From 0bf7a8de49f840c34f5f90cceb6301a685e934df Mon Sep 17 00:00:00 2001 From: Mark Powers Date: Fri, 31 Jul 2020 09:02:22 -0400 Subject: [PATCH] Initial commit --- .gitattributes | 2 + 9781484257920.jpg | Bin 0 -> 24801 bytes Ch01/apd.sensors-chapter01/Pipfile | 20 + Ch01/apd.sensors-chapter01/Pipfile.lock | 535 +++ Ch01/apd.sensors-chapter01/sensors.py | 60 + Ch01/figure01-01-fizzbuzz.ipynb | 158 + Ch01/figure01-04-versioninfo.ipynb | 58 + Ch01/figure01-05-ip-address.ipynb | 137 + Ch01/figure01-06-ip-address-joined.ipynb | 85 + Ch01/figure01-07-multiple-datapoints.ipynb | 154 + ...1-08-temperature_and_humidity_remote.ipynb | 54 + ...01-09-temperature_and_humidity_local.ipynb | 43 + Ch01/listing01-01-fizzbuzz.py | 9 + Ch01/listing01-02-fizzbuzz_blank_lines.py | 11 + Ch01/listing01-03-fizzbuzz_with_breakpoint.py | 11 + Ch01/listing01-04-converted.py | 51 + Ch01/listing01-05-serverstatus.py | 27 + Ch01/listing01-06-sensors_argv.py | 63 + Ch01/listing01-07-sensors_argparse.py | 55 + Ch01/listing01-08-sensors_click.py | 47 + Ch01/listing01-09-sensors_click_bold.py | 39 + Ch01/listing01-10-final-sensors.py | 59 + Ch02/apd.sensors-chapter02-ex01/Pipfile | 18 + Ch02/apd.sensors-chapter02-ex01/Pipfile.lock | 494 +++ Ch02/apd.sensors-chapter02-ex01/sensors.py | 59 + .../tests/__init__.py | 0 .../tests/test_sensors.py | 4 + .../.pre-commit-config.yaml | 23 + Ch02/apd.sensors-chapter02-pyi/Pipfile | 29 + Ch02/apd.sensors-chapter02-pyi/Pipfile.lock | 866 +++++ Ch02/apd.sensors-chapter02-pyi/pytest.ini | 3 + Ch02/apd.sensors-chapter02-pyi/sensors.py | 192 + Ch02/apd.sensors-chapter02-pyi/sensors.pyi | 59 + Ch02/apd.sensors-chapter02-pyi/setup.cfg | 5 + .../tests/__init__.py | 0 .../tests/test_acstatus.py | 55 + .../tests/test_cpuusage.py | 45 + .../tests/test_dht.py | 66 + .../tests/test_ipaddresses.py | 59 + .../tests/test_pythonversion.py | 61 + .../tests/test_ramusage.py | 47 + .../tests/test_sensors.py | 17 + Ch02/listing02-01-temperature_sensor.py | 73 + .../listing02-02-temperature_conversion.ipynb | 85 + ...temperature_conversion_invalid_types.ipynb | 128 + Ch02/listing02-04-temperature.py | 5 + .../__pycache__/temperature.cpython-37.pyc | Bin 0 -> 472 bytes .../temperature.py | 5 + .../test_unittest.py | 22 + .../temperature.py | 5 + .../test_pytest.py | 23 + Ch02/listing02-07-sensors.py | 198 ++ Ch02/listing02-08/Pipfile | 21 + Ch02/listing02-08/Pipfile.lock | 586 +++ Ch02/listing02-08/sensors.py | 178 + Ch02/listing02-08/tests/__init__.py | 0 Ch02/listing02-08/tests/test_pythonversion.py | 32 + Ch02/listing02-08/tests/test_sensors.py | 17 + Ch02/listing02-09-sensors,cover.py | 178 + Ch02/listing02-10/.pre-commit-config.yaml | 23 + Ch02/listing02-10/Pipfile | 29 + Ch02/listing02-10/Pipfile.lock | 866 +++++ Ch02/listing02-10/incorrect.py | 4 + Ch02/listing02-10/pytest.ini | 3 + Ch02/listing02-10/sensors.py | 198 ++ Ch02/listing02-10/setup.cfg | 5 + Ch02/listing02-10/tests/__init__.py | 0 Ch02/listing02-10/tests/test_acstatus.py | 55 + Ch02/listing02-10/tests/test_cpuusage.py | 45 + Ch02/listing02-10/tests/test_dht.py | 66 + Ch02/listing02-10/tests/test_ipaddresses.py | 59 + Ch02/listing02-10/tests/test_pythonversion.py | 61 + Ch02/listing02-10/tests/test_ramusage.py | 47 + Ch02/listing02-10/tests/test_sensors.py | 17 + Ch02/listing02-11/.pre-commit-config.yaml | 23 + Ch02/listing02-11/Pipfile | 29 + Ch02/listing02-11/Pipfile.lock | 866 +++++ Ch02/listing02-11/pytest.ini | 3 + Ch02/listing02-11/sensors.py | 198 ++ Ch02/listing02-11/setup.cfg | 5 + Ch02/listing02-11/tests/__init__.py | 0 Ch02/listing02-11/tests/test_acstatus.py | 55 + Ch02/listing02-11/tests/test_cpuusage.py | 45 + Ch02/listing02-11/tests/test_dht.py | 66 + Ch02/listing02-11/tests/test_ipaddresses.py | 59 + Ch02/listing02-11/tests/test_pythonversion.py | 61 + Ch02/listing02-11/tests/test_ramusage.py | 47 + Ch02/listing02-11/tests/test_sensors.py | 17 + Ch02/listing02-12/.pre-commit-config.yaml | 23 + Ch02/listing02-12/Pipfile | 29 + Ch02/listing02-12/Pipfile.lock | 866 +++++ Ch02/listing02-12/pytest.ini | 3 + Ch02/listing02-12/sensors.py | 192 + Ch02/listing02-12/sensors.pyi | 59 + Ch02/listing02-12/setup.cfg | 5 + Ch02/listing02-12/tests/__init__.py | 0 Ch02/listing02-12/tests/test_acstatus.py | 55 + Ch02/listing02-12/tests/test_cpuusage.py | 45 + Ch02/listing02-12/tests/test_dht.py | 66 + Ch02/listing02-12/tests/test_ipaddresses.py | 59 + Ch02/listing02-12/tests/test_pythonversion.py | 61 + Ch02/listing02-12/tests/test_ramusage.py | 47 + Ch02/listing02-12/tests/test_sensors.py | 17 + Ch02/listing02-13-.pre-commit-config.yaml | 23 + .../.pre-commit-config.yaml | 23 + Ch03/apd.sensors-chapter03/CHANGES.md | 5 + Ch03/apd.sensors-chapter03/LICENCE | 21 + Ch03/apd.sensors-chapter03/Pipfile | 29 + Ch03/apd.sensors-chapter03/Pipfile.lock | 897 +++++ Ch03/apd.sensors-chapter03/README.md | 32 + Ch03/apd.sensors-chapter03/pytest.ini | 3 + Ch03/apd.sensors-chapter03/setup.cfg | 38 + Ch03/apd.sensors-chapter03/setup.py | 3 + .../src/apd/sensors/__init__.py | 1 + .../src/apd/sensors/py.typed | 0 .../src/apd/sensors/sensors.py | 198 ++ Ch03/apd.sensors-chapter03/tests/__init__.py | 0 .../tests/test_acstatus.py | 55 + .../tests/test_cpuusage.py | 45 + Ch03/apd.sensors-chapter03/tests/test_dht.py | 66 + .../tests/test_ipaddresses.py | 59 + .../tests/test_pythonversion.py | 61 + .../tests/test_ramusage.py | 47 + .../tests/test_sensors.py | 17 + Ch03/listing03-01-setup.cfg | 30 + Ch03/listing03-02-indexserver.service | 12 + Ch03/listing03-03-cheatsheet.md | 48 + Ch03/listing03-04-cheatsheet.rst | 77 + Ch03/listing03-05-readme.md | 32 + .../.pre-commit-config.yaml | 23 + .../CHANGES.md | 5 + .../LICENCE | 21 + .../Pipfile | 29 + .../Pipfile.lock | 739 ++++ .../README.md | 32 + .../pyproject.toml | 5 + .../pytest.ini | 3 + .../setup.cfg | 48 + .../setup.py | 3 + .../src/apd/sensors/__init__.py | 1 + .../src/apd/sensors/cli.py | 104 + .../src/apd/sensors/sensors.py | 170 + .../tests/__init__.py | 0 .../tests/test_acstatus.py | 55 + .../tests/test_cpuusage.py | 45 + .../tests/test_dht.py | 66 + .../tests/test_ipaddresses.py | 59 + .../tests/test_pythonversion.py | 61 + .../tests/test_ramusage.py | 47 + .../tests/test_sensors.py | 64 + .../.pre-commit-config.yaml | 23 + .../CHANGES.md | 5 + .../LICENCE | 21 + .../Pipfile | 29 + .../Pipfile.lock | 739 ++++ .../README.md | 32 + .../pyproject.toml | 5 + .../pytest.ini | 3 + .../setup.cfg | 35 + .../setup.py | 3 + .../src/apd/sensors/__init__.py | 1 + .../src/apd/sensors/sensors.py | 248 ++ .../tests/__init__.py | 0 .../tests/test_acstatus.py | 55 + .../tests/test_cpuusage.py | 45 + .../tests/test_dht.py | 66 + .../tests/test_ipaddresses.py | 59 + .../tests/test_pythonversion.py | 61 + .../tests/test_ramusage.py | 47 + .../tests/test_sensors.py | 16 + .../.pre-commit-config.yaml | 23 + .../CHANGES.md | 5 + .../LICENCE | 21 + .../Pipfile | 29 + .../Pipfile.lock | 897 +++++ .../README.md | 32 + .../config.cfg | 32 + .../pytest.ini | 3 + .../setup.cfg | 59 + .../setup.py | 3 + .../src/apd/sensors/__init__.py | 1 + .../src/apd/sensors/cli.py | 142 + .../src/apd/sensors/config_path_utils.py | 207 ++ .../src/apd/sensors/py.typed | 0 .../src/apd/sensors/sensors.py | 191 + .../tests/default_test_config.cfg | 10 + .../tests/test_acstatus.py | 55 + .../tests/test_cpuusage.py | 45 + .../tests/test_dht.py | 66 + .../tests/test_ipaddresses.py | 59 + .../tests/test_pythonversion.py | 61 + .../tests/test_ramusage.py | 47 + .../tests/test_sensors.py | 113 + .../.pre-commit-config.yaml | 23 + .../CHANGES.md | 5 + .../LICENCE | 21 + .../Pipfile | 29 + .../Pipfile.lock | 897 +++++ .../README.md | 32 + .../pytest.ini | 3 + .../setup.cfg | 59 + .../setup.py | 3 + .../src/apd/sensors/__init__.py | 1 + .../src/apd/sensors/cli.py | 119 + .../src/apd/sensors/py.typed | 0 .../src/apd/sensors/sensors.py | 191 + .../tests/test_acstatus.py | 55 + .../tests/test_cpuusage.py | 45 + .../tests/test_dht.py | 66 + .../tests/test_ipaddresses.py | 59 + .../tests/test_pythonversion.py | 61 + .../tests/test_ramusage.py | 47 + .../tests/test_sensors.py | 113 + .../.pre-commit-config.yaml | 23 + Ch04/apd.sensors-chapter04-ex01/CHANGES.md | 5 + Ch04/apd.sensors-chapter04-ex01/LICENCE | 21 + Ch04/apd.sensors-chapter04-ex01/Pipfile | 29 + Ch04/apd.sensors-chapter04-ex01/Pipfile.lock | 739 ++++ Ch04/apd.sensors-chapter04-ex01/README.md | 32 + .../apd.sensors-chapter04-ex01/pyproject.toml | 5 + Ch04/apd.sensors-chapter04-ex01/pytest.ini | 3 + Ch04/apd.sensors-chapter04-ex01/setup.cfg | 48 + Ch04/apd.sensors-chapter04-ex01/setup.py | 3 + .../src/apd/sensors/__init__.py | 1 + .../src/apd/sensors/cli.py | 126 + .../src/apd/sensors/sensors.py | 170 + .../tests/__init__.py | 0 .../tests/test_acstatus.py | 55 + .../tests/test_cpuusage.py | 45 + .../tests/test_dht.py | 66 + .../tests/test_ipaddresses.py | 59 + .../tests/test_pythonversion.py | 61 + .../tests/test_ramusage.py | 47 + .../tests/test_sensors.py | 64 + .../.pre-commit-config.yaml | 26 + Ch04/apd.sensors-chapter04/CHANGES.md | 5 + Ch04/apd.sensors-chapter04/LICENCE | 19 + Ch04/apd.sensors-chapter04/Pipfile | 31 + Ch04/apd.sensors-chapter04/Pipfile.lock | 924 +++++ Ch04/apd.sensors-chapter04/README.md | 32 + .../plugins/apd.sunnyboy_solar/pyproject.toml | 5 + .../plugins/apd.sunnyboy_solar/setup.cfg | 33 + .../plugins/apd.sunnyboy_solar/setup.py | 3 + .../src/apd/sunnyboy_solar/Pipfile | 0 .../src/apd/sunnyboy_solar/__init__.py | 1 + .../src/apd/sunnyboy_solar/sensor.py | 48 + Ch04/apd.sensors-chapter04/pytest.ini | 3 + Ch04/apd.sensors-chapter04/setup.cfg | 62 + Ch04/apd.sensors-chapter04/setup.py | 3 + .../src/apd/sensors/__init__.py | 1 + .../src/apd/sensors/cli.py | 74 + .../src/apd/sensors/py.typed | 0 .../src/apd/sensors/sensors.py | 181 + .../src/apd/sensors/wsgi.py | 31 + .../tests/test_acstatus.py | 55 + .../tests/test_api_server.py | 25 + .../tests/test_cpuusage.py | 45 + Ch04/apd.sensors-chapter04/tests/test_dht.py | 66 + .../tests/test_ipaddresses.py | 59 + .../tests/test_pythonversion.py | 61 + .../tests/test_ramusage.py | 47 + .../tests/test_sensors.py | 59 + Ch04/listing04-01-solar_prototype.ipynb | 104 + .../.pre-commit-config.yaml | 26 + .../CHANGES.md | 29 + Ch05/apd.sensors-chapter05-pintbased/LICENCE | 19 + Ch05/apd.sensors-chapter05-pintbased/Pipfile | 34 + .../Pipfile.lock | 1018 ++++++ .../apd.sensors-chapter05-pintbased/README.md | 66 + .../plugins/apd.sunnyboy_solar/pyproject.toml | 5 + .../plugins/apd.sunnyboy_solar/setup.cfg | 33 + .../plugins/apd.sunnyboy_solar/setup.py | 3 + .../src/apd/sunnyboy_solar/Pipfile | 0 .../src/apd/sunnyboy_solar/__init__.py | 1 + .../src/apd/sunnyboy_solar/sensor.py | 69 + .../pytest.ini | 3 + .../apd.sensors-chapter05-pintbased/setup.cfg | 66 + Ch05/apd.sensors-chapter05-pintbased/setup.py | 3 + .../src/apd/sensors/__init__.py | 1 + .../src/apd/sensors/base.py | 51 + .../src/apd/sensors/cli.py | 74 + .../src/apd/sensors/py.typed | 0 .../src/apd/sensors/sensors.py | 192 + .../src/apd/sensors/wsgi/__init__.py | 12 + .../src/apd/sensors/wsgi/base.py | 43 + .../src/apd/sensors/wsgi/serve.py | 10 + .../src/apd/sensors/wsgi/v10.py | 26 + .../src/apd/sensors/wsgi/v20.py | 32 + .../tests/test_acstatus.py | 55 + .../tests/test_api_server.py | 105 + .../tests/test_cpuusage.py | 45 + .../tests/test_dht.py | 67 + .../tests/test_ipaddresses.py | 59 + .../tests/test_pythonversion.py | 61 + .../tests/test_ramusage.py | 47 + .../tests/test_sensors.py | 88 + .../.pre-commit-config.yaml | 26 + Ch05/apd.sensors-chapter05/CHANGES.md | 29 + Ch05/apd.sensors-chapter05/LICENCE | 19 + Ch05/apd.sensors-chapter05/Pipfile | 34 + Ch05/apd.sensors-chapter05/Pipfile.lock | 1018 ++++++ Ch05/apd.sensors-chapter05/README.md | 66 + .../plugins/apd.sunnyboy_solar/pyproject.toml | 5 + .../plugins/apd.sunnyboy_solar/setup.cfg | 33 + .../plugins/apd.sunnyboy_solar/setup.py | 3 + .../src/apd/sunnyboy_solar/Pipfile | 0 .../src/apd/sunnyboy_solar/__init__.py | 1 + .../src/apd/sunnyboy_solar/sensor.py | 69 + Ch05/apd.sensors-chapter05/pytest.ini | 3 + Ch05/apd.sensors-chapter05/setup.cfg | 66 + Ch05/apd.sensors-chapter05/setup.py | 3 + .../src/apd/sensors/__init__.py | 1 + .../src/apd/sensors/base.py | 51 + .../src/apd/sensors/cli.py | 74 + .../src/apd/sensors/py.typed | 0 .../src/apd/sensors/sensors.py | 192 + .../src/apd/sensors/wsgi/__init__.py | 12 + .../src/apd/sensors/wsgi/base.py | 43 + .../src/apd/sensors/wsgi/serve.py | 10 + .../src/apd/sensors/wsgi/v10.py | 26 + .../src/apd/sensors/wsgi/v20.py | 32 + .../tests/test_acstatus.py | 55 + .../tests/test_api_server.py | 105 + .../tests/test_cpuusage.py | 45 + Ch05/apd.sensors-chapter05/tests/test_dht.py | 67 + .../tests/test_ipaddresses.py | 59 + .../tests/test_pythonversion.py | 61 + .../tests/test_ramusage.py | 47 + .../tests/test_sensors.py | 88 + Ch05/listing05-01-helloworld.py | 13 + Ch05/listing05-02-helloworld-incremental.py | 19 + Ch05/listing05-03-apd_sensors_wsgi.py | 30 + Ch05/listing05-08-typing.py | 33 + Ch06/apd.aggregation-chapter06/.coveragerc | 3 + .../.pre-commit-config.yaml | 26 + Ch06/apd.aggregation-chapter06/CHANGES.md | 5 + Ch06/apd.aggregation-chapter06/LICENCE | 31 + Ch06/apd.aggregation-chapter06/Pipfile | 22 + Ch06/apd.aggregation-chapter06/Pipfile.lock | 466 +++ Ch06/apd.aggregation-chapter06/README.md | 4 + Ch06/apd.aggregation-chapter06/pyproject.toml | 5 + Ch06/apd.aggregation-chapter06/setup.cfg | 44 + Ch06/apd.aggregation-chapter06/setup.py | 3 + .../src/apd/aggregation/__init__.py | 1 + .../src/apd/aggregation/alembic/README | 12 + .../src/apd/aggregation/alembic/env.py | 73 + .../apd/aggregation/alembic/script.py.mako | 24 + ...6d2eacd5da3f_create_sensor_values_table.py | 31 + .../src/apd/aggregation/cli.py | 52 + .../src/apd/aggregation/collect.py | 63 + .../src/apd/aggregation/database.py | 31 + .../tests/__init__.py | 0 .../tests/conftest.py | 0 Ch06/chapter06-ex1-generators.py | 27 + Ch06/listing06-03-descriptors.py | 27 + .../apd.aggregation-chapter07-aio/.coveragerc | 3 + .../.pre-commit-config.yaml | 26 + Ch07/apd.aggregation-chapter07-aio/CHANGES.md | 5 + Ch07/apd.aggregation-chapter07-aio/LICENCE | 31 + Ch07/apd.aggregation-chapter07-aio/Pipfile | 22 + .../Pipfile.lock | 466 +++ Ch07/apd.aggregation-chapter07-aio/README.md | 4 + .../pyproject.toml | 5 + Ch07/apd.aggregation-chapter07-aio/setup.cfg | 44 + Ch07/apd.aggregation-chapter07-aio/setup.py | 3 + .../src/apd/aggregation/__init__.py | 1 + .../src/apd/aggregation/alembic/README | 12 + .../src/apd/aggregation/alembic/env.py | 73 + .../apd/aggregation/alembic/script.py.mako | 24 + ...6d2eacd5da3f_create_sensor_values_table.py | 31 + .../src/apd/aggregation/cli.py | 52 + .../src/apd/aggregation/collect.py | 78 + .../src/apd/aggregation/database.py | 31 + .../tests/__init__.py | 0 .../tests/conftest.py | 0 .../.coveragerc | 3 + .../.pre-commit-config.yaml | 26 + .../CHANGES.md | 5 + .../LICENCE | 31 + .../Pipfile | 22 + .../Pipfile.lock | 466 +++ .../README.md | 4 + .../pyproject.toml | 5 + .../setup.cfg | 44 + .../setup.py | 3 + .../src/apd/aggregation/__init__.py | 1 + .../src/apd/aggregation/alembic/README | 12 + .../src/apd/aggregation/alembic/env.py | 73 + .../apd/aggregation/alembic/script.py.mako | 24 + ...6d2eacd5da3f_create_sensor_values_table.py | 31 + .../src/apd/aggregation/cli.py | 52 + .../src/apd/aggregation/collect.py | 79 + .../src/apd/aggregation/database.py | 31 + .../tests/__init__.py | 0 .../tests/conftest.py | 0 .../.coveragerc | 3 + .../.pre-commit-config.yaml | 26 + .../apd.aggregation-chapter07-nbio/CHANGES.md | 5 + Ch07/apd.aggregation-chapter07-nbio/LICENCE | 31 + Ch07/apd.aggregation-chapter07-nbio/Pipfile | 22 + .../Pipfile.lock | 466 +++ Ch07/apd.aggregation-chapter07-nbio/README.md | 4 + .../pyproject.toml | 5 + Ch07/apd.aggregation-chapter07-nbio/setup.cfg | 48 + Ch07/apd.aggregation-chapter07-nbio/setup.py | 3 + .../src/apd/aggregation/__init__.py | 1 + .../src/apd/aggregation/alembic/README | 12 + .../src/apd/aggregation/alembic/env.py | 73 + .../apd/aggregation/alembic/script.py.mako | 24 + ...6d2eacd5da3f_create_sensor_values_table.py | 31 + .../src/apd/aggregation/cli.py | 52 + .../src/apd/aggregation/collect.py | 125 + .../src/apd/aggregation/database.py | 31 + .../tests/__init__.py | 0 .../tests/conftest.py | 0 .../.coveragerc | 3 + .../.pre-commit-config.yaml | 26 + .../CHANGES.md | 5 + .../LICENCE | 31 + .../Pipfile | 22 + .../Pipfile.lock | 466 +++ .../README.md | 4 + .../pyproject.toml | 5 + .../setup.cfg | 44 + .../setup.py | 3 + .../src/apd/aggregation/__init__.py | 1 + .../src/apd/aggregation/alembic/README | 12 + .../src/apd/aggregation/alembic/env.py | 73 + .../apd/aggregation/alembic/script.py.mako | 24 + ...6d2eacd5da3f_create_sensor_values_table.py | 31 + .../src/apd/aggregation/cli.py | 52 + .../src/apd/aggregation/collect.py | 102 + .../src/apd/aggregation/database.py | 31 + .../tests/__init__.py | 0 .../tests/conftest.py | 0 Ch07/listing07-01-nbioexample.py | 79 + Ch07/listing07-02-increment_dis.py | 15 + Ch07/listing07-05-threadpools-and-queues.py | 80 + Ch07/listing07-06-reentrantlocks.py | 24 + Ch07/listing07-07-conditions.py | 66 + Ch07/listing07-08-barriers.py | 28 + Ch07/listing07-09-events.py | 32 + Ch07/listing07-10-semaphore.py | 29 + Ch07/listing07-11-async-increment.py | 17 + Ch07/listing07-12-list_of_awaitables.py | 20 + Ch07/listing07-13-awaitable_list.py | 20 + Ch07/listing07-14-async_for.py | 21 + Ch07/listing07-15-awaitable_gather.py | 23 + Ch07/listing07-16-async_increment_unsafe.py | 22 + Ch07/listing07-17-async_increment_safe.py | 25 + Ch08/apd.aggregation-chapter08/.coveragerc | 3 + .../.pre-commit-config.yaml | 26 + Ch08/apd.aggregation-chapter08/CHANGES.md | 5 + Ch08/apd.aggregation-chapter08/LICENCE | 31 + Ch08/apd.aggregation-chapter08/Pipfile | 25 + Ch08/apd.aggregation-chapter08/Pipfile.lock | 751 ++++ Ch08/apd.aggregation-chapter08/README.md | 4 + Ch08/apd.aggregation-chapter08/pyproject.toml | 5 + Ch08/apd.aggregation-chapter08/pytest.ini | 3 + Ch08/apd.aggregation-chapter08/setup.cfg | 56 + Ch08/apd.aggregation-chapter08/setup.py | 3 + .../src/apd/aggregation/__init__.py | 1 + .../src/apd/aggregation/alembic/README | 12 + .../src/apd/aggregation/alembic/env.py | 80 + .../apd/aggregation/alembic/script.py.mako | 24 + .../4b2df8a6e1ce_add_indexes_to_datapoints.py | 32 + .../6962f8455a6d_add_daily_summary_view.py | 38 + ...6d2eacd5da3f_create_sensor_values_table.py | 31 + ...cf6a178f_add_deployment_id_to_datapoint.py | 34 + .../src/apd/aggregation/cli.py | 52 + .../src/apd/aggregation/collect.py | 93 + .../src/apd/aggregation/database.py | 102 + .../src/apd/aggregation/query.py | 38 + .../tests/__init__.py | 0 .../tests/conftest.py | 120 + .../tests/test_http_get.py | 154 + .../tests/test_sensor_aggregation.py | 174 + .../.pre-commit-config.yaml | 26 + Ch08/apd.sensors-chapter08/CHANGES.md | 29 + Ch08/apd.sensors-chapter08/LICENCE | 19 + Ch08/apd.sensors-chapter08/Pipfile | 34 + Ch08/apd.sensors-chapter08/Pipfile.lock | 872 +++++ Ch08/apd.sensors-chapter08/README.md | 66 + .../plugins/apd.sunnyboy_solar/pyproject.toml | 5 + .../plugins/apd.sunnyboy_solar/setup.cfg | 33 + .../plugins/apd.sunnyboy_solar/setup.py | 3 + .../src/apd/sunnyboy_solar/Pipfile | 0 .../src/apd/sunnyboy_solar/__init__.py | 1 + .../src/apd/sunnyboy_solar/sensor.py | 69 + Ch08/apd.sensors-chapter08/pyproject.toml | 5 + Ch08/apd.sensors-chapter08/pytest.ini | 3 + Ch08/apd.sensors-chapter08/setup.cfg | 66 + Ch08/apd.sensors-chapter08/setup.py | 3 + .../src/apd/sensors/__init__.py | 1 + .../src/apd/sensors/base.py | 61 + .../src/apd/sensors/cli.py | 70 + .../src/apd/sensors/py.typed | 0 .../src/apd/sensors/sensors.py | 196 + .../src/apd/sensors/wsgi/__init__.py | 14 + .../src/apd/sensors/wsgi/base.py | 43 + .../src/apd/sensors/wsgi/serve.py | 10 + .../src/apd/sensors/wsgi/v10.py | 26 + .../src/apd/sensors/wsgi/v20.py | 32 + .../src/apd/sensors/wsgi/v21.py | 39 + Ch08/apd.sensors-chapter08/tests/__init__.py | 0 .../tests/test_acstatus.py | 55 + .../tests/test_api_server.py | 148 + .../tests/test_cpuusage.py | 45 + Ch08/apd.sensors-chapter08/tests/test_dht.py | 67 + .../tests/test_ipaddresses.py | 59 + .../tests/test_pythonversion.py | 61 + .../tests/test_ramusage.py | 47 + .../tests/test_sensors.py | 87 + Ch08/listing08-01-httpfixture.py | 45 + Ch08/listing08-02-config_fixture.py | 61 + Ch08/listing08-03-mocking.py | 33 + Ch08/listing08-04-manual_mocks.py | 48 + Ch08/listing08-05-apdaggregation_mocks.py | 46 + Ch08/listing08-06-classic_sqlalchemy.py | 27 + Ch08/listing08-07-datapoint_with_asdict.py | 18 + Ch08/listing08-08-database_integration.py | 25 + Ch08/listing08-09-full_datapoint.py | 22 + Ch08/listing08-10-comparator.py | 76 + Ch08/listing08-11-django.py | 19 + Ch08/listing08-12-migration.py | 36 + Ch08/listing08-13-env.py | 31 + .../.coveragerc | 3 + .../.pre-commit-config.yaml | 26 + .../apd.aggregation-chapter09-ex01/CHANGES.md | 5 + Ch09/apd.aggregation-chapter09-ex01/LICENCE | 31 + Ch09/apd.aggregation-chapter09-ex01/Pipfile | 25 + .../Pipfile.lock | 751 ++++ Ch09/apd.aggregation-chapter09-ex01/README.md | 4 + .../pyproject.toml | 5 + .../apd.aggregation-chapter09-ex01/pytest.ini | 3 + Ch09/apd.aggregation-chapter09-ex01/setup.cfg | 63 + Ch09/apd.aggregation-chapter09-ex01/setup.py | 3 + .../src/apd/aggregation/__init__.py | 1 + .../src/apd/aggregation/alembic/README | 12 + .../src/apd/aggregation/alembic/env.py | 80 + .../apd/aggregation/alembic/script.py.mako | 24 + .../4b2df8a6e1ce_add_indexes_to_datapoints.py | 32 + .../6962f8455a6d_add_daily_summary_view.py | 38 + ...6d2eacd5da3f_create_sensor_values_table.py | 31 + ...cf6a178f_add_deployment_id_to_datapoint.py | 34 + .../src/apd/aggregation/analysis.py | 148 + .../src/apd/aggregation/cli.py | 52 + .../src/apd/aggregation/collect.py | 93 + .../src/apd/aggregation/database.py | 102 + .../src/apd/aggregation/query.py | 129 + .../tests/__init__.py | 0 .../tests/conftest.py | 123 + .../tests/test_analysis.py | 283 ++ .../tests/test_http_get.py | 154 + .../tests/test_query.py | 111 + .../tests/test_sensor_aggregation.py | 174 + .../.coveragerc | 3 + .../.pre-commit-config.yaml | 26 + .../apd.aggregation-chapter09-ex02/CHANGES.md | 5 + Ch09/apd.aggregation-chapter09-ex02/LICENCE | 31 + Ch09/apd.aggregation-chapter09-ex02/Pipfile | 25 + .../Pipfile.lock | 751 ++++ Ch09/apd.aggregation-chapter09-ex02/README.md | 4 + .../pyproject.toml | 5 + .../apd.aggregation-chapter09-ex02/pytest.ini | 3 + Ch09/apd.aggregation-chapter09-ex02/setup.cfg | 76 + Ch09/apd.aggregation-chapter09-ex02/setup.py | 3 + .../src/apd/aggregation/__init__.py | 1 + .../src/apd/aggregation/alembic/README | 12 + .../src/apd/aggregation/alembic/env.py | 80 + .../apd/aggregation/alembic/script.py.mako | 24 + .../4b2df8a6e1ce_add_indexes_to_datapoints.py | 32 + .../6962f8455a6d_add_daily_summary_view.py | 38 + ...6d2eacd5da3f_create_sensor_values_table.py | 31 + ...cf6a178f_add_deployment_id_to_datapoint.py | 34 + .../src/apd/aggregation/analysis.py | 226 ++ .../src/apd/aggregation/cli.py | 52 + .../src/apd/aggregation/collect.py | 93 + .../src/apd/aggregation/database.py | 102 + .../src/apd/aggregation/query.py | 129 + .../tests/__init__.py | 0 .../tests/conftest.py | 123 + .../tests/test_analysis.py | 283 ++ .../tests/test_http_get.py | 154 + .../tests/test_query.py | 111 + .../tests/test_sensor_aggregation.py | 174 + .../.coveragerc | 3 + .../.pre-commit-config.yaml | 26 + .../CHANGES.md | 5 + .../LICENCE | 31 + .../Pipfile | 25 + .../Pipfile.lock | 751 ++++ .../README.md | 4 + .../pyproject.toml | 5 + .../pytest.ini | 3 + .../setup.cfg | 77 + .../setup.py | 3 + .../src/apd/aggregation/__init__.py | 1 + .../src/apd/aggregation/alembic/README | 12 + .../src/apd/aggregation/alembic/env.py | 80 + .../apd/aggregation/alembic/script.py.mako | 24 + .../4b2df8a6e1ce_add_indexes_to_datapoints.py | 32 + .../6962f8455a6d_add_daily_summary_view.py | 38 + ...6d2eacd5da3f_create_sensor_values_table.py | 31 + .../d8cdc709086b_add_deployment_table.py | 32 + ...cf6a178f_add_deployment_id_to_datapoint.py | 34 + .../src/apd/aggregation/analysis.py | 426 +++ .../src/apd/aggregation/cli.py | 184 + .../src/apd/aggregation/collect.py | 112 + .../src/apd/aggregation/database.py | 129 + .../src/apd/aggregation/query.py | 146 + .../src/apd/aggregation/utils.py | 27 + .../tests/__init__.py | 0 .../tests/conftest.py | 124 + .../tests/test_analysis.py | 423 +++ .../tests/test_cli.py | 155 + .../tests/test_http_get.py | 188 + .../tests/test_query.py | 111 + .../tests/test_sensor_aggregation.py | 199 ++ .../.coveragerc | 3 + .../.pre-commit-config.yaml | 26 + .../apd.aggregation-chapter09-ex03/CHANGES.md | 5 + Ch09/apd.aggregation-chapter09-ex03/LICENCE | 31 + Ch09/apd.aggregation-chapter09-ex03/Pipfile | 25 + .../Pipfile.lock | 751 ++++ Ch09/apd.aggregation-chapter09-ex03/README.md | 4 + .../pyproject.toml | 5 + .../apd.aggregation-chapter09-ex03/pytest.ini | 3 + Ch09/apd.aggregation-chapter09-ex03/setup.cfg | 77 + Ch09/apd.aggregation-chapter09-ex03/setup.py | 3 + .../src/apd/aggregation/__init__.py | 1 + .../src/apd/aggregation/alembic/README | 12 + .../src/apd/aggregation/alembic/env.py | 80 + .../apd/aggregation/alembic/script.py.mako | 24 + .../4b2df8a6e1ce_add_indexes_to_datapoints.py | 32 + .../6962f8455a6d_add_daily_summary_view.py | 38 + ...6d2eacd5da3f_create_sensor_values_table.py | 31 + .../d8cdc709086b_add_deployment_table.py | 32 + ...cf6a178f_add_deployment_id_to_datapoint.py | 34 + .../src/apd/aggregation/analysis.py | 381 ++ .../src/apd/aggregation/cli.py | 184 + .../src/apd/aggregation/collect.py | 112 + .../src/apd/aggregation/database.py | 129 + .../src/apd/aggregation/query.py | 146 + .../src/apd/aggregation/utils.py | 27 + .../tests/__init__.py | 0 .../tests/conftest.py | 124 + .../tests/test_analysis.py | 423 +++ .../tests/test_cli.py | 155 + .../tests/test_http_get.py | 188 + .../tests/test_query.py | 111 + .../tests/test_sensor_aggregation.py | 199 ++ Ch09/apd.aggregation-chapter09/.coveragerc | 3 + .../.pre-commit-config.yaml | 26 + Ch09/apd.aggregation-chapter09/CHANGES.md | 5 + .../Connect to database.ipynb | 577 +++ Ch09/apd.aggregation-chapter09/LICENCE | 31 + Ch09/apd.aggregation-chapter09/Mapping.ipynb | 254 ++ Ch09/apd.aggregation-chapter09/Pipfile | 25 + Ch09/apd.aggregation-chapter09/Pipfile.lock | 751 ++++ Ch09/apd.aggregation-chapter09/README.md | 4 + Ch09/apd.aggregation-chapter09/pyproject.toml | 5 + Ch09/apd.aggregation-chapter09/pytest.ini | 3 + Ch09/apd.aggregation-chapter09/setup.cfg | 77 + Ch09/apd.aggregation-chapter09/setup.py | 3 + .../src/apd/aggregation/__init__.py | 1 + .../src/apd/aggregation/alembic/README | 12 + .../src/apd/aggregation/alembic/env.py | 80 + .../apd/aggregation/alembic/script.py.mako | 24 + .../4b2df8a6e1ce_add_indexes_to_datapoints.py | 32 + .../6962f8455a6d_add_daily_summary_view.py | 38 + ...6d2eacd5da3f_create_sensor_values_table.py | 31 + .../d8cdc709086b_add_deployment_table.py | 32 + ...cf6a178f_add_deployment_id_to_datapoint.py | 34 + .../src/apd/aggregation/analysis.py | 381 ++ .../src/apd/aggregation/cli.py | 184 + .../src/apd/aggregation/collect.py | 112 + .../src/apd/aggregation/database.py | 129 + .../src/apd/aggregation/query.py | 148 + .../src/apd/aggregation/utils.py | 27 + .../tests/__init__.py | 0 .../tests/conftest.py | 124 + .../tests/test_analysis.py | 423 +++ .../tests/test_cli.py | 155 + .../tests/test_http_get.py | 188 + .../tests/test_query.py | 111 + .../tests/test_sensor_aggregation.py | 199 ++ Ch09/chapter09-analysis.ipynb | 577 +++ Ch09/chapter09-database.ipynb | 577 +++ Ch09/chapter09-mapping.ipynb | 254 ++ Ch09/listing09-01-query_contextmanager.py | 27 + Ch09/listing09-02-getdata.py | 15 + Ch09/listing09-03-count-datapoints.py | 8 + Ch09/listing09-04-plot.py | 17 + Ch09/listing09-05-filtering.py | 13 + Ch09/listing09-06-multiplot.py | 19 + Ch09/listing09-07-more_filtering.py | 21 + Ch09/listing09-08-plot_with_helpers.py | 20 + Ch09/listing09-09-async_groupby.py | 67 + Ch09/listing09-10-new_get_data.py | 35 + Ch09/listing09-11-database_fixtures.py | 70 + Ch09/listing09-12-parameterisation.py | 34 + Ch09/listing09-13-configs.py | 50 + Ch09/listing09-14-two_plots.py | 19 + Ch09/listing09-15-temperature_cleaner.py | 51 + Ch09/listing09-16-chart_grid.py | 27 + Ch09/listing09-17-sync_from_async.py | 10 + Ch09/listing09-18-wrap_coroutine.py | 23 + Ch09/listing09-19-interactable.py | 39 + Ch09/listing09-20-genericised_plots.py | 34 + Ch09/listing09-21-contours_and_scatter.py | 14 + Ch09/listing09-22-get_data_config.py | 19 + Ch09/listing09-23-generic_config.py | 36 + Ch09/listing09-24-custom_map_chart.py | 36 + .../.coveragerc | 3 + .../.pre-commit-config.yaml | 26 + .../apd.aggregation-chapter10-ex01/CHANGES.md | 5 + .../Connect to database.ipynb | 577 +++ Ch10/apd.aggregation-chapter10-ex01/LICENCE | 31 + .../Mapping.ipynb | 254 ++ Ch10/apd.aggregation-chapter10-ex01/Pipfile | 25 + .../Pipfile.lock | 751 ++++ Ch10/apd.aggregation-chapter10-ex01/README.md | 4 + .../pyproject.toml | 5 + .../apd.aggregation-chapter10-ex01/pytest.ini | 4 + Ch10/apd.aggregation-chapter10-ex01/setup.cfg | 83 + Ch10/apd.aggregation-chapter10-ex01/setup.py | 3 + .../src/apd/aggregation/__init__.py | 1 + .../src/apd/aggregation/alembic/README | 12 + .../src/apd/aggregation/alembic/env.py | 80 + .../apd/aggregation/alembic/script.py.mako | 24 + .../4b2df8a6e1ce_add_indexes_to_datapoints.py | 35 + .../6962f8455a6d_add_daily_summary_view.py | 38 + ...6d2eacd5da3f_create_sensor_values_table.py | 31 + .../d8cdc709086b_add_deployment_table.py | 32 + ...cf6a178f_add_deployment_id_to_datapoint.py | 34 + .../src/apd/aggregation/analysis.py | 384 ++ .../src/apd/aggregation/cli.py | 184 + .../src/apd/aggregation/collect.py | 112 + .../src/apd/aggregation/database.py | 129 + .../src/apd/aggregation/query.py | 146 + .../src/apd/aggregation/typing.py | 48 + .../src/apd/aggregation/utils.py | 82 + .../tests/__init__.py | 0 .../tests/conftest.py | 124 + .../tests/test_analysis.py | 503 +++ .../tests/test_cli.py | 155 + .../tests/test_http_get.py | 188 + .../tests/test_query.py | 111 + .../tests/test_sensor_aggregation.py | 199 ++ Ch10/apd.aggregation-chapter10/.coveragerc | 3 + .../.pre-commit-config.yaml | 26 + Ch10/apd.aggregation-chapter10/CHANGES.md | 5 + .../Connect to database.ipynb | 577 +++ Ch10/apd.aggregation-chapter10/LICENCE | 31 + Ch10/apd.aggregation-chapter10/Mapping.ipynb | 254 ++ Ch10/apd.aggregation-chapter10/Pipfile | 26 + Ch10/apd.aggregation-chapter10/Pipfile.lock | 987 ++++++ Ch10/apd.aggregation-chapter10/README.md | 4 + .../Yappi Profiling.ipynb | 3140 +++++++++++++++++ Ch10/apd.aggregation-chapter10/pyproject.toml | 5 + Ch10/apd.aggregation-chapter10/pytest.ini | 4 + Ch10/apd.aggregation-chapter10/setup.cfg | 83 + Ch10/apd.aggregation-chapter10/setup.py | 3 + .../src/apd/aggregation/__init__.py | 1 + .../src/apd/aggregation/alembic/README | 12 + .../src/apd/aggregation/alembic/env.py | 80 + .../apd/aggregation/alembic/script.py.mako | 24 + .../4b2df8a6e1ce_add_indexes_to_datapoints.py | 32 + .../6962f8455a6d_add_daily_summary_view.py | 38 + ...6d2eacd5da3f_create_sensor_values_table.py | 31 + .../d8cdc709086b_add_deployment_table.py | 32 + ...cf6a178f_add_deployment_id_to_datapoint.py | 34 + .../src/apd/aggregation/analysis.py | 391 ++ .../src/apd/aggregation/cli.py | 184 + .../src/apd/aggregation/collect.py | 112 + .../src/apd/aggregation/database.py | 129 + .../src/apd/aggregation/query.py | 148 + .../src/apd/aggregation/typing.py | 48 + .../src/apd/aggregation/utils.py | 86 + .../tests/__init__.py | 0 .../tests/conftest.py | 124 + .../tests/test_analysis.py | 503 +++ .../tests/test_cli.py | 155 + .../tests/test_http_get.py | 188 + .../tests/test_query.py | 111 + .../tests/test_sensor_aggregation.py | 199 ++ .../.pre-commit-config.yaml | 26 + Ch10/apd.sensors-chapter10/CHANGES.md | 39 + Ch10/apd.sensors-chapter10/LICENCE | 19 + Ch10/apd.sensors-chapter10/Pipfile | 34 + Ch10/apd.sensors-chapter10/Pipfile.lock | 1018 ++++++ Ch10/apd.sensors-chapter10/README.md | 66 + .../plugins/apd.sunnyboy_solar/pyproject.toml | 5 + .../plugins/apd.sunnyboy_solar/setup.cfg | 33 + .../plugins/apd.sunnyboy_solar/setup.py | 3 + .../src/apd/sunnyboy_solar/Pipfile | 0 .../src/apd/sunnyboy_solar/__init__.py | 1 + .../src/apd/sunnyboy_solar/sensor.py | 69 + Ch10/apd.sensors-chapter10/pytest.ini | 3 + Ch10/apd.sensors-chapter10/setup.cfg | 69 + Ch10/apd.sensors-chapter10/setup.py | 3 + .../src/apd/sensors/__init__.py | 1 + .../src/apd/sensors/base.py | 51 + .../src/apd/sensors/cli.py | 74 + .../src/apd/sensors/py.typed | 0 .../src/apd/sensors/sensors.py | 189 + .../src/apd/sensors/wsgi/__init__.py | 14 + .../src/apd/sensors/wsgi/base.py | 43 + .../src/apd/sensors/wsgi/serve.py | 10 + .../src/apd/sensors/wsgi/v10.py | 26 + .../src/apd/sensors/wsgi/v20.py | 32 + .../src/apd/sensors/wsgi/v21.py | 39 + .../tests/test_acstatus.py | 55 + .../tests/test_api_server.py | 140 + .../tests/test_cpuusage.py | 45 + Ch10/apd.sensors-chapter10/tests/test_dht.py | 67 + .../tests/test_ipaddresses.py | 59 + .../tests/test_pythonversion.py | 61 + .../tests/test_ramusage.py | 47 + .../tests/test_sensors.py | 88 + Ch10/chapter10-yappi.ipynb | 3140 +++++++++++++++++ Ch10/listing10-01-profiling_wrapper.py | 48 + Ch10/listing10-02-profile_with_yappi.py | 13 + Ch10/listing10-03-memory_profiler.py | 12 + Ch10/listing10-04-sql_filtering.py | 21 + Ch10/listing10-05-python_filtering.py | 24 + Ch10/listing10-06-consume_iterators.py | 14 + ...g10-07-consume_iterators_singledispatch.py | 18 + Ch10/listing10-08-typed_conversion.py | 24 + Ch10/listing10-09-fahrenheit_chart.py | 13 + Ch10/listing10-10-minimal_cache.py | 16 + Ch11/apd.aggregation-chapter11/.coveragerc | 3 + .../.pre-commit-config.yaml | 26 + Ch11/apd.aggregation-chapter11/CHANGES.md | 5 + .../Connect to database.ipynb | 577 +++ Ch11/apd.aggregation-chapter11/LICENCE | 31 + Ch11/apd.aggregation-chapter11/Mapping.ipynb | 254 ++ Ch11/apd.aggregation-chapter11/Pipfile | 26 + Ch11/apd.aggregation-chapter11/Pipfile.lock | 987 ++++++ Ch11/apd.aggregation-chapter11/README.md | 4 + .../Yappi Profiling.ipynb | 3140 +++++++++++++++++ Ch11/apd.aggregation-chapter11/pyproject.toml | 5 + Ch11/apd.aggregation-chapter11/pytest.ini | 4 + Ch11/apd.aggregation-chapter11/setup.cfg | 83 + Ch11/apd.aggregation-chapter11/setup.py | 3 + .../src/apd/aggregation/__init__.py | 1 + .../src/apd/aggregation/alembic/README | 12 + .../src/apd/aggregation/alembic/env.py | 80 + .../apd/aggregation/alembic/script.py.mako | 24 + .../4b2df8a6e1ce_add_indexes_to_datapoints.py | 32 + .../6962f8455a6d_add_daily_summary_view.py | 38 + ...6d2eacd5da3f_create_sensor_values_table.py | 31 + .../d8cdc709086b_add_deployment_table.py | 32 + ...cf6a178f_add_deployment_id_to_datapoint.py | 34 + .../src/apd/aggregation/analysis.py | 401 +++ .../src/apd/aggregation/cli.py | 184 + .../src/apd/aggregation/collect.py | 112 + .../src/apd/aggregation/database.py | 129 + .../src/apd/aggregation/query.py | 148 + .../src/apd/aggregation/typing.py | 48 + .../src/apd/aggregation/utils.py | 100 + .../tests/__init__.py | 0 .../tests/conftest.py | 124 + .../tests/test_analysis.py | 525 +++ .../tests/test_cli.py | 155 + .../tests/test_http_get.py | 188 + .../tests/test_query.py | 111 + .../tests/test_sensor_aggregation.py | 199 ++ .../.pre-commit-config.yaml | 26 + Ch11/apd.sensors-chapter11-ex01/CHANGES.md | 44 + Ch11/apd.sensors-chapter11-ex01/LICENCE | 19 + Ch11/apd.sensors-chapter11-ex01/Pipfile | 34 + Ch11/apd.sensors-chapter11-ex01/Pipfile.lock | 1092 ++++++ Ch11/apd.sensors-chapter11-ex01/README.md | 96 + .../plugins/apd.sunnyboy_solar/pyproject.toml | 5 + .../plugins/apd.sunnyboy_solar/setup.cfg | 33 + .../plugins/apd.sunnyboy_solar/setup.py | 3 + .../src/apd/sunnyboy_solar/Pipfile | 0 .../src/apd/sunnyboy_solar/__init__.py | 1 + .../src/apd/sunnyboy_solar/sensor.py | 73 + Ch11/apd.sensors-chapter11-ex01/pytest.ini | 5 + Ch11/apd.sensors-chapter11-ex01/setup.cfg | 83 + Ch11/apd.sensors-chapter11-ex01/setup.py | 3 + .../src/apd/sensors/__init__.py | 1 + .../src/apd/sensors/alembic/README | 1 + .../src/apd/sensors/alembic/env.py | 77 + .../src/apd/sensors/alembic/script.py.mako | 24 + .../0eeb2a54fea8_add_initial_sensor_table.py | 45 + .../src/apd/sensors/base.py | 59 + .../src/apd/sensors/cli.py | 118 + .../src/apd/sensors/database.py | 30 + .../src/apd/sensors/exceptions.py | 32 + .../src/apd/sensors/py.typed | 0 .../src/apd/sensors/sensors.py | 189 + .../src/apd/sensors/utils.py | 20 + .../src/apd/sensors/wsgi/__init__.py | 31 + .../src/apd/sensors/wsgi/base.py | 47 + .../src/apd/sensors/wsgi/serve.py | 10 + .../src/apd/sensors/wsgi/v10.py | 30 + .../src/apd/sensors/wsgi/v20.py | 40 + .../src/apd/sensors/wsgi/v21.py | 47 + .../src/apd/sensors/wsgi/v30.py | 117 + .../tests/__init__.py | 0 .../tests/test_acstatus.py | 58 + .../tests/test_api_server.py | 332 ++ .../tests/test_cpuusage.py | 45 + .../tests/test_dht.py | 61 + .../tests/test_ipaddresses.py | 59 + .../tests/test_pythonversion.py | 61 + .../tests/test_ramusage.py | 47 + .../tests/test_sensors.py | 126 + .../tests/test_utils.py | 57 + .../.pre-commit-config.yaml | 26 + Ch11/apd.sensors-chapter11/CHANGES.md | 44 + Ch11/apd.sensors-chapter11/LICENCE | 19 + Ch11/apd.sensors-chapter11/Pipfile | 34 + Ch11/apd.sensors-chapter11/Pipfile.lock | 872 +++++ Ch11/apd.sensors-chapter11/README.md | 96 + .../plugins/apd.sunnyboy_solar/pyproject.toml | 5 + .../plugins/apd.sunnyboy_solar/setup.cfg | 33 + .../plugins/apd.sunnyboy_solar/setup.py | 3 + .../src/apd/sunnyboy_solar/Pipfile | 0 .../src/apd/sunnyboy_solar/__init__.py | 1 + .../src/apd/sunnyboy_solar/sensor.py | 73 + Ch11/apd.sensors-chapter11/pyproject.toml | 5 + Ch11/apd.sensors-chapter11/pytest.ini | 3 + Ch11/apd.sensors-chapter11/setup.cfg | 80 + Ch11/apd.sensors-chapter11/setup.py | 3 + .../src/apd/sensors/__init__.py | 1 + .../src/apd/sensors/alembic/README | 1 + .../src/apd/sensors/alembic/env.py | 77 + .../src/apd/sensors/alembic/script.py.mako | 24 + .../0eeb2a54fea8_add_initial_sensor_table.py | 45 + .../src/apd/sensors/base.py | 61 + .../src/apd/sensors/cli.py | 111 + .../src/apd/sensors/database.py | 30 + .../src/apd/sensors/exceptions.py | 32 + .../src/apd/sensors/py.typed | 0 .../src/apd/sensors/sensors.py | 189 + .../src/apd/sensors/utils.py | 20 + .../src/apd/sensors/wsgi/__init__.py | 31 + .../src/apd/sensors/wsgi/base.py | 47 + .../src/apd/sensors/wsgi/serve.py | 10 + .../src/apd/sensors/wsgi/v10.py | 30 + .../src/apd/sensors/wsgi/v20.py | 40 + .../src/apd/sensors/wsgi/v21.py | 47 + .../src/apd/sensors/wsgi/v30.py | 101 + Ch11/apd.sensors-chapter11/tests/__init__.py | 0 .../tests/test_acstatus.py | 58 + .../tests/test_api_server.py | 286 ++ .../tests/test_cpuusage.py | 45 + Ch11/apd.sensors-chapter11/tests/test_dht.py | 61 + .../tests/test_ipaddresses.py | 59 + .../tests/test_pythonversion.py | 61 + .../tests/test_ramusage.py | 47 + .../tests/test_sensors.py | 125 + .../apd.sensors-chapter11/tests/test_utils.py | 57 + Ch11/listing11-01-get_with_default.py | 12 + Ch11/listing11-02-new_exceptions.py | 16 + Ch11/listing11-03-retry_sensor.py | 19 + Ch11/listing11-04-exception_with_metadata.py | 32 + Ch11/listing11-05-dht_baseclass.py | 26 + Ch11/listing11-06-cli_exceptions.py | 40 + Ch11/listing11-07-failing_test_sensor.py | 24 + Ch11/listing11-08-compatibility_test.py | 12 + Ch11/listing11-09-mock-failingsensor.py | 9 + Ch11/listing11-10-deprecationwarning.py | 33 + ...ting11-11-test_for_deprecation_warnings.py | 20 + Ch11/listing11-12-logging_config.py | 21 + Ch11/listing11-13-log_adapter.py | 24 + Ch11/listing11-14-log_factory.py | 21 + Ch11/listing11-15-log_filter.py | 25 + Ch11/listing11-16-log_handler.py | 13 + Ch11/listing11-17-log_config.ini | 21 + Ch11/listing11-18-local_data_cache.py | 31 + Ch11/listing11-19-local_data_cache_cli.py | 55 + Ch11/listing11-20-v3_api_additions.py | 46 + .../.coveragerc | 3 + .../.pre-commit-config.yaml | 25 + .../CHANGES.md | 8 + .../Connect to database.ipynb | 577 +++ .../LICENCE | 31 + .../Mapping.ipynb | 254 ++ .../Pipfile | 26 + .../Pipfile.lock | 987 ++++++ .../README.md | 128 + .../Yappi Profiling.ipynb | 3140 +++++++++++++++++ .../pyproject.toml | 5 + .../pytest.ini | 4 + .../setup.cfg | 89 + .../setup.py | 3 + .../src/apd/aggregation/__init__.py | 1 + .../src/apd/aggregation/actions/__init__.py | 0 .../src/apd/aggregation/actions/action.py | 74 + .../src/apd/aggregation/actions/base.py | 62 + .../src/apd/aggregation/actions/runner.py | 75 + .../src/apd/aggregation/actions/source.py | 80 + .../src/apd/aggregation/actions/trigger.py | 77 + .../src/apd/aggregation/alembic/README | 12 + .../src/apd/aggregation/alembic/env.py | 80 + .../apd/aggregation/alembic/script.py.mako | 24 + .../4b2df8a6e1ce_add_indexes_to_datapoints.py | 32 + .../6962f8455a6d_add_daily_summary_view.py | 38 + ...6d2eacd5da3f_create_sensor_values_table.py | 31 + .../d8cdc709086b_add_deployment_table.py | 32 + ...cf6a178f_add_deployment_id_to_datapoint.py | 34 + .../src/apd/aggregation/analysis.py | 401 +++ .../src/apd/aggregation/cli.py | 287 ++ .../src/apd/aggregation/collect.py | 118 + .../src/apd/aggregation/database.py | 129 + .../src/apd/aggregation/exceptions.py | 14 + .../src/apd/aggregation/query.py | 154 + .../src/apd/aggregation/typing.py | 48 + .../src/apd/aggregation/utils.py | 100 + .../tests/__init__.py | 0 .../tests/conftest.py | 127 + .../tests/test_actions_actions.py | 118 + .../tests/test_actions_runner.py | 110 + .../tests/test_actions_triggers.py | 127 + .../tests/test_analysis.py | 525 +++ .../tests/test_cli.py | 155 + .../tests/test_http_get.py | 188 + .../tests/test_query.py | 111 + .../tests/test_sensor_aggregation.py | 199 ++ .../.coveragerc | 3 + .../.pre-commit-config.yaml | 25 + .../apd.aggregation-chapter12-ex01/CHANGES.md | 8 + .../Connect to database.ipynb | 577 +++ Ch12/apd.aggregation-chapter12-ex01/LICENCE | 31 + .../Mapping.ipynb | 254 ++ Ch12/apd.aggregation-chapter12-ex01/Pipfile | 26 + .../Pipfile.lock | 987 ++++++ Ch12/apd.aggregation-chapter12-ex01/README.md | 128 + .../Yappi Profiling.ipynb | 3140 +++++++++++++++++ .../pyproject.toml | 5 + .../apd.aggregation-chapter12-ex01/pytest.ini | 4 + Ch12/apd.aggregation-chapter12-ex01/setup.cfg | 89 + Ch12/apd.aggregation-chapter12-ex01/setup.py | 3 + .../src/apd/aggregation/__init__.py | 1 + .../src/apd/aggregation/actions/__init__.py | 0 .../src/apd/aggregation/actions/action.py | 74 + .../src/apd/aggregation/actions/base.py | 62 + .../src/apd/aggregation/actions/runner.py | 75 + .../src/apd/aggregation/actions/source.py | 80 + .../src/apd/aggregation/actions/trigger.py | 34 + .../src/apd/aggregation/alembic/README | 12 + .../src/apd/aggregation/alembic/env.py | 80 + .../apd/aggregation/alembic/script.py.mako | 24 + .../4b2df8a6e1ce_add_indexes_to_datapoints.py | 32 + .../6962f8455a6d_add_daily_summary_view.py | 38 + ...6d2eacd5da3f_create_sensor_values_table.py | 31 + .../d8cdc709086b_add_deployment_table.py | 32 + ...cf6a178f_add_deployment_id_to_datapoint.py | 34 + .../src/apd/aggregation/analysis.py | 401 +++ .../src/apd/aggregation/cli.py | 287 ++ .../src/apd/aggregation/collect.py | 118 + .../src/apd/aggregation/database.py | 129 + .../src/apd/aggregation/exceptions.py | 14 + .../src/apd/aggregation/query.py | 154 + .../src/apd/aggregation/typing.py | 48 + .../src/apd/aggregation/utils.py | 100 + .../tests/__init__.py | 0 .../tests/conftest.py | 127 + .../tests/test_actions_actions.py | 118 + .../tests/test_actions_runner.py | 110 + .../tests/test_actions_triggers.py | 127 + .../tests/test_analysis.py | 525 +++ .../tests/test_cli.py | 155 + .../tests/test_http_get.py | 188 + .../tests/test_query.py | 111 + .../tests/test_sensor_aggregation.py | 199 ++ Ch12/apd.aggregation-chapter12/.coveragerc | 3 + .../.pre-commit-config.yaml | 25 + Ch12/apd.aggregation-chapter12/CHANGES.md | 8 + .../Connect to database.ipynb | 577 +++ Ch12/apd.aggregation-chapter12/LICENCE | 31 + Ch12/apd.aggregation-chapter12/Mapping.ipynb | 254 ++ Ch12/apd.aggregation-chapter12/Pipfile | 26 + Ch12/apd.aggregation-chapter12/Pipfile.lock | 987 ++++++ Ch12/apd.aggregation-chapter12/README.md | 128 + .../Yappi Profiling.ipynb | 3140 +++++++++++++++++ Ch12/apd.aggregation-chapter12/pyproject.toml | 5 + Ch12/apd.aggregation-chapter12/pytest.ini | 4 + Ch12/apd.aggregation-chapter12/setup.cfg | 89 + Ch12/apd.aggregation-chapter12/setup.py | 3 + .../src/apd/aggregation/__init__.py | 1 + .../src/apd/aggregation/actions/__init__.py | 0 .../src/apd/aggregation/actions/action.py | 140 + .../src/apd/aggregation/actions/base.py | 62 + .../src/apd/aggregation/actions/runner.py | 75 + .../src/apd/aggregation/actions/source.py | 102 + .../src/apd/aggregation/actions/trigger.py | 77 + .../src/apd/aggregation/alembic/README | 12 + .../src/apd/aggregation/alembic/env.py | 80 + .../apd/aggregation/alembic/script.py.mako | 24 + .../4b2df8a6e1ce_add_indexes_to_datapoints.py | 32 + .../6962f8455a6d_add_daily_summary_view.py | 38 + ...6d2eacd5da3f_create_sensor_values_table.py | 31 + .../d8cdc709086b_add_deployment_table.py | 32 + ...cf6a178f_add_deployment_id_to_datapoint.py | 34 + .../src/apd/aggregation/analysis.py | 401 +++ .../src/apd/aggregation/cli.py | 295 ++ .../src/apd/aggregation/collect.py | 118 + .../src/apd/aggregation/database.py | 129 + .../src/apd/aggregation/exceptions.py | 14 + .../src/apd/aggregation/query.py | 154 + .../src/apd/aggregation/typing.py | 48 + .../src/apd/aggregation/utils.py | 100 + .../tests/__init__.py | 0 .../tests/conftest.py | 127 + .../tests/test_actions_actions.py | 118 + .../tests/test_actions_runner.py | 110 + .../tests/test_actions_triggers.py | 127 + .../tests/test_analysis.py | 525 +++ .../tests/test_cli.py | 155 + .../tests/test_http_get.py | 188 + .../tests/test_query.py | 111 + .../tests/test_sensor_aggregation.py | 199 ++ .../.pre-commit-config.yaml | 26 + Ch12/apd.sensors-chapter12/CHANGES.md | 44 + Ch12/apd.sensors-chapter12/LICENCE | 19 + Ch12/apd.sensors-chapter12/Pipfile | 34 + Ch12/apd.sensors-chapter12/Pipfile.lock | 1092 ++++++ Ch12/apd.sensors-chapter12/README.md | 96 + .../plugins/apd.sunnyboy_solar/pyproject.toml | 5 + .../plugins/apd.sunnyboy_solar/setup.cfg | 33 + .../plugins/apd.sunnyboy_solar/setup.py | 3 + .../src/apd/sunnyboy_solar/Pipfile | 0 .../src/apd/sunnyboy_solar/__init__.py | 1 + .../src/apd/sunnyboy_solar/sensor.py | 73 + Ch12/apd.sensors-chapter12/pytest.ini | 5 + Ch12/apd.sensors-chapter12/setup.cfg | 83 + Ch12/apd.sensors-chapter12/setup.py | 3 + .../src/apd/sensors/__init__.py | 1 + .../src/apd/sensors/alembic/README | 1 + .../src/apd/sensors/alembic/env.py | 77 + .../src/apd/sensors/alembic/script.py.mako | 24 + .../0eeb2a54fea8_add_initial_sensor_table.py | 45 + .../src/apd/sensors/base.py | 59 + .../src/apd/sensors/cli.py | 118 + .../src/apd/sensors/database.py | 30 + .../src/apd/sensors/exceptions.py | 32 + .../src/apd/sensors/py.typed | 0 .../src/apd/sensors/sensors.py | 189 + .../src/apd/sensors/utils.py | 20 + .../src/apd/sensors/wsgi/__init__.py | 31 + .../src/apd/sensors/wsgi/base.py | 47 + .../src/apd/sensors/wsgi/serve.py | 10 + .../src/apd/sensors/wsgi/v10.py | 30 + .../src/apd/sensors/wsgi/v20.py | 40 + .../src/apd/sensors/wsgi/v21.py | 47 + .../src/apd/sensors/wsgi/v30.py | 117 + Ch12/apd.sensors-chapter12/tests/__init__.py | 0 .../tests/test_acstatus.py | 58 + .../tests/test_api_server.py | 332 ++ .../tests/test_cpuusage.py | 45 + Ch12/apd.sensors-chapter12/tests/test_dht.py | 61 + .../tests/test_ipaddresses.py | 59 + .../tests/test_pythonversion.py | 61 + .../tests/test_ramusage.py | 47 + .../tests/test_sensors.py | 126 + .../apd.sensors-chapter12/tests/test_utils.py | 57 + Ch12/listing12-01-clean_passthrough.py | 9 + Ch12/listing12-02-sum_ints.py | 18 + Ch12/listing12-03-process_own_output.py | 17 + Ch12/listing12-04-wrapper_generator.py | 36 + Ch12/listing12-05-enhanced_generator.py | 25 + Ch12/listing12-06-mean_finder.py | 29 + Ch12/listing12-07-wrap_enhanced_generator.py | 50 + Ch12/listing12-08-shared_state_by_return.py | 33 + Ch12/listing12-09-mean_with_enhanced.py | 30 + Ch12/listing12-10-coroutine_and_queue.py | 52 + Ch12/listing12-11-dataprocessor.py | 44 + Ch12/listing12-12-trigger_and_action.py | 60 + Ch12/listing12-13-valuethreshold.py | 34 + Ch12/listing12-14-webhook.py | 34 + Ch12/listing12-15-loggingaction.py | 19 + Ch12/listing12-16-get_data_repeatedly.py | 25 + Ch12/listing12-17-actions_cli.py | 61 + Ch12/listing12-18-config.py | 22 + Ch12/listing12-19-dataprocessor_stats.py | 43 + Ch12/listing12-20-stats_signals.py | 11 + Ch12/listing12-21-better_stats_signals.py | 32 + Ch12/listing12-22-time_taken_callback.py | 25 + Ch12/listing12-23-refeed_getdata.py | 43 + Ch12/listing12-24-refeed_actions.py | 18 + Contributing.md | 14 + LICENSE.txt | 27 + README.md | 16 + apd.aggregation/HEAD | 1 + apd.aggregation/config | 7 + apd.aggregation/description | 1 + apd.aggregation/hooks/applypatch-msg.sample | 15 + apd.aggregation/hooks/commit-msg.sample | 24 + .../hooks/fsmonitor-watchman.sample | 114 + apd.aggregation/hooks/post-update.sample | 8 + apd.aggregation/hooks/pre-applypatch.sample | 14 + apd.aggregation/hooks/pre-commit.sample | 49 + apd.aggregation/hooks/pre-push.sample | 53 + apd.aggregation/hooks/pre-rebase.sample | 169 + apd.aggregation/hooks/pre-receive.sample | 24 + .../hooks/prepare-commit-msg.sample | 42 + apd.aggregation/hooks/update.sample | 128 + apd.aggregation/info/exclude | 6 + ...7fa669b06f00ec17d49d52ad382f7f44ef9af1.idx | Bin 0 -> 24284 bytes ...fa669b06f00ec17d49d52ad382f7f44ef9af1.pack | Bin 0 -> 2559225 bytes apd.aggregation/packed-refs | 22 + apd.sensors/HEAD | 1 + apd.sensors/config | 7 + apd.sensors/description | 1 + apd.sensors/hooks/applypatch-msg.sample | 15 + apd.sensors/hooks/commit-msg.sample | 24 + apd.sensors/hooks/fsmonitor-watchman.sample | 114 + apd.sensors/hooks/post-update.sample | 8 + apd.sensors/hooks/pre-applypatch.sample | 14 + apd.sensors/hooks/pre-commit.sample | 49 + apd.sensors/hooks/pre-push.sample | 53 + apd.sensors/hooks/pre-rebase.sample | 169 + apd.sensors/hooks/pre-receive.sample | 24 + apd.sensors/hooks/prepare-commit-msg.sample | 42 + apd.sensors/hooks/update.sample | 128 + apd.sensors/info/exclude | 6 + ...612f3627aa76525a86c082a5393616dab67f82.idx | Bin 0 -> 26048 bytes ...12f3627aa76525a86c082a5393616dab67f82.pack | Bin 0 -> 222056 bytes apd.sensors/packed-refs | 23 + errata.md | 13 + 1227 files changed, 119918 insertions(+) create mode 100644 .gitattributes create mode 100644 9781484257920.jpg create mode 100644 Ch01/apd.sensors-chapter01/Pipfile create mode 100644 Ch01/apd.sensors-chapter01/Pipfile.lock create mode 100644 Ch01/apd.sensors-chapter01/sensors.py create mode 100644 Ch01/figure01-01-fizzbuzz.ipynb create mode 100644 Ch01/figure01-04-versioninfo.ipynb create mode 100644 Ch01/figure01-05-ip-address.ipynb create mode 100644 Ch01/figure01-06-ip-address-joined.ipynb create mode 100644 Ch01/figure01-07-multiple-datapoints.ipynb create mode 100644 Ch01/figure01-08-temperature_and_humidity_remote.ipynb create mode 100644 Ch01/figure01-09-temperature_and_humidity_local.ipynb create mode 100644 Ch01/listing01-01-fizzbuzz.py create mode 100644 Ch01/listing01-02-fizzbuzz_blank_lines.py create mode 100644 Ch01/listing01-03-fizzbuzz_with_breakpoint.py create mode 100644 Ch01/listing01-04-converted.py create mode 100644 Ch01/listing01-05-serverstatus.py create mode 100644 Ch01/listing01-06-sensors_argv.py create mode 100644 Ch01/listing01-07-sensors_argparse.py create mode 100644 Ch01/listing01-08-sensors_click.py create mode 100644 Ch01/listing01-09-sensors_click_bold.py create mode 100644 Ch01/listing01-10-final-sensors.py create mode 100644 Ch02/apd.sensors-chapter02-ex01/Pipfile create mode 100644 Ch02/apd.sensors-chapter02-ex01/Pipfile.lock create mode 100644 Ch02/apd.sensors-chapter02-ex01/sensors.py create mode 100644 Ch02/apd.sensors-chapter02-ex01/tests/__init__.py create mode 100644 Ch02/apd.sensors-chapter02-ex01/tests/test_sensors.py create mode 100644 Ch02/apd.sensors-chapter02-pyi/.pre-commit-config.yaml create mode 100644 Ch02/apd.sensors-chapter02-pyi/Pipfile create mode 100644 Ch02/apd.sensors-chapter02-pyi/Pipfile.lock create mode 100644 Ch02/apd.sensors-chapter02-pyi/pytest.ini create mode 100644 Ch02/apd.sensors-chapter02-pyi/sensors.py create mode 100644 Ch02/apd.sensors-chapter02-pyi/sensors.pyi create mode 100644 Ch02/apd.sensors-chapter02-pyi/setup.cfg create mode 100644 Ch02/apd.sensors-chapter02-pyi/tests/__init__.py create mode 100644 Ch02/apd.sensors-chapter02-pyi/tests/test_acstatus.py create mode 100644 Ch02/apd.sensors-chapter02-pyi/tests/test_cpuusage.py create mode 100644 Ch02/apd.sensors-chapter02-pyi/tests/test_dht.py create mode 100644 Ch02/apd.sensors-chapter02-pyi/tests/test_ipaddresses.py create mode 100644 Ch02/apd.sensors-chapter02-pyi/tests/test_pythonversion.py create mode 100644 Ch02/apd.sensors-chapter02-pyi/tests/test_ramusage.py create mode 100644 Ch02/apd.sensors-chapter02-pyi/tests/test_sensors.py create mode 100644 Ch02/listing02-01-temperature_sensor.py create mode 100644 Ch02/listing02-02-temperature_conversion.ipynb create mode 100644 Ch02/listing02-03-temperature_conversion_invalid_types.ipynb create mode 100644 Ch02/listing02-04-temperature.py create mode 100644 Ch02/listing02-05-unittest_temperature/__pycache__/temperature.cpython-37.pyc create mode 100644 Ch02/listing02-05-unittest_temperature/temperature.py create mode 100644 Ch02/listing02-05-unittest_temperature/test_unittest.py create mode 100644 Ch02/listing02-06-pytest_temperature/temperature.py create mode 100644 Ch02/listing02-06-pytest_temperature/test_pytest.py create mode 100644 Ch02/listing02-07-sensors.py create mode 100644 Ch02/listing02-08/Pipfile create mode 100644 Ch02/listing02-08/Pipfile.lock create mode 100644 Ch02/listing02-08/sensors.py create mode 100644 Ch02/listing02-08/tests/__init__.py create mode 100644 Ch02/listing02-08/tests/test_pythonversion.py create mode 100644 Ch02/listing02-08/tests/test_sensors.py create mode 100644 Ch02/listing02-09-sensors,cover.py create mode 100644 Ch02/listing02-10/.pre-commit-config.yaml create mode 100644 Ch02/listing02-10/Pipfile create mode 100644 Ch02/listing02-10/Pipfile.lock create mode 100644 Ch02/listing02-10/incorrect.py create mode 100644 Ch02/listing02-10/pytest.ini create mode 100644 Ch02/listing02-10/sensors.py create mode 100644 Ch02/listing02-10/setup.cfg create mode 100644 Ch02/listing02-10/tests/__init__.py create mode 100644 Ch02/listing02-10/tests/test_acstatus.py create mode 100644 Ch02/listing02-10/tests/test_cpuusage.py create mode 100644 Ch02/listing02-10/tests/test_dht.py create mode 100644 Ch02/listing02-10/tests/test_ipaddresses.py create mode 100644 Ch02/listing02-10/tests/test_pythonversion.py create mode 100644 Ch02/listing02-10/tests/test_ramusage.py create mode 100644 Ch02/listing02-10/tests/test_sensors.py create mode 100644 Ch02/listing02-11/.pre-commit-config.yaml create mode 100644 Ch02/listing02-11/Pipfile create mode 100644 Ch02/listing02-11/Pipfile.lock create mode 100644 Ch02/listing02-11/pytest.ini create mode 100644 Ch02/listing02-11/sensors.py create mode 100644 Ch02/listing02-11/setup.cfg create mode 100644 Ch02/listing02-11/tests/__init__.py create mode 100644 Ch02/listing02-11/tests/test_acstatus.py create mode 100644 Ch02/listing02-11/tests/test_cpuusage.py create mode 100644 Ch02/listing02-11/tests/test_dht.py create mode 100644 Ch02/listing02-11/tests/test_ipaddresses.py create mode 100644 Ch02/listing02-11/tests/test_pythonversion.py create mode 100644 Ch02/listing02-11/tests/test_ramusage.py create mode 100644 Ch02/listing02-11/tests/test_sensors.py create mode 100644 Ch02/listing02-12/.pre-commit-config.yaml create mode 100644 Ch02/listing02-12/Pipfile create mode 100644 Ch02/listing02-12/Pipfile.lock create mode 100644 Ch02/listing02-12/pytest.ini create mode 100644 Ch02/listing02-12/sensors.py create mode 100644 Ch02/listing02-12/sensors.pyi create mode 100644 Ch02/listing02-12/setup.cfg create mode 100644 Ch02/listing02-12/tests/__init__.py create mode 100644 Ch02/listing02-12/tests/test_acstatus.py create mode 100644 Ch02/listing02-12/tests/test_cpuusage.py create mode 100644 Ch02/listing02-12/tests/test_dht.py create mode 100644 Ch02/listing02-12/tests/test_ipaddresses.py create mode 100644 Ch02/listing02-12/tests/test_pythonversion.py create mode 100644 Ch02/listing02-12/tests/test_ramusage.py create mode 100644 Ch02/listing02-12/tests/test_sensors.py create mode 100644 Ch02/listing02-13-.pre-commit-config.yaml create mode 100644 Ch03/apd.sensors-chapter03/.pre-commit-config.yaml create mode 100644 Ch03/apd.sensors-chapter03/CHANGES.md create mode 100644 Ch03/apd.sensors-chapter03/LICENCE create mode 100644 Ch03/apd.sensors-chapter03/Pipfile create mode 100644 Ch03/apd.sensors-chapter03/Pipfile.lock create mode 100644 Ch03/apd.sensors-chapter03/README.md create mode 100644 Ch03/apd.sensors-chapter03/pytest.ini create mode 100644 Ch03/apd.sensors-chapter03/setup.cfg create mode 100644 Ch03/apd.sensors-chapter03/setup.py create mode 100644 Ch03/apd.sensors-chapter03/src/apd/sensors/__init__.py create mode 100644 Ch03/apd.sensors-chapter03/src/apd/sensors/py.typed create mode 100644 Ch03/apd.sensors-chapter03/src/apd/sensors/sensors.py create mode 100644 Ch03/apd.sensors-chapter03/tests/__init__.py create mode 100644 Ch03/apd.sensors-chapter03/tests/test_acstatus.py create mode 100644 Ch03/apd.sensors-chapter03/tests/test_cpuusage.py create mode 100644 Ch03/apd.sensors-chapter03/tests/test_dht.py create mode 100644 Ch03/apd.sensors-chapter03/tests/test_ipaddresses.py create mode 100644 Ch03/apd.sensors-chapter03/tests/test_pythonversion.py create mode 100644 Ch03/apd.sensors-chapter03/tests/test_ramusage.py create mode 100644 Ch03/apd.sensors-chapter03/tests/test_sensors.py create mode 100644 Ch03/listing03-01-setup.cfg create mode 100644 Ch03/listing03-02-indexserver.service create mode 100644 Ch03/listing03-03-cheatsheet.md create mode 100644 Ch03/listing03-04-cheatsheet.rst create mode 100644 Ch03/listing03-05-readme.md create mode 100644 Ch04/apd.sensors-chapter04-click-parsing/.pre-commit-config.yaml create mode 100644 Ch04/apd.sensors-chapter04-click-parsing/CHANGES.md create mode 100644 Ch04/apd.sensors-chapter04-click-parsing/LICENCE create mode 100644 Ch04/apd.sensors-chapter04-click-parsing/Pipfile create mode 100644 Ch04/apd.sensors-chapter04-click-parsing/Pipfile.lock create mode 100644 Ch04/apd.sensors-chapter04-click-parsing/README.md create mode 100644 Ch04/apd.sensors-chapter04-click-parsing/pyproject.toml create mode 100644 Ch04/apd.sensors-chapter04-click-parsing/pytest.ini create mode 100644 Ch04/apd.sensors-chapter04-click-parsing/setup.cfg create mode 100644 Ch04/apd.sensors-chapter04-click-parsing/setup.py create mode 100644 Ch04/apd.sensors-chapter04-click-parsing/src/apd/sensors/__init__.py create mode 100644 Ch04/apd.sensors-chapter04-click-parsing/src/apd/sensors/cli.py create mode 100644 Ch04/apd.sensors-chapter04-click-parsing/src/apd/sensors/sensors.py create mode 100644 Ch04/apd.sensors-chapter04-click-parsing/tests/__init__.py create mode 100644 Ch04/apd.sensors-chapter04-click-parsing/tests/test_acstatus.py create mode 100644 Ch04/apd.sensors-chapter04-click-parsing/tests/test_cpuusage.py create mode 100644 Ch04/apd.sensors-chapter04-click-parsing/tests/test_dht.py create mode 100644 Ch04/apd.sensors-chapter04-click-parsing/tests/test_ipaddresses.py create mode 100644 Ch04/apd.sensors-chapter04-click-parsing/tests/test_pythonversion.py create mode 100644 Ch04/apd.sensors-chapter04-click-parsing/tests/test_ramusage.py create mode 100644 Ch04/apd.sensors-chapter04-click-parsing/tests/test_sensors.py create mode 100644 Ch04/apd.sensors-chapter04-click-subcommands/.pre-commit-config.yaml create mode 100644 Ch04/apd.sensors-chapter04-click-subcommands/CHANGES.md create mode 100644 Ch04/apd.sensors-chapter04-click-subcommands/LICENCE create mode 100644 Ch04/apd.sensors-chapter04-click-subcommands/Pipfile create mode 100644 Ch04/apd.sensors-chapter04-click-subcommands/Pipfile.lock create mode 100644 Ch04/apd.sensors-chapter04-click-subcommands/README.md create mode 100644 Ch04/apd.sensors-chapter04-click-subcommands/pyproject.toml create mode 100644 Ch04/apd.sensors-chapter04-click-subcommands/pytest.ini create mode 100644 Ch04/apd.sensors-chapter04-click-subcommands/setup.cfg create mode 100644 Ch04/apd.sensors-chapter04-click-subcommands/setup.py create mode 100644 Ch04/apd.sensors-chapter04-click-subcommands/src/apd/sensors/__init__.py create mode 100644 Ch04/apd.sensors-chapter04-click-subcommands/src/apd/sensors/sensors.py create mode 100644 Ch04/apd.sensors-chapter04-click-subcommands/tests/__init__.py create mode 100644 Ch04/apd.sensors-chapter04-click-subcommands/tests/test_acstatus.py create mode 100644 Ch04/apd.sensors-chapter04-click-subcommands/tests/test_cpuusage.py create mode 100644 Ch04/apd.sensors-chapter04-click-subcommands/tests/test_dht.py create mode 100644 Ch04/apd.sensors-chapter04-click-subcommands/tests/test_ipaddresses.py create mode 100644 Ch04/apd.sensors-chapter04-click-subcommands/tests/test_pythonversion.py create mode 100644 Ch04/apd.sensors-chapter04-click-subcommands/tests/test_ramusage.py create mode 100644 Ch04/apd.sensors-chapter04-click-subcommands/tests/test_sensors.py create mode 100644 Ch04/apd.sensors-chapter04-configparser-local/.pre-commit-config.yaml create mode 100644 Ch04/apd.sensors-chapter04-configparser-local/CHANGES.md create mode 100644 Ch04/apd.sensors-chapter04-configparser-local/LICENCE create mode 100644 Ch04/apd.sensors-chapter04-configparser-local/Pipfile create mode 100644 Ch04/apd.sensors-chapter04-configparser-local/Pipfile.lock create mode 100644 Ch04/apd.sensors-chapter04-configparser-local/README.md create mode 100644 Ch04/apd.sensors-chapter04-configparser-local/config.cfg create mode 100644 Ch04/apd.sensors-chapter04-configparser-local/pytest.ini create mode 100644 Ch04/apd.sensors-chapter04-configparser-local/setup.cfg create mode 100644 Ch04/apd.sensors-chapter04-configparser-local/setup.py create mode 100644 Ch04/apd.sensors-chapter04-configparser-local/src/apd/sensors/__init__.py create mode 100644 Ch04/apd.sensors-chapter04-configparser-local/src/apd/sensors/cli.py create mode 100644 Ch04/apd.sensors-chapter04-configparser-local/src/apd/sensors/config_path_utils.py create mode 100644 Ch04/apd.sensors-chapter04-configparser-local/src/apd/sensors/py.typed create mode 100644 Ch04/apd.sensors-chapter04-configparser-local/src/apd/sensors/sensors.py create mode 100644 Ch04/apd.sensors-chapter04-configparser-local/tests/default_test_config.cfg create mode 100644 Ch04/apd.sensors-chapter04-configparser-local/tests/test_acstatus.py create mode 100644 Ch04/apd.sensors-chapter04-configparser-local/tests/test_cpuusage.py create mode 100644 Ch04/apd.sensors-chapter04-configparser-local/tests/test_dht.py create mode 100644 Ch04/apd.sensors-chapter04-configparser-local/tests/test_ipaddresses.py create mode 100644 Ch04/apd.sensors-chapter04-configparser-local/tests/test_pythonversion.py create mode 100644 Ch04/apd.sensors-chapter04-configparser-local/tests/test_ramusage.py create mode 100644 Ch04/apd.sensors-chapter04-configparser-local/tests/test_sensors.py create mode 100644 Ch04/apd.sensors-chapter04-configparser/.pre-commit-config.yaml create mode 100644 Ch04/apd.sensors-chapter04-configparser/CHANGES.md create mode 100644 Ch04/apd.sensors-chapter04-configparser/LICENCE create mode 100644 Ch04/apd.sensors-chapter04-configparser/Pipfile create mode 100644 Ch04/apd.sensors-chapter04-configparser/Pipfile.lock create mode 100644 Ch04/apd.sensors-chapter04-configparser/README.md create mode 100644 Ch04/apd.sensors-chapter04-configparser/pytest.ini create mode 100644 Ch04/apd.sensors-chapter04-configparser/setup.cfg create mode 100644 Ch04/apd.sensors-chapter04-configparser/setup.py create mode 100644 Ch04/apd.sensors-chapter04-configparser/src/apd/sensors/__init__.py create mode 100644 Ch04/apd.sensors-chapter04-configparser/src/apd/sensors/cli.py create mode 100644 Ch04/apd.sensors-chapter04-configparser/src/apd/sensors/py.typed create mode 100644 Ch04/apd.sensors-chapter04-configparser/src/apd/sensors/sensors.py create mode 100644 Ch04/apd.sensors-chapter04-configparser/tests/test_acstatus.py create mode 100644 Ch04/apd.sensors-chapter04-configparser/tests/test_cpuusage.py create mode 100644 Ch04/apd.sensors-chapter04-configparser/tests/test_dht.py create mode 100644 Ch04/apd.sensors-chapter04-configparser/tests/test_ipaddresses.py create mode 100644 Ch04/apd.sensors-chapter04-configparser/tests/test_pythonversion.py create mode 100644 Ch04/apd.sensors-chapter04-configparser/tests/test_ramusage.py create mode 100644 Ch04/apd.sensors-chapter04-configparser/tests/test_sensors.py create mode 100644 Ch04/apd.sensors-chapter04-ex01/.pre-commit-config.yaml create mode 100644 Ch04/apd.sensors-chapter04-ex01/CHANGES.md create mode 100644 Ch04/apd.sensors-chapter04-ex01/LICENCE create mode 100644 Ch04/apd.sensors-chapter04-ex01/Pipfile create mode 100644 Ch04/apd.sensors-chapter04-ex01/Pipfile.lock create mode 100644 Ch04/apd.sensors-chapter04-ex01/README.md create mode 100644 Ch04/apd.sensors-chapter04-ex01/pyproject.toml create mode 100644 Ch04/apd.sensors-chapter04-ex01/pytest.ini create mode 100644 Ch04/apd.sensors-chapter04-ex01/setup.cfg create mode 100644 Ch04/apd.sensors-chapter04-ex01/setup.py create mode 100644 Ch04/apd.sensors-chapter04-ex01/src/apd/sensors/__init__.py create mode 100644 Ch04/apd.sensors-chapter04-ex01/src/apd/sensors/cli.py create mode 100644 Ch04/apd.sensors-chapter04-ex01/src/apd/sensors/sensors.py create mode 100644 Ch04/apd.sensors-chapter04-ex01/tests/__init__.py create mode 100644 Ch04/apd.sensors-chapter04-ex01/tests/test_acstatus.py create mode 100644 Ch04/apd.sensors-chapter04-ex01/tests/test_cpuusage.py create mode 100644 Ch04/apd.sensors-chapter04-ex01/tests/test_dht.py create mode 100644 Ch04/apd.sensors-chapter04-ex01/tests/test_ipaddresses.py create mode 100644 Ch04/apd.sensors-chapter04-ex01/tests/test_pythonversion.py create mode 100644 Ch04/apd.sensors-chapter04-ex01/tests/test_ramusage.py create mode 100644 Ch04/apd.sensors-chapter04-ex01/tests/test_sensors.py create mode 100644 Ch04/apd.sensors-chapter04/.pre-commit-config.yaml create mode 100644 Ch04/apd.sensors-chapter04/CHANGES.md create mode 100644 Ch04/apd.sensors-chapter04/LICENCE create mode 100644 Ch04/apd.sensors-chapter04/Pipfile create mode 100644 Ch04/apd.sensors-chapter04/Pipfile.lock create mode 100644 Ch04/apd.sensors-chapter04/README.md create mode 100644 Ch04/apd.sensors-chapter04/plugins/apd.sunnyboy_solar/pyproject.toml create mode 100644 Ch04/apd.sensors-chapter04/plugins/apd.sunnyboy_solar/setup.cfg create mode 100644 Ch04/apd.sensors-chapter04/plugins/apd.sunnyboy_solar/setup.py create mode 100644 Ch04/apd.sensors-chapter04/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/Pipfile create mode 100644 Ch04/apd.sensors-chapter04/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/__init__.py create mode 100644 Ch04/apd.sensors-chapter04/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/sensor.py create mode 100644 Ch04/apd.sensors-chapter04/pytest.ini create mode 100644 Ch04/apd.sensors-chapter04/setup.cfg create mode 100644 Ch04/apd.sensors-chapter04/setup.py create mode 100644 Ch04/apd.sensors-chapter04/src/apd/sensors/__init__.py create mode 100644 Ch04/apd.sensors-chapter04/src/apd/sensors/cli.py create mode 100644 Ch04/apd.sensors-chapter04/src/apd/sensors/py.typed create mode 100644 Ch04/apd.sensors-chapter04/src/apd/sensors/sensors.py create mode 100644 Ch04/apd.sensors-chapter04/src/apd/sensors/wsgi.py create mode 100644 Ch04/apd.sensors-chapter04/tests/test_acstatus.py create mode 100644 Ch04/apd.sensors-chapter04/tests/test_api_server.py create mode 100644 Ch04/apd.sensors-chapter04/tests/test_cpuusage.py create mode 100644 Ch04/apd.sensors-chapter04/tests/test_dht.py create mode 100644 Ch04/apd.sensors-chapter04/tests/test_ipaddresses.py create mode 100644 Ch04/apd.sensors-chapter04/tests/test_pythonversion.py create mode 100644 Ch04/apd.sensors-chapter04/tests/test_ramusage.py create mode 100644 Ch04/apd.sensors-chapter04/tests/test_sensors.py create mode 100644 Ch04/listing04-01-solar_prototype.ipynb create mode 100644 Ch05/apd.sensors-chapter05-pintbased/.pre-commit-config.yaml create mode 100644 Ch05/apd.sensors-chapter05-pintbased/CHANGES.md create mode 100644 Ch05/apd.sensors-chapter05-pintbased/LICENCE create mode 100644 Ch05/apd.sensors-chapter05-pintbased/Pipfile create mode 100644 Ch05/apd.sensors-chapter05-pintbased/Pipfile.lock create mode 100644 Ch05/apd.sensors-chapter05-pintbased/README.md create mode 100644 Ch05/apd.sensors-chapter05-pintbased/plugins/apd.sunnyboy_solar/pyproject.toml create mode 100644 Ch05/apd.sensors-chapter05-pintbased/plugins/apd.sunnyboy_solar/setup.cfg create mode 100644 Ch05/apd.sensors-chapter05-pintbased/plugins/apd.sunnyboy_solar/setup.py create mode 100644 Ch05/apd.sensors-chapter05-pintbased/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/Pipfile create mode 100644 Ch05/apd.sensors-chapter05-pintbased/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/__init__.py create mode 100644 Ch05/apd.sensors-chapter05-pintbased/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/sensor.py create mode 100644 Ch05/apd.sensors-chapter05-pintbased/pytest.ini create mode 100644 Ch05/apd.sensors-chapter05-pintbased/setup.cfg create mode 100644 Ch05/apd.sensors-chapter05-pintbased/setup.py create mode 100644 Ch05/apd.sensors-chapter05-pintbased/src/apd/sensors/__init__.py create mode 100644 Ch05/apd.sensors-chapter05-pintbased/src/apd/sensors/base.py create mode 100644 Ch05/apd.sensors-chapter05-pintbased/src/apd/sensors/cli.py create mode 100644 Ch05/apd.sensors-chapter05-pintbased/src/apd/sensors/py.typed create mode 100644 Ch05/apd.sensors-chapter05-pintbased/src/apd/sensors/sensors.py create mode 100644 Ch05/apd.sensors-chapter05-pintbased/src/apd/sensors/wsgi/__init__.py create mode 100644 Ch05/apd.sensors-chapter05-pintbased/src/apd/sensors/wsgi/base.py create mode 100644 Ch05/apd.sensors-chapter05-pintbased/src/apd/sensors/wsgi/serve.py create mode 100644 Ch05/apd.sensors-chapter05-pintbased/src/apd/sensors/wsgi/v10.py create mode 100644 Ch05/apd.sensors-chapter05-pintbased/src/apd/sensors/wsgi/v20.py create mode 100644 Ch05/apd.sensors-chapter05-pintbased/tests/test_acstatus.py create mode 100644 Ch05/apd.sensors-chapter05-pintbased/tests/test_api_server.py create mode 100644 Ch05/apd.sensors-chapter05-pintbased/tests/test_cpuusage.py create mode 100644 Ch05/apd.sensors-chapter05-pintbased/tests/test_dht.py create mode 100644 Ch05/apd.sensors-chapter05-pintbased/tests/test_ipaddresses.py create mode 100644 Ch05/apd.sensors-chapter05-pintbased/tests/test_pythonversion.py create mode 100644 Ch05/apd.sensors-chapter05-pintbased/tests/test_ramusage.py create mode 100644 Ch05/apd.sensors-chapter05-pintbased/tests/test_sensors.py create mode 100644 Ch05/apd.sensors-chapter05/.pre-commit-config.yaml create mode 100644 Ch05/apd.sensors-chapter05/CHANGES.md create mode 100644 Ch05/apd.sensors-chapter05/LICENCE create mode 100644 Ch05/apd.sensors-chapter05/Pipfile create mode 100644 Ch05/apd.sensors-chapter05/Pipfile.lock create mode 100644 Ch05/apd.sensors-chapter05/README.md create mode 100644 Ch05/apd.sensors-chapter05/plugins/apd.sunnyboy_solar/pyproject.toml create mode 100644 Ch05/apd.sensors-chapter05/plugins/apd.sunnyboy_solar/setup.cfg create mode 100644 Ch05/apd.sensors-chapter05/plugins/apd.sunnyboy_solar/setup.py create mode 100644 Ch05/apd.sensors-chapter05/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/Pipfile create mode 100644 Ch05/apd.sensors-chapter05/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/__init__.py create mode 100644 Ch05/apd.sensors-chapter05/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/sensor.py create mode 100644 Ch05/apd.sensors-chapter05/pytest.ini create mode 100644 Ch05/apd.sensors-chapter05/setup.cfg create mode 100644 Ch05/apd.sensors-chapter05/setup.py create mode 100644 Ch05/apd.sensors-chapter05/src/apd/sensors/__init__.py create mode 100644 Ch05/apd.sensors-chapter05/src/apd/sensors/base.py create mode 100644 Ch05/apd.sensors-chapter05/src/apd/sensors/cli.py create mode 100644 Ch05/apd.sensors-chapter05/src/apd/sensors/py.typed create mode 100644 Ch05/apd.sensors-chapter05/src/apd/sensors/sensors.py create mode 100644 Ch05/apd.sensors-chapter05/src/apd/sensors/wsgi/__init__.py create mode 100644 Ch05/apd.sensors-chapter05/src/apd/sensors/wsgi/base.py create mode 100644 Ch05/apd.sensors-chapter05/src/apd/sensors/wsgi/serve.py create mode 100644 Ch05/apd.sensors-chapter05/src/apd/sensors/wsgi/v10.py create mode 100644 Ch05/apd.sensors-chapter05/src/apd/sensors/wsgi/v20.py create mode 100644 Ch05/apd.sensors-chapter05/tests/test_acstatus.py create mode 100644 Ch05/apd.sensors-chapter05/tests/test_api_server.py create mode 100644 Ch05/apd.sensors-chapter05/tests/test_cpuusage.py create mode 100644 Ch05/apd.sensors-chapter05/tests/test_dht.py create mode 100644 Ch05/apd.sensors-chapter05/tests/test_ipaddresses.py create mode 100644 Ch05/apd.sensors-chapter05/tests/test_pythonversion.py create mode 100644 Ch05/apd.sensors-chapter05/tests/test_ramusage.py create mode 100644 Ch05/apd.sensors-chapter05/tests/test_sensors.py create mode 100644 Ch05/listing05-01-helloworld.py create mode 100644 Ch05/listing05-02-helloworld-incremental.py create mode 100644 Ch05/listing05-03-apd_sensors_wsgi.py create mode 100644 Ch05/listing05-08-typing.py create mode 100644 Ch06/apd.aggregation-chapter06/.coveragerc create mode 100644 Ch06/apd.aggregation-chapter06/.pre-commit-config.yaml create mode 100644 Ch06/apd.aggregation-chapter06/CHANGES.md create mode 100644 Ch06/apd.aggregation-chapter06/LICENCE create mode 100644 Ch06/apd.aggregation-chapter06/Pipfile create mode 100644 Ch06/apd.aggregation-chapter06/Pipfile.lock create mode 100644 Ch06/apd.aggregation-chapter06/README.md create mode 100644 Ch06/apd.aggregation-chapter06/pyproject.toml create mode 100644 Ch06/apd.aggregation-chapter06/setup.cfg create mode 100644 Ch06/apd.aggregation-chapter06/setup.py create mode 100644 Ch06/apd.aggregation-chapter06/src/apd/aggregation/__init__.py create mode 100644 Ch06/apd.aggregation-chapter06/src/apd/aggregation/alembic/README create mode 100644 Ch06/apd.aggregation-chapter06/src/apd/aggregation/alembic/env.py create mode 100644 Ch06/apd.aggregation-chapter06/src/apd/aggregation/alembic/script.py.mako create mode 100644 Ch06/apd.aggregation-chapter06/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py create mode 100644 Ch06/apd.aggregation-chapter06/src/apd/aggregation/cli.py create mode 100644 Ch06/apd.aggregation-chapter06/src/apd/aggregation/collect.py create mode 100644 Ch06/apd.aggregation-chapter06/src/apd/aggregation/database.py create mode 100644 Ch06/apd.aggregation-chapter06/tests/__init__.py create mode 100644 Ch06/apd.aggregation-chapter06/tests/conftest.py create mode 100644 Ch06/chapter06-ex1-generators.py create mode 100644 Ch06/listing06-03-descriptors.py create mode 100644 Ch07/apd.aggregation-chapter07-aio/.coveragerc create mode 100644 Ch07/apd.aggregation-chapter07-aio/.pre-commit-config.yaml create mode 100644 Ch07/apd.aggregation-chapter07-aio/CHANGES.md create mode 100644 Ch07/apd.aggregation-chapter07-aio/LICENCE create mode 100644 Ch07/apd.aggregation-chapter07-aio/Pipfile create mode 100644 Ch07/apd.aggregation-chapter07-aio/Pipfile.lock create mode 100644 Ch07/apd.aggregation-chapter07-aio/README.md create mode 100644 Ch07/apd.aggregation-chapter07-aio/pyproject.toml create mode 100644 Ch07/apd.aggregation-chapter07-aio/setup.cfg create mode 100644 Ch07/apd.aggregation-chapter07-aio/setup.py create mode 100644 Ch07/apd.aggregation-chapter07-aio/src/apd/aggregation/__init__.py create mode 100644 Ch07/apd.aggregation-chapter07-aio/src/apd/aggregation/alembic/README create mode 100644 Ch07/apd.aggregation-chapter07-aio/src/apd/aggregation/alembic/env.py create mode 100644 Ch07/apd.aggregation-chapter07-aio/src/apd/aggregation/alembic/script.py.mako create mode 100644 Ch07/apd.aggregation-chapter07-aio/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py create mode 100644 Ch07/apd.aggregation-chapter07-aio/src/apd/aggregation/cli.py create mode 100644 Ch07/apd.aggregation-chapter07-aio/src/apd/aggregation/collect.py create mode 100644 Ch07/apd.aggregation-chapter07-aio/src/apd/aggregation/database.py create mode 100644 Ch07/apd.aggregation-chapter07-aio/tests/__init__.py create mode 100644 Ch07/apd.aggregation-chapter07-aio/tests/conftest.py create mode 100644 Ch07/apd.aggregation-chapter07-multiprocess/.coveragerc create mode 100644 Ch07/apd.aggregation-chapter07-multiprocess/.pre-commit-config.yaml create mode 100644 Ch07/apd.aggregation-chapter07-multiprocess/CHANGES.md create mode 100644 Ch07/apd.aggregation-chapter07-multiprocess/LICENCE create mode 100644 Ch07/apd.aggregation-chapter07-multiprocess/Pipfile create mode 100644 Ch07/apd.aggregation-chapter07-multiprocess/Pipfile.lock create mode 100644 Ch07/apd.aggregation-chapter07-multiprocess/README.md create mode 100644 Ch07/apd.aggregation-chapter07-multiprocess/pyproject.toml create mode 100644 Ch07/apd.aggregation-chapter07-multiprocess/setup.cfg create mode 100644 Ch07/apd.aggregation-chapter07-multiprocess/setup.py create mode 100644 Ch07/apd.aggregation-chapter07-multiprocess/src/apd/aggregation/__init__.py create mode 100644 Ch07/apd.aggregation-chapter07-multiprocess/src/apd/aggregation/alembic/README create mode 100644 Ch07/apd.aggregation-chapter07-multiprocess/src/apd/aggregation/alembic/env.py create mode 100644 Ch07/apd.aggregation-chapter07-multiprocess/src/apd/aggregation/alembic/script.py.mako create mode 100644 Ch07/apd.aggregation-chapter07-multiprocess/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py create mode 100644 Ch07/apd.aggregation-chapter07-multiprocess/src/apd/aggregation/cli.py create mode 100644 Ch07/apd.aggregation-chapter07-multiprocess/src/apd/aggregation/collect.py create mode 100644 Ch07/apd.aggregation-chapter07-multiprocess/src/apd/aggregation/database.py create mode 100644 Ch07/apd.aggregation-chapter07-multiprocess/tests/__init__.py create mode 100644 Ch07/apd.aggregation-chapter07-multiprocess/tests/conftest.py create mode 100644 Ch07/apd.aggregation-chapter07-nbio/.coveragerc create mode 100644 Ch07/apd.aggregation-chapter07-nbio/.pre-commit-config.yaml create mode 100644 Ch07/apd.aggregation-chapter07-nbio/CHANGES.md create mode 100644 Ch07/apd.aggregation-chapter07-nbio/LICENCE create mode 100644 Ch07/apd.aggregation-chapter07-nbio/Pipfile create mode 100644 Ch07/apd.aggregation-chapter07-nbio/Pipfile.lock create mode 100644 Ch07/apd.aggregation-chapter07-nbio/README.md create mode 100644 Ch07/apd.aggregation-chapter07-nbio/pyproject.toml create mode 100644 Ch07/apd.aggregation-chapter07-nbio/setup.cfg create mode 100644 Ch07/apd.aggregation-chapter07-nbio/setup.py create mode 100644 Ch07/apd.aggregation-chapter07-nbio/src/apd/aggregation/__init__.py create mode 100644 Ch07/apd.aggregation-chapter07-nbio/src/apd/aggregation/alembic/README create mode 100644 Ch07/apd.aggregation-chapter07-nbio/src/apd/aggregation/alembic/env.py create mode 100644 Ch07/apd.aggregation-chapter07-nbio/src/apd/aggregation/alembic/script.py.mako create mode 100644 Ch07/apd.aggregation-chapter07-nbio/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py create mode 100644 Ch07/apd.aggregation-chapter07-nbio/src/apd/aggregation/cli.py create mode 100644 Ch07/apd.aggregation-chapter07-nbio/src/apd/aggregation/collect.py create mode 100644 Ch07/apd.aggregation-chapter07-nbio/src/apd/aggregation/database.py create mode 100644 Ch07/apd.aggregation-chapter07-nbio/tests/__init__.py create mode 100644 Ch07/apd.aggregation-chapter07-nbio/tests/conftest.py create mode 100644 Ch07/apd.aggregation-chapter07-simple-threads/.coveragerc create mode 100644 Ch07/apd.aggregation-chapter07-simple-threads/.pre-commit-config.yaml create mode 100644 Ch07/apd.aggregation-chapter07-simple-threads/CHANGES.md create mode 100644 Ch07/apd.aggregation-chapter07-simple-threads/LICENCE create mode 100644 Ch07/apd.aggregation-chapter07-simple-threads/Pipfile create mode 100644 Ch07/apd.aggregation-chapter07-simple-threads/Pipfile.lock create mode 100644 Ch07/apd.aggregation-chapter07-simple-threads/README.md create mode 100644 Ch07/apd.aggregation-chapter07-simple-threads/pyproject.toml create mode 100644 Ch07/apd.aggregation-chapter07-simple-threads/setup.cfg create mode 100644 Ch07/apd.aggregation-chapter07-simple-threads/setup.py create mode 100644 Ch07/apd.aggregation-chapter07-simple-threads/src/apd/aggregation/__init__.py create mode 100644 Ch07/apd.aggregation-chapter07-simple-threads/src/apd/aggregation/alembic/README create mode 100644 Ch07/apd.aggregation-chapter07-simple-threads/src/apd/aggregation/alembic/env.py create mode 100644 Ch07/apd.aggregation-chapter07-simple-threads/src/apd/aggregation/alembic/script.py.mako create mode 100644 Ch07/apd.aggregation-chapter07-simple-threads/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py create mode 100644 Ch07/apd.aggregation-chapter07-simple-threads/src/apd/aggregation/cli.py create mode 100644 Ch07/apd.aggregation-chapter07-simple-threads/src/apd/aggregation/collect.py create mode 100644 Ch07/apd.aggregation-chapter07-simple-threads/src/apd/aggregation/database.py create mode 100644 Ch07/apd.aggregation-chapter07-simple-threads/tests/__init__.py create mode 100644 Ch07/apd.aggregation-chapter07-simple-threads/tests/conftest.py create mode 100644 Ch07/listing07-01-nbioexample.py create mode 100644 Ch07/listing07-02-increment_dis.py create mode 100644 Ch07/listing07-05-threadpools-and-queues.py create mode 100644 Ch07/listing07-06-reentrantlocks.py create mode 100644 Ch07/listing07-07-conditions.py create mode 100644 Ch07/listing07-08-barriers.py create mode 100644 Ch07/listing07-09-events.py create mode 100644 Ch07/listing07-10-semaphore.py create mode 100644 Ch07/listing07-11-async-increment.py create mode 100644 Ch07/listing07-12-list_of_awaitables.py create mode 100644 Ch07/listing07-13-awaitable_list.py create mode 100644 Ch07/listing07-14-async_for.py create mode 100644 Ch07/listing07-15-awaitable_gather.py create mode 100644 Ch07/listing07-16-async_increment_unsafe.py create mode 100644 Ch07/listing07-17-async_increment_safe.py create mode 100644 Ch08/apd.aggregation-chapter08/.coveragerc create mode 100644 Ch08/apd.aggregation-chapter08/.pre-commit-config.yaml create mode 100644 Ch08/apd.aggregation-chapter08/CHANGES.md create mode 100644 Ch08/apd.aggregation-chapter08/LICENCE create mode 100644 Ch08/apd.aggregation-chapter08/Pipfile create mode 100644 Ch08/apd.aggregation-chapter08/Pipfile.lock create mode 100644 Ch08/apd.aggregation-chapter08/README.md create mode 100644 Ch08/apd.aggregation-chapter08/pyproject.toml create mode 100644 Ch08/apd.aggregation-chapter08/pytest.ini create mode 100644 Ch08/apd.aggregation-chapter08/setup.cfg create mode 100644 Ch08/apd.aggregation-chapter08/setup.py create mode 100644 Ch08/apd.aggregation-chapter08/src/apd/aggregation/__init__.py create mode 100644 Ch08/apd.aggregation-chapter08/src/apd/aggregation/alembic/README create mode 100644 Ch08/apd.aggregation-chapter08/src/apd/aggregation/alembic/env.py create mode 100644 Ch08/apd.aggregation-chapter08/src/apd/aggregation/alembic/script.py.mako create mode 100644 Ch08/apd.aggregation-chapter08/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py create mode 100644 Ch08/apd.aggregation-chapter08/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py create mode 100644 Ch08/apd.aggregation-chapter08/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py create mode 100644 Ch08/apd.aggregation-chapter08/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py create mode 100644 Ch08/apd.aggregation-chapter08/src/apd/aggregation/cli.py create mode 100644 Ch08/apd.aggregation-chapter08/src/apd/aggregation/collect.py create mode 100644 Ch08/apd.aggregation-chapter08/src/apd/aggregation/database.py create mode 100644 Ch08/apd.aggregation-chapter08/src/apd/aggregation/query.py create mode 100644 Ch08/apd.aggregation-chapter08/tests/__init__.py create mode 100644 Ch08/apd.aggregation-chapter08/tests/conftest.py create mode 100644 Ch08/apd.aggregation-chapter08/tests/test_http_get.py create mode 100644 Ch08/apd.aggregation-chapter08/tests/test_sensor_aggregation.py create mode 100644 Ch08/apd.sensors-chapter08/.pre-commit-config.yaml create mode 100644 Ch08/apd.sensors-chapter08/CHANGES.md create mode 100644 Ch08/apd.sensors-chapter08/LICENCE create mode 100644 Ch08/apd.sensors-chapter08/Pipfile create mode 100644 Ch08/apd.sensors-chapter08/Pipfile.lock create mode 100644 Ch08/apd.sensors-chapter08/README.md create mode 100644 Ch08/apd.sensors-chapter08/plugins/apd.sunnyboy_solar/pyproject.toml create mode 100644 Ch08/apd.sensors-chapter08/plugins/apd.sunnyboy_solar/setup.cfg create mode 100644 Ch08/apd.sensors-chapter08/plugins/apd.sunnyboy_solar/setup.py create mode 100644 Ch08/apd.sensors-chapter08/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/Pipfile create mode 100644 Ch08/apd.sensors-chapter08/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/__init__.py create mode 100644 Ch08/apd.sensors-chapter08/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/sensor.py create mode 100644 Ch08/apd.sensors-chapter08/pyproject.toml create mode 100644 Ch08/apd.sensors-chapter08/pytest.ini create mode 100644 Ch08/apd.sensors-chapter08/setup.cfg create mode 100644 Ch08/apd.sensors-chapter08/setup.py create mode 100644 Ch08/apd.sensors-chapter08/src/apd/sensors/__init__.py create mode 100644 Ch08/apd.sensors-chapter08/src/apd/sensors/base.py create mode 100644 Ch08/apd.sensors-chapter08/src/apd/sensors/cli.py create mode 100644 Ch08/apd.sensors-chapter08/src/apd/sensors/py.typed create mode 100644 Ch08/apd.sensors-chapter08/src/apd/sensors/sensors.py create mode 100644 Ch08/apd.sensors-chapter08/src/apd/sensors/wsgi/__init__.py create mode 100644 Ch08/apd.sensors-chapter08/src/apd/sensors/wsgi/base.py create mode 100644 Ch08/apd.sensors-chapter08/src/apd/sensors/wsgi/serve.py create mode 100644 Ch08/apd.sensors-chapter08/src/apd/sensors/wsgi/v10.py create mode 100644 Ch08/apd.sensors-chapter08/src/apd/sensors/wsgi/v20.py create mode 100644 Ch08/apd.sensors-chapter08/src/apd/sensors/wsgi/v21.py create mode 100644 Ch08/apd.sensors-chapter08/tests/__init__.py create mode 100644 Ch08/apd.sensors-chapter08/tests/test_acstatus.py create mode 100644 Ch08/apd.sensors-chapter08/tests/test_api_server.py create mode 100644 Ch08/apd.sensors-chapter08/tests/test_cpuusage.py create mode 100644 Ch08/apd.sensors-chapter08/tests/test_dht.py create mode 100644 Ch08/apd.sensors-chapter08/tests/test_ipaddresses.py create mode 100644 Ch08/apd.sensors-chapter08/tests/test_pythonversion.py create mode 100644 Ch08/apd.sensors-chapter08/tests/test_ramusage.py create mode 100644 Ch08/apd.sensors-chapter08/tests/test_sensors.py create mode 100644 Ch08/listing08-01-httpfixture.py create mode 100644 Ch08/listing08-02-config_fixture.py create mode 100644 Ch08/listing08-03-mocking.py create mode 100644 Ch08/listing08-04-manual_mocks.py create mode 100644 Ch08/listing08-05-apdaggregation_mocks.py create mode 100644 Ch08/listing08-06-classic_sqlalchemy.py create mode 100644 Ch08/listing08-07-datapoint_with_asdict.py create mode 100644 Ch08/listing08-08-database_integration.py create mode 100644 Ch08/listing08-09-full_datapoint.py create mode 100644 Ch08/listing08-10-comparator.py create mode 100644 Ch08/listing08-11-django.py create mode 100644 Ch08/listing08-12-migration.py create mode 100644 Ch08/listing08-13-env.py create mode 100644 Ch09/apd.aggregation-chapter09-ex01/.coveragerc create mode 100644 Ch09/apd.aggregation-chapter09-ex01/.pre-commit-config.yaml create mode 100644 Ch09/apd.aggregation-chapter09-ex01/CHANGES.md create mode 100644 Ch09/apd.aggregation-chapter09-ex01/LICENCE create mode 100644 Ch09/apd.aggregation-chapter09-ex01/Pipfile create mode 100644 Ch09/apd.aggregation-chapter09-ex01/Pipfile.lock create mode 100644 Ch09/apd.aggregation-chapter09-ex01/README.md create mode 100644 Ch09/apd.aggregation-chapter09-ex01/pyproject.toml create mode 100644 Ch09/apd.aggregation-chapter09-ex01/pytest.ini create mode 100644 Ch09/apd.aggregation-chapter09-ex01/setup.cfg create mode 100644 Ch09/apd.aggregation-chapter09-ex01/setup.py create mode 100644 Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/__init__.py create mode 100644 Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/alembic/README create mode 100644 Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/alembic/env.py create mode 100644 Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/alembic/script.py.mako create mode 100644 Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py create mode 100644 Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py create mode 100644 Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py create mode 100644 Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py create mode 100644 Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/analysis.py create mode 100644 Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/cli.py create mode 100644 Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/collect.py create mode 100644 Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/database.py create mode 100644 Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/query.py create mode 100644 Ch09/apd.aggregation-chapter09-ex01/tests/__init__.py create mode 100644 Ch09/apd.aggregation-chapter09-ex01/tests/conftest.py create mode 100644 Ch09/apd.aggregation-chapter09-ex01/tests/test_analysis.py create mode 100644 Ch09/apd.aggregation-chapter09-ex01/tests/test_http_get.py create mode 100644 Ch09/apd.aggregation-chapter09-ex01/tests/test_query.py create mode 100644 Ch09/apd.aggregation-chapter09-ex01/tests/test_sensor_aggregation.py create mode 100644 Ch09/apd.aggregation-chapter09-ex02/.coveragerc create mode 100644 Ch09/apd.aggregation-chapter09-ex02/.pre-commit-config.yaml create mode 100644 Ch09/apd.aggregation-chapter09-ex02/CHANGES.md create mode 100644 Ch09/apd.aggregation-chapter09-ex02/LICENCE create mode 100644 Ch09/apd.aggregation-chapter09-ex02/Pipfile create mode 100644 Ch09/apd.aggregation-chapter09-ex02/Pipfile.lock create mode 100644 Ch09/apd.aggregation-chapter09-ex02/README.md create mode 100644 Ch09/apd.aggregation-chapter09-ex02/pyproject.toml create mode 100644 Ch09/apd.aggregation-chapter09-ex02/pytest.ini create mode 100644 Ch09/apd.aggregation-chapter09-ex02/setup.cfg create mode 100644 Ch09/apd.aggregation-chapter09-ex02/setup.py create mode 100644 Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/__init__.py create mode 100644 Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/alembic/README create mode 100644 Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/alembic/env.py create mode 100644 Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/alembic/script.py.mako create mode 100644 Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py create mode 100644 Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py create mode 100644 Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py create mode 100644 Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py create mode 100644 Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/analysis.py create mode 100644 Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/cli.py create mode 100644 Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/collect.py create mode 100644 Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/database.py create mode 100644 Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/query.py create mode 100644 Ch09/apd.aggregation-chapter09-ex02/tests/__init__.py create mode 100644 Ch09/apd.aggregation-chapter09-ex02/tests/conftest.py create mode 100644 Ch09/apd.aggregation-chapter09-ex02/tests/test_analysis.py create mode 100644 Ch09/apd.aggregation-chapter09-ex02/tests/test_http_get.py create mode 100644 Ch09/apd.aggregation-chapter09-ex02/tests/test_query.py create mode 100644 Ch09/apd.aggregation-chapter09-ex02/tests/test_sensor_aggregation.py create mode 100644 Ch09/apd.aggregation-chapter09-ex03-complete/.coveragerc create mode 100644 Ch09/apd.aggregation-chapter09-ex03-complete/.pre-commit-config.yaml create mode 100644 Ch09/apd.aggregation-chapter09-ex03-complete/CHANGES.md create mode 100644 Ch09/apd.aggregation-chapter09-ex03-complete/LICENCE create mode 100644 Ch09/apd.aggregation-chapter09-ex03-complete/Pipfile create mode 100644 Ch09/apd.aggregation-chapter09-ex03-complete/Pipfile.lock create mode 100644 Ch09/apd.aggregation-chapter09-ex03-complete/README.md create mode 100644 Ch09/apd.aggregation-chapter09-ex03-complete/pyproject.toml create mode 100644 Ch09/apd.aggregation-chapter09-ex03-complete/pytest.ini create mode 100644 Ch09/apd.aggregation-chapter09-ex03-complete/setup.cfg create mode 100644 Ch09/apd.aggregation-chapter09-ex03-complete/setup.py create mode 100644 Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/__init__.py create mode 100644 Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/alembic/README create mode 100644 Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/alembic/env.py create mode 100644 Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/alembic/script.py.mako create mode 100644 Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py create mode 100644 Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py create mode 100644 Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py create mode 100644 Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/alembic/versions/d8cdc709086b_add_deployment_table.py create mode 100644 Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py create mode 100644 Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/analysis.py create mode 100644 Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/cli.py create mode 100644 Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/collect.py create mode 100644 Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/database.py create mode 100644 Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/query.py create mode 100644 Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/utils.py create mode 100644 Ch09/apd.aggregation-chapter09-ex03-complete/tests/__init__.py create mode 100644 Ch09/apd.aggregation-chapter09-ex03-complete/tests/conftest.py create mode 100644 Ch09/apd.aggregation-chapter09-ex03-complete/tests/test_analysis.py create mode 100644 Ch09/apd.aggregation-chapter09-ex03-complete/tests/test_cli.py create mode 100644 Ch09/apd.aggregation-chapter09-ex03-complete/tests/test_http_get.py create mode 100644 Ch09/apd.aggregation-chapter09-ex03-complete/tests/test_query.py create mode 100644 Ch09/apd.aggregation-chapter09-ex03-complete/tests/test_sensor_aggregation.py create mode 100644 Ch09/apd.aggregation-chapter09-ex03/.coveragerc create mode 100644 Ch09/apd.aggregation-chapter09-ex03/.pre-commit-config.yaml create mode 100644 Ch09/apd.aggregation-chapter09-ex03/CHANGES.md create mode 100644 Ch09/apd.aggregation-chapter09-ex03/LICENCE create mode 100644 Ch09/apd.aggregation-chapter09-ex03/Pipfile create mode 100644 Ch09/apd.aggregation-chapter09-ex03/Pipfile.lock create mode 100644 Ch09/apd.aggregation-chapter09-ex03/README.md create mode 100644 Ch09/apd.aggregation-chapter09-ex03/pyproject.toml create mode 100644 Ch09/apd.aggregation-chapter09-ex03/pytest.ini create mode 100644 Ch09/apd.aggregation-chapter09-ex03/setup.cfg create mode 100644 Ch09/apd.aggregation-chapter09-ex03/setup.py create mode 100644 Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/__init__.py create mode 100644 Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/alembic/README create mode 100644 Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/alembic/env.py create mode 100644 Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/alembic/script.py.mako create mode 100644 Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py create mode 100644 Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py create mode 100644 Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py create mode 100644 Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/alembic/versions/d8cdc709086b_add_deployment_table.py create mode 100644 Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py create mode 100644 Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/analysis.py create mode 100644 Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/cli.py create mode 100644 Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/collect.py create mode 100644 Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/database.py create mode 100644 Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/query.py create mode 100644 Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/utils.py create mode 100644 Ch09/apd.aggregation-chapter09-ex03/tests/__init__.py create mode 100644 Ch09/apd.aggregation-chapter09-ex03/tests/conftest.py create mode 100644 Ch09/apd.aggregation-chapter09-ex03/tests/test_analysis.py create mode 100644 Ch09/apd.aggregation-chapter09-ex03/tests/test_cli.py create mode 100644 Ch09/apd.aggregation-chapter09-ex03/tests/test_http_get.py create mode 100644 Ch09/apd.aggregation-chapter09-ex03/tests/test_query.py create mode 100644 Ch09/apd.aggregation-chapter09-ex03/tests/test_sensor_aggregation.py create mode 100644 Ch09/apd.aggregation-chapter09/.coveragerc create mode 100644 Ch09/apd.aggregation-chapter09/.pre-commit-config.yaml create mode 100644 Ch09/apd.aggregation-chapter09/CHANGES.md create mode 100644 Ch09/apd.aggregation-chapter09/Connect to database.ipynb create mode 100644 Ch09/apd.aggregation-chapter09/LICENCE create mode 100644 Ch09/apd.aggregation-chapter09/Mapping.ipynb create mode 100644 Ch09/apd.aggregation-chapter09/Pipfile create mode 100644 Ch09/apd.aggregation-chapter09/Pipfile.lock create mode 100644 Ch09/apd.aggregation-chapter09/README.md create mode 100644 Ch09/apd.aggregation-chapter09/pyproject.toml create mode 100644 Ch09/apd.aggregation-chapter09/pytest.ini create mode 100644 Ch09/apd.aggregation-chapter09/setup.cfg create mode 100644 Ch09/apd.aggregation-chapter09/setup.py create mode 100644 Ch09/apd.aggregation-chapter09/src/apd/aggregation/__init__.py create mode 100644 Ch09/apd.aggregation-chapter09/src/apd/aggregation/alembic/README create mode 100644 Ch09/apd.aggregation-chapter09/src/apd/aggregation/alembic/env.py create mode 100644 Ch09/apd.aggregation-chapter09/src/apd/aggregation/alembic/script.py.mako create mode 100644 Ch09/apd.aggregation-chapter09/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py create mode 100644 Ch09/apd.aggregation-chapter09/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py create mode 100644 Ch09/apd.aggregation-chapter09/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py create mode 100644 Ch09/apd.aggregation-chapter09/src/apd/aggregation/alembic/versions/d8cdc709086b_add_deployment_table.py create mode 100644 Ch09/apd.aggregation-chapter09/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py create mode 100644 Ch09/apd.aggregation-chapter09/src/apd/aggregation/analysis.py create mode 100644 Ch09/apd.aggregation-chapter09/src/apd/aggregation/cli.py create mode 100644 Ch09/apd.aggregation-chapter09/src/apd/aggregation/collect.py create mode 100644 Ch09/apd.aggregation-chapter09/src/apd/aggregation/database.py create mode 100644 Ch09/apd.aggregation-chapter09/src/apd/aggregation/query.py create mode 100644 Ch09/apd.aggregation-chapter09/src/apd/aggregation/utils.py create mode 100644 Ch09/apd.aggregation-chapter09/tests/__init__.py create mode 100644 Ch09/apd.aggregation-chapter09/tests/conftest.py create mode 100644 Ch09/apd.aggregation-chapter09/tests/test_analysis.py create mode 100644 Ch09/apd.aggregation-chapter09/tests/test_cli.py create mode 100644 Ch09/apd.aggregation-chapter09/tests/test_http_get.py create mode 100644 Ch09/apd.aggregation-chapter09/tests/test_query.py create mode 100644 Ch09/apd.aggregation-chapter09/tests/test_sensor_aggregation.py create mode 100644 Ch09/chapter09-analysis.ipynb create mode 100644 Ch09/chapter09-database.ipynb create mode 100644 Ch09/chapter09-mapping.ipynb create mode 100644 Ch09/listing09-01-query_contextmanager.py create mode 100644 Ch09/listing09-02-getdata.py create mode 100644 Ch09/listing09-03-count-datapoints.py create mode 100644 Ch09/listing09-04-plot.py create mode 100644 Ch09/listing09-05-filtering.py create mode 100644 Ch09/listing09-06-multiplot.py create mode 100644 Ch09/listing09-07-more_filtering.py create mode 100644 Ch09/listing09-08-plot_with_helpers.py create mode 100644 Ch09/listing09-09-async_groupby.py create mode 100644 Ch09/listing09-10-new_get_data.py create mode 100644 Ch09/listing09-11-database_fixtures.py create mode 100644 Ch09/listing09-12-parameterisation.py create mode 100644 Ch09/listing09-13-configs.py create mode 100644 Ch09/listing09-14-two_plots.py create mode 100644 Ch09/listing09-15-temperature_cleaner.py create mode 100644 Ch09/listing09-16-chart_grid.py create mode 100644 Ch09/listing09-17-sync_from_async.py create mode 100644 Ch09/listing09-18-wrap_coroutine.py create mode 100644 Ch09/listing09-19-interactable.py create mode 100644 Ch09/listing09-20-genericised_plots.py create mode 100644 Ch09/listing09-21-contours_and_scatter.py create mode 100644 Ch09/listing09-22-get_data_config.py create mode 100644 Ch09/listing09-23-generic_config.py create mode 100644 Ch09/listing09-24-custom_map_chart.py create mode 100644 Ch10/apd.aggregation-chapter10-ex01/.coveragerc create mode 100644 Ch10/apd.aggregation-chapter10-ex01/.pre-commit-config.yaml create mode 100644 Ch10/apd.aggregation-chapter10-ex01/CHANGES.md create mode 100644 Ch10/apd.aggregation-chapter10-ex01/Connect to database.ipynb create mode 100644 Ch10/apd.aggregation-chapter10-ex01/LICENCE create mode 100644 Ch10/apd.aggregation-chapter10-ex01/Mapping.ipynb create mode 100644 Ch10/apd.aggregation-chapter10-ex01/Pipfile create mode 100644 Ch10/apd.aggregation-chapter10-ex01/Pipfile.lock create mode 100644 Ch10/apd.aggregation-chapter10-ex01/README.md create mode 100644 Ch10/apd.aggregation-chapter10-ex01/pyproject.toml create mode 100644 Ch10/apd.aggregation-chapter10-ex01/pytest.ini create mode 100644 Ch10/apd.aggregation-chapter10-ex01/setup.cfg create mode 100644 Ch10/apd.aggregation-chapter10-ex01/setup.py create mode 100644 Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/__init__.py create mode 100644 Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/alembic/README create mode 100644 Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/alembic/env.py create mode 100644 Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/alembic/script.py.mako create mode 100644 Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py create mode 100644 Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py create mode 100644 Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py create mode 100644 Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/alembic/versions/d8cdc709086b_add_deployment_table.py create mode 100644 Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py create mode 100644 Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/analysis.py create mode 100644 Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/cli.py create mode 100644 Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/collect.py create mode 100644 Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/database.py create mode 100644 Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/query.py create mode 100644 Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/typing.py create mode 100644 Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/utils.py create mode 100644 Ch10/apd.aggregation-chapter10-ex01/tests/__init__.py create mode 100644 Ch10/apd.aggregation-chapter10-ex01/tests/conftest.py create mode 100644 Ch10/apd.aggregation-chapter10-ex01/tests/test_analysis.py create mode 100644 Ch10/apd.aggregation-chapter10-ex01/tests/test_cli.py create mode 100644 Ch10/apd.aggregation-chapter10-ex01/tests/test_http_get.py create mode 100644 Ch10/apd.aggregation-chapter10-ex01/tests/test_query.py create mode 100644 Ch10/apd.aggregation-chapter10-ex01/tests/test_sensor_aggregation.py create mode 100644 Ch10/apd.aggregation-chapter10/.coveragerc create mode 100644 Ch10/apd.aggregation-chapter10/.pre-commit-config.yaml create mode 100644 Ch10/apd.aggregation-chapter10/CHANGES.md create mode 100644 Ch10/apd.aggregation-chapter10/Connect to database.ipynb create mode 100644 Ch10/apd.aggregation-chapter10/LICENCE create mode 100644 Ch10/apd.aggregation-chapter10/Mapping.ipynb create mode 100644 Ch10/apd.aggregation-chapter10/Pipfile create mode 100644 Ch10/apd.aggregation-chapter10/Pipfile.lock create mode 100644 Ch10/apd.aggregation-chapter10/README.md create mode 100644 Ch10/apd.aggregation-chapter10/Yappi Profiling.ipynb create mode 100644 Ch10/apd.aggregation-chapter10/pyproject.toml create mode 100644 Ch10/apd.aggregation-chapter10/pytest.ini create mode 100644 Ch10/apd.aggregation-chapter10/setup.cfg create mode 100644 Ch10/apd.aggregation-chapter10/setup.py create mode 100644 Ch10/apd.aggregation-chapter10/src/apd/aggregation/__init__.py create mode 100644 Ch10/apd.aggregation-chapter10/src/apd/aggregation/alembic/README create mode 100644 Ch10/apd.aggregation-chapter10/src/apd/aggregation/alembic/env.py create mode 100644 Ch10/apd.aggregation-chapter10/src/apd/aggregation/alembic/script.py.mako create mode 100644 Ch10/apd.aggregation-chapter10/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py create mode 100644 Ch10/apd.aggregation-chapter10/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py create mode 100644 Ch10/apd.aggregation-chapter10/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py create mode 100644 Ch10/apd.aggregation-chapter10/src/apd/aggregation/alembic/versions/d8cdc709086b_add_deployment_table.py create mode 100644 Ch10/apd.aggregation-chapter10/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py create mode 100644 Ch10/apd.aggregation-chapter10/src/apd/aggregation/analysis.py create mode 100644 Ch10/apd.aggregation-chapter10/src/apd/aggregation/cli.py create mode 100644 Ch10/apd.aggregation-chapter10/src/apd/aggregation/collect.py create mode 100644 Ch10/apd.aggregation-chapter10/src/apd/aggregation/database.py create mode 100644 Ch10/apd.aggregation-chapter10/src/apd/aggregation/query.py create mode 100644 Ch10/apd.aggregation-chapter10/src/apd/aggregation/typing.py create mode 100644 Ch10/apd.aggregation-chapter10/src/apd/aggregation/utils.py create mode 100644 Ch10/apd.aggregation-chapter10/tests/__init__.py create mode 100644 Ch10/apd.aggregation-chapter10/tests/conftest.py create mode 100644 Ch10/apd.aggregation-chapter10/tests/test_analysis.py create mode 100644 Ch10/apd.aggregation-chapter10/tests/test_cli.py create mode 100644 Ch10/apd.aggregation-chapter10/tests/test_http_get.py create mode 100644 Ch10/apd.aggregation-chapter10/tests/test_query.py create mode 100644 Ch10/apd.aggregation-chapter10/tests/test_sensor_aggregation.py create mode 100644 Ch10/apd.sensors-chapter10/.pre-commit-config.yaml create mode 100644 Ch10/apd.sensors-chapter10/CHANGES.md create mode 100644 Ch10/apd.sensors-chapter10/LICENCE create mode 100644 Ch10/apd.sensors-chapter10/Pipfile create mode 100644 Ch10/apd.sensors-chapter10/Pipfile.lock create mode 100644 Ch10/apd.sensors-chapter10/README.md create mode 100644 Ch10/apd.sensors-chapter10/plugins/apd.sunnyboy_solar/pyproject.toml create mode 100644 Ch10/apd.sensors-chapter10/plugins/apd.sunnyboy_solar/setup.cfg create mode 100644 Ch10/apd.sensors-chapter10/plugins/apd.sunnyboy_solar/setup.py create mode 100644 Ch10/apd.sensors-chapter10/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/Pipfile create mode 100644 Ch10/apd.sensors-chapter10/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/__init__.py create mode 100644 Ch10/apd.sensors-chapter10/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/sensor.py create mode 100644 Ch10/apd.sensors-chapter10/pytest.ini create mode 100644 Ch10/apd.sensors-chapter10/setup.cfg create mode 100644 Ch10/apd.sensors-chapter10/setup.py create mode 100644 Ch10/apd.sensors-chapter10/src/apd/sensors/__init__.py create mode 100644 Ch10/apd.sensors-chapter10/src/apd/sensors/base.py create mode 100644 Ch10/apd.sensors-chapter10/src/apd/sensors/cli.py create mode 100644 Ch10/apd.sensors-chapter10/src/apd/sensors/py.typed create mode 100644 Ch10/apd.sensors-chapter10/src/apd/sensors/sensors.py create mode 100644 Ch10/apd.sensors-chapter10/src/apd/sensors/wsgi/__init__.py create mode 100644 Ch10/apd.sensors-chapter10/src/apd/sensors/wsgi/base.py create mode 100644 Ch10/apd.sensors-chapter10/src/apd/sensors/wsgi/serve.py create mode 100644 Ch10/apd.sensors-chapter10/src/apd/sensors/wsgi/v10.py create mode 100644 Ch10/apd.sensors-chapter10/src/apd/sensors/wsgi/v20.py create mode 100644 Ch10/apd.sensors-chapter10/src/apd/sensors/wsgi/v21.py create mode 100644 Ch10/apd.sensors-chapter10/tests/test_acstatus.py create mode 100644 Ch10/apd.sensors-chapter10/tests/test_api_server.py create mode 100644 Ch10/apd.sensors-chapter10/tests/test_cpuusage.py create mode 100644 Ch10/apd.sensors-chapter10/tests/test_dht.py create mode 100644 Ch10/apd.sensors-chapter10/tests/test_ipaddresses.py create mode 100644 Ch10/apd.sensors-chapter10/tests/test_pythonversion.py create mode 100644 Ch10/apd.sensors-chapter10/tests/test_ramusage.py create mode 100644 Ch10/apd.sensors-chapter10/tests/test_sensors.py create mode 100644 Ch10/chapter10-yappi.ipynb create mode 100644 Ch10/listing10-01-profiling_wrapper.py create mode 100644 Ch10/listing10-02-profile_with_yappi.py create mode 100644 Ch10/listing10-03-memory_profiler.py create mode 100644 Ch10/listing10-04-sql_filtering.py create mode 100644 Ch10/listing10-05-python_filtering.py create mode 100644 Ch10/listing10-06-consume_iterators.py create mode 100644 Ch10/listing10-07-consume_iterators_singledispatch.py create mode 100644 Ch10/listing10-08-typed_conversion.py create mode 100644 Ch10/listing10-09-fahrenheit_chart.py create mode 100644 Ch10/listing10-10-minimal_cache.py create mode 100644 Ch11/apd.aggregation-chapter11/.coveragerc create mode 100644 Ch11/apd.aggregation-chapter11/.pre-commit-config.yaml create mode 100644 Ch11/apd.aggregation-chapter11/CHANGES.md create mode 100644 Ch11/apd.aggregation-chapter11/Connect to database.ipynb create mode 100644 Ch11/apd.aggregation-chapter11/LICENCE create mode 100644 Ch11/apd.aggregation-chapter11/Mapping.ipynb create mode 100644 Ch11/apd.aggregation-chapter11/Pipfile create mode 100644 Ch11/apd.aggregation-chapter11/Pipfile.lock create mode 100644 Ch11/apd.aggregation-chapter11/README.md create mode 100644 Ch11/apd.aggregation-chapter11/Yappi Profiling.ipynb create mode 100644 Ch11/apd.aggregation-chapter11/pyproject.toml create mode 100644 Ch11/apd.aggregation-chapter11/pytest.ini create mode 100644 Ch11/apd.aggregation-chapter11/setup.cfg create mode 100644 Ch11/apd.aggregation-chapter11/setup.py create mode 100644 Ch11/apd.aggregation-chapter11/src/apd/aggregation/__init__.py create mode 100644 Ch11/apd.aggregation-chapter11/src/apd/aggregation/alembic/README create mode 100644 Ch11/apd.aggregation-chapter11/src/apd/aggregation/alembic/env.py create mode 100644 Ch11/apd.aggregation-chapter11/src/apd/aggregation/alembic/script.py.mako create mode 100644 Ch11/apd.aggregation-chapter11/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py create mode 100644 Ch11/apd.aggregation-chapter11/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py create mode 100644 Ch11/apd.aggregation-chapter11/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py create mode 100644 Ch11/apd.aggregation-chapter11/src/apd/aggregation/alembic/versions/d8cdc709086b_add_deployment_table.py create mode 100644 Ch11/apd.aggregation-chapter11/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py create mode 100644 Ch11/apd.aggregation-chapter11/src/apd/aggregation/analysis.py create mode 100644 Ch11/apd.aggregation-chapter11/src/apd/aggregation/cli.py create mode 100644 Ch11/apd.aggregation-chapter11/src/apd/aggregation/collect.py create mode 100644 Ch11/apd.aggregation-chapter11/src/apd/aggregation/database.py create mode 100644 Ch11/apd.aggregation-chapter11/src/apd/aggregation/query.py create mode 100644 Ch11/apd.aggregation-chapter11/src/apd/aggregation/typing.py create mode 100644 Ch11/apd.aggregation-chapter11/src/apd/aggregation/utils.py create mode 100644 Ch11/apd.aggregation-chapter11/tests/__init__.py create mode 100644 Ch11/apd.aggregation-chapter11/tests/conftest.py create mode 100644 Ch11/apd.aggregation-chapter11/tests/test_analysis.py create mode 100644 Ch11/apd.aggregation-chapter11/tests/test_cli.py create mode 100644 Ch11/apd.aggregation-chapter11/tests/test_http_get.py create mode 100644 Ch11/apd.aggregation-chapter11/tests/test_query.py create mode 100644 Ch11/apd.aggregation-chapter11/tests/test_sensor_aggregation.py create mode 100644 Ch11/apd.sensors-chapter11-ex01/.pre-commit-config.yaml create mode 100644 Ch11/apd.sensors-chapter11-ex01/CHANGES.md create mode 100644 Ch11/apd.sensors-chapter11-ex01/LICENCE create mode 100644 Ch11/apd.sensors-chapter11-ex01/Pipfile create mode 100644 Ch11/apd.sensors-chapter11-ex01/Pipfile.lock create mode 100644 Ch11/apd.sensors-chapter11-ex01/README.md create mode 100644 Ch11/apd.sensors-chapter11-ex01/plugins/apd.sunnyboy_solar/pyproject.toml create mode 100644 Ch11/apd.sensors-chapter11-ex01/plugins/apd.sunnyboy_solar/setup.cfg create mode 100644 Ch11/apd.sensors-chapter11-ex01/plugins/apd.sunnyboy_solar/setup.py create mode 100644 Ch11/apd.sensors-chapter11-ex01/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/Pipfile create mode 100644 Ch11/apd.sensors-chapter11-ex01/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/__init__.py create mode 100644 Ch11/apd.sensors-chapter11-ex01/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/sensor.py create mode 100644 Ch11/apd.sensors-chapter11-ex01/pytest.ini create mode 100644 Ch11/apd.sensors-chapter11-ex01/setup.cfg create mode 100644 Ch11/apd.sensors-chapter11-ex01/setup.py create mode 100644 Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/__init__.py create mode 100644 Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/alembic/README create mode 100644 Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/alembic/env.py create mode 100644 Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/alembic/script.py.mako create mode 100644 Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/alembic/versions/0eeb2a54fea8_add_initial_sensor_table.py create mode 100644 Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/base.py create mode 100644 Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/cli.py create mode 100644 Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/database.py create mode 100644 Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/exceptions.py create mode 100644 Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/py.typed create mode 100644 Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/sensors.py create mode 100644 Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/utils.py create mode 100644 Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/wsgi/__init__.py create mode 100644 Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/wsgi/base.py create mode 100644 Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/wsgi/serve.py create mode 100644 Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/wsgi/v10.py create mode 100644 Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/wsgi/v20.py create mode 100644 Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/wsgi/v21.py create mode 100644 Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/wsgi/v30.py create mode 100644 Ch11/apd.sensors-chapter11-ex01/tests/__init__.py create mode 100644 Ch11/apd.sensors-chapter11-ex01/tests/test_acstatus.py create mode 100644 Ch11/apd.sensors-chapter11-ex01/tests/test_api_server.py create mode 100644 Ch11/apd.sensors-chapter11-ex01/tests/test_cpuusage.py create mode 100644 Ch11/apd.sensors-chapter11-ex01/tests/test_dht.py create mode 100644 Ch11/apd.sensors-chapter11-ex01/tests/test_ipaddresses.py create mode 100644 Ch11/apd.sensors-chapter11-ex01/tests/test_pythonversion.py create mode 100644 Ch11/apd.sensors-chapter11-ex01/tests/test_ramusage.py create mode 100644 Ch11/apd.sensors-chapter11-ex01/tests/test_sensors.py create mode 100644 Ch11/apd.sensors-chapter11-ex01/tests/test_utils.py create mode 100644 Ch11/apd.sensors-chapter11/.pre-commit-config.yaml create mode 100644 Ch11/apd.sensors-chapter11/CHANGES.md create mode 100644 Ch11/apd.sensors-chapter11/LICENCE create mode 100644 Ch11/apd.sensors-chapter11/Pipfile create mode 100644 Ch11/apd.sensors-chapter11/Pipfile.lock create mode 100644 Ch11/apd.sensors-chapter11/README.md create mode 100644 Ch11/apd.sensors-chapter11/plugins/apd.sunnyboy_solar/pyproject.toml create mode 100644 Ch11/apd.sensors-chapter11/plugins/apd.sunnyboy_solar/setup.cfg create mode 100644 Ch11/apd.sensors-chapter11/plugins/apd.sunnyboy_solar/setup.py create mode 100644 Ch11/apd.sensors-chapter11/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/Pipfile create mode 100644 Ch11/apd.sensors-chapter11/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/__init__.py create mode 100644 Ch11/apd.sensors-chapter11/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/sensor.py create mode 100644 Ch11/apd.sensors-chapter11/pyproject.toml create mode 100644 Ch11/apd.sensors-chapter11/pytest.ini create mode 100644 Ch11/apd.sensors-chapter11/setup.cfg create mode 100644 Ch11/apd.sensors-chapter11/setup.py create mode 100644 Ch11/apd.sensors-chapter11/src/apd/sensors/__init__.py create mode 100644 Ch11/apd.sensors-chapter11/src/apd/sensors/alembic/README create mode 100644 Ch11/apd.sensors-chapter11/src/apd/sensors/alembic/env.py create mode 100644 Ch11/apd.sensors-chapter11/src/apd/sensors/alembic/script.py.mako create mode 100644 Ch11/apd.sensors-chapter11/src/apd/sensors/alembic/versions/0eeb2a54fea8_add_initial_sensor_table.py create mode 100644 Ch11/apd.sensors-chapter11/src/apd/sensors/base.py create mode 100644 Ch11/apd.sensors-chapter11/src/apd/sensors/cli.py create mode 100644 Ch11/apd.sensors-chapter11/src/apd/sensors/database.py create mode 100644 Ch11/apd.sensors-chapter11/src/apd/sensors/exceptions.py create mode 100644 Ch11/apd.sensors-chapter11/src/apd/sensors/py.typed create mode 100644 Ch11/apd.sensors-chapter11/src/apd/sensors/sensors.py create mode 100644 Ch11/apd.sensors-chapter11/src/apd/sensors/utils.py create mode 100644 Ch11/apd.sensors-chapter11/src/apd/sensors/wsgi/__init__.py create mode 100644 Ch11/apd.sensors-chapter11/src/apd/sensors/wsgi/base.py create mode 100644 Ch11/apd.sensors-chapter11/src/apd/sensors/wsgi/serve.py create mode 100644 Ch11/apd.sensors-chapter11/src/apd/sensors/wsgi/v10.py create mode 100644 Ch11/apd.sensors-chapter11/src/apd/sensors/wsgi/v20.py create mode 100644 Ch11/apd.sensors-chapter11/src/apd/sensors/wsgi/v21.py create mode 100644 Ch11/apd.sensors-chapter11/src/apd/sensors/wsgi/v30.py create mode 100644 Ch11/apd.sensors-chapter11/tests/__init__.py create mode 100644 Ch11/apd.sensors-chapter11/tests/test_acstatus.py create mode 100644 Ch11/apd.sensors-chapter11/tests/test_api_server.py create mode 100644 Ch11/apd.sensors-chapter11/tests/test_cpuusage.py create mode 100644 Ch11/apd.sensors-chapter11/tests/test_dht.py create mode 100644 Ch11/apd.sensors-chapter11/tests/test_ipaddresses.py create mode 100644 Ch11/apd.sensors-chapter11/tests/test_pythonversion.py create mode 100644 Ch11/apd.sensors-chapter11/tests/test_ramusage.py create mode 100644 Ch11/apd.sensors-chapter11/tests/test_sensors.py create mode 100644 Ch11/apd.sensors-chapter11/tests/test_utils.py create mode 100644 Ch11/listing11-01-get_with_default.py create mode 100644 Ch11/listing11-02-new_exceptions.py create mode 100644 Ch11/listing11-03-retry_sensor.py create mode 100644 Ch11/listing11-04-exception_with_metadata.py create mode 100644 Ch11/listing11-05-dht_baseclass.py create mode 100644 Ch11/listing11-06-cli_exceptions.py create mode 100644 Ch11/listing11-07-failing_test_sensor.py create mode 100644 Ch11/listing11-08-compatibility_test.py create mode 100644 Ch11/listing11-09-mock-failingsensor.py create mode 100644 Ch11/listing11-10-deprecationwarning.py create mode 100644 Ch11/listing11-11-test_for_deprecation_warnings.py create mode 100644 Ch11/listing11-12-logging_config.py create mode 100644 Ch11/listing11-13-log_adapter.py create mode 100644 Ch11/listing11-14-log_factory.py create mode 100644 Ch11/listing11-15-log_filter.py create mode 100644 Ch11/listing11-16-log_handler.py create mode 100644 Ch11/listing11-17-log_config.ini create mode 100644 Ch11/listing11-18-local_data_cache.py create mode 100644 Ch11/listing11-19-local_data_cache_cli.py create mode 100644 Ch11/listing11-20-v3_api_additions.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/.coveragerc create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/.pre-commit-config.yaml create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/CHANGES.md create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/Connect to database.ipynb create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/LICENCE create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/Mapping.ipynb create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/Pipfile create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/Pipfile.lock create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/README.md create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/Yappi Profiling.ipynb create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/pyproject.toml create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/pytest.ini create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/setup.cfg create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/setup.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/__init__.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/actions/__init__.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/actions/action.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/actions/base.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/actions/runner.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/actions/source.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/actions/trigger.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/alembic/README create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/alembic/env.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/alembic/script.py.mako create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/alembic/versions/d8cdc709086b_add_deployment_table.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/analysis.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/cli.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/collect.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/database.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/exceptions.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/query.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/typing.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/utils.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/tests/__init__.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/tests/conftest.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/tests/test_actions_actions.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/tests/test_actions_runner.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/tests/test_actions_triggers.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/tests/test_analysis.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/tests/test_cli.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/tests/test_http_get.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/tests/test_query.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01-complete/tests/test_sensor_aggregation.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01/.coveragerc create mode 100644 Ch12/apd.aggregation-chapter12-ex01/.pre-commit-config.yaml create mode 100644 Ch12/apd.aggregation-chapter12-ex01/CHANGES.md create mode 100644 Ch12/apd.aggregation-chapter12-ex01/Connect to database.ipynb create mode 100644 Ch12/apd.aggregation-chapter12-ex01/LICENCE create mode 100644 Ch12/apd.aggregation-chapter12-ex01/Mapping.ipynb create mode 100644 Ch12/apd.aggregation-chapter12-ex01/Pipfile create mode 100644 Ch12/apd.aggregation-chapter12-ex01/Pipfile.lock create mode 100644 Ch12/apd.aggregation-chapter12-ex01/README.md create mode 100644 Ch12/apd.aggregation-chapter12-ex01/Yappi Profiling.ipynb create mode 100644 Ch12/apd.aggregation-chapter12-ex01/pyproject.toml create mode 100644 Ch12/apd.aggregation-chapter12-ex01/pytest.ini create mode 100644 Ch12/apd.aggregation-chapter12-ex01/setup.cfg create mode 100644 Ch12/apd.aggregation-chapter12-ex01/setup.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/__init__.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/actions/__init__.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/actions/action.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/actions/base.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/actions/runner.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/actions/source.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/actions/trigger.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/alembic/README create mode 100644 Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/alembic/env.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/alembic/script.py.mako create mode 100644 Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/alembic/versions/d8cdc709086b_add_deployment_table.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/analysis.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/cli.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/collect.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/database.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/exceptions.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/query.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/typing.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/utils.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01/tests/__init__.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01/tests/conftest.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01/tests/test_actions_actions.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01/tests/test_actions_runner.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01/tests/test_actions_triggers.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01/tests/test_analysis.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01/tests/test_cli.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01/tests/test_http_get.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01/tests/test_query.py create mode 100644 Ch12/apd.aggregation-chapter12-ex01/tests/test_sensor_aggregation.py create mode 100644 Ch12/apd.aggregation-chapter12/.coveragerc create mode 100644 Ch12/apd.aggregation-chapter12/.pre-commit-config.yaml create mode 100644 Ch12/apd.aggregation-chapter12/CHANGES.md create mode 100644 Ch12/apd.aggregation-chapter12/Connect to database.ipynb create mode 100644 Ch12/apd.aggregation-chapter12/LICENCE create mode 100644 Ch12/apd.aggregation-chapter12/Mapping.ipynb create mode 100644 Ch12/apd.aggregation-chapter12/Pipfile create mode 100644 Ch12/apd.aggregation-chapter12/Pipfile.lock create mode 100644 Ch12/apd.aggregation-chapter12/README.md create mode 100644 Ch12/apd.aggregation-chapter12/Yappi Profiling.ipynb create mode 100644 Ch12/apd.aggregation-chapter12/pyproject.toml create mode 100644 Ch12/apd.aggregation-chapter12/pytest.ini create mode 100644 Ch12/apd.aggregation-chapter12/setup.cfg create mode 100644 Ch12/apd.aggregation-chapter12/setup.py create mode 100644 Ch12/apd.aggregation-chapter12/src/apd/aggregation/__init__.py create mode 100644 Ch12/apd.aggregation-chapter12/src/apd/aggregation/actions/__init__.py create mode 100644 Ch12/apd.aggregation-chapter12/src/apd/aggregation/actions/action.py create mode 100644 Ch12/apd.aggregation-chapter12/src/apd/aggregation/actions/base.py create mode 100644 Ch12/apd.aggregation-chapter12/src/apd/aggregation/actions/runner.py create mode 100644 Ch12/apd.aggregation-chapter12/src/apd/aggregation/actions/source.py create mode 100644 Ch12/apd.aggregation-chapter12/src/apd/aggregation/actions/trigger.py create mode 100644 Ch12/apd.aggregation-chapter12/src/apd/aggregation/alembic/README create mode 100644 Ch12/apd.aggregation-chapter12/src/apd/aggregation/alembic/env.py create mode 100644 Ch12/apd.aggregation-chapter12/src/apd/aggregation/alembic/script.py.mako create mode 100644 Ch12/apd.aggregation-chapter12/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py create mode 100644 Ch12/apd.aggregation-chapter12/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py create mode 100644 Ch12/apd.aggregation-chapter12/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py create mode 100644 Ch12/apd.aggregation-chapter12/src/apd/aggregation/alembic/versions/d8cdc709086b_add_deployment_table.py create mode 100644 Ch12/apd.aggregation-chapter12/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py create mode 100644 Ch12/apd.aggregation-chapter12/src/apd/aggregation/analysis.py create mode 100644 Ch12/apd.aggregation-chapter12/src/apd/aggregation/cli.py create mode 100644 Ch12/apd.aggregation-chapter12/src/apd/aggregation/collect.py create mode 100644 Ch12/apd.aggregation-chapter12/src/apd/aggregation/database.py create mode 100644 Ch12/apd.aggregation-chapter12/src/apd/aggregation/exceptions.py create mode 100644 Ch12/apd.aggregation-chapter12/src/apd/aggregation/query.py create mode 100644 Ch12/apd.aggregation-chapter12/src/apd/aggregation/typing.py create mode 100644 Ch12/apd.aggregation-chapter12/src/apd/aggregation/utils.py create mode 100644 Ch12/apd.aggregation-chapter12/tests/__init__.py create mode 100644 Ch12/apd.aggregation-chapter12/tests/conftest.py create mode 100644 Ch12/apd.aggregation-chapter12/tests/test_actions_actions.py create mode 100644 Ch12/apd.aggregation-chapter12/tests/test_actions_runner.py create mode 100644 Ch12/apd.aggregation-chapter12/tests/test_actions_triggers.py create mode 100644 Ch12/apd.aggregation-chapter12/tests/test_analysis.py create mode 100644 Ch12/apd.aggregation-chapter12/tests/test_cli.py create mode 100644 Ch12/apd.aggregation-chapter12/tests/test_http_get.py create mode 100644 Ch12/apd.aggregation-chapter12/tests/test_query.py create mode 100644 Ch12/apd.aggregation-chapter12/tests/test_sensor_aggregation.py create mode 100644 Ch12/apd.sensors-chapter12/.pre-commit-config.yaml create mode 100644 Ch12/apd.sensors-chapter12/CHANGES.md create mode 100644 Ch12/apd.sensors-chapter12/LICENCE create mode 100644 Ch12/apd.sensors-chapter12/Pipfile create mode 100644 Ch12/apd.sensors-chapter12/Pipfile.lock create mode 100644 Ch12/apd.sensors-chapter12/README.md create mode 100644 Ch12/apd.sensors-chapter12/plugins/apd.sunnyboy_solar/pyproject.toml create mode 100644 Ch12/apd.sensors-chapter12/plugins/apd.sunnyboy_solar/setup.cfg create mode 100644 Ch12/apd.sensors-chapter12/plugins/apd.sunnyboy_solar/setup.py create mode 100644 Ch12/apd.sensors-chapter12/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/Pipfile create mode 100644 Ch12/apd.sensors-chapter12/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/__init__.py create mode 100644 Ch12/apd.sensors-chapter12/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/sensor.py create mode 100644 Ch12/apd.sensors-chapter12/pytest.ini create mode 100644 Ch12/apd.sensors-chapter12/setup.cfg create mode 100644 Ch12/apd.sensors-chapter12/setup.py create mode 100644 Ch12/apd.sensors-chapter12/src/apd/sensors/__init__.py create mode 100644 Ch12/apd.sensors-chapter12/src/apd/sensors/alembic/README create mode 100644 Ch12/apd.sensors-chapter12/src/apd/sensors/alembic/env.py create mode 100644 Ch12/apd.sensors-chapter12/src/apd/sensors/alembic/script.py.mako create mode 100644 Ch12/apd.sensors-chapter12/src/apd/sensors/alembic/versions/0eeb2a54fea8_add_initial_sensor_table.py create mode 100644 Ch12/apd.sensors-chapter12/src/apd/sensors/base.py create mode 100644 Ch12/apd.sensors-chapter12/src/apd/sensors/cli.py create mode 100644 Ch12/apd.sensors-chapter12/src/apd/sensors/database.py create mode 100644 Ch12/apd.sensors-chapter12/src/apd/sensors/exceptions.py create mode 100644 Ch12/apd.sensors-chapter12/src/apd/sensors/py.typed create mode 100644 Ch12/apd.sensors-chapter12/src/apd/sensors/sensors.py create mode 100644 Ch12/apd.sensors-chapter12/src/apd/sensors/utils.py create mode 100644 Ch12/apd.sensors-chapter12/src/apd/sensors/wsgi/__init__.py create mode 100644 Ch12/apd.sensors-chapter12/src/apd/sensors/wsgi/base.py create mode 100644 Ch12/apd.sensors-chapter12/src/apd/sensors/wsgi/serve.py create mode 100644 Ch12/apd.sensors-chapter12/src/apd/sensors/wsgi/v10.py create mode 100644 Ch12/apd.sensors-chapter12/src/apd/sensors/wsgi/v20.py create mode 100644 Ch12/apd.sensors-chapter12/src/apd/sensors/wsgi/v21.py create mode 100644 Ch12/apd.sensors-chapter12/src/apd/sensors/wsgi/v30.py create mode 100644 Ch12/apd.sensors-chapter12/tests/__init__.py create mode 100644 Ch12/apd.sensors-chapter12/tests/test_acstatus.py create mode 100644 Ch12/apd.sensors-chapter12/tests/test_api_server.py create mode 100644 Ch12/apd.sensors-chapter12/tests/test_cpuusage.py create mode 100644 Ch12/apd.sensors-chapter12/tests/test_dht.py create mode 100644 Ch12/apd.sensors-chapter12/tests/test_ipaddresses.py create mode 100644 Ch12/apd.sensors-chapter12/tests/test_pythonversion.py create mode 100644 Ch12/apd.sensors-chapter12/tests/test_ramusage.py create mode 100644 Ch12/apd.sensors-chapter12/tests/test_sensors.py create mode 100644 Ch12/apd.sensors-chapter12/tests/test_utils.py create mode 100644 Ch12/listing12-01-clean_passthrough.py create mode 100644 Ch12/listing12-02-sum_ints.py create mode 100644 Ch12/listing12-03-process_own_output.py create mode 100644 Ch12/listing12-04-wrapper_generator.py create mode 100644 Ch12/listing12-05-enhanced_generator.py create mode 100644 Ch12/listing12-06-mean_finder.py create mode 100644 Ch12/listing12-07-wrap_enhanced_generator.py create mode 100644 Ch12/listing12-08-shared_state_by_return.py create mode 100644 Ch12/listing12-09-mean_with_enhanced.py create mode 100644 Ch12/listing12-10-coroutine_and_queue.py create mode 100644 Ch12/listing12-11-dataprocessor.py create mode 100644 Ch12/listing12-12-trigger_and_action.py create mode 100644 Ch12/listing12-13-valuethreshold.py create mode 100644 Ch12/listing12-14-webhook.py create mode 100644 Ch12/listing12-15-loggingaction.py create mode 100644 Ch12/listing12-16-get_data_repeatedly.py create mode 100644 Ch12/listing12-17-actions_cli.py create mode 100644 Ch12/listing12-18-config.py create mode 100644 Ch12/listing12-19-dataprocessor_stats.py create mode 100644 Ch12/listing12-20-stats_signals.py create mode 100644 Ch12/listing12-21-better_stats_signals.py create mode 100644 Ch12/listing12-22-time_taken_callback.py create mode 100644 Ch12/listing12-23-refeed_getdata.py create mode 100644 Ch12/listing12-24-refeed_actions.py create mode 100644 Contributing.md create mode 100644 LICENSE.txt create mode 100644 README.md create mode 100644 apd.aggregation/HEAD create mode 100644 apd.aggregation/config create mode 100644 apd.aggregation/description create mode 100644 apd.aggregation/hooks/applypatch-msg.sample create mode 100644 apd.aggregation/hooks/commit-msg.sample create mode 100644 apd.aggregation/hooks/fsmonitor-watchman.sample create mode 100644 apd.aggregation/hooks/post-update.sample create mode 100644 apd.aggregation/hooks/pre-applypatch.sample create mode 100644 apd.aggregation/hooks/pre-commit.sample create mode 100644 apd.aggregation/hooks/pre-push.sample create mode 100644 apd.aggregation/hooks/pre-rebase.sample create mode 100644 apd.aggregation/hooks/pre-receive.sample create mode 100644 apd.aggregation/hooks/prepare-commit-msg.sample create mode 100644 apd.aggregation/hooks/update.sample create mode 100644 apd.aggregation/info/exclude create mode 100644 apd.aggregation/objects/pack/pack-0e7fa669b06f00ec17d49d52ad382f7f44ef9af1.idx create mode 100644 apd.aggregation/objects/pack/pack-0e7fa669b06f00ec17d49d52ad382f7f44ef9af1.pack create mode 100644 apd.aggregation/packed-refs create mode 100644 apd.sensors/HEAD create mode 100644 apd.sensors/config create mode 100644 apd.sensors/description create mode 100644 apd.sensors/hooks/applypatch-msg.sample create mode 100644 apd.sensors/hooks/commit-msg.sample create mode 100644 apd.sensors/hooks/fsmonitor-watchman.sample create mode 100644 apd.sensors/hooks/post-update.sample create mode 100644 apd.sensors/hooks/pre-applypatch.sample create mode 100644 apd.sensors/hooks/pre-commit.sample create mode 100644 apd.sensors/hooks/pre-push.sample create mode 100644 apd.sensors/hooks/pre-rebase.sample create mode 100644 apd.sensors/hooks/pre-receive.sample create mode 100644 apd.sensors/hooks/prepare-commit-msg.sample create mode 100644 apd.sensors/hooks/update.sample create mode 100644 apd.sensors/info/exclude create mode 100644 apd.sensors/objects/pack/pack-2c612f3627aa76525a86c082a5393616dab67f82.idx create mode 100644 apd.sensors/objects/pack/pack-2c612f3627aa76525a86c082a5393616dab67f82.pack create mode 100644 apd.sensors/packed-refs create mode 100644 errata.md diff --git a/.gitattributes b/.gitattributes new file mode 100644 index 0000000..dfe0770 --- /dev/null +++ b/.gitattributes @@ -0,0 +1,2 @@ +# Auto detect text files and perform LF normalization +* text=auto diff --git a/9781484257920.jpg b/9781484257920.jpg new file mode 100644 index 0000000000000000000000000000000000000000..fa377752f32385da9085b8616b69612dd6122057 GIT binary patch literal 24801 zcmbTd1ymi~7NA+k#odCtySo$I-GjS31PLJog1ZwOf)hM=aCdhL?(U&4|Lb}0&8*cu zGkv(L*2k7x$8PO?>Quchylwz!a#FHV00aaCAOrpbUbm2RWF;hwRMeEEWECXA3IITo zQLu4zfhMOIRR)D3L(#{Vg| za{&080AQL)Mun90Kl1-igl^{S>J9)9Dqw34a|<^!Fb9L#-pk$jO@0n$EK|EThJ=1& zS8xTvjQhq`|6;~}Z2rZfZ*1=1Xb!e{tFyDYgZUfxfccxJhXt6S6u=zfX=C99<{2K_NLK&FrvJt67T(}`0)T{* zvyZEdm9;x5tr;CD8y_Dpsf>k}y@k6wlZuI%or$YCsf3e*vx%b*0Q{@XZ(ab#Ti=p` zJDHn}kDHr`of+Ky|1SSq<-e`|_wY8h|FXDJ{b$S|a7O+k`;YH`WKMYizAkjqv}W+ke&J4gWQ-!GKxt7r-)N2GGW_ z0H~7@02&h!fHKGeYasqTZVK>Pz}qiRn`G}_^B&A#{XfV5+W|5L{4b=NjTPyeSVB#M z)Xc-x^Nqp3iMIm?KmbqyEC3H61}FepfC*p+cmM%F6p#eu0A)Y}&;>pKW`H%|0Js8P zfFJM~2mvC1SRe^V2eN?zpaiG{YJf(d73c)|fMH+)m<5)B4PXa20?vV3;0b&ogM~nb zz=XhqAc3HQV1QtU;Dr!|kc3cxP=nBgFov*#aD?!H@PqgQ5djeokq(gyQ36p7(FD;6 zF$ggUu?VpVaR6}%@dyb8i3EuSNd!p^$pXm>DF!JIsR3ySX$9#5`4KW0G8!@!G7qvG zvH`Laau{+Jas%=R@&*ckLWIJBB7W7+! z+JHKSdVq$3#)Kw?W`Y)gmVwrUHiLG74uFn?PKPdrZh-EAo`&9pK8OAbLIx3n7(o0W zS&$CM3giU}0VRWqK=q(r&@5;NbPEFmg9AeY!viA&qYGmT;|miB^BtxN<~PhF%r?vo zEG#S@ECZ|%tTL<#tUGK7Y#MAiYzOQV><;Wb93mVE96Ov8oF1GbTo7C`Tq#^T+!Wj% z+!H(+JQX}YyfVBwybpW~d;xqj{5bp${1XB?0u6!?f(C*u!e@k3gi3^7gcXDt6F#8kwehy#e5h!02@Nc2b&NCrqANYO|?kbWaAB3&UPBU2-bBI_Z$BS#~b zAa^6LA>X55qA;V#qL`z6LdigBK$${0MTJMDLKQ>(fcg0?hcm#R}|L*HypPLcNX^%j}%W5&kipRuMuw*9~z$?UlrdAKMTJX z|Cj)aK!CuEAe^9vV2Kctke*PD(3dcuaD?!Nh?q#4$eAdOsGI1R7>8Jt*p@hvxSjZb z1d~LV#D*l1q=V#;6q{6x)Sfhzw1@PZjF3!*%!4eKY>e!QoQ7PJJczuCe3b%$f|tUQ zB9Wqt;+&F%QjyY+vW#+x3Z9CW%9<*Ls-NnPnuc1NI+VJRdY=ZDMwaFyO&QG!Ei$bL ztqW})?F=0Z9WR|7-FLbPdPsUMdTaU&`f&zG25tr$hVKlMj37onMn}dx#(5?rCNU;Y zrZT2YW*lY(<{;)q=2I3*7Cn|YmVTDMtX!=2tOcygY#3~EY(Z?zY?tix>}Kp4>@yt5 z98w&gIDTav$(e@)+}E^33yM@v87f@(%EU z_{8}>@wM_j@N@IK^Vjg72`~xR36u)#3(^Q$2o?x#3y}+%2;~ZG2$KpM3+D)Lh>(ex zh~$ZEiBgD~ix!FQiP4GKij|9(Q3`tGNbjdX- zaw#jRGO2TEE@@xs-!dQ>d6_twd08S^GuaZ^b2%P4f4LrcBzblDbong>dIeX7W<^Lv zImHCU6(uSqN2Nw(Kv`BfL3ve$M#V*?MHNO>MKwcpSB*{0Ppw}aQ{70tRQ*;%Tq8zf zS(8@NL$gZ@Rm(uDMC(rby>`6zh7OC4zs|5OzOIe#FFja2ExjVW8+}RrB>f!&E`tz* zIYSylZ^OY4_#f;)v>BlqnHbd?gN(I}OO2mRluhzXZcJrOGfmIUB+OFGj?6{P6U`4S zge>AM_AG@g<1P2Cgsc**4y;A2ldX?!By7@cE^K9Nvu*F}lsnQHa&$sGd%CT zw7hD)(Y+nLM||jg!hH5VN_{N!h4wY`?eZh@`|P*rFXo>c01;ps(DjMpQ}CyqKBu6|)nneypu|=guy+&I`kHv7uWW~b7I>ye$iNqDhqsM=Y-%e0WXhPNXo>&Ljq8pe6Xe@*aB zG*1dnwoi#nbxyyZ?wgUF8J<;|ot)F0TbMVP-&inT*k80?yjb#FdRh)#0j-3uqOB&c z5w7K})2&x+aBsA2zTX_#Qr}wMHrqb>c=(bb=Qr`&DyQQ?bBWOJ>Grs1Mfrs zqxR$8lh-rsbLtD-OY>j(zbmf}udlDmfCK;q2@b4~P~ZX${(#^>AZTb10xT>H91;Q& z5+VX3A~FgF8Zrtx3L+vJ4jMWp7B)6E66!l#94uT6ENrZ|FM)sp`#^)>K_GZ6WJF}F z|KH`c3qXg1AO;4YAkYCwbOE z)NM<%2}l^%i|$puZPX6@<^ln5Z3f`19{cWSxn)Fu?4sGdvV-4Is61A2h-GH6j3=_b zTyoB4A$VOc@#30TL<*{UG_#83>gor0fr7zxcgQBcc(W|+?`ZK+k&&?MIy#B@3-Ks- zt};KxE=ES8a0CA>y+4}ty@5=7`ed9ze7WDZVoo?OeyVYug zG9lPpZC|`!CWd7qkz1pJMxhnpMH~c+{-CU(={a~$Esb3}3&L&;Q=sT*BeL-WF z`8G_)Nrgv#Pr{7S{(URWBO)ldAM`lWx2Em>qPrh!G0m@qDEEC2e=~$|n0A^G9Bxdn z5nnI6;?2ml!--dS)b6!xU%_-?h;=F1>W_W1LzNZ_Qp(q}^JABjY!AtpwU-=tbhjli zox86)s!) zRoA4!`;s(j^2*es5{+8@Ls`Vvg4(N>Y)*l1#xnFz%qu{{P#aHW-O!ncz^UpB2tV7jB0J7@bfg+;B50?pN%>?Zx;8g#%x|4r zaw$U3&~tMwY`=Ks2|Mtu1@_&I5?9&}*=2kGvB(#B<&CC(r2HDi-zV`wyWU>)~*|X##2= zcnT*IbRM`Ss|)-dr5B?4XI$p;BkQpY2ewZ7tEk&uiDN9?jPL!0Nt6R00}h@y&x9Oe z)Q(OS{fEm)asB2Qx8+7$yvV1sb$owzeF$m!h(EiK!z=+Y5rTise`yTy0{MJ#3X#pW zH{$E}cE-n#2}UhjO$#Lz%(3&EpZ6t*Yzj)~2RBZ@{!&dozcLCNus zjU9Zoh67*AAwZD#_N+{Dv?4Bpu&nWu#EAG6(F^C6GOlgq()Ae11wV8z zuJ@P?-DgqwkTfwtL1;SvcJHMdvC8(j2O;svW7yHYL*H75?{M$OMsO{>-RSMR{aotm z@I22%dymUaKFakhm!YH@^f+Bh7j0gl(nZ#eDop4!p`Bm>87(CnK0~Tb)l6ZMujG5* zjMO* z=6qXNcY?*mL?8W+WzETpbjNjO^}$epg&XgIJnvOvYvjm9EY;thr-0|5gUEzRY?3Z_ zBG^RLw8v9^sD+mEemiVG_e097$DJeB)6)*an{J|SaXjthBdCaH~&cvSzUSvM@7JUs=SBjuuPL9JEms^z#ei=n7d9=*r@y8$aL_mIp8^Io7jPwQ5sMu@Zqh!Dya#32hO#6JR*e;wb&L?h; z)ZHrIhVq~+`oLD0S3t#}+rDgIuSKIf`2)EoE|VioHgS#ZNQb{+!J=+%@7EQ!+6jOD zyRMMNwWC)6%Pege)inLcv~nl|i}P{mivzZJ^U8LWrM?)gZBkp!O#Cf>8z&AH_fot> zUeU}vm-y1u?ffesqp5?aJDclVhb5~>vNbbxc1uu1OI3YhD=rXlvUk&Py4UDPyoi2U zS0BD|&P2TymA!RXwQcz2@&41MS4xxC309)wk7o;sXa5U3uXUx?&OgIAzPgNM$Xm>c z$kBiGF@x7fXaP$tjYG&0W5b=#b<5Ur@#;_oigQ)R5}j#~Ag zjRwiZ-EZ?=j&EwJjSfpgCyOlFd}=ywh`_pY_@TwrKCCJ?I=$pr70XaGi<9BxCRXe7 zrzHJnwN>|g4}!nPaA!vMljx5tu+Le8?W4mN&4rQO9hGESdqEM(Z&jgqBMpik@d-Ul zmb`uQn}d7bQyVK=IMv&yQ(t7A07mZ)%dRfx`%D1_Q_JYj$`c#Dm=~#2+_Fq$hxq%z5=mp#t-A~o6S?hK7O7jlyXv3<|eEKj_8xLxVtz{8R5S4^dLwJMR@;^hTzj9rwG8QMGqCAJL(VTykotZVk!K znd*++*GBe6>Z)P9hBY0I1G>@2Tn>iM2jJ0N*+zC^$Dt3#*zUh^2zDH0eJ~>DAQoHK z#@Y(hDFwy)6V|Jz`X+hfL(z456x5|aA1&LY<_8(uDB8FFTr~_INwz2NqrUm1E=1Jd ztrzMaT$;;+D8pPbBkIWY9s+8ClozrbR38O<_?=J)VmgK%ClsBc-djb4KGjrLP}eBy z&v<4kzPf(A1YXR9)9BrA-crY;$hq<>YIxXH~?@OBH!-5OaGv?yy& zU^~s@^65|{o+ydB)JA(Ox|e!dlg?Bv9A-@j#+gmehM3qw*e>O}<V5bmfe;waWIA2;4%=+wwf~nj@0xw}stf-F47wvMtjW;gDcL|@_dfV`D(%&!C z?sx3hv=sXNC)>E9f?KXg_c-sKLDR0%C%5df^Q##C(6QXBVxOLAnM~#mHAiL5(k$dW z(hu*tvnshZeSh(MeYZ3NY< zMTB@P&rFzmaZ2Lfh*(b2W$><7jIt$-RG_plP_bp;p9ajV6(dJ6XD0L&B`VDhSsK~6 z)64SYU^#7OS$~fzP8+x2xaCac=Ins))>eyJYHmq>pk)ZKl|%jWE4nS|-J%#<=jd+W z%7iLJBNr=ytCEc^GqOdn2KFc($};tB_L9cxD(Y(n zoUFcgi2>2{{3KkM#gG1CkdZszr7Ca3funojXq|eXFOxhj^3Plxm2ZGH98O@7wS(H% zl#!g@xSD!)V~GVmq+YS=RioCcHi}}!4nHMc^<{LB8jX;WMFu}~Vl@jOh>G^%_N)U{<=SbhGck5sX z_L|joqB6gfB8NlFAQV-JB^nhB+Lq&YqvL9BX(&oKaq^p%6qj7u_S_G)*`2^1!TR8d zRS;vr=rJ~L!LEq8Ufq#vH>_ARFhu&bPO>f{e*wGK;zlX$YhBd~q#&QU;NXFRje^B*y?nLTXe-|A%kP7QujjK@_D+6d?X;hNePMthMK^jaZC zU{*+fBSA}SPW)Al?qcRqT&-ueHDpb_-Jt6pdHG=&>vI>48zKooIO3W$sEi=|FJATP zR;^Du)>!|xsc_l$@%xt)?X~P2E)CSJQTBPqnyIO5>HpE zehG=M0PWC+sQZ=t!Ju~-b47j;B@&lTrx$x00=9MA)inh}>}=(g-yX#u_PMWgF`pzF z$O!jve|c=mlhAxNjsOX;FPI_cwB=v(a%RMpQ{x}z4sX_m+#aJ1PJN(sD0u$0f_i|c z^I(9cBN_BP-JqMePT(hE6sR-Szx|I3zm;vzhMx5cG09oIY#fDa9T6X6xf$bLNM6`f zi&nXUt=+ATOKOdWuzGP{=r;Hu^PkPUaD7fy%p~ z9&T-0lyqua3~p`D7MAlqo1_ox6`<}JFi*%3cQcqSfs-KPDxLj(WH1pTZq3C_M`#T# zW|P;JrMIjx*R&32fQRTgAK%@N`Ri;_=xfNgJLgxxzl>*>um-fNUY8&)~Wh&6*jjP>$~PPah`pp%9nPiNQ62#d~;wow>2B~a(Tq6R%mr5rtI z!Lo&*>sCKzXSP2ps5n$Y;VgYkb>v=SZf542?$cz-R~0tFJC%alv&@X(#ks|*m-K}z z%8h7*@ke7drsC94Kc)=I%#XAh^IG)*wLxb-(Jy~$R#0R}ALw@N*wbGDkT7e~u9Tpv z4kf#^u8tCeA^_mggVm~#Ie$dZYaH}^XX2^-toMWd(`QYZFujgZT&Ggrav{BFLXl2FIOWgMlgEE$ z9z_NRHe~qGq6xb@ajBfN^5Bk6k9M^_ThB_g=hWM7v1f|zXWm9E(45Egh+Oc)DPHck zeXYD#Zv$s0P}hzG2x{9=vQ~Nqz~+(xS;Oy2xV8#*HWKABa42~X4kb`f5YW&_P~e+e zZ?WVplt6>f-(rav3>LX6HY>ZhiOc7>-0IGAF40LeQVNMp91d=^sf+hgD(c3jUH=3Y z$hW|9fqvn9{lob^tc#Qiui4nWOZGJV6h(8$fYy=1QjDA|5oqt z{HjR&Ibl@BJ+gxGyKLp$N=aIsrF2+|C&^0bCB;h4U`$(L9#;R-TdTwN(O%{|u*jvfXyrks!#Ki@Vo=o}B6)hSw|6I+1 z3M!4vno#LbcW$IlPKg>UpPHD_k1JIF`7{1(LFpZq6{I0OU2rs+&4u!@fKi(=t|xng z;!;qf2$P~)UJ3$ym=A1viHr40lte_j)@qlyb4iwglBPm|NiM$?9?T!5#Qo*^p%Cu+ zo|t#N8lh4WKCXJ}Rce9pTk3Tu{`6AEtFes=qleVye=gNop-MR6(h@uCJq=m}#Ioq~ z1>$_`4^>)2bN;Tyykiu%w05<3gpz-*N)Kx$2sRdQFi4D?o5Etl;rQ6qmCSx?Oq)M3 zdN6^>>_gM2@7zEmF`TE51IPF9`D|*B1Hx%1iLg| z^%H%Tek7A&l%xe;H@}9;w?WtC@0EV`Bg{5aCHe8(xBdh21RURo%aOARLpo6O^iT?D zK!pQ1Llbf((EW?5T%BL&9TZaNE>G~jHI~}?8#W2LWfYre{7gQea6QcK8dk#e=z;Ri zr}kyG5&I%G6z<&lyV#2P_`s-F_$wuWlE94WzGL=4J9S&L`bKQ5*hZZavB4KhBnm_m zIw)5Q!HR&wm`9M}V|2WmGPSFSdDUXy-W`MDaF=sh-NAYcwyMX1cE4o)@ZQ$o??EXj zLuqXT??Y%`-e-h{nXr9|wAJO8O!X>{r1H3#2}`!PBS*r<6g4 z-pTxxh0?^0S8A(N`MF$NahuPqtz3o*`|J8>NS`_l9mn$G63;m_qW^s7QkYM7(YYs;aR^_bTc)WYk%(5cTR21Rf+rkbdh7Az8)q>+6E!FY8x-_&I zs|{!C{~(kZVB215OI+oc-}l3DC?5Ztlg3t&qSb8l%`3o8qWucc*FH<2mc7U=-=8Q| ziX1oVXH}6@XzDp?!=(@Yup#uOdj)!24o@GkU7kHN&N_Nmnbt5v&8lR^G+e%=QaAx6 z_Q!=K$KA*5Q9Q5jE1+p;e#Av&3$NgG?H_z3 zlNC{_DPuIQEm9gZsEL@7-iXtfG9BKunBg2(Tm4A9_Q_l2+P_*uTEl|b&3iBVU~BER zZ&jHWPJ8OthK$fr%t?89NQhAR9)vW7g>hUf$}2FqE`pLVd!vz@&UgG`GJ3MvFI-+G zxti#?KdR&%i|ydfiFUHHQI+E0Do)OfyXNE4slD{;s6yZRDoP^!OM!;Qc|ZE#Zy?ig z<40vsI!Z0sadES(++9dpVa_?Fqh=$&uW#z&^PjPJRbf@MvA^D{+h^IKiieM79;KDd zU%!-_a_nwTA8ALJJ1=poJY;}dtk3tWQ&K_jRCsi_paMBQ7F@|m_Z-vpmR5#Ldxx*h z($p{5GYR(jR^-h}efNA>LBf(oBHxCH{J@(ma=3Hs$P`2cDd(I z=b2+%kd&sgaXLm`8Ilxy3Pv=G0}%YbDZSeps4j2P|3sb7!dyCl+{)ZCpeur83_A_ z8EtN4g7y!R;AI8(I82|!_mZ(S<M@^@VE zqdM^-K}jf?w^GE1aa;DnbY7P_PxdGe4)aAkm@2)FRm#Sm)h{760SH-n{2{hci!aN2 zo6{fL%ktMlBu^fa>;uO3^e%?AM^%&^I4{#rE(HXWM`ji{UIB-7)SAkhkfK?oxr+o6 z6cKE1)^2@8dDWL`;OU-T_W*g9N5#=D1eMDE+4ILtfQe2?ZquNuy2k4JtbkebztFRZ z`Ga_d#P!qK>TOqzG`u$q0^>nPfH=*_C6v;>1`66*b^&emN{#@8a$r!^0ns7#PQh8cm%%1 zK8{D$JzZ&*#){Wpn&Y7%Gdd_tUnUOO!+l_|@cIy{6|~}Y{~+e>2-W278U2yotHyI< z?-k(ktB4HrDN-ir6MI6e=yD15-)68L*`^(s{5rQiUHmbCzx8ZaxkEU+ z!#13Q*z11sQwu7mZ^~`@pLKffrRlKm&@q5v6Fd!zJ~&WFBBxyDveR@MXA2~ zn&uNLG%T{m^mN0d`cbIYuIMV`RPwqt)&HQX=oKKlE1C=O0d+6Gs59RnT~haVJQl6n zg+5F9hkd8`#S@XL&abRF#+|LIcp&nyA>4(@FE4jS7fsx={L;2!-d`c@nx8U|=sRt0 z_MDKty7c)^9aBq_qm&OSSKX&i(Muw2@P7yq4r@=yqfUuBKA#E~VhdJH*E)An`bynE zl>snxJcQf6)h#KK?eP^Z3_Vj1wf-?kgX%w^|zAs4SDqoI+n}cUeR>5hX?}%-w&RkS z&{q_sN|-S?6XtOII?-Y&Zt^wa+PH1VO>bknJX0#n!rV33nRk&Jh1|0)-#L zfd5<3ODm4m5hjD~H2iG5#HH#1Gn6;gY1k5DO0#CNlF$SbIwGD=KJ1k{oHJ_LhFm}a!<+L0GZpX8%shL zBR!@+WD<2*gJ)=YY-*RM!5v$x4!)brapGAsc!A8&#$*RyqL4Lwe%s$>CGK;b~8Zc6_x2Z^45f$?uc}gDULzx(RaWA=`X6F2cNIN8&cdS2XXQ0E? zQT$9CG>Y1C;cW|kxSDAcL`p4eqf$ZV1#b7zZsZPVy9Ae5nWoM$+3QA=ItE|I#aFki zBf!@`OnndOJH49cF11U8DJ&F2ZYA)0kxylK>htbaG5{_@arM`=)725S;rnq>zq~I) zRp1^iYUg}clo+CttF8`heJ*uk+rH1B7oO-wQ&r5#N-%#NBK_@FctKe%N&mf*^$PiE zS{aS&go)81d#w7j#1E5^7hmd5A2wfmj6w+5N>?MeZ+>2BZf{on}|1}i=*IrxGLV~dSy$oO%>6szh7zo zT@Swq68<(Z{YmRVri$Wa>qEzl`aA}v$VDN7U|A$zLCkJ&QO#NX;+<5|G{4l1d|h6f z8VdEVzGRKW+yrYA6T{gd%*XYkD2m7F7q&dcV{H<9#Rt7=Wdr`>hNx7D0xbHF)R)B*tl^?jL>{^4pksiYdYj#?&eKdqB&_=oPX%< zx~Q=x%nNZ;@H^x7OImA7Sk|L8!a}r})0(uO9B8Mg>wNY2(rmmWF$jcWB9T#xaaKJW zP9JwL@o7}BQZzjqj%!x;qd)UduEi!*s3oPVFBsdv<8c>EJA@bt#giRc!<)D7lQwI> zm#i;_?ieH~{3-jDJY$2YMi*xh<|SDyuVdT4J{z(ut2ZXApfT7An`#;gb#?8d0cw#i zRwU~)z|yy+(`LKoLlu0Agy$5}HNCQ)Rd*>+xF%B5z>}{8;k(>ROQt~Si!1KN6)1FB ztTBKZ#%+T&aM{nW=spHj!Pt_!T$DZ+KE{s3=a; zD3+@SuqiW@d_LwneOFZj4cX8y5&4B?`S($yZX~t|u8PnyobC{j8wXm3lz)!hpx7b2 z=w!SV;_dsc%A0)jJQ-H?SwqM-Tszo@_xnQs5G-9oWS%iLrmq~$9L0`sm1Xbobo#d3 zhkEAnnVGJKo2gnB4bG)fYk@pVn;?1lLVCJpJRe@VdXPBI04>K34dDT1l+sFa5gKR^ zyXX_{{BY}4yk309-1oBFQPKl#X=dKi&(T~3N{X?CvLo>*xL09mi?D0yX)cshg_MCp zafQu#N#*H~OVsrOM!4TKCRI@CO&zfNuzddpZceF1WGHe&BGVx!@)Rdqa5t=PeNCh# z{gcP~h!jpJqlXZsRw+dsuN9i?QZ!In64pgUQ=o2MH)Ur%;DlabsyI(@85m07XxLlP zJ|*s=0Fy4B>HH@#Je7TP_}7m%vR%w=&2{1!k+9kLh9gOHt`1xoJf}&WbI? zBuoPiyju|0jDDtiiYZ*KcjSLQFIC|tC!{!YcGA)Vo~2$r;To}OYB-gTQ0Gw|${VH2 z7F&r$?tAziv{*7?oG&@1CSfVerqfaffw^H10^?GOL&&EU6Pla{?s+AOUI>2~!&g+q zA)_?Fqw-xVHOV3=PSukFE;c1j^KwdK36JD5w&yuHHpR&_LcVl}p#ECn+M`gfZw!XB zyr;EWNrX3%{F@e^{%N`LzEu$><95;ROvhC-;+PG*RgyDAQIeXOBxj1s4~&9YV2hP4 zf7gO~!C`J%TIH~2h*K&u#e>CN-$~7T2cweSCmH-`TU7ap{wh8di}}ZP%4ADTqZr` z3E3h@>>5wEZkAMDeHHsZrN#lqKnWiN2dJ&Uh-Crk~f;p$YSDTn=wokWbfVJI7L^}8p8ubO~^gHOPhpUK-j#ma5 zYcS*G-SRe!1yr|5o|OgU1=;Ts?GTpbhwOtAb7qLz51ka`>@3mZmr^va61uYJ(2H%D z^lZgu&9=RK$!xsqnOlqT`#BxdG8uy1gSnTZ%$s>S=}Ic{68pcJn#js~;>dyO^I~$~ z5<9elDIwd^=jp#xk8i(YvR_FSEh^vMuu*6&reYdSZ?Bx9dq0o*F7&TNdc8sThK*9m zYMDb3Yr|oRAcBFDzD87Dx>n{^MTgW}>EhQxDNY*n-ygROll0~EnprT)66s;{5R=r@ zFzDTQP}Yd!P^gp)HkN*&42fy_+?r|Ig(u6yxoDi22EXhw>d*aR(`h7gA#o?4RY#0S z?90$^L;JDf()qIxdWk^~lIM>dDzZm|K|Li65L<|P5HYpsMrbX-tD#+~lG5C=Z`Ngy zk>Kc?*F2@fn{|(GKL?npntFRtDa6BQ!VXDtPT>S2EAj zH~q$+7NwJ^Yt3W3eFY98u$q5Vy600*yF?(sb0TnW%XO6wmBuR4WzGJ?25+kS|IBrO zgWg`nuUDlmQLfBJ$AVM46>pIAg1YwI`_9~*PRaXi3>W5R6onn>d zd~E-g90twWdJPS)JFjkadfQy`a7kYSlhS$@CClU6c>h62%#GrLhUBi#1SQdiYo};y zV^iwl`5hI{%Ljjcb-LNSRHTJV2*&kp>+rI+d3)x~<83p#E^2A<#6v*Na%p#Hq zR|d*`BFk&S*5wWZBQzP7-06BgMQm6P=h1^VQp57vWF+}bPt|p?>sdLe&)Xz@%6;6~ z79x#C?g6Rur&XIIMLhd*?dTDw*<867G2~$Q$zEAub}w2liRK4EmEacfSVvjTQ0TsJ z+uPsFGzj54N`j^~hVU{NcOURwgH@){;TZ*3mo)Y0K+F{L#85H?cf6~@Aq{8hUI+$} zJqq-yR4hzUN);{Qnq%0NE~}=?@)r7BfSE!`Cf#-O7EWDo<&uN?1Kew^b!MhHs|7}{3o?33msF+>IqH5wmw$G?!V&odm8|M|%^m_PM0&|s_H`{(6=gNpx3 zWKMF)sT*p6>U2W&$3Y4;rx#%Y=E(feI~Gz&&>A|jPxpR#zk%=c%@Hai4i25&jby7| z9~P{eh6rWxCsOyIGiEFkaK;p*bKFuN zaGUu@aE8wl17x0r;ajYPV;ka_jig1)&&{9Y#0uLnG=4(7co5k@`;aCij`^S=(hRSB z{bKRG%o)NFD#Y~XKB2lc>i2@^l9e_cW`iv?t5u#8I-J_05@~DNHsv{WsgA9y&T6&iLkUQYOn9A5!S_9}Ojf}$O$GcGQ!0T)`qshXKB ze9o2XFQ2-2##6e>n=X4lDp;tbz@i`Yc!2K^cc2ODS#Kss{aJ-Qp!nwJ@K^*v+SW%> z>J!E_!O(7Ih)>vi9g9C@q) zx`MW^SDLPkZAM2y@HcK6jPfBN#l@o&H;fU}#Ltz5tm55+DRqXo0i@DaAIKrjFPNNX z0GS`hBQmzMUXjl$3wHBi#ZqdEkJc82?aTKxpTYNHcvk+L@O~ghu@Ftt_fPB5DQ{$~ z6V9jIl`F3Yb!w&FohikjNAOVHd;_tuxbHgq!jOy;n&K^RA0YCk5DTow6q{i8eJJ(x zxl7+IaGAj!>)YvfMcg_Pj{3c!;MnQ>#jx;%FIb1#|2mbC#672(pf6L=EPtHO6vMSl znq?<5M`d#;;3jBIVFrDffb$0WW`uY6c`^!n`lAz0eG9wla)*{CQLULc4yQosT)&)CtZ}|B#@* zDUCC;`MBZW(!MUA?cumRy8TH3s$SG}sPf@4bgfVEFh)T+xIJ)&(`@}6n;kY2lkPD` z`rSP5Qyvv$#8+d%XQ>hgX69^z*yF;ka<+A7ZdiUN&Ux2CEm54Evb!g_>Qz3$r1@`E zbg(YdOO@7e-|9i_y}tcZQE}#vUI!-Nu^b5JXp{6fB#lpA!E!qm$~iz|s=-D%5vt@m zKUV*XE4spoGt<71HUQcCL0eej>@N*HCn49PB{i8CtyLPYZ~R$Mdq5c`Ry&*Yqls22`9*9V_nIKuMUxvVzoV7!;FtrpRf z3h*;+G`onnYcNYDNJD z;Vi@eM4ikl`?$|Y6wiNTtX+7LHFMEcsYGVXld90Otj}KC^&ThaEh^l`9(;;LjAYtp%a2GEfvl4C zMJ;Ub<%W#ChnSXmgPTvdcW4`rdwQ`Df?PSao1@Eb--WM|sh9{`Ojgst3iA=lFSE2n3g$?atQVE9$G!g2 zV>`;5Rg)aWi`XlIaYbydUna%KXP~%wFo$?ha9S-B+cTBD&$Z7@wRO_Srt79&zk-EOLp{drz16Kx$OcAas zuzK8Qkf+J{!_i8Y-K`!K5+|4s@x`xzDF!xLu8J^SnEm_r%6t`aAZ!+W@_P;lSu?0O zAxE{3;pK&&>M9z82E9PY5y?rYqUE>73tmxJdmJq9v9Yr(9QAr2c@MmBB~V?54>O`CqZJ(tZ?8+E&S8rDJyic5!10hQqAIaVyOF)ltWC*^~J*d6! zW!HREKL7k(wBDkT=UCH8^}STc&sQJ>p?A#)9V<+>I((r@M70WsalzdvZ1`euAghp9 z|G)z(lU@uD39c2V&k&WLsv4F|tDMebLhJWX5ogprDMR3I+;lY`p+(6gjo9Yj=R*AQ z&#IdpK>sI`jdfdvBn;gce$`r{2ttG0%cZQ%$y+WSsofL4 zv6$}%41_2_(b)FXPnI+iAbc-~t@`#xz`ldm`%(P88~J2Xe}R9Tcqdx>3-gY=1|sVm zKf9sbuji0Vq#%OLo-!lOE_Xhr^M0BG>YrM!QuC1`x}3d^TAto#SihIvapGLAJEd}U zc_j}IRhFp)AzPPdG$6Vx?TXxe?!>uV`+kS3DFdCy&Dyw)5>Q(oG^+Dr#yP{jFiXtp zt6=W%lUZwTsNHN-Um@h|v>dK^WpY8<3l#3K?5KU(wqSF?kgMTMdz+|I3VAkM3he3& ze_B4nY3Tl{rXGWP%`a6N?y#nvJ+)S|fR1$}iE~v|&W56Of&Fz3A1>vL)?`pKM|0E4 zTFgRF9I9a^hEsXzM=x zmFZ}9drZzE7bdsbMSD)W)I;xh6j`AmZYf^+n^1C*-hmOg=bV8#@YlWYLgaROmo5A8 z;OS7HqyMa1`sx#o&o^-9PVSeJd-*A`FE7^6x3=jji};4|YyjT>{fm;vyBcx_ujEB# zqYIBE)$I#qaaQ4N#*_}F9G0!@+xWgJ$mg27DUua=U*}{U=DibPX_5<-iK{fJ7)ZJ? zuMe+)e)C-@1sjtK1NCIIgmk8Sa-=u#l#*l(Fucnf2URvXt>6i0d2! z@@bUuvKy>$j=M2nVAUc1X|MSQ>?pvNO}`clhS)@RJMR)O#4G(NMs9usS(L?e|Hn6= z#EsW>{RjS$lYRlSGFVPk#~RRDTmTlHHS5(Ttbid+`-{%SD*&d13L5r*`JlFiTmAt{ z;$>ceE3%${$hTeN1I9nFY4Js^1`ZI9eIgJQ$BtKs zBWqJdH1j5z-yXeqK;3r#eoGHnAUL?ytmYXkHCH4_>`5#<*SKU8J*uftxDAPRzQsNN ziw^|GEx5vx1pA6bT#>HZlzCP3dQ_7QPRO(R z{9H7kYq?TfDKw6ppFicXkKLnsUhn+NOGtyh+;534ykf22v8b za)9+>_B}0%>vPWb4bjBf+Ee{;QsL_5;S)nVkWwVoTA0lGN&WjXoA{3#wWAI0_iiWF znIm=v9vlq&%a0Epx;UEW&8U*rWs$x@A#JDLXu;02ubDHT6zWh*qqg6Jm%rVZ9;3F5 zdzDq=uoEP-Q<_WF_AcDm{6HN$Ru&pK%L3fbF?tdxTM7bQw4)H(#kT~~7n5d0aDe3E z!cd8fX)->0Fqg?k zPkeQ7Nbv~$*;$eX>`1%N_xcrMk2Zd&-Hp{FZ=`lX-uWqz!8&^BAtf*?x|MLgZV#1A zz36SP2c4@`(04Gc>gD#7(-ePd=$fq3d)56izUIhsz<9OVNp&VBZbIde{%~(;=?7zr zs@DhOw{xWY-#Sld)TU_I$4TQ0Em$p^hTJ_F|?A zs*Hq|0FC^;k3Qz1zM1mVRpQ;xG_d2>;Z;uCKSHzyg(7;&=3e9 z0oCXN%$aVUvmjNw&;y4OcFLsMRS~vpqog;&C7;u$o~Q|pdFOV+ZsS6jKn&p_`O!0> z(G=#vgFOJOMU~O;YA)8Sk$kOpp`cI*j@*ViG0`ogB5{6p3Lp2Lr10MS9JA<;qy-5@N^{;p11hJx2)HdSi)icULx zAe z2@khHILm(6qdP{EdN-~Zi@|#s#!wc{HIHeBx*!kmIOxynv9gtREvXR1?SuAI)Gc11 z09f13FVEGhO87k6*&aj4d*Ir~zvhUD^;8$Kw*v>_I>%foiYEl~q1botd^s9^Xuvgw zYJ^scOj&g|TBLI_ngmmQ(?45#se>G?`|78-ZlX+!Y1xxiHzq~*5E56_}b$cW) zs{vmgg9y$yP}sAWkja>}r(zXIha4Blt8?fMUg$E@m!w9gCGO|&gwvq#uQ(lwXElwj z%p7{w`i`zo$LnV8p+>Y?ULG~AKg5Hs-prasOPpz;&25^2P+`#95N~tVjc##s zB3JNCEk2z*iMAvUt3H=`+gG3L?)lm#Dr_Bn6rg;c1?Cr_?juhLNjOIu+W5TrjbHd5 z!0II2=G3;5@jjQo@P7Ln;@H+9_t8H95+RY2AKK%pHT+Jg^mGTHiCwBea;E2h6Q$_w=8?#ZdJgZ90TG0SiZ}kRg-=i4T^Tv zLb@=7CClfh*~(s?P&hqK(8~Wp?|UfvJp=b&*b4;w-^`?r{T+J6wlFFG8+!lU%EWvj zeE)8Qvz>C%l7aM{gD49+tm-hzdCm|Ai|2q5@n|b*U?C+_`7eUmr&NGRT8!)UG)=hC z=Gw*K6IPq{N%z8g%H1ayqLMa?cdUcTU77KFT&(A> zky=xvD=$)5I461#Zk`g8oZhISE&SWx?&H2U_Vd)M`HLHJZXUveIE20BK%0ob#>n)> z$J~(@xiu|Oe2)1}{(w)N^7T~Wv`azJK&2wX^T6B#GG*OphvYN!tP(wmsdX!q(K9>?0NuUF zt~HGtPef9hk*KRr1G#?Jzzy4F& zEcJXW@8;e`A+GT?L69b5%Twsy#a(cS)3Ok2kE^EVg^Tak`vBN$gNUqTR)gf=<_+~v zL78@CVEOZCsn)7_uXS8GVRKCid}9d;$&N9?v?=oQOU4=11*2hdCv|tRnu)fdNE^*X zrm?(7wiMB>p%NGvyjRl&0MDBr*oK&yne6G{jeTs&zRwLzE8hij_ju8-Se<{UI*#6-0yMyu%!fSK?5aK{UFb41Yn_oio z0Erz1Mb^5IUJRgW>K;?*LdTW8f+$_1*)uD~Z*{dwTFrUhoAA&=;_9>NhhbuBS0(H> z=EI2JVZ-y`f5WX|ZZq}Tk7|dLUp*)g#RkwkjHijTxC_tY@jN2AZ@yvcTP5H*fgrbt z8etGbA?tWXNYTe3pm&FW1fR^+V3}6EF;ORmv1ptttbK5Xv_EC&SkU+aX01V2)c7K} zU-$BjVkm$P`!4-dy~(6|`j5n0lSk>Ny`3gV;qzs zLQGx%1+J*Y=&_@YhOoQP^8lfJj%atxT1eAhi?~fZXtZ@EKrIkivxQraTeL^tY|q=dRMD9u%+L8juX0Zf<|1Bgy#- z4_cB{iVwZ?Qi;%G#CIniAhmz>b%ObeAZXEcmwGryLTS44S)ue8T5Xk)q~X}T+S@WY zBT(g=#>ELNRVq_Mr?Mp>OndR|_CMZ7kAkpN`jTy_yF(0bu2;T>Wx-}3@a(SA$<58U z&-Wa^U*v_EBY;i)9f?I0ky9HGFEfp<3O{M&ips?3XLN~1FzQ;A=47GwSdldcME%>MEENcfdbWZ<8dU^h`=a?T9FuuAMww z5Q#Ma+JuHs1r3IoNe>o2I@Y6O8#Q`fT8$1g>UPIB*edNS%1%7xxb2rOxWei@E_A1k zKX>;(if2;$%u_)Ou}HU~>QwR>r$A40l6xJfq&x08+_&lT%!SQ5N=(Y$@n8T`StwS$ zEzD${$I>bzp*nJNeU9>JV89lGNJ(&Mq@C!qVSl^uA6De>?MLlKj!*`}%tq&53f~;g z#M2fF;-79TA4lY;7bZNs4=E@uIU_Q5A(yPxJh4GxP(9W|EJoiLR} zb49RB<$a45pa|pj@i}<7urBn~B+tj|NW>^CucH1_!s=uo;=6kk+j(%NUa<*BoWXo> zHfYe3s7_Oq*TG>=AU3PkyN=3lET0j35vsy%&mDoY%y=xpOwC(O5PJI8iWzbT6q|}G z4PUI}V9_cmV%ece?zm(e7Fr{p{Ra>kerL$1=u!L}1^}1GAR7p$u0k_F5E8!LNgXoU z@^39J;XpR-PYNYx72GPzjrvXX*ZfKmH+q(uD=p0lSO2-T_wMq%tHpm^p8u&^dGBHQ zAD4&yJyn7!b}{uX7XR1f!Fou+S!7ootrZa5tlsa zsnp&4yVcvSDQi1Dkrb5`|2|gw$q6~sy4`h8kZwjpKr8WX$UL8N*(C0oxfbf;^!9zW z3z$E9B_ok_%AdMn!<$GU>_<%?cJQGd_&Iv2ch&MH*eVwI2R$+gD&TGet+~7Yfm8%} zH3+TZnALh}8g4A6jml-%oL^`Td!YcsWADupCk&S|lrx-HyDTYP%Gw?U*6TUaqw)sG zo<~^7`ZtQyjKrd8*@Siwqw)}bfNlritWGLv=Y1PI*>*7%EXo`AxShx9@4?8yWx38si)mkE4B4|68L5#q-Mel9>tMlEZdqJEpeY@d z8Do-nzS3>BhwOY1*w#12Zcd!4m(xvOZ6p$-T82kh!~wjgGV`&TJO%M()dfV)Y+tjq zsrQ{%DWv%IFI#$WPm8>lQ2Fj4y`#y-zmo zutok$bb?cOvZ8dZlYaY4f|xcB9e!M@obowE_ZdU%jrf15Fz%I092`pahPpzE+U8ut z=~Tu?X6(kZ&HE;0*J9QBqh7#n8@RL10?B3a6DvewvNFvq)0I7J4wF3nwyrL}N$e|? zT%IAD$j-d9jPX|c+Q$;o8^@y}{$>FS?r1?X+~_ow5}yXIT~%OqZ2k~Iiwh0JAy0o@zJa(y{HL#WBS+k?W&!Ltliv#5=IYPh9hkLULNLTe2+Pl zAIU|3bkZew+(YtYDrZeNZ>*OfNuDW@v#gX8MKAtEkn(ByL{O`TFkygCwP7Skm#ubs zNV#wUI>PFP67!~tNtba(7P z7T7O~sb9rL?y-2l7y!;9@pC>SbEhLOX#Tv@wMkT3p$8!rsTpUXC&|2{-L}uo)0DyW zb0*WC>G={RgcR;FAC~L20L<1UOh9j{R=VAxfqHGYI&SnhXl0KUimq|$DvO-1R3?lG zN438pLHqyab7y;v&0~-O^4uyL=+ddd2ebWy9v_+TI#UAI*zv0fwDQqQ)^=bD^!Z%C zMWt@NKa?x2;$Cn(=UXPubDyyiQCsrCbsn3mni}i_Jep;_XzgzgRB0FrC$i z8qSO8C~ccGN_;`Uh2M0AK2)JsZ(aRr-j2JU_T5@8uay5&3Y@Ixo$Mig9K2wtjgJYx zwZsV=xyNV_9DgP6bpiei3N(m{EOI)_fu2VdODa<5VorD*d1QP-;0L9h^~hI7FLo33 zUf!(R`d_hQ_%klQPTf4Z;0ppg`h0<>!Kc!MU{9z++K#RcvMGOm(gU5a1vV)Bg!y=g z@eze~7LNR-cFTe+F)Ru*wQ>HKaujZHX5gtg(=5Weq2VLcwV9$q2T8Da}6gCuE$sT37l=lW}*8++mB z#7@mcoB7rH2HJYVbeO_iT*d}qkENfmN%mi7e10TjbaCOiClE{hjD=XR;2^9TS5P&2PFmJg%mQ?SNiLL!u2^#^wQdL;(Rf< znYyJ{-dKC&h*}pQk<(WD*Bwy72@s+m7g>#NTrOfqxTdf~#&fPi6QAGuJnK}+?^eyF zCRE50+$-yMGZ?j0;#PuCQ%YNT6sF;es%oY30@{Od2vaXbR)R?qhq3MI$^W*vuTsq| z`6X_F4nD*d8K(wt-(1-OyM$_%Cd^LO`MWVW_e_$H(a7)G4i4bqxCtQpknzXXk$EBl zfjmRp)k`j86dsRygesnfvphaSi?PG=d>j*2{Lxs~`uhNm`1p_zOSYoSz-*M;n> zHElGNXcGaRWpXVpF|K$D`nQ52-1y8`bALbHR-wbLx@r^WE$d&rR|)lA!4?@5Ct7Im z`Uj8~XYs=qOe^yvffH}qSuo)7eqrGt z$%@33Y3ef5_YOL~t^9O9(<%(#WP;G$zmFy<^?$g2%G|WR_;P5{R1Zuzte}M;sW=9A zM{t!%&+Pm1I%emfm;cNb)(k;%$SJE70{9{{u1h(8V{8XjK; zX$`{CoVoiva5){e-m!?|OLVji{O*G2v!uaXMvewW*kJiB19ioRY>)FOvGt2WpYXk_ zUUx3aWg&ZTY*Rz%G)&V_POL|)<1Ypy+LnavpCz7{4kS`KM>9zwEc8Qy5;@g)X-!xe z$bXdi0i-fZ%AU&kp3ov4uuE$vz&&eh_;GTO6qeAXcy8Wfqu%1PqVO+=PE9r?o@6ex z=~T~3oh!G8xYDl&4P3i3e(h~&Pe04Z zql@Iq2v_DA<6}Qcin%)RH0k75cR}v^f+^W?K!*fFMCDG+a%u8SQrTAj0NgS0za;7i z@4P;6ph=a^FBkq&}+1dMLEPMuS?MW>=9$he(qImRV$c8Ffi* z5n%dit=hN5SoH=$HU}V&;gw(qJHDy_i3wF^6;-+H@ia#*+4v8^60CL8<(N8f5m$1l z54{TI>YXl(MDuenSXkl0J;npyP4EIyea(6Ce+bdvnB`S-PZ?!kc`v0UH%^E97A!ny z1duBx$y{9A_yqw)$FNO+O-5P2xt1W1$zT>CbLnFD&zZOHy#zxeOlspg_=Kl9K&+D; zzz7Jbxajhh@>hE!fSuE~Ge?bh zpi+JcL{yIl3Y%`!LWB%P8@u!M0kP#wZ6sYXV{H{*xwNf~hU z>)Hd|wm1RULo@S~4oOLz!XLLHoPsDno!nk+Jc za9VI4;)%^qzY=$g>V>j~vG2){}(i@wBGusu0_8?^7U*}ipZ89q{+t4#>`qh=?Fli z)Qi@l&>Da4sL5budNNDG9!G;%QmFDbW!FVi|j|JM5`pH$xG`S(=c>Y}QgHN7@J zTb^1wU$sdqkE_jEwu>{|myPhV^!9iG2%;Ya&npdTJ>5}Dq#oabo0JE0le+kU@aOMQA4#+01CD_7J7LB_(J2Wt|E2B;tEt!k*UFhwiQ1c2b|NAP(9~ABn2KV;D#-_w6%_q6rC)n@hozMd z520HCDN~Tg_ruQS3tgFBJX|wm&^{AUzj9S7-naWq0{Pt%W|Hp)IpRzPe+l{)u|LFmzAMe8{{Y2r8*u;t literal 0 HcmV?d00001 diff --git a/Ch01/apd.sensors-chapter01/Pipfile b/Ch01/apd.sensors-chapter01/Pipfile new file mode 100644 index 0000000..f2b958d --- /dev/null +++ b/Ch01/apd.sensors-chapter01/Pipfile @@ -0,0 +1,20 @@ +[[source]] +name = "pypi" +url = "https://pypi.org/simple" +verify_ssl = true + +[[source]] +name = "piwheels" +url = "https://piwheels.org/simple" +verify_ssl = true + +[dev-packages] +ipykernel = "*" +remote-ikernel = "*" + +[packages] +psutil = "*" +click = "*" +adafruit-circuitpython-dht = {markers = "'arm' in platform_machine",version = "*"} + +[requires] diff --git a/Ch01/apd.sensors-chapter01/Pipfile.lock b/Ch01/apd.sensors-chapter01/Pipfile.lock new file mode 100644 index 0000000..cf665d9 --- /dev/null +++ b/Ch01/apd.sensors-chapter01/Pipfile.lock @@ -0,0 +1,535 @@ +{ + "_meta": { + "hash": { + "sha256": "28688ae3c6bdd5db612b474745d21f04b74e15edcd7843201f8fa5a0a5165868" + }, + "pipfile-spec": 6, + "requires": {}, + "sources": [ + { + "name": "pypi", + "url": "https://pypi.org/simple", + "verify_ssl": true + }, + { + "name": "piwheels", + "url": "https://piwheels.org/simple", + "verify_ssl": true + } + ] + }, + "default": { + "adafruit-blinka": { + "hashes": [ + "sha256:375a71854a52779a760c5b2f53f626c9217b523b77ac1c4648ee81c606ce4eec", + "sha256:dbd25293944e118bec49ef0763b51cda8445b7a8cb49e8d39934f01551820cc5" + ], + "version": "==4.2.0" + }, + "adafruit-circuitpython-dht": { + "hashes": [ + "sha256:454b506bab88a009ea19aa1ea00338dffe1d48fb42ab2c3e03948bf337a5542c", + "sha256:5f9307fbfad64221ba1a4e7b34ecbf26326a5d77a856482361bef70c251df55d" + ], + "index": "pypi", + "markers": "'arm' in platform_machine", + "version": "==3.3.0" + }, + "adafruit-platformdetect": { + "hashes": [ + "sha256:917f431371f94a60391e881fe1af3731a225b188e0c0157ebc69b877f1fd0a2a", + "sha256:bf446f8365cdf0a87d4bf6620e70bd59da99b0523c2111f0dc74a1155236ff61" + ], + "version": "==2.5.0" + }, + "adafruit-pureio": { + "hashes": [ + "sha256:013ebe6119eaaa0d39716ea5fbfad4fcbada7c88eaebcc7d6615f9df44e53b8c", + "sha256:b67587ed3c4dc90bd0e9b988587efa66b4466abf71eb0dcbcd4695e7e4350326" + ], + "version": "==1.0.4" + }, + "click": { + "hashes": [ + "sha256:8a18b4ea89d8820c5d0c7da8a64b2c324b4dabb695804dbfea19b9be9d88c0cc", + "sha256:e345d143d80bf5ee7534056164e5e112ea5e22716bbb1ce727941f4c8b471b9a" + ], + "index": "pypi", + "version": "==7.1.1" + }, + "psutil": { + "hashes": [ + "sha256:002bd856770037221256765a472f50d677074ad207276a39e2bccdb7394e333b", + "sha256:1413f4158eb50e110777c4f15d7c759521703bd6beb58926f1d562da40180058", + "sha256:298af2f14b635c3c7118fd9183843f4e73e681bb6f01e12284d4d70d48a60953", + "sha256:60b86f327c198561f101a92be1995f9ae0399736b6eced8f24af41ec64fb88d4", + "sha256:685ec16ca14d079455892f25bd124df26ff9137664af445563c1bd36629b5e0e", + "sha256:73f35ab66c6c7a9ce82ba44b1e9b1050be2a80cd4dcc3352cc108656b115c74f", + "sha256:75e22717d4dbc7ca529ec5063000b2b294fc9a367f9c9ede1f65846c7955fd38", + "sha256:833b2b19c04fc0aecad22daa3e35108d6ee2e4f92061a4a8f2dd77c6fa9154f5", + "sha256:a02f4ac50d4a23253b68233b07e7cdb567bd025b982d5cf0ee78296990c22d9e", + "sha256:d008ddc00c6906ec80040d26dc2d3e3962109e40ad07fd8a12d0284ce5e0e4f8", + "sha256:d84029b190c8a66a946e28b4d3934d2ca1528ec94764b180f7d6ea57b0e75e26", + "sha256:e2d0c5b07c6fe5a87fa27b7855017edb0d52ee73b71e6ee368fae268605cc3f5", + "sha256:f344ca230dd8e8d5eee16827596f1c22ec0876127c28e800d7ae20ed44c4b310", + "sha256:f3e7f183162622eae9fbdee44ff19b226edec68b94ae7cba47f9afcf4c3ec66c" + ], + "index": "pypi", + "version": "==5.7.0" + }, + "pyftdi": { + "hashes": [ + "sha256:51827a876d0ed2b146d66083f7020a4ca1b703fca599da119e3a79009c89549c", + "sha256:a98e683b7e3569814524a4bdd723e8b239072da30366071a9266ab80083f2135", + "sha256:e781c9a4e6ad2ed6830e5b4aa3f1707efb781d3598493f0655c43c97d64afc63" + ], + "version": "==0.48.3" + }, + "pyserial": { + "hashes": [ + "sha256:6e2d401fdee0eab996cf734e67773a0143b932772ca8b42451440cfed942c627", + "sha256:e0770fadba80c31013896c7e6ef703f72e7834965954a78e71a3049488d4d7d8" + ], + "version": "==3.4" + }, + "pyusb": { + "hashes": [ + "sha256:4e9b72cc4a4205ca64fbf1f3fff39a335512166c151ad103e55c8223ac147362", + "sha256:789749b8a9bf3828c55d41df2c3e569739cd1bdbe1517e8d940af9587a711faa" + ], + "version": "==1.0.2" + }, + "rpi-ws281x": { + "hashes": [ + "sha256:185d7ae138a5633cf4cd707c55d7190b34810cc3f5e5682c820ddf1dade20914", + "sha256:265a395410cc7199f779c4209ca3970b7211896b86dbaa4731bdc3569d2e595f", + "sha256:544f09353ccb578452d0478470460d3425f40e8dd7433131a95239daeae83303", + "sha256:bc3a22e55c2a10de5c4dfb23c13dceff66162e77eb7176701f1a0d5ae8b97695", + "sha256:de182acceab047030056e2ab0dd2bd2632f2375f60d9a94cf7e3a8a4033834a0", + "sha256:f35e698e0d4205cb1bc2835b46429235fa22e973c8320d661f16556ceaf0f90b" + ], + "version": "==4.2.3" + }, + "rpi.gpio": { + "hashes": [ + "sha256:5cd2f3c88d0b1e2f4780c905702c0474768c2bc113fb793121c2e117b401ab16", + "sha256:6a4791f41cafc2ee6e4cb70e5bd31fadc66a0cfab29b38df8723a98f6f73ad5a", + "sha256:7424bc6c205466764f30f666c18187a0824077daf20b295c42f08aea2cb87d3f", + "sha256:7da5235aeba20da39ad4fb97f3ba3a2c6b2d60bba8958b00a4df42f608c6d42e" + ], + "version": "==0.7.0" + } + }, + "develop": { + "attrs": { + "hashes": [ + "sha256:08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c", + "sha256:f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72" + ], + "version": "==19.3.0" + }, + "backcall": { + "hashes": [ + "sha256:1fac21e6861f538700a5d498620153f38407a4bacf9e1d5047b3d717f10bc4ab", + "sha256:38ecd85be2c1e78f77fd91700c76e14667dc21e2713b63876c0eb901196e01e4", + "sha256:bbbf4b1e5cd2bdb08f915895b51081c041bac22394fdfcfdfbe9f14b77c08bf2" + ], + "version": "==0.1.0" + }, + "bleach": { + "hashes": [ + "sha256:cc8da25076a1fe56c3ac63671e2194458e0c4d9c7becfd52ca251650d517903c", + "sha256:e78e426105ac07026ba098f04de8abe9b6e3e98b5befbf89b51a5ef0a4292b03" + ], + "version": "==3.1.4" + }, + "colorama": { + "hashes": [ + "sha256:7d73d2a99753107a36ac6b455ee49046802e59d9d076ef8e47b61499fa29afff", + "sha256:e96da0d330793e2cb9485e9ddfd918d456036c7149416295932478192f4436a1" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.3" + }, + "decorator": { + "hashes": [ + "sha256:41fa54c2a0cc4ba648be4fd43cff00aedf5b9465c9bf18d64325bc225f08f760", + "sha256:e3a62f0520172440ca0dcc823749319382e377f37f140a0b99ef45fecb84bfe7" + ], + "version": "==4.4.2" + }, + "defusedxml": { + "hashes": [ + "sha256:6687150770438374ab581bb7a1b327a847dd9c5749e396102de3fad4e8a3ef93", + "sha256:f684034d135af4c6cbb949b8a4d2ed61634515257a67299e5f940fbaa34377f5" + ], + "version": "==0.6.0" + }, + "entrypoints": { + "hashes": [ + "sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19", + "sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451" + ], + "version": "==0.3" + }, + "importlib-metadata": { + "hashes": [ + "sha256:2a688cbaa90e0cc587f1df48bdc97a6eadccdcd9c35fb3f976a09e3b5016d90f", + "sha256:34513a8a0c4962bc66d35b359558fd8a5e10cd472d37aec5f66858addef32c1e" + ], + "markers": "python_version < '3.8'", + "version": "==1.6.0" + }, + "ipykernel": { + "hashes": [ + "sha256:08997a27ccafbb998437d167ccc893666c6088ec3aa90c054bfb3d588bb3fc20", + "sha256:37c65d2e2da3326e5cf114405df6d47d997b8a3eba99e2cc4b75833bf71a5e18", + "sha256:39746b5f7d847a23fae4eac893e63e3d9cc5f8c3a4797fcd3bfa8d1a296ec6ed" + ], + "index": "pypi", + "version": "==5.2.0" + }, + "ipython": { + "hashes": [ + "sha256:1807adeae64502fcaa491cd93405644faa055b646efb40c1e48648ad66f65a75", + "sha256:ca478e52ae1f88da0102360e57e528b92f3ae4316aabac80a2cd7f7ab2efb48a", + "sha256:eb8d075de37f678424527b5ef6ea23f7b80240ca031c2dd6de5879d687a65333" + ], + "version": "==7.13.0" + }, + "ipython-genutils": { + "hashes": [ + "sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8", + "sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8" + ], + "version": "==0.2.0" + }, + "jedi": { + "hashes": [ + "sha256:b4f4052551025c6b0b0b193b29a6ff7bdb74c52450631206c262aef9f7159ad2", + "sha256:d5c871cb9360b414f981e7072c52c33258d598305280fef91c6cae34739d65d5" + ], + "version": "==0.16.0" + }, + "jinja2": { + "hashes": [ + "sha256:93187ffbc7808079673ef52771baa950426fd664d3aad1d0fa3e95644360e250", + "sha256:b0eaf100007721b5c16c1fc1eecb87409464edc10469ddc9a22a27a99123be49" + ], + "version": "==2.11.1" + }, + "jsonschema": { + "hashes": [ + "sha256:4e5b3cf8216f577bee9ce139cbe72eca3ea4f292ec60928ff24758ce626cd163", + "sha256:c8a85b28d377cc7737e46e2d9f2b4f44ee3c0e1deac6bf46ddefc7187d30797a" + ], + "version": "==3.2.0" + }, + "jupyter-client": { + "hashes": [ + "sha256:5724827aedb1948ed6ed15131372bc304a8d3ad9ac67ac19da7c95120d6b17e0", + "sha256:81c1c712de383bf6bf3dab6b407392b0d84d814c7bd0ce2c7035ead8b2ffea97" + ], + "version": "==6.1.2" + }, + "jupyter-core": { + "hashes": [ + "sha256:394fd5dd787e7c8861741880bdf8a00ce39f95de5d18e579c74b882522219e7e", + "sha256:a4ee613c060fe5697d913416fc9d553599c05e4492d58fac1192c9a6844abb21" + ], + "version": "==4.6.3" + }, + "markupsafe": { + "hashes": [ + "sha256:00bc623926325b26bb9605ae9eae8a215691f33cae5df11ca5424f06f2d1f473", + "sha256:09027a7803a62ca78792ad89403b1b7a73a01c8cb65909cd876f7fcebd79b161", + "sha256:09c4b7f37d6c648cb13f9230d847adf22f8171b1ccc4d5682398e77f40309235", + "sha256:1027c282dad077d0bae18be6794e6b6b8c91d58ed8a8d89a89d59693b9131db5", + "sha256:13d3144e1e340870b25e7b10b98d779608c02016d5184cfb9927a9f10c689f42", + "sha256:19536834abffb3fa155017053c607cb835b2ecc6a3a2554a88043d991dffb736", + "sha256:24982cc2533820871eba85ba648cd53d8623687ff11cbb805be4ff7b4c971aff", + "sha256:29872e92839765e546828bb7754a68c418d927cd064fd4708fab9fe9c8bb116b", + "sha256:3d61f15e39611aacd91b7e71d903787da86d9e80896e683c0103fced9add7834", + "sha256:43a55c2930bbc139570ac2452adf3d70cdbb3cfe5912c71cdce1c2c6bbd9c5d1", + "sha256:46c99d2de99945ec5cb54f23c8cd5689f6d7177305ebff350a58ce5f8de1669e", + "sha256:500d4957e52ddc3351cabf489e79c91c17f6e0899158447047588650b5e69183", + "sha256:535f6fc4d397c1563d08b88e485c3496cf5784e927af890fb3c3aac7f933ec66", + "sha256:596510de112c685489095da617b5bcbbac7dd6384aeebeda4df6025d0256a81b", + "sha256:62fe6c95e3ec8a7fad637b7f3d372c15ec1caa01ab47926cfdf7a75b40e0eac1", + "sha256:6788b695d50a51edb699cb55e35487e430fa21f1ed838122d722e0ff0ac5ba15", + "sha256:6dd73240d2af64df90aa7c4e7481e23825ea70af4b4922f8ede5b9e35f78a3b1", + "sha256:717ba8fe3ae9cc0006d7c451f0bb265ee07739daf76355d06366154ee68d221e", + "sha256:7952deddf24b85c88dab48f6ec366ac6e39d2761b5280f2f9594911e03fcd064", + "sha256:79855e1c5b8da654cf486b830bd42c06e8780cea587384cf6545b7d9ac013a0b", + "sha256:7c1699dfe0cf8ff607dbdcc1e9b9af1755371f92a68f706051cc8c37d447c905", + "sha256:88e5fcfb52ee7b911e8bb6d6aa2fd21fbecc674eadd44118a9cc3863f938e735", + "sha256:8defac2f2ccd6805ebf65f5eeb132adcf2ab57aa11fdf4c0dd5169a004710e7d", + "sha256:98c7086708b163d425c67c7a91bad6e466bb99d797aa64f965e9d25c12111a5e", + "sha256:9add70b36c5666a2ed02b43b335fe19002ee5235efd4b8a89bfcf9005bebac0d", + "sha256:9bf40443012702a1d2070043cb6291650a0841ece432556f784f004937f0f32c", + "sha256:ade5e387d2ad0d7ebf59146cc00c8044acbd863725f887353a10df825fc8ae21", + "sha256:b00c1de48212e4cc9603895652c5c410df699856a2853135b3967591e4beebc2", + "sha256:b1282f8c00509d99fef04d8ba936b156d419be841854fe901d8ae224c59f0be5", + "sha256:b2051432115498d3562c084a49bba65d97cf251f5a331c64a12ee7e04dacc51b", + "sha256:ba59edeaa2fc6114428f1637ffff42da1e311e29382d81b339c1817d37ec93c6", + "sha256:c8716a48d94b06bb3b2524c2b77e055fb313aeb4ea620c8dd03a105574ba704f", + "sha256:cd5df75523866410809ca100dc9681e301e3c27567cf498077e8551b6d20e42f", + "sha256:cdb132fc825c38e1aeec2c8aa9338310d29d337bebbd7baa06889d09a60a1fa2", + "sha256:e249096428b3ae81b08327a63a485ad0878de3fb939049038579ac0ef61e17e7", + "sha256:e8313f01ba26fbbe36c7be1966a7b7424942f670f38e666995b88d012765b9be" + ], + "version": "==1.1.1" + }, + "mistune": { + "hashes": [ + "sha256:59a3429db53c50b5c6bcc8a07f8848cb00d7dc8bdb431a4ab41920d201d4756e", + "sha256:88a1051873018da288eee8538d476dffe1262495144b33ecb586c4ab266bb8d4" + ], + "version": "==0.8.4" + }, + "nbconvert": { + "hashes": [ + "sha256:21fb48e700b43e82ba0e3142421a659d7739b65568cc832a13976a77be16b523", + "sha256:f0d6ec03875f96df45aa13e21fd9b8450c42d7e1830418cccc008c0df725fcee" + ], + "version": "==5.6.1" + }, + "nbformat": { + "hashes": [ + "sha256:65a79936a128fd85aef392b7fea520166364037118b6fe3ed52de742d06c4558", + "sha256:f0c47cf93c505cb943e2f131ef32b8ae869292b5f9f279db2bafb35867923f69" + ], + "version": "==5.0.5" + }, + "notebook": { + "hashes": [ + "sha256:3edc616c684214292994a3af05eaea4cc043f6b4247d830f3a2f209fa7639a80", + "sha256:47a9092975c9e7965ada00b9a20f0cf637d001db60d241d479f53c0be117ad48" + ], + "version": "==6.0.3" + }, + "pandocfilters": { + "hashes": [ + "sha256:41a309da81cba5509389b19d96b0ee49551cee8165a6406754f2565e95429860", + "sha256:b3dd70e169bb5449e6bc6ff96aea89c5eea8c5f6ab5e207fc2f521a2cf4a0da9" + ], + "version": "==1.4.2" + }, + "parso": { + "hashes": [ + "sha256:0c5659e0c6eba20636f99a04f469798dca8da279645ce5c387315b2c23912157", + "sha256:8515fc12cfca6ee3aa59138741fc5624d62340c97e401c74875769948d4f2995" + ], + "version": "==0.6.2" + }, + "pexpect": { + "hashes": [ + "sha256:0b48a55dcb3c05f3329815901ea4fc1537514d6ba867a152b581d69ae3710937", + "sha256:fc65a43959d153d0114afe13997d439c22823a27cefceb5ff35c2178c6784c0c" + ], + "version": "==4.8.0" + }, + "pickleshare": { + "hashes": [ + "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca", + "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56" + ], + "version": "==0.7.5" + }, + "prometheus-client": { + "hashes": [ + "sha256:09b5750fd1c153420dccd35881116e853c730081bea0dbf0ea6649103bcb8445", + "sha256:71cd24a2b3eb335cb800c7159f423df1bd4dcd5171b234be15e3f31ec9f622da" + ], + "version": "==0.7.1" + }, + "prompt-toolkit": { + "hashes": [ + "sha256:563d1a4140b63ff9dd587bda9557cffb2fe73650205ab6f4383092fb882e7dc8", + "sha256:df7e9e63aea609b1da3a65641ceaf5bc7d05e0a04de5bd45d05dbeffbabf9e04" + ], + "version": "==3.0.5" + }, + "ptyprocess": { + "hashes": [ + "sha256:923f299cc5ad920c68f2bc0bc98b75b9f838b93b599941a6b63ddbc2476394c0", + "sha256:d7cc528d76e76342423ca640335bd3633420dc1366f258cb31d05e865ef5ca1f" + ], + "version": "==0.6.0" + }, + "pygments": { + "hashes": [ + "sha256:647344a061c249a3b74e230c739f434d7ea4d8b1d5f3721bc0f3558049b38f44", + "sha256:aa931c0bd5daa25c475afadb2147115134cfe501f0656828cbe7cb566c7123bc", + "sha256:ff7a40b4860b727ab48fad6360eb351cc1b33cbf9b15a0f689ca5353e9463324" + ], + "version": "==2.6.1" + }, + "pyrsistent": { + "hashes": [ + "sha256:28669905fe725965daa16184933676547c5bb40a5153055a8dee2a4bd7933ad3", + "sha256:3217696df78f9222a3d1179b119c27be346b969a9e4d617de2a215a87d9aa456", + "sha256:9324b762b52e5a901611b25f50f9cdf8789c61ece3ff7c24dc872603c4faca62", + "sha256:c11415790cc5803e173de7d71d54f94c66a9154f81a72ffdf45a70096916f226" + ], + "version": "==0.16.0" + }, + "python-dateutil": { + "hashes": [ + "sha256:73ebfe9dbf22e832286dafa60473e4cd239f8592f699aa5adaf10050e6e1823c", + "sha256:75bb3f31ea686f1197762692a9ee6a7550b59fc6ca3a1f4b5d7e32fb98e2da2a" + ], + "version": "==2.8.1" + }, + "pywin32": { + "hashes": [ + "sha256:300a2db938e98c3e7e2093e4491439e62287d0d493fe07cce110db070b54c0be", + "sha256:31f88a89139cb2adc40f8f0e65ee56a8c585f629974f9e07622ba80199057511", + "sha256:371fcc39416d736401f0274dd64c2302728c9e034808e37381b5e1b22be4a6b0", + "sha256:47a3c7551376a865dd8d095a98deba954a98f326c6fe3c72d8726ca6e6b15507", + "sha256:4cdad3e84191194ea6d0dd1b1b9bdda574ff563177d2adf2b4efec2a244fa116", + "sha256:7c1ae32c489dc012930787f06244426f8356e129184a02c25aef163917ce158e", + "sha256:7f18199fbf29ca99dff10e1f09451582ae9e372a892ff03a28528a24d55875bc", + "sha256:9b31e009564fb95db160f154e2aa195ed66bcc4c058ed72850d047141b36f3a2", + "sha256:a929a4af626e530383a579431b70e512e736e9588106715215bf685a3ea508d4", + "sha256:c054c52ba46e7eb6b7d7dfae4dbd987a1bb48ee86debe3f245a2884ece46e295", + "sha256:f27cec5e7f588c3d1051651830ecc00294f90728d19c3bf6916e6dba93ea357c", + "sha256:f4c5be1a293bae0076d93c88f37ee8da68136744588bc5e2be2f299a34ceb7aa" + ], + "markers": "sys_platform == 'win32'", + "version": "==227" + }, + "pywinpty": { + "hashes": [ + "sha256:1e525a4de05e72016a7af27836d512db67d06a015aeaf2fa0180f8e6a039b3c2", + "sha256:2740eeeb59297593a0d3f762269b01d0285c1b829d6827445fcd348fb47f7e70", + "sha256:2d7e9c881638a72ffdca3f5417dd1563b60f603e1b43e5895674c2a1b01f95a0", + "sha256:33df97f79843b2b8b8bc5c7aaf54adec08cc1bae94ee99dfb1a93c7a67704d95", + "sha256:5fb2c6c6819491b216f78acc2c521b9df21e0f53b9a399d58a5c151a3c4e2a2d", + "sha256:8fc5019ff3efb4f13708bd3b5ad327589c1a554cb516d792527361525a7cb78c", + "sha256:b358cb552c0f6baf790de375fab96524a0498c9df83489b8c23f7f08795e966b", + "sha256:dbd838de92de1d4ebf0dce9d4d5e4fc38d0b7b1de837947a18b57a882f219139", + "sha256:dd22c8efacf600730abe4a46c1388355ce0d4ab75dc79b15d23a7bd87bf05b48", + "sha256:e854211df55d107f0edfda8a80b39dfc87015bef52a8fe6594eb379240d81df2" + ], + "markers": "os_name == 'nt'", + "version": "==0.5.7" + }, + "pyzmq": { + "hashes": [ + "sha256:07bfbf192f22ef1dde65b6046efff191e3201e74da6d47098e68958469ecbe48", + "sha256:0bbc1728fe4314b4ca46249c33873a390559edac7c217ec7001b5e0c34a8fb7f", + "sha256:1e076ad5bd3638a18c376544d32e0af986ca10d43d4ce5a5d889a8649f0d0a3d", + "sha256:242d949eb6b10197cda1d1cec377deab1d5324983d77e0d0bf9dc5eb6d71a6b4", + "sha256:26f4ae420977d2a8792d7c2d7bda43128b037b5eeb21c81951a94054ad8b8843", + "sha256:32234c21c5e0a767c754181c8112092b3ddd2e2a36c3f76fc231ced817aeee47", + "sha256:3f12ce1e9cc9c31497bd82b207e8e86ccda9eebd8c9f95053aae46d15ccd2196", + "sha256:4557d5e036e6d85715b4b9fdb482081398da1d43dc580d03db642b91605b409f", + "sha256:4f562dab21c03c7aa061f63b147a595dbe1006bf4f03213272fc9f7d5baec791", + "sha256:54ecd00daa474885bbf318108401d318614425a05dfeae917611dd93f99f2678", + "sha256:5e071b834051e9ecb224915398f474bfad802c2fff883f118ff5363ca4ae3edf", + "sha256:5e1f65e576ab07aed83f444e201d86deb01cd27dcf3f37c727bc8729246a60a8", + "sha256:5f10a31f288bf055be76c57710807a8f0efdb2b82be6c2a2b8f9a61f33a40cea", + "sha256:6aaaf90b420dc40d9a0e1996b82c6a0ff91d9680bebe2135e67c9e6d197c0a53", + "sha256:75238d3c16cab96947705d5709187a49ebb844f54354cdf0814d195dd4c045de", + "sha256:7f7e7b24b1d392bb5947ba91c981e7d1a43293113642e0d8870706c8e70cdc71", + "sha256:84b91153102c4bcf5d0f57d1a66a0f03c31e9e6525a5f656f52fc615a675c748", + "sha256:944f6bb5c63140d76494467444fd92bebd8674236837480a3c75b01fe17df1ab", + "sha256:a1f957c20c9f51d43903881399b078cddcf710d34a2950e88bce4e494dcaa4d1", + "sha256:a49fd42a29c1cc1aa9f461c5f2f5e0303adba7c945138b35ee7f4ab675b9f754", + "sha256:a99ae601b4f6917985e9bb071549e30b6f93c72f5060853e197bdc4b7d357e5f", + "sha256:ad48865a29efa8a0cecf266432ea7bc34e319954e55cf104be0319c177e6c8f5", + "sha256:b08e425cf93b4e018ab21dc8fdbc25d7d0502a23cc4fea2380010cf8cf11e462", + "sha256:bb10361293d96aa92be6261fa4d15476bca56203b3a11c62c61bd14df0ef89ba", + "sha256:bd1a769d65257a7a12e2613070ca8155ee348aa9183f2aadf1c8b8552a5510f5", + "sha256:cb3b7156ef6b1a119e68fbe3a54e0a0c40ecacc6b7838d57dd708c90b62a06dc", + "sha256:d2f64994f9628f621e0f636f9532055887defc9fa5213aaeceb770d9c579f9ac", + "sha256:e8e4efb52ec2df8d046395ca4c84ae0056cf507b2f713ec803c65a8102d010de", + "sha256:f37c29da2a5b0c5e31e6f8aab885625ea76c807082f70b2d334d3fd573c3100a", + "sha256:f4d558bc5668d2345773a9ff8c39e2462dafcb1f6772a2e582fbced389ce527f", + "sha256:f5b6d015587a1d6f582ba03b226a9ddb1dfb09878b3be04ef48b01b7d4eb6b2a" + ], + "version": "==19.0.0" + }, + "remote-ikernel": { + "hashes": [ + "sha256:5253216e87a8c31f1b0ca9305454f223147518b580e853b7635a3d8b9c88c295", + "sha256:740b80a57fa1af40cadef541c5a4eb293675b504092ecf00c57dd2f0011bd840" + ], + "index": "pypi", + "version": "==0.4.6" + }, + "send2trash": { + "hashes": [ + "sha256:60001cc07d707fe247c94f74ca6ac0d3255aabcb930529690897ca2a39db28b2", + "sha256:f1691922577b6fa12821234aeb57599d887c4900b9ca537948d2dac34aea888b" + ], + "version": "==1.5.0" + }, + "six": { + "hashes": [ + "sha256:236bdbdce46e6e6a3d61a337c0f8b763ca1e8717c03b369e87a7ec7ce1319c0a", + "sha256:8f3cd2e254d8f793e7f3d6d9df77b92252b52637291d0f0da013c76ea2724b6c" + ], + "version": "==1.14.0" + }, + "terminado": { + "hashes": [ + "sha256:4804a774f802306a7d9af7322193c5390f1da0abb429e082a10ef1d46e6fb2c2", + "sha256:a43dcb3e353bc680dd0783b1d9c3fc28d529f190bc54ba9a229f72fe6e7a54d7" + ], + "version": "==0.8.3" + }, + "testpath": { + "hashes": [ + "sha256:60e0a3261c149755f4399a1fff7d37523179a70fdc3abdf78de9fc2604aeec7e", + "sha256:bfcf9411ef4bf3db7579063e0546938b1edda3d69f4e1fb8756991f5951f85d4" + ], + "version": "==0.4.4" + }, + "tornado": { + "hashes": [ + "sha256:0fe2d45ba43b00a41cd73f8be321a44936dc1aba233dee979f17a042b83eb6dc", + "sha256:22aed82c2ea340c3771e3babc5ef220272f6fd06b5108a53b4976d0d722bcd52", + "sha256:2c027eb2a393d964b22b5c154d1a23a5f8727db6fda837118a776b29e2b8ebc6", + "sha256:503700d85d9a2c2aa737fb16df58bfa2ac0d5ec501881fea2acceae64ce17858", + "sha256:5217e601700f24e966ddab689f90b7ea4bd91ff3357c3600fa1045e26d68e55d", + "sha256:5618f72e947533832cbc3dec54e1dffc1747a5cb17d1fd91577ed14fa0dc081b", + "sha256:5f6a07e62e799be5d2330e68d808c8ac41d4a259b9cea61da4101b83cb5dc673", + "sha256:7182a9285e364e55e6902b5fb4d4a219efd8d7818d9000b419a0eaf3909fc0bc", + "sha256:c58d56003daf1b616336781b26d184023ea4af13ae143d9dda65e31e534940b9", + "sha256:c952975c8ba74f546ae6de2e226ab3cc3cc11ae47baf607459a6728585bb542a", + "sha256:c98232a3ac391f5faea6821b53db8db461157baa788f5d6222a193e9456e1740" + ], + "version": "==6.0.4" + }, + "traitlets": { + "hashes": [ + "sha256:70b4c6a1d9019d7b4f6846832288f86998aa3b9207c6821f3578a6a6a467fe44", + "sha256:d023ee369ddd2763310e4c3eae1ff649689440d4ae59d7485eb4cfbbe3e359f7" + ], + "version": "==4.3.3" + }, + "wcwidth": { + "hashes": [ + "sha256:cafe2186b3c009a04067022ce1dcd79cb38d8d65ee4f4791b8888d6599d1bbe1", + "sha256:ee73862862a156bf77ff92b09034fc4825dd3af9cf81bc5b360668d425f3c5f1" + ], + "version": "==0.1.9" + }, + "webencodings": { + "hashes": [ + "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", + "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923" + ], + "version": "==0.5.1" + }, + "zipp": { + "hashes": [ + "sha256:aa36550ff0c0b7ef7fa639055d797116ee891440eac1a56f378e2d3179e0320b", + "sha256:c599e4d75c98f6798c509911d08a22e6c021d074469042177c8c86fb92eefd96" + ], + "version": "==3.1.0" + } + } +} diff --git a/Ch01/apd.sensors-chapter01/sensors.py b/Ch01/apd.sensors-chapter01/sensors.py new file mode 100644 index 0000000..ca0d73b --- /dev/null +++ b/Ch01/apd.sensors-chapter01/sensors.py @@ -0,0 +1,60 @@ +#!/usr/bin/env python +# coding: utf-8 +import socket +import sys + +import click +import psutil + + +def python_version(): + return sys.version_info + + +def ip_addresses(): + hostname = socket.gethostname() + addresses = socket.getaddrinfo(socket.gethostname(), None) + + address_info = [] + for address in addresses: + address_info.append((address[0].name, address[4][0])) + return address_info + + +def cpu_load(): + return psutil.cpu_percent(interval=0.1) / 100 + + +def ram_available(): + return psutil.virtual_memory().available + + +def ac_connected(): + return psutil.sensors_battery().power_plugged + + +def get_relative_humidity(): + try: + # Connect to a DHT22 sensor on pin 4 + from adafruit_dht import DHT22 + from board import D4 + except (ImportError, NotImplementedError): + # No DHT library results in an ImportError. + # Running on an unknown platform results in a NotImplementedError when getting the pin + return None + return DHT22(D4).humidity + + +@click.command(help="Displays the values of the sensors") +def show_sensors(): + click.echo("Python version: {0.major}.{0.minor}".format(python_version())) + for address in ip_addresses(): + click.echo("IP addresses: {0[1]} ({0[0]})".format(address)) + click.echo("CPU Load: {:.1%}".format(cpu_load())) + click.echo("RAM Available: {:.0f} MiB".format(ram_available() / 1024**2)) + click.echo("AC Connected: {!r}".format(ac_connected())) + click.echo("Humidity: {!r}".format(get_relative_humidity())) + + +if __name__ == '__main__': + show_sensors() \ No newline at end of file diff --git a/Ch01/figure01-01-fizzbuzz.ipynb b/Ch01/figure01-01-fizzbuzz.ipynb new file mode 100644 index 0000000..61c95a1 --- /dev/null +++ b/Ch01/figure01-01-fizzbuzz.ipynb @@ -0,0 +1,158 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1\n", + "2\n", + "Fizz\n", + "4\n", + "Buzz\n", + "Fizz\n", + "7\n", + "8\n", + "Fizz\n", + "Buzz\n", + "11\n", + "Fizz\n", + "13\n", + "14\n", + "FizzBuzz\n", + "16\n", + "17\n", + "Fizz\n", + "19\n", + "Buzz\n", + "Fizz\n", + "22\n", + "23\n", + "Fizz\n", + "Buzz\n", + "26\n", + "Fizz\n", + "28\n", + "29\n", + "FizzBuzz\n", + "31\n", + "32\n", + "Fizz\n", + "34\n", + "Buzz\n", + "Fizz\n", + "37\n", + "38\n", + "Fizz\n", + "Buzz\n", + "41\n", + "Fizz\n", + "43\n", + "44\n", + "FizzBuzz\n", + "46\n", + "47\n", + "Fizz\n", + "49\n", + "Buzz\n", + "Fizz\n", + "52\n", + "53\n", + "Fizz\n", + "Buzz\n", + "56\n", + "Fizz\n", + "58\n", + "59\n", + "FizzBuzz\n", + "61\n", + "62\n", + "Fizz\n", + "64\n", + "Buzz\n", + "Fizz\n", + "67\n", + "68\n", + "Fizz\n", + "Buzz\n", + "71\n", + "Fizz\n", + "73\n", + "74\n", + "FizzBuzz\n", + "76\n", + "77\n", + "Fizz\n", + "79\n", + "Buzz\n", + "Fizz\n", + "82\n", + "83\n", + "Fizz\n", + "Buzz\n", + "86\n", + "Fizz\n", + "88\n", + "89\n", + "FizzBuzz\n", + "91\n", + "92\n", + "Fizz\n", + "94\n", + "Buzz\n", + "Fizz\n", + "97\n", + "98\n", + "Fizz\n", + "Buzz\n" + ] + } + ], + "source": [ + "for num in range(1, 101):\n", + " val = ''\n", + " if num % 3 == 0:\n", + " val += 'Fizz'\n", + " if num % 5 == 0:\n", + " val += 'Buzz'\n", + "\n", + " if not val:\n", + " val = str(num)\n", + "\n", + " print(val)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "advancedpython", + "language": "python", + "name": "advancedpython" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.2" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Ch01/figure01-04-versioninfo.ipynb b/Ch01/figure01-04-versioninfo.ipynb new file mode 100644 index 0000000..828310c --- /dev/null +++ b/Ch01/figure01-04-versioninfo.ipynb @@ -0,0 +1,58 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "scrolled": false, + "slideshow": { + "slide_type": "slide" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "sys.version_info(major=3, minor=8, micro=0, releaselevel='final', serial=0)" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import sys\n", + "sys.version_info" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "advancedpython", + "language": "python", + "name": "advancedpython" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Ch01/figure01-05-ip-address.ipynb b/Ch01/figure01-05-ip-address.ipynb new file mode 100644 index 0000000..1049144 --- /dev/null +++ b/Ch01/figure01-05-ip-address.ipynb @@ -0,0 +1,137 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "scrolled": false, + "slideshow": { + "slide_type": "slide" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "sys.version_info(major=3, minor=8, micro=0, releaselevel='final', serial=0)" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import sys\n", + "sys.version_info" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'LAPTOP-IOJMBDVL'" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import socket\n", + "hostname = socket.gethostname()\n", + "hostname" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[(,\n", + " 0,\n", + " 0,\n", + " '',\n", + " ('fe80::xxxx:xxxx:ae23:fa5', 0, 0, 10)),\n", + " (,\n", + " 0,\n", + " 0,\n", + " '',\n", + " ('2001:xxxx:xxxx:xxxx:xxxx:xxxx:1321:a799', 0, 0, 0)),\n", + " (,\n", + " 0,\n", + " 0,\n", + " '',\n", + " ('2001:xxxx:xxxx:xxxx:xxxx:xxxx:ae23:fa5', 0, 0, 0)),\n", + " (, 0, 0, '', ('192.168.1.246', 0))]" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "addresses = socket.getaddrinfo(hostname, None)\n", + "addresses" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "AF_INET6 fe80::xxxx:xxxx:ae23:fa5\n", + "AF_INET6 2001:xxxx:xxxx:xxxx:xxxx:xxxx:1321:a799\n", + "AF_INET6 2001:xxxx:xxxx:xxxx:xxxx:xxxx:ae23:fa5\n", + "AF_INET 192.168.1.246\n" + ] + } + ], + "source": [ + "for address in addresses:\n", + " print(address[0].name, address[4][0])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "advancedpython", + "language": "python", + "name": "advancedpython" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Ch01/figure01-06-ip-address-joined.ipynb b/Ch01/figure01-06-ip-address-joined.ipynb new file mode 100644 index 0000000..010a2a6 --- /dev/null +++ b/Ch01/figure01-06-ip-address-joined.ipynb @@ -0,0 +1,85 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "scrolled": false, + "slideshow": { + "slide_type": "slide" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "sys.version_info(major=3, minor=8, micro=0, releaselevel='final', serial=0)" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import sys\n", + "sys.version_info" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "AF_INET6 fe80::xxxx:xxx:ae23:fa5\n", + "AF_INET6 2001:xxxx:xxxx:xxxx:xxx:xxxx:1321:a799\n", + "AF_INET6 2001:xxxx:xxxx:xxxx:xxx:xxxx:ae23:fa5\n", + "AF_INET 192.168.1.246\n" + ] + } + ], + "source": [ + "import socket\n", + "hostname = socket.gethostname()\n", + "\n", + "addresses = socket.getaddrinfo(hostname, None)\n", + "\n", + "for address in addresses:\n", + " print(address[0].name, address[4][0])\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "advancedpython", + "language": "python", + "name": "advancedpython" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Ch01/figure01-07-multiple-datapoints.ipynb b/Ch01/figure01-07-multiple-datapoints.ipynb new file mode 100644 index 0000000..21eb8a9 --- /dev/null +++ b/Ch01/figure01-07-multiple-datapoints.ipynb @@ -0,0 +1,154 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "scrolled": false, + "slideshow": { + "slide_type": "slide" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "sys.version_info(major=3, minor=8, micro=0, releaselevel='final', serial=0)" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import sys\n", + "sys.version_info" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "AF_INET6 fe80::xxxx:xxx:ae23:fa5\n", + "AF_INET6 2001:xxxx:xxxx:xxxx:xxx:xxxx:1321:a799\n", + "AF_INET6 2001:xxxx:xxxx:xxxx:xxx:xxxx:ae23:fa5\n", + "AF_INET 192.168.1.246\n" + ] + } + ], + "source": [ + "import socket\n", + "hostname = socket.gethostname()\n", + "\n", + "addresses = socket.getaddrinfo(hostname, None)\n", + "\n", + "for address in addresses:\n", + " print(address[0].name, address[4][0])\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "import psutil" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "60.8" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "psutil.cpu_percent()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "551014400" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "psutil.virtual_memory().available" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "psutil.sensors_battery().power_plugged" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "advancedpython", + "language": "python", + "name": "advancedpython" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Ch01/figure01-08-temperature_and_humidity_remote.ipynb b/Ch01/figure01-08-temperature_and_humidity_remote.ipynb new file mode 100644 index 0000000..e092c2f --- /dev/null +++ b/Ch01/figure01-08-temperature_and_humidity_remote.ipynb @@ -0,0 +1,54 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "44.6" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from adafruit_dht import DHT22\n", + "from board import D4\n", + "DHT22(D4).humidity" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "SSH pi@rpi4-office development-testing (office)", + "language": "python", + "name": "rik_ssh_pi_rpi4_office_developmenttestingoffice" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Ch01/figure01-09-temperature_and_humidity_local.ipynb b/Ch01/figure01-09-temperature_and_humidity_local.ipynb new file mode 100644 index 0000000..7dbcc39 --- /dev/null +++ b/Ch01/figure01-09-temperature_and_humidity_local.ipynb @@ -0,0 +1,43 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "ename": "ModuleNotFoundError", + "evalue": "No module named 'adafruit_dht'", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[1;32mfrom\u001b[0m \u001b[0madafruit_dht\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mDHT22\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[0mboard\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mD4\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3\u001b[0m \u001b[0mDHT22\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mD4\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mhumidity\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mModuleNotFoundError\u001b[0m: No module named 'adafruit_dht'" + ] + } + ], + "source": [ + "from adafruit_dht import DHT22\n", + "from board import D4\n", + "DHT22(D4).humidity" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Ch01/listing01-01-fizzbuzz.py b/Ch01/listing01-01-fizzbuzz.py new file mode 100644 index 0000000..f737034 --- /dev/null +++ b/Ch01/listing01-01-fizzbuzz.py @@ -0,0 +1,9 @@ +for num in range(1, 101): + val = '' + if num % 3 == 0: + val += 'Fizz' + if num % 5 == 0: + val += 'Buzz' + if not val: + val = str(num) + print(val) diff --git a/Ch01/listing01-02-fizzbuzz_blank_lines.py b/Ch01/listing01-02-fizzbuzz_blank_lines.py new file mode 100644 index 0000000..25643f7 --- /dev/null +++ b/Ch01/listing01-02-fizzbuzz_blank_lines.py @@ -0,0 +1,11 @@ +for num in range(1, 101): + val = '' + if num % 3 == 0: + val += 'Fizz' + if num % 5 == 0: + val += 'Buzz' + + if not val: + val = str(num) + + print(val) diff --git a/Ch01/listing01-03-fizzbuzz_with_breakpoint.py b/Ch01/listing01-03-fizzbuzz_with_breakpoint.py new file mode 100644 index 0000000..e32ff6b --- /dev/null +++ b/Ch01/listing01-03-fizzbuzz_with_breakpoint.py @@ -0,0 +1,11 @@ +for num in range(1, 101): + val = '' + if num == 15: + breakpoint() + if num % 3 == 0: + val += 'Fizz' + if num % 5 == 0: + val += 'Buzz' + if not val: + val = str(num) + print(val) diff --git a/Ch01/listing01-04-converted.py b/Ch01/listing01-04-converted.py new file mode 100644 index 0000000..aaaac96 --- /dev/null +++ b/Ch01/listing01-04-converted.py @@ -0,0 +1,51 @@ +#!/usr/bin/env python +# coding: utf-8 + +# In[1]: + + +import sys +sys.version_info + + +# In[4]: + + +import socket +hostname = socket.gethostname() + +addresses = socket.getaddrinfo(hostname, None) + +for address in addresses: + print(address[0].name, address[4][0]) + + +# In[5]: + + +import psutil + + +# In[6]: + + +psutil.cpu_percent() + + +# In[7]: + + +psutil.virtual_memory().available + + +# In[8]: + + +psutil.sensors_battery().power_plugged + + +# In[ ]: + + + + diff --git a/Ch01/listing01-05-serverstatus.py b/Ch01/listing01-05-serverstatus.py new file mode 100644 index 0000000..1ad0002 --- /dev/null +++ b/Ch01/listing01-05-serverstatus.py @@ -0,0 +1,27 @@ +#!/usr/bin/env python +import sys +import socket + +import psutil + + +def python_version(): + return sys.version_info + +def ip_addresses(): + hostname = socket.gethostname() + + addresses = socket.getaddrinfo(hostname, None) + address_info = [] + for address in addresses: + address_info.append(address[0].name, address[4][0]) + return address_info + +def cpu_load(): + return psutil.cpu_percent() + +def ram_available(): + return psutil.virtual_memory().available + +def ac_connected(): + return psutil.sensors_battery().power_plugged diff --git a/Ch01/listing01-06-sensors_argv.py b/Ch01/listing01-06-sensors_argv.py new file mode 100644 index 0000000..9f17b4e --- /dev/null +++ b/Ch01/listing01-06-sensors_argv.py @@ -0,0 +1,63 @@ +#!/usr/bin/env python +# coding: utf-8 + +import psutil + +import sys + + +HELP_TEXT = """usage: python {program_name:s} + +Displays the values of the sensors + +Options and arguments: +--help: Display this message""" + + +def python_version(): + return sys.version_info + + +def ip_addresses(): + hostname = socket.gethostname() + addresses = socket.getaddrinfo(socket.gethostname(), None) + + address_info = [] + for address in addresses: + address_info.append((address[0].name, address[4][0])) + return address_info + + +def cpu_load(): + return psutil.cpu_percent(interval=0.1) + + +def ram_available(): + return psutil.virtual_memory().available + + +def ac_connected(): + return psutil.sensors_battery().power_plugged + + +def show_sensors(): + print("Python version: {}".format(python_version())) + for address in ip_addresses(): + print("IP addresses: {0[1]} ({0[0]})".format(address)) + print("CPU Load: {}".format(cpu_load())) + print("RAM Available: {}".format(ram_available())) + print("AC Connected: {}".format(ac_connected())) + + +def command_line(argv): + program_name, *arguments = argv + if not arguments: + show_sensors() + elif arguments and arguments[0] == '--help': + print(HELP_TEXT.format(program_name=program_name)) + return + else: + raise ValueError("Unknown arguments {}".format(arguments)) + +if __name__ == '__main__': + command_line(sys.argv) \ No newline at end of file diff --git a/Ch01/listing01-07-sensors_argparse.py b/Ch01/listing01-07-sensors_argparse.py new file mode 100644 index 0000000..185a19d --- /dev/null +++ b/Ch01/listing01-07-sensors_argparse.py @@ -0,0 +1,55 @@ +#!/usr/bin/env python +# coding: utf-8 + +import psutil + +import argparse +import sys + + +def python_version(): + return sys.version_info + + +def ip_addresses(): + hostname = socket.gethostname() + addresses = socket.getaddrinfo(socket.gethostname(), None) + + address_info = [] + for address in addresses: + address_info.append((address[0].name, address[4][0])) + return address_info + + +def cpu_load(): + return psutil.cpu_percent(interval=0.1) + + +def ram_available(): + return psutil.virtual_memory().available + + +def ac_connected(): + return psutil.sensors_battery().power_plugged + + +def show_sensors(): + print("Python version: {}".format(python_version())) + for address in ip_addresses(): + print("IP addresses: {0[1]} ({0[0]})".format(address)) + print("CPU Load: {}".format(cpu_load())) + print("RAM Available: {}".format(ram_available())) + print("AC Connected: {}".format(ac_connected())) + + +def command_line(argv): + parser = argparse.ArgumentParser( + description='Displays the values of the sensors', + add_help=True, + ) + arguments = parser.parse_args() + show_sensors() + + +if __name__ == '__main__': + command_line(sys.argv) \ No newline at end of file diff --git a/Ch01/listing01-08-sensors_click.py b/Ch01/listing01-08-sensors_click.py new file mode 100644 index 0000000..0854e7e --- /dev/null +++ b/Ch01/listing01-08-sensors_click.py @@ -0,0 +1,47 @@ +#!/usr/bin/env python +# coding: utf-8 +import socket +import sys + +import click +import psutil + + +def python_version(): + return sys.version_info + + +def ip_addresses(): + hostname = socket.gethostname() + addresses = socket.getaddrinfo(socket.gethostname(), None) + + address_info = [] + for address in addresses: + address_info.append((address[0].name, address[4][0])) + return address_info + + +def cpu_load(): + return psutil.cpu_percent(interval=0.1) / 100.0 + + +def ram_available(): + return psutil.virtual_memory().available + + +def ac_connected(): + return psutil.sensors_battery().power_plugged + + +@click.command(help="Displays the values of the sensors") +def show_sensors(): + click.echo("Python version: {0.major}.{0.minor}".format(python_version())) + for address in ip_addresses(): + click.echo("IP addresses: {0[1]} ({0[0]})".format(address)) + click.echo("CPU Load: {:.1%}".format(cpu_load())) + click.echo("RAM Available: {:.0f} MiB".format(ram_available() / 1024**2)) + click.echo("AC Connected: {!r}".format(ac_connected())) + + +if __name__ == '__main__': + show_sensors() \ No newline at end of file diff --git a/Ch01/listing01-09-sensors_click_bold.py b/Ch01/listing01-09-sensors_click_bold.py new file mode 100644 index 0000000..43847c7 --- /dev/null +++ b/Ch01/listing01-09-sensors_click_bold.py @@ -0,0 +1,39 @@ +#!/usr/bin/env python +# coding: utf-8 + +import click +import psutil + +import sys + + +def python_version(): + return sys.version_info + + +def cpu_load(): + return psutil.cpu_percent(interval=0.1) / 100.0 + + +def ram_available(): + return psutil.virtual_memory().available + + +def ac_connected(): + return psutil.sensors_battery().power_plugged + + +@click.command(help="Displays the values of the sensors") +def show_sensors(): + click.secho("Python version: ", bold=True, nl=False) + click.echo("{!r}".format(python_version())) + click.secho("CPU Load: ", bold=True, nl=False) + click.echo("{:.1%}".format(cpu_load())) + click.secho("RAM Available: ", bold=True, nl=False) + click.echo("{:d}".format(ram_available())) + click.secho("AC Connected: ", bold=True, nl=False) + click.echo("{!r}".format(ac_connected())) + + +if __name__ == '__main__': + show_sensors() \ No newline at end of file diff --git a/Ch01/listing01-10-final-sensors.py b/Ch01/listing01-10-final-sensors.py new file mode 100644 index 0000000..735d74f --- /dev/null +++ b/Ch01/listing01-10-final-sensors.py @@ -0,0 +1,59 @@ +#!/usr/bin/env python +# coding: utf-8 +import socket +import sys + +import click +import psutil + + +def python_version(): + return sys.version_info + + +def ip_addresses(): + hostname = socket.gethostname() + addresses = socket.getaddrinfo(socket.gethostname(), None) + + address_info = [] + for address in addresses: + address_info.append((address[0].name, address[4][0])) + return address_info + + +def cpu_load(): + return psutil.cpu_percent(interval=0.1) / 100.0 + + +def ram_available(): + return psutil.virtual_memory().available + + +def ac_connected(): + return psutil.sensors_battery().power_plugged + + +def get_relative_humidity(): + try: + from adafruit_dht import DHT11 + from board import D4 + except (ImportError, NotImplementedError): + # No DHT library results in an ImportError. + # Running on an unknown platform results in a NotImplementedError when getting the pin + return None + return DHT11(D4).humidity + + +@click.command(help="Displays the values of the sensors") +def show_sensors(): + click.echo("Python version: {0.major}.{0.minor}".format(python_version())) + for address in ip_addresses(): + click.echo("IP addresses: {0[1]} ({0[0]})".format(address)) + click.echo("CPU Load: {:.1%}".format(cpu_load())) + click.echo("RAM Available: {:.0f} MiB".format(ram_available() / 1024**2)) + click.echo("AC Connected: {!r}".format(ac_connected())) + click.echo("Humidity: {!r}".format(get_relative_humidity())) + + +if __name__ == '__main__': + show_sensors() \ No newline at end of file diff --git a/Ch02/apd.sensors-chapter02-ex01/Pipfile b/Ch02/apd.sensors-chapter02-ex01/Pipfile new file mode 100644 index 0000000..ec57aae --- /dev/null +++ b/Ch02/apd.sensors-chapter02-ex01/Pipfile @@ -0,0 +1,18 @@ +[[source]] +name = "pypi" +url = "https://pypi.org/simple" +verify_ssl = true + +[dev-packages] +ipykernel = "*" +remote-ikernel = "*" +pytest = "*" + +[packages] +psutil = "*" +click = "*" +adafruit-circuitpython-dht = {markers = "'arm' in platform_machine",version = "*"} +sysv-ipc = {markers = "platform_machine == 'armv61' and platform_system == 'Linux'",version = "*"} +numpy = "*" + +[requires] diff --git a/Ch02/apd.sensors-chapter02-ex01/Pipfile.lock b/Ch02/apd.sensors-chapter02-ex01/Pipfile.lock new file mode 100644 index 0000000..c1e13a6 --- /dev/null +++ b/Ch02/apd.sensors-chapter02-ex01/Pipfile.lock @@ -0,0 +1,494 @@ +{ + "_meta": { + "hash": { + "sha256": "a3c95748bc8a1cf82467a168b3dfb2c6f6c7c8937b8d4a3aad3ab7d16029994e" + }, + "pipfile-spec": 6, + "requires": {}, + "sources": [ + { + "name": "pypi", + "url": "https://pypi.org/simple", + "verify_ssl": true + } + ] + }, + "default": { + "adafruit-blinka": { + "hashes": [ + "sha256:b640e06b2fc4a763a82b3051e09105ff60133132cc256e9df2c46684476fc884" + ], + "version": "==1.3.2" + }, + "adafruit-circuitpython-dht": { + "hashes": [ + "sha256:44db93e07b001782c7ed950170a657d6f5cff065393db18b483a2446ce3a6666" + ], + "index": "pypi", + "markers": "'arm' in platform_machine", + "version": "==3.2.3" + }, + "adafruit-platformdetect": { + "hashes": [ + "sha256:4dfa0b7ef08845f30e37674e0c360542fb5da2b1e51264d273b7898c69d8a8b0" + ], + "version": "==1.0.2" + }, + "adafruit-pureio": { + "hashes": [ + "sha256:e65cd929f1d8e109513ed1e457c2742bf4f15349c1a9b7f5b1e04191624d7488" + ], + "version": "==0.2.3" + }, + "click": { + "hashes": [ + "sha256:2335065e6395b9e67ca716de5f7526736bfa6ceead690adf616d925bdc622b13", + "sha256:5b94b49521f6456670fdb30cd82a4eca9412788a93fa6dd6df72c94d5a8ff2d7" + ], + "index": "pypi", + "version": "==7.0" + }, + "numpy": { + "hashes": [ + "sha256:0e2eed77804b2a6a88741f8fcac02c5499bba3953ec9c71e8b217fad4912c56c", + "sha256:1c666f04553ef70fda54adf097dbae7080645435fc273e2397f26bbf1d127bbb", + "sha256:1f46532afa7b2903bfb1b79becca2954c0a04389d19e03dc73f06b039048ac40", + "sha256:315fa1b1dfc16ae0f03f8fd1c55f23fd15368710f641d570236f3d78af55e340", + "sha256:3d5fcea4f5ed40c3280791d54da3ad2ecf896f4c87c877b113576b8280c59441", + "sha256:48241759b99d60aba63b0e590332c600fc4b46ad597c9b0a53f350b871ef0634", + "sha256:4b4f2924b36d857cf302aec369caac61e43500c17eeef0d7baacad1084c0ee84", + "sha256:54fe3b7ed9e7eb928bbc4318f954d133851865f062fa4bbb02ef8940bc67b5d2", + "sha256:5a8f021c70e6206c317974c93eaaf9bc2b56295b6b1cacccf88846e44a1f33fc", + "sha256:754a6be26d938e6ca91942804eb209307b73f806a1721176278a6038869a1686", + "sha256:771147e654e8b95eea1293174a94f34e2e77d5729ad44aefb62fbf8a79747a15", + "sha256:78a6f89da87eeb48014ec652a65c4ffde370c036d780a995edaeb121d3625621", + "sha256:7fde5c2a3a682a9e101e61d97696687ebdba47637611378b4127fe7e47fdf2bf", + "sha256:80d99399c97f646e873dd8ce87c38cfdbb668956bbc39bc1e6cac4b515bba2a0", + "sha256:88a72c1e45a0ae24d1f249a529d9f71fe82e6fa6a3fd61414b829396ec585900", + "sha256:a4f4460877a16ac73302a9c077ca545498d9fe64e6a81398d8e1a67e4695e3df", + "sha256:a61255a765b3ac73ee4b110b28fccfbf758c985677f526c2b4b39c48cc4b509d", + "sha256:ab4896a8c910b9a04c0142871d8800c76c8a2e5ff44763513e1dd9d9631ce897", + "sha256:abbd6b1c2ef6199f4b7ca9f818eb6b31f17b73a6110aadc4e4298c3f00fab24e", + "sha256:b16d88da290334e33ea992c56492326ea3b06233a00a1855414360b77ca72f26", + "sha256:b78a1defedb0e8f6ae1eb55fa6ac74ab42acc4569c3a2eacc2a407ee5d42ebcb", + "sha256:cfef82c43b8b29ca436560d51b2251d5117818a8d1fb74a8384a83c096745dad", + "sha256:d160e57731fcdec2beda807ebcabf39823c47e9409485b5a3a1db3a8c6ce763e" + ], + "index": "pypi", + "version": "==1.16.3" + }, + "psutil": { + "hashes": [ + "sha256:206eb909aa8878101d0eca07f4b31889c748f34ed6820a12eb3168c7aa17478e", + "sha256:649f7ffc02114dced8fbd08afcd021af75f5f5b2311bc0e69e53e8f100fe296f", + "sha256:6ebf2b9c996bb8c7198b385bade468ac8068ad8b78c54a58ff288cd5f61992c7", + "sha256:753c5988edc07da00dafd6d3d279d41f98c62cd4d3a548c4d05741a023b0c2e7", + "sha256:76fb0956d6d50e68e3f22e7cc983acf4e243dc0fcc32fd693d398cb21c928802", + "sha256:828e1c3ca6756c54ac00f1427fdac8b12e21b8a068c3bb9b631a1734cada25ed", + "sha256:a4c62319ec6bf2b3570487dd72d471307ae5495ce3802c1be81b8a22e438b4bc", + "sha256:acba1df9da3983ec3c9c963adaaf530fcb4be0cd400a8294f1ecc2db56499ddd", + "sha256:ef342cb7d9b60e6100364f50c57fa3a77d02ff8665d5b956746ac01901247ac4" + ], + "index": "pypi", + "version": "==5.6.2" + }, + "sysv-ipc": { + "hashes": [ + "sha256:b284e961274c67ed3debfdd8a43f197451c5f100955142bbed380258c6c73e06", + "sha256:b59fbd42c9de27b42fdda69c4aa7556312112dc6ac7246e44cd875cf049e4273", + "sha256:cd70548a92218ede2da499080b31e52f1d7cf60716c5cc7d468ec89e8b73c530" + ], + "index": "pypi", + "markers": "platform_machine == 'armv61' and platform_system == 'Linux'", + "version": "==1.0.0" + } + }, + "develop": { + "atomicwrites": { + "hashes": [ + "sha256:03472c30eb2c5d1ba9227e4c2ca66ab8287fbfbbda3888aa93dc2e28fc6811b4", + "sha256:75a9445bac02d8d058d5e1fe689654ba5a6556a1dfd8ce6ec55a0ed79866cfa6" + ], + "version": "==1.3.0" + }, + "attrs": { + "hashes": [ + "sha256:69c0dbf2ed392de1cb5ec704444b08a5ef81680a61cb899dc08127123af36a79", + "sha256:f0b870f674851ecbfbbbd364d6b5cbdff9dcedbc7f3f5e18a6891057f21fe399" + ], + "version": "==19.1.0" + }, + "backcall": { + "hashes": [ + "sha256:38ecd85be2c1e78f77fd91700c76e14667dc21e2713b63876c0eb901196e01e4", + "sha256:bbbf4b1e5cd2bdb08f915895b51081c041bac22394fdfcfdfbe9f14b77c08bf2" + ], + "version": "==0.1.0" + }, + "bleach": { + "hashes": [ + "sha256:213336e49e102af26d9cde77dd2d0397afabc5a6bf2fed985dc35b5d1e285a16", + "sha256:3fdf7f77adcf649c9911387df51254b813185e32b2c6619f690b593a617e19fa" + ], + "version": "==3.1.0" + }, + "colorama": { + "hashes": [ + "sha256:05eed71e2e327246ad6b38c540c4a3117230b19679b875190486ddd2d721422d", + "sha256:f8ac84de7840f5b9c4e3347b3c1eaa50f7e49c2b07596221daec5edaabbd7c48" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.1" + }, + "decorator": { + "hashes": [ + "sha256:86156361c50488b84a3f148056ea716ca587df2f0de1d34750d35c21312725de", + "sha256:f069f3a01830ca754ba5258fde2278454a0b5b79e0d7f5c13b3b97e57d4acff6" + ], + "version": "==4.4.0" + }, + "defusedxml": { + "hashes": [ + "sha256:6687150770438374ab581bb7a1b327a847dd9c5749e396102de3fad4e8a3ef93", + "sha256:f684034d135af4c6cbb949b8a4d2ed61634515257a67299e5f940fbaa34377f5" + ], + "version": "==0.6.0" + }, + "entrypoints": { + "hashes": [ + "sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19", + "sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451" + ], + "version": "==0.3" + }, + "ipykernel": { + "hashes": [ + "sha256:0aeb7ec277ac42cc2b59ae3d08b10909b2ec161dc6908096210527162b53675d", + "sha256:0fc0bf97920d454102168ec2008620066878848fcfca06c22b669696212e292f" + ], + "index": "pypi", + "version": "==5.1.0" + }, + "ipython": { + "hashes": [ + "sha256:54c5a8aa1eadd269ac210b96923688ccf01ebb2d0f21c18c3c717909583579a8", + "sha256:e840810029224b56cd0d9e7719dc3b39cf84d577f8ac686547c8ba7a06eeab26" + ], + "version": "==7.5.0" + }, + "ipython-genutils": { + "hashes": [ + "sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8", + "sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8" + ], + "version": "==0.2.0" + }, + "jedi": { + "hashes": [ + "sha256:2bb0603e3506f708e792c7f4ad8fc2a7a9d9c2d292a358fbbd58da531695595b", + "sha256:2c6bcd9545c7d6440951b12b44d373479bf18123a401a52025cf98563fbd826c" + ], + "version": "==0.13.3" + }, + "jinja2": { + "hashes": [ + "sha256:065c4f02ebe7f7cf559e49ee5a95fb800a9e4528727aec6f24402a5374c65013", + "sha256:14dd6caf1527abb21f08f86c784eac40853ba93edb79552aa1e4b8aef1b61c7b" + ], + "version": "==2.10.1" + }, + "jsonschema": { + "hashes": [ + "sha256:0c0a81564f181de3212efa2d17de1910f8732fa1b71c42266d983cd74304e20d", + "sha256:a5f6559964a3851f59040d3b961de5e68e70971afb88ba519d27e6a039efff1a" + ], + "version": "==3.0.1" + }, + "jupyter-client": { + "hashes": [ + "sha256:b5f9cb06105c1d2d30719db5ffb3ea67da60919fb68deaefa583deccd8813551", + "sha256:c44411eb1463ed77548bc2d5ec0d744c9b81c4a542d9637c7a52824e2121b987" + ], + "version": "==5.2.4" + }, + "jupyter-core": { + "hashes": [ + "sha256:927d713ffa616ea11972534411544589976b2493fc7e09ad946e010aa7eb9970", + "sha256:ba70754aa680300306c699790128f6fbd8c306ee5927976cbe48adacf240c0b7" + ], + "version": "==4.4.0" + }, + "markupsafe": { + "hashes": [ + "sha256:00bc623926325b26bb9605ae9eae8a215691f33cae5df11ca5424f06f2d1f473", + "sha256:09027a7803a62ca78792ad89403b1b7a73a01c8cb65909cd876f7fcebd79b161", + "sha256:09c4b7f37d6c648cb13f9230d847adf22f8171b1ccc4d5682398e77f40309235", + "sha256:1027c282dad077d0bae18be6794e6b6b8c91d58ed8a8d89a89d59693b9131db5", + "sha256:24982cc2533820871eba85ba648cd53d8623687ff11cbb805be4ff7b4c971aff", + "sha256:29872e92839765e546828bb7754a68c418d927cd064fd4708fab9fe9c8bb116b", + "sha256:43a55c2930bbc139570ac2452adf3d70cdbb3cfe5912c71cdce1c2c6bbd9c5d1", + "sha256:46c99d2de99945ec5cb54f23c8cd5689f6d7177305ebff350a58ce5f8de1669e", + "sha256:500d4957e52ddc3351cabf489e79c91c17f6e0899158447047588650b5e69183", + "sha256:535f6fc4d397c1563d08b88e485c3496cf5784e927af890fb3c3aac7f933ec66", + "sha256:62fe6c95e3ec8a7fad637b7f3d372c15ec1caa01ab47926cfdf7a75b40e0eac1", + "sha256:6dd73240d2af64df90aa7c4e7481e23825ea70af4b4922f8ede5b9e35f78a3b1", + "sha256:717ba8fe3ae9cc0006d7c451f0bb265ee07739daf76355d06366154ee68d221e", + "sha256:79855e1c5b8da654cf486b830bd42c06e8780cea587384cf6545b7d9ac013a0b", + "sha256:7c1699dfe0cf8ff607dbdcc1e9b9af1755371f92a68f706051cc8c37d447c905", + "sha256:88e5fcfb52ee7b911e8bb6d6aa2fd21fbecc674eadd44118a9cc3863f938e735", + "sha256:8defac2f2ccd6805ebf65f5eeb132adcf2ab57aa11fdf4c0dd5169a004710e7d", + "sha256:98c7086708b163d425c67c7a91bad6e466bb99d797aa64f965e9d25c12111a5e", + "sha256:9add70b36c5666a2ed02b43b335fe19002ee5235efd4b8a89bfcf9005bebac0d", + "sha256:9bf40443012702a1d2070043cb6291650a0841ece432556f784f004937f0f32c", + "sha256:ade5e387d2ad0d7ebf59146cc00c8044acbd863725f887353a10df825fc8ae21", + "sha256:b00c1de48212e4cc9603895652c5c410df699856a2853135b3967591e4beebc2", + "sha256:b1282f8c00509d99fef04d8ba936b156d419be841854fe901d8ae224c59f0be5", + "sha256:b2051432115498d3562c084a49bba65d97cf251f5a331c64a12ee7e04dacc51b", + "sha256:ba59edeaa2fc6114428f1637ffff42da1e311e29382d81b339c1817d37ec93c6", + "sha256:c8716a48d94b06bb3b2524c2b77e055fb313aeb4ea620c8dd03a105574ba704f", + "sha256:cd5df75523866410809ca100dc9681e301e3c27567cf498077e8551b6d20e42f", + "sha256:e249096428b3ae81b08327a63a485ad0878de3fb939049038579ac0ef61e17e7" + ], + "version": "==1.1.1" + }, + "mistune": { + "hashes": [ + "sha256:59a3429db53c50b5c6bcc8a07f8848cb00d7dc8bdb431a4ab41920d201d4756e", + "sha256:88a1051873018da288eee8538d476dffe1262495144b33ecb586c4ab266bb8d4" + ], + "version": "==0.8.4" + }, + "more-itertools": { + "hashes": [ + "sha256:2112d2ca570bb7c3e53ea1a35cd5df42bb0fd10c45f0fb97178679c3c03d64c7", + "sha256:c3e4748ba1aad8dba30a4886b0b1a2004f9a863837b8654e7059eebf727afa5a" + ], + "markers": "python_version > '2.7'", + "version": "==7.0.0" + }, + "nbconvert": { + "hashes": [ + "sha256:138381baa41d83584459b5cfecfc38c800ccf1f37d9ddd0bd440783346a4c39c", + "sha256:4a978548d8383f6b2cfca4a3b0543afb77bc7cb5a96e8b424337ab58c12da9bc" + ], + "version": "==5.5.0" + }, + "nbformat": { + "hashes": [ + "sha256:b9a0dbdbd45bb034f4f8893cafd6f652ea08c8c1674ba83f2dc55d3955743b0b", + "sha256:f7494ef0df60766b7cabe0a3651556345a963b74dbc16bc7c18479041170d402" + ], + "version": "==4.4.0" + }, + "notebook": { + "hashes": [ + "sha256:573e0ae650c5d76b18b6e564ba6d21bf321d00847de1d215b418acb64f056eb8", + "sha256:f64fa6624d2323fbef6210a621817d6505a45d0d4a9367f1843b20a38a4666ee" + ], + "version": "==5.7.8" + }, + "pandocfilters": { + "hashes": [ + "sha256:b3dd70e169bb5449e6bc6ff96aea89c5eea8c5f6ab5e207fc2f521a2cf4a0da9" + ], + "version": "==1.4.2" + }, + "parso": { + "hashes": [ + "sha256:17cc2d7a945eb42c3569d4564cdf49bde221bc2b552af3eca9c1aad517dcdd33", + "sha256:2e9574cb12e7112a87253e14e2c380ce312060269d04bd018478a3c92ea9a376" + ], + "version": "==0.4.0" + }, + "pexpect": { + "hashes": [ + "sha256:2094eefdfcf37a1fdbfb9aa090862c1a4878e5c7e0e7e7088bdb511c558e5cd1", + "sha256:9e2c1fd0e6ee3a49b28f95d4b33bc389c89b20af6a1255906e90ff1262ce62eb" + ], + "version": "==4.7.0" + }, + "pickleshare": { + "hashes": [ + "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca", + "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56" + ], + "version": "==0.7.5" + }, + "pluggy": { + "hashes": [ + "sha256:25a1bc1d148c9a640211872b4ff859878d422bccb59c9965e04eed468a0aa180", + "sha256:964cedd2b27c492fbf0b7f58b3284a09cf7f99b0f715941fb24a439b3af1bd1a" + ], + "version": "==0.11.0" + }, + "prometheus-client": { + "hashes": [ + "sha256:1b38b958750f66f208bcd9ab92a633c0c994d8859c831f7abc1f46724fcee490" + ], + "version": "==0.6.0" + }, + "prompt-toolkit": { + "hashes": [ + "sha256:11adf3389a996a6d45cc277580d0d53e8a5afd281d0c9ec71b28e6f121463780", + "sha256:2519ad1d8038fd5fc8e770362237ad0364d16a7650fb5724af6997ed5515e3c1", + "sha256:977c6583ae813a37dc1c2e1b715892461fcbdaa57f6fc62f33a528c4886c8f55" + ], + "version": "==2.0.9" + }, + "ptyprocess": { + "hashes": [ + "sha256:923f299cc5ad920c68f2bc0bc98b75b9f838b93b599941a6b63ddbc2476394c0", + "sha256:d7cc528d76e76342423ca640335bd3633420dc1366f258cb31d05e865ef5ca1f" + ], + "version": "==0.6.0" + }, + "py": { + "hashes": [ + "sha256:64f65755aee5b381cea27766a3a147c3f15b9b6b9ac88676de66ba2ae36793fa", + "sha256:dc639b046a6e2cff5bbe40194ad65936d6ba360b52b3c3fe1d08a82dd50b5e53" + ], + "version": "==1.8.0" + }, + "pygments": { + "hashes": [ + "sha256:31cba6ffb739f099a85e243eff8cb717089fdd3c7300767d9fc34cb8e1b065f5", + "sha256:5ad302949b3c98dd73f8d9fcdc7e9cb592f120e32a18e23efd7f3dc51194472b" + ], + "version": "==2.4.0" + }, + "pyrsistent": { + "hashes": [ + "sha256:16692ee739d42cf5e39cef8d27649a8c1fdb7aa99887098f1460057c5eb75c3a" + ], + "version": "==0.15.2" + }, + "pytest": { + "hashes": [ + "sha256:1a8aa4fa958f8f451ac5441f3ac130d9fc86ea38780dd2715e6d5c5882700b24", + "sha256:b8bf138592384bd4e87338cb0f256bf5f615398a649d4bd83915f0e4047a5ca6" + ], + "index": "pypi", + "version": "==4.5.0" + }, + "python-dateutil": { + "hashes": [ + "sha256:7e6584c74aeed623791615e26efd690f29817a27c73085b78e4bad02493df2fb", + "sha256:c89805f6f4d64db21ed966fda138f8a5ed7a4fdbc1a8ee329ce1b74e3c74da9e" + ], + "version": "==2.8.0" + }, + "pywinpty": { + "hashes": [ + "sha256:0e01321e53a230233358a6d608a1a8bc86c3882cf82769ba3c62ca387dc9cc51", + "sha256:333e0bc5fca8ad9e9a1516ebedb2a65da38dc1f399f8b2ea57d6cccec1ff2cc8", + "sha256:3ca3123aa6340ab31bbf9bd012b92e72f9ec905e4c9ee152cc997403e1778cd3", + "sha256:44a6dddcf2abf402e22f87e2c9a341f7d0b296afbec3d28184c8de4d7f514ee4", + "sha256:53d94d574c3d4da2df5b1c3ae728b8d90e4d33502b0388576bbd4ddeb4de0f77", + "sha256:c3955f162c53dde968f3fc11361658f1d83b683bfe601d4b6f94bb01ea4300bc", + "sha256:cec9894ecb34de3d7b1ca121dd98433035b9f8949b5095e84b103b349231509c", + "sha256:dcd45912e2fe2e6f72cee997a4da6ed1ad2056165a277ce5ec7f7ac98dcdf667", + "sha256:f2bcdd9a2ffd8b223752a971b3d377fb7bfed85f140ec9710f1218d760f2ccb7" + ], + "markers": "os_name == 'nt'", + "version": "==0.5.5" + }, + "pyzmq": { + "hashes": [ + "sha256:1651e52ed91f0736afd6d94ef9f3259b5534ce8beddb054f3d5ca989c4ef7c4f", + "sha256:5ccb9b3d4cd20c000a9b75689d5add8cd3bce67fcbd0f8ae1b59345247d803af", + "sha256:5e120c4cd3872e332fb35d255ad5998ebcee32ace4387b1b337416b6b90436c7", + "sha256:5e2a3707c69a7281a9957f83718815fd74698cba31f6d69f9ed359921f662221", + "sha256:63d51add9af8d0442dc90f916baf98fdc04e3b0a32afec4bfc83f8d85e72959f", + "sha256:65c5a0bdc49e20f7d6b03a661f71e2fda7a99c51270cafe71598146d09810d0d", + "sha256:66828fabe911aa545d919028441a585edb7c9c77969a5fea6722ef6e6ece38ab", + "sha256:7d79427e82d9dad6e9b47c0b3e7ae5f9d489b1601e3a36ea629bb49501a4daf3", + "sha256:824ee5d3078c4eae737ffc500fbf32f2b14e6ec89b26b435b7834febd70120cf", + "sha256:89dc0a83cccec19ff3c62c091e43e66e0183d1e6b4658c16ee4e659518131494", + "sha256:8b319805f6f7c907b101c864c3ca6cefc9db8ce0791356f180b1b644c7347e4c", + "sha256:90facfb379ab47f94b19519c1ecc8ec8d10813b69d9c163117944948bdec5d15", + "sha256:a0a178c7420021fc0730180a914a4b4b3092ce9696ceb8e72d0f60f8ce1655dd", + "sha256:a7a89591ae315baccb8072f216614b3e59aed7385aef4393a6c741783d6ee9cf", + "sha256:ba2578f0ae582452c02ed9fac2dc477b08e80ce05d2c0885becf5fff6651ccb0", + "sha256:c69b0055c55702f5b0b6b354133e8325b9a56dbc80e1be2d240bead253fb9825", + "sha256:ca434e1858fe222380221ddeb81e86f45522773344c9da63c311d17161df5e06", + "sha256:d4b8ecfc3d92f114f04d5c40f60a65e5196198b827503341521dda12d8b14939", + "sha256:d706025c47b09a54f005953ebe206f6d07a22516776faa4f509aaff681cc5468", + "sha256:d8f27e958f8a2c0c8ffd4d8855c3ce8ac3fa1e105f0491ce31729aa2b3229740", + "sha256:dbd264298f76b9060ce537008eb989317ca787c857e23cbd1b3ddf89f190a9b1", + "sha256:e926d66f0df8fdbf03ba20583af0f215e475c667fb033d45fd031c66c63e34c9", + "sha256:efc3bd48237f973a749f7312f68062f1b4ca5c2032a0673ca3ea8e46aa77187b", + "sha256:f59bc782228777cbfe04555707a9c56d269c787ed25d6d28ed9d0fbb41cb1ad2", + "sha256:f8da5322f4ff5f667a0d5a27e871b560c6637153c81e318b35cb012b2a98835c" + ], + "version": "==18.0.1" + }, + "remote-ikernel": { + "hashes": [ + "sha256:740b80a57fa1af40cadef541c5a4eb293675b504092ecf00c57dd2f0011bd840" + ], + "index": "pypi", + "version": "==0.4.6" + }, + "send2trash": { + "hashes": [ + "sha256:60001cc07d707fe247c94f74ca6ac0d3255aabcb930529690897ca2a39db28b2", + "sha256:f1691922577b6fa12821234aeb57599d887c4900b9ca537948d2dac34aea888b" + ], + "version": "==1.5.0" + }, + "six": { + "hashes": [ + "sha256:3350809f0555b11f552448330d0b52d5f24c91a322ea4a15ef22629740f3761c", + "sha256:d16a0141ec1a18405cd4ce8b4613101da75da0e9a7aec5bdd4fa804d0e0eba73" + ], + "version": "==1.12.0" + }, + "terminado": { + "hashes": [ + "sha256:d9d012de63acb8223ac969c17c3043337c2fcfd28f3aea1ee429b345d01ef460", + "sha256:de08e141f83c3a0798b050ecb097ab6259c3f0331b2f7b7750c9075ced2c20c2" + ], + "version": "==0.8.2" + }, + "testpath": { + "hashes": [ + "sha256:46c89ebb683f473ffe2aab0ed9f12581d4d078308a3cb3765d79c6b2317b0109", + "sha256:b694b3d9288dbd81685c5d2e7140b81365d46c29f5db4bc659de5aa6b98780f8" + ], + "version": "==0.4.2" + }, + "tornado": { + "hashes": [ + "sha256:1174dcb84d08887b55defb2cda1986faeeea715fff189ef3dc44cce99f5fca6b", + "sha256:2613fab506bd2aedb3722c8c64c17f8f74f4070afed6eea17f20b2115e445aec", + "sha256:44b82bc1146a24e5b9853d04c142576b4e8fa7a92f2e30bc364a85d1f75c4de2", + "sha256:457fcbee4df737d2defc181b9073758d73f54a6cfc1f280533ff48831b39f4a8", + "sha256:49603e1a6e24104961497ad0c07c799aec1caac7400a6762b687e74c8206677d", + "sha256:8c2f40b99a8153893793559919a355d7b74649a11e59f411b0b0a1793e160bc0", + "sha256:e1d897889c3b5a829426b7d52828fb37b28bc181cd598624e65c8be40ee3f7fa" + ], + "version": "==6.0.2" + }, + "traitlets": { + "hashes": [ + "sha256:9c4bd2d267b7153df9152698efb1050a5d84982d3384a37b2c1f7723ba3e7835", + "sha256:c6cb5e6f57c5a9bdaa40fa71ce7b4af30298fbab9ece9815b5d995ab6217c7d9" + ], + "version": "==4.3.2" + }, + "wcwidth": { + "hashes": [ + "sha256:3df37372226d6e63e1b1e1eda15c594bca98a22d33a23832a90998faa96bc65e", + "sha256:f4ebe71925af7b40a864553f761ed559b43544f8f71746c2d756c7fe788ade7c" + ], + "version": "==0.1.7" + }, + "webencodings": { + "hashes": [ + "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", + "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923" + ], + "version": "==0.5.1" + } + } +} diff --git a/Ch02/apd.sensors-chapter02-ex01/sensors.py b/Ch02/apd.sensors-chapter02-ex01/sensors.py new file mode 100644 index 0000000..5c471fe --- /dev/null +++ b/Ch02/apd.sensors-chapter02-ex01/sensors.py @@ -0,0 +1,59 @@ +#!/usr/bin/env python +# coding: utf-8 +import socket +import sys + +import click +import psutil + + +def python_version(): + return sys.version_info + + +def ip_addresses(): + hostname = socket.gethostname() + addresses = socket.getaddrinfo(socket.gethostname(), None) + + address_info = [] + for address in addresses: + address_info.append((address[0].name, address[4][0])) + return address_info + + +def cpu_load(): + return psutil.cpu_percent(interval=0.1) / 100.0 + + +def ram_available(): + return psutil.virtual_memory().available + + +def ac_connected(): + return psutil.sensors_battery().power_plugged + + +def get_relative_humidity(): + try: + from adafruit_dht import DHT11 + from board import D4 + except (ImportError, NotImplementedError): + # No DHT library results in an ImportError. + # Running on an unknown platform results in a NotImplementedError when getting the pin + return None + return DHT11(D4).humidity + + +@click.command()#help="Displays the values of the sensors") +def show_sensors(): + click.echo("Python version: {0.major}.{0.minor}".format(python_version())) + for address in ip_addresses(): + click.echo("IP addresses: {0[1]} ({0[0]})".format(address)) + click.echo("CPU Load: {:.1%}".format(cpu_load())) + click.echo("RAM Available: {:.0f} MiB".format(ram_available() / 1024**2)) + click.echo("AC Connected: {!r}".format(ac_connected())) + click.echo("Humidity: {!r}".format(get_relative_humidity())) + + +if __name__ == '__main__': + show_sensors() \ No newline at end of file diff --git a/Ch02/apd.sensors-chapter02-ex01/tests/__init__.py b/Ch02/apd.sensors-chapter02-ex01/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/Ch02/apd.sensors-chapter02-ex01/tests/test_sensors.py b/Ch02/apd.sensors-chapter02-ex01/tests/test_sensors.py new file mode 100644 index 0000000..25ec9b3 --- /dev/null +++ b/Ch02/apd.sensors-chapter02-ex01/tests/test_sensors.py @@ -0,0 +1,4 @@ +import sensors + +def test_sensors(): + assert hasattr(sensors, 'python_version') \ No newline at end of file diff --git a/Ch02/apd.sensors-chapter02-pyi/.pre-commit-config.yaml b/Ch02/apd.sensors-chapter02-pyi/.pre-commit-config.yaml new file mode 100644 index 0000000..3ff6d15 --- /dev/null +++ b/Ch02/apd.sensors-chapter02-pyi/.pre-commit-config.yaml @@ -0,0 +1,23 @@ +repos: + +- repo: local + hooks: + - id: black + name: black + entry: pipenv run black + args: [--quiet] + language: system + types: [python] + + - id: mypy + name: mypy + entry: pipenv run mypy + args: ["--follow-imports=skip"] + language: system + types: [python] + + - id: flake8 + name: flake8 + entry: pipenv run flake8 + language: system + types: [python] diff --git a/Ch02/apd.sensors-chapter02-pyi/Pipfile b/Ch02/apd.sensors-chapter02-pyi/Pipfile new file mode 100644 index 0000000..c35d39c --- /dev/null +++ b/Ch02/apd.sensors-chapter02-pyi/Pipfile @@ -0,0 +1,29 @@ +[[source]] +name = "pypi" +url = "https://pypi.org/simple" +verify_ssl = true + +[[source]] +name = "pypi" +url = "https://piwheels.org/simple" +verify_ssl = true + +[dev-packages] +ipykernel = "*" +remote-ikernel = "*" +pytest = "*" +pytest-cov = "*" +mypy = "*" +flake8 = "*" +black = "*" +pre-commit = "*" + +[packages] +psutil = "*" +click = "*" +adafruit-circuitpython-dht = {markers = "'arm' in platform_machine",version = "*"} + +[requires] + +[pipenv] +allow_prereleases = true diff --git a/Ch02/apd.sensors-chapter02-pyi/Pipfile.lock b/Ch02/apd.sensors-chapter02-pyi/Pipfile.lock new file mode 100644 index 0000000..ff7db13 --- /dev/null +++ b/Ch02/apd.sensors-chapter02-pyi/Pipfile.lock @@ -0,0 +1,866 @@ +{ + "_meta": { + "hash": { + "sha256": "9bc7427fda5ec4bf8a1344d4f47036d9af341544ccce6f12273046f922d95df2" + }, + "pipfile-spec": 6, + "requires": {}, + "sources": [ + { + "name": "pypi", + "url": "https://pypi.org/simple", + "verify_ssl": true + }, + { + "name": "pypi", + "url": "https://piwheels.org/simple", + "verify_ssl": true + } + ] + }, + "default": { + "adafruit-blinka": { + "hashes": [ + "sha256:375a71854a52779a760c5b2f53f626c9217b523b77ac1c4648ee81c606ce4eec", + "sha256:dbd25293944e118bec49ef0763b51cda8445b7a8cb49e8d39934f01551820cc5" + ], + "version": "==4.2.0" + }, + "adafruit-circuitpython-dht": { + "hashes": [ + "sha256:454b506bab88a009ea19aa1ea00338dffe1d48fb42ab2c3e03948bf337a5542c", + "sha256:5f9307fbfad64221ba1a4e7b34ecbf26326a5d77a856482361bef70c251df55d" + ], + "index": "pypi", + "markers": "'arm' in platform_machine", + "version": "==3.3.0" + }, + "adafruit-platformdetect": { + "hashes": [ + "sha256:917f431371f94a60391e881fe1af3731a225b188e0c0157ebc69b877f1fd0a2a", + "sha256:bf446f8365cdf0a87d4bf6620e70bd59da99b0523c2111f0dc74a1155236ff61" + ], + "version": "==2.5.0" + }, + "adafruit-pureio": { + "hashes": [ + "sha256:013ebe6119eaaa0d39716ea5fbfad4fcbada7c88eaebcc7d6615f9df44e53b8c", + "sha256:b67587ed3c4dc90bd0e9b988587efa66b4466abf71eb0dcbcd4695e7e4350326" + ], + "version": "==1.0.4" + }, + "click": { + "hashes": [ + "sha256:8a18b4ea89d8820c5d0c7da8a64b2c324b4dabb695804dbfea19b9be9d88c0cc", + "sha256:e345d143d80bf5ee7534056164e5e112ea5e22716bbb1ce727941f4c8b471b9a" + ], + "index": "pypi", + "version": "==7.1.1" + }, + "psutil": { + "hashes": [ + "sha256:002bd856770037221256765a472f50d677074ad207276a39e2bccdb7394e333b", + "sha256:1413f4158eb50e110777c4f15d7c759521703bd6beb58926f1d562da40180058", + "sha256:298af2f14b635c3c7118fd9183843f4e73e681bb6f01e12284d4d70d48a60953", + "sha256:60b86f327c198561f101a92be1995f9ae0399736b6eced8f24af41ec64fb88d4", + "sha256:685ec16ca14d079455892f25bd124df26ff9137664af445563c1bd36629b5e0e", + "sha256:73f35ab66c6c7a9ce82ba44b1e9b1050be2a80cd4dcc3352cc108656b115c74f", + "sha256:75e22717d4dbc7ca529ec5063000b2b294fc9a367f9c9ede1f65846c7955fd38", + "sha256:833b2b19c04fc0aecad22daa3e35108d6ee2e4f92061a4a8f2dd77c6fa9154f5", + "sha256:a02f4ac50d4a23253b68233b07e7cdb567bd025b982d5cf0ee78296990c22d9e", + "sha256:d008ddc00c6906ec80040d26dc2d3e3962109e40ad07fd8a12d0284ce5e0e4f8", + "sha256:d84029b190c8a66a946e28b4d3934d2ca1528ec94764b180f7d6ea57b0e75e26", + "sha256:e2d0c5b07c6fe5a87fa27b7855017edb0d52ee73b71e6ee368fae268605cc3f5", + "sha256:f344ca230dd8e8d5eee16827596f1c22ec0876127c28e800d7ae20ed44c4b310", + "sha256:f3e7f183162622eae9fbdee44ff19b226edec68b94ae7cba47f9afcf4c3ec66c" + ], + "index": "pypi", + "version": "==5.7.0" + }, + "pyftdi": { + "hashes": [ + "sha256:51827a876d0ed2b146d66083f7020a4ca1b703fca599da119e3a79009c89549c", + "sha256:a98e683b7e3569814524a4bdd723e8b239072da30366071a9266ab80083f2135", + "sha256:e781c9a4e6ad2ed6830e5b4aa3f1707efb781d3598493f0655c43c97d64afc63" + ], + "version": "==0.48.3" + }, + "pyserial": { + "hashes": [ + "sha256:6e2d401fdee0eab996cf734e67773a0143b932772ca8b42451440cfed942c627", + "sha256:e0770fadba80c31013896c7e6ef703f72e7834965954a78e71a3049488d4d7d8" + ], + "version": "==3.4" + }, + "pyusb": { + "hashes": [ + "sha256:4e9b72cc4a4205ca64fbf1f3fff39a335512166c151ad103e55c8223ac147362", + "sha256:789749b8a9bf3828c55d41df2c3e569739cd1bdbe1517e8d940af9587a711faa" + ], + "version": "==1.0.2" + }, + "rpi-ws281x": { + "hashes": [ + "sha256:185d7ae138a5633cf4cd707c55d7190b34810cc3f5e5682c820ddf1dade20914", + "sha256:265a395410cc7199f779c4209ca3970b7211896b86dbaa4731bdc3569d2e595f", + "sha256:544f09353ccb578452d0478470460d3425f40e8dd7433131a95239daeae83303", + "sha256:bc3a22e55c2a10de5c4dfb23c13dceff66162e77eb7176701f1a0d5ae8b97695", + "sha256:de182acceab047030056e2ab0dd2bd2632f2375f60d9a94cf7e3a8a4033834a0", + "sha256:f35e698e0d4205cb1bc2835b46429235fa22e973c8320d661f16556ceaf0f90b" + ], + "version": "==4.2.3" + }, + "rpi.gpio": { + "hashes": [ + "sha256:5cd2f3c88d0b1e2f4780c905702c0474768c2bc113fb793121c2e117b401ab16", + "sha256:6a4791f41cafc2ee6e4cb70e5bd31fadc66a0cfab29b38df8723a98f6f73ad5a", + "sha256:7424bc6c205466764f30f666c18187a0824077daf20b295c42f08aea2cb87d3f", + "sha256:7da5235aeba20da39ad4fb97f3ba3a2c6b2d60bba8958b00a4df42f608c6d42e" + ], + "version": "==0.7.0" + } + }, + "develop": { + "appdirs": { + "hashes": [ + "sha256:9e5896d1372858f8dd3344faf4e5014d21849c756c8d5701f78f8a103b372d92", + "sha256:d8b24664561d0d34ddfaec54636d502d7cea6e29c3eaf68f3df6180863e2166e" + ], + "version": "==1.4.3" + }, + "atomicwrites": { + "hashes": [ + "sha256:03472c30eb2c5d1ba9227e4c2ca66ab8287fbfbbda3888aa93dc2e28fc6811b4", + "sha256:75a9445bac02d8d058d5e1fe689654ba5a6556a1dfd8ce6ec55a0ed79866cfa6" + ], + "markers": "sys_platform == 'win32'", + "version": "==1.3.0" + }, + "attrs": { + "hashes": [ + "sha256:08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c", + "sha256:f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72" + ], + "version": "==19.3.0" + }, + "backcall": { + "hashes": [ + "sha256:1fac21e6861f538700a5d498620153f38407a4bacf9e1d5047b3d717f10bc4ab", + "sha256:38ecd85be2c1e78f77fd91700c76e14667dc21e2713b63876c0eb901196e01e4", + "sha256:bbbf4b1e5cd2bdb08f915895b51081c041bac22394fdfcfdfbe9f14b77c08bf2" + ], + "version": "==0.1.0" + }, + "black": { + "hashes": [ + "sha256:1b30e59be925fafc1ee4565e5e08abef6b03fe455102883820fe5ee2e4734e0b", + "sha256:c2edb73a08e9e0e6f65a0e6af18b059b8b1cdd5bef997d7a0b181df93dc81539" + ], + "index": "pypi", + "version": "==19.10b0" + }, + "bleach": { + "hashes": [ + "sha256:cc8da25076a1fe56c3ac63671e2194458e0c4d9c7becfd52ca251650d517903c", + "sha256:e78e426105ac07026ba098f04de8abe9b6e3e98b5befbf89b51a5ef0a4292b03" + ], + "version": "==3.1.4" + }, + "cfgv": { + "hashes": [ + "sha256:1ccf53320421aeeb915275a196e23b3b8ae87dea8ac6698b1638001d4a486d53", + "sha256:c8e8f552ffcc6194f4e18dd4f68d9aef0c0d58ae7e7be8c82bee3c5e9edfa513" + ], + "version": "==3.1.0" + }, + "click": { + "hashes": [ + "sha256:8a18b4ea89d8820c5d0c7da8a64b2c324b4dabb695804dbfea19b9be9d88c0cc", + "sha256:e345d143d80bf5ee7534056164e5e112ea5e22716bbb1ce727941f4c8b471b9a" + ], + "index": "pypi", + "version": "==7.1.1" + }, + "colorama": { + "hashes": [ + "sha256:7d73d2a99753107a36ac6b455ee49046802e59d9d076ef8e47b61499fa29afff", + "sha256:e96da0d330793e2cb9485e9ddfd918d456036c7149416295932478192f4436a1" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.3" + }, + "coverage": { + "hashes": [ + "sha256:03f630aba2b9b0d69871c2e8d23a69b7fe94a1e2f5f10df5049c0df99db639a0", + "sha256:046a1a742e66d065d16fb564a26c2a15867f17695e7f3d358d7b1ad8a61bca30", + "sha256:0a907199566269e1cfa304325cc3b45c72ae341fbb3253ddde19fa820ded7a8b", + "sha256:165a48268bfb5a77e2d9dbb80de7ea917332a79c7adb747bd005b3a07ff8caf0", + "sha256:1b60a95fc995649464e0cd48cecc8288bac5f4198f21d04b8229dc4097d76823", + "sha256:1f66cf263ec77af5b8fe14ef14c5e46e2eb4a795ac495ad7c03adc72ae43fafe", + "sha256:2e08c32cbede4a29e2a701822291ae2bc9b5220a971bba9d1e7615312efd3037", + "sha256:327ff84602ee3b5c0c921ff8bbe605e2dd3599fc2a12620b0085f847af4ebb2a", + "sha256:3844c3dab800ca8536f75ae89f3cf566848a3eb2af4d9f7b1103b4f4f7a5dad6", + "sha256:408ce64078398b2ee2ec08199ea3fcf382828d2f8a19c5a5ba2946fe5ddc6c31", + "sha256:443be7602c790960b9514567917af538cac7807a7c0c0727c4d2bbd4014920fd", + "sha256:4482f69e0701139d0f2c44f3c395d1d1d37abd81bfafbf9b6efbe2542679d892", + "sha256:4a8a259bf990044351baf69d3b23e575699dd60b18460c71e81dc565f5819ac1", + "sha256:513e6526e0082c59a984448f4104c9bf346c2da9961779ede1fc458e8e8a1f78", + "sha256:5f587dfd83cb669933186661a351ad6fc7166273bc3e3a1531ec5c783d997aac", + "sha256:62061e87071497951155cbccee487980524d7abea647a1b2a6eb6b9647df9006", + "sha256:641e329e7f2c01531c45c687efcec8aeca2a78a4ff26d49184dce3d53fc35014", + "sha256:65a7e00c00472cd0f59ae09d2fb8a8aaae7f4a0cf54b2b74f3138d9f9ceb9cb2", + "sha256:6ad6ca45e9e92c05295f638e78cd42bfaaf8ee07878c9ed73e93190b26c125f7", + "sha256:73aa6e86034dad9f00f4bbf5a666a889d17d79db73bc5af04abd6c20a014d9c8", + "sha256:7c9762f80a25d8d0e4ab3cb1af5d9dffbddb3ee5d21c43e3474c84bf5ff941f7", + "sha256:85596aa5d9aac1bf39fe39d9fa1051b0f00823982a1de5766e35d495b4a36ca9", + "sha256:86a0ea78fd851b313b2e712266f663e13b6bc78c2fb260b079e8b67d970474b1", + "sha256:8a620767b8209f3446197c0e29ba895d75a1e272a36af0786ec70fe7834e4307", + "sha256:922fb9ef2c67c3ab20e22948dcfd783397e4c043a5c5fa5ff5e9df5529074b0a", + "sha256:9fad78c13e71546a76c2f8789623eec8e499f8d2d799f4b4547162ce0a4df435", + "sha256:a37c6233b28e5bc340054cf6170e7090a4e85069513320275a4dc929144dccf0", + "sha256:c3fc325ce4cbf902d05a80daa47b645d07e796a80682c1c5800d6ac5045193e5", + "sha256:cda33311cb9fb9323958a69499a667bd728a39a7aa4718d7622597a44c4f1441", + "sha256:db1d4e38c9b15be1521722e946ee24f6db95b189d1447fa9ff18dd16ba89f732", + "sha256:eda55e6e9ea258f5e4add23bcf33dc53b2c319e70806e180aecbff8d90ea24de", + "sha256:f0db0dc803e0f81f2a4098d4f25904f41be13b6d3e69f098b5b2bbba17cb7985", + "sha256:f372cdbb240e09ee855735b9d85e7f50730dcfb6296b74b95a3e5dea0615c4c1" + ], + "version": "==5.0.4" + }, + "decorator": { + "hashes": [ + "sha256:41fa54c2a0cc4ba648be4fd43cff00aedf5b9465c9bf18d64325bc225f08f760", + "sha256:e3a62f0520172440ca0dcc823749319382e377f37f140a0b99ef45fecb84bfe7" + ], + "version": "==4.4.2" + }, + "defusedxml": { + "hashes": [ + "sha256:6687150770438374ab581bb7a1b327a847dd9c5749e396102de3fad4e8a3ef93", + "sha256:f684034d135af4c6cbb949b8a4d2ed61634515257a67299e5f940fbaa34377f5" + ], + "version": "==0.6.0" + }, + "distlib": { + "hashes": [ + "sha256:2e166e231a26b36d6dfe35a48c4464346620f8645ed0ace01ee31822b288de21", + "sha256:8a041060c5a140131768a2e2450813f5577f7e4c68a4585824c5585502dcfbea" + ], + "version": "==0.3.0" + }, + "entrypoints": { + "hashes": [ + "sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19", + "sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451" + ], + "version": "==0.3" + }, + "filelock": { + "hashes": [ + "sha256:18d82244ee114f543149c66a6e0c14e9c4f8a1044b5cdaadd0f82159d6a6ff59", + "sha256:929b7d63ec5b7d6b71b0fa5ac14e030b3f70b75747cef1b10da9b879fef15836" + ], + "version": "==3.0.12" + }, + "flake8": { + "hashes": [ + "sha256:45681a117ecc81e870cbf1262835ae4af5e7a8b08e40b944a8a6e6b895914cfb", + "sha256:49356e766643ad15072a789a20915d3c91dc89fd313ccd71802303fd67e4deca" + ], + "index": "pypi", + "version": "==3.7.9" + }, + "identify": { + "hashes": [ + "sha256:a7577a1f55cee1d21953a5cf11a3c839ab87f5ef909a4cba6cf52ed72b4c6059", + "sha256:ab246293e6585a1c6361a505b68d5b501a0409310932b7de2c2ead667b564d89" + ], + "version": "==1.4.13" + }, + "importlib-metadata": { + "hashes": [ + "sha256:2a688cbaa90e0cc587f1df48bdc97a6eadccdcd9c35fb3f976a09e3b5016d90f", + "sha256:34513a8a0c4962bc66d35b359558fd8a5e10cd472d37aec5f66858addef32c1e" + ], + "markers": "python_version < '3.8'", + "version": "==1.6.0" + }, + "ipykernel": { + "hashes": [ + "sha256:08997a27ccafbb998437d167ccc893666c6088ec3aa90c054bfb3d588bb3fc20", + "sha256:37c65d2e2da3326e5cf114405df6d47d997b8a3eba99e2cc4b75833bf71a5e18", + "sha256:39746b5f7d847a23fae4eac893e63e3d9cc5f8c3a4797fcd3bfa8d1a296ec6ed" + ], + "index": "pypi", + "version": "==5.2.0" + }, + "ipython": { + "hashes": [ + "sha256:1807adeae64502fcaa491cd93405644faa055b646efb40c1e48648ad66f65a75", + "sha256:ca478e52ae1f88da0102360e57e528b92f3ae4316aabac80a2cd7f7ab2efb48a", + "sha256:eb8d075de37f678424527b5ef6ea23f7b80240ca031c2dd6de5879d687a65333" + ], + "version": "==7.13.0" + }, + "ipython-genutils": { + "hashes": [ + "sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8", + "sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8" + ], + "version": "==0.2.0" + }, + "jedi": { + "hashes": [ + "sha256:b4f4052551025c6b0b0b193b29a6ff7bdb74c52450631206c262aef9f7159ad2", + "sha256:d5c871cb9360b414f981e7072c52c33258d598305280fef91c6cae34739d65d5" + ], + "version": "==0.16.0" + }, + "jinja2": { + "hashes": [ + "sha256:39cbce1ffc25cbf4860b09195654763be95b9e4900475b24d5c345d3e0948c53", + "sha256:c10142f819c2d22bdcd17548c46fa9b77cf4fda45097854c689666bf425e7484", + "sha256:c922560ac46888d47384de1dbdc3daaa2ea993af4b26a436dec31fa2c19ec668" + ], + "version": "==3.0.0a1" + }, + "jsonschema": { + "hashes": [ + "sha256:4e5b3cf8216f577bee9ce139cbe72eca3ea4f292ec60928ff24758ce626cd163", + "sha256:c8a85b28d377cc7737e46e2d9f2b4f44ee3c0e1deac6bf46ddefc7187d30797a" + ], + "version": "==3.2.0" + }, + "jupyter-client": { + "hashes": [ + "sha256:5724827aedb1948ed6ed15131372bc304a8d3ad9ac67ac19da7c95120d6b17e0", + "sha256:81c1c712de383bf6bf3dab6b407392b0d84d814c7bd0ce2c7035ead8b2ffea97" + ], + "version": "==6.1.2" + }, + "jupyter-core": { + "hashes": [ + "sha256:394fd5dd787e7c8861741880bdf8a00ce39f95de5d18e579c74b882522219e7e", + "sha256:a4ee613c060fe5697d913416fc9d553599c05e4492d58fac1192c9a6844abb21" + ], + "version": "==4.6.3" + }, + "jupyterlab-pygments": { + "hashes": [ + "sha256:31deda75bd11b014190764c79f6199aa04ef2d4cf35c1c94270fc2e19c23a5c5", + "sha256:cc15f2a9850899d108a3c22743a86edcd3b42791a6c88b6e5b558d021d14d065" + ], + "version": "==0.1.0" + }, + "markupsafe": { + "hashes": [ + "sha256:00bc623926325b26bb9605ae9eae8a215691f33cae5df11ca5424f06f2d1f473", + "sha256:09027a7803a62ca78792ad89403b1b7a73a01c8cb65909cd876f7fcebd79b161", + "sha256:09c4b7f37d6c648cb13f9230d847adf22f8171b1ccc4d5682398e77f40309235", + "sha256:1027c282dad077d0bae18be6794e6b6b8c91d58ed8a8d89a89d59693b9131db5", + "sha256:13d3144e1e340870b25e7b10b98d779608c02016d5184cfb9927a9f10c689f42", + "sha256:19536834abffb3fa155017053c607cb835b2ecc6a3a2554a88043d991dffb736", + "sha256:24982cc2533820871eba85ba648cd53d8623687ff11cbb805be4ff7b4c971aff", + "sha256:29872e92839765e546828bb7754a68c418d927cd064fd4708fab9fe9c8bb116b", + "sha256:3d61f15e39611aacd91b7e71d903787da86d9e80896e683c0103fced9add7834", + "sha256:43a55c2930bbc139570ac2452adf3d70cdbb3cfe5912c71cdce1c2c6bbd9c5d1", + "sha256:46c99d2de99945ec5cb54f23c8cd5689f6d7177305ebff350a58ce5f8de1669e", + "sha256:500d4957e52ddc3351cabf489e79c91c17f6e0899158447047588650b5e69183", + "sha256:535f6fc4d397c1563d08b88e485c3496cf5784e927af890fb3c3aac7f933ec66", + "sha256:596510de112c685489095da617b5bcbbac7dd6384aeebeda4df6025d0256a81b", + "sha256:62fe6c95e3ec8a7fad637b7f3d372c15ec1caa01ab47926cfdf7a75b40e0eac1", + "sha256:6788b695d50a51edb699cb55e35487e430fa21f1ed838122d722e0ff0ac5ba15", + "sha256:6dd73240d2af64df90aa7c4e7481e23825ea70af4b4922f8ede5b9e35f78a3b1", + "sha256:717ba8fe3ae9cc0006d7c451f0bb265ee07739daf76355d06366154ee68d221e", + "sha256:7952deddf24b85c88dab48f6ec366ac6e39d2761b5280f2f9594911e03fcd064", + "sha256:79855e1c5b8da654cf486b830bd42c06e8780cea587384cf6545b7d9ac013a0b", + "sha256:7c1699dfe0cf8ff607dbdcc1e9b9af1755371f92a68f706051cc8c37d447c905", + "sha256:88e5fcfb52ee7b911e8bb6d6aa2fd21fbecc674eadd44118a9cc3863f938e735", + "sha256:8defac2f2ccd6805ebf65f5eeb132adcf2ab57aa11fdf4c0dd5169a004710e7d", + "sha256:98c7086708b163d425c67c7a91bad6e466bb99d797aa64f965e9d25c12111a5e", + "sha256:9add70b36c5666a2ed02b43b335fe19002ee5235efd4b8a89bfcf9005bebac0d", + "sha256:9bf40443012702a1d2070043cb6291650a0841ece432556f784f004937f0f32c", + "sha256:ade5e387d2ad0d7ebf59146cc00c8044acbd863725f887353a10df825fc8ae21", + "sha256:b00c1de48212e4cc9603895652c5c410df699856a2853135b3967591e4beebc2", + "sha256:b1282f8c00509d99fef04d8ba936b156d419be841854fe901d8ae224c59f0be5", + "sha256:b2051432115498d3562c084a49bba65d97cf251f5a331c64a12ee7e04dacc51b", + "sha256:ba59edeaa2fc6114428f1637ffff42da1e311e29382d81b339c1817d37ec93c6", + "sha256:c8716a48d94b06bb3b2524c2b77e055fb313aeb4ea620c8dd03a105574ba704f", + "sha256:cd5df75523866410809ca100dc9681e301e3c27567cf498077e8551b6d20e42f", + "sha256:cdb132fc825c38e1aeec2c8aa9338310d29d337bebbd7baa06889d09a60a1fa2", + "sha256:e249096428b3ae81b08327a63a485ad0878de3fb939049038579ac0ef61e17e7", + "sha256:e8313f01ba26fbbe36c7be1966a7b7424942f670f38e666995b88d012765b9be" + ], + "version": "==1.1.1" + }, + "mccabe": { + "hashes": [ + "sha256:ab8a6258860da4b6677da4bd2fe5dc2c659cff31b3ee4f7f5d64e79735b80d42", + "sha256:dd8d182285a0fe56bace7f45b5e7d1a6ebcbf524e8f3bd87eb0f125271b8831f" + ], + "version": "==0.6.1" + }, + "mistune": { + "hashes": [ + "sha256:59a3429db53c50b5c6bcc8a07f8848cb00d7dc8bdb431a4ab41920d201d4756e", + "sha256:88a1051873018da288eee8538d476dffe1262495144b33ecb586c4ab266bb8d4" + ], + "version": "==0.8.4" + }, + "more-itertools": { + "hashes": [ + "sha256:5dd8bcf33e5f9513ffa06d5ad33d78f31e1931ac9a18f33d37e77a180d393a7c", + "sha256:b1ddb932186d8a6ac451e1d95844b382f55e12686d51ca0c68b6f61f2ab7a507" + ], + "version": "==8.2.0" + }, + "mypy": { + "hashes": [ + "sha256:15b948e1302682e3682f11f50208b726a246ab4e6c1b39f9264a8796bb416aa2", + "sha256:219a3116ecd015f8dca7b5d2c366c973509dfb9a8fc97ef044a36e3da66144a1", + "sha256:3b1fc683fb204c6b4403a1ef23f0b1fac8e4477091585e0c8c54cbdf7d7bb164", + "sha256:3beff56b453b6ef94ecb2996bea101a08f1f8a9771d3cbf4988a61e4d9973761", + "sha256:7687f6455ec3ed7649d1ae574136835a4272b65b3ddcf01ab8704ac65616c5ce", + "sha256:7ec45a70d40ede1ec7ad7f95b3c94c9cf4c186a32f6bacb1795b60abd2f9ef27", + "sha256:86c857510a9b7c3104cf4cde1568f4921762c8f9842e987bc03ed4f160925754", + "sha256:8a627507ef9b307b46a1fea9513d5c98680ba09591253082b4c48697ba05a4ae", + "sha256:8dfb69fbf9f3aeed18afffb15e319ca7f8da9642336348ddd6cab2713ddcf8f9", + "sha256:a34b577cdf6313bf24755f7a0e3f3c326d5c1f4fe7422d1d06498eb25ad0c600", + "sha256:a8ffcd53cb5dfc131850851cc09f1c44689c2812d0beb954d8138d4f5fc17f65", + "sha256:b90928f2d9eb2f33162405f32dde9f6dcead63a0971ca8a1b50eb4ca3e35ceb8", + "sha256:c56ffe22faa2e51054c5f7a3bc70a370939c2ed4de308c690e7949230c995913", + "sha256:f91c7ae919bbc3f96cd5e5b2e786b2b108343d1d7972ea130f7de27fdd547cf3" + ], + "index": "pypi", + "version": "==0.770" + }, + "mypy-extensions": { + "hashes": [ + "sha256:090fedd75945a69ae91ce1303b5824f428daf5a028d2f6ab8a299250a846f15d", + "sha256:2d82818f5bb3e369420cb3c4060a7970edba416647068eb4c5343488a6c604a8" + ], + "version": "==0.4.3" + }, + "nbconvert": { + "hashes": [ + "sha256:944a5fbe6c4609d74e7f331bfa957c8eff2d53904f7c40f053a44bfb4164b718", + "sha256:c86da6adc412df9ad2726fe438589e4495c7835792d6d84f888178682f5d5bcf" + ], + "version": "==6.0.0a0" + }, + "nbformat": { + "hashes": [ + "sha256:562de41fc7f4f481b79ab5d683279bf3a168858268d4387b489b7b02be0b324a", + "sha256:f4bbbd8089bd346488f00af4ce2efb7f8310a74b2058040d075895429924678c" + ], + "version": "==5.0.4" + }, + "nodeenv": { + "hashes": [ + "sha256:5b2438f2e42af54ca968dd1b374d14a1194848955187b0e5e4be1f73813a5212" + ], + "version": "==1.3.5" + }, + "notebook": { + "hashes": [ + "sha256:3edc616c684214292994a3af05eaea4cc043f6b4247d830f3a2f209fa7639a80", + "sha256:47a9092975c9e7965ada00b9a20f0cf637d001db60d241d479f53c0be117ad48" + ], + "version": "==6.0.3" + }, + "packaging": { + "hashes": [ + "sha256:3c292b474fda1671ec57d46d739d072bfd495a4f51ad01a055121d81e952b7a3", + "sha256:82f77b9bee21c1bafbf35a84905d604d5d1223801d639cf3ed140bd651c08752" + ], + "version": "==20.3" + }, + "pandocfilters": { + "hashes": [ + "sha256:41a309da81cba5509389b19d96b0ee49551cee8165a6406754f2565e95429860", + "sha256:b3dd70e169bb5449e6bc6ff96aea89c5eea8c5f6ab5e207fc2f521a2cf4a0da9" + ], + "version": "==1.4.2" + }, + "parso": { + "hashes": [ + "sha256:0c5659e0c6eba20636f99a04f469798dca8da279645ce5c387315b2c23912157", + "sha256:8515fc12cfca6ee3aa59138741fc5624d62340c97e401c74875769948d4f2995" + ], + "version": "==0.6.2" + }, + "pathspec": { + "hashes": [ + "sha256:163b0632d4e31cef212976cf57b43d9fd6b0bac6e67c26015d611a647d5e7424", + "sha256:562aa70af2e0d434367d9790ad37aed893de47f1693e4201fd1d3dca15d19b96" + ], + "version": "==0.7.0" + }, + "pexpect": { + "hashes": [ + "sha256:0b48a55dcb3c05f3329815901ea4fc1537514d6ba867a152b581d69ae3710937", + "sha256:fc65a43959d153d0114afe13997d439c22823a27cefceb5ff35c2178c6784c0c" + ], + "version": "==4.8.0" + }, + "pickleshare": { + "hashes": [ + "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca", + "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56" + ], + "version": "==0.7.5" + }, + "pluggy": { + "hashes": [ + "sha256:15b2acde666561e1298d71b523007ed7364de07029219b604cf808bfa1c765b0", + "sha256:966c145cd83c96502c3c3868f50408687b38434af77734af1e9ca461a4081d2d" + ], + "version": "==0.13.1" + }, + "pre-commit": { + "hashes": [ + "sha256:487c675916e6f99d355ec5595ad77b325689d423ef4839db1ed2f02f639c9522", + "sha256:9707b4f7069365ffdb57d2782086a9f3019afde2a6e9f85df785c9bf090e1118", + "sha256:c0aa11bce04a7b46c5544723aedf4e81a4d5f64ad1205a30a9ea12d5e81969e1" + ], + "index": "pypi", + "version": "==2.2.0" + }, + "prometheus-client": { + "hashes": [ + "sha256:09b5750fd1c153420dccd35881116e853c730081bea0dbf0ea6649103bcb8445", + "sha256:71cd24a2b3eb335cb800c7159f423df1bd4dcd5171b234be15e3f31ec9f622da" + ], + "version": "==0.7.1" + }, + "prompt-toolkit": { + "hashes": [ + "sha256:563d1a4140b63ff9dd587bda9557cffb2fe73650205ab6f4383092fb882e7dc8", + "sha256:df7e9e63aea609b1da3a65641ceaf5bc7d05e0a04de5bd45d05dbeffbabf9e04" + ], + "version": "==3.0.5" + }, + "ptyprocess": { + "hashes": [ + "sha256:923f299cc5ad920c68f2bc0bc98b75b9f838b93b599941a6b63ddbc2476394c0", + "sha256:d7cc528d76e76342423ca640335bd3633420dc1366f258cb31d05e865ef5ca1f" + ], + "version": "==0.6.0" + }, + "py": { + "hashes": [ + "sha256:5e27081401262157467ad6e7f851b7aa402c5852dbcb3dae06768434de5752aa", + "sha256:c20fdd83a5dbc0af9efd622bee9a5564e278f6380fffcacc43ba6f43db2813b0" + ], + "version": "==1.8.1" + }, + "pycodestyle": { + "hashes": [ + "sha256:95a2219d12372f05704562a14ec30bc76b05a5b297b21a5dfe3f6fac3491ae56", + "sha256:e40a936c9a450ad81df37f549d676d127b1b66000a6c500caa2b085bc0ca976c" + ], + "version": "==2.5.0" + }, + "pyflakes": { + "hashes": [ + "sha256:17dbeb2e3f4d772725c777fabc446d5634d1038f234e77343108ce445ea69ce0", + "sha256:d976835886f8c5b31d47970ed689944a0262b5f3afa00a5a7b4dc81e5449f8a2" + ], + "version": "==2.1.1" + }, + "pygments": { + "hashes": [ + "sha256:647344a061c249a3b74e230c739f434d7ea4d8b1d5f3721bc0f3558049b38f44", + "sha256:aa931c0bd5daa25c475afadb2147115134cfe501f0656828cbe7cb566c7123bc", + "sha256:ff7a40b4860b727ab48fad6360eb351cc1b33cbf9b15a0f689ca5353e9463324" + ], + "version": "==2.6.1" + }, + "pyparsing": { + "hashes": [ + "sha256:4c830582a84fb022400b85429791bc551f1f4871c33f23e44f353119e92f969f", + "sha256:c342dccb5250c08d45fd6f8b4a559613ca603b57498511740e65cd11a2e7dcec" + ], + "version": "==2.4.6" + }, + "pyrsistent": { + "hashes": [ + "sha256:28669905fe725965daa16184933676547c5bb40a5153055a8dee2a4bd7933ad3", + "sha256:3217696df78f9222a3d1179b119c27be346b969a9e4d617de2a215a87d9aa456", + "sha256:9324b762b52e5a901611b25f50f9cdf8789c61ece3ff7c24dc872603c4faca62", + "sha256:c11415790cc5803e173de7d71d54f94c66a9154f81a72ffdf45a70096916f226" + ], + "version": "==0.16.0" + }, + "pytest": { + "hashes": [ + "sha256:0e5b30f5cb04e887b91b1ee519fa3d89049595f428c1db76e73bd7f17b09b172", + "sha256:84dde37075b8805f3d1f392cc47e38a0e59518fb46a431cfdaf7cf1ce805f970" + ], + "index": "pypi", + "version": "==5.4.1" + }, + "pytest-cov": { + "hashes": [ + "sha256:cc6742d8bac45070217169f5f72ceee1e0e55b0221f54bcf24845972d3a47f2b", + "sha256:cdbdef4f870408ebdbfeb44e63e07eb18bb4619fae852f6e760645fa36172626" + ], + "index": "pypi", + "version": "==2.8.1" + }, + "python-dateutil": { + "hashes": [ + "sha256:73ebfe9dbf22e832286dafa60473e4cd239f8592f699aa5adaf10050e6e1823c", + "sha256:75bb3f31ea686f1197762692a9ee6a7550b59fc6ca3a1f4b5d7e32fb98e2da2a" + ], + "version": "==2.8.1" + }, + "pywin32": { + "hashes": [ + "sha256:300a2db938e98c3e7e2093e4491439e62287d0d493fe07cce110db070b54c0be", + "sha256:31f88a89139cb2adc40f8f0e65ee56a8c585f629974f9e07622ba80199057511", + "sha256:371fcc39416d736401f0274dd64c2302728c9e034808e37381b5e1b22be4a6b0", + "sha256:47a3c7551376a865dd8d095a98deba954a98f326c6fe3c72d8726ca6e6b15507", + "sha256:4cdad3e84191194ea6d0dd1b1b9bdda574ff563177d2adf2b4efec2a244fa116", + "sha256:7c1ae32c489dc012930787f06244426f8356e129184a02c25aef163917ce158e", + "sha256:7f18199fbf29ca99dff10e1f09451582ae9e372a892ff03a28528a24d55875bc", + "sha256:9b31e009564fb95db160f154e2aa195ed66bcc4c058ed72850d047141b36f3a2", + "sha256:a929a4af626e530383a579431b70e512e736e9588106715215bf685a3ea508d4", + "sha256:c054c52ba46e7eb6b7d7dfae4dbd987a1bb48ee86debe3f245a2884ece46e295", + "sha256:f27cec5e7f588c3d1051651830ecc00294f90728d19c3bf6916e6dba93ea357c", + "sha256:f4c5be1a293bae0076d93c88f37ee8da68136744588bc5e2be2f299a34ceb7aa" + ], + "markers": "sys_platform == 'win32'", + "version": "==227" + }, + "pywinpty": { + "hashes": [ + "sha256:1e525a4de05e72016a7af27836d512db67d06a015aeaf2fa0180f8e6a039b3c2", + "sha256:2740eeeb59297593a0d3f762269b01d0285c1b829d6827445fcd348fb47f7e70", + "sha256:2d7e9c881638a72ffdca3f5417dd1563b60f603e1b43e5895674c2a1b01f95a0", + "sha256:33df97f79843b2b8b8bc5c7aaf54adec08cc1bae94ee99dfb1a93c7a67704d95", + "sha256:5fb2c6c6819491b216f78acc2c521b9df21e0f53b9a399d58a5c151a3c4e2a2d", + "sha256:8fc5019ff3efb4f13708bd3b5ad327589c1a554cb516d792527361525a7cb78c", + "sha256:b358cb552c0f6baf790de375fab96524a0498c9df83489b8c23f7f08795e966b", + "sha256:dbd838de92de1d4ebf0dce9d4d5e4fc38d0b7b1de837947a18b57a882f219139", + "sha256:dd22c8efacf600730abe4a46c1388355ce0d4ab75dc79b15d23a7bd87bf05b48", + "sha256:e854211df55d107f0edfda8a80b39dfc87015bef52a8fe6594eb379240d81df2" + ], + "markers": "os_name == 'nt'", + "version": "==0.5.7" + }, + "pyyaml": { + "hashes": [ + "sha256:06a0d7ba600ce0b2d2fe2e78453a470b5a6e000a985dd4a4e54e436cc36b0e97", + "sha256:240097ff019d7c70a4922b6869d8a86407758333f02203e0fc6ff79c5dcede76", + "sha256:4f4b913ca1a7319b33cfb1369e91e50354d6f07a135f3b901aca02aa95940bd2", + "sha256:589929630502f3b0e87daee190b399f98401b6bccea87ed634a73fe5da43d3d4", + "sha256:69f00dca373f240f842b2931fb2c7e14ddbacd1397d57157a9b005a6a9942648", + "sha256:6e8383720b2127b09dba5b323ac896c702cf02bc5786fce16cd6791825d92d16", + "sha256:73f099454b799e05e5ab51423c7bcf361c58d3206fa7b0d555426b1f4d9a3eaf", + "sha256:74809a57b329d6cc0fdccee6318f44b9b8649961fa73144a98735b0aaf029f1f", + "sha256:7739fc0fa8205b3ee8808aea45e968bc90082c10aef6ea95e855e10abf4a37b2", + "sha256:95f71d2af0ff4227885f7a6605c37fd53d3a106fcab511b8860ecca9fcf400ee", + "sha256:b8eac752c5e14d3eca0e6dd9199cd627518cb5ec06add0de9d32baeee6fe645d", + "sha256:cc8955cfbfc7a115fa81d85284ee61147059a753344bc51098f3ccd69b0d7e0c", + "sha256:d13155f591e6fcc1ec3b30685d50bf0711574e2c0dfffd7644babf8b5102ca1a" + ], + "version": "==5.3.1" + }, + "pyzmq": { + "hashes": [ + "sha256:07bfbf192f22ef1dde65b6046efff191e3201e74da6d47098e68958469ecbe48", + "sha256:0bbc1728fe4314b4ca46249c33873a390559edac7c217ec7001b5e0c34a8fb7f", + "sha256:1e076ad5bd3638a18c376544d32e0af986ca10d43d4ce5a5d889a8649f0d0a3d", + "sha256:242d949eb6b10197cda1d1cec377deab1d5324983d77e0d0bf9dc5eb6d71a6b4", + "sha256:26f4ae420977d2a8792d7c2d7bda43128b037b5eeb21c81951a94054ad8b8843", + "sha256:32234c21c5e0a767c754181c8112092b3ddd2e2a36c3f76fc231ced817aeee47", + "sha256:3f12ce1e9cc9c31497bd82b207e8e86ccda9eebd8c9f95053aae46d15ccd2196", + "sha256:4557d5e036e6d85715b4b9fdb482081398da1d43dc580d03db642b91605b409f", + "sha256:4f562dab21c03c7aa061f63b147a595dbe1006bf4f03213272fc9f7d5baec791", + "sha256:54ecd00daa474885bbf318108401d318614425a05dfeae917611dd93f99f2678", + "sha256:5e071b834051e9ecb224915398f474bfad802c2fff883f118ff5363ca4ae3edf", + "sha256:5e1f65e576ab07aed83f444e201d86deb01cd27dcf3f37c727bc8729246a60a8", + "sha256:5f10a31f288bf055be76c57710807a8f0efdb2b82be6c2a2b8f9a61f33a40cea", + "sha256:6aaaf90b420dc40d9a0e1996b82c6a0ff91d9680bebe2135e67c9e6d197c0a53", + "sha256:75238d3c16cab96947705d5709187a49ebb844f54354cdf0814d195dd4c045de", + "sha256:7f7e7b24b1d392bb5947ba91c981e7d1a43293113642e0d8870706c8e70cdc71", + "sha256:84b91153102c4bcf5d0f57d1a66a0f03c31e9e6525a5f656f52fc615a675c748", + "sha256:944f6bb5c63140d76494467444fd92bebd8674236837480a3c75b01fe17df1ab", + "sha256:a1f957c20c9f51d43903881399b078cddcf710d34a2950e88bce4e494dcaa4d1", + "sha256:a49fd42a29c1cc1aa9f461c5f2f5e0303adba7c945138b35ee7f4ab675b9f754", + "sha256:a99ae601b4f6917985e9bb071549e30b6f93c72f5060853e197bdc4b7d357e5f", + "sha256:ad48865a29efa8a0cecf266432ea7bc34e319954e55cf104be0319c177e6c8f5", + "sha256:b08e425cf93b4e018ab21dc8fdbc25d7d0502a23cc4fea2380010cf8cf11e462", + "sha256:bb10361293d96aa92be6261fa4d15476bca56203b3a11c62c61bd14df0ef89ba", + "sha256:bd1a769d65257a7a12e2613070ca8155ee348aa9183f2aadf1c8b8552a5510f5", + "sha256:cb3b7156ef6b1a119e68fbe3a54e0a0c40ecacc6b7838d57dd708c90b62a06dc", + "sha256:d2f64994f9628f621e0f636f9532055887defc9fa5213aaeceb770d9c579f9ac", + "sha256:e8e4efb52ec2df8d046395ca4c84ae0056cf507b2f713ec803c65a8102d010de", + "sha256:f37c29da2a5b0c5e31e6f8aab885625ea76c807082f70b2d334d3fd573c3100a", + "sha256:f4d558bc5668d2345773a9ff8c39e2462dafcb1f6772a2e582fbced389ce527f", + "sha256:f5b6d015587a1d6f582ba03b226a9ddb1dfb09878b3be04ef48b01b7d4eb6b2a" + ], + "version": "==19.0.0" + }, + "regex": { + "hashes": [ + "sha256:01b2d70cbaed11f72e57c1cfbaca71b02e3b98f739ce33f5f26f71859ad90431", + "sha256:046e83a8b160aff37e7034139a336b660b01dbfe58706f9d73f5cdc6b3460242", + "sha256:113309e819634f499d0006f6200700c8209a2a8bf6bd1bdc863a4d9d6776a5d1", + "sha256:200539b5124bc4721247a823a47d116a7a23e62cc6695744e3eb5454a8888e6d", + "sha256:25f4ce26b68425b80a233ce7b6218743c71cf7297dbe02feab1d711a2bf90045", + "sha256:269f0c5ff23639316b29f31df199f401e4cb87529eafff0c76828071635d417b", + "sha256:59fd3df28f43adf25a32b4a957f5b0a62e3ff55ce29de6600da7e110f33102dd", + "sha256:5de40649d4f88a15c9489ed37f88f053c15400257eeb18425ac7ed0a4e119400", + "sha256:7f78f963e62a61e294adb6ff5db901b629ef78cb2a1cfce3cf4eeba80c1c67aa", + "sha256:82469a0c1330a4beb3d42568f82dffa32226ced006e0b063719468dcd40ffdf0", + "sha256:8c2b7fa4d72781577ac45ab658da44c7518e6d96e2a50d04ecb0fd8f28b21d69", + "sha256:974535648f31c2b712a6b2595969f8ab370834080e00ab24e5dbb9d19b8bfb74", + "sha256:99272d6b6a68c7ae4391908fc15f6b8c9a6c345a46b632d7fdb7ef6c883a2bbb", + "sha256:9b64a4cc825ec4df262050c17e18f60252cdd94742b4ba1286bcfe481f1c0f26", + "sha256:9e9624440d754733eddbcd4614378c18713d2d9d0dc647cf9c72f64e39671be5", + "sha256:9ff16d994309b26a1cdf666a6309c1ef51ad4f72f99d3392bcd7b7139577a1f2", + "sha256:b33ebcd0222c1d77e61dbcd04a9fd139359bded86803063d3d2d197b796c63ce", + "sha256:bba52d72e16a554d1894a0cc74041da50eea99a8483e591a9edf1025a66843ab", + "sha256:bed7986547ce54d230fd8721aba6fd19459cdc6d315497b98686d0416efaff4e", + "sha256:c7f58a0e0e13fb44623b65b01052dae8e820ed9b8b654bb6296bc9c41f571b70", + "sha256:d3242da581f8d54d5a0f769b4d003f065dc6222621267a056b98f6886dc90f36", + "sha256:d58a4fa7910102500722defbde6e2816b0372a4fcc85c7e239323767c74f5cbc", + "sha256:da22de67d83ee26b45c7b461c96e541f0cda72b76229d95e313666770dd8da41", + "sha256:f1ac2dc65105a53c1c2d72b1d3e98c2464a133b4067a51a3d2477b28449709a0" + ], + "version": "==2020.2.20" + }, + "remote-ikernel": { + "hashes": [ + "sha256:5253216e87a8c31f1b0ca9305454f223147518b580e853b7635a3d8b9c88c295", + "sha256:740b80a57fa1af40cadef541c5a4eb293675b504092ecf00c57dd2f0011bd840" + ], + "index": "pypi", + "version": "==0.4.6" + }, + "send2trash": { + "hashes": [ + "sha256:60001cc07d707fe247c94f74ca6ac0d3255aabcb930529690897ca2a39db28b2", + "sha256:f1691922577b6fa12821234aeb57599d887c4900b9ca537948d2dac34aea888b" + ], + "version": "==1.5.0" + }, + "six": { + "hashes": [ + "sha256:236bdbdce46e6e6a3d61a337c0f8b763ca1e8717c03b369e87a7ec7ce1319c0a", + "sha256:8f3cd2e254d8f793e7f3d6d9df77b92252b52637291d0f0da013c76ea2724b6c" + ], + "version": "==1.14.0" + }, + "terminado": { + "hashes": [ + "sha256:4804a774f802306a7d9af7322193c5390f1da0abb429e082a10ef1d46e6fb2c2", + "sha256:a43dcb3e353bc680dd0783b1d9c3fc28d529f190bc54ba9a229f72fe6e7a54d7" + ], + "version": "==0.8.3" + }, + "testpath": { + "hashes": [ + "sha256:60e0a3261c149755f4399a1fff7d37523179a70fdc3abdf78de9fc2604aeec7e", + "sha256:bfcf9411ef4bf3db7579063e0546938b1edda3d69f4e1fb8756991f5951f85d4" + ], + "version": "==0.4.4" + }, + "toml": { + "hashes": [ + "sha256:229f81c57791a41d65e399fc06bf0848bab550a9dfd5ed66df18ce5f05e73d5c", + "sha256:235682dd292d5899d361a811df37e04a8828a5b1da3115886b73cf81ebc9100e" + ], + "version": "==0.10.0" + }, + "tornado": { + "hashes": [ + "sha256:0fe2d45ba43b00a41cd73f8be321a44936dc1aba233dee979f17a042b83eb6dc", + "sha256:22aed82c2ea340c3771e3babc5ef220272f6fd06b5108a53b4976d0d722bcd52", + "sha256:2c027eb2a393d964b22b5c154d1a23a5f8727db6fda837118a776b29e2b8ebc6", + "sha256:503700d85d9a2c2aa737fb16df58bfa2ac0d5ec501881fea2acceae64ce17858", + "sha256:5217e601700f24e966ddab689f90b7ea4bd91ff3357c3600fa1045e26d68e55d", + "sha256:5618f72e947533832cbc3dec54e1dffc1747a5cb17d1fd91577ed14fa0dc081b", + "sha256:5f6a07e62e799be5d2330e68d808c8ac41d4a259b9cea61da4101b83cb5dc673", + "sha256:7182a9285e364e55e6902b5fb4d4a219efd8d7818d9000b419a0eaf3909fc0bc", + "sha256:c58d56003daf1b616336781b26d184023ea4af13ae143d9dda65e31e534940b9", + "sha256:c952975c8ba74f546ae6de2e226ab3cc3cc11ae47baf607459a6728585bb542a", + "sha256:c98232a3ac391f5faea6821b53db8db461157baa788f5d6222a193e9456e1740" + ], + "version": "==6.0.4" + }, + "traitlets": { + "hashes": [ + "sha256:70b4c6a1d9019d7b4f6846832288f86998aa3b9207c6821f3578a6a6a467fe44", + "sha256:d023ee369ddd2763310e4c3eae1ff649689440d4ae59d7485eb4cfbbe3e359f7" + ], + "version": "==4.3.3" + }, + "typed-ast": { + "hashes": [ + "sha256:0666aa36131496aed8f7be0410ff974562ab7eeac11ef351def9ea6fa28f6355", + "sha256:0c2c07682d61a629b68433afb159376e24e5b2fd4641d35424e462169c0a7919", + "sha256:249862707802d40f7f29f6e1aad8d84b5aa9e44552d2cc17384b209f091276aa", + "sha256:24995c843eb0ad11a4527b026b4dde3da70e1f2d8806c99b7b4a7cf491612652", + "sha256:269151951236b0f9a6f04015a9004084a5ab0d5f19b57de779f908621e7d8b75", + "sha256:3791f73e5d75aa9a95274679ab4821bd9d16de623c4ecf4900a77a29864ee144", + "sha256:4083861b0aa07990b619bd7ddc365eb7fa4b817e99cf5f8d9cf21a42780f6e01", + "sha256:498b0f36cc7054c1fead3d7fc59d2150f4d5c6c56ba7fb150c013fbc683a8d2d", + "sha256:4e3e5da80ccbebfff202a67bf900d081906c358ccc3d5e3c8aea42fdfdfd51c1", + "sha256:6daac9731f172c2a22ade6ed0c00197ee7cc1221aa84cfdf9c31defeb059a907", + "sha256:715ff2f2df46121071622063fc7543d9b1fd19ebfc4f5c8895af64a77a8c852c", + "sha256:73d785a950fc82dd2a25897d525d003f6378d1cb23ab305578394694202a58c3", + "sha256:8c8aaad94455178e3187ab22c8b01a3837f8ee50e09cf31f1ba129eb293ec30b", + "sha256:8ce678dbaf790dbdb3eba24056d5364fb45944f33553dd5869b7580cdbb83614", + "sha256:aaee9905aee35ba5905cfb3c62f3e83b3bec7b39413f0a7f19be4e547ea01ebb", + "sha256:bcd3b13b56ea479b3650b82cabd6b5343a625b0ced5429e4ccad28a8973f301b", + "sha256:c9e348e02e4d2b4a8b2eedb48210430658df6951fa484e59de33ff773fbd4b41", + "sha256:d205b1b46085271b4e15f670058ce182bd1199e56b317bf2ec004b6a44f911f6", + "sha256:d43943ef777f9a1c42bf4e552ba23ac77a6351de620aa9acf64ad54933ad4d34", + "sha256:d5d33e9e7af3b34a40dc05f498939f0ebf187f07c385fd58d591c533ad8562fe", + "sha256:df74880bdb70f34304ccc52b0c99d3e578f96a906b86f3ae172a1f1c2edef2bc", + "sha256:fc0fea399acb12edbf8a628ba8d2312f583bdbdb3335635db062fa98cf71fca4", + "sha256:fe460b922ec15dd205595c9b5b99e2f056fd98ae8f9f56b888e7a17dc2b757e7" + ], + "version": "==1.4.1" + }, + "typing-extensions": { + "hashes": [ + "sha256:091ecc894d5e908ac75209f10d5b4f118fbdb2eb1ede6a63544054bb1edb41f2", + "sha256:910f4656f54de5993ad9304959ce9bb903f90aadc7c67a0bef07e678014e892d", + "sha256:cf8b63fedea4d89bab840ecbb93e75578af28f76f66c35889bd7065f5af88575" + ], + "version": "==3.7.4.1" + }, + "virtualenv": { + "hashes": [ + "sha256:4e399f48c6b71228bf79f5febd27e3bbb753d9d5905776a86667bc61ab628a25", + "sha256:9e81279f4a9d16d1c0654a127c2c86e5bca2073585341691882c1e66e31ef8a5" + ], + "version": "==20.0.15" + }, + "wcwidth": { + "hashes": [ + "sha256:cafe2186b3c009a04067022ce1dcd79cb38d8d65ee4f4791b8888d6599d1bbe1", + "sha256:ee73862862a156bf77ff92b09034fc4825dd3af9cf81bc5b360668d425f3c5f1" + ], + "version": "==0.1.9" + }, + "webencodings": { + "hashes": [ + "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", + "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923" + ], + "version": "==0.5.1" + }, + "zipp": { + "hashes": [ + "sha256:aa36550ff0c0b7ef7fa639055d797116ee891440eac1a56f378e2d3179e0320b", + "sha256:c599e4d75c98f6798c509911d08a22e6c021d074469042177c8c86fb92eefd96" + ], + "version": "==3.1.0" + } + } +} diff --git a/Ch02/apd.sensors-chapter02-pyi/pytest.ini b/Ch02/apd.sensors-chapter02-pyi/pytest.ini new file mode 100644 index 0000000..861f3d0 --- /dev/null +++ b/Ch02/apd.sensors-chapter02-pyi/pytest.ini @@ -0,0 +1,3 @@ +[pytest] +markers = + functional: these tests are significantly slower as they run the whole CLI script \ No newline at end of file diff --git a/Ch02/apd.sensors-chapter02-pyi/sensors.py b/Ch02/apd.sensors-chapter02-pyi/sensors.py new file mode 100644 index 0000000..5db91fb --- /dev/null +++ b/Ch02/apd.sensors-chapter02-pyi/sensors.py @@ -0,0 +1,192 @@ +#!/usr/bin/env python +# coding: utf-8 +import math +import socket +import sys + + +import click +import psutil + + +class Sensor: + def value(self): + raise NotImplementedError + + @classmethod + def format(cls, value): + raise NotImplementedError + + def __str__(self): + return self.format(self.value()) + + +class PythonVersion(Sensor): + title = "Python Version" + + def value(self): + return sys.version_info + + @classmethod + def format(cls, value): + if value.micro == 0 and value.releaselevel == "alpha": + return "{0.major}.{0.minor}.{0.micro}a{0.serial}".format(value) + return "{0.major}.{0.minor}".format(value) + + +class IPAddresses(Sensor): + title = "IP Addresses" + FAMILIES = {"AF_INET": "IPv4", "AF_INET6": "IPv6"} + + def value(self): + hostname = socket.gethostname() + addresses = socket.getaddrinfo(hostname, None) + + address_info = [] + for address in addresses: + family, ip = (address[0].name, address[4][0]) + if family not in self.FAMILIES: + continue + value = (family, ip) + if value not in address_info: + address_info.append(value) + return address_info + + @classmethod + def format(cls, value): + return "\n".join( + "{0} ({1})".format(address[1], cls.FAMILIES.get(address[0], "Unknown")) + for address in value + ) + + +class CPULoad(Sensor): + title = "CPU Usage" + + def value(self): + return psutil.cpu_percent(interval=3) / 100.0 + + @classmethod + def format(cls, value): + return "{:.1%}".format(value) + + +class RAMAvailable(Sensor): + title = "RAM Available" + UNITS = ("B", "KiB", "MiB", "GiB", "TiB", "PiB", "EiB") + UNIT_SIZE = 2 ** 10 + + def value(self): + return psutil.virtual_memory().available + + @classmethod + def format(cls, value): + magnitude = math.floor(math.log(value, cls.UNIT_SIZE)) + max_magnitude = len(cls.UNITS) - 1 + magnitude = min(magnitude, max_magnitude) + scaled_value = value / (cls.UNIT_SIZE ** magnitude) + return "{:.1f} {}".format(scaled_value, cls.UNITS[magnitude]) + + +class ACStatus(Sensor): + title = "AC Connected" + + def value(self): + battery = psutil.sensors_battery() + if battery is not None: + return battery.power_plugged + else: + return None + + @classmethod + def format(cls, value): + if value is None: + return "Unknown" + elif value: + return "Connected" + else: + return "Not connected" + + +class Temperature(Sensor): + title = "Ambient Temperature" + + def value(self): + try: + # Connect to a DHT22 on pin 4 + from adafruit_dht import DHT22 + from board import D4 + except (ImportError, NotImplementedError): + # No DHT library results in an ImportError. + # Running on an unknown platform results in a + # NotImplementedError when getting the pin + return None + try: + return DHT22(D4).temperature + except RuntimeError: + return None + + @staticmethod + def celsius_to_fahrenheit(value): + return value * 9 / 5 + 32 + + @classmethod + def format(cls, value): + if value is None: + return "Unknown" + else: + return "{:.1f}C ({:.1f}F)".format(value, cls.celsius_to_fahrenheit(value)) + + def __str__(self): + return self.format(self.value()) + + +class RelativeHumidity(Sensor): + title = "Relative Humidity" + + def value(self): + try: + # Connect to a DHT22 on pin 4 + from adafruit_dht import DHT22 + from board import D4 + except (ImportError, NotImplementedError): + # No DHT library results in an ImportError. + # Running on an unknown platform results in a + # NotImplementedError when getting the pin + return None + try: + return DHT22(D4).humidity / 100 + except RuntimeError: + return None + + @classmethod + def format(cls, value): + if value is None: + return "Unknown" + else: + return "{:.1%}".format(value) + + +def get_sensors(): + return [ + PythonVersion(), + IPAddresses(), + CPULoad(), + RAMAvailable(), + ACStatus(), + Temperature(), + RelativeHumidity(), + ] + + +@click.command(help="Displays the values of the sensors") +def show_sensors(): + sensors = get_sensors() + for sensor in sensors: + click.secho(sensor.title, bold=True) + click.echo(str(sensor)) + click.echo("") + + +if __name__ == "__main__": + show_sensors() diff --git a/Ch02/apd.sensors-chapter02-pyi/sensors.pyi b/Ch02/apd.sensors-chapter02-pyi/sensors.pyi new file mode 100644 index 0000000..763c009 --- /dev/null +++ b/Ch02/apd.sensors-chapter02-pyi/sensors.pyi @@ -0,0 +1,59 @@ +from typing import Any, Iterable, List, Optional, Tuple, TypeVar, Generic + +T_value = TypeVar('T_value') + +class Sensor(Generic[T_value]): + title: str + def value(self) -> T_value: ... + @classmethod + def format(cls: Any, value: T_value) -> str: ... + +class PythonVersion(Sensor[Any]): + title: str = ... + def value(self) -> Any: ... + @classmethod + def format(cls: Any, value: Any) -> str: ... + +class IPAddresses(Sensor[Iterable[Tuple[str, str]]]): + title: str = ... + FAMILIES: Any = ... + def value(self) -> List[Tuple[str, str]]: ... + @classmethod + def format(cls: Any, value: Iterable[Tuple[str, str]]) -> str: ... + +class CPULoad(Sensor[float]): + title: str = ... + def value(self) -> float: ... + @classmethod + def format(cls: Any, value: float) -> str: ... + +class RAMAvailable(Sensor[int]): + title: str = ... + UNITS: Any = ... + UNIT_SIZE: Any = ... + def value(self) -> int: ... + @classmethod + def format(cls: Any, value: int) -> str: ... + +class ACStatus(Sensor[Optional[bool]]): + title: str = ... + def value(self) -> Optional[bool]: ... + @classmethod + def format(cls: Any, value: Optional[bool]) -> str: ... + +class Temperature(Sensor[Optional[float]]): + title: str = ... + def value(self) -> Optional[float]: ... + @staticmethod + def celsius_to_fahrenheit(value: float) -> float: ... + @classmethod + def format(cls: Any, value: Optional[float]) -> str: ... + +class RelativeHumidity(Sensor[Optional[float]]): + title: str = ... + def value(self) -> Optional[float]: ... + @classmethod + def format(cls: Any, value: Optional[float]) -> str: ... + +def get_sensors() -> Iterable[Sensor[Any]]: ... +def show_sensors() -> None: ... diff --git a/Ch02/apd.sensors-chapter02-pyi/setup.cfg b/Ch02/apd.sensors-chapter02-pyi/setup.cfg new file mode 100644 index 0000000..9aedcef --- /dev/null +++ b/Ch02/apd.sensors-chapter02-pyi/setup.cfg @@ -0,0 +1,5 @@ +[mypy] +ignore_missing_imports = True + +[flake8] +max-line-length = 88 \ No newline at end of file diff --git a/Ch02/apd.sensors-chapter02-pyi/tests/__init__.py b/Ch02/apd.sensors-chapter02-pyi/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/Ch02/apd.sensors-chapter02-pyi/tests/test_acstatus.py b/Ch02/apd.sensors-chapter02-pyi/tests/test_acstatus.py new file mode 100644 index 0000000..7dab477 --- /dev/null +++ b/Ch02/apd.sensors-chapter02-pyi/tests/test_acstatus.py @@ -0,0 +1,55 @@ +from unittest import mock + +import pytest + +from sensors import ACStatus + + +@pytest.fixture +def sensor(): + return ACStatus() + + +class TestACStatusFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_True(self, subject): + assert subject(True) == "Connected" + + def test_format_False(self, subject): + assert subject(False) == "Not connected" + + def test_format_None(self, subject): + assert subject(None) == "Unknown" + + +class TestACStatusValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def sensors_battery(self): + with mock.patch("psutil.sensors_battery") as sensors_battery: + yield sensors_battery + + def test_sensors_battery_called(self, subject, sensors_battery): + sensors_battery.return_value.power_plugged = True + assert subject() is True + assert sensors_battery.call_count == 1 + + def test_sensor_but_battery_unknown(self, subject, sensors_battery): + sensors_battery.return_value.power_plugged = None + assert subject() is None + assert sensors_battery.call_count == 1 + + def test_no_sensor(self, subject, sensors_battery): + sensors_battery.return_value = None + assert subject() is None + + def test_str_representation_is_formatted_value(self, sensor, sensors_battery): + sensors_battery.return_value.power_plugged = True + assert str(sensor) == "Connected" + assert sensors_battery.call_count == 1 diff --git a/Ch02/apd.sensors-chapter02-pyi/tests/test_cpuusage.py b/Ch02/apd.sensors-chapter02-pyi/tests/test_cpuusage.py new file mode 100644 index 0000000..504861b --- /dev/null +++ b/Ch02/apd.sensors-chapter02-pyi/tests/test_cpuusage.py @@ -0,0 +1,45 @@ +from unittest import mock + +import pytest + +from sensors import CPULoad + + +@pytest.fixture +def sensor(): + return CPULoad() + + +class TestCPULoadFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_simple_percentage(self, subject): + assert subject(0.05) == "5.0%" + + def test_format_multiple_decimal_places(self, subject): + assert subject(0.031415926) == "3.1%" + + def test_format_multiple_decimal_places_int(self, subject) -> None: + assert subject(1) == "100.0%" + + +class TestCPULoadValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def cpuload(self): + with mock.patch("psutil.cpu_percent") as cpu_percent: + cpu_percent.return_value = 50.1 + yield cpu_percent + + def test_cpu_percent_called_With_interval(self, subject, cpuload): + assert subject() == 0.501 + assert cpuload.call_count == 1 + assert tuple(cpuload.call_args) == ((), {"interval": 3}) + + def test_str_representation_is_formatted_value(self, sensor, cpuload): + assert str(sensor) == "50.1%" diff --git a/Ch02/apd.sensors-chapter02-pyi/tests/test_dht.py b/Ch02/apd.sensors-chapter02-pyi/tests/test_dht.py new file mode 100644 index 0000000..c8391a3 --- /dev/null +++ b/Ch02/apd.sensors-chapter02-pyi/tests/test_dht.py @@ -0,0 +1,66 @@ +import pytest + +from sensors import Temperature, RelativeHumidity + + +@pytest.fixture +def temperature_sensor(): + return Temperature() + + +@pytest.fixture +def humidity_sensor(): + return RelativeHumidity() + + +class TestTemperatureFormatter: + @pytest.fixture + def subject(self, temperature_sensor): + return temperature_sensor.format + + def test_format_21c(self, subject): + assert subject(21.0) == "21.0C (69.8F)" + + def test_format_negative(self, subject): + assert subject(-32.0) == "-32.0C (-25.6F)" + + def test_format_unknown(self, subject): + assert subject(None) == "Unknown" + + +class TestTemperatureConversion: + @pytest.fixture + def subject(self, temperature_sensor): + return temperature_sensor.celsius_to_fahrenheit + + def test_celsius_to_fahrenheit(self, subject): + c = 21 + f = subject(c) + assert f == 69.8 + + def test_celsius_to_fahrenheit_equivlance_point(self, subject): + c = -40 + f = subject(c) + assert f == -40 + + def test_celsius_to_fahrenheit_float(self, subject): + c = 21.2 + f = subject(c) + assert f == 70.16 + + def test_celsius_to_fahrenheit_string(self, subject): + c = "21" + with pytest.raises(TypeError): + subject(c) + + +class TestHumidityFormatter: + @pytest.fixture + def subject(self, humidity_sensor): + return humidity_sensor.format + + def test_format_percentage(self, subject): + assert subject(0.035) == "3.5%" + + def test_format_unknown(self, subject): + assert subject(None) == "Unknown" diff --git a/Ch02/apd.sensors-chapter02-pyi/tests/test_ipaddresses.py b/Ch02/apd.sensors-chapter02-pyi/tests/test_ipaddresses.py new file mode 100644 index 0000000..f97d377 --- /dev/null +++ b/Ch02/apd.sensors-chapter02-pyi/tests/test_ipaddresses.py @@ -0,0 +1,59 @@ +import socket +from unittest import mock + +import pytest + +from sensors import IPAddresses + + +@pytest.fixture +def sensor(): + return IPAddresses() + + +class TestIPAddressFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_single_ipv4(self, subject): + ips = [("AF_INET", "192.0.2.1")] + assert subject(ips) == "192.0.2.1 (IPv4)" + + def test_format_single_ipv6(self, subject): + ips = [("AF_INET6", "2001:DB8::1")] + assert subject(ips) == "2001:DB8::1 (IPv6)" + + def test_format_mixed_list(self, subject): + ips = [("AF_INET", "192.0.2.1"), ("AF_INET6", "2001:DB8::1")] + assert subject(ips) == "192.0.2.1 (IPv4)\n2001:DB8::1 (IPv6)" + + def test_unusual_protocols_are_marked_as_unknown(self, subject): + ips = [("AF_IRDA", "ffff")] + assert subject(ips) == "ffff (Unknown)" + + +class TestIPAddressesValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def gethostname(self): + with mock.patch("socket.gethostname") as gethostname: + gethostname.return_value = "localhost" + yield gethostname + + @pytest.fixture + def getaddrinfo(self, gethostname): + with mock.patch("socket.getaddrinfo") as getaddrinfo: + yield getaddrinfo + + def test_getaddrinfo_used_for_value_collection(self, getaddrinfo, subject): + getaddrinfo.return_value = [(socket.AF_INET, 0, 0, "", ("192.0.2.1", 0))] + assert subject() == [("AF_INET", "192.0.2.1")] + assert getaddrinfo.call_count == 1 + + def test_str_representation_is_formatted_value(self, getaddrinfo, sensor): + getaddrinfo.return_value = [(socket.AF_INET6, 0, 0, "", ("2001:DB8::1", 0))] + assert str(sensor) == "2001:DB8::1 (IPv6)" diff --git a/Ch02/apd.sensors-chapter02-pyi/tests/test_pythonversion.py b/Ch02/apd.sensors-chapter02-pyi/tests/test_pythonversion.py new file mode 100644 index 0000000..473eb62 --- /dev/null +++ b/Ch02/apd.sensors-chapter02-pyi/tests/test_pythonversion.py @@ -0,0 +1,61 @@ +from collections import namedtuple +from unittest import mock + +import pytest + +from sensors import PythonVersion + + +@pytest.fixture +def version(): + return namedtuple( + "sys_versioninfo", ("major", "minor", "micro", "releaselevel", "serial") + ) + + +@pytest.fixture +def sensor(): + return PythonVersion() + + +class TestPythonVersionFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_py38(self, subject, version): + py38 = version(3, 8, 0, "final", 0) + assert subject(py38) == "3.8" + + def test_format_large_version(self, subject, version): + large = version(255, 128, 0, "final", 0) + assert subject(large) == "255.128" + + def test_alpha_of_minor_is_marked(self, subject, version): + py39 = version(3, 9, 0, "alpha", 1) + assert subject(py39) == "3.9.0a1" + + def test_alpha_of_micro_is_unmarked(self, subject, version): + py39 = version(3, 9, 1, "alpha", 1) + assert subject(py39) == "3.9" + + +class TestPythonVersionValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def python_version(self): + import sys + + return sys.version_info + + def test_data_value_is_sys_versioninfo(self, python_version, subject): + assert subject() == python_version + + +class TestPythonVersionSensor: + def test_str_representation_is_formatted_value(self, sensor, version): + with mock.patch("sys.version_info", new=version(3, 4, 1, "final", 1)): + assert str(sensor) == "3.4" diff --git a/Ch02/apd.sensors-chapter02-pyi/tests/test_ramusage.py b/Ch02/apd.sensors-chapter02-pyi/tests/test_ramusage.py new file mode 100644 index 0000000..b3c091a --- /dev/null +++ b/Ch02/apd.sensors-chapter02-pyi/tests/test_ramusage.py @@ -0,0 +1,47 @@ +from unittest import mock + +import pytest + +from sensors import RAMAvailable + + +@pytest.fixture +def sensor(): + return RAMAvailable() + + +class TestRAMAvailableFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_bytes(self, subject): + assert subject(15) == "15.0 B" + + def test_format_kibibytes(self, subject): + assert subject(15000) == "14.6 KiB" + + def test_format_mibibytes(self, subject): + assert subject(15000000) == "14.3 MiB" + + def test_format_gibibytes(self, subject): + assert subject(15000000000) == "14.0 GiB" + + +class TestRAMAvailableValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def virtual_memory(self): + with mock.patch("psutil.virtual_memory") as virtual_memory: + virtual_memory.return_value.available = 1024 + yield virtual_memory + + def test_virtual_memory_called(self, subject, virtual_memory): + assert subject() == 1024 + assert virtual_memory.call_count == 1 + + def test_str_representation_is_formatted_value(self, sensor, virtual_memory): + assert str(sensor) == "1.0 KiB" diff --git a/Ch02/apd.sensors-chapter02-pyi/tests/test_sensors.py b/Ch02/apd.sensors-chapter02-pyi/tests/test_sensors.py new file mode 100644 index 0000000..6596ba1 --- /dev/null +++ b/Ch02/apd.sensors-chapter02-pyi/tests/test_sensors.py @@ -0,0 +1,17 @@ +from click.testing import CliRunner + +import pytest + +import sensors + + +def test_sensors(): + assert hasattr(sensors, "PythonVersion") + + +@pytest.mark.functional +def test_python_version_is_first_two_lines_of_cli_output(): + runner = CliRunner() + result = runner.invoke(sensors.show_sensors) + python_version = str(sensors.PythonVersion()) + assert ["Python Version", python_version] == result.stdout.split("\n")[:2] diff --git a/Ch02/listing02-01-temperature_sensor.py b/Ch02/listing02-01-temperature_sensor.py new file mode 100644 index 0000000..16bb8ac --- /dev/null +++ b/Ch02/listing02-01-temperature_sensor.py @@ -0,0 +1,73 @@ +#!/usr/bin/env python +# coding: utf-8 +import socket +import sys + +import click +import psutil + + +def python_version(): + return sys.version_info + + +def ip_addresses(): + hostname = socket.gethostname() + addresses = socket.getaddrinfo(socket.gethostname(), None) + + address_info = [] + for address in addresses: + address_info.append((address[0].name, address[4][0])) + return address_info + + +def cpu_load(): + return psutil.cpu_percent(interval=0.1) / 100.0 + + +def ram_available(): + return psutil.virtual_memory().available + + +def ac_connected(): + return psutil.sensors_battery().power_plugged + + +def get_relative_humidity(): + try: + # Connect a DHT22 sensor on GPIO pin 4 + from adafruit_dht import DHT22 + from board import D4 + except (ImportError, NotImplementedError): + # No DHT library results in an ImportError. + # Running on an unknown platform results in a NotImplementedError when getting the pin + return None + return DHT22(D4).humidity + + +def get_temperature(): + try: + # Connect a DHT22 sensor on GPIO pin 4 + from adafruit_dht import DHT22 + from board import D4 + except (ImportError, NotImplementedError): + # No DHT library results in an ImportError. + # Running on an unknown platform results in a NotImplementedError when getting the pin + return None + return DHT22(D4).temperature + + +@click.command(help="Displays the values of the sensors") +def show_sensors(): + click.echo("Python version: {0.major}.{0.minor}".format(python_version())) + for address in ip_addresses(): + click.echo("IP addresses: {0[1]} ({0[0]})".format(address)) + click.echo("CPU Load: {:.1%}".format(cpu_load())) + click.echo("RAM Available: {:.0f} MiB".format(ram_available() / 1024**2)) + click.echo("AC Connected: {!r}".format(ac_connected())) + click.echo("Humidity: {!r}".format(get_relative_humidity())) + click.echo("Temperature: {!r}".format(get_temperature())) + + +if __name__ == '__main__': + show_sensors() \ No newline at end of file diff --git a/Ch02/listing02-02-temperature_conversion.ipynb b/Ch02/listing02-02-temperature_conversion.ipynb new file mode 100644 index 0000000..29f8e8c --- /dev/null +++ b/Ch02/listing02-02-temperature_conversion.ipynb @@ -0,0 +1,85 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "def celsius_to_fahrenheit(celsius):\n", + " return celsius * 9 / 5 + 32\n", + "\n", + "def celsius_to_kelvin(celsius):\n", + " return 273.15 + celsius" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "69.8" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "celsius_to_fahrenheit(21)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "294.15" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "celsius_to_kelvin(21)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "advancedpython", + "language": "python", + "name": "advancedpython" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Ch02/listing02-03-temperature_conversion_invalid_types.ipynb b/Ch02/listing02-03-temperature_conversion_invalid_types.ipynb new file mode 100644 index 0000000..ab31649 --- /dev/null +++ b/Ch02/listing02-03-temperature_conversion_invalid_types.ipynb @@ -0,0 +1,128 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "def celsius_to_fahrenheit(celsius):\n", + " return celsius * 9 / 5 + 32\n", + "\n", + "def celsius_to_kelvin(celsius):\n", + " return 273.15 + celsius" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "69.8" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "celsius_to_fahrenheit(21)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "294.15" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "celsius_to_kelvin(21)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(32.18+3.6j)" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "celsius_to_fahrenheit(0.1+2j)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[33.8, 32. , 32. ],\n", + " [32. , 33.8, 32. ],\n", + " [32. , 32. , 33.8]])" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import numpy\n", + "celsius_to_fahrenheit(numpy.identity(3))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "advancedpython", + "language": "python", + "name": "advancedpython" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Ch02/listing02-04-temperature.py b/Ch02/listing02-04-temperature.py new file mode 100644 index 0000000..087592a --- /dev/null +++ b/Ch02/listing02-04-temperature.py @@ -0,0 +1,5 @@ +def celsius_to_fahrenheit(celsius): + return celsius * 9 / 5 + 32 + +def celsius_to_kelvin(celsius): + return 273.15 + celsius diff --git a/Ch02/listing02-05-unittest_temperature/__pycache__/temperature.cpython-37.pyc b/Ch02/listing02-05-unittest_temperature/__pycache__/temperature.cpython-37.pyc new file mode 100644 index 0000000000000000000000000000000000000000..45c73af088a4a4bae2839340f766bb5f4e31e268 GIT binary patch literal 472 zcmZuty-EW?5Z=8cCJF(Sh=onsD*Q9b9XNoNh!XGg}qOc z)+(=H<;;@P6b{TczdJME4%+P<0&@QT$=<+zVNgi`P9M~E065|Fl{^q0@ETak>vtq< zBos<0Xt93?YIgw^(BFaXBf@Kk1bXYyY8&#a20|C$gM@V1Ohjg7X-yq69=>0O7wp~& zV_7Z}quGto#iM>^*L)VMMDXtI+@)G|2U<^=jq@TCmc{F0;cLArok{DYnw<7d&U&Si z&I#*APUM9!u`7*W8~$-IUmmQ_896-~$Egu271AL&i|hzBO~C(Ix1hr5f_Sz;G#R7p zKlMGUkQyZZN7HOUxZK;=Hx=1TD*T6P7fy`A!0$8|Y&`e>YNes{H_| CscK^Y literal 0 HcmV?d00001 diff --git a/Ch02/listing02-05-unittest_temperature/temperature.py b/Ch02/listing02-05-unittest_temperature/temperature.py new file mode 100644 index 0000000..087592a --- /dev/null +++ b/Ch02/listing02-05-unittest_temperature/temperature.py @@ -0,0 +1,5 @@ +def celsius_to_fahrenheit(celsius): + return celsius * 9 / 5 + 32 + +def celsius_to_kelvin(celsius): + return 273.15 + celsius diff --git a/Ch02/listing02-05-unittest_temperature/test_unittest.py b/Ch02/listing02-05-unittest_temperature/test_unittest.py new file mode 100644 index 0000000..2655206 --- /dev/null +++ b/Ch02/listing02-05-unittest_temperature/test_unittest.py @@ -0,0 +1,22 @@ +import unittest +from temperature import celsius_to_fahrenheit + + +class TestTemperatureConversion(unittest.TestCase): + + def test_celsius_to_fahrenheit(self): + self.assertEqual(celsius_to_fahrenheit(21), 69.8) + + def test_celsius_to_fahrenheit_equivlance_point(self): + self.assertEqual(celsius_to_fahrenheit(-40), -40) + + def test_celsius_to_fahrenheit_float(self): + self.assertEqual(celsius_to_fahrenheit(21.2), 70.16) + + def test_celsius_to_fahrenheit_string(self): + with self.assertRaises(TypeError): + f = celsius_to_fahrenheit("21") + + +if __name__ == '__main__': + unittest.main() diff --git a/Ch02/listing02-06-pytest_temperature/temperature.py b/Ch02/listing02-06-pytest_temperature/temperature.py new file mode 100644 index 0000000..087592a --- /dev/null +++ b/Ch02/listing02-06-pytest_temperature/temperature.py @@ -0,0 +1,5 @@ +def celsius_to_fahrenheit(celsius): + return celsius * 9 / 5 + 32 + +def celsius_to_kelvin(celsius): + return 273.15 + celsius diff --git a/Ch02/listing02-06-pytest_temperature/test_pytest.py b/Ch02/listing02-06-pytest_temperature/test_pytest.py new file mode 100644 index 0000000..ad8dd48 --- /dev/null +++ b/Ch02/listing02-06-pytest_temperature/test_pytest.py @@ -0,0 +1,23 @@ +import pytest +from .temperature import celsius_to_fahrenheit + + +def test_celsius_to_fahrenheit(): + c = 21 + f = celsius_to_fahrenheit(c) + assert f == 69.8 + +def test_celsius_to_fahrenheit_equivlance_point(): + c = -40 + f = celsius_to_fahrenheit(c) + assert f == -40 + +def test_celsius_to_fahrenheit_float(): + c = 21.2 + f = celsius_to_fahrenheit(c) + assert f == 70.16 + +def test_celsius_to_fahrenheit_string(): + c = "21" + with pytest.raises(TypeError): + f = celsius_to_fahrenheit(c) diff --git a/Ch02/listing02-07-sensors.py b/Ch02/listing02-07-sensors.py new file mode 100644 index 0000000..20b6ef8 --- /dev/null +++ b/Ch02/listing02-07-sensors.py @@ -0,0 +1,198 @@ +#!/usr/bin/env python +# coding: utf-8 +import math +import socket +import sys +from typing import Any, Optional, List, Tuple, Iterable, TypeVar, Generic + + +import click +import psutil + + +T_value = TypeVar("T_value") + + +class Sensor(Generic[T_value]): + title: str + + def value(self) -> T_value: + raise NotImplementedError + + @classmethod + def format(cls, value: T_value) -> str: + raise NotImplementedError + + def __str__(self) -> str: + return self.format(self.value()) + + +class PythonVersion(Sensor[Any]): + title = "Python Version" + + def value(self) -> Any: + return sys.version_info + + @classmethod + def format(cls, value: Any) -> str: + if value.micro == 0 and value.releaselevel == "alpha": + return "{0.major}.{0.minor}.{0.micro}a{0.serial}".format(value) + return "{0.major}.{0.minor}".format(value) + + +class IPAddresses(Sensor[Iterable[Tuple[str, str]]]): + title = "IP Addresses" + FAMILIES = {"AF_INET": "IPv4", "AF_INET6": "IPv6"} + + def value(self) -> List[Tuple[str, str]]: + hostname = socket.gethostname() + addresses = socket.getaddrinfo(hostname, None) + + address_info: List[Tuple[str, str]] = [] + for address in addresses: + family, ip = (address[0].name, address[4][0]) + if family not in self.FAMILIES: + continue + value = (family, ip) + if value not in address_info: + address_info.append(value) + return address_info + + @classmethod + def format(cls, value: Iterable[Tuple[str, str]]) -> str: + return "\n".join( + "{0} ({1})".format(address[1], cls.FAMILIES.get(address[0], "Unknown")) + for address in value + ) + + +class CPULoad(Sensor[float]): + title = "CPU Usage" + + def value(self) -> float: + return psutil.cpu_percent(interval=3) / 100.0 + + @classmethod + def format(cls, value: float) -> str: + return "{:.1%}".format(value) + + +class RAMAvailable(Sensor[int]): + title = "RAM Available" + UNITS = ("B", "KiB", "MiB", "GiB", "TiB", "PiB", "EiB") + UNIT_SIZE = 2 ** 10 + + def value(self) -> int: + return psutil.virtual_memory().available + + @classmethod + def format(cls, value: int) -> str: + magnitude = math.floor(math.log(value, cls.UNIT_SIZE)) + max_magnitude = len(cls.UNITS) - 1 + magnitude = min(magnitude, max_magnitude) + scaled_value = value / (cls.UNIT_SIZE ** magnitude) + return "{:.1f} {}".format(scaled_value, cls.UNITS[magnitude]) + + +class ACStatus(Sensor[Optional[bool]]): + title = "AC Connected" + + def value(self) -> Optional[bool]: + battery = psutil.sensors_battery() + if battery is not None: + return battery.power_plugged + else: + return None + + @classmethod + def format(cls, value: Optional[bool]) -> str: + if value is None: + return "Unknown" + elif value: + return "Connected" + else: + return "Not connected" + + +class Temperature(Sensor[Optional[float]]): + title = "Ambient Temperature" + + def value(self) -> Optional[float]: + try: + # Connect to a DHT22 on pin 4 + from adafruit_dht import DHT22 + from board import D4 + except (ImportError, NotImplementedError): + # No DHT library results in an ImportError. + # Running on an unknown platform results in a + # NotImplementedError when getting the pin + return None + try: + return DHT22(D4).temperature + except RuntimeError: + return None + + @staticmethod + def celsius_to_fahrenheit(cls, value: float) -> float: + return value * 9 / 5 + 32 + + @classmethod + def format(cls, value: Optional[float]) -> str: + if value is None: + return "Unknown" + else: + return "{:.1f}C ({:.1f}F)".format(value, cls.celsius_to_fahrenheit(value)) + + def __str__(self) -> str: + return self.format(self.value()) + + +class RelativeHumidity(Sensor[Optional[float]]): + title = "Relative Humidity" + + def value(self) -> Optional[float]: + try: + # Connect to a DHT22 on pin 4 + from adafruit_dht import DHT22 + from board import D4 + except (ImportError, NotImplementedError): + # No DHT library results in an ImportError. + # Running on an unknown platform results in a + # NotImplementedError when getting the pin + return None + try: + return DHT22(D4).humidity / 100 + except RuntimeError: + return None + + @classmethod + def format(cls, value: Optional[float]) -> str: + if value is None: + return "Unknown" + else: + return "{:.1%}".format(value) + + +def get_sensors() -> Iterable[Sensor[Any]]: + return [ + PythonVersion(), + IPAddresses(), + CPULoad(), + RAMAvailable(), + ACStatus(), + Temperature(), + RelativeHumidity(), + ] + + +@click.command(help="Displays the values of the sensors") +def show_sensors() -> None: + sensors = get_sensors() + for sensor in sensors: + click.secho(sensor.title, bold=True) + click.echo(str(sensor)) + click.echo("") + + +if __name__ == "__main__": + show_sensors() diff --git a/Ch02/listing02-08/Pipfile b/Ch02/listing02-08/Pipfile new file mode 100644 index 0000000..6c2bafc --- /dev/null +++ b/Ch02/listing02-08/Pipfile @@ -0,0 +1,21 @@ +[[source]] +name = "pypi" +url = "https://pypi.org/simple" +verify_ssl = true + +[[source]] +name = "pypi" +url = "https://piwheels.org/simple" +verify_ssl = true + +[dev-packages] +ipykernel = "*" +remote-ikernel = "*" +pytest = "*" + +[packages] +psutil = "*" +click = "*" +adafruit-circuitpython-dht = {markers = "'arm' in platform_machine",version = "*"} + +[requires] diff --git a/Ch02/listing02-08/Pipfile.lock b/Ch02/listing02-08/Pipfile.lock new file mode 100644 index 0000000..b4f1484 --- /dev/null +++ b/Ch02/listing02-08/Pipfile.lock @@ -0,0 +1,586 @@ +{ + "_meta": { + "hash": { + "sha256": "0e38a51ef0a99c717ca43d73fe5df561a6f1b789ff3291fff6553f5c7adb5ee0" + }, + "pipfile-spec": 6, + "requires": {}, + "sources": [ + { + "name": "pypi", + "url": "https://pypi.org/simple", + "verify_ssl": true + }, + { + "name": "pypi", + "url": "https://piwheels.org/simple", + "verify_ssl": true + } + ] + }, + "default": { + "adafruit-blinka": { + "hashes": [ + "sha256:375a71854a52779a760c5b2f53f626c9217b523b77ac1c4648ee81c606ce4eec", + "sha256:dbd25293944e118bec49ef0763b51cda8445b7a8cb49e8d39934f01551820cc5" + ], + "version": "==4.2.0" + }, + "adafruit-circuitpython-dht": { + "hashes": [ + "sha256:454b506bab88a009ea19aa1ea00338dffe1d48fb42ab2c3e03948bf337a5542c", + "sha256:5f9307fbfad64221ba1a4e7b34ecbf26326a5d77a856482361bef70c251df55d" + ], + "index": "pypi", + "markers": "'arm' in platform_machine", + "version": "==3.3.0" + }, + "adafruit-platformdetect": { + "hashes": [ + "sha256:917f431371f94a60391e881fe1af3731a225b188e0c0157ebc69b877f1fd0a2a", + "sha256:bf446f8365cdf0a87d4bf6620e70bd59da99b0523c2111f0dc74a1155236ff61" + ], + "version": "==2.5.0" + }, + "adafruit-pureio": { + "hashes": [ + "sha256:013ebe6119eaaa0d39716ea5fbfad4fcbada7c88eaebcc7d6615f9df44e53b8c", + "sha256:b67587ed3c4dc90bd0e9b988587efa66b4466abf71eb0dcbcd4695e7e4350326" + ], + "version": "==1.0.4" + }, + "click": { + "hashes": [ + "sha256:8a18b4ea89d8820c5d0c7da8a64b2c324b4dabb695804dbfea19b9be9d88c0cc", + "sha256:e345d143d80bf5ee7534056164e5e112ea5e22716bbb1ce727941f4c8b471b9a" + ], + "index": "pypi", + "version": "==7.1.1" + }, + "psutil": { + "hashes": [ + "sha256:002bd856770037221256765a472f50d677074ad207276a39e2bccdb7394e333b", + "sha256:1413f4158eb50e110777c4f15d7c759521703bd6beb58926f1d562da40180058", + "sha256:298af2f14b635c3c7118fd9183843f4e73e681bb6f01e12284d4d70d48a60953", + "sha256:60b86f327c198561f101a92be1995f9ae0399736b6eced8f24af41ec64fb88d4", + "sha256:685ec16ca14d079455892f25bd124df26ff9137664af445563c1bd36629b5e0e", + "sha256:73f35ab66c6c7a9ce82ba44b1e9b1050be2a80cd4dcc3352cc108656b115c74f", + "sha256:75e22717d4dbc7ca529ec5063000b2b294fc9a367f9c9ede1f65846c7955fd38", + "sha256:833b2b19c04fc0aecad22daa3e35108d6ee2e4f92061a4a8f2dd77c6fa9154f5", + "sha256:a02f4ac50d4a23253b68233b07e7cdb567bd025b982d5cf0ee78296990c22d9e", + "sha256:d008ddc00c6906ec80040d26dc2d3e3962109e40ad07fd8a12d0284ce5e0e4f8", + "sha256:d84029b190c8a66a946e28b4d3934d2ca1528ec94764b180f7d6ea57b0e75e26", + "sha256:e2d0c5b07c6fe5a87fa27b7855017edb0d52ee73b71e6ee368fae268605cc3f5", + "sha256:f344ca230dd8e8d5eee16827596f1c22ec0876127c28e800d7ae20ed44c4b310", + "sha256:f3e7f183162622eae9fbdee44ff19b226edec68b94ae7cba47f9afcf4c3ec66c" + ], + "index": "pypi", + "version": "==5.7.0" + }, + "pyftdi": { + "hashes": [ + "sha256:51827a876d0ed2b146d66083f7020a4ca1b703fca599da119e3a79009c89549c", + "sha256:a98e683b7e3569814524a4bdd723e8b239072da30366071a9266ab80083f2135", + "sha256:e781c9a4e6ad2ed6830e5b4aa3f1707efb781d3598493f0655c43c97d64afc63" + ], + "version": "==0.48.3" + }, + "pyserial": { + "hashes": [ + "sha256:6e2d401fdee0eab996cf734e67773a0143b932772ca8b42451440cfed942c627", + "sha256:e0770fadba80c31013896c7e6ef703f72e7834965954a78e71a3049488d4d7d8" + ], + "version": "==3.4" + }, + "pyusb": { + "hashes": [ + "sha256:4e9b72cc4a4205ca64fbf1f3fff39a335512166c151ad103e55c8223ac147362", + "sha256:789749b8a9bf3828c55d41df2c3e569739cd1bdbe1517e8d940af9587a711faa" + ], + "version": "==1.0.2" + }, + "rpi-ws281x": { + "hashes": [ + "sha256:185d7ae138a5633cf4cd707c55d7190b34810cc3f5e5682c820ddf1dade20914", + "sha256:265a395410cc7199f779c4209ca3970b7211896b86dbaa4731bdc3569d2e595f", + "sha256:544f09353ccb578452d0478470460d3425f40e8dd7433131a95239daeae83303", + "sha256:bc3a22e55c2a10de5c4dfb23c13dceff66162e77eb7176701f1a0d5ae8b97695", + "sha256:de182acceab047030056e2ab0dd2bd2632f2375f60d9a94cf7e3a8a4033834a0", + "sha256:f35e698e0d4205cb1bc2835b46429235fa22e973c8320d661f16556ceaf0f90b" + ], + "version": "==4.2.3" + }, + "rpi.gpio": { + "hashes": [ + "sha256:5cd2f3c88d0b1e2f4780c905702c0474768c2bc113fb793121c2e117b401ab16", + "sha256:6a4791f41cafc2ee6e4cb70e5bd31fadc66a0cfab29b38df8723a98f6f73ad5a", + "sha256:7424bc6c205466764f30f666c18187a0824077daf20b295c42f08aea2cb87d3f", + "sha256:7da5235aeba20da39ad4fb97f3ba3a2c6b2d60bba8958b00a4df42f608c6d42e" + ], + "version": "==0.7.0" + } + }, + "develop": { + "atomicwrites": { + "hashes": [ + "sha256:03472c30eb2c5d1ba9227e4c2ca66ab8287fbfbbda3888aa93dc2e28fc6811b4", + "sha256:75a9445bac02d8d058d5e1fe689654ba5a6556a1dfd8ce6ec55a0ed79866cfa6" + ], + "markers": "sys_platform == 'win32'", + "version": "==1.3.0" + }, + "attrs": { + "hashes": [ + "sha256:08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c", + "sha256:f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72" + ], + "version": "==19.3.0" + }, + "backcall": { + "hashes": [ + "sha256:1fac21e6861f538700a5d498620153f38407a4bacf9e1d5047b3d717f10bc4ab", + "sha256:38ecd85be2c1e78f77fd91700c76e14667dc21e2713b63876c0eb901196e01e4", + "sha256:bbbf4b1e5cd2bdb08f915895b51081c041bac22394fdfcfdfbe9f14b77c08bf2" + ], + "version": "==0.1.0" + }, + "bleach": { + "hashes": [ + "sha256:cc8da25076a1fe56c3ac63671e2194458e0c4d9c7becfd52ca251650d517903c", + "sha256:e78e426105ac07026ba098f04de8abe9b6e3e98b5befbf89b51a5ef0a4292b03" + ], + "version": "==3.1.4" + }, + "colorama": { + "hashes": [ + "sha256:7d73d2a99753107a36ac6b455ee49046802e59d9d076ef8e47b61499fa29afff", + "sha256:e96da0d330793e2cb9485e9ddfd918d456036c7149416295932478192f4436a1" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.3" + }, + "decorator": { + "hashes": [ + "sha256:41fa54c2a0cc4ba648be4fd43cff00aedf5b9465c9bf18d64325bc225f08f760", + "sha256:e3a62f0520172440ca0dcc823749319382e377f37f140a0b99ef45fecb84bfe7" + ], + "version": "==4.4.2" + }, + "defusedxml": { + "hashes": [ + "sha256:6687150770438374ab581bb7a1b327a847dd9c5749e396102de3fad4e8a3ef93", + "sha256:f684034d135af4c6cbb949b8a4d2ed61634515257a67299e5f940fbaa34377f5" + ], + "version": "==0.6.0" + }, + "entrypoints": { + "hashes": [ + "sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19", + "sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451" + ], + "version": "==0.3" + }, + "importlib-metadata": { + "hashes": [ + "sha256:2a688cbaa90e0cc587f1df48bdc97a6eadccdcd9c35fb3f976a09e3b5016d90f", + "sha256:34513a8a0c4962bc66d35b359558fd8a5e10cd472d37aec5f66858addef32c1e" + ], + "markers": "python_version < '3.8'", + "version": "==1.6.0" + }, + "ipykernel": { + "hashes": [ + "sha256:08997a27ccafbb998437d167ccc893666c6088ec3aa90c054bfb3d588bb3fc20", + "sha256:37c65d2e2da3326e5cf114405df6d47d997b8a3eba99e2cc4b75833bf71a5e18", + "sha256:39746b5f7d847a23fae4eac893e63e3d9cc5f8c3a4797fcd3bfa8d1a296ec6ed" + ], + "index": "pypi", + "version": "==5.2.0" + }, + "ipython": { + "hashes": [ + "sha256:1807adeae64502fcaa491cd93405644faa055b646efb40c1e48648ad66f65a75", + "sha256:ca478e52ae1f88da0102360e57e528b92f3ae4316aabac80a2cd7f7ab2efb48a", + "sha256:eb8d075de37f678424527b5ef6ea23f7b80240ca031c2dd6de5879d687a65333" + ], + "version": "==7.13.0" + }, + "ipython-genutils": { + "hashes": [ + "sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8", + "sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8" + ], + "version": "==0.2.0" + }, + "jedi": { + "hashes": [ + "sha256:b4f4052551025c6b0b0b193b29a6ff7bdb74c52450631206c262aef9f7159ad2", + "sha256:d5c871cb9360b414f981e7072c52c33258d598305280fef91c6cae34739d65d5" + ], + "version": "==0.16.0" + }, + "jinja2": { + "hashes": [ + "sha256:93187ffbc7808079673ef52771baa950426fd664d3aad1d0fa3e95644360e250", + "sha256:b0eaf100007721b5c16c1fc1eecb87409464edc10469ddc9a22a27a99123be49" + ], + "version": "==2.11.1" + }, + "jsonschema": { + "hashes": [ + "sha256:4e5b3cf8216f577bee9ce139cbe72eca3ea4f292ec60928ff24758ce626cd163", + "sha256:c8a85b28d377cc7737e46e2d9f2b4f44ee3c0e1deac6bf46ddefc7187d30797a" + ], + "version": "==3.2.0" + }, + "jupyter-client": { + "hashes": [ + "sha256:5724827aedb1948ed6ed15131372bc304a8d3ad9ac67ac19da7c95120d6b17e0", + "sha256:81c1c712de383bf6bf3dab6b407392b0d84d814c7bd0ce2c7035ead8b2ffea97" + ], + "version": "==6.1.2" + }, + "jupyter-core": { + "hashes": [ + "sha256:394fd5dd787e7c8861741880bdf8a00ce39f95de5d18e579c74b882522219e7e", + "sha256:a4ee613c060fe5697d913416fc9d553599c05e4492d58fac1192c9a6844abb21" + ], + "version": "==4.6.3" + }, + "markupsafe": { + "hashes": [ + "sha256:00bc623926325b26bb9605ae9eae8a215691f33cae5df11ca5424f06f2d1f473", + "sha256:09027a7803a62ca78792ad89403b1b7a73a01c8cb65909cd876f7fcebd79b161", + "sha256:09c4b7f37d6c648cb13f9230d847adf22f8171b1ccc4d5682398e77f40309235", + "sha256:1027c282dad077d0bae18be6794e6b6b8c91d58ed8a8d89a89d59693b9131db5", + "sha256:13d3144e1e340870b25e7b10b98d779608c02016d5184cfb9927a9f10c689f42", + "sha256:19536834abffb3fa155017053c607cb835b2ecc6a3a2554a88043d991dffb736", + "sha256:24982cc2533820871eba85ba648cd53d8623687ff11cbb805be4ff7b4c971aff", + "sha256:29872e92839765e546828bb7754a68c418d927cd064fd4708fab9fe9c8bb116b", + "sha256:3d61f15e39611aacd91b7e71d903787da86d9e80896e683c0103fced9add7834", + "sha256:43a55c2930bbc139570ac2452adf3d70cdbb3cfe5912c71cdce1c2c6bbd9c5d1", + "sha256:46c99d2de99945ec5cb54f23c8cd5689f6d7177305ebff350a58ce5f8de1669e", + "sha256:500d4957e52ddc3351cabf489e79c91c17f6e0899158447047588650b5e69183", + "sha256:535f6fc4d397c1563d08b88e485c3496cf5784e927af890fb3c3aac7f933ec66", + "sha256:596510de112c685489095da617b5bcbbac7dd6384aeebeda4df6025d0256a81b", + "sha256:62fe6c95e3ec8a7fad637b7f3d372c15ec1caa01ab47926cfdf7a75b40e0eac1", + "sha256:6788b695d50a51edb699cb55e35487e430fa21f1ed838122d722e0ff0ac5ba15", + "sha256:6dd73240d2af64df90aa7c4e7481e23825ea70af4b4922f8ede5b9e35f78a3b1", + "sha256:717ba8fe3ae9cc0006d7c451f0bb265ee07739daf76355d06366154ee68d221e", + "sha256:7952deddf24b85c88dab48f6ec366ac6e39d2761b5280f2f9594911e03fcd064", + "sha256:79855e1c5b8da654cf486b830bd42c06e8780cea587384cf6545b7d9ac013a0b", + "sha256:7c1699dfe0cf8ff607dbdcc1e9b9af1755371f92a68f706051cc8c37d447c905", + "sha256:88e5fcfb52ee7b911e8bb6d6aa2fd21fbecc674eadd44118a9cc3863f938e735", + "sha256:8defac2f2ccd6805ebf65f5eeb132adcf2ab57aa11fdf4c0dd5169a004710e7d", + "sha256:98c7086708b163d425c67c7a91bad6e466bb99d797aa64f965e9d25c12111a5e", + "sha256:9add70b36c5666a2ed02b43b335fe19002ee5235efd4b8a89bfcf9005bebac0d", + "sha256:9bf40443012702a1d2070043cb6291650a0841ece432556f784f004937f0f32c", + "sha256:ade5e387d2ad0d7ebf59146cc00c8044acbd863725f887353a10df825fc8ae21", + "sha256:b00c1de48212e4cc9603895652c5c410df699856a2853135b3967591e4beebc2", + "sha256:b1282f8c00509d99fef04d8ba936b156d419be841854fe901d8ae224c59f0be5", + "sha256:b2051432115498d3562c084a49bba65d97cf251f5a331c64a12ee7e04dacc51b", + "sha256:ba59edeaa2fc6114428f1637ffff42da1e311e29382d81b339c1817d37ec93c6", + "sha256:c8716a48d94b06bb3b2524c2b77e055fb313aeb4ea620c8dd03a105574ba704f", + "sha256:cd5df75523866410809ca100dc9681e301e3c27567cf498077e8551b6d20e42f", + "sha256:cdb132fc825c38e1aeec2c8aa9338310d29d337bebbd7baa06889d09a60a1fa2", + "sha256:e249096428b3ae81b08327a63a485ad0878de3fb939049038579ac0ef61e17e7", + "sha256:e8313f01ba26fbbe36c7be1966a7b7424942f670f38e666995b88d012765b9be" + ], + "version": "==1.1.1" + }, + "mistune": { + "hashes": [ + "sha256:59a3429db53c50b5c6bcc8a07f8848cb00d7dc8bdb431a4ab41920d201d4756e", + "sha256:88a1051873018da288eee8538d476dffe1262495144b33ecb586c4ab266bb8d4" + ], + "version": "==0.8.4" + }, + "more-itertools": { + "hashes": [ + "sha256:5dd8bcf33e5f9513ffa06d5ad33d78f31e1931ac9a18f33d37e77a180d393a7c", + "sha256:b1ddb932186d8a6ac451e1d95844b382f55e12686d51ca0c68b6f61f2ab7a507" + ], + "version": "==8.2.0" + }, + "nbconvert": { + "hashes": [ + "sha256:21fb48e700b43e82ba0e3142421a659d7739b65568cc832a13976a77be16b523", + "sha256:f0d6ec03875f96df45aa13e21fd9b8450c42d7e1830418cccc008c0df725fcee" + ], + "version": "==5.6.1" + }, + "nbformat": { + "hashes": [ + "sha256:562de41fc7f4f481b79ab5d683279bf3a168858268d4387b489b7b02be0b324a", + "sha256:f4bbbd8089bd346488f00af4ce2efb7f8310a74b2058040d075895429924678c" + ], + "version": "==5.0.4" + }, + "notebook": { + "hashes": [ + "sha256:3edc616c684214292994a3af05eaea4cc043f6b4247d830f3a2f209fa7639a80", + "sha256:47a9092975c9e7965ada00b9a20f0cf637d001db60d241d479f53c0be117ad48" + ], + "version": "==6.0.3" + }, + "packaging": { + "hashes": [ + "sha256:3c292b474fda1671ec57d46d739d072bfd495a4f51ad01a055121d81e952b7a3", + "sha256:82f77b9bee21c1bafbf35a84905d604d5d1223801d639cf3ed140bd651c08752" + ], + "version": "==20.3" + }, + "pandocfilters": { + "hashes": [ + "sha256:41a309da81cba5509389b19d96b0ee49551cee8165a6406754f2565e95429860", + "sha256:b3dd70e169bb5449e6bc6ff96aea89c5eea8c5f6ab5e207fc2f521a2cf4a0da9" + ], + "version": "==1.4.2" + }, + "parso": { + "hashes": [ + "sha256:0c5659e0c6eba20636f99a04f469798dca8da279645ce5c387315b2c23912157", + "sha256:8515fc12cfca6ee3aa59138741fc5624d62340c97e401c74875769948d4f2995" + ], + "version": "==0.6.2" + }, + "pexpect": { + "hashes": [ + "sha256:0b48a55dcb3c05f3329815901ea4fc1537514d6ba867a152b581d69ae3710937", + "sha256:fc65a43959d153d0114afe13997d439c22823a27cefceb5ff35c2178c6784c0c" + ], + "version": "==4.8.0" + }, + "pickleshare": { + "hashes": [ + "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca", + "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56" + ], + "version": "==0.7.5" + }, + "pluggy": { + "hashes": [ + "sha256:15b2acde666561e1298d71b523007ed7364de07029219b604cf808bfa1c765b0", + "sha256:966c145cd83c96502c3c3868f50408687b38434af77734af1e9ca461a4081d2d" + ], + "version": "==0.13.1" + }, + "prometheus-client": { + "hashes": [ + "sha256:09b5750fd1c153420dccd35881116e853c730081bea0dbf0ea6649103bcb8445", + "sha256:71cd24a2b3eb335cb800c7159f423df1bd4dcd5171b234be15e3f31ec9f622da" + ], + "version": "==0.7.1" + }, + "prompt-toolkit": { + "hashes": [ + "sha256:563d1a4140b63ff9dd587bda9557cffb2fe73650205ab6f4383092fb882e7dc8", + "sha256:df7e9e63aea609b1da3a65641ceaf5bc7d05e0a04de5bd45d05dbeffbabf9e04" + ], + "version": "==3.0.5" + }, + "ptyprocess": { + "hashes": [ + "sha256:923f299cc5ad920c68f2bc0bc98b75b9f838b93b599941a6b63ddbc2476394c0", + "sha256:d7cc528d76e76342423ca640335bd3633420dc1366f258cb31d05e865ef5ca1f" + ], + "version": "==0.6.0" + }, + "py": { + "hashes": [ + "sha256:5e27081401262157467ad6e7f851b7aa402c5852dbcb3dae06768434de5752aa", + "sha256:c20fdd83a5dbc0af9efd622bee9a5564e278f6380fffcacc43ba6f43db2813b0" + ], + "version": "==1.8.1" + }, + "pygments": { + "hashes": [ + "sha256:647344a061c249a3b74e230c739f434d7ea4d8b1d5f3721bc0f3558049b38f44", + "sha256:aa931c0bd5daa25c475afadb2147115134cfe501f0656828cbe7cb566c7123bc", + "sha256:ff7a40b4860b727ab48fad6360eb351cc1b33cbf9b15a0f689ca5353e9463324" + ], + "version": "==2.6.1" + }, + "pyparsing": { + "hashes": [ + "sha256:4c830582a84fb022400b85429791bc551f1f4871c33f23e44f353119e92f969f", + "sha256:c342dccb5250c08d45fd6f8b4a559613ca603b57498511740e65cd11a2e7dcec" + ], + "version": "==2.4.6" + }, + "pyrsistent": { + "hashes": [ + "sha256:28669905fe725965daa16184933676547c5bb40a5153055a8dee2a4bd7933ad3", + "sha256:3217696df78f9222a3d1179b119c27be346b969a9e4d617de2a215a87d9aa456", + "sha256:9324b762b52e5a901611b25f50f9cdf8789c61ece3ff7c24dc872603c4faca62", + "sha256:c11415790cc5803e173de7d71d54f94c66a9154f81a72ffdf45a70096916f226" + ], + "version": "==0.16.0" + }, + "pytest": { + "hashes": [ + "sha256:0e5b30f5cb04e887b91b1ee519fa3d89049595f428c1db76e73bd7f17b09b172", + "sha256:84dde37075b8805f3d1f392cc47e38a0e59518fb46a431cfdaf7cf1ce805f970" + ], + "index": "pypi", + "version": "==5.4.1" + }, + "python-dateutil": { + "hashes": [ + "sha256:73ebfe9dbf22e832286dafa60473e4cd239f8592f699aa5adaf10050e6e1823c", + "sha256:75bb3f31ea686f1197762692a9ee6a7550b59fc6ca3a1f4b5d7e32fb98e2da2a" + ], + "version": "==2.8.1" + }, + "pywin32": { + "hashes": [ + "sha256:300a2db938e98c3e7e2093e4491439e62287d0d493fe07cce110db070b54c0be", + "sha256:31f88a89139cb2adc40f8f0e65ee56a8c585f629974f9e07622ba80199057511", + "sha256:371fcc39416d736401f0274dd64c2302728c9e034808e37381b5e1b22be4a6b0", + "sha256:47a3c7551376a865dd8d095a98deba954a98f326c6fe3c72d8726ca6e6b15507", + "sha256:4cdad3e84191194ea6d0dd1b1b9bdda574ff563177d2adf2b4efec2a244fa116", + "sha256:7c1ae32c489dc012930787f06244426f8356e129184a02c25aef163917ce158e", + "sha256:7f18199fbf29ca99dff10e1f09451582ae9e372a892ff03a28528a24d55875bc", + "sha256:9b31e009564fb95db160f154e2aa195ed66bcc4c058ed72850d047141b36f3a2", + "sha256:a929a4af626e530383a579431b70e512e736e9588106715215bf685a3ea508d4", + "sha256:c054c52ba46e7eb6b7d7dfae4dbd987a1bb48ee86debe3f245a2884ece46e295", + "sha256:f27cec5e7f588c3d1051651830ecc00294f90728d19c3bf6916e6dba93ea357c", + "sha256:f4c5be1a293bae0076d93c88f37ee8da68136744588bc5e2be2f299a34ceb7aa" + ], + "markers": "sys_platform == 'win32'", + "version": "==227" + }, + "pywinpty": { + "hashes": [ + "sha256:1e525a4de05e72016a7af27836d512db67d06a015aeaf2fa0180f8e6a039b3c2", + "sha256:2740eeeb59297593a0d3f762269b01d0285c1b829d6827445fcd348fb47f7e70", + "sha256:2d7e9c881638a72ffdca3f5417dd1563b60f603e1b43e5895674c2a1b01f95a0", + "sha256:33df97f79843b2b8b8bc5c7aaf54adec08cc1bae94ee99dfb1a93c7a67704d95", + "sha256:5fb2c6c6819491b216f78acc2c521b9df21e0f53b9a399d58a5c151a3c4e2a2d", + "sha256:8fc5019ff3efb4f13708bd3b5ad327589c1a554cb516d792527361525a7cb78c", + "sha256:b358cb552c0f6baf790de375fab96524a0498c9df83489b8c23f7f08795e966b", + "sha256:dbd838de92de1d4ebf0dce9d4d5e4fc38d0b7b1de837947a18b57a882f219139", + "sha256:dd22c8efacf600730abe4a46c1388355ce0d4ab75dc79b15d23a7bd87bf05b48", + "sha256:e854211df55d107f0edfda8a80b39dfc87015bef52a8fe6594eb379240d81df2" + ], + "markers": "os_name == 'nt'", + "version": "==0.5.7" + }, + "pyzmq": { + "hashes": [ + "sha256:07bfbf192f22ef1dde65b6046efff191e3201e74da6d47098e68958469ecbe48", + "sha256:0bbc1728fe4314b4ca46249c33873a390559edac7c217ec7001b5e0c34a8fb7f", + "sha256:1e076ad5bd3638a18c376544d32e0af986ca10d43d4ce5a5d889a8649f0d0a3d", + "sha256:242d949eb6b10197cda1d1cec377deab1d5324983d77e0d0bf9dc5eb6d71a6b4", + "sha256:26f4ae420977d2a8792d7c2d7bda43128b037b5eeb21c81951a94054ad8b8843", + "sha256:32234c21c5e0a767c754181c8112092b3ddd2e2a36c3f76fc231ced817aeee47", + "sha256:3f12ce1e9cc9c31497bd82b207e8e86ccda9eebd8c9f95053aae46d15ccd2196", + "sha256:4557d5e036e6d85715b4b9fdb482081398da1d43dc580d03db642b91605b409f", + "sha256:4f562dab21c03c7aa061f63b147a595dbe1006bf4f03213272fc9f7d5baec791", + "sha256:54ecd00daa474885bbf318108401d318614425a05dfeae917611dd93f99f2678", + "sha256:5e071b834051e9ecb224915398f474bfad802c2fff883f118ff5363ca4ae3edf", + "sha256:5e1f65e576ab07aed83f444e201d86deb01cd27dcf3f37c727bc8729246a60a8", + "sha256:5f10a31f288bf055be76c57710807a8f0efdb2b82be6c2a2b8f9a61f33a40cea", + "sha256:6aaaf90b420dc40d9a0e1996b82c6a0ff91d9680bebe2135e67c9e6d197c0a53", + "sha256:75238d3c16cab96947705d5709187a49ebb844f54354cdf0814d195dd4c045de", + "sha256:7f7e7b24b1d392bb5947ba91c981e7d1a43293113642e0d8870706c8e70cdc71", + "sha256:84b91153102c4bcf5d0f57d1a66a0f03c31e9e6525a5f656f52fc615a675c748", + "sha256:944f6bb5c63140d76494467444fd92bebd8674236837480a3c75b01fe17df1ab", + "sha256:a1f957c20c9f51d43903881399b078cddcf710d34a2950e88bce4e494dcaa4d1", + "sha256:a49fd42a29c1cc1aa9f461c5f2f5e0303adba7c945138b35ee7f4ab675b9f754", + "sha256:a99ae601b4f6917985e9bb071549e30b6f93c72f5060853e197bdc4b7d357e5f", + "sha256:ad48865a29efa8a0cecf266432ea7bc34e319954e55cf104be0319c177e6c8f5", + "sha256:b08e425cf93b4e018ab21dc8fdbc25d7d0502a23cc4fea2380010cf8cf11e462", + "sha256:bb10361293d96aa92be6261fa4d15476bca56203b3a11c62c61bd14df0ef89ba", + "sha256:bd1a769d65257a7a12e2613070ca8155ee348aa9183f2aadf1c8b8552a5510f5", + "sha256:cb3b7156ef6b1a119e68fbe3a54e0a0c40ecacc6b7838d57dd708c90b62a06dc", + "sha256:d2f64994f9628f621e0f636f9532055887defc9fa5213aaeceb770d9c579f9ac", + "sha256:e8e4efb52ec2df8d046395ca4c84ae0056cf507b2f713ec803c65a8102d010de", + "sha256:f37c29da2a5b0c5e31e6f8aab885625ea76c807082f70b2d334d3fd573c3100a", + "sha256:f4d558bc5668d2345773a9ff8c39e2462dafcb1f6772a2e582fbced389ce527f", + "sha256:f5b6d015587a1d6f582ba03b226a9ddb1dfb09878b3be04ef48b01b7d4eb6b2a" + ], + "version": "==19.0.0" + }, + "remote-ikernel": { + "hashes": [ + "sha256:5253216e87a8c31f1b0ca9305454f223147518b580e853b7635a3d8b9c88c295", + "sha256:740b80a57fa1af40cadef541c5a4eb293675b504092ecf00c57dd2f0011bd840" + ], + "index": "pypi", + "version": "==0.4.6" + }, + "send2trash": { + "hashes": [ + "sha256:60001cc07d707fe247c94f74ca6ac0d3255aabcb930529690897ca2a39db28b2", + "sha256:f1691922577b6fa12821234aeb57599d887c4900b9ca537948d2dac34aea888b" + ], + "version": "==1.5.0" + }, + "six": { + "hashes": [ + "sha256:236bdbdce46e6e6a3d61a337c0f8b763ca1e8717c03b369e87a7ec7ce1319c0a", + "sha256:8f3cd2e254d8f793e7f3d6d9df77b92252b52637291d0f0da013c76ea2724b6c" + ], + "version": "==1.14.0" + }, + "terminado": { + "hashes": [ + "sha256:4804a774f802306a7d9af7322193c5390f1da0abb429e082a10ef1d46e6fb2c2", + "sha256:a43dcb3e353bc680dd0783b1d9c3fc28d529f190bc54ba9a229f72fe6e7a54d7" + ], + "version": "==0.8.3" + }, + "testpath": { + "hashes": [ + "sha256:60e0a3261c149755f4399a1fff7d37523179a70fdc3abdf78de9fc2604aeec7e", + "sha256:bfcf9411ef4bf3db7579063e0546938b1edda3d69f4e1fb8756991f5951f85d4" + ], + "version": "==0.4.4" + }, + "tornado": { + "hashes": [ + "sha256:0fe2d45ba43b00a41cd73f8be321a44936dc1aba233dee979f17a042b83eb6dc", + "sha256:22aed82c2ea340c3771e3babc5ef220272f6fd06b5108a53b4976d0d722bcd52", + "sha256:2c027eb2a393d964b22b5c154d1a23a5f8727db6fda837118a776b29e2b8ebc6", + "sha256:503700d85d9a2c2aa737fb16df58bfa2ac0d5ec501881fea2acceae64ce17858", + "sha256:5217e601700f24e966ddab689f90b7ea4bd91ff3357c3600fa1045e26d68e55d", + "sha256:5618f72e947533832cbc3dec54e1dffc1747a5cb17d1fd91577ed14fa0dc081b", + "sha256:5f6a07e62e799be5d2330e68d808c8ac41d4a259b9cea61da4101b83cb5dc673", + "sha256:7182a9285e364e55e6902b5fb4d4a219efd8d7818d9000b419a0eaf3909fc0bc", + "sha256:c58d56003daf1b616336781b26d184023ea4af13ae143d9dda65e31e534940b9", + "sha256:c952975c8ba74f546ae6de2e226ab3cc3cc11ae47baf607459a6728585bb542a", + "sha256:c98232a3ac391f5faea6821b53db8db461157baa788f5d6222a193e9456e1740" + ], + "version": "==6.0.4" + }, + "traitlets": { + "hashes": [ + "sha256:70b4c6a1d9019d7b4f6846832288f86998aa3b9207c6821f3578a6a6a467fe44", + "sha256:d023ee369ddd2763310e4c3eae1ff649689440d4ae59d7485eb4cfbbe3e359f7" + ], + "version": "==4.3.3" + }, + "wcwidth": { + "hashes": [ + "sha256:cafe2186b3c009a04067022ce1dcd79cb38d8d65ee4f4791b8888d6599d1bbe1", + "sha256:ee73862862a156bf77ff92b09034fc4825dd3af9cf81bc5b360668d425f3c5f1" + ], + "version": "==0.1.9" + }, + "webencodings": { + "hashes": [ + "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", + "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923" + ], + "version": "==0.5.1" + }, + "zipp": { + "hashes": [ + "sha256:aa36550ff0c0b7ef7fa639055d797116ee891440eac1a56f378e2d3179e0320b", + "sha256:c599e4d75c98f6798c509911d08a22e6c021d074469042177c8c86fb92eefd96" + ], + "version": "==3.1.0" + } + } +} diff --git a/Ch02/listing02-08/sensors.py b/Ch02/listing02-08/sensors.py new file mode 100644 index 0000000..4785c09 --- /dev/null +++ b/Ch02/listing02-08/sensors.py @@ -0,0 +1,178 @@ +#!/usr/bin/env python +# coding: utf-8 +import math +import socket +import sys + +import click +import psutil + + +class PythonVersion: + title = "Python Version" + + def value(self): + return sys.version_info + + @classmethod + def format(cls, value): + if value.micro == 0 and value.releaselevel == "alpha": + return "{0.major}.{0.minor}.{0.micro}a{0.serial}".format(value) + return "{0.major}.{0.minor}".format(value) + + def __str__(self): + return self.format(self.value()) + + +class IPAddresses: + title = "IP Addresses" + + def value(self): + hostname = socket.gethostname() + addresses = socket.getaddrinfo(hostname, None) + + address_info = [] + for address in addresses: + value = (address[0].name, address[4][0]) + if value not in address_info: + address_info.append(value) + return address_info + + @classmethod + def format(cls, value): + return "\n".join( + "{0[1]} ({0[0]})".format(address) + for address in value + ) + + def __str__(self): + return self.format(self.value()) + + +class CPULoad: + title = "CPU Usage" + + def value(self): + return psutil.cpu_percent(interval=3) / 100.0 + + @classmethod + def format(cls, value): + return "{:.1%}".format(value) + + def __str__(self): + return self.format(self.value()) + + +class RAMAvailable: + title = "RAM Available" + UNITS = ('KiB', 'MiB', 'GiB', 'TiB', 'PiB', 'EiB') + UNIT_SIZE = 2**10 + + def value(self): + return psutil.virtual_memory().available + + @classmethod + def format(cls, value): + magnitude = math.floor(math.log(value, cls.UNIT_SIZE)) + max_magnitude = len(cls.UNITS) + magnitude = min(magnitude, max_magnitude) + scaled_value = value / cls.UNIT_SIZE ** magnitude + + return "{:.1f} {}".format(scaled_value, cls.UNITS[magnitude - 1]) + + def __str__(self): + return self.format(self.value()) + + +class ACStatus: + title = "AC Connected" + + def value(self): + battery = psutil.sensors_battery() + if battery is not None: + return battery.power_plugged + else: + return None + + @classmethod + def format(cls, value): + if value is None: + return "Unknown" + elif value: + return "Connected" + else: + return "Not connected" + + def __str__(self): + return self.format(self.value()) + + +class Temperature: + title = "Ambient Temperature" + + def value(self): + try: + # Connect to a DHT22 on pin 4 + from adafruit_dht import DHT22 + from board import D4 + except (ImportError, NotImplementedError): + # No DHT library results in an ImportError. + # Running on an unknown platform results in a NotImplementedError when getting the pin + return None + try: + return DHT22(D4).temperature + except RuntimeError: + return None + + @staticmethod + def celsius_to_fahrenheit(cls, value: float) -> float: + return value * 9 / 5 + 32 + + @classmethod + def format(cls, value): + if value is None: + return "Unknown" + else: + return "{:.1}C ({:.1}F)".format(value, self.celsius_to_fahrenheit(value)) + + def __str__(self): + return self.format(self.value()) + +class RelativeHumidity: + title = "Relative Humidity" + + def value(self): + try: + # Connect to a DHT22 on pin 4 + from adafruit_dht import DHT22 + from board import D4 + except (ImportError, NotImplementedError): + # No DHT library results in an ImportError. + # Running on an unknown platform results in a NotImplementedError when getting the pin + return None + try: + return DHT22(D4).humidity / 100 + except RuntimeError: + return None + + @classmethod + def format(cls, value): + if value is None: + return "Unknown" + else: + return "{:.1%}".format(value) + + def __str__(self): + return self.format(self.value()) + + +@click.command(help="Displays the values of the sensors") +def show_sensors(): + for sensor in [PythonVersion(), IPAddresses(), CPULoad(), RAMAvailable(), ACStatus(), Temperature(), RelativeHumidity()]: + click.secho(sensor.title, bold=True) + click.echo(sensor) + click.echo("") + + +if __name__ == '__main__': + show_sensors() \ No newline at end of file diff --git a/Ch02/listing02-08/tests/__init__.py b/Ch02/listing02-08/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/Ch02/listing02-08/tests/test_pythonversion.py b/Ch02/listing02-08/tests/test_pythonversion.py new file mode 100644 index 0000000..abd2f49 --- /dev/null +++ b/Ch02/listing02-08/tests/test_pythonversion.py @@ -0,0 +1,32 @@ +from collections import namedtuple + +from sensors import PythonVersion + +import pytest + + +class TestPythonVersionFormatter: + + @pytest.fixture + def subject(self): + return PythonVersion().format + + @pytest.fixture + def version(self): + return namedtuple("sys_versioninfo", ("major", "minor", "micro", "releaselevel", "serial")) + + def test_format_py38(self, subject, version): + py38 = version(3, 8, 0, "final", 0) + assert subject(py38) == "3.8" + + def test_format_large_version(self, subject, version): + large = version(255, 128, 0, "final", 0) + assert subject(large) == "255.128" + + def test_alpha_of_minor_is_marked(self, subject, version): + py39 = version(3, 9, 0, "alpha", 1) + assert subject(py39) == "3.9.0a1" + + def test_alpha_of_micro_is_unmarked(self, subject, version): + py39 = version(3, 9, 1, "alpha", 1) + assert subject(py39) == "3.9" diff --git a/Ch02/listing02-08/tests/test_sensors.py b/Ch02/listing02-08/tests/test_sensors.py new file mode 100644 index 0000000..dec77f9 --- /dev/null +++ b/Ch02/listing02-08/tests/test_sensors.py @@ -0,0 +1,17 @@ +import sys + +from click.testing import CliRunner +import pytest + +import sensors + + +def test_sensors(): + assert hasattr(sensors, 'PythonVersion') + +@pytest.mark.functional +def test_python_version_is_first_two_lines_of_cli_output(): + runner = CliRunner() + result = runner.invoke(sensors.show_sensors) + python_version = str(sensors.PythonVersion()) + assert ["Python Version", python_version] == result.stdout.split("\n")[:2] \ No newline at end of file diff --git a/Ch02/listing02-09-sensors,cover.py b/Ch02/listing02-09-sensors,cover.py new file mode 100644 index 0000000..7c29f0e --- /dev/null +++ b/Ch02/listing02-09-sensors,cover.py @@ -0,0 +1,178 @@ + #!/usr/bin/env python + # coding: utf-8 +> import math +> import socket +> import sys + +> import click +> import psutil + + +> class PythonVersion: +> title = "Python Version" + +> def value(self): +! return sys.version_info + +> @classmethod +> def format(cls, value): +> if value.micro == 0 and value.releaselevel == "alpha": +> return "{0.major}.{0.minor}.{0.micro}a{0.serial}".format(value) +> return "{0.major}.{0.minor}".format(value) + +> def __str__(self): +! return self.format(self.value()) + + +> class IPAddresses: +> title = "IP Addresses" + +> def value(self): +! hostname = socket.gethostname() +! addresses = socket.getaddrinfo(hostname, None) + +! address_info = [] +! for address in addresses: +! value = (address[0].name, address[4][0]) +! if value not in address_info: +! address_info.append(value) +! return address_info + +> @classmethod +> def format(cls, value): +! return "\n".join( +! "{0[1]} ({0[0]})".format(address) +! for address in value +! ) + +> def __str__(self): +! return self.format(self.value()) + + +> class CPULoad: +> title = "CPU Usage" + +> def value(self): +! return psutil.cpu_percent(interval=3) / 100.0 + +> @classmethod +> def format(cls, value): +! return "{:.1%}".format(value) + +> def __str__(self): +! return self.format(self.value()) + + +> class RAMAvailable: +> title = "RAM Available" +> UNITS = ('KiB', 'MiB', 'GiB', 'TiB', 'PiB', 'EiB') +> UNIT_SIZE = 2**10 + +> def value(self): +! return psutil.virtual_memory().available + +> @classmethod +> def format(cls, value): +! magnitude = math.floor(math.log(value, cls.UNIT_SIZE)) +! max_magnitude = len(cls.UNITS) +! magnitude = min(magnitude, max_magnitude) +! scaled_value = value / cls.UNIT_SIZE ** magnitude + +! return "{:.1f} {}".format(scaled_value, cls.UNITS[magnitude - 1]) + +> def __str__(self): +! return self.format(self.value()) + + +> class ACStatus: +> title = "AC Connected" + +> def value(self): +! battery = psutil.sensors_battery() +! if battery is not None: +! return battery.power_plugged +! else: +! return None + +> @classmethod +> def format(cls, value): +! if value is None: +! return "Unknown" +! elif value: +! return "Connected" +! else: +! return "Not connected" + +> def __str__(self): +! return self.format(self.value()) + + +> class Temperature: +> title = "Ambient Temperature" + +> def value(self): +! try: + # Connect to a DHT22 on pin 4 +! from adafruit_dht import DHT22 +! from board import D4 +! except (ImportError, NotImplementedError): + # No DHT library results in an ImportError. + # Running on an unknown platform results in a NotImplementedError when getting the pin +! return None +! try: +! return DHT22(D4).temperature +! except RuntimeError: +! return None + +> @staticmethod +> def celsius_to_fahrenheit(cls, value: float) -> float: +! return value * 9 / 5 + 32 + +> @classmethod +> def format(cls, value): +! if value is None: +! return "Unknown" +! else: +! return "{:.1}C ({:.1}F)".format(value, self.celsius_to_fahrenheit(value)) + +> def __str__(self): +! return self.format(self.value()) + +> class RelativeHumidity: +> title = "Relative Humidity" + +> def value(self): +! try: + # Connect to a DHT22 on pin 4 +! from adafruit_dht import DHT22 +! from board import D4 +! except (ImportError, NotImplementedError): + # No DHT library results in an ImportError. + # Running on an unknown platform results in a NotImplementedError when getting the pin +! return None +! try: +! return DHT22(D4).humidity / 100 +! except RuntimeError: +! return None + +> @classmethod +> def format(cls, value): +! if value is None: +! return "Unknown" +! else: +! return "{:.1%}".format(value) + +> def __str__(self): +! return self.format(self.value()) + + +> @click.command(help="Displays the values of the sensors") +> def show_sensors(): +! for sensor in [PythonVersion(), IPAddresses(), CPULoad(), RAMAvailable(), ACStatus(), Temperature(), RelativeHumidity()]: +! click.secho(sensor.title, bold=True) +! click.echo(sensor) +! click.echo("") + + +> if __name__ == '__main__': +! show_sensors() diff --git a/Ch02/listing02-10/.pre-commit-config.yaml b/Ch02/listing02-10/.pre-commit-config.yaml new file mode 100644 index 0000000..3ff6d15 --- /dev/null +++ b/Ch02/listing02-10/.pre-commit-config.yaml @@ -0,0 +1,23 @@ +repos: + +- repo: local + hooks: + - id: black + name: black + entry: pipenv run black + args: [--quiet] + language: system + types: [python] + + - id: mypy + name: mypy + entry: pipenv run mypy + args: ["--follow-imports=skip"] + language: system + types: [python] + + - id: flake8 + name: flake8 + entry: pipenv run flake8 + language: system + types: [python] diff --git a/Ch02/listing02-10/Pipfile b/Ch02/listing02-10/Pipfile new file mode 100644 index 0000000..c35d39c --- /dev/null +++ b/Ch02/listing02-10/Pipfile @@ -0,0 +1,29 @@ +[[source]] +name = "pypi" +url = "https://pypi.org/simple" +verify_ssl = true + +[[source]] +name = "pypi" +url = "https://piwheels.org/simple" +verify_ssl = true + +[dev-packages] +ipykernel = "*" +remote-ikernel = "*" +pytest = "*" +pytest-cov = "*" +mypy = "*" +flake8 = "*" +black = "*" +pre-commit = "*" + +[packages] +psutil = "*" +click = "*" +adafruit-circuitpython-dht = {markers = "'arm' in platform_machine",version = "*"} + +[requires] + +[pipenv] +allow_prereleases = true diff --git a/Ch02/listing02-10/Pipfile.lock b/Ch02/listing02-10/Pipfile.lock new file mode 100644 index 0000000..ff7db13 --- /dev/null +++ b/Ch02/listing02-10/Pipfile.lock @@ -0,0 +1,866 @@ +{ + "_meta": { + "hash": { + "sha256": "9bc7427fda5ec4bf8a1344d4f47036d9af341544ccce6f12273046f922d95df2" + }, + "pipfile-spec": 6, + "requires": {}, + "sources": [ + { + "name": "pypi", + "url": "https://pypi.org/simple", + "verify_ssl": true + }, + { + "name": "pypi", + "url": "https://piwheels.org/simple", + "verify_ssl": true + } + ] + }, + "default": { + "adafruit-blinka": { + "hashes": [ + "sha256:375a71854a52779a760c5b2f53f626c9217b523b77ac1c4648ee81c606ce4eec", + "sha256:dbd25293944e118bec49ef0763b51cda8445b7a8cb49e8d39934f01551820cc5" + ], + "version": "==4.2.0" + }, + "adafruit-circuitpython-dht": { + "hashes": [ + "sha256:454b506bab88a009ea19aa1ea00338dffe1d48fb42ab2c3e03948bf337a5542c", + "sha256:5f9307fbfad64221ba1a4e7b34ecbf26326a5d77a856482361bef70c251df55d" + ], + "index": "pypi", + "markers": "'arm' in platform_machine", + "version": "==3.3.0" + }, + "adafruit-platformdetect": { + "hashes": [ + "sha256:917f431371f94a60391e881fe1af3731a225b188e0c0157ebc69b877f1fd0a2a", + "sha256:bf446f8365cdf0a87d4bf6620e70bd59da99b0523c2111f0dc74a1155236ff61" + ], + "version": "==2.5.0" + }, + "adafruit-pureio": { + "hashes": [ + "sha256:013ebe6119eaaa0d39716ea5fbfad4fcbada7c88eaebcc7d6615f9df44e53b8c", + "sha256:b67587ed3c4dc90bd0e9b988587efa66b4466abf71eb0dcbcd4695e7e4350326" + ], + "version": "==1.0.4" + }, + "click": { + "hashes": [ + "sha256:8a18b4ea89d8820c5d0c7da8a64b2c324b4dabb695804dbfea19b9be9d88c0cc", + "sha256:e345d143d80bf5ee7534056164e5e112ea5e22716bbb1ce727941f4c8b471b9a" + ], + "index": "pypi", + "version": "==7.1.1" + }, + "psutil": { + "hashes": [ + "sha256:002bd856770037221256765a472f50d677074ad207276a39e2bccdb7394e333b", + "sha256:1413f4158eb50e110777c4f15d7c759521703bd6beb58926f1d562da40180058", + "sha256:298af2f14b635c3c7118fd9183843f4e73e681bb6f01e12284d4d70d48a60953", + "sha256:60b86f327c198561f101a92be1995f9ae0399736b6eced8f24af41ec64fb88d4", + "sha256:685ec16ca14d079455892f25bd124df26ff9137664af445563c1bd36629b5e0e", + "sha256:73f35ab66c6c7a9ce82ba44b1e9b1050be2a80cd4dcc3352cc108656b115c74f", + "sha256:75e22717d4dbc7ca529ec5063000b2b294fc9a367f9c9ede1f65846c7955fd38", + "sha256:833b2b19c04fc0aecad22daa3e35108d6ee2e4f92061a4a8f2dd77c6fa9154f5", + "sha256:a02f4ac50d4a23253b68233b07e7cdb567bd025b982d5cf0ee78296990c22d9e", + "sha256:d008ddc00c6906ec80040d26dc2d3e3962109e40ad07fd8a12d0284ce5e0e4f8", + "sha256:d84029b190c8a66a946e28b4d3934d2ca1528ec94764b180f7d6ea57b0e75e26", + "sha256:e2d0c5b07c6fe5a87fa27b7855017edb0d52ee73b71e6ee368fae268605cc3f5", + "sha256:f344ca230dd8e8d5eee16827596f1c22ec0876127c28e800d7ae20ed44c4b310", + "sha256:f3e7f183162622eae9fbdee44ff19b226edec68b94ae7cba47f9afcf4c3ec66c" + ], + "index": "pypi", + "version": "==5.7.0" + }, + "pyftdi": { + "hashes": [ + "sha256:51827a876d0ed2b146d66083f7020a4ca1b703fca599da119e3a79009c89549c", + "sha256:a98e683b7e3569814524a4bdd723e8b239072da30366071a9266ab80083f2135", + "sha256:e781c9a4e6ad2ed6830e5b4aa3f1707efb781d3598493f0655c43c97d64afc63" + ], + "version": "==0.48.3" + }, + "pyserial": { + "hashes": [ + "sha256:6e2d401fdee0eab996cf734e67773a0143b932772ca8b42451440cfed942c627", + "sha256:e0770fadba80c31013896c7e6ef703f72e7834965954a78e71a3049488d4d7d8" + ], + "version": "==3.4" + }, + "pyusb": { + "hashes": [ + "sha256:4e9b72cc4a4205ca64fbf1f3fff39a335512166c151ad103e55c8223ac147362", + "sha256:789749b8a9bf3828c55d41df2c3e569739cd1bdbe1517e8d940af9587a711faa" + ], + "version": "==1.0.2" + }, + "rpi-ws281x": { + "hashes": [ + "sha256:185d7ae138a5633cf4cd707c55d7190b34810cc3f5e5682c820ddf1dade20914", + "sha256:265a395410cc7199f779c4209ca3970b7211896b86dbaa4731bdc3569d2e595f", + "sha256:544f09353ccb578452d0478470460d3425f40e8dd7433131a95239daeae83303", + "sha256:bc3a22e55c2a10de5c4dfb23c13dceff66162e77eb7176701f1a0d5ae8b97695", + "sha256:de182acceab047030056e2ab0dd2bd2632f2375f60d9a94cf7e3a8a4033834a0", + "sha256:f35e698e0d4205cb1bc2835b46429235fa22e973c8320d661f16556ceaf0f90b" + ], + "version": "==4.2.3" + }, + "rpi.gpio": { + "hashes": [ + "sha256:5cd2f3c88d0b1e2f4780c905702c0474768c2bc113fb793121c2e117b401ab16", + "sha256:6a4791f41cafc2ee6e4cb70e5bd31fadc66a0cfab29b38df8723a98f6f73ad5a", + "sha256:7424bc6c205466764f30f666c18187a0824077daf20b295c42f08aea2cb87d3f", + "sha256:7da5235aeba20da39ad4fb97f3ba3a2c6b2d60bba8958b00a4df42f608c6d42e" + ], + "version": "==0.7.0" + } + }, + "develop": { + "appdirs": { + "hashes": [ + "sha256:9e5896d1372858f8dd3344faf4e5014d21849c756c8d5701f78f8a103b372d92", + "sha256:d8b24664561d0d34ddfaec54636d502d7cea6e29c3eaf68f3df6180863e2166e" + ], + "version": "==1.4.3" + }, + "atomicwrites": { + "hashes": [ + "sha256:03472c30eb2c5d1ba9227e4c2ca66ab8287fbfbbda3888aa93dc2e28fc6811b4", + "sha256:75a9445bac02d8d058d5e1fe689654ba5a6556a1dfd8ce6ec55a0ed79866cfa6" + ], + "markers": "sys_platform == 'win32'", + "version": "==1.3.0" + }, + "attrs": { + "hashes": [ + "sha256:08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c", + "sha256:f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72" + ], + "version": "==19.3.0" + }, + "backcall": { + "hashes": [ + "sha256:1fac21e6861f538700a5d498620153f38407a4bacf9e1d5047b3d717f10bc4ab", + "sha256:38ecd85be2c1e78f77fd91700c76e14667dc21e2713b63876c0eb901196e01e4", + "sha256:bbbf4b1e5cd2bdb08f915895b51081c041bac22394fdfcfdfbe9f14b77c08bf2" + ], + "version": "==0.1.0" + }, + "black": { + "hashes": [ + "sha256:1b30e59be925fafc1ee4565e5e08abef6b03fe455102883820fe5ee2e4734e0b", + "sha256:c2edb73a08e9e0e6f65a0e6af18b059b8b1cdd5bef997d7a0b181df93dc81539" + ], + "index": "pypi", + "version": "==19.10b0" + }, + "bleach": { + "hashes": [ + "sha256:cc8da25076a1fe56c3ac63671e2194458e0c4d9c7becfd52ca251650d517903c", + "sha256:e78e426105ac07026ba098f04de8abe9b6e3e98b5befbf89b51a5ef0a4292b03" + ], + "version": "==3.1.4" + }, + "cfgv": { + "hashes": [ + "sha256:1ccf53320421aeeb915275a196e23b3b8ae87dea8ac6698b1638001d4a486d53", + "sha256:c8e8f552ffcc6194f4e18dd4f68d9aef0c0d58ae7e7be8c82bee3c5e9edfa513" + ], + "version": "==3.1.0" + }, + "click": { + "hashes": [ + "sha256:8a18b4ea89d8820c5d0c7da8a64b2c324b4dabb695804dbfea19b9be9d88c0cc", + "sha256:e345d143d80bf5ee7534056164e5e112ea5e22716bbb1ce727941f4c8b471b9a" + ], + "index": "pypi", + "version": "==7.1.1" + }, + "colorama": { + "hashes": [ + "sha256:7d73d2a99753107a36ac6b455ee49046802e59d9d076ef8e47b61499fa29afff", + "sha256:e96da0d330793e2cb9485e9ddfd918d456036c7149416295932478192f4436a1" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.3" + }, + "coverage": { + "hashes": [ + "sha256:03f630aba2b9b0d69871c2e8d23a69b7fe94a1e2f5f10df5049c0df99db639a0", + "sha256:046a1a742e66d065d16fb564a26c2a15867f17695e7f3d358d7b1ad8a61bca30", + "sha256:0a907199566269e1cfa304325cc3b45c72ae341fbb3253ddde19fa820ded7a8b", + "sha256:165a48268bfb5a77e2d9dbb80de7ea917332a79c7adb747bd005b3a07ff8caf0", + "sha256:1b60a95fc995649464e0cd48cecc8288bac5f4198f21d04b8229dc4097d76823", + "sha256:1f66cf263ec77af5b8fe14ef14c5e46e2eb4a795ac495ad7c03adc72ae43fafe", + "sha256:2e08c32cbede4a29e2a701822291ae2bc9b5220a971bba9d1e7615312efd3037", + "sha256:327ff84602ee3b5c0c921ff8bbe605e2dd3599fc2a12620b0085f847af4ebb2a", + "sha256:3844c3dab800ca8536f75ae89f3cf566848a3eb2af4d9f7b1103b4f4f7a5dad6", + "sha256:408ce64078398b2ee2ec08199ea3fcf382828d2f8a19c5a5ba2946fe5ddc6c31", + "sha256:443be7602c790960b9514567917af538cac7807a7c0c0727c4d2bbd4014920fd", + "sha256:4482f69e0701139d0f2c44f3c395d1d1d37abd81bfafbf9b6efbe2542679d892", + "sha256:4a8a259bf990044351baf69d3b23e575699dd60b18460c71e81dc565f5819ac1", + "sha256:513e6526e0082c59a984448f4104c9bf346c2da9961779ede1fc458e8e8a1f78", + "sha256:5f587dfd83cb669933186661a351ad6fc7166273bc3e3a1531ec5c783d997aac", + "sha256:62061e87071497951155cbccee487980524d7abea647a1b2a6eb6b9647df9006", + "sha256:641e329e7f2c01531c45c687efcec8aeca2a78a4ff26d49184dce3d53fc35014", + "sha256:65a7e00c00472cd0f59ae09d2fb8a8aaae7f4a0cf54b2b74f3138d9f9ceb9cb2", + "sha256:6ad6ca45e9e92c05295f638e78cd42bfaaf8ee07878c9ed73e93190b26c125f7", + "sha256:73aa6e86034dad9f00f4bbf5a666a889d17d79db73bc5af04abd6c20a014d9c8", + "sha256:7c9762f80a25d8d0e4ab3cb1af5d9dffbddb3ee5d21c43e3474c84bf5ff941f7", + "sha256:85596aa5d9aac1bf39fe39d9fa1051b0f00823982a1de5766e35d495b4a36ca9", + "sha256:86a0ea78fd851b313b2e712266f663e13b6bc78c2fb260b079e8b67d970474b1", + "sha256:8a620767b8209f3446197c0e29ba895d75a1e272a36af0786ec70fe7834e4307", + "sha256:922fb9ef2c67c3ab20e22948dcfd783397e4c043a5c5fa5ff5e9df5529074b0a", + "sha256:9fad78c13e71546a76c2f8789623eec8e499f8d2d799f4b4547162ce0a4df435", + "sha256:a37c6233b28e5bc340054cf6170e7090a4e85069513320275a4dc929144dccf0", + "sha256:c3fc325ce4cbf902d05a80daa47b645d07e796a80682c1c5800d6ac5045193e5", + "sha256:cda33311cb9fb9323958a69499a667bd728a39a7aa4718d7622597a44c4f1441", + "sha256:db1d4e38c9b15be1521722e946ee24f6db95b189d1447fa9ff18dd16ba89f732", + "sha256:eda55e6e9ea258f5e4add23bcf33dc53b2c319e70806e180aecbff8d90ea24de", + "sha256:f0db0dc803e0f81f2a4098d4f25904f41be13b6d3e69f098b5b2bbba17cb7985", + "sha256:f372cdbb240e09ee855735b9d85e7f50730dcfb6296b74b95a3e5dea0615c4c1" + ], + "version": "==5.0.4" + }, + "decorator": { + "hashes": [ + "sha256:41fa54c2a0cc4ba648be4fd43cff00aedf5b9465c9bf18d64325bc225f08f760", + "sha256:e3a62f0520172440ca0dcc823749319382e377f37f140a0b99ef45fecb84bfe7" + ], + "version": "==4.4.2" + }, + "defusedxml": { + "hashes": [ + "sha256:6687150770438374ab581bb7a1b327a847dd9c5749e396102de3fad4e8a3ef93", + "sha256:f684034d135af4c6cbb949b8a4d2ed61634515257a67299e5f940fbaa34377f5" + ], + "version": "==0.6.0" + }, + "distlib": { + "hashes": [ + "sha256:2e166e231a26b36d6dfe35a48c4464346620f8645ed0ace01ee31822b288de21", + "sha256:8a041060c5a140131768a2e2450813f5577f7e4c68a4585824c5585502dcfbea" + ], + "version": "==0.3.0" + }, + "entrypoints": { + "hashes": [ + "sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19", + "sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451" + ], + "version": "==0.3" + }, + "filelock": { + "hashes": [ + "sha256:18d82244ee114f543149c66a6e0c14e9c4f8a1044b5cdaadd0f82159d6a6ff59", + "sha256:929b7d63ec5b7d6b71b0fa5ac14e030b3f70b75747cef1b10da9b879fef15836" + ], + "version": "==3.0.12" + }, + "flake8": { + "hashes": [ + "sha256:45681a117ecc81e870cbf1262835ae4af5e7a8b08e40b944a8a6e6b895914cfb", + "sha256:49356e766643ad15072a789a20915d3c91dc89fd313ccd71802303fd67e4deca" + ], + "index": "pypi", + "version": "==3.7.9" + }, + "identify": { + "hashes": [ + "sha256:a7577a1f55cee1d21953a5cf11a3c839ab87f5ef909a4cba6cf52ed72b4c6059", + "sha256:ab246293e6585a1c6361a505b68d5b501a0409310932b7de2c2ead667b564d89" + ], + "version": "==1.4.13" + }, + "importlib-metadata": { + "hashes": [ + "sha256:2a688cbaa90e0cc587f1df48bdc97a6eadccdcd9c35fb3f976a09e3b5016d90f", + "sha256:34513a8a0c4962bc66d35b359558fd8a5e10cd472d37aec5f66858addef32c1e" + ], + "markers": "python_version < '3.8'", + "version": "==1.6.0" + }, + "ipykernel": { + "hashes": [ + "sha256:08997a27ccafbb998437d167ccc893666c6088ec3aa90c054bfb3d588bb3fc20", + "sha256:37c65d2e2da3326e5cf114405df6d47d997b8a3eba99e2cc4b75833bf71a5e18", + "sha256:39746b5f7d847a23fae4eac893e63e3d9cc5f8c3a4797fcd3bfa8d1a296ec6ed" + ], + "index": "pypi", + "version": "==5.2.0" + }, + "ipython": { + "hashes": [ + "sha256:1807adeae64502fcaa491cd93405644faa055b646efb40c1e48648ad66f65a75", + "sha256:ca478e52ae1f88da0102360e57e528b92f3ae4316aabac80a2cd7f7ab2efb48a", + "sha256:eb8d075de37f678424527b5ef6ea23f7b80240ca031c2dd6de5879d687a65333" + ], + "version": "==7.13.0" + }, + "ipython-genutils": { + "hashes": [ + "sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8", + "sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8" + ], + "version": "==0.2.0" + }, + "jedi": { + "hashes": [ + "sha256:b4f4052551025c6b0b0b193b29a6ff7bdb74c52450631206c262aef9f7159ad2", + "sha256:d5c871cb9360b414f981e7072c52c33258d598305280fef91c6cae34739d65d5" + ], + "version": "==0.16.0" + }, + "jinja2": { + "hashes": [ + "sha256:39cbce1ffc25cbf4860b09195654763be95b9e4900475b24d5c345d3e0948c53", + "sha256:c10142f819c2d22bdcd17548c46fa9b77cf4fda45097854c689666bf425e7484", + "sha256:c922560ac46888d47384de1dbdc3daaa2ea993af4b26a436dec31fa2c19ec668" + ], + "version": "==3.0.0a1" + }, + "jsonschema": { + "hashes": [ + "sha256:4e5b3cf8216f577bee9ce139cbe72eca3ea4f292ec60928ff24758ce626cd163", + "sha256:c8a85b28d377cc7737e46e2d9f2b4f44ee3c0e1deac6bf46ddefc7187d30797a" + ], + "version": "==3.2.0" + }, + "jupyter-client": { + "hashes": [ + "sha256:5724827aedb1948ed6ed15131372bc304a8d3ad9ac67ac19da7c95120d6b17e0", + "sha256:81c1c712de383bf6bf3dab6b407392b0d84d814c7bd0ce2c7035ead8b2ffea97" + ], + "version": "==6.1.2" + }, + "jupyter-core": { + "hashes": [ + "sha256:394fd5dd787e7c8861741880bdf8a00ce39f95de5d18e579c74b882522219e7e", + "sha256:a4ee613c060fe5697d913416fc9d553599c05e4492d58fac1192c9a6844abb21" + ], + "version": "==4.6.3" + }, + "jupyterlab-pygments": { + "hashes": [ + "sha256:31deda75bd11b014190764c79f6199aa04ef2d4cf35c1c94270fc2e19c23a5c5", + "sha256:cc15f2a9850899d108a3c22743a86edcd3b42791a6c88b6e5b558d021d14d065" + ], + "version": "==0.1.0" + }, + "markupsafe": { + "hashes": [ + "sha256:00bc623926325b26bb9605ae9eae8a215691f33cae5df11ca5424f06f2d1f473", + "sha256:09027a7803a62ca78792ad89403b1b7a73a01c8cb65909cd876f7fcebd79b161", + "sha256:09c4b7f37d6c648cb13f9230d847adf22f8171b1ccc4d5682398e77f40309235", + "sha256:1027c282dad077d0bae18be6794e6b6b8c91d58ed8a8d89a89d59693b9131db5", + "sha256:13d3144e1e340870b25e7b10b98d779608c02016d5184cfb9927a9f10c689f42", + "sha256:19536834abffb3fa155017053c607cb835b2ecc6a3a2554a88043d991dffb736", + "sha256:24982cc2533820871eba85ba648cd53d8623687ff11cbb805be4ff7b4c971aff", + "sha256:29872e92839765e546828bb7754a68c418d927cd064fd4708fab9fe9c8bb116b", + "sha256:3d61f15e39611aacd91b7e71d903787da86d9e80896e683c0103fced9add7834", + "sha256:43a55c2930bbc139570ac2452adf3d70cdbb3cfe5912c71cdce1c2c6bbd9c5d1", + "sha256:46c99d2de99945ec5cb54f23c8cd5689f6d7177305ebff350a58ce5f8de1669e", + "sha256:500d4957e52ddc3351cabf489e79c91c17f6e0899158447047588650b5e69183", + "sha256:535f6fc4d397c1563d08b88e485c3496cf5784e927af890fb3c3aac7f933ec66", + "sha256:596510de112c685489095da617b5bcbbac7dd6384aeebeda4df6025d0256a81b", + "sha256:62fe6c95e3ec8a7fad637b7f3d372c15ec1caa01ab47926cfdf7a75b40e0eac1", + "sha256:6788b695d50a51edb699cb55e35487e430fa21f1ed838122d722e0ff0ac5ba15", + "sha256:6dd73240d2af64df90aa7c4e7481e23825ea70af4b4922f8ede5b9e35f78a3b1", + "sha256:717ba8fe3ae9cc0006d7c451f0bb265ee07739daf76355d06366154ee68d221e", + "sha256:7952deddf24b85c88dab48f6ec366ac6e39d2761b5280f2f9594911e03fcd064", + "sha256:79855e1c5b8da654cf486b830bd42c06e8780cea587384cf6545b7d9ac013a0b", + "sha256:7c1699dfe0cf8ff607dbdcc1e9b9af1755371f92a68f706051cc8c37d447c905", + "sha256:88e5fcfb52ee7b911e8bb6d6aa2fd21fbecc674eadd44118a9cc3863f938e735", + "sha256:8defac2f2ccd6805ebf65f5eeb132adcf2ab57aa11fdf4c0dd5169a004710e7d", + "sha256:98c7086708b163d425c67c7a91bad6e466bb99d797aa64f965e9d25c12111a5e", + "sha256:9add70b36c5666a2ed02b43b335fe19002ee5235efd4b8a89bfcf9005bebac0d", + "sha256:9bf40443012702a1d2070043cb6291650a0841ece432556f784f004937f0f32c", + "sha256:ade5e387d2ad0d7ebf59146cc00c8044acbd863725f887353a10df825fc8ae21", + "sha256:b00c1de48212e4cc9603895652c5c410df699856a2853135b3967591e4beebc2", + "sha256:b1282f8c00509d99fef04d8ba936b156d419be841854fe901d8ae224c59f0be5", + "sha256:b2051432115498d3562c084a49bba65d97cf251f5a331c64a12ee7e04dacc51b", + "sha256:ba59edeaa2fc6114428f1637ffff42da1e311e29382d81b339c1817d37ec93c6", + "sha256:c8716a48d94b06bb3b2524c2b77e055fb313aeb4ea620c8dd03a105574ba704f", + "sha256:cd5df75523866410809ca100dc9681e301e3c27567cf498077e8551b6d20e42f", + "sha256:cdb132fc825c38e1aeec2c8aa9338310d29d337bebbd7baa06889d09a60a1fa2", + "sha256:e249096428b3ae81b08327a63a485ad0878de3fb939049038579ac0ef61e17e7", + "sha256:e8313f01ba26fbbe36c7be1966a7b7424942f670f38e666995b88d012765b9be" + ], + "version": "==1.1.1" + }, + "mccabe": { + "hashes": [ + "sha256:ab8a6258860da4b6677da4bd2fe5dc2c659cff31b3ee4f7f5d64e79735b80d42", + "sha256:dd8d182285a0fe56bace7f45b5e7d1a6ebcbf524e8f3bd87eb0f125271b8831f" + ], + "version": "==0.6.1" + }, + "mistune": { + "hashes": [ + "sha256:59a3429db53c50b5c6bcc8a07f8848cb00d7dc8bdb431a4ab41920d201d4756e", + "sha256:88a1051873018da288eee8538d476dffe1262495144b33ecb586c4ab266bb8d4" + ], + "version": "==0.8.4" + }, + "more-itertools": { + "hashes": [ + "sha256:5dd8bcf33e5f9513ffa06d5ad33d78f31e1931ac9a18f33d37e77a180d393a7c", + "sha256:b1ddb932186d8a6ac451e1d95844b382f55e12686d51ca0c68b6f61f2ab7a507" + ], + "version": "==8.2.0" + }, + "mypy": { + "hashes": [ + "sha256:15b948e1302682e3682f11f50208b726a246ab4e6c1b39f9264a8796bb416aa2", + "sha256:219a3116ecd015f8dca7b5d2c366c973509dfb9a8fc97ef044a36e3da66144a1", + "sha256:3b1fc683fb204c6b4403a1ef23f0b1fac8e4477091585e0c8c54cbdf7d7bb164", + "sha256:3beff56b453b6ef94ecb2996bea101a08f1f8a9771d3cbf4988a61e4d9973761", + "sha256:7687f6455ec3ed7649d1ae574136835a4272b65b3ddcf01ab8704ac65616c5ce", + "sha256:7ec45a70d40ede1ec7ad7f95b3c94c9cf4c186a32f6bacb1795b60abd2f9ef27", + "sha256:86c857510a9b7c3104cf4cde1568f4921762c8f9842e987bc03ed4f160925754", + "sha256:8a627507ef9b307b46a1fea9513d5c98680ba09591253082b4c48697ba05a4ae", + "sha256:8dfb69fbf9f3aeed18afffb15e319ca7f8da9642336348ddd6cab2713ddcf8f9", + "sha256:a34b577cdf6313bf24755f7a0e3f3c326d5c1f4fe7422d1d06498eb25ad0c600", + "sha256:a8ffcd53cb5dfc131850851cc09f1c44689c2812d0beb954d8138d4f5fc17f65", + "sha256:b90928f2d9eb2f33162405f32dde9f6dcead63a0971ca8a1b50eb4ca3e35ceb8", + "sha256:c56ffe22faa2e51054c5f7a3bc70a370939c2ed4de308c690e7949230c995913", + "sha256:f91c7ae919bbc3f96cd5e5b2e786b2b108343d1d7972ea130f7de27fdd547cf3" + ], + "index": "pypi", + "version": "==0.770" + }, + "mypy-extensions": { + "hashes": [ + "sha256:090fedd75945a69ae91ce1303b5824f428daf5a028d2f6ab8a299250a846f15d", + "sha256:2d82818f5bb3e369420cb3c4060a7970edba416647068eb4c5343488a6c604a8" + ], + "version": "==0.4.3" + }, + "nbconvert": { + "hashes": [ + "sha256:944a5fbe6c4609d74e7f331bfa957c8eff2d53904f7c40f053a44bfb4164b718", + "sha256:c86da6adc412df9ad2726fe438589e4495c7835792d6d84f888178682f5d5bcf" + ], + "version": "==6.0.0a0" + }, + "nbformat": { + "hashes": [ + "sha256:562de41fc7f4f481b79ab5d683279bf3a168858268d4387b489b7b02be0b324a", + "sha256:f4bbbd8089bd346488f00af4ce2efb7f8310a74b2058040d075895429924678c" + ], + "version": "==5.0.4" + }, + "nodeenv": { + "hashes": [ + "sha256:5b2438f2e42af54ca968dd1b374d14a1194848955187b0e5e4be1f73813a5212" + ], + "version": "==1.3.5" + }, + "notebook": { + "hashes": [ + "sha256:3edc616c684214292994a3af05eaea4cc043f6b4247d830f3a2f209fa7639a80", + "sha256:47a9092975c9e7965ada00b9a20f0cf637d001db60d241d479f53c0be117ad48" + ], + "version": "==6.0.3" + }, + "packaging": { + "hashes": [ + "sha256:3c292b474fda1671ec57d46d739d072bfd495a4f51ad01a055121d81e952b7a3", + "sha256:82f77b9bee21c1bafbf35a84905d604d5d1223801d639cf3ed140bd651c08752" + ], + "version": "==20.3" + }, + "pandocfilters": { + "hashes": [ + "sha256:41a309da81cba5509389b19d96b0ee49551cee8165a6406754f2565e95429860", + "sha256:b3dd70e169bb5449e6bc6ff96aea89c5eea8c5f6ab5e207fc2f521a2cf4a0da9" + ], + "version": "==1.4.2" + }, + "parso": { + "hashes": [ + "sha256:0c5659e0c6eba20636f99a04f469798dca8da279645ce5c387315b2c23912157", + "sha256:8515fc12cfca6ee3aa59138741fc5624d62340c97e401c74875769948d4f2995" + ], + "version": "==0.6.2" + }, + "pathspec": { + "hashes": [ + "sha256:163b0632d4e31cef212976cf57b43d9fd6b0bac6e67c26015d611a647d5e7424", + "sha256:562aa70af2e0d434367d9790ad37aed893de47f1693e4201fd1d3dca15d19b96" + ], + "version": "==0.7.0" + }, + "pexpect": { + "hashes": [ + "sha256:0b48a55dcb3c05f3329815901ea4fc1537514d6ba867a152b581d69ae3710937", + "sha256:fc65a43959d153d0114afe13997d439c22823a27cefceb5ff35c2178c6784c0c" + ], + "version": "==4.8.0" + }, + "pickleshare": { + "hashes": [ + "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca", + "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56" + ], + "version": "==0.7.5" + }, + "pluggy": { + "hashes": [ + "sha256:15b2acde666561e1298d71b523007ed7364de07029219b604cf808bfa1c765b0", + "sha256:966c145cd83c96502c3c3868f50408687b38434af77734af1e9ca461a4081d2d" + ], + "version": "==0.13.1" + }, + "pre-commit": { + "hashes": [ + "sha256:487c675916e6f99d355ec5595ad77b325689d423ef4839db1ed2f02f639c9522", + "sha256:9707b4f7069365ffdb57d2782086a9f3019afde2a6e9f85df785c9bf090e1118", + "sha256:c0aa11bce04a7b46c5544723aedf4e81a4d5f64ad1205a30a9ea12d5e81969e1" + ], + "index": "pypi", + "version": "==2.2.0" + }, + "prometheus-client": { + "hashes": [ + "sha256:09b5750fd1c153420dccd35881116e853c730081bea0dbf0ea6649103bcb8445", + "sha256:71cd24a2b3eb335cb800c7159f423df1bd4dcd5171b234be15e3f31ec9f622da" + ], + "version": "==0.7.1" + }, + "prompt-toolkit": { + "hashes": [ + "sha256:563d1a4140b63ff9dd587bda9557cffb2fe73650205ab6f4383092fb882e7dc8", + "sha256:df7e9e63aea609b1da3a65641ceaf5bc7d05e0a04de5bd45d05dbeffbabf9e04" + ], + "version": "==3.0.5" + }, + "ptyprocess": { + "hashes": [ + "sha256:923f299cc5ad920c68f2bc0bc98b75b9f838b93b599941a6b63ddbc2476394c0", + "sha256:d7cc528d76e76342423ca640335bd3633420dc1366f258cb31d05e865ef5ca1f" + ], + "version": "==0.6.0" + }, + "py": { + "hashes": [ + "sha256:5e27081401262157467ad6e7f851b7aa402c5852dbcb3dae06768434de5752aa", + "sha256:c20fdd83a5dbc0af9efd622bee9a5564e278f6380fffcacc43ba6f43db2813b0" + ], + "version": "==1.8.1" + }, + "pycodestyle": { + "hashes": [ + "sha256:95a2219d12372f05704562a14ec30bc76b05a5b297b21a5dfe3f6fac3491ae56", + "sha256:e40a936c9a450ad81df37f549d676d127b1b66000a6c500caa2b085bc0ca976c" + ], + "version": "==2.5.0" + }, + "pyflakes": { + "hashes": [ + "sha256:17dbeb2e3f4d772725c777fabc446d5634d1038f234e77343108ce445ea69ce0", + "sha256:d976835886f8c5b31d47970ed689944a0262b5f3afa00a5a7b4dc81e5449f8a2" + ], + "version": "==2.1.1" + }, + "pygments": { + "hashes": [ + "sha256:647344a061c249a3b74e230c739f434d7ea4d8b1d5f3721bc0f3558049b38f44", + "sha256:aa931c0bd5daa25c475afadb2147115134cfe501f0656828cbe7cb566c7123bc", + "sha256:ff7a40b4860b727ab48fad6360eb351cc1b33cbf9b15a0f689ca5353e9463324" + ], + "version": "==2.6.1" + }, + "pyparsing": { + "hashes": [ + "sha256:4c830582a84fb022400b85429791bc551f1f4871c33f23e44f353119e92f969f", + "sha256:c342dccb5250c08d45fd6f8b4a559613ca603b57498511740e65cd11a2e7dcec" + ], + "version": "==2.4.6" + }, + "pyrsistent": { + "hashes": [ + "sha256:28669905fe725965daa16184933676547c5bb40a5153055a8dee2a4bd7933ad3", + "sha256:3217696df78f9222a3d1179b119c27be346b969a9e4d617de2a215a87d9aa456", + "sha256:9324b762b52e5a901611b25f50f9cdf8789c61ece3ff7c24dc872603c4faca62", + "sha256:c11415790cc5803e173de7d71d54f94c66a9154f81a72ffdf45a70096916f226" + ], + "version": "==0.16.0" + }, + "pytest": { + "hashes": [ + "sha256:0e5b30f5cb04e887b91b1ee519fa3d89049595f428c1db76e73bd7f17b09b172", + "sha256:84dde37075b8805f3d1f392cc47e38a0e59518fb46a431cfdaf7cf1ce805f970" + ], + "index": "pypi", + "version": "==5.4.1" + }, + "pytest-cov": { + "hashes": [ + "sha256:cc6742d8bac45070217169f5f72ceee1e0e55b0221f54bcf24845972d3a47f2b", + "sha256:cdbdef4f870408ebdbfeb44e63e07eb18bb4619fae852f6e760645fa36172626" + ], + "index": "pypi", + "version": "==2.8.1" + }, + "python-dateutil": { + "hashes": [ + "sha256:73ebfe9dbf22e832286dafa60473e4cd239f8592f699aa5adaf10050e6e1823c", + "sha256:75bb3f31ea686f1197762692a9ee6a7550b59fc6ca3a1f4b5d7e32fb98e2da2a" + ], + "version": "==2.8.1" + }, + "pywin32": { + "hashes": [ + "sha256:300a2db938e98c3e7e2093e4491439e62287d0d493fe07cce110db070b54c0be", + "sha256:31f88a89139cb2adc40f8f0e65ee56a8c585f629974f9e07622ba80199057511", + "sha256:371fcc39416d736401f0274dd64c2302728c9e034808e37381b5e1b22be4a6b0", + "sha256:47a3c7551376a865dd8d095a98deba954a98f326c6fe3c72d8726ca6e6b15507", + "sha256:4cdad3e84191194ea6d0dd1b1b9bdda574ff563177d2adf2b4efec2a244fa116", + "sha256:7c1ae32c489dc012930787f06244426f8356e129184a02c25aef163917ce158e", + "sha256:7f18199fbf29ca99dff10e1f09451582ae9e372a892ff03a28528a24d55875bc", + "sha256:9b31e009564fb95db160f154e2aa195ed66bcc4c058ed72850d047141b36f3a2", + "sha256:a929a4af626e530383a579431b70e512e736e9588106715215bf685a3ea508d4", + "sha256:c054c52ba46e7eb6b7d7dfae4dbd987a1bb48ee86debe3f245a2884ece46e295", + "sha256:f27cec5e7f588c3d1051651830ecc00294f90728d19c3bf6916e6dba93ea357c", + "sha256:f4c5be1a293bae0076d93c88f37ee8da68136744588bc5e2be2f299a34ceb7aa" + ], + "markers": "sys_platform == 'win32'", + "version": "==227" + }, + "pywinpty": { + "hashes": [ + "sha256:1e525a4de05e72016a7af27836d512db67d06a015aeaf2fa0180f8e6a039b3c2", + "sha256:2740eeeb59297593a0d3f762269b01d0285c1b829d6827445fcd348fb47f7e70", + "sha256:2d7e9c881638a72ffdca3f5417dd1563b60f603e1b43e5895674c2a1b01f95a0", + "sha256:33df97f79843b2b8b8bc5c7aaf54adec08cc1bae94ee99dfb1a93c7a67704d95", + "sha256:5fb2c6c6819491b216f78acc2c521b9df21e0f53b9a399d58a5c151a3c4e2a2d", + "sha256:8fc5019ff3efb4f13708bd3b5ad327589c1a554cb516d792527361525a7cb78c", + "sha256:b358cb552c0f6baf790de375fab96524a0498c9df83489b8c23f7f08795e966b", + "sha256:dbd838de92de1d4ebf0dce9d4d5e4fc38d0b7b1de837947a18b57a882f219139", + "sha256:dd22c8efacf600730abe4a46c1388355ce0d4ab75dc79b15d23a7bd87bf05b48", + "sha256:e854211df55d107f0edfda8a80b39dfc87015bef52a8fe6594eb379240d81df2" + ], + "markers": "os_name == 'nt'", + "version": "==0.5.7" + }, + "pyyaml": { + "hashes": [ + "sha256:06a0d7ba600ce0b2d2fe2e78453a470b5a6e000a985dd4a4e54e436cc36b0e97", + "sha256:240097ff019d7c70a4922b6869d8a86407758333f02203e0fc6ff79c5dcede76", + "sha256:4f4b913ca1a7319b33cfb1369e91e50354d6f07a135f3b901aca02aa95940bd2", + "sha256:589929630502f3b0e87daee190b399f98401b6bccea87ed634a73fe5da43d3d4", + "sha256:69f00dca373f240f842b2931fb2c7e14ddbacd1397d57157a9b005a6a9942648", + "sha256:6e8383720b2127b09dba5b323ac896c702cf02bc5786fce16cd6791825d92d16", + "sha256:73f099454b799e05e5ab51423c7bcf361c58d3206fa7b0d555426b1f4d9a3eaf", + "sha256:74809a57b329d6cc0fdccee6318f44b9b8649961fa73144a98735b0aaf029f1f", + "sha256:7739fc0fa8205b3ee8808aea45e968bc90082c10aef6ea95e855e10abf4a37b2", + "sha256:95f71d2af0ff4227885f7a6605c37fd53d3a106fcab511b8860ecca9fcf400ee", + "sha256:b8eac752c5e14d3eca0e6dd9199cd627518cb5ec06add0de9d32baeee6fe645d", + "sha256:cc8955cfbfc7a115fa81d85284ee61147059a753344bc51098f3ccd69b0d7e0c", + "sha256:d13155f591e6fcc1ec3b30685d50bf0711574e2c0dfffd7644babf8b5102ca1a" + ], + "version": "==5.3.1" + }, + "pyzmq": { + "hashes": [ + "sha256:07bfbf192f22ef1dde65b6046efff191e3201e74da6d47098e68958469ecbe48", + "sha256:0bbc1728fe4314b4ca46249c33873a390559edac7c217ec7001b5e0c34a8fb7f", + "sha256:1e076ad5bd3638a18c376544d32e0af986ca10d43d4ce5a5d889a8649f0d0a3d", + "sha256:242d949eb6b10197cda1d1cec377deab1d5324983d77e0d0bf9dc5eb6d71a6b4", + "sha256:26f4ae420977d2a8792d7c2d7bda43128b037b5eeb21c81951a94054ad8b8843", + "sha256:32234c21c5e0a767c754181c8112092b3ddd2e2a36c3f76fc231ced817aeee47", + "sha256:3f12ce1e9cc9c31497bd82b207e8e86ccda9eebd8c9f95053aae46d15ccd2196", + "sha256:4557d5e036e6d85715b4b9fdb482081398da1d43dc580d03db642b91605b409f", + "sha256:4f562dab21c03c7aa061f63b147a595dbe1006bf4f03213272fc9f7d5baec791", + "sha256:54ecd00daa474885bbf318108401d318614425a05dfeae917611dd93f99f2678", + "sha256:5e071b834051e9ecb224915398f474bfad802c2fff883f118ff5363ca4ae3edf", + "sha256:5e1f65e576ab07aed83f444e201d86deb01cd27dcf3f37c727bc8729246a60a8", + "sha256:5f10a31f288bf055be76c57710807a8f0efdb2b82be6c2a2b8f9a61f33a40cea", + "sha256:6aaaf90b420dc40d9a0e1996b82c6a0ff91d9680bebe2135e67c9e6d197c0a53", + "sha256:75238d3c16cab96947705d5709187a49ebb844f54354cdf0814d195dd4c045de", + "sha256:7f7e7b24b1d392bb5947ba91c981e7d1a43293113642e0d8870706c8e70cdc71", + "sha256:84b91153102c4bcf5d0f57d1a66a0f03c31e9e6525a5f656f52fc615a675c748", + "sha256:944f6bb5c63140d76494467444fd92bebd8674236837480a3c75b01fe17df1ab", + "sha256:a1f957c20c9f51d43903881399b078cddcf710d34a2950e88bce4e494dcaa4d1", + "sha256:a49fd42a29c1cc1aa9f461c5f2f5e0303adba7c945138b35ee7f4ab675b9f754", + "sha256:a99ae601b4f6917985e9bb071549e30b6f93c72f5060853e197bdc4b7d357e5f", + "sha256:ad48865a29efa8a0cecf266432ea7bc34e319954e55cf104be0319c177e6c8f5", + "sha256:b08e425cf93b4e018ab21dc8fdbc25d7d0502a23cc4fea2380010cf8cf11e462", + "sha256:bb10361293d96aa92be6261fa4d15476bca56203b3a11c62c61bd14df0ef89ba", + "sha256:bd1a769d65257a7a12e2613070ca8155ee348aa9183f2aadf1c8b8552a5510f5", + "sha256:cb3b7156ef6b1a119e68fbe3a54e0a0c40ecacc6b7838d57dd708c90b62a06dc", + "sha256:d2f64994f9628f621e0f636f9532055887defc9fa5213aaeceb770d9c579f9ac", + "sha256:e8e4efb52ec2df8d046395ca4c84ae0056cf507b2f713ec803c65a8102d010de", + "sha256:f37c29da2a5b0c5e31e6f8aab885625ea76c807082f70b2d334d3fd573c3100a", + "sha256:f4d558bc5668d2345773a9ff8c39e2462dafcb1f6772a2e582fbced389ce527f", + "sha256:f5b6d015587a1d6f582ba03b226a9ddb1dfb09878b3be04ef48b01b7d4eb6b2a" + ], + "version": "==19.0.0" + }, + "regex": { + "hashes": [ + "sha256:01b2d70cbaed11f72e57c1cfbaca71b02e3b98f739ce33f5f26f71859ad90431", + "sha256:046e83a8b160aff37e7034139a336b660b01dbfe58706f9d73f5cdc6b3460242", + "sha256:113309e819634f499d0006f6200700c8209a2a8bf6bd1bdc863a4d9d6776a5d1", + "sha256:200539b5124bc4721247a823a47d116a7a23e62cc6695744e3eb5454a8888e6d", + "sha256:25f4ce26b68425b80a233ce7b6218743c71cf7297dbe02feab1d711a2bf90045", + "sha256:269f0c5ff23639316b29f31df199f401e4cb87529eafff0c76828071635d417b", + "sha256:59fd3df28f43adf25a32b4a957f5b0a62e3ff55ce29de6600da7e110f33102dd", + "sha256:5de40649d4f88a15c9489ed37f88f053c15400257eeb18425ac7ed0a4e119400", + "sha256:7f78f963e62a61e294adb6ff5db901b629ef78cb2a1cfce3cf4eeba80c1c67aa", + "sha256:82469a0c1330a4beb3d42568f82dffa32226ced006e0b063719468dcd40ffdf0", + "sha256:8c2b7fa4d72781577ac45ab658da44c7518e6d96e2a50d04ecb0fd8f28b21d69", + "sha256:974535648f31c2b712a6b2595969f8ab370834080e00ab24e5dbb9d19b8bfb74", + "sha256:99272d6b6a68c7ae4391908fc15f6b8c9a6c345a46b632d7fdb7ef6c883a2bbb", + "sha256:9b64a4cc825ec4df262050c17e18f60252cdd94742b4ba1286bcfe481f1c0f26", + "sha256:9e9624440d754733eddbcd4614378c18713d2d9d0dc647cf9c72f64e39671be5", + "sha256:9ff16d994309b26a1cdf666a6309c1ef51ad4f72f99d3392bcd7b7139577a1f2", + "sha256:b33ebcd0222c1d77e61dbcd04a9fd139359bded86803063d3d2d197b796c63ce", + "sha256:bba52d72e16a554d1894a0cc74041da50eea99a8483e591a9edf1025a66843ab", + "sha256:bed7986547ce54d230fd8721aba6fd19459cdc6d315497b98686d0416efaff4e", + "sha256:c7f58a0e0e13fb44623b65b01052dae8e820ed9b8b654bb6296bc9c41f571b70", + "sha256:d3242da581f8d54d5a0f769b4d003f065dc6222621267a056b98f6886dc90f36", + "sha256:d58a4fa7910102500722defbde6e2816b0372a4fcc85c7e239323767c74f5cbc", + "sha256:da22de67d83ee26b45c7b461c96e541f0cda72b76229d95e313666770dd8da41", + "sha256:f1ac2dc65105a53c1c2d72b1d3e98c2464a133b4067a51a3d2477b28449709a0" + ], + "version": "==2020.2.20" + }, + "remote-ikernel": { + "hashes": [ + "sha256:5253216e87a8c31f1b0ca9305454f223147518b580e853b7635a3d8b9c88c295", + "sha256:740b80a57fa1af40cadef541c5a4eb293675b504092ecf00c57dd2f0011bd840" + ], + "index": "pypi", + "version": "==0.4.6" + }, + "send2trash": { + "hashes": [ + "sha256:60001cc07d707fe247c94f74ca6ac0d3255aabcb930529690897ca2a39db28b2", + "sha256:f1691922577b6fa12821234aeb57599d887c4900b9ca537948d2dac34aea888b" + ], + "version": "==1.5.0" + }, + "six": { + "hashes": [ + "sha256:236bdbdce46e6e6a3d61a337c0f8b763ca1e8717c03b369e87a7ec7ce1319c0a", + "sha256:8f3cd2e254d8f793e7f3d6d9df77b92252b52637291d0f0da013c76ea2724b6c" + ], + "version": "==1.14.0" + }, + "terminado": { + "hashes": [ + "sha256:4804a774f802306a7d9af7322193c5390f1da0abb429e082a10ef1d46e6fb2c2", + "sha256:a43dcb3e353bc680dd0783b1d9c3fc28d529f190bc54ba9a229f72fe6e7a54d7" + ], + "version": "==0.8.3" + }, + "testpath": { + "hashes": [ + "sha256:60e0a3261c149755f4399a1fff7d37523179a70fdc3abdf78de9fc2604aeec7e", + "sha256:bfcf9411ef4bf3db7579063e0546938b1edda3d69f4e1fb8756991f5951f85d4" + ], + "version": "==0.4.4" + }, + "toml": { + "hashes": [ + "sha256:229f81c57791a41d65e399fc06bf0848bab550a9dfd5ed66df18ce5f05e73d5c", + "sha256:235682dd292d5899d361a811df37e04a8828a5b1da3115886b73cf81ebc9100e" + ], + "version": "==0.10.0" + }, + "tornado": { + "hashes": [ + "sha256:0fe2d45ba43b00a41cd73f8be321a44936dc1aba233dee979f17a042b83eb6dc", + "sha256:22aed82c2ea340c3771e3babc5ef220272f6fd06b5108a53b4976d0d722bcd52", + "sha256:2c027eb2a393d964b22b5c154d1a23a5f8727db6fda837118a776b29e2b8ebc6", + "sha256:503700d85d9a2c2aa737fb16df58bfa2ac0d5ec501881fea2acceae64ce17858", + "sha256:5217e601700f24e966ddab689f90b7ea4bd91ff3357c3600fa1045e26d68e55d", + "sha256:5618f72e947533832cbc3dec54e1dffc1747a5cb17d1fd91577ed14fa0dc081b", + "sha256:5f6a07e62e799be5d2330e68d808c8ac41d4a259b9cea61da4101b83cb5dc673", + "sha256:7182a9285e364e55e6902b5fb4d4a219efd8d7818d9000b419a0eaf3909fc0bc", + "sha256:c58d56003daf1b616336781b26d184023ea4af13ae143d9dda65e31e534940b9", + "sha256:c952975c8ba74f546ae6de2e226ab3cc3cc11ae47baf607459a6728585bb542a", + "sha256:c98232a3ac391f5faea6821b53db8db461157baa788f5d6222a193e9456e1740" + ], + "version": "==6.0.4" + }, + "traitlets": { + "hashes": [ + "sha256:70b4c6a1d9019d7b4f6846832288f86998aa3b9207c6821f3578a6a6a467fe44", + "sha256:d023ee369ddd2763310e4c3eae1ff649689440d4ae59d7485eb4cfbbe3e359f7" + ], + "version": "==4.3.3" + }, + "typed-ast": { + "hashes": [ + "sha256:0666aa36131496aed8f7be0410ff974562ab7eeac11ef351def9ea6fa28f6355", + "sha256:0c2c07682d61a629b68433afb159376e24e5b2fd4641d35424e462169c0a7919", + "sha256:249862707802d40f7f29f6e1aad8d84b5aa9e44552d2cc17384b209f091276aa", + "sha256:24995c843eb0ad11a4527b026b4dde3da70e1f2d8806c99b7b4a7cf491612652", + "sha256:269151951236b0f9a6f04015a9004084a5ab0d5f19b57de779f908621e7d8b75", + "sha256:3791f73e5d75aa9a95274679ab4821bd9d16de623c4ecf4900a77a29864ee144", + "sha256:4083861b0aa07990b619bd7ddc365eb7fa4b817e99cf5f8d9cf21a42780f6e01", + "sha256:498b0f36cc7054c1fead3d7fc59d2150f4d5c6c56ba7fb150c013fbc683a8d2d", + "sha256:4e3e5da80ccbebfff202a67bf900d081906c358ccc3d5e3c8aea42fdfdfd51c1", + "sha256:6daac9731f172c2a22ade6ed0c00197ee7cc1221aa84cfdf9c31defeb059a907", + "sha256:715ff2f2df46121071622063fc7543d9b1fd19ebfc4f5c8895af64a77a8c852c", + "sha256:73d785a950fc82dd2a25897d525d003f6378d1cb23ab305578394694202a58c3", + "sha256:8c8aaad94455178e3187ab22c8b01a3837f8ee50e09cf31f1ba129eb293ec30b", + "sha256:8ce678dbaf790dbdb3eba24056d5364fb45944f33553dd5869b7580cdbb83614", + "sha256:aaee9905aee35ba5905cfb3c62f3e83b3bec7b39413f0a7f19be4e547ea01ebb", + "sha256:bcd3b13b56ea479b3650b82cabd6b5343a625b0ced5429e4ccad28a8973f301b", + "sha256:c9e348e02e4d2b4a8b2eedb48210430658df6951fa484e59de33ff773fbd4b41", + "sha256:d205b1b46085271b4e15f670058ce182bd1199e56b317bf2ec004b6a44f911f6", + "sha256:d43943ef777f9a1c42bf4e552ba23ac77a6351de620aa9acf64ad54933ad4d34", + "sha256:d5d33e9e7af3b34a40dc05f498939f0ebf187f07c385fd58d591c533ad8562fe", + "sha256:df74880bdb70f34304ccc52b0c99d3e578f96a906b86f3ae172a1f1c2edef2bc", + "sha256:fc0fea399acb12edbf8a628ba8d2312f583bdbdb3335635db062fa98cf71fca4", + "sha256:fe460b922ec15dd205595c9b5b99e2f056fd98ae8f9f56b888e7a17dc2b757e7" + ], + "version": "==1.4.1" + }, + "typing-extensions": { + "hashes": [ + "sha256:091ecc894d5e908ac75209f10d5b4f118fbdb2eb1ede6a63544054bb1edb41f2", + "sha256:910f4656f54de5993ad9304959ce9bb903f90aadc7c67a0bef07e678014e892d", + "sha256:cf8b63fedea4d89bab840ecbb93e75578af28f76f66c35889bd7065f5af88575" + ], + "version": "==3.7.4.1" + }, + "virtualenv": { + "hashes": [ + "sha256:4e399f48c6b71228bf79f5febd27e3bbb753d9d5905776a86667bc61ab628a25", + "sha256:9e81279f4a9d16d1c0654a127c2c86e5bca2073585341691882c1e66e31ef8a5" + ], + "version": "==20.0.15" + }, + "wcwidth": { + "hashes": [ + "sha256:cafe2186b3c009a04067022ce1dcd79cb38d8d65ee4f4791b8888d6599d1bbe1", + "sha256:ee73862862a156bf77ff92b09034fc4825dd3af9cf81bc5b360668d425f3c5f1" + ], + "version": "==0.1.9" + }, + "webencodings": { + "hashes": [ + "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", + "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923" + ], + "version": "==0.5.1" + }, + "zipp": { + "hashes": [ + "sha256:aa36550ff0c0b7ef7fa639055d797116ee891440eac1a56f378e2d3179e0320b", + "sha256:c599e4d75c98f6798c509911d08a22e6c021d074469042177c8c86fb92eefd96" + ], + "version": "==3.1.0" + } + } +} diff --git a/Ch02/listing02-10/incorrect.py b/Ch02/listing02-10/incorrect.py new file mode 100644 index 0000000..f74a699 --- /dev/null +++ b/Ch02/listing02-10/incorrect.py @@ -0,0 +1,4 @@ +import sensors + +sensor = sensors.CPULoad() +print("The CPU load is " + sensor.value()) diff --git a/Ch02/listing02-10/pytest.ini b/Ch02/listing02-10/pytest.ini new file mode 100644 index 0000000..861f3d0 --- /dev/null +++ b/Ch02/listing02-10/pytest.ini @@ -0,0 +1,3 @@ +[pytest] +markers = + functional: these tests are significantly slower as they run the whole CLI script \ No newline at end of file diff --git a/Ch02/listing02-10/sensors.py b/Ch02/listing02-10/sensors.py new file mode 100644 index 0000000..0e46a9b --- /dev/null +++ b/Ch02/listing02-10/sensors.py @@ -0,0 +1,198 @@ +#!/usr/bin/env python +# coding: utf-8 +import math +import socket +import sys +from typing import Any, Optional, List, Tuple, Iterable, TypeVar, Generic + + +import click +import psutil + + +T_value = TypeVar("T_value") + + +class Sensor(Generic[T_value]): + title: str + + def value(self) -> T_value: + raise NotImplementedError + + @classmethod + def format(cls, value: T_value) -> str: + raise NotImplementedError + + def __str__(self) -> str: + return self.format(self.value()) + + +class PythonVersion(Sensor[Any]): + title = "Python Version" + + def value(self) -> Any: + return sys.version_info + + @classmethod + def format(cls, value: Any) -> str: + if value.micro == 0 and value.releaselevel == "alpha": + return "{0.major}.{0.minor}.{0.micro}a{0.serial}".format(value) + return "{0.major}.{0.minor}".format(value) + + +class IPAddresses(Sensor[Iterable[Tuple[str, str]]]): + title = "IP Addresses" + FAMILIES = {"AF_INET": "IPv4", "AF_INET6": "IPv6"} + + def value(self) -> List[Tuple[str, str]]: + hostname = socket.gethostname() + addresses = socket.getaddrinfo(hostname, None) + + address_info: List[Tuple[str, str]] = [] + for address in addresses: + family, ip = (address[0].name, address[4][0]) + if family not in self.FAMILIES: + continue + value = (family, ip) + if value not in address_info: + address_info.append(value) + return address_info + + @classmethod + def format(cls, value: Iterable[Tuple[str, str]]) -> str: + return "\n".join( + "{0} ({1})".format(address[1], cls.FAMILIES.get(address[0], "Unknown")) + for address in value + ) + + +class CPULoad(Sensor[float]): + title = "CPU Usage" + + def value(self) -> float: + return psutil.cpu_percent(interval=3) / 100.0 + + @classmethod + def format(cls, value: float) -> str: + return "{:.1%}".format(value) + + +class RAMAvailable(Sensor[int]): + title = "RAM Available" + UNITS = ("B", "KiB", "MiB", "GiB", "TiB", "PiB", "EiB") + UNIT_SIZE = 2 ** 10 + + def value(self) -> int: + return psutil.virtual_memory().available + + @classmethod + def format(cls, value: int) -> str: + magnitude = math.floor(math.log(value, cls.UNIT_SIZE)) + max_magnitude = len(cls.UNITS) - 1 + magnitude = min(magnitude, max_magnitude) + scaled_value = value / (cls.UNIT_SIZE ** magnitude) + return "{:.1f} {}".format(scaled_value, cls.UNITS[magnitude]) + + +class ACStatus(Sensor[Optional[bool]]): + title = "AC Connected" + + def value(self) -> Optional[bool]: + battery = psutil.sensors_battery() + if battery is not None: + return battery.power_plugged + else: + return None + + @classmethod + def format(cls, value: Optional[bool]) -> str: + if value is None: + return "Unknown" + elif value: + return "Connected" + else: + return "Not connected" + + +class Temperature(Sensor[Optional[float]]): + title = "Ambient Temperature" + + def value(self) -> Optional[float]: + try: + # Connect to a DHT22 on pin 4 + from adafruit_dht import DHT22 + from board import D4 + except (ImportError, NotImplementedError): + # No DHT library results in an ImportError. + # Running on an unknown platform results in a + # NotImplementedError when getting the pin + return None + try: + return DHT22(D4).temperature + except RuntimeError: + return None + + @staticmethod + def celsius_to_fahrenheit(value: float) -> float: + return value * 9 / 5 + 32 + + @classmethod + def format(cls, value: Optional[float]) -> str: + if value is None: + return "Unknown" + else: + return "{:.1f}C ({:.1f}F)".format(value, cls.celsius_to_fahrenheit(value)) + + def __str__(self) -> str: + return self.format(self.value()) + + +class RelativeHumidity(Sensor[Optional[float]]): + title = "Relative Humidity" + + def value(self) -> Optional[float]: + try: + # Connect to a DHT22 on pin 4 + from adafruit_dht import DHT22 + from board import D4 + except (ImportError, NotImplementedError): + # No DHT library results in an ImportError. + # Running on an unknown platform results in a + # NotImplementedError when getting the pin + return None + try: + return DHT22(D4).humidity / 100 + except RuntimeError: + return None + + @classmethod + def format(cls, value: Optional[float]) -> str: + if value is None: + return "Unknown" + else: + return "{:.1%}".format(value) + + +def get_sensors() -> Iterable[Sensor[Any]]: + return [ + PythonVersion(), + IPAddresses(), + CPULoad(), + RAMAvailable(), + ACStatus(), + Temperature(), + RelativeHumidity(), + ] + + +@click.command(help="Displays the values of the sensors") +def show_sensors() -> None: + sensors = get_sensors() + for sensor in sensors: + click.secho(sensor.title, bold=True) + click.echo(str(sensor)) + click.echo("") + + +if __name__ == "__main__": + show_sensors() diff --git a/Ch02/listing02-10/setup.cfg b/Ch02/listing02-10/setup.cfg new file mode 100644 index 0000000..9aedcef --- /dev/null +++ b/Ch02/listing02-10/setup.cfg @@ -0,0 +1,5 @@ +[mypy] +ignore_missing_imports = True + +[flake8] +max-line-length = 88 \ No newline at end of file diff --git a/Ch02/listing02-10/tests/__init__.py b/Ch02/listing02-10/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/Ch02/listing02-10/tests/test_acstatus.py b/Ch02/listing02-10/tests/test_acstatus.py new file mode 100644 index 0000000..7dab477 --- /dev/null +++ b/Ch02/listing02-10/tests/test_acstatus.py @@ -0,0 +1,55 @@ +from unittest import mock + +import pytest + +from sensors import ACStatus + + +@pytest.fixture +def sensor(): + return ACStatus() + + +class TestACStatusFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_True(self, subject): + assert subject(True) == "Connected" + + def test_format_False(self, subject): + assert subject(False) == "Not connected" + + def test_format_None(self, subject): + assert subject(None) == "Unknown" + + +class TestACStatusValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def sensors_battery(self): + with mock.patch("psutil.sensors_battery") as sensors_battery: + yield sensors_battery + + def test_sensors_battery_called(self, subject, sensors_battery): + sensors_battery.return_value.power_plugged = True + assert subject() is True + assert sensors_battery.call_count == 1 + + def test_sensor_but_battery_unknown(self, subject, sensors_battery): + sensors_battery.return_value.power_plugged = None + assert subject() is None + assert sensors_battery.call_count == 1 + + def test_no_sensor(self, subject, sensors_battery): + sensors_battery.return_value = None + assert subject() is None + + def test_str_representation_is_formatted_value(self, sensor, sensors_battery): + sensors_battery.return_value.power_plugged = True + assert str(sensor) == "Connected" + assert sensors_battery.call_count == 1 diff --git a/Ch02/listing02-10/tests/test_cpuusage.py b/Ch02/listing02-10/tests/test_cpuusage.py new file mode 100644 index 0000000..504861b --- /dev/null +++ b/Ch02/listing02-10/tests/test_cpuusage.py @@ -0,0 +1,45 @@ +from unittest import mock + +import pytest + +from sensors import CPULoad + + +@pytest.fixture +def sensor(): + return CPULoad() + + +class TestCPULoadFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_simple_percentage(self, subject): + assert subject(0.05) == "5.0%" + + def test_format_multiple_decimal_places(self, subject): + assert subject(0.031415926) == "3.1%" + + def test_format_multiple_decimal_places_int(self, subject) -> None: + assert subject(1) == "100.0%" + + +class TestCPULoadValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def cpuload(self): + with mock.patch("psutil.cpu_percent") as cpu_percent: + cpu_percent.return_value = 50.1 + yield cpu_percent + + def test_cpu_percent_called_With_interval(self, subject, cpuload): + assert subject() == 0.501 + assert cpuload.call_count == 1 + assert tuple(cpuload.call_args) == ((), {"interval": 3}) + + def test_str_representation_is_formatted_value(self, sensor, cpuload): + assert str(sensor) == "50.1%" diff --git a/Ch02/listing02-10/tests/test_dht.py b/Ch02/listing02-10/tests/test_dht.py new file mode 100644 index 0000000..c8391a3 --- /dev/null +++ b/Ch02/listing02-10/tests/test_dht.py @@ -0,0 +1,66 @@ +import pytest + +from sensors import Temperature, RelativeHumidity + + +@pytest.fixture +def temperature_sensor(): + return Temperature() + + +@pytest.fixture +def humidity_sensor(): + return RelativeHumidity() + + +class TestTemperatureFormatter: + @pytest.fixture + def subject(self, temperature_sensor): + return temperature_sensor.format + + def test_format_21c(self, subject): + assert subject(21.0) == "21.0C (69.8F)" + + def test_format_negative(self, subject): + assert subject(-32.0) == "-32.0C (-25.6F)" + + def test_format_unknown(self, subject): + assert subject(None) == "Unknown" + + +class TestTemperatureConversion: + @pytest.fixture + def subject(self, temperature_sensor): + return temperature_sensor.celsius_to_fahrenheit + + def test_celsius_to_fahrenheit(self, subject): + c = 21 + f = subject(c) + assert f == 69.8 + + def test_celsius_to_fahrenheit_equivlance_point(self, subject): + c = -40 + f = subject(c) + assert f == -40 + + def test_celsius_to_fahrenheit_float(self, subject): + c = 21.2 + f = subject(c) + assert f == 70.16 + + def test_celsius_to_fahrenheit_string(self, subject): + c = "21" + with pytest.raises(TypeError): + subject(c) + + +class TestHumidityFormatter: + @pytest.fixture + def subject(self, humidity_sensor): + return humidity_sensor.format + + def test_format_percentage(self, subject): + assert subject(0.035) == "3.5%" + + def test_format_unknown(self, subject): + assert subject(None) == "Unknown" diff --git a/Ch02/listing02-10/tests/test_ipaddresses.py b/Ch02/listing02-10/tests/test_ipaddresses.py new file mode 100644 index 0000000..f97d377 --- /dev/null +++ b/Ch02/listing02-10/tests/test_ipaddresses.py @@ -0,0 +1,59 @@ +import socket +from unittest import mock + +import pytest + +from sensors import IPAddresses + + +@pytest.fixture +def sensor(): + return IPAddresses() + + +class TestIPAddressFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_single_ipv4(self, subject): + ips = [("AF_INET", "192.0.2.1")] + assert subject(ips) == "192.0.2.1 (IPv4)" + + def test_format_single_ipv6(self, subject): + ips = [("AF_INET6", "2001:DB8::1")] + assert subject(ips) == "2001:DB8::1 (IPv6)" + + def test_format_mixed_list(self, subject): + ips = [("AF_INET", "192.0.2.1"), ("AF_INET6", "2001:DB8::1")] + assert subject(ips) == "192.0.2.1 (IPv4)\n2001:DB8::1 (IPv6)" + + def test_unusual_protocols_are_marked_as_unknown(self, subject): + ips = [("AF_IRDA", "ffff")] + assert subject(ips) == "ffff (Unknown)" + + +class TestIPAddressesValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def gethostname(self): + with mock.patch("socket.gethostname") as gethostname: + gethostname.return_value = "localhost" + yield gethostname + + @pytest.fixture + def getaddrinfo(self, gethostname): + with mock.patch("socket.getaddrinfo") as getaddrinfo: + yield getaddrinfo + + def test_getaddrinfo_used_for_value_collection(self, getaddrinfo, subject): + getaddrinfo.return_value = [(socket.AF_INET, 0, 0, "", ("192.0.2.1", 0))] + assert subject() == [("AF_INET", "192.0.2.1")] + assert getaddrinfo.call_count == 1 + + def test_str_representation_is_formatted_value(self, getaddrinfo, sensor): + getaddrinfo.return_value = [(socket.AF_INET6, 0, 0, "", ("2001:DB8::1", 0))] + assert str(sensor) == "2001:DB8::1 (IPv6)" diff --git a/Ch02/listing02-10/tests/test_pythonversion.py b/Ch02/listing02-10/tests/test_pythonversion.py new file mode 100644 index 0000000..473eb62 --- /dev/null +++ b/Ch02/listing02-10/tests/test_pythonversion.py @@ -0,0 +1,61 @@ +from collections import namedtuple +from unittest import mock + +import pytest + +from sensors import PythonVersion + + +@pytest.fixture +def version(): + return namedtuple( + "sys_versioninfo", ("major", "minor", "micro", "releaselevel", "serial") + ) + + +@pytest.fixture +def sensor(): + return PythonVersion() + + +class TestPythonVersionFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_py38(self, subject, version): + py38 = version(3, 8, 0, "final", 0) + assert subject(py38) == "3.8" + + def test_format_large_version(self, subject, version): + large = version(255, 128, 0, "final", 0) + assert subject(large) == "255.128" + + def test_alpha_of_minor_is_marked(self, subject, version): + py39 = version(3, 9, 0, "alpha", 1) + assert subject(py39) == "3.9.0a1" + + def test_alpha_of_micro_is_unmarked(self, subject, version): + py39 = version(3, 9, 1, "alpha", 1) + assert subject(py39) == "3.9" + + +class TestPythonVersionValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def python_version(self): + import sys + + return sys.version_info + + def test_data_value_is_sys_versioninfo(self, python_version, subject): + assert subject() == python_version + + +class TestPythonVersionSensor: + def test_str_representation_is_formatted_value(self, sensor, version): + with mock.patch("sys.version_info", new=version(3, 4, 1, "final", 1)): + assert str(sensor) == "3.4" diff --git a/Ch02/listing02-10/tests/test_ramusage.py b/Ch02/listing02-10/tests/test_ramusage.py new file mode 100644 index 0000000..b3c091a --- /dev/null +++ b/Ch02/listing02-10/tests/test_ramusage.py @@ -0,0 +1,47 @@ +from unittest import mock + +import pytest + +from sensors import RAMAvailable + + +@pytest.fixture +def sensor(): + return RAMAvailable() + + +class TestRAMAvailableFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_bytes(self, subject): + assert subject(15) == "15.0 B" + + def test_format_kibibytes(self, subject): + assert subject(15000) == "14.6 KiB" + + def test_format_mibibytes(self, subject): + assert subject(15000000) == "14.3 MiB" + + def test_format_gibibytes(self, subject): + assert subject(15000000000) == "14.0 GiB" + + +class TestRAMAvailableValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def virtual_memory(self): + with mock.patch("psutil.virtual_memory") as virtual_memory: + virtual_memory.return_value.available = 1024 + yield virtual_memory + + def test_virtual_memory_called(self, subject, virtual_memory): + assert subject() == 1024 + assert virtual_memory.call_count == 1 + + def test_str_representation_is_formatted_value(self, sensor, virtual_memory): + assert str(sensor) == "1.0 KiB" diff --git a/Ch02/listing02-10/tests/test_sensors.py b/Ch02/listing02-10/tests/test_sensors.py new file mode 100644 index 0000000..6596ba1 --- /dev/null +++ b/Ch02/listing02-10/tests/test_sensors.py @@ -0,0 +1,17 @@ +from click.testing import CliRunner + +import pytest + +import sensors + + +def test_sensors(): + assert hasattr(sensors, "PythonVersion") + + +@pytest.mark.functional +def test_python_version_is_first_two_lines_of_cli_output(): + runner = CliRunner() + result = runner.invoke(sensors.show_sensors) + python_version = str(sensors.PythonVersion()) + assert ["Python Version", python_version] == result.stdout.split("\n")[:2] diff --git a/Ch02/listing02-11/.pre-commit-config.yaml b/Ch02/listing02-11/.pre-commit-config.yaml new file mode 100644 index 0000000..3ff6d15 --- /dev/null +++ b/Ch02/listing02-11/.pre-commit-config.yaml @@ -0,0 +1,23 @@ +repos: + +- repo: local + hooks: + - id: black + name: black + entry: pipenv run black + args: [--quiet] + language: system + types: [python] + + - id: mypy + name: mypy + entry: pipenv run mypy + args: ["--follow-imports=skip"] + language: system + types: [python] + + - id: flake8 + name: flake8 + entry: pipenv run flake8 + language: system + types: [python] diff --git a/Ch02/listing02-11/Pipfile b/Ch02/listing02-11/Pipfile new file mode 100644 index 0000000..c35d39c --- /dev/null +++ b/Ch02/listing02-11/Pipfile @@ -0,0 +1,29 @@ +[[source]] +name = "pypi" +url = "https://pypi.org/simple" +verify_ssl = true + +[[source]] +name = "pypi" +url = "https://piwheels.org/simple" +verify_ssl = true + +[dev-packages] +ipykernel = "*" +remote-ikernel = "*" +pytest = "*" +pytest-cov = "*" +mypy = "*" +flake8 = "*" +black = "*" +pre-commit = "*" + +[packages] +psutil = "*" +click = "*" +adafruit-circuitpython-dht = {markers = "'arm' in platform_machine",version = "*"} + +[requires] + +[pipenv] +allow_prereleases = true diff --git a/Ch02/listing02-11/Pipfile.lock b/Ch02/listing02-11/Pipfile.lock new file mode 100644 index 0000000..ff7db13 --- /dev/null +++ b/Ch02/listing02-11/Pipfile.lock @@ -0,0 +1,866 @@ +{ + "_meta": { + "hash": { + "sha256": "9bc7427fda5ec4bf8a1344d4f47036d9af341544ccce6f12273046f922d95df2" + }, + "pipfile-spec": 6, + "requires": {}, + "sources": [ + { + "name": "pypi", + "url": "https://pypi.org/simple", + "verify_ssl": true + }, + { + "name": "pypi", + "url": "https://piwheels.org/simple", + "verify_ssl": true + } + ] + }, + "default": { + "adafruit-blinka": { + "hashes": [ + "sha256:375a71854a52779a760c5b2f53f626c9217b523b77ac1c4648ee81c606ce4eec", + "sha256:dbd25293944e118bec49ef0763b51cda8445b7a8cb49e8d39934f01551820cc5" + ], + "version": "==4.2.0" + }, + "adafruit-circuitpython-dht": { + "hashes": [ + "sha256:454b506bab88a009ea19aa1ea00338dffe1d48fb42ab2c3e03948bf337a5542c", + "sha256:5f9307fbfad64221ba1a4e7b34ecbf26326a5d77a856482361bef70c251df55d" + ], + "index": "pypi", + "markers": "'arm' in platform_machine", + "version": "==3.3.0" + }, + "adafruit-platformdetect": { + "hashes": [ + "sha256:917f431371f94a60391e881fe1af3731a225b188e0c0157ebc69b877f1fd0a2a", + "sha256:bf446f8365cdf0a87d4bf6620e70bd59da99b0523c2111f0dc74a1155236ff61" + ], + "version": "==2.5.0" + }, + "adafruit-pureio": { + "hashes": [ + "sha256:013ebe6119eaaa0d39716ea5fbfad4fcbada7c88eaebcc7d6615f9df44e53b8c", + "sha256:b67587ed3c4dc90bd0e9b988587efa66b4466abf71eb0dcbcd4695e7e4350326" + ], + "version": "==1.0.4" + }, + "click": { + "hashes": [ + "sha256:8a18b4ea89d8820c5d0c7da8a64b2c324b4dabb695804dbfea19b9be9d88c0cc", + "sha256:e345d143d80bf5ee7534056164e5e112ea5e22716bbb1ce727941f4c8b471b9a" + ], + "index": "pypi", + "version": "==7.1.1" + }, + "psutil": { + "hashes": [ + "sha256:002bd856770037221256765a472f50d677074ad207276a39e2bccdb7394e333b", + "sha256:1413f4158eb50e110777c4f15d7c759521703bd6beb58926f1d562da40180058", + "sha256:298af2f14b635c3c7118fd9183843f4e73e681bb6f01e12284d4d70d48a60953", + "sha256:60b86f327c198561f101a92be1995f9ae0399736b6eced8f24af41ec64fb88d4", + "sha256:685ec16ca14d079455892f25bd124df26ff9137664af445563c1bd36629b5e0e", + "sha256:73f35ab66c6c7a9ce82ba44b1e9b1050be2a80cd4dcc3352cc108656b115c74f", + "sha256:75e22717d4dbc7ca529ec5063000b2b294fc9a367f9c9ede1f65846c7955fd38", + "sha256:833b2b19c04fc0aecad22daa3e35108d6ee2e4f92061a4a8f2dd77c6fa9154f5", + "sha256:a02f4ac50d4a23253b68233b07e7cdb567bd025b982d5cf0ee78296990c22d9e", + "sha256:d008ddc00c6906ec80040d26dc2d3e3962109e40ad07fd8a12d0284ce5e0e4f8", + "sha256:d84029b190c8a66a946e28b4d3934d2ca1528ec94764b180f7d6ea57b0e75e26", + "sha256:e2d0c5b07c6fe5a87fa27b7855017edb0d52ee73b71e6ee368fae268605cc3f5", + "sha256:f344ca230dd8e8d5eee16827596f1c22ec0876127c28e800d7ae20ed44c4b310", + "sha256:f3e7f183162622eae9fbdee44ff19b226edec68b94ae7cba47f9afcf4c3ec66c" + ], + "index": "pypi", + "version": "==5.7.0" + }, + "pyftdi": { + "hashes": [ + "sha256:51827a876d0ed2b146d66083f7020a4ca1b703fca599da119e3a79009c89549c", + "sha256:a98e683b7e3569814524a4bdd723e8b239072da30366071a9266ab80083f2135", + "sha256:e781c9a4e6ad2ed6830e5b4aa3f1707efb781d3598493f0655c43c97d64afc63" + ], + "version": "==0.48.3" + }, + "pyserial": { + "hashes": [ + "sha256:6e2d401fdee0eab996cf734e67773a0143b932772ca8b42451440cfed942c627", + "sha256:e0770fadba80c31013896c7e6ef703f72e7834965954a78e71a3049488d4d7d8" + ], + "version": "==3.4" + }, + "pyusb": { + "hashes": [ + "sha256:4e9b72cc4a4205ca64fbf1f3fff39a335512166c151ad103e55c8223ac147362", + "sha256:789749b8a9bf3828c55d41df2c3e569739cd1bdbe1517e8d940af9587a711faa" + ], + "version": "==1.0.2" + }, + "rpi-ws281x": { + "hashes": [ + "sha256:185d7ae138a5633cf4cd707c55d7190b34810cc3f5e5682c820ddf1dade20914", + "sha256:265a395410cc7199f779c4209ca3970b7211896b86dbaa4731bdc3569d2e595f", + "sha256:544f09353ccb578452d0478470460d3425f40e8dd7433131a95239daeae83303", + "sha256:bc3a22e55c2a10de5c4dfb23c13dceff66162e77eb7176701f1a0d5ae8b97695", + "sha256:de182acceab047030056e2ab0dd2bd2632f2375f60d9a94cf7e3a8a4033834a0", + "sha256:f35e698e0d4205cb1bc2835b46429235fa22e973c8320d661f16556ceaf0f90b" + ], + "version": "==4.2.3" + }, + "rpi.gpio": { + "hashes": [ + "sha256:5cd2f3c88d0b1e2f4780c905702c0474768c2bc113fb793121c2e117b401ab16", + "sha256:6a4791f41cafc2ee6e4cb70e5bd31fadc66a0cfab29b38df8723a98f6f73ad5a", + "sha256:7424bc6c205466764f30f666c18187a0824077daf20b295c42f08aea2cb87d3f", + "sha256:7da5235aeba20da39ad4fb97f3ba3a2c6b2d60bba8958b00a4df42f608c6d42e" + ], + "version": "==0.7.0" + } + }, + "develop": { + "appdirs": { + "hashes": [ + "sha256:9e5896d1372858f8dd3344faf4e5014d21849c756c8d5701f78f8a103b372d92", + "sha256:d8b24664561d0d34ddfaec54636d502d7cea6e29c3eaf68f3df6180863e2166e" + ], + "version": "==1.4.3" + }, + "atomicwrites": { + "hashes": [ + "sha256:03472c30eb2c5d1ba9227e4c2ca66ab8287fbfbbda3888aa93dc2e28fc6811b4", + "sha256:75a9445bac02d8d058d5e1fe689654ba5a6556a1dfd8ce6ec55a0ed79866cfa6" + ], + "markers": "sys_platform == 'win32'", + "version": "==1.3.0" + }, + "attrs": { + "hashes": [ + "sha256:08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c", + "sha256:f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72" + ], + "version": "==19.3.0" + }, + "backcall": { + "hashes": [ + "sha256:1fac21e6861f538700a5d498620153f38407a4bacf9e1d5047b3d717f10bc4ab", + "sha256:38ecd85be2c1e78f77fd91700c76e14667dc21e2713b63876c0eb901196e01e4", + "sha256:bbbf4b1e5cd2bdb08f915895b51081c041bac22394fdfcfdfbe9f14b77c08bf2" + ], + "version": "==0.1.0" + }, + "black": { + "hashes": [ + "sha256:1b30e59be925fafc1ee4565e5e08abef6b03fe455102883820fe5ee2e4734e0b", + "sha256:c2edb73a08e9e0e6f65a0e6af18b059b8b1cdd5bef997d7a0b181df93dc81539" + ], + "index": "pypi", + "version": "==19.10b0" + }, + "bleach": { + "hashes": [ + "sha256:cc8da25076a1fe56c3ac63671e2194458e0c4d9c7becfd52ca251650d517903c", + "sha256:e78e426105ac07026ba098f04de8abe9b6e3e98b5befbf89b51a5ef0a4292b03" + ], + "version": "==3.1.4" + }, + "cfgv": { + "hashes": [ + "sha256:1ccf53320421aeeb915275a196e23b3b8ae87dea8ac6698b1638001d4a486d53", + "sha256:c8e8f552ffcc6194f4e18dd4f68d9aef0c0d58ae7e7be8c82bee3c5e9edfa513" + ], + "version": "==3.1.0" + }, + "click": { + "hashes": [ + "sha256:8a18b4ea89d8820c5d0c7da8a64b2c324b4dabb695804dbfea19b9be9d88c0cc", + "sha256:e345d143d80bf5ee7534056164e5e112ea5e22716bbb1ce727941f4c8b471b9a" + ], + "index": "pypi", + "version": "==7.1.1" + }, + "colorama": { + "hashes": [ + "sha256:7d73d2a99753107a36ac6b455ee49046802e59d9d076ef8e47b61499fa29afff", + "sha256:e96da0d330793e2cb9485e9ddfd918d456036c7149416295932478192f4436a1" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.3" + }, + "coverage": { + "hashes": [ + "sha256:03f630aba2b9b0d69871c2e8d23a69b7fe94a1e2f5f10df5049c0df99db639a0", + "sha256:046a1a742e66d065d16fb564a26c2a15867f17695e7f3d358d7b1ad8a61bca30", + "sha256:0a907199566269e1cfa304325cc3b45c72ae341fbb3253ddde19fa820ded7a8b", + "sha256:165a48268bfb5a77e2d9dbb80de7ea917332a79c7adb747bd005b3a07ff8caf0", + "sha256:1b60a95fc995649464e0cd48cecc8288bac5f4198f21d04b8229dc4097d76823", + "sha256:1f66cf263ec77af5b8fe14ef14c5e46e2eb4a795ac495ad7c03adc72ae43fafe", + "sha256:2e08c32cbede4a29e2a701822291ae2bc9b5220a971bba9d1e7615312efd3037", + "sha256:327ff84602ee3b5c0c921ff8bbe605e2dd3599fc2a12620b0085f847af4ebb2a", + "sha256:3844c3dab800ca8536f75ae89f3cf566848a3eb2af4d9f7b1103b4f4f7a5dad6", + "sha256:408ce64078398b2ee2ec08199ea3fcf382828d2f8a19c5a5ba2946fe5ddc6c31", + "sha256:443be7602c790960b9514567917af538cac7807a7c0c0727c4d2bbd4014920fd", + "sha256:4482f69e0701139d0f2c44f3c395d1d1d37abd81bfafbf9b6efbe2542679d892", + "sha256:4a8a259bf990044351baf69d3b23e575699dd60b18460c71e81dc565f5819ac1", + "sha256:513e6526e0082c59a984448f4104c9bf346c2da9961779ede1fc458e8e8a1f78", + "sha256:5f587dfd83cb669933186661a351ad6fc7166273bc3e3a1531ec5c783d997aac", + "sha256:62061e87071497951155cbccee487980524d7abea647a1b2a6eb6b9647df9006", + "sha256:641e329e7f2c01531c45c687efcec8aeca2a78a4ff26d49184dce3d53fc35014", + "sha256:65a7e00c00472cd0f59ae09d2fb8a8aaae7f4a0cf54b2b74f3138d9f9ceb9cb2", + "sha256:6ad6ca45e9e92c05295f638e78cd42bfaaf8ee07878c9ed73e93190b26c125f7", + "sha256:73aa6e86034dad9f00f4bbf5a666a889d17d79db73bc5af04abd6c20a014d9c8", + "sha256:7c9762f80a25d8d0e4ab3cb1af5d9dffbddb3ee5d21c43e3474c84bf5ff941f7", + "sha256:85596aa5d9aac1bf39fe39d9fa1051b0f00823982a1de5766e35d495b4a36ca9", + "sha256:86a0ea78fd851b313b2e712266f663e13b6bc78c2fb260b079e8b67d970474b1", + "sha256:8a620767b8209f3446197c0e29ba895d75a1e272a36af0786ec70fe7834e4307", + "sha256:922fb9ef2c67c3ab20e22948dcfd783397e4c043a5c5fa5ff5e9df5529074b0a", + "sha256:9fad78c13e71546a76c2f8789623eec8e499f8d2d799f4b4547162ce0a4df435", + "sha256:a37c6233b28e5bc340054cf6170e7090a4e85069513320275a4dc929144dccf0", + "sha256:c3fc325ce4cbf902d05a80daa47b645d07e796a80682c1c5800d6ac5045193e5", + "sha256:cda33311cb9fb9323958a69499a667bd728a39a7aa4718d7622597a44c4f1441", + "sha256:db1d4e38c9b15be1521722e946ee24f6db95b189d1447fa9ff18dd16ba89f732", + "sha256:eda55e6e9ea258f5e4add23bcf33dc53b2c319e70806e180aecbff8d90ea24de", + "sha256:f0db0dc803e0f81f2a4098d4f25904f41be13b6d3e69f098b5b2bbba17cb7985", + "sha256:f372cdbb240e09ee855735b9d85e7f50730dcfb6296b74b95a3e5dea0615c4c1" + ], + "version": "==5.0.4" + }, + "decorator": { + "hashes": [ + "sha256:41fa54c2a0cc4ba648be4fd43cff00aedf5b9465c9bf18d64325bc225f08f760", + "sha256:e3a62f0520172440ca0dcc823749319382e377f37f140a0b99ef45fecb84bfe7" + ], + "version": "==4.4.2" + }, + "defusedxml": { + "hashes": [ + "sha256:6687150770438374ab581bb7a1b327a847dd9c5749e396102de3fad4e8a3ef93", + "sha256:f684034d135af4c6cbb949b8a4d2ed61634515257a67299e5f940fbaa34377f5" + ], + "version": "==0.6.0" + }, + "distlib": { + "hashes": [ + "sha256:2e166e231a26b36d6dfe35a48c4464346620f8645ed0ace01ee31822b288de21", + "sha256:8a041060c5a140131768a2e2450813f5577f7e4c68a4585824c5585502dcfbea" + ], + "version": "==0.3.0" + }, + "entrypoints": { + "hashes": [ + "sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19", + "sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451" + ], + "version": "==0.3" + }, + "filelock": { + "hashes": [ + "sha256:18d82244ee114f543149c66a6e0c14e9c4f8a1044b5cdaadd0f82159d6a6ff59", + "sha256:929b7d63ec5b7d6b71b0fa5ac14e030b3f70b75747cef1b10da9b879fef15836" + ], + "version": "==3.0.12" + }, + "flake8": { + "hashes": [ + "sha256:45681a117ecc81e870cbf1262835ae4af5e7a8b08e40b944a8a6e6b895914cfb", + "sha256:49356e766643ad15072a789a20915d3c91dc89fd313ccd71802303fd67e4deca" + ], + "index": "pypi", + "version": "==3.7.9" + }, + "identify": { + "hashes": [ + "sha256:a7577a1f55cee1d21953a5cf11a3c839ab87f5ef909a4cba6cf52ed72b4c6059", + "sha256:ab246293e6585a1c6361a505b68d5b501a0409310932b7de2c2ead667b564d89" + ], + "version": "==1.4.13" + }, + "importlib-metadata": { + "hashes": [ + "sha256:2a688cbaa90e0cc587f1df48bdc97a6eadccdcd9c35fb3f976a09e3b5016d90f", + "sha256:34513a8a0c4962bc66d35b359558fd8a5e10cd472d37aec5f66858addef32c1e" + ], + "markers": "python_version < '3.8'", + "version": "==1.6.0" + }, + "ipykernel": { + "hashes": [ + "sha256:08997a27ccafbb998437d167ccc893666c6088ec3aa90c054bfb3d588bb3fc20", + "sha256:37c65d2e2da3326e5cf114405df6d47d997b8a3eba99e2cc4b75833bf71a5e18", + "sha256:39746b5f7d847a23fae4eac893e63e3d9cc5f8c3a4797fcd3bfa8d1a296ec6ed" + ], + "index": "pypi", + "version": "==5.2.0" + }, + "ipython": { + "hashes": [ + "sha256:1807adeae64502fcaa491cd93405644faa055b646efb40c1e48648ad66f65a75", + "sha256:ca478e52ae1f88da0102360e57e528b92f3ae4316aabac80a2cd7f7ab2efb48a", + "sha256:eb8d075de37f678424527b5ef6ea23f7b80240ca031c2dd6de5879d687a65333" + ], + "version": "==7.13.0" + }, + "ipython-genutils": { + "hashes": [ + "sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8", + "sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8" + ], + "version": "==0.2.0" + }, + "jedi": { + "hashes": [ + "sha256:b4f4052551025c6b0b0b193b29a6ff7bdb74c52450631206c262aef9f7159ad2", + "sha256:d5c871cb9360b414f981e7072c52c33258d598305280fef91c6cae34739d65d5" + ], + "version": "==0.16.0" + }, + "jinja2": { + "hashes": [ + "sha256:39cbce1ffc25cbf4860b09195654763be95b9e4900475b24d5c345d3e0948c53", + "sha256:c10142f819c2d22bdcd17548c46fa9b77cf4fda45097854c689666bf425e7484", + "sha256:c922560ac46888d47384de1dbdc3daaa2ea993af4b26a436dec31fa2c19ec668" + ], + "version": "==3.0.0a1" + }, + "jsonschema": { + "hashes": [ + "sha256:4e5b3cf8216f577bee9ce139cbe72eca3ea4f292ec60928ff24758ce626cd163", + "sha256:c8a85b28d377cc7737e46e2d9f2b4f44ee3c0e1deac6bf46ddefc7187d30797a" + ], + "version": "==3.2.0" + }, + "jupyter-client": { + "hashes": [ + "sha256:5724827aedb1948ed6ed15131372bc304a8d3ad9ac67ac19da7c95120d6b17e0", + "sha256:81c1c712de383bf6bf3dab6b407392b0d84d814c7bd0ce2c7035ead8b2ffea97" + ], + "version": "==6.1.2" + }, + "jupyter-core": { + "hashes": [ + "sha256:394fd5dd787e7c8861741880bdf8a00ce39f95de5d18e579c74b882522219e7e", + "sha256:a4ee613c060fe5697d913416fc9d553599c05e4492d58fac1192c9a6844abb21" + ], + "version": "==4.6.3" + }, + "jupyterlab-pygments": { + "hashes": [ + "sha256:31deda75bd11b014190764c79f6199aa04ef2d4cf35c1c94270fc2e19c23a5c5", + "sha256:cc15f2a9850899d108a3c22743a86edcd3b42791a6c88b6e5b558d021d14d065" + ], + "version": "==0.1.0" + }, + "markupsafe": { + "hashes": [ + "sha256:00bc623926325b26bb9605ae9eae8a215691f33cae5df11ca5424f06f2d1f473", + "sha256:09027a7803a62ca78792ad89403b1b7a73a01c8cb65909cd876f7fcebd79b161", + "sha256:09c4b7f37d6c648cb13f9230d847adf22f8171b1ccc4d5682398e77f40309235", + "sha256:1027c282dad077d0bae18be6794e6b6b8c91d58ed8a8d89a89d59693b9131db5", + "sha256:13d3144e1e340870b25e7b10b98d779608c02016d5184cfb9927a9f10c689f42", + "sha256:19536834abffb3fa155017053c607cb835b2ecc6a3a2554a88043d991dffb736", + "sha256:24982cc2533820871eba85ba648cd53d8623687ff11cbb805be4ff7b4c971aff", + "sha256:29872e92839765e546828bb7754a68c418d927cd064fd4708fab9fe9c8bb116b", + "sha256:3d61f15e39611aacd91b7e71d903787da86d9e80896e683c0103fced9add7834", + "sha256:43a55c2930bbc139570ac2452adf3d70cdbb3cfe5912c71cdce1c2c6bbd9c5d1", + "sha256:46c99d2de99945ec5cb54f23c8cd5689f6d7177305ebff350a58ce5f8de1669e", + "sha256:500d4957e52ddc3351cabf489e79c91c17f6e0899158447047588650b5e69183", + "sha256:535f6fc4d397c1563d08b88e485c3496cf5784e927af890fb3c3aac7f933ec66", + "sha256:596510de112c685489095da617b5bcbbac7dd6384aeebeda4df6025d0256a81b", + "sha256:62fe6c95e3ec8a7fad637b7f3d372c15ec1caa01ab47926cfdf7a75b40e0eac1", + "sha256:6788b695d50a51edb699cb55e35487e430fa21f1ed838122d722e0ff0ac5ba15", + "sha256:6dd73240d2af64df90aa7c4e7481e23825ea70af4b4922f8ede5b9e35f78a3b1", + "sha256:717ba8fe3ae9cc0006d7c451f0bb265ee07739daf76355d06366154ee68d221e", + "sha256:7952deddf24b85c88dab48f6ec366ac6e39d2761b5280f2f9594911e03fcd064", + "sha256:79855e1c5b8da654cf486b830bd42c06e8780cea587384cf6545b7d9ac013a0b", + "sha256:7c1699dfe0cf8ff607dbdcc1e9b9af1755371f92a68f706051cc8c37d447c905", + "sha256:88e5fcfb52ee7b911e8bb6d6aa2fd21fbecc674eadd44118a9cc3863f938e735", + "sha256:8defac2f2ccd6805ebf65f5eeb132adcf2ab57aa11fdf4c0dd5169a004710e7d", + "sha256:98c7086708b163d425c67c7a91bad6e466bb99d797aa64f965e9d25c12111a5e", + "sha256:9add70b36c5666a2ed02b43b335fe19002ee5235efd4b8a89bfcf9005bebac0d", + "sha256:9bf40443012702a1d2070043cb6291650a0841ece432556f784f004937f0f32c", + "sha256:ade5e387d2ad0d7ebf59146cc00c8044acbd863725f887353a10df825fc8ae21", + "sha256:b00c1de48212e4cc9603895652c5c410df699856a2853135b3967591e4beebc2", + "sha256:b1282f8c00509d99fef04d8ba936b156d419be841854fe901d8ae224c59f0be5", + "sha256:b2051432115498d3562c084a49bba65d97cf251f5a331c64a12ee7e04dacc51b", + "sha256:ba59edeaa2fc6114428f1637ffff42da1e311e29382d81b339c1817d37ec93c6", + "sha256:c8716a48d94b06bb3b2524c2b77e055fb313aeb4ea620c8dd03a105574ba704f", + "sha256:cd5df75523866410809ca100dc9681e301e3c27567cf498077e8551b6d20e42f", + "sha256:cdb132fc825c38e1aeec2c8aa9338310d29d337bebbd7baa06889d09a60a1fa2", + "sha256:e249096428b3ae81b08327a63a485ad0878de3fb939049038579ac0ef61e17e7", + "sha256:e8313f01ba26fbbe36c7be1966a7b7424942f670f38e666995b88d012765b9be" + ], + "version": "==1.1.1" + }, + "mccabe": { + "hashes": [ + "sha256:ab8a6258860da4b6677da4bd2fe5dc2c659cff31b3ee4f7f5d64e79735b80d42", + "sha256:dd8d182285a0fe56bace7f45b5e7d1a6ebcbf524e8f3bd87eb0f125271b8831f" + ], + "version": "==0.6.1" + }, + "mistune": { + "hashes": [ + "sha256:59a3429db53c50b5c6bcc8a07f8848cb00d7dc8bdb431a4ab41920d201d4756e", + "sha256:88a1051873018da288eee8538d476dffe1262495144b33ecb586c4ab266bb8d4" + ], + "version": "==0.8.4" + }, + "more-itertools": { + "hashes": [ + "sha256:5dd8bcf33e5f9513ffa06d5ad33d78f31e1931ac9a18f33d37e77a180d393a7c", + "sha256:b1ddb932186d8a6ac451e1d95844b382f55e12686d51ca0c68b6f61f2ab7a507" + ], + "version": "==8.2.0" + }, + "mypy": { + "hashes": [ + "sha256:15b948e1302682e3682f11f50208b726a246ab4e6c1b39f9264a8796bb416aa2", + "sha256:219a3116ecd015f8dca7b5d2c366c973509dfb9a8fc97ef044a36e3da66144a1", + "sha256:3b1fc683fb204c6b4403a1ef23f0b1fac8e4477091585e0c8c54cbdf7d7bb164", + "sha256:3beff56b453b6ef94ecb2996bea101a08f1f8a9771d3cbf4988a61e4d9973761", + "sha256:7687f6455ec3ed7649d1ae574136835a4272b65b3ddcf01ab8704ac65616c5ce", + "sha256:7ec45a70d40ede1ec7ad7f95b3c94c9cf4c186a32f6bacb1795b60abd2f9ef27", + "sha256:86c857510a9b7c3104cf4cde1568f4921762c8f9842e987bc03ed4f160925754", + "sha256:8a627507ef9b307b46a1fea9513d5c98680ba09591253082b4c48697ba05a4ae", + "sha256:8dfb69fbf9f3aeed18afffb15e319ca7f8da9642336348ddd6cab2713ddcf8f9", + "sha256:a34b577cdf6313bf24755f7a0e3f3c326d5c1f4fe7422d1d06498eb25ad0c600", + "sha256:a8ffcd53cb5dfc131850851cc09f1c44689c2812d0beb954d8138d4f5fc17f65", + "sha256:b90928f2d9eb2f33162405f32dde9f6dcead63a0971ca8a1b50eb4ca3e35ceb8", + "sha256:c56ffe22faa2e51054c5f7a3bc70a370939c2ed4de308c690e7949230c995913", + "sha256:f91c7ae919bbc3f96cd5e5b2e786b2b108343d1d7972ea130f7de27fdd547cf3" + ], + "index": "pypi", + "version": "==0.770" + }, + "mypy-extensions": { + "hashes": [ + "sha256:090fedd75945a69ae91ce1303b5824f428daf5a028d2f6ab8a299250a846f15d", + "sha256:2d82818f5bb3e369420cb3c4060a7970edba416647068eb4c5343488a6c604a8" + ], + "version": "==0.4.3" + }, + "nbconvert": { + "hashes": [ + "sha256:944a5fbe6c4609d74e7f331bfa957c8eff2d53904f7c40f053a44bfb4164b718", + "sha256:c86da6adc412df9ad2726fe438589e4495c7835792d6d84f888178682f5d5bcf" + ], + "version": "==6.0.0a0" + }, + "nbformat": { + "hashes": [ + "sha256:562de41fc7f4f481b79ab5d683279bf3a168858268d4387b489b7b02be0b324a", + "sha256:f4bbbd8089bd346488f00af4ce2efb7f8310a74b2058040d075895429924678c" + ], + "version": "==5.0.4" + }, + "nodeenv": { + "hashes": [ + "sha256:5b2438f2e42af54ca968dd1b374d14a1194848955187b0e5e4be1f73813a5212" + ], + "version": "==1.3.5" + }, + "notebook": { + "hashes": [ + "sha256:3edc616c684214292994a3af05eaea4cc043f6b4247d830f3a2f209fa7639a80", + "sha256:47a9092975c9e7965ada00b9a20f0cf637d001db60d241d479f53c0be117ad48" + ], + "version": "==6.0.3" + }, + "packaging": { + "hashes": [ + "sha256:3c292b474fda1671ec57d46d739d072bfd495a4f51ad01a055121d81e952b7a3", + "sha256:82f77b9bee21c1bafbf35a84905d604d5d1223801d639cf3ed140bd651c08752" + ], + "version": "==20.3" + }, + "pandocfilters": { + "hashes": [ + "sha256:41a309da81cba5509389b19d96b0ee49551cee8165a6406754f2565e95429860", + "sha256:b3dd70e169bb5449e6bc6ff96aea89c5eea8c5f6ab5e207fc2f521a2cf4a0da9" + ], + "version": "==1.4.2" + }, + "parso": { + "hashes": [ + "sha256:0c5659e0c6eba20636f99a04f469798dca8da279645ce5c387315b2c23912157", + "sha256:8515fc12cfca6ee3aa59138741fc5624d62340c97e401c74875769948d4f2995" + ], + "version": "==0.6.2" + }, + "pathspec": { + "hashes": [ + "sha256:163b0632d4e31cef212976cf57b43d9fd6b0bac6e67c26015d611a647d5e7424", + "sha256:562aa70af2e0d434367d9790ad37aed893de47f1693e4201fd1d3dca15d19b96" + ], + "version": "==0.7.0" + }, + "pexpect": { + "hashes": [ + "sha256:0b48a55dcb3c05f3329815901ea4fc1537514d6ba867a152b581d69ae3710937", + "sha256:fc65a43959d153d0114afe13997d439c22823a27cefceb5ff35c2178c6784c0c" + ], + "version": "==4.8.0" + }, + "pickleshare": { + "hashes": [ + "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca", + "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56" + ], + "version": "==0.7.5" + }, + "pluggy": { + "hashes": [ + "sha256:15b2acde666561e1298d71b523007ed7364de07029219b604cf808bfa1c765b0", + "sha256:966c145cd83c96502c3c3868f50408687b38434af77734af1e9ca461a4081d2d" + ], + "version": "==0.13.1" + }, + "pre-commit": { + "hashes": [ + "sha256:487c675916e6f99d355ec5595ad77b325689d423ef4839db1ed2f02f639c9522", + "sha256:9707b4f7069365ffdb57d2782086a9f3019afde2a6e9f85df785c9bf090e1118", + "sha256:c0aa11bce04a7b46c5544723aedf4e81a4d5f64ad1205a30a9ea12d5e81969e1" + ], + "index": "pypi", + "version": "==2.2.0" + }, + "prometheus-client": { + "hashes": [ + "sha256:09b5750fd1c153420dccd35881116e853c730081bea0dbf0ea6649103bcb8445", + "sha256:71cd24a2b3eb335cb800c7159f423df1bd4dcd5171b234be15e3f31ec9f622da" + ], + "version": "==0.7.1" + }, + "prompt-toolkit": { + "hashes": [ + "sha256:563d1a4140b63ff9dd587bda9557cffb2fe73650205ab6f4383092fb882e7dc8", + "sha256:df7e9e63aea609b1da3a65641ceaf5bc7d05e0a04de5bd45d05dbeffbabf9e04" + ], + "version": "==3.0.5" + }, + "ptyprocess": { + "hashes": [ + "sha256:923f299cc5ad920c68f2bc0bc98b75b9f838b93b599941a6b63ddbc2476394c0", + "sha256:d7cc528d76e76342423ca640335bd3633420dc1366f258cb31d05e865ef5ca1f" + ], + "version": "==0.6.0" + }, + "py": { + "hashes": [ + "sha256:5e27081401262157467ad6e7f851b7aa402c5852dbcb3dae06768434de5752aa", + "sha256:c20fdd83a5dbc0af9efd622bee9a5564e278f6380fffcacc43ba6f43db2813b0" + ], + "version": "==1.8.1" + }, + "pycodestyle": { + "hashes": [ + "sha256:95a2219d12372f05704562a14ec30bc76b05a5b297b21a5dfe3f6fac3491ae56", + "sha256:e40a936c9a450ad81df37f549d676d127b1b66000a6c500caa2b085bc0ca976c" + ], + "version": "==2.5.0" + }, + "pyflakes": { + "hashes": [ + "sha256:17dbeb2e3f4d772725c777fabc446d5634d1038f234e77343108ce445ea69ce0", + "sha256:d976835886f8c5b31d47970ed689944a0262b5f3afa00a5a7b4dc81e5449f8a2" + ], + "version": "==2.1.1" + }, + "pygments": { + "hashes": [ + "sha256:647344a061c249a3b74e230c739f434d7ea4d8b1d5f3721bc0f3558049b38f44", + "sha256:aa931c0bd5daa25c475afadb2147115134cfe501f0656828cbe7cb566c7123bc", + "sha256:ff7a40b4860b727ab48fad6360eb351cc1b33cbf9b15a0f689ca5353e9463324" + ], + "version": "==2.6.1" + }, + "pyparsing": { + "hashes": [ + "sha256:4c830582a84fb022400b85429791bc551f1f4871c33f23e44f353119e92f969f", + "sha256:c342dccb5250c08d45fd6f8b4a559613ca603b57498511740e65cd11a2e7dcec" + ], + "version": "==2.4.6" + }, + "pyrsistent": { + "hashes": [ + "sha256:28669905fe725965daa16184933676547c5bb40a5153055a8dee2a4bd7933ad3", + "sha256:3217696df78f9222a3d1179b119c27be346b969a9e4d617de2a215a87d9aa456", + "sha256:9324b762b52e5a901611b25f50f9cdf8789c61ece3ff7c24dc872603c4faca62", + "sha256:c11415790cc5803e173de7d71d54f94c66a9154f81a72ffdf45a70096916f226" + ], + "version": "==0.16.0" + }, + "pytest": { + "hashes": [ + "sha256:0e5b30f5cb04e887b91b1ee519fa3d89049595f428c1db76e73bd7f17b09b172", + "sha256:84dde37075b8805f3d1f392cc47e38a0e59518fb46a431cfdaf7cf1ce805f970" + ], + "index": "pypi", + "version": "==5.4.1" + }, + "pytest-cov": { + "hashes": [ + "sha256:cc6742d8bac45070217169f5f72ceee1e0e55b0221f54bcf24845972d3a47f2b", + "sha256:cdbdef4f870408ebdbfeb44e63e07eb18bb4619fae852f6e760645fa36172626" + ], + "index": "pypi", + "version": "==2.8.1" + }, + "python-dateutil": { + "hashes": [ + "sha256:73ebfe9dbf22e832286dafa60473e4cd239f8592f699aa5adaf10050e6e1823c", + "sha256:75bb3f31ea686f1197762692a9ee6a7550b59fc6ca3a1f4b5d7e32fb98e2da2a" + ], + "version": "==2.8.1" + }, + "pywin32": { + "hashes": [ + "sha256:300a2db938e98c3e7e2093e4491439e62287d0d493fe07cce110db070b54c0be", + "sha256:31f88a89139cb2adc40f8f0e65ee56a8c585f629974f9e07622ba80199057511", + "sha256:371fcc39416d736401f0274dd64c2302728c9e034808e37381b5e1b22be4a6b0", + "sha256:47a3c7551376a865dd8d095a98deba954a98f326c6fe3c72d8726ca6e6b15507", + "sha256:4cdad3e84191194ea6d0dd1b1b9bdda574ff563177d2adf2b4efec2a244fa116", + "sha256:7c1ae32c489dc012930787f06244426f8356e129184a02c25aef163917ce158e", + "sha256:7f18199fbf29ca99dff10e1f09451582ae9e372a892ff03a28528a24d55875bc", + "sha256:9b31e009564fb95db160f154e2aa195ed66bcc4c058ed72850d047141b36f3a2", + "sha256:a929a4af626e530383a579431b70e512e736e9588106715215bf685a3ea508d4", + "sha256:c054c52ba46e7eb6b7d7dfae4dbd987a1bb48ee86debe3f245a2884ece46e295", + "sha256:f27cec5e7f588c3d1051651830ecc00294f90728d19c3bf6916e6dba93ea357c", + "sha256:f4c5be1a293bae0076d93c88f37ee8da68136744588bc5e2be2f299a34ceb7aa" + ], + "markers": "sys_platform == 'win32'", + "version": "==227" + }, + "pywinpty": { + "hashes": [ + "sha256:1e525a4de05e72016a7af27836d512db67d06a015aeaf2fa0180f8e6a039b3c2", + "sha256:2740eeeb59297593a0d3f762269b01d0285c1b829d6827445fcd348fb47f7e70", + "sha256:2d7e9c881638a72ffdca3f5417dd1563b60f603e1b43e5895674c2a1b01f95a0", + "sha256:33df97f79843b2b8b8bc5c7aaf54adec08cc1bae94ee99dfb1a93c7a67704d95", + "sha256:5fb2c6c6819491b216f78acc2c521b9df21e0f53b9a399d58a5c151a3c4e2a2d", + "sha256:8fc5019ff3efb4f13708bd3b5ad327589c1a554cb516d792527361525a7cb78c", + "sha256:b358cb552c0f6baf790de375fab96524a0498c9df83489b8c23f7f08795e966b", + "sha256:dbd838de92de1d4ebf0dce9d4d5e4fc38d0b7b1de837947a18b57a882f219139", + "sha256:dd22c8efacf600730abe4a46c1388355ce0d4ab75dc79b15d23a7bd87bf05b48", + "sha256:e854211df55d107f0edfda8a80b39dfc87015bef52a8fe6594eb379240d81df2" + ], + "markers": "os_name == 'nt'", + "version": "==0.5.7" + }, + "pyyaml": { + "hashes": [ + "sha256:06a0d7ba600ce0b2d2fe2e78453a470b5a6e000a985dd4a4e54e436cc36b0e97", + "sha256:240097ff019d7c70a4922b6869d8a86407758333f02203e0fc6ff79c5dcede76", + "sha256:4f4b913ca1a7319b33cfb1369e91e50354d6f07a135f3b901aca02aa95940bd2", + "sha256:589929630502f3b0e87daee190b399f98401b6bccea87ed634a73fe5da43d3d4", + "sha256:69f00dca373f240f842b2931fb2c7e14ddbacd1397d57157a9b005a6a9942648", + "sha256:6e8383720b2127b09dba5b323ac896c702cf02bc5786fce16cd6791825d92d16", + "sha256:73f099454b799e05e5ab51423c7bcf361c58d3206fa7b0d555426b1f4d9a3eaf", + "sha256:74809a57b329d6cc0fdccee6318f44b9b8649961fa73144a98735b0aaf029f1f", + "sha256:7739fc0fa8205b3ee8808aea45e968bc90082c10aef6ea95e855e10abf4a37b2", + "sha256:95f71d2af0ff4227885f7a6605c37fd53d3a106fcab511b8860ecca9fcf400ee", + "sha256:b8eac752c5e14d3eca0e6dd9199cd627518cb5ec06add0de9d32baeee6fe645d", + "sha256:cc8955cfbfc7a115fa81d85284ee61147059a753344bc51098f3ccd69b0d7e0c", + "sha256:d13155f591e6fcc1ec3b30685d50bf0711574e2c0dfffd7644babf8b5102ca1a" + ], + "version": "==5.3.1" + }, + "pyzmq": { + "hashes": [ + "sha256:07bfbf192f22ef1dde65b6046efff191e3201e74da6d47098e68958469ecbe48", + "sha256:0bbc1728fe4314b4ca46249c33873a390559edac7c217ec7001b5e0c34a8fb7f", + "sha256:1e076ad5bd3638a18c376544d32e0af986ca10d43d4ce5a5d889a8649f0d0a3d", + "sha256:242d949eb6b10197cda1d1cec377deab1d5324983d77e0d0bf9dc5eb6d71a6b4", + "sha256:26f4ae420977d2a8792d7c2d7bda43128b037b5eeb21c81951a94054ad8b8843", + "sha256:32234c21c5e0a767c754181c8112092b3ddd2e2a36c3f76fc231ced817aeee47", + "sha256:3f12ce1e9cc9c31497bd82b207e8e86ccda9eebd8c9f95053aae46d15ccd2196", + "sha256:4557d5e036e6d85715b4b9fdb482081398da1d43dc580d03db642b91605b409f", + "sha256:4f562dab21c03c7aa061f63b147a595dbe1006bf4f03213272fc9f7d5baec791", + "sha256:54ecd00daa474885bbf318108401d318614425a05dfeae917611dd93f99f2678", + "sha256:5e071b834051e9ecb224915398f474bfad802c2fff883f118ff5363ca4ae3edf", + "sha256:5e1f65e576ab07aed83f444e201d86deb01cd27dcf3f37c727bc8729246a60a8", + "sha256:5f10a31f288bf055be76c57710807a8f0efdb2b82be6c2a2b8f9a61f33a40cea", + "sha256:6aaaf90b420dc40d9a0e1996b82c6a0ff91d9680bebe2135e67c9e6d197c0a53", + "sha256:75238d3c16cab96947705d5709187a49ebb844f54354cdf0814d195dd4c045de", + "sha256:7f7e7b24b1d392bb5947ba91c981e7d1a43293113642e0d8870706c8e70cdc71", + "sha256:84b91153102c4bcf5d0f57d1a66a0f03c31e9e6525a5f656f52fc615a675c748", + "sha256:944f6bb5c63140d76494467444fd92bebd8674236837480a3c75b01fe17df1ab", + "sha256:a1f957c20c9f51d43903881399b078cddcf710d34a2950e88bce4e494dcaa4d1", + "sha256:a49fd42a29c1cc1aa9f461c5f2f5e0303adba7c945138b35ee7f4ab675b9f754", + "sha256:a99ae601b4f6917985e9bb071549e30b6f93c72f5060853e197bdc4b7d357e5f", + "sha256:ad48865a29efa8a0cecf266432ea7bc34e319954e55cf104be0319c177e6c8f5", + "sha256:b08e425cf93b4e018ab21dc8fdbc25d7d0502a23cc4fea2380010cf8cf11e462", + "sha256:bb10361293d96aa92be6261fa4d15476bca56203b3a11c62c61bd14df0ef89ba", + "sha256:bd1a769d65257a7a12e2613070ca8155ee348aa9183f2aadf1c8b8552a5510f5", + "sha256:cb3b7156ef6b1a119e68fbe3a54e0a0c40ecacc6b7838d57dd708c90b62a06dc", + "sha256:d2f64994f9628f621e0f636f9532055887defc9fa5213aaeceb770d9c579f9ac", + "sha256:e8e4efb52ec2df8d046395ca4c84ae0056cf507b2f713ec803c65a8102d010de", + "sha256:f37c29da2a5b0c5e31e6f8aab885625ea76c807082f70b2d334d3fd573c3100a", + "sha256:f4d558bc5668d2345773a9ff8c39e2462dafcb1f6772a2e582fbced389ce527f", + "sha256:f5b6d015587a1d6f582ba03b226a9ddb1dfb09878b3be04ef48b01b7d4eb6b2a" + ], + "version": "==19.0.0" + }, + "regex": { + "hashes": [ + "sha256:01b2d70cbaed11f72e57c1cfbaca71b02e3b98f739ce33f5f26f71859ad90431", + "sha256:046e83a8b160aff37e7034139a336b660b01dbfe58706f9d73f5cdc6b3460242", + "sha256:113309e819634f499d0006f6200700c8209a2a8bf6bd1bdc863a4d9d6776a5d1", + "sha256:200539b5124bc4721247a823a47d116a7a23e62cc6695744e3eb5454a8888e6d", + "sha256:25f4ce26b68425b80a233ce7b6218743c71cf7297dbe02feab1d711a2bf90045", + "sha256:269f0c5ff23639316b29f31df199f401e4cb87529eafff0c76828071635d417b", + "sha256:59fd3df28f43adf25a32b4a957f5b0a62e3ff55ce29de6600da7e110f33102dd", + "sha256:5de40649d4f88a15c9489ed37f88f053c15400257eeb18425ac7ed0a4e119400", + "sha256:7f78f963e62a61e294adb6ff5db901b629ef78cb2a1cfce3cf4eeba80c1c67aa", + "sha256:82469a0c1330a4beb3d42568f82dffa32226ced006e0b063719468dcd40ffdf0", + "sha256:8c2b7fa4d72781577ac45ab658da44c7518e6d96e2a50d04ecb0fd8f28b21d69", + "sha256:974535648f31c2b712a6b2595969f8ab370834080e00ab24e5dbb9d19b8bfb74", + "sha256:99272d6b6a68c7ae4391908fc15f6b8c9a6c345a46b632d7fdb7ef6c883a2bbb", + "sha256:9b64a4cc825ec4df262050c17e18f60252cdd94742b4ba1286bcfe481f1c0f26", + "sha256:9e9624440d754733eddbcd4614378c18713d2d9d0dc647cf9c72f64e39671be5", + "sha256:9ff16d994309b26a1cdf666a6309c1ef51ad4f72f99d3392bcd7b7139577a1f2", + "sha256:b33ebcd0222c1d77e61dbcd04a9fd139359bded86803063d3d2d197b796c63ce", + "sha256:bba52d72e16a554d1894a0cc74041da50eea99a8483e591a9edf1025a66843ab", + "sha256:bed7986547ce54d230fd8721aba6fd19459cdc6d315497b98686d0416efaff4e", + "sha256:c7f58a0e0e13fb44623b65b01052dae8e820ed9b8b654bb6296bc9c41f571b70", + "sha256:d3242da581f8d54d5a0f769b4d003f065dc6222621267a056b98f6886dc90f36", + "sha256:d58a4fa7910102500722defbde6e2816b0372a4fcc85c7e239323767c74f5cbc", + "sha256:da22de67d83ee26b45c7b461c96e541f0cda72b76229d95e313666770dd8da41", + "sha256:f1ac2dc65105a53c1c2d72b1d3e98c2464a133b4067a51a3d2477b28449709a0" + ], + "version": "==2020.2.20" + }, + "remote-ikernel": { + "hashes": [ + "sha256:5253216e87a8c31f1b0ca9305454f223147518b580e853b7635a3d8b9c88c295", + "sha256:740b80a57fa1af40cadef541c5a4eb293675b504092ecf00c57dd2f0011bd840" + ], + "index": "pypi", + "version": "==0.4.6" + }, + "send2trash": { + "hashes": [ + "sha256:60001cc07d707fe247c94f74ca6ac0d3255aabcb930529690897ca2a39db28b2", + "sha256:f1691922577b6fa12821234aeb57599d887c4900b9ca537948d2dac34aea888b" + ], + "version": "==1.5.0" + }, + "six": { + "hashes": [ + "sha256:236bdbdce46e6e6a3d61a337c0f8b763ca1e8717c03b369e87a7ec7ce1319c0a", + "sha256:8f3cd2e254d8f793e7f3d6d9df77b92252b52637291d0f0da013c76ea2724b6c" + ], + "version": "==1.14.0" + }, + "terminado": { + "hashes": [ + "sha256:4804a774f802306a7d9af7322193c5390f1da0abb429e082a10ef1d46e6fb2c2", + "sha256:a43dcb3e353bc680dd0783b1d9c3fc28d529f190bc54ba9a229f72fe6e7a54d7" + ], + "version": "==0.8.3" + }, + "testpath": { + "hashes": [ + "sha256:60e0a3261c149755f4399a1fff7d37523179a70fdc3abdf78de9fc2604aeec7e", + "sha256:bfcf9411ef4bf3db7579063e0546938b1edda3d69f4e1fb8756991f5951f85d4" + ], + "version": "==0.4.4" + }, + "toml": { + "hashes": [ + "sha256:229f81c57791a41d65e399fc06bf0848bab550a9dfd5ed66df18ce5f05e73d5c", + "sha256:235682dd292d5899d361a811df37e04a8828a5b1da3115886b73cf81ebc9100e" + ], + "version": "==0.10.0" + }, + "tornado": { + "hashes": [ + "sha256:0fe2d45ba43b00a41cd73f8be321a44936dc1aba233dee979f17a042b83eb6dc", + "sha256:22aed82c2ea340c3771e3babc5ef220272f6fd06b5108a53b4976d0d722bcd52", + "sha256:2c027eb2a393d964b22b5c154d1a23a5f8727db6fda837118a776b29e2b8ebc6", + "sha256:503700d85d9a2c2aa737fb16df58bfa2ac0d5ec501881fea2acceae64ce17858", + "sha256:5217e601700f24e966ddab689f90b7ea4bd91ff3357c3600fa1045e26d68e55d", + "sha256:5618f72e947533832cbc3dec54e1dffc1747a5cb17d1fd91577ed14fa0dc081b", + "sha256:5f6a07e62e799be5d2330e68d808c8ac41d4a259b9cea61da4101b83cb5dc673", + "sha256:7182a9285e364e55e6902b5fb4d4a219efd8d7818d9000b419a0eaf3909fc0bc", + "sha256:c58d56003daf1b616336781b26d184023ea4af13ae143d9dda65e31e534940b9", + "sha256:c952975c8ba74f546ae6de2e226ab3cc3cc11ae47baf607459a6728585bb542a", + "sha256:c98232a3ac391f5faea6821b53db8db461157baa788f5d6222a193e9456e1740" + ], + "version": "==6.0.4" + }, + "traitlets": { + "hashes": [ + "sha256:70b4c6a1d9019d7b4f6846832288f86998aa3b9207c6821f3578a6a6a467fe44", + "sha256:d023ee369ddd2763310e4c3eae1ff649689440d4ae59d7485eb4cfbbe3e359f7" + ], + "version": "==4.3.3" + }, + "typed-ast": { + "hashes": [ + "sha256:0666aa36131496aed8f7be0410ff974562ab7eeac11ef351def9ea6fa28f6355", + "sha256:0c2c07682d61a629b68433afb159376e24e5b2fd4641d35424e462169c0a7919", + "sha256:249862707802d40f7f29f6e1aad8d84b5aa9e44552d2cc17384b209f091276aa", + "sha256:24995c843eb0ad11a4527b026b4dde3da70e1f2d8806c99b7b4a7cf491612652", + "sha256:269151951236b0f9a6f04015a9004084a5ab0d5f19b57de779f908621e7d8b75", + "sha256:3791f73e5d75aa9a95274679ab4821bd9d16de623c4ecf4900a77a29864ee144", + "sha256:4083861b0aa07990b619bd7ddc365eb7fa4b817e99cf5f8d9cf21a42780f6e01", + "sha256:498b0f36cc7054c1fead3d7fc59d2150f4d5c6c56ba7fb150c013fbc683a8d2d", + "sha256:4e3e5da80ccbebfff202a67bf900d081906c358ccc3d5e3c8aea42fdfdfd51c1", + "sha256:6daac9731f172c2a22ade6ed0c00197ee7cc1221aa84cfdf9c31defeb059a907", + "sha256:715ff2f2df46121071622063fc7543d9b1fd19ebfc4f5c8895af64a77a8c852c", + "sha256:73d785a950fc82dd2a25897d525d003f6378d1cb23ab305578394694202a58c3", + "sha256:8c8aaad94455178e3187ab22c8b01a3837f8ee50e09cf31f1ba129eb293ec30b", + "sha256:8ce678dbaf790dbdb3eba24056d5364fb45944f33553dd5869b7580cdbb83614", + "sha256:aaee9905aee35ba5905cfb3c62f3e83b3bec7b39413f0a7f19be4e547ea01ebb", + "sha256:bcd3b13b56ea479b3650b82cabd6b5343a625b0ced5429e4ccad28a8973f301b", + "sha256:c9e348e02e4d2b4a8b2eedb48210430658df6951fa484e59de33ff773fbd4b41", + "sha256:d205b1b46085271b4e15f670058ce182bd1199e56b317bf2ec004b6a44f911f6", + "sha256:d43943ef777f9a1c42bf4e552ba23ac77a6351de620aa9acf64ad54933ad4d34", + "sha256:d5d33e9e7af3b34a40dc05f498939f0ebf187f07c385fd58d591c533ad8562fe", + "sha256:df74880bdb70f34304ccc52b0c99d3e578f96a906b86f3ae172a1f1c2edef2bc", + "sha256:fc0fea399acb12edbf8a628ba8d2312f583bdbdb3335635db062fa98cf71fca4", + "sha256:fe460b922ec15dd205595c9b5b99e2f056fd98ae8f9f56b888e7a17dc2b757e7" + ], + "version": "==1.4.1" + }, + "typing-extensions": { + "hashes": [ + "sha256:091ecc894d5e908ac75209f10d5b4f118fbdb2eb1ede6a63544054bb1edb41f2", + "sha256:910f4656f54de5993ad9304959ce9bb903f90aadc7c67a0bef07e678014e892d", + "sha256:cf8b63fedea4d89bab840ecbb93e75578af28f76f66c35889bd7065f5af88575" + ], + "version": "==3.7.4.1" + }, + "virtualenv": { + "hashes": [ + "sha256:4e399f48c6b71228bf79f5febd27e3bbb753d9d5905776a86667bc61ab628a25", + "sha256:9e81279f4a9d16d1c0654a127c2c86e5bca2073585341691882c1e66e31ef8a5" + ], + "version": "==20.0.15" + }, + "wcwidth": { + "hashes": [ + "sha256:cafe2186b3c009a04067022ce1dcd79cb38d8d65ee4f4791b8888d6599d1bbe1", + "sha256:ee73862862a156bf77ff92b09034fc4825dd3af9cf81bc5b360668d425f3c5f1" + ], + "version": "==0.1.9" + }, + "webencodings": { + "hashes": [ + "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", + "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923" + ], + "version": "==0.5.1" + }, + "zipp": { + "hashes": [ + "sha256:aa36550ff0c0b7ef7fa639055d797116ee891440eac1a56f378e2d3179e0320b", + "sha256:c599e4d75c98f6798c509911d08a22e6c021d074469042177c8c86fb92eefd96" + ], + "version": "==3.1.0" + } + } +} diff --git a/Ch02/listing02-11/pytest.ini b/Ch02/listing02-11/pytest.ini new file mode 100644 index 0000000..861f3d0 --- /dev/null +++ b/Ch02/listing02-11/pytest.ini @@ -0,0 +1,3 @@ +[pytest] +markers = + functional: these tests are significantly slower as they run the whole CLI script \ No newline at end of file diff --git a/Ch02/listing02-11/sensors.py b/Ch02/listing02-11/sensors.py new file mode 100644 index 0000000..0e46a9b --- /dev/null +++ b/Ch02/listing02-11/sensors.py @@ -0,0 +1,198 @@ +#!/usr/bin/env python +# coding: utf-8 +import math +import socket +import sys +from typing import Any, Optional, List, Tuple, Iterable, TypeVar, Generic + + +import click +import psutil + + +T_value = TypeVar("T_value") + + +class Sensor(Generic[T_value]): + title: str + + def value(self) -> T_value: + raise NotImplementedError + + @classmethod + def format(cls, value: T_value) -> str: + raise NotImplementedError + + def __str__(self) -> str: + return self.format(self.value()) + + +class PythonVersion(Sensor[Any]): + title = "Python Version" + + def value(self) -> Any: + return sys.version_info + + @classmethod + def format(cls, value: Any) -> str: + if value.micro == 0 and value.releaselevel == "alpha": + return "{0.major}.{0.minor}.{0.micro}a{0.serial}".format(value) + return "{0.major}.{0.minor}".format(value) + + +class IPAddresses(Sensor[Iterable[Tuple[str, str]]]): + title = "IP Addresses" + FAMILIES = {"AF_INET": "IPv4", "AF_INET6": "IPv6"} + + def value(self) -> List[Tuple[str, str]]: + hostname = socket.gethostname() + addresses = socket.getaddrinfo(hostname, None) + + address_info: List[Tuple[str, str]] = [] + for address in addresses: + family, ip = (address[0].name, address[4][0]) + if family not in self.FAMILIES: + continue + value = (family, ip) + if value not in address_info: + address_info.append(value) + return address_info + + @classmethod + def format(cls, value: Iterable[Tuple[str, str]]) -> str: + return "\n".join( + "{0} ({1})".format(address[1], cls.FAMILIES.get(address[0], "Unknown")) + for address in value + ) + + +class CPULoad(Sensor[float]): + title = "CPU Usage" + + def value(self) -> float: + return psutil.cpu_percent(interval=3) / 100.0 + + @classmethod + def format(cls, value: float) -> str: + return "{:.1%}".format(value) + + +class RAMAvailable(Sensor[int]): + title = "RAM Available" + UNITS = ("B", "KiB", "MiB", "GiB", "TiB", "PiB", "EiB") + UNIT_SIZE = 2 ** 10 + + def value(self) -> int: + return psutil.virtual_memory().available + + @classmethod + def format(cls, value: int) -> str: + magnitude = math.floor(math.log(value, cls.UNIT_SIZE)) + max_magnitude = len(cls.UNITS) - 1 + magnitude = min(magnitude, max_magnitude) + scaled_value = value / (cls.UNIT_SIZE ** magnitude) + return "{:.1f} {}".format(scaled_value, cls.UNITS[magnitude]) + + +class ACStatus(Sensor[Optional[bool]]): + title = "AC Connected" + + def value(self) -> Optional[bool]: + battery = psutil.sensors_battery() + if battery is not None: + return battery.power_plugged + else: + return None + + @classmethod + def format(cls, value: Optional[bool]) -> str: + if value is None: + return "Unknown" + elif value: + return "Connected" + else: + return "Not connected" + + +class Temperature(Sensor[Optional[float]]): + title = "Ambient Temperature" + + def value(self) -> Optional[float]: + try: + # Connect to a DHT22 on pin 4 + from adafruit_dht import DHT22 + from board import D4 + except (ImportError, NotImplementedError): + # No DHT library results in an ImportError. + # Running on an unknown platform results in a + # NotImplementedError when getting the pin + return None + try: + return DHT22(D4).temperature + except RuntimeError: + return None + + @staticmethod + def celsius_to_fahrenheit(value: float) -> float: + return value * 9 / 5 + 32 + + @classmethod + def format(cls, value: Optional[float]) -> str: + if value is None: + return "Unknown" + else: + return "{:.1f}C ({:.1f}F)".format(value, cls.celsius_to_fahrenheit(value)) + + def __str__(self) -> str: + return self.format(self.value()) + + +class RelativeHumidity(Sensor[Optional[float]]): + title = "Relative Humidity" + + def value(self) -> Optional[float]: + try: + # Connect to a DHT22 on pin 4 + from adafruit_dht import DHT22 + from board import D4 + except (ImportError, NotImplementedError): + # No DHT library results in an ImportError. + # Running on an unknown platform results in a + # NotImplementedError when getting the pin + return None + try: + return DHT22(D4).humidity / 100 + except RuntimeError: + return None + + @classmethod + def format(cls, value: Optional[float]) -> str: + if value is None: + return "Unknown" + else: + return "{:.1%}".format(value) + + +def get_sensors() -> Iterable[Sensor[Any]]: + return [ + PythonVersion(), + IPAddresses(), + CPULoad(), + RAMAvailable(), + ACStatus(), + Temperature(), + RelativeHumidity(), + ] + + +@click.command(help="Displays the values of the sensors") +def show_sensors() -> None: + sensors = get_sensors() + for sensor in sensors: + click.secho(sensor.title, bold=True) + click.echo(str(sensor)) + click.echo("") + + +if __name__ == "__main__": + show_sensors() diff --git a/Ch02/listing02-11/setup.cfg b/Ch02/listing02-11/setup.cfg new file mode 100644 index 0000000..9aedcef --- /dev/null +++ b/Ch02/listing02-11/setup.cfg @@ -0,0 +1,5 @@ +[mypy] +ignore_missing_imports = True + +[flake8] +max-line-length = 88 \ No newline at end of file diff --git a/Ch02/listing02-11/tests/__init__.py b/Ch02/listing02-11/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/Ch02/listing02-11/tests/test_acstatus.py b/Ch02/listing02-11/tests/test_acstatus.py new file mode 100644 index 0000000..7dab477 --- /dev/null +++ b/Ch02/listing02-11/tests/test_acstatus.py @@ -0,0 +1,55 @@ +from unittest import mock + +import pytest + +from sensors import ACStatus + + +@pytest.fixture +def sensor(): + return ACStatus() + + +class TestACStatusFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_True(self, subject): + assert subject(True) == "Connected" + + def test_format_False(self, subject): + assert subject(False) == "Not connected" + + def test_format_None(self, subject): + assert subject(None) == "Unknown" + + +class TestACStatusValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def sensors_battery(self): + with mock.patch("psutil.sensors_battery") as sensors_battery: + yield sensors_battery + + def test_sensors_battery_called(self, subject, sensors_battery): + sensors_battery.return_value.power_plugged = True + assert subject() is True + assert sensors_battery.call_count == 1 + + def test_sensor_but_battery_unknown(self, subject, sensors_battery): + sensors_battery.return_value.power_plugged = None + assert subject() is None + assert sensors_battery.call_count == 1 + + def test_no_sensor(self, subject, sensors_battery): + sensors_battery.return_value = None + assert subject() is None + + def test_str_representation_is_formatted_value(self, sensor, sensors_battery): + sensors_battery.return_value.power_plugged = True + assert str(sensor) == "Connected" + assert sensors_battery.call_count == 1 diff --git a/Ch02/listing02-11/tests/test_cpuusage.py b/Ch02/listing02-11/tests/test_cpuusage.py new file mode 100644 index 0000000..504861b --- /dev/null +++ b/Ch02/listing02-11/tests/test_cpuusage.py @@ -0,0 +1,45 @@ +from unittest import mock + +import pytest + +from sensors import CPULoad + + +@pytest.fixture +def sensor(): + return CPULoad() + + +class TestCPULoadFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_simple_percentage(self, subject): + assert subject(0.05) == "5.0%" + + def test_format_multiple_decimal_places(self, subject): + assert subject(0.031415926) == "3.1%" + + def test_format_multiple_decimal_places_int(self, subject) -> None: + assert subject(1) == "100.0%" + + +class TestCPULoadValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def cpuload(self): + with mock.patch("psutil.cpu_percent") as cpu_percent: + cpu_percent.return_value = 50.1 + yield cpu_percent + + def test_cpu_percent_called_With_interval(self, subject, cpuload): + assert subject() == 0.501 + assert cpuload.call_count == 1 + assert tuple(cpuload.call_args) == ((), {"interval": 3}) + + def test_str_representation_is_formatted_value(self, sensor, cpuload): + assert str(sensor) == "50.1%" diff --git a/Ch02/listing02-11/tests/test_dht.py b/Ch02/listing02-11/tests/test_dht.py new file mode 100644 index 0000000..c8391a3 --- /dev/null +++ b/Ch02/listing02-11/tests/test_dht.py @@ -0,0 +1,66 @@ +import pytest + +from sensors import Temperature, RelativeHumidity + + +@pytest.fixture +def temperature_sensor(): + return Temperature() + + +@pytest.fixture +def humidity_sensor(): + return RelativeHumidity() + + +class TestTemperatureFormatter: + @pytest.fixture + def subject(self, temperature_sensor): + return temperature_sensor.format + + def test_format_21c(self, subject): + assert subject(21.0) == "21.0C (69.8F)" + + def test_format_negative(self, subject): + assert subject(-32.0) == "-32.0C (-25.6F)" + + def test_format_unknown(self, subject): + assert subject(None) == "Unknown" + + +class TestTemperatureConversion: + @pytest.fixture + def subject(self, temperature_sensor): + return temperature_sensor.celsius_to_fahrenheit + + def test_celsius_to_fahrenheit(self, subject): + c = 21 + f = subject(c) + assert f == 69.8 + + def test_celsius_to_fahrenheit_equivlance_point(self, subject): + c = -40 + f = subject(c) + assert f == -40 + + def test_celsius_to_fahrenheit_float(self, subject): + c = 21.2 + f = subject(c) + assert f == 70.16 + + def test_celsius_to_fahrenheit_string(self, subject): + c = "21" + with pytest.raises(TypeError): + subject(c) + + +class TestHumidityFormatter: + @pytest.fixture + def subject(self, humidity_sensor): + return humidity_sensor.format + + def test_format_percentage(self, subject): + assert subject(0.035) == "3.5%" + + def test_format_unknown(self, subject): + assert subject(None) == "Unknown" diff --git a/Ch02/listing02-11/tests/test_ipaddresses.py b/Ch02/listing02-11/tests/test_ipaddresses.py new file mode 100644 index 0000000..f97d377 --- /dev/null +++ b/Ch02/listing02-11/tests/test_ipaddresses.py @@ -0,0 +1,59 @@ +import socket +from unittest import mock + +import pytest + +from sensors import IPAddresses + + +@pytest.fixture +def sensor(): + return IPAddresses() + + +class TestIPAddressFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_single_ipv4(self, subject): + ips = [("AF_INET", "192.0.2.1")] + assert subject(ips) == "192.0.2.1 (IPv4)" + + def test_format_single_ipv6(self, subject): + ips = [("AF_INET6", "2001:DB8::1")] + assert subject(ips) == "2001:DB8::1 (IPv6)" + + def test_format_mixed_list(self, subject): + ips = [("AF_INET", "192.0.2.1"), ("AF_INET6", "2001:DB8::1")] + assert subject(ips) == "192.0.2.1 (IPv4)\n2001:DB8::1 (IPv6)" + + def test_unusual_protocols_are_marked_as_unknown(self, subject): + ips = [("AF_IRDA", "ffff")] + assert subject(ips) == "ffff (Unknown)" + + +class TestIPAddressesValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def gethostname(self): + with mock.patch("socket.gethostname") as gethostname: + gethostname.return_value = "localhost" + yield gethostname + + @pytest.fixture + def getaddrinfo(self, gethostname): + with mock.patch("socket.getaddrinfo") as getaddrinfo: + yield getaddrinfo + + def test_getaddrinfo_used_for_value_collection(self, getaddrinfo, subject): + getaddrinfo.return_value = [(socket.AF_INET, 0, 0, "", ("192.0.2.1", 0))] + assert subject() == [("AF_INET", "192.0.2.1")] + assert getaddrinfo.call_count == 1 + + def test_str_representation_is_formatted_value(self, getaddrinfo, sensor): + getaddrinfo.return_value = [(socket.AF_INET6, 0, 0, "", ("2001:DB8::1", 0))] + assert str(sensor) == "2001:DB8::1 (IPv6)" diff --git a/Ch02/listing02-11/tests/test_pythonversion.py b/Ch02/listing02-11/tests/test_pythonversion.py new file mode 100644 index 0000000..473eb62 --- /dev/null +++ b/Ch02/listing02-11/tests/test_pythonversion.py @@ -0,0 +1,61 @@ +from collections import namedtuple +from unittest import mock + +import pytest + +from sensors import PythonVersion + + +@pytest.fixture +def version(): + return namedtuple( + "sys_versioninfo", ("major", "minor", "micro", "releaselevel", "serial") + ) + + +@pytest.fixture +def sensor(): + return PythonVersion() + + +class TestPythonVersionFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_py38(self, subject, version): + py38 = version(3, 8, 0, "final", 0) + assert subject(py38) == "3.8" + + def test_format_large_version(self, subject, version): + large = version(255, 128, 0, "final", 0) + assert subject(large) == "255.128" + + def test_alpha_of_minor_is_marked(self, subject, version): + py39 = version(3, 9, 0, "alpha", 1) + assert subject(py39) == "3.9.0a1" + + def test_alpha_of_micro_is_unmarked(self, subject, version): + py39 = version(3, 9, 1, "alpha", 1) + assert subject(py39) == "3.9" + + +class TestPythonVersionValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def python_version(self): + import sys + + return sys.version_info + + def test_data_value_is_sys_versioninfo(self, python_version, subject): + assert subject() == python_version + + +class TestPythonVersionSensor: + def test_str_representation_is_formatted_value(self, sensor, version): + with mock.patch("sys.version_info", new=version(3, 4, 1, "final", 1)): + assert str(sensor) == "3.4" diff --git a/Ch02/listing02-11/tests/test_ramusage.py b/Ch02/listing02-11/tests/test_ramusage.py new file mode 100644 index 0000000..b3c091a --- /dev/null +++ b/Ch02/listing02-11/tests/test_ramusage.py @@ -0,0 +1,47 @@ +from unittest import mock + +import pytest + +from sensors import RAMAvailable + + +@pytest.fixture +def sensor(): + return RAMAvailable() + + +class TestRAMAvailableFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_bytes(self, subject): + assert subject(15) == "15.0 B" + + def test_format_kibibytes(self, subject): + assert subject(15000) == "14.6 KiB" + + def test_format_mibibytes(self, subject): + assert subject(15000000) == "14.3 MiB" + + def test_format_gibibytes(self, subject): + assert subject(15000000000) == "14.0 GiB" + + +class TestRAMAvailableValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def virtual_memory(self): + with mock.patch("psutil.virtual_memory") as virtual_memory: + virtual_memory.return_value.available = 1024 + yield virtual_memory + + def test_virtual_memory_called(self, subject, virtual_memory): + assert subject() == 1024 + assert virtual_memory.call_count == 1 + + def test_str_representation_is_formatted_value(self, sensor, virtual_memory): + assert str(sensor) == "1.0 KiB" diff --git a/Ch02/listing02-11/tests/test_sensors.py b/Ch02/listing02-11/tests/test_sensors.py new file mode 100644 index 0000000..6596ba1 --- /dev/null +++ b/Ch02/listing02-11/tests/test_sensors.py @@ -0,0 +1,17 @@ +from click.testing import CliRunner + +import pytest + +import sensors + + +def test_sensors(): + assert hasattr(sensors, "PythonVersion") + + +@pytest.mark.functional +def test_python_version_is_first_two_lines_of_cli_output(): + runner = CliRunner() + result = runner.invoke(sensors.show_sensors) + python_version = str(sensors.PythonVersion()) + assert ["Python Version", python_version] == result.stdout.split("\n")[:2] diff --git a/Ch02/listing02-12/.pre-commit-config.yaml b/Ch02/listing02-12/.pre-commit-config.yaml new file mode 100644 index 0000000..3ff6d15 --- /dev/null +++ b/Ch02/listing02-12/.pre-commit-config.yaml @@ -0,0 +1,23 @@ +repos: + +- repo: local + hooks: + - id: black + name: black + entry: pipenv run black + args: [--quiet] + language: system + types: [python] + + - id: mypy + name: mypy + entry: pipenv run mypy + args: ["--follow-imports=skip"] + language: system + types: [python] + + - id: flake8 + name: flake8 + entry: pipenv run flake8 + language: system + types: [python] diff --git a/Ch02/listing02-12/Pipfile b/Ch02/listing02-12/Pipfile new file mode 100644 index 0000000..c35d39c --- /dev/null +++ b/Ch02/listing02-12/Pipfile @@ -0,0 +1,29 @@ +[[source]] +name = "pypi" +url = "https://pypi.org/simple" +verify_ssl = true + +[[source]] +name = "pypi" +url = "https://piwheels.org/simple" +verify_ssl = true + +[dev-packages] +ipykernel = "*" +remote-ikernel = "*" +pytest = "*" +pytest-cov = "*" +mypy = "*" +flake8 = "*" +black = "*" +pre-commit = "*" + +[packages] +psutil = "*" +click = "*" +adafruit-circuitpython-dht = {markers = "'arm' in platform_machine",version = "*"} + +[requires] + +[pipenv] +allow_prereleases = true diff --git a/Ch02/listing02-12/Pipfile.lock b/Ch02/listing02-12/Pipfile.lock new file mode 100644 index 0000000..ff7db13 --- /dev/null +++ b/Ch02/listing02-12/Pipfile.lock @@ -0,0 +1,866 @@ +{ + "_meta": { + "hash": { + "sha256": "9bc7427fda5ec4bf8a1344d4f47036d9af341544ccce6f12273046f922d95df2" + }, + "pipfile-spec": 6, + "requires": {}, + "sources": [ + { + "name": "pypi", + "url": "https://pypi.org/simple", + "verify_ssl": true + }, + { + "name": "pypi", + "url": "https://piwheels.org/simple", + "verify_ssl": true + } + ] + }, + "default": { + "adafruit-blinka": { + "hashes": [ + "sha256:375a71854a52779a760c5b2f53f626c9217b523b77ac1c4648ee81c606ce4eec", + "sha256:dbd25293944e118bec49ef0763b51cda8445b7a8cb49e8d39934f01551820cc5" + ], + "version": "==4.2.0" + }, + "adafruit-circuitpython-dht": { + "hashes": [ + "sha256:454b506bab88a009ea19aa1ea00338dffe1d48fb42ab2c3e03948bf337a5542c", + "sha256:5f9307fbfad64221ba1a4e7b34ecbf26326a5d77a856482361bef70c251df55d" + ], + "index": "pypi", + "markers": "'arm' in platform_machine", + "version": "==3.3.0" + }, + "adafruit-platformdetect": { + "hashes": [ + "sha256:917f431371f94a60391e881fe1af3731a225b188e0c0157ebc69b877f1fd0a2a", + "sha256:bf446f8365cdf0a87d4bf6620e70bd59da99b0523c2111f0dc74a1155236ff61" + ], + "version": "==2.5.0" + }, + "adafruit-pureio": { + "hashes": [ + "sha256:013ebe6119eaaa0d39716ea5fbfad4fcbada7c88eaebcc7d6615f9df44e53b8c", + "sha256:b67587ed3c4dc90bd0e9b988587efa66b4466abf71eb0dcbcd4695e7e4350326" + ], + "version": "==1.0.4" + }, + "click": { + "hashes": [ + "sha256:8a18b4ea89d8820c5d0c7da8a64b2c324b4dabb695804dbfea19b9be9d88c0cc", + "sha256:e345d143d80bf5ee7534056164e5e112ea5e22716bbb1ce727941f4c8b471b9a" + ], + "index": "pypi", + "version": "==7.1.1" + }, + "psutil": { + "hashes": [ + "sha256:002bd856770037221256765a472f50d677074ad207276a39e2bccdb7394e333b", + "sha256:1413f4158eb50e110777c4f15d7c759521703bd6beb58926f1d562da40180058", + "sha256:298af2f14b635c3c7118fd9183843f4e73e681bb6f01e12284d4d70d48a60953", + "sha256:60b86f327c198561f101a92be1995f9ae0399736b6eced8f24af41ec64fb88d4", + "sha256:685ec16ca14d079455892f25bd124df26ff9137664af445563c1bd36629b5e0e", + "sha256:73f35ab66c6c7a9ce82ba44b1e9b1050be2a80cd4dcc3352cc108656b115c74f", + "sha256:75e22717d4dbc7ca529ec5063000b2b294fc9a367f9c9ede1f65846c7955fd38", + "sha256:833b2b19c04fc0aecad22daa3e35108d6ee2e4f92061a4a8f2dd77c6fa9154f5", + "sha256:a02f4ac50d4a23253b68233b07e7cdb567bd025b982d5cf0ee78296990c22d9e", + "sha256:d008ddc00c6906ec80040d26dc2d3e3962109e40ad07fd8a12d0284ce5e0e4f8", + "sha256:d84029b190c8a66a946e28b4d3934d2ca1528ec94764b180f7d6ea57b0e75e26", + "sha256:e2d0c5b07c6fe5a87fa27b7855017edb0d52ee73b71e6ee368fae268605cc3f5", + "sha256:f344ca230dd8e8d5eee16827596f1c22ec0876127c28e800d7ae20ed44c4b310", + "sha256:f3e7f183162622eae9fbdee44ff19b226edec68b94ae7cba47f9afcf4c3ec66c" + ], + "index": "pypi", + "version": "==5.7.0" + }, + "pyftdi": { + "hashes": [ + "sha256:51827a876d0ed2b146d66083f7020a4ca1b703fca599da119e3a79009c89549c", + "sha256:a98e683b7e3569814524a4bdd723e8b239072da30366071a9266ab80083f2135", + "sha256:e781c9a4e6ad2ed6830e5b4aa3f1707efb781d3598493f0655c43c97d64afc63" + ], + "version": "==0.48.3" + }, + "pyserial": { + "hashes": [ + "sha256:6e2d401fdee0eab996cf734e67773a0143b932772ca8b42451440cfed942c627", + "sha256:e0770fadba80c31013896c7e6ef703f72e7834965954a78e71a3049488d4d7d8" + ], + "version": "==3.4" + }, + "pyusb": { + "hashes": [ + "sha256:4e9b72cc4a4205ca64fbf1f3fff39a335512166c151ad103e55c8223ac147362", + "sha256:789749b8a9bf3828c55d41df2c3e569739cd1bdbe1517e8d940af9587a711faa" + ], + "version": "==1.0.2" + }, + "rpi-ws281x": { + "hashes": [ + "sha256:185d7ae138a5633cf4cd707c55d7190b34810cc3f5e5682c820ddf1dade20914", + "sha256:265a395410cc7199f779c4209ca3970b7211896b86dbaa4731bdc3569d2e595f", + "sha256:544f09353ccb578452d0478470460d3425f40e8dd7433131a95239daeae83303", + "sha256:bc3a22e55c2a10de5c4dfb23c13dceff66162e77eb7176701f1a0d5ae8b97695", + "sha256:de182acceab047030056e2ab0dd2bd2632f2375f60d9a94cf7e3a8a4033834a0", + "sha256:f35e698e0d4205cb1bc2835b46429235fa22e973c8320d661f16556ceaf0f90b" + ], + "version": "==4.2.3" + }, + "rpi.gpio": { + "hashes": [ + "sha256:5cd2f3c88d0b1e2f4780c905702c0474768c2bc113fb793121c2e117b401ab16", + "sha256:6a4791f41cafc2ee6e4cb70e5bd31fadc66a0cfab29b38df8723a98f6f73ad5a", + "sha256:7424bc6c205466764f30f666c18187a0824077daf20b295c42f08aea2cb87d3f", + "sha256:7da5235aeba20da39ad4fb97f3ba3a2c6b2d60bba8958b00a4df42f608c6d42e" + ], + "version": "==0.7.0" + } + }, + "develop": { + "appdirs": { + "hashes": [ + "sha256:9e5896d1372858f8dd3344faf4e5014d21849c756c8d5701f78f8a103b372d92", + "sha256:d8b24664561d0d34ddfaec54636d502d7cea6e29c3eaf68f3df6180863e2166e" + ], + "version": "==1.4.3" + }, + "atomicwrites": { + "hashes": [ + "sha256:03472c30eb2c5d1ba9227e4c2ca66ab8287fbfbbda3888aa93dc2e28fc6811b4", + "sha256:75a9445bac02d8d058d5e1fe689654ba5a6556a1dfd8ce6ec55a0ed79866cfa6" + ], + "markers": "sys_platform == 'win32'", + "version": "==1.3.0" + }, + "attrs": { + "hashes": [ + "sha256:08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c", + "sha256:f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72" + ], + "version": "==19.3.0" + }, + "backcall": { + "hashes": [ + "sha256:1fac21e6861f538700a5d498620153f38407a4bacf9e1d5047b3d717f10bc4ab", + "sha256:38ecd85be2c1e78f77fd91700c76e14667dc21e2713b63876c0eb901196e01e4", + "sha256:bbbf4b1e5cd2bdb08f915895b51081c041bac22394fdfcfdfbe9f14b77c08bf2" + ], + "version": "==0.1.0" + }, + "black": { + "hashes": [ + "sha256:1b30e59be925fafc1ee4565e5e08abef6b03fe455102883820fe5ee2e4734e0b", + "sha256:c2edb73a08e9e0e6f65a0e6af18b059b8b1cdd5bef997d7a0b181df93dc81539" + ], + "index": "pypi", + "version": "==19.10b0" + }, + "bleach": { + "hashes": [ + "sha256:cc8da25076a1fe56c3ac63671e2194458e0c4d9c7becfd52ca251650d517903c", + "sha256:e78e426105ac07026ba098f04de8abe9b6e3e98b5befbf89b51a5ef0a4292b03" + ], + "version": "==3.1.4" + }, + "cfgv": { + "hashes": [ + "sha256:1ccf53320421aeeb915275a196e23b3b8ae87dea8ac6698b1638001d4a486d53", + "sha256:c8e8f552ffcc6194f4e18dd4f68d9aef0c0d58ae7e7be8c82bee3c5e9edfa513" + ], + "version": "==3.1.0" + }, + "click": { + "hashes": [ + "sha256:8a18b4ea89d8820c5d0c7da8a64b2c324b4dabb695804dbfea19b9be9d88c0cc", + "sha256:e345d143d80bf5ee7534056164e5e112ea5e22716bbb1ce727941f4c8b471b9a" + ], + "index": "pypi", + "version": "==7.1.1" + }, + "colorama": { + "hashes": [ + "sha256:7d73d2a99753107a36ac6b455ee49046802e59d9d076ef8e47b61499fa29afff", + "sha256:e96da0d330793e2cb9485e9ddfd918d456036c7149416295932478192f4436a1" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.3" + }, + "coverage": { + "hashes": [ + "sha256:03f630aba2b9b0d69871c2e8d23a69b7fe94a1e2f5f10df5049c0df99db639a0", + "sha256:046a1a742e66d065d16fb564a26c2a15867f17695e7f3d358d7b1ad8a61bca30", + "sha256:0a907199566269e1cfa304325cc3b45c72ae341fbb3253ddde19fa820ded7a8b", + "sha256:165a48268bfb5a77e2d9dbb80de7ea917332a79c7adb747bd005b3a07ff8caf0", + "sha256:1b60a95fc995649464e0cd48cecc8288bac5f4198f21d04b8229dc4097d76823", + "sha256:1f66cf263ec77af5b8fe14ef14c5e46e2eb4a795ac495ad7c03adc72ae43fafe", + "sha256:2e08c32cbede4a29e2a701822291ae2bc9b5220a971bba9d1e7615312efd3037", + "sha256:327ff84602ee3b5c0c921ff8bbe605e2dd3599fc2a12620b0085f847af4ebb2a", + "sha256:3844c3dab800ca8536f75ae89f3cf566848a3eb2af4d9f7b1103b4f4f7a5dad6", + "sha256:408ce64078398b2ee2ec08199ea3fcf382828d2f8a19c5a5ba2946fe5ddc6c31", + "sha256:443be7602c790960b9514567917af538cac7807a7c0c0727c4d2bbd4014920fd", + "sha256:4482f69e0701139d0f2c44f3c395d1d1d37abd81bfafbf9b6efbe2542679d892", + "sha256:4a8a259bf990044351baf69d3b23e575699dd60b18460c71e81dc565f5819ac1", + "sha256:513e6526e0082c59a984448f4104c9bf346c2da9961779ede1fc458e8e8a1f78", + "sha256:5f587dfd83cb669933186661a351ad6fc7166273bc3e3a1531ec5c783d997aac", + "sha256:62061e87071497951155cbccee487980524d7abea647a1b2a6eb6b9647df9006", + "sha256:641e329e7f2c01531c45c687efcec8aeca2a78a4ff26d49184dce3d53fc35014", + "sha256:65a7e00c00472cd0f59ae09d2fb8a8aaae7f4a0cf54b2b74f3138d9f9ceb9cb2", + "sha256:6ad6ca45e9e92c05295f638e78cd42bfaaf8ee07878c9ed73e93190b26c125f7", + "sha256:73aa6e86034dad9f00f4bbf5a666a889d17d79db73bc5af04abd6c20a014d9c8", + "sha256:7c9762f80a25d8d0e4ab3cb1af5d9dffbddb3ee5d21c43e3474c84bf5ff941f7", + "sha256:85596aa5d9aac1bf39fe39d9fa1051b0f00823982a1de5766e35d495b4a36ca9", + "sha256:86a0ea78fd851b313b2e712266f663e13b6bc78c2fb260b079e8b67d970474b1", + "sha256:8a620767b8209f3446197c0e29ba895d75a1e272a36af0786ec70fe7834e4307", + "sha256:922fb9ef2c67c3ab20e22948dcfd783397e4c043a5c5fa5ff5e9df5529074b0a", + "sha256:9fad78c13e71546a76c2f8789623eec8e499f8d2d799f4b4547162ce0a4df435", + "sha256:a37c6233b28e5bc340054cf6170e7090a4e85069513320275a4dc929144dccf0", + "sha256:c3fc325ce4cbf902d05a80daa47b645d07e796a80682c1c5800d6ac5045193e5", + "sha256:cda33311cb9fb9323958a69499a667bd728a39a7aa4718d7622597a44c4f1441", + "sha256:db1d4e38c9b15be1521722e946ee24f6db95b189d1447fa9ff18dd16ba89f732", + "sha256:eda55e6e9ea258f5e4add23bcf33dc53b2c319e70806e180aecbff8d90ea24de", + "sha256:f0db0dc803e0f81f2a4098d4f25904f41be13b6d3e69f098b5b2bbba17cb7985", + "sha256:f372cdbb240e09ee855735b9d85e7f50730dcfb6296b74b95a3e5dea0615c4c1" + ], + "version": "==5.0.4" + }, + "decorator": { + "hashes": [ + "sha256:41fa54c2a0cc4ba648be4fd43cff00aedf5b9465c9bf18d64325bc225f08f760", + "sha256:e3a62f0520172440ca0dcc823749319382e377f37f140a0b99ef45fecb84bfe7" + ], + "version": "==4.4.2" + }, + "defusedxml": { + "hashes": [ + "sha256:6687150770438374ab581bb7a1b327a847dd9c5749e396102de3fad4e8a3ef93", + "sha256:f684034d135af4c6cbb949b8a4d2ed61634515257a67299e5f940fbaa34377f5" + ], + "version": "==0.6.0" + }, + "distlib": { + "hashes": [ + "sha256:2e166e231a26b36d6dfe35a48c4464346620f8645ed0ace01ee31822b288de21", + "sha256:8a041060c5a140131768a2e2450813f5577f7e4c68a4585824c5585502dcfbea" + ], + "version": "==0.3.0" + }, + "entrypoints": { + "hashes": [ + "sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19", + "sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451" + ], + "version": "==0.3" + }, + "filelock": { + "hashes": [ + "sha256:18d82244ee114f543149c66a6e0c14e9c4f8a1044b5cdaadd0f82159d6a6ff59", + "sha256:929b7d63ec5b7d6b71b0fa5ac14e030b3f70b75747cef1b10da9b879fef15836" + ], + "version": "==3.0.12" + }, + "flake8": { + "hashes": [ + "sha256:45681a117ecc81e870cbf1262835ae4af5e7a8b08e40b944a8a6e6b895914cfb", + "sha256:49356e766643ad15072a789a20915d3c91dc89fd313ccd71802303fd67e4deca" + ], + "index": "pypi", + "version": "==3.7.9" + }, + "identify": { + "hashes": [ + "sha256:a7577a1f55cee1d21953a5cf11a3c839ab87f5ef909a4cba6cf52ed72b4c6059", + "sha256:ab246293e6585a1c6361a505b68d5b501a0409310932b7de2c2ead667b564d89" + ], + "version": "==1.4.13" + }, + "importlib-metadata": { + "hashes": [ + "sha256:2a688cbaa90e0cc587f1df48bdc97a6eadccdcd9c35fb3f976a09e3b5016d90f", + "sha256:34513a8a0c4962bc66d35b359558fd8a5e10cd472d37aec5f66858addef32c1e" + ], + "markers": "python_version < '3.8'", + "version": "==1.6.0" + }, + "ipykernel": { + "hashes": [ + "sha256:08997a27ccafbb998437d167ccc893666c6088ec3aa90c054bfb3d588bb3fc20", + "sha256:37c65d2e2da3326e5cf114405df6d47d997b8a3eba99e2cc4b75833bf71a5e18", + "sha256:39746b5f7d847a23fae4eac893e63e3d9cc5f8c3a4797fcd3bfa8d1a296ec6ed" + ], + "index": "pypi", + "version": "==5.2.0" + }, + "ipython": { + "hashes": [ + "sha256:1807adeae64502fcaa491cd93405644faa055b646efb40c1e48648ad66f65a75", + "sha256:ca478e52ae1f88da0102360e57e528b92f3ae4316aabac80a2cd7f7ab2efb48a", + "sha256:eb8d075de37f678424527b5ef6ea23f7b80240ca031c2dd6de5879d687a65333" + ], + "version": "==7.13.0" + }, + "ipython-genutils": { + "hashes": [ + "sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8", + "sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8" + ], + "version": "==0.2.0" + }, + "jedi": { + "hashes": [ + "sha256:b4f4052551025c6b0b0b193b29a6ff7bdb74c52450631206c262aef9f7159ad2", + "sha256:d5c871cb9360b414f981e7072c52c33258d598305280fef91c6cae34739d65d5" + ], + "version": "==0.16.0" + }, + "jinja2": { + "hashes": [ + "sha256:39cbce1ffc25cbf4860b09195654763be95b9e4900475b24d5c345d3e0948c53", + "sha256:c10142f819c2d22bdcd17548c46fa9b77cf4fda45097854c689666bf425e7484", + "sha256:c922560ac46888d47384de1dbdc3daaa2ea993af4b26a436dec31fa2c19ec668" + ], + "version": "==3.0.0a1" + }, + "jsonschema": { + "hashes": [ + "sha256:4e5b3cf8216f577bee9ce139cbe72eca3ea4f292ec60928ff24758ce626cd163", + "sha256:c8a85b28d377cc7737e46e2d9f2b4f44ee3c0e1deac6bf46ddefc7187d30797a" + ], + "version": "==3.2.0" + }, + "jupyter-client": { + "hashes": [ + "sha256:5724827aedb1948ed6ed15131372bc304a8d3ad9ac67ac19da7c95120d6b17e0", + "sha256:81c1c712de383bf6bf3dab6b407392b0d84d814c7bd0ce2c7035ead8b2ffea97" + ], + "version": "==6.1.2" + }, + "jupyter-core": { + "hashes": [ + "sha256:394fd5dd787e7c8861741880bdf8a00ce39f95de5d18e579c74b882522219e7e", + "sha256:a4ee613c060fe5697d913416fc9d553599c05e4492d58fac1192c9a6844abb21" + ], + "version": "==4.6.3" + }, + "jupyterlab-pygments": { + "hashes": [ + "sha256:31deda75bd11b014190764c79f6199aa04ef2d4cf35c1c94270fc2e19c23a5c5", + "sha256:cc15f2a9850899d108a3c22743a86edcd3b42791a6c88b6e5b558d021d14d065" + ], + "version": "==0.1.0" + }, + "markupsafe": { + "hashes": [ + "sha256:00bc623926325b26bb9605ae9eae8a215691f33cae5df11ca5424f06f2d1f473", + "sha256:09027a7803a62ca78792ad89403b1b7a73a01c8cb65909cd876f7fcebd79b161", + "sha256:09c4b7f37d6c648cb13f9230d847adf22f8171b1ccc4d5682398e77f40309235", + "sha256:1027c282dad077d0bae18be6794e6b6b8c91d58ed8a8d89a89d59693b9131db5", + "sha256:13d3144e1e340870b25e7b10b98d779608c02016d5184cfb9927a9f10c689f42", + "sha256:19536834abffb3fa155017053c607cb835b2ecc6a3a2554a88043d991dffb736", + "sha256:24982cc2533820871eba85ba648cd53d8623687ff11cbb805be4ff7b4c971aff", + "sha256:29872e92839765e546828bb7754a68c418d927cd064fd4708fab9fe9c8bb116b", + "sha256:3d61f15e39611aacd91b7e71d903787da86d9e80896e683c0103fced9add7834", + "sha256:43a55c2930bbc139570ac2452adf3d70cdbb3cfe5912c71cdce1c2c6bbd9c5d1", + "sha256:46c99d2de99945ec5cb54f23c8cd5689f6d7177305ebff350a58ce5f8de1669e", + "sha256:500d4957e52ddc3351cabf489e79c91c17f6e0899158447047588650b5e69183", + "sha256:535f6fc4d397c1563d08b88e485c3496cf5784e927af890fb3c3aac7f933ec66", + "sha256:596510de112c685489095da617b5bcbbac7dd6384aeebeda4df6025d0256a81b", + "sha256:62fe6c95e3ec8a7fad637b7f3d372c15ec1caa01ab47926cfdf7a75b40e0eac1", + "sha256:6788b695d50a51edb699cb55e35487e430fa21f1ed838122d722e0ff0ac5ba15", + "sha256:6dd73240d2af64df90aa7c4e7481e23825ea70af4b4922f8ede5b9e35f78a3b1", + "sha256:717ba8fe3ae9cc0006d7c451f0bb265ee07739daf76355d06366154ee68d221e", + "sha256:7952deddf24b85c88dab48f6ec366ac6e39d2761b5280f2f9594911e03fcd064", + "sha256:79855e1c5b8da654cf486b830bd42c06e8780cea587384cf6545b7d9ac013a0b", + "sha256:7c1699dfe0cf8ff607dbdcc1e9b9af1755371f92a68f706051cc8c37d447c905", + "sha256:88e5fcfb52ee7b911e8bb6d6aa2fd21fbecc674eadd44118a9cc3863f938e735", + "sha256:8defac2f2ccd6805ebf65f5eeb132adcf2ab57aa11fdf4c0dd5169a004710e7d", + "sha256:98c7086708b163d425c67c7a91bad6e466bb99d797aa64f965e9d25c12111a5e", + "sha256:9add70b36c5666a2ed02b43b335fe19002ee5235efd4b8a89bfcf9005bebac0d", + "sha256:9bf40443012702a1d2070043cb6291650a0841ece432556f784f004937f0f32c", + "sha256:ade5e387d2ad0d7ebf59146cc00c8044acbd863725f887353a10df825fc8ae21", + "sha256:b00c1de48212e4cc9603895652c5c410df699856a2853135b3967591e4beebc2", + "sha256:b1282f8c00509d99fef04d8ba936b156d419be841854fe901d8ae224c59f0be5", + "sha256:b2051432115498d3562c084a49bba65d97cf251f5a331c64a12ee7e04dacc51b", + "sha256:ba59edeaa2fc6114428f1637ffff42da1e311e29382d81b339c1817d37ec93c6", + "sha256:c8716a48d94b06bb3b2524c2b77e055fb313aeb4ea620c8dd03a105574ba704f", + "sha256:cd5df75523866410809ca100dc9681e301e3c27567cf498077e8551b6d20e42f", + "sha256:cdb132fc825c38e1aeec2c8aa9338310d29d337bebbd7baa06889d09a60a1fa2", + "sha256:e249096428b3ae81b08327a63a485ad0878de3fb939049038579ac0ef61e17e7", + "sha256:e8313f01ba26fbbe36c7be1966a7b7424942f670f38e666995b88d012765b9be" + ], + "version": "==1.1.1" + }, + "mccabe": { + "hashes": [ + "sha256:ab8a6258860da4b6677da4bd2fe5dc2c659cff31b3ee4f7f5d64e79735b80d42", + "sha256:dd8d182285a0fe56bace7f45b5e7d1a6ebcbf524e8f3bd87eb0f125271b8831f" + ], + "version": "==0.6.1" + }, + "mistune": { + "hashes": [ + "sha256:59a3429db53c50b5c6bcc8a07f8848cb00d7dc8bdb431a4ab41920d201d4756e", + "sha256:88a1051873018da288eee8538d476dffe1262495144b33ecb586c4ab266bb8d4" + ], + "version": "==0.8.4" + }, + "more-itertools": { + "hashes": [ + "sha256:5dd8bcf33e5f9513ffa06d5ad33d78f31e1931ac9a18f33d37e77a180d393a7c", + "sha256:b1ddb932186d8a6ac451e1d95844b382f55e12686d51ca0c68b6f61f2ab7a507" + ], + "version": "==8.2.0" + }, + "mypy": { + "hashes": [ + "sha256:15b948e1302682e3682f11f50208b726a246ab4e6c1b39f9264a8796bb416aa2", + "sha256:219a3116ecd015f8dca7b5d2c366c973509dfb9a8fc97ef044a36e3da66144a1", + "sha256:3b1fc683fb204c6b4403a1ef23f0b1fac8e4477091585e0c8c54cbdf7d7bb164", + "sha256:3beff56b453b6ef94ecb2996bea101a08f1f8a9771d3cbf4988a61e4d9973761", + "sha256:7687f6455ec3ed7649d1ae574136835a4272b65b3ddcf01ab8704ac65616c5ce", + "sha256:7ec45a70d40ede1ec7ad7f95b3c94c9cf4c186a32f6bacb1795b60abd2f9ef27", + "sha256:86c857510a9b7c3104cf4cde1568f4921762c8f9842e987bc03ed4f160925754", + "sha256:8a627507ef9b307b46a1fea9513d5c98680ba09591253082b4c48697ba05a4ae", + "sha256:8dfb69fbf9f3aeed18afffb15e319ca7f8da9642336348ddd6cab2713ddcf8f9", + "sha256:a34b577cdf6313bf24755f7a0e3f3c326d5c1f4fe7422d1d06498eb25ad0c600", + "sha256:a8ffcd53cb5dfc131850851cc09f1c44689c2812d0beb954d8138d4f5fc17f65", + "sha256:b90928f2d9eb2f33162405f32dde9f6dcead63a0971ca8a1b50eb4ca3e35ceb8", + "sha256:c56ffe22faa2e51054c5f7a3bc70a370939c2ed4de308c690e7949230c995913", + "sha256:f91c7ae919bbc3f96cd5e5b2e786b2b108343d1d7972ea130f7de27fdd547cf3" + ], + "index": "pypi", + "version": "==0.770" + }, + "mypy-extensions": { + "hashes": [ + "sha256:090fedd75945a69ae91ce1303b5824f428daf5a028d2f6ab8a299250a846f15d", + "sha256:2d82818f5bb3e369420cb3c4060a7970edba416647068eb4c5343488a6c604a8" + ], + "version": "==0.4.3" + }, + "nbconvert": { + "hashes": [ + "sha256:944a5fbe6c4609d74e7f331bfa957c8eff2d53904f7c40f053a44bfb4164b718", + "sha256:c86da6adc412df9ad2726fe438589e4495c7835792d6d84f888178682f5d5bcf" + ], + "version": "==6.0.0a0" + }, + "nbformat": { + "hashes": [ + "sha256:562de41fc7f4f481b79ab5d683279bf3a168858268d4387b489b7b02be0b324a", + "sha256:f4bbbd8089bd346488f00af4ce2efb7f8310a74b2058040d075895429924678c" + ], + "version": "==5.0.4" + }, + "nodeenv": { + "hashes": [ + "sha256:5b2438f2e42af54ca968dd1b374d14a1194848955187b0e5e4be1f73813a5212" + ], + "version": "==1.3.5" + }, + "notebook": { + "hashes": [ + "sha256:3edc616c684214292994a3af05eaea4cc043f6b4247d830f3a2f209fa7639a80", + "sha256:47a9092975c9e7965ada00b9a20f0cf637d001db60d241d479f53c0be117ad48" + ], + "version": "==6.0.3" + }, + "packaging": { + "hashes": [ + "sha256:3c292b474fda1671ec57d46d739d072bfd495a4f51ad01a055121d81e952b7a3", + "sha256:82f77b9bee21c1bafbf35a84905d604d5d1223801d639cf3ed140bd651c08752" + ], + "version": "==20.3" + }, + "pandocfilters": { + "hashes": [ + "sha256:41a309da81cba5509389b19d96b0ee49551cee8165a6406754f2565e95429860", + "sha256:b3dd70e169bb5449e6bc6ff96aea89c5eea8c5f6ab5e207fc2f521a2cf4a0da9" + ], + "version": "==1.4.2" + }, + "parso": { + "hashes": [ + "sha256:0c5659e0c6eba20636f99a04f469798dca8da279645ce5c387315b2c23912157", + "sha256:8515fc12cfca6ee3aa59138741fc5624d62340c97e401c74875769948d4f2995" + ], + "version": "==0.6.2" + }, + "pathspec": { + "hashes": [ + "sha256:163b0632d4e31cef212976cf57b43d9fd6b0bac6e67c26015d611a647d5e7424", + "sha256:562aa70af2e0d434367d9790ad37aed893de47f1693e4201fd1d3dca15d19b96" + ], + "version": "==0.7.0" + }, + "pexpect": { + "hashes": [ + "sha256:0b48a55dcb3c05f3329815901ea4fc1537514d6ba867a152b581d69ae3710937", + "sha256:fc65a43959d153d0114afe13997d439c22823a27cefceb5ff35c2178c6784c0c" + ], + "version": "==4.8.0" + }, + "pickleshare": { + "hashes": [ + "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca", + "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56" + ], + "version": "==0.7.5" + }, + "pluggy": { + "hashes": [ + "sha256:15b2acde666561e1298d71b523007ed7364de07029219b604cf808bfa1c765b0", + "sha256:966c145cd83c96502c3c3868f50408687b38434af77734af1e9ca461a4081d2d" + ], + "version": "==0.13.1" + }, + "pre-commit": { + "hashes": [ + "sha256:487c675916e6f99d355ec5595ad77b325689d423ef4839db1ed2f02f639c9522", + "sha256:9707b4f7069365ffdb57d2782086a9f3019afde2a6e9f85df785c9bf090e1118", + "sha256:c0aa11bce04a7b46c5544723aedf4e81a4d5f64ad1205a30a9ea12d5e81969e1" + ], + "index": "pypi", + "version": "==2.2.0" + }, + "prometheus-client": { + "hashes": [ + "sha256:09b5750fd1c153420dccd35881116e853c730081bea0dbf0ea6649103bcb8445", + "sha256:71cd24a2b3eb335cb800c7159f423df1bd4dcd5171b234be15e3f31ec9f622da" + ], + "version": "==0.7.1" + }, + "prompt-toolkit": { + "hashes": [ + "sha256:563d1a4140b63ff9dd587bda9557cffb2fe73650205ab6f4383092fb882e7dc8", + "sha256:df7e9e63aea609b1da3a65641ceaf5bc7d05e0a04de5bd45d05dbeffbabf9e04" + ], + "version": "==3.0.5" + }, + "ptyprocess": { + "hashes": [ + "sha256:923f299cc5ad920c68f2bc0bc98b75b9f838b93b599941a6b63ddbc2476394c0", + "sha256:d7cc528d76e76342423ca640335bd3633420dc1366f258cb31d05e865ef5ca1f" + ], + "version": "==0.6.0" + }, + "py": { + "hashes": [ + "sha256:5e27081401262157467ad6e7f851b7aa402c5852dbcb3dae06768434de5752aa", + "sha256:c20fdd83a5dbc0af9efd622bee9a5564e278f6380fffcacc43ba6f43db2813b0" + ], + "version": "==1.8.1" + }, + "pycodestyle": { + "hashes": [ + "sha256:95a2219d12372f05704562a14ec30bc76b05a5b297b21a5dfe3f6fac3491ae56", + "sha256:e40a936c9a450ad81df37f549d676d127b1b66000a6c500caa2b085bc0ca976c" + ], + "version": "==2.5.0" + }, + "pyflakes": { + "hashes": [ + "sha256:17dbeb2e3f4d772725c777fabc446d5634d1038f234e77343108ce445ea69ce0", + "sha256:d976835886f8c5b31d47970ed689944a0262b5f3afa00a5a7b4dc81e5449f8a2" + ], + "version": "==2.1.1" + }, + "pygments": { + "hashes": [ + "sha256:647344a061c249a3b74e230c739f434d7ea4d8b1d5f3721bc0f3558049b38f44", + "sha256:aa931c0bd5daa25c475afadb2147115134cfe501f0656828cbe7cb566c7123bc", + "sha256:ff7a40b4860b727ab48fad6360eb351cc1b33cbf9b15a0f689ca5353e9463324" + ], + "version": "==2.6.1" + }, + "pyparsing": { + "hashes": [ + "sha256:4c830582a84fb022400b85429791bc551f1f4871c33f23e44f353119e92f969f", + "sha256:c342dccb5250c08d45fd6f8b4a559613ca603b57498511740e65cd11a2e7dcec" + ], + "version": "==2.4.6" + }, + "pyrsistent": { + "hashes": [ + "sha256:28669905fe725965daa16184933676547c5bb40a5153055a8dee2a4bd7933ad3", + "sha256:3217696df78f9222a3d1179b119c27be346b969a9e4d617de2a215a87d9aa456", + "sha256:9324b762b52e5a901611b25f50f9cdf8789c61ece3ff7c24dc872603c4faca62", + "sha256:c11415790cc5803e173de7d71d54f94c66a9154f81a72ffdf45a70096916f226" + ], + "version": "==0.16.0" + }, + "pytest": { + "hashes": [ + "sha256:0e5b30f5cb04e887b91b1ee519fa3d89049595f428c1db76e73bd7f17b09b172", + "sha256:84dde37075b8805f3d1f392cc47e38a0e59518fb46a431cfdaf7cf1ce805f970" + ], + "index": "pypi", + "version": "==5.4.1" + }, + "pytest-cov": { + "hashes": [ + "sha256:cc6742d8bac45070217169f5f72ceee1e0e55b0221f54bcf24845972d3a47f2b", + "sha256:cdbdef4f870408ebdbfeb44e63e07eb18bb4619fae852f6e760645fa36172626" + ], + "index": "pypi", + "version": "==2.8.1" + }, + "python-dateutil": { + "hashes": [ + "sha256:73ebfe9dbf22e832286dafa60473e4cd239f8592f699aa5adaf10050e6e1823c", + "sha256:75bb3f31ea686f1197762692a9ee6a7550b59fc6ca3a1f4b5d7e32fb98e2da2a" + ], + "version": "==2.8.1" + }, + "pywin32": { + "hashes": [ + "sha256:300a2db938e98c3e7e2093e4491439e62287d0d493fe07cce110db070b54c0be", + "sha256:31f88a89139cb2adc40f8f0e65ee56a8c585f629974f9e07622ba80199057511", + "sha256:371fcc39416d736401f0274dd64c2302728c9e034808e37381b5e1b22be4a6b0", + "sha256:47a3c7551376a865dd8d095a98deba954a98f326c6fe3c72d8726ca6e6b15507", + "sha256:4cdad3e84191194ea6d0dd1b1b9bdda574ff563177d2adf2b4efec2a244fa116", + "sha256:7c1ae32c489dc012930787f06244426f8356e129184a02c25aef163917ce158e", + "sha256:7f18199fbf29ca99dff10e1f09451582ae9e372a892ff03a28528a24d55875bc", + "sha256:9b31e009564fb95db160f154e2aa195ed66bcc4c058ed72850d047141b36f3a2", + "sha256:a929a4af626e530383a579431b70e512e736e9588106715215bf685a3ea508d4", + "sha256:c054c52ba46e7eb6b7d7dfae4dbd987a1bb48ee86debe3f245a2884ece46e295", + "sha256:f27cec5e7f588c3d1051651830ecc00294f90728d19c3bf6916e6dba93ea357c", + "sha256:f4c5be1a293bae0076d93c88f37ee8da68136744588bc5e2be2f299a34ceb7aa" + ], + "markers": "sys_platform == 'win32'", + "version": "==227" + }, + "pywinpty": { + "hashes": [ + "sha256:1e525a4de05e72016a7af27836d512db67d06a015aeaf2fa0180f8e6a039b3c2", + "sha256:2740eeeb59297593a0d3f762269b01d0285c1b829d6827445fcd348fb47f7e70", + "sha256:2d7e9c881638a72ffdca3f5417dd1563b60f603e1b43e5895674c2a1b01f95a0", + "sha256:33df97f79843b2b8b8bc5c7aaf54adec08cc1bae94ee99dfb1a93c7a67704d95", + "sha256:5fb2c6c6819491b216f78acc2c521b9df21e0f53b9a399d58a5c151a3c4e2a2d", + "sha256:8fc5019ff3efb4f13708bd3b5ad327589c1a554cb516d792527361525a7cb78c", + "sha256:b358cb552c0f6baf790de375fab96524a0498c9df83489b8c23f7f08795e966b", + "sha256:dbd838de92de1d4ebf0dce9d4d5e4fc38d0b7b1de837947a18b57a882f219139", + "sha256:dd22c8efacf600730abe4a46c1388355ce0d4ab75dc79b15d23a7bd87bf05b48", + "sha256:e854211df55d107f0edfda8a80b39dfc87015bef52a8fe6594eb379240d81df2" + ], + "markers": "os_name == 'nt'", + "version": "==0.5.7" + }, + "pyyaml": { + "hashes": [ + "sha256:06a0d7ba600ce0b2d2fe2e78453a470b5a6e000a985dd4a4e54e436cc36b0e97", + "sha256:240097ff019d7c70a4922b6869d8a86407758333f02203e0fc6ff79c5dcede76", + "sha256:4f4b913ca1a7319b33cfb1369e91e50354d6f07a135f3b901aca02aa95940bd2", + "sha256:589929630502f3b0e87daee190b399f98401b6bccea87ed634a73fe5da43d3d4", + "sha256:69f00dca373f240f842b2931fb2c7e14ddbacd1397d57157a9b005a6a9942648", + "sha256:6e8383720b2127b09dba5b323ac896c702cf02bc5786fce16cd6791825d92d16", + "sha256:73f099454b799e05e5ab51423c7bcf361c58d3206fa7b0d555426b1f4d9a3eaf", + "sha256:74809a57b329d6cc0fdccee6318f44b9b8649961fa73144a98735b0aaf029f1f", + "sha256:7739fc0fa8205b3ee8808aea45e968bc90082c10aef6ea95e855e10abf4a37b2", + "sha256:95f71d2af0ff4227885f7a6605c37fd53d3a106fcab511b8860ecca9fcf400ee", + "sha256:b8eac752c5e14d3eca0e6dd9199cd627518cb5ec06add0de9d32baeee6fe645d", + "sha256:cc8955cfbfc7a115fa81d85284ee61147059a753344bc51098f3ccd69b0d7e0c", + "sha256:d13155f591e6fcc1ec3b30685d50bf0711574e2c0dfffd7644babf8b5102ca1a" + ], + "version": "==5.3.1" + }, + "pyzmq": { + "hashes": [ + "sha256:07bfbf192f22ef1dde65b6046efff191e3201e74da6d47098e68958469ecbe48", + "sha256:0bbc1728fe4314b4ca46249c33873a390559edac7c217ec7001b5e0c34a8fb7f", + "sha256:1e076ad5bd3638a18c376544d32e0af986ca10d43d4ce5a5d889a8649f0d0a3d", + "sha256:242d949eb6b10197cda1d1cec377deab1d5324983d77e0d0bf9dc5eb6d71a6b4", + "sha256:26f4ae420977d2a8792d7c2d7bda43128b037b5eeb21c81951a94054ad8b8843", + "sha256:32234c21c5e0a767c754181c8112092b3ddd2e2a36c3f76fc231ced817aeee47", + "sha256:3f12ce1e9cc9c31497bd82b207e8e86ccda9eebd8c9f95053aae46d15ccd2196", + "sha256:4557d5e036e6d85715b4b9fdb482081398da1d43dc580d03db642b91605b409f", + "sha256:4f562dab21c03c7aa061f63b147a595dbe1006bf4f03213272fc9f7d5baec791", + "sha256:54ecd00daa474885bbf318108401d318614425a05dfeae917611dd93f99f2678", + "sha256:5e071b834051e9ecb224915398f474bfad802c2fff883f118ff5363ca4ae3edf", + "sha256:5e1f65e576ab07aed83f444e201d86deb01cd27dcf3f37c727bc8729246a60a8", + "sha256:5f10a31f288bf055be76c57710807a8f0efdb2b82be6c2a2b8f9a61f33a40cea", + "sha256:6aaaf90b420dc40d9a0e1996b82c6a0ff91d9680bebe2135e67c9e6d197c0a53", + "sha256:75238d3c16cab96947705d5709187a49ebb844f54354cdf0814d195dd4c045de", + "sha256:7f7e7b24b1d392bb5947ba91c981e7d1a43293113642e0d8870706c8e70cdc71", + "sha256:84b91153102c4bcf5d0f57d1a66a0f03c31e9e6525a5f656f52fc615a675c748", + "sha256:944f6bb5c63140d76494467444fd92bebd8674236837480a3c75b01fe17df1ab", + "sha256:a1f957c20c9f51d43903881399b078cddcf710d34a2950e88bce4e494dcaa4d1", + "sha256:a49fd42a29c1cc1aa9f461c5f2f5e0303adba7c945138b35ee7f4ab675b9f754", + "sha256:a99ae601b4f6917985e9bb071549e30b6f93c72f5060853e197bdc4b7d357e5f", + "sha256:ad48865a29efa8a0cecf266432ea7bc34e319954e55cf104be0319c177e6c8f5", + "sha256:b08e425cf93b4e018ab21dc8fdbc25d7d0502a23cc4fea2380010cf8cf11e462", + "sha256:bb10361293d96aa92be6261fa4d15476bca56203b3a11c62c61bd14df0ef89ba", + "sha256:bd1a769d65257a7a12e2613070ca8155ee348aa9183f2aadf1c8b8552a5510f5", + "sha256:cb3b7156ef6b1a119e68fbe3a54e0a0c40ecacc6b7838d57dd708c90b62a06dc", + "sha256:d2f64994f9628f621e0f636f9532055887defc9fa5213aaeceb770d9c579f9ac", + "sha256:e8e4efb52ec2df8d046395ca4c84ae0056cf507b2f713ec803c65a8102d010de", + "sha256:f37c29da2a5b0c5e31e6f8aab885625ea76c807082f70b2d334d3fd573c3100a", + "sha256:f4d558bc5668d2345773a9ff8c39e2462dafcb1f6772a2e582fbced389ce527f", + "sha256:f5b6d015587a1d6f582ba03b226a9ddb1dfb09878b3be04ef48b01b7d4eb6b2a" + ], + "version": "==19.0.0" + }, + "regex": { + "hashes": [ + "sha256:01b2d70cbaed11f72e57c1cfbaca71b02e3b98f739ce33f5f26f71859ad90431", + "sha256:046e83a8b160aff37e7034139a336b660b01dbfe58706f9d73f5cdc6b3460242", + "sha256:113309e819634f499d0006f6200700c8209a2a8bf6bd1bdc863a4d9d6776a5d1", + "sha256:200539b5124bc4721247a823a47d116a7a23e62cc6695744e3eb5454a8888e6d", + "sha256:25f4ce26b68425b80a233ce7b6218743c71cf7297dbe02feab1d711a2bf90045", + "sha256:269f0c5ff23639316b29f31df199f401e4cb87529eafff0c76828071635d417b", + "sha256:59fd3df28f43adf25a32b4a957f5b0a62e3ff55ce29de6600da7e110f33102dd", + "sha256:5de40649d4f88a15c9489ed37f88f053c15400257eeb18425ac7ed0a4e119400", + "sha256:7f78f963e62a61e294adb6ff5db901b629ef78cb2a1cfce3cf4eeba80c1c67aa", + "sha256:82469a0c1330a4beb3d42568f82dffa32226ced006e0b063719468dcd40ffdf0", + "sha256:8c2b7fa4d72781577ac45ab658da44c7518e6d96e2a50d04ecb0fd8f28b21d69", + "sha256:974535648f31c2b712a6b2595969f8ab370834080e00ab24e5dbb9d19b8bfb74", + "sha256:99272d6b6a68c7ae4391908fc15f6b8c9a6c345a46b632d7fdb7ef6c883a2bbb", + "sha256:9b64a4cc825ec4df262050c17e18f60252cdd94742b4ba1286bcfe481f1c0f26", + "sha256:9e9624440d754733eddbcd4614378c18713d2d9d0dc647cf9c72f64e39671be5", + "sha256:9ff16d994309b26a1cdf666a6309c1ef51ad4f72f99d3392bcd7b7139577a1f2", + "sha256:b33ebcd0222c1d77e61dbcd04a9fd139359bded86803063d3d2d197b796c63ce", + "sha256:bba52d72e16a554d1894a0cc74041da50eea99a8483e591a9edf1025a66843ab", + "sha256:bed7986547ce54d230fd8721aba6fd19459cdc6d315497b98686d0416efaff4e", + "sha256:c7f58a0e0e13fb44623b65b01052dae8e820ed9b8b654bb6296bc9c41f571b70", + "sha256:d3242da581f8d54d5a0f769b4d003f065dc6222621267a056b98f6886dc90f36", + "sha256:d58a4fa7910102500722defbde6e2816b0372a4fcc85c7e239323767c74f5cbc", + "sha256:da22de67d83ee26b45c7b461c96e541f0cda72b76229d95e313666770dd8da41", + "sha256:f1ac2dc65105a53c1c2d72b1d3e98c2464a133b4067a51a3d2477b28449709a0" + ], + "version": "==2020.2.20" + }, + "remote-ikernel": { + "hashes": [ + "sha256:5253216e87a8c31f1b0ca9305454f223147518b580e853b7635a3d8b9c88c295", + "sha256:740b80a57fa1af40cadef541c5a4eb293675b504092ecf00c57dd2f0011bd840" + ], + "index": "pypi", + "version": "==0.4.6" + }, + "send2trash": { + "hashes": [ + "sha256:60001cc07d707fe247c94f74ca6ac0d3255aabcb930529690897ca2a39db28b2", + "sha256:f1691922577b6fa12821234aeb57599d887c4900b9ca537948d2dac34aea888b" + ], + "version": "==1.5.0" + }, + "six": { + "hashes": [ + "sha256:236bdbdce46e6e6a3d61a337c0f8b763ca1e8717c03b369e87a7ec7ce1319c0a", + "sha256:8f3cd2e254d8f793e7f3d6d9df77b92252b52637291d0f0da013c76ea2724b6c" + ], + "version": "==1.14.0" + }, + "terminado": { + "hashes": [ + "sha256:4804a774f802306a7d9af7322193c5390f1da0abb429e082a10ef1d46e6fb2c2", + "sha256:a43dcb3e353bc680dd0783b1d9c3fc28d529f190bc54ba9a229f72fe6e7a54d7" + ], + "version": "==0.8.3" + }, + "testpath": { + "hashes": [ + "sha256:60e0a3261c149755f4399a1fff7d37523179a70fdc3abdf78de9fc2604aeec7e", + "sha256:bfcf9411ef4bf3db7579063e0546938b1edda3d69f4e1fb8756991f5951f85d4" + ], + "version": "==0.4.4" + }, + "toml": { + "hashes": [ + "sha256:229f81c57791a41d65e399fc06bf0848bab550a9dfd5ed66df18ce5f05e73d5c", + "sha256:235682dd292d5899d361a811df37e04a8828a5b1da3115886b73cf81ebc9100e" + ], + "version": "==0.10.0" + }, + "tornado": { + "hashes": [ + "sha256:0fe2d45ba43b00a41cd73f8be321a44936dc1aba233dee979f17a042b83eb6dc", + "sha256:22aed82c2ea340c3771e3babc5ef220272f6fd06b5108a53b4976d0d722bcd52", + "sha256:2c027eb2a393d964b22b5c154d1a23a5f8727db6fda837118a776b29e2b8ebc6", + "sha256:503700d85d9a2c2aa737fb16df58bfa2ac0d5ec501881fea2acceae64ce17858", + "sha256:5217e601700f24e966ddab689f90b7ea4bd91ff3357c3600fa1045e26d68e55d", + "sha256:5618f72e947533832cbc3dec54e1dffc1747a5cb17d1fd91577ed14fa0dc081b", + "sha256:5f6a07e62e799be5d2330e68d808c8ac41d4a259b9cea61da4101b83cb5dc673", + "sha256:7182a9285e364e55e6902b5fb4d4a219efd8d7818d9000b419a0eaf3909fc0bc", + "sha256:c58d56003daf1b616336781b26d184023ea4af13ae143d9dda65e31e534940b9", + "sha256:c952975c8ba74f546ae6de2e226ab3cc3cc11ae47baf607459a6728585bb542a", + "sha256:c98232a3ac391f5faea6821b53db8db461157baa788f5d6222a193e9456e1740" + ], + "version": "==6.0.4" + }, + "traitlets": { + "hashes": [ + "sha256:70b4c6a1d9019d7b4f6846832288f86998aa3b9207c6821f3578a6a6a467fe44", + "sha256:d023ee369ddd2763310e4c3eae1ff649689440d4ae59d7485eb4cfbbe3e359f7" + ], + "version": "==4.3.3" + }, + "typed-ast": { + "hashes": [ + "sha256:0666aa36131496aed8f7be0410ff974562ab7eeac11ef351def9ea6fa28f6355", + "sha256:0c2c07682d61a629b68433afb159376e24e5b2fd4641d35424e462169c0a7919", + "sha256:249862707802d40f7f29f6e1aad8d84b5aa9e44552d2cc17384b209f091276aa", + "sha256:24995c843eb0ad11a4527b026b4dde3da70e1f2d8806c99b7b4a7cf491612652", + "sha256:269151951236b0f9a6f04015a9004084a5ab0d5f19b57de779f908621e7d8b75", + "sha256:3791f73e5d75aa9a95274679ab4821bd9d16de623c4ecf4900a77a29864ee144", + "sha256:4083861b0aa07990b619bd7ddc365eb7fa4b817e99cf5f8d9cf21a42780f6e01", + "sha256:498b0f36cc7054c1fead3d7fc59d2150f4d5c6c56ba7fb150c013fbc683a8d2d", + "sha256:4e3e5da80ccbebfff202a67bf900d081906c358ccc3d5e3c8aea42fdfdfd51c1", + "sha256:6daac9731f172c2a22ade6ed0c00197ee7cc1221aa84cfdf9c31defeb059a907", + "sha256:715ff2f2df46121071622063fc7543d9b1fd19ebfc4f5c8895af64a77a8c852c", + "sha256:73d785a950fc82dd2a25897d525d003f6378d1cb23ab305578394694202a58c3", + "sha256:8c8aaad94455178e3187ab22c8b01a3837f8ee50e09cf31f1ba129eb293ec30b", + "sha256:8ce678dbaf790dbdb3eba24056d5364fb45944f33553dd5869b7580cdbb83614", + "sha256:aaee9905aee35ba5905cfb3c62f3e83b3bec7b39413f0a7f19be4e547ea01ebb", + "sha256:bcd3b13b56ea479b3650b82cabd6b5343a625b0ced5429e4ccad28a8973f301b", + "sha256:c9e348e02e4d2b4a8b2eedb48210430658df6951fa484e59de33ff773fbd4b41", + "sha256:d205b1b46085271b4e15f670058ce182bd1199e56b317bf2ec004b6a44f911f6", + "sha256:d43943ef777f9a1c42bf4e552ba23ac77a6351de620aa9acf64ad54933ad4d34", + "sha256:d5d33e9e7af3b34a40dc05f498939f0ebf187f07c385fd58d591c533ad8562fe", + "sha256:df74880bdb70f34304ccc52b0c99d3e578f96a906b86f3ae172a1f1c2edef2bc", + "sha256:fc0fea399acb12edbf8a628ba8d2312f583bdbdb3335635db062fa98cf71fca4", + "sha256:fe460b922ec15dd205595c9b5b99e2f056fd98ae8f9f56b888e7a17dc2b757e7" + ], + "version": "==1.4.1" + }, + "typing-extensions": { + "hashes": [ + "sha256:091ecc894d5e908ac75209f10d5b4f118fbdb2eb1ede6a63544054bb1edb41f2", + "sha256:910f4656f54de5993ad9304959ce9bb903f90aadc7c67a0bef07e678014e892d", + "sha256:cf8b63fedea4d89bab840ecbb93e75578af28f76f66c35889bd7065f5af88575" + ], + "version": "==3.7.4.1" + }, + "virtualenv": { + "hashes": [ + "sha256:4e399f48c6b71228bf79f5febd27e3bbb753d9d5905776a86667bc61ab628a25", + "sha256:9e81279f4a9d16d1c0654a127c2c86e5bca2073585341691882c1e66e31ef8a5" + ], + "version": "==20.0.15" + }, + "wcwidth": { + "hashes": [ + "sha256:cafe2186b3c009a04067022ce1dcd79cb38d8d65ee4f4791b8888d6599d1bbe1", + "sha256:ee73862862a156bf77ff92b09034fc4825dd3af9cf81bc5b360668d425f3c5f1" + ], + "version": "==0.1.9" + }, + "webencodings": { + "hashes": [ + "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", + "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923" + ], + "version": "==0.5.1" + }, + "zipp": { + "hashes": [ + "sha256:aa36550ff0c0b7ef7fa639055d797116ee891440eac1a56f378e2d3179e0320b", + "sha256:c599e4d75c98f6798c509911d08a22e6c021d074469042177c8c86fb92eefd96" + ], + "version": "==3.1.0" + } + } +} diff --git a/Ch02/listing02-12/pytest.ini b/Ch02/listing02-12/pytest.ini new file mode 100644 index 0000000..861f3d0 --- /dev/null +++ b/Ch02/listing02-12/pytest.ini @@ -0,0 +1,3 @@ +[pytest] +markers = + functional: these tests are significantly slower as they run the whole CLI script \ No newline at end of file diff --git a/Ch02/listing02-12/sensors.py b/Ch02/listing02-12/sensors.py new file mode 100644 index 0000000..5db91fb --- /dev/null +++ b/Ch02/listing02-12/sensors.py @@ -0,0 +1,192 @@ +#!/usr/bin/env python +# coding: utf-8 +import math +import socket +import sys + + +import click +import psutil + + +class Sensor: + def value(self): + raise NotImplementedError + + @classmethod + def format(cls, value): + raise NotImplementedError + + def __str__(self): + return self.format(self.value()) + + +class PythonVersion(Sensor): + title = "Python Version" + + def value(self): + return sys.version_info + + @classmethod + def format(cls, value): + if value.micro == 0 and value.releaselevel == "alpha": + return "{0.major}.{0.minor}.{0.micro}a{0.serial}".format(value) + return "{0.major}.{0.minor}".format(value) + + +class IPAddresses(Sensor): + title = "IP Addresses" + FAMILIES = {"AF_INET": "IPv4", "AF_INET6": "IPv6"} + + def value(self): + hostname = socket.gethostname() + addresses = socket.getaddrinfo(hostname, None) + + address_info = [] + for address in addresses: + family, ip = (address[0].name, address[4][0]) + if family not in self.FAMILIES: + continue + value = (family, ip) + if value not in address_info: + address_info.append(value) + return address_info + + @classmethod + def format(cls, value): + return "\n".join( + "{0} ({1})".format(address[1], cls.FAMILIES.get(address[0], "Unknown")) + for address in value + ) + + +class CPULoad(Sensor): + title = "CPU Usage" + + def value(self): + return psutil.cpu_percent(interval=3) / 100.0 + + @classmethod + def format(cls, value): + return "{:.1%}".format(value) + + +class RAMAvailable(Sensor): + title = "RAM Available" + UNITS = ("B", "KiB", "MiB", "GiB", "TiB", "PiB", "EiB") + UNIT_SIZE = 2 ** 10 + + def value(self): + return psutil.virtual_memory().available + + @classmethod + def format(cls, value): + magnitude = math.floor(math.log(value, cls.UNIT_SIZE)) + max_magnitude = len(cls.UNITS) - 1 + magnitude = min(magnitude, max_magnitude) + scaled_value = value / (cls.UNIT_SIZE ** magnitude) + return "{:.1f} {}".format(scaled_value, cls.UNITS[magnitude]) + + +class ACStatus(Sensor): + title = "AC Connected" + + def value(self): + battery = psutil.sensors_battery() + if battery is not None: + return battery.power_plugged + else: + return None + + @classmethod + def format(cls, value): + if value is None: + return "Unknown" + elif value: + return "Connected" + else: + return "Not connected" + + +class Temperature(Sensor): + title = "Ambient Temperature" + + def value(self): + try: + # Connect to a DHT22 on pin 4 + from adafruit_dht import DHT22 + from board import D4 + except (ImportError, NotImplementedError): + # No DHT library results in an ImportError. + # Running on an unknown platform results in a + # NotImplementedError when getting the pin + return None + try: + return DHT22(D4).temperature + except RuntimeError: + return None + + @staticmethod + def celsius_to_fahrenheit(value): + return value * 9 / 5 + 32 + + @classmethod + def format(cls, value): + if value is None: + return "Unknown" + else: + return "{:.1f}C ({:.1f}F)".format(value, cls.celsius_to_fahrenheit(value)) + + def __str__(self): + return self.format(self.value()) + + +class RelativeHumidity(Sensor): + title = "Relative Humidity" + + def value(self): + try: + # Connect to a DHT22 on pin 4 + from adafruit_dht import DHT22 + from board import D4 + except (ImportError, NotImplementedError): + # No DHT library results in an ImportError. + # Running on an unknown platform results in a + # NotImplementedError when getting the pin + return None + try: + return DHT22(D4).humidity / 100 + except RuntimeError: + return None + + @classmethod + def format(cls, value): + if value is None: + return "Unknown" + else: + return "{:.1%}".format(value) + + +def get_sensors(): + return [ + PythonVersion(), + IPAddresses(), + CPULoad(), + RAMAvailable(), + ACStatus(), + Temperature(), + RelativeHumidity(), + ] + + +@click.command(help="Displays the values of the sensors") +def show_sensors(): + sensors = get_sensors() + for sensor in sensors: + click.secho(sensor.title, bold=True) + click.echo(str(sensor)) + click.echo("") + + +if __name__ == "__main__": + show_sensors() diff --git a/Ch02/listing02-12/sensors.pyi b/Ch02/listing02-12/sensors.pyi new file mode 100644 index 0000000..763c009 --- /dev/null +++ b/Ch02/listing02-12/sensors.pyi @@ -0,0 +1,59 @@ +from typing import Any, Iterable, List, Optional, Tuple, TypeVar, Generic + +T_value = TypeVar('T_value') + +class Sensor(Generic[T_value]): + title: str + def value(self) -> T_value: ... + @classmethod + def format(cls: Any, value: T_value) -> str: ... + +class PythonVersion(Sensor[Any]): + title: str = ... + def value(self) -> Any: ... + @classmethod + def format(cls: Any, value: Any) -> str: ... + +class IPAddresses(Sensor[Iterable[Tuple[str, str]]]): + title: str = ... + FAMILIES: Any = ... + def value(self) -> List[Tuple[str, str]]: ... + @classmethod + def format(cls: Any, value: Iterable[Tuple[str, str]]) -> str: ... + +class CPULoad(Sensor[float]): + title: str = ... + def value(self) -> float: ... + @classmethod + def format(cls: Any, value: float) -> str: ... + +class RAMAvailable(Sensor[int]): + title: str = ... + UNITS: Any = ... + UNIT_SIZE: Any = ... + def value(self) -> int: ... + @classmethod + def format(cls: Any, value: int) -> str: ... + +class ACStatus(Sensor[Optional[bool]]): + title: str = ... + def value(self) -> Optional[bool]: ... + @classmethod + def format(cls: Any, value: Optional[bool]) -> str: ... + +class Temperature(Sensor[Optional[float]]): + title: str = ... + def value(self) -> Optional[float]: ... + @staticmethod + def celsius_to_fahrenheit(value: float) -> float: ... + @classmethod + def format(cls: Any, value: Optional[float]) -> str: ... + +class RelativeHumidity(Sensor[Optional[float]]): + title: str = ... + def value(self) -> Optional[float]: ... + @classmethod + def format(cls: Any, value: Optional[float]) -> str: ... + +def get_sensors() -> Iterable[Sensor[Any]]: ... +def show_sensors() -> None: ... diff --git a/Ch02/listing02-12/setup.cfg b/Ch02/listing02-12/setup.cfg new file mode 100644 index 0000000..9aedcef --- /dev/null +++ b/Ch02/listing02-12/setup.cfg @@ -0,0 +1,5 @@ +[mypy] +ignore_missing_imports = True + +[flake8] +max-line-length = 88 \ No newline at end of file diff --git a/Ch02/listing02-12/tests/__init__.py b/Ch02/listing02-12/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/Ch02/listing02-12/tests/test_acstatus.py b/Ch02/listing02-12/tests/test_acstatus.py new file mode 100644 index 0000000..7dab477 --- /dev/null +++ b/Ch02/listing02-12/tests/test_acstatus.py @@ -0,0 +1,55 @@ +from unittest import mock + +import pytest + +from sensors import ACStatus + + +@pytest.fixture +def sensor(): + return ACStatus() + + +class TestACStatusFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_True(self, subject): + assert subject(True) == "Connected" + + def test_format_False(self, subject): + assert subject(False) == "Not connected" + + def test_format_None(self, subject): + assert subject(None) == "Unknown" + + +class TestACStatusValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def sensors_battery(self): + with mock.patch("psutil.sensors_battery") as sensors_battery: + yield sensors_battery + + def test_sensors_battery_called(self, subject, sensors_battery): + sensors_battery.return_value.power_plugged = True + assert subject() is True + assert sensors_battery.call_count == 1 + + def test_sensor_but_battery_unknown(self, subject, sensors_battery): + sensors_battery.return_value.power_plugged = None + assert subject() is None + assert sensors_battery.call_count == 1 + + def test_no_sensor(self, subject, sensors_battery): + sensors_battery.return_value = None + assert subject() is None + + def test_str_representation_is_formatted_value(self, sensor, sensors_battery): + sensors_battery.return_value.power_plugged = True + assert str(sensor) == "Connected" + assert sensors_battery.call_count == 1 diff --git a/Ch02/listing02-12/tests/test_cpuusage.py b/Ch02/listing02-12/tests/test_cpuusage.py new file mode 100644 index 0000000..504861b --- /dev/null +++ b/Ch02/listing02-12/tests/test_cpuusage.py @@ -0,0 +1,45 @@ +from unittest import mock + +import pytest + +from sensors import CPULoad + + +@pytest.fixture +def sensor(): + return CPULoad() + + +class TestCPULoadFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_simple_percentage(self, subject): + assert subject(0.05) == "5.0%" + + def test_format_multiple_decimal_places(self, subject): + assert subject(0.031415926) == "3.1%" + + def test_format_multiple_decimal_places_int(self, subject) -> None: + assert subject(1) == "100.0%" + + +class TestCPULoadValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def cpuload(self): + with mock.patch("psutil.cpu_percent") as cpu_percent: + cpu_percent.return_value = 50.1 + yield cpu_percent + + def test_cpu_percent_called_With_interval(self, subject, cpuload): + assert subject() == 0.501 + assert cpuload.call_count == 1 + assert tuple(cpuload.call_args) == ((), {"interval": 3}) + + def test_str_representation_is_formatted_value(self, sensor, cpuload): + assert str(sensor) == "50.1%" diff --git a/Ch02/listing02-12/tests/test_dht.py b/Ch02/listing02-12/tests/test_dht.py new file mode 100644 index 0000000..c8391a3 --- /dev/null +++ b/Ch02/listing02-12/tests/test_dht.py @@ -0,0 +1,66 @@ +import pytest + +from sensors import Temperature, RelativeHumidity + + +@pytest.fixture +def temperature_sensor(): + return Temperature() + + +@pytest.fixture +def humidity_sensor(): + return RelativeHumidity() + + +class TestTemperatureFormatter: + @pytest.fixture + def subject(self, temperature_sensor): + return temperature_sensor.format + + def test_format_21c(self, subject): + assert subject(21.0) == "21.0C (69.8F)" + + def test_format_negative(self, subject): + assert subject(-32.0) == "-32.0C (-25.6F)" + + def test_format_unknown(self, subject): + assert subject(None) == "Unknown" + + +class TestTemperatureConversion: + @pytest.fixture + def subject(self, temperature_sensor): + return temperature_sensor.celsius_to_fahrenheit + + def test_celsius_to_fahrenheit(self, subject): + c = 21 + f = subject(c) + assert f == 69.8 + + def test_celsius_to_fahrenheit_equivlance_point(self, subject): + c = -40 + f = subject(c) + assert f == -40 + + def test_celsius_to_fahrenheit_float(self, subject): + c = 21.2 + f = subject(c) + assert f == 70.16 + + def test_celsius_to_fahrenheit_string(self, subject): + c = "21" + with pytest.raises(TypeError): + subject(c) + + +class TestHumidityFormatter: + @pytest.fixture + def subject(self, humidity_sensor): + return humidity_sensor.format + + def test_format_percentage(self, subject): + assert subject(0.035) == "3.5%" + + def test_format_unknown(self, subject): + assert subject(None) == "Unknown" diff --git a/Ch02/listing02-12/tests/test_ipaddresses.py b/Ch02/listing02-12/tests/test_ipaddresses.py new file mode 100644 index 0000000..f97d377 --- /dev/null +++ b/Ch02/listing02-12/tests/test_ipaddresses.py @@ -0,0 +1,59 @@ +import socket +from unittest import mock + +import pytest + +from sensors import IPAddresses + + +@pytest.fixture +def sensor(): + return IPAddresses() + + +class TestIPAddressFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_single_ipv4(self, subject): + ips = [("AF_INET", "192.0.2.1")] + assert subject(ips) == "192.0.2.1 (IPv4)" + + def test_format_single_ipv6(self, subject): + ips = [("AF_INET6", "2001:DB8::1")] + assert subject(ips) == "2001:DB8::1 (IPv6)" + + def test_format_mixed_list(self, subject): + ips = [("AF_INET", "192.0.2.1"), ("AF_INET6", "2001:DB8::1")] + assert subject(ips) == "192.0.2.1 (IPv4)\n2001:DB8::1 (IPv6)" + + def test_unusual_protocols_are_marked_as_unknown(self, subject): + ips = [("AF_IRDA", "ffff")] + assert subject(ips) == "ffff (Unknown)" + + +class TestIPAddressesValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def gethostname(self): + with mock.patch("socket.gethostname") as gethostname: + gethostname.return_value = "localhost" + yield gethostname + + @pytest.fixture + def getaddrinfo(self, gethostname): + with mock.patch("socket.getaddrinfo") as getaddrinfo: + yield getaddrinfo + + def test_getaddrinfo_used_for_value_collection(self, getaddrinfo, subject): + getaddrinfo.return_value = [(socket.AF_INET, 0, 0, "", ("192.0.2.1", 0))] + assert subject() == [("AF_INET", "192.0.2.1")] + assert getaddrinfo.call_count == 1 + + def test_str_representation_is_formatted_value(self, getaddrinfo, sensor): + getaddrinfo.return_value = [(socket.AF_INET6, 0, 0, "", ("2001:DB8::1", 0))] + assert str(sensor) == "2001:DB8::1 (IPv6)" diff --git a/Ch02/listing02-12/tests/test_pythonversion.py b/Ch02/listing02-12/tests/test_pythonversion.py new file mode 100644 index 0000000..473eb62 --- /dev/null +++ b/Ch02/listing02-12/tests/test_pythonversion.py @@ -0,0 +1,61 @@ +from collections import namedtuple +from unittest import mock + +import pytest + +from sensors import PythonVersion + + +@pytest.fixture +def version(): + return namedtuple( + "sys_versioninfo", ("major", "minor", "micro", "releaselevel", "serial") + ) + + +@pytest.fixture +def sensor(): + return PythonVersion() + + +class TestPythonVersionFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_py38(self, subject, version): + py38 = version(3, 8, 0, "final", 0) + assert subject(py38) == "3.8" + + def test_format_large_version(self, subject, version): + large = version(255, 128, 0, "final", 0) + assert subject(large) == "255.128" + + def test_alpha_of_minor_is_marked(self, subject, version): + py39 = version(3, 9, 0, "alpha", 1) + assert subject(py39) == "3.9.0a1" + + def test_alpha_of_micro_is_unmarked(self, subject, version): + py39 = version(3, 9, 1, "alpha", 1) + assert subject(py39) == "3.9" + + +class TestPythonVersionValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def python_version(self): + import sys + + return sys.version_info + + def test_data_value_is_sys_versioninfo(self, python_version, subject): + assert subject() == python_version + + +class TestPythonVersionSensor: + def test_str_representation_is_formatted_value(self, sensor, version): + with mock.patch("sys.version_info", new=version(3, 4, 1, "final", 1)): + assert str(sensor) == "3.4" diff --git a/Ch02/listing02-12/tests/test_ramusage.py b/Ch02/listing02-12/tests/test_ramusage.py new file mode 100644 index 0000000..b3c091a --- /dev/null +++ b/Ch02/listing02-12/tests/test_ramusage.py @@ -0,0 +1,47 @@ +from unittest import mock + +import pytest + +from sensors import RAMAvailable + + +@pytest.fixture +def sensor(): + return RAMAvailable() + + +class TestRAMAvailableFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_bytes(self, subject): + assert subject(15) == "15.0 B" + + def test_format_kibibytes(self, subject): + assert subject(15000) == "14.6 KiB" + + def test_format_mibibytes(self, subject): + assert subject(15000000) == "14.3 MiB" + + def test_format_gibibytes(self, subject): + assert subject(15000000000) == "14.0 GiB" + + +class TestRAMAvailableValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def virtual_memory(self): + with mock.patch("psutil.virtual_memory") as virtual_memory: + virtual_memory.return_value.available = 1024 + yield virtual_memory + + def test_virtual_memory_called(self, subject, virtual_memory): + assert subject() == 1024 + assert virtual_memory.call_count == 1 + + def test_str_representation_is_formatted_value(self, sensor, virtual_memory): + assert str(sensor) == "1.0 KiB" diff --git a/Ch02/listing02-12/tests/test_sensors.py b/Ch02/listing02-12/tests/test_sensors.py new file mode 100644 index 0000000..6596ba1 --- /dev/null +++ b/Ch02/listing02-12/tests/test_sensors.py @@ -0,0 +1,17 @@ +from click.testing import CliRunner + +import pytest + +import sensors + + +def test_sensors(): + assert hasattr(sensors, "PythonVersion") + + +@pytest.mark.functional +def test_python_version_is_first_two_lines_of_cli_output(): + runner = CliRunner() + result = runner.invoke(sensors.show_sensors) + python_version = str(sensors.PythonVersion()) + assert ["Python Version", python_version] == result.stdout.split("\n")[:2] diff --git a/Ch02/listing02-13-.pre-commit-config.yaml b/Ch02/listing02-13-.pre-commit-config.yaml new file mode 100644 index 0000000..3ff6d15 --- /dev/null +++ b/Ch02/listing02-13-.pre-commit-config.yaml @@ -0,0 +1,23 @@ +repos: + +- repo: local + hooks: + - id: black + name: black + entry: pipenv run black + args: [--quiet] + language: system + types: [python] + + - id: mypy + name: mypy + entry: pipenv run mypy + args: ["--follow-imports=skip"] + language: system + types: [python] + + - id: flake8 + name: flake8 + entry: pipenv run flake8 + language: system + types: [python] diff --git a/Ch03/apd.sensors-chapter03/.pre-commit-config.yaml b/Ch03/apd.sensors-chapter03/.pre-commit-config.yaml new file mode 100644 index 0000000..3ff6d15 --- /dev/null +++ b/Ch03/apd.sensors-chapter03/.pre-commit-config.yaml @@ -0,0 +1,23 @@ +repos: + +- repo: local + hooks: + - id: black + name: black + entry: pipenv run black + args: [--quiet] + language: system + types: [python] + + - id: mypy + name: mypy + entry: pipenv run mypy + args: ["--follow-imports=skip"] + language: system + types: [python] + + - id: flake8 + name: flake8 + entry: pipenv run flake8 + language: system + types: [python] diff --git a/Ch03/apd.sensors-chapter03/CHANGES.md b/Ch03/apd.sensors-chapter03/CHANGES.md new file mode 100644 index 0000000..569aeea --- /dev/null +++ b/Ch03/apd.sensors-chapter03/CHANGES.md @@ -0,0 +1,5 @@ +## Changes + +### 1.0.0 (2019-06-20) + +* Added initial sensors (Matthew Wilkes) diff --git a/Ch03/apd.sensors-chapter03/LICENCE b/Ch03/apd.sensors-chapter03/LICENCE new file mode 100644 index 0000000..ccaef50 --- /dev/null +++ b/Ch03/apd.sensors-chapter03/LICENCE @@ -0,0 +1,21 @@ +``` +Copyright (c) 2019 Matthew Wilkes + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. +``` \ No newline at end of file diff --git a/Ch03/apd.sensors-chapter03/Pipfile b/Ch03/apd.sensors-chapter03/Pipfile new file mode 100644 index 0000000..40413b8 --- /dev/null +++ b/Ch03/apd.sensors-chapter03/Pipfile @@ -0,0 +1,29 @@ +[[source]] +name = "pypi" +url = "https://pypi.org/simple" +verify_ssl = true + +[[source]] +name = "piwheels" +url = "https://piwheels.org/simple" +verify_ssl = true + +[dev-packages] +ipykernel = "*" +remote-ikernel = "*" +pytest = "*" +pytest-cov = "*" +mypy = "*" +flake8 = "*" +black = "*" +pre-commit = "*" +wheel = "*" +twine = "*" + +[packages] +apd-sensors = {editable = true,path = "."} + +[requires] + +[pipenv] +allow_prereleases = true diff --git a/Ch03/apd.sensors-chapter03/Pipfile.lock b/Ch03/apd.sensors-chapter03/Pipfile.lock new file mode 100644 index 0000000..e7e5bb8 --- /dev/null +++ b/Ch03/apd.sensors-chapter03/Pipfile.lock @@ -0,0 +1,897 @@ +{ + "_meta": { + "hash": { + "sha256": "b2def6fc1541c4ee04e68450c1818f456f7d3aac56b38ed1356d6bbcd13ffd8d" + }, + "pipfile-spec": 6, + "requires": {}, + "sources": [ + { + "name": "pypi", + "url": "https://pypi.org/simple", + "verify_ssl": true + }, + { + "name": "piwheels", + "url": "https://piwheels.org/simple", + "verify_ssl": true + } + ] + }, + "default": { + "apd-sensors": { + "editable": true, + "path": "." + }, + "click": { + "hashes": [ + "sha256:8a18b4ea89d8820c5d0c7da8a64b2c324b4dabb695804dbfea19b9be9d88c0cc", + "sha256:e345d143d80bf5ee7534056164e5e112ea5e22716bbb1ce727941f4c8b471b9a" + ], + "version": "==7.1.1" + }, + "psutil": { + "hashes": [ + "sha256:002bd856770037221256765a472f50d677074ad207276a39e2bccdb7394e333b", + "sha256:1413f4158eb50e110777c4f15d7c759521703bd6beb58926f1d562da40180058", + "sha256:298af2f14b635c3c7118fd9183843f4e73e681bb6f01e12284d4d70d48a60953", + "sha256:60b86f327c198561f101a92be1995f9ae0399736b6eced8f24af41ec64fb88d4", + "sha256:685ec16ca14d079455892f25bd124df26ff9137664af445563c1bd36629b5e0e", + "sha256:73f35ab66c6c7a9ce82ba44b1e9b1050be2a80cd4dcc3352cc108656b115c74f", + "sha256:75e22717d4dbc7ca529ec5063000b2b294fc9a367f9c9ede1f65846c7955fd38", + "sha256:833b2b19c04fc0aecad22daa3e35108d6ee2e4f92061a4a8f2dd77c6fa9154f5", + "sha256:a02f4ac50d4a23253b68233b07e7cdb567bd025b982d5cf0ee78296990c22d9e", + "sha256:d008ddc00c6906ec80040d26dc2d3e3962109e40ad07fd8a12d0284ce5e0e4f8", + "sha256:d84029b190c8a66a946e28b4d3934d2ca1528ec94764b180f7d6ea57b0e75e26", + "sha256:e2d0c5b07c6fe5a87fa27b7855017edb0d52ee73b71e6ee368fae268605cc3f5", + "sha256:f344ca230dd8e8d5eee16827596f1c22ec0876127c28e800d7ae20ed44c4b310", + "sha256:f3e7f183162622eae9fbdee44ff19b226edec68b94ae7cba47f9afcf4c3ec66c" + ], + "version": "==5.7.0" + } + }, + "develop": { + "appdirs": { + "hashes": [ + "sha256:9e5896d1372858f8dd3344faf4e5014d21849c756c8d5701f78f8a103b372d92", + "sha256:d8b24664561d0d34ddfaec54636d502d7cea6e29c3eaf68f3df6180863e2166e" + ], + "version": "==1.4.3" + }, + "atomicwrites": { + "hashes": [ + "sha256:03472c30eb2c5d1ba9227e4c2ca66ab8287fbfbbda3888aa93dc2e28fc6811b4", + "sha256:75a9445bac02d8d058d5e1fe689654ba5a6556a1dfd8ce6ec55a0ed79866cfa6" + ], + "markers": "sys_platform == 'win32'", + "version": "==1.3.0" + }, + "attrs": { + "hashes": [ + "sha256:08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c", + "sha256:f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72" + ], + "version": "==19.3.0" + }, + "backcall": { + "hashes": [ + "sha256:1fac21e6861f538700a5d498620153f38407a4bacf9e1d5047b3d717f10bc4ab", + "sha256:38ecd85be2c1e78f77fd91700c76e14667dc21e2713b63876c0eb901196e01e4", + "sha256:bbbf4b1e5cd2bdb08f915895b51081c041bac22394fdfcfdfbe9f14b77c08bf2" + ], + "version": "==0.1.0" + }, + "black": { + "hashes": [ + "sha256:1b30e59be925fafc1ee4565e5e08abef6b03fe455102883820fe5ee2e4734e0b", + "sha256:c2edb73a08e9e0e6f65a0e6af18b059b8b1cdd5bef997d7a0b181df93dc81539" + ], + "index": "pypi", + "version": "==19.10b0" + }, + "bleach": { + "hashes": [ + "sha256:cc8da25076a1fe56c3ac63671e2194458e0c4d9c7becfd52ca251650d517903c", + "sha256:e78e426105ac07026ba098f04de8abe9b6e3e98b5befbf89b51a5ef0a4292b03" + ], + "version": "==3.1.4" + }, + "certifi": { + "hashes": [ + "sha256:017c25db2a153ce562900032d5bc68e9f191e44e9a0f762f373977de9df1fbb3", + "sha256:25b64c7da4cd7479594d035c08c2d809eb4aab3a26e5a990ea98cc450c320f1f" + ], + "version": "==2019.11.28" + }, + "cfgv": { + "hashes": [ + "sha256:1ccf53320421aeeb915275a196e23b3b8ae87dea8ac6698b1638001d4a486d53", + "sha256:c8e8f552ffcc6194f4e18dd4f68d9aef0c0d58ae7e7be8c82bee3c5e9edfa513" + ], + "version": "==3.1.0" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:8a18b4ea89d8820c5d0c7da8a64b2c324b4dabb695804dbfea19b9be9d88c0cc", + "sha256:e345d143d80bf5ee7534056164e5e112ea5e22716bbb1ce727941f4c8b471b9a" + ], + "version": "==7.1.1" + }, + "colorama": { + "hashes": [ + "sha256:7d73d2a99753107a36ac6b455ee49046802e59d9d076ef8e47b61499fa29afff", + "sha256:e96da0d330793e2cb9485e9ddfd918d456036c7149416295932478192f4436a1" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.3" + }, + "coverage": { + "hashes": [ + "sha256:03f630aba2b9b0d69871c2e8d23a69b7fe94a1e2f5f10df5049c0df99db639a0", + "sha256:046a1a742e66d065d16fb564a26c2a15867f17695e7f3d358d7b1ad8a61bca30", + "sha256:0a907199566269e1cfa304325cc3b45c72ae341fbb3253ddde19fa820ded7a8b", + "sha256:165a48268bfb5a77e2d9dbb80de7ea917332a79c7adb747bd005b3a07ff8caf0", + "sha256:1b60a95fc995649464e0cd48cecc8288bac5f4198f21d04b8229dc4097d76823", + "sha256:1f66cf263ec77af5b8fe14ef14c5e46e2eb4a795ac495ad7c03adc72ae43fafe", + "sha256:2e08c32cbede4a29e2a701822291ae2bc9b5220a971bba9d1e7615312efd3037", + "sha256:327ff84602ee3b5c0c921ff8bbe605e2dd3599fc2a12620b0085f847af4ebb2a", + "sha256:3844c3dab800ca8536f75ae89f3cf566848a3eb2af4d9f7b1103b4f4f7a5dad6", + "sha256:408ce64078398b2ee2ec08199ea3fcf382828d2f8a19c5a5ba2946fe5ddc6c31", + "sha256:443be7602c790960b9514567917af538cac7807a7c0c0727c4d2bbd4014920fd", + "sha256:4482f69e0701139d0f2c44f3c395d1d1d37abd81bfafbf9b6efbe2542679d892", + "sha256:4a8a259bf990044351baf69d3b23e575699dd60b18460c71e81dc565f5819ac1", + "sha256:513e6526e0082c59a984448f4104c9bf346c2da9961779ede1fc458e8e8a1f78", + "sha256:5f587dfd83cb669933186661a351ad6fc7166273bc3e3a1531ec5c783d997aac", + "sha256:62061e87071497951155cbccee487980524d7abea647a1b2a6eb6b9647df9006", + "sha256:641e329e7f2c01531c45c687efcec8aeca2a78a4ff26d49184dce3d53fc35014", + "sha256:65a7e00c00472cd0f59ae09d2fb8a8aaae7f4a0cf54b2b74f3138d9f9ceb9cb2", + "sha256:6ad6ca45e9e92c05295f638e78cd42bfaaf8ee07878c9ed73e93190b26c125f7", + "sha256:73aa6e86034dad9f00f4bbf5a666a889d17d79db73bc5af04abd6c20a014d9c8", + "sha256:7c9762f80a25d8d0e4ab3cb1af5d9dffbddb3ee5d21c43e3474c84bf5ff941f7", + "sha256:85596aa5d9aac1bf39fe39d9fa1051b0f00823982a1de5766e35d495b4a36ca9", + "sha256:86a0ea78fd851b313b2e712266f663e13b6bc78c2fb260b079e8b67d970474b1", + "sha256:8a620767b8209f3446197c0e29ba895d75a1e272a36af0786ec70fe7834e4307", + "sha256:922fb9ef2c67c3ab20e22948dcfd783397e4c043a5c5fa5ff5e9df5529074b0a", + "sha256:9fad78c13e71546a76c2f8789623eec8e499f8d2d799f4b4547162ce0a4df435", + "sha256:a37c6233b28e5bc340054cf6170e7090a4e85069513320275a4dc929144dccf0", + "sha256:c3fc325ce4cbf902d05a80daa47b645d07e796a80682c1c5800d6ac5045193e5", + "sha256:cda33311cb9fb9323958a69499a667bd728a39a7aa4718d7622597a44c4f1441", + "sha256:db1d4e38c9b15be1521722e946ee24f6db95b189d1447fa9ff18dd16ba89f732", + "sha256:eda55e6e9ea258f5e4add23bcf33dc53b2c319e70806e180aecbff8d90ea24de", + "sha256:f0db0dc803e0f81f2a4098d4f25904f41be13b6d3e69f098b5b2bbba17cb7985", + "sha256:f372cdbb240e09ee855735b9d85e7f50730dcfb6296b74b95a3e5dea0615c4c1" + ], + "version": "==5.0.4" + }, + "decorator": { + "hashes": [ + "sha256:41fa54c2a0cc4ba648be4fd43cff00aedf5b9465c9bf18d64325bc225f08f760", + "sha256:e3a62f0520172440ca0dcc823749319382e377f37f140a0b99ef45fecb84bfe7" + ], + "version": "==4.4.2" + }, + "defusedxml": { + "hashes": [ + "sha256:6687150770438374ab581bb7a1b327a847dd9c5749e396102de3fad4e8a3ef93", + "sha256:f684034d135af4c6cbb949b8a4d2ed61634515257a67299e5f940fbaa34377f5" + ], + "version": "==0.6.0" + }, + "distlib": { + "hashes": [ + "sha256:2e166e231a26b36d6dfe35a48c4464346620f8645ed0ace01ee31822b288de21", + "sha256:8a041060c5a140131768a2e2450813f5577f7e4c68a4585824c5585502dcfbea" + ], + "version": "==0.3.0" + }, + "docutils": { + "hashes": [ + "sha256:0c5b78adfbf7762415433f5515cd5c9e762339e23369dbe8000d84a4bf4ab3af", + "sha256:c2de3a60e9e7d07be26b7f2b00ca0309c207e06c100f9cc2a94931fc75a478fc" + ], + "version": "==0.16" + }, + "entrypoints": { + "hashes": [ + "sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19", + "sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451" + ], + "version": "==0.3" + }, + "filelock": { + "hashes": [ + "sha256:18d82244ee114f543149c66a6e0c14e9c4f8a1044b5cdaadd0f82159d6a6ff59", + "sha256:929b7d63ec5b7d6b71b0fa5ac14e030b3f70b75747cef1b10da9b879fef15836" + ], + "version": "==3.0.12" + }, + "flake8": { + "hashes": [ + "sha256:45681a117ecc81e870cbf1262835ae4af5e7a8b08e40b944a8a6e6b895914cfb", + "sha256:49356e766643ad15072a789a20915d3c91dc89fd313ccd71802303fd67e4deca" + ], + "index": "pypi", + "version": "==3.7.9" + }, + "identify": { + "hashes": [ + "sha256:a7577a1f55cee1d21953a5cf11a3c839ab87f5ef909a4cba6cf52ed72b4c6059", + "sha256:ab246293e6585a1c6361a505b68d5b501a0409310932b7de2c2ead667b564d89" + ], + "version": "==1.4.13" + }, + "idna": { + "hashes": [ + "sha256:7588d1c14ae4c77d74036e8c22ff447b26d0fde8f007354fd48a7814db15b7cb", + "sha256:a068a21ceac8a4d63dbfd964670474107f541babbd2250d61922f029858365fa" + ], + "version": "==2.9" + }, + "importlib-metadata": { + "hashes": [ + "sha256:2a688cbaa90e0cc587f1df48bdc97a6eadccdcd9c35fb3f976a09e3b5016d90f", + "sha256:34513a8a0c4962bc66d35b359558fd8a5e10cd472d37aec5f66858addef32c1e" + ], + "markers": "python_version < '3.8'", + "version": "==1.6.0" + }, + "ipykernel": { + "hashes": [ + "sha256:08997a27ccafbb998437d167ccc893666c6088ec3aa90c054bfb3d588bb3fc20", + "sha256:37c65d2e2da3326e5cf114405df6d47d997b8a3eba99e2cc4b75833bf71a5e18", + "sha256:39746b5f7d847a23fae4eac893e63e3d9cc5f8c3a4797fcd3bfa8d1a296ec6ed" + ], + "index": "pypi", + "version": "==5.2.0" + }, + "ipython": { + "hashes": [ + "sha256:1807adeae64502fcaa491cd93405644faa055b646efb40c1e48648ad66f65a75", + "sha256:ca478e52ae1f88da0102360e57e528b92f3ae4316aabac80a2cd7f7ab2efb48a", + "sha256:eb8d075de37f678424527b5ef6ea23f7b80240ca031c2dd6de5879d687a65333" + ], + "version": "==7.13.0" + }, + "ipython-genutils": { + "hashes": [ + "sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8", + "sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8" + ], + "version": "==0.2.0" + }, + "jedi": { + "hashes": [ + "sha256:b4f4052551025c6b0b0b193b29a6ff7bdb74c52450631206c262aef9f7159ad2", + "sha256:d5c871cb9360b414f981e7072c52c33258d598305280fef91c6cae34739d65d5" + ], + "version": "==0.16.0" + }, + "jinja2": { + "hashes": [ + "sha256:39cbce1ffc25cbf4860b09195654763be95b9e4900475b24d5c345d3e0948c53", + "sha256:c10142f819c2d22bdcd17548c46fa9b77cf4fda45097854c689666bf425e7484", + "sha256:c922560ac46888d47384de1dbdc3daaa2ea993af4b26a436dec31fa2c19ec668" + ], + "version": "==3.0.0a1" + }, + "jsonschema": { + "hashes": [ + "sha256:4e5b3cf8216f577bee9ce139cbe72eca3ea4f292ec60928ff24758ce626cd163", + "sha256:c8a85b28d377cc7737e46e2d9f2b4f44ee3c0e1deac6bf46ddefc7187d30797a" + ], + "version": "==3.2.0" + }, + "jupyter-client": { + "hashes": [ + "sha256:5724827aedb1948ed6ed15131372bc304a8d3ad9ac67ac19da7c95120d6b17e0", + "sha256:81c1c712de383bf6bf3dab6b407392b0d84d814c7bd0ce2c7035ead8b2ffea97" + ], + "version": "==6.1.2" + }, + "jupyter-core": { + "hashes": [ + "sha256:394fd5dd787e7c8861741880bdf8a00ce39f95de5d18e579c74b882522219e7e", + "sha256:a4ee613c060fe5697d913416fc9d553599c05e4492d58fac1192c9a6844abb21" + ], + "version": "==4.6.3" + }, + "jupyterlab-pygments": { + "hashes": [ + "sha256:31deda75bd11b014190764c79f6199aa04ef2d4cf35c1c94270fc2e19c23a5c5", + "sha256:cc15f2a9850899d108a3c22743a86edcd3b42791a6c88b6e5b558d021d14d065" + ], + "version": "==0.1.0" + }, + "keyring": { + "hashes": [ + "sha256:197fd5903901030ef7b82fe247f43cfed2c157a28e7747d1cfcf4bc5e699dd03", + "sha256:8179b1cdcdcbc221456b5b74e6b7cfa06f8dd9f239eb81892166d9223d82c5ba", + "sha256:dcb7f54f06c868526b97f9825b558e5199661f9647849acf9204c2d6028501dc" + ], + "version": "==21.2.0" + }, + "markupsafe": { + "hashes": [ + "sha256:00bc623926325b26bb9605ae9eae8a215691f33cae5df11ca5424f06f2d1f473", + "sha256:09027a7803a62ca78792ad89403b1b7a73a01c8cb65909cd876f7fcebd79b161", + "sha256:09c4b7f37d6c648cb13f9230d847adf22f8171b1ccc4d5682398e77f40309235", + "sha256:1027c282dad077d0bae18be6794e6b6b8c91d58ed8a8d89a89d59693b9131db5", + "sha256:13d3144e1e340870b25e7b10b98d779608c02016d5184cfb9927a9f10c689f42", + "sha256:19536834abffb3fa155017053c607cb835b2ecc6a3a2554a88043d991dffb736", + "sha256:24982cc2533820871eba85ba648cd53d8623687ff11cbb805be4ff7b4c971aff", + "sha256:29872e92839765e546828bb7754a68c418d927cd064fd4708fab9fe9c8bb116b", + "sha256:3d61f15e39611aacd91b7e71d903787da86d9e80896e683c0103fced9add7834", + "sha256:43a55c2930bbc139570ac2452adf3d70cdbb3cfe5912c71cdce1c2c6bbd9c5d1", + "sha256:46c99d2de99945ec5cb54f23c8cd5689f6d7177305ebff350a58ce5f8de1669e", + "sha256:500d4957e52ddc3351cabf489e79c91c17f6e0899158447047588650b5e69183", + "sha256:535f6fc4d397c1563d08b88e485c3496cf5784e927af890fb3c3aac7f933ec66", + "sha256:596510de112c685489095da617b5bcbbac7dd6384aeebeda4df6025d0256a81b", + "sha256:62fe6c95e3ec8a7fad637b7f3d372c15ec1caa01ab47926cfdf7a75b40e0eac1", + "sha256:6788b695d50a51edb699cb55e35487e430fa21f1ed838122d722e0ff0ac5ba15", + "sha256:6dd73240d2af64df90aa7c4e7481e23825ea70af4b4922f8ede5b9e35f78a3b1", + "sha256:717ba8fe3ae9cc0006d7c451f0bb265ee07739daf76355d06366154ee68d221e", + "sha256:7952deddf24b85c88dab48f6ec366ac6e39d2761b5280f2f9594911e03fcd064", + "sha256:79855e1c5b8da654cf486b830bd42c06e8780cea587384cf6545b7d9ac013a0b", + "sha256:7c1699dfe0cf8ff607dbdcc1e9b9af1755371f92a68f706051cc8c37d447c905", + "sha256:88e5fcfb52ee7b911e8bb6d6aa2fd21fbecc674eadd44118a9cc3863f938e735", + "sha256:8defac2f2ccd6805ebf65f5eeb132adcf2ab57aa11fdf4c0dd5169a004710e7d", + "sha256:98c7086708b163d425c67c7a91bad6e466bb99d797aa64f965e9d25c12111a5e", + "sha256:9add70b36c5666a2ed02b43b335fe19002ee5235efd4b8a89bfcf9005bebac0d", + "sha256:9bf40443012702a1d2070043cb6291650a0841ece432556f784f004937f0f32c", + "sha256:ade5e387d2ad0d7ebf59146cc00c8044acbd863725f887353a10df825fc8ae21", + "sha256:b00c1de48212e4cc9603895652c5c410df699856a2853135b3967591e4beebc2", + "sha256:b1282f8c00509d99fef04d8ba936b156d419be841854fe901d8ae224c59f0be5", + "sha256:b2051432115498d3562c084a49bba65d97cf251f5a331c64a12ee7e04dacc51b", + "sha256:ba59edeaa2fc6114428f1637ffff42da1e311e29382d81b339c1817d37ec93c6", + "sha256:c8716a48d94b06bb3b2524c2b77e055fb313aeb4ea620c8dd03a105574ba704f", + "sha256:cd5df75523866410809ca100dc9681e301e3c27567cf498077e8551b6d20e42f", + "sha256:cdb132fc825c38e1aeec2c8aa9338310d29d337bebbd7baa06889d09a60a1fa2", + "sha256:e249096428b3ae81b08327a63a485ad0878de3fb939049038579ac0ef61e17e7", + "sha256:e8313f01ba26fbbe36c7be1966a7b7424942f670f38e666995b88d012765b9be" + ], + "version": "==1.1.1" + }, + "mccabe": { + "hashes": [ + "sha256:ab8a6258860da4b6677da4bd2fe5dc2c659cff31b3ee4f7f5d64e79735b80d42", + "sha256:dd8d182285a0fe56bace7f45b5e7d1a6ebcbf524e8f3bd87eb0f125271b8831f" + ], + "version": "==0.6.1" + }, + "mistune": { + "hashes": [ + "sha256:59a3429db53c50b5c6bcc8a07f8848cb00d7dc8bdb431a4ab41920d201d4756e", + "sha256:88a1051873018da288eee8538d476dffe1262495144b33ecb586c4ab266bb8d4" + ], + "version": "==0.8.4" + }, + "more-itertools": { + "hashes": [ + "sha256:5dd8bcf33e5f9513ffa06d5ad33d78f31e1931ac9a18f33d37e77a180d393a7c", + "sha256:b1ddb932186d8a6ac451e1d95844b382f55e12686d51ca0c68b6f61f2ab7a507" + ], + "version": "==8.2.0" + }, + "mypy": { + "hashes": [ + "sha256:15b948e1302682e3682f11f50208b726a246ab4e6c1b39f9264a8796bb416aa2", + "sha256:219a3116ecd015f8dca7b5d2c366c973509dfb9a8fc97ef044a36e3da66144a1", + "sha256:3b1fc683fb204c6b4403a1ef23f0b1fac8e4477091585e0c8c54cbdf7d7bb164", + "sha256:3beff56b453b6ef94ecb2996bea101a08f1f8a9771d3cbf4988a61e4d9973761", + "sha256:7687f6455ec3ed7649d1ae574136835a4272b65b3ddcf01ab8704ac65616c5ce", + "sha256:7ec45a70d40ede1ec7ad7f95b3c94c9cf4c186a32f6bacb1795b60abd2f9ef27", + "sha256:86c857510a9b7c3104cf4cde1568f4921762c8f9842e987bc03ed4f160925754", + "sha256:8a627507ef9b307b46a1fea9513d5c98680ba09591253082b4c48697ba05a4ae", + "sha256:8dfb69fbf9f3aeed18afffb15e319ca7f8da9642336348ddd6cab2713ddcf8f9", + "sha256:a34b577cdf6313bf24755f7a0e3f3c326d5c1f4fe7422d1d06498eb25ad0c600", + "sha256:a8ffcd53cb5dfc131850851cc09f1c44689c2812d0beb954d8138d4f5fc17f65", + "sha256:b90928f2d9eb2f33162405f32dde9f6dcead63a0971ca8a1b50eb4ca3e35ceb8", + "sha256:c56ffe22faa2e51054c5f7a3bc70a370939c2ed4de308c690e7949230c995913", + "sha256:f91c7ae919bbc3f96cd5e5b2e786b2b108343d1d7972ea130f7de27fdd547cf3" + ], + "index": "pypi", + "version": "==0.770" + }, + "mypy-extensions": { + "hashes": [ + "sha256:090fedd75945a69ae91ce1303b5824f428daf5a028d2f6ab8a299250a846f15d", + "sha256:2d82818f5bb3e369420cb3c4060a7970edba416647068eb4c5343488a6c604a8" + ], + "version": "==0.4.3" + }, + "nbconvert": { + "hashes": [ + "sha256:944a5fbe6c4609d74e7f331bfa957c8eff2d53904f7c40f053a44bfb4164b718", + "sha256:c86da6adc412df9ad2726fe438589e4495c7835792d6d84f888178682f5d5bcf" + ], + "version": "==6.0.0a0" + }, + "nbformat": { + "hashes": [ + "sha256:65a79936a128fd85aef392b7fea520166364037118b6fe3ed52de742d06c4558", + "sha256:f0c47cf93c505cb943e2f131ef32b8ae869292b5f9f279db2bafb35867923f69" + ], + "version": "==5.0.5" + }, + "nodeenv": { + "hashes": [ + "sha256:5b2438f2e42af54ca968dd1b374d14a1194848955187b0e5e4be1f73813a5212" + ], + "version": "==1.3.5" + }, + "notebook": { + "hashes": [ + "sha256:3edc616c684214292994a3af05eaea4cc043f6b4247d830f3a2f209fa7639a80", + "sha256:47a9092975c9e7965ada00b9a20f0cf637d001db60d241d479f53c0be117ad48" + ], + "version": "==6.0.3" + }, + "packaging": { + "hashes": [ + "sha256:3c292b474fda1671ec57d46d739d072bfd495a4f51ad01a055121d81e952b7a3", + "sha256:82f77b9bee21c1bafbf35a84905d604d5d1223801d639cf3ed140bd651c08752" + ], + "version": "==20.3" + }, + "pandocfilters": { + "hashes": [ + "sha256:41a309da81cba5509389b19d96b0ee49551cee8165a6406754f2565e95429860", + "sha256:b3dd70e169bb5449e6bc6ff96aea89c5eea8c5f6ab5e207fc2f521a2cf4a0da9" + ], + "version": "==1.4.2" + }, + "parso": { + "hashes": [ + "sha256:0c5659e0c6eba20636f99a04f469798dca8da279645ce5c387315b2c23912157", + "sha256:8515fc12cfca6ee3aa59138741fc5624d62340c97e401c74875769948d4f2995" + ], + "version": "==0.6.2" + }, + "pathspec": { + "hashes": [ + "sha256:163b0632d4e31cef212976cf57b43d9fd6b0bac6e67c26015d611a647d5e7424", + "sha256:562aa70af2e0d434367d9790ad37aed893de47f1693e4201fd1d3dca15d19b96" + ], + "version": "==0.7.0" + }, + "pexpect": { + "hashes": [ + "sha256:0b48a55dcb3c05f3329815901ea4fc1537514d6ba867a152b581d69ae3710937", + "sha256:fc65a43959d153d0114afe13997d439c22823a27cefceb5ff35c2178c6784c0c" + ], + "version": "==4.8.0" + }, + "pickleshare": { + "hashes": [ + "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca", + "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56" + ], + "version": "==0.7.5" + }, + "pkginfo": { + "hashes": [ + "sha256:7424f2c8511c186cd5424bbf31045b77435b37a8d604990b79d4e70d741148bb", + "sha256:a6d9e40ca61ad3ebd0b72fbadd4fba16e4c0e4df0428c041e01e06eb6ee71f32" + ], + "version": "==1.5.0.1" + }, + "pluggy": { + "hashes": [ + "sha256:15b2acde666561e1298d71b523007ed7364de07029219b604cf808bfa1c765b0", + "sha256:966c145cd83c96502c3c3868f50408687b38434af77734af1e9ca461a4081d2d" + ], + "version": "==0.13.1" + }, + "pre-commit": { + "hashes": [ + "sha256:487c675916e6f99d355ec5595ad77b325689d423ef4839db1ed2f02f639c9522", + "sha256:9707b4f7069365ffdb57d2782086a9f3019afde2a6e9f85df785c9bf090e1118", + "sha256:c0aa11bce04a7b46c5544723aedf4e81a4d5f64ad1205a30a9ea12d5e81969e1" + ], + "index": "pypi", + "version": "==2.2.0" + }, + "prometheus-client": { + "hashes": [ + "sha256:09b5750fd1c153420dccd35881116e853c730081bea0dbf0ea6649103bcb8445", + "sha256:71cd24a2b3eb335cb800c7159f423df1bd4dcd5171b234be15e3f31ec9f622da" + ], + "version": "==0.7.1" + }, + "prompt-toolkit": { + "hashes": [ + "sha256:563d1a4140b63ff9dd587bda9557cffb2fe73650205ab6f4383092fb882e7dc8", + "sha256:df7e9e63aea609b1da3a65641ceaf5bc7d05e0a04de5bd45d05dbeffbabf9e04" + ], + "version": "==3.0.5" + }, + "ptyprocess": { + "hashes": [ + "sha256:923f299cc5ad920c68f2bc0bc98b75b9f838b93b599941a6b63ddbc2476394c0", + "sha256:d7cc528d76e76342423ca640335bd3633420dc1366f258cb31d05e865ef5ca1f" + ], + "version": "==0.6.0" + }, + "py": { + "hashes": [ + "sha256:5e27081401262157467ad6e7f851b7aa402c5852dbcb3dae06768434de5752aa", + "sha256:c20fdd83a5dbc0af9efd622bee9a5564e278f6380fffcacc43ba6f43db2813b0" + ], + "version": "==1.8.1" + }, + "pycodestyle": { + "hashes": [ + "sha256:95a2219d12372f05704562a14ec30bc76b05a5b297b21a5dfe3f6fac3491ae56", + "sha256:e40a936c9a450ad81df37f549d676d127b1b66000a6c500caa2b085bc0ca976c" + ], + "version": "==2.5.0" + }, + "pyflakes": { + "hashes": [ + "sha256:17dbeb2e3f4d772725c777fabc446d5634d1038f234e77343108ce445ea69ce0", + "sha256:d976835886f8c5b31d47970ed689944a0262b5f3afa00a5a7b4dc81e5449f8a2" + ], + "version": "==2.1.1" + }, + "pygments": { + "hashes": [ + "sha256:647344a061c249a3b74e230c739f434d7ea4d8b1d5f3721bc0f3558049b38f44", + "sha256:aa931c0bd5daa25c475afadb2147115134cfe501f0656828cbe7cb566c7123bc", + "sha256:ff7a40b4860b727ab48fad6360eb351cc1b33cbf9b15a0f689ca5353e9463324" + ], + "version": "==2.6.1" + }, + "pyparsing": { + "hashes": [ + "sha256:4c830582a84fb022400b85429791bc551f1f4871c33f23e44f353119e92f969f", + "sha256:c342dccb5250c08d45fd6f8b4a559613ca603b57498511740e65cd11a2e7dcec" + ], + "version": "==2.4.6" + }, + "pyrsistent": { + "hashes": [ + "sha256:28669905fe725965daa16184933676547c5bb40a5153055a8dee2a4bd7933ad3", + "sha256:3217696df78f9222a3d1179b119c27be346b969a9e4d617de2a215a87d9aa456", + "sha256:9324b762b52e5a901611b25f50f9cdf8789c61ece3ff7c24dc872603c4faca62", + "sha256:c11415790cc5803e173de7d71d54f94c66a9154f81a72ffdf45a70096916f226" + ], + "version": "==0.16.0" + }, + "pytest": { + "hashes": [ + "sha256:0e5b30f5cb04e887b91b1ee519fa3d89049595f428c1db76e73bd7f17b09b172", + "sha256:84dde37075b8805f3d1f392cc47e38a0e59518fb46a431cfdaf7cf1ce805f970" + ], + "index": "pypi", + "version": "==5.4.1" + }, + "pytest-cov": { + "hashes": [ + "sha256:cc6742d8bac45070217169f5f72ceee1e0e55b0221f54bcf24845972d3a47f2b", + "sha256:cdbdef4f870408ebdbfeb44e63e07eb18bb4619fae852f6e760645fa36172626" + ], + "index": "pypi", + "version": "==2.8.1" + }, + "python-dateutil": { + "hashes": [ + "sha256:73ebfe9dbf22e832286dafa60473e4cd239f8592f699aa5adaf10050e6e1823c", + "sha256:75bb3f31ea686f1197762692a9ee6a7550b59fc6ca3a1f4b5d7e32fb98e2da2a" + ], + "version": "==2.8.1" + }, + "pywin32": { + "hashes": [ + "sha256:300a2db938e98c3e7e2093e4491439e62287d0d493fe07cce110db070b54c0be", + "sha256:31f88a89139cb2adc40f8f0e65ee56a8c585f629974f9e07622ba80199057511", + "sha256:371fcc39416d736401f0274dd64c2302728c9e034808e37381b5e1b22be4a6b0", + "sha256:47a3c7551376a865dd8d095a98deba954a98f326c6fe3c72d8726ca6e6b15507", + "sha256:4cdad3e84191194ea6d0dd1b1b9bdda574ff563177d2adf2b4efec2a244fa116", + "sha256:7c1ae32c489dc012930787f06244426f8356e129184a02c25aef163917ce158e", + "sha256:7f18199fbf29ca99dff10e1f09451582ae9e372a892ff03a28528a24d55875bc", + "sha256:9b31e009564fb95db160f154e2aa195ed66bcc4c058ed72850d047141b36f3a2", + "sha256:a929a4af626e530383a579431b70e512e736e9588106715215bf685a3ea508d4", + "sha256:c054c52ba46e7eb6b7d7dfae4dbd987a1bb48ee86debe3f245a2884ece46e295", + "sha256:f27cec5e7f588c3d1051651830ecc00294f90728d19c3bf6916e6dba93ea357c", + "sha256:f4c5be1a293bae0076d93c88f37ee8da68136744588bc5e2be2f299a34ceb7aa" + ], + "markers": "sys_platform == 'win32'", + "version": "==227" + }, + "pywin32-ctypes": { + "hashes": [ + "sha256:24ffc3b341d457d48e8922352130cf2644024a4ff09762a2261fd34c36ee5942", + "sha256:9dc2d991b3479cc2df15930958b674a48a227d5361d413827a4cfd0b5876fc98" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.2.0" + }, + "pywinpty": { + "hashes": [ + "sha256:1e525a4de05e72016a7af27836d512db67d06a015aeaf2fa0180f8e6a039b3c2", + "sha256:2740eeeb59297593a0d3f762269b01d0285c1b829d6827445fcd348fb47f7e70", + "sha256:2d7e9c881638a72ffdca3f5417dd1563b60f603e1b43e5895674c2a1b01f95a0", + "sha256:33df97f79843b2b8b8bc5c7aaf54adec08cc1bae94ee99dfb1a93c7a67704d95", + "sha256:5fb2c6c6819491b216f78acc2c521b9df21e0f53b9a399d58a5c151a3c4e2a2d", + "sha256:8fc5019ff3efb4f13708bd3b5ad327589c1a554cb516d792527361525a7cb78c", + "sha256:b358cb552c0f6baf790de375fab96524a0498c9df83489b8c23f7f08795e966b", + "sha256:dbd838de92de1d4ebf0dce9d4d5e4fc38d0b7b1de837947a18b57a882f219139", + "sha256:dd22c8efacf600730abe4a46c1388355ce0d4ab75dc79b15d23a7bd87bf05b48", + "sha256:e854211df55d107f0edfda8a80b39dfc87015bef52a8fe6594eb379240d81df2" + ], + "markers": "os_name == 'nt'", + "version": "==0.5.7" + }, + "pyyaml": { + "hashes": [ + "sha256:06a0d7ba600ce0b2d2fe2e78453a470b5a6e000a985dd4a4e54e436cc36b0e97", + "sha256:240097ff019d7c70a4922b6869d8a86407758333f02203e0fc6ff79c5dcede76", + "sha256:4f4b913ca1a7319b33cfb1369e91e50354d6f07a135f3b901aca02aa95940bd2", + "sha256:589929630502f3b0e87daee190b399f98401b6bccea87ed634a73fe5da43d3d4", + "sha256:69f00dca373f240f842b2931fb2c7e14ddbacd1397d57157a9b005a6a9942648", + "sha256:6e8383720b2127b09dba5b323ac896c702cf02bc5786fce16cd6791825d92d16", + "sha256:73f099454b799e05e5ab51423c7bcf361c58d3206fa7b0d555426b1f4d9a3eaf", + "sha256:74809a57b329d6cc0fdccee6318f44b9b8649961fa73144a98735b0aaf029f1f", + "sha256:7739fc0fa8205b3ee8808aea45e968bc90082c10aef6ea95e855e10abf4a37b2", + "sha256:95f71d2af0ff4227885f7a6605c37fd53d3a106fcab511b8860ecca9fcf400ee", + "sha256:b8eac752c5e14d3eca0e6dd9199cd627518cb5ec06add0de9d32baeee6fe645d", + "sha256:cc8955cfbfc7a115fa81d85284ee61147059a753344bc51098f3ccd69b0d7e0c", + "sha256:d13155f591e6fcc1ec3b30685d50bf0711574e2c0dfffd7644babf8b5102ca1a" + ], + "version": "==5.3.1" + }, + "pyzmq": { + "hashes": [ + "sha256:07bfbf192f22ef1dde65b6046efff191e3201e74da6d47098e68958469ecbe48", + "sha256:0bbc1728fe4314b4ca46249c33873a390559edac7c217ec7001b5e0c34a8fb7f", + "sha256:1e076ad5bd3638a18c376544d32e0af986ca10d43d4ce5a5d889a8649f0d0a3d", + "sha256:242d949eb6b10197cda1d1cec377deab1d5324983d77e0d0bf9dc5eb6d71a6b4", + "sha256:26f4ae420977d2a8792d7c2d7bda43128b037b5eeb21c81951a94054ad8b8843", + "sha256:32234c21c5e0a767c754181c8112092b3ddd2e2a36c3f76fc231ced817aeee47", + "sha256:3f12ce1e9cc9c31497bd82b207e8e86ccda9eebd8c9f95053aae46d15ccd2196", + "sha256:4557d5e036e6d85715b4b9fdb482081398da1d43dc580d03db642b91605b409f", + "sha256:4f562dab21c03c7aa061f63b147a595dbe1006bf4f03213272fc9f7d5baec791", + "sha256:54ecd00daa474885bbf318108401d318614425a05dfeae917611dd93f99f2678", + "sha256:5e071b834051e9ecb224915398f474bfad802c2fff883f118ff5363ca4ae3edf", + "sha256:5e1f65e576ab07aed83f444e201d86deb01cd27dcf3f37c727bc8729246a60a8", + "sha256:5f10a31f288bf055be76c57710807a8f0efdb2b82be6c2a2b8f9a61f33a40cea", + "sha256:6aaaf90b420dc40d9a0e1996b82c6a0ff91d9680bebe2135e67c9e6d197c0a53", + "sha256:75238d3c16cab96947705d5709187a49ebb844f54354cdf0814d195dd4c045de", + "sha256:7f7e7b24b1d392bb5947ba91c981e7d1a43293113642e0d8870706c8e70cdc71", + "sha256:84b91153102c4bcf5d0f57d1a66a0f03c31e9e6525a5f656f52fc615a675c748", + "sha256:944f6bb5c63140d76494467444fd92bebd8674236837480a3c75b01fe17df1ab", + "sha256:a1f957c20c9f51d43903881399b078cddcf710d34a2950e88bce4e494dcaa4d1", + "sha256:a49fd42a29c1cc1aa9f461c5f2f5e0303adba7c945138b35ee7f4ab675b9f754", + "sha256:a99ae601b4f6917985e9bb071549e30b6f93c72f5060853e197bdc4b7d357e5f", + "sha256:ad48865a29efa8a0cecf266432ea7bc34e319954e55cf104be0319c177e6c8f5", + "sha256:b08e425cf93b4e018ab21dc8fdbc25d7d0502a23cc4fea2380010cf8cf11e462", + "sha256:bb10361293d96aa92be6261fa4d15476bca56203b3a11c62c61bd14df0ef89ba", + "sha256:bd1a769d65257a7a12e2613070ca8155ee348aa9183f2aadf1c8b8552a5510f5", + "sha256:cb3b7156ef6b1a119e68fbe3a54e0a0c40ecacc6b7838d57dd708c90b62a06dc", + "sha256:d2f64994f9628f621e0f636f9532055887defc9fa5213aaeceb770d9c579f9ac", + "sha256:e8e4efb52ec2df8d046395ca4c84ae0056cf507b2f713ec803c65a8102d010de", + "sha256:f37c29da2a5b0c5e31e6f8aab885625ea76c807082f70b2d334d3fd573c3100a", + "sha256:f4d558bc5668d2345773a9ff8c39e2462dafcb1f6772a2e582fbced389ce527f", + "sha256:f5b6d015587a1d6f582ba03b226a9ddb1dfb09878b3be04ef48b01b7d4eb6b2a" + ], + "version": "==19.0.0" + }, + "readme-renderer": { + "hashes": [ + "sha256:1b6d8dd1673a0b293766b4106af766b6eff3654605f9c4f239e65de6076bc222", + "sha256:e67d64242f0174a63c3b727801a2fff4c1f38ebe5d71d95ff7ece081945a6cd4" + ], + "version": "==25.0" + }, + "regex": { + "hashes": [ + "sha256:01b2d70cbaed11f72e57c1cfbaca71b02e3b98f739ce33f5f26f71859ad90431", + "sha256:046e83a8b160aff37e7034139a336b660b01dbfe58706f9d73f5cdc6b3460242", + "sha256:113309e819634f499d0006f6200700c8209a2a8bf6bd1bdc863a4d9d6776a5d1", + "sha256:200539b5124bc4721247a823a47d116a7a23e62cc6695744e3eb5454a8888e6d", + "sha256:25f4ce26b68425b80a233ce7b6218743c71cf7297dbe02feab1d711a2bf90045", + "sha256:269f0c5ff23639316b29f31df199f401e4cb87529eafff0c76828071635d417b", + "sha256:59fd3df28f43adf25a32b4a957f5b0a62e3ff55ce29de6600da7e110f33102dd", + "sha256:5de40649d4f88a15c9489ed37f88f053c15400257eeb18425ac7ed0a4e119400", + "sha256:7f78f963e62a61e294adb6ff5db901b629ef78cb2a1cfce3cf4eeba80c1c67aa", + "sha256:82469a0c1330a4beb3d42568f82dffa32226ced006e0b063719468dcd40ffdf0", + "sha256:8c2b7fa4d72781577ac45ab658da44c7518e6d96e2a50d04ecb0fd8f28b21d69", + "sha256:974535648f31c2b712a6b2595969f8ab370834080e00ab24e5dbb9d19b8bfb74", + "sha256:99272d6b6a68c7ae4391908fc15f6b8c9a6c345a46b632d7fdb7ef6c883a2bbb", + "sha256:9b64a4cc825ec4df262050c17e18f60252cdd94742b4ba1286bcfe481f1c0f26", + "sha256:9e9624440d754733eddbcd4614378c18713d2d9d0dc647cf9c72f64e39671be5", + "sha256:9ff16d994309b26a1cdf666a6309c1ef51ad4f72f99d3392bcd7b7139577a1f2", + "sha256:b33ebcd0222c1d77e61dbcd04a9fd139359bded86803063d3d2d197b796c63ce", + "sha256:bba52d72e16a554d1894a0cc74041da50eea99a8483e591a9edf1025a66843ab", + "sha256:bed7986547ce54d230fd8721aba6fd19459cdc6d315497b98686d0416efaff4e", + "sha256:c7f58a0e0e13fb44623b65b01052dae8e820ed9b8b654bb6296bc9c41f571b70", + "sha256:d3242da581f8d54d5a0f769b4d003f065dc6222621267a056b98f6886dc90f36", + "sha256:d58a4fa7910102500722defbde6e2816b0372a4fcc85c7e239323767c74f5cbc", + "sha256:da22de67d83ee26b45c7b461c96e541f0cda72b76229d95e313666770dd8da41", + "sha256:f1ac2dc65105a53c1c2d72b1d3e98c2464a133b4067a51a3d2477b28449709a0" + ], + "version": "==2020.2.20" + }, + "remote-ikernel": { + "hashes": [ + "sha256:5253216e87a8c31f1b0ca9305454f223147518b580e853b7635a3d8b9c88c295", + "sha256:740b80a57fa1af40cadef541c5a4eb293675b504092ecf00c57dd2f0011bd840" + ], + "index": "pypi", + "version": "==0.4.6" + }, + "requests": { + "hashes": [ + "sha256:43999036bfa82904b6af1d99e4882b560e5e2c68e5c4b0aa03b655f3d7d73fee", + "sha256:b3f43d496c6daba4493e7c431722aeb7dbc6288f52a6e04e7b6023b0247817e6" + ], + "version": "==2.23.0" + }, + "requests-toolbelt": { + "hashes": [ + "sha256:380606e1d10dc85c3bd47bf5a6095f815ec007be7a8b69c878507068df059e6f", + "sha256:968089d4584ad4ad7c171454f0a5c6dac23971e9472521ea3b6d49d610aa6fc0" + ], + "version": "==0.9.1" + }, + "send2trash": { + "hashes": [ + "sha256:60001cc07d707fe247c94f74ca6ac0d3255aabcb930529690897ca2a39db28b2", + "sha256:f1691922577b6fa12821234aeb57599d887c4900b9ca537948d2dac34aea888b" + ], + "version": "==1.5.0" + }, + "six": { + "hashes": [ + "sha256:236bdbdce46e6e6a3d61a337c0f8b763ca1e8717c03b369e87a7ec7ce1319c0a", + "sha256:8f3cd2e254d8f793e7f3d6d9df77b92252b52637291d0f0da013c76ea2724b6c" + ], + "version": "==1.14.0" + }, + "terminado": { + "hashes": [ + "sha256:4804a774f802306a7d9af7322193c5390f1da0abb429e082a10ef1d46e6fb2c2", + "sha256:a43dcb3e353bc680dd0783b1d9c3fc28d529f190bc54ba9a229f72fe6e7a54d7" + ], + "version": "==0.8.3" + }, + "testpath": { + "hashes": [ + "sha256:60e0a3261c149755f4399a1fff7d37523179a70fdc3abdf78de9fc2604aeec7e", + "sha256:bfcf9411ef4bf3db7579063e0546938b1edda3d69f4e1fb8756991f5951f85d4" + ], + "version": "==0.4.4" + }, + "toml": { + "hashes": [ + "sha256:229f81c57791a41d65e399fc06bf0848bab550a9dfd5ed66df18ce5f05e73d5c", + "sha256:235682dd292d5899d361a811df37e04a8828a5b1da3115886b73cf81ebc9100e" + ], + "version": "==0.10.0" + }, + "tornado": { + "hashes": [ + "sha256:0fe2d45ba43b00a41cd73f8be321a44936dc1aba233dee979f17a042b83eb6dc", + "sha256:22aed82c2ea340c3771e3babc5ef220272f6fd06b5108a53b4976d0d722bcd52", + "sha256:2c027eb2a393d964b22b5c154d1a23a5f8727db6fda837118a776b29e2b8ebc6", + "sha256:503700d85d9a2c2aa737fb16df58bfa2ac0d5ec501881fea2acceae64ce17858", + "sha256:5217e601700f24e966ddab689f90b7ea4bd91ff3357c3600fa1045e26d68e55d", + "sha256:5618f72e947533832cbc3dec54e1dffc1747a5cb17d1fd91577ed14fa0dc081b", + "sha256:5f6a07e62e799be5d2330e68d808c8ac41d4a259b9cea61da4101b83cb5dc673", + "sha256:7182a9285e364e55e6902b5fb4d4a219efd8d7818d9000b419a0eaf3909fc0bc", + "sha256:c58d56003daf1b616336781b26d184023ea4af13ae143d9dda65e31e534940b9", + "sha256:c952975c8ba74f546ae6de2e226ab3cc3cc11ae47baf607459a6728585bb542a", + "sha256:c98232a3ac391f5faea6821b53db8db461157baa788f5d6222a193e9456e1740" + ], + "version": "==6.0.4" + }, + "tqdm": { + "hashes": [ + "sha256:03d2366c64d44c7f61e74c700d9b202d57e9efe355ea5c28814c52bfe7a50b8c", + "sha256:be5ddeec77d78ba781ea41eacb2358a77f74cc2407f54b82222d7ee7dc8c8ccf" + ], + "version": "==4.44.1" + }, + "traitlets": { + "hashes": [ + "sha256:70b4c6a1d9019d7b4f6846832288f86998aa3b9207c6821f3578a6a6a467fe44", + "sha256:d023ee369ddd2763310e4c3eae1ff649689440d4ae59d7485eb4cfbbe3e359f7" + ], + "version": "==4.3.3" + }, + "twine": { + "hashes": [ + "sha256:c1af8ca391e43b0a06bbc155f7f67db0bf0d19d284bfc88d1675da497a946124", + "sha256:d561a5e511f70275e5a485a6275ff61851c16ffcb3a95a602189161112d9f160" + ], + "index": "pypi", + "version": "==3.1.1" + }, + "typed-ast": { + "hashes": [ + "sha256:0666aa36131496aed8f7be0410ff974562ab7eeac11ef351def9ea6fa28f6355", + "sha256:0c2c07682d61a629b68433afb159376e24e5b2fd4641d35424e462169c0a7919", + "sha256:249862707802d40f7f29f6e1aad8d84b5aa9e44552d2cc17384b209f091276aa", + "sha256:24995c843eb0ad11a4527b026b4dde3da70e1f2d8806c99b7b4a7cf491612652", + "sha256:269151951236b0f9a6f04015a9004084a5ab0d5f19b57de779f908621e7d8b75", + "sha256:3791f73e5d75aa9a95274679ab4821bd9d16de623c4ecf4900a77a29864ee144", + "sha256:4083861b0aa07990b619bd7ddc365eb7fa4b817e99cf5f8d9cf21a42780f6e01", + "sha256:498b0f36cc7054c1fead3d7fc59d2150f4d5c6c56ba7fb150c013fbc683a8d2d", + "sha256:4e3e5da80ccbebfff202a67bf900d081906c358ccc3d5e3c8aea42fdfdfd51c1", + "sha256:6daac9731f172c2a22ade6ed0c00197ee7cc1221aa84cfdf9c31defeb059a907", + "sha256:715ff2f2df46121071622063fc7543d9b1fd19ebfc4f5c8895af64a77a8c852c", + "sha256:73d785a950fc82dd2a25897d525d003f6378d1cb23ab305578394694202a58c3", + "sha256:8c8aaad94455178e3187ab22c8b01a3837f8ee50e09cf31f1ba129eb293ec30b", + "sha256:8ce678dbaf790dbdb3eba24056d5364fb45944f33553dd5869b7580cdbb83614", + "sha256:aaee9905aee35ba5905cfb3c62f3e83b3bec7b39413f0a7f19be4e547ea01ebb", + "sha256:bcd3b13b56ea479b3650b82cabd6b5343a625b0ced5429e4ccad28a8973f301b", + "sha256:c9e348e02e4d2b4a8b2eedb48210430658df6951fa484e59de33ff773fbd4b41", + "sha256:d205b1b46085271b4e15f670058ce182bd1199e56b317bf2ec004b6a44f911f6", + "sha256:d43943ef777f9a1c42bf4e552ba23ac77a6351de620aa9acf64ad54933ad4d34", + "sha256:d5d33e9e7af3b34a40dc05f498939f0ebf187f07c385fd58d591c533ad8562fe", + "sha256:df74880bdb70f34304ccc52b0c99d3e578f96a906b86f3ae172a1f1c2edef2bc", + "sha256:fc0fea399acb12edbf8a628ba8d2312f583bdbdb3335635db062fa98cf71fca4", + "sha256:fe460b922ec15dd205595c9b5b99e2f056fd98ae8f9f56b888e7a17dc2b757e7" + ], + "version": "==1.4.1" + }, + "typing-extensions": { + "hashes": [ + "sha256:091ecc894d5e908ac75209f10d5b4f118fbdb2eb1ede6a63544054bb1edb41f2", + "sha256:910f4656f54de5993ad9304959ce9bb903f90aadc7c67a0bef07e678014e892d", + "sha256:cf8b63fedea4d89bab840ecbb93e75578af28f76f66c35889bd7065f5af88575" + ], + "version": "==3.7.4.1" + }, + "urllib3": { + "hashes": [ + "sha256:2f3db8b19923a873b3e5256dc9c2dedfa883e33d87c690d9c7913e1f40673cdc", + "sha256:87716c2d2a7121198ebcb7ce7cccf6ce5e9ba539041cfbaeecfb641dc0bf6acc" + ], + "version": "==1.25.8" + }, + "virtualenv": { + "hashes": [ + "sha256:4e399f48c6b71228bf79f5febd27e3bbb753d9d5905776a86667bc61ab628a25", + "sha256:9e81279f4a9d16d1c0654a127c2c86e5bca2073585341691882c1e66e31ef8a5" + ], + "version": "==20.0.15" + }, + "wcwidth": { + "hashes": [ + "sha256:cafe2186b3c009a04067022ce1dcd79cb38d8d65ee4f4791b8888d6599d1bbe1", + "sha256:ee73862862a156bf77ff92b09034fc4825dd3af9cf81bc5b360668d425f3c5f1" + ], + "version": "==0.1.9" + }, + "webencodings": { + "hashes": [ + "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", + "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923" + ], + "version": "==0.5.1" + }, + "wheel": { + "hashes": [ + "sha256:8788e9155fe14f54164c1b9eb0a319d98ef02c160725587ad60f14ddc57b6f96", + "sha256:df277cb51e61359aba502208d680f90c0493adec6f0e848af94948778aed386e" + ], + "index": "pypi", + "version": "==0.34.2" + }, + "zipp": { + "hashes": [ + "sha256:aa36550ff0c0b7ef7fa639055d797116ee891440eac1a56f378e2d3179e0320b", + "sha256:c599e4d75c98f6798c509911d08a22e6c021d074469042177c8c86fb92eefd96" + ], + "version": "==3.1.0" + } + } +} diff --git a/Ch03/apd.sensors-chapter03/README.md b/Ch03/apd.sensors-chapter03/README.md new file mode 100644 index 0000000..e6dcb45 --- /dev/null +++ b/Ch03/apd.sensors-chapter03/README.md @@ -0,0 +1,32 @@ +# Advanced Python Development Sensors + +This is the data collection package that forms part of the running example +for the book [Advanced Python Development](https://advancedpython.dev). + +## Usage + +This installs a console script called `sensors` that returns a report on +various aspects of the system. The available sensors are: + +* Python version +* IP Addresses +* CPU Usage +* RAM Available +* Battery charging state +* Ambient Temperature +* Ambient Humidity + +There are no command-line options, to view the report run `sensors` on the +command line. + +## Caveats + +The Ambient Temperature and Ambient Humidity sensors are only available on +RaspberryPi hosts and assume that a DHT22 sensor is connected to pin `D20`. + +If there is an entry in `/etc/hosts` for the current machine's hostname that +value will be the only result from the IP Addresses sensor. + +## Installation + +Install with `pip3 install apd.sensors` under Python 3.7 or higher diff --git a/Ch03/apd.sensors-chapter03/pytest.ini b/Ch03/apd.sensors-chapter03/pytest.ini new file mode 100644 index 0000000..861f3d0 --- /dev/null +++ b/Ch03/apd.sensors-chapter03/pytest.ini @@ -0,0 +1,3 @@ +[pytest] +markers = + functional: these tests are significantly slower as they run the whole CLI script \ No newline at end of file diff --git a/Ch03/apd.sensors-chapter03/setup.cfg b/Ch03/apd.sensors-chapter03/setup.cfg new file mode 100644 index 0000000..755ea35 --- /dev/null +++ b/Ch03/apd.sensors-chapter03/setup.cfg @@ -0,0 +1,38 @@ +[mypy] +ignore_missing_imports = True + +[flake8] +max-line-length = 88 + +[metadata] +name = apd.sensors +version = attr: apd.sensors.VERSION +description = APD Sensor package +long_description = file: README.md, CHANGES.md, LICENCE +long_description_content_type = text/markdown +keywords = iot +license = MIT +classifiers = + Programming Language :: Python :: 3 + Programming Language :: Python :: 3.7 + +[options] +zip_safe = False +include_package_data = True +package-dir = + =src +packages = find_namespace: +install_requires = + psutil + click + adafruit-circuitpython-dht ; 'arm' in platform_machine + +[options.package_data] +apd.sensors = py.typed + +[options.packages.find] +where = src + +[options.entry_points] +console_scripts = + sensors = apd.sensors.sensors:show_sensors diff --git a/Ch03/apd.sensors-chapter03/setup.py b/Ch03/apd.sensors-chapter03/setup.py new file mode 100644 index 0000000..6068493 --- /dev/null +++ b/Ch03/apd.sensors-chapter03/setup.py @@ -0,0 +1,3 @@ +from setuptools import setup + +setup() diff --git a/Ch03/apd.sensors-chapter03/src/apd/sensors/__init__.py b/Ch03/apd.sensors-chapter03/src/apd/sensors/__init__.py new file mode 100644 index 0000000..369b4e0 --- /dev/null +++ b/Ch03/apd.sensors-chapter03/src/apd/sensors/__init__.py @@ -0,0 +1 @@ +VERSION = "1.0.0" \ No newline at end of file diff --git a/Ch03/apd.sensors-chapter03/src/apd/sensors/py.typed b/Ch03/apd.sensors-chapter03/src/apd/sensors/py.typed new file mode 100644 index 0000000..e69de29 diff --git a/Ch03/apd.sensors-chapter03/src/apd/sensors/sensors.py b/Ch03/apd.sensors-chapter03/src/apd/sensors/sensors.py new file mode 100644 index 0000000..0e46a9b --- /dev/null +++ b/Ch03/apd.sensors-chapter03/src/apd/sensors/sensors.py @@ -0,0 +1,198 @@ +#!/usr/bin/env python +# coding: utf-8 +import math +import socket +import sys +from typing import Any, Optional, List, Tuple, Iterable, TypeVar, Generic + + +import click +import psutil + + +T_value = TypeVar("T_value") + + +class Sensor(Generic[T_value]): + title: str + + def value(self) -> T_value: + raise NotImplementedError + + @classmethod + def format(cls, value: T_value) -> str: + raise NotImplementedError + + def __str__(self) -> str: + return self.format(self.value()) + + +class PythonVersion(Sensor[Any]): + title = "Python Version" + + def value(self) -> Any: + return sys.version_info + + @classmethod + def format(cls, value: Any) -> str: + if value.micro == 0 and value.releaselevel == "alpha": + return "{0.major}.{0.minor}.{0.micro}a{0.serial}".format(value) + return "{0.major}.{0.minor}".format(value) + + +class IPAddresses(Sensor[Iterable[Tuple[str, str]]]): + title = "IP Addresses" + FAMILIES = {"AF_INET": "IPv4", "AF_INET6": "IPv6"} + + def value(self) -> List[Tuple[str, str]]: + hostname = socket.gethostname() + addresses = socket.getaddrinfo(hostname, None) + + address_info: List[Tuple[str, str]] = [] + for address in addresses: + family, ip = (address[0].name, address[4][0]) + if family not in self.FAMILIES: + continue + value = (family, ip) + if value not in address_info: + address_info.append(value) + return address_info + + @classmethod + def format(cls, value: Iterable[Tuple[str, str]]) -> str: + return "\n".join( + "{0} ({1})".format(address[1], cls.FAMILIES.get(address[0], "Unknown")) + for address in value + ) + + +class CPULoad(Sensor[float]): + title = "CPU Usage" + + def value(self) -> float: + return psutil.cpu_percent(interval=3) / 100.0 + + @classmethod + def format(cls, value: float) -> str: + return "{:.1%}".format(value) + + +class RAMAvailable(Sensor[int]): + title = "RAM Available" + UNITS = ("B", "KiB", "MiB", "GiB", "TiB", "PiB", "EiB") + UNIT_SIZE = 2 ** 10 + + def value(self) -> int: + return psutil.virtual_memory().available + + @classmethod + def format(cls, value: int) -> str: + magnitude = math.floor(math.log(value, cls.UNIT_SIZE)) + max_magnitude = len(cls.UNITS) - 1 + magnitude = min(magnitude, max_magnitude) + scaled_value = value / (cls.UNIT_SIZE ** magnitude) + return "{:.1f} {}".format(scaled_value, cls.UNITS[magnitude]) + + +class ACStatus(Sensor[Optional[bool]]): + title = "AC Connected" + + def value(self) -> Optional[bool]: + battery = psutil.sensors_battery() + if battery is not None: + return battery.power_plugged + else: + return None + + @classmethod + def format(cls, value: Optional[bool]) -> str: + if value is None: + return "Unknown" + elif value: + return "Connected" + else: + return "Not connected" + + +class Temperature(Sensor[Optional[float]]): + title = "Ambient Temperature" + + def value(self) -> Optional[float]: + try: + # Connect to a DHT22 on pin 4 + from adafruit_dht import DHT22 + from board import D4 + except (ImportError, NotImplementedError): + # No DHT library results in an ImportError. + # Running on an unknown platform results in a + # NotImplementedError when getting the pin + return None + try: + return DHT22(D4).temperature + except RuntimeError: + return None + + @staticmethod + def celsius_to_fahrenheit(value: float) -> float: + return value * 9 / 5 + 32 + + @classmethod + def format(cls, value: Optional[float]) -> str: + if value is None: + return "Unknown" + else: + return "{:.1f}C ({:.1f}F)".format(value, cls.celsius_to_fahrenheit(value)) + + def __str__(self) -> str: + return self.format(self.value()) + + +class RelativeHumidity(Sensor[Optional[float]]): + title = "Relative Humidity" + + def value(self) -> Optional[float]: + try: + # Connect to a DHT22 on pin 4 + from adafruit_dht import DHT22 + from board import D4 + except (ImportError, NotImplementedError): + # No DHT library results in an ImportError. + # Running on an unknown platform results in a + # NotImplementedError when getting the pin + return None + try: + return DHT22(D4).humidity / 100 + except RuntimeError: + return None + + @classmethod + def format(cls, value: Optional[float]) -> str: + if value is None: + return "Unknown" + else: + return "{:.1%}".format(value) + + +def get_sensors() -> Iterable[Sensor[Any]]: + return [ + PythonVersion(), + IPAddresses(), + CPULoad(), + RAMAvailable(), + ACStatus(), + Temperature(), + RelativeHumidity(), + ] + + +@click.command(help="Displays the values of the sensors") +def show_sensors() -> None: + sensors = get_sensors() + for sensor in sensors: + click.secho(sensor.title, bold=True) + click.echo(str(sensor)) + click.echo("") + + +if __name__ == "__main__": + show_sensors() diff --git a/Ch03/apd.sensors-chapter03/tests/__init__.py b/Ch03/apd.sensors-chapter03/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/Ch03/apd.sensors-chapter03/tests/test_acstatus.py b/Ch03/apd.sensors-chapter03/tests/test_acstatus.py new file mode 100644 index 0000000..d2fe71e --- /dev/null +++ b/Ch03/apd.sensors-chapter03/tests/test_acstatus.py @@ -0,0 +1,55 @@ +from unittest import mock + +import pytest + +from apd.sensors.sensors import ACStatus + + +@pytest.fixture +def sensor(): + return ACStatus() + + +class TestACStatusFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_True(self, subject): + assert subject(True) == "Connected" + + def test_format_False(self, subject): + assert subject(False) == "Not connected" + + def test_format_None(self, subject): + assert subject(None) == "Unknown" + + +class TestACStatusValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def sensors_battery(self): + with mock.patch("psutil.sensors_battery") as sensors_battery: + yield sensors_battery + + def test_sensors_battery_called(self, subject, sensors_battery): + sensors_battery.return_value.power_plugged = True + assert subject() is True + assert sensors_battery.call_count == 1 + + def test_sensor_but_battery_unknown(self, subject, sensors_battery): + sensors_battery.return_value.power_plugged = None + assert subject() is None + assert sensors_battery.call_count == 1 + + def test_no_sensor(self, subject, sensors_battery): + sensors_battery.return_value = None + assert subject() is None + + def test_str_representation_is_formatted_value(self, sensor, sensors_battery): + sensors_battery.return_value.power_plugged = True + assert str(sensor) == "Connected" + assert sensors_battery.call_count == 1 diff --git a/Ch03/apd.sensors-chapter03/tests/test_cpuusage.py b/Ch03/apd.sensors-chapter03/tests/test_cpuusage.py new file mode 100644 index 0000000..445f4e5 --- /dev/null +++ b/Ch03/apd.sensors-chapter03/tests/test_cpuusage.py @@ -0,0 +1,45 @@ +from unittest import mock + +import pytest + +from apd.sensors.sensors import CPULoad + + +@pytest.fixture +def sensor(): + return CPULoad() + + +class TestCPULoadFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_simple_percentage(self, subject): + assert subject(0.05) == "5.0%" + + def test_format_multiple_decimal_places(self, subject): + assert subject(0.031415926) == "3.1%" + + def test_format_multiple_decimal_places_int(self, subject) -> None: + assert subject(1) == "100.0%" + + +class TestCPULoadValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def cpuload(self): + with mock.patch("psutil.cpu_percent") as cpu_percent: + cpu_percent.return_value = 50.1 + yield cpu_percent + + def test_cpu_percent_called_With_interval(self, subject, cpuload): + assert subject() == 0.501 + assert cpuload.call_count == 1 + assert tuple(cpuload.call_args) == ((), {"interval": 3}) + + def test_str_representation_is_formatted_value(self, sensor, cpuload): + assert str(sensor) == "50.1%" diff --git a/Ch03/apd.sensors-chapter03/tests/test_dht.py b/Ch03/apd.sensors-chapter03/tests/test_dht.py new file mode 100644 index 0000000..153c1db --- /dev/null +++ b/Ch03/apd.sensors-chapter03/tests/test_dht.py @@ -0,0 +1,66 @@ +import pytest + +from apd.sensors.sensors import Temperature, RelativeHumidity + + +@pytest.fixture +def temperature_sensor(): + return Temperature() + + +@pytest.fixture +def humidity_sensor(): + return RelativeHumidity() + + +class TestTemperatureFormatter: + @pytest.fixture + def subject(self, temperature_sensor): + return temperature_sensor.format + + def test_format_21c(self, subject): + assert subject(21.0) == "21.0C (69.8F)" + + def test_format_negative(self, subject): + assert subject(-32.0) == "-32.0C (-25.6F)" + + def test_format_unknown(self, subject): + assert subject(None) == "Unknown" + + +class TestTemperatureConversion: + @pytest.fixture + def subject(self, temperature_sensor): + return temperature_sensor.celsius_to_fahrenheit + + def test_celsius_to_fahrenheit(self, subject): + c = 21 + f = subject(c) + assert f == 69.8 + + def test_celsius_to_fahrenheit_equivlance_point(self, subject): + c = -40 + f = subject(c) + assert f == -40 + + def test_celsius_to_fahrenheit_float(self, subject): + c = 21.2 + f = subject(c) + assert f == 70.16 + + def test_celsius_to_fahrenheit_string(self, subject): + c = "21" + with pytest.raises(TypeError): + subject(c) + + +class TestHumidityFormatter: + @pytest.fixture + def subject(self, humidity_sensor): + return humidity_sensor.format + + def test_format_percentage(self, subject): + assert subject(0.035) == "3.5%" + + def test_format_unknown(self, subject): + assert subject(None) == "Unknown" diff --git a/Ch03/apd.sensors-chapter03/tests/test_ipaddresses.py b/Ch03/apd.sensors-chapter03/tests/test_ipaddresses.py new file mode 100644 index 0000000..bd61d85 --- /dev/null +++ b/Ch03/apd.sensors-chapter03/tests/test_ipaddresses.py @@ -0,0 +1,59 @@ +import socket +from unittest import mock + +import pytest + +from apd.sensors.sensors import IPAddresses + + +@pytest.fixture +def sensor(): + return IPAddresses() + + +class TestIPAddressFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_single_ipv4(self, subject): + ips = [("AF_INET", "192.0.2.1")] + assert subject(ips) == "192.0.2.1 (IPv4)" + + def test_format_single_ipv6(self, subject): + ips = [("AF_INET6", "2001:DB8::1")] + assert subject(ips) == "2001:DB8::1 (IPv6)" + + def test_format_mixed_list(self, subject): + ips = [("AF_INET", "192.0.2.1"), ("AF_INET6", "2001:DB8::1")] + assert subject(ips) == "192.0.2.1 (IPv4)\n2001:DB8::1 (IPv6)" + + def test_unusual_protocols_are_marked_as_unknown(self, subject): + ips = [("AF_IRDA", "ffff")] + assert subject(ips) == "ffff (Unknown)" + + +class TestIPAddressesValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def gethostname(self): + with mock.patch("socket.gethostname") as gethostname: + gethostname.return_value = "localhost" + yield gethostname + + @pytest.fixture + def getaddrinfo(self, gethostname): + with mock.patch("socket.getaddrinfo") as getaddrinfo: + yield getaddrinfo + + def test_getaddrinfo_used_for_value_collection(self, getaddrinfo, subject): + getaddrinfo.return_value = [(socket.AF_INET, 0, 0, "", ("192.0.2.1", 0))] + assert subject() == [("AF_INET", "192.0.2.1")] + assert getaddrinfo.call_count == 1 + + def test_str_representation_is_formatted_value(self, getaddrinfo, sensor): + getaddrinfo.return_value = [(socket.AF_INET6, 0, 0, "", ("2001:DB8::1", 0))] + assert str(sensor) == "2001:DB8::1 (IPv6)" diff --git a/Ch03/apd.sensors-chapter03/tests/test_pythonversion.py b/Ch03/apd.sensors-chapter03/tests/test_pythonversion.py new file mode 100644 index 0000000..43ad806 --- /dev/null +++ b/Ch03/apd.sensors-chapter03/tests/test_pythonversion.py @@ -0,0 +1,61 @@ +from collections import namedtuple +from unittest import mock + +import pytest + +from apd.sensors.sensors import PythonVersion + + +@pytest.fixture +def version(): + return namedtuple( + "sys_versioninfo", ("major", "minor", "micro", "releaselevel", "serial") + ) + + +@pytest.fixture +def sensor(): + return PythonVersion() + + +class TestPythonVersionFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_py38(self, subject, version): + py38 = version(3, 8, 0, "final", 0) + assert subject(py38) == "3.8" + + def test_format_large_version(self, subject, version): + large = version(255, 128, 0, "final", 0) + assert subject(large) == "255.128" + + def test_alpha_of_minor_is_marked(self, subject, version): + py39 = version(3, 9, 0, "alpha", 1) + assert subject(py39) == "3.9.0a1" + + def test_alpha_of_micro_is_unmarked(self, subject, version): + py39 = version(3, 9, 1, "alpha", 1) + assert subject(py39) == "3.9" + + +class TestPythonVersionValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def python_version(self): + import sys + + return sys.version_info + + def test_data_value_is_sys_versioninfo(self, python_version, subject): + assert subject() == python_version + + +class TestPythonVersionSensor: + def test_str_representation_is_formatted_value(self, sensor, version): + with mock.patch("sys.version_info", new=version(3, 4, 1, "final", 1)): + assert str(sensor) == "3.4" diff --git a/Ch03/apd.sensors-chapter03/tests/test_ramusage.py b/Ch03/apd.sensors-chapter03/tests/test_ramusage.py new file mode 100644 index 0000000..197ad06 --- /dev/null +++ b/Ch03/apd.sensors-chapter03/tests/test_ramusage.py @@ -0,0 +1,47 @@ +from unittest import mock + +import pytest + +from apd.sensors.sensors import RAMAvailable + + +@pytest.fixture +def sensor(): + return RAMAvailable() + + +class TestRAMAvailableFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_bytes(self, subject): + assert subject(15) == "15.0 B" + + def test_format_kibibytes(self, subject): + assert subject(15000) == "14.6 KiB" + + def test_format_mibibytes(self, subject): + assert subject(15000000) == "14.3 MiB" + + def test_format_gibibytes(self, subject): + assert subject(15000000000) == "14.0 GiB" + + +class TestRAMAvailableValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def virtual_memory(self): + with mock.patch("psutil.virtual_memory") as virtual_memory: + virtual_memory.return_value.available = 1024 + yield virtual_memory + + def test_virtual_memory_called(self, subject, virtual_memory): + assert subject() == 1024 + assert virtual_memory.call_count == 1 + + def test_str_representation_is_formatted_value(self, sensor, virtual_memory): + assert str(sensor) == "1.0 KiB" diff --git a/Ch03/apd.sensors-chapter03/tests/test_sensors.py b/Ch03/apd.sensors-chapter03/tests/test_sensors.py new file mode 100644 index 0000000..2b5c009 --- /dev/null +++ b/Ch03/apd.sensors-chapter03/tests/test_sensors.py @@ -0,0 +1,17 @@ +from click.testing import CliRunner + +import pytest + +import apd.sensors.sensors + + +def test_sensors(): + assert hasattr(apd.sensors.sensors, "PythonVersion") + + +@pytest.mark.functional +def test_python_version_is_first_two_lines_of_cli_output(): + runner = CliRunner() + result = runner.invoke(apd.sensors.sensors.show_sensors) + python_version = str(apd.sensors.sensors.PythonVersion()) + assert ["Python Version", python_version] == result.stdout.split("\n")[:2] diff --git a/Ch03/listing03-01-setup.cfg b/Ch03/listing03-01-setup.cfg new file mode 100644 index 0000000..3d3667e --- /dev/null +++ b/Ch03/listing03-01-setup.cfg @@ -0,0 +1,30 @@ +[mypy] +ignore_missing_imports = True + +[flake8] +max-line-length = 88 + +[metadata] +name = apd.sensors +version = attr: apd.sensors.VERSION +description = APD Sensor package +long_description = file: README.md, CHANGES.md, LICENCE +keywords = iot +license = MIT +classifiers = + Programming Language :: Python :: 3 + Programming Language :: Python :: 3.7 + +[options] +zip_safe = False +include_package_data = True +package-dir = + =src +packages = find-namespace: +install_requires = + psutil + click + adafruit-circuitpython-dht ; 'arm' in platform_machine + +[options.packages.find] +where = src diff --git a/Ch03/listing03-02-indexserver.service b/Ch03/listing03-02-indexserver.service new file mode 100644 index 0000000..69b896f --- /dev/null +++ b/Ch03/listing03-02-indexserver.service @@ -0,0 +1,12 @@ +[Unit] +Description=Custom Index Server for Python distributions +After=multi-user.target + +[Service] +Type=idle +User=indexserver +WorkingDirectory=/home/indexserver/indexserver +ExecStart=/home/indexserver/.local/bin/pipenv run pypi-server -p 8080 -P htaccess ../packages + +[Install] +WantedBy=multi-user.target diff --git a/Ch03/listing03-03-cheatsheet.md b/Ch03/listing03-03-cheatsheet.md new file mode 100644 index 0000000..0074129 --- /dev/null +++ b/Ch03/listing03-03-cheatsheet.md @@ -0,0 +1,48 @@ +# Header 1 +## Header 2 +### Header 3 +#### Header 4 + +_italic_ **bold** **_bold and italic_** + +1. Numbered List +2. With more items + 1. Sublists are indented + 1. The numbers in any level of list need not be correct +3. It can be confusing if the numbers don't match the reader's expectation + +* Unordered lists +* Use asterisks in the first position + - Sublists are indented + - Hyphens can be used to visually differentiate sublists + + As with numbered lists, * - and + are interchangeable and do not need to be used consistently +* but it is best to use them consistently + +When referring to things that should be rendered in a monospace font, such as file names or the names of classes, these should be surrounded by `backticks`. + +Larger blocks of code should be surrounded with three backticks. They can optionally have a language following the first three backticks, to facilitate syntax highlighting +```python +def example(): + return True +``` + +> Quotations are declared with a leading right chevron +> and can cover multiple lines + +Links and images are handled similarly to each other, as a pair of square brackets that defines the text that should be shown followed by a pair of parentheses that contain the target URL. + +[Link to book's website](https://advancedpython.dev) + +Images are differentiated by having a leading exclamation mark: + +![Book's cover](https://advancedpython.dev/cover.png) + +Finally, tables use pipes to delimit columns and new lines to delimit rows. Hyphens are used to split the header row from the body, resulting in a very readable ASCII art style table: + + +| Multiplications | One | Two | +| --------------- | --- | --- | +| One | 1 | 2 | +| Two | 2 | 4 | + +However, the alignment is not important. The table will still render correctly even if the pipes are not aligned correctly. The row that contains the hyphens must include at least three hyphens per column, but otherwise, the format is relatively forgiving. diff --git a/Ch03/listing03-04-cheatsheet.rst b/Ch03/listing03-04-cheatsheet.rst new file mode 100644 index 0000000..faf0f5e --- /dev/null +++ b/Ch03/listing03-04-cheatsheet.rst @@ -0,0 +1,77 @@ +Header 1 +======== + +Header 2 +-------- + +Header 3 +++++++++ + +Header 4 +******** + +*italic* **bold** Combining bold and italic is not possible. + +1. Numbered List +2. With more items + + #. Sublists are indented with a blank line surrounding them + #. The # symbol can be used in place of the number to auto-number the list + +3. It can be confusing if the numbers don’t match the reader’s + expectation + +- Unordered lists +- Use asterisks in the first position + + - Sublists are indented with a blank line surrounding them + - Hyphens can be used to visually differentiate sublists + - As with numbered lists, \* - and + are interchangeable but must be used consistently + +- but it is best to use them consistently + +When referring to things that should be rendered in a monospace font, +such as file names or the names of classes. These should be surrounded +by ``double backticks``. + +Larger blocks of code are in a named block, starting with ``.. code ::``. They +can optionally have a language following the double colon, to +facilitate syntax highlighting + +.. code:: python + + def example(): + return True + +.. + + Quotations are declared with an unnamed block, declared with ``..`` + and can cover multiple lines. They must be surrounded by blank lines. + +Links have a confusing structure. The link definition is a pair of backticks +with a trailing underscore. Inside the backticks are the link text followed by +the target in angle brackets. + +`Link to book’s website `_ + +Images are handled similarly to code blocks, with a ``.. image::`` declaration +followed by the URL of the image. They can have indented arguments, such as +to define alt text. + +.. image:: https://advancedpython.dev/cover.png + :alt: Book’s cover + +Finally, tables use pipes to delimit columns and new lines to delimit +rows. Equals signs are used to delimit the columns as well as the top +and bottom of the table and the end of the header. + +=============== === === +Multiplications One Two +=============== === === +One 1 2 +Two 2 4 +=============== === === + +The alignment here is essential. The table will not render unless the equals signs +all match the extent of the column they define, with no discrepancy. Any text that extends +wider will also cause rendering to fail. diff --git a/Ch03/listing03-05-readme.md b/Ch03/listing03-05-readme.md new file mode 100644 index 0000000..6a2194a --- /dev/null +++ b/Ch03/listing03-05-readme.md @@ -0,0 +1,32 @@ +# Advanced Python Development Sensors + +This is the data collection package that forms part of the running example +for the book [Advanced Python Development](https://advancedpython.dev). + +## Usage + +This installs a console script called `sensors` that returns a report on +various aspects of the system. The available sensors are: + +* Python version +* IP Addresses +* CPU Usage +* RAM Available +* Battery charging state +* Ambient Temperature +* Ambient Humidity + +There are no command-line options, to view the report run `sensors` on the +command line. + +## Caveats + +The Ambient Temperature and Ambient Humidity sensors are only available on +RaspberryPi hosts and assume that a DHT22 sensor is connected to pin `D4`. + +If there is an entry in `/etc/hosts` for the current machine's hostname that +value will be the only result from the IP Addresses sensor. + +## Installation + +Install with `pip3 install apd.sensors` under Python 3.7 or higher diff --git a/Ch04/apd.sensors-chapter04-click-parsing/.pre-commit-config.yaml b/Ch04/apd.sensors-chapter04-click-parsing/.pre-commit-config.yaml new file mode 100644 index 0000000..3ff6d15 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-click-parsing/.pre-commit-config.yaml @@ -0,0 +1,23 @@ +repos: + +- repo: local + hooks: + - id: black + name: black + entry: pipenv run black + args: [--quiet] + language: system + types: [python] + + - id: mypy + name: mypy + entry: pipenv run mypy + args: ["--follow-imports=skip"] + language: system + types: [python] + + - id: flake8 + name: flake8 + entry: pipenv run flake8 + language: system + types: [python] diff --git a/Ch04/apd.sensors-chapter04-click-parsing/CHANGES.md b/Ch04/apd.sensors-chapter04-click-parsing/CHANGES.md new file mode 100644 index 0000000..569aeea --- /dev/null +++ b/Ch04/apd.sensors-chapter04-click-parsing/CHANGES.md @@ -0,0 +1,5 @@ +## Changes + +### 1.0.0 (2019-06-20) + +* Added initial sensors (Matthew Wilkes) diff --git a/Ch04/apd.sensors-chapter04-click-parsing/LICENCE b/Ch04/apd.sensors-chapter04-click-parsing/LICENCE new file mode 100644 index 0000000..ccaef50 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-click-parsing/LICENCE @@ -0,0 +1,21 @@ +``` +Copyright (c) 2019 Matthew Wilkes + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. +``` \ No newline at end of file diff --git a/Ch04/apd.sensors-chapter04-click-parsing/Pipfile b/Ch04/apd.sensors-chapter04-click-parsing/Pipfile new file mode 100644 index 0000000..40413b8 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-click-parsing/Pipfile @@ -0,0 +1,29 @@ +[[source]] +name = "pypi" +url = "https://pypi.org/simple" +verify_ssl = true + +[[source]] +name = "piwheels" +url = "https://piwheels.org/simple" +verify_ssl = true + +[dev-packages] +ipykernel = "*" +remote-ikernel = "*" +pytest = "*" +pytest-cov = "*" +mypy = "*" +flake8 = "*" +black = "*" +pre-commit = "*" +wheel = "*" +twine = "*" + +[packages] +apd-sensors = {editable = true,path = "."} + +[requires] + +[pipenv] +allow_prereleases = true diff --git a/Ch04/apd.sensors-chapter04-click-parsing/Pipfile.lock b/Ch04/apd.sensors-chapter04-click-parsing/Pipfile.lock new file mode 100644 index 0000000..f2c94d2 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-click-parsing/Pipfile.lock @@ -0,0 +1,739 @@ +{ + "_meta": { + "hash": { + "sha256": "b2def6fc1541c4ee04e68450c1818f456f7d3aac56b38ed1356d6bbcd13ffd8d" + }, + "pipfile-spec": 6, + "requires": {}, + "sources": [ + { + "name": "pypi", + "url": "https://pypi.org/simple", + "verify_ssl": true + }, + { + "name": "piwheels", + "url": "https://piwheels.org/simple", + "verify_ssl": true + } + ] + }, + "default": { + "apd-sensors": { + "editable": true, + "path": "." + } + }, + "develop": { + "appdirs": { + "hashes": [ + "sha256:9e5896d1372858f8dd3344faf4e5014d21849c756c8d5701f78f8a103b372d92", + "sha256:d8b24664561d0d34ddfaec54636d502d7cea6e29c3eaf68f3df6180863e2166e" + ], + "version": "==1.4.3" + }, + "aspy.yaml": { + "hashes": [ + "sha256:463372c043f70160a9ec950c3f1e4c3a82db5fca01d334b6bc89c7164d744bdc", + "sha256:e7c742382eff2caed61f87a39d13f99109088e5e93f04d76eb8d4b28aa143f45" + ], + "version": "==1.3.0" + }, + "atomicwrites": { + "hashes": [ + "sha256:03472c30eb2c5d1ba9227e4c2ca66ab8287fbfbbda3888aa93dc2e28fc6811b4", + "sha256:75a9445bac02d8d058d5e1fe689654ba5a6556a1dfd8ce6ec55a0ed79866cfa6" + ], + "version": "==1.3.0" + }, + "attrs": { + "hashes": [ + "sha256:69c0dbf2ed392de1cb5ec704444b08a5ef81680a61cb899dc08127123af36a79", + "sha256:f0b870f674851ecbfbbbd364d6b5cbdff9dcedbc7f3f5e18a6891057f21fe399" + ], + "version": "==19.1.0" + }, + "backcall": { + "hashes": [ + "sha256:38ecd85be2c1e78f77fd91700c76e14667dc21e2713b63876c0eb901196e01e4", + "sha256:65d380041000921f67ec230b41e9f50904f52594dc3e6139c41a08c98c4bca77", + "sha256:bbbf4b1e5cd2bdb08f915895b51081c041bac22394fdfcfdfbe9f14b77c08bf2" + ], + "version": "==0.1.0" + }, + "black": { + "hashes": [ + "sha256:09a9dcb7c46ed496a9850b76e4e825d6049ecd38b611f1224857a79bd985a8cf", + "sha256:68950ffd4d9169716bcb8719a56c07a2f4485354fec061cdd5910aa07369731c" + ], + "index": "pypi", + "version": "==19.3b0" + }, + "bleach": { + "hashes": [ + "sha256:213336e49e102af26d9cde77dd2d0397afabc5a6bf2fed985dc35b5d1e285a16", + "sha256:3fdf7f77adcf649c9911387df51254b813185e32b2c6619f690b593a617e19fa" + ], + "version": "==3.1.0" + }, + "certifi": { + "hashes": [ + "sha256:046832c04d4e752f37383b628bc601a7ea7211496b4638f6514d0e5b9acc4939", + "sha256:945e3ba63a0b9f577b1395204e13c3a231f9bc0223888be653286534e5873695" + ], + "version": "==2019.6.16" + }, + "cfgv": { + "hashes": [ + "sha256:32edbe09de6f4521224b87822103a8c16a614d31a894735f7a5b3bcf0eb3c37e", + "sha256:3bd31385cd2bebddbba8012200aaf15aa208539f1b33973759b4d02fc2148da5" + ], + "version": "==2.0.0" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:2335065e6395b9e67ca716de5f7526736bfa6ceead690adf616d925bdc622b13", + "sha256:5b94b49521f6456670fdb30cd82a4eca9412788a93fa6dd6df72c94d5a8ff2d7" + ], + "version": "==7.0" + }, + "colorama": { + "hashes": [ + "sha256:05eed71e2e327246ad6b38c540c4a3117230b19679b875190486ddd2d721422d", + "sha256:f8ac84de7840f5b9c4e3347b3c1eaa50f7e49c2b07596221daec5edaabbd7c48" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.1" + }, + "coverage": { + "hashes": [ + "sha256:0402b1822d513d0231589494bceddb067d20581f5083598c451b56c684b0e5d6", + "sha256:0644e28e8aea9d9d563607ee8b7071b07dd57a4a3de11f8684cd33c51c0d1b93", + "sha256:0874a283686803884ec0665018881130604956dbaa344f2539c46d82cbe29eda", + "sha256:0988c3837df4bc371189bb3425d5232cf150055452034c232dda9cbe04f9c38e", + "sha256:20bc3205b3100956bb72293fabb97f0ed972c81fed10b3251c90c70dcb0599ab", + "sha256:2cc9142a3367e74eb6b19d58c53ebb1dfd7336b91cdcc91a6a2888bf8c7af984", + "sha256:3ae9a0a59b058ce0761c3bd2c2d66ecb2ee2b8ac592620184370577f7a546fb3", + "sha256:3b2e30b835df58cb973f478d09f3d82e90c98c8e5059acc245a8e4607e023801", + "sha256:401e9b04894eb1498c639c6623ee78a646990ce5f095248e2440968aafd6e90e", + "sha256:41ec5812d5decdaa72708be3018e7443e90def4b5a71294236a4df192cf9eab9", + "sha256:475769b638a055e75b3d3219e054fe2a023c0b077ff15bff6c95aba7e93e6cac", + "sha256:61424f4e2e82c4129a4ba71e10ebacb32a9ecd6f80de2cd05bdead6ba75ed736", + "sha256:811969904d4dd0bee7d958898be8d9d75cef672d9b7e7db819dfeac3d20d2d0c", + "sha256:86224bb99abfd672bf2f9fcecad5e8d7a3fa94f7f71513f2210460a0350307cd", + "sha256:9a238a20a3af00665f8381f7e53e9c606f9bb652d2423f6b822f6cb790d887e8", + "sha256:a23b3fbc14d4e6182ecebfd22f3729beef0636d151d94764a1c28330d185e4e5", + "sha256:ac162b4ebe51b7a2b7f5e462c4402802633eb81e77c94f8a7c1ed8a556e72c75", + "sha256:b6187378726c84365bf297b5dcdae8789b6a5823b200bea23797777e5a63be09", + "sha256:bcd5723d905ed4a825f17410a53535f880b6d7548ae3d89078db7b1ceefcd853", + "sha256:c48a4f9c5fb385269bb7fbaf9c1326a94863b65ec7f5c96b2ea56b252f01ad08", + "sha256:cd40199d6f1c29c85b170d25589be9a97edff8ee7e62be180a2a137823896030", + "sha256:d1bc331a7d069485ac1d8c25a0ea1f6aab6cb2a87146fb652222481c1bddc9ff", + "sha256:d7e0cdc249aa0f94aa2e531b03999ddaf03a10b4fa090a894712d4c8066abd89", + "sha256:e9ee8fcd8e067fcc5d7276d46e07e863102b70a52545ef4254df1ff0893ce75f", + "sha256:eb313c23d983b7810504f42104e8dcd1c7ccdda8fbaab82aab92ab79fea19345", + "sha256:f9cfd478654b509941b85ed70f870f5e3c74678f566bec12fd26545e5340ba47", + "sha256:fae1fa144034d021a52cb9ea200eb8dedf91869c6df8202ad5d149b41ed91cc8" + ], + "version": "==5.0a5" + }, + "decorator": { + "hashes": [ + "sha256:86156361c50488b84a3f148056ea716ca587df2f0de1d34750d35c21312725de", + "sha256:f069f3a01830ca754ba5258fde2278454a0b5b79e0d7f5c13b3b97e57d4acff6" + ], + "version": "==4.4.0" + }, + "defusedxml": { + "hashes": [ + "sha256:6687150770438374ab581bb7a1b327a847dd9c5749e396102de3fad4e8a3ef93", + "sha256:f684034d135af4c6cbb949b8a4d2ed61634515257a67299e5f940fbaa34377f5" + ], + "version": "==0.6.0" + }, + "docutils": { + "hashes": [ + "sha256:02aec4bd92ab067f6ff27a38a38a41173bf01bed8f89157768c1573f53e474a6", + "sha256:51e64ef2ebfb29cae1faa133b3710143496eca21c530f3f71424d77687764274", + "sha256:7a4bd47eaf6596e1295ecb11361139febe29b084a87bf005bf899f9a42edc3c6" + ], + "version": "==0.14" + }, + "entrypoints": { + "hashes": [ + "sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19", + "sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451" + ], + "version": "==0.3" + }, + "flake8": { + "hashes": [ + "sha256:859996073f341f2670741b51ec1e67a01da142831aa1fdc6242dbf88dffbe661", + "sha256:a796a115208f5c03b18f332f7c11729812c8c3ded6c46319c59b53efd3819da8" + ], + "index": "pypi", + "version": "==3.7.7" + }, + "identify": { + "hashes": [ + "sha256:0a11379b46d06529795442742a043dc2fa14cd8c995ae81d1febbc5f1c014c87", + "sha256:43a5d24ffdb07bc7e21faf68b08e9f526a1f41f0056073f480291539ef961dfd" + ], + "version": "==1.4.5" + }, + "idna": { + "hashes": [ + "sha256:c357b3f628cf53ae2c4c05627ecc484553142ca23264e593d327bcde5e9c3407", + "sha256:ea8b7f6188e6fa117537c3df7da9fc686d485087abf6ac197f9c46432f7e4a3c" + ], + "version": "==2.8" + }, + "importlib-metadata": { + "hashes": [ + "sha256:6dfd58dfe281e8d240937776065dd3624ad5469c835248219bd16cf2e12dbeb7", + "sha256:cb6ee23b46173539939964df59d3d72c3e0c1b5d54b84f1d8a7e912fe43612db" + ], + "version": "==0.18" + }, + "ipykernel": { + "hashes": [ + "sha256:346189536b88859937b5f4848a6fd85d1ad0729f01724a411de5cae9b618819c", + "sha256:f0e962052718068ad3b1d8bcc703794660858f58803c3798628817f492a8769c" + ], + "index": "pypi", + "version": "==5.1.1" + }, + "ipython": { + "hashes": [ + "sha256:54c5a8aa1eadd269ac210b96923688ccf01ebb2d0f21c18c3c717909583579a8", + "sha256:e840810029224b56cd0d9e7719dc3b39cf84d577f8ac686547c8ba7a06eeab26" + ], + "version": "==7.5.0" + }, + "ipython-genutils": { + "hashes": [ + "sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8", + "sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8" + ], + "version": "==0.2.0" + }, + "jedi": { + "hashes": [ + "sha256:49ccb782651bb6f7009810d17a3316f8867dde31654c750506970742e18b553d", + "sha256:79d0f6595f3846dffcbe667cc6dc821b96e5baa8add125176c31a3917eb19d58" + ], + "version": "==0.14.0" + }, + "jinja2": { + "hashes": [ + "sha256:065c4f02ebe7f7cf559e49ee5a95fb800a9e4528727aec6f24402a5374c65013", + "sha256:14dd6caf1527abb21f08f86c784eac40853ba93edb79552aa1e4b8aef1b61c7b" + ], + "version": "==2.10.1" + }, + "jsonschema": { + "hashes": [ + "sha256:0c0a81564f181de3212efa2d17de1910f8732fa1b71c42266d983cd74304e20d", + "sha256:a5f6559964a3851f59040d3b961de5e68e70971afb88ba519d27e6a039efff1a" + ], + "version": "==3.0.1" + }, + "jupyter-client": { + "hashes": [ + "sha256:b5f9cb06105c1d2d30719db5ffb3ea67da60919fb68deaefa583deccd8813551", + "sha256:c44411eb1463ed77548bc2d5ec0d744c9b81c4a542d9637c7a52824e2121b987" + ], + "version": "==5.2.4" + }, + "jupyter-core": { + "hashes": [ + "sha256:2c6e7c1e9f2ac45b5c2ceea5730bc9008d92fe59d0725eac57b04c0edfba24f7", + "sha256:f4fa22d6cf25f34807c995f22d2923693575c70f02557bcbfbe59bd5ec8d8b84" + ], + "version": "==4.5.0" + }, + "markupsafe": { + "hashes": [ + "sha256:00bc623926325b26bb9605ae9eae8a215691f33cae5df11ca5424f06f2d1f473", + "sha256:068b504787d682e13616b3683c277b6538665efb7f348eb70c676bd742a741c8", + "sha256:06c339404d8177f85e595eb43b8755d2d3396cfc462ba172ff06f9fa70496e8d", + "sha256:09027a7803a62ca78792ad89403b1b7a73a01c8cb65909cd876f7fcebd79b161", + "sha256:09c4b7f37d6c648cb13f9230d847adf22f8171b1ccc4d5682398e77f40309235", + "sha256:0c5213014661b22242912266252b7c0e459e22d655ded05b9315ef3b6cc85ae0", + "sha256:1027c282dad077d0bae18be6794e6b6b8c91d58ed8a8d89a89d59693b9131db5", + "sha256:24982cc2533820871eba85ba648cd53d8623687ff11cbb805be4ff7b4c971aff", + "sha256:29872e92839765e546828bb7754a68c418d927cd064fd4708fab9fe9c8bb116b", + "sha256:43a55c2930bbc139570ac2452adf3d70cdbb3cfe5912c71cdce1c2c6bbd9c5d1", + "sha256:46c99d2de99945ec5cb54f23c8cd5689f6d7177305ebff350a58ce5f8de1669e", + "sha256:500d4957e52ddc3351cabf489e79c91c17f6e0899158447047588650b5e69183", + "sha256:535f6fc4d397c1563d08b88e485c3496cf5784e927af890fb3c3aac7f933ec66", + "sha256:62fe6c95e3ec8a7fad637b7f3d372c15ec1caa01ab47926cfdf7a75b40e0eac1", + "sha256:6dd73240d2af64df90aa7c4e7481e23825ea70af4b4922f8ede5b9e35f78a3b1", + "sha256:717ba8fe3ae9cc0006d7c451f0bb265ee07739daf76355d06366154ee68d221e", + "sha256:79855e1c5b8da654cf486b830bd42c06e8780cea587384cf6545b7d9ac013a0b", + "sha256:7c1699dfe0cf8ff607dbdcc1e9b9af1755371f92a68f706051cc8c37d447c905", + "sha256:88e5fcfb52ee7b911e8bb6d6aa2fd21fbecc674eadd44118a9cc3863f938e735", + "sha256:8defac2f2ccd6805ebf65f5eeb132adcf2ab57aa11fdf4c0dd5169a004710e7d", + "sha256:98c7086708b163d425c67c7a91bad6e466bb99d797aa64f965e9d25c12111a5e", + "sha256:9add70b36c5666a2ed02b43b335fe19002ee5235efd4b8a89bfcf9005bebac0d", + "sha256:9bf40443012702a1d2070043cb6291650a0841ece432556f784f004937f0f32c", + "sha256:ade5e387d2ad0d7ebf59146cc00c8044acbd863725f887353a10df825fc8ae21", + "sha256:b00c1de48212e4cc9603895652c5c410df699856a2853135b3967591e4beebc2", + "sha256:b1282f8c00509d99fef04d8ba936b156d419be841854fe901d8ae224c59f0be5", + "sha256:b2051432115498d3562c084a49bba65d97cf251f5a331c64a12ee7e04dacc51b", + "sha256:ba59edeaa2fc6114428f1637ffff42da1e311e29382d81b339c1817d37ec93c6", + "sha256:c8716a48d94b06bb3b2524c2b77e055fb313aeb4ea620c8dd03a105574ba704f", + "sha256:cd5df75523866410809ca100dc9681e301e3c27567cf498077e8551b6d20e42f", + "sha256:e249096428b3ae81b08327a63a485ad0878de3fb939049038579ac0ef61e17e7" + ], + "version": "==1.1.1" + }, + "mccabe": { + "hashes": [ + "sha256:ab8a6258860da4b6677da4bd2fe5dc2c659cff31b3ee4f7f5d64e79735b80d42", + "sha256:dd8d182285a0fe56bace7f45b5e7d1a6ebcbf524e8f3bd87eb0f125271b8831f" + ], + "version": "==0.6.1" + }, + "mistune": { + "hashes": [ + "sha256:59a3429db53c50b5c6bcc8a07f8848cb00d7dc8bdb431a4ab41920d201d4756e", + "sha256:88a1051873018da288eee8538d476dffe1262495144b33ecb586c4ab266bb8d4" + ], + "version": "==0.8.4" + }, + "more-itertools": { + "hashes": [ + "sha256:3ad685ff8512bf6dc5a8b82ebf73543999b657eded8c11803d9ba6b648986f4d", + "sha256:8bb43d1f51ecef60d81854af61a3a880555a14643691cc4b64a6ee269c78f09a" + ], + "markers": "python_version > '2.7'", + "version": "==7.1.0" + }, + "mypy": { + "hashes": [ + "sha256:12d18bd7fc642c5d54b1bb62dde813a7e2ab79b32ee11ff206ac387c68fc2ad4", + "sha256:23e24bc1683a36f39dee67d8ac74ea414654642eee26d420bada95b8ee8c9095", + "sha256:2b38e64c52a8968df4ebcae0ddba4a54eb94d184695dd4e54e14509a9389b78c", + "sha256:3d4f551466a76e278187ec3a5b26cfb50f72f6760b749aa00ac69a6f9c99898d", + "sha256:53d5dacb8d844e50be698830509aa592b093547e7ab90aee63eb23db61109007", + "sha256:56f981d246010ba21cac6b2455eaecfaf68fc8a5663d865b26c8e579c36f751d", + "sha256:8c57f6f59f1e8479d9fc6e1bf034353e54626ed64e32394c613afc493a441dc1", + "sha256:bbed4a593d87476b592d52867ef86da2155ccd0becf0c4c02e6567d842e43368", + "sha256:d6ff850e2ba18b2db7704897c8f2f1384478e3b75ad292ec06196bf7794f3a40", + "sha256:e13b1bb8785d7f785e0b88873f1c21cda58ceba9ce1153b58cbfa24b09a111d5", + "sha256:e2b9ee6f648ce72d6741925a47c88c2391168ef973b6f74f17969450c5b1ffdd" + ], + "index": "pypi", + "version": "==0.711" + }, + "mypy-extensions": { + "hashes": [ + "sha256:37e0e956f41369209a3d5f34580150bcacfabaa57b33a15c0b25f4b5725e0812", + "sha256:b16cabe759f55e3409a7d231ebd2841378fb0c27a5d1994719e340e4f429ac3e" + ], + "version": "==0.4.1" + }, + "nbconvert": { + "hashes": [ + "sha256:138381baa41d83584459b5cfecfc38c800ccf1f37d9ddd0bd440783346a4c39c", + "sha256:4a978548d8383f6b2cfca4a3b0543afb77bc7cb5a96e8b424337ab58c12da9bc" + ], + "version": "==5.5.0" + }, + "nbformat": { + "hashes": [ + "sha256:b9a0dbdbd45bb034f4f8893cafd6f652ea08c8c1674ba83f2dc55d3955743b0b", + "sha256:f7494ef0df60766b7cabe0a3651556345a963b74dbc16bc7c18479041170d402" + ], + "version": "==4.4.0" + }, + "nodeenv": { + "hashes": [ + "sha256:ad8259494cf1c9034539f6cced78a1da4840a4b157e23640bc4a0c0546b0cb7a" + ], + "version": "==1.3.3" + }, + "notebook": { + "hashes": [ + "sha256:91965e89e863948c7575c2a43a0b17246332880f1a3bd28127bb20f603b70f61", + "sha256:c7490a10eb4de04ee30e68de36f356af122b1b65d60b24df8a51a03fef200532" + ], + "version": "==6.0.0rc1" + }, + "packaging": { + "hashes": [ + "sha256:0c98a5d0be38ed775798ece1b9727178c4469d9c3b4ada66e8e6b7849f8732af", + "sha256:9e1cbf8c12b1f1ce0bb5344b8d7ecf66a6f8a6e91bcb0c84593ed6d3ab5c4ab3" + ], + "version": "==19.0" + }, + "pandocfilters": { + "hashes": [ + "sha256:b3dd70e169bb5449e6bc6ff96aea89c5eea8c5f6ab5e207fc2f521a2cf4a0da9", + "sha256:eddde9b495077a2cb5d74af4f22c235a1e2474a1e6757dfc1d28c726ea91a421" + ], + "version": "==1.4.2" + }, + "parso": { + "hashes": [ + "sha256:5052bb33be034cba784193e74b1cde6ebf29ae8b8c1e4ad94df0c4209bfc4826", + "sha256:db5881df1643bf3e66c097bfd8935cf03eae73f4cb61ae4433c9ea4fb6613446" + ], + "version": "==0.5.0" + }, + "pexpect": { + "hashes": [ + "sha256:2094eefdfcf37a1fdbfb9aa090862c1a4878e5c7e0e7e7088bdb511c558e5cd1", + "sha256:9e2c1fd0e6ee3a49b28f95d4b33bc389c89b20af6a1255906e90ff1262ce62eb" + ], + "version": "==4.7.0" + }, + "pickleshare": { + "hashes": [ + "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca", + "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56" + ], + "version": "==0.7.5" + }, + "pkginfo": { + "hashes": [ + "sha256:7424f2c8511c186cd5424bbf31045b77435b37a8d604990b79d4e70d741148bb", + "sha256:a6d9e40ca61ad3ebd0b72fbadd4fba16e4c0e4df0428c041e01e06eb6ee71f32" + ], + "version": "==1.5.0.1" + }, + "pluggy": { + "hashes": [ + "sha256:0825a152ac059776623854c1543d65a4ad408eb3d33ee114dff91e57ec6ae6fc", + "sha256:b9817417e95936bf75d85d3f8767f7df6cdde751fc40aed3bb3074cbcb77757c" + ], + "version": "==0.12.0" + }, + "pre-commit": { + "hashes": [ + "sha256:92e406d556190503630fd801958379861c94884693a032ba66629d0351fdccd4", + "sha256:cccc39051bc2457b0c0f7152a411f8e05e3ba2fe1a5613e4ee0833c1c1985ce3" + ], + "index": "pypi", + "version": "==1.17.0" + }, + "prometheus-client": { + "hashes": [ + "sha256:71cd24a2b3eb335cb800c7159f423df1bd4dcd5171b234be15e3f31ec9f622da" + ], + "version": "==0.7.1" + }, + "prompt-toolkit": { + "hashes": [ + "sha256:11adf3389a996a6d45cc277580d0d53e8a5afd281d0c9ec71b28e6f121463780", + "sha256:2519ad1d8038fd5fc8e770362237ad0364d16a7650fb5724af6997ed5515e3c1", + "sha256:977c6583ae813a37dc1c2e1b715892461fcbdaa57f6fc62f33a528c4886c8f55" + ], + "version": "==2.0.9" + }, + "ptyprocess": { + "hashes": [ + "sha256:923f299cc5ad920c68f2bc0bc98b75b9f838b93b599941a6b63ddbc2476394c0", + "sha256:d7cc528d76e76342423ca640335bd3633420dc1366f258cb31d05e865ef5ca1f" + ], + "version": "==0.6.0" + }, + "py": { + "hashes": [ + "sha256:64f65755aee5b381cea27766a3a147c3f15b9b6b9ac88676de66ba2ae36793fa", + "sha256:dc639b046a6e2cff5bbe40194ad65936d6ba360b52b3c3fe1d08a82dd50b5e53" + ], + "version": "==1.8.0" + }, + "pycodestyle": { + "hashes": [ + "sha256:95a2219d12372f05704562a14ec30bc76b05a5b297b21a5dfe3f6fac3491ae56", + "sha256:e40a936c9a450ad81df37f549d676d127b1b66000a6c500caa2b085bc0ca976c" + ], + "version": "==2.5.0" + }, + "pyflakes": { + "hashes": [ + "sha256:17dbeb2e3f4d772725c777fabc446d5634d1038f234e77343108ce445ea69ce0", + "sha256:d976835886f8c5b31d47970ed689944a0262b5f3afa00a5a7b4dc81e5449f8a2" + ], + "version": "==2.1.1" + }, + "pygments": { + "hashes": [ + "sha256:71e430bc85c88a430f000ac1d9b331d2407f681d6f6aec95e8bcfbc3df5b0127", + "sha256:881c4c157e45f30af185c1ffe8d549d48ac9127433f2c380c24b84572ad66297" + ], + "version": "==2.4.2" + }, + "pyparsing": { + "hashes": [ + "sha256:1873c03321fc118f4e9746baf201ff990ceb915f433f23b395f5580d1840cb2a", + "sha256:9b6323ef4ab914af344ba97510e966d64ba91055d6b9afa6b30799340e89cc03" + ], + "version": "==2.4.0" + }, + "pyrsistent": { + "hashes": [ + "sha256:16692ee739d42cf5e39cef8d27649a8c1fdb7aa99887098f1460057c5eb75c3a" + ], + "version": "==0.15.2" + }, + "pytest": { + "hashes": [ + "sha256:4a784f1d4f2ef198fe9b7aef793e9fa1a3b2f84e822d9b3a64a181293a572d45", + "sha256:926855726d8ae8371803f7b2e6ec0a69953d9c6311fa7c3b6c1b929ff92d27da" + ], + "index": "pypi", + "version": "==4.6.3" + }, + "pytest-cov": { + "hashes": [ + "sha256:2b097cde81a302e1047331b48cadacf23577e431b61e9c6f49a1170bbe3d3da6", + "sha256:e00ea4fdde970725482f1f35630d12f074e121a23801aabf2ae154ec6bdd343a" + ], + "index": "pypi", + "version": "==2.7.1" + }, + "python-dateutil": { + "hashes": [ + "sha256:7e6584c74aeed623791615e26efd690f29817a27c73085b78e4bad02493df2fb", + "sha256:c89805f6f4d64db21ed966fda138f8a5ed7a4fdbc1a8ee329ce1b74e3c74da9e" + ], + "version": "==2.8.0" + }, + "pywinpty": { + "hashes": [ + "sha256:0e01321e53a230233358a6d608a1a8bc86c3882cf82769ba3c62ca387dc9cc51", + "sha256:333e0bc5fca8ad9e9a1516ebedb2a65da38dc1f399f8b2ea57d6cccec1ff2cc8", + "sha256:3ca3123aa6340ab31bbf9bd012b92e72f9ec905e4c9ee152cc997403e1778cd3", + "sha256:44a6dddcf2abf402e22f87e2c9a341f7d0b296afbec3d28184c8de4d7f514ee4", + "sha256:53d94d574c3d4da2df5b1c3ae728b8d90e4d33502b0388576bbd4ddeb4de0f77", + "sha256:c3955f162c53dde968f3fc11361658f1d83b683bfe601d4b6f94bb01ea4300bc", + "sha256:cec9894ecb34de3d7b1ca121dd98433035b9f8949b5095e84b103b349231509c", + "sha256:dcd45912e2fe2e6f72cee997a4da6ed1ad2056165a277ce5ec7f7ac98dcdf667", + "sha256:f2bcdd9a2ffd8b223752a971b3d377fb7bfed85f140ec9710f1218d760f2ccb7" + ], + "markers": "os_name == 'nt'", + "version": "==0.5.5" + }, + "pyyaml": { + "hashes": [ + "sha256:57acc1d8533cbe51f6662a55434f0dbecfa2b9eaf115bede8f6fd00115a0c0d3", + "sha256:588c94b3d16b76cfed8e0be54932e5729cc185caffaa5a451e7ad2f7ed8b4043", + "sha256:65104f348b42edffc29f99deba59e2d4aac312e0aadab7260d596b6888f2ceac", + "sha256:68c8dd247f29f9a0d09375c9c6b8fdc64b60810ebf07ba4cdd64ceee3a58c7b7", + "sha256:70d9818f1c9cd5c48bb87804f2efc8692f1023dac7f1a1a5c61d454043c1d265", + "sha256:7ed2c295c1822e06857eb0da79f9d18d52c8a2e5b6b0d52d5be00428647e7a74", + "sha256:86a93cccd50f8c125286e637328ff4eef108400dd7089b46a7be3445eecfa391", + "sha256:a0f329125a926876f647c9fa0ef32801587a12328b4a3c741270464e3e4fa778", + "sha256:a3c252ab0fa1bb0d5a3f6449a4826732f3eb6c0270925548cac342bc9b22c225", + "sha256:b4bb4d3f5e232425e25dda21c070ce05168a786ac9eda43768ab7f3ac2770955", + "sha256:cc6a265fc360573ca25a0c39493dc58f07eb18e7f4ce07822c2fe453c1038916", + "sha256:cd0618c5ba5bda5f4039b9398bb7fb6a317bb8298218c3de25c47c4740e4b95e", + "sha256:ceacb9e5f8474dcf45b940578591c7f3d960e82f926c707788a570b51ba59190", + "sha256:fe6a88094b64132c4bb3b631412e90032e8cfe9745a58370462240b8cb7553cd" + ], + "version": "==5.1.1" + }, + "pyzmq": { + "hashes": [ + "sha256:00dd015159eaeb1c0731ad49310e1f5d839c9a35a15e4f3267f5052233fad99b", + "sha256:03913b6beb8e7b417b9910b0ee1fd5d62e9626d218faefbe879d70714ceab1a2", + "sha256:13f17386df81d5e6efb9a4faea341d8de22cdc82e49a326dded26e33f42a3112", + "sha256:16c6281d96885db1e15f7047ddc1a8f48ff4ea35d31ca709f4d2eb39f246d356", + "sha256:17efab4a804e31f58361631256d660214204046f9e2b962738b171b9ad674ea7", + "sha256:2b79919ddeff3d3c96aa6087c21d294c8db1c01f6bfeee73324944683685f419", + "sha256:2f832e4711657bb8d16ea1feba860f676ec5f14fb9fe3b449b5953a60e89edae", + "sha256:31a11d37ac73107363b47e14c94547dbfc6a550029c3fe0530be443199026fc2", + "sha256:33a3e928e6c3138c675e1d6702dd11f6b7050177d7aab3fc322db6e1d2274490", + "sha256:34a38195a6d3a9646cbcdaf8eb245b4d935c7a57f7e1b3af467814bc1a92467e", + "sha256:42900054f1500acef6df7428edf806abbf641bf92eb9ceded24aa863397c3bae", + "sha256:4ccc7f3c63aa9d744dadb62c49eda2d0e7de55649b80c45d7c684d70161a69af", + "sha256:5b220c37c346e6575db8c88a940c1fc234f99ce8e0068c408919bb8896c4b6d2", + "sha256:6074848da5c8b44a1ca40adf75cf65aa92bc80f635e8249aa8f37a69b2b9b6f5", + "sha256:61a4155964bd4a14ef95bf46cb1651bcf8dcbbed8c0108e9c974c1fcbb57788f", + "sha256:62b5774688326600c52f587f7a033ca6b6284bef4c8b1b5fda32480897759eac", + "sha256:65a9ffa4f9f085d696f16fd7541f34b3c357d25fe99c90e3bce2ea59c3b5b4b6", + "sha256:76a077d2c30f8adc5e919a55985a784b96aeca69b53c1ea6fd5723d3ae2e6f53", + "sha256:8e5b4c51557071d6379d6dc1f54f35e9f6a137f5e84e102efb869c8d3c13c8ff", + "sha256:917f73e07cc04f0678a96d93e7bb8b1adcccdde9ccfe202e622814f4d1d1ecfd", + "sha256:91c75d3c4c357f9643e739db9e79ab9681b2f6ae8ec5678d6ef2ea0d01532596", + "sha256:923dd91618b100bb4c92ab9ed7b65825a595b8524a094ce03c7cb2aaae7d353b", + "sha256:9849054e0355e2bc7f4668766a25517ba76095031c9ff5e39ae8949cee5bb024", + "sha256:c9d453933f0e3f44b9759189f2a18aa765f7f1a4345c727c18ebe8ad0d748d26", + "sha256:cb7514936277abce64c2f4c56883e5704d85ed04d98d2d432d1c6764003bb003" + ], + "version": "==18.0.2" + }, + "readme-renderer": { + "hashes": [ + "sha256:bb16f55b259f27f75f640acf5e00cf897845a8b3e4731b5c1a436e4b8529202f", + "sha256:c8532b79afc0375a85f10433eca157d6b50f7d6990f337fa498c96cd4bfc203d" + ], + "version": "==24.0" + }, + "remote-ikernel": { + "hashes": [ + "sha256:5253216e87a8c31f1b0ca9305454f223147518b580e853b7635a3d8b9c88c295", + "sha256:740b80a57fa1af40cadef541c5a4eb293675b504092ecf00c57dd2f0011bd840" + ], + "index": "pypi", + "version": "==0.4.6" + }, + "requests": { + "hashes": [ + "sha256:11e007a8a2aa0323f5a921e9e6a2d7e4e67d9877e85773fba9ba6419025cbeb4", + "sha256:9cf5292fcd0f598c671cfc1e0d7d1a7f13bb8085e9a590f48c010551dc6c4b31" + ], + "version": "==2.22.0" + }, + "requests-toolbelt": { + "hashes": [ + "sha256:380606e1d10dc85c3bd47bf5a6095f815ec007be7a8b69c878507068df059e6f", + "sha256:968089d4584ad4ad7c171454f0a5c6dac23971e9472521ea3b6d49d610aa6fc0" + ], + "version": "==0.9.1" + }, + "send2trash": { + "hashes": [ + "sha256:60001cc07d707fe247c94f74ca6ac0d3255aabcb930529690897ca2a39db28b2", + "sha256:f1691922577b6fa12821234aeb57599d887c4900b9ca537948d2dac34aea888b" + ], + "version": "==1.5.0" + }, + "six": { + "hashes": [ + "sha256:3350809f0555b11f552448330d0b52d5f24c91a322ea4a15ef22629740f3761c", + "sha256:d16a0141ec1a18405cd4ce8b4613101da75da0e9a7aec5bdd4fa804d0e0eba73" + ], + "version": "==1.12.0" + }, + "terminado": { + "hashes": [ + "sha256:d9d012de63acb8223ac969c17c3043337c2fcfd28f3aea1ee429b345d01ef460", + "sha256:de08e141f83c3a0798b050ecb097ab6259c3f0331b2f7b7750c9075ced2c20c2" + ], + "version": "==0.8.2" + }, + "testpath": { + "hashes": [ + "sha256:46c89ebb683f473ffe2aab0ed9f12581d4d078308a3cb3765d79c6b2317b0109", + "sha256:b694b3d9288dbd81685c5d2e7140b81365d46c29f5db4bc659de5aa6b98780f8" + ], + "version": "==0.4.2" + }, + "toml": { + "hashes": [ + "sha256:229f81c57791a41d65e399fc06bf0848bab550a9dfd5ed66df18ce5f05e73d5c", + "sha256:235682dd292d5899d361a811df37e04a8828a5b1da3115886b73cf81ebc9100e" + ], + "version": "==0.10.0" + }, + "tornado": { + "hashes": [ + "sha256:349884248c36801afa19e342a77cc4458caca694b0eda633f5878e458a44cb2c", + "sha256:398e0d35e086ba38a0427c3b37f4337327231942e731edaa6e9fd1865bbd6f60", + "sha256:4e73ef678b1a859f0cb29e1d895526a20ea64b5ffd510a2307b5998c7df24281", + "sha256:559bce3d31484b665259f50cd94c5c28b961b09315ccd838f284687245f416e5", + "sha256:abbe53a39734ef4aba061fca54e30c6b4639d3e1f59653f0da37a0003de148c7", + "sha256:c845db36ba616912074c5b1ee897f8e0124df269468f25e4fe21fe72f6edd7a9", + "sha256:c9399267c926a4e7c418baa5cbe91c7d1cf362d505a1ef898fde44a07c9dd8a5" + ], + "version": "==6.0.3" + }, + "tqdm": { + "hashes": [ + "sha256:14a285392c32b6f8222ecfbcd217838f88e11630affe9006cd0e94c7eff3cb61", + "sha256:25d4c0ea02a305a688e7e9c2cdc8f862f989ef2a4701ab28ee963295f5b109ab" + ], + "version": "==4.32.2" + }, + "traitlets": { + "hashes": [ + "sha256:9c4bd2d267b7153df9152698efb1050a5d84982d3384a37b2c1f7723ba3e7835", + "sha256:c6cb5e6f57c5a9bdaa40fa71ce7b4af30298fbab9ece9815b5d995ab6217c7d9" + ], + "version": "==4.3.2" + }, + "twine": { + "hashes": [ + "sha256:0fb0bfa3df4f62076cab5def36b1a71a2e4acb4d1fa5c97475b048117b1a6446", + "sha256:d6c29c933ecfc74e9b1d9fa13aa1f87c5d5770e119f5a4ce032092f0ff5b14dc" + ], + "index": "pypi", + "version": "==1.13.0" + }, + "typed-ast": { + "hashes": [ + "sha256:18511a0b3e7922276346bcb47e2ef9f38fb90fd31cb9223eed42c85d1312344e", + "sha256:262c247a82d005e43b5b7f69aff746370538e176131c32dda9cb0f324d27141e", + "sha256:2b907eb046d049bcd9892e3076c7a6456c93a25bebfe554e931620c90e6a25b0", + "sha256:354c16e5babd09f5cb0ee000d54cfa38401d8b8891eefa878ac772f827181a3c", + "sha256:4e0b70c6fc4d010f8107726af5fd37921b666f5b31d9331f0bd24ad9a088e631", + "sha256:630968c5cdee51a11c05a30453f8cd65e0cc1d2ad0d9192819df9978984529f4", + "sha256:66480f95b8167c9c5c5c87f32cf437d585937970f3fc24386f313a4c97b44e34", + "sha256:71211d26ffd12d63a83e079ff258ac9d56a1376a25bc80b1cdcdf601b855b90b", + "sha256:95bd11af7eafc16e829af2d3df510cecfd4387f6453355188342c3e79a2ec87a", + "sha256:bc6c7d3fa1325a0c6613512a093bc2a2a15aeec350451cbdf9e1d4bffe3e3233", + "sha256:cc34a6f5b426748a507dd5d1de4c1978f2eb5626d51326e43280941206c209e1", + "sha256:d755f03c1e4a51e9b24d899561fec4ccaf51f210d52abdf8c07ee2849b212a36", + "sha256:d7c45933b1bdfaf9f36c579671fec15d25b06c8398f113dab64c18ed1adda01d", + "sha256:d896919306dd0aa22d0132f62a1b78d11aaf4c9fc5b3410d3c666b818191630a", + "sha256:ffde2fbfad571af120fcbfbbc61c72469e72f550d676c3342492a9dfdefb8f12" + ], + "version": "==1.4.0" + }, + "urllib3": { + "hashes": [ + "sha256:b246607a25ac80bedac05c6f282e3cdaf3afb65420fd024ac94435cabe6e18d1", + "sha256:dbe59173209418ae49d485b87d1681aefa36252ee85884c31346debd19463232" + ], + "version": "==1.25.3" + }, + "virtualenv": { + "hashes": [ + "sha256:b7335cddd9260a3dd214b73a2521ffc09647bde3e9457fcca31dc3be3999d04a", + "sha256:d28ca64c0f3f125f59cabf13e0a150e1c68e5eea60983cc4395d88c584495783" + ], + "version": "==16.6.1" + }, + "wcwidth": { + "hashes": [ + "sha256:3df37372226d6e63e1b1e1eda15c594bca98a22d33a23832a90998faa96bc65e", + "sha256:f4ebe71925af7b40a864553f761ed559b43544f8f71746c2d756c7fe788ade7c" + ], + "version": "==0.1.7" + }, + "webencodings": { + "hashes": [ + "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", + "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923" + ], + "version": "==0.5.1" + }, + "wheel": { + "hashes": [ + "sha256:5e79117472686ac0c4aef5bad5172ea73a1c2d1646b808c35926bd26bdfb0c08", + "sha256:62fcfa03d45b5b722539ccbc07b190e4bfff4bb9e3a4d470dd9f6a0981002565" + ], + "index": "pypi", + "version": "==0.33.4" + }, + "zipp": { + "hashes": [ + "sha256:8c1019c6aad13642199fbe458275ad6a84907634cc9f0989877ccc4a2840139d", + "sha256:ca943a7e809cc12257001ccfb99e3563da9af99d52f261725e96dfe0f9275bc3" + ], + "version": "==0.5.1" + } + } +} diff --git a/Ch04/apd.sensors-chapter04-click-parsing/README.md b/Ch04/apd.sensors-chapter04-click-parsing/README.md new file mode 100644 index 0000000..e6dcb45 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-click-parsing/README.md @@ -0,0 +1,32 @@ +# Advanced Python Development Sensors + +This is the data collection package that forms part of the running example +for the book [Advanced Python Development](https://advancedpython.dev). + +## Usage + +This installs a console script called `sensors` that returns a report on +various aspects of the system. The available sensors are: + +* Python version +* IP Addresses +* CPU Usage +* RAM Available +* Battery charging state +* Ambient Temperature +* Ambient Humidity + +There are no command-line options, to view the report run `sensors` on the +command line. + +## Caveats + +The Ambient Temperature and Ambient Humidity sensors are only available on +RaspberryPi hosts and assume that a DHT22 sensor is connected to pin `D20`. + +If there is an entry in `/etc/hosts` for the current machine's hostname that +value will be the only result from the IP Addresses sensor. + +## Installation + +Install with `pip3 install apd.sensors` under Python 3.7 or higher diff --git a/Ch04/apd.sensors-chapter04-click-parsing/pyproject.toml b/Ch04/apd.sensors-chapter04-click-parsing/pyproject.toml new file mode 100644 index 0000000..4d3bb67 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-click-parsing/pyproject.toml @@ -0,0 +1,5 @@ +[build-system] +requires = [ + "setuptools", +] +build-backend = "setuptools.build_meta" diff --git a/Ch04/apd.sensors-chapter04-click-parsing/pytest.ini b/Ch04/apd.sensors-chapter04-click-parsing/pytest.ini new file mode 100644 index 0000000..861f3d0 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-click-parsing/pytest.ini @@ -0,0 +1,3 @@ +[pytest] +markers = + functional: these tests are significantly slower as they run the whole CLI script \ No newline at end of file diff --git a/Ch04/apd.sensors-chapter04-click-parsing/setup.cfg b/Ch04/apd.sensors-chapter04-click-parsing/setup.cfg new file mode 100644 index 0000000..db6d144 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-click-parsing/setup.cfg @@ -0,0 +1,48 @@ +[mypy] +namespace_packages = True +mypy_path = src + +[mypy-psutil] +ignore_missing_imports = True + +[mypy-adafruit_dht] +ignore_missing_imports = True + +[mypy-board] +ignore_missing_imports = True + +[mypy-pytest] +ignore_missing_imports = True + +[flake8] +max-line-length = 88 + +[metadata] +name = apd.sensors +version = attr: apd.sensors.VERSION +description = APD Sensor package +long_description = file: README.md, CHANGES.md, LICENCE +long_description_content_type = text/markdown +keywords = iot +license = MIT +classifiers = + Programming Language :: Python :: 3 + Programming Language :: Python :: 3.7 + +[options] +zip_safe = False +include_package_data = True +package-dir = + =src +packages = find: +install_requires = + psutil + click + adafruit-circuitpython-dht ; 'arm' in platform_machine + +[options.packages.find] +where = src + +[options.entry_points] +console_scripts = + sensors = apd.sensors.cli:show_sensors diff --git a/Ch04/apd.sensors-chapter04-click-parsing/setup.py b/Ch04/apd.sensors-chapter04-click-parsing/setup.py new file mode 100644 index 0000000..6068493 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-click-parsing/setup.py @@ -0,0 +1,3 @@ +from setuptools import setup + +setup() diff --git a/Ch04/apd.sensors-chapter04-click-parsing/src/apd/sensors/__init__.py b/Ch04/apd.sensors-chapter04-click-parsing/src/apd/sensors/__init__.py new file mode 100644 index 0000000..ec63ed1 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-click-parsing/src/apd/sensors/__init__.py @@ -0,0 +1 @@ +VERSION = "1.1.0dev1" diff --git a/Ch04/apd.sensors-chapter04-click-parsing/src/apd/sensors/cli.py b/Ch04/apd.sensors-chapter04-click-parsing/src/apd/sensors/cli.py new file mode 100644 index 0000000..47358a8 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-click-parsing/src/apd/sensors/cli.py @@ -0,0 +1,104 @@ +import functools +import importlib +import typing as t + +import click + +from .sensors import ( + Sensor, + ACStatus, + CPULoad, + IPAddresses, + PythonVersion, + RAMAvailable, + RelativeHumidity, + Temperature, +) + + +RETURN_CODES = {"OK": 0, "BAD_SENSOR_PATH": 17} + + +class PythonClass(click.types.ParamType): + name = "pythonclass" + + def __init__(self, superclass=type): + self.superclass = superclass + + def get_sensor_by_path( + self, sensor_path: str, fail: t.Callable[[str], None] + ) -> t.Any: + try: + module_name, sensor_name = sensor_path.split(":") + except ValueError: + return fail( + "Class path must be in the format dotted.path.to.module:ClassName" + ) + try: + module = importlib.import_module(module_name) + except ImportError: + return fail(f"Could not import module {module_name}") + try: + sensor_class = getattr(module, sensor_name) + except AttributeError: + return fail(f"Could not find attribute {sensor_name} in {module_name}") + if ( + isinstance(sensor_class, type) + and issubclass(sensor_class, self.superclass) + and sensor_class != self.superclass + ): + return sensor_class + else: + return fail( + f"Detected object {sensor_class!r} is" + f" not recognised as a {self.superclass.__name__} type" + ) + + def convert( + self, + value: str, + param: t.Optional[click.core.Parameter], + ctx: t.Optional[click.core.Context], + ) -> t.Any: + fail = functools.partial(self.fail, param=param, ctx=ctx) + return self.get_sensor_by_path(value, fail) + + def __repr__(self): + return "PythonClass" + + +def get_sensors() -> t.Iterable[Sensor[t.Any]]: + return [ + PythonVersion(), + IPAddresses(), + CPULoad(), + RAMAvailable(), + ACStatus(), + Temperature(), + RelativeHumidity(), + ] + + +@click.command(help="Displays the values of the sensors") +@click.option( + "--develop", + required=False, + metavar="path", + help="Load a sensor by Python path", + type=PythonClass(Sensor), +) +def show_sensors(develop: t.Callable[[], Sensor[t.Any]]) -> int: + sensors: t.Iterable[Sensor[t.Any]] + if develop: + sensors = [develop()] + else: + sensors = get_sensors() + for sensor in sensors: + click.secho(sensor.title, bold=True) + click.echo(str(sensor)) + click.echo("") + return RETURN_CODES["OK"] + + +if __name__ == "__main__": + show_sensors() diff --git a/Ch04/apd.sensors-chapter04-click-parsing/src/apd/sensors/sensors.py b/Ch04/apd.sensors-chapter04-click-parsing/src/apd/sensors/sensors.py new file mode 100644 index 0000000..47c2ab0 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-click-parsing/src/apd/sensors/sensors.py @@ -0,0 +1,170 @@ +#!/usr/bin/env python +# coding: utf-8 +import math +import socket +import sys +from typing import Any, Optional, List, Tuple, Iterable, TypeVar, Generic + + +import psutil + + +T_value = TypeVar("T_value") + + +class Sensor(Generic[T_value]): + title: str + + def value(self) -> T_value: + raise NotImplementedError + + @classmethod + def format(cls, value: T_value) -> str: + raise NotImplementedError + + def __str__(self) -> str: + return self.format(self.value()) + + +class PythonVersion(Sensor[Any]): + title = "Python Version" + + def value(self) -> Any: + return sys.version_info + + @classmethod + def format(cls, value: Any) -> str: + if value.micro == 0 and value.releaselevel == "alpha": + return "{0.major}.{0.minor}.{0.micro}a{0.serial}".format(value) + return "{0.major}.{0.minor}".format(value) + + +class IPAddresses(Sensor[Iterable[Tuple[str, str]]]): + title = "IP Addresses" + FAMILIES = {"AF_INET": "IPv4", "AF_INET6": "IPv6"} + + def value(self) -> List[Tuple[str, str]]: + hostname = socket.gethostname() + addresses = socket.getaddrinfo(hostname, None) + + address_info: List[Tuple[str, str]] = [] + for address in addresses: + family, ip = (address[0].name, address[4][0]) + if family not in self.FAMILIES: + continue + value = (family, ip) + if value not in address_info: + address_info.append(value) + return address_info + + @classmethod + def format(cls, value: Iterable[Tuple[str, str]]) -> str: + return "\n".join( + "{0} ({1})".format(address[1], cls.FAMILIES.get(address[0], "Unknown")) + for address in value + ) + + +class CPULoad(Sensor[float]): + title = "CPU Usage" + + def value(self) -> float: + return psutil.cpu_percent(interval=3) / 100.0 + + @classmethod + def format(cls, value: float) -> str: + return "{:.1%}".format(value) + + +class RAMAvailable(Sensor[int]): + title = "RAM Available" + UNITS = ("B", "KiB", "MiB", "GiB", "TiB", "PiB", "EiB") + UNIT_SIZE = 2 ** 10 + + def value(self) -> int: + return psutil.virtual_memory().available + + @classmethod + def format(cls, value: int) -> str: + magnitude = math.floor(math.log(value, cls.UNIT_SIZE)) + max_magnitude = len(cls.UNITS) - 1 + magnitude = min(magnitude, max_magnitude) + scaled_value = value / (cls.UNIT_SIZE ** magnitude) + return "{:.1f} {}".format(scaled_value, cls.UNITS[magnitude]) + + +class ACStatus(Sensor[Optional[bool]]): + title = "AC Connected" + + def value(self) -> Optional[bool]: + battery = psutil.sensors_battery() + if battery is not None: + return battery.power_plugged + else: + return None + + @classmethod + def format(cls, value: Optional[bool]) -> str: + if value is None: + return "Unknown" + elif value: + return "Connected" + else: + return "Not connected" + + +class Temperature(Sensor[Optional[float]]): + title = "Ambient Temperature" + + def value(self) -> Optional[float]: + try: + from adafruit_dht import DHT22 + from board import D20 + except (ImportError, NotImplementedError): + # No DHT library results in an ImportError. + # Running on an unknown platform results in a + # NotImplementedError when getting the pin + return None + try: + return DHT22(D20).temperature + except RuntimeError: + return None + + @classmethod + def celsius_to_fahrenheit(cls, value: float) -> float: + return value * 9 / 5 + 32 + + @classmethod + def format(cls, value: Optional[float]) -> str: + if value is None: + return "Unknown" + else: + return "{:.1f}C ({:.1f}F)".format(value, cls.celsius_to_fahrenheit(value)) + + def __str__(self) -> str: + return self.format(self.value()) + + +class RelativeHumidity(Sensor[Optional[float]]): + title = "Relative Humidity" + + def value(self) -> Optional[float]: + try: + from adafruit_dht import DHT22 + from board import D20 + except (ImportError, NotImplementedError): + # No DHT library results in an ImportError. + # Running on an unknown platform results in a + # NotImplementedError when getting the pin + return None + try: + return DHT22(D20).humidity / 100 + except RuntimeError: + return None + + @classmethod + def format(cls, value: Optional[float]) -> str: + if value is None: + return "Unknown" + else: + return "{:.1%}".format(value) diff --git a/Ch04/apd.sensors-chapter04-click-parsing/tests/__init__.py b/Ch04/apd.sensors-chapter04-click-parsing/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/Ch04/apd.sensors-chapter04-click-parsing/tests/test_acstatus.py b/Ch04/apd.sensors-chapter04-click-parsing/tests/test_acstatus.py new file mode 100644 index 0000000..1d10940 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-click-parsing/tests/test_acstatus.py @@ -0,0 +1,55 @@ +from unittest import mock + +from apd.sensors.sensors import ACStatus + +import pytest + + +@pytest.fixture +def sensor(): + return ACStatus() + + +class TestACStatusFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_True(self, subject): + assert subject(True) == "Connected" + + def test_format_False(self, subject): + assert subject(False) == "Not connected" + + def test_format_None(self, subject): + assert subject(None) == "Unknown" + + +class TestACStatusValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def sensors_battery(self): + with mock.patch("psutil.sensors_battery") as sensors_battery: + yield sensors_battery + + def test_sensors_battery_called(self, subject, sensors_battery): + sensors_battery.return_value.power_plugged = True + assert subject() is True + assert sensors_battery.call_count == 1 + + def test_sensor_but_battery_unknown(self, subject, sensors_battery): + sensors_battery.return_value.power_plugged = None + assert subject() is None + assert sensors_battery.call_count == 1 + + def test_no_sensor(self, subject, sensors_battery): + sensors_battery.return_value = None + assert subject() is None + + def test_str_representation_is_formatted_value(self, sensor, sensors_battery): + sensors_battery.return_value.power_plugged = True + assert str(sensor) == "Connected" + assert sensors_battery.call_count == 1 diff --git a/Ch04/apd.sensors-chapter04-click-parsing/tests/test_cpuusage.py b/Ch04/apd.sensors-chapter04-click-parsing/tests/test_cpuusage.py new file mode 100644 index 0000000..aa8a66a --- /dev/null +++ b/Ch04/apd.sensors-chapter04-click-parsing/tests/test_cpuusage.py @@ -0,0 +1,45 @@ +from unittest import mock + +from apd.sensors.sensors import CPULoad + +import pytest + + +@pytest.fixture +def sensor(): + return CPULoad() + + +class TestCPULoadFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_simple_percentage(self, subject): + assert subject(0.05) == "5.0%" + + def test_format_multiple_decimal_places(self, subject): + assert subject(0.031415926) == "3.1%" + + def test_format_multiple_decimal_places_int(self, subject) -> None: + assert subject(1) == "100.0%" + + +class TestCPULoadValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def cpuload(self): + with mock.patch("psutil.cpu_percent") as cpu_percent: + cpu_percent.return_value = 50.1 + yield cpu_percent + + def test_cpu_percent_called_With_interval(self, subject, cpuload): + assert subject() == 0.501 + assert cpuload.call_count == 1 + assert tuple(cpuload.call_args) == ((), {"interval": 3}) + + def test_str_representation_is_formatted_value(self, sensor, cpuload): + assert str(sensor) == "50.1%" diff --git a/Ch04/apd.sensors-chapter04-click-parsing/tests/test_dht.py b/Ch04/apd.sensors-chapter04-click-parsing/tests/test_dht.py new file mode 100644 index 0000000..b546593 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-click-parsing/tests/test_dht.py @@ -0,0 +1,66 @@ +from apd.sensors.sensors import Temperature, RelativeHumidity + +import pytest + + +@pytest.fixture +def temperature_sensor(): + return Temperature() + + +@pytest.fixture +def humidity_sensor(): + return RelativeHumidity() + + +class TestTemperatureFormatter: + @pytest.fixture + def subject(self, temperature_sensor): + return temperature_sensor.format + + def test_format_21c(self, subject): + assert subject(21.0) == "21.0C (69.8F)" + + def test_format_negative(self, subject): + assert subject(-32.0) == "-32.0C (-25.6F)" + + def test_format_unknown(self, subject): + assert subject(None) == "Unknown" + + +class TestTemperatureConversion: + @pytest.fixture + def subject(self, temperature_sensor): + return temperature_sensor.celsius_to_fahrenheit + + def test_celsius_to_fahrenheit(self, subject): + c = 21 + f = subject(c) + assert f == 69.8 + + def test_celsius_to_fahrenheit_equivlance_point(self, subject): + c = -40 + f = subject(c) + assert f == -40 + + def test_celsius_to_fahrenheit_float(self, subject): + c = 21.2 + f = subject(c) + assert f == 70.16 + + def test_celsius_to_fahrenheit_string(self, subject): + c = "21" + with pytest.raises(TypeError): + subject(c) + + +class TestHumidityFormatter: + @pytest.fixture + def subject(self, humidity_sensor): + return humidity_sensor.format + + def test_format_percentage(self, subject): + assert subject(0.035) == "3.5%" + + def test_format_unknown(self, subject): + assert subject(None) == "Unknown" diff --git a/Ch04/apd.sensors-chapter04-click-parsing/tests/test_ipaddresses.py b/Ch04/apd.sensors-chapter04-click-parsing/tests/test_ipaddresses.py new file mode 100644 index 0000000..e8a9690 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-click-parsing/tests/test_ipaddresses.py @@ -0,0 +1,59 @@ +from unittest import mock +import socket + +from apd.sensors.sensors import IPAddresses + +import pytest + + +@pytest.fixture +def sensor(): + return IPAddresses() + + +class TestIPAddressFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_single_ipv4(self, subject): + ips = [("AF_INET", "192.0.2.1")] + assert subject(ips) == "192.0.2.1 (IPv4)" + + def test_format_single_ipv6(self, subject): + ips = [("AF_INET6", "2001:DB8::1")] + assert subject(ips) == "2001:DB8::1 (IPv6)" + + def test_format_mixed_list(self, subject): + ips = [("AF_INET", "192.0.2.1"), ("AF_INET6", "2001:DB8::1")] + assert subject(ips) == "192.0.2.1 (IPv4)\n2001:DB8::1 (IPv6)" + + def test_unusual_protocols_are_marked_as_unknown(self, subject): + ips = [("AF_IRDA", "ffff")] + assert subject(ips) == "ffff (Unknown)" + + +class TestIPAddressesValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def gethostname(self): + with mock.patch("socket.gethostname") as gethostname: + gethostname.return_value = "localhost" + yield gethostname + + @pytest.fixture + def getaddrinfo(self, gethostname): + with mock.patch("socket.getaddrinfo") as getaddrinfo: + yield getaddrinfo + + def test_getaddrinfo_used_for_value_collection(self, getaddrinfo, subject): + getaddrinfo.return_value = [(socket.AF_INET, 0, 0, "", ("192.0.2.1", 0))] + assert subject() == [("AF_INET", "192.0.2.1")] + assert getaddrinfo.call_count == 1 + + def test_str_representation_is_formatted_value(self, getaddrinfo, sensor): + getaddrinfo.return_value = [(socket.AF_INET6, 0, 0, "", ("2001:DB8::1", 0))] + assert str(sensor) == "2001:DB8::1 (IPv6)" diff --git a/Ch04/apd.sensors-chapter04-click-parsing/tests/test_pythonversion.py b/Ch04/apd.sensors-chapter04-click-parsing/tests/test_pythonversion.py new file mode 100644 index 0000000..dff6bb0 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-click-parsing/tests/test_pythonversion.py @@ -0,0 +1,61 @@ +from collections import namedtuple +from unittest import mock + +from apd.sensors.sensors import PythonVersion + +import pytest + + +@pytest.fixture +def version(): + return namedtuple( + "sys_versioninfo", ("major", "minor", "micro", "releaselevel", "serial") + ) + + +@pytest.fixture +def sensor(): + return PythonVersion() + + +class TestPythonVersionFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_py38(self, subject, version): + py38 = version(3, 8, 0, "final", 0) + assert subject(py38) == "3.8" + + def test_format_large_version(self, subject, version): + large = version(255, 128, 0, "final", 0) + assert subject(large) == "255.128" + + def test_alpha_of_minor_is_marked(self, subject, version): + py39 = version(3, 9, 0, "alpha", 1) + assert subject(py39) == "3.9.0a1" + + def test_alpha_of_micro_is_unmarked(self, subject, version): + py39 = version(3, 9, 1, "alpha", 1) + assert subject(py39) == "3.9" + + +class TestPythonVersionValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def python_version(self): + import sys + + return sys.version_info + + def test_data_value_is_sys_versioninfo(self, python_version, subject): + assert subject() == python_version + + +class TestPythonVersionSensor: + def test_str_representation_is_formatted_value(self, sensor, version): + with mock.patch("sys.version_info", new=version(3, 4, 1, "final", 1)): + assert str(sensor) == "3.4" diff --git a/Ch04/apd.sensors-chapter04-click-parsing/tests/test_ramusage.py b/Ch04/apd.sensors-chapter04-click-parsing/tests/test_ramusage.py new file mode 100644 index 0000000..2a368c1 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-click-parsing/tests/test_ramusage.py @@ -0,0 +1,47 @@ +from unittest import mock + +from apd.sensors.sensors import RAMAvailable + +import pytest + + +@pytest.fixture +def sensor(): + return RAMAvailable() + + +class TestRAMAvailableFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_bytes(self, subject): + assert subject(15) == "15.0 B" + + def test_format_kibibytes(self, subject): + assert subject(15000) == "14.6 KiB" + + def test_format_mibibytes(self, subject): + assert subject(15000000) == "14.3 MiB" + + def test_format_gibibytes(self, subject): + assert subject(15000000000) == "14.0 GiB" + + +class TestRAMAvailableValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def virtual_memory(self): + with mock.patch("psutil.virtual_memory") as virtual_memory: + virtual_memory.return_value.available = 1024 + yield virtual_memory + + def test_virtual_memory_called(self, subject, virtual_memory): + assert subject() == 1024 + assert virtual_memory.call_count == 1 + + def test_str_representation_is_formatted_value(self, sensor, virtual_memory): + assert str(sensor) == "1.0 KiB" diff --git a/Ch04/apd.sensors-chapter04-click-parsing/tests/test_sensors.py b/Ch04/apd.sensors-chapter04-click-parsing/tests/test_sensors.py new file mode 100644 index 0000000..b31a026 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-click-parsing/tests/test_sensors.py @@ -0,0 +1,64 @@ +import functools + +from click.testing import CliRunner +import pytest + +import apd.sensors.cli +import apd.sensors.sensors + + +def test_sensors(): + assert hasattr(apd.sensors.sensors, "PythonVersion") + + +@pytest.mark.functional +def test_python_version_is_first_two_lines_of_cli_output(): + runner = CliRunner() + result = runner.invoke(apd.sensors.cli.show_sensors) + python_version = str(apd.sensors.sensors.PythonVersion()) + assert ["Python Version", python_version] == result.stdout.split("\n")[:2] + + +class TestSensorFromPath: + @staticmethod + def fail(message): + raise RuntimeError(message) + + @pytest.fixture + def subject(self): + return functools.partial( + apd.sensors.cli.PythonClass(apd.sensors.sensors.Sensor).get_sensor_by_path, + fail=self.fail, + ) + + def test_get_sensor_by_path(self, subject): + assert ( + subject("apd.sensors.sensors:PythonVersion") + == apd.sensors.sensors.PythonVersion + ) + + def test_invalid_format(self, subject): + with pytest.raises(RuntimeError, match="dotted.path.to.module:ClassName"): + subject("apd.sensors.sensors.PythonVersion") + + def test_invalid_module(self, subject): + with pytest.raises(RuntimeError, match="Could not import module"): + subject("apd.nonsense.sensor:FakeSensor") + + def test_missing_sensor(self, subject): + with pytest.raises(RuntimeError, match="Could not find attribute"): + subject("apd.sensors.sensors:FakeSensor") + + def test_invalid_sensor(self, subject): + with pytest.raises(RuntimeError, match="is not recognised as a Sensor"): + subject("apd.sensors.sensors:Sensor") + + +@pytest.mark.functional +def test_develop_option_finds_sensor_by_path(): + runner = CliRunner() + result = runner.invoke( + apd.sensors.cli.show_sensors, ["--develop", "apd.sensors.sensors:PythonVersion"] + ) + python_version = str(apd.sensors.sensors.PythonVersion()) + assert ["Python Version", python_version, "", ""] == result.stdout.split("\n") diff --git a/Ch04/apd.sensors-chapter04-click-subcommands/.pre-commit-config.yaml b/Ch04/apd.sensors-chapter04-click-subcommands/.pre-commit-config.yaml new file mode 100644 index 0000000..3ff6d15 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-click-subcommands/.pre-commit-config.yaml @@ -0,0 +1,23 @@ +repos: + +- repo: local + hooks: + - id: black + name: black + entry: pipenv run black + args: [--quiet] + language: system + types: [python] + + - id: mypy + name: mypy + entry: pipenv run mypy + args: ["--follow-imports=skip"] + language: system + types: [python] + + - id: flake8 + name: flake8 + entry: pipenv run flake8 + language: system + types: [python] diff --git a/Ch04/apd.sensors-chapter04-click-subcommands/CHANGES.md b/Ch04/apd.sensors-chapter04-click-subcommands/CHANGES.md new file mode 100644 index 0000000..569aeea --- /dev/null +++ b/Ch04/apd.sensors-chapter04-click-subcommands/CHANGES.md @@ -0,0 +1,5 @@ +## Changes + +### 1.0.0 (2019-06-20) + +* Added initial sensors (Matthew Wilkes) diff --git a/Ch04/apd.sensors-chapter04-click-subcommands/LICENCE b/Ch04/apd.sensors-chapter04-click-subcommands/LICENCE new file mode 100644 index 0000000..ccaef50 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-click-subcommands/LICENCE @@ -0,0 +1,21 @@ +``` +Copyright (c) 2019 Matthew Wilkes + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. +``` \ No newline at end of file diff --git a/Ch04/apd.sensors-chapter04-click-subcommands/Pipfile b/Ch04/apd.sensors-chapter04-click-subcommands/Pipfile new file mode 100644 index 0000000..40413b8 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-click-subcommands/Pipfile @@ -0,0 +1,29 @@ +[[source]] +name = "pypi" +url = "https://pypi.org/simple" +verify_ssl = true + +[[source]] +name = "piwheels" +url = "https://piwheels.org/simple" +verify_ssl = true + +[dev-packages] +ipykernel = "*" +remote-ikernel = "*" +pytest = "*" +pytest-cov = "*" +mypy = "*" +flake8 = "*" +black = "*" +pre-commit = "*" +wheel = "*" +twine = "*" + +[packages] +apd-sensors = {editable = true,path = "."} + +[requires] + +[pipenv] +allow_prereleases = true diff --git a/Ch04/apd.sensors-chapter04-click-subcommands/Pipfile.lock b/Ch04/apd.sensors-chapter04-click-subcommands/Pipfile.lock new file mode 100644 index 0000000..f2c94d2 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-click-subcommands/Pipfile.lock @@ -0,0 +1,739 @@ +{ + "_meta": { + "hash": { + "sha256": "b2def6fc1541c4ee04e68450c1818f456f7d3aac56b38ed1356d6bbcd13ffd8d" + }, + "pipfile-spec": 6, + "requires": {}, + "sources": [ + { + "name": "pypi", + "url": "https://pypi.org/simple", + "verify_ssl": true + }, + { + "name": "piwheels", + "url": "https://piwheels.org/simple", + "verify_ssl": true + } + ] + }, + "default": { + "apd-sensors": { + "editable": true, + "path": "." + } + }, + "develop": { + "appdirs": { + "hashes": [ + "sha256:9e5896d1372858f8dd3344faf4e5014d21849c756c8d5701f78f8a103b372d92", + "sha256:d8b24664561d0d34ddfaec54636d502d7cea6e29c3eaf68f3df6180863e2166e" + ], + "version": "==1.4.3" + }, + "aspy.yaml": { + "hashes": [ + "sha256:463372c043f70160a9ec950c3f1e4c3a82db5fca01d334b6bc89c7164d744bdc", + "sha256:e7c742382eff2caed61f87a39d13f99109088e5e93f04d76eb8d4b28aa143f45" + ], + "version": "==1.3.0" + }, + "atomicwrites": { + "hashes": [ + "sha256:03472c30eb2c5d1ba9227e4c2ca66ab8287fbfbbda3888aa93dc2e28fc6811b4", + "sha256:75a9445bac02d8d058d5e1fe689654ba5a6556a1dfd8ce6ec55a0ed79866cfa6" + ], + "version": "==1.3.0" + }, + "attrs": { + "hashes": [ + "sha256:69c0dbf2ed392de1cb5ec704444b08a5ef81680a61cb899dc08127123af36a79", + "sha256:f0b870f674851ecbfbbbd364d6b5cbdff9dcedbc7f3f5e18a6891057f21fe399" + ], + "version": "==19.1.0" + }, + "backcall": { + "hashes": [ + "sha256:38ecd85be2c1e78f77fd91700c76e14667dc21e2713b63876c0eb901196e01e4", + "sha256:65d380041000921f67ec230b41e9f50904f52594dc3e6139c41a08c98c4bca77", + "sha256:bbbf4b1e5cd2bdb08f915895b51081c041bac22394fdfcfdfbe9f14b77c08bf2" + ], + "version": "==0.1.0" + }, + "black": { + "hashes": [ + "sha256:09a9dcb7c46ed496a9850b76e4e825d6049ecd38b611f1224857a79bd985a8cf", + "sha256:68950ffd4d9169716bcb8719a56c07a2f4485354fec061cdd5910aa07369731c" + ], + "index": "pypi", + "version": "==19.3b0" + }, + "bleach": { + "hashes": [ + "sha256:213336e49e102af26d9cde77dd2d0397afabc5a6bf2fed985dc35b5d1e285a16", + "sha256:3fdf7f77adcf649c9911387df51254b813185e32b2c6619f690b593a617e19fa" + ], + "version": "==3.1.0" + }, + "certifi": { + "hashes": [ + "sha256:046832c04d4e752f37383b628bc601a7ea7211496b4638f6514d0e5b9acc4939", + "sha256:945e3ba63a0b9f577b1395204e13c3a231f9bc0223888be653286534e5873695" + ], + "version": "==2019.6.16" + }, + "cfgv": { + "hashes": [ + "sha256:32edbe09de6f4521224b87822103a8c16a614d31a894735f7a5b3bcf0eb3c37e", + "sha256:3bd31385cd2bebddbba8012200aaf15aa208539f1b33973759b4d02fc2148da5" + ], + "version": "==2.0.0" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:2335065e6395b9e67ca716de5f7526736bfa6ceead690adf616d925bdc622b13", + "sha256:5b94b49521f6456670fdb30cd82a4eca9412788a93fa6dd6df72c94d5a8ff2d7" + ], + "version": "==7.0" + }, + "colorama": { + "hashes": [ + "sha256:05eed71e2e327246ad6b38c540c4a3117230b19679b875190486ddd2d721422d", + "sha256:f8ac84de7840f5b9c4e3347b3c1eaa50f7e49c2b07596221daec5edaabbd7c48" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.1" + }, + "coverage": { + "hashes": [ + "sha256:0402b1822d513d0231589494bceddb067d20581f5083598c451b56c684b0e5d6", + "sha256:0644e28e8aea9d9d563607ee8b7071b07dd57a4a3de11f8684cd33c51c0d1b93", + "sha256:0874a283686803884ec0665018881130604956dbaa344f2539c46d82cbe29eda", + "sha256:0988c3837df4bc371189bb3425d5232cf150055452034c232dda9cbe04f9c38e", + "sha256:20bc3205b3100956bb72293fabb97f0ed972c81fed10b3251c90c70dcb0599ab", + "sha256:2cc9142a3367e74eb6b19d58c53ebb1dfd7336b91cdcc91a6a2888bf8c7af984", + "sha256:3ae9a0a59b058ce0761c3bd2c2d66ecb2ee2b8ac592620184370577f7a546fb3", + "sha256:3b2e30b835df58cb973f478d09f3d82e90c98c8e5059acc245a8e4607e023801", + "sha256:401e9b04894eb1498c639c6623ee78a646990ce5f095248e2440968aafd6e90e", + "sha256:41ec5812d5decdaa72708be3018e7443e90def4b5a71294236a4df192cf9eab9", + "sha256:475769b638a055e75b3d3219e054fe2a023c0b077ff15bff6c95aba7e93e6cac", + "sha256:61424f4e2e82c4129a4ba71e10ebacb32a9ecd6f80de2cd05bdead6ba75ed736", + "sha256:811969904d4dd0bee7d958898be8d9d75cef672d9b7e7db819dfeac3d20d2d0c", + "sha256:86224bb99abfd672bf2f9fcecad5e8d7a3fa94f7f71513f2210460a0350307cd", + "sha256:9a238a20a3af00665f8381f7e53e9c606f9bb652d2423f6b822f6cb790d887e8", + "sha256:a23b3fbc14d4e6182ecebfd22f3729beef0636d151d94764a1c28330d185e4e5", + "sha256:ac162b4ebe51b7a2b7f5e462c4402802633eb81e77c94f8a7c1ed8a556e72c75", + "sha256:b6187378726c84365bf297b5dcdae8789b6a5823b200bea23797777e5a63be09", + "sha256:bcd5723d905ed4a825f17410a53535f880b6d7548ae3d89078db7b1ceefcd853", + "sha256:c48a4f9c5fb385269bb7fbaf9c1326a94863b65ec7f5c96b2ea56b252f01ad08", + "sha256:cd40199d6f1c29c85b170d25589be9a97edff8ee7e62be180a2a137823896030", + "sha256:d1bc331a7d069485ac1d8c25a0ea1f6aab6cb2a87146fb652222481c1bddc9ff", + "sha256:d7e0cdc249aa0f94aa2e531b03999ddaf03a10b4fa090a894712d4c8066abd89", + "sha256:e9ee8fcd8e067fcc5d7276d46e07e863102b70a52545ef4254df1ff0893ce75f", + "sha256:eb313c23d983b7810504f42104e8dcd1c7ccdda8fbaab82aab92ab79fea19345", + "sha256:f9cfd478654b509941b85ed70f870f5e3c74678f566bec12fd26545e5340ba47", + "sha256:fae1fa144034d021a52cb9ea200eb8dedf91869c6df8202ad5d149b41ed91cc8" + ], + "version": "==5.0a5" + }, + "decorator": { + "hashes": [ + "sha256:86156361c50488b84a3f148056ea716ca587df2f0de1d34750d35c21312725de", + "sha256:f069f3a01830ca754ba5258fde2278454a0b5b79e0d7f5c13b3b97e57d4acff6" + ], + "version": "==4.4.0" + }, + "defusedxml": { + "hashes": [ + "sha256:6687150770438374ab581bb7a1b327a847dd9c5749e396102de3fad4e8a3ef93", + "sha256:f684034d135af4c6cbb949b8a4d2ed61634515257a67299e5f940fbaa34377f5" + ], + "version": "==0.6.0" + }, + "docutils": { + "hashes": [ + "sha256:02aec4bd92ab067f6ff27a38a38a41173bf01bed8f89157768c1573f53e474a6", + "sha256:51e64ef2ebfb29cae1faa133b3710143496eca21c530f3f71424d77687764274", + "sha256:7a4bd47eaf6596e1295ecb11361139febe29b084a87bf005bf899f9a42edc3c6" + ], + "version": "==0.14" + }, + "entrypoints": { + "hashes": [ + "sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19", + "sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451" + ], + "version": "==0.3" + }, + "flake8": { + "hashes": [ + "sha256:859996073f341f2670741b51ec1e67a01da142831aa1fdc6242dbf88dffbe661", + "sha256:a796a115208f5c03b18f332f7c11729812c8c3ded6c46319c59b53efd3819da8" + ], + "index": "pypi", + "version": "==3.7.7" + }, + "identify": { + "hashes": [ + "sha256:0a11379b46d06529795442742a043dc2fa14cd8c995ae81d1febbc5f1c014c87", + "sha256:43a5d24ffdb07bc7e21faf68b08e9f526a1f41f0056073f480291539ef961dfd" + ], + "version": "==1.4.5" + }, + "idna": { + "hashes": [ + "sha256:c357b3f628cf53ae2c4c05627ecc484553142ca23264e593d327bcde5e9c3407", + "sha256:ea8b7f6188e6fa117537c3df7da9fc686d485087abf6ac197f9c46432f7e4a3c" + ], + "version": "==2.8" + }, + "importlib-metadata": { + "hashes": [ + "sha256:6dfd58dfe281e8d240937776065dd3624ad5469c835248219bd16cf2e12dbeb7", + "sha256:cb6ee23b46173539939964df59d3d72c3e0c1b5d54b84f1d8a7e912fe43612db" + ], + "version": "==0.18" + }, + "ipykernel": { + "hashes": [ + "sha256:346189536b88859937b5f4848a6fd85d1ad0729f01724a411de5cae9b618819c", + "sha256:f0e962052718068ad3b1d8bcc703794660858f58803c3798628817f492a8769c" + ], + "index": "pypi", + "version": "==5.1.1" + }, + "ipython": { + "hashes": [ + "sha256:54c5a8aa1eadd269ac210b96923688ccf01ebb2d0f21c18c3c717909583579a8", + "sha256:e840810029224b56cd0d9e7719dc3b39cf84d577f8ac686547c8ba7a06eeab26" + ], + "version": "==7.5.0" + }, + "ipython-genutils": { + "hashes": [ + "sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8", + "sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8" + ], + "version": "==0.2.0" + }, + "jedi": { + "hashes": [ + "sha256:49ccb782651bb6f7009810d17a3316f8867dde31654c750506970742e18b553d", + "sha256:79d0f6595f3846dffcbe667cc6dc821b96e5baa8add125176c31a3917eb19d58" + ], + "version": "==0.14.0" + }, + "jinja2": { + "hashes": [ + "sha256:065c4f02ebe7f7cf559e49ee5a95fb800a9e4528727aec6f24402a5374c65013", + "sha256:14dd6caf1527abb21f08f86c784eac40853ba93edb79552aa1e4b8aef1b61c7b" + ], + "version": "==2.10.1" + }, + "jsonschema": { + "hashes": [ + "sha256:0c0a81564f181de3212efa2d17de1910f8732fa1b71c42266d983cd74304e20d", + "sha256:a5f6559964a3851f59040d3b961de5e68e70971afb88ba519d27e6a039efff1a" + ], + "version": "==3.0.1" + }, + "jupyter-client": { + "hashes": [ + "sha256:b5f9cb06105c1d2d30719db5ffb3ea67da60919fb68deaefa583deccd8813551", + "sha256:c44411eb1463ed77548bc2d5ec0d744c9b81c4a542d9637c7a52824e2121b987" + ], + "version": "==5.2.4" + }, + "jupyter-core": { + "hashes": [ + "sha256:2c6e7c1e9f2ac45b5c2ceea5730bc9008d92fe59d0725eac57b04c0edfba24f7", + "sha256:f4fa22d6cf25f34807c995f22d2923693575c70f02557bcbfbe59bd5ec8d8b84" + ], + "version": "==4.5.0" + }, + "markupsafe": { + "hashes": [ + "sha256:00bc623926325b26bb9605ae9eae8a215691f33cae5df11ca5424f06f2d1f473", + "sha256:068b504787d682e13616b3683c277b6538665efb7f348eb70c676bd742a741c8", + "sha256:06c339404d8177f85e595eb43b8755d2d3396cfc462ba172ff06f9fa70496e8d", + "sha256:09027a7803a62ca78792ad89403b1b7a73a01c8cb65909cd876f7fcebd79b161", + "sha256:09c4b7f37d6c648cb13f9230d847adf22f8171b1ccc4d5682398e77f40309235", + "sha256:0c5213014661b22242912266252b7c0e459e22d655ded05b9315ef3b6cc85ae0", + "sha256:1027c282dad077d0bae18be6794e6b6b8c91d58ed8a8d89a89d59693b9131db5", + "sha256:24982cc2533820871eba85ba648cd53d8623687ff11cbb805be4ff7b4c971aff", + "sha256:29872e92839765e546828bb7754a68c418d927cd064fd4708fab9fe9c8bb116b", + "sha256:43a55c2930bbc139570ac2452adf3d70cdbb3cfe5912c71cdce1c2c6bbd9c5d1", + "sha256:46c99d2de99945ec5cb54f23c8cd5689f6d7177305ebff350a58ce5f8de1669e", + "sha256:500d4957e52ddc3351cabf489e79c91c17f6e0899158447047588650b5e69183", + "sha256:535f6fc4d397c1563d08b88e485c3496cf5784e927af890fb3c3aac7f933ec66", + "sha256:62fe6c95e3ec8a7fad637b7f3d372c15ec1caa01ab47926cfdf7a75b40e0eac1", + "sha256:6dd73240d2af64df90aa7c4e7481e23825ea70af4b4922f8ede5b9e35f78a3b1", + "sha256:717ba8fe3ae9cc0006d7c451f0bb265ee07739daf76355d06366154ee68d221e", + "sha256:79855e1c5b8da654cf486b830bd42c06e8780cea587384cf6545b7d9ac013a0b", + "sha256:7c1699dfe0cf8ff607dbdcc1e9b9af1755371f92a68f706051cc8c37d447c905", + "sha256:88e5fcfb52ee7b911e8bb6d6aa2fd21fbecc674eadd44118a9cc3863f938e735", + "sha256:8defac2f2ccd6805ebf65f5eeb132adcf2ab57aa11fdf4c0dd5169a004710e7d", + "sha256:98c7086708b163d425c67c7a91bad6e466bb99d797aa64f965e9d25c12111a5e", + "sha256:9add70b36c5666a2ed02b43b335fe19002ee5235efd4b8a89bfcf9005bebac0d", + "sha256:9bf40443012702a1d2070043cb6291650a0841ece432556f784f004937f0f32c", + "sha256:ade5e387d2ad0d7ebf59146cc00c8044acbd863725f887353a10df825fc8ae21", + "sha256:b00c1de48212e4cc9603895652c5c410df699856a2853135b3967591e4beebc2", + "sha256:b1282f8c00509d99fef04d8ba936b156d419be841854fe901d8ae224c59f0be5", + "sha256:b2051432115498d3562c084a49bba65d97cf251f5a331c64a12ee7e04dacc51b", + "sha256:ba59edeaa2fc6114428f1637ffff42da1e311e29382d81b339c1817d37ec93c6", + "sha256:c8716a48d94b06bb3b2524c2b77e055fb313aeb4ea620c8dd03a105574ba704f", + "sha256:cd5df75523866410809ca100dc9681e301e3c27567cf498077e8551b6d20e42f", + "sha256:e249096428b3ae81b08327a63a485ad0878de3fb939049038579ac0ef61e17e7" + ], + "version": "==1.1.1" + }, + "mccabe": { + "hashes": [ + "sha256:ab8a6258860da4b6677da4bd2fe5dc2c659cff31b3ee4f7f5d64e79735b80d42", + "sha256:dd8d182285a0fe56bace7f45b5e7d1a6ebcbf524e8f3bd87eb0f125271b8831f" + ], + "version": "==0.6.1" + }, + "mistune": { + "hashes": [ + "sha256:59a3429db53c50b5c6bcc8a07f8848cb00d7dc8bdb431a4ab41920d201d4756e", + "sha256:88a1051873018da288eee8538d476dffe1262495144b33ecb586c4ab266bb8d4" + ], + "version": "==0.8.4" + }, + "more-itertools": { + "hashes": [ + "sha256:3ad685ff8512bf6dc5a8b82ebf73543999b657eded8c11803d9ba6b648986f4d", + "sha256:8bb43d1f51ecef60d81854af61a3a880555a14643691cc4b64a6ee269c78f09a" + ], + "markers": "python_version > '2.7'", + "version": "==7.1.0" + }, + "mypy": { + "hashes": [ + "sha256:12d18bd7fc642c5d54b1bb62dde813a7e2ab79b32ee11ff206ac387c68fc2ad4", + "sha256:23e24bc1683a36f39dee67d8ac74ea414654642eee26d420bada95b8ee8c9095", + "sha256:2b38e64c52a8968df4ebcae0ddba4a54eb94d184695dd4e54e14509a9389b78c", + "sha256:3d4f551466a76e278187ec3a5b26cfb50f72f6760b749aa00ac69a6f9c99898d", + "sha256:53d5dacb8d844e50be698830509aa592b093547e7ab90aee63eb23db61109007", + "sha256:56f981d246010ba21cac6b2455eaecfaf68fc8a5663d865b26c8e579c36f751d", + "sha256:8c57f6f59f1e8479d9fc6e1bf034353e54626ed64e32394c613afc493a441dc1", + "sha256:bbed4a593d87476b592d52867ef86da2155ccd0becf0c4c02e6567d842e43368", + "sha256:d6ff850e2ba18b2db7704897c8f2f1384478e3b75ad292ec06196bf7794f3a40", + "sha256:e13b1bb8785d7f785e0b88873f1c21cda58ceba9ce1153b58cbfa24b09a111d5", + "sha256:e2b9ee6f648ce72d6741925a47c88c2391168ef973b6f74f17969450c5b1ffdd" + ], + "index": "pypi", + "version": "==0.711" + }, + "mypy-extensions": { + "hashes": [ + "sha256:37e0e956f41369209a3d5f34580150bcacfabaa57b33a15c0b25f4b5725e0812", + "sha256:b16cabe759f55e3409a7d231ebd2841378fb0c27a5d1994719e340e4f429ac3e" + ], + "version": "==0.4.1" + }, + "nbconvert": { + "hashes": [ + "sha256:138381baa41d83584459b5cfecfc38c800ccf1f37d9ddd0bd440783346a4c39c", + "sha256:4a978548d8383f6b2cfca4a3b0543afb77bc7cb5a96e8b424337ab58c12da9bc" + ], + "version": "==5.5.0" + }, + "nbformat": { + "hashes": [ + "sha256:b9a0dbdbd45bb034f4f8893cafd6f652ea08c8c1674ba83f2dc55d3955743b0b", + "sha256:f7494ef0df60766b7cabe0a3651556345a963b74dbc16bc7c18479041170d402" + ], + "version": "==4.4.0" + }, + "nodeenv": { + "hashes": [ + "sha256:ad8259494cf1c9034539f6cced78a1da4840a4b157e23640bc4a0c0546b0cb7a" + ], + "version": "==1.3.3" + }, + "notebook": { + "hashes": [ + "sha256:91965e89e863948c7575c2a43a0b17246332880f1a3bd28127bb20f603b70f61", + "sha256:c7490a10eb4de04ee30e68de36f356af122b1b65d60b24df8a51a03fef200532" + ], + "version": "==6.0.0rc1" + }, + "packaging": { + "hashes": [ + "sha256:0c98a5d0be38ed775798ece1b9727178c4469d9c3b4ada66e8e6b7849f8732af", + "sha256:9e1cbf8c12b1f1ce0bb5344b8d7ecf66a6f8a6e91bcb0c84593ed6d3ab5c4ab3" + ], + "version": "==19.0" + }, + "pandocfilters": { + "hashes": [ + "sha256:b3dd70e169bb5449e6bc6ff96aea89c5eea8c5f6ab5e207fc2f521a2cf4a0da9", + "sha256:eddde9b495077a2cb5d74af4f22c235a1e2474a1e6757dfc1d28c726ea91a421" + ], + "version": "==1.4.2" + }, + "parso": { + "hashes": [ + "sha256:5052bb33be034cba784193e74b1cde6ebf29ae8b8c1e4ad94df0c4209bfc4826", + "sha256:db5881df1643bf3e66c097bfd8935cf03eae73f4cb61ae4433c9ea4fb6613446" + ], + "version": "==0.5.0" + }, + "pexpect": { + "hashes": [ + "sha256:2094eefdfcf37a1fdbfb9aa090862c1a4878e5c7e0e7e7088bdb511c558e5cd1", + "sha256:9e2c1fd0e6ee3a49b28f95d4b33bc389c89b20af6a1255906e90ff1262ce62eb" + ], + "version": "==4.7.0" + }, + "pickleshare": { + "hashes": [ + "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca", + "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56" + ], + "version": "==0.7.5" + }, + "pkginfo": { + "hashes": [ + "sha256:7424f2c8511c186cd5424bbf31045b77435b37a8d604990b79d4e70d741148bb", + "sha256:a6d9e40ca61ad3ebd0b72fbadd4fba16e4c0e4df0428c041e01e06eb6ee71f32" + ], + "version": "==1.5.0.1" + }, + "pluggy": { + "hashes": [ + "sha256:0825a152ac059776623854c1543d65a4ad408eb3d33ee114dff91e57ec6ae6fc", + "sha256:b9817417e95936bf75d85d3f8767f7df6cdde751fc40aed3bb3074cbcb77757c" + ], + "version": "==0.12.0" + }, + "pre-commit": { + "hashes": [ + "sha256:92e406d556190503630fd801958379861c94884693a032ba66629d0351fdccd4", + "sha256:cccc39051bc2457b0c0f7152a411f8e05e3ba2fe1a5613e4ee0833c1c1985ce3" + ], + "index": "pypi", + "version": "==1.17.0" + }, + "prometheus-client": { + "hashes": [ + "sha256:71cd24a2b3eb335cb800c7159f423df1bd4dcd5171b234be15e3f31ec9f622da" + ], + "version": "==0.7.1" + }, + "prompt-toolkit": { + "hashes": [ + "sha256:11adf3389a996a6d45cc277580d0d53e8a5afd281d0c9ec71b28e6f121463780", + "sha256:2519ad1d8038fd5fc8e770362237ad0364d16a7650fb5724af6997ed5515e3c1", + "sha256:977c6583ae813a37dc1c2e1b715892461fcbdaa57f6fc62f33a528c4886c8f55" + ], + "version": "==2.0.9" + }, + "ptyprocess": { + "hashes": [ + "sha256:923f299cc5ad920c68f2bc0bc98b75b9f838b93b599941a6b63ddbc2476394c0", + "sha256:d7cc528d76e76342423ca640335bd3633420dc1366f258cb31d05e865ef5ca1f" + ], + "version": "==0.6.0" + }, + "py": { + "hashes": [ + "sha256:64f65755aee5b381cea27766a3a147c3f15b9b6b9ac88676de66ba2ae36793fa", + "sha256:dc639b046a6e2cff5bbe40194ad65936d6ba360b52b3c3fe1d08a82dd50b5e53" + ], + "version": "==1.8.0" + }, + "pycodestyle": { + "hashes": [ + "sha256:95a2219d12372f05704562a14ec30bc76b05a5b297b21a5dfe3f6fac3491ae56", + "sha256:e40a936c9a450ad81df37f549d676d127b1b66000a6c500caa2b085bc0ca976c" + ], + "version": "==2.5.0" + }, + "pyflakes": { + "hashes": [ + "sha256:17dbeb2e3f4d772725c777fabc446d5634d1038f234e77343108ce445ea69ce0", + "sha256:d976835886f8c5b31d47970ed689944a0262b5f3afa00a5a7b4dc81e5449f8a2" + ], + "version": "==2.1.1" + }, + "pygments": { + "hashes": [ + "sha256:71e430bc85c88a430f000ac1d9b331d2407f681d6f6aec95e8bcfbc3df5b0127", + "sha256:881c4c157e45f30af185c1ffe8d549d48ac9127433f2c380c24b84572ad66297" + ], + "version": "==2.4.2" + }, + "pyparsing": { + "hashes": [ + "sha256:1873c03321fc118f4e9746baf201ff990ceb915f433f23b395f5580d1840cb2a", + "sha256:9b6323ef4ab914af344ba97510e966d64ba91055d6b9afa6b30799340e89cc03" + ], + "version": "==2.4.0" + }, + "pyrsistent": { + "hashes": [ + "sha256:16692ee739d42cf5e39cef8d27649a8c1fdb7aa99887098f1460057c5eb75c3a" + ], + "version": "==0.15.2" + }, + "pytest": { + "hashes": [ + "sha256:4a784f1d4f2ef198fe9b7aef793e9fa1a3b2f84e822d9b3a64a181293a572d45", + "sha256:926855726d8ae8371803f7b2e6ec0a69953d9c6311fa7c3b6c1b929ff92d27da" + ], + "index": "pypi", + "version": "==4.6.3" + }, + "pytest-cov": { + "hashes": [ + "sha256:2b097cde81a302e1047331b48cadacf23577e431b61e9c6f49a1170bbe3d3da6", + "sha256:e00ea4fdde970725482f1f35630d12f074e121a23801aabf2ae154ec6bdd343a" + ], + "index": "pypi", + "version": "==2.7.1" + }, + "python-dateutil": { + "hashes": [ + "sha256:7e6584c74aeed623791615e26efd690f29817a27c73085b78e4bad02493df2fb", + "sha256:c89805f6f4d64db21ed966fda138f8a5ed7a4fdbc1a8ee329ce1b74e3c74da9e" + ], + "version": "==2.8.0" + }, + "pywinpty": { + "hashes": [ + "sha256:0e01321e53a230233358a6d608a1a8bc86c3882cf82769ba3c62ca387dc9cc51", + "sha256:333e0bc5fca8ad9e9a1516ebedb2a65da38dc1f399f8b2ea57d6cccec1ff2cc8", + "sha256:3ca3123aa6340ab31bbf9bd012b92e72f9ec905e4c9ee152cc997403e1778cd3", + "sha256:44a6dddcf2abf402e22f87e2c9a341f7d0b296afbec3d28184c8de4d7f514ee4", + "sha256:53d94d574c3d4da2df5b1c3ae728b8d90e4d33502b0388576bbd4ddeb4de0f77", + "sha256:c3955f162c53dde968f3fc11361658f1d83b683bfe601d4b6f94bb01ea4300bc", + "sha256:cec9894ecb34de3d7b1ca121dd98433035b9f8949b5095e84b103b349231509c", + "sha256:dcd45912e2fe2e6f72cee997a4da6ed1ad2056165a277ce5ec7f7ac98dcdf667", + "sha256:f2bcdd9a2ffd8b223752a971b3d377fb7bfed85f140ec9710f1218d760f2ccb7" + ], + "markers": "os_name == 'nt'", + "version": "==0.5.5" + }, + "pyyaml": { + "hashes": [ + "sha256:57acc1d8533cbe51f6662a55434f0dbecfa2b9eaf115bede8f6fd00115a0c0d3", + "sha256:588c94b3d16b76cfed8e0be54932e5729cc185caffaa5a451e7ad2f7ed8b4043", + "sha256:65104f348b42edffc29f99deba59e2d4aac312e0aadab7260d596b6888f2ceac", + "sha256:68c8dd247f29f9a0d09375c9c6b8fdc64b60810ebf07ba4cdd64ceee3a58c7b7", + "sha256:70d9818f1c9cd5c48bb87804f2efc8692f1023dac7f1a1a5c61d454043c1d265", + "sha256:7ed2c295c1822e06857eb0da79f9d18d52c8a2e5b6b0d52d5be00428647e7a74", + "sha256:86a93cccd50f8c125286e637328ff4eef108400dd7089b46a7be3445eecfa391", + "sha256:a0f329125a926876f647c9fa0ef32801587a12328b4a3c741270464e3e4fa778", + "sha256:a3c252ab0fa1bb0d5a3f6449a4826732f3eb6c0270925548cac342bc9b22c225", + "sha256:b4bb4d3f5e232425e25dda21c070ce05168a786ac9eda43768ab7f3ac2770955", + "sha256:cc6a265fc360573ca25a0c39493dc58f07eb18e7f4ce07822c2fe453c1038916", + "sha256:cd0618c5ba5bda5f4039b9398bb7fb6a317bb8298218c3de25c47c4740e4b95e", + "sha256:ceacb9e5f8474dcf45b940578591c7f3d960e82f926c707788a570b51ba59190", + "sha256:fe6a88094b64132c4bb3b631412e90032e8cfe9745a58370462240b8cb7553cd" + ], + "version": "==5.1.1" + }, + "pyzmq": { + "hashes": [ + "sha256:00dd015159eaeb1c0731ad49310e1f5d839c9a35a15e4f3267f5052233fad99b", + "sha256:03913b6beb8e7b417b9910b0ee1fd5d62e9626d218faefbe879d70714ceab1a2", + "sha256:13f17386df81d5e6efb9a4faea341d8de22cdc82e49a326dded26e33f42a3112", + "sha256:16c6281d96885db1e15f7047ddc1a8f48ff4ea35d31ca709f4d2eb39f246d356", + "sha256:17efab4a804e31f58361631256d660214204046f9e2b962738b171b9ad674ea7", + "sha256:2b79919ddeff3d3c96aa6087c21d294c8db1c01f6bfeee73324944683685f419", + "sha256:2f832e4711657bb8d16ea1feba860f676ec5f14fb9fe3b449b5953a60e89edae", + "sha256:31a11d37ac73107363b47e14c94547dbfc6a550029c3fe0530be443199026fc2", + "sha256:33a3e928e6c3138c675e1d6702dd11f6b7050177d7aab3fc322db6e1d2274490", + "sha256:34a38195a6d3a9646cbcdaf8eb245b4d935c7a57f7e1b3af467814bc1a92467e", + "sha256:42900054f1500acef6df7428edf806abbf641bf92eb9ceded24aa863397c3bae", + "sha256:4ccc7f3c63aa9d744dadb62c49eda2d0e7de55649b80c45d7c684d70161a69af", + "sha256:5b220c37c346e6575db8c88a940c1fc234f99ce8e0068c408919bb8896c4b6d2", + "sha256:6074848da5c8b44a1ca40adf75cf65aa92bc80f635e8249aa8f37a69b2b9b6f5", + "sha256:61a4155964bd4a14ef95bf46cb1651bcf8dcbbed8c0108e9c974c1fcbb57788f", + "sha256:62b5774688326600c52f587f7a033ca6b6284bef4c8b1b5fda32480897759eac", + "sha256:65a9ffa4f9f085d696f16fd7541f34b3c357d25fe99c90e3bce2ea59c3b5b4b6", + "sha256:76a077d2c30f8adc5e919a55985a784b96aeca69b53c1ea6fd5723d3ae2e6f53", + "sha256:8e5b4c51557071d6379d6dc1f54f35e9f6a137f5e84e102efb869c8d3c13c8ff", + "sha256:917f73e07cc04f0678a96d93e7bb8b1adcccdde9ccfe202e622814f4d1d1ecfd", + "sha256:91c75d3c4c357f9643e739db9e79ab9681b2f6ae8ec5678d6ef2ea0d01532596", + "sha256:923dd91618b100bb4c92ab9ed7b65825a595b8524a094ce03c7cb2aaae7d353b", + "sha256:9849054e0355e2bc7f4668766a25517ba76095031c9ff5e39ae8949cee5bb024", + "sha256:c9d453933f0e3f44b9759189f2a18aa765f7f1a4345c727c18ebe8ad0d748d26", + "sha256:cb7514936277abce64c2f4c56883e5704d85ed04d98d2d432d1c6764003bb003" + ], + "version": "==18.0.2" + }, + "readme-renderer": { + "hashes": [ + "sha256:bb16f55b259f27f75f640acf5e00cf897845a8b3e4731b5c1a436e4b8529202f", + "sha256:c8532b79afc0375a85f10433eca157d6b50f7d6990f337fa498c96cd4bfc203d" + ], + "version": "==24.0" + }, + "remote-ikernel": { + "hashes": [ + "sha256:5253216e87a8c31f1b0ca9305454f223147518b580e853b7635a3d8b9c88c295", + "sha256:740b80a57fa1af40cadef541c5a4eb293675b504092ecf00c57dd2f0011bd840" + ], + "index": "pypi", + "version": "==0.4.6" + }, + "requests": { + "hashes": [ + "sha256:11e007a8a2aa0323f5a921e9e6a2d7e4e67d9877e85773fba9ba6419025cbeb4", + "sha256:9cf5292fcd0f598c671cfc1e0d7d1a7f13bb8085e9a590f48c010551dc6c4b31" + ], + "version": "==2.22.0" + }, + "requests-toolbelt": { + "hashes": [ + "sha256:380606e1d10dc85c3bd47bf5a6095f815ec007be7a8b69c878507068df059e6f", + "sha256:968089d4584ad4ad7c171454f0a5c6dac23971e9472521ea3b6d49d610aa6fc0" + ], + "version": "==0.9.1" + }, + "send2trash": { + "hashes": [ + "sha256:60001cc07d707fe247c94f74ca6ac0d3255aabcb930529690897ca2a39db28b2", + "sha256:f1691922577b6fa12821234aeb57599d887c4900b9ca537948d2dac34aea888b" + ], + "version": "==1.5.0" + }, + "six": { + "hashes": [ + "sha256:3350809f0555b11f552448330d0b52d5f24c91a322ea4a15ef22629740f3761c", + "sha256:d16a0141ec1a18405cd4ce8b4613101da75da0e9a7aec5bdd4fa804d0e0eba73" + ], + "version": "==1.12.0" + }, + "terminado": { + "hashes": [ + "sha256:d9d012de63acb8223ac969c17c3043337c2fcfd28f3aea1ee429b345d01ef460", + "sha256:de08e141f83c3a0798b050ecb097ab6259c3f0331b2f7b7750c9075ced2c20c2" + ], + "version": "==0.8.2" + }, + "testpath": { + "hashes": [ + "sha256:46c89ebb683f473ffe2aab0ed9f12581d4d078308a3cb3765d79c6b2317b0109", + "sha256:b694b3d9288dbd81685c5d2e7140b81365d46c29f5db4bc659de5aa6b98780f8" + ], + "version": "==0.4.2" + }, + "toml": { + "hashes": [ + "sha256:229f81c57791a41d65e399fc06bf0848bab550a9dfd5ed66df18ce5f05e73d5c", + "sha256:235682dd292d5899d361a811df37e04a8828a5b1da3115886b73cf81ebc9100e" + ], + "version": "==0.10.0" + }, + "tornado": { + "hashes": [ + "sha256:349884248c36801afa19e342a77cc4458caca694b0eda633f5878e458a44cb2c", + "sha256:398e0d35e086ba38a0427c3b37f4337327231942e731edaa6e9fd1865bbd6f60", + "sha256:4e73ef678b1a859f0cb29e1d895526a20ea64b5ffd510a2307b5998c7df24281", + "sha256:559bce3d31484b665259f50cd94c5c28b961b09315ccd838f284687245f416e5", + "sha256:abbe53a39734ef4aba061fca54e30c6b4639d3e1f59653f0da37a0003de148c7", + "sha256:c845db36ba616912074c5b1ee897f8e0124df269468f25e4fe21fe72f6edd7a9", + "sha256:c9399267c926a4e7c418baa5cbe91c7d1cf362d505a1ef898fde44a07c9dd8a5" + ], + "version": "==6.0.3" + }, + "tqdm": { + "hashes": [ + "sha256:14a285392c32b6f8222ecfbcd217838f88e11630affe9006cd0e94c7eff3cb61", + "sha256:25d4c0ea02a305a688e7e9c2cdc8f862f989ef2a4701ab28ee963295f5b109ab" + ], + "version": "==4.32.2" + }, + "traitlets": { + "hashes": [ + "sha256:9c4bd2d267b7153df9152698efb1050a5d84982d3384a37b2c1f7723ba3e7835", + "sha256:c6cb5e6f57c5a9bdaa40fa71ce7b4af30298fbab9ece9815b5d995ab6217c7d9" + ], + "version": "==4.3.2" + }, + "twine": { + "hashes": [ + "sha256:0fb0bfa3df4f62076cab5def36b1a71a2e4acb4d1fa5c97475b048117b1a6446", + "sha256:d6c29c933ecfc74e9b1d9fa13aa1f87c5d5770e119f5a4ce032092f0ff5b14dc" + ], + "index": "pypi", + "version": "==1.13.0" + }, + "typed-ast": { + "hashes": [ + "sha256:18511a0b3e7922276346bcb47e2ef9f38fb90fd31cb9223eed42c85d1312344e", + "sha256:262c247a82d005e43b5b7f69aff746370538e176131c32dda9cb0f324d27141e", + "sha256:2b907eb046d049bcd9892e3076c7a6456c93a25bebfe554e931620c90e6a25b0", + "sha256:354c16e5babd09f5cb0ee000d54cfa38401d8b8891eefa878ac772f827181a3c", + "sha256:4e0b70c6fc4d010f8107726af5fd37921b666f5b31d9331f0bd24ad9a088e631", + "sha256:630968c5cdee51a11c05a30453f8cd65e0cc1d2ad0d9192819df9978984529f4", + "sha256:66480f95b8167c9c5c5c87f32cf437d585937970f3fc24386f313a4c97b44e34", + "sha256:71211d26ffd12d63a83e079ff258ac9d56a1376a25bc80b1cdcdf601b855b90b", + "sha256:95bd11af7eafc16e829af2d3df510cecfd4387f6453355188342c3e79a2ec87a", + "sha256:bc6c7d3fa1325a0c6613512a093bc2a2a15aeec350451cbdf9e1d4bffe3e3233", + "sha256:cc34a6f5b426748a507dd5d1de4c1978f2eb5626d51326e43280941206c209e1", + "sha256:d755f03c1e4a51e9b24d899561fec4ccaf51f210d52abdf8c07ee2849b212a36", + "sha256:d7c45933b1bdfaf9f36c579671fec15d25b06c8398f113dab64c18ed1adda01d", + "sha256:d896919306dd0aa22d0132f62a1b78d11aaf4c9fc5b3410d3c666b818191630a", + "sha256:ffde2fbfad571af120fcbfbbc61c72469e72f550d676c3342492a9dfdefb8f12" + ], + "version": "==1.4.0" + }, + "urllib3": { + "hashes": [ + "sha256:b246607a25ac80bedac05c6f282e3cdaf3afb65420fd024ac94435cabe6e18d1", + "sha256:dbe59173209418ae49d485b87d1681aefa36252ee85884c31346debd19463232" + ], + "version": "==1.25.3" + }, + "virtualenv": { + "hashes": [ + "sha256:b7335cddd9260a3dd214b73a2521ffc09647bde3e9457fcca31dc3be3999d04a", + "sha256:d28ca64c0f3f125f59cabf13e0a150e1c68e5eea60983cc4395d88c584495783" + ], + "version": "==16.6.1" + }, + "wcwidth": { + "hashes": [ + "sha256:3df37372226d6e63e1b1e1eda15c594bca98a22d33a23832a90998faa96bc65e", + "sha256:f4ebe71925af7b40a864553f761ed559b43544f8f71746c2d756c7fe788ade7c" + ], + "version": "==0.1.7" + }, + "webencodings": { + "hashes": [ + "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", + "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923" + ], + "version": "==0.5.1" + }, + "wheel": { + "hashes": [ + "sha256:5e79117472686ac0c4aef5bad5172ea73a1c2d1646b808c35926bd26bdfb0c08", + "sha256:62fcfa03d45b5b722539ccbc07b190e4bfff4bb9e3a4d470dd9f6a0981002565" + ], + "index": "pypi", + "version": "==0.33.4" + }, + "zipp": { + "hashes": [ + "sha256:8c1019c6aad13642199fbe458275ad6a84907634cc9f0989877ccc4a2840139d", + "sha256:ca943a7e809cc12257001ccfb99e3563da9af99d52f261725e96dfe0f9275bc3" + ], + "version": "==0.5.1" + } + } +} diff --git a/Ch04/apd.sensors-chapter04-click-subcommands/README.md b/Ch04/apd.sensors-chapter04-click-subcommands/README.md new file mode 100644 index 0000000..e6dcb45 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-click-subcommands/README.md @@ -0,0 +1,32 @@ +# Advanced Python Development Sensors + +This is the data collection package that forms part of the running example +for the book [Advanced Python Development](https://advancedpython.dev). + +## Usage + +This installs a console script called `sensors` that returns a report on +various aspects of the system. The available sensors are: + +* Python version +* IP Addresses +* CPU Usage +* RAM Available +* Battery charging state +* Ambient Temperature +* Ambient Humidity + +There are no command-line options, to view the report run `sensors` on the +command line. + +## Caveats + +The Ambient Temperature and Ambient Humidity sensors are only available on +RaspberryPi hosts and assume that a DHT22 sensor is connected to pin `D20`. + +If there is an entry in `/etc/hosts` for the current machine's hostname that +value will be the only result from the IP Addresses sensor. + +## Installation + +Install with `pip3 install apd.sensors` under Python 3.7 or higher diff --git a/Ch04/apd.sensors-chapter04-click-subcommands/pyproject.toml b/Ch04/apd.sensors-chapter04-click-subcommands/pyproject.toml new file mode 100644 index 0000000..4d3bb67 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-click-subcommands/pyproject.toml @@ -0,0 +1,5 @@ +[build-system] +requires = [ + "setuptools", +] +build-backend = "setuptools.build_meta" diff --git a/Ch04/apd.sensors-chapter04-click-subcommands/pytest.ini b/Ch04/apd.sensors-chapter04-click-subcommands/pytest.ini new file mode 100644 index 0000000..861f3d0 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-click-subcommands/pytest.ini @@ -0,0 +1,3 @@ +[pytest] +markers = + functional: these tests are significantly slower as they run the whole CLI script \ No newline at end of file diff --git a/Ch04/apd.sensors-chapter04-click-subcommands/setup.cfg b/Ch04/apd.sensors-chapter04-click-subcommands/setup.cfg new file mode 100644 index 0000000..1675018 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-click-subcommands/setup.cfg @@ -0,0 +1,35 @@ +[mypy] +ignore_missing_imports = True + +[flake8] +max-line-length = 88 + +[metadata] +name = apd.sensors +version = attr: apd.sensors.VERSION +description = APD Sensor package +long_description = file: README.md, CHANGES.md, LICENCE +long_description_content_type = text/markdown +keywords = iot +license = MIT +classifiers = + Programming Language :: Python :: 3 + Programming Language :: Python :: 3.7 + +[options] +zip_safe = False +include_package_data = True +package-dir = + =src +packages = find: +install_requires = + psutil + click + adafruit-circuitpython-dht ; 'arm' in platform_machine + +[options.packages.find] +where = src + +[options.entry_points] +console_scripts = + sensors = apd.sensors.sensors:sensors diff --git a/Ch04/apd.sensors-chapter04-click-subcommands/setup.py b/Ch04/apd.sensors-chapter04-click-subcommands/setup.py new file mode 100644 index 0000000..6068493 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-click-subcommands/setup.py @@ -0,0 +1,3 @@ +from setuptools import setup + +setup() diff --git a/Ch04/apd.sensors-chapter04-click-subcommands/src/apd/sensors/__init__.py b/Ch04/apd.sensors-chapter04-click-subcommands/src/apd/sensors/__init__.py new file mode 100644 index 0000000..196b66d --- /dev/null +++ b/Ch04/apd.sensors-chapter04-click-subcommands/src/apd/sensors/__init__.py @@ -0,0 +1 @@ +VERSION = "2.0.0dev1" diff --git a/Ch04/apd.sensors-chapter04-click-subcommands/src/apd/sensors/sensors.py b/Ch04/apd.sensors-chapter04-click-subcommands/src/apd/sensors/sensors.py new file mode 100644 index 0000000..0e580b6 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-click-subcommands/src/apd/sensors/sensors.py @@ -0,0 +1,248 @@ +#!/usr/bin/env python +# coding: utf-8 +import importlib +import math +import socket +import sys +from typing import Any, Optional, List, Tuple, Iterable, TypeVar, Generic + + +import click +import psutil + + +T_value = TypeVar("T_value") + + +class Sensor(Generic[T_value]): + title: str + + def value(self) -> T_value: + raise NotImplementedError + + @classmethod + def format(cls, value: T_value) -> str: + raise NotImplementedError + + def __str__(self) -> str: + return self.format(self.value()) + + +class PythonVersion(Sensor[Any]): + title = "Python Version" + + def value(self) -> Any: + return sys.version_info + + @classmethod + def format(cls, value: Any) -> str: + if value.micro == 0 and value.releaselevel == "alpha": + return "{0.major}.{0.minor}.{0.micro}a{0.serial}".format(value) + return "{0.major}.{0.minor}".format(value) + + +class IPAddresses(Sensor[Iterable[Tuple[str, str]]]): + title = "IP Addresses" + FAMILIES = {"AF_INET": "IPv4", "AF_INET6": "IPv6"} + + def value(self) -> List[Tuple[str, str]]: + hostname = socket.gethostname() + addresses = socket.getaddrinfo(hostname, None) + + address_info: List[Tuple[str, str]] = [] + for address in addresses: + family, ip = (address[0].name, address[4][0]) + if family not in self.FAMILIES: + continue + value = (family, ip) + if value not in address_info: + address_info.append(value) + return address_info + + @classmethod + def format(cls, value: Iterable[Tuple[str, str]]) -> str: + return "\n".join( + "{0} ({1})".format(address[1], cls.FAMILIES.get(address[0], "Unknown")) + for address in value + ) + + +class CPULoad(Sensor[float]): + title = "CPU Usage" + + def value(self) -> float: + return psutil.cpu_percent(interval=3) / 100.0 + + @classmethod + def format(cls, value: float) -> str: + return "{:.1%}".format(value) + + +class RAMAvailable(Sensor[int]): + title = "RAM Available" + UNITS = ("B", "KiB", "MiB", "GiB", "TiB", "PiB", "EiB") + UNIT_SIZE = 2 ** 10 + + def value(self) -> int: + return psutil.virtual_memory().available + + @classmethod + def format(cls, value: int) -> str: + magnitude = math.floor(math.log(value, cls.UNIT_SIZE)) + max_magnitude = len(cls.UNITS) - 1 + magnitude = min(magnitude, max_magnitude) + scaled_value = value / (cls.UNIT_SIZE ** magnitude) + return "{:.1f} {}".format(scaled_value, cls.UNITS[magnitude]) + + +class ACStatus(Sensor[Optional[bool]]): + title = "AC Connected" + + def value(self) -> Optional[bool]: + battery = psutil.sensors_battery() + if battery is not None: + return battery.power_plugged + else: + return None + + @classmethod + def format(cls, value: Optional[bool]) -> str: + if value is None: + return "Unknown" + elif value: + return "Connected" + else: + return "Not connected" + + +class Temperature(Sensor[Optional[float]]): + title = "Ambient Temperature" + + def value(self) -> Optional[float]: + try: + from adafruit_dht import DHT22 + from board import D20 + except (ImportError, NotImplementedError): + # No DHT library results in an ImportError. + # Running on an unknown platform results in a + # NotImplementedError when getting the pin + return None + try: + return DHT22(D20).temperature + except RuntimeError: + return None + + @classmethod + def celsius_to_fahrenheit(cls, value: float) -> float: + return value * 9 / 5 + 32 + + @classmethod + def format(cls, value: Optional[float]) -> str: + if value is None: + return "Unknown" + else: + return "{:.1f}C ({:.1f}F)".format(value, cls.celsius_to_fahrenheit(value)) + + def __str__(self) -> str: + return self.format(self.value()) + + +class RelativeHumidity(Sensor[Optional[float]]): + title = "Relative Humidity" + + def value(self) -> Optional[float]: + try: + from adafruit_dht import DHT22 + from board import D20 + except (ImportError, NotImplementedError): + # No DHT library results in an ImportError. + # Running on an unknown platform results in a + # NotImplementedError when getting the pin + return None + try: + return DHT22(D20).humidity / 100 + except RuntimeError: + return None + + @classmethod + def format(cls, value: Optional[float]) -> str: + if value is None: + return "Unknown" + else: + return "{:.1%}".format(value) + + +def get_sensors() -> Iterable[Sensor[Any]]: + return [ + PythonVersion(), + IPAddresses(), + CPULoad(), + RAMAvailable(), + ACStatus(), + Temperature(), + RelativeHumidity(), + ] + + +@click.group() +def show_sensors() -> None: + return + + +RETURN_CODES = {"OK": 0, "BAD_SENSOR_PATH": 17} + + +def get_sensor_by_path(sensor_path: str) -> Sensor[Any]: + try: + module_name, sensor_name = sensor_path.split(":") + except ValueError: + raise RuntimeError( + "Sensor path must be in the format dotted.path.to.module:ClassName" + ) + try: + module = importlib.import_module(module_name) + except ImportError: + raise RuntimeError(f"Could not import module {module_name}") + try: + sensor_class = getattr(module, sensor_name) + except AttributeError: + raise RuntimeError(f"Could not find attribute {sensor_name} in {module_name}") + if ( + isinstance(sensor_class, type) + and issubclass(sensor_class, Sensor) + and sensor_class != Sensor + ): + return sensor_class() + else: + raise RuntimeError( + f"Detected object {sensor_class!r} is not recognised as a Sensor type" + ) + + +@show_sensors.command(help="Displays the values of the sensors") +def show() -> int: + sensors = get_sensors() + for sensor in sensors: + click.secho(sensor.title, bold=True) + click.echo(str(sensor)) + click.echo("") + return RETURN_CODES["OK"] + + +@show_sensors.command(help="Displays the values of a specific sensor in development") +@click.argument("sensor_path", required=True, metavar="path") +def develop(sensor_path) -> int: + try: + sensor = get_sensor_by_path(sensor_path) + except RuntimeError as error: + click.secho(str(error), fg="red", bold=True) + return RETURN_CODES["BAD_SENSOR_PATH"] + + click.secho(sensor.title, bold=True) + click.echo(str(sensor)) + click.echo("") + return RETURN_CODES["OK"] + + +if __name__ == "__main__": + show_sensors() diff --git a/Ch04/apd.sensors-chapter04-click-subcommands/tests/__init__.py b/Ch04/apd.sensors-chapter04-click-subcommands/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/Ch04/apd.sensors-chapter04-click-subcommands/tests/test_acstatus.py b/Ch04/apd.sensors-chapter04-click-subcommands/tests/test_acstatus.py new file mode 100644 index 0000000..1d10940 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-click-subcommands/tests/test_acstatus.py @@ -0,0 +1,55 @@ +from unittest import mock + +from apd.sensors.sensors import ACStatus + +import pytest + + +@pytest.fixture +def sensor(): + return ACStatus() + + +class TestACStatusFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_True(self, subject): + assert subject(True) == "Connected" + + def test_format_False(self, subject): + assert subject(False) == "Not connected" + + def test_format_None(self, subject): + assert subject(None) == "Unknown" + + +class TestACStatusValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def sensors_battery(self): + with mock.patch("psutil.sensors_battery") as sensors_battery: + yield sensors_battery + + def test_sensors_battery_called(self, subject, sensors_battery): + sensors_battery.return_value.power_plugged = True + assert subject() is True + assert sensors_battery.call_count == 1 + + def test_sensor_but_battery_unknown(self, subject, sensors_battery): + sensors_battery.return_value.power_plugged = None + assert subject() is None + assert sensors_battery.call_count == 1 + + def test_no_sensor(self, subject, sensors_battery): + sensors_battery.return_value = None + assert subject() is None + + def test_str_representation_is_formatted_value(self, sensor, sensors_battery): + sensors_battery.return_value.power_plugged = True + assert str(sensor) == "Connected" + assert sensors_battery.call_count == 1 diff --git a/Ch04/apd.sensors-chapter04-click-subcommands/tests/test_cpuusage.py b/Ch04/apd.sensors-chapter04-click-subcommands/tests/test_cpuusage.py new file mode 100644 index 0000000..aa8a66a --- /dev/null +++ b/Ch04/apd.sensors-chapter04-click-subcommands/tests/test_cpuusage.py @@ -0,0 +1,45 @@ +from unittest import mock + +from apd.sensors.sensors import CPULoad + +import pytest + + +@pytest.fixture +def sensor(): + return CPULoad() + + +class TestCPULoadFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_simple_percentage(self, subject): + assert subject(0.05) == "5.0%" + + def test_format_multiple_decimal_places(self, subject): + assert subject(0.031415926) == "3.1%" + + def test_format_multiple_decimal_places_int(self, subject) -> None: + assert subject(1) == "100.0%" + + +class TestCPULoadValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def cpuload(self): + with mock.patch("psutil.cpu_percent") as cpu_percent: + cpu_percent.return_value = 50.1 + yield cpu_percent + + def test_cpu_percent_called_With_interval(self, subject, cpuload): + assert subject() == 0.501 + assert cpuload.call_count == 1 + assert tuple(cpuload.call_args) == ((), {"interval": 3}) + + def test_str_representation_is_formatted_value(self, sensor, cpuload): + assert str(sensor) == "50.1%" diff --git a/Ch04/apd.sensors-chapter04-click-subcommands/tests/test_dht.py b/Ch04/apd.sensors-chapter04-click-subcommands/tests/test_dht.py new file mode 100644 index 0000000..b546593 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-click-subcommands/tests/test_dht.py @@ -0,0 +1,66 @@ +from apd.sensors.sensors import Temperature, RelativeHumidity + +import pytest + + +@pytest.fixture +def temperature_sensor(): + return Temperature() + + +@pytest.fixture +def humidity_sensor(): + return RelativeHumidity() + + +class TestTemperatureFormatter: + @pytest.fixture + def subject(self, temperature_sensor): + return temperature_sensor.format + + def test_format_21c(self, subject): + assert subject(21.0) == "21.0C (69.8F)" + + def test_format_negative(self, subject): + assert subject(-32.0) == "-32.0C (-25.6F)" + + def test_format_unknown(self, subject): + assert subject(None) == "Unknown" + + +class TestTemperatureConversion: + @pytest.fixture + def subject(self, temperature_sensor): + return temperature_sensor.celsius_to_fahrenheit + + def test_celsius_to_fahrenheit(self, subject): + c = 21 + f = subject(c) + assert f == 69.8 + + def test_celsius_to_fahrenheit_equivlance_point(self, subject): + c = -40 + f = subject(c) + assert f == -40 + + def test_celsius_to_fahrenheit_float(self, subject): + c = 21.2 + f = subject(c) + assert f == 70.16 + + def test_celsius_to_fahrenheit_string(self, subject): + c = "21" + with pytest.raises(TypeError): + subject(c) + + +class TestHumidityFormatter: + @pytest.fixture + def subject(self, humidity_sensor): + return humidity_sensor.format + + def test_format_percentage(self, subject): + assert subject(0.035) == "3.5%" + + def test_format_unknown(self, subject): + assert subject(None) == "Unknown" diff --git a/Ch04/apd.sensors-chapter04-click-subcommands/tests/test_ipaddresses.py b/Ch04/apd.sensors-chapter04-click-subcommands/tests/test_ipaddresses.py new file mode 100644 index 0000000..e8a9690 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-click-subcommands/tests/test_ipaddresses.py @@ -0,0 +1,59 @@ +from unittest import mock +import socket + +from apd.sensors.sensors import IPAddresses + +import pytest + + +@pytest.fixture +def sensor(): + return IPAddresses() + + +class TestIPAddressFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_single_ipv4(self, subject): + ips = [("AF_INET", "192.0.2.1")] + assert subject(ips) == "192.0.2.1 (IPv4)" + + def test_format_single_ipv6(self, subject): + ips = [("AF_INET6", "2001:DB8::1")] + assert subject(ips) == "2001:DB8::1 (IPv6)" + + def test_format_mixed_list(self, subject): + ips = [("AF_INET", "192.0.2.1"), ("AF_INET6", "2001:DB8::1")] + assert subject(ips) == "192.0.2.1 (IPv4)\n2001:DB8::1 (IPv6)" + + def test_unusual_protocols_are_marked_as_unknown(self, subject): + ips = [("AF_IRDA", "ffff")] + assert subject(ips) == "ffff (Unknown)" + + +class TestIPAddressesValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def gethostname(self): + with mock.patch("socket.gethostname") as gethostname: + gethostname.return_value = "localhost" + yield gethostname + + @pytest.fixture + def getaddrinfo(self, gethostname): + with mock.patch("socket.getaddrinfo") as getaddrinfo: + yield getaddrinfo + + def test_getaddrinfo_used_for_value_collection(self, getaddrinfo, subject): + getaddrinfo.return_value = [(socket.AF_INET, 0, 0, "", ("192.0.2.1", 0))] + assert subject() == [("AF_INET", "192.0.2.1")] + assert getaddrinfo.call_count == 1 + + def test_str_representation_is_formatted_value(self, getaddrinfo, sensor): + getaddrinfo.return_value = [(socket.AF_INET6, 0, 0, "", ("2001:DB8::1", 0))] + assert str(sensor) == "2001:DB8::1 (IPv6)" diff --git a/Ch04/apd.sensors-chapter04-click-subcommands/tests/test_pythonversion.py b/Ch04/apd.sensors-chapter04-click-subcommands/tests/test_pythonversion.py new file mode 100644 index 0000000..dff6bb0 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-click-subcommands/tests/test_pythonversion.py @@ -0,0 +1,61 @@ +from collections import namedtuple +from unittest import mock + +from apd.sensors.sensors import PythonVersion + +import pytest + + +@pytest.fixture +def version(): + return namedtuple( + "sys_versioninfo", ("major", "minor", "micro", "releaselevel", "serial") + ) + + +@pytest.fixture +def sensor(): + return PythonVersion() + + +class TestPythonVersionFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_py38(self, subject, version): + py38 = version(3, 8, 0, "final", 0) + assert subject(py38) == "3.8" + + def test_format_large_version(self, subject, version): + large = version(255, 128, 0, "final", 0) + assert subject(large) == "255.128" + + def test_alpha_of_minor_is_marked(self, subject, version): + py39 = version(3, 9, 0, "alpha", 1) + assert subject(py39) == "3.9.0a1" + + def test_alpha_of_micro_is_unmarked(self, subject, version): + py39 = version(3, 9, 1, "alpha", 1) + assert subject(py39) == "3.9" + + +class TestPythonVersionValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def python_version(self): + import sys + + return sys.version_info + + def test_data_value_is_sys_versioninfo(self, python_version, subject): + assert subject() == python_version + + +class TestPythonVersionSensor: + def test_str_representation_is_formatted_value(self, sensor, version): + with mock.patch("sys.version_info", new=version(3, 4, 1, "final", 1)): + assert str(sensor) == "3.4" diff --git a/Ch04/apd.sensors-chapter04-click-subcommands/tests/test_ramusage.py b/Ch04/apd.sensors-chapter04-click-subcommands/tests/test_ramusage.py new file mode 100644 index 0000000..2a368c1 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-click-subcommands/tests/test_ramusage.py @@ -0,0 +1,47 @@ +from unittest import mock + +from apd.sensors.sensors import RAMAvailable + +import pytest + + +@pytest.fixture +def sensor(): + return RAMAvailable() + + +class TestRAMAvailableFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_bytes(self, subject): + assert subject(15) == "15.0 B" + + def test_format_kibibytes(self, subject): + assert subject(15000) == "14.6 KiB" + + def test_format_mibibytes(self, subject): + assert subject(15000000) == "14.3 MiB" + + def test_format_gibibytes(self, subject): + assert subject(15000000000) == "14.0 GiB" + + +class TestRAMAvailableValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def virtual_memory(self): + with mock.patch("psutil.virtual_memory") as virtual_memory: + virtual_memory.return_value.available = 1024 + yield virtual_memory + + def test_virtual_memory_called(self, subject, virtual_memory): + assert subject() == 1024 + assert virtual_memory.call_count == 1 + + def test_str_representation_is_formatted_value(self, sensor, virtual_memory): + assert str(sensor) == "1.0 KiB" diff --git a/Ch04/apd.sensors-chapter04-click-subcommands/tests/test_sensors.py b/Ch04/apd.sensors-chapter04-click-subcommands/tests/test_sensors.py new file mode 100644 index 0000000..6885c41 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-click-subcommands/tests/test_sensors.py @@ -0,0 +1,16 @@ +from click.testing import CliRunner +import pytest + +import apd.sensors.sensors + + +def test_sensors(): + assert hasattr(apd.sensors.sensors, "PythonVersion") + + +@pytest.mark.functional +def test_python_version_is_first_two_lines_of_cli_output(): + runner = CliRunner() + result = runner.invoke(apd.sensors.sensors.show_sensors) + python_version = str(apd.sensors.sensors.PythonVersion()) + assert ["Python Version", python_version] == result.stdout.split("\n")[:2] diff --git a/Ch04/apd.sensors-chapter04-configparser-local/.pre-commit-config.yaml b/Ch04/apd.sensors-chapter04-configparser-local/.pre-commit-config.yaml new file mode 100644 index 0000000..3ff6d15 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-configparser-local/.pre-commit-config.yaml @@ -0,0 +1,23 @@ +repos: + +- repo: local + hooks: + - id: black + name: black + entry: pipenv run black + args: [--quiet] + language: system + types: [python] + + - id: mypy + name: mypy + entry: pipenv run mypy + args: ["--follow-imports=skip"] + language: system + types: [python] + + - id: flake8 + name: flake8 + entry: pipenv run flake8 + language: system + types: [python] diff --git a/Ch04/apd.sensors-chapter04-configparser-local/CHANGES.md b/Ch04/apd.sensors-chapter04-configparser-local/CHANGES.md new file mode 100644 index 0000000..569aeea --- /dev/null +++ b/Ch04/apd.sensors-chapter04-configparser-local/CHANGES.md @@ -0,0 +1,5 @@ +## Changes + +### 1.0.0 (2019-06-20) + +* Added initial sensors (Matthew Wilkes) diff --git a/Ch04/apd.sensors-chapter04-configparser-local/LICENCE b/Ch04/apd.sensors-chapter04-configparser-local/LICENCE new file mode 100644 index 0000000..ccaef50 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-configparser-local/LICENCE @@ -0,0 +1,21 @@ +``` +Copyright (c) 2019 Matthew Wilkes + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. +``` \ No newline at end of file diff --git a/Ch04/apd.sensors-chapter04-configparser-local/Pipfile b/Ch04/apd.sensors-chapter04-configparser-local/Pipfile new file mode 100644 index 0000000..40413b8 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-configparser-local/Pipfile @@ -0,0 +1,29 @@ +[[source]] +name = "pypi" +url = "https://pypi.org/simple" +verify_ssl = true + +[[source]] +name = "piwheels" +url = "https://piwheels.org/simple" +verify_ssl = true + +[dev-packages] +ipykernel = "*" +remote-ikernel = "*" +pytest = "*" +pytest-cov = "*" +mypy = "*" +flake8 = "*" +black = "*" +pre-commit = "*" +wheel = "*" +twine = "*" + +[packages] +apd-sensors = {editable = true,path = "."} + +[requires] + +[pipenv] +allow_prereleases = true diff --git a/Ch04/apd.sensors-chapter04-configparser-local/Pipfile.lock b/Ch04/apd.sensors-chapter04-configparser-local/Pipfile.lock new file mode 100644 index 0000000..e7e5bb8 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-configparser-local/Pipfile.lock @@ -0,0 +1,897 @@ +{ + "_meta": { + "hash": { + "sha256": "b2def6fc1541c4ee04e68450c1818f456f7d3aac56b38ed1356d6bbcd13ffd8d" + }, + "pipfile-spec": 6, + "requires": {}, + "sources": [ + { + "name": "pypi", + "url": "https://pypi.org/simple", + "verify_ssl": true + }, + { + "name": "piwheels", + "url": "https://piwheels.org/simple", + "verify_ssl": true + } + ] + }, + "default": { + "apd-sensors": { + "editable": true, + "path": "." + }, + "click": { + "hashes": [ + "sha256:8a18b4ea89d8820c5d0c7da8a64b2c324b4dabb695804dbfea19b9be9d88c0cc", + "sha256:e345d143d80bf5ee7534056164e5e112ea5e22716bbb1ce727941f4c8b471b9a" + ], + "version": "==7.1.1" + }, + "psutil": { + "hashes": [ + "sha256:002bd856770037221256765a472f50d677074ad207276a39e2bccdb7394e333b", + "sha256:1413f4158eb50e110777c4f15d7c759521703bd6beb58926f1d562da40180058", + "sha256:298af2f14b635c3c7118fd9183843f4e73e681bb6f01e12284d4d70d48a60953", + "sha256:60b86f327c198561f101a92be1995f9ae0399736b6eced8f24af41ec64fb88d4", + "sha256:685ec16ca14d079455892f25bd124df26ff9137664af445563c1bd36629b5e0e", + "sha256:73f35ab66c6c7a9ce82ba44b1e9b1050be2a80cd4dcc3352cc108656b115c74f", + "sha256:75e22717d4dbc7ca529ec5063000b2b294fc9a367f9c9ede1f65846c7955fd38", + "sha256:833b2b19c04fc0aecad22daa3e35108d6ee2e4f92061a4a8f2dd77c6fa9154f5", + "sha256:a02f4ac50d4a23253b68233b07e7cdb567bd025b982d5cf0ee78296990c22d9e", + "sha256:d008ddc00c6906ec80040d26dc2d3e3962109e40ad07fd8a12d0284ce5e0e4f8", + "sha256:d84029b190c8a66a946e28b4d3934d2ca1528ec94764b180f7d6ea57b0e75e26", + "sha256:e2d0c5b07c6fe5a87fa27b7855017edb0d52ee73b71e6ee368fae268605cc3f5", + "sha256:f344ca230dd8e8d5eee16827596f1c22ec0876127c28e800d7ae20ed44c4b310", + "sha256:f3e7f183162622eae9fbdee44ff19b226edec68b94ae7cba47f9afcf4c3ec66c" + ], + "version": "==5.7.0" + } + }, + "develop": { + "appdirs": { + "hashes": [ + "sha256:9e5896d1372858f8dd3344faf4e5014d21849c756c8d5701f78f8a103b372d92", + "sha256:d8b24664561d0d34ddfaec54636d502d7cea6e29c3eaf68f3df6180863e2166e" + ], + "version": "==1.4.3" + }, + "atomicwrites": { + "hashes": [ + "sha256:03472c30eb2c5d1ba9227e4c2ca66ab8287fbfbbda3888aa93dc2e28fc6811b4", + "sha256:75a9445bac02d8d058d5e1fe689654ba5a6556a1dfd8ce6ec55a0ed79866cfa6" + ], + "markers": "sys_platform == 'win32'", + "version": "==1.3.0" + }, + "attrs": { + "hashes": [ + "sha256:08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c", + "sha256:f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72" + ], + "version": "==19.3.0" + }, + "backcall": { + "hashes": [ + "sha256:1fac21e6861f538700a5d498620153f38407a4bacf9e1d5047b3d717f10bc4ab", + "sha256:38ecd85be2c1e78f77fd91700c76e14667dc21e2713b63876c0eb901196e01e4", + "sha256:bbbf4b1e5cd2bdb08f915895b51081c041bac22394fdfcfdfbe9f14b77c08bf2" + ], + "version": "==0.1.0" + }, + "black": { + "hashes": [ + "sha256:1b30e59be925fafc1ee4565e5e08abef6b03fe455102883820fe5ee2e4734e0b", + "sha256:c2edb73a08e9e0e6f65a0e6af18b059b8b1cdd5bef997d7a0b181df93dc81539" + ], + "index": "pypi", + "version": "==19.10b0" + }, + "bleach": { + "hashes": [ + "sha256:cc8da25076a1fe56c3ac63671e2194458e0c4d9c7becfd52ca251650d517903c", + "sha256:e78e426105ac07026ba098f04de8abe9b6e3e98b5befbf89b51a5ef0a4292b03" + ], + "version": "==3.1.4" + }, + "certifi": { + "hashes": [ + "sha256:017c25db2a153ce562900032d5bc68e9f191e44e9a0f762f373977de9df1fbb3", + "sha256:25b64c7da4cd7479594d035c08c2d809eb4aab3a26e5a990ea98cc450c320f1f" + ], + "version": "==2019.11.28" + }, + "cfgv": { + "hashes": [ + "sha256:1ccf53320421aeeb915275a196e23b3b8ae87dea8ac6698b1638001d4a486d53", + "sha256:c8e8f552ffcc6194f4e18dd4f68d9aef0c0d58ae7e7be8c82bee3c5e9edfa513" + ], + "version": "==3.1.0" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:8a18b4ea89d8820c5d0c7da8a64b2c324b4dabb695804dbfea19b9be9d88c0cc", + "sha256:e345d143d80bf5ee7534056164e5e112ea5e22716bbb1ce727941f4c8b471b9a" + ], + "version": "==7.1.1" + }, + "colorama": { + "hashes": [ + "sha256:7d73d2a99753107a36ac6b455ee49046802e59d9d076ef8e47b61499fa29afff", + "sha256:e96da0d330793e2cb9485e9ddfd918d456036c7149416295932478192f4436a1" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.3" + }, + "coverage": { + "hashes": [ + "sha256:03f630aba2b9b0d69871c2e8d23a69b7fe94a1e2f5f10df5049c0df99db639a0", + "sha256:046a1a742e66d065d16fb564a26c2a15867f17695e7f3d358d7b1ad8a61bca30", + "sha256:0a907199566269e1cfa304325cc3b45c72ae341fbb3253ddde19fa820ded7a8b", + "sha256:165a48268bfb5a77e2d9dbb80de7ea917332a79c7adb747bd005b3a07ff8caf0", + "sha256:1b60a95fc995649464e0cd48cecc8288bac5f4198f21d04b8229dc4097d76823", + "sha256:1f66cf263ec77af5b8fe14ef14c5e46e2eb4a795ac495ad7c03adc72ae43fafe", + "sha256:2e08c32cbede4a29e2a701822291ae2bc9b5220a971bba9d1e7615312efd3037", + "sha256:327ff84602ee3b5c0c921ff8bbe605e2dd3599fc2a12620b0085f847af4ebb2a", + "sha256:3844c3dab800ca8536f75ae89f3cf566848a3eb2af4d9f7b1103b4f4f7a5dad6", + "sha256:408ce64078398b2ee2ec08199ea3fcf382828d2f8a19c5a5ba2946fe5ddc6c31", + "sha256:443be7602c790960b9514567917af538cac7807a7c0c0727c4d2bbd4014920fd", + "sha256:4482f69e0701139d0f2c44f3c395d1d1d37abd81bfafbf9b6efbe2542679d892", + "sha256:4a8a259bf990044351baf69d3b23e575699dd60b18460c71e81dc565f5819ac1", + "sha256:513e6526e0082c59a984448f4104c9bf346c2da9961779ede1fc458e8e8a1f78", + "sha256:5f587dfd83cb669933186661a351ad6fc7166273bc3e3a1531ec5c783d997aac", + "sha256:62061e87071497951155cbccee487980524d7abea647a1b2a6eb6b9647df9006", + "sha256:641e329e7f2c01531c45c687efcec8aeca2a78a4ff26d49184dce3d53fc35014", + "sha256:65a7e00c00472cd0f59ae09d2fb8a8aaae7f4a0cf54b2b74f3138d9f9ceb9cb2", + "sha256:6ad6ca45e9e92c05295f638e78cd42bfaaf8ee07878c9ed73e93190b26c125f7", + "sha256:73aa6e86034dad9f00f4bbf5a666a889d17d79db73bc5af04abd6c20a014d9c8", + "sha256:7c9762f80a25d8d0e4ab3cb1af5d9dffbddb3ee5d21c43e3474c84bf5ff941f7", + "sha256:85596aa5d9aac1bf39fe39d9fa1051b0f00823982a1de5766e35d495b4a36ca9", + "sha256:86a0ea78fd851b313b2e712266f663e13b6bc78c2fb260b079e8b67d970474b1", + "sha256:8a620767b8209f3446197c0e29ba895d75a1e272a36af0786ec70fe7834e4307", + "sha256:922fb9ef2c67c3ab20e22948dcfd783397e4c043a5c5fa5ff5e9df5529074b0a", + "sha256:9fad78c13e71546a76c2f8789623eec8e499f8d2d799f4b4547162ce0a4df435", + "sha256:a37c6233b28e5bc340054cf6170e7090a4e85069513320275a4dc929144dccf0", + "sha256:c3fc325ce4cbf902d05a80daa47b645d07e796a80682c1c5800d6ac5045193e5", + "sha256:cda33311cb9fb9323958a69499a667bd728a39a7aa4718d7622597a44c4f1441", + "sha256:db1d4e38c9b15be1521722e946ee24f6db95b189d1447fa9ff18dd16ba89f732", + "sha256:eda55e6e9ea258f5e4add23bcf33dc53b2c319e70806e180aecbff8d90ea24de", + "sha256:f0db0dc803e0f81f2a4098d4f25904f41be13b6d3e69f098b5b2bbba17cb7985", + "sha256:f372cdbb240e09ee855735b9d85e7f50730dcfb6296b74b95a3e5dea0615c4c1" + ], + "version": "==5.0.4" + }, + "decorator": { + "hashes": [ + "sha256:41fa54c2a0cc4ba648be4fd43cff00aedf5b9465c9bf18d64325bc225f08f760", + "sha256:e3a62f0520172440ca0dcc823749319382e377f37f140a0b99ef45fecb84bfe7" + ], + "version": "==4.4.2" + }, + "defusedxml": { + "hashes": [ + "sha256:6687150770438374ab581bb7a1b327a847dd9c5749e396102de3fad4e8a3ef93", + "sha256:f684034d135af4c6cbb949b8a4d2ed61634515257a67299e5f940fbaa34377f5" + ], + "version": "==0.6.0" + }, + "distlib": { + "hashes": [ + "sha256:2e166e231a26b36d6dfe35a48c4464346620f8645ed0ace01ee31822b288de21", + "sha256:8a041060c5a140131768a2e2450813f5577f7e4c68a4585824c5585502dcfbea" + ], + "version": "==0.3.0" + }, + "docutils": { + "hashes": [ + "sha256:0c5b78adfbf7762415433f5515cd5c9e762339e23369dbe8000d84a4bf4ab3af", + "sha256:c2de3a60e9e7d07be26b7f2b00ca0309c207e06c100f9cc2a94931fc75a478fc" + ], + "version": "==0.16" + }, + "entrypoints": { + "hashes": [ + "sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19", + "sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451" + ], + "version": "==0.3" + }, + "filelock": { + "hashes": [ + "sha256:18d82244ee114f543149c66a6e0c14e9c4f8a1044b5cdaadd0f82159d6a6ff59", + "sha256:929b7d63ec5b7d6b71b0fa5ac14e030b3f70b75747cef1b10da9b879fef15836" + ], + "version": "==3.0.12" + }, + "flake8": { + "hashes": [ + "sha256:45681a117ecc81e870cbf1262835ae4af5e7a8b08e40b944a8a6e6b895914cfb", + "sha256:49356e766643ad15072a789a20915d3c91dc89fd313ccd71802303fd67e4deca" + ], + "index": "pypi", + "version": "==3.7.9" + }, + "identify": { + "hashes": [ + "sha256:a7577a1f55cee1d21953a5cf11a3c839ab87f5ef909a4cba6cf52ed72b4c6059", + "sha256:ab246293e6585a1c6361a505b68d5b501a0409310932b7de2c2ead667b564d89" + ], + "version": "==1.4.13" + }, + "idna": { + "hashes": [ + "sha256:7588d1c14ae4c77d74036e8c22ff447b26d0fde8f007354fd48a7814db15b7cb", + "sha256:a068a21ceac8a4d63dbfd964670474107f541babbd2250d61922f029858365fa" + ], + "version": "==2.9" + }, + "importlib-metadata": { + "hashes": [ + "sha256:2a688cbaa90e0cc587f1df48bdc97a6eadccdcd9c35fb3f976a09e3b5016d90f", + "sha256:34513a8a0c4962bc66d35b359558fd8a5e10cd472d37aec5f66858addef32c1e" + ], + "markers": "python_version < '3.8'", + "version": "==1.6.0" + }, + "ipykernel": { + "hashes": [ + "sha256:08997a27ccafbb998437d167ccc893666c6088ec3aa90c054bfb3d588bb3fc20", + "sha256:37c65d2e2da3326e5cf114405df6d47d997b8a3eba99e2cc4b75833bf71a5e18", + "sha256:39746b5f7d847a23fae4eac893e63e3d9cc5f8c3a4797fcd3bfa8d1a296ec6ed" + ], + "index": "pypi", + "version": "==5.2.0" + }, + "ipython": { + "hashes": [ + "sha256:1807adeae64502fcaa491cd93405644faa055b646efb40c1e48648ad66f65a75", + "sha256:ca478e52ae1f88da0102360e57e528b92f3ae4316aabac80a2cd7f7ab2efb48a", + "sha256:eb8d075de37f678424527b5ef6ea23f7b80240ca031c2dd6de5879d687a65333" + ], + "version": "==7.13.0" + }, + "ipython-genutils": { + "hashes": [ + "sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8", + "sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8" + ], + "version": "==0.2.0" + }, + "jedi": { + "hashes": [ + "sha256:b4f4052551025c6b0b0b193b29a6ff7bdb74c52450631206c262aef9f7159ad2", + "sha256:d5c871cb9360b414f981e7072c52c33258d598305280fef91c6cae34739d65d5" + ], + "version": "==0.16.0" + }, + "jinja2": { + "hashes": [ + "sha256:39cbce1ffc25cbf4860b09195654763be95b9e4900475b24d5c345d3e0948c53", + "sha256:c10142f819c2d22bdcd17548c46fa9b77cf4fda45097854c689666bf425e7484", + "sha256:c922560ac46888d47384de1dbdc3daaa2ea993af4b26a436dec31fa2c19ec668" + ], + "version": "==3.0.0a1" + }, + "jsonschema": { + "hashes": [ + "sha256:4e5b3cf8216f577bee9ce139cbe72eca3ea4f292ec60928ff24758ce626cd163", + "sha256:c8a85b28d377cc7737e46e2d9f2b4f44ee3c0e1deac6bf46ddefc7187d30797a" + ], + "version": "==3.2.0" + }, + "jupyter-client": { + "hashes": [ + "sha256:5724827aedb1948ed6ed15131372bc304a8d3ad9ac67ac19da7c95120d6b17e0", + "sha256:81c1c712de383bf6bf3dab6b407392b0d84d814c7bd0ce2c7035ead8b2ffea97" + ], + "version": "==6.1.2" + }, + "jupyter-core": { + "hashes": [ + "sha256:394fd5dd787e7c8861741880bdf8a00ce39f95de5d18e579c74b882522219e7e", + "sha256:a4ee613c060fe5697d913416fc9d553599c05e4492d58fac1192c9a6844abb21" + ], + "version": "==4.6.3" + }, + "jupyterlab-pygments": { + "hashes": [ + "sha256:31deda75bd11b014190764c79f6199aa04ef2d4cf35c1c94270fc2e19c23a5c5", + "sha256:cc15f2a9850899d108a3c22743a86edcd3b42791a6c88b6e5b558d021d14d065" + ], + "version": "==0.1.0" + }, + "keyring": { + "hashes": [ + "sha256:197fd5903901030ef7b82fe247f43cfed2c157a28e7747d1cfcf4bc5e699dd03", + "sha256:8179b1cdcdcbc221456b5b74e6b7cfa06f8dd9f239eb81892166d9223d82c5ba", + "sha256:dcb7f54f06c868526b97f9825b558e5199661f9647849acf9204c2d6028501dc" + ], + "version": "==21.2.0" + }, + "markupsafe": { + "hashes": [ + "sha256:00bc623926325b26bb9605ae9eae8a215691f33cae5df11ca5424f06f2d1f473", + "sha256:09027a7803a62ca78792ad89403b1b7a73a01c8cb65909cd876f7fcebd79b161", + "sha256:09c4b7f37d6c648cb13f9230d847adf22f8171b1ccc4d5682398e77f40309235", + "sha256:1027c282dad077d0bae18be6794e6b6b8c91d58ed8a8d89a89d59693b9131db5", + "sha256:13d3144e1e340870b25e7b10b98d779608c02016d5184cfb9927a9f10c689f42", + "sha256:19536834abffb3fa155017053c607cb835b2ecc6a3a2554a88043d991dffb736", + "sha256:24982cc2533820871eba85ba648cd53d8623687ff11cbb805be4ff7b4c971aff", + "sha256:29872e92839765e546828bb7754a68c418d927cd064fd4708fab9fe9c8bb116b", + "sha256:3d61f15e39611aacd91b7e71d903787da86d9e80896e683c0103fced9add7834", + "sha256:43a55c2930bbc139570ac2452adf3d70cdbb3cfe5912c71cdce1c2c6bbd9c5d1", + "sha256:46c99d2de99945ec5cb54f23c8cd5689f6d7177305ebff350a58ce5f8de1669e", + "sha256:500d4957e52ddc3351cabf489e79c91c17f6e0899158447047588650b5e69183", + "sha256:535f6fc4d397c1563d08b88e485c3496cf5784e927af890fb3c3aac7f933ec66", + "sha256:596510de112c685489095da617b5bcbbac7dd6384aeebeda4df6025d0256a81b", + "sha256:62fe6c95e3ec8a7fad637b7f3d372c15ec1caa01ab47926cfdf7a75b40e0eac1", + "sha256:6788b695d50a51edb699cb55e35487e430fa21f1ed838122d722e0ff0ac5ba15", + "sha256:6dd73240d2af64df90aa7c4e7481e23825ea70af4b4922f8ede5b9e35f78a3b1", + "sha256:717ba8fe3ae9cc0006d7c451f0bb265ee07739daf76355d06366154ee68d221e", + "sha256:7952deddf24b85c88dab48f6ec366ac6e39d2761b5280f2f9594911e03fcd064", + "sha256:79855e1c5b8da654cf486b830bd42c06e8780cea587384cf6545b7d9ac013a0b", + "sha256:7c1699dfe0cf8ff607dbdcc1e9b9af1755371f92a68f706051cc8c37d447c905", + "sha256:88e5fcfb52ee7b911e8bb6d6aa2fd21fbecc674eadd44118a9cc3863f938e735", + "sha256:8defac2f2ccd6805ebf65f5eeb132adcf2ab57aa11fdf4c0dd5169a004710e7d", + "sha256:98c7086708b163d425c67c7a91bad6e466bb99d797aa64f965e9d25c12111a5e", + "sha256:9add70b36c5666a2ed02b43b335fe19002ee5235efd4b8a89bfcf9005bebac0d", + "sha256:9bf40443012702a1d2070043cb6291650a0841ece432556f784f004937f0f32c", + "sha256:ade5e387d2ad0d7ebf59146cc00c8044acbd863725f887353a10df825fc8ae21", + "sha256:b00c1de48212e4cc9603895652c5c410df699856a2853135b3967591e4beebc2", + "sha256:b1282f8c00509d99fef04d8ba936b156d419be841854fe901d8ae224c59f0be5", + "sha256:b2051432115498d3562c084a49bba65d97cf251f5a331c64a12ee7e04dacc51b", + "sha256:ba59edeaa2fc6114428f1637ffff42da1e311e29382d81b339c1817d37ec93c6", + "sha256:c8716a48d94b06bb3b2524c2b77e055fb313aeb4ea620c8dd03a105574ba704f", + "sha256:cd5df75523866410809ca100dc9681e301e3c27567cf498077e8551b6d20e42f", + "sha256:cdb132fc825c38e1aeec2c8aa9338310d29d337bebbd7baa06889d09a60a1fa2", + "sha256:e249096428b3ae81b08327a63a485ad0878de3fb939049038579ac0ef61e17e7", + "sha256:e8313f01ba26fbbe36c7be1966a7b7424942f670f38e666995b88d012765b9be" + ], + "version": "==1.1.1" + }, + "mccabe": { + "hashes": [ + "sha256:ab8a6258860da4b6677da4bd2fe5dc2c659cff31b3ee4f7f5d64e79735b80d42", + "sha256:dd8d182285a0fe56bace7f45b5e7d1a6ebcbf524e8f3bd87eb0f125271b8831f" + ], + "version": "==0.6.1" + }, + "mistune": { + "hashes": [ + "sha256:59a3429db53c50b5c6bcc8a07f8848cb00d7dc8bdb431a4ab41920d201d4756e", + "sha256:88a1051873018da288eee8538d476dffe1262495144b33ecb586c4ab266bb8d4" + ], + "version": "==0.8.4" + }, + "more-itertools": { + "hashes": [ + "sha256:5dd8bcf33e5f9513ffa06d5ad33d78f31e1931ac9a18f33d37e77a180d393a7c", + "sha256:b1ddb932186d8a6ac451e1d95844b382f55e12686d51ca0c68b6f61f2ab7a507" + ], + "version": "==8.2.0" + }, + "mypy": { + "hashes": [ + "sha256:15b948e1302682e3682f11f50208b726a246ab4e6c1b39f9264a8796bb416aa2", + "sha256:219a3116ecd015f8dca7b5d2c366c973509dfb9a8fc97ef044a36e3da66144a1", + "sha256:3b1fc683fb204c6b4403a1ef23f0b1fac8e4477091585e0c8c54cbdf7d7bb164", + "sha256:3beff56b453b6ef94ecb2996bea101a08f1f8a9771d3cbf4988a61e4d9973761", + "sha256:7687f6455ec3ed7649d1ae574136835a4272b65b3ddcf01ab8704ac65616c5ce", + "sha256:7ec45a70d40ede1ec7ad7f95b3c94c9cf4c186a32f6bacb1795b60abd2f9ef27", + "sha256:86c857510a9b7c3104cf4cde1568f4921762c8f9842e987bc03ed4f160925754", + "sha256:8a627507ef9b307b46a1fea9513d5c98680ba09591253082b4c48697ba05a4ae", + "sha256:8dfb69fbf9f3aeed18afffb15e319ca7f8da9642336348ddd6cab2713ddcf8f9", + "sha256:a34b577cdf6313bf24755f7a0e3f3c326d5c1f4fe7422d1d06498eb25ad0c600", + "sha256:a8ffcd53cb5dfc131850851cc09f1c44689c2812d0beb954d8138d4f5fc17f65", + "sha256:b90928f2d9eb2f33162405f32dde9f6dcead63a0971ca8a1b50eb4ca3e35ceb8", + "sha256:c56ffe22faa2e51054c5f7a3bc70a370939c2ed4de308c690e7949230c995913", + "sha256:f91c7ae919bbc3f96cd5e5b2e786b2b108343d1d7972ea130f7de27fdd547cf3" + ], + "index": "pypi", + "version": "==0.770" + }, + "mypy-extensions": { + "hashes": [ + "sha256:090fedd75945a69ae91ce1303b5824f428daf5a028d2f6ab8a299250a846f15d", + "sha256:2d82818f5bb3e369420cb3c4060a7970edba416647068eb4c5343488a6c604a8" + ], + "version": "==0.4.3" + }, + "nbconvert": { + "hashes": [ + "sha256:944a5fbe6c4609d74e7f331bfa957c8eff2d53904f7c40f053a44bfb4164b718", + "sha256:c86da6adc412df9ad2726fe438589e4495c7835792d6d84f888178682f5d5bcf" + ], + "version": "==6.0.0a0" + }, + "nbformat": { + "hashes": [ + "sha256:65a79936a128fd85aef392b7fea520166364037118b6fe3ed52de742d06c4558", + "sha256:f0c47cf93c505cb943e2f131ef32b8ae869292b5f9f279db2bafb35867923f69" + ], + "version": "==5.0.5" + }, + "nodeenv": { + "hashes": [ + "sha256:5b2438f2e42af54ca968dd1b374d14a1194848955187b0e5e4be1f73813a5212" + ], + "version": "==1.3.5" + }, + "notebook": { + "hashes": [ + "sha256:3edc616c684214292994a3af05eaea4cc043f6b4247d830f3a2f209fa7639a80", + "sha256:47a9092975c9e7965ada00b9a20f0cf637d001db60d241d479f53c0be117ad48" + ], + "version": "==6.0.3" + }, + "packaging": { + "hashes": [ + "sha256:3c292b474fda1671ec57d46d739d072bfd495a4f51ad01a055121d81e952b7a3", + "sha256:82f77b9bee21c1bafbf35a84905d604d5d1223801d639cf3ed140bd651c08752" + ], + "version": "==20.3" + }, + "pandocfilters": { + "hashes": [ + "sha256:41a309da81cba5509389b19d96b0ee49551cee8165a6406754f2565e95429860", + "sha256:b3dd70e169bb5449e6bc6ff96aea89c5eea8c5f6ab5e207fc2f521a2cf4a0da9" + ], + "version": "==1.4.2" + }, + "parso": { + "hashes": [ + "sha256:0c5659e0c6eba20636f99a04f469798dca8da279645ce5c387315b2c23912157", + "sha256:8515fc12cfca6ee3aa59138741fc5624d62340c97e401c74875769948d4f2995" + ], + "version": "==0.6.2" + }, + "pathspec": { + "hashes": [ + "sha256:163b0632d4e31cef212976cf57b43d9fd6b0bac6e67c26015d611a647d5e7424", + "sha256:562aa70af2e0d434367d9790ad37aed893de47f1693e4201fd1d3dca15d19b96" + ], + "version": "==0.7.0" + }, + "pexpect": { + "hashes": [ + "sha256:0b48a55dcb3c05f3329815901ea4fc1537514d6ba867a152b581d69ae3710937", + "sha256:fc65a43959d153d0114afe13997d439c22823a27cefceb5ff35c2178c6784c0c" + ], + "version": "==4.8.0" + }, + "pickleshare": { + "hashes": [ + "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca", + "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56" + ], + "version": "==0.7.5" + }, + "pkginfo": { + "hashes": [ + "sha256:7424f2c8511c186cd5424bbf31045b77435b37a8d604990b79d4e70d741148bb", + "sha256:a6d9e40ca61ad3ebd0b72fbadd4fba16e4c0e4df0428c041e01e06eb6ee71f32" + ], + "version": "==1.5.0.1" + }, + "pluggy": { + "hashes": [ + "sha256:15b2acde666561e1298d71b523007ed7364de07029219b604cf808bfa1c765b0", + "sha256:966c145cd83c96502c3c3868f50408687b38434af77734af1e9ca461a4081d2d" + ], + "version": "==0.13.1" + }, + "pre-commit": { + "hashes": [ + "sha256:487c675916e6f99d355ec5595ad77b325689d423ef4839db1ed2f02f639c9522", + "sha256:9707b4f7069365ffdb57d2782086a9f3019afde2a6e9f85df785c9bf090e1118", + "sha256:c0aa11bce04a7b46c5544723aedf4e81a4d5f64ad1205a30a9ea12d5e81969e1" + ], + "index": "pypi", + "version": "==2.2.0" + }, + "prometheus-client": { + "hashes": [ + "sha256:09b5750fd1c153420dccd35881116e853c730081bea0dbf0ea6649103bcb8445", + "sha256:71cd24a2b3eb335cb800c7159f423df1bd4dcd5171b234be15e3f31ec9f622da" + ], + "version": "==0.7.1" + }, + "prompt-toolkit": { + "hashes": [ + "sha256:563d1a4140b63ff9dd587bda9557cffb2fe73650205ab6f4383092fb882e7dc8", + "sha256:df7e9e63aea609b1da3a65641ceaf5bc7d05e0a04de5bd45d05dbeffbabf9e04" + ], + "version": "==3.0.5" + }, + "ptyprocess": { + "hashes": [ + "sha256:923f299cc5ad920c68f2bc0bc98b75b9f838b93b599941a6b63ddbc2476394c0", + "sha256:d7cc528d76e76342423ca640335bd3633420dc1366f258cb31d05e865ef5ca1f" + ], + "version": "==0.6.0" + }, + "py": { + "hashes": [ + "sha256:5e27081401262157467ad6e7f851b7aa402c5852dbcb3dae06768434de5752aa", + "sha256:c20fdd83a5dbc0af9efd622bee9a5564e278f6380fffcacc43ba6f43db2813b0" + ], + "version": "==1.8.1" + }, + "pycodestyle": { + "hashes": [ + "sha256:95a2219d12372f05704562a14ec30bc76b05a5b297b21a5dfe3f6fac3491ae56", + "sha256:e40a936c9a450ad81df37f549d676d127b1b66000a6c500caa2b085bc0ca976c" + ], + "version": "==2.5.0" + }, + "pyflakes": { + "hashes": [ + "sha256:17dbeb2e3f4d772725c777fabc446d5634d1038f234e77343108ce445ea69ce0", + "sha256:d976835886f8c5b31d47970ed689944a0262b5f3afa00a5a7b4dc81e5449f8a2" + ], + "version": "==2.1.1" + }, + "pygments": { + "hashes": [ + "sha256:647344a061c249a3b74e230c739f434d7ea4d8b1d5f3721bc0f3558049b38f44", + "sha256:aa931c0bd5daa25c475afadb2147115134cfe501f0656828cbe7cb566c7123bc", + "sha256:ff7a40b4860b727ab48fad6360eb351cc1b33cbf9b15a0f689ca5353e9463324" + ], + "version": "==2.6.1" + }, + "pyparsing": { + "hashes": [ + "sha256:4c830582a84fb022400b85429791bc551f1f4871c33f23e44f353119e92f969f", + "sha256:c342dccb5250c08d45fd6f8b4a559613ca603b57498511740e65cd11a2e7dcec" + ], + "version": "==2.4.6" + }, + "pyrsistent": { + "hashes": [ + "sha256:28669905fe725965daa16184933676547c5bb40a5153055a8dee2a4bd7933ad3", + "sha256:3217696df78f9222a3d1179b119c27be346b969a9e4d617de2a215a87d9aa456", + "sha256:9324b762b52e5a901611b25f50f9cdf8789c61ece3ff7c24dc872603c4faca62", + "sha256:c11415790cc5803e173de7d71d54f94c66a9154f81a72ffdf45a70096916f226" + ], + "version": "==0.16.0" + }, + "pytest": { + "hashes": [ + "sha256:0e5b30f5cb04e887b91b1ee519fa3d89049595f428c1db76e73bd7f17b09b172", + "sha256:84dde37075b8805f3d1f392cc47e38a0e59518fb46a431cfdaf7cf1ce805f970" + ], + "index": "pypi", + "version": "==5.4.1" + }, + "pytest-cov": { + "hashes": [ + "sha256:cc6742d8bac45070217169f5f72ceee1e0e55b0221f54bcf24845972d3a47f2b", + "sha256:cdbdef4f870408ebdbfeb44e63e07eb18bb4619fae852f6e760645fa36172626" + ], + "index": "pypi", + "version": "==2.8.1" + }, + "python-dateutil": { + "hashes": [ + "sha256:73ebfe9dbf22e832286dafa60473e4cd239f8592f699aa5adaf10050e6e1823c", + "sha256:75bb3f31ea686f1197762692a9ee6a7550b59fc6ca3a1f4b5d7e32fb98e2da2a" + ], + "version": "==2.8.1" + }, + "pywin32": { + "hashes": [ + "sha256:300a2db938e98c3e7e2093e4491439e62287d0d493fe07cce110db070b54c0be", + "sha256:31f88a89139cb2adc40f8f0e65ee56a8c585f629974f9e07622ba80199057511", + "sha256:371fcc39416d736401f0274dd64c2302728c9e034808e37381b5e1b22be4a6b0", + "sha256:47a3c7551376a865dd8d095a98deba954a98f326c6fe3c72d8726ca6e6b15507", + "sha256:4cdad3e84191194ea6d0dd1b1b9bdda574ff563177d2adf2b4efec2a244fa116", + "sha256:7c1ae32c489dc012930787f06244426f8356e129184a02c25aef163917ce158e", + "sha256:7f18199fbf29ca99dff10e1f09451582ae9e372a892ff03a28528a24d55875bc", + "sha256:9b31e009564fb95db160f154e2aa195ed66bcc4c058ed72850d047141b36f3a2", + "sha256:a929a4af626e530383a579431b70e512e736e9588106715215bf685a3ea508d4", + "sha256:c054c52ba46e7eb6b7d7dfae4dbd987a1bb48ee86debe3f245a2884ece46e295", + "sha256:f27cec5e7f588c3d1051651830ecc00294f90728d19c3bf6916e6dba93ea357c", + "sha256:f4c5be1a293bae0076d93c88f37ee8da68136744588bc5e2be2f299a34ceb7aa" + ], + "markers": "sys_platform == 'win32'", + "version": "==227" + }, + "pywin32-ctypes": { + "hashes": [ + "sha256:24ffc3b341d457d48e8922352130cf2644024a4ff09762a2261fd34c36ee5942", + "sha256:9dc2d991b3479cc2df15930958b674a48a227d5361d413827a4cfd0b5876fc98" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.2.0" + }, + "pywinpty": { + "hashes": [ + "sha256:1e525a4de05e72016a7af27836d512db67d06a015aeaf2fa0180f8e6a039b3c2", + "sha256:2740eeeb59297593a0d3f762269b01d0285c1b829d6827445fcd348fb47f7e70", + "sha256:2d7e9c881638a72ffdca3f5417dd1563b60f603e1b43e5895674c2a1b01f95a0", + "sha256:33df97f79843b2b8b8bc5c7aaf54adec08cc1bae94ee99dfb1a93c7a67704d95", + "sha256:5fb2c6c6819491b216f78acc2c521b9df21e0f53b9a399d58a5c151a3c4e2a2d", + "sha256:8fc5019ff3efb4f13708bd3b5ad327589c1a554cb516d792527361525a7cb78c", + "sha256:b358cb552c0f6baf790de375fab96524a0498c9df83489b8c23f7f08795e966b", + "sha256:dbd838de92de1d4ebf0dce9d4d5e4fc38d0b7b1de837947a18b57a882f219139", + "sha256:dd22c8efacf600730abe4a46c1388355ce0d4ab75dc79b15d23a7bd87bf05b48", + "sha256:e854211df55d107f0edfda8a80b39dfc87015bef52a8fe6594eb379240d81df2" + ], + "markers": "os_name == 'nt'", + "version": "==0.5.7" + }, + "pyyaml": { + "hashes": [ + "sha256:06a0d7ba600ce0b2d2fe2e78453a470b5a6e000a985dd4a4e54e436cc36b0e97", + "sha256:240097ff019d7c70a4922b6869d8a86407758333f02203e0fc6ff79c5dcede76", + "sha256:4f4b913ca1a7319b33cfb1369e91e50354d6f07a135f3b901aca02aa95940bd2", + "sha256:589929630502f3b0e87daee190b399f98401b6bccea87ed634a73fe5da43d3d4", + "sha256:69f00dca373f240f842b2931fb2c7e14ddbacd1397d57157a9b005a6a9942648", + "sha256:6e8383720b2127b09dba5b323ac896c702cf02bc5786fce16cd6791825d92d16", + "sha256:73f099454b799e05e5ab51423c7bcf361c58d3206fa7b0d555426b1f4d9a3eaf", + "sha256:74809a57b329d6cc0fdccee6318f44b9b8649961fa73144a98735b0aaf029f1f", + "sha256:7739fc0fa8205b3ee8808aea45e968bc90082c10aef6ea95e855e10abf4a37b2", + "sha256:95f71d2af0ff4227885f7a6605c37fd53d3a106fcab511b8860ecca9fcf400ee", + "sha256:b8eac752c5e14d3eca0e6dd9199cd627518cb5ec06add0de9d32baeee6fe645d", + "sha256:cc8955cfbfc7a115fa81d85284ee61147059a753344bc51098f3ccd69b0d7e0c", + "sha256:d13155f591e6fcc1ec3b30685d50bf0711574e2c0dfffd7644babf8b5102ca1a" + ], + "version": "==5.3.1" + }, + "pyzmq": { + "hashes": [ + "sha256:07bfbf192f22ef1dde65b6046efff191e3201e74da6d47098e68958469ecbe48", + "sha256:0bbc1728fe4314b4ca46249c33873a390559edac7c217ec7001b5e0c34a8fb7f", + "sha256:1e076ad5bd3638a18c376544d32e0af986ca10d43d4ce5a5d889a8649f0d0a3d", + "sha256:242d949eb6b10197cda1d1cec377deab1d5324983d77e0d0bf9dc5eb6d71a6b4", + "sha256:26f4ae420977d2a8792d7c2d7bda43128b037b5eeb21c81951a94054ad8b8843", + "sha256:32234c21c5e0a767c754181c8112092b3ddd2e2a36c3f76fc231ced817aeee47", + "sha256:3f12ce1e9cc9c31497bd82b207e8e86ccda9eebd8c9f95053aae46d15ccd2196", + "sha256:4557d5e036e6d85715b4b9fdb482081398da1d43dc580d03db642b91605b409f", + "sha256:4f562dab21c03c7aa061f63b147a595dbe1006bf4f03213272fc9f7d5baec791", + "sha256:54ecd00daa474885bbf318108401d318614425a05dfeae917611dd93f99f2678", + "sha256:5e071b834051e9ecb224915398f474bfad802c2fff883f118ff5363ca4ae3edf", + "sha256:5e1f65e576ab07aed83f444e201d86deb01cd27dcf3f37c727bc8729246a60a8", + "sha256:5f10a31f288bf055be76c57710807a8f0efdb2b82be6c2a2b8f9a61f33a40cea", + "sha256:6aaaf90b420dc40d9a0e1996b82c6a0ff91d9680bebe2135e67c9e6d197c0a53", + "sha256:75238d3c16cab96947705d5709187a49ebb844f54354cdf0814d195dd4c045de", + "sha256:7f7e7b24b1d392bb5947ba91c981e7d1a43293113642e0d8870706c8e70cdc71", + "sha256:84b91153102c4bcf5d0f57d1a66a0f03c31e9e6525a5f656f52fc615a675c748", + "sha256:944f6bb5c63140d76494467444fd92bebd8674236837480a3c75b01fe17df1ab", + "sha256:a1f957c20c9f51d43903881399b078cddcf710d34a2950e88bce4e494dcaa4d1", + "sha256:a49fd42a29c1cc1aa9f461c5f2f5e0303adba7c945138b35ee7f4ab675b9f754", + "sha256:a99ae601b4f6917985e9bb071549e30b6f93c72f5060853e197bdc4b7d357e5f", + "sha256:ad48865a29efa8a0cecf266432ea7bc34e319954e55cf104be0319c177e6c8f5", + "sha256:b08e425cf93b4e018ab21dc8fdbc25d7d0502a23cc4fea2380010cf8cf11e462", + "sha256:bb10361293d96aa92be6261fa4d15476bca56203b3a11c62c61bd14df0ef89ba", + "sha256:bd1a769d65257a7a12e2613070ca8155ee348aa9183f2aadf1c8b8552a5510f5", + "sha256:cb3b7156ef6b1a119e68fbe3a54e0a0c40ecacc6b7838d57dd708c90b62a06dc", + "sha256:d2f64994f9628f621e0f636f9532055887defc9fa5213aaeceb770d9c579f9ac", + "sha256:e8e4efb52ec2df8d046395ca4c84ae0056cf507b2f713ec803c65a8102d010de", + "sha256:f37c29da2a5b0c5e31e6f8aab885625ea76c807082f70b2d334d3fd573c3100a", + "sha256:f4d558bc5668d2345773a9ff8c39e2462dafcb1f6772a2e582fbced389ce527f", + "sha256:f5b6d015587a1d6f582ba03b226a9ddb1dfb09878b3be04ef48b01b7d4eb6b2a" + ], + "version": "==19.0.0" + }, + "readme-renderer": { + "hashes": [ + "sha256:1b6d8dd1673a0b293766b4106af766b6eff3654605f9c4f239e65de6076bc222", + "sha256:e67d64242f0174a63c3b727801a2fff4c1f38ebe5d71d95ff7ece081945a6cd4" + ], + "version": "==25.0" + }, + "regex": { + "hashes": [ + "sha256:01b2d70cbaed11f72e57c1cfbaca71b02e3b98f739ce33f5f26f71859ad90431", + "sha256:046e83a8b160aff37e7034139a336b660b01dbfe58706f9d73f5cdc6b3460242", + "sha256:113309e819634f499d0006f6200700c8209a2a8bf6bd1bdc863a4d9d6776a5d1", + "sha256:200539b5124bc4721247a823a47d116a7a23e62cc6695744e3eb5454a8888e6d", + "sha256:25f4ce26b68425b80a233ce7b6218743c71cf7297dbe02feab1d711a2bf90045", + "sha256:269f0c5ff23639316b29f31df199f401e4cb87529eafff0c76828071635d417b", + "sha256:59fd3df28f43adf25a32b4a957f5b0a62e3ff55ce29de6600da7e110f33102dd", + "sha256:5de40649d4f88a15c9489ed37f88f053c15400257eeb18425ac7ed0a4e119400", + "sha256:7f78f963e62a61e294adb6ff5db901b629ef78cb2a1cfce3cf4eeba80c1c67aa", + "sha256:82469a0c1330a4beb3d42568f82dffa32226ced006e0b063719468dcd40ffdf0", + "sha256:8c2b7fa4d72781577ac45ab658da44c7518e6d96e2a50d04ecb0fd8f28b21d69", + "sha256:974535648f31c2b712a6b2595969f8ab370834080e00ab24e5dbb9d19b8bfb74", + "sha256:99272d6b6a68c7ae4391908fc15f6b8c9a6c345a46b632d7fdb7ef6c883a2bbb", + "sha256:9b64a4cc825ec4df262050c17e18f60252cdd94742b4ba1286bcfe481f1c0f26", + "sha256:9e9624440d754733eddbcd4614378c18713d2d9d0dc647cf9c72f64e39671be5", + "sha256:9ff16d994309b26a1cdf666a6309c1ef51ad4f72f99d3392bcd7b7139577a1f2", + "sha256:b33ebcd0222c1d77e61dbcd04a9fd139359bded86803063d3d2d197b796c63ce", + "sha256:bba52d72e16a554d1894a0cc74041da50eea99a8483e591a9edf1025a66843ab", + "sha256:bed7986547ce54d230fd8721aba6fd19459cdc6d315497b98686d0416efaff4e", + "sha256:c7f58a0e0e13fb44623b65b01052dae8e820ed9b8b654bb6296bc9c41f571b70", + "sha256:d3242da581f8d54d5a0f769b4d003f065dc6222621267a056b98f6886dc90f36", + "sha256:d58a4fa7910102500722defbde6e2816b0372a4fcc85c7e239323767c74f5cbc", + "sha256:da22de67d83ee26b45c7b461c96e541f0cda72b76229d95e313666770dd8da41", + "sha256:f1ac2dc65105a53c1c2d72b1d3e98c2464a133b4067a51a3d2477b28449709a0" + ], + "version": "==2020.2.20" + }, + "remote-ikernel": { + "hashes": [ + "sha256:5253216e87a8c31f1b0ca9305454f223147518b580e853b7635a3d8b9c88c295", + "sha256:740b80a57fa1af40cadef541c5a4eb293675b504092ecf00c57dd2f0011bd840" + ], + "index": "pypi", + "version": "==0.4.6" + }, + "requests": { + "hashes": [ + "sha256:43999036bfa82904b6af1d99e4882b560e5e2c68e5c4b0aa03b655f3d7d73fee", + "sha256:b3f43d496c6daba4493e7c431722aeb7dbc6288f52a6e04e7b6023b0247817e6" + ], + "version": "==2.23.0" + }, + "requests-toolbelt": { + "hashes": [ + "sha256:380606e1d10dc85c3bd47bf5a6095f815ec007be7a8b69c878507068df059e6f", + "sha256:968089d4584ad4ad7c171454f0a5c6dac23971e9472521ea3b6d49d610aa6fc0" + ], + "version": "==0.9.1" + }, + "send2trash": { + "hashes": [ + "sha256:60001cc07d707fe247c94f74ca6ac0d3255aabcb930529690897ca2a39db28b2", + "sha256:f1691922577b6fa12821234aeb57599d887c4900b9ca537948d2dac34aea888b" + ], + "version": "==1.5.0" + }, + "six": { + "hashes": [ + "sha256:236bdbdce46e6e6a3d61a337c0f8b763ca1e8717c03b369e87a7ec7ce1319c0a", + "sha256:8f3cd2e254d8f793e7f3d6d9df77b92252b52637291d0f0da013c76ea2724b6c" + ], + "version": "==1.14.0" + }, + "terminado": { + "hashes": [ + "sha256:4804a774f802306a7d9af7322193c5390f1da0abb429e082a10ef1d46e6fb2c2", + "sha256:a43dcb3e353bc680dd0783b1d9c3fc28d529f190bc54ba9a229f72fe6e7a54d7" + ], + "version": "==0.8.3" + }, + "testpath": { + "hashes": [ + "sha256:60e0a3261c149755f4399a1fff7d37523179a70fdc3abdf78de9fc2604aeec7e", + "sha256:bfcf9411ef4bf3db7579063e0546938b1edda3d69f4e1fb8756991f5951f85d4" + ], + "version": "==0.4.4" + }, + "toml": { + "hashes": [ + "sha256:229f81c57791a41d65e399fc06bf0848bab550a9dfd5ed66df18ce5f05e73d5c", + "sha256:235682dd292d5899d361a811df37e04a8828a5b1da3115886b73cf81ebc9100e" + ], + "version": "==0.10.0" + }, + "tornado": { + "hashes": [ + "sha256:0fe2d45ba43b00a41cd73f8be321a44936dc1aba233dee979f17a042b83eb6dc", + "sha256:22aed82c2ea340c3771e3babc5ef220272f6fd06b5108a53b4976d0d722bcd52", + "sha256:2c027eb2a393d964b22b5c154d1a23a5f8727db6fda837118a776b29e2b8ebc6", + "sha256:503700d85d9a2c2aa737fb16df58bfa2ac0d5ec501881fea2acceae64ce17858", + "sha256:5217e601700f24e966ddab689f90b7ea4bd91ff3357c3600fa1045e26d68e55d", + "sha256:5618f72e947533832cbc3dec54e1dffc1747a5cb17d1fd91577ed14fa0dc081b", + "sha256:5f6a07e62e799be5d2330e68d808c8ac41d4a259b9cea61da4101b83cb5dc673", + "sha256:7182a9285e364e55e6902b5fb4d4a219efd8d7818d9000b419a0eaf3909fc0bc", + "sha256:c58d56003daf1b616336781b26d184023ea4af13ae143d9dda65e31e534940b9", + "sha256:c952975c8ba74f546ae6de2e226ab3cc3cc11ae47baf607459a6728585bb542a", + "sha256:c98232a3ac391f5faea6821b53db8db461157baa788f5d6222a193e9456e1740" + ], + "version": "==6.0.4" + }, + "tqdm": { + "hashes": [ + "sha256:03d2366c64d44c7f61e74c700d9b202d57e9efe355ea5c28814c52bfe7a50b8c", + "sha256:be5ddeec77d78ba781ea41eacb2358a77f74cc2407f54b82222d7ee7dc8c8ccf" + ], + "version": "==4.44.1" + }, + "traitlets": { + "hashes": [ + "sha256:70b4c6a1d9019d7b4f6846832288f86998aa3b9207c6821f3578a6a6a467fe44", + "sha256:d023ee369ddd2763310e4c3eae1ff649689440d4ae59d7485eb4cfbbe3e359f7" + ], + "version": "==4.3.3" + }, + "twine": { + "hashes": [ + "sha256:c1af8ca391e43b0a06bbc155f7f67db0bf0d19d284bfc88d1675da497a946124", + "sha256:d561a5e511f70275e5a485a6275ff61851c16ffcb3a95a602189161112d9f160" + ], + "index": "pypi", + "version": "==3.1.1" + }, + "typed-ast": { + "hashes": [ + "sha256:0666aa36131496aed8f7be0410ff974562ab7eeac11ef351def9ea6fa28f6355", + "sha256:0c2c07682d61a629b68433afb159376e24e5b2fd4641d35424e462169c0a7919", + "sha256:249862707802d40f7f29f6e1aad8d84b5aa9e44552d2cc17384b209f091276aa", + "sha256:24995c843eb0ad11a4527b026b4dde3da70e1f2d8806c99b7b4a7cf491612652", + "sha256:269151951236b0f9a6f04015a9004084a5ab0d5f19b57de779f908621e7d8b75", + "sha256:3791f73e5d75aa9a95274679ab4821bd9d16de623c4ecf4900a77a29864ee144", + "sha256:4083861b0aa07990b619bd7ddc365eb7fa4b817e99cf5f8d9cf21a42780f6e01", + "sha256:498b0f36cc7054c1fead3d7fc59d2150f4d5c6c56ba7fb150c013fbc683a8d2d", + "sha256:4e3e5da80ccbebfff202a67bf900d081906c358ccc3d5e3c8aea42fdfdfd51c1", + "sha256:6daac9731f172c2a22ade6ed0c00197ee7cc1221aa84cfdf9c31defeb059a907", + "sha256:715ff2f2df46121071622063fc7543d9b1fd19ebfc4f5c8895af64a77a8c852c", + "sha256:73d785a950fc82dd2a25897d525d003f6378d1cb23ab305578394694202a58c3", + "sha256:8c8aaad94455178e3187ab22c8b01a3837f8ee50e09cf31f1ba129eb293ec30b", + "sha256:8ce678dbaf790dbdb3eba24056d5364fb45944f33553dd5869b7580cdbb83614", + "sha256:aaee9905aee35ba5905cfb3c62f3e83b3bec7b39413f0a7f19be4e547ea01ebb", + "sha256:bcd3b13b56ea479b3650b82cabd6b5343a625b0ced5429e4ccad28a8973f301b", + "sha256:c9e348e02e4d2b4a8b2eedb48210430658df6951fa484e59de33ff773fbd4b41", + "sha256:d205b1b46085271b4e15f670058ce182bd1199e56b317bf2ec004b6a44f911f6", + "sha256:d43943ef777f9a1c42bf4e552ba23ac77a6351de620aa9acf64ad54933ad4d34", + "sha256:d5d33e9e7af3b34a40dc05f498939f0ebf187f07c385fd58d591c533ad8562fe", + "sha256:df74880bdb70f34304ccc52b0c99d3e578f96a906b86f3ae172a1f1c2edef2bc", + "sha256:fc0fea399acb12edbf8a628ba8d2312f583bdbdb3335635db062fa98cf71fca4", + "sha256:fe460b922ec15dd205595c9b5b99e2f056fd98ae8f9f56b888e7a17dc2b757e7" + ], + "version": "==1.4.1" + }, + "typing-extensions": { + "hashes": [ + "sha256:091ecc894d5e908ac75209f10d5b4f118fbdb2eb1ede6a63544054bb1edb41f2", + "sha256:910f4656f54de5993ad9304959ce9bb903f90aadc7c67a0bef07e678014e892d", + "sha256:cf8b63fedea4d89bab840ecbb93e75578af28f76f66c35889bd7065f5af88575" + ], + "version": "==3.7.4.1" + }, + "urllib3": { + "hashes": [ + "sha256:2f3db8b19923a873b3e5256dc9c2dedfa883e33d87c690d9c7913e1f40673cdc", + "sha256:87716c2d2a7121198ebcb7ce7cccf6ce5e9ba539041cfbaeecfb641dc0bf6acc" + ], + "version": "==1.25.8" + }, + "virtualenv": { + "hashes": [ + "sha256:4e399f48c6b71228bf79f5febd27e3bbb753d9d5905776a86667bc61ab628a25", + "sha256:9e81279f4a9d16d1c0654a127c2c86e5bca2073585341691882c1e66e31ef8a5" + ], + "version": "==20.0.15" + }, + "wcwidth": { + "hashes": [ + "sha256:cafe2186b3c009a04067022ce1dcd79cb38d8d65ee4f4791b8888d6599d1bbe1", + "sha256:ee73862862a156bf77ff92b09034fc4825dd3af9cf81bc5b360668d425f3c5f1" + ], + "version": "==0.1.9" + }, + "webencodings": { + "hashes": [ + "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", + "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923" + ], + "version": "==0.5.1" + }, + "wheel": { + "hashes": [ + "sha256:8788e9155fe14f54164c1b9eb0a319d98ef02c160725587ad60f14ddc57b6f96", + "sha256:df277cb51e61359aba502208d680f90c0493adec6f0e848af94948778aed386e" + ], + "index": "pypi", + "version": "==0.34.2" + }, + "zipp": { + "hashes": [ + "sha256:aa36550ff0c0b7ef7fa639055d797116ee891440eac1a56f378e2d3179e0320b", + "sha256:c599e4d75c98f6798c509911d08a22e6c021d074469042177c8c86fb92eefd96" + ], + "version": "==3.1.0" + } + } +} diff --git a/Ch04/apd.sensors-chapter04-configparser-local/README.md b/Ch04/apd.sensors-chapter04-configparser-local/README.md new file mode 100644 index 0000000..e6dcb45 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-configparser-local/README.md @@ -0,0 +1,32 @@ +# Advanced Python Development Sensors + +This is the data collection package that forms part of the running example +for the book [Advanced Python Development](https://advancedpython.dev). + +## Usage + +This installs a console script called `sensors` that returns a report on +various aspects of the system. The available sensors are: + +* Python version +* IP Addresses +* CPU Usage +* RAM Available +* Battery charging state +* Ambient Temperature +* Ambient Humidity + +There are no command-line options, to view the report run `sensors` on the +command line. + +## Caveats + +The Ambient Temperature and Ambient Humidity sensors are only available on +RaspberryPi hosts and assume that a DHT22 sensor is connected to pin `D20`. + +If there is an entry in `/etc/hosts` for the current machine's hostname that +value will be the only result from the IP Addresses sensor. + +## Installation + +Install with `pip3 install apd.sensors` under Python 3.7 or higher diff --git a/Ch04/apd.sensors-chapter04-configparser-local/config.cfg b/Ch04/apd.sensors-chapter04-configparser-local/config.cfg new file mode 100644 index 0000000..a7e3d59 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-configparser-local/config.cfg @@ -0,0 +1,32 @@ +[config] +plugins = + PythonVersion + IPAddress + CPULoad + RAMAvailable + ACStatus + Temperature + Humidity + +[IPAddress] +plugin = apd.sensors.sensors:IPAddresses + +[PythonVersion] +plugin = apd.sensors.sensors:PythonVersion + +[CPULoad] +plugin = apd.sensors.sensors:CPULoad + +[RAMAvailable] +plugin = apd.sensors.sensors:RAMAvailable + +[ACStatus] +plugin = apd.sensors.sensors:ACStatus + +[Temperature] +plugin = apd.sensors.sensors:Temperature +pin = D4 + +[Humidity] +plugin = apd.sensors.sensors:Temperature +pin = D4 diff --git a/Ch04/apd.sensors-chapter04-configparser-local/pytest.ini b/Ch04/apd.sensors-chapter04-configparser-local/pytest.ini new file mode 100644 index 0000000..861f3d0 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-configparser-local/pytest.ini @@ -0,0 +1,3 @@ +[pytest] +markers = + functional: these tests are significantly slower as they run the whole CLI script \ No newline at end of file diff --git a/Ch04/apd.sensors-chapter04-configparser-local/setup.cfg b/Ch04/apd.sensors-chapter04-configparser-local/setup.cfg new file mode 100644 index 0000000..908c774 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-configparser-local/setup.cfg @@ -0,0 +1,59 @@ +[mypy] +namespace_packages = True +mypy_path = src + +[mypy-psutil] +ignore_missing_imports = True + +[mypy-adafruit_dht] +ignore_missing_imports = True + +[mypy-board] +ignore_missing_imports = True + +[mypy-pytest] +ignore_missing_imports = True + +[flake8] +max-line-length = 88 + +[metadata] +name = apd.sensors +version = attr: apd.sensors.VERSION +description = APD Sensor package +long_description = file: README.md, CHANGES.md, LICENCE +long_description_content_type = text/markdown +keywords = iot +license = MIT +classifiers = + Programming Language :: Python :: 3 + Programming Language :: Python :: 3.7 + +[options] +zip_safe = False +include_package_data = True +package-dir = + =src +packages = find_namespace: +install_requires = + psutil + click + adafruit-circuitpython-dht ; 'arm' in platform_machine + +[options.package_data] +apd.sensors = py.typed + +[options.packages.find] +where = src + +[options.entry_points] +console_scripts = + sensors = apd.sensors.cli:show_sensors +apd_sensors = + PythonVersion = apd.sensors.sensors:PythonVersion + IPAddresses = apd.sensors.sensors:IPAddresses + CPULoad = apd.sensors.sensors:CPULoad + RAMAvailable = apd.sensors.sensors:RAMAvailable + ACStatus = apd.sensors.sensors:ACStatus + Temperature = apd.sensors.sensors:Temperature + RelativeHumidity = apd.sensors.sensors:RelativeHumidity \ No newline at end of file diff --git a/Ch04/apd.sensors-chapter04-configparser-local/setup.py b/Ch04/apd.sensors-chapter04-configparser-local/setup.py new file mode 100644 index 0000000..6068493 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-configparser-local/setup.py @@ -0,0 +1,3 @@ +from setuptools import setup + +setup() diff --git a/Ch04/apd.sensors-chapter04-configparser-local/src/apd/sensors/__init__.py b/Ch04/apd.sensors-chapter04-configparser-local/src/apd/sensors/__init__.py new file mode 100644 index 0000000..ec63ed1 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-configparser-local/src/apd/sensors/__init__.py @@ -0,0 +1 @@ +VERSION = "1.1.0dev1" diff --git a/Ch04/apd.sensors-chapter04-configparser-local/src/apd/sensors/cli.py b/Ch04/apd.sensors-chapter04-configparser-local/src/apd/sensors/cli.py new file mode 100644 index 0000000..343ca17 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-configparser-local/src/apd/sensors/cli.py @@ -0,0 +1,142 @@ +import configparser +import enum +import importlib +import os +import sys +import typing as t + +import click + +from .sensors import Sensor +from .config_path_utils import user_config_dir, site_config_dirs + + +class ReturnCodes(enum.IntEnum): + OK = 0 + BAD_SENSOR_PATH = 17 + BAD_CONFIG = 18 + + +def parse_config_file( + path: t.Union[str, t.Iterable[str]] +) -> t.Dict[str, t.Dict[str, str]]: + parser = configparser.ConfigParser() + parser.read(path, encoding="utf-8") + try: + plugin_names = [ + name for name in parser.get("config", "plugins").split() if name + ] + except configparser.NoSectionError: + raise RuntimeError(f"Could not find [config] section in file") + except configparser.NoOptionError: + raise RuntimeError(f"Could not find plugins line in [config] section") + plugin_data = {} + for plugin_name in plugin_names: + try: + plugin_data[plugin_name] = dict(parser.items(plugin_name)) + except configparser.NoSectionError: + raise RuntimeError(f"Could not find [{plugin_name}] section in file") + return plugin_data + + +def get_sensor_by_path(sensor_path: str, **kwargs) -> Sensor[t.Any]: + try: + module_name, sensor_name = sensor_path.split(":") + except ValueError: + raise RuntimeError( + "Sensor path must be in the format dotted.path.to.module:ClassName" + ) + try: + module = importlib.import_module(module_name) + except ImportError: + raise RuntimeError(f"Could not import module {module_name}") + try: + sensor_class = getattr(module, sensor_name) + except AttributeError: + raise RuntimeError(f"Could not find attribute {sensor_name} in {module_name}") + if ( + isinstance(sensor_class, type) + and issubclass(sensor_class, Sensor) + and sensor_class != Sensor + ): + try: + return sensor_class(**kwargs) + except TypeError as error: + message = str(error) + if "got an unexpected" in message: + raise RuntimeError(f"Sensor {sensor_name} " + message.split(" ", 1)[1]) + raise + else: + raise RuntimeError( + f"Detected object {sensor_class!r} is not recognised as a Sensor type" + ) + + +def get_sensors(path: t.Iterable[str]) -> t.Iterable[Sensor[t.Any]]: + sensors = [] + for plugin_name, sensor_data in parse_config_file(path).items(): + try: + class_path = sensor_data.pop("plugin") + except TypeError: + raise RuntimeError( + f"Could not find plugin= line in [{plugin_name}] section" + ) + sensors.append(get_sensor_by_path(class_path, **sensor_data)) + return sensors + + +@click.command(help="Displays the values of the sensors") +@click.option( + "--develop", required=False, metavar="path", help="Load a sensor by Python path" +) +@click.option( + "--config", + required=False, + metavar="config_path", + help="Load the specified configuration file", +) +@click.option( + "--verbose", + "-v", + required=False, + is_flag=True, + help="Print additional programme information", +) +def show_sensors(develop: str, config: str, verbose: bool) -> None: + sensors: t.Iterable[Sensor[t.Any]] + if develop: + try: + sensors = [get_sensor_by_path(develop)] + except RuntimeError as error: + click.secho(str(error), fg="red", bold=True, err=True) + sys.exit(ReturnCodes.BAD_SENSOR_PATH) + else: + if config is None: + configs = ( + [user_config_dir("apd_sensors")] + + site_config_dirs("apd_sensors") + + [os.getcwd()] + ) + configs = [os.path.join(path, "config.cfg") for path in configs] + else: + configs = [os.path.abspath(config)] + if verbose: + click.secho( + "Looking for configuration in {}".format("; ".join(configs)), + fg="yellow", + err=True, + ) + try: + sensors = get_sensors(configs) + except RuntimeError as error: + click.secho(str(error), fg="red", bold=True, err=True) + sys.exit(ReturnCodes.BAD_CONFIG) + for sensor in sensors: + click.secho(sensor.title, bold=True) + click.echo(str(sensor)) + click.echo("") + sys.exit(ReturnCodes.OK) + + +if __name__ == "__main__": + show_sensors() diff --git a/Ch04/apd.sensors-chapter04-configparser-local/src/apd/sensors/config_path_utils.py b/Ch04/apd.sensors-chapter04-configparser-local/src/apd/sensors/config_path_utils.py new file mode 100644 index 0000000..4d9f3a0 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-configparser-local/src/apd/sensors/config_path_utils.py @@ -0,0 +1,207 @@ +# Functions from Pip https://github.com/pypa/pip/blob/800f866600968997dd6d9e49076b401784195123/src/pip/_internal/utils/appdirs.py # noqa: E501 + + +# Copyright (c) 2008-2019 The pip developers (see AUTHORS.txt file) +# +# Permission is hereby granted, free of charge, to any person obtaining +# a copy of this software and associated documentation files (the +# "Software"), to deal in the Software without restriction, including +# without limitation the rights to use, copy, modify, merge, publish, +# distribute, sublicense, and/or sell copies of the Software, and to +# permit persons to whom the Software is furnished to do so, subject to +# the following conditions: +# +# The above copyright notice and this permission notice shall be +# included in all copies or substantial portions of the Software. +# +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE +# LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION +# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION +# WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + + +# Authors of the relevant code appear to be +# Chris Jerdonek +# cytolentino +# Donald Stufft +# Maxim Kurnikov +# Mickaël Schoentgen +# Monica Baluna +# Pradyun Gedam +# but thanks go to all contributors to pip + + +# This contains modifications to simplify dependencies, please do not +# report any bugs against the official version that only affect +# this implementation + +from __future__ import absolute_import + +import ctypes +import os +import sys + +from typing import List + + +WINDOWS = sys.platform.startswith("win") or (sys.platform == "cli" and os.name == "nt") + + +def expanduser(path): + # type: (str) -> str + """ + Expand ~ and ~user constructions. + Includes a workaround for https://bugs.python.org/issue14768 + """ + expanded = os.path.expanduser(path) + if path.startswith("~/") and expanded.startswith("//"): + expanded = expanded[1:] + return expanded + + +def user_data_dir(appname, roaming=False): + # type: (str, bool) -> str + r""" + Return full path to the user-specific data dir for this application. + "appname" is the name of application. + If None, just the system directory is returned. + "roaming" (boolean, default False) can be set True to use the Windows + roaming appdata directory. That means that for users on a Windows + network setup for roaming profiles, this user data will be + sync'd on login. See + + for a discussion of issues. + Typical user data directories are: + macOS: ~/Library/Application Support/ + if it exists, else ~/.config/ + Unix: ~/.local/share/ # or in + $XDG_DATA_HOME, if defined + Win XP (not roaming): C:\Documents and Settings\\ ... + ...Application Data\ + Win XP (roaming): C:\Documents and Settings\\Local ... + ...Settings\Application Data\ + Win 7 (not roaming): C:\\Users\\AppData\Local\ + Win 7 (roaming): C:\\Users\\AppData\Roaming\ + For Unix, we follow the XDG spec and support $XDG_DATA_HOME. + That means, by default "~/.local/share/". + """ + if WINDOWS: + const = roaming and "CSIDL_APPDATA" or "CSIDL_LOCAL_APPDATA" + path = os.path.join(os.path.normpath(_get_win_folder(const)), appname) + elif sys.platform == "darwin": + path = ( + os.path.join(expanduser("~/Library/Application Support/"), appname) + if os.path.isdir( + os.path.join(expanduser("~/Library/Application Support/"), appname) + ) + else os.path.join(expanduser("~/.config/"), appname) + ) + else: + path = os.path.join( + os.getenv("XDG_DATA_HOME", expanduser("~/.local/share")), appname + ) + + return path + + +def user_config_dir(appname, roaming=True): + # type: (str, bool) -> str + """Return full path to the user-specific config dir for this application. + "appname" is the name of application. + If None, just the system directory is returned. + "roaming" (boolean, default True) can be set False to not use the + Windows roaming appdata directory. That means that for users on a + Windows network setup for roaming profiles, this user data will be + sync'd on login. See + + for a discussion of issues. + Typical user data directories are: + macOS: same as user_data_dir + Unix: ~/.config/ + Win *: same as user_data_dir + For Unix, we follow the XDG spec and support $XDG_CONFIG_HOME. + That means, by default "~/.config/". + """ + if WINDOWS: + path = user_data_dir(appname, roaming=roaming) + elif sys.platform == "darwin": + path = user_data_dir(appname) + else: + path = os.getenv("XDG_CONFIG_HOME", expanduser("~/.config")) + path = os.path.join(path, appname) + + return path + + +# for the discussion regarding site_config_dirs locations +# see +def site_config_dirs(appname): + # type: (str) -> List[str] + r"""Return a list of potential user-shared config dirs for this application. + "appname" is the name of application. + Typical user config directories are: + macOS: /Library/Application Support// + Unix: /etc or $XDG_CONFIG_DIRS[i]// for each value in + $XDG_CONFIG_DIRS + Win XP: C:\Documents and Settings\All Users\Application ... + ...Data\\ + Vista: (Fail! "C:\ProgramData" is a hidden *system* directory + on Vista.) + Win 7: Hidden, but writeable on Win 7: + C:\ProgramData\\ + """ + if WINDOWS: + path = os.path.normpath(_get_win_folder("CSIDL_COMMON_APPDATA")) + pathlist = [os.path.join(path, appname)] + elif sys.platform == "darwin": + pathlist = [os.path.join("/Library/Application Support", appname)] + else: + # try looking in $XDG_CONFIG_DIRS + xdg_config_dirs = os.getenv("XDG_CONFIG_DIRS", "/etc/xdg") + if xdg_config_dirs: + pathlist = [ + os.path.join(expanduser(x), appname) + for x in xdg_config_dirs.split(os.pathsep) + ] + else: + pathlist = [] + + # always look in /etc directly as well + pathlist.append("/etc") + + return pathlist + + +# -- Windows support functions -- + + +def _get_win_folder(csidl_name): + # type: (str) -> str + # On Python 2, ctypes.create_unicode_buffer().value returns "unicode", + # which isn't the same as str in the annotation above. + csidl_const = { + "CSIDL_APPDATA": 26, + "CSIDL_COMMON_APPDATA": 35, + "CSIDL_LOCAL_APPDATA": 28, + }[csidl_name] + + buf = ctypes.create_unicode_buffer(1024) + ctypes.windll.shell32.SHGetFolderPathW(None, csidl_const, None, 0, buf) + + # Downgrade to short path name if have highbit chars. See + # . + has_high_char = False + for c in buf: + if ord(c) > 255: + has_high_char = True + break + if has_high_char: + buf2 = ctypes.create_unicode_buffer(1024) + if ctypes.windll.kernel32.GetShortPathNameW(buf.value, buf2, 1024): + buf = buf2 + + # The type: ignore is explained under the type annotation for this function + return buf.value # type: ignore diff --git a/Ch04/apd.sensors-chapter04-configparser-local/src/apd/sensors/py.typed b/Ch04/apd.sensors-chapter04-configparser-local/src/apd/sensors/py.typed new file mode 100644 index 0000000..e69de29 diff --git a/Ch04/apd.sensors-chapter04-configparser-local/src/apd/sensors/sensors.py b/Ch04/apd.sensors-chapter04-configparser-local/src/apd/sensors/sensors.py new file mode 100644 index 0000000..27f88a4 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-configparser-local/src/apd/sensors/sensors.py @@ -0,0 +1,191 @@ +#!/usr/bin/env python +# coding: utf-8 +import math +import socket +import sys +from typing import Any, Optional, List, Tuple, Iterable, TypeVar, Generic + + +import psutil + + +T_value = TypeVar("T_value") + + +class Sensor(Generic[T_value]): + title: str + + def __init__(self, **kwargs): + if kwargs: + raise TypeError( + "Sensor got an unexpected keyword argument {}".format( + ", ".join(kwargs.keys()) + ) + ) + return + + def value(self) -> T_value: + raise NotImplementedError + + @classmethod + def format(cls, value: T_value) -> str: + raise NotImplementedError + + def __str__(self) -> str: + return self.format(self.value()) + + +class PythonVersion(Sensor[Any]): + title = "Python Version" + + def value(self) -> Any: + return sys.version_info + + @classmethod + def format(cls, value: Any) -> str: + if value.micro == 0 and value.releaselevel == "alpha": + return "{0.major}.{0.minor}.{0.micro}a{0.serial}".format(value) + return "{0.major}.{0.minor}".format(value) + + +class IPAddresses(Sensor[Iterable[Tuple[str, str]]]): + title = "IP Addresses" + FAMILIES = {"AF_INET": "IPv4", "AF_INET6": "IPv6"} + + def value(self) -> List[Tuple[str, str]]: + hostname = socket.gethostname() + addresses = socket.getaddrinfo(hostname, None) + + address_info: List[Tuple[str, str]] = [] + for address in addresses: + family, ip = (address[0].name, address[4][0]) + if family not in self.FAMILIES: + continue + value = (family, ip) + if value not in address_info: + address_info.append(value) + return address_info + + @classmethod + def format(cls, value: Iterable[Tuple[str, str]]) -> str: + return "\n".join( + "{0} ({1})".format(address[1], cls.FAMILIES.get(address[0], "Unknown")) + for address in value + ) + + +class CPULoad(Sensor[float]): + title = "CPU Usage" + + def value(self) -> float: + return psutil.cpu_percent(interval=3) / 100.0 + + @classmethod + def format(cls, value: float) -> str: + return "{:.1%}".format(value) + + +class RAMAvailable(Sensor[int]): + title = "RAM Available" + UNITS = ("B", "KiB", "MiB", "GiB", "TiB", "PiB", "EiB") + UNIT_SIZE = 2 ** 10 + + def value(self) -> int: + return psutil.virtual_memory().available + + @classmethod + def format(cls, value: int) -> str: + magnitude = math.floor(math.log(value, cls.UNIT_SIZE)) + max_magnitude = len(cls.UNITS) - 1 + magnitude = min(magnitude, max_magnitude) + scaled_value = value / (cls.UNIT_SIZE ** magnitude) + return "{:.1f} {}".format(scaled_value, cls.UNITS[magnitude]) + + +class ACStatus(Sensor[Optional[bool]]): + title = "AC Connected" + + def value(self) -> Optional[bool]: + battery = psutil.sensors_battery() + if battery is not None: + return battery.power_plugged + else: + return None + + @classmethod + def format(cls, value: Optional[bool]) -> str: + if value is None: + return "Unknown" + elif value: + return "Connected" + else: + return "Not connected" + + +class Temperature(Sensor[Optional[float]]): + title = "Ambient Temperature" + + def __init__(self, board="DHT22", pin="D4"): + self.board = board + self.pin = pin + + def value(self) -> Optional[float]: + try: + import adafruit_dht + import board + except (ImportError, NotImplementedError): + # No DHT library results in an ImportError. + # Running on an unknown platform results in a + # NotImplementedError when getting the pin + return None + try: + sensor_type = getattr(adafruit_dht, self.board) + pin = getattr(board, self.pin) + return sensor_type(pin).temperature + except RuntimeError: + return None + + @staticmethod + def celsius_to_fahrenheit(value: float) -> float: + return value * 9 / 5 + 32 + + @classmethod + def format(cls, value: Optional[float]) -> str: + if value is None: + return "Unknown" + else: + return "{:.1f}C ({:.1f}F)".format(value, cls.celsius_to_fahrenheit(value)) + + def __str__(self) -> str: + return self.format(self.value()) + + +class RelativeHumidity(Sensor[Optional[float]]): + title = "Relative Humidity" + + def __init__(self, board="DHT22", pin="D4"): + self.board = board + self.pin = pin + + def value(self) -> Optional[float]: + try: + import adafruit_dht + import board + except (ImportError, NotImplementedError): + # No DHT library results in an ImportError. + # Running on an unknown platform results in a + # NotImplementedError when getting the pin + return None + try: + sensor_type = getattr(adafruit_dht, self.board) + pin = getattr(board, self.pin) + return sensor_type(pin).humidity / 100 + except RuntimeError: + return None + + @classmethod + def format(cls, value: Optional[float]) -> str: + if value is None: + return "Unknown" + else: + return "{:.1%}".format(value) diff --git a/Ch04/apd.sensors-chapter04-configparser-local/tests/default_test_config.cfg b/Ch04/apd.sensors-chapter04-configparser-local/tests/default_test_config.cfg new file mode 100644 index 0000000..afefb5d --- /dev/null +++ b/Ch04/apd.sensors-chapter04-configparser-local/tests/default_test_config.cfg @@ -0,0 +1,10 @@ +[config] +plugins = + PythonVersion + IPAddress + +[PythonVersion] +plugin = apd.sensors.sensors:PythonVersion + +[IPAddress] +plugin = apd.sensors.sensors:IPAddresses diff --git a/Ch04/apd.sensors-chapter04-configparser-local/tests/test_acstatus.py b/Ch04/apd.sensors-chapter04-configparser-local/tests/test_acstatus.py new file mode 100644 index 0000000..d2fe71e --- /dev/null +++ b/Ch04/apd.sensors-chapter04-configparser-local/tests/test_acstatus.py @@ -0,0 +1,55 @@ +from unittest import mock + +import pytest + +from apd.sensors.sensors import ACStatus + + +@pytest.fixture +def sensor(): + return ACStatus() + + +class TestACStatusFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_True(self, subject): + assert subject(True) == "Connected" + + def test_format_False(self, subject): + assert subject(False) == "Not connected" + + def test_format_None(self, subject): + assert subject(None) == "Unknown" + + +class TestACStatusValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def sensors_battery(self): + with mock.patch("psutil.sensors_battery") as sensors_battery: + yield sensors_battery + + def test_sensors_battery_called(self, subject, sensors_battery): + sensors_battery.return_value.power_plugged = True + assert subject() is True + assert sensors_battery.call_count == 1 + + def test_sensor_but_battery_unknown(self, subject, sensors_battery): + sensors_battery.return_value.power_plugged = None + assert subject() is None + assert sensors_battery.call_count == 1 + + def test_no_sensor(self, subject, sensors_battery): + sensors_battery.return_value = None + assert subject() is None + + def test_str_representation_is_formatted_value(self, sensor, sensors_battery): + sensors_battery.return_value.power_plugged = True + assert str(sensor) == "Connected" + assert sensors_battery.call_count == 1 diff --git a/Ch04/apd.sensors-chapter04-configparser-local/tests/test_cpuusage.py b/Ch04/apd.sensors-chapter04-configparser-local/tests/test_cpuusage.py new file mode 100644 index 0000000..445f4e5 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-configparser-local/tests/test_cpuusage.py @@ -0,0 +1,45 @@ +from unittest import mock + +import pytest + +from apd.sensors.sensors import CPULoad + + +@pytest.fixture +def sensor(): + return CPULoad() + + +class TestCPULoadFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_simple_percentage(self, subject): + assert subject(0.05) == "5.0%" + + def test_format_multiple_decimal_places(self, subject): + assert subject(0.031415926) == "3.1%" + + def test_format_multiple_decimal_places_int(self, subject) -> None: + assert subject(1) == "100.0%" + + +class TestCPULoadValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def cpuload(self): + with mock.patch("psutil.cpu_percent") as cpu_percent: + cpu_percent.return_value = 50.1 + yield cpu_percent + + def test_cpu_percent_called_With_interval(self, subject, cpuload): + assert subject() == 0.501 + assert cpuload.call_count == 1 + assert tuple(cpuload.call_args) == ((), {"interval": 3}) + + def test_str_representation_is_formatted_value(self, sensor, cpuload): + assert str(sensor) == "50.1%" diff --git a/Ch04/apd.sensors-chapter04-configparser-local/tests/test_dht.py b/Ch04/apd.sensors-chapter04-configparser-local/tests/test_dht.py new file mode 100644 index 0000000..153c1db --- /dev/null +++ b/Ch04/apd.sensors-chapter04-configparser-local/tests/test_dht.py @@ -0,0 +1,66 @@ +import pytest + +from apd.sensors.sensors import Temperature, RelativeHumidity + + +@pytest.fixture +def temperature_sensor(): + return Temperature() + + +@pytest.fixture +def humidity_sensor(): + return RelativeHumidity() + + +class TestTemperatureFormatter: + @pytest.fixture + def subject(self, temperature_sensor): + return temperature_sensor.format + + def test_format_21c(self, subject): + assert subject(21.0) == "21.0C (69.8F)" + + def test_format_negative(self, subject): + assert subject(-32.0) == "-32.0C (-25.6F)" + + def test_format_unknown(self, subject): + assert subject(None) == "Unknown" + + +class TestTemperatureConversion: + @pytest.fixture + def subject(self, temperature_sensor): + return temperature_sensor.celsius_to_fahrenheit + + def test_celsius_to_fahrenheit(self, subject): + c = 21 + f = subject(c) + assert f == 69.8 + + def test_celsius_to_fahrenheit_equivlance_point(self, subject): + c = -40 + f = subject(c) + assert f == -40 + + def test_celsius_to_fahrenheit_float(self, subject): + c = 21.2 + f = subject(c) + assert f == 70.16 + + def test_celsius_to_fahrenheit_string(self, subject): + c = "21" + with pytest.raises(TypeError): + subject(c) + + +class TestHumidityFormatter: + @pytest.fixture + def subject(self, humidity_sensor): + return humidity_sensor.format + + def test_format_percentage(self, subject): + assert subject(0.035) == "3.5%" + + def test_format_unknown(self, subject): + assert subject(None) == "Unknown" diff --git a/Ch04/apd.sensors-chapter04-configparser-local/tests/test_ipaddresses.py b/Ch04/apd.sensors-chapter04-configparser-local/tests/test_ipaddresses.py new file mode 100644 index 0000000..bd61d85 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-configparser-local/tests/test_ipaddresses.py @@ -0,0 +1,59 @@ +import socket +from unittest import mock + +import pytest + +from apd.sensors.sensors import IPAddresses + + +@pytest.fixture +def sensor(): + return IPAddresses() + + +class TestIPAddressFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_single_ipv4(self, subject): + ips = [("AF_INET", "192.0.2.1")] + assert subject(ips) == "192.0.2.1 (IPv4)" + + def test_format_single_ipv6(self, subject): + ips = [("AF_INET6", "2001:DB8::1")] + assert subject(ips) == "2001:DB8::1 (IPv6)" + + def test_format_mixed_list(self, subject): + ips = [("AF_INET", "192.0.2.1"), ("AF_INET6", "2001:DB8::1")] + assert subject(ips) == "192.0.2.1 (IPv4)\n2001:DB8::1 (IPv6)" + + def test_unusual_protocols_are_marked_as_unknown(self, subject): + ips = [("AF_IRDA", "ffff")] + assert subject(ips) == "ffff (Unknown)" + + +class TestIPAddressesValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def gethostname(self): + with mock.patch("socket.gethostname") as gethostname: + gethostname.return_value = "localhost" + yield gethostname + + @pytest.fixture + def getaddrinfo(self, gethostname): + with mock.patch("socket.getaddrinfo") as getaddrinfo: + yield getaddrinfo + + def test_getaddrinfo_used_for_value_collection(self, getaddrinfo, subject): + getaddrinfo.return_value = [(socket.AF_INET, 0, 0, "", ("192.0.2.1", 0))] + assert subject() == [("AF_INET", "192.0.2.1")] + assert getaddrinfo.call_count == 1 + + def test_str_representation_is_formatted_value(self, getaddrinfo, sensor): + getaddrinfo.return_value = [(socket.AF_INET6, 0, 0, "", ("2001:DB8::1", 0))] + assert str(sensor) == "2001:DB8::1 (IPv6)" diff --git a/Ch04/apd.sensors-chapter04-configparser-local/tests/test_pythonversion.py b/Ch04/apd.sensors-chapter04-configparser-local/tests/test_pythonversion.py new file mode 100644 index 0000000..43ad806 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-configparser-local/tests/test_pythonversion.py @@ -0,0 +1,61 @@ +from collections import namedtuple +from unittest import mock + +import pytest + +from apd.sensors.sensors import PythonVersion + + +@pytest.fixture +def version(): + return namedtuple( + "sys_versioninfo", ("major", "minor", "micro", "releaselevel", "serial") + ) + + +@pytest.fixture +def sensor(): + return PythonVersion() + + +class TestPythonVersionFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_py38(self, subject, version): + py38 = version(3, 8, 0, "final", 0) + assert subject(py38) == "3.8" + + def test_format_large_version(self, subject, version): + large = version(255, 128, 0, "final", 0) + assert subject(large) == "255.128" + + def test_alpha_of_minor_is_marked(self, subject, version): + py39 = version(3, 9, 0, "alpha", 1) + assert subject(py39) == "3.9.0a1" + + def test_alpha_of_micro_is_unmarked(self, subject, version): + py39 = version(3, 9, 1, "alpha", 1) + assert subject(py39) == "3.9" + + +class TestPythonVersionValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def python_version(self): + import sys + + return sys.version_info + + def test_data_value_is_sys_versioninfo(self, python_version, subject): + assert subject() == python_version + + +class TestPythonVersionSensor: + def test_str_representation_is_formatted_value(self, sensor, version): + with mock.patch("sys.version_info", new=version(3, 4, 1, "final", 1)): + assert str(sensor) == "3.4" diff --git a/Ch04/apd.sensors-chapter04-configparser-local/tests/test_ramusage.py b/Ch04/apd.sensors-chapter04-configparser-local/tests/test_ramusage.py new file mode 100644 index 0000000..197ad06 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-configparser-local/tests/test_ramusage.py @@ -0,0 +1,47 @@ +from unittest import mock + +import pytest + +from apd.sensors.sensors import RAMAvailable + + +@pytest.fixture +def sensor(): + return RAMAvailable() + + +class TestRAMAvailableFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_bytes(self, subject): + assert subject(15) == "15.0 B" + + def test_format_kibibytes(self, subject): + assert subject(15000) == "14.6 KiB" + + def test_format_mibibytes(self, subject): + assert subject(15000000) == "14.3 MiB" + + def test_format_gibibytes(self, subject): + assert subject(15000000000) == "14.0 GiB" + + +class TestRAMAvailableValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def virtual_memory(self): + with mock.patch("psutil.virtual_memory") as virtual_memory: + virtual_memory.return_value.available = 1024 + yield virtual_memory + + def test_virtual_memory_called(self, subject, virtual_memory): + assert subject() == 1024 + assert virtual_memory.call_count == 1 + + def test_str_representation_is_formatted_value(self, sensor, virtual_memory): + assert str(sensor) == "1.0 KiB" diff --git a/Ch04/apd.sensors-chapter04-configparser-local/tests/test_sensors.py b/Ch04/apd.sensors-chapter04-configparser-local/tests/test_sensors.py new file mode 100644 index 0000000..720c457 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-configparser-local/tests/test_sensors.py @@ -0,0 +1,113 @@ +import os +from unittest import mock + +from click.testing import CliRunner + +import pytest + +import apd.sensors.cli +import apd.sensors.sensors + + +class MockTestingSensor(apd.sensors.sensors.Sensor[int]): + title = "Configured Number" + + def __init__(self, configured="0"): + self.configured = configured + + def value(self) -> int: + return int(self.configured) + + @classmethod + def format(cls, value: int) -> str: + return "{}".format(value) + + +def test_sensors(): + assert hasattr(apd.sensors.sensors, "PythonVersion") + + +@pytest.fixture +def default_config_path(): + return os.path.join(os.path.dirname(__file__), "default_test_config.cfg") + + +@pytest.mark.functional +def test_python_version_is_first_two_lines_of_cli_output(default_config_path): + runner = CliRunner() + result = runner.invoke( + apd.sensors.cli.show_sensors, ["--config", default_config_path] + ) + python_version = str(apd.sensors.sensors.PythonVersion()) + assert ["Python Version", python_version] == result.stdout.split("\n")[:2] + + +def test_parameter_for_sensor(): + with mock.patch("apd.sensors.cli.parse_config_file") as parse_config_file: + parse_config_file.return_value = { + "TestingSensor": { + "plugin": "tests.test_sensors:MockTestingSensor", + "configured": "42", + } + } + sensors = apd.sensors.cli.get_sensors("") + assert isinstance(sensors[0], MockTestingSensor) + assert sensors[0].value() == 42 + + +def test_spurious_parameters_raise_errors(): + with mock.patch("apd.sensors.cli.parse_config_file") as parse_config_file: + parse_config_file.return_value = { + "TestingSensor": { + "plugin": "apd.sensors.sensors:PythonVersion", + "magic": "42", + } + } + with pytest.raises(RuntimeError, match="unexpected keyword argument magic"): + apd.sensors.cli.get_sensors("") + + +def test_extract_plugins(default_config_path): + parsed = apd.sensors.cli.parse_config_file(default_config_path) + assert parsed == { + "IPAddress": {"plugin": "apd.sensors.sensors:IPAddresses"}, + "PythonVersion": {"plugin": "apd.sensors.sensors:PythonVersion"}, + } + + +class TestSensorFromPath: + @pytest.fixture + def subject(self): + return apd.sensors.cli.get_sensor_by_path + + def test_get_sensor_by_path(self, subject): + assert isinstance( + subject("apd.sensors.sensors:PythonVersion"), + apd.sensors.sensors.PythonVersion, + ) + + def test_invalid_format(self, subject): + with pytest.raises(RuntimeError, match="dotted.path.to.module:ClassName"): + subject("apd.sensors.sensors.PythonVersion") + + def test_invalid_module(self, subject): + with pytest.raises(RuntimeError, match="Could not import module"): + subject("apd.nonsense.sensor:FakeSensor") + + def test_missing_sensor(self, subject): + with pytest.raises(RuntimeError, match="Could not find attribute"): + subject("apd.sensors.sensors:FakeSensor") + + def test_invalid_sensor(self, subject): + with pytest.raises(RuntimeError, match="is not recognised as a Sensor"): + subject("apd.sensors.sensors:Sensor") + + +@pytest.mark.functional +def test_develop_option_finds_sensor_by_path(): + runner = CliRunner() + result = runner.invoke( + apd.sensors.cli.show_sensors, ["--develop", "apd.sensors.sensors:PythonVersion"] + ) + python_version = str(apd.sensors.sensors.PythonVersion()) + assert ["Python Version", python_version, "", ""] == result.stdout.split("\n") diff --git a/Ch04/apd.sensors-chapter04-configparser/.pre-commit-config.yaml b/Ch04/apd.sensors-chapter04-configparser/.pre-commit-config.yaml new file mode 100644 index 0000000..3ff6d15 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-configparser/.pre-commit-config.yaml @@ -0,0 +1,23 @@ +repos: + +- repo: local + hooks: + - id: black + name: black + entry: pipenv run black + args: [--quiet] + language: system + types: [python] + + - id: mypy + name: mypy + entry: pipenv run mypy + args: ["--follow-imports=skip"] + language: system + types: [python] + + - id: flake8 + name: flake8 + entry: pipenv run flake8 + language: system + types: [python] diff --git a/Ch04/apd.sensors-chapter04-configparser/CHANGES.md b/Ch04/apd.sensors-chapter04-configparser/CHANGES.md new file mode 100644 index 0000000..569aeea --- /dev/null +++ b/Ch04/apd.sensors-chapter04-configparser/CHANGES.md @@ -0,0 +1,5 @@ +## Changes + +### 1.0.0 (2019-06-20) + +* Added initial sensors (Matthew Wilkes) diff --git a/Ch04/apd.sensors-chapter04-configparser/LICENCE b/Ch04/apd.sensors-chapter04-configparser/LICENCE new file mode 100644 index 0000000..ccaef50 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-configparser/LICENCE @@ -0,0 +1,21 @@ +``` +Copyright (c) 2019 Matthew Wilkes + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. +``` \ No newline at end of file diff --git a/Ch04/apd.sensors-chapter04-configparser/Pipfile b/Ch04/apd.sensors-chapter04-configparser/Pipfile new file mode 100644 index 0000000..40413b8 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-configparser/Pipfile @@ -0,0 +1,29 @@ +[[source]] +name = "pypi" +url = "https://pypi.org/simple" +verify_ssl = true + +[[source]] +name = "piwheels" +url = "https://piwheels.org/simple" +verify_ssl = true + +[dev-packages] +ipykernel = "*" +remote-ikernel = "*" +pytest = "*" +pytest-cov = "*" +mypy = "*" +flake8 = "*" +black = "*" +pre-commit = "*" +wheel = "*" +twine = "*" + +[packages] +apd-sensors = {editable = true,path = "."} + +[requires] + +[pipenv] +allow_prereleases = true diff --git a/Ch04/apd.sensors-chapter04-configparser/Pipfile.lock b/Ch04/apd.sensors-chapter04-configparser/Pipfile.lock new file mode 100644 index 0000000..e7e5bb8 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-configparser/Pipfile.lock @@ -0,0 +1,897 @@ +{ + "_meta": { + "hash": { + "sha256": "b2def6fc1541c4ee04e68450c1818f456f7d3aac56b38ed1356d6bbcd13ffd8d" + }, + "pipfile-spec": 6, + "requires": {}, + "sources": [ + { + "name": "pypi", + "url": "https://pypi.org/simple", + "verify_ssl": true + }, + { + "name": "piwheels", + "url": "https://piwheels.org/simple", + "verify_ssl": true + } + ] + }, + "default": { + "apd-sensors": { + "editable": true, + "path": "." + }, + "click": { + "hashes": [ + "sha256:8a18b4ea89d8820c5d0c7da8a64b2c324b4dabb695804dbfea19b9be9d88c0cc", + "sha256:e345d143d80bf5ee7534056164e5e112ea5e22716bbb1ce727941f4c8b471b9a" + ], + "version": "==7.1.1" + }, + "psutil": { + "hashes": [ + "sha256:002bd856770037221256765a472f50d677074ad207276a39e2bccdb7394e333b", + "sha256:1413f4158eb50e110777c4f15d7c759521703bd6beb58926f1d562da40180058", + "sha256:298af2f14b635c3c7118fd9183843f4e73e681bb6f01e12284d4d70d48a60953", + "sha256:60b86f327c198561f101a92be1995f9ae0399736b6eced8f24af41ec64fb88d4", + "sha256:685ec16ca14d079455892f25bd124df26ff9137664af445563c1bd36629b5e0e", + "sha256:73f35ab66c6c7a9ce82ba44b1e9b1050be2a80cd4dcc3352cc108656b115c74f", + "sha256:75e22717d4dbc7ca529ec5063000b2b294fc9a367f9c9ede1f65846c7955fd38", + "sha256:833b2b19c04fc0aecad22daa3e35108d6ee2e4f92061a4a8f2dd77c6fa9154f5", + "sha256:a02f4ac50d4a23253b68233b07e7cdb567bd025b982d5cf0ee78296990c22d9e", + "sha256:d008ddc00c6906ec80040d26dc2d3e3962109e40ad07fd8a12d0284ce5e0e4f8", + "sha256:d84029b190c8a66a946e28b4d3934d2ca1528ec94764b180f7d6ea57b0e75e26", + "sha256:e2d0c5b07c6fe5a87fa27b7855017edb0d52ee73b71e6ee368fae268605cc3f5", + "sha256:f344ca230dd8e8d5eee16827596f1c22ec0876127c28e800d7ae20ed44c4b310", + "sha256:f3e7f183162622eae9fbdee44ff19b226edec68b94ae7cba47f9afcf4c3ec66c" + ], + "version": "==5.7.0" + } + }, + "develop": { + "appdirs": { + "hashes": [ + "sha256:9e5896d1372858f8dd3344faf4e5014d21849c756c8d5701f78f8a103b372d92", + "sha256:d8b24664561d0d34ddfaec54636d502d7cea6e29c3eaf68f3df6180863e2166e" + ], + "version": "==1.4.3" + }, + "atomicwrites": { + "hashes": [ + "sha256:03472c30eb2c5d1ba9227e4c2ca66ab8287fbfbbda3888aa93dc2e28fc6811b4", + "sha256:75a9445bac02d8d058d5e1fe689654ba5a6556a1dfd8ce6ec55a0ed79866cfa6" + ], + "markers": "sys_platform == 'win32'", + "version": "==1.3.0" + }, + "attrs": { + "hashes": [ + "sha256:08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c", + "sha256:f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72" + ], + "version": "==19.3.0" + }, + "backcall": { + "hashes": [ + "sha256:1fac21e6861f538700a5d498620153f38407a4bacf9e1d5047b3d717f10bc4ab", + "sha256:38ecd85be2c1e78f77fd91700c76e14667dc21e2713b63876c0eb901196e01e4", + "sha256:bbbf4b1e5cd2bdb08f915895b51081c041bac22394fdfcfdfbe9f14b77c08bf2" + ], + "version": "==0.1.0" + }, + "black": { + "hashes": [ + "sha256:1b30e59be925fafc1ee4565e5e08abef6b03fe455102883820fe5ee2e4734e0b", + "sha256:c2edb73a08e9e0e6f65a0e6af18b059b8b1cdd5bef997d7a0b181df93dc81539" + ], + "index": "pypi", + "version": "==19.10b0" + }, + "bleach": { + "hashes": [ + "sha256:cc8da25076a1fe56c3ac63671e2194458e0c4d9c7becfd52ca251650d517903c", + "sha256:e78e426105ac07026ba098f04de8abe9b6e3e98b5befbf89b51a5ef0a4292b03" + ], + "version": "==3.1.4" + }, + "certifi": { + "hashes": [ + "sha256:017c25db2a153ce562900032d5bc68e9f191e44e9a0f762f373977de9df1fbb3", + "sha256:25b64c7da4cd7479594d035c08c2d809eb4aab3a26e5a990ea98cc450c320f1f" + ], + "version": "==2019.11.28" + }, + "cfgv": { + "hashes": [ + "sha256:1ccf53320421aeeb915275a196e23b3b8ae87dea8ac6698b1638001d4a486d53", + "sha256:c8e8f552ffcc6194f4e18dd4f68d9aef0c0d58ae7e7be8c82bee3c5e9edfa513" + ], + "version": "==3.1.0" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:8a18b4ea89d8820c5d0c7da8a64b2c324b4dabb695804dbfea19b9be9d88c0cc", + "sha256:e345d143d80bf5ee7534056164e5e112ea5e22716bbb1ce727941f4c8b471b9a" + ], + "version": "==7.1.1" + }, + "colorama": { + "hashes": [ + "sha256:7d73d2a99753107a36ac6b455ee49046802e59d9d076ef8e47b61499fa29afff", + "sha256:e96da0d330793e2cb9485e9ddfd918d456036c7149416295932478192f4436a1" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.3" + }, + "coverage": { + "hashes": [ + "sha256:03f630aba2b9b0d69871c2e8d23a69b7fe94a1e2f5f10df5049c0df99db639a0", + "sha256:046a1a742e66d065d16fb564a26c2a15867f17695e7f3d358d7b1ad8a61bca30", + "sha256:0a907199566269e1cfa304325cc3b45c72ae341fbb3253ddde19fa820ded7a8b", + "sha256:165a48268bfb5a77e2d9dbb80de7ea917332a79c7adb747bd005b3a07ff8caf0", + "sha256:1b60a95fc995649464e0cd48cecc8288bac5f4198f21d04b8229dc4097d76823", + "sha256:1f66cf263ec77af5b8fe14ef14c5e46e2eb4a795ac495ad7c03adc72ae43fafe", + "sha256:2e08c32cbede4a29e2a701822291ae2bc9b5220a971bba9d1e7615312efd3037", + "sha256:327ff84602ee3b5c0c921ff8bbe605e2dd3599fc2a12620b0085f847af4ebb2a", + "sha256:3844c3dab800ca8536f75ae89f3cf566848a3eb2af4d9f7b1103b4f4f7a5dad6", + "sha256:408ce64078398b2ee2ec08199ea3fcf382828d2f8a19c5a5ba2946fe5ddc6c31", + "sha256:443be7602c790960b9514567917af538cac7807a7c0c0727c4d2bbd4014920fd", + "sha256:4482f69e0701139d0f2c44f3c395d1d1d37abd81bfafbf9b6efbe2542679d892", + "sha256:4a8a259bf990044351baf69d3b23e575699dd60b18460c71e81dc565f5819ac1", + "sha256:513e6526e0082c59a984448f4104c9bf346c2da9961779ede1fc458e8e8a1f78", + "sha256:5f587dfd83cb669933186661a351ad6fc7166273bc3e3a1531ec5c783d997aac", + "sha256:62061e87071497951155cbccee487980524d7abea647a1b2a6eb6b9647df9006", + "sha256:641e329e7f2c01531c45c687efcec8aeca2a78a4ff26d49184dce3d53fc35014", + "sha256:65a7e00c00472cd0f59ae09d2fb8a8aaae7f4a0cf54b2b74f3138d9f9ceb9cb2", + "sha256:6ad6ca45e9e92c05295f638e78cd42bfaaf8ee07878c9ed73e93190b26c125f7", + "sha256:73aa6e86034dad9f00f4bbf5a666a889d17d79db73bc5af04abd6c20a014d9c8", + "sha256:7c9762f80a25d8d0e4ab3cb1af5d9dffbddb3ee5d21c43e3474c84bf5ff941f7", + "sha256:85596aa5d9aac1bf39fe39d9fa1051b0f00823982a1de5766e35d495b4a36ca9", + "sha256:86a0ea78fd851b313b2e712266f663e13b6bc78c2fb260b079e8b67d970474b1", + "sha256:8a620767b8209f3446197c0e29ba895d75a1e272a36af0786ec70fe7834e4307", + "sha256:922fb9ef2c67c3ab20e22948dcfd783397e4c043a5c5fa5ff5e9df5529074b0a", + "sha256:9fad78c13e71546a76c2f8789623eec8e499f8d2d799f4b4547162ce0a4df435", + "sha256:a37c6233b28e5bc340054cf6170e7090a4e85069513320275a4dc929144dccf0", + "sha256:c3fc325ce4cbf902d05a80daa47b645d07e796a80682c1c5800d6ac5045193e5", + "sha256:cda33311cb9fb9323958a69499a667bd728a39a7aa4718d7622597a44c4f1441", + "sha256:db1d4e38c9b15be1521722e946ee24f6db95b189d1447fa9ff18dd16ba89f732", + "sha256:eda55e6e9ea258f5e4add23bcf33dc53b2c319e70806e180aecbff8d90ea24de", + "sha256:f0db0dc803e0f81f2a4098d4f25904f41be13b6d3e69f098b5b2bbba17cb7985", + "sha256:f372cdbb240e09ee855735b9d85e7f50730dcfb6296b74b95a3e5dea0615c4c1" + ], + "version": "==5.0.4" + }, + "decorator": { + "hashes": [ + "sha256:41fa54c2a0cc4ba648be4fd43cff00aedf5b9465c9bf18d64325bc225f08f760", + "sha256:e3a62f0520172440ca0dcc823749319382e377f37f140a0b99ef45fecb84bfe7" + ], + "version": "==4.4.2" + }, + "defusedxml": { + "hashes": [ + "sha256:6687150770438374ab581bb7a1b327a847dd9c5749e396102de3fad4e8a3ef93", + "sha256:f684034d135af4c6cbb949b8a4d2ed61634515257a67299e5f940fbaa34377f5" + ], + "version": "==0.6.0" + }, + "distlib": { + "hashes": [ + "sha256:2e166e231a26b36d6dfe35a48c4464346620f8645ed0ace01ee31822b288de21", + "sha256:8a041060c5a140131768a2e2450813f5577f7e4c68a4585824c5585502dcfbea" + ], + "version": "==0.3.0" + }, + "docutils": { + "hashes": [ + "sha256:0c5b78adfbf7762415433f5515cd5c9e762339e23369dbe8000d84a4bf4ab3af", + "sha256:c2de3a60e9e7d07be26b7f2b00ca0309c207e06c100f9cc2a94931fc75a478fc" + ], + "version": "==0.16" + }, + "entrypoints": { + "hashes": [ + "sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19", + "sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451" + ], + "version": "==0.3" + }, + "filelock": { + "hashes": [ + "sha256:18d82244ee114f543149c66a6e0c14e9c4f8a1044b5cdaadd0f82159d6a6ff59", + "sha256:929b7d63ec5b7d6b71b0fa5ac14e030b3f70b75747cef1b10da9b879fef15836" + ], + "version": "==3.0.12" + }, + "flake8": { + "hashes": [ + "sha256:45681a117ecc81e870cbf1262835ae4af5e7a8b08e40b944a8a6e6b895914cfb", + "sha256:49356e766643ad15072a789a20915d3c91dc89fd313ccd71802303fd67e4deca" + ], + "index": "pypi", + "version": "==3.7.9" + }, + "identify": { + "hashes": [ + "sha256:a7577a1f55cee1d21953a5cf11a3c839ab87f5ef909a4cba6cf52ed72b4c6059", + "sha256:ab246293e6585a1c6361a505b68d5b501a0409310932b7de2c2ead667b564d89" + ], + "version": "==1.4.13" + }, + "idna": { + "hashes": [ + "sha256:7588d1c14ae4c77d74036e8c22ff447b26d0fde8f007354fd48a7814db15b7cb", + "sha256:a068a21ceac8a4d63dbfd964670474107f541babbd2250d61922f029858365fa" + ], + "version": "==2.9" + }, + "importlib-metadata": { + "hashes": [ + "sha256:2a688cbaa90e0cc587f1df48bdc97a6eadccdcd9c35fb3f976a09e3b5016d90f", + "sha256:34513a8a0c4962bc66d35b359558fd8a5e10cd472d37aec5f66858addef32c1e" + ], + "markers": "python_version < '3.8'", + "version": "==1.6.0" + }, + "ipykernel": { + "hashes": [ + "sha256:08997a27ccafbb998437d167ccc893666c6088ec3aa90c054bfb3d588bb3fc20", + "sha256:37c65d2e2da3326e5cf114405df6d47d997b8a3eba99e2cc4b75833bf71a5e18", + "sha256:39746b5f7d847a23fae4eac893e63e3d9cc5f8c3a4797fcd3bfa8d1a296ec6ed" + ], + "index": "pypi", + "version": "==5.2.0" + }, + "ipython": { + "hashes": [ + "sha256:1807adeae64502fcaa491cd93405644faa055b646efb40c1e48648ad66f65a75", + "sha256:ca478e52ae1f88da0102360e57e528b92f3ae4316aabac80a2cd7f7ab2efb48a", + "sha256:eb8d075de37f678424527b5ef6ea23f7b80240ca031c2dd6de5879d687a65333" + ], + "version": "==7.13.0" + }, + "ipython-genutils": { + "hashes": [ + "sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8", + "sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8" + ], + "version": "==0.2.0" + }, + "jedi": { + "hashes": [ + "sha256:b4f4052551025c6b0b0b193b29a6ff7bdb74c52450631206c262aef9f7159ad2", + "sha256:d5c871cb9360b414f981e7072c52c33258d598305280fef91c6cae34739d65d5" + ], + "version": "==0.16.0" + }, + "jinja2": { + "hashes": [ + "sha256:39cbce1ffc25cbf4860b09195654763be95b9e4900475b24d5c345d3e0948c53", + "sha256:c10142f819c2d22bdcd17548c46fa9b77cf4fda45097854c689666bf425e7484", + "sha256:c922560ac46888d47384de1dbdc3daaa2ea993af4b26a436dec31fa2c19ec668" + ], + "version": "==3.0.0a1" + }, + "jsonschema": { + "hashes": [ + "sha256:4e5b3cf8216f577bee9ce139cbe72eca3ea4f292ec60928ff24758ce626cd163", + "sha256:c8a85b28d377cc7737e46e2d9f2b4f44ee3c0e1deac6bf46ddefc7187d30797a" + ], + "version": "==3.2.0" + }, + "jupyter-client": { + "hashes": [ + "sha256:5724827aedb1948ed6ed15131372bc304a8d3ad9ac67ac19da7c95120d6b17e0", + "sha256:81c1c712de383bf6bf3dab6b407392b0d84d814c7bd0ce2c7035ead8b2ffea97" + ], + "version": "==6.1.2" + }, + "jupyter-core": { + "hashes": [ + "sha256:394fd5dd787e7c8861741880bdf8a00ce39f95de5d18e579c74b882522219e7e", + "sha256:a4ee613c060fe5697d913416fc9d553599c05e4492d58fac1192c9a6844abb21" + ], + "version": "==4.6.3" + }, + "jupyterlab-pygments": { + "hashes": [ + "sha256:31deda75bd11b014190764c79f6199aa04ef2d4cf35c1c94270fc2e19c23a5c5", + "sha256:cc15f2a9850899d108a3c22743a86edcd3b42791a6c88b6e5b558d021d14d065" + ], + "version": "==0.1.0" + }, + "keyring": { + "hashes": [ + "sha256:197fd5903901030ef7b82fe247f43cfed2c157a28e7747d1cfcf4bc5e699dd03", + "sha256:8179b1cdcdcbc221456b5b74e6b7cfa06f8dd9f239eb81892166d9223d82c5ba", + "sha256:dcb7f54f06c868526b97f9825b558e5199661f9647849acf9204c2d6028501dc" + ], + "version": "==21.2.0" + }, + "markupsafe": { + "hashes": [ + "sha256:00bc623926325b26bb9605ae9eae8a215691f33cae5df11ca5424f06f2d1f473", + "sha256:09027a7803a62ca78792ad89403b1b7a73a01c8cb65909cd876f7fcebd79b161", + "sha256:09c4b7f37d6c648cb13f9230d847adf22f8171b1ccc4d5682398e77f40309235", + "sha256:1027c282dad077d0bae18be6794e6b6b8c91d58ed8a8d89a89d59693b9131db5", + "sha256:13d3144e1e340870b25e7b10b98d779608c02016d5184cfb9927a9f10c689f42", + "sha256:19536834abffb3fa155017053c607cb835b2ecc6a3a2554a88043d991dffb736", + "sha256:24982cc2533820871eba85ba648cd53d8623687ff11cbb805be4ff7b4c971aff", + "sha256:29872e92839765e546828bb7754a68c418d927cd064fd4708fab9fe9c8bb116b", + "sha256:3d61f15e39611aacd91b7e71d903787da86d9e80896e683c0103fced9add7834", + "sha256:43a55c2930bbc139570ac2452adf3d70cdbb3cfe5912c71cdce1c2c6bbd9c5d1", + "sha256:46c99d2de99945ec5cb54f23c8cd5689f6d7177305ebff350a58ce5f8de1669e", + "sha256:500d4957e52ddc3351cabf489e79c91c17f6e0899158447047588650b5e69183", + "sha256:535f6fc4d397c1563d08b88e485c3496cf5784e927af890fb3c3aac7f933ec66", + "sha256:596510de112c685489095da617b5bcbbac7dd6384aeebeda4df6025d0256a81b", + "sha256:62fe6c95e3ec8a7fad637b7f3d372c15ec1caa01ab47926cfdf7a75b40e0eac1", + "sha256:6788b695d50a51edb699cb55e35487e430fa21f1ed838122d722e0ff0ac5ba15", + "sha256:6dd73240d2af64df90aa7c4e7481e23825ea70af4b4922f8ede5b9e35f78a3b1", + "sha256:717ba8fe3ae9cc0006d7c451f0bb265ee07739daf76355d06366154ee68d221e", + "sha256:7952deddf24b85c88dab48f6ec366ac6e39d2761b5280f2f9594911e03fcd064", + "sha256:79855e1c5b8da654cf486b830bd42c06e8780cea587384cf6545b7d9ac013a0b", + "sha256:7c1699dfe0cf8ff607dbdcc1e9b9af1755371f92a68f706051cc8c37d447c905", + "sha256:88e5fcfb52ee7b911e8bb6d6aa2fd21fbecc674eadd44118a9cc3863f938e735", + "sha256:8defac2f2ccd6805ebf65f5eeb132adcf2ab57aa11fdf4c0dd5169a004710e7d", + "sha256:98c7086708b163d425c67c7a91bad6e466bb99d797aa64f965e9d25c12111a5e", + "sha256:9add70b36c5666a2ed02b43b335fe19002ee5235efd4b8a89bfcf9005bebac0d", + "sha256:9bf40443012702a1d2070043cb6291650a0841ece432556f784f004937f0f32c", + "sha256:ade5e387d2ad0d7ebf59146cc00c8044acbd863725f887353a10df825fc8ae21", + "sha256:b00c1de48212e4cc9603895652c5c410df699856a2853135b3967591e4beebc2", + "sha256:b1282f8c00509d99fef04d8ba936b156d419be841854fe901d8ae224c59f0be5", + "sha256:b2051432115498d3562c084a49bba65d97cf251f5a331c64a12ee7e04dacc51b", + "sha256:ba59edeaa2fc6114428f1637ffff42da1e311e29382d81b339c1817d37ec93c6", + "sha256:c8716a48d94b06bb3b2524c2b77e055fb313aeb4ea620c8dd03a105574ba704f", + "sha256:cd5df75523866410809ca100dc9681e301e3c27567cf498077e8551b6d20e42f", + "sha256:cdb132fc825c38e1aeec2c8aa9338310d29d337bebbd7baa06889d09a60a1fa2", + "sha256:e249096428b3ae81b08327a63a485ad0878de3fb939049038579ac0ef61e17e7", + "sha256:e8313f01ba26fbbe36c7be1966a7b7424942f670f38e666995b88d012765b9be" + ], + "version": "==1.1.1" + }, + "mccabe": { + "hashes": [ + "sha256:ab8a6258860da4b6677da4bd2fe5dc2c659cff31b3ee4f7f5d64e79735b80d42", + "sha256:dd8d182285a0fe56bace7f45b5e7d1a6ebcbf524e8f3bd87eb0f125271b8831f" + ], + "version": "==0.6.1" + }, + "mistune": { + "hashes": [ + "sha256:59a3429db53c50b5c6bcc8a07f8848cb00d7dc8bdb431a4ab41920d201d4756e", + "sha256:88a1051873018da288eee8538d476dffe1262495144b33ecb586c4ab266bb8d4" + ], + "version": "==0.8.4" + }, + "more-itertools": { + "hashes": [ + "sha256:5dd8bcf33e5f9513ffa06d5ad33d78f31e1931ac9a18f33d37e77a180d393a7c", + "sha256:b1ddb932186d8a6ac451e1d95844b382f55e12686d51ca0c68b6f61f2ab7a507" + ], + "version": "==8.2.0" + }, + "mypy": { + "hashes": [ + "sha256:15b948e1302682e3682f11f50208b726a246ab4e6c1b39f9264a8796bb416aa2", + "sha256:219a3116ecd015f8dca7b5d2c366c973509dfb9a8fc97ef044a36e3da66144a1", + "sha256:3b1fc683fb204c6b4403a1ef23f0b1fac8e4477091585e0c8c54cbdf7d7bb164", + "sha256:3beff56b453b6ef94ecb2996bea101a08f1f8a9771d3cbf4988a61e4d9973761", + "sha256:7687f6455ec3ed7649d1ae574136835a4272b65b3ddcf01ab8704ac65616c5ce", + "sha256:7ec45a70d40ede1ec7ad7f95b3c94c9cf4c186a32f6bacb1795b60abd2f9ef27", + "sha256:86c857510a9b7c3104cf4cde1568f4921762c8f9842e987bc03ed4f160925754", + "sha256:8a627507ef9b307b46a1fea9513d5c98680ba09591253082b4c48697ba05a4ae", + "sha256:8dfb69fbf9f3aeed18afffb15e319ca7f8da9642336348ddd6cab2713ddcf8f9", + "sha256:a34b577cdf6313bf24755f7a0e3f3c326d5c1f4fe7422d1d06498eb25ad0c600", + "sha256:a8ffcd53cb5dfc131850851cc09f1c44689c2812d0beb954d8138d4f5fc17f65", + "sha256:b90928f2d9eb2f33162405f32dde9f6dcead63a0971ca8a1b50eb4ca3e35ceb8", + "sha256:c56ffe22faa2e51054c5f7a3bc70a370939c2ed4de308c690e7949230c995913", + "sha256:f91c7ae919bbc3f96cd5e5b2e786b2b108343d1d7972ea130f7de27fdd547cf3" + ], + "index": "pypi", + "version": "==0.770" + }, + "mypy-extensions": { + "hashes": [ + "sha256:090fedd75945a69ae91ce1303b5824f428daf5a028d2f6ab8a299250a846f15d", + "sha256:2d82818f5bb3e369420cb3c4060a7970edba416647068eb4c5343488a6c604a8" + ], + "version": "==0.4.3" + }, + "nbconvert": { + "hashes": [ + "sha256:944a5fbe6c4609d74e7f331bfa957c8eff2d53904f7c40f053a44bfb4164b718", + "sha256:c86da6adc412df9ad2726fe438589e4495c7835792d6d84f888178682f5d5bcf" + ], + "version": "==6.0.0a0" + }, + "nbformat": { + "hashes": [ + "sha256:65a79936a128fd85aef392b7fea520166364037118b6fe3ed52de742d06c4558", + "sha256:f0c47cf93c505cb943e2f131ef32b8ae869292b5f9f279db2bafb35867923f69" + ], + "version": "==5.0.5" + }, + "nodeenv": { + "hashes": [ + "sha256:5b2438f2e42af54ca968dd1b374d14a1194848955187b0e5e4be1f73813a5212" + ], + "version": "==1.3.5" + }, + "notebook": { + "hashes": [ + "sha256:3edc616c684214292994a3af05eaea4cc043f6b4247d830f3a2f209fa7639a80", + "sha256:47a9092975c9e7965ada00b9a20f0cf637d001db60d241d479f53c0be117ad48" + ], + "version": "==6.0.3" + }, + "packaging": { + "hashes": [ + "sha256:3c292b474fda1671ec57d46d739d072bfd495a4f51ad01a055121d81e952b7a3", + "sha256:82f77b9bee21c1bafbf35a84905d604d5d1223801d639cf3ed140bd651c08752" + ], + "version": "==20.3" + }, + "pandocfilters": { + "hashes": [ + "sha256:41a309da81cba5509389b19d96b0ee49551cee8165a6406754f2565e95429860", + "sha256:b3dd70e169bb5449e6bc6ff96aea89c5eea8c5f6ab5e207fc2f521a2cf4a0da9" + ], + "version": "==1.4.2" + }, + "parso": { + "hashes": [ + "sha256:0c5659e0c6eba20636f99a04f469798dca8da279645ce5c387315b2c23912157", + "sha256:8515fc12cfca6ee3aa59138741fc5624d62340c97e401c74875769948d4f2995" + ], + "version": "==0.6.2" + }, + "pathspec": { + "hashes": [ + "sha256:163b0632d4e31cef212976cf57b43d9fd6b0bac6e67c26015d611a647d5e7424", + "sha256:562aa70af2e0d434367d9790ad37aed893de47f1693e4201fd1d3dca15d19b96" + ], + "version": "==0.7.0" + }, + "pexpect": { + "hashes": [ + "sha256:0b48a55dcb3c05f3329815901ea4fc1537514d6ba867a152b581d69ae3710937", + "sha256:fc65a43959d153d0114afe13997d439c22823a27cefceb5ff35c2178c6784c0c" + ], + "version": "==4.8.0" + }, + "pickleshare": { + "hashes": [ + "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca", + "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56" + ], + "version": "==0.7.5" + }, + "pkginfo": { + "hashes": [ + "sha256:7424f2c8511c186cd5424bbf31045b77435b37a8d604990b79d4e70d741148bb", + "sha256:a6d9e40ca61ad3ebd0b72fbadd4fba16e4c0e4df0428c041e01e06eb6ee71f32" + ], + "version": "==1.5.0.1" + }, + "pluggy": { + "hashes": [ + "sha256:15b2acde666561e1298d71b523007ed7364de07029219b604cf808bfa1c765b0", + "sha256:966c145cd83c96502c3c3868f50408687b38434af77734af1e9ca461a4081d2d" + ], + "version": "==0.13.1" + }, + "pre-commit": { + "hashes": [ + "sha256:487c675916e6f99d355ec5595ad77b325689d423ef4839db1ed2f02f639c9522", + "sha256:9707b4f7069365ffdb57d2782086a9f3019afde2a6e9f85df785c9bf090e1118", + "sha256:c0aa11bce04a7b46c5544723aedf4e81a4d5f64ad1205a30a9ea12d5e81969e1" + ], + "index": "pypi", + "version": "==2.2.0" + }, + "prometheus-client": { + "hashes": [ + "sha256:09b5750fd1c153420dccd35881116e853c730081bea0dbf0ea6649103bcb8445", + "sha256:71cd24a2b3eb335cb800c7159f423df1bd4dcd5171b234be15e3f31ec9f622da" + ], + "version": "==0.7.1" + }, + "prompt-toolkit": { + "hashes": [ + "sha256:563d1a4140b63ff9dd587bda9557cffb2fe73650205ab6f4383092fb882e7dc8", + "sha256:df7e9e63aea609b1da3a65641ceaf5bc7d05e0a04de5bd45d05dbeffbabf9e04" + ], + "version": "==3.0.5" + }, + "ptyprocess": { + "hashes": [ + "sha256:923f299cc5ad920c68f2bc0bc98b75b9f838b93b599941a6b63ddbc2476394c0", + "sha256:d7cc528d76e76342423ca640335bd3633420dc1366f258cb31d05e865ef5ca1f" + ], + "version": "==0.6.0" + }, + "py": { + "hashes": [ + "sha256:5e27081401262157467ad6e7f851b7aa402c5852dbcb3dae06768434de5752aa", + "sha256:c20fdd83a5dbc0af9efd622bee9a5564e278f6380fffcacc43ba6f43db2813b0" + ], + "version": "==1.8.1" + }, + "pycodestyle": { + "hashes": [ + "sha256:95a2219d12372f05704562a14ec30bc76b05a5b297b21a5dfe3f6fac3491ae56", + "sha256:e40a936c9a450ad81df37f549d676d127b1b66000a6c500caa2b085bc0ca976c" + ], + "version": "==2.5.0" + }, + "pyflakes": { + "hashes": [ + "sha256:17dbeb2e3f4d772725c777fabc446d5634d1038f234e77343108ce445ea69ce0", + "sha256:d976835886f8c5b31d47970ed689944a0262b5f3afa00a5a7b4dc81e5449f8a2" + ], + "version": "==2.1.1" + }, + "pygments": { + "hashes": [ + "sha256:647344a061c249a3b74e230c739f434d7ea4d8b1d5f3721bc0f3558049b38f44", + "sha256:aa931c0bd5daa25c475afadb2147115134cfe501f0656828cbe7cb566c7123bc", + "sha256:ff7a40b4860b727ab48fad6360eb351cc1b33cbf9b15a0f689ca5353e9463324" + ], + "version": "==2.6.1" + }, + "pyparsing": { + "hashes": [ + "sha256:4c830582a84fb022400b85429791bc551f1f4871c33f23e44f353119e92f969f", + "sha256:c342dccb5250c08d45fd6f8b4a559613ca603b57498511740e65cd11a2e7dcec" + ], + "version": "==2.4.6" + }, + "pyrsistent": { + "hashes": [ + "sha256:28669905fe725965daa16184933676547c5bb40a5153055a8dee2a4bd7933ad3", + "sha256:3217696df78f9222a3d1179b119c27be346b969a9e4d617de2a215a87d9aa456", + "sha256:9324b762b52e5a901611b25f50f9cdf8789c61ece3ff7c24dc872603c4faca62", + "sha256:c11415790cc5803e173de7d71d54f94c66a9154f81a72ffdf45a70096916f226" + ], + "version": "==0.16.0" + }, + "pytest": { + "hashes": [ + "sha256:0e5b30f5cb04e887b91b1ee519fa3d89049595f428c1db76e73bd7f17b09b172", + "sha256:84dde37075b8805f3d1f392cc47e38a0e59518fb46a431cfdaf7cf1ce805f970" + ], + "index": "pypi", + "version": "==5.4.1" + }, + "pytest-cov": { + "hashes": [ + "sha256:cc6742d8bac45070217169f5f72ceee1e0e55b0221f54bcf24845972d3a47f2b", + "sha256:cdbdef4f870408ebdbfeb44e63e07eb18bb4619fae852f6e760645fa36172626" + ], + "index": "pypi", + "version": "==2.8.1" + }, + "python-dateutil": { + "hashes": [ + "sha256:73ebfe9dbf22e832286dafa60473e4cd239f8592f699aa5adaf10050e6e1823c", + "sha256:75bb3f31ea686f1197762692a9ee6a7550b59fc6ca3a1f4b5d7e32fb98e2da2a" + ], + "version": "==2.8.1" + }, + "pywin32": { + "hashes": [ + "sha256:300a2db938e98c3e7e2093e4491439e62287d0d493fe07cce110db070b54c0be", + "sha256:31f88a89139cb2adc40f8f0e65ee56a8c585f629974f9e07622ba80199057511", + "sha256:371fcc39416d736401f0274dd64c2302728c9e034808e37381b5e1b22be4a6b0", + "sha256:47a3c7551376a865dd8d095a98deba954a98f326c6fe3c72d8726ca6e6b15507", + "sha256:4cdad3e84191194ea6d0dd1b1b9bdda574ff563177d2adf2b4efec2a244fa116", + "sha256:7c1ae32c489dc012930787f06244426f8356e129184a02c25aef163917ce158e", + "sha256:7f18199fbf29ca99dff10e1f09451582ae9e372a892ff03a28528a24d55875bc", + "sha256:9b31e009564fb95db160f154e2aa195ed66bcc4c058ed72850d047141b36f3a2", + "sha256:a929a4af626e530383a579431b70e512e736e9588106715215bf685a3ea508d4", + "sha256:c054c52ba46e7eb6b7d7dfae4dbd987a1bb48ee86debe3f245a2884ece46e295", + "sha256:f27cec5e7f588c3d1051651830ecc00294f90728d19c3bf6916e6dba93ea357c", + "sha256:f4c5be1a293bae0076d93c88f37ee8da68136744588bc5e2be2f299a34ceb7aa" + ], + "markers": "sys_platform == 'win32'", + "version": "==227" + }, + "pywin32-ctypes": { + "hashes": [ + "sha256:24ffc3b341d457d48e8922352130cf2644024a4ff09762a2261fd34c36ee5942", + "sha256:9dc2d991b3479cc2df15930958b674a48a227d5361d413827a4cfd0b5876fc98" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.2.0" + }, + "pywinpty": { + "hashes": [ + "sha256:1e525a4de05e72016a7af27836d512db67d06a015aeaf2fa0180f8e6a039b3c2", + "sha256:2740eeeb59297593a0d3f762269b01d0285c1b829d6827445fcd348fb47f7e70", + "sha256:2d7e9c881638a72ffdca3f5417dd1563b60f603e1b43e5895674c2a1b01f95a0", + "sha256:33df97f79843b2b8b8bc5c7aaf54adec08cc1bae94ee99dfb1a93c7a67704d95", + "sha256:5fb2c6c6819491b216f78acc2c521b9df21e0f53b9a399d58a5c151a3c4e2a2d", + "sha256:8fc5019ff3efb4f13708bd3b5ad327589c1a554cb516d792527361525a7cb78c", + "sha256:b358cb552c0f6baf790de375fab96524a0498c9df83489b8c23f7f08795e966b", + "sha256:dbd838de92de1d4ebf0dce9d4d5e4fc38d0b7b1de837947a18b57a882f219139", + "sha256:dd22c8efacf600730abe4a46c1388355ce0d4ab75dc79b15d23a7bd87bf05b48", + "sha256:e854211df55d107f0edfda8a80b39dfc87015bef52a8fe6594eb379240d81df2" + ], + "markers": "os_name == 'nt'", + "version": "==0.5.7" + }, + "pyyaml": { + "hashes": [ + "sha256:06a0d7ba600ce0b2d2fe2e78453a470b5a6e000a985dd4a4e54e436cc36b0e97", + "sha256:240097ff019d7c70a4922b6869d8a86407758333f02203e0fc6ff79c5dcede76", + "sha256:4f4b913ca1a7319b33cfb1369e91e50354d6f07a135f3b901aca02aa95940bd2", + "sha256:589929630502f3b0e87daee190b399f98401b6bccea87ed634a73fe5da43d3d4", + "sha256:69f00dca373f240f842b2931fb2c7e14ddbacd1397d57157a9b005a6a9942648", + "sha256:6e8383720b2127b09dba5b323ac896c702cf02bc5786fce16cd6791825d92d16", + "sha256:73f099454b799e05e5ab51423c7bcf361c58d3206fa7b0d555426b1f4d9a3eaf", + "sha256:74809a57b329d6cc0fdccee6318f44b9b8649961fa73144a98735b0aaf029f1f", + "sha256:7739fc0fa8205b3ee8808aea45e968bc90082c10aef6ea95e855e10abf4a37b2", + "sha256:95f71d2af0ff4227885f7a6605c37fd53d3a106fcab511b8860ecca9fcf400ee", + "sha256:b8eac752c5e14d3eca0e6dd9199cd627518cb5ec06add0de9d32baeee6fe645d", + "sha256:cc8955cfbfc7a115fa81d85284ee61147059a753344bc51098f3ccd69b0d7e0c", + "sha256:d13155f591e6fcc1ec3b30685d50bf0711574e2c0dfffd7644babf8b5102ca1a" + ], + "version": "==5.3.1" + }, + "pyzmq": { + "hashes": [ + "sha256:07bfbf192f22ef1dde65b6046efff191e3201e74da6d47098e68958469ecbe48", + "sha256:0bbc1728fe4314b4ca46249c33873a390559edac7c217ec7001b5e0c34a8fb7f", + "sha256:1e076ad5bd3638a18c376544d32e0af986ca10d43d4ce5a5d889a8649f0d0a3d", + "sha256:242d949eb6b10197cda1d1cec377deab1d5324983d77e0d0bf9dc5eb6d71a6b4", + "sha256:26f4ae420977d2a8792d7c2d7bda43128b037b5eeb21c81951a94054ad8b8843", + "sha256:32234c21c5e0a767c754181c8112092b3ddd2e2a36c3f76fc231ced817aeee47", + "sha256:3f12ce1e9cc9c31497bd82b207e8e86ccda9eebd8c9f95053aae46d15ccd2196", + "sha256:4557d5e036e6d85715b4b9fdb482081398da1d43dc580d03db642b91605b409f", + "sha256:4f562dab21c03c7aa061f63b147a595dbe1006bf4f03213272fc9f7d5baec791", + "sha256:54ecd00daa474885bbf318108401d318614425a05dfeae917611dd93f99f2678", + "sha256:5e071b834051e9ecb224915398f474bfad802c2fff883f118ff5363ca4ae3edf", + "sha256:5e1f65e576ab07aed83f444e201d86deb01cd27dcf3f37c727bc8729246a60a8", + "sha256:5f10a31f288bf055be76c57710807a8f0efdb2b82be6c2a2b8f9a61f33a40cea", + "sha256:6aaaf90b420dc40d9a0e1996b82c6a0ff91d9680bebe2135e67c9e6d197c0a53", + "sha256:75238d3c16cab96947705d5709187a49ebb844f54354cdf0814d195dd4c045de", + "sha256:7f7e7b24b1d392bb5947ba91c981e7d1a43293113642e0d8870706c8e70cdc71", + "sha256:84b91153102c4bcf5d0f57d1a66a0f03c31e9e6525a5f656f52fc615a675c748", + "sha256:944f6bb5c63140d76494467444fd92bebd8674236837480a3c75b01fe17df1ab", + "sha256:a1f957c20c9f51d43903881399b078cddcf710d34a2950e88bce4e494dcaa4d1", + "sha256:a49fd42a29c1cc1aa9f461c5f2f5e0303adba7c945138b35ee7f4ab675b9f754", + "sha256:a99ae601b4f6917985e9bb071549e30b6f93c72f5060853e197bdc4b7d357e5f", + "sha256:ad48865a29efa8a0cecf266432ea7bc34e319954e55cf104be0319c177e6c8f5", + "sha256:b08e425cf93b4e018ab21dc8fdbc25d7d0502a23cc4fea2380010cf8cf11e462", + "sha256:bb10361293d96aa92be6261fa4d15476bca56203b3a11c62c61bd14df0ef89ba", + "sha256:bd1a769d65257a7a12e2613070ca8155ee348aa9183f2aadf1c8b8552a5510f5", + "sha256:cb3b7156ef6b1a119e68fbe3a54e0a0c40ecacc6b7838d57dd708c90b62a06dc", + "sha256:d2f64994f9628f621e0f636f9532055887defc9fa5213aaeceb770d9c579f9ac", + "sha256:e8e4efb52ec2df8d046395ca4c84ae0056cf507b2f713ec803c65a8102d010de", + "sha256:f37c29da2a5b0c5e31e6f8aab885625ea76c807082f70b2d334d3fd573c3100a", + "sha256:f4d558bc5668d2345773a9ff8c39e2462dafcb1f6772a2e582fbced389ce527f", + "sha256:f5b6d015587a1d6f582ba03b226a9ddb1dfb09878b3be04ef48b01b7d4eb6b2a" + ], + "version": "==19.0.0" + }, + "readme-renderer": { + "hashes": [ + "sha256:1b6d8dd1673a0b293766b4106af766b6eff3654605f9c4f239e65de6076bc222", + "sha256:e67d64242f0174a63c3b727801a2fff4c1f38ebe5d71d95ff7ece081945a6cd4" + ], + "version": "==25.0" + }, + "regex": { + "hashes": [ + "sha256:01b2d70cbaed11f72e57c1cfbaca71b02e3b98f739ce33f5f26f71859ad90431", + "sha256:046e83a8b160aff37e7034139a336b660b01dbfe58706f9d73f5cdc6b3460242", + "sha256:113309e819634f499d0006f6200700c8209a2a8bf6bd1bdc863a4d9d6776a5d1", + "sha256:200539b5124bc4721247a823a47d116a7a23e62cc6695744e3eb5454a8888e6d", + "sha256:25f4ce26b68425b80a233ce7b6218743c71cf7297dbe02feab1d711a2bf90045", + "sha256:269f0c5ff23639316b29f31df199f401e4cb87529eafff0c76828071635d417b", + "sha256:59fd3df28f43adf25a32b4a957f5b0a62e3ff55ce29de6600da7e110f33102dd", + "sha256:5de40649d4f88a15c9489ed37f88f053c15400257eeb18425ac7ed0a4e119400", + "sha256:7f78f963e62a61e294adb6ff5db901b629ef78cb2a1cfce3cf4eeba80c1c67aa", + "sha256:82469a0c1330a4beb3d42568f82dffa32226ced006e0b063719468dcd40ffdf0", + "sha256:8c2b7fa4d72781577ac45ab658da44c7518e6d96e2a50d04ecb0fd8f28b21d69", + "sha256:974535648f31c2b712a6b2595969f8ab370834080e00ab24e5dbb9d19b8bfb74", + "sha256:99272d6b6a68c7ae4391908fc15f6b8c9a6c345a46b632d7fdb7ef6c883a2bbb", + "sha256:9b64a4cc825ec4df262050c17e18f60252cdd94742b4ba1286bcfe481f1c0f26", + "sha256:9e9624440d754733eddbcd4614378c18713d2d9d0dc647cf9c72f64e39671be5", + "sha256:9ff16d994309b26a1cdf666a6309c1ef51ad4f72f99d3392bcd7b7139577a1f2", + "sha256:b33ebcd0222c1d77e61dbcd04a9fd139359bded86803063d3d2d197b796c63ce", + "sha256:bba52d72e16a554d1894a0cc74041da50eea99a8483e591a9edf1025a66843ab", + "sha256:bed7986547ce54d230fd8721aba6fd19459cdc6d315497b98686d0416efaff4e", + "sha256:c7f58a0e0e13fb44623b65b01052dae8e820ed9b8b654bb6296bc9c41f571b70", + "sha256:d3242da581f8d54d5a0f769b4d003f065dc6222621267a056b98f6886dc90f36", + "sha256:d58a4fa7910102500722defbde6e2816b0372a4fcc85c7e239323767c74f5cbc", + "sha256:da22de67d83ee26b45c7b461c96e541f0cda72b76229d95e313666770dd8da41", + "sha256:f1ac2dc65105a53c1c2d72b1d3e98c2464a133b4067a51a3d2477b28449709a0" + ], + "version": "==2020.2.20" + }, + "remote-ikernel": { + "hashes": [ + "sha256:5253216e87a8c31f1b0ca9305454f223147518b580e853b7635a3d8b9c88c295", + "sha256:740b80a57fa1af40cadef541c5a4eb293675b504092ecf00c57dd2f0011bd840" + ], + "index": "pypi", + "version": "==0.4.6" + }, + "requests": { + "hashes": [ + "sha256:43999036bfa82904b6af1d99e4882b560e5e2c68e5c4b0aa03b655f3d7d73fee", + "sha256:b3f43d496c6daba4493e7c431722aeb7dbc6288f52a6e04e7b6023b0247817e6" + ], + "version": "==2.23.0" + }, + "requests-toolbelt": { + "hashes": [ + "sha256:380606e1d10dc85c3bd47bf5a6095f815ec007be7a8b69c878507068df059e6f", + "sha256:968089d4584ad4ad7c171454f0a5c6dac23971e9472521ea3b6d49d610aa6fc0" + ], + "version": "==0.9.1" + }, + "send2trash": { + "hashes": [ + "sha256:60001cc07d707fe247c94f74ca6ac0d3255aabcb930529690897ca2a39db28b2", + "sha256:f1691922577b6fa12821234aeb57599d887c4900b9ca537948d2dac34aea888b" + ], + "version": "==1.5.0" + }, + "six": { + "hashes": [ + "sha256:236bdbdce46e6e6a3d61a337c0f8b763ca1e8717c03b369e87a7ec7ce1319c0a", + "sha256:8f3cd2e254d8f793e7f3d6d9df77b92252b52637291d0f0da013c76ea2724b6c" + ], + "version": "==1.14.0" + }, + "terminado": { + "hashes": [ + "sha256:4804a774f802306a7d9af7322193c5390f1da0abb429e082a10ef1d46e6fb2c2", + "sha256:a43dcb3e353bc680dd0783b1d9c3fc28d529f190bc54ba9a229f72fe6e7a54d7" + ], + "version": "==0.8.3" + }, + "testpath": { + "hashes": [ + "sha256:60e0a3261c149755f4399a1fff7d37523179a70fdc3abdf78de9fc2604aeec7e", + "sha256:bfcf9411ef4bf3db7579063e0546938b1edda3d69f4e1fb8756991f5951f85d4" + ], + "version": "==0.4.4" + }, + "toml": { + "hashes": [ + "sha256:229f81c57791a41d65e399fc06bf0848bab550a9dfd5ed66df18ce5f05e73d5c", + "sha256:235682dd292d5899d361a811df37e04a8828a5b1da3115886b73cf81ebc9100e" + ], + "version": "==0.10.0" + }, + "tornado": { + "hashes": [ + "sha256:0fe2d45ba43b00a41cd73f8be321a44936dc1aba233dee979f17a042b83eb6dc", + "sha256:22aed82c2ea340c3771e3babc5ef220272f6fd06b5108a53b4976d0d722bcd52", + "sha256:2c027eb2a393d964b22b5c154d1a23a5f8727db6fda837118a776b29e2b8ebc6", + "sha256:503700d85d9a2c2aa737fb16df58bfa2ac0d5ec501881fea2acceae64ce17858", + "sha256:5217e601700f24e966ddab689f90b7ea4bd91ff3357c3600fa1045e26d68e55d", + "sha256:5618f72e947533832cbc3dec54e1dffc1747a5cb17d1fd91577ed14fa0dc081b", + "sha256:5f6a07e62e799be5d2330e68d808c8ac41d4a259b9cea61da4101b83cb5dc673", + "sha256:7182a9285e364e55e6902b5fb4d4a219efd8d7818d9000b419a0eaf3909fc0bc", + "sha256:c58d56003daf1b616336781b26d184023ea4af13ae143d9dda65e31e534940b9", + "sha256:c952975c8ba74f546ae6de2e226ab3cc3cc11ae47baf607459a6728585bb542a", + "sha256:c98232a3ac391f5faea6821b53db8db461157baa788f5d6222a193e9456e1740" + ], + "version": "==6.0.4" + }, + "tqdm": { + "hashes": [ + "sha256:03d2366c64d44c7f61e74c700d9b202d57e9efe355ea5c28814c52bfe7a50b8c", + "sha256:be5ddeec77d78ba781ea41eacb2358a77f74cc2407f54b82222d7ee7dc8c8ccf" + ], + "version": "==4.44.1" + }, + "traitlets": { + "hashes": [ + "sha256:70b4c6a1d9019d7b4f6846832288f86998aa3b9207c6821f3578a6a6a467fe44", + "sha256:d023ee369ddd2763310e4c3eae1ff649689440d4ae59d7485eb4cfbbe3e359f7" + ], + "version": "==4.3.3" + }, + "twine": { + "hashes": [ + "sha256:c1af8ca391e43b0a06bbc155f7f67db0bf0d19d284bfc88d1675da497a946124", + "sha256:d561a5e511f70275e5a485a6275ff61851c16ffcb3a95a602189161112d9f160" + ], + "index": "pypi", + "version": "==3.1.1" + }, + "typed-ast": { + "hashes": [ + "sha256:0666aa36131496aed8f7be0410ff974562ab7eeac11ef351def9ea6fa28f6355", + "sha256:0c2c07682d61a629b68433afb159376e24e5b2fd4641d35424e462169c0a7919", + "sha256:249862707802d40f7f29f6e1aad8d84b5aa9e44552d2cc17384b209f091276aa", + "sha256:24995c843eb0ad11a4527b026b4dde3da70e1f2d8806c99b7b4a7cf491612652", + "sha256:269151951236b0f9a6f04015a9004084a5ab0d5f19b57de779f908621e7d8b75", + "sha256:3791f73e5d75aa9a95274679ab4821bd9d16de623c4ecf4900a77a29864ee144", + "sha256:4083861b0aa07990b619bd7ddc365eb7fa4b817e99cf5f8d9cf21a42780f6e01", + "sha256:498b0f36cc7054c1fead3d7fc59d2150f4d5c6c56ba7fb150c013fbc683a8d2d", + "sha256:4e3e5da80ccbebfff202a67bf900d081906c358ccc3d5e3c8aea42fdfdfd51c1", + "sha256:6daac9731f172c2a22ade6ed0c00197ee7cc1221aa84cfdf9c31defeb059a907", + "sha256:715ff2f2df46121071622063fc7543d9b1fd19ebfc4f5c8895af64a77a8c852c", + "sha256:73d785a950fc82dd2a25897d525d003f6378d1cb23ab305578394694202a58c3", + "sha256:8c8aaad94455178e3187ab22c8b01a3837f8ee50e09cf31f1ba129eb293ec30b", + "sha256:8ce678dbaf790dbdb3eba24056d5364fb45944f33553dd5869b7580cdbb83614", + "sha256:aaee9905aee35ba5905cfb3c62f3e83b3bec7b39413f0a7f19be4e547ea01ebb", + "sha256:bcd3b13b56ea479b3650b82cabd6b5343a625b0ced5429e4ccad28a8973f301b", + "sha256:c9e348e02e4d2b4a8b2eedb48210430658df6951fa484e59de33ff773fbd4b41", + "sha256:d205b1b46085271b4e15f670058ce182bd1199e56b317bf2ec004b6a44f911f6", + "sha256:d43943ef777f9a1c42bf4e552ba23ac77a6351de620aa9acf64ad54933ad4d34", + "sha256:d5d33e9e7af3b34a40dc05f498939f0ebf187f07c385fd58d591c533ad8562fe", + "sha256:df74880bdb70f34304ccc52b0c99d3e578f96a906b86f3ae172a1f1c2edef2bc", + "sha256:fc0fea399acb12edbf8a628ba8d2312f583bdbdb3335635db062fa98cf71fca4", + "sha256:fe460b922ec15dd205595c9b5b99e2f056fd98ae8f9f56b888e7a17dc2b757e7" + ], + "version": "==1.4.1" + }, + "typing-extensions": { + "hashes": [ + "sha256:091ecc894d5e908ac75209f10d5b4f118fbdb2eb1ede6a63544054bb1edb41f2", + "sha256:910f4656f54de5993ad9304959ce9bb903f90aadc7c67a0bef07e678014e892d", + "sha256:cf8b63fedea4d89bab840ecbb93e75578af28f76f66c35889bd7065f5af88575" + ], + "version": "==3.7.4.1" + }, + "urllib3": { + "hashes": [ + "sha256:2f3db8b19923a873b3e5256dc9c2dedfa883e33d87c690d9c7913e1f40673cdc", + "sha256:87716c2d2a7121198ebcb7ce7cccf6ce5e9ba539041cfbaeecfb641dc0bf6acc" + ], + "version": "==1.25.8" + }, + "virtualenv": { + "hashes": [ + "sha256:4e399f48c6b71228bf79f5febd27e3bbb753d9d5905776a86667bc61ab628a25", + "sha256:9e81279f4a9d16d1c0654a127c2c86e5bca2073585341691882c1e66e31ef8a5" + ], + "version": "==20.0.15" + }, + "wcwidth": { + "hashes": [ + "sha256:cafe2186b3c009a04067022ce1dcd79cb38d8d65ee4f4791b8888d6599d1bbe1", + "sha256:ee73862862a156bf77ff92b09034fc4825dd3af9cf81bc5b360668d425f3c5f1" + ], + "version": "==0.1.9" + }, + "webencodings": { + "hashes": [ + "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", + "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923" + ], + "version": "==0.5.1" + }, + "wheel": { + "hashes": [ + "sha256:8788e9155fe14f54164c1b9eb0a319d98ef02c160725587ad60f14ddc57b6f96", + "sha256:df277cb51e61359aba502208d680f90c0493adec6f0e848af94948778aed386e" + ], + "index": "pypi", + "version": "==0.34.2" + }, + "zipp": { + "hashes": [ + "sha256:aa36550ff0c0b7ef7fa639055d797116ee891440eac1a56f378e2d3179e0320b", + "sha256:c599e4d75c98f6798c509911d08a22e6c021d074469042177c8c86fb92eefd96" + ], + "version": "==3.1.0" + } + } +} diff --git a/Ch04/apd.sensors-chapter04-configparser/README.md b/Ch04/apd.sensors-chapter04-configparser/README.md new file mode 100644 index 0000000..e6dcb45 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-configparser/README.md @@ -0,0 +1,32 @@ +# Advanced Python Development Sensors + +This is the data collection package that forms part of the running example +for the book [Advanced Python Development](https://advancedpython.dev). + +## Usage + +This installs a console script called `sensors` that returns a report on +various aspects of the system. The available sensors are: + +* Python version +* IP Addresses +* CPU Usage +* RAM Available +* Battery charging state +* Ambient Temperature +* Ambient Humidity + +There are no command-line options, to view the report run `sensors` on the +command line. + +## Caveats + +The Ambient Temperature and Ambient Humidity sensors are only available on +RaspberryPi hosts and assume that a DHT22 sensor is connected to pin `D20`. + +If there is an entry in `/etc/hosts` for the current machine's hostname that +value will be the only result from the IP Addresses sensor. + +## Installation + +Install with `pip3 install apd.sensors` under Python 3.7 or higher diff --git a/Ch04/apd.sensors-chapter04-configparser/pytest.ini b/Ch04/apd.sensors-chapter04-configparser/pytest.ini new file mode 100644 index 0000000..861f3d0 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-configparser/pytest.ini @@ -0,0 +1,3 @@ +[pytest] +markers = + functional: these tests are significantly slower as they run the whole CLI script \ No newline at end of file diff --git a/Ch04/apd.sensors-chapter04-configparser/setup.cfg b/Ch04/apd.sensors-chapter04-configparser/setup.cfg new file mode 100644 index 0000000..908c774 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-configparser/setup.cfg @@ -0,0 +1,59 @@ +[mypy] +namespace_packages = True +mypy_path = src + +[mypy-psutil] +ignore_missing_imports = True + +[mypy-adafruit_dht] +ignore_missing_imports = True + +[mypy-board] +ignore_missing_imports = True + +[mypy-pytest] +ignore_missing_imports = True + +[flake8] +max-line-length = 88 + +[metadata] +name = apd.sensors +version = attr: apd.sensors.VERSION +description = APD Sensor package +long_description = file: README.md, CHANGES.md, LICENCE +long_description_content_type = text/markdown +keywords = iot +license = MIT +classifiers = + Programming Language :: Python :: 3 + Programming Language :: Python :: 3.7 + +[options] +zip_safe = False +include_package_data = True +package-dir = + =src +packages = find_namespace: +install_requires = + psutil + click + adafruit-circuitpython-dht ; 'arm' in platform_machine + +[options.package_data] +apd.sensors = py.typed + +[options.packages.find] +where = src + +[options.entry_points] +console_scripts = + sensors = apd.sensors.cli:show_sensors +apd_sensors = + PythonVersion = apd.sensors.sensors:PythonVersion + IPAddresses = apd.sensors.sensors:IPAddresses + CPULoad = apd.sensors.sensors:CPULoad + RAMAvailable = apd.sensors.sensors:RAMAvailable + ACStatus = apd.sensors.sensors:ACStatus + Temperature = apd.sensors.sensors:Temperature + RelativeHumidity = apd.sensors.sensors:RelativeHumidity \ No newline at end of file diff --git a/Ch04/apd.sensors-chapter04-configparser/setup.py b/Ch04/apd.sensors-chapter04-configparser/setup.py new file mode 100644 index 0000000..6068493 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-configparser/setup.py @@ -0,0 +1,3 @@ +from setuptools import setup + +setup() diff --git a/Ch04/apd.sensors-chapter04-configparser/src/apd/sensors/__init__.py b/Ch04/apd.sensors-chapter04-configparser/src/apd/sensors/__init__.py new file mode 100644 index 0000000..ec63ed1 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-configparser/src/apd/sensors/__init__.py @@ -0,0 +1 @@ +VERSION = "1.1.0dev1" diff --git a/Ch04/apd.sensors-chapter04-configparser/src/apd/sensors/cli.py b/Ch04/apd.sensors-chapter04-configparser/src/apd/sensors/cli.py new file mode 100644 index 0000000..c49d2f2 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-configparser/src/apd/sensors/cli.py @@ -0,0 +1,119 @@ +import configparser +import enum +import importlib +import sys +import typing as t + +import click + +from .sensors import Sensor + + +class ReturnCodes(enum.IntEnum): + OK = 0 + BAD_SENSOR_PATH = 17 + BAD_CONFIG = 18 + + +def parse_config_file( + path: t.Union[str, t.Iterable[str]] +) -> t.Dict[str, t.Dict[str, str]]: + parser = configparser.ConfigParser() + parser.read(path, encoding="utf-8") + try: + plugin_names = [ + name for name in parser.get("config", "plugins").split() if name + ] + except configparser.NoSectionError: + raise RuntimeError(f"Could not find [config] section in file") + except configparser.NoOptionError: + raise RuntimeError(f"Could not find plugins line in [config] section") + plugin_data = {} + for plugin_name in plugin_names: + try: + plugin_data[plugin_name] = dict(parser.items(plugin_name)) + except configparser.NoSectionError: + raise RuntimeError(f"Could not find [{plugin_name}] section in file") + return plugin_data + + +def get_sensor_by_path(sensor_path: str, **kwargs) -> Sensor[t.Any]: + try: + module_name, sensor_name = sensor_path.split(":") + except ValueError: + raise RuntimeError( + "Sensor path must be in the format dotted.path.to.module:ClassName" + ) + try: + module = importlib.import_module(module_name) + except ImportError: + raise RuntimeError(f"Could not import module {module_name}") + try: + sensor_class = getattr(module, sensor_name) + except AttributeError: + raise RuntimeError(f"Could not find attribute {sensor_name} in {module_name}") + if ( + isinstance(sensor_class, type) + and issubclass(sensor_class, Sensor) + and sensor_class != Sensor + ): + try: + return sensor_class(**kwargs) + except TypeError as error: + message = str(error) + if "got an unexpected" in message: + raise RuntimeError(f"Sensor {sensor_name} " + message.split(" ", 1)[1]) + raise + else: + raise RuntimeError( + f"Detected object {sensor_class!r} is not recognised as a Sensor type" + ) + + +def get_sensors(path: str) -> t.Iterable[Sensor[t.Any]]: + sensors = [] + for plugin_name, sensor_data in parse_config_file(path).items(): + try: + class_path = sensor_data.pop("plugin") + except TypeError: + raise RuntimeError( + f"Could not find plugin= line in [{plugin_name}] section" + ) + sensors.append(get_sensor_by_path(class_path, **sensor_data)) + return sensors + + +@click.command(help="Displays the values of the sensors") +@click.option( + "--develop", required=False, metavar="path", help="Load a sensor by Python path" +) +@click.option( + "--config", + required=False, + default="config.cfg", + metavar="config_path", + help="Load the specified configuration file", +) +def show_sensors(develop: str, config: str) -> None: + sensors: t.Iterable[Sensor[t.Any]] + if develop: + try: + sensors = [get_sensor_by_path(develop)] + except RuntimeError as error: + click.secho(str(error), fg="red", bold=True) + sys.exit(ReturnCodes.BAD_SENSOR_PATH) + else: + try: + sensors = get_sensors(config) + except RuntimeError as error: + click.secho(str(error), fg="red", bold=True) + sys.exit(ReturnCodes.BAD_CONFIG) + for sensor in sensors: + click.secho(sensor.title, bold=True) + click.echo(str(sensor)) + click.echo("") + sys.exit(ReturnCodes.OK) + + +if __name__ == "__main__": + show_sensors() diff --git a/Ch04/apd.sensors-chapter04-configparser/src/apd/sensors/py.typed b/Ch04/apd.sensors-chapter04-configparser/src/apd/sensors/py.typed new file mode 100644 index 0000000..e69de29 diff --git a/Ch04/apd.sensors-chapter04-configparser/src/apd/sensors/sensors.py b/Ch04/apd.sensors-chapter04-configparser/src/apd/sensors/sensors.py new file mode 100644 index 0000000..27f88a4 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-configparser/src/apd/sensors/sensors.py @@ -0,0 +1,191 @@ +#!/usr/bin/env python +# coding: utf-8 +import math +import socket +import sys +from typing import Any, Optional, List, Tuple, Iterable, TypeVar, Generic + + +import psutil + + +T_value = TypeVar("T_value") + + +class Sensor(Generic[T_value]): + title: str + + def __init__(self, **kwargs): + if kwargs: + raise TypeError( + "Sensor got an unexpected keyword argument {}".format( + ", ".join(kwargs.keys()) + ) + ) + return + + def value(self) -> T_value: + raise NotImplementedError + + @classmethod + def format(cls, value: T_value) -> str: + raise NotImplementedError + + def __str__(self) -> str: + return self.format(self.value()) + + +class PythonVersion(Sensor[Any]): + title = "Python Version" + + def value(self) -> Any: + return sys.version_info + + @classmethod + def format(cls, value: Any) -> str: + if value.micro == 0 and value.releaselevel == "alpha": + return "{0.major}.{0.minor}.{0.micro}a{0.serial}".format(value) + return "{0.major}.{0.minor}".format(value) + + +class IPAddresses(Sensor[Iterable[Tuple[str, str]]]): + title = "IP Addresses" + FAMILIES = {"AF_INET": "IPv4", "AF_INET6": "IPv6"} + + def value(self) -> List[Tuple[str, str]]: + hostname = socket.gethostname() + addresses = socket.getaddrinfo(hostname, None) + + address_info: List[Tuple[str, str]] = [] + for address in addresses: + family, ip = (address[0].name, address[4][0]) + if family not in self.FAMILIES: + continue + value = (family, ip) + if value not in address_info: + address_info.append(value) + return address_info + + @classmethod + def format(cls, value: Iterable[Tuple[str, str]]) -> str: + return "\n".join( + "{0} ({1})".format(address[1], cls.FAMILIES.get(address[0], "Unknown")) + for address in value + ) + + +class CPULoad(Sensor[float]): + title = "CPU Usage" + + def value(self) -> float: + return psutil.cpu_percent(interval=3) / 100.0 + + @classmethod + def format(cls, value: float) -> str: + return "{:.1%}".format(value) + + +class RAMAvailable(Sensor[int]): + title = "RAM Available" + UNITS = ("B", "KiB", "MiB", "GiB", "TiB", "PiB", "EiB") + UNIT_SIZE = 2 ** 10 + + def value(self) -> int: + return psutil.virtual_memory().available + + @classmethod + def format(cls, value: int) -> str: + magnitude = math.floor(math.log(value, cls.UNIT_SIZE)) + max_magnitude = len(cls.UNITS) - 1 + magnitude = min(magnitude, max_magnitude) + scaled_value = value / (cls.UNIT_SIZE ** magnitude) + return "{:.1f} {}".format(scaled_value, cls.UNITS[magnitude]) + + +class ACStatus(Sensor[Optional[bool]]): + title = "AC Connected" + + def value(self) -> Optional[bool]: + battery = psutil.sensors_battery() + if battery is not None: + return battery.power_plugged + else: + return None + + @classmethod + def format(cls, value: Optional[bool]) -> str: + if value is None: + return "Unknown" + elif value: + return "Connected" + else: + return "Not connected" + + +class Temperature(Sensor[Optional[float]]): + title = "Ambient Temperature" + + def __init__(self, board="DHT22", pin="D4"): + self.board = board + self.pin = pin + + def value(self) -> Optional[float]: + try: + import adafruit_dht + import board + except (ImportError, NotImplementedError): + # No DHT library results in an ImportError. + # Running on an unknown platform results in a + # NotImplementedError when getting the pin + return None + try: + sensor_type = getattr(adafruit_dht, self.board) + pin = getattr(board, self.pin) + return sensor_type(pin).temperature + except RuntimeError: + return None + + @staticmethod + def celsius_to_fahrenheit(value: float) -> float: + return value * 9 / 5 + 32 + + @classmethod + def format(cls, value: Optional[float]) -> str: + if value is None: + return "Unknown" + else: + return "{:.1f}C ({:.1f}F)".format(value, cls.celsius_to_fahrenheit(value)) + + def __str__(self) -> str: + return self.format(self.value()) + + +class RelativeHumidity(Sensor[Optional[float]]): + title = "Relative Humidity" + + def __init__(self, board="DHT22", pin="D4"): + self.board = board + self.pin = pin + + def value(self) -> Optional[float]: + try: + import adafruit_dht + import board + except (ImportError, NotImplementedError): + # No DHT library results in an ImportError. + # Running on an unknown platform results in a + # NotImplementedError when getting the pin + return None + try: + sensor_type = getattr(adafruit_dht, self.board) + pin = getattr(board, self.pin) + return sensor_type(pin).humidity / 100 + except RuntimeError: + return None + + @classmethod + def format(cls, value: Optional[float]) -> str: + if value is None: + return "Unknown" + else: + return "{:.1%}".format(value) diff --git a/Ch04/apd.sensors-chapter04-configparser/tests/test_acstatus.py b/Ch04/apd.sensors-chapter04-configparser/tests/test_acstatus.py new file mode 100644 index 0000000..d2fe71e --- /dev/null +++ b/Ch04/apd.sensors-chapter04-configparser/tests/test_acstatus.py @@ -0,0 +1,55 @@ +from unittest import mock + +import pytest + +from apd.sensors.sensors import ACStatus + + +@pytest.fixture +def sensor(): + return ACStatus() + + +class TestACStatusFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_True(self, subject): + assert subject(True) == "Connected" + + def test_format_False(self, subject): + assert subject(False) == "Not connected" + + def test_format_None(self, subject): + assert subject(None) == "Unknown" + + +class TestACStatusValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def sensors_battery(self): + with mock.patch("psutil.sensors_battery") as sensors_battery: + yield sensors_battery + + def test_sensors_battery_called(self, subject, sensors_battery): + sensors_battery.return_value.power_plugged = True + assert subject() is True + assert sensors_battery.call_count == 1 + + def test_sensor_but_battery_unknown(self, subject, sensors_battery): + sensors_battery.return_value.power_plugged = None + assert subject() is None + assert sensors_battery.call_count == 1 + + def test_no_sensor(self, subject, sensors_battery): + sensors_battery.return_value = None + assert subject() is None + + def test_str_representation_is_formatted_value(self, sensor, sensors_battery): + sensors_battery.return_value.power_plugged = True + assert str(sensor) == "Connected" + assert sensors_battery.call_count == 1 diff --git a/Ch04/apd.sensors-chapter04-configparser/tests/test_cpuusage.py b/Ch04/apd.sensors-chapter04-configparser/tests/test_cpuusage.py new file mode 100644 index 0000000..445f4e5 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-configparser/tests/test_cpuusage.py @@ -0,0 +1,45 @@ +from unittest import mock + +import pytest + +from apd.sensors.sensors import CPULoad + + +@pytest.fixture +def sensor(): + return CPULoad() + + +class TestCPULoadFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_simple_percentage(self, subject): + assert subject(0.05) == "5.0%" + + def test_format_multiple_decimal_places(self, subject): + assert subject(0.031415926) == "3.1%" + + def test_format_multiple_decimal_places_int(self, subject) -> None: + assert subject(1) == "100.0%" + + +class TestCPULoadValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def cpuload(self): + with mock.patch("psutil.cpu_percent") as cpu_percent: + cpu_percent.return_value = 50.1 + yield cpu_percent + + def test_cpu_percent_called_With_interval(self, subject, cpuload): + assert subject() == 0.501 + assert cpuload.call_count == 1 + assert tuple(cpuload.call_args) == ((), {"interval": 3}) + + def test_str_representation_is_formatted_value(self, sensor, cpuload): + assert str(sensor) == "50.1%" diff --git a/Ch04/apd.sensors-chapter04-configparser/tests/test_dht.py b/Ch04/apd.sensors-chapter04-configparser/tests/test_dht.py new file mode 100644 index 0000000..153c1db --- /dev/null +++ b/Ch04/apd.sensors-chapter04-configparser/tests/test_dht.py @@ -0,0 +1,66 @@ +import pytest + +from apd.sensors.sensors import Temperature, RelativeHumidity + + +@pytest.fixture +def temperature_sensor(): + return Temperature() + + +@pytest.fixture +def humidity_sensor(): + return RelativeHumidity() + + +class TestTemperatureFormatter: + @pytest.fixture + def subject(self, temperature_sensor): + return temperature_sensor.format + + def test_format_21c(self, subject): + assert subject(21.0) == "21.0C (69.8F)" + + def test_format_negative(self, subject): + assert subject(-32.0) == "-32.0C (-25.6F)" + + def test_format_unknown(self, subject): + assert subject(None) == "Unknown" + + +class TestTemperatureConversion: + @pytest.fixture + def subject(self, temperature_sensor): + return temperature_sensor.celsius_to_fahrenheit + + def test_celsius_to_fahrenheit(self, subject): + c = 21 + f = subject(c) + assert f == 69.8 + + def test_celsius_to_fahrenheit_equivlance_point(self, subject): + c = -40 + f = subject(c) + assert f == -40 + + def test_celsius_to_fahrenheit_float(self, subject): + c = 21.2 + f = subject(c) + assert f == 70.16 + + def test_celsius_to_fahrenheit_string(self, subject): + c = "21" + with pytest.raises(TypeError): + subject(c) + + +class TestHumidityFormatter: + @pytest.fixture + def subject(self, humidity_sensor): + return humidity_sensor.format + + def test_format_percentage(self, subject): + assert subject(0.035) == "3.5%" + + def test_format_unknown(self, subject): + assert subject(None) == "Unknown" diff --git a/Ch04/apd.sensors-chapter04-configparser/tests/test_ipaddresses.py b/Ch04/apd.sensors-chapter04-configparser/tests/test_ipaddresses.py new file mode 100644 index 0000000..bd61d85 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-configparser/tests/test_ipaddresses.py @@ -0,0 +1,59 @@ +import socket +from unittest import mock + +import pytest + +from apd.sensors.sensors import IPAddresses + + +@pytest.fixture +def sensor(): + return IPAddresses() + + +class TestIPAddressFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_single_ipv4(self, subject): + ips = [("AF_INET", "192.0.2.1")] + assert subject(ips) == "192.0.2.1 (IPv4)" + + def test_format_single_ipv6(self, subject): + ips = [("AF_INET6", "2001:DB8::1")] + assert subject(ips) == "2001:DB8::1 (IPv6)" + + def test_format_mixed_list(self, subject): + ips = [("AF_INET", "192.0.2.1"), ("AF_INET6", "2001:DB8::1")] + assert subject(ips) == "192.0.2.1 (IPv4)\n2001:DB8::1 (IPv6)" + + def test_unusual_protocols_are_marked_as_unknown(self, subject): + ips = [("AF_IRDA", "ffff")] + assert subject(ips) == "ffff (Unknown)" + + +class TestIPAddressesValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def gethostname(self): + with mock.patch("socket.gethostname") as gethostname: + gethostname.return_value = "localhost" + yield gethostname + + @pytest.fixture + def getaddrinfo(self, gethostname): + with mock.patch("socket.getaddrinfo") as getaddrinfo: + yield getaddrinfo + + def test_getaddrinfo_used_for_value_collection(self, getaddrinfo, subject): + getaddrinfo.return_value = [(socket.AF_INET, 0, 0, "", ("192.0.2.1", 0))] + assert subject() == [("AF_INET", "192.0.2.1")] + assert getaddrinfo.call_count == 1 + + def test_str_representation_is_formatted_value(self, getaddrinfo, sensor): + getaddrinfo.return_value = [(socket.AF_INET6, 0, 0, "", ("2001:DB8::1", 0))] + assert str(sensor) == "2001:DB8::1 (IPv6)" diff --git a/Ch04/apd.sensors-chapter04-configparser/tests/test_pythonversion.py b/Ch04/apd.sensors-chapter04-configparser/tests/test_pythonversion.py new file mode 100644 index 0000000..43ad806 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-configparser/tests/test_pythonversion.py @@ -0,0 +1,61 @@ +from collections import namedtuple +from unittest import mock + +import pytest + +from apd.sensors.sensors import PythonVersion + + +@pytest.fixture +def version(): + return namedtuple( + "sys_versioninfo", ("major", "minor", "micro", "releaselevel", "serial") + ) + + +@pytest.fixture +def sensor(): + return PythonVersion() + + +class TestPythonVersionFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_py38(self, subject, version): + py38 = version(3, 8, 0, "final", 0) + assert subject(py38) == "3.8" + + def test_format_large_version(self, subject, version): + large = version(255, 128, 0, "final", 0) + assert subject(large) == "255.128" + + def test_alpha_of_minor_is_marked(self, subject, version): + py39 = version(3, 9, 0, "alpha", 1) + assert subject(py39) == "3.9.0a1" + + def test_alpha_of_micro_is_unmarked(self, subject, version): + py39 = version(3, 9, 1, "alpha", 1) + assert subject(py39) == "3.9" + + +class TestPythonVersionValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def python_version(self): + import sys + + return sys.version_info + + def test_data_value_is_sys_versioninfo(self, python_version, subject): + assert subject() == python_version + + +class TestPythonVersionSensor: + def test_str_representation_is_formatted_value(self, sensor, version): + with mock.patch("sys.version_info", new=version(3, 4, 1, "final", 1)): + assert str(sensor) == "3.4" diff --git a/Ch04/apd.sensors-chapter04-configparser/tests/test_ramusage.py b/Ch04/apd.sensors-chapter04-configparser/tests/test_ramusage.py new file mode 100644 index 0000000..197ad06 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-configparser/tests/test_ramusage.py @@ -0,0 +1,47 @@ +from unittest import mock + +import pytest + +from apd.sensors.sensors import RAMAvailable + + +@pytest.fixture +def sensor(): + return RAMAvailable() + + +class TestRAMAvailableFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_bytes(self, subject): + assert subject(15) == "15.0 B" + + def test_format_kibibytes(self, subject): + assert subject(15000) == "14.6 KiB" + + def test_format_mibibytes(self, subject): + assert subject(15000000) == "14.3 MiB" + + def test_format_gibibytes(self, subject): + assert subject(15000000000) == "14.0 GiB" + + +class TestRAMAvailableValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def virtual_memory(self): + with mock.patch("psutil.virtual_memory") as virtual_memory: + virtual_memory.return_value.available = 1024 + yield virtual_memory + + def test_virtual_memory_called(self, subject, virtual_memory): + assert subject() == 1024 + assert virtual_memory.call_count == 1 + + def test_str_representation_is_formatted_value(self, sensor, virtual_memory): + assert str(sensor) == "1.0 KiB" diff --git a/Ch04/apd.sensors-chapter04-configparser/tests/test_sensors.py b/Ch04/apd.sensors-chapter04-configparser/tests/test_sensors.py new file mode 100644 index 0000000..720c457 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-configparser/tests/test_sensors.py @@ -0,0 +1,113 @@ +import os +from unittest import mock + +from click.testing import CliRunner + +import pytest + +import apd.sensors.cli +import apd.sensors.sensors + + +class MockTestingSensor(apd.sensors.sensors.Sensor[int]): + title = "Configured Number" + + def __init__(self, configured="0"): + self.configured = configured + + def value(self) -> int: + return int(self.configured) + + @classmethod + def format(cls, value: int) -> str: + return "{}".format(value) + + +def test_sensors(): + assert hasattr(apd.sensors.sensors, "PythonVersion") + + +@pytest.fixture +def default_config_path(): + return os.path.join(os.path.dirname(__file__), "default_test_config.cfg") + + +@pytest.mark.functional +def test_python_version_is_first_two_lines_of_cli_output(default_config_path): + runner = CliRunner() + result = runner.invoke( + apd.sensors.cli.show_sensors, ["--config", default_config_path] + ) + python_version = str(apd.sensors.sensors.PythonVersion()) + assert ["Python Version", python_version] == result.stdout.split("\n")[:2] + + +def test_parameter_for_sensor(): + with mock.patch("apd.sensors.cli.parse_config_file") as parse_config_file: + parse_config_file.return_value = { + "TestingSensor": { + "plugin": "tests.test_sensors:MockTestingSensor", + "configured": "42", + } + } + sensors = apd.sensors.cli.get_sensors("") + assert isinstance(sensors[0], MockTestingSensor) + assert sensors[0].value() == 42 + + +def test_spurious_parameters_raise_errors(): + with mock.patch("apd.sensors.cli.parse_config_file") as parse_config_file: + parse_config_file.return_value = { + "TestingSensor": { + "plugin": "apd.sensors.sensors:PythonVersion", + "magic": "42", + } + } + with pytest.raises(RuntimeError, match="unexpected keyword argument magic"): + apd.sensors.cli.get_sensors("") + + +def test_extract_plugins(default_config_path): + parsed = apd.sensors.cli.parse_config_file(default_config_path) + assert parsed == { + "IPAddress": {"plugin": "apd.sensors.sensors:IPAddresses"}, + "PythonVersion": {"plugin": "apd.sensors.sensors:PythonVersion"}, + } + + +class TestSensorFromPath: + @pytest.fixture + def subject(self): + return apd.sensors.cli.get_sensor_by_path + + def test_get_sensor_by_path(self, subject): + assert isinstance( + subject("apd.sensors.sensors:PythonVersion"), + apd.sensors.sensors.PythonVersion, + ) + + def test_invalid_format(self, subject): + with pytest.raises(RuntimeError, match="dotted.path.to.module:ClassName"): + subject("apd.sensors.sensors.PythonVersion") + + def test_invalid_module(self, subject): + with pytest.raises(RuntimeError, match="Could not import module"): + subject("apd.nonsense.sensor:FakeSensor") + + def test_missing_sensor(self, subject): + with pytest.raises(RuntimeError, match="Could not find attribute"): + subject("apd.sensors.sensors:FakeSensor") + + def test_invalid_sensor(self, subject): + with pytest.raises(RuntimeError, match="is not recognised as a Sensor"): + subject("apd.sensors.sensors:Sensor") + + +@pytest.mark.functional +def test_develop_option_finds_sensor_by_path(): + runner = CliRunner() + result = runner.invoke( + apd.sensors.cli.show_sensors, ["--develop", "apd.sensors.sensors:PythonVersion"] + ) + python_version = str(apd.sensors.sensors.PythonVersion()) + assert ["Python Version", python_version, "", ""] == result.stdout.split("\n") diff --git a/Ch04/apd.sensors-chapter04-ex01/.pre-commit-config.yaml b/Ch04/apd.sensors-chapter04-ex01/.pre-commit-config.yaml new file mode 100644 index 0000000..3ff6d15 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-ex01/.pre-commit-config.yaml @@ -0,0 +1,23 @@ +repos: + +- repo: local + hooks: + - id: black + name: black + entry: pipenv run black + args: [--quiet] + language: system + types: [python] + + - id: mypy + name: mypy + entry: pipenv run mypy + args: ["--follow-imports=skip"] + language: system + types: [python] + + - id: flake8 + name: flake8 + entry: pipenv run flake8 + language: system + types: [python] diff --git a/Ch04/apd.sensors-chapter04-ex01/CHANGES.md b/Ch04/apd.sensors-chapter04-ex01/CHANGES.md new file mode 100644 index 0000000..569aeea --- /dev/null +++ b/Ch04/apd.sensors-chapter04-ex01/CHANGES.md @@ -0,0 +1,5 @@ +## Changes + +### 1.0.0 (2019-06-20) + +* Added initial sensors (Matthew Wilkes) diff --git a/Ch04/apd.sensors-chapter04-ex01/LICENCE b/Ch04/apd.sensors-chapter04-ex01/LICENCE new file mode 100644 index 0000000..ccaef50 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-ex01/LICENCE @@ -0,0 +1,21 @@ +``` +Copyright (c) 2019 Matthew Wilkes + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. +``` \ No newline at end of file diff --git a/Ch04/apd.sensors-chapter04-ex01/Pipfile b/Ch04/apd.sensors-chapter04-ex01/Pipfile new file mode 100644 index 0000000..40413b8 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-ex01/Pipfile @@ -0,0 +1,29 @@ +[[source]] +name = "pypi" +url = "https://pypi.org/simple" +verify_ssl = true + +[[source]] +name = "piwheels" +url = "https://piwheels.org/simple" +verify_ssl = true + +[dev-packages] +ipykernel = "*" +remote-ikernel = "*" +pytest = "*" +pytest-cov = "*" +mypy = "*" +flake8 = "*" +black = "*" +pre-commit = "*" +wheel = "*" +twine = "*" + +[packages] +apd-sensors = {editable = true,path = "."} + +[requires] + +[pipenv] +allow_prereleases = true diff --git a/Ch04/apd.sensors-chapter04-ex01/Pipfile.lock b/Ch04/apd.sensors-chapter04-ex01/Pipfile.lock new file mode 100644 index 0000000..f2c94d2 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-ex01/Pipfile.lock @@ -0,0 +1,739 @@ +{ + "_meta": { + "hash": { + "sha256": "b2def6fc1541c4ee04e68450c1818f456f7d3aac56b38ed1356d6bbcd13ffd8d" + }, + "pipfile-spec": 6, + "requires": {}, + "sources": [ + { + "name": "pypi", + "url": "https://pypi.org/simple", + "verify_ssl": true + }, + { + "name": "piwheels", + "url": "https://piwheels.org/simple", + "verify_ssl": true + } + ] + }, + "default": { + "apd-sensors": { + "editable": true, + "path": "." + } + }, + "develop": { + "appdirs": { + "hashes": [ + "sha256:9e5896d1372858f8dd3344faf4e5014d21849c756c8d5701f78f8a103b372d92", + "sha256:d8b24664561d0d34ddfaec54636d502d7cea6e29c3eaf68f3df6180863e2166e" + ], + "version": "==1.4.3" + }, + "aspy.yaml": { + "hashes": [ + "sha256:463372c043f70160a9ec950c3f1e4c3a82db5fca01d334b6bc89c7164d744bdc", + "sha256:e7c742382eff2caed61f87a39d13f99109088e5e93f04d76eb8d4b28aa143f45" + ], + "version": "==1.3.0" + }, + "atomicwrites": { + "hashes": [ + "sha256:03472c30eb2c5d1ba9227e4c2ca66ab8287fbfbbda3888aa93dc2e28fc6811b4", + "sha256:75a9445bac02d8d058d5e1fe689654ba5a6556a1dfd8ce6ec55a0ed79866cfa6" + ], + "version": "==1.3.0" + }, + "attrs": { + "hashes": [ + "sha256:69c0dbf2ed392de1cb5ec704444b08a5ef81680a61cb899dc08127123af36a79", + "sha256:f0b870f674851ecbfbbbd364d6b5cbdff9dcedbc7f3f5e18a6891057f21fe399" + ], + "version": "==19.1.0" + }, + "backcall": { + "hashes": [ + "sha256:38ecd85be2c1e78f77fd91700c76e14667dc21e2713b63876c0eb901196e01e4", + "sha256:65d380041000921f67ec230b41e9f50904f52594dc3e6139c41a08c98c4bca77", + "sha256:bbbf4b1e5cd2bdb08f915895b51081c041bac22394fdfcfdfbe9f14b77c08bf2" + ], + "version": "==0.1.0" + }, + "black": { + "hashes": [ + "sha256:09a9dcb7c46ed496a9850b76e4e825d6049ecd38b611f1224857a79bd985a8cf", + "sha256:68950ffd4d9169716bcb8719a56c07a2f4485354fec061cdd5910aa07369731c" + ], + "index": "pypi", + "version": "==19.3b0" + }, + "bleach": { + "hashes": [ + "sha256:213336e49e102af26d9cde77dd2d0397afabc5a6bf2fed985dc35b5d1e285a16", + "sha256:3fdf7f77adcf649c9911387df51254b813185e32b2c6619f690b593a617e19fa" + ], + "version": "==3.1.0" + }, + "certifi": { + "hashes": [ + "sha256:046832c04d4e752f37383b628bc601a7ea7211496b4638f6514d0e5b9acc4939", + "sha256:945e3ba63a0b9f577b1395204e13c3a231f9bc0223888be653286534e5873695" + ], + "version": "==2019.6.16" + }, + "cfgv": { + "hashes": [ + "sha256:32edbe09de6f4521224b87822103a8c16a614d31a894735f7a5b3bcf0eb3c37e", + "sha256:3bd31385cd2bebddbba8012200aaf15aa208539f1b33973759b4d02fc2148da5" + ], + "version": "==2.0.0" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:2335065e6395b9e67ca716de5f7526736bfa6ceead690adf616d925bdc622b13", + "sha256:5b94b49521f6456670fdb30cd82a4eca9412788a93fa6dd6df72c94d5a8ff2d7" + ], + "version": "==7.0" + }, + "colorama": { + "hashes": [ + "sha256:05eed71e2e327246ad6b38c540c4a3117230b19679b875190486ddd2d721422d", + "sha256:f8ac84de7840f5b9c4e3347b3c1eaa50f7e49c2b07596221daec5edaabbd7c48" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.1" + }, + "coverage": { + "hashes": [ + "sha256:0402b1822d513d0231589494bceddb067d20581f5083598c451b56c684b0e5d6", + "sha256:0644e28e8aea9d9d563607ee8b7071b07dd57a4a3de11f8684cd33c51c0d1b93", + "sha256:0874a283686803884ec0665018881130604956dbaa344f2539c46d82cbe29eda", + "sha256:0988c3837df4bc371189bb3425d5232cf150055452034c232dda9cbe04f9c38e", + "sha256:20bc3205b3100956bb72293fabb97f0ed972c81fed10b3251c90c70dcb0599ab", + "sha256:2cc9142a3367e74eb6b19d58c53ebb1dfd7336b91cdcc91a6a2888bf8c7af984", + "sha256:3ae9a0a59b058ce0761c3bd2c2d66ecb2ee2b8ac592620184370577f7a546fb3", + "sha256:3b2e30b835df58cb973f478d09f3d82e90c98c8e5059acc245a8e4607e023801", + "sha256:401e9b04894eb1498c639c6623ee78a646990ce5f095248e2440968aafd6e90e", + "sha256:41ec5812d5decdaa72708be3018e7443e90def4b5a71294236a4df192cf9eab9", + "sha256:475769b638a055e75b3d3219e054fe2a023c0b077ff15bff6c95aba7e93e6cac", + "sha256:61424f4e2e82c4129a4ba71e10ebacb32a9ecd6f80de2cd05bdead6ba75ed736", + "sha256:811969904d4dd0bee7d958898be8d9d75cef672d9b7e7db819dfeac3d20d2d0c", + "sha256:86224bb99abfd672bf2f9fcecad5e8d7a3fa94f7f71513f2210460a0350307cd", + "sha256:9a238a20a3af00665f8381f7e53e9c606f9bb652d2423f6b822f6cb790d887e8", + "sha256:a23b3fbc14d4e6182ecebfd22f3729beef0636d151d94764a1c28330d185e4e5", + "sha256:ac162b4ebe51b7a2b7f5e462c4402802633eb81e77c94f8a7c1ed8a556e72c75", + "sha256:b6187378726c84365bf297b5dcdae8789b6a5823b200bea23797777e5a63be09", + "sha256:bcd5723d905ed4a825f17410a53535f880b6d7548ae3d89078db7b1ceefcd853", + "sha256:c48a4f9c5fb385269bb7fbaf9c1326a94863b65ec7f5c96b2ea56b252f01ad08", + "sha256:cd40199d6f1c29c85b170d25589be9a97edff8ee7e62be180a2a137823896030", + "sha256:d1bc331a7d069485ac1d8c25a0ea1f6aab6cb2a87146fb652222481c1bddc9ff", + "sha256:d7e0cdc249aa0f94aa2e531b03999ddaf03a10b4fa090a894712d4c8066abd89", + "sha256:e9ee8fcd8e067fcc5d7276d46e07e863102b70a52545ef4254df1ff0893ce75f", + "sha256:eb313c23d983b7810504f42104e8dcd1c7ccdda8fbaab82aab92ab79fea19345", + "sha256:f9cfd478654b509941b85ed70f870f5e3c74678f566bec12fd26545e5340ba47", + "sha256:fae1fa144034d021a52cb9ea200eb8dedf91869c6df8202ad5d149b41ed91cc8" + ], + "version": "==5.0a5" + }, + "decorator": { + "hashes": [ + "sha256:86156361c50488b84a3f148056ea716ca587df2f0de1d34750d35c21312725de", + "sha256:f069f3a01830ca754ba5258fde2278454a0b5b79e0d7f5c13b3b97e57d4acff6" + ], + "version": "==4.4.0" + }, + "defusedxml": { + "hashes": [ + "sha256:6687150770438374ab581bb7a1b327a847dd9c5749e396102de3fad4e8a3ef93", + "sha256:f684034d135af4c6cbb949b8a4d2ed61634515257a67299e5f940fbaa34377f5" + ], + "version": "==0.6.0" + }, + "docutils": { + "hashes": [ + "sha256:02aec4bd92ab067f6ff27a38a38a41173bf01bed8f89157768c1573f53e474a6", + "sha256:51e64ef2ebfb29cae1faa133b3710143496eca21c530f3f71424d77687764274", + "sha256:7a4bd47eaf6596e1295ecb11361139febe29b084a87bf005bf899f9a42edc3c6" + ], + "version": "==0.14" + }, + "entrypoints": { + "hashes": [ + "sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19", + "sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451" + ], + "version": "==0.3" + }, + "flake8": { + "hashes": [ + "sha256:859996073f341f2670741b51ec1e67a01da142831aa1fdc6242dbf88dffbe661", + "sha256:a796a115208f5c03b18f332f7c11729812c8c3ded6c46319c59b53efd3819da8" + ], + "index": "pypi", + "version": "==3.7.7" + }, + "identify": { + "hashes": [ + "sha256:0a11379b46d06529795442742a043dc2fa14cd8c995ae81d1febbc5f1c014c87", + "sha256:43a5d24ffdb07bc7e21faf68b08e9f526a1f41f0056073f480291539ef961dfd" + ], + "version": "==1.4.5" + }, + "idna": { + "hashes": [ + "sha256:c357b3f628cf53ae2c4c05627ecc484553142ca23264e593d327bcde5e9c3407", + "sha256:ea8b7f6188e6fa117537c3df7da9fc686d485087abf6ac197f9c46432f7e4a3c" + ], + "version": "==2.8" + }, + "importlib-metadata": { + "hashes": [ + "sha256:6dfd58dfe281e8d240937776065dd3624ad5469c835248219bd16cf2e12dbeb7", + "sha256:cb6ee23b46173539939964df59d3d72c3e0c1b5d54b84f1d8a7e912fe43612db" + ], + "version": "==0.18" + }, + "ipykernel": { + "hashes": [ + "sha256:346189536b88859937b5f4848a6fd85d1ad0729f01724a411de5cae9b618819c", + "sha256:f0e962052718068ad3b1d8bcc703794660858f58803c3798628817f492a8769c" + ], + "index": "pypi", + "version": "==5.1.1" + }, + "ipython": { + "hashes": [ + "sha256:54c5a8aa1eadd269ac210b96923688ccf01ebb2d0f21c18c3c717909583579a8", + "sha256:e840810029224b56cd0d9e7719dc3b39cf84d577f8ac686547c8ba7a06eeab26" + ], + "version": "==7.5.0" + }, + "ipython-genutils": { + "hashes": [ + "sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8", + "sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8" + ], + "version": "==0.2.0" + }, + "jedi": { + "hashes": [ + "sha256:49ccb782651bb6f7009810d17a3316f8867dde31654c750506970742e18b553d", + "sha256:79d0f6595f3846dffcbe667cc6dc821b96e5baa8add125176c31a3917eb19d58" + ], + "version": "==0.14.0" + }, + "jinja2": { + "hashes": [ + "sha256:065c4f02ebe7f7cf559e49ee5a95fb800a9e4528727aec6f24402a5374c65013", + "sha256:14dd6caf1527abb21f08f86c784eac40853ba93edb79552aa1e4b8aef1b61c7b" + ], + "version": "==2.10.1" + }, + "jsonschema": { + "hashes": [ + "sha256:0c0a81564f181de3212efa2d17de1910f8732fa1b71c42266d983cd74304e20d", + "sha256:a5f6559964a3851f59040d3b961de5e68e70971afb88ba519d27e6a039efff1a" + ], + "version": "==3.0.1" + }, + "jupyter-client": { + "hashes": [ + "sha256:b5f9cb06105c1d2d30719db5ffb3ea67da60919fb68deaefa583deccd8813551", + "sha256:c44411eb1463ed77548bc2d5ec0d744c9b81c4a542d9637c7a52824e2121b987" + ], + "version": "==5.2.4" + }, + "jupyter-core": { + "hashes": [ + "sha256:2c6e7c1e9f2ac45b5c2ceea5730bc9008d92fe59d0725eac57b04c0edfba24f7", + "sha256:f4fa22d6cf25f34807c995f22d2923693575c70f02557bcbfbe59bd5ec8d8b84" + ], + "version": "==4.5.0" + }, + "markupsafe": { + "hashes": [ + "sha256:00bc623926325b26bb9605ae9eae8a215691f33cae5df11ca5424f06f2d1f473", + "sha256:068b504787d682e13616b3683c277b6538665efb7f348eb70c676bd742a741c8", + "sha256:06c339404d8177f85e595eb43b8755d2d3396cfc462ba172ff06f9fa70496e8d", + "sha256:09027a7803a62ca78792ad89403b1b7a73a01c8cb65909cd876f7fcebd79b161", + "sha256:09c4b7f37d6c648cb13f9230d847adf22f8171b1ccc4d5682398e77f40309235", + "sha256:0c5213014661b22242912266252b7c0e459e22d655ded05b9315ef3b6cc85ae0", + "sha256:1027c282dad077d0bae18be6794e6b6b8c91d58ed8a8d89a89d59693b9131db5", + "sha256:24982cc2533820871eba85ba648cd53d8623687ff11cbb805be4ff7b4c971aff", + "sha256:29872e92839765e546828bb7754a68c418d927cd064fd4708fab9fe9c8bb116b", + "sha256:43a55c2930bbc139570ac2452adf3d70cdbb3cfe5912c71cdce1c2c6bbd9c5d1", + "sha256:46c99d2de99945ec5cb54f23c8cd5689f6d7177305ebff350a58ce5f8de1669e", + "sha256:500d4957e52ddc3351cabf489e79c91c17f6e0899158447047588650b5e69183", + "sha256:535f6fc4d397c1563d08b88e485c3496cf5784e927af890fb3c3aac7f933ec66", + "sha256:62fe6c95e3ec8a7fad637b7f3d372c15ec1caa01ab47926cfdf7a75b40e0eac1", + "sha256:6dd73240d2af64df90aa7c4e7481e23825ea70af4b4922f8ede5b9e35f78a3b1", + "sha256:717ba8fe3ae9cc0006d7c451f0bb265ee07739daf76355d06366154ee68d221e", + "sha256:79855e1c5b8da654cf486b830bd42c06e8780cea587384cf6545b7d9ac013a0b", + "sha256:7c1699dfe0cf8ff607dbdcc1e9b9af1755371f92a68f706051cc8c37d447c905", + "sha256:88e5fcfb52ee7b911e8bb6d6aa2fd21fbecc674eadd44118a9cc3863f938e735", + "sha256:8defac2f2ccd6805ebf65f5eeb132adcf2ab57aa11fdf4c0dd5169a004710e7d", + "sha256:98c7086708b163d425c67c7a91bad6e466bb99d797aa64f965e9d25c12111a5e", + "sha256:9add70b36c5666a2ed02b43b335fe19002ee5235efd4b8a89bfcf9005bebac0d", + "sha256:9bf40443012702a1d2070043cb6291650a0841ece432556f784f004937f0f32c", + "sha256:ade5e387d2ad0d7ebf59146cc00c8044acbd863725f887353a10df825fc8ae21", + "sha256:b00c1de48212e4cc9603895652c5c410df699856a2853135b3967591e4beebc2", + "sha256:b1282f8c00509d99fef04d8ba936b156d419be841854fe901d8ae224c59f0be5", + "sha256:b2051432115498d3562c084a49bba65d97cf251f5a331c64a12ee7e04dacc51b", + "sha256:ba59edeaa2fc6114428f1637ffff42da1e311e29382d81b339c1817d37ec93c6", + "sha256:c8716a48d94b06bb3b2524c2b77e055fb313aeb4ea620c8dd03a105574ba704f", + "sha256:cd5df75523866410809ca100dc9681e301e3c27567cf498077e8551b6d20e42f", + "sha256:e249096428b3ae81b08327a63a485ad0878de3fb939049038579ac0ef61e17e7" + ], + "version": "==1.1.1" + }, + "mccabe": { + "hashes": [ + "sha256:ab8a6258860da4b6677da4bd2fe5dc2c659cff31b3ee4f7f5d64e79735b80d42", + "sha256:dd8d182285a0fe56bace7f45b5e7d1a6ebcbf524e8f3bd87eb0f125271b8831f" + ], + "version": "==0.6.1" + }, + "mistune": { + "hashes": [ + "sha256:59a3429db53c50b5c6bcc8a07f8848cb00d7dc8bdb431a4ab41920d201d4756e", + "sha256:88a1051873018da288eee8538d476dffe1262495144b33ecb586c4ab266bb8d4" + ], + "version": "==0.8.4" + }, + "more-itertools": { + "hashes": [ + "sha256:3ad685ff8512bf6dc5a8b82ebf73543999b657eded8c11803d9ba6b648986f4d", + "sha256:8bb43d1f51ecef60d81854af61a3a880555a14643691cc4b64a6ee269c78f09a" + ], + "markers": "python_version > '2.7'", + "version": "==7.1.0" + }, + "mypy": { + "hashes": [ + "sha256:12d18bd7fc642c5d54b1bb62dde813a7e2ab79b32ee11ff206ac387c68fc2ad4", + "sha256:23e24bc1683a36f39dee67d8ac74ea414654642eee26d420bada95b8ee8c9095", + "sha256:2b38e64c52a8968df4ebcae0ddba4a54eb94d184695dd4e54e14509a9389b78c", + "sha256:3d4f551466a76e278187ec3a5b26cfb50f72f6760b749aa00ac69a6f9c99898d", + "sha256:53d5dacb8d844e50be698830509aa592b093547e7ab90aee63eb23db61109007", + "sha256:56f981d246010ba21cac6b2455eaecfaf68fc8a5663d865b26c8e579c36f751d", + "sha256:8c57f6f59f1e8479d9fc6e1bf034353e54626ed64e32394c613afc493a441dc1", + "sha256:bbed4a593d87476b592d52867ef86da2155ccd0becf0c4c02e6567d842e43368", + "sha256:d6ff850e2ba18b2db7704897c8f2f1384478e3b75ad292ec06196bf7794f3a40", + "sha256:e13b1bb8785d7f785e0b88873f1c21cda58ceba9ce1153b58cbfa24b09a111d5", + "sha256:e2b9ee6f648ce72d6741925a47c88c2391168ef973b6f74f17969450c5b1ffdd" + ], + "index": "pypi", + "version": "==0.711" + }, + "mypy-extensions": { + "hashes": [ + "sha256:37e0e956f41369209a3d5f34580150bcacfabaa57b33a15c0b25f4b5725e0812", + "sha256:b16cabe759f55e3409a7d231ebd2841378fb0c27a5d1994719e340e4f429ac3e" + ], + "version": "==0.4.1" + }, + "nbconvert": { + "hashes": [ + "sha256:138381baa41d83584459b5cfecfc38c800ccf1f37d9ddd0bd440783346a4c39c", + "sha256:4a978548d8383f6b2cfca4a3b0543afb77bc7cb5a96e8b424337ab58c12da9bc" + ], + "version": "==5.5.0" + }, + "nbformat": { + "hashes": [ + "sha256:b9a0dbdbd45bb034f4f8893cafd6f652ea08c8c1674ba83f2dc55d3955743b0b", + "sha256:f7494ef0df60766b7cabe0a3651556345a963b74dbc16bc7c18479041170d402" + ], + "version": "==4.4.0" + }, + "nodeenv": { + "hashes": [ + "sha256:ad8259494cf1c9034539f6cced78a1da4840a4b157e23640bc4a0c0546b0cb7a" + ], + "version": "==1.3.3" + }, + "notebook": { + "hashes": [ + "sha256:91965e89e863948c7575c2a43a0b17246332880f1a3bd28127bb20f603b70f61", + "sha256:c7490a10eb4de04ee30e68de36f356af122b1b65d60b24df8a51a03fef200532" + ], + "version": "==6.0.0rc1" + }, + "packaging": { + "hashes": [ + "sha256:0c98a5d0be38ed775798ece1b9727178c4469d9c3b4ada66e8e6b7849f8732af", + "sha256:9e1cbf8c12b1f1ce0bb5344b8d7ecf66a6f8a6e91bcb0c84593ed6d3ab5c4ab3" + ], + "version": "==19.0" + }, + "pandocfilters": { + "hashes": [ + "sha256:b3dd70e169bb5449e6bc6ff96aea89c5eea8c5f6ab5e207fc2f521a2cf4a0da9", + "sha256:eddde9b495077a2cb5d74af4f22c235a1e2474a1e6757dfc1d28c726ea91a421" + ], + "version": "==1.4.2" + }, + "parso": { + "hashes": [ + "sha256:5052bb33be034cba784193e74b1cde6ebf29ae8b8c1e4ad94df0c4209bfc4826", + "sha256:db5881df1643bf3e66c097bfd8935cf03eae73f4cb61ae4433c9ea4fb6613446" + ], + "version": "==0.5.0" + }, + "pexpect": { + "hashes": [ + "sha256:2094eefdfcf37a1fdbfb9aa090862c1a4878e5c7e0e7e7088bdb511c558e5cd1", + "sha256:9e2c1fd0e6ee3a49b28f95d4b33bc389c89b20af6a1255906e90ff1262ce62eb" + ], + "version": "==4.7.0" + }, + "pickleshare": { + "hashes": [ + "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca", + "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56" + ], + "version": "==0.7.5" + }, + "pkginfo": { + "hashes": [ + "sha256:7424f2c8511c186cd5424bbf31045b77435b37a8d604990b79d4e70d741148bb", + "sha256:a6d9e40ca61ad3ebd0b72fbadd4fba16e4c0e4df0428c041e01e06eb6ee71f32" + ], + "version": "==1.5.0.1" + }, + "pluggy": { + "hashes": [ + "sha256:0825a152ac059776623854c1543d65a4ad408eb3d33ee114dff91e57ec6ae6fc", + "sha256:b9817417e95936bf75d85d3f8767f7df6cdde751fc40aed3bb3074cbcb77757c" + ], + "version": "==0.12.0" + }, + "pre-commit": { + "hashes": [ + "sha256:92e406d556190503630fd801958379861c94884693a032ba66629d0351fdccd4", + "sha256:cccc39051bc2457b0c0f7152a411f8e05e3ba2fe1a5613e4ee0833c1c1985ce3" + ], + "index": "pypi", + "version": "==1.17.0" + }, + "prometheus-client": { + "hashes": [ + "sha256:71cd24a2b3eb335cb800c7159f423df1bd4dcd5171b234be15e3f31ec9f622da" + ], + "version": "==0.7.1" + }, + "prompt-toolkit": { + "hashes": [ + "sha256:11adf3389a996a6d45cc277580d0d53e8a5afd281d0c9ec71b28e6f121463780", + "sha256:2519ad1d8038fd5fc8e770362237ad0364d16a7650fb5724af6997ed5515e3c1", + "sha256:977c6583ae813a37dc1c2e1b715892461fcbdaa57f6fc62f33a528c4886c8f55" + ], + "version": "==2.0.9" + }, + "ptyprocess": { + "hashes": [ + "sha256:923f299cc5ad920c68f2bc0bc98b75b9f838b93b599941a6b63ddbc2476394c0", + "sha256:d7cc528d76e76342423ca640335bd3633420dc1366f258cb31d05e865ef5ca1f" + ], + "version": "==0.6.0" + }, + "py": { + "hashes": [ + "sha256:64f65755aee5b381cea27766a3a147c3f15b9b6b9ac88676de66ba2ae36793fa", + "sha256:dc639b046a6e2cff5bbe40194ad65936d6ba360b52b3c3fe1d08a82dd50b5e53" + ], + "version": "==1.8.0" + }, + "pycodestyle": { + "hashes": [ + "sha256:95a2219d12372f05704562a14ec30bc76b05a5b297b21a5dfe3f6fac3491ae56", + "sha256:e40a936c9a450ad81df37f549d676d127b1b66000a6c500caa2b085bc0ca976c" + ], + "version": "==2.5.0" + }, + "pyflakes": { + "hashes": [ + "sha256:17dbeb2e3f4d772725c777fabc446d5634d1038f234e77343108ce445ea69ce0", + "sha256:d976835886f8c5b31d47970ed689944a0262b5f3afa00a5a7b4dc81e5449f8a2" + ], + "version": "==2.1.1" + }, + "pygments": { + "hashes": [ + "sha256:71e430bc85c88a430f000ac1d9b331d2407f681d6f6aec95e8bcfbc3df5b0127", + "sha256:881c4c157e45f30af185c1ffe8d549d48ac9127433f2c380c24b84572ad66297" + ], + "version": "==2.4.2" + }, + "pyparsing": { + "hashes": [ + "sha256:1873c03321fc118f4e9746baf201ff990ceb915f433f23b395f5580d1840cb2a", + "sha256:9b6323ef4ab914af344ba97510e966d64ba91055d6b9afa6b30799340e89cc03" + ], + "version": "==2.4.0" + }, + "pyrsistent": { + "hashes": [ + "sha256:16692ee739d42cf5e39cef8d27649a8c1fdb7aa99887098f1460057c5eb75c3a" + ], + "version": "==0.15.2" + }, + "pytest": { + "hashes": [ + "sha256:4a784f1d4f2ef198fe9b7aef793e9fa1a3b2f84e822d9b3a64a181293a572d45", + "sha256:926855726d8ae8371803f7b2e6ec0a69953d9c6311fa7c3b6c1b929ff92d27da" + ], + "index": "pypi", + "version": "==4.6.3" + }, + "pytest-cov": { + "hashes": [ + "sha256:2b097cde81a302e1047331b48cadacf23577e431b61e9c6f49a1170bbe3d3da6", + "sha256:e00ea4fdde970725482f1f35630d12f074e121a23801aabf2ae154ec6bdd343a" + ], + "index": "pypi", + "version": "==2.7.1" + }, + "python-dateutil": { + "hashes": [ + "sha256:7e6584c74aeed623791615e26efd690f29817a27c73085b78e4bad02493df2fb", + "sha256:c89805f6f4d64db21ed966fda138f8a5ed7a4fdbc1a8ee329ce1b74e3c74da9e" + ], + "version": "==2.8.0" + }, + "pywinpty": { + "hashes": [ + "sha256:0e01321e53a230233358a6d608a1a8bc86c3882cf82769ba3c62ca387dc9cc51", + "sha256:333e0bc5fca8ad9e9a1516ebedb2a65da38dc1f399f8b2ea57d6cccec1ff2cc8", + "sha256:3ca3123aa6340ab31bbf9bd012b92e72f9ec905e4c9ee152cc997403e1778cd3", + "sha256:44a6dddcf2abf402e22f87e2c9a341f7d0b296afbec3d28184c8de4d7f514ee4", + "sha256:53d94d574c3d4da2df5b1c3ae728b8d90e4d33502b0388576bbd4ddeb4de0f77", + "sha256:c3955f162c53dde968f3fc11361658f1d83b683bfe601d4b6f94bb01ea4300bc", + "sha256:cec9894ecb34de3d7b1ca121dd98433035b9f8949b5095e84b103b349231509c", + "sha256:dcd45912e2fe2e6f72cee997a4da6ed1ad2056165a277ce5ec7f7ac98dcdf667", + "sha256:f2bcdd9a2ffd8b223752a971b3d377fb7bfed85f140ec9710f1218d760f2ccb7" + ], + "markers": "os_name == 'nt'", + "version": "==0.5.5" + }, + "pyyaml": { + "hashes": [ + "sha256:57acc1d8533cbe51f6662a55434f0dbecfa2b9eaf115bede8f6fd00115a0c0d3", + "sha256:588c94b3d16b76cfed8e0be54932e5729cc185caffaa5a451e7ad2f7ed8b4043", + "sha256:65104f348b42edffc29f99deba59e2d4aac312e0aadab7260d596b6888f2ceac", + "sha256:68c8dd247f29f9a0d09375c9c6b8fdc64b60810ebf07ba4cdd64ceee3a58c7b7", + "sha256:70d9818f1c9cd5c48bb87804f2efc8692f1023dac7f1a1a5c61d454043c1d265", + "sha256:7ed2c295c1822e06857eb0da79f9d18d52c8a2e5b6b0d52d5be00428647e7a74", + "sha256:86a93cccd50f8c125286e637328ff4eef108400dd7089b46a7be3445eecfa391", + "sha256:a0f329125a926876f647c9fa0ef32801587a12328b4a3c741270464e3e4fa778", + "sha256:a3c252ab0fa1bb0d5a3f6449a4826732f3eb6c0270925548cac342bc9b22c225", + "sha256:b4bb4d3f5e232425e25dda21c070ce05168a786ac9eda43768ab7f3ac2770955", + "sha256:cc6a265fc360573ca25a0c39493dc58f07eb18e7f4ce07822c2fe453c1038916", + "sha256:cd0618c5ba5bda5f4039b9398bb7fb6a317bb8298218c3de25c47c4740e4b95e", + "sha256:ceacb9e5f8474dcf45b940578591c7f3d960e82f926c707788a570b51ba59190", + "sha256:fe6a88094b64132c4bb3b631412e90032e8cfe9745a58370462240b8cb7553cd" + ], + "version": "==5.1.1" + }, + "pyzmq": { + "hashes": [ + "sha256:00dd015159eaeb1c0731ad49310e1f5d839c9a35a15e4f3267f5052233fad99b", + "sha256:03913b6beb8e7b417b9910b0ee1fd5d62e9626d218faefbe879d70714ceab1a2", + "sha256:13f17386df81d5e6efb9a4faea341d8de22cdc82e49a326dded26e33f42a3112", + "sha256:16c6281d96885db1e15f7047ddc1a8f48ff4ea35d31ca709f4d2eb39f246d356", + "sha256:17efab4a804e31f58361631256d660214204046f9e2b962738b171b9ad674ea7", + "sha256:2b79919ddeff3d3c96aa6087c21d294c8db1c01f6bfeee73324944683685f419", + "sha256:2f832e4711657bb8d16ea1feba860f676ec5f14fb9fe3b449b5953a60e89edae", + "sha256:31a11d37ac73107363b47e14c94547dbfc6a550029c3fe0530be443199026fc2", + "sha256:33a3e928e6c3138c675e1d6702dd11f6b7050177d7aab3fc322db6e1d2274490", + "sha256:34a38195a6d3a9646cbcdaf8eb245b4d935c7a57f7e1b3af467814bc1a92467e", + "sha256:42900054f1500acef6df7428edf806abbf641bf92eb9ceded24aa863397c3bae", + "sha256:4ccc7f3c63aa9d744dadb62c49eda2d0e7de55649b80c45d7c684d70161a69af", + "sha256:5b220c37c346e6575db8c88a940c1fc234f99ce8e0068c408919bb8896c4b6d2", + "sha256:6074848da5c8b44a1ca40adf75cf65aa92bc80f635e8249aa8f37a69b2b9b6f5", + "sha256:61a4155964bd4a14ef95bf46cb1651bcf8dcbbed8c0108e9c974c1fcbb57788f", + "sha256:62b5774688326600c52f587f7a033ca6b6284bef4c8b1b5fda32480897759eac", + "sha256:65a9ffa4f9f085d696f16fd7541f34b3c357d25fe99c90e3bce2ea59c3b5b4b6", + "sha256:76a077d2c30f8adc5e919a55985a784b96aeca69b53c1ea6fd5723d3ae2e6f53", + "sha256:8e5b4c51557071d6379d6dc1f54f35e9f6a137f5e84e102efb869c8d3c13c8ff", + "sha256:917f73e07cc04f0678a96d93e7bb8b1adcccdde9ccfe202e622814f4d1d1ecfd", + "sha256:91c75d3c4c357f9643e739db9e79ab9681b2f6ae8ec5678d6ef2ea0d01532596", + "sha256:923dd91618b100bb4c92ab9ed7b65825a595b8524a094ce03c7cb2aaae7d353b", + "sha256:9849054e0355e2bc7f4668766a25517ba76095031c9ff5e39ae8949cee5bb024", + "sha256:c9d453933f0e3f44b9759189f2a18aa765f7f1a4345c727c18ebe8ad0d748d26", + "sha256:cb7514936277abce64c2f4c56883e5704d85ed04d98d2d432d1c6764003bb003" + ], + "version": "==18.0.2" + }, + "readme-renderer": { + "hashes": [ + "sha256:bb16f55b259f27f75f640acf5e00cf897845a8b3e4731b5c1a436e4b8529202f", + "sha256:c8532b79afc0375a85f10433eca157d6b50f7d6990f337fa498c96cd4bfc203d" + ], + "version": "==24.0" + }, + "remote-ikernel": { + "hashes": [ + "sha256:5253216e87a8c31f1b0ca9305454f223147518b580e853b7635a3d8b9c88c295", + "sha256:740b80a57fa1af40cadef541c5a4eb293675b504092ecf00c57dd2f0011bd840" + ], + "index": "pypi", + "version": "==0.4.6" + }, + "requests": { + "hashes": [ + "sha256:11e007a8a2aa0323f5a921e9e6a2d7e4e67d9877e85773fba9ba6419025cbeb4", + "sha256:9cf5292fcd0f598c671cfc1e0d7d1a7f13bb8085e9a590f48c010551dc6c4b31" + ], + "version": "==2.22.0" + }, + "requests-toolbelt": { + "hashes": [ + "sha256:380606e1d10dc85c3bd47bf5a6095f815ec007be7a8b69c878507068df059e6f", + "sha256:968089d4584ad4ad7c171454f0a5c6dac23971e9472521ea3b6d49d610aa6fc0" + ], + "version": "==0.9.1" + }, + "send2trash": { + "hashes": [ + "sha256:60001cc07d707fe247c94f74ca6ac0d3255aabcb930529690897ca2a39db28b2", + "sha256:f1691922577b6fa12821234aeb57599d887c4900b9ca537948d2dac34aea888b" + ], + "version": "==1.5.0" + }, + "six": { + "hashes": [ + "sha256:3350809f0555b11f552448330d0b52d5f24c91a322ea4a15ef22629740f3761c", + "sha256:d16a0141ec1a18405cd4ce8b4613101da75da0e9a7aec5bdd4fa804d0e0eba73" + ], + "version": "==1.12.0" + }, + "terminado": { + "hashes": [ + "sha256:d9d012de63acb8223ac969c17c3043337c2fcfd28f3aea1ee429b345d01ef460", + "sha256:de08e141f83c3a0798b050ecb097ab6259c3f0331b2f7b7750c9075ced2c20c2" + ], + "version": "==0.8.2" + }, + "testpath": { + "hashes": [ + "sha256:46c89ebb683f473ffe2aab0ed9f12581d4d078308a3cb3765d79c6b2317b0109", + "sha256:b694b3d9288dbd81685c5d2e7140b81365d46c29f5db4bc659de5aa6b98780f8" + ], + "version": "==0.4.2" + }, + "toml": { + "hashes": [ + "sha256:229f81c57791a41d65e399fc06bf0848bab550a9dfd5ed66df18ce5f05e73d5c", + "sha256:235682dd292d5899d361a811df37e04a8828a5b1da3115886b73cf81ebc9100e" + ], + "version": "==0.10.0" + }, + "tornado": { + "hashes": [ + "sha256:349884248c36801afa19e342a77cc4458caca694b0eda633f5878e458a44cb2c", + "sha256:398e0d35e086ba38a0427c3b37f4337327231942e731edaa6e9fd1865bbd6f60", + "sha256:4e73ef678b1a859f0cb29e1d895526a20ea64b5ffd510a2307b5998c7df24281", + "sha256:559bce3d31484b665259f50cd94c5c28b961b09315ccd838f284687245f416e5", + "sha256:abbe53a39734ef4aba061fca54e30c6b4639d3e1f59653f0da37a0003de148c7", + "sha256:c845db36ba616912074c5b1ee897f8e0124df269468f25e4fe21fe72f6edd7a9", + "sha256:c9399267c926a4e7c418baa5cbe91c7d1cf362d505a1ef898fde44a07c9dd8a5" + ], + "version": "==6.0.3" + }, + "tqdm": { + "hashes": [ + "sha256:14a285392c32b6f8222ecfbcd217838f88e11630affe9006cd0e94c7eff3cb61", + "sha256:25d4c0ea02a305a688e7e9c2cdc8f862f989ef2a4701ab28ee963295f5b109ab" + ], + "version": "==4.32.2" + }, + "traitlets": { + "hashes": [ + "sha256:9c4bd2d267b7153df9152698efb1050a5d84982d3384a37b2c1f7723ba3e7835", + "sha256:c6cb5e6f57c5a9bdaa40fa71ce7b4af30298fbab9ece9815b5d995ab6217c7d9" + ], + "version": "==4.3.2" + }, + "twine": { + "hashes": [ + "sha256:0fb0bfa3df4f62076cab5def36b1a71a2e4acb4d1fa5c97475b048117b1a6446", + "sha256:d6c29c933ecfc74e9b1d9fa13aa1f87c5d5770e119f5a4ce032092f0ff5b14dc" + ], + "index": "pypi", + "version": "==1.13.0" + }, + "typed-ast": { + "hashes": [ + "sha256:18511a0b3e7922276346bcb47e2ef9f38fb90fd31cb9223eed42c85d1312344e", + "sha256:262c247a82d005e43b5b7f69aff746370538e176131c32dda9cb0f324d27141e", + "sha256:2b907eb046d049bcd9892e3076c7a6456c93a25bebfe554e931620c90e6a25b0", + "sha256:354c16e5babd09f5cb0ee000d54cfa38401d8b8891eefa878ac772f827181a3c", + "sha256:4e0b70c6fc4d010f8107726af5fd37921b666f5b31d9331f0bd24ad9a088e631", + "sha256:630968c5cdee51a11c05a30453f8cd65e0cc1d2ad0d9192819df9978984529f4", + "sha256:66480f95b8167c9c5c5c87f32cf437d585937970f3fc24386f313a4c97b44e34", + "sha256:71211d26ffd12d63a83e079ff258ac9d56a1376a25bc80b1cdcdf601b855b90b", + "sha256:95bd11af7eafc16e829af2d3df510cecfd4387f6453355188342c3e79a2ec87a", + "sha256:bc6c7d3fa1325a0c6613512a093bc2a2a15aeec350451cbdf9e1d4bffe3e3233", + "sha256:cc34a6f5b426748a507dd5d1de4c1978f2eb5626d51326e43280941206c209e1", + "sha256:d755f03c1e4a51e9b24d899561fec4ccaf51f210d52abdf8c07ee2849b212a36", + "sha256:d7c45933b1bdfaf9f36c579671fec15d25b06c8398f113dab64c18ed1adda01d", + "sha256:d896919306dd0aa22d0132f62a1b78d11aaf4c9fc5b3410d3c666b818191630a", + "sha256:ffde2fbfad571af120fcbfbbc61c72469e72f550d676c3342492a9dfdefb8f12" + ], + "version": "==1.4.0" + }, + "urllib3": { + "hashes": [ + "sha256:b246607a25ac80bedac05c6f282e3cdaf3afb65420fd024ac94435cabe6e18d1", + "sha256:dbe59173209418ae49d485b87d1681aefa36252ee85884c31346debd19463232" + ], + "version": "==1.25.3" + }, + "virtualenv": { + "hashes": [ + "sha256:b7335cddd9260a3dd214b73a2521ffc09647bde3e9457fcca31dc3be3999d04a", + "sha256:d28ca64c0f3f125f59cabf13e0a150e1c68e5eea60983cc4395d88c584495783" + ], + "version": "==16.6.1" + }, + "wcwidth": { + "hashes": [ + "sha256:3df37372226d6e63e1b1e1eda15c594bca98a22d33a23832a90998faa96bc65e", + "sha256:f4ebe71925af7b40a864553f761ed559b43544f8f71746c2d756c7fe788ade7c" + ], + "version": "==0.1.7" + }, + "webencodings": { + "hashes": [ + "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", + "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923" + ], + "version": "==0.5.1" + }, + "wheel": { + "hashes": [ + "sha256:5e79117472686ac0c4aef5bad5172ea73a1c2d1646b808c35926bd26bdfb0c08", + "sha256:62fcfa03d45b5b722539ccbc07b190e4bfff4bb9e3a4d470dd9f6a0981002565" + ], + "index": "pypi", + "version": "==0.33.4" + }, + "zipp": { + "hashes": [ + "sha256:8c1019c6aad13642199fbe458275ad6a84907634cc9f0989877ccc4a2840139d", + "sha256:ca943a7e809cc12257001ccfb99e3563da9af99d52f261725e96dfe0f9275bc3" + ], + "version": "==0.5.1" + } + } +} diff --git a/Ch04/apd.sensors-chapter04-ex01/README.md b/Ch04/apd.sensors-chapter04-ex01/README.md new file mode 100644 index 0000000..e6dcb45 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-ex01/README.md @@ -0,0 +1,32 @@ +# Advanced Python Development Sensors + +This is the data collection package that forms part of the running example +for the book [Advanced Python Development](https://advancedpython.dev). + +## Usage + +This installs a console script called `sensors` that returns a report on +various aspects of the system. The available sensors are: + +* Python version +* IP Addresses +* CPU Usage +* RAM Available +* Battery charging state +* Ambient Temperature +* Ambient Humidity + +There are no command-line options, to view the report run `sensors` on the +command line. + +## Caveats + +The Ambient Temperature and Ambient Humidity sensors are only available on +RaspberryPi hosts and assume that a DHT22 sensor is connected to pin `D20`. + +If there is an entry in `/etc/hosts` for the current machine's hostname that +value will be the only result from the IP Addresses sensor. + +## Installation + +Install with `pip3 install apd.sensors` under Python 3.7 or higher diff --git a/Ch04/apd.sensors-chapter04-ex01/pyproject.toml b/Ch04/apd.sensors-chapter04-ex01/pyproject.toml new file mode 100644 index 0000000..4d3bb67 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-ex01/pyproject.toml @@ -0,0 +1,5 @@ +[build-system] +requires = [ + "setuptools", +] +build-backend = "setuptools.build_meta" diff --git a/Ch04/apd.sensors-chapter04-ex01/pytest.ini b/Ch04/apd.sensors-chapter04-ex01/pytest.ini new file mode 100644 index 0000000..861f3d0 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-ex01/pytest.ini @@ -0,0 +1,3 @@ +[pytest] +markers = + functional: these tests are significantly slower as they run the whole CLI script \ No newline at end of file diff --git a/Ch04/apd.sensors-chapter04-ex01/setup.cfg b/Ch04/apd.sensors-chapter04-ex01/setup.cfg new file mode 100644 index 0000000..db6d144 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-ex01/setup.cfg @@ -0,0 +1,48 @@ +[mypy] +namespace_packages = True +mypy_path = src + +[mypy-psutil] +ignore_missing_imports = True + +[mypy-adafruit_dht] +ignore_missing_imports = True + +[mypy-board] +ignore_missing_imports = True + +[mypy-pytest] +ignore_missing_imports = True + +[flake8] +max-line-length = 88 + +[metadata] +name = apd.sensors +version = attr: apd.sensors.VERSION +description = APD Sensor package +long_description = file: README.md, CHANGES.md, LICENCE +long_description_content_type = text/markdown +keywords = iot +license = MIT +classifiers = + Programming Language :: Python :: 3 + Programming Language :: Python :: 3.7 + +[options] +zip_safe = False +include_package_data = True +package-dir = + =src +packages = find: +install_requires = + psutil + click + adafruit-circuitpython-dht ; 'arm' in platform_machine + +[options.packages.find] +where = src + +[options.entry_points] +console_scripts = + sensors = apd.sensors.cli:show_sensors diff --git a/Ch04/apd.sensors-chapter04-ex01/setup.py b/Ch04/apd.sensors-chapter04-ex01/setup.py new file mode 100644 index 0000000..6068493 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-ex01/setup.py @@ -0,0 +1,3 @@ +from setuptools import setup + +setup() diff --git a/Ch04/apd.sensors-chapter04-ex01/src/apd/sensors/__init__.py b/Ch04/apd.sensors-chapter04-ex01/src/apd/sensors/__init__.py new file mode 100644 index 0000000..ec63ed1 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-ex01/src/apd/sensors/__init__.py @@ -0,0 +1 @@ +VERSION = "1.1.0dev1" diff --git a/Ch04/apd.sensors-chapter04-ex01/src/apd/sensors/cli.py b/Ch04/apd.sensors-chapter04-ex01/src/apd/sensors/cli.py new file mode 100644 index 0000000..aaaf33a --- /dev/null +++ b/Ch04/apd.sensors-chapter04-ex01/src/apd/sensors/cli.py @@ -0,0 +1,126 @@ +import functools +import importlib +import typing as t + +import click + +from .sensors import ( + Sensor, + ACStatus, + CPULoad, + IPAddresses, + PythonVersion, + RAMAvailable, + RelativeHumidity, + Temperature, +) + + +RETURN_CODES = {"OK": 0, "BAD_SENSOR_PATH": 17} + + +def is_valid_sensor_value(sensor_class, superclass): + return ( + isinstance(sensor_class, type) + and issubclass(sensor_class, superclass) + and sensor_class != superclass + ) + + +class PythonClass(click.types.ParamType): + name = "pythonclass" + + def __init__(self, superclass=type): + self.superclass = superclass + + def get_sensor_by_path( + self, sensor_path: str, fail: t.Callable[[str], None] + ) -> t.Any: + try: + module_name, sensor_name = sensor_path.split(":") + except ValueError: + return fail( + "Class path must be in the format dotted.path.to.module:ClassName" + ) + try: + module = importlib.import_module(module_name) + except ImportError: + return fail(f"Could not import module {module_name}") + try: + sensor_class = getattr(module, sensor_name) + except AttributeError: + return fail(f"Could not find attribute {sensor_name} in {module_name}") + if is_valid_sensor_value(sensor_class, self.superclass): + return sensor_class + else: + return fail( + f"Detected object {sensor_class!r} is not recognised" + f" as a {self.superclass} type" + ) + + def convert( + self, + value: str, + param: t.Optional[click.core.Parameter], + ctx: t.Optional[click.core.Context], + ) -> t.Any: + fail = functools.partial(self.fail, param=param, ctx=ctx) + return self.get_sensor_by_path(value, fail) + + def __repr__(self): + return "PythonClass" + + +def AutocompleteSensorPath( + ctx: click.core.Context, args: list, incomplete: str +) -> t.List[t.Tuple[str, str]]: + try: + module_name, sensor_name = incomplete.split(":") + module = importlib.import_module(module_name) + possibles = [ + (f"{module_name}:{name}", value.__doc__) + for (name, value) in vars(module).items() + if name.startswith(sensor_name) and is_valid_sensor_value(value, Sensor) + ] + except (ValueError, AttributeError): + return [] + else: + return possibles + + +def get_sensors() -> t.Iterable[Sensor[t.Any]]: + return [ + PythonVersion(), + IPAddresses(), + CPULoad(), + RAMAvailable(), + ACStatus(), + Temperature(), + RelativeHumidity(), + ] + + +@click.command(help="Displays the values of the sensors") +@click.option( + "--develop", + required=False, + metavar="path", + help="Load a sensor by Python path", + type=PythonClass(Sensor), + autocompletion=AutocompleteSensorPath, +) +def show_sensors(develop: t.Callable[[], Sensor[t.Any]]) -> int: + sensors: t.Iterable[Sensor[t.Any]] + if develop: + sensors = [develop()] + else: + sensors = get_sensors() + for sensor in sensors: + click.secho(sensor.title, bold=True) + click.echo(str(sensor)) + click.echo("") + return RETURN_CODES["OK"] + + +if __name__ == "__main__": + show_sensors() diff --git a/Ch04/apd.sensors-chapter04-ex01/src/apd/sensors/sensors.py b/Ch04/apd.sensors-chapter04-ex01/src/apd/sensors/sensors.py new file mode 100644 index 0000000..47c2ab0 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-ex01/src/apd/sensors/sensors.py @@ -0,0 +1,170 @@ +#!/usr/bin/env python +# coding: utf-8 +import math +import socket +import sys +from typing import Any, Optional, List, Tuple, Iterable, TypeVar, Generic + + +import psutil + + +T_value = TypeVar("T_value") + + +class Sensor(Generic[T_value]): + title: str + + def value(self) -> T_value: + raise NotImplementedError + + @classmethod + def format(cls, value: T_value) -> str: + raise NotImplementedError + + def __str__(self) -> str: + return self.format(self.value()) + + +class PythonVersion(Sensor[Any]): + title = "Python Version" + + def value(self) -> Any: + return sys.version_info + + @classmethod + def format(cls, value: Any) -> str: + if value.micro == 0 and value.releaselevel == "alpha": + return "{0.major}.{0.minor}.{0.micro}a{0.serial}".format(value) + return "{0.major}.{0.minor}".format(value) + + +class IPAddresses(Sensor[Iterable[Tuple[str, str]]]): + title = "IP Addresses" + FAMILIES = {"AF_INET": "IPv4", "AF_INET6": "IPv6"} + + def value(self) -> List[Tuple[str, str]]: + hostname = socket.gethostname() + addresses = socket.getaddrinfo(hostname, None) + + address_info: List[Tuple[str, str]] = [] + for address in addresses: + family, ip = (address[0].name, address[4][0]) + if family not in self.FAMILIES: + continue + value = (family, ip) + if value not in address_info: + address_info.append(value) + return address_info + + @classmethod + def format(cls, value: Iterable[Tuple[str, str]]) -> str: + return "\n".join( + "{0} ({1})".format(address[1], cls.FAMILIES.get(address[0], "Unknown")) + for address in value + ) + + +class CPULoad(Sensor[float]): + title = "CPU Usage" + + def value(self) -> float: + return psutil.cpu_percent(interval=3) / 100.0 + + @classmethod + def format(cls, value: float) -> str: + return "{:.1%}".format(value) + + +class RAMAvailable(Sensor[int]): + title = "RAM Available" + UNITS = ("B", "KiB", "MiB", "GiB", "TiB", "PiB", "EiB") + UNIT_SIZE = 2 ** 10 + + def value(self) -> int: + return psutil.virtual_memory().available + + @classmethod + def format(cls, value: int) -> str: + magnitude = math.floor(math.log(value, cls.UNIT_SIZE)) + max_magnitude = len(cls.UNITS) - 1 + magnitude = min(magnitude, max_magnitude) + scaled_value = value / (cls.UNIT_SIZE ** magnitude) + return "{:.1f} {}".format(scaled_value, cls.UNITS[magnitude]) + + +class ACStatus(Sensor[Optional[bool]]): + title = "AC Connected" + + def value(self) -> Optional[bool]: + battery = psutil.sensors_battery() + if battery is not None: + return battery.power_plugged + else: + return None + + @classmethod + def format(cls, value: Optional[bool]) -> str: + if value is None: + return "Unknown" + elif value: + return "Connected" + else: + return "Not connected" + + +class Temperature(Sensor[Optional[float]]): + title = "Ambient Temperature" + + def value(self) -> Optional[float]: + try: + from adafruit_dht import DHT22 + from board import D20 + except (ImportError, NotImplementedError): + # No DHT library results in an ImportError. + # Running on an unknown platform results in a + # NotImplementedError when getting the pin + return None + try: + return DHT22(D20).temperature + except RuntimeError: + return None + + @classmethod + def celsius_to_fahrenheit(cls, value: float) -> float: + return value * 9 / 5 + 32 + + @classmethod + def format(cls, value: Optional[float]) -> str: + if value is None: + return "Unknown" + else: + return "{:.1f}C ({:.1f}F)".format(value, cls.celsius_to_fahrenheit(value)) + + def __str__(self) -> str: + return self.format(self.value()) + + +class RelativeHumidity(Sensor[Optional[float]]): + title = "Relative Humidity" + + def value(self) -> Optional[float]: + try: + from adafruit_dht import DHT22 + from board import D20 + except (ImportError, NotImplementedError): + # No DHT library results in an ImportError. + # Running on an unknown platform results in a + # NotImplementedError when getting the pin + return None + try: + return DHT22(D20).humidity / 100 + except RuntimeError: + return None + + @classmethod + def format(cls, value: Optional[float]) -> str: + if value is None: + return "Unknown" + else: + return "{:.1%}".format(value) diff --git a/Ch04/apd.sensors-chapter04-ex01/tests/__init__.py b/Ch04/apd.sensors-chapter04-ex01/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/Ch04/apd.sensors-chapter04-ex01/tests/test_acstatus.py b/Ch04/apd.sensors-chapter04-ex01/tests/test_acstatus.py new file mode 100644 index 0000000..1d10940 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-ex01/tests/test_acstatus.py @@ -0,0 +1,55 @@ +from unittest import mock + +from apd.sensors.sensors import ACStatus + +import pytest + + +@pytest.fixture +def sensor(): + return ACStatus() + + +class TestACStatusFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_True(self, subject): + assert subject(True) == "Connected" + + def test_format_False(self, subject): + assert subject(False) == "Not connected" + + def test_format_None(self, subject): + assert subject(None) == "Unknown" + + +class TestACStatusValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def sensors_battery(self): + with mock.patch("psutil.sensors_battery") as sensors_battery: + yield sensors_battery + + def test_sensors_battery_called(self, subject, sensors_battery): + sensors_battery.return_value.power_plugged = True + assert subject() is True + assert sensors_battery.call_count == 1 + + def test_sensor_but_battery_unknown(self, subject, sensors_battery): + sensors_battery.return_value.power_plugged = None + assert subject() is None + assert sensors_battery.call_count == 1 + + def test_no_sensor(self, subject, sensors_battery): + sensors_battery.return_value = None + assert subject() is None + + def test_str_representation_is_formatted_value(self, sensor, sensors_battery): + sensors_battery.return_value.power_plugged = True + assert str(sensor) == "Connected" + assert sensors_battery.call_count == 1 diff --git a/Ch04/apd.sensors-chapter04-ex01/tests/test_cpuusage.py b/Ch04/apd.sensors-chapter04-ex01/tests/test_cpuusage.py new file mode 100644 index 0000000..aa8a66a --- /dev/null +++ b/Ch04/apd.sensors-chapter04-ex01/tests/test_cpuusage.py @@ -0,0 +1,45 @@ +from unittest import mock + +from apd.sensors.sensors import CPULoad + +import pytest + + +@pytest.fixture +def sensor(): + return CPULoad() + + +class TestCPULoadFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_simple_percentage(self, subject): + assert subject(0.05) == "5.0%" + + def test_format_multiple_decimal_places(self, subject): + assert subject(0.031415926) == "3.1%" + + def test_format_multiple_decimal_places_int(self, subject) -> None: + assert subject(1) == "100.0%" + + +class TestCPULoadValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def cpuload(self): + with mock.patch("psutil.cpu_percent") as cpu_percent: + cpu_percent.return_value = 50.1 + yield cpu_percent + + def test_cpu_percent_called_With_interval(self, subject, cpuload): + assert subject() == 0.501 + assert cpuload.call_count == 1 + assert tuple(cpuload.call_args) == ((), {"interval": 3}) + + def test_str_representation_is_formatted_value(self, sensor, cpuload): + assert str(sensor) == "50.1%" diff --git a/Ch04/apd.sensors-chapter04-ex01/tests/test_dht.py b/Ch04/apd.sensors-chapter04-ex01/tests/test_dht.py new file mode 100644 index 0000000..b546593 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-ex01/tests/test_dht.py @@ -0,0 +1,66 @@ +from apd.sensors.sensors import Temperature, RelativeHumidity + +import pytest + + +@pytest.fixture +def temperature_sensor(): + return Temperature() + + +@pytest.fixture +def humidity_sensor(): + return RelativeHumidity() + + +class TestTemperatureFormatter: + @pytest.fixture + def subject(self, temperature_sensor): + return temperature_sensor.format + + def test_format_21c(self, subject): + assert subject(21.0) == "21.0C (69.8F)" + + def test_format_negative(self, subject): + assert subject(-32.0) == "-32.0C (-25.6F)" + + def test_format_unknown(self, subject): + assert subject(None) == "Unknown" + + +class TestTemperatureConversion: + @pytest.fixture + def subject(self, temperature_sensor): + return temperature_sensor.celsius_to_fahrenheit + + def test_celsius_to_fahrenheit(self, subject): + c = 21 + f = subject(c) + assert f == 69.8 + + def test_celsius_to_fahrenheit_equivlance_point(self, subject): + c = -40 + f = subject(c) + assert f == -40 + + def test_celsius_to_fahrenheit_float(self, subject): + c = 21.2 + f = subject(c) + assert f == 70.16 + + def test_celsius_to_fahrenheit_string(self, subject): + c = "21" + with pytest.raises(TypeError): + subject(c) + + +class TestHumidityFormatter: + @pytest.fixture + def subject(self, humidity_sensor): + return humidity_sensor.format + + def test_format_percentage(self, subject): + assert subject(0.035) == "3.5%" + + def test_format_unknown(self, subject): + assert subject(None) == "Unknown" diff --git a/Ch04/apd.sensors-chapter04-ex01/tests/test_ipaddresses.py b/Ch04/apd.sensors-chapter04-ex01/tests/test_ipaddresses.py new file mode 100644 index 0000000..e8a9690 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-ex01/tests/test_ipaddresses.py @@ -0,0 +1,59 @@ +from unittest import mock +import socket + +from apd.sensors.sensors import IPAddresses + +import pytest + + +@pytest.fixture +def sensor(): + return IPAddresses() + + +class TestIPAddressFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_single_ipv4(self, subject): + ips = [("AF_INET", "192.0.2.1")] + assert subject(ips) == "192.0.2.1 (IPv4)" + + def test_format_single_ipv6(self, subject): + ips = [("AF_INET6", "2001:DB8::1")] + assert subject(ips) == "2001:DB8::1 (IPv6)" + + def test_format_mixed_list(self, subject): + ips = [("AF_INET", "192.0.2.1"), ("AF_INET6", "2001:DB8::1")] + assert subject(ips) == "192.0.2.1 (IPv4)\n2001:DB8::1 (IPv6)" + + def test_unusual_protocols_are_marked_as_unknown(self, subject): + ips = [("AF_IRDA", "ffff")] + assert subject(ips) == "ffff (Unknown)" + + +class TestIPAddressesValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def gethostname(self): + with mock.patch("socket.gethostname") as gethostname: + gethostname.return_value = "localhost" + yield gethostname + + @pytest.fixture + def getaddrinfo(self, gethostname): + with mock.patch("socket.getaddrinfo") as getaddrinfo: + yield getaddrinfo + + def test_getaddrinfo_used_for_value_collection(self, getaddrinfo, subject): + getaddrinfo.return_value = [(socket.AF_INET, 0, 0, "", ("192.0.2.1", 0))] + assert subject() == [("AF_INET", "192.0.2.1")] + assert getaddrinfo.call_count == 1 + + def test_str_representation_is_formatted_value(self, getaddrinfo, sensor): + getaddrinfo.return_value = [(socket.AF_INET6, 0, 0, "", ("2001:DB8::1", 0))] + assert str(sensor) == "2001:DB8::1 (IPv6)" diff --git a/Ch04/apd.sensors-chapter04-ex01/tests/test_pythonversion.py b/Ch04/apd.sensors-chapter04-ex01/tests/test_pythonversion.py new file mode 100644 index 0000000..dff6bb0 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-ex01/tests/test_pythonversion.py @@ -0,0 +1,61 @@ +from collections import namedtuple +from unittest import mock + +from apd.sensors.sensors import PythonVersion + +import pytest + + +@pytest.fixture +def version(): + return namedtuple( + "sys_versioninfo", ("major", "minor", "micro", "releaselevel", "serial") + ) + + +@pytest.fixture +def sensor(): + return PythonVersion() + + +class TestPythonVersionFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_py38(self, subject, version): + py38 = version(3, 8, 0, "final", 0) + assert subject(py38) == "3.8" + + def test_format_large_version(self, subject, version): + large = version(255, 128, 0, "final", 0) + assert subject(large) == "255.128" + + def test_alpha_of_minor_is_marked(self, subject, version): + py39 = version(3, 9, 0, "alpha", 1) + assert subject(py39) == "3.9.0a1" + + def test_alpha_of_micro_is_unmarked(self, subject, version): + py39 = version(3, 9, 1, "alpha", 1) + assert subject(py39) == "3.9" + + +class TestPythonVersionValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def python_version(self): + import sys + + return sys.version_info + + def test_data_value_is_sys_versioninfo(self, python_version, subject): + assert subject() == python_version + + +class TestPythonVersionSensor: + def test_str_representation_is_formatted_value(self, sensor, version): + with mock.patch("sys.version_info", new=version(3, 4, 1, "final", 1)): + assert str(sensor) == "3.4" diff --git a/Ch04/apd.sensors-chapter04-ex01/tests/test_ramusage.py b/Ch04/apd.sensors-chapter04-ex01/tests/test_ramusage.py new file mode 100644 index 0000000..2a368c1 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-ex01/tests/test_ramusage.py @@ -0,0 +1,47 @@ +from unittest import mock + +from apd.sensors.sensors import RAMAvailable + +import pytest + + +@pytest.fixture +def sensor(): + return RAMAvailable() + + +class TestRAMAvailableFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_bytes(self, subject): + assert subject(15) == "15.0 B" + + def test_format_kibibytes(self, subject): + assert subject(15000) == "14.6 KiB" + + def test_format_mibibytes(self, subject): + assert subject(15000000) == "14.3 MiB" + + def test_format_gibibytes(self, subject): + assert subject(15000000000) == "14.0 GiB" + + +class TestRAMAvailableValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def virtual_memory(self): + with mock.patch("psutil.virtual_memory") as virtual_memory: + virtual_memory.return_value.available = 1024 + yield virtual_memory + + def test_virtual_memory_called(self, subject, virtual_memory): + assert subject() == 1024 + assert virtual_memory.call_count == 1 + + def test_str_representation_is_formatted_value(self, sensor, virtual_memory): + assert str(sensor) == "1.0 KiB" diff --git a/Ch04/apd.sensors-chapter04-ex01/tests/test_sensors.py b/Ch04/apd.sensors-chapter04-ex01/tests/test_sensors.py new file mode 100644 index 0000000..b31a026 --- /dev/null +++ b/Ch04/apd.sensors-chapter04-ex01/tests/test_sensors.py @@ -0,0 +1,64 @@ +import functools + +from click.testing import CliRunner +import pytest + +import apd.sensors.cli +import apd.sensors.sensors + + +def test_sensors(): + assert hasattr(apd.sensors.sensors, "PythonVersion") + + +@pytest.mark.functional +def test_python_version_is_first_two_lines_of_cli_output(): + runner = CliRunner() + result = runner.invoke(apd.sensors.cli.show_sensors) + python_version = str(apd.sensors.sensors.PythonVersion()) + assert ["Python Version", python_version] == result.stdout.split("\n")[:2] + + +class TestSensorFromPath: + @staticmethod + def fail(message): + raise RuntimeError(message) + + @pytest.fixture + def subject(self): + return functools.partial( + apd.sensors.cli.PythonClass(apd.sensors.sensors.Sensor).get_sensor_by_path, + fail=self.fail, + ) + + def test_get_sensor_by_path(self, subject): + assert ( + subject("apd.sensors.sensors:PythonVersion") + == apd.sensors.sensors.PythonVersion + ) + + def test_invalid_format(self, subject): + with pytest.raises(RuntimeError, match="dotted.path.to.module:ClassName"): + subject("apd.sensors.sensors.PythonVersion") + + def test_invalid_module(self, subject): + with pytest.raises(RuntimeError, match="Could not import module"): + subject("apd.nonsense.sensor:FakeSensor") + + def test_missing_sensor(self, subject): + with pytest.raises(RuntimeError, match="Could not find attribute"): + subject("apd.sensors.sensors:FakeSensor") + + def test_invalid_sensor(self, subject): + with pytest.raises(RuntimeError, match="is not recognised as a Sensor"): + subject("apd.sensors.sensors:Sensor") + + +@pytest.mark.functional +def test_develop_option_finds_sensor_by_path(): + runner = CliRunner() + result = runner.invoke( + apd.sensors.cli.show_sensors, ["--develop", "apd.sensors.sensors:PythonVersion"] + ) + python_version = str(apd.sensors.sensors.PythonVersion()) + assert ["Python Version", python_version, "", ""] == result.stdout.split("\n") diff --git a/Ch04/apd.sensors-chapter04/.pre-commit-config.yaml b/Ch04/apd.sensors-chapter04/.pre-commit-config.yaml new file mode 100644 index 0000000..d3b6ec7 --- /dev/null +++ b/Ch04/apd.sensors-chapter04/.pre-commit-config.yaml @@ -0,0 +1,26 @@ +repos: + +- repo: local + hooks: + - id: black + name: black + entry: pipenv run black + args: [--quiet] + language: system + types: [python] + + - id: mypy + name: mypy + exclude: (?x)^( + (.*)/setup.py + )$ + entry: pipenv run mypy + args: ["--follow-imports=skip"] + language: system + types: [python] + + - id: flake8 + name: flake8 + entry: pipenv run flake8 + language: system + types: [python] diff --git a/Ch04/apd.sensors-chapter04/CHANGES.md b/Ch04/apd.sensors-chapter04/CHANGES.md new file mode 100644 index 0000000..569aeea --- /dev/null +++ b/Ch04/apd.sensors-chapter04/CHANGES.md @@ -0,0 +1,5 @@ +## Changes + +### 1.0.0 (2019-06-20) + +* Added initial sensors (Matthew Wilkes) diff --git a/Ch04/apd.sensors-chapter04/LICENCE b/Ch04/apd.sensors-chapter04/LICENCE new file mode 100644 index 0000000..053f694 --- /dev/null +++ b/Ch04/apd.sensors-chapter04/LICENCE @@ -0,0 +1,19 @@ +Copyright (c) 2019 Matthew Wilkes + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. diff --git a/Ch04/apd.sensors-chapter04/Pipfile b/Ch04/apd.sensors-chapter04/Pipfile new file mode 100644 index 0000000..a09fb90 --- /dev/null +++ b/Ch04/apd.sensors-chapter04/Pipfile @@ -0,0 +1,31 @@ +[[source]] +name = "pypi" +url = "https://pypi.org/simple" +verify_ssl = true + +[[source]] +name = "piwheels" +url = "https://piwheels.org/simple" +verify_ssl = true + +[dev-packages] +ipykernel = "*" +remote-ikernel = "*" +pytest = "*" +pytest-cov = "*" +mypy = "*" +flake8 = "*" +black = "*" +pre-commit = "*" +wheel = "*" +twine = "*" +webtest = "*" + +[packages] +apd-sensors = {editable = true,path = "."} +apd-sunnyboy-solar = {editable = true,path = "./plugins/apd.sunnyboy_solar"} + +[requires] + +[pipenv] +allow_prereleases = true diff --git a/Ch04/apd.sensors-chapter04/Pipfile.lock b/Ch04/apd.sensors-chapter04/Pipfile.lock new file mode 100644 index 0000000..49e29bc --- /dev/null +++ b/Ch04/apd.sensors-chapter04/Pipfile.lock @@ -0,0 +1,924 @@ +{ + "_meta": { + "hash": { + "sha256": "d965513ad2cd15d7eb54dad39d4dca967969eff609b2e5cf9cc4003e8e030e79" + }, + "pipfile-spec": 6, + "requires": {}, + "sources": [ + { + "name": "pypi", + "url": "https://pypi.org/simple", + "verify_ssl": true + }, + { + "name": "piwheels", + "url": "https://piwheels.org/simple", + "verify_ssl": true + } + ] + }, + "default": { + "apd-sensors": { + "editable": true, + "path": "." + }, + "apd-sunnyboy-solar": { + "editable": true, + "path": "./plugins/apd.sunnyboy_solar" + }, + "click": { + "hashes": [ + "sha256:8a18b4ea89d8820c5d0c7da8a64b2c324b4dabb695804dbfea19b9be9d88c0cc", + "sha256:e345d143d80bf5ee7534056164e5e112ea5e22716bbb1ce727941f4c8b471b9a" + ], + "version": "==7.1.1" + }, + "psutil": { + "hashes": [ + "sha256:002bd856770037221256765a472f50d677074ad207276a39e2bccdb7394e333b", + "sha256:1413f4158eb50e110777c4f15d7c759521703bd6beb58926f1d562da40180058", + "sha256:298af2f14b635c3c7118fd9183843f4e73e681bb6f01e12284d4d70d48a60953", + "sha256:60b86f327c198561f101a92be1995f9ae0399736b6eced8f24af41ec64fb88d4", + "sha256:685ec16ca14d079455892f25bd124df26ff9137664af445563c1bd36629b5e0e", + "sha256:73f35ab66c6c7a9ce82ba44b1e9b1050be2a80cd4dcc3352cc108656b115c74f", + "sha256:75e22717d4dbc7ca529ec5063000b2b294fc9a367f9c9ede1f65846c7955fd38", + "sha256:833b2b19c04fc0aecad22daa3e35108d6ee2e4f92061a4a8f2dd77c6fa9154f5", + "sha256:a02f4ac50d4a23253b68233b07e7cdb567bd025b982d5cf0ee78296990c22d9e", + "sha256:d008ddc00c6906ec80040d26dc2d3e3962109e40ad07fd8a12d0284ce5e0e4f8", + "sha256:d84029b190c8a66a946e28b4d3934d2ca1528ec94764b180f7d6ea57b0e75e26", + "sha256:e2d0c5b07c6fe5a87fa27b7855017edb0d52ee73b71e6ee368fae268605cc3f5", + "sha256:f344ca230dd8e8d5eee16827596f1c22ec0876127c28e800d7ae20ed44c4b310", + "sha256:f3e7f183162622eae9fbdee44ff19b226edec68b94ae7cba47f9afcf4c3ec66c" + ], + "version": "==5.7.0" + } + }, + "develop": { + "appdirs": { + "hashes": [ + "sha256:9e5896d1372858f8dd3344faf4e5014d21849c756c8d5701f78f8a103b372d92", + "sha256:d8b24664561d0d34ddfaec54636d502d7cea6e29c3eaf68f3df6180863e2166e" + ], + "version": "==1.4.3" + }, + "atomicwrites": { + "hashes": [ + "sha256:03472c30eb2c5d1ba9227e4c2ca66ab8287fbfbbda3888aa93dc2e28fc6811b4", + "sha256:75a9445bac02d8d058d5e1fe689654ba5a6556a1dfd8ce6ec55a0ed79866cfa6" + ], + "markers": "sys_platform == 'win32'", + "version": "==1.3.0" + }, + "attrs": { + "hashes": [ + "sha256:08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c", + "sha256:f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72" + ], + "version": "==19.3.0" + }, + "backcall": { + "hashes": [ + "sha256:1fac21e6861f538700a5d498620153f38407a4bacf9e1d5047b3d717f10bc4ab", + "sha256:38ecd85be2c1e78f77fd91700c76e14667dc21e2713b63876c0eb901196e01e4", + "sha256:bbbf4b1e5cd2bdb08f915895b51081c041bac22394fdfcfdfbe9f14b77c08bf2" + ], + "version": "==0.1.0" + }, + "beautifulsoup4": { + "hashes": [ + "sha256:05fd825eb01c290877657a56df4c6e4c311b3965bda790c613a3d6fb01a5462a", + "sha256:9fbb4d6e48ecd30bcacc5b63b94088192dcda178513b2ae3c394229f8911b887", + "sha256:e1505eeed31b0f4ce2dbb3bc8eb256c04cc2b3b72af7d551a4ab6efd5cbe5dae" + ], + "version": "==4.8.2" + }, + "black": { + "hashes": [ + "sha256:1b30e59be925fafc1ee4565e5e08abef6b03fe455102883820fe5ee2e4734e0b", + "sha256:c2edb73a08e9e0e6f65a0e6af18b059b8b1cdd5bef997d7a0b181df93dc81539" + ], + "index": "pypi", + "version": "==19.10b0" + }, + "bleach": { + "hashes": [ + "sha256:cc8da25076a1fe56c3ac63671e2194458e0c4d9c7becfd52ca251650d517903c", + "sha256:e78e426105ac07026ba098f04de8abe9b6e3e98b5befbf89b51a5ef0a4292b03" + ], + "version": "==3.1.4" + }, + "certifi": { + "hashes": [ + "sha256:017c25db2a153ce562900032d5bc68e9f191e44e9a0f762f373977de9df1fbb3", + "sha256:25b64c7da4cd7479594d035c08c2d809eb4aab3a26e5a990ea98cc450c320f1f" + ], + "version": "==2019.11.28" + }, + "cfgv": { + "hashes": [ + "sha256:1ccf53320421aeeb915275a196e23b3b8ae87dea8ac6698b1638001d4a486d53", + "sha256:c8e8f552ffcc6194f4e18dd4f68d9aef0c0d58ae7e7be8c82bee3c5e9edfa513" + ], + "version": "==3.1.0" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:8a18b4ea89d8820c5d0c7da8a64b2c324b4dabb695804dbfea19b9be9d88c0cc", + "sha256:e345d143d80bf5ee7534056164e5e112ea5e22716bbb1ce727941f4c8b471b9a" + ], + "version": "==7.1.1" + }, + "colorama": { + "hashes": [ + "sha256:7d73d2a99753107a36ac6b455ee49046802e59d9d076ef8e47b61499fa29afff", + "sha256:e96da0d330793e2cb9485e9ddfd918d456036c7149416295932478192f4436a1" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.3" + }, + "coverage": { + "hashes": [ + "sha256:03f630aba2b9b0d69871c2e8d23a69b7fe94a1e2f5f10df5049c0df99db639a0", + "sha256:046a1a742e66d065d16fb564a26c2a15867f17695e7f3d358d7b1ad8a61bca30", + "sha256:0a907199566269e1cfa304325cc3b45c72ae341fbb3253ddde19fa820ded7a8b", + "sha256:165a48268bfb5a77e2d9dbb80de7ea917332a79c7adb747bd005b3a07ff8caf0", + "sha256:1b60a95fc995649464e0cd48cecc8288bac5f4198f21d04b8229dc4097d76823", + "sha256:1f66cf263ec77af5b8fe14ef14c5e46e2eb4a795ac495ad7c03adc72ae43fafe", + "sha256:2e08c32cbede4a29e2a701822291ae2bc9b5220a971bba9d1e7615312efd3037", + "sha256:327ff84602ee3b5c0c921ff8bbe605e2dd3599fc2a12620b0085f847af4ebb2a", + "sha256:3844c3dab800ca8536f75ae89f3cf566848a3eb2af4d9f7b1103b4f4f7a5dad6", + "sha256:408ce64078398b2ee2ec08199ea3fcf382828d2f8a19c5a5ba2946fe5ddc6c31", + "sha256:443be7602c790960b9514567917af538cac7807a7c0c0727c4d2bbd4014920fd", + "sha256:4482f69e0701139d0f2c44f3c395d1d1d37abd81bfafbf9b6efbe2542679d892", + "sha256:4a8a259bf990044351baf69d3b23e575699dd60b18460c71e81dc565f5819ac1", + "sha256:513e6526e0082c59a984448f4104c9bf346c2da9961779ede1fc458e8e8a1f78", + "sha256:5f587dfd83cb669933186661a351ad6fc7166273bc3e3a1531ec5c783d997aac", + "sha256:62061e87071497951155cbccee487980524d7abea647a1b2a6eb6b9647df9006", + "sha256:641e329e7f2c01531c45c687efcec8aeca2a78a4ff26d49184dce3d53fc35014", + "sha256:65a7e00c00472cd0f59ae09d2fb8a8aaae7f4a0cf54b2b74f3138d9f9ceb9cb2", + "sha256:6ad6ca45e9e92c05295f638e78cd42bfaaf8ee07878c9ed73e93190b26c125f7", + "sha256:73aa6e86034dad9f00f4bbf5a666a889d17d79db73bc5af04abd6c20a014d9c8", + "sha256:7c9762f80a25d8d0e4ab3cb1af5d9dffbddb3ee5d21c43e3474c84bf5ff941f7", + "sha256:85596aa5d9aac1bf39fe39d9fa1051b0f00823982a1de5766e35d495b4a36ca9", + "sha256:86a0ea78fd851b313b2e712266f663e13b6bc78c2fb260b079e8b67d970474b1", + "sha256:8a620767b8209f3446197c0e29ba895d75a1e272a36af0786ec70fe7834e4307", + "sha256:922fb9ef2c67c3ab20e22948dcfd783397e4c043a5c5fa5ff5e9df5529074b0a", + "sha256:9fad78c13e71546a76c2f8789623eec8e499f8d2d799f4b4547162ce0a4df435", + "sha256:a37c6233b28e5bc340054cf6170e7090a4e85069513320275a4dc929144dccf0", + "sha256:c3fc325ce4cbf902d05a80daa47b645d07e796a80682c1c5800d6ac5045193e5", + "sha256:cda33311cb9fb9323958a69499a667bd728a39a7aa4718d7622597a44c4f1441", + "sha256:db1d4e38c9b15be1521722e946ee24f6db95b189d1447fa9ff18dd16ba89f732", + "sha256:eda55e6e9ea258f5e4add23bcf33dc53b2c319e70806e180aecbff8d90ea24de", + "sha256:f0db0dc803e0f81f2a4098d4f25904f41be13b6d3e69f098b5b2bbba17cb7985", + "sha256:f372cdbb240e09ee855735b9d85e7f50730dcfb6296b74b95a3e5dea0615c4c1" + ], + "version": "==5.0.4" + }, + "decorator": { + "hashes": [ + "sha256:41fa54c2a0cc4ba648be4fd43cff00aedf5b9465c9bf18d64325bc225f08f760", + "sha256:e3a62f0520172440ca0dcc823749319382e377f37f140a0b99ef45fecb84bfe7" + ], + "version": "==4.4.2" + }, + "defusedxml": { + "hashes": [ + "sha256:6687150770438374ab581bb7a1b327a847dd9c5749e396102de3fad4e8a3ef93", + "sha256:f684034d135af4c6cbb949b8a4d2ed61634515257a67299e5f940fbaa34377f5" + ], + "version": "==0.6.0" + }, + "distlib": { + "hashes": [ + "sha256:2e166e231a26b36d6dfe35a48c4464346620f8645ed0ace01ee31822b288de21", + "sha256:8a041060c5a140131768a2e2450813f5577f7e4c68a4585824c5585502dcfbea" + ], + "version": "==0.3.0" + }, + "docutils": { + "hashes": [ + "sha256:0c5b78adfbf7762415433f5515cd5c9e762339e23369dbe8000d84a4bf4ab3af", + "sha256:c2de3a60e9e7d07be26b7f2b00ca0309c207e06c100f9cc2a94931fc75a478fc" + ], + "version": "==0.16" + }, + "entrypoints": { + "hashes": [ + "sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19", + "sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451" + ], + "version": "==0.3" + }, + "filelock": { + "hashes": [ + "sha256:18d82244ee114f543149c66a6e0c14e9c4f8a1044b5cdaadd0f82159d6a6ff59", + "sha256:929b7d63ec5b7d6b71b0fa5ac14e030b3f70b75747cef1b10da9b879fef15836" + ], + "version": "==3.0.12" + }, + "flake8": { + "hashes": [ + "sha256:45681a117ecc81e870cbf1262835ae4af5e7a8b08e40b944a8a6e6b895914cfb", + "sha256:49356e766643ad15072a789a20915d3c91dc89fd313ccd71802303fd67e4deca" + ], + "index": "pypi", + "version": "==3.7.9" + }, + "identify": { + "hashes": [ + "sha256:a7577a1f55cee1d21953a5cf11a3c839ab87f5ef909a4cba6cf52ed72b4c6059", + "sha256:ab246293e6585a1c6361a505b68d5b501a0409310932b7de2c2ead667b564d89" + ], + "version": "==1.4.13" + }, + "idna": { + "hashes": [ + "sha256:7588d1c14ae4c77d74036e8c22ff447b26d0fde8f007354fd48a7814db15b7cb", + "sha256:a068a21ceac8a4d63dbfd964670474107f541babbd2250d61922f029858365fa" + ], + "version": "==2.9" + }, + "ipykernel": { + "hashes": [ + "sha256:08997a27ccafbb998437d167ccc893666c6088ec3aa90c054bfb3d588bb3fc20", + "sha256:37c65d2e2da3326e5cf114405df6d47d997b8a3eba99e2cc4b75833bf71a5e18", + "sha256:39746b5f7d847a23fae4eac893e63e3d9cc5f8c3a4797fcd3bfa8d1a296ec6ed" + ], + "index": "pypi", + "version": "==5.2.0" + }, + "ipython": { + "hashes": [ + "sha256:1807adeae64502fcaa491cd93405644faa055b646efb40c1e48648ad66f65a75", + "sha256:ca478e52ae1f88da0102360e57e528b92f3ae4316aabac80a2cd7f7ab2efb48a", + "sha256:eb8d075de37f678424527b5ef6ea23f7b80240ca031c2dd6de5879d687a65333" + ], + "version": "==7.13.0" + }, + "ipython-genutils": { + "hashes": [ + "sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8", + "sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8" + ], + "version": "==0.2.0" + }, + "jedi": { + "hashes": [ + "sha256:b4f4052551025c6b0b0b193b29a6ff7bdb74c52450631206c262aef9f7159ad2", + "sha256:d5c871cb9360b414f981e7072c52c33258d598305280fef91c6cae34739d65d5" + ], + "version": "==0.16.0" + }, + "jinja2": { + "hashes": [ + "sha256:39cbce1ffc25cbf4860b09195654763be95b9e4900475b24d5c345d3e0948c53", + "sha256:c10142f819c2d22bdcd17548c46fa9b77cf4fda45097854c689666bf425e7484", + "sha256:c922560ac46888d47384de1dbdc3daaa2ea993af4b26a436dec31fa2c19ec668" + ], + "version": "==3.0.0a1" + }, + "jsonschema": { + "hashes": [ + "sha256:4e5b3cf8216f577bee9ce139cbe72eca3ea4f292ec60928ff24758ce626cd163", + "sha256:c8a85b28d377cc7737e46e2d9f2b4f44ee3c0e1deac6bf46ddefc7187d30797a" + ], + "version": "==3.2.0" + }, + "jupyter-client": { + "hashes": [ + "sha256:5724827aedb1948ed6ed15131372bc304a8d3ad9ac67ac19da7c95120d6b17e0", + "sha256:81c1c712de383bf6bf3dab6b407392b0d84d814c7bd0ce2c7035ead8b2ffea97" + ], + "version": "==6.1.2" + }, + "jupyter-core": { + "hashes": [ + "sha256:394fd5dd787e7c8861741880bdf8a00ce39f95de5d18e579c74b882522219e7e", + "sha256:a4ee613c060fe5697d913416fc9d553599c05e4492d58fac1192c9a6844abb21" + ], + "version": "==4.6.3" + }, + "jupyterlab-pygments": { + "hashes": [ + "sha256:31deda75bd11b014190764c79f6199aa04ef2d4cf35c1c94270fc2e19c23a5c5", + "sha256:cc15f2a9850899d108a3c22743a86edcd3b42791a6c88b6e5b558d021d14d065" + ], + "version": "==0.1.0" + }, + "keyring": { + "hashes": [ + "sha256:197fd5903901030ef7b82fe247f43cfed2c157a28e7747d1cfcf4bc5e699dd03", + "sha256:8179b1cdcdcbc221456b5b74e6b7cfa06f8dd9f239eb81892166d9223d82c5ba", + "sha256:dcb7f54f06c868526b97f9825b558e5199661f9647849acf9204c2d6028501dc" + ], + "version": "==21.2.0" + }, + "markupsafe": { + "hashes": [ + "sha256:00bc623926325b26bb9605ae9eae8a215691f33cae5df11ca5424f06f2d1f473", + "sha256:09027a7803a62ca78792ad89403b1b7a73a01c8cb65909cd876f7fcebd79b161", + "sha256:09c4b7f37d6c648cb13f9230d847adf22f8171b1ccc4d5682398e77f40309235", + "sha256:1027c282dad077d0bae18be6794e6b6b8c91d58ed8a8d89a89d59693b9131db5", + "sha256:13d3144e1e340870b25e7b10b98d779608c02016d5184cfb9927a9f10c689f42", + "sha256:19536834abffb3fa155017053c607cb835b2ecc6a3a2554a88043d991dffb736", + "sha256:24982cc2533820871eba85ba648cd53d8623687ff11cbb805be4ff7b4c971aff", + "sha256:29872e92839765e546828bb7754a68c418d927cd064fd4708fab9fe9c8bb116b", + "sha256:3d61f15e39611aacd91b7e71d903787da86d9e80896e683c0103fced9add7834", + "sha256:43a55c2930bbc139570ac2452adf3d70cdbb3cfe5912c71cdce1c2c6bbd9c5d1", + "sha256:46c99d2de99945ec5cb54f23c8cd5689f6d7177305ebff350a58ce5f8de1669e", + "sha256:500d4957e52ddc3351cabf489e79c91c17f6e0899158447047588650b5e69183", + "sha256:535f6fc4d397c1563d08b88e485c3496cf5784e927af890fb3c3aac7f933ec66", + "sha256:596510de112c685489095da617b5bcbbac7dd6384aeebeda4df6025d0256a81b", + "sha256:62fe6c95e3ec8a7fad637b7f3d372c15ec1caa01ab47926cfdf7a75b40e0eac1", + "sha256:6788b695d50a51edb699cb55e35487e430fa21f1ed838122d722e0ff0ac5ba15", + "sha256:6dd73240d2af64df90aa7c4e7481e23825ea70af4b4922f8ede5b9e35f78a3b1", + "sha256:717ba8fe3ae9cc0006d7c451f0bb265ee07739daf76355d06366154ee68d221e", + "sha256:7952deddf24b85c88dab48f6ec366ac6e39d2761b5280f2f9594911e03fcd064", + "sha256:79855e1c5b8da654cf486b830bd42c06e8780cea587384cf6545b7d9ac013a0b", + "sha256:7c1699dfe0cf8ff607dbdcc1e9b9af1755371f92a68f706051cc8c37d447c905", + "sha256:88e5fcfb52ee7b911e8bb6d6aa2fd21fbecc674eadd44118a9cc3863f938e735", + "sha256:8defac2f2ccd6805ebf65f5eeb132adcf2ab57aa11fdf4c0dd5169a004710e7d", + "sha256:98c7086708b163d425c67c7a91bad6e466bb99d797aa64f965e9d25c12111a5e", + "sha256:9add70b36c5666a2ed02b43b335fe19002ee5235efd4b8a89bfcf9005bebac0d", + "sha256:9bf40443012702a1d2070043cb6291650a0841ece432556f784f004937f0f32c", + "sha256:ade5e387d2ad0d7ebf59146cc00c8044acbd863725f887353a10df825fc8ae21", + "sha256:b00c1de48212e4cc9603895652c5c410df699856a2853135b3967591e4beebc2", + "sha256:b1282f8c00509d99fef04d8ba936b156d419be841854fe901d8ae224c59f0be5", + "sha256:b2051432115498d3562c084a49bba65d97cf251f5a331c64a12ee7e04dacc51b", + "sha256:ba59edeaa2fc6114428f1637ffff42da1e311e29382d81b339c1817d37ec93c6", + "sha256:c8716a48d94b06bb3b2524c2b77e055fb313aeb4ea620c8dd03a105574ba704f", + "sha256:cd5df75523866410809ca100dc9681e301e3c27567cf498077e8551b6d20e42f", + "sha256:cdb132fc825c38e1aeec2c8aa9338310d29d337bebbd7baa06889d09a60a1fa2", + "sha256:e249096428b3ae81b08327a63a485ad0878de3fb939049038579ac0ef61e17e7", + "sha256:e8313f01ba26fbbe36c7be1966a7b7424942f670f38e666995b88d012765b9be" + ], + "version": "==1.1.1" + }, + "mccabe": { + "hashes": [ + "sha256:ab8a6258860da4b6677da4bd2fe5dc2c659cff31b3ee4f7f5d64e79735b80d42", + "sha256:dd8d182285a0fe56bace7f45b5e7d1a6ebcbf524e8f3bd87eb0f125271b8831f" + ], + "version": "==0.6.1" + }, + "mistune": { + "hashes": [ + "sha256:59a3429db53c50b5c6bcc8a07f8848cb00d7dc8bdb431a4ab41920d201d4756e", + "sha256:88a1051873018da288eee8538d476dffe1262495144b33ecb586c4ab266bb8d4" + ], + "version": "==0.8.4" + }, + "more-itertools": { + "hashes": [ + "sha256:5dd8bcf33e5f9513ffa06d5ad33d78f31e1931ac9a18f33d37e77a180d393a7c", + "sha256:b1ddb932186d8a6ac451e1d95844b382f55e12686d51ca0c68b6f61f2ab7a507" + ], + "version": "==8.2.0" + }, + "mypy": { + "hashes": [ + "sha256:15b948e1302682e3682f11f50208b726a246ab4e6c1b39f9264a8796bb416aa2", + "sha256:219a3116ecd015f8dca7b5d2c366c973509dfb9a8fc97ef044a36e3da66144a1", + "sha256:3b1fc683fb204c6b4403a1ef23f0b1fac8e4477091585e0c8c54cbdf7d7bb164", + "sha256:3beff56b453b6ef94ecb2996bea101a08f1f8a9771d3cbf4988a61e4d9973761", + "sha256:7687f6455ec3ed7649d1ae574136835a4272b65b3ddcf01ab8704ac65616c5ce", + "sha256:7ec45a70d40ede1ec7ad7f95b3c94c9cf4c186a32f6bacb1795b60abd2f9ef27", + "sha256:86c857510a9b7c3104cf4cde1568f4921762c8f9842e987bc03ed4f160925754", + "sha256:8a627507ef9b307b46a1fea9513d5c98680ba09591253082b4c48697ba05a4ae", + "sha256:8dfb69fbf9f3aeed18afffb15e319ca7f8da9642336348ddd6cab2713ddcf8f9", + "sha256:a34b577cdf6313bf24755f7a0e3f3c326d5c1f4fe7422d1d06498eb25ad0c600", + "sha256:a8ffcd53cb5dfc131850851cc09f1c44689c2812d0beb954d8138d4f5fc17f65", + "sha256:b90928f2d9eb2f33162405f32dde9f6dcead63a0971ca8a1b50eb4ca3e35ceb8", + "sha256:c56ffe22faa2e51054c5f7a3bc70a370939c2ed4de308c690e7949230c995913", + "sha256:f91c7ae919bbc3f96cd5e5b2e786b2b108343d1d7972ea130f7de27fdd547cf3" + ], + "index": "pypi", + "version": "==0.770" + }, + "mypy-extensions": { + "hashes": [ + "sha256:090fedd75945a69ae91ce1303b5824f428daf5a028d2f6ab8a299250a846f15d", + "sha256:2d82818f5bb3e369420cb3c4060a7970edba416647068eb4c5343488a6c604a8" + ], + "version": "==0.4.3" + }, + "nbconvert": { + "hashes": [ + "sha256:944a5fbe6c4609d74e7f331bfa957c8eff2d53904f7c40f053a44bfb4164b718", + "sha256:c86da6adc412df9ad2726fe438589e4495c7835792d6d84f888178682f5d5bcf" + ], + "version": "==6.0.0a0" + }, + "nbformat": { + "hashes": [ + "sha256:65a79936a128fd85aef392b7fea520166364037118b6fe3ed52de742d06c4558", + "sha256:f0c47cf93c505cb943e2f131ef32b8ae869292b5f9f279db2bafb35867923f69" + ], + "version": "==5.0.5" + }, + "nodeenv": { + "hashes": [ + "sha256:5b2438f2e42af54ca968dd1b374d14a1194848955187b0e5e4be1f73813a5212" + ], + "version": "==1.3.5" + }, + "notebook": { + "hashes": [ + "sha256:3edc616c684214292994a3af05eaea4cc043f6b4247d830f3a2f209fa7639a80", + "sha256:47a9092975c9e7965ada00b9a20f0cf637d001db60d241d479f53c0be117ad48" + ], + "version": "==6.0.3" + }, + "packaging": { + "hashes": [ + "sha256:3c292b474fda1671ec57d46d739d072bfd495a4f51ad01a055121d81e952b7a3", + "sha256:82f77b9bee21c1bafbf35a84905d604d5d1223801d639cf3ed140bd651c08752" + ], + "version": "==20.3" + }, + "pandocfilters": { + "hashes": [ + "sha256:41a309da81cba5509389b19d96b0ee49551cee8165a6406754f2565e95429860", + "sha256:b3dd70e169bb5449e6bc6ff96aea89c5eea8c5f6ab5e207fc2f521a2cf4a0da9" + ], + "version": "==1.4.2" + }, + "parso": { + "hashes": [ + "sha256:0c5659e0c6eba20636f99a04f469798dca8da279645ce5c387315b2c23912157", + "sha256:8515fc12cfca6ee3aa59138741fc5624d62340c97e401c74875769948d4f2995" + ], + "version": "==0.6.2" + }, + "pathspec": { + "hashes": [ + "sha256:163b0632d4e31cef212976cf57b43d9fd6b0bac6e67c26015d611a647d5e7424", + "sha256:562aa70af2e0d434367d9790ad37aed893de47f1693e4201fd1d3dca15d19b96" + ], + "version": "==0.7.0" + }, + "pexpect": { + "hashes": [ + "sha256:0b48a55dcb3c05f3329815901ea4fc1537514d6ba867a152b581d69ae3710937", + "sha256:fc65a43959d153d0114afe13997d439c22823a27cefceb5ff35c2178c6784c0c" + ], + "version": "==4.8.0" + }, + "pickleshare": { + "hashes": [ + "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca", + "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56" + ], + "version": "==0.7.5" + }, + "pkginfo": { + "hashes": [ + "sha256:7424f2c8511c186cd5424bbf31045b77435b37a8d604990b79d4e70d741148bb", + "sha256:a6d9e40ca61ad3ebd0b72fbadd4fba16e4c0e4df0428c041e01e06eb6ee71f32" + ], + "version": "==1.5.0.1" + }, + "pluggy": { + "hashes": [ + "sha256:15b2acde666561e1298d71b523007ed7364de07029219b604cf808bfa1c765b0", + "sha256:966c145cd83c96502c3c3868f50408687b38434af77734af1e9ca461a4081d2d" + ], + "version": "==0.13.1" + }, + "pre-commit": { + "hashes": [ + "sha256:487c675916e6f99d355ec5595ad77b325689d423ef4839db1ed2f02f639c9522", + "sha256:9707b4f7069365ffdb57d2782086a9f3019afde2a6e9f85df785c9bf090e1118", + "sha256:c0aa11bce04a7b46c5544723aedf4e81a4d5f64ad1205a30a9ea12d5e81969e1" + ], + "index": "pypi", + "version": "==2.2.0" + }, + "prometheus-client": { + "hashes": [ + "sha256:09b5750fd1c153420dccd35881116e853c730081bea0dbf0ea6649103bcb8445", + "sha256:71cd24a2b3eb335cb800c7159f423df1bd4dcd5171b234be15e3f31ec9f622da" + ], + "version": "==0.7.1" + }, + "prompt-toolkit": { + "hashes": [ + "sha256:563d1a4140b63ff9dd587bda9557cffb2fe73650205ab6f4383092fb882e7dc8", + "sha256:df7e9e63aea609b1da3a65641ceaf5bc7d05e0a04de5bd45d05dbeffbabf9e04" + ], + "version": "==3.0.5" + }, + "ptyprocess": { + "hashes": [ + "sha256:923f299cc5ad920c68f2bc0bc98b75b9f838b93b599941a6b63ddbc2476394c0", + "sha256:d7cc528d76e76342423ca640335bd3633420dc1366f258cb31d05e865ef5ca1f" + ], + "version": "==0.6.0" + }, + "py": { + "hashes": [ + "sha256:5e27081401262157467ad6e7f851b7aa402c5852dbcb3dae06768434de5752aa", + "sha256:c20fdd83a5dbc0af9efd622bee9a5564e278f6380fffcacc43ba6f43db2813b0" + ], + "version": "==1.8.1" + }, + "pycodestyle": { + "hashes": [ + "sha256:95a2219d12372f05704562a14ec30bc76b05a5b297b21a5dfe3f6fac3491ae56", + "sha256:e40a936c9a450ad81df37f549d676d127b1b66000a6c500caa2b085bc0ca976c" + ], + "version": "==2.5.0" + }, + "pyflakes": { + "hashes": [ + "sha256:17dbeb2e3f4d772725c777fabc446d5634d1038f234e77343108ce445ea69ce0", + "sha256:d976835886f8c5b31d47970ed689944a0262b5f3afa00a5a7b4dc81e5449f8a2" + ], + "version": "==2.1.1" + }, + "pygments": { + "hashes": [ + "sha256:647344a061c249a3b74e230c739f434d7ea4d8b1d5f3721bc0f3558049b38f44", + "sha256:aa931c0bd5daa25c475afadb2147115134cfe501f0656828cbe7cb566c7123bc", + "sha256:ff7a40b4860b727ab48fad6360eb351cc1b33cbf9b15a0f689ca5353e9463324" + ], + "version": "==2.6.1" + }, + "pyparsing": { + "hashes": [ + "sha256:4c830582a84fb022400b85429791bc551f1f4871c33f23e44f353119e92f969f", + "sha256:c342dccb5250c08d45fd6f8b4a559613ca603b57498511740e65cd11a2e7dcec" + ], + "version": "==2.4.6" + }, + "pyrsistent": { + "hashes": [ + "sha256:28669905fe725965daa16184933676547c5bb40a5153055a8dee2a4bd7933ad3", + "sha256:3217696df78f9222a3d1179b119c27be346b969a9e4d617de2a215a87d9aa456", + "sha256:9324b762b52e5a901611b25f50f9cdf8789c61ece3ff7c24dc872603c4faca62", + "sha256:c11415790cc5803e173de7d71d54f94c66a9154f81a72ffdf45a70096916f226" + ], + "version": "==0.16.0" + }, + "pytest": { + "hashes": [ + "sha256:0e5b30f5cb04e887b91b1ee519fa3d89049595f428c1db76e73bd7f17b09b172", + "sha256:84dde37075b8805f3d1f392cc47e38a0e59518fb46a431cfdaf7cf1ce805f970" + ], + "index": "pypi", + "version": "==5.4.1" + }, + "pytest-cov": { + "hashes": [ + "sha256:cc6742d8bac45070217169f5f72ceee1e0e55b0221f54bcf24845972d3a47f2b", + "sha256:cdbdef4f870408ebdbfeb44e63e07eb18bb4619fae852f6e760645fa36172626" + ], + "index": "pypi", + "version": "==2.8.1" + }, + "python-dateutil": { + "hashes": [ + "sha256:73ebfe9dbf22e832286dafa60473e4cd239f8592f699aa5adaf10050e6e1823c", + "sha256:75bb3f31ea686f1197762692a9ee6a7550b59fc6ca3a1f4b5d7e32fb98e2da2a" + ], + "version": "==2.8.1" + }, + "pywin32": { + "hashes": [ + "sha256:300a2db938e98c3e7e2093e4491439e62287d0d493fe07cce110db070b54c0be", + "sha256:31f88a89139cb2adc40f8f0e65ee56a8c585f629974f9e07622ba80199057511", + "sha256:371fcc39416d736401f0274dd64c2302728c9e034808e37381b5e1b22be4a6b0", + "sha256:47a3c7551376a865dd8d095a98deba954a98f326c6fe3c72d8726ca6e6b15507", + "sha256:4cdad3e84191194ea6d0dd1b1b9bdda574ff563177d2adf2b4efec2a244fa116", + "sha256:7c1ae32c489dc012930787f06244426f8356e129184a02c25aef163917ce158e", + "sha256:7f18199fbf29ca99dff10e1f09451582ae9e372a892ff03a28528a24d55875bc", + "sha256:9b31e009564fb95db160f154e2aa195ed66bcc4c058ed72850d047141b36f3a2", + "sha256:a929a4af626e530383a579431b70e512e736e9588106715215bf685a3ea508d4", + "sha256:c054c52ba46e7eb6b7d7dfae4dbd987a1bb48ee86debe3f245a2884ece46e295", + "sha256:f27cec5e7f588c3d1051651830ecc00294f90728d19c3bf6916e6dba93ea357c", + "sha256:f4c5be1a293bae0076d93c88f37ee8da68136744588bc5e2be2f299a34ceb7aa" + ], + "markers": "sys_platform == 'win32'", + "version": "==227" + }, + "pywin32-ctypes": { + "hashes": [ + "sha256:24ffc3b341d457d48e8922352130cf2644024a4ff09762a2261fd34c36ee5942", + "sha256:9dc2d991b3479cc2df15930958b674a48a227d5361d413827a4cfd0b5876fc98" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.2.0" + }, + "pywinpty": { + "hashes": [ + "sha256:1e525a4de05e72016a7af27836d512db67d06a015aeaf2fa0180f8e6a039b3c2", + "sha256:2740eeeb59297593a0d3f762269b01d0285c1b829d6827445fcd348fb47f7e70", + "sha256:2d7e9c881638a72ffdca3f5417dd1563b60f603e1b43e5895674c2a1b01f95a0", + "sha256:33df97f79843b2b8b8bc5c7aaf54adec08cc1bae94ee99dfb1a93c7a67704d95", + "sha256:5fb2c6c6819491b216f78acc2c521b9df21e0f53b9a399d58a5c151a3c4e2a2d", + "sha256:8fc5019ff3efb4f13708bd3b5ad327589c1a554cb516d792527361525a7cb78c", + "sha256:b358cb552c0f6baf790de375fab96524a0498c9df83489b8c23f7f08795e966b", + "sha256:dbd838de92de1d4ebf0dce9d4d5e4fc38d0b7b1de837947a18b57a882f219139", + "sha256:dd22c8efacf600730abe4a46c1388355ce0d4ab75dc79b15d23a7bd87bf05b48", + "sha256:e854211df55d107f0edfda8a80b39dfc87015bef52a8fe6594eb379240d81df2" + ], + "markers": "os_name == 'nt'", + "version": "==0.5.7" + }, + "pyyaml": { + "hashes": [ + "sha256:06a0d7ba600ce0b2d2fe2e78453a470b5a6e000a985dd4a4e54e436cc36b0e97", + "sha256:240097ff019d7c70a4922b6869d8a86407758333f02203e0fc6ff79c5dcede76", + "sha256:4f4b913ca1a7319b33cfb1369e91e50354d6f07a135f3b901aca02aa95940bd2", + "sha256:589929630502f3b0e87daee190b399f98401b6bccea87ed634a73fe5da43d3d4", + "sha256:69f00dca373f240f842b2931fb2c7e14ddbacd1397d57157a9b005a6a9942648", + "sha256:6e8383720b2127b09dba5b323ac896c702cf02bc5786fce16cd6791825d92d16", + "sha256:73f099454b799e05e5ab51423c7bcf361c58d3206fa7b0d555426b1f4d9a3eaf", + "sha256:74809a57b329d6cc0fdccee6318f44b9b8649961fa73144a98735b0aaf029f1f", + "sha256:7739fc0fa8205b3ee8808aea45e968bc90082c10aef6ea95e855e10abf4a37b2", + "sha256:95f71d2af0ff4227885f7a6605c37fd53d3a106fcab511b8860ecca9fcf400ee", + "sha256:b8eac752c5e14d3eca0e6dd9199cd627518cb5ec06add0de9d32baeee6fe645d", + "sha256:cc8955cfbfc7a115fa81d85284ee61147059a753344bc51098f3ccd69b0d7e0c", + "sha256:d13155f591e6fcc1ec3b30685d50bf0711574e2c0dfffd7644babf8b5102ca1a" + ], + "version": "==5.3.1" + }, + "pyzmq": { + "hashes": [ + "sha256:07bfbf192f22ef1dde65b6046efff191e3201e74da6d47098e68958469ecbe48", + "sha256:0bbc1728fe4314b4ca46249c33873a390559edac7c217ec7001b5e0c34a8fb7f", + "sha256:1e076ad5bd3638a18c376544d32e0af986ca10d43d4ce5a5d889a8649f0d0a3d", + "sha256:242d949eb6b10197cda1d1cec377deab1d5324983d77e0d0bf9dc5eb6d71a6b4", + "sha256:26f4ae420977d2a8792d7c2d7bda43128b037b5eeb21c81951a94054ad8b8843", + "sha256:32234c21c5e0a767c754181c8112092b3ddd2e2a36c3f76fc231ced817aeee47", + "sha256:3f12ce1e9cc9c31497bd82b207e8e86ccda9eebd8c9f95053aae46d15ccd2196", + "sha256:4557d5e036e6d85715b4b9fdb482081398da1d43dc580d03db642b91605b409f", + "sha256:4f562dab21c03c7aa061f63b147a595dbe1006bf4f03213272fc9f7d5baec791", + "sha256:54ecd00daa474885bbf318108401d318614425a05dfeae917611dd93f99f2678", + "sha256:5e071b834051e9ecb224915398f474bfad802c2fff883f118ff5363ca4ae3edf", + "sha256:5e1f65e576ab07aed83f444e201d86deb01cd27dcf3f37c727bc8729246a60a8", + "sha256:5f10a31f288bf055be76c57710807a8f0efdb2b82be6c2a2b8f9a61f33a40cea", + "sha256:6aaaf90b420dc40d9a0e1996b82c6a0ff91d9680bebe2135e67c9e6d197c0a53", + "sha256:75238d3c16cab96947705d5709187a49ebb844f54354cdf0814d195dd4c045de", + "sha256:7f7e7b24b1d392bb5947ba91c981e7d1a43293113642e0d8870706c8e70cdc71", + "sha256:84b91153102c4bcf5d0f57d1a66a0f03c31e9e6525a5f656f52fc615a675c748", + "sha256:944f6bb5c63140d76494467444fd92bebd8674236837480a3c75b01fe17df1ab", + "sha256:a1f957c20c9f51d43903881399b078cddcf710d34a2950e88bce4e494dcaa4d1", + "sha256:a49fd42a29c1cc1aa9f461c5f2f5e0303adba7c945138b35ee7f4ab675b9f754", + "sha256:a99ae601b4f6917985e9bb071549e30b6f93c72f5060853e197bdc4b7d357e5f", + "sha256:ad48865a29efa8a0cecf266432ea7bc34e319954e55cf104be0319c177e6c8f5", + "sha256:b08e425cf93b4e018ab21dc8fdbc25d7d0502a23cc4fea2380010cf8cf11e462", + "sha256:bb10361293d96aa92be6261fa4d15476bca56203b3a11c62c61bd14df0ef89ba", + "sha256:bd1a769d65257a7a12e2613070ca8155ee348aa9183f2aadf1c8b8552a5510f5", + "sha256:cb3b7156ef6b1a119e68fbe3a54e0a0c40ecacc6b7838d57dd708c90b62a06dc", + "sha256:d2f64994f9628f621e0f636f9532055887defc9fa5213aaeceb770d9c579f9ac", + "sha256:e8e4efb52ec2df8d046395ca4c84ae0056cf507b2f713ec803c65a8102d010de", + "sha256:f37c29da2a5b0c5e31e6f8aab885625ea76c807082f70b2d334d3fd573c3100a", + "sha256:f4d558bc5668d2345773a9ff8c39e2462dafcb1f6772a2e582fbced389ce527f", + "sha256:f5b6d015587a1d6f582ba03b226a9ddb1dfb09878b3be04ef48b01b7d4eb6b2a" + ], + "version": "==19.0.0" + }, + "readme-renderer": { + "hashes": [ + "sha256:1b6d8dd1673a0b293766b4106af766b6eff3654605f9c4f239e65de6076bc222", + "sha256:e67d64242f0174a63c3b727801a2fff4c1f38ebe5d71d95ff7ece081945a6cd4" + ], + "version": "==25.0" + }, + "regex": { + "hashes": [ + "sha256:01b2d70cbaed11f72e57c1cfbaca71b02e3b98f739ce33f5f26f71859ad90431", + "sha256:046e83a8b160aff37e7034139a336b660b01dbfe58706f9d73f5cdc6b3460242", + "sha256:113309e819634f499d0006f6200700c8209a2a8bf6bd1bdc863a4d9d6776a5d1", + "sha256:200539b5124bc4721247a823a47d116a7a23e62cc6695744e3eb5454a8888e6d", + "sha256:25f4ce26b68425b80a233ce7b6218743c71cf7297dbe02feab1d711a2bf90045", + "sha256:269f0c5ff23639316b29f31df199f401e4cb87529eafff0c76828071635d417b", + "sha256:59fd3df28f43adf25a32b4a957f5b0a62e3ff55ce29de6600da7e110f33102dd", + "sha256:5de40649d4f88a15c9489ed37f88f053c15400257eeb18425ac7ed0a4e119400", + "sha256:7f78f963e62a61e294adb6ff5db901b629ef78cb2a1cfce3cf4eeba80c1c67aa", + "sha256:82469a0c1330a4beb3d42568f82dffa32226ced006e0b063719468dcd40ffdf0", + "sha256:8c2b7fa4d72781577ac45ab658da44c7518e6d96e2a50d04ecb0fd8f28b21d69", + "sha256:974535648f31c2b712a6b2595969f8ab370834080e00ab24e5dbb9d19b8bfb74", + "sha256:99272d6b6a68c7ae4391908fc15f6b8c9a6c345a46b632d7fdb7ef6c883a2bbb", + "sha256:9b64a4cc825ec4df262050c17e18f60252cdd94742b4ba1286bcfe481f1c0f26", + "sha256:9e9624440d754733eddbcd4614378c18713d2d9d0dc647cf9c72f64e39671be5", + "sha256:9ff16d994309b26a1cdf666a6309c1ef51ad4f72f99d3392bcd7b7139577a1f2", + "sha256:b33ebcd0222c1d77e61dbcd04a9fd139359bded86803063d3d2d197b796c63ce", + "sha256:bba52d72e16a554d1894a0cc74041da50eea99a8483e591a9edf1025a66843ab", + "sha256:bed7986547ce54d230fd8721aba6fd19459cdc6d315497b98686d0416efaff4e", + "sha256:c7f58a0e0e13fb44623b65b01052dae8e820ed9b8b654bb6296bc9c41f571b70", + "sha256:d3242da581f8d54d5a0f769b4d003f065dc6222621267a056b98f6886dc90f36", + "sha256:d58a4fa7910102500722defbde6e2816b0372a4fcc85c7e239323767c74f5cbc", + "sha256:da22de67d83ee26b45c7b461c96e541f0cda72b76229d95e313666770dd8da41", + "sha256:f1ac2dc65105a53c1c2d72b1d3e98c2464a133b4067a51a3d2477b28449709a0" + ], + "version": "==2020.2.20" + }, + "remote-ikernel": { + "hashes": [ + "sha256:5253216e87a8c31f1b0ca9305454f223147518b580e853b7635a3d8b9c88c295", + "sha256:740b80a57fa1af40cadef541c5a4eb293675b504092ecf00c57dd2f0011bd840" + ], + "index": "pypi", + "version": "==0.4.6" + }, + "requests": { + "hashes": [ + "sha256:43999036bfa82904b6af1d99e4882b560e5e2c68e5c4b0aa03b655f3d7d73fee", + "sha256:b3f43d496c6daba4493e7c431722aeb7dbc6288f52a6e04e7b6023b0247817e6" + ], + "version": "==2.23.0" + }, + "requests-toolbelt": { + "hashes": [ + "sha256:380606e1d10dc85c3bd47bf5a6095f815ec007be7a8b69c878507068df059e6f", + "sha256:968089d4584ad4ad7c171454f0a5c6dac23971e9472521ea3b6d49d610aa6fc0" + ], + "version": "==0.9.1" + }, + "send2trash": { + "hashes": [ + "sha256:60001cc07d707fe247c94f74ca6ac0d3255aabcb930529690897ca2a39db28b2", + "sha256:f1691922577b6fa12821234aeb57599d887c4900b9ca537948d2dac34aea888b" + ], + "version": "==1.5.0" + }, + "six": { + "hashes": [ + "sha256:236bdbdce46e6e6a3d61a337c0f8b763ca1e8717c03b369e87a7ec7ce1319c0a", + "sha256:8f3cd2e254d8f793e7f3d6d9df77b92252b52637291d0f0da013c76ea2724b6c" + ], + "version": "==1.14.0" + }, + "soupsieve": { + "hashes": [ + "sha256:e914534802d7ffd233242b785229d5ba0766a7f487385e3f714446a07bf540ae", + "sha256:f24cabf0197b86c6d5e3fb96fd11a1c0739618375d95de91a477aa9652282150", + "sha256:fcd71e08c0aee99aca1b73f45478549ee7e7fc006d51b37bec9e9def7dc22b69" + ], + "version": "==2.0" + }, + "terminado": { + "hashes": [ + "sha256:4804a774f802306a7d9af7322193c5390f1da0abb429e082a10ef1d46e6fb2c2", + "sha256:a43dcb3e353bc680dd0783b1d9c3fc28d529f190bc54ba9a229f72fe6e7a54d7" + ], + "version": "==0.8.3" + }, + "testpath": { + "hashes": [ + "sha256:60e0a3261c149755f4399a1fff7d37523179a70fdc3abdf78de9fc2604aeec7e", + "sha256:bfcf9411ef4bf3db7579063e0546938b1edda3d69f4e1fb8756991f5951f85d4" + ], + "version": "==0.4.4" + }, + "toml": { + "hashes": [ + "sha256:229f81c57791a41d65e399fc06bf0848bab550a9dfd5ed66df18ce5f05e73d5c", + "sha256:235682dd292d5899d361a811df37e04a8828a5b1da3115886b73cf81ebc9100e" + ], + "version": "==0.10.0" + }, + "tornado": { + "hashes": [ + "sha256:0fe2d45ba43b00a41cd73f8be321a44936dc1aba233dee979f17a042b83eb6dc", + "sha256:22aed82c2ea340c3771e3babc5ef220272f6fd06b5108a53b4976d0d722bcd52", + "sha256:2c027eb2a393d964b22b5c154d1a23a5f8727db6fda837118a776b29e2b8ebc6", + "sha256:503700d85d9a2c2aa737fb16df58bfa2ac0d5ec501881fea2acceae64ce17858", + "sha256:5217e601700f24e966ddab689f90b7ea4bd91ff3357c3600fa1045e26d68e55d", + "sha256:5618f72e947533832cbc3dec54e1dffc1747a5cb17d1fd91577ed14fa0dc081b", + "sha256:5f6a07e62e799be5d2330e68d808c8ac41d4a259b9cea61da4101b83cb5dc673", + "sha256:7182a9285e364e55e6902b5fb4d4a219efd8d7818d9000b419a0eaf3909fc0bc", + "sha256:c58d56003daf1b616336781b26d184023ea4af13ae143d9dda65e31e534940b9", + "sha256:c952975c8ba74f546ae6de2e226ab3cc3cc11ae47baf607459a6728585bb542a", + "sha256:c98232a3ac391f5faea6821b53db8db461157baa788f5d6222a193e9456e1740" + ], + "version": "==6.0.4" + }, + "tqdm": { + "hashes": [ + "sha256:00339634a22c10a7a22476ee946bbde2dbe48d042ded784e4d88e0236eca5d81", + "sha256:ea9e3fd6bd9a37e8783d75bfc4c1faf3c6813da6bd1c3e776488b41ec683af94" + ], + "version": "==4.45.0" + }, + "traitlets": { + "hashes": [ + "sha256:70b4c6a1d9019d7b4f6846832288f86998aa3b9207c6821f3578a6a6a467fe44", + "sha256:d023ee369ddd2763310e4c3eae1ff649689440d4ae59d7485eb4cfbbe3e359f7" + ], + "version": "==4.3.3" + }, + "twine": { + "hashes": [ + "sha256:c1af8ca391e43b0a06bbc155f7f67db0bf0d19d284bfc88d1675da497a946124", + "sha256:d561a5e511f70275e5a485a6275ff61851c16ffcb3a95a602189161112d9f160" + ], + "index": "pypi", + "version": "==3.1.1" + }, + "typed-ast": { + "hashes": [ + "sha256:0666aa36131496aed8f7be0410ff974562ab7eeac11ef351def9ea6fa28f6355", + "sha256:0c2c07682d61a629b68433afb159376e24e5b2fd4641d35424e462169c0a7919", + "sha256:249862707802d40f7f29f6e1aad8d84b5aa9e44552d2cc17384b209f091276aa", + "sha256:24995c843eb0ad11a4527b026b4dde3da70e1f2d8806c99b7b4a7cf491612652", + "sha256:269151951236b0f9a6f04015a9004084a5ab0d5f19b57de779f908621e7d8b75", + "sha256:3791f73e5d75aa9a95274679ab4821bd9d16de623c4ecf4900a77a29864ee144", + "sha256:4083861b0aa07990b619bd7ddc365eb7fa4b817e99cf5f8d9cf21a42780f6e01", + "sha256:498b0f36cc7054c1fead3d7fc59d2150f4d5c6c56ba7fb150c013fbc683a8d2d", + "sha256:4e3e5da80ccbebfff202a67bf900d081906c358ccc3d5e3c8aea42fdfdfd51c1", + "sha256:6daac9731f172c2a22ade6ed0c00197ee7cc1221aa84cfdf9c31defeb059a907", + "sha256:715ff2f2df46121071622063fc7543d9b1fd19ebfc4f5c8895af64a77a8c852c", + "sha256:73d785a950fc82dd2a25897d525d003f6378d1cb23ab305578394694202a58c3", + "sha256:8c8aaad94455178e3187ab22c8b01a3837f8ee50e09cf31f1ba129eb293ec30b", + "sha256:8ce678dbaf790dbdb3eba24056d5364fb45944f33553dd5869b7580cdbb83614", + "sha256:aaee9905aee35ba5905cfb3c62f3e83b3bec7b39413f0a7f19be4e547ea01ebb", + "sha256:bcd3b13b56ea479b3650b82cabd6b5343a625b0ced5429e4ccad28a8973f301b", + "sha256:c9e348e02e4d2b4a8b2eedb48210430658df6951fa484e59de33ff773fbd4b41", + "sha256:d205b1b46085271b4e15f670058ce182bd1199e56b317bf2ec004b6a44f911f6", + "sha256:d43943ef777f9a1c42bf4e552ba23ac77a6351de620aa9acf64ad54933ad4d34", + "sha256:d5d33e9e7af3b34a40dc05f498939f0ebf187f07c385fd58d591c533ad8562fe", + "sha256:df74880bdb70f34304ccc52b0c99d3e578f96a906b86f3ae172a1f1c2edef2bc", + "sha256:fc0fea399acb12edbf8a628ba8d2312f583bdbdb3335635db062fa98cf71fca4", + "sha256:fe460b922ec15dd205595c9b5b99e2f056fd98ae8f9f56b888e7a17dc2b757e7" + ], + "version": "==1.4.1" + }, + "typing-extensions": { + "hashes": [ + "sha256:6e95524d8a547a91e08f404ae485bbb71962de46967e1b71a0cb89af24e761c5", + "sha256:79ee589a3caca649a9bfd2a8de4709837400dfa00b6cc81962a1e6a1815969ae", + "sha256:f8d2bd89d25bc39dabe7d23df520442fa1d8969b82544370e03d88b5a591c392" + ], + "version": "==3.7.4.2" + }, + "urllib3": { + "hashes": [ + "sha256:2f3db8b19923a873b3e5256dc9c2dedfa883e33d87c690d9c7913e1f40673cdc", + "sha256:87716c2d2a7121198ebcb7ce7cccf6ce5e9ba539041cfbaeecfb641dc0bf6acc" + ], + "version": "==1.25.8" + }, + "virtualenv": { + "hashes": [ + "sha256:4e399f48c6b71228bf79f5febd27e3bbb753d9d5905776a86667bc61ab628a25", + "sha256:9e81279f4a9d16d1c0654a127c2c86e5bca2073585341691882c1e66e31ef8a5" + ], + "version": "==20.0.15" + }, + "waitress": { + "hashes": [ + "sha256:045b3efc3d97c93362173ab1dfc159b52cfa22b46c3334ffc805dbdbf0e4309e", + "sha256:77ff3f3226931a1d7d8624c5371de07c8e90c7e5d80c5cc660d72659aaf23f38" + ], + "version": "==1.4.3" + }, + "wcwidth": { + "hashes": [ + "sha256:cafe2186b3c009a04067022ce1dcd79cb38d8d65ee4f4791b8888d6599d1bbe1", + "sha256:ee73862862a156bf77ff92b09034fc4825dd3af9cf81bc5b360668d425f3c5f1" + ], + "version": "==0.1.9" + }, + "webencodings": { + "hashes": [ + "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", + "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923" + ], + "version": "==0.5.1" + }, + "webob": { + "hashes": [ + "sha256:a3c89a8e9ba0aeb17382836cdb73c516d0ecf6630ec40ec28288f3ed459ce87b", + "sha256:aa3a917ed752ba3e0b242234b2a373f9c4e2a75d35291dcbe977649bd21fd108" + ], + "version": "==1.8.6" + }, + "webtest": { + "hashes": [ + "sha256:71114cd778a7d7b237ec5c8a5c32084f447d869ae62e48bcd5b73af211133e74", + "sha256:da9cf14c103ff51a40dee4cac7657840d1317456eb8f0ca81289b5cbff175f4b" + ], + "index": "pypi", + "version": "==2.0.34" + }, + "wheel": { + "hashes": [ + "sha256:8788e9155fe14f54164c1b9eb0a319d98ef02c160725587ad60f14ddc57b6f96", + "sha256:df277cb51e61359aba502208d680f90c0493adec6f0e848af94948778aed386e" + ], + "index": "pypi", + "version": "==0.34.2" + } + } +} diff --git a/Ch04/apd.sensors-chapter04/README.md b/Ch04/apd.sensors-chapter04/README.md new file mode 100644 index 0000000..e6dcb45 --- /dev/null +++ b/Ch04/apd.sensors-chapter04/README.md @@ -0,0 +1,32 @@ +# Advanced Python Development Sensors + +This is the data collection package that forms part of the running example +for the book [Advanced Python Development](https://advancedpython.dev). + +## Usage + +This installs a console script called `sensors` that returns a report on +various aspects of the system. The available sensors are: + +* Python version +* IP Addresses +* CPU Usage +* RAM Available +* Battery charging state +* Ambient Temperature +* Ambient Humidity + +There are no command-line options, to view the report run `sensors` on the +command line. + +## Caveats + +The Ambient Temperature and Ambient Humidity sensors are only available on +RaspberryPi hosts and assume that a DHT22 sensor is connected to pin `D20`. + +If there is an entry in `/etc/hosts` for the current machine's hostname that +value will be the only result from the IP Addresses sensor. + +## Installation + +Install with `pip3 install apd.sensors` under Python 3.7 or higher diff --git a/Ch04/apd.sensors-chapter04/plugins/apd.sunnyboy_solar/pyproject.toml b/Ch04/apd.sensors-chapter04/plugins/apd.sunnyboy_solar/pyproject.toml new file mode 100644 index 0000000..4d3bb67 --- /dev/null +++ b/Ch04/apd.sensors-chapter04/plugins/apd.sunnyboy_solar/pyproject.toml @@ -0,0 +1,5 @@ +[build-system] +requires = [ + "setuptools", +] +build-backend = "setuptools.build_meta" diff --git a/Ch04/apd.sensors-chapter04/plugins/apd.sunnyboy_solar/setup.cfg b/Ch04/apd.sensors-chapter04/plugins/apd.sunnyboy_solar/setup.cfg new file mode 100644 index 0000000..a24bdf9 --- /dev/null +++ b/Ch04/apd.sensors-chapter04/plugins/apd.sunnyboy_solar/setup.cfg @@ -0,0 +1,33 @@ +[mypy] +ignore_missing_imports = True + +[flake8] +max-line-length = 88 + +[metadata] +name = apd.sunnyboy_solar +version = attr: apd.sunnyboy_solar.VERSION +description = APD Sensor for reading data from Sunnyboy inverters +long_description = file: README.md, CHANGES.md, LICENCE +long_description_content_type = text/markdown +keywords = iot solar +license = MIT +classifiers = + Programming Language :: Python :: 3 + Programming Language :: Python :: 3.7 + +[options] +zip_safe = False +include_package_data = True +package-dir = + =src +packages = find: +install_requires = + apd.sensors + +[options.packages.find] +where = src + +[options.entry_points] +apd.sensors.sensors = + SolarCumulativeOutput = apd.sunnyboy_solar.sensor:SolarCumulativeOutput diff --git a/Ch04/apd.sensors-chapter04/plugins/apd.sunnyboy_solar/setup.py b/Ch04/apd.sensors-chapter04/plugins/apd.sunnyboy_solar/setup.py new file mode 100644 index 0000000..6068493 --- /dev/null +++ b/Ch04/apd.sensors-chapter04/plugins/apd.sunnyboy_solar/setup.py @@ -0,0 +1,3 @@ +from setuptools import setup + +setup() diff --git a/Ch04/apd.sensors-chapter04/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/Pipfile b/Ch04/apd.sensors-chapter04/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/Pipfile new file mode 100644 index 0000000..e69de29 diff --git a/Ch04/apd.sensors-chapter04/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/__init__.py b/Ch04/apd.sensors-chapter04/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/__init__.py new file mode 100644 index 0000000..3277f64 --- /dev/null +++ b/Ch04/apd.sensors-chapter04/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/__init__.py @@ -0,0 +1 @@ +VERSION = "1.0.0" diff --git a/Ch04/apd.sensors-chapter04/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/sensor.py b/Ch04/apd.sensors-chapter04/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/sensor.py new file mode 100644 index 0000000..232b46c --- /dev/null +++ b/Ch04/apd.sensors-chapter04/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/sensor.py @@ -0,0 +1,48 @@ +import os +import subprocess +import typing as t + +from apd.sensors.sensors import Sensor + + +class SolarCumulativeOutput(Sensor[t.Optional[float]]): + title = "Solar panel cumulative output" + + def __init__(self, path=None, bt_addr=None): + self.path = os.environ.get( + "APD_SUNNYBOYSOLAR_PATH", "/home/pi/opensunny-master/opensunny" + ) + self.bt_addr = os.environ.get("APD_SUNNYBOYSOLAR_BT_ADDRESS", None) + + def value(self) -> t.Optional[float]: + if self.bt_addr is None: + return None + try: + output: bytes = subprocess.check_output( + [self.path, "-i", self.bt_addr], stderr=subprocess.STDOUT, timeout=15 + ) + except (subprocess.CalledProcessError, FileNotFoundError): + return None + + lines = filter(None, output.split(b"\n")) + found = {} + for line in lines: + start, value = line.rsplit(b"=", 1) + start, key = start.rsplit(b" ", 1) + found[key] = value + + try: + yield_total = float(found[b"yield_total"][:-3].replace(b".", b"")) + power_dc_1 = int(found[b"power_dc_1"][:-1]) + power_dc_2 = int(found[b"power_dc_2"][:-1]) + if power_dc_1 > 1500 or power_dc_2 > 1500: + return None + except (ValueError, IndexError): + return None + return yield_total + + @classmethod + def format(cls, value: t.Optional[float]) -> str: + if value is None: + return "Unknown" + return "{} kW".format(value / 1000) diff --git a/Ch04/apd.sensors-chapter04/pytest.ini b/Ch04/apd.sensors-chapter04/pytest.ini new file mode 100644 index 0000000..861f3d0 --- /dev/null +++ b/Ch04/apd.sensors-chapter04/pytest.ini @@ -0,0 +1,3 @@ +[pytest] +markers = + functional: these tests are significantly slower as they run the whole CLI script \ No newline at end of file diff --git a/Ch04/apd.sensors-chapter04/setup.cfg b/Ch04/apd.sensors-chapter04/setup.cfg new file mode 100644 index 0000000..ecf9c2e --- /dev/null +++ b/Ch04/apd.sensors-chapter04/setup.cfg @@ -0,0 +1,62 @@ +[mypy] +namespace_packages = True +mypy_path = src + +[mypy-psutil] +ignore_missing_imports = True + +[mypy-adafruit_dht] +ignore_missing_imports = True + +[mypy-board] +ignore_missing_imports = True + +[mypy-pytest] +ignore_missing_imports = True + +[mypy-webtest] +ignore_missing_imports = True + +[flake8] +max-line-length = 88 + +[metadata] +name = apd.sensors +version = attr: apd.sensors.VERSION +description = APD Sensor package +long_description = file: README.md, CHANGES.md, LICENCE +long_description_content_type = text/markdown +keywords = iot +license = MIT +classifiers = + Programming Language :: Python :: 3 + Programming Language :: Python :: 3.7 + +[options] +zip_safe = False +include_package_data = True +package-dir = + =src +packages = find_namespace: +install_requires = + psutil + click + adafruit-circuitpython-dht ; 'arm' in platform_machine + +[options.package_data] +apd.sensors = py.typed + +[options.packages.find] +where = src + +[options.entry_points] +console_scripts = + sensors = apd.sensors.cli:show_sensors +apd.sensors.sensors = + PythonVersion = apd.sensors.sensors:PythonVersion + IPAddresses = apd.sensors.sensors:IPAddresses + CPULoad = apd.sensors.sensors:CPULoad + RAMAvailable = apd.sensors.sensors:RAMAvailable + ACStatus = apd.sensors.sensors:ACStatus + Temperature = apd.sensors.sensors:Temperature + RelativeHumidity = apd.sensors.sensors:RelativeHumidity \ No newline at end of file diff --git a/Ch04/apd.sensors-chapter04/setup.py b/Ch04/apd.sensors-chapter04/setup.py new file mode 100644 index 0000000..6068493 --- /dev/null +++ b/Ch04/apd.sensors-chapter04/setup.py @@ -0,0 +1,3 @@ +from setuptools import setup + +setup() diff --git a/Ch04/apd.sensors-chapter04/src/apd/sensors/__init__.py b/Ch04/apd.sensors-chapter04/src/apd/sensors/__init__.py new file mode 100644 index 0000000..848258f --- /dev/null +++ b/Ch04/apd.sensors-chapter04/src/apd/sensors/__init__.py @@ -0,0 +1 @@ +VERSION = "1.2.0" diff --git a/Ch04/apd.sensors-chapter04/src/apd/sensors/cli.py b/Ch04/apd.sensors-chapter04/src/apd/sensors/cli.py new file mode 100644 index 0000000..1ee27b9 --- /dev/null +++ b/Ch04/apd.sensors-chapter04/src/apd/sensors/cli.py @@ -0,0 +1,74 @@ +import enum +import importlib +import sys +import pkg_resources +import typing as t + +import click + +from .sensors import Sensor + + +class ReturnCodes(enum.IntEnum): + OK = 0 + BAD_SENSOR_PATH = 17 + + +def get_sensor_by_path(sensor_path: str) -> Sensor[t.Any]: + try: + module_name, sensor_name = sensor_path.split(":") + except ValueError: + raise RuntimeError( + "Sensor path must be in the format dotted.path.to.module:ClassName" + ) + try: + module = importlib.import_module(module_name) + except ImportError: + raise RuntimeError(f"Could not import module {module_name}") + try: + sensor_class = getattr(module, sensor_name) + except AttributeError: + raise RuntimeError(f"Could not find attribute {sensor_name} in {module_name}") + if ( + isinstance(sensor_class, type) + and issubclass(sensor_class, Sensor) + and sensor_class != Sensor + ): + return sensor_class() + else: + raise RuntimeError( + f"Detected object {sensor_class!r} is not recognised as a Sensor type" + ) + + +def get_sensors() -> t.Iterable[Sensor[t.Any]]: + sensors = [] + for sensor_class in pkg_resources.iter_entry_points("apd.sensors.sensors"): + class_ = sensor_class.load() + sensors.append(t.cast(Sensor[t.Any], class_())) + return sensors + + +@click.command(help="Displays the values of the sensors") +@click.option( + "--develop", required=False, metavar="path", help="Load a sensor by Python path" +) +def show_sensors(develop: str) -> None: + sensors: t.Iterable[Sensor[t.Any]] + if develop: + try: + sensors = [get_sensor_by_path(develop)] + except RuntimeError as error: + click.secho(str(error), fg="red", bold=True) + sys.exit(ReturnCodes.BAD_SENSOR_PATH) + else: + sensors = get_sensors() + for sensor in sensors: + click.secho(sensor.title, bold=True) + click.echo(str(sensor)) + click.echo("") + sys.exit(ReturnCodes.OK) + + +if __name__ == "__main__": + show_sensors() diff --git a/Ch04/apd.sensors-chapter04/src/apd/sensors/py.typed b/Ch04/apd.sensors-chapter04/src/apd/sensors/py.typed new file mode 100644 index 0000000..e69de29 diff --git a/Ch04/apd.sensors-chapter04/src/apd/sensors/sensors.py b/Ch04/apd.sensors-chapter04/src/apd/sensors/sensors.py new file mode 100644 index 0000000..c763370 --- /dev/null +++ b/Ch04/apd.sensors-chapter04/src/apd/sensors/sensors.py @@ -0,0 +1,181 @@ +#!/usr/bin/env python +# coding: utf-8 +import math +import os +import socket +import sys +from typing import Any, Optional, List, Tuple, Iterable, TypeVar, Generic + + +import psutil + + +T_value = TypeVar("T_value") + + +class Sensor(Generic[T_value]): + title: str + + def value(self) -> T_value: + raise NotImplementedError + + @classmethod + def format(cls, value: T_value) -> str: + raise NotImplementedError + + def __str__(self) -> str: + return self.format(self.value()) + + +class PythonVersion(Sensor[Any]): + title = "Python Version" + + def value(self) -> Any: + return sys.version_info + + @classmethod + def format(cls, value: Any) -> str: + if value.micro == 0 and value.releaselevel == "alpha": + return "{0.major}.{0.minor}.{0.micro}a{0.serial}".format(value) + return "{0.major}.{0.minor}".format(value) + + +class IPAddresses(Sensor[Iterable[Tuple[str, str]]]): + title = "IP Addresses" + FAMILIES = {"AF_INET": "IPv4", "AF_INET6": "IPv6"} + + def value(self) -> List[Tuple[str, str]]: + hostname = socket.gethostname() + addresses = socket.getaddrinfo(hostname, None) + + address_info: List[Tuple[str, str]] = [] + for address in addresses: + family, ip = (address[0].name, address[4][0]) + if family not in self.FAMILIES: + continue + value = (family, ip) + if value not in address_info: + address_info.append(value) + return address_info + + @classmethod + def format(cls, value: Iterable[Tuple[str, str]]) -> str: + return "\n".join( + "{0} ({1})".format(address[1], cls.FAMILIES.get(address[0], "Unknown")) + for address in value + ) + + +class CPULoad(Sensor[float]): + title = "CPU Usage" + + def value(self) -> float: + return psutil.cpu_percent(interval=3) / 100.0 + + @classmethod + def format(cls, value: float) -> str: + return "{:.1%}".format(value) + + +class RAMAvailable(Sensor[int]): + title = "RAM Available" + UNITS = ("B", "KiB", "MiB", "GiB", "TiB", "PiB", "EiB") + UNIT_SIZE = 2 ** 10 + + def value(self) -> int: + return psutil.virtual_memory().available + + @classmethod + def format(cls, value: int) -> str: + magnitude = math.floor(math.log(value, cls.UNIT_SIZE)) + max_magnitude = len(cls.UNITS) - 1 + magnitude = min(magnitude, max_magnitude) + scaled_value = value / (cls.UNIT_SIZE ** magnitude) + return "{:.1f} {}".format(scaled_value, cls.UNITS[magnitude]) + + +class ACStatus(Sensor[Optional[bool]]): + title = "AC Connected" + + def value(self) -> Optional[bool]: + battery = psutil.sensors_battery() + if battery is not None: + return battery.power_plugged + else: + return None + + @classmethod + def format(cls, value: Optional[bool]) -> str: + if value is None: + return "Unknown" + elif value: + return "Connected" + else: + return "Not connected" + + +class Temperature(Sensor[Optional[float]]): + title = "Ambient Temperature" + + def __init__(self, board=None, pin=None): + self.board = os.environ.get("APD_SENSORS_TEMPERATURE_BOARD", "DHT22") + self.pin = os.environ.get("APD_SENSORS_TEMPERATURE_PIN", "D4") + + def value(self) -> Optional[float]: + try: + # Connect to a DHT22 on pin 4 + from adafruit_dht import DHT22 + from board import D4 + except (ImportError, NotImplementedError): + # No DHT library results in an ImportError. + # Running on an unknown platform results in a + # NotImplementedError when getting the pin + return None + try: + return DHT22(D4).temperature + except RuntimeError: + return None + + @staticmethod + def celsius_to_fahrenheit(value: float) -> float: + return value * 9 / 5 + 32 + + @classmethod + def format(cls, value: Optional[float]) -> str: + if value is None: + return "Unknown" + else: + return "{:.1f}C ({:.1f}F)".format(value, cls.celsius_to_fahrenheit(value)) + + def __str__(self) -> str: + return self.format(self.value()) + + +class RelativeHumidity(Sensor[Optional[float]]): + title = "Relative Humidity" + + def __init__(self, board=None, pin=None): + self.board = os.environ.get("APD_SENSORS_TEMPERATURE_BOARD", "DHT22") + self.pin = os.environ.get("APD_SENSORS_TEMPERATURE_PIN", "D4") + + def value(self) -> Optional[float]: + try: + # Connect to a DHT22 on pin 4 + from adafruit_dht import DHT22 + from board import D4 + except (ImportError, NotImplementedError): + # No DHT library results in an ImportError. + # Running on an unknown platform results in a + # NotImplementedError when getting the pin + return None + try: + return DHT22(D4).humidity / 100 + except RuntimeError: + return None + + @classmethod + def format(cls, value: Optional[float]) -> str: + if value is None: + return "Unknown" + else: + return "{:.1%}".format(value) diff --git a/Ch04/apd.sensors-chapter04/src/apd/sensors/wsgi.py b/Ch04/apd.sensors-chapter04/src/apd/sensors/wsgi.py new file mode 100644 index 0000000..8c5b23c --- /dev/null +++ b/Ch04/apd.sensors-chapter04/src/apd/sensors/wsgi.py @@ -0,0 +1,31 @@ +import json +import typing as t + +from apd.sensors.cli import get_sensors + +if t.TYPE_CHECKING: + from wsgiref.types import StartResponse +else: + StartResponse = t.Callable + + +def sensor_values( + environ: t.Dict[str, str], start_response: StartResponse +) -> t.List[bytes]: + headers = [ + ("Content-type", "application/json; charset=utf-8"), + ("Content-Security-Policy", "default-src 'none';"), + ] + start_response("200 OK", headers) + data = {} + for sensor in get_sensors(): + data[sensor.title] = sensor.value() + encoded = json.dumps(data).encode("utf-8") + return [encoded] + + +if __name__ == "__main__": + import wsgiref.simple_server + + with wsgiref.simple_server.make_server("", 8000, sensor_values) as server: + server.serve_forever() diff --git a/Ch04/apd.sensors-chapter04/tests/test_acstatus.py b/Ch04/apd.sensors-chapter04/tests/test_acstatus.py new file mode 100644 index 0000000..d2fe71e --- /dev/null +++ b/Ch04/apd.sensors-chapter04/tests/test_acstatus.py @@ -0,0 +1,55 @@ +from unittest import mock + +import pytest + +from apd.sensors.sensors import ACStatus + + +@pytest.fixture +def sensor(): + return ACStatus() + + +class TestACStatusFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_True(self, subject): + assert subject(True) == "Connected" + + def test_format_False(self, subject): + assert subject(False) == "Not connected" + + def test_format_None(self, subject): + assert subject(None) == "Unknown" + + +class TestACStatusValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def sensors_battery(self): + with mock.patch("psutil.sensors_battery") as sensors_battery: + yield sensors_battery + + def test_sensors_battery_called(self, subject, sensors_battery): + sensors_battery.return_value.power_plugged = True + assert subject() is True + assert sensors_battery.call_count == 1 + + def test_sensor_but_battery_unknown(self, subject, sensors_battery): + sensors_battery.return_value.power_plugged = None + assert subject() is None + assert sensors_battery.call_count == 1 + + def test_no_sensor(self, subject, sensors_battery): + sensors_battery.return_value = None + assert subject() is None + + def test_str_representation_is_formatted_value(self, sensor, sensors_battery): + sensors_battery.return_value.power_plugged = True + assert str(sensor) == "Connected" + assert sensors_battery.call_count == 1 diff --git a/Ch04/apd.sensors-chapter04/tests/test_api_server.py b/Ch04/apd.sensors-chapter04/tests/test_api_server.py new file mode 100644 index 0000000..4bdb983 --- /dev/null +++ b/Ch04/apd.sensors-chapter04/tests/test_api_server.py @@ -0,0 +1,25 @@ +import pytest +from webtest import TestApp + +from apd.sensors.wsgi import sensor_values +from apd.sensors.sensors import PythonVersion + + +@pytest.fixture(scope="session") +def subject(): + return sensor_values + + +@pytest.fixture(scope="session") +def api_server(subject): + return TestApp(subject) + + +@pytest.mark.functional +def test_sensor_values_returned_as_json(api_server): + value = api_server.get("/sensors/").json + python_version = PythonVersion().value() + + sensor_names = value.keys() + assert "Python Version" in sensor_names + assert value["Python Version"] == list(python_version) diff --git a/Ch04/apd.sensors-chapter04/tests/test_cpuusage.py b/Ch04/apd.sensors-chapter04/tests/test_cpuusage.py new file mode 100644 index 0000000..445f4e5 --- /dev/null +++ b/Ch04/apd.sensors-chapter04/tests/test_cpuusage.py @@ -0,0 +1,45 @@ +from unittest import mock + +import pytest + +from apd.sensors.sensors import CPULoad + + +@pytest.fixture +def sensor(): + return CPULoad() + + +class TestCPULoadFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_simple_percentage(self, subject): + assert subject(0.05) == "5.0%" + + def test_format_multiple_decimal_places(self, subject): + assert subject(0.031415926) == "3.1%" + + def test_format_multiple_decimal_places_int(self, subject) -> None: + assert subject(1) == "100.0%" + + +class TestCPULoadValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def cpuload(self): + with mock.patch("psutil.cpu_percent") as cpu_percent: + cpu_percent.return_value = 50.1 + yield cpu_percent + + def test_cpu_percent_called_With_interval(self, subject, cpuload): + assert subject() == 0.501 + assert cpuload.call_count == 1 + assert tuple(cpuload.call_args) == ((), {"interval": 3}) + + def test_str_representation_is_formatted_value(self, sensor, cpuload): + assert str(sensor) == "50.1%" diff --git a/Ch04/apd.sensors-chapter04/tests/test_dht.py b/Ch04/apd.sensors-chapter04/tests/test_dht.py new file mode 100644 index 0000000..153c1db --- /dev/null +++ b/Ch04/apd.sensors-chapter04/tests/test_dht.py @@ -0,0 +1,66 @@ +import pytest + +from apd.sensors.sensors import Temperature, RelativeHumidity + + +@pytest.fixture +def temperature_sensor(): + return Temperature() + + +@pytest.fixture +def humidity_sensor(): + return RelativeHumidity() + + +class TestTemperatureFormatter: + @pytest.fixture + def subject(self, temperature_sensor): + return temperature_sensor.format + + def test_format_21c(self, subject): + assert subject(21.0) == "21.0C (69.8F)" + + def test_format_negative(self, subject): + assert subject(-32.0) == "-32.0C (-25.6F)" + + def test_format_unknown(self, subject): + assert subject(None) == "Unknown" + + +class TestTemperatureConversion: + @pytest.fixture + def subject(self, temperature_sensor): + return temperature_sensor.celsius_to_fahrenheit + + def test_celsius_to_fahrenheit(self, subject): + c = 21 + f = subject(c) + assert f == 69.8 + + def test_celsius_to_fahrenheit_equivlance_point(self, subject): + c = -40 + f = subject(c) + assert f == -40 + + def test_celsius_to_fahrenheit_float(self, subject): + c = 21.2 + f = subject(c) + assert f == 70.16 + + def test_celsius_to_fahrenheit_string(self, subject): + c = "21" + with pytest.raises(TypeError): + subject(c) + + +class TestHumidityFormatter: + @pytest.fixture + def subject(self, humidity_sensor): + return humidity_sensor.format + + def test_format_percentage(self, subject): + assert subject(0.035) == "3.5%" + + def test_format_unknown(self, subject): + assert subject(None) == "Unknown" diff --git a/Ch04/apd.sensors-chapter04/tests/test_ipaddresses.py b/Ch04/apd.sensors-chapter04/tests/test_ipaddresses.py new file mode 100644 index 0000000..bd61d85 --- /dev/null +++ b/Ch04/apd.sensors-chapter04/tests/test_ipaddresses.py @@ -0,0 +1,59 @@ +import socket +from unittest import mock + +import pytest + +from apd.sensors.sensors import IPAddresses + + +@pytest.fixture +def sensor(): + return IPAddresses() + + +class TestIPAddressFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_single_ipv4(self, subject): + ips = [("AF_INET", "192.0.2.1")] + assert subject(ips) == "192.0.2.1 (IPv4)" + + def test_format_single_ipv6(self, subject): + ips = [("AF_INET6", "2001:DB8::1")] + assert subject(ips) == "2001:DB8::1 (IPv6)" + + def test_format_mixed_list(self, subject): + ips = [("AF_INET", "192.0.2.1"), ("AF_INET6", "2001:DB8::1")] + assert subject(ips) == "192.0.2.1 (IPv4)\n2001:DB8::1 (IPv6)" + + def test_unusual_protocols_are_marked_as_unknown(self, subject): + ips = [("AF_IRDA", "ffff")] + assert subject(ips) == "ffff (Unknown)" + + +class TestIPAddressesValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def gethostname(self): + with mock.patch("socket.gethostname") as gethostname: + gethostname.return_value = "localhost" + yield gethostname + + @pytest.fixture + def getaddrinfo(self, gethostname): + with mock.patch("socket.getaddrinfo") as getaddrinfo: + yield getaddrinfo + + def test_getaddrinfo_used_for_value_collection(self, getaddrinfo, subject): + getaddrinfo.return_value = [(socket.AF_INET, 0, 0, "", ("192.0.2.1", 0))] + assert subject() == [("AF_INET", "192.0.2.1")] + assert getaddrinfo.call_count == 1 + + def test_str_representation_is_formatted_value(self, getaddrinfo, sensor): + getaddrinfo.return_value = [(socket.AF_INET6, 0, 0, "", ("2001:DB8::1", 0))] + assert str(sensor) == "2001:DB8::1 (IPv6)" diff --git a/Ch04/apd.sensors-chapter04/tests/test_pythonversion.py b/Ch04/apd.sensors-chapter04/tests/test_pythonversion.py new file mode 100644 index 0000000..43ad806 --- /dev/null +++ b/Ch04/apd.sensors-chapter04/tests/test_pythonversion.py @@ -0,0 +1,61 @@ +from collections import namedtuple +from unittest import mock + +import pytest + +from apd.sensors.sensors import PythonVersion + + +@pytest.fixture +def version(): + return namedtuple( + "sys_versioninfo", ("major", "minor", "micro", "releaselevel", "serial") + ) + + +@pytest.fixture +def sensor(): + return PythonVersion() + + +class TestPythonVersionFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_py38(self, subject, version): + py38 = version(3, 8, 0, "final", 0) + assert subject(py38) == "3.8" + + def test_format_large_version(self, subject, version): + large = version(255, 128, 0, "final", 0) + assert subject(large) == "255.128" + + def test_alpha_of_minor_is_marked(self, subject, version): + py39 = version(3, 9, 0, "alpha", 1) + assert subject(py39) == "3.9.0a1" + + def test_alpha_of_micro_is_unmarked(self, subject, version): + py39 = version(3, 9, 1, "alpha", 1) + assert subject(py39) == "3.9" + + +class TestPythonVersionValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def python_version(self): + import sys + + return sys.version_info + + def test_data_value_is_sys_versioninfo(self, python_version, subject): + assert subject() == python_version + + +class TestPythonVersionSensor: + def test_str_representation_is_formatted_value(self, sensor, version): + with mock.patch("sys.version_info", new=version(3, 4, 1, "final", 1)): + assert str(sensor) == "3.4" diff --git a/Ch04/apd.sensors-chapter04/tests/test_ramusage.py b/Ch04/apd.sensors-chapter04/tests/test_ramusage.py new file mode 100644 index 0000000..197ad06 --- /dev/null +++ b/Ch04/apd.sensors-chapter04/tests/test_ramusage.py @@ -0,0 +1,47 @@ +from unittest import mock + +import pytest + +from apd.sensors.sensors import RAMAvailable + + +@pytest.fixture +def sensor(): + return RAMAvailable() + + +class TestRAMAvailableFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_bytes(self, subject): + assert subject(15) == "15.0 B" + + def test_format_kibibytes(self, subject): + assert subject(15000) == "14.6 KiB" + + def test_format_mibibytes(self, subject): + assert subject(15000000) == "14.3 MiB" + + def test_format_gibibytes(self, subject): + assert subject(15000000000) == "14.0 GiB" + + +class TestRAMAvailableValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def virtual_memory(self): + with mock.patch("psutil.virtual_memory") as virtual_memory: + virtual_memory.return_value.available = 1024 + yield virtual_memory + + def test_virtual_memory_called(self, subject, virtual_memory): + assert subject() == 1024 + assert virtual_memory.call_count == 1 + + def test_str_representation_is_formatted_value(self, sensor, virtual_memory): + assert str(sensor) == "1.0 KiB" diff --git a/Ch04/apd.sensors-chapter04/tests/test_sensors.py b/Ch04/apd.sensors-chapter04/tests/test_sensors.py new file mode 100644 index 0000000..f3f5f8e --- /dev/null +++ b/Ch04/apd.sensors-chapter04/tests/test_sensors.py @@ -0,0 +1,59 @@ +from click.testing import CliRunner + +import pytest +from unittest import mock + +import apd.sensors.cli +import apd.sensors.sensors + + +def test_sensors(): + assert hasattr(apd.sensors.sensors, "PythonVersion") + + +@pytest.mark.functional +def test_first_sensor_is_first_two_lines_of_cli_output(): + runner = CliRunner() + with mock.patch("apd.sensors.cli.get_sensors") as get_sensors: + get_sensors.return_value = [apd.sensors.sensors.PythonVersion()] + result = runner.invoke(apd.sensors.cli.show_sensors) + python_version = str(apd.sensors.sensors.PythonVersion()) + assert ["Python Version", python_version] == result.stdout.split("\n")[:2] + + +class TestSensorFromPath: + @pytest.fixture + def subject(self): + return apd.sensors.cli.get_sensor_by_path + + def test_get_sensor_by_path(self, subject): + assert isinstance( + subject("apd.sensors.sensors:PythonVersion"), + apd.sensors.sensors.PythonVersion, + ) + + def test_invalid_format(self, subject): + with pytest.raises(RuntimeError, match="dotted.path.to.module:ClassName"): + subject("apd.sensors.sensors.PythonVersion") + + def test_invalid_module(self, subject): + with pytest.raises(RuntimeError, match="Could not import module"): + subject("apd.nonsense.sensor:FakeSensor") + + def test_missing_sensor(self, subject): + with pytest.raises(RuntimeError, match="Could not find attribute"): + subject("apd.sensors.sensors:FakeSensor") + + def test_invalid_sensor(self, subject): + with pytest.raises(RuntimeError, match="is not recognised as a Sensor"): + subject("apd.sensors.sensors:Sensor") + + +@pytest.mark.functional +def test_develop_option_finds_sensor_by_path(): + runner = CliRunner() + result = runner.invoke( + apd.sensors.cli.show_sensors, ["--develop", "apd.sensors.sensors:PythonVersion"] + ) + python_version = str(apd.sensors.sensors.PythonVersion()) + assert ["Python Version", python_version, "", ""] == result.stdout.split("\n") diff --git a/Ch04/listing04-01-solar_prototype.ipynb b/Ch04/listing04-01-solar_prototype.ipynb new file mode 100644 index 0000000..929665b --- /dev/null +++ b/Ch04/listing04-01-solar_prototype.ipynb @@ -0,0 +1,104 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import subprocess\n", + "\n", + "bt_addr = \"00:80:25:00:00:00\"\n", + "output = subprocess.check_output(\n", + " [\"/home/pi/opensunny-master/opensunny\", \"-i\", bt_addr],\n", + " stderr=subprocess.STDOUT,\n", + " timeout=15,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "b'2020-04-04T12:34:45.914165:INFO:[Value] timestamp=1247525322 current_ac_l3=5.003A'" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lines = [line for line in output.split(b\"\\n\") if line]\n", + "lines[-1]" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "dict_keys([b'model', b'power_ac', b'yield_total', b'power_dc_1', b'power_dc_2', b'voltage_dc_1', b'voltage_dc_2', b'power_ac_max_l1', b'power_ac_max_l2', b'power_ac_max_l3', b'power_ac_l1', b'power_ac_l2', b'power_ac_l3', b'voltage_ac_l1', b'voltage_ac_l2', b'voltage_ac_l3', b'current_ac_l1', b'current_ac_l2', b'current_ac_l3'])\n", + "b'15220.034kWh'\n" + ] + } + ], + "source": [ + "found = {}\n", + "for line in lines:\n", + " start, value = line.rsplit(b\"=\", 1)\n", + " _, key = start.rsplit(b\" \", 1)\n", + " found[key] = value\n", + "print(found.keys())\n", + "print(found[b\"yield_total\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "15220034.0\n" + ] + } + ], + "source": [ + "yield_total = float(found[b\"yield_total\"][:-3].replace(b\".\", b\"\"))\n", + "print(yield_total)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "SSH pi@rpi4 loft-sensor", + "language": "python", + "name": "rik_ssh_pi_rpi4_loftsensor" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Ch05/apd.sensors-chapter05-pintbased/.pre-commit-config.yaml b/Ch05/apd.sensors-chapter05-pintbased/.pre-commit-config.yaml new file mode 100644 index 0000000..d3b6ec7 --- /dev/null +++ b/Ch05/apd.sensors-chapter05-pintbased/.pre-commit-config.yaml @@ -0,0 +1,26 @@ +repos: + +- repo: local + hooks: + - id: black + name: black + entry: pipenv run black + args: [--quiet] + language: system + types: [python] + + - id: mypy + name: mypy + exclude: (?x)^( + (.*)/setup.py + )$ + entry: pipenv run mypy + args: ["--follow-imports=skip"] + language: system + types: [python] + + - id: flake8 + name: flake8 + entry: pipenv run flake8 + language: system + types: [python] diff --git a/Ch05/apd.sensors-chapter05-pintbased/CHANGES.md b/Ch05/apd.sensors-chapter05-pintbased/CHANGES.md new file mode 100644 index 0000000..dba741b --- /dev/null +++ b/Ch05/apd.sensors-chapter05-pintbased/CHANGES.md @@ -0,0 +1,29 @@ +## Changes + +### 2.0.0 (2019-09-08) + +* Add `to_json_compatible` and `from_json_compatible` methods to Sensor + to facilitate better HTTP API (Matthew Wilkes) + +* HTTP API is now versioned. The API from 1.3.0 is available at /v/1.0 + and an updated version is at /v/2.0 (Matthew Wilkes) + +### 1.3.0 (2019-08-20) + +* WSGI HTTP API support added (Matthew Wilkes) + +### 1.2.0 (2019-08-05) + +* Add external plugin support through `apd.sensors.sensors` entrypoint (Matthew Wilkes) + +### 1.1.0 (2019-07-12) + +* Add --develop argument (Matthew Wilkes) + +### 1.0.1 (2019-06-20) + +* Fix broken 1.0.0 release (Matthew Wilkes) + +### 1.0.0 (2019-06-20) + +* Added initial sensors (Matthew Wilkes) diff --git a/Ch05/apd.sensors-chapter05-pintbased/LICENCE b/Ch05/apd.sensors-chapter05-pintbased/LICENCE new file mode 100644 index 0000000..053f694 --- /dev/null +++ b/Ch05/apd.sensors-chapter05-pintbased/LICENCE @@ -0,0 +1,19 @@ +Copyright (c) 2019 Matthew Wilkes + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. diff --git a/Ch05/apd.sensors-chapter05-pintbased/Pipfile b/Ch05/apd.sensors-chapter05-pintbased/Pipfile new file mode 100644 index 0000000..f6cd446 --- /dev/null +++ b/Ch05/apd.sensors-chapter05-pintbased/Pipfile @@ -0,0 +1,34 @@ +[[source]] +name = "pypi" +url = "https://pypi.org/simple" +verify_ssl = true + +[[source]] +name = "piwheels" +url = "https://piwheels.org/simple" +verify_ssl = true + +[dev-packages] +ipykernel = "*" +remote-ikernel = "*" +pytest = "*" +pytest-cov = "*" +mypy = "*" +flake8 = "*" +black = "*" +pre-commit = "*" +wheel = "*" +twine = "*" +webtest = "*" +apd-sensors = {editable = true,extras = ["webapp"],path = "."} + +[packages] +apd-sensors = {editable = true,path = "."} +apd-sunnyboy-solar = {editable = true,path = "./plugins/apd.sunnyboy_solar"} +waitress = "*" +pint = "*" + +[requires] + +[pipenv] +allow_prereleases = true diff --git a/Ch05/apd.sensors-chapter05-pintbased/Pipfile.lock b/Ch05/apd.sensors-chapter05-pintbased/Pipfile.lock new file mode 100644 index 0000000..3b587bb --- /dev/null +++ b/Ch05/apd.sensors-chapter05-pintbased/Pipfile.lock @@ -0,0 +1,1018 @@ +{ + "_meta": { + "hash": { + "sha256": "b5f132c374a0a891097a70c6f3be719ec794dec7b855ed5f0ed9adad4d72b0e7" + }, + "pipfile-spec": 6, + "requires": {}, + "sources": [ + { + "name": "pypi", + "url": "https://pypi.org/simple", + "verify_ssl": true + }, + { + "name": "piwheels", + "url": "https://piwheels.org/simple", + "verify_ssl": true + } + ] + }, + "default": { + "apd-sensors": { + "editable": true, + "path": "." + }, + "apd-sunnyboy-solar": { + "editable": true, + "path": "./plugins/apd.sunnyboy_solar" + }, + "click": { + "hashes": [ + "sha256:8a18b4ea89d8820c5d0c7da8a64b2c324b4dabb695804dbfea19b9be9d88c0cc", + "sha256:e345d143d80bf5ee7534056164e5e112ea5e22716bbb1ce727941f4c8b471b9a" + ], + "version": "==7.1.1" + }, + "pint": { + "hashes": [ + "sha256:308f1070500e102f83b6adfca6db53debfce2ffc5d3cbe3f6c367da359b5cf4d", + "sha256:5690c85948dfb283382aa73357c3d5a333e8c7d818be7d8643db18e07597dd99", + "sha256:833ec1b2561a29dd5ab316825924ec2ce64dc7d69ab09505cd1bea7709c8f0f8" + ], + "index": "pypi", + "version": "==0.11" + }, + "psutil": { + "hashes": [ + "sha256:002bd856770037221256765a472f50d677074ad207276a39e2bccdb7394e333b", + "sha256:1413f4158eb50e110777c4f15d7c759521703bd6beb58926f1d562da40180058", + "sha256:298af2f14b635c3c7118fd9183843f4e73e681bb6f01e12284d4d70d48a60953", + "sha256:60b86f327c198561f101a92be1995f9ae0399736b6eced8f24af41ec64fb88d4", + "sha256:685ec16ca14d079455892f25bd124df26ff9137664af445563c1bd36629b5e0e", + "sha256:73f35ab66c6c7a9ce82ba44b1e9b1050be2a80cd4dcc3352cc108656b115c74f", + "sha256:75e22717d4dbc7ca529ec5063000b2b294fc9a367f9c9ede1f65846c7955fd38", + "sha256:833b2b19c04fc0aecad22daa3e35108d6ee2e4f92061a4a8f2dd77c6fa9154f5", + "sha256:a02f4ac50d4a23253b68233b07e7cdb567bd025b982d5cf0ee78296990c22d9e", + "sha256:d008ddc00c6906ec80040d26dc2d3e3962109e40ad07fd8a12d0284ce5e0e4f8", + "sha256:d84029b190c8a66a946e28b4d3934d2ca1528ec94764b180f7d6ea57b0e75e26", + "sha256:e2d0c5b07c6fe5a87fa27b7855017edb0d52ee73b71e6ee368fae268605cc3f5", + "sha256:f344ca230dd8e8d5eee16827596f1c22ec0876127c28e800d7ae20ed44c4b310", + "sha256:f3e7f183162622eae9fbdee44ff19b226edec68b94ae7cba47f9afcf4c3ec66c" + ], + "version": "==5.7.0" + }, + "waitress": { + "hashes": [ + "sha256:045b3efc3d97c93362173ab1dfc159b52cfa22b46c3334ffc805dbdbf0e4309e", + "sha256:77ff3f3226931a1d7d8624c5371de07c8e90c7e5d80c5cc660d72659aaf23f38" + ], + "index": "pypi", + "version": "==1.4.3" + } + }, + "develop": { + "apd-sensors": { + "editable": true, + "path": "." + }, + "appdirs": { + "hashes": [ + "sha256:9e5896d1372858f8dd3344faf4e5014d21849c756c8d5701f78f8a103b372d92", + "sha256:d8b24664561d0d34ddfaec54636d502d7cea6e29c3eaf68f3df6180863e2166e" + ], + "version": "==1.4.3" + }, + "async-generator": { + "hashes": [ + "sha256:01c7bf666359b4967d2cda0000cc2e4af16a0ae098cbffcb8472fb9e8ad6585b", + "sha256:6ebb3d106c12920aaae42ccb6f787ef5eefdcdd166ea3d628fa8476abe712144" + ], + "version": "==1.10" + }, + "atomicwrites": { + "hashes": [ + "sha256:03472c30eb2c5d1ba9227e4c2ca66ab8287fbfbbda3888aa93dc2e28fc6811b4", + "sha256:75a9445bac02d8d058d5e1fe689654ba5a6556a1dfd8ce6ec55a0ed79866cfa6" + ], + "markers": "sys_platform == 'win32'", + "version": "==1.3.0" + }, + "attrs": { + "hashes": [ + "sha256:08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c", + "sha256:f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72" + ], + "version": "==19.3.0" + }, + "backcall": { + "hashes": [ + "sha256:1fac21e6861f538700a5d498620153f38407a4bacf9e1d5047b3d717f10bc4ab", + "sha256:38ecd85be2c1e78f77fd91700c76e14667dc21e2713b63876c0eb901196e01e4", + "sha256:bbbf4b1e5cd2bdb08f915895b51081c041bac22394fdfcfdfbe9f14b77c08bf2" + ], + "version": "==0.1.0" + }, + "beautifulsoup4": { + "hashes": [ + "sha256:594ca51a10d2b3443cbac41214e12dbb2a1cd57e1a7344659849e2e20ba6a8d8", + "sha256:a4bbe77fd30670455c5296242967a123ec28c37e9702a8a81bd2f20a4baf0368", + "sha256:d4e96ac9b0c3a6d3f0caae2e4124e6055c5dcafde8e2f831ff194c104f0775a0" + ], + "version": "==4.9.0" + }, + "black": { + "hashes": [ + "sha256:1b30e59be925fafc1ee4565e5e08abef6b03fe455102883820fe5ee2e4734e0b", + "sha256:c2edb73a08e9e0e6f65a0e6af18b059b8b1cdd5bef997d7a0b181df93dc81539" + ], + "index": "pypi", + "version": "==19.10b0" + }, + "bleach": { + "hashes": [ + "sha256:cc8da25076a1fe56c3ac63671e2194458e0c4d9c7becfd52ca251650d517903c", + "sha256:e78e426105ac07026ba098f04de8abe9b6e3e98b5befbf89b51a5ef0a4292b03" + ], + "version": "==3.1.4" + }, + "certifi": { + "hashes": [ + "sha256:1d987a998c75633c40847cc966fcf5904906c920a7f17ef374f5aa4282abd304", + "sha256:51fcb31174be6e6664c5f69e3e1691a2d72a1a12e90f872cbdb1567eb47b6519" + ], + "version": "==2020.4.5.1" + }, + "cfgv": { + "hashes": [ + "sha256:1ccf53320421aeeb915275a196e23b3b8ae87dea8ac6698b1638001d4a486d53", + "sha256:c8e8f552ffcc6194f4e18dd4f68d9aef0c0d58ae7e7be8c82bee3c5e9edfa513" + ], + "version": "==3.1.0" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:8a18b4ea89d8820c5d0c7da8a64b2c324b4dabb695804dbfea19b9be9d88c0cc", + "sha256:e345d143d80bf5ee7534056164e5e112ea5e22716bbb1ce727941f4c8b471b9a" + ], + "version": "==7.1.1" + }, + "colorama": { + "hashes": [ + "sha256:7d73d2a99753107a36ac6b455ee49046802e59d9d076ef8e47b61499fa29afff", + "sha256:e96da0d330793e2cb9485e9ddfd918d456036c7149416295932478192f4436a1" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.3" + }, + "coverage": { + "hashes": [ + "sha256:03f630aba2b9b0d69871c2e8d23a69b7fe94a1e2f5f10df5049c0df99db639a0", + "sha256:046a1a742e66d065d16fb564a26c2a15867f17695e7f3d358d7b1ad8a61bca30", + "sha256:0a907199566269e1cfa304325cc3b45c72ae341fbb3253ddde19fa820ded7a8b", + "sha256:165a48268bfb5a77e2d9dbb80de7ea917332a79c7adb747bd005b3a07ff8caf0", + "sha256:1b60a95fc995649464e0cd48cecc8288bac5f4198f21d04b8229dc4097d76823", + "sha256:1f66cf263ec77af5b8fe14ef14c5e46e2eb4a795ac495ad7c03adc72ae43fafe", + "sha256:2e08c32cbede4a29e2a701822291ae2bc9b5220a971bba9d1e7615312efd3037", + "sha256:327ff84602ee3b5c0c921ff8bbe605e2dd3599fc2a12620b0085f847af4ebb2a", + "sha256:3844c3dab800ca8536f75ae89f3cf566848a3eb2af4d9f7b1103b4f4f7a5dad6", + "sha256:408ce64078398b2ee2ec08199ea3fcf382828d2f8a19c5a5ba2946fe5ddc6c31", + "sha256:443be7602c790960b9514567917af538cac7807a7c0c0727c4d2bbd4014920fd", + "sha256:4482f69e0701139d0f2c44f3c395d1d1d37abd81bfafbf9b6efbe2542679d892", + "sha256:4a8a259bf990044351baf69d3b23e575699dd60b18460c71e81dc565f5819ac1", + "sha256:513e6526e0082c59a984448f4104c9bf346c2da9961779ede1fc458e8e8a1f78", + "sha256:5f587dfd83cb669933186661a351ad6fc7166273bc3e3a1531ec5c783d997aac", + "sha256:62061e87071497951155cbccee487980524d7abea647a1b2a6eb6b9647df9006", + "sha256:641e329e7f2c01531c45c687efcec8aeca2a78a4ff26d49184dce3d53fc35014", + "sha256:65a7e00c00472cd0f59ae09d2fb8a8aaae7f4a0cf54b2b74f3138d9f9ceb9cb2", + "sha256:6ad6ca45e9e92c05295f638e78cd42bfaaf8ee07878c9ed73e93190b26c125f7", + "sha256:73aa6e86034dad9f00f4bbf5a666a889d17d79db73bc5af04abd6c20a014d9c8", + "sha256:7c9762f80a25d8d0e4ab3cb1af5d9dffbddb3ee5d21c43e3474c84bf5ff941f7", + "sha256:85596aa5d9aac1bf39fe39d9fa1051b0f00823982a1de5766e35d495b4a36ca9", + "sha256:86a0ea78fd851b313b2e712266f663e13b6bc78c2fb260b079e8b67d970474b1", + "sha256:8a620767b8209f3446197c0e29ba895d75a1e272a36af0786ec70fe7834e4307", + "sha256:922fb9ef2c67c3ab20e22948dcfd783397e4c043a5c5fa5ff5e9df5529074b0a", + "sha256:9fad78c13e71546a76c2f8789623eec8e499f8d2d799f4b4547162ce0a4df435", + "sha256:a37c6233b28e5bc340054cf6170e7090a4e85069513320275a4dc929144dccf0", + "sha256:c3fc325ce4cbf902d05a80daa47b645d07e796a80682c1c5800d6ac5045193e5", + "sha256:cda33311cb9fb9323958a69499a667bd728a39a7aa4718d7622597a44c4f1441", + "sha256:db1d4e38c9b15be1521722e946ee24f6db95b189d1447fa9ff18dd16ba89f732", + "sha256:eda55e6e9ea258f5e4add23bcf33dc53b2c319e70806e180aecbff8d90ea24de", + "sha256:f0db0dc803e0f81f2a4098d4f25904f41be13b6d3e69f098b5b2bbba17cb7985", + "sha256:f372cdbb240e09ee855735b9d85e7f50730dcfb6296b74b95a3e5dea0615c4c1" + ], + "version": "==5.0.4" + }, + "decorator": { + "hashes": [ + "sha256:41fa54c2a0cc4ba648be4fd43cff00aedf5b9465c9bf18d64325bc225f08f760", + "sha256:e3a62f0520172440ca0dcc823749319382e377f37f140a0b99ef45fecb84bfe7" + ], + "version": "==4.4.2" + }, + "defusedxml": { + "hashes": [ + "sha256:6687150770438374ab581bb7a1b327a847dd9c5749e396102de3fad4e8a3ef93", + "sha256:f684034d135af4c6cbb949b8a4d2ed61634515257a67299e5f940fbaa34377f5" + ], + "version": "==0.6.0" + }, + "distlib": { + "hashes": [ + "sha256:2e166e231a26b36d6dfe35a48c4464346620f8645ed0ace01ee31822b288de21", + "sha256:8a041060c5a140131768a2e2450813f5577f7e4c68a4585824c5585502dcfbea" + ], + "version": "==0.3.0" + }, + "docutils": { + "hashes": [ + "sha256:0c5b78adfbf7762415433f5515cd5c9e762339e23369dbe8000d84a4bf4ab3af", + "sha256:c2de3a60e9e7d07be26b7f2b00ca0309c207e06c100f9cc2a94931fc75a478fc" + ], + "version": "==0.16" + }, + "entrypoints": { + "hashes": [ + "sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19", + "sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451" + ], + "version": "==0.3" + }, + "filelock": { + "hashes": [ + "sha256:18d82244ee114f543149c66a6e0c14e9c4f8a1044b5cdaadd0f82159d6a6ff59", + "sha256:929b7d63ec5b7d6b71b0fa5ac14e030b3f70b75747cef1b10da9b879fef15836" + ], + "version": "==3.0.12" + }, + "flake8": { + "hashes": [ + "sha256:45681a117ecc81e870cbf1262835ae4af5e7a8b08e40b944a8a6e6b895914cfb", + "sha256:49356e766643ad15072a789a20915d3c91dc89fd313ccd71802303fd67e4deca" + ], + "index": "pypi", + "version": "==3.7.9" + }, + "flask": { + "hashes": [ + "sha256:4efa1ae2d7c9865af48986de8aeb8504bf32c7f3d6fdc9353d34b21f4b127060", + "sha256:8a4fdd8936eba2512e9c85df320a37e694c93945b33ef33c89946a340a238557" + ], + "version": "==1.1.2" + }, + "identify": { + "hashes": [ + "sha256:2bb8760d97d8df4408f4e805883dad26a2d076f04be92a10a3e43f09c6060742", + "sha256:faffea0fd8ec86bb146ac538ac350ed0c73908326426d387eded0bcc9d077522" + ], + "version": "==1.4.14" + }, + "idna": { + "hashes": [ + "sha256:7588d1c14ae4c77d74036e8c22ff447b26d0fde8f007354fd48a7814db15b7cb", + "sha256:a068a21ceac8a4d63dbfd964670474107f541babbd2250d61922f029858365fa" + ], + "version": "==2.9" + }, + "ipykernel": { + "hashes": [ + "sha256:08997a27ccafbb998437d167ccc893666c6088ec3aa90c054bfb3d588bb3fc20", + "sha256:37c65d2e2da3326e5cf114405df6d47d997b8a3eba99e2cc4b75833bf71a5e18", + "sha256:39746b5f7d847a23fae4eac893e63e3d9cc5f8c3a4797fcd3bfa8d1a296ec6ed" + ], + "index": "pypi", + "version": "==5.2.0" + }, + "ipython": { + "hashes": [ + "sha256:1807adeae64502fcaa491cd93405644faa055b646efb40c1e48648ad66f65a75", + "sha256:ca478e52ae1f88da0102360e57e528b92f3ae4316aabac80a2cd7f7ab2efb48a", + "sha256:eb8d075de37f678424527b5ef6ea23f7b80240ca031c2dd6de5879d687a65333" + ], + "version": "==7.13.0" + }, + "ipython-genutils": { + "hashes": [ + "sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8", + "sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8" + ], + "version": "==0.2.0" + }, + "itsdangerous": { + "hashes": [ + "sha256:321b033d07f2a4136d3ec762eac9f16a10ccd60f53c0c91af90217ace7ba1f19", + "sha256:b12271b2047cb23eeb98c8b5622e2e5c5e9abd9784a153e9d8ef9cb4dd09d749" + ], + "version": "==1.1.0" + }, + "jedi": { + "hashes": [ + "sha256:b4f4052551025c6b0b0b193b29a6ff7bdb74c52450631206c262aef9f7159ad2", + "sha256:d5c871cb9360b414f981e7072c52c33258d598305280fef91c6cae34739d65d5" + ], + "version": "==0.16.0" + }, + "jinja2": { + "hashes": [ + "sha256:39cbce1ffc25cbf4860b09195654763be95b9e4900475b24d5c345d3e0948c53", + "sha256:c10142f819c2d22bdcd17548c46fa9b77cf4fda45097854c689666bf425e7484", + "sha256:c922560ac46888d47384de1dbdc3daaa2ea993af4b26a436dec31fa2c19ec668" + ], + "version": "==3.0.0a1" + }, + "jsonschema": { + "hashes": [ + "sha256:4e5b3cf8216f577bee9ce139cbe72eca3ea4f292ec60928ff24758ce626cd163", + "sha256:c8a85b28d377cc7737e46e2d9f2b4f44ee3c0e1deac6bf46ddefc7187d30797a" + ], + "version": "==3.2.0" + }, + "jupyter-client": { + "hashes": [ + "sha256:5724827aedb1948ed6ed15131372bc304a8d3ad9ac67ac19da7c95120d6b17e0", + "sha256:81c1c712de383bf6bf3dab6b407392b0d84d814c7bd0ce2c7035ead8b2ffea97" + ], + "version": "==6.1.2" + }, + "jupyter-core": { + "hashes": [ + "sha256:394fd5dd787e7c8861741880bdf8a00ce39f95de5d18e579c74b882522219e7e", + "sha256:a4ee613c060fe5697d913416fc9d553599c05e4492d58fac1192c9a6844abb21" + ], + "version": "==4.6.3" + }, + "jupyterlab-pygments": { + "hashes": [ + "sha256:31deda75bd11b014190764c79f6199aa04ef2d4cf35c1c94270fc2e19c23a5c5", + "sha256:cc15f2a9850899d108a3c22743a86edcd3b42791a6c88b6e5b558d021d14d065" + ], + "version": "==0.1.0" + }, + "keyring": { + "hashes": [ + "sha256:197fd5903901030ef7b82fe247f43cfed2c157a28e7747d1cfcf4bc5e699dd03", + "sha256:8179b1cdcdcbc221456b5b74e6b7cfa06f8dd9f239eb81892166d9223d82c5ba", + "sha256:dcb7f54f06c868526b97f9825b558e5199661f9647849acf9204c2d6028501dc" + ], + "version": "==21.2.0" + }, + "markupsafe": { + "hashes": [ + "sha256:00bc623926325b26bb9605ae9eae8a215691f33cae5df11ca5424f06f2d1f473", + "sha256:09027a7803a62ca78792ad89403b1b7a73a01c8cb65909cd876f7fcebd79b161", + "sha256:09c4b7f37d6c648cb13f9230d847adf22f8171b1ccc4d5682398e77f40309235", + "sha256:1027c282dad077d0bae18be6794e6b6b8c91d58ed8a8d89a89d59693b9131db5", + "sha256:13d3144e1e340870b25e7b10b98d779608c02016d5184cfb9927a9f10c689f42", + "sha256:19536834abffb3fa155017053c607cb835b2ecc6a3a2554a88043d991dffb736", + "sha256:24982cc2533820871eba85ba648cd53d8623687ff11cbb805be4ff7b4c971aff", + "sha256:29872e92839765e546828bb7754a68c418d927cd064fd4708fab9fe9c8bb116b", + "sha256:3d61f15e39611aacd91b7e71d903787da86d9e80896e683c0103fced9add7834", + "sha256:43a55c2930bbc139570ac2452adf3d70cdbb3cfe5912c71cdce1c2c6bbd9c5d1", + "sha256:46c99d2de99945ec5cb54f23c8cd5689f6d7177305ebff350a58ce5f8de1669e", + "sha256:500d4957e52ddc3351cabf489e79c91c17f6e0899158447047588650b5e69183", + "sha256:535f6fc4d397c1563d08b88e485c3496cf5784e927af890fb3c3aac7f933ec66", + "sha256:596510de112c685489095da617b5bcbbac7dd6384aeebeda4df6025d0256a81b", + "sha256:62fe6c95e3ec8a7fad637b7f3d372c15ec1caa01ab47926cfdf7a75b40e0eac1", + "sha256:6788b695d50a51edb699cb55e35487e430fa21f1ed838122d722e0ff0ac5ba15", + "sha256:6dd73240d2af64df90aa7c4e7481e23825ea70af4b4922f8ede5b9e35f78a3b1", + "sha256:717ba8fe3ae9cc0006d7c451f0bb265ee07739daf76355d06366154ee68d221e", + "sha256:7952deddf24b85c88dab48f6ec366ac6e39d2761b5280f2f9594911e03fcd064", + "sha256:79855e1c5b8da654cf486b830bd42c06e8780cea587384cf6545b7d9ac013a0b", + "sha256:7c1699dfe0cf8ff607dbdcc1e9b9af1755371f92a68f706051cc8c37d447c905", + "sha256:88e5fcfb52ee7b911e8bb6d6aa2fd21fbecc674eadd44118a9cc3863f938e735", + "sha256:8defac2f2ccd6805ebf65f5eeb132adcf2ab57aa11fdf4c0dd5169a004710e7d", + "sha256:98c7086708b163d425c67c7a91bad6e466bb99d797aa64f965e9d25c12111a5e", + "sha256:9add70b36c5666a2ed02b43b335fe19002ee5235efd4b8a89bfcf9005bebac0d", + "sha256:9bf40443012702a1d2070043cb6291650a0841ece432556f784f004937f0f32c", + "sha256:ade5e387d2ad0d7ebf59146cc00c8044acbd863725f887353a10df825fc8ae21", + "sha256:b00c1de48212e4cc9603895652c5c410df699856a2853135b3967591e4beebc2", + "sha256:b1282f8c00509d99fef04d8ba936b156d419be841854fe901d8ae224c59f0be5", + "sha256:b2051432115498d3562c084a49bba65d97cf251f5a331c64a12ee7e04dacc51b", + "sha256:ba59edeaa2fc6114428f1637ffff42da1e311e29382d81b339c1817d37ec93c6", + "sha256:c8716a48d94b06bb3b2524c2b77e055fb313aeb4ea620c8dd03a105574ba704f", + "sha256:cd5df75523866410809ca100dc9681e301e3c27567cf498077e8551b6d20e42f", + "sha256:cdb132fc825c38e1aeec2c8aa9338310d29d337bebbd7baa06889d09a60a1fa2", + "sha256:e249096428b3ae81b08327a63a485ad0878de3fb939049038579ac0ef61e17e7", + "sha256:e8313f01ba26fbbe36c7be1966a7b7424942f670f38e666995b88d012765b9be" + ], + "version": "==1.1.1" + }, + "mccabe": { + "hashes": [ + "sha256:ab8a6258860da4b6677da4bd2fe5dc2c659cff31b3ee4f7f5d64e79735b80d42", + "sha256:dd8d182285a0fe56bace7f45b5e7d1a6ebcbf524e8f3bd87eb0f125271b8831f" + ], + "version": "==0.6.1" + }, + "mistune": { + "hashes": [ + "sha256:59a3429db53c50b5c6bcc8a07f8848cb00d7dc8bdb431a4ab41920d201d4756e", + "sha256:88a1051873018da288eee8538d476dffe1262495144b33ecb586c4ab266bb8d4" + ], + "version": "==0.8.4" + }, + "more-itertools": { + "hashes": [ + "sha256:5dd8bcf33e5f9513ffa06d5ad33d78f31e1931ac9a18f33d37e77a180d393a7c", + "sha256:b1ddb932186d8a6ac451e1d95844b382f55e12686d51ca0c68b6f61f2ab7a507" + ], + "version": "==8.2.0" + }, + "mypy": { + "hashes": [ + "sha256:15b948e1302682e3682f11f50208b726a246ab4e6c1b39f9264a8796bb416aa2", + "sha256:219a3116ecd015f8dca7b5d2c366c973509dfb9a8fc97ef044a36e3da66144a1", + "sha256:3b1fc683fb204c6b4403a1ef23f0b1fac8e4477091585e0c8c54cbdf7d7bb164", + "sha256:3beff56b453b6ef94ecb2996bea101a08f1f8a9771d3cbf4988a61e4d9973761", + "sha256:7687f6455ec3ed7649d1ae574136835a4272b65b3ddcf01ab8704ac65616c5ce", + "sha256:7ec45a70d40ede1ec7ad7f95b3c94c9cf4c186a32f6bacb1795b60abd2f9ef27", + "sha256:86c857510a9b7c3104cf4cde1568f4921762c8f9842e987bc03ed4f160925754", + "sha256:8a627507ef9b307b46a1fea9513d5c98680ba09591253082b4c48697ba05a4ae", + "sha256:8dfb69fbf9f3aeed18afffb15e319ca7f8da9642336348ddd6cab2713ddcf8f9", + "sha256:a34b577cdf6313bf24755f7a0e3f3c326d5c1f4fe7422d1d06498eb25ad0c600", + "sha256:a8ffcd53cb5dfc131850851cc09f1c44689c2812d0beb954d8138d4f5fc17f65", + "sha256:b90928f2d9eb2f33162405f32dde9f6dcead63a0971ca8a1b50eb4ca3e35ceb8", + "sha256:c56ffe22faa2e51054c5f7a3bc70a370939c2ed4de308c690e7949230c995913", + "sha256:f91c7ae919bbc3f96cd5e5b2e786b2b108343d1d7972ea130f7de27fdd547cf3" + ], + "index": "pypi", + "version": "==0.770" + }, + "mypy-extensions": { + "hashes": [ + "sha256:090fedd75945a69ae91ce1303b5824f428daf5a028d2f6ab8a299250a846f15d", + "sha256:2d82818f5bb3e369420cb3c4060a7970edba416647068eb4c5343488a6c604a8" + ], + "version": "==0.4.3" + }, + "nbclient": { + "hashes": [ + "sha256:193731fd5039061dbd7d6d3f765a2fa59d23012594d68b1798deea9c3eae4a01", + "sha256:44dde0356def1d9345908c8f58dc604a434f2fe61c49ac13fac6e2da2ae429de", + "sha256:4589b7d656adfb90397ffe34b19e16fab74f0e732bbda7828f96d1f3111744ac" + ], + "version": "==0.2.0" + }, + "nbconvert": { + "hashes": [ + "sha256:4b2eff78c254a85d1668af70fca1cab4cecb077324ca72a1ac8959af08e78e3d", + "sha256:b327e1e75673fa4e76659396a0a012cb144bf3adc7aba3b55756de9497a2215e", + "sha256:fa440adb42328e35ee904c948932086744c23881883afc9630f81514fcbd4c3d" + ], + "version": "==6.0.0a1" + }, + "nbformat": { + "hashes": [ + "sha256:65a79936a128fd85aef392b7fea520166364037118b6fe3ed52de742d06c4558", + "sha256:f0c47cf93c505cb943e2f131ef32b8ae869292b5f9f279db2bafb35867923f69" + ], + "version": "==5.0.5" + }, + "nest-asyncio": { + "hashes": [ + "sha256:14e194b72144052a82173ca9109bd07c57813a320f42c7acfad1e4d329988350", + "sha256:b4cdd08655e2848098d204a26590cbfa39fcbc4ad1811c568678ffc8a0c8e279" + ], + "version": "==1.3.2" + }, + "nodeenv": { + "hashes": [ + "sha256:5b2438f2e42af54ca968dd1b374d14a1194848955187b0e5e4be1f73813a5212" + ], + "version": "==1.3.5" + }, + "notebook": { + "hashes": [ + "sha256:3edc616c684214292994a3af05eaea4cc043f6b4247d830f3a2f209fa7639a80", + "sha256:47a9092975c9e7965ada00b9a20f0cf637d001db60d241d479f53c0be117ad48" + ], + "version": "==6.0.3" + }, + "packaging": { + "hashes": [ + "sha256:3c292b474fda1671ec57d46d739d072bfd495a4f51ad01a055121d81e952b7a3", + "sha256:82f77b9bee21c1bafbf35a84905d604d5d1223801d639cf3ed140bd651c08752" + ], + "version": "==20.3" + }, + "pandocfilters": { + "hashes": [ + "sha256:41a309da81cba5509389b19d96b0ee49551cee8165a6406754f2565e95429860", + "sha256:b3dd70e169bb5449e6bc6ff96aea89c5eea8c5f6ab5e207fc2f521a2cf4a0da9" + ], + "version": "==1.4.2" + }, + "parso": { + "hashes": [ + "sha256:0c5659e0c6eba20636f99a04f469798dca8da279645ce5c387315b2c23912157", + "sha256:8515fc12cfca6ee3aa59138741fc5624d62340c97e401c74875769948d4f2995" + ], + "version": "==0.6.2" + }, + "pathspec": { + "hashes": [ + "sha256:163b0632d4e31cef212976cf57b43d9fd6b0bac6e67c26015d611a647d5e7424", + "sha256:562aa70af2e0d434367d9790ad37aed893de47f1693e4201fd1d3dca15d19b96" + ], + "version": "==0.7.0" + }, + "pexpect": { + "hashes": [ + "sha256:0b48a55dcb3c05f3329815901ea4fc1537514d6ba867a152b581d69ae3710937", + "sha256:fc65a43959d153d0114afe13997d439c22823a27cefceb5ff35c2178c6784c0c" + ], + "version": "==4.8.0" + }, + "pickleshare": { + "hashes": [ + "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca", + "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56" + ], + "version": "==0.7.5" + }, + "pint": { + "hashes": [ + "sha256:308f1070500e102f83b6adfca6db53debfce2ffc5d3cbe3f6c367da359b5cf4d", + "sha256:5690c85948dfb283382aa73357c3d5a333e8c7d818be7d8643db18e07597dd99", + "sha256:833ec1b2561a29dd5ab316825924ec2ce64dc7d69ab09505cd1bea7709c8f0f8" + ], + "index": "pypi", + "version": "==0.11" + }, + "pkginfo": { + "hashes": [ + "sha256:7424f2c8511c186cd5424bbf31045b77435b37a8d604990b79d4e70d741148bb", + "sha256:a6d9e40ca61ad3ebd0b72fbadd4fba16e4c0e4df0428c041e01e06eb6ee71f32" + ], + "version": "==1.5.0.1" + }, + "pluggy": { + "hashes": [ + "sha256:15b2acde666561e1298d71b523007ed7364de07029219b604cf808bfa1c765b0", + "sha256:966c145cd83c96502c3c3868f50408687b38434af77734af1e9ca461a4081d2d" + ], + "version": "==0.13.1" + }, + "pre-commit": { + "hashes": [ + "sha256:487c675916e6f99d355ec5595ad77b325689d423ef4839db1ed2f02f639c9522", + "sha256:9707b4f7069365ffdb57d2782086a9f3019afde2a6e9f85df785c9bf090e1118", + "sha256:c0aa11bce04a7b46c5544723aedf4e81a4d5f64ad1205a30a9ea12d5e81969e1" + ], + "index": "pypi", + "version": "==2.2.0" + }, + "prometheus-client": { + "hashes": [ + "sha256:09b5750fd1c153420dccd35881116e853c730081bea0dbf0ea6649103bcb8445", + "sha256:71cd24a2b3eb335cb800c7159f423df1bd4dcd5171b234be15e3f31ec9f622da" + ], + "version": "==0.7.1" + }, + "prompt-toolkit": { + "hashes": [ + "sha256:563d1a4140b63ff9dd587bda9557cffb2fe73650205ab6f4383092fb882e7dc8", + "sha256:df7e9e63aea609b1da3a65641ceaf5bc7d05e0a04de5bd45d05dbeffbabf9e04" + ], + "version": "==3.0.5" + }, + "psutil": { + "hashes": [ + "sha256:002bd856770037221256765a472f50d677074ad207276a39e2bccdb7394e333b", + "sha256:1413f4158eb50e110777c4f15d7c759521703bd6beb58926f1d562da40180058", + "sha256:298af2f14b635c3c7118fd9183843f4e73e681bb6f01e12284d4d70d48a60953", + "sha256:60b86f327c198561f101a92be1995f9ae0399736b6eced8f24af41ec64fb88d4", + "sha256:685ec16ca14d079455892f25bd124df26ff9137664af445563c1bd36629b5e0e", + "sha256:73f35ab66c6c7a9ce82ba44b1e9b1050be2a80cd4dcc3352cc108656b115c74f", + "sha256:75e22717d4dbc7ca529ec5063000b2b294fc9a367f9c9ede1f65846c7955fd38", + "sha256:833b2b19c04fc0aecad22daa3e35108d6ee2e4f92061a4a8f2dd77c6fa9154f5", + "sha256:a02f4ac50d4a23253b68233b07e7cdb567bd025b982d5cf0ee78296990c22d9e", + "sha256:d008ddc00c6906ec80040d26dc2d3e3962109e40ad07fd8a12d0284ce5e0e4f8", + "sha256:d84029b190c8a66a946e28b4d3934d2ca1528ec94764b180f7d6ea57b0e75e26", + "sha256:e2d0c5b07c6fe5a87fa27b7855017edb0d52ee73b71e6ee368fae268605cc3f5", + "sha256:f344ca230dd8e8d5eee16827596f1c22ec0876127c28e800d7ae20ed44c4b310", + "sha256:f3e7f183162622eae9fbdee44ff19b226edec68b94ae7cba47f9afcf4c3ec66c" + ], + "version": "==5.7.0" + }, + "ptyprocess": { + "hashes": [ + "sha256:923f299cc5ad920c68f2bc0bc98b75b9f838b93b599941a6b63ddbc2476394c0", + "sha256:d7cc528d76e76342423ca640335bd3633420dc1366f258cb31d05e865ef5ca1f" + ], + "version": "==0.6.0" + }, + "py": { + "hashes": [ + "sha256:5e27081401262157467ad6e7f851b7aa402c5852dbcb3dae06768434de5752aa", + "sha256:c20fdd83a5dbc0af9efd622bee9a5564e278f6380fffcacc43ba6f43db2813b0" + ], + "version": "==1.8.1" + }, + "pycodestyle": { + "hashes": [ + "sha256:95a2219d12372f05704562a14ec30bc76b05a5b297b21a5dfe3f6fac3491ae56", + "sha256:e40a936c9a450ad81df37f549d676d127b1b66000a6c500caa2b085bc0ca976c" + ], + "version": "==2.5.0" + }, + "pyflakes": { + "hashes": [ + "sha256:17dbeb2e3f4d772725c777fabc446d5634d1038f234e77343108ce445ea69ce0", + "sha256:d976835886f8c5b31d47970ed689944a0262b5f3afa00a5a7b4dc81e5449f8a2" + ], + "version": "==2.1.1" + }, + "pygments": { + "hashes": [ + "sha256:647344a061c249a3b74e230c739f434d7ea4d8b1d5f3721bc0f3558049b38f44", + "sha256:aa931c0bd5daa25c475afadb2147115134cfe501f0656828cbe7cb566c7123bc", + "sha256:ff7a40b4860b727ab48fad6360eb351cc1b33cbf9b15a0f689ca5353e9463324" + ], + "version": "==2.6.1" + }, + "pyparsing": { + "hashes": [ + "sha256:67199f0c41a9c702154efb0e7a8cc08accf830eb003b4d9fa42c4059002e2492", + "sha256:700d17888d441604b0bd51535908dcb297561b040819cccde647a92439db5a2a" + ], + "version": "==3.0.0a1" + }, + "pyrsistent": { + "hashes": [ + "sha256:28669905fe725965daa16184933676547c5bb40a5153055a8dee2a4bd7933ad3", + "sha256:3217696df78f9222a3d1179b119c27be346b969a9e4d617de2a215a87d9aa456", + "sha256:9324b762b52e5a901611b25f50f9cdf8789c61ece3ff7c24dc872603c4faca62", + "sha256:c11415790cc5803e173de7d71d54f94c66a9154f81a72ffdf45a70096916f226" + ], + "version": "==0.16.0" + }, + "pytest": { + "hashes": [ + "sha256:0e5b30f5cb04e887b91b1ee519fa3d89049595f428c1db76e73bd7f17b09b172", + "sha256:84dde37075b8805f3d1f392cc47e38a0e59518fb46a431cfdaf7cf1ce805f970" + ], + "index": "pypi", + "version": "==5.4.1" + }, + "pytest-cov": { + "hashes": [ + "sha256:cc6742d8bac45070217169f5f72ceee1e0e55b0221f54bcf24845972d3a47f2b", + "sha256:cdbdef4f870408ebdbfeb44e63e07eb18bb4619fae852f6e760645fa36172626" + ], + "index": "pypi", + "version": "==2.8.1" + }, + "python-dateutil": { + "hashes": [ + "sha256:73ebfe9dbf22e832286dafa60473e4cd239f8592f699aa5adaf10050e6e1823c", + "sha256:75bb3f31ea686f1197762692a9ee6a7550b59fc6ca3a1f4b5d7e32fb98e2da2a" + ], + "version": "==2.8.1" + }, + "pywin32": { + "hashes": [ + "sha256:300a2db938e98c3e7e2093e4491439e62287d0d493fe07cce110db070b54c0be", + "sha256:31f88a89139cb2adc40f8f0e65ee56a8c585f629974f9e07622ba80199057511", + "sha256:371fcc39416d736401f0274dd64c2302728c9e034808e37381b5e1b22be4a6b0", + "sha256:47a3c7551376a865dd8d095a98deba954a98f326c6fe3c72d8726ca6e6b15507", + "sha256:4cdad3e84191194ea6d0dd1b1b9bdda574ff563177d2adf2b4efec2a244fa116", + "sha256:7c1ae32c489dc012930787f06244426f8356e129184a02c25aef163917ce158e", + "sha256:7f18199fbf29ca99dff10e1f09451582ae9e372a892ff03a28528a24d55875bc", + "sha256:9b31e009564fb95db160f154e2aa195ed66bcc4c058ed72850d047141b36f3a2", + "sha256:a929a4af626e530383a579431b70e512e736e9588106715215bf685a3ea508d4", + "sha256:c054c52ba46e7eb6b7d7dfae4dbd987a1bb48ee86debe3f245a2884ece46e295", + "sha256:f27cec5e7f588c3d1051651830ecc00294f90728d19c3bf6916e6dba93ea357c", + "sha256:f4c5be1a293bae0076d93c88f37ee8da68136744588bc5e2be2f299a34ceb7aa" + ], + "markers": "sys_platform == 'win32'", + "version": "==227" + }, + "pywin32-ctypes": { + "hashes": [ + "sha256:24ffc3b341d457d48e8922352130cf2644024a4ff09762a2261fd34c36ee5942", + "sha256:9dc2d991b3479cc2df15930958b674a48a227d5361d413827a4cfd0b5876fc98" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.2.0" + }, + "pywinpty": { + "hashes": [ + "sha256:1e525a4de05e72016a7af27836d512db67d06a015aeaf2fa0180f8e6a039b3c2", + "sha256:2740eeeb59297593a0d3f762269b01d0285c1b829d6827445fcd348fb47f7e70", + "sha256:2d7e9c881638a72ffdca3f5417dd1563b60f603e1b43e5895674c2a1b01f95a0", + "sha256:33df97f79843b2b8b8bc5c7aaf54adec08cc1bae94ee99dfb1a93c7a67704d95", + "sha256:5fb2c6c6819491b216f78acc2c521b9df21e0f53b9a399d58a5c151a3c4e2a2d", + "sha256:8fc5019ff3efb4f13708bd3b5ad327589c1a554cb516d792527361525a7cb78c", + "sha256:b358cb552c0f6baf790de375fab96524a0498c9df83489b8c23f7f08795e966b", + "sha256:dbd838de92de1d4ebf0dce9d4d5e4fc38d0b7b1de837947a18b57a882f219139", + "sha256:dd22c8efacf600730abe4a46c1388355ce0d4ab75dc79b15d23a7bd87bf05b48", + "sha256:e854211df55d107f0edfda8a80b39dfc87015bef52a8fe6594eb379240d81df2" + ], + "markers": "os_name == 'nt'", + "version": "==0.5.7" + }, + "pyyaml": { + "hashes": [ + "sha256:06a0d7ba600ce0b2d2fe2e78453a470b5a6e000a985dd4a4e54e436cc36b0e97", + "sha256:240097ff019d7c70a4922b6869d8a86407758333f02203e0fc6ff79c5dcede76", + "sha256:4f4b913ca1a7319b33cfb1369e91e50354d6f07a135f3b901aca02aa95940bd2", + "sha256:589929630502f3b0e87daee190b399f98401b6bccea87ed634a73fe5da43d3d4", + "sha256:69f00dca373f240f842b2931fb2c7e14ddbacd1397d57157a9b005a6a9942648", + "sha256:6e8383720b2127b09dba5b323ac896c702cf02bc5786fce16cd6791825d92d16", + "sha256:73f099454b799e05e5ab51423c7bcf361c58d3206fa7b0d555426b1f4d9a3eaf", + "sha256:74809a57b329d6cc0fdccee6318f44b9b8649961fa73144a98735b0aaf029f1f", + "sha256:7739fc0fa8205b3ee8808aea45e968bc90082c10aef6ea95e855e10abf4a37b2", + "sha256:95f71d2af0ff4227885f7a6605c37fd53d3a106fcab511b8860ecca9fcf400ee", + "sha256:b8eac752c5e14d3eca0e6dd9199cd627518cb5ec06add0de9d32baeee6fe645d", + "sha256:cc8955cfbfc7a115fa81d85284ee61147059a753344bc51098f3ccd69b0d7e0c", + "sha256:d13155f591e6fcc1ec3b30685d50bf0711574e2c0dfffd7644babf8b5102ca1a" + ], + "version": "==5.3.1" + }, + "pyzmq": { + "hashes": [ + "sha256:07bfbf192f22ef1dde65b6046efff191e3201e74da6d47098e68958469ecbe48", + "sha256:0bbc1728fe4314b4ca46249c33873a390559edac7c217ec7001b5e0c34a8fb7f", + "sha256:1e076ad5bd3638a18c376544d32e0af986ca10d43d4ce5a5d889a8649f0d0a3d", + "sha256:242d949eb6b10197cda1d1cec377deab1d5324983d77e0d0bf9dc5eb6d71a6b4", + "sha256:26f4ae420977d2a8792d7c2d7bda43128b037b5eeb21c81951a94054ad8b8843", + "sha256:32234c21c5e0a767c754181c8112092b3ddd2e2a36c3f76fc231ced817aeee47", + "sha256:3f12ce1e9cc9c31497bd82b207e8e86ccda9eebd8c9f95053aae46d15ccd2196", + "sha256:4557d5e036e6d85715b4b9fdb482081398da1d43dc580d03db642b91605b409f", + "sha256:4f562dab21c03c7aa061f63b147a595dbe1006bf4f03213272fc9f7d5baec791", + "sha256:54ecd00daa474885bbf318108401d318614425a05dfeae917611dd93f99f2678", + "sha256:5e071b834051e9ecb224915398f474bfad802c2fff883f118ff5363ca4ae3edf", + "sha256:5e1f65e576ab07aed83f444e201d86deb01cd27dcf3f37c727bc8729246a60a8", + "sha256:5f10a31f288bf055be76c57710807a8f0efdb2b82be6c2a2b8f9a61f33a40cea", + "sha256:6aaaf90b420dc40d9a0e1996b82c6a0ff91d9680bebe2135e67c9e6d197c0a53", + "sha256:75238d3c16cab96947705d5709187a49ebb844f54354cdf0814d195dd4c045de", + "sha256:7f7e7b24b1d392bb5947ba91c981e7d1a43293113642e0d8870706c8e70cdc71", + "sha256:84b91153102c4bcf5d0f57d1a66a0f03c31e9e6525a5f656f52fc615a675c748", + "sha256:944f6bb5c63140d76494467444fd92bebd8674236837480a3c75b01fe17df1ab", + "sha256:a1f957c20c9f51d43903881399b078cddcf710d34a2950e88bce4e494dcaa4d1", + "sha256:a49fd42a29c1cc1aa9f461c5f2f5e0303adba7c945138b35ee7f4ab675b9f754", + "sha256:a99ae601b4f6917985e9bb071549e30b6f93c72f5060853e197bdc4b7d357e5f", + "sha256:ad48865a29efa8a0cecf266432ea7bc34e319954e55cf104be0319c177e6c8f5", + "sha256:b08e425cf93b4e018ab21dc8fdbc25d7d0502a23cc4fea2380010cf8cf11e462", + "sha256:bb10361293d96aa92be6261fa4d15476bca56203b3a11c62c61bd14df0ef89ba", + "sha256:bd1a769d65257a7a12e2613070ca8155ee348aa9183f2aadf1c8b8552a5510f5", + "sha256:cb3b7156ef6b1a119e68fbe3a54e0a0c40ecacc6b7838d57dd708c90b62a06dc", + "sha256:d2f64994f9628f621e0f636f9532055887defc9fa5213aaeceb770d9c579f9ac", + "sha256:e8e4efb52ec2df8d046395ca4c84ae0056cf507b2f713ec803c65a8102d010de", + "sha256:f37c29da2a5b0c5e31e6f8aab885625ea76c807082f70b2d334d3fd573c3100a", + "sha256:f4d558bc5668d2345773a9ff8c39e2462dafcb1f6772a2e582fbced389ce527f", + "sha256:f5b6d015587a1d6f582ba03b226a9ddb1dfb09878b3be04ef48b01b7d4eb6b2a" + ], + "version": "==19.0.0" + }, + "readme-renderer": { + "hashes": [ + "sha256:1b6d8dd1673a0b293766b4106af766b6eff3654605f9c4f239e65de6076bc222", + "sha256:e67d64242f0174a63c3b727801a2fff4c1f38ebe5d71d95ff7ece081945a6cd4" + ], + "version": "==25.0" + }, + "regex": { + "hashes": [ + "sha256:08119f707f0ebf2da60d2f24c2f39ca616277bb67ef6c92b72cbf90cbe3a556b", + "sha256:0ce9537396d8f556bcfc317c65b6a0705320701e5ce511f05fc04421ba05b8a8", + "sha256:1cbe0fa0b7f673400eb29e9ef41d4f53638f65f9a2143854de6b1ce2899185c3", + "sha256:2294f8b70e058a2553cd009df003a20802ef75b3c629506be20687df0908177e", + "sha256:23069d9c07e115537f37270d1d5faea3e0bdded8279081c4d4d607a2ad393683", + "sha256:24f4f4062eb16c5bbfff6a22312e8eab92c2c99c51a02e39b4eae54ce8255cd1", + "sha256:295badf61a51add2d428a46b8580309c520d8b26e769868b922750cf3ce67142", + "sha256:2a3bf8b48f8e37c3a40bb3f854bf0121c194e69a650b209628d951190b862de3", + "sha256:4385f12aa289d79419fede43f979e372f527892ac44a541b5446617e4406c468", + "sha256:5635cd1ed0a12b4c42cce18a8d2fb53ff13ff537f09de5fd791e97de27b6400e", + "sha256:5bfed051dbff32fd8945eccca70f5e22b55e4148d2a8a45141a3b053d6455ae3", + "sha256:7e1037073b1b7053ee74c3c6c0ada80f3501ec29d5f46e42669378eae6d4405a", + "sha256:9016fe9da2a10642e25543c9ffaa2466dac697d87d42653666ec84007e4d37d3", + "sha256:90742c6ff121a9c5b261b9b215cb476eea97df98ea82037ec8ac95d1be7a034f", + "sha256:a58dd45cb865be0ce1d5ecc4cfc85cd8c6867bea66733623e54bd95131f473b6", + "sha256:c087bff162158536387c53647411db09b6ee3f9603c334c90943e97b1052a156", + "sha256:c162a21e0da33eb3d31a3ac17a51db5e634fc347f650d271f0305d96601dc15b", + "sha256:c9423a150d3a4fc0f3f2aae897a59919acd293f4cb397429b120a5fcd96ea3db", + "sha256:ccccdd84912875e34c5ad2d06e1989d890d43af6c2242c6fcfa51556997af6cd", + "sha256:e04db93ad8072c40ce03e5ea074fe811e483a2fc5b539f481264e09bf6522559", + "sha256:e91ba11da11cf770f389e47c3f5c30473e6d85e06d7fd9dcba0017d2867aab4a", + "sha256:ea4adf02d23b437684cd388d557bf76e3afa72f7fed5bbc013482cc00c816948", + "sha256:fa4c724fc5b867d3a2461d4d78e0feb6adfeee5f2976071aba4b2325fae71045", + "sha256:fb95debbd1a824b2c4376932f2216cc186912e389bdb0e27147778cf6acb3f89" + ], + "version": "==2020.4.4" + }, + "remote-ikernel": { + "hashes": [ + "sha256:5253216e87a8c31f1b0ca9305454f223147518b580e853b7635a3d8b9c88c295", + "sha256:740b80a57fa1af40cadef541c5a4eb293675b504092ecf00c57dd2f0011bd840" + ], + "index": "pypi", + "version": "==0.4.6" + }, + "requests": { + "hashes": [ + "sha256:43999036bfa82904b6af1d99e4882b560e5e2c68e5c4b0aa03b655f3d7d73fee", + "sha256:b3f43d496c6daba4493e7c431722aeb7dbc6288f52a6e04e7b6023b0247817e6" + ], + "version": "==2.23.0" + }, + "requests-toolbelt": { + "hashes": [ + "sha256:380606e1d10dc85c3bd47bf5a6095f815ec007be7a8b69c878507068df059e6f", + "sha256:968089d4584ad4ad7c171454f0a5c6dac23971e9472521ea3b6d49d610aa6fc0" + ], + "version": "==0.9.1" + }, + "send2trash": { + "hashes": [ + "sha256:60001cc07d707fe247c94f74ca6ac0d3255aabcb930529690897ca2a39db28b2", + "sha256:f1691922577b6fa12821234aeb57599d887c4900b9ca537948d2dac34aea888b" + ], + "version": "==1.5.0" + }, + "six": { + "hashes": [ + "sha256:236bdbdce46e6e6a3d61a337c0f8b763ca1e8717c03b369e87a7ec7ce1319c0a", + "sha256:8f3cd2e254d8f793e7f3d6d9df77b92252b52637291d0f0da013c76ea2724b6c" + ], + "version": "==1.14.0" + }, + "soupsieve": { + "hashes": [ + "sha256:e914534802d7ffd233242b785229d5ba0766a7f487385e3f714446a07bf540ae", + "sha256:f24cabf0197b86c6d5e3fb96fd11a1c0739618375d95de91a477aa9652282150", + "sha256:fcd71e08c0aee99aca1b73f45478549ee7e7fc006d51b37bec9e9def7dc22b69" + ], + "version": "==2.0" + }, + "terminado": { + "hashes": [ + "sha256:4804a774f802306a7d9af7322193c5390f1da0abb429e082a10ef1d46e6fb2c2", + "sha256:a43dcb3e353bc680dd0783b1d9c3fc28d529f190bc54ba9a229f72fe6e7a54d7" + ], + "version": "==0.8.3" + }, + "testpath": { + "hashes": [ + "sha256:60e0a3261c149755f4399a1fff7d37523179a70fdc3abdf78de9fc2604aeec7e", + "sha256:bfcf9411ef4bf3db7579063e0546938b1edda3d69f4e1fb8756991f5951f85d4" + ], + "version": "==0.4.4" + }, + "toml": { + "hashes": [ + "sha256:229f81c57791a41d65e399fc06bf0848bab550a9dfd5ed66df18ce5f05e73d5c", + "sha256:235682dd292d5899d361a811df37e04a8828a5b1da3115886b73cf81ebc9100e" + ], + "version": "==0.10.0" + }, + "tornado": { + "hashes": [ + "sha256:0fe2d45ba43b00a41cd73f8be321a44936dc1aba233dee979f17a042b83eb6dc", + "sha256:22aed82c2ea340c3771e3babc5ef220272f6fd06b5108a53b4976d0d722bcd52", + "sha256:2c027eb2a393d964b22b5c154d1a23a5f8727db6fda837118a776b29e2b8ebc6", + "sha256:503700d85d9a2c2aa737fb16df58bfa2ac0d5ec501881fea2acceae64ce17858", + "sha256:5217e601700f24e966ddab689f90b7ea4bd91ff3357c3600fa1045e26d68e55d", + "sha256:5618f72e947533832cbc3dec54e1dffc1747a5cb17d1fd91577ed14fa0dc081b", + "sha256:5f6a07e62e799be5d2330e68d808c8ac41d4a259b9cea61da4101b83cb5dc673", + "sha256:7182a9285e364e55e6902b5fb4d4a219efd8d7818d9000b419a0eaf3909fc0bc", + "sha256:c58d56003daf1b616336781b26d184023ea4af13ae143d9dda65e31e534940b9", + "sha256:c952975c8ba74f546ae6de2e226ab3cc3cc11ae47baf607459a6728585bb542a", + "sha256:c98232a3ac391f5faea6821b53db8db461157baa788f5d6222a193e9456e1740" + ], + "version": "==6.0.4" + }, + "tqdm": { + "hashes": [ + "sha256:00339634a22c10a7a22476ee946bbde2dbe48d042ded784e4d88e0236eca5d81", + "sha256:ea9e3fd6bd9a37e8783d75bfc4c1faf3c6813da6bd1c3e776488b41ec683af94" + ], + "version": "==4.45.0" + }, + "traitlets": { + "hashes": [ + "sha256:70b4c6a1d9019d7b4f6846832288f86998aa3b9207c6821f3578a6a6a467fe44", + "sha256:d023ee369ddd2763310e4c3eae1ff649689440d4ae59d7485eb4cfbbe3e359f7" + ], + "version": "==4.3.3" + }, + "twine": { + "hashes": [ + "sha256:c1af8ca391e43b0a06bbc155f7f67db0bf0d19d284bfc88d1675da497a946124", + "sha256:d561a5e511f70275e5a485a6275ff61851c16ffcb3a95a602189161112d9f160" + ], + "index": "pypi", + "version": "==3.1.1" + }, + "typed-ast": { + "hashes": [ + "sha256:0666aa36131496aed8f7be0410ff974562ab7eeac11ef351def9ea6fa28f6355", + "sha256:0c2c07682d61a629b68433afb159376e24e5b2fd4641d35424e462169c0a7919", + "sha256:249862707802d40f7f29f6e1aad8d84b5aa9e44552d2cc17384b209f091276aa", + "sha256:24995c843eb0ad11a4527b026b4dde3da70e1f2d8806c99b7b4a7cf491612652", + "sha256:269151951236b0f9a6f04015a9004084a5ab0d5f19b57de779f908621e7d8b75", + "sha256:3791f73e5d75aa9a95274679ab4821bd9d16de623c4ecf4900a77a29864ee144", + "sha256:4083861b0aa07990b619bd7ddc365eb7fa4b817e99cf5f8d9cf21a42780f6e01", + "sha256:498b0f36cc7054c1fead3d7fc59d2150f4d5c6c56ba7fb150c013fbc683a8d2d", + "sha256:4e3e5da80ccbebfff202a67bf900d081906c358ccc3d5e3c8aea42fdfdfd51c1", + "sha256:6daac9731f172c2a22ade6ed0c00197ee7cc1221aa84cfdf9c31defeb059a907", + "sha256:715ff2f2df46121071622063fc7543d9b1fd19ebfc4f5c8895af64a77a8c852c", + "sha256:73d785a950fc82dd2a25897d525d003f6378d1cb23ab305578394694202a58c3", + "sha256:8c8aaad94455178e3187ab22c8b01a3837f8ee50e09cf31f1ba129eb293ec30b", + "sha256:8ce678dbaf790dbdb3eba24056d5364fb45944f33553dd5869b7580cdbb83614", + "sha256:aaee9905aee35ba5905cfb3c62f3e83b3bec7b39413f0a7f19be4e547ea01ebb", + "sha256:bcd3b13b56ea479b3650b82cabd6b5343a625b0ced5429e4ccad28a8973f301b", + "sha256:c9e348e02e4d2b4a8b2eedb48210430658df6951fa484e59de33ff773fbd4b41", + "sha256:d205b1b46085271b4e15f670058ce182bd1199e56b317bf2ec004b6a44f911f6", + "sha256:d43943ef777f9a1c42bf4e552ba23ac77a6351de620aa9acf64ad54933ad4d34", + "sha256:d5d33e9e7af3b34a40dc05f498939f0ebf187f07c385fd58d591c533ad8562fe", + "sha256:df74880bdb70f34304ccc52b0c99d3e578f96a906b86f3ae172a1f1c2edef2bc", + "sha256:fc0fea399acb12edbf8a628ba8d2312f583bdbdb3335635db062fa98cf71fca4", + "sha256:fe460b922ec15dd205595c9b5b99e2f056fd98ae8f9f56b888e7a17dc2b757e7" + ], + "version": "==1.4.1" + }, + "typing-extensions": { + "hashes": [ + "sha256:6e95524d8a547a91e08f404ae485bbb71962de46967e1b71a0cb89af24e761c5", + "sha256:79ee589a3caca649a9bfd2a8de4709837400dfa00b6cc81962a1e6a1815969ae", + "sha256:f8d2bd89d25bc39dabe7d23df520442fa1d8969b82544370e03d88b5a591c392" + ], + "version": "==3.7.4.2" + }, + "urllib3": { + "hashes": [ + "sha256:2f3db8b19923a873b3e5256dc9c2dedfa883e33d87c690d9c7913e1f40673cdc", + "sha256:87716c2d2a7121198ebcb7ce7cccf6ce5e9ba539041cfbaeecfb641dc0bf6acc" + ], + "version": "==1.25.8" + }, + "virtualenv": { + "hashes": [ + "sha256:6ea131d41c477f6c4b7863948a9a54f7fa196854dbef73efbdff32b509f4d8bf", + "sha256:94f647e12d1e6ced2541b93215e51752aecbd1bbb18eb1816e2867f7532b1fe1" + ], + "version": "==20.0.16" + }, + "waitress": { + "hashes": [ + "sha256:045b3efc3d97c93362173ab1dfc159b52cfa22b46c3334ffc805dbdbf0e4309e", + "sha256:77ff3f3226931a1d7d8624c5371de07c8e90c7e5d80c5cc660d72659aaf23f38" + ], + "index": "pypi", + "version": "==1.4.3" + }, + "wcwidth": { + "hashes": [ + "sha256:cafe2186b3c009a04067022ce1dcd79cb38d8d65ee4f4791b8888d6599d1bbe1", + "sha256:ee73862862a156bf77ff92b09034fc4825dd3af9cf81bc5b360668d425f3c5f1" + ], + "version": "==0.1.9" + }, + "webencodings": { + "hashes": [ + "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", + "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923" + ], + "version": "==0.5.1" + }, + "webob": { + "hashes": [ + "sha256:a3c89a8e9ba0aeb17382836cdb73c516d0ecf6630ec40ec28288f3ed459ce87b", + "sha256:aa3a917ed752ba3e0b242234b2a373f9c4e2a75d35291dcbe977649bd21fd108" + ], + "version": "==1.8.6" + }, + "webtest": { + "hashes": [ + "sha256:71114cd778a7d7b237ec5c8a5c32084f447d869ae62e48bcd5b73af211133e74", + "sha256:da9cf14c103ff51a40dee4cac7657840d1317456eb8f0ca81289b5cbff175f4b" + ], + "index": "pypi", + "version": "==2.0.34" + }, + "werkzeug": { + "hashes": [ + "sha256:2de2a5db0baeae7b2d2664949077c2ac63fbd16d98da0ff71837f7d1dea3fd43", + "sha256:6c80b1e5ad3665290ea39320b91e1be1e0d5f60652b964a3070216de83d2e47c" + ], + "version": "==1.0.1" + }, + "wheel": { + "hashes": [ + "sha256:8788e9155fe14f54164c1b9eb0a319d98ef02c160725587ad60f14ddc57b6f96", + "sha256:df277cb51e61359aba502208d680f90c0493adec6f0e848af94948778aed386e" + ], + "index": "pypi", + "version": "==0.34.2" + } + } +} diff --git a/Ch05/apd.sensors-chapter05-pintbased/README.md b/Ch05/apd.sensors-chapter05-pintbased/README.md new file mode 100644 index 0000000..7f015bf --- /dev/null +++ b/Ch05/apd.sensors-chapter05-pintbased/README.md @@ -0,0 +1,66 @@ +# Advanced Python Development Sensors + +This is the data collection package that forms part of the running example +for the book [Advanced Python Development](https://advancedpython.dev). + +## Usage + +This installs a console script called `sensors` that returns a report on +various aspects of the system. The available sensors are: + +* Python version +* IP Addresses +* CPU Usage +* RAM Available +* Battery charging state +* Ambient Temperature +* Ambient Humidity + +There are no command-line options, to view the report run `sensors` on the +command line. + +## Caveats + +The Ambient Temperature and Ambient Humidity sensors are only available on +RaspberryPi hosts and assume that a DHT22 sensor is connected to pin `D20`. + +The location and type of the sensor can be controlled by setting a pair of +environment variables: `APD_SENSORS_TEMPERATURE_BOARD` and +`APD_SENSORS_TEMPERATURE_PIN`. + +If there is an entry in `/etc/hosts` for the current machine's hostname that +value will be the only result from the IP Addresses sensor. + +## Installation + +You can install with `pip3 install apd.sensors` under Python 3.7 or higher. + +We recommend using pipenv to manage your environment, in which case you would +install using `pipenv --three install apd.sensors` and run the programme using +`pipenv run sensors`. + +## API server + +There is an optional API server shipped with apd.sensors. To use this you +should install the `apd.sensors[webapp]` extra. The API can then be started +with the non-production quality wsgiref server using: + + python -m apd.sensors.wsgi.serve + +or through Waitress (if installed) using: + + waitress-serve --call apd.sensors.wsgi:set_up_config + +Other WSGI servers will also work, you should use set_up_config as a factory +function. + +An environment variable is required to use the API server, `APD_SENSORS_API_KEY` +should be set to the API key required to gain access. One can be generated +using: + + python -c "import uuid; print(uuid.uuid4().hex)" + +The following endpoints are supported: + +* /v/2.0/sensors +* /v/2.0/sensors/sensorid diff --git a/Ch05/apd.sensors-chapter05-pintbased/plugins/apd.sunnyboy_solar/pyproject.toml b/Ch05/apd.sensors-chapter05-pintbased/plugins/apd.sunnyboy_solar/pyproject.toml new file mode 100644 index 0000000..4d3bb67 --- /dev/null +++ b/Ch05/apd.sensors-chapter05-pintbased/plugins/apd.sunnyboy_solar/pyproject.toml @@ -0,0 +1,5 @@ +[build-system] +requires = [ + "setuptools", +] +build-backend = "setuptools.build_meta" diff --git a/Ch05/apd.sensors-chapter05-pintbased/plugins/apd.sunnyboy_solar/setup.cfg b/Ch05/apd.sensors-chapter05-pintbased/plugins/apd.sunnyboy_solar/setup.cfg new file mode 100644 index 0000000..0f5db10 --- /dev/null +++ b/Ch05/apd.sensors-chapter05-pintbased/plugins/apd.sunnyboy_solar/setup.cfg @@ -0,0 +1,33 @@ +[mypy] +ignore_missing_imports = True + +[flake8] +max-line-length = 88 + +[metadata] +name = apd.sunnyboy_solar +version = attr: apd.sunnyboy_solar.VERSION +description = APD Sensor for reading data from Sunnyboy inverters +long_description = file: README.md, CHANGES.md, LICENCE +long_description_content_type = text/markdown +keywords = iot solar +license = MIT +classifiers = + Programming Language :: Python :: 3 + Programming Language :: Python :: 3.7 + +[options] +zip_safe = False +include_package_data = True +package_dir = + =src +packages = find_namespace: +install_requires = + apd.sensors + +[options.packages.find] +where = src + +[options.entry_points] +apd.sensors.sensors = + SolarCumulativeOutput = apd.sunnyboy_solar.sensor:SolarCumulativeOutput diff --git a/Ch05/apd.sensors-chapter05-pintbased/plugins/apd.sunnyboy_solar/setup.py b/Ch05/apd.sensors-chapter05-pintbased/plugins/apd.sunnyboy_solar/setup.py new file mode 100644 index 0000000..6068493 --- /dev/null +++ b/Ch05/apd.sensors-chapter05-pintbased/plugins/apd.sunnyboy_solar/setup.py @@ -0,0 +1,3 @@ +from setuptools import setup + +setup() diff --git a/Ch05/apd.sensors-chapter05-pintbased/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/Pipfile b/Ch05/apd.sensors-chapter05-pintbased/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/Pipfile new file mode 100644 index 0000000..e69de29 diff --git a/Ch05/apd.sensors-chapter05-pintbased/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/__init__.py b/Ch05/apd.sensors-chapter05-pintbased/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/__init__.py new file mode 100644 index 0000000..3277f64 --- /dev/null +++ b/Ch05/apd.sensors-chapter05-pintbased/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/__init__.py @@ -0,0 +1 @@ +VERSION = "1.0.0" diff --git a/Ch05/apd.sensors-chapter05-pintbased/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/sensor.py b/Ch05/apd.sensors-chapter05-pintbased/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/sensor.py new file mode 100644 index 0000000..aa37a2e --- /dev/null +++ b/Ch05/apd.sensors-chapter05-pintbased/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/sensor.py @@ -0,0 +1,69 @@ +import os +import subprocess +import typing as t + +from pint import _DEFAULT_REGISTRY as ureg + +from apd.sensors.base import Sensor + + +class SolarCumulativeOutput(Sensor[t.Optional[t.Any]]): + name = "SolarCumulativeOutput" + title = "Solar panel cumulative output" + + def __init__( + self, path: t.Optional[str] = None, bt_addr: t.Optional[str] = None + ) -> None: + self.path = os.environ.get( + "APD_SUNNYBOYSOLAR_PATH", "/home/pi/opensunny-master/opensunny" + ) + self.bt_addr = os.environ.get("APD_SUNNYBOYSOLAR_BT_ADDRESS", None) + + def value(self) -> t.Optional[t.Any]: + if self.bt_addr is None: + return None + try: + output: bytes = subprocess.check_output( + [self.path, "-i", self.bt_addr], stderr=subprocess.STDOUT, timeout=15 + ) + except (subprocess.CalledProcessError, FileNotFoundError): + return None + + lines = filter(None, output.split(b"\n")) + found = {} + for line in lines: + start, value = line.rsplit(b"=", 1) + start, key = start.rsplit(b" ", 1) + found[key] = value + + try: + yield_total = float(found[b"yield_total"][:-3].replace(b".", b"")) + power_dc_1 = int(found[b"power_dc_1"][:-1]) + power_dc_2 = int(found[b"power_dc_2"][:-1]) + if power_dc_1 > 1500 or power_dc_2 > 1500: + return None + except (ValueError, IndexError, KeyError): + return None + return ureg.Quantity(yield_total, "watt") + + @classmethod + def format(cls, value: t.Optional[t.Any]) -> str: + if value is None: + return "Unknown" + return "{:~P}".format(value.to(ureg.kilowatt)) + + @classmethod + def to_json_compatible( + cls, value: t.Optional[t.Any] + ) -> t.Optional[t.Dict[str, t.Union[str, float]]]: + if value is not None: + return {"magnitude": value.magnitude, "unit": str(value.units)} + else: + return None + + @classmethod + def from_json_compatible(cls, json_version: t.Any) -> t.Optional[t.Any]: + if json_version: + return ureg.Quantity(json_version["magnitude"], ureg[json_version["unit"]]) + else: + return None diff --git a/Ch05/apd.sensors-chapter05-pintbased/pytest.ini b/Ch05/apd.sensors-chapter05-pintbased/pytest.ini new file mode 100644 index 0000000..861f3d0 --- /dev/null +++ b/Ch05/apd.sensors-chapter05-pintbased/pytest.ini @@ -0,0 +1,3 @@ +[pytest] +markers = + functional: these tests are significantly slower as they run the whole CLI script \ No newline at end of file diff --git a/Ch05/apd.sensors-chapter05-pintbased/setup.cfg b/Ch05/apd.sensors-chapter05-pintbased/setup.cfg new file mode 100644 index 0000000..fe8017c --- /dev/null +++ b/Ch05/apd.sensors-chapter05-pintbased/setup.cfg @@ -0,0 +1,66 @@ +[mypy] +namespace_packages = True +mypy_path = src + +[mypy-psutil] +ignore_missing_imports = True + +[mypy-adafruit_dht] +ignore_missing_imports = True + +[mypy-board] +ignore_missing_imports = True + +[mypy-pytest] +ignore_missing_imports = True + +[mypy-webtest] +ignore_missing_imports = True + +[flake8] +max-line-length = 88 + +[metadata] +name = apd.sensors +version = attr: apd.sensors.VERSION +description = APD Sensor package +long_description = file: README.md, CHANGES.md, LICENCE +long_description_content_type = text/markdown +keywords = iot +license = MIT +classifiers = + Programming Language :: Python :: 3 + Programming Language :: Python :: 3.7 + +[options] +zip_safe = False +include_package_data = True +package_dir = + =src +packages = find_namespace: +install_requires = + psutil + click + pint + adafruit-circuitpython-dht ; 'arm' in platform_machine + +[options.package_data] +apd.sensors = py.typed + +[options.packages.find] +where = src + +[options.entry_points] +console_scripts = + sensors = apd.sensors.cli:show_sensors +apd.sensors.sensors = + PythonVersion = apd.sensors.sensors:PythonVersion + IPAddresses = apd.sensors.sensors:IPAddresses + CPULoad = apd.sensors.sensors:CPULoad + RAMAvailable = apd.sensors.sensors:RAMAvailable + ACStatus = apd.sensors.sensors:ACStatus + Temperature = apd.sensors.sensors:Temperature + RelativeHumidity = apd.sensors.sensors:RelativeHumidity + +[options.extras_require] +webapp = flask \ No newline at end of file diff --git a/Ch05/apd.sensors-chapter05-pintbased/setup.py b/Ch05/apd.sensors-chapter05-pintbased/setup.py new file mode 100644 index 0000000..6068493 --- /dev/null +++ b/Ch05/apd.sensors-chapter05-pintbased/setup.py @@ -0,0 +1,3 @@ +from setuptools import setup + +setup() diff --git a/Ch05/apd.sensors-chapter05-pintbased/src/apd/sensors/__init__.py b/Ch05/apd.sensors-chapter05-pintbased/src/apd/sensors/__init__.py new file mode 100644 index 0000000..2101409 --- /dev/null +++ b/Ch05/apd.sensors-chapter05-pintbased/src/apd/sensors/__init__.py @@ -0,0 +1 @@ +VERSION = "2.0.0" diff --git a/Ch05/apd.sensors-chapter05-pintbased/src/apd/sensors/base.py b/Ch05/apd.sensors-chapter05-pintbased/src/apd/sensors/base.py new file mode 100644 index 0000000..74b32ae --- /dev/null +++ b/Ch05/apd.sensors-chapter05-pintbased/src/apd/sensors/base.py @@ -0,0 +1,51 @@ +#!/usr/bin/env python +# coding: utf-8 +import typing as t + + +T_value = t.TypeVar("T_value") + + +class Sensor(t.Generic[T_value]): + name: str + title: str + + def value(self) -> T_value: + raise NotImplementedError + + @classmethod + def format(cls, value: T_value) -> str: + raise NotImplementedError + + def __str__(self) -> str: + return self.format(self.value()) + + @classmethod + def to_json_compatible(cls, value: T_value) -> t.Any: + raise NotImplementedError() + + @classmethod + def from_json_compatible(cls, json_version: t.Any) -> T_value: + raise NotImplementedError() + + +class JSONSensor(Sensor[T_value]): + @classmethod + def to_json_compatible(cls, value: T_value) -> t.Any: + return value + + @classmethod + def from_json_compatible(cls, json_version: t.Any) -> T_value: + return t.cast(T_value, json_version) + + +version_info_type = t.NamedTuple( + "version_info_type", + [ + ("major", int), + ("minor", int), + ("micro", int), + ("releaselevel", str), + ("serial", int), + ], +) diff --git a/Ch05/apd.sensors-chapter05-pintbased/src/apd/sensors/cli.py b/Ch05/apd.sensors-chapter05-pintbased/src/apd/sensors/cli.py new file mode 100644 index 0000000..1ee27b9 --- /dev/null +++ b/Ch05/apd.sensors-chapter05-pintbased/src/apd/sensors/cli.py @@ -0,0 +1,74 @@ +import enum +import importlib +import sys +import pkg_resources +import typing as t + +import click + +from .sensors import Sensor + + +class ReturnCodes(enum.IntEnum): + OK = 0 + BAD_SENSOR_PATH = 17 + + +def get_sensor_by_path(sensor_path: str) -> Sensor[t.Any]: + try: + module_name, sensor_name = sensor_path.split(":") + except ValueError: + raise RuntimeError( + "Sensor path must be in the format dotted.path.to.module:ClassName" + ) + try: + module = importlib.import_module(module_name) + except ImportError: + raise RuntimeError(f"Could not import module {module_name}") + try: + sensor_class = getattr(module, sensor_name) + except AttributeError: + raise RuntimeError(f"Could not find attribute {sensor_name} in {module_name}") + if ( + isinstance(sensor_class, type) + and issubclass(sensor_class, Sensor) + and sensor_class != Sensor + ): + return sensor_class() + else: + raise RuntimeError( + f"Detected object {sensor_class!r} is not recognised as a Sensor type" + ) + + +def get_sensors() -> t.Iterable[Sensor[t.Any]]: + sensors = [] + for sensor_class in pkg_resources.iter_entry_points("apd.sensors.sensors"): + class_ = sensor_class.load() + sensors.append(t.cast(Sensor[t.Any], class_())) + return sensors + + +@click.command(help="Displays the values of the sensors") +@click.option( + "--develop", required=False, metavar="path", help="Load a sensor by Python path" +) +def show_sensors(develop: str) -> None: + sensors: t.Iterable[Sensor[t.Any]] + if develop: + try: + sensors = [get_sensor_by_path(develop)] + except RuntimeError as error: + click.secho(str(error), fg="red", bold=True) + sys.exit(ReturnCodes.BAD_SENSOR_PATH) + else: + sensors = get_sensors() + for sensor in sensors: + click.secho(sensor.title, bold=True) + click.echo(str(sensor)) + click.echo("") + sys.exit(ReturnCodes.OK) + + +if __name__ == "__main__": + show_sensors() diff --git a/Ch05/apd.sensors-chapter05-pintbased/src/apd/sensors/py.typed b/Ch05/apd.sensors-chapter05-pintbased/src/apd/sensors/py.typed new file mode 100644 index 0000000..e69de29 diff --git a/Ch05/apd.sensors-chapter05-pintbased/src/apd/sensors/sensors.py b/Ch05/apd.sensors-chapter05-pintbased/src/apd/sensors/sensors.py new file mode 100644 index 0000000..44d432f --- /dev/null +++ b/Ch05/apd.sensors-chapter05-pintbased/src/apd/sensors/sensors.py @@ -0,0 +1,192 @@ +#!/usr/bin/env python +# coding: utf-8 +import math +import os +import socket +import sys +import typing as t + +import psutil +from pint import _DEFAULT_REGISTRY as ureg + +from .base import Sensor, JSONSensor, version_info_type + + +class PythonVersion(JSONSensor[version_info_type]): + name = "PythonVersion" + title = "Python Version" + + def value(self) -> version_info_type: + return version_info_type(*sys.version_info) + + @classmethod + def format(cls, value: version_info_type) -> str: + if value.micro == 0 and value.releaselevel == "alpha": + return "{0.major}.{0.minor}.{0.micro}a{0.serial}".format(value) + return "{0.major}.{0.minor}".format(value) + + +class IPAddresses(JSONSensor[t.Iterable[t.Tuple[str, str]]]): + name = "IPAddresses" + title = "IP Addresses" + FAMILIES = {"AF_INET": "IPv4", "AF_INET6": "IPv6"} + + def value(self) -> t.List[t.Tuple[str, str]]: + hostname = socket.gethostname() + addresses = socket.getaddrinfo(hostname, None) + + address_info: t.List[t.Tuple[str, str]] = [] + for address in addresses: + family, ip = (address[0].name, address[4][0]) + if family not in self.FAMILIES: + continue + value = (family, ip) + if value not in address_info: + address_info.append(value) + return address_info + + @classmethod + def format(cls, value: t.Iterable[t.Tuple[str, str]]) -> str: + return "\n".join( + "{0} ({1})".format(address[1], cls.FAMILIES.get(address[0], "Unknown")) + for address in value + ) + + +class CPULoad(JSONSensor[float]): + name = "CPULoad" + title = "CPU Usage" + + def value(self) -> float: + return float(psutil.cpu_percent(interval=3)) / 100.0 + + @classmethod + def format(cls, value: float) -> str: + return "{:.1%}".format(value) + + +class RAMAvailable(JSONSensor[int]): + name = "RAMAvailable" + title = "RAM Available" + UNITS = ("B", "KiB", "MiB", "GiB", "TiB", "PiB", "EiB") + UNIT_SIZE = 2 ** 10 + + def value(self) -> int: + return int(psutil.virtual_memory().available) + + @classmethod + def format(cls, value: int) -> str: + magnitude = math.floor(math.log(value, cls.UNIT_SIZE)) + max_magnitude = len(cls.UNITS) - 1 + magnitude = min(magnitude, max_magnitude) + scaled_value = value / (cls.UNIT_SIZE ** magnitude) + return "{:.1f} {}".format(scaled_value, cls.UNITS[magnitude]) + + +class ACStatus(JSONSensor[t.Optional[bool]]): + name = "ACStatus" + title = "AC Connected" + + def value(self) -> t.Optional[bool]: + battery = psutil.sensors_battery() + if battery is not None: + value = battery.power_plugged + if value is None: + return None + else: + return bool(value) + else: + return None + + @classmethod + def format(cls, value: t.Optional[bool]) -> str: + if value is None: + return "Unknown" + elif value: + return "Connected" + else: + return "Not connected" + + +class Temperature(Sensor[t.Optional[t.Any]]): + name = "Temperature" + title = "Ambient Temperature" + + def __init__(self) -> None: + self.board = os.environ.get("APD_SENSORS_TEMPERATURE_BOARD", "DHT22") + self.pin = os.environ.get("APD_SENSORS_TEMPERATURE_PIN", "D20") + + def value(self) -> t.Optional[t.Any]: + try: + import adafruit_dht + import board + + sensor_type = getattr(adafruit_dht, self.board) + pin = getattr(board, self.pin) + except (ImportError, NotImplementedError, AttributeError): + # No DHT library results in an ImportError. + # Running on an unknown platform results in a + # NotImplementedError when getting the pin + return None + try: + return ureg.Quantity(sensor_type(pin).temperature, ureg.celsius) + except RuntimeError: + return None + + @classmethod + def format(cls, value: t.Optional[t.Any]) -> str: + if value is None: + return "Unknown" + else: + return "{:.3~P} ({:.3~P})".format(value, value.to(ureg.fahrenheit)) + + @classmethod + def to_json_compatible(cls, value: t.Optional[t.Any]) -> t.Any: + if value is not None: + return {"magnitude": value.magnitude, "unit": str(value.units)} + else: + return None + + @classmethod + def from_json_compatible(cls, json_version: t.Any) -> t.Optional[t.Any]: + if json_version: + return ureg.Quantity(json_version["magnitude"], ureg[json_version["unit"]]) + else: + return None + + def __str__(self) -> str: + return self.format(self.value()) + + +class RelativeHumidity(JSONSensor[t.Optional[float]]): + name = "RelativeHumidity" + title = "Relative Humidity" + + def __init__(self) -> None: + self.board = os.environ.get("APD_SENSORS_TEMPERATURE_BOARD", "DHT22") + self.pin = os.environ.get("APD_SENSORS_TEMPERATURE_PIN", "D20") + + def value(self) -> t.Optional[float]: + try: + import adafruit_dht + import board + + sensor_type = getattr(adafruit_dht, self.board) + pin = getattr(board, self.pin) + except (ImportError, NotImplementedError, AttributeError): + # No DHT library results in an ImportError. + # Running on an unknown platform results in a + # NotImplementedError when getting the pin + return None + + try: + return float(sensor_type(pin).humidity) + except RuntimeError: + return None + + @classmethod + def format(cls, value: t.Optional[float]) -> str: + if value is None: + return "Unknown" + else: + return "{:.1%}".format(value) diff --git a/Ch05/apd.sensors-chapter05-pintbased/src/apd/sensors/wsgi/__init__.py b/Ch05/apd.sensors-chapter05-pintbased/src/apd/sensors/wsgi/__init__.py new file mode 100644 index 0000000..a97c28f --- /dev/null +++ b/Ch05/apd.sensors-chapter05-pintbased/src/apd/sensors/wsgi/__init__.py @@ -0,0 +1,12 @@ +import flask + +from .base import set_up_config +from . import v10 +from . import v20 + + +__all__ = ["app", "set_up_config"] + +app = flask.Flask(__name__) +app.register_blueprint(v10.version, url_prefix="/v/1.0") +app.register_blueprint(v20.version, url_prefix="/v/2.0") diff --git a/Ch05/apd.sensors-chapter05-pintbased/src/apd/sensors/wsgi/base.py b/Ch05/apd.sensors-chapter05-pintbased/src/apd/sensors/wsgi/base.py new file mode 100644 index 0000000..c9be130 --- /dev/null +++ b/Ch05/apd.sensors-chapter05-pintbased/src/apd/sensors/wsgi/base.py @@ -0,0 +1,43 @@ +from hmac import compare_digest +import functools +import os +import typing as t + +import flask + + +ViewFuncReturn = t.TypeVar("ViewFuncReturn") +ErrorReturn = t.Tuple[t.Dict[str, str], int] +REQUIRED_CONFIG_KEYS = {"APD_SENSORS_API_KEY"} + + +def require_api_key( + func: t.Callable[[], ViewFuncReturn] +) -> t.Callable[[], t.Union[ViewFuncReturn, ErrorReturn]]: + @functools.wraps(func) + def wrapped() -> t.Union[ViewFuncReturn, ErrorReturn]: + api_key = flask.current_app.config["APD_SENSORS_API_KEY"] + headers = flask.request.headers + supplied_key = headers.get("X-API-Key", "") + if not compare_digest(api_key, supplied_key): + return {"error": "Supply API key in X-API-Key header"}, 403 + return func() + + return wrapped + + +def set_up_config( + environ: t.Optional[t.Dict[str, str]] = None, + to_configure: t.Optional[flask.Flask] = None, +) -> flask.Flask: + if environ is None: + environ = dict(os.environ) + if to_configure is None: + from apd.sensors.wsgi import app + + to_configure = app + missing_keys = REQUIRED_CONFIG_KEYS - environ.keys() + if missing_keys: + raise ValueError("Missing config variables: {}".format(", ".join(missing_keys))) + to_configure.config.from_mapping(environ) + return to_configure diff --git a/Ch05/apd.sensors-chapter05-pintbased/src/apd/sensors/wsgi/serve.py b/Ch05/apd.sensors-chapter05-pintbased/src/apd/sensors/wsgi/serve.py new file mode 100644 index 0000000..0b1f684 --- /dev/null +++ b/Ch05/apd.sensors-chapter05-pintbased/src/apd/sensors/wsgi/serve.py @@ -0,0 +1,10 @@ +from . import app +from .base import set_up_config + +if __name__ == "__main__": + import wsgiref.simple_server + + set_up_config(None, app) + + with wsgiref.simple_server.make_server("", 8000, app) as server: + server.serve_forever() diff --git a/Ch05/apd.sensors-chapter05-pintbased/src/apd/sensors/wsgi/v10.py b/Ch05/apd.sensors-chapter05-pintbased/src/apd/sensors/wsgi/v10.py new file mode 100644 index 0000000..7eee6dd --- /dev/null +++ b/Ch05/apd.sensors-chapter05-pintbased/src/apd/sensors/wsgi/v10.py @@ -0,0 +1,26 @@ +import json +import typing as t + +import flask + +from apd.sensors.cli import get_sensors +from .base import require_api_key + +version = flask.Blueprint(__name__, __name__) + + +@version.route("/sensors/") +@require_api_key +def sensor_values() -> t.Tuple[t.Dict[str, t.Any], int, t.Dict[str, str]]: + headers = {"Content-Security-Policy": "default-src 'none'"} + data = {} + for sensor in get_sensors(): + value = sensor.value() + try: + json.dumps(value) + except TypeError: + # This value isn't JSON serializable, skip it + continue + else: + data[sensor.title] = sensor.value() + return data, 200, headers diff --git a/Ch05/apd.sensors-chapter05-pintbased/src/apd/sensors/wsgi/v20.py b/Ch05/apd.sensors-chapter05-pintbased/src/apd/sensors/wsgi/v20.py new file mode 100644 index 0000000..fd2b5fc --- /dev/null +++ b/Ch05/apd.sensors-chapter05-pintbased/src/apd/sensors/wsgi/v20.py @@ -0,0 +1,32 @@ +import typing as t + +import flask + +from apd.sensors.cli import get_sensors +from .base import require_api_key + +version = flask.Blueprint(__name__, __name__) + + +@version.route("/sensors/") +@version.route("/sensors/") +@require_api_key +def sensor_values(sensor_id=None) -> t.Tuple[t.Dict[str, t.Any], int, t.Dict[str, str]]: + headers = {"Content-Security-Policy": "default-src 'none'"} + sensors = [] + for sensor in get_sensors(): + if sensor_id and sensor_id != sensor.name: + continue + try: + value = sensor.value() + sensor_data = { + "id": sensor.name, + "title": sensor.title, + "value": sensor.to_json_compatible(value), + "human_readable": sensor.format(value), + } + sensors.append(sensor_data) + except NotImplementedError: + pass + data = {"sensors": sensors} + return data, 200, headers diff --git a/Ch05/apd.sensors-chapter05-pintbased/tests/test_acstatus.py b/Ch05/apd.sensors-chapter05-pintbased/tests/test_acstatus.py new file mode 100644 index 0000000..d2fe71e --- /dev/null +++ b/Ch05/apd.sensors-chapter05-pintbased/tests/test_acstatus.py @@ -0,0 +1,55 @@ +from unittest import mock + +import pytest + +from apd.sensors.sensors import ACStatus + + +@pytest.fixture +def sensor(): + return ACStatus() + + +class TestACStatusFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_True(self, subject): + assert subject(True) == "Connected" + + def test_format_False(self, subject): + assert subject(False) == "Not connected" + + def test_format_None(self, subject): + assert subject(None) == "Unknown" + + +class TestACStatusValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def sensors_battery(self): + with mock.patch("psutil.sensors_battery") as sensors_battery: + yield sensors_battery + + def test_sensors_battery_called(self, subject, sensors_battery): + sensors_battery.return_value.power_plugged = True + assert subject() is True + assert sensors_battery.call_count == 1 + + def test_sensor_but_battery_unknown(self, subject, sensors_battery): + sensors_battery.return_value.power_plugged = None + assert subject() is None + assert sensors_battery.call_count == 1 + + def test_no_sensor(self, subject, sensors_battery): + sensors_battery.return_value = None + assert subject() is None + + def test_str_representation_is_formatted_value(self, sensor, sensors_battery): + sensors_battery.return_value.power_plugged = True + assert str(sensor) == "Connected" + assert sensors_battery.call_count == 1 diff --git a/Ch05/apd.sensors-chapter05-pintbased/tests/test_api_server.py b/Ch05/apd.sensors-chapter05-pintbased/tests/test_api_server.py new file mode 100644 index 0000000..0ffbeaa --- /dev/null +++ b/Ch05/apd.sensors-chapter05-pintbased/tests/test_api_server.py @@ -0,0 +1,105 @@ +import os +import uuid +from unittest import mock + +import flask +import pytest +from webtest import TestApp + +from apd.sensors.wsgi import set_up_config +from apd.sensors.sensors import PythonVersion +from apd.sensors.wsgi import v10 +from apd.sensors.wsgi import v20 + + +@pytest.fixture(scope="session") +def api_key(): + return uuid.uuid4().hex + + +def test_api_key_is_required_config_option(): + app = mock.MagicMock() + with pytest.raises( + ValueError, match="Missing config variables: APD_SENSORS_API_KEY" + ): + set_up_config({}, to_configure=app) + + +def test_os_environ_is_default_for_config_values(api_key): + app = mock.MagicMock() + os.environ["APD_SENSORS_API_KEY"] = api_key + try: + assert app.config.from_mapping.call_count == 0 + set_up_config(None, to_configure=app) + assert app.config.from_mapping.call_count == 1 + assert app.config.from_mapping.call_args[0][0] == os.environ + finally: + del os.environ["APD_SENSORS_API_KEY"] + + +class CommonTests: + @pytest.mark.functional + def test_sensor_values_fails_on_missing_api_key(self, api_server): + response = api_server.get("/sensors/", expect_errors=True) + assert response.status_code == 403 + assert response.json["error"] == "Supply API key in X-API-Key header" + + @pytest.mark.functional + def test_sensor_values_require_correct_api_key(self, api_server): + response = api_server.get( + "/sensors/", headers={"X-API-Key": "wrong_key"}, expect_errors=True + ) + assert response.status_code == 403 + assert response.json["error"] == "Supply API key in X-API-Key header" + + +class Testv10API(CommonTests): + @pytest.fixture + def subject(self, api_key): + app = flask.Flask("testapp") + app.register_blueprint(v10.version) + set_up_config({"APD_SENSORS_API_KEY": api_key}, to_configure=app) + return app + + @pytest.fixture + def api_server(self, subject): + return TestApp(subject) + + @pytest.mark.functional + def test_sensor_values_returned_as_json(self, api_server, api_key): + value = api_server.get("/sensors/", headers={"X-API-Key": api_key}).json + python_version = PythonVersion().value() + + sensor_names = value.keys() + assert "Python Version" in sensor_names + assert value["Python Version"] == list(python_version) + + @pytest.mark.functional + def test_unserializable_sensor_is_omitted(self, api_server, api_key): + value = api_server.get("/sensors/", headers={"X-API-Key": api_key}).json + sensor_names = value.keys() + assert "Temperature" not in sensor_names + + +class Testv20API(CommonTests): + @pytest.fixture + def subject(self, api_key): + app = flask.Flask("testapp") + app.register_blueprint(v20.version) + set_up_config({"APD_SENSORS_API_KEY": api_key}, to_configure=app) + return app + + @pytest.fixture + def api_server(self, subject): + return TestApp(subject) + + @pytest.mark.functional + def test_sensor_values_returned_as_json(self, api_server, api_key): + value = api_server.get("/sensors/", headers={"X-API-Key": api_key}).json + sensors = value["sensors"] + + python_version = [ + sensor for sensor in sensors if sensor["id"] == "PythonVersion" + ][0] + assert python_version["title"] == "Python Version" + assert python_version["value"] == list(PythonVersion().value()) diff --git a/Ch05/apd.sensors-chapter05-pintbased/tests/test_cpuusage.py b/Ch05/apd.sensors-chapter05-pintbased/tests/test_cpuusage.py new file mode 100644 index 0000000..445f4e5 --- /dev/null +++ b/Ch05/apd.sensors-chapter05-pintbased/tests/test_cpuusage.py @@ -0,0 +1,45 @@ +from unittest import mock + +import pytest + +from apd.sensors.sensors import CPULoad + + +@pytest.fixture +def sensor(): + return CPULoad() + + +class TestCPULoadFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_simple_percentage(self, subject): + assert subject(0.05) == "5.0%" + + def test_format_multiple_decimal_places(self, subject): + assert subject(0.031415926) == "3.1%" + + def test_format_multiple_decimal_places_int(self, subject) -> None: + assert subject(1) == "100.0%" + + +class TestCPULoadValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def cpuload(self): + with mock.patch("psutil.cpu_percent") as cpu_percent: + cpu_percent.return_value = 50.1 + yield cpu_percent + + def test_cpu_percent_called_With_interval(self, subject, cpuload): + assert subject() == 0.501 + assert cpuload.call_count == 1 + assert tuple(cpuload.call_args) == ((), {"interval": 3}) + + def test_str_representation_is_formatted_value(self, sensor, cpuload): + assert str(sensor) == "50.1%" diff --git a/Ch05/apd.sensors-chapter05-pintbased/tests/test_dht.py b/Ch05/apd.sensors-chapter05-pintbased/tests/test_dht.py new file mode 100644 index 0000000..52a5ee9 --- /dev/null +++ b/Ch05/apd.sensors-chapter05-pintbased/tests/test_dht.py @@ -0,0 +1,67 @@ +import pytest + +from apd.sensors.sensors import Temperature, RelativeHumidity, ureg + + +@pytest.fixture +def temperature_sensor(): + return Temperature() + + +@pytest.fixture +def humidity_sensor(): + return RelativeHumidity() + + +class TestTemperatureFormatter: + @pytest.fixture + def subject(self, temperature_sensor): + return temperature_sensor.format + + @staticmethod + def to_degc(magnitude): + return ureg.Quantity(magnitude, "degree_Celsius") + + def test_format_21c(self, subject): + assert subject(self.to_degc(21.0)) == "21.0 °C (69.8 °F)" + + def test_format_negative(self, subject): + assert subject(self.to_degc(-32.0)) == "-32.0 °C (-25.6 °F)" + + def test_format_unknown(self, subject): + assert subject(None) == "Unknown" + + +class TestTemperatureSerializer: + @pytest.fixture + def serialize(self, temperature_sensor): + return temperature_sensor.to_json_compatible + + @pytest.fixture + def deserialize(self, temperature_sensor): + return temperature_sensor.from_json_compatible + + @staticmethod + def to_degc(magnitude): + return ureg.Quantity(magnitude, "degree_Celsius") + + def test_serialize_21c(self, serialize): + assert serialize(self.to_degc(21.0)) == {"magnitude": 21.0, "unit": "degree_Celsius"} + + def test_serialize_negative(self, serialize): + assert serialize(self.to_degc(-32.3)) == {"magnitude": -32.3, "unit": "degree_Celsius"} + + def test_deserialize_21c(self, deserialize): + assert deserialize({"magnitude": 21.0, "unit": "degree_Celsius"}) == self.to_degc(21.0) + + +class TestHumidityFormatter: + @pytest.fixture + def subject(self, humidity_sensor): + return humidity_sensor.format + + def test_format_percentage(self, subject): + assert subject(0.035) == "3.5%" + + def test_format_unknown(self, subject): + assert subject(None) == "Unknown" diff --git a/Ch05/apd.sensors-chapter05-pintbased/tests/test_ipaddresses.py b/Ch05/apd.sensors-chapter05-pintbased/tests/test_ipaddresses.py new file mode 100644 index 0000000..bd61d85 --- /dev/null +++ b/Ch05/apd.sensors-chapter05-pintbased/tests/test_ipaddresses.py @@ -0,0 +1,59 @@ +import socket +from unittest import mock + +import pytest + +from apd.sensors.sensors import IPAddresses + + +@pytest.fixture +def sensor(): + return IPAddresses() + + +class TestIPAddressFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_single_ipv4(self, subject): + ips = [("AF_INET", "192.0.2.1")] + assert subject(ips) == "192.0.2.1 (IPv4)" + + def test_format_single_ipv6(self, subject): + ips = [("AF_INET6", "2001:DB8::1")] + assert subject(ips) == "2001:DB8::1 (IPv6)" + + def test_format_mixed_list(self, subject): + ips = [("AF_INET", "192.0.2.1"), ("AF_INET6", "2001:DB8::1")] + assert subject(ips) == "192.0.2.1 (IPv4)\n2001:DB8::1 (IPv6)" + + def test_unusual_protocols_are_marked_as_unknown(self, subject): + ips = [("AF_IRDA", "ffff")] + assert subject(ips) == "ffff (Unknown)" + + +class TestIPAddressesValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def gethostname(self): + with mock.patch("socket.gethostname") as gethostname: + gethostname.return_value = "localhost" + yield gethostname + + @pytest.fixture + def getaddrinfo(self, gethostname): + with mock.patch("socket.getaddrinfo") as getaddrinfo: + yield getaddrinfo + + def test_getaddrinfo_used_for_value_collection(self, getaddrinfo, subject): + getaddrinfo.return_value = [(socket.AF_INET, 0, 0, "", ("192.0.2.1", 0))] + assert subject() == [("AF_INET", "192.0.2.1")] + assert getaddrinfo.call_count == 1 + + def test_str_representation_is_formatted_value(self, getaddrinfo, sensor): + getaddrinfo.return_value = [(socket.AF_INET6, 0, 0, "", ("2001:DB8::1", 0))] + assert str(sensor) == "2001:DB8::1 (IPv6)" diff --git a/Ch05/apd.sensors-chapter05-pintbased/tests/test_pythonversion.py b/Ch05/apd.sensors-chapter05-pintbased/tests/test_pythonversion.py new file mode 100644 index 0000000..43ad806 --- /dev/null +++ b/Ch05/apd.sensors-chapter05-pintbased/tests/test_pythonversion.py @@ -0,0 +1,61 @@ +from collections import namedtuple +from unittest import mock + +import pytest + +from apd.sensors.sensors import PythonVersion + + +@pytest.fixture +def version(): + return namedtuple( + "sys_versioninfo", ("major", "minor", "micro", "releaselevel", "serial") + ) + + +@pytest.fixture +def sensor(): + return PythonVersion() + + +class TestPythonVersionFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_py38(self, subject, version): + py38 = version(3, 8, 0, "final", 0) + assert subject(py38) == "3.8" + + def test_format_large_version(self, subject, version): + large = version(255, 128, 0, "final", 0) + assert subject(large) == "255.128" + + def test_alpha_of_minor_is_marked(self, subject, version): + py39 = version(3, 9, 0, "alpha", 1) + assert subject(py39) == "3.9.0a1" + + def test_alpha_of_micro_is_unmarked(self, subject, version): + py39 = version(3, 9, 1, "alpha", 1) + assert subject(py39) == "3.9" + + +class TestPythonVersionValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def python_version(self): + import sys + + return sys.version_info + + def test_data_value_is_sys_versioninfo(self, python_version, subject): + assert subject() == python_version + + +class TestPythonVersionSensor: + def test_str_representation_is_formatted_value(self, sensor, version): + with mock.patch("sys.version_info", new=version(3, 4, 1, "final", 1)): + assert str(sensor) == "3.4" diff --git a/Ch05/apd.sensors-chapter05-pintbased/tests/test_ramusage.py b/Ch05/apd.sensors-chapter05-pintbased/tests/test_ramusage.py new file mode 100644 index 0000000..197ad06 --- /dev/null +++ b/Ch05/apd.sensors-chapter05-pintbased/tests/test_ramusage.py @@ -0,0 +1,47 @@ +from unittest import mock + +import pytest + +from apd.sensors.sensors import RAMAvailable + + +@pytest.fixture +def sensor(): + return RAMAvailable() + + +class TestRAMAvailableFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_bytes(self, subject): + assert subject(15) == "15.0 B" + + def test_format_kibibytes(self, subject): + assert subject(15000) == "14.6 KiB" + + def test_format_mibibytes(self, subject): + assert subject(15000000) == "14.3 MiB" + + def test_format_gibibytes(self, subject): + assert subject(15000000000) == "14.0 GiB" + + +class TestRAMAvailableValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def virtual_memory(self): + with mock.patch("psutil.virtual_memory") as virtual_memory: + virtual_memory.return_value.available = 1024 + yield virtual_memory + + def test_virtual_memory_called(self, subject, virtual_memory): + assert subject() == 1024 + assert virtual_memory.call_count == 1 + + def test_str_representation_is_formatted_value(self, sensor, virtual_memory): + assert str(sensor) == "1.0 KiB" diff --git a/Ch05/apd.sensors-chapter05-pintbased/tests/test_sensors.py b/Ch05/apd.sensors-chapter05-pintbased/tests/test_sensors.py new file mode 100644 index 0000000..c67a180 --- /dev/null +++ b/Ch05/apd.sensors-chapter05-pintbased/tests/test_sensors.py @@ -0,0 +1,88 @@ +import json +from unittest import mock + +from click.testing import CliRunner + +import pytest + +import apd.sensors.cli +import apd.sensors.sensors + + +def test_sensors(): + assert hasattr(apd.sensors.sensors, "PythonVersion") + + +@pytest.mark.functional +def test_first_sensor_is_first_two_lines_of_cli_output(): + runner = CliRunner() + with mock.patch("apd.sensors.cli.get_sensors") as get_sensors: + get_sensors.return_value = [apd.sensors.sensors.PythonVersion()] + result = runner.invoke(apd.sensors.cli.show_sensors) + python_version = str(apd.sensors.sensors.PythonVersion()) + assert ["Python Version", python_version] == result.stdout.split("\n")[:2] + + +class TestSensorFromPath: + @pytest.fixture + def subject(self): + return apd.sensors.cli.get_sensor_by_path + + def test_get_sensor_by_path(self, subject): + assert isinstance( + subject("apd.sensors.sensors:PythonVersion"), + apd.sensors.sensors.PythonVersion, + ) + + def test_invalid_format(self, subject): + with pytest.raises(RuntimeError, match="dotted.path.to.module:ClassName"): + subject("apd.sensors.sensors.PythonVersion") + + def test_invalid_module(self, subject): + with pytest.raises(RuntimeError, match="Could not import module"): + subject("apd.nonsense.sensor:FakeSensor") + + def test_missing_sensor(self, subject): + with pytest.raises(RuntimeError, match="Could not find attribute"): + subject("apd.sensors.sensors:FakeSensor") + + def test_invalid_sensor(self, subject): + with pytest.raises(RuntimeError, match="is not recognised as a Sensor"): + subject("apd.sensors.sensors:Sensor") + + +@pytest.mark.functional +def test_develop_option_finds_sensor_by_path(): + runner = CliRunner() + result = runner.invoke( + apd.sensors.cli.show_sensors, ["--develop", "apd.sensors.sensors:PythonVersion"] + ) + python_version = str(apd.sensors.sensors.PythonVersion()) + assert ["Python Version", python_version, "", ""] == result.stdout.split("\n") + + +class TestDefaultSerializer: + @pytest.fixture + def python_version(self): + return apd.sensors.sensors.PythonVersion() + + @pytest.fixture + def serialize(self, python_version): + return python_version.to_json_compatible + + @pytest.fixture + def deserialize(self, python_version): + return python_version.from_json_compatible + + def test_serialize_deserialize_is_symmetric( + self, python_version, serialize, deserialize + ): + value = python_version.value() + serialized = serialize(value) + json_version = json.dumps(serialized) + assert ( + json_version == f"[{value.major}, {value.minor}, {value.micro}," + f' "{value.releaselevel}", {value.serial}]' + ) + deserialized = deserialize(serialized) + assert deserialized == value diff --git a/Ch05/apd.sensors-chapter05/.pre-commit-config.yaml b/Ch05/apd.sensors-chapter05/.pre-commit-config.yaml new file mode 100644 index 0000000..d3b6ec7 --- /dev/null +++ b/Ch05/apd.sensors-chapter05/.pre-commit-config.yaml @@ -0,0 +1,26 @@ +repos: + +- repo: local + hooks: + - id: black + name: black + entry: pipenv run black + args: [--quiet] + language: system + types: [python] + + - id: mypy + name: mypy + exclude: (?x)^( + (.*)/setup.py + )$ + entry: pipenv run mypy + args: ["--follow-imports=skip"] + language: system + types: [python] + + - id: flake8 + name: flake8 + entry: pipenv run flake8 + language: system + types: [python] diff --git a/Ch05/apd.sensors-chapter05/CHANGES.md b/Ch05/apd.sensors-chapter05/CHANGES.md new file mode 100644 index 0000000..dba741b --- /dev/null +++ b/Ch05/apd.sensors-chapter05/CHANGES.md @@ -0,0 +1,29 @@ +## Changes + +### 2.0.0 (2019-09-08) + +* Add `to_json_compatible` and `from_json_compatible` methods to Sensor + to facilitate better HTTP API (Matthew Wilkes) + +* HTTP API is now versioned. The API from 1.3.0 is available at /v/1.0 + and an updated version is at /v/2.0 (Matthew Wilkes) + +### 1.3.0 (2019-08-20) + +* WSGI HTTP API support added (Matthew Wilkes) + +### 1.2.0 (2019-08-05) + +* Add external plugin support through `apd.sensors.sensors` entrypoint (Matthew Wilkes) + +### 1.1.0 (2019-07-12) + +* Add --develop argument (Matthew Wilkes) + +### 1.0.1 (2019-06-20) + +* Fix broken 1.0.0 release (Matthew Wilkes) + +### 1.0.0 (2019-06-20) + +* Added initial sensors (Matthew Wilkes) diff --git a/Ch05/apd.sensors-chapter05/LICENCE b/Ch05/apd.sensors-chapter05/LICENCE new file mode 100644 index 0000000..053f694 --- /dev/null +++ b/Ch05/apd.sensors-chapter05/LICENCE @@ -0,0 +1,19 @@ +Copyright (c) 2019 Matthew Wilkes + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. diff --git a/Ch05/apd.sensors-chapter05/Pipfile b/Ch05/apd.sensors-chapter05/Pipfile new file mode 100644 index 0000000..f6cd446 --- /dev/null +++ b/Ch05/apd.sensors-chapter05/Pipfile @@ -0,0 +1,34 @@ +[[source]] +name = "pypi" +url = "https://pypi.org/simple" +verify_ssl = true + +[[source]] +name = "piwheels" +url = "https://piwheels.org/simple" +verify_ssl = true + +[dev-packages] +ipykernel = "*" +remote-ikernel = "*" +pytest = "*" +pytest-cov = "*" +mypy = "*" +flake8 = "*" +black = "*" +pre-commit = "*" +wheel = "*" +twine = "*" +webtest = "*" +apd-sensors = {editable = true,extras = ["webapp"],path = "."} + +[packages] +apd-sensors = {editable = true,path = "."} +apd-sunnyboy-solar = {editable = true,path = "./plugins/apd.sunnyboy_solar"} +waitress = "*" +pint = "*" + +[requires] + +[pipenv] +allow_prereleases = true diff --git a/Ch05/apd.sensors-chapter05/Pipfile.lock b/Ch05/apd.sensors-chapter05/Pipfile.lock new file mode 100644 index 0000000..3b587bb --- /dev/null +++ b/Ch05/apd.sensors-chapter05/Pipfile.lock @@ -0,0 +1,1018 @@ +{ + "_meta": { + "hash": { + "sha256": "b5f132c374a0a891097a70c6f3be719ec794dec7b855ed5f0ed9adad4d72b0e7" + }, + "pipfile-spec": 6, + "requires": {}, + "sources": [ + { + "name": "pypi", + "url": "https://pypi.org/simple", + "verify_ssl": true + }, + { + "name": "piwheels", + "url": "https://piwheels.org/simple", + "verify_ssl": true + } + ] + }, + "default": { + "apd-sensors": { + "editable": true, + "path": "." + }, + "apd-sunnyboy-solar": { + "editable": true, + "path": "./plugins/apd.sunnyboy_solar" + }, + "click": { + "hashes": [ + "sha256:8a18b4ea89d8820c5d0c7da8a64b2c324b4dabb695804dbfea19b9be9d88c0cc", + "sha256:e345d143d80bf5ee7534056164e5e112ea5e22716bbb1ce727941f4c8b471b9a" + ], + "version": "==7.1.1" + }, + "pint": { + "hashes": [ + "sha256:308f1070500e102f83b6adfca6db53debfce2ffc5d3cbe3f6c367da359b5cf4d", + "sha256:5690c85948dfb283382aa73357c3d5a333e8c7d818be7d8643db18e07597dd99", + "sha256:833ec1b2561a29dd5ab316825924ec2ce64dc7d69ab09505cd1bea7709c8f0f8" + ], + "index": "pypi", + "version": "==0.11" + }, + "psutil": { + "hashes": [ + "sha256:002bd856770037221256765a472f50d677074ad207276a39e2bccdb7394e333b", + "sha256:1413f4158eb50e110777c4f15d7c759521703bd6beb58926f1d562da40180058", + "sha256:298af2f14b635c3c7118fd9183843f4e73e681bb6f01e12284d4d70d48a60953", + "sha256:60b86f327c198561f101a92be1995f9ae0399736b6eced8f24af41ec64fb88d4", + "sha256:685ec16ca14d079455892f25bd124df26ff9137664af445563c1bd36629b5e0e", + "sha256:73f35ab66c6c7a9ce82ba44b1e9b1050be2a80cd4dcc3352cc108656b115c74f", + "sha256:75e22717d4dbc7ca529ec5063000b2b294fc9a367f9c9ede1f65846c7955fd38", + "sha256:833b2b19c04fc0aecad22daa3e35108d6ee2e4f92061a4a8f2dd77c6fa9154f5", + "sha256:a02f4ac50d4a23253b68233b07e7cdb567bd025b982d5cf0ee78296990c22d9e", + "sha256:d008ddc00c6906ec80040d26dc2d3e3962109e40ad07fd8a12d0284ce5e0e4f8", + "sha256:d84029b190c8a66a946e28b4d3934d2ca1528ec94764b180f7d6ea57b0e75e26", + "sha256:e2d0c5b07c6fe5a87fa27b7855017edb0d52ee73b71e6ee368fae268605cc3f5", + "sha256:f344ca230dd8e8d5eee16827596f1c22ec0876127c28e800d7ae20ed44c4b310", + "sha256:f3e7f183162622eae9fbdee44ff19b226edec68b94ae7cba47f9afcf4c3ec66c" + ], + "version": "==5.7.0" + }, + "waitress": { + "hashes": [ + "sha256:045b3efc3d97c93362173ab1dfc159b52cfa22b46c3334ffc805dbdbf0e4309e", + "sha256:77ff3f3226931a1d7d8624c5371de07c8e90c7e5d80c5cc660d72659aaf23f38" + ], + "index": "pypi", + "version": "==1.4.3" + } + }, + "develop": { + "apd-sensors": { + "editable": true, + "path": "." + }, + "appdirs": { + "hashes": [ + "sha256:9e5896d1372858f8dd3344faf4e5014d21849c756c8d5701f78f8a103b372d92", + "sha256:d8b24664561d0d34ddfaec54636d502d7cea6e29c3eaf68f3df6180863e2166e" + ], + "version": "==1.4.3" + }, + "async-generator": { + "hashes": [ + "sha256:01c7bf666359b4967d2cda0000cc2e4af16a0ae098cbffcb8472fb9e8ad6585b", + "sha256:6ebb3d106c12920aaae42ccb6f787ef5eefdcdd166ea3d628fa8476abe712144" + ], + "version": "==1.10" + }, + "atomicwrites": { + "hashes": [ + "sha256:03472c30eb2c5d1ba9227e4c2ca66ab8287fbfbbda3888aa93dc2e28fc6811b4", + "sha256:75a9445bac02d8d058d5e1fe689654ba5a6556a1dfd8ce6ec55a0ed79866cfa6" + ], + "markers": "sys_platform == 'win32'", + "version": "==1.3.0" + }, + "attrs": { + "hashes": [ + "sha256:08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c", + "sha256:f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72" + ], + "version": "==19.3.0" + }, + "backcall": { + "hashes": [ + "sha256:1fac21e6861f538700a5d498620153f38407a4bacf9e1d5047b3d717f10bc4ab", + "sha256:38ecd85be2c1e78f77fd91700c76e14667dc21e2713b63876c0eb901196e01e4", + "sha256:bbbf4b1e5cd2bdb08f915895b51081c041bac22394fdfcfdfbe9f14b77c08bf2" + ], + "version": "==0.1.0" + }, + "beautifulsoup4": { + "hashes": [ + "sha256:594ca51a10d2b3443cbac41214e12dbb2a1cd57e1a7344659849e2e20ba6a8d8", + "sha256:a4bbe77fd30670455c5296242967a123ec28c37e9702a8a81bd2f20a4baf0368", + "sha256:d4e96ac9b0c3a6d3f0caae2e4124e6055c5dcafde8e2f831ff194c104f0775a0" + ], + "version": "==4.9.0" + }, + "black": { + "hashes": [ + "sha256:1b30e59be925fafc1ee4565e5e08abef6b03fe455102883820fe5ee2e4734e0b", + "sha256:c2edb73a08e9e0e6f65a0e6af18b059b8b1cdd5bef997d7a0b181df93dc81539" + ], + "index": "pypi", + "version": "==19.10b0" + }, + "bleach": { + "hashes": [ + "sha256:cc8da25076a1fe56c3ac63671e2194458e0c4d9c7becfd52ca251650d517903c", + "sha256:e78e426105ac07026ba098f04de8abe9b6e3e98b5befbf89b51a5ef0a4292b03" + ], + "version": "==3.1.4" + }, + "certifi": { + "hashes": [ + "sha256:1d987a998c75633c40847cc966fcf5904906c920a7f17ef374f5aa4282abd304", + "sha256:51fcb31174be6e6664c5f69e3e1691a2d72a1a12e90f872cbdb1567eb47b6519" + ], + "version": "==2020.4.5.1" + }, + "cfgv": { + "hashes": [ + "sha256:1ccf53320421aeeb915275a196e23b3b8ae87dea8ac6698b1638001d4a486d53", + "sha256:c8e8f552ffcc6194f4e18dd4f68d9aef0c0d58ae7e7be8c82bee3c5e9edfa513" + ], + "version": "==3.1.0" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:8a18b4ea89d8820c5d0c7da8a64b2c324b4dabb695804dbfea19b9be9d88c0cc", + "sha256:e345d143d80bf5ee7534056164e5e112ea5e22716bbb1ce727941f4c8b471b9a" + ], + "version": "==7.1.1" + }, + "colorama": { + "hashes": [ + "sha256:7d73d2a99753107a36ac6b455ee49046802e59d9d076ef8e47b61499fa29afff", + "sha256:e96da0d330793e2cb9485e9ddfd918d456036c7149416295932478192f4436a1" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.3" + }, + "coverage": { + "hashes": [ + "sha256:03f630aba2b9b0d69871c2e8d23a69b7fe94a1e2f5f10df5049c0df99db639a0", + "sha256:046a1a742e66d065d16fb564a26c2a15867f17695e7f3d358d7b1ad8a61bca30", + "sha256:0a907199566269e1cfa304325cc3b45c72ae341fbb3253ddde19fa820ded7a8b", + "sha256:165a48268bfb5a77e2d9dbb80de7ea917332a79c7adb747bd005b3a07ff8caf0", + "sha256:1b60a95fc995649464e0cd48cecc8288bac5f4198f21d04b8229dc4097d76823", + "sha256:1f66cf263ec77af5b8fe14ef14c5e46e2eb4a795ac495ad7c03adc72ae43fafe", + "sha256:2e08c32cbede4a29e2a701822291ae2bc9b5220a971bba9d1e7615312efd3037", + "sha256:327ff84602ee3b5c0c921ff8bbe605e2dd3599fc2a12620b0085f847af4ebb2a", + "sha256:3844c3dab800ca8536f75ae89f3cf566848a3eb2af4d9f7b1103b4f4f7a5dad6", + "sha256:408ce64078398b2ee2ec08199ea3fcf382828d2f8a19c5a5ba2946fe5ddc6c31", + "sha256:443be7602c790960b9514567917af538cac7807a7c0c0727c4d2bbd4014920fd", + "sha256:4482f69e0701139d0f2c44f3c395d1d1d37abd81bfafbf9b6efbe2542679d892", + "sha256:4a8a259bf990044351baf69d3b23e575699dd60b18460c71e81dc565f5819ac1", + "sha256:513e6526e0082c59a984448f4104c9bf346c2da9961779ede1fc458e8e8a1f78", + "sha256:5f587dfd83cb669933186661a351ad6fc7166273bc3e3a1531ec5c783d997aac", + "sha256:62061e87071497951155cbccee487980524d7abea647a1b2a6eb6b9647df9006", + "sha256:641e329e7f2c01531c45c687efcec8aeca2a78a4ff26d49184dce3d53fc35014", + "sha256:65a7e00c00472cd0f59ae09d2fb8a8aaae7f4a0cf54b2b74f3138d9f9ceb9cb2", + "sha256:6ad6ca45e9e92c05295f638e78cd42bfaaf8ee07878c9ed73e93190b26c125f7", + "sha256:73aa6e86034dad9f00f4bbf5a666a889d17d79db73bc5af04abd6c20a014d9c8", + "sha256:7c9762f80a25d8d0e4ab3cb1af5d9dffbddb3ee5d21c43e3474c84bf5ff941f7", + "sha256:85596aa5d9aac1bf39fe39d9fa1051b0f00823982a1de5766e35d495b4a36ca9", + "sha256:86a0ea78fd851b313b2e712266f663e13b6bc78c2fb260b079e8b67d970474b1", + "sha256:8a620767b8209f3446197c0e29ba895d75a1e272a36af0786ec70fe7834e4307", + "sha256:922fb9ef2c67c3ab20e22948dcfd783397e4c043a5c5fa5ff5e9df5529074b0a", + "sha256:9fad78c13e71546a76c2f8789623eec8e499f8d2d799f4b4547162ce0a4df435", + "sha256:a37c6233b28e5bc340054cf6170e7090a4e85069513320275a4dc929144dccf0", + "sha256:c3fc325ce4cbf902d05a80daa47b645d07e796a80682c1c5800d6ac5045193e5", + "sha256:cda33311cb9fb9323958a69499a667bd728a39a7aa4718d7622597a44c4f1441", + "sha256:db1d4e38c9b15be1521722e946ee24f6db95b189d1447fa9ff18dd16ba89f732", + "sha256:eda55e6e9ea258f5e4add23bcf33dc53b2c319e70806e180aecbff8d90ea24de", + "sha256:f0db0dc803e0f81f2a4098d4f25904f41be13b6d3e69f098b5b2bbba17cb7985", + "sha256:f372cdbb240e09ee855735b9d85e7f50730dcfb6296b74b95a3e5dea0615c4c1" + ], + "version": "==5.0.4" + }, + "decorator": { + "hashes": [ + "sha256:41fa54c2a0cc4ba648be4fd43cff00aedf5b9465c9bf18d64325bc225f08f760", + "sha256:e3a62f0520172440ca0dcc823749319382e377f37f140a0b99ef45fecb84bfe7" + ], + "version": "==4.4.2" + }, + "defusedxml": { + "hashes": [ + "sha256:6687150770438374ab581bb7a1b327a847dd9c5749e396102de3fad4e8a3ef93", + "sha256:f684034d135af4c6cbb949b8a4d2ed61634515257a67299e5f940fbaa34377f5" + ], + "version": "==0.6.0" + }, + "distlib": { + "hashes": [ + "sha256:2e166e231a26b36d6dfe35a48c4464346620f8645ed0ace01ee31822b288de21", + "sha256:8a041060c5a140131768a2e2450813f5577f7e4c68a4585824c5585502dcfbea" + ], + "version": "==0.3.0" + }, + "docutils": { + "hashes": [ + "sha256:0c5b78adfbf7762415433f5515cd5c9e762339e23369dbe8000d84a4bf4ab3af", + "sha256:c2de3a60e9e7d07be26b7f2b00ca0309c207e06c100f9cc2a94931fc75a478fc" + ], + "version": "==0.16" + }, + "entrypoints": { + "hashes": [ + "sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19", + "sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451" + ], + "version": "==0.3" + }, + "filelock": { + "hashes": [ + "sha256:18d82244ee114f543149c66a6e0c14e9c4f8a1044b5cdaadd0f82159d6a6ff59", + "sha256:929b7d63ec5b7d6b71b0fa5ac14e030b3f70b75747cef1b10da9b879fef15836" + ], + "version": "==3.0.12" + }, + "flake8": { + "hashes": [ + "sha256:45681a117ecc81e870cbf1262835ae4af5e7a8b08e40b944a8a6e6b895914cfb", + "sha256:49356e766643ad15072a789a20915d3c91dc89fd313ccd71802303fd67e4deca" + ], + "index": "pypi", + "version": "==3.7.9" + }, + "flask": { + "hashes": [ + "sha256:4efa1ae2d7c9865af48986de8aeb8504bf32c7f3d6fdc9353d34b21f4b127060", + "sha256:8a4fdd8936eba2512e9c85df320a37e694c93945b33ef33c89946a340a238557" + ], + "version": "==1.1.2" + }, + "identify": { + "hashes": [ + "sha256:2bb8760d97d8df4408f4e805883dad26a2d076f04be92a10a3e43f09c6060742", + "sha256:faffea0fd8ec86bb146ac538ac350ed0c73908326426d387eded0bcc9d077522" + ], + "version": "==1.4.14" + }, + "idna": { + "hashes": [ + "sha256:7588d1c14ae4c77d74036e8c22ff447b26d0fde8f007354fd48a7814db15b7cb", + "sha256:a068a21ceac8a4d63dbfd964670474107f541babbd2250d61922f029858365fa" + ], + "version": "==2.9" + }, + "ipykernel": { + "hashes": [ + "sha256:08997a27ccafbb998437d167ccc893666c6088ec3aa90c054bfb3d588bb3fc20", + "sha256:37c65d2e2da3326e5cf114405df6d47d997b8a3eba99e2cc4b75833bf71a5e18", + "sha256:39746b5f7d847a23fae4eac893e63e3d9cc5f8c3a4797fcd3bfa8d1a296ec6ed" + ], + "index": "pypi", + "version": "==5.2.0" + }, + "ipython": { + "hashes": [ + "sha256:1807adeae64502fcaa491cd93405644faa055b646efb40c1e48648ad66f65a75", + "sha256:ca478e52ae1f88da0102360e57e528b92f3ae4316aabac80a2cd7f7ab2efb48a", + "sha256:eb8d075de37f678424527b5ef6ea23f7b80240ca031c2dd6de5879d687a65333" + ], + "version": "==7.13.0" + }, + "ipython-genutils": { + "hashes": [ + "sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8", + "sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8" + ], + "version": "==0.2.0" + }, + "itsdangerous": { + "hashes": [ + "sha256:321b033d07f2a4136d3ec762eac9f16a10ccd60f53c0c91af90217ace7ba1f19", + "sha256:b12271b2047cb23eeb98c8b5622e2e5c5e9abd9784a153e9d8ef9cb4dd09d749" + ], + "version": "==1.1.0" + }, + "jedi": { + "hashes": [ + "sha256:b4f4052551025c6b0b0b193b29a6ff7bdb74c52450631206c262aef9f7159ad2", + "sha256:d5c871cb9360b414f981e7072c52c33258d598305280fef91c6cae34739d65d5" + ], + "version": "==0.16.0" + }, + "jinja2": { + "hashes": [ + "sha256:39cbce1ffc25cbf4860b09195654763be95b9e4900475b24d5c345d3e0948c53", + "sha256:c10142f819c2d22bdcd17548c46fa9b77cf4fda45097854c689666bf425e7484", + "sha256:c922560ac46888d47384de1dbdc3daaa2ea993af4b26a436dec31fa2c19ec668" + ], + "version": "==3.0.0a1" + }, + "jsonschema": { + "hashes": [ + "sha256:4e5b3cf8216f577bee9ce139cbe72eca3ea4f292ec60928ff24758ce626cd163", + "sha256:c8a85b28d377cc7737e46e2d9f2b4f44ee3c0e1deac6bf46ddefc7187d30797a" + ], + "version": "==3.2.0" + }, + "jupyter-client": { + "hashes": [ + "sha256:5724827aedb1948ed6ed15131372bc304a8d3ad9ac67ac19da7c95120d6b17e0", + "sha256:81c1c712de383bf6bf3dab6b407392b0d84d814c7bd0ce2c7035ead8b2ffea97" + ], + "version": "==6.1.2" + }, + "jupyter-core": { + "hashes": [ + "sha256:394fd5dd787e7c8861741880bdf8a00ce39f95de5d18e579c74b882522219e7e", + "sha256:a4ee613c060fe5697d913416fc9d553599c05e4492d58fac1192c9a6844abb21" + ], + "version": "==4.6.3" + }, + "jupyterlab-pygments": { + "hashes": [ + "sha256:31deda75bd11b014190764c79f6199aa04ef2d4cf35c1c94270fc2e19c23a5c5", + "sha256:cc15f2a9850899d108a3c22743a86edcd3b42791a6c88b6e5b558d021d14d065" + ], + "version": "==0.1.0" + }, + "keyring": { + "hashes": [ + "sha256:197fd5903901030ef7b82fe247f43cfed2c157a28e7747d1cfcf4bc5e699dd03", + "sha256:8179b1cdcdcbc221456b5b74e6b7cfa06f8dd9f239eb81892166d9223d82c5ba", + "sha256:dcb7f54f06c868526b97f9825b558e5199661f9647849acf9204c2d6028501dc" + ], + "version": "==21.2.0" + }, + "markupsafe": { + "hashes": [ + "sha256:00bc623926325b26bb9605ae9eae8a215691f33cae5df11ca5424f06f2d1f473", + "sha256:09027a7803a62ca78792ad89403b1b7a73a01c8cb65909cd876f7fcebd79b161", + "sha256:09c4b7f37d6c648cb13f9230d847adf22f8171b1ccc4d5682398e77f40309235", + "sha256:1027c282dad077d0bae18be6794e6b6b8c91d58ed8a8d89a89d59693b9131db5", + "sha256:13d3144e1e340870b25e7b10b98d779608c02016d5184cfb9927a9f10c689f42", + "sha256:19536834abffb3fa155017053c607cb835b2ecc6a3a2554a88043d991dffb736", + "sha256:24982cc2533820871eba85ba648cd53d8623687ff11cbb805be4ff7b4c971aff", + "sha256:29872e92839765e546828bb7754a68c418d927cd064fd4708fab9fe9c8bb116b", + "sha256:3d61f15e39611aacd91b7e71d903787da86d9e80896e683c0103fced9add7834", + "sha256:43a55c2930bbc139570ac2452adf3d70cdbb3cfe5912c71cdce1c2c6bbd9c5d1", + "sha256:46c99d2de99945ec5cb54f23c8cd5689f6d7177305ebff350a58ce5f8de1669e", + "sha256:500d4957e52ddc3351cabf489e79c91c17f6e0899158447047588650b5e69183", + "sha256:535f6fc4d397c1563d08b88e485c3496cf5784e927af890fb3c3aac7f933ec66", + "sha256:596510de112c685489095da617b5bcbbac7dd6384aeebeda4df6025d0256a81b", + "sha256:62fe6c95e3ec8a7fad637b7f3d372c15ec1caa01ab47926cfdf7a75b40e0eac1", + "sha256:6788b695d50a51edb699cb55e35487e430fa21f1ed838122d722e0ff0ac5ba15", + "sha256:6dd73240d2af64df90aa7c4e7481e23825ea70af4b4922f8ede5b9e35f78a3b1", + "sha256:717ba8fe3ae9cc0006d7c451f0bb265ee07739daf76355d06366154ee68d221e", + "sha256:7952deddf24b85c88dab48f6ec366ac6e39d2761b5280f2f9594911e03fcd064", + "sha256:79855e1c5b8da654cf486b830bd42c06e8780cea587384cf6545b7d9ac013a0b", + "sha256:7c1699dfe0cf8ff607dbdcc1e9b9af1755371f92a68f706051cc8c37d447c905", + "sha256:88e5fcfb52ee7b911e8bb6d6aa2fd21fbecc674eadd44118a9cc3863f938e735", + "sha256:8defac2f2ccd6805ebf65f5eeb132adcf2ab57aa11fdf4c0dd5169a004710e7d", + "sha256:98c7086708b163d425c67c7a91bad6e466bb99d797aa64f965e9d25c12111a5e", + "sha256:9add70b36c5666a2ed02b43b335fe19002ee5235efd4b8a89bfcf9005bebac0d", + "sha256:9bf40443012702a1d2070043cb6291650a0841ece432556f784f004937f0f32c", + "sha256:ade5e387d2ad0d7ebf59146cc00c8044acbd863725f887353a10df825fc8ae21", + "sha256:b00c1de48212e4cc9603895652c5c410df699856a2853135b3967591e4beebc2", + "sha256:b1282f8c00509d99fef04d8ba936b156d419be841854fe901d8ae224c59f0be5", + "sha256:b2051432115498d3562c084a49bba65d97cf251f5a331c64a12ee7e04dacc51b", + "sha256:ba59edeaa2fc6114428f1637ffff42da1e311e29382d81b339c1817d37ec93c6", + "sha256:c8716a48d94b06bb3b2524c2b77e055fb313aeb4ea620c8dd03a105574ba704f", + "sha256:cd5df75523866410809ca100dc9681e301e3c27567cf498077e8551b6d20e42f", + "sha256:cdb132fc825c38e1aeec2c8aa9338310d29d337bebbd7baa06889d09a60a1fa2", + "sha256:e249096428b3ae81b08327a63a485ad0878de3fb939049038579ac0ef61e17e7", + "sha256:e8313f01ba26fbbe36c7be1966a7b7424942f670f38e666995b88d012765b9be" + ], + "version": "==1.1.1" + }, + "mccabe": { + "hashes": [ + "sha256:ab8a6258860da4b6677da4bd2fe5dc2c659cff31b3ee4f7f5d64e79735b80d42", + "sha256:dd8d182285a0fe56bace7f45b5e7d1a6ebcbf524e8f3bd87eb0f125271b8831f" + ], + "version": "==0.6.1" + }, + "mistune": { + "hashes": [ + "sha256:59a3429db53c50b5c6bcc8a07f8848cb00d7dc8bdb431a4ab41920d201d4756e", + "sha256:88a1051873018da288eee8538d476dffe1262495144b33ecb586c4ab266bb8d4" + ], + "version": "==0.8.4" + }, + "more-itertools": { + "hashes": [ + "sha256:5dd8bcf33e5f9513ffa06d5ad33d78f31e1931ac9a18f33d37e77a180d393a7c", + "sha256:b1ddb932186d8a6ac451e1d95844b382f55e12686d51ca0c68b6f61f2ab7a507" + ], + "version": "==8.2.0" + }, + "mypy": { + "hashes": [ + "sha256:15b948e1302682e3682f11f50208b726a246ab4e6c1b39f9264a8796bb416aa2", + "sha256:219a3116ecd015f8dca7b5d2c366c973509dfb9a8fc97ef044a36e3da66144a1", + "sha256:3b1fc683fb204c6b4403a1ef23f0b1fac8e4477091585e0c8c54cbdf7d7bb164", + "sha256:3beff56b453b6ef94ecb2996bea101a08f1f8a9771d3cbf4988a61e4d9973761", + "sha256:7687f6455ec3ed7649d1ae574136835a4272b65b3ddcf01ab8704ac65616c5ce", + "sha256:7ec45a70d40ede1ec7ad7f95b3c94c9cf4c186a32f6bacb1795b60abd2f9ef27", + "sha256:86c857510a9b7c3104cf4cde1568f4921762c8f9842e987bc03ed4f160925754", + "sha256:8a627507ef9b307b46a1fea9513d5c98680ba09591253082b4c48697ba05a4ae", + "sha256:8dfb69fbf9f3aeed18afffb15e319ca7f8da9642336348ddd6cab2713ddcf8f9", + "sha256:a34b577cdf6313bf24755f7a0e3f3c326d5c1f4fe7422d1d06498eb25ad0c600", + "sha256:a8ffcd53cb5dfc131850851cc09f1c44689c2812d0beb954d8138d4f5fc17f65", + "sha256:b90928f2d9eb2f33162405f32dde9f6dcead63a0971ca8a1b50eb4ca3e35ceb8", + "sha256:c56ffe22faa2e51054c5f7a3bc70a370939c2ed4de308c690e7949230c995913", + "sha256:f91c7ae919bbc3f96cd5e5b2e786b2b108343d1d7972ea130f7de27fdd547cf3" + ], + "index": "pypi", + "version": "==0.770" + }, + "mypy-extensions": { + "hashes": [ + "sha256:090fedd75945a69ae91ce1303b5824f428daf5a028d2f6ab8a299250a846f15d", + "sha256:2d82818f5bb3e369420cb3c4060a7970edba416647068eb4c5343488a6c604a8" + ], + "version": "==0.4.3" + }, + "nbclient": { + "hashes": [ + "sha256:193731fd5039061dbd7d6d3f765a2fa59d23012594d68b1798deea9c3eae4a01", + "sha256:44dde0356def1d9345908c8f58dc604a434f2fe61c49ac13fac6e2da2ae429de", + "sha256:4589b7d656adfb90397ffe34b19e16fab74f0e732bbda7828f96d1f3111744ac" + ], + "version": "==0.2.0" + }, + "nbconvert": { + "hashes": [ + "sha256:4b2eff78c254a85d1668af70fca1cab4cecb077324ca72a1ac8959af08e78e3d", + "sha256:b327e1e75673fa4e76659396a0a012cb144bf3adc7aba3b55756de9497a2215e", + "sha256:fa440adb42328e35ee904c948932086744c23881883afc9630f81514fcbd4c3d" + ], + "version": "==6.0.0a1" + }, + "nbformat": { + "hashes": [ + "sha256:65a79936a128fd85aef392b7fea520166364037118b6fe3ed52de742d06c4558", + "sha256:f0c47cf93c505cb943e2f131ef32b8ae869292b5f9f279db2bafb35867923f69" + ], + "version": "==5.0.5" + }, + "nest-asyncio": { + "hashes": [ + "sha256:14e194b72144052a82173ca9109bd07c57813a320f42c7acfad1e4d329988350", + "sha256:b4cdd08655e2848098d204a26590cbfa39fcbc4ad1811c568678ffc8a0c8e279" + ], + "version": "==1.3.2" + }, + "nodeenv": { + "hashes": [ + "sha256:5b2438f2e42af54ca968dd1b374d14a1194848955187b0e5e4be1f73813a5212" + ], + "version": "==1.3.5" + }, + "notebook": { + "hashes": [ + "sha256:3edc616c684214292994a3af05eaea4cc043f6b4247d830f3a2f209fa7639a80", + "sha256:47a9092975c9e7965ada00b9a20f0cf637d001db60d241d479f53c0be117ad48" + ], + "version": "==6.0.3" + }, + "packaging": { + "hashes": [ + "sha256:3c292b474fda1671ec57d46d739d072bfd495a4f51ad01a055121d81e952b7a3", + "sha256:82f77b9bee21c1bafbf35a84905d604d5d1223801d639cf3ed140bd651c08752" + ], + "version": "==20.3" + }, + "pandocfilters": { + "hashes": [ + "sha256:41a309da81cba5509389b19d96b0ee49551cee8165a6406754f2565e95429860", + "sha256:b3dd70e169bb5449e6bc6ff96aea89c5eea8c5f6ab5e207fc2f521a2cf4a0da9" + ], + "version": "==1.4.2" + }, + "parso": { + "hashes": [ + "sha256:0c5659e0c6eba20636f99a04f469798dca8da279645ce5c387315b2c23912157", + "sha256:8515fc12cfca6ee3aa59138741fc5624d62340c97e401c74875769948d4f2995" + ], + "version": "==0.6.2" + }, + "pathspec": { + "hashes": [ + "sha256:163b0632d4e31cef212976cf57b43d9fd6b0bac6e67c26015d611a647d5e7424", + "sha256:562aa70af2e0d434367d9790ad37aed893de47f1693e4201fd1d3dca15d19b96" + ], + "version": "==0.7.0" + }, + "pexpect": { + "hashes": [ + "sha256:0b48a55dcb3c05f3329815901ea4fc1537514d6ba867a152b581d69ae3710937", + "sha256:fc65a43959d153d0114afe13997d439c22823a27cefceb5ff35c2178c6784c0c" + ], + "version": "==4.8.0" + }, + "pickleshare": { + "hashes": [ + "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca", + "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56" + ], + "version": "==0.7.5" + }, + "pint": { + "hashes": [ + "sha256:308f1070500e102f83b6adfca6db53debfce2ffc5d3cbe3f6c367da359b5cf4d", + "sha256:5690c85948dfb283382aa73357c3d5a333e8c7d818be7d8643db18e07597dd99", + "sha256:833ec1b2561a29dd5ab316825924ec2ce64dc7d69ab09505cd1bea7709c8f0f8" + ], + "index": "pypi", + "version": "==0.11" + }, + "pkginfo": { + "hashes": [ + "sha256:7424f2c8511c186cd5424bbf31045b77435b37a8d604990b79d4e70d741148bb", + "sha256:a6d9e40ca61ad3ebd0b72fbadd4fba16e4c0e4df0428c041e01e06eb6ee71f32" + ], + "version": "==1.5.0.1" + }, + "pluggy": { + "hashes": [ + "sha256:15b2acde666561e1298d71b523007ed7364de07029219b604cf808bfa1c765b0", + "sha256:966c145cd83c96502c3c3868f50408687b38434af77734af1e9ca461a4081d2d" + ], + "version": "==0.13.1" + }, + "pre-commit": { + "hashes": [ + "sha256:487c675916e6f99d355ec5595ad77b325689d423ef4839db1ed2f02f639c9522", + "sha256:9707b4f7069365ffdb57d2782086a9f3019afde2a6e9f85df785c9bf090e1118", + "sha256:c0aa11bce04a7b46c5544723aedf4e81a4d5f64ad1205a30a9ea12d5e81969e1" + ], + "index": "pypi", + "version": "==2.2.0" + }, + "prometheus-client": { + "hashes": [ + "sha256:09b5750fd1c153420dccd35881116e853c730081bea0dbf0ea6649103bcb8445", + "sha256:71cd24a2b3eb335cb800c7159f423df1bd4dcd5171b234be15e3f31ec9f622da" + ], + "version": "==0.7.1" + }, + "prompt-toolkit": { + "hashes": [ + "sha256:563d1a4140b63ff9dd587bda9557cffb2fe73650205ab6f4383092fb882e7dc8", + "sha256:df7e9e63aea609b1da3a65641ceaf5bc7d05e0a04de5bd45d05dbeffbabf9e04" + ], + "version": "==3.0.5" + }, + "psutil": { + "hashes": [ + "sha256:002bd856770037221256765a472f50d677074ad207276a39e2bccdb7394e333b", + "sha256:1413f4158eb50e110777c4f15d7c759521703bd6beb58926f1d562da40180058", + "sha256:298af2f14b635c3c7118fd9183843f4e73e681bb6f01e12284d4d70d48a60953", + "sha256:60b86f327c198561f101a92be1995f9ae0399736b6eced8f24af41ec64fb88d4", + "sha256:685ec16ca14d079455892f25bd124df26ff9137664af445563c1bd36629b5e0e", + "sha256:73f35ab66c6c7a9ce82ba44b1e9b1050be2a80cd4dcc3352cc108656b115c74f", + "sha256:75e22717d4dbc7ca529ec5063000b2b294fc9a367f9c9ede1f65846c7955fd38", + "sha256:833b2b19c04fc0aecad22daa3e35108d6ee2e4f92061a4a8f2dd77c6fa9154f5", + "sha256:a02f4ac50d4a23253b68233b07e7cdb567bd025b982d5cf0ee78296990c22d9e", + "sha256:d008ddc00c6906ec80040d26dc2d3e3962109e40ad07fd8a12d0284ce5e0e4f8", + "sha256:d84029b190c8a66a946e28b4d3934d2ca1528ec94764b180f7d6ea57b0e75e26", + "sha256:e2d0c5b07c6fe5a87fa27b7855017edb0d52ee73b71e6ee368fae268605cc3f5", + "sha256:f344ca230dd8e8d5eee16827596f1c22ec0876127c28e800d7ae20ed44c4b310", + "sha256:f3e7f183162622eae9fbdee44ff19b226edec68b94ae7cba47f9afcf4c3ec66c" + ], + "version": "==5.7.0" + }, + "ptyprocess": { + "hashes": [ + "sha256:923f299cc5ad920c68f2bc0bc98b75b9f838b93b599941a6b63ddbc2476394c0", + "sha256:d7cc528d76e76342423ca640335bd3633420dc1366f258cb31d05e865ef5ca1f" + ], + "version": "==0.6.0" + }, + "py": { + "hashes": [ + "sha256:5e27081401262157467ad6e7f851b7aa402c5852dbcb3dae06768434de5752aa", + "sha256:c20fdd83a5dbc0af9efd622bee9a5564e278f6380fffcacc43ba6f43db2813b0" + ], + "version": "==1.8.1" + }, + "pycodestyle": { + "hashes": [ + "sha256:95a2219d12372f05704562a14ec30bc76b05a5b297b21a5dfe3f6fac3491ae56", + "sha256:e40a936c9a450ad81df37f549d676d127b1b66000a6c500caa2b085bc0ca976c" + ], + "version": "==2.5.0" + }, + "pyflakes": { + "hashes": [ + "sha256:17dbeb2e3f4d772725c777fabc446d5634d1038f234e77343108ce445ea69ce0", + "sha256:d976835886f8c5b31d47970ed689944a0262b5f3afa00a5a7b4dc81e5449f8a2" + ], + "version": "==2.1.1" + }, + "pygments": { + "hashes": [ + "sha256:647344a061c249a3b74e230c739f434d7ea4d8b1d5f3721bc0f3558049b38f44", + "sha256:aa931c0bd5daa25c475afadb2147115134cfe501f0656828cbe7cb566c7123bc", + "sha256:ff7a40b4860b727ab48fad6360eb351cc1b33cbf9b15a0f689ca5353e9463324" + ], + "version": "==2.6.1" + }, + "pyparsing": { + "hashes": [ + "sha256:67199f0c41a9c702154efb0e7a8cc08accf830eb003b4d9fa42c4059002e2492", + "sha256:700d17888d441604b0bd51535908dcb297561b040819cccde647a92439db5a2a" + ], + "version": "==3.0.0a1" + }, + "pyrsistent": { + "hashes": [ + "sha256:28669905fe725965daa16184933676547c5bb40a5153055a8dee2a4bd7933ad3", + "sha256:3217696df78f9222a3d1179b119c27be346b969a9e4d617de2a215a87d9aa456", + "sha256:9324b762b52e5a901611b25f50f9cdf8789c61ece3ff7c24dc872603c4faca62", + "sha256:c11415790cc5803e173de7d71d54f94c66a9154f81a72ffdf45a70096916f226" + ], + "version": "==0.16.0" + }, + "pytest": { + "hashes": [ + "sha256:0e5b30f5cb04e887b91b1ee519fa3d89049595f428c1db76e73bd7f17b09b172", + "sha256:84dde37075b8805f3d1f392cc47e38a0e59518fb46a431cfdaf7cf1ce805f970" + ], + "index": "pypi", + "version": "==5.4.1" + }, + "pytest-cov": { + "hashes": [ + "sha256:cc6742d8bac45070217169f5f72ceee1e0e55b0221f54bcf24845972d3a47f2b", + "sha256:cdbdef4f870408ebdbfeb44e63e07eb18bb4619fae852f6e760645fa36172626" + ], + "index": "pypi", + "version": "==2.8.1" + }, + "python-dateutil": { + "hashes": [ + "sha256:73ebfe9dbf22e832286dafa60473e4cd239f8592f699aa5adaf10050e6e1823c", + "sha256:75bb3f31ea686f1197762692a9ee6a7550b59fc6ca3a1f4b5d7e32fb98e2da2a" + ], + "version": "==2.8.1" + }, + "pywin32": { + "hashes": [ + "sha256:300a2db938e98c3e7e2093e4491439e62287d0d493fe07cce110db070b54c0be", + "sha256:31f88a89139cb2adc40f8f0e65ee56a8c585f629974f9e07622ba80199057511", + "sha256:371fcc39416d736401f0274dd64c2302728c9e034808e37381b5e1b22be4a6b0", + "sha256:47a3c7551376a865dd8d095a98deba954a98f326c6fe3c72d8726ca6e6b15507", + "sha256:4cdad3e84191194ea6d0dd1b1b9bdda574ff563177d2adf2b4efec2a244fa116", + "sha256:7c1ae32c489dc012930787f06244426f8356e129184a02c25aef163917ce158e", + "sha256:7f18199fbf29ca99dff10e1f09451582ae9e372a892ff03a28528a24d55875bc", + "sha256:9b31e009564fb95db160f154e2aa195ed66bcc4c058ed72850d047141b36f3a2", + "sha256:a929a4af626e530383a579431b70e512e736e9588106715215bf685a3ea508d4", + "sha256:c054c52ba46e7eb6b7d7dfae4dbd987a1bb48ee86debe3f245a2884ece46e295", + "sha256:f27cec5e7f588c3d1051651830ecc00294f90728d19c3bf6916e6dba93ea357c", + "sha256:f4c5be1a293bae0076d93c88f37ee8da68136744588bc5e2be2f299a34ceb7aa" + ], + "markers": "sys_platform == 'win32'", + "version": "==227" + }, + "pywin32-ctypes": { + "hashes": [ + "sha256:24ffc3b341d457d48e8922352130cf2644024a4ff09762a2261fd34c36ee5942", + "sha256:9dc2d991b3479cc2df15930958b674a48a227d5361d413827a4cfd0b5876fc98" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.2.0" + }, + "pywinpty": { + "hashes": [ + "sha256:1e525a4de05e72016a7af27836d512db67d06a015aeaf2fa0180f8e6a039b3c2", + "sha256:2740eeeb59297593a0d3f762269b01d0285c1b829d6827445fcd348fb47f7e70", + "sha256:2d7e9c881638a72ffdca3f5417dd1563b60f603e1b43e5895674c2a1b01f95a0", + "sha256:33df97f79843b2b8b8bc5c7aaf54adec08cc1bae94ee99dfb1a93c7a67704d95", + "sha256:5fb2c6c6819491b216f78acc2c521b9df21e0f53b9a399d58a5c151a3c4e2a2d", + "sha256:8fc5019ff3efb4f13708bd3b5ad327589c1a554cb516d792527361525a7cb78c", + "sha256:b358cb552c0f6baf790de375fab96524a0498c9df83489b8c23f7f08795e966b", + "sha256:dbd838de92de1d4ebf0dce9d4d5e4fc38d0b7b1de837947a18b57a882f219139", + "sha256:dd22c8efacf600730abe4a46c1388355ce0d4ab75dc79b15d23a7bd87bf05b48", + "sha256:e854211df55d107f0edfda8a80b39dfc87015bef52a8fe6594eb379240d81df2" + ], + "markers": "os_name == 'nt'", + "version": "==0.5.7" + }, + "pyyaml": { + "hashes": [ + "sha256:06a0d7ba600ce0b2d2fe2e78453a470b5a6e000a985dd4a4e54e436cc36b0e97", + "sha256:240097ff019d7c70a4922b6869d8a86407758333f02203e0fc6ff79c5dcede76", + "sha256:4f4b913ca1a7319b33cfb1369e91e50354d6f07a135f3b901aca02aa95940bd2", + "sha256:589929630502f3b0e87daee190b399f98401b6bccea87ed634a73fe5da43d3d4", + "sha256:69f00dca373f240f842b2931fb2c7e14ddbacd1397d57157a9b005a6a9942648", + "sha256:6e8383720b2127b09dba5b323ac896c702cf02bc5786fce16cd6791825d92d16", + "sha256:73f099454b799e05e5ab51423c7bcf361c58d3206fa7b0d555426b1f4d9a3eaf", + "sha256:74809a57b329d6cc0fdccee6318f44b9b8649961fa73144a98735b0aaf029f1f", + "sha256:7739fc0fa8205b3ee8808aea45e968bc90082c10aef6ea95e855e10abf4a37b2", + "sha256:95f71d2af0ff4227885f7a6605c37fd53d3a106fcab511b8860ecca9fcf400ee", + "sha256:b8eac752c5e14d3eca0e6dd9199cd627518cb5ec06add0de9d32baeee6fe645d", + "sha256:cc8955cfbfc7a115fa81d85284ee61147059a753344bc51098f3ccd69b0d7e0c", + "sha256:d13155f591e6fcc1ec3b30685d50bf0711574e2c0dfffd7644babf8b5102ca1a" + ], + "version": "==5.3.1" + }, + "pyzmq": { + "hashes": [ + "sha256:07bfbf192f22ef1dde65b6046efff191e3201e74da6d47098e68958469ecbe48", + "sha256:0bbc1728fe4314b4ca46249c33873a390559edac7c217ec7001b5e0c34a8fb7f", + "sha256:1e076ad5bd3638a18c376544d32e0af986ca10d43d4ce5a5d889a8649f0d0a3d", + "sha256:242d949eb6b10197cda1d1cec377deab1d5324983d77e0d0bf9dc5eb6d71a6b4", + "sha256:26f4ae420977d2a8792d7c2d7bda43128b037b5eeb21c81951a94054ad8b8843", + "sha256:32234c21c5e0a767c754181c8112092b3ddd2e2a36c3f76fc231ced817aeee47", + "sha256:3f12ce1e9cc9c31497bd82b207e8e86ccda9eebd8c9f95053aae46d15ccd2196", + "sha256:4557d5e036e6d85715b4b9fdb482081398da1d43dc580d03db642b91605b409f", + "sha256:4f562dab21c03c7aa061f63b147a595dbe1006bf4f03213272fc9f7d5baec791", + "sha256:54ecd00daa474885bbf318108401d318614425a05dfeae917611dd93f99f2678", + "sha256:5e071b834051e9ecb224915398f474bfad802c2fff883f118ff5363ca4ae3edf", + "sha256:5e1f65e576ab07aed83f444e201d86deb01cd27dcf3f37c727bc8729246a60a8", + "sha256:5f10a31f288bf055be76c57710807a8f0efdb2b82be6c2a2b8f9a61f33a40cea", + "sha256:6aaaf90b420dc40d9a0e1996b82c6a0ff91d9680bebe2135e67c9e6d197c0a53", + "sha256:75238d3c16cab96947705d5709187a49ebb844f54354cdf0814d195dd4c045de", + "sha256:7f7e7b24b1d392bb5947ba91c981e7d1a43293113642e0d8870706c8e70cdc71", + "sha256:84b91153102c4bcf5d0f57d1a66a0f03c31e9e6525a5f656f52fc615a675c748", + "sha256:944f6bb5c63140d76494467444fd92bebd8674236837480a3c75b01fe17df1ab", + "sha256:a1f957c20c9f51d43903881399b078cddcf710d34a2950e88bce4e494dcaa4d1", + "sha256:a49fd42a29c1cc1aa9f461c5f2f5e0303adba7c945138b35ee7f4ab675b9f754", + "sha256:a99ae601b4f6917985e9bb071549e30b6f93c72f5060853e197bdc4b7d357e5f", + "sha256:ad48865a29efa8a0cecf266432ea7bc34e319954e55cf104be0319c177e6c8f5", + "sha256:b08e425cf93b4e018ab21dc8fdbc25d7d0502a23cc4fea2380010cf8cf11e462", + "sha256:bb10361293d96aa92be6261fa4d15476bca56203b3a11c62c61bd14df0ef89ba", + "sha256:bd1a769d65257a7a12e2613070ca8155ee348aa9183f2aadf1c8b8552a5510f5", + "sha256:cb3b7156ef6b1a119e68fbe3a54e0a0c40ecacc6b7838d57dd708c90b62a06dc", + "sha256:d2f64994f9628f621e0f636f9532055887defc9fa5213aaeceb770d9c579f9ac", + "sha256:e8e4efb52ec2df8d046395ca4c84ae0056cf507b2f713ec803c65a8102d010de", + "sha256:f37c29da2a5b0c5e31e6f8aab885625ea76c807082f70b2d334d3fd573c3100a", + "sha256:f4d558bc5668d2345773a9ff8c39e2462dafcb1f6772a2e582fbced389ce527f", + "sha256:f5b6d015587a1d6f582ba03b226a9ddb1dfb09878b3be04ef48b01b7d4eb6b2a" + ], + "version": "==19.0.0" + }, + "readme-renderer": { + "hashes": [ + "sha256:1b6d8dd1673a0b293766b4106af766b6eff3654605f9c4f239e65de6076bc222", + "sha256:e67d64242f0174a63c3b727801a2fff4c1f38ebe5d71d95ff7ece081945a6cd4" + ], + "version": "==25.0" + }, + "regex": { + "hashes": [ + "sha256:08119f707f0ebf2da60d2f24c2f39ca616277bb67ef6c92b72cbf90cbe3a556b", + "sha256:0ce9537396d8f556bcfc317c65b6a0705320701e5ce511f05fc04421ba05b8a8", + "sha256:1cbe0fa0b7f673400eb29e9ef41d4f53638f65f9a2143854de6b1ce2899185c3", + "sha256:2294f8b70e058a2553cd009df003a20802ef75b3c629506be20687df0908177e", + "sha256:23069d9c07e115537f37270d1d5faea3e0bdded8279081c4d4d607a2ad393683", + "sha256:24f4f4062eb16c5bbfff6a22312e8eab92c2c99c51a02e39b4eae54ce8255cd1", + "sha256:295badf61a51add2d428a46b8580309c520d8b26e769868b922750cf3ce67142", + "sha256:2a3bf8b48f8e37c3a40bb3f854bf0121c194e69a650b209628d951190b862de3", + "sha256:4385f12aa289d79419fede43f979e372f527892ac44a541b5446617e4406c468", + "sha256:5635cd1ed0a12b4c42cce18a8d2fb53ff13ff537f09de5fd791e97de27b6400e", + "sha256:5bfed051dbff32fd8945eccca70f5e22b55e4148d2a8a45141a3b053d6455ae3", + "sha256:7e1037073b1b7053ee74c3c6c0ada80f3501ec29d5f46e42669378eae6d4405a", + "sha256:9016fe9da2a10642e25543c9ffaa2466dac697d87d42653666ec84007e4d37d3", + "sha256:90742c6ff121a9c5b261b9b215cb476eea97df98ea82037ec8ac95d1be7a034f", + "sha256:a58dd45cb865be0ce1d5ecc4cfc85cd8c6867bea66733623e54bd95131f473b6", + "sha256:c087bff162158536387c53647411db09b6ee3f9603c334c90943e97b1052a156", + "sha256:c162a21e0da33eb3d31a3ac17a51db5e634fc347f650d271f0305d96601dc15b", + "sha256:c9423a150d3a4fc0f3f2aae897a59919acd293f4cb397429b120a5fcd96ea3db", + "sha256:ccccdd84912875e34c5ad2d06e1989d890d43af6c2242c6fcfa51556997af6cd", + "sha256:e04db93ad8072c40ce03e5ea074fe811e483a2fc5b539f481264e09bf6522559", + "sha256:e91ba11da11cf770f389e47c3f5c30473e6d85e06d7fd9dcba0017d2867aab4a", + "sha256:ea4adf02d23b437684cd388d557bf76e3afa72f7fed5bbc013482cc00c816948", + "sha256:fa4c724fc5b867d3a2461d4d78e0feb6adfeee5f2976071aba4b2325fae71045", + "sha256:fb95debbd1a824b2c4376932f2216cc186912e389bdb0e27147778cf6acb3f89" + ], + "version": "==2020.4.4" + }, + "remote-ikernel": { + "hashes": [ + "sha256:5253216e87a8c31f1b0ca9305454f223147518b580e853b7635a3d8b9c88c295", + "sha256:740b80a57fa1af40cadef541c5a4eb293675b504092ecf00c57dd2f0011bd840" + ], + "index": "pypi", + "version": "==0.4.6" + }, + "requests": { + "hashes": [ + "sha256:43999036bfa82904b6af1d99e4882b560e5e2c68e5c4b0aa03b655f3d7d73fee", + "sha256:b3f43d496c6daba4493e7c431722aeb7dbc6288f52a6e04e7b6023b0247817e6" + ], + "version": "==2.23.0" + }, + "requests-toolbelt": { + "hashes": [ + "sha256:380606e1d10dc85c3bd47bf5a6095f815ec007be7a8b69c878507068df059e6f", + "sha256:968089d4584ad4ad7c171454f0a5c6dac23971e9472521ea3b6d49d610aa6fc0" + ], + "version": "==0.9.1" + }, + "send2trash": { + "hashes": [ + "sha256:60001cc07d707fe247c94f74ca6ac0d3255aabcb930529690897ca2a39db28b2", + "sha256:f1691922577b6fa12821234aeb57599d887c4900b9ca537948d2dac34aea888b" + ], + "version": "==1.5.0" + }, + "six": { + "hashes": [ + "sha256:236bdbdce46e6e6a3d61a337c0f8b763ca1e8717c03b369e87a7ec7ce1319c0a", + "sha256:8f3cd2e254d8f793e7f3d6d9df77b92252b52637291d0f0da013c76ea2724b6c" + ], + "version": "==1.14.0" + }, + "soupsieve": { + "hashes": [ + "sha256:e914534802d7ffd233242b785229d5ba0766a7f487385e3f714446a07bf540ae", + "sha256:f24cabf0197b86c6d5e3fb96fd11a1c0739618375d95de91a477aa9652282150", + "sha256:fcd71e08c0aee99aca1b73f45478549ee7e7fc006d51b37bec9e9def7dc22b69" + ], + "version": "==2.0" + }, + "terminado": { + "hashes": [ + "sha256:4804a774f802306a7d9af7322193c5390f1da0abb429e082a10ef1d46e6fb2c2", + "sha256:a43dcb3e353bc680dd0783b1d9c3fc28d529f190bc54ba9a229f72fe6e7a54d7" + ], + "version": "==0.8.3" + }, + "testpath": { + "hashes": [ + "sha256:60e0a3261c149755f4399a1fff7d37523179a70fdc3abdf78de9fc2604aeec7e", + "sha256:bfcf9411ef4bf3db7579063e0546938b1edda3d69f4e1fb8756991f5951f85d4" + ], + "version": "==0.4.4" + }, + "toml": { + "hashes": [ + "sha256:229f81c57791a41d65e399fc06bf0848bab550a9dfd5ed66df18ce5f05e73d5c", + "sha256:235682dd292d5899d361a811df37e04a8828a5b1da3115886b73cf81ebc9100e" + ], + "version": "==0.10.0" + }, + "tornado": { + "hashes": [ + "sha256:0fe2d45ba43b00a41cd73f8be321a44936dc1aba233dee979f17a042b83eb6dc", + "sha256:22aed82c2ea340c3771e3babc5ef220272f6fd06b5108a53b4976d0d722bcd52", + "sha256:2c027eb2a393d964b22b5c154d1a23a5f8727db6fda837118a776b29e2b8ebc6", + "sha256:503700d85d9a2c2aa737fb16df58bfa2ac0d5ec501881fea2acceae64ce17858", + "sha256:5217e601700f24e966ddab689f90b7ea4bd91ff3357c3600fa1045e26d68e55d", + "sha256:5618f72e947533832cbc3dec54e1dffc1747a5cb17d1fd91577ed14fa0dc081b", + "sha256:5f6a07e62e799be5d2330e68d808c8ac41d4a259b9cea61da4101b83cb5dc673", + "sha256:7182a9285e364e55e6902b5fb4d4a219efd8d7818d9000b419a0eaf3909fc0bc", + "sha256:c58d56003daf1b616336781b26d184023ea4af13ae143d9dda65e31e534940b9", + "sha256:c952975c8ba74f546ae6de2e226ab3cc3cc11ae47baf607459a6728585bb542a", + "sha256:c98232a3ac391f5faea6821b53db8db461157baa788f5d6222a193e9456e1740" + ], + "version": "==6.0.4" + }, + "tqdm": { + "hashes": [ + "sha256:00339634a22c10a7a22476ee946bbde2dbe48d042ded784e4d88e0236eca5d81", + "sha256:ea9e3fd6bd9a37e8783d75bfc4c1faf3c6813da6bd1c3e776488b41ec683af94" + ], + "version": "==4.45.0" + }, + "traitlets": { + "hashes": [ + "sha256:70b4c6a1d9019d7b4f6846832288f86998aa3b9207c6821f3578a6a6a467fe44", + "sha256:d023ee369ddd2763310e4c3eae1ff649689440d4ae59d7485eb4cfbbe3e359f7" + ], + "version": "==4.3.3" + }, + "twine": { + "hashes": [ + "sha256:c1af8ca391e43b0a06bbc155f7f67db0bf0d19d284bfc88d1675da497a946124", + "sha256:d561a5e511f70275e5a485a6275ff61851c16ffcb3a95a602189161112d9f160" + ], + "index": "pypi", + "version": "==3.1.1" + }, + "typed-ast": { + "hashes": [ + "sha256:0666aa36131496aed8f7be0410ff974562ab7eeac11ef351def9ea6fa28f6355", + "sha256:0c2c07682d61a629b68433afb159376e24e5b2fd4641d35424e462169c0a7919", + "sha256:249862707802d40f7f29f6e1aad8d84b5aa9e44552d2cc17384b209f091276aa", + "sha256:24995c843eb0ad11a4527b026b4dde3da70e1f2d8806c99b7b4a7cf491612652", + "sha256:269151951236b0f9a6f04015a9004084a5ab0d5f19b57de779f908621e7d8b75", + "sha256:3791f73e5d75aa9a95274679ab4821bd9d16de623c4ecf4900a77a29864ee144", + "sha256:4083861b0aa07990b619bd7ddc365eb7fa4b817e99cf5f8d9cf21a42780f6e01", + "sha256:498b0f36cc7054c1fead3d7fc59d2150f4d5c6c56ba7fb150c013fbc683a8d2d", + "sha256:4e3e5da80ccbebfff202a67bf900d081906c358ccc3d5e3c8aea42fdfdfd51c1", + "sha256:6daac9731f172c2a22ade6ed0c00197ee7cc1221aa84cfdf9c31defeb059a907", + "sha256:715ff2f2df46121071622063fc7543d9b1fd19ebfc4f5c8895af64a77a8c852c", + "sha256:73d785a950fc82dd2a25897d525d003f6378d1cb23ab305578394694202a58c3", + "sha256:8c8aaad94455178e3187ab22c8b01a3837f8ee50e09cf31f1ba129eb293ec30b", + "sha256:8ce678dbaf790dbdb3eba24056d5364fb45944f33553dd5869b7580cdbb83614", + "sha256:aaee9905aee35ba5905cfb3c62f3e83b3bec7b39413f0a7f19be4e547ea01ebb", + "sha256:bcd3b13b56ea479b3650b82cabd6b5343a625b0ced5429e4ccad28a8973f301b", + "sha256:c9e348e02e4d2b4a8b2eedb48210430658df6951fa484e59de33ff773fbd4b41", + "sha256:d205b1b46085271b4e15f670058ce182bd1199e56b317bf2ec004b6a44f911f6", + "sha256:d43943ef777f9a1c42bf4e552ba23ac77a6351de620aa9acf64ad54933ad4d34", + "sha256:d5d33e9e7af3b34a40dc05f498939f0ebf187f07c385fd58d591c533ad8562fe", + "sha256:df74880bdb70f34304ccc52b0c99d3e578f96a906b86f3ae172a1f1c2edef2bc", + "sha256:fc0fea399acb12edbf8a628ba8d2312f583bdbdb3335635db062fa98cf71fca4", + "sha256:fe460b922ec15dd205595c9b5b99e2f056fd98ae8f9f56b888e7a17dc2b757e7" + ], + "version": "==1.4.1" + }, + "typing-extensions": { + "hashes": [ + "sha256:6e95524d8a547a91e08f404ae485bbb71962de46967e1b71a0cb89af24e761c5", + "sha256:79ee589a3caca649a9bfd2a8de4709837400dfa00b6cc81962a1e6a1815969ae", + "sha256:f8d2bd89d25bc39dabe7d23df520442fa1d8969b82544370e03d88b5a591c392" + ], + "version": "==3.7.4.2" + }, + "urllib3": { + "hashes": [ + "sha256:2f3db8b19923a873b3e5256dc9c2dedfa883e33d87c690d9c7913e1f40673cdc", + "sha256:87716c2d2a7121198ebcb7ce7cccf6ce5e9ba539041cfbaeecfb641dc0bf6acc" + ], + "version": "==1.25.8" + }, + "virtualenv": { + "hashes": [ + "sha256:6ea131d41c477f6c4b7863948a9a54f7fa196854dbef73efbdff32b509f4d8bf", + "sha256:94f647e12d1e6ced2541b93215e51752aecbd1bbb18eb1816e2867f7532b1fe1" + ], + "version": "==20.0.16" + }, + "waitress": { + "hashes": [ + "sha256:045b3efc3d97c93362173ab1dfc159b52cfa22b46c3334ffc805dbdbf0e4309e", + "sha256:77ff3f3226931a1d7d8624c5371de07c8e90c7e5d80c5cc660d72659aaf23f38" + ], + "index": "pypi", + "version": "==1.4.3" + }, + "wcwidth": { + "hashes": [ + "sha256:cafe2186b3c009a04067022ce1dcd79cb38d8d65ee4f4791b8888d6599d1bbe1", + "sha256:ee73862862a156bf77ff92b09034fc4825dd3af9cf81bc5b360668d425f3c5f1" + ], + "version": "==0.1.9" + }, + "webencodings": { + "hashes": [ + "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", + "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923" + ], + "version": "==0.5.1" + }, + "webob": { + "hashes": [ + "sha256:a3c89a8e9ba0aeb17382836cdb73c516d0ecf6630ec40ec28288f3ed459ce87b", + "sha256:aa3a917ed752ba3e0b242234b2a373f9c4e2a75d35291dcbe977649bd21fd108" + ], + "version": "==1.8.6" + }, + "webtest": { + "hashes": [ + "sha256:71114cd778a7d7b237ec5c8a5c32084f447d869ae62e48bcd5b73af211133e74", + "sha256:da9cf14c103ff51a40dee4cac7657840d1317456eb8f0ca81289b5cbff175f4b" + ], + "index": "pypi", + "version": "==2.0.34" + }, + "werkzeug": { + "hashes": [ + "sha256:2de2a5db0baeae7b2d2664949077c2ac63fbd16d98da0ff71837f7d1dea3fd43", + "sha256:6c80b1e5ad3665290ea39320b91e1be1e0d5f60652b964a3070216de83d2e47c" + ], + "version": "==1.0.1" + }, + "wheel": { + "hashes": [ + "sha256:8788e9155fe14f54164c1b9eb0a319d98ef02c160725587ad60f14ddc57b6f96", + "sha256:df277cb51e61359aba502208d680f90c0493adec6f0e848af94948778aed386e" + ], + "index": "pypi", + "version": "==0.34.2" + } + } +} diff --git a/Ch05/apd.sensors-chapter05/README.md b/Ch05/apd.sensors-chapter05/README.md new file mode 100644 index 0000000..7f015bf --- /dev/null +++ b/Ch05/apd.sensors-chapter05/README.md @@ -0,0 +1,66 @@ +# Advanced Python Development Sensors + +This is the data collection package that forms part of the running example +for the book [Advanced Python Development](https://advancedpython.dev). + +## Usage + +This installs a console script called `sensors` that returns a report on +various aspects of the system. The available sensors are: + +* Python version +* IP Addresses +* CPU Usage +* RAM Available +* Battery charging state +* Ambient Temperature +* Ambient Humidity + +There are no command-line options, to view the report run `sensors` on the +command line. + +## Caveats + +The Ambient Temperature and Ambient Humidity sensors are only available on +RaspberryPi hosts and assume that a DHT22 sensor is connected to pin `D20`. + +The location and type of the sensor can be controlled by setting a pair of +environment variables: `APD_SENSORS_TEMPERATURE_BOARD` and +`APD_SENSORS_TEMPERATURE_PIN`. + +If there is an entry in `/etc/hosts` for the current machine's hostname that +value will be the only result from the IP Addresses sensor. + +## Installation + +You can install with `pip3 install apd.sensors` under Python 3.7 or higher. + +We recommend using pipenv to manage your environment, in which case you would +install using `pipenv --three install apd.sensors` and run the programme using +`pipenv run sensors`. + +## API server + +There is an optional API server shipped with apd.sensors. To use this you +should install the `apd.sensors[webapp]` extra. The API can then be started +with the non-production quality wsgiref server using: + + python -m apd.sensors.wsgi.serve + +or through Waitress (if installed) using: + + waitress-serve --call apd.sensors.wsgi:set_up_config + +Other WSGI servers will also work, you should use set_up_config as a factory +function. + +An environment variable is required to use the API server, `APD_SENSORS_API_KEY` +should be set to the API key required to gain access. One can be generated +using: + + python -c "import uuid; print(uuid.uuid4().hex)" + +The following endpoints are supported: + +* /v/2.0/sensors +* /v/2.0/sensors/sensorid diff --git a/Ch05/apd.sensors-chapter05/plugins/apd.sunnyboy_solar/pyproject.toml b/Ch05/apd.sensors-chapter05/plugins/apd.sunnyboy_solar/pyproject.toml new file mode 100644 index 0000000..4d3bb67 --- /dev/null +++ b/Ch05/apd.sensors-chapter05/plugins/apd.sunnyboy_solar/pyproject.toml @@ -0,0 +1,5 @@ +[build-system] +requires = [ + "setuptools", +] +build-backend = "setuptools.build_meta" diff --git a/Ch05/apd.sensors-chapter05/plugins/apd.sunnyboy_solar/setup.cfg b/Ch05/apd.sensors-chapter05/plugins/apd.sunnyboy_solar/setup.cfg new file mode 100644 index 0000000..0f5db10 --- /dev/null +++ b/Ch05/apd.sensors-chapter05/plugins/apd.sunnyboy_solar/setup.cfg @@ -0,0 +1,33 @@ +[mypy] +ignore_missing_imports = True + +[flake8] +max-line-length = 88 + +[metadata] +name = apd.sunnyboy_solar +version = attr: apd.sunnyboy_solar.VERSION +description = APD Sensor for reading data from Sunnyboy inverters +long_description = file: README.md, CHANGES.md, LICENCE +long_description_content_type = text/markdown +keywords = iot solar +license = MIT +classifiers = + Programming Language :: Python :: 3 + Programming Language :: Python :: 3.7 + +[options] +zip_safe = False +include_package_data = True +package_dir = + =src +packages = find_namespace: +install_requires = + apd.sensors + +[options.packages.find] +where = src + +[options.entry_points] +apd.sensors.sensors = + SolarCumulativeOutput = apd.sunnyboy_solar.sensor:SolarCumulativeOutput diff --git a/Ch05/apd.sensors-chapter05/plugins/apd.sunnyboy_solar/setup.py b/Ch05/apd.sensors-chapter05/plugins/apd.sunnyboy_solar/setup.py new file mode 100644 index 0000000..6068493 --- /dev/null +++ b/Ch05/apd.sensors-chapter05/plugins/apd.sunnyboy_solar/setup.py @@ -0,0 +1,3 @@ +from setuptools import setup + +setup() diff --git a/Ch05/apd.sensors-chapter05/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/Pipfile b/Ch05/apd.sensors-chapter05/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/Pipfile new file mode 100644 index 0000000..e69de29 diff --git a/Ch05/apd.sensors-chapter05/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/__init__.py b/Ch05/apd.sensors-chapter05/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/__init__.py new file mode 100644 index 0000000..3277f64 --- /dev/null +++ b/Ch05/apd.sensors-chapter05/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/__init__.py @@ -0,0 +1 @@ +VERSION = "1.0.0" diff --git a/Ch05/apd.sensors-chapter05/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/sensor.py b/Ch05/apd.sensors-chapter05/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/sensor.py new file mode 100644 index 0000000..aa37a2e --- /dev/null +++ b/Ch05/apd.sensors-chapter05/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/sensor.py @@ -0,0 +1,69 @@ +import os +import subprocess +import typing as t + +from pint import _DEFAULT_REGISTRY as ureg + +from apd.sensors.base import Sensor + + +class SolarCumulativeOutput(Sensor[t.Optional[t.Any]]): + name = "SolarCumulativeOutput" + title = "Solar panel cumulative output" + + def __init__( + self, path: t.Optional[str] = None, bt_addr: t.Optional[str] = None + ) -> None: + self.path = os.environ.get( + "APD_SUNNYBOYSOLAR_PATH", "/home/pi/opensunny-master/opensunny" + ) + self.bt_addr = os.environ.get("APD_SUNNYBOYSOLAR_BT_ADDRESS", None) + + def value(self) -> t.Optional[t.Any]: + if self.bt_addr is None: + return None + try: + output: bytes = subprocess.check_output( + [self.path, "-i", self.bt_addr], stderr=subprocess.STDOUT, timeout=15 + ) + except (subprocess.CalledProcessError, FileNotFoundError): + return None + + lines = filter(None, output.split(b"\n")) + found = {} + for line in lines: + start, value = line.rsplit(b"=", 1) + start, key = start.rsplit(b" ", 1) + found[key] = value + + try: + yield_total = float(found[b"yield_total"][:-3].replace(b".", b"")) + power_dc_1 = int(found[b"power_dc_1"][:-1]) + power_dc_2 = int(found[b"power_dc_2"][:-1]) + if power_dc_1 > 1500 or power_dc_2 > 1500: + return None + except (ValueError, IndexError, KeyError): + return None + return ureg.Quantity(yield_total, "watt") + + @classmethod + def format(cls, value: t.Optional[t.Any]) -> str: + if value is None: + return "Unknown" + return "{:~P}".format(value.to(ureg.kilowatt)) + + @classmethod + def to_json_compatible( + cls, value: t.Optional[t.Any] + ) -> t.Optional[t.Dict[str, t.Union[str, float]]]: + if value is not None: + return {"magnitude": value.magnitude, "unit": str(value.units)} + else: + return None + + @classmethod + def from_json_compatible(cls, json_version: t.Any) -> t.Optional[t.Any]: + if json_version: + return ureg.Quantity(json_version["magnitude"], ureg[json_version["unit"]]) + else: + return None diff --git a/Ch05/apd.sensors-chapter05/pytest.ini b/Ch05/apd.sensors-chapter05/pytest.ini new file mode 100644 index 0000000..861f3d0 --- /dev/null +++ b/Ch05/apd.sensors-chapter05/pytest.ini @@ -0,0 +1,3 @@ +[pytest] +markers = + functional: these tests are significantly slower as they run the whole CLI script \ No newline at end of file diff --git a/Ch05/apd.sensors-chapter05/setup.cfg b/Ch05/apd.sensors-chapter05/setup.cfg new file mode 100644 index 0000000..fe8017c --- /dev/null +++ b/Ch05/apd.sensors-chapter05/setup.cfg @@ -0,0 +1,66 @@ +[mypy] +namespace_packages = True +mypy_path = src + +[mypy-psutil] +ignore_missing_imports = True + +[mypy-adafruit_dht] +ignore_missing_imports = True + +[mypy-board] +ignore_missing_imports = True + +[mypy-pytest] +ignore_missing_imports = True + +[mypy-webtest] +ignore_missing_imports = True + +[flake8] +max-line-length = 88 + +[metadata] +name = apd.sensors +version = attr: apd.sensors.VERSION +description = APD Sensor package +long_description = file: README.md, CHANGES.md, LICENCE +long_description_content_type = text/markdown +keywords = iot +license = MIT +classifiers = + Programming Language :: Python :: 3 + Programming Language :: Python :: 3.7 + +[options] +zip_safe = False +include_package_data = True +package_dir = + =src +packages = find_namespace: +install_requires = + psutil + click + pint + adafruit-circuitpython-dht ; 'arm' in platform_machine + +[options.package_data] +apd.sensors = py.typed + +[options.packages.find] +where = src + +[options.entry_points] +console_scripts = + sensors = apd.sensors.cli:show_sensors +apd.sensors.sensors = + PythonVersion = apd.sensors.sensors:PythonVersion + IPAddresses = apd.sensors.sensors:IPAddresses + CPULoad = apd.sensors.sensors:CPULoad + RAMAvailable = apd.sensors.sensors:RAMAvailable + ACStatus = apd.sensors.sensors:ACStatus + Temperature = apd.sensors.sensors:Temperature + RelativeHumidity = apd.sensors.sensors:RelativeHumidity + +[options.extras_require] +webapp = flask \ No newline at end of file diff --git a/Ch05/apd.sensors-chapter05/setup.py b/Ch05/apd.sensors-chapter05/setup.py new file mode 100644 index 0000000..6068493 --- /dev/null +++ b/Ch05/apd.sensors-chapter05/setup.py @@ -0,0 +1,3 @@ +from setuptools import setup + +setup() diff --git a/Ch05/apd.sensors-chapter05/src/apd/sensors/__init__.py b/Ch05/apd.sensors-chapter05/src/apd/sensors/__init__.py new file mode 100644 index 0000000..2101409 --- /dev/null +++ b/Ch05/apd.sensors-chapter05/src/apd/sensors/__init__.py @@ -0,0 +1 @@ +VERSION = "2.0.0" diff --git a/Ch05/apd.sensors-chapter05/src/apd/sensors/base.py b/Ch05/apd.sensors-chapter05/src/apd/sensors/base.py new file mode 100644 index 0000000..74b32ae --- /dev/null +++ b/Ch05/apd.sensors-chapter05/src/apd/sensors/base.py @@ -0,0 +1,51 @@ +#!/usr/bin/env python +# coding: utf-8 +import typing as t + + +T_value = t.TypeVar("T_value") + + +class Sensor(t.Generic[T_value]): + name: str + title: str + + def value(self) -> T_value: + raise NotImplementedError + + @classmethod + def format(cls, value: T_value) -> str: + raise NotImplementedError + + def __str__(self) -> str: + return self.format(self.value()) + + @classmethod + def to_json_compatible(cls, value: T_value) -> t.Any: + raise NotImplementedError() + + @classmethod + def from_json_compatible(cls, json_version: t.Any) -> T_value: + raise NotImplementedError() + + +class JSONSensor(Sensor[T_value]): + @classmethod + def to_json_compatible(cls, value: T_value) -> t.Any: + return value + + @classmethod + def from_json_compatible(cls, json_version: t.Any) -> T_value: + return t.cast(T_value, json_version) + + +version_info_type = t.NamedTuple( + "version_info_type", + [ + ("major", int), + ("minor", int), + ("micro", int), + ("releaselevel", str), + ("serial", int), + ], +) diff --git a/Ch05/apd.sensors-chapter05/src/apd/sensors/cli.py b/Ch05/apd.sensors-chapter05/src/apd/sensors/cli.py new file mode 100644 index 0000000..1ee27b9 --- /dev/null +++ b/Ch05/apd.sensors-chapter05/src/apd/sensors/cli.py @@ -0,0 +1,74 @@ +import enum +import importlib +import sys +import pkg_resources +import typing as t + +import click + +from .sensors import Sensor + + +class ReturnCodes(enum.IntEnum): + OK = 0 + BAD_SENSOR_PATH = 17 + + +def get_sensor_by_path(sensor_path: str) -> Sensor[t.Any]: + try: + module_name, sensor_name = sensor_path.split(":") + except ValueError: + raise RuntimeError( + "Sensor path must be in the format dotted.path.to.module:ClassName" + ) + try: + module = importlib.import_module(module_name) + except ImportError: + raise RuntimeError(f"Could not import module {module_name}") + try: + sensor_class = getattr(module, sensor_name) + except AttributeError: + raise RuntimeError(f"Could not find attribute {sensor_name} in {module_name}") + if ( + isinstance(sensor_class, type) + and issubclass(sensor_class, Sensor) + and sensor_class != Sensor + ): + return sensor_class() + else: + raise RuntimeError( + f"Detected object {sensor_class!r} is not recognised as a Sensor type" + ) + + +def get_sensors() -> t.Iterable[Sensor[t.Any]]: + sensors = [] + for sensor_class in pkg_resources.iter_entry_points("apd.sensors.sensors"): + class_ = sensor_class.load() + sensors.append(t.cast(Sensor[t.Any], class_())) + return sensors + + +@click.command(help="Displays the values of the sensors") +@click.option( + "--develop", required=False, metavar="path", help="Load a sensor by Python path" +) +def show_sensors(develop: str) -> None: + sensors: t.Iterable[Sensor[t.Any]] + if develop: + try: + sensors = [get_sensor_by_path(develop)] + except RuntimeError as error: + click.secho(str(error), fg="red", bold=True) + sys.exit(ReturnCodes.BAD_SENSOR_PATH) + else: + sensors = get_sensors() + for sensor in sensors: + click.secho(sensor.title, bold=True) + click.echo(str(sensor)) + click.echo("") + sys.exit(ReturnCodes.OK) + + +if __name__ == "__main__": + show_sensors() diff --git a/Ch05/apd.sensors-chapter05/src/apd/sensors/py.typed b/Ch05/apd.sensors-chapter05/src/apd/sensors/py.typed new file mode 100644 index 0000000..e69de29 diff --git a/Ch05/apd.sensors-chapter05/src/apd/sensors/sensors.py b/Ch05/apd.sensors-chapter05/src/apd/sensors/sensors.py new file mode 100644 index 0000000..44d432f --- /dev/null +++ b/Ch05/apd.sensors-chapter05/src/apd/sensors/sensors.py @@ -0,0 +1,192 @@ +#!/usr/bin/env python +# coding: utf-8 +import math +import os +import socket +import sys +import typing as t + +import psutil +from pint import _DEFAULT_REGISTRY as ureg + +from .base import Sensor, JSONSensor, version_info_type + + +class PythonVersion(JSONSensor[version_info_type]): + name = "PythonVersion" + title = "Python Version" + + def value(self) -> version_info_type: + return version_info_type(*sys.version_info) + + @classmethod + def format(cls, value: version_info_type) -> str: + if value.micro == 0 and value.releaselevel == "alpha": + return "{0.major}.{0.minor}.{0.micro}a{0.serial}".format(value) + return "{0.major}.{0.minor}".format(value) + + +class IPAddresses(JSONSensor[t.Iterable[t.Tuple[str, str]]]): + name = "IPAddresses" + title = "IP Addresses" + FAMILIES = {"AF_INET": "IPv4", "AF_INET6": "IPv6"} + + def value(self) -> t.List[t.Tuple[str, str]]: + hostname = socket.gethostname() + addresses = socket.getaddrinfo(hostname, None) + + address_info: t.List[t.Tuple[str, str]] = [] + for address in addresses: + family, ip = (address[0].name, address[4][0]) + if family not in self.FAMILIES: + continue + value = (family, ip) + if value not in address_info: + address_info.append(value) + return address_info + + @classmethod + def format(cls, value: t.Iterable[t.Tuple[str, str]]) -> str: + return "\n".join( + "{0} ({1})".format(address[1], cls.FAMILIES.get(address[0], "Unknown")) + for address in value + ) + + +class CPULoad(JSONSensor[float]): + name = "CPULoad" + title = "CPU Usage" + + def value(self) -> float: + return float(psutil.cpu_percent(interval=3)) / 100.0 + + @classmethod + def format(cls, value: float) -> str: + return "{:.1%}".format(value) + + +class RAMAvailable(JSONSensor[int]): + name = "RAMAvailable" + title = "RAM Available" + UNITS = ("B", "KiB", "MiB", "GiB", "TiB", "PiB", "EiB") + UNIT_SIZE = 2 ** 10 + + def value(self) -> int: + return int(psutil.virtual_memory().available) + + @classmethod + def format(cls, value: int) -> str: + magnitude = math.floor(math.log(value, cls.UNIT_SIZE)) + max_magnitude = len(cls.UNITS) - 1 + magnitude = min(magnitude, max_magnitude) + scaled_value = value / (cls.UNIT_SIZE ** magnitude) + return "{:.1f} {}".format(scaled_value, cls.UNITS[magnitude]) + + +class ACStatus(JSONSensor[t.Optional[bool]]): + name = "ACStatus" + title = "AC Connected" + + def value(self) -> t.Optional[bool]: + battery = psutil.sensors_battery() + if battery is not None: + value = battery.power_plugged + if value is None: + return None + else: + return bool(value) + else: + return None + + @classmethod + def format(cls, value: t.Optional[bool]) -> str: + if value is None: + return "Unknown" + elif value: + return "Connected" + else: + return "Not connected" + + +class Temperature(Sensor[t.Optional[t.Any]]): + name = "Temperature" + title = "Ambient Temperature" + + def __init__(self) -> None: + self.board = os.environ.get("APD_SENSORS_TEMPERATURE_BOARD", "DHT22") + self.pin = os.environ.get("APD_SENSORS_TEMPERATURE_PIN", "D20") + + def value(self) -> t.Optional[t.Any]: + try: + import adafruit_dht + import board + + sensor_type = getattr(adafruit_dht, self.board) + pin = getattr(board, self.pin) + except (ImportError, NotImplementedError, AttributeError): + # No DHT library results in an ImportError. + # Running on an unknown platform results in a + # NotImplementedError when getting the pin + return None + try: + return ureg.Quantity(sensor_type(pin).temperature, ureg.celsius) + except RuntimeError: + return None + + @classmethod + def format(cls, value: t.Optional[t.Any]) -> str: + if value is None: + return "Unknown" + else: + return "{:.3~P} ({:.3~P})".format(value, value.to(ureg.fahrenheit)) + + @classmethod + def to_json_compatible(cls, value: t.Optional[t.Any]) -> t.Any: + if value is not None: + return {"magnitude": value.magnitude, "unit": str(value.units)} + else: + return None + + @classmethod + def from_json_compatible(cls, json_version: t.Any) -> t.Optional[t.Any]: + if json_version: + return ureg.Quantity(json_version["magnitude"], ureg[json_version["unit"]]) + else: + return None + + def __str__(self) -> str: + return self.format(self.value()) + + +class RelativeHumidity(JSONSensor[t.Optional[float]]): + name = "RelativeHumidity" + title = "Relative Humidity" + + def __init__(self) -> None: + self.board = os.environ.get("APD_SENSORS_TEMPERATURE_BOARD", "DHT22") + self.pin = os.environ.get("APD_SENSORS_TEMPERATURE_PIN", "D20") + + def value(self) -> t.Optional[float]: + try: + import adafruit_dht + import board + + sensor_type = getattr(adafruit_dht, self.board) + pin = getattr(board, self.pin) + except (ImportError, NotImplementedError, AttributeError): + # No DHT library results in an ImportError. + # Running on an unknown platform results in a + # NotImplementedError when getting the pin + return None + + try: + return float(sensor_type(pin).humidity) + except RuntimeError: + return None + + @classmethod + def format(cls, value: t.Optional[float]) -> str: + if value is None: + return "Unknown" + else: + return "{:.1%}".format(value) diff --git a/Ch05/apd.sensors-chapter05/src/apd/sensors/wsgi/__init__.py b/Ch05/apd.sensors-chapter05/src/apd/sensors/wsgi/__init__.py new file mode 100644 index 0000000..a97c28f --- /dev/null +++ b/Ch05/apd.sensors-chapter05/src/apd/sensors/wsgi/__init__.py @@ -0,0 +1,12 @@ +import flask + +from .base import set_up_config +from . import v10 +from . import v20 + + +__all__ = ["app", "set_up_config"] + +app = flask.Flask(__name__) +app.register_blueprint(v10.version, url_prefix="/v/1.0") +app.register_blueprint(v20.version, url_prefix="/v/2.0") diff --git a/Ch05/apd.sensors-chapter05/src/apd/sensors/wsgi/base.py b/Ch05/apd.sensors-chapter05/src/apd/sensors/wsgi/base.py new file mode 100644 index 0000000..c9be130 --- /dev/null +++ b/Ch05/apd.sensors-chapter05/src/apd/sensors/wsgi/base.py @@ -0,0 +1,43 @@ +from hmac import compare_digest +import functools +import os +import typing as t + +import flask + + +ViewFuncReturn = t.TypeVar("ViewFuncReturn") +ErrorReturn = t.Tuple[t.Dict[str, str], int] +REQUIRED_CONFIG_KEYS = {"APD_SENSORS_API_KEY"} + + +def require_api_key( + func: t.Callable[[], ViewFuncReturn] +) -> t.Callable[[], t.Union[ViewFuncReturn, ErrorReturn]]: + @functools.wraps(func) + def wrapped() -> t.Union[ViewFuncReturn, ErrorReturn]: + api_key = flask.current_app.config["APD_SENSORS_API_KEY"] + headers = flask.request.headers + supplied_key = headers.get("X-API-Key", "") + if not compare_digest(api_key, supplied_key): + return {"error": "Supply API key in X-API-Key header"}, 403 + return func() + + return wrapped + + +def set_up_config( + environ: t.Optional[t.Dict[str, str]] = None, + to_configure: t.Optional[flask.Flask] = None, +) -> flask.Flask: + if environ is None: + environ = dict(os.environ) + if to_configure is None: + from apd.sensors.wsgi import app + + to_configure = app + missing_keys = REQUIRED_CONFIG_KEYS - environ.keys() + if missing_keys: + raise ValueError("Missing config variables: {}".format(", ".join(missing_keys))) + to_configure.config.from_mapping(environ) + return to_configure diff --git a/Ch05/apd.sensors-chapter05/src/apd/sensors/wsgi/serve.py b/Ch05/apd.sensors-chapter05/src/apd/sensors/wsgi/serve.py new file mode 100644 index 0000000..0b1f684 --- /dev/null +++ b/Ch05/apd.sensors-chapter05/src/apd/sensors/wsgi/serve.py @@ -0,0 +1,10 @@ +from . import app +from .base import set_up_config + +if __name__ == "__main__": + import wsgiref.simple_server + + set_up_config(None, app) + + with wsgiref.simple_server.make_server("", 8000, app) as server: + server.serve_forever() diff --git a/Ch05/apd.sensors-chapter05/src/apd/sensors/wsgi/v10.py b/Ch05/apd.sensors-chapter05/src/apd/sensors/wsgi/v10.py new file mode 100644 index 0000000..7eee6dd --- /dev/null +++ b/Ch05/apd.sensors-chapter05/src/apd/sensors/wsgi/v10.py @@ -0,0 +1,26 @@ +import json +import typing as t + +import flask + +from apd.sensors.cli import get_sensors +from .base import require_api_key + +version = flask.Blueprint(__name__, __name__) + + +@version.route("/sensors/") +@require_api_key +def sensor_values() -> t.Tuple[t.Dict[str, t.Any], int, t.Dict[str, str]]: + headers = {"Content-Security-Policy": "default-src 'none'"} + data = {} + for sensor in get_sensors(): + value = sensor.value() + try: + json.dumps(value) + except TypeError: + # This value isn't JSON serializable, skip it + continue + else: + data[sensor.title] = sensor.value() + return data, 200, headers diff --git a/Ch05/apd.sensors-chapter05/src/apd/sensors/wsgi/v20.py b/Ch05/apd.sensors-chapter05/src/apd/sensors/wsgi/v20.py new file mode 100644 index 0000000..fd2b5fc --- /dev/null +++ b/Ch05/apd.sensors-chapter05/src/apd/sensors/wsgi/v20.py @@ -0,0 +1,32 @@ +import typing as t + +import flask + +from apd.sensors.cli import get_sensors +from .base import require_api_key + +version = flask.Blueprint(__name__, __name__) + + +@version.route("/sensors/") +@version.route("/sensors/") +@require_api_key +def sensor_values(sensor_id=None) -> t.Tuple[t.Dict[str, t.Any], int, t.Dict[str, str]]: + headers = {"Content-Security-Policy": "default-src 'none'"} + sensors = [] + for sensor in get_sensors(): + if sensor_id and sensor_id != sensor.name: + continue + try: + value = sensor.value() + sensor_data = { + "id": sensor.name, + "title": sensor.title, + "value": sensor.to_json_compatible(value), + "human_readable": sensor.format(value), + } + sensors.append(sensor_data) + except NotImplementedError: + pass + data = {"sensors": sensors} + return data, 200, headers diff --git a/Ch05/apd.sensors-chapter05/tests/test_acstatus.py b/Ch05/apd.sensors-chapter05/tests/test_acstatus.py new file mode 100644 index 0000000..d2fe71e --- /dev/null +++ b/Ch05/apd.sensors-chapter05/tests/test_acstatus.py @@ -0,0 +1,55 @@ +from unittest import mock + +import pytest + +from apd.sensors.sensors import ACStatus + + +@pytest.fixture +def sensor(): + return ACStatus() + + +class TestACStatusFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_True(self, subject): + assert subject(True) == "Connected" + + def test_format_False(self, subject): + assert subject(False) == "Not connected" + + def test_format_None(self, subject): + assert subject(None) == "Unknown" + + +class TestACStatusValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def sensors_battery(self): + with mock.patch("psutil.sensors_battery") as sensors_battery: + yield sensors_battery + + def test_sensors_battery_called(self, subject, sensors_battery): + sensors_battery.return_value.power_plugged = True + assert subject() is True + assert sensors_battery.call_count == 1 + + def test_sensor_but_battery_unknown(self, subject, sensors_battery): + sensors_battery.return_value.power_plugged = None + assert subject() is None + assert sensors_battery.call_count == 1 + + def test_no_sensor(self, subject, sensors_battery): + sensors_battery.return_value = None + assert subject() is None + + def test_str_representation_is_formatted_value(self, sensor, sensors_battery): + sensors_battery.return_value.power_plugged = True + assert str(sensor) == "Connected" + assert sensors_battery.call_count == 1 diff --git a/Ch05/apd.sensors-chapter05/tests/test_api_server.py b/Ch05/apd.sensors-chapter05/tests/test_api_server.py new file mode 100644 index 0000000..0ffbeaa --- /dev/null +++ b/Ch05/apd.sensors-chapter05/tests/test_api_server.py @@ -0,0 +1,105 @@ +import os +import uuid +from unittest import mock + +import flask +import pytest +from webtest import TestApp + +from apd.sensors.wsgi import set_up_config +from apd.sensors.sensors import PythonVersion +from apd.sensors.wsgi import v10 +from apd.sensors.wsgi import v20 + + +@pytest.fixture(scope="session") +def api_key(): + return uuid.uuid4().hex + + +def test_api_key_is_required_config_option(): + app = mock.MagicMock() + with pytest.raises( + ValueError, match="Missing config variables: APD_SENSORS_API_KEY" + ): + set_up_config({}, to_configure=app) + + +def test_os_environ_is_default_for_config_values(api_key): + app = mock.MagicMock() + os.environ["APD_SENSORS_API_KEY"] = api_key + try: + assert app.config.from_mapping.call_count == 0 + set_up_config(None, to_configure=app) + assert app.config.from_mapping.call_count == 1 + assert app.config.from_mapping.call_args[0][0] == os.environ + finally: + del os.environ["APD_SENSORS_API_KEY"] + + +class CommonTests: + @pytest.mark.functional + def test_sensor_values_fails_on_missing_api_key(self, api_server): + response = api_server.get("/sensors/", expect_errors=True) + assert response.status_code == 403 + assert response.json["error"] == "Supply API key in X-API-Key header" + + @pytest.mark.functional + def test_sensor_values_require_correct_api_key(self, api_server): + response = api_server.get( + "/sensors/", headers={"X-API-Key": "wrong_key"}, expect_errors=True + ) + assert response.status_code == 403 + assert response.json["error"] == "Supply API key in X-API-Key header" + + +class Testv10API(CommonTests): + @pytest.fixture + def subject(self, api_key): + app = flask.Flask("testapp") + app.register_blueprint(v10.version) + set_up_config({"APD_SENSORS_API_KEY": api_key}, to_configure=app) + return app + + @pytest.fixture + def api_server(self, subject): + return TestApp(subject) + + @pytest.mark.functional + def test_sensor_values_returned_as_json(self, api_server, api_key): + value = api_server.get("/sensors/", headers={"X-API-Key": api_key}).json + python_version = PythonVersion().value() + + sensor_names = value.keys() + assert "Python Version" in sensor_names + assert value["Python Version"] == list(python_version) + + @pytest.mark.functional + def test_unserializable_sensor_is_omitted(self, api_server, api_key): + value = api_server.get("/sensors/", headers={"X-API-Key": api_key}).json + sensor_names = value.keys() + assert "Temperature" not in sensor_names + + +class Testv20API(CommonTests): + @pytest.fixture + def subject(self, api_key): + app = flask.Flask("testapp") + app.register_blueprint(v20.version) + set_up_config({"APD_SENSORS_API_KEY": api_key}, to_configure=app) + return app + + @pytest.fixture + def api_server(self, subject): + return TestApp(subject) + + @pytest.mark.functional + def test_sensor_values_returned_as_json(self, api_server, api_key): + value = api_server.get("/sensors/", headers={"X-API-Key": api_key}).json + sensors = value["sensors"] + + python_version = [ + sensor for sensor in sensors if sensor["id"] == "PythonVersion" + ][0] + assert python_version["title"] == "Python Version" + assert python_version["value"] == list(PythonVersion().value()) diff --git a/Ch05/apd.sensors-chapter05/tests/test_cpuusage.py b/Ch05/apd.sensors-chapter05/tests/test_cpuusage.py new file mode 100644 index 0000000..445f4e5 --- /dev/null +++ b/Ch05/apd.sensors-chapter05/tests/test_cpuusage.py @@ -0,0 +1,45 @@ +from unittest import mock + +import pytest + +from apd.sensors.sensors import CPULoad + + +@pytest.fixture +def sensor(): + return CPULoad() + + +class TestCPULoadFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_simple_percentage(self, subject): + assert subject(0.05) == "5.0%" + + def test_format_multiple_decimal_places(self, subject): + assert subject(0.031415926) == "3.1%" + + def test_format_multiple_decimal_places_int(self, subject) -> None: + assert subject(1) == "100.0%" + + +class TestCPULoadValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def cpuload(self): + with mock.patch("psutil.cpu_percent") as cpu_percent: + cpu_percent.return_value = 50.1 + yield cpu_percent + + def test_cpu_percent_called_With_interval(self, subject, cpuload): + assert subject() == 0.501 + assert cpuload.call_count == 1 + assert tuple(cpuload.call_args) == ((), {"interval": 3}) + + def test_str_representation_is_formatted_value(self, sensor, cpuload): + assert str(sensor) == "50.1%" diff --git a/Ch05/apd.sensors-chapter05/tests/test_dht.py b/Ch05/apd.sensors-chapter05/tests/test_dht.py new file mode 100644 index 0000000..52a5ee9 --- /dev/null +++ b/Ch05/apd.sensors-chapter05/tests/test_dht.py @@ -0,0 +1,67 @@ +import pytest + +from apd.sensors.sensors import Temperature, RelativeHumidity, ureg + + +@pytest.fixture +def temperature_sensor(): + return Temperature() + + +@pytest.fixture +def humidity_sensor(): + return RelativeHumidity() + + +class TestTemperatureFormatter: + @pytest.fixture + def subject(self, temperature_sensor): + return temperature_sensor.format + + @staticmethod + def to_degc(magnitude): + return ureg.Quantity(magnitude, "degree_Celsius") + + def test_format_21c(self, subject): + assert subject(self.to_degc(21.0)) == "21.0 °C (69.8 °F)" + + def test_format_negative(self, subject): + assert subject(self.to_degc(-32.0)) == "-32.0 °C (-25.6 °F)" + + def test_format_unknown(self, subject): + assert subject(None) == "Unknown" + + +class TestTemperatureSerializer: + @pytest.fixture + def serialize(self, temperature_sensor): + return temperature_sensor.to_json_compatible + + @pytest.fixture + def deserialize(self, temperature_sensor): + return temperature_sensor.from_json_compatible + + @staticmethod + def to_degc(magnitude): + return ureg.Quantity(magnitude, "degree_Celsius") + + def test_serialize_21c(self, serialize): + assert serialize(self.to_degc(21.0)) == {"magnitude": 21.0, "unit": "degree_Celsius"} + + def test_serialize_negative(self, serialize): + assert serialize(self.to_degc(-32.3)) == {"magnitude": -32.3, "unit": "degree_Celsius"} + + def test_deserialize_21c(self, deserialize): + assert deserialize({"magnitude": 21.0, "unit": "degree_Celsius"}) == self.to_degc(21.0) + + +class TestHumidityFormatter: + @pytest.fixture + def subject(self, humidity_sensor): + return humidity_sensor.format + + def test_format_percentage(self, subject): + assert subject(0.035) == "3.5%" + + def test_format_unknown(self, subject): + assert subject(None) == "Unknown" diff --git a/Ch05/apd.sensors-chapter05/tests/test_ipaddresses.py b/Ch05/apd.sensors-chapter05/tests/test_ipaddresses.py new file mode 100644 index 0000000..bd61d85 --- /dev/null +++ b/Ch05/apd.sensors-chapter05/tests/test_ipaddresses.py @@ -0,0 +1,59 @@ +import socket +from unittest import mock + +import pytest + +from apd.sensors.sensors import IPAddresses + + +@pytest.fixture +def sensor(): + return IPAddresses() + + +class TestIPAddressFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_single_ipv4(self, subject): + ips = [("AF_INET", "192.0.2.1")] + assert subject(ips) == "192.0.2.1 (IPv4)" + + def test_format_single_ipv6(self, subject): + ips = [("AF_INET6", "2001:DB8::1")] + assert subject(ips) == "2001:DB8::1 (IPv6)" + + def test_format_mixed_list(self, subject): + ips = [("AF_INET", "192.0.2.1"), ("AF_INET6", "2001:DB8::1")] + assert subject(ips) == "192.0.2.1 (IPv4)\n2001:DB8::1 (IPv6)" + + def test_unusual_protocols_are_marked_as_unknown(self, subject): + ips = [("AF_IRDA", "ffff")] + assert subject(ips) == "ffff (Unknown)" + + +class TestIPAddressesValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def gethostname(self): + with mock.patch("socket.gethostname") as gethostname: + gethostname.return_value = "localhost" + yield gethostname + + @pytest.fixture + def getaddrinfo(self, gethostname): + with mock.patch("socket.getaddrinfo") as getaddrinfo: + yield getaddrinfo + + def test_getaddrinfo_used_for_value_collection(self, getaddrinfo, subject): + getaddrinfo.return_value = [(socket.AF_INET, 0, 0, "", ("192.0.2.1", 0))] + assert subject() == [("AF_INET", "192.0.2.1")] + assert getaddrinfo.call_count == 1 + + def test_str_representation_is_formatted_value(self, getaddrinfo, sensor): + getaddrinfo.return_value = [(socket.AF_INET6, 0, 0, "", ("2001:DB8::1", 0))] + assert str(sensor) == "2001:DB8::1 (IPv6)" diff --git a/Ch05/apd.sensors-chapter05/tests/test_pythonversion.py b/Ch05/apd.sensors-chapter05/tests/test_pythonversion.py new file mode 100644 index 0000000..43ad806 --- /dev/null +++ b/Ch05/apd.sensors-chapter05/tests/test_pythonversion.py @@ -0,0 +1,61 @@ +from collections import namedtuple +from unittest import mock + +import pytest + +from apd.sensors.sensors import PythonVersion + + +@pytest.fixture +def version(): + return namedtuple( + "sys_versioninfo", ("major", "minor", "micro", "releaselevel", "serial") + ) + + +@pytest.fixture +def sensor(): + return PythonVersion() + + +class TestPythonVersionFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_py38(self, subject, version): + py38 = version(3, 8, 0, "final", 0) + assert subject(py38) == "3.8" + + def test_format_large_version(self, subject, version): + large = version(255, 128, 0, "final", 0) + assert subject(large) == "255.128" + + def test_alpha_of_minor_is_marked(self, subject, version): + py39 = version(3, 9, 0, "alpha", 1) + assert subject(py39) == "3.9.0a1" + + def test_alpha_of_micro_is_unmarked(self, subject, version): + py39 = version(3, 9, 1, "alpha", 1) + assert subject(py39) == "3.9" + + +class TestPythonVersionValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def python_version(self): + import sys + + return sys.version_info + + def test_data_value_is_sys_versioninfo(self, python_version, subject): + assert subject() == python_version + + +class TestPythonVersionSensor: + def test_str_representation_is_formatted_value(self, sensor, version): + with mock.patch("sys.version_info", new=version(3, 4, 1, "final", 1)): + assert str(sensor) == "3.4" diff --git a/Ch05/apd.sensors-chapter05/tests/test_ramusage.py b/Ch05/apd.sensors-chapter05/tests/test_ramusage.py new file mode 100644 index 0000000..197ad06 --- /dev/null +++ b/Ch05/apd.sensors-chapter05/tests/test_ramusage.py @@ -0,0 +1,47 @@ +from unittest import mock + +import pytest + +from apd.sensors.sensors import RAMAvailable + + +@pytest.fixture +def sensor(): + return RAMAvailable() + + +class TestRAMAvailableFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_bytes(self, subject): + assert subject(15) == "15.0 B" + + def test_format_kibibytes(self, subject): + assert subject(15000) == "14.6 KiB" + + def test_format_mibibytes(self, subject): + assert subject(15000000) == "14.3 MiB" + + def test_format_gibibytes(self, subject): + assert subject(15000000000) == "14.0 GiB" + + +class TestRAMAvailableValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def virtual_memory(self): + with mock.patch("psutil.virtual_memory") as virtual_memory: + virtual_memory.return_value.available = 1024 + yield virtual_memory + + def test_virtual_memory_called(self, subject, virtual_memory): + assert subject() == 1024 + assert virtual_memory.call_count == 1 + + def test_str_representation_is_formatted_value(self, sensor, virtual_memory): + assert str(sensor) == "1.0 KiB" diff --git a/Ch05/apd.sensors-chapter05/tests/test_sensors.py b/Ch05/apd.sensors-chapter05/tests/test_sensors.py new file mode 100644 index 0000000..c67a180 --- /dev/null +++ b/Ch05/apd.sensors-chapter05/tests/test_sensors.py @@ -0,0 +1,88 @@ +import json +from unittest import mock + +from click.testing import CliRunner + +import pytest + +import apd.sensors.cli +import apd.sensors.sensors + + +def test_sensors(): + assert hasattr(apd.sensors.sensors, "PythonVersion") + + +@pytest.mark.functional +def test_first_sensor_is_first_two_lines_of_cli_output(): + runner = CliRunner() + with mock.patch("apd.sensors.cli.get_sensors") as get_sensors: + get_sensors.return_value = [apd.sensors.sensors.PythonVersion()] + result = runner.invoke(apd.sensors.cli.show_sensors) + python_version = str(apd.sensors.sensors.PythonVersion()) + assert ["Python Version", python_version] == result.stdout.split("\n")[:2] + + +class TestSensorFromPath: + @pytest.fixture + def subject(self): + return apd.sensors.cli.get_sensor_by_path + + def test_get_sensor_by_path(self, subject): + assert isinstance( + subject("apd.sensors.sensors:PythonVersion"), + apd.sensors.sensors.PythonVersion, + ) + + def test_invalid_format(self, subject): + with pytest.raises(RuntimeError, match="dotted.path.to.module:ClassName"): + subject("apd.sensors.sensors.PythonVersion") + + def test_invalid_module(self, subject): + with pytest.raises(RuntimeError, match="Could not import module"): + subject("apd.nonsense.sensor:FakeSensor") + + def test_missing_sensor(self, subject): + with pytest.raises(RuntimeError, match="Could not find attribute"): + subject("apd.sensors.sensors:FakeSensor") + + def test_invalid_sensor(self, subject): + with pytest.raises(RuntimeError, match="is not recognised as a Sensor"): + subject("apd.sensors.sensors:Sensor") + + +@pytest.mark.functional +def test_develop_option_finds_sensor_by_path(): + runner = CliRunner() + result = runner.invoke( + apd.sensors.cli.show_sensors, ["--develop", "apd.sensors.sensors:PythonVersion"] + ) + python_version = str(apd.sensors.sensors.PythonVersion()) + assert ["Python Version", python_version, "", ""] == result.stdout.split("\n") + + +class TestDefaultSerializer: + @pytest.fixture + def python_version(self): + return apd.sensors.sensors.PythonVersion() + + @pytest.fixture + def serialize(self, python_version): + return python_version.to_json_compatible + + @pytest.fixture + def deserialize(self, python_version): + return python_version.from_json_compatible + + def test_serialize_deserialize_is_symmetric( + self, python_version, serialize, deserialize + ): + value = python_version.value() + serialized = serialize(value) + json_version = json.dumps(serialized) + assert ( + json_version == f"[{value.major}, {value.minor}, {value.micro}," + f' "{value.releaselevel}", {value.serial}]' + ) + deserialized = deserialize(serialized) + assert deserialized == value diff --git a/Ch05/listing05-01-helloworld.py b/Ch05/listing05-01-helloworld.py new file mode 100644 index 0000000..72e0590 --- /dev/null +++ b/Ch05/listing05-01-helloworld.py @@ -0,0 +1,13 @@ +import wsgiref.simple_server + +def hello_world(environ, start_response): + headers = [ + ("Content-type", "text/plain; charset=utf-8"), + ("Content-Security-Policy", "default-src 'none';"), + ] + start_response("200 OK", headers) + return [b"hello", b" ", b"world"] + +if __name__ == "__main__": + with wsgiref.simple_server.make_server("", 8000, hello_world) as server: + server.serve_forever() diff --git a/Ch05/listing05-02-helloworld-incremental.py b/Ch05/listing05-02-helloworld-incremental.py new file mode 100644 index 0000000..49df1ae --- /dev/null +++ b/Ch05/listing05-02-helloworld-incremental.py @@ -0,0 +1,19 @@ +import time +import wsgiref.simple_server + + +def hello_world(environ, start_response): + headers = [ + ("Content-type", "text/html; charset=utf-8"), + ("Content-Security-Policy", "default-src 'none';"), + ] + start_response("200 OK", headers) + yield b"" + for i in range(20): + yield b"

hello world

" + time.sleep(1) + yield b"" + +if __name__ == "__main__": + with wsgiref.simple_server.make_server("", 8000, hello_world) as server: + server.serve_forever() diff --git a/Ch05/listing05-03-apd_sensors_wsgi.py b/Ch05/listing05-03-apd_sensors_wsgi.py new file mode 100644 index 0000000..491f35a --- /dev/null +++ b/Ch05/listing05-03-apd_sensors_wsgi.py @@ -0,0 +1,30 @@ +import json +import typing as t +import wsgiref.simple_server + +from apd.sensors.cli import get_sensors + +if t.TYPE_CHECKING: + # Use the exact definition of StartResponse, of possible + from wsgiref.types import StartResponse +else: + StartResponse = t.Callable + + +def sensor_values( + environ: t.Dict[str, str], start_response: StartResponse +) -> t.List[bytes]: + headers = [ + ("Content-type", "application/json; charset=utf-8"), + ("Content-Security-Policy", "default-src 'none';"), + ] + start_response("200 OK", headers) + data = {} + for sensor in get_sensors(): + data[sensor.title] = sensor.value() + encoded = json.dumps(data).encode("utf-8") + return [encoded] + +if __name__ == "__main__": + with wsgiref.simple_server.make_server("", 8000, sensor_values) as server: + server.handle_request() diff --git a/Ch05/listing05-08-typing.py b/Ch05/listing05-08-typing.py new file mode 100644 index 0000000..62a72cf --- /dev/null +++ b/Ch05/listing05-08-typing.py @@ -0,0 +1,33 @@ +import functools +import random +import typing as t + +ViewFuncReturn = t.TypeVar("ViewFuncReturn") +ErrorReturn = int + +def result_or_number( + func: t.Callable[[], ViewFuncReturn] +) -> t.Callable[[], t.Union[ViewFuncReturn, ErrorReturn]]: + @functools.wraps(func) + def wrapped() -> t.Union[ViewFuncReturn, ErrorReturn]: + + pass_through = random.choice([True, False]) + if pass_through: + return func() + else: + return random.randint(0, 100) + + return wrapped + +@result_or_number +def hello() -> str: + return "Hello!" + +@result_or_number +def three() -> int: + return 3 + +if t.TYPE_CHECKING: + reveal_type(hello) +else: + print(hello()) diff --git a/Ch06/apd.aggregation-chapter06/.coveragerc b/Ch06/apd.aggregation-chapter06/.coveragerc new file mode 100644 index 0000000..e766c69 --- /dev/null +++ b/Ch06/apd.aggregation-chapter06/.coveragerc @@ -0,0 +1,3 @@ +[run] +branch = True +omit = tests/* diff --git a/Ch06/apd.aggregation-chapter06/.pre-commit-config.yaml b/Ch06/apd.aggregation-chapter06/.pre-commit-config.yaml new file mode 100644 index 0000000..d3b6ec7 --- /dev/null +++ b/Ch06/apd.aggregation-chapter06/.pre-commit-config.yaml @@ -0,0 +1,26 @@ +repos: + +- repo: local + hooks: + - id: black + name: black + entry: pipenv run black + args: [--quiet] + language: system + types: [python] + + - id: mypy + name: mypy + exclude: (?x)^( + (.*)/setup.py + )$ + entry: pipenv run mypy + args: ["--follow-imports=skip"] + language: system + types: [python] + + - id: flake8 + name: flake8 + entry: pipenv run flake8 + language: system + types: [python] diff --git a/Ch06/apd.aggregation-chapter06/CHANGES.md b/Ch06/apd.aggregation-chapter06/CHANGES.md new file mode 100644 index 0000000..8e424e5 --- /dev/null +++ b/Ch06/apd.aggregation-chapter06/CHANGES.md @@ -0,0 +1,5 @@ +## Changes + +### 1.0.0 (Unreleased) + +* Generated from skeleton diff --git a/Ch06/apd.aggregation-chapter06/LICENCE b/Ch06/apd.aggregation-chapter06/LICENCE new file mode 100644 index 0000000..86685d4 --- /dev/null +++ b/Ch06/apd.aggregation-chapter06/LICENCE @@ -0,0 +1,31 @@ +Copyright (c) 2019, Matthew Wilkes + + +All rights reserved. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + +* Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + +* Redistributions in binary form must reproduce the above copyright notice, this + list of conditions and the following disclaimer in the documentation and/or + other materials provided with the distribution. + +* Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived from this + software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND +ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. +IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, +INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, +BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY +OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE +OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED +OF THE POSSIBILITY OF SUCH DAMAGE. + + diff --git a/Ch06/apd.aggregation-chapter06/Pipfile b/Ch06/apd.aggregation-chapter06/Pipfile new file mode 100644 index 0000000..ba42fa3 --- /dev/null +++ b/Ch06/apd.aggregation-chapter06/Pipfile @@ -0,0 +1,22 @@ +[[source]] +name = "pypi" +url = "https://pypi.org/simple" +verify_ssl = true + +[dev-packages] +pytest = "*" +pytest-cov = "*" +mypy = "*" +flake8 = "*" +black = "*" +pre-commit = "*" +wheel = "*" +twine = "*" + +[packages] +apd-aggregation = {editable = true,path = "."} + +[requires] + +[pipenv] +allow_prereleases = true diff --git a/Ch06/apd.aggregation-chapter06/Pipfile.lock b/Ch06/apd.aggregation-chapter06/Pipfile.lock new file mode 100644 index 0000000..62333bb --- /dev/null +++ b/Ch06/apd.aggregation-chapter06/Pipfile.lock @@ -0,0 +1,466 @@ +{ + "_meta": { + "hash": { + "sha256": "6b1c63a96230c56a20e4bac5a8dfee64e295cb0c9240505e3d32018442533f74" + }, + "pipfile-spec": 6, + "requires": {}, + "sources": [ + { + "name": "pypi", + "url": "https://pypi.org/simple", + "verify_ssl": true + } + ] + }, + "default": { + "apd-aggregation": { + "editable": true, + "path": "." + }, + "psycopg2": { + "hashes": [ + "sha256:128d0fa910ada0157bba1cb74a9c5f92bb8a1dca77cf91a31eb274d1f889e001", + "sha256:227fd46cf9b7255f07687e5bde454d7d67ae39ca77e170097cdef8ebfc30c323", + "sha256:2315e7f104681d498ccf6fd70b0dba5bce65d60ac92171492bfe228e21dcc242", + "sha256:4b5417dcd2999db0f5a891d54717cfaee33acc64f4772c4bc574d4ff95ed9d80", + "sha256:640113ddc943522aaf71294e3f2d24013b0edd659b7820621492c9ebd3a2fb0b", + "sha256:897a6e838319b4bf648a574afb6cabcb17d0488f8c7195100d48d872419f4457", + "sha256:8dceca81409898c870e011c71179454962dec152a1a6b86a347f4be74b16d864", + "sha256:b1b8e41da09a0c3ef0b3d4bb72da0dde2abebe583c1e8462973233fd5ad0235f", + "sha256:cb407fccc12fc29dc331f2b934913405fa49b9b75af4f3a72d0f50f57ad2ca23", + "sha256:d3a27550a8185e53b244ad7e79e307594b92fede8617d80200a8cce1fba2c60f", + "sha256:f0e6b697a975d9d3ccd04135316c947dd82d841067c7800ccf622a8717e98df1" + ], + "index": "pypi", + "version": "==2.8.3" + }, + "sqlalchemy": { + "hashes": [ + "sha256:2f8ff566a4d3a92246d367f2e9cd6ed3edeef670dcd6dda6dfdc9efed88bcd80" + ], + "version": "==1.3.8" + } + }, + "develop": { + "appdirs": { + "hashes": [ + "sha256:9e5896d1372858f8dd3344faf4e5014d21849c756c8d5701f78f8a103b372d92", + "sha256:d8b24664561d0d34ddfaec54636d502d7cea6e29c3eaf68f3df6180863e2166e" + ], + "version": "==1.4.3" + }, + "aspy.yaml": { + "hashes": [ + "sha256:463372c043f70160a9ec950c3f1e4c3a82db5fca01d334b6bc89c7164d744bdc", + "sha256:e7c742382eff2caed61f87a39d13f99109088e5e93f04d76eb8d4b28aa143f45" + ], + "version": "==1.3.0" + }, + "atomicwrites": { + "hashes": [ + "sha256:03472c30eb2c5d1ba9227e4c2ca66ab8287fbfbbda3888aa93dc2e28fc6811b4", + "sha256:75a9445bac02d8d058d5e1fe689654ba5a6556a1dfd8ce6ec55a0ed79866cfa6" + ], + "version": "==1.3.0" + }, + "attrs": { + "hashes": [ + "sha256:69c0dbf2ed392de1cb5ec704444b08a5ef81680a61cb899dc08127123af36a79", + "sha256:f0b870f674851ecbfbbbd364d6b5cbdff9dcedbc7f3f5e18a6891057f21fe399" + ], + "version": "==19.1.0" + }, + "black": { + "hashes": [ + "sha256:09a9dcb7c46ed496a9850b76e4e825d6049ecd38b611f1224857a79bd985a8cf", + "sha256:68950ffd4d9169716bcb8719a56c07a2f4485354fec061cdd5910aa07369731c" + ], + "index": "pypi", + "version": "==19.3b0" + }, + "bleach": { + "hashes": [ + "sha256:213336e49e102af26d9cde77dd2d0397afabc5a6bf2fed985dc35b5d1e285a16", + "sha256:3fdf7f77adcf649c9911387df51254b813185e32b2c6619f690b593a617e19fa" + ], + "version": "==3.1.0" + }, + "certifi": { + "hashes": [ + "sha256:e4f3620cfea4f83eedc95b24abd9cd56f3c4b146dd0177e83a21b4eb49e21e50", + "sha256:fd7c7c74727ddcf00e9acd26bba8da604ffec95bf1c2144e67aff7a8b50e6cef" + ], + "version": "==2019.9.11" + }, + "cfgv": { + "hashes": [ + "sha256:edb387943b665bf9c434f717bf630fa78aecd53d5900d2e05da6ad6048553144", + "sha256:fbd93c9ab0a523bf7daec408f3be2ed99a980e20b2d19b50fc184ca6b820d289" + ], + "version": "==2.0.1" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:2335065e6395b9e67ca716de5f7526736bfa6ceead690adf616d925bdc622b13", + "sha256:5b94b49521f6456670fdb30cd82a4eca9412788a93fa6dd6df72c94d5a8ff2d7" + ], + "version": "==7.0" + }, + "colorama": { + "hashes": [ + "sha256:05eed71e2e327246ad6b38c540c4a3117230b19679b875190486ddd2d721422d", + "sha256:f8ac84de7840f5b9c4e3347b3c1eaa50f7e49c2b07596221daec5edaabbd7c48" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.1" + }, + "coverage": { + "hashes": [ + "sha256:094378c3a35594335a840ea04d473c019e6d4fe10e343cd0d7fb5e87f8b7e926", + "sha256:10216222f3e4139910b6230d0ca0fe9d10ee98837eb83d29525722d628729d20", + "sha256:147478e21cba12c63b3454df5a2fb77b44df630428cffa3a36a6813e38157eab", + "sha256:230ce08965190c0f69196be34a07a795981b2b02b21419c2e1918a882b3eeab0", + "sha256:2469621d680a4c71cdbd3ea4dbed9d199bba93f21d2be1c107ded907b2db41a8", + "sha256:26526174d11fb2163832628d943edd452e07528b0ecc0c83c88256a59a32287c", + "sha256:2690bf0835f34ef3451860b02471e9560e4b3caf7413abeaa7544af72eb6d9ed", + "sha256:2b6f2d9a60413e75651cebe33c3f2f66d61209db44e8b9cf6d8d66fb0cb01fda", + "sha256:3ce91c6b92160ecefedf95a8c61fbf4fb36b0addef1a40c654acf1ad390653d0", + "sha256:43d16d7e9e9eaace3d9f1828b617b1be248f90d031a4b2dc1b6e1c88f1602dcf", + "sha256:52b6455da5f547cad72fd5cfc57a16678573fda6c695d257b5c266a44dbbd172", + "sha256:533f3036c8f58e6381fcca3306fe988740638c62c7fc86b7fae9c74b85ac3cdc", + "sha256:62d2abe5c733394058cb381d088bcab64a18da3ce9dc9a8ef2a18e122cbe47f1", + "sha256:72c34f99164679e44a5cbf19bf1a13be4e715c680816302b6ceca49b979fde91", + "sha256:81fc07feed4e40a7c0bdd266efa65e5afc83b5e0f1063007acc6759a957322a1", + "sha256:82093e673182c761ce54dfab17f026a06be3c011fee9b653855b9a2649f20232", + "sha256:87947fef728f72860407c446fd9b4a0f98e39e91ad7ae80803c02a85738e63ef", + "sha256:8b18c5a5a6b35b6311d2c356782ce3c7bacf6d987d9dc479178577391bf1c7dd", + "sha256:90e1850e993aa6b81bafaf672c8e508eaa17fbb5eb23aba93f7f4df822f3bd29", + "sha256:99f71e365bcb03a8debe1a75061329c9e45379f244a229442319d64c53c4e844", + "sha256:9b2c559104a90bf0043d6ef262ca205326d1fe6ec572dcf59e34be9289432793", + "sha256:ad22b073d92ea65b063e612154c72d6367dec3dd47ed33c02e3ab339eabe7bf3", + "sha256:bc3648da235fee2113a8cb80154d9fff4e2689d2d4a11ad35c1ecae23454b539", + "sha256:d0e2478bde68c5d853bcd306b5aae8fbe80417e87957a21fa6ee71edb90639f2", + "sha256:d3e6912d2370925222d2bfb3bd2ba02e9698b8da89cf7192ddf80cbb9f2455ee", + "sha256:d4fa98e3e15863568ea89eaec5e0866ca763980bdc56098dd9316865c111a28e", + "sha256:ee924a23457b373241ff39d21570360afd8ccb58520eb1e8e18eb00827b73e2d" + ], + "version": "==5.0a7" + }, + "docutils": { + "hashes": [ + "sha256:6c4f696463b79f1fb8ba0c594b63840ebd41f059e92b31957c46b74a4599b6d0", + "sha256:9e4d7ecfc600058e07ba661411a2b7de2fd0fafa17d1a7f7361cd47b1175c827", + "sha256:a2aeea129088da402665e92e0b25b04b073c04b2dce4ab65caaa38b7ce2e1a99" + ], + "version": "==0.15.2" + }, + "entrypoints": { + "hashes": [ + "sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19", + "sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451" + ], + "version": "==0.3" + }, + "flake8": { + "hashes": [ + "sha256:19241c1cbc971b9962473e4438a2ca19749a7dd002dd1a946eaba171b4114548", + "sha256:8e9dfa3cecb2400b3738a42c54c3043e821682b9c840b0448c0503f781130696" + ], + "index": "pypi", + "version": "==3.7.8" + }, + "identify": { + "hashes": [ + "sha256:4f1fe9a59df4e80fcb0213086fcf502bc1765a01ea4fe8be48da3b65afd2a017", + "sha256:d8919589bd2a5f99c66302fec0ef9027b12ae150b0b0213999ad3f695fc7296e" + ], + "version": "==1.4.7" + }, + "idna": { + "hashes": [ + "sha256:c357b3f628cf53ae2c4c05627ecc484553142ca23264e593d327bcde5e9c3407", + "sha256:ea8b7f6188e6fa117537c3df7da9fc686d485087abf6ac197f9c46432f7e4a3c" + ], + "version": "==2.8" + }, + "importlib-metadata": { + "hashes": [ + "sha256:aa18d7378b00b40847790e7c27e11673d7fed219354109d0e7b9e5b25dc3ad26", + "sha256:d5f18a79777f3aa179c145737780282e27b508fc8fd688cb17c7a813e8bd39af" + ], + "markers": "python_version < '3.8'", + "version": "==0.23" + }, + "mccabe": { + "hashes": [ + "sha256:ab8a6258860da4b6677da4bd2fe5dc2c659cff31b3ee4f7f5d64e79735b80d42", + "sha256:dd8d182285a0fe56bace7f45b5e7d1a6ebcbf524e8f3bd87eb0f125271b8831f" + ], + "version": "==0.6.1" + }, + "more-itertools": { + "hashes": [ + "sha256:409cd48d4db7052af495b09dec721011634af3753ae1ef92d2b32f73a745f832", + "sha256:92b8c4b06dac4f0611c0729b2f2ede52b2e1bac1ab48f089c7ddc12e26bb60c4" + ], + "version": "==7.2.0" + }, + "mypy": { + "hashes": [ + "sha256:0107bff4f46a289f0e4081d59b77cef1c48ea43da5a0dbf0005d54748b26df2a", + "sha256:07957f5471b3bb768c61f08690c96d8a09be0912185a27a68700f3ede99184e4", + "sha256:10af62f87b6921eac50271e667cc234162a194e742d8e02fc4ddc121e129a5b0", + "sha256:11fd60d2f69f0cefbe53ce551acf5b1cec1a89e7ce2d47b4e95a84eefb2899ae", + "sha256:15e43d3b1546813669bd1a6ec7e6a11d2888db938e0607f7b5eef6b976671339", + "sha256:352c24ba054a89bb9a35dd064ee95ab9b12903b56c72a8d3863d882e2632dc76", + "sha256:437020a39417e85e22ea8edcb709612903a9924209e10b3ec6d8c9f05b79f498", + "sha256:49925f9da7cee47eebf3420d7c0e00ec662ec6abb2780eb0a16260a7ba25f9c4", + "sha256:6724fcd5777aa6cebfa7e644c526888c9d639bd22edd26b2a8038c674a7c34bd", + "sha256:7a17613f7ea374ab64f39f03257f22b5755335b73251d0d253687a69029701ba", + "sha256:cdc1151ced496ca1496272da7fc356580e95f2682be1d32377c22ddebdf73c91" + ], + "index": "pypi", + "version": "==0.720" + }, + "mypy-extensions": { + "hashes": [ + "sha256:37e0e956f41369209a3d5f34580150bcacfabaa57b33a15c0b25f4b5725e0812", + "sha256:b16cabe759f55e3409a7d231ebd2841378fb0c27a5d1994719e340e4f429ac3e" + ], + "version": "==0.4.1" + }, + "nodeenv": { + "hashes": [ + "sha256:ad8259494cf1c9034539f6cced78a1da4840a4b157e23640bc4a0c0546b0cb7a" + ], + "version": "==1.3.3" + }, + "packaging": { + "hashes": [ + "sha256:28b924174df7a2fa32c1953825ff29c61e2f5e082343165438812f00d3a7fc47", + "sha256:d9551545c6d761f3def1677baf08ab2a3ca17c56879e70fecba2fc4dde4ed108" + ], + "version": "==19.2" + }, + "pkginfo": { + "hashes": [ + "sha256:7424f2c8511c186cd5424bbf31045b77435b37a8d604990b79d4e70d741148bb", + "sha256:a6d9e40ca61ad3ebd0b72fbadd4fba16e4c0e4df0428c041e01e06eb6ee71f32" + ], + "version": "==1.5.0.1" + }, + "pluggy": { + "hashes": [ + "sha256:0db4b7601aae1d35b4a033282da476845aa19185c1e6964b25cf324b5e4ec3e6", + "sha256:fa5fa1622fa6dd5c030e9cad086fa19ef6a0cf6d7a2d12318e10cb49d6d68f34" + ], + "version": "==0.13.0" + }, + "pre-commit": { + "hashes": [ + "sha256:1d3c0587bda7c4e537a46c27f2c84aa006acc18facf9970bf947df596ce91f3f", + "sha256:fa78ff96e8e9ac94c748388597693f18b041a181c94a4f039ad20f45287ba44a" + ], + "index": "pypi", + "version": "==1.18.3" + }, + "py": { + "hashes": [ + "sha256:64f65755aee5b381cea27766a3a147c3f15b9b6b9ac88676de66ba2ae36793fa", + "sha256:dc639b046a6e2cff5bbe40194ad65936d6ba360b52b3c3fe1d08a82dd50b5e53" + ], + "version": "==1.8.0" + }, + "pycodestyle": { + "hashes": [ + "sha256:95a2219d12372f05704562a14ec30bc76b05a5b297b21a5dfe3f6fac3491ae56", + "sha256:e40a936c9a450ad81df37f549d676d127b1b66000a6c500caa2b085bc0ca976c" + ], + "version": "==2.5.0" + }, + "pyflakes": { + "hashes": [ + "sha256:17dbeb2e3f4d772725c777fabc446d5634d1038f234e77343108ce445ea69ce0", + "sha256:d976835886f8c5b31d47970ed689944a0262b5f3afa00a5a7b4dc81e5449f8a2" + ], + "version": "==2.1.1" + }, + "pygments": { + "hashes": [ + "sha256:71e430bc85c88a430f000ac1d9b331d2407f681d6f6aec95e8bcfbc3df5b0127", + "sha256:881c4c157e45f30af185c1ffe8d549d48ac9127433f2c380c24b84572ad66297" + ], + "version": "==2.4.2" + }, + "pyparsing": { + "hashes": [ + "sha256:6f98a7b9397e206d78cc01df10131398f1c8b8510a2f4d97d9abd82e1aacdd80", + "sha256:d9338df12903bbf5d65a0e4e87c2161968b10d2e489652bb47001d82a9b028b4" + ], + "version": "==2.4.2" + }, + "pytest": { + "hashes": [ + "sha256:813b99704b22c7d377bbd756ebe56c35252bb710937b46f207100e843440b3c2", + "sha256:cc6620b96bc667a0c8d4fa592a8c9c94178a1bd6cc799dbb057dfd9286d31a31" + ], + "index": "pypi", + "version": "==5.1.3" + }, + "pytest-cov": { + "hashes": [ + "sha256:2b097cde81a302e1047331b48cadacf23577e431b61e9c6f49a1170bbe3d3da6", + "sha256:e00ea4fdde970725482f1f35630d12f074e121a23801aabf2ae154ec6bdd343a" + ], + "index": "pypi", + "version": "==2.7.1" + }, + "pyyaml": { + "hashes": [ + "sha256:0113bc0ec2ad727182326b61326afa3d1d8280ae1122493553fd6f4397f33df9", + "sha256:01adf0b6c6f61bd11af6e10ca52b7d4057dd0be0343eb9283c878cf3af56aee4", + "sha256:5124373960b0b3f4aa7df1707e63e9f109b5263eca5976c66e08b1c552d4eaf8", + "sha256:5ca4f10adbddae56d824b2c09668e91219bb178a1eee1faa56af6f99f11bf696", + "sha256:7907be34ffa3c5a32b60b95f4d95ea25361c951383a894fec31be7252b2b6f34", + "sha256:7ec9b2a4ed5cad025c2278a1e6a19c011c80a3caaac804fd2d329e9cc2c287c9", + "sha256:87ae4c829bb25b9fe99cf71fbb2140c448f534e24c998cc60f39ae4f94396a73", + "sha256:9de9919becc9cc2ff03637872a440195ac4241c80536632fffeb6a1e25a74299", + "sha256:a5a85b10e450c66b49f98846937e8cfca1db3127a9d5d1e31ca45c3d0bef4c5b", + "sha256:b0997827b4f6a7c286c01c5f60384d218dca4ed7d9efa945c3e1aa623d5709ae", + "sha256:b631ef96d3222e62861443cc89d6563ba3eeb816eeb96b2629345ab795e53681", + "sha256:bf47c0607522fdbca6c9e817a6e81b08491de50f3766a7a0e6a5be7905961b41", + "sha256:f81025eddd0327c7d4cfe9b62cf33190e1e736cc6e97502b3ec425f574b3e7a8" + ], + "version": "==5.1.2" + }, + "readme-renderer": { + "hashes": [ + "sha256:bb16f55b259f27f75f640acf5e00cf897845a8b3e4731b5c1a436e4b8529202f", + "sha256:c8532b79afc0375a85f10433eca157d6b50f7d6990f337fa498c96cd4bfc203d" + ], + "version": "==24.0" + }, + "requests": { + "hashes": [ + "sha256:11e007a8a2aa0323f5a921e9e6a2d7e4e67d9877e85773fba9ba6419025cbeb4", + "sha256:9cf5292fcd0f598c671cfc1e0d7d1a7f13bb8085e9a590f48c010551dc6c4b31" + ], + "version": "==2.22.0" + }, + "requests-toolbelt": { + "hashes": [ + "sha256:380606e1d10dc85c3bd47bf5a6095f815ec007be7a8b69c878507068df059e6f", + "sha256:968089d4584ad4ad7c171454f0a5c6dac23971e9472521ea3b6d49d610aa6fc0" + ], + "version": "==0.9.1" + }, + "six": { + "hashes": [ + "sha256:3350809f0555b11f552448330d0b52d5f24c91a322ea4a15ef22629740f3761c", + "sha256:d16a0141ec1a18405cd4ce8b4613101da75da0e9a7aec5bdd4fa804d0e0eba73" + ], + "version": "==1.12.0" + }, + "toml": { + "hashes": [ + "sha256:229f81c57791a41d65e399fc06bf0848bab550a9dfd5ed66df18ce5f05e73d5c", + "sha256:235682dd292d5899d361a811df37e04a8828a5b1da3115886b73cf81ebc9100e" + ], + "version": "==0.10.0" + }, + "tqdm": { + "hashes": [ + "sha256:abc25d0ce2397d070ef07d8c7e706aede7920da163c64997585d42d3537ece3d", + "sha256:dd3fcca8488bb1d416aa7469d2f277902f26260c45aa86b667b074cd44b3b115" + ], + "version": "==4.36.1" + }, + "twine": { + "hashes": [ + "sha256:5319dd3e02ac73fcddcd94f035b9631589ab5d23e1f4699d57365199d85261e1", + "sha256:9fe7091715c7576df166df8ef6654e61bada39571783f2fd415bdcba867c6993" + ], + "index": "pypi", + "version": "==2.0.0" + }, + "typed-ast": { + "hashes": [ + "sha256:18511a0b3e7922276346bcb47e2ef9f38fb90fd31cb9223eed42c85d1312344e", + "sha256:262c247a82d005e43b5b7f69aff746370538e176131c32dda9cb0f324d27141e", + "sha256:2b907eb046d049bcd9892e3076c7a6456c93a25bebfe554e931620c90e6a25b0", + "sha256:354c16e5babd09f5cb0ee000d54cfa38401d8b8891eefa878ac772f827181a3c", + "sha256:4e0b70c6fc4d010f8107726af5fd37921b666f5b31d9331f0bd24ad9a088e631", + "sha256:630968c5cdee51a11c05a30453f8cd65e0cc1d2ad0d9192819df9978984529f4", + "sha256:66480f95b8167c9c5c5c87f32cf437d585937970f3fc24386f313a4c97b44e34", + "sha256:71211d26ffd12d63a83e079ff258ac9d56a1376a25bc80b1cdcdf601b855b90b", + "sha256:95bd11af7eafc16e829af2d3df510cecfd4387f6453355188342c3e79a2ec87a", + "sha256:bc6c7d3fa1325a0c6613512a093bc2a2a15aeec350451cbdf9e1d4bffe3e3233", + "sha256:cc34a6f5b426748a507dd5d1de4c1978f2eb5626d51326e43280941206c209e1", + "sha256:d755f03c1e4a51e9b24d899561fec4ccaf51f210d52abdf8c07ee2849b212a36", + "sha256:d7c45933b1bdfaf9f36c579671fec15d25b06c8398f113dab64c18ed1adda01d", + "sha256:d896919306dd0aa22d0132f62a1b78d11aaf4c9fc5b3410d3c666b818191630a", + "sha256:ffde2fbfad571af120fcbfbbc61c72469e72f550d676c3342492a9dfdefb8f12" + ], + "version": "==1.4.0" + }, + "typing-extensions": { + "hashes": [ + "sha256:2ed632b30bb54fc3941c382decfd0ee4148f5c591651c9272473fea2c6397d95", + "sha256:b1edbbf0652660e32ae780ac9433f4231e7339c7f9a8057d0f042fcbcea49b87", + "sha256:d8179012ec2c620d3791ca6fe2bf7979d979acdbef1fca0bc56b37411db682ed" + ], + "version": "==3.7.4" + }, + "urllib3": { + "hashes": [ + "sha256:3de946ffbed6e6746608990594d08faac602528ac7015ac28d33cee6a45b7398", + "sha256:9a107b99a5393caf59c7aa3c1249c16e6879447533d0887f4336dde834c7be86" + ], + "version": "==1.25.6" + }, + "virtualenv": { + "hashes": [ + "sha256:680af46846662bb38c5504b78bad9ed9e4f3ba2d54f54ba42494fdf94337fe30", + "sha256:f78d81b62d3147396ac33fc9d77579ddc42cc2a98dd9ea38886f616b33bc7fb2" + ], + "version": "==16.7.5" + }, + "wcwidth": { + "hashes": [ + "sha256:3df37372226d6e63e1b1e1eda15c594bca98a22d33a23832a90998faa96bc65e", + "sha256:f4ebe71925af7b40a864553f761ed559b43544f8f71746c2d756c7fe788ade7c" + ], + "version": "==0.1.7" + }, + "webencodings": { + "hashes": [ + "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", + "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923" + ], + "version": "==0.5.1" + }, + "wheel": { + "hashes": [ + "sha256:10c9da68765315ed98850f8e048347c3eb06dd81822dc2ab1d4fde9dc9702646", + "sha256:f4da1763d3becf2e2cd92a14a7c920f0f00eca30fdde9ea992c836685b9faf28" + ], + "index": "pypi", + "version": "==0.33.6" + }, + "zipp": { + "hashes": [ + "sha256:3718b1cbcd963c7d4c5511a8240812904164b7f381b647143a89d3b98f9bcd8e", + "sha256:f06903e9f1f43b12d371004b4ac7b06ab39a44adc747266928ae6debfa7b3335" + ], + "version": "==0.6.0" + } + } +} diff --git a/Ch06/apd.aggregation-chapter06/README.md b/Ch06/apd.aggregation-chapter06/README.md new file mode 100644 index 0000000..85669dd --- /dev/null +++ b/Ch06/apd.aggregation-chapter06/README.md @@ -0,0 +1,4 @@ +# APD Sensor aggregator + +A programme that queries apd.sensor endpoints and aggregates their results. + diff --git a/Ch06/apd.aggregation-chapter06/pyproject.toml b/Ch06/apd.aggregation-chapter06/pyproject.toml new file mode 100644 index 0000000..4d3bb67 --- /dev/null +++ b/Ch06/apd.aggregation-chapter06/pyproject.toml @@ -0,0 +1,5 @@ +[build-system] +requires = [ + "setuptools", +] +build-backend = "setuptools.build_meta" diff --git a/Ch06/apd.aggregation-chapter06/setup.cfg b/Ch06/apd.aggregation-chapter06/setup.cfg new file mode 100644 index 0000000..6c2dc8a --- /dev/null +++ b/Ch06/apd.aggregation-chapter06/setup.cfg @@ -0,0 +1,44 @@ +[mypy] +namespace_packages = True +mypy_path = src +plugins = sqlmypy + +[mypy-alembic] +ignore_missing_imports = True + +[flake8] +max-line-length = 88 + +[metadata] +name = apd.aggregation +version = attr: apd.aggregation.VERSION +description = A programme that queries apd.sensor endpoints and aggregates their results. +long_description = file: README.md, CHANGES.md, LICENCE +long_description_content_type = text/markdown +keywords = +license = BSD +classifiers = + Programming Language :: Python :: 3 + Programming Language :: Python :: 3.7 + +[options] +zip_safe = False +include_package_data = True +package_dir = + =src +packages = find_namespace: +install_requires = + sqlalchemy + requests + psycopg2 + alembic + click + sqlalchemy-stubs + + +[options.packages.find] +where = src + +[options.entry_points] +console_scripts = + collect_sensor_data = apd.aggregation.cli:collect_sensor_data diff --git a/Ch06/apd.aggregation-chapter06/setup.py b/Ch06/apd.aggregation-chapter06/setup.py new file mode 100644 index 0000000..6068493 --- /dev/null +++ b/Ch06/apd.aggregation-chapter06/setup.py @@ -0,0 +1,3 @@ +from setuptools import setup + +setup() diff --git a/Ch06/apd.aggregation-chapter06/src/apd/aggregation/__init__.py b/Ch06/apd.aggregation-chapter06/src/apd/aggregation/__init__.py new file mode 100644 index 0000000..3277f64 --- /dev/null +++ b/Ch06/apd.aggregation-chapter06/src/apd/aggregation/__init__.py @@ -0,0 +1 @@ +VERSION = "1.0.0" diff --git a/Ch06/apd.aggregation-chapter06/src/apd/aggregation/alembic/README b/Ch06/apd.aggregation-chapter06/src/apd/aggregation/alembic/README new file mode 100644 index 0000000..97a87d5 --- /dev/null +++ b/Ch06/apd.aggregation-chapter06/src/apd/aggregation/alembic/README @@ -0,0 +1,12 @@ +Generic single-database configuration. + + +# Database setup + +To generate the required database tables you must create an alembic.ini file, as follows: + + [alembic] + script_location = apd.aggregation:alembic + sqlalchemy.url = postgresql+psycopg2://apd@localhost/apd + +and run `alembic upgrade head`. This should also be done after every upgrade of the software. \ No newline at end of file diff --git a/Ch06/apd.aggregation-chapter06/src/apd/aggregation/alembic/env.py b/Ch06/apd.aggregation-chapter06/src/apd/aggregation/alembic/env.py new file mode 100644 index 0000000..09beb9c --- /dev/null +++ b/Ch06/apd.aggregation-chapter06/src/apd/aggregation/alembic/env.py @@ -0,0 +1,73 @@ +from logging.config import fileConfig + +from sqlalchemy import engine_from_config +from sqlalchemy import pool + +from alembic import context + +# this is the Alembic Config object, which provides +# access to the values within the .ini file in use. +config = context.config + +# Interpret the config file for Python logging. +# This line sets up loggers basically. +fileConfig(config.config_file_name) + +from apd.aggregation.database import Base + +target_metadata = Base.metadata + +# other values from the config, defined by the needs of env.py, +# can be acquired: +# my_important_option = config.get_main_option("my_important_option") +# ... etc. + + +def run_migrations_offline(): + """Run migrations in 'offline' mode. + + This configures the context with just a URL + and not an Engine, though an Engine is acceptable + here as well. By skipping the Engine creation + we don't even need a DBAPI to be available. + + Calls to context.execute() here emit the given string to the + script output. + + """ + url = config.get_main_option("sqlalchemy.url") + context.configure( + url=url, + target_metadata=target_metadata, + literal_binds=True, + dialect_opts={"paramstyle": "named"}, + ) + + with context.begin_transaction(): + context.run_migrations() + + +def run_migrations_online(): + """Run migrations in 'online' mode. + + In this scenario we need to create an Engine + and associate a connection with the context. + + """ + connectable = engine_from_config( + config.get_section(config.config_ini_section), + prefix="sqlalchemy.", + poolclass=pool.NullPool, + ) + + with connectable.connect() as connection: + context.configure(connection=connection, target_metadata=target_metadata) + + with context.begin_transaction(): + context.run_migrations() + + +if context.is_offline_mode(): + run_migrations_offline() +else: + run_migrations_online() diff --git a/Ch06/apd.aggregation-chapter06/src/apd/aggregation/alembic/script.py.mako b/Ch06/apd.aggregation-chapter06/src/apd/aggregation/alembic/script.py.mako new file mode 100644 index 0000000..2c01563 --- /dev/null +++ b/Ch06/apd.aggregation-chapter06/src/apd/aggregation/alembic/script.py.mako @@ -0,0 +1,24 @@ +"""${message} + +Revision ID: ${up_revision} +Revises: ${down_revision | comma,n} +Create Date: ${create_date} + +""" +from alembic import op +import sqlalchemy as sa +${imports if imports else ""} + +# revision identifiers, used by Alembic. +revision = ${repr(up_revision)} +down_revision = ${repr(down_revision)} +branch_labels = ${repr(branch_labels)} +depends_on = ${repr(depends_on)} + + +def upgrade(): + ${upgrades if upgrades else "pass"} + + +def downgrade(): + ${downgrades if downgrades else "pass"} diff --git a/Ch06/apd.aggregation-chapter06/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py b/Ch06/apd.aggregation-chapter06/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py new file mode 100644 index 0000000..b4a3545 --- /dev/null +++ b/Ch06/apd.aggregation-chapter06/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py @@ -0,0 +1,31 @@ +"""Create datapoints table + +Revision ID: 6d2eacd5da3f +Revises: N/A +Create Date: 2019-09-29 13:43:21.242706 + +""" +from alembic import op +import sqlalchemy as sa +from sqlalchemy.dialects import postgresql + +# revision identifiers, used by Alembic. +revision = "6d2eacd5da3f" +down_revision = None +branch_labels = None +depends_on = None + + +def upgrade(): + op.create_table( + "datapoints", + sa.Column("id", sa.Integer(), nullable=False), + sa.Column("sensor_name", sa.String(), nullable=True), + sa.Column("collected_at", postgresql.TIMESTAMP(), nullable=True), + sa.Column("data", postgresql.JSONB(astext_type=sa.Text()), nullable=True), + sa.PrimaryKeyConstraint("id"), + ) + + +def downgrade(): + op.drop_table("datapoints") diff --git a/Ch06/apd.aggregation-chapter06/src/apd/aggregation/cli.py b/Ch06/apd.aggregation-chapter06/src/apd/aggregation/cli.py new file mode 100644 index 0000000..3435e78 --- /dev/null +++ b/Ch06/apd.aggregation-chapter06/src/apd/aggregation/cli.py @@ -0,0 +1,52 @@ +import typing as t + +import click + +from .collect import standalone + + +@click.command() +@click.argument("server", nargs=-1) +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +@click.option("--api-key", metavar="", envvar="APD_API_KEY") +@click.option( + "--tolerate-failures", + "-f", + help="If provided, failure to retrieve some sensors' data will not abort the collection process", + is_flag=True, +) +@click.option("-v", "--verbose", is_flag=True, help="Enables verbose mode") +def collect_sensor_data( + db: str, server: t.Tuple[str], api_key: str, tolerate_failures: bool, verbose: bool +): + """This loads data from one or more sensors into the specified database. + + Only PostgreSQL databases are supported, as the column definitions use + multiple pg specific features. The database must already exist and be + populated with the required tables. + + The --api-key option is used to specify the access token for the sensors + being queried. + + You may specify any number of servers, the variable should be the full URL + to the sensor's HTTP interface, not including the /v/2.0 portion. Multiple + URLs should be separated with a space. + """ + if tolerate_failures: + attempts = [(s,) for s in server] + else: + attempts = [server] + success = True + for attempt in attempts: + try: + standalone(db, attempt, api_key, echo=verbose) + except ValueError as e: + click.secho(str(e), err=True, fg="red") + success = False + return success diff --git a/Ch06/apd.aggregation-chapter06/src/apd/aggregation/collect.py b/Ch06/apd.aggregation-chapter06/src/apd/aggregation/collect.py new file mode 100644 index 0000000..ecc2c41 --- /dev/null +++ b/Ch06/apd.aggregation-chapter06/src/apd/aggregation/collect.py @@ -0,0 +1,63 @@ +import datetime +import typing as t + +import requests +from sqlalchemy import create_engine +from sqlalchemy.orm import sessionmaker +from sqlalchemy.orm.session import Session + +from .database import DataPoint + + +def get_data_points(server: str, api_key: t.Optional[str]) -> t.Iterable[DataPoint]: + if not server.endswith("/"): + server += "/" + url = server + "v/2.0/sensors/" + headers = {} + if api_key: + headers["X-API-KEY"] = api_key + try: + result = requests.get(url, headers=headers) + except requests.ConnectionError as e: + raise ValueError(f"Error connecting to {server}") + now = datetime.datetime.now() + if result.ok: + for value in result.json()["sensors"]: + yield DataPoint( + sensor_name=value["id"], collected_at=now, data=value["value"] + ) + else: + raise ValueError( + f"Error loading data from {server}: " + + result.json().get("error", "Unknown") + ) + + +def add_data_from_sensors( + session: Session, servers: t.Tuple[str], api_key: t.Optional[str] +) -> t.Iterable[DataPoint]: + points: t.List[DataPoint] = [] + for server in servers: + for point in get_data_points(server, api_key): + session.add(point) + points.append(point) + return points + + +def standalone( + db_uri: str, servers: t.Tuple[str], api_key: t.Optional[str], echo: bool = False +) -> None: + engine = create_engine(db_uri, echo=echo) + sm = sessionmaker(engine) + Session = sm() + add_data_from_sensors(Session, servers, api_key) + Session.commit() + + +if __name__ == "__main__": + standalone( + db_uri="postgresql+psycopg2://apd@localhost/apd", + servers=("http://pvoutput:8080/",), + api_key="h3hdfjksfhwkjehnwekj", + ) + \ No newline at end of file diff --git a/Ch06/apd.aggregation-chapter06/src/apd/aggregation/database.py b/Ch06/apd.aggregation-chapter06/src/apd/aggregation/database.py new file mode 100644 index 0000000..af1cbde --- /dev/null +++ b/Ch06/apd.aggregation-chapter06/src/apd/aggregation/database.py @@ -0,0 +1,31 @@ +import sqlalchemy +from sqlalchemy.ext.declarative import declarative_base +from sqlalchemy.dialects.postgresql import JSONB, TIMESTAMP +from sqlalchemy.orm import sessionmaker + + +Base = declarative_base() + + +class DataPoint(Base): + __tablename__ = "datapoints" + id = sqlalchemy.Column(sqlalchemy.Integer, primary_key=True) + sensor_name = sqlalchemy.Column(sqlalchemy.String) + collected_at = sqlalchemy.Column(TIMESTAMP) + data = sqlalchemy.Column(JSONB) + + +def main(): + engine = sqlalchemy.create_engine( + "postgresql+psycopg2://apd@localhost/apd", echo=True + ) + sm = sessionmaker(engine) + Session = sm() + if False: + Base.metadata.create_all(engine) + print(Session.query(DataPoint).all()) + pass + + +if __name__ == "__main__": + main() diff --git a/Ch06/apd.aggregation-chapter06/tests/__init__.py b/Ch06/apd.aggregation-chapter06/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/Ch06/apd.aggregation-chapter06/tests/conftest.py b/Ch06/apd.aggregation-chapter06/tests/conftest.py new file mode 100644 index 0000000..e69de29 diff --git a/Ch06/chapter06-ex1-generators.py b/Ch06/chapter06-ex1-generators.py new file mode 100644 index 0000000..b481f86 --- /dev/null +++ b/Ch06/chapter06-ex1-generators.py @@ -0,0 +1,27 @@ +from datetime import datetime +import random +import time + +from apd.aggregation.database import DataPoint + + +def generate_points(time_to_wait): + while True: + time.sleep(time_to_wait) + yield DataPoint( + sensor_name="Fake", + collected_at=datetime.now(), + data=random.choice([1, 2, 3]) + ) + +def get_points_on_odd_seconds(): + points = generate_points(1) + odd_seconds = filter(lambda point: point.collected_at.second % 2, points) + yield from odd_seconds + +def print_points(points): + for point in points: + print(point.sensor_name, point.collected_at, point.data) + +if __name__ == "__main__": + print_points(get_points_on_odd_seconds()) \ No newline at end of file diff --git a/Ch06/listing06-03-descriptors.py b/Ch06/listing06-03-descriptors.py new file mode 100644 index 0000000..4402911 --- /dev/null +++ b/Ch06/listing06-03-descriptors.py @@ -0,0 +1,27 @@ +class ExampleDescriptor: + + def __set_name__(self, instance, name): + self.name = name + + def __get__(self, instance, owner): + print(f"{self}.__get__({instance}, {owner})") + if not instance: + # We were called on the class available as `owner` + return self + else: + # We were called on the instance called `instance` + if self.name in instance.__dict__: + return instance.__dict__[self.name] + else: + raise AttributeError(self.name) + + def __set__(self, instance, value): + print(f"{self}.__set__({instance}, {value})") + instance.__dict__[self.name] = value + + def __delete__(self, instance): + print(f"{self}.__delete__({instance}") + del instance.__dict__[self.name] + +class A: + foo = ExampleDescriptor() diff --git a/Ch07/apd.aggregation-chapter07-aio/.coveragerc b/Ch07/apd.aggregation-chapter07-aio/.coveragerc new file mode 100644 index 0000000..e766c69 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-aio/.coveragerc @@ -0,0 +1,3 @@ +[run] +branch = True +omit = tests/* diff --git a/Ch07/apd.aggregation-chapter07-aio/.pre-commit-config.yaml b/Ch07/apd.aggregation-chapter07-aio/.pre-commit-config.yaml new file mode 100644 index 0000000..d3b6ec7 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-aio/.pre-commit-config.yaml @@ -0,0 +1,26 @@ +repos: + +- repo: local + hooks: + - id: black + name: black + entry: pipenv run black + args: [--quiet] + language: system + types: [python] + + - id: mypy + name: mypy + exclude: (?x)^( + (.*)/setup.py + )$ + entry: pipenv run mypy + args: ["--follow-imports=skip"] + language: system + types: [python] + + - id: flake8 + name: flake8 + entry: pipenv run flake8 + language: system + types: [python] diff --git a/Ch07/apd.aggregation-chapter07-aio/CHANGES.md b/Ch07/apd.aggregation-chapter07-aio/CHANGES.md new file mode 100644 index 0000000..8e424e5 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-aio/CHANGES.md @@ -0,0 +1,5 @@ +## Changes + +### 1.0.0 (Unreleased) + +* Generated from skeleton diff --git a/Ch07/apd.aggregation-chapter07-aio/LICENCE b/Ch07/apd.aggregation-chapter07-aio/LICENCE new file mode 100644 index 0000000..86685d4 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-aio/LICENCE @@ -0,0 +1,31 @@ +Copyright (c) 2019, Matthew Wilkes + + +All rights reserved. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + +* Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + +* Redistributions in binary form must reproduce the above copyright notice, this + list of conditions and the following disclaimer in the documentation and/or + other materials provided with the distribution. + +* Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived from this + software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND +ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. +IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, +INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, +BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY +OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE +OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED +OF THE POSSIBILITY OF SUCH DAMAGE. + + diff --git a/Ch07/apd.aggregation-chapter07-aio/Pipfile b/Ch07/apd.aggregation-chapter07-aio/Pipfile new file mode 100644 index 0000000..ba42fa3 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-aio/Pipfile @@ -0,0 +1,22 @@ +[[source]] +name = "pypi" +url = "https://pypi.org/simple" +verify_ssl = true + +[dev-packages] +pytest = "*" +pytest-cov = "*" +mypy = "*" +flake8 = "*" +black = "*" +pre-commit = "*" +wheel = "*" +twine = "*" + +[packages] +apd-aggregation = {editable = true,path = "."} + +[requires] + +[pipenv] +allow_prereleases = true diff --git a/Ch07/apd.aggregation-chapter07-aio/Pipfile.lock b/Ch07/apd.aggregation-chapter07-aio/Pipfile.lock new file mode 100644 index 0000000..62333bb --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-aio/Pipfile.lock @@ -0,0 +1,466 @@ +{ + "_meta": { + "hash": { + "sha256": "6b1c63a96230c56a20e4bac5a8dfee64e295cb0c9240505e3d32018442533f74" + }, + "pipfile-spec": 6, + "requires": {}, + "sources": [ + { + "name": "pypi", + "url": "https://pypi.org/simple", + "verify_ssl": true + } + ] + }, + "default": { + "apd-aggregation": { + "editable": true, + "path": "." + }, + "psycopg2": { + "hashes": [ + "sha256:128d0fa910ada0157bba1cb74a9c5f92bb8a1dca77cf91a31eb274d1f889e001", + "sha256:227fd46cf9b7255f07687e5bde454d7d67ae39ca77e170097cdef8ebfc30c323", + "sha256:2315e7f104681d498ccf6fd70b0dba5bce65d60ac92171492bfe228e21dcc242", + "sha256:4b5417dcd2999db0f5a891d54717cfaee33acc64f4772c4bc574d4ff95ed9d80", + "sha256:640113ddc943522aaf71294e3f2d24013b0edd659b7820621492c9ebd3a2fb0b", + "sha256:897a6e838319b4bf648a574afb6cabcb17d0488f8c7195100d48d872419f4457", + "sha256:8dceca81409898c870e011c71179454962dec152a1a6b86a347f4be74b16d864", + "sha256:b1b8e41da09a0c3ef0b3d4bb72da0dde2abebe583c1e8462973233fd5ad0235f", + "sha256:cb407fccc12fc29dc331f2b934913405fa49b9b75af4f3a72d0f50f57ad2ca23", + "sha256:d3a27550a8185e53b244ad7e79e307594b92fede8617d80200a8cce1fba2c60f", + "sha256:f0e6b697a975d9d3ccd04135316c947dd82d841067c7800ccf622a8717e98df1" + ], + "index": "pypi", + "version": "==2.8.3" + }, + "sqlalchemy": { + "hashes": [ + "sha256:2f8ff566a4d3a92246d367f2e9cd6ed3edeef670dcd6dda6dfdc9efed88bcd80" + ], + "version": "==1.3.8" + } + }, + "develop": { + "appdirs": { + "hashes": [ + "sha256:9e5896d1372858f8dd3344faf4e5014d21849c756c8d5701f78f8a103b372d92", + "sha256:d8b24664561d0d34ddfaec54636d502d7cea6e29c3eaf68f3df6180863e2166e" + ], + "version": "==1.4.3" + }, + "aspy.yaml": { + "hashes": [ + "sha256:463372c043f70160a9ec950c3f1e4c3a82db5fca01d334b6bc89c7164d744bdc", + "sha256:e7c742382eff2caed61f87a39d13f99109088e5e93f04d76eb8d4b28aa143f45" + ], + "version": "==1.3.0" + }, + "atomicwrites": { + "hashes": [ + "sha256:03472c30eb2c5d1ba9227e4c2ca66ab8287fbfbbda3888aa93dc2e28fc6811b4", + "sha256:75a9445bac02d8d058d5e1fe689654ba5a6556a1dfd8ce6ec55a0ed79866cfa6" + ], + "version": "==1.3.0" + }, + "attrs": { + "hashes": [ + "sha256:69c0dbf2ed392de1cb5ec704444b08a5ef81680a61cb899dc08127123af36a79", + "sha256:f0b870f674851ecbfbbbd364d6b5cbdff9dcedbc7f3f5e18a6891057f21fe399" + ], + "version": "==19.1.0" + }, + "black": { + "hashes": [ + "sha256:09a9dcb7c46ed496a9850b76e4e825d6049ecd38b611f1224857a79bd985a8cf", + "sha256:68950ffd4d9169716bcb8719a56c07a2f4485354fec061cdd5910aa07369731c" + ], + "index": "pypi", + "version": "==19.3b0" + }, + "bleach": { + "hashes": [ + "sha256:213336e49e102af26d9cde77dd2d0397afabc5a6bf2fed985dc35b5d1e285a16", + "sha256:3fdf7f77adcf649c9911387df51254b813185e32b2c6619f690b593a617e19fa" + ], + "version": "==3.1.0" + }, + "certifi": { + "hashes": [ + "sha256:e4f3620cfea4f83eedc95b24abd9cd56f3c4b146dd0177e83a21b4eb49e21e50", + "sha256:fd7c7c74727ddcf00e9acd26bba8da604ffec95bf1c2144e67aff7a8b50e6cef" + ], + "version": "==2019.9.11" + }, + "cfgv": { + "hashes": [ + "sha256:edb387943b665bf9c434f717bf630fa78aecd53d5900d2e05da6ad6048553144", + "sha256:fbd93c9ab0a523bf7daec408f3be2ed99a980e20b2d19b50fc184ca6b820d289" + ], + "version": "==2.0.1" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:2335065e6395b9e67ca716de5f7526736bfa6ceead690adf616d925bdc622b13", + "sha256:5b94b49521f6456670fdb30cd82a4eca9412788a93fa6dd6df72c94d5a8ff2d7" + ], + "version": "==7.0" + }, + "colorama": { + "hashes": [ + "sha256:05eed71e2e327246ad6b38c540c4a3117230b19679b875190486ddd2d721422d", + "sha256:f8ac84de7840f5b9c4e3347b3c1eaa50f7e49c2b07596221daec5edaabbd7c48" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.1" + }, + "coverage": { + "hashes": [ + "sha256:094378c3a35594335a840ea04d473c019e6d4fe10e343cd0d7fb5e87f8b7e926", + "sha256:10216222f3e4139910b6230d0ca0fe9d10ee98837eb83d29525722d628729d20", + "sha256:147478e21cba12c63b3454df5a2fb77b44df630428cffa3a36a6813e38157eab", + "sha256:230ce08965190c0f69196be34a07a795981b2b02b21419c2e1918a882b3eeab0", + "sha256:2469621d680a4c71cdbd3ea4dbed9d199bba93f21d2be1c107ded907b2db41a8", + "sha256:26526174d11fb2163832628d943edd452e07528b0ecc0c83c88256a59a32287c", + "sha256:2690bf0835f34ef3451860b02471e9560e4b3caf7413abeaa7544af72eb6d9ed", + "sha256:2b6f2d9a60413e75651cebe33c3f2f66d61209db44e8b9cf6d8d66fb0cb01fda", + "sha256:3ce91c6b92160ecefedf95a8c61fbf4fb36b0addef1a40c654acf1ad390653d0", + "sha256:43d16d7e9e9eaace3d9f1828b617b1be248f90d031a4b2dc1b6e1c88f1602dcf", + "sha256:52b6455da5f547cad72fd5cfc57a16678573fda6c695d257b5c266a44dbbd172", + "sha256:533f3036c8f58e6381fcca3306fe988740638c62c7fc86b7fae9c74b85ac3cdc", + "sha256:62d2abe5c733394058cb381d088bcab64a18da3ce9dc9a8ef2a18e122cbe47f1", + "sha256:72c34f99164679e44a5cbf19bf1a13be4e715c680816302b6ceca49b979fde91", + "sha256:81fc07feed4e40a7c0bdd266efa65e5afc83b5e0f1063007acc6759a957322a1", + "sha256:82093e673182c761ce54dfab17f026a06be3c011fee9b653855b9a2649f20232", + "sha256:87947fef728f72860407c446fd9b4a0f98e39e91ad7ae80803c02a85738e63ef", + "sha256:8b18c5a5a6b35b6311d2c356782ce3c7bacf6d987d9dc479178577391bf1c7dd", + "sha256:90e1850e993aa6b81bafaf672c8e508eaa17fbb5eb23aba93f7f4df822f3bd29", + "sha256:99f71e365bcb03a8debe1a75061329c9e45379f244a229442319d64c53c4e844", + "sha256:9b2c559104a90bf0043d6ef262ca205326d1fe6ec572dcf59e34be9289432793", + "sha256:ad22b073d92ea65b063e612154c72d6367dec3dd47ed33c02e3ab339eabe7bf3", + "sha256:bc3648da235fee2113a8cb80154d9fff4e2689d2d4a11ad35c1ecae23454b539", + "sha256:d0e2478bde68c5d853bcd306b5aae8fbe80417e87957a21fa6ee71edb90639f2", + "sha256:d3e6912d2370925222d2bfb3bd2ba02e9698b8da89cf7192ddf80cbb9f2455ee", + "sha256:d4fa98e3e15863568ea89eaec5e0866ca763980bdc56098dd9316865c111a28e", + "sha256:ee924a23457b373241ff39d21570360afd8ccb58520eb1e8e18eb00827b73e2d" + ], + "version": "==5.0a7" + }, + "docutils": { + "hashes": [ + "sha256:6c4f696463b79f1fb8ba0c594b63840ebd41f059e92b31957c46b74a4599b6d0", + "sha256:9e4d7ecfc600058e07ba661411a2b7de2fd0fafa17d1a7f7361cd47b1175c827", + "sha256:a2aeea129088da402665e92e0b25b04b073c04b2dce4ab65caaa38b7ce2e1a99" + ], + "version": "==0.15.2" + }, + "entrypoints": { + "hashes": [ + "sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19", + "sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451" + ], + "version": "==0.3" + }, + "flake8": { + "hashes": [ + "sha256:19241c1cbc971b9962473e4438a2ca19749a7dd002dd1a946eaba171b4114548", + "sha256:8e9dfa3cecb2400b3738a42c54c3043e821682b9c840b0448c0503f781130696" + ], + "index": "pypi", + "version": "==3.7.8" + }, + "identify": { + "hashes": [ + "sha256:4f1fe9a59df4e80fcb0213086fcf502bc1765a01ea4fe8be48da3b65afd2a017", + "sha256:d8919589bd2a5f99c66302fec0ef9027b12ae150b0b0213999ad3f695fc7296e" + ], + "version": "==1.4.7" + }, + "idna": { + "hashes": [ + "sha256:c357b3f628cf53ae2c4c05627ecc484553142ca23264e593d327bcde5e9c3407", + "sha256:ea8b7f6188e6fa117537c3df7da9fc686d485087abf6ac197f9c46432f7e4a3c" + ], + "version": "==2.8" + }, + "importlib-metadata": { + "hashes": [ + "sha256:aa18d7378b00b40847790e7c27e11673d7fed219354109d0e7b9e5b25dc3ad26", + "sha256:d5f18a79777f3aa179c145737780282e27b508fc8fd688cb17c7a813e8bd39af" + ], + "markers": "python_version < '3.8'", + "version": "==0.23" + }, + "mccabe": { + "hashes": [ + "sha256:ab8a6258860da4b6677da4bd2fe5dc2c659cff31b3ee4f7f5d64e79735b80d42", + "sha256:dd8d182285a0fe56bace7f45b5e7d1a6ebcbf524e8f3bd87eb0f125271b8831f" + ], + "version": "==0.6.1" + }, + "more-itertools": { + "hashes": [ + "sha256:409cd48d4db7052af495b09dec721011634af3753ae1ef92d2b32f73a745f832", + "sha256:92b8c4b06dac4f0611c0729b2f2ede52b2e1bac1ab48f089c7ddc12e26bb60c4" + ], + "version": "==7.2.0" + }, + "mypy": { + "hashes": [ + "sha256:0107bff4f46a289f0e4081d59b77cef1c48ea43da5a0dbf0005d54748b26df2a", + "sha256:07957f5471b3bb768c61f08690c96d8a09be0912185a27a68700f3ede99184e4", + "sha256:10af62f87b6921eac50271e667cc234162a194e742d8e02fc4ddc121e129a5b0", + "sha256:11fd60d2f69f0cefbe53ce551acf5b1cec1a89e7ce2d47b4e95a84eefb2899ae", + "sha256:15e43d3b1546813669bd1a6ec7e6a11d2888db938e0607f7b5eef6b976671339", + "sha256:352c24ba054a89bb9a35dd064ee95ab9b12903b56c72a8d3863d882e2632dc76", + "sha256:437020a39417e85e22ea8edcb709612903a9924209e10b3ec6d8c9f05b79f498", + "sha256:49925f9da7cee47eebf3420d7c0e00ec662ec6abb2780eb0a16260a7ba25f9c4", + "sha256:6724fcd5777aa6cebfa7e644c526888c9d639bd22edd26b2a8038c674a7c34bd", + "sha256:7a17613f7ea374ab64f39f03257f22b5755335b73251d0d253687a69029701ba", + "sha256:cdc1151ced496ca1496272da7fc356580e95f2682be1d32377c22ddebdf73c91" + ], + "index": "pypi", + "version": "==0.720" + }, + "mypy-extensions": { + "hashes": [ + "sha256:37e0e956f41369209a3d5f34580150bcacfabaa57b33a15c0b25f4b5725e0812", + "sha256:b16cabe759f55e3409a7d231ebd2841378fb0c27a5d1994719e340e4f429ac3e" + ], + "version": "==0.4.1" + }, + "nodeenv": { + "hashes": [ + "sha256:ad8259494cf1c9034539f6cced78a1da4840a4b157e23640bc4a0c0546b0cb7a" + ], + "version": "==1.3.3" + }, + "packaging": { + "hashes": [ + "sha256:28b924174df7a2fa32c1953825ff29c61e2f5e082343165438812f00d3a7fc47", + "sha256:d9551545c6d761f3def1677baf08ab2a3ca17c56879e70fecba2fc4dde4ed108" + ], + "version": "==19.2" + }, + "pkginfo": { + "hashes": [ + "sha256:7424f2c8511c186cd5424bbf31045b77435b37a8d604990b79d4e70d741148bb", + "sha256:a6d9e40ca61ad3ebd0b72fbadd4fba16e4c0e4df0428c041e01e06eb6ee71f32" + ], + "version": "==1.5.0.1" + }, + "pluggy": { + "hashes": [ + "sha256:0db4b7601aae1d35b4a033282da476845aa19185c1e6964b25cf324b5e4ec3e6", + "sha256:fa5fa1622fa6dd5c030e9cad086fa19ef6a0cf6d7a2d12318e10cb49d6d68f34" + ], + "version": "==0.13.0" + }, + "pre-commit": { + "hashes": [ + "sha256:1d3c0587bda7c4e537a46c27f2c84aa006acc18facf9970bf947df596ce91f3f", + "sha256:fa78ff96e8e9ac94c748388597693f18b041a181c94a4f039ad20f45287ba44a" + ], + "index": "pypi", + "version": "==1.18.3" + }, + "py": { + "hashes": [ + "sha256:64f65755aee5b381cea27766a3a147c3f15b9b6b9ac88676de66ba2ae36793fa", + "sha256:dc639b046a6e2cff5bbe40194ad65936d6ba360b52b3c3fe1d08a82dd50b5e53" + ], + "version": "==1.8.0" + }, + "pycodestyle": { + "hashes": [ + "sha256:95a2219d12372f05704562a14ec30bc76b05a5b297b21a5dfe3f6fac3491ae56", + "sha256:e40a936c9a450ad81df37f549d676d127b1b66000a6c500caa2b085bc0ca976c" + ], + "version": "==2.5.0" + }, + "pyflakes": { + "hashes": [ + "sha256:17dbeb2e3f4d772725c777fabc446d5634d1038f234e77343108ce445ea69ce0", + "sha256:d976835886f8c5b31d47970ed689944a0262b5f3afa00a5a7b4dc81e5449f8a2" + ], + "version": "==2.1.1" + }, + "pygments": { + "hashes": [ + "sha256:71e430bc85c88a430f000ac1d9b331d2407f681d6f6aec95e8bcfbc3df5b0127", + "sha256:881c4c157e45f30af185c1ffe8d549d48ac9127433f2c380c24b84572ad66297" + ], + "version": "==2.4.2" + }, + "pyparsing": { + "hashes": [ + "sha256:6f98a7b9397e206d78cc01df10131398f1c8b8510a2f4d97d9abd82e1aacdd80", + "sha256:d9338df12903bbf5d65a0e4e87c2161968b10d2e489652bb47001d82a9b028b4" + ], + "version": "==2.4.2" + }, + "pytest": { + "hashes": [ + "sha256:813b99704b22c7d377bbd756ebe56c35252bb710937b46f207100e843440b3c2", + "sha256:cc6620b96bc667a0c8d4fa592a8c9c94178a1bd6cc799dbb057dfd9286d31a31" + ], + "index": "pypi", + "version": "==5.1.3" + }, + "pytest-cov": { + "hashes": [ + "sha256:2b097cde81a302e1047331b48cadacf23577e431b61e9c6f49a1170bbe3d3da6", + "sha256:e00ea4fdde970725482f1f35630d12f074e121a23801aabf2ae154ec6bdd343a" + ], + "index": "pypi", + "version": "==2.7.1" + }, + "pyyaml": { + "hashes": [ + "sha256:0113bc0ec2ad727182326b61326afa3d1d8280ae1122493553fd6f4397f33df9", + "sha256:01adf0b6c6f61bd11af6e10ca52b7d4057dd0be0343eb9283c878cf3af56aee4", + "sha256:5124373960b0b3f4aa7df1707e63e9f109b5263eca5976c66e08b1c552d4eaf8", + "sha256:5ca4f10adbddae56d824b2c09668e91219bb178a1eee1faa56af6f99f11bf696", + "sha256:7907be34ffa3c5a32b60b95f4d95ea25361c951383a894fec31be7252b2b6f34", + "sha256:7ec9b2a4ed5cad025c2278a1e6a19c011c80a3caaac804fd2d329e9cc2c287c9", + "sha256:87ae4c829bb25b9fe99cf71fbb2140c448f534e24c998cc60f39ae4f94396a73", + "sha256:9de9919becc9cc2ff03637872a440195ac4241c80536632fffeb6a1e25a74299", + "sha256:a5a85b10e450c66b49f98846937e8cfca1db3127a9d5d1e31ca45c3d0bef4c5b", + "sha256:b0997827b4f6a7c286c01c5f60384d218dca4ed7d9efa945c3e1aa623d5709ae", + "sha256:b631ef96d3222e62861443cc89d6563ba3eeb816eeb96b2629345ab795e53681", + "sha256:bf47c0607522fdbca6c9e817a6e81b08491de50f3766a7a0e6a5be7905961b41", + "sha256:f81025eddd0327c7d4cfe9b62cf33190e1e736cc6e97502b3ec425f574b3e7a8" + ], + "version": "==5.1.2" + }, + "readme-renderer": { + "hashes": [ + "sha256:bb16f55b259f27f75f640acf5e00cf897845a8b3e4731b5c1a436e4b8529202f", + "sha256:c8532b79afc0375a85f10433eca157d6b50f7d6990f337fa498c96cd4bfc203d" + ], + "version": "==24.0" + }, + "requests": { + "hashes": [ + "sha256:11e007a8a2aa0323f5a921e9e6a2d7e4e67d9877e85773fba9ba6419025cbeb4", + "sha256:9cf5292fcd0f598c671cfc1e0d7d1a7f13bb8085e9a590f48c010551dc6c4b31" + ], + "version": "==2.22.0" + }, + "requests-toolbelt": { + "hashes": [ + "sha256:380606e1d10dc85c3bd47bf5a6095f815ec007be7a8b69c878507068df059e6f", + "sha256:968089d4584ad4ad7c171454f0a5c6dac23971e9472521ea3b6d49d610aa6fc0" + ], + "version": "==0.9.1" + }, + "six": { + "hashes": [ + "sha256:3350809f0555b11f552448330d0b52d5f24c91a322ea4a15ef22629740f3761c", + "sha256:d16a0141ec1a18405cd4ce8b4613101da75da0e9a7aec5bdd4fa804d0e0eba73" + ], + "version": "==1.12.0" + }, + "toml": { + "hashes": [ + "sha256:229f81c57791a41d65e399fc06bf0848bab550a9dfd5ed66df18ce5f05e73d5c", + "sha256:235682dd292d5899d361a811df37e04a8828a5b1da3115886b73cf81ebc9100e" + ], + "version": "==0.10.0" + }, + "tqdm": { + "hashes": [ + "sha256:abc25d0ce2397d070ef07d8c7e706aede7920da163c64997585d42d3537ece3d", + "sha256:dd3fcca8488bb1d416aa7469d2f277902f26260c45aa86b667b074cd44b3b115" + ], + "version": "==4.36.1" + }, + "twine": { + "hashes": [ + "sha256:5319dd3e02ac73fcddcd94f035b9631589ab5d23e1f4699d57365199d85261e1", + "sha256:9fe7091715c7576df166df8ef6654e61bada39571783f2fd415bdcba867c6993" + ], + "index": "pypi", + "version": "==2.0.0" + }, + "typed-ast": { + "hashes": [ + "sha256:18511a0b3e7922276346bcb47e2ef9f38fb90fd31cb9223eed42c85d1312344e", + "sha256:262c247a82d005e43b5b7f69aff746370538e176131c32dda9cb0f324d27141e", + "sha256:2b907eb046d049bcd9892e3076c7a6456c93a25bebfe554e931620c90e6a25b0", + "sha256:354c16e5babd09f5cb0ee000d54cfa38401d8b8891eefa878ac772f827181a3c", + "sha256:4e0b70c6fc4d010f8107726af5fd37921b666f5b31d9331f0bd24ad9a088e631", + "sha256:630968c5cdee51a11c05a30453f8cd65e0cc1d2ad0d9192819df9978984529f4", + "sha256:66480f95b8167c9c5c5c87f32cf437d585937970f3fc24386f313a4c97b44e34", + "sha256:71211d26ffd12d63a83e079ff258ac9d56a1376a25bc80b1cdcdf601b855b90b", + "sha256:95bd11af7eafc16e829af2d3df510cecfd4387f6453355188342c3e79a2ec87a", + "sha256:bc6c7d3fa1325a0c6613512a093bc2a2a15aeec350451cbdf9e1d4bffe3e3233", + "sha256:cc34a6f5b426748a507dd5d1de4c1978f2eb5626d51326e43280941206c209e1", + "sha256:d755f03c1e4a51e9b24d899561fec4ccaf51f210d52abdf8c07ee2849b212a36", + "sha256:d7c45933b1bdfaf9f36c579671fec15d25b06c8398f113dab64c18ed1adda01d", + "sha256:d896919306dd0aa22d0132f62a1b78d11aaf4c9fc5b3410d3c666b818191630a", + "sha256:ffde2fbfad571af120fcbfbbc61c72469e72f550d676c3342492a9dfdefb8f12" + ], + "version": "==1.4.0" + }, + "typing-extensions": { + "hashes": [ + "sha256:2ed632b30bb54fc3941c382decfd0ee4148f5c591651c9272473fea2c6397d95", + "sha256:b1edbbf0652660e32ae780ac9433f4231e7339c7f9a8057d0f042fcbcea49b87", + "sha256:d8179012ec2c620d3791ca6fe2bf7979d979acdbef1fca0bc56b37411db682ed" + ], + "version": "==3.7.4" + }, + "urllib3": { + "hashes": [ + "sha256:3de946ffbed6e6746608990594d08faac602528ac7015ac28d33cee6a45b7398", + "sha256:9a107b99a5393caf59c7aa3c1249c16e6879447533d0887f4336dde834c7be86" + ], + "version": "==1.25.6" + }, + "virtualenv": { + "hashes": [ + "sha256:680af46846662bb38c5504b78bad9ed9e4f3ba2d54f54ba42494fdf94337fe30", + "sha256:f78d81b62d3147396ac33fc9d77579ddc42cc2a98dd9ea38886f616b33bc7fb2" + ], + "version": "==16.7.5" + }, + "wcwidth": { + "hashes": [ + "sha256:3df37372226d6e63e1b1e1eda15c594bca98a22d33a23832a90998faa96bc65e", + "sha256:f4ebe71925af7b40a864553f761ed559b43544f8f71746c2d756c7fe788ade7c" + ], + "version": "==0.1.7" + }, + "webencodings": { + "hashes": [ + "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", + "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923" + ], + "version": "==0.5.1" + }, + "wheel": { + "hashes": [ + "sha256:10c9da68765315ed98850f8e048347c3eb06dd81822dc2ab1d4fde9dc9702646", + "sha256:f4da1763d3becf2e2cd92a14a7c920f0f00eca30fdde9ea992c836685b9faf28" + ], + "index": "pypi", + "version": "==0.33.6" + }, + "zipp": { + "hashes": [ + "sha256:3718b1cbcd963c7d4c5511a8240812904164b7f381b647143a89d3b98f9bcd8e", + "sha256:f06903e9f1f43b12d371004b4ac7b06ab39a44adc747266928ae6debfa7b3335" + ], + "version": "==0.6.0" + } + } +} diff --git a/Ch07/apd.aggregation-chapter07-aio/README.md b/Ch07/apd.aggregation-chapter07-aio/README.md new file mode 100644 index 0000000..85669dd --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-aio/README.md @@ -0,0 +1,4 @@ +# APD Sensor aggregator + +A programme that queries apd.sensor endpoints and aggregates their results. + diff --git a/Ch07/apd.aggregation-chapter07-aio/pyproject.toml b/Ch07/apd.aggregation-chapter07-aio/pyproject.toml new file mode 100644 index 0000000..4d3bb67 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-aio/pyproject.toml @@ -0,0 +1,5 @@ +[build-system] +requires = [ + "setuptools", +] +build-backend = "setuptools.build_meta" diff --git a/Ch07/apd.aggregation-chapter07-aio/setup.cfg b/Ch07/apd.aggregation-chapter07-aio/setup.cfg new file mode 100644 index 0000000..949fb48 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-aio/setup.cfg @@ -0,0 +1,44 @@ +[mypy] +namespace_packages = True +mypy_path = src +plugins = sqlmypy + +[mypy-alembic] +ignore_missing_imports = True + +[flake8] +max-line-length = 88 + +[metadata] +name = apd.aggregation +version = attr: apd.aggregation.VERSION +description = A programme that queries apd.sensor endpoints and aggregates their results. +long_description = file: README.md, CHANGES.md, LICENCE +long_description_content_type = text/markdown +keywords = +license = BSD +classifiers = + Programming Language :: Python :: 3 + Programming Language :: Python :: 3.7 + +[options] +zip_safe = False +include_package_data = True +package_dir = + =src +packages = find_namespace: +install_requires = + sqlalchemy + aiohttp + psycopg2 + alembic + click + sqlalchemy-stubs + + +[options.packages.find] +where = src + +[options.entry_points] +console_scripts = + collect_sensor_data = apd.aggregation.cli:collect_sensor_data diff --git a/Ch07/apd.aggregation-chapter07-aio/setup.py b/Ch07/apd.aggregation-chapter07-aio/setup.py new file mode 100644 index 0000000..6068493 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-aio/setup.py @@ -0,0 +1,3 @@ +from setuptools import setup + +setup() diff --git a/Ch07/apd.aggregation-chapter07-aio/src/apd/aggregation/__init__.py b/Ch07/apd.aggregation-chapter07-aio/src/apd/aggregation/__init__.py new file mode 100644 index 0000000..3277f64 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-aio/src/apd/aggregation/__init__.py @@ -0,0 +1 @@ +VERSION = "1.0.0" diff --git a/Ch07/apd.aggregation-chapter07-aio/src/apd/aggregation/alembic/README b/Ch07/apd.aggregation-chapter07-aio/src/apd/aggregation/alembic/README new file mode 100644 index 0000000..97a87d5 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-aio/src/apd/aggregation/alembic/README @@ -0,0 +1,12 @@ +Generic single-database configuration. + + +# Database setup + +To generate the required database tables you must create an alembic.ini file, as follows: + + [alembic] + script_location = apd.aggregation:alembic + sqlalchemy.url = postgresql+psycopg2://apd@localhost/apd + +and run `alembic upgrade head`. This should also be done after every upgrade of the software. \ No newline at end of file diff --git a/Ch07/apd.aggregation-chapter07-aio/src/apd/aggregation/alembic/env.py b/Ch07/apd.aggregation-chapter07-aio/src/apd/aggregation/alembic/env.py new file mode 100644 index 0000000..09beb9c --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-aio/src/apd/aggregation/alembic/env.py @@ -0,0 +1,73 @@ +from logging.config import fileConfig + +from sqlalchemy import engine_from_config +from sqlalchemy import pool + +from alembic import context + +# this is the Alembic Config object, which provides +# access to the values within the .ini file in use. +config = context.config + +# Interpret the config file for Python logging. +# This line sets up loggers basically. +fileConfig(config.config_file_name) + +from apd.aggregation.database import Base + +target_metadata = Base.metadata + +# other values from the config, defined by the needs of env.py, +# can be acquired: +# my_important_option = config.get_main_option("my_important_option") +# ... etc. + + +def run_migrations_offline(): + """Run migrations in 'offline' mode. + + This configures the context with just a URL + and not an Engine, though an Engine is acceptable + here as well. By skipping the Engine creation + we don't even need a DBAPI to be available. + + Calls to context.execute() here emit the given string to the + script output. + + """ + url = config.get_main_option("sqlalchemy.url") + context.configure( + url=url, + target_metadata=target_metadata, + literal_binds=True, + dialect_opts={"paramstyle": "named"}, + ) + + with context.begin_transaction(): + context.run_migrations() + + +def run_migrations_online(): + """Run migrations in 'online' mode. + + In this scenario we need to create an Engine + and associate a connection with the context. + + """ + connectable = engine_from_config( + config.get_section(config.config_ini_section), + prefix="sqlalchemy.", + poolclass=pool.NullPool, + ) + + with connectable.connect() as connection: + context.configure(connection=connection, target_metadata=target_metadata) + + with context.begin_transaction(): + context.run_migrations() + + +if context.is_offline_mode(): + run_migrations_offline() +else: + run_migrations_online() diff --git a/Ch07/apd.aggregation-chapter07-aio/src/apd/aggregation/alembic/script.py.mako b/Ch07/apd.aggregation-chapter07-aio/src/apd/aggregation/alembic/script.py.mako new file mode 100644 index 0000000..2c01563 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-aio/src/apd/aggregation/alembic/script.py.mako @@ -0,0 +1,24 @@ +"""${message} + +Revision ID: ${up_revision} +Revises: ${down_revision | comma,n} +Create Date: ${create_date} + +""" +from alembic import op +import sqlalchemy as sa +${imports if imports else ""} + +# revision identifiers, used by Alembic. +revision = ${repr(up_revision)} +down_revision = ${repr(down_revision)} +branch_labels = ${repr(branch_labels)} +depends_on = ${repr(depends_on)} + + +def upgrade(): + ${upgrades if upgrades else "pass"} + + +def downgrade(): + ${downgrades if downgrades else "pass"} diff --git a/Ch07/apd.aggregation-chapter07-aio/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py b/Ch07/apd.aggregation-chapter07-aio/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py new file mode 100644 index 0000000..b4a3545 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-aio/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py @@ -0,0 +1,31 @@ +"""Create datapoints table + +Revision ID: 6d2eacd5da3f +Revises: N/A +Create Date: 2019-09-29 13:43:21.242706 + +""" +from alembic import op +import sqlalchemy as sa +from sqlalchemy.dialects import postgresql + +# revision identifiers, used by Alembic. +revision = "6d2eacd5da3f" +down_revision = None +branch_labels = None +depends_on = None + + +def upgrade(): + op.create_table( + "datapoints", + sa.Column("id", sa.Integer(), nullable=False), + sa.Column("sensor_name", sa.String(), nullable=True), + sa.Column("collected_at", postgresql.TIMESTAMP(), nullable=True), + sa.Column("data", postgresql.JSONB(astext_type=sa.Text()), nullable=True), + sa.PrimaryKeyConstraint("id"), + ) + + +def downgrade(): + op.drop_table("datapoints") diff --git a/Ch07/apd.aggregation-chapter07-aio/src/apd/aggregation/cli.py b/Ch07/apd.aggregation-chapter07-aio/src/apd/aggregation/cli.py new file mode 100644 index 0000000..3435e78 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-aio/src/apd/aggregation/cli.py @@ -0,0 +1,52 @@ +import typing as t + +import click + +from .collect import standalone + + +@click.command() +@click.argument("server", nargs=-1) +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +@click.option("--api-key", metavar="", envvar="APD_API_KEY") +@click.option( + "--tolerate-failures", + "-f", + help="If provided, failure to retrieve some sensors' data will not abort the collection process", + is_flag=True, +) +@click.option("-v", "--verbose", is_flag=True, help="Enables verbose mode") +def collect_sensor_data( + db: str, server: t.Tuple[str], api_key: str, tolerate_failures: bool, verbose: bool +): + """This loads data from one or more sensors into the specified database. + + Only PostgreSQL databases are supported, as the column definitions use + multiple pg specific features. The database must already exist and be + populated with the required tables. + + The --api-key option is used to specify the access token for the sensors + being queried. + + You may specify any number of servers, the variable should be the full URL + to the sensor's HTTP interface, not including the /v/2.0 portion. Multiple + URLs should be separated with a space. + """ + if tolerate_failures: + attempts = [(s,) for s in server] + else: + attempts = [server] + success = True + for attempt in attempts: + try: + standalone(db, attempt, api_key, echo=verbose) + except ValueError as e: + click.secho(str(e), err=True, fg="red") + success = False + return success diff --git a/Ch07/apd.aggregation-chapter07-aio/src/apd/aggregation/collect.py b/Ch07/apd.aggregation-chapter07-aio/src/apd/aggregation/collect.py new file mode 100644 index 0000000..b1c28d6 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-aio/src/apd/aggregation/collect.py @@ -0,0 +1,78 @@ +import asyncio +import datetime +import typing as t + +import aiohttp +from sqlalchemy import create_engine +from sqlalchemy.orm import sessionmaker +from sqlalchemy.orm.session import Session + +from .database import DataPoint + + +async def get_data_points( + server: str, api_key: t.Optional[str], http: aiohttp.ClientSession +) -> t.List[DataPoint]: + if not server.endswith("/"): + server += "/" + url = server + "v/2.0/sensors/" + headers = {} + if api_key: + headers["X-API-KEY"] = api_key + async with http.get(url) as request: + result = await request.json() + ok = request.status == 200 + now = datetime.datetime.now() + if ok: + points = [] + for value in result["sensors"]: + points.append( + DataPoint( + sensor_name=value["id"], collected_at=now, data=value["value"] + ) + ) + return points + else: + raise ValueError( + f"Error loading data from {server}: " + + result.json().get("error", "Unknown") + ) + + +async def handle_result( + result: t.List[DataPoint], session: Session +) -> t.List[DataPoint]: + for point in result: + session.add(point) + return result + + +async def add_data_from_sensors( + session: Session, servers: t.Tuple[str], api_key: t.Optional[str] +) -> t.List[DataPoint]: + tasks: t.List[t.Awaitable[t.List[DataPoint]]] = [] + points: t.List[DataPoint] = [] + async with aiohttp.ClientSession() as http: + for server in servers: + tasks.append(get_data_points(server, api_key, http)) + for a in await asyncio.gather(*tasks): + points += await handle_result(a, session) + return points + + +def standalone( + db_uri: str, servers: t.Tuple[str], api_key: t.Optional[str], echo: bool = False +) -> None: + engine = create_engine(db_uri, echo=echo) + sm = sessionmaker(engine) + Session = sm() + asyncio.run(add_data_from_sensors(Session, servers, api_key)) + Session.commit() + + +if __name__ == "__main__": + standalone( + db_uri="postgresql+psycopg2://apd@localhost/apd", + servers=("http://pvoutput:8080/",), + api_key="h3hdfjksfhwkjehnwekj", + ) diff --git a/Ch07/apd.aggregation-chapter07-aio/src/apd/aggregation/database.py b/Ch07/apd.aggregation-chapter07-aio/src/apd/aggregation/database.py new file mode 100644 index 0000000..af1cbde --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-aio/src/apd/aggregation/database.py @@ -0,0 +1,31 @@ +import sqlalchemy +from sqlalchemy.ext.declarative import declarative_base +from sqlalchemy.dialects.postgresql import JSONB, TIMESTAMP +from sqlalchemy.orm import sessionmaker + + +Base = declarative_base() + + +class DataPoint(Base): + __tablename__ = "datapoints" + id = sqlalchemy.Column(sqlalchemy.Integer, primary_key=True) + sensor_name = sqlalchemy.Column(sqlalchemy.String) + collected_at = sqlalchemy.Column(TIMESTAMP) + data = sqlalchemy.Column(JSONB) + + +def main(): + engine = sqlalchemy.create_engine( + "postgresql+psycopg2://apd@localhost/apd", echo=True + ) + sm = sessionmaker(engine) + Session = sm() + if False: + Base.metadata.create_all(engine) + print(Session.query(DataPoint).all()) + pass + + +if __name__ == "__main__": + main() diff --git a/Ch07/apd.aggregation-chapter07-aio/tests/__init__.py b/Ch07/apd.aggregation-chapter07-aio/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/Ch07/apd.aggregation-chapter07-aio/tests/conftest.py b/Ch07/apd.aggregation-chapter07-aio/tests/conftest.py new file mode 100644 index 0000000..e69de29 diff --git a/Ch07/apd.aggregation-chapter07-multiprocess/.coveragerc b/Ch07/apd.aggregation-chapter07-multiprocess/.coveragerc new file mode 100644 index 0000000..e766c69 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-multiprocess/.coveragerc @@ -0,0 +1,3 @@ +[run] +branch = True +omit = tests/* diff --git a/Ch07/apd.aggregation-chapter07-multiprocess/.pre-commit-config.yaml b/Ch07/apd.aggregation-chapter07-multiprocess/.pre-commit-config.yaml new file mode 100644 index 0000000..d3b6ec7 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-multiprocess/.pre-commit-config.yaml @@ -0,0 +1,26 @@ +repos: + +- repo: local + hooks: + - id: black + name: black + entry: pipenv run black + args: [--quiet] + language: system + types: [python] + + - id: mypy + name: mypy + exclude: (?x)^( + (.*)/setup.py + )$ + entry: pipenv run mypy + args: ["--follow-imports=skip"] + language: system + types: [python] + + - id: flake8 + name: flake8 + entry: pipenv run flake8 + language: system + types: [python] diff --git a/Ch07/apd.aggregation-chapter07-multiprocess/CHANGES.md b/Ch07/apd.aggregation-chapter07-multiprocess/CHANGES.md new file mode 100644 index 0000000..8e424e5 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-multiprocess/CHANGES.md @@ -0,0 +1,5 @@ +## Changes + +### 1.0.0 (Unreleased) + +* Generated from skeleton diff --git a/Ch07/apd.aggregation-chapter07-multiprocess/LICENCE b/Ch07/apd.aggregation-chapter07-multiprocess/LICENCE new file mode 100644 index 0000000..86685d4 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-multiprocess/LICENCE @@ -0,0 +1,31 @@ +Copyright (c) 2019, Matthew Wilkes + + +All rights reserved. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + +* Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + +* Redistributions in binary form must reproduce the above copyright notice, this + list of conditions and the following disclaimer in the documentation and/or + other materials provided with the distribution. + +* Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived from this + software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND +ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. +IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, +INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, +BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY +OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE +OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED +OF THE POSSIBILITY OF SUCH DAMAGE. + + diff --git a/Ch07/apd.aggregation-chapter07-multiprocess/Pipfile b/Ch07/apd.aggregation-chapter07-multiprocess/Pipfile new file mode 100644 index 0000000..ba42fa3 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-multiprocess/Pipfile @@ -0,0 +1,22 @@ +[[source]] +name = "pypi" +url = "https://pypi.org/simple" +verify_ssl = true + +[dev-packages] +pytest = "*" +pytest-cov = "*" +mypy = "*" +flake8 = "*" +black = "*" +pre-commit = "*" +wheel = "*" +twine = "*" + +[packages] +apd-aggregation = {editable = true,path = "."} + +[requires] + +[pipenv] +allow_prereleases = true diff --git a/Ch07/apd.aggregation-chapter07-multiprocess/Pipfile.lock b/Ch07/apd.aggregation-chapter07-multiprocess/Pipfile.lock new file mode 100644 index 0000000..62333bb --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-multiprocess/Pipfile.lock @@ -0,0 +1,466 @@ +{ + "_meta": { + "hash": { + "sha256": "6b1c63a96230c56a20e4bac5a8dfee64e295cb0c9240505e3d32018442533f74" + }, + "pipfile-spec": 6, + "requires": {}, + "sources": [ + { + "name": "pypi", + "url": "https://pypi.org/simple", + "verify_ssl": true + } + ] + }, + "default": { + "apd-aggregation": { + "editable": true, + "path": "." + }, + "psycopg2": { + "hashes": [ + "sha256:128d0fa910ada0157bba1cb74a9c5f92bb8a1dca77cf91a31eb274d1f889e001", + "sha256:227fd46cf9b7255f07687e5bde454d7d67ae39ca77e170097cdef8ebfc30c323", + "sha256:2315e7f104681d498ccf6fd70b0dba5bce65d60ac92171492bfe228e21dcc242", + "sha256:4b5417dcd2999db0f5a891d54717cfaee33acc64f4772c4bc574d4ff95ed9d80", + "sha256:640113ddc943522aaf71294e3f2d24013b0edd659b7820621492c9ebd3a2fb0b", + "sha256:897a6e838319b4bf648a574afb6cabcb17d0488f8c7195100d48d872419f4457", + "sha256:8dceca81409898c870e011c71179454962dec152a1a6b86a347f4be74b16d864", + "sha256:b1b8e41da09a0c3ef0b3d4bb72da0dde2abebe583c1e8462973233fd5ad0235f", + "sha256:cb407fccc12fc29dc331f2b934913405fa49b9b75af4f3a72d0f50f57ad2ca23", + "sha256:d3a27550a8185e53b244ad7e79e307594b92fede8617d80200a8cce1fba2c60f", + "sha256:f0e6b697a975d9d3ccd04135316c947dd82d841067c7800ccf622a8717e98df1" + ], + "index": "pypi", + "version": "==2.8.3" + }, + "sqlalchemy": { + "hashes": [ + "sha256:2f8ff566a4d3a92246d367f2e9cd6ed3edeef670dcd6dda6dfdc9efed88bcd80" + ], + "version": "==1.3.8" + } + }, + "develop": { + "appdirs": { + "hashes": [ + "sha256:9e5896d1372858f8dd3344faf4e5014d21849c756c8d5701f78f8a103b372d92", + "sha256:d8b24664561d0d34ddfaec54636d502d7cea6e29c3eaf68f3df6180863e2166e" + ], + "version": "==1.4.3" + }, + "aspy.yaml": { + "hashes": [ + "sha256:463372c043f70160a9ec950c3f1e4c3a82db5fca01d334b6bc89c7164d744bdc", + "sha256:e7c742382eff2caed61f87a39d13f99109088e5e93f04d76eb8d4b28aa143f45" + ], + "version": "==1.3.0" + }, + "atomicwrites": { + "hashes": [ + "sha256:03472c30eb2c5d1ba9227e4c2ca66ab8287fbfbbda3888aa93dc2e28fc6811b4", + "sha256:75a9445bac02d8d058d5e1fe689654ba5a6556a1dfd8ce6ec55a0ed79866cfa6" + ], + "version": "==1.3.0" + }, + "attrs": { + "hashes": [ + "sha256:69c0dbf2ed392de1cb5ec704444b08a5ef81680a61cb899dc08127123af36a79", + "sha256:f0b870f674851ecbfbbbd364d6b5cbdff9dcedbc7f3f5e18a6891057f21fe399" + ], + "version": "==19.1.0" + }, + "black": { + "hashes": [ + "sha256:09a9dcb7c46ed496a9850b76e4e825d6049ecd38b611f1224857a79bd985a8cf", + "sha256:68950ffd4d9169716bcb8719a56c07a2f4485354fec061cdd5910aa07369731c" + ], + "index": "pypi", + "version": "==19.3b0" + }, + "bleach": { + "hashes": [ + "sha256:213336e49e102af26d9cde77dd2d0397afabc5a6bf2fed985dc35b5d1e285a16", + "sha256:3fdf7f77adcf649c9911387df51254b813185e32b2c6619f690b593a617e19fa" + ], + "version": "==3.1.0" + }, + "certifi": { + "hashes": [ + "sha256:e4f3620cfea4f83eedc95b24abd9cd56f3c4b146dd0177e83a21b4eb49e21e50", + "sha256:fd7c7c74727ddcf00e9acd26bba8da604ffec95bf1c2144e67aff7a8b50e6cef" + ], + "version": "==2019.9.11" + }, + "cfgv": { + "hashes": [ + "sha256:edb387943b665bf9c434f717bf630fa78aecd53d5900d2e05da6ad6048553144", + "sha256:fbd93c9ab0a523bf7daec408f3be2ed99a980e20b2d19b50fc184ca6b820d289" + ], + "version": "==2.0.1" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:2335065e6395b9e67ca716de5f7526736bfa6ceead690adf616d925bdc622b13", + "sha256:5b94b49521f6456670fdb30cd82a4eca9412788a93fa6dd6df72c94d5a8ff2d7" + ], + "version": "==7.0" + }, + "colorama": { + "hashes": [ + "sha256:05eed71e2e327246ad6b38c540c4a3117230b19679b875190486ddd2d721422d", + "sha256:f8ac84de7840f5b9c4e3347b3c1eaa50f7e49c2b07596221daec5edaabbd7c48" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.1" + }, + "coverage": { + "hashes": [ + "sha256:094378c3a35594335a840ea04d473c019e6d4fe10e343cd0d7fb5e87f8b7e926", + "sha256:10216222f3e4139910b6230d0ca0fe9d10ee98837eb83d29525722d628729d20", + "sha256:147478e21cba12c63b3454df5a2fb77b44df630428cffa3a36a6813e38157eab", + "sha256:230ce08965190c0f69196be34a07a795981b2b02b21419c2e1918a882b3eeab0", + "sha256:2469621d680a4c71cdbd3ea4dbed9d199bba93f21d2be1c107ded907b2db41a8", + "sha256:26526174d11fb2163832628d943edd452e07528b0ecc0c83c88256a59a32287c", + "sha256:2690bf0835f34ef3451860b02471e9560e4b3caf7413abeaa7544af72eb6d9ed", + "sha256:2b6f2d9a60413e75651cebe33c3f2f66d61209db44e8b9cf6d8d66fb0cb01fda", + "sha256:3ce91c6b92160ecefedf95a8c61fbf4fb36b0addef1a40c654acf1ad390653d0", + "sha256:43d16d7e9e9eaace3d9f1828b617b1be248f90d031a4b2dc1b6e1c88f1602dcf", + "sha256:52b6455da5f547cad72fd5cfc57a16678573fda6c695d257b5c266a44dbbd172", + "sha256:533f3036c8f58e6381fcca3306fe988740638c62c7fc86b7fae9c74b85ac3cdc", + "sha256:62d2abe5c733394058cb381d088bcab64a18da3ce9dc9a8ef2a18e122cbe47f1", + "sha256:72c34f99164679e44a5cbf19bf1a13be4e715c680816302b6ceca49b979fde91", + "sha256:81fc07feed4e40a7c0bdd266efa65e5afc83b5e0f1063007acc6759a957322a1", + "sha256:82093e673182c761ce54dfab17f026a06be3c011fee9b653855b9a2649f20232", + "sha256:87947fef728f72860407c446fd9b4a0f98e39e91ad7ae80803c02a85738e63ef", + "sha256:8b18c5a5a6b35b6311d2c356782ce3c7bacf6d987d9dc479178577391bf1c7dd", + "sha256:90e1850e993aa6b81bafaf672c8e508eaa17fbb5eb23aba93f7f4df822f3bd29", + "sha256:99f71e365bcb03a8debe1a75061329c9e45379f244a229442319d64c53c4e844", + "sha256:9b2c559104a90bf0043d6ef262ca205326d1fe6ec572dcf59e34be9289432793", + "sha256:ad22b073d92ea65b063e612154c72d6367dec3dd47ed33c02e3ab339eabe7bf3", + "sha256:bc3648da235fee2113a8cb80154d9fff4e2689d2d4a11ad35c1ecae23454b539", + "sha256:d0e2478bde68c5d853bcd306b5aae8fbe80417e87957a21fa6ee71edb90639f2", + "sha256:d3e6912d2370925222d2bfb3bd2ba02e9698b8da89cf7192ddf80cbb9f2455ee", + "sha256:d4fa98e3e15863568ea89eaec5e0866ca763980bdc56098dd9316865c111a28e", + "sha256:ee924a23457b373241ff39d21570360afd8ccb58520eb1e8e18eb00827b73e2d" + ], + "version": "==5.0a7" + }, + "docutils": { + "hashes": [ + "sha256:6c4f696463b79f1fb8ba0c594b63840ebd41f059e92b31957c46b74a4599b6d0", + "sha256:9e4d7ecfc600058e07ba661411a2b7de2fd0fafa17d1a7f7361cd47b1175c827", + "sha256:a2aeea129088da402665e92e0b25b04b073c04b2dce4ab65caaa38b7ce2e1a99" + ], + "version": "==0.15.2" + }, + "entrypoints": { + "hashes": [ + "sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19", + "sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451" + ], + "version": "==0.3" + }, + "flake8": { + "hashes": [ + "sha256:19241c1cbc971b9962473e4438a2ca19749a7dd002dd1a946eaba171b4114548", + "sha256:8e9dfa3cecb2400b3738a42c54c3043e821682b9c840b0448c0503f781130696" + ], + "index": "pypi", + "version": "==3.7.8" + }, + "identify": { + "hashes": [ + "sha256:4f1fe9a59df4e80fcb0213086fcf502bc1765a01ea4fe8be48da3b65afd2a017", + "sha256:d8919589bd2a5f99c66302fec0ef9027b12ae150b0b0213999ad3f695fc7296e" + ], + "version": "==1.4.7" + }, + "idna": { + "hashes": [ + "sha256:c357b3f628cf53ae2c4c05627ecc484553142ca23264e593d327bcde5e9c3407", + "sha256:ea8b7f6188e6fa117537c3df7da9fc686d485087abf6ac197f9c46432f7e4a3c" + ], + "version": "==2.8" + }, + "importlib-metadata": { + "hashes": [ + "sha256:aa18d7378b00b40847790e7c27e11673d7fed219354109d0e7b9e5b25dc3ad26", + "sha256:d5f18a79777f3aa179c145737780282e27b508fc8fd688cb17c7a813e8bd39af" + ], + "markers": "python_version < '3.8'", + "version": "==0.23" + }, + "mccabe": { + "hashes": [ + "sha256:ab8a6258860da4b6677da4bd2fe5dc2c659cff31b3ee4f7f5d64e79735b80d42", + "sha256:dd8d182285a0fe56bace7f45b5e7d1a6ebcbf524e8f3bd87eb0f125271b8831f" + ], + "version": "==0.6.1" + }, + "more-itertools": { + "hashes": [ + "sha256:409cd48d4db7052af495b09dec721011634af3753ae1ef92d2b32f73a745f832", + "sha256:92b8c4b06dac4f0611c0729b2f2ede52b2e1bac1ab48f089c7ddc12e26bb60c4" + ], + "version": "==7.2.0" + }, + "mypy": { + "hashes": [ + "sha256:0107bff4f46a289f0e4081d59b77cef1c48ea43da5a0dbf0005d54748b26df2a", + "sha256:07957f5471b3bb768c61f08690c96d8a09be0912185a27a68700f3ede99184e4", + "sha256:10af62f87b6921eac50271e667cc234162a194e742d8e02fc4ddc121e129a5b0", + "sha256:11fd60d2f69f0cefbe53ce551acf5b1cec1a89e7ce2d47b4e95a84eefb2899ae", + "sha256:15e43d3b1546813669bd1a6ec7e6a11d2888db938e0607f7b5eef6b976671339", + "sha256:352c24ba054a89bb9a35dd064ee95ab9b12903b56c72a8d3863d882e2632dc76", + "sha256:437020a39417e85e22ea8edcb709612903a9924209e10b3ec6d8c9f05b79f498", + "sha256:49925f9da7cee47eebf3420d7c0e00ec662ec6abb2780eb0a16260a7ba25f9c4", + "sha256:6724fcd5777aa6cebfa7e644c526888c9d639bd22edd26b2a8038c674a7c34bd", + "sha256:7a17613f7ea374ab64f39f03257f22b5755335b73251d0d253687a69029701ba", + "sha256:cdc1151ced496ca1496272da7fc356580e95f2682be1d32377c22ddebdf73c91" + ], + "index": "pypi", + "version": "==0.720" + }, + "mypy-extensions": { + "hashes": [ + "sha256:37e0e956f41369209a3d5f34580150bcacfabaa57b33a15c0b25f4b5725e0812", + "sha256:b16cabe759f55e3409a7d231ebd2841378fb0c27a5d1994719e340e4f429ac3e" + ], + "version": "==0.4.1" + }, + "nodeenv": { + "hashes": [ + "sha256:ad8259494cf1c9034539f6cced78a1da4840a4b157e23640bc4a0c0546b0cb7a" + ], + "version": "==1.3.3" + }, + "packaging": { + "hashes": [ + "sha256:28b924174df7a2fa32c1953825ff29c61e2f5e082343165438812f00d3a7fc47", + "sha256:d9551545c6d761f3def1677baf08ab2a3ca17c56879e70fecba2fc4dde4ed108" + ], + "version": "==19.2" + }, + "pkginfo": { + "hashes": [ + "sha256:7424f2c8511c186cd5424bbf31045b77435b37a8d604990b79d4e70d741148bb", + "sha256:a6d9e40ca61ad3ebd0b72fbadd4fba16e4c0e4df0428c041e01e06eb6ee71f32" + ], + "version": "==1.5.0.1" + }, + "pluggy": { + "hashes": [ + "sha256:0db4b7601aae1d35b4a033282da476845aa19185c1e6964b25cf324b5e4ec3e6", + "sha256:fa5fa1622fa6dd5c030e9cad086fa19ef6a0cf6d7a2d12318e10cb49d6d68f34" + ], + "version": "==0.13.0" + }, + "pre-commit": { + "hashes": [ + "sha256:1d3c0587bda7c4e537a46c27f2c84aa006acc18facf9970bf947df596ce91f3f", + "sha256:fa78ff96e8e9ac94c748388597693f18b041a181c94a4f039ad20f45287ba44a" + ], + "index": "pypi", + "version": "==1.18.3" + }, + "py": { + "hashes": [ + "sha256:64f65755aee5b381cea27766a3a147c3f15b9b6b9ac88676de66ba2ae36793fa", + "sha256:dc639b046a6e2cff5bbe40194ad65936d6ba360b52b3c3fe1d08a82dd50b5e53" + ], + "version": "==1.8.0" + }, + "pycodestyle": { + "hashes": [ + "sha256:95a2219d12372f05704562a14ec30bc76b05a5b297b21a5dfe3f6fac3491ae56", + "sha256:e40a936c9a450ad81df37f549d676d127b1b66000a6c500caa2b085bc0ca976c" + ], + "version": "==2.5.0" + }, + "pyflakes": { + "hashes": [ + "sha256:17dbeb2e3f4d772725c777fabc446d5634d1038f234e77343108ce445ea69ce0", + "sha256:d976835886f8c5b31d47970ed689944a0262b5f3afa00a5a7b4dc81e5449f8a2" + ], + "version": "==2.1.1" + }, + "pygments": { + "hashes": [ + "sha256:71e430bc85c88a430f000ac1d9b331d2407f681d6f6aec95e8bcfbc3df5b0127", + "sha256:881c4c157e45f30af185c1ffe8d549d48ac9127433f2c380c24b84572ad66297" + ], + "version": "==2.4.2" + }, + "pyparsing": { + "hashes": [ + "sha256:6f98a7b9397e206d78cc01df10131398f1c8b8510a2f4d97d9abd82e1aacdd80", + "sha256:d9338df12903bbf5d65a0e4e87c2161968b10d2e489652bb47001d82a9b028b4" + ], + "version": "==2.4.2" + }, + "pytest": { + "hashes": [ + "sha256:813b99704b22c7d377bbd756ebe56c35252bb710937b46f207100e843440b3c2", + "sha256:cc6620b96bc667a0c8d4fa592a8c9c94178a1bd6cc799dbb057dfd9286d31a31" + ], + "index": "pypi", + "version": "==5.1.3" + }, + "pytest-cov": { + "hashes": [ + "sha256:2b097cde81a302e1047331b48cadacf23577e431b61e9c6f49a1170bbe3d3da6", + "sha256:e00ea4fdde970725482f1f35630d12f074e121a23801aabf2ae154ec6bdd343a" + ], + "index": "pypi", + "version": "==2.7.1" + }, + "pyyaml": { + "hashes": [ + "sha256:0113bc0ec2ad727182326b61326afa3d1d8280ae1122493553fd6f4397f33df9", + "sha256:01adf0b6c6f61bd11af6e10ca52b7d4057dd0be0343eb9283c878cf3af56aee4", + "sha256:5124373960b0b3f4aa7df1707e63e9f109b5263eca5976c66e08b1c552d4eaf8", + "sha256:5ca4f10adbddae56d824b2c09668e91219bb178a1eee1faa56af6f99f11bf696", + "sha256:7907be34ffa3c5a32b60b95f4d95ea25361c951383a894fec31be7252b2b6f34", + "sha256:7ec9b2a4ed5cad025c2278a1e6a19c011c80a3caaac804fd2d329e9cc2c287c9", + "sha256:87ae4c829bb25b9fe99cf71fbb2140c448f534e24c998cc60f39ae4f94396a73", + "sha256:9de9919becc9cc2ff03637872a440195ac4241c80536632fffeb6a1e25a74299", + "sha256:a5a85b10e450c66b49f98846937e8cfca1db3127a9d5d1e31ca45c3d0bef4c5b", + "sha256:b0997827b4f6a7c286c01c5f60384d218dca4ed7d9efa945c3e1aa623d5709ae", + "sha256:b631ef96d3222e62861443cc89d6563ba3eeb816eeb96b2629345ab795e53681", + "sha256:bf47c0607522fdbca6c9e817a6e81b08491de50f3766a7a0e6a5be7905961b41", + "sha256:f81025eddd0327c7d4cfe9b62cf33190e1e736cc6e97502b3ec425f574b3e7a8" + ], + "version": "==5.1.2" + }, + "readme-renderer": { + "hashes": [ + "sha256:bb16f55b259f27f75f640acf5e00cf897845a8b3e4731b5c1a436e4b8529202f", + "sha256:c8532b79afc0375a85f10433eca157d6b50f7d6990f337fa498c96cd4bfc203d" + ], + "version": "==24.0" + }, + "requests": { + "hashes": [ + "sha256:11e007a8a2aa0323f5a921e9e6a2d7e4e67d9877e85773fba9ba6419025cbeb4", + "sha256:9cf5292fcd0f598c671cfc1e0d7d1a7f13bb8085e9a590f48c010551dc6c4b31" + ], + "version": "==2.22.0" + }, + "requests-toolbelt": { + "hashes": [ + "sha256:380606e1d10dc85c3bd47bf5a6095f815ec007be7a8b69c878507068df059e6f", + "sha256:968089d4584ad4ad7c171454f0a5c6dac23971e9472521ea3b6d49d610aa6fc0" + ], + "version": "==0.9.1" + }, + "six": { + "hashes": [ + "sha256:3350809f0555b11f552448330d0b52d5f24c91a322ea4a15ef22629740f3761c", + "sha256:d16a0141ec1a18405cd4ce8b4613101da75da0e9a7aec5bdd4fa804d0e0eba73" + ], + "version": "==1.12.0" + }, + "toml": { + "hashes": [ + "sha256:229f81c57791a41d65e399fc06bf0848bab550a9dfd5ed66df18ce5f05e73d5c", + "sha256:235682dd292d5899d361a811df37e04a8828a5b1da3115886b73cf81ebc9100e" + ], + "version": "==0.10.0" + }, + "tqdm": { + "hashes": [ + "sha256:abc25d0ce2397d070ef07d8c7e706aede7920da163c64997585d42d3537ece3d", + "sha256:dd3fcca8488bb1d416aa7469d2f277902f26260c45aa86b667b074cd44b3b115" + ], + "version": "==4.36.1" + }, + "twine": { + "hashes": [ + "sha256:5319dd3e02ac73fcddcd94f035b9631589ab5d23e1f4699d57365199d85261e1", + "sha256:9fe7091715c7576df166df8ef6654e61bada39571783f2fd415bdcba867c6993" + ], + "index": "pypi", + "version": "==2.0.0" + }, + "typed-ast": { + "hashes": [ + "sha256:18511a0b3e7922276346bcb47e2ef9f38fb90fd31cb9223eed42c85d1312344e", + "sha256:262c247a82d005e43b5b7f69aff746370538e176131c32dda9cb0f324d27141e", + "sha256:2b907eb046d049bcd9892e3076c7a6456c93a25bebfe554e931620c90e6a25b0", + "sha256:354c16e5babd09f5cb0ee000d54cfa38401d8b8891eefa878ac772f827181a3c", + "sha256:4e0b70c6fc4d010f8107726af5fd37921b666f5b31d9331f0bd24ad9a088e631", + "sha256:630968c5cdee51a11c05a30453f8cd65e0cc1d2ad0d9192819df9978984529f4", + "sha256:66480f95b8167c9c5c5c87f32cf437d585937970f3fc24386f313a4c97b44e34", + "sha256:71211d26ffd12d63a83e079ff258ac9d56a1376a25bc80b1cdcdf601b855b90b", + "sha256:95bd11af7eafc16e829af2d3df510cecfd4387f6453355188342c3e79a2ec87a", + "sha256:bc6c7d3fa1325a0c6613512a093bc2a2a15aeec350451cbdf9e1d4bffe3e3233", + "sha256:cc34a6f5b426748a507dd5d1de4c1978f2eb5626d51326e43280941206c209e1", + "sha256:d755f03c1e4a51e9b24d899561fec4ccaf51f210d52abdf8c07ee2849b212a36", + "sha256:d7c45933b1bdfaf9f36c579671fec15d25b06c8398f113dab64c18ed1adda01d", + "sha256:d896919306dd0aa22d0132f62a1b78d11aaf4c9fc5b3410d3c666b818191630a", + "sha256:ffde2fbfad571af120fcbfbbc61c72469e72f550d676c3342492a9dfdefb8f12" + ], + "version": "==1.4.0" + }, + "typing-extensions": { + "hashes": [ + "sha256:2ed632b30bb54fc3941c382decfd0ee4148f5c591651c9272473fea2c6397d95", + "sha256:b1edbbf0652660e32ae780ac9433f4231e7339c7f9a8057d0f042fcbcea49b87", + "sha256:d8179012ec2c620d3791ca6fe2bf7979d979acdbef1fca0bc56b37411db682ed" + ], + "version": "==3.7.4" + }, + "urllib3": { + "hashes": [ + "sha256:3de946ffbed6e6746608990594d08faac602528ac7015ac28d33cee6a45b7398", + "sha256:9a107b99a5393caf59c7aa3c1249c16e6879447533d0887f4336dde834c7be86" + ], + "version": "==1.25.6" + }, + "virtualenv": { + "hashes": [ + "sha256:680af46846662bb38c5504b78bad9ed9e4f3ba2d54f54ba42494fdf94337fe30", + "sha256:f78d81b62d3147396ac33fc9d77579ddc42cc2a98dd9ea38886f616b33bc7fb2" + ], + "version": "==16.7.5" + }, + "wcwidth": { + "hashes": [ + "sha256:3df37372226d6e63e1b1e1eda15c594bca98a22d33a23832a90998faa96bc65e", + "sha256:f4ebe71925af7b40a864553f761ed559b43544f8f71746c2d756c7fe788ade7c" + ], + "version": "==0.1.7" + }, + "webencodings": { + "hashes": [ + "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", + "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923" + ], + "version": "==0.5.1" + }, + "wheel": { + "hashes": [ + "sha256:10c9da68765315ed98850f8e048347c3eb06dd81822dc2ab1d4fde9dc9702646", + "sha256:f4da1763d3becf2e2cd92a14a7c920f0f00eca30fdde9ea992c836685b9faf28" + ], + "index": "pypi", + "version": "==0.33.6" + }, + "zipp": { + "hashes": [ + "sha256:3718b1cbcd963c7d4c5511a8240812904164b7f381b647143a89d3b98f9bcd8e", + "sha256:f06903e9f1f43b12d371004b4ac7b06ab39a44adc747266928ae6debfa7b3335" + ], + "version": "==0.6.0" + } + } +} diff --git a/Ch07/apd.aggregation-chapter07-multiprocess/README.md b/Ch07/apd.aggregation-chapter07-multiprocess/README.md new file mode 100644 index 0000000..85669dd --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-multiprocess/README.md @@ -0,0 +1,4 @@ +# APD Sensor aggregator + +A programme that queries apd.sensor endpoints and aggregates their results. + diff --git a/Ch07/apd.aggregation-chapter07-multiprocess/pyproject.toml b/Ch07/apd.aggregation-chapter07-multiprocess/pyproject.toml new file mode 100644 index 0000000..4d3bb67 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-multiprocess/pyproject.toml @@ -0,0 +1,5 @@ +[build-system] +requires = [ + "setuptools", +] +build-backend = "setuptools.build_meta" diff --git a/Ch07/apd.aggregation-chapter07-multiprocess/setup.cfg b/Ch07/apd.aggregation-chapter07-multiprocess/setup.cfg new file mode 100644 index 0000000..6c2dc8a --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-multiprocess/setup.cfg @@ -0,0 +1,44 @@ +[mypy] +namespace_packages = True +mypy_path = src +plugins = sqlmypy + +[mypy-alembic] +ignore_missing_imports = True + +[flake8] +max-line-length = 88 + +[metadata] +name = apd.aggregation +version = attr: apd.aggregation.VERSION +description = A programme that queries apd.sensor endpoints and aggregates their results. +long_description = file: README.md, CHANGES.md, LICENCE +long_description_content_type = text/markdown +keywords = +license = BSD +classifiers = + Programming Language :: Python :: 3 + Programming Language :: Python :: 3.7 + +[options] +zip_safe = False +include_package_data = True +package_dir = + =src +packages = find_namespace: +install_requires = + sqlalchemy + requests + psycopg2 + alembic + click + sqlalchemy-stubs + + +[options.packages.find] +where = src + +[options.entry_points] +console_scripts = + collect_sensor_data = apd.aggregation.cli:collect_sensor_data diff --git a/Ch07/apd.aggregation-chapter07-multiprocess/setup.py b/Ch07/apd.aggregation-chapter07-multiprocess/setup.py new file mode 100644 index 0000000..6068493 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-multiprocess/setup.py @@ -0,0 +1,3 @@ +from setuptools import setup + +setup() diff --git a/Ch07/apd.aggregation-chapter07-multiprocess/src/apd/aggregation/__init__.py b/Ch07/apd.aggregation-chapter07-multiprocess/src/apd/aggregation/__init__.py new file mode 100644 index 0000000..3277f64 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-multiprocess/src/apd/aggregation/__init__.py @@ -0,0 +1 @@ +VERSION = "1.0.0" diff --git a/Ch07/apd.aggregation-chapter07-multiprocess/src/apd/aggregation/alembic/README b/Ch07/apd.aggregation-chapter07-multiprocess/src/apd/aggregation/alembic/README new file mode 100644 index 0000000..97a87d5 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-multiprocess/src/apd/aggregation/alembic/README @@ -0,0 +1,12 @@ +Generic single-database configuration. + + +# Database setup + +To generate the required database tables you must create an alembic.ini file, as follows: + + [alembic] + script_location = apd.aggregation:alembic + sqlalchemy.url = postgresql+psycopg2://apd@localhost/apd + +and run `alembic upgrade head`. This should also be done after every upgrade of the software. \ No newline at end of file diff --git a/Ch07/apd.aggregation-chapter07-multiprocess/src/apd/aggregation/alembic/env.py b/Ch07/apd.aggregation-chapter07-multiprocess/src/apd/aggregation/alembic/env.py new file mode 100644 index 0000000..09beb9c --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-multiprocess/src/apd/aggregation/alembic/env.py @@ -0,0 +1,73 @@ +from logging.config import fileConfig + +from sqlalchemy import engine_from_config +from sqlalchemy import pool + +from alembic import context + +# this is the Alembic Config object, which provides +# access to the values within the .ini file in use. +config = context.config + +# Interpret the config file for Python logging. +# This line sets up loggers basically. +fileConfig(config.config_file_name) + +from apd.aggregation.database import Base + +target_metadata = Base.metadata + +# other values from the config, defined by the needs of env.py, +# can be acquired: +# my_important_option = config.get_main_option("my_important_option") +# ... etc. + + +def run_migrations_offline(): + """Run migrations in 'offline' mode. + + This configures the context with just a URL + and not an Engine, though an Engine is acceptable + here as well. By skipping the Engine creation + we don't even need a DBAPI to be available. + + Calls to context.execute() here emit the given string to the + script output. + + """ + url = config.get_main_option("sqlalchemy.url") + context.configure( + url=url, + target_metadata=target_metadata, + literal_binds=True, + dialect_opts={"paramstyle": "named"}, + ) + + with context.begin_transaction(): + context.run_migrations() + + +def run_migrations_online(): + """Run migrations in 'online' mode. + + In this scenario we need to create an Engine + and associate a connection with the context. + + """ + connectable = engine_from_config( + config.get_section(config.config_ini_section), + prefix="sqlalchemy.", + poolclass=pool.NullPool, + ) + + with connectable.connect() as connection: + context.configure(connection=connection, target_metadata=target_metadata) + + with context.begin_transaction(): + context.run_migrations() + + +if context.is_offline_mode(): + run_migrations_offline() +else: + run_migrations_online() diff --git a/Ch07/apd.aggregation-chapter07-multiprocess/src/apd/aggregation/alembic/script.py.mako b/Ch07/apd.aggregation-chapter07-multiprocess/src/apd/aggregation/alembic/script.py.mako new file mode 100644 index 0000000..2c01563 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-multiprocess/src/apd/aggregation/alembic/script.py.mako @@ -0,0 +1,24 @@ +"""${message} + +Revision ID: ${up_revision} +Revises: ${down_revision | comma,n} +Create Date: ${create_date} + +""" +from alembic import op +import sqlalchemy as sa +${imports if imports else ""} + +# revision identifiers, used by Alembic. +revision = ${repr(up_revision)} +down_revision = ${repr(down_revision)} +branch_labels = ${repr(branch_labels)} +depends_on = ${repr(depends_on)} + + +def upgrade(): + ${upgrades if upgrades else "pass"} + + +def downgrade(): + ${downgrades if downgrades else "pass"} diff --git a/Ch07/apd.aggregation-chapter07-multiprocess/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py b/Ch07/apd.aggregation-chapter07-multiprocess/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py new file mode 100644 index 0000000..b4a3545 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-multiprocess/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py @@ -0,0 +1,31 @@ +"""Create datapoints table + +Revision ID: 6d2eacd5da3f +Revises: N/A +Create Date: 2019-09-29 13:43:21.242706 + +""" +from alembic import op +import sqlalchemy as sa +from sqlalchemy.dialects import postgresql + +# revision identifiers, used by Alembic. +revision = "6d2eacd5da3f" +down_revision = None +branch_labels = None +depends_on = None + + +def upgrade(): + op.create_table( + "datapoints", + sa.Column("id", sa.Integer(), nullable=False), + sa.Column("sensor_name", sa.String(), nullable=True), + sa.Column("collected_at", postgresql.TIMESTAMP(), nullable=True), + sa.Column("data", postgresql.JSONB(astext_type=sa.Text()), nullable=True), + sa.PrimaryKeyConstraint("id"), + ) + + +def downgrade(): + op.drop_table("datapoints") diff --git a/Ch07/apd.aggregation-chapter07-multiprocess/src/apd/aggregation/cli.py b/Ch07/apd.aggregation-chapter07-multiprocess/src/apd/aggregation/cli.py new file mode 100644 index 0000000..3435e78 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-multiprocess/src/apd/aggregation/cli.py @@ -0,0 +1,52 @@ +import typing as t + +import click + +from .collect import standalone + + +@click.command() +@click.argument("server", nargs=-1) +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +@click.option("--api-key", metavar="", envvar="APD_API_KEY") +@click.option( + "--tolerate-failures", + "-f", + help="If provided, failure to retrieve some sensors' data will not abort the collection process", + is_flag=True, +) +@click.option("-v", "--verbose", is_flag=True, help="Enables verbose mode") +def collect_sensor_data( + db: str, server: t.Tuple[str], api_key: str, tolerate_failures: bool, verbose: bool +): + """This loads data from one or more sensors into the specified database. + + Only PostgreSQL databases are supported, as the column definitions use + multiple pg specific features. The database must already exist and be + populated with the required tables. + + The --api-key option is used to specify the access token for the sensors + being queried. + + You may specify any number of servers, the variable should be the full URL + to the sensor's HTTP interface, not including the /v/2.0 portion. Multiple + URLs should be separated with a space. + """ + if tolerate_failures: + attempts = [(s,) for s in server] + else: + attempts = [server] + success = True + for attempt in attempts: + try: + standalone(db, attempt, api_key, echo=verbose) + except ValueError as e: + click.secho(str(e), err=True, fg="red") + success = False + return success diff --git a/Ch07/apd.aggregation-chapter07-multiprocess/src/apd/aggregation/collect.py b/Ch07/apd.aggregation-chapter07-multiprocess/src/apd/aggregation/collect.py new file mode 100644 index 0000000..0d22164 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-multiprocess/src/apd/aggregation/collect.py @@ -0,0 +1,79 @@ +import datetime +from concurrent.futures import ThreadPoolExecutor, Future +import typing as t + +import requests +from sqlalchemy import create_engine +from sqlalchemy.orm import sessionmaker +from sqlalchemy.orm.session import Session + +from .database import DataPoint + + +def get_data_points(server: str, api_key: t.Optional[str]) -> t.List[DataPoint]: + if not server.endswith("/"): + server += "/" + url = server + "v/2.0/sensors/" + headers = {} + if api_key: + headers["X-API-KEY"] = api_key + try: + result = requests.get(url, headers=headers) + except requests.ConnectionError: + raise ValueError(f"Error connecting to {server}") + now = datetime.datetime.now() + if result.ok: + points = [] + for value in result.json()["sensors"]: + points.append( + DataPoint( + sensor_name=value["id"], collected_at=now, data=value["value"] + ) + ) + return points + else: + raise ValueError( + f"Error loading data from {server}: " + + result.json().get("error", "Unknown") + ) + + +def handle_result(execution: Future, session: Session) -> t.List[DataPoint]: + points: t.List[DataPoint] = [] + result = execution.result() + for point in result: + session.add(point) + points.append(point) + return points + + +def add_data_from_sensors( + session: Session, servers: t.Tuple[str], api_key: t.Optional[str] +) -> t.List[DataPoint]: + threads: t.List[Future] = [] + points: t.List[DataPoint] = [] + with ThreadPoolExecutor() as pool: + for server in servers: + points_future = pool.submit(get_data_points, server, api_key) + threads.append(points_future) + for thread in threads: + points += handle_result(thread, session) + return points + + +def standalone( + db_uri: str, servers: t.Tuple[str], api_key: t.Optional[str], echo: bool = False +) -> None: + engine = create_engine(db_uri, echo=echo) + sm = sessionmaker(engine) + Session = sm() + add_data_from_sensors(Session, servers, api_key) + Session.commit() + + +if __name__ == "__main__": + standalone( + db_uri="postgresql+psycopg2://apd@localhost/apd", + servers=("http://pvoutput:8080/",), + api_key="h3hdfjksfhwkjehnwekj", + ) diff --git a/Ch07/apd.aggregation-chapter07-multiprocess/src/apd/aggregation/database.py b/Ch07/apd.aggregation-chapter07-multiprocess/src/apd/aggregation/database.py new file mode 100644 index 0000000..af1cbde --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-multiprocess/src/apd/aggregation/database.py @@ -0,0 +1,31 @@ +import sqlalchemy +from sqlalchemy.ext.declarative import declarative_base +from sqlalchemy.dialects.postgresql import JSONB, TIMESTAMP +from sqlalchemy.orm import sessionmaker + + +Base = declarative_base() + + +class DataPoint(Base): + __tablename__ = "datapoints" + id = sqlalchemy.Column(sqlalchemy.Integer, primary_key=True) + sensor_name = sqlalchemy.Column(sqlalchemy.String) + collected_at = sqlalchemy.Column(TIMESTAMP) + data = sqlalchemy.Column(JSONB) + + +def main(): + engine = sqlalchemy.create_engine( + "postgresql+psycopg2://apd@localhost/apd", echo=True + ) + sm = sessionmaker(engine) + Session = sm() + if False: + Base.metadata.create_all(engine) + print(Session.query(DataPoint).all()) + pass + + +if __name__ == "__main__": + main() diff --git a/Ch07/apd.aggregation-chapter07-multiprocess/tests/__init__.py b/Ch07/apd.aggregation-chapter07-multiprocess/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/Ch07/apd.aggregation-chapter07-multiprocess/tests/conftest.py b/Ch07/apd.aggregation-chapter07-multiprocess/tests/conftest.py new file mode 100644 index 0000000..e69de29 diff --git a/Ch07/apd.aggregation-chapter07-nbio/.coveragerc b/Ch07/apd.aggregation-chapter07-nbio/.coveragerc new file mode 100644 index 0000000..e766c69 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-nbio/.coveragerc @@ -0,0 +1,3 @@ +[run] +branch = True +omit = tests/* diff --git a/Ch07/apd.aggregation-chapter07-nbio/.pre-commit-config.yaml b/Ch07/apd.aggregation-chapter07-nbio/.pre-commit-config.yaml new file mode 100644 index 0000000..d3b6ec7 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-nbio/.pre-commit-config.yaml @@ -0,0 +1,26 @@ +repos: + +- repo: local + hooks: + - id: black + name: black + entry: pipenv run black + args: [--quiet] + language: system + types: [python] + + - id: mypy + name: mypy + exclude: (?x)^( + (.*)/setup.py + )$ + entry: pipenv run mypy + args: ["--follow-imports=skip"] + language: system + types: [python] + + - id: flake8 + name: flake8 + entry: pipenv run flake8 + language: system + types: [python] diff --git a/Ch07/apd.aggregation-chapter07-nbio/CHANGES.md b/Ch07/apd.aggregation-chapter07-nbio/CHANGES.md new file mode 100644 index 0000000..8e424e5 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-nbio/CHANGES.md @@ -0,0 +1,5 @@ +## Changes + +### 1.0.0 (Unreleased) + +* Generated from skeleton diff --git a/Ch07/apd.aggregation-chapter07-nbio/LICENCE b/Ch07/apd.aggregation-chapter07-nbio/LICENCE new file mode 100644 index 0000000..86685d4 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-nbio/LICENCE @@ -0,0 +1,31 @@ +Copyright (c) 2019, Matthew Wilkes + + +All rights reserved. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + +* Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + +* Redistributions in binary form must reproduce the above copyright notice, this + list of conditions and the following disclaimer in the documentation and/or + other materials provided with the distribution. + +* Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived from this + software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND +ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. +IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, +INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, +BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY +OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE +OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED +OF THE POSSIBILITY OF SUCH DAMAGE. + + diff --git a/Ch07/apd.aggregation-chapter07-nbio/Pipfile b/Ch07/apd.aggregation-chapter07-nbio/Pipfile new file mode 100644 index 0000000..ba42fa3 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-nbio/Pipfile @@ -0,0 +1,22 @@ +[[source]] +name = "pypi" +url = "https://pypi.org/simple" +verify_ssl = true + +[dev-packages] +pytest = "*" +pytest-cov = "*" +mypy = "*" +flake8 = "*" +black = "*" +pre-commit = "*" +wheel = "*" +twine = "*" + +[packages] +apd-aggregation = {editable = true,path = "."} + +[requires] + +[pipenv] +allow_prereleases = true diff --git a/Ch07/apd.aggregation-chapter07-nbio/Pipfile.lock b/Ch07/apd.aggregation-chapter07-nbio/Pipfile.lock new file mode 100644 index 0000000..62333bb --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-nbio/Pipfile.lock @@ -0,0 +1,466 @@ +{ + "_meta": { + "hash": { + "sha256": "6b1c63a96230c56a20e4bac5a8dfee64e295cb0c9240505e3d32018442533f74" + }, + "pipfile-spec": 6, + "requires": {}, + "sources": [ + { + "name": "pypi", + "url": "https://pypi.org/simple", + "verify_ssl": true + } + ] + }, + "default": { + "apd-aggregation": { + "editable": true, + "path": "." + }, + "psycopg2": { + "hashes": [ + "sha256:128d0fa910ada0157bba1cb74a9c5f92bb8a1dca77cf91a31eb274d1f889e001", + "sha256:227fd46cf9b7255f07687e5bde454d7d67ae39ca77e170097cdef8ebfc30c323", + "sha256:2315e7f104681d498ccf6fd70b0dba5bce65d60ac92171492bfe228e21dcc242", + "sha256:4b5417dcd2999db0f5a891d54717cfaee33acc64f4772c4bc574d4ff95ed9d80", + "sha256:640113ddc943522aaf71294e3f2d24013b0edd659b7820621492c9ebd3a2fb0b", + "sha256:897a6e838319b4bf648a574afb6cabcb17d0488f8c7195100d48d872419f4457", + "sha256:8dceca81409898c870e011c71179454962dec152a1a6b86a347f4be74b16d864", + "sha256:b1b8e41da09a0c3ef0b3d4bb72da0dde2abebe583c1e8462973233fd5ad0235f", + "sha256:cb407fccc12fc29dc331f2b934913405fa49b9b75af4f3a72d0f50f57ad2ca23", + "sha256:d3a27550a8185e53b244ad7e79e307594b92fede8617d80200a8cce1fba2c60f", + "sha256:f0e6b697a975d9d3ccd04135316c947dd82d841067c7800ccf622a8717e98df1" + ], + "index": "pypi", + "version": "==2.8.3" + }, + "sqlalchemy": { + "hashes": [ + "sha256:2f8ff566a4d3a92246d367f2e9cd6ed3edeef670dcd6dda6dfdc9efed88bcd80" + ], + "version": "==1.3.8" + } + }, + "develop": { + "appdirs": { + "hashes": [ + "sha256:9e5896d1372858f8dd3344faf4e5014d21849c756c8d5701f78f8a103b372d92", + "sha256:d8b24664561d0d34ddfaec54636d502d7cea6e29c3eaf68f3df6180863e2166e" + ], + "version": "==1.4.3" + }, + "aspy.yaml": { + "hashes": [ + "sha256:463372c043f70160a9ec950c3f1e4c3a82db5fca01d334b6bc89c7164d744bdc", + "sha256:e7c742382eff2caed61f87a39d13f99109088e5e93f04d76eb8d4b28aa143f45" + ], + "version": "==1.3.0" + }, + "atomicwrites": { + "hashes": [ + "sha256:03472c30eb2c5d1ba9227e4c2ca66ab8287fbfbbda3888aa93dc2e28fc6811b4", + "sha256:75a9445bac02d8d058d5e1fe689654ba5a6556a1dfd8ce6ec55a0ed79866cfa6" + ], + "version": "==1.3.0" + }, + "attrs": { + "hashes": [ + "sha256:69c0dbf2ed392de1cb5ec704444b08a5ef81680a61cb899dc08127123af36a79", + "sha256:f0b870f674851ecbfbbbd364d6b5cbdff9dcedbc7f3f5e18a6891057f21fe399" + ], + "version": "==19.1.0" + }, + "black": { + "hashes": [ + "sha256:09a9dcb7c46ed496a9850b76e4e825d6049ecd38b611f1224857a79bd985a8cf", + "sha256:68950ffd4d9169716bcb8719a56c07a2f4485354fec061cdd5910aa07369731c" + ], + "index": "pypi", + "version": "==19.3b0" + }, + "bleach": { + "hashes": [ + "sha256:213336e49e102af26d9cde77dd2d0397afabc5a6bf2fed985dc35b5d1e285a16", + "sha256:3fdf7f77adcf649c9911387df51254b813185e32b2c6619f690b593a617e19fa" + ], + "version": "==3.1.0" + }, + "certifi": { + "hashes": [ + "sha256:e4f3620cfea4f83eedc95b24abd9cd56f3c4b146dd0177e83a21b4eb49e21e50", + "sha256:fd7c7c74727ddcf00e9acd26bba8da604ffec95bf1c2144e67aff7a8b50e6cef" + ], + "version": "==2019.9.11" + }, + "cfgv": { + "hashes": [ + "sha256:edb387943b665bf9c434f717bf630fa78aecd53d5900d2e05da6ad6048553144", + "sha256:fbd93c9ab0a523bf7daec408f3be2ed99a980e20b2d19b50fc184ca6b820d289" + ], + "version": "==2.0.1" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:2335065e6395b9e67ca716de5f7526736bfa6ceead690adf616d925bdc622b13", + "sha256:5b94b49521f6456670fdb30cd82a4eca9412788a93fa6dd6df72c94d5a8ff2d7" + ], + "version": "==7.0" + }, + "colorama": { + "hashes": [ + "sha256:05eed71e2e327246ad6b38c540c4a3117230b19679b875190486ddd2d721422d", + "sha256:f8ac84de7840f5b9c4e3347b3c1eaa50f7e49c2b07596221daec5edaabbd7c48" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.1" + }, + "coverage": { + "hashes": [ + "sha256:094378c3a35594335a840ea04d473c019e6d4fe10e343cd0d7fb5e87f8b7e926", + "sha256:10216222f3e4139910b6230d0ca0fe9d10ee98837eb83d29525722d628729d20", + "sha256:147478e21cba12c63b3454df5a2fb77b44df630428cffa3a36a6813e38157eab", + "sha256:230ce08965190c0f69196be34a07a795981b2b02b21419c2e1918a882b3eeab0", + "sha256:2469621d680a4c71cdbd3ea4dbed9d199bba93f21d2be1c107ded907b2db41a8", + "sha256:26526174d11fb2163832628d943edd452e07528b0ecc0c83c88256a59a32287c", + "sha256:2690bf0835f34ef3451860b02471e9560e4b3caf7413abeaa7544af72eb6d9ed", + "sha256:2b6f2d9a60413e75651cebe33c3f2f66d61209db44e8b9cf6d8d66fb0cb01fda", + "sha256:3ce91c6b92160ecefedf95a8c61fbf4fb36b0addef1a40c654acf1ad390653d0", + "sha256:43d16d7e9e9eaace3d9f1828b617b1be248f90d031a4b2dc1b6e1c88f1602dcf", + "sha256:52b6455da5f547cad72fd5cfc57a16678573fda6c695d257b5c266a44dbbd172", + "sha256:533f3036c8f58e6381fcca3306fe988740638c62c7fc86b7fae9c74b85ac3cdc", + "sha256:62d2abe5c733394058cb381d088bcab64a18da3ce9dc9a8ef2a18e122cbe47f1", + "sha256:72c34f99164679e44a5cbf19bf1a13be4e715c680816302b6ceca49b979fde91", + "sha256:81fc07feed4e40a7c0bdd266efa65e5afc83b5e0f1063007acc6759a957322a1", + "sha256:82093e673182c761ce54dfab17f026a06be3c011fee9b653855b9a2649f20232", + "sha256:87947fef728f72860407c446fd9b4a0f98e39e91ad7ae80803c02a85738e63ef", + "sha256:8b18c5a5a6b35b6311d2c356782ce3c7bacf6d987d9dc479178577391bf1c7dd", + "sha256:90e1850e993aa6b81bafaf672c8e508eaa17fbb5eb23aba93f7f4df822f3bd29", + "sha256:99f71e365bcb03a8debe1a75061329c9e45379f244a229442319d64c53c4e844", + "sha256:9b2c559104a90bf0043d6ef262ca205326d1fe6ec572dcf59e34be9289432793", + "sha256:ad22b073d92ea65b063e612154c72d6367dec3dd47ed33c02e3ab339eabe7bf3", + "sha256:bc3648da235fee2113a8cb80154d9fff4e2689d2d4a11ad35c1ecae23454b539", + "sha256:d0e2478bde68c5d853bcd306b5aae8fbe80417e87957a21fa6ee71edb90639f2", + "sha256:d3e6912d2370925222d2bfb3bd2ba02e9698b8da89cf7192ddf80cbb9f2455ee", + "sha256:d4fa98e3e15863568ea89eaec5e0866ca763980bdc56098dd9316865c111a28e", + "sha256:ee924a23457b373241ff39d21570360afd8ccb58520eb1e8e18eb00827b73e2d" + ], + "version": "==5.0a7" + }, + "docutils": { + "hashes": [ + "sha256:6c4f696463b79f1fb8ba0c594b63840ebd41f059e92b31957c46b74a4599b6d0", + "sha256:9e4d7ecfc600058e07ba661411a2b7de2fd0fafa17d1a7f7361cd47b1175c827", + "sha256:a2aeea129088da402665e92e0b25b04b073c04b2dce4ab65caaa38b7ce2e1a99" + ], + "version": "==0.15.2" + }, + "entrypoints": { + "hashes": [ + "sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19", + "sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451" + ], + "version": "==0.3" + }, + "flake8": { + "hashes": [ + "sha256:19241c1cbc971b9962473e4438a2ca19749a7dd002dd1a946eaba171b4114548", + "sha256:8e9dfa3cecb2400b3738a42c54c3043e821682b9c840b0448c0503f781130696" + ], + "index": "pypi", + "version": "==3.7.8" + }, + "identify": { + "hashes": [ + "sha256:4f1fe9a59df4e80fcb0213086fcf502bc1765a01ea4fe8be48da3b65afd2a017", + "sha256:d8919589bd2a5f99c66302fec0ef9027b12ae150b0b0213999ad3f695fc7296e" + ], + "version": "==1.4.7" + }, + "idna": { + "hashes": [ + "sha256:c357b3f628cf53ae2c4c05627ecc484553142ca23264e593d327bcde5e9c3407", + "sha256:ea8b7f6188e6fa117537c3df7da9fc686d485087abf6ac197f9c46432f7e4a3c" + ], + "version": "==2.8" + }, + "importlib-metadata": { + "hashes": [ + "sha256:aa18d7378b00b40847790e7c27e11673d7fed219354109d0e7b9e5b25dc3ad26", + "sha256:d5f18a79777f3aa179c145737780282e27b508fc8fd688cb17c7a813e8bd39af" + ], + "markers": "python_version < '3.8'", + "version": "==0.23" + }, + "mccabe": { + "hashes": [ + "sha256:ab8a6258860da4b6677da4bd2fe5dc2c659cff31b3ee4f7f5d64e79735b80d42", + "sha256:dd8d182285a0fe56bace7f45b5e7d1a6ebcbf524e8f3bd87eb0f125271b8831f" + ], + "version": "==0.6.1" + }, + "more-itertools": { + "hashes": [ + "sha256:409cd48d4db7052af495b09dec721011634af3753ae1ef92d2b32f73a745f832", + "sha256:92b8c4b06dac4f0611c0729b2f2ede52b2e1bac1ab48f089c7ddc12e26bb60c4" + ], + "version": "==7.2.0" + }, + "mypy": { + "hashes": [ + "sha256:0107bff4f46a289f0e4081d59b77cef1c48ea43da5a0dbf0005d54748b26df2a", + "sha256:07957f5471b3bb768c61f08690c96d8a09be0912185a27a68700f3ede99184e4", + "sha256:10af62f87b6921eac50271e667cc234162a194e742d8e02fc4ddc121e129a5b0", + "sha256:11fd60d2f69f0cefbe53ce551acf5b1cec1a89e7ce2d47b4e95a84eefb2899ae", + "sha256:15e43d3b1546813669bd1a6ec7e6a11d2888db938e0607f7b5eef6b976671339", + "sha256:352c24ba054a89bb9a35dd064ee95ab9b12903b56c72a8d3863d882e2632dc76", + "sha256:437020a39417e85e22ea8edcb709612903a9924209e10b3ec6d8c9f05b79f498", + "sha256:49925f9da7cee47eebf3420d7c0e00ec662ec6abb2780eb0a16260a7ba25f9c4", + "sha256:6724fcd5777aa6cebfa7e644c526888c9d639bd22edd26b2a8038c674a7c34bd", + "sha256:7a17613f7ea374ab64f39f03257f22b5755335b73251d0d253687a69029701ba", + "sha256:cdc1151ced496ca1496272da7fc356580e95f2682be1d32377c22ddebdf73c91" + ], + "index": "pypi", + "version": "==0.720" + }, + "mypy-extensions": { + "hashes": [ + "sha256:37e0e956f41369209a3d5f34580150bcacfabaa57b33a15c0b25f4b5725e0812", + "sha256:b16cabe759f55e3409a7d231ebd2841378fb0c27a5d1994719e340e4f429ac3e" + ], + "version": "==0.4.1" + }, + "nodeenv": { + "hashes": [ + "sha256:ad8259494cf1c9034539f6cced78a1da4840a4b157e23640bc4a0c0546b0cb7a" + ], + "version": "==1.3.3" + }, + "packaging": { + "hashes": [ + "sha256:28b924174df7a2fa32c1953825ff29c61e2f5e082343165438812f00d3a7fc47", + "sha256:d9551545c6d761f3def1677baf08ab2a3ca17c56879e70fecba2fc4dde4ed108" + ], + "version": "==19.2" + }, + "pkginfo": { + "hashes": [ + "sha256:7424f2c8511c186cd5424bbf31045b77435b37a8d604990b79d4e70d741148bb", + "sha256:a6d9e40ca61ad3ebd0b72fbadd4fba16e4c0e4df0428c041e01e06eb6ee71f32" + ], + "version": "==1.5.0.1" + }, + "pluggy": { + "hashes": [ + "sha256:0db4b7601aae1d35b4a033282da476845aa19185c1e6964b25cf324b5e4ec3e6", + "sha256:fa5fa1622fa6dd5c030e9cad086fa19ef6a0cf6d7a2d12318e10cb49d6d68f34" + ], + "version": "==0.13.0" + }, + "pre-commit": { + "hashes": [ + "sha256:1d3c0587bda7c4e537a46c27f2c84aa006acc18facf9970bf947df596ce91f3f", + "sha256:fa78ff96e8e9ac94c748388597693f18b041a181c94a4f039ad20f45287ba44a" + ], + "index": "pypi", + "version": "==1.18.3" + }, + "py": { + "hashes": [ + "sha256:64f65755aee5b381cea27766a3a147c3f15b9b6b9ac88676de66ba2ae36793fa", + "sha256:dc639b046a6e2cff5bbe40194ad65936d6ba360b52b3c3fe1d08a82dd50b5e53" + ], + "version": "==1.8.0" + }, + "pycodestyle": { + "hashes": [ + "sha256:95a2219d12372f05704562a14ec30bc76b05a5b297b21a5dfe3f6fac3491ae56", + "sha256:e40a936c9a450ad81df37f549d676d127b1b66000a6c500caa2b085bc0ca976c" + ], + "version": "==2.5.0" + }, + "pyflakes": { + "hashes": [ + "sha256:17dbeb2e3f4d772725c777fabc446d5634d1038f234e77343108ce445ea69ce0", + "sha256:d976835886f8c5b31d47970ed689944a0262b5f3afa00a5a7b4dc81e5449f8a2" + ], + "version": "==2.1.1" + }, + "pygments": { + "hashes": [ + "sha256:71e430bc85c88a430f000ac1d9b331d2407f681d6f6aec95e8bcfbc3df5b0127", + "sha256:881c4c157e45f30af185c1ffe8d549d48ac9127433f2c380c24b84572ad66297" + ], + "version": "==2.4.2" + }, + "pyparsing": { + "hashes": [ + "sha256:6f98a7b9397e206d78cc01df10131398f1c8b8510a2f4d97d9abd82e1aacdd80", + "sha256:d9338df12903bbf5d65a0e4e87c2161968b10d2e489652bb47001d82a9b028b4" + ], + "version": "==2.4.2" + }, + "pytest": { + "hashes": [ + "sha256:813b99704b22c7d377bbd756ebe56c35252bb710937b46f207100e843440b3c2", + "sha256:cc6620b96bc667a0c8d4fa592a8c9c94178a1bd6cc799dbb057dfd9286d31a31" + ], + "index": "pypi", + "version": "==5.1.3" + }, + "pytest-cov": { + "hashes": [ + "sha256:2b097cde81a302e1047331b48cadacf23577e431b61e9c6f49a1170bbe3d3da6", + "sha256:e00ea4fdde970725482f1f35630d12f074e121a23801aabf2ae154ec6bdd343a" + ], + "index": "pypi", + "version": "==2.7.1" + }, + "pyyaml": { + "hashes": [ + "sha256:0113bc0ec2ad727182326b61326afa3d1d8280ae1122493553fd6f4397f33df9", + "sha256:01adf0b6c6f61bd11af6e10ca52b7d4057dd0be0343eb9283c878cf3af56aee4", + "sha256:5124373960b0b3f4aa7df1707e63e9f109b5263eca5976c66e08b1c552d4eaf8", + "sha256:5ca4f10adbddae56d824b2c09668e91219bb178a1eee1faa56af6f99f11bf696", + "sha256:7907be34ffa3c5a32b60b95f4d95ea25361c951383a894fec31be7252b2b6f34", + "sha256:7ec9b2a4ed5cad025c2278a1e6a19c011c80a3caaac804fd2d329e9cc2c287c9", + "sha256:87ae4c829bb25b9fe99cf71fbb2140c448f534e24c998cc60f39ae4f94396a73", + "sha256:9de9919becc9cc2ff03637872a440195ac4241c80536632fffeb6a1e25a74299", + "sha256:a5a85b10e450c66b49f98846937e8cfca1db3127a9d5d1e31ca45c3d0bef4c5b", + "sha256:b0997827b4f6a7c286c01c5f60384d218dca4ed7d9efa945c3e1aa623d5709ae", + "sha256:b631ef96d3222e62861443cc89d6563ba3eeb816eeb96b2629345ab795e53681", + "sha256:bf47c0607522fdbca6c9e817a6e81b08491de50f3766a7a0e6a5be7905961b41", + "sha256:f81025eddd0327c7d4cfe9b62cf33190e1e736cc6e97502b3ec425f574b3e7a8" + ], + "version": "==5.1.2" + }, + "readme-renderer": { + "hashes": [ + "sha256:bb16f55b259f27f75f640acf5e00cf897845a8b3e4731b5c1a436e4b8529202f", + "sha256:c8532b79afc0375a85f10433eca157d6b50f7d6990f337fa498c96cd4bfc203d" + ], + "version": "==24.0" + }, + "requests": { + "hashes": [ + "sha256:11e007a8a2aa0323f5a921e9e6a2d7e4e67d9877e85773fba9ba6419025cbeb4", + "sha256:9cf5292fcd0f598c671cfc1e0d7d1a7f13bb8085e9a590f48c010551dc6c4b31" + ], + "version": "==2.22.0" + }, + "requests-toolbelt": { + "hashes": [ + "sha256:380606e1d10dc85c3bd47bf5a6095f815ec007be7a8b69c878507068df059e6f", + "sha256:968089d4584ad4ad7c171454f0a5c6dac23971e9472521ea3b6d49d610aa6fc0" + ], + "version": "==0.9.1" + }, + "six": { + "hashes": [ + "sha256:3350809f0555b11f552448330d0b52d5f24c91a322ea4a15ef22629740f3761c", + "sha256:d16a0141ec1a18405cd4ce8b4613101da75da0e9a7aec5bdd4fa804d0e0eba73" + ], + "version": "==1.12.0" + }, + "toml": { + "hashes": [ + "sha256:229f81c57791a41d65e399fc06bf0848bab550a9dfd5ed66df18ce5f05e73d5c", + "sha256:235682dd292d5899d361a811df37e04a8828a5b1da3115886b73cf81ebc9100e" + ], + "version": "==0.10.0" + }, + "tqdm": { + "hashes": [ + "sha256:abc25d0ce2397d070ef07d8c7e706aede7920da163c64997585d42d3537ece3d", + "sha256:dd3fcca8488bb1d416aa7469d2f277902f26260c45aa86b667b074cd44b3b115" + ], + "version": "==4.36.1" + }, + "twine": { + "hashes": [ + "sha256:5319dd3e02ac73fcddcd94f035b9631589ab5d23e1f4699d57365199d85261e1", + "sha256:9fe7091715c7576df166df8ef6654e61bada39571783f2fd415bdcba867c6993" + ], + "index": "pypi", + "version": "==2.0.0" + }, + "typed-ast": { + "hashes": [ + "sha256:18511a0b3e7922276346bcb47e2ef9f38fb90fd31cb9223eed42c85d1312344e", + "sha256:262c247a82d005e43b5b7f69aff746370538e176131c32dda9cb0f324d27141e", + "sha256:2b907eb046d049bcd9892e3076c7a6456c93a25bebfe554e931620c90e6a25b0", + "sha256:354c16e5babd09f5cb0ee000d54cfa38401d8b8891eefa878ac772f827181a3c", + "sha256:4e0b70c6fc4d010f8107726af5fd37921b666f5b31d9331f0bd24ad9a088e631", + "sha256:630968c5cdee51a11c05a30453f8cd65e0cc1d2ad0d9192819df9978984529f4", + "sha256:66480f95b8167c9c5c5c87f32cf437d585937970f3fc24386f313a4c97b44e34", + "sha256:71211d26ffd12d63a83e079ff258ac9d56a1376a25bc80b1cdcdf601b855b90b", + "sha256:95bd11af7eafc16e829af2d3df510cecfd4387f6453355188342c3e79a2ec87a", + "sha256:bc6c7d3fa1325a0c6613512a093bc2a2a15aeec350451cbdf9e1d4bffe3e3233", + "sha256:cc34a6f5b426748a507dd5d1de4c1978f2eb5626d51326e43280941206c209e1", + "sha256:d755f03c1e4a51e9b24d899561fec4ccaf51f210d52abdf8c07ee2849b212a36", + "sha256:d7c45933b1bdfaf9f36c579671fec15d25b06c8398f113dab64c18ed1adda01d", + "sha256:d896919306dd0aa22d0132f62a1b78d11aaf4c9fc5b3410d3c666b818191630a", + "sha256:ffde2fbfad571af120fcbfbbc61c72469e72f550d676c3342492a9dfdefb8f12" + ], + "version": "==1.4.0" + }, + "typing-extensions": { + "hashes": [ + "sha256:2ed632b30bb54fc3941c382decfd0ee4148f5c591651c9272473fea2c6397d95", + "sha256:b1edbbf0652660e32ae780ac9433f4231e7339c7f9a8057d0f042fcbcea49b87", + "sha256:d8179012ec2c620d3791ca6fe2bf7979d979acdbef1fca0bc56b37411db682ed" + ], + "version": "==3.7.4" + }, + "urllib3": { + "hashes": [ + "sha256:3de946ffbed6e6746608990594d08faac602528ac7015ac28d33cee6a45b7398", + "sha256:9a107b99a5393caf59c7aa3c1249c16e6879447533d0887f4336dde834c7be86" + ], + "version": "==1.25.6" + }, + "virtualenv": { + "hashes": [ + "sha256:680af46846662bb38c5504b78bad9ed9e4f3ba2d54f54ba42494fdf94337fe30", + "sha256:f78d81b62d3147396ac33fc9d77579ddc42cc2a98dd9ea38886f616b33bc7fb2" + ], + "version": "==16.7.5" + }, + "wcwidth": { + "hashes": [ + "sha256:3df37372226d6e63e1b1e1eda15c594bca98a22d33a23832a90998faa96bc65e", + "sha256:f4ebe71925af7b40a864553f761ed559b43544f8f71746c2d756c7fe788ade7c" + ], + "version": "==0.1.7" + }, + "webencodings": { + "hashes": [ + "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", + "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923" + ], + "version": "==0.5.1" + }, + "wheel": { + "hashes": [ + "sha256:10c9da68765315ed98850f8e048347c3eb06dd81822dc2ab1d4fde9dc9702646", + "sha256:f4da1763d3becf2e2cd92a14a7c920f0f00eca30fdde9ea992c836685b9faf28" + ], + "index": "pypi", + "version": "==0.33.6" + }, + "zipp": { + "hashes": [ + "sha256:3718b1cbcd963c7d4c5511a8240812904164b7f381b647143a89d3b98f9bcd8e", + "sha256:f06903e9f1f43b12d371004b4ac7b06ab39a44adc747266928ae6debfa7b3335" + ], + "version": "==0.6.0" + } + } +} diff --git a/Ch07/apd.aggregation-chapter07-nbio/README.md b/Ch07/apd.aggregation-chapter07-nbio/README.md new file mode 100644 index 0000000..85669dd --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-nbio/README.md @@ -0,0 +1,4 @@ +# APD Sensor aggregator + +A programme that queries apd.sensor endpoints and aggregates their results. + diff --git a/Ch07/apd.aggregation-chapter07-nbio/pyproject.toml b/Ch07/apd.aggregation-chapter07-nbio/pyproject.toml new file mode 100644 index 0000000..4d3bb67 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-nbio/pyproject.toml @@ -0,0 +1,5 @@ +[build-system] +requires = [ + "setuptools", +] +build-backend = "setuptools.build_meta" diff --git a/Ch07/apd.aggregation-chapter07-nbio/setup.cfg b/Ch07/apd.aggregation-chapter07-nbio/setup.cfg new file mode 100644 index 0000000..acc9143 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-nbio/setup.cfg @@ -0,0 +1,48 @@ +[mypy] +namespace_packages = True +mypy_path = src +plugins = sqlmypy + +[mypy-alembic] +ignore_missing_imports = True + +[mypy-h11] +ignore_missing_imports = True + +[flake8] +max-line-length = 88 + +[metadata] +name = apd.aggregation +version = attr: apd.aggregation.VERSION +description = A programme that queries apd.sensor endpoints and aggregates their results. +long_description = file: README.md, CHANGES.md, LICENCE +long_description_content_type = text/markdown +keywords = +license = BSD +classifiers = + Programming Language :: Python :: 3 + Programming Language :: Python :: 3.7 + +[options] +zip_safe = False +include_package_data = True +package_dir = + =src +packages = find_namespace: +install_requires = + h11 + sqlalchemy + requests + psycopg2 + alembic + click + sqlalchemy-stubs + + +[options.packages.find] +where = src + +[options.entry_points] +console_scripts = + collect_sensor_data = apd.aggregation.cli:collect_sensor_data diff --git a/Ch07/apd.aggregation-chapter07-nbio/setup.py b/Ch07/apd.aggregation-chapter07-nbio/setup.py new file mode 100644 index 0000000..6068493 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-nbio/setup.py @@ -0,0 +1,3 @@ +from setuptools import setup + +setup() diff --git a/Ch07/apd.aggregation-chapter07-nbio/src/apd/aggregation/__init__.py b/Ch07/apd.aggregation-chapter07-nbio/src/apd/aggregation/__init__.py new file mode 100644 index 0000000..3277f64 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-nbio/src/apd/aggregation/__init__.py @@ -0,0 +1 @@ +VERSION = "1.0.0" diff --git a/Ch07/apd.aggregation-chapter07-nbio/src/apd/aggregation/alembic/README b/Ch07/apd.aggregation-chapter07-nbio/src/apd/aggregation/alembic/README new file mode 100644 index 0000000..97a87d5 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-nbio/src/apd/aggregation/alembic/README @@ -0,0 +1,12 @@ +Generic single-database configuration. + + +# Database setup + +To generate the required database tables you must create an alembic.ini file, as follows: + + [alembic] + script_location = apd.aggregation:alembic + sqlalchemy.url = postgresql+psycopg2://apd@localhost/apd + +and run `alembic upgrade head`. This should also be done after every upgrade of the software. \ No newline at end of file diff --git a/Ch07/apd.aggregation-chapter07-nbio/src/apd/aggregation/alembic/env.py b/Ch07/apd.aggregation-chapter07-nbio/src/apd/aggregation/alembic/env.py new file mode 100644 index 0000000..09beb9c --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-nbio/src/apd/aggregation/alembic/env.py @@ -0,0 +1,73 @@ +from logging.config import fileConfig + +from sqlalchemy import engine_from_config +from sqlalchemy import pool + +from alembic import context + +# this is the Alembic Config object, which provides +# access to the values within the .ini file in use. +config = context.config + +# Interpret the config file for Python logging. +# This line sets up loggers basically. +fileConfig(config.config_file_name) + +from apd.aggregation.database import Base + +target_metadata = Base.metadata + +# other values from the config, defined by the needs of env.py, +# can be acquired: +# my_important_option = config.get_main_option("my_important_option") +# ... etc. + + +def run_migrations_offline(): + """Run migrations in 'offline' mode. + + This configures the context with just a URL + and not an Engine, though an Engine is acceptable + here as well. By skipping the Engine creation + we don't even need a DBAPI to be available. + + Calls to context.execute() here emit the given string to the + script output. + + """ + url = config.get_main_option("sqlalchemy.url") + context.configure( + url=url, + target_metadata=target_metadata, + literal_binds=True, + dialect_opts={"paramstyle": "named"}, + ) + + with context.begin_transaction(): + context.run_migrations() + + +def run_migrations_online(): + """Run migrations in 'online' mode. + + In this scenario we need to create an Engine + and associate a connection with the context. + + """ + connectable = engine_from_config( + config.get_section(config.config_ini_section), + prefix="sqlalchemy.", + poolclass=pool.NullPool, + ) + + with connectable.connect() as connection: + context.configure(connection=connection, target_metadata=target_metadata) + + with context.begin_transaction(): + context.run_migrations() + + +if context.is_offline_mode(): + run_migrations_offline() +else: + run_migrations_online() diff --git a/Ch07/apd.aggregation-chapter07-nbio/src/apd/aggregation/alembic/script.py.mako b/Ch07/apd.aggregation-chapter07-nbio/src/apd/aggregation/alembic/script.py.mako new file mode 100644 index 0000000..2c01563 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-nbio/src/apd/aggregation/alembic/script.py.mako @@ -0,0 +1,24 @@ +"""${message} + +Revision ID: ${up_revision} +Revises: ${down_revision | comma,n} +Create Date: ${create_date} + +""" +from alembic import op +import sqlalchemy as sa +${imports if imports else ""} + +# revision identifiers, used by Alembic. +revision = ${repr(up_revision)} +down_revision = ${repr(down_revision)} +branch_labels = ${repr(branch_labels)} +depends_on = ${repr(depends_on)} + + +def upgrade(): + ${upgrades if upgrades else "pass"} + + +def downgrade(): + ${downgrades if downgrades else "pass"} diff --git a/Ch07/apd.aggregation-chapter07-nbio/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py b/Ch07/apd.aggregation-chapter07-nbio/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py new file mode 100644 index 0000000..b4a3545 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-nbio/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py @@ -0,0 +1,31 @@ +"""Create datapoints table + +Revision ID: 6d2eacd5da3f +Revises: N/A +Create Date: 2019-09-29 13:43:21.242706 + +""" +from alembic import op +import sqlalchemy as sa +from sqlalchemy.dialects import postgresql + +# revision identifiers, used by Alembic. +revision = "6d2eacd5da3f" +down_revision = None +branch_labels = None +depends_on = None + + +def upgrade(): + op.create_table( + "datapoints", + sa.Column("id", sa.Integer(), nullable=False), + sa.Column("sensor_name", sa.String(), nullable=True), + sa.Column("collected_at", postgresql.TIMESTAMP(), nullable=True), + sa.Column("data", postgresql.JSONB(astext_type=sa.Text()), nullable=True), + sa.PrimaryKeyConstraint("id"), + ) + + +def downgrade(): + op.drop_table("datapoints") diff --git a/Ch07/apd.aggregation-chapter07-nbio/src/apd/aggregation/cli.py b/Ch07/apd.aggregation-chapter07-nbio/src/apd/aggregation/cli.py new file mode 100644 index 0000000..3435e78 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-nbio/src/apd/aggregation/cli.py @@ -0,0 +1,52 @@ +import typing as t + +import click + +from .collect import standalone + + +@click.command() +@click.argument("server", nargs=-1) +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +@click.option("--api-key", metavar="", envvar="APD_API_KEY") +@click.option( + "--tolerate-failures", + "-f", + help="If provided, failure to retrieve some sensors' data will not abort the collection process", + is_flag=True, +) +@click.option("-v", "--verbose", is_flag=True, help="Enables verbose mode") +def collect_sensor_data( + db: str, server: t.Tuple[str], api_key: str, tolerate_failures: bool, verbose: bool +): + """This loads data from one or more sensors into the specified database. + + Only PostgreSQL databases are supported, as the column definitions use + multiple pg specific features. The database must already exist and be + populated with the required tables. + + The --api-key option is used to specify the access token for the sensors + being queried. + + You may specify any number of servers, the variable should be the full URL + to the sensor's HTTP interface, not including the /v/2.0 portion. Multiple + URLs should be separated with a space. + """ + if tolerate_failures: + attempts = [(s,) for s in server] + else: + attempts = [server] + success = True + for attempt in attempts: + try: + standalone(db, attempt, api_key, echo=verbose) + except ValueError as e: + click.secho(str(e), err=True, fg="red") + success = False + return success diff --git a/Ch07/apd.aggregation-chapter07-nbio/src/apd/aggregation/collect.py b/Ch07/apd.aggregation-chapter07-nbio/src/apd/aggregation/collect.py new file mode 100644 index 0000000..7f55943 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-nbio/src/apd/aggregation/collect.py @@ -0,0 +1,125 @@ +import datetime +import io +import json +import select +import socket +import typing as t +import urllib.parse + +import h11 +import requests +from sqlalchemy import create_engine +from sqlalchemy.orm import sessionmaker +from sqlalchemy.orm.session import Session + +from .database import DataPoint + + +def get_http(uri: str, headers: t.Dict[str, str]) -> socket.socket: + """Given a URI and a set of headers, make a HTTP request and return the + underlying socket. If there were a production-quality implementation of + nonblocking HTTP this function would be replaced with the relevant one + from that library.""" + parsed = urllib.parse.urlparse(uri) + sock = socket.socket() + if parsed.port: + port = parsed.port + else: + port = 80 + headers["Host"] = parsed.netloc + sock.connect((parsed.hostname, port)) + sock.setblocking(False) + + connection = h11.Connection(h11.CLIENT) + request = h11.Request(method="GET", target=parsed.path, headers=headers.items()) + + sock.send(connection.send(request)) + sock.send(connection.send(h11.EndOfMessage())) + return sock + + +def read_from_socket(sock: socket.socket) -> str: + """ If there were a production-quality implementation of nonblocking HTTP + this function would be replaced with the relevant one to get the body of + the response if it was a success or error otherwise. """ + data = sock.recv(2048) + connection = h11.Connection(h11.CLIENT) + connection.receive_data(data) + + response = connection.next_event() + headers = dict(response.headers) + body = connection.next_event() + eom = connection.next_event() + + try: + if ( + response.status_code == 200 + and headers.get(b"content-type", None) == b"application/json" + ): + return body.data.decode("utf-8") + else: + raise ValueError("Bad response") + finally: + sock.close() + + +def connect_to_server(server: str, api_key: t.Optional[str]) -> socket.socket: + if not server.endswith("/"): + server += "/" + url = server + "v/2.0/sensors/" + headers = {} + if api_key: + headers["X-API-KEY"] = api_key + + return get_http(url, headers=headers) + + +def prepare_datapoints_from_response(response: str) -> t.Iterator[DataPoint]: + now = datetime.datetime.now() + json_result = json.loads(response) + if "sensors" in json_result: + for value in json_result["sensors"]: + yield DataPoint( + sensor_name=value["id"], collected_at=now, data=value["value"] + ) + else: + raise ValueError( + f"Error loading data from stream: " + json_result.get("error", "Unknown") + ) + + +def add_data_from_sensors( + session: Session, servers: t.Tuple[str], api_key: t.Optional[str] +) -> t.Iterable[DataPoint]: + points: t.List[DataPoint] = [] + sockets = [connect_to_server(server, api_key) for server in servers] + while sockets: + readable, writable, exceptional = select.select(sockets, [], []) + for request in readable: + # In a production quality implementation there would be + # handling here for responses that have only partially been + # received. + value = read_from_socket(request) + for point in prepare_datapoints_from_response(value): + session.add(point) + points.append(point) + sockets.remove(request) + return points + + +def standalone( + db_uri: str, servers: t.Tuple[str], api_key: t.Optional[str], echo: bool = False +) -> None: + engine = create_engine(db_uri, echo=echo) + sm = sessionmaker(engine) + Session = sm() + add_data_from_sensors(Session, servers, api_key) + Session.commit() + + +if __name__ == "__main__": + standalone( + db_uri="postgresql+psycopg2://apd@localhost/apd", + servers=("http://pvoutput:8080/",), + api_key="h3hdfjksfhwkjehnwekj", + ) diff --git a/Ch07/apd.aggregation-chapter07-nbio/src/apd/aggregation/database.py b/Ch07/apd.aggregation-chapter07-nbio/src/apd/aggregation/database.py new file mode 100644 index 0000000..af1cbde --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-nbio/src/apd/aggregation/database.py @@ -0,0 +1,31 @@ +import sqlalchemy +from sqlalchemy.ext.declarative import declarative_base +from sqlalchemy.dialects.postgresql import JSONB, TIMESTAMP +from sqlalchemy.orm import sessionmaker + + +Base = declarative_base() + + +class DataPoint(Base): + __tablename__ = "datapoints" + id = sqlalchemy.Column(sqlalchemy.Integer, primary_key=True) + sensor_name = sqlalchemy.Column(sqlalchemy.String) + collected_at = sqlalchemy.Column(TIMESTAMP) + data = sqlalchemy.Column(JSONB) + + +def main(): + engine = sqlalchemy.create_engine( + "postgresql+psycopg2://apd@localhost/apd", echo=True + ) + sm = sessionmaker(engine) + Session = sm() + if False: + Base.metadata.create_all(engine) + print(Session.query(DataPoint).all()) + pass + + +if __name__ == "__main__": + main() diff --git a/Ch07/apd.aggregation-chapter07-nbio/tests/__init__.py b/Ch07/apd.aggregation-chapter07-nbio/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/Ch07/apd.aggregation-chapter07-nbio/tests/conftest.py b/Ch07/apd.aggregation-chapter07-nbio/tests/conftest.py new file mode 100644 index 0000000..e69de29 diff --git a/Ch07/apd.aggregation-chapter07-simple-threads/.coveragerc b/Ch07/apd.aggregation-chapter07-simple-threads/.coveragerc new file mode 100644 index 0000000..e766c69 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-simple-threads/.coveragerc @@ -0,0 +1,3 @@ +[run] +branch = True +omit = tests/* diff --git a/Ch07/apd.aggregation-chapter07-simple-threads/.pre-commit-config.yaml b/Ch07/apd.aggregation-chapter07-simple-threads/.pre-commit-config.yaml new file mode 100644 index 0000000..d3b6ec7 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-simple-threads/.pre-commit-config.yaml @@ -0,0 +1,26 @@ +repos: + +- repo: local + hooks: + - id: black + name: black + entry: pipenv run black + args: [--quiet] + language: system + types: [python] + + - id: mypy + name: mypy + exclude: (?x)^( + (.*)/setup.py + )$ + entry: pipenv run mypy + args: ["--follow-imports=skip"] + language: system + types: [python] + + - id: flake8 + name: flake8 + entry: pipenv run flake8 + language: system + types: [python] diff --git a/Ch07/apd.aggregation-chapter07-simple-threads/CHANGES.md b/Ch07/apd.aggregation-chapter07-simple-threads/CHANGES.md new file mode 100644 index 0000000..8e424e5 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-simple-threads/CHANGES.md @@ -0,0 +1,5 @@ +## Changes + +### 1.0.0 (Unreleased) + +* Generated from skeleton diff --git a/Ch07/apd.aggregation-chapter07-simple-threads/LICENCE b/Ch07/apd.aggregation-chapter07-simple-threads/LICENCE new file mode 100644 index 0000000..86685d4 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-simple-threads/LICENCE @@ -0,0 +1,31 @@ +Copyright (c) 2019, Matthew Wilkes + + +All rights reserved. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + +* Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + +* Redistributions in binary form must reproduce the above copyright notice, this + list of conditions and the following disclaimer in the documentation and/or + other materials provided with the distribution. + +* Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived from this + software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND +ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. +IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, +INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, +BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY +OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE +OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED +OF THE POSSIBILITY OF SUCH DAMAGE. + + diff --git a/Ch07/apd.aggregation-chapter07-simple-threads/Pipfile b/Ch07/apd.aggregation-chapter07-simple-threads/Pipfile new file mode 100644 index 0000000..ba42fa3 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-simple-threads/Pipfile @@ -0,0 +1,22 @@ +[[source]] +name = "pypi" +url = "https://pypi.org/simple" +verify_ssl = true + +[dev-packages] +pytest = "*" +pytest-cov = "*" +mypy = "*" +flake8 = "*" +black = "*" +pre-commit = "*" +wheel = "*" +twine = "*" + +[packages] +apd-aggregation = {editable = true,path = "."} + +[requires] + +[pipenv] +allow_prereleases = true diff --git a/Ch07/apd.aggregation-chapter07-simple-threads/Pipfile.lock b/Ch07/apd.aggregation-chapter07-simple-threads/Pipfile.lock new file mode 100644 index 0000000..62333bb --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-simple-threads/Pipfile.lock @@ -0,0 +1,466 @@ +{ + "_meta": { + "hash": { + "sha256": "6b1c63a96230c56a20e4bac5a8dfee64e295cb0c9240505e3d32018442533f74" + }, + "pipfile-spec": 6, + "requires": {}, + "sources": [ + { + "name": "pypi", + "url": "https://pypi.org/simple", + "verify_ssl": true + } + ] + }, + "default": { + "apd-aggregation": { + "editable": true, + "path": "." + }, + "psycopg2": { + "hashes": [ + "sha256:128d0fa910ada0157bba1cb74a9c5f92bb8a1dca77cf91a31eb274d1f889e001", + "sha256:227fd46cf9b7255f07687e5bde454d7d67ae39ca77e170097cdef8ebfc30c323", + "sha256:2315e7f104681d498ccf6fd70b0dba5bce65d60ac92171492bfe228e21dcc242", + "sha256:4b5417dcd2999db0f5a891d54717cfaee33acc64f4772c4bc574d4ff95ed9d80", + "sha256:640113ddc943522aaf71294e3f2d24013b0edd659b7820621492c9ebd3a2fb0b", + "sha256:897a6e838319b4bf648a574afb6cabcb17d0488f8c7195100d48d872419f4457", + "sha256:8dceca81409898c870e011c71179454962dec152a1a6b86a347f4be74b16d864", + "sha256:b1b8e41da09a0c3ef0b3d4bb72da0dde2abebe583c1e8462973233fd5ad0235f", + "sha256:cb407fccc12fc29dc331f2b934913405fa49b9b75af4f3a72d0f50f57ad2ca23", + "sha256:d3a27550a8185e53b244ad7e79e307594b92fede8617d80200a8cce1fba2c60f", + "sha256:f0e6b697a975d9d3ccd04135316c947dd82d841067c7800ccf622a8717e98df1" + ], + "index": "pypi", + "version": "==2.8.3" + }, + "sqlalchemy": { + "hashes": [ + "sha256:2f8ff566a4d3a92246d367f2e9cd6ed3edeef670dcd6dda6dfdc9efed88bcd80" + ], + "version": "==1.3.8" + } + }, + "develop": { + "appdirs": { + "hashes": [ + "sha256:9e5896d1372858f8dd3344faf4e5014d21849c756c8d5701f78f8a103b372d92", + "sha256:d8b24664561d0d34ddfaec54636d502d7cea6e29c3eaf68f3df6180863e2166e" + ], + "version": "==1.4.3" + }, + "aspy.yaml": { + "hashes": [ + "sha256:463372c043f70160a9ec950c3f1e4c3a82db5fca01d334b6bc89c7164d744bdc", + "sha256:e7c742382eff2caed61f87a39d13f99109088e5e93f04d76eb8d4b28aa143f45" + ], + "version": "==1.3.0" + }, + "atomicwrites": { + "hashes": [ + "sha256:03472c30eb2c5d1ba9227e4c2ca66ab8287fbfbbda3888aa93dc2e28fc6811b4", + "sha256:75a9445bac02d8d058d5e1fe689654ba5a6556a1dfd8ce6ec55a0ed79866cfa6" + ], + "version": "==1.3.0" + }, + "attrs": { + "hashes": [ + "sha256:69c0dbf2ed392de1cb5ec704444b08a5ef81680a61cb899dc08127123af36a79", + "sha256:f0b870f674851ecbfbbbd364d6b5cbdff9dcedbc7f3f5e18a6891057f21fe399" + ], + "version": "==19.1.0" + }, + "black": { + "hashes": [ + "sha256:09a9dcb7c46ed496a9850b76e4e825d6049ecd38b611f1224857a79bd985a8cf", + "sha256:68950ffd4d9169716bcb8719a56c07a2f4485354fec061cdd5910aa07369731c" + ], + "index": "pypi", + "version": "==19.3b0" + }, + "bleach": { + "hashes": [ + "sha256:213336e49e102af26d9cde77dd2d0397afabc5a6bf2fed985dc35b5d1e285a16", + "sha256:3fdf7f77adcf649c9911387df51254b813185e32b2c6619f690b593a617e19fa" + ], + "version": "==3.1.0" + }, + "certifi": { + "hashes": [ + "sha256:e4f3620cfea4f83eedc95b24abd9cd56f3c4b146dd0177e83a21b4eb49e21e50", + "sha256:fd7c7c74727ddcf00e9acd26bba8da604ffec95bf1c2144e67aff7a8b50e6cef" + ], + "version": "==2019.9.11" + }, + "cfgv": { + "hashes": [ + "sha256:edb387943b665bf9c434f717bf630fa78aecd53d5900d2e05da6ad6048553144", + "sha256:fbd93c9ab0a523bf7daec408f3be2ed99a980e20b2d19b50fc184ca6b820d289" + ], + "version": "==2.0.1" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:2335065e6395b9e67ca716de5f7526736bfa6ceead690adf616d925bdc622b13", + "sha256:5b94b49521f6456670fdb30cd82a4eca9412788a93fa6dd6df72c94d5a8ff2d7" + ], + "version": "==7.0" + }, + "colorama": { + "hashes": [ + "sha256:05eed71e2e327246ad6b38c540c4a3117230b19679b875190486ddd2d721422d", + "sha256:f8ac84de7840f5b9c4e3347b3c1eaa50f7e49c2b07596221daec5edaabbd7c48" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.1" + }, + "coverage": { + "hashes": [ + "sha256:094378c3a35594335a840ea04d473c019e6d4fe10e343cd0d7fb5e87f8b7e926", + "sha256:10216222f3e4139910b6230d0ca0fe9d10ee98837eb83d29525722d628729d20", + "sha256:147478e21cba12c63b3454df5a2fb77b44df630428cffa3a36a6813e38157eab", + "sha256:230ce08965190c0f69196be34a07a795981b2b02b21419c2e1918a882b3eeab0", + "sha256:2469621d680a4c71cdbd3ea4dbed9d199bba93f21d2be1c107ded907b2db41a8", + "sha256:26526174d11fb2163832628d943edd452e07528b0ecc0c83c88256a59a32287c", + "sha256:2690bf0835f34ef3451860b02471e9560e4b3caf7413abeaa7544af72eb6d9ed", + "sha256:2b6f2d9a60413e75651cebe33c3f2f66d61209db44e8b9cf6d8d66fb0cb01fda", + "sha256:3ce91c6b92160ecefedf95a8c61fbf4fb36b0addef1a40c654acf1ad390653d0", + "sha256:43d16d7e9e9eaace3d9f1828b617b1be248f90d031a4b2dc1b6e1c88f1602dcf", + "sha256:52b6455da5f547cad72fd5cfc57a16678573fda6c695d257b5c266a44dbbd172", + "sha256:533f3036c8f58e6381fcca3306fe988740638c62c7fc86b7fae9c74b85ac3cdc", + "sha256:62d2abe5c733394058cb381d088bcab64a18da3ce9dc9a8ef2a18e122cbe47f1", + "sha256:72c34f99164679e44a5cbf19bf1a13be4e715c680816302b6ceca49b979fde91", + "sha256:81fc07feed4e40a7c0bdd266efa65e5afc83b5e0f1063007acc6759a957322a1", + "sha256:82093e673182c761ce54dfab17f026a06be3c011fee9b653855b9a2649f20232", + "sha256:87947fef728f72860407c446fd9b4a0f98e39e91ad7ae80803c02a85738e63ef", + "sha256:8b18c5a5a6b35b6311d2c356782ce3c7bacf6d987d9dc479178577391bf1c7dd", + "sha256:90e1850e993aa6b81bafaf672c8e508eaa17fbb5eb23aba93f7f4df822f3bd29", + "sha256:99f71e365bcb03a8debe1a75061329c9e45379f244a229442319d64c53c4e844", + "sha256:9b2c559104a90bf0043d6ef262ca205326d1fe6ec572dcf59e34be9289432793", + "sha256:ad22b073d92ea65b063e612154c72d6367dec3dd47ed33c02e3ab339eabe7bf3", + "sha256:bc3648da235fee2113a8cb80154d9fff4e2689d2d4a11ad35c1ecae23454b539", + "sha256:d0e2478bde68c5d853bcd306b5aae8fbe80417e87957a21fa6ee71edb90639f2", + "sha256:d3e6912d2370925222d2bfb3bd2ba02e9698b8da89cf7192ddf80cbb9f2455ee", + "sha256:d4fa98e3e15863568ea89eaec5e0866ca763980bdc56098dd9316865c111a28e", + "sha256:ee924a23457b373241ff39d21570360afd8ccb58520eb1e8e18eb00827b73e2d" + ], + "version": "==5.0a7" + }, + "docutils": { + "hashes": [ + "sha256:6c4f696463b79f1fb8ba0c594b63840ebd41f059e92b31957c46b74a4599b6d0", + "sha256:9e4d7ecfc600058e07ba661411a2b7de2fd0fafa17d1a7f7361cd47b1175c827", + "sha256:a2aeea129088da402665e92e0b25b04b073c04b2dce4ab65caaa38b7ce2e1a99" + ], + "version": "==0.15.2" + }, + "entrypoints": { + "hashes": [ + "sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19", + "sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451" + ], + "version": "==0.3" + }, + "flake8": { + "hashes": [ + "sha256:19241c1cbc971b9962473e4438a2ca19749a7dd002dd1a946eaba171b4114548", + "sha256:8e9dfa3cecb2400b3738a42c54c3043e821682b9c840b0448c0503f781130696" + ], + "index": "pypi", + "version": "==3.7.8" + }, + "identify": { + "hashes": [ + "sha256:4f1fe9a59df4e80fcb0213086fcf502bc1765a01ea4fe8be48da3b65afd2a017", + "sha256:d8919589bd2a5f99c66302fec0ef9027b12ae150b0b0213999ad3f695fc7296e" + ], + "version": "==1.4.7" + }, + "idna": { + "hashes": [ + "sha256:c357b3f628cf53ae2c4c05627ecc484553142ca23264e593d327bcde5e9c3407", + "sha256:ea8b7f6188e6fa117537c3df7da9fc686d485087abf6ac197f9c46432f7e4a3c" + ], + "version": "==2.8" + }, + "importlib-metadata": { + "hashes": [ + "sha256:aa18d7378b00b40847790e7c27e11673d7fed219354109d0e7b9e5b25dc3ad26", + "sha256:d5f18a79777f3aa179c145737780282e27b508fc8fd688cb17c7a813e8bd39af" + ], + "markers": "python_version < '3.8'", + "version": "==0.23" + }, + "mccabe": { + "hashes": [ + "sha256:ab8a6258860da4b6677da4bd2fe5dc2c659cff31b3ee4f7f5d64e79735b80d42", + "sha256:dd8d182285a0fe56bace7f45b5e7d1a6ebcbf524e8f3bd87eb0f125271b8831f" + ], + "version": "==0.6.1" + }, + "more-itertools": { + "hashes": [ + "sha256:409cd48d4db7052af495b09dec721011634af3753ae1ef92d2b32f73a745f832", + "sha256:92b8c4b06dac4f0611c0729b2f2ede52b2e1bac1ab48f089c7ddc12e26bb60c4" + ], + "version": "==7.2.0" + }, + "mypy": { + "hashes": [ + "sha256:0107bff4f46a289f0e4081d59b77cef1c48ea43da5a0dbf0005d54748b26df2a", + "sha256:07957f5471b3bb768c61f08690c96d8a09be0912185a27a68700f3ede99184e4", + "sha256:10af62f87b6921eac50271e667cc234162a194e742d8e02fc4ddc121e129a5b0", + "sha256:11fd60d2f69f0cefbe53ce551acf5b1cec1a89e7ce2d47b4e95a84eefb2899ae", + "sha256:15e43d3b1546813669bd1a6ec7e6a11d2888db938e0607f7b5eef6b976671339", + "sha256:352c24ba054a89bb9a35dd064ee95ab9b12903b56c72a8d3863d882e2632dc76", + "sha256:437020a39417e85e22ea8edcb709612903a9924209e10b3ec6d8c9f05b79f498", + "sha256:49925f9da7cee47eebf3420d7c0e00ec662ec6abb2780eb0a16260a7ba25f9c4", + "sha256:6724fcd5777aa6cebfa7e644c526888c9d639bd22edd26b2a8038c674a7c34bd", + "sha256:7a17613f7ea374ab64f39f03257f22b5755335b73251d0d253687a69029701ba", + "sha256:cdc1151ced496ca1496272da7fc356580e95f2682be1d32377c22ddebdf73c91" + ], + "index": "pypi", + "version": "==0.720" + }, + "mypy-extensions": { + "hashes": [ + "sha256:37e0e956f41369209a3d5f34580150bcacfabaa57b33a15c0b25f4b5725e0812", + "sha256:b16cabe759f55e3409a7d231ebd2841378fb0c27a5d1994719e340e4f429ac3e" + ], + "version": "==0.4.1" + }, + "nodeenv": { + "hashes": [ + "sha256:ad8259494cf1c9034539f6cced78a1da4840a4b157e23640bc4a0c0546b0cb7a" + ], + "version": "==1.3.3" + }, + "packaging": { + "hashes": [ + "sha256:28b924174df7a2fa32c1953825ff29c61e2f5e082343165438812f00d3a7fc47", + "sha256:d9551545c6d761f3def1677baf08ab2a3ca17c56879e70fecba2fc4dde4ed108" + ], + "version": "==19.2" + }, + "pkginfo": { + "hashes": [ + "sha256:7424f2c8511c186cd5424bbf31045b77435b37a8d604990b79d4e70d741148bb", + "sha256:a6d9e40ca61ad3ebd0b72fbadd4fba16e4c0e4df0428c041e01e06eb6ee71f32" + ], + "version": "==1.5.0.1" + }, + "pluggy": { + "hashes": [ + "sha256:0db4b7601aae1d35b4a033282da476845aa19185c1e6964b25cf324b5e4ec3e6", + "sha256:fa5fa1622fa6dd5c030e9cad086fa19ef6a0cf6d7a2d12318e10cb49d6d68f34" + ], + "version": "==0.13.0" + }, + "pre-commit": { + "hashes": [ + "sha256:1d3c0587bda7c4e537a46c27f2c84aa006acc18facf9970bf947df596ce91f3f", + "sha256:fa78ff96e8e9ac94c748388597693f18b041a181c94a4f039ad20f45287ba44a" + ], + "index": "pypi", + "version": "==1.18.3" + }, + "py": { + "hashes": [ + "sha256:64f65755aee5b381cea27766a3a147c3f15b9b6b9ac88676de66ba2ae36793fa", + "sha256:dc639b046a6e2cff5bbe40194ad65936d6ba360b52b3c3fe1d08a82dd50b5e53" + ], + "version": "==1.8.0" + }, + "pycodestyle": { + "hashes": [ + "sha256:95a2219d12372f05704562a14ec30bc76b05a5b297b21a5dfe3f6fac3491ae56", + "sha256:e40a936c9a450ad81df37f549d676d127b1b66000a6c500caa2b085bc0ca976c" + ], + "version": "==2.5.0" + }, + "pyflakes": { + "hashes": [ + "sha256:17dbeb2e3f4d772725c777fabc446d5634d1038f234e77343108ce445ea69ce0", + "sha256:d976835886f8c5b31d47970ed689944a0262b5f3afa00a5a7b4dc81e5449f8a2" + ], + "version": "==2.1.1" + }, + "pygments": { + "hashes": [ + "sha256:71e430bc85c88a430f000ac1d9b331d2407f681d6f6aec95e8bcfbc3df5b0127", + "sha256:881c4c157e45f30af185c1ffe8d549d48ac9127433f2c380c24b84572ad66297" + ], + "version": "==2.4.2" + }, + "pyparsing": { + "hashes": [ + "sha256:6f98a7b9397e206d78cc01df10131398f1c8b8510a2f4d97d9abd82e1aacdd80", + "sha256:d9338df12903bbf5d65a0e4e87c2161968b10d2e489652bb47001d82a9b028b4" + ], + "version": "==2.4.2" + }, + "pytest": { + "hashes": [ + "sha256:813b99704b22c7d377bbd756ebe56c35252bb710937b46f207100e843440b3c2", + "sha256:cc6620b96bc667a0c8d4fa592a8c9c94178a1bd6cc799dbb057dfd9286d31a31" + ], + "index": "pypi", + "version": "==5.1.3" + }, + "pytest-cov": { + "hashes": [ + "sha256:2b097cde81a302e1047331b48cadacf23577e431b61e9c6f49a1170bbe3d3da6", + "sha256:e00ea4fdde970725482f1f35630d12f074e121a23801aabf2ae154ec6bdd343a" + ], + "index": "pypi", + "version": "==2.7.1" + }, + "pyyaml": { + "hashes": [ + "sha256:0113bc0ec2ad727182326b61326afa3d1d8280ae1122493553fd6f4397f33df9", + "sha256:01adf0b6c6f61bd11af6e10ca52b7d4057dd0be0343eb9283c878cf3af56aee4", + "sha256:5124373960b0b3f4aa7df1707e63e9f109b5263eca5976c66e08b1c552d4eaf8", + "sha256:5ca4f10adbddae56d824b2c09668e91219bb178a1eee1faa56af6f99f11bf696", + "sha256:7907be34ffa3c5a32b60b95f4d95ea25361c951383a894fec31be7252b2b6f34", + "sha256:7ec9b2a4ed5cad025c2278a1e6a19c011c80a3caaac804fd2d329e9cc2c287c9", + "sha256:87ae4c829bb25b9fe99cf71fbb2140c448f534e24c998cc60f39ae4f94396a73", + "sha256:9de9919becc9cc2ff03637872a440195ac4241c80536632fffeb6a1e25a74299", + "sha256:a5a85b10e450c66b49f98846937e8cfca1db3127a9d5d1e31ca45c3d0bef4c5b", + "sha256:b0997827b4f6a7c286c01c5f60384d218dca4ed7d9efa945c3e1aa623d5709ae", + "sha256:b631ef96d3222e62861443cc89d6563ba3eeb816eeb96b2629345ab795e53681", + "sha256:bf47c0607522fdbca6c9e817a6e81b08491de50f3766a7a0e6a5be7905961b41", + "sha256:f81025eddd0327c7d4cfe9b62cf33190e1e736cc6e97502b3ec425f574b3e7a8" + ], + "version": "==5.1.2" + }, + "readme-renderer": { + "hashes": [ + "sha256:bb16f55b259f27f75f640acf5e00cf897845a8b3e4731b5c1a436e4b8529202f", + "sha256:c8532b79afc0375a85f10433eca157d6b50f7d6990f337fa498c96cd4bfc203d" + ], + "version": "==24.0" + }, + "requests": { + "hashes": [ + "sha256:11e007a8a2aa0323f5a921e9e6a2d7e4e67d9877e85773fba9ba6419025cbeb4", + "sha256:9cf5292fcd0f598c671cfc1e0d7d1a7f13bb8085e9a590f48c010551dc6c4b31" + ], + "version": "==2.22.0" + }, + "requests-toolbelt": { + "hashes": [ + "sha256:380606e1d10dc85c3bd47bf5a6095f815ec007be7a8b69c878507068df059e6f", + "sha256:968089d4584ad4ad7c171454f0a5c6dac23971e9472521ea3b6d49d610aa6fc0" + ], + "version": "==0.9.1" + }, + "six": { + "hashes": [ + "sha256:3350809f0555b11f552448330d0b52d5f24c91a322ea4a15ef22629740f3761c", + "sha256:d16a0141ec1a18405cd4ce8b4613101da75da0e9a7aec5bdd4fa804d0e0eba73" + ], + "version": "==1.12.0" + }, + "toml": { + "hashes": [ + "sha256:229f81c57791a41d65e399fc06bf0848bab550a9dfd5ed66df18ce5f05e73d5c", + "sha256:235682dd292d5899d361a811df37e04a8828a5b1da3115886b73cf81ebc9100e" + ], + "version": "==0.10.0" + }, + "tqdm": { + "hashes": [ + "sha256:abc25d0ce2397d070ef07d8c7e706aede7920da163c64997585d42d3537ece3d", + "sha256:dd3fcca8488bb1d416aa7469d2f277902f26260c45aa86b667b074cd44b3b115" + ], + "version": "==4.36.1" + }, + "twine": { + "hashes": [ + "sha256:5319dd3e02ac73fcddcd94f035b9631589ab5d23e1f4699d57365199d85261e1", + "sha256:9fe7091715c7576df166df8ef6654e61bada39571783f2fd415bdcba867c6993" + ], + "index": "pypi", + "version": "==2.0.0" + }, + "typed-ast": { + "hashes": [ + "sha256:18511a0b3e7922276346bcb47e2ef9f38fb90fd31cb9223eed42c85d1312344e", + "sha256:262c247a82d005e43b5b7f69aff746370538e176131c32dda9cb0f324d27141e", + "sha256:2b907eb046d049bcd9892e3076c7a6456c93a25bebfe554e931620c90e6a25b0", + "sha256:354c16e5babd09f5cb0ee000d54cfa38401d8b8891eefa878ac772f827181a3c", + "sha256:4e0b70c6fc4d010f8107726af5fd37921b666f5b31d9331f0bd24ad9a088e631", + "sha256:630968c5cdee51a11c05a30453f8cd65e0cc1d2ad0d9192819df9978984529f4", + "sha256:66480f95b8167c9c5c5c87f32cf437d585937970f3fc24386f313a4c97b44e34", + "sha256:71211d26ffd12d63a83e079ff258ac9d56a1376a25bc80b1cdcdf601b855b90b", + "sha256:95bd11af7eafc16e829af2d3df510cecfd4387f6453355188342c3e79a2ec87a", + "sha256:bc6c7d3fa1325a0c6613512a093bc2a2a15aeec350451cbdf9e1d4bffe3e3233", + "sha256:cc34a6f5b426748a507dd5d1de4c1978f2eb5626d51326e43280941206c209e1", + "sha256:d755f03c1e4a51e9b24d899561fec4ccaf51f210d52abdf8c07ee2849b212a36", + "sha256:d7c45933b1bdfaf9f36c579671fec15d25b06c8398f113dab64c18ed1adda01d", + "sha256:d896919306dd0aa22d0132f62a1b78d11aaf4c9fc5b3410d3c666b818191630a", + "sha256:ffde2fbfad571af120fcbfbbc61c72469e72f550d676c3342492a9dfdefb8f12" + ], + "version": "==1.4.0" + }, + "typing-extensions": { + "hashes": [ + "sha256:2ed632b30bb54fc3941c382decfd0ee4148f5c591651c9272473fea2c6397d95", + "sha256:b1edbbf0652660e32ae780ac9433f4231e7339c7f9a8057d0f042fcbcea49b87", + "sha256:d8179012ec2c620d3791ca6fe2bf7979d979acdbef1fca0bc56b37411db682ed" + ], + "version": "==3.7.4" + }, + "urllib3": { + "hashes": [ + "sha256:3de946ffbed6e6746608990594d08faac602528ac7015ac28d33cee6a45b7398", + "sha256:9a107b99a5393caf59c7aa3c1249c16e6879447533d0887f4336dde834c7be86" + ], + "version": "==1.25.6" + }, + "virtualenv": { + "hashes": [ + "sha256:680af46846662bb38c5504b78bad9ed9e4f3ba2d54f54ba42494fdf94337fe30", + "sha256:f78d81b62d3147396ac33fc9d77579ddc42cc2a98dd9ea38886f616b33bc7fb2" + ], + "version": "==16.7.5" + }, + "wcwidth": { + "hashes": [ + "sha256:3df37372226d6e63e1b1e1eda15c594bca98a22d33a23832a90998faa96bc65e", + "sha256:f4ebe71925af7b40a864553f761ed559b43544f8f71746c2d756c7fe788ade7c" + ], + "version": "==0.1.7" + }, + "webencodings": { + "hashes": [ + "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", + "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923" + ], + "version": "==0.5.1" + }, + "wheel": { + "hashes": [ + "sha256:10c9da68765315ed98850f8e048347c3eb06dd81822dc2ab1d4fde9dc9702646", + "sha256:f4da1763d3becf2e2cd92a14a7c920f0f00eca30fdde9ea992c836685b9faf28" + ], + "index": "pypi", + "version": "==0.33.6" + }, + "zipp": { + "hashes": [ + "sha256:3718b1cbcd963c7d4c5511a8240812904164b7f381b647143a89d3b98f9bcd8e", + "sha256:f06903e9f1f43b12d371004b4ac7b06ab39a44adc747266928ae6debfa7b3335" + ], + "version": "==0.6.0" + } + } +} diff --git a/Ch07/apd.aggregation-chapter07-simple-threads/README.md b/Ch07/apd.aggregation-chapter07-simple-threads/README.md new file mode 100644 index 0000000..85669dd --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-simple-threads/README.md @@ -0,0 +1,4 @@ +# APD Sensor aggregator + +A programme that queries apd.sensor endpoints and aggregates their results. + diff --git a/Ch07/apd.aggregation-chapter07-simple-threads/pyproject.toml b/Ch07/apd.aggregation-chapter07-simple-threads/pyproject.toml new file mode 100644 index 0000000..4d3bb67 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-simple-threads/pyproject.toml @@ -0,0 +1,5 @@ +[build-system] +requires = [ + "setuptools", +] +build-backend = "setuptools.build_meta" diff --git a/Ch07/apd.aggregation-chapter07-simple-threads/setup.cfg b/Ch07/apd.aggregation-chapter07-simple-threads/setup.cfg new file mode 100644 index 0000000..6c2dc8a --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-simple-threads/setup.cfg @@ -0,0 +1,44 @@ +[mypy] +namespace_packages = True +mypy_path = src +plugins = sqlmypy + +[mypy-alembic] +ignore_missing_imports = True + +[flake8] +max-line-length = 88 + +[metadata] +name = apd.aggregation +version = attr: apd.aggregation.VERSION +description = A programme that queries apd.sensor endpoints and aggregates their results. +long_description = file: README.md, CHANGES.md, LICENCE +long_description_content_type = text/markdown +keywords = +license = BSD +classifiers = + Programming Language :: Python :: 3 + Programming Language :: Python :: 3.7 + +[options] +zip_safe = False +include_package_data = True +package_dir = + =src +packages = find_namespace: +install_requires = + sqlalchemy + requests + psycopg2 + alembic + click + sqlalchemy-stubs + + +[options.packages.find] +where = src + +[options.entry_points] +console_scripts = + collect_sensor_data = apd.aggregation.cli:collect_sensor_data diff --git a/Ch07/apd.aggregation-chapter07-simple-threads/setup.py b/Ch07/apd.aggregation-chapter07-simple-threads/setup.py new file mode 100644 index 0000000..6068493 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-simple-threads/setup.py @@ -0,0 +1,3 @@ +from setuptools import setup + +setup() diff --git a/Ch07/apd.aggregation-chapter07-simple-threads/src/apd/aggregation/__init__.py b/Ch07/apd.aggregation-chapter07-simple-threads/src/apd/aggregation/__init__.py new file mode 100644 index 0000000..3277f64 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-simple-threads/src/apd/aggregation/__init__.py @@ -0,0 +1 @@ +VERSION = "1.0.0" diff --git a/Ch07/apd.aggregation-chapter07-simple-threads/src/apd/aggregation/alembic/README b/Ch07/apd.aggregation-chapter07-simple-threads/src/apd/aggregation/alembic/README new file mode 100644 index 0000000..97a87d5 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-simple-threads/src/apd/aggregation/alembic/README @@ -0,0 +1,12 @@ +Generic single-database configuration. + + +# Database setup + +To generate the required database tables you must create an alembic.ini file, as follows: + + [alembic] + script_location = apd.aggregation:alembic + sqlalchemy.url = postgresql+psycopg2://apd@localhost/apd + +and run `alembic upgrade head`. This should also be done after every upgrade of the software. \ No newline at end of file diff --git a/Ch07/apd.aggregation-chapter07-simple-threads/src/apd/aggregation/alembic/env.py b/Ch07/apd.aggregation-chapter07-simple-threads/src/apd/aggregation/alembic/env.py new file mode 100644 index 0000000..09beb9c --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-simple-threads/src/apd/aggregation/alembic/env.py @@ -0,0 +1,73 @@ +from logging.config import fileConfig + +from sqlalchemy import engine_from_config +from sqlalchemy import pool + +from alembic import context + +# this is the Alembic Config object, which provides +# access to the values within the .ini file in use. +config = context.config + +# Interpret the config file for Python logging. +# This line sets up loggers basically. +fileConfig(config.config_file_name) + +from apd.aggregation.database import Base + +target_metadata = Base.metadata + +# other values from the config, defined by the needs of env.py, +# can be acquired: +# my_important_option = config.get_main_option("my_important_option") +# ... etc. + + +def run_migrations_offline(): + """Run migrations in 'offline' mode. + + This configures the context with just a URL + and not an Engine, though an Engine is acceptable + here as well. By skipping the Engine creation + we don't even need a DBAPI to be available. + + Calls to context.execute() here emit the given string to the + script output. + + """ + url = config.get_main_option("sqlalchemy.url") + context.configure( + url=url, + target_metadata=target_metadata, + literal_binds=True, + dialect_opts={"paramstyle": "named"}, + ) + + with context.begin_transaction(): + context.run_migrations() + + +def run_migrations_online(): + """Run migrations in 'online' mode. + + In this scenario we need to create an Engine + and associate a connection with the context. + + """ + connectable = engine_from_config( + config.get_section(config.config_ini_section), + prefix="sqlalchemy.", + poolclass=pool.NullPool, + ) + + with connectable.connect() as connection: + context.configure(connection=connection, target_metadata=target_metadata) + + with context.begin_transaction(): + context.run_migrations() + + +if context.is_offline_mode(): + run_migrations_offline() +else: + run_migrations_online() diff --git a/Ch07/apd.aggregation-chapter07-simple-threads/src/apd/aggregation/alembic/script.py.mako b/Ch07/apd.aggregation-chapter07-simple-threads/src/apd/aggregation/alembic/script.py.mako new file mode 100644 index 0000000..2c01563 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-simple-threads/src/apd/aggregation/alembic/script.py.mako @@ -0,0 +1,24 @@ +"""${message} + +Revision ID: ${up_revision} +Revises: ${down_revision | comma,n} +Create Date: ${create_date} + +""" +from alembic import op +import sqlalchemy as sa +${imports if imports else ""} + +# revision identifiers, used by Alembic. +revision = ${repr(up_revision)} +down_revision = ${repr(down_revision)} +branch_labels = ${repr(branch_labels)} +depends_on = ${repr(depends_on)} + + +def upgrade(): + ${upgrades if upgrades else "pass"} + + +def downgrade(): + ${downgrades if downgrades else "pass"} diff --git a/Ch07/apd.aggregation-chapter07-simple-threads/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py b/Ch07/apd.aggregation-chapter07-simple-threads/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py new file mode 100644 index 0000000..b4a3545 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-simple-threads/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py @@ -0,0 +1,31 @@ +"""Create datapoints table + +Revision ID: 6d2eacd5da3f +Revises: N/A +Create Date: 2019-09-29 13:43:21.242706 + +""" +from alembic import op +import sqlalchemy as sa +from sqlalchemy.dialects import postgresql + +# revision identifiers, used by Alembic. +revision = "6d2eacd5da3f" +down_revision = None +branch_labels = None +depends_on = None + + +def upgrade(): + op.create_table( + "datapoints", + sa.Column("id", sa.Integer(), nullable=False), + sa.Column("sensor_name", sa.String(), nullable=True), + sa.Column("collected_at", postgresql.TIMESTAMP(), nullable=True), + sa.Column("data", postgresql.JSONB(astext_type=sa.Text()), nullable=True), + sa.PrimaryKeyConstraint("id"), + ) + + +def downgrade(): + op.drop_table("datapoints") diff --git a/Ch07/apd.aggregation-chapter07-simple-threads/src/apd/aggregation/cli.py b/Ch07/apd.aggregation-chapter07-simple-threads/src/apd/aggregation/cli.py new file mode 100644 index 0000000..3435e78 --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-simple-threads/src/apd/aggregation/cli.py @@ -0,0 +1,52 @@ +import typing as t + +import click + +from .collect import standalone + + +@click.command() +@click.argument("server", nargs=-1) +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +@click.option("--api-key", metavar="", envvar="APD_API_KEY") +@click.option( + "--tolerate-failures", + "-f", + help="If provided, failure to retrieve some sensors' data will not abort the collection process", + is_flag=True, +) +@click.option("-v", "--verbose", is_flag=True, help="Enables verbose mode") +def collect_sensor_data( + db: str, server: t.Tuple[str], api_key: str, tolerate_failures: bool, verbose: bool +): + """This loads data from one or more sensors into the specified database. + + Only PostgreSQL databases are supported, as the column definitions use + multiple pg specific features. The database must already exist and be + populated with the required tables. + + The --api-key option is used to specify the access token for the sensors + being queried. + + You may specify any number of servers, the variable should be the full URL + to the sensor's HTTP interface, not including the /v/2.0 portion. Multiple + URLs should be separated with a space. + """ + if tolerate_failures: + attempts = [(s,) for s in server] + else: + attempts = [server] + success = True + for attempt in attempts: + try: + standalone(db, attempt, api_key, echo=verbose) + except ValueError as e: + click.secho(str(e), err=True, fg="red") + success = False + return success diff --git a/Ch07/apd.aggregation-chapter07-simple-threads/src/apd/aggregation/collect.py b/Ch07/apd.aggregation-chapter07-simple-threads/src/apd/aggregation/collect.py new file mode 100644 index 0000000..a560a5a --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-simple-threads/src/apd/aggregation/collect.py @@ -0,0 +1,102 @@ +from __future__ import annotations + +import datetime +import functools +import threading +import typing as t +import queue + +import requests +from sqlalchemy import create_engine +from sqlalchemy.orm import sessionmaker +from sqlalchemy.orm.session import Session + +from .database import DataPoint + + +T_Val = t.TypeVar("T_Val") + + +class return_via_queue(t.Generic[T_Val]): + def __init__(self, return_queue: queue.Queue[T_Val]) -> None: + self.return_queue = return_queue + + def __call__(self, func: t.Callable[..., T_Val]) -> t.Callable[..., T_Val]: + @functools.wraps(func) + def inner(*args, **kwargs): + value = func(*args, **kwargs) + self.return_queue.put(value) + return + + return inner + + +def get_data_points(server: str, api_key: t.Optional[str]) -> t.List[DataPoint]: + if not server.endswith("/"): + server += "/" + url = server + "v/2.0/sensors/" + headers = {} + if api_key: + headers["X-API-KEY"] = api_key + try: + result = requests.get(url, headers=headers) + except requests.ConnectionError: + raise ValueError(f"Error connecting to {server}") + now = datetime.datetime.now() + dps: t.List[DataPoint] = [] + if result.ok: + for value in result.json()["sensors"]: + dps.append( + DataPoint( + sensor_name=value["id"], collected_at=now, data=value["value"] + ) + ) + else: + raise ValueError( + f"Error loading data from {server}: " + + result.json().get("error", "Unknown") + ) + return dps + + +def add_data_from_sensors( + session: Session, servers: t.Tuple[str], api_key: t.Optional[str] +) -> t.Iterable[DataPoint]: + points: t.List[DataPoint] = [] + q: queue.Queue[t.List[DataPoint]] = queue.Queue() + wrap = return_via_queue(q) + threads = [ + threading.Thread(target=wrap(get_data_points), args=(server, api_key)) + for server in servers + ] + for thread in threads: + # Start all threads + thread.start() + for thread in threads: + # Wait for all threads to finish + thread.join() + while not q.empty(): + # So long as there's a return value in the queue, process one thread's results + found = q.get_nowait() + for point in found: + session.add(point) + points.append(point) + return points + + +def standalone( + db_uri: str, servers: t.Tuple[str], api_key: t.Optional[str], echo: bool = False +) -> None: + engine = create_engine(db_uri, echo=echo) + sm = sessionmaker(engine) + Session = sm() + add_data_from_sensors(Session, servers, api_key) + Session.commit() + + +if __name__ == "__main__": + standalone( + db_uri="postgresql+psycopg2://apd@localhost/apd", + servers=("http://pvoutput:8080/",), + api_key="h3hdfjksfhwkjehnwekj", + ) diff --git a/Ch07/apd.aggregation-chapter07-simple-threads/src/apd/aggregation/database.py b/Ch07/apd.aggregation-chapter07-simple-threads/src/apd/aggregation/database.py new file mode 100644 index 0000000..af1cbde --- /dev/null +++ b/Ch07/apd.aggregation-chapter07-simple-threads/src/apd/aggregation/database.py @@ -0,0 +1,31 @@ +import sqlalchemy +from sqlalchemy.ext.declarative import declarative_base +from sqlalchemy.dialects.postgresql import JSONB, TIMESTAMP +from sqlalchemy.orm import sessionmaker + + +Base = declarative_base() + + +class DataPoint(Base): + __tablename__ = "datapoints" + id = sqlalchemy.Column(sqlalchemy.Integer, primary_key=True) + sensor_name = sqlalchemy.Column(sqlalchemy.String) + collected_at = sqlalchemy.Column(TIMESTAMP) + data = sqlalchemy.Column(JSONB) + + +def main(): + engine = sqlalchemy.create_engine( + "postgresql+psycopg2://apd@localhost/apd", echo=True + ) + sm = sessionmaker(engine) + Session = sm() + if False: + Base.metadata.create_all(engine) + print(Session.query(DataPoint).all()) + pass + + +if __name__ == "__main__": + main() diff --git a/Ch07/apd.aggregation-chapter07-simple-threads/tests/__init__.py b/Ch07/apd.aggregation-chapter07-simple-threads/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/Ch07/apd.aggregation-chapter07-simple-threads/tests/conftest.py b/Ch07/apd.aggregation-chapter07-simple-threads/tests/conftest.py new file mode 100644 index 0000000..e69de29 diff --git a/Ch07/listing07-01-nbioexample.py b/Ch07/listing07-01-nbioexample.py new file mode 100644 index 0000000..d0ed4df --- /dev/null +++ b/Ch07/listing07-01-nbioexample.py @@ -0,0 +1,79 @@ +import select +import socket +import typing as t +import urllib.parse + +import h11 + + + +def get_http(uri: str, headers: t.Dict[str, str]) -> socket.socket: + """Given a URI and a set of headers, make a HTTP request and return the + underlying socket. If there were a production-quality implementation of + nonblocking HTTP this function would be replaced with the relevant one + from that library.""" + parsed = urllib.parse.urlparse(uri) + sock = socket.socket() + if parsed.port: + port = parsed.port + else: + port = 80 + headers["Host"] = parsed.netloc + sock.connect((parsed.hostname, port)) + sock.setblocking(False) + + connection = h11.Connection(h11.CLIENT) + request = h11.Request(method="GET", target=parsed.path, headers=headers.items()) + + sock.send(connection.send(request)) + sock.send(connection.send(h11.EndOfMessage())) + return sock + + +def read_from_socket(sock: socket.socket) -> str: + """ If there were a production-quality implementation of nonblocking HTTP + this function would be replaced with the relevant one to get the body of + the response if it was a success or error otherwise. """ + data = sock.recv(1024000) + connection = h11.Connection(h11.CLIENT) + connection.receive_data(data) + + response = connection.next_event() + headers = dict(response.headers) + body = connection.next_event() + eom = connection.next_event() + + try: + if ( + response.status_code == 200 + and b"application/json" in headers.get(b"content-type", None) + ): + return body.data.decode("utf-8") + else: + raise ValueError("Bad response") + finally: + sock.close() + + +def show_responses(uris: t.Tuple[str]) -> None: + sockets = [] + for uri in uris: + print(f"Making request to {uri}") + sockets.append(get_http(uri, {})) + while sockets: + readable, writable, exceptional = select.select(sockets, [], []) + print(f"{ len(readable) } socket(s) ready") + for request in readable: + print(f"Reading from socket") + response = read_from_socket(request) + print(f"Got { len(response) } bytes") + sockets.remove(request) + + + +if __name__ == "__main__": + show_responses([ + "http://jsonplaceholder.typicode.com/posts?userId=1", + "http://jsonplaceholder.typicode.com/posts?userId=5", + "http://jsonplaceholder.typicode.com/posts?userId=8", + ]) diff --git a/Ch07/listing07-02-increment_dis.py b/Ch07/listing07-02-increment_dis.py new file mode 100644 index 0000000..16e37b0 --- /dev/null +++ b/Ch07/listing07-02-increment_dis.py @@ -0,0 +1,15 @@ +num = 0 + +def increment(): + global num + num += 1 # 5 0 LOAD_GLOBAL 0 (num) + # 2 LOAD_CONST 1 (1) + # 4 INPLACE_ADD + # 6 STORE_GLOBAL 0 (num) + + return None # 10 8 LOAD_CONST 0 (None) + # 10 RETURN_VALUE + +if __name__ == "__main__": + import dis + dis.dis(increment) \ No newline at end of file diff --git a/Ch07/listing07-05-threadpools-and-queues.py b/Ch07/listing07-05-threadpools-and-queues.py new file mode 100644 index 0000000..fd00dfa --- /dev/null +++ b/Ch07/listing07-05-threadpools-and-queues.py @@ -0,0 +1,80 @@ +from concurrent.futures import ThreadPoolExecutor +import queue +import requests +import textwrap + + +def print_column(text, column): + wrapped = textwrap.fill(text, 45) + indent_level = 50 * column + indented = textwrap.indent(wrapped, " " * indent_level) + print(indented) + + +def fetch(urls, responses, parsed): + while True: + url = urls.get() + if url is None: + print_column("Got instruction to finish", 0) + return + print_column(f"Getting {url}", 0) + response = requests.get(url) + print_column(f"Storing {response} from {url}", 0) + responses.put(response) + urls.task_done() + + +def parse(urls, responses, parsed): + # Wait for the initial URLs to be processed + print_column("Waiting for url fetch thread", 1) + urls.join() + + while not responses.empty(): + response = responses.get() + print_column(f"Starting processing of {response}", 1) + + if response.ok: + data = response.json() + for commit in data: + parsed.put(commit) + + links = response.headers["link"].split(",") + for link in links: + if "next" in link: + url = link.split(";")[0].strip("<>") + print_column(f"Discovered new url: {url}", 1) + urls.put(url) + + responses.task_done() + if responses.empty(): + # We have no responses left, so the loop will + # end. Wait for all queued urls to be fetched + # before continuing + print_column("Waiting for url fetch thread", 1) + urls.join() + + # We reach this point if there are no responses to process + # after waiting for the fetch thread to catch up. Tell the + # fetch thread that it can stop now, then exit this thread. + print_column("Sending instruction to finish", 1) + urls.put(None) + + +def get_commit_info(repos): + urls = queue.Queue() + responses = queue.Queue() + parsed = queue.Queue() + + for (username, repo) in repos: + urls.put(f"https://api.github.com/repos/{username}/{repo}/commits") + + with ThreadPoolExecutor() as pool: + fetcher = pool.submit(fetch, urls, responses, parsed) + parser = pool.submit(parse, urls, responses, parsed) + print(f"{parsed.qsize()} commits found") + + +if __name__ == "__main__": + get_commit_info( + [("MatthewWilkes", "apd.sensors"), ("MatthewWilkes", "apd.aggregation")] + ) diff --git a/Ch07/listing07-06-reentrantlocks.py b/Ch07/listing07-06-reentrantlocks.py new file mode 100644 index 0000000..995888f --- /dev/null +++ b/Ch07/listing07-06-reentrantlocks.py @@ -0,0 +1,24 @@ +from concurrent.futures import ThreadPoolExecutor +import threading + +num = 0 + +numlock = threading.RLock() + +def fiddle_with_num(): + global num + with numlock: + if num == 4: + num = -50 + +def increment(): + global num + with numlock: + num += 1 + fiddle_with_num() + +if __name__ == "__main__": + with ThreadPoolExecutor() as pool: + for i in range(8): + pool.submit(increment) + print(num) \ No newline at end of file diff --git a/Ch07/listing07-07-conditions.py b/Ch07/listing07-07-conditions.py new file mode 100644 index 0000000..f9356af --- /dev/null +++ b/Ch07/listing07-07-conditions.py @@ -0,0 +1,66 @@ +from concurrent.futures import ThreadPoolExecutor +import sys +import time +import threading + + +data = [] +results = [] +running = True +data_available = threading.Condition() +work_complete = threading.Condition() + + +def has_data(): + """ Return true if there is data in the data list """ + return bool(data) + + +def num_complete(n): + """Return a function that checks if the results list has the length specified by n""" + + def finished(): + return len(results) >= n + + return finished + + +def calculate(): + while running: + with data_available: + # Acquire the data_available lock and wait for has_data + print("Waiting for data") + data_available.wait_for(has_data) + time.sleep(1) + i = data.pop() + with work_complete: + if i % 2: + results.append(1) + else: + results.append(0) + # Acquire the work_complete lock and wake listeners + work_complete.notify_all() + + +if __name__ == "__main__": + with ThreadPoolExecutor() as pool: + # Schedule two worker functions + workers = [pool.submit(calculate), pool.submit(calculate)] + + for i in range(200): + with data_available: + data.append(i) + # After adding each piece of data wake the data_available lock + data_available.notify() + print("200 items submitted") + + with work_complete: + # Wait for at least 5 items to be complete through the work_complete lock + work_complete.wait_for(num_complete(5)) + + for worker in workers: + # Set a shared variable causing the threads to end their work + running = False + print("Stopping workers") + + print(f"{len(results)} items processed") diff --git a/Ch07/listing07-08-barriers.py b/Ch07/listing07-08-barriers.py new file mode 100644 index 0000000..4860465 --- /dev/null +++ b/Ch07/listing07-08-barriers.py @@ -0,0 +1,28 @@ +from concurrent.futures import ThreadPoolExecutor +import random +import time +import threading + + +barrier = threading.Barrier(5) + + +def wait_random(): + thread_id = threading.get_ident() + to_wait = random.randint(1, 10) + print(f"Thread {thread_id:5d}: Waiting {to_wait:2d} seconds") + start_time = time.time() + time.sleep(to_wait) + i = barrier.wait() + end_time = time.time() + elapsed = end_time - start_time + print( + f"Thread {thread_id:5d}: Resumed in position {i} after {elapsed:3.3f} seconds" + ) + + +if __name__ == "__main__": + with ThreadPoolExecutor() as pool: + # Schedule two worker functions + for i in range(5): + pool.submit(wait_random) diff --git a/Ch07/listing07-09-events.py b/Ch07/listing07-09-events.py new file mode 100644 index 0000000..356a95f --- /dev/null +++ b/Ch07/listing07-09-events.py @@ -0,0 +1,32 @@ +from concurrent.futures import ThreadPoolExecutor +import random +import time +import threading + + +event = threading.Event() + + +def wait_random(master): + thread_id = threading.get_ident() + to_wait = random.randint(1, 10) + print(f"Thread {thread_id:5d}: Waiting {to_wait:2d} seconds (Master: {master})") + start_time = time.time() + time.sleep(to_wait) + if master: + event.set() + else: + event.wait() + end_time = time.time() + elapsed = end_time - start_time + print( + f"Thread {thread_id:5d}: Resumed after {elapsed:3.3f} seconds" + ) + + +if __name__ == "__main__": + with ThreadPoolExecutor() as pool: + # Schedule two worker functions + for i in range(4): + pool.submit(wait_random, False) + pool.submit(wait_random, True) diff --git a/Ch07/listing07-10-semaphore.py b/Ch07/listing07-10-semaphore.py new file mode 100644 index 0000000..4aa0c78 --- /dev/null +++ b/Ch07/listing07-10-semaphore.py @@ -0,0 +1,29 @@ +from concurrent.futures import ThreadPoolExecutor +import random +import time +import threading + + +semaphore = threading.Semaphore(3) + + +def wait_random(): + thread_id = threading.get_ident() + to_wait = random.randint(1, 10) + with semaphore: + print(f"Thread {thread_id:5d}: Waiting {to_wait:2d} seconds") + start_time = time.time() + time.sleep(to_wait) + + end_time = time.time() + elapsed = end_time - start_time + print( + f"Thread {thread_id:5d}: Resumed after {elapsed:3.3f} seconds" + ) + + +if __name__ == "__main__": + with ThreadPoolExecutor() as pool: + # Schedule two worker functions + for i in range(5): + pool.submit(wait_random) diff --git a/Ch07/listing07-11-async-increment.py b/Ch07/listing07-11-async-increment.py new file mode 100644 index 0000000..2616da6 --- /dev/null +++ b/Ch07/listing07-11-async-increment.py @@ -0,0 +1,17 @@ +import asyncio + +async def increment(): + return 1 + +async def decrement(): + return -1 + +async def onehundred(): + num = 0 + for i in range(100): + num += await increment() + num += await decrement() + return num + +if __name__ == "__main__": + print(asyncio.run(onehundred())) diff --git a/Ch07/listing07-12-list_of_awaitables.py b/Ch07/listing07-12-list_of_awaitables.py new file mode 100644 index 0000000..85b2665 --- /dev/null +++ b/Ch07/listing07-12-list_of_awaitables.py @@ -0,0 +1,20 @@ +import asyncio +import typing as t + + +async def number(num: int) -> int: + return num + +def numbers() -> t.Iterable[t.Awaitable[int]]: + return [number(2), number(3)] + +async def add_all(numbers: t.Iterable[t.Awaitable[int]]) -> int: + total = 0 + for num in numbers: + total += await num + return total + +if __name__ == "__main__": + to_add = numbers() + result = asyncio.run(add_all(to_add)) + print(result) diff --git a/Ch07/listing07-13-awaitable_list.py b/Ch07/listing07-13-awaitable_list.py new file mode 100644 index 0000000..9a11492 --- /dev/null +++ b/Ch07/listing07-13-awaitable_list.py @@ -0,0 +1,20 @@ +import asyncio +import typing as t + + +async def number(num: int) -> int: + return num + +async def numbers() -> t.Iterable[int]: + return [await number(2), await number(3)] + +async def add_all(nums: t.Awaitable[t.Iterable[int]]) -> int: + total = 0 + for num in await nums: + total += num + return total + +if __name__ == "__main__": + to_add = numbers() + result = asyncio.run(add_all(to_add)) + print(result) \ No newline at end of file diff --git a/Ch07/listing07-14-async_for.py b/Ch07/listing07-14-async_for.py new file mode 100644 index 0000000..4398040 --- /dev/null +++ b/Ch07/listing07-14-async_for.py @@ -0,0 +1,21 @@ +import asyncio +import typing as t + + +async def number(num: int) -> int: + return num + +async def numbers() -> t.AsyncIterator[int]: + yield await number(2) + yield await number(3) + +async def add_all(nums: t.AsyncIterator[int]) -> int: + total = 0 + async for num in nums: + total += num + return total + +if __name__ == "__main__": + to_add = numbers() + result = asyncio.run(add_all(to_add)) + print(result) \ No newline at end of file diff --git a/Ch07/listing07-15-awaitable_gather.py b/Ch07/listing07-15-awaitable_gather.py new file mode 100644 index 0000000..98bb433 --- /dev/null +++ b/Ch07/listing07-15-awaitable_gather.py @@ -0,0 +1,23 @@ +import asyncio +import typing as t + + +async def number(num: int) -> int: + return num + +async def numbers() -> t.Iterable[int]: + return await asyncio.gather( + number(2), + number(3) + ) + +async def add_all(nums: t.Awaitable[t.Iterable[int]]) -> int: + total = 0 + for num in await nums: + total += num + return total + +if __name__ == "__main__": + to_add = numbers() + result = asyncio.run(add_all(to_add)) + print(result) \ No newline at end of file diff --git a/Ch07/listing07-16-async_increment_unsafe.py b/Ch07/listing07-16-async_increment_unsafe.py new file mode 100644 index 0000000..034b928 --- /dev/null +++ b/Ch07/listing07-16-async_increment_unsafe.py @@ -0,0 +1,22 @@ +import asyncio +import random + +num = 0 + +async def offset(): + await asyncio.sleep(0) + return 1 + +async def increment(): + global num + num += await offset() + +async def onehundred(): + tasks = [] + for i in range(100): + tasks.append(increment()) + await asyncio.gather(*tasks) + return num + +if __name__ == "__main__": + print(asyncio.run(onehundred())) diff --git a/Ch07/listing07-17-async_increment_safe.py b/Ch07/listing07-17-async_increment_safe.py new file mode 100644 index 0000000..0652978 --- /dev/null +++ b/Ch07/listing07-17-async_increment_safe.py @@ -0,0 +1,25 @@ +import asyncio +import random + +num = 0 + +async def offset(): + await asyncio.sleep(0) + return 1 + +async def increment(numlock): + global num + async with numlock: + num += await offset() + +async def onehundred(): + tasks = [] + numlock = asyncio.Lock() + + for i in range(100): + tasks.append(increment(numlock)) + await asyncio.gather(*tasks) + return num + +if __name__ == "__main__": + print(asyncio.run(onehundred())) diff --git a/Ch08/apd.aggregation-chapter08/.coveragerc b/Ch08/apd.aggregation-chapter08/.coveragerc new file mode 100644 index 0000000..e766c69 --- /dev/null +++ b/Ch08/apd.aggregation-chapter08/.coveragerc @@ -0,0 +1,3 @@ +[run] +branch = True +omit = tests/* diff --git a/Ch08/apd.aggregation-chapter08/.pre-commit-config.yaml b/Ch08/apd.aggregation-chapter08/.pre-commit-config.yaml new file mode 100644 index 0000000..d3b6ec7 --- /dev/null +++ b/Ch08/apd.aggregation-chapter08/.pre-commit-config.yaml @@ -0,0 +1,26 @@ +repos: + +- repo: local + hooks: + - id: black + name: black + entry: pipenv run black + args: [--quiet] + language: system + types: [python] + + - id: mypy + name: mypy + exclude: (?x)^( + (.*)/setup.py + )$ + entry: pipenv run mypy + args: ["--follow-imports=skip"] + language: system + types: [python] + + - id: flake8 + name: flake8 + entry: pipenv run flake8 + language: system + types: [python] diff --git a/Ch08/apd.aggregation-chapter08/CHANGES.md b/Ch08/apd.aggregation-chapter08/CHANGES.md new file mode 100644 index 0000000..8e424e5 --- /dev/null +++ b/Ch08/apd.aggregation-chapter08/CHANGES.md @@ -0,0 +1,5 @@ +## Changes + +### 1.0.0 (Unreleased) + +* Generated from skeleton diff --git a/Ch08/apd.aggregation-chapter08/LICENCE b/Ch08/apd.aggregation-chapter08/LICENCE new file mode 100644 index 0000000..86685d4 --- /dev/null +++ b/Ch08/apd.aggregation-chapter08/LICENCE @@ -0,0 +1,31 @@ +Copyright (c) 2019, Matthew Wilkes + + +All rights reserved. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + +* Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + +* Redistributions in binary form must reproduce the above copyright notice, this + list of conditions and the following disclaimer in the documentation and/or + other materials provided with the distribution. + +* Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived from this + software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND +ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. +IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, +INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, +BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY +OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE +OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED +OF THE POSSIBILITY OF SUCH DAMAGE. + + diff --git a/Ch08/apd.aggregation-chapter08/Pipfile b/Ch08/apd.aggregation-chapter08/Pipfile new file mode 100644 index 0000000..ef1fd86 --- /dev/null +++ b/Ch08/apd.aggregation-chapter08/Pipfile @@ -0,0 +1,25 @@ +[[source]] +name = "pypi" +url = "https://pypi.org/simple" +verify_ssl = true + +[dev-packages] +pytest = "*" +pytest-cov = "*" +pytest-asyncio = "*" +mypy = "*" +flake8 = "*" +black = "*" +pre-commit = "*" +wheel = "*" +twine = "*" +sqlalchemy-stubs = "*" + +[packages] +apd-aggregation = {editable = true,path = "."} +apd-sensors = {editable = true,extras = ["webapp"],path = "./../code"} + +[requires] + +[pipenv] +allow_prereleases = true diff --git a/Ch08/apd.aggregation-chapter08/Pipfile.lock b/Ch08/apd.aggregation-chapter08/Pipfile.lock new file mode 100644 index 0000000..37ebbba --- /dev/null +++ b/Ch08/apd.aggregation-chapter08/Pipfile.lock @@ -0,0 +1,751 @@ +{ + "_meta": { + "hash": { + "sha256": "9cbbc3af88a1213ed8f4f93c33e35a9f9d7e047077cd25ff02f9bde13e2b606b" + }, + "pipfile-spec": 6, + "requires": {}, + "sources": [ + { + "name": "pypi", + "url": "https://pypi.org/simple", + "verify_ssl": true + } + ] + }, + "default": { + "aiohttp": { + "hashes": [ + "sha256:173267050501e1537293df06723bc5e719990889e2820ba3932969983892e960", + "sha256:438f1f1555c02c50894604d94944cff188fe138b46467b7fa99fdceb51ab5842", + "sha256:90bed250d1435aef33a1f8c439c5056d5d25a44fe6caf33fcafafed805bad4dc", + "sha256:93c3b14747413f38f094a60e98f55e73831f0c9a23ae7faa3dc97d8963e13021", + "sha256:a6e70a38d883185b1921d8122759661c39ade54949770394412a9e713fec6fa7", + "sha256:b5036133c1ba77ed5a70208d2a021a90b76fdf8bf523ae33dae46d4f4380d86f", + "sha256:c138451a82cdbf65cddf952941d5c7a1a2cac8ce3bc618dee8d889e5251ec7a5", + "sha256:c94770383e49f9cc5912b926364ad022a6c8a5dbf5498933ca3a5713c6daf738", + "sha256:ea26536ae06df6dac021303a0df72c79e55512070e6a304ba93ad468a3a754dc" + ], + "version": "==4.0.0a1" + }, + "alembic": { + "hashes": [ + "sha256:49277bb7242192bbb9eac58fed4fe02ec6c3a2a4b4345d2171197459266482b2" + ], + "version": "==1.3.1" + }, + "apd-aggregation": { + "editable": true, + "path": "." + }, + "apd-sensors": { + "editable": true, + "extras": [ + "webapp" + ], + "path": "./../code" + }, + "async-timeout": { + "hashes": [ + "sha256:0c3c816a028d47f659d6ff5c745cb2acf1f966da1fe5c19c77a70282b25f4c5f", + "sha256:4291ca197d287d274d0b6cb5d6f8f8f82d434ed288f962539ff18cc9012f9ea3" + ], + "version": "==3.0.1" + }, + "attrs": { + "hashes": [ + "sha256:08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c", + "sha256:f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72" + ], + "version": "==19.3.0" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:2335065e6395b9e67ca716de5f7526736bfa6ceead690adf616d925bdc622b13", + "sha256:5b94b49521f6456670fdb30cd82a4eca9412788a93fa6dd6df72c94d5a8ff2d7" + ], + "version": "==7.0" + }, + "flask": { + "hashes": [ + "sha256:13f9f196f330c7c2c5d7a5cf91af894110ca0215ac051b5844701f2bfd934d52", + "sha256:45eb5a6fd193d6cf7e0cf5d8a5b31f83d5faae0293695626f539a823e93b13f6" + ], + "version": "==1.1.1" + }, + "idna": { + "hashes": [ + "sha256:c357b3f628cf53ae2c4c05627ecc484553142ca23264e593d327bcde5e9c3407", + "sha256:ea8b7f6188e6fa117537c3df7da9fc686d485087abf6ac197f9c46432f7e4a3c" + ], + "version": "==2.8" + }, + "itsdangerous": { + "hashes": [ + "sha256:321b033d07f2a4136d3ec762eac9f16a10ccd60f53c0c91af90217ace7ba1f19", + "sha256:b12271b2047cb23eeb98c8b5622e2e5c5e9abd9784a153e9d8ef9cb4dd09d749" + ], + "version": "==1.1.0" + }, + "jinja2": { + "hashes": [ + "sha256:74320bb91f31270f9551d46522e33af46a80c3d619f4a4bf42b3164d30b5911f", + "sha256:9fe95f19286cfefaa917656583d020be14e7859c6b0252588391e47db34527de" + ], + "version": "==2.10.3" + }, + "mako": { + "hashes": [ + "sha256:a36919599a9b7dc5d86a7a8988f23a9a3a3d083070023bab23d64f7f1d1e0a4b" + ], + "version": "==1.1.0" + }, + "markupsafe": { + "hashes": [ + "sha256:00bc623926325b26bb9605ae9eae8a215691f33cae5df11ca5424f06f2d1f473", + "sha256:09027a7803a62ca78792ad89403b1b7a73a01c8cb65909cd876f7fcebd79b161", + "sha256:09c4b7f37d6c648cb13f9230d847adf22f8171b1ccc4d5682398e77f40309235", + "sha256:1027c282dad077d0bae18be6794e6b6b8c91d58ed8a8d89a89d59693b9131db5", + "sha256:24982cc2533820871eba85ba648cd53d8623687ff11cbb805be4ff7b4c971aff", + "sha256:29872e92839765e546828bb7754a68c418d927cd064fd4708fab9fe9c8bb116b", + "sha256:43a55c2930bbc139570ac2452adf3d70cdbb3cfe5912c71cdce1c2c6bbd9c5d1", + "sha256:46c99d2de99945ec5cb54f23c8cd5689f6d7177305ebff350a58ce5f8de1669e", + "sha256:500d4957e52ddc3351cabf489e79c91c17f6e0899158447047588650b5e69183", + "sha256:535f6fc4d397c1563d08b88e485c3496cf5784e927af890fb3c3aac7f933ec66", + "sha256:62fe6c95e3ec8a7fad637b7f3d372c15ec1caa01ab47926cfdf7a75b40e0eac1", + "sha256:6dd73240d2af64df90aa7c4e7481e23825ea70af4b4922f8ede5b9e35f78a3b1", + "sha256:717ba8fe3ae9cc0006d7c451f0bb265ee07739daf76355d06366154ee68d221e", + "sha256:79855e1c5b8da654cf486b830bd42c06e8780cea587384cf6545b7d9ac013a0b", + "sha256:7c1699dfe0cf8ff607dbdcc1e9b9af1755371f92a68f706051cc8c37d447c905", + "sha256:88e5fcfb52ee7b911e8bb6d6aa2fd21fbecc674eadd44118a9cc3863f938e735", + "sha256:8defac2f2ccd6805ebf65f5eeb132adcf2ab57aa11fdf4c0dd5169a004710e7d", + "sha256:98c7086708b163d425c67c7a91bad6e466bb99d797aa64f965e9d25c12111a5e", + "sha256:9add70b36c5666a2ed02b43b335fe19002ee5235efd4b8a89bfcf9005bebac0d", + "sha256:9bf40443012702a1d2070043cb6291650a0841ece432556f784f004937f0f32c", + "sha256:ade5e387d2ad0d7ebf59146cc00c8044acbd863725f887353a10df825fc8ae21", + "sha256:b00c1de48212e4cc9603895652c5c410df699856a2853135b3967591e4beebc2", + "sha256:b1282f8c00509d99fef04d8ba936b156d419be841854fe901d8ae224c59f0be5", + "sha256:b2051432115498d3562c084a49bba65d97cf251f5a331c64a12ee7e04dacc51b", + "sha256:ba59edeaa2fc6114428f1637ffff42da1e311e29382d81b339c1817d37ec93c6", + "sha256:c8716a48d94b06bb3b2524c2b77e055fb313aeb4ea620c8dd03a105574ba704f", + "sha256:cd5df75523866410809ca100dc9681e301e3c27567cf498077e8551b6d20e42f", + "sha256:e249096428b3ae81b08327a63a485ad0878de3fb939049038579ac0ef61e17e7" + ], + "version": "==1.1.1" + }, + "multidict": { + "hashes": [ + "sha256:07f9a6bf75ad675d53956b2c6a2d4ef2fa63132f33ecc99e9c24cf93beb0d10b", + "sha256:0ffe4d4d28cbe9801952bfb52a8095dd9ffecebd93f84bdf973c76300de783c5", + "sha256:1b605272c558e4c659dbaf0fb32a53bfede44121bcf77b356e6e906867b958b7", + "sha256:205a011e636d885af6dd0029e41e3514a46e05bb2a43251a619a6e8348b96fc0", + "sha256:250632316295f2311e1ed43e6b26a63b0216b866b45c11441886ac1543ca96e1", + "sha256:2bc9c2579312c68a3552ee816311c8da76412e6f6a9cf33b15152e385a572d2a", + "sha256:318aadf1cfb6741c555c7dd83d94f746dc95989f4f106b25b8a83dfb547f2756", + "sha256:42cdd649741a14b0602bf15985cad0dd4696a380081a3319cd1ead46fd0f0fab", + "sha256:5159c4975931a1a78bf6602bbebaa366747fce0a56cb2111f44789d2c45e379f", + "sha256:87e26d8b89127c25659e962c61a4c655ec7445d19150daea0759516884ecb8b4", + "sha256:891b7e142885e17a894d9d22b0349b92bb2da4769b4e675665d0331c08719be5", + "sha256:8d919034420378132d074bf89df148d0193e9780c9fe7c0e495e895b8af4d8a2", + "sha256:9c890978e2b37dd0dc1bd952da9a5d9f245d4807bee33e3517e4119c48d66f8c", + "sha256:a37433ce8cdb35fc9e6e47e1606fa1bfd6d70440879038dca7d8dd023197eaa9", + "sha256:c626029841ada34c030b94a00c573a0c7575fe66489cde148785b6535397d675", + "sha256:cfec9d001a83dc73580143f3c77e898cf7ad78b27bb5e64dbe9652668fcafec7", + "sha256:efaf1b18ea6c1f577b1371c0159edbe4749558bfe983e13aa24d0a0c01e1ad7b" + ], + "version": "==4.6.1" + }, + "pint": { + "hashes": [ + "sha256:32d8a9a9d63f4f81194c0014b3b742679dce81a26d45127d9810a68a561fe4e2", + "sha256:7ece3f639ad58073ce49982b022d464014e6d91d0b3eaa89c8e8ea9c38e32659" + ], + "version": "==0.9" + }, + "psutil": { + "hashes": [ + "sha256:094f899ac3ef72422b7e00411b4ed174e3c5a2e04c267db6643937ddba67a05b", + "sha256:10b7f75cc8bd676cfc6fa40cd7d5c25b3f45a0e06d43becd7c2d2871cbb5e806", + "sha256:1b1575240ca9a90b437e5a40db662acd87bbf181f6aa02f0204978737b913c6b", + "sha256:21231ef1c1a89728e29b98a885b8e0a8e00d09018f6da5cdc1f43f988471a995", + "sha256:28f771129bfee9fc6b63d83a15d857663bbdcae3828e1cb926e91320a9b5b5cd", + "sha256:70387772f84fa5c3bb6a106915a2445e20ac8f9821c5914d7cbde148f4d7ff73", + "sha256:b560f5cd86cf8df7bcd258a851ca1ad98f0d5b8b98748e877a0aec4e9032b465", + "sha256:b74b43fecce384a57094a83d2778cdfc2e2d9a6afaadd1ebecb2e75e0d34e10d", + "sha256:e85f727ffb21539849e6012f47b12f6dd4c44965e56591d8dec6e8bc9ab96f4a", + "sha256:fd2e09bb593ad9bdd7429e779699d2d47c1268cbde4dda95fcd1bd17544a0217", + "sha256:ffad8eb2ac614518bbe3c0b8eb9dffdb3a8d2e3a7d5da51c5b974fb723a5c5aa" + ], + "version": "==5.6.7" + }, + "psycopg2": { + "hashes": [ + "sha256:4212ca404c4445dc5746c0d68db27d2cbfb87b523fe233dc84ecd24062e35677", + "sha256:47fc642bf6f427805daf52d6e52619fe0637648fe27017062d898f3bf891419d", + "sha256:72772181d9bad1fa349792a1e7384dde56742c14af2b9986013eb94a240f005b", + "sha256:8396be6e5ff844282d4d49b81631772f80dabae5658d432202faf101f5283b7c", + "sha256:893c11064b347b24ecdd277a094413e1954f8a4e8cdaf7ffbe7ca3db87c103f0", + "sha256:92a07dfd4d7c325dd177548c4134052d4842222833576c8391aab6f74038fc3f", + "sha256:965c4c93e33e6984d8031f74e51227bd755376a9df6993774fd5b6fb3288b1f4", + "sha256:9ab75e0b2820880ae24b7136c4d230383e07db014456a476d096591172569c38", + "sha256:b0845e3bdd4aa18dc2f9b6fb78fbd3d9d371ad167fd6d1b7ad01c0a6cdad4fc6", + "sha256:dca2d7203f0dfce8ea4b3efd668f8ea65cd2b35112638e488a4c12594015f67b", + "sha256:ed686e5926929887e2c7ae0a700e32c6129abb798b4ad2b846e933de21508151", + "sha256:ef6df7e14698e79c59c7ee7cf94cd62e5b869db369ed4b1b8f7b729ea825712a", + "sha256:f898e5cc0a662a9e12bde6f931263a1bbd350cfb18e1d5336a12927851825bb6" + ], + "version": "==2.8.4" + }, + "python-dateutil": { + "hashes": [ + "sha256:73ebfe9dbf22e832286dafa60473e4cd239f8592f699aa5adaf10050e6e1823c", + "sha256:75bb3f31ea686f1197762692a9ee6a7550b59fc6ca3a1f4b5d7e32fb98e2da2a" + ], + "version": "==2.8.1" + }, + "python-editor": { + "hashes": [ + "sha256:1bf6e860a8ad52a14c3ee1252d5dc25b2030618ed80c022598f00176adc8367d", + "sha256:51fda6bcc5ddbbb7063b2af7509e43bd84bfc32a4ff71349ec7847713882327b", + "sha256:5f98b069316ea1c2ed3f67e7f5df6c0d8f10b689964a4a811ff64f0106819ec8" + ], + "version": "==1.0.4" + }, + "six": { + "hashes": [ + "sha256:1f1b7d42e254082a9db6279deae68afb421ceba6158efa6131de7b3003ee93fd", + "sha256:30f610279e8b2578cab6db20741130331735c781b56053c59c4076da27f06b66" + ], + "version": "==1.13.0" + }, + "sqlalchemy": { + "hashes": [ + "sha256:afa5541e9dea8ad0014251bc9d56171ca3d8b130c9627c6cb3681cff30be3f8a" + ], + "version": "==1.3.11" + }, + "typing-extensions": { + "hashes": [ + "sha256:091ecc894d5e908ac75209f10d5b4f118fbdb2eb1ede6a63544054bb1edb41f2", + "sha256:910f4656f54de5993ad9304959ce9bb903f90aadc7c67a0bef07e678014e892d", + "sha256:cf8b63fedea4d89bab840ecbb93e75578af28f76f66c35889bd7065f5af88575" + ], + "version": "==3.7.4.1" + }, + "werkzeug": { + "hashes": [ + "sha256:7280924747b5733b246fe23972186c6b348f9ae29724135a6dfc1e53cea433e7", + "sha256:e5f4a1f98b52b18a93da705a7458e55afb26f32bff83ff5d19189f92462d65c4" + ], + "version": "==0.16.0" + }, + "yarl": { + "hashes": [ + "sha256:2e5f4f4d709aed4f689843ef605fc432d0472e3325a8e165b1ecf1e2f3f22a89", + "sha256:412fe567284bdd16a8035c5a6f541da9872804b5702378532cf2e3ef5ae4a9e6", + "sha256:629f542dfd4e964c9e32039a1515b3262dae210f8802cfcceca9f0b529c68ee7", + "sha256:7bd0b31008afcba762d75171ac09135f49bc17c8d092bce49f0b9bf2c4b51850", + "sha256:9510699e48d7565a2c1dc0a9fcb396f1ac80802991621cf02d55540d571a5dc9", + "sha256:9a07c2a1b0c8b314ad5bcea37e62c109d8c19ad9f02985e8db898a56c129984f", + "sha256:9a49055f9e3121449c76709986aee829c74e2eee3b98185542799eec97808ed1", + "sha256:b59dd6679cb2ae172eb594f484e482aaac66fbff71a717603b0f9adf01649386", + "sha256:e5d6b530bec5817be9383452728c116d59868bfbed650ccc7657b2ec9aa51c03" + ], + "version": "==1.4.0a11" + } + }, + "develop": { + "appdirs": { + "hashes": [ + "sha256:9e5896d1372858f8dd3344faf4e5014d21849c756c8d5701f78f8a103b372d92", + "sha256:d8b24664561d0d34ddfaec54636d502d7cea6e29c3eaf68f3df6180863e2166e" + ], + "version": "==1.4.3" + }, + "aspy.yaml": { + "hashes": [ + "sha256:463372c043f70160a9ec950c3f1e4c3a82db5fca01d334b6bc89c7164d744bdc", + "sha256:e7c742382eff2caed61f87a39d13f99109088e5e93f04d76eb8d4b28aa143f45" + ], + "version": "==1.3.0" + }, + "atomicwrites": { + "hashes": [ + "sha256:03472c30eb2c5d1ba9227e4c2ca66ab8287fbfbbda3888aa93dc2e28fc6811b4", + "sha256:75a9445bac02d8d058d5e1fe689654ba5a6556a1dfd8ce6ec55a0ed79866cfa6" + ], + "markers": "sys_platform == 'win32'", + "version": "==1.3.0" + }, + "attrs": { + "hashes": [ + "sha256:08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c", + "sha256:f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72" + ], + "version": "==19.3.0" + }, + "black": { + "hashes": [ + "sha256:1b30e59be925fafc1ee4565e5e08abef6b03fe455102883820fe5ee2e4734e0b", + "sha256:c2edb73a08e9e0e6f65a0e6af18b059b8b1cdd5bef997d7a0b181df93dc81539" + ], + "index": "pypi", + "version": "==19.10b0" + }, + "bleach": { + "hashes": [ + "sha256:213336e49e102af26d9cde77dd2d0397afabc5a6bf2fed985dc35b5d1e285a16", + "sha256:3fdf7f77adcf649c9911387df51254b813185e32b2c6619f690b593a617e19fa" + ], + "version": "==3.1.0" + }, + "certifi": { + "hashes": [ + "sha256:e4f3620cfea4f83eedc95b24abd9cd56f3c4b146dd0177e83a21b4eb49e21e50", + "sha256:fd7c7c74727ddcf00e9acd26bba8da604ffec95bf1c2144e67aff7a8b50e6cef" + ], + "version": "==2019.9.11" + }, + "cfgv": { + "hashes": [ + "sha256:edb387943b665bf9c434f717bf630fa78aecd53d5900d2e05da6ad6048553144", + "sha256:fbd93c9ab0a523bf7daec408f3be2ed99a980e20b2d19b50fc184ca6b820d289" + ], + "version": "==2.0.1" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:2335065e6395b9e67ca716de5f7526736bfa6ceead690adf616d925bdc622b13", + "sha256:5b94b49521f6456670fdb30cd82a4eca9412788a93fa6dd6df72c94d5a8ff2d7" + ], + "version": "==7.0" + }, + "colorama": { + "hashes": [ + "sha256:05eed71e2e327246ad6b38c540c4a3117230b19679b875190486ddd2d721422d", + "sha256:f8ac84de7840f5b9c4e3347b3c1eaa50f7e49c2b07596221daec5edaabbd7c48" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.1" + }, + "coverage": { + "hashes": [ + "sha256:2358e685d0253125da42a48396038d4c7b4cd1448c00bbc4bda0cb8c43c2a870", + "sha256:25017cf384eeed2e6caf72efd3ec4124e32a8b7a4387600499104387975400c7", + "sha256:2e2de9423ff8b14303a97eafddd16c479fbcc9a0b8b0be3b7c3843a3e0cf6d69", + "sha256:324ed908e4e40a6e2451056fe502470ad4e79495cb7a03ecab94e6309c3e117e", + "sha256:34f865a0cf6255b694a46e4383a7131c61ea72c5b4c4f81d20e522fb1e440b4b", + "sha256:3a2bcc464b60a18f1f7167b95b2773ede93bf3722bfa59e0802717f652b6cc25", + "sha256:48d70865266d649b6602e2ba94820d7972ef470d3b72a8fd41a3d17321feed3a", + "sha256:50cf23523ab3a724c6905d3b60f87fa8250d9bae3995e09f49f63effa2b54f15", + "sha256:54c84a68abd8c4c5b71878b35eb85321df41f3d144c78181867d5b026ec74994", + "sha256:5b59d661ee7f3200aedd7b71882b7927ea7ed522df75e3853f316a79ad872a2e", + "sha256:5ffb39624bc573177888a21fb301ccee46838c600b27d58c3e9dae495f44d34a", + "sha256:699b3072b7f0e69ed175a88fa8b2ec7eefc4f34d490c54ed9a52feff21a15fdc", + "sha256:79ef4a2bb862110bd585174e551a783bee5c3aa461734a2ac7429193be357589", + "sha256:8210a6f93c4a8c6d460b402e20e38399529b99200c3318542faf6a520c9b6a5c", + "sha256:8d30c10cfd0a6fdf0a2d5023de00ef7b329cd6ead2310c9e53eab79c209acb70", + "sha256:97ac79ff28f2cda6ac00a803ee582b965951755f61ab43377482bfba450b619a", + "sha256:9fe4aacacff9028ed167db108bf013510654f148d83c4857fed61d2ce0588bf2", + "sha256:a5b6395d5957d638f8b1870561607e3c39b1a236ea6cff9eafe5b9bb1db913f2", + "sha256:ab32c5fad6905986a7e34e3acf01180a69bb60c2aa7331815b46e51c776a1943", + "sha256:ad67f0cfdfecbd49b9da46a7e488e6dc32a69388740b85c36a4ef4b33082cbad", + "sha256:aedad67c30326a1af324f45833a40b97180664912deb29942459ddbe9fa0ce19", + "sha256:b077cd0e70f41366ac1f9d09275258fa1906758a5d4f31cacc18b10dfcf90784", + "sha256:b8ea210810d3c14aec7561f8fe0d3eec582d1088100aaa0bb8153d53d867d20f", + "sha256:bf572722326ce6704e863447a070039a827072b7179352570859be899b9e6551", + "sha256:c0df57e189dacd2606cae6386acf127d01d85b2bf49acd9a65543b5d6c359ddc", + "sha256:d523e75f2a8a0b4a6a8be1287c0e0e3a561b8832b05ddd987d4cd7c62f3ad3bc", + "sha256:e10593c60c5f0bfd8b241bf9f27ef2191a3005b73dde8ada0424f642543a1e59", + "sha256:e9128444c83bc260aea988bf1ca6278a33ba730955bf94720468c656b61353eb", + "sha256:f7162f2e3711f3a08a8a741f92e1f63afd58d0713177979f2cf9723dd50161cf" + ], + "version": "==5.0b1" + }, + "docutils": { + "hashes": [ + "sha256:6c4f696463b79f1fb8ba0c594b63840ebd41f059e92b31957c46b74a4599b6d0", + "sha256:9e4d7ecfc600058e07ba661411a2b7de2fd0fafa17d1a7f7361cd47b1175c827", + "sha256:a2aeea129088da402665e92e0b25b04b073c04b2dce4ab65caaa38b7ce2e1a99" + ], + "version": "==0.15.2" + }, + "entrypoints": { + "hashes": [ + "sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19", + "sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451" + ], + "version": "==0.3" + }, + "flake8": { + "hashes": [ + "sha256:45681a117ecc81e870cbf1262835ae4af5e7a8b08e40b944a8a6e6b895914cfb", + "sha256:49356e766643ad15072a789a20915d3c91dc89fd313ccd71802303fd67e4deca" + ], + "index": "pypi", + "version": "==3.7.9" + }, + "identify": { + "hashes": [ + "sha256:4f1fe9a59df4e80fcb0213086fcf502bc1765a01ea4fe8be48da3b65afd2a017", + "sha256:d8919589bd2a5f99c66302fec0ef9027b12ae150b0b0213999ad3f695fc7296e" + ], + "version": "==1.4.7" + }, + "idna": { + "hashes": [ + "sha256:c357b3f628cf53ae2c4c05627ecc484553142ca23264e593d327bcde5e9c3407", + "sha256:ea8b7f6188e6fa117537c3df7da9fc686d485087abf6ac197f9c46432f7e4a3c" + ], + "version": "==2.8" + }, + "importlib-metadata": { + "hashes": [ + "sha256:aa18d7378b00b40847790e7c27e11673d7fed219354109d0e7b9e5b25dc3ad26", + "sha256:d5f18a79777f3aa179c145737780282e27b508fc8fd688cb17c7a813e8bd39af" + ], + "markers": "python_version < '3.8'", + "version": "==0.23" + }, + "keyring": { + "hashes": [ + "sha256:91037ccaf0c9a112a76f7740e4a416b9457a69b66c2799421581bee710a974b3", + "sha256:f5bb20ea6c57c2360daf0c591931c9ea0d7660a8d9e32ca84d63273f131ea605" + ], + "version": "==19.2.0" + }, + "mccabe": { + "hashes": [ + "sha256:ab8a6258860da4b6677da4bd2fe5dc2c659cff31b3ee4f7f5d64e79735b80d42", + "sha256:dd8d182285a0fe56bace7f45b5e7d1a6ebcbf524e8f3bd87eb0f125271b8831f" + ], + "version": "==0.6.1" + }, + "more-itertools": { + "hashes": [ + "sha256:409cd48d4db7052af495b09dec721011634af3753ae1ef92d2b32f73a745f832", + "sha256:92b8c4b06dac4f0611c0729b2f2ede52b2e1bac1ab48f089c7ddc12e26bb60c4" + ], + "version": "==7.2.0" + }, + "mypy": { + "hashes": [ + "sha256:1521c186a3d200c399bd5573c828ea2db1362af7209b2adb1bb8532cea2fb36f", + "sha256:31a046ab040a84a0fc38bc93694876398e62bc9f35eca8ccbf6418b7297f4c00", + "sha256:3b1a411909c84b2ae9b8283b58b48541654b918e8513c20a400bb946aa9111ae", + "sha256:48c8bc99380575deb39f5d3400ebb6a8a1cb5cc669bbba4d3bb30f904e0a0e7d", + "sha256:540c9caa57a22d0d5d3c69047cc9dd0094d49782603eb03069821b41f9e970e9", + "sha256:672e418425d957e276c291930a3921b4a6413204f53fe7c37cad7bc57b9a3391", + "sha256:6ed3b9b3fdc7193ea7aca6f3c20549b377a56f28769783a8f27191903a54170f", + "sha256:9371290aa2cad5ad133e4cdc43892778efd13293406f7340b9ffe99d5ec7c1d9", + "sha256:ace6ac1d0f87d4072f05b5468a084a45b4eda970e4d26704f201e06d47ab2990", + "sha256:b428f883d2b3fe1d052c630642cc6afddd07d5cd7873da948644508be3b9d4a7", + "sha256:d5bf0e6ec8ba346a2cf35cb55bf4adfddbc6b6576fcc9e10863daa523e418dbb", + "sha256:d7574e283f83c08501607586b3167728c58e8442947e027d2d4c7dcd6d82f453", + "sha256:dc889c84241a857c263a2b1cd1121507db7d5b5f5e87e77147097230f374d10b", + "sha256:f4748697b349f373002656bf32fede706a0e713d67bfdcf04edf39b1f61d46eb" + ], + "index": "pypi", + "version": "==0.740" + }, + "mypy-extensions": { + "hashes": [ + "sha256:090fedd75945a69ae91ce1303b5824f428daf5a028d2f6ab8a299250a846f15d", + "sha256:2d82818f5bb3e369420cb3c4060a7970edba416647068eb4c5343488a6c604a8" + ], + "version": "==0.4.3" + }, + "nodeenv": { + "hashes": [ + "sha256:ad8259494cf1c9034539f6cced78a1da4840a4b157e23640bc4a0c0546b0cb7a" + ], + "version": "==1.3.3" + }, + "packaging": { + "hashes": [ + "sha256:28b924174df7a2fa32c1953825ff29c61e2f5e082343165438812f00d3a7fc47", + "sha256:d9551545c6d761f3def1677baf08ab2a3ca17c56879e70fecba2fc4dde4ed108" + ], + "version": "==19.2" + }, + "pathspec": { + "hashes": [ + "sha256:e285ccc8b0785beadd4c18e5708b12bb8fcf529a1e61215b3feff1d1e559ea5c" + ], + "version": "==0.6.0" + }, + "pkginfo": { + "hashes": [ + "sha256:7424f2c8511c186cd5424bbf31045b77435b37a8d604990b79d4e70d741148bb", + "sha256:a6d9e40ca61ad3ebd0b72fbadd4fba16e4c0e4df0428c041e01e06eb6ee71f32" + ], + "version": "==1.5.0.1" + }, + "pluggy": { + "hashes": [ + "sha256:15b2acde666561e1298d71b523007ed7364de07029219b604cf808bfa1c765b0", + "sha256:966c145cd83c96502c3c3868f50408687b38434af77734af1e9ca461a4081d2d" + ], + "version": "==0.13.1" + }, + "pre-commit": { + "hashes": [ + "sha256:9f152687127ec90642a2cc3e4d9e1e6240c4eb153615cb02aa1ad41d331cbb6e", + "sha256:c2e4810d2d3102d354947907514a78c5d30424d299dc0fe48f5aa049826e9b50" + ], + "index": "pypi", + "version": "==1.20.0" + }, + "py": { + "hashes": [ + "sha256:64f65755aee5b381cea27766a3a147c3f15b9b6b9ac88676de66ba2ae36793fa", + "sha256:dc639b046a6e2cff5bbe40194ad65936d6ba360b52b3c3fe1d08a82dd50b5e53" + ], + "version": "==1.8.0" + }, + "pycodestyle": { + "hashes": [ + "sha256:95a2219d12372f05704562a14ec30bc76b05a5b297b21a5dfe3f6fac3491ae56", + "sha256:e40a936c9a450ad81df37f549d676d127b1b66000a6c500caa2b085bc0ca976c" + ], + "version": "==2.5.0" + }, + "pyflakes": { + "hashes": [ + "sha256:17dbeb2e3f4d772725c777fabc446d5634d1038f234e77343108ce445ea69ce0", + "sha256:d976835886f8c5b31d47970ed689944a0262b5f3afa00a5a7b4dc81e5449f8a2" + ], + "version": "==2.1.1" + }, + "pygments": { + "hashes": [ + "sha256:71e430bc85c88a430f000ac1d9b331d2407f681d6f6aec95e8bcfbc3df5b0127", + "sha256:881c4c157e45f30af185c1ffe8d549d48ac9127433f2c380c24b84572ad66297" + ], + "version": "==2.4.2" + }, + "pyparsing": { + "hashes": [ + "sha256:20f995ecd72f2a1f4bf6b072b63b22e2eb457836601e76d6e5dfcd75436acc1f", + "sha256:4ca62001be367f01bd3e92ecbb79070272a9d4964dce6a48a82ff0b8bc7e683a" + ], + "version": "==2.4.5" + }, + "pytest": { + "hashes": [ + "sha256:1897d74f60a5d8be02e06d708b41bf2445da2ee777066bd68edf14474fc201eb", + "sha256:f6a567e20c04259d41adce9a360bd8991e6aa29dd9695c5e6bd25a9779272673" + ], + "index": "pypi", + "version": "==5.3.0" + }, + "pytest-asyncio": { + "hashes": [ + "sha256:9fac5100fd716cbecf6ef89233e8590a4ad61d729d1732e0a96b84182df1daaf", + "sha256:d734718e25cfc32d2bf78d346e99d33724deeba774cc4afdf491530c6184b63b" + ], + "index": "pypi", + "version": "==0.10.0" + }, + "pytest-cov": { + "hashes": [ + "sha256:cc6742d8bac45070217169f5f72ceee1e0e55b0221f54bcf24845972d3a47f2b", + "sha256:cdbdef4f870408ebdbfeb44e63e07eb18bb4619fae852f6e760645fa36172626" + ], + "index": "pypi", + "version": "==2.8.1" + }, + "pywin32-ctypes": { + "hashes": [ + "sha256:24ffc3b341d457d48e8922352130cf2644024a4ff09762a2261fd34c36ee5942", + "sha256:9dc2d991b3479cc2df15930958b674a48a227d5361d413827a4cfd0b5876fc98" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.2.0" + }, + "pyyaml": { + "hashes": [ + "sha256:0113bc0ec2ad727182326b61326afa3d1d8280ae1122493553fd6f4397f33df9", + "sha256:01adf0b6c6f61bd11af6e10ca52b7d4057dd0be0343eb9283c878cf3af56aee4", + "sha256:5124373960b0b3f4aa7df1707e63e9f109b5263eca5976c66e08b1c552d4eaf8", + "sha256:5ca4f10adbddae56d824b2c09668e91219bb178a1eee1faa56af6f99f11bf696", + "sha256:7907be34ffa3c5a32b60b95f4d95ea25361c951383a894fec31be7252b2b6f34", + "sha256:7ec9b2a4ed5cad025c2278a1e6a19c011c80a3caaac804fd2d329e9cc2c287c9", + "sha256:87ae4c829bb25b9fe99cf71fbb2140c448f534e24c998cc60f39ae4f94396a73", + "sha256:9de9919becc9cc2ff03637872a440195ac4241c80536632fffeb6a1e25a74299", + "sha256:a5a85b10e450c66b49f98846937e8cfca1db3127a9d5d1e31ca45c3d0bef4c5b", + "sha256:b0997827b4f6a7c286c01c5f60384d218dca4ed7d9efa945c3e1aa623d5709ae", + "sha256:b631ef96d3222e62861443cc89d6563ba3eeb816eeb96b2629345ab795e53681", + "sha256:bf47c0607522fdbca6c9e817a6e81b08491de50f3766a7a0e6a5be7905961b41", + "sha256:f81025eddd0327c7d4cfe9b62cf33190e1e736cc6e97502b3ec425f574b3e7a8" + ], + "version": "==5.1.2" + }, + "readme-renderer": { + "hashes": [ + "sha256:bb16f55b259f27f75f640acf5e00cf897845a8b3e4731b5c1a436e4b8529202f", + "sha256:c8532b79afc0375a85f10433eca157d6b50f7d6990f337fa498c96cd4bfc203d" + ], + "version": "==24.0" + }, + "regex": { + "hashes": [ + "sha256:15454b37c5a278f46f7aa2d9339bda450c300617ca2fca6558d05d870245edc7", + "sha256:1ad40708c255943a227e778b022c6497c129ad614bb7a2a2f916e12e8a359ee7", + "sha256:5e00f65cc507d13ab4dfa92c1232d004fa202c1d43a32a13940ab8a5afe2fb96", + "sha256:604dc563a02a74d70ae1f55208ddc9bfb6d9f470f6d1a5054c4bd5ae58744ab1", + "sha256:720e34a539a76a1fedcebe4397290604cc2bdf6f81eca44adb9fb2ea071c0c69", + "sha256:7caf47e4a9ac6ef08cabd3442cc4ca3386db141fb3c8b2a7e202d0470028e910", + "sha256:7faf534c1841c09d8fefa60ccde7b9903c9b528853ecf41628689793290ca143", + "sha256:b4e0406d822aa4993ac45072a584d57aa4931cf8288b5455bbf30c1d59dbad59", + "sha256:c31eaf28c6fe75ea329add0022efeed249e37861c19681960f99bbc7db981fb2", + "sha256:c7393597191fc2043c744db021643549061e12abe0b3ff5c429d806de7b93b66", + "sha256:d2b302f8cdd82c8f48e9de749d1d17f85ce9a0f082880b9a4859f66b07037dc6", + "sha256:e3d8dd0ec0ea280cf89026b0898971f5750a7bd92cb62c51af5a52abd020054a", + "sha256:ec032cbfed59bd5a4b8eab943c310acfaaa81394e14f44454ad5c9eba4f24a74" + ], + "version": "==2019.11.1" + }, + "requests": { + "hashes": [ + "sha256:11e007a8a2aa0323f5a921e9e6a2d7e4e67d9877e85773fba9ba6419025cbeb4", + "sha256:9cf5292fcd0f598c671cfc1e0d7d1a7f13bb8085e9a590f48c010551dc6c4b31" + ], + "version": "==2.22.0" + }, + "requests-toolbelt": { + "hashes": [ + "sha256:380606e1d10dc85c3bd47bf5a6095f815ec007be7a8b69c878507068df059e6f", + "sha256:968089d4584ad4ad7c171454f0a5c6dac23971e9472521ea3b6d49d610aa6fc0" + ], + "version": "==0.9.1" + }, + "six": { + "hashes": [ + "sha256:1f1b7d42e254082a9db6279deae68afb421ceba6158efa6131de7b3003ee93fd", + "sha256:30f610279e8b2578cab6db20741130331735c781b56053c59c4076da27f06b66" + ], + "version": "==1.13.0" + }, + "sqlalchemy-stubs": { + "hashes": [ + "sha256:a3318c810697164e8c818aa2d90bac570c1a0e752ced3ec25455b309c0bee8fd", + "sha256:ca1250605a39648cc433f5c70cb1a6f9fe0b60bdda4c51e1f9a2ab3651daadc8" + ], + "index": "pypi", + "version": "==0.3" + }, + "toml": { + "hashes": [ + "sha256:229f81c57791a41d65e399fc06bf0848bab550a9dfd5ed66df18ce5f05e73d5c", + "sha256:235682dd292d5899d361a811df37e04a8828a5b1da3115886b73cf81ebc9100e" + ], + "version": "==0.10.0" + }, + "tqdm": { + "hashes": [ + "sha256:5a1f3d58f3eb53264387394387fe23df469d2a3fab98c9e7f99d5c146c119873", + "sha256:f1a1613fee07cc30a253051617f2a219a785c58877f9f6bfa129446cbaf8b4c1" + ], + "version": "==4.39.0" + }, + "twine": { + "hashes": [ + "sha256:1a87ae3f1e29a87a8ac174809bf0aa996085a0368fe500402196bda94b23aab3", + "sha256:ba8ba1b39987f1c22d9162f7dd3b4668388640e5f7158c15226624f88e464836" + ], + "index": "pypi", + "version": "==3.1.0" + }, + "typed-ast": { + "hashes": [ + "sha256:1170afa46a3799e18b4c977777ce137bb53c7485379d9706af8a59f2ea1aa161", + "sha256:18511a0b3e7922276346bcb47e2ef9f38fb90fd31cb9223eed42c85d1312344e", + "sha256:262c247a82d005e43b5b7f69aff746370538e176131c32dda9cb0f324d27141e", + "sha256:2b907eb046d049bcd9892e3076c7a6456c93a25bebfe554e931620c90e6a25b0", + "sha256:354c16e5babd09f5cb0ee000d54cfa38401d8b8891eefa878ac772f827181a3c", + "sha256:48e5b1e71f25cfdef98b013263a88d7145879fbb2d5185f2a0c79fa7ebbeae47", + "sha256:4e0b70c6fc4d010f8107726af5fd37921b666f5b31d9331f0bd24ad9a088e631", + "sha256:630968c5cdee51a11c05a30453f8cd65e0cc1d2ad0d9192819df9978984529f4", + "sha256:66480f95b8167c9c5c5c87f32cf437d585937970f3fc24386f313a4c97b44e34", + "sha256:71211d26ffd12d63a83e079ff258ac9d56a1376a25bc80b1cdcdf601b855b90b", + "sha256:7954560051331d003b4e2b3eb822d9dd2e376fa4f6d98fee32f452f52dd6ebb2", + "sha256:838997f4310012cf2e1ad3803bce2f3402e9ffb71ded61b5ee22617b3a7f6b6e", + "sha256:95bd11af7eafc16e829af2d3df510cecfd4387f6453355188342c3e79a2ec87a", + "sha256:bc6c7d3fa1325a0c6613512a093bc2a2a15aeec350451cbdf9e1d4bffe3e3233", + "sha256:cc34a6f5b426748a507dd5d1de4c1978f2eb5626d51326e43280941206c209e1", + "sha256:d755f03c1e4a51e9b24d899561fec4ccaf51f210d52abdf8c07ee2849b212a36", + "sha256:d7c45933b1bdfaf9f36c579671fec15d25b06c8398f113dab64c18ed1adda01d", + "sha256:d896919306dd0aa22d0132f62a1b78d11aaf4c9fc5b3410d3c666b818191630a", + "sha256:fdc1c9bbf79510b76408840e009ed65958feba92a88833cdceecff93ae8fff66", + "sha256:ffde2fbfad571af120fcbfbbc61c72469e72f550d676c3342492a9dfdefb8f12" + ], + "version": "==1.4.0" + }, + "typing-extensions": { + "hashes": [ + "sha256:091ecc894d5e908ac75209f10d5b4f118fbdb2eb1ede6a63544054bb1edb41f2", + "sha256:910f4656f54de5993ad9304959ce9bb903f90aadc7c67a0bef07e678014e892d", + "sha256:cf8b63fedea4d89bab840ecbb93e75578af28f76f66c35889bd7065f5af88575" + ], + "version": "==3.7.4.1" + }, + "urllib3": { + "hashes": [ + "sha256:a8a318824cc77d1fd4b2bec2ded92646630d7fe8619497b142c84a9e6f5a7293", + "sha256:f3c5fd51747d450d4dcf6f923c81f78f811aab8205fda64b0aba34a4e48b0745" + ], + "version": "==1.25.7" + }, + "virtualenv": { + "hashes": [ + "sha256:116655188441670978117d0ebb6451eb6a7526f9ae0796cc0dee6bd7356909b0", + "sha256:b57776b44f91511866594e477dd10e76a6eb44439cdd7f06dcd30ba4c5bd854f" + ], + "version": "==16.7.8" + }, + "wcwidth": { + "hashes": [ + "sha256:3df37372226d6e63e1b1e1eda15c594bca98a22d33a23832a90998faa96bc65e", + "sha256:f4ebe71925af7b40a864553f761ed559b43544f8f71746c2d756c7fe788ade7c" + ], + "version": "==0.1.7" + }, + "webencodings": { + "hashes": [ + "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", + "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923" + ], + "version": "==0.5.1" + }, + "wheel": { + "hashes": [ + "sha256:10c9da68765315ed98850f8e048347c3eb06dd81822dc2ab1d4fde9dc9702646", + "sha256:f4da1763d3becf2e2cd92a14a7c920f0f00eca30fdde9ea992c836685b9faf28" + ], + "index": "pypi", + "version": "==0.33.6" + }, + "zipp": { + "hashes": [ + "sha256:3718b1cbcd963c7d4c5511a8240812904164b7f381b647143a89d3b98f9bcd8e", + "sha256:f06903e9f1f43b12d371004b4ac7b06ab39a44adc747266928ae6debfa7b3335" + ], + "version": "==0.6.0" + } + } +} diff --git a/Ch08/apd.aggregation-chapter08/README.md b/Ch08/apd.aggregation-chapter08/README.md new file mode 100644 index 0000000..85669dd --- /dev/null +++ b/Ch08/apd.aggregation-chapter08/README.md @@ -0,0 +1,4 @@ +# APD Sensor aggregator + +A programme that queries apd.sensor endpoints and aggregates their results. + diff --git a/Ch08/apd.aggregation-chapter08/pyproject.toml b/Ch08/apd.aggregation-chapter08/pyproject.toml new file mode 100644 index 0000000..4d3bb67 --- /dev/null +++ b/Ch08/apd.aggregation-chapter08/pyproject.toml @@ -0,0 +1,5 @@ +[build-system] +requires = [ + "setuptools", +] +build-backend = "setuptools.build_meta" diff --git a/Ch08/apd.aggregation-chapter08/pytest.ini b/Ch08/apd.aggregation-chapter08/pytest.ini new file mode 100644 index 0000000..c1d3e58 --- /dev/null +++ b/Ch08/apd.aggregation-chapter08/pytest.ini @@ -0,0 +1,3 @@ +[pytest] +markers = + functional: these tests are significantly slower as they start a HTTP server \ No newline at end of file diff --git a/Ch08/apd.aggregation-chapter08/setup.cfg b/Ch08/apd.aggregation-chapter08/setup.cfg new file mode 100644 index 0000000..06b7be6 --- /dev/null +++ b/Ch08/apd.aggregation-chapter08/setup.cfg @@ -0,0 +1,56 @@ +[mypy] +namespace_packages = True +mypy_path = src +plugins = sqlmypy + +[mypy-alembic] +ignore_missing_imports = True + +[mypy-alembic.config] +ignore_missing_imports = True + +[mypy-alembic.script] +ignore_missing_imports = True + +[mypy-alembic.runtime.environment] +ignore_missing_imports = True + +[mypy-pytest] +ignore_missing_imports = True + +[flake8] +max-line-length = 120 +ignore = E501 + +[metadata] +name = apd.aggregation +version = attr: apd.aggregation.VERSION +description = A programme that queries apd.sensor endpoints and aggregates their results. +long_description = file: README.md, CHANGES.md, LICENCE +long_description_content_type = text/markdown +keywords = +license = BSD +classifiers = + Programming Language :: Python :: 3 + Programming Language :: Python :: 3.7 + +[options] +zip_safe = False +include_package_data = True +package_dir = + =src +packages = find_namespace: +install_requires = + sqlalchemy + aiohttp + psycopg2 + alembic + click + + +[options.packages.find] +where = src + +[options.entry_points] +console_scripts = + collect_sensor_data = apd.aggregation.cli:collect_sensor_data diff --git a/Ch08/apd.aggregation-chapter08/setup.py b/Ch08/apd.aggregation-chapter08/setup.py new file mode 100644 index 0000000..6068493 --- /dev/null +++ b/Ch08/apd.aggregation-chapter08/setup.py @@ -0,0 +1,3 @@ +from setuptools import setup + +setup() diff --git a/Ch08/apd.aggregation-chapter08/src/apd/aggregation/__init__.py b/Ch08/apd.aggregation-chapter08/src/apd/aggregation/__init__.py new file mode 100644 index 0000000..3277f64 --- /dev/null +++ b/Ch08/apd.aggregation-chapter08/src/apd/aggregation/__init__.py @@ -0,0 +1 @@ +VERSION = "1.0.0" diff --git a/Ch08/apd.aggregation-chapter08/src/apd/aggregation/alembic/README b/Ch08/apd.aggregation-chapter08/src/apd/aggregation/alembic/README new file mode 100644 index 0000000..97a87d5 --- /dev/null +++ b/Ch08/apd.aggregation-chapter08/src/apd/aggregation/alembic/README @@ -0,0 +1,12 @@ +Generic single-database configuration. + + +# Database setup + +To generate the required database tables you must create an alembic.ini file, as follows: + + [alembic] + script_location = apd.aggregation:alembic + sqlalchemy.url = postgresql+psycopg2://apd@localhost/apd + +and run `alembic upgrade head`. This should also be done after every upgrade of the software. \ No newline at end of file diff --git a/Ch08/apd.aggregation-chapter08/src/apd/aggregation/alembic/env.py b/Ch08/apd.aggregation-chapter08/src/apd/aggregation/alembic/env.py new file mode 100644 index 0000000..4c8a2c2 --- /dev/null +++ b/Ch08/apd.aggregation-chapter08/src/apd/aggregation/alembic/env.py @@ -0,0 +1,80 @@ +from logging.config import fileConfig + +from sqlalchemy import engine_from_config +from sqlalchemy import pool +from alembic import context + +from apd.aggregation.database import metadata + + +# this is the Alembic Config object, which provides +# access to the values within the .ini file in use. +config = context.config + +# Interpret the config file for Python logging. +# This line sets up loggers basically. +if config.config_file_name: + fileConfig(config.config_file_name) + +target_metadata = metadata + + +def include_object(object, name, type_, reflected, compare_to): + if object.info.get("is_view", False): + return False + return True + + +def run_migrations_offline(): + """Run migrations in 'offline' mode. + + This configures the context with just a URL + and not an Engine, though an Engine is acceptable + here as well. By skipping the Engine creation + we don't even need a DBAPI to be available. + + Calls to context.execute() here emit the given string to the + script output. + + """ + url = config.get_main_option("sqlalchemy.url") + context.configure( + url=url, + include_object=include_object, + target_metadata=target_metadata, + literal_binds=True, + dialect_opts={"paramstyle": "named"}, + ) + + with context.begin_transaction(): + context.run_migrations() + + +def run_migrations_online(): + """Run migrations in 'online' mode. + + In this scenario we need to create an Engine + and associate a connection with the context. + + """ + connectable = engine_from_config( + config.get_section(config.config_ini_section), + prefix="sqlalchemy.", + poolclass=pool.NullPool, + ) + + with connectable.connect() as connection: + context.configure( + connection=connection, + target_metadata=target_metadata, + include_object=include_object, + ) + + with context.begin_transaction(): + context.run_migrations() + + +if context.is_offline_mode(): + run_migrations_offline() +else: + run_migrations_online() diff --git a/Ch08/apd.aggregation-chapter08/src/apd/aggregation/alembic/script.py.mako b/Ch08/apd.aggregation-chapter08/src/apd/aggregation/alembic/script.py.mako new file mode 100644 index 0000000..2c01563 --- /dev/null +++ b/Ch08/apd.aggregation-chapter08/src/apd/aggregation/alembic/script.py.mako @@ -0,0 +1,24 @@ +"""${message} + +Revision ID: ${up_revision} +Revises: ${down_revision | comma,n} +Create Date: ${create_date} + +""" +from alembic import op +import sqlalchemy as sa +${imports if imports else ""} + +# revision identifiers, used by Alembic. +revision = ${repr(up_revision)} +down_revision = ${repr(down_revision)} +branch_labels = ${repr(branch_labels)} +depends_on = ${repr(depends_on)} + + +def upgrade(): + ${upgrades if upgrades else "pass"} + + +def downgrade(): + ${downgrades if downgrades else "pass"} diff --git a/Ch08/apd.aggregation-chapter08/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py b/Ch08/apd.aggregation-chapter08/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py new file mode 100644 index 0000000..ef671bd --- /dev/null +++ b/Ch08/apd.aggregation-chapter08/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py @@ -0,0 +1,32 @@ +"""Add indexes to datapoints + +Revision ID: 4b2df8a6e1ce +Revises: 6d2eacd5da3f +Create Date: 2019-12-02 16:07:41.123116 + +""" +from alembic import op + + +# revision identifiers, used by Alembic. +revision = "4b2df8a6e1ce" +down_revision = "6d2eacd5da3f" +branch_labels = None +depends_on = None + + +def upgrade(): + op.create_index( + op.f("ix_datapoints_collected_at"), + "datapoints", + ["collected_at"], + unique=False, + ) + op.create_index( + op.f("ix_datapoints_sensor_name"), "datapoints", ["sensor_name"], unique=False, + ) + + +def downgrade(): + op.drop_index(op.f("ix_datapoints_sensor_name"), table_name="datapoints") + op.drop_index(op.f("ix_datapoints_collected_at"), table_name="datapoints") diff --git a/Ch08/apd.aggregation-chapter08/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py b/Ch08/apd.aggregation-chapter08/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py new file mode 100644 index 0000000..eb02455 --- /dev/null +++ b/Ch08/apd.aggregation-chapter08/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py @@ -0,0 +1,38 @@ +"""Add daily summary view + +Revision ID: 6962f8455a6d +Revises: 4b2df8a6e1ce +Create Date: 2019-12-03 11:50:24.403402 + +""" +from alembic import op + + +# revision identifiers, used by Alembic. +revision = "6962f8455a6d" +down_revision = "4b2df8a6e1ce" +branch_labels = None +depends_on = None + + +def upgrade(): + create_view = """ + CREATE VIEW daily_summary AS + SELECT + datapoints.sensor_name AS sensor_name, + datapoints.data AS data, + count(datapoints.id) AS count + FROM datapoints + WHERE + datapoints.collected_at >= CAST(CURRENT_DATE AS DATE) + AND + datapoints.collected_at < CAST(CURRENT_DATE AS DATE) + 1 + GROUP BY + datapoints.sensor_name, + datapoints.data; + """ + op.execute(create_view) + + +def downgrade(): + op.execute("""DROP VIEW daily_summary""") diff --git a/Ch08/apd.aggregation-chapter08/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py b/Ch08/apd.aggregation-chapter08/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py new file mode 100644 index 0000000..b4a3545 --- /dev/null +++ b/Ch08/apd.aggregation-chapter08/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py @@ -0,0 +1,31 @@ +"""Create datapoints table + +Revision ID: 6d2eacd5da3f +Revises: N/A +Create Date: 2019-09-29 13:43:21.242706 + +""" +from alembic import op +import sqlalchemy as sa +from sqlalchemy.dialects import postgresql + +# revision identifiers, used by Alembic. +revision = "6d2eacd5da3f" +down_revision = None +branch_labels = None +depends_on = None + + +def upgrade(): + op.create_table( + "datapoints", + sa.Column("id", sa.Integer(), nullable=False), + sa.Column("sensor_name", sa.String(), nullable=True), + sa.Column("collected_at", postgresql.TIMESTAMP(), nullable=True), + sa.Column("data", postgresql.JSONB(astext_type=sa.Text()), nullable=True), + sa.PrimaryKeyConstraint("id"), + ) + + +def downgrade(): + op.drop_table("datapoints") diff --git a/Ch08/apd.aggregation-chapter08/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py b/Ch08/apd.aggregation-chapter08/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py new file mode 100644 index 0000000..88d5219 --- /dev/null +++ b/Ch08/apd.aggregation-chapter08/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py @@ -0,0 +1,34 @@ +"""Add deployment id to DataPoint + +Revision ID: d8d4cf6a178f +Revises: 6962f8455a6d +Create Date: 2019-12-03 20:58:11.285509 + +""" +from alembic import op +import sqlalchemy as sa +from sqlalchemy.dialects import postgresql + +# revision identifiers, used by Alembic. +revision = "d8d4cf6a178f" +down_revision = "6962f8455a6d" +branch_labels = None +depends_on = None + + +def upgrade(): + op.add_column( + "datapoints", + sa.Column("deployment_id", postgresql.UUID(as_uuid=True), nullable=True), + ) + op.create_index( + op.f("ix_datapoints_deployment_id"), + "datapoints", + ["deployment_id"], + unique=False, + ) + + +def downgrade(): + op.drop_index(op.f("ix_datapoints_deployment_id"), table_name="datapoints") + op.drop_column("datapoints", "deployment_id") diff --git a/Ch08/apd.aggregation-chapter08/src/apd/aggregation/cli.py b/Ch08/apd.aggregation-chapter08/src/apd/aggregation/cli.py new file mode 100644 index 0000000..3435e78 --- /dev/null +++ b/Ch08/apd.aggregation-chapter08/src/apd/aggregation/cli.py @@ -0,0 +1,52 @@ +import typing as t + +import click + +from .collect import standalone + + +@click.command() +@click.argument("server", nargs=-1) +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +@click.option("--api-key", metavar="", envvar="APD_API_KEY") +@click.option( + "--tolerate-failures", + "-f", + help="If provided, failure to retrieve some sensors' data will not abort the collection process", + is_flag=True, +) +@click.option("-v", "--verbose", is_flag=True, help="Enables verbose mode") +def collect_sensor_data( + db: str, server: t.Tuple[str], api_key: str, tolerate_failures: bool, verbose: bool +): + """This loads data from one or more sensors into the specified database. + + Only PostgreSQL databases are supported, as the column definitions use + multiple pg specific features. The database must already exist and be + populated with the required tables. + + The --api-key option is used to specify the access token for the sensors + being queried. + + You may specify any number of servers, the variable should be the full URL + to the sensor's HTTP interface, not including the /v/2.0 portion. Multiple + URLs should be separated with a space. + """ + if tolerate_failures: + attempts = [(s,) for s in server] + else: + attempts = [server] + success = True + for attempt in attempts: + try: + standalone(db, attempt, api_key, echo=verbose) + except ValueError as e: + click.secho(str(e), err=True, fg="red") + success = False + return success diff --git a/Ch08/apd.aggregation-chapter08/src/apd/aggregation/collect.py b/Ch08/apd.aggregation-chapter08/src/apd/aggregation/collect.py new file mode 100644 index 0000000..f745d69 --- /dev/null +++ b/Ch08/apd.aggregation-chapter08/src/apd/aggregation/collect.py @@ -0,0 +1,93 @@ +import asyncio +from contextvars import ContextVar +import datetime +import typing as t +import uuid + +import aiohttp +from sqlalchemy import create_engine +from sqlalchemy.orm import sessionmaker +from sqlalchemy.orm.session import Session + +from .database import DataPoint, datapoint_table + +http_session_var: ContextVar[aiohttp.ClientSession] = ContextVar("http_session") + + +async def get_data_points(server: str, api_key: t.Optional[str],) -> t.List[DataPoint]: + if not server.endswith("/"): + server += "/" + url = server + "v/2.1/sensors/" + deployment_id_url = server + "v/2.1/deployment_id" + headers = {} + if api_key: + headers["X-API-KEY"] = api_key + http = http_session_var.get() + + async with http.get(deployment_id_url) as request: + if request.status != 200: + raise ValueError(f"Error loading deployment id from {server}") + result = await request.json() + deployment_id = uuid.UUID(result["deployment_id"]) + + async with http.get(url, headers=headers) as request: + result = await request.json() + ok = request.status == 200 + now = datetime.datetime.now() + if ok: + points = [] + for value in result["sensors"]: + points.append( + DataPoint( + sensor_name=value["id"], + collected_at=now, + data=value["value"], + deployment_id=deployment_id, + ) + ) + return points + else: + raise ValueError( + f"Error loading data from {server}: " + result.get("error", "Unknown") + ) + + +def handle_result(result: t.List[DataPoint], session: Session) -> t.List[DataPoint]: + for point in result: + insert = datapoint_table.insert().values(**point._asdict()) + sql_result = session.execute(insert) + point.id = sql_result.inserted_primary_key[0] + return result + + +async def add_data_from_sensors( + session: Session, servers: t.Tuple[str], api_key: t.Optional[str] +) -> t.List[DataPoint]: + tasks: t.List[t.Awaitable[t.List[DataPoint]]] = [] + points: t.List[DataPoint] = [] + async with aiohttp.ClientSession() as http: + http_session_var.set(http) + tasks = [get_data_points(server, api_key) for server in servers] + for results in await asyncio.gather(*tasks): + points += results + loop = asyncio.get_running_loop() + await loop.run_in_executor(None, handle_result, points, session) + return points + + +def standalone( + db_uri: str, servers: t.Tuple[str], api_key: t.Optional[str], echo: bool = False +) -> None: + engine = create_engine(db_uri, echo=echo) + sm = sessionmaker(engine) + Session = sm() + asyncio.run(add_data_from_sensors(Session, servers, api_key)) + Session.commit() + + +if __name__ == "__main__": + standalone( + db_uri="postgresql+psycopg2://apd@localhost/apd", + servers=("http://pvoutput:8080/",), + api_key="h3hdfjksfhwkjehnwekj", + ) diff --git a/Ch08/apd.aggregation-chapter08/src/apd/aggregation/database.py b/Ch08/apd.aggregation-chapter08/src/apd/aggregation/database.py new file mode 100644 index 0000000..dd5d791 --- /dev/null +++ b/Ch08/apd.aggregation-chapter08/src/apd/aggregation/database.py @@ -0,0 +1,102 @@ +from __future__ import annotations + +from dataclasses import dataclass, field, asdict +import datetime +import typing as t +import uuid + +import sqlalchemy +from sqlalchemy.dialects.postgresql import JSONB, DATE, TIMESTAMP, UUID +from sqlalchemy.ext.hybrid import ExprComparator, hybrid_property +from sqlalchemy.orm import sessionmaker +from sqlalchemy.schema import Table + + +metadata = sqlalchemy.MetaData() + +datapoint_table = Table( + "datapoints", + metadata, + sqlalchemy.Column("id", sqlalchemy.Integer, primary_key=True), + sqlalchemy.Column("sensor_name", sqlalchemy.String, index=True), + sqlalchemy.Column("collected_at", TIMESTAMP, index=True), + sqlalchemy.Column("deployment_id", UUID(as_uuid=True), index=True), + sqlalchemy.Column("data", JSONB), +) + +daily_summary_view = Table( + "daily_summary", + metadata, + sqlalchemy.Column("sensor_name", sqlalchemy.String), + sqlalchemy.Column("data", JSONB), + sqlalchemy.Column("count", sqlalchemy.Integer), + info={"is_view": True}, +) + + +class DateEqualComparator(ExprComparator): + def __init__(self, fallback_expression, raw_expression): + # Do not try and find update expression from parent + super().__init__(None, fallback_expression, None) + self.raw_expression = raw_expression + + def __eq__(self, other): + """ Returns True iff on the same day as other """ + other_date = sqlalchemy.cast(other, DATE) + return sqlalchemy.and_( + self.raw_expression >= other_date, self.raw_expression < other_date + 1, + ) + + def operate(self, op, *other, **kwargs): + other = [sqlalchemy.cast(date, DATE) for date in other] + return op(self.expression, *other, **kwargs) + + def reverse_operate(self, op, other, **kwargs): + other = [sqlalchemy.cast(date, DATE) for date in other] + return op(other, self.expression, **kwargs) + + +@dataclass +class DataPoint: + sensor_name: str + data: t.Dict[str, t.Any] + deployment_id: uuid.UUID + id: t.Optional[int] = None + collected_at: datetime.datetime = field(default_factory=datetime.datetime.now) + + @classmethod + def from_sql_result(cls, result) -> DataPoint: + return cls(**result._asdict()) + + def _asdict(self) -> t.Dict[str, t.Any]: + data = asdict(self) + if data["id"] is None: + del data["id"] + return data + + @hybrid_property + def collected_on_date(self): + return self.collected_at.date() + + @collected_on_date.comparator # type: ignore + def collected_on_date(cls): + return DateEqualComparator( + fallback_expression=sqlalchemy.cast(datapoint_table.c.collected_at, DATE), + raw_expression=datapoint_table.c.collected_at, + ) + + +def main(): + engine = sqlalchemy.create_engine( + "postgresql+psycopg2://apd@localhost/apd", echo=True + ) + sm = sessionmaker(engine) + Session = sm() + if False: + metadata.create_all(engine) + print(Session.query(DataPoint).all()) + pass + + +if __name__ == "__main__": + main() diff --git a/Ch08/apd.aggregation-chapter08/src/apd/aggregation/query.py b/Ch08/apd.aggregation-chapter08/src/apd/aggregation/query.py new file mode 100644 index 0000000..512bd83 --- /dev/null +++ b/Ch08/apd.aggregation-chapter08/src/apd/aggregation/query.py @@ -0,0 +1,38 @@ +import asyncio +import contextlib +from contextvars import ContextVar +import typing as t + +from sqlalchemy import create_engine +from sqlalchemy.orm import sessionmaker +from sqlalchemy.orm.session import Session + + +from apd.aggregation.collect import datapoint_table, DataPoint + + +db_session_var: ContextVar[Session] = ContextVar("db_session") + + +@contextlib.contextmanager +def with_database(uri: t.Optional[str] = None) -> t.Iterator[Session]: + """Given a URI, set up a DB connection, and return a Session as a context manager """ + if uri is None: + uri = "postgresql+psycopg2://localhost/apd" + engine = create_engine(uri) + sm = sessionmaker(engine) + Session = sm() + token = db_session_var.set(Session) + yield Session + db_session_var.reset(token) + Session.commit() + Session.close() + + +async def get_data() -> t.AsyncIterator[DataPoint]: + db_session = db_session_var.get() + loop = asyncio.get_running_loop() + query = db_session.query(datapoint_table) + rows = await loop.run_in_executor(None, query.all) + for row in rows: + yield DataPoint.from_sql_result(row) diff --git a/Ch08/apd.aggregation-chapter08/tests/__init__.py b/Ch08/apd.aggregation-chapter08/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/Ch08/apd.aggregation-chapter08/tests/conftest.py b/Ch08/apd.aggregation-chapter08/tests/conftest.py new file mode 100644 index 0000000..d377b56 --- /dev/null +++ b/Ch08/apd.aggregation-chapter08/tests/conftest.py @@ -0,0 +1,120 @@ +import datetime +from uuid import UUID + +from apd.aggregation.database import datapoint_table + +from alembic.config import Config +from alembic.script import ScriptDirectory +from alembic.runtime.environment import EnvironmentContext +import pytest + + +@pytest.fixture +def db_uri(): + return "postgresql+psycopg2://apd@localhost/apd-test" + + +@pytest.fixture +def db_session(db_uri): + from sqlalchemy import create_engine + from sqlalchemy.orm import sessionmaker + + engine = create_engine(db_uri, echo=True) + sm = sessionmaker(engine) + Session = sm() + yield Session + Session.close() + + +@pytest.fixture +def migrated_db(db_uri): + config = Config() + config.set_main_option("script_location", "apd.aggregation:alembic") + config.set_main_option("sqlalchemy.url", db_uri) + script = ScriptDirectory.from_config(config) + + def upgrade(rev, context): + return script._upgrade_revs(script.get_current_head(), rev) + + def downgrade(rev, context): + return script._downgrade_revs(None, rev) + + with EnvironmentContext(config, script, fn=upgrade): + script.run_env() + + yield + + with EnvironmentContext(config, script, fn=downgrade): + script.run_env() + + +@pytest.fixture +def populated_db(migrated_db, db_session): + datas = [ + { + "id": 1, + "sensor_name": "Test", + "data": "1", + "collected_at": datetime.datetime(2020, 4, 1, 12, 0, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 2, + "sensor_name": "Test", + "data": "2", + "collected_at": datetime.datetime(2020, 4, 1, 12, 1, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 3, + "sensor_name": "Test", + "data": "3", + "collected_at": datetime.datetime(2020, 4, 1, 12, 2, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 4, + "sensor_name": "Test", + "data": "4", + "collected_at": datetime.datetime(2020, 4, 1, 12, 3, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 5, + "sensor_name": "OtherTest", + "data": "5", + "collected_at": datetime.datetime(2020, 4, 1, 12, 4, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 6, + "sensor_name": "Test", + "data": "1", + "collected_at": datetime.datetime(2020, 4, 1, 12, 0, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + { + "id": 7, + "sensor_name": "Test", + "data": "1", + "collected_at": datetime.datetime(2020, 4, 1, 12, 1, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + { + "id": 8, + "sensor_name": "Test", + "data": "2", + "collected_at": datetime.datetime(2020, 4, 1, 12, 2, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + { + "id": 9, + "sensor_name": "OtherTest", + "data": "3", + "collected_at": datetime.datetime(2020, 4, 1, 12, 3, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + ] + for data in datas: + insert = datapoint_table.insert().values(**data) + db_session.execute(insert) diff --git a/Ch08/apd.aggregation-chapter08/tests/test_http_get.py b/Ch08/apd.aggregation-chapter08/tests/test_http_get.py new file mode 100644 index 0000000..d38fd4c --- /dev/null +++ b/Ch08/apd.aggregation-chapter08/tests/test_http_get.py @@ -0,0 +1,154 @@ +from concurrent.futures import ThreadPoolExecutor +import datetime +import typing as t +from unittest.mock import patch, MagicMock +import wsgiref.simple_server + +import aiohttp +from apd.sensors.base import Sensor +from apd.sensors.sensors import PythonVersion, ACStatus +from apd.sensors.wsgi import set_up_config +import flask +import pytest + +from apd.sensors.wsgi import v21 + +from apd.aggregation import collect + +pytestmark = [pytest.mark.functional] + + +@pytest.fixture +def sensors() -> t.Iterator[t.List[Sensor[t.Any]]]: + """ Patch the get_sensors method to return a known pair of sensors only """ + data: t.List[Sensor[t.Any]] = [PythonVersion(), ACStatus()] + with patch("apd.sensors.cli.get_sensors") as get_sensors: + get_sensors.return_value = data + yield data + + +def get_independent_flask_app(name: str) -> flask.Flask: + """ Create a new flask app with the v20 API blueprint loaded, so multiple copies + of the app can be run in parallel without conflicting configuration """ + app = flask.Flask(name) + app.register_blueprint(v21.version, url_prefix="/v/2.1") + return app + + +def run_server_in_thread( + name: str, config: t.Dict[str, t.Any], port: int +) -> t.Iterator[str]: + # Create a new flask app and load in required code, to prevent config conflicts + app = get_independent_flask_app(name) + flask_app = set_up_config(config, app) + server = wsgiref.simple_server.make_server("localhost", port, flask_app) + + with ThreadPoolExecutor() as pool: + pool.submit(server.serve_forever) + yield f"http://localhost:{port}/" + server.shutdown() + + +@pytest.fixture(scope="module") +def http_server(): + yield from run_server_in_thread( + "standard", + { + "APD_SENSORS_API_KEY": "testing", + "APD_SENSORS_DEPLOYMENT_ID": "a46b1d1207fd4cdcad39bbdf706dfe29", + }, + 12081, + ) + + +@pytest.fixture(scope="module") +def bad_api_key_http_server(): + yield from run_server_in_thread( + "alternate", + { + "APD_SENSORS_API_KEY": "penny", + "APD_SENSORS_DEPLOYMENT_ID": "38cf2bae9adb445fad946c82e290487a", + }, + 12082, + ) + + +class TestGetDataPoints: + @pytest.fixture + def mut(self): + return collect.get_data_points + + @pytest.mark.asyncio + async def test_get_data_points( + self, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + # Get the data from the server, storing the time before and after + # as bounds for the collected_at value + async with aiohttp.ClientSession() as http: + collect.http_session_var.set(http) + time_before = datetime.datetime.now() + results = await mut(http_server, "testing") + time_after = datetime.datetime.now() + + assert len(results) == len(sensors) == 2 + + for (sensor, result) in zip(sensors, results): + assert sensor.from_json_compatible(result.data) == sensor.value() + assert result.sensor_name == sensor.name + assert time_before <= result.collected_at <= time_after + + @pytest.mark.asyncio + async def test_get_data_points_fails_with_bad_api_key( + self, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + with pytest.raises( + ValueError, + match=f"Error loading data from {http_server}: Supply API key in X-API-Key header", + ): + async with aiohttp.ClientSession() as http: + collect.http_session_var.set(http) + await mut(http_server, "incorrect") + + +class TestAddDataFromSensors: + @pytest.fixture + def mut(self): + return collect.add_data_from_sensors + + @pytest.fixture + def mock_db_session(self): + return MagicMock() + + @pytest.mark.asyncio + async def test_get_get_data_from_sensors( + self, mock_db_session, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + results = await mut(mock_db_session, [http_server], "testing") + assert mock_db_session.execute.call_count == len(sensors) + assert len(results) == len(sensors) + + @pytest.mark.asyncio + async def test_get_get_data_from_sensors_with_multiple_servers( + self, mock_db_session, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + results = await mut(mock_db_session, [http_server, http_server], "testing") + assert mock_db_session.execute.call_count == len(sensors) * 2 + assert len(results) == len(sensors) * 2 + + @pytest.mark.asyncio + async def test_data_points_not_added_if_only_partial_success( + self, + mock_db_session, + sensors: t.List[Sensor[t.Any]], + mut, + http_server: str, + bad_api_key_http_server: str, + ) -> None: + with pytest.raises( + ValueError, + match=f"Error loading data from {bad_api_key_http_server}: Supply API key in X-API-Key header", + ): + await mut( + mock_db_session, [http_server, bad_api_key_http_server], "testing" + ) + assert mock_db_session.execute.call_count == 0 diff --git a/Ch08/apd.aggregation-chapter08/tests/test_sensor_aggregation.py b/Ch08/apd.aggregation-chapter08/tests/test_sensor_aggregation.py new file mode 100644 index 0000000..0f1872d --- /dev/null +++ b/Ch08/apd.aggregation-chapter08/tests/test_sensor_aggregation.py @@ -0,0 +1,174 @@ +from __future__ import annotations + +import contextlib +from dataclasses import dataclass +import json +import typing as t +from unittest.mock import patch, Mock + +import pytest +import sqlalchemy + +import apd.aggregation.collect + + +@pytest.fixture +def data() -> t.Any: + return { + "sensors": [ + { + "human_readable": "3.7", + "id": "PythonVersion", + "title": "Python Version", + "value": [3, 7, 2, "final", 0], + }, + { + "human_readable": "Not connected", + "id": "ACStatus", + "title": "AC Connected", + "value": False, + }, + ] + } + + +@dataclass +class FakeAIOHttpClient: + responses: t.Dict[str, str] + + @contextlib.asynccontextmanager + async def get( + self, url: str, headers: t.Optional[t.Dict[str, str]] = None + ) -> t.AsyncIterator[FakeAIOHttpResponse]: + if url in self.responses: + yield FakeAIOHttpResponse(body=self.responses[url]) + else: + yield FakeAIOHttpResponse(body="", status=404) + + +@dataclass +class FakeAIOHttpResponse: + body: str + status: int = 200 + + async def json(self) -> t.Any: + return json.loads(self.body) + + +@pytest.fixture +def mockclient(data) -> FakeAIOHttpClient: + return FakeAIOHttpClient( + { + "http://localhost/v/2.1/sensors/": json.dumps(data), + "http://localhost/v/2.1/deployment_id": json.dumps( + {"deployment_id": "b29ba0ee10f14552b6b21327bb96d3fb"} + ), + } + ) + + +class TestGetDataPoints: + @pytest.fixture + def mut(self): + return apd.aggregation.collect.get_data_points + + @pytest.mark.asyncio + async def test_get_data_points( + self, mut, mockclient: FakeAIOHttpClient, data + ) -> None: + token = apd.aggregation.collect.http_session_var.set(mockclient) + try: + datapoints = await mut("http://localhost", "") + finally: + apd.aggregation.collect.http_session_var.reset(token) + + assert len(datapoints) == len(data["sensors"]) + for sensor in data["sensors"]: + assert sensor["value"] in (datapoint.data for datapoint in datapoints) + assert sensor["id"] in (datapoint.sensor_name for datapoint in datapoints) + + +class TestAddDataFromSensors: + @pytest.fixture + def mut(self): + return apd.aggregation.collect.add_data_from_sensors + + @pytest.fixture(autouse=True) + def patch_aiohttp(self, mockclient): + with patch("aiohttp.ClientSession") as ClientSession: + ClientSession.return_value.__aenter__.return_value = mockclient + yield ClientSession + + @pytest.fixture + def db_session(self): + session = Mock() + sql_result = session.execute.return_value + sql_result.inserted_primary_key = [1] + return session + + @pytest.mark.asyncio + async def test_datapoints_are_added_to_the_session(self, mut, db_session) -> None: + assert db_session.execute.call_count == 0 + datapoints = await mut(db_session, ["http://localhost"], "") + assert db_session.execute.call_count == len(datapoints) + + +@pytest.mark.usefixtures("migrated_db") +class TestDatabaseConnection: + @pytest.fixture(autouse=True) + def patch_aiohttp(self, mockclient): + with patch("aiohttp.ClientSession") as ClientSession: + ClientSession.return_value.__aenter__.return_value = mockclient + yield ClientSession + + @pytest.fixture + def table(self): + return apd.aggregation.database.datapoint_table + + @pytest.fixture + def daily_summary_view(self): + return apd.aggregation.database.daily_summary_view + + @pytest.fixture + def model(self): + return apd.aggregation.database.DataPoint + + @pytest.fixture + def mut(self): + return apd.aggregation.collect.add_data_from_sensors + + @pytest.mark.asyncio + async def test_datapoints_are_added_to_the_session(self, db_session, table) -> None: + datapoints = await apd.aggregation.collect.add_data_from_sensors( + db_session, ["http://localhost"], "" + ) + num_points = db_session.query(table).count() + assert num_points == len(datapoints) == 2 + + @pytest.mark.asyncio + async def test_datapoints_can_be_mapped_back_to_DataPoints( + self, mut, db_session, table, model + ) -> None: + datapoints = await mut(db_session, ["http://localhost"], "") + db_points = [ + model.from_sql_result(result) for result in db_session.query(table) + ] + assert db_points == datapoints + + @pytest.mark.asyncio + async def test_daily_summary_view_matches_query( + self, db_session, model, table, daily_summary_view + ) -> None: + await apd.aggregation.collect.add_data_from_sensors( + db_session, ["http://localhost"], "" + ) + + headers = table.c.sensor_name, table.c.data + value_counts = ( + db_session.query(*headers, sqlalchemy.func.count(table.c.id)) + .filter(model.collected_on_date == sqlalchemy.func.current_date()) + .group_by(*headers) + ) + + daily_summary_view = db_session.query(daily_summary_view) + assert value_counts.all() == daily_summary_view.all() diff --git a/Ch08/apd.sensors-chapter08/.pre-commit-config.yaml b/Ch08/apd.sensors-chapter08/.pre-commit-config.yaml new file mode 100644 index 0000000..d3b6ec7 --- /dev/null +++ b/Ch08/apd.sensors-chapter08/.pre-commit-config.yaml @@ -0,0 +1,26 @@ +repos: + +- repo: local + hooks: + - id: black + name: black + entry: pipenv run black + args: [--quiet] + language: system + types: [python] + + - id: mypy + name: mypy + exclude: (?x)^( + (.*)/setup.py + )$ + entry: pipenv run mypy + args: ["--follow-imports=skip"] + language: system + types: [python] + + - id: flake8 + name: flake8 + entry: pipenv run flake8 + language: system + types: [python] diff --git a/Ch08/apd.sensors-chapter08/CHANGES.md b/Ch08/apd.sensors-chapter08/CHANGES.md new file mode 100644 index 0000000..dba741b --- /dev/null +++ b/Ch08/apd.sensors-chapter08/CHANGES.md @@ -0,0 +1,29 @@ +## Changes + +### 2.0.0 (2019-09-08) + +* Add `to_json_compatible` and `from_json_compatible` methods to Sensor + to facilitate better HTTP API (Matthew Wilkes) + +* HTTP API is now versioned. The API from 1.3.0 is available at /v/1.0 + and an updated version is at /v/2.0 (Matthew Wilkes) + +### 1.3.0 (2019-08-20) + +* WSGI HTTP API support added (Matthew Wilkes) + +### 1.2.0 (2019-08-05) + +* Add external plugin support through `apd.sensors.sensors` entrypoint (Matthew Wilkes) + +### 1.1.0 (2019-07-12) + +* Add --develop argument (Matthew Wilkes) + +### 1.0.1 (2019-06-20) + +* Fix broken 1.0.0 release (Matthew Wilkes) + +### 1.0.0 (2019-06-20) + +* Added initial sensors (Matthew Wilkes) diff --git a/Ch08/apd.sensors-chapter08/LICENCE b/Ch08/apd.sensors-chapter08/LICENCE new file mode 100644 index 0000000..053f694 --- /dev/null +++ b/Ch08/apd.sensors-chapter08/LICENCE @@ -0,0 +1,19 @@ +Copyright (c) 2019 Matthew Wilkes + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. diff --git a/Ch08/apd.sensors-chapter08/Pipfile b/Ch08/apd.sensors-chapter08/Pipfile new file mode 100644 index 0000000..f6cd446 --- /dev/null +++ b/Ch08/apd.sensors-chapter08/Pipfile @@ -0,0 +1,34 @@ +[[source]] +name = "pypi" +url = "https://pypi.org/simple" +verify_ssl = true + +[[source]] +name = "piwheels" +url = "https://piwheels.org/simple" +verify_ssl = true + +[dev-packages] +ipykernel = "*" +remote-ikernel = "*" +pytest = "*" +pytest-cov = "*" +mypy = "*" +flake8 = "*" +black = "*" +pre-commit = "*" +wheel = "*" +twine = "*" +webtest = "*" +apd-sensors = {editable = true,extras = ["webapp"],path = "."} + +[packages] +apd-sensors = {editable = true,path = "."} +apd-sunnyboy-solar = {editable = true,path = "./plugins/apd.sunnyboy_solar"} +waitress = "*" +pint = "*" + +[requires] + +[pipenv] +allow_prereleases = true diff --git a/Ch08/apd.sensors-chapter08/Pipfile.lock b/Ch08/apd.sensors-chapter08/Pipfile.lock new file mode 100644 index 0000000..1304857 --- /dev/null +++ b/Ch08/apd.sensors-chapter08/Pipfile.lock @@ -0,0 +1,872 @@ +{ + "_meta": { + "hash": { + "sha256": "34faaa40acc9d73922634e8c6bef3e8cdeffc6728a1c907283b70297d90b514b" + }, + "pipfile-spec": 6, + "requires": {}, + "sources": [ + { + "name": "pypi", + "url": "https://pypi.org/simple", + "verify_ssl": true + }, + { + "name": "piwheels", + "url": "https://piwheels.org/simple", + "verify_ssl": true + } + ] + }, + "default": { + "apd-sensors": { + "editable": true, + "path": "." + }, + "apd-sunnyboy-solar": { + "editable": true, + "path": "./plugins/apd.sunnyboy_solar" + }, + "click": { + "hashes": [ + "sha256:2335065e6395b9e67ca716de5f7526736bfa6ceead690adf616d925bdc622b13", + "sha256:5b94b49521f6456670fdb30cd82a4eca9412788a93fa6dd6df72c94d5a8ff2d7" + ], + "version": "==7.0" + }, + "psutil": { + "hashes": [ + "sha256:028a1ec3c6197eadd11e7b46e8cc2f0720dc18ac6d7aabdb8e8c0d6c9704f000", + "sha256:503e4b20fa9d3342bcf58191bbc20a4a5ef79ca7df8972e6197cc14c5513e73d", + "sha256:863a85c1c0a5103a12c05a35e59d336e1d665747e531256e061213e2e90f63f3", + "sha256:954f782608bfef9ae9f78e660e065bd8ffcfaea780f9f2c8a133bb7cb9e826d7", + "sha256:968b1d0ad79ee376f52875b9cf3a204ebb099da50a3567daba8fb890679ce6b9", + "sha256:b6e08f965a305cd84c2d07409bc16fbef4417d67b70c53b299116c5b895e3f45", + "sha256:b99cf995f4ab9b36faff05615c24e3b05418234312d1335485423e43f2297326", + "sha256:bc96d437dfbb8865fc8828cf363450001cb04056bbdcdd6fc152c436c8a74c61", + "sha256:cf49178021075d47c61c03c0229ac0c60d5e2830f8cab19e2d88e579b18cdb76", + "sha256:cfc9ddeb293e469d19918d8a379e09731b430f5d009bb38915683f41b59c9ddf", + "sha256:d5350cb66690915d60f8b233180f1e49938756fb2d501c93c44f8fb5b970cc63", + "sha256:eba238cf1989dfff7d483c029acb0ac4fcbfc15de295d682901f0e2497e6781a" + ], + "version": "==5.6.3" + } + }, + "develop": { + "apd-sensors": { + "editable": true, + "path": "." + }, + "appdirs": { + "hashes": [ + "sha256:9e5896d1372858f8dd3344faf4e5014d21849c756c8d5701f78f8a103b372d92", + "sha256:d8b24664561d0d34ddfaec54636d502d7cea6e29c3eaf68f3df6180863e2166e" + ], + "version": "==1.4.3" + }, + "aspy.yaml": { + "hashes": [ + "sha256:463372c043f70160a9ec950c3f1e4c3a82db5fca01d334b6bc89c7164d744bdc", + "sha256:e7c742382eff2caed61f87a39d13f99109088e5e93f04d76eb8d4b28aa143f45" + ], + "version": "==1.3.0" + }, + "atomicwrites": { + "hashes": [ + "sha256:03472c30eb2c5d1ba9227e4c2ca66ab8287fbfbbda3888aa93dc2e28fc6811b4", + "sha256:75a9445bac02d8d058d5e1fe689654ba5a6556a1dfd8ce6ec55a0ed79866cfa6" + ], + "version": "==1.3.0" + }, + "attrs": { + "hashes": [ + "sha256:69c0dbf2ed392de1cb5ec704444b08a5ef81680a61cb899dc08127123af36a79", + "sha256:f0b870f674851ecbfbbbd364d6b5cbdff9dcedbc7f3f5e18a6891057f21fe399" + ], + "version": "==19.1.0" + }, + "backcall": { + "hashes": [ + "sha256:1fac21e6861f538700a5d498620153f38407a4bacf9e1d5047b3d717f10bc4ab", + "sha256:38ecd85be2c1e78f77fd91700c76e14667dc21e2713b63876c0eb901196e01e4", + "sha256:bbbf4b1e5cd2bdb08f915895b51081c041bac22394fdfcfdfbe9f14b77c08bf2" + ], + "version": "==0.1.0" + }, + "beautifulsoup4": { + "hashes": [ + "sha256:05668158c7b85b791c5abde53e50265e16f98ad601c402ba44d70f96c4159612", + "sha256:25288c9e176f354bf277c0a10aa96c782a6a18a17122dba2e8cec4a97e03343b", + "sha256:f040590be10520f2ea4c2ae8c3dae441c7cfff5308ec9d58a0ec0c1b8f81d469" + ], + "version": "==4.8.0" + }, + "black": { + "hashes": [ + "sha256:09a9dcb7c46ed496a9850b76e4e825d6049ecd38b611f1224857a79bd985a8cf", + "sha256:68950ffd4d9169716bcb8719a56c07a2f4485354fec061cdd5910aa07369731c" + ], + "index": "pypi", + "version": "==19.3b0" + }, + "bleach": { + "hashes": [ + "sha256:213336e49e102af26d9cde77dd2d0397afabc5a6bf2fed985dc35b5d1e285a16", + "sha256:3fdf7f77adcf649c9911387df51254b813185e32b2c6619f690b593a617e19fa" + ], + "version": "==3.1.0" + }, + "certifi": { + "hashes": [ + "sha256:046832c04d4e752f37383b628bc601a7ea7211496b4638f6514d0e5b9acc4939", + "sha256:945e3ba63a0b9f577b1395204e13c3a231f9bc0223888be653286534e5873695" + ], + "version": "==2019.6.16" + }, + "cfgv": { + "hashes": [ + "sha256:edb387943b665bf9c434f717bf630fa78aecd53d5900d2e05da6ad6048553144", + "sha256:fbd93c9ab0a523bf7daec408f3be2ed99a980e20b2d19b50fc184ca6b820d289" + ], + "version": "==2.0.1" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:2335065e6395b9e67ca716de5f7526736bfa6ceead690adf616d925bdc622b13", + "sha256:5b94b49521f6456670fdb30cd82a4eca9412788a93fa6dd6df72c94d5a8ff2d7" + ], + "version": "==7.0" + }, + "colorama": { + "hashes": [ + "sha256:05eed71e2e327246ad6b38c540c4a3117230b19679b875190486ddd2d721422d", + "sha256:f8ac84de7840f5b9c4e3347b3c1eaa50f7e49c2b07596221daec5edaabbd7c48" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.1" + }, + "coverage": { + "hashes": [ + "sha256:108efa19b676e62590a7a13084098e35183479c0d9608131c20b0921c5a72dc0", + "sha256:16fe3ef881eff27bab287f91dadb4ff0ce4388b9e928d84cbf148a83cc70b3a1", + "sha256:1d0bbc11421827d1100da82ac8dc929532b97ad464038475a0f6505cbf83d6ea", + "sha256:23a8ca5b3c9673f775cc151e85a737f1a967df2ec02b09e8c5a3b606ff2050bf", + "sha256:24b890e51455276762b55cb06fa1c922066e8fc18d1deb1a6399b4d24dfa8ea2", + "sha256:2f0041757ca4801f3c6a74d1660862fdb18a25aea302dd0ce9b067ddbb06b667", + "sha256:3169aba03baddfccdab7cc04cf0878dbf76fc06d300bc35639129a6b794d6484", + "sha256:35845f6415b297bc52bbb774a74c7216db6e39d632afbcf929daa8cf93f21c3c", + "sha256:364fb1bf0f999af2e7f4b1a1e614b2af8c3e0017d11af716aad25f911b7cd0c7", + "sha256:3d5ce16de7afa15516088450eeff5e3abd74b20034b97ba235cd950911f012d3", + "sha256:5256856d23f3e45959e7e3a8f9d4cbad3d1613e5660cb8117cd1417798efc395", + "sha256:5b26daa1e1a1147455bf62cd682e504e68f1d1e04235374d50a5248a3c792b1c", + "sha256:60247c8f0c756732e2cfe21f03e6847b923b9a9eaff61f04dc64d3047ec1b669", + "sha256:6463d51507308eb3973340d903537f17ece2ee1e6513aa0c27548fc3a09b0471", + "sha256:64cbadf7a884b299794238bc4391752130e74f71e919993b50c1c431786ef2a2", + "sha256:6de85748ea39ce819ad6d90e660da43964457a1f5cd25262e962a7c7c87945b3", + "sha256:6f95b4794bd84f64aeca25087d8e3abc416aad76842afcac34fa6c3a6f61c62e", + "sha256:778fa184aa3079fa3cbd240e2f5b36771c3382db26bc7bf78aea9d06212c6c66", + "sha256:790a9c5e2dbdf6c41eec9776ed663e99bd36c1604e3bf2e8ae3b123181bfee9f", + "sha256:7d97c1aec0b68b4ea5e3c9edb9fc3f951e8a52360f4bad3aacab9a77defe5b17", + "sha256:93cefddcc0b541d3c52981a232947bf085a38092b0812317f1adb56f02869bcb", + "sha256:95e49867ac616ec63ecd69ea005e65e4b896a48b8db7f9f3ad69f37be29324b7", + "sha256:aca423563eafba66a7c15125391b267befd1e45238de5e1a119ae1fb4ea83b5c", + "sha256:baef7c35e7fce738d9637e9c7a6aa79cb79085e4de49c2ec517ce19239a660f6", + "sha256:c10ccf0797ffce85e93a40aff3a96a3adb63c734f95b59384a7c9522ed25c9e2", + "sha256:ca39704a05bba1886c384a4d7944fda72c53fe5e61979cd933d22084678ad4c1", + "sha256:f6e96d5eee578187f5b7e9266bf646b73de29e2dd7adca8bd83e383680ce1f4c", + "sha256:fc6524511fa664cb4e91401229eedd0dad4ba6ded9c4423fee2f698d78908d9c", + "sha256:fdf2e7e5f074495ad6ea796ca0d245aa6a8b9e4c546ffbf8d30aaaee6601af0f" + ], + "version": "==5.0a6" + }, + "decorator": { + "hashes": [ + "sha256:86156361c50488b84a3f148056ea716ca587df2f0de1d34750d35c21312725de", + "sha256:f069f3a01830ca754ba5258fde2278454a0b5b79e0d7f5c13b3b97e57d4acff6" + ], + "version": "==4.4.0" + }, + "defusedxml": { + "hashes": [ + "sha256:6687150770438374ab581bb7a1b327a847dd9c5749e396102de3fad4e8a3ef93", + "sha256:f684034d135af4c6cbb949b8a4d2ed61634515257a67299e5f940fbaa34377f5" + ], + "version": "==0.6.0" + }, + "docutils": { + "hashes": [ + "sha256:6c4f696463b79f1fb8ba0c594b63840ebd41f059e92b31957c46b74a4599b6d0", + "sha256:84f558c26fd6d63e0cb6d0d36b538a670396db28cd176cd623be1f7220831db6", + "sha256:9e4d7ecfc600058e07ba661411a2b7de2fd0fafa17d1a7f7361cd47b1175c827", + "sha256:a2aeea129088da402665e92e0b25b04b073c04b2dce4ab65caaa38b7ce2e1a99" + ], + "version": "==0.15.2" + }, + "entrypoints": { + "hashes": [ + "sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19", + "sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451" + ], + "version": "==0.3" + }, + "flake8": { + "hashes": [ + "sha256:19241c1cbc971b9962473e4438a2ca19749a7dd002dd1a946eaba171b4114548", + "sha256:8e9dfa3cecb2400b3738a42c54c3043e821682b9c840b0448c0503f781130696" + ], + "index": "pypi", + "version": "==3.7.8" + }, + "flask": { + "hashes": [ + "sha256:13f9f196f330c7c2c5d7a5cf91af894110ca0215ac051b5844701f2bfd934d52", + "sha256:45eb5a6fd193d6cf7e0cf5d8a5b31f83d5faae0293695626f539a823e93b13f6" + ], + "version": "==1.1.1" + }, + "identify": { + "hashes": [ + "sha256:9aba2d08a82aa8e6f58810d4887ed3cf103a1befeb1eaf632d9c6fd2d6642542", + "sha256:b50ffad180b3a93b33a58b42597ef22493240d406ba07cc5058daf70f44b8d7c" + ], + "version": "==1.4.6" + }, + "idna": { + "hashes": [ + "sha256:c357b3f628cf53ae2c4c05627ecc484553142ca23264e593d327bcde5e9c3407", + "sha256:ea8b7f6188e6fa117537c3df7da9fc686d485087abf6ac197f9c46432f7e4a3c" + ], + "version": "==2.8" + }, + "importlib-metadata": { + "hashes": [ + "sha256:23d3d873e008a513952355379d93cbcab874c58f4f034ff657c7a87422fa64e8", + "sha256:80d2de76188eabfbfcf27e6a37342c2827801e59c4cc14b0371c56fed43820e3" + ], + "markers": "python_version < '3.8'", + "version": "==0.19" + }, + "ipykernel": { + "hashes": [ + "sha256:167c3ef08450f5e060b76c749905acb0e0fbef9365899377a4a1eae728864383", + "sha256:b503913e0b4cce7ed2de965457dfb2edd633e8234161a60e23f2fe2161345d12" + ], + "index": "pypi", + "version": "==5.1.2" + }, + "ipython": { + "hashes": [ + "sha256:1d3a1692921e932751bc1a1f7bb96dc38671eeefdc66ed33ee4cbc57e92a410e", + "sha256:537cd0176ff6abd06ef3e23f2d0c4c2c8a4d9277b7451544c6cbf56d1c79a83d" + ], + "version": "==7.7.0" + }, + "ipython-genutils": { + "hashes": [ + "sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8", + "sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8" + ], + "version": "==0.2.0" + }, + "itsdangerous": { + "hashes": [ + "sha256:321b033d07f2a4136d3ec762eac9f16a10ccd60f53c0c91af90217ace7ba1f19", + "sha256:b12271b2047cb23eeb98c8b5622e2e5c5e9abd9784a153e9d8ef9cb4dd09d749" + ], + "version": "==1.1.0" + }, + "jedi": { + "hashes": [ + "sha256:786b6c3d80e2f06fd77162a07fed81b8baa22dde5d62896a790a331d6ac21a27", + "sha256:ba859c74fa3c966a22f2aeebe1b74ee27e2a462f56d3f5f7ca4a59af61bfe42e" + ], + "version": "==0.15.1" + }, + "jinja2": { + "hashes": [ + "sha256:065c4f02ebe7f7cf559e49ee5a95fb800a9e4528727aec6f24402a5374c65013", + "sha256:14dd6caf1527abb21f08f86c784eac40853ba93edb79552aa1e4b8aef1b61c7b" + ], + "version": "==2.10.1" + }, + "jsonschema": { + "hashes": [ + "sha256:5f9c0a719ca2ce14c5de2fd350a64fd2d13e8539db29836a86adc990bb1a068f", + "sha256:8d4a2b7b6c2237e0199c8ea1a6d3e05bf118e289ae2b9d7ba444182a2959560d" + ], + "version": "==3.0.2" + }, + "jupyter-client": { + "hashes": [ + "sha256:73a809a2964afa07adcc1521537fddb58c2ffbb7e84d53dc5901cf80480465b3", + "sha256:98e8af5edff5d24e4d31e73bc21043130ae9d955a91aa93fc0bc3b1d0f7b5880" + ], + "version": "==5.3.1" + }, + "jupyter-core": { + "hashes": [ + "sha256:2c6e7c1e9f2ac45b5c2ceea5730bc9008d92fe59d0725eac57b04c0edfba24f7", + "sha256:f4fa22d6cf25f34807c995f22d2923693575c70f02557bcbfbe59bd5ec8d8b84" + ], + "version": "==4.5.0" + }, + "markupsafe": { + "hashes": [ + "sha256:00bc623926325b26bb9605ae9eae8a215691f33cae5df11ca5424f06f2d1f473", + "sha256:09027a7803a62ca78792ad89403b1b7a73a01c8cb65909cd876f7fcebd79b161", + "sha256:09c4b7f37d6c648cb13f9230d847adf22f8171b1ccc4d5682398e77f40309235", + "sha256:1027c282dad077d0bae18be6794e6b6b8c91d58ed8a8d89a89d59693b9131db5", + "sha256:19536834abffb3fa155017053c607cb835b2ecc6a3a2554a88043d991dffb736", + "sha256:24982cc2533820871eba85ba648cd53d8623687ff11cbb805be4ff7b4c971aff", + "sha256:29872e92839765e546828bb7754a68c418d927cd064fd4708fab9fe9c8bb116b", + "sha256:3d61f15e39611aacd91b7e71d903787da86d9e80896e683c0103fced9add7834", + "sha256:43a55c2930bbc139570ac2452adf3d70cdbb3cfe5912c71cdce1c2c6bbd9c5d1", + "sha256:46c99d2de99945ec5cb54f23c8cd5689f6d7177305ebff350a58ce5f8de1669e", + "sha256:500d4957e52ddc3351cabf489e79c91c17f6e0899158447047588650b5e69183", + "sha256:535f6fc4d397c1563d08b88e485c3496cf5784e927af890fb3c3aac7f933ec66", + "sha256:62fe6c95e3ec8a7fad637b7f3d372c15ec1caa01ab47926cfdf7a75b40e0eac1", + "sha256:6dd73240d2af64df90aa7c4e7481e23825ea70af4b4922f8ede5b9e35f78a3b1", + "sha256:717ba8fe3ae9cc0006d7c451f0bb265ee07739daf76355d06366154ee68d221e", + "sha256:7952deddf24b85c88dab48f6ec366ac6e39d2761b5280f2f9594911e03fcd064", + "sha256:79855e1c5b8da654cf486b830bd42c06e8780cea587384cf6545b7d9ac013a0b", + "sha256:7c1699dfe0cf8ff607dbdcc1e9b9af1755371f92a68f706051cc8c37d447c905", + "sha256:88e5fcfb52ee7b911e8bb6d6aa2fd21fbecc674eadd44118a9cc3863f938e735", + "sha256:8defac2f2ccd6805ebf65f5eeb132adcf2ab57aa11fdf4c0dd5169a004710e7d", + "sha256:98c7086708b163d425c67c7a91bad6e466bb99d797aa64f965e9d25c12111a5e", + "sha256:9add70b36c5666a2ed02b43b335fe19002ee5235efd4b8a89bfcf9005bebac0d", + "sha256:9bf40443012702a1d2070043cb6291650a0841ece432556f784f004937f0f32c", + "sha256:ade5e387d2ad0d7ebf59146cc00c8044acbd863725f887353a10df825fc8ae21", + "sha256:b00c1de48212e4cc9603895652c5c410df699856a2853135b3967591e4beebc2", + "sha256:b1282f8c00509d99fef04d8ba936b156d419be841854fe901d8ae224c59f0be5", + "sha256:b2051432115498d3562c084a49bba65d97cf251f5a331c64a12ee7e04dacc51b", + "sha256:ba59edeaa2fc6114428f1637ffff42da1e311e29382d81b339c1817d37ec93c6", + "sha256:c8716a48d94b06bb3b2524c2b77e055fb313aeb4ea620c8dd03a105574ba704f", + "sha256:cd5df75523866410809ca100dc9681e301e3c27567cf498077e8551b6d20e42f", + "sha256:e249096428b3ae81b08327a63a485ad0878de3fb939049038579ac0ef61e17e7" + ], + "version": "==1.1.1" + }, + "mccabe": { + "hashes": [ + "sha256:ab8a6258860da4b6677da4bd2fe5dc2c659cff31b3ee4f7f5d64e79735b80d42", + "sha256:dd8d182285a0fe56bace7f45b5e7d1a6ebcbf524e8f3bd87eb0f125271b8831f" + ], + "version": "==0.6.1" + }, + "mistune": { + "hashes": [ + "sha256:59a3429db53c50b5c6bcc8a07f8848cb00d7dc8bdb431a4ab41920d201d4756e", + "sha256:88a1051873018da288eee8538d476dffe1262495144b33ecb586c4ab266bb8d4" + ], + "version": "==0.8.4" + }, + "more-itertools": { + "hashes": [ + "sha256:409cd48d4db7052af495b09dec721011634af3753ae1ef92d2b32f73a745f832", + "sha256:92b8c4b06dac4f0611c0729b2f2ede52b2e1bac1ab48f089c7ddc12e26bb60c4" + ], + "version": "==7.2.0" + }, + "mypy": { + "hashes": [ + "sha256:0107bff4f46a289f0e4081d59b77cef1c48ea43da5a0dbf0005d54748b26df2a", + "sha256:07957f5471b3bb768c61f08690c96d8a09be0912185a27a68700f3ede99184e4", + "sha256:10af62f87b6921eac50271e667cc234162a194e742d8e02fc4ddc121e129a5b0", + "sha256:11fd60d2f69f0cefbe53ce551acf5b1cec1a89e7ce2d47b4e95a84eefb2899ae", + "sha256:15e43d3b1546813669bd1a6ec7e6a11d2888db938e0607f7b5eef6b976671339", + "sha256:352c24ba054a89bb9a35dd064ee95ab9b12903b56c72a8d3863d882e2632dc76", + "sha256:437020a39417e85e22ea8edcb709612903a9924209e10b3ec6d8c9f05b79f498", + "sha256:49925f9da7cee47eebf3420d7c0e00ec662ec6abb2780eb0a16260a7ba25f9c4", + "sha256:6724fcd5777aa6cebfa7e644c526888c9d639bd22edd26b2a8038c674a7c34bd", + "sha256:7a17613f7ea374ab64f39f03257f22b5755335b73251d0d253687a69029701ba", + "sha256:cdc1151ced496ca1496272da7fc356580e95f2682be1d32377c22ddebdf73c91" + ], + "index": "pypi", + "version": "==0.720" + }, + "mypy-extensions": { + "hashes": [ + "sha256:37e0e956f41369209a3d5f34580150bcacfabaa57b33a15c0b25f4b5725e0812", + "sha256:b16cabe759f55e3409a7d231ebd2841378fb0c27a5d1994719e340e4f429ac3e" + ], + "version": "==0.4.1" + }, + "nbconvert": { + "hashes": [ + "sha256:427a468ec26e7d68a529b95f578d5cbf018cb4c1f889e897681c2b6d11897695", + "sha256:48d3c342057a2cf21e8df820d49ff27ab9f25fc72b8f15606bd47967333b2709" + ], + "version": "==5.6.0" + }, + "nbformat": { + "hashes": [ + "sha256:b9a0dbdbd45bb034f4f8893cafd6f652ea08c8c1674ba83f2dc55d3955743b0b", + "sha256:f7494ef0df60766b7cabe0a3651556345a963b74dbc16bc7c18479041170d402" + ], + "version": "==4.4.0" + }, + "nodeenv": { + "hashes": [ + "sha256:ad8259494cf1c9034539f6cced78a1da4840a4b157e23640bc4a0c0546b0cb7a", + "sha256:ae768ef7f4a047bae646c4da47fc984b78d651d8eb2c30c3c85ffba2804427a0" + ], + "version": "==1.3.3" + }, + "notebook": { + "hashes": [ + "sha256:0be97e939cec73cde37fc4d2a606a6f497a9addf3afcf61a09a21b0c35e699c5", + "sha256:5c16dbf4fa824db19de43637ebfb24bcbd3b4f646e5d6a0414ed3a376d6bc951" + ], + "version": "==6.0.0" + }, + "packaging": { + "hashes": [ + "sha256:a7ac867b97fdc07ee80a8058fe4435ccd274ecc3b0ed61d852d7d53055528cf9", + "sha256:c491ca87294da7cc01902edbe30a5bc6c4c28172b5138ab4e4aa1b9d7bfaeafe" + ], + "version": "==19.1" + }, + "pandocfilters": { + "hashes": [ + "sha256:41a309da81cba5509389b19d96b0ee49551cee8165a6406754f2565e95429860", + "sha256:b3dd70e169bb5449e6bc6ff96aea89c5eea8c5f6ab5e207fc2f521a2cf4a0da9" + ], + "version": "==1.4.2" + }, + "parso": { + "hashes": [ + "sha256:63854233e1fadb5da97f2744b6b24346d2750b85965e7e399bec1620232797dc", + "sha256:666b0ee4a7a1220f65d367617f2cd3ffddff3e205f3f16a0284df30e774c2a9c" + ], + "version": "==0.5.1" + }, + "pexpect": { + "hashes": [ + "sha256:2094eefdfcf37a1fdbfb9aa090862c1a4878e5c7e0e7e7088bdb511c558e5cd1", + "sha256:9e2c1fd0e6ee3a49b28f95d4b33bc389c89b20af6a1255906e90ff1262ce62eb" + ], + "version": "==4.7.0" + }, + "pickleshare": { + "hashes": [ + "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca", + "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56" + ], + "version": "==0.7.5" + }, + "pkginfo": { + "hashes": [ + "sha256:7424f2c8511c186cd5424bbf31045b77435b37a8d604990b79d4e70d741148bb", + "sha256:a6d9e40ca61ad3ebd0b72fbadd4fba16e4c0e4df0428c041e01e06eb6ee71f32" + ], + "version": "==1.5.0.1" + }, + "pluggy": { + "hashes": [ + "sha256:0825a152ac059776623854c1543d65a4ad408eb3d33ee114dff91e57ec6ae6fc", + "sha256:b9817417e95936bf75d85d3f8767f7df6cdde751fc40aed3bb3074cbcb77757c" + ], + "version": "==0.12.0" + }, + "pre-commit": { + "hashes": [ + "sha256:21ce389ea3a480170804208baff8ceaac815ecf6b9bd6c6797de5584ad69cff8", + "sha256:3b0e901f442b966444833f1924e9bf9a7c10c79741b21520f68bc87639220f5e" + ], + "index": "pypi", + "version": "==1.18.2" + }, + "prometheus-client": { + "hashes": [ + "sha256:09b5750fd1c153420dccd35881116e853c730081bea0dbf0ea6649103bcb8445", + "sha256:71cd24a2b3eb335cb800c7159f423df1bd4dcd5171b234be15e3f31ec9f622da" + ], + "version": "==0.7.1" + }, + "prompt-toolkit": { + "hashes": [ + "sha256:11adf3389a996a6d45cc277580d0d53e8a5afd281d0c9ec71b28e6f121463780", + "sha256:2519ad1d8038fd5fc8e770362237ad0364d16a7650fb5724af6997ed5515e3c1", + "sha256:977c6583ae813a37dc1c2e1b715892461fcbdaa57f6fc62f33a528c4886c8f55" + ], + "version": "==2.0.9" + }, + "psutil": { + "hashes": [ + "sha256:028a1ec3c6197eadd11e7b46e8cc2f0720dc18ac6d7aabdb8e8c0d6c9704f000", + "sha256:503e4b20fa9d3342bcf58191bbc20a4a5ef79ca7df8972e6197cc14c5513e73d", + "sha256:863a85c1c0a5103a12c05a35e59d336e1d665747e531256e061213e2e90f63f3", + "sha256:954f782608bfef9ae9f78e660e065bd8ffcfaea780f9f2c8a133bb7cb9e826d7", + "sha256:968b1d0ad79ee376f52875b9cf3a204ebb099da50a3567daba8fb890679ce6b9", + "sha256:b6e08f965a305cd84c2d07409bc16fbef4417d67b70c53b299116c5b895e3f45", + "sha256:b99cf995f4ab9b36faff05615c24e3b05418234312d1335485423e43f2297326", + "sha256:bc96d437dfbb8865fc8828cf363450001cb04056bbdcdd6fc152c436c8a74c61", + "sha256:cf49178021075d47c61c03c0229ac0c60d5e2830f8cab19e2d88e579b18cdb76", + "sha256:cfc9ddeb293e469d19918d8a379e09731b430f5d009bb38915683f41b59c9ddf", + "sha256:d5350cb66690915d60f8b233180f1e49938756fb2d501c93c44f8fb5b970cc63", + "sha256:eba238cf1989dfff7d483c029acb0ac4fcbfc15de295d682901f0e2497e6781a" + ], + "version": "==5.6.3" + }, + "ptyprocess": { + "hashes": [ + "sha256:923f299cc5ad920c68f2bc0bc98b75b9f838b93b599941a6b63ddbc2476394c0", + "sha256:d7cc528d76e76342423ca640335bd3633420dc1366f258cb31d05e865ef5ca1f" + ], + "version": "==0.6.0" + }, + "py": { + "hashes": [ + "sha256:64f65755aee5b381cea27766a3a147c3f15b9b6b9ac88676de66ba2ae36793fa", + "sha256:dc639b046a6e2cff5bbe40194ad65936d6ba360b52b3c3fe1d08a82dd50b5e53" + ], + "version": "==1.8.0" + }, + "pycodestyle": { + "hashes": [ + "sha256:95a2219d12372f05704562a14ec30bc76b05a5b297b21a5dfe3f6fac3491ae56", + "sha256:e40a936c9a450ad81df37f549d676d127b1b66000a6c500caa2b085bc0ca976c" + ], + "version": "==2.5.0" + }, + "pyflakes": { + "hashes": [ + "sha256:17dbeb2e3f4d772725c777fabc446d5634d1038f234e77343108ce445ea69ce0", + "sha256:d976835886f8c5b31d47970ed689944a0262b5f3afa00a5a7b4dc81e5449f8a2" + ], + "version": "==2.1.1" + }, + "pygments": { + "hashes": [ + "sha256:71e430bc85c88a430f000ac1d9b331d2407f681d6f6aec95e8bcfbc3df5b0127", + "sha256:881c4c157e45f30af185c1ffe8d549d48ac9127433f2c380c24b84572ad66297" + ], + "version": "==2.4.2" + }, + "pyparsing": { + "hashes": [ + "sha256:6f98a7b9397e206d78cc01df10131398f1c8b8510a2f4d97d9abd82e1aacdd80", + "sha256:d9338df12903bbf5d65a0e4e87c2161968b10d2e489652bb47001d82a9b028b4" + ], + "version": "==2.4.2" + }, + "pyrsistent": { + "hashes": [ + "sha256:34b47fa169d6006b32e99d4b3c4031f155e6e68ebcc107d6454852e8e0ee6533", + "sha256:44bd536028d023466d579cb95b7d090e48da4a44fcc76662e861151362f59e3e", + "sha256:4675b7efae98bb55067563c80ef072742a895647c32120e09489ddf12ae3103d", + "sha256:b03dcf0690ca57ceb5fdaa27bbdca77d48852fcf730efe401b43d59207909451" + ], + "version": "==0.15.4" + }, + "pytest": { + "hashes": [ + "sha256:3805d095f1ea279b9870c3eeae5dddf8a81b10952c8835cd628cf1875b0ef031", + "sha256:abc562321c2d190dd63c2faadf70b86b7af21a553b61f0df5f5e1270717dc5a3" + ], + "index": "pypi", + "version": "==5.1.0" + }, + "pytest-cov": { + "hashes": [ + "sha256:2b097cde81a302e1047331b48cadacf23577e431b61e9c6f49a1170bbe3d3da6", + "sha256:e00ea4fdde970725482f1f35630d12f074e121a23801aabf2ae154ec6bdd343a" + ], + "index": "pypi", + "version": "==2.7.1" + }, + "python-dateutil": { + "hashes": [ + "sha256:7e6584c74aeed623791615e26efd690f29817a27c73085b78e4bad02493df2fb", + "sha256:c89805f6f4d64db21ed966fda138f8a5ed7a4fdbc1a8ee329ce1b74e3c74da9e" + ], + "version": "==2.8.0" + }, + "pywinpty": { + "hashes": [ + "sha256:0e01321e53a230233358a6d608a1a8bc86c3882cf82769ba3c62ca387dc9cc51", + "sha256:333e0bc5fca8ad9e9a1516ebedb2a65da38dc1f399f8b2ea57d6cccec1ff2cc8", + "sha256:3ca3123aa6340ab31bbf9bd012b92e72f9ec905e4c9ee152cc997403e1778cd3", + "sha256:44a6dddcf2abf402e22f87e2c9a341f7d0b296afbec3d28184c8de4d7f514ee4", + "sha256:53d94d574c3d4da2df5b1c3ae728b8d90e4d33502b0388576bbd4ddeb4de0f77", + "sha256:c3955f162c53dde968f3fc11361658f1d83b683bfe601d4b6f94bb01ea4300bc", + "sha256:cec9894ecb34de3d7b1ca121dd98433035b9f8949b5095e84b103b349231509c", + "sha256:dcd45912e2fe2e6f72cee997a4da6ed1ad2056165a277ce5ec7f7ac98dcdf667", + "sha256:f2bcdd9a2ffd8b223752a971b3d377fb7bfed85f140ec9710f1218d760f2ccb7" + ], + "markers": "os_name == 'nt'", + "version": "==0.5.5" + }, + "pyyaml": { + "hashes": [ + "sha256:0113bc0ec2ad727182326b61326afa3d1d8280ae1122493553fd6f4397f33df9", + "sha256:01adf0b6c6f61bd11af6e10ca52b7d4057dd0be0343eb9283c878cf3af56aee4", + "sha256:2e47139cc7a6599dee11e1e799a9a42c3039bbf840f70f7df39b412728e489f1", + "sha256:5124373960b0b3f4aa7df1707e63e9f109b5263eca5976c66e08b1c552d4eaf8", + "sha256:5ca4f10adbddae56d824b2c09668e91219bb178a1eee1faa56af6f99f11bf696", + "sha256:66d998cbe162f3240144b1ea848a1d55d76f66c006f1c00752d0b2dd0288c95f", + "sha256:7907be34ffa3c5a32b60b95f4d95ea25361c951383a894fec31be7252b2b6f34", + "sha256:7ec9b2a4ed5cad025c2278a1e6a19c011c80a3caaac804fd2d329e9cc2c287c9", + "sha256:87ae4c829bb25b9fe99cf71fbb2140c448f534e24c998cc60f39ae4f94396a73", + "sha256:9de9919becc9cc2ff03637872a440195ac4241c80536632fffeb6a1e25a74299", + "sha256:a5a85b10e450c66b49f98846937e8cfca1db3127a9d5d1e31ca45c3d0bef4c5b", + "sha256:ade41f6b19edc1b3d9dd536e7e065f2cc3dfac05dfac6d9bbf5918f8cd414e6f", + "sha256:b0997827b4f6a7c286c01c5f60384d218dca4ed7d9efa945c3e1aa623d5709ae", + "sha256:b631ef96d3222e62861443cc89d6563ba3eeb816eeb96b2629345ab795e53681", + "sha256:bf47c0607522fdbca6c9e817a6e81b08491de50f3766a7a0e6a5be7905961b41", + "sha256:f81025eddd0327c7d4cfe9b62cf33190e1e736cc6e97502b3ec425f574b3e7a8" + ], + "version": "==5.1.2" + }, + "pyzmq": { + "hashes": [ + "sha256:01636e95a88d60118479041c6aaaaf5419c6485b7b1d37c9c4dd424b7b9f1121", + "sha256:021dba0d1436516092c624359e5da51472b11ba8edffa334218912f7e8b65467", + "sha256:0463bd941b6aead494d4035f7eebd70035293dd6caf8425993e85ad41de13fa3", + "sha256:05fd51edd81eed798fccafdd49c936b6c166ffae7b32482e4d6d6a2e196af4e6", + "sha256:1fadc8fbdf3d22753c36d4172169d184ee6654f8d6539e7af25029643363c490", + "sha256:22efa0596cf245a78a99060fe5682c4cd00c58bb7614271129215c889062db80", + "sha256:260c70b7c018905ec3659d0f04db735ac830fe27236e43b9dc0532cf7c9873ef", + "sha256:2762c45e289732d4450406cedca35a9d4d71e449131ba2f491e0bf473e3d2ff2", + "sha256:2fc6cada8dc53521c1189596f1898d45c5f68603194d3a6453d6db4b27f4e12e", + "sha256:343b9710a61f2b167673bea1974e70b5dccfe64b5ed10626798f08c1f7227e72", + "sha256:41bf96d5f554598a0632c3ec28e3026f1d6591a50f580df38eff0b8067efb9e7", + "sha256:56dc8f72f0ce67a9be1782a0d016602abd3e7bf1a39cda003edd492e55b54f13", + "sha256:7b2a856a3f880869cb6ce0938c3e6433d5c3a8119530830cc9f91dd814a4ea40", + "sha256:856b2cdf7a1e2cbb84928e1e8db0ea4018709b39804103d3a409e5584f553f57", + "sha256:85b869abc894672de9aecdf032158ea8ad01e2f0c3b09ef60e3687fb79418096", + "sha256:875e1d33dd464fd86cded15eb4e3e41bf674acfd623cfa3f7326d2ca8bbe3cdf", + "sha256:93f44739db69234c013a16990e43db1aa0af3cf5a4b8b377d028ff24515fbeb3", + "sha256:98fa3e75ccb22c0dc99654e3dd9ff693b956861459e8c8e8734dd6247b89eb29", + "sha256:9a22c94d2e93af8bebd4fcf5fa38830f5e3b1ff0d4424e2912b07651eb1bafb4", + "sha256:a7d3f4b4bbb5d7866ae727763268b5c15797cbd7b63ea17f3b0ec1067da8994b", + "sha256:b645a49376547b3816433a7e2d2a99135c8e651e50497e7ecac3bd126e4bea16", + "sha256:cf0765822e78cf9e45451647a346d443f66792aba906bc340f4e0ac7870c169c", + "sha256:dc398e1e047efb18bfab7a8989346c6921a847feae2cad69fedf6ca12fb99e2c", + "sha256:dd5995ae2e80044e33b5077fb4bc2b0c1788ac6feaf15a6b87a00c14b4bdd682", + "sha256:e03fe5e07e70f245dc9013a9d48ae8cc4b10c33a1968039c5a3b64b5d01d083d", + "sha256:ea09a306144dff2795e48439883349819bef2c53c0ee62a3c2fae429451843bb", + "sha256:f4e37f33da282c3c319849877e34f97f0a3acec09622ec61b7333205bdd13b52", + "sha256:fa4bad0d1d173dee3e8ef3c3eb6b2bb6c723fc7a661eeecc1ecb2fa99860dd45" + ], + "version": "==18.1.0" + }, + "readme-renderer": { + "hashes": [ + "sha256:bb16f55b259f27f75f640acf5e00cf897845a8b3e4731b5c1a436e4b8529202f", + "sha256:c8532b79afc0375a85f10433eca157d6b50f7d6990f337fa498c96cd4bfc203d" + ], + "version": "==24.0" + }, + "remote-ikernel": { + "hashes": [ + "sha256:5253216e87a8c31f1b0ca9305454f223147518b580e853b7635a3d8b9c88c295", + "sha256:740b80a57fa1af40cadef541c5a4eb293675b504092ecf00c57dd2f0011bd840" + ], + "index": "pypi", + "version": "==0.4.6" + }, + "requests": { + "hashes": [ + "sha256:11e007a8a2aa0323f5a921e9e6a2d7e4e67d9877e85773fba9ba6419025cbeb4", + "sha256:9cf5292fcd0f598c671cfc1e0d7d1a7f13bb8085e9a590f48c010551dc6c4b31" + ], + "version": "==2.22.0" + }, + "requests-toolbelt": { + "hashes": [ + "sha256:380606e1d10dc85c3bd47bf5a6095f815ec007be7a8b69c878507068df059e6f", + "sha256:968089d4584ad4ad7c171454f0a5c6dac23971e9472521ea3b6d49d610aa6fc0" + ], + "version": "==0.9.1" + }, + "send2trash": { + "hashes": [ + "sha256:60001cc07d707fe247c94f74ca6ac0d3255aabcb930529690897ca2a39db28b2", + "sha256:f1691922577b6fa12821234aeb57599d887c4900b9ca537948d2dac34aea888b" + ], + "version": "==1.5.0" + }, + "six": { + "hashes": [ + "sha256:3350809f0555b11f552448330d0b52d5f24c91a322ea4a15ef22629740f3761c", + "sha256:d16a0141ec1a18405cd4ce8b4613101da75da0e9a7aec5bdd4fa804d0e0eba73" + ], + "version": "==1.12.0" + }, + "soupsieve": { + "hashes": [ + "sha256:8662843366b8d8779dec4e2f921bebec9afd856a5ff2e82cd419acc5054a1a92", + "sha256:a5a6166b4767725fd52ae55fee8c8b6137d9a51e9f1edea461a062a759160118" + ], + "version": "==1.9.3" + }, + "terminado": { + "hashes": [ + "sha256:d9d012de63acb8223ac969c17c3043337c2fcfd28f3aea1ee429b345d01ef460", + "sha256:de08e141f83c3a0798b050ecb097ab6259c3f0331b2f7b7750c9075ced2c20c2" + ], + "version": "==0.8.2" + }, + "testpath": { + "hashes": [ + "sha256:46c89ebb683f473ffe2aab0ed9f12581d4d078308a3cb3765d79c6b2317b0109", + "sha256:b694b3d9288dbd81685c5d2e7140b81365d46c29f5db4bc659de5aa6b98780f8" + ], + "version": "==0.4.2" + }, + "toml": { + "hashes": [ + "sha256:229f81c57791a41d65e399fc06bf0848bab550a9dfd5ed66df18ce5f05e73d5c", + "sha256:235682dd292d5899d361a811df37e04a8828a5b1da3115886b73cf81ebc9100e" + ], + "version": "==0.10.0" + }, + "tornado": { + "hashes": [ + "sha256:33e962c5857767326202b6405a51149b3dbf323d145dbde7e845d0094b8cc641", + "sha256:349884248c36801afa19e342a77cc4458caca694b0eda633f5878e458a44cb2c", + "sha256:398e0d35e086ba38a0427c3b37f4337327231942e731edaa6e9fd1865bbd6f60", + "sha256:4e73ef678b1a859f0cb29e1d895526a20ea64b5ffd510a2307b5998c7df24281", + "sha256:559bce3d31484b665259f50cd94c5c28b961b09315ccd838f284687245f416e5", + "sha256:abbe53a39734ef4aba061fca54e30c6b4639d3e1f59653f0da37a0003de148c7", + "sha256:c845db36ba616912074c5b1ee897f8e0124df269468f25e4fe21fe72f6edd7a9", + "sha256:c9399267c926a4e7c418baa5cbe91c7d1cf362d505a1ef898fde44a07c9dd8a5", + "sha256:e573a3591f29be3136ba79ec6d975f37a730f986098e576de8d80cbd687d89ce" + ], + "version": "==6.0.3" + }, + "tqdm": { + "hashes": [ + "sha256:438d6a735167099d75e5fd9a55175c6727c4dbba345ae406b2886c2728fe3e80", + "sha256:ebc205051d79b49989140f5f6c73ec23fce5f590cbc4d9cd6e4c47f168fa0f10" + ], + "version": "==4.34.0" + }, + "traitlets": { + "hashes": [ + "sha256:9c4bd2d267b7153df9152698efb1050a5d84982d3384a37b2c1f7723ba3e7835", + "sha256:c6cb5e6f57c5a9bdaa40fa71ce7b4af30298fbab9ece9815b5d995ab6217c7d9" + ], + "version": "==4.3.2" + }, + "twine": { + "hashes": [ + "sha256:0fb0bfa3df4f62076cab5def36b1a71a2e4acb4d1fa5c97475b048117b1a6446", + "sha256:d6c29c933ecfc74e9b1d9fa13aa1f87c5d5770e119f5a4ce032092f0ff5b14dc" + ], + "index": "pypi", + "version": "==1.13.0" + }, + "typed-ast": { + "hashes": [ + "sha256:18511a0b3e7922276346bcb47e2ef9f38fb90fd31cb9223eed42c85d1312344e", + "sha256:262c247a82d005e43b5b7f69aff746370538e176131c32dda9cb0f324d27141e", + "sha256:2b907eb046d049bcd9892e3076c7a6456c93a25bebfe554e931620c90e6a25b0", + "sha256:354c16e5babd09f5cb0ee000d54cfa38401d8b8891eefa878ac772f827181a3c", + "sha256:3fe142e6c113dc390479a21f363464ddee2ae48d20f7ff23e41ac19465761c32", + "sha256:4e0b70c6fc4d010f8107726af5fd37921b666f5b31d9331f0bd24ad9a088e631", + "sha256:630968c5cdee51a11c05a30453f8cd65e0cc1d2ad0d9192819df9978984529f4", + "sha256:66480f95b8167c9c5c5c87f32cf437d585937970f3fc24386f313a4c97b44e34", + "sha256:71211d26ffd12d63a83e079ff258ac9d56a1376a25bc80b1cdcdf601b855b90b", + "sha256:95bd11af7eafc16e829af2d3df510cecfd4387f6453355188342c3e79a2ec87a", + "sha256:a9abe531ff65a6aeedb69d2475b15082470f2b4778b7d1bbb8108861bb3a004d", + "sha256:bc6c7d3fa1325a0c6613512a093bc2a2a15aeec350451cbdf9e1d4bffe3e3233", + "sha256:cc34a6f5b426748a507dd5d1de4c1978f2eb5626d51326e43280941206c209e1", + "sha256:d755f03c1e4a51e9b24d899561fec4ccaf51f210d52abdf8c07ee2849b212a36", + "sha256:d7c45933b1bdfaf9f36c579671fec15d25b06c8398f113dab64c18ed1adda01d", + "sha256:d896919306dd0aa22d0132f62a1b78d11aaf4c9fc5b3410d3c666b818191630a", + "sha256:f9aadde5abd3225e4d94a9fafe3ce6f15fe607b2305a989be7ab4b7938cd96d1", + "sha256:ffde2fbfad571af120fcbfbbc61c72469e72f550d676c3342492a9dfdefb8f12" + ], + "version": "==1.4.0" + }, + "typing-extensions": { + "hashes": [ + "sha256:2ed632b30bb54fc3941c382decfd0ee4148f5c591651c9272473fea2c6397d95", + "sha256:b1edbbf0652660e32ae780ac9433f4231e7339c7f9a8057d0f042fcbcea49b87", + "sha256:d8179012ec2c620d3791ca6fe2bf7979d979acdbef1fca0bc56b37411db682ed" + ], + "version": "==3.7.4" + }, + "urllib3": { + "hashes": [ + "sha256:b246607a25ac80bedac05c6f282e3cdaf3afb65420fd024ac94435cabe6e18d1", + "sha256:dbe59173209418ae49d485b87d1681aefa36252ee85884c31346debd19463232" + ], + "version": "==1.25.3" + }, + "virtualenv": { + "hashes": [ + "sha256:5e4d92f9a36359a745ddb113cabb662e6100e71072a1e566eb6ddfcc95fdb7ed", + "sha256:b6711690882013bc79e0eac55889d901596f0967165d80adfa338c5729db1c71" + ], + "version": "==16.7.3" + }, + "waitress": { + "hashes": [ + "sha256:4e2a6e6fca56d6d3c279f68a2b2cc9b4798d834ea3c3a9db3e2b76b6d66f4526", + "sha256:90fe750cd40b282fae877d3c866255d485de18e8a232e93de42ebd9fb750eebb" + ], + "version": "==1.3.0" + }, + "wcwidth": { + "hashes": [ + "sha256:3df37372226d6e63e1b1e1eda15c594bca98a22d33a23832a90998faa96bc65e", + "sha256:f4ebe71925af7b40a864553f761ed559b43544f8f71746c2d756c7fe788ade7c" + ], + "version": "==0.1.7" + }, + "webencodings": { + "hashes": [ + "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", + "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923" + ], + "version": "==0.5.1" + }, + "webob": { + "hashes": [ + "sha256:05aaab7975e0ee8af2026325d656e5ce14a71f1883c52276181821d6d5bf7086", + "sha256:36db8203c67023d68c1b00208a7bf55e3b10de2aa317555740add29c619de12b" + ], + "version": "==1.8.5" + }, + "webtest": { + "hashes": [ + "sha256:41348efe4323a647a239c31cde84e5e440d726ca4f449859264e538d39037fd0", + "sha256:f3a603b8f1dd873b9710cd5a7dd0889cf758d7e1c133b1dae971c04f567e566e" + ], + "index": "pypi", + "version": "==2.0.33" + }, + "werkzeug": { + "hashes": [ + "sha256:87ae4e5b5366da2347eb3116c0e6c681a0e939a33b2805e2c0cbd282664932c4", + "sha256:a13b74dd3c45f758d4ebdb224be8f1ab8ef58b3c0ffc1783a8c7d9f4f50227e6" + ], + "version": "==0.15.5" + }, + "wheel": { + "hashes": [ + "sha256:10c9da68765315ed98850f8e048347c3eb06dd81822dc2ab1d4fde9dc9702646", + "sha256:f4da1763d3becf2e2cd92a14a7c920f0f00eca30fdde9ea992c836685b9faf28" + ], + "index": "pypi", + "version": "==0.33.6" + }, + "zipp": { + "hashes": [ + "sha256:4970c3758f4e89a7857a973b1e2a5d75bcdc47794442f2e2dd4fe8e0466e809a", + "sha256:8a5712cfd3bb4248015eb3b0b3c54a5f6ee3f2425963ef2a0125b8bc40aafaec" + ], + "version": "==0.5.2" + } + } +} diff --git a/Ch08/apd.sensors-chapter08/README.md b/Ch08/apd.sensors-chapter08/README.md new file mode 100644 index 0000000..7f015bf --- /dev/null +++ b/Ch08/apd.sensors-chapter08/README.md @@ -0,0 +1,66 @@ +# Advanced Python Development Sensors + +This is the data collection package that forms part of the running example +for the book [Advanced Python Development](https://advancedpython.dev). + +## Usage + +This installs a console script called `sensors` that returns a report on +various aspects of the system. The available sensors are: + +* Python version +* IP Addresses +* CPU Usage +* RAM Available +* Battery charging state +* Ambient Temperature +* Ambient Humidity + +There are no command-line options, to view the report run `sensors` on the +command line. + +## Caveats + +The Ambient Temperature and Ambient Humidity sensors are only available on +RaspberryPi hosts and assume that a DHT22 sensor is connected to pin `D20`. + +The location and type of the sensor can be controlled by setting a pair of +environment variables: `APD_SENSORS_TEMPERATURE_BOARD` and +`APD_SENSORS_TEMPERATURE_PIN`. + +If there is an entry in `/etc/hosts` for the current machine's hostname that +value will be the only result from the IP Addresses sensor. + +## Installation + +You can install with `pip3 install apd.sensors` under Python 3.7 or higher. + +We recommend using pipenv to manage your environment, in which case you would +install using `pipenv --three install apd.sensors` and run the programme using +`pipenv run sensors`. + +## API server + +There is an optional API server shipped with apd.sensors. To use this you +should install the `apd.sensors[webapp]` extra. The API can then be started +with the non-production quality wsgiref server using: + + python -m apd.sensors.wsgi.serve + +or through Waitress (if installed) using: + + waitress-serve --call apd.sensors.wsgi:set_up_config + +Other WSGI servers will also work, you should use set_up_config as a factory +function. + +An environment variable is required to use the API server, `APD_SENSORS_API_KEY` +should be set to the API key required to gain access. One can be generated +using: + + python -c "import uuid; print(uuid.uuid4().hex)" + +The following endpoints are supported: + +* /v/2.0/sensors +* /v/2.0/sensors/sensorid diff --git a/Ch08/apd.sensors-chapter08/plugins/apd.sunnyboy_solar/pyproject.toml b/Ch08/apd.sensors-chapter08/plugins/apd.sunnyboy_solar/pyproject.toml new file mode 100644 index 0000000..4d3bb67 --- /dev/null +++ b/Ch08/apd.sensors-chapter08/plugins/apd.sunnyboy_solar/pyproject.toml @@ -0,0 +1,5 @@ +[build-system] +requires = [ + "setuptools", +] +build-backend = "setuptools.build_meta" diff --git a/Ch08/apd.sensors-chapter08/plugins/apd.sunnyboy_solar/setup.cfg b/Ch08/apd.sensors-chapter08/plugins/apd.sunnyboy_solar/setup.cfg new file mode 100644 index 0000000..0f5db10 --- /dev/null +++ b/Ch08/apd.sensors-chapter08/plugins/apd.sunnyboy_solar/setup.cfg @@ -0,0 +1,33 @@ +[mypy] +ignore_missing_imports = True + +[flake8] +max-line-length = 88 + +[metadata] +name = apd.sunnyboy_solar +version = attr: apd.sunnyboy_solar.VERSION +description = APD Sensor for reading data from Sunnyboy inverters +long_description = file: README.md, CHANGES.md, LICENCE +long_description_content_type = text/markdown +keywords = iot solar +license = MIT +classifiers = + Programming Language :: Python :: 3 + Programming Language :: Python :: 3.7 + +[options] +zip_safe = False +include_package_data = True +package_dir = + =src +packages = find_namespace: +install_requires = + apd.sensors + +[options.packages.find] +where = src + +[options.entry_points] +apd.sensors.sensors = + SolarCumulativeOutput = apd.sunnyboy_solar.sensor:SolarCumulativeOutput diff --git a/Ch08/apd.sensors-chapter08/plugins/apd.sunnyboy_solar/setup.py b/Ch08/apd.sensors-chapter08/plugins/apd.sunnyboy_solar/setup.py new file mode 100644 index 0000000..6068493 --- /dev/null +++ b/Ch08/apd.sensors-chapter08/plugins/apd.sunnyboy_solar/setup.py @@ -0,0 +1,3 @@ +from setuptools import setup + +setup() diff --git a/Ch08/apd.sensors-chapter08/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/Pipfile b/Ch08/apd.sensors-chapter08/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/Pipfile new file mode 100644 index 0000000..e69de29 diff --git a/Ch08/apd.sensors-chapter08/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/__init__.py b/Ch08/apd.sensors-chapter08/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/__init__.py new file mode 100644 index 0000000..3277f64 --- /dev/null +++ b/Ch08/apd.sensors-chapter08/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/__init__.py @@ -0,0 +1 @@ +VERSION = "1.0.0" diff --git a/Ch08/apd.sensors-chapter08/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/sensor.py b/Ch08/apd.sensors-chapter08/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/sensor.py new file mode 100644 index 0000000..aa37a2e --- /dev/null +++ b/Ch08/apd.sensors-chapter08/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/sensor.py @@ -0,0 +1,69 @@ +import os +import subprocess +import typing as t + +from pint import _DEFAULT_REGISTRY as ureg + +from apd.sensors.base import Sensor + + +class SolarCumulativeOutput(Sensor[t.Optional[t.Any]]): + name = "SolarCumulativeOutput" + title = "Solar panel cumulative output" + + def __init__( + self, path: t.Optional[str] = None, bt_addr: t.Optional[str] = None + ) -> None: + self.path = os.environ.get( + "APD_SUNNYBOYSOLAR_PATH", "/home/pi/opensunny-master/opensunny" + ) + self.bt_addr = os.environ.get("APD_SUNNYBOYSOLAR_BT_ADDRESS", None) + + def value(self) -> t.Optional[t.Any]: + if self.bt_addr is None: + return None + try: + output: bytes = subprocess.check_output( + [self.path, "-i", self.bt_addr], stderr=subprocess.STDOUT, timeout=15 + ) + except (subprocess.CalledProcessError, FileNotFoundError): + return None + + lines = filter(None, output.split(b"\n")) + found = {} + for line in lines: + start, value = line.rsplit(b"=", 1) + start, key = start.rsplit(b" ", 1) + found[key] = value + + try: + yield_total = float(found[b"yield_total"][:-3].replace(b".", b"")) + power_dc_1 = int(found[b"power_dc_1"][:-1]) + power_dc_2 = int(found[b"power_dc_2"][:-1]) + if power_dc_1 > 1500 or power_dc_2 > 1500: + return None + except (ValueError, IndexError, KeyError): + return None + return ureg.Quantity(yield_total, "watt") + + @classmethod + def format(cls, value: t.Optional[t.Any]) -> str: + if value is None: + return "Unknown" + return "{:~P}".format(value.to(ureg.kilowatt)) + + @classmethod + def to_json_compatible( + cls, value: t.Optional[t.Any] + ) -> t.Optional[t.Dict[str, t.Union[str, float]]]: + if value is not None: + return {"magnitude": value.magnitude, "unit": str(value.units)} + else: + return None + + @classmethod + def from_json_compatible(cls, json_version: t.Any) -> t.Optional[t.Any]: + if json_version: + return ureg.Quantity(json_version["magnitude"], ureg[json_version["unit"]]) + else: + return None diff --git a/Ch08/apd.sensors-chapter08/pyproject.toml b/Ch08/apd.sensors-chapter08/pyproject.toml new file mode 100644 index 0000000..4d3bb67 --- /dev/null +++ b/Ch08/apd.sensors-chapter08/pyproject.toml @@ -0,0 +1,5 @@ +[build-system] +requires = [ + "setuptools", +] +build-backend = "setuptools.build_meta" diff --git a/Ch08/apd.sensors-chapter08/pytest.ini b/Ch08/apd.sensors-chapter08/pytest.ini new file mode 100644 index 0000000..861f3d0 --- /dev/null +++ b/Ch08/apd.sensors-chapter08/pytest.ini @@ -0,0 +1,3 @@ +[pytest] +markers = + functional: these tests are significantly slower as they run the whole CLI script \ No newline at end of file diff --git a/Ch08/apd.sensors-chapter08/setup.cfg b/Ch08/apd.sensors-chapter08/setup.cfg new file mode 100644 index 0000000..01be718 --- /dev/null +++ b/Ch08/apd.sensors-chapter08/setup.cfg @@ -0,0 +1,66 @@ +[mypy] +namespace_packages = True +mypy_path = src + +[mypy-psutil] +ignore_missing_imports = True + +[mypy-adafruit_dht] +ignore_missing_imports = True + +[mypy-board] +ignore_missing_imports = True + +[mypy-pint] +ignore_missing_imports = True + +[mypy-pytest] +ignore_missing_imports = True + +[mypy-webtest] +ignore_missing_imports = True + +[flake8] +max-line-length = 88 + +[metadata] +name = apd.sensors +version = attr: apd.sensors.VERSION +description = APD Sensor package +long_description = file: README.md, CHANGES.md, LICENCE +long_description_content_type = text/markdown +keywords = iot +license = MIT +classifiers = + Programming Language :: Python :: 3 + Programming Language :: Python :: 3.7 + +[options] +zip_safe = False +include_package_data = True +package_dir = + =src +packages = find_namespace: +install_requires = + psutil + click + pint + adafruit-circuitpython-dht ; 'arm' in platform_machine + +[options.packages.find] +where = src + +[options.entry_points] +console_scripts = + sensors = apd.sensors.cli:show_sensors +apd.sensors.sensors = + PythonVersion = apd.sensors.sensors:PythonVersion + IPAddresses = apd.sensors.sensors:IPAddresses + CPULoad = apd.sensors.sensors:CPULoad + RAMAvailable = apd.sensors.sensors:RAMAvailable + ACStatus = apd.sensors.sensors:ACStatus + Temperature = apd.sensors.sensors:Temperature + RelativeHumidity = apd.sensors.sensors:RelativeHumidity + +[options.extras_require] +webapp = flask \ No newline at end of file diff --git a/Ch08/apd.sensors-chapter08/setup.py b/Ch08/apd.sensors-chapter08/setup.py new file mode 100644 index 0000000..6068493 --- /dev/null +++ b/Ch08/apd.sensors-chapter08/setup.py @@ -0,0 +1,3 @@ +from setuptools import setup + +setup() diff --git a/Ch08/apd.sensors-chapter08/src/apd/sensors/__init__.py b/Ch08/apd.sensors-chapter08/src/apd/sensors/__init__.py new file mode 100644 index 0000000..2101409 --- /dev/null +++ b/Ch08/apd.sensors-chapter08/src/apd/sensors/__init__.py @@ -0,0 +1 @@ +VERSION = "2.0.0" diff --git a/Ch08/apd.sensors-chapter08/src/apd/sensors/base.py b/Ch08/apd.sensors-chapter08/src/apd/sensors/base.py new file mode 100644 index 0000000..75e7e27 --- /dev/null +++ b/Ch08/apd.sensors-chapter08/src/apd/sensors/base.py @@ -0,0 +1,61 @@ +#!/usr/bin/env python +# coding: utf-8 +import typing as t + + +JSON_0 = t.Union[str, int, float, bool, None] +JSON_1 = t.Union[t.Dict[str, JSON_0], t.Iterable[JSON_0], JSON_0] +JSON_2 = t.Union[t.Dict[str, JSON_1], t.Iterable[JSON_1], JSON_1] +JSON_3 = t.Union[t.Dict[str, JSON_2], t.Iterable[JSON_2], JSON_2] +JSON_4 = t.Union[t.Dict[str, JSON_3], t.Iterable[JSON_3], JSON_3] +JSON_5 = t.Union[t.Dict[str, JSON_4], t.Iterable[JSON_4], JSON_4] +JSON_like = JSON_5 + + +T_value = t.TypeVar("T_value") +JSONT_value = t.TypeVar("JSONT_value", bound=JSON_like) + + +class Sensor(t.Generic[T_value]): + name: str + title: str + + def value(self) -> T_value: + raise NotImplementedError + + @classmethod + def format(cls, value: T_value) -> str: + raise NotImplementedError + + def __str__(self) -> str: + return self.format(self.value()) + + @classmethod + def to_json_compatible(cls, value: T_value) -> JSON_like: + raise NotImplementedError() + + @classmethod + def from_json_compatible(cls, json_version: JSON_like) -> T_value: + raise NotImplementedError() + + +class JSONSensor(Sensor[JSONT_value]): + @classmethod + def to_json_compatible(cls, value: JSONT_value) -> JSONT_value: + return value + + @classmethod + def from_json_compatible(cls, json_version: JSON_like) -> JSONT_value: + return t.cast(JSONT_value, json_version) + + +version_info_type = t.NamedTuple( + "version_info_type", + [ + ("major", int), + ("minor", int), + ("micro", int), + ("releaselevel", str), + ("serial", int), + ], +) diff --git a/Ch08/apd.sensors-chapter08/src/apd/sensors/cli.py b/Ch08/apd.sensors-chapter08/src/apd/sensors/cli.py new file mode 100644 index 0000000..82b7faf --- /dev/null +++ b/Ch08/apd.sensors-chapter08/src/apd/sensors/cli.py @@ -0,0 +1,70 @@ +import importlib +import pkg_resources +import typing as t + +import click + +from .sensors import Sensor + + +RETURN_CODES = {"OK": 0, "BAD_SENSOR_PATH": 17} + + +def get_sensor_by_path(sensor_path: str) -> Sensor[t.Any]: + try: + module_name, sensor_name = sensor_path.split(":") + except ValueError: + raise RuntimeError( + "Sensor path must be in the format dotted.path.to.module:ClassName" + ) + try: + module = importlib.import_module(module_name) + except ImportError: + raise RuntimeError(f"Could not import module {module_name}") + try: + sensor_class = getattr(module, sensor_name) + except AttributeError: + raise RuntimeError(f"Could not find attribute {sensor_name} in {module_name}") + if ( + isinstance(sensor_class, type) + and issubclass(sensor_class, Sensor) + and sensor_class != Sensor + ): + return sensor_class() + else: + raise RuntimeError( + f"Detected object {sensor_class!r} is not recognised as a Sensor type" + ) + + +def get_sensors() -> t.Iterable[Sensor[t.Any]]: + sensors = [] + for sensor_class in pkg_resources.iter_entry_points("apd.sensors.sensors"): + class_ = sensor_class.load() + sensors.append(t.cast(Sensor[t.Any], class_())) + return sensors + + +@click.command(help="Displays the values of the sensors") +@click.option( + "--develop", required=False, metavar="path", help="Load a sensor by Python path" +) +def show_sensors(develop: str) -> int: + sensors: t.Iterable[Sensor[t.Any]] + if develop: + try: + sensors = [get_sensor_by_path(develop)] + except RuntimeError as error: + click.secho(str(error), fg="red", bold=True) + return RETURN_CODES["BAD_SENSOR_PATH"] + else: + sensors = get_sensors() + for sensor in sensors: + click.secho(sensor.title, bold=True) + click.echo(str(sensor)) + click.echo("") + return RETURN_CODES["OK"] + + +if __name__ == "__main__": + show_sensors() diff --git a/Ch08/apd.sensors-chapter08/src/apd/sensors/py.typed b/Ch08/apd.sensors-chapter08/src/apd/sensors/py.typed new file mode 100644 index 0000000..e69de29 diff --git a/Ch08/apd.sensors-chapter08/src/apd/sensors/sensors.py b/Ch08/apd.sensors-chapter08/src/apd/sensors/sensors.py new file mode 100644 index 0000000..caccbae --- /dev/null +++ b/Ch08/apd.sensors-chapter08/src/apd/sensors/sensors.py @@ -0,0 +1,196 @@ +#!/usr/bin/env python +# coding: utf-8 +import math +import os +import socket +import sys +import typing as t + +import psutil +from pint import _DEFAULT_REGISTRY as ureg + +from .base import Sensor, JSONSensor, version_info_type + + +class PythonVersion(JSONSensor[version_info_type]): + name = "PythonVersion" + title = "Python Version" + + def value(self) -> version_info_type: + return version_info_type(*sys.version_info) + + @classmethod + def from_json_compatible(cls, json_version: t.Any) -> version_info_type: + return version_info_type(*json_version) + + @classmethod + def format(cls, value: version_info_type) -> str: + if value.micro == 0 and value.releaselevel == "alpha": + return "{0.major}.{0.minor}.{0.micro}a{0.serial}".format(value) + return "{0.major}.{0.minor}".format(value) + + +class IPAddresses(JSONSensor[t.Iterable[t.Tuple[str, str]]]): + name = "IPAddresses" + title = "IP Addresses" + FAMILIES = {"AF_INET": "IPv4", "AF_INET6": "IPv6"} + + def value(self) -> t.List[t.Tuple[str, str]]: + hostname = socket.gethostname() + addresses = socket.getaddrinfo(hostname, None) + + address_info: t.List[t.Tuple[str, str]] = [] + for address in addresses: + family, ip = (address[0].name, address[4][0]) + if family not in self.FAMILIES: + continue + value = (family, ip) + if value not in address_info: + address_info.append(value) + return address_info + + @classmethod + def format(cls, value: t.Iterable[t.Tuple[str, str]]) -> str: + return "\n".join( + "{0} ({1})".format(address[1], cls.FAMILIES.get(address[0], "Unknown")) + for address in value + ) + + +class CPULoad(JSONSensor[float]): + name = "CPULoad" + title = "CPU Usage" + + def value(self) -> float: + return float(psutil.cpu_percent(interval=3)) / 100.0 + + @classmethod + def format(cls, value: float) -> str: + return "{:.1%}".format(value) + + +class RAMAvailable(JSONSensor[int]): + name = "RAMAvailable" + title = "RAM Available" + UNITS = ("B", "KiB", "MiB", "GiB", "TiB", "PiB", "EiB") + UNIT_SIZE = 2 ** 10 + + def value(self) -> int: + return int(psutil.virtual_memory().available) + + @classmethod + def format(cls, value: int) -> str: + magnitude = math.floor(math.log(value, cls.UNIT_SIZE)) + max_magnitude = len(cls.UNITS) - 1 + magnitude = min(magnitude, max_magnitude) + scaled_value = value / (cls.UNIT_SIZE ** magnitude) + return "{:.1f} {}".format(scaled_value, cls.UNITS[magnitude]) + + +class ACStatus(JSONSensor[t.Optional[bool]]): + name = "ACStatus" + title = "AC Connected" + + def value(self) -> t.Optional[bool]: + battery = psutil.sensors_battery() + if battery is not None: + value = battery.power_plugged + if value is None: + return None + else: + return bool(value) + else: + return None + + @classmethod + def format(cls, value: t.Optional[bool]) -> str: + if value is None: + return "Unknown" + elif value: + return "Connected" + else: + return "Not connected" + + +class Temperature(Sensor[t.Optional[t.Any]]): + name = "Temperature" + title = "Ambient Temperature" + + def __init__(self) -> None: + self.board = os.environ.get("APD_SENSORS_TEMPERATURE_BOARD", "DHT22") + self.pin = os.environ.get("APD_SENSORS_TEMPERATURE_PIN", "D20") + + def value(self) -> t.Optional[t.Any]: + try: + import adafruit_dht + import board + + sensor_type = getattr(adafruit_dht, self.board) + pin = getattr(board, self.pin) + except (ImportError, NotImplementedError, AttributeError): + # No DHT library results in an ImportError. + # Running on an unknown platform results in a + # NotImplementedError when getting the pin + return None + try: + return ureg.Quantity(sensor_type(pin).temperature, ureg.celsius) + except RuntimeError: + return None + + @classmethod + def format(cls, value: t.Optional[t.Any]) -> str: + if value is None: + return "Unknown" + else: + return "{:.3~P} ({:.3~P})".format(value, value.to(ureg.fahrenheit)) + + @classmethod + def to_json_compatible(cls, value: t.Optional[t.Any]) -> t.Any: + if value is not None: + return {"magnitude": value.magnitude, "unit": str(value.units)} + else: + return None + + @classmethod + def from_json_compatible(cls, json_version: t.Any) -> t.Optional[t.Any]: + if json_version: + return ureg.Quantity(json_version["magnitude"], ureg[json_version["unit"]]) + else: + return None + + def __str__(self) -> str: + return self.format(self.value()) + + +class RelativeHumidity(JSONSensor[t.Optional[float]]): + name = "RelativeHumidity" + title = "Relative Humidity" + + def __init__(self) -> None: + self.board = os.environ.get("APD_SENSORS_TEMPERATURE_BOARD", "DHT22") + self.pin = os.environ.get("APD_SENSORS_TEMPERATURE_PIN", "D20") + + def value(self) -> t.Optional[float]: + try: + import adafruit_dht + import board + + sensor_type = getattr(adafruit_dht, self.board) + pin = getattr(board, self.pin) + except (ImportError, NotImplementedError, AttributeError): + # No DHT library results in an ImportError. + # Running on an unknown platform results in a + # NotImplementedError when getting the pin + return None + + try: + return float(sensor_type(pin).humidity) + except RuntimeError: + return None + + @classmethod + def format(cls, value: t.Optional[float]) -> str: + if value is None: + return "Unknown" + else: + return "{:.1%}".format(value) diff --git a/Ch08/apd.sensors-chapter08/src/apd/sensors/wsgi/__init__.py b/Ch08/apd.sensors-chapter08/src/apd/sensors/wsgi/__init__.py new file mode 100644 index 0000000..b279326 --- /dev/null +++ b/Ch08/apd.sensors-chapter08/src/apd/sensors/wsgi/__init__.py @@ -0,0 +1,14 @@ +import flask + +from .base import set_up_config +from . import v10 +from . import v20 +from . import v21 + + +__all__ = ["app", "set_up_config"] + +app = flask.Flask(__name__) +app.register_blueprint(v10.version, url_prefix="/v/1.0") +app.register_blueprint(v20.version, url_prefix="/v/2.0") +app.register_blueprint(v21.version, url_prefix="/v/2.1") diff --git a/Ch08/apd.sensors-chapter08/src/apd/sensors/wsgi/base.py b/Ch08/apd.sensors-chapter08/src/apd/sensors/wsgi/base.py new file mode 100644 index 0000000..3224000 --- /dev/null +++ b/Ch08/apd.sensors-chapter08/src/apd/sensors/wsgi/base.py @@ -0,0 +1,43 @@ +from hmac import compare_digest +import functools +import os +import typing as t + +import flask + + +ViewFuncReturn = t.TypeVar("ViewFuncReturn") +ErrorReturn = t.Tuple[t.Dict[str, str], int] +REQUIRED_CONFIG_KEYS = {"APD_SENSORS_API_KEY", "APD_SENSORS_DEPLOYMENT_ID"} + + +def require_api_key( + func: t.Callable[[], ViewFuncReturn] +) -> t.Callable[[], t.Union[ViewFuncReturn, ErrorReturn]]: + @functools.wraps(func) + def wrapped() -> t.Union[ViewFuncReturn, ErrorReturn]: + api_key = flask.current_app.config["APD_SENSORS_API_KEY"] + headers = flask.request.headers + supplied_key = headers.get("X-API-Key", "") + if not compare_digest(api_key, supplied_key): + return {"error": "Supply API key in X-API-Key header"}, 403 + return func() + + return wrapped + + +def set_up_config( + environ: t.Optional[t.Dict[str, str]] = None, + to_configure: t.Optional[flask.Flask] = None, +) -> flask.Flask: + if environ is None: + environ = dict(os.environ) + if to_configure is None: + from apd.sensors.wsgi import app + + to_configure = app + missing_keys = REQUIRED_CONFIG_KEYS - environ.keys() + if missing_keys: + raise ValueError("Missing config variables: {}".format(", ".join(missing_keys))) + to_configure.config.from_mapping(environ) + return to_configure diff --git a/Ch08/apd.sensors-chapter08/src/apd/sensors/wsgi/serve.py b/Ch08/apd.sensors-chapter08/src/apd/sensors/wsgi/serve.py new file mode 100644 index 0000000..0b1f684 --- /dev/null +++ b/Ch08/apd.sensors-chapter08/src/apd/sensors/wsgi/serve.py @@ -0,0 +1,10 @@ +from . import app +from .base import set_up_config + +if __name__ == "__main__": + import wsgiref.simple_server + + set_up_config(None, app) + + with wsgiref.simple_server.make_server("", 8000, app) as server: + server.serve_forever() diff --git a/Ch08/apd.sensors-chapter08/src/apd/sensors/wsgi/v10.py b/Ch08/apd.sensors-chapter08/src/apd/sensors/wsgi/v10.py new file mode 100644 index 0000000..7eee6dd --- /dev/null +++ b/Ch08/apd.sensors-chapter08/src/apd/sensors/wsgi/v10.py @@ -0,0 +1,26 @@ +import json +import typing as t + +import flask + +from apd.sensors.cli import get_sensors +from .base import require_api_key + +version = flask.Blueprint(__name__, __name__) + + +@version.route("/sensors/") +@require_api_key +def sensor_values() -> t.Tuple[t.Dict[str, t.Any], int, t.Dict[str, str]]: + headers = {"Content-Security-Policy": "default-src 'none'"} + data = {} + for sensor in get_sensors(): + value = sensor.value() + try: + json.dumps(value) + except TypeError: + # This value isn't JSON serializable, skip it + continue + else: + data[sensor.title] = sensor.value() + return data, 200, headers diff --git a/Ch08/apd.sensors-chapter08/src/apd/sensors/wsgi/v20.py b/Ch08/apd.sensors-chapter08/src/apd/sensors/wsgi/v20.py new file mode 100644 index 0000000..fe7688f --- /dev/null +++ b/Ch08/apd.sensors-chapter08/src/apd/sensors/wsgi/v20.py @@ -0,0 +1,32 @@ +import typing as t + +import flask + +from apd.sensors import cli +from .base import require_api_key + +version = flask.Blueprint(__name__, __name__) + + +@version.route("/sensors/") +@version.route("/sensors/") +@require_api_key +def sensor_values(sensor_id=None) -> t.Tuple[t.Dict[str, t.Any], int, t.Dict[str, str]]: + headers = {"Content-Security-Policy": "default-src 'none'"} + sensors = [] + for sensor in cli.get_sensors(): + if sensor_id and sensor_id != sensor.name: + continue + try: + value = sensor.value() + sensor_data = { + "id": sensor.name, + "title": sensor.title, + "value": sensor.to_json_compatible(value), + "human_readable": sensor.format(value), + } + sensors.append(sensor_data) + except NotImplementedError: + pass + data = {"sensors": sensors} + return data, 200, headers diff --git a/Ch08/apd.sensors-chapter08/src/apd/sensors/wsgi/v21.py b/Ch08/apd.sensors-chapter08/src/apd/sensors/wsgi/v21.py new file mode 100644 index 0000000..9709a54 --- /dev/null +++ b/Ch08/apd.sensors-chapter08/src/apd/sensors/wsgi/v21.py @@ -0,0 +1,39 @@ +import typing as t + +import flask + +from apd.sensors import cli +from .base import require_api_key + +version = flask.Blueprint(__name__, __name__) + + +@version.route("/sensors/") +@version.route("/sensors/") +@require_api_key +def sensor_values(sensor_id=None) -> t.Tuple[t.Dict[str, t.Any], int, t.Dict[str, str]]: + headers = {"Content-Security-Policy": "default-src 'none'"} + sensors = [] + for sensor in cli.get_sensors(): + if sensor_id and sensor_id != sensor.name: + continue + try: + value = sensor.value() + sensor_data = { + "id": sensor.name, + "title": sensor.title, + "value": sensor.to_json_compatible(value), + "human_readable": sensor.format(value), + } + sensors.append(sensor_data) + except NotImplementedError: + pass + data = {"sensors": sensors} + return data, 200, headers + + +@version.route("/deployment_id") +def deployment_id() -> t.Tuple[t.Dict[str, t.Any], int, t.Dict[str, str]]: + headers = {"Content-Security-Policy": "default-src 'none'"} + data = {"deployment_id": flask.current_app.config["APD_SENSORS_DEPLOYMENT_ID"]} + return data, 200, headers diff --git a/Ch08/apd.sensors-chapter08/tests/__init__.py b/Ch08/apd.sensors-chapter08/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/Ch08/apd.sensors-chapter08/tests/test_acstatus.py b/Ch08/apd.sensors-chapter08/tests/test_acstatus.py new file mode 100644 index 0000000..1d10940 --- /dev/null +++ b/Ch08/apd.sensors-chapter08/tests/test_acstatus.py @@ -0,0 +1,55 @@ +from unittest import mock + +from apd.sensors.sensors import ACStatus + +import pytest + + +@pytest.fixture +def sensor(): + return ACStatus() + + +class TestACStatusFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_True(self, subject): + assert subject(True) == "Connected" + + def test_format_False(self, subject): + assert subject(False) == "Not connected" + + def test_format_None(self, subject): + assert subject(None) == "Unknown" + + +class TestACStatusValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def sensors_battery(self): + with mock.patch("psutil.sensors_battery") as sensors_battery: + yield sensors_battery + + def test_sensors_battery_called(self, subject, sensors_battery): + sensors_battery.return_value.power_plugged = True + assert subject() is True + assert sensors_battery.call_count == 1 + + def test_sensor_but_battery_unknown(self, subject, sensors_battery): + sensors_battery.return_value.power_plugged = None + assert subject() is None + assert sensors_battery.call_count == 1 + + def test_no_sensor(self, subject, sensors_battery): + sensors_battery.return_value = None + assert subject() is None + + def test_str_representation_is_formatted_value(self, sensor, sensors_battery): + sensors_battery.return_value.power_plugged = True + assert str(sensor) == "Connected" + assert sensors_battery.call_count == 1 diff --git a/Ch08/apd.sensors-chapter08/tests/test_api_server.py b/Ch08/apd.sensors-chapter08/tests/test_api_server.py new file mode 100644 index 0000000..7cac7ed --- /dev/null +++ b/Ch08/apd.sensors-chapter08/tests/test_api_server.py @@ -0,0 +1,148 @@ +import os +import uuid +from unittest import mock + +import flask +import pytest +from webtest import TestApp + +from apd.sensors.wsgi import set_up_config +from apd.sensors.sensors import PythonVersion +from apd.sensors.wsgi import v10 +from apd.sensors.wsgi import v20 +from apd.sensors.wsgi import v21 + + +@pytest.fixture(scope="session") +def api_key(): + return uuid.uuid4().hex + + +def test_api_key_is_required_config_option(): + app = mock.MagicMock() + with pytest.raises( + ValueError, match="Missing config variables: APD_SENSORS_API_KEY" + ): + set_up_config({"APD_SENSORS_DEPLOYMENT_ID": ""}, to_configure=app) + + +def test_deployment_id_is_required_config_option(): + app = mock.MagicMock() + with pytest.raises( + ValueError, match="Missing config variables: APD_SENSORS_DEPLOYMENT_ID" + ): + set_up_config({"APD_SENSORS_API_KEY": ""}, to_configure=app) + + +def test_os_environ_is_default_for_config_values(api_key): + app = mock.MagicMock() + os.environ["APD_SENSORS_API_KEY"] = api_key + os.environ["APD_SENSORS_DEPLOYMENT_ID"] = "8f1b57faa04b430c81decbbeee9e300c" + try: + assert app.config.from_mapping.call_count == 0 + set_up_config(None, to_configure=app) + assert app.config.from_mapping.call_count == 1 + assert app.config.from_mapping.call_args[0][0] == os.environ + finally: + del os.environ["APD_SENSORS_API_KEY"] + del os.environ["APD_SENSORS_DEPLOYMENT_ID"] + + +class CommonTests: + @pytest.mark.functional + def test_sensor_values_fails_on_missing_api_key(self, api_server): + response = api_server.get("/sensors/", expect_errors=True) + assert response.status_code == 403 + assert response.json["error"] == "Supply API key in X-API-Key header" + + @pytest.mark.functional + def test_sensor_values_require_correct_api_key(self, api_server): + response = api_server.get( + "/sensors/", headers={"X-API-Key": "wrong_key"}, expect_errors=True + ) + assert response.status_code == 403 + assert response.json["error"] == "Supply API key in X-API-Key header" + + +class Testv10API(CommonTests): + @pytest.fixture + def subject(self, api_key): + app = flask.Flask("testapp") + app.register_blueprint(v10.version) + set_up_config( + { + "APD_SENSORS_API_KEY": api_key, + "APD_SENSORS_DEPLOYMENT_ID": "8f1b57faa04b430c81decbbeee9e300c", + }, + to_configure=app, + ) + return app + + @pytest.fixture + def api_server(self, subject): + return TestApp(subject) + + @pytest.mark.functional + def test_sensor_values_returned_as_json(self, api_server, api_key): + value = api_server.get("/sensors/", headers={"X-API-Key": api_key}).json + python_version = PythonVersion().value() + + sensor_names = value.keys() + assert "Python Version" in sensor_names + assert value["Python Version"] == list(python_version) + + @pytest.mark.functional + def test_unserializable_sensor_is_omitted(self, api_server, api_key): + value = api_server.get("/sensors/", headers={"X-API-Key": api_key}).json + sensor_names = value.keys() + assert "Temperature" not in sensor_names + + +class Testv20API(CommonTests): + @pytest.fixture + def subject(self, api_key): + app = flask.Flask("testapp") + app.register_blueprint(v20.version) + set_up_config( + { + "APD_SENSORS_API_KEY": api_key, + "APD_SENSORS_DEPLOYMENT_ID": "8f1b57faa04b430c81decbbeee9e300c", + }, + to_configure=app, + ) + return app + + @pytest.fixture + def api_server(self, subject): + return TestApp(subject) + + @pytest.mark.functional + def test_sensor_values_returned_as_json(self, api_server, api_key): + value = api_server.get("/sensors/", headers={"X-API-Key": api_key}).json + sensors = value["sensors"] + + python_version = [ + sensor for sensor in sensors if sensor["id"] == "PythonVersion" + ][0] + assert python_version["title"] == "Python Version" + assert python_version["value"] == list(PythonVersion().value()) + + +class Testv21API(Testv20API): + @pytest.fixture + def subject(self, api_key): + app = flask.Flask("testapp") + app.register_blueprint(v21.version) + set_up_config( + { + "APD_SENSORS_API_KEY": api_key, + "APD_SENSORS_DEPLOYMENT_ID": "8f1b57faa04b430c81decbbeee9e300c", + }, + to_configure=app, + ) + return app + + @pytest.mark.functional + def test_deployment_id(self, api_server, api_key): + value = api_server.get("/deployment_id", headers={"X-API-Key": api_key}).json + assert value == {"deployment_id": "8f1b57faa04b430c81decbbeee9e300c"} diff --git a/Ch08/apd.sensors-chapter08/tests/test_cpuusage.py b/Ch08/apd.sensors-chapter08/tests/test_cpuusage.py new file mode 100644 index 0000000..aa8a66a --- /dev/null +++ b/Ch08/apd.sensors-chapter08/tests/test_cpuusage.py @@ -0,0 +1,45 @@ +from unittest import mock + +from apd.sensors.sensors import CPULoad + +import pytest + + +@pytest.fixture +def sensor(): + return CPULoad() + + +class TestCPULoadFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_simple_percentage(self, subject): + assert subject(0.05) == "5.0%" + + def test_format_multiple_decimal_places(self, subject): + assert subject(0.031415926) == "3.1%" + + def test_format_multiple_decimal_places_int(self, subject) -> None: + assert subject(1) == "100.0%" + + +class TestCPULoadValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def cpuload(self): + with mock.patch("psutil.cpu_percent") as cpu_percent: + cpu_percent.return_value = 50.1 + yield cpu_percent + + def test_cpu_percent_called_With_interval(self, subject, cpuload): + assert subject() == 0.501 + assert cpuload.call_count == 1 + assert tuple(cpuload.call_args) == ((), {"interval": 3}) + + def test_str_representation_is_formatted_value(self, sensor, cpuload): + assert str(sensor) == "50.1%" diff --git a/Ch08/apd.sensors-chapter08/tests/test_dht.py b/Ch08/apd.sensors-chapter08/tests/test_dht.py new file mode 100644 index 0000000..4c2126e --- /dev/null +++ b/Ch08/apd.sensors-chapter08/tests/test_dht.py @@ -0,0 +1,67 @@ +from apd.sensors.sensors import Temperature, RelativeHumidity, ureg + +import pytest + + +@pytest.fixture +def temperature_sensor(): + return Temperature() + + +@pytest.fixture +def humidity_sensor(): + return RelativeHumidity() + + +class TestTemperatureFormatter: + @pytest.fixture + def subject(self, temperature_sensor): + return temperature_sensor.format + + @staticmethod + def to_degc(magnitude): + return ureg.Quantity(magnitude, "degC") + + def test_format_21c(self, subject): + assert subject(self.to_degc(21.0)) == "21.0 celsius (69.8 fahrenheit)" + + def test_format_negative(self, subject): + assert subject(self.to_degc(-32.0)) == "-32.0 celsius (-25.6 fahrenheit)" + + def test_format_unknown(self, subject): + assert subject(None) == "Unknown" + + +class TestTemperatureSerializer: + @pytest.fixture + def serialize(self, temperature_sensor): + return temperature_sensor.to_json_compatible + + @pytest.fixture + def deserialize(self, temperature_sensor): + return temperature_sensor.from_json_compatible + + @staticmethod + def to_degc(magnitude): + return ureg.Quantity(magnitude, "degC") + + def test_serialize_21c(self, serialize): + assert serialize(self.to_degc(21.0)) == {"magnitude": 21.0, "unit": "degC"} + + def test_serialize_negative(self, serialize): + assert serialize(self.to_degc(-32.3)) == {"magnitude": -32.3, "unit": "degC"} + + def test_deserialize_21c(self, deserialize): + assert deserialize({"magnitude": 21.0, "unit": "degC"}) == self.to_degc(21.0) + + +class TestHumidityFormatter: + @pytest.fixture + def subject(self, humidity_sensor): + return humidity_sensor.format + + def test_format_percentage(self, subject): + assert subject(0.035) == "3.5%" + + def test_format_unknown(self, subject): + assert subject(None) == "Unknown" diff --git a/Ch08/apd.sensors-chapter08/tests/test_ipaddresses.py b/Ch08/apd.sensors-chapter08/tests/test_ipaddresses.py new file mode 100644 index 0000000..e8a9690 --- /dev/null +++ b/Ch08/apd.sensors-chapter08/tests/test_ipaddresses.py @@ -0,0 +1,59 @@ +from unittest import mock +import socket + +from apd.sensors.sensors import IPAddresses + +import pytest + + +@pytest.fixture +def sensor(): + return IPAddresses() + + +class TestIPAddressFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_single_ipv4(self, subject): + ips = [("AF_INET", "192.0.2.1")] + assert subject(ips) == "192.0.2.1 (IPv4)" + + def test_format_single_ipv6(self, subject): + ips = [("AF_INET6", "2001:DB8::1")] + assert subject(ips) == "2001:DB8::1 (IPv6)" + + def test_format_mixed_list(self, subject): + ips = [("AF_INET", "192.0.2.1"), ("AF_INET6", "2001:DB8::1")] + assert subject(ips) == "192.0.2.1 (IPv4)\n2001:DB8::1 (IPv6)" + + def test_unusual_protocols_are_marked_as_unknown(self, subject): + ips = [("AF_IRDA", "ffff")] + assert subject(ips) == "ffff (Unknown)" + + +class TestIPAddressesValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def gethostname(self): + with mock.patch("socket.gethostname") as gethostname: + gethostname.return_value = "localhost" + yield gethostname + + @pytest.fixture + def getaddrinfo(self, gethostname): + with mock.patch("socket.getaddrinfo") as getaddrinfo: + yield getaddrinfo + + def test_getaddrinfo_used_for_value_collection(self, getaddrinfo, subject): + getaddrinfo.return_value = [(socket.AF_INET, 0, 0, "", ("192.0.2.1", 0))] + assert subject() == [("AF_INET", "192.0.2.1")] + assert getaddrinfo.call_count == 1 + + def test_str_representation_is_formatted_value(self, getaddrinfo, sensor): + getaddrinfo.return_value = [(socket.AF_INET6, 0, 0, "", ("2001:DB8::1", 0))] + assert str(sensor) == "2001:DB8::1 (IPv6)" diff --git a/Ch08/apd.sensors-chapter08/tests/test_pythonversion.py b/Ch08/apd.sensors-chapter08/tests/test_pythonversion.py new file mode 100644 index 0000000..dff6bb0 --- /dev/null +++ b/Ch08/apd.sensors-chapter08/tests/test_pythonversion.py @@ -0,0 +1,61 @@ +from collections import namedtuple +from unittest import mock + +from apd.sensors.sensors import PythonVersion + +import pytest + + +@pytest.fixture +def version(): + return namedtuple( + "sys_versioninfo", ("major", "minor", "micro", "releaselevel", "serial") + ) + + +@pytest.fixture +def sensor(): + return PythonVersion() + + +class TestPythonVersionFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_py38(self, subject, version): + py38 = version(3, 8, 0, "final", 0) + assert subject(py38) == "3.8" + + def test_format_large_version(self, subject, version): + large = version(255, 128, 0, "final", 0) + assert subject(large) == "255.128" + + def test_alpha_of_minor_is_marked(self, subject, version): + py39 = version(3, 9, 0, "alpha", 1) + assert subject(py39) == "3.9.0a1" + + def test_alpha_of_micro_is_unmarked(self, subject, version): + py39 = version(3, 9, 1, "alpha", 1) + assert subject(py39) == "3.9" + + +class TestPythonVersionValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def python_version(self): + import sys + + return sys.version_info + + def test_data_value_is_sys_versioninfo(self, python_version, subject): + assert subject() == python_version + + +class TestPythonVersionSensor: + def test_str_representation_is_formatted_value(self, sensor, version): + with mock.patch("sys.version_info", new=version(3, 4, 1, "final", 1)): + assert str(sensor) == "3.4" diff --git a/Ch08/apd.sensors-chapter08/tests/test_ramusage.py b/Ch08/apd.sensors-chapter08/tests/test_ramusage.py new file mode 100644 index 0000000..2a368c1 --- /dev/null +++ b/Ch08/apd.sensors-chapter08/tests/test_ramusage.py @@ -0,0 +1,47 @@ +from unittest import mock + +from apd.sensors.sensors import RAMAvailable + +import pytest + + +@pytest.fixture +def sensor(): + return RAMAvailable() + + +class TestRAMAvailableFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_bytes(self, subject): + assert subject(15) == "15.0 B" + + def test_format_kibibytes(self, subject): + assert subject(15000) == "14.6 KiB" + + def test_format_mibibytes(self, subject): + assert subject(15000000) == "14.3 MiB" + + def test_format_gibibytes(self, subject): + assert subject(15000000000) == "14.0 GiB" + + +class TestRAMAvailableValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def virtual_memory(self): + with mock.patch("psutil.virtual_memory") as virtual_memory: + virtual_memory.return_value.available = 1024 + yield virtual_memory + + def test_virtual_memory_called(self, subject, virtual_memory): + assert subject() == 1024 + assert virtual_memory.call_count == 1 + + def test_str_representation_is_formatted_value(self, sensor, virtual_memory): + assert str(sensor) == "1.0 KiB" diff --git a/Ch08/apd.sensors-chapter08/tests/test_sensors.py b/Ch08/apd.sensors-chapter08/tests/test_sensors.py new file mode 100644 index 0000000..d6ca988 --- /dev/null +++ b/Ch08/apd.sensors-chapter08/tests/test_sensors.py @@ -0,0 +1,87 @@ +import json +from unittest import mock + +from click.testing import CliRunner +import pytest + +import apd.sensors.cli +import apd.sensors.sensors + + +def test_sensors(): + assert hasattr(apd.sensors.sensors, "PythonVersion") + + +@pytest.mark.functional +def test_first_sensor_is_first_two_lines_of_cli_output(): + runner = CliRunner() + with mock.patch("apd.sensors.cli.get_sensors") as get_sensors: + get_sensors.return_value = [apd.sensors.sensors.PythonVersion()] + result = runner.invoke(apd.sensors.cli.show_sensors) + python_version = str(apd.sensors.sensors.PythonVersion()) + assert ["Python Version", python_version] == result.stdout.split("\n")[:2] + + +class TestSensorFromPath: + @pytest.fixture + def subject(self): + return apd.sensors.cli.get_sensor_by_path + + def test_get_sensor_by_path(self, subject): + assert isinstance( + subject("apd.sensors.sensors:PythonVersion"), + apd.sensors.sensors.PythonVersion, + ) + + def test_invalid_format(self, subject): + with pytest.raises(RuntimeError, match="dotted.path.to.module:ClassName"): + subject("apd.sensors.sensors.PythonVersion") + + def test_invalid_module(self, subject): + with pytest.raises(RuntimeError, match="Could not import module"): + subject("apd.nonsense.sensor:FakeSensor") + + def test_missing_sensor(self, subject): + with pytest.raises(RuntimeError, match="Could not find attribute"): + subject("apd.sensors.sensors:FakeSensor") + + def test_invalid_sensor(self, subject): + with pytest.raises(RuntimeError, match="is not recognised as a Sensor"): + subject("apd.sensors.sensors:Sensor") + + +@pytest.mark.functional +def test_develop_option_finds_sensor_by_path(): + runner = CliRunner() + result = runner.invoke( + apd.sensors.cli.show_sensors, ["--develop", "apd.sensors.sensors:PythonVersion"] + ) + python_version = str(apd.sensors.sensors.PythonVersion()) + assert ["Python Version", python_version, "", ""] == result.stdout.split("\n") + + +class TestDefaultSerializer: + @pytest.fixture + def python_version(self): + return apd.sensors.sensors.PythonVersion() + + @pytest.fixture + def serialize(self, python_version): + return python_version.to_json_compatible + + @pytest.fixture + def deserialize(self, python_version): + return python_version.from_json_compatible + + def test_serialize_deserialize_is_symmetric( + self, python_version, serialize, deserialize + ): + value = python_version.value() + serialized = serialize(value) + json_version = json.dumps(serialized) + assert ( + json_version == f"[{value.major}, {value.minor}, {value.micro}," + f' "{value.releaselevel}", {value.serial}]' + ) + deserialized = deserialize(serialized) + assert deserialized == value diff --git a/Ch08/listing08-01-httpfixture.py b/Ch08/listing08-01-httpfixture.py new file mode 100644 index 0000000..068ca10 --- /dev/null +++ b/Ch08/listing08-01-httpfixture.py @@ -0,0 +1,45 @@ +from concurrent.futures import ThreadPoolExecutor +import typing as t +import wsgiref.simple_server + +import flask +import pytest + +from apd.sensors.wsgi import v20 +from apd.sensors.wsgi import set_up_config + + +def get_independent_flask_app(name: str) -> flask.Flask: + """ Create a new flask app with the v20 API blueprint loaded, so multiple copies + of the app can be run in parallel without conflicting configuration """ + app = flask.Flask(name) + app.register_blueprint(v20.version, url_prefix="/v/2.0") + return app + + +def run_server_in_thread( + name: str, config: t.Dict[str, t.Any], port: int +) -> t.Iterator[str]: + # Create a new flask app and load in required code, to prevent config conflicts + app = get_independent_flask_app(name) + flask_app = set_up_config(config, app) + server = wsgiref.simple_server.make_server("localhost", port, flask_app) + + with ThreadPoolExecutor() as pool: + pool.submit(server.serve_forever) + yield f"http://localhost:{port}/" + server.shutdown() + + +@pytest.fixture(scope="session") +def http_server(): + yield from run_server_in_thread( + "standard", {"APD_SENSORS_API_KEY": "testing"}, 12081 + ) + + +def test_http(http_server): + import requests + + response = requests.get(http_server + "v/2.0/sensors") + assert response.status_code == 403 diff --git a/Ch08/listing08-02-config_fixture.py b/Ch08/listing08-02-config_fixture.py new file mode 100644 index 0000000..110b166 --- /dev/null +++ b/Ch08/listing08-02-config_fixture.py @@ -0,0 +1,61 @@ +from concurrent.futures import ThreadPoolExecutor +import copy +import typing as t +import wsgiref.simple_server + +import flask +import pytest + +from apd.sensors.wsgi import v20 +from apd.sensors.wsgi import set_up_config + + +def get_independent_flask_app(name: str) -> flask.Flask: + """ Create a new flask app with the v20 API blueprint loaded, so multiple copies + of the app can be run in parallel without conflicting configuration """ + app = flask.Flask(name) + app.register_blueprint(v20.version, url_prefix="/v/2.0") + return app + + +def run_server_in_thread( + name: str, config: t.Dict[str, t.Any], port: int +) -> t.Iterator[str]: + # Create a new flask app and load in required code, to prevent config conflicts + app = get_independent_flask_app(name) + flask_app = set_up_config(config, app) + server = wsgiref.simple_server.make_server("localhost", port, flask_app) + + with ThreadPoolExecutor() as pool: + pool.submit(server.serve_forever) + yield f"http://localhost:{port}/" + server.shutdown() + + +@pytest.fixture(scope="session") +def config_defaults(): + return { + "APD_SENSORS_API_KEY": "testing", + "APD_SOME_VALUE": "example", + "APD_OTHER_THING": "off" + } + +@pytest.fixture(scope="session") +def http_server(config_defaults): + config = copy.copy(config_defaults) + yield from run_server_in_thread("standard", config, 12081) + +@pytest.fixture(scope="session") +def bad_api_key_http_server(config_defaults): + config = copy.copy(config_defaults) + config["APD_SENSORS_API_KEY"] = "penny" + yield from run_server_in_thread( + "alternate", config, 12082 + ) + + +def test_http(http_server): + import requests + + response = requests.get(http_server + "v/2.0/sensors") + assert response.status_code == 403 diff --git a/Ch08/listing08-03-mocking.py b/Ch08/listing08-03-mocking.py new file mode 100644 index 0000000..f22cbaf --- /dev/null +++ b/Ch08/listing08-03-mocking.py @@ -0,0 +1,33 @@ +from unittest.mock import Mock, MagicMock, AsyncMock + +import pytest + + +@pytest.fixture +def data() -> t.Any: + return { + "sensors": [ + { + "human_readable": "3.7", + "id": "PythonVersion", + "title": "Python Version", + "value": [3, 7, 2, "final", 0], + }, + { + "human_readable": "Not connected", + "id": "ACStatus", + "title": "AC Connected", + "value": False, + }, + ] + } + +@pytest.fixture +def mockclient(data): + client = MagicMock() + response = Mock() + response.json = AsyncMock(return_value=data) + response.status = 200 + client.get.return_value.__aenter__ = AsyncMock(return_value=response) + return client + diff --git a/Ch08/listing08-04-manual_mocks.py b/Ch08/listing08-04-manual_mocks.py new file mode 100644 index 0000000..41787b6 --- /dev/null +++ b/Ch08/listing08-04-manual_mocks.py @@ -0,0 +1,48 @@ +import contextlib +from dataclasses import dataclass +import typing as t + +import pytest + + +@pytest.fixture +def data() -> t.Any: + return { + "sensors": [ + { + "human_readable": "3.7", + "id": "PythonVersion", + "title": "Python Version", + "value": [3, 7, 2, "final", 0], + }, + { + "human_readable": "Not connected", + "id": "ACStatus", + "title": "AC Connected", + "value": False, + }, + ] + } + + +@dataclass +class FakeAIOHttpClient: + data: t.Any + + @contextlib.asynccontextmanager + async def get(self, url: str, headers: t.Optional[t.Dict[str, str]]=None) -> FakeAIOHttpResponse: + yield FakeAIOHttpResponse(json_data=self.data, status=200) + + +@dataclass +class FakeAIOHttpResponse: + json_data: t.Any + status: int + + async def json(self) -> t.Any: + return self.json_data + +@pytest.fixture +def mockclient(data) -> FakeAIOHttpClient: + return FakeAIOHttpClient(data) + diff --git a/Ch08/listing08-05-apdaggregation_mocks.py b/Ch08/listing08-05-apdaggregation_mocks.py new file mode 100644 index 0000000..e204598 --- /dev/null +++ b/Ch08/listing08-05-apdaggregation_mocks.py @@ -0,0 +1,46 @@ +from unittest.mock import patch, Mock, AsyncMock + +import pytest + +import apd.aggregation.collect + + +class TestGetDataPoints: + @pytest.fixture + def mut(self): + return apd.aggregation.collect.get_data_points + + @pytest.mark.asyncio + async def test_get_data_points( + self, mut, mockclient: FakeAIOHttpClient, data + ) -> None: + datapoints = await mut("http://localhost", "", mockclient) + + assert len(datapoints) == len(data["sensors"]) + for sensor in data["sensors"]: + assert sensor["value"] in (datapoint.data for datapoint in datapoints) + assert sensor["id"] in (datapoint.sensor_name for datapoint in datapoints) + +class TestAddDataFromSensors: + @pytest.fixture + def mut(self): + return apd.aggregation.collect.add_data_from_sensors + + @pytest.fixture(autouse=True) + def patch_aiohttp(self, mockclient): + # Ensure all tests in this class use the mockclient + with patch("aiohttp.ClientSession") as ClientSession: + ClientSession.return_value.__aenter__ = AsyncMock(return_value=mockclient) + yield ClientSession + + @pytest.fixture + def db_session(self): + return Mock() + + @pytest.mark.asyncio + async def test_datapoints_are_added_to_the_session(self, mut, db_session) -> None: + # The only times data should be added to the session are when running the MUT + assert db_session.add.call_count == 0 + datapoints = await mut(db_session, ["http://localhost"], "") + assert db_session.add.call_count == len(datapoints) + diff --git a/Ch08/listing08-06-classic_sqlalchemy.py b/Ch08/listing08-06-classic_sqlalchemy.py new file mode 100644 index 0000000..3997f2c --- /dev/null +++ b/Ch08/listing08-06-classic_sqlalchemy.py @@ -0,0 +1,27 @@ +from dataclasses import dataclass, field +import datetime +import typing as t + +import sqlalchemy +from sqlalchemy.dialects.postgresql import JSONB, TIMESTAMP +from sqlalchemy.schema import Table + + +metadata = sqlalchemy.MetaData() + +datapoint_table = Table( + "sensor_values", + metadata, + sqlalchemy.Column("id", sqlalchemy.Integer, primary_key=True), + sqlalchemy.Column("sensor_name", sqlalchemy.String), + sqlalchemy.Column("collected_at", TIMESTAMP), + sqlalchemy.Column("data", JSONB), +) + +@dataclass +class DataPoint: + sensor_name: str + data: t.Dict[str, t.Any] + id: int = None + collected_at: datetime.datetime = field(default_factory=datetime.datetime.now) + diff --git a/Ch08/listing08-07-datapoint_with_asdict.py b/Ch08/listing08-07-datapoint_with_asdict.py new file mode 100644 index 0000000..3a9cd8c --- /dev/null +++ b/Ch08/listing08-07-datapoint_with_asdict.py @@ -0,0 +1,18 @@ +from dataclasses import dataclass, field, asdict +import datetime +import typing as t + + +@dataclass +class DataPoint: + sensor_name: str + data: t.Dict[str, t.Any] + id: int = None + collected_at: datetime.datetime = field(default_factory=datetime.datetime.now) + + def _asdict(self): + data = asdict(self) + if data["id"] is None: + del data["id"] + return data + diff --git a/Ch08/listing08-08-database_integration.py b/Ch08/listing08-08-database_integration.py new file mode 100644 index 0000000..b518e3b --- /dev/null +++ b/Ch08/listing08-08-database_integration.py @@ -0,0 +1,25 @@ +import asyncio +import testing as t + + + +def handle_result(result: t.List[DataPoint], session: Session) -> t.List[DataPoint]: + for point in result: + insert = datapoint_table.insert().values(**point._asdict()) + sql_result = session.execute(insert) + point.id = sql_result.inserted_primary_key[0] + return result + +async def add_data_from_sensors( + session: Session, servers: t.Tuple[str], api_key: t.Optional[str] +) -> t.List[DataPoint]: + tasks: t.List[t.Awaitable[t.List[DataPoint]]] = [] + points: t.List[DataPoint] = [] + async with aiohttp.ClientSession() as http: + tasks = [get_data_points(server, api_key, http) for server in servers] + for results in await asyncio.gather(*tasks): + points += results + loop = asyncio.get_running_loop() + await loop.run_in_executor(None, handle_result, points, session) + return points + diff --git a/Ch08/listing08-09-full_datapoint.py b/Ch08/listing08-09-full_datapoint.py new file mode 100644 index 0000000..25efe10 --- /dev/null +++ b/Ch08/listing08-09-full_datapoint.py @@ -0,0 +1,22 @@ +from dataclasses import dataclass, field, asdict +import datetime +import typing as t + + +@dataclass +class DataPoint: + sensor_name: str + data: t.Dict[str, t.Any] + id: int = None + collected_at: datetime.datetime = field(default_factory=datetime.datetime.now) + + @classmethod + def from_sql_result(cls, result): + return cls(**result._asdict()) + + def _asdict(self): + data = asdict(self) + if data["id"] is None: + del data["id"] + return data + diff --git a/Ch08/listing08-10-comparator.py b/Ch08/listing08-10-comparator.py new file mode 100644 index 0000000..12c0ac2 --- /dev/null +++ b/Ch08/listing08-10-comparator.py @@ -0,0 +1,76 @@ +from __future__ import annotations + +from dataclasses import dataclass, field, asdict +import datetime +import typing as t + +import sqlalchemy +from sqlalchemy.dialects.postgresql import JSONB, DATE, TIMESTAMP +from sqlalchemy.ext.hybrid import ExprComparator, hybrid_property +from sqlalchemy.orm import sessionmaker +from sqlalchemy.schema import Table + +metadata = sqlalchemy.MetaData() + +datapoint_table = Table( + "sensor_values", + metadata, + sqlalchemy.Column("id", sqlalchemy.Integer, primary_key=True), + sqlalchemy.Column("sensor_name", sqlalchemy.String, index=True), + sqlalchemy.Column("collected_at", TIMESTAMP, index=True), + sqlalchemy.Column("data", JSONB), +) + +class DateEqualComparator(ExprComparator): + + def __init__(self, fallback_expression, raw_expression): + # Do not try and find update expression from parent + super().__init__(None, fallback_expression, None) + self.raw_expression = raw_expression + + def __eq__(self, other): + """ Returns True iff on the same day as other """ + other_date = sqlalchemy.cast(other, DATE) + return sqlalchemy.and_( + self.raw_expression >= other_date, + self.raw_expression < other_date + 1, + ) + + def operate(self, op, *other, **kwargs): + other = [sqlalchemy.cast(date, DATE) for date in other] + return op(self.expression, *other, **kwargs) + + def reverse_operate(self, op, other, **kwargs): + other = [sqlalchemy.cast(date, DATE) for date in other] + return op(other, self.expression, **kwargs) + + +@dataclass +class DataPoint: + sensor_name: str + data: t.Dict[str, t.Any] + id: t.Optional[int] = None + collected_at: datetime.datetime = field(default_factory=datetime.datetime.now) + + @classmethod + def from_sql_result(cls, result) -> DataPoint: + return cls(**result._asdict()) + + def _asdict(self) -> t.Dict[str, t.Any]: + data = asdict(self) + if data["id"] is None: + del data["id"] + return data + + @hybrid_property + def collected_on_date(self): + return self.collected_at.date() + + @collected_on_date.comparator + def collected_on_date(cls): + return DateEqualComparator( + cls, + sqlalchemy.cast(datapoint_table.c.collected_at, DATE), + datapoint_table.c.collected_at, + ) + diff --git a/Ch08/listing08-11-django.py b/Ch08/listing08-11-django.py new file mode 100644 index 0000000..b0c8963 --- /dev/null +++ b/Ch08/listing08-11-django.py @@ -0,0 +1,19 @@ +from django.db import models +from django.db.models.functions.datetime import TruncDate + +@TruncDate.register_lookup +class DateExact(models.Lookup): + lookup_name = 'exact' + + def as_sql(self, compiler, connection): + # self.lhs (left-hand-side of the comparison) is always TruncDate, we want its argument + underlying_dt = self.lhs.lhs + # Instead, we want to wrap the rhs with TruncDate + other_date = TruncDate(self.rhs) + # Compile both sides + lhs, lhs_params = compiler.compile(underlying_dt) + rhs, rhs_params = compiler.compile(other_date) + params = lhs_params + rhs_params + lhs_params + rhs_params + # Return ((lhs >= rhs) AND (lhs < rhs+1)) - compatible with postgresql only! + return '%s >= %s AND %s < (%s + 1)' % (lhs, rhs, lhs, rhs), params + diff --git a/Ch08/listing08-12-migration.py b/Ch08/listing08-12-migration.py new file mode 100644 index 0000000..607d47e --- /dev/null +++ b/Ch08/listing08-12-migration.py @@ -0,0 +1,36 @@ +"""Add daily summary view + +Revision ID: 6962f8455a6d +Revises: 4b2df8a6e1ce +Create Date: 2019-12-03 11:50:24.403402 + +""" +from alembic import op + +# revision identifiers, used by Alembic. +revision = "6962f8455a6d" +down_revision = "4b2df8a6e1ce" +branch_labels = None +depends_on = None + +def upgrade(): + create_view = """ + CREATE VIEW daily_summary AS + SELECT + datapoints.sensor_name AS sensor_name, + datapoints.data AS data, + count(datapoints.id) AS count + FROM datapoints + WHERE + datapoints.collected_at >= CAST(CURRENT_DATE AS DATE) + AND + datapoints.collected_at < CAST(CURRENT_DATE AS DATE) + 1 + GROUP BY + datapoints.sensor_name, + datapoints.data; + """ + op.execute(create_view) + +def downgrade(): + op.execute("""DROP VIEW daily_summary""") + diff --git a/Ch08/listing08-13-env.py b/Ch08/listing08-13-env.py new file mode 100644 index 0000000..e504735 --- /dev/null +++ b/Ch08/listing08-13-env.py @@ -0,0 +1,31 @@ +from logging.config import fileConfig + +from sqlalchemy import engine_from_config +from sqlalchemy import pool +from alembic import context + +from apd.aggregation.database import metadata as target_metadata + + +def include_object(object, name, type_, reflected, compare_to): + if object.info.get("is_view", False): + return False + return True + +def run_migrations_online(): + connectable = engine_from_config( + config.get_section(config.config_ini_section), + prefix="sqlalchemy.", + poolclass=pool.NullPool, + ) + + with connectable.connect() as connection: + context.configure( + connection=connection, + target_metadata=target_metadata, + include_object=include_object, + ) + + with context.begin_transaction(): + context.run_migrations() + diff --git a/Ch09/apd.aggregation-chapter09-ex01/.coveragerc b/Ch09/apd.aggregation-chapter09-ex01/.coveragerc new file mode 100644 index 0000000..e766c69 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex01/.coveragerc @@ -0,0 +1,3 @@ +[run] +branch = True +omit = tests/* diff --git a/Ch09/apd.aggregation-chapter09-ex01/.pre-commit-config.yaml b/Ch09/apd.aggregation-chapter09-ex01/.pre-commit-config.yaml new file mode 100644 index 0000000..d3b6ec7 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex01/.pre-commit-config.yaml @@ -0,0 +1,26 @@ +repos: + +- repo: local + hooks: + - id: black + name: black + entry: pipenv run black + args: [--quiet] + language: system + types: [python] + + - id: mypy + name: mypy + exclude: (?x)^( + (.*)/setup.py + )$ + entry: pipenv run mypy + args: ["--follow-imports=skip"] + language: system + types: [python] + + - id: flake8 + name: flake8 + entry: pipenv run flake8 + language: system + types: [python] diff --git a/Ch09/apd.aggregation-chapter09-ex01/CHANGES.md b/Ch09/apd.aggregation-chapter09-ex01/CHANGES.md new file mode 100644 index 0000000..8e424e5 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex01/CHANGES.md @@ -0,0 +1,5 @@ +## Changes + +### 1.0.0 (Unreleased) + +* Generated from skeleton diff --git a/Ch09/apd.aggregation-chapter09-ex01/LICENCE b/Ch09/apd.aggregation-chapter09-ex01/LICENCE new file mode 100644 index 0000000..86685d4 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex01/LICENCE @@ -0,0 +1,31 @@ +Copyright (c) 2019, Matthew Wilkes + + +All rights reserved. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + +* Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + +* Redistributions in binary form must reproduce the above copyright notice, this + list of conditions and the following disclaimer in the documentation and/or + other materials provided with the distribution. + +* Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived from this + software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND +ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. +IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, +INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, +BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY +OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE +OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED +OF THE POSSIBILITY OF SUCH DAMAGE. + + diff --git a/Ch09/apd.aggregation-chapter09-ex01/Pipfile b/Ch09/apd.aggregation-chapter09-ex01/Pipfile new file mode 100644 index 0000000..ef1fd86 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex01/Pipfile @@ -0,0 +1,25 @@ +[[source]] +name = "pypi" +url = "https://pypi.org/simple" +verify_ssl = true + +[dev-packages] +pytest = "*" +pytest-cov = "*" +pytest-asyncio = "*" +mypy = "*" +flake8 = "*" +black = "*" +pre-commit = "*" +wheel = "*" +twine = "*" +sqlalchemy-stubs = "*" + +[packages] +apd-aggregation = {editable = true,path = "."} +apd-sensors = {editable = true,extras = ["webapp"],path = "./../code"} + +[requires] + +[pipenv] +allow_prereleases = true diff --git a/Ch09/apd.aggregation-chapter09-ex01/Pipfile.lock b/Ch09/apd.aggregation-chapter09-ex01/Pipfile.lock new file mode 100644 index 0000000..37ebbba --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex01/Pipfile.lock @@ -0,0 +1,751 @@ +{ + "_meta": { + "hash": { + "sha256": "9cbbc3af88a1213ed8f4f93c33e35a9f9d7e047077cd25ff02f9bde13e2b606b" + }, + "pipfile-spec": 6, + "requires": {}, + "sources": [ + { + "name": "pypi", + "url": "https://pypi.org/simple", + "verify_ssl": true + } + ] + }, + "default": { + "aiohttp": { + "hashes": [ + "sha256:173267050501e1537293df06723bc5e719990889e2820ba3932969983892e960", + "sha256:438f1f1555c02c50894604d94944cff188fe138b46467b7fa99fdceb51ab5842", + "sha256:90bed250d1435aef33a1f8c439c5056d5d25a44fe6caf33fcafafed805bad4dc", + "sha256:93c3b14747413f38f094a60e98f55e73831f0c9a23ae7faa3dc97d8963e13021", + "sha256:a6e70a38d883185b1921d8122759661c39ade54949770394412a9e713fec6fa7", + "sha256:b5036133c1ba77ed5a70208d2a021a90b76fdf8bf523ae33dae46d4f4380d86f", + "sha256:c138451a82cdbf65cddf952941d5c7a1a2cac8ce3bc618dee8d889e5251ec7a5", + "sha256:c94770383e49f9cc5912b926364ad022a6c8a5dbf5498933ca3a5713c6daf738", + "sha256:ea26536ae06df6dac021303a0df72c79e55512070e6a304ba93ad468a3a754dc" + ], + "version": "==4.0.0a1" + }, + "alembic": { + "hashes": [ + "sha256:49277bb7242192bbb9eac58fed4fe02ec6c3a2a4b4345d2171197459266482b2" + ], + "version": "==1.3.1" + }, + "apd-aggregation": { + "editable": true, + "path": "." + }, + "apd-sensors": { + "editable": true, + "extras": [ + "webapp" + ], + "path": "./../code" + }, + "async-timeout": { + "hashes": [ + "sha256:0c3c816a028d47f659d6ff5c745cb2acf1f966da1fe5c19c77a70282b25f4c5f", + "sha256:4291ca197d287d274d0b6cb5d6f8f8f82d434ed288f962539ff18cc9012f9ea3" + ], + "version": "==3.0.1" + }, + "attrs": { + "hashes": [ + "sha256:08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c", + "sha256:f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72" + ], + "version": "==19.3.0" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:2335065e6395b9e67ca716de5f7526736bfa6ceead690adf616d925bdc622b13", + "sha256:5b94b49521f6456670fdb30cd82a4eca9412788a93fa6dd6df72c94d5a8ff2d7" + ], + "version": "==7.0" + }, + "flask": { + "hashes": [ + "sha256:13f9f196f330c7c2c5d7a5cf91af894110ca0215ac051b5844701f2bfd934d52", + "sha256:45eb5a6fd193d6cf7e0cf5d8a5b31f83d5faae0293695626f539a823e93b13f6" + ], + "version": "==1.1.1" + }, + "idna": { + "hashes": [ + "sha256:c357b3f628cf53ae2c4c05627ecc484553142ca23264e593d327bcde5e9c3407", + "sha256:ea8b7f6188e6fa117537c3df7da9fc686d485087abf6ac197f9c46432f7e4a3c" + ], + "version": "==2.8" + }, + "itsdangerous": { + "hashes": [ + "sha256:321b033d07f2a4136d3ec762eac9f16a10ccd60f53c0c91af90217ace7ba1f19", + "sha256:b12271b2047cb23eeb98c8b5622e2e5c5e9abd9784a153e9d8ef9cb4dd09d749" + ], + "version": "==1.1.0" + }, + "jinja2": { + "hashes": [ + "sha256:74320bb91f31270f9551d46522e33af46a80c3d619f4a4bf42b3164d30b5911f", + "sha256:9fe95f19286cfefaa917656583d020be14e7859c6b0252588391e47db34527de" + ], + "version": "==2.10.3" + }, + "mako": { + "hashes": [ + "sha256:a36919599a9b7dc5d86a7a8988f23a9a3a3d083070023bab23d64f7f1d1e0a4b" + ], + "version": "==1.1.0" + }, + "markupsafe": { + "hashes": [ + "sha256:00bc623926325b26bb9605ae9eae8a215691f33cae5df11ca5424f06f2d1f473", + "sha256:09027a7803a62ca78792ad89403b1b7a73a01c8cb65909cd876f7fcebd79b161", + "sha256:09c4b7f37d6c648cb13f9230d847adf22f8171b1ccc4d5682398e77f40309235", + "sha256:1027c282dad077d0bae18be6794e6b6b8c91d58ed8a8d89a89d59693b9131db5", + "sha256:24982cc2533820871eba85ba648cd53d8623687ff11cbb805be4ff7b4c971aff", + "sha256:29872e92839765e546828bb7754a68c418d927cd064fd4708fab9fe9c8bb116b", + "sha256:43a55c2930bbc139570ac2452adf3d70cdbb3cfe5912c71cdce1c2c6bbd9c5d1", + "sha256:46c99d2de99945ec5cb54f23c8cd5689f6d7177305ebff350a58ce5f8de1669e", + "sha256:500d4957e52ddc3351cabf489e79c91c17f6e0899158447047588650b5e69183", + "sha256:535f6fc4d397c1563d08b88e485c3496cf5784e927af890fb3c3aac7f933ec66", + "sha256:62fe6c95e3ec8a7fad637b7f3d372c15ec1caa01ab47926cfdf7a75b40e0eac1", + "sha256:6dd73240d2af64df90aa7c4e7481e23825ea70af4b4922f8ede5b9e35f78a3b1", + "sha256:717ba8fe3ae9cc0006d7c451f0bb265ee07739daf76355d06366154ee68d221e", + "sha256:79855e1c5b8da654cf486b830bd42c06e8780cea587384cf6545b7d9ac013a0b", + "sha256:7c1699dfe0cf8ff607dbdcc1e9b9af1755371f92a68f706051cc8c37d447c905", + "sha256:88e5fcfb52ee7b911e8bb6d6aa2fd21fbecc674eadd44118a9cc3863f938e735", + "sha256:8defac2f2ccd6805ebf65f5eeb132adcf2ab57aa11fdf4c0dd5169a004710e7d", + "sha256:98c7086708b163d425c67c7a91bad6e466bb99d797aa64f965e9d25c12111a5e", + "sha256:9add70b36c5666a2ed02b43b335fe19002ee5235efd4b8a89bfcf9005bebac0d", + "sha256:9bf40443012702a1d2070043cb6291650a0841ece432556f784f004937f0f32c", + "sha256:ade5e387d2ad0d7ebf59146cc00c8044acbd863725f887353a10df825fc8ae21", + "sha256:b00c1de48212e4cc9603895652c5c410df699856a2853135b3967591e4beebc2", + "sha256:b1282f8c00509d99fef04d8ba936b156d419be841854fe901d8ae224c59f0be5", + "sha256:b2051432115498d3562c084a49bba65d97cf251f5a331c64a12ee7e04dacc51b", + "sha256:ba59edeaa2fc6114428f1637ffff42da1e311e29382d81b339c1817d37ec93c6", + "sha256:c8716a48d94b06bb3b2524c2b77e055fb313aeb4ea620c8dd03a105574ba704f", + "sha256:cd5df75523866410809ca100dc9681e301e3c27567cf498077e8551b6d20e42f", + "sha256:e249096428b3ae81b08327a63a485ad0878de3fb939049038579ac0ef61e17e7" + ], + "version": "==1.1.1" + }, + "multidict": { + "hashes": [ + "sha256:07f9a6bf75ad675d53956b2c6a2d4ef2fa63132f33ecc99e9c24cf93beb0d10b", + "sha256:0ffe4d4d28cbe9801952bfb52a8095dd9ffecebd93f84bdf973c76300de783c5", + "sha256:1b605272c558e4c659dbaf0fb32a53bfede44121bcf77b356e6e906867b958b7", + "sha256:205a011e636d885af6dd0029e41e3514a46e05bb2a43251a619a6e8348b96fc0", + "sha256:250632316295f2311e1ed43e6b26a63b0216b866b45c11441886ac1543ca96e1", + "sha256:2bc9c2579312c68a3552ee816311c8da76412e6f6a9cf33b15152e385a572d2a", + "sha256:318aadf1cfb6741c555c7dd83d94f746dc95989f4f106b25b8a83dfb547f2756", + "sha256:42cdd649741a14b0602bf15985cad0dd4696a380081a3319cd1ead46fd0f0fab", + "sha256:5159c4975931a1a78bf6602bbebaa366747fce0a56cb2111f44789d2c45e379f", + "sha256:87e26d8b89127c25659e962c61a4c655ec7445d19150daea0759516884ecb8b4", + "sha256:891b7e142885e17a894d9d22b0349b92bb2da4769b4e675665d0331c08719be5", + "sha256:8d919034420378132d074bf89df148d0193e9780c9fe7c0e495e895b8af4d8a2", + "sha256:9c890978e2b37dd0dc1bd952da9a5d9f245d4807bee33e3517e4119c48d66f8c", + "sha256:a37433ce8cdb35fc9e6e47e1606fa1bfd6d70440879038dca7d8dd023197eaa9", + "sha256:c626029841ada34c030b94a00c573a0c7575fe66489cde148785b6535397d675", + "sha256:cfec9d001a83dc73580143f3c77e898cf7ad78b27bb5e64dbe9652668fcafec7", + "sha256:efaf1b18ea6c1f577b1371c0159edbe4749558bfe983e13aa24d0a0c01e1ad7b" + ], + "version": "==4.6.1" + }, + "pint": { + "hashes": [ + "sha256:32d8a9a9d63f4f81194c0014b3b742679dce81a26d45127d9810a68a561fe4e2", + "sha256:7ece3f639ad58073ce49982b022d464014e6d91d0b3eaa89c8e8ea9c38e32659" + ], + "version": "==0.9" + }, + "psutil": { + "hashes": [ + "sha256:094f899ac3ef72422b7e00411b4ed174e3c5a2e04c267db6643937ddba67a05b", + "sha256:10b7f75cc8bd676cfc6fa40cd7d5c25b3f45a0e06d43becd7c2d2871cbb5e806", + "sha256:1b1575240ca9a90b437e5a40db662acd87bbf181f6aa02f0204978737b913c6b", + "sha256:21231ef1c1a89728e29b98a885b8e0a8e00d09018f6da5cdc1f43f988471a995", + "sha256:28f771129bfee9fc6b63d83a15d857663bbdcae3828e1cb926e91320a9b5b5cd", + "sha256:70387772f84fa5c3bb6a106915a2445e20ac8f9821c5914d7cbde148f4d7ff73", + "sha256:b560f5cd86cf8df7bcd258a851ca1ad98f0d5b8b98748e877a0aec4e9032b465", + "sha256:b74b43fecce384a57094a83d2778cdfc2e2d9a6afaadd1ebecb2e75e0d34e10d", + "sha256:e85f727ffb21539849e6012f47b12f6dd4c44965e56591d8dec6e8bc9ab96f4a", + "sha256:fd2e09bb593ad9bdd7429e779699d2d47c1268cbde4dda95fcd1bd17544a0217", + "sha256:ffad8eb2ac614518bbe3c0b8eb9dffdb3a8d2e3a7d5da51c5b974fb723a5c5aa" + ], + "version": "==5.6.7" + }, + "psycopg2": { + "hashes": [ + "sha256:4212ca404c4445dc5746c0d68db27d2cbfb87b523fe233dc84ecd24062e35677", + "sha256:47fc642bf6f427805daf52d6e52619fe0637648fe27017062d898f3bf891419d", + "sha256:72772181d9bad1fa349792a1e7384dde56742c14af2b9986013eb94a240f005b", + "sha256:8396be6e5ff844282d4d49b81631772f80dabae5658d432202faf101f5283b7c", + "sha256:893c11064b347b24ecdd277a094413e1954f8a4e8cdaf7ffbe7ca3db87c103f0", + "sha256:92a07dfd4d7c325dd177548c4134052d4842222833576c8391aab6f74038fc3f", + "sha256:965c4c93e33e6984d8031f74e51227bd755376a9df6993774fd5b6fb3288b1f4", + "sha256:9ab75e0b2820880ae24b7136c4d230383e07db014456a476d096591172569c38", + "sha256:b0845e3bdd4aa18dc2f9b6fb78fbd3d9d371ad167fd6d1b7ad01c0a6cdad4fc6", + "sha256:dca2d7203f0dfce8ea4b3efd668f8ea65cd2b35112638e488a4c12594015f67b", + "sha256:ed686e5926929887e2c7ae0a700e32c6129abb798b4ad2b846e933de21508151", + "sha256:ef6df7e14698e79c59c7ee7cf94cd62e5b869db369ed4b1b8f7b729ea825712a", + "sha256:f898e5cc0a662a9e12bde6f931263a1bbd350cfb18e1d5336a12927851825bb6" + ], + "version": "==2.8.4" + }, + "python-dateutil": { + "hashes": [ + "sha256:73ebfe9dbf22e832286dafa60473e4cd239f8592f699aa5adaf10050e6e1823c", + "sha256:75bb3f31ea686f1197762692a9ee6a7550b59fc6ca3a1f4b5d7e32fb98e2da2a" + ], + "version": "==2.8.1" + }, + "python-editor": { + "hashes": [ + "sha256:1bf6e860a8ad52a14c3ee1252d5dc25b2030618ed80c022598f00176adc8367d", + "sha256:51fda6bcc5ddbbb7063b2af7509e43bd84bfc32a4ff71349ec7847713882327b", + "sha256:5f98b069316ea1c2ed3f67e7f5df6c0d8f10b689964a4a811ff64f0106819ec8" + ], + "version": "==1.0.4" + }, + "six": { + "hashes": [ + "sha256:1f1b7d42e254082a9db6279deae68afb421ceba6158efa6131de7b3003ee93fd", + "sha256:30f610279e8b2578cab6db20741130331735c781b56053c59c4076da27f06b66" + ], + "version": "==1.13.0" + }, + "sqlalchemy": { + "hashes": [ + "sha256:afa5541e9dea8ad0014251bc9d56171ca3d8b130c9627c6cb3681cff30be3f8a" + ], + "version": "==1.3.11" + }, + "typing-extensions": { + "hashes": [ + "sha256:091ecc894d5e908ac75209f10d5b4f118fbdb2eb1ede6a63544054bb1edb41f2", + "sha256:910f4656f54de5993ad9304959ce9bb903f90aadc7c67a0bef07e678014e892d", + "sha256:cf8b63fedea4d89bab840ecbb93e75578af28f76f66c35889bd7065f5af88575" + ], + "version": "==3.7.4.1" + }, + "werkzeug": { + "hashes": [ + "sha256:7280924747b5733b246fe23972186c6b348f9ae29724135a6dfc1e53cea433e7", + "sha256:e5f4a1f98b52b18a93da705a7458e55afb26f32bff83ff5d19189f92462d65c4" + ], + "version": "==0.16.0" + }, + "yarl": { + "hashes": [ + "sha256:2e5f4f4d709aed4f689843ef605fc432d0472e3325a8e165b1ecf1e2f3f22a89", + "sha256:412fe567284bdd16a8035c5a6f541da9872804b5702378532cf2e3ef5ae4a9e6", + "sha256:629f542dfd4e964c9e32039a1515b3262dae210f8802cfcceca9f0b529c68ee7", + "sha256:7bd0b31008afcba762d75171ac09135f49bc17c8d092bce49f0b9bf2c4b51850", + "sha256:9510699e48d7565a2c1dc0a9fcb396f1ac80802991621cf02d55540d571a5dc9", + "sha256:9a07c2a1b0c8b314ad5bcea37e62c109d8c19ad9f02985e8db898a56c129984f", + "sha256:9a49055f9e3121449c76709986aee829c74e2eee3b98185542799eec97808ed1", + "sha256:b59dd6679cb2ae172eb594f484e482aaac66fbff71a717603b0f9adf01649386", + "sha256:e5d6b530bec5817be9383452728c116d59868bfbed650ccc7657b2ec9aa51c03" + ], + "version": "==1.4.0a11" + } + }, + "develop": { + "appdirs": { + "hashes": [ + "sha256:9e5896d1372858f8dd3344faf4e5014d21849c756c8d5701f78f8a103b372d92", + "sha256:d8b24664561d0d34ddfaec54636d502d7cea6e29c3eaf68f3df6180863e2166e" + ], + "version": "==1.4.3" + }, + "aspy.yaml": { + "hashes": [ + "sha256:463372c043f70160a9ec950c3f1e4c3a82db5fca01d334b6bc89c7164d744bdc", + "sha256:e7c742382eff2caed61f87a39d13f99109088e5e93f04d76eb8d4b28aa143f45" + ], + "version": "==1.3.0" + }, + "atomicwrites": { + "hashes": [ + "sha256:03472c30eb2c5d1ba9227e4c2ca66ab8287fbfbbda3888aa93dc2e28fc6811b4", + "sha256:75a9445bac02d8d058d5e1fe689654ba5a6556a1dfd8ce6ec55a0ed79866cfa6" + ], + "markers": "sys_platform == 'win32'", + "version": "==1.3.0" + }, + "attrs": { + "hashes": [ + "sha256:08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c", + "sha256:f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72" + ], + "version": "==19.3.0" + }, + "black": { + "hashes": [ + "sha256:1b30e59be925fafc1ee4565e5e08abef6b03fe455102883820fe5ee2e4734e0b", + "sha256:c2edb73a08e9e0e6f65a0e6af18b059b8b1cdd5bef997d7a0b181df93dc81539" + ], + "index": "pypi", + "version": "==19.10b0" + }, + "bleach": { + "hashes": [ + "sha256:213336e49e102af26d9cde77dd2d0397afabc5a6bf2fed985dc35b5d1e285a16", + "sha256:3fdf7f77adcf649c9911387df51254b813185e32b2c6619f690b593a617e19fa" + ], + "version": "==3.1.0" + }, + "certifi": { + "hashes": [ + "sha256:e4f3620cfea4f83eedc95b24abd9cd56f3c4b146dd0177e83a21b4eb49e21e50", + "sha256:fd7c7c74727ddcf00e9acd26bba8da604ffec95bf1c2144e67aff7a8b50e6cef" + ], + "version": "==2019.9.11" + }, + "cfgv": { + "hashes": [ + "sha256:edb387943b665bf9c434f717bf630fa78aecd53d5900d2e05da6ad6048553144", + "sha256:fbd93c9ab0a523bf7daec408f3be2ed99a980e20b2d19b50fc184ca6b820d289" + ], + "version": "==2.0.1" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:2335065e6395b9e67ca716de5f7526736bfa6ceead690adf616d925bdc622b13", + "sha256:5b94b49521f6456670fdb30cd82a4eca9412788a93fa6dd6df72c94d5a8ff2d7" + ], + "version": "==7.0" + }, + "colorama": { + "hashes": [ + "sha256:05eed71e2e327246ad6b38c540c4a3117230b19679b875190486ddd2d721422d", + "sha256:f8ac84de7840f5b9c4e3347b3c1eaa50f7e49c2b07596221daec5edaabbd7c48" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.1" + }, + "coverage": { + "hashes": [ + "sha256:2358e685d0253125da42a48396038d4c7b4cd1448c00bbc4bda0cb8c43c2a870", + "sha256:25017cf384eeed2e6caf72efd3ec4124e32a8b7a4387600499104387975400c7", + "sha256:2e2de9423ff8b14303a97eafddd16c479fbcc9a0b8b0be3b7c3843a3e0cf6d69", + "sha256:324ed908e4e40a6e2451056fe502470ad4e79495cb7a03ecab94e6309c3e117e", + "sha256:34f865a0cf6255b694a46e4383a7131c61ea72c5b4c4f81d20e522fb1e440b4b", + "sha256:3a2bcc464b60a18f1f7167b95b2773ede93bf3722bfa59e0802717f652b6cc25", + "sha256:48d70865266d649b6602e2ba94820d7972ef470d3b72a8fd41a3d17321feed3a", + "sha256:50cf23523ab3a724c6905d3b60f87fa8250d9bae3995e09f49f63effa2b54f15", + "sha256:54c84a68abd8c4c5b71878b35eb85321df41f3d144c78181867d5b026ec74994", + "sha256:5b59d661ee7f3200aedd7b71882b7927ea7ed522df75e3853f316a79ad872a2e", + "sha256:5ffb39624bc573177888a21fb301ccee46838c600b27d58c3e9dae495f44d34a", + "sha256:699b3072b7f0e69ed175a88fa8b2ec7eefc4f34d490c54ed9a52feff21a15fdc", + "sha256:79ef4a2bb862110bd585174e551a783bee5c3aa461734a2ac7429193be357589", + "sha256:8210a6f93c4a8c6d460b402e20e38399529b99200c3318542faf6a520c9b6a5c", + "sha256:8d30c10cfd0a6fdf0a2d5023de00ef7b329cd6ead2310c9e53eab79c209acb70", + "sha256:97ac79ff28f2cda6ac00a803ee582b965951755f61ab43377482bfba450b619a", + "sha256:9fe4aacacff9028ed167db108bf013510654f148d83c4857fed61d2ce0588bf2", + "sha256:a5b6395d5957d638f8b1870561607e3c39b1a236ea6cff9eafe5b9bb1db913f2", + "sha256:ab32c5fad6905986a7e34e3acf01180a69bb60c2aa7331815b46e51c776a1943", + "sha256:ad67f0cfdfecbd49b9da46a7e488e6dc32a69388740b85c36a4ef4b33082cbad", + "sha256:aedad67c30326a1af324f45833a40b97180664912deb29942459ddbe9fa0ce19", + "sha256:b077cd0e70f41366ac1f9d09275258fa1906758a5d4f31cacc18b10dfcf90784", + "sha256:b8ea210810d3c14aec7561f8fe0d3eec582d1088100aaa0bb8153d53d867d20f", + "sha256:bf572722326ce6704e863447a070039a827072b7179352570859be899b9e6551", + "sha256:c0df57e189dacd2606cae6386acf127d01d85b2bf49acd9a65543b5d6c359ddc", + "sha256:d523e75f2a8a0b4a6a8be1287c0e0e3a561b8832b05ddd987d4cd7c62f3ad3bc", + "sha256:e10593c60c5f0bfd8b241bf9f27ef2191a3005b73dde8ada0424f642543a1e59", + "sha256:e9128444c83bc260aea988bf1ca6278a33ba730955bf94720468c656b61353eb", + "sha256:f7162f2e3711f3a08a8a741f92e1f63afd58d0713177979f2cf9723dd50161cf" + ], + "version": "==5.0b1" + }, + "docutils": { + "hashes": [ + "sha256:6c4f696463b79f1fb8ba0c594b63840ebd41f059e92b31957c46b74a4599b6d0", + "sha256:9e4d7ecfc600058e07ba661411a2b7de2fd0fafa17d1a7f7361cd47b1175c827", + "sha256:a2aeea129088da402665e92e0b25b04b073c04b2dce4ab65caaa38b7ce2e1a99" + ], + "version": "==0.15.2" + }, + "entrypoints": { + "hashes": [ + "sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19", + "sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451" + ], + "version": "==0.3" + }, + "flake8": { + "hashes": [ + "sha256:45681a117ecc81e870cbf1262835ae4af5e7a8b08e40b944a8a6e6b895914cfb", + "sha256:49356e766643ad15072a789a20915d3c91dc89fd313ccd71802303fd67e4deca" + ], + "index": "pypi", + "version": "==3.7.9" + }, + "identify": { + "hashes": [ + "sha256:4f1fe9a59df4e80fcb0213086fcf502bc1765a01ea4fe8be48da3b65afd2a017", + "sha256:d8919589bd2a5f99c66302fec0ef9027b12ae150b0b0213999ad3f695fc7296e" + ], + "version": "==1.4.7" + }, + "idna": { + "hashes": [ + "sha256:c357b3f628cf53ae2c4c05627ecc484553142ca23264e593d327bcde5e9c3407", + "sha256:ea8b7f6188e6fa117537c3df7da9fc686d485087abf6ac197f9c46432f7e4a3c" + ], + "version": "==2.8" + }, + "importlib-metadata": { + "hashes": [ + "sha256:aa18d7378b00b40847790e7c27e11673d7fed219354109d0e7b9e5b25dc3ad26", + "sha256:d5f18a79777f3aa179c145737780282e27b508fc8fd688cb17c7a813e8bd39af" + ], + "markers": "python_version < '3.8'", + "version": "==0.23" + }, + "keyring": { + "hashes": [ + "sha256:91037ccaf0c9a112a76f7740e4a416b9457a69b66c2799421581bee710a974b3", + "sha256:f5bb20ea6c57c2360daf0c591931c9ea0d7660a8d9e32ca84d63273f131ea605" + ], + "version": "==19.2.0" + }, + "mccabe": { + "hashes": [ + "sha256:ab8a6258860da4b6677da4bd2fe5dc2c659cff31b3ee4f7f5d64e79735b80d42", + "sha256:dd8d182285a0fe56bace7f45b5e7d1a6ebcbf524e8f3bd87eb0f125271b8831f" + ], + "version": "==0.6.1" + }, + "more-itertools": { + "hashes": [ + "sha256:409cd48d4db7052af495b09dec721011634af3753ae1ef92d2b32f73a745f832", + "sha256:92b8c4b06dac4f0611c0729b2f2ede52b2e1bac1ab48f089c7ddc12e26bb60c4" + ], + "version": "==7.2.0" + }, + "mypy": { + "hashes": [ + "sha256:1521c186a3d200c399bd5573c828ea2db1362af7209b2adb1bb8532cea2fb36f", + "sha256:31a046ab040a84a0fc38bc93694876398e62bc9f35eca8ccbf6418b7297f4c00", + "sha256:3b1a411909c84b2ae9b8283b58b48541654b918e8513c20a400bb946aa9111ae", + "sha256:48c8bc99380575deb39f5d3400ebb6a8a1cb5cc669bbba4d3bb30f904e0a0e7d", + "sha256:540c9caa57a22d0d5d3c69047cc9dd0094d49782603eb03069821b41f9e970e9", + "sha256:672e418425d957e276c291930a3921b4a6413204f53fe7c37cad7bc57b9a3391", + "sha256:6ed3b9b3fdc7193ea7aca6f3c20549b377a56f28769783a8f27191903a54170f", + "sha256:9371290aa2cad5ad133e4cdc43892778efd13293406f7340b9ffe99d5ec7c1d9", + "sha256:ace6ac1d0f87d4072f05b5468a084a45b4eda970e4d26704f201e06d47ab2990", + "sha256:b428f883d2b3fe1d052c630642cc6afddd07d5cd7873da948644508be3b9d4a7", + "sha256:d5bf0e6ec8ba346a2cf35cb55bf4adfddbc6b6576fcc9e10863daa523e418dbb", + "sha256:d7574e283f83c08501607586b3167728c58e8442947e027d2d4c7dcd6d82f453", + "sha256:dc889c84241a857c263a2b1cd1121507db7d5b5f5e87e77147097230f374d10b", + "sha256:f4748697b349f373002656bf32fede706a0e713d67bfdcf04edf39b1f61d46eb" + ], + "index": "pypi", + "version": "==0.740" + }, + "mypy-extensions": { + "hashes": [ + "sha256:090fedd75945a69ae91ce1303b5824f428daf5a028d2f6ab8a299250a846f15d", + "sha256:2d82818f5bb3e369420cb3c4060a7970edba416647068eb4c5343488a6c604a8" + ], + "version": "==0.4.3" + }, + "nodeenv": { + "hashes": [ + "sha256:ad8259494cf1c9034539f6cced78a1da4840a4b157e23640bc4a0c0546b0cb7a" + ], + "version": "==1.3.3" + }, + "packaging": { + "hashes": [ + "sha256:28b924174df7a2fa32c1953825ff29c61e2f5e082343165438812f00d3a7fc47", + "sha256:d9551545c6d761f3def1677baf08ab2a3ca17c56879e70fecba2fc4dde4ed108" + ], + "version": "==19.2" + }, + "pathspec": { + "hashes": [ + "sha256:e285ccc8b0785beadd4c18e5708b12bb8fcf529a1e61215b3feff1d1e559ea5c" + ], + "version": "==0.6.0" + }, + "pkginfo": { + "hashes": [ + "sha256:7424f2c8511c186cd5424bbf31045b77435b37a8d604990b79d4e70d741148bb", + "sha256:a6d9e40ca61ad3ebd0b72fbadd4fba16e4c0e4df0428c041e01e06eb6ee71f32" + ], + "version": "==1.5.0.1" + }, + "pluggy": { + "hashes": [ + "sha256:15b2acde666561e1298d71b523007ed7364de07029219b604cf808bfa1c765b0", + "sha256:966c145cd83c96502c3c3868f50408687b38434af77734af1e9ca461a4081d2d" + ], + "version": "==0.13.1" + }, + "pre-commit": { + "hashes": [ + "sha256:9f152687127ec90642a2cc3e4d9e1e6240c4eb153615cb02aa1ad41d331cbb6e", + "sha256:c2e4810d2d3102d354947907514a78c5d30424d299dc0fe48f5aa049826e9b50" + ], + "index": "pypi", + "version": "==1.20.0" + }, + "py": { + "hashes": [ + "sha256:64f65755aee5b381cea27766a3a147c3f15b9b6b9ac88676de66ba2ae36793fa", + "sha256:dc639b046a6e2cff5bbe40194ad65936d6ba360b52b3c3fe1d08a82dd50b5e53" + ], + "version": "==1.8.0" + }, + "pycodestyle": { + "hashes": [ + "sha256:95a2219d12372f05704562a14ec30bc76b05a5b297b21a5dfe3f6fac3491ae56", + "sha256:e40a936c9a450ad81df37f549d676d127b1b66000a6c500caa2b085bc0ca976c" + ], + "version": "==2.5.0" + }, + "pyflakes": { + "hashes": [ + "sha256:17dbeb2e3f4d772725c777fabc446d5634d1038f234e77343108ce445ea69ce0", + "sha256:d976835886f8c5b31d47970ed689944a0262b5f3afa00a5a7b4dc81e5449f8a2" + ], + "version": "==2.1.1" + }, + "pygments": { + "hashes": [ + "sha256:71e430bc85c88a430f000ac1d9b331d2407f681d6f6aec95e8bcfbc3df5b0127", + "sha256:881c4c157e45f30af185c1ffe8d549d48ac9127433f2c380c24b84572ad66297" + ], + "version": "==2.4.2" + }, + "pyparsing": { + "hashes": [ + "sha256:20f995ecd72f2a1f4bf6b072b63b22e2eb457836601e76d6e5dfcd75436acc1f", + "sha256:4ca62001be367f01bd3e92ecbb79070272a9d4964dce6a48a82ff0b8bc7e683a" + ], + "version": "==2.4.5" + }, + "pytest": { + "hashes": [ + "sha256:1897d74f60a5d8be02e06d708b41bf2445da2ee777066bd68edf14474fc201eb", + "sha256:f6a567e20c04259d41adce9a360bd8991e6aa29dd9695c5e6bd25a9779272673" + ], + "index": "pypi", + "version": "==5.3.0" + }, + "pytest-asyncio": { + "hashes": [ + "sha256:9fac5100fd716cbecf6ef89233e8590a4ad61d729d1732e0a96b84182df1daaf", + "sha256:d734718e25cfc32d2bf78d346e99d33724deeba774cc4afdf491530c6184b63b" + ], + "index": "pypi", + "version": "==0.10.0" + }, + "pytest-cov": { + "hashes": [ + "sha256:cc6742d8bac45070217169f5f72ceee1e0e55b0221f54bcf24845972d3a47f2b", + "sha256:cdbdef4f870408ebdbfeb44e63e07eb18bb4619fae852f6e760645fa36172626" + ], + "index": "pypi", + "version": "==2.8.1" + }, + "pywin32-ctypes": { + "hashes": [ + "sha256:24ffc3b341d457d48e8922352130cf2644024a4ff09762a2261fd34c36ee5942", + "sha256:9dc2d991b3479cc2df15930958b674a48a227d5361d413827a4cfd0b5876fc98" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.2.0" + }, + "pyyaml": { + "hashes": [ + "sha256:0113bc0ec2ad727182326b61326afa3d1d8280ae1122493553fd6f4397f33df9", + "sha256:01adf0b6c6f61bd11af6e10ca52b7d4057dd0be0343eb9283c878cf3af56aee4", + "sha256:5124373960b0b3f4aa7df1707e63e9f109b5263eca5976c66e08b1c552d4eaf8", + "sha256:5ca4f10adbddae56d824b2c09668e91219bb178a1eee1faa56af6f99f11bf696", + "sha256:7907be34ffa3c5a32b60b95f4d95ea25361c951383a894fec31be7252b2b6f34", + "sha256:7ec9b2a4ed5cad025c2278a1e6a19c011c80a3caaac804fd2d329e9cc2c287c9", + "sha256:87ae4c829bb25b9fe99cf71fbb2140c448f534e24c998cc60f39ae4f94396a73", + "sha256:9de9919becc9cc2ff03637872a440195ac4241c80536632fffeb6a1e25a74299", + "sha256:a5a85b10e450c66b49f98846937e8cfca1db3127a9d5d1e31ca45c3d0bef4c5b", + "sha256:b0997827b4f6a7c286c01c5f60384d218dca4ed7d9efa945c3e1aa623d5709ae", + "sha256:b631ef96d3222e62861443cc89d6563ba3eeb816eeb96b2629345ab795e53681", + "sha256:bf47c0607522fdbca6c9e817a6e81b08491de50f3766a7a0e6a5be7905961b41", + "sha256:f81025eddd0327c7d4cfe9b62cf33190e1e736cc6e97502b3ec425f574b3e7a8" + ], + "version": "==5.1.2" + }, + "readme-renderer": { + "hashes": [ + "sha256:bb16f55b259f27f75f640acf5e00cf897845a8b3e4731b5c1a436e4b8529202f", + "sha256:c8532b79afc0375a85f10433eca157d6b50f7d6990f337fa498c96cd4bfc203d" + ], + "version": "==24.0" + }, + "regex": { + "hashes": [ + "sha256:15454b37c5a278f46f7aa2d9339bda450c300617ca2fca6558d05d870245edc7", + "sha256:1ad40708c255943a227e778b022c6497c129ad614bb7a2a2f916e12e8a359ee7", + "sha256:5e00f65cc507d13ab4dfa92c1232d004fa202c1d43a32a13940ab8a5afe2fb96", + "sha256:604dc563a02a74d70ae1f55208ddc9bfb6d9f470f6d1a5054c4bd5ae58744ab1", + "sha256:720e34a539a76a1fedcebe4397290604cc2bdf6f81eca44adb9fb2ea071c0c69", + "sha256:7caf47e4a9ac6ef08cabd3442cc4ca3386db141fb3c8b2a7e202d0470028e910", + "sha256:7faf534c1841c09d8fefa60ccde7b9903c9b528853ecf41628689793290ca143", + "sha256:b4e0406d822aa4993ac45072a584d57aa4931cf8288b5455bbf30c1d59dbad59", + "sha256:c31eaf28c6fe75ea329add0022efeed249e37861c19681960f99bbc7db981fb2", + "sha256:c7393597191fc2043c744db021643549061e12abe0b3ff5c429d806de7b93b66", + "sha256:d2b302f8cdd82c8f48e9de749d1d17f85ce9a0f082880b9a4859f66b07037dc6", + "sha256:e3d8dd0ec0ea280cf89026b0898971f5750a7bd92cb62c51af5a52abd020054a", + "sha256:ec032cbfed59bd5a4b8eab943c310acfaaa81394e14f44454ad5c9eba4f24a74" + ], + "version": "==2019.11.1" + }, + "requests": { + "hashes": [ + "sha256:11e007a8a2aa0323f5a921e9e6a2d7e4e67d9877e85773fba9ba6419025cbeb4", + "sha256:9cf5292fcd0f598c671cfc1e0d7d1a7f13bb8085e9a590f48c010551dc6c4b31" + ], + "version": "==2.22.0" + }, + "requests-toolbelt": { + "hashes": [ + "sha256:380606e1d10dc85c3bd47bf5a6095f815ec007be7a8b69c878507068df059e6f", + "sha256:968089d4584ad4ad7c171454f0a5c6dac23971e9472521ea3b6d49d610aa6fc0" + ], + "version": "==0.9.1" + }, + "six": { + "hashes": [ + "sha256:1f1b7d42e254082a9db6279deae68afb421ceba6158efa6131de7b3003ee93fd", + "sha256:30f610279e8b2578cab6db20741130331735c781b56053c59c4076da27f06b66" + ], + "version": "==1.13.0" + }, + "sqlalchemy-stubs": { + "hashes": [ + "sha256:a3318c810697164e8c818aa2d90bac570c1a0e752ced3ec25455b309c0bee8fd", + "sha256:ca1250605a39648cc433f5c70cb1a6f9fe0b60bdda4c51e1f9a2ab3651daadc8" + ], + "index": "pypi", + "version": "==0.3" + }, + "toml": { + "hashes": [ + "sha256:229f81c57791a41d65e399fc06bf0848bab550a9dfd5ed66df18ce5f05e73d5c", + "sha256:235682dd292d5899d361a811df37e04a8828a5b1da3115886b73cf81ebc9100e" + ], + "version": "==0.10.0" + }, + "tqdm": { + "hashes": [ + "sha256:5a1f3d58f3eb53264387394387fe23df469d2a3fab98c9e7f99d5c146c119873", + "sha256:f1a1613fee07cc30a253051617f2a219a785c58877f9f6bfa129446cbaf8b4c1" + ], + "version": "==4.39.0" + }, + "twine": { + "hashes": [ + "sha256:1a87ae3f1e29a87a8ac174809bf0aa996085a0368fe500402196bda94b23aab3", + "sha256:ba8ba1b39987f1c22d9162f7dd3b4668388640e5f7158c15226624f88e464836" + ], + "index": "pypi", + "version": "==3.1.0" + }, + "typed-ast": { + "hashes": [ + "sha256:1170afa46a3799e18b4c977777ce137bb53c7485379d9706af8a59f2ea1aa161", + "sha256:18511a0b3e7922276346bcb47e2ef9f38fb90fd31cb9223eed42c85d1312344e", + "sha256:262c247a82d005e43b5b7f69aff746370538e176131c32dda9cb0f324d27141e", + "sha256:2b907eb046d049bcd9892e3076c7a6456c93a25bebfe554e931620c90e6a25b0", + "sha256:354c16e5babd09f5cb0ee000d54cfa38401d8b8891eefa878ac772f827181a3c", + "sha256:48e5b1e71f25cfdef98b013263a88d7145879fbb2d5185f2a0c79fa7ebbeae47", + "sha256:4e0b70c6fc4d010f8107726af5fd37921b666f5b31d9331f0bd24ad9a088e631", + "sha256:630968c5cdee51a11c05a30453f8cd65e0cc1d2ad0d9192819df9978984529f4", + "sha256:66480f95b8167c9c5c5c87f32cf437d585937970f3fc24386f313a4c97b44e34", + "sha256:71211d26ffd12d63a83e079ff258ac9d56a1376a25bc80b1cdcdf601b855b90b", + "sha256:7954560051331d003b4e2b3eb822d9dd2e376fa4f6d98fee32f452f52dd6ebb2", + "sha256:838997f4310012cf2e1ad3803bce2f3402e9ffb71ded61b5ee22617b3a7f6b6e", + "sha256:95bd11af7eafc16e829af2d3df510cecfd4387f6453355188342c3e79a2ec87a", + "sha256:bc6c7d3fa1325a0c6613512a093bc2a2a15aeec350451cbdf9e1d4bffe3e3233", + "sha256:cc34a6f5b426748a507dd5d1de4c1978f2eb5626d51326e43280941206c209e1", + "sha256:d755f03c1e4a51e9b24d899561fec4ccaf51f210d52abdf8c07ee2849b212a36", + "sha256:d7c45933b1bdfaf9f36c579671fec15d25b06c8398f113dab64c18ed1adda01d", + "sha256:d896919306dd0aa22d0132f62a1b78d11aaf4c9fc5b3410d3c666b818191630a", + "sha256:fdc1c9bbf79510b76408840e009ed65958feba92a88833cdceecff93ae8fff66", + "sha256:ffde2fbfad571af120fcbfbbc61c72469e72f550d676c3342492a9dfdefb8f12" + ], + "version": "==1.4.0" + }, + "typing-extensions": { + "hashes": [ + "sha256:091ecc894d5e908ac75209f10d5b4f118fbdb2eb1ede6a63544054bb1edb41f2", + "sha256:910f4656f54de5993ad9304959ce9bb903f90aadc7c67a0bef07e678014e892d", + "sha256:cf8b63fedea4d89bab840ecbb93e75578af28f76f66c35889bd7065f5af88575" + ], + "version": "==3.7.4.1" + }, + "urllib3": { + "hashes": [ + "sha256:a8a318824cc77d1fd4b2bec2ded92646630d7fe8619497b142c84a9e6f5a7293", + "sha256:f3c5fd51747d450d4dcf6f923c81f78f811aab8205fda64b0aba34a4e48b0745" + ], + "version": "==1.25.7" + }, + "virtualenv": { + "hashes": [ + "sha256:116655188441670978117d0ebb6451eb6a7526f9ae0796cc0dee6bd7356909b0", + "sha256:b57776b44f91511866594e477dd10e76a6eb44439cdd7f06dcd30ba4c5bd854f" + ], + "version": "==16.7.8" + }, + "wcwidth": { + "hashes": [ + "sha256:3df37372226d6e63e1b1e1eda15c594bca98a22d33a23832a90998faa96bc65e", + "sha256:f4ebe71925af7b40a864553f761ed559b43544f8f71746c2d756c7fe788ade7c" + ], + "version": "==0.1.7" + }, + "webencodings": { + "hashes": [ + "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", + "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923" + ], + "version": "==0.5.1" + }, + "wheel": { + "hashes": [ + "sha256:10c9da68765315ed98850f8e048347c3eb06dd81822dc2ab1d4fde9dc9702646", + "sha256:f4da1763d3becf2e2cd92a14a7c920f0f00eca30fdde9ea992c836685b9faf28" + ], + "index": "pypi", + "version": "==0.33.6" + }, + "zipp": { + "hashes": [ + "sha256:3718b1cbcd963c7d4c5511a8240812904164b7f381b647143a89d3b98f9bcd8e", + "sha256:f06903e9f1f43b12d371004b4ac7b06ab39a44adc747266928ae6debfa7b3335" + ], + "version": "==0.6.0" + } + } +} diff --git a/Ch09/apd.aggregation-chapter09-ex01/README.md b/Ch09/apd.aggregation-chapter09-ex01/README.md new file mode 100644 index 0000000..85669dd --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex01/README.md @@ -0,0 +1,4 @@ +# APD Sensor aggregator + +A programme that queries apd.sensor endpoints and aggregates their results. + diff --git a/Ch09/apd.aggregation-chapter09-ex01/pyproject.toml b/Ch09/apd.aggregation-chapter09-ex01/pyproject.toml new file mode 100644 index 0000000..4d3bb67 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex01/pyproject.toml @@ -0,0 +1,5 @@ +[build-system] +requires = [ + "setuptools", +] +build-backend = "setuptools.build_meta" diff --git a/Ch09/apd.aggregation-chapter09-ex01/pytest.ini b/Ch09/apd.aggregation-chapter09-ex01/pytest.ini new file mode 100644 index 0000000..c1d3e58 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex01/pytest.ini @@ -0,0 +1,3 @@ +[pytest] +markers = + functional: these tests are significantly slower as they start a HTTP server \ No newline at end of file diff --git a/Ch09/apd.aggregation-chapter09-ex01/setup.cfg b/Ch09/apd.aggregation-chapter09-ex01/setup.cfg new file mode 100644 index 0000000..356d822 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex01/setup.cfg @@ -0,0 +1,63 @@ +[mypy] +namespace_packages = True +mypy_path = src +plugins = sqlmypy + +[mypy-alembic] +ignore_missing_imports = True + +[mypy-alembic.config] +ignore_missing_imports = True + +[mypy-alembic.script] +ignore_missing_imports = True + +[mypy-alembic.runtime.environment] +ignore_missing_imports = True + +[mypy-matplotlib.axes._base] +ignore_missing_imports = True + +[mypy-pint] +ignore_missing_imports = True + +[mypy-pytest] +ignore_missing_imports = True + +[flake8] +max-line-length = 120 +ignore = E501 + +[metadata] +name = apd.aggregation +version = attr: apd.aggregation.VERSION +description = A programme that queries apd.sensor endpoints and aggregates their results. +long_description = file: README.md, CHANGES.md, LICENCE +long_description_content_type = text/markdown +keywords = +license = BSD +classifiers = + Programming Language :: Python :: 3 + Programming Language :: Python :: 3.7 + +[options] +zip_safe = False +include_package_data = True +package_dir = + =src +packages = find_namespace: +install_requires = + sqlalchemy + aiohttp + pint + psycopg2 + alembic + click + + +[options.packages.find] +where = src + +[options.entry_points] +console_scripts = + collect_sensor_data = apd.aggregation.cli:collect_sensor_data diff --git a/Ch09/apd.aggregation-chapter09-ex01/setup.py b/Ch09/apd.aggregation-chapter09-ex01/setup.py new file mode 100644 index 0000000..6068493 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex01/setup.py @@ -0,0 +1,3 @@ +from setuptools import setup + +setup() diff --git a/Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/__init__.py b/Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/__init__.py new file mode 100644 index 0000000..3277f64 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/__init__.py @@ -0,0 +1 @@ +VERSION = "1.0.0" diff --git a/Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/alembic/README b/Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/alembic/README new file mode 100644 index 0000000..97a87d5 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/alembic/README @@ -0,0 +1,12 @@ +Generic single-database configuration. + + +# Database setup + +To generate the required database tables you must create an alembic.ini file, as follows: + + [alembic] + script_location = apd.aggregation:alembic + sqlalchemy.url = postgresql+psycopg2://apd@localhost/apd + +and run `alembic upgrade head`. This should also be done after every upgrade of the software. \ No newline at end of file diff --git a/Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/alembic/env.py b/Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/alembic/env.py new file mode 100644 index 0000000..4c8a2c2 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/alembic/env.py @@ -0,0 +1,80 @@ +from logging.config import fileConfig + +from sqlalchemy import engine_from_config +from sqlalchemy import pool +from alembic import context + +from apd.aggregation.database import metadata + + +# this is the Alembic Config object, which provides +# access to the values within the .ini file in use. +config = context.config + +# Interpret the config file for Python logging. +# This line sets up loggers basically. +if config.config_file_name: + fileConfig(config.config_file_name) + +target_metadata = metadata + + +def include_object(object, name, type_, reflected, compare_to): + if object.info.get("is_view", False): + return False + return True + + +def run_migrations_offline(): + """Run migrations in 'offline' mode. + + This configures the context with just a URL + and not an Engine, though an Engine is acceptable + here as well. By skipping the Engine creation + we don't even need a DBAPI to be available. + + Calls to context.execute() here emit the given string to the + script output. + + """ + url = config.get_main_option("sqlalchemy.url") + context.configure( + url=url, + include_object=include_object, + target_metadata=target_metadata, + literal_binds=True, + dialect_opts={"paramstyle": "named"}, + ) + + with context.begin_transaction(): + context.run_migrations() + + +def run_migrations_online(): + """Run migrations in 'online' mode. + + In this scenario we need to create an Engine + and associate a connection with the context. + + """ + connectable = engine_from_config( + config.get_section(config.config_ini_section), + prefix="sqlalchemy.", + poolclass=pool.NullPool, + ) + + with connectable.connect() as connection: + context.configure( + connection=connection, + target_metadata=target_metadata, + include_object=include_object, + ) + + with context.begin_transaction(): + context.run_migrations() + + +if context.is_offline_mode(): + run_migrations_offline() +else: + run_migrations_online() diff --git a/Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/alembic/script.py.mako b/Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/alembic/script.py.mako new file mode 100644 index 0000000..2c01563 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/alembic/script.py.mako @@ -0,0 +1,24 @@ +"""${message} + +Revision ID: ${up_revision} +Revises: ${down_revision | comma,n} +Create Date: ${create_date} + +""" +from alembic import op +import sqlalchemy as sa +${imports if imports else ""} + +# revision identifiers, used by Alembic. +revision = ${repr(up_revision)} +down_revision = ${repr(down_revision)} +branch_labels = ${repr(branch_labels)} +depends_on = ${repr(depends_on)} + + +def upgrade(): + ${upgrades if upgrades else "pass"} + + +def downgrade(): + ${downgrades if downgrades else "pass"} diff --git a/Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py b/Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py new file mode 100644 index 0000000..ef671bd --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py @@ -0,0 +1,32 @@ +"""Add indexes to datapoints + +Revision ID: 4b2df8a6e1ce +Revises: 6d2eacd5da3f +Create Date: 2019-12-02 16:07:41.123116 + +""" +from alembic import op + + +# revision identifiers, used by Alembic. +revision = "4b2df8a6e1ce" +down_revision = "6d2eacd5da3f" +branch_labels = None +depends_on = None + + +def upgrade(): + op.create_index( + op.f("ix_datapoints_collected_at"), + "datapoints", + ["collected_at"], + unique=False, + ) + op.create_index( + op.f("ix_datapoints_sensor_name"), "datapoints", ["sensor_name"], unique=False, + ) + + +def downgrade(): + op.drop_index(op.f("ix_datapoints_sensor_name"), table_name="datapoints") + op.drop_index(op.f("ix_datapoints_collected_at"), table_name="datapoints") diff --git a/Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py b/Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py new file mode 100644 index 0000000..eb02455 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py @@ -0,0 +1,38 @@ +"""Add daily summary view + +Revision ID: 6962f8455a6d +Revises: 4b2df8a6e1ce +Create Date: 2019-12-03 11:50:24.403402 + +""" +from alembic import op + + +# revision identifiers, used by Alembic. +revision = "6962f8455a6d" +down_revision = "4b2df8a6e1ce" +branch_labels = None +depends_on = None + + +def upgrade(): + create_view = """ + CREATE VIEW daily_summary AS + SELECT + datapoints.sensor_name AS sensor_name, + datapoints.data AS data, + count(datapoints.id) AS count + FROM datapoints + WHERE + datapoints.collected_at >= CAST(CURRENT_DATE AS DATE) + AND + datapoints.collected_at < CAST(CURRENT_DATE AS DATE) + 1 + GROUP BY + datapoints.sensor_name, + datapoints.data; + """ + op.execute(create_view) + + +def downgrade(): + op.execute("""DROP VIEW daily_summary""") diff --git a/Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py b/Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py new file mode 100644 index 0000000..b4a3545 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py @@ -0,0 +1,31 @@ +"""Create datapoints table + +Revision ID: 6d2eacd5da3f +Revises: N/A +Create Date: 2019-09-29 13:43:21.242706 + +""" +from alembic import op +import sqlalchemy as sa +from sqlalchemy.dialects import postgresql + +# revision identifiers, used by Alembic. +revision = "6d2eacd5da3f" +down_revision = None +branch_labels = None +depends_on = None + + +def upgrade(): + op.create_table( + "datapoints", + sa.Column("id", sa.Integer(), nullable=False), + sa.Column("sensor_name", sa.String(), nullable=True), + sa.Column("collected_at", postgresql.TIMESTAMP(), nullable=True), + sa.Column("data", postgresql.JSONB(astext_type=sa.Text()), nullable=True), + sa.PrimaryKeyConstraint("id"), + ) + + +def downgrade(): + op.drop_table("datapoints") diff --git a/Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py b/Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py new file mode 100644 index 0000000..88d5219 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py @@ -0,0 +1,34 @@ +"""Add deployment id to DataPoint + +Revision ID: d8d4cf6a178f +Revises: 6962f8455a6d +Create Date: 2019-12-03 20:58:11.285509 + +""" +from alembic import op +import sqlalchemy as sa +from sqlalchemy.dialects import postgresql + +# revision identifiers, used by Alembic. +revision = "d8d4cf6a178f" +down_revision = "6962f8455a6d" +branch_labels = None +depends_on = None + + +def upgrade(): + op.add_column( + "datapoints", + sa.Column("deployment_id", postgresql.UUID(as_uuid=True), nullable=True), + ) + op.create_index( + op.f("ix_datapoints_deployment_id"), + "datapoints", + ["deployment_id"], + unique=False, + ) + + +def downgrade(): + op.drop_index(op.f("ix_datapoints_deployment_id"), table_name="datapoints") + op.drop_column("datapoints", "deployment_id") diff --git a/Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/analysis.py b/Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/analysis.py new file mode 100644 index 0000000..6aff21a --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/analysis.py @@ -0,0 +1,148 @@ +from __future__ import annotations + +import collections +import dataclasses +import datetime +import typing as t +from uuid import UUID + +from matplotlib.axes._base import _AxesBase + +from apd.aggregation.query import get_data_by_deployment +from apd.aggregation.database import DataPoint + + +@dataclasses.dataclass(frozen=True) +class Config: + title: str + sensor_name: str + clean: t.Callable[ + [t.AsyncIterator[DataPoint]], t.AsyncIterator[t.Tuple[datetime.datetime, float]] + ] + ylabel: str + + +async def clean_watthours_to_watts( + datapoints: t.AsyncIterator[DataPoint], +) -> t.AsyncIterator[t.Tuple[datetime.datetime, float]]: + async for date, data in clean_magnitude(datapoints): + yield (date, data) + + +async def clean_magnitude( + datapoints: t.AsyncIterator[DataPoint], +) -> t.AsyncIterator[t.Tuple[datetime.datetime, float]]: + async for datapoint in datapoints: + if datapoint.data is None: + continue + yield datapoint.collected_at, datapoint.data["magnitude"] + + +async def clean_temperature_fluctuations( + datapoints: t.AsyncIterator[DataPoint], +) -> t.AsyncIterator[t.Tuple[datetime.datetime, float]]: + allowed_jitter = 2.5 + allowed_range = (-40, 80) + window_datapoints: t.Deque[DataPoint] = collections.deque(maxlen=3) + + def datapoint_ok(datapoint: DataPoint) -> bool: + """Return False if this data point does not contain a valid temperature""" + if datapoint.data is None: + return False + elif datapoint.data["unit"] != "degC": + # This point is in a different temperature system. While it could be converted + # this cleaner is not yet doing that. + return False + elif not allowed_range[0] < datapoint.data["magnitude"] < allowed_range[1]: + return False + return True + + async for datapoint in datapoints: + if not datapoint_ok(datapoint): + # If the datapoint is invalid then skip directly to the next item + continue + + window_datapoints.append(datapoint) + if len(window_datapoints) == 3: + # Find the temperatures of the datapoints in the window, then average + # the first and last and compare that to the middle point. + window_temperatures = [dp.data["magnitude"] for dp in window_datapoints] + avr_first_last = (window_temperatures[0] + window_temperatures[2]) / 2 + diff_middle_avr = abs(window_temperatures[1] - avr_first_last) + if diff_middle_avr > allowed_jitter: + pass + else: + yield window_datapoints[1].collected_at, window_temperatures[1] + elif len(window_datapoints) == 1: + # The item in the iterator can't be compared to both neighbours + # so should be yielded + yield datapoint.collected_at, datapoint.data["magnitude"] + else: + # Otherwise, let the window fill up, it will be yieleded later + pass + # When the iterator ends the final item is not yet in the middle + # of the window, so the last item must be explicitly yielded. + if len(window_datapoints) > 1 and datapoint_ok(datapoint): + yield datapoint.collected_at, datapoint.data["magnitude"] + + +async def clean_passthrough( + datapoints: t.AsyncIterator[DataPoint], +) -> t.AsyncIterator[t.Tuple[datetime.datetime, float]]: + async for datapoint in datapoints: + if datapoint.data is None: + continue + else: + yield datapoint.collected_at, datapoint.data + + +configs = ( + Config( + sensor_name="SolarCumulativeOutput", + clean=clean_watthours_to_watts, + title="Solar generation", + ylabel="Watts", + ), + Config( + sensor_name="RAMAvailable", + clean=clean_passthrough, + title="RAM available", + ylabel="Bytes", + ), + Config( + sensor_name="RelativeHumidity", + clean=clean_passthrough, + title="Relative humidity", + ylabel="Percent", + ), + Config( + sensor_name="Temperature", + clean=clean_temperature_fluctuations, + title="Ambient temperature", + ylabel="Degrees C", + ), +) + + +def get_known_configs(): + return {config.title: config for config in configs} + + +async def plot_sensor( + config: Config, plot: _AxesBase, location_names: t.Dict[UUID, str], **kwargs +): + locations = [] + async for deployment, query_results in get_data_by_deployment( + sensor_name=config.sensor_name, **kwargs + ): + # Mypy currently doesn't understand callable fields on datatypes: https://github.com/python/mypy/issues/5485 + points = [dp async for dp in config.clean(query_results)] # type: ignore + if not points: + continue + locations.append(deployment) + x, y = zip(*points) + plot.set_title(config.title) + plot.set_ylabel(config.ylabel) + plot.plot_date(x, y, f"-", xdate=True) + plot.legend([location_names.get(l, l) for l in locations]) + return plot diff --git a/Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/cli.py b/Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/cli.py new file mode 100644 index 0000000..3435e78 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/cli.py @@ -0,0 +1,52 @@ +import typing as t + +import click + +from .collect import standalone + + +@click.command() +@click.argument("server", nargs=-1) +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +@click.option("--api-key", metavar="", envvar="APD_API_KEY") +@click.option( + "--tolerate-failures", + "-f", + help="If provided, failure to retrieve some sensors' data will not abort the collection process", + is_flag=True, +) +@click.option("-v", "--verbose", is_flag=True, help="Enables verbose mode") +def collect_sensor_data( + db: str, server: t.Tuple[str], api_key: str, tolerate_failures: bool, verbose: bool +): + """This loads data from one or more sensors into the specified database. + + Only PostgreSQL databases are supported, as the column definitions use + multiple pg specific features. The database must already exist and be + populated with the required tables. + + The --api-key option is used to specify the access token for the sensors + being queried. + + You may specify any number of servers, the variable should be the full URL + to the sensor's HTTP interface, not including the /v/2.0 portion. Multiple + URLs should be separated with a space. + """ + if tolerate_failures: + attempts = [(s,) for s in server] + else: + attempts = [server] + success = True + for attempt in attempts: + try: + standalone(db, attempt, api_key, echo=verbose) + except ValueError as e: + click.secho(str(e), err=True, fg="red") + success = False + return success diff --git a/Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/collect.py b/Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/collect.py new file mode 100644 index 0000000..f745d69 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/collect.py @@ -0,0 +1,93 @@ +import asyncio +from contextvars import ContextVar +import datetime +import typing as t +import uuid + +import aiohttp +from sqlalchemy import create_engine +from sqlalchemy.orm import sessionmaker +from sqlalchemy.orm.session import Session + +from .database import DataPoint, datapoint_table + +http_session_var: ContextVar[aiohttp.ClientSession] = ContextVar("http_session") + + +async def get_data_points(server: str, api_key: t.Optional[str],) -> t.List[DataPoint]: + if not server.endswith("/"): + server += "/" + url = server + "v/2.1/sensors/" + deployment_id_url = server + "v/2.1/deployment_id" + headers = {} + if api_key: + headers["X-API-KEY"] = api_key + http = http_session_var.get() + + async with http.get(deployment_id_url) as request: + if request.status != 200: + raise ValueError(f"Error loading deployment id from {server}") + result = await request.json() + deployment_id = uuid.UUID(result["deployment_id"]) + + async with http.get(url, headers=headers) as request: + result = await request.json() + ok = request.status == 200 + now = datetime.datetime.now() + if ok: + points = [] + for value in result["sensors"]: + points.append( + DataPoint( + sensor_name=value["id"], + collected_at=now, + data=value["value"], + deployment_id=deployment_id, + ) + ) + return points + else: + raise ValueError( + f"Error loading data from {server}: " + result.get("error", "Unknown") + ) + + +def handle_result(result: t.List[DataPoint], session: Session) -> t.List[DataPoint]: + for point in result: + insert = datapoint_table.insert().values(**point._asdict()) + sql_result = session.execute(insert) + point.id = sql_result.inserted_primary_key[0] + return result + + +async def add_data_from_sensors( + session: Session, servers: t.Tuple[str], api_key: t.Optional[str] +) -> t.List[DataPoint]: + tasks: t.List[t.Awaitable[t.List[DataPoint]]] = [] + points: t.List[DataPoint] = [] + async with aiohttp.ClientSession() as http: + http_session_var.set(http) + tasks = [get_data_points(server, api_key) for server in servers] + for results in await asyncio.gather(*tasks): + points += results + loop = asyncio.get_running_loop() + await loop.run_in_executor(None, handle_result, points, session) + return points + + +def standalone( + db_uri: str, servers: t.Tuple[str], api_key: t.Optional[str], echo: bool = False +) -> None: + engine = create_engine(db_uri, echo=echo) + sm = sessionmaker(engine) + Session = sm() + asyncio.run(add_data_from_sensors(Session, servers, api_key)) + Session.commit() + + +if __name__ == "__main__": + standalone( + db_uri="postgresql+psycopg2://apd@localhost/apd", + servers=("http://pvoutput:8080/",), + api_key="h3hdfjksfhwkjehnwekj", + ) diff --git a/Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/database.py b/Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/database.py new file mode 100644 index 0000000..3e8e794 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/database.py @@ -0,0 +1,102 @@ +from __future__ import annotations + +from dataclasses import dataclass, field, asdict +import datetime +import typing as t +import uuid + +import sqlalchemy +from sqlalchemy.dialects.postgresql import JSONB, DATE, TIMESTAMP, UUID +from sqlalchemy.ext.hybrid import ExprComparator, hybrid_property +from sqlalchemy.orm import sessionmaker +from sqlalchemy.schema import Table + + +metadata = sqlalchemy.MetaData() + +datapoint_table = Table( + "datapoints", + metadata, + sqlalchemy.Column("id", sqlalchemy.Integer, primary_key=True), + sqlalchemy.Column("sensor_name", sqlalchemy.String, index=True), + sqlalchemy.Column("collected_at", TIMESTAMP, index=True), + sqlalchemy.Column("deployment_id", UUID(as_uuid=True), index=True), + sqlalchemy.Column("data", JSONB), +) + +daily_summary_view = Table( + "daily_summary", + metadata, + sqlalchemy.Column("sensor_name", sqlalchemy.String), + sqlalchemy.Column("data", JSONB), + sqlalchemy.Column("count", sqlalchemy.Integer), + info={"is_view": True}, +) + + +class DateEqualComparator(ExprComparator): + def __init__(self, fallback_expression, raw_expression): + # Do not try and find update expression from parent + super().__init__(None, fallback_expression, None) + self.raw_expression = raw_expression + + def __eq__(self, other): + """ Returns True iff on the same day as other """ + other_date = sqlalchemy.cast(other, DATE) + return sqlalchemy.and_( + self.raw_expression >= other_date, self.raw_expression < other_date + 1, + ) + + def operate(self, op, *other, **kwargs): + other = [sqlalchemy.cast(date, DATE) for date in other] + return op(self.expression, *other, **kwargs) + + def reverse_operate(self, op, other, **kwargs): + other = [sqlalchemy.cast(date, DATE) for date in other] + return op(other, self.expression, **kwargs) + + +@dataclass +class DataPoint: + sensor_name: str + data: t.Any + deployment_id: uuid.UUID + id: t.Optional[int] = None + collected_at: datetime.datetime = field(default_factory=datetime.datetime.now) + + @classmethod + def from_sql_result(cls, result) -> DataPoint: + return cls(**result._asdict()) + + def _asdict(self) -> t.Dict[str, t.Any]: + data = asdict(self) + if data["id"] is None: + del data["id"] + return data + + @hybrid_property + def collected_on_date(self): + return self.collected_at.date() + + @collected_on_date.comparator # type: ignore + def collected_on_date(cls): + return DateEqualComparator( + fallback_expression=sqlalchemy.cast(datapoint_table.c.collected_at, DATE), + raw_expression=datapoint_table.c.collected_at, + ) + + +def main(): + engine = sqlalchemy.create_engine( + "postgresql+psycopg2://apd@localhost/apd", echo=True + ) + sm = sessionmaker(engine) + Session = sm() + if False: + metadata.create_all(engine) + print(Session.query(DataPoint).all()) + pass + + +if __name__ == "__main__": + main() diff --git a/Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/query.py b/Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/query.py new file mode 100644 index 0000000..6944e11 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex01/src/apd/aggregation/query.py @@ -0,0 +1,129 @@ +import asyncio +import contextlib +from contextvars import ContextVar +import datetime +import typing as t +from uuid import UUID + +from sqlalchemy import create_engine +from sqlalchemy.orm import sessionmaker +from sqlalchemy.orm.session import Session + + +from apd.aggregation.collect import datapoint_table, DataPoint + + +db_session_var: ContextVar[Session] = ContextVar("db_session") + + +@contextlib.contextmanager +def with_database(uri: t.Optional[str] = None) -> t.Iterator[Session]: + """Given a URI, set up a DB connection, and return a Session as a context manager """ + if uri is None: + uri = "postgresql+psycopg2://localhost/apd" + engine = create_engine(uri) + sm = sessionmaker(engine) + Session = sm() + token = db_session_var.set(Session) + yield Session + db_session_var.reset(token) + Session.commit() + Session.close() + + +async def get_data( + sensor_name: t.Optional[str] = None, + deployment_id: t.Optional[UUID] = None, + collected_before: t.Optional[datetime.datetime] = None, + collected_after: t.Optional[datetime.datetime] = None, +) -> t.AsyncIterator[DataPoint]: + db_session = db_session_var.get() + loop = asyncio.get_running_loop() + query = db_session.query(datapoint_table) + if sensor_name: + query = query.filter(datapoint_table.c.sensor_name == sensor_name) + if deployment_id: + query = query.filter(datapoint_table.c.deployment_id == deployment_id) + if collected_before: + query = query.filter(datapoint_table.c.collected_at < collected_before) + if collected_after: + query = query.filter(datapoint_table.c.collected_at > collected_after) + query = query.order_by( + datapoint_table.c.deployment_id, + datapoint_table.c.sensor_name, + datapoint_table.c.collected_at, + ) + + rows = await loop.run_in_executor(None, query.all) + for row in rows: + yield DataPoint.from_sql_result(row) + + +async def get_deployment_ids(): + db_session = db_session_var.get() + loop = asyncio.get_running_loop() + query = db_session.query(datapoint_table.c.deployment_id).distinct() + return [row.deployment_id for row in await loop.run_in_executor(None, query.all)] + + +async def get_data_by_deployment( + *args, **kwargs +) -> t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]: + """Return an Async Iterator that contains two-item pairs. + These pairs are a string (deployment_id), and an async iterator that contains + the datapoints with that deployment_id. + + Usage example: + + async for deployment_id, datapoints in get_data_by_deployment(): + print(deployment_id) + async for datapoint in datapoints: + print(datapoint) + print() + """ + # Get the data, using the arguments to this function as filters + data = get_data(*args, **kwargs) + + # The two levels of iterator share the item variable, initialise it with the + # first item from the iterator. Also set last_deployment_id to None, so the + # outer iterator knows to start a new group. + last_deployment_id: t.Optional[UUID] = None + try: + item = await data.__anext__() + except StopAsyncIteration: + # There were no items in the underlying query, return immediately + return + + async def subiterator(group_id: UUID) -> t.AsyncIterator[DataPoint]: + """Using a closure, create an iterator that yields the current + item, then yields all items from data while the deployment_id matches + group_id, leaving the first that doesn't match as item in the enclosing + scope.""" + # item is from the enclosing scope + nonlocal item + while item.deployment_id == group_id: + # yield items from data while they match the group_id this iterator represents + yield item + try: + # Advance the underlying iterator + item = await data.__anext__() + except StopAsyncIteration: + # The underlying iterator came to an end, so end the subiterator too + return + + while True: + while item.deployment_id == last_deployment_id: + # We are trying to advance the outer iterator while the underlying iterator + # is still part-way through a group. Speed through the underlying until we + # hit an item where the deployment_id is different to the last one (or, is not + # None, in the case of the start of the iterator) + try: + item = await data.__anext__() + except StopAsyncIteration: + # We hit the end of the underlying iterator: end this iterator too + return + last_deployment_id = item.deployment_id + # Don't yield an iterator for unclassified deployments + if last_deployment_id is not None: + # Instantiate a subiterator for this group + yield last_deployment_id, subiterator(last_deployment_id) diff --git a/Ch09/apd.aggregation-chapter09-ex01/tests/__init__.py b/Ch09/apd.aggregation-chapter09-ex01/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/Ch09/apd.aggregation-chapter09-ex01/tests/conftest.py b/Ch09/apd.aggregation-chapter09-ex01/tests/conftest.py new file mode 100644 index 0000000..65db278 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex01/tests/conftest.py @@ -0,0 +1,123 @@ +import datetime +from uuid import UUID + +from apd.aggregation.database import datapoint_table + +from alembic.config import Config +from alembic.script import ScriptDirectory +from alembic.runtime.environment import EnvironmentContext +import pytest + + +@pytest.fixture +def db_uri(): + return "postgresql+psycopg2://apd@localhost/apd-test" + + +@pytest.fixture +def db_session(db_uri): + from sqlalchemy import create_engine + from sqlalchemy.orm import sessionmaker + + engine = create_engine(db_uri, echo=True) + sm = sessionmaker(engine) + Session = sm() + yield Session + Session.close() + + +@pytest.fixture +def migrated_db(db_uri, db_session): + config = Config() + config.set_main_option("script_location", "apd.aggregation:alembic") + config.set_main_option("sqlalchemy.url", db_uri) + script = ScriptDirectory.from_config(config) + + def upgrade(rev, context): + return script._upgrade_revs(script.get_current_head(), rev) + + def downgrade(rev, context): + return script._downgrade_revs(None, rev) + + with EnvironmentContext(config, script, fn=upgrade): + script.run_env() + + yield + + # Clear any pending work from the db_session connection + db_session.rollback() + + with EnvironmentContext(config, script, fn=downgrade): + script.run_env() + + +@pytest.fixture +def populated_db(migrated_db, db_session): + datas = [ + { + "id": 1, + "sensor_name": "Test", + "data": "1", + "collected_at": datetime.datetime(2020, 4, 1, 12, 0, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 2, + "sensor_name": "Test", + "data": "2", + "collected_at": datetime.datetime(2020, 4, 1, 12, 1, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 3, + "sensor_name": "Test", + "data": "3", + "collected_at": datetime.datetime(2020, 4, 1, 12, 2, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 4, + "sensor_name": "Test", + "data": "4", + "collected_at": datetime.datetime(2020, 4, 1, 12, 3, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 5, + "sensor_name": "OtherTest", + "data": "5", + "collected_at": datetime.datetime(2020, 4, 1, 12, 4, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 6, + "sensor_name": "Test", + "data": "1", + "collected_at": datetime.datetime(2020, 4, 1, 12, 0, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + { + "id": 7, + "sensor_name": "Test", + "data": "1", + "collected_at": datetime.datetime(2020, 4, 1, 12, 1, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + { + "id": 8, + "sensor_name": "Test", + "data": "2", + "collected_at": datetime.datetime(2020, 4, 1, 12, 2, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + { + "id": 9, + "sensor_name": "OtherTest", + "data": "3", + "collected_at": datetime.datetime(2020, 4, 1, 12, 3, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + ] + for data in datas: + insert = datapoint_table.insert().values(**data) + db_session.execute(insert) diff --git a/Ch09/apd.aggregation-chapter09-ex01/tests/test_analysis.py b/Ch09/apd.aggregation-chapter09-ex01/tests/test_analysis.py new file mode 100644 index 0000000..31d4d5d --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex01/tests/test_analysis.py @@ -0,0 +1,283 @@ +import datetime +import uuid + +import pytest + +from apd.aggregation import analysis +from apd.aggregation.database import DataPoint + + +async def generate_datapoints(datas): + deployment_id = uuid.uuid4() + for i, (time, data) in enumerate(datas, start=1): + yield DataPoint( + id=i, + collected_at=time, + sensor_name="TestSensor", + data=data, + deployment_id=deployment_id, + ) + + +class TestPassThroughCleaner: + @pytest.fixture + def cleaner(self): + return analysis.clean_passthrough + + @pytest.mark.asyncio + async def test_float_passthrough(self, cleaner): + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 65.0), + (datetime.datetime(2020, 4, 1, 13, 0, 0), 65.5), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == data + + @pytest.mark.asyncio + async def test_Nones_are_skipped(self, cleaner): + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), None), + (datetime.datetime(2020, 4, 1, 13, 0, 0), 65.5), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 13, 0, 0), 65.5), + ] + + +class TestTemperatureCleaner: + @pytest.fixture + def cleaner(self): + return analysis.clean_temperature_fluctuations + + @pytest.mark.asyncio + async def test_window_not_full(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [(datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0)] + + @pytest.mark.asyncio + async def test_window_exactly_full(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 1), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 21.0), + ] + + @pytest.mark.asyncio + async def test_window_overfilled(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 3), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 4), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 1), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 3), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 4), 21.0), + ] + + @pytest.mark.asyncio + async def test_outlier_dropped(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 61.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 21.0), + ] + + @pytest.mark.asyncio + async def test_limited_to_DHT22_range(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 91.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 91.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 91.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [] + + @pytest.mark.asyncio + async def test_Nones_dropped(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 31.0, "unit": "degC"}, + ), + (datetime.datetime(2020, 4, 1, 12, 0, 1), None,), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 32.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 31.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 32.0), + ] + + +class TestWattHourCleaner: + @pytest.fixture + def cleaner(self): + return analysis.clean_watthours_to_watts + + @pytest.mark.asyncio + async def test_one_entry_insufficient_to_find_diff(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [] + + @pytest.mark.asyncio + async def test_two_entries_provides_diff_with_second_time(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 13, 0, 0), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 1 + assert output[0][0] == datetime.datetime(2020, 4, 1, 13, 0, 0) + assert output[0][1] == pytest.approx(9.0, 0.0001) + + @pytest.mark.asyncio + async def test_fractional_hour(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 23, 42), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 1 + assert output[0][0] == datetime.datetime(2020, 4, 1, 12, 23, 42) + assert output[0][1] == pytest.approx(22.7848, 0.001) + + @pytest.mark.asyncio + async def test_diff_happens_pairwise(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 23, 42), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 13, 23, 42), + {"magnitude": 13.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 2 + assert output[0][0] == datetime.datetime(2020, 4, 1, 12, 23, 42) + assert output[0][1] == pytest.approx(22.7848, 0.001) + assert output[1][0] == datetime.datetime(2020, 4, 1, 13, 23, 42) + assert output[1][1] == pytest.approx(3, 0.001) + + @pytest.mark.asyncio + async def test_None_ignored(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + (datetime.datetime(2020, 4, 1, 12, 58, 0), None,), + ( + datetime.datetime(2020, 4, 1, 13, 0, 0), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 1 + assert output[0][0] == datetime.datetime(2020, 4, 1, 13, 0, 0) + assert output[0][1] == pytest.approx(9.0, 0.0001) diff --git a/Ch09/apd.aggregation-chapter09-ex01/tests/test_http_get.py b/Ch09/apd.aggregation-chapter09-ex01/tests/test_http_get.py new file mode 100644 index 0000000..d38fd4c --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex01/tests/test_http_get.py @@ -0,0 +1,154 @@ +from concurrent.futures import ThreadPoolExecutor +import datetime +import typing as t +from unittest.mock import patch, MagicMock +import wsgiref.simple_server + +import aiohttp +from apd.sensors.base import Sensor +from apd.sensors.sensors import PythonVersion, ACStatus +from apd.sensors.wsgi import set_up_config +import flask +import pytest + +from apd.sensors.wsgi import v21 + +from apd.aggregation import collect + +pytestmark = [pytest.mark.functional] + + +@pytest.fixture +def sensors() -> t.Iterator[t.List[Sensor[t.Any]]]: + """ Patch the get_sensors method to return a known pair of sensors only """ + data: t.List[Sensor[t.Any]] = [PythonVersion(), ACStatus()] + with patch("apd.sensors.cli.get_sensors") as get_sensors: + get_sensors.return_value = data + yield data + + +def get_independent_flask_app(name: str) -> flask.Flask: + """ Create a new flask app with the v20 API blueprint loaded, so multiple copies + of the app can be run in parallel without conflicting configuration """ + app = flask.Flask(name) + app.register_blueprint(v21.version, url_prefix="/v/2.1") + return app + + +def run_server_in_thread( + name: str, config: t.Dict[str, t.Any], port: int +) -> t.Iterator[str]: + # Create a new flask app and load in required code, to prevent config conflicts + app = get_independent_flask_app(name) + flask_app = set_up_config(config, app) + server = wsgiref.simple_server.make_server("localhost", port, flask_app) + + with ThreadPoolExecutor() as pool: + pool.submit(server.serve_forever) + yield f"http://localhost:{port}/" + server.shutdown() + + +@pytest.fixture(scope="module") +def http_server(): + yield from run_server_in_thread( + "standard", + { + "APD_SENSORS_API_KEY": "testing", + "APD_SENSORS_DEPLOYMENT_ID": "a46b1d1207fd4cdcad39bbdf706dfe29", + }, + 12081, + ) + + +@pytest.fixture(scope="module") +def bad_api_key_http_server(): + yield from run_server_in_thread( + "alternate", + { + "APD_SENSORS_API_KEY": "penny", + "APD_SENSORS_DEPLOYMENT_ID": "38cf2bae9adb445fad946c82e290487a", + }, + 12082, + ) + + +class TestGetDataPoints: + @pytest.fixture + def mut(self): + return collect.get_data_points + + @pytest.mark.asyncio + async def test_get_data_points( + self, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + # Get the data from the server, storing the time before and after + # as bounds for the collected_at value + async with aiohttp.ClientSession() as http: + collect.http_session_var.set(http) + time_before = datetime.datetime.now() + results = await mut(http_server, "testing") + time_after = datetime.datetime.now() + + assert len(results) == len(sensors) == 2 + + for (sensor, result) in zip(sensors, results): + assert sensor.from_json_compatible(result.data) == sensor.value() + assert result.sensor_name == sensor.name + assert time_before <= result.collected_at <= time_after + + @pytest.mark.asyncio + async def test_get_data_points_fails_with_bad_api_key( + self, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + with pytest.raises( + ValueError, + match=f"Error loading data from {http_server}: Supply API key in X-API-Key header", + ): + async with aiohttp.ClientSession() as http: + collect.http_session_var.set(http) + await mut(http_server, "incorrect") + + +class TestAddDataFromSensors: + @pytest.fixture + def mut(self): + return collect.add_data_from_sensors + + @pytest.fixture + def mock_db_session(self): + return MagicMock() + + @pytest.mark.asyncio + async def test_get_get_data_from_sensors( + self, mock_db_session, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + results = await mut(mock_db_session, [http_server], "testing") + assert mock_db_session.execute.call_count == len(sensors) + assert len(results) == len(sensors) + + @pytest.mark.asyncio + async def test_get_get_data_from_sensors_with_multiple_servers( + self, mock_db_session, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + results = await mut(mock_db_session, [http_server, http_server], "testing") + assert mock_db_session.execute.call_count == len(sensors) * 2 + assert len(results) == len(sensors) * 2 + + @pytest.mark.asyncio + async def test_data_points_not_added_if_only_partial_success( + self, + mock_db_session, + sensors: t.List[Sensor[t.Any]], + mut, + http_server: str, + bad_api_key_http_server: str, + ) -> None: + with pytest.raises( + ValueError, + match=f"Error loading data from {bad_api_key_http_server}: Supply API key in X-API-Key header", + ): + await mut( + mock_db_session, [http_server, bad_api_key_http_server], "testing" + ) + assert mock_db_session.execute.call_count == 0 diff --git a/Ch09/apd.aggregation-chapter09-ex01/tests/test_query.py b/Ch09/apd.aggregation-chapter09-ex01/tests/test_query.py new file mode 100644 index 0000000..9b6e0aa --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex01/tests/test_query.py @@ -0,0 +1,111 @@ +import datetime +from uuid import UUID + +import pytest + +from apd.aggregation.query import ( + get_data, + get_deployment_ids, + get_data_by_deployment, + db_session_var, +) + + +class TestGetData: + @pytest.fixture + def mut(self): + return get_data + + @pytest.mark.asyncio + @pytest.mark.parametrize( + "filter,num_items_expected", + [ + ({}, 9), + ({"sensor_name": "Test"}, 7), + ({"deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd")}, 5), + ({"collected_after": datetime.datetime(2020, 4, 1, 12, 2, 1)}, 3), + ({"collected_before": datetime.datetime(2020, 4, 1, 12, 2, 1)}, 4), + ( + { + "collected_after": datetime.datetime(2020, 4, 1, 12, 2, 1), + "collected_before": datetime.datetime(2020, 4, 1, 12, 3, 5), + }, + 2, + ), + ], + ) + async def test_iterate_over_items( + self, mut, db_session, populated_db, filter, num_items_expected + ): + db_session_var.set(db_session) + points = [dp async for dp in mut(**filter)] + assert len(points) == num_items_expected + + @pytest.mark.asyncio + async def test_empty_db(self, mut, db_session, migrated_db): + db_session_var.set(db_session) + points = [dp async for dp in mut()] + assert len(points) == 0 + + +class TestGetDeployments: + @pytest.fixture + def mut(self): + return get_deployment_ids + + @pytest.mark.asyncio + async def test_get_all_deployments(self, mut, db_session, populated_db): + db_session_var.set(db_session) + deployment_ids = await mut() + assert set(deployment_ids) == { + UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + } + + @pytest.mark.asyncio + async def test_empty_db(self, mut, db_session, migrated_db): + db_session_var.set(db_session) + deployment_ids = await mut() + assert deployment_ids == [] + + +@pytest.mark.usefixtures("populated_db") +class TestGetDataByDeployment: + @pytest.fixture + def mut(self): + return get_data_by_deployment + + @pytest.mark.asyncio + @pytest.mark.parametrize( + "filter,num_items_expected", [({}, 9), ({"sensor_name": "Test"}, 7)] + ) + async def test_iterate_over_all_items( + self, mut, db_session, filter, num_items_expected + ): + db_session_var.set(db_session) + num_items = 0 + num_deployments = 0 + async for deployment_id, items in mut(**filter): + num_deployments += 1 + async for item in items: + num_items += 1 + assert num_deployments == 2 + assert num_items == num_items_expected + + @pytest.mark.asyncio + @pytest.mark.parametrize( + "filter,num_items_expected", [({}, 5), ({"sensor_name": "Test"}, 4)] + ) + async def test_skip_first_deployment( + self, mut, db_session, filter, num_items_expected + ): + db_session_var.set(db_session) + num_items = 0 + num_deployments = 0 + async for deployment_id, items in mut(**filter): + num_deployments += 1 + if num_deployments == 2: + async for item in items: + num_items += 1 + assert num_deployments == 2 + assert num_items == num_items_expected diff --git a/Ch09/apd.aggregation-chapter09-ex01/tests/test_sensor_aggregation.py b/Ch09/apd.aggregation-chapter09-ex01/tests/test_sensor_aggregation.py new file mode 100644 index 0000000..0f1872d --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex01/tests/test_sensor_aggregation.py @@ -0,0 +1,174 @@ +from __future__ import annotations + +import contextlib +from dataclasses import dataclass +import json +import typing as t +from unittest.mock import patch, Mock + +import pytest +import sqlalchemy + +import apd.aggregation.collect + + +@pytest.fixture +def data() -> t.Any: + return { + "sensors": [ + { + "human_readable": "3.7", + "id": "PythonVersion", + "title": "Python Version", + "value": [3, 7, 2, "final", 0], + }, + { + "human_readable": "Not connected", + "id": "ACStatus", + "title": "AC Connected", + "value": False, + }, + ] + } + + +@dataclass +class FakeAIOHttpClient: + responses: t.Dict[str, str] + + @contextlib.asynccontextmanager + async def get( + self, url: str, headers: t.Optional[t.Dict[str, str]] = None + ) -> t.AsyncIterator[FakeAIOHttpResponse]: + if url in self.responses: + yield FakeAIOHttpResponse(body=self.responses[url]) + else: + yield FakeAIOHttpResponse(body="", status=404) + + +@dataclass +class FakeAIOHttpResponse: + body: str + status: int = 200 + + async def json(self) -> t.Any: + return json.loads(self.body) + + +@pytest.fixture +def mockclient(data) -> FakeAIOHttpClient: + return FakeAIOHttpClient( + { + "http://localhost/v/2.1/sensors/": json.dumps(data), + "http://localhost/v/2.1/deployment_id": json.dumps( + {"deployment_id": "b29ba0ee10f14552b6b21327bb96d3fb"} + ), + } + ) + + +class TestGetDataPoints: + @pytest.fixture + def mut(self): + return apd.aggregation.collect.get_data_points + + @pytest.mark.asyncio + async def test_get_data_points( + self, mut, mockclient: FakeAIOHttpClient, data + ) -> None: + token = apd.aggregation.collect.http_session_var.set(mockclient) + try: + datapoints = await mut("http://localhost", "") + finally: + apd.aggregation.collect.http_session_var.reset(token) + + assert len(datapoints) == len(data["sensors"]) + for sensor in data["sensors"]: + assert sensor["value"] in (datapoint.data for datapoint in datapoints) + assert sensor["id"] in (datapoint.sensor_name for datapoint in datapoints) + + +class TestAddDataFromSensors: + @pytest.fixture + def mut(self): + return apd.aggregation.collect.add_data_from_sensors + + @pytest.fixture(autouse=True) + def patch_aiohttp(self, mockclient): + with patch("aiohttp.ClientSession") as ClientSession: + ClientSession.return_value.__aenter__.return_value = mockclient + yield ClientSession + + @pytest.fixture + def db_session(self): + session = Mock() + sql_result = session.execute.return_value + sql_result.inserted_primary_key = [1] + return session + + @pytest.mark.asyncio + async def test_datapoints_are_added_to_the_session(self, mut, db_session) -> None: + assert db_session.execute.call_count == 0 + datapoints = await mut(db_session, ["http://localhost"], "") + assert db_session.execute.call_count == len(datapoints) + + +@pytest.mark.usefixtures("migrated_db") +class TestDatabaseConnection: + @pytest.fixture(autouse=True) + def patch_aiohttp(self, mockclient): + with patch("aiohttp.ClientSession") as ClientSession: + ClientSession.return_value.__aenter__.return_value = mockclient + yield ClientSession + + @pytest.fixture + def table(self): + return apd.aggregation.database.datapoint_table + + @pytest.fixture + def daily_summary_view(self): + return apd.aggregation.database.daily_summary_view + + @pytest.fixture + def model(self): + return apd.aggregation.database.DataPoint + + @pytest.fixture + def mut(self): + return apd.aggregation.collect.add_data_from_sensors + + @pytest.mark.asyncio + async def test_datapoints_are_added_to_the_session(self, db_session, table) -> None: + datapoints = await apd.aggregation.collect.add_data_from_sensors( + db_session, ["http://localhost"], "" + ) + num_points = db_session.query(table).count() + assert num_points == len(datapoints) == 2 + + @pytest.mark.asyncio + async def test_datapoints_can_be_mapped_back_to_DataPoints( + self, mut, db_session, table, model + ) -> None: + datapoints = await mut(db_session, ["http://localhost"], "") + db_points = [ + model.from_sql_result(result) for result in db_session.query(table) + ] + assert db_points == datapoints + + @pytest.mark.asyncio + async def test_daily_summary_view_matches_query( + self, db_session, model, table, daily_summary_view + ) -> None: + await apd.aggregation.collect.add_data_from_sensors( + db_session, ["http://localhost"], "" + ) + + headers = table.c.sensor_name, table.c.data + value_counts = ( + db_session.query(*headers, sqlalchemy.func.count(table.c.id)) + .filter(model.collected_on_date == sqlalchemy.func.current_date()) + .group_by(*headers) + ) + + daily_summary_view = db_session.query(daily_summary_view) + assert value_counts.all() == daily_summary_view.all() diff --git a/Ch09/apd.aggregation-chapter09-ex02/.coveragerc b/Ch09/apd.aggregation-chapter09-ex02/.coveragerc new file mode 100644 index 0000000..e766c69 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex02/.coveragerc @@ -0,0 +1,3 @@ +[run] +branch = True +omit = tests/* diff --git a/Ch09/apd.aggregation-chapter09-ex02/.pre-commit-config.yaml b/Ch09/apd.aggregation-chapter09-ex02/.pre-commit-config.yaml new file mode 100644 index 0000000..d3b6ec7 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex02/.pre-commit-config.yaml @@ -0,0 +1,26 @@ +repos: + +- repo: local + hooks: + - id: black + name: black + entry: pipenv run black + args: [--quiet] + language: system + types: [python] + + - id: mypy + name: mypy + exclude: (?x)^( + (.*)/setup.py + )$ + entry: pipenv run mypy + args: ["--follow-imports=skip"] + language: system + types: [python] + + - id: flake8 + name: flake8 + entry: pipenv run flake8 + language: system + types: [python] diff --git a/Ch09/apd.aggregation-chapter09-ex02/CHANGES.md b/Ch09/apd.aggregation-chapter09-ex02/CHANGES.md new file mode 100644 index 0000000..8e424e5 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex02/CHANGES.md @@ -0,0 +1,5 @@ +## Changes + +### 1.0.0 (Unreleased) + +* Generated from skeleton diff --git a/Ch09/apd.aggregation-chapter09-ex02/LICENCE b/Ch09/apd.aggregation-chapter09-ex02/LICENCE new file mode 100644 index 0000000..86685d4 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex02/LICENCE @@ -0,0 +1,31 @@ +Copyright (c) 2019, Matthew Wilkes + + +All rights reserved. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + +* Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + +* Redistributions in binary form must reproduce the above copyright notice, this + list of conditions and the following disclaimer in the documentation and/or + other materials provided with the distribution. + +* Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived from this + software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND +ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. +IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, +INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, +BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY +OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE +OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED +OF THE POSSIBILITY OF SUCH DAMAGE. + + diff --git a/Ch09/apd.aggregation-chapter09-ex02/Pipfile b/Ch09/apd.aggregation-chapter09-ex02/Pipfile new file mode 100644 index 0000000..b308175 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex02/Pipfile @@ -0,0 +1,25 @@ +[[source]] +name = "pypi" +url = "https://pypi.org/simple" +verify_ssl = true + +[dev-packages] +pytest = "*" +pytest-cov = "*" +pytest-asyncio = "*" +mypy = "*" +flake8 = "*" +black = "*" +pre-commit = "*" +wheel = "*" +twine = "*" +sqlalchemy-stubs = "*" + +[packages] +apd-aggregation = {editable = true,extras = ["jupyter"],path = "."} +apd-sensors = {editable = true,extras = ["webapp"],path = "./../code"} + +[requires] + +[pipenv] +allow_prereleases = true diff --git a/Ch09/apd.aggregation-chapter09-ex02/Pipfile.lock b/Ch09/apd.aggregation-chapter09-ex02/Pipfile.lock new file mode 100644 index 0000000..37ebbba --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex02/Pipfile.lock @@ -0,0 +1,751 @@ +{ + "_meta": { + "hash": { + "sha256": "9cbbc3af88a1213ed8f4f93c33e35a9f9d7e047077cd25ff02f9bde13e2b606b" + }, + "pipfile-spec": 6, + "requires": {}, + "sources": [ + { + "name": "pypi", + "url": "https://pypi.org/simple", + "verify_ssl": true + } + ] + }, + "default": { + "aiohttp": { + "hashes": [ + "sha256:173267050501e1537293df06723bc5e719990889e2820ba3932969983892e960", + "sha256:438f1f1555c02c50894604d94944cff188fe138b46467b7fa99fdceb51ab5842", + "sha256:90bed250d1435aef33a1f8c439c5056d5d25a44fe6caf33fcafafed805bad4dc", + "sha256:93c3b14747413f38f094a60e98f55e73831f0c9a23ae7faa3dc97d8963e13021", + "sha256:a6e70a38d883185b1921d8122759661c39ade54949770394412a9e713fec6fa7", + "sha256:b5036133c1ba77ed5a70208d2a021a90b76fdf8bf523ae33dae46d4f4380d86f", + "sha256:c138451a82cdbf65cddf952941d5c7a1a2cac8ce3bc618dee8d889e5251ec7a5", + "sha256:c94770383e49f9cc5912b926364ad022a6c8a5dbf5498933ca3a5713c6daf738", + "sha256:ea26536ae06df6dac021303a0df72c79e55512070e6a304ba93ad468a3a754dc" + ], + "version": "==4.0.0a1" + }, + "alembic": { + "hashes": [ + "sha256:49277bb7242192bbb9eac58fed4fe02ec6c3a2a4b4345d2171197459266482b2" + ], + "version": "==1.3.1" + }, + "apd-aggregation": { + "editable": true, + "path": "." + }, + "apd-sensors": { + "editable": true, + "extras": [ + "webapp" + ], + "path": "./../code" + }, + "async-timeout": { + "hashes": [ + "sha256:0c3c816a028d47f659d6ff5c745cb2acf1f966da1fe5c19c77a70282b25f4c5f", + "sha256:4291ca197d287d274d0b6cb5d6f8f8f82d434ed288f962539ff18cc9012f9ea3" + ], + "version": "==3.0.1" + }, + "attrs": { + "hashes": [ + "sha256:08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c", + "sha256:f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72" + ], + "version": "==19.3.0" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:2335065e6395b9e67ca716de5f7526736bfa6ceead690adf616d925bdc622b13", + "sha256:5b94b49521f6456670fdb30cd82a4eca9412788a93fa6dd6df72c94d5a8ff2d7" + ], + "version": "==7.0" + }, + "flask": { + "hashes": [ + "sha256:13f9f196f330c7c2c5d7a5cf91af894110ca0215ac051b5844701f2bfd934d52", + "sha256:45eb5a6fd193d6cf7e0cf5d8a5b31f83d5faae0293695626f539a823e93b13f6" + ], + "version": "==1.1.1" + }, + "idna": { + "hashes": [ + "sha256:c357b3f628cf53ae2c4c05627ecc484553142ca23264e593d327bcde5e9c3407", + "sha256:ea8b7f6188e6fa117537c3df7da9fc686d485087abf6ac197f9c46432f7e4a3c" + ], + "version": "==2.8" + }, + "itsdangerous": { + "hashes": [ + "sha256:321b033d07f2a4136d3ec762eac9f16a10ccd60f53c0c91af90217ace7ba1f19", + "sha256:b12271b2047cb23eeb98c8b5622e2e5c5e9abd9784a153e9d8ef9cb4dd09d749" + ], + "version": "==1.1.0" + }, + "jinja2": { + "hashes": [ + "sha256:74320bb91f31270f9551d46522e33af46a80c3d619f4a4bf42b3164d30b5911f", + "sha256:9fe95f19286cfefaa917656583d020be14e7859c6b0252588391e47db34527de" + ], + "version": "==2.10.3" + }, + "mako": { + "hashes": [ + "sha256:a36919599a9b7dc5d86a7a8988f23a9a3a3d083070023bab23d64f7f1d1e0a4b" + ], + "version": "==1.1.0" + }, + "markupsafe": { + "hashes": [ + "sha256:00bc623926325b26bb9605ae9eae8a215691f33cae5df11ca5424f06f2d1f473", + "sha256:09027a7803a62ca78792ad89403b1b7a73a01c8cb65909cd876f7fcebd79b161", + "sha256:09c4b7f37d6c648cb13f9230d847adf22f8171b1ccc4d5682398e77f40309235", + "sha256:1027c282dad077d0bae18be6794e6b6b8c91d58ed8a8d89a89d59693b9131db5", + "sha256:24982cc2533820871eba85ba648cd53d8623687ff11cbb805be4ff7b4c971aff", + "sha256:29872e92839765e546828bb7754a68c418d927cd064fd4708fab9fe9c8bb116b", + "sha256:43a55c2930bbc139570ac2452adf3d70cdbb3cfe5912c71cdce1c2c6bbd9c5d1", + "sha256:46c99d2de99945ec5cb54f23c8cd5689f6d7177305ebff350a58ce5f8de1669e", + "sha256:500d4957e52ddc3351cabf489e79c91c17f6e0899158447047588650b5e69183", + "sha256:535f6fc4d397c1563d08b88e485c3496cf5784e927af890fb3c3aac7f933ec66", + "sha256:62fe6c95e3ec8a7fad637b7f3d372c15ec1caa01ab47926cfdf7a75b40e0eac1", + "sha256:6dd73240d2af64df90aa7c4e7481e23825ea70af4b4922f8ede5b9e35f78a3b1", + "sha256:717ba8fe3ae9cc0006d7c451f0bb265ee07739daf76355d06366154ee68d221e", + "sha256:79855e1c5b8da654cf486b830bd42c06e8780cea587384cf6545b7d9ac013a0b", + "sha256:7c1699dfe0cf8ff607dbdcc1e9b9af1755371f92a68f706051cc8c37d447c905", + "sha256:88e5fcfb52ee7b911e8bb6d6aa2fd21fbecc674eadd44118a9cc3863f938e735", + "sha256:8defac2f2ccd6805ebf65f5eeb132adcf2ab57aa11fdf4c0dd5169a004710e7d", + "sha256:98c7086708b163d425c67c7a91bad6e466bb99d797aa64f965e9d25c12111a5e", + "sha256:9add70b36c5666a2ed02b43b335fe19002ee5235efd4b8a89bfcf9005bebac0d", + "sha256:9bf40443012702a1d2070043cb6291650a0841ece432556f784f004937f0f32c", + "sha256:ade5e387d2ad0d7ebf59146cc00c8044acbd863725f887353a10df825fc8ae21", + "sha256:b00c1de48212e4cc9603895652c5c410df699856a2853135b3967591e4beebc2", + "sha256:b1282f8c00509d99fef04d8ba936b156d419be841854fe901d8ae224c59f0be5", + "sha256:b2051432115498d3562c084a49bba65d97cf251f5a331c64a12ee7e04dacc51b", + "sha256:ba59edeaa2fc6114428f1637ffff42da1e311e29382d81b339c1817d37ec93c6", + "sha256:c8716a48d94b06bb3b2524c2b77e055fb313aeb4ea620c8dd03a105574ba704f", + "sha256:cd5df75523866410809ca100dc9681e301e3c27567cf498077e8551b6d20e42f", + "sha256:e249096428b3ae81b08327a63a485ad0878de3fb939049038579ac0ef61e17e7" + ], + "version": "==1.1.1" + }, + "multidict": { + "hashes": [ + "sha256:07f9a6bf75ad675d53956b2c6a2d4ef2fa63132f33ecc99e9c24cf93beb0d10b", + "sha256:0ffe4d4d28cbe9801952bfb52a8095dd9ffecebd93f84bdf973c76300de783c5", + "sha256:1b605272c558e4c659dbaf0fb32a53bfede44121bcf77b356e6e906867b958b7", + "sha256:205a011e636d885af6dd0029e41e3514a46e05bb2a43251a619a6e8348b96fc0", + "sha256:250632316295f2311e1ed43e6b26a63b0216b866b45c11441886ac1543ca96e1", + "sha256:2bc9c2579312c68a3552ee816311c8da76412e6f6a9cf33b15152e385a572d2a", + "sha256:318aadf1cfb6741c555c7dd83d94f746dc95989f4f106b25b8a83dfb547f2756", + "sha256:42cdd649741a14b0602bf15985cad0dd4696a380081a3319cd1ead46fd0f0fab", + "sha256:5159c4975931a1a78bf6602bbebaa366747fce0a56cb2111f44789d2c45e379f", + "sha256:87e26d8b89127c25659e962c61a4c655ec7445d19150daea0759516884ecb8b4", + "sha256:891b7e142885e17a894d9d22b0349b92bb2da4769b4e675665d0331c08719be5", + "sha256:8d919034420378132d074bf89df148d0193e9780c9fe7c0e495e895b8af4d8a2", + "sha256:9c890978e2b37dd0dc1bd952da9a5d9f245d4807bee33e3517e4119c48d66f8c", + "sha256:a37433ce8cdb35fc9e6e47e1606fa1bfd6d70440879038dca7d8dd023197eaa9", + "sha256:c626029841ada34c030b94a00c573a0c7575fe66489cde148785b6535397d675", + "sha256:cfec9d001a83dc73580143f3c77e898cf7ad78b27bb5e64dbe9652668fcafec7", + "sha256:efaf1b18ea6c1f577b1371c0159edbe4749558bfe983e13aa24d0a0c01e1ad7b" + ], + "version": "==4.6.1" + }, + "pint": { + "hashes": [ + "sha256:32d8a9a9d63f4f81194c0014b3b742679dce81a26d45127d9810a68a561fe4e2", + "sha256:7ece3f639ad58073ce49982b022d464014e6d91d0b3eaa89c8e8ea9c38e32659" + ], + "version": "==0.9" + }, + "psutil": { + "hashes": [ + "sha256:094f899ac3ef72422b7e00411b4ed174e3c5a2e04c267db6643937ddba67a05b", + "sha256:10b7f75cc8bd676cfc6fa40cd7d5c25b3f45a0e06d43becd7c2d2871cbb5e806", + "sha256:1b1575240ca9a90b437e5a40db662acd87bbf181f6aa02f0204978737b913c6b", + "sha256:21231ef1c1a89728e29b98a885b8e0a8e00d09018f6da5cdc1f43f988471a995", + "sha256:28f771129bfee9fc6b63d83a15d857663bbdcae3828e1cb926e91320a9b5b5cd", + "sha256:70387772f84fa5c3bb6a106915a2445e20ac8f9821c5914d7cbde148f4d7ff73", + "sha256:b560f5cd86cf8df7bcd258a851ca1ad98f0d5b8b98748e877a0aec4e9032b465", + "sha256:b74b43fecce384a57094a83d2778cdfc2e2d9a6afaadd1ebecb2e75e0d34e10d", + "sha256:e85f727ffb21539849e6012f47b12f6dd4c44965e56591d8dec6e8bc9ab96f4a", + "sha256:fd2e09bb593ad9bdd7429e779699d2d47c1268cbde4dda95fcd1bd17544a0217", + "sha256:ffad8eb2ac614518bbe3c0b8eb9dffdb3a8d2e3a7d5da51c5b974fb723a5c5aa" + ], + "version": "==5.6.7" + }, + "psycopg2": { + "hashes": [ + "sha256:4212ca404c4445dc5746c0d68db27d2cbfb87b523fe233dc84ecd24062e35677", + "sha256:47fc642bf6f427805daf52d6e52619fe0637648fe27017062d898f3bf891419d", + "sha256:72772181d9bad1fa349792a1e7384dde56742c14af2b9986013eb94a240f005b", + "sha256:8396be6e5ff844282d4d49b81631772f80dabae5658d432202faf101f5283b7c", + "sha256:893c11064b347b24ecdd277a094413e1954f8a4e8cdaf7ffbe7ca3db87c103f0", + "sha256:92a07dfd4d7c325dd177548c4134052d4842222833576c8391aab6f74038fc3f", + "sha256:965c4c93e33e6984d8031f74e51227bd755376a9df6993774fd5b6fb3288b1f4", + "sha256:9ab75e0b2820880ae24b7136c4d230383e07db014456a476d096591172569c38", + "sha256:b0845e3bdd4aa18dc2f9b6fb78fbd3d9d371ad167fd6d1b7ad01c0a6cdad4fc6", + "sha256:dca2d7203f0dfce8ea4b3efd668f8ea65cd2b35112638e488a4c12594015f67b", + "sha256:ed686e5926929887e2c7ae0a700e32c6129abb798b4ad2b846e933de21508151", + "sha256:ef6df7e14698e79c59c7ee7cf94cd62e5b869db369ed4b1b8f7b729ea825712a", + "sha256:f898e5cc0a662a9e12bde6f931263a1bbd350cfb18e1d5336a12927851825bb6" + ], + "version": "==2.8.4" + }, + "python-dateutil": { + "hashes": [ + "sha256:73ebfe9dbf22e832286dafa60473e4cd239f8592f699aa5adaf10050e6e1823c", + "sha256:75bb3f31ea686f1197762692a9ee6a7550b59fc6ca3a1f4b5d7e32fb98e2da2a" + ], + "version": "==2.8.1" + }, + "python-editor": { + "hashes": [ + "sha256:1bf6e860a8ad52a14c3ee1252d5dc25b2030618ed80c022598f00176adc8367d", + "sha256:51fda6bcc5ddbbb7063b2af7509e43bd84bfc32a4ff71349ec7847713882327b", + "sha256:5f98b069316ea1c2ed3f67e7f5df6c0d8f10b689964a4a811ff64f0106819ec8" + ], + "version": "==1.0.4" + }, + "six": { + "hashes": [ + "sha256:1f1b7d42e254082a9db6279deae68afb421ceba6158efa6131de7b3003ee93fd", + "sha256:30f610279e8b2578cab6db20741130331735c781b56053c59c4076da27f06b66" + ], + "version": "==1.13.0" + }, + "sqlalchemy": { + "hashes": [ + "sha256:afa5541e9dea8ad0014251bc9d56171ca3d8b130c9627c6cb3681cff30be3f8a" + ], + "version": "==1.3.11" + }, + "typing-extensions": { + "hashes": [ + "sha256:091ecc894d5e908ac75209f10d5b4f118fbdb2eb1ede6a63544054bb1edb41f2", + "sha256:910f4656f54de5993ad9304959ce9bb903f90aadc7c67a0bef07e678014e892d", + "sha256:cf8b63fedea4d89bab840ecbb93e75578af28f76f66c35889bd7065f5af88575" + ], + "version": "==3.7.4.1" + }, + "werkzeug": { + "hashes": [ + "sha256:7280924747b5733b246fe23972186c6b348f9ae29724135a6dfc1e53cea433e7", + "sha256:e5f4a1f98b52b18a93da705a7458e55afb26f32bff83ff5d19189f92462d65c4" + ], + "version": "==0.16.0" + }, + "yarl": { + "hashes": [ + "sha256:2e5f4f4d709aed4f689843ef605fc432d0472e3325a8e165b1ecf1e2f3f22a89", + "sha256:412fe567284bdd16a8035c5a6f541da9872804b5702378532cf2e3ef5ae4a9e6", + "sha256:629f542dfd4e964c9e32039a1515b3262dae210f8802cfcceca9f0b529c68ee7", + "sha256:7bd0b31008afcba762d75171ac09135f49bc17c8d092bce49f0b9bf2c4b51850", + "sha256:9510699e48d7565a2c1dc0a9fcb396f1ac80802991621cf02d55540d571a5dc9", + "sha256:9a07c2a1b0c8b314ad5bcea37e62c109d8c19ad9f02985e8db898a56c129984f", + "sha256:9a49055f9e3121449c76709986aee829c74e2eee3b98185542799eec97808ed1", + "sha256:b59dd6679cb2ae172eb594f484e482aaac66fbff71a717603b0f9adf01649386", + "sha256:e5d6b530bec5817be9383452728c116d59868bfbed650ccc7657b2ec9aa51c03" + ], + "version": "==1.4.0a11" + } + }, + "develop": { + "appdirs": { + "hashes": [ + "sha256:9e5896d1372858f8dd3344faf4e5014d21849c756c8d5701f78f8a103b372d92", + "sha256:d8b24664561d0d34ddfaec54636d502d7cea6e29c3eaf68f3df6180863e2166e" + ], + "version": "==1.4.3" + }, + "aspy.yaml": { + "hashes": [ + "sha256:463372c043f70160a9ec950c3f1e4c3a82db5fca01d334b6bc89c7164d744bdc", + "sha256:e7c742382eff2caed61f87a39d13f99109088e5e93f04d76eb8d4b28aa143f45" + ], + "version": "==1.3.0" + }, + "atomicwrites": { + "hashes": [ + "sha256:03472c30eb2c5d1ba9227e4c2ca66ab8287fbfbbda3888aa93dc2e28fc6811b4", + "sha256:75a9445bac02d8d058d5e1fe689654ba5a6556a1dfd8ce6ec55a0ed79866cfa6" + ], + "markers": "sys_platform == 'win32'", + "version": "==1.3.0" + }, + "attrs": { + "hashes": [ + "sha256:08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c", + "sha256:f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72" + ], + "version": "==19.3.0" + }, + "black": { + "hashes": [ + "sha256:1b30e59be925fafc1ee4565e5e08abef6b03fe455102883820fe5ee2e4734e0b", + "sha256:c2edb73a08e9e0e6f65a0e6af18b059b8b1cdd5bef997d7a0b181df93dc81539" + ], + "index": "pypi", + "version": "==19.10b0" + }, + "bleach": { + "hashes": [ + "sha256:213336e49e102af26d9cde77dd2d0397afabc5a6bf2fed985dc35b5d1e285a16", + "sha256:3fdf7f77adcf649c9911387df51254b813185e32b2c6619f690b593a617e19fa" + ], + "version": "==3.1.0" + }, + "certifi": { + "hashes": [ + "sha256:e4f3620cfea4f83eedc95b24abd9cd56f3c4b146dd0177e83a21b4eb49e21e50", + "sha256:fd7c7c74727ddcf00e9acd26bba8da604ffec95bf1c2144e67aff7a8b50e6cef" + ], + "version": "==2019.9.11" + }, + "cfgv": { + "hashes": [ + "sha256:edb387943b665bf9c434f717bf630fa78aecd53d5900d2e05da6ad6048553144", + "sha256:fbd93c9ab0a523bf7daec408f3be2ed99a980e20b2d19b50fc184ca6b820d289" + ], + "version": "==2.0.1" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:2335065e6395b9e67ca716de5f7526736bfa6ceead690adf616d925bdc622b13", + "sha256:5b94b49521f6456670fdb30cd82a4eca9412788a93fa6dd6df72c94d5a8ff2d7" + ], + "version": "==7.0" + }, + "colorama": { + "hashes": [ + "sha256:05eed71e2e327246ad6b38c540c4a3117230b19679b875190486ddd2d721422d", + "sha256:f8ac84de7840f5b9c4e3347b3c1eaa50f7e49c2b07596221daec5edaabbd7c48" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.1" + }, + "coverage": { + "hashes": [ + "sha256:2358e685d0253125da42a48396038d4c7b4cd1448c00bbc4bda0cb8c43c2a870", + "sha256:25017cf384eeed2e6caf72efd3ec4124e32a8b7a4387600499104387975400c7", + "sha256:2e2de9423ff8b14303a97eafddd16c479fbcc9a0b8b0be3b7c3843a3e0cf6d69", + "sha256:324ed908e4e40a6e2451056fe502470ad4e79495cb7a03ecab94e6309c3e117e", + "sha256:34f865a0cf6255b694a46e4383a7131c61ea72c5b4c4f81d20e522fb1e440b4b", + "sha256:3a2bcc464b60a18f1f7167b95b2773ede93bf3722bfa59e0802717f652b6cc25", + "sha256:48d70865266d649b6602e2ba94820d7972ef470d3b72a8fd41a3d17321feed3a", + "sha256:50cf23523ab3a724c6905d3b60f87fa8250d9bae3995e09f49f63effa2b54f15", + "sha256:54c84a68abd8c4c5b71878b35eb85321df41f3d144c78181867d5b026ec74994", + "sha256:5b59d661ee7f3200aedd7b71882b7927ea7ed522df75e3853f316a79ad872a2e", + "sha256:5ffb39624bc573177888a21fb301ccee46838c600b27d58c3e9dae495f44d34a", + "sha256:699b3072b7f0e69ed175a88fa8b2ec7eefc4f34d490c54ed9a52feff21a15fdc", + "sha256:79ef4a2bb862110bd585174e551a783bee5c3aa461734a2ac7429193be357589", + "sha256:8210a6f93c4a8c6d460b402e20e38399529b99200c3318542faf6a520c9b6a5c", + "sha256:8d30c10cfd0a6fdf0a2d5023de00ef7b329cd6ead2310c9e53eab79c209acb70", + "sha256:97ac79ff28f2cda6ac00a803ee582b965951755f61ab43377482bfba450b619a", + "sha256:9fe4aacacff9028ed167db108bf013510654f148d83c4857fed61d2ce0588bf2", + "sha256:a5b6395d5957d638f8b1870561607e3c39b1a236ea6cff9eafe5b9bb1db913f2", + "sha256:ab32c5fad6905986a7e34e3acf01180a69bb60c2aa7331815b46e51c776a1943", + "sha256:ad67f0cfdfecbd49b9da46a7e488e6dc32a69388740b85c36a4ef4b33082cbad", + "sha256:aedad67c30326a1af324f45833a40b97180664912deb29942459ddbe9fa0ce19", + "sha256:b077cd0e70f41366ac1f9d09275258fa1906758a5d4f31cacc18b10dfcf90784", + "sha256:b8ea210810d3c14aec7561f8fe0d3eec582d1088100aaa0bb8153d53d867d20f", + "sha256:bf572722326ce6704e863447a070039a827072b7179352570859be899b9e6551", + "sha256:c0df57e189dacd2606cae6386acf127d01d85b2bf49acd9a65543b5d6c359ddc", + "sha256:d523e75f2a8a0b4a6a8be1287c0e0e3a561b8832b05ddd987d4cd7c62f3ad3bc", + "sha256:e10593c60c5f0bfd8b241bf9f27ef2191a3005b73dde8ada0424f642543a1e59", + "sha256:e9128444c83bc260aea988bf1ca6278a33ba730955bf94720468c656b61353eb", + "sha256:f7162f2e3711f3a08a8a741f92e1f63afd58d0713177979f2cf9723dd50161cf" + ], + "version": "==5.0b1" + }, + "docutils": { + "hashes": [ + "sha256:6c4f696463b79f1fb8ba0c594b63840ebd41f059e92b31957c46b74a4599b6d0", + "sha256:9e4d7ecfc600058e07ba661411a2b7de2fd0fafa17d1a7f7361cd47b1175c827", + "sha256:a2aeea129088da402665e92e0b25b04b073c04b2dce4ab65caaa38b7ce2e1a99" + ], + "version": "==0.15.2" + }, + "entrypoints": { + "hashes": [ + "sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19", + "sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451" + ], + "version": "==0.3" + }, + "flake8": { + "hashes": [ + "sha256:45681a117ecc81e870cbf1262835ae4af5e7a8b08e40b944a8a6e6b895914cfb", + "sha256:49356e766643ad15072a789a20915d3c91dc89fd313ccd71802303fd67e4deca" + ], + "index": "pypi", + "version": "==3.7.9" + }, + "identify": { + "hashes": [ + "sha256:4f1fe9a59df4e80fcb0213086fcf502bc1765a01ea4fe8be48da3b65afd2a017", + "sha256:d8919589bd2a5f99c66302fec0ef9027b12ae150b0b0213999ad3f695fc7296e" + ], + "version": "==1.4.7" + }, + "idna": { + "hashes": [ + "sha256:c357b3f628cf53ae2c4c05627ecc484553142ca23264e593d327bcde5e9c3407", + "sha256:ea8b7f6188e6fa117537c3df7da9fc686d485087abf6ac197f9c46432f7e4a3c" + ], + "version": "==2.8" + }, + "importlib-metadata": { + "hashes": [ + "sha256:aa18d7378b00b40847790e7c27e11673d7fed219354109d0e7b9e5b25dc3ad26", + "sha256:d5f18a79777f3aa179c145737780282e27b508fc8fd688cb17c7a813e8bd39af" + ], + "markers": "python_version < '3.8'", + "version": "==0.23" + }, + "keyring": { + "hashes": [ + "sha256:91037ccaf0c9a112a76f7740e4a416b9457a69b66c2799421581bee710a974b3", + "sha256:f5bb20ea6c57c2360daf0c591931c9ea0d7660a8d9e32ca84d63273f131ea605" + ], + "version": "==19.2.0" + }, + "mccabe": { + "hashes": [ + "sha256:ab8a6258860da4b6677da4bd2fe5dc2c659cff31b3ee4f7f5d64e79735b80d42", + "sha256:dd8d182285a0fe56bace7f45b5e7d1a6ebcbf524e8f3bd87eb0f125271b8831f" + ], + "version": "==0.6.1" + }, + "more-itertools": { + "hashes": [ + "sha256:409cd48d4db7052af495b09dec721011634af3753ae1ef92d2b32f73a745f832", + "sha256:92b8c4b06dac4f0611c0729b2f2ede52b2e1bac1ab48f089c7ddc12e26bb60c4" + ], + "version": "==7.2.0" + }, + "mypy": { + "hashes": [ + "sha256:1521c186a3d200c399bd5573c828ea2db1362af7209b2adb1bb8532cea2fb36f", + "sha256:31a046ab040a84a0fc38bc93694876398e62bc9f35eca8ccbf6418b7297f4c00", + "sha256:3b1a411909c84b2ae9b8283b58b48541654b918e8513c20a400bb946aa9111ae", + "sha256:48c8bc99380575deb39f5d3400ebb6a8a1cb5cc669bbba4d3bb30f904e0a0e7d", + "sha256:540c9caa57a22d0d5d3c69047cc9dd0094d49782603eb03069821b41f9e970e9", + "sha256:672e418425d957e276c291930a3921b4a6413204f53fe7c37cad7bc57b9a3391", + "sha256:6ed3b9b3fdc7193ea7aca6f3c20549b377a56f28769783a8f27191903a54170f", + "sha256:9371290aa2cad5ad133e4cdc43892778efd13293406f7340b9ffe99d5ec7c1d9", + "sha256:ace6ac1d0f87d4072f05b5468a084a45b4eda970e4d26704f201e06d47ab2990", + "sha256:b428f883d2b3fe1d052c630642cc6afddd07d5cd7873da948644508be3b9d4a7", + "sha256:d5bf0e6ec8ba346a2cf35cb55bf4adfddbc6b6576fcc9e10863daa523e418dbb", + "sha256:d7574e283f83c08501607586b3167728c58e8442947e027d2d4c7dcd6d82f453", + "sha256:dc889c84241a857c263a2b1cd1121507db7d5b5f5e87e77147097230f374d10b", + "sha256:f4748697b349f373002656bf32fede706a0e713d67bfdcf04edf39b1f61d46eb" + ], + "index": "pypi", + "version": "==0.740" + }, + "mypy-extensions": { + "hashes": [ + "sha256:090fedd75945a69ae91ce1303b5824f428daf5a028d2f6ab8a299250a846f15d", + "sha256:2d82818f5bb3e369420cb3c4060a7970edba416647068eb4c5343488a6c604a8" + ], + "version": "==0.4.3" + }, + "nodeenv": { + "hashes": [ + "sha256:ad8259494cf1c9034539f6cced78a1da4840a4b157e23640bc4a0c0546b0cb7a" + ], + "version": "==1.3.3" + }, + "packaging": { + "hashes": [ + "sha256:28b924174df7a2fa32c1953825ff29c61e2f5e082343165438812f00d3a7fc47", + "sha256:d9551545c6d761f3def1677baf08ab2a3ca17c56879e70fecba2fc4dde4ed108" + ], + "version": "==19.2" + }, + "pathspec": { + "hashes": [ + "sha256:e285ccc8b0785beadd4c18e5708b12bb8fcf529a1e61215b3feff1d1e559ea5c" + ], + "version": "==0.6.0" + }, + "pkginfo": { + "hashes": [ + "sha256:7424f2c8511c186cd5424bbf31045b77435b37a8d604990b79d4e70d741148bb", + "sha256:a6d9e40ca61ad3ebd0b72fbadd4fba16e4c0e4df0428c041e01e06eb6ee71f32" + ], + "version": "==1.5.0.1" + }, + "pluggy": { + "hashes": [ + "sha256:15b2acde666561e1298d71b523007ed7364de07029219b604cf808bfa1c765b0", + "sha256:966c145cd83c96502c3c3868f50408687b38434af77734af1e9ca461a4081d2d" + ], + "version": "==0.13.1" + }, + "pre-commit": { + "hashes": [ + "sha256:9f152687127ec90642a2cc3e4d9e1e6240c4eb153615cb02aa1ad41d331cbb6e", + "sha256:c2e4810d2d3102d354947907514a78c5d30424d299dc0fe48f5aa049826e9b50" + ], + "index": "pypi", + "version": "==1.20.0" + }, + "py": { + "hashes": [ + "sha256:64f65755aee5b381cea27766a3a147c3f15b9b6b9ac88676de66ba2ae36793fa", + "sha256:dc639b046a6e2cff5bbe40194ad65936d6ba360b52b3c3fe1d08a82dd50b5e53" + ], + "version": "==1.8.0" + }, + "pycodestyle": { + "hashes": [ + "sha256:95a2219d12372f05704562a14ec30bc76b05a5b297b21a5dfe3f6fac3491ae56", + "sha256:e40a936c9a450ad81df37f549d676d127b1b66000a6c500caa2b085bc0ca976c" + ], + "version": "==2.5.0" + }, + "pyflakes": { + "hashes": [ + "sha256:17dbeb2e3f4d772725c777fabc446d5634d1038f234e77343108ce445ea69ce0", + "sha256:d976835886f8c5b31d47970ed689944a0262b5f3afa00a5a7b4dc81e5449f8a2" + ], + "version": "==2.1.1" + }, + "pygments": { + "hashes": [ + "sha256:71e430bc85c88a430f000ac1d9b331d2407f681d6f6aec95e8bcfbc3df5b0127", + "sha256:881c4c157e45f30af185c1ffe8d549d48ac9127433f2c380c24b84572ad66297" + ], + "version": "==2.4.2" + }, + "pyparsing": { + "hashes": [ + "sha256:20f995ecd72f2a1f4bf6b072b63b22e2eb457836601e76d6e5dfcd75436acc1f", + "sha256:4ca62001be367f01bd3e92ecbb79070272a9d4964dce6a48a82ff0b8bc7e683a" + ], + "version": "==2.4.5" + }, + "pytest": { + "hashes": [ + "sha256:1897d74f60a5d8be02e06d708b41bf2445da2ee777066bd68edf14474fc201eb", + "sha256:f6a567e20c04259d41adce9a360bd8991e6aa29dd9695c5e6bd25a9779272673" + ], + "index": "pypi", + "version": "==5.3.0" + }, + "pytest-asyncio": { + "hashes": [ + "sha256:9fac5100fd716cbecf6ef89233e8590a4ad61d729d1732e0a96b84182df1daaf", + "sha256:d734718e25cfc32d2bf78d346e99d33724deeba774cc4afdf491530c6184b63b" + ], + "index": "pypi", + "version": "==0.10.0" + }, + "pytest-cov": { + "hashes": [ + "sha256:cc6742d8bac45070217169f5f72ceee1e0e55b0221f54bcf24845972d3a47f2b", + "sha256:cdbdef4f870408ebdbfeb44e63e07eb18bb4619fae852f6e760645fa36172626" + ], + "index": "pypi", + "version": "==2.8.1" + }, + "pywin32-ctypes": { + "hashes": [ + "sha256:24ffc3b341d457d48e8922352130cf2644024a4ff09762a2261fd34c36ee5942", + "sha256:9dc2d991b3479cc2df15930958b674a48a227d5361d413827a4cfd0b5876fc98" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.2.0" + }, + "pyyaml": { + "hashes": [ + "sha256:0113bc0ec2ad727182326b61326afa3d1d8280ae1122493553fd6f4397f33df9", + "sha256:01adf0b6c6f61bd11af6e10ca52b7d4057dd0be0343eb9283c878cf3af56aee4", + "sha256:5124373960b0b3f4aa7df1707e63e9f109b5263eca5976c66e08b1c552d4eaf8", + "sha256:5ca4f10adbddae56d824b2c09668e91219bb178a1eee1faa56af6f99f11bf696", + "sha256:7907be34ffa3c5a32b60b95f4d95ea25361c951383a894fec31be7252b2b6f34", + "sha256:7ec9b2a4ed5cad025c2278a1e6a19c011c80a3caaac804fd2d329e9cc2c287c9", + "sha256:87ae4c829bb25b9fe99cf71fbb2140c448f534e24c998cc60f39ae4f94396a73", + "sha256:9de9919becc9cc2ff03637872a440195ac4241c80536632fffeb6a1e25a74299", + "sha256:a5a85b10e450c66b49f98846937e8cfca1db3127a9d5d1e31ca45c3d0bef4c5b", + "sha256:b0997827b4f6a7c286c01c5f60384d218dca4ed7d9efa945c3e1aa623d5709ae", + "sha256:b631ef96d3222e62861443cc89d6563ba3eeb816eeb96b2629345ab795e53681", + "sha256:bf47c0607522fdbca6c9e817a6e81b08491de50f3766a7a0e6a5be7905961b41", + "sha256:f81025eddd0327c7d4cfe9b62cf33190e1e736cc6e97502b3ec425f574b3e7a8" + ], + "version": "==5.1.2" + }, + "readme-renderer": { + "hashes": [ + "sha256:bb16f55b259f27f75f640acf5e00cf897845a8b3e4731b5c1a436e4b8529202f", + "sha256:c8532b79afc0375a85f10433eca157d6b50f7d6990f337fa498c96cd4bfc203d" + ], + "version": "==24.0" + }, + "regex": { + "hashes": [ + "sha256:15454b37c5a278f46f7aa2d9339bda450c300617ca2fca6558d05d870245edc7", + "sha256:1ad40708c255943a227e778b022c6497c129ad614bb7a2a2f916e12e8a359ee7", + "sha256:5e00f65cc507d13ab4dfa92c1232d004fa202c1d43a32a13940ab8a5afe2fb96", + "sha256:604dc563a02a74d70ae1f55208ddc9bfb6d9f470f6d1a5054c4bd5ae58744ab1", + "sha256:720e34a539a76a1fedcebe4397290604cc2bdf6f81eca44adb9fb2ea071c0c69", + "sha256:7caf47e4a9ac6ef08cabd3442cc4ca3386db141fb3c8b2a7e202d0470028e910", + "sha256:7faf534c1841c09d8fefa60ccde7b9903c9b528853ecf41628689793290ca143", + "sha256:b4e0406d822aa4993ac45072a584d57aa4931cf8288b5455bbf30c1d59dbad59", + "sha256:c31eaf28c6fe75ea329add0022efeed249e37861c19681960f99bbc7db981fb2", + "sha256:c7393597191fc2043c744db021643549061e12abe0b3ff5c429d806de7b93b66", + "sha256:d2b302f8cdd82c8f48e9de749d1d17f85ce9a0f082880b9a4859f66b07037dc6", + "sha256:e3d8dd0ec0ea280cf89026b0898971f5750a7bd92cb62c51af5a52abd020054a", + "sha256:ec032cbfed59bd5a4b8eab943c310acfaaa81394e14f44454ad5c9eba4f24a74" + ], + "version": "==2019.11.1" + }, + "requests": { + "hashes": [ + "sha256:11e007a8a2aa0323f5a921e9e6a2d7e4e67d9877e85773fba9ba6419025cbeb4", + "sha256:9cf5292fcd0f598c671cfc1e0d7d1a7f13bb8085e9a590f48c010551dc6c4b31" + ], + "version": "==2.22.0" + }, + "requests-toolbelt": { + "hashes": [ + "sha256:380606e1d10dc85c3bd47bf5a6095f815ec007be7a8b69c878507068df059e6f", + "sha256:968089d4584ad4ad7c171454f0a5c6dac23971e9472521ea3b6d49d610aa6fc0" + ], + "version": "==0.9.1" + }, + "six": { + "hashes": [ + "sha256:1f1b7d42e254082a9db6279deae68afb421ceba6158efa6131de7b3003ee93fd", + "sha256:30f610279e8b2578cab6db20741130331735c781b56053c59c4076da27f06b66" + ], + "version": "==1.13.0" + }, + "sqlalchemy-stubs": { + "hashes": [ + "sha256:a3318c810697164e8c818aa2d90bac570c1a0e752ced3ec25455b309c0bee8fd", + "sha256:ca1250605a39648cc433f5c70cb1a6f9fe0b60bdda4c51e1f9a2ab3651daadc8" + ], + "index": "pypi", + "version": "==0.3" + }, + "toml": { + "hashes": [ + "sha256:229f81c57791a41d65e399fc06bf0848bab550a9dfd5ed66df18ce5f05e73d5c", + "sha256:235682dd292d5899d361a811df37e04a8828a5b1da3115886b73cf81ebc9100e" + ], + "version": "==0.10.0" + }, + "tqdm": { + "hashes": [ + "sha256:5a1f3d58f3eb53264387394387fe23df469d2a3fab98c9e7f99d5c146c119873", + "sha256:f1a1613fee07cc30a253051617f2a219a785c58877f9f6bfa129446cbaf8b4c1" + ], + "version": "==4.39.0" + }, + "twine": { + "hashes": [ + "sha256:1a87ae3f1e29a87a8ac174809bf0aa996085a0368fe500402196bda94b23aab3", + "sha256:ba8ba1b39987f1c22d9162f7dd3b4668388640e5f7158c15226624f88e464836" + ], + "index": "pypi", + "version": "==3.1.0" + }, + "typed-ast": { + "hashes": [ + "sha256:1170afa46a3799e18b4c977777ce137bb53c7485379d9706af8a59f2ea1aa161", + "sha256:18511a0b3e7922276346bcb47e2ef9f38fb90fd31cb9223eed42c85d1312344e", + "sha256:262c247a82d005e43b5b7f69aff746370538e176131c32dda9cb0f324d27141e", + "sha256:2b907eb046d049bcd9892e3076c7a6456c93a25bebfe554e931620c90e6a25b0", + "sha256:354c16e5babd09f5cb0ee000d54cfa38401d8b8891eefa878ac772f827181a3c", + "sha256:48e5b1e71f25cfdef98b013263a88d7145879fbb2d5185f2a0c79fa7ebbeae47", + "sha256:4e0b70c6fc4d010f8107726af5fd37921b666f5b31d9331f0bd24ad9a088e631", + "sha256:630968c5cdee51a11c05a30453f8cd65e0cc1d2ad0d9192819df9978984529f4", + "sha256:66480f95b8167c9c5c5c87f32cf437d585937970f3fc24386f313a4c97b44e34", + "sha256:71211d26ffd12d63a83e079ff258ac9d56a1376a25bc80b1cdcdf601b855b90b", + "sha256:7954560051331d003b4e2b3eb822d9dd2e376fa4f6d98fee32f452f52dd6ebb2", + "sha256:838997f4310012cf2e1ad3803bce2f3402e9ffb71ded61b5ee22617b3a7f6b6e", + "sha256:95bd11af7eafc16e829af2d3df510cecfd4387f6453355188342c3e79a2ec87a", + "sha256:bc6c7d3fa1325a0c6613512a093bc2a2a15aeec350451cbdf9e1d4bffe3e3233", + "sha256:cc34a6f5b426748a507dd5d1de4c1978f2eb5626d51326e43280941206c209e1", + "sha256:d755f03c1e4a51e9b24d899561fec4ccaf51f210d52abdf8c07ee2849b212a36", + "sha256:d7c45933b1bdfaf9f36c579671fec15d25b06c8398f113dab64c18ed1adda01d", + "sha256:d896919306dd0aa22d0132f62a1b78d11aaf4c9fc5b3410d3c666b818191630a", + "sha256:fdc1c9bbf79510b76408840e009ed65958feba92a88833cdceecff93ae8fff66", + "sha256:ffde2fbfad571af120fcbfbbc61c72469e72f550d676c3342492a9dfdefb8f12" + ], + "version": "==1.4.0" + }, + "typing-extensions": { + "hashes": [ + "sha256:091ecc894d5e908ac75209f10d5b4f118fbdb2eb1ede6a63544054bb1edb41f2", + "sha256:910f4656f54de5993ad9304959ce9bb903f90aadc7c67a0bef07e678014e892d", + "sha256:cf8b63fedea4d89bab840ecbb93e75578af28f76f66c35889bd7065f5af88575" + ], + "version": "==3.7.4.1" + }, + "urllib3": { + "hashes": [ + "sha256:a8a318824cc77d1fd4b2bec2ded92646630d7fe8619497b142c84a9e6f5a7293", + "sha256:f3c5fd51747d450d4dcf6f923c81f78f811aab8205fda64b0aba34a4e48b0745" + ], + "version": "==1.25.7" + }, + "virtualenv": { + "hashes": [ + "sha256:116655188441670978117d0ebb6451eb6a7526f9ae0796cc0dee6bd7356909b0", + "sha256:b57776b44f91511866594e477dd10e76a6eb44439cdd7f06dcd30ba4c5bd854f" + ], + "version": "==16.7.8" + }, + "wcwidth": { + "hashes": [ + "sha256:3df37372226d6e63e1b1e1eda15c594bca98a22d33a23832a90998faa96bc65e", + "sha256:f4ebe71925af7b40a864553f761ed559b43544f8f71746c2d756c7fe788ade7c" + ], + "version": "==0.1.7" + }, + "webencodings": { + "hashes": [ + "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", + "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923" + ], + "version": "==0.5.1" + }, + "wheel": { + "hashes": [ + "sha256:10c9da68765315ed98850f8e048347c3eb06dd81822dc2ab1d4fde9dc9702646", + "sha256:f4da1763d3becf2e2cd92a14a7c920f0f00eca30fdde9ea992c836685b9faf28" + ], + "index": "pypi", + "version": "==0.33.6" + }, + "zipp": { + "hashes": [ + "sha256:3718b1cbcd963c7d4c5511a8240812904164b7f381b647143a89d3b98f9bcd8e", + "sha256:f06903e9f1f43b12d371004b4ac7b06ab39a44adc747266928ae6debfa7b3335" + ], + "version": "==0.6.0" + } + } +} diff --git a/Ch09/apd.aggregation-chapter09-ex02/README.md b/Ch09/apd.aggregation-chapter09-ex02/README.md new file mode 100644 index 0000000..85669dd --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex02/README.md @@ -0,0 +1,4 @@ +# APD Sensor aggregator + +A programme that queries apd.sensor endpoints and aggregates their results. + diff --git a/Ch09/apd.aggregation-chapter09-ex02/pyproject.toml b/Ch09/apd.aggregation-chapter09-ex02/pyproject.toml new file mode 100644 index 0000000..4d3bb67 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex02/pyproject.toml @@ -0,0 +1,5 @@ +[build-system] +requires = [ + "setuptools", +] +build-backend = "setuptools.build_meta" diff --git a/Ch09/apd.aggregation-chapter09-ex02/pytest.ini b/Ch09/apd.aggregation-chapter09-ex02/pytest.ini new file mode 100644 index 0000000..c1d3e58 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex02/pytest.ini @@ -0,0 +1,3 @@ +[pytest] +markers = + functional: these tests are significantly slower as they start a HTTP server \ No newline at end of file diff --git a/Ch09/apd.aggregation-chapter09-ex02/setup.cfg b/Ch09/apd.aggregation-chapter09-ex02/setup.cfg new file mode 100644 index 0000000..060cccc --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex02/setup.cfg @@ -0,0 +1,76 @@ +[mypy] +namespace_packages = True +mypy_path = src +plugins = sqlmypy + +[mypy-alembic] +ignore_missing_imports = True + +[mypy-alembic.config] +ignore_missing_imports = True + +[mypy-alembic.script] +ignore_missing_imports = True + +[mypy-alembic.runtime.environment] +ignore_missing_imports = True + +[mypy-matplotlib] +ignore_missing_imports = True + +[mypy-matplotlib.axes._base] +ignore_missing_imports = True + +[mypy-matplotlib.figure] +ignore_missing_imports = True + +[mypy-matplotlib.pyplot] +ignore_missing_imports = True + + +[mypy-pint] +ignore_missing_imports = True + +[mypy-pytest] +ignore_missing_imports = True + +[flake8] +max-line-length = 120 +ignore = E501 + +[metadata] +name = apd.aggregation +version = attr: apd.aggregation.VERSION +description = A programme that queries apd.sensor endpoints and aggregates their results. +long_description = file: README.md, CHANGES.md, LICENCE +long_description_content_type = text/markdown +keywords = +license = BSD +classifiers = + Programming Language :: Python :: 3 + Programming Language :: Python :: 3.7 + +[options] +zip_safe = False +include_package_data = True +package_dir = + =src +packages = find_namespace: +install_requires = + sqlalchemy + aiohttp + pint + psycopg2 + alembic + click + + +[options.extras_require] +jupyter = ipywidgets + +[options.packages.find] +where = src + +[options.entry_points] +console_scripts = + collect_sensor_data = apd.aggregation.cli:collect_sensor_data diff --git a/Ch09/apd.aggregation-chapter09-ex02/setup.py b/Ch09/apd.aggregation-chapter09-ex02/setup.py new file mode 100644 index 0000000..6068493 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex02/setup.py @@ -0,0 +1,3 @@ +from setuptools import setup + +setup() diff --git a/Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/__init__.py b/Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/__init__.py new file mode 100644 index 0000000..3277f64 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/__init__.py @@ -0,0 +1 @@ +VERSION = "1.0.0" diff --git a/Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/alembic/README b/Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/alembic/README new file mode 100644 index 0000000..97a87d5 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/alembic/README @@ -0,0 +1,12 @@ +Generic single-database configuration. + + +# Database setup + +To generate the required database tables you must create an alembic.ini file, as follows: + + [alembic] + script_location = apd.aggregation:alembic + sqlalchemy.url = postgresql+psycopg2://apd@localhost/apd + +and run `alembic upgrade head`. This should also be done after every upgrade of the software. \ No newline at end of file diff --git a/Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/alembic/env.py b/Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/alembic/env.py new file mode 100644 index 0000000..4c8a2c2 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/alembic/env.py @@ -0,0 +1,80 @@ +from logging.config import fileConfig + +from sqlalchemy import engine_from_config +from sqlalchemy import pool +from alembic import context + +from apd.aggregation.database import metadata + + +# this is the Alembic Config object, which provides +# access to the values within the .ini file in use. +config = context.config + +# Interpret the config file for Python logging. +# This line sets up loggers basically. +if config.config_file_name: + fileConfig(config.config_file_name) + +target_metadata = metadata + + +def include_object(object, name, type_, reflected, compare_to): + if object.info.get("is_view", False): + return False + return True + + +def run_migrations_offline(): + """Run migrations in 'offline' mode. + + This configures the context with just a URL + and not an Engine, though an Engine is acceptable + here as well. By skipping the Engine creation + we don't even need a DBAPI to be available. + + Calls to context.execute() here emit the given string to the + script output. + + """ + url = config.get_main_option("sqlalchemy.url") + context.configure( + url=url, + include_object=include_object, + target_metadata=target_metadata, + literal_binds=True, + dialect_opts={"paramstyle": "named"}, + ) + + with context.begin_transaction(): + context.run_migrations() + + +def run_migrations_online(): + """Run migrations in 'online' mode. + + In this scenario we need to create an Engine + and associate a connection with the context. + + """ + connectable = engine_from_config( + config.get_section(config.config_ini_section), + prefix="sqlalchemy.", + poolclass=pool.NullPool, + ) + + with connectable.connect() as connection: + context.configure( + connection=connection, + target_metadata=target_metadata, + include_object=include_object, + ) + + with context.begin_transaction(): + context.run_migrations() + + +if context.is_offline_mode(): + run_migrations_offline() +else: + run_migrations_online() diff --git a/Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/alembic/script.py.mako b/Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/alembic/script.py.mako new file mode 100644 index 0000000..2c01563 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/alembic/script.py.mako @@ -0,0 +1,24 @@ +"""${message} + +Revision ID: ${up_revision} +Revises: ${down_revision | comma,n} +Create Date: ${create_date} + +""" +from alembic import op +import sqlalchemy as sa +${imports if imports else ""} + +# revision identifiers, used by Alembic. +revision = ${repr(up_revision)} +down_revision = ${repr(down_revision)} +branch_labels = ${repr(branch_labels)} +depends_on = ${repr(depends_on)} + + +def upgrade(): + ${upgrades if upgrades else "pass"} + + +def downgrade(): + ${downgrades if downgrades else "pass"} diff --git a/Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py b/Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py new file mode 100644 index 0000000..ef671bd --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py @@ -0,0 +1,32 @@ +"""Add indexes to datapoints + +Revision ID: 4b2df8a6e1ce +Revises: 6d2eacd5da3f +Create Date: 2019-12-02 16:07:41.123116 + +""" +from alembic import op + + +# revision identifiers, used by Alembic. +revision = "4b2df8a6e1ce" +down_revision = "6d2eacd5da3f" +branch_labels = None +depends_on = None + + +def upgrade(): + op.create_index( + op.f("ix_datapoints_collected_at"), + "datapoints", + ["collected_at"], + unique=False, + ) + op.create_index( + op.f("ix_datapoints_sensor_name"), "datapoints", ["sensor_name"], unique=False, + ) + + +def downgrade(): + op.drop_index(op.f("ix_datapoints_sensor_name"), table_name="datapoints") + op.drop_index(op.f("ix_datapoints_collected_at"), table_name="datapoints") diff --git a/Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py b/Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py new file mode 100644 index 0000000..eb02455 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py @@ -0,0 +1,38 @@ +"""Add daily summary view + +Revision ID: 6962f8455a6d +Revises: 4b2df8a6e1ce +Create Date: 2019-12-03 11:50:24.403402 + +""" +from alembic import op + + +# revision identifiers, used by Alembic. +revision = "6962f8455a6d" +down_revision = "4b2df8a6e1ce" +branch_labels = None +depends_on = None + + +def upgrade(): + create_view = """ + CREATE VIEW daily_summary AS + SELECT + datapoints.sensor_name AS sensor_name, + datapoints.data AS data, + count(datapoints.id) AS count + FROM datapoints + WHERE + datapoints.collected_at >= CAST(CURRENT_DATE AS DATE) + AND + datapoints.collected_at < CAST(CURRENT_DATE AS DATE) + 1 + GROUP BY + datapoints.sensor_name, + datapoints.data; + """ + op.execute(create_view) + + +def downgrade(): + op.execute("""DROP VIEW daily_summary""") diff --git a/Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py b/Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py new file mode 100644 index 0000000..b4a3545 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py @@ -0,0 +1,31 @@ +"""Create datapoints table + +Revision ID: 6d2eacd5da3f +Revises: N/A +Create Date: 2019-09-29 13:43:21.242706 + +""" +from alembic import op +import sqlalchemy as sa +from sqlalchemy.dialects import postgresql + +# revision identifiers, used by Alembic. +revision = "6d2eacd5da3f" +down_revision = None +branch_labels = None +depends_on = None + + +def upgrade(): + op.create_table( + "datapoints", + sa.Column("id", sa.Integer(), nullable=False), + sa.Column("sensor_name", sa.String(), nullable=True), + sa.Column("collected_at", postgresql.TIMESTAMP(), nullable=True), + sa.Column("data", postgresql.JSONB(astext_type=sa.Text()), nullable=True), + sa.PrimaryKeyConstraint("id"), + ) + + +def downgrade(): + op.drop_table("datapoints") diff --git a/Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py b/Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py new file mode 100644 index 0000000..88d5219 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py @@ -0,0 +1,34 @@ +"""Add deployment id to DataPoint + +Revision ID: d8d4cf6a178f +Revises: 6962f8455a6d +Create Date: 2019-12-03 20:58:11.285509 + +""" +from alembic import op +import sqlalchemy as sa +from sqlalchemy.dialects import postgresql + +# revision identifiers, used by Alembic. +revision = "d8d4cf6a178f" +down_revision = "6962f8455a6d" +branch_labels = None +depends_on = None + + +def upgrade(): + op.add_column( + "datapoints", + sa.Column("deployment_id", postgresql.UUID(as_uuid=True), nullable=True), + ) + op.create_index( + op.f("ix_datapoints_deployment_id"), + "datapoints", + ["deployment_id"], + unique=False, + ) + + +def downgrade(): + op.drop_index(op.f("ix_datapoints_deployment_id"), table_name="datapoints") + op.drop_column("datapoints", "deployment_id") diff --git a/Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/analysis.py b/Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/analysis.py new file mode 100644 index 0000000..664b45b --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/analysis.py @@ -0,0 +1,226 @@ +from __future__ import annotations + +import asyncio +import collections +from concurrent.futures import ThreadPoolExecutor +import dataclasses +import datetime +import functools +import math +import typing as t +from uuid import UUID + +import matplotlib.pyplot as plt +from matplotlib.axes._base import _AxesBase +from matplotlib.figure import Figure +from pint import _DEFAULT_REGISTRY as ureg + +from apd.aggregation.query import get_data_by_deployment, with_database +from apd.aggregation.database import DataPoint + + +@dataclasses.dataclass(frozen=True) +class Config: + title: str + sensor_name: str + clean: t.Callable[ + [t.AsyncIterator[DataPoint]], t.AsyncIterator[t.Tuple[datetime.datetime, float]] + ] + ylabel: str + + +async def clean_watthours_to_watts( + datapoints: t.AsyncIterator[DataPoint], +) -> t.AsyncIterator[t.Tuple[datetime.datetime, float]]: + last_watthours = None + last_time = None + async for datapoint in datapoints: + if datapoint.data is None: + continue + time = datapoint.collected_at + watthours = ureg.Quantity(datapoint.data["magnitude"], datapoint.data["unit"]) + if last_watthours: + seconds_elapsed = (time - last_time).total_seconds() + time_elapsed = ureg.Quantity(seconds_elapsed, ureg.second) + additional_power = watthours - last_watthours + power = additional_power / time_elapsed + yield time, power.to(ureg.watt).magnitude + last_watthours = watthours + last_time = datapoint.collected_at + + +async def clean_magnitude( + datapoints: t.AsyncIterator[DataPoint], +) -> t.AsyncIterator[t.Tuple[datetime.datetime, float]]: + async for datapoint in datapoints: + if datapoint.data is None: + continue + yield datapoint.collected_at, datapoint.data["magnitude"] + + +async def clean_temperature_fluctuations( + datapoints: t.AsyncIterator[DataPoint], +) -> t.AsyncIterator[t.Tuple[datetime.datetime, float]]: + allowed_jitter = 2.5 + allowed_range = (-40, 80) + window_datapoints: t.Deque[DataPoint] = collections.deque(maxlen=3) + + def datapoint_ok(datapoint: DataPoint) -> bool: + """Return False if this data point does not contain a valid temperature""" + if datapoint.data is None: + return False + elif datapoint.data["unit"] != "degC": + # This point is in a different temperature system. While it could be converted + # this cleaner is not yet doing that. + return False + elif not allowed_range[0] < datapoint.data["magnitude"] < allowed_range[1]: + return False + return True + + async for datapoint in datapoints: + if not datapoint_ok(datapoint): + # If the datapoint is invalid then skip directly to the next item + continue + + window_datapoints.append(datapoint) + if len(window_datapoints) == 3: + # Find the temperatures of the datapoints in the window, then average + # the first and last and compare that to the middle point. + window_temperatures = [dp.data["magnitude"] for dp in window_datapoints] + avr_first_last = (window_temperatures[0] + window_temperatures[2]) / 2 + diff_middle_avr = abs(window_temperatures[1] - avr_first_last) + if diff_middle_avr > allowed_jitter: + pass + else: + yield window_datapoints[1].collected_at, window_temperatures[1] + elif len(window_datapoints) == 1: + # The item in the iterator can't be compared to both neighbours + # so should be yielded + yield datapoint.collected_at, datapoint.data["magnitude"] + else: + # Otherwise, let the window fill up, it will be yieleded later + pass + # When the iterator ends the final item is not yet in the middle + # of the window, so the last item must be explicitly yielded. + if len(window_datapoints) > 1 and datapoint_ok(datapoint): + yield datapoint.collected_at, datapoint.data["magnitude"] + + +async def clean_passthrough( + datapoints: t.AsyncIterator[DataPoint], +) -> t.AsyncIterator[t.Tuple[datetime.datetime, float]]: + async for datapoint in datapoints: + if datapoint.data is None: + continue + else: + yield datapoint.collected_at, datapoint.data + + +configs = ( + Config( + sensor_name="SolarCumulativeOutput", + clean=clean_watthours_to_watts, + title="Solar generation", + ylabel="Watts", + ), + Config( + sensor_name="RAMAvailable", + clean=clean_passthrough, + title="RAM available", + ylabel="Bytes", + ), + Config( + sensor_name="RelativeHumidity", + clean=clean_passthrough, + title="Relative humidity", + ylabel="Percent", + ), + Config( + sensor_name="Temperature", + clean=clean_temperature_fluctuations, + title="Ambient temperature", + ylabel="Degrees C", + ), +) + + +def get_known_configs() -> t.Dict[str, Config]: + return {config.title: config for config in configs} + + +async def plot_sensor( + config: Config, plot: _AxesBase, location_names: t.Dict[UUID, str], **kwargs: t.Any +) -> _AxesBase: + locations = [] + async for deployment, query_results in get_data_by_deployment( + sensor_name=config.sensor_name, **kwargs + ): + # Mypy currently doesn't understand callable fields on datatypes: https://github.com/python/mypy/issues/5485 + points = [dp async for dp in config.clean(query_results)] # type: ignore + if not points: + continue + locations.append(deployment) + x, y = zip(*points) + plot.set_title(config.title) + plot.set_ylabel(config.ylabel) + plot.plot_date(x, y, f"-", xdate=True) + plot.legend([location_names.get(l, l) for l in locations]) + return plot + + +_Coroutine_Result = t.TypeVar("_Coroutine_Result") + + +def wrap_coroutine( + f: t.Callable[..., t.Coroutine[t.Any, t.Any, _Coroutine_Result]] +) -> t.Callable[..., _Coroutine_Result]: + """Given a coroutine, return a function that runs that coroutine + in a new event loop in an isolated thread""" + + @functools.wraps(f) + def run_in_thread(*args: t.Any, **kwargs: t.Any) -> _Coroutine_Result: + loop = asyncio.new_event_loop() + wrapped = f(*args, **kwargs) + with ThreadPoolExecutor(max_workers=1) as pool: + task = pool.submit(loop.run_until_complete, wrapped) + # Mypy can get confused when nesting generic functions, like we do here + # The fact that Task is generic means we lose the association with + # _CoroutineResult. Adding an explicit cast restores this. + return t.cast(_Coroutine_Result, task.result()) + + return run_in_thread + + +async def plot_multiple_charts(*args: t.Any, **kwargs: t.Any) -> Figure: + # These parameters are pulled from kwargs to avoid confusing function + # introspection code in IPython widgets + location_names = kwargs.pop("location_names", None) + configs = kwargs.pop("configs", None) + dimensions = kwargs.pop("dimensions", None) + + with with_database("postgresql+psycopg2://apd@localhost/apd"): + coros = [] + if configs is None: + # If no configs are supplied, use all known configs + configs = get_known_configs().values() + if dimensions is None: + # If no dimensions are supplied, get the square root of the number + # of configs and round it to find a number of columns. This will + # keep the arrangement approximately square. Find rows by multiplying + # out rows. + total_configs = len(configs) + columns = round(math.sqrt(total_configs)) + rows = math.ceil(total_configs / columns) + figure = plt.figure(figsize=(10 * columns, 5 * rows), dpi=300) + for i, config in enumerate(configs, start=1): + plot = figure.add_subplot(columns, rows, i) + coros.append(plot_sensor(config, plot, location_names, *args, **kwargs)) + await asyncio.gather(*coros) + return figure + + +def interactable_plot_multiple_charts( + *args: t.Any, **kwargs: t.Any +) -> t.Callable[..., Figure]: + with_config = functools.partial(plot_multiple_charts, *args, **kwargs) + return wrap_coroutine(with_config) diff --git a/Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/cli.py b/Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/cli.py new file mode 100644 index 0000000..3435e78 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/cli.py @@ -0,0 +1,52 @@ +import typing as t + +import click + +from .collect import standalone + + +@click.command() +@click.argument("server", nargs=-1) +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +@click.option("--api-key", metavar="", envvar="APD_API_KEY") +@click.option( + "--tolerate-failures", + "-f", + help="If provided, failure to retrieve some sensors' data will not abort the collection process", + is_flag=True, +) +@click.option("-v", "--verbose", is_flag=True, help="Enables verbose mode") +def collect_sensor_data( + db: str, server: t.Tuple[str], api_key: str, tolerate_failures: bool, verbose: bool +): + """This loads data from one or more sensors into the specified database. + + Only PostgreSQL databases are supported, as the column definitions use + multiple pg specific features. The database must already exist and be + populated with the required tables. + + The --api-key option is used to specify the access token for the sensors + being queried. + + You may specify any number of servers, the variable should be the full URL + to the sensor's HTTP interface, not including the /v/2.0 portion. Multiple + URLs should be separated with a space. + """ + if tolerate_failures: + attempts = [(s,) for s in server] + else: + attempts = [server] + success = True + for attempt in attempts: + try: + standalone(db, attempt, api_key, echo=verbose) + except ValueError as e: + click.secho(str(e), err=True, fg="red") + success = False + return success diff --git a/Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/collect.py b/Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/collect.py new file mode 100644 index 0000000..f745d69 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/collect.py @@ -0,0 +1,93 @@ +import asyncio +from contextvars import ContextVar +import datetime +import typing as t +import uuid + +import aiohttp +from sqlalchemy import create_engine +from sqlalchemy.orm import sessionmaker +from sqlalchemy.orm.session import Session + +from .database import DataPoint, datapoint_table + +http_session_var: ContextVar[aiohttp.ClientSession] = ContextVar("http_session") + + +async def get_data_points(server: str, api_key: t.Optional[str],) -> t.List[DataPoint]: + if not server.endswith("/"): + server += "/" + url = server + "v/2.1/sensors/" + deployment_id_url = server + "v/2.1/deployment_id" + headers = {} + if api_key: + headers["X-API-KEY"] = api_key + http = http_session_var.get() + + async with http.get(deployment_id_url) as request: + if request.status != 200: + raise ValueError(f"Error loading deployment id from {server}") + result = await request.json() + deployment_id = uuid.UUID(result["deployment_id"]) + + async with http.get(url, headers=headers) as request: + result = await request.json() + ok = request.status == 200 + now = datetime.datetime.now() + if ok: + points = [] + for value in result["sensors"]: + points.append( + DataPoint( + sensor_name=value["id"], + collected_at=now, + data=value["value"], + deployment_id=deployment_id, + ) + ) + return points + else: + raise ValueError( + f"Error loading data from {server}: " + result.get("error", "Unknown") + ) + + +def handle_result(result: t.List[DataPoint], session: Session) -> t.List[DataPoint]: + for point in result: + insert = datapoint_table.insert().values(**point._asdict()) + sql_result = session.execute(insert) + point.id = sql_result.inserted_primary_key[0] + return result + + +async def add_data_from_sensors( + session: Session, servers: t.Tuple[str], api_key: t.Optional[str] +) -> t.List[DataPoint]: + tasks: t.List[t.Awaitable[t.List[DataPoint]]] = [] + points: t.List[DataPoint] = [] + async with aiohttp.ClientSession() as http: + http_session_var.set(http) + tasks = [get_data_points(server, api_key) for server in servers] + for results in await asyncio.gather(*tasks): + points += results + loop = asyncio.get_running_loop() + await loop.run_in_executor(None, handle_result, points, session) + return points + + +def standalone( + db_uri: str, servers: t.Tuple[str], api_key: t.Optional[str], echo: bool = False +) -> None: + engine = create_engine(db_uri, echo=echo) + sm = sessionmaker(engine) + Session = sm() + asyncio.run(add_data_from_sensors(Session, servers, api_key)) + Session.commit() + + +if __name__ == "__main__": + standalone( + db_uri="postgresql+psycopg2://apd@localhost/apd", + servers=("http://pvoutput:8080/",), + api_key="h3hdfjksfhwkjehnwekj", + ) diff --git a/Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/database.py b/Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/database.py new file mode 100644 index 0000000..0ffcb90 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/database.py @@ -0,0 +1,102 @@ +from __future__ import annotations + +from dataclasses import dataclass, field, asdict +import datetime +import typing as t +import uuid + +import sqlalchemy +from sqlalchemy.dialects.postgresql import JSONB, DATE, TIMESTAMP, UUID +from sqlalchemy.ext.hybrid import ExprComparator, hybrid_property +from sqlalchemy.orm import sessionmaker +from sqlalchemy.schema import Table + + +metadata = sqlalchemy.MetaData() + +datapoint_table = Table( + "datapoints", + metadata, + sqlalchemy.Column("id", sqlalchemy.Integer, primary_key=True), + sqlalchemy.Column("sensor_name", sqlalchemy.String, index=True), + sqlalchemy.Column("collected_at", TIMESTAMP, index=True), + sqlalchemy.Column("deployment_id", UUID(as_uuid=True), index=True), + sqlalchemy.Column("data", JSONB), +) + +daily_summary_view = Table( + "daily_summary", + metadata, + sqlalchemy.Column("sensor_name", sqlalchemy.String), + sqlalchemy.Column("data", JSONB), + sqlalchemy.Column("count", sqlalchemy.Integer), + info={"is_view": True}, +) + + +class DateEqualComparator(ExprComparator): + def __init__(self, fallback_expression, raw_expression): + # Do not try and find update expression from parent + super().__init__(None, fallback_expression, None) + self.raw_expression = raw_expression + + def __eq__(self, other): + """ Returns True iff on the same day as other """ + other_date = sqlalchemy.cast(other, DATE) + return sqlalchemy.and_( + self.raw_expression >= other_date, self.raw_expression < other_date + 1, + ) + + def operate(self, op, *other, **kwargs): + other = [sqlalchemy.cast(date, DATE) for date in other] + return op(self.expression, *other, **kwargs) + + def reverse_operate(self, op, other, **kwargs): + other = [sqlalchemy.cast(date, DATE) for date in other] + return op(other, self.expression, **kwargs) + + +@dataclass +class DataPoint: + sensor_name: str + data: t.Any + deployment_id: uuid.UUID + id: t.Optional[int] = None + collected_at: datetime.datetime = field(default_factory=datetime.datetime.now) + + @classmethod + def from_sql_result(cls, result) -> DataPoint: + return cls(**result._asdict()) + + def _asdict(self) -> t.Dict[str, t.Any]: + data = asdict(self) + if data["id"] is None: + del data["id"] + return data + + @hybrid_property + def collected_on_date(self): + return self.collected_at.date() + + @collected_on_date.comparator # type: ignore + def collected_on_date(cls): + return DateEqualComparator( + fallback_expression=sqlalchemy.cast(datapoint_table.c.collected_at, DATE), + raw_expression=datapoint_table.c.collected_at, + ) + + +def main() -> None: + engine = sqlalchemy.create_engine( + "postgresql+psycopg2://apd@localhost/apd", echo=True + ) + sm = sessionmaker(engine) + Session = sm() + if False: + metadata.create_all(engine) + print(Session.query(DataPoint).all()) + pass + + +if __name__ == "__main__": + main() diff --git a/Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/query.py b/Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/query.py new file mode 100644 index 0000000..5f22de5 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex02/src/apd/aggregation/query.py @@ -0,0 +1,129 @@ +import asyncio +import contextlib +from contextvars import ContextVar +import datetime +import typing as t +from uuid import UUID + +from sqlalchemy import create_engine +from sqlalchemy.orm import sessionmaker +from sqlalchemy.orm.session import Session + + +from apd.aggregation.database import datapoint_table, DataPoint + + +db_session_var: ContextVar[Session] = ContextVar("db_session") + + +@contextlib.contextmanager +def with_database(uri: t.Optional[str] = None) -> t.Iterator[Session]: + """Given a URI, set up a DB connection, and return a Session as a context manager """ + if uri is None: + uri = "postgresql+psycopg2://localhost/apd" + engine = create_engine(uri) + sm = sessionmaker(engine) + Session = sm() + token = db_session_var.set(Session) + yield Session + db_session_var.reset(token) + Session.commit() + Session.close() + + +async def get_data( + sensor_name: t.Optional[str] = None, + deployment_id: t.Optional[UUID] = None, + collected_before: t.Optional[datetime.datetime] = None, + collected_after: t.Optional[datetime.datetime] = None, +) -> t.AsyncIterator[DataPoint]: + db_session = db_session_var.get() + loop = asyncio.get_running_loop() + query = db_session.query(datapoint_table) + if sensor_name: + query = query.filter(datapoint_table.c.sensor_name == sensor_name) + if deployment_id: + query = query.filter(datapoint_table.c.deployment_id == deployment_id) + if collected_before: + query = query.filter(datapoint_table.c.collected_at < collected_before) + if collected_after: + query = query.filter(datapoint_table.c.collected_at > collected_after) + query = query.order_by( + datapoint_table.c.deployment_id, + datapoint_table.c.sensor_name, + datapoint_table.c.collected_at, + ) + + rows = await loop.run_in_executor(None, query.all) + for row in rows: + yield DataPoint.from_sql_result(row) + + +async def get_deployment_ids() -> t.List[UUID]: + db_session = db_session_var.get() + loop = asyncio.get_running_loop() + query = db_session.query(datapoint_table.c.deployment_id).distinct() + return [row.deployment_id for row in await loop.run_in_executor(None, query.all)] + + +async def get_data_by_deployment( + *args: t.Any, **kwargs: t.Any +) -> t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]: + """Return an Async Iterator that contains two-item pairs. + These pairs are a string (deployment_id), and an async iterator that contains + the datapoints with that deployment_id. + + Usage example: + + async for deployment_id, datapoints in get_data_by_deployment(): + print(deployment_id) + async for datapoint in datapoints: + print(datapoint) + print() + """ + # Get the data, using the arguments to this function as filters + data = get_data(*args, **kwargs) + + # The two levels of iterator share the item variable, initialise it with the + # first item from the iterator. Also set last_deployment_id to None, so the + # outer iterator knows to start a new group. + last_deployment_id: t.Optional[UUID] = None + try: + item = await data.__anext__() + except StopAsyncIteration: + # There were no items in the underlying query, return immediately + return + + async def subiterator(group_id: UUID) -> t.AsyncIterator[DataPoint]: + """Using a closure, create an iterator that yields the current + item, then yields all items from data while the deployment_id matches + group_id, leaving the first that doesn't match as item in the enclosing + scope.""" + # item is from the enclosing scope + nonlocal item + while item.deployment_id == group_id: + # yield items from data while they match the group_id this iterator represents + yield item + try: + # Advance the underlying iterator + item = await data.__anext__() + except StopAsyncIteration: + # The underlying iterator came to an end, so end the subiterator too + return + + while True: + while item.deployment_id == last_deployment_id: + # We are trying to advance the outer iterator while the underlying iterator + # is still part-way through a group. Speed through the underlying until we + # hit an item where the deployment_id is different to the last one (or, is not + # None, in the case of the start of the iterator) + try: + item = await data.__anext__() + except StopAsyncIteration: + # We hit the end of the underlying iterator: end this iterator too + return + last_deployment_id = item.deployment_id + # Don't yield an iterator for unclassified deployments + if last_deployment_id is not None: + # Instantiate a subiterator for this group + yield last_deployment_id, subiterator(last_deployment_id) diff --git a/Ch09/apd.aggregation-chapter09-ex02/tests/__init__.py b/Ch09/apd.aggregation-chapter09-ex02/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/Ch09/apd.aggregation-chapter09-ex02/tests/conftest.py b/Ch09/apd.aggregation-chapter09-ex02/tests/conftest.py new file mode 100644 index 0000000..65db278 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex02/tests/conftest.py @@ -0,0 +1,123 @@ +import datetime +from uuid import UUID + +from apd.aggregation.database import datapoint_table + +from alembic.config import Config +from alembic.script import ScriptDirectory +from alembic.runtime.environment import EnvironmentContext +import pytest + + +@pytest.fixture +def db_uri(): + return "postgresql+psycopg2://apd@localhost/apd-test" + + +@pytest.fixture +def db_session(db_uri): + from sqlalchemy import create_engine + from sqlalchemy.orm import sessionmaker + + engine = create_engine(db_uri, echo=True) + sm = sessionmaker(engine) + Session = sm() + yield Session + Session.close() + + +@pytest.fixture +def migrated_db(db_uri, db_session): + config = Config() + config.set_main_option("script_location", "apd.aggregation:alembic") + config.set_main_option("sqlalchemy.url", db_uri) + script = ScriptDirectory.from_config(config) + + def upgrade(rev, context): + return script._upgrade_revs(script.get_current_head(), rev) + + def downgrade(rev, context): + return script._downgrade_revs(None, rev) + + with EnvironmentContext(config, script, fn=upgrade): + script.run_env() + + yield + + # Clear any pending work from the db_session connection + db_session.rollback() + + with EnvironmentContext(config, script, fn=downgrade): + script.run_env() + + +@pytest.fixture +def populated_db(migrated_db, db_session): + datas = [ + { + "id": 1, + "sensor_name": "Test", + "data": "1", + "collected_at": datetime.datetime(2020, 4, 1, 12, 0, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 2, + "sensor_name": "Test", + "data": "2", + "collected_at": datetime.datetime(2020, 4, 1, 12, 1, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 3, + "sensor_name": "Test", + "data": "3", + "collected_at": datetime.datetime(2020, 4, 1, 12, 2, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 4, + "sensor_name": "Test", + "data": "4", + "collected_at": datetime.datetime(2020, 4, 1, 12, 3, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 5, + "sensor_name": "OtherTest", + "data": "5", + "collected_at": datetime.datetime(2020, 4, 1, 12, 4, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 6, + "sensor_name": "Test", + "data": "1", + "collected_at": datetime.datetime(2020, 4, 1, 12, 0, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + { + "id": 7, + "sensor_name": "Test", + "data": "1", + "collected_at": datetime.datetime(2020, 4, 1, 12, 1, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + { + "id": 8, + "sensor_name": "Test", + "data": "2", + "collected_at": datetime.datetime(2020, 4, 1, 12, 2, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + { + "id": 9, + "sensor_name": "OtherTest", + "data": "3", + "collected_at": datetime.datetime(2020, 4, 1, 12, 3, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + ] + for data in datas: + insert = datapoint_table.insert().values(**data) + db_session.execute(insert) diff --git a/Ch09/apd.aggregation-chapter09-ex02/tests/test_analysis.py b/Ch09/apd.aggregation-chapter09-ex02/tests/test_analysis.py new file mode 100644 index 0000000..31d4d5d --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex02/tests/test_analysis.py @@ -0,0 +1,283 @@ +import datetime +import uuid + +import pytest + +from apd.aggregation import analysis +from apd.aggregation.database import DataPoint + + +async def generate_datapoints(datas): + deployment_id = uuid.uuid4() + for i, (time, data) in enumerate(datas, start=1): + yield DataPoint( + id=i, + collected_at=time, + sensor_name="TestSensor", + data=data, + deployment_id=deployment_id, + ) + + +class TestPassThroughCleaner: + @pytest.fixture + def cleaner(self): + return analysis.clean_passthrough + + @pytest.mark.asyncio + async def test_float_passthrough(self, cleaner): + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 65.0), + (datetime.datetime(2020, 4, 1, 13, 0, 0), 65.5), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == data + + @pytest.mark.asyncio + async def test_Nones_are_skipped(self, cleaner): + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), None), + (datetime.datetime(2020, 4, 1, 13, 0, 0), 65.5), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 13, 0, 0), 65.5), + ] + + +class TestTemperatureCleaner: + @pytest.fixture + def cleaner(self): + return analysis.clean_temperature_fluctuations + + @pytest.mark.asyncio + async def test_window_not_full(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [(datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0)] + + @pytest.mark.asyncio + async def test_window_exactly_full(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 1), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 21.0), + ] + + @pytest.mark.asyncio + async def test_window_overfilled(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 3), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 4), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 1), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 3), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 4), 21.0), + ] + + @pytest.mark.asyncio + async def test_outlier_dropped(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 61.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 21.0), + ] + + @pytest.mark.asyncio + async def test_limited_to_DHT22_range(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 91.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 91.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 91.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [] + + @pytest.mark.asyncio + async def test_Nones_dropped(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 31.0, "unit": "degC"}, + ), + (datetime.datetime(2020, 4, 1, 12, 0, 1), None,), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 32.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 31.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 32.0), + ] + + +class TestWattHourCleaner: + @pytest.fixture + def cleaner(self): + return analysis.clean_watthours_to_watts + + @pytest.mark.asyncio + async def test_one_entry_insufficient_to_find_diff(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [] + + @pytest.mark.asyncio + async def test_two_entries_provides_diff_with_second_time(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 13, 0, 0), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 1 + assert output[0][0] == datetime.datetime(2020, 4, 1, 13, 0, 0) + assert output[0][1] == pytest.approx(9.0, 0.0001) + + @pytest.mark.asyncio + async def test_fractional_hour(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 23, 42), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 1 + assert output[0][0] == datetime.datetime(2020, 4, 1, 12, 23, 42) + assert output[0][1] == pytest.approx(22.7848, 0.001) + + @pytest.mark.asyncio + async def test_diff_happens_pairwise(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 23, 42), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 13, 23, 42), + {"magnitude": 13.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 2 + assert output[0][0] == datetime.datetime(2020, 4, 1, 12, 23, 42) + assert output[0][1] == pytest.approx(22.7848, 0.001) + assert output[1][0] == datetime.datetime(2020, 4, 1, 13, 23, 42) + assert output[1][1] == pytest.approx(3, 0.001) + + @pytest.mark.asyncio + async def test_None_ignored(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + (datetime.datetime(2020, 4, 1, 12, 58, 0), None,), + ( + datetime.datetime(2020, 4, 1, 13, 0, 0), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 1 + assert output[0][0] == datetime.datetime(2020, 4, 1, 13, 0, 0) + assert output[0][1] == pytest.approx(9.0, 0.0001) diff --git a/Ch09/apd.aggregation-chapter09-ex02/tests/test_http_get.py b/Ch09/apd.aggregation-chapter09-ex02/tests/test_http_get.py new file mode 100644 index 0000000..d38fd4c --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex02/tests/test_http_get.py @@ -0,0 +1,154 @@ +from concurrent.futures import ThreadPoolExecutor +import datetime +import typing as t +from unittest.mock import patch, MagicMock +import wsgiref.simple_server + +import aiohttp +from apd.sensors.base import Sensor +from apd.sensors.sensors import PythonVersion, ACStatus +from apd.sensors.wsgi import set_up_config +import flask +import pytest + +from apd.sensors.wsgi import v21 + +from apd.aggregation import collect + +pytestmark = [pytest.mark.functional] + + +@pytest.fixture +def sensors() -> t.Iterator[t.List[Sensor[t.Any]]]: + """ Patch the get_sensors method to return a known pair of sensors only """ + data: t.List[Sensor[t.Any]] = [PythonVersion(), ACStatus()] + with patch("apd.sensors.cli.get_sensors") as get_sensors: + get_sensors.return_value = data + yield data + + +def get_independent_flask_app(name: str) -> flask.Flask: + """ Create a new flask app with the v20 API blueprint loaded, so multiple copies + of the app can be run in parallel without conflicting configuration """ + app = flask.Flask(name) + app.register_blueprint(v21.version, url_prefix="/v/2.1") + return app + + +def run_server_in_thread( + name: str, config: t.Dict[str, t.Any], port: int +) -> t.Iterator[str]: + # Create a new flask app and load in required code, to prevent config conflicts + app = get_independent_flask_app(name) + flask_app = set_up_config(config, app) + server = wsgiref.simple_server.make_server("localhost", port, flask_app) + + with ThreadPoolExecutor() as pool: + pool.submit(server.serve_forever) + yield f"http://localhost:{port}/" + server.shutdown() + + +@pytest.fixture(scope="module") +def http_server(): + yield from run_server_in_thread( + "standard", + { + "APD_SENSORS_API_KEY": "testing", + "APD_SENSORS_DEPLOYMENT_ID": "a46b1d1207fd4cdcad39bbdf706dfe29", + }, + 12081, + ) + + +@pytest.fixture(scope="module") +def bad_api_key_http_server(): + yield from run_server_in_thread( + "alternate", + { + "APD_SENSORS_API_KEY": "penny", + "APD_SENSORS_DEPLOYMENT_ID": "38cf2bae9adb445fad946c82e290487a", + }, + 12082, + ) + + +class TestGetDataPoints: + @pytest.fixture + def mut(self): + return collect.get_data_points + + @pytest.mark.asyncio + async def test_get_data_points( + self, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + # Get the data from the server, storing the time before and after + # as bounds for the collected_at value + async with aiohttp.ClientSession() as http: + collect.http_session_var.set(http) + time_before = datetime.datetime.now() + results = await mut(http_server, "testing") + time_after = datetime.datetime.now() + + assert len(results) == len(sensors) == 2 + + for (sensor, result) in zip(sensors, results): + assert sensor.from_json_compatible(result.data) == sensor.value() + assert result.sensor_name == sensor.name + assert time_before <= result.collected_at <= time_after + + @pytest.mark.asyncio + async def test_get_data_points_fails_with_bad_api_key( + self, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + with pytest.raises( + ValueError, + match=f"Error loading data from {http_server}: Supply API key in X-API-Key header", + ): + async with aiohttp.ClientSession() as http: + collect.http_session_var.set(http) + await mut(http_server, "incorrect") + + +class TestAddDataFromSensors: + @pytest.fixture + def mut(self): + return collect.add_data_from_sensors + + @pytest.fixture + def mock_db_session(self): + return MagicMock() + + @pytest.mark.asyncio + async def test_get_get_data_from_sensors( + self, mock_db_session, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + results = await mut(mock_db_session, [http_server], "testing") + assert mock_db_session.execute.call_count == len(sensors) + assert len(results) == len(sensors) + + @pytest.mark.asyncio + async def test_get_get_data_from_sensors_with_multiple_servers( + self, mock_db_session, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + results = await mut(mock_db_session, [http_server, http_server], "testing") + assert mock_db_session.execute.call_count == len(sensors) * 2 + assert len(results) == len(sensors) * 2 + + @pytest.mark.asyncio + async def test_data_points_not_added_if_only_partial_success( + self, + mock_db_session, + sensors: t.List[Sensor[t.Any]], + mut, + http_server: str, + bad_api_key_http_server: str, + ) -> None: + with pytest.raises( + ValueError, + match=f"Error loading data from {bad_api_key_http_server}: Supply API key in X-API-Key header", + ): + await mut( + mock_db_session, [http_server, bad_api_key_http_server], "testing" + ) + assert mock_db_session.execute.call_count == 0 diff --git a/Ch09/apd.aggregation-chapter09-ex02/tests/test_query.py b/Ch09/apd.aggregation-chapter09-ex02/tests/test_query.py new file mode 100644 index 0000000..9b6e0aa --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex02/tests/test_query.py @@ -0,0 +1,111 @@ +import datetime +from uuid import UUID + +import pytest + +from apd.aggregation.query import ( + get_data, + get_deployment_ids, + get_data_by_deployment, + db_session_var, +) + + +class TestGetData: + @pytest.fixture + def mut(self): + return get_data + + @pytest.mark.asyncio + @pytest.mark.parametrize( + "filter,num_items_expected", + [ + ({}, 9), + ({"sensor_name": "Test"}, 7), + ({"deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd")}, 5), + ({"collected_after": datetime.datetime(2020, 4, 1, 12, 2, 1)}, 3), + ({"collected_before": datetime.datetime(2020, 4, 1, 12, 2, 1)}, 4), + ( + { + "collected_after": datetime.datetime(2020, 4, 1, 12, 2, 1), + "collected_before": datetime.datetime(2020, 4, 1, 12, 3, 5), + }, + 2, + ), + ], + ) + async def test_iterate_over_items( + self, mut, db_session, populated_db, filter, num_items_expected + ): + db_session_var.set(db_session) + points = [dp async for dp in mut(**filter)] + assert len(points) == num_items_expected + + @pytest.mark.asyncio + async def test_empty_db(self, mut, db_session, migrated_db): + db_session_var.set(db_session) + points = [dp async for dp in mut()] + assert len(points) == 0 + + +class TestGetDeployments: + @pytest.fixture + def mut(self): + return get_deployment_ids + + @pytest.mark.asyncio + async def test_get_all_deployments(self, mut, db_session, populated_db): + db_session_var.set(db_session) + deployment_ids = await mut() + assert set(deployment_ids) == { + UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + } + + @pytest.mark.asyncio + async def test_empty_db(self, mut, db_session, migrated_db): + db_session_var.set(db_session) + deployment_ids = await mut() + assert deployment_ids == [] + + +@pytest.mark.usefixtures("populated_db") +class TestGetDataByDeployment: + @pytest.fixture + def mut(self): + return get_data_by_deployment + + @pytest.mark.asyncio + @pytest.mark.parametrize( + "filter,num_items_expected", [({}, 9), ({"sensor_name": "Test"}, 7)] + ) + async def test_iterate_over_all_items( + self, mut, db_session, filter, num_items_expected + ): + db_session_var.set(db_session) + num_items = 0 + num_deployments = 0 + async for deployment_id, items in mut(**filter): + num_deployments += 1 + async for item in items: + num_items += 1 + assert num_deployments == 2 + assert num_items == num_items_expected + + @pytest.mark.asyncio + @pytest.mark.parametrize( + "filter,num_items_expected", [({}, 5), ({"sensor_name": "Test"}, 4)] + ) + async def test_skip_first_deployment( + self, mut, db_session, filter, num_items_expected + ): + db_session_var.set(db_session) + num_items = 0 + num_deployments = 0 + async for deployment_id, items in mut(**filter): + num_deployments += 1 + if num_deployments == 2: + async for item in items: + num_items += 1 + assert num_deployments == 2 + assert num_items == num_items_expected diff --git a/Ch09/apd.aggregation-chapter09-ex02/tests/test_sensor_aggregation.py b/Ch09/apd.aggregation-chapter09-ex02/tests/test_sensor_aggregation.py new file mode 100644 index 0000000..0f1872d --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex02/tests/test_sensor_aggregation.py @@ -0,0 +1,174 @@ +from __future__ import annotations + +import contextlib +from dataclasses import dataclass +import json +import typing as t +from unittest.mock import patch, Mock + +import pytest +import sqlalchemy + +import apd.aggregation.collect + + +@pytest.fixture +def data() -> t.Any: + return { + "sensors": [ + { + "human_readable": "3.7", + "id": "PythonVersion", + "title": "Python Version", + "value": [3, 7, 2, "final", 0], + }, + { + "human_readable": "Not connected", + "id": "ACStatus", + "title": "AC Connected", + "value": False, + }, + ] + } + + +@dataclass +class FakeAIOHttpClient: + responses: t.Dict[str, str] + + @contextlib.asynccontextmanager + async def get( + self, url: str, headers: t.Optional[t.Dict[str, str]] = None + ) -> t.AsyncIterator[FakeAIOHttpResponse]: + if url in self.responses: + yield FakeAIOHttpResponse(body=self.responses[url]) + else: + yield FakeAIOHttpResponse(body="", status=404) + + +@dataclass +class FakeAIOHttpResponse: + body: str + status: int = 200 + + async def json(self) -> t.Any: + return json.loads(self.body) + + +@pytest.fixture +def mockclient(data) -> FakeAIOHttpClient: + return FakeAIOHttpClient( + { + "http://localhost/v/2.1/sensors/": json.dumps(data), + "http://localhost/v/2.1/deployment_id": json.dumps( + {"deployment_id": "b29ba0ee10f14552b6b21327bb96d3fb"} + ), + } + ) + + +class TestGetDataPoints: + @pytest.fixture + def mut(self): + return apd.aggregation.collect.get_data_points + + @pytest.mark.asyncio + async def test_get_data_points( + self, mut, mockclient: FakeAIOHttpClient, data + ) -> None: + token = apd.aggregation.collect.http_session_var.set(mockclient) + try: + datapoints = await mut("http://localhost", "") + finally: + apd.aggregation.collect.http_session_var.reset(token) + + assert len(datapoints) == len(data["sensors"]) + for sensor in data["sensors"]: + assert sensor["value"] in (datapoint.data for datapoint in datapoints) + assert sensor["id"] in (datapoint.sensor_name for datapoint in datapoints) + + +class TestAddDataFromSensors: + @pytest.fixture + def mut(self): + return apd.aggregation.collect.add_data_from_sensors + + @pytest.fixture(autouse=True) + def patch_aiohttp(self, mockclient): + with patch("aiohttp.ClientSession") as ClientSession: + ClientSession.return_value.__aenter__.return_value = mockclient + yield ClientSession + + @pytest.fixture + def db_session(self): + session = Mock() + sql_result = session.execute.return_value + sql_result.inserted_primary_key = [1] + return session + + @pytest.mark.asyncio + async def test_datapoints_are_added_to_the_session(self, mut, db_session) -> None: + assert db_session.execute.call_count == 0 + datapoints = await mut(db_session, ["http://localhost"], "") + assert db_session.execute.call_count == len(datapoints) + + +@pytest.mark.usefixtures("migrated_db") +class TestDatabaseConnection: + @pytest.fixture(autouse=True) + def patch_aiohttp(self, mockclient): + with patch("aiohttp.ClientSession") as ClientSession: + ClientSession.return_value.__aenter__.return_value = mockclient + yield ClientSession + + @pytest.fixture + def table(self): + return apd.aggregation.database.datapoint_table + + @pytest.fixture + def daily_summary_view(self): + return apd.aggregation.database.daily_summary_view + + @pytest.fixture + def model(self): + return apd.aggregation.database.DataPoint + + @pytest.fixture + def mut(self): + return apd.aggregation.collect.add_data_from_sensors + + @pytest.mark.asyncio + async def test_datapoints_are_added_to_the_session(self, db_session, table) -> None: + datapoints = await apd.aggregation.collect.add_data_from_sensors( + db_session, ["http://localhost"], "" + ) + num_points = db_session.query(table).count() + assert num_points == len(datapoints) == 2 + + @pytest.mark.asyncio + async def test_datapoints_can_be_mapped_back_to_DataPoints( + self, mut, db_session, table, model + ) -> None: + datapoints = await mut(db_session, ["http://localhost"], "") + db_points = [ + model.from_sql_result(result) for result in db_session.query(table) + ] + assert db_points == datapoints + + @pytest.mark.asyncio + async def test_daily_summary_view_matches_query( + self, db_session, model, table, daily_summary_view + ) -> None: + await apd.aggregation.collect.add_data_from_sensors( + db_session, ["http://localhost"], "" + ) + + headers = table.c.sensor_name, table.c.data + value_counts = ( + db_session.query(*headers, sqlalchemy.func.count(table.c.id)) + .filter(model.collected_on_date == sqlalchemy.func.current_date()) + .group_by(*headers) + ) + + daily_summary_view = db_session.query(daily_summary_view) + assert value_counts.all() == daily_summary_view.all() diff --git a/Ch09/apd.aggregation-chapter09-ex03-complete/.coveragerc b/Ch09/apd.aggregation-chapter09-ex03-complete/.coveragerc new file mode 100644 index 0000000..e766c69 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03-complete/.coveragerc @@ -0,0 +1,3 @@ +[run] +branch = True +omit = tests/* diff --git a/Ch09/apd.aggregation-chapter09-ex03-complete/.pre-commit-config.yaml b/Ch09/apd.aggregation-chapter09-ex03-complete/.pre-commit-config.yaml new file mode 100644 index 0000000..d3b6ec7 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03-complete/.pre-commit-config.yaml @@ -0,0 +1,26 @@ +repos: + +- repo: local + hooks: + - id: black + name: black + entry: pipenv run black + args: [--quiet] + language: system + types: [python] + + - id: mypy + name: mypy + exclude: (?x)^( + (.*)/setup.py + )$ + entry: pipenv run mypy + args: ["--follow-imports=skip"] + language: system + types: [python] + + - id: flake8 + name: flake8 + entry: pipenv run flake8 + language: system + types: [python] diff --git a/Ch09/apd.aggregation-chapter09-ex03-complete/CHANGES.md b/Ch09/apd.aggregation-chapter09-ex03-complete/CHANGES.md new file mode 100644 index 0000000..8e424e5 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03-complete/CHANGES.md @@ -0,0 +1,5 @@ +## Changes + +### 1.0.0 (Unreleased) + +* Generated from skeleton diff --git a/Ch09/apd.aggregation-chapter09-ex03-complete/LICENCE b/Ch09/apd.aggregation-chapter09-ex03-complete/LICENCE new file mode 100644 index 0000000..86685d4 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03-complete/LICENCE @@ -0,0 +1,31 @@ +Copyright (c) 2019, Matthew Wilkes + + +All rights reserved. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + +* Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + +* Redistributions in binary form must reproduce the above copyright notice, this + list of conditions and the following disclaimer in the documentation and/or + other materials provided with the distribution. + +* Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived from this + software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND +ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. +IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, +INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, +BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY +OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE +OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED +OF THE POSSIBILITY OF SUCH DAMAGE. + + diff --git a/Ch09/apd.aggregation-chapter09-ex03-complete/Pipfile b/Ch09/apd.aggregation-chapter09-ex03-complete/Pipfile new file mode 100644 index 0000000..b308175 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03-complete/Pipfile @@ -0,0 +1,25 @@ +[[source]] +name = "pypi" +url = "https://pypi.org/simple" +verify_ssl = true + +[dev-packages] +pytest = "*" +pytest-cov = "*" +pytest-asyncio = "*" +mypy = "*" +flake8 = "*" +black = "*" +pre-commit = "*" +wheel = "*" +twine = "*" +sqlalchemy-stubs = "*" + +[packages] +apd-aggregation = {editable = true,extras = ["jupyter"],path = "."} +apd-sensors = {editable = true,extras = ["webapp"],path = "./../code"} + +[requires] + +[pipenv] +allow_prereleases = true diff --git a/Ch09/apd.aggregation-chapter09-ex03-complete/Pipfile.lock b/Ch09/apd.aggregation-chapter09-ex03-complete/Pipfile.lock new file mode 100644 index 0000000..37ebbba --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03-complete/Pipfile.lock @@ -0,0 +1,751 @@ +{ + "_meta": { + "hash": { + "sha256": "9cbbc3af88a1213ed8f4f93c33e35a9f9d7e047077cd25ff02f9bde13e2b606b" + }, + "pipfile-spec": 6, + "requires": {}, + "sources": [ + { + "name": "pypi", + "url": "https://pypi.org/simple", + "verify_ssl": true + } + ] + }, + "default": { + "aiohttp": { + "hashes": [ + "sha256:173267050501e1537293df06723bc5e719990889e2820ba3932969983892e960", + "sha256:438f1f1555c02c50894604d94944cff188fe138b46467b7fa99fdceb51ab5842", + "sha256:90bed250d1435aef33a1f8c439c5056d5d25a44fe6caf33fcafafed805bad4dc", + "sha256:93c3b14747413f38f094a60e98f55e73831f0c9a23ae7faa3dc97d8963e13021", + "sha256:a6e70a38d883185b1921d8122759661c39ade54949770394412a9e713fec6fa7", + "sha256:b5036133c1ba77ed5a70208d2a021a90b76fdf8bf523ae33dae46d4f4380d86f", + "sha256:c138451a82cdbf65cddf952941d5c7a1a2cac8ce3bc618dee8d889e5251ec7a5", + "sha256:c94770383e49f9cc5912b926364ad022a6c8a5dbf5498933ca3a5713c6daf738", + "sha256:ea26536ae06df6dac021303a0df72c79e55512070e6a304ba93ad468a3a754dc" + ], + "version": "==4.0.0a1" + }, + "alembic": { + "hashes": [ + "sha256:49277bb7242192bbb9eac58fed4fe02ec6c3a2a4b4345d2171197459266482b2" + ], + "version": "==1.3.1" + }, + "apd-aggregation": { + "editable": true, + "path": "." + }, + "apd-sensors": { + "editable": true, + "extras": [ + "webapp" + ], + "path": "./../code" + }, + "async-timeout": { + "hashes": [ + "sha256:0c3c816a028d47f659d6ff5c745cb2acf1f966da1fe5c19c77a70282b25f4c5f", + "sha256:4291ca197d287d274d0b6cb5d6f8f8f82d434ed288f962539ff18cc9012f9ea3" + ], + "version": "==3.0.1" + }, + "attrs": { + "hashes": [ + "sha256:08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c", + "sha256:f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72" + ], + "version": "==19.3.0" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:2335065e6395b9e67ca716de5f7526736bfa6ceead690adf616d925bdc622b13", + "sha256:5b94b49521f6456670fdb30cd82a4eca9412788a93fa6dd6df72c94d5a8ff2d7" + ], + "version": "==7.0" + }, + "flask": { + "hashes": [ + "sha256:13f9f196f330c7c2c5d7a5cf91af894110ca0215ac051b5844701f2bfd934d52", + "sha256:45eb5a6fd193d6cf7e0cf5d8a5b31f83d5faae0293695626f539a823e93b13f6" + ], + "version": "==1.1.1" + }, + "idna": { + "hashes": [ + "sha256:c357b3f628cf53ae2c4c05627ecc484553142ca23264e593d327bcde5e9c3407", + "sha256:ea8b7f6188e6fa117537c3df7da9fc686d485087abf6ac197f9c46432f7e4a3c" + ], + "version": "==2.8" + }, + "itsdangerous": { + "hashes": [ + "sha256:321b033d07f2a4136d3ec762eac9f16a10ccd60f53c0c91af90217ace7ba1f19", + "sha256:b12271b2047cb23eeb98c8b5622e2e5c5e9abd9784a153e9d8ef9cb4dd09d749" + ], + "version": "==1.1.0" + }, + "jinja2": { + "hashes": [ + "sha256:74320bb91f31270f9551d46522e33af46a80c3d619f4a4bf42b3164d30b5911f", + "sha256:9fe95f19286cfefaa917656583d020be14e7859c6b0252588391e47db34527de" + ], + "version": "==2.10.3" + }, + "mako": { + "hashes": [ + "sha256:a36919599a9b7dc5d86a7a8988f23a9a3a3d083070023bab23d64f7f1d1e0a4b" + ], + "version": "==1.1.0" + }, + "markupsafe": { + "hashes": [ + "sha256:00bc623926325b26bb9605ae9eae8a215691f33cae5df11ca5424f06f2d1f473", + "sha256:09027a7803a62ca78792ad89403b1b7a73a01c8cb65909cd876f7fcebd79b161", + "sha256:09c4b7f37d6c648cb13f9230d847adf22f8171b1ccc4d5682398e77f40309235", + "sha256:1027c282dad077d0bae18be6794e6b6b8c91d58ed8a8d89a89d59693b9131db5", + "sha256:24982cc2533820871eba85ba648cd53d8623687ff11cbb805be4ff7b4c971aff", + "sha256:29872e92839765e546828bb7754a68c418d927cd064fd4708fab9fe9c8bb116b", + "sha256:43a55c2930bbc139570ac2452adf3d70cdbb3cfe5912c71cdce1c2c6bbd9c5d1", + "sha256:46c99d2de99945ec5cb54f23c8cd5689f6d7177305ebff350a58ce5f8de1669e", + "sha256:500d4957e52ddc3351cabf489e79c91c17f6e0899158447047588650b5e69183", + "sha256:535f6fc4d397c1563d08b88e485c3496cf5784e927af890fb3c3aac7f933ec66", + "sha256:62fe6c95e3ec8a7fad637b7f3d372c15ec1caa01ab47926cfdf7a75b40e0eac1", + "sha256:6dd73240d2af64df90aa7c4e7481e23825ea70af4b4922f8ede5b9e35f78a3b1", + "sha256:717ba8fe3ae9cc0006d7c451f0bb265ee07739daf76355d06366154ee68d221e", + "sha256:79855e1c5b8da654cf486b830bd42c06e8780cea587384cf6545b7d9ac013a0b", + "sha256:7c1699dfe0cf8ff607dbdcc1e9b9af1755371f92a68f706051cc8c37d447c905", + "sha256:88e5fcfb52ee7b911e8bb6d6aa2fd21fbecc674eadd44118a9cc3863f938e735", + "sha256:8defac2f2ccd6805ebf65f5eeb132adcf2ab57aa11fdf4c0dd5169a004710e7d", + "sha256:98c7086708b163d425c67c7a91bad6e466bb99d797aa64f965e9d25c12111a5e", + "sha256:9add70b36c5666a2ed02b43b335fe19002ee5235efd4b8a89bfcf9005bebac0d", + "sha256:9bf40443012702a1d2070043cb6291650a0841ece432556f784f004937f0f32c", + "sha256:ade5e387d2ad0d7ebf59146cc00c8044acbd863725f887353a10df825fc8ae21", + "sha256:b00c1de48212e4cc9603895652c5c410df699856a2853135b3967591e4beebc2", + "sha256:b1282f8c00509d99fef04d8ba936b156d419be841854fe901d8ae224c59f0be5", + "sha256:b2051432115498d3562c084a49bba65d97cf251f5a331c64a12ee7e04dacc51b", + "sha256:ba59edeaa2fc6114428f1637ffff42da1e311e29382d81b339c1817d37ec93c6", + "sha256:c8716a48d94b06bb3b2524c2b77e055fb313aeb4ea620c8dd03a105574ba704f", + "sha256:cd5df75523866410809ca100dc9681e301e3c27567cf498077e8551b6d20e42f", + "sha256:e249096428b3ae81b08327a63a485ad0878de3fb939049038579ac0ef61e17e7" + ], + "version": "==1.1.1" + }, + "multidict": { + "hashes": [ + "sha256:07f9a6bf75ad675d53956b2c6a2d4ef2fa63132f33ecc99e9c24cf93beb0d10b", + "sha256:0ffe4d4d28cbe9801952bfb52a8095dd9ffecebd93f84bdf973c76300de783c5", + "sha256:1b605272c558e4c659dbaf0fb32a53bfede44121bcf77b356e6e906867b958b7", + "sha256:205a011e636d885af6dd0029e41e3514a46e05bb2a43251a619a6e8348b96fc0", + "sha256:250632316295f2311e1ed43e6b26a63b0216b866b45c11441886ac1543ca96e1", + "sha256:2bc9c2579312c68a3552ee816311c8da76412e6f6a9cf33b15152e385a572d2a", + "sha256:318aadf1cfb6741c555c7dd83d94f746dc95989f4f106b25b8a83dfb547f2756", + "sha256:42cdd649741a14b0602bf15985cad0dd4696a380081a3319cd1ead46fd0f0fab", + "sha256:5159c4975931a1a78bf6602bbebaa366747fce0a56cb2111f44789d2c45e379f", + "sha256:87e26d8b89127c25659e962c61a4c655ec7445d19150daea0759516884ecb8b4", + "sha256:891b7e142885e17a894d9d22b0349b92bb2da4769b4e675665d0331c08719be5", + "sha256:8d919034420378132d074bf89df148d0193e9780c9fe7c0e495e895b8af4d8a2", + "sha256:9c890978e2b37dd0dc1bd952da9a5d9f245d4807bee33e3517e4119c48d66f8c", + "sha256:a37433ce8cdb35fc9e6e47e1606fa1bfd6d70440879038dca7d8dd023197eaa9", + "sha256:c626029841ada34c030b94a00c573a0c7575fe66489cde148785b6535397d675", + "sha256:cfec9d001a83dc73580143f3c77e898cf7ad78b27bb5e64dbe9652668fcafec7", + "sha256:efaf1b18ea6c1f577b1371c0159edbe4749558bfe983e13aa24d0a0c01e1ad7b" + ], + "version": "==4.6.1" + }, + "pint": { + "hashes": [ + "sha256:32d8a9a9d63f4f81194c0014b3b742679dce81a26d45127d9810a68a561fe4e2", + "sha256:7ece3f639ad58073ce49982b022d464014e6d91d0b3eaa89c8e8ea9c38e32659" + ], + "version": "==0.9" + }, + "psutil": { + "hashes": [ + "sha256:094f899ac3ef72422b7e00411b4ed174e3c5a2e04c267db6643937ddba67a05b", + "sha256:10b7f75cc8bd676cfc6fa40cd7d5c25b3f45a0e06d43becd7c2d2871cbb5e806", + "sha256:1b1575240ca9a90b437e5a40db662acd87bbf181f6aa02f0204978737b913c6b", + "sha256:21231ef1c1a89728e29b98a885b8e0a8e00d09018f6da5cdc1f43f988471a995", + "sha256:28f771129bfee9fc6b63d83a15d857663bbdcae3828e1cb926e91320a9b5b5cd", + "sha256:70387772f84fa5c3bb6a106915a2445e20ac8f9821c5914d7cbde148f4d7ff73", + "sha256:b560f5cd86cf8df7bcd258a851ca1ad98f0d5b8b98748e877a0aec4e9032b465", + "sha256:b74b43fecce384a57094a83d2778cdfc2e2d9a6afaadd1ebecb2e75e0d34e10d", + "sha256:e85f727ffb21539849e6012f47b12f6dd4c44965e56591d8dec6e8bc9ab96f4a", + "sha256:fd2e09bb593ad9bdd7429e779699d2d47c1268cbde4dda95fcd1bd17544a0217", + "sha256:ffad8eb2ac614518bbe3c0b8eb9dffdb3a8d2e3a7d5da51c5b974fb723a5c5aa" + ], + "version": "==5.6.7" + }, + "psycopg2": { + "hashes": [ + "sha256:4212ca404c4445dc5746c0d68db27d2cbfb87b523fe233dc84ecd24062e35677", + "sha256:47fc642bf6f427805daf52d6e52619fe0637648fe27017062d898f3bf891419d", + "sha256:72772181d9bad1fa349792a1e7384dde56742c14af2b9986013eb94a240f005b", + "sha256:8396be6e5ff844282d4d49b81631772f80dabae5658d432202faf101f5283b7c", + "sha256:893c11064b347b24ecdd277a094413e1954f8a4e8cdaf7ffbe7ca3db87c103f0", + "sha256:92a07dfd4d7c325dd177548c4134052d4842222833576c8391aab6f74038fc3f", + "sha256:965c4c93e33e6984d8031f74e51227bd755376a9df6993774fd5b6fb3288b1f4", + "sha256:9ab75e0b2820880ae24b7136c4d230383e07db014456a476d096591172569c38", + "sha256:b0845e3bdd4aa18dc2f9b6fb78fbd3d9d371ad167fd6d1b7ad01c0a6cdad4fc6", + "sha256:dca2d7203f0dfce8ea4b3efd668f8ea65cd2b35112638e488a4c12594015f67b", + "sha256:ed686e5926929887e2c7ae0a700e32c6129abb798b4ad2b846e933de21508151", + "sha256:ef6df7e14698e79c59c7ee7cf94cd62e5b869db369ed4b1b8f7b729ea825712a", + "sha256:f898e5cc0a662a9e12bde6f931263a1bbd350cfb18e1d5336a12927851825bb6" + ], + "version": "==2.8.4" + }, + "python-dateutil": { + "hashes": [ + "sha256:73ebfe9dbf22e832286dafa60473e4cd239f8592f699aa5adaf10050e6e1823c", + "sha256:75bb3f31ea686f1197762692a9ee6a7550b59fc6ca3a1f4b5d7e32fb98e2da2a" + ], + "version": "==2.8.1" + }, + "python-editor": { + "hashes": [ + "sha256:1bf6e860a8ad52a14c3ee1252d5dc25b2030618ed80c022598f00176adc8367d", + "sha256:51fda6bcc5ddbbb7063b2af7509e43bd84bfc32a4ff71349ec7847713882327b", + "sha256:5f98b069316ea1c2ed3f67e7f5df6c0d8f10b689964a4a811ff64f0106819ec8" + ], + "version": "==1.0.4" + }, + "six": { + "hashes": [ + "sha256:1f1b7d42e254082a9db6279deae68afb421ceba6158efa6131de7b3003ee93fd", + "sha256:30f610279e8b2578cab6db20741130331735c781b56053c59c4076da27f06b66" + ], + "version": "==1.13.0" + }, + "sqlalchemy": { + "hashes": [ + "sha256:afa5541e9dea8ad0014251bc9d56171ca3d8b130c9627c6cb3681cff30be3f8a" + ], + "version": "==1.3.11" + }, + "typing-extensions": { + "hashes": [ + "sha256:091ecc894d5e908ac75209f10d5b4f118fbdb2eb1ede6a63544054bb1edb41f2", + "sha256:910f4656f54de5993ad9304959ce9bb903f90aadc7c67a0bef07e678014e892d", + "sha256:cf8b63fedea4d89bab840ecbb93e75578af28f76f66c35889bd7065f5af88575" + ], + "version": "==3.7.4.1" + }, + "werkzeug": { + "hashes": [ + "sha256:7280924747b5733b246fe23972186c6b348f9ae29724135a6dfc1e53cea433e7", + "sha256:e5f4a1f98b52b18a93da705a7458e55afb26f32bff83ff5d19189f92462d65c4" + ], + "version": "==0.16.0" + }, + "yarl": { + "hashes": [ + "sha256:2e5f4f4d709aed4f689843ef605fc432d0472e3325a8e165b1ecf1e2f3f22a89", + "sha256:412fe567284bdd16a8035c5a6f541da9872804b5702378532cf2e3ef5ae4a9e6", + "sha256:629f542dfd4e964c9e32039a1515b3262dae210f8802cfcceca9f0b529c68ee7", + "sha256:7bd0b31008afcba762d75171ac09135f49bc17c8d092bce49f0b9bf2c4b51850", + "sha256:9510699e48d7565a2c1dc0a9fcb396f1ac80802991621cf02d55540d571a5dc9", + "sha256:9a07c2a1b0c8b314ad5bcea37e62c109d8c19ad9f02985e8db898a56c129984f", + "sha256:9a49055f9e3121449c76709986aee829c74e2eee3b98185542799eec97808ed1", + "sha256:b59dd6679cb2ae172eb594f484e482aaac66fbff71a717603b0f9adf01649386", + "sha256:e5d6b530bec5817be9383452728c116d59868bfbed650ccc7657b2ec9aa51c03" + ], + "version": "==1.4.0a11" + } + }, + "develop": { + "appdirs": { + "hashes": [ + "sha256:9e5896d1372858f8dd3344faf4e5014d21849c756c8d5701f78f8a103b372d92", + "sha256:d8b24664561d0d34ddfaec54636d502d7cea6e29c3eaf68f3df6180863e2166e" + ], + "version": "==1.4.3" + }, + "aspy.yaml": { + "hashes": [ + "sha256:463372c043f70160a9ec950c3f1e4c3a82db5fca01d334b6bc89c7164d744bdc", + "sha256:e7c742382eff2caed61f87a39d13f99109088e5e93f04d76eb8d4b28aa143f45" + ], + "version": "==1.3.0" + }, + "atomicwrites": { + "hashes": [ + "sha256:03472c30eb2c5d1ba9227e4c2ca66ab8287fbfbbda3888aa93dc2e28fc6811b4", + "sha256:75a9445bac02d8d058d5e1fe689654ba5a6556a1dfd8ce6ec55a0ed79866cfa6" + ], + "markers": "sys_platform == 'win32'", + "version": "==1.3.0" + }, + "attrs": { + "hashes": [ + "sha256:08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c", + "sha256:f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72" + ], + "version": "==19.3.0" + }, + "black": { + "hashes": [ + "sha256:1b30e59be925fafc1ee4565e5e08abef6b03fe455102883820fe5ee2e4734e0b", + "sha256:c2edb73a08e9e0e6f65a0e6af18b059b8b1cdd5bef997d7a0b181df93dc81539" + ], + "index": "pypi", + "version": "==19.10b0" + }, + "bleach": { + "hashes": [ + "sha256:213336e49e102af26d9cde77dd2d0397afabc5a6bf2fed985dc35b5d1e285a16", + "sha256:3fdf7f77adcf649c9911387df51254b813185e32b2c6619f690b593a617e19fa" + ], + "version": "==3.1.0" + }, + "certifi": { + "hashes": [ + "sha256:e4f3620cfea4f83eedc95b24abd9cd56f3c4b146dd0177e83a21b4eb49e21e50", + "sha256:fd7c7c74727ddcf00e9acd26bba8da604ffec95bf1c2144e67aff7a8b50e6cef" + ], + "version": "==2019.9.11" + }, + "cfgv": { + "hashes": [ + "sha256:edb387943b665bf9c434f717bf630fa78aecd53d5900d2e05da6ad6048553144", + "sha256:fbd93c9ab0a523bf7daec408f3be2ed99a980e20b2d19b50fc184ca6b820d289" + ], + "version": "==2.0.1" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:2335065e6395b9e67ca716de5f7526736bfa6ceead690adf616d925bdc622b13", + "sha256:5b94b49521f6456670fdb30cd82a4eca9412788a93fa6dd6df72c94d5a8ff2d7" + ], + "version": "==7.0" + }, + "colorama": { + "hashes": [ + "sha256:05eed71e2e327246ad6b38c540c4a3117230b19679b875190486ddd2d721422d", + "sha256:f8ac84de7840f5b9c4e3347b3c1eaa50f7e49c2b07596221daec5edaabbd7c48" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.1" + }, + "coverage": { + "hashes": [ + "sha256:2358e685d0253125da42a48396038d4c7b4cd1448c00bbc4bda0cb8c43c2a870", + "sha256:25017cf384eeed2e6caf72efd3ec4124e32a8b7a4387600499104387975400c7", + "sha256:2e2de9423ff8b14303a97eafddd16c479fbcc9a0b8b0be3b7c3843a3e0cf6d69", + "sha256:324ed908e4e40a6e2451056fe502470ad4e79495cb7a03ecab94e6309c3e117e", + "sha256:34f865a0cf6255b694a46e4383a7131c61ea72c5b4c4f81d20e522fb1e440b4b", + "sha256:3a2bcc464b60a18f1f7167b95b2773ede93bf3722bfa59e0802717f652b6cc25", + "sha256:48d70865266d649b6602e2ba94820d7972ef470d3b72a8fd41a3d17321feed3a", + "sha256:50cf23523ab3a724c6905d3b60f87fa8250d9bae3995e09f49f63effa2b54f15", + "sha256:54c84a68abd8c4c5b71878b35eb85321df41f3d144c78181867d5b026ec74994", + "sha256:5b59d661ee7f3200aedd7b71882b7927ea7ed522df75e3853f316a79ad872a2e", + "sha256:5ffb39624bc573177888a21fb301ccee46838c600b27d58c3e9dae495f44d34a", + "sha256:699b3072b7f0e69ed175a88fa8b2ec7eefc4f34d490c54ed9a52feff21a15fdc", + "sha256:79ef4a2bb862110bd585174e551a783bee5c3aa461734a2ac7429193be357589", + "sha256:8210a6f93c4a8c6d460b402e20e38399529b99200c3318542faf6a520c9b6a5c", + "sha256:8d30c10cfd0a6fdf0a2d5023de00ef7b329cd6ead2310c9e53eab79c209acb70", + "sha256:97ac79ff28f2cda6ac00a803ee582b965951755f61ab43377482bfba450b619a", + "sha256:9fe4aacacff9028ed167db108bf013510654f148d83c4857fed61d2ce0588bf2", + "sha256:a5b6395d5957d638f8b1870561607e3c39b1a236ea6cff9eafe5b9bb1db913f2", + "sha256:ab32c5fad6905986a7e34e3acf01180a69bb60c2aa7331815b46e51c776a1943", + "sha256:ad67f0cfdfecbd49b9da46a7e488e6dc32a69388740b85c36a4ef4b33082cbad", + "sha256:aedad67c30326a1af324f45833a40b97180664912deb29942459ddbe9fa0ce19", + "sha256:b077cd0e70f41366ac1f9d09275258fa1906758a5d4f31cacc18b10dfcf90784", + "sha256:b8ea210810d3c14aec7561f8fe0d3eec582d1088100aaa0bb8153d53d867d20f", + "sha256:bf572722326ce6704e863447a070039a827072b7179352570859be899b9e6551", + "sha256:c0df57e189dacd2606cae6386acf127d01d85b2bf49acd9a65543b5d6c359ddc", + "sha256:d523e75f2a8a0b4a6a8be1287c0e0e3a561b8832b05ddd987d4cd7c62f3ad3bc", + "sha256:e10593c60c5f0bfd8b241bf9f27ef2191a3005b73dde8ada0424f642543a1e59", + "sha256:e9128444c83bc260aea988bf1ca6278a33ba730955bf94720468c656b61353eb", + "sha256:f7162f2e3711f3a08a8a741f92e1f63afd58d0713177979f2cf9723dd50161cf" + ], + "version": "==5.0b1" + }, + "docutils": { + "hashes": [ + "sha256:6c4f696463b79f1fb8ba0c594b63840ebd41f059e92b31957c46b74a4599b6d0", + "sha256:9e4d7ecfc600058e07ba661411a2b7de2fd0fafa17d1a7f7361cd47b1175c827", + "sha256:a2aeea129088da402665e92e0b25b04b073c04b2dce4ab65caaa38b7ce2e1a99" + ], + "version": "==0.15.2" + }, + "entrypoints": { + "hashes": [ + "sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19", + "sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451" + ], + "version": "==0.3" + }, + "flake8": { + "hashes": [ + "sha256:45681a117ecc81e870cbf1262835ae4af5e7a8b08e40b944a8a6e6b895914cfb", + "sha256:49356e766643ad15072a789a20915d3c91dc89fd313ccd71802303fd67e4deca" + ], + "index": "pypi", + "version": "==3.7.9" + }, + "identify": { + "hashes": [ + "sha256:4f1fe9a59df4e80fcb0213086fcf502bc1765a01ea4fe8be48da3b65afd2a017", + "sha256:d8919589bd2a5f99c66302fec0ef9027b12ae150b0b0213999ad3f695fc7296e" + ], + "version": "==1.4.7" + }, + "idna": { + "hashes": [ + "sha256:c357b3f628cf53ae2c4c05627ecc484553142ca23264e593d327bcde5e9c3407", + "sha256:ea8b7f6188e6fa117537c3df7da9fc686d485087abf6ac197f9c46432f7e4a3c" + ], + "version": "==2.8" + }, + "importlib-metadata": { + "hashes": [ + "sha256:aa18d7378b00b40847790e7c27e11673d7fed219354109d0e7b9e5b25dc3ad26", + "sha256:d5f18a79777f3aa179c145737780282e27b508fc8fd688cb17c7a813e8bd39af" + ], + "markers": "python_version < '3.8'", + "version": "==0.23" + }, + "keyring": { + "hashes": [ + "sha256:91037ccaf0c9a112a76f7740e4a416b9457a69b66c2799421581bee710a974b3", + "sha256:f5bb20ea6c57c2360daf0c591931c9ea0d7660a8d9e32ca84d63273f131ea605" + ], + "version": "==19.2.0" + }, + "mccabe": { + "hashes": [ + "sha256:ab8a6258860da4b6677da4bd2fe5dc2c659cff31b3ee4f7f5d64e79735b80d42", + "sha256:dd8d182285a0fe56bace7f45b5e7d1a6ebcbf524e8f3bd87eb0f125271b8831f" + ], + "version": "==0.6.1" + }, + "more-itertools": { + "hashes": [ + "sha256:409cd48d4db7052af495b09dec721011634af3753ae1ef92d2b32f73a745f832", + "sha256:92b8c4b06dac4f0611c0729b2f2ede52b2e1bac1ab48f089c7ddc12e26bb60c4" + ], + "version": "==7.2.0" + }, + "mypy": { + "hashes": [ + "sha256:1521c186a3d200c399bd5573c828ea2db1362af7209b2adb1bb8532cea2fb36f", + "sha256:31a046ab040a84a0fc38bc93694876398e62bc9f35eca8ccbf6418b7297f4c00", + "sha256:3b1a411909c84b2ae9b8283b58b48541654b918e8513c20a400bb946aa9111ae", + "sha256:48c8bc99380575deb39f5d3400ebb6a8a1cb5cc669bbba4d3bb30f904e0a0e7d", + "sha256:540c9caa57a22d0d5d3c69047cc9dd0094d49782603eb03069821b41f9e970e9", + "sha256:672e418425d957e276c291930a3921b4a6413204f53fe7c37cad7bc57b9a3391", + "sha256:6ed3b9b3fdc7193ea7aca6f3c20549b377a56f28769783a8f27191903a54170f", + "sha256:9371290aa2cad5ad133e4cdc43892778efd13293406f7340b9ffe99d5ec7c1d9", + "sha256:ace6ac1d0f87d4072f05b5468a084a45b4eda970e4d26704f201e06d47ab2990", + "sha256:b428f883d2b3fe1d052c630642cc6afddd07d5cd7873da948644508be3b9d4a7", + "sha256:d5bf0e6ec8ba346a2cf35cb55bf4adfddbc6b6576fcc9e10863daa523e418dbb", + "sha256:d7574e283f83c08501607586b3167728c58e8442947e027d2d4c7dcd6d82f453", + "sha256:dc889c84241a857c263a2b1cd1121507db7d5b5f5e87e77147097230f374d10b", + "sha256:f4748697b349f373002656bf32fede706a0e713d67bfdcf04edf39b1f61d46eb" + ], + "index": "pypi", + "version": "==0.740" + }, + "mypy-extensions": { + "hashes": [ + "sha256:090fedd75945a69ae91ce1303b5824f428daf5a028d2f6ab8a299250a846f15d", + "sha256:2d82818f5bb3e369420cb3c4060a7970edba416647068eb4c5343488a6c604a8" + ], + "version": "==0.4.3" + }, + "nodeenv": { + "hashes": [ + "sha256:ad8259494cf1c9034539f6cced78a1da4840a4b157e23640bc4a0c0546b0cb7a" + ], + "version": "==1.3.3" + }, + "packaging": { + "hashes": [ + "sha256:28b924174df7a2fa32c1953825ff29c61e2f5e082343165438812f00d3a7fc47", + "sha256:d9551545c6d761f3def1677baf08ab2a3ca17c56879e70fecba2fc4dde4ed108" + ], + "version": "==19.2" + }, + "pathspec": { + "hashes": [ + "sha256:e285ccc8b0785beadd4c18e5708b12bb8fcf529a1e61215b3feff1d1e559ea5c" + ], + "version": "==0.6.0" + }, + "pkginfo": { + "hashes": [ + "sha256:7424f2c8511c186cd5424bbf31045b77435b37a8d604990b79d4e70d741148bb", + "sha256:a6d9e40ca61ad3ebd0b72fbadd4fba16e4c0e4df0428c041e01e06eb6ee71f32" + ], + "version": "==1.5.0.1" + }, + "pluggy": { + "hashes": [ + "sha256:15b2acde666561e1298d71b523007ed7364de07029219b604cf808bfa1c765b0", + "sha256:966c145cd83c96502c3c3868f50408687b38434af77734af1e9ca461a4081d2d" + ], + "version": "==0.13.1" + }, + "pre-commit": { + "hashes": [ + "sha256:9f152687127ec90642a2cc3e4d9e1e6240c4eb153615cb02aa1ad41d331cbb6e", + "sha256:c2e4810d2d3102d354947907514a78c5d30424d299dc0fe48f5aa049826e9b50" + ], + "index": "pypi", + "version": "==1.20.0" + }, + "py": { + "hashes": [ + "sha256:64f65755aee5b381cea27766a3a147c3f15b9b6b9ac88676de66ba2ae36793fa", + "sha256:dc639b046a6e2cff5bbe40194ad65936d6ba360b52b3c3fe1d08a82dd50b5e53" + ], + "version": "==1.8.0" + }, + "pycodestyle": { + "hashes": [ + "sha256:95a2219d12372f05704562a14ec30bc76b05a5b297b21a5dfe3f6fac3491ae56", + "sha256:e40a936c9a450ad81df37f549d676d127b1b66000a6c500caa2b085bc0ca976c" + ], + "version": "==2.5.0" + }, + "pyflakes": { + "hashes": [ + "sha256:17dbeb2e3f4d772725c777fabc446d5634d1038f234e77343108ce445ea69ce0", + "sha256:d976835886f8c5b31d47970ed689944a0262b5f3afa00a5a7b4dc81e5449f8a2" + ], + "version": "==2.1.1" + }, + "pygments": { + "hashes": [ + "sha256:71e430bc85c88a430f000ac1d9b331d2407f681d6f6aec95e8bcfbc3df5b0127", + "sha256:881c4c157e45f30af185c1ffe8d549d48ac9127433f2c380c24b84572ad66297" + ], + "version": "==2.4.2" + }, + "pyparsing": { + "hashes": [ + "sha256:20f995ecd72f2a1f4bf6b072b63b22e2eb457836601e76d6e5dfcd75436acc1f", + "sha256:4ca62001be367f01bd3e92ecbb79070272a9d4964dce6a48a82ff0b8bc7e683a" + ], + "version": "==2.4.5" + }, + "pytest": { + "hashes": [ + "sha256:1897d74f60a5d8be02e06d708b41bf2445da2ee777066bd68edf14474fc201eb", + "sha256:f6a567e20c04259d41adce9a360bd8991e6aa29dd9695c5e6bd25a9779272673" + ], + "index": "pypi", + "version": "==5.3.0" + }, + "pytest-asyncio": { + "hashes": [ + "sha256:9fac5100fd716cbecf6ef89233e8590a4ad61d729d1732e0a96b84182df1daaf", + "sha256:d734718e25cfc32d2bf78d346e99d33724deeba774cc4afdf491530c6184b63b" + ], + "index": "pypi", + "version": "==0.10.0" + }, + "pytest-cov": { + "hashes": [ + "sha256:cc6742d8bac45070217169f5f72ceee1e0e55b0221f54bcf24845972d3a47f2b", + "sha256:cdbdef4f870408ebdbfeb44e63e07eb18bb4619fae852f6e760645fa36172626" + ], + "index": "pypi", + "version": "==2.8.1" + }, + "pywin32-ctypes": { + "hashes": [ + "sha256:24ffc3b341d457d48e8922352130cf2644024a4ff09762a2261fd34c36ee5942", + "sha256:9dc2d991b3479cc2df15930958b674a48a227d5361d413827a4cfd0b5876fc98" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.2.0" + }, + "pyyaml": { + "hashes": [ + "sha256:0113bc0ec2ad727182326b61326afa3d1d8280ae1122493553fd6f4397f33df9", + "sha256:01adf0b6c6f61bd11af6e10ca52b7d4057dd0be0343eb9283c878cf3af56aee4", + "sha256:5124373960b0b3f4aa7df1707e63e9f109b5263eca5976c66e08b1c552d4eaf8", + "sha256:5ca4f10adbddae56d824b2c09668e91219bb178a1eee1faa56af6f99f11bf696", + "sha256:7907be34ffa3c5a32b60b95f4d95ea25361c951383a894fec31be7252b2b6f34", + "sha256:7ec9b2a4ed5cad025c2278a1e6a19c011c80a3caaac804fd2d329e9cc2c287c9", + "sha256:87ae4c829bb25b9fe99cf71fbb2140c448f534e24c998cc60f39ae4f94396a73", + "sha256:9de9919becc9cc2ff03637872a440195ac4241c80536632fffeb6a1e25a74299", + "sha256:a5a85b10e450c66b49f98846937e8cfca1db3127a9d5d1e31ca45c3d0bef4c5b", + "sha256:b0997827b4f6a7c286c01c5f60384d218dca4ed7d9efa945c3e1aa623d5709ae", + "sha256:b631ef96d3222e62861443cc89d6563ba3eeb816eeb96b2629345ab795e53681", + "sha256:bf47c0607522fdbca6c9e817a6e81b08491de50f3766a7a0e6a5be7905961b41", + "sha256:f81025eddd0327c7d4cfe9b62cf33190e1e736cc6e97502b3ec425f574b3e7a8" + ], + "version": "==5.1.2" + }, + "readme-renderer": { + "hashes": [ + "sha256:bb16f55b259f27f75f640acf5e00cf897845a8b3e4731b5c1a436e4b8529202f", + "sha256:c8532b79afc0375a85f10433eca157d6b50f7d6990f337fa498c96cd4bfc203d" + ], + "version": "==24.0" + }, + "regex": { + "hashes": [ + "sha256:15454b37c5a278f46f7aa2d9339bda450c300617ca2fca6558d05d870245edc7", + "sha256:1ad40708c255943a227e778b022c6497c129ad614bb7a2a2f916e12e8a359ee7", + "sha256:5e00f65cc507d13ab4dfa92c1232d004fa202c1d43a32a13940ab8a5afe2fb96", + "sha256:604dc563a02a74d70ae1f55208ddc9bfb6d9f470f6d1a5054c4bd5ae58744ab1", + "sha256:720e34a539a76a1fedcebe4397290604cc2bdf6f81eca44adb9fb2ea071c0c69", + "sha256:7caf47e4a9ac6ef08cabd3442cc4ca3386db141fb3c8b2a7e202d0470028e910", + "sha256:7faf534c1841c09d8fefa60ccde7b9903c9b528853ecf41628689793290ca143", + "sha256:b4e0406d822aa4993ac45072a584d57aa4931cf8288b5455bbf30c1d59dbad59", + "sha256:c31eaf28c6fe75ea329add0022efeed249e37861c19681960f99bbc7db981fb2", + "sha256:c7393597191fc2043c744db021643549061e12abe0b3ff5c429d806de7b93b66", + "sha256:d2b302f8cdd82c8f48e9de749d1d17f85ce9a0f082880b9a4859f66b07037dc6", + "sha256:e3d8dd0ec0ea280cf89026b0898971f5750a7bd92cb62c51af5a52abd020054a", + "sha256:ec032cbfed59bd5a4b8eab943c310acfaaa81394e14f44454ad5c9eba4f24a74" + ], + "version": "==2019.11.1" + }, + "requests": { + "hashes": [ + "sha256:11e007a8a2aa0323f5a921e9e6a2d7e4e67d9877e85773fba9ba6419025cbeb4", + "sha256:9cf5292fcd0f598c671cfc1e0d7d1a7f13bb8085e9a590f48c010551dc6c4b31" + ], + "version": "==2.22.0" + }, + "requests-toolbelt": { + "hashes": [ + "sha256:380606e1d10dc85c3bd47bf5a6095f815ec007be7a8b69c878507068df059e6f", + "sha256:968089d4584ad4ad7c171454f0a5c6dac23971e9472521ea3b6d49d610aa6fc0" + ], + "version": "==0.9.1" + }, + "six": { + "hashes": [ + "sha256:1f1b7d42e254082a9db6279deae68afb421ceba6158efa6131de7b3003ee93fd", + "sha256:30f610279e8b2578cab6db20741130331735c781b56053c59c4076da27f06b66" + ], + "version": "==1.13.0" + }, + "sqlalchemy-stubs": { + "hashes": [ + "sha256:a3318c810697164e8c818aa2d90bac570c1a0e752ced3ec25455b309c0bee8fd", + "sha256:ca1250605a39648cc433f5c70cb1a6f9fe0b60bdda4c51e1f9a2ab3651daadc8" + ], + "index": "pypi", + "version": "==0.3" + }, + "toml": { + "hashes": [ + "sha256:229f81c57791a41d65e399fc06bf0848bab550a9dfd5ed66df18ce5f05e73d5c", + "sha256:235682dd292d5899d361a811df37e04a8828a5b1da3115886b73cf81ebc9100e" + ], + "version": "==0.10.0" + }, + "tqdm": { + "hashes": [ + "sha256:5a1f3d58f3eb53264387394387fe23df469d2a3fab98c9e7f99d5c146c119873", + "sha256:f1a1613fee07cc30a253051617f2a219a785c58877f9f6bfa129446cbaf8b4c1" + ], + "version": "==4.39.0" + }, + "twine": { + "hashes": [ + "sha256:1a87ae3f1e29a87a8ac174809bf0aa996085a0368fe500402196bda94b23aab3", + "sha256:ba8ba1b39987f1c22d9162f7dd3b4668388640e5f7158c15226624f88e464836" + ], + "index": "pypi", + "version": "==3.1.0" + }, + "typed-ast": { + "hashes": [ + "sha256:1170afa46a3799e18b4c977777ce137bb53c7485379d9706af8a59f2ea1aa161", + "sha256:18511a0b3e7922276346bcb47e2ef9f38fb90fd31cb9223eed42c85d1312344e", + "sha256:262c247a82d005e43b5b7f69aff746370538e176131c32dda9cb0f324d27141e", + "sha256:2b907eb046d049bcd9892e3076c7a6456c93a25bebfe554e931620c90e6a25b0", + "sha256:354c16e5babd09f5cb0ee000d54cfa38401d8b8891eefa878ac772f827181a3c", + "sha256:48e5b1e71f25cfdef98b013263a88d7145879fbb2d5185f2a0c79fa7ebbeae47", + "sha256:4e0b70c6fc4d010f8107726af5fd37921b666f5b31d9331f0bd24ad9a088e631", + "sha256:630968c5cdee51a11c05a30453f8cd65e0cc1d2ad0d9192819df9978984529f4", + "sha256:66480f95b8167c9c5c5c87f32cf437d585937970f3fc24386f313a4c97b44e34", + "sha256:71211d26ffd12d63a83e079ff258ac9d56a1376a25bc80b1cdcdf601b855b90b", + "sha256:7954560051331d003b4e2b3eb822d9dd2e376fa4f6d98fee32f452f52dd6ebb2", + "sha256:838997f4310012cf2e1ad3803bce2f3402e9ffb71ded61b5ee22617b3a7f6b6e", + "sha256:95bd11af7eafc16e829af2d3df510cecfd4387f6453355188342c3e79a2ec87a", + "sha256:bc6c7d3fa1325a0c6613512a093bc2a2a15aeec350451cbdf9e1d4bffe3e3233", + "sha256:cc34a6f5b426748a507dd5d1de4c1978f2eb5626d51326e43280941206c209e1", + "sha256:d755f03c1e4a51e9b24d899561fec4ccaf51f210d52abdf8c07ee2849b212a36", + "sha256:d7c45933b1bdfaf9f36c579671fec15d25b06c8398f113dab64c18ed1adda01d", + "sha256:d896919306dd0aa22d0132f62a1b78d11aaf4c9fc5b3410d3c666b818191630a", + "sha256:fdc1c9bbf79510b76408840e009ed65958feba92a88833cdceecff93ae8fff66", + "sha256:ffde2fbfad571af120fcbfbbc61c72469e72f550d676c3342492a9dfdefb8f12" + ], + "version": "==1.4.0" + }, + "typing-extensions": { + "hashes": [ + "sha256:091ecc894d5e908ac75209f10d5b4f118fbdb2eb1ede6a63544054bb1edb41f2", + "sha256:910f4656f54de5993ad9304959ce9bb903f90aadc7c67a0bef07e678014e892d", + "sha256:cf8b63fedea4d89bab840ecbb93e75578af28f76f66c35889bd7065f5af88575" + ], + "version": "==3.7.4.1" + }, + "urllib3": { + "hashes": [ + "sha256:a8a318824cc77d1fd4b2bec2ded92646630d7fe8619497b142c84a9e6f5a7293", + "sha256:f3c5fd51747d450d4dcf6f923c81f78f811aab8205fda64b0aba34a4e48b0745" + ], + "version": "==1.25.7" + }, + "virtualenv": { + "hashes": [ + "sha256:116655188441670978117d0ebb6451eb6a7526f9ae0796cc0dee6bd7356909b0", + "sha256:b57776b44f91511866594e477dd10e76a6eb44439cdd7f06dcd30ba4c5bd854f" + ], + "version": "==16.7.8" + }, + "wcwidth": { + "hashes": [ + "sha256:3df37372226d6e63e1b1e1eda15c594bca98a22d33a23832a90998faa96bc65e", + "sha256:f4ebe71925af7b40a864553f761ed559b43544f8f71746c2d756c7fe788ade7c" + ], + "version": "==0.1.7" + }, + "webencodings": { + "hashes": [ + "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", + "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923" + ], + "version": "==0.5.1" + }, + "wheel": { + "hashes": [ + "sha256:10c9da68765315ed98850f8e048347c3eb06dd81822dc2ab1d4fde9dc9702646", + "sha256:f4da1763d3becf2e2cd92a14a7c920f0f00eca30fdde9ea992c836685b9faf28" + ], + "index": "pypi", + "version": "==0.33.6" + }, + "zipp": { + "hashes": [ + "sha256:3718b1cbcd963c7d4c5511a8240812904164b7f381b647143a89d3b98f9bcd8e", + "sha256:f06903e9f1f43b12d371004b4ac7b06ab39a44adc747266928ae6debfa7b3335" + ], + "version": "==0.6.0" + } + } +} diff --git a/Ch09/apd.aggregation-chapter09-ex03-complete/README.md b/Ch09/apd.aggregation-chapter09-ex03-complete/README.md new file mode 100644 index 0000000..85669dd --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03-complete/README.md @@ -0,0 +1,4 @@ +# APD Sensor aggregator + +A programme that queries apd.sensor endpoints and aggregates their results. + diff --git a/Ch09/apd.aggregation-chapter09-ex03-complete/pyproject.toml b/Ch09/apd.aggregation-chapter09-ex03-complete/pyproject.toml new file mode 100644 index 0000000..4d3bb67 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03-complete/pyproject.toml @@ -0,0 +1,5 @@ +[build-system] +requires = [ + "setuptools", +] +build-backend = "setuptools.build_meta" diff --git a/Ch09/apd.aggregation-chapter09-ex03-complete/pytest.ini b/Ch09/apd.aggregation-chapter09-ex03-complete/pytest.ini new file mode 100644 index 0000000..c1d3e58 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03-complete/pytest.ini @@ -0,0 +1,3 @@ +[pytest] +markers = + functional: these tests are significantly slower as they start a HTTP server \ No newline at end of file diff --git a/Ch09/apd.aggregation-chapter09-ex03-complete/setup.cfg b/Ch09/apd.aggregation-chapter09-ex03-complete/setup.cfg new file mode 100644 index 0000000..73fc36a --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03-complete/setup.cfg @@ -0,0 +1,77 @@ +[mypy] +namespace_packages = True +mypy_path = src +plugins = sqlmypy + +[mypy-alembic] +ignore_missing_imports = True + +[mypy-alembic.config] +ignore_missing_imports = True + +[mypy-alembic.script] +ignore_missing_imports = True + +[mypy-alembic.runtime.environment] +ignore_missing_imports = True + +[mypy-matplotlib] +ignore_missing_imports = True + +[mypy-matplotlib.axes._base] +ignore_missing_imports = True + +[mypy-matplotlib.figure] +ignore_missing_imports = True + +[mypy-matplotlib.pyplot] +ignore_missing_imports = True + + +[mypy-pint] +ignore_missing_imports = True + +[mypy-pytest] +ignore_missing_imports = True + +[flake8] +max-line-length = 120 +ignore = E501 + +[metadata] +name = apd.aggregation +version = attr: apd.aggregation.VERSION +description = A programme that queries apd.sensor endpoints and aggregates their results. +long_description = file: README.md, CHANGES.md, LICENCE +long_description_content_type = text/markdown +keywords = +license = BSD +classifiers = + Programming Language :: Python :: 3 + Programming Language :: Python :: 3.7 + +[options] +zip_safe = False +include_package_data = True +package_dir = + =src +packages = find_namespace: +install_requires = + sqlalchemy + aiohttp + pint + psycopg2 + alembic + click + + +[options.extras_require] +jupyter = ipywidgets + +[options.packages.find] +where = src + +[options.entry_points] +console_scripts = + collect_sensor_data = apd.aggregation.cli:collect_sensor_data + sensor_deployments = apd.aggregation.cli:deployments diff --git a/Ch09/apd.aggregation-chapter09-ex03-complete/setup.py b/Ch09/apd.aggregation-chapter09-ex03-complete/setup.py new file mode 100644 index 0000000..6068493 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03-complete/setup.py @@ -0,0 +1,3 @@ +from setuptools import setup + +setup() diff --git a/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/__init__.py b/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/__init__.py new file mode 100644 index 0000000..3277f64 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/__init__.py @@ -0,0 +1 @@ +VERSION = "1.0.0" diff --git a/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/alembic/README b/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/alembic/README new file mode 100644 index 0000000..97a87d5 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/alembic/README @@ -0,0 +1,12 @@ +Generic single-database configuration. + + +# Database setup + +To generate the required database tables you must create an alembic.ini file, as follows: + + [alembic] + script_location = apd.aggregation:alembic + sqlalchemy.url = postgresql+psycopg2://apd@localhost/apd + +and run `alembic upgrade head`. This should also be done after every upgrade of the software. \ No newline at end of file diff --git a/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/alembic/env.py b/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/alembic/env.py new file mode 100644 index 0000000..4c8a2c2 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/alembic/env.py @@ -0,0 +1,80 @@ +from logging.config import fileConfig + +from sqlalchemy import engine_from_config +from sqlalchemy import pool +from alembic import context + +from apd.aggregation.database import metadata + + +# this is the Alembic Config object, which provides +# access to the values within the .ini file in use. +config = context.config + +# Interpret the config file for Python logging. +# This line sets up loggers basically. +if config.config_file_name: + fileConfig(config.config_file_name) + +target_metadata = metadata + + +def include_object(object, name, type_, reflected, compare_to): + if object.info.get("is_view", False): + return False + return True + + +def run_migrations_offline(): + """Run migrations in 'offline' mode. + + This configures the context with just a URL + and not an Engine, though an Engine is acceptable + here as well. By skipping the Engine creation + we don't even need a DBAPI to be available. + + Calls to context.execute() here emit the given string to the + script output. + + """ + url = config.get_main_option("sqlalchemy.url") + context.configure( + url=url, + include_object=include_object, + target_metadata=target_metadata, + literal_binds=True, + dialect_opts={"paramstyle": "named"}, + ) + + with context.begin_transaction(): + context.run_migrations() + + +def run_migrations_online(): + """Run migrations in 'online' mode. + + In this scenario we need to create an Engine + and associate a connection with the context. + + """ + connectable = engine_from_config( + config.get_section(config.config_ini_section), + prefix="sqlalchemy.", + poolclass=pool.NullPool, + ) + + with connectable.connect() as connection: + context.configure( + connection=connection, + target_metadata=target_metadata, + include_object=include_object, + ) + + with context.begin_transaction(): + context.run_migrations() + + +if context.is_offline_mode(): + run_migrations_offline() +else: + run_migrations_online() diff --git a/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/alembic/script.py.mako b/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/alembic/script.py.mako new file mode 100644 index 0000000..2c01563 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/alembic/script.py.mako @@ -0,0 +1,24 @@ +"""${message} + +Revision ID: ${up_revision} +Revises: ${down_revision | comma,n} +Create Date: ${create_date} + +""" +from alembic import op +import sqlalchemy as sa +${imports if imports else ""} + +# revision identifiers, used by Alembic. +revision = ${repr(up_revision)} +down_revision = ${repr(down_revision)} +branch_labels = ${repr(branch_labels)} +depends_on = ${repr(depends_on)} + + +def upgrade(): + ${upgrades if upgrades else "pass"} + + +def downgrade(): + ${downgrades if downgrades else "pass"} diff --git a/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py b/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py new file mode 100644 index 0000000..ef671bd --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py @@ -0,0 +1,32 @@ +"""Add indexes to datapoints + +Revision ID: 4b2df8a6e1ce +Revises: 6d2eacd5da3f +Create Date: 2019-12-02 16:07:41.123116 + +""" +from alembic import op + + +# revision identifiers, used by Alembic. +revision = "4b2df8a6e1ce" +down_revision = "6d2eacd5da3f" +branch_labels = None +depends_on = None + + +def upgrade(): + op.create_index( + op.f("ix_datapoints_collected_at"), + "datapoints", + ["collected_at"], + unique=False, + ) + op.create_index( + op.f("ix_datapoints_sensor_name"), "datapoints", ["sensor_name"], unique=False, + ) + + +def downgrade(): + op.drop_index(op.f("ix_datapoints_sensor_name"), table_name="datapoints") + op.drop_index(op.f("ix_datapoints_collected_at"), table_name="datapoints") diff --git a/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py b/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py new file mode 100644 index 0000000..eb02455 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py @@ -0,0 +1,38 @@ +"""Add daily summary view + +Revision ID: 6962f8455a6d +Revises: 4b2df8a6e1ce +Create Date: 2019-12-03 11:50:24.403402 + +""" +from alembic import op + + +# revision identifiers, used by Alembic. +revision = "6962f8455a6d" +down_revision = "4b2df8a6e1ce" +branch_labels = None +depends_on = None + + +def upgrade(): + create_view = """ + CREATE VIEW daily_summary AS + SELECT + datapoints.sensor_name AS sensor_name, + datapoints.data AS data, + count(datapoints.id) AS count + FROM datapoints + WHERE + datapoints.collected_at >= CAST(CURRENT_DATE AS DATE) + AND + datapoints.collected_at < CAST(CURRENT_DATE AS DATE) + 1 + GROUP BY + datapoints.sensor_name, + datapoints.data; + """ + op.execute(create_view) + + +def downgrade(): + op.execute("""DROP VIEW daily_summary""") diff --git a/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py b/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py new file mode 100644 index 0000000..b4a3545 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py @@ -0,0 +1,31 @@ +"""Create datapoints table + +Revision ID: 6d2eacd5da3f +Revises: N/A +Create Date: 2019-09-29 13:43:21.242706 + +""" +from alembic import op +import sqlalchemy as sa +from sqlalchemy.dialects import postgresql + +# revision identifiers, used by Alembic. +revision = "6d2eacd5da3f" +down_revision = None +branch_labels = None +depends_on = None + + +def upgrade(): + op.create_table( + "datapoints", + sa.Column("id", sa.Integer(), nullable=False), + sa.Column("sensor_name", sa.String(), nullable=True), + sa.Column("collected_at", postgresql.TIMESTAMP(), nullable=True), + sa.Column("data", postgresql.JSONB(astext_type=sa.Text()), nullable=True), + sa.PrimaryKeyConstraint("id"), + ) + + +def downgrade(): + op.drop_table("datapoints") diff --git a/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/alembic/versions/d8cdc709086b_add_deployment_table.py b/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/alembic/versions/d8cdc709086b_add_deployment_table.py new file mode 100644 index 0000000..204e096 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/alembic/versions/d8cdc709086b_add_deployment_table.py @@ -0,0 +1,32 @@ +"""Add deployment table + +Revision ID: d8cdc709086b +Revises: d8d4cf6a178f +Create Date: 2019-12-17 16:28:58.585616 + +""" +from alembic import op +import sqlalchemy as sa +from sqlalchemy.dialects import postgresql + +# revision identifiers, used by Alembic. +revision = "d8cdc709086b" +down_revision = "d8d4cf6a178f" +branch_labels = None +depends_on = None + + +def upgrade(): + op.create_table( + "deployments", + sa.Column("id", postgresql.UUID(as_uuid=True), nullable=False), + sa.Column("uri", sa.String(), nullable=True), + sa.Column("name", sa.String(), nullable=True), + sa.Column("colour", sa.String(), nullable=True), + sa.Column("api_key", sa.String(), nullable=True), + sa.PrimaryKeyConstraint("id"), + ) + + +def downgrade(): + op.drop_table("deployments") diff --git a/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py b/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py new file mode 100644 index 0000000..88d5219 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py @@ -0,0 +1,34 @@ +"""Add deployment id to DataPoint + +Revision ID: d8d4cf6a178f +Revises: 6962f8455a6d +Create Date: 2019-12-03 20:58:11.285509 + +""" +from alembic import op +import sqlalchemy as sa +from sqlalchemy.dialects import postgresql + +# revision identifiers, used by Alembic. +revision = "d8d4cf6a178f" +down_revision = "6962f8455a6d" +branch_labels = None +depends_on = None + + +def upgrade(): + op.add_column( + "datapoints", + sa.Column("deployment_id", postgresql.UUID(as_uuid=True), nullable=True), + ) + op.create_index( + op.f("ix_datapoints_deployment_id"), + "datapoints", + ["deployment_id"], + unique=False, + ) + + +def downgrade(): + op.drop_index(op.f("ix_datapoints_deployment_id"), table_name="datapoints") + op.drop_column("datapoints", "deployment_id") diff --git a/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/analysis.py b/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/analysis.py new file mode 100644 index 0000000..1a26a6d --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/analysis.py @@ -0,0 +1,426 @@ +from __future__ import annotations + +import asyncio +import collections +from concurrent.futures import ThreadPoolExecutor +import dataclasses +import datetime +import functools +import math +import typing as t +from uuid import UUID + +import matplotlib.pyplot as plt +from matplotlib.axes._base import _AxesBase +from matplotlib.figure import Figure +from pint import _DEFAULT_REGISTRY as ureg + +from apd.aggregation.query import ( + get_data, + get_data_by_deployment, + with_database, + get_deployment_by_id, +) +from apd.aggregation.database import DataPoint, deployment_table +from .utils import merc_x, merc_y + +plot_key = t.TypeVar("plot_key") +plot_value = t.TypeVar("plot_value") + +# Static UUID to represent aggregation of other deployments +GLOBAL = UUID("bd02526e-7619-4a59-b04b-1fafd1c262d1") + + +@dataclasses.dataclass +class Config(t.Generic[plot_key, plot_value]): + title: str + clean: t.Callable[ + [t.AsyncIterator[DataPoint]], t.AsyncIterator[t.Tuple[plot_key, plot_value]] + ] + draw: t.Optional[ + t.Callable[ + [t.Any, t.Iterable[plot_key], t.Iterable[plot_value], t.Optional[str]], None + ] + ] = None + get_data: t.Optional[ + t.Callable[..., t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]] + ] = None + ylabel: t.Optional[str] = None + sensor_name: dataclasses.InitVar[str] = None + + def __post_init__(self, sensor_name: t.Optional[str] = None) -> None: + if self.draw is None: + self.draw = draw_date # type: ignore + if self.get_data is None: + if sensor_name is None: + raise ValueError("You must specify either get_data or sensor_name") + self.get_data = get_one_sensor_by_deployment(sensor_name) + + +def draw_date( + plot: _AxesBase, + x: t.Iterable[datetime.datetime], + y: t.Iterable[float], + colour: t.Optional[str], +) -> None: + plot.plot_date(x, y, color=colour, linestyle="-", marker="", xdate=True) + + +def draw_bar( + plot: _AxesBase, + x: t.Iterable[datetime.datetime], + y: t.Iterable[float], + colour: t.Optional[str], +) -> None: + plot.bar(x, y, color=colour) + + +def draw_map( + plot: _AxesBase, + x: t.Iterable[t.Tuple[float, float]], + y: t.Iterable[float], + colour: t.Optional[str], +) -> None: + lon = [merc_y(coord[0]) for coord in x] + lat = [merc_x(coord[1]) for coord in x] + + for axis in "x", "y": + plt.tick_params( + axis=axis, + which="both", + bottom=False, + top=False, + left=False, + right=False, + labelbottom=False, + labelleft=False, + ) + + plot.tricontourf(lat, lon, y) + plot.plot(lat, lon, "wo", ms=3) + plot.set_aspect(1.0) + + +def get_map_cleaner_for( + sensor_name: str, +) -> t.Callable[ + [t.AsyncIterator[DataPoint]], t.AsyncIterator[t.Tuple[t.Tuple[float, float], float]] +]: + """Given a sensor_name that represents a float, return a coroutine that acts as a cleaner + extracting that sensor's data keyed by the value of a Location sensor.""" + + async def clean_latest_coord_and_value( + datapoints: t.AsyncIterator[DataPoint], + ) -> t.AsyncIterator[t.Tuple[t.Tuple[float, float], float]]: + + # We will be building a dictionary of UUID to dictionary + # That inner dictionary should contain coord (float, float) + # and value (float) only. Either or both can be None. + class IntermediateData(t.TypedDict): + coord: t.Optional[t.Tuple[float, float]] + value: t.Optional[float] + + # We will iterate over data points and build an entry in cleaned_data + # for each deployment. This lets newer data replace older data, as + # datapoints is assumed to be in date order + cleaned_data: t.Dict[UUID, IntermediateData] = {} + async for datapoint in datapoints: + # Get the existing data for this deployment, if we've seen it before + row_data = cleaned_data.get(datapoint.deployment_id, None) + if row_data is None: + # This is the first time we've seen this deployment + row_data = {"coord": None, "value": None} + if datapoint.sensor_name == "Location": + # Coord is a 2-tuple of floats + row_data["coord"] = ( + float(datapoint.data[0]), + float(datapoint.data[1]), + ) + elif datapoint.sensor_name == sensor_name: + # Value is a single float + row_data["value"] = float(datapoint.data) + # Store the info about this deployment back into the cleaned_data set + cleaned_data[datapoint.deployment_id] + + for data in cleaned_data.values(): + if data["coord"] is None or data["value"] is None: + # We only got a partial record, don't plot this + continue + yield data["coord"], data["value"] + + # Return the set up cleaner coroutine + return clean_latest_coord_and_value + + +async def clean_watthours_to_watts( + datapoints: t.AsyncIterator[DataPoint], +) -> t.AsyncIterator[t.Tuple[datetime.datetime, float]]: + last_watthours = None + last_time = None + async for datapoint in datapoints: + if datapoint.data is None: + continue + time = datapoint.collected_at + watthours = ureg.Quantity(datapoint.data["magnitude"], datapoint.data["unit"]) + if last_watthours: + seconds_elapsed = (time - last_time).total_seconds() + time_elapsed = ureg.Quantity(seconds_elapsed, ureg.second) + additional_power = watthours - last_watthours + power = additional_power / time_elapsed + yield time, power.to(ureg.watt).magnitude + last_watthours = watthours + last_time = datapoint.collected_at + + +async def clean_watthours_by_day( + datapoints: t.AsyncIterator[DataPoint], +) -> t.AsyncIterator[t.Tuple[datetime.datetime, float]]: + last_watthours = None + last_date = None + async for datapoint in datapoints: + if datapoint.data is None: + continue + date = datapoint.collected_at.date() + if date != last_date: + # We have a new date + watthours = ureg.Quantity( + datapoint.data["magnitude"], datapoint.data["unit"] + ) + if last_watthours is not None and last_date is not None: + midpoint = datetime.datetime.combine(last_date, datetime.time(12, 0, 0)) + diff = watthours - last_watthours + yield midpoint, diff.to(ureg.kilowatt_hours).magnitude + last_watthours = watthours + last_date = datapoint.collected_at.date() + if last_watthours is not None and last_date is not None: + watthours = ureg.Quantity(datapoint.data["magnitude"], datapoint.data["unit"]) + midpoint = datetime.datetime.combine( + datapoint.collected_at.date(), datetime.time(12, 0, 0) + ) + diff = watthours - last_watthours + yield midpoint, diff.to(ureg.kilowatt_hours).magnitude + + +async def clean_magnitude( + datapoints: t.AsyncIterator[DataPoint], +) -> t.AsyncIterator[t.Tuple[datetime.datetime, float]]: + async for datapoint in datapoints: + if datapoint.data is None: + continue + yield datapoint.collected_at, datapoint.data["magnitude"] + + +async def clean_temperature_fluctuations( + datapoints: t.AsyncIterator[DataPoint], +) -> t.AsyncIterator[t.Tuple[datetime.datetime, float]]: + allowed_jitter = 2.5 + allowed_range = (-40, 80) + window_datapoints: t.Deque[DataPoint] = collections.deque(maxlen=3) + + def datapoint_ok(datapoint: DataPoint) -> bool: + """Return False if this data point does not contain a valid temperature""" + if datapoint.data is None: + return False + elif datapoint.data["unit"] != "degC": + # This point is in a different temperature system. While it could be converted + # this cleaner is not yet doing that. + return False + elif not allowed_range[0] < datapoint.data["magnitude"] < allowed_range[1]: + return False + return True + + async for datapoint in datapoints: + if not datapoint_ok(datapoint): + # If the datapoint is invalid then skip directly to the next item + continue + + window_datapoints.append(datapoint) + if len(window_datapoints) == 3: + # Find the temperatures of the datapoints in the window, then average + # the first and last and compare that to the middle point. + window_temperatures = [dp.data["magnitude"] for dp in window_datapoints] + avr_first_last = (window_temperatures[0] + window_temperatures[2]) / 2 + diff_middle_avr = abs(window_temperatures[1] - avr_first_last) + if diff_middle_avr > allowed_jitter: + pass + else: + yield window_datapoints[1].collected_at, window_temperatures[1] + elif len(window_datapoints) == 1: + # The item in the iterator can't be compared to both neighbours + # so should be yielded + yield datapoint.collected_at, datapoint.data["magnitude"] + else: + # Otherwise, let the window fill up, it will be yieleded later + pass + # When the iterator ends the final item is not yet in the middle + # of the window, so the last item must be explicitly yielded. + if len(window_datapoints) > 1 and datapoint_ok(datapoint): + yield datapoint.collected_at, datapoint.data["magnitude"] + + +async def clean_passthrough( + datapoints: t.AsyncIterator[DataPoint], +) -> t.AsyncIterator[t.Tuple[datetime.datetime, float]]: + async for datapoint in datapoints: + if datapoint.data is None: + continue + else: + yield datapoint.collected_at, datapoint.data + + +def get_one_sensor_by_deployment( + sensor_name: str, +) -> t.Callable[..., t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]]: + return functools.partial(get_data_by_deployment, sensor_name=sensor_name) + + +def get_all_data() -> t.Callable[ + ..., t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]] +]: + async def get_all_data_inner( + *args: t.Any, **kwargs: t.Any + ) -> t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]: + yield GLOBAL, get_data(*args, **kwargs) + + return get_all_data_inner + + +configs = ( + Config( + sensor_name="SolarCumulativeOutput", + clean=clean_watthours_to_watts, + title="Solar momentary output", + ylabel="Watts", + ), + Config( + sensor_name="SolarCumulativeOutput", + clean=clean_watthours_by_day, + title="Daily total generation", + ylabel="Kilowatt Hours", + draw=draw_bar, + ), + Config( + sensor_name="RAMAvailable", + clean=clean_passthrough, + title="RAM available", + ylabel="Bytes", + ), + Config( + sensor_name="RelativeHumidity", + clean=clean_passthrough, + title="Relative humidity", + ylabel="Percent", + ), + Config( + sensor_name="Temperature", + clean=clean_temperature_fluctuations, + title="Ambient temperature", + ylabel="Degrees C", + ), +) + + +def get_known_configs() -> t.Dict[str, Config[t.Any, t.Any]]: + return {config.title: config for config in configs} + + +async def plot_sensor( + config: Config[t.Any, t.Any], + plot: _AxesBase, + location_names: t.Dict[UUID, str], + **kwargs: t.Any +) -> _AxesBase: + locations = [] + if config.get_data is None: + raise ValueError("You must provide a get_data function") + async for deployment_id, query_results in config.get_data(**kwargs): + if deployment_id == GLOBAL: + name = "Global" + else: + try: + deployment = await get_deployment_by_id(deployment_id) + except IndexError: + name = str(deployment_id) + colour = None + else: + name = deployment.name or str(deployment_id) + colour = deployment.colour + # Mypy currently doesn't understand callable fields on datatypes: https://github.com/python/mypy/issues/5485 + points = [dp async for dp in config.clean(query_results)] # type: ignore + if not points: + continue + locations.append(name) + x, y = zip(*points) + plot.set_title(config.title) + plot.set_ylabel(config.ylabel) + if config.draw is None: + raise ValueError("You must provide a get_data function") + config.draw(plot, x, y, colour) + plot.legend(locations) + return plot + + +_Coroutine_Result = t.TypeVar("_Coroutine_Result") + + +def wrap_coroutine( + f: t.Callable[..., t.Coroutine[t.Any, t.Any, _Coroutine_Result]] +) -> t.Callable[..., _Coroutine_Result]: + """Given a coroutine, return a function that runs that coroutine + in a new event loop in an isolated thread""" + + @functools.wraps(f) + def run_in_thread(*args: t.Any, **kwargs: t.Any) -> _Coroutine_Result: + loop = asyncio.new_event_loop() + wrapped = f(*args, **kwargs) + with ThreadPoolExecutor(max_workers=1) as pool: + task = pool.submit(loop.run_until_complete, wrapped) + # Mypy can get confused when nesting generic functions, like we do here + # The fact that Task is generic means we lose the association with + # _CoroutineResult. Adding an explicit cast restores this. + return t.cast(_Coroutine_Result, task.result()) + + return run_in_thread + + +async def plot_multiple_charts(*args: t.Any, **kwargs: t.Any) -> Figure: + # These parameters are pulled from kwargs to avoid confusing function + # introspection code in IPython widgets + location_names = kwargs.pop("location_names", None) + configs = kwargs.pop("configs", None) + dimensions = kwargs.pop("dimensions", None) + + with with_database("postgresql+psycopg2://apd@localhost/apd") as session: + loop = asyncio.get_running_loop() + coros = [] + if configs is None: + # If no configs are supplied, use all known configs + configs = get_known_configs().values() + if dimensions is None: + # If no dimensions are supplied, get the square root of the number + # of configs and round it to find a number of columns. This will + # keep the arrangement approximately square. Find rows by multiplying + # out rows. + total_configs = len(configs) + columns = round(math.sqrt(total_configs)) + rows = math.ceil(total_configs / columns) + if location_names is None: + location_query = session.query( + deployment_table.c.id, deployment_table.c.name + ) + location_data = await loop.run_in_executor(None, location_query.all) + location_names = dict(location_data) + + figure = plt.figure(figsize=(10 * columns, 5 * rows), dpi=300) + for i, config in enumerate(configs, start=1): + plot = figure.add_subplot(columns, rows, i) + coros.append(plot_sensor(config, plot, location_names, *args, **kwargs)) + await asyncio.gather(*coros) + return figure + + +def interactable_plot_multiple_charts( + *args: t.Any, **kwargs: t.Any +) -> t.Callable[..., Figure]: + with_config = functools.partial(plot_multiple_charts, *args, **kwargs) + return wrap_coroutine(with_config) diff --git a/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/cli.py b/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/cli.py new file mode 100644 index 0000000..6e98436 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/cli.py @@ -0,0 +1,184 @@ +import asyncio +import typing as t +import uuid + +import aiohttp +import click +from sqlalchemy import create_engine +from sqlalchemy.orm import sessionmaker + +from . import collect +from .database import Deployment, deployment_table + + +@click.command() +@click.argument("server", nargs=-1) +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +@click.option("--api-key", metavar="", envvar="APD_API_KEY") +@click.option( + "--tolerate-failures", + "-f", + help="If provided, failure to retrieve some sensors' data will not abort the collection process", + is_flag=True, +) +@click.option("-v", "--verbose", is_flag=True, help="Enables verbose mode") +def collect_sensor_data( + db: str, server: t.Tuple[str], api_key: str, tolerate_failures: bool, verbose: bool +): + """This loads data from one or more sensors into the specified database. + + Only PostgreSQL databases are supported, as the column definitions use + multiple pg specific features. The database must already exist and be + populated with the required tables. + + The --api-key option is used to specify the access token for the sensors + being queried. + + You may specify any number of servers, the variable should be the full URL + to the sensor's HTTP interface, not including the /v/2.0 portion. Multiple + URLs should be separated with a space. + """ + if tolerate_failures: + attempts = [(s,) for s in server] + else: + attempts = [server] + success = True + for attempt in attempts: + try: + collect.standalone(db, attempt, api_key, echo=verbose) + except ValueError as e: + click.secho(str(e), err=True, fg="red") + success = False + return success + + +@click.group() +def deployments(): + pass + + +@deployments.command() +@click.argument("uri") +@click.argument("name") +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +@click.option("--api-key", metavar="", envvar="APD_API_KEY") +@click.option("--colour") +def add( + db: str, uri: str, name: str, api_key: t.Optional[str], colour: t.Optional[str], +): + """This creates a record of a new deployment in the database. + """ + deployment = Deployment(id=None, uri=uri, name=name, api_key=api_key, colour=colour) + + async def http_get_deployment_id(): + async with aiohttp.ClientSession() as http: + collect.http_session_var.set(http) + return await collect.get_deployment_id(uri) + + deployment.id = asyncio.run(http_get_deployment_id()) + insert = deployment_table.insert().values(**deployment._asdict()) + + engine = create_engine(db) + sm = sessionmaker(engine) + Session = sm() + Session.execute(insert) + Session.commit() + return True + + +@deployments.command() +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +def list(db: str): + """This creates a record of a new deployment in the database. + """ + engine = create_engine(db) + sm = sessionmaker(engine) + Session = sm() + deployments = Session.query(deployment_table).all() + for deployment in deployments: + click.secho(deployment.name, bold=True) + click.echo(click.style("ID ", bold=True) + deployment.id.hex) + click.echo(click.style("URI ", bold=True) + deployment.uri) + click.echo(click.style("API key ", bold=True) + deployment.api_key) + click.echo(click.style("Colour ", bold=True) + str(deployment.colour)) + click.echo() + Session.rollback() + return True + + +@deployments.command() +@click.argument("id") +@click.option("--uri") +@click.option("--name") +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +@click.option("--api-key", metavar="", envvar="APD_API_KEY") +@click.option("--colour") +def edit( + db: str, + id, + uri: t.Optional[str], + name: t.Optional[str], + api_key: t.Optional[str], + colour: t.Optional[str], +): + """This creates a record of a new deployment in the database. + """ + update = {} + if uri is not None: + update["uri"] = uri + if name is not None: + update["name"] = name + if api_key is not None: + update["api_key"] = api_key + if colour is not None: + update["colour"] = colour + deployment_id = uuid.UUID(id) + + update = ( + deployment_table.update() + .where(deployment_table.c.id == deployment_id) + .values(**update) + ) + + engine = create_engine(db) + sm = sessionmaker(engine) + Session = sm() + Session.execute(update) + deployments = Session.query(deployment_table).filter( + deployment_table.c.id == deployment_id + ) + Session.commit() + + for deployment in deployments: + click.secho(deployment.name, bold=True) + click.echo(click.style("ID ", bold=True) + deployment.id.hex) + click.echo(click.style("URI ", bold=True) + deployment.uri) + click.echo(click.style("API key ", bold=True) + deployment.api_key) + click.echo(click.style("Colour ", bold=True) + str(deployment.colour)) + click.echo() + + return True diff --git a/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/collect.py b/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/collect.py new file mode 100644 index 0000000..1d9ea08 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/collect.py @@ -0,0 +1,112 @@ +import asyncio +from contextvars import ContextVar +import datetime +import typing as t +import uuid + +import aiohttp +from sqlalchemy import create_engine +from sqlalchemy.orm import sessionmaker +from sqlalchemy.orm.session import Session + +from .database import DataPoint, datapoint_table, Deployment, deployment_table + +http_session_var: ContextVar[aiohttp.ClientSession] = ContextVar("http_session") + + +async def get_deployment_id(server): + http = http_session_var.get() + if not server.endswith("/"): + server += "/" + url = server + "v/2.1/deployment_id" + async with http.get(url) as request: + if request.status != 200: + raise ValueError(f"Error loading deployment id from {server}") + result = await request.json() + return uuid.UUID(result["deployment_id"]) + + +async def get_data_points(server: str, api_key: t.Optional[str],) -> t.List[DataPoint]: + if not server.endswith("/"): + server += "/" + url = server + "v/2.1/sensors/" + headers = {} + if api_key: + headers["X-API-KEY"] = api_key + http = http_session_var.get() + + # Get the deployment ID in parallel to the sensor data + deployment_id = asyncio.create_task(get_deployment_id(server)) + + async with http.get(url, headers=headers) as request: + result = await request.json() + ok = request.status == 200 + now = datetime.datetime.now() + if ok: + points = [] + for value in result["sensors"]: + points.append( + DataPoint( + sensor_name=value["id"], + collected_at=now, + data=value["value"], + deployment_id=await deployment_id, + ) + ) + return points + else: + raise ValueError( + f"Error loading data from {server}: " + result.get("error", "Unknown") + ) + + +def handle_result(result: t.List[DataPoint], session: Session) -> t.List[DataPoint]: + for point in result: + insert = datapoint_table.insert().values(**point._asdict()) + sql_result = session.execute(insert) + point.id = sql_result.inserted_primary_key[0] + return result + + +async def add_data_from_sensors( + session: Session, servers: t.Iterable[Deployment] +) -> t.List[DataPoint]: + tasks: t.List[t.Awaitable[t.List[DataPoint]]] = [] + points: t.List[DataPoint] = [] + async with aiohttp.ClientSession() as http: + http_session_var.set(http) + tasks = [get_data_points(server.uri, server.api_key) for server in servers] + for results in await asyncio.gather(*tasks): + points += results + loop = asyncio.get_running_loop() + await loop.run_in_executor(None, handle_result, points, session) + return points + + +def standalone( + db_uri: str, servers: t.Tuple[str], api_key: t.Optional[str], echo: bool = False +) -> None: + engine = create_engine(db_uri, echo=echo) + sm = sessionmaker(engine) + Session = sm() + deployments: t.Iterable[Deployment] + if servers: + deployments = tuple( + Deployment(id=None, name=None, colour=None, api_key=api_key, uri=server) + for server in servers + ) + else: + deployment_data = Session.query(deployment_table).all() + deployments = tuple( + Deployment.from_sql_result(deployment) for deployment in deployment_data + ) + asyncio.run(add_data_from_sensors(Session, deployments)) + Session.commit() + + +if __name__ == "__main__": + standalone( + db_uri="postgresql+psycopg2://apd@localhost/apd", + servers=("http://pvoutput:8080/",), + api_key="h3hdfjksfhwkjehnwekj", + ) diff --git a/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/database.py b/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/database.py new file mode 100644 index 0000000..f28b469 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/database.py @@ -0,0 +1,129 @@ +from __future__ import annotations + +from dataclasses import dataclass, field, asdict +import datetime +import typing as t +import uuid + +import sqlalchemy +from sqlalchemy.dialects.postgresql import JSONB, DATE, TIMESTAMP, UUID +from sqlalchemy.ext.hybrid import ExprComparator, hybrid_property +from sqlalchemy.orm import sessionmaker +from sqlalchemy.schema import Table + + +metadata = sqlalchemy.MetaData() + +deployment_table = Table( + "deployments", + metadata, + sqlalchemy.Column("id", UUID(as_uuid=True), primary_key=True), + sqlalchemy.Column("uri", sqlalchemy.String, index=False), + sqlalchemy.Column("name", sqlalchemy.String, index=False, nullable=True), + sqlalchemy.Column("colour", sqlalchemy.String, index=False, nullable=True), + sqlalchemy.Column("api_key", sqlalchemy.String, index=False), +) + +datapoint_table = Table( + "datapoints", + metadata, + sqlalchemy.Column("id", sqlalchemy.Integer, primary_key=True), + sqlalchemy.Column("sensor_name", sqlalchemy.String, index=True), + sqlalchemy.Column("collected_at", TIMESTAMP, index=True), + sqlalchemy.Column("deployment_id", UUID(as_uuid=True), index=True), + sqlalchemy.Column("data", JSONB), +) + +daily_summary_view = Table( + "daily_summary", + metadata, + sqlalchemy.Column("sensor_name", sqlalchemy.String), + sqlalchemy.Column("data", JSONB), + sqlalchemy.Column("count", sqlalchemy.Integer), + info={"is_view": True}, +) + + +class DateEqualComparator(ExprComparator): + def __init__(self, fallback_expression, raw_expression): + # Do not try and find update expression from parent + super().__init__(None, fallback_expression, None) + self.raw_expression = raw_expression + + def __eq__(self, other): + """ Returns True iff on the same day as other """ + other_date = sqlalchemy.cast(other, DATE) + return sqlalchemy.and_( + self.raw_expression >= other_date, self.raw_expression < other_date + 1, + ) + + def operate(self, op, *other, **kwargs): + other = [sqlalchemy.cast(date, DATE) for date in other] + return op(self.expression, *other, **kwargs) + + def reverse_operate(self, op, other, **kwargs): + other = [sqlalchemy.cast(date, DATE) for date in other] + return op(other, self.expression, **kwargs) + + +@dataclass +class DataPoint: + sensor_name: str + data: t.Any + deployment_id: uuid.UUID + id: t.Optional[int] = None + collected_at: datetime.datetime = field(default_factory=datetime.datetime.now) + + @classmethod + def from_sql_result(cls, result) -> DataPoint: + return cls(**result._asdict()) + + def _asdict(self) -> t.Dict[str, t.Any]: + data = asdict(self) + if data["id"] is None: + del data["id"] + return data + + @hybrid_property + def collected_on_date(self): + return self.collected_at.date() + + @collected_on_date.comparator # type: ignore + def collected_on_date(cls): + return DateEqualComparator( + fallback_expression=sqlalchemy.cast(datapoint_table.c.collected_at, DATE), + raw_expression=datapoint_table.c.collected_at, + ) + + +@dataclass +class Deployment: + id: t.Optional[uuid.UUID] + uri: str + name: t.Optional[str] + colour: t.Optional[str] + api_key: t.Optional[str] + + @classmethod + def from_sql_result(cls, result) -> Deployment: + return cls(**result._asdict()) + + def _asdict(self) -> t.Dict[str, t.Any]: + data = asdict(self) + return data + + +def main() -> None: + engine = sqlalchemy.create_engine( + "postgresql+psycopg2://apd@localhost/apd", echo=True + ) + sm = sessionmaker(engine) + Session = sm() + if False: + metadata.create_all(engine) + print(Session.query(DataPoint).all()) + pass + + +if __name__ == "__main__": + main() diff --git a/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/query.py b/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/query.py new file mode 100644 index 0000000..3d2005d --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/query.py @@ -0,0 +1,146 @@ +import asyncio +import contextlib +from contextvars import ContextVar +import datetime +import typing as t +from uuid import UUID + +from sqlalchemy import create_engine +from sqlalchemy.orm import sessionmaker +from sqlalchemy.orm.session import Session + + +from apd.aggregation.database import ( + datapoint_table, + DataPoint, + deployment_table, + Deployment, +) + + +db_session_var: ContextVar[Session] = ContextVar("db_session") + + +@contextlib.contextmanager +def with_database(uri: t.Optional[str] = None) -> t.Iterator[Session]: + """Given a URI, set up a DB connection, and return a Session as a context manager """ + if uri is None: + uri = "postgresql+psycopg2://localhost/apd" + engine = create_engine(uri) + sm = sessionmaker(engine) + Session = sm() + token = db_session_var.set(Session) + yield Session + db_session_var.reset(token) + Session.commit() + Session.close() + + +async def get_data( + sensor_name: t.Optional[str] = None, + deployment_id: t.Optional[UUID] = None, + collected_before: t.Optional[datetime.datetime] = None, + collected_after: t.Optional[datetime.datetime] = None, +) -> t.AsyncIterator[DataPoint]: + db_session = db_session_var.get() + loop = asyncio.get_running_loop() + query = db_session.query(datapoint_table) + if sensor_name: + query = query.filter(datapoint_table.c.sensor_name == sensor_name) + if deployment_id: + query = query.filter(datapoint_table.c.deployment_id == deployment_id) + if collected_before: + query = query.filter(datapoint_table.c.collected_at < collected_before) + if collected_after: + query = query.filter(datapoint_table.c.collected_at > collected_after) + query = query.order_by( + datapoint_table.c.deployment_id, + datapoint_table.c.sensor_name, + datapoint_table.c.collected_at, + ) + + rows = await loop.run_in_executor(None, query.all) + for row in rows: + yield DataPoint.from_sql_result(row) + + +async def get_deployment_ids() -> t.List[UUID]: + db_session = db_session_var.get() + loop = asyncio.get_running_loop() + query = db_session.query(datapoint_table.c.deployment_id).distinct() + return [row.deployment_id for row in await loop.run_in_executor(None, query.all)] + + +async def get_deployment_by_id(deployment_id: UUID) -> Deployment: + db_session = db_session_var.get() + loop = asyncio.get_running_loop() + query = db_session.query(deployment_table).filter( + deployment_table.c.id == deployment_id + ) + return [ + Deployment.from_sql_result(row) + for row in await loop.run_in_executor(None, query.all) + ][0] + + +async def get_data_by_deployment( + *args: t.Any, **kwargs: t.Any +) -> t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]: + """Return an Async Iterator that contains two-item pairs. + These pairs are a string (deployment_id), and an async iterator that contains + the datapoints with that deployment_id. + + Usage example: + + async for deployment_id, datapoints in get_data_by_deployment(): + print(deployment_id) + async for datapoint in datapoints: + print(datapoint) + print() + """ + # Get the data, using the arguments to this function as filters + data = get_data(*args, **kwargs) + + # The two levels of iterator share the item variable, initialise it with the + # first item from the iterator. Also set last_deployment_id to None, so the + # outer iterator knows to start a new group. + last_deployment_id: t.Optional[UUID] = None + try: + item = await data.__anext__() + except StopAsyncIteration: + # There were no items in the underlying query, return immediately + return + + async def subiterator(group_id: UUID) -> t.AsyncIterator[DataPoint]: + """Using a closure, create an iterator that yields the current + item, then yields all items from data while the deployment_id matches + group_id, leaving the first that doesn't match as item in the enclosing + scope.""" + # item is from the enclosing scope + nonlocal item + while item.deployment_id == group_id: + # yield items from data while they match the group_id this iterator represents + yield item + try: + # Advance the underlying iterator + item = await data.__anext__() + except StopAsyncIteration: + # The underlying iterator came to an end, so end the subiterator too + return + + while True: + while item.deployment_id == last_deployment_id: + # We are trying to advance the outer iterator while the underlying iterator + # is still part-way through a group. Speed through the underlying until we + # hit an item where the deployment_id is different to the last one (or, is not + # None, in the case of the start of the iterator) + try: + item = await data.__anext__() + except StopAsyncIteration: + # We hit the end of the underlying iterator: end this iterator too + return + last_deployment_id = item.deployment_id + # Don't yield an iterator for unclassified deployments + if last_deployment_id is not None: + # Instantiate a subiterator for this group + yield last_deployment_id, subiterator(last_deployment_id) diff --git a/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/utils.py b/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/utils.py new file mode 100644 index 0000000..76f05ec --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03-complete/src/apd/aggregation/utils.py @@ -0,0 +1,27 @@ +import math + + +# Set up mercator transform from https://wiki.openstreetmap.org/wiki/Mercator#Python +# Thanks to Paulo Silva and the OSM contributors +def merc_x(lon: float) -> float: + r_major = 6378137.000 + return r_major * math.radians(lon) + + +def merc_y(lat: float) -> float: + if lat > 89.5: + lat = 89.5 + if lat < -89.5: + lat = -89.5 + r_major = 6378137.000 + r_minor = 6356752.3142 + temp = r_minor / r_major + eccent = math.sqrt(1 - temp ** 2) + phi = math.radians(lat) + sinphi = math.sin(phi) + con = eccent * sinphi + com = eccent / 2 + con = ((1.0 - con) / (1.0 + con)) ** com + ts = math.tan((math.pi / 2 - phi) / 2) / con + y = 0 - r_major * math.log(ts) + return y diff --git a/Ch09/apd.aggregation-chapter09-ex03-complete/tests/__init__.py b/Ch09/apd.aggregation-chapter09-ex03-complete/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/Ch09/apd.aggregation-chapter09-ex03-complete/tests/conftest.py b/Ch09/apd.aggregation-chapter09-ex03-complete/tests/conftest.py new file mode 100644 index 0000000..328e95f --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03-complete/tests/conftest.py @@ -0,0 +1,124 @@ +import datetime +from uuid import UUID + +from apd.aggregation.database import datapoint_table + +from alembic.config import Config +from alembic.script import ScriptDirectory +from alembic.runtime.environment import EnvironmentContext +import pytest + + +@pytest.fixture +def db_uri(): + return "postgresql+psycopg2://apd@localhost/apd-test" + + +@pytest.fixture +def db_session(db_uri): + from sqlalchemy import create_engine + from sqlalchemy.orm import sessionmaker + + engine = create_engine(db_uri, echo=True) + sm = sessionmaker(engine) + Session = sm() + yield Session + Session.close() + + +@pytest.fixture +def migrated_db(db_uri, db_session): + config = Config() + config.set_main_option("script_location", "apd.aggregation:alembic") + config.set_main_option("sqlalchemy.url", db_uri) + script = ScriptDirectory.from_config(config) + + def upgrade(rev, context): + return script._upgrade_revs(script.get_current_head(), rev) + + def downgrade(rev, context): + return script._downgrade_revs(None, rev) + + with EnvironmentContext(config, script, fn=upgrade): + script.run_env() + + try: + yield + finally: + # Clear any pending work from the db_session connection + db_session.rollback() + + with EnvironmentContext(config, script, fn=downgrade): + script.run_env() + + +@pytest.fixture +def populated_db(migrated_db, db_session): + datas = [ + { + "id": 1, + "sensor_name": "Test", + "data": "1", + "collected_at": datetime.datetime(2020, 4, 1, 12, 0, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 2, + "sensor_name": "Test", + "data": "2", + "collected_at": datetime.datetime(2020, 4, 1, 12, 1, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 3, + "sensor_name": "Test", + "data": "3", + "collected_at": datetime.datetime(2020, 4, 1, 12, 2, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 4, + "sensor_name": "Test", + "data": "4", + "collected_at": datetime.datetime(2020, 4, 1, 12, 3, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 5, + "sensor_name": "OtherTest", + "data": "5", + "collected_at": datetime.datetime(2020, 4, 1, 12, 4, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 6, + "sensor_name": "Test", + "data": "1", + "collected_at": datetime.datetime(2020, 4, 1, 12, 0, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + { + "id": 7, + "sensor_name": "Test", + "data": "1", + "collected_at": datetime.datetime(2020, 4, 1, 12, 1, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + { + "id": 8, + "sensor_name": "Test", + "data": "2", + "collected_at": datetime.datetime(2020, 4, 1, 12, 2, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + { + "id": 9, + "sensor_name": "OtherTest", + "data": "3", + "collected_at": datetime.datetime(2020, 4, 1, 12, 3, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + ] + for data in datas: + insert = datapoint_table.insert().values(**data) + db_session.execute(insert) diff --git a/Ch09/apd.aggregation-chapter09-ex03-complete/tests/test_analysis.py b/Ch09/apd.aggregation-chapter09-ex03-complete/tests/test_analysis.py new file mode 100644 index 0000000..34a32b4 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03-complete/tests/test_analysis.py @@ -0,0 +1,423 @@ +import datetime +import uuid + +import pytest + +from apd.aggregation import analysis +from apd.aggregation.database import DataPoint, datapoint_table +from apd.aggregation.query import db_session_var + + +async def generate_datapoints(datas): + deployment_id = uuid.uuid4() + for i, (time, data) in enumerate(datas, start=1): + yield DataPoint( + id=i, + collected_at=time, + sensor_name="TestSensor", + data=data, + deployment_id=deployment_id, + ) + + +class TestPassThroughCleaner: + @pytest.fixture + def cleaner(self): + return analysis.clean_passthrough + + @pytest.mark.asyncio + async def test_float_passthrough(self, cleaner): + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 65.0), + (datetime.datetime(2020, 4, 1, 13, 0, 0), 65.5), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == data + + @pytest.mark.asyncio + async def test_Nones_are_skipped(self, cleaner): + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), None), + (datetime.datetime(2020, 4, 1, 13, 0, 0), 65.5), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 13, 0, 0), 65.5), + ] + + +class TestTemperatureCleaner: + @pytest.fixture + def cleaner(self): + return analysis.clean_temperature_fluctuations + + @pytest.mark.asyncio + async def test_window_not_full(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [(datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0)] + + @pytest.mark.asyncio + async def test_window_exactly_full(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 1), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 21.0), + ] + + @pytest.mark.asyncio + async def test_window_overfilled(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 3), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 4), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 1), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 3), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 4), 21.0), + ] + + @pytest.mark.asyncio + async def test_outlier_dropped(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 61.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 21.0), + ] + + @pytest.mark.asyncio + async def test_limited_to_DHT22_range(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 91.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 91.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 91.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [] + + @pytest.mark.asyncio + async def test_Nones_dropped(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 31.0, "unit": "degC"}, + ), + (datetime.datetime(2020, 4, 1, 12, 0, 1), None,), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 32.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 31.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 32.0), + ] + + +class TestWattHourCleaner: + @pytest.fixture + def cleaner(self): + return analysis.clean_watthours_to_watts + + @pytest.mark.asyncio + async def test_one_entry_insufficient_to_find_diff(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [] + + @pytest.mark.asyncio + async def test_two_entries_provides_diff_with_second_time(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 13, 0, 0), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 1 + assert output[0][0] == datetime.datetime(2020, 4, 1, 13, 0, 0) + assert output[0][1] == pytest.approx(9.0, 0.0001) + + @pytest.mark.asyncio + async def test_fractional_hour(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 23, 42), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 1 + assert output[0][0] == datetime.datetime(2020, 4, 1, 12, 23, 42) + assert output[0][1] == pytest.approx(22.7848, 0.001) + + @pytest.mark.asyncio + async def test_diff_happens_pairwise(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 23, 42), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 13, 23, 42), + {"magnitude": 13.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 2 + assert output[0][0] == datetime.datetime(2020, 4, 1, 12, 23, 42) + assert output[0][1] == pytest.approx(22.7848, 0.001) + assert output[1][0] == datetime.datetime(2020, 4, 1, 13, 23, 42) + assert output[1][1] == pytest.approx(3, 0.001) + + @pytest.mark.asyncio + async def test_None_ignored(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + (datetime.datetime(2020, 4, 1, 12, 58, 0), None,), + ( + datetime.datetime(2020, 4, 1, 13, 0, 0), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 1 + assert output[0][0] == datetime.datetime(2020, 4, 1, 13, 0, 0) + assert output[0][1] == pytest.approx(9.0, 0.0001) + + +class TestTemperatureMap: + @pytest.fixture + def temperature_data(self): + return { + (53.8667, -1.3333): -1, + (53.35, -2.2833): 1, + (52.45, -1.7333): 3, + (51.5, -0.1333): 6, + (51.55, -2.5667): 5, + (54.9667, -1.6167): -1, + (55.9667, -3.2167): -1, + (54.7667, -1.5833): 0, + (53.7667, -0.3): 1, + (53.7667, -3.0167): 0, + (51.4833, -3.1833): 4, + (53.2667, -3.5167): 2, + (52.0833, -2.8): 2, + (52.0167, -0.6): 2, + (52.6667, 1.2667): 5, + (50.4333, -4.9833): 9, + (50.35, -4.1167): 10, + (50.5167, -2.45): 9, + (50.8333, -1.1667): 9, + (56.45, -5.4333): 4, + (57.5333, -4.05): -2, + (54.5167, -3.6167): 3, + (53.0833, 0.2667): 4, + (51.35, 1.3333): 7, + (50.8833, 0.3167): 8, + (58.45, -3.1): 3, + (50.1, -5.6667): 9, + (58.2167, -6.3333): 4, + (55.6833, -6.25): 7, + } + + @pytest.fixture + def temperature_datapoints(self, migrated_db, db_session, temperature_data): + datas = [] + now = datetime.datetime.now() + for (coord, temp) in temperature_data.items(): + deployment_id = uuid.uuid4() + datas.append( + DataPoint( + sensor_name="Location", + deployment_id=deployment_id, + collected_at=now, + data=coord, + ) + ) + datas.append( + DataPoint( + sensor_name="Temperature", + deployment_id=deployment_id, + collected_at=now, + data=temp, + ) + ) + return datas + + @pytest.fixture + def populated_db(self, migrated_db, db_session, temperature_datapoints): + for data in temperature_datapoints: + insert = datapoint_table.insert().values(**data._asdict()) + db_session.execute(insert) + + @pytest.fixture + def cleaner(self): + return analysis.get_map_cleaner_for("Temperature") + + @pytest.fixture + def get_data(self, db_session): + db_session_var.set(db_session) + return analysis.get_all_data() + + @pytest.mark.asyncio + async def test_latest_coord_temp_cleaner( + self, temperature_data, populated_db, get_data, cleaner + ): + data = get_data() + deployments = 0 + async for deployment, data_points in cleaner(data): + deployments += 1 + cleaned = {a async for a in cleaner(data_points)} + # There should only be one deployment + assert deployments == 1 + expected = set(temperature_data.items()) + assert cleaned == expected + + @pytest.mark.asyncio + async def test_newer_items_superceed_older( + self, db_session, temperature_datapoints, populated_db, get_data, cleaner + ): + # Pick any of the deployment ids and find the pair of DataPoints in that deployment id + deployment_1 = temperature_datapoints[0].deployment_id + existing = [ + datapoint + for datapoint in temperature_datapoints + if datapoint.deployment_id == deployment_1 + ] + old_location = [ + datapoint for datapoint in existing if datapoint.sensor_name == "Location" + ][0] + old_temperature = [ + datapoint + for datapoint in existing + if datapoint.sensor_name == "Temperature" + ][0] + + new_location = DataPoint( + sensor_name="Location", + deployment_id=deployment_1, + collected_at=datetime.datetime(2031, 4, 1, 12, 0, 0), + data=(-10.5, 150.1), + ) + new_temperature = DataPoint( + sensor_name="Temperature", + deployment_id=deployment_1, + collected_at=datetime.datetime(2031, 4, 1, 12, 0, 0), + data=21, + ) + for data in [new_location, new_temperature]: + insert = datapoint_table.insert().values(**data._asdict()) + db_session.execute(insert) + + data = get_data() + deployments = 0 + async for deployment, data_points in cleaner(data): + deployments += 1 + cleaned = {a async for a in cleaner(data_points)} + # There should only be one deployment + assert deployments == 1 + + # We expect the newer one, not the older + assert (new_location.data, new_temperature.data) in cleaned + assert (old_location.data, old_temperature.data) not in cleaned + # The cleaner converts two data points to one plottable + assert len(cleaned) == len(temperature_datapoints) / 2 diff --git a/Ch09/apd.aggregation-chapter09-ex03-complete/tests/test_cli.py b/Ch09/apd.aggregation-chapter09-ex03-complete/tests/test_cli.py new file mode 100644 index 0000000..5cab441 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03-complete/tests/test_cli.py @@ -0,0 +1,155 @@ +from unittest import mock +import uuid + +from click.testing import CliRunner +import pytest + +import apd.aggregation.cli +from apd.aggregation.database import Deployment, deployment_table + + +@pytest.mark.functional +def test_sensors_are_passed_to_get_data_points(db_uri): + runner = CliRunner() + with mock.patch("apd.aggregation.collect.get_data_points") as get_data_points: + runner.invoke( + apd.aggregation.cli.collect_sensor_data, + [ + "http://localhost", + "http://otherhost", + "--db", + db_uri, + "--api-key", + "key", + ], + ) + calls = get_data_points.call_args_list + assert len(calls) == 2 + details = {call[0] for call in get_data_points.call_args_list} + assert details == { + ("http://localhost", "key"), + ("http://otherhost", "key"), + } + + +@pytest.mark.functional +def test_add_deployment_to_db(db_uri, db_session, migrated_db): + runner = CliRunner() + deployment_id = uuid.UUID("76587cdd42dc489ea1d220e9b0bc62ca") + with mock.patch("apd.aggregation.collect.get_deployment_id") as get_deployment_id: + get_deployment_id.return_value = deployment_id + runner.invoke( + apd.aggregation.cli.deployments, + ["add", "http://otherhost", "Other", "--db", db_uri, "--api-key", "key"], + ) + deployments = db_session.query(deployment_table).all() + assert len(deployments) == 1 + deployment = Deployment.from_sql_result(deployments[0]) + assert deployment.uri == "http://otherhost" + assert deployment.api_key == "key" + assert deployment.id == deployment_id + + +@pytest.mark.functional +def test_use_stored_deployments(db_uri, migrated_db): + runner = CliRunner() + + deployment_id = uuid.UUID("76587cdd42dc489ea1d220e9b0bc62ca") + with mock.patch("apd.aggregation.collect.get_deployment_id") as get_deployment_id: + get_deployment_id.return_value = deployment_id + runner.invoke( + apd.aggregation.cli.deployments, + [ + "add", + "http://specifiedhost", + "Specified", + "--db", + db_uri, + "--api-key", + "an_api_key", + ], + ) + + with mock.patch("apd.aggregation.collect.get_data_points") as get_data_points: + runner.invoke( + apd.aggregation.cli.collect_sensor_data, ["--db", db_uri], + ) + calls = get_data_points.call_args_list + assert len(calls) == 1 + details = {call[0] for call in get_data_points.call_args_list} + assert details == { + ("http://specifiedhost", "an_api_key"), + } + + +@pytest.mark.functional +def test_list_deployments(db_uri, migrated_db): + runner = CliRunner() + + deployment_id = uuid.UUID("76587cdd42dc489ea1d220e9b0bc62ca") + with mock.patch("apd.aggregation.collect.get_deployment_id") as get_deployment_id: + get_deployment_id.return_value = deployment_id + runner.invoke( + apd.aggregation.cli.deployments, + [ + "add", + "http://specifiedhost", + "Specified", + "--db", + db_uri, + "--api-key", + "an_api_key", + ], + ) + + result = runner.invoke(apd.aggregation.cli.deployments, ["list", "--db", db_uri],) + expected = """Specified +ID 76587cdd42dc489ea1d220e9b0bc62ca +URI http://specifiedhost +API key an_api_key +Colour None + +""" + assert result.output == expected + + +@pytest.mark.functional +def test_edit_deployment(db_uri, migrated_db): + runner = CliRunner() + return + deployment_id = uuid.UUID("76587cdd42dc489ea1d220e9b0bc62ca") + with mock.patch("apd.aggregation.collect.get_deployment_id") as get_deployment_id: + get_deployment_id.return_value = deployment_id + runner.invoke( + apd.aggregation.cli.deployments, + [ + "add", + "http://specifiedhost", + "Specified", + "--db", + db_uri, + "--api-key", + "an_api_key", + ], + ) + + result = runner.invoke( + apd.aggregation.cli.deployments, + [ + "edit", + "--db", + db_uri, + deployment_id.hex(), + "--colour", + "red" "--name", + "New name", + ], + ) + expected = """New name +ID 76587cdd42dc489ea1d220e9b0bc62ca +URI http://specifiedhost +API key an_api_key +Colour red + +""" + assert result.output == expected diff --git a/Ch09/apd.aggregation-chapter09-ex03-complete/tests/test_http_get.py b/Ch09/apd.aggregation-chapter09-ex03-complete/tests/test_http_get.py new file mode 100644 index 0000000..df575c6 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03-complete/tests/test_http_get.py @@ -0,0 +1,188 @@ +from concurrent.futures import ThreadPoolExecutor +import datetime +import typing as t +from unittest.mock import patch, MagicMock +import wsgiref.simple_server + +import aiohttp +from apd.sensors.base import Sensor +from apd.sensors.sensors import PythonVersion, ACStatus +from apd.sensors.wsgi import set_up_config +import flask +import pytest + +from apd.sensors.wsgi import v21 + +from apd.aggregation import collect +from apd.aggregation.database import Deployment + +pytestmark = [pytest.mark.functional] + + +@pytest.fixture +def sensors() -> t.Iterator[t.List[Sensor[t.Any]]]: + """ Patch the get_sensors method to return a known pair of sensors only """ + data: t.List[Sensor[t.Any]] = [PythonVersion(), ACStatus()] + with patch("apd.sensors.cli.get_sensors") as get_sensors: + get_sensors.return_value = data + yield data + + +def get_independent_flask_app(name: str) -> flask.Flask: + """ Create a new flask app with the v20 API blueprint loaded, so multiple copies + of the app can be run in parallel without conflicting configuration """ + app = flask.Flask(name) + app.register_blueprint(v21.version, url_prefix="/v/2.1") + return app + + +def run_server_in_thread( + name: str, config: t.Dict[str, t.Any], port: int +) -> t.Iterator[str]: + # Create a new flask app and load in required code, to prevent config conflicts + app = get_independent_flask_app(name) + flask_app = set_up_config(config, app) + server = wsgiref.simple_server.make_server("localhost", port, flask_app) + + with ThreadPoolExecutor() as pool: + pool.submit(server.serve_forever) + yield f"http://localhost:{port}/" + server.shutdown() + + +@pytest.fixture(scope="module") +def http_server(): + yield from run_server_in_thread( + "standard", + { + "APD_SENSORS_API_KEY": "testing", + "APD_SENSORS_DEPLOYMENT_ID": "a46b1d1207fd4cdcad39bbdf706dfe29", + }, + 12081, + ) + + +@pytest.fixture(scope="module") +def bad_api_key_http_server(): + yield from run_server_in_thread( + "alternate", + { + "APD_SENSORS_API_KEY": "penny", + "APD_SENSORS_DEPLOYMENT_ID": "38cf2bae9adb445fad946c82e290487a", + }, + 12082, + ) + + +class TestGetDataPoints: + @pytest.fixture + def mut(self): + return collect.get_data_points + + @pytest.mark.asyncio + async def test_get_data_points( + self, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + # Get the data from the server, storing the time before and after + # as bounds for the collected_at value + async with aiohttp.ClientSession() as http: + collect.http_session_var.set(http) + time_before = datetime.datetime.now() + results = await mut(http_server, "testing") + time_after = datetime.datetime.now() + + assert len(results) == len(sensors) == 2 + + for (sensor, result) in zip(sensors, results): + assert sensor.from_json_compatible(result.data) == sensor.value() + assert result.sensor_name == sensor.name + assert time_before <= result.collected_at <= time_after + + @pytest.mark.asyncio + async def test_get_data_points_fails_with_bad_api_key( + self, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + with pytest.raises( + ValueError, + match=f"Error loading data from {http_server}: Supply API key in X-API-Key header", + ): + async with aiohttp.ClientSession() as http: + collect.http_session_var.set(http) + await mut(http_server, "incorrect") + + +class TestAddDataFromSensors: + @pytest.fixture + def mut(self): + return collect.add_data_from_sensors + + @pytest.fixture + def mock_db_session(self): + return MagicMock() + + @pytest.mark.asyncio + async def test_get_get_data_from_sensors( + self, mock_db_session, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + results = await mut( + mock_db_session, + [ + Deployment( + id=None, colour=None, name=None, uri=http_server, api_key="testing" + ) + ], + ) + assert mock_db_session.execute.call_count == len(sensors) + assert len(results) == len(sensors) + + @pytest.mark.asyncio + async def test_get_get_data_from_sensors_with_multiple_servers( + self, mock_db_session, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + results = await mut( + mock_db_session, + [ + Deployment( + id=None, colour=None, name=None, uri=http_server, api_key="testing" + ), + Deployment( + id=None, colour=None, name=None, uri=http_server, api_key="testing" + ), + ], + ) + assert mock_db_session.execute.call_count == len(sensors) * 2 + assert len(results) == len(sensors) * 2 + + @pytest.mark.asyncio + async def test_data_points_not_added_if_only_partial_success( + self, + mock_db_session, + sensors: t.List[Sensor[t.Any]], + mut, + http_server: str, + bad_api_key_http_server: str, + ) -> None: + with pytest.raises( + ValueError, + match=f"Error loading data from {bad_api_key_http_server}: Supply API key in X-API-Key header", + ): + await mut( + mock_db_session, + [ + Deployment( + id=None, + colour=None, + name=None, + uri=http_server, + api_key="testing", + ), + Deployment( + id=None, + colour=None, + name=None, + uri=bad_api_key_http_server, + api_key="testing", + ), + ], + ) + assert mock_db_session.execute.call_count == 0 diff --git a/Ch09/apd.aggregation-chapter09-ex03-complete/tests/test_query.py b/Ch09/apd.aggregation-chapter09-ex03-complete/tests/test_query.py new file mode 100644 index 0000000..9b6e0aa --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03-complete/tests/test_query.py @@ -0,0 +1,111 @@ +import datetime +from uuid import UUID + +import pytest + +from apd.aggregation.query import ( + get_data, + get_deployment_ids, + get_data_by_deployment, + db_session_var, +) + + +class TestGetData: + @pytest.fixture + def mut(self): + return get_data + + @pytest.mark.asyncio + @pytest.mark.parametrize( + "filter,num_items_expected", + [ + ({}, 9), + ({"sensor_name": "Test"}, 7), + ({"deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd")}, 5), + ({"collected_after": datetime.datetime(2020, 4, 1, 12, 2, 1)}, 3), + ({"collected_before": datetime.datetime(2020, 4, 1, 12, 2, 1)}, 4), + ( + { + "collected_after": datetime.datetime(2020, 4, 1, 12, 2, 1), + "collected_before": datetime.datetime(2020, 4, 1, 12, 3, 5), + }, + 2, + ), + ], + ) + async def test_iterate_over_items( + self, mut, db_session, populated_db, filter, num_items_expected + ): + db_session_var.set(db_session) + points = [dp async for dp in mut(**filter)] + assert len(points) == num_items_expected + + @pytest.mark.asyncio + async def test_empty_db(self, mut, db_session, migrated_db): + db_session_var.set(db_session) + points = [dp async for dp in mut()] + assert len(points) == 0 + + +class TestGetDeployments: + @pytest.fixture + def mut(self): + return get_deployment_ids + + @pytest.mark.asyncio + async def test_get_all_deployments(self, mut, db_session, populated_db): + db_session_var.set(db_session) + deployment_ids = await mut() + assert set(deployment_ids) == { + UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + } + + @pytest.mark.asyncio + async def test_empty_db(self, mut, db_session, migrated_db): + db_session_var.set(db_session) + deployment_ids = await mut() + assert deployment_ids == [] + + +@pytest.mark.usefixtures("populated_db") +class TestGetDataByDeployment: + @pytest.fixture + def mut(self): + return get_data_by_deployment + + @pytest.mark.asyncio + @pytest.mark.parametrize( + "filter,num_items_expected", [({}, 9), ({"sensor_name": "Test"}, 7)] + ) + async def test_iterate_over_all_items( + self, mut, db_session, filter, num_items_expected + ): + db_session_var.set(db_session) + num_items = 0 + num_deployments = 0 + async for deployment_id, items in mut(**filter): + num_deployments += 1 + async for item in items: + num_items += 1 + assert num_deployments == 2 + assert num_items == num_items_expected + + @pytest.mark.asyncio + @pytest.mark.parametrize( + "filter,num_items_expected", [({}, 5), ({"sensor_name": "Test"}, 4)] + ) + async def test_skip_first_deployment( + self, mut, db_session, filter, num_items_expected + ): + db_session_var.set(db_session) + num_items = 0 + num_deployments = 0 + async for deployment_id, items in mut(**filter): + num_deployments += 1 + if num_deployments == 2: + async for item in items: + num_items += 1 + assert num_deployments == 2 + assert num_items == num_items_expected diff --git a/Ch09/apd.aggregation-chapter09-ex03-complete/tests/test_sensor_aggregation.py b/Ch09/apd.aggregation-chapter09-ex03-complete/tests/test_sensor_aggregation.py new file mode 100644 index 0000000..311dd19 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03-complete/tests/test_sensor_aggregation.py @@ -0,0 +1,199 @@ +from __future__ import annotations + +import contextlib +from dataclasses import dataclass +import json +import typing as t +from unittest.mock import patch, Mock + +import pytest +import sqlalchemy + +import apd.aggregation.collect +from apd.aggregation.database import Deployment + + +@pytest.fixture +def data() -> t.Any: + return { + "sensors": [ + { + "human_readable": "3.7", + "id": "PythonVersion", + "title": "Python Version", + "value": [3, 7, 2, "final", 0], + }, + { + "human_readable": "Not connected", + "id": "ACStatus", + "title": "AC Connected", + "value": False, + }, + ] + } + + +@dataclass +class FakeAIOHttpClient: + responses: t.Dict[str, str] + + @contextlib.asynccontextmanager + async def get( + self, url: str, headers: t.Optional[t.Dict[str, str]] = None + ) -> t.AsyncIterator[FakeAIOHttpResponse]: + if url in self.responses: + yield FakeAIOHttpResponse(body=self.responses[url]) + else: + yield FakeAIOHttpResponse(body="", status=404) + + +@dataclass +class FakeAIOHttpResponse: + body: str + status: int = 200 + + async def json(self) -> t.Any: + return json.loads(self.body) + + +@pytest.fixture +def mockclient(data) -> FakeAIOHttpClient: + return FakeAIOHttpClient( + { + "http://localhost/v/2.1/sensors/": json.dumps(data), + "http://localhost/v/2.1/deployment_id": json.dumps( + {"deployment_id": "b29ba0ee10f14552b6b21327bb96d3fb"} + ), + } + ) + + +class TestGetDataPoints: + @pytest.fixture + def mut(self): + return apd.aggregation.collect.get_data_points + + @pytest.mark.asyncio + async def test_get_data_points( + self, mut, mockclient: FakeAIOHttpClient, data + ) -> None: + token = apd.aggregation.collect.http_session_var.set(mockclient) + try: + datapoints = await mut("http://localhost", "") + finally: + apd.aggregation.collect.http_session_var.reset(token) + + assert len(datapoints) == len(data["sensors"]) + for sensor in data["sensors"]: + assert sensor["value"] in (datapoint.data for datapoint in datapoints) + assert sensor["id"] in (datapoint.sensor_name for datapoint in datapoints) + + +class TestAddDataFromSensors: + @pytest.fixture + def mut(self): + return apd.aggregation.collect.add_data_from_sensors + + @pytest.fixture(autouse=True) + def patch_aiohttp(self, mockclient): + with patch("aiohttp.ClientSession") as ClientSession: + ClientSession.return_value.__aenter__.return_value = mockclient + yield ClientSession + + @pytest.fixture + def db_session(self): + session = Mock() + sql_result = session.execute.return_value + sql_result.inserted_primary_key = [1] + return session + + @pytest.mark.asyncio + async def test_datapoints_are_added_to_the_session(self, mut, db_session) -> None: + assert db_session.execute.call_count == 0 + datapoints = await mut( + db_session, + [ + Deployment( + id=None, colour=None, name=None, uri="http://localhost", api_key="" + ) + ], + ) + assert db_session.execute.call_count == len(datapoints) + + +@pytest.mark.usefixtures("migrated_db") +class TestDatabaseConnection: + @pytest.fixture(autouse=True) + def patch_aiohttp(self, mockclient): + with patch("aiohttp.ClientSession") as ClientSession: + ClientSession.return_value.__aenter__.return_value = mockclient + yield ClientSession + + @pytest.fixture + def table(self): + return apd.aggregation.database.datapoint_table + + @pytest.fixture + def daily_summary_view(self): + return apd.aggregation.database.daily_summary_view + + @pytest.fixture + def model(self): + return apd.aggregation.database.DataPoint + + @pytest.fixture + def mut(self): + return apd.aggregation.collect.add_data_from_sensors + + @pytest.mark.asyncio + async def test_datapoints_are_added_to_the_session(self, db_session, table) -> None: + datapoints = await apd.aggregation.collect.add_data_from_sensors( + db_session, + [ + Deployment( + id=None, colour=None, name=None, uri="http://localhost", api_key="" + ) + ], + ) + num_points = db_session.query(table).count() + assert num_points == len(datapoints) == 2 + + @pytest.mark.asyncio + async def test_datapoints_can_be_mapped_back_to_DataPoints( + self, mut, db_session, table, model + ) -> None: + datapoints = await mut( + db_session, + [ + Deployment( + id=None, colour=None, name=None, uri="http://localhost", api_key="" + ) + ], + ) + db_points = [ + model.from_sql_result(result) for result in db_session.query(table) + ] + assert db_points == datapoints + + @pytest.mark.asyncio + async def test_daily_summary_view_matches_query( + self, db_session, model, table, daily_summary_view + ) -> None: + await apd.aggregation.collect.add_data_from_sensors( + db_session, + [ + Deployment( + id=None, colour=None, name=None, uri="http://localhost", api_key="" + ) + ], + ) + + headers = table.c.sensor_name, table.c.data + value_counts = ( + db_session.query(*headers, sqlalchemy.func.count(table.c.id)) + .filter(model.collected_on_date == sqlalchemy.func.current_date()) + .group_by(*headers) + ) + + daily_summary_view = db_session.query(daily_summary_view) + assert value_counts.all() == daily_summary_view.all() diff --git a/Ch09/apd.aggregation-chapter09-ex03/.coveragerc b/Ch09/apd.aggregation-chapter09-ex03/.coveragerc new file mode 100644 index 0000000..e766c69 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03/.coveragerc @@ -0,0 +1,3 @@ +[run] +branch = True +omit = tests/* diff --git a/Ch09/apd.aggregation-chapter09-ex03/.pre-commit-config.yaml b/Ch09/apd.aggregation-chapter09-ex03/.pre-commit-config.yaml new file mode 100644 index 0000000..d3b6ec7 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03/.pre-commit-config.yaml @@ -0,0 +1,26 @@ +repos: + +- repo: local + hooks: + - id: black + name: black + entry: pipenv run black + args: [--quiet] + language: system + types: [python] + + - id: mypy + name: mypy + exclude: (?x)^( + (.*)/setup.py + )$ + entry: pipenv run mypy + args: ["--follow-imports=skip"] + language: system + types: [python] + + - id: flake8 + name: flake8 + entry: pipenv run flake8 + language: system + types: [python] diff --git a/Ch09/apd.aggregation-chapter09-ex03/CHANGES.md b/Ch09/apd.aggregation-chapter09-ex03/CHANGES.md new file mode 100644 index 0000000..8e424e5 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03/CHANGES.md @@ -0,0 +1,5 @@ +## Changes + +### 1.0.0 (Unreleased) + +* Generated from skeleton diff --git a/Ch09/apd.aggregation-chapter09-ex03/LICENCE b/Ch09/apd.aggregation-chapter09-ex03/LICENCE new file mode 100644 index 0000000..86685d4 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03/LICENCE @@ -0,0 +1,31 @@ +Copyright (c) 2019, Matthew Wilkes + + +All rights reserved. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + +* Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + +* Redistributions in binary form must reproduce the above copyright notice, this + list of conditions and the following disclaimer in the documentation and/or + other materials provided with the distribution. + +* Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived from this + software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND +ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. +IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, +INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, +BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY +OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE +OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED +OF THE POSSIBILITY OF SUCH DAMAGE. + + diff --git a/Ch09/apd.aggregation-chapter09-ex03/Pipfile b/Ch09/apd.aggregation-chapter09-ex03/Pipfile new file mode 100644 index 0000000..b308175 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03/Pipfile @@ -0,0 +1,25 @@ +[[source]] +name = "pypi" +url = "https://pypi.org/simple" +verify_ssl = true + +[dev-packages] +pytest = "*" +pytest-cov = "*" +pytest-asyncio = "*" +mypy = "*" +flake8 = "*" +black = "*" +pre-commit = "*" +wheel = "*" +twine = "*" +sqlalchemy-stubs = "*" + +[packages] +apd-aggregation = {editable = true,extras = ["jupyter"],path = "."} +apd-sensors = {editable = true,extras = ["webapp"],path = "./../code"} + +[requires] + +[pipenv] +allow_prereleases = true diff --git a/Ch09/apd.aggregation-chapter09-ex03/Pipfile.lock b/Ch09/apd.aggregation-chapter09-ex03/Pipfile.lock new file mode 100644 index 0000000..37ebbba --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03/Pipfile.lock @@ -0,0 +1,751 @@ +{ + "_meta": { + "hash": { + "sha256": "9cbbc3af88a1213ed8f4f93c33e35a9f9d7e047077cd25ff02f9bde13e2b606b" + }, + "pipfile-spec": 6, + "requires": {}, + "sources": [ + { + "name": "pypi", + "url": "https://pypi.org/simple", + "verify_ssl": true + } + ] + }, + "default": { + "aiohttp": { + "hashes": [ + "sha256:173267050501e1537293df06723bc5e719990889e2820ba3932969983892e960", + "sha256:438f1f1555c02c50894604d94944cff188fe138b46467b7fa99fdceb51ab5842", + "sha256:90bed250d1435aef33a1f8c439c5056d5d25a44fe6caf33fcafafed805bad4dc", + "sha256:93c3b14747413f38f094a60e98f55e73831f0c9a23ae7faa3dc97d8963e13021", + "sha256:a6e70a38d883185b1921d8122759661c39ade54949770394412a9e713fec6fa7", + "sha256:b5036133c1ba77ed5a70208d2a021a90b76fdf8bf523ae33dae46d4f4380d86f", + "sha256:c138451a82cdbf65cddf952941d5c7a1a2cac8ce3bc618dee8d889e5251ec7a5", + "sha256:c94770383e49f9cc5912b926364ad022a6c8a5dbf5498933ca3a5713c6daf738", + "sha256:ea26536ae06df6dac021303a0df72c79e55512070e6a304ba93ad468a3a754dc" + ], + "version": "==4.0.0a1" + }, + "alembic": { + "hashes": [ + "sha256:49277bb7242192bbb9eac58fed4fe02ec6c3a2a4b4345d2171197459266482b2" + ], + "version": "==1.3.1" + }, + "apd-aggregation": { + "editable": true, + "path": "." + }, + "apd-sensors": { + "editable": true, + "extras": [ + "webapp" + ], + "path": "./../code" + }, + "async-timeout": { + "hashes": [ + "sha256:0c3c816a028d47f659d6ff5c745cb2acf1f966da1fe5c19c77a70282b25f4c5f", + "sha256:4291ca197d287d274d0b6cb5d6f8f8f82d434ed288f962539ff18cc9012f9ea3" + ], + "version": "==3.0.1" + }, + "attrs": { + "hashes": [ + "sha256:08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c", + "sha256:f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72" + ], + "version": "==19.3.0" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:2335065e6395b9e67ca716de5f7526736bfa6ceead690adf616d925bdc622b13", + "sha256:5b94b49521f6456670fdb30cd82a4eca9412788a93fa6dd6df72c94d5a8ff2d7" + ], + "version": "==7.0" + }, + "flask": { + "hashes": [ + "sha256:13f9f196f330c7c2c5d7a5cf91af894110ca0215ac051b5844701f2bfd934d52", + "sha256:45eb5a6fd193d6cf7e0cf5d8a5b31f83d5faae0293695626f539a823e93b13f6" + ], + "version": "==1.1.1" + }, + "idna": { + "hashes": [ + "sha256:c357b3f628cf53ae2c4c05627ecc484553142ca23264e593d327bcde5e9c3407", + "sha256:ea8b7f6188e6fa117537c3df7da9fc686d485087abf6ac197f9c46432f7e4a3c" + ], + "version": "==2.8" + }, + "itsdangerous": { + "hashes": [ + "sha256:321b033d07f2a4136d3ec762eac9f16a10ccd60f53c0c91af90217ace7ba1f19", + "sha256:b12271b2047cb23eeb98c8b5622e2e5c5e9abd9784a153e9d8ef9cb4dd09d749" + ], + "version": "==1.1.0" + }, + "jinja2": { + "hashes": [ + "sha256:74320bb91f31270f9551d46522e33af46a80c3d619f4a4bf42b3164d30b5911f", + "sha256:9fe95f19286cfefaa917656583d020be14e7859c6b0252588391e47db34527de" + ], + "version": "==2.10.3" + }, + "mako": { + "hashes": [ + "sha256:a36919599a9b7dc5d86a7a8988f23a9a3a3d083070023bab23d64f7f1d1e0a4b" + ], + "version": "==1.1.0" + }, + "markupsafe": { + "hashes": [ + "sha256:00bc623926325b26bb9605ae9eae8a215691f33cae5df11ca5424f06f2d1f473", + "sha256:09027a7803a62ca78792ad89403b1b7a73a01c8cb65909cd876f7fcebd79b161", + "sha256:09c4b7f37d6c648cb13f9230d847adf22f8171b1ccc4d5682398e77f40309235", + "sha256:1027c282dad077d0bae18be6794e6b6b8c91d58ed8a8d89a89d59693b9131db5", + "sha256:24982cc2533820871eba85ba648cd53d8623687ff11cbb805be4ff7b4c971aff", + "sha256:29872e92839765e546828bb7754a68c418d927cd064fd4708fab9fe9c8bb116b", + "sha256:43a55c2930bbc139570ac2452adf3d70cdbb3cfe5912c71cdce1c2c6bbd9c5d1", + "sha256:46c99d2de99945ec5cb54f23c8cd5689f6d7177305ebff350a58ce5f8de1669e", + "sha256:500d4957e52ddc3351cabf489e79c91c17f6e0899158447047588650b5e69183", + "sha256:535f6fc4d397c1563d08b88e485c3496cf5784e927af890fb3c3aac7f933ec66", + "sha256:62fe6c95e3ec8a7fad637b7f3d372c15ec1caa01ab47926cfdf7a75b40e0eac1", + "sha256:6dd73240d2af64df90aa7c4e7481e23825ea70af4b4922f8ede5b9e35f78a3b1", + "sha256:717ba8fe3ae9cc0006d7c451f0bb265ee07739daf76355d06366154ee68d221e", + "sha256:79855e1c5b8da654cf486b830bd42c06e8780cea587384cf6545b7d9ac013a0b", + "sha256:7c1699dfe0cf8ff607dbdcc1e9b9af1755371f92a68f706051cc8c37d447c905", + "sha256:88e5fcfb52ee7b911e8bb6d6aa2fd21fbecc674eadd44118a9cc3863f938e735", + "sha256:8defac2f2ccd6805ebf65f5eeb132adcf2ab57aa11fdf4c0dd5169a004710e7d", + "sha256:98c7086708b163d425c67c7a91bad6e466bb99d797aa64f965e9d25c12111a5e", + "sha256:9add70b36c5666a2ed02b43b335fe19002ee5235efd4b8a89bfcf9005bebac0d", + "sha256:9bf40443012702a1d2070043cb6291650a0841ece432556f784f004937f0f32c", + "sha256:ade5e387d2ad0d7ebf59146cc00c8044acbd863725f887353a10df825fc8ae21", + "sha256:b00c1de48212e4cc9603895652c5c410df699856a2853135b3967591e4beebc2", + "sha256:b1282f8c00509d99fef04d8ba936b156d419be841854fe901d8ae224c59f0be5", + "sha256:b2051432115498d3562c084a49bba65d97cf251f5a331c64a12ee7e04dacc51b", + "sha256:ba59edeaa2fc6114428f1637ffff42da1e311e29382d81b339c1817d37ec93c6", + "sha256:c8716a48d94b06bb3b2524c2b77e055fb313aeb4ea620c8dd03a105574ba704f", + "sha256:cd5df75523866410809ca100dc9681e301e3c27567cf498077e8551b6d20e42f", + "sha256:e249096428b3ae81b08327a63a485ad0878de3fb939049038579ac0ef61e17e7" + ], + "version": "==1.1.1" + }, + "multidict": { + "hashes": [ + "sha256:07f9a6bf75ad675d53956b2c6a2d4ef2fa63132f33ecc99e9c24cf93beb0d10b", + "sha256:0ffe4d4d28cbe9801952bfb52a8095dd9ffecebd93f84bdf973c76300de783c5", + "sha256:1b605272c558e4c659dbaf0fb32a53bfede44121bcf77b356e6e906867b958b7", + "sha256:205a011e636d885af6dd0029e41e3514a46e05bb2a43251a619a6e8348b96fc0", + "sha256:250632316295f2311e1ed43e6b26a63b0216b866b45c11441886ac1543ca96e1", + "sha256:2bc9c2579312c68a3552ee816311c8da76412e6f6a9cf33b15152e385a572d2a", + "sha256:318aadf1cfb6741c555c7dd83d94f746dc95989f4f106b25b8a83dfb547f2756", + "sha256:42cdd649741a14b0602bf15985cad0dd4696a380081a3319cd1ead46fd0f0fab", + "sha256:5159c4975931a1a78bf6602bbebaa366747fce0a56cb2111f44789d2c45e379f", + "sha256:87e26d8b89127c25659e962c61a4c655ec7445d19150daea0759516884ecb8b4", + "sha256:891b7e142885e17a894d9d22b0349b92bb2da4769b4e675665d0331c08719be5", + "sha256:8d919034420378132d074bf89df148d0193e9780c9fe7c0e495e895b8af4d8a2", + "sha256:9c890978e2b37dd0dc1bd952da9a5d9f245d4807bee33e3517e4119c48d66f8c", + "sha256:a37433ce8cdb35fc9e6e47e1606fa1bfd6d70440879038dca7d8dd023197eaa9", + "sha256:c626029841ada34c030b94a00c573a0c7575fe66489cde148785b6535397d675", + "sha256:cfec9d001a83dc73580143f3c77e898cf7ad78b27bb5e64dbe9652668fcafec7", + "sha256:efaf1b18ea6c1f577b1371c0159edbe4749558bfe983e13aa24d0a0c01e1ad7b" + ], + "version": "==4.6.1" + }, + "pint": { + "hashes": [ + "sha256:32d8a9a9d63f4f81194c0014b3b742679dce81a26d45127d9810a68a561fe4e2", + "sha256:7ece3f639ad58073ce49982b022d464014e6d91d0b3eaa89c8e8ea9c38e32659" + ], + "version": "==0.9" + }, + "psutil": { + "hashes": [ + "sha256:094f899ac3ef72422b7e00411b4ed174e3c5a2e04c267db6643937ddba67a05b", + "sha256:10b7f75cc8bd676cfc6fa40cd7d5c25b3f45a0e06d43becd7c2d2871cbb5e806", + "sha256:1b1575240ca9a90b437e5a40db662acd87bbf181f6aa02f0204978737b913c6b", + "sha256:21231ef1c1a89728e29b98a885b8e0a8e00d09018f6da5cdc1f43f988471a995", + "sha256:28f771129bfee9fc6b63d83a15d857663bbdcae3828e1cb926e91320a9b5b5cd", + "sha256:70387772f84fa5c3bb6a106915a2445e20ac8f9821c5914d7cbde148f4d7ff73", + "sha256:b560f5cd86cf8df7bcd258a851ca1ad98f0d5b8b98748e877a0aec4e9032b465", + "sha256:b74b43fecce384a57094a83d2778cdfc2e2d9a6afaadd1ebecb2e75e0d34e10d", + "sha256:e85f727ffb21539849e6012f47b12f6dd4c44965e56591d8dec6e8bc9ab96f4a", + "sha256:fd2e09bb593ad9bdd7429e779699d2d47c1268cbde4dda95fcd1bd17544a0217", + "sha256:ffad8eb2ac614518bbe3c0b8eb9dffdb3a8d2e3a7d5da51c5b974fb723a5c5aa" + ], + "version": "==5.6.7" + }, + "psycopg2": { + "hashes": [ + "sha256:4212ca404c4445dc5746c0d68db27d2cbfb87b523fe233dc84ecd24062e35677", + "sha256:47fc642bf6f427805daf52d6e52619fe0637648fe27017062d898f3bf891419d", + "sha256:72772181d9bad1fa349792a1e7384dde56742c14af2b9986013eb94a240f005b", + "sha256:8396be6e5ff844282d4d49b81631772f80dabae5658d432202faf101f5283b7c", + "sha256:893c11064b347b24ecdd277a094413e1954f8a4e8cdaf7ffbe7ca3db87c103f0", + "sha256:92a07dfd4d7c325dd177548c4134052d4842222833576c8391aab6f74038fc3f", + "sha256:965c4c93e33e6984d8031f74e51227bd755376a9df6993774fd5b6fb3288b1f4", + "sha256:9ab75e0b2820880ae24b7136c4d230383e07db014456a476d096591172569c38", + "sha256:b0845e3bdd4aa18dc2f9b6fb78fbd3d9d371ad167fd6d1b7ad01c0a6cdad4fc6", + "sha256:dca2d7203f0dfce8ea4b3efd668f8ea65cd2b35112638e488a4c12594015f67b", + "sha256:ed686e5926929887e2c7ae0a700e32c6129abb798b4ad2b846e933de21508151", + "sha256:ef6df7e14698e79c59c7ee7cf94cd62e5b869db369ed4b1b8f7b729ea825712a", + "sha256:f898e5cc0a662a9e12bde6f931263a1bbd350cfb18e1d5336a12927851825bb6" + ], + "version": "==2.8.4" + }, + "python-dateutil": { + "hashes": [ + "sha256:73ebfe9dbf22e832286dafa60473e4cd239f8592f699aa5adaf10050e6e1823c", + "sha256:75bb3f31ea686f1197762692a9ee6a7550b59fc6ca3a1f4b5d7e32fb98e2da2a" + ], + "version": "==2.8.1" + }, + "python-editor": { + "hashes": [ + "sha256:1bf6e860a8ad52a14c3ee1252d5dc25b2030618ed80c022598f00176adc8367d", + "sha256:51fda6bcc5ddbbb7063b2af7509e43bd84bfc32a4ff71349ec7847713882327b", + "sha256:5f98b069316ea1c2ed3f67e7f5df6c0d8f10b689964a4a811ff64f0106819ec8" + ], + "version": "==1.0.4" + }, + "six": { + "hashes": [ + "sha256:1f1b7d42e254082a9db6279deae68afb421ceba6158efa6131de7b3003ee93fd", + "sha256:30f610279e8b2578cab6db20741130331735c781b56053c59c4076da27f06b66" + ], + "version": "==1.13.0" + }, + "sqlalchemy": { + "hashes": [ + "sha256:afa5541e9dea8ad0014251bc9d56171ca3d8b130c9627c6cb3681cff30be3f8a" + ], + "version": "==1.3.11" + }, + "typing-extensions": { + "hashes": [ + "sha256:091ecc894d5e908ac75209f10d5b4f118fbdb2eb1ede6a63544054bb1edb41f2", + "sha256:910f4656f54de5993ad9304959ce9bb903f90aadc7c67a0bef07e678014e892d", + "sha256:cf8b63fedea4d89bab840ecbb93e75578af28f76f66c35889bd7065f5af88575" + ], + "version": "==3.7.4.1" + }, + "werkzeug": { + "hashes": [ + "sha256:7280924747b5733b246fe23972186c6b348f9ae29724135a6dfc1e53cea433e7", + "sha256:e5f4a1f98b52b18a93da705a7458e55afb26f32bff83ff5d19189f92462d65c4" + ], + "version": "==0.16.0" + }, + "yarl": { + "hashes": [ + "sha256:2e5f4f4d709aed4f689843ef605fc432d0472e3325a8e165b1ecf1e2f3f22a89", + "sha256:412fe567284bdd16a8035c5a6f541da9872804b5702378532cf2e3ef5ae4a9e6", + "sha256:629f542dfd4e964c9e32039a1515b3262dae210f8802cfcceca9f0b529c68ee7", + "sha256:7bd0b31008afcba762d75171ac09135f49bc17c8d092bce49f0b9bf2c4b51850", + "sha256:9510699e48d7565a2c1dc0a9fcb396f1ac80802991621cf02d55540d571a5dc9", + "sha256:9a07c2a1b0c8b314ad5bcea37e62c109d8c19ad9f02985e8db898a56c129984f", + "sha256:9a49055f9e3121449c76709986aee829c74e2eee3b98185542799eec97808ed1", + "sha256:b59dd6679cb2ae172eb594f484e482aaac66fbff71a717603b0f9adf01649386", + "sha256:e5d6b530bec5817be9383452728c116d59868bfbed650ccc7657b2ec9aa51c03" + ], + "version": "==1.4.0a11" + } + }, + "develop": { + "appdirs": { + "hashes": [ + "sha256:9e5896d1372858f8dd3344faf4e5014d21849c756c8d5701f78f8a103b372d92", + "sha256:d8b24664561d0d34ddfaec54636d502d7cea6e29c3eaf68f3df6180863e2166e" + ], + "version": "==1.4.3" + }, + "aspy.yaml": { + "hashes": [ + "sha256:463372c043f70160a9ec950c3f1e4c3a82db5fca01d334b6bc89c7164d744bdc", + "sha256:e7c742382eff2caed61f87a39d13f99109088e5e93f04d76eb8d4b28aa143f45" + ], + "version": "==1.3.0" + }, + "atomicwrites": { + "hashes": [ + "sha256:03472c30eb2c5d1ba9227e4c2ca66ab8287fbfbbda3888aa93dc2e28fc6811b4", + "sha256:75a9445bac02d8d058d5e1fe689654ba5a6556a1dfd8ce6ec55a0ed79866cfa6" + ], + "markers": "sys_platform == 'win32'", + "version": "==1.3.0" + }, + "attrs": { + "hashes": [ + "sha256:08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c", + "sha256:f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72" + ], + "version": "==19.3.0" + }, + "black": { + "hashes": [ + "sha256:1b30e59be925fafc1ee4565e5e08abef6b03fe455102883820fe5ee2e4734e0b", + "sha256:c2edb73a08e9e0e6f65a0e6af18b059b8b1cdd5bef997d7a0b181df93dc81539" + ], + "index": "pypi", + "version": "==19.10b0" + }, + "bleach": { + "hashes": [ + "sha256:213336e49e102af26d9cde77dd2d0397afabc5a6bf2fed985dc35b5d1e285a16", + "sha256:3fdf7f77adcf649c9911387df51254b813185e32b2c6619f690b593a617e19fa" + ], + "version": "==3.1.0" + }, + "certifi": { + "hashes": [ + "sha256:e4f3620cfea4f83eedc95b24abd9cd56f3c4b146dd0177e83a21b4eb49e21e50", + "sha256:fd7c7c74727ddcf00e9acd26bba8da604ffec95bf1c2144e67aff7a8b50e6cef" + ], + "version": "==2019.9.11" + }, + "cfgv": { + "hashes": [ + "sha256:edb387943b665bf9c434f717bf630fa78aecd53d5900d2e05da6ad6048553144", + "sha256:fbd93c9ab0a523bf7daec408f3be2ed99a980e20b2d19b50fc184ca6b820d289" + ], + "version": "==2.0.1" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:2335065e6395b9e67ca716de5f7526736bfa6ceead690adf616d925bdc622b13", + "sha256:5b94b49521f6456670fdb30cd82a4eca9412788a93fa6dd6df72c94d5a8ff2d7" + ], + "version": "==7.0" + }, + "colorama": { + "hashes": [ + "sha256:05eed71e2e327246ad6b38c540c4a3117230b19679b875190486ddd2d721422d", + "sha256:f8ac84de7840f5b9c4e3347b3c1eaa50f7e49c2b07596221daec5edaabbd7c48" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.1" + }, + "coverage": { + "hashes": [ + "sha256:2358e685d0253125da42a48396038d4c7b4cd1448c00bbc4bda0cb8c43c2a870", + "sha256:25017cf384eeed2e6caf72efd3ec4124e32a8b7a4387600499104387975400c7", + "sha256:2e2de9423ff8b14303a97eafddd16c479fbcc9a0b8b0be3b7c3843a3e0cf6d69", + "sha256:324ed908e4e40a6e2451056fe502470ad4e79495cb7a03ecab94e6309c3e117e", + "sha256:34f865a0cf6255b694a46e4383a7131c61ea72c5b4c4f81d20e522fb1e440b4b", + "sha256:3a2bcc464b60a18f1f7167b95b2773ede93bf3722bfa59e0802717f652b6cc25", + "sha256:48d70865266d649b6602e2ba94820d7972ef470d3b72a8fd41a3d17321feed3a", + "sha256:50cf23523ab3a724c6905d3b60f87fa8250d9bae3995e09f49f63effa2b54f15", + "sha256:54c84a68abd8c4c5b71878b35eb85321df41f3d144c78181867d5b026ec74994", + "sha256:5b59d661ee7f3200aedd7b71882b7927ea7ed522df75e3853f316a79ad872a2e", + "sha256:5ffb39624bc573177888a21fb301ccee46838c600b27d58c3e9dae495f44d34a", + "sha256:699b3072b7f0e69ed175a88fa8b2ec7eefc4f34d490c54ed9a52feff21a15fdc", + "sha256:79ef4a2bb862110bd585174e551a783bee5c3aa461734a2ac7429193be357589", + "sha256:8210a6f93c4a8c6d460b402e20e38399529b99200c3318542faf6a520c9b6a5c", + "sha256:8d30c10cfd0a6fdf0a2d5023de00ef7b329cd6ead2310c9e53eab79c209acb70", + "sha256:97ac79ff28f2cda6ac00a803ee582b965951755f61ab43377482bfba450b619a", + "sha256:9fe4aacacff9028ed167db108bf013510654f148d83c4857fed61d2ce0588bf2", + "sha256:a5b6395d5957d638f8b1870561607e3c39b1a236ea6cff9eafe5b9bb1db913f2", + "sha256:ab32c5fad6905986a7e34e3acf01180a69bb60c2aa7331815b46e51c776a1943", + "sha256:ad67f0cfdfecbd49b9da46a7e488e6dc32a69388740b85c36a4ef4b33082cbad", + "sha256:aedad67c30326a1af324f45833a40b97180664912deb29942459ddbe9fa0ce19", + "sha256:b077cd0e70f41366ac1f9d09275258fa1906758a5d4f31cacc18b10dfcf90784", + "sha256:b8ea210810d3c14aec7561f8fe0d3eec582d1088100aaa0bb8153d53d867d20f", + "sha256:bf572722326ce6704e863447a070039a827072b7179352570859be899b9e6551", + "sha256:c0df57e189dacd2606cae6386acf127d01d85b2bf49acd9a65543b5d6c359ddc", + "sha256:d523e75f2a8a0b4a6a8be1287c0e0e3a561b8832b05ddd987d4cd7c62f3ad3bc", + "sha256:e10593c60c5f0bfd8b241bf9f27ef2191a3005b73dde8ada0424f642543a1e59", + "sha256:e9128444c83bc260aea988bf1ca6278a33ba730955bf94720468c656b61353eb", + "sha256:f7162f2e3711f3a08a8a741f92e1f63afd58d0713177979f2cf9723dd50161cf" + ], + "version": "==5.0b1" + }, + "docutils": { + "hashes": [ + "sha256:6c4f696463b79f1fb8ba0c594b63840ebd41f059e92b31957c46b74a4599b6d0", + "sha256:9e4d7ecfc600058e07ba661411a2b7de2fd0fafa17d1a7f7361cd47b1175c827", + "sha256:a2aeea129088da402665e92e0b25b04b073c04b2dce4ab65caaa38b7ce2e1a99" + ], + "version": "==0.15.2" + }, + "entrypoints": { + "hashes": [ + "sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19", + "sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451" + ], + "version": "==0.3" + }, + "flake8": { + "hashes": [ + "sha256:45681a117ecc81e870cbf1262835ae4af5e7a8b08e40b944a8a6e6b895914cfb", + "sha256:49356e766643ad15072a789a20915d3c91dc89fd313ccd71802303fd67e4deca" + ], + "index": "pypi", + "version": "==3.7.9" + }, + "identify": { + "hashes": [ + "sha256:4f1fe9a59df4e80fcb0213086fcf502bc1765a01ea4fe8be48da3b65afd2a017", + "sha256:d8919589bd2a5f99c66302fec0ef9027b12ae150b0b0213999ad3f695fc7296e" + ], + "version": "==1.4.7" + }, + "idna": { + "hashes": [ + "sha256:c357b3f628cf53ae2c4c05627ecc484553142ca23264e593d327bcde5e9c3407", + "sha256:ea8b7f6188e6fa117537c3df7da9fc686d485087abf6ac197f9c46432f7e4a3c" + ], + "version": "==2.8" + }, + "importlib-metadata": { + "hashes": [ + "sha256:aa18d7378b00b40847790e7c27e11673d7fed219354109d0e7b9e5b25dc3ad26", + "sha256:d5f18a79777f3aa179c145737780282e27b508fc8fd688cb17c7a813e8bd39af" + ], + "markers": "python_version < '3.8'", + "version": "==0.23" + }, + "keyring": { + "hashes": [ + "sha256:91037ccaf0c9a112a76f7740e4a416b9457a69b66c2799421581bee710a974b3", + "sha256:f5bb20ea6c57c2360daf0c591931c9ea0d7660a8d9e32ca84d63273f131ea605" + ], + "version": "==19.2.0" + }, + "mccabe": { + "hashes": [ + "sha256:ab8a6258860da4b6677da4bd2fe5dc2c659cff31b3ee4f7f5d64e79735b80d42", + "sha256:dd8d182285a0fe56bace7f45b5e7d1a6ebcbf524e8f3bd87eb0f125271b8831f" + ], + "version": "==0.6.1" + }, + "more-itertools": { + "hashes": [ + "sha256:409cd48d4db7052af495b09dec721011634af3753ae1ef92d2b32f73a745f832", + "sha256:92b8c4b06dac4f0611c0729b2f2ede52b2e1bac1ab48f089c7ddc12e26bb60c4" + ], + "version": "==7.2.0" + }, + "mypy": { + "hashes": [ + "sha256:1521c186a3d200c399bd5573c828ea2db1362af7209b2adb1bb8532cea2fb36f", + "sha256:31a046ab040a84a0fc38bc93694876398e62bc9f35eca8ccbf6418b7297f4c00", + "sha256:3b1a411909c84b2ae9b8283b58b48541654b918e8513c20a400bb946aa9111ae", + "sha256:48c8bc99380575deb39f5d3400ebb6a8a1cb5cc669bbba4d3bb30f904e0a0e7d", + "sha256:540c9caa57a22d0d5d3c69047cc9dd0094d49782603eb03069821b41f9e970e9", + "sha256:672e418425d957e276c291930a3921b4a6413204f53fe7c37cad7bc57b9a3391", + "sha256:6ed3b9b3fdc7193ea7aca6f3c20549b377a56f28769783a8f27191903a54170f", + "sha256:9371290aa2cad5ad133e4cdc43892778efd13293406f7340b9ffe99d5ec7c1d9", + "sha256:ace6ac1d0f87d4072f05b5468a084a45b4eda970e4d26704f201e06d47ab2990", + "sha256:b428f883d2b3fe1d052c630642cc6afddd07d5cd7873da948644508be3b9d4a7", + "sha256:d5bf0e6ec8ba346a2cf35cb55bf4adfddbc6b6576fcc9e10863daa523e418dbb", + "sha256:d7574e283f83c08501607586b3167728c58e8442947e027d2d4c7dcd6d82f453", + "sha256:dc889c84241a857c263a2b1cd1121507db7d5b5f5e87e77147097230f374d10b", + "sha256:f4748697b349f373002656bf32fede706a0e713d67bfdcf04edf39b1f61d46eb" + ], + "index": "pypi", + "version": "==0.740" + }, + "mypy-extensions": { + "hashes": [ + "sha256:090fedd75945a69ae91ce1303b5824f428daf5a028d2f6ab8a299250a846f15d", + "sha256:2d82818f5bb3e369420cb3c4060a7970edba416647068eb4c5343488a6c604a8" + ], + "version": "==0.4.3" + }, + "nodeenv": { + "hashes": [ + "sha256:ad8259494cf1c9034539f6cced78a1da4840a4b157e23640bc4a0c0546b0cb7a" + ], + "version": "==1.3.3" + }, + "packaging": { + "hashes": [ + "sha256:28b924174df7a2fa32c1953825ff29c61e2f5e082343165438812f00d3a7fc47", + "sha256:d9551545c6d761f3def1677baf08ab2a3ca17c56879e70fecba2fc4dde4ed108" + ], + "version": "==19.2" + }, + "pathspec": { + "hashes": [ + "sha256:e285ccc8b0785beadd4c18e5708b12bb8fcf529a1e61215b3feff1d1e559ea5c" + ], + "version": "==0.6.0" + }, + "pkginfo": { + "hashes": [ + "sha256:7424f2c8511c186cd5424bbf31045b77435b37a8d604990b79d4e70d741148bb", + "sha256:a6d9e40ca61ad3ebd0b72fbadd4fba16e4c0e4df0428c041e01e06eb6ee71f32" + ], + "version": "==1.5.0.1" + }, + "pluggy": { + "hashes": [ + "sha256:15b2acde666561e1298d71b523007ed7364de07029219b604cf808bfa1c765b0", + "sha256:966c145cd83c96502c3c3868f50408687b38434af77734af1e9ca461a4081d2d" + ], + "version": "==0.13.1" + }, + "pre-commit": { + "hashes": [ + "sha256:9f152687127ec90642a2cc3e4d9e1e6240c4eb153615cb02aa1ad41d331cbb6e", + "sha256:c2e4810d2d3102d354947907514a78c5d30424d299dc0fe48f5aa049826e9b50" + ], + "index": "pypi", + "version": "==1.20.0" + }, + "py": { + "hashes": [ + "sha256:64f65755aee5b381cea27766a3a147c3f15b9b6b9ac88676de66ba2ae36793fa", + "sha256:dc639b046a6e2cff5bbe40194ad65936d6ba360b52b3c3fe1d08a82dd50b5e53" + ], + "version": "==1.8.0" + }, + "pycodestyle": { + "hashes": [ + "sha256:95a2219d12372f05704562a14ec30bc76b05a5b297b21a5dfe3f6fac3491ae56", + "sha256:e40a936c9a450ad81df37f549d676d127b1b66000a6c500caa2b085bc0ca976c" + ], + "version": "==2.5.0" + }, + "pyflakes": { + "hashes": [ + "sha256:17dbeb2e3f4d772725c777fabc446d5634d1038f234e77343108ce445ea69ce0", + "sha256:d976835886f8c5b31d47970ed689944a0262b5f3afa00a5a7b4dc81e5449f8a2" + ], + "version": "==2.1.1" + }, + "pygments": { + "hashes": [ + "sha256:71e430bc85c88a430f000ac1d9b331d2407f681d6f6aec95e8bcfbc3df5b0127", + "sha256:881c4c157e45f30af185c1ffe8d549d48ac9127433f2c380c24b84572ad66297" + ], + "version": "==2.4.2" + }, + "pyparsing": { + "hashes": [ + "sha256:20f995ecd72f2a1f4bf6b072b63b22e2eb457836601e76d6e5dfcd75436acc1f", + "sha256:4ca62001be367f01bd3e92ecbb79070272a9d4964dce6a48a82ff0b8bc7e683a" + ], + "version": "==2.4.5" + }, + "pytest": { + "hashes": [ + "sha256:1897d74f60a5d8be02e06d708b41bf2445da2ee777066bd68edf14474fc201eb", + "sha256:f6a567e20c04259d41adce9a360bd8991e6aa29dd9695c5e6bd25a9779272673" + ], + "index": "pypi", + "version": "==5.3.0" + }, + "pytest-asyncio": { + "hashes": [ + "sha256:9fac5100fd716cbecf6ef89233e8590a4ad61d729d1732e0a96b84182df1daaf", + "sha256:d734718e25cfc32d2bf78d346e99d33724deeba774cc4afdf491530c6184b63b" + ], + "index": "pypi", + "version": "==0.10.0" + }, + "pytest-cov": { + "hashes": [ + "sha256:cc6742d8bac45070217169f5f72ceee1e0e55b0221f54bcf24845972d3a47f2b", + "sha256:cdbdef4f870408ebdbfeb44e63e07eb18bb4619fae852f6e760645fa36172626" + ], + "index": "pypi", + "version": "==2.8.1" + }, + "pywin32-ctypes": { + "hashes": [ + "sha256:24ffc3b341d457d48e8922352130cf2644024a4ff09762a2261fd34c36ee5942", + "sha256:9dc2d991b3479cc2df15930958b674a48a227d5361d413827a4cfd0b5876fc98" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.2.0" + }, + "pyyaml": { + "hashes": [ + "sha256:0113bc0ec2ad727182326b61326afa3d1d8280ae1122493553fd6f4397f33df9", + "sha256:01adf0b6c6f61bd11af6e10ca52b7d4057dd0be0343eb9283c878cf3af56aee4", + "sha256:5124373960b0b3f4aa7df1707e63e9f109b5263eca5976c66e08b1c552d4eaf8", + "sha256:5ca4f10adbddae56d824b2c09668e91219bb178a1eee1faa56af6f99f11bf696", + "sha256:7907be34ffa3c5a32b60b95f4d95ea25361c951383a894fec31be7252b2b6f34", + "sha256:7ec9b2a4ed5cad025c2278a1e6a19c011c80a3caaac804fd2d329e9cc2c287c9", + "sha256:87ae4c829bb25b9fe99cf71fbb2140c448f534e24c998cc60f39ae4f94396a73", + "sha256:9de9919becc9cc2ff03637872a440195ac4241c80536632fffeb6a1e25a74299", + "sha256:a5a85b10e450c66b49f98846937e8cfca1db3127a9d5d1e31ca45c3d0bef4c5b", + "sha256:b0997827b4f6a7c286c01c5f60384d218dca4ed7d9efa945c3e1aa623d5709ae", + "sha256:b631ef96d3222e62861443cc89d6563ba3eeb816eeb96b2629345ab795e53681", + "sha256:bf47c0607522fdbca6c9e817a6e81b08491de50f3766a7a0e6a5be7905961b41", + "sha256:f81025eddd0327c7d4cfe9b62cf33190e1e736cc6e97502b3ec425f574b3e7a8" + ], + "version": "==5.1.2" + }, + "readme-renderer": { + "hashes": [ + "sha256:bb16f55b259f27f75f640acf5e00cf897845a8b3e4731b5c1a436e4b8529202f", + "sha256:c8532b79afc0375a85f10433eca157d6b50f7d6990f337fa498c96cd4bfc203d" + ], + "version": "==24.0" + }, + "regex": { + "hashes": [ + "sha256:15454b37c5a278f46f7aa2d9339bda450c300617ca2fca6558d05d870245edc7", + "sha256:1ad40708c255943a227e778b022c6497c129ad614bb7a2a2f916e12e8a359ee7", + "sha256:5e00f65cc507d13ab4dfa92c1232d004fa202c1d43a32a13940ab8a5afe2fb96", + "sha256:604dc563a02a74d70ae1f55208ddc9bfb6d9f470f6d1a5054c4bd5ae58744ab1", + "sha256:720e34a539a76a1fedcebe4397290604cc2bdf6f81eca44adb9fb2ea071c0c69", + "sha256:7caf47e4a9ac6ef08cabd3442cc4ca3386db141fb3c8b2a7e202d0470028e910", + "sha256:7faf534c1841c09d8fefa60ccde7b9903c9b528853ecf41628689793290ca143", + "sha256:b4e0406d822aa4993ac45072a584d57aa4931cf8288b5455bbf30c1d59dbad59", + "sha256:c31eaf28c6fe75ea329add0022efeed249e37861c19681960f99bbc7db981fb2", + "sha256:c7393597191fc2043c744db021643549061e12abe0b3ff5c429d806de7b93b66", + "sha256:d2b302f8cdd82c8f48e9de749d1d17f85ce9a0f082880b9a4859f66b07037dc6", + "sha256:e3d8dd0ec0ea280cf89026b0898971f5750a7bd92cb62c51af5a52abd020054a", + "sha256:ec032cbfed59bd5a4b8eab943c310acfaaa81394e14f44454ad5c9eba4f24a74" + ], + "version": "==2019.11.1" + }, + "requests": { + "hashes": [ + "sha256:11e007a8a2aa0323f5a921e9e6a2d7e4e67d9877e85773fba9ba6419025cbeb4", + "sha256:9cf5292fcd0f598c671cfc1e0d7d1a7f13bb8085e9a590f48c010551dc6c4b31" + ], + "version": "==2.22.0" + }, + "requests-toolbelt": { + "hashes": [ + "sha256:380606e1d10dc85c3bd47bf5a6095f815ec007be7a8b69c878507068df059e6f", + "sha256:968089d4584ad4ad7c171454f0a5c6dac23971e9472521ea3b6d49d610aa6fc0" + ], + "version": "==0.9.1" + }, + "six": { + "hashes": [ + "sha256:1f1b7d42e254082a9db6279deae68afb421ceba6158efa6131de7b3003ee93fd", + "sha256:30f610279e8b2578cab6db20741130331735c781b56053c59c4076da27f06b66" + ], + "version": "==1.13.0" + }, + "sqlalchemy-stubs": { + "hashes": [ + "sha256:a3318c810697164e8c818aa2d90bac570c1a0e752ced3ec25455b309c0bee8fd", + "sha256:ca1250605a39648cc433f5c70cb1a6f9fe0b60bdda4c51e1f9a2ab3651daadc8" + ], + "index": "pypi", + "version": "==0.3" + }, + "toml": { + "hashes": [ + "sha256:229f81c57791a41d65e399fc06bf0848bab550a9dfd5ed66df18ce5f05e73d5c", + "sha256:235682dd292d5899d361a811df37e04a8828a5b1da3115886b73cf81ebc9100e" + ], + "version": "==0.10.0" + }, + "tqdm": { + "hashes": [ + "sha256:5a1f3d58f3eb53264387394387fe23df469d2a3fab98c9e7f99d5c146c119873", + "sha256:f1a1613fee07cc30a253051617f2a219a785c58877f9f6bfa129446cbaf8b4c1" + ], + "version": "==4.39.0" + }, + "twine": { + "hashes": [ + "sha256:1a87ae3f1e29a87a8ac174809bf0aa996085a0368fe500402196bda94b23aab3", + "sha256:ba8ba1b39987f1c22d9162f7dd3b4668388640e5f7158c15226624f88e464836" + ], + "index": "pypi", + "version": "==3.1.0" + }, + "typed-ast": { + "hashes": [ + "sha256:1170afa46a3799e18b4c977777ce137bb53c7485379d9706af8a59f2ea1aa161", + "sha256:18511a0b3e7922276346bcb47e2ef9f38fb90fd31cb9223eed42c85d1312344e", + "sha256:262c247a82d005e43b5b7f69aff746370538e176131c32dda9cb0f324d27141e", + "sha256:2b907eb046d049bcd9892e3076c7a6456c93a25bebfe554e931620c90e6a25b0", + "sha256:354c16e5babd09f5cb0ee000d54cfa38401d8b8891eefa878ac772f827181a3c", + "sha256:48e5b1e71f25cfdef98b013263a88d7145879fbb2d5185f2a0c79fa7ebbeae47", + "sha256:4e0b70c6fc4d010f8107726af5fd37921b666f5b31d9331f0bd24ad9a088e631", + "sha256:630968c5cdee51a11c05a30453f8cd65e0cc1d2ad0d9192819df9978984529f4", + "sha256:66480f95b8167c9c5c5c87f32cf437d585937970f3fc24386f313a4c97b44e34", + "sha256:71211d26ffd12d63a83e079ff258ac9d56a1376a25bc80b1cdcdf601b855b90b", + "sha256:7954560051331d003b4e2b3eb822d9dd2e376fa4f6d98fee32f452f52dd6ebb2", + "sha256:838997f4310012cf2e1ad3803bce2f3402e9ffb71ded61b5ee22617b3a7f6b6e", + "sha256:95bd11af7eafc16e829af2d3df510cecfd4387f6453355188342c3e79a2ec87a", + "sha256:bc6c7d3fa1325a0c6613512a093bc2a2a15aeec350451cbdf9e1d4bffe3e3233", + "sha256:cc34a6f5b426748a507dd5d1de4c1978f2eb5626d51326e43280941206c209e1", + "sha256:d755f03c1e4a51e9b24d899561fec4ccaf51f210d52abdf8c07ee2849b212a36", + "sha256:d7c45933b1bdfaf9f36c579671fec15d25b06c8398f113dab64c18ed1adda01d", + "sha256:d896919306dd0aa22d0132f62a1b78d11aaf4c9fc5b3410d3c666b818191630a", + "sha256:fdc1c9bbf79510b76408840e009ed65958feba92a88833cdceecff93ae8fff66", + "sha256:ffde2fbfad571af120fcbfbbc61c72469e72f550d676c3342492a9dfdefb8f12" + ], + "version": "==1.4.0" + }, + "typing-extensions": { + "hashes": [ + "sha256:091ecc894d5e908ac75209f10d5b4f118fbdb2eb1ede6a63544054bb1edb41f2", + "sha256:910f4656f54de5993ad9304959ce9bb903f90aadc7c67a0bef07e678014e892d", + "sha256:cf8b63fedea4d89bab840ecbb93e75578af28f76f66c35889bd7065f5af88575" + ], + "version": "==3.7.4.1" + }, + "urllib3": { + "hashes": [ + "sha256:a8a318824cc77d1fd4b2bec2ded92646630d7fe8619497b142c84a9e6f5a7293", + "sha256:f3c5fd51747d450d4dcf6f923c81f78f811aab8205fda64b0aba34a4e48b0745" + ], + "version": "==1.25.7" + }, + "virtualenv": { + "hashes": [ + "sha256:116655188441670978117d0ebb6451eb6a7526f9ae0796cc0dee6bd7356909b0", + "sha256:b57776b44f91511866594e477dd10e76a6eb44439cdd7f06dcd30ba4c5bd854f" + ], + "version": "==16.7.8" + }, + "wcwidth": { + "hashes": [ + "sha256:3df37372226d6e63e1b1e1eda15c594bca98a22d33a23832a90998faa96bc65e", + "sha256:f4ebe71925af7b40a864553f761ed559b43544f8f71746c2d756c7fe788ade7c" + ], + "version": "==0.1.7" + }, + "webencodings": { + "hashes": [ + "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", + "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923" + ], + "version": "==0.5.1" + }, + "wheel": { + "hashes": [ + "sha256:10c9da68765315ed98850f8e048347c3eb06dd81822dc2ab1d4fde9dc9702646", + "sha256:f4da1763d3becf2e2cd92a14a7c920f0f00eca30fdde9ea992c836685b9faf28" + ], + "index": "pypi", + "version": "==0.33.6" + }, + "zipp": { + "hashes": [ + "sha256:3718b1cbcd963c7d4c5511a8240812904164b7f381b647143a89d3b98f9bcd8e", + "sha256:f06903e9f1f43b12d371004b4ac7b06ab39a44adc747266928ae6debfa7b3335" + ], + "version": "==0.6.0" + } + } +} diff --git a/Ch09/apd.aggregation-chapter09-ex03/README.md b/Ch09/apd.aggregation-chapter09-ex03/README.md new file mode 100644 index 0000000..85669dd --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03/README.md @@ -0,0 +1,4 @@ +# APD Sensor aggregator + +A programme that queries apd.sensor endpoints and aggregates their results. + diff --git a/Ch09/apd.aggregation-chapter09-ex03/pyproject.toml b/Ch09/apd.aggregation-chapter09-ex03/pyproject.toml new file mode 100644 index 0000000..4d3bb67 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03/pyproject.toml @@ -0,0 +1,5 @@ +[build-system] +requires = [ + "setuptools", +] +build-backend = "setuptools.build_meta" diff --git a/Ch09/apd.aggregation-chapter09-ex03/pytest.ini b/Ch09/apd.aggregation-chapter09-ex03/pytest.ini new file mode 100644 index 0000000..c1d3e58 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03/pytest.ini @@ -0,0 +1,3 @@ +[pytest] +markers = + functional: these tests are significantly slower as they start a HTTP server \ No newline at end of file diff --git a/Ch09/apd.aggregation-chapter09-ex03/setup.cfg b/Ch09/apd.aggregation-chapter09-ex03/setup.cfg new file mode 100644 index 0000000..73fc36a --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03/setup.cfg @@ -0,0 +1,77 @@ +[mypy] +namespace_packages = True +mypy_path = src +plugins = sqlmypy + +[mypy-alembic] +ignore_missing_imports = True + +[mypy-alembic.config] +ignore_missing_imports = True + +[mypy-alembic.script] +ignore_missing_imports = True + +[mypy-alembic.runtime.environment] +ignore_missing_imports = True + +[mypy-matplotlib] +ignore_missing_imports = True + +[mypy-matplotlib.axes._base] +ignore_missing_imports = True + +[mypy-matplotlib.figure] +ignore_missing_imports = True + +[mypy-matplotlib.pyplot] +ignore_missing_imports = True + + +[mypy-pint] +ignore_missing_imports = True + +[mypy-pytest] +ignore_missing_imports = True + +[flake8] +max-line-length = 120 +ignore = E501 + +[metadata] +name = apd.aggregation +version = attr: apd.aggregation.VERSION +description = A programme that queries apd.sensor endpoints and aggregates their results. +long_description = file: README.md, CHANGES.md, LICENCE +long_description_content_type = text/markdown +keywords = +license = BSD +classifiers = + Programming Language :: Python :: 3 + Programming Language :: Python :: 3.7 + +[options] +zip_safe = False +include_package_data = True +package_dir = + =src +packages = find_namespace: +install_requires = + sqlalchemy + aiohttp + pint + psycopg2 + alembic + click + + +[options.extras_require] +jupyter = ipywidgets + +[options.packages.find] +where = src + +[options.entry_points] +console_scripts = + collect_sensor_data = apd.aggregation.cli:collect_sensor_data + sensor_deployments = apd.aggregation.cli:deployments diff --git a/Ch09/apd.aggregation-chapter09-ex03/setup.py b/Ch09/apd.aggregation-chapter09-ex03/setup.py new file mode 100644 index 0000000..6068493 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03/setup.py @@ -0,0 +1,3 @@ +from setuptools import setup + +setup() diff --git a/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/__init__.py b/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/__init__.py new file mode 100644 index 0000000..3277f64 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/__init__.py @@ -0,0 +1 @@ +VERSION = "1.0.0" diff --git a/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/alembic/README b/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/alembic/README new file mode 100644 index 0000000..97a87d5 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/alembic/README @@ -0,0 +1,12 @@ +Generic single-database configuration. + + +# Database setup + +To generate the required database tables you must create an alembic.ini file, as follows: + + [alembic] + script_location = apd.aggregation:alembic + sqlalchemy.url = postgresql+psycopg2://apd@localhost/apd + +and run `alembic upgrade head`. This should also be done after every upgrade of the software. \ No newline at end of file diff --git a/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/alembic/env.py b/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/alembic/env.py new file mode 100644 index 0000000..4c8a2c2 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/alembic/env.py @@ -0,0 +1,80 @@ +from logging.config import fileConfig + +from sqlalchemy import engine_from_config +from sqlalchemy import pool +from alembic import context + +from apd.aggregation.database import metadata + + +# this is the Alembic Config object, which provides +# access to the values within the .ini file in use. +config = context.config + +# Interpret the config file for Python logging. +# This line sets up loggers basically. +if config.config_file_name: + fileConfig(config.config_file_name) + +target_metadata = metadata + + +def include_object(object, name, type_, reflected, compare_to): + if object.info.get("is_view", False): + return False + return True + + +def run_migrations_offline(): + """Run migrations in 'offline' mode. + + This configures the context with just a URL + and not an Engine, though an Engine is acceptable + here as well. By skipping the Engine creation + we don't even need a DBAPI to be available. + + Calls to context.execute() here emit the given string to the + script output. + + """ + url = config.get_main_option("sqlalchemy.url") + context.configure( + url=url, + include_object=include_object, + target_metadata=target_metadata, + literal_binds=True, + dialect_opts={"paramstyle": "named"}, + ) + + with context.begin_transaction(): + context.run_migrations() + + +def run_migrations_online(): + """Run migrations in 'online' mode. + + In this scenario we need to create an Engine + and associate a connection with the context. + + """ + connectable = engine_from_config( + config.get_section(config.config_ini_section), + prefix="sqlalchemy.", + poolclass=pool.NullPool, + ) + + with connectable.connect() as connection: + context.configure( + connection=connection, + target_metadata=target_metadata, + include_object=include_object, + ) + + with context.begin_transaction(): + context.run_migrations() + + +if context.is_offline_mode(): + run_migrations_offline() +else: + run_migrations_online() diff --git a/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/alembic/script.py.mako b/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/alembic/script.py.mako new file mode 100644 index 0000000..2c01563 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/alembic/script.py.mako @@ -0,0 +1,24 @@ +"""${message} + +Revision ID: ${up_revision} +Revises: ${down_revision | comma,n} +Create Date: ${create_date} + +""" +from alembic import op +import sqlalchemy as sa +${imports if imports else ""} + +# revision identifiers, used by Alembic. +revision = ${repr(up_revision)} +down_revision = ${repr(down_revision)} +branch_labels = ${repr(branch_labels)} +depends_on = ${repr(depends_on)} + + +def upgrade(): + ${upgrades if upgrades else "pass"} + + +def downgrade(): + ${downgrades if downgrades else "pass"} diff --git a/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py b/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py new file mode 100644 index 0000000..ef671bd --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py @@ -0,0 +1,32 @@ +"""Add indexes to datapoints + +Revision ID: 4b2df8a6e1ce +Revises: 6d2eacd5da3f +Create Date: 2019-12-02 16:07:41.123116 + +""" +from alembic import op + + +# revision identifiers, used by Alembic. +revision = "4b2df8a6e1ce" +down_revision = "6d2eacd5da3f" +branch_labels = None +depends_on = None + + +def upgrade(): + op.create_index( + op.f("ix_datapoints_collected_at"), + "datapoints", + ["collected_at"], + unique=False, + ) + op.create_index( + op.f("ix_datapoints_sensor_name"), "datapoints", ["sensor_name"], unique=False, + ) + + +def downgrade(): + op.drop_index(op.f("ix_datapoints_sensor_name"), table_name="datapoints") + op.drop_index(op.f("ix_datapoints_collected_at"), table_name="datapoints") diff --git a/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py b/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py new file mode 100644 index 0000000..eb02455 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py @@ -0,0 +1,38 @@ +"""Add daily summary view + +Revision ID: 6962f8455a6d +Revises: 4b2df8a6e1ce +Create Date: 2019-12-03 11:50:24.403402 + +""" +from alembic import op + + +# revision identifiers, used by Alembic. +revision = "6962f8455a6d" +down_revision = "4b2df8a6e1ce" +branch_labels = None +depends_on = None + + +def upgrade(): + create_view = """ + CREATE VIEW daily_summary AS + SELECT + datapoints.sensor_name AS sensor_name, + datapoints.data AS data, + count(datapoints.id) AS count + FROM datapoints + WHERE + datapoints.collected_at >= CAST(CURRENT_DATE AS DATE) + AND + datapoints.collected_at < CAST(CURRENT_DATE AS DATE) + 1 + GROUP BY + datapoints.sensor_name, + datapoints.data; + """ + op.execute(create_view) + + +def downgrade(): + op.execute("""DROP VIEW daily_summary""") diff --git a/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py b/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py new file mode 100644 index 0000000..b4a3545 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py @@ -0,0 +1,31 @@ +"""Create datapoints table + +Revision ID: 6d2eacd5da3f +Revises: N/A +Create Date: 2019-09-29 13:43:21.242706 + +""" +from alembic import op +import sqlalchemy as sa +from sqlalchemy.dialects import postgresql + +# revision identifiers, used by Alembic. +revision = "6d2eacd5da3f" +down_revision = None +branch_labels = None +depends_on = None + + +def upgrade(): + op.create_table( + "datapoints", + sa.Column("id", sa.Integer(), nullable=False), + sa.Column("sensor_name", sa.String(), nullable=True), + sa.Column("collected_at", postgresql.TIMESTAMP(), nullable=True), + sa.Column("data", postgresql.JSONB(astext_type=sa.Text()), nullable=True), + sa.PrimaryKeyConstraint("id"), + ) + + +def downgrade(): + op.drop_table("datapoints") diff --git a/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/alembic/versions/d8cdc709086b_add_deployment_table.py b/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/alembic/versions/d8cdc709086b_add_deployment_table.py new file mode 100644 index 0000000..204e096 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/alembic/versions/d8cdc709086b_add_deployment_table.py @@ -0,0 +1,32 @@ +"""Add deployment table + +Revision ID: d8cdc709086b +Revises: d8d4cf6a178f +Create Date: 2019-12-17 16:28:58.585616 + +""" +from alembic import op +import sqlalchemy as sa +from sqlalchemy.dialects import postgresql + +# revision identifiers, used by Alembic. +revision = "d8cdc709086b" +down_revision = "d8d4cf6a178f" +branch_labels = None +depends_on = None + + +def upgrade(): + op.create_table( + "deployments", + sa.Column("id", postgresql.UUID(as_uuid=True), nullable=False), + sa.Column("uri", sa.String(), nullable=True), + sa.Column("name", sa.String(), nullable=True), + sa.Column("colour", sa.String(), nullable=True), + sa.Column("api_key", sa.String(), nullable=True), + sa.PrimaryKeyConstraint("id"), + ) + + +def downgrade(): + op.drop_table("deployments") diff --git a/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py b/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py new file mode 100644 index 0000000..88d5219 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py @@ -0,0 +1,34 @@ +"""Add deployment id to DataPoint + +Revision ID: d8d4cf6a178f +Revises: 6962f8455a6d +Create Date: 2019-12-03 20:58:11.285509 + +""" +from alembic import op +import sqlalchemy as sa +from sqlalchemy.dialects import postgresql + +# revision identifiers, used by Alembic. +revision = "d8d4cf6a178f" +down_revision = "6962f8455a6d" +branch_labels = None +depends_on = None + + +def upgrade(): + op.add_column( + "datapoints", + sa.Column("deployment_id", postgresql.UUID(as_uuid=True), nullable=True), + ) + op.create_index( + op.f("ix_datapoints_deployment_id"), + "datapoints", + ["deployment_id"], + unique=False, + ) + + +def downgrade(): + op.drop_index(op.f("ix_datapoints_deployment_id"), table_name="datapoints") + op.drop_column("datapoints", "deployment_id") diff --git a/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/analysis.py b/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/analysis.py new file mode 100644 index 0000000..e17278d --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/analysis.py @@ -0,0 +1,381 @@ +from __future__ import annotations + +import asyncio +import collections +from concurrent.futures import ThreadPoolExecutor +import dataclasses +import datetime +import functools +import math +import typing as t +from uuid import UUID + +import matplotlib.pyplot as plt +from matplotlib.axes._base import _AxesBase +from matplotlib.figure import Figure +from pint import _DEFAULT_REGISTRY as ureg + +from apd.aggregation.query import ( + get_data, + get_data_by_deployment, + with_database, + get_deployment_by_id, +) +from apd.aggregation.database import DataPoint, deployment_table +from .utils import merc_x, merc_y + +plot_key = t.TypeVar("plot_key") +plot_value = t.TypeVar("plot_value") + +# Static UUID to represent aggregation of other deployments +GLOBAL = UUID("bd02526e-7619-4a59-b04b-1fafd1c262d1") + + +@dataclasses.dataclass +class Config(t.Generic[plot_key, plot_value]): + title: str + clean: t.Callable[ + [t.AsyncIterator[DataPoint]], t.AsyncIterator[t.Tuple[plot_key, plot_value]] + ] + draw: t.Optional[ + t.Callable[ + [t.Any, t.Iterable[plot_key], t.Iterable[plot_value], t.Optional[str]], None + ] + ] = None + get_data: t.Optional[ + t.Callable[..., t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]] + ] = None + ylabel: t.Optional[str] = None + sensor_name: dataclasses.InitVar[str] = None + + def __post_init__(self, sensor_name: t.Optional[str] = None) -> None: + if self.draw is None: + self.draw = draw_date # type: ignore + if self.get_data is None: + if sensor_name is None: + raise ValueError("You must specify either get_data or sensor_name") + self.get_data = get_one_sensor_by_deployment(sensor_name) + + +def draw_date( + plot: _AxesBase, + x: t.Iterable[datetime.datetime], + y: t.Iterable[float], + colour: t.Optional[str], +) -> None: + plot.plot_date(x, y, color=colour, linestyle="-", marker="", xdate=True) + + +def draw_map( + plot: _AxesBase, + x: t.Iterable[t.Tuple[float, float]], + y: t.Iterable[float], + colour: t.Optional[str], +) -> None: + lon = [merc_y(coord[0]) for coord in x] + lat = [merc_x(coord[1]) for coord in x] + + for axis in "x", "y": + plt.tick_params( + axis=axis, + which="both", + bottom=False, + top=False, + left=False, + right=False, + labelbottom=False, + labelleft=False, + ) + + plot.tricontourf(lat, lon, y) + plot.plot(lat, lon, "wo", ms=3) + plot.set_aspect(1.0) + + +def get_map_cleaner_for( + sensor_name: str, +) -> t.Callable[ + [t.AsyncIterator[DataPoint]], t.AsyncIterator[t.Tuple[t.Tuple[float, float], float]] +]: + """Given a sensor_name that represents a float, return a coroutine that acts as a cleaner + extracting that sensor's data keyed by the value of a Location sensor.""" + + async def clean_latest_coord_and_value( + datapoints: t.AsyncIterator[DataPoint], + ) -> t.AsyncIterator[t.Tuple[t.Tuple[float, float], float]]: + + # We will be building a dictionary of UUID to dictionary + # That inner dictionary should contain coord (float, float) + # and value (float) only. Either or both can be None. + class IntermediateData(t.TypedDict): + coord: t.Optional[t.Tuple[float, float]] + value: t.Optional[float] + + # We will iterate over data points and build an entry in cleaned_data + # for each deployment. This lets newer data replace older data, as + # datapoints is assumed to be in date order + cleaned_data: t.Dict[UUID, IntermediateData] = {} + async for datapoint in datapoints: + # Get the existing data for this deployment, if we've seen it before + row_data = cleaned_data.get(datapoint.deployment_id, None) + if row_data is None: + # This is the first time we've seen this deployment + row_data = {"coord": None, "value": None} + if datapoint.sensor_name == "Location": + # Coord is a 2-tuple of floats + row_data["coord"] = ( + float(datapoint.data[0]), + float(datapoint.data[1]), + ) + elif datapoint.sensor_name == sensor_name: + # Value is a single float + row_data["value"] = float(datapoint.data) + # Store the info about this deployment back into the cleaned_data set + cleaned_data[datapoint.deployment_id] + + for data in cleaned_data.values(): + if data["coord"] is None or data["value"] is None: + # We only got a partial record, don't plot this + continue + yield data["coord"], data["value"] + + # Return the set up cleaner coroutine + return clean_latest_coord_and_value + + +async def clean_watthours_to_watts( + datapoints: t.AsyncIterator[DataPoint], +) -> t.AsyncIterator[t.Tuple[datetime.datetime, float]]: + last_watthours = None + last_time = None + async for datapoint in datapoints: + if datapoint.data is None: + continue + time = datapoint.collected_at + watthours = ureg.Quantity(datapoint.data["magnitude"], datapoint.data["unit"]) + if last_watthours: + seconds_elapsed = (time - last_time).total_seconds() + time_elapsed = ureg.Quantity(seconds_elapsed, ureg.second) + additional_power = watthours - last_watthours + power = additional_power / time_elapsed + yield time, power.to(ureg.watt).magnitude + last_watthours = watthours + last_time = datapoint.collected_at + + +async def clean_magnitude( + datapoints: t.AsyncIterator[DataPoint], +) -> t.AsyncIterator[t.Tuple[datetime.datetime, float]]: + async for datapoint in datapoints: + if datapoint.data is None: + continue + yield datapoint.collected_at, datapoint.data["magnitude"] + + +async def clean_temperature_fluctuations( + datapoints: t.AsyncIterator[DataPoint], +) -> t.AsyncIterator[t.Tuple[datetime.datetime, float]]: + allowed_jitter = 2.5 + allowed_range = (-40, 80) + window_datapoints: t.Deque[DataPoint] = collections.deque(maxlen=3) + + def datapoint_ok(datapoint: DataPoint) -> bool: + """Return False if this data point does not contain a valid temperature""" + if datapoint.data is None: + return False + elif datapoint.data["unit"] != "degC": + # This point is in a different temperature system. While it could be converted + # this cleaner is not yet doing that. + return False + elif not allowed_range[0] < datapoint.data["magnitude"] < allowed_range[1]: + return False + return True + + async for datapoint in datapoints: + if not datapoint_ok(datapoint): + # If the datapoint is invalid then skip directly to the next item + continue + + window_datapoints.append(datapoint) + if len(window_datapoints) == 3: + # Find the temperatures of the datapoints in the window, then average + # the first and last and compare that to the middle point. + window_temperatures = [dp.data["magnitude"] for dp in window_datapoints] + avr_first_last = (window_temperatures[0] + window_temperatures[2]) / 2 + diff_middle_avr = abs(window_temperatures[1] - avr_first_last) + if diff_middle_avr > allowed_jitter: + pass + else: + yield window_datapoints[1].collected_at, window_temperatures[1] + elif len(window_datapoints) == 1: + # The item in the iterator can't be compared to both neighbours + # so should be yielded + yield datapoint.collected_at, datapoint.data["magnitude"] + else: + # Otherwise, let the window fill up, it will be yieleded later + pass + # When the iterator ends the final item is not yet in the middle + # of the window, so the last item must be explicitly yielded. + if len(window_datapoints) > 1 and datapoint_ok(datapoint): + yield datapoint.collected_at, datapoint.data["magnitude"] + + +async def clean_passthrough( + datapoints: t.AsyncIterator[DataPoint], +) -> t.AsyncIterator[t.Tuple[datetime.datetime, float]]: + async for datapoint in datapoints: + if datapoint.data is None: + continue + else: + yield datapoint.collected_at, datapoint.data + + +def get_one_sensor_by_deployment( + sensor_name: str, +) -> t.Callable[..., t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]]: + return functools.partial(get_data_by_deployment, sensor_name=sensor_name) + + +def get_all_data() -> t.Callable[ + ..., t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]] +]: + async def get_all_data_inner( + *args: t.Any, **kwargs: t.Any + ) -> t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]: + yield GLOBAL, get_data(*args, **kwargs) + + return get_all_data_inner + + +configs = ( + Config( + sensor_name="SolarCumulativeOutput", + clean=clean_watthours_to_watts, + title="Solar generation", + ylabel="Watts", + ), + Config( + sensor_name="RAMAvailable", + clean=clean_passthrough, + title="RAM available", + ylabel="Bytes", + ), + Config( + sensor_name="RelativeHumidity", + clean=clean_passthrough, + title="Relative humidity", + ylabel="Percent", + ), + Config( + sensor_name="Temperature", + clean=clean_temperature_fluctuations, + title="Ambient temperature", + ylabel="Degrees C", + ), +) + + +def get_known_configs() -> t.Dict[str, Config[t.Any, t.Any]]: + return {config.title: config for config in configs} + + +async def plot_sensor( + config: Config[t.Any, t.Any], + plot: _AxesBase, + location_names: t.Dict[UUID, str], + **kwargs: t.Any +) -> _AxesBase: + locations = [] + if config.get_data is None: + raise ValueError("You must provide a get_data function") + async for deployment_id, query_results in config.get_data(**kwargs): + if deployment_id == GLOBAL: + name = "Global" + else: + try: + deployment = await get_deployment_by_id(deployment_id) + except IndexError: + name = str(deployment_id) + colour = None + else: + name = deployment.name or str(deployment_id) + colour = deployment.colour + # Mypy currently doesn't understand callable fields on datatypes: https://github.com/python/mypy/issues/5485 + points = [dp async for dp in config.clean(query_results)] # type: ignore + if not points: + continue + locations.append(name) + x, y = zip(*points) + plot.set_title(config.title) + plot.set_ylabel(config.ylabel) + if config.draw is None: + raise ValueError("You must provide a get_data function") + config.draw(plot, x, y, colour) + plot.legend(locations) + return plot + + +_Coroutine_Result = t.TypeVar("_Coroutine_Result") + + +def wrap_coroutine( + f: t.Callable[..., t.Coroutine[t.Any, t.Any, _Coroutine_Result]] +) -> t.Callable[..., _Coroutine_Result]: + """Given a coroutine, return a function that runs that coroutine + in a new event loop in an isolated thread""" + + @functools.wraps(f) + def run_in_thread(*args: t.Any, **kwargs: t.Any) -> _Coroutine_Result: + loop = asyncio.new_event_loop() + wrapped = f(*args, **kwargs) + with ThreadPoolExecutor(max_workers=1) as pool: + task = pool.submit(loop.run_until_complete, wrapped) + # Mypy can get confused when nesting generic functions, like we do here + # The fact that Task is generic means we lose the association with + # _CoroutineResult. Adding an explicit cast restores this. + return t.cast(_Coroutine_Result, task.result()) + + return run_in_thread + + +async def plot_multiple_charts(*args: t.Any, **kwargs: t.Any) -> Figure: + # These parameters are pulled from kwargs to avoid confusing function + # introspection code in IPython widgets + location_names = kwargs.pop("location_names", None) + configs = kwargs.pop("configs", None) + dimensions = kwargs.pop("dimensions", None) + + with with_database("postgresql+psycopg2://apd@localhost/apd") as session: + loop = asyncio.get_running_loop() + coros = [] + if configs is None: + # If no configs are supplied, use all known configs + configs = get_known_configs().values() + if dimensions is None: + # If no dimensions are supplied, get the square root of the number + # of configs and round it to find a number of columns. This will + # keep the arrangement approximately square. Find rows by multiplying + # out rows. + total_configs = len(configs) + columns = round(math.sqrt(total_configs)) + rows = math.ceil(total_configs / columns) + if location_names is None: + location_query = session.query( + deployment_table.c.id, deployment_table.c.name + ) + location_data = await loop.run_in_executor(None, location_query.all) + location_names = dict(location_data) + + figure = plt.figure(figsize=(10 * columns, 5 * rows), dpi=300) + for i, config in enumerate(configs, start=1): + plot = figure.add_subplot(columns, rows, i) + coros.append(plot_sensor(config, plot, location_names, *args, **kwargs)) + await asyncio.gather(*coros) + return figure + + +def interactable_plot_multiple_charts( + *args: t.Any, **kwargs: t.Any +) -> t.Callable[..., Figure]: + with_config = functools.partial(plot_multiple_charts, *args, **kwargs) + return wrap_coroutine(with_config) diff --git a/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/cli.py b/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/cli.py new file mode 100644 index 0000000..6e98436 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/cli.py @@ -0,0 +1,184 @@ +import asyncio +import typing as t +import uuid + +import aiohttp +import click +from sqlalchemy import create_engine +from sqlalchemy.orm import sessionmaker + +from . import collect +from .database import Deployment, deployment_table + + +@click.command() +@click.argument("server", nargs=-1) +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +@click.option("--api-key", metavar="", envvar="APD_API_KEY") +@click.option( + "--tolerate-failures", + "-f", + help="If provided, failure to retrieve some sensors' data will not abort the collection process", + is_flag=True, +) +@click.option("-v", "--verbose", is_flag=True, help="Enables verbose mode") +def collect_sensor_data( + db: str, server: t.Tuple[str], api_key: str, tolerate_failures: bool, verbose: bool +): + """This loads data from one or more sensors into the specified database. + + Only PostgreSQL databases are supported, as the column definitions use + multiple pg specific features. The database must already exist and be + populated with the required tables. + + The --api-key option is used to specify the access token for the sensors + being queried. + + You may specify any number of servers, the variable should be the full URL + to the sensor's HTTP interface, not including the /v/2.0 portion. Multiple + URLs should be separated with a space. + """ + if tolerate_failures: + attempts = [(s,) for s in server] + else: + attempts = [server] + success = True + for attempt in attempts: + try: + collect.standalone(db, attempt, api_key, echo=verbose) + except ValueError as e: + click.secho(str(e), err=True, fg="red") + success = False + return success + + +@click.group() +def deployments(): + pass + + +@deployments.command() +@click.argument("uri") +@click.argument("name") +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +@click.option("--api-key", metavar="", envvar="APD_API_KEY") +@click.option("--colour") +def add( + db: str, uri: str, name: str, api_key: t.Optional[str], colour: t.Optional[str], +): + """This creates a record of a new deployment in the database. + """ + deployment = Deployment(id=None, uri=uri, name=name, api_key=api_key, colour=colour) + + async def http_get_deployment_id(): + async with aiohttp.ClientSession() as http: + collect.http_session_var.set(http) + return await collect.get_deployment_id(uri) + + deployment.id = asyncio.run(http_get_deployment_id()) + insert = deployment_table.insert().values(**deployment._asdict()) + + engine = create_engine(db) + sm = sessionmaker(engine) + Session = sm() + Session.execute(insert) + Session.commit() + return True + + +@deployments.command() +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +def list(db: str): + """This creates a record of a new deployment in the database. + """ + engine = create_engine(db) + sm = sessionmaker(engine) + Session = sm() + deployments = Session.query(deployment_table).all() + for deployment in deployments: + click.secho(deployment.name, bold=True) + click.echo(click.style("ID ", bold=True) + deployment.id.hex) + click.echo(click.style("URI ", bold=True) + deployment.uri) + click.echo(click.style("API key ", bold=True) + deployment.api_key) + click.echo(click.style("Colour ", bold=True) + str(deployment.colour)) + click.echo() + Session.rollback() + return True + + +@deployments.command() +@click.argument("id") +@click.option("--uri") +@click.option("--name") +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +@click.option("--api-key", metavar="", envvar="APD_API_KEY") +@click.option("--colour") +def edit( + db: str, + id, + uri: t.Optional[str], + name: t.Optional[str], + api_key: t.Optional[str], + colour: t.Optional[str], +): + """This creates a record of a new deployment in the database. + """ + update = {} + if uri is not None: + update["uri"] = uri + if name is not None: + update["name"] = name + if api_key is not None: + update["api_key"] = api_key + if colour is not None: + update["colour"] = colour + deployment_id = uuid.UUID(id) + + update = ( + deployment_table.update() + .where(deployment_table.c.id == deployment_id) + .values(**update) + ) + + engine = create_engine(db) + sm = sessionmaker(engine) + Session = sm() + Session.execute(update) + deployments = Session.query(deployment_table).filter( + deployment_table.c.id == deployment_id + ) + Session.commit() + + for deployment in deployments: + click.secho(deployment.name, bold=True) + click.echo(click.style("ID ", bold=True) + deployment.id.hex) + click.echo(click.style("URI ", bold=True) + deployment.uri) + click.echo(click.style("API key ", bold=True) + deployment.api_key) + click.echo(click.style("Colour ", bold=True) + str(deployment.colour)) + click.echo() + + return True diff --git a/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/collect.py b/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/collect.py new file mode 100644 index 0000000..1d9ea08 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/collect.py @@ -0,0 +1,112 @@ +import asyncio +from contextvars import ContextVar +import datetime +import typing as t +import uuid + +import aiohttp +from sqlalchemy import create_engine +from sqlalchemy.orm import sessionmaker +from sqlalchemy.orm.session import Session + +from .database import DataPoint, datapoint_table, Deployment, deployment_table + +http_session_var: ContextVar[aiohttp.ClientSession] = ContextVar("http_session") + + +async def get_deployment_id(server): + http = http_session_var.get() + if not server.endswith("/"): + server += "/" + url = server + "v/2.1/deployment_id" + async with http.get(url) as request: + if request.status != 200: + raise ValueError(f"Error loading deployment id from {server}") + result = await request.json() + return uuid.UUID(result["deployment_id"]) + + +async def get_data_points(server: str, api_key: t.Optional[str],) -> t.List[DataPoint]: + if not server.endswith("/"): + server += "/" + url = server + "v/2.1/sensors/" + headers = {} + if api_key: + headers["X-API-KEY"] = api_key + http = http_session_var.get() + + # Get the deployment ID in parallel to the sensor data + deployment_id = asyncio.create_task(get_deployment_id(server)) + + async with http.get(url, headers=headers) as request: + result = await request.json() + ok = request.status == 200 + now = datetime.datetime.now() + if ok: + points = [] + for value in result["sensors"]: + points.append( + DataPoint( + sensor_name=value["id"], + collected_at=now, + data=value["value"], + deployment_id=await deployment_id, + ) + ) + return points + else: + raise ValueError( + f"Error loading data from {server}: " + result.get("error", "Unknown") + ) + + +def handle_result(result: t.List[DataPoint], session: Session) -> t.List[DataPoint]: + for point in result: + insert = datapoint_table.insert().values(**point._asdict()) + sql_result = session.execute(insert) + point.id = sql_result.inserted_primary_key[0] + return result + + +async def add_data_from_sensors( + session: Session, servers: t.Iterable[Deployment] +) -> t.List[DataPoint]: + tasks: t.List[t.Awaitable[t.List[DataPoint]]] = [] + points: t.List[DataPoint] = [] + async with aiohttp.ClientSession() as http: + http_session_var.set(http) + tasks = [get_data_points(server.uri, server.api_key) for server in servers] + for results in await asyncio.gather(*tasks): + points += results + loop = asyncio.get_running_loop() + await loop.run_in_executor(None, handle_result, points, session) + return points + + +def standalone( + db_uri: str, servers: t.Tuple[str], api_key: t.Optional[str], echo: bool = False +) -> None: + engine = create_engine(db_uri, echo=echo) + sm = sessionmaker(engine) + Session = sm() + deployments: t.Iterable[Deployment] + if servers: + deployments = tuple( + Deployment(id=None, name=None, colour=None, api_key=api_key, uri=server) + for server in servers + ) + else: + deployment_data = Session.query(deployment_table).all() + deployments = tuple( + Deployment.from_sql_result(deployment) for deployment in deployment_data + ) + asyncio.run(add_data_from_sensors(Session, deployments)) + Session.commit() + + +if __name__ == "__main__": + standalone( + db_uri="postgresql+psycopg2://apd@localhost/apd", + servers=("http://pvoutput:8080/",), + api_key="h3hdfjksfhwkjehnwekj", + ) diff --git a/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/database.py b/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/database.py new file mode 100644 index 0000000..f28b469 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/database.py @@ -0,0 +1,129 @@ +from __future__ import annotations + +from dataclasses import dataclass, field, asdict +import datetime +import typing as t +import uuid + +import sqlalchemy +from sqlalchemy.dialects.postgresql import JSONB, DATE, TIMESTAMP, UUID +from sqlalchemy.ext.hybrid import ExprComparator, hybrid_property +from sqlalchemy.orm import sessionmaker +from sqlalchemy.schema import Table + + +metadata = sqlalchemy.MetaData() + +deployment_table = Table( + "deployments", + metadata, + sqlalchemy.Column("id", UUID(as_uuid=True), primary_key=True), + sqlalchemy.Column("uri", sqlalchemy.String, index=False), + sqlalchemy.Column("name", sqlalchemy.String, index=False, nullable=True), + sqlalchemy.Column("colour", sqlalchemy.String, index=False, nullable=True), + sqlalchemy.Column("api_key", sqlalchemy.String, index=False), +) + +datapoint_table = Table( + "datapoints", + metadata, + sqlalchemy.Column("id", sqlalchemy.Integer, primary_key=True), + sqlalchemy.Column("sensor_name", sqlalchemy.String, index=True), + sqlalchemy.Column("collected_at", TIMESTAMP, index=True), + sqlalchemy.Column("deployment_id", UUID(as_uuid=True), index=True), + sqlalchemy.Column("data", JSONB), +) + +daily_summary_view = Table( + "daily_summary", + metadata, + sqlalchemy.Column("sensor_name", sqlalchemy.String), + sqlalchemy.Column("data", JSONB), + sqlalchemy.Column("count", sqlalchemy.Integer), + info={"is_view": True}, +) + + +class DateEqualComparator(ExprComparator): + def __init__(self, fallback_expression, raw_expression): + # Do not try and find update expression from parent + super().__init__(None, fallback_expression, None) + self.raw_expression = raw_expression + + def __eq__(self, other): + """ Returns True iff on the same day as other """ + other_date = sqlalchemy.cast(other, DATE) + return sqlalchemy.and_( + self.raw_expression >= other_date, self.raw_expression < other_date + 1, + ) + + def operate(self, op, *other, **kwargs): + other = [sqlalchemy.cast(date, DATE) for date in other] + return op(self.expression, *other, **kwargs) + + def reverse_operate(self, op, other, **kwargs): + other = [sqlalchemy.cast(date, DATE) for date in other] + return op(other, self.expression, **kwargs) + + +@dataclass +class DataPoint: + sensor_name: str + data: t.Any + deployment_id: uuid.UUID + id: t.Optional[int] = None + collected_at: datetime.datetime = field(default_factory=datetime.datetime.now) + + @classmethod + def from_sql_result(cls, result) -> DataPoint: + return cls(**result._asdict()) + + def _asdict(self) -> t.Dict[str, t.Any]: + data = asdict(self) + if data["id"] is None: + del data["id"] + return data + + @hybrid_property + def collected_on_date(self): + return self.collected_at.date() + + @collected_on_date.comparator # type: ignore + def collected_on_date(cls): + return DateEqualComparator( + fallback_expression=sqlalchemy.cast(datapoint_table.c.collected_at, DATE), + raw_expression=datapoint_table.c.collected_at, + ) + + +@dataclass +class Deployment: + id: t.Optional[uuid.UUID] + uri: str + name: t.Optional[str] + colour: t.Optional[str] + api_key: t.Optional[str] + + @classmethod + def from_sql_result(cls, result) -> Deployment: + return cls(**result._asdict()) + + def _asdict(self) -> t.Dict[str, t.Any]: + data = asdict(self) + return data + + +def main() -> None: + engine = sqlalchemy.create_engine( + "postgresql+psycopg2://apd@localhost/apd", echo=True + ) + sm = sessionmaker(engine) + Session = sm() + if False: + metadata.create_all(engine) + print(Session.query(DataPoint).all()) + pass + + +if __name__ == "__main__": + main() diff --git a/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/query.py b/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/query.py new file mode 100644 index 0000000..3d2005d --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/query.py @@ -0,0 +1,146 @@ +import asyncio +import contextlib +from contextvars import ContextVar +import datetime +import typing as t +from uuid import UUID + +from sqlalchemy import create_engine +from sqlalchemy.orm import sessionmaker +from sqlalchemy.orm.session import Session + + +from apd.aggregation.database import ( + datapoint_table, + DataPoint, + deployment_table, + Deployment, +) + + +db_session_var: ContextVar[Session] = ContextVar("db_session") + + +@contextlib.contextmanager +def with_database(uri: t.Optional[str] = None) -> t.Iterator[Session]: + """Given a URI, set up a DB connection, and return a Session as a context manager """ + if uri is None: + uri = "postgresql+psycopg2://localhost/apd" + engine = create_engine(uri) + sm = sessionmaker(engine) + Session = sm() + token = db_session_var.set(Session) + yield Session + db_session_var.reset(token) + Session.commit() + Session.close() + + +async def get_data( + sensor_name: t.Optional[str] = None, + deployment_id: t.Optional[UUID] = None, + collected_before: t.Optional[datetime.datetime] = None, + collected_after: t.Optional[datetime.datetime] = None, +) -> t.AsyncIterator[DataPoint]: + db_session = db_session_var.get() + loop = asyncio.get_running_loop() + query = db_session.query(datapoint_table) + if sensor_name: + query = query.filter(datapoint_table.c.sensor_name == sensor_name) + if deployment_id: + query = query.filter(datapoint_table.c.deployment_id == deployment_id) + if collected_before: + query = query.filter(datapoint_table.c.collected_at < collected_before) + if collected_after: + query = query.filter(datapoint_table.c.collected_at > collected_after) + query = query.order_by( + datapoint_table.c.deployment_id, + datapoint_table.c.sensor_name, + datapoint_table.c.collected_at, + ) + + rows = await loop.run_in_executor(None, query.all) + for row in rows: + yield DataPoint.from_sql_result(row) + + +async def get_deployment_ids() -> t.List[UUID]: + db_session = db_session_var.get() + loop = asyncio.get_running_loop() + query = db_session.query(datapoint_table.c.deployment_id).distinct() + return [row.deployment_id for row in await loop.run_in_executor(None, query.all)] + + +async def get_deployment_by_id(deployment_id: UUID) -> Deployment: + db_session = db_session_var.get() + loop = asyncio.get_running_loop() + query = db_session.query(deployment_table).filter( + deployment_table.c.id == deployment_id + ) + return [ + Deployment.from_sql_result(row) + for row in await loop.run_in_executor(None, query.all) + ][0] + + +async def get_data_by_deployment( + *args: t.Any, **kwargs: t.Any +) -> t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]: + """Return an Async Iterator that contains two-item pairs. + These pairs are a string (deployment_id), and an async iterator that contains + the datapoints with that deployment_id. + + Usage example: + + async for deployment_id, datapoints in get_data_by_deployment(): + print(deployment_id) + async for datapoint in datapoints: + print(datapoint) + print() + """ + # Get the data, using the arguments to this function as filters + data = get_data(*args, **kwargs) + + # The two levels of iterator share the item variable, initialise it with the + # first item from the iterator. Also set last_deployment_id to None, so the + # outer iterator knows to start a new group. + last_deployment_id: t.Optional[UUID] = None + try: + item = await data.__anext__() + except StopAsyncIteration: + # There were no items in the underlying query, return immediately + return + + async def subiterator(group_id: UUID) -> t.AsyncIterator[DataPoint]: + """Using a closure, create an iterator that yields the current + item, then yields all items from data while the deployment_id matches + group_id, leaving the first that doesn't match as item in the enclosing + scope.""" + # item is from the enclosing scope + nonlocal item + while item.deployment_id == group_id: + # yield items from data while they match the group_id this iterator represents + yield item + try: + # Advance the underlying iterator + item = await data.__anext__() + except StopAsyncIteration: + # The underlying iterator came to an end, so end the subiterator too + return + + while True: + while item.deployment_id == last_deployment_id: + # We are trying to advance the outer iterator while the underlying iterator + # is still part-way through a group. Speed through the underlying until we + # hit an item where the deployment_id is different to the last one (or, is not + # None, in the case of the start of the iterator) + try: + item = await data.__anext__() + except StopAsyncIteration: + # We hit the end of the underlying iterator: end this iterator too + return + last_deployment_id = item.deployment_id + # Don't yield an iterator for unclassified deployments + if last_deployment_id is not None: + # Instantiate a subiterator for this group + yield last_deployment_id, subiterator(last_deployment_id) diff --git a/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/utils.py b/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/utils.py new file mode 100644 index 0000000..76f05ec --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03/src/apd/aggregation/utils.py @@ -0,0 +1,27 @@ +import math + + +# Set up mercator transform from https://wiki.openstreetmap.org/wiki/Mercator#Python +# Thanks to Paulo Silva and the OSM contributors +def merc_x(lon: float) -> float: + r_major = 6378137.000 + return r_major * math.radians(lon) + + +def merc_y(lat: float) -> float: + if lat > 89.5: + lat = 89.5 + if lat < -89.5: + lat = -89.5 + r_major = 6378137.000 + r_minor = 6356752.3142 + temp = r_minor / r_major + eccent = math.sqrt(1 - temp ** 2) + phi = math.radians(lat) + sinphi = math.sin(phi) + con = eccent * sinphi + com = eccent / 2 + con = ((1.0 - con) / (1.0 + con)) ** com + ts = math.tan((math.pi / 2 - phi) / 2) / con + y = 0 - r_major * math.log(ts) + return y diff --git a/Ch09/apd.aggregation-chapter09-ex03/tests/__init__.py b/Ch09/apd.aggregation-chapter09-ex03/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/Ch09/apd.aggregation-chapter09-ex03/tests/conftest.py b/Ch09/apd.aggregation-chapter09-ex03/tests/conftest.py new file mode 100644 index 0000000..328e95f --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03/tests/conftest.py @@ -0,0 +1,124 @@ +import datetime +from uuid import UUID + +from apd.aggregation.database import datapoint_table + +from alembic.config import Config +from alembic.script import ScriptDirectory +from alembic.runtime.environment import EnvironmentContext +import pytest + + +@pytest.fixture +def db_uri(): + return "postgresql+psycopg2://apd@localhost/apd-test" + + +@pytest.fixture +def db_session(db_uri): + from sqlalchemy import create_engine + from sqlalchemy.orm import sessionmaker + + engine = create_engine(db_uri, echo=True) + sm = sessionmaker(engine) + Session = sm() + yield Session + Session.close() + + +@pytest.fixture +def migrated_db(db_uri, db_session): + config = Config() + config.set_main_option("script_location", "apd.aggregation:alembic") + config.set_main_option("sqlalchemy.url", db_uri) + script = ScriptDirectory.from_config(config) + + def upgrade(rev, context): + return script._upgrade_revs(script.get_current_head(), rev) + + def downgrade(rev, context): + return script._downgrade_revs(None, rev) + + with EnvironmentContext(config, script, fn=upgrade): + script.run_env() + + try: + yield + finally: + # Clear any pending work from the db_session connection + db_session.rollback() + + with EnvironmentContext(config, script, fn=downgrade): + script.run_env() + + +@pytest.fixture +def populated_db(migrated_db, db_session): + datas = [ + { + "id": 1, + "sensor_name": "Test", + "data": "1", + "collected_at": datetime.datetime(2020, 4, 1, 12, 0, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 2, + "sensor_name": "Test", + "data": "2", + "collected_at": datetime.datetime(2020, 4, 1, 12, 1, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 3, + "sensor_name": "Test", + "data": "3", + "collected_at": datetime.datetime(2020, 4, 1, 12, 2, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 4, + "sensor_name": "Test", + "data": "4", + "collected_at": datetime.datetime(2020, 4, 1, 12, 3, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 5, + "sensor_name": "OtherTest", + "data": "5", + "collected_at": datetime.datetime(2020, 4, 1, 12, 4, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 6, + "sensor_name": "Test", + "data": "1", + "collected_at": datetime.datetime(2020, 4, 1, 12, 0, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + { + "id": 7, + "sensor_name": "Test", + "data": "1", + "collected_at": datetime.datetime(2020, 4, 1, 12, 1, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + { + "id": 8, + "sensor_name": "Test", + "data": "2", + "collected_at": datetime.datetime(2020, 4, 1, 12, 2, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + { + "id": 9, + "sensor_name": "OtherTest", + "data": "3", + "collected_at": datetime.datetime(2020, 4, 1, 12, 3, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + ] + for data in datas: + insert = datapoint_table.insert().values(**data) + db_session.execute(insert) diff --git a/Ch09/apd.aggregation-chapter09-ex03/tests/test_analysis.py b/Ch09/apd.aggregation-chapter09-ex03/tests/test_analysis.py new file mode 100644 index 0000000..34a32b4 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03/tests/test_analysis.py @@ -0,0 +1,423 @@ +import datetime +import uuid + +import pytest + +from apd.aggregation import analysis +from apd.aggregation.database import DataPoint, datapoint_table +from apd.aggregation.query import db_session_var + + +async def generate_datapoints(datas): + deployment_id = uuid.uuid4() + for i, (time, data) in enumerate(datas, start=1): + yield DataPoint( + id=i, + collected_at=time, + sensor_name="TestSensor", + data=data, + deployment_id=deployment_id, + ) + + +class TestPassThroughCleaner: + @pytest.fixture + def cleaner(self): + return analysis.clean_passthrough + + @pytest.mark.asyncio + async def test_float_passthrough(self, cleaner): + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 65.0), + (datetime.datetime(2020, 4, 1, 13, 0, 0), 65.5), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == data + + @pytest.mark.asyncio + async def test_Nones_are_skipped(self, cleaner): + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), None), + (datetime.datetime(2020, 4, 1, 13, 0, 0), 65.5), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 13, 0, 0), 65.5), + ] + + +class TestTemperatureCleaner: + @pytest.fixture + def cleaner(self): + return analysis.clean_temperature_fluctuations + + @pytest.mark.asyncio + async def test_window_not_full(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [(datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0)] + + @pytest.mark.asyncio + async def test_window_exactly_full(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 1), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 21.0), + ] + + @pytest.mark.asyncio + async def test_window_overfilled(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 3), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 4), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 1), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 3), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 4), 21.0), + ] + + @pytest.mark.asyncio + async def test_outlier_dropped(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 61.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 21.0), + ] + + @pytest.mark.asyncio + async def test_limited_to_DHT22_range(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 91.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 91.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 91.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [] + + @pytest.mark.asyncio + async def test_Nones_dropped(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 31.0, "unit": "degC"}, + ), + (datetime.datetime(2020, 4, 1, 12, 0, 1), None,), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 32.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 31.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 32.0), + ] + + +class TestWattHourCleaner: + @pytest.fixture + def cleaner(self): + return analysis.clean_watthours_to_watts + + @pytest.mark.asyncio + async def test_one_entry_insufficient_to_find_diff(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [] + + @pytest.mark.asyncio + async def test_two_entries_provides_diff_with_second_time(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 13, 0, 0), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 1 + assert output[0][0] == datetime.datetime(2020, 4, 1, 13, 0, 0) + assert output[0][1] == pytest.approx(9.0, 0.0001) + + @pytest.mark.asyncio + async def test_fractional_hour(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 23, 42), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 1 + assert output[0][0] == datetime.datetime(2020, 4, 1, 12, 23, 42) + assert output[0][1] == pytest.approx(22.7848, 0.001) + + @pytest.mark.asyncio + async def test_diff_happens_pairwise(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 23, 42), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 13, 23, 42), + {"magnitude": 13.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 2 + assert output[0][0] == datetime.datetime(2020, 4, 1, 12, 23, 42) + assert output[0][1] == pytest.approx(22.7848, 0.001) + assert output[1][0] == datetime.datetime(2020, 4, 1, 13, 23, 42) + assert output[1][1] == pytest.approx(3, 0.001) + + @pytest.mark.asyncio + async def test_None_ignored(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + (datetime.datetime(2020, 4, 1, 12, 58, 0), None,), + ( + datetime.datetime(2020, 4, 1, 13, 0, 0), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 1 + assert output[0][0] == datetime.datetime(2020, 4, 1, 13, 0, 0) + assert output[0][1] == pytest.approx(9.0, 0.0001) + + +class TestTemperatureMap: + @pytest.fixture + def temperature_data(self): + return { + (53.8667, -1.3333): -1, + (53.35, -2.2833): 1, + (52.45, -1.7333): 3, + (51.5, -0.1333): 6, + (51.55, -2.5667): 5, + (54.9667, -1.6167): -1, + (55.9667, -3.2167): -1, + (54.7667, -1.5833): 0, + (53.7667, -0.3): 1, + (53.7667, -3.0167): 0, + (51.4833, -3.1833): 4, + (53.2667, -3.5167): 2, + (52.0833, -2.8): 2, + (52.0167, -0.6): 2, + (52.6667, 1.2667): 5, + (50.4333, -4.9833): 9, + (50.35, -4.1167): 10, + (50.5167, -2.45): 9, + (50.8333, -1.1667): 9, + (56.45, -5.4333): 4, + (57.5333, -4.05): -2, + (54.5167, -3.6167): 3, + (53.0833, 0.2667): 4, + (51.35, 1.3333): 7, + (50.8833, 0.3167): 8, + (58.45, -3.1): 3, + (50.1, -5.6667): 9, + (58.2167, -6.3333): 4, + (55.6833, -6.25): 7, + } + + @pytest.fixture + def temperature_datapoints(self, migrated_db, db_session, temperature_data): + datas = [] + now = datetime.datetime.now() + for (coord, temp) in temperature_data.items(): + deployment_id = uuid.uuid4() + datas.append( + DataPoint( + sensor_name="Location", + deployment_id=deployment_id, + collected_at=now, + data=coord, + ) + ) + datas.append( + DataPoint( + sensor_name="Temperature", + deployment_id=deployment_id, + collected_at=now, + data=temp, + ) + ) + return datas + + @pytest.fixture + def populated_db(self, migrated_db, db_session, temperature_datapoints): + for data in temperature_datapoints: + insert = datapoint_table.insert().values(**data._asdict()) + db_session.execute(insert) + + @pytest.fixture + def cleaner(self): + return analysis.get_map_cleaner_for("Temperature") + + @pytest.fixture + def get_data(self, db_session): + db_session_var.set(db_session) + return analysis.get_all_data() + + @pytest.mark.asyncio + async def test_latest_coord_temp_cleaner( + self, temperature_data, populated_db, get_data, cleaner + ): + data = get_data() + deployments = 0 + async for deployment, data_points in cleaner(data): + deployments += 1 + cleaned = {a async for a in cleaner(data_points)} + # There should only be one deployment + assert deployments == 1 + expected = set(temperature_data.items()) + assert cleaned == expected + + @pytest.mark.asyncio + async def test_newer_items_superceed_older( + self, db_session, temperature_datapoints, populated_db, get_data, cleaner + ): + # Pick any of the deployment ids and find the pair of DataPoints in that deployment id + deployment_1 = temperature_datapoints[0].deployment_id + existing = [ + datapoint + for datapoint in temperature_datapoints + if datapoint.deployment_id == deployment_1 + ] + old_location = [ + datapoint for datapoint in existing if datapoint.sensor_name == "Location" + ][0] + old_temperature = [ + datapoint + for datapoint in existing + if datapoint.sensor_name == "Temperature" + ][0] + + new_location = DataPoint( + sensor_name="Location", + deployment_id=deployment_1, + collected_at=datetime.datetime(2031, 4, 1, 12, 0, 0), + data=(-10.5, 150.1), + ) + new_temperature = DataPoint( + sensor_name="Temperature", + deployment_id=deployment_1, + collected_at=datetime.datetime(2031, 4, 1, 12, 0, 0), + data=21, + ) + for data in [new_location, new_temperature]: + insert = datapoint_table.insert().values(**data._asdict()) + db_session.execute(insert) + + data = get_data() + deployments = 0 + async for deployment, data_points in cleaner(data): + deployments += 1 + cleaned = {a async for a in cleaner(data_points)} + # There should only be one deployment + assert deployments == 1 + + # We expect the newer one, not the older + assert (new_location.data, new_temperature.data) in cleaned + assert (old_location.data, old_temperature.data) not in cleaned + # The cleaner converts two data points to one plottable + assert len(cleaned) == len(temperature_datapoints) / 2 diff --git a/Ch09/apd.aggregation-chapter09-ex03/tests/test_cli.py b/Ch09/apd.aggregation-chapter09-ex03/tests/test_cli.py new file mode 100644 index 0000000..5cab441 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03/tests/test_cli.py @@ -0,0 +1,155 @@ +from unittest import mock +import uuid + +from click.testing import CliRunner +import pytest + +import apd.aggregation.cli +from apd.aggregation.database import Deployment, deployment_table + + +@pytest.mark.functional +def test_sensors_are_passed_to_get_data_points(db_uri): + runner = CliRunner() + with mock.patch("apd.aggregation.collect.get_data_points") as get_data_points: + runner.invoke( + apd.aggregation.cli.collect_sensor_data, + [ + "http://localhost", + "http://otherhost", + "--db", + db_uri, + "--api-key", + "key", + ], + ) + calls = get_data_points.call_args_list + assert len(calls) == 2 + details = {call[0] for call in get_data_points.call_args_list} + assert details == { + ("http://localhost", "key"), + ("http://otherhost", "key"), + } + + +@pytest.mark.functional +def test_add_deployment_to_db(db_uri, db_session, migrated_db): + runner = CliRunner() + deployment_id = uuid.UUID("76587cdd42dc489ea1d220e9b0bc62ca") + with mock.patch("apd.aggregation.collect.get_deployment_id") as get_deployment_id: + get_deployment_id.return_value = deployment_id + runner.invoke( + apd.aggregation.cli.deployments, + ["add", "http://otherhost", "Other", "--db", db_uri, "--api-key", "key"], + ) + deployments = db_session.query(deployment_table).all() + assert len(deployments) == 1 + deployment = Deployment.from_sql_result(deployments[0]) + assert deployment.uri == "http://otherhost" + assert deployment.api_key == "key" + assert deployment.id == deployment_id + + +@pytest.mark.functional +def test_use_stored_deployments(db_uri, migrated_db): + runner = CliRunner() + + deployment_id = uuid.UUID("76587cdd42dc489ea1d220e9b0bc62ca") + with mock.patch("apd.aggregation.collect.get_deployment_id") as get_deployment_id: + get_deployment_id.return_value = deployment_id + runner.invoke( + apd.aggregation.cli.deployments, + [ + "add", + "http://specifiedhost", + "Specified", + "--db", + db_uri, + "--api-key", + "an_api_key", + ], + ) + + with mock.patch("apd.aggregation.collect.get_data_points") as get_data_points: + runner.invoke( + apd.aggregation.cli.collect_sensor_data, ["--db", db_uri], + ) + calls = get_data_points.call_args_list + assert len(calls) == 1 + details = {call[0] for call in get_data_points.call_args_list} + assert details == { + ("http://specifiedhost", "an_api_key"), + } + + +@pytest.mark.functional +def test_list_deployments(db_uri, migrated_db): + runner = CliRunner() + + deployment_id = uuid.UUID("76587cdd42dc489ea1d220e9b0bc62ca") + with mock.patch("apd.aggregation.collect.get_deployment_id") as get_deployment_id: + get_deployment_id.return_value = deployment_id + runner.invoke( + apd.aggregation.cli.deployments, + [ + "add", + "http://specifiedhost", + "Specified", + "--db", + db_uri, + "--api-key", + "an_api_key", + ], + ) + + result = runner.invoke(apd.aggregation.cli.deployments, ["list", "--db", db_uri],) + expected = """Specified +ID 76587cdd42dc489ea1d220e9b0bc62ca +URI http://specifiedhost +API key an_api_key +Colour None + +""" + assert result.output == expected + + +@pytest.mark.functional +def test_edit_deployment(db_uri, migrated_db): + runner = CliRunner() + return + deployment_id = uuid.UUID("76587cdd42dc489ea1d220e9b0bc62ca") + with mock.patch("apd.aggregation.collect.get_deployment_id") as get_deployment_id: + get_deployment_id.return_value = deployment_id + runner.invoke( + apd.aggregation.cli.deployments, + [ + "add", + "http://specifiedhost", + "Specified", + "--db", + db_uri, + "--api-key", + "an_api_key", + ], + ) + + result = runner.invoke( + apd.aggregation.cli.deployments, + [ + "edit", + "--db", + db_uri, + deployment_id.hex(), + "--colour", + "red" "--name", + "New name", + ], + ) + expected = """New name +ID 76587cdd42dc489ea1d220e9b0bc62ca +URI http://specifiedhost +API key an_api_key +Colour red + +""" + assert result.output == expected diff --git a/Ch09/apd.aggregation-chapter09-ex03/tests/test_http_get.py b/Ch09/apd.aggregation-chapter09-ex03/tests/test_http_get.py new file mode 100644 index 0000000..df575c6 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03/tests/test_http_get.py @@ -0,0 +1,188 @@ +from concurrent.futures import ThreadPoolExecutor +import datetime +import typing as t +from unittest.mock import patch, MagicMock +import wsgiref.simple_server + +import aiohttp +from apd.sensors.base import Sensor +from apd.sensors.sensors import PythonVersion, ACStatus +from apd.sensors.wsgi import set_up_config +import flask +import pytest + +from apd.sensors.wsgi import v21 + +from apd.aggregation import collect +from apd.aggregation.database import Deployment + +pytestmark = [pytest.mark.functional] + + +@pytest.fixture +def sensors() -> t.Iterator[t.List[Sensor[t.Any]]]: + """ Patch the get_sensors method to return a known pair of sensors only """ + data: t.List[Sensor[t.Any]] = [PythonVersion(), ACStatus()] + with patch("apd.sensors.cli.get_sensors") as get_sensors: + get_sensors.return_value = data + yield data + + +def get_independent_flask_app(name: str) -> flask.Flask: + """ Create a new flask app with the v20 API blueprint loaded, so multiple copies + of the app can be run in parallel without conflicting configuration """ + app = flask.Flask(name) + app.register_blueprint(v21.version, url_prefix="/v/2.1") + return app + + +def run_server_in_thread( + name: str, config: t.Dict[str, t.Any], port: int +) -> t.Iterator[str]: + # Create a new flask app and load in required code, to prevent config conflicts + app = get_independent_flask_app(name) + flask_app = set_up_config(config, app) + server = wsgiref.simple_server.make_server("localhost", port, flask_app) + + with ThreadPoolExecutor() as pool: + pool.submit(server.serve_forever) + yield f"http://localhost:{port}/" + server.shutdown() + + +@pytest.fixture(scope="module") +def http_server(): + yield from run_server_in_thread( + "standard", + { + "APD_SENSORS_API_KEY": "testing", + "APD_SENSORS_DEPLOYMENT_ID": "a46b1d1207fd4cdcad39bbdf706dfe29", + }, + 12081, + ) + + +@pytest.fixture(scope="module") +def bad_api_key_http_server(): + yield from run_server_in_thread( + "alternate", + { + "APD_SENSORS_API_KEY": "penny", + "APD_SENSORS_DEPLOYMENT_ID": "38cf2bae9adb445fad946c82e290487a", + }, + 12082, + ) + + +class TestGetDataPoints: + @pytest.fixture + def mut(self): + return collect.get_data_points + + @pytest.mark.asyncio + async def test_get_data_points( + self, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + # Get the data from the server, storing the time before and after + # as bounds for the collected_at value + async with aiohttp.ClientSession() as http: + collect.http_session_var.set(http) + time_before = datetime.datetime.now() + results = await mut(http_server, "testing") + time_after = datetime.datetime.now() + + assert len(results) == len(sensors) == 2 + + for (sensor, result) in zip(sensors, results): + assert sensor.from_json_compatible(result.data) == sensor.value() + assert result.sensor_name == sensor.name + assert time_before <= result.collected_at <= time_after + + @pytest.mark.asyncio + async def test_get_data_points_fails_with_bad_api_key( + self, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + with pytest.raises( + ValueError, + match=f"Error loading data from {http_server}: Supply API key in X-API-Key header", + ): + async with aiohttp.ClientSession() as http: + collect.http_session_var.set(http) + await mut(http_server, "incorrect") + + +class TestAddDataFromSensors: + @pytest.fixture + def mut(self): + return collect.add_data_from_sensors + + @pytest.fixture + def mock_db_session(self): + return MagicMock() + + @pytest.mark.asyncio + async def test_get_get_data_from_sensors( + self, mock_db_session, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + results = await mut( + mock_db_session, + [ + Deployment( + id=None, colour=None, name=None, uri=http_server, api_key="testing" + ) + ], + ) + assert mock_db_session.execute.call_count == len(sensors) + assert len(results) == len(sensors) + + @pytest.mark.asyncio + async def test_get_get_data_from_sensors_with_multiple_servers( + self, mock_db_session, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + results = await mut( + mock_db_session, + [ + Deployment( + id=None, colour=None, name=None, uri=http_server, api_key="testing" + ), + Deployment( + id=None, colour=None, name=None, uri=http_server, api_key="testing" + ), + ], + ) + assert mock_db_session.execute.call_count == len(sensors) * 2 + assert len(results) == len(sensors) * 2 + + @pytest.mark.asyncio + async def test_data_points_not_added_if_only_partial_success( + self, + mock_db_session, + sensors: t.List[Sensor[t.Any]], + mut, + http_server: str, + bad_api_key_http_server: str, + ) -> None: + with pytest.raises( + ValueError, + match=f"Error loading data from {bad_api_key_http_server}: Supply API key in X-API-Key header", + ): + await mut( + mock_db_session, + [ + Deployment( + id=None, + colour=None, + name=None, + uri=http_server, + api_key="testing", + ), + Deployment( + id=None, + colour=None, + name=None, + uri=bad_api_key_http_server, + api_key="testing", + ), + ], + ) + assert mock_db_session.execute.call_count == 0 diff --git a/Ch09/apd.aggregation-chapter09-ex03/tests/test_query.py b/Ch09/apd.aggregation-chapter09-ex03/tests/test_query.py new file mode 100644 index 0000000..9b6e0aa --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03/tests/test_query.py @@ -0,0 +1,111 @@ +import datetime +from uuid import UUID + +import pytest + +from apd.aggregation.query import ( + get_data, + get_deployment_ids, + get_data_by_deployment, + db_session_var, +) + + +class TestGetData: + @pytest.fixture + def mut(self): + return get_data + + @pytest.mark.asyncio + @pytest.mark.parametrize( + "filter,num_items_expected", + [ + ({}, 9), + ({"sensor_name": "Test"}, 7), + ({"deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd")}, 5), + ({"collected_after": datetime.datetime(2020, 4, 1, 12, 2, 1)}, 3), + ({"collected_before": datetime.datetime(2020, 4, 1, 12, 2, 1)}, 4), + ( + { + "collected_after": datetime.datetime(2020, 4, 1, 12, 2, 1), + "collected_before": datetime.datetime(2020, 4, 1, 12, 3, 5), + }, + 2, + ), + ], + ) + async def test_iterate_over_items( + self, mut, db_session, populated_db, filter, num_items_expected + ): + db_session_var.set(db_session) + points = [dp async for dp in mut(**filter)] + assert len(points) == num_items_expected + + @pytest.mark.asyncio + async def test_empty_db(self, mut, db_session, migrated_db): + db_session_var.set(db_session) + points = [dp async for dp in mut()] + assert len(points) == 0 + + +class TestGetDeployments: + @pytest.fixture + def mut(self): + return get_deployment_ids + + @pytest.mark.asyncio + async def test_get_all_deployments(self, mut, db_session, populated_db): + db_session_var.set(db_session) + deployment_ids = await mut() + assert set(deployment_ids) == { + UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + } + + @pytest.mark.asyncio + async def test_empty_db(self, mut, db_session, migrated_db): + db_session_var.set(db_session) + deployment_ids = await mut() + assert deployment_ids == [] + + +@pytest.mark.usefixtures("populated_db") +class TestGetDataByDeployment: + @pytest.fixture + def mut(self): + return get_data_by_deployment + + @pytest.mark.asyncio + @pytest.mark.parametrize( + "filter,num_items_expected", [({}, 9), ({"sensor_name": "Test"}, 7)] + ) + async def test_iterate_over_all_items( + self, mut, db_session, filter, num_items_expected + ): + db_session_var.set(db_session) + num_items = 0 + num_deployments = 0 + async for deployment_id, items in mut(**filter): + num_deployments += 1 + async for item in items: + num_items += 1 + assert num_deployments == 2 + assert num_items == num_items_expected + + @pytest.mark.asyncio + @pytest.mark.parametrize( + "filter,num_items_expected", [({}, 5), ({"sensor_name": "Test"}, 4)] + ) + async def test_skip_first_deployment( + self, mut, db_session, filter, num_items_expected + ): + db_session_var.set(db_session) + num_items = 0 + num_deployments = 0 + async for deployment_id, items in mut(**filter): + num_deployments += 1 + if num_deployments == 2: + async for item in items: + num_items += 1 + assert num_deployments == 2 + assert num_items == num_items_expected diff --git a/Ch09/apd.aggregation-chapter09-ex03/tests/test_sensor_aggregation.py b/Ch09/apd.aggregation-chapter09-ex03/tests/test_sensor_aggregation.py new file mode 100644 index 0000000..311dd19 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09-ex03/tests/test_sensor_aggregation.py @@ -0,0 +1,199 @@ +from __future__ import annotations + +import contextlib +from dataclasses import dataclass +import json +import typing as t +from unittest.mock import patch, Mock + +import pytest +import sqlalchemy + +import apd.aggregation.collect +from apd.aggregation.database import Deployment + + +@pytest.fixture +def data() -> t.Any: + return { + "sensors": [ + { + "human_readable": "3.7", + "id": "PythonVersion", + "title": "Python Version", + "value": [3, 7, 2, "final", 0], + }, + { + "human_readable": "Not connected", + "id": "ACStatus", + "title": "AC Connected", + "value": False, + }, + ] + } + + +@dataclass +class FakeAIOHttpClient: + responses: t.Dict[str, str] + + @contextlib.asynccontextmanager + async def get( + self, url: str, headers: t.Optional[t.Dict[str, str]] = None + ) -> t.AsyncIterator[FakeAIOHttpResponse]: + if url in self.responses: + yield FakeAIOHttpResponse(body=self.responses[url]) + else: + yield FakeAIOHttpResponse(body="", status=404) + + +@dataclass +class FakeAIOHttpResponse: + body: str + status: int = 200 + + async def json(self) -> t.Any: + return json.loads(self.body) + + +@pytest.fixture +def mockclient(data) -> FakeAIOHttpClient: + return FakeAIOHttpClient( + { + "http://localhost/v/2.1/sensors/": json.dumps(data), + "http://localhost/v/2.1/deployment_id": json.dumps( + {"deployment_id": "b29ba0ee10f14552b6b21327bb96d3fb"} + ), + } + ) + + +class TestGetDataPoints: + @pytest.fixture + def mut(self): + return apd.aggregation.collect.get_data_points + + @pytest.mark.asyncio + async def test_get_data_points( + self, mut, mockclient: FakeAIOHttpClient, data + ) -> None: + token = apd.aggregation.collect.http_session_var.set(mockclient) + try: + datapoints = await mut("http://localhost", "") + finally: + apd.aggregation.collect.http_session_var.reset(token) + + assert len(datapoints) == len(data["sensors"]) + for sensor in data["sensors"]: + assert sensor["value"] in (datapoint.data for datapoint in datapoints) + assert sensor["id"] in (datapoint.sensor_name for datapoint in datapoints) + + +class TestAddDataFromSensors: + @pytest.fixture + def mut(self): + return apd.aggregation.collect.add_data_from_sensors + + @pytest.fixture(autouse=True) + def patch_aiohttp(self, mockclient): + with patch("aiohttp.ClientSession") as ClientSession: + ClientSession.return_value.__aenter__.return_value = mockclient + yield ClientSession + + @pytest.fixture + def db_session(self): + session = Mock() + sql_result = session.execute.return_value + sql_result.inserted_primary_key = [1] + return session + + @pytest.mark.asyncio + async def test_datapoints_are_added_to_the_session(self, mut, db_session) -> None: + assert db_session.execute.call_count == 0 + datapoints = await mut( + db_session, + [ + Deployment( + id=None, colour=None, name=None, uri="http://localhost", api_key="" + ) + ], + ) + assert db_session.execute.call_count == len(datapoints) + + +@pytest.mark.usefixtures("migrated_db") +class TestDatabaseConnection: + @pytest.fixture(autouse=True) + def patch_aiohttp(self, mockclient): + with patch("aiohttp.ClientSession") as ClientSession: + ClientSession.return_value.__aenter__.return_value = mockclient + yield ClientSession + + @pytest.fixture + def table(self): + return apd.aggregation.database.datapoint_table + + @pytest.fixture + def daily_summary_view(self): + return apd.aggregation.database.daily_summary_view + + @pytest.fixture + def model(self): + return apd.aggregation.database.DataPoint + + @pytest.fixture + def mut(self): + return apd.aggregation.collect.add_data_from_sensors + + @pytest.mark.asyncio + async def test_datapoints_are_added_to_the_session(self, db_session, table) -> None: + datapoints = await apd.aggregation.collect.add_data_from_sensors( + db_session, + [ + Deployment( + id=None, colour=None, name=None, uri="http://localhost", api_key="" + ) + ], + ) + num_points = db_session.query(table).count() + assert num_points == len(datapoints) == 2 + + @pytest.mark.asyncio + async def test_datapoints_can_be_mapped_back_to_DataPoints( + self, mut, db_session, table, model + ) -> None: + datapoints = await mut( + db_session, + [ + Deployment( + id=None, colour=None, name=None, uri="http://localhost", api_key="" + ) + ], + ) + db_points = [ + model.from_sql_result(result) for result in db_session.query(table) + ] + assert db_points == datapoints + + @pytest.mark.asyncio + async def test_daily_summary_view_matches_query( + self, db_session, model, table, daily_summary_view + ) -> None: + await apd.aggregation.collect.add_data_from_sensors( + db_session, + [ + Deployment( + id=None, colour=None, name=None, uri="http://localhost", api_key="" + ) + ], + ) + + headers = table.c.sensor_name, table.c.data + value_counts = ( + db_session.query(*headers, sqlalchemy.func.count(table.c.id)) + .filter(model.collected_on_date == sqlalchemy.func.current_date()) + .group_by(*headers) + ) + + daily_summary_view = db_session.query(daily_summary_view) + assert value_counts.all() == daily_summary_view.all() diff --git a/Ch09/apd.aggregation-chapter09/.coveragerc b/Ch09/apd.aggregation-chapter09/.coveragerc new file mode 100644 index 0000000..e766c69 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09/.coveragerc @@ -0,0 +1,3 @@ +[run] +branch = True +omit = tests/* diff --git a/Ch09/apd.aggregation-chapter09/.pre-commit-config.yaml b/Ch09/apd.aggregation-chapter09/.pre-commit-config.yaml new file mode 100644 index 0000000..d3b6ec7 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09/.pre-commit-config.yaml @@ -0,0 +1,26 @@ +repos: + +- repo: local + hooks: + - id: black + name: black + entry: pipenv run black + args: [--quiet] + language: system + types: [python] + + - id: mypy + name: mypy + exclude: (?x)^( + (.*)/setup.py + )$ + entry: pipenv run mypy + args: ["--follow-imports=skip"] + language: system + types: [python] + + - id: flake8 + name: flake8 + entry: pipenv run flake8 + language: system + types: [python] diff --git a/Ch09/apd.aggregation-chapter09/CHANGES.md b/Ch09/apd.aggregation-chapter09/CHANGES.md new file mode 100644 index 0000000..8e424e5 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09/CHANGES.md @@ -0,0 +1,5 @@ +## Changes + +### 1.0.0 (Unreleased) + +* Generated from skeleton diff --git a/Ch09/apd.aggregation-chapter09/Connect to database.ipynb b/Ch09/apd.aggregation-chapter09/Connect to database.ipynb new file mode 100644 index 0000000..98a74f0 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09/Connect to database.ipynb @@ -0,0 +1,577 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "53635\n" + ] + } + ], + "source": [ + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.database import datapoint_table\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " print(session.query(datapoint_table).count())" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "53635\n" + ] + } + ], + "source": [ + "from apd.aggregation.query import with_database, get_data\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " count = 0\n", + " async for datapoint in get_data():\n", + " count += 1\n", + " print(count)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nO2df5RV5Xnvv88czuAZIhnGAMWJk1FK8cYMMOmk4KXXaiwlkahHIyFW1vKu5uptb1dbSjvtULnFZEEgkhC6bu+695L+olcWRQ0dTTASitqueoUuzIDERIpGRUcKNDhRYYRheO4fZ+9hz56999m/z95zvp+1Zp05++wfz373u9/nfd/neZ9HVBWEEEKIGw21FoAQQki2oaIghBDiCRUFIYQQT6goCCGEeEJFQQghxJMJtRYAAD7ykY9oe3t7rcUghJBc8cILL/y7qk5N+jqZUBTt7e04cOBArcUghJBcISJvpHEdTj0RQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+qej2JyF8B+ByAk6r6CWNbC4AdANoBvA7gC6r6jvHbKgBfAjAM4HdVdXcikhOSIr19/XjwiZcwMDgU6TxNxUrf7OzQRQDAlKYi1tx6HcqdrSPX2bj7CN4eGMSVzSV0L5498htJjiDlbq8LU5qKWDJnBp55+RTeHhjEh0tFnL8wPPKM/WCvB1lDqkWPFZEbALwP4G8tiuIhAKdVdYOI9ACYoqp/LCIfB7AdwC8BuBLAPwD4BVUd9rpGV1eX0j2WZJXevn50P3oIQxeTibRcLAg23jUXALBq52EMDl16XUrFAtbf2ZHZBmQ80NvX77vck6wLZj0I8qxF5AVV7YpdGBtVp55U9Z8AnLZtvh3AVuP/rQDKlu1/p6rnVPU1AK+gojQIyS0bdx9JTEkAwNCwYuPuI9i4+8ioxgoABoeGsXH3kcSuTRCo3JOsC2Y9yCJhF9xNV9XjAKCqx0VkmrG9FcA+y35vGdvGICL3A7gfANra2kKKQUjyvD0wWNNrpHH9esatfJ22J/0ssvqs4zZmi8M2R/WrqltUtUtVu6ZOTXwFOiGhubK5lMo13K6TxvXrmSDlnvSzyOqzDqsoTojIDAAwPk8a298CcJVlv48CeDu8eITUnu7Fs1FscOoDxUOxIOhePBvdi2ejVCyM+q1ULKB78ezErk0QqNyTrAtmPcgiYRXFEwDuNf6/F8Djlu1fFJGJInI1gFkA/iWaiITUlnJnKzYunYvmUjHyuZqKDSOeT0DF28U0YJY7W7H+zg60NpcgAFqbSzRkp0CQcneqC1Oaili+oG3k+OZScdQz9oO1HmQRP15P2wHcCOAjAE4AWAOgF8AjANoAHAOwVFVPG/s/AOA3AFwAsEJVv1dNCHo9EUJIcNLyeqpqzFbVu11+utll/3UA1kURihBCSHbgymxCCCGeUFEQQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhCRUEIIcQTKgpCCCGeUFEQQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhSNR8FIWHp7evHg0+8hIHBoTG/TWosYN0d/rO39fb1Y+PuI3h7YBBXNpfQvXh2bNnAvOQ0mdJUxJpbr0O5szWwLOb+/QODKIhgWBXNpSLOXxjG2aGLsdwDUElYXywIzg9fSkY2pamIJXNm4JmXT43I235FCft+8g6GVVEQwd3zr8LackdscvjFXu7WMq4FTvXA/tyr1RMrbveTZF1OiqoZ7tKAGe7GH719/eh+9BCGLrrXr0KD4BtLq6d/7O3rx6qdhzE4NDyyrVQsxJIm1I+cJsWCYNmnrsK3X+j3LYuT7Flk+YK2VJWFW7kXC1KTlKBe9cB87jv+5U1f9cR+rPV+4q7LaWW449QTSYSNu49UfamGLyo27j7i61z2hnZwaNjXsX7O7fflHxpWbN//ZiBZnGTPItv3v5nq9dzKfWjYX51ISx7g0nMPqiTMY633k2RdThIqCpIIbw8Mxraf2z5+rxH1+laGXUbgScqYBm73lRRe5VKLMqt2zSjlYz13XusJFQVJhCubS7Ht57aP32tEvb6Vgkig88QhYxq43VdSeJVLLcqs2jWjlI/13HmtJ1QUJBG6F89GscH75So0CLoXz/Z1rlKxMGpbqVjwdayfc1eT06RYqBh+g8jiJHsWuXv+Valez63ciwV/dSIteYBLz91vPbEfa72fJOtyklBRkEQod7Zi49K5aC4VHX+f1FjwZcg2z7X+zg60NpcgAFqbS7EYsv3IaTKlqYiNd83F2nJHIFmssgOXeqbNpSKaivG+fgKgsTC6MZvSVMTyBW2j5F04s2VEjoJI6oZswLnczTKuhQeQWz2wPnc/9cTpWOv9JFmXk4ReT4QQklPo9UQIISQTUFEQQgjxJJKiEJHfE5EfishLIrLC2NYiIntE5KjxOSUeUQkhhNSC0IpCRD4B4D4AvwRgLoDPicgsAD0A9qrqLAB7je+EEEJySpQRxX8AsE9Vz6rqBQD/COAOALcD2GrssxVAOZqIhBBCakkURfFDADeIyBUi0gTgFgBXAZiuqscBwPic5nSwiNwvIgdE5MCpU6ciiEEIISRJQisKVf0xgK8B2APgKQCHAFwIcPwWVe1S1a6pU6eGFYMQQkjCRDJmq+pfquonVfUGAKcBHAVwQkRmAIDxeTK6mIQQQmpFVK+nacZnG4A7AWwH8ASAe41d7gXweJRrEEIIqS1RExd9W0SuADAE4LdV9R0R2QDgERH5EoBjAJZGFZLUH1lLakNIPRNJUajqf3LY9lMAN0c5L6lvnJLIvHN2CN2PHQIAKgtCUoYrs0nmyFpSG0LqHebMJqlizR8tAOzqwGmblf6BQXz8v38vUK7pKU1FfHzG5Xju1dO+9rVOccU1Bba69zC2739zTJ5qr/zJ1t8+XCpCBBg4O+S436qdL2LQKJMGAa6/pgUvvf3emPzPZv5st/JvEODX56cfTdYtX/WSOTPw3UPHazIFubr3MLbtO+ZYH1tzkus6Lhg9lqRGXvJHm3mOAcSS13l172E8vO/YmO0LZ7bgB8d+5pg/GYBnWVn3W7njIPyrTX+kGXo8SN5yIJ282m7PzEpcedujkFb0WCoKkhoLNzyN/oynfDQx80e4ydvaXMJzPZ/2da6Zq54MlEqz2rWD7heGggheXX9L7Od1Iky9CFL+YfD7zJKWoxppKQpOPZFYqPQKD8JpRmhSYwHr7ujIfF5gK9VkDXIvQfMtx5lvPCxp5tAOcx9J1yW/95+nOh0FGrNJZHr7+rFih7OSAIAz54fxB48eQnOT/+xgtebK5lJseZ2D5luudu2g+4UhzRzaYe4h6RzTfu8/67mu44KKgkTGjyfS8EWFKnKRP9rMcxxXXme3fNQLZ7a45k+ulmvbul8SL3GaObSD5C0H0smr7ef+85DrOi6oKEhk/A6/fzY4NCp/tFPTYM/73FRsGJVb2v7dD1Oailg4s8X3vqahNK68zmvLHVi+oG1Mnupt913vmj/Znlu5uVTElKai436bls1DyVImDVJRQk75n8382YBz+TdIuoZswDtf9fIFbTXJq20+Mzf1lZdc13FBYzaJjF9jZK0Nf4SMN5gzm+QGP8PvQkPy0wWEkGSgoiCRKXe2YvOyeXCbEZrUWMA3liY/XUAISQa6x5JYMOfLCSHjD44oCCGEeEJFQQghxBMqCkIIIZ5QURBCCPGEioIQQognVBSEEEI8oXssyQT2JDFmxFm63BJSe6goSM1xShJjRpwFmCObkFrDqSdSc7bvf9Nx+/BF5sgmJAtwREFSx54L2itJjDUyrT3v9IJrpozKC91UbMDEYmEkr/RN104dlW8ZSDfncpbwys1t/h5HbvCgctifkVOebDNasD1Per0+y1rA6LEkVYLmzTYjzvrJYeyXNHIuZwmnMrfme3bLWR13OSWRM73enqUdRo8l45KNu4/4biisEWfdpqfCMDRcX1NaTmU+ODQ8UgYbdx8ZoySA+MspyLP3S709y1oRSVGIyO+LyEsi8kMR2S4il4lIi4jsEZGjxueUuIQl+cdvkiN7xNm4czjXS65jwP1eze1eZRFnOSVV5vX0LGtFaEUhIq0AfhdAl6p+AkABwBcB9ADYq6qzAOw1vhMCwF+O4dbmEl76ymdGTSfEncO5XnIdA+73am6PKzd4WDmyel5yiahTTxMAlERkAoAmAG8DuB3AVuP3rQDKEa9BxhF+c0HbiTOHcxo5l7OEU5lbyzmu3OBh5IhKvT3LWhFaUahqP4CvAzgG4DiAn6nq9wFMV9Xjxj7HAUyLQ1AyPvCbC9qOU95pe17opmLDqHPZ8y0D6eVczhL2MreXc1y5wcPI4ZQT277NLU96PT7LWhHa68mwPXwbwDIAAwAeBfAYgD9X1WbLfu+o6hg7hYjcD+B+AGhra/vFN954I5QchBBSr+TB6+lXAbymqqdUdQjATgD/EcAJEZkBAMbnSaeDVXWLqnapatfUqVMjiEEIISRJoiiKYwAWiEiTiAiAmwH8GMATAO419rkXwOPRRCSEEFJLQq/MVtX9IvIYgB8AuACgD8AWAB8C8IiIfAkVZbI0DkEJIYTUhkghPFR1DYA1ts3nUBldEEIIGQdwZTYhhBBPqCgIIYR4QkVBCCHEEyoKQgghnlBREEII8YSKghBCiCdUFIQQQjyhoiCEEOIJc2YTUidUy5udNfIm73iGioKQOsCer7p/YBCrdh4GgEw2vnmTd7zDqSdC6oBqebOzRt7kHe9QURBSB1TLm5018ibveIeKgpA6oFre7KyRN3nHO1QUhNQB1fJmZ428yTveoTGbkDrANADnxYsob/KOd0LnzI6Trq4uPXDgQK3FIISQXJGHnNmEEELqACoKQgghntBGYeGebz2P5149PfJ94cwWbLvv+hpKRAghtYcjCgO7kgCA5149jUWbnq2NQIQQkhHqZkRxdc8uWM32AuC1DUtGvtuVhMnRk2fQ29dPbwtCSN1SFyOKdpuSAAA1tvth1c4XY5eJEELywrhXFPd863nP3+ev21P1HINDF+MShxBCcse4VhS9ff2uU0omJ947n5I0hBCST8a1ovjjb/ubMpqz5qmEJSGEkPwSWlGIyGwROWj5e1dEVohIi4jsEZGjxueUOAUOwrkL/qaM3j03XH0nQgipU0IrClU9oqrzVHUegF8EcBbA3wPoAbBXVWcB2Gt8J4QQklPimnq6GcCrqvoGgNsBbDW2bwVQjukaNaW3r7/WItQVvX39WLjhaVzdswsLNzzN8iekhsSlKL4IYLvx/3RVPQ4Axuc0pwNE5H4ROSAiB06dOhWTGKOZNW1SbOdiZq30WLTpWazYcRD9A4NQVNJgrthxkMqCkBoRecGdiDQCuA3AqiDHqeoWAFuASvTYqHI4cfZ8fG6tWcisVQ/J5u/51vM4evKM428rHzmYi/uth+dEorO69zC2738Tw6ooiODu+Vdhbbmj1mI5EsfK7M8C+IGqnjC+nxCRGap6XERmADgZwzVCEWfj/uFSMbZzhWHOmqdGGd3Ha7J5L3fmi7WPiF+VRZueHaXozNEQML6eE4mGvZ4Mq+LhfccAIJPKIo6pp7txadoJAJ4AcK/x/70AHo/hGqFonBCf9++7g0OxnSso89ftcfTMGm/J5q994MlaixAJr9HQih0Hcc2qXZw+I1jde9i1npjKImtEGlGISBOARQD+q2XzBgCPiMiXABwDsDTKNcLS29fv2z3WD0mvzXaKXLu0qw0bdx/xXBTYn4EpsThY3XsYHwznYMjgQbXFnRcVHF2QzCoDLyIpClU9C+AK27afouIFVVO6Hz1YaxEccZq/fvTAMcfItdUaHqAS3DCvWMsi3yoiGH/02CEqijplde/hWosQinEbPbZaeKZJjQWcOZ/uQrvevn78/o6DI41i/8DgqO9hyGsD29vXj1U7D2NwqP4WO57P+ciJBKe3r39kNOlFVjt+uVYUUbxL1t3RMaahKhULng1Xe8+uSN4Jf/TYIccotvXIxt1HAiuJgmT1NQrO6t7DmTRaEm/CeCr5VRIAcM+CtjjEjJ3cKorevn50P3oIQ4YrTP/AILofPQQAOPCG95RNqdgwolDsiqbaA3XyTvCrsNiTvEQY28qwjp/ye3jfMSqKnBHWU+nBJ17yfY2s1oncKooHn3hpREmYDF1UPPjESxio4qG0/s45ACoGRXuD7lfzbzNedHtvge6Q/hAEH021NpeSEIWQqlTzVPJq4Ku1RyaTJxZCyZYGuVUUboXv56F4NeClYoOv/BNmI+emWFbsGL04jG6RowkzNmi/Il5FYe8hzpo2CXtW3hjqXEk8X7sn3MQJDfja5yudHC7oS5ft+98MdVy1fDhWXvzyZ0JdIw1yqyiSYv2dc3yPKqphTaGa5HqHepnvfu7V07GlpbUrCaCS9nbRpmerKguneeowLo/tPbuwfEGb47NzyuF+7sLFMXXTHMH+ae/hTDc0Tlz7wJNjXKInTyxk8j6qTXs6vYNOdcyNUjHbGR9EMzDv29XVpQcOHAh0jN80pnYmNAhe+eotnvvMXv09X2swFs5s8eXCmgavW/J/54Gwz880Z1frSVezG3ld36ssV/ceTsQP3q4wwpTPZQXBy+u863ZWcFISVtKsz15u2hMEeGX9Esxc9WRVZWGVOYgBGwA2L5sXqgMkIi+oalfgAwOSbTWWAF9fOrfqPubwvhppKYnNy+alcp08oMafGcLEacrHdL21BhX8/R0HY/FhT2qx1MP7jkWW74NhzY2ffrXFlVeH7EgExV5X7FzQitJecE2wtDpf/o5/A/bCmS2ZnzqsK0WxfEGbrweSlYfW2lwK3dPIMkHmbb1wC2Hi5HqrqDTGfmwJ7T27atLgxqGE8rjq1wlF+FFnEPy6afvpFFqV2ztn/Rmwly9ow7b7rve1by3JraJoLAT3qc/TPP5lBcFzPZ8eURILZ7bUWKJ4WN17uOpL1xDg0Tq52XoFg/TrqhhHDz8M7T27Umkg80LSSjvOwKGK4Cuv89Im5VZRTJoYzA4fdPomzlwWYbDPNVfrdeQl0Y+fHu+mLwR7VvZ79YoF6ddVEYindz5r2iQsz+giqlpyWYCOXpJK+8qYXa7NOtPsI9q0n32yQm4Vhd+hnUnQ6Zs9K2+sibKYPLEQypC38pHRiX7c5u+TIG4lFfRZ2UcJ1bybg8j386su9e4XbXo2iFgAKvVobbmDdiYbG+6qbiu08vC+Y7i6J/7ou92LZ8d6PqAyCvLTIXnwtutiv3ZS5NY9tiCS+ErdPStvxMINTyceoTUODw97rgZz/j5p+0aQBYdJ9QqDjBKAimJpbS75eq4XtGJTeeXk+55RfJ2YfnnjyP9mWcTlep13wriLKyrl94ePHsLXl87Nte1u1rRJuZI/tyOKtMI5JNHjsBIkflFTQF9r+/xrEtNTKz0WHNrZ5mMqx2xcJ8aYS8TOwOBQoOf63KunAysJANj/wKJR38udramMLPLg+RTFNnDhomLFjoNo79mF2au/F6ke1yKfS5SFnbUit4oiCFHmiMudrYnOMd89/yrf+371Tn9uuybWrHxOLqNxTE95zfK0WxRSb19/1dXY0y9vHGlc/booO+FnyjDpnr3bKLHc2Zr4GoGwtpVrH3hyxJje3rMr0URScdkGzl24iJWPhM+nXot8LnlTEkCdKIqongXmHHPcsYYWzmwJJFvQoap1sOLkBjg4NDzSM3P6i6Nnak5FVWuYly9oG9UDjzIs//f3g/f+42LWtEmZWPw4f92eQPtf3bNrzNqGD4Y1MWVx07VTYzvXRQ0/MhhPEYmTJLeKIu0HXO5sxXM9n8brG5Zg+YK2Mdf3WoK/edm8EUUjuLQ+Imn/aavBP0zPKU0X0ajK3JRzde/hwI4OcbF52TzfvcVJjcEDwF1WkJH6V40T750fZYj3YnXvYdfRXlJZB595+ZTj9rChLMJOZXlNYdMB4RK5NWb7ja+TxLTR2nKHY8O2uvcwtu07NvLSTWosYN0dHSO947SNV0HWI7hRLTLm9MsbQ83f24kaw+nhfcfQ9bGWmi04a7KErvfDujs6Ak9/mS7Ta8sdvu7zglZGCq9VGeHUoszcGvYPfATkdCLsVJabU0Nrc2kkuvScNU855qw3FUk9OCjkVlGsLXfgtVPvV128leaCFjcFUivsnlBh8WrEJxTiCY0ch4dWrV5YQXD7URAvKKvtxqSp2ICzPqMcz1+3Z+R4p4CGteBKlwb6yuYSbrp2amDlFdbppHvxbMcEZtbzVQtSeOCN0+NmRbwbuVUUQGURGlexJs+qnS+6NuJxrWx1Ok+YnBVpM6WpiDW3XhdKyZk91jCZGr8aIMqxOeL7+VW7cMFSoNbEO2nj1UCb924qND+E7WS4JTALcj6zc+inLPM6nZVrRQEAxQb3BVb1viI2rsjFg0MXMWfNU449K7eeYVCcpg7uWdCWekM2QTCqMfVi8sQC+v701yJf0ymBlp9j/vDRQ7jgc9gYtkOVVMNWrYE2R+dpdATDlL+dteUOPPPyKdd3oTXneUNya8w22bjUuSIH9SjKC1Oa/C/7H7oYX0Kdd88NY86ap8Zs7148G6VitOkn+1DfZG25I1VlP3liAa+sX+I7wX2t8yZ8fencWOxQXiTZsJkOIq9tWDIqrpkVPz4rWekQOr0LpWIBm5fNc72/vJB7RWEuYkrbo6hWrLn1OhQDxMl58ImXsHDD07Fc+91zw2MUT7mzFXoxuAFyQoOMPK/1d3a4vkRryx2hAkAGZfrljSMN/2sbloxaVW0nbJiVuCl3tmLTF+J3284S98yvrgSy0iEsd7Zi/Z0do9oir7qdJ3KbuKie6e3r95UbPAlam0t4rufTgbJ3AZWeVdiX5uqeXZFtFW6Z5LywZ5lbOLMl0x2QuKdpzGdda7ySHGU1I15apJW4iIoixzilywzLpMYCzpyvHpcf8O8S29pciiWvc9R4W+Mxp4cTQbOqVSNL5TZ/3Z4xda7elQSQE0UhIs0A/gLAJ1BxUPkNAEcA7ADQDuB1AF9Q1Xe8zkNFEZ6oqTmtaz06v/L9WBerxTU909vXj+5HD2EohL+vmcqyXohrVJH10ROpkJdUqH8G4ClVvRbAXAA/BtADYK+qzgKw1/hOEiLq/GxzU+NIr3HNrdclbhwNQ7mzFR+6LJyDXj0piTihkiBWQisKEZkM4AYAfwkAqnpeVQcA3A5gq7HbVgDlqEISb6I07tb1C6ZxNA4mT4xnIZ7JQIiRTpDkOOOFOAzbWfEiItkhyojiGgCnAPy1iPSJyF+IyCQA01X1OAAYn9OcDhaR+0XkgIgcOHXKOe4L8UeUFdj29QtxhcKOe+74wwGzgV1WkDFZAuuB7sWzfbv3OiHIjhcRyQ5RFtxNAPBJAL+jqvtF5M8QYJpJVbcA2AJUbBQR5Kh7/CbhccJp/UK5szWSUTQJ19GhYW8X3Cy4q2aBcmdr6JAS9apcSXWiKIq3ALylqvuN74+hoihOiMgMVT0uIjMAnIwqJPGme/Hs0A173F4tSTXYfj2ySGVE0PWxFnQ/etA1akHeVwrXgjChVsYLoRWFqv6biLwpIrNV9QiAmwH8yPi7F8AG4/PxWCQlrmQlzWaW4tg4Bb+rpymVOMJSkEuYib/M2FRm4i8g/ajQtSCq19PvANgmIi8CmAfgq6goiEUichTAIuM7SZhyZ6uvcAdW4ooFBSTvc98cwEZhugybAeXM4Hd5SBFKsolb4q9apFKtBZGaClU9qKpdqjpHVcuq+o6q/lRVb1bVWcZnPCvCSFX8hDuw4hYnKyiTJxYS71U9eNt1rr/ZkwBt3/+m435u2wmphluU5FqkUq0FuY/1RC6xttzhK180UHGB9Grcg3iWprE61ktWu/3CLTS135DVhNhp9gjGGVfgzSxDRTHO2LPyRixf0DbKRbKxIJjSVBwVNLHafP03fK6nSNPn3k131d9qCZI2Xn2Meph+yn0+CjKWODLtmT14a/DBYgMwrJV1G7UwELu9q2HHCfbAhrOmTfKd85rUFz/zCMBZD9NPVBTEFb+eM1nzMCqIOE4zWUceTtFvj548g0WbnqWyIGPwStBVCOpFkkM49UQikUUPIzdbhOLSfLJbiPQgodNJ/eCVk7sebF9UFCQS21xWALttTwOveEf1MJ9M4qfc2eoaU40jCkKqELfdICxWzxOv3p+bmyMh1XCLqcYRBSEJ0tvXj4UbnsbVPbuwcMPTVd0MvaLkWkcK5c5W19zi9iCIhJDq0JhNakJvXz9WPnJwpJfWPzCIlY9UQpC4GdC9ouTaDY1L5sxwDIx307VTfckWdgFh3tKnEuIHjihIYniNEP5k54tjGv6LWtnuhpftwT7YeOZl59D15na3EQdQcQkOg1Nq2udePY17vvV8qPMRkhU4oiCRcHNFBSrTQW4987MuYU3dtgPeUXLtEri5Mprb19x6neu5Bjx85r1wy18eNq951tyOawnLorZQUZBI3D3/KtfcB2EXIkWZ+jFpEOepKtNDJWrOjaAEvSd7LnTT7RgAuj7WUlfhrr3KIk1lIXB20nAznY0n5capJxKJteUOzxAafozUdpymn8wwz37o7etP1ENlde9hzFz1JNp7dmHmqid9rRkJ6pbrpnwf3ncMq3YeRv/AIBSXwl2P53hDXmWRJkE8/LK4vigKVBQkMl5Nr1tDZo/4asVp+skpzLMbXo1ykHDlToRtAOIM81DP4a7zwniLYExFQSJTrfF1asjW3RFsCB5k/YPXvlHXRnk1ACWPBB9JL8mqh3hDeWK8RTCmoiCROX+hek/f2pDNWfNUVfuAvYfuZ/3Dok3PVt134GzFUB12qsarAfjAwxCfRvMwnqef8obXau08PicqChIZL08lK6t7D6O9ZxfePVddsdhDgHQvno1S0X26CqjEabrnW8979q4/bIx+kpiqiWsxX9h57LBuvVlngstKS7ftWeDu+Ve5/pbHaUJ6PZHUCGJ8VADtPbtGvi+c2YL1d3ZUHYlUc0U1O3pJhPLwct8NQlgjbVi33jQJ4wl0wcUzwW17Flhb7nB9jnkMI0NFQXKBqQAmNRbGZLQLwjGz98wAAA/USURBVDvG1JNX2Og06e3rH+PqOl7JiptrEji5PzeXio7K+8MRHSpqAaeeSG547tXTgY3gdsy542oNcnvPrsBTQEGnFHr7+rFyx8FRrq4rU1zbkTZJeAKlOd8fdDW/m5liYHAolNt4LaGiIJFIu7JHndoxjdF+FqgF9XsPOqWwaueLsFt3/Fl78omXI0B7zy7MX7fH8fckwq2EYc2t17n+5jRyMEevTuRt/QsVBYlE3gxzQc2fQewFQY3Zgz6dAIJijco778vfR+dXvu87Qm8tOfHeeUdlEbSBToqgq9+r5akYHBrOjQMCbRQkMFaDZN6IKrFXmlU/xuw5a57y5fUVFqsDADC6Ie0fGET3o4cABG/00uLEe+fHbEs73EoUrDYnP3VtYHAolpA1SUNFQQLhFCE1r7jFg7Jz7QNP4orLL/N8+f00CkkrCT8MXVSs2vliphsmJwO/27PKkoesGWbGbwQBkxU7DuLAG6czbdCPNPUkIq+LyGEROSgiB4xtLSKyR0SOGp9T4hGV1Jrevv5xoyQA4Nfnt/na74NhHTE4e1FtGqHWSsJkcOhipqegVtgM/Ct2HHRV6HF5yAZNouVEkDAzdrIeByoOG8VNqjpPVbuM7z0A9qrqLAB7je9kHJCX4b9f4u7B5WEdg8kfPJL+s5w4IX6TaBz5qs2RQNRAi1HdrbMcByoJY/btALYa/28FUE7gGiRlstwDDYo1kdDyBf5GFX7x8tDJEsM1MC997fNzYp8qisNO5jQSCBNoMeq9ZdnmF9VGoQC+LyIK4P+o6hYA01X1OACo6nERmRZVSFJ78ubd5IU5fbZo07M4evJMrOf2conMGnbDt5VJjQWsu6MjVluGea6Nu4/EttgxajRgoHqSK79keKF4ZKKOKBaq6icBfBbAb4vIDX4PFJH7ReSAiBw4dco5bSXJDmmHHZg80TuuU1Tae3bFriTGE2fOD2PFjoOZH0nGMPMUCK/w+HGQ1fKOpChU9W3j8ySAvwfwSwBOiMgMADA+T7ocu0VVu1S1a+rU6gnvSW2JK+BdNVqbS3h9wxK8+OXPpHI94k2cdimrLSAukh7B2RvuqJEBqpHVdRWhFYWITBKRy83/AfwagB8CeALAvcZu9wJ4PKqQpPakEYOoVCyMuk7c9gNSW6J4BbkRhzHbi1WWbIs/v2pX4g4dWXWIiDKimA7gn0XkEIB/AbBLVZ8CsAHAIhE5CmCR8Z3knHJnKxbObIntfJuXzcPmZfPQ2lyCoDKSWH/n6DnxLPuVk+AkMX2ZtAHYXD3f3rMLF8axDaIaoY3ZqvoTAHMdtv8UwM1RhCLZZNt918eyKnvhzJYRhVDNWOqW0J7kj8YJDTh3If6wJUmvbM7y+oa0YKwnEoi15Q68uv4WvL5hSajjZ02bhG33Xe97/3sCTj8tX9CG1zcswfTLG4OKVhM2L5tXaxE8mRDjzE4SSgJIfk1I2PwgYfBKp1tLsikVyQVBlYUA2LPyxkDH+J1+EkMec/9F1/1coOvUiiyH0sgLUdaEZM3L6LIqWRxrBRUFSY3XQo5CqjF5YmHMudPsBY5n8jIvH7bBz5qX0UBG1+FQUZDQBHk5Gwvh5zCqhX5I2pV28sRCrIZ8k1nTJgHI/vRTHvjyd8I1+FnzMspq9jsqChKaIKu1H7prjN+Db772+TmuvyXtQrtwZgte/PJnsO2+62NVFtMvbxyZhit3tkZSpOMJQfCcIUC+VsR7kfYCQr9QUZDQ+HV3XL6gLdJcfLmzFZuXzRtl6GuQynnDuNCWig2jXHObS0XHF2H5grZRhvcwysLJDXjzsnnY/8CiUfs9dNdc11hB5jFhlGJrc2lk5JIHrmwu4Zt1PMLK6tQT81GQ0FzZXPJcZdtq5BKIw2Bb7mz1fZ5qU2Lr75wT6HxWtt13vWeMJDt+3YCtcZCseRisx5U7W0cUox8ZrM4GQWS2Eue02PIFbZ62I3PBZZiYUHHEfMoCaUVACAoVBQnNTddO9Xzxn+v5dIrSXKLalFhankZBG9kgymtSYwFnzruvcraPfESAoEtfNi+bF2tZmUrOXIcjAJoaCzh7fniMYjTLwm+irAdvc0+Xmiduujab4YyoKEhonnnZPZhjaw17RmkHMLQzpamINbdel6hCWndHh2c4CftalXvme/fmnUhC/rXljkDThX5GcFEUmt8sh2mxff+xTEYkoI2ChMarQa5lz8hr+J50bCAA6PvTX0t81OJ1fqc7XFvuCGTjSDp6b5xEKessKQmgNnlC/EBFQULj1SB7jTaSxiuAYdKxgdI0HLuN2tyey9pyh6/psMkTC3UTvbeWI988QUVBQuM1aqj19I8bcTQMXpnMgq48j0L34tko2Vby2iPw2jE9yOxeWK9vWDLyVy9KAog3KvKUpuK4jXhMGwUJjdeooZbeG27GbEE8DUNWpiv8eEq5HcfQIRXKna2xhA4vFmTELrVt/7HAjgMmWXVlpqIgofFyXUwjf4UbbqMZxfiLrVTvjX4aUyJOMc16+/pdFXQYxwFg9CLMrEFFQUJTEHGd869l4+W2viOu+Wi30OcZXVSbe7zq2aaEF+e5TSV5Kei15Y5AimJCg+DrS+dmWuFTUZDQeBmGk84R4EX34tlYtfPwqGxq1ebug+B21xmZkRp33D3/KseG15rXJCnCuqq6LS4MG02g1tCYTULj1UMPEgcqbsqdrVh/Z4dn9rwouLnYpuF6W4+Yrr1m+RZExoRXyRpuMudRSQAcUZAIdC+e7WoI9Bt6ISmSnLt3G0kl7XpbzwRdqBeEhTNbHFd/Rw0CmaTMacMRBQlNludUk8RtJEWf/HziFOxx4cyWTI9Y0oYjCkICkrQNhKQPlYI3VBQkEvXoARR2/QIheYWKgkSicUIDzl246Lh9PFPv6xdIdbzWWuQNKgoSCScl4bWdkHqgt69/1PRk/8AgVu08DCCftr3x3e0jhJAasHH3kVE2LAAYHBquqdt4FKgoSCTcMouNl4xjhITBLYxMVoNlViOyohCRgoj0ich3je8tIrJHRI4an1Oii0myyoO3XYeiLZxqsUHGTcYxQsLgFhQzq6lOqxHHiOL3APzY8r0HwF5VnQVgr/GdjFPKna3YuHTuqFXQGzMet4aQpAkTAj7LRDJmi8hHASwBsA7ASmPz7QBuNP7fCuBZAH8c5Tok29ADiJDRjDcX6qheT5sB/BGAyy3bpqvqcQBQ1eMiMs3pQBG5H8D9ANDWNj6TfRBC6pfx1IEKPfUkIp8DcFJVXwhzvKpuUdUuVe2aOrV2+ZUJIYR4E2VEsRDAbSJyC4DLAEwWkYcBnBCRGcZoYgaAk3EISgghpDaEHlGo6ipV/aiqtgP4IoCnVXU5gCcA3Gvsdi+AxyNLSQghpGYksY5iA4BFInIUwCLjOyGEkJwSSwgPVX0WFe8mqOpPAdwcx3kJIYTUHtEMJFsRkVMA3jC+fgTAv9dQnLBQ7nSh3OlCudPFr9wfU9XEvYEyoSisiMgBVe2qtRxBodzpQrnThXKnS9bkZqwnQgghnlBREEII8SSLimJLrQUICeVOF8qdLpQ7XTIld+ZsFIQQQrJFFkcUhBBCMgQVBSGEEG9U1fMPwFUAnkEl58RLAH7P2N4CYA+Ao8bnFGP7Fcb+7wP4c9u5lgF40TjPQx7XXAfgTQDv27avBPAj4xx7UfEhdjp+IiqhRM4CGATwrxa5hwG8B+AcKnGoMi83gJsAHLbIPQzgnqzLbfz2Z4Zs54zzZKm8bzDK9SKAtzC6fu8FMATgDLJXvx3lBvAxAAct9eTHeZA7B++lW3ln/b28AcAPAFwAcJftt68B+KHxt8xNhpH9q+4AzADwSeP/y1FpBD4O4CEAPcb2HgBfM/6fBOCXAfymtYCMgjsGYKrxfSuAm12uucC4rr2AbgLQZPz/WwB2uBz/3wD8LYBPohKH6tsWuc/nVO6HDHlbUGmQv5EDuX8TwOsA/sSQ8y0A38yQ3O0APg3guwDuwuj6/XcA/sb4LWv1xE3uuQC+Ycj7IQDvAPifOZA76++ll9xZfi/bAcxB5d28y7J9CSqdnwmGnAcATHY6h/lXdepJVY+r6g+M/99DpZfSikqCoq3GblsBlI19zqjqPwP4wHaqawD8q6qeMr7/A4DPu1xznxo5LWzbn1HVs8bXfQA+6iL27QD+lyH3YwB+xSL3hJzKbZb3XQC+B+BzOZD7k6hUxL9W1TMA/gmV3lQm5FbV11X1aRgrYG31uxOVURKQsXriIfc0VOrFVlRGeWcALM6B3Jl+L6vIndn30pD7RVRGQlY+DuAfVfWC8V4eAvAZp3OYBLJRiEg7Ki/QftgSFKFSSb14BcC1ItIuIhNQqQhXBbm+jS+h8mCcaEVlyAZVvYDKC/OLhtwC4Dsisg/A/BzJbZb3FwH8dU7kfhLAFAA/E5GPoNJDas6Q3KOw128Ap4FM1u9R2OT+OQC7UXke61HpwXqRFbmz/F6OwqUdzOJ76cYhAJ8VkSbjvbypmgy+gwKKyIdQmVJYoarvikggyVT1HRH5LQA7UNFw/w8V7RoYEVkOoAuVnqvjLja5fw7AfYbc76pql4hcA+BpVFGWGZIbRn6PDlQaAk8yIneviAwZ1z4F4HkAd2RIbiuXIT/124pdblXVOSJyJYBeWJ5NxuXO8nvpJXeW30s3Gb4vIp/C6PfygtcxvkYUIlJEpXC2qepOY/MJo4DMgqqaoEhVv6Oq81X1egBHABwVkYKIHDT+vuJDll8F8ACA21T1nLFtnXkOY7e3AFxlyL0TFaPk/zV++zcjsdJPUOkRvJ8TuU8A+C8A/h6VgGF5Ke9jAD6rqosAlGD00jMi98juAP4QtvqNyrxzFuu3p9xG/X4bwE9QGd3lQe4sv5decmf5vfSSYZ2qzjPeS0HFKcnzAM8/4yR/C2CzbftGjDY+PWT7/T9jrLV/mvE5BRXvjF+ocm27EacTwKsAZlU57rcB/G9D7icBPGK57iZDXjM6419mXW5LeR9DZZiYl/IuAPgfhrxzAPwbgI1ZkdtSv18B8F2H+r0Fl4zZmSlvN7lRmav+piHvFFR6i3+VA7kz/V76qCeZfC8t+/8NRhuzCwCuMP6fg4rn0wTPc/i4yC8DUFRcsQ4af7egMve5FxVNtBdAi+WY11HpOb6PSm/z48b27ai4df0IwBc9rvmQcZzpjvagsf0fUNHgphxPuBx/GSrDV0XFE+FHxv5/YPxvurP9KCdy3wJgHiqGsTyV9+2o9JjOoOI2uz9jcn8KlR6gojL0HrSU9/OoeOJcNMr9rhzI/QAqLpdW99g8lHfW30uvepLl9/JTxnFnAPwUwEuW99W8/j4A87x0gKoyhAchhBBvuDKbEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhCRUEIIcQTKgpCCCGe/H9DmsqiQBIg1AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from apd.aggregation.query import with_database, get_data\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "async def plot():\n", + " points = [(dp.collected_at, dp.data) async for dp in get_data() if dp.sensor_name==\"RelativeHumidity\"]\n", + " x, y = zip(*points)\n", + " plt.plot_date(x, y, \"o\", xdate=True)\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " await plot()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nO2df5RV5Xnvv88czuAZIhnGAMWJk1FK8cYMMOmk4KXXaiwlkahHIyFW1vKu5uptb1dbSjvtULnFZEEgkhC6bu+695L+olcWRQ0dTTASitqueoUuzIDERIpGRUcKNDhRYYRheO4fZ+9hz56999m/z95zvp+1Zp05++wfz373u9/nfd/neZ9HVBWEEEKIGw21FoAQQki2oaIghBDiCRUFIYQQT6goCCGEeEJFQQghxJMJtRYAAD7ykY9oe3t7rcUghJBc8cILL/y7qk5N+jqZUBTt7e04cOBArcUghJBcISJvpHEdTj0RQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+qej2JyF8B+ByAk6r6CWNbC4AdANoBvA7gC6r6jvHbKgBfAjAM4HdVdXcikhOSIr19/XjwiZcwMDgU6TxNxUrf7OzQRQDAlKYi1tx6HcqdrSPX2bj7CN4eGMSVzSV0L5498htJjiDlbq8LU5qKWDJnBp55+RTeHhjEh0tFnL8wPPKM/WCvB1lDqkWPFZEbALwP4G8tiuIhAKdVdYOI9ACYoqp/LCIfB7AdwC8BuBLAPwD4BVUd9rpGV1eX0j2WZJXevn50P3oIQxeTibRcLAg23jUXALBq52EMDl16XUrFAtbf2ZHZBmQ80NvX77vck6wLZj0I8qxF5AVV7YpdGBtVp55U9Z8AnLZtvh3AVuP/rQDKlu1/p6rnVPU1AK+gojQIyS0bdx9JTEkAwNCwYuPuI9i4+8ioxgoABoeGsXH3kcSuTRCo3JOsC2Y9yCJhF9xNV9XjAKCqx0VkmrG9FcA+y35vGdvGICL3A7gfANra2kKKQUjyvD0wWNNrpHH9esatfJ22J/0ssvqs4zZmi8M2R/WrqltUtUtVu6ZOTXwFOiGhubK5lMo13K6TxvXrmSDlnvSzyOqzDqsoTojIDAAwPk8a298CcJVlv48CeDu8eITUnu7Fs1FscOoDxUOxIOhePBvdi2ejVCyM+q1ULKB78ezErk0QqNyTrAtmPcgiYRXFEwDuNf6/F8Djlu1fFJGJInI1gFkA/iWaiITUlnJnKzYunYvmUjHyuZqKDSOeT0DF28U0YJY7W7H+zg60NpcgAFqbSzRkp0CQcneqC1Oaili+oG3k+OZScdQz9oO1HmQRP15P2wHcCOAjAE4AWAOgF8AjANoAHAOwVFVPG/s/AOA3AFwAsEJVv1dNCHo9EUJIcNLyeqpqzFbVu11+utll/3UA1kURihBCSHbgymxCCCGeUFEQQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhCRUEIIcQTKgpCCCGeUFEQQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhSNR8FIWHp7evHg0+8hIHBoTG/TWosYN0d/rO39fb1Y+PuI3h7YBBXNpfQvXh2bNnAvOQ0mdJUxJpbr0O5szWwLOb+/QODKIhgWBXNpSLOXxjG2aGLsdwDUElYXywIzg9fSkY2pamIJXNm4JmXT43I235FCft+8g6GVVEQwd3zr8LackdscvjFXu7WMq4FTvXA/tyr1RMrbveTZF1OiqoZ7tKAGe7GH719/eh+9BCGLrrXr0KD4BtLq6d/7O3rx6qdhzE4NDyyrVQsxJIm1I+cJsWCYNmnrsK3X+j3LYuT7Flk+YK2VJWFW7kXC1KTlKBe9cB87jv+5U1f9cR+rPV+4q7LaWW449QTSYSNu49UfamGLyo27j7i61z2hnZwaNjXsX7O7fflHxpWbN//ZiBZnGTPItv3v5nq9dzKfWjYX51ISx7g0nMPqiTMY633k2RdThIqCpIIbw8Mxraf2z5+rxH1+laGXUbgScqYBm73lRRe5VKLMqt2zSjlYz13XusJFQVJhCubS7Ht57aP32tEvb6Vgkig88QhYxq43VdSeJVLLcqs2jWjlI/13HmtJ1QUJBG6F89GscH75So0CLoXz/Z1rlKxMGpbqVjwdayfc1eT06RYqBh+g8jiJHsWuXv+Valez63ciwV/dSIteYBLz91vPbEfa72fJOtyklBRkEQod7Zi49K5aC4VHX+f1FjwZcg2z7X+zg60NpcgAFqbS7EYsv3IaTKlqYiNd83F2nJHIFmssgOXeqbNpSKaivG+fgKgsTC6MZvSVMTyBW2j5F04s2VEjoJI6oZswLnczTKuhQeQWz2wPnc/9cTpWOv9JFmXk4ReT4QQklPo9UQIISQTUFEQQgjxJJKiEJHfE5EfishLIrLC2NYiIntE5KjxOSUeUQkhhNSC0IpCRD4B4D4AvwRgLoDPicgsAD0A9qrqLAB7je+EEEJySpQRxX8AsE9Vz6rqBQD/COAOALcD2GrssxVAOZqIhBBCakkURfFDADeIyBUi0gTgFgBXAZiuqscBwPic5nSwiNwvIgdE5MCpU6ciiEEIISRJQisKVf0xgK8B2APgKQCHAFwIcPwWVe1S1a6pU6eGFYMQQkjCRDJmq+pfquonVfUGAKcBHAVwQkRmAIDxeTK6mIQQQmpFVK+nacZnG4A7AWwH8ASAe41d7gXweJRrEEIIqS1RExd9W0SuADAE4LdV9R0R2QDgERH5EoBjAJZGFZLUH1lLakNIPRNJUajqf3LY9lMAN0c5L6lvnJLIvHN2CN2PHQIAKgtCUoYrs0nmyFpSG0LqHebMJqlizR8tAOzqwGmblf6BQXz8v38vUK7pKU1FfHzG5Xju1dO+9rVOccU1Bba69zC2739zTJ5qr/zJ1t8+XCpCBBg4O+S436qdL2LQKJMGAa6/pgUvvf3emPzPZv5st/JvEODX56cfTdYtX/WSOTPw3UPHazIFubr3MLbtO+ZYH1tzkus6Lhg9lqRGXvJHm3mOAcSS13l172E8vO/YmO0LZ7bgB8d+5pg/GYBnWVn3W7njIPyrTX+kGXo8SN5yIJ282m7PzEpcedujkFb0WCoKkhoLNzyN/oynfDQx80e4ydvaXMJzPZ/2da6Zq54MlEqz2rWD7heGggheXX9L7Od1Iky9CFL+YfD7zJKWoxppKQpOPZFYqPQKD8JpRmhSYwHr7ujIfF5gK9VkDXIvQfMtx5lvPCxp5tAOcx9J1yW/95+nOh0FGrNJZHr7+rFih7OSAIAz54fxB48eQnOT/+xgtebK5lJseZ2D5luudu2g+4UhzRzaYe4h6RzTfu8/67mu44KKgkTGjyfS8EWFKnKRP9rMcxxXXme3fNQLZ7a45k+ulmvbul8SL3GaObSD5C0H0smr7ef+85DrOi6oKEhk/A6/fzY4NCp/tFPTYM/73FRsGJVb2v7dD1Oailg4s8X3vqahNK68zmvLHVi+oG1Mnupt913vmj/Znlu5uVTElKai436bls1DyVImDVJRQk75n8382YBz+TdIuoZswDtf9fIFbTXJq20+Mzf1lZdc13FBYzaJjF9jZK0Nf4SMN5gzm+QGP8PvQkPy0wWEkGSgoiCRKXe2YvOyeXCbEZrUWMA3liY/XUAISQa6x5JYMOfLCSHjD44oCCGEeEJFQQghxBMqCkIIIZ5QURBCCPGEioIQQognVBSEEEI8oXssyQT2JDFmxFm63BJSe6goSM1xShJjRpwFmCObkFrDqSdSc7bvf9Nx+/BF5sgmJAtwREFSx54L2itJjDUyrT3v9IJrpozKC91UbMDEYmEkr/RN104dlW8ZSDfncpbwys1t/h5HbvCgctifkVOebDNasD1Per0+y1rA6LEkVYLmzTYjzvrJYeyXNHIuZwmnMrfme3bLWR13OSWRM73enqUdRo8l45KNu4/4biisEWfdpqfCMDRcX1NaTmU+ODQ8UgYbdx8ZoySA+MspyLP3S709y1oRSVGIyO+LyEsi8kMR2S4il4lIi4jsEZGjxueUuIQl+cdvkiN7xNm4czjXS65jwP1eze1eZRFnOSVV5vX0LGtFaEUhIq0AfhdAl6p+AkABwBcB9ADYq6qzAOw1vhMCwF+O4dbmEl76ymdGTSfEncO5XnIdA+73am6PKzd4WDmyel5yiahTTxMAlERkAoAmAG8DuB3AVuP3rQDKEa9BxhF+c0HbiTOHcxo5l7OEU5lbyzmu3OBh5IhKvT3LWhFaUahqP4CvAzgG4DiAn6nq9wFMV9Xjxj7HAUyLQ1AyPvCbC9qOU95pe17opmLDqHPZ8y0D6eVczhL2MreXc1y5wcPI4ZQT277NLU96PT7LWhHa68mwPXwbwDIAAwAeBfAYgD9X1WbLfu+o6hg7hYjcD+B+AGhra/vFN954I5QchBBSr+TB6+lXAbymqqdUdQjATgD/EcAJEZkBAMbnSaeDVXWLqnapatfUqVMjiEEIISRJoiiKYwAWiEiTiAiAmwH8GMATAO419rkXwOPRRCSEEFJLQq/MVtX9IvIYgB8AuACgD8AWAB8C8IiIfAkVZbI0DkEJIYTUhkghPFR1DYA1ts3nUBldEEIIGQdwZTYhhBBPqCgIIYR4QkVBCCHEEyoKQgghnlBREEII8YSKghBCiCdUFIQQQjyhoiCEEOIJc2YTUidUy5udNfIm73iGioKQOsCer7p/YBCrdh4GgEw2vnmTd7zDqSdC6oBqebOzRt7kHe9QURBSB1TLm5018ibveIeKgpA6oFre7KyRN3nHO1QUhNQB1fJmZ428yTveoTGbkDrANADnxYsob/KOd0LnzI6Trq4uPXDgQK3FIISQXJGHnNmEEELqACoKQgghntBGYeGebz2P5149PfJ94cwWbLvv+hpKRAghtYcjCgO7kgCA5149jUWbnq2NQIQQkhHqZkRxdc8uWM32AuC1DUtGvtuVhMnRk2fQ29dPbwtCSN1SFyOKdpuSAAA1tvth1c4XY5eJEELywrhXFPd863nP3+ev21P1HINDF+MShxBCcse4VhS9ff2uU0omJ947n5I0hBCST8a1ovjjb/ubMpqz5qmEJSGEkPwSWlGIyGwROWj5e1dEVohIi4jsEZGjxueUOAUOwrkL/qaM3j03XH0nQgipU0IrClU9oqrzVHUegF8EcBbA3wPoAbBXVWcB2Gt8J4QQklPimnq6GcCrqvoGgNsBbDW2bwVQjukaNaW3r7/WItQVvX39WLjhaVzdswsLNzzN8iekhsSlKL4IYLvx/3RVPQ4Axuc0pwNE5H4ROSAiB06dOhWTGKOZNW1SbOdiZq30WLTpWazYcRD9A4NQVNJgrthxkMqCkBoRecGdiDQCuA3AqiDHqeoWAFuASvTYqHI4cfZ8fG6tWcisVQ/J5u/51vM4evKM428rHzmYi/uth+dEorO69zC2738Tw6ooiODu+Vdhbbmj1mI5EsfK7M8C+IGqnjC+nxCRGap6XERmADgZwzVCEWfj/uFSMbZzhWHOmqdGGd3Ha7J5L3fmi7WPiF+VRZueHaXozNEQML6eE4mGvZ4Mq+LhfccAIJPKIo6pp7txadoJAJ4AcK/x/70AHo/hGqFonBCf9++7g0OxnSso89ftcfTMGm/J5q994MlaixAJr9HQih0Hcc2qXZw+I1jde9i1npjKImtEGlGISBOARQD+q2XzBgCPiMiXABwDsDTKNcLS29fv2z3WD0mvzXaKXLu0qw0bdx/xXBTYn4EpsThY3XsYHwznYMjgQbXFnRcVHF2QzCoDLyIpClU9C+AK27afouIFVVO6Hz1YaxEccZq/fvTAMcfItdUaHqAS3DCvWMsi3yoiGH/02CEqijplde/hWosQinEbPbZaeKZJjQWcOZ/uQrvevn78/o6DI41i/8DgqO9hyGsD29vXj1U7D2NwqP4WO57P+ciJBKe3r39kNOlFVjt+uVYUUbxL1t3RMaahKhULng1Xe8+uSN4Jf/TYIccotvXIxt1HAiuJgmT1NQrO6t7DmTRaEm/CeCr5VRIAcM+CtjjEjJ3cKorevn50P3oIQ4YrTP/AILofPQQAOPCG95RNqdgwolDsiqbaA3XyTvCrsNiTvEQY28qwjp/ye3jfMSqKnBHWU+nBJ17yfY2s1oncKooHn3hpREmYDF1UPPjESxio4qG0/s45ACoGRXuD7lfzbzNedHtvge6Q/hAEH021NpeSEIWQqlTzVPJq4Ku1RyaTJxZCyZYGuVUUboXv56F4NeClYoOv/BNmI+emWFbsGL04jG6RowkzNmi/Il5FYe8hzpo2CXtW3hjqXEk8X7sn3MQJDfja5yudHC7oS5ft+98MdVy1fDhWXvzyZ0JdIw1yqyiSYv2dc3yPKqphTaGa5HqHepnvfu7V07GlpbUrCaCS9nbRpmerKguneeowLo/tPbuwfEGb47NzyuF+7sLFMXXTHMH+ae/hTDc0Tlz7wJNjXKInTyxk8j6qTXs6vYNOdcyNUjHbGR9EMzDv29XVpQcOHAh0jN80pnYmNAhe+eotnvvMXv09X2swFs5s8eXCmgavW/J/54Gwz880Z1frSVezG3ld36ssV/ceTsQP3q4wwpTPZQXBy+u863ZWcFISVtKsz15u2hMEeGX9Esxc9WRVZWGVOYgBGwA2L5sXqgMkIi+oalfgAwOSbTWWAF9fOrfqPubwvhppKYnNy+alcp08oMafGcLEacrHdL21BhX8/R0HY/FhT2qx1MP7jkWW74NhzY2ffrXFlVeH7EgExV5X7FzQitJecE2wtDpf/o5/A/bCmS2ZnzqsK0WxfEGbrweSlYfW2lwK3dPIMkHmbb1wC2Hi5HqrqDTGfmwJ7T27atLgxqGE8rjq1wlF+FFnEPy6afvpFFqV2ztn/Rmwly9ow7b7rve1by3JraJoLAT3qc/TPP5lBcFzPZ8eURILZ7bUWKJ4WN17uOpL1xDg0Tq52XoFg/TrqhhHDz8M7T27Umkg80LSSjvOwKGK4Cuv89Im5VZRTJoYzA4fdPomzlwWYbDPNVfrdeQl0Y+fHu+mLwR7VvZ79YoF6ddVEYindz5r2iQsz+giqlpyWYCOXpJK+8qYXa7NOtPsI9q0n32yQm4Vhd+hnUnQ6Zs9K2+sibKYPLEQypC38pHRiX7c5u+TIG4lFfRZ2UcJ1bybg8j386su9e4XbXo2iFgAKvVobbmDdiYbG+6qbiu08vC+Y7i6J/7ou92LZ8d6PqAyCvLTIXnwtutiv3ZS5NY9tiCS+ErdPStvxMINTyceoTUODw97rgZz/j5p+0aQBYdJ9QqDjBKAimJpbS75eq4XtGJTeeXk+55RfJ2YfnnjyP9mWcTlep13wriLKyrl94ePHsLXl87Nte1u1rRJuZI/tyOKtMI5JNHjsBIkflFTQF9r+/xrEtNTKz0WHNrZ5mMqx2xcJ8aYS8TOwOBQoOf63KunAysJANj/wKJR38udramMLPLg+RTFNnDhomLFjoNo79mF2au/F6ke1yKfS5SFnbUit4oiCFHmiMudrYnOMd89/yrf+371Tn9uuybWrHxOLqNxTE95zfK0WxRSb19/1dXY0y9vHGlc/booO+FnyjDpnr3bKLHc2Zr4GoGwtpVrH3hyxJje3rMr0URScdkGzl24iJWPhM+nXot8LnlTEkCdKIqongXmHHPcsYYWzmwJJFvQoap1sOLkBjg4NDzSM3P6i6Nnak5FVWuYly9oG9UDjzIs//f3g/f+42LWtEmZWPw4f92eQPtf3bNrzNqGD4Y1MWVx07VTYzvXRQ0/MhhPEYmTJLeKIu0HXO5sxXM9n8brG5Zg+YK2Mdf3WoK/edm8EUUjuLQ+Imn/aavBP0zPKU0X0ajK3JRzde/hwI4OcbF52TzfvcVJjcEDwF1WkJH6V40T750fZYj3YnXvYdfRXlJZB595+ZTj9rChLMJOZXlNYdMB4RK5NWb7ja+TxLTR2nKHY8O2uvcwtu07NvLSTWosYN0dHSO947SNV0HWI7hRLTLm9MsbQ83f24kaw+nhfcfQ9bGWmi04a7KErvfDujs6Ak9/mS7Ta8sdvu7zglZGCq9VGeHUoszcGvYPfATkdCLsVJabU0Nrc2kkuvScNU855qw3FUk9OCjkVlGsLXfgtVPvV128leaCFjcFUivsnlBh8WrEJxTiCY0ch4dWrV5YQXD7URAvKKvtxqSp2ICzPqMcz1+3Z+R4p4CGteBKlwb6yuYSbrp2amDlFdbppHvxbMcEZtbzVQtSeOCN0+NmRbwbuVUUQGURGlexJs+qnS+6NuJxrWx1Ok+YnBVpM6WpiDW3XhdKyZk91jCZGr8aIMqxOeL7+VW7cMFSoNbEO2nj1UCb924qND+E7WS4JTALcj6zc+inLPM6nZVrRQEAxQb3BVb1viI2rsjFg0MXMWfNU449K7eeYVCcpg7uWdCWekM2QTCqMfVi8sQC+v701yJf0ymBlp9j/vDRQ7jgc9gYtkOVVMNWrYE2R+dpdATDlL+dteUOPPPyKdd3oTXneUNya8w22bjUuSIH9SjKC1Oa/C/7H7oYX0Kdd88NY86ap8Zs7148G6VitOkn+1DfZG25I1VlP3liAa+sX+I7wX2t8yZ8fencWOxQXiTZsJkOIq9tWDIqrpkVPz4rWekQOr0LpWIBm5fNc72/vJB7RWEuYkrbo6hWrLn1OhQDxMl58ImXsHDD07Fc+91zw2MUT7mzFXoxuAFyQoOMPK/1d3a4vkRryx2hAkAGZfrljSMN/2sbloxaVW0nbJiVuCl3tmLTF+J3284S98yvrgSy0iEsd7Zi/Z0do9oir7qdJ3KbuKie6e3r95UbPAlam0t4rufTgbJ3AZWeVdiX5uqeXZFtFW6Z5LywZ5lbOLMl0x2QuKdpzGdda7ySHGU1I15apJW4iIoixzilywzLpMYCzpyvHpcf8O8S29pciiWvc9R4W+Mxp4cTQbOqVSNL5TZ/3Z4xda7elQSQE0UhIs0A/gLAJ1BxUPkNAEcA7ADQDuB1AF9Q1Xe8zkNFEZ6oqTmtaz06v/L9WBerxTU909vXj+5HD2EohL+vmcqyXohrVJH10ROpkJdUqH8G4ClVvRbAXAA/BtADYK+qzgKw1/hOEiLq/GxzU+NIr3HNrdclbhwNQ7mzFR+6LJyDXj0piTihkiBWQisKEZkM4AYAfwkAqnpeVQcA3A5gq7HbVgDlqEISb6I07tb1C6ZxNA4mT4xnIZ7JQIiRTpDkOOOFOAzbWfEiItkhyojiGgCnAPy1iPSJyF+IyCQA01X1OAAYn9OcDhaR+0XkgIgcOHXKOe4L8UeUFdj29QtxhcKOe+74wwGzgV1WkDFZAuuB7sWzfbv3OiHIjhcRyQ5RFtxNAPBJAL+jqvtF5M8QYJpJVbcA2AJUbBQR5Kh7/CbhccJp/UK5szWSUTQJ19GhYW8X3Cy4q2aBcmdr6JAS9apcSXWiKIq3ALylqvuN74+hoihOiMgMVT0uIjMAnIwqJPGme/Hs0A173F4tSTXYfj2ySGVE0PWxFnQ/etA1akHeVwrXgjChVsYLoRWFqv6biLwpIrNV9QiAmwH8yPi7F8AG4/PxWCQlrmQlzWaW4tg4Bb+rpymVOMJSkEuYib/M2FRm4i8g/ajQtSCq19PvANgmIi8CmAfgq6goiEUichTAIuM7SZhyZ6uvcAdW4ooFBSTvc98cwEZhugybAeXM4Hd5SBFKsolb4q9apFKtBZGaClU9qKpdqjpHVcuq+o6q/lRVb1bVWcZnPCvCSFX8hDuw4hYnKyiTJxYS71U9eNt1rr/ZkwBt3/+m435u2wmphluU5FqkUq0FuY/1RC6xttzhK180UHGB9Grcg3iWprE61ktWu/3CLTS135DVhNhp9gjGGVfgzSxDRTHO2LPyRixf0DbKRbKxIJjSVBwVNLHafP03fK6nSNPn3k131d9qCZI2Xn2Meph+yn0+CjKWODLtmT14a/DBYgMwrJV1G7UwELu9q2HHCfbAhrOmTfKd85rUFz/zCMBZD9NPVBTEFb+eM1nzMCqIOE4zWUceTtFvj548g0WbnqWyIGPwStBVCOpFkkM49UQikUUPIzdbhOLSfLJbiPQgodNJ/eCVk7sebF9UFCQS21xWALttTwOveEf1MJ9M4qfc2eoaU40jCkKqELfdICxWzxOv3p+bmyMh1XCLqcYRBSEJ0tvXj4UbnsbVPbuwcMPTVd0MvaLkWkcK5c5W19zi9iCIhJDq0JhNakJvXz9WPnJwpJfWPzCIlY9UQpC4GdC9ouTaDY1L5sxwDIx307VTfckWdgFh3tKnEuIHjihIYniNEP5k54tjGv6LWtnuhpftwT7YeOZl59D15na3EQdQcQkOg1Nq2udePY17vvV8qPMRkhU4oiCRcHNFBSrTQW4987MuYU3dtgPeUXLtEri5Mprb19x6neu5Bjx85r1wy18eNq951tyOawnLorZQUZBI3D3/KtfcB2EXIkWZ+jFpEOepKtNDJWrOjaAEvSd7LnTT7RgAuj7WUlfhrr3KIk1lIXB20nAznY0n5capJxKJteUOzxAafozUdpymn8wwz37o7etP1ENlde9hzFz1JNp7dmHmqid9rRkJ6pbrpnwf3ncMq3YeRv/AIBSXwl2P53hDXmWRJkE8/LK4vigKVBQkMl5Nr1tDZo/4asVp+skpzLMbXo1ykHDlToRtAOIM81DP4a7zwniLYExFQSJTrfF1asjW3RFsCB5k/YPXvlHXRnk1ACWPBB9JL8mqh3hDeWK8RTCmoiCROX+hek/f2pDNWfNUVfuAvYfuZ/3Dok3PVt134GzFUB12qsarAfjAwxCfRvMwnqef8obXau08PicqChIZL08lK6t7D6O9ZxfePVddsdhDgHQvno1S0X26CqjEabrnW8979q4/bIx+kpiqiWsxX9h57LBuvVlngstKS7ftWeDu+Ve5/pbHaUJ6PZHUCGJ8VADtPbtGvi+c2YL1d3ZUHYlUc0U1O3pJhPLwct8NQlgjbVi33jQJ4wl0wcUzwW17Flhb7nB9jnkMI0NFQXKBqQAmNRbGZLQLwjGz98wAAA/USURBVDvG1JNX2Og06e3rH+PqOl7JiptrEji5PzeXio7K+8MRHSpqAaeeSG547tXTgY3gdsy542oNcnvPrsBTQEGnFHr7+rFyx8FRrq4rU1zbkTZJeAKlOd8fdDW/m5liYHAolNt4LaGiIJFIu7JHndoxjdF+FqgF9XsPOqWwaueLsFt3/Fl78omXI0B7zy7MX7fH8fckwq2EYc2t17n+5jRyMEevTuRt/QsVBYlE3gxzQc2fQewFQY3Zgz6dAIJijco778vfR+dXvu87Qm8tOfHeeUdlEbSBToqgq9+r5akYHBrOjQMCbRQkMFaDZN6IKrFXmlU/xuw5a57y5fUVFqsDADC6Ie0fGET3o4cABG/00uLEe+fHbEs73EoUrDYnP3VtYHAolpA1SUNFQQLhFCE1r7jFg7Jz7QNP4orLL/N8+f00CkkrCT8MXVSs2vliphsmJwO/27PKkoesGWbGbwQBkxU7DuLAG6czbdCPNPUkIq+LyGEROSgiB4xtLSKyR0SOGp9T4hGV1Jrevv5xoyQA4Nfnt/na74NhHTE4e1FtGqHWSsJkcOhipqegVtgM/Ct2HHRV6HF5yAZNouVEkDAzdrIeByoOG8VNqjpPVbuM7z0A9qrqLAB7je9kHJCX4b9f4u7B5WEdg8kfPJL+s5w4IX6TaBz5qs2RQNRAi1HdrbMcByoJY/btALYa/28FUE7gGiRlstwDDYo1kdDyBf5GFX7x8tDJEsM1MC997fNzYp8qisNO5jQSCBNoMeq9ZdnmF9VGoQC+LyIK4P+o6hYA01X1OACo6nERmRZVSFJ78ubd5IU5fbZo07M4evJMrOf2conMGnbDt5VJjQWsu6MjVluGea6Nu4/EttgxajRgoHqSK79keKF4ZKKOKBaq6icBfBbAb4vIDX4PFJH7ReSAiBw4dco5bSXJDmmHHZg80TuuU1Tae3bFriTGE2fOD2PFjoOZH0nGMPMUCK/w+HGQ1fKOpChU9W3j8ySAvwfwSwBOiMgMADA+T7ocu0VVu1S1a+rU6gnvSW2JK+BdNVqbS3h9wxK8+OXPpHI94k2cdimrLSAukh7B2RvuqJEBqpHVdRWhFYWITBKRy83/AfwagB8CeALAvcZu9wJ4PKqQpPakEYOoVCyMuk7c9gNSW6J4BbkRhzHbi1WWbIs/v2pX4g4dWXWIiDKimA7gn0XkEIB/AbBLVZ8CsAHAIhE5CmCR8Z3knHJnKxbObIntfJuXzcPmZfPQ2lyCoDKSWH/n6DnxLPuVk+AkMX2ZtAHYXD3f3rMLF8axDaIaoY3ZqvoTAHMdtv8UwM1RhCLZZNt918eyKnvhzJYRhVDNWOqW0J7kj8YJDTh3If6wJUmvbM7y+oa0YKwnEoi15Q68uv4WvL5hSajjZ02bhG33Xe97/3sCTj8tX9CG1zcswfTLG4OKVhM2L5tXaxE8mRDjzE4SSgJIfk1I2PwgYfBKp1tLsikVyQVBlYUA2LPyxkDH+J1+EkMec/9F1/1coOvUiiyH0sgLUdaEZM3L6LIqWRxrBRUFSY3XQo5CqjF5YmHMudPsBY5n8jIvH7bBz5qX0UBG1+FQUZDQBHk5Gwvh5zCqhX5I2pV28sRCrIZ8k1nTJgHI/vRTHvjyd8I1+FnzMspq9jsqChKaIKu1H7prjN+Db772+TmuvyXtQrtwZgte/PJnsO2+62NVFtMvbxyZhit3tkZSpOMJQfCcIUC+VsR7kfYCQr9QUZDQ+HV3XL6gLdJcfLmzFZuXzRtl6GuQynnDuNCWig2jXHObS0XHF2H5grZRhvcwysLJDXjzsnnY/8CiUfs9dNdc11hB5jFhlGJrc2lk5JIHrmwu4Zt1PMLK6tQT81GQ0FzZXPJcZdtq5BKIw2Bb7mz1fZ5qU2Lr75wT6HxWtt13vWeMJDt+3YCtcZCseRisx5U7W0cUox8ZrM4GQWS2Eue02PIFbZ62I3PBZZiYUHHEfMoCaUVACAoVBQnNTddO9Xzxn+v5dIrSXKLalFhankZBG9kgymtSYwFnzruvcraPfESAoEtfNi+bF2tZmUrOXIcjAJoaCzh7fniMYjTLwm+irAdvc0+Xmiduujab4YyoKEhonnnZPZhjaw17RmkHMLQzpamINbdel6hCWndHh2c4CftalXvme/fmnUhC/rXljkDThX5GcFEUmt8sh2mxff+xTEYkoI2ChMarQa5lz8hr+J50bCAA6PvTX0t81OJ1fqc7XFvuCGTjSDp6b5xEKessKQmgNnlC/EBFQULj1SB7jTaSxiuAYdKxgdI0HLuN2tyey9pyh6/psMkTC3UTvbeWI988QUVBQuM1aqj19I8bcTQMXpnMgq48j0L34tko2Vby2iPw2jE9yOxeWK9vWDLyVy9KAog3KvKUpuK4jXhMGwUJjdeooZbeG27GbEE8DUNWpiv8eEq5HcfQIRXKna2xhA4vFmTELrVt/7HAjgMmWXVlpqIgofFyXUwjf4UbbqMZxfiLrVTvjX4aUyJOMc16+/pdFXQYxwFg9CLMrEFFQUJTEHGd869l4+W2viOu+Wi30OcZXVSbe7zq2aaEF+e5TSV5Kei15Y5AimJCg+DrS+dmWuFTUZDQeBmGk84R4EX34tlYtfPwqGxq1ebug+B21xmZkRp33D3/KseG15rXJCnCuqq6LS4MG02g1tCYTULj1UMPEgcqbsqdrVh/Z4dn9rwouLnYpuF6W4+Yrr1m+RZExoRXyRpuMudRSQAcUZAIdC+e7WoI9Bt6ISmSnLt3G0kl7XpbzwRdqBeEhTNbHFd/Rw0CmaTMacMRBQlNludUk8RtJEWf/HziFOxx4cyWTI9Y0oYjCkICkrQNhKQPlYI3VBQkEvXoARR2/QIheYWKgkSicUIDzl246Lh9PFPv6xdIdbzWWuQNKgoSCScl4bWdkHqgt69/1PRk/8AgVu08DCCftr3x3e0jhJAasHH3kVE2LAAYHBquqdt4FKgoSCTcMouNl4xjhITBLYxMVoNlViOyohCRgoj0ich3je8tIrJHRI4an1Oii0myyoO3XYeiLZxqsUHGTcYxQsLgFhQzq6lOqxHHiOL3APzY8r0HwF5VnQVgr/GdjFPKna3YuHTuqFXQGzMet4aQpAkTAj7LRDJmi8hHASwBsA7ASmPz7QBuNP7fCuBZAH8c5Tok29ADiJDRjDcX6qheT5sB/BGAyy3bpqvqcQBQ1eMiMs3pQBG5H8D9ANDWNj6TfRBC6pfx1IEKPfUkIp8DcFJVXwhzvKpuUdUuVe2aOrV2+ZUJIYR4E2VEsRDAbSJyC4DLAEwWkYcBnBCRGcZoYgaAk3EISgghpDaEHlGo6ipV/aiqtgP4IoCnVXU5gCcA3Gvsdi+AxyNLSQghpGYksY5iA4BFInIUwCLjOyGEkJwSSwgPVX0WFe8mqOpPAdwcx3kJIYTUHtEMJFsRkVMA3jC+fgTAv9dQnLBQ7nSh3OlCudPFr9wfU9XEvYEyoSisiMgBVe2qtRxBodzpQrnThXKnS9bkZqwnQgghnlBREEII8SSLimJLrQUICeVOF8qdLpQ7XTIld+ZsFIQQQrJFFkcUhBBCMgQVBSGEEG9U1fMPwFUAnkEl58RLAH7P2N4CYA+Ao8bnFGP7Fcb+7wP4c9u5lgF40TjPQx7XXAfgTQDv27avBPAj4xx7UfEhdjp+IiqhRM4CGATwrxa5hwG8B+AcKnGoMi83gJsAHLbIPQzgnqzLbfz2Z4Zs54zzZKm8bzDK9SKAtzC6fu8FMATgDLJXvx3lBvAxAAct9eTHeZA7B++lW3ln/b28AcAPAFwAcJftt68B+KHxt8xNhpH9q+4AzADwSeP/y1FpBD4O4CEAPcb2HgBfM/6fBOCXAfymtYCMgjsGYKrxfSuAm12uucC4rr2AbgLQZPz/WwB2uBz/3wD8LYBPohKH6tsWuc/nVO6HDHlbUGmQv5EDuX8TwOsA/sSQ8y0A38yQ3O0APg3guwDuwuj6/XcA/sb4LWv1xE3uuQC+Ycj7IQDvAPifOZA76++ll9xZfi/bAcxB5d28y7J9CSqdnwmGnAcATHY6h/lXdepJVY+r6g+M/99DpZfSikqCoq3GblsBlI19zqjqPwP4wHaqawD8q6qeMr7/A4DPu1xznxo5LWzbn1HVs8bXfQA+6iL27QD+lyH3YwB+xSL3hJzKbZb3XQC+B+BzOZD7k6hUxL9W1TMA/gmV3lQm5FbV11X1aRgrYG31uxOVURKQsXriIfc0VOrFVlRGeWcALM6B3Jl+L6vIndn30pD7RVRGQlY+DuAfVfWC8V4eAvAZp3OYBLJRiEg7Ki/QftgSFKFSSb14BcC1ItIuIhNQqQhXBbm+jS+h8mCcaEVlyAZVvYDKC/OLhtwC4Dsisg/A/BzJbZb3FwH8dU7kfhLAFAA/E5GPoNJDas6Q3KOw128Ap4FM1u9R2OT+OQC7UXke61HpwXqRFbmz/F6OwqUdzOJ76cYhAJ8VkSbjvbypmgy+gwKKyIdQmVJYoarvikggyVT1HRH5LQA7UNFw/w8V7RoYEVkOoAuVnqvjLja5fw7AfYbc76pql4hcA+BpVFGWGZIbRn6PDlQaAk8yIneviAwZ1z4F4HkAd2RIbiuXIT/124pdblXVOSJyJYBeWJ5NxuXO8nvpJXeW30s3Gb4vIp/C6PfygtcxvkYUIlJEpXC2qepOY/MJo4DMgqqaoEhVv6Oq81X1egBHABwVkYKIHDT+vuJDll8F8ACA21T1nLFtnXkOY7e3AFxlyL0TFaPk/zV++zcjsdJPUOkRvJ8TuU8A+C8A/h6VgGF5Ke9jAD6rqosAlGD00jMi98juAP4QtvqNyrxzFuu3p9xG/X4bwE9QGd3lQe4sv5decmf5vfSSYZ2qzjPeS0HFKcnzAM8/4yR/C2CzbftGjDY+PWT7/T9jrLV/mvE5BRXvjF+ocm27EacTwKsAZlU57rcB/G9D7icBPGK57iZDXjM6419mXW5LeR9DZZiYl/IuAPgfhrxzAPwbgI1ZkdtSv18B8F2H+r0Fl4zZmSlvN7lRmav+piHvFFR6i3+VA7kz/V76qCeZfC8t+/8NRhuzCwCuMP6fg4rn0wTPc/i4yC8DUFRcsQ4af7egMve5FxVNtBdAi+WY11HpOb6PSm/z48b27ai4df0IwBc9rvmQcZzpjvagsf0fUNHgphxPuBx/GSrDV0XFE+FHxv5/YPxvurP9KCdy3wJgHiqGsTyV9+2o9JjOoOI2uz9jcn8KlR6gojL0HrSU9/OoeOJcNMr9rhzI/QAqLpdW99g8lHfW30uvepLl9/JTxnFnAPwUwEuW99W8/j4A87x0gKoyhAchhBBvuDKbEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhCRUEIIcQTKgpCCCGe/H9DmsqiQBIg1AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from apd.aggregation.query import with_database, get_data\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "async def plot():\n", + " points = [(dp.collected_at, dp.data) async for dp in get_data(sensor_name=\"RelativeHumidity\")]\n", + " x, y = zip(*points)\n", + " plt.plot_date(x, y, \"o\", xdate=True)\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " await plot()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nO2de5wU1ZX4v3eaAQbUGZHXgOBoQsQX8pgoRFeTEDUKyMQH6C/+Vo0/XROzwbg+cEUZIsTnGtk1a1Y3UbLJqmgMChOTuGRN1kTMAhpMJEZFfM3wiDqjwgDzuL8/qmqmu6equp7dVdPn+/n0p7tv1+P0rap77j333HOU1hpBEARBcKKi1AIIgiAIyUYUhSAIguCKKApBEATBFVEUgiAIgiuiKARBEARXBpRaAIDhw4frurq6UoshCIKQKjZs2PBXrfWIuM+TCEVRV1fH+vXrSy2GIAhCqlBKvVmM84jpSRAEQXBFFIUgCILgiigKQRAEwRVRFIIgCIIroigEQRAEVwp6PSmlfgDMBnZorY82y4YBjwB1wFZgntb6A/O364FLgC7gG1rrX8QiuSAUkaYtTdzy/C207WsLdZyqTBUA7V3tANQMqmHhcQuZddisnvMs37icbbu2MXroaBZMXdDzmxAffuo9/16oGVTDaXWn8Zt3fsO2Xds4YOAB7Ova13ONvZB/HyQNVSh6rFLqJOBj4IdZiuJ24H2t9a1KqYXAgVrr65RSRwIPAccBY4D/Aj6lte5yO0d9fb0W91ghqTRtaWLRs4vo1J2xHL+yopKbT7gZgMbfNbKna0/Pb4Mzg2n8TGNiG5D+QNOWJs/1Hue9YN0Hfq61UmqD1ro+cmHyKGh60lr/Bng/r3gusML8vAJoyCp/WGu9V2v9BvAahtIQhNSyfOPy2JQEQEd3B8s3Lmf5xuU5jRXAnq49LN+4PLZzC/iq9zjvBes+SCJBF9yN0lq3AGitW5RSI83yscC6rO3eMcv6oJS6DLgMYPz48QHFEIT42bZrW0nPUYzzlzNO9WtXHve1SOq1jnoyW9mU2dq2tNb3aa3rtdb1I0bEvgJdEAIzeujoopzD6TzFOH8546fe474WSb3WQRXFdqVULYD5vsMsfwcYl7XdwUBzcPEEofQsmLqAASq+aDeVFZUsmLqABVMXMDgzOOe3wZnBLJi6ILZzC/iq9zjvBes+SCJB//GTwIXAreb7E1nl/6mUugtjMnsC8PuwQgpCKbEmF4vh9QSI11ORserXS73b3Qvi9QQopR4CPgsMB7YDi4FVwEpgPPAWcK7W+n1z+xuArwCdwJVa66cKCSFeT4IgCP4pltdTwRGF1vp8h59mOmy/DFgWRihBEAQhOcjKbEEQBMEVURSCIAiCK6IoBEEQBFdEUQiCIAiuiKIQBEEQXBFFIQiCILgiikIQBEFwRRSFIAiC4IooCkEQBMEVURSCIAiCK6IoBEEQBFdEUQiCIAiuiKIQBEEQXBFFIQiCILgiikIQBEFwJb78jkLZ07SlyTEr3JABQ7hpxk2eM3o1bWmKLfObm5wW2RnI/Mpibd+yq4UKVUG37qZ6YLXvLGheqFSVdOiOHLmzs6+NHjqaQ/Y/hN9v/z3dupsKVcG5nzqXRdMXRSqHF/LrvdRZ3uzug/zr7ifLodP/ifNejouCGe6KgWS46380bWli0bOL6NSdjttkVIZlJy4r+JA0bWmi8XeN7Ona01M2ODOYxs80hn7AvMhpUVlRyVkTzuKJ157wLIud7Elk/uHzi6osnOq9sqKSm0+4uegNp9t9YF33n/zlJ57uk/x9s/9P1PdysTLciaIQYuHUx06lZVdLwe1qh9byy3N+GehYXvYthFc5LawRgVdZ/B6/VFSoCv7wt38o2vnc6iWK6xqlPOB83b2Q/X+ivpeLpShkjkKIhW27tkW2ndM2Xs8R9vzZODUWccpYDII2gkFxq5dS1Fmhc4apn+xjp/U+EUUhxMLooaMj285pG6/nCHv+bCqU/SMTp4zFwOl/xYVbvZSizgqdM0z9ZB87rfeJKAohFhZMXcAA5e4rkVEZFkxd4OlYgzODc8oGZwZ72tfLsQvJaVFZUcm5nzrXlyx2sieRcz91blHP51TvlRWVkVzXqOSB3uvu9T7J3zf7/8R5L8eJeD0JsWBNzEXh9WRtE4enSCE5LbI9WKaMnOJZlmzZxeupF7t6L6XXk9N9kH/dw3o9xXkvx4lMZguCIKQUmcwWBEEQEoEoCkEQBMGVUIpCKbVAKfVHpdSflFJXmmXDlFJPK6VeNd8PjEZUQRAEoRQEVhRKqaOBS4HjgGOB2UqpCcBCYK3WegKw1vwuCIIgpJQwI4ojgHVa691a607g18CXgLnACnObFUBDOBEFQRCEUhJGUfwROEkpdZBSaghwBjAOGKW1bgEw30fa7ayUukwptV4ptX7nzp0hxBAEQRDiJLCi0FpvBm4DngZ+DvwB8BwxS2t9n9a6XmtdP2LEiKBiCIIgCDETajJba/19rfVUrfVJwPvAq8B2pVQtgPm+I7yYgiAIQqkI6/U00nwfD5wFPAQ8CVxobnIh8ESYcwiCIAilJWwIj58opQ4COoArtNYfKKVuBVYqpS4B3gKKG0RG6BckLamNIJQzoRSF1vpvbMreA2aGOa5Q3tglkWnd28qNv70RQJSFIBQZWZktJI7lG5fbZhLr6O5g+cblJZBIEMobiR4rFJXs/NFBaNnVwnE/Os5X1NWaQTVMPHAi67at87RttokrKhPY0nVLefQvj/aJ2OqWPzn7twMGHoBSira9bbbbLfndkp46USiOH308m9/f3CcSqhVJ1qn+FYp5h88rejRZp3zVp9Wdxs/f+HlJTJBL1y3lkVcesf2tdmhtKqK+RoVEjxWKRlryR1t5joFI8jo7NTjTR0/nxZ0v2uZPBlzrKnu76//nejTRPsfFzKHtJ285FCevtpuSsIgqb3sYJGe20O9IS/5oMHqMQCR5nY/94bG+UmkWOrff7YJQzBzaQe6LuPNqe71mpcjvnU2xFIWYnoRIaNrSxI3P3piTNMfCSlKU9LzA2RSS1c9/8ZtvOcp840EpZg7tIP8j7nvJ6/9P0z0dBpnMFkLTtKWJhf+z0FZJAOzu3M0Nz95A9aDqIksWnNFDR0eW19lvvuVC5/a7XRCKmUM7yH+IO8e01/+f9FzXUSGKQgiNF0+kLt2F1joV+aOtPMdR5XV2ykc9ffR0x/zJhXJtZ2+nUJ5l8Uoxc2j7yVsOxcmr7eX/pyHXdVSIohBC43X4/eG+D2n8TGOPbd2JSlXZ87kqU0VVpsrxuxdqBtUwffR0z9taE6WzDpvF0hOXUj2w2vZ3ryyavoj5h8/v6aVWqArmHz6f+0+7v6c+FIraobU9k6OzDpuV81v1wGpqBtXYbnfL39ySUycKxfTR03PktmSff/h81/pXqKJOZAO29Qy98oat/yBY18yJ7GtQDshkthAar5ORpZ74E4T+huTMFlKDl+F3RmXKZpguCP0NURRCaGYdNotb/+bWHJNRNkMGDGHZicvKZpguCP0NcY8VIsGylwuC0P+QEYUgCILgiigKQRAEwRVRFIIgCIIroigEQRAEV0RRCIIgCK6IohAEQRBcEfdYIRHkx/+3Is6Ky60glB4ZUQglxy5JjBVxtmlLU4mkEgTBQhSFUHIe/cujtuVduktyZAtCAhDTk1B08nNBuyWJyY5Mm593+rhRx+Xkha7KVDFowKCevNInHXxSTr5lKG7O5SThlpvb+j2K3OB+5ci/RnZ5sq3IuPl50sv1WpYCiR4rFBW/ebOtiLNechh7pRg5l5OEXZ1n53t2ylkddT3FkTO93K5lPhI9VuiXLN+43HNDkR1x1sk8FYSO7o6yMmnZ1fmerj09dbB84/I+SgKiryc/194r5XYtS0UoRaGU+qZS6k9KqT8qpR5SSg1WSg1TSj2tlHrVfD8wKmGF9OM1yVF+xNmocziXS65jcP6vVrlbXURZT3HVeTldy1IRWFEopcYC3wDqtdZHAxngPGAhsFZrPQFYa34XBMBbjuHaobU8/+Xnc8wJUedwLpdcx+D8X63yqHKDB5UjqccVegn79A0AqpRSA4AhQDMwF1hh/r4CaAh5DqEf4TUXdD5R5nAuRs7lJGFX59n1HFVu8CByhKXcrmWpCKwotNbvAncCbwEtQJvW+pfAKK11i7lNCzAyCkGF/oHXXND52OWdzs8LXZWpyjlWfr5lKF7O5SSRX+f59RxVbvAgctjlxM4vc8qTXo7XslQE9noy5x5+AswHWoFHgceAe7TWNVnbfaC17jNPoZS6DLgMYPz48dPefPPNQHIIgiCUK2nwevoC8IbWeqfWugN4HPgMsF0pVQtgvu+w21lrfZ/Wul5rXT9ixIgQYgiCIAhxEkZRvAVMV0oNUUopYCawGXgSuNDc5kLgiXAiCoIgCKUk8MpsrfXzSqnHgI1AJ/ACcB+wH7BSKXUJhjKJbhZSEARBKDqhQnhorRcDi/OK92KMLgRBEIR+gKzMFgRBEFwRRSEIgiC4IopCEARBcEUUhSAIguCKKApBEATBFVEUgiAIgiuiKARBEARXRFEIgiAIroiiEIQyoWlLE6c+diqTVkzi1MdOpWlLU6lFciVt8vZnQq3MFgQhHeTnq27Z1ULj7xoBEhmmO23y9ndkRCEIZUChvNlJI23y9ndEUQhCGVAob3bSSJu8/R1RFIJQBhTKm5000iZvf0cUhSCUAYXyZieNtMnb35HJbEEoA6wJ4OUbl7Nt1zZGDx3NgqkLEjsxnDZ5+zuBc2ZHSX19vV6/fn2pxRAEQUgVaciZLQiCIJQBoigEQRAEV2SOIpsVZ8Ibv+79fujJcOGTpZNHEAQhAciIwiJfSYDx/Z7jSyOPIAhCQiifEUXjgUB3VkEFNH7Q+zVfSVj89c+waSVMmhendIIgCImlPEYUjdXkKgmM743V3vZffWXUEgmCIKSG/q8oVpzp/vudEwsfo2NXNLIIgiCkkP6tKDatdDYpWXzcUhxZBEEQUkr/VhRPfN3bdreMj1cOQRCEFBNYUSilDldKvZj1+lApdaVSaphS6mml1Kvm+4FRCuyLrr3ettvbFq8cgiAIKSawotBav6K1nqy1ngxMA3YDPwUWAmu11hOAteZ3QRAEIaVEZXqaCbyutX4TmAusMMtXAA0RnaO0bFpZagnKi00r4TtHQ2ON8S71LwglIypFcR7wkPl5lNa6BcB8H2m3g1LqMqXUeqXU+p07d0YkRh7DPXg0eWXtt6I7luDOPcfD45dC29uANt4fv1SUhSCUiNCKQik1EDgTeNTPflrr+7TW9Vrr+hEjRoQVw54o3Vrb3onuWEEph172ijONRY52/PTviitLUMrhOgnhWXMVLBlmrOdaMsz4nlCiWJl9OrBRa73d/L5dKVWrtW5RStUCOyI4RzCibNyrSjcnDxieWdmT7m1vw+pvGJ/706pxN3dmnb9oMoHcc3yuorNGQ9C/rpMQjvz7RHfB+u8bn2ffVRqZXIjC9HQ+vWYngCeBC83PFwJPRHCOYGQGRnes9hJ6Rt050d4zq6O9f5nEbk55mku30dDjl8KSA2V0IRgjB6f7xFIWCSPUiEIpNQQ4Bci2CdwKrFRKXQK8BZwb5hyB2bTSu3usJ7oiPJYNdpFrp1xgKAK3RYFtb8crV7FYcxV0tZdainAUWtypu2V0ISRWGbgRSlForXcDB+WVvYfhBVVaVl1Ragns2bTSaPzb3oHqg2HmTfDCj+wj1xZqeABQsYhZFLLrgtJnWiwaT1whiqJcSfA8hBv9N3ps9z733wcOhX1FjuG0aSU8fhk9jWLb27nfA5HSBnbTSmOOpSPlo4ggdBW4N4X+R/6z70gyO37pDuERxrtk9t1QWZVblv89n7DeCU9cQd8bJaUNfVjWfsu/klCZeGQpBSntWZY9QTyVNq00TY4envX6r4QWMQ7Sqyg2rYRVX8v1tV/1NaO80MWrHGoM/ef8M1SPA5TxPuefC5/X8k7IPodXhSU9yV6CzK3omOeJikkK7dRlzz3HG9fNug/t2gI7nrrO+zkS6PEEaTY9PXUddHfklnV3GOXt77vvO+du433SvL62YmuysRDrf2Bc1J7egom4Q3pE4Xs0VT0uFkkEoSCFPJXcGvhC7ZHFII/5cUpAehWFU+V7uShuDXjlUI8L9cxGzkmxPH5p7nnELTKPACa3YYdFK0K+L/vwifD154MdK47rm+8JlxkEc+8xPuc7REinJF42PBhsv0L5cLK5/q1g5ygC6TU9xYU12oiC7MYjzvUO5WLvfuPX0TXI+UoCjO9ecqTb2am9jkSzaax2vnZ2Ody79hrnsQtvksZQ+TePNuog+5XU/1HI7Gl3He853qPnIkYHNcEorUs/mVpfX6/Xr1/vbyevaUzzqRgAN73nvs3NI72twTj0ZO83Qtw0pixUetDrZ3mFFOpJ27khZ2/rdn63ulxzVTzzC/WX5JovgtRPpgpu3BadTHFy82j3dTPFvJ/d3LRVJSz+q9EhKKQssmXON0kX4qz7A40KlVIbtNb1vnf0SfmNKBruLbyNNbwvRLGUxFn3F+c8qUDT05Ne/Q37EYblepvT674smpFXXJPQXiZFC9HVnp7RZaHFlY1FCpmTf6/kozsMpV13or/j+pnAPvTkxJsOy0tR1F/i7YIk5aJVjwvc00g0fuy2bjiFMLF1vdVGY+zFdOVmEoqTKJRQv/Gm6g4x6vSBVzdtL53CbOXmdQK7/hK48Elv25aQ9CqKIHGcEup6ZkumCr75x14lcejJpZUnKtZcVfih87News7N1i0YpNeeXhQ9/CBYtnrBIG6lHWlU6G7/sqakTUqvohi4n7/t/ZpvosxlEYR8W3OhXkdaQlt76fF+6Xv+jpn/Xysqnbf12tODaHrnwycavUYhl0yBxa3ZxKm0qw+O9njWPVM1rPC2XrZJCOlVFH4eePBvvvn686VRFoOqg03k/fTvcm3yTvb7OIhaSfm9VvmjhELhW/zIt2R472cvHlH5fP15o9co80y5zPWwuDWb9d837q+o7+mZN0V7PDBGQV7ap9Nvi/7cMZHedRQqE/9K3a8/bzR8cUdojcLDIz9Xg2W/j3t+w8+Cw7h6hX47DU9dZ8z/eLmuusOYU9n5F/covnbsV9v72aqLIG60/ZFA7uLaqL9VXzWcUtI8dzd8YqrkT++IoljhHOLocWTjxx7v19c63/4ah3nq8csdym0axPU/KHw8q3HNDAouUyHa3/d3Xd/4tX8lAXB13jqNSfOKM7JIg+dTmLmB7k7j/mqsNlzZw9zHpcjnEmZhZ4lIr6LwQxgb8aR58dqYp13kfVu/iwGzs/LZuYxGYp5yUdiN1b0KadNKCq7G3q+2t3H16qJshxeTYdw9e6dR4qR58a8RCDq3kr8ALs5EUlHNDXTtNcyuQe/jUuRzSZmSgHJRFGE9Cywbc9Sxhg492Z9sYYaqdm6AHe29PTO7VxQ9U8sUVahhrr8ktwce5r/uKl32XYZPTMbixzt9zq81Hth3bUNXe3zKYsKp0R1LdwcfGfSniMQxkl5FUewLPGme4a7a2GY0avnndzMLnXV/lqJRvesj4vafzrbdB+k5FdNFNKwyt+Rcc5X/OYuoOOt+773FgQFCNmSqeu+/QnzckjsR78aaqwCHfORxZR189Zf25UFDWQQ1ZbmZsMUBoYf0TmZPu8jbEDsOs9Hsu+wbtjVXmXZ408QycKiR98LqHRd78kpF0A8oFBlzv9pg9vt8Nq0sWD9tW6vYsWl/OndnGDCki5GTPqK6rr1XzvHTS7fgzApd75XZd/s3f1ku07Pv8vY/dYcxUmj8wH27UtSZU8PesTvY8YKaspycGqrH9UaXvmW8fc56S5GUgYNCehXF7LvgvdcKL94q5oIWJwVSKvI9oYLi1ohnIrqFCnhotW2touX3NehuI9ZT5+4BtPy+BqBXWZTsgVX+54/8eEFlz91YeI5y3G2Yoaz911xlRELVXcao2M8cWZRUH+zQQB9smKX8Kq+gTiczb+qbabGyKvd4haK6vrWuH62Itye9pidIxdL3fsHqK51/i2plq+1xetNCbt94QI+SsNDdiu0bD4jm/EGpGgZn3RdstGhNbNuZJRvbel/5SgL8KSZrxLdkuH3inVIw8yb7DJMzbzI6W3bmXTeCjtadEpj5Gh3e5d1ykVJzVnpHFBYVA50XWJX7itiKAGFO7OjYZQy/7XpWTj1Dv9iZDuq/0tOQde2z79M4lQdGVRomGy8Mqobr3gh/TrsEWl72WfVVw1XUC0HDgsTVsFn/1ynCrzU6L0Y4kyD1n8/su4x5F6dnoXpcqvOGpHtEAdDwXWwTkvv1KEoLfpb9d++LbiXr3jb7XAF2PUO/5A/1Lfz01KJgULURUtrrY1HqRDMN90YzD+VGnA1bj4NIa25cs2y8/L+kdAidRkln3e/8/1JC+hXFpHnG0L/YHkWl4vTb/AVEfOo6Yy1DFOxt66t4Js1zdJhxpWIAnob6s++CzEBUpf1JnMp9s19tb8Pf+EHuqup8goZZiZpJ8+BL/9a/U8ROu7jwNknpEEZhxkoo6U1cVM5sWuktN3gcVI8zekd2GeLcqKwK/tA01tC2dTDNz1eDzurbqG7GHN/WO5ntRn5iIC/kZ5k79ORkd0CiNtNY17rUuCU5GlRd+pFdCSlW4iJRFGnGLl1mUAYOhX1evGjw7hJbPS6avM5mvK2W/z2A1i1DDe9jBTWH7aL20x8W3r8/5vSww29WtUIkqd7unNj3nitzJQEpURRKqRrg34GjMR7frwCvAI8AdcBWYJ7W2tWRWxRFCMKm5sxe63HbodGOUqIyz2xaSdvyf6Bl3RB0V7a1VFPziQLKwkplWS5ENapI+uhJANKTCnU58HOt9UTgWGAzsBBYq7WeAKw1vwtxEdY+WzWst9d4+m3JDGkwaR47XhmbpyQAFK2vD6Vtq8tkejkpiSgRJSFkEVhRKKUOAE4Cvg+gtd6ntW4F5gIrzM1WAA1hhRQKEMbzJXv9wqR5/pMGOTEoWnt553tOowZFywaHtRR+kuP0F6KY2E6KF5GQGMKMKA4DdgIPKKVeUEr9u1JqKDBKa90CYL6PtNtZKXWZUmq9Umr9zp07Q4ghhFqBnb9+IapQ2BHbjlW1s+LRHTa3caaqb5bAcmDmTdi6i3umIjleREJiCLPgbgAwFfh7rfXzSqnl+DAzaa3vA+4DY44ihByC1yQ8dtitX5g0L9ykaByuo/vcstapZLirJoFJ84KHlChX5SoUJMyI4h3gHa21FS7zMQzFsV0pVQtgvpcw5nOZECa5UtReLTE12Hp3wGBx5YgVFt9tZb5dqBBREq60rV7Nq5+fyeYjjuTVz8+kbfXqUotUNAKPKLTW25RSbyulDtdavwLMBF42XxcCt5rvT0QiqeBMUtJsJiiOTcuSJbSufBS6uiCToWbeudQuXlxqsYpHFGEphB7aVq+m5cab0Hv2ANDZ3EzLjUYHrXrOnFKKVhTCej39PfBjpdQmYDLwbQwFcYpS6lXgFPO7EDeT5vmf1I4qFhTE7nOvamo8b9uyZAmtDz1sKAmAri5aH3qYliVLYpJO6O/s+M7dPUrCQu/Zw47v+IwanFJCKQqt9Yta63qt9SStdYPW+gOt9Xta65la6wnme4myyJQhXsIdZNPw3WjOO6g69t5r7Q3/6PibGjIk53vrykdtt3MqF4RCdLbYLzDtbG4usiSlIf2xnoReZt/lLV80GC6Qbo27n/UURVgd6za87zN/YY0k8nEqF4QCZFy87sphrkIURX/j68+bfvBZLpKZgWbU2aygiYVcIL2upyimz71ycPt0KheEiHBzQC8H81P681EIfYki05412sgOPlgxEHSnsW7Dyo5WTJ97p3AzAcPQvDZ7Nh2vvd7zvfKTn+CTa9YEOpbQv9Ftzt585WB+EkUhOOPRcyZxHkaZjL2ZKWvkka8kADpee53XZs8WZSH0YUBtrbNCyCQw7E3EiOlJCEUiPYyc5iK07rEn5ysJC6dyobwZ+U2XdMBlMPclikIIRevDj/gqLwYDxoxx/K0c7MlC9FTPmeM8FyYjCkEoQMTzBkHJ9jxx6/05uTkKQkGc7mkZUQhCfPgOieDi3ZQ9UqieM4eMwwK9AbUuKU4FQbBFFIVQEtpWr6b5uoXGBKHWdDY303zdQndl4TJKyZ9o3P/0L9put9/JJ3mSLShbL76YzROP6HltvdjnIkhBSCCiKITYcGtwW25aDN153und3Ua5A25zD/mjjY9//RvbzaxypxEHQMuybzufx4WtF19M+3Prcsran1snykJIPaIohHC4TOS5TRzr9nZf5VDA8yRvtOHkymiVj3IJCaJbW53P40K+kihUXoiWJUvYfNTRxujkqKPLOlaV1EVpEUUhhKJm3rmOvwVZiKSJKCRCAQ+VYkf89Puf3NyOyy3cdWJcsH1GBuhPyk0UhRCK2sWLXSeZ/TZkCnhryc19yq0wz15oW706Vg+VIA2AX7fc1ocedixvufGmnLmdlhtv6tfKwq0uiooPD7/EKLeIEEUhhKfAJLNdQ5Yf8TWbzMcf9SmzC/PshFuj7CdcuR1BG4AowzyUc7jrtNDfIhiLohBCU6jxtWvIapc04melhZ/1D27bhr3hXRuAqirnHWMOXFgO8YZSRT+LYCyKQgjP3r0FN8luyDZ/+jiar7nWdftFq17K+e5l/cNrs2cX3LbLDO4W2FTj1gC4jXiKsACxP5ufUoeLk0car5MoCiE0bp5K2bQsWcLmiUfAR4ZpyamPrYEfr8vNcTHym1eiBg92PX7Ha6+z9eKLXXvXyswrEIepJqrFfEHt2EHdehPPAIfYpU7lCcDNySONZkJRFELR8Dr5qDCURd3Cpp7X17YNp/bmbxXct5ArqnXDxxHKw9V91wdBJ2mDuvUWk0CeQJ2d/soTgFv05DSGkRFFISSSplVX8+AvlvLZtzcA8NvX3+dr24a7ToJ7octsTJMSyqOcXF37mydQNnbXzWnuTrlky0sqoiiExKEwbsxR7a1cu+EhfrbqappWXU3lM09Tu6Qx3MFN23Gh3v/miUf4bsD8mhTaVq+m+drrchv9cwIAABT/SURBVMOYXHudr2OkiTg8gYqpWP2u5ndqXHVra+o6BaIohFDEfbMrehXHtRseKjgJXhCzN+tlwZ3f3q5fk0LzTYv7TnIXOepuUXFxBNg88QheOelk25/jCLcSBL+r+btcTIFpW/8iikIIRTEn5iJxMPXppupnvsC3OcujE4Bfss1Zf54+g79Mn5EK01b3jh22yiKOcCtB8L2av0CeCr1nT2ocEJLrNiAklkWrXuKh59+mS2uampvT1dsI22N3SbM68ptXFhzxbP70cT1eX3GweeIROd91ayuWtJ3NzTRfbzS6xQ5h4pXuHTv6lFXPmRN+JFkk2lavZsd37jZGlx7uNd3aStvq1Ym9HhaiKARffPn+5/jt6+/3fN9ZVcOo9uR729iilKeHefOxkxlw0EHuD7+X48SsJDzR2UnzTYsT3TBlN7YDamuN+SSnaxXzQkY/WGFmvEYQsGi+5lp2b9xY2jzzBQjVGVRKbVVKvaSUelEptd4sG6aUelop9ar5fmA0ogqlZtUL7+YoCYAHjzydPZlK1/20+YqSKI5Xc958b+fau7dnwtmNgmaEUisJi/b2RJug3r3m2pwJ/reuvT72TIqrXniXE279FYcubOKEW3/Fqhfe9X0MP2Fm8km691cUVoPPaa0na63rze8LgbVa6wnAWvO70A+48pEX+5Q9M24ayyef49hwa+CMhjtpzwyMVBYFdONfYWRv77UH57XPmoZ1DBbN1xX/sVQDvd0D+fU9QHc5X+cI8lWveuFdrn/8Jd5tbUcD77a2c/3jL/lWFmHDqCQ5DlQc5uW5wArz8wqgIYZzCEXG7aH5wpv/W3D/f5l8duSjigrgw8oq3wrj/sX/2vO55vzzIpNH4+6hkyjyk0YVgdplS6EiWJPjqKwjiJ10xy9eob0j9zjtHV3c8YtX/B0orBkswXGgwioKDfxSKbVBKXWZWTZKa90CYL6PDHkOIQE4PTRLn/0eU//6WsFe9zPjpvk6n1dz1QEd7cxquNPzcRUw4cn/AODbV93FK6t+3qNowioyDXQWaVQRhdLNTtma//rz1GmRm6eq58xhzG23umcq9EnYaMBgjCD8lDvSj12bwyqKE7TWU4HTgSuUUoUTEpsopS5TSq1XSq3fuXNnSDGEuGl2eGjclIQGNg7/ZM53N3TWq+PAg7h92vmBzEuFGNneyssTj6DhZ/czqr2VCnrDhoQ5l7XmIw0UvBa7d9N8zbWJnsuA4vv3h40MUIik1neoetZaN5vvO4CfAscB25VStQDme19/N2Of+7TW9Vrr+hEjRoQRQygCY2pcQmjbYCmJRSde3lO2pm6G61zGh5lBXHrRdznyz5s59rlneWbcNM+jhR2D9vfcyCvsG/WwjU4QJRFUMRU6V6HjepU1SrdUyyso25YfthPgtqgtCvJNrqEjAxQgqesqAj8bSqmhSqn9rc/AqcAfgSeBC83NLgSeCCukUHquOe1w3/tkKwmAeyefzeq6GXQplTN6sJTKxWfdmnOeC6aP93yui05f3KMssl9+icNDy+1caTpuWOy8gqyRXGAimMx24/rHN/V83nzU0bGv50iqQ0SYdRSjgJ8qYwJnAPCfWuufK6X+F1iplLoEeAtwjrcrpIaGKWN5dP1bfdxj39hvJId+vCOnh6rNcjvunXw2904+m7vnTwaMuY/m1nbG1FRxy2mH0zBlbM+2SxuO4Ud54cbzyW5kLjo914vpZ6uuLvi/8tlZVcODR57ONRseSpUpKZ8uIEOy5HcKcWJdw0CyxjwB3N5hTPrnL2QsNwIrCq31FuBYm/L3gJlhhBKSyY8vnZGzKhtgaNe+Pg+4MsudOOETw3oUQrZisENhr4zAaGDW1M3w9R/c0BjrQp4ZN41nxk3rmai35IgSaxT1yQ+bqd63u+C2fs7/YWUV5826mTWrru6Zf0kCrfsNo+aj9/qU76yqYf89H1GljUbfr7xxr2xO8vqGYpGq6AtC6VnacAyv33IGW2+dBcAIh1XZTuUTRg7lx5d6b9y/PH08V3zhWt7Yb2Qfs9LquhncO/nsnO0vmD6erbfOYtT+/tdtaHK9sxadeDln+PCo8suiEy/niGWNBWXyQzfwvUmGR/rskLJriNS082+fOrXP4sw9mUoePPJ0zp57W+C6jntNSND8IIFwS6dbQiSEhxCYrbfO4plfLLUN4bGzqq/bogKevuqzvs5hmZ+u+IK7bVgBb5jKC+CUo0azY9D+jNz7kaceqgbumHa+L9miwEsco43DP1nQBVkDnaqCu6bOz1F2Hw4cUnDE4sacM2/jtcB752LJddHLTzGivbXHzJctr0ah/KrHEGtCVr3wLp99e4OjTEuf/V7gYwchM2hQUc/nFRlRCKGwC+Fh9RLzyW7Io+SAQZk+x/7RurccJ7jzmyFrdOK01mPj8E9GOjHuNodjx6ITL3edZLeOd+bc2/v8h+8dMzfwZHG3UnRGPDP+zLhpXHTaImY13MlFpy3qI++auumBVtsHdSv9zb/+BwtefKzHTXpUeyvXmDlQfrbq6h7TY7GwcronDVEUQmBWvfBuTwiP7VU1dAPbq2pYPvmcPg3AwExwS/mgAe636aYlX3T87aLTF3NGw505r9unnZ8j7+3Tzu9jwsrm9plXMGTG9ECyf5gZ1EdJvbHfSK74wrVMGDkUgDF33F7wOLMa7rRdU2K5FTuNuPwudMw+btMhwf5zGO6dfLbvOQoFvHlbMLPVmeufYHBXR06ZNa9TyJkhDg+5pGa/E9OTEBhrtbY1+evG7ef08XvwzG1nT7KNMwX+XGgtvMhrccInhplzKl9k68UXs/u5db4asvPmLLMtH7X/wB4zXPWcOTT/4w3Q0dFnu/as0drshjv56os/Ydab66jQmm6laDpkuquSC0Ncx3VDgeeovtkM+Kvtcq2COM2lecUyb4K/SXgnB4Wk9tyTKpeQApxWa+dzwfTxBb2b3GiYMpa750+mqrL3dq1QxnGXNhzj+3hVlRXcPX8yY2uqUEBNVaXtg3DB9PE5E+91DzzAkBn+TCN3z5+cc66xNVXcPX8yz99wSs52Y769rE8cpE4U90w+p2efC6aP597JZzN77h2c0XAns+feUbAxH1tTxa6jpzqawJLGmJoqxtx+m+/9dtjMiXnho8rgk8ea3hGr3/2cSKrpSUYUQmDG1FS5xsMZW1PFNXlrI4LSMGWs5+MUivp5y1mTfB0vm7oHHuBlDz71GvjroP09uwFb7p3ZeRjGfPNKHshy+2yYMrZHMdYtbCoow9aeeZvP86MT5+TY2/dVDGBgd2fBY1jrXaLggunjXdfFVFVmuOa0w6k262rHd+5mX3NzQRNQF4on6+fy2SBCBQzkl++a7XUS3jI9Du3aZ+sE4jtLYpEQRSEE5nMTR7g++L9d+PkiStNLoaifUSguJ6ymYseg/Wl98Ke+9q2eM8fzeoChAzPs2ue82OyETwzL+X7j31zex5pTaEHi3fMnR1pXlpKz1uEoYMjADLv3dTEmr1Nh1cWX73+Oa/7pEgai+yzqBEPh3T3lXBq+9n8DybR/CI+w7NHcmrrpzNn6nCfz0xVfuJbPvr2BBS8+ljM/sidTyftfupAJgSWKD1EUQmD++8/OwRzH+owNFSVeTWJx8eX/s5zFc46KVSEt+9IxjvM2QJ+1Kl8+vm9v3sl92PICuy4G+Zc2HOPLXPjjS2dQ9/odrnMzYRSaqqjw7V6rMeoum3snn82crc952hecXYX/p/kgXvclTXEQRSEExq1B/tzE0gV6dDOJZSJIndmtFBmHyVYFvHDTqaHPUYiGKWMdFYXdP7Qa52xlcdHpi3nwqSU9k7EWq+tm8OPj53FdZNKGxwr9YkcYhawKKAm7q7xj0P59wsVY2xbykspeq2PrVJHEiSNEUQghcGuQ3UYbcXPNaYc7NqJdEeQMaDrE3syggYGf/ETo43tlrEP9O0X6XdpwDPWHDMupG7sG74BBGVeX4/7EgDFjCmam8zpZvaZuhqP5qdBanaQjikIIjNscRanNP05EYRL7tylGz3Z2XqPwxn4jmbVmTejje+Wa0w7n+sdfysnOZk0IO2H1vrODMUblcJBGRn7zysgiwj78mfP42xmH8N7Dj1CR1SHZYbMCPW2IohAC4zZq8Ju/IkqcJrMVwcKl59OtnU0h8aw9tydoox/U46s/4iWEihcqM4rFc46idsqpfGZPfeBkd9YizKQhikIIjJtrbBQNclCcRjOaeD2eSkG5N/pxLwRTZLsZ97LqhXcdFbSd44AXshdhJg1RFEJgMko52vxL2Xg5zZ1E5YnllGwnKeG8+xtu99ldEa7zsKPm/PNsy90UtJc8KtkMqFDcee6xiVb4oiiEwLhNDK964d2S3fhBbPd+cAvOJ0TP+cePs214s/OaxEXt4r6T/V5wWlwYNJpAqZEQHkJg3HrohRa9xUnDlLHcctYxOWEzbjnrmMgaFScX2yhcb4W+LG04hgumj++p34xSfcKrJA0nmdOoJACUjsBdMCz19fV6/fr1pRZD8MmqF951XfRlZ9vtD7iFz+iv/7k/s/Xii2l/bl2f8qoZ06l74IESSOQdpdQGrXV93OeREYUQmCTbVOPEaSRVytXoQnDqHniAqrww8mlQEsVE5igEwSdxz4EIxUeUgjuiKIRQlKMHkCxaE8oNURRCKAYOqGBvZ994OQMLZKVLO+W+fkEojNtai7QhikIIhZ2ScCsXhHJg1Qvv5pgn321t5/rHXwLSObfXv7t9giAIJeCOX7ySM4cF0N7RVVK38TCIohBCUVNV6atcEMoBpzAySQ2WWYjQikIplVFKvaCUWmN+H6aUelop9ar5fmB4MYWk0njmUVRW5E5dV1YoGs88qkQSCULpcQqKWcpgmWGIYkSxANic9X0hsFZrPQFYa34X+ikNU8Zyx7nH5qyCviPhcWsEIW6uOe1wqiozOWVpdqEONZmtlDoYI7LyMuAqs3gu9OQ5XwE8A4lKliVEjHgACUIu/c2FOqzX093AtUB2AtlRWusWAK11i1JqpN2OSqnLgMsAxo8fH1IMQRCEZNGfOlCBTU9KqdnADq31hiD7a63v01rXa63rR4woXX5lQRAEwZ0wI4oTgDOVUmcAg4EDlFI/ArYrpWrN0UQtsCMKQQVBEITSEHhEobW+Xmt9sNa6DjgP+JXW+gLgSeBCc7MLgSdCSykIgiCUjDjWUdwKnKKUehU4xfwuCIIgpJRIQnhorZ/B8G5Ca/0eMDOK4wqCIAilJxGJi5RSO4E3za/Dgb+WUJygiNzFReQuLiJ3cfEq9yFa69i9gRKhKLJRSq0vRsamqBG5i4vIXVxE7uKSNLkl1pMgCILgiigKQRAEwZUkKor7Si1AQETu4iJyFxeRu7gkSu7EzVEIgiAIySKJIwpBEAQhQYiiEARBENzRWru+gHHAf2PknPgTsMAsHwY8Dbxqvh9olh9kbv8xcE/eseYDm8zj3O5yzmXA28DHeeVXAS+bx1iL4UNst/8gjFAiu4F24C9ZcncBHwF7MeJQJV5u4HPAS1lydwFfTrrc5m/LTdn2msdJUn2fZNZrN/AOuff3WqAD2EXy7m9buYFDgBez7pPNaZA7Bc+lU30n/bk8CdgIdALn5P12G/BH8zXfSYae7QtuALXAVPPz/hiNwJHA7cBCs3whcJv5eShwInB5dgWZFfcWMML8vgKY6XDO6eZ58yvoc8AQ8/NXgUcc9v8a8ENgKkYcqp9kyb0vpXLfbso7DKNB/qcUyH05sBX4R1POd4DvJEjuOuDzwBrgHHLv74eBB83fknafOMl9LPBPprz7AR8A302B3El/Lt3kTvJzWQdMwng2z8kqn4XR+RlgyrkeOMDuGNaroOlJa92itd5ofv4Io5cyFiNB0QpzsxVAg7nNLq31s8CevEMdBvxFa73T/P5fwNkO51ynzZwWeeX/rbXebX5dBxzsIPZc4F5T7seAk7PkHpBSua36Pgd4CpidArmnYtyID2itdwG/wehNJUJurfVWrfWvMFfA5t3fUzBGSZCw+8RF7pEY98UKjFHeLuC0FMid6OeygNyJfS5NuTdhjISyORL4tda603wu/wB80e4YFr7mKJRSdRgP0PPkJSjCuEndeA2YqJSqU0oNwLgRxvk5fx6XYFwYO8ZiDNnQWndiPDDTTLkVsFoptQ44PkVyW/V9HvBASuT+GXAg0KaUGo7RQ6pJkNw55N/fwPuQyPs7hzy5RwO/wLget2D0YN1IitxJfi5zcGgHk/hcOvEH4HSl1BDzufxcIRk8BwVUSu2HYVK4Umv9oVLKl2Ra6w+UUl8FHsHQcL/D0K6+UUpdANRj9FxtN8mTezRwqSn3h1rreqXUYcCvKKAsEyQ3Zn6PYzAaAlcSIvcqpVSHee6dwHPAlxIkdzaDSc/9nU2+3FprPUkpNQZYRda1SbjcSX4u3eRO8nPpJMMvlVKfJve57HTbx9OIQilViVE5P9ZaP24WbzcryKqoggmKtNartdbHa61nAK8AryqlMkqpF83XtzzI8gXgBuBMrfVes2yZdQxzs3eAcabcj2NMSv6H+ds2M7HSFowewccpkXs78P+An2IEDEtLfb8FnK61PgWowuylJ0Tuns2Bq8m7vzHszkm8v13lNu/vZmALxuguDXIn+bl0kzvJz6WbDMu01pPN51JhOCW57uD6Mg/yQ+DuvPI7yJ18uj3v94voO9s/0nw/EMM741MFzp0/iTMFeB2YUGC/K4DvmXL/DFiZdd67THmt6IzfT7rcWfX9FsYwMS31nQH+xZR3ErANuCMpcmfd368Ba2zu7/voncxOTH07yY1hq/6OKe+BGL3FH6RA7kQ/lx7uk0Q+l1nbP0juZHYGOMj8PAnD82mA6zE8nOREQGO4Yr1ovs7AsH2uxdBEa4FhWftsxeg5fozR2zzSLH8Iw63rZeA8l3Pebu5nuaM1muX/haHBLTmedNh/MMbwVWN4Irxsbv8P5mfLne3llMh9BjAZY2IsTfU9F6PHtAvDbfb5hMn9aYweoMYYerdn1fdzGJ443Wa9n5MCuW/AcLnMdo9NQ30n/bl0u0+S/Fx+2txvF/Ae8Kes59U6/zpgspsO0FpLCA9BEATBHVmZLQiCILgiikIQBEFwRRSFIAiC4IooCkEQBMEVURSCIAiCK6IoBEEQBFdEUQiCIAiu/H8KgxuCBe2ajgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import collections\n", + "\n", + "from apd.aggregation.query import with_database, get_data\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "async def plot():\n", + " legends = collections.defaultdict(list)\n", + " async for dp in get_data(sensor_name=\"RelativeHumidity\"):\n", + " legends[dp.deployment_id].append((dp.collected_at, dp.data))\n", + "\n", + " for deployment_id, points in legends.items():\n", + " x, y = zip(*points)\n", + " plt.plot_date(x, y, \"o\", xdate=True)\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " await plot()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nO2de5hU1ZXof6u7C+juIA3ysJuHRHQQFVDTRtQEJ2HUSQAlGRW8yTfEyeBkXtHkXhJUFFBUlEnUezPf3Gsmk5A7+QxqDLEhGXVIJsmMaXPxBWpLUIOK3QpRQYVG+rHvH+dUU1V9zqnzrDrVtX7f11917TqPVfucOmvvtdZeS4wxKIqiKIobNeUWQFEURUk3qigURVEUT1RRKIqiKJ6oolAURVE8UUWhKIqieFJXbgEAxo4da6ZOnVpuMRRFUSqKJ5544g/GmHFJnycVimLq1Kls27at3GIoiqJUFCLySinOo6YnRVEUxRNVFIqiKIonqigURVEUT1RRKIqiKJ6oolAURVE8KRr1JCL/AiwA9hpjTrPbxgAbganAbuByY8w79mfXAl8E+oAvG2MeTkRyRSkhm556ndUPPcf+7p5Ix2nIWGOzQz39AIxuyLBq4aksOmPiwHnWP7yTzv3dtDTVs/yi6QOfKckRpN8L74XRDRnmz2rmFy/so3N/N6PqMxzp7Ru4xn4ovA/ShhTLHisic4H3ge/nKIo7gLeNMetEZAUw2hjzdRE5BbgX+CjQAvw78EfGmD6vc7S2thoNj1XSyqanXmf5/c/Q059MpuVMrbD+0tkAXPvgDrp7jv5c6jO13PbZmal9gAwFNj31uu9+T/JeyN4HQa61iDxhjGmNXZgCipqejDG/At4uaL4E2GD/vwFYlNP+Q2PMB8aY3wMvYikNRalY1j+8MzElAdDTZ1j/8E7WP7wz72EF0N3Tx/qHdyZ2boVA/Z7kvZC9D9JI2AV3E4wxXQDGmC4RGW+3TwTac7bbY7cNQkSuAq4CmDJlSkgxFCV5Ovd3l/UcpTh/NePWv07tSV+LtF7ruJ3Z4tDmqH6NMfcYY1qNMa3jxiW+Al1RQtPSVF+Sc7idpxTnr2aC9HvS1yKt1zqsonhTRJoB7Ne9dvseYHLOdpOAzvDiKUr5WX7RdDI1TmOgeMjUCssvms7yi6ZTn6nN+6w+U8vyi6Yndm6FQP2e5L2QvQ/SSFhF8RCw1P5/KfCTnPYlIjJcRD4MnAT8NpqIilJeFp0xkfWXzaapPhP5WA2ZmoHIJ7CiXbIOzEVnTOS2z85kYlM9AkxsqldHdgkI0u9O98LohgyfnzNlYP+m+kzeNfZD7n2QRvxEPd0L/DEwFngTWAVsAu4DpgCvApcZY962t78e+AugF7jGGPOzYkJo1JOiKEpwShX1VNSZbYy5wuWjeS7b3wLcEkUoRVEUJT3oymxFURTFE1UUiqIoiieqKBRFURRPVFEoiqIonqiiUBRFUTxRRaEoiqJ4oopCURRF8UQVhaIoiuKJKgpFURTFE1UUiqIoiieqKBRFURRPVFEoiqIonqiiUBRFUTxRRaEoiqJ4oopCURRF8aRoPQpFCcump15n9UPPsb+7Z9BnjcNqueUz/qu3bXrqddY/vJPO/d20NNWz/KLpsVUD85Izy+iGDKsWnsqiMyYGliW7/ev7u6kVoc8YmuozHOnt41BPfyzfAayC9Zla4Ujf0WJkoxsyzJ/VzC9e2Dcg79Rj62l/+R36jKFWhCvOnszaRTNjk8Mvhf2e28flwOk+KLzuxe6TXNy+T5L3clIUrXBXCrTC3dBj01Ovs/z+Z+jpd7+/amuEb1xWvPzjpqde59oHd9Dd0zfQVp+pjaVMqB85s2RqhcVnTeZHT7zuWxYn2dPI5+dMKamycOv3TK2UpSSo132Qve4bf/uar/ukcN/c7xP3vVyqCndqelISYf3DO4v+qPr6Desf3unrWIUP2u6ePl/7+jm23x9/T5/h3sdfCySLk+xp5N7HXyvp+dz6vafP3z1RKnng6HUPqiSy++Z+nyTv5SRRRaEkQuf+7ti2c9vG7zminj+XPpcZeJIylgK375UUXv1Sjj4rds4o/ZN77Eq9T1RRKInQ0lQf23Zu2/g9R9Tz51IrEug4cchYCty+V1J49Us5+qzYOaP0T+6xK/U+UUWhJMLyi6aTqfH+cdXWCMsvmu7rWPWZ2ry2+kytr339HLuYnFkytZbjN4gsTrKnkSvOnlzS87n1e6bW3z1RKnng6HX3e58U7pv7fZK8l5NEFYWSCIvOmMj6y2bTVJ9x/LxxWK0vR3b2WLd9diYTm+oRYGJTfSyObD9yZhndkGH9pbNZu2hmIFlyZYejI9Om+gwNmXh/fgIMq81/mI1uyPD5OVPy5D1v2pgBOWpFSu7IBud+z/ZxOSKA3O6D3Ovu5z5x2jf3+yR5LyeJRj0piqJUKBr1pCiKoqQCVRSKoiiKJ5EUhYhcLSLPishzInKN3TZGRB4VkV326+h4RFUURVHKQWhFISKnAcuAjwKzgQUichKwAthqjDkJ2Gq/VxRFUSqUKDOKGUC7MeaQMaYX+CXwGeASYIO9zQZgUTQRFUVRlHISRVE8C8wVkWNFpAH4NDAZmGCM6QKwX8c77SwiV4nINhHZtm/fvghiKIqiKEkSWlEYYzqA24FHgX8DngF6A+x/jzGm1RjTOm7cuLBiKIqiKAkTyZltjPmOMeZMY8xc4G1gF/CmiDQD2K97o4upKIqilIuoUU/j7dcpwGeBe4GHgKX2JkuBn0Q5h6IoilJeohYu+pGIHAv0AH9rjHlHRNYB94nIF4FXgcuiCqlUH2kraqMo1UwkRWGM+bhD21vAvCjHVaobpyIy7xzqYfkDzwCoslCUEqMrs5XUkbaiNopS7WjNbKWk5NaPFqBQHTi15fL6/m5OueFngWpNj27IcErzSP7rpbd9bZtr4orLBLZy0w7uffy1QXWqveon5342qj6DCOw/1OO43bUPbqfb7pMagXNOGMNzne8Nqv+crZ/t1v81Av/t7NJnk3WrVz1/VjObn+kqiwly5aYd/KD9Vcf7cWKF1LqOC80eq5SMSqkfna1zDMRS13nlph38a/urg9rPmzaGJ1894Fg/GfDsq9ztvrrxafyrTX+UMvV4kLrlUJq62m7XLJe46rZHoVTZY1VRKCXjvHU/5/WUl3zMkq0f4SbvxKZ6/mvFJ30da9q1Pw1USrPYuYNuF4ZaEV667dOxH9eJMPdFkP4Pg99rlrQcxSiVolDTkxIL1qjwaZwsQo3DarnlMzNTXxc4l2KyBvkuQestx1lvPCylrKEd5nskfS/5/f6VdE9HQZ3ZSmQ2PfU612x0VhIAB4/08d/vf4amBv/VwcpNS1N9bHWdg9ZbLnbuoNuFoZQ1tMN8h6RrTPv9/mmvdR0XqiiUyPiJROrrNxhDRdSPztY5jquus1s96vOmjXGtn1ys1nbudkn8iEtZQztI3XIoTV1tP9+/Empdx4UqCiUyfqffB7p78upHOz0aCus+N2Rq8mpLF773w+iGDOdNG+N726yjNK66zmsXzeTzc6YMqlP9g2XnuNZPLqyt3FSfYXRDxnG7by4+nfqcPqkRSwk51X/O1s8G5/6vkdI6ssG7XvXn50wpS13t7DVzU1+VUus6LtSZrUTGrzOy3I4/RRlqaM1spWLwM/2urUneXKAoSjKoolAis+iMidy1+HTcLEKNw2r5xmXJmwsURUkGDY9VYiFrL1cUZeihMwpFURTFE1UUiqIoiieqKBRFURRPVFEoiqIonqiiUBRFUTxRRaEoiqJ4ouGxSiooLBKTzTirIbeKUn5UUShlx6lITDbjLGiNbEUpN2p6UsrOvY+/5tje1681shUlDeiMQik5hbWgvYrE5GamLaw7PeeE0Xl1oRsyNQzP1A7Ulf7EyePy6i1DaWsupwmv2tzZz+OoDR5UjsJr5FQnO5stuLBOerVey3Kg2WOVkhK0bnY246yfGsZ+KUXN5TTh1Oe59Z7dalbH3U9J1EyvtmtZiGaPVYYk6x/e6ftBkZtx1s08FYaevuoyaTn1eXdP30AfrH945yAlAfH3U5Br75dqu5blIpKiEJGviMhzIvKsiNwrIiNEZIyIPCoiu+zX0XEJq1Q+foscFWacjbuGc7XUOgb375pt9+qLOPspqT6vpmtZLkIrChGZCHwZaDXGnAbUAkuAFcBWY8xJwFb7vaIA/moMT2yq57mb/jTPnBB3DedqqXUM7t812x5XbfCwcqT1uMpRopqe6oB6EakDGoBO4BJgg/35BmBRxHMoQwi/taALibOGcylqLqcJpz7P7ee4aoOHkSMq1XYty0VoRWGMeR34B+BVoAs4YIx5BJhgjOmyt+kCxschqDI08FsLuhCnutOFdaEbMjV5xyqstwylq7mcJgr7vLCf46oNHkYOp5rYhW1uddKr8VqWi9BRT7bv4UfAYmA/cD/wAPAtY0xTznbvGGMG+SlE5CrgKoApU6Z85JVXXgklh6IoSrVSCVFPfwL83hizzxjTAzwInAu8KSLNAPbrXqedjTH3GGNajTGt48aNiyCGoiiKkiRRFMWrwBwRaRARAeYBHcBDwFJ7m6XAT6KJqCiKopST0CuzjTGPi8gDwJNAL/AUcA/wIeA+EfkiljK5LA5BFUVRlPIQKYWHMWYVsKqg+QOs2YWiKIoyBNCV2YqiKIonqigURVEUT1RRKIqiKJ6oolAURVE8UUWhKIqieKKKQlEURfFEFYWiKIriiSoKRVEUxROtma0oVUKxutlpo9LkHcqoolCUKqCwXvXr+7u59sEdAKl8+FaavEMdNT0pShVQrG522qg0eYc6qigUpQooVjc7bVSavEMdVRSKUgUUq5udNipN3qGOKgpFqQKK1c1OG5Um71BHndmKUgVkHcCVEkVUafIOdULXzI6T1tZWs23btnKLoSiKUlFUQs1sRVEUpQpQRaEoiqJ4oj6KHHZfeSXdv2kfeF9/zhymfve7ZZRIURSl/OiMwqZQSQB0/6adFxcsKJNEiqIo6aBqZhQdM06BXMe9CDM6nh94W6gksvS8+BIH2toYtXBh0iIqiqKkkqqYUXScPCNfSQAYY7X7oPPGVQlIpSiKUhkMeUWx+8orPT/fOff84gfp1rQBiqJUL0NaURxoa3M1KWXp37u3RNIoiqJUJkNaUXRdv9LXdh1nfTRhSRRFUSqX0IpCRKaLyNM5f++KyDUiMkZEHhWRXfbr6DgFDoI5csTfhu+9l6wgiqIoFUxoRWGM2WmMOd0YczrwEeAQ8GNgBbDVGHMSsNV+ryiKolQocZme5gEvGWNeAS4BNtjtG4BFMZ2jrBxoayu3CFXFgbY2dn1yHh0zTmHXJ+dp/ytKGYlLUSwB7rX/n2CM6QKwX8c77SAiV4nINhHZtm/fvpjEyCdz4rTYjrX3zrtiO5bizYsLFtC5/Gv0dnaCMfR2dtK5/GuqLBSlTERWFCIyDLgYuD/IfsaYe4wxrcaY1nHjxkUVw/kch+ILa+3t6ortWGGphlH27iuvpOfFlxw/6/x6ZVgxq+E6KdHpWrOGjlNPo+PkGXScehpda9aUWyRX4liZ/SngSWPMm/b7N0Wk2RjTJSLNQNniT+N8uMuoUbEdKwwdZ300z+ne29lJ1w03AgypVeOe4cz9/aUTJCQvLliQp+iysyEYWtdJiUbhfUJfH/vv/SEAzavSt8A3DtPTFRw1OwE8BCy1/18K/CSGc4RCMpnYjmXefTe2YwVl59zzHSOzzOHDQ8ok1jH79HKLEAnP2dDyr9Fxyqk6u1DoWrPG9T7JKou0EWlGISINwAXAX+U0rwPuE5EvAq8Cl0U5R1gOtLX5D4/1Q8KjWafMtaM/+1n23nmX56LA3s7OROUqFV1r1sAHH5RbjEgUW9xJf7/OLpTUKgMvIikKY8wh4NiCtrewoqDKSud115dbBEcOtLWx98676O3qoq65mfFfuYZ3HnzQMXNt0QcPgEhCkiZPbl8MysU1hOm87npVFFVKmv0QXgzd7LE9PZ4fS0MD5tChEgljcaCtjc6vfX3godjb2Zn3PhQV+oA90NZG1w03Yg4fLrcopafIvakMPQ60tQ3MJj1J6cCvolN4RIkuaV6zGhkxIq+t8H0hUaMTOq+73jGLbTWy9867giuJ2tpkhCkDlTqyrHbCRCr5VhJA05LFUUVMhIpVFAfa2ui89rr8WPtrr7NGqsUuXn09oxYupPnmm6hraQER6lpaaL75puIntqMTcs/hW2HpSHKAUL6Vvr74BSkTlWinrnZeXLDAum7Z+9DhWeBE1y23+j5HGiOeoIIVRdctt0Jvb35jby9dt9xa9EfYcpN1YUctXMhJP9/KjI7nOennWwPZjff/cCNwdLSgi8MCEmKKXdfSkoAgilKcKJFKZv9+fycZOTKoWCWjYn0Ubp3v56J4KoT6en/1J2yTkduUsnP51/LOo4qjgBAmt8zxU2IVoTCWPXPiNE7cvDnUsZK4voWRcDJsGM23rAUYFBChzvFk2X9foPXEAxSrh5PLjP/321DnKAUVO6NIiuxsIw5yHx5JrneoFnt392/aY3sgD1rwhFX21k+NdCc7tV8bdC4dJ89wvXZONdzNkSN0Lv+a4wy2ElPld8w+3erD3L+0fo8iZk+n6/jiggX+IhfBGqCmGDEpcKa2traabdu2BdrHbxnTQdTVMePZHZ6bvDBrtq81GPXnzPF/IyTMjBc6yi1CIEJfP9tkVWwk7RSGnLut1/m9+rJrzZpE/AtNVyzJs0+H6p/hw5nxzNMxSpUcHbNP91w3U8r72TNMu7aWGc89S8eppxVVFrkyB3FgA7SsvyPUrFBEnjDGtAbeMSBVN6Noua24Yyk7vS9GqZREy/o7SnKeisCYgZF01w03Os4wsqG3haPuOGZeSTmh/ThFi/LBB5UzuyyyuLJjxiklEaPwXhlEXx8dJ8+g/qNnBTrumwEc2PXnzEm96bCqFEXTFUt8XZC0XLS6lpbQI400E8Ru64VbChO30Nv99/7Ql+nKyySUJHEooSETTWVM+FlnAPyGafsZFOYqtz6fDuymK5Yw9bvf9bVtOalcRREij1NaQ88cGT48LxKr/pw5ZRYoHrrWrCn+o6vxf1s6hdl6JYP0G6oYywg/BFlbvWKRtNKONSu0MYFlrZRnUsUqitrGxkDbBzXfxFnLIgyFtuZio45KSW3tZ8Tbcvu6QMcc9F3r3IP5fIcqEs/oPHPiNJquWBL5OEOO4cN9b5qk0q5rbo71eNl7Rpqaim7rZ5u0ULGKwu/ULktQ882JmzeXR1mMHBnKkdf59RV5Nnk3+30SxK2kgl6rQbOEIgsbg8jXceppA//7iYgq5MTNm2letUr9TAW0rL050Pb77/0hHTNOif2eHv+Va2I9HlizID8Dkubrr4v93ElRsYqiFOkcTty8uSSLvGa80HH0L2wsdUF221KlIA+y4DCpUWGQWQJYisX3de3rY/eVV7Jz7vmuC67cqBl/tLjjqIULVVnkEOreNMYKBT5tZmpnzH7JnDitonyPlasoSpTOIYkRRx4BFJ4EjLUutL8mYZ5yqzrnFBqYXc3uRfbhKsOGRRPMA7N/f6Dr2v2bds9U725M/9Uv896XSllUQuRTJN9Ab6+lME6ewQuzZke6j8tRzyXKws5yUbmKIgBRbMSjFi5M1MbcdLn/ch3NARcD5lblcwoZjcU85VGno+PkGQMK6UBbW9HV2DXjxw88XP2GKDvhx2QYZoFcENzMh6MWLkx8jUBY38qgBXAJFpKKyzdgjhyh8+srQt/H5ajnUmlKAqpEUUSNLMjamOM2Q9WfMyeQbEGnqrkX1ykM0Bw+PDAyc/qLY2SaNUUVezA3XbEkbwQeZVre/4e3Qu8blcyJ01Kx+HHn3PMDbd8x45TBaxs++CAxZfGh8+fGd7D+/vAzgyGUkThJKldRlPgCDyQQfKHDmmEUnt/DLNSy/o6jisbOVNuy/o7E46dzHf5hRk6lDBGNqsyzcnatWRM40CEuWtbf4Xu0KA0NwU8wfPjR+68I/Xv35jnivehas8Z9tpdQ1cH3f/kr5w9CprIIbcryMGGrT+koFaso/JpskjAbNa9axYznns13Qj/1pHWunKyo0tAwsGAuSqba0MRQBKWYGSPXYRuFqCaw7GK6ci04Ezt1vV+a16wOfI5syLRvpdrX52uFczn6zPXBHrKQVVhTlpuVoK6l5aiZ0CWra3YAWA1UbPbY5lWr+GD37qKLt0q5oKV51ap0LaCJKY/XgbY214dgTV0dcVQT33vnXZGVZ9J+B1dEAvuPst/Vj8y5vpuBU9bXY3xmOd459/yB/bvWrLEyofb1QW1tIB9ZnNQ1NzvOcuuam/nQ+XMDK6+wQSfjv3LNoEqLMmJE3vGKRSIeevLJobMi3oWKnVFA8UVoSjx03uiu/OJa2ep4nJSWhcyltqmJljtuD6XksiNWJ7Nk7my1UElAsMCGbMRWx6mnORbeKQfjv3KNY4XJ8V+5huZVq5zNux6EHWS4FTALNDvMyuuDSp2BVGz22CwdM2e5LrAqzMg5FAiU3iGTYcaO7cH3c2LkSMeR1a5PzoslcqSupYWTfr41ry2pTK2e1Nb6D7126ZNS0XHazMHFu2ImyVxjxTL8gv/7Ng0BBF6/hbqWlkTqhmj2WJ+03HqLY3vQiKJKoTbIsv+envgWJr33nmOtAKeRYVAKp/pZgozUYmHkSGY896zvmUy5C8203HZroLxYYUjSl+bLb+fjWqQlRYrbLKll/R2l80smRMUriuwiplJHFJWLCddfhwRIiNh1y63s+uS8eE7+3nuDFM+ohQsJNSutq/M11W9etSpUAsig1IwfP/Dgn9HxvLeTPmSalbgZtXAhLbevG9IlYpuWLC66TVoGhHGYsdJKxZueqpEDbW103XJr4NQVcZA1ETlViPNCRowI/aPpmHFKZMd8GDNkYZW5+nPmpHoAEnfWWSdzYDnwLHJUZvNfuSmV6UkVRQXjVC4zLNLQgDl0yNe2NePH+0ppUdfSEktd56h+kKFY08OJoFXVipGmfts59/zB91yVKwmoEEUhIk3APwOnAQb4C2AnsBGYCuwGLjfGvON1HFUU4Ynq8JWGBprXrGbUwoX8bs45sS5Wi8s8c6Ctja7rr8ccyQ1aMIAPX4JdyrJaiGtWkfbZk2JRKc7su4F/M8acDMwGOoAVwFZjzEnAVvu9khBR7bO1TU0Do8YJ11+XuHM0DKMWLqT5Y73UNfQCZuDV+vOmmpREnKiSUHIJveBORI4B5gJfADDGHAGOiMglwB/bm20A/gP4ehQhlSKIhLbh565fCLIIrCguq1nDMmp8J6Muzv+OHT88zv7PZWYRoDjOUKGupSVyuHJaooiU9BBl+HgCsA/4rog8JSL/LCKNwARjTBeA/eoYPiIiV4nINhHZtm/fvghiKFEcvYWpD+JKhR277bh+9OBzLHmDpmkHcZxZDB8+qEpgNRA5Lb5IaqKIlPQQRVHUAWcC/2SMOQM4SAAzkzHmHmNMqzGmddy4cRHEUKKERzo9WKI6MBMJHe1zjnppPutdZizpys+79UJHVSoJiJgWf/hwZnQ8H69AypAgiqLYA+wxxjxuv38AS3G8KSLNAPZr8IovSiCijCLjjmpJbH3BkYPJHHcIMlB61WP9iVOqkGpVrr7Zfh/ceRqsbrJet99XbolKRmgfhTHmDRF5TUSmG2N2AvOA5+2/pcA6+/UnsUiquBKrbyECqcpjs/mr8MT3wPSB1MJHvgALvlluqUpGNmOxEhPb74O2L0OPnYjxwGvWe4BZl5dPrhIRNcTl74EfiMh24HTgViwFcYGI7AIusN8rCTNq4cLgSfRiXPGceMx9/Rj/227+Kmz7jqUkwHrd9h2rXVHCsPWmo0oiS0+31V4FRFIUxpinbT/DLGPMImPMO8aYt4wx84wxJ9mvb8clrOKNn3QHubjlyQrMyJHJj14/dbv7Z8Ma898/8T3n7dzaFaUYB/a4tL9WWjnKRPqC5pXQNK9a5ateNFghkJ4P9wApnkuyOtZrel/ovzAu2V/d2hWlGA5RdwNUga9CFcUQ48TNmwdV2iOTsbLO5iRNLBYC2bLuNl/nK23MvZtpLf11K5QhTBWYnyq2wp3iThyV9rKzjbzkg5mMVf/AmIHqaKWNuXdbLxJyHcm3zoY/vHD0/diT4e8ed99eqV66PbIQVYH5SRWF4orvyJm0RRhJrYuZKWfmUagkwHr/rbNVWSiDGTXJXSGIfzNtpaKmJyUaaYwwcvVFmKP25EIlkcWtXalu5t3o/lkV+L5UUSjR2PYvwdpLwajJ7p9VgT1ZSYBZl4O4PC51RqEoxYjZbxCW3MgTr9GfW5ijohTD9Lu064xCUZIjaEoEtxEd5M8UZl3uvkBv1KTgcipKlaOKQikP2++DH3/JdhAa6/XHX/JWFm4jOhjsaDz1M87bnXShP9nCsuFiWD3q6N+Gi8MfS1FSgioKJTm8Hrht1wyesps+q90NL99D4VqKXY84b5Zt90oJ8rOQ5VM2XAy//2V+2+9/qcpCqXhUUSjR8HLkeTmOe1yywbq1g7fvodAn4hbKmG33SgnSHTLrTKGSKNZejM1fhTVjrJnJmjHVnatK+6KsqKJQovGRL7h/5mMh0pbGBi6c1MKsqZO5cFILWxob4kmJUCxCpdQZP4N+J6+w42pLd52aEOyAmQGGkHJTRaFEY8E38Uyh4fEg29LYwLXjjqUrU4cRoStTx7XjjmXLL64fvHE2zbMftt+XbIRKmAdA0LDcbd9xb2/7cr5vp+3LQ1tZePVFSQkQ4Zca5RYPqiiUGPAIhXV7kA1r5IaxYzAFqdGNCDccM2zwcZzSPLvh9VAOkq7cibAPgDjTPFRxuuuKYYhlMFZFoUSn2MPX6UG24C56XOpnOLYHWf+Q5FoJrwdAptH5MyDxxIVVkG+oohhiGYxVUSjR6XWuZ51H7oPstinw4DLPzde2r81v8LP+4VtnF982m9wtrKnG6wHQc8hrx3DnC8JQNj9VGl5BHhV4nVRRKNHxilTKZfNXLbv+Bwe8txNh486N+W3zboRMvfd+f3jBCkX1Gl1n6wokYaqJazFfWDt22HXEKREAABUoSURBVLDetFPjkrvUrT0NeAV5VKCZUBWFUjoCOh9nbpg58Les61FY+D+L7+Q3FDUJ85Rn+G4Awjppw4b1lpIwgQD9vcHa04BX9uQKTCOjikJJJybfVNP+RrulLArLngYl+zBNSyqPagp1HWKRQHk4XTc3351XtbyUoopCSScODu32N9phwV0Rj2vbjouN/lePCv4AC2pS2H4fPPhX+aGuD/5VsGNUEklEApVSsca1mr/77YobFKiiUKIR4GY/d3ILM6dOHvgLjDFFneDFj2GPZv0suAs62g1qUmi7Bihc7+GRz6rS8QoEWD0K/uFk58+TSLcShqCr+b1MgRW2/kUVhRINn6Pocye38F5trTVTyP0LyOnHO5uMHFd4OxLwnEH8BUHNWX6DAIKSa866/cPWXyWYtt7vclYWSaRbCUPQ1fzF6lT0dFdMAIIqCiUwa9vXMvv7s5m5YSazR8PaMU1F9xlQElEQoU+ERS0T8pq3NDawomCF94pxxzJz6mSWTRhbcJCIYaquP37x58y+bcrRzLJJsHqUNevKmrO637YfprZpa9PfpF9ZFFLqdCtRyFXSftZMdL+d7uthk+L4MiWNLHt4meUrsOkXYeMxI/lpYwOPvdbpuI/76D4EIrw0LH/l9oqxYwYrIft9e3098yY1s3WPwwNIarxTl2e5+Tj40FjbtBShUNNtU4qHBidNf49l8krzw3f7fdZM9cAea5Y270b3a+VVo6TUZNPM+M0gkOXBZfBqe3nrzBchUi+LyG4R2SEiT4vINrttjIg8KiK77NfKc/Erjmx5eUuekhhAhPdqaweN9LOsGHds9NlEoSy5ysfr2CLsratznvV85Epf51o7ajizR8PMqZOYPXWy+wyqmBkhR0kU+muyf26mtVjpOZjqUeyi9pXMtPt75mhY1H6DR+6ueHw6W17ewoUPXMisDbO48IEL2fLyluAHCZJmppCUR3/FoY4/YYw53RjTar9fAWw1xpwEbLXfK0OAFb/2uJQOI32AeZOaY1cSiLBi3LFcOKnFl9kLe9Yz6CHvYwS3dkwTG48ZSb/tU8nOoOZNah68sQ97+bxJzcycOtnZX2Ob1maWQln8+EvJn6OQ2uFFN5l5/CTrPsrpk5eGZVwHIXHUq97y8hZWP7aaroNdGAxdB7tY/djq4MoiahqVFOeBSmLedgmwwf5/A7AogXMoJcbvj+bs4yflOZT31kWwbhoPc47ti9h4zEh/iijnIb928xeOtrd+0XM3x+Pbs5R5k5qZbc8EBpSQR4TOzOMnWf3h5ci3P0tcWZQj59Al3/I0Fc08fpJz37gMQoBYvsfdT97N4b7DeW2H+w5z95N3BztQVDNYivNARfVRGOARETHA/zHG3ANMMMZ0ARhjukRkfFQhlfLj60cjwiH7R551KIfGS0kUnDMQImz8wzZWAsseWEj7+7+HnFDdpv5+Vrz1DvMPHnJwhOcfZ+ChjxXUuvGYkcB7rHSwPpw7ucV/pJe9zazjJ7H9FeeQ27Vjmrj/mJH0Y432Lnv3PVa+vX/QdssmjKW9Pj/1ybQjR9jU+aa3Q31Yo7VmJU5fRvZYW28aNPp2VRI5bGlsYP7BgnxaUbMBA10HHfxXHu2uxGQGSyNRZxTnGWPOBD4F/K2IzPW7o4hcJSLbRGTbvn37IoqhJM0bB98IvlOYEFhjaO7pZd17ffGbrHKY988nW0qiwPSzv7aW68cdy8zjJ1kP2CL+j8L3G48ZyZbGBs48flKe7yFw1JcIRsRRWbmZwwrNcOdObjn6HfJMOcPcTTlZjhy0nKwJ+zK2NDb4UhKIcMPY6EohMlEzAxQjpb6jSIrCGNNpv+4Ffgx8FHhTRJoB7Ne9LvveY4xpNca0jhs3LooYSgk4rvG4eA/oMmNo/lALj/xlB/P/viPe8+VSMBsopC/COg+wnPc9NTWR14wgQnt9PWvHNOWZuNzMYdaMxmLZhLHuysnLlFNI1AWOuWSjguzZRDasmWxfFcEx/XzC6ygGmVyjZgYoRkrXVYRWFCLSKCIjs/8DFwLPAg8BS+3NlgI/iSqkUn6uPvPqeA9oDCP686fqI2pH5J1n8fTF8Z4zl2IPpiizmZhnQoWzh2K0TplYfDZEzGHLfiiICoolGi4GZ7YXax5bk/NmrKfiXNQyIW8WWXTW5kRKEztGmVFMAP5TRJ4BfgtsMcb8G7AOuEBEdgEX2O+VCmf+CfOZc9yc2I637vw7WH3+HTQ3NiMIzY3NrD53NfNPmD+wzco5K2M7X8Xi4tx1Y+bxk/jAzwhdhBVjx0R/sAXhwB6WTRgbPoULDivzE3YAd/fZim31KDA9rtvNm9TsEK3lw8RXIYR2ZhtjXgZmO7S/BcyLIpSSTr590bdZ276W+393P/0RHHdzjpszoBByFYMTgmBKUfQnLkL4ZELv63Z+v8cp2PalYcMGHuAj+/pcF1CGZdnESbRnCP89RejDGrlv6nzzaPv2+5JdQFhkfcNAdF+QaK0KI0XLGpVKYOWclTzz58+wY+kOq8FvdJLNtGOm8e2Lvu17+8unB3sALJ6+mB1LdzB+xHhLtoDylZodZ97Ijt0xlTEN6gtxmqnYf+/V1tpO5kw8sgHtw8L7fQawH755+bySXhNSJN9XMRNaIBOfZznd8qGKQgnNgLLwiSBs+symQPv4NT8Jwo6lOwa2/8Txn7A/iMlfkJTSsUfC6/a9lS6lZiuM06eWoW5Hsb7Oyee1bMLYSOanUCuwcyi63sVeHJo1t3mGXAPUFV+UWA5UUSjRCPAg3r50eyIijKwbOejYG3dujNWpXGsMtYnNUIT5Bw8xsq8vdcqijzIsAguwhqa9vt56+IYMK727/baisjitws86rn3N4nJmagPyupGt6Z4yVFEooQkyGstEMGEMq/G28z72ucdCH9sPI+tG8nTNNJ5+ZU/wB7nH9tOOmWb989l7ACyfQAWYy5Jmxyt7GN7f768f7Ifvll+Hq0PddWTwIsXC4++tq2PW8ZPY0tjAbHt9TJ7jOgi2vK6ktPqdKgolNEFSHNz8sZtDn+em89wfAomG0GI53h/73GOw9CH48Pms+8PbwR7kLg+S8SPGHzXDzbocai1luCOrjOJUFhWkfAQBhG2vvh5gJ+Hu4eFmPr4e8/bixxXjjqU/d31MBD5SkOom7aiiUELjd7X24umLi0Y3eTH/hPms+/g66muPjsQEYfH0xaFCaOtr61n38XUDobmjho2ixuGnsHj64nzH+9KHmD/+LBr8PnSNYd3H1+Wdq7mxmXUfX8fWxVvzt73kHwfWBOx4ZQ/r9r1Fc28vAgP7hFGKzY3NrJPKWdB6XONxAzOsOd3dvhXcG3Xh1lP4Vp8xKIfcYx2pqRmonbJ67JijyiKlpietR6GE5rjG4zzz4TQ3NnP1mVdHUhJZ5p8w3/dxipnEVp27KtDx8lj6EIe+d5qvTTMG32HA+XmQ9jC/7ljmn3VjXtjn/BPmDyjGmRtmFj1/brDBCh/bO7Hu4/Etg1o8fbHlO3JhYMGl3Vff3noTMz2sNLkcN8xHFuGUcrimhuvsvGjz6yLkR0sQVRRKaOZOmuv5w3/k0kdKKM1RipnE4lBcxagxhpvP9yjh6cSsy32vB2ioa+BQ7yHXzwsXRwZej2IM6+beHmtfZZVc7jqchroGunu7Oa7xuPxBhd0Xcx5eRnvXb4qO5q+ec20omZr6+9lfG+PqbmNCzTz6bdMWUz9D8ndncNT0pITmV3t+5fpZc6NDvYYSESqBYRzYvoCm4U3cGvNDtpAbz/Euu1q4ViXoehREEpE/dx3OjqU7ePxzj7N96XYeufQRx/N9+6JvF33wrvv4utCyrnj7AJm4/DdRjyPCda88FI8sMaOKQgmN1wN57iTfiYRjxyuBYU3CpTN37H6NXy/5deKzFq/ji4OLduWclYF8HCPrRhbfKCVE8n+9/z4373uL5p5exBjwG22VEP2kM1W5KgolNF4PZK/ZRtJ4JTCMknpkAK8R7tiTox/fJ26zNrfrsnLOSl8+h5F1IxMPOU4NoyYz/+AhHtnTyfbdr7HjlT1MO3IkXKSYCIvffa9iIsyCoIpCCY3XrKFs5p8ixGEScxqxD7T/3eORj++Xq8+8mhG1I/LaCjPwFpKNICuMwsqagnYs3VE9SgJg3mAT3qbON9mx+zXG9/YGeug3DW9i5Ql/Fqd0qUGd2UpovGYNsdevCICXMzuOdOluTmGTXJ0lR7Iml7ufvJs3Dr4x2CHssV8pHPoVwazLXVOHb93TxaKWCbw0vHhajUxNhhUfXQEnzEc2zAqdyHJgEWbKUEWhhMYrNDb2+hUB8JrNDLUHZLU/9J3Wv8SJVTL2wKD2LS9vcVXQl0+/3DMa0I28RZgpQxWFEpoaqXG1+Zfz4eW2vqOckVhKeLzus1s/fmuyJ2/9omOzl4JeOWdlIEVRJ3Ws/djaVCt89VEoofFyDEfNyhmFMLZ7Jb1c9keXObbn1jVJjAXfDLWbW4RZNg1+7t9Tf/5UqpUEqKJQIuA1Qg+SBypu5p8wn9XnrvasnhcFtxDbpENvq5VsaG+2f2ukZnB6lZThJnOlVm0Uk4JQrtbWVrNt27Zyi6EEZMvLW1jx6xWunwetV1EpeKXPGKrfeUiz4WL4/S8Ht3/4fCsZZIoRkSeMMa1Jn0eHQEpo0j5dTgq3mZT6QCoUOzNwHhWgJEqJOrMVJSBXn3k1qx9bzeG+wwNt6gOpcFQpeKKKQlECEnb9gqJUKqoolEgMqxnGkf4jju1DmWpfv6AUx2utRaWhikKJhJOS8GpXlGpgy8tb8syTXQe7WP3YaqAyfXvqzFYURYmZu5+8O8+HBXC473BZw8ajoIpCicSoYaMCtStKNeCWRiatyTKLEVlRiEitiDwlIpvt92NE5FER2WW/jo4uppJWrj37Wuok34JZJ3Vce3a4imOKMhRwS4pZzmSZUYhjRnE10JHzfgWw1RhzErDVfq8MUeafMJ+1H1ubtwo67XlrFCVphloamUjObBGZBMwHbgG+ajdfAvyx/f8G4D+Ar0c5j5JuNAJIUfIZaiHUUaOe7gK+BuTWTZxgjOkCMMZ0ich4px1F5CrgKoApU6ZEFENRFCVdDKUBVGjTk4gsAPYaY54Is78x5h5jTKsxpnXcuHFhxVAURVESJsqM4jzgYhH5NDACOEZE/hV4U0Sa7dlEM7A3DkEVRVGU8hB6RmGMudYYM8kYMxVYAvzcGPN54CFgqb3ZUuAnkaVUFEVRykYS6yjWAReIyC7gAvu9oiiKUqHEksLDGPMfWNFNGGPeAubFcVxFURSl/KSicJGI7ANesd+OBf5QRnHConKXFpW7tKjcpcWv3McbYxKPBkqFoshFRLaVomJT3KjcpUXlLi0qd2lJm9ya60lRFEXxRBWFoiiK4kkaFcU95RYgJCp3aVG5S4vKXVpSJXfqfBSKoihKukjjjEJRFEVJEaooFEVRFG+MMZ5/wGTgF1g1J54DrrbbxwCPArvs19F2+7H29u8D3yo41mJgu32cOzzOeQvwGvB+QftXgeftY2zFiiF22n84ViqRQ0A38LscufuA94APsPJQpV5u4BPAjhy5+4DPpV1u+7O7bdk+sI+Tpv6ea/drP7CH/Pt7K9ADHCR997ej3MDxwNM590lHJchdAb9Lt/5O++9yLvAk0AtcWvDZ7cCz9t9iNxkGti+6ATQDZ9r/j8R6CJwC3AGssNtXALfb/zcCHwO+lNtBdse9Coyz328A5rmcc4593sIO+gTQYP//18BGl/3/Bvg+cCZWHqof5ch9pELlvsOWdwzWA/kbFSD3l4DdwHW2nHuAO1Mk91Tgk8Bm4FLy7+8fAt+zP0vbfeIm92zgG7a8HwLeAf6xAuRO++/SS+40/y6nArOwfpuX5rTPxxr81NlybgOOcTpG9q+o6ckY02WMedL+/z2sUcpErAJFG+zNNgCL7G0OGmP+EzhccKgTgN8ZY/bZ7/8d+DOXc7Ybu6ZFQfsvjDGH7LftwCQXsS8B/smW+wHg/By56ypU7mx/Xwr8DFhQAXKfiXUjftcYcxD4FdZoKhVyG2N2G2N+jr0CtuD+PgNrlgQpu0885B6PdV9swJrlHQQuqgC5U/27LCJ3an+XttzbsWZCuZwC/NIY02v/Lp8B/tTpGFkC+ShEZCrWD+hxCgoUYd2kXrwInCwiU0WkDutGmBzk/AV8EevCODERa8qGMaYX6wfzEVtuAdpEpB04u4Lkzvb3EuC7FSL3T4HRwAERGYs1QmpKkdx5FN7fwNuQyvs7jwK5jwMexroet2GNYL1Ii9xp/l3m4fIcTOPv0o1ngE+JSIP9u/xEMRl8JwUUkQ9hmRSuMca8KyKBJDPGvCMifw1sxNJwj2Fp18CIyOeBVqyRq+MmBXIfByyz5X7XGNMqIicAP6eIskyR3Nj1PWZiPQg8SYncm0Skxz73PuA3wGdSJHcuI6ic+zuXQrmNMWaWiLQAm8i5NimXO82/Sy+50/y7dJPhERE5i/zfZa/XPr5mFCKSweqcHxhjHrSb37Q7KNtRRQsUGWPajDFnG2POAXYCu0SkVkSetv9u8iHLnwDXAxcbYz6w227JHsPebA8w2Zb7QSyn5P+1P3vDLqz0MtaI4P0KkftN4C+BH2MlDKuU/n4V+JQx5gKgHnuUnhK5BzYH/gcF9zeW3TmN97en3Pb93Qm8jDW7qwS50/y79JI7zb9LLxluMcacbv8uBSsoyXMHzz/7IN8H7ipoX0++8+mOgs+/wGBv/3j7dTRWdMYfFTl3oRPnDOAl4KQi+/0t8L9tuX8K3Jdz3m/a8mazM34n7XLn9PerWNPESunvWuB/2fLOAt4A1qdF7pz7+0Vgs8P9fQ9Hndmp6W83ubFs1Xfa8o7GGi3+SwXInerfpY/7JJW/y5ztv0e+M7sWONb+fxZW5FOd5zF8nORjgMEKxXra/vs0lu1zK5Ym2gqMydlnN9bI8X2s0eYpdvu9WGFdzwNLPM55h71fNhxttd3+71gaPCvHQy77j8CavhqsSITn7e3/u/1/Npzt+QqR+9PA6ViOsUrq70uwRkwHscJmH0+Z3GdhjQAN1tS7O6e/f4MVidNv9/ulFSD39Vghl7nhsZXQ32n/XXrdJ2n+XZ5l73cQeAt4Luf3mj1/O3C6lw4wxmgKD0VRFMUbXZmtKIqieKKKQlEURfFEFYWiKIriiSoKRVEUxRNVFIqiKIonqigURVEUT1RRKIqiKJ78f6S57F/6hNcgAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import collections\n", + "\n", + "from apd.aggregation.query import with_database, get_data, get_deployment_ids\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "async def plot(deployment_id):\n", + " points = []\n", + " async for dp in get_data(sensor_name=\"RelativeHumidity\", deployment_id=deployment_id):\n", + " points.append((dp.collected_at, dp.data))\n", + "\n", + " if points:\n", + " x, y = zip(*points)\n", + " plt.plot_date(x, y, \"o\", xdate=True)\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " deployment_ids = await get_deployment_ids()\n", + " for deployment in deployment_ids:\n", + " await plot(deployment)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAE0YAAAUsCAYAAAC9bUPVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdd7x0Z1Uv8N9KBwIJEAJSQ+9NihSBBJAqIL2HkCCCXq5cURD13ovYr6BwQakGCKFKByHIRQOitCAogjSBCKEESEIPIWTdP/a8Zt79zilzzpwzb/l+P5/5kL32fp5nzZk5w+eds/Z6qrsDAAAAAAAAAAAAAAAAAAAAAAAAsEz7LTsBAAAAAAAAAAAAAAAAAAAAAAAAAI3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAEaq6qiq6tHjuGXntZ2q6tTR8z912Tntjfyc92xV9bTxZ8WesL73HQAAAAAAAAAAwO5jE7VgS61hm9ey63OXvT4AAACwfhqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMRoAAAAw0wq7oq32OLeqzqyqz1bVKVX1R1V1n6o6aNnPBQAAAAAAAAAAANiYPaWesKruuEI+pyxwjaPXeO5HL2idY9dY56hFrAMAAAAAuyON0QAAAIBFOTjJZZJcI8ldk/xmkjclOaOq/qSqDl1mcnu7qnrpqOjpi8vOCdi7VNUXR58zL112TgAAAAAAAAAA7JaWVU94wgrxn6uqK2/RmmPH72bzAAAAAMAeR2M0AAAAYKsdkeTJSf6tqm697GQAAAAAAAAAAACApdiyesKqOjzJ/VY4vV+S4xa53iruX1WX2MwEVXW1JLdfUD4AAAAAsMc5YNkJAAAAAHuU7yf53ArnLprkUkkuvcL5qyQ5paru0N0f24rkAAAAAAAAAAAAgG2xu9UTPjzJIaucf3RV/V5394LWW8lFkzw4yYs2McfxSWox6QAAAADAnkdjNAAAAGAep3X30atdUFVXTHKvJE9KcvXR6UskeV1VXbe7f7w1KbIIa73OQNLdT0vytCWnMTe/3wAAAAAAAAAALMDuVk94wui4s3NzsaOS3CnJ/1vAWmNnJ7nk1PHx2WBjtKraL8mjRuGzMjSaYy+1p9aiAQAAAGyV/ZadAAAAALB36e4vd/fzktw4yRtmXHL1JL+0vVkBAAAAAAAAAAAA22m76gmr6iZJbjoK/3mS80ax4ze71gpeneQnU8e3qqrrbnCuuya54tTxOUnesdHEAAAAAGBPpDEaAAAAsCW6+/tJHp7k32ecfuQ2pwMAAAAAAAAAAAAswTbUEz5mvGSSZyd52yh+v6q65ALWG/tKkr8dxTbahG087pVJzt3gXAAAAACwR9IYDQAAANgy3X1ukj+acermVXWp7c4HAAAAAAAAAAAA2H5bVU9YVYckedgofGp3/2eSl43iB2do0LYVThwdP7KqDphngqq6dJJ7rzEvAAAAAOz15vpiDQAAAGADTpkR2y/JtZO8f6OTVtV+SW6a5Kgkl0lyqSTfSfKNJJ9L8tHuvmCj8y9SVV0hyXUy5HpYkotkyPWsJP+Z5MOToi+2QFVdJMktk/xUkiOTHJrkWxneK//S3f+xxPTWpaouk+RWSa6WIf9vJzkzyQe7+/Rl5rbVquqwDM/9mhl+f85NckaS98/z3Kvq8klukeH38NAMv39fTvKe7v7OgtPekKo6OMltk1w5yeWS/CTJ15N8PMnHuruXmB4AAAAAAAAAAGzWVtQT3i/JJUexkyb/+/YMdWKXmTp3QpLnbnCt1bwlyTeTHDE5vmySe0zi6/WIJAdNHf9rd3+kqhaT4QJU1f4Z6tiuk+QKSS6RZP8kZ08en0ry8d2lfnMR9pUa0Ko6KMk1MjzXy2V4bZPheZ6V4XX99DblckCSmye5fobfqQuSfDXJF5J8oLt/sh15rNfeUKcKAAAAuxuN0QAAAIAt1d3fqKrv5MICiR2OmHX9Wqrqdkl+JcnPZWiGtpKzqurtSf6ouz+5kbU2qqqOSHLfJHdOcocMBU6rOa+qPpCh2Or16y0IqqovJrnKCqevUlXraaJ0THefOmPuUzPkvsN7uvvoFfL4eJIbTIW+keQK3f3jdaw/U1U9NMkrR+Ff6e6/XOf4/TLs7PmIJLdPcsgq134hyWuTPKO7v7mxjLdGVR2d5LeS3ClDAeCsaz6Z5A+TvHKexllVdVySl4zCV+3uL24gz/G6v9vdT1tjzNOS/O/pWHfX1PlbJPmdDMWBM7/HrKr3JPnN7v7AKuvcK8lTktwmyawKwfOq6o1JnjzZJXbd1noOc8xzVJKnZfjcGH9W7vC1qnp+kmd29/fmXWO03qlZx+/3JK8vrDLVo6rqUWutt+NnUlWXyNDU7tCp06d29zFrJr2Kqnp2kv8+Ct+ku/9lM/MCAAAAAAAAALBYi64nnDhhdPyDJK+brHd+Vb0yya9Onb9JVd20uz+6iTV30d3nVdUrRmsdn/kaox0/Oj5x04ktQFVdM0MDujtm2PjxYmsM+XZVvStDTd4H51hnt6hF3K4a0NGaT8sCatE2sO5NkvxCkmOS/EySg9e4/htJ3pbhtV14bW5VXTbJbyY5LsnhK1x2ZlW9NsnTu/sbi85hvfaWOlUAAADYXc28mRIAAABgwWY18Vmp+c9MVXWtSaOz9yZ5cFZvipbJ+Uck+XhVvbiqViw4WKRJEdVXk7wwyYOydkFMMuzwePsMRQ//VlXX37oMt8S4udZlktxzk3MeNzr+UZJXrWdgVd0tyccz7Pp5l6xSbDJx1QyNsz5fVb+6xrXboqoOrqoXJfn7DE0AV/se73pJTk5ySlWtVXC226vB7yX5QJJ7Z/XNHe6Q5J+q6tdnzHNYVb0+Q2HhbTO7KVoy/P49OMknq+rOm0p+AybvuU8keVRW/1y8XIbmaZ+oqpttQ2oL193fyfBenXZ0VV13o3NOdto8dhR+v6ZoAAAAAAAAAAC7rU3XE+5QVVfN0NBp2htGGw++bMbQcTO1Rfmr0fE9q+rI9QysqpsnudFU6LzsWmuzrarq0lX1z0k+k+SPM9TjradG7bAkD0jygap6c1Wt1OBqbOm1iPtKDWhVXaeqPp3koxkast0+azRFm7hMkkdneJ4vqqr1jFlvTvdI8skkT8zKTdGS5Mgk/y3Jv1fVQxa1/jz2hjpVAAAA2N1pjAYAAABsh1kFCt9Z7+CqulOSDya5+wbW3i9DEdN7JjvJbbXbZPVGTmu5boZioG1v0LQJJycZ78j46I1OVlVXzLDT4rQ3dffZ6xj760n+JkOzsHldPMmzJo30NvMabsqkid87kjxmzqF3SfL2qtp/8Vltq+cn+Z2s/7vLSvKnVfXY/woMhXTvzrBL6XpdLMlbquoWc4zZlKr6gyTPSnLROYZdOcPn2R7ZHC3Drqhjj9vEfA/Nrv8f87xNzAcAAAAAAAAAwNbaVD3hyPHZdcPEk6YPuvujGRoYTXv4Vmy22t0fT/KRqdABSR65zuHHj47f0t3fWkhiG3fxJDfd5Bz3TvKhSV3gWnaHWsR9pQb0ckmutYnxlaHG8b1VtaHGhjtNVnWvJG/O2psmT7t0kldO1w5uh72hThUAAAD2BP7hDAAAAGypqrp6Zjf9+fw6x98ryeuTHDg6dV6Sv8vQMO1LSb6d5NAkRyW5Y5Lbja6/ZZI3VdXtu3tcOLNVfpLkn5N8IsmnknwrQwFXZdjh8ppJbpXkttm5CdShSV5dVTft7i+tMv8nk5wz+e8rJ7nk1LkfT86vZdbum3Pp7jOr6u1J7jMVvkdVHdndZ25gymOza1OsE9caVFV/nGFHvbGzkrwrQ8HZmUl+kKG47vpJ7pbk2qPrT8jwc/31ubJenBOz8y6mn87QKO1TGZ7LYRmKze6fXXejvH2S/5HkGVuf5uJNdkKcLlI6Pclbk/xbhud+eJKfSfLA7LpL7LOq6p0ZPg9enWS6cdhHkpyS5AtJvpvh53bHDEV30++1iyR5UVXdvLvPX9DTmqmqfi3Jb8049aNJru9N8pUMDduumuH36waTay6W5E1JXreVOWb4nP2XqePrZefP4rOT/Oc8E3b3J6rq1CRHT4WPraqndvcPNpDj40fH30ry1xuYBwAAAAAAAACALbbZesLRXPslOW4UPiPDhopjJyX506njwzNsuvjKedddhxOzc+3S8UmeudqASZO2h86YZ3fzvSQfTvLvST6boW7zu0kOylC/eL0MtW/XHY27ZpLXVNUdVqvL2l1qEadsdQ3o7uTsXPja/keG5/m9DDV1R2Sot7xLhlrVabdM8uIkD9rE2ldN8pxceL9zJ/mnJG9P8uXJ8ZUybK582+zcDLGSPL+qvtXdr99EDuuyF9WpAgAAwG5PYzQAAABgq91/RuzsDMUTq6qqq2YoSJpuxHN+kj9P8qfd/Y0Vhj6tqm6SodhiusDoVkn+OMmT1pH3Rp2X5A0Zdi78u+7+9loDquoqSf4oOxc2XTrJ85L8/ErjuvseU3O8NMmjpk5/pbtvMlfmm3Nidi5GOiDJI5L82QbmOm50/OUk/2+1AVV13+xabHJ2kt9MclJ3n7vCuEryC0men+TIqVNPqqr3dvdb5sh7EX4myY6dSL+W5AndPbP5VVU9JclfZCjemvbbVfUX3f3DrUtzy/zJ5H9/kOH39EXd/ZPRNS+qqt/O0DDxtlPxi2RoNPbpJHedxD6f5LHdPavY8TlVdfMMOzdOv/Y3ztB47VWbeSKrqaprJ/mDGafekSHfL8849zuT9/nzMjR2u2KSX9qqHJOku7+S5L8+R6rqi0muMnXJW7r7uA1M/dzs3Bjt8CQPyZzFnFV1syQ3H4VfstLvOwAAAAAAAAAAS7fhesIZ7pqhhmbayd19wYxrT85QO7j/VOyEbE1jtFdmaIS2ow7selX1M939wVXG3C9DDc0OZyT52y3IbSPOyfDze12Sf1rPxrRVdZskz87OtT23SfLErL3p51JrEbONNaC7ga8leWmSNyY5bYXfnf8yqbe8e5JnZWgKt8MDq+oBK9U6rsOTc+Hvy6eSHLfC78sfVtUtJzlPN9+rJM+rqvd09zc3mMOa9qI6VQAAANgjjLvdAwAAACxMVf1UZu9m9qq1CigmXpGdi31+kOSu3f3kVZqiJUm6+2MZCmneNTr1hKq60jrW3qhbdPf9u/uN6ymISZLuPr27H5bkaaNT96iq6yw8w63x9iRfH8WOm3eSqrptdi6YSZKXrfZ+qaojk7xkFP5skht19wtXa5LUgzdmKMAaN6P6o0lBynbaUdzz+SS3Wq1QqLu/l+Fn/M7RqcMzu4BwT3Bwht/zO3f382c0RUuSdPfXMxSMjXcBfUSSp0/++xNJbr1CU7Qd85yW2T+rR8+b+Jyelwtf6x1em+TnV2iKliSZvFfvkAuf90W2Jr0t96bs+vv2+A3MMx7TSV6woYwAAAAAAAAAANhSC6gnHDthRuykWRd299eya6OxYyabty5Ud5+TodHUtLXqkcbP5WUr1U5ts68kuXx3P6G737OepmhJ0t3/lOR2SU4ZnfrvVXXAGsOXVos4sa/UgH4oyZW6+6nd/aH1/A5O6i3fnmED2I+OTv/aJnLZUUv3iSQ/u1oTwe7+UIb31idGpy6TCzdmXbi9rE4VAAAA9ggaowEAAABboqqunqGo5TKjUz/IsDPeWuN/LsmtR+Hju/vv1ptDd5+X5IFJpneAOzCbK8BYa811FcKs4OlJPjx1XEmO31xG26O7z8+wQ+K0G1bVzeacalYB2LiYZOxXkxw2dfyDJHdbrcHUWHd/KclDRuHrJbn3eudYoB8neVB3n77Whd3dmf1+vuvCs9o+T+zu96910aSAcLx76EWTXCzJuRl+huPGabPmeV92LcA7pqrGjcsWoqpumOSYUfhzSY5dZ3HZp5McuxW5bZdJ0ea4gdnNq+rms66fpaoOy847rCbJu7r7c5vNDwAAAAAAAACAxdpsPeGM+Y5Icq9R+LTu/uQqw142niZbt4HiiaPjh1TVzE0Qq+qo7FpPtFbN3Lbo7vO6+4cbHHtukkdleI13uFKSu6wxbpm1iPtMDWh3/2Dys97I2LOzaw3bravqeptI6bwk9+vub61j/W8lud9kzLSHTz4btsLeVqcKAAAAuz2N0QAAAICFqKpDquoKVXXPqnphkn9NcqMZl/7iOgsBnjI6/ofufs28eU2KVJ49Ct933nm2w6TJ1ctH4Z9dRi4bNC7mSubYqbGqLprkQaPwe7v7P1YZc2iSXx6Fn9ndn1/vujt09z8mefcovIz3yiu7+yPrvXhSzPfPo/C8RWC7i88kefEc179+hfjL1yhyHHvd6PiAJDecY/w8Hjcj9qTu/tF6J+judyZ56+JSWooXZtfCtMfPMf5RGRrhTXv+pjICAAAAAAAAAGAhtqCecOzYJAeNYietMebNScZNr46rqq24x/LdSaY3xjwsyf1XuPbRGRpo7fDevWVzwMnGluNNK9dTE7nttYiLsBfUgK5bd/9bdq1b3MxzfU53f2aO9T+T5Dmj8MGZ432yXntpnSoAAADs9jRGAwAAAOZxh6rqWY8kP0zy5SRvS/KL2bVhzQ+SPLy7X7nWIlV1qSR3HIXnaZY09jej46tU1VU2Md9W+uzo+Ker6sClZDKnSSOqD43CD6uqg9c5xf2TXHwUW2uHxjsnOXwU+6t1rjfL+L1yh03MtVEv2sCY8c/9WotIZAleMikOW5dJYdGsHTrnfQ98dEbs2nPOsV53Hx1/Nbu+79bjBQvIZWkmRY9/PQo/pKrGv88r+aXR8RnZ85vFAQAAAAB7kUkTgDtV1QlV9ZSq+tWqemBV3XjZuQEAACzIttQTruD40fGPk7xqtQHdfW6S147CV0pylw3msNpaneSlo/A450yasj1qFJ7VFGxPNq6JvNVaA5ZUi7goe2wN6AbM/dquYiN1ky+cERvX5y3C3linCgAAALu9A5adAAAAALDX+26S1yR5end/aZ1jbpedd0BMkn/aRA5fmBG7aXbekXFLTHaKu32G3S6vl+TSSS6R5GKZ3bT+0NHxwUkum6FIbE/wkiS3nDq+VJJ7Z9cGSLM8enT8vXWMGxeEnNHdm3ldx++Vo6rq8O4+ZxNzzuOH2bWgaz3GO1nuX1WHdvf3FpDTdnrvBsb8Z5IbTh3/IMlH5pzjizNi623QtW5VdWSSq47Cb+7un2xguncm+X6Gz5I91XOTPHzq+KIZdvP9v6sNqqo7ZPg8nfai7j5/sekBAAAAANulqq6W5BZJbj7535/Ozjcwn97dRy0htblV1Q2S/K8k90pyyArXfDbD31Se2d3nbWN6AAAAy7aResKdVNWtklx/FH57d39zHcNflqFR27Tjk5yykVzW8JIM/z7cUQt5dFVdtbuna9TunGR6k9fvJnndFuSyMFV1hSS3yVATea0kh2WoibxIdq37TJLLjY6vvM6ltrsWcaZ9qQa0qq6eobnZjZJcPcPzvESG5zDrtR2/lut9bcc+1d2fnndQd3+mqj6RnT8PblFV+3X3BRvMZZa9rU4VAAAA9ggaowEAAABb7bQkz5mziOm2M2Kvn+wkuShHLHCuXVTVzZL8RoZCnItscrrDswcUxUy8KsmfZefnfFzWKCqqqqskOXoUfm13f3+N9cbvlUtW1cfWTnNF46KkZHivbFfByend/eMNjPv2jNhhGQq69iSf28CY746OT99Ag6zxHMnw81u0m82IzdvELUnS3edX1b8mufXmUlqe7v5AVX0kO/9cHpc1GqMlefzo+PwkL15kbgAAAADA1quqo5M8NUMztEstN5vNq6pK8j+TPC2zbxaeds0kf5jkoVX1sO7+ty1ODwAAYHexkXrCsRNmxE5az8Du/seq+lySa0yF71NVR6yzsdq6dffpVfV3Se40CVWGWrr/PXXZ8aNhr1lHzdxSVNUDkvxyhiZRsxqCrdd6N6zc7lrE8Tz7RA1oVe2X4XfqFzM0q9+MjW5GuqEauol/zs6N0S6eoWHfpzYx59jeVqcKAAAAewSN0QAAAIB5fD+zGxcdmOSSSX5qxrljkny4qo7r7letc50rzojdaJ1j1+vSC54vSVJVByb58wyNezZT/DNtKxo0bYnu/nZVvTHJw6bCd62qn+rur64y9LjsepPQS9ax5Pi9ctEkN17HuHlcOhtr2LURZ21w3KxmagduJpElOXsDY8bPfe45uvvHw/1qO9mKn9+RM2Jz73Q55VPZgxujTTw3O/+uX7eqju7uU2ddXFVHJrnvKPyW7j5ji/IDAAAAALbOTZLcZdlJLNCLsuvN+RdkuOn/i0kOSnK9DDfn7nDDJO+uqlt39+e3I0kAAIAF2q56wv9SVRdL8uBR+Kwkb5tjmpOSPH3q+KAkj0jyrHnzWYcTc2FjtCQ5rqp+t7svqKpLJvmFGdfvVqrq8klenuSOC5pyXfWQS6hFTLJv1YBW1XWTvCLJTRc05Uaf52Zr6MaOXCG+UXtbnSoAAADsERb1xQwAAACwbzitu28y43H97r58hj/MH5ddCwoOSvLyqrrXOtfZkqZlI5vdwW8Xk4KYv07yK1ns9y57WoOrcRHR/kkeudLFNXSkOnYU/mx3v28da11qztw2YuHvlVXManC2z+juRTz/3flnOGtHzG9vYr7NjN1dvDrJt0axx61y/QkZ/j9l2vMWmhEAAAAAsGw/SvIfy05iHlX1hOzaFO3VSa7c3T/T3Q/u7vt297WT3DLJR6euOzLJO6rqkG1KFwAAYFG2q55w2oOSXHwUe3V3nzfHHCcl6VFs/G+6RXlDknOmjq+cCxulPTzJwVPnPtXd79+iPDakqq6Q5NQsrilakhwwx7XbWYu4T9WAVtUNkrwni2uKlmz8eS66hm5Wnd5m7G11qgAAALBH0BgNAAAAWJjuPqu7X5bkJhlu9pi2f5KTq+qodUx1yQWntl2ekuQ+M+JnJPnLDLtK3jrJlTIUXhzS3TX9yLAj5p7u3UlOH8Uevcr1d0hytVFszR0aq+qi2bkwDHZ346LMZNg5d6M2M3a30N3nJvmrUfh+VXXZ8bVVtV+Sx47Cn83wmQMAAAAA7Jl+nORjSV6c5JeS3CzDd6mPWWZS86iqSyf5w1H4Od390O4+Y3x9d384ye2TfGgqfK0kT9y6LAEAALbfAusJp81qYHbSnHmdnqEh1LQbVNUt58xlPWudm+RVo/COWrrjR/ETF73+Arw0yTVnxD+W5I+S3DfJTye5XJJLJDloRk3k725i/W2pRZyyT9SAThrAvTbJZWac/sckT0vy80lunKGh+8WTHDDjub5sQSktuoZuVp3ehqhTBQAAgOWZp7s+AAAAwLp094+q6pFJLpudizwukaEBzp1mDrzQD0fH53T3bt0sraqOTPLUUfj8JL+R5Lndff46p9rjd33r7q6qlyX5X1Ph61TVrbr7AzOGjAuVfpL1Faudm+SC7Nz8/03dfd+5Eobt890ZsYttYr7NjN2d/GWSX8+Fv8sHZihiHd9IePckR41iL+ju8Q6+AAAAAMCe4WVJnj+5SXwnVbWEdDbsCUkOnTr+9yRPWm1Ad3+vqh6e5JMZvhNNkqdW1Qu6++ytSRMAAGA5FlBPmCSpqmsnue2MUx9Y0L8jj8/OTawX5SVJHj91fN+qOibJTadi5yd5+RasvWFVdc8kdx6Fz0xybHe/c46pNlwTuY21iPtaDehjk1x3FPuPJA/p7tPmmGdRz3XRNXSz6vQ2Sp0qAAAALMl+a18CAAAAML9JEcixSb4zOnXHqnrwGsO/OTo+vKoOX1hyW+PeSS46ij2lu581R0FMklxqgTkt00uTjJsVHTe+qKoOTXL/Ufhvu/uMtRbo7guSnDMKX3X9KbIIk90jWZ/x+zVJDtvEfJsZu9uY7ML7tlH4sVU1/v768aPjczN81gAAAAAAe6DuPntWU7Q90L1Gx8/u7h+vNai7P5fkTVOhSyS53yITAwAA2F1ssp5whxMWm9UuHlpV4xrATevuDyf5+FTokCQnjy57e3d/bdFrb9JDR8c/SXKvOZuiJZuviXxptrgWcWJfqgEdv7bfTXLnOZuiJYt7rouuoZtVp7ch6lQBAABgeTRGAwAAALZMd385O+/Ut8MfrtFM6eszYjdaTFZb5udGx2cnee4G5rnaAnJZuu7+QpJTR+GHVNUho9iDsuuOfS+ZY6nxe+VaVXXwHOP3ZbNuytpIk7NLbzaRfciZM2LX3sR819nE2N3N+PPyKknuvuOgqnY6nnhtd39rqxMDAAAAAPY+VXVoVd21qh5dVU+uqidV1SOr6uYzNm1YbZ6LJ2JdggYAACAASURBVLnJKDzPDeKnjI4fMMdYAACAPcom6glTVQdkaKy2lS6Rrft32bgm7vKj4xO3aN3NGNdEntLdH9rAPJuqidzGWsR9ogZ00kDu1qPwSd39xQ1Mt6jneq1NjJ1VfzerTm8z1KkCAADAEmiMBgAAAGy15yX5/Ch2tay+e+Os4plxQ5zdzZVGxx/s7vM2MM+44GRPNi4qOizJfUex40bHZyV5yxxrjN8rF0ly9Bzj92Xj3VeTobhvXtfYbCL7kI/MiN1sIxNNij1394aR8/h/ST49ij1+6r8fm12/z37elmYEAAAAAOx1Js3Q/i7D3yNOyXDj+Z8keUaSk5J8OMnXq+qPq+qS65jy8tn5u8vvz3kj8cdHx3dyYy0AALCX20g9YZL8fJLLjmJfS/Ivm3yMrZXHRr08yUr1hGcm+ZstWndDquqgJEeOwv+wgXn2T3LLBaS0HbWI+0oN6Pi7jGRjr+2RWVxjtA3V0K0w9rtJPrOJ+WZRpwoAAABLoDEaAAAAsKUmhSFPn3Hqt1e5seNdM2IPnjQC2l0dMTo+a94JquqIJMdscP3zR8f7b3CeRXp9dm2+9egd/1FVV09yu9H5V3T3j+ZYY9Z75RFzjN+XnTMjtpFCpTtsNpF9RXefmeQLo/C9q2oj39PeNbvucLrVtuxzprs7yV+OwnevqqtMdgQeF51+rLs/sKj1AQAAAIC9W1UdUVXvytAM7ZgkB65y+RFJnpLks1V1+zWmvtToeNZ376sZX39gkuvMOQcAAMAeY4P1hMnshmWP7u6bbOaRXRse3b6qFr5RZHd/M8nbVjj98u4e1+Us27geMtlATWSSeyQ5dJO5JNtTi7jsGtDtsqjX9sGbTWTKdavq2vMOqqprJbn+KPzh7r5gMWn9F3WqAAAAsAQaowEAAADb4eTsugPbFZP84qyLu/uMJB8Zha+aXXf02518f3Q8q3hkLb+S5JANrv/d0fEiiok2pbt/kOQ1o/CdqmrHzorHzRg23tlxLe9Mcu4o9tCNFMnsgz49IzbX7pyTHT2PX0w6+4x3jI4vn+SeG5hn5ufnFtvqz5mXJvne1PF+SR6bYXfX8Y6/z1vw2gAAAADAXmpyQ/sHk9x5dOq7SU7N8LeM1yU5Lcn0jbOXTvKuqrrrKtOfNzpe7Sb+WWZdf7055wAAANjTzFVPWFU/leTuo/DXM7tZ0UZyGduqeqgT54wv07geMtlYTeSvbTaRZNtqEZddA7pdNv3aTja6fMJi0vkvj9nAmFmfGeP6vEVQpwoAAABLoDEaAAAAsOW6+ydJfm/GqadW1UpFIH8wI/aMyQ5vu6Ovjo5vU1UXW+/gqrp+kqduYv2zR8eHV9UlNzHfooyLi/ZLcmxV7Zfk2NG5f+nuj84z+WQnzReOwvsneWVVXWSuTPcx3X1mki+Pwg+aNDtbr19JcrXFZbVPeP6M2DOq6qD1TlBVd05yn8WltG7jz5mFvvbd/Z0kLx+FT8iuRXTfSfLKRa4NAAAAAOydquqiSd6Ynb/P/HSSByS5ZHcf090P6e4HdvctMtyI/6Kpaw9KcnJVXWGFJb41Or7kKn/7muWnZsTcVAsAAOzVNlBPeFyGmrBpr5rMs1mvTnL+KPaoOWuo1uvtGf4dOP24bHd/cgvW2pTu/naSH4zCd5lnjqp6TJKjF5VTtrgWMcuvAd0u4+eZzPnaJvnfSa65gFymPWHS3H5dJteO68p+lGFzzoVSpwoAAADLoTEaAAAAsF1emeRTo9jlkzxu1sXd/cYkp43ChyV5x6SAZG5VdfGq+o2qesRGxq/hH0bHh2Yo/lhTVR2V5C1JDt7E+h+fEbvHJuZbiO5+f3Z93Y9LcqckVx7FN7rz5R9l110MfzrJGzfaHK6qrlJVz6mqG2wwpz3FeHfEKyd54noGVtWdkvyfhWe0l+vujyf5+1H4WkleMinSW1VVXTO7Ng/bLuPPmRtM7bq6KM8dHV82yc+OYid39/cWvC4AAAAAsHf60yTT3/W/I8lNu/v1s26g7+6vdvdjkzxpKnxEZt+wnwwbkEx/X7l/kpvPkd+tZ8QOm2M8AADAnmqeesJHz4idvIgkuvsbSd45I4+7L2L+0Vrd3V8bPc5c9DoL9L7R8dFVta6axKq6W5L/u8hktqEWcdk1oNti8p77zCj88Kq68XrGV9WjszUN4A5O8ob11HxOrnlDdv15v3LSxGwrqFMFAACAbaYxGgAAALAtuvuCJL8749RvVtVFVxj20CRnjWJXS/LBqvrtqlrzxpCq2q+qjqmq5yf5zwyNnC43R+rr9fokF4xiv1FVv1dVB6yS30OTvD/D80qS72xw/Q/MWP+ZVXWfqjpwg3MuyninxmskefYodl6SV2xk8u7+WpJHJenRqbsm+UhVPWK112CHqrpYVT24qt6Q5HNJ/luSWTuQ7k1ePCP2J1X1S1VVswZU1SFV9ZQMN48dnOTcrUxwL/XL2fXn9rAkb6mqK6w0qKp+Icl7c+Fn2A+3Jr0V/dPoeL8kf11V89zkt6rJDrjjxnFjz1/UegAAAADA3quqLp/kMVOhLyZ5QHev+d1qd/9ZkrdPhR5eVbv8fam7z0/yj6PwI9eZXyWZtZnPxdczHgAAYE+23nrCqrpDkmuOrvlUd39kgenMarJ2wgLn31O9dkbsNVX1gJUGTGrL/leSNye5yCS80ZrIWbayFnHZNaDbafzaHpjklKo6eqUBVXV4VT07yV/lwvuSF/Vcd9TS3TDJ+6rqlqvkcYsMTexuODr1jSRPWVA+u1CnCgAAANtvzX9oAwAAACzQa5P8TpLrT8Uum6FJ0DPGF3f356rqQRluPDlo6tTFkvx+kqdW1fsy3HDy1STnJLloksOTXCnDbmw/PTneUt39mao6Ocmxo1O/k+S4qnpdkn9N8r0kl0py7ST3TnL1qWt/kKEw43kbWP+rVXVKkukdGS+b5E1JzquqL2XYrW5clPGY7j5t3vXm9PIkf5hk/6nYdUfXvLW7v7XRBbr79ZOCqt8bnbrqZP1nVNWpSU7LUADz/SSXyPDeuEaSmye5UfaAHRsXqbs/VFVvTnKfqfD+GRpP/UpVvTFD8c15SS6T5GYZ3mNHTl3/xGhUNZfu/lRV/XaSZ45O3TPJ56rqHRmKt76aoUDwahleo+lirjOS/HWGn/92eXOGZpWXmor9TJIPV9V3k3wlMxrldfdN5lznL5Ics8K593X3x+ecDwAAAADYNz0uO/996Xe7+wdzjH9mLvy7y0FJ7pbkpTOuOznDTbA7PLqqntfdH1tj/idk15v7E43RAACAfcd66glnNSh7+YLzeHOGBk+XmIrds6qO7O4zF7zWnuSkJE/NzjWOh2bYSPGfk7w1Q23ZjzPUk90syc8nufTU9Z+cXLeohlVbVou47BrQbfbnGRpyTdfWXi7J31fVe5O8M0OD+Qsm8dskuXuG13+Hd2eoYRv/vDbi/yT5tcn810vygUlt8DuSfGlyzZUyfDdzuyTjTV87yeO7+xsLyGVF6lQBAABge2mMBgAAAGyb7r6gqn43u+429+TJDSLfnzHm3VV1uySvy1DYMO1iGW40uet43JL89yS3THKdUfyKWbt50Y+TPDBDYcxG/UaSO2T4uUw7KDsX30w7dIX4wkw1bbvnKpeduIB1fr+qvpKhqdJ4B73LJnnw5MHOHpfkFkkuP4rfMLvuqjj2p939gqrSGG1O3f1nVXVEhuLBaYckue/ksZLvJ/mFDIWE26a7z62q/5HkZTNOXzxDsd8ivClDQdv4Mz/Z/YsGAQAAAIDdx89N/fdPMvytaR7vS3J+Lqy1vV1mN0Z7dZKn5cK/xRyY5K1Vdbfu/sSsiavqwZmxadDEBXPmCQAAsEdaq54wQ/Or+4+HJXnFgvP4YVW9IclxU+EDMzR8Wunfbnu97v5xVT0ww7+PLzo6vWPT2tWckaFm8LgF5rTVtYjLrgHdFt19VlU9PMlbsnOTuSS5/eSxmn/L8Fz/fEEpfSHJw5O8YZJPZfge5nbrGNtJHtfdr19QLqsvpk4VAAAAts1+y04AAAAA2Ofs2DVv2mWSPGGlAd39oQxFNC/JUDyyUZ3k1CT/sIk5Vp68+9tJ7pzkA3MO/UqSO3f32ze5/icz3OTzuc3Ms0VWKzb6aoYdBjetu09Mcuskf7fJqc7NcCPTf246qd1cd38tyc9mvvfNeUl+vbufvDVZ7Ru6+7eS/I/MVwz35STHdPdpW5PV6rr7pCSPSfLdLVzjJ0leMOPUN5JsSwEbAAAAALBnq6pDktxsKvSlJEdU1VHrfWTYUOScqTlmbkLT3ednuHn3vKnwFZP8c1X9ZVXdtaquU1U3rKoHV9XbMvwN4sDJtV8eTXlOAAAA9h2r1RM+LLs25Hpfd5++BXmcPCN2whass0fp7o9m2Lj2q3MO/UCSW3X3Fxee1BbWIi67BnQ7TXJ9YJLvzDn0bUlu191nLzift2TYLHSe70XOSvLw7n7hInNZizpVAAAA2B4aowEAAADbqrs7ydNmnPr1qrr4KuO+2d3HJ7lGhl0YP5Gh0dlavpvkbzI0H7pqdx/T3R+cO/F16u4zMuyW99+SfH6Ny09P8j+TXKe737ug9d+fYbfCeyT5ywy7NX4lyfeSXLCINTborUm+ucK5kyaNkBaiuz/W3XdKcqskJ2XXG4pW8tUMBW6PSnK57n5od5+5qLx2Z939hSQ3SvJbWb2I7bwkr0ly0+5+5nbktrfr7mcluX6Sl2X1IrMzk/x+kut394e3I7eVdPdfJblCkkcneXmSj2bI74cLXGZW47cTu/tHC1wDAAAAANh7XS4XNh5LkqOSfGEDjyOm5rjUSotN/vb0iAw3tO5wUJLHJzklyb9nuNH/1UnuOXXNm5K8dDSdxmgAAMA+Y7V6wiS/NCM+q4HZIvx9kjNGsetU1W22aL09Rne/L8mNk/yfrP1v1tMy1N/dtrvXW7c3ry2tRVx2Deh26u43ZqgbfEFWr/26IMOmxPfp7nt195Z8d9Hdb0tyvSR/kdVr6b6R5LkZfu6v2opc1qJOFQAAALZeDd8dAgAAAOx5quoySW6WYYfISyc5NMn3MzRD+3KSTyU5vZf4BUhVXSvJLSc5XmyS35eT/Gt3f3pZee1rquoaGQpmLj15HJShWdy3M9zY9CnFJReqqhtlKGY7IsOuq99O8ukk7+/u7y0zt71ZVR2c5GeTXDnDTXsXJPl6hpvlPtbdy2xuuK2q6pVJHjoV6iTX6O61ig0BAAAAgL1AVR2d4ab0HU7v7qPmGH+zzN6AYTO+2N1XXWPdm2fYuOYWa8z14yR/mOQPJtc/ZurcE7v72ZtJFAAAALZCVe2f5OYZNoI8IskBGeo1v5DktO7+2hLT2xL7Sg3opHbtZ5JcO0ON5X4ZGuH9R5IPd/dZ25zPgRm+X7n+JJ8LMjQV+0KGOsaFbca7KOpUAQAAYLE0RgMAAAAAYLcxaXr5pSQHT4VP6e67LyklAAAAAGCbLaAx2q2T/NOC01p3DlX1c0nuneR2SS6f5PAkZyU5PcnfJHl5d39hcu37ktx2avjPdvc/LjBvAAAAAAAAAIA9ygHLTgAAAAAAAKb8YnZuipYkf7GMRAAAAACAPdY3R8d/29133a7Fu/tdSd611nVVdWCSm02Fzk/yz1uVFwAAAAAAAADAnmC/ZScAAAAAAABJUlUXS/Kro/Dnkrx9CekAAAAAAHuur4+Or7WULNZ22ySHTB1/sLt/uKxkAAAAAAAAAAB2BxqjAQAAAACwu3h6kiNHsWd19wXLSAYAAAAA2DN193eSfGIqdFRVXXNZ+azihNHxi5eSBQAAAAAAAADAbkRjNAAAAAAAlqqqLlVVz0jya6NTpyd50RJSAgAAAAD2fO8cHf/iUrJYQVVdPckDpkLnJHnNktIBAAAAAAAAANhtaIwGAAAAAMC2qqoXV9XHJo8vJ/lmkifNuPQ3uvu8bU4PAAAAANg7PC/J+VPHT6iq6y8rmWlVtX+S5yc5ZCr8+939wyWlBAAAAAAAAACw29AYDQAAAACA7XaNJDeePK6QpGZcc1J3//W2ZgUAAAAA7DW6+3NJXjIVOiTJ26vqevPMU1UHV9Vxa1xzwBzzHZjk5UnuPBX+UJJnzZMXAAAAAAAAAMDeSmM0AAAAAAB2NycnecyykwAAAAAAtlZVXbGqjho/klxudOkBs66bPI5YZYlfS/KvU8dXTnJaVf1BVV1plbwuUlV3rqr/m+RL2bnB2ix3q6rTquqXV5p30mDtvpN8Hjp16uwkx3b3T9ZYAwAAAAAAAABgn1DdvewcAAAAAADYh1TVqUnuMBX6YZIzkrw/yYndfeoS0gIAAAAAtllVfTHJVTY5zcu6+7hV1rhSkr9Ncp0Zpz+f5FNJzklyQJLDkhyV5BpJ9p++sLtrlTV+Pslbp0JfTvLJJGclOTDJZZPcNMnFRkO/leSe3f3BleYGAAAAAAAAANjXHLDsBAAAAAAA2Ld099HLzgEAAAAA2Dd095eq6hZJnp/k4aPTV5s81nLOnMtecfJYzT8mOba7Pz/n3AAAAAAAAAAAe7X9lp0AAAAAAAAAAAAAAGyV7v5edz8iyY2TnJzk7HUM+0qSVyR5YJLLrXHtJ5K8LMnX1kolyXsnc95OUzQAAAAAAAAAgF1Vdy87BwAAAAAAAAAAAADYFlW1X5IbJblekkslOTzJuUm+k+SLSf69u7+0wbmPSnLDJFdKcliGTYy/k+Q/knywu7+1uewBAAAAAAAAAPZuGqMBAAAAAAAAAAAAAAAAAAAAAAAAS7ffshMAAAAAAAAAAAAAAAAAAAAAAAAA0BgNAAAAAAAAAAAAAAAAAAAAAAAAWDqN0QAAAAAAAAAAAAAAAAAAAAAAAICl0xgNAAAAAAAAAAAAAAAAAAAAAAAAWDqN0QAAAAAAAAAAAAAAAAAAAAAAAICl0xgNAAAAAAAAAAAAAAAAAAAAAAAAWDqN0QAAAAAAAAAAAAAAAPj/7N15fFT1vf/x93cykw0SCJCwIzsoihtUQVzAurfWqkWtrbWLWpeuV722FtFqtdaqvfdqa7Uu1K3WqiAu2F8VFMUFQZQWUVH2NZAEsicz8/39cSBkJufMQiaZYfJ6Ph55JN/v+S6fcxLwjMx5BwAAAAAAAAAAAEg7gtEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApJ0/3QUA6WaM6SHp+FZd6yU1pakcAAAAAAAAAAAAAACA9siVNLhV+3Vr7c50FQMAAO/RAwAAAAAAAAAAAAAAWYL353USgtEA5w1Xc9JdBAAAAAAAAAAAAAAAQAf4mqTn010EAKBL4z16AAAAAAAAAAAAAAAgG/H+vA7iS3cBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAwGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIC086e7ACADrG/dmD17tkaOHJmuWgAAAAAAAAAAAAAAAPbZqlWrdNZZZ7XuWu81FgCATsJ79AAAAAAAAAAAAAAAwH6P9+d1HoLRAKmpdWPkyJEaN25cumoBAAAAAAAAAAAAAABIpab4QwAA6FC8Rw8AAAAAAAAAAAAAAGQj3p/XQXzpLgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACEYDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkHYEowEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIO4LRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKQdwWgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0o5gNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABpRzAaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgLQjGA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA2hGMBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACDtCEYDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkHYEowEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIO4LRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKQdwWgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0o5gNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABp5093AUBXZK1VOByWtTbdpQBAG8YY+Xw+GWPSXQoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACALoRgNKATWGvV0NCg6upqVVdXq6mpKd0lAUBcubm5KioqUlFRkfLz8wlKAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANChCEYDOlhdXZ02bdqk5ubmdJcCAElpamrSjh07tGPHDgUCAQ0YMECFhYXpLgsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAlvKluwAgm9XV1WndunWEogHY7zU3N2vdunWqq6tLdykAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAshTBaEAH2ROKZq1NdykAkBLWWsLRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHQYf7oLALKRtVabNm1qE4oWCARUXFys7t27KxAIyBiTpgoBwJu1Vs3NzaqpqdGuXbvU3NwccWzTpk0aMWIEf4cBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASCmC0YAO0NDQEBEkJElFRUUaOHAgQUIA9guBQECFhYUqLS3Vxo0bVV1d3XKsublZjY2Nys/PT2OFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALKNL90FANmodYCQ5AQMEYoGYH9kjNHAgQMVCAQi+nft2pWmigAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkK4LRgA4QHYxWXFxMKBqA/ZYxRsXFxRF90X/PAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEB7EYwGpJi1Vk1NTRF93bt3T1M1AJAa0X+PNTU1yVqbpmoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZCOC0YAUC4fDbfoCgUAaKgGA1PH7/W363P6+AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB9RTAakGLW2jZ9xpg0VAIAqePztb1lcPv7DgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2FcFoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANKOYDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaUcwGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIC0IxgNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQNoRjAYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg7QhGAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJB2/nQXgM5hjAlIOkbSEEn9JdVI2iTpA2vtmhTvNUzSYZIGSOouabOktZIWWWubU7kXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsgPBaGlijBkuaaKkCbs/HyGpqNWQtdbaoSnYp1TSTZLOk9TLY8wiSXdZa59p517nSvq5pEkeQyqMMU9JusFau709ewEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACC7EIzWiYwxJ0j6hZwwNNeQshTvd5qkRySVxRk6WdJkY8zjki6z1tYmuU93SQ9IOj/O0F6SLpd0tjHmO9baV5LZBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANnLl+4CupjDJJ2szglFO0HSbEWGollJSyQ9Len/SdoeNe1CSU8aYxL+uTDG5Eh6Sm1D0col/XP3Xkt3771HX0lzjDFTEt0HyGZDhw6VMablY8GCBekuCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACATkcwWmZolPR5qhYzxgyS9Kyk3Fbdb0kaZ62dYK2dbq09WdIgST+R1Nxq3Fcl3ZLEdr+VdHqrdrOkH0kaZK09ZfdeR0o6WNLbrcblSZptjOmfxF4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIUgSjdb5mScsk/UXSZZKOlFQk6Qcp3OMmSSWt2oskfdla+3HrQdbaRmvt/0qaHjX/58aYA+JtYowZLidYrbVvWGvvsdY2Re21QtKJigxH6y1pZrx9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkP0IRutcsyQVW2sPt9ZeYq2931q71FrbnKoNjDGjJH2nVVeTpIuttQ1ec6y1s3fXtkeeEgssmykp0Kr9iLV2Tox96iVdvLumPb6/O2ANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXRjBaJ3IWlsZK6AsRb4pKadV+1lr7WcJzLs9qj3dGJPvNdgYUyDp3DhrtGGt/VTS7FZdfjk1AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoAsjGC37fD2q/XAik6y1H0t6t1VXN0knx5hyiqTCVu23rbUrE6qwbU1nJzgPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWYpgtCxijOkn6dBWXUFJbyWxxIKo9mkxxp4aZ24sC+XUtsfhxpi+ScwHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAlvGnuwCk1MFR7Y+stbVJzF8U1R6XxF5vJ7qJtbbWGLNc0uFRe21NdA0AybPWaunSpVq5cqW2bdumxsZGlZaWauDAgZoyZYq6d++e7hL32fr167V48WJt2LBB9fX16tOnjw455BBNmDBBPl/7MkC3bdumhQsXatOmTaqvr9eAAQM0fPhwHX300e1e282KFSu0fPlylZeXa9euXerVq5f69++vKVOmqHfv3infDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyBcFo01ZDSQAAIABJREFU2eWgqPaqJOd/Hme91g5MwV6tg9EOkvRakmsASMD27dt166236rHHHlN5ebnrmNzcXE2bNk033nijjjrqqITWvfjiizVr1qyW9urVqzV06NCE5i5YsEBTp05tac+cOVM33nij53hjTMvXxx9/vBYsWCBJWrRokWbOnKnXXntN4XC4zby+ffvq+uuv15VXXpl0iNkHH3yga665RvPnz3dde9CgQbrssst03XXXye/368Ybb9RNN93Ucnz+/Pk64YQTEtprx44duuOOO/TYY49p48aNrmN8Pp8mT56smTNn6stf/nJS5wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+wOC0bLLyKj2uiTnr41q9zbGlFhrK1t3GmN6SerVzr2ix49Kcj6ABMyePVsXXXSRqqurY45ramrSvHnzNG/ePF166aW699575fdn9n8ibr31Vt1www0KhUKeY7Zu3aof//jHmj9/vv72t78pNzc3obXvuusuXXvttTHX3rBhg2bMmKGXX35Zzz77bNL17/HXv/5VP/rRj7Rr166Y48LhsN58802ddNJJ+ta3vqUHH3ww4fMBAAAAkN3qQ3Va3fCJmsKNSc3rE+inAXlD5DOxg6RDNqT1DZ+rKljRnjKzRq4vT8PyR6sgp1vK164J7dLa+s/UbJvbHMvz5WtYwRjl+wpSvm+qNIebtbbhM5UEeqt3oG+6ywEAANgv1IR2aUvjevXLG6zuOcXpLicjVTSXa0PjaoVt219kU5TTQwcUjJTfBFK+785gpbY2bdSQ/BHtug9vCNdrTf2nagjXp7C6jtM3d6D65Q6K+MVFbpz7/09VE4r975CFOd01uvDgVJYIAACAfRUOSrtWSsFaqfdEKc6/DwAAAAAAAAAAAAAAAKRLZqfeIFk9o9rbkplsra0xxjRIym/V3UNSZdTQ6H3qrLW1yezlUluPJOcDiOOhhx7SJZdconA48iGRESNG6KCDDlJhYaHWrVun9957LyIA7P7779e6des0d+7cjA1H+/3vf6/rr7++pT1mzBiNGTNG3bp10+bNm/XOO++ooaGh5fhzzz2nGTNm6Pbbb4+79p133qmrr766Tf9BBx2kUaNGKS8vT+vWrdPixYsVCoW0aNEiTZ8+Xccdd1zS53HDDTfo5ptvjugzxmjMmDEaNWqUioqKVFlZqffff1/l5eUtYx577DFt3rxZ8+bNy9jvEQAAAIDO8XrlS3p6218UVtuAgEQMyB2iqwbfqJ7+6Ax8x+bG9fq/DTeqKrijHVVmH598ml52iY4rOS0l61lr9fKOv+vFHX+TlY2xb44u7HeFJvU4MSX7ptKndct138bb1BCukySN7/4lfb//1Qr4CPUGAADw8tL2pzSv4mkFbVBGRueWfV9TS76S7rIyRsgG9fDmu7W0+q2Y47r5inTFoF9pWMGYlOwbtmE9te1+LayaJ0nKkV8X9f+xJhYn/29B7+5coMe23KOQgimprbMckD9KVw6a4RnW90ndcv15460Jhb0NzR+law+4I9UlAgAAIBnBOum9S6U1j7sfP/Q30kHXEZQGAAAAAAAAAAAAAAAyBmkq2aV7VHtffuV0vSKD0Yo6cJ/W3PZJmjGmTFJpktNGpGLvVLHBoFS+Id1lZL/SQTJZHCi1bNkyXX755RGhaIcddpjuvfdeTZ48OWJseXm5ZsyYoT//+c8tffPmzdMNN9ygW2+9tdNqTtTy5cu1cOFCSdJZZ52l2267TWPHjo0YU1lZqZ///Od65JFHWvruvPNOXX755Ro6dKjn2kuWLNF1110X0XfCCSfonnvu0bhx4yL6y8vLdcMNN+i+++7TG2+8oRUrViR1HrNmzYoIRfP5fLryyit19dVXa8iQIRFjrbWaM2eOfvKTn2jdunWSpFdffVUzZszQbbfdltS+AAAAALLHuoZVemrb/e1aY1PTOj26+X/1o8E3tjlmrdWfN95GKJqLsML627Y/a1jBGA3OH97u9VbUfaAXdjyZwL4hPbrl/zQ0f7T65w1u976p0hRu1J82/EaNdm9I+Uc17+nlHU/rzNIL01gZAABA5lpeszjiHtDK6ultf9HQ/FEpC/ja3/2z4tm4oWiSVBuu1h833qLfjnhYOab9//739s5XW0LRJCmkoB7ZfLeG5Y9Rn9y+Ca+zrWmTZm35Q7vrSYe1DZ/pqa336/sD2v4yocZwg+6Luv8HAABABmuqlF47Wap433vMh9dLDdulI+/qvLoAAAAAAAAAAAAAAABiyN5UoK4pOrBsX96JXC+pJMaaqdwn1pr76gpJM1O0VnqUb5CdzsMOHc38/ROp/9B0l9Fhvv/976upqamlPWXKFL3yyisqLCxsM7a0tFT33XefRo4cqWuuuaal//bbb9cFF1ygQw45pFNqTlRFRYUk6dprr9Xtt9/uOqakpEQPP/ywKisrNWfOHElSKBTSgw8+GBFGFu3KK69UMBhsaZ999tl66qmn5HcJ0SstLdWf/vQnDR8+XNdee622b9+e8DmsXbtWl19+eUs7Ly9Ps2fP1qmnnuo63hijs846S5MnT9YxxxyjVatWSZLuuOMOXXrppRo2bFjCewMAAADIHv+uWZKSdT6pW66GcL3yfQUR/duaN2lb86aU7JGtPqp5LyXBaB9Vv5fU+OU1izMqGO2TuuWuoQgf1bxLMBoAAICHl3c87dq/rOYdgtF2S+Y1T22oWp/Xr9TowoPbve/y2sVt+qysltcu1tTcryS+Tk3bdfYn/655XyEbUo7Jiej/1OP+HwAAABnIWmnRRbFD0fZY9Wdp/K+lQKreygkAAAAAAAAAAAAAALDvfOkuAB3KZtkcAAmYP3++li5d2tIuLi7WU0895RqK1trVV1+tr3xl78Mc4XBYd999d4fV2R5TpkzRbbfdFnfcb37zm4j2a6+95jl28eLFevfdd1va/fv310MPPeQaitbaNddco5NPPjluLa3dcccdqq/fmw959913e4aitVZWVqYnnniipR0KhTL2ewQAAACg4+0MVqZknbBCqgnuatNf1bwjJetns53BipSsUxVM7lrvDKVm31TZ6VF/qn5GAQAAss26hlVa0/Cp67Gq5sy610un6lBVUuNTdn/u8Voo2fvbZO/zM02jbVBjOPr3nUlVKbrOAAAA6ARrnpA2vZDY2FCdtHNFx9YDAAAAAAAAAAAAAACQIILRsktNVLtgH9aInhO9ZmfuA2AfzJo1K6J95ZVXasCAAQnN/e1vfxvRfvLJJ9XY2Jiy2lLl+uuvl88X/z9h48aN09ChQ1vay5Yt8xz75JNPRrSvuuoq9ejRI6F6ZsyYkdA4SaqtrdVDDz3U0h4+fLguu+yyhOdPnDhRxx57bEv7+eefT3guAAAAgOwStM0pW6vRtn3YvcHlAXhEStU1arQNadk3VRrD7vW7/VwBAABAer3qZc9j3EPtlexv2vK6L02W1/25W0hYLJl2374v3M4h2esAAACANKnfKi35cXJzPr6jbZ8NSxVLndA0G05NbQAAAAAAAAAAAAAAAHH4010AUopgNOmPkp5Ocs4ISXNStD+Qdm+++WZE+1vf+lbCc8eNG6cjjjhCS5culSQ1NDRoyZIlmjx5ckprbI+CggJNmzYt4fEHHnig1qxZI0mqq6tTTU2Nunfv3mbcokWLItrTp09PeI8pU6ZowIAB2rRpU9yxb775purr9z4wcu655yYU8tba1KlTtXDhQknS2rVrtW7dOg0ZMiSpNQAAAADs/7yC0XLkV64vt02/ldQQrnOd0+ASIBArrKvAV5hYkVmi2TYpaINt+lMWvJDkOqnaN1W86gnaoIK2WX4T6OSKAAAAMldtqFrv71roeTzT7vXSK7lotFQFdnkFmqUqGM3rNVu6WNkY59z259FrrE8+5fny2/S79QEAAKAT7NqHILP1/5Cq/i31PHj3Gp9Kb3xN2rXSaZceKx3zpFQ4MLW1AgAAAAAAAAAAAAAARCEYLbvsjGqXJjPZGNNdbQPLqhLYp9AY081aW5vEdmUJ7JM0a+02SduSmWOMScXWQEaorKzU559/3tLu2bOnDjzwwKTWmDx5ckswmiQtXrw4o4LRRowYodzcxB8WKSkpiWjv3LnTNRjtww8/bPm6Z8+eGjlyZFJ1TZgwQc8//3zccdHBdQMGDGgJbktU9Pl/8cUXBKMBAAAAXZBbUJckTe75ZV3Q94dt+q21+tGn5yistg9CuT3g7/Wwe2mgv24a/qckq92/PV/+uOZVtM3i97pGyfIKWPAbf4cGsqVKrOvQGG6QP4dgNAAAgD3e3vmqmm2T5/FUhXtlA2uTDUbr2ODiZNf3CqY+oeR0nVP2vaTr6igN4Xr9/LMLXI+5/Tx6XYcDux2mKwfdkNLaAAAA0A59p0pfWSEtvkLaMDvxeS8d4nzuNkyqXR15rHyhNHuQNPa/pG5DpZ6HSH0mSbLSJ3+Qts6XcntLPcdJRWMkhSVfrlT+llS/WSo5TBp6oVTQz1nPWon3bwIAAAAAAAAAAAAAABcEo2WXz6LaByQ5P3p8hbW2MnqQtXaHMaZSUuu0oSGSPm7HXtG1A9gH5eXlEe1Ro0YlHf43duzYiPa2bUllDXa46KCzeAKByIevm5ub24ypra1VQ8Pehzj2JWQs0Tnr16+PaP/0pz/VT3/606T3a62ioqJd8wEAAADsn4K27esbSQoY9xAqY4zyfAWqD7fNtk/mYfd8X3SufvbzOudGm5rgBa9gseKcElUEy9v0Z1pYRqyAiMZwg7rlFHViNQAAAJkrbMNaWDUv5phMC8Hdn6QiuNham8JgNPd68jLsNVWuyZORkVXbIDq3c/Z6PZJp5wUAAABJBf2lY5+V1j0tvX+V1FguHTxTskHpP7+JPTc6FK21lXfGnrvWo3/NY9IHV7sf8+VJg8+RAt2ljXOdIDVJ6n+qNPhsKbdE6neSlNvD6d/+rrTxBcnkSMMvds5110opv0wyfim/VKr8SFr9V0nWCWTrdUTsuqPVbZCaq6XiMZLxeY+zVqr+VNr8T8mGnPPoNji5vQAAAAAAAAAAAAAAQASC0bJLdDDZyCTnD49qr4iz1+SovZIJRoveK5m52a10kMzfP0l3FdmvdFC6K+gQlZWRWYY9evRIeo3oOZkWuuXzxXiT2T6qqqqKaBcVJf/AdnFxcULjduzYkfTa8VRXV6d8TQAAAACZzysYLcd4/y+/PF++RzBaMg+75ydYYfbwOudUBZR5BSz08PfyCEbLrLCMRut9HTKtVgAAgHT6uPYDlTdviTmG+6e93IK6YknFtWu2TbIKux5LNnjNa3yBrzDpujqSz/iUa/Jcg5/dzsHrOnfF14oAAAD7BWOkA6ZLfadJK38vjfultGtF/GC0zhZulNY+0bZ/8zznI5Z/3xR//ZV3OZ8Hny2FGpwws8IB0ohLpD5HSTYsrX1KWnadVLfOfY0BX5E2vRB/r6U/k3IKpeHfkXIKpKYKKdBDGvZtqaFcqt8obX/bOdZ9pFQ2xelv3imVHSfteN/5uvQYqfuw+PsBAAAAAAAAAAAAAJCFCEbLLv+Oao83xhRaa+sSnH9MnPWij7UORpskaW4imxhjukkan8ReXYrx+6X+Q9NdBvZT1kY+IGKMafeaqVgj0+Xl5UW0m5qakl4j0Tn7snY80d93AAAAAF2DVzCa3wQ85+T5Clz7kwtGc18jmyVz3ZJlrfVcp9hf4tqfbCBDR4t1HTKtVgAAgHR6verluGMIRtvLKxjNJ5/CLuFlsQJ7ExUr/NgtOCwWr3vhTHxNlecrUGPI5XWhyzl7XYc8k3nnBQAAgFby+0iH/db5uuQwaeCZ0sbn01tTOqx/NrL9xcPS5CekiqXSx7+LPTeRULQ9QnXSZ3+K7PvkfxKfv0fJ4dLYn0sDv+q0a1ZJ9ZulDXOkHYudALXaNXvH9zhIKj1WChRLvlyp21Cp71SpaETyewMAAAAAAAAAAAAAkEYEo2URa+1mY8xH2hs65pc0RdI/E1zihKh2rHfmz5N0aYy5sRyryJ+9D6y1W5OYD8BDr169Ito7d+5Meo3oOSUl7g9ht0coFEr5mu0RfY6VlZVJr1FRUZHQuD59+kS0Fy1apEmTJiW9HwAAAAAEbdC1P1YwWr7HA/huD+x7P8Sfn0B12cXrnFMR+hW0QYXl/jq52N/TtT/TwjJi1RMrWAIAAKAr2d60Vf+pXRJ3XCrCvbJdnq9A9eHaNv2puE9O5b1tQ9j995fl+wqTWqcz5PsKtCvU9t/Hknmt6PV6EwAAABlq8qPS0z3SXUX62bD01vnprsJb5QfS299OfPzOFc6Hm27DpCPulAZ/PTW1AQAAAAAAAAAAAADQgXzpLgAp91xU+7uJTDLGjJV0VKuuWsUOVHtFUut3PE/avUYiLo5qR9cMYB+VlpZGtD/99NOk1/jkk08i2mVlZa7j/P7IbM1g0P2BfDf7EjzWkXJycjRw4MCW9hdffKG6OveHVbwsX748oXF9+/aNaO/L9wgAAAAAJClom137YwWjeQV8uT387xUI0BUfdvc658Zwg6y17Vo7VvBFjxz3sPJMCxuLFRCXaSFuAAAA6fJG1cuyin/vGLRBz3v9rsbreiUT+JysWGs0JHlv63Xfnp+BYdOpeK3YFUO0AQAA9muBYumbVjr2WalodLqrQWeoXS0tPFvaMDfdlQAAAAAAAAAAAAAAEBfBaNnncUmhVu2zjTGjEpj331Htv1trPd/Zba2tk/SPOGu0YYwZLan1r5sLSnoigfoAJKCkpEQjRoxoaVdVVenjjz9Oao1FixZFtCdOnOg6rri4OKJdVVWV8B7/+c9/kqqpMxx99NEtX4fDYb3++usJz62oqNCHH36Y0NjJkydHtP/5z1gZlAAAAADgLWjdA6r9xu/aLyUXIOAVCNAVH3b3OmersJptU7vWjhVy1sPfy32ObVDYhtu1byrFCj9LRTgFAADA/q4p3Ki3d76a8HjCZXfzCCGOFVzcXrHWSCaguDnc7PmaLd9XmHRdHc07GK3tOXtdh674WhEAACArDP669NVPpNOWSQPPlHwByd8t3VWhI33yh3RXAAAAAAAAAAAAAABAXN5PSWK/ZK39zBgzS9L3dnflSnrEGHOiV9CZMeZrki5u1dUk6aYEtrtR0vmSArvbFxtjnrPWPu+xT76kh3fXtMeD1trPE9gLQIKmTJmizz/f+8fq8ccf1y233JLQ3I8//lhLlixpaefn5+vII490HVtWVhbRXrFihSZMmJDQPi+99FJC4zrTl7/8ZT3zzDMt7QceeECnnXZaQnNnzZqlpqbEHoQ/8cQTlZOTo1DIybB8/vnntW3btjbXEwAAAADiCXkGowVc+yUpz3g87G7dHnZ3DwTwCiHIZrHOuSFcr1xf3j6vHSt4odjf0/NYk21UvsmM70WsgIhG79+9AAAA0GUsrX5LteHqhMc3hhvULaeoAyvaP7jHonkHi6UkGC3G/WuzbVLYhuQzOfHXiXGPnImvqfI8w+YSD9HOxPMCAABAEkoOlY6fE9lnw1K4WcrJk2rXS3OGxF6j/ylSbolUu06yIWnIuVLP8dL8UzqubiRv62vSwnOl5l1SToFU0E/K7S11Gyw1bJdkpQGnS4Fi5+uCAc7nQHGchQEAAAAAAAAAAAAASB1fugvoaowxg4wxQ6M/JPWLGup3G7f7o0+cbWZKqmzVnizpX8aYsVG15BljfiTp6aj5d1pr18Y7F2vtF5L+J6r7H8aYq4wxrcPPZIw5UNKru2vZY4cSC2ADkISLLrooon3PPfdoy5YtCc39xS9+EdE+//zzlZfn/nD3EUccEdGeO3duQnu88soreu+99xIa25kuvPBCFRXtfcjoueee0yuvvBJ33saNG/XrX/864X1KSkp04YUXtrRramp09dVXJ1csAAAAAEgK2mbXfr/x/l0IeT6PYDSXAAGvB/nzMiSMqzN5XTcpduBBImKFN/Twl3TYvqkUKzwiFeEUAAAA+7vXq15Oajz3UA6rsGu/9+ua9t8je4V+7d0jse9NrHW8gt3SKbnXiu7XINbrJgAAAOynjM8JRZOc0Cwv3YZJ37TS1HnSMU9KJ78lnfKOdODVUv+TY+/xTa9I5ASUneB9zN9NGnzOvq+d7dY/I235f9LG56VV90srbpMWXyEtv0FaPlN6ZaL0whjphbHS08XS0z2kJ4zzsegi6dUT97bfvlja+IIU3v0LfUKNUuMOKdQg1a6Vdn4shWL80tEQr4EBAAAAAAAAAAAAAG15PyWJjvKmpAMSGDdQ0mqPY7MkXew10Vq7wRhztqRXJO0JKDtG0gpjzBJJX0jqIekISaVR01+QNCOB+va4TtI4Saftbgck/Z+kGcaYpZKqJQ3fvZdpNa9J0tettZuT2AtAAqZNm6bDDjtMy5YtkyTt3LlTF1xwgV566SUVFHg/vH733Xdrzpy9v/XTGKOf/exnnuMnTZqkwsJC1dXVSXKCxN5//31NmDDBc85nn32m73znO8meUqcoKirST37yE91yyy0tfdOnT9fs2bM1depU1zlr1qzR6aefrqqqqqT2uvHGG/XUU0+psbFRkvToo4+qf//+uvXWW5WTk5PwOitWrND27dt13HHHJbU/AAAAgOzgHYwW8JyT53N/XegWIOAVdtUVH3b3um5S/OCEeLxCBYyMuuf0SHpeOsSqJZMC3AAAANJhTf1nWtvwWVJz2nuPmS284hHyPV/XtP8eOd79a2O4QQU53eKu0xCu8zzmVX86JRqMZq31DtHOwPMCAABAipVOkcrfbNs/7rrY83ofLe14p23/2J+3r55jnpSe6+9+7KS3pJJDpeZq6fO/OHXnlUr5/aR/t/P3+V4Qkj78pbTidvfjx78g9TxYKhwsrXpA2jBbatwulRwmjbhEUlj68FfS1lfbV0e6rHk0sr16lvMRS6Cnc/6VyyRfQCo7Xlr/j8gxg8+RRv3QGRusltY/J1UskYyRhl4ojbzMCetrzVop3LQ3wC8clHy8NR4AAAAAAAAAAAAAsgH/+pulrLULjDFfl/SI9oafGUkTdn+4eVLSJdbaUBL7hIwx0yX9RdJ5rQ6VSTrVY9o2Sd+x1i5MdB+gK9myZYvWrFmzT3OHDh0qSXrwwQc1adIkNTU5v2lxwYIFOvbYY3XvvffqqKOOipizfft2zZw5U3/84x8j+q+99lqNHz/ec6+ioiKdd955evjhhyVJoVBIZ5xxhh599FGdfHLkb/psamrSrFmzdN1116miokIlJSWqrKzcp3PsSDNmzNCcOXO0fPlySdKuXbt04okn6txzz9X06dM1evRo5ebmat26dXrppZf0wAMPqK6uTvn5+TrllFMiguViGTZsmO6///6IkLjf/e53euONN/TLX/5Sp512mvx+9/9Er1mzRi+++KKeeeYZzZ8/XzNnziQYDQAAAOiimj2D0bz/l1+iD7tL3mEMXfFh9zzjfc7tDV/wvs75MQMTMiUsI2SDniF9EsFoAAAAb1S9lPQc7qH2cI9Gy/cVuvY32vZft3j32V4B0smsk4mvqbxee0SfR9A2K6yw69hMPC8AAACk2OBz2gajGb806Oux5w35hnsw2gEXxJ6XUygN+5a06v62x0b+UCroJ/WaKFUsjjzW7QCp5yHO14EiaezPnA9Jql3bvmC0HuOccK6BX3UPRsvvKw08Y2971GXOR7TRV3kHo522zDmHf5R41zHkPGndU+7Heh8lfel+qXCg9Ewf7zU6U3OVtG3B3nZ0KJokrX/G+XBT/pa0+IrE9ys7Xhr/a+f7tXW+1LBVsmGp15FSQX/n5za/zAlUa65xAtv8hVK3oVJuiRPGVr5IWvJTyeQ434+Rl0h9pznHWmuscMYEitse26Opyvl5zsl1Pw4AAAAAAAAAAAAAaINgtCxmrX3JGHOwpJvkhJZ5vUviHUm/t9Z6vKMg7j41ks43xvxD0n9JOtpjaIWkpyTNtNaW78teQFdwwQVx3vAVg7XOAyJHHHGE7rnnHv3whz9UOOw8nLBkyRIdffTRGjlypMaNG6f8/HytX79e7733noLBYMQ6J510km6++ea4+91888167rnnVFVVJUnatm2bTjnlFI0cOVLjx49XXl6etm7dqnfffVe1tbWSpH79+un222+PCAXLFLm5uXrxxRc1bdo0rVq1SpJzTZ9++mk9/fTTrnOMMbr33nu1bt26iGA04/Ump90uuugibdmyRb/4xS9avkfvvPOOzjzzTBUWFurwww9X3759VVBQoOrqam3fvl0rVqxoudYAAAAAELJB136/CXjOSfRhd8k78CtWWFe2CvgCypFfIbW95u0NrfCan+cr8Ayyc+a1L5AtVeLVkSl1AgAApENNcJfer37T9djYwkO1uv4T16At7qEcNslgtODu0N5Yr4niiX9/m9j9f0O4zrXfb/wK+Pa9vo7iFQYd/fMZ6/rkGe/XLwAAAMgSo6+UKpZKax512jkF0uQnpPzS2PNG/kDa+Ly07fW9fWN+4oRUSdJBv5BW3NZ23vibpR4HuQejDTnH+Xzk3dKCrzjBW5KUky9NuMcJL3PT7QD3MLVEHXC+87nPJCdEq3ZN5PGh30psndLJTo02Kng4p0AqGuWEdBUOkuo2tJ2bWyId9YATIub2b0VT/i51G+J8PeIH0ud/SaymbLLtdelfx6duvR3veAfRtTb0207gmr9Qat4lrX9WqlsfOabvNOfntP9p0ojvSatnSQ3bpb5TpdJjnHC1UINU/ZnzvS4YIMl4h64BAAAAAAAAAAAAQJYiGK2TWWuHdvJ+2yRdboz5iaRjJB0gqZ+kWkkbJX1grV2dor3+Iekfxphhko6QNEBSN0lbJK2V9Ja1tikVewGI75JLLlFJSYm++93vqqampqV/1apVLaFfbr73ve/pvvvuUyAQ/6GMgQMH6plnntFZZ52l6urquHsMGzZML76U+kb1AAAgAElEQVT4orZu3Zrk2XSewYMHa+HChbriiiv03HPPxRzbu3dvzZo1S2eccYb++7//O+JYUVFR3L2uvfZajR8/Xt/97ne1ZcuWlv66ujq99dZbCdVbUhLjN4MCAAAAyGpB2+zaHysEIM8j1Cz64XZrrecD77HCurJZvq9AteHqNv1uQRbJ8LzOJl85xi+/Cbh+r93C7NIhXh2EegAAgK5s0c5/ed63H9fzNG1qXKfGkEswWjvvMbOGey5azLDmxnCD/DkdF4yW6H14g+frqcwMmva6ptHXI9b5d8UQbQAAgC7HF5Am/1U69DdS7Won2MzfLf68QLE09RVpy7+kXSudULHSyXuPD/u29On/SsHavX25JdLQC6T8ftKB10gf37H32EHXSX1PdL4uPUY6/SNp04tSuMkJmyoeFbueCf8nvfE1qSHOe9iOnyu99U0puPvfBgafK439L+dr45NOeMlZp/ozp2/IeU6YWyLyy6T+p0ubXojsP+A8J1RLkkZfJS27ru3cA6+RAkXSwDOkDXMij5UeszcUbc/YjXPjnytSY09oYCxbX3M+b3pJWvKjvf3L48zrNVE67llp+7tS5QdS4WAnNC1Q7PxZDHR3xlUslWq+kHp/KfJnAQAAAAAAAAAAAAD2MwSjdRG7A8nmd9JeqyWlJGwNQPuce+65Ou6443Trrbfq8ccf1/bt213HBQIBTZ06VTNnztTkyZNdx3iZNm2a3nvvPV133XV6/vnnZW3bp1RKS0t18cUX61e/+pWKi4szOhhNkvr166dnn31Wb775pp588kktWLBAmzZtUkNDgwYMGKDhw4frG9/4hs477zz16NFDklRVVRWxxp7+eE499VStXr1aDz30kB544AF9+OGHrtdwj0AgoIkTJ+rkk0/WN7/5TY0aFeeNfAAAAACyUtiGFFbY9VjsYDT3ULPoh92bbZOsx/pd9WH3PF++azBaewPKvEIv9nyv8n0Fqgm1DdPIlMCxVAVHAAAAZJuwDWnhznmux0r8fXRI94l6rnyWFGp7PFPu9dLNeiSjxQtG65YT/5fXeM9PTfBvQ7jOtT/fV5h0TZ3B67Vi9P18o/W+Pl01RBsAAKBL6jbY+UhGTp4T5DXwjLbHehwoTfuX9OGvpKoPnZCnI+6SCvo7xw//nTTqcqlymVRyqNR9eNt6Rv0w8Vr6HCWdtkx653vS5pfdxxSPlQZ+RTpnm7Tj/d3nfEDbur/yiVS9SsrrLeX1SrwGSZr8mPTOxU6om3zS4HOkCX/ce3zot6WP75Qay/f25fWRhl/sfP2lB6T6rdKOd5x2z0OkyU9Encdo6ZTF0vtXSRufT64+ZJaKxdLsJP/cSc7PUW5P589P+cK2x7uPdAL56jdKhQc4P8s9D94dtla8d5y1kg1Ltlmq3+z8+cxp9Tow1CD58iRjkq8RAAAAAAAAAAAAAFwQjAYAabZmzZoOXb+srEx/+MMfdNddd2nJkiVauXKlysvL1djYqD59+mjQoEGaMmWKior2/SGRsWPHavbs2dq+fbtef/11bdiwQXV1derbt6+GDRumY489Vn7/3v/knHDCCTHDv6IlMzbaI488okceeWSf5k6ZMkVTpkxJaOyKFStavjbGqKysLOF98vPzdcUVV+iKK65QRUWF3nnnHW3evFkVFRVqbm5W9+7dVVZWptGjR2vs2LEqLMzMh2YAAAAAdJ6gDXoe8xvv/+XnFSAQ/fB/rDCrrvqwe57ntWtfaIXX/D375fnyVRPa5TIvMwLH4p2/V/AbAABAtvtP7VLtaN7memxKz1OUY3ISDqPqqvY1GK094t7fJri+1/16pgZNe4doRwWjxTj/rvpaEQAAACnS52jpxH95H+8+zPlIlYJ+0uRHpWf6uB/P3R1ylpMvlcV4/5gxUvE+/mLL3B7Scc9JwTrJ+CJDpiSpcIB08iLpo5lS1TKp56HS+Jv3Bsbll0qnvC3VrJbCzVLRKPdQqm6DpePnOMFWf/M74VboOtY8Gvt4zSrpP7+JPab7SKn2i7Y/O7m9nJ/DXZ/sbpdIQ86Txv1Cyu8r7fyPVP6mFKqXBn5VKj5QsiHJl+TjC6EGKRyUAt2TmwcAAAAAAAAAAABgv0YwGgB0ET6fTxMnTtTEiRM7bI8+ffronHPO6bD1M1Vtba2WLl3a0h49evQ+B8316tVLp59+eqpKAwAAAJClgrbZ85jfBDyP5RmPh91tg8I2LJ/xOe2YwWiZ+SB/R+uo0Aqva71nvzyTWJhdusSro73BFAAAAPur16tedu3PkV/H9DhJUuLBxV2XezBarNck7b4/t7HnJ7p+fbjOtT9zg9ESC4L2On+ffAqY3JTXBQAAAHSoPeFnbnoc1Hl1+GP8ksyikdIxj8een2hgnDHSuOulf9+ceG3tMeQ8qe/xUvMuadl1nbMnOkbNKvf+pgrno6VdKa26z/mI5vYz0PdEJzQtv0ySdUL+6tY763jp/SVp0NelwoFS+VtSU5VU+YHU6wgnmK3yQ+fP9shLpV6HS43bpZovpK0LpGC1tOU1qfcEadjF0sAznD2DtVLxWCmH17UAAAAAAAAAAABAJiEYDQCAdpo1a5bq6vY+4DJp0qQ0VgMAAACgKwjaoOexmMFoMR7Cb7KNyt8dwhXrYX+vgLBs5x1a0b7gL69rvWc/r+vdaDMjcCxeHe0NpgAAANgflTdt1orapa7HjiiarGJ/T0kx7vUIl5XkFYvmXDcjI+syor2hcg1xrn2i3xuvOjI3GM3rZ7Fe1loZY3a33c8/z5ffMgYAAADYbxgj9ZooVSxue2zYtzu/ns4w8Ez3YLS83lLjjtTtU3KYNOVve9sjL5PW/k3auULqfZR0wPmSL0cKNUn/uUXa+KITVlU2Veo5TnppfOpqQeba+mryc3a853xEq/40sr3pBe816tZJ65+Ns5GRDrpWql7lhPvZkFR2nBQOOu1ug6URP3BC1XJ7OWvuXOEEuxUOkvpMkkyOZPxSTn7sAEQAAAAAAAAAAAAArghGAwCgHTZs2KAZM2ZE9F100UVpqgYAAABAVxG0zZ7Hcoz3//KLFWrWGK5veUg/1sP+mfogf0eLFRTQHrGCBWLtmymBY/HOv73XBwAAYH/0RtU8z2PHlZze8jXBaPG4R6MZGeX58l3vidt77VJ1f+sdgJyZD0J7hWiHFVbQNitgciXFev3SNV8nAgAAIAuM/IH0XlQwWvGBUumU9NTT0XodKQ3/nvTFQ3v7ig+Ujn5E+ufRcn0dNvbn0sq72vb3Ptr5vOOdtsfG/DSyndtTGvXDtuNycqXxv3Y+Itb+knv4VY+DpTOWS5XLpHXPSKE6acg3pD5HS6+fKW2c23aOJA38qjThXql8obToQvcx8XQfKdWs2re52A9ZacXtkV1bX4tsf3DNvi/vy5XCTVJ+mTTgDCmnUPL5ndC1vic6IWzGSPVbnIC1hi1SyRFS7Rpp10qpaLQTQGiDzkduyb7XAgAAAAAAAAAAAGQogtEAAGjlmWee0ZIlS/Szn/1MpaWlMcd+8MEHOuecc1RRUdHSd+ihh2rq1KkdXSYAAACALi5WMJp/n4PRGlp97f4Qf4788ptAAhVmH68H/Ts6GM0riC5TwjLi1ZEpdQIAAHSWpnCj3t75quuxQXnDNDx/TEs7z2T2vV66WesRjGaM8ky+GtT2Xry9AcLxrn2i63sHo2VmgFh+nNeKAd+eYDT38yIYDQAAAPutEZdIwVpp5R+kxnKp71TpqAcl40t3ZR3DGOmov0iDviaVvykVjZSGTN8bXPbZnyLHFwyUxt8irf2bVL8p8tiI7znXLjoYzZcnDTqzfXUO/ZZ7MNqYHzufSw5zPiJq7e+93uirpG6DpYJveAejTfyT9O9fS/Wb2x47+mFp+MXO1407pGCNlN9Pyslz+p4wMU/H1Zf+LIWbpfevSn4u9n/hJudzwzbpi4cjj0W3E+XLlWSlkiOlgn7ShtlOf06B1Hea1HO8ZJulpkopWO8EvTVskfqfJo28ROp/irR1vlS7VtrxrtTjIKnHOGnA6W3/TmyqlIxfChTtW60AAAAAAAAAAABAAghGAwCglerqat122236/e9/r1NPPVUnnniiDj30UJWVlcnv96uiokLLly/XCy+8oLlz50Y8lJObm6tZs2alsXoAAAAAXUXQBj2PBWIEl8V6CL/1g/uN1j0MIFMf4u8MXqFy7Q5e8LjWe0IyvAIG2rtvqsSrozHcIGutjNmHh4IAAAD2Q+9XL1RduMb12PE9T4+4L/IM37WZca+XyfJ8BVKosk2/1/11ouIFHye6/v4WjOYV0ic559JdxZLiBzsDAAAA+x1jpLE/k8b8VLIhydcF3lZtjBNcFh1eduT/OEFnax53rkX34dJxcyR/gfTl16VFu8PKckukA6+WRvxAskFp57+lzx901ggUS8f83RnTHkO/KX32R2nXyr19PQ6WDrjAe06fY6RV97sfKz7Q+ewLSH0mSdvfjjxucqSBZ0qVH0qr7os65neCo/bI6+18RKw/NrLWPcbf7JxHdNjaAedLIy91vo4VjHZB2Kn1oxukyqVSqEE6/PfS+1d6z0HXtSdsLTqsMFQvbXrR+XCz+WXnI5Z+Jzl/rk2OtPbJvf09xjmhgf1Pcf6MGiOFQ87Pa7BG+vwhqWGrVDRKOvC/nL9XJCkcdNbi3w8BAAAAAAAAAAAQQxf4F3wAAJLX3NysuXPnau7cuQmNLygo0F//+lcdeuihHVwZAAAAAEhB2+x5zB8jGM0reEGKfMDd6yH+rvywu1eAgVcwQKLiXeuO2jdV4tURVkhB26yAye2kigAAANLHWqvXK19yPVbgK9TE4uMi+rzur+OFc3UVYYVd+41MjGvX3mC02PMTXb8hXOfaH+s1WTrFeq3XOqjP8/WL6bqvFQEAAJAljHECsLoyX0D6/+zdd3wc5YH/8c9s0aoXq1hWsS33btwwNrYxxWBMTSCUQAIJBFIuR5IjdwdJCKRwyd3lF3IJKZBASMhBOpcQSiAB23SI6QkYjLtxl9ykXWm18/vjsZBWO88WWbJW0vf9es1rd59nnjKzK2lmV/PdBXfB7G9DWxMUNHSGFhWNg9OegbYDECgAx2fKnSDM/zHMvBkOboCyY8DfC58HhMrhlNUmVKzxJdPvpM9AsNDepv598I9vwr6/x5dXnwoF9Z2Pp34BVp1rQt06jP8E5NfA1Oth5+PxIWez/gvyhiefb/158PrXE8tHXgCVi2DVOdC235SVTodjvtG5Ts0Z3oFVkz5n9n/lQjj50fi6wjHw+OmJbQCmfRleu8m7rvw4WLbKPFfrfgzh7dCy3QTRlU6Hoglm+1eeZd/WslnQ+GLn41AlRHbZ15fBYfsj3uX7XocXP2+WVO3f+n7qcQIFJmhw5IVwcB3sfcEEshVNhBGngi8H8kbAgbehYJRZcGDnY9C6D8rnmt8XAM1bYcdj4A+Z3wM5Jd5jxtqg6VXzO7Bkaufvt65cd+iEZ4qIiIiIiIiIiIiIiGQRfTojIiLSRWlpKX6/n/b29rTbHH/88dxyyy3MnTu3D2cmIiIiIiLSKVkwmj/JhTt+x0/QyaHNbU2o63qBu+1i/2y9iP9osF3obwsGSJdtX3cEomV7WEY6wRCRWJigT8FoIiIiMvhtCK9lc+Qdz7oFJSeT4wvFlfVVuNfg51jPTY70ODl1MFp6/dvWy/PlZzyno8EWyAzx+6RrSFq67UVEREREZIAJDTOLl2CRd3lulVl6U24FTL8h/fWDRXDKKvjbZ2DrHyHWCjWnw/w74terPQNO/iu8cye0NkLNChh7pakrqIfTnoVtD0LLNhh+YmfIUjITr4FtD8QHhk29HoonmOWcjbBzJQRLoWI++Lu8H1B3rncwWv159vFyyux1hWNMwFPM47PEmV8zdcXjYdY3vdtXLbX3DXD6GnPb3mqCojq25R6PMCmRTEUPwd6/maWr7Y/CW7ceWd8l06BiAQQKYc8zsPvpxHVC5VBzJpROg2izCf1b+73O+rpzYe53ze+XgtEmRC3aYgIFw7tgxDIT3JZM2wE48JYJnAwWH9k2iYiIiIiIiIiIiIiIDHIKRhMREeni3HPPZceOHTz00EM8+eSTvPrqq2zcuJG9e/cSDofJy8tj2LBhjBo1isWLF7NixQqOP/74/p62iIiIiIgMMcmC0QJOMGnbkC+XtvbEYLSuF7vbwr5swQ1Dge1C/yMNrbAFJnTsa3vgQ3aEZaQVjOa2UIj+sV9EREQGv5VND1jrlpSenlCmYLTkXFzPch9OnwQIx9wYETdVMFp6z02L9Tg/OwPEAk4QHz5ixBLq0gvRHrrniiIiIiIikkVC5bDw5xCLghsDv+VLW6oWm8VLsBhGXZjZuLmVsGy1CVQ7+A5ULobKBZ31OaVQd45324ZLTZDb1j90lk38jAlwsgmW2Ovy62DE6fH9AYQqoHJR6m0JFpoAt7amxLqyWZ33bfu2u7FXQKgK/v4f3vVnHQ6I+l/H3scHXdixEv6y1Lt+8e+h/lxzv+VdE1K390UonmRCqtpbTIBVfp3Zd2/fZgKvgsWwczWUTIUtv09ve2Tg2veaWZKJ7IH1d9nrt9xnlmQqFpqgxncfTm9e026AwrFQs9wETLZHYMv/Qds+GH6SCWHDgZJJ4Lrw7p/Na9xtN+GN9e8zr2+xa3kX9rwApdNNmONL/wbrf2bqSqbAsqcgJ8nvVRERERERERERERER6TcKRhMREemmvLycSy65hEsuuaS/pyIiIiIiIuIp6kY9y3348aX4x+eQL5eD7fsTyiNpXOxuCwcbCqwBZW7PgxcgdbBAXwQ+9KZ0tt8WtCciIiIymByINrHmwJOedZPzj6Eqpyah3HZ8reOnDt7BaDjJgtF6HirX6kZSrpNu/7bj9Ww9p3IO79OWWHNCnUK0RURERERkwPH1w7/HBwpg5PmZt/PnwuLfwq4nYd/rUH4slM9N3qZovAlQCu/sNociqDgO8muh8UVo3mzKfSGY90Pwh9KbU+0ZsOEXieWjk/w/5egPwYafJ5Y3XGa2yyZvhLmtXAS7nvDuF0x4EQ6e7xVUzI/vb+wVMNY+JPNu9S53XRMIt/o82PGY9zonPQJls+HBWdC8yXudJfdBtNmEL3U8B12N/AD4crz3sQx8u5/KbP3XvtLzsd46/FquXmYC1JpegdZGUzbmcvM7Ia/G/F7w50L0IOx/E8K7gJgJcYtF4NBmKBgJtWeaELEdj0GgEIonwLqfwObfmfJjf2h+Jve/AXueMeGC1ctM+GM22v8WvHwdbP6tfZ19f4fflMKKV0xwmoiIiIiIiIiIiIiIZBUFo4mIiIiIiIiIiAwwUbfNszzoBFO2DTmWgK+4YDRd7N6dNRjtCIIXXNdNEoxmxgs53vs8W8Iy0pnHkewjERERkYHiyX2PWgOMTyhb4VneF8eYg4lry0XD6ZNQuXTCh9PtP+wRMAbZG4wG5vXoHYymEG0REREREZE+5QvA8BPMktb6fph4Dbz8hfjyCZ+EQD4UT4QVL8O7f4a2/VB9MhSOSX8+026Anavjg7/GfMSMaTPpGtjyO4ge6iyrOsEEnhWOgec/SUKoWdEEEygHMPJC72C0hkvNbW6l2Y7tj8bXDz+pM1ztSDkO5JTBmCu8g9EKx0H1KeZ++bH2YLSaM8xzOvpiaA+b7coZBiXTwJ/Tud6Cn0PTyyYUz58L/nzAgUAehKqgZRs4Ptj9DLz7sAmpKptl9ltbkwnA2vaACZ7rGpLnFZrXXd4IE3Qlg8P2RxLL3vlp74/zzEfM0t38O6D+/RA9APv+AWXHmJ/ZTLQ2waGNUDw5/uekJ8K7TeDcWz8Ay/u1CVaeBedsOLJxRURERERERERERESk1ykYTUREREREREREZICxBS74ndRv99nCzSJu5wXu9mC0oXuxu22/HUnwQtRtI0a7ZTyzr20BA12fr/6UTmiHgj1ERERksIu57TzR9LBn3bBAJdMK5njWWY/NdfwEgNv9guku+mLfpRf6m3qdtlib9ZwtmwPE0gnqSxXsLCIiIiIiIkfJlOtM2NaG/wViUH9+fHBZThmMurBnfRdPgOUvwNb7IbzdhIGVz0veZtgcOGU1rP0eHFoPlUtg6r+bsLH8Wqg/Dzb/Jr5N1/mO+TBsuteEhHUYeQEMP7nz8XE/hZVnQuNL5nHpDDjuzp5tYzK1Z5igsvZu58Bd92fDhxO3B0x4mq/L57X+3M4wte4cxwRIlR2TfD7174NZ3/Sum3ytuW3eCsEiCBabx02vwwPTvNvM/DpMvR7cGLz2Vdj0K2g7CJXHmyC7muWw6v0mtE0kHc9+1Cw2TiA+oMyfBxULoGQKHNwA2+6PXz9UDgWjoe0AlM+H9hY4tAGKxsG4q6DieHDbYPtfIbIbgoWw/S+w7zXY8xzEvL9kLqlDG6FlB+QNz7ytiIiIiIiIiIiIiIj0GQWjiYiIiIiIiIiIDDBR1/ufeQNOMGVb24X4XUMAbIEAtvCBocC236JuG+1uNK1Quu6ShTaEHLOv7YEPPQ9k603pBE8cSXiciIiIyEDw2qG/sTe6y7NucelyfI7fs67jmK+7dqJE3ba0ju8HN+9gNAeHkNP7AcJphf6m0X+yY/VcX35Gczqa0gmbs4doD91zRRERERERkX7hODD+42bpC7mVMPYjmbUZNguO+4l33cK74ZXRsPWPECyFsVfAuI911geL4cRHYMv/wb7XoXwu1J4Fjq9znfxaWL4G9r9hyosmmP3Q23JKYcHd8NQlEIuYsuplMOVfO9cZscxsR1tTfNtRF/T+fNKRX5v8cVdlhwP8HR9M/7JZulvxUuf9/Wvh6Q+ZwKlgqQljm3o9vPh5eONb9nFGXQzbH4WI93tmMoR0/wKB9hbY8VezeInsMQvAgbWd5XtfgI339s0cAVq2KBhNRERERERERERERCTLKBhNRERERERERERkgGnv/s/DhwXSCOdK72J374v9beFgQ0GyC/0jsTD5/sKM+4y4yQITcg/f2gLZsiMsI63wiDTWERERERnIVjY+4FkecAIsLDnF2i7VMWbAP7SD0bxj0UwwWjqBz5lK79g2df/J5pDN51Tp7FPbPgpl8XaJiIiIiIhIFvCHYNZ/mcUmkAejL0rej+NAyeTenZuXkefB8KWw6ynIr4PSGeDrEnzvz4UT/gCrzoXWvaas7n0w9Yt9P7d05JTCsLkmSKqrYCkMPyGzvoonwGnPQtt+CBR2htXlVdvbzPpvmPwvnY9dF5o3wY7HTWhb5SKzDwHeuQueudy7n1NWQ9lMaN4Mr9wAm39rykPlMOV68AXBnwfEYOv9sO8fcPDtzLZPpEPLu/09AxERERERERERERER6UbBaCIiIiIiIiIiIgNMm9vmWZ5OSJbtgvWuF7jbLuQPOfbghsEuWYBBONbSs2C0JMELHSEZyQIGWmORfg/LSCcYIp11RERERAaqHa1b+UfzS551s4sWURQosbZNdYxZ4C864vkNbLZotPQCnzOVTqhaOgHF4ViztS7Xl9+juR0NtvO9roHOOlcUERERERGRISNUDnVn2eurFsP7t8PeNZBXAwX1R29u6Zj5dVh1DrSH48v8PTyHDxbHP85Psr1lM+MfOw4UjIIxlyWuO2yOvZ+icRAsgpIpsPg30NpkgtD8ocR1x12VWLb3RXhotnff026AGTfBr8ugrcl7nfMb4Tdl9vmN/hA0roF9r9vXkYHjiQvgQvv7eiIiIiIiIiIiIiIicvQpGE1ERERERERERGSAiVqD0VK/3WcLX+h6gbstTCBZcMNgZwtegJ6HLyQPRstLOW5PA9l6UzrbfiThFCIiIiLZbnXTQ9a6E0pXJG2bLARXx1DgWoLRHJwkwWg9D+VNd5+nCihOFrCW7Dnvb7bzva77xbZ/h/K5ooiIiIiIiAxhviBUzO/vWXgbcSqc+ixs+hVEm6HubBi+tPf6r15mtj/W7XPr8uOg6sT0+ymZAgUNcGh9fPmweZBXHV+WU5rZHLu3j6sbcbjPEnswWrLxpl5vguZcF+7xea/jC8FFYWjeCut+AgfXmSC40ZdAeAf8aaq9/1AlRHbZ66X3tbdA20EI9u/n7yIiIiIiIiIiIiIi0snyKYyIiIiIiIiIiIhkq3Y36lkecOwX53dIJ0Ag4npf7J7NF/H3teShFT0LX7AFJjj4CDo5aYzb/2EZttdKpuuIiIiIDESRWJin9/3Fs64+NIbRueOTtu+L8N0hwXGsx8lHFoyWXttkwWemvtmzPOAECPpSn7P1F9vrsWN7Y26MVjeSUVsRERERERER6UdlM2Dm12DO/+vdUDSA0DCY/xNwulyOMmweLP4N+Pzp9+P4YN73wZ/fWZZTBnNu6YU5VkGo3LtuxHJzO+la7/qqpfHrdTfqInPrOPbxqxab2/xamH4DLLgLJv6zmVPJFHu7QAHMv91ef8pKWPaEvb5gNHzQ+wsH3rPileT1ACMvSL3OYNP0an/PQEREREREREREREREulAwmoiIiIiIiIiIyAATdds8y9MLRrMFCIQ976fTdijIcULWulTBCDb2/ZyLc/if6JMFDPR03N4SdduIWkL6ulKoh4iIiAxWz+9fRYslBOuEshXvHdPZBJ0cHLzXOZKAr8HAde0XbzokC3wOJ22bTLr7PNXxbXiAnk8l26cArW4EF+99m+3bJiIiIiIiIiJ9oOFDcPYGOO6ncOKfYdlqEwKWqZrlcMZrMPdWOPZ2E9pVufDI5+fzw+gPJZYPPwkKR5v79efGh7t1GHWhuZ38L9A96L7mTCid3mXdi7zHH/+J5PMbfYl3+fSboGy2pZEDJVMhL8l+Lhpnbid9zrt++Mlm/uOutvcRqkgezlZ+rJlHtprwaXj/DsgbkVm79kN9Mx8REREREREREREREekRBaOJiIiIiIiIiIgMMNZgtO7/lO3BfrF7ZwiALXArWUjXYDn/xKEAACAASURBVOdzfIQc7+3veTBa6v2c44SyNiyjNRZJaz0Fo4mIiMhg5Louq5oe8KzL9xUyt2hxyj58js8awNvfIbj9zRbAZTjWIK4YMev5UioRN73j1lTH4bb6XF9+xnM6mlKFaCc7rs9VMJqIiIiIiIjI0FRQD2MugxHLwG//oqmUChtgwidh3JWQX9d785v1nyagLFAEvhyoPRsW/6azPr8OFt4Dvi5zH/sxGHuluV99Cpz4CIy8ACoXm9Cyxb+NH2Pcx8Hxd9ueMSZALZmGDyeW+XJg1MVmvw6bl1g/4lQIlUPBKCgc591v+bHmttYy/qgLzG1ejX1uBaPMPrMpGt85jpeL2uCCZnj/Lvs6ODD7Fnv1pM/BnP8xz0cyoy6CqqVQdgwc+yM4ZxPM/R/IrYLxn/QYNsklVFEFo4mIiIiIiIiIiIiIZJNAf09AREREREREREREMtMWswSjpfF2ny3cqyMEoN2NWoMEhvrF7iFfHpH2xDCAngZ/2dp1fY46wjK8Qhr6Oywj3fH7e54iIiIifeGdljfYEtngWbeg5GRyfOldCJrby8eYg0WyYDQfDrlJQpvDsRaCvpyMx0x3n6c6vg3Hmj3Ls/18yh6M1nL41r5/hnKItoiIiIiIiIhkMV8Q5n0f5nwH3Hbwe7yHMeoCqD0D9rwAReMgvza+fvgJZrEZfgKccD/8/T/gwDqoPB7m3AL+FO9PjTjVBHm9fD1E9kD+SFhwF+QfDixbeDc8dhoc2mAel0yBeT809x0HZnwVnr7UbFeHYDE0XG7uV51gAt7W/bizvvpUGH3p4fGXw6tf9p5bzZlmjNIZ0PRKYv3YK8GNwjt3JtaVTANfwCyBJO+Hjb4EiifZ66dcB7kVsOFeWHe79zqnrIaqRfY+pn7BPOfv/BTaW6D2HJhxI/y6xHt9BaOJiIiIiIiIiIiIiGQVBaOJiIiIiIiIiIgMMO1EPcsDvmDKtraL8cO62D2lXF8e+9sbE8ojPQz+8go7g8T9nK1hGemO39/zFBEREekLq5oe9Cx3cFhSujztfkK+PPA6xrQcKw4d9mA0cAg59osqI7EwRVgubkwi3UDfVMe3tn6yPxjNEqJ9eHuTnfcM9XNFEREREREREclyviCQ5LP0QEHy8LNUapabJVPjrjIhY+FdkDc8vq54Apz1Fux9AXw5JqTM1+Xyn9EXmRC3f/yXCS8rnQHTb4Ti8abe8cGxt5kgtL3PQ/FkGHFaZx/l82DM5SY0rKthc2Hip839hg/Bi5+Pry8cB1VLwI1Bfj00b46vH3NZ/OOJ18Cb30nc9rFXmDn486G92xcNlM6AUPnh/TAxsW2HgpH2OjDhbpOvNUtXeTXQsi1x/Ve+BMPmQdFYs/96gxvrvb66a9kO+16Hg+9A234TSld2jKl75yemvvoUs5+aXjP7snwetOyAyE4oGA3BosR+Y20mrC+nDPyHvwCk7QDseBxatoAThOhBs7SHoWAUFI4xQXfdgwVFRERERERERERERI6AgtFEREREREREREQGmGjMEozmpH67L9XF7snCALL9Qv6+Zt13PQytSDcwIVvDMtINhOtpcJyIiIhIttofbWLNgac866YUzKIyZ0TafaU6Ph+q3CTBaA5O0iCuiNvD4OJ0g39THIeHY82e5dl+PmWbX+S9EG0Fo4mIiIiIiIiI9DrHlxiK1sEXgIrj7G2rFpvF2rdjAt+8Qt8cB+bfAbXnwD/+0wRrTfosjLoYAvlmnUn/ApG98Nb3IXoAKhbAwl+YOTs+OOkv8OSF0PiiCTib8CmY9Ln4ccZ/CjbeC+EdnWXVp5hwNccH074AL3+hy7wCJuDNcczjspmQVwstW+P7LZ1ugtl6ImeYdzDawXfg/gmdcxx5oQn/Wv8z2P8G1J5p9lfN6bDhbnjjFvDnmHalx0DJZBMq1vIu7Hw8vu+RH4C8Oqg9A4afmF5YmhuDt38EW/4Ptj9iHo+7Gvx58OYt6W3r2u+mtx5A7dmw9Q+J5cPmwN6/pd9PXg2MWA5T/s0E/LVHYNuDsP8f0NoEB9aaELXqU6B0JjS9DIUNsOcFE/SWVw117zc/F+2t5uegr8LlRERERERERERERCSrKRhNRERERERERERkgIm6bZ7lASfJt1wfZrvYPeq20e5Gk4YBDPWL3UOWfZcsTC4Z277uPo49LKN/A8fSDo4Y4qEeIiIiMvg8ue8R2vEOK15SuiKjvrL1WK+/ufZcNHCcpCFj4R4ef6Z7XJ9qPVu97XwiW4Qc79di+L1gNO/9GnACaZ2LioiIiIiIiIhIlnEcqD/XLLb6Y26GGV+B9jAEC+Pri8fD6WsgvBtySsDn8R5R8Xg49Wl4+3YTiFV5vAlL6wi6mnq9Ccna/HsIFsHoS8w6783BB3O+DU9+ENzD78n68+CY/+oMT8tUoCD1OtsfNUtXm35tFi97nzeLTUe7N79tbstmQ+UiGHEaVC2CYHFimxf+Cd76QXzZ2z9KPfee8gpFg8xC0cCEzr1zh1mS+fs37HXPfzL+ccEoOPFhaG+Bkqner7Wu2iNwaBP4/JA/EnBN6F5PXzMiIiIiIiIiIiIi0i8UjCYiIiIiIiIiIjLA2ILR/E7qt/uSXYwfiYWTBjBk+4X8fc0WvtDT4C/bvu4ejmHb7/0dOBZx0xu/p8FxIiIiItmo3W1nddNDnnXlweFMLZiVUX/2Y72hfgxlT0ZzMKHQPnzEiCXU93Tfpdsu1XG47fg3z5ef8ZyOJltIX6sbIebG7IFvztA+TxQRERERERERGfR8AfAV2utzK5K3L2wwAWs29e83i83ID0DReNjyB/DlQN05UDI5+ZjJBJJsy9HSuMYsa/+nv2cyMBzaCPdP6nxcPBH2v9n52J8HbjvEWlP3lVsF4Z3J1ymbBSXTTFBf8QTY9zps/KW5bXwRChpMYF/NitQhbSIiIiIiIiIiIiLSYwpGExERERERERERGWCiHd+E3E3ASf0Pl7aL3cFcwJ8sxCrHCaWe3CBm23c9D17wDlRIDEbzHre/A8fSHT/dADURERGRgeDVg8/TFN3jWbekdDk+x59Rf/ZjzKF9DOUmDUZzcByHkC+XllhzQn3Pg4vTa5fq+N8aIJblQdO2IGgXlza31Xpcn+wcU0REREREREREpFeUHWOW3pA3onf6kf7TNRQNoD2D/51IFYoGJvys8UXY8HPv+kPrYdW5nY8X3A1lMyBYDE4QcsrgnTth2wPQsg0mfRaqToCCkenPU0REREREREREREQUjCYiIiIiIiIiIjLQRN02z/JgWsFo9ovxI7GwPazLycXn+NKb4CBlCwro7eCF7sEC9nH7Nxgt/eCIoR3qISIiIoPLyqYHPMsDTpAFJSdn3J+C0XrCAcy5Te8Go6UZ/Jui/7DHnMB+XJ8tkp0rJgvRzvbANxERERERERERkTijLoQNd/f3LGQwefrSFPUf7rxfOh1CFRA9BIEiCL8L+CBYBKUzoO59MOJUcJz0xj60GZo3mwC2QxuheBLUrDDtY+3gtoH/8OcQrfsgUAA+XUooIiIiIiIiIiIiA4PezRQRERERERERERlgbMFofif123224AUwQQC62N3Otu9s+ywVW7vugQnZGpaRSXCE67o46f7jroiIiEiW2h7ZwpvNr3jWzS1aRKG/OOM+Q44lBNcd2sFoLq61ruOo0naO0tMA4XT3ear+bfXZH4yW7FwxSYh2knYiIiIiIiIiIiJZp+YMmPBPsPZ7/T0TGYqaXrXX7X4a3v6Rue/PhfbD78nm15vwMwBfEEJVMGw2bP1j5uMHCqByCdScDi1bIX8kFI6F4olQONqEqfn8qftxXdj/pumvoD7zeYiIiIiIiIiIiIikQcFoIiIiIiIiIiIiA4wtGC3gBFO2zXFCODieQQORWNgaBpDtF/EfDUcreKF7OIZt3/c0kK23pBvM5hKjzW0lxwn18YxERERE+taqpgetdUtKV/Soz94O3x0skgWjdUSj9XaAcLrtUq3XYg1Gy894TkdTsnO+SKzFut06VxQRERERERERkQHFcWDud6FiAWz+vQmH2v10f88qfTnDIFQBgXwoPxbevi2z9mWzoXiC6UPhcNmrvcv7sR2haACxNvOa3bq1Z/1GD8G7D5ollfyRMGwOVC6C3U+BP88sW/8I4e3x6467Gnb81cw1VGmC1/LqoGAUDJsF4Z0Q3gFFE0zZwXfg4DoIlpoQuGGzzLZFdpvAtZxh5n7Ty2ZflEyFkilQdowJhxMREREREREREZEhQcFoIiIiIiIiIiIiA0zUjXqWpxOM5nN85Dghz1CucKzFGvJlCx0YSkJO74ZW2IIFuu/r3g586C2ZjB+JtZDjUzCaiIiIDFzhWAvP7H/Ms25U7nhG543vUb+2UKn+PtbLZo5zOBjNcnwecXt2fJ7ucb0t4Pi9emswWnYHiCU754voXFFERERERERERAab0R80C0DLDvh9tfd6+XUw6Vpw26HxRWjeBDtXmZCm6tPgzW97tysYBedsgFgUNv4Snv0oxFp7Pt+8WtOfr9tlYMmC0U5/CUpnQNt+EyYV6PblDXO/C64LTa/Cuh9D9CDUrIB37oJt93v3Oe+H8PzHvesuOAS/KrDP58y1sP5n8Nat0NoIReOhcCyEymHDL+ztpH80bzLLlt+nXvftH3VptznzwL6eqFgIs79tXkst20xoWm4V4Jjb6AETvLbjL3BwPQyba15zzVuAGOQOh8heyBsOweLOft0YOL6+n7+IiIiIiIiIiIikpGA0ERERERERERGRASbqtnmWpxOMBhDy5RFpT7yYP+KGk4R1ZfdF/EdDb4dWpBssEHJs4/Ys8KG3ZBIIF461UERpH85GREREpG89t38l4VizZ90Jpaf3uF97CG7/Huv1N9d1rXXO4Vvb8XlPgovb3aj1PCvT/m2vk2wPRvM7AQJO0HM/RGLhJOcv2b1dIiIiIiIiIiIiKeVW2utqz4JJ19jrbcFo+fXm1heAhkvMEovCX5fBzsczm1/1Mljw88RQNICp18PrNyeW170Pymaa+zkl9r4dB8pmwNz/iS/3CkarXgYjTvPuZ+SFicFrXQVLoHg8zPwqzPjK4dCqLmFUde+DJ863txfpbvdT8Of5vdtnoACih8z9ykWQVwP7/m7Ky2aCEzBhiWXHQMk0EwIX3mley4ECwAF/jglr84XAHzLhg3k1JojN5+8cy3Wh5V0TWrj/H6a+eGLvbUtrE7Rsh6Jx3r87REREREREREREBgC9syUiIiIiIiIiIjLARN2oZ3nASe/tvlxfHvvbGxPKw7EW60X+tsCGoaS3QyvSDaGzjuv2LJCtt2QSCNfT8DgRERGRbOC6LqsaH/SsK/AXMadoUY/7th9jDvXjJ3swWkc0Wm/uu946to26bdbztWwPRgOzT6PticFo4VhLkvMXnSuKiIiIiIiIiMgA5/igbBY0vphYN+qi5G2rlsDOVYnlEz3C1HwBWPQruK8WYim+qOHi2OG5OcnXq3ufdzBa/XnJ2yVTe6YJaQrviC8fdzUUjoYJ/wxruwSphcpNQBtA+bGw57nEPqff2HnfceJD0QCGLzUBUd33S/5IOGc93OMnYyc9Cn89JfN2oUqI7Mq8nQx8HaFoALueiK/b8+zRmUPVEhM02NoIhzZCy1bw55twtWAh5NVC8SSIRWDz700428R/horjoHUfvHw9bLynsz9fCKbfAFOu6/x94rqw7U+w+bfQvAVqzjB9OD7zM7hztSkvm2FC4LpqbQTHb36GY+1AzPzsioiIiIiIiIiI9AEFo4mISK/YtGkTt912GytXrmTt2rU0NjbS1tb5weSdd97J5Zdf3n8TFBERERERGUSirvc/yAac9P7RLFmAgC3kayBcxN/XugeWdehJQJnrutZ93f35sY1rC7E7WiJu+uMr2ENEREQGsnUtf2db60bPuoUlpxD05fS4b+sx5hA/fnKTBKM5fRCMlsmxdbJg5GT95PryM5pTfwg5uRziQEJ5xA3bQ7QdBaOJiIiIiIiIiMggMPZKeOFT8WVF46EyxRdjjL40MRgtpwxqVnivn1sJx94Oz14Jli9ZACd1IFqHYXNgxtfglS92lo35CIy6IL32Xvy5cMpqePajsPtpE8Q07Qsw8nDY2pxbTHjT9j+buoYPQWGDqas71yMYzYH69yUfM1QODZfDutvjyyd9zoQ1+UImCCpdEz4NxRPTX78rpwchbEsfhIPrTJhU44sQKITqk+HVGyG8s2fzkKFp5yrvsMVk3n3IXheLwMtfMIvN9kdhzWfN767WxC/aTClQCBM/A9O+BP4caDtofg7y66DpFdj6J/NzPP6TUFBvgtdClVA+14SquW7877zuj0VEREREREREZMhSMJqISD8bPXo0Gzd2Xkzz2GOPsXTp0v6bUA/cfvvtfPrTnyYSyeDDRhEREREREemxdss/xwac9N7uswcItFhDBGxthhJbOFwkFsZ1XZwM/ikv6rYRI+ZZ1z0cI9m4/SmT8XsSHiciIiKSLVY2PehZ7uCwuGT5EfVtO84Ox1oyPsYcTNIJRrMdJ/ckQDiTY9tk/YfbkwWjZX/YdLJzD9s+GgjbJSIiIiIiIiIiktL4T0DbPnjzOxDZY4K/FtxlwnySGXulCcN641sQPWTCuI7/JQSSfFHCmMtMaNYfxkKsNbF+5s3pz9txTGjZ6Etg7/NQMhWKJx95qFDxeFi2GtpbTdBR9zFHntcZlNbVhE/Djsdg+yMdK8Oc70DBqNRjzvuBWW/LfWb/NXwYxl5h6qZ9EV75UmKbmjNMKJTbHl/e8GHIHW4Cm6IHE9vl15nnrbv680wY3prPpp5vh8pFUGP5rKDpdXjr1vT7EulPPQlFA/Mz9vrXzJLM2z9K3VegCIJFULHA/D5t3moCJX05Zn7tERPe2HAZVBxr76e10fTV+BJED0DJNNOPiIiIiIiIiIgMKApGExGRI/LAAw9w9dVX47r2C1S6evzxxznxxBPfe/zlL3+ZG2+8sY9mJyIiIiIiMjhF3TbP8oATTKt99+CtDpFYi/Uif13sbt9vLi6tboSQk354XLLghe792IPsMg9k6029FR4hIiIiks32Rffy4oGnPeumFsyhImf4EfWf63gfY8ZoJ+pGCaZ5jD/YJAtG43Awmv28JvNQ3oxCf5Osm+y4N9eX5ELILGHbp+Ek54q2NiIiIiIiIiIiIgOK48DU62DKv0PscPBOuu1m3GSCuyJ7IK86vXb5dbDk/+Dx07v154fRF2c2d4DC0Wbpbd1D0VIJFsLSB2DP83BwHVQuhMIx6bX1+U3I27QvJNY1fAhe/w9ob+6yfg7M+k8YdxU8/3FoeRdyq2DOd6F8rlmn/jxYf1d8X/l1cMpqeGgOtO6Nrxt7JRRP8A5Gm/pF2PQrOLA2vnzc1fZtKpthrwuWQltTYnnNGbD4N3BwPYTKzTZ1aHzFbE97BEZdBFWLOutcF8I7IVRh5vinKd7jTv0izPwq7H8TGl+G3c+YAMBD62Hz7+zzFTkaogfMsvm3ydd76/sw4nTzM/Duw7BzFebzoySfL+UMg1n/DcNPhO2Pwr7XoOk1aNkG+/9h6qtPgeplUDrd/B3Iq4Xcit7cQhERERERERERyYCC0URE5Ihcd911caFoH/zgB7niiiuor68nGOy8WKeiQh8GiIiIiIiI9JY2azBaem/3JQvailgvdk8/9GuwSrYPwrGWjPZRxE0WmJBeMJpLjDa3lRwnlPa4vcn2WjnSdUVERESyyZNNjxCj3bPuhLIVR9x/smPIiNtCkKEZjJbsupWOXGD7eU3mx56ZHdvaA4rDsWaPFsZACBBLeq7oegfC6VxRREREREREREQGFcdJPxStK18w/VC0DjXLYc534OUvQPSgCbRa8DMoGJX5+NnEF4DKBWbpLQWj4OTH4G//DI0vmdCiWf8NJVPMUnuWCQXLrep8Exlg3q0mfGzLHwAXyo+D439hQuSWrYZnr4Q9z5n+p99onhOAmf8BL1/X2U/5cTDpszDhk/DsVbDjr5BfC5M+Bw2X2uddcyaeYU3D5sGI0+D1ryW2GXe1eQ2WTE6sK5sBZd/yHstxIO/wl7nk19nnNHypuS2eaJZRF3TWRZvh7dth52OQOwImX2uC7e6rM+FRXurfb9rl15twurzhUNAA5cfCc1ebwDWRvvDug2Z5T7Iv3cEEIT770eT1m35lllTKZpvfAfkjTUhjyxbYvxaCxeZn5uA6KDvG/K6qOgECRbDtftjzgqkrbIDKxSb00fEl9u+6cGij+bnOr/deR0RERERERERkCFAwmoiI9Nibb77JK6+88t7jFStW8Itf/KIfZyQiIiIiIjI0tLtRz/KAk15oQq7lgvxwrIVIzHKxu5P9F/H3Ndt+A6z7rSfrdw9MSD5uCzm+/gpGS3+bM90/IiIiItmg3Y2yet/DnnWVwWom5x9zxGMkDUaLhSn0Fx/xGAORm+TiFQdzUZstaKwnx5620C8vMdqJum0EnRyPsb0D1vwECPqyP+TOvk/t54rJzldEREREREREREQkhYn/DOM/Ac1bTDiXwm/sKo6F054BN5a4n7qGgnUVKIAl95nQNBwTPtcRnFYyBU59Ctpbwd/t/d6p/w41K2DnKhNyNPxECBx+L3TpH73n4CW/BsZcDu/c2WWuPpjyr1A+H9b/DJo3ddZVLoKa01P3m0qwCCqPh11PxpeHys0YNoF8mHSNWbqqXGQPi1r8W3t/x/wHPHmRd90FB83zAxBrh1ir2cfrfwFPW8LmVrwCudXw4udh/V2mLFgKE/4Jqk+G7Y/C2u9B277ONgUNJrytcIwZr3weRA/Bw8fa5y2SSuMas3jZtfrw7RP29juAdT+BZy5Pb7z682HYHDjwJuAzr+WcUvP3I2+EWWfnE7DzcROMWHs2hIaZ8i1/MIGSuVUw6iLTrruOn8FDG2D3UxAsMeGNwaL05iciIiIiIiIi0kcUjCYiIj32wgsvxD0+//zz+2kmIiIiIiIiQ0vUbfMsTzcYzRa+EImFCVsu5E8W2DBUJA+t8N5vNrb97DVOsnHDsRaK8PiHtaMgk8CJZNsrIiIikq1ePvgc+6J7PesWly7H1wsXqNmCqCDzY8zBxR6MRkcwmmM7r8l8v2XaJhILE/QlBqO1WPrJ9Q+M8DD7uWKLdR/pXFFEREREREREROQI+YJQ2NDfsxg4evLefG6Vva57KFqHshlmOdI5HHu7CWHb+icTTDb2is7ws1Ofgrd/BPv+ARXzTcCXr5cu9Zv5DVh5BrTtPzxnP8z6Fvh78OV7Yz7iHYxWfUrydiNOBV8IYpH48vJjO0PRAHx+6Pi8pPJ47758QRNyFiyEBT81S3fDl8L0L0PLdrOvA/lJJueQ/LOIo2T0pbDh7sTyQIEJcBMB2Pwbs3T32lcz6+f5T2Q+dv355vfHvteheAJE9prgyNY9EG2GfX83v+NireDPM7e5VRCq7Lxta4I9z0P0IFQtgRHLzXoH10PpNGhtAlyzbkd4pYiIiIiIiIgICkYTEZEjsGPHjrjHdXV1/TQTERERERGRoSPmthMj5lmXdjCa431RfsQNE3G9w65ykwQ2DBW9GYxmCxVz8BF04v/pNnlYRvrhZL0t4qa/zf05TxEREZGeWtn4gGd50MlhQcnJvTJGsuPsoXwMlTwW7XAwmi3Ey3JOk0w4w30dcVsopDix3BaMNkDOp2z7tDl2iDa3NaM2IiIiIiIiIiIiIoIJ/Zp8rVm6y6+FGV/pm3GrFsHyNbDlPhOwVXsGDJvTs76qTzahZIfWx5ePuzp5u5wys92vf72zzBeEaV+ytykcDcPmwt4X4strVphQtFR8QSioT73e1Ovg9ZsTy3OrILwzdft0lEw1YVI252yEgpGw8OfmcdsBaN4CeSMgpxTW3QHPXuHd1uv56HDMN6F0Jjy+3D72yAth0y/t9Sf80Yy/5ff2dWRo6BrItu81c7vz8fh1dvwl/f7e/I69LlAE0QPmfv5IqFgAw2YDDrjtEGszgWrRQ3DwbTjwlglZG3UxVBwLbQdNefMWaNkGG+81ZXtfMKGU9edBjeXnwnUPh7tlEB4Zi/ZemKWIiIiIiIiIeNKZt4iI9NjBgwfjHgeD6V2ALyIiIiIiIj0XdaPWuoCT3tt9tovyw7EW64X8ycK5hoqAEyTgBDyfg3AvBaOFfLk43b750hZk15Nxe0vUbUv6WuxuKId6iIiIyMC0LbKJt1pe86ybW7yYAn9Rr4wTdHJwcHA9osCG8jGU1/7oznZeE4mFcV034bg6mUyDjm3H4eFYs2d5ri8/o/77i22fHojuy7iNiIiIiIiIiIiIiPSzorEw+V+OvB9fEJatgueuhh2PmzCvyZ+Hkeenbjvjq1AyDbb+EXJKYPSHoHJB8jbH3wuPn25Cj8AEpc370RFvRpzas7yD0cb/E2y4Gw6sTawLlkJbU/pjjLwQNt0L+/7uUemYALS4/ougZHLn48Kx9r6X/A4ePtYERcV1G4CxV0LLu/a2s75lgvJswWjjroLaM03g1L2Wa4TGfRxm3ASvfsWEp0X2QNE4qDwe9rwAjWvs44vYdISiATRvgk2bkgf4Aex/A968JXXf635sllRyq81teHt8efUy8zM57ipYfxds+AVEdpu6k/4CFfPNz+PB9eA4sHMVtIehaglUHJd6XBERERERERHxpGA0EZEhwnVd1qxZwxtvvMHOnTuJRCJUVlZSW1vLokWLKCxM49tzuonFYn0wUxEREREREUkm6rZZ6wJOeoHVIV+uZ3kk1mINX9DF7kbIl0e0/UBCeaahFfYAusTnJugL4idAO4lBZBG3f8Iyemt7RURERLLV6qaHrHUnlK7otXEcxyHky/UM2uqvENzsYA9GczCBZ7bwZheXVjdCyPE+7/GS+fGt9/q252ygnE/Z9tm+6F57mwGybSIiIiIiIiIiIiJyBPLrYOmf2bgopgAAIABJREFUwI2B40u/nePA6IvMkq6isXDmG9D0GvhDUDTB9NObyudDw2Um4KhD6QwY/3Fz/9Ub4tcvGAXH3QWPLzdhRx1qz4a8anj7tsQxRn8QfAF4+frEusrjTeBcMhXzvcPYChrMXOvPg433xtfVnQuhYcn7HTYbcofb632hw7cBKJ0OTa8mrjPqQsitgnnfM4uXlneheYvpw58L/5vkORx3NbxtCb+rOgF2rrS3FelN3QPROmx/BHgE3v5hYt1fT07db+ViyK+H4klQNvPwz7/PBEYWTYCcMmjZZoLV/LnmZzyyG1obIb8G2iMmPHHbA4f7W2TCFWNR87N6aBPgQttB2Pu8uR15vvn9JCIiIiIiIjKAKRhNRGSQ2717NzfffDN33303u3bt8lwnJyeHk046iRtvvJH58+db+9qwYQMNDQ3W+hNPPNGz/M477+QjH/mIZ91NN93ETTfdZO3zscceY+nSpdZ6ERERERGRoSbqJoZjdUg/GM37wvUD0X24lgACW5jaUBNycjlEYjBapqEVmQbQhXy5NMcOevTTP2EZGQdHuEM51ENEREQGmnCshWf3P+ZZ15A7kZG5Y3t1vJCTS5jE46VMj7kGE3ssmgmTg+TnKJFYOKNzmN46ng/Hmj3LB0wwmmWe+9sb7W0yCKATERERERERERERkQEuk1C0Ix2nbEYf9u/AcXeYcLHdT5lgopHnm+ChqddBeAes+zHEIlA6Exb9GorHw8mPw1s/gJatMPwkmHwtHNpowoqat3T2P/EaE/A2/uOw7UHYtbqzzpcDU7+Yeo7+XJh6Pbz0r10nDtNvMPvn2NvBdWHL701V3Tkw/w5zPzQMhs2FvS/E9xmqNKFsTgCCJdC2L3HckR/ovD/mCljzmfj6wnFQtST1/PNGmKVD5eL4/dBh+k0mZM1m3g/hT5NTj9fdol+b53TnE/DCJ03AW6jChFMNmwsH3oSK46G92Tx3oXLzOBYx+/fZKzMfU8TG67Xf1/72afN7pOEywDGv//J50NpkAtOiB83vgmFzTfhaV64bH0gZPQSO3/QnIiIiIiIichQpGE1EZBC77777+PCHP8yBA4kXbHfV2trKQw89xEMPPcRVV13FrbfeSiCgPxEiIiIiIiLZKOq2WesCTnrncraAAK/grc42A+NC/r5mCzSIuJmFVtiCF2yhAvZgtP4Jy8g4GG0Ih3qIiIjIwPPsvsesx2tLSk/v9fFCvjzwCJ7qrxDcrOAmi0YzkgWfhWMtFFOa9nCZHq/aXh/W4/wBcj5lO99JFtA9ULZNRERERERERERERCSO44O6s8zSlS8A874Hs/8bWvdB3vDOuor5ZumqaByc+ixs+pUJSRt+ItQe7jOnDE56BN65E3auMmFkYy6DiuPSm+OUz0NhA2z+nQlUG3Ux1Jxm6oKFsOheaA+bz1UC3d6vP+YbsPJsE/zVsb2z/hN8h794s+5cWH9XfJu8EVCxoPPxxH+G1kZY+10TolZ5PCz4ec8C8mrP8g6HGnkBuO3ebXw5ZvtrzoRt9yfWVy2B3c9ArDW+3PGZIDaAqkWw4hWIHR7D509vvhUL4I1bzPbXnA6jLzX77h7Ltte9D5b8zozz9o9gz3OQO9wEseWNgMaX4PWvpTe2SG9pD5vXY28ac7l5ne9/w/xeyBthAtZ2PWF+VvJHmqA1X44JWswph433mt83FcdBw+VQMikxfM11TQBboCC+XERERERERIY0pd6IZJtYNP5bQqRv5NeZDysGsTvuuIOPfexjxGKxuPKxY8cyZcoU8vPz2bRpE8899xzt7Z0fItx2221s2rSJP/7xjwpHExERERERyULJgtH8RxiM1tttBiPbRf+ZhlbYgtRs+9kWUGALXuhrGW+vgtFERERkgHBdl1VND3rWFfpLmF10fK+PaTsGzDR8dzBxsQejOZh/hLcdI0PfH6/a1rcdn+f58jPqv7/07Fwx1AczERERERERERERERHpZ/5cyEvzffP8Gpj0GUs/IRj/cbP0xMjzzWLjt8yx+mRY/gJs+g3EwiaYrGsg26z/gn2vw94XzOOcMlj06/hrrRwHZtwI028wAUuBI/i8Y/wn4N2HYcdfOstmfLUzIKl4kgla6qr+/Wb/jfyAdzDaxM9A3m9g4//Gl49YHh9oB+kHonUomQLzb0ssL5sNjWsSy8d+tHOcCZ8EPhlfP/I8eOv70Lo3s3l4Of0l+Ns1sHNlZ1mwBGpWwMZ7Mu/P8ZtwupKp5rb789ATBQ0Q2Q3RA0fel2SXd34a//jA2s77W+6Lr1vzufjHO1fC37/Zs3Fzh0N4Bww/CUZdCIFCE4pY0AD5taa+PWJec74cwIG86p4FOYqIiIiIiEjWUOKNSLZp3gJ/aOjvWQx+Z6+HwtH9PYs+89JLL/GJT3wiLhTtmGOO4dZbb2XhwoVx6+7atYsvfelL/OhHnd8A8dBDD3HDDTdw8803x61bV1fH+vXr33t8yy238J3vfOe9x/fccw/HHZf4zTUVFRUsXboUgGeeeYaLL774vbprrrmGz3zG8gEQUF1dnWJrRUREREREhpaoG7XWBZ1gWn0kCxDozTaDkS0oINOAMluQgi14zRqW0U/BaJlub38FuImIiIhk6q2W13i3dbNn3fElpxD0pXfMnQl7+K6C0bx0BKMlC/HKOOjMzfR43nt923Gv7TnONpkGowWdHHxOhhcSiYiIiIiIiIiIiIjI0VEyGaZ/ybsutxJOfQaaXoLWRig/DoKF3us6viMLRQPT94kPwq4nTZBSxQIonX64fwcW/xYeWw7Nhz+nK58Ps28x90d+ADb8Arb/ubO/unOg9kyoXmaC37b8H+BC9Wmw8O4jm2syDR9ODEbLq4ERp6VuO+ZyeOP/Hdn4/lwomwmnPG4etzZCsNTsQ4BNvzLhZl4+aP/8LUHbAfh1sb2+ZKoJ1vNyfiPklJr70RYTkObPhUABrH6/CcjriWFz4cDb0NbUs/YysIV3mNsdfzVLJsZeATNvhtyq3p+XiIiIiIiI9CkFo4mIDEJXXHEFra2t7z1etGgRDz/8MPn5iR9EVFZW8sMf/pBx48bx+c9//r3yb37zm1x88cVMnz79vbJAIMDo0aPfe1xaWhrXV3V1dVx9V4WF5gOSDRs2xJWXlpZa24iIiIiIiEiiqNtmrQukGYyW6cXuPW0zGPVWaIUtSMEWQJdtYRmZb+/QDfUQERGRgWVl44Oe5Q4+FpWmcUFDD2RbCG626whGCzhB/ARoJzE8OtN9l/n63se3mR7nZ5tMA9wGynaJiIiIiIiIiIiIiIgHnx+GzTmK4wVh+FKzdFcyBc5+B/augWARFE80gWwAgTw44Q+w7QFofAnKZkHtWWb+vqAJVYseglgUckr6dhsmftoENK39HzNm6Qw4/pdmHqlM+BRsvAda3u0sG34i1KyAFz9vb9fV9JviH+eUxT+e9iV49cbEdmM+ml7/HYJF5jnZ93fv+pxS73KAYJfnIJAHgfrOxyNOtwejTbsBXvuKd92pT0PFcfFl79wFL3waogc6yyZfC2M+YuYe3mnGanwZdj4Oe//WuZ4vxwTIdQ+Ry683z2+sFRlE1v0Edq42gYJ5I/p7NiIiIiIiIpIBBaOJiAwyjz32GGvWdH77SHFxMb/85S89Q9G6uvbaa1m5ciX3338/ALFYjG9/+9vccccdfTpfERERERERyUxvBKNlevF6wAmk3fdgZ9t34V4KUrCFYtjKMx23t0RcBaOJiIjI4NPUtoeXDz7jWTe9cC7lwb75BulsO9bLBi6xJLXOe/dyfXkcih1IWKOvj1cjrvdzE441e5YPlACx3AwDsRWgLSIiIiIiIiIiIiIivcYXgIpjvev8Iah/n1m8BAr6bl5dOT445maYcRO07oPcivTbFo4xAV9v3wYH3oKKBTD+UybY652fwr7XO9f150N7t8+d/Pkw+oPJxxh1sQkXc7t91tbw4fTn2WHyv8IzlyeWVyw08971ZGJdyTRwnMTyDjWnw5rPJJbn10PJVHu7glGJZWMuM9t7aKOp9+fE1+dWQcOHzGLjutC8CXDMHBwH2iPwS8tnYKFyOOF+eOajsP8f9n4l+xxYC2/fDtNv6O+ZiIiIiIiISAYUjCYiMsjcddddcY8/9alPUVNTk1bbb3zjG+8FowHcc889/OAHPyAUCvXqHEVERERERKTnkgWj+Z303u4LOZldlJ/p+oOZ7cL/TIMUbCEXtv5tQQr9FTiWcXDEEA71EBERkYHjiX1/JmYJ5FpSenqfjZttx3rZwHXtdV2vpQj5cr2D0Xrp+NzG1r+tn1xf8i8wyhahDAPcBkrgm4iIiIiIiIiIiIiISK/yBTMLRetQMApmfj2+zF8Oy1bDujth32swbC6M/ShsfxRe+jfY/waUzoR5P4T8uuT9F0+Axb+HZ6+EyC4IFsOsb8HwEzKfa93Z4M+F9m6fi428AGpWgC8EsUh8Xf15qedXdQLsXBlfPu4qGH4iOH5w2+Pr8usht9q7P38OFI9PvS02jpMYuuYPQV4NtGxLXH/u96HiOCieaA9Guzhm+o3sgT3PwY7HIVQBvhzIKYNDGyBQCLEwvPyFxPb158Pm30DZbGhc0/Ntk0Q7HlMwmoiIiIiIyACjYDQRkUHmiSeeiHt86aWXpt126tSpzJ49mzVrzBun4XCYv/3tbyxcuLBX5ygiIiIiIiI9F3WjnuU+/PgcX1p92MK3emv9wcweWtE7QQq2fW0Lp+uvwLGMt9cNE3Njab9GRURERI62qNvGE01/9qyrCtYwKX9mn43dW+G7g0uSZDQ6k9Fs+663gs5sbP3bg9EGRoBYpsFoma4vIiIiIiIiIiIiIiIiHnLKYPLn4stqzzRLrM0EsaWr7myo3Q7NmyGvDnz+ns9pyR/giQ9A2z5TNu5qmPBPps9Fv4YnL+gMTqs5E6b8a+p+l9wHz10N2x4wwW1jPwZTrwfHB6MvgfU/i19/0mfjvznpaKg7B976QXyZPw9GnGbuj70CttyX2K5sdudcQ+VQc7pZbKZcB1vvh0PrTSBeZbfr9/43yXZ/0E1ef2GLeW62PwprPmdeDx1GXwIb700MoRvsWhv7ewYiIiIiIiKSIQWjiYgMIo2Njaxbt+69x6WlpUyePDmjPhYuXPheMBrA888/r2A0ERERERGRLBJ12zzLg076//wUcIL48BMjvX9s0cXunWz7ItMghYhrCUazBKBlW1iGLfAh4AStr9FWN0KuZftERERE+tvLB55lf7v3P0IvKV3epwGv1hBcyzHjUOAmCUZz4oLR+ja4uMBXxKHYgbTXtx0nD5RzqpCTYYh2huuLiIiIiIiIiIiIiIhIhjIJRevg+KBg1JGPPWIZnLcLml6B/FGQW9FZV3cWvH8n7H4GCkZC0YT0AsxySmHRLyHWbubZtc38n0D+SBM6FiyChstg/NVHvh2ZmnYD7H4aGl8yj31BOPY2yCkxj6uXQagCIrvj2zVcmtk4jmP2o03DZbD+rsTyydea27FXwLqfJNZXnwr+XLOMPB9qz4bILhPW5j/8+d6Mr8IfxniPO/ULMOMr8Ms8iLV6r3Pac7BzlQkbe/3r9m1IV+5wCO848n6SaWvq2/5FRERERESk1ykYTSTb5NfB2ev7exaDX35df8+gT+zatSvu8fjx43Ey/FaMSZMmxT3euXPnEc9LREREREREek/UjXqW+5303+pzHIeQL5eW2KG01s8dIBfxHw22gDJbAIKNLUjB1r/tOeivsAzb/EsCZexp834vIRIL67UkIiIiWWtl04Oe5TlOiONKTurTsbMtBDcb2GPR4vXGvnNd13o8Xxwo5VBresFoUbfNGhKcN0COg0O+UIbrD4ztEhERERERERERERERkR7yBWHYHO+6YJEJT+tRv36PsgDM/KpZ+lNeNSx7CnathpbtULUECkd31vtDcNJf4Inz4cBb4MuB8Z+Cidf07jxGnu8djDbyAnNbc6Z3MNqYy+Mf+3Mgvza+LK/GPm71ySa0bs534PlPJNZXHg/l88ziuvZgtJIpZj8+dxVs+pX3OufvhZyyzsdt+8GfB4c2mr4LG8zrItYOe56Dtd+FPc9C82aItZlrRCd+1gTVOQ7seQHW/9T0013rPvs2i4iIiIiISFZSMJpItvEF4t8oE8lAY2Nj3OOSkpKM++jeZu/evUc0JxEREREREeldtgvtA05m3wyZ68tLOxjNFjYwFFkDyjIORvNe3xYs0FuBbL3FFjRR7E8WjNYClHnWiYiIiPSnrZENvN3yumfdvOIl5PsL+3T8bDvWyw72aDSHzi8F6o1gtKgbJUa7Z11xoIx3Wzd79J/43CR7vgZKgJjP8ZPjhGh1I2mtr3NFERERERERERERERERGZQCeTDiVHt92Qw4ay0c2mxCuQJ98HlgzRkw9Yvw+tfMY8cHs79tAsmA/8/encfHUR72H//O7C3r9CFfMsjGF+bwgc0NxpyOCwRCEiAHOZq7JKGE8kubNnZ+ISRpaBNISEgoDTQl9JcmpKQOkNJgm9MhmBsbbIMNvvAtWedqj/n9MdjSaueZ3ZVWK630eb9e85LmeeZ55pnZtfyMtPMdTf4LNyStZ+jY5EukKe/L3XcgIk1cKu16OLM8MkYae4b7fcN7pWf/SnLSmdtM+UD395Ylo4bLpHCNNP2z3sFo4dFSqDazLFTtfq2anlluB6Rxp7mLn6kflSZfLK3yeO0Sze6xWLZ/HwAAAACAIYMrOAAYRhwn8yYRy++Xi3kqRh8AAAAAgOJJOUnP8qBV2DMQCrmBvVxu4i+FiNX/4AV3e1Mwmnf/pteg0EC2YjEGowVrPcv92gAAAAy2xw4+bKxbXLtswPdfrPDd4cTJMxjNdO4KCZXzO881Qe9gX6/+O1PmfmJ2Rd7jGWyFXSsSjAYAAAAAAAAAAIARbNSUgQlFk9zQsbnflN63RzrvUemKfdKsL3XX2yHp9F9KS/4gzfuOtPj30lm/dUPP8jHvu1J0QmZ/C38sBcLuemyidPp9kh3u3qbxo9KMz2f2M+2T3v03ftT9Wn+WFBmXXX/UB/2D1foqbPoMoyO9tFzavabvfae6pMShvrcHAAAAABSksLslAQBD2ujRozPWm5ubC+6jd5u6Ou8bPgAAAAAAgyPhJDzLg1aooH4KCTvjZvduxtAKJ//gBcdxjCFh5mA07/LOQQobMx1vtSE4QhrZwR4AAGDo6ki16ZlDqz3rjokdq4bo1AEfg2muR7CsQY8Px0csU6hc/ufOby5fHfCe33r17xfGVk5h01E7ppZUfn9jNF0fAQAAAAAAAAAAACiS6DgpusS7zg5IEy90l0LVnSi95wVp10Nu2NfEi6TqWZnbHP1BadJ7pP3PSFXTpVFHZ/dz7FeknSulzj3dZdM+KdXMfneMIems+6U1l0iJJrds3FnS3G8VPuZ8hMwPd9WrN7lLxvY10ugFkh11g+5qTpAsW5pwgRQZLXXulcJ10ssrpC13S6m4G/Z22r+5561lszTmZKlicu6xpbqk9relQ6+721fNcvfVsVMa1ej+Lbz5NSnVJlVOl0JVbj0AAAAAjFAEowHAMDJuXObTEzZu3FhwH6+//nrGen19fb/GBAAAAAAorqQxGK2wX/VFCwg7Ixitm+lcJJ2kkk4ir4C6pJNQWmlD/97BAuawjMEJGzPtt8KuVNAKeb5P/YIiAAAABsvaQ6sUd7xDtM6uXVqSMZjmgPF0pxzHkTUQT8ke4hzHMdb1PBvGebLhNfXc1idErcYQ/OvVf2e63dhP1K7IezyDrZDrP64VAQAAAAAAAAAAgDIWGy9N+7j/NqEqacJ55vqaOdKFa6Utv3BDv+qXSI0fytym/kzp8p3S/rVSZJzbZqACv8I1hW2faJZ2ryqszZ7HpAcazfUVDVKqQ4rvdwPOWjcX1n9P486S5nzVfQ3ssJTukgIRKdEqBSskWZKTlKyg5KSk1jek2EQ3qK51izT6JDfgzUuixW0fqsx/PJ173Nc61SE1XC7VHtf3YwMAAACAHAhGA4BhpK6uTsccc4zeeOMNSVJTU5M2bNigY489Nu8+nnrqqYz1RYsWFXWMI/HmHQAAAAAopmTaFIyWO5CrJ1P4gpdoAdsOd37nLZ7uVDCQ+3XwC14wBdaZXoOE06WUk1LACuTcbzGZjiFiRxWxo0qmst+nfscNAAAwGBzH0WNND3vWVQVqNK/y9JKMI2J5zwHTSinpJBSywiUZx1DiyC8YrfsD8qZ5ciEBwn4BvtWmYDSPNqZ9BhRUyC7sem0wFXKtWMi2AAAAAAAAAAAAAIapyqnSCV/33yYYk8YvGfixhAoMRhsI7du7v+9PKJok7X1cWvN4//robfwSqe0td3FSbtnML0pdTVK03g0/2/oLqW6eNOkvpMkXSzv+W3r15sx+XvoHaeaXpOpZUstGKZ2UGi5120XrJceRvO4ldRwp1S5ZASnAw7gAAAAAmBGMBgDDzJlnnnkkGE2S7r33Xt100015td2wYYPWrVt3ZD0ajeqkk04q6vgikUjGejweL2r/AAAAADDcpZT0LC84GM0q4GZ3Q1DDSOR3439nukOjAlU5+4g75uAF0+vit9+udKdigVE591tMfsFoUTumtlRLdhuHYDQAADC0vN7+knZ3bfesO6PmwpKFWeUK3w3ZIy8YzU/Pj01HDMHChQSjmea2lmxVBqqNbRzHyXggUIdhn9FAeYWHEaINAAAAAAAAAAAAoGwFIlLFUVL724M9kqFr96rsso0/zC47+IK7vPotc18bb8tc33R7YWMZc7I0+VLJDrqBaWMWSvWLpTJ6+BgAAACAgUMwGgAMM9dcc43uueeeI+s/+tGPdO2112rChAk52/7t3/5txvpVV12VFWTWX7W1tRnru3btKmr/AAAAADDcJZ2EZ3mwwA8BmAIEvHCzeze/c2EKVOit0yekwfS65NrvUAlGi9oxY5Ce33EDAAAMhjVND3mWW7J1Zu2FJRtH1GduHnc6VCnvcK7hzJHjU9sdRmYORss/lDdX6K9pfAmnS2Gr++9opjC2crueKiQYu5DrSgAAAAAAAAAAAAAoiakfkV69ebBHgXzsf8Zdept8qRSulWqOk0LV0oFn3UC39m3SpL+QImOlQExqeK9Uf45kWZJll3z4AAAAAAYWwWgAMMyce+65mjdvnl544QVJUnNzs66++mo9+OCDisXMN158//vf1wMPPHBk3bIs/fVf/3XRxzdt2jSFw2F1dXVJklatWqVEIqFQiBR/AAAAAMhHIm0IRivwV32F3MAeKbMb+QeS33kzBSFkb2cOaTD17xdOMBiBY6Z9Ruyo8f1SSDgFAADAQDuY2KeXWj0+XCvpxMqTNTo0rmRj8Z9jjtQ5lDkYzcojGK2QObJp26gd870W6kx3KGxHMta9+6nIeyxDQUHXigWEqAEAAAAAAAAAAABASZzwf6VEq7TxtsEeCfpqx+/Mddv/q/v7jT/s/j5UK4XrpMho92vG0rusx3qo2g1WAwAAADDkEIwGAEPMO++8o61bt/apbWNjoyTprrvu0mmnnXYkfGz16tU666yzdPvtt+uUU07JaLNv3z4tX75cP/7xjzPKb7zxRp144ol9GoefcDisM844Q6tWrZIkvf3227r00kv1uc99TjNmzFBFRebNIRMmTFA0yk0VAAAAAHBYSknP8qBdWOB0tICwM4LRuoWtiCxZcjyCGvINrTBtZ8lWyAp71vm9BnGn9GEZpmOI2DFjkMLIDfUAAABD0RPNf5CjtGfd4tr3lHQsvnO9ETqHSjvmYLQeuWhFCeU1BRy7ob+5gpFrj6x3pts9tyvk2mso4FoRAAAAAAAAAAAAQFmzA9LCW6UFt0g7Vkr7nnbDtFo2DfbIMJASTe7StqWwdpb9bqiaR6BaVshar/VgJaFqAAAAwAAiGA0Ahpirr766z22dd28SWbBggX70ox/pc5/7nNJp96aedevW6dRTT9X06dN13HHHKRqNatu2bXrmmWeUTGbeVH/BBRfom9/8Zt8PIofrr7/+SDCaJD388MN6+OGHPbddtWqVzjnnnAEbCwAAAACUm2TaEIxmFfarPr8b/Puz7XBnWZYidlSdHuEJXmVeTCENUTsqy/ABiYgdMfaX736LJekkjAF9ESvqE05R2nECAACYJJ2Enmx6xLNufLhBsyqK/+AYPyErLEu2Z1Bbqed6Q4c5GM3qkYxmmnt2OXGlnZRsK5BzT8bQXytXMFpmO9NrVW7BaFwrAgAAAAAAAAAAABgW7JA05XJ3OeZT0spZ3tud9ENp+mek302TOnZ4bzN+idS6RWrbOmDDxSBx0lLXAXcplBXMDlPLK2CtTgpUEKoGAAAA5EAwGgAMU5/+9KdVV1enT3ziE2ptbT1SvnnzZm3evNnY7pOf/KTuuOMOhUKhARvbxRdfrJtuuknLly9XKpUasP0AAAAAwHCUdBKe5UGrsOu4Qm7OL7cb+QdaxI55hh7kG/xl2s4U6iBJthVQyAor4XT1eb/FYgqOkNxgBFM4AsFoAABgqHi+5WkdSjV51p1du9QYVjtQusN327Pq/OZew5mTbzCa5RdcFlcsUJFzX3HHPD/3uxbqfU3g9fod7qecFBaMVl7HBgAAAAAAAAAAAGCEGnWUZEekdDy7bsJ5UiAszfyC9OLXvNuf96jkONILX5U23ialOqW6+dIp/yKNXtC93S8NnzeITZQu39m9vv4fpRf+j/e2l213A7feus/dX88xh+uksadJHTul8BgpEJV2/t7d3unxwNvq2W5Z8yvZ/QdiUorPcxaFk5Tie92lUHY4d6CaKWQtwEPMAAAAMDIQjAYAw9j73/9+nX322br55pt17733at++fZ7bhUIhLVmyRMuXL9fpp59ekrF97Wtf0+WXX65f/OIXeuqpp7Rx40Y1Nzero4NfqgEAAACAH1MwWsAq7Fd9hd3szh+o44m2AAAgAElEQVTQezKFL3iFpRWyXa7zHLVjSqSGejBazCcYbWSGegAAgKHnsaaHPMsjVlSnVi8p8Wje3bcxGI2/m/jxCy6LO52KKY9gNMM8NWJHFbRCCiiolJJZ9XEns52pn5idewxDSSFhZ4RoAwAAAAAAAAAAACgLgag05X1u2FhPdfPcEDFJmnSxdzDajM+7Xy1Lmv9d6YSvS+kuKVQjWXbmtpGxUtzjHs5jPpO5PuECSR7BaMEqN0TNsqXZ17lLPtIp96sdyK7r3CPteUyqminVHi81b5AePN67n+rZ0qHXvOtq5kjLXpGeu156/Qf5jQtm6S6pc7e7FCoQLTBQrcd6IFz8YwEAAAAGCMFoADDItm7dOqD919fX6wc/+IH++Z//WevWrdNrr72mvXv3Kh6Pa+zYsWpoaNCZZ56pqqqqgvtesWKFVqxY0eexzZkzR9/+9rf73B4AAAAARqKkk31DviQFrVBB/XCze9+Zzke+wV/G4AVD4NqRejuqllRzn/dbLH4BcBE72u/zAwAAMJC2d27RGx0bPOtOrj5HscCoEo/IZZoLjtQ5lCPHWGep+wnbfuHC+YbKmc7x4XltxI6qPd2as12HR7Cd2768rqcKuf4jRBsAAAAAAAAAAABA2Vj4I6ljp7RnjbtePUs68z/dwDNJqjtRmvYJ6c2fd7eJTZZmfyWzn+AoSYbPFjR+xDs0rPHqzPW6eVLVDKllU2b50Vdlh63lwysQ7bBovXTU+7vXYxPM2055n/Tqzd51jR91z9VJ33eD3faskZykNOtL0qijpWc+L22+w9z3pW9KO/5bWvdl7/rj/s4Nldv8M3MfcKU6pY5d7lKoQIUbkBbpFZ4W8ijLCFirlezCPqsOAAAA9BfBaAAwQti2rUWLFmnRokWDPRQAAAAAQD8knYRneWgAg9G42T2T6XzEnTyDFxxDMFqO12SoBI757S9qx4yhHn6BagAAAKWypulBY93ZdUtLOJJM5jnmyAxGk08wmoocjGaapx7uO2rHDMFoHb7rh5Vb0HS+14qWLIWtyACPBgAAAAAAAAAAAACKJDJaOn+11LpVSnVI1bO7Q9EOO+UuaeJF0u7VUmWjGwZWMSn/fcy+XtqxUmrd3F026zo3hK0ny5LO/p205mKp9Q23bOJSacEthR9XocJ1UqhGSmQ/qFdT3iftXiXtezq7rme42uRl7tLT1I/4B6ONapQmnO9dV3GUNPdb7vdjT5fWftx7u6kfk7bc41034QJ3jPEDUtfBXkuPMq/jHklS7VJHu9Sxo/C2wcpeYWl5BqyFav3D+wAAAAADgtEAAAAAAACAMmIKRgsWGoxmCK/y3LbMbuQfaKbzkW9AmWm7XAF0pv2WOnDMFPhgyVLICpvPz4gN9QAAAENFe6pVfz70mGfd9NgcTY40lnZAPZjCs0ZquKxvLJrVMxjNfK3S2e/5eezdr/kF/3am2z23K79gtPyuFSN2NOO1AAAAAAAAAAAAAICyUNlorrMs6egr3aUvRk2RLlorbfuN1LpFql/sBq15qZktXbJJOrTBDSqrmNy3fRbKst0AsTfuyiyvminVLZBmf0V64gPK+Mv9lCukqun+/Y49XQpWScmW7Lrx57nntmaONO4sae/jmfUzr+3+flSjeR+1J5jrZn9FmmQ41z2lU1KiyT887fDSO2TN69hGkmSru7S/XXjbUE1mWFrvgDWvkLXwaClU7b5nAQAAMCIRjAYAAAAAAACUEVMwWsAq7Fd9hdycH7YiBfU93PU3tMIULJbrNelvIFuxmPYXtiKyLdt4HKbjBgAAKJW1zY+qy4l71p1du8yzvFSGylxvqHAcv2i0bgEroJAVVsLpyqrLP7jYf35uCgrr3b/peqDsgtHyDNEuJGwbAAAAAAAAAAAAAEaMyBhp+mfy2/ZwWFipLfi+1LZNeud/3PXKadLZD7jjOeoK9/vNP5Xie6WJS6Xj/z53n5YlvXeL9JuxmeV2SDr2b7rXF/9O+vPnpR2/d4Owpn9WOvaG7vqxp7ghWonmzH4qjpKqZpj3H6rKPUZJsgPuaxQZk9/2PaUTUlfvUDWPQLXeZfEDUsr7YWsjRqLZXdq2FtjQksK1PoFqPgFrwSr3fQkAAICyRTAaAAAAAAAAUEaSTtKzPGiFCurHdHN/1nZWVDZP2sqQbzCCiWm7XK+JKXgg30C2Yok7pvEXFhwBAABQSmknrceaHvasqw7UaV7VKSUeUSbzHGqkhsuag9FsZV6fROyoEimvYLT8zp1pPn34NTGH1mW2MwejVeQ1jqEi3yA303kBAAAAAAAAAAAAAAxxoSrp3D+44WiJQ1LNsVLPzwo3XOIuhYqMka5KSK/9k7TrD1J0ohsSN35x9zbhWumM+yQnnbnPwwJRac6N0otfyyw//mvSmJO992sFpJrjCh9voeyQFB3nLoVKdeUIVPMJWEuN5M/fOt3no1BWwH2/hXqEpfkFqvUsC44iVA0AAGAIIBgNAAAAAAAAKCNJJ+FZPmDBaNzsnsV0TvINKMsVvGDe79AIHMsdHDE0AtwAAAB6er39Je1J7PSsO7P2woLn08U2VOZ6Q4U5Fi1bxI6pNXUoq7zfwcWW//y2dzvzPLm8rqnyv1bMbzsAAAAAAAAAAAAAwBA1akrx+7SD0pz/4y5+/B7afNzfSaMapbd/LQUi0tFXSw2XunXjzpL2Pp65/cSLpHBNv4Y94AJhKTbeXQqV6nSDweI+4WmmsnT2g+ZGDCclxfe7S2uBbe2QFKp1A9VCdVLNbGn656WxhnC+QqTi0r6npMhYN9CPB5gDAAAYEYwGAAAAAAAAlJGkk/QsD1qF/aov35vzo2V2E38pmM5JPM/gL2PwQo5zbdyvU9rAMdP4D4/PFJCQcLqUdlKyrcCAjQ0AAMBkTdODnuW2bJ1Zc2GJR5ONcNnezNFoljKfyHs4wKy3vOfnjv/8PGKZ5v/d7ZJOwhhiHSuza6p8rxXLLfANAAAAAAAAAAAAAFBGGj/kLr2d8Utp9TKp6WV3ffQi6ZR/Le3YSi0QlWIT3aUQjiOlOrzD07JC1jy2MXxmfURIJ6T4XneRpP1rpTfvdt9v486QxpwiVc+UAjEpOEoKVrpf7bBkWeZ+3/qV9Nx1Useu7rKTbpUmXCDVHJvf2BIt0p7H3PC2qunS3qeldFxqfUOKTpQmLXXLAQAAhgGC0QAAAAAAAIAyYrrZPmiFCuonYAUUssJKOP5PAjMFNIxkpnNiCgzL2s4UvGAIdMi931IHo3nv7/D4/ML04um4YoGKARkXAACAyYHEXr3c+qxn3dzKU1UbGlPiEWUzh+/mN8ccbhyfYDT1DkbrZ6hcX+e3Pfv321e5BYjlG45NiDYAAAAAAAAAAAAAoOQqGqT3vCgdet0Nhqqc5h9ENZJZlhSscJeKhsLaOo6UbM0OS+sdoNY7YC1xOFQtPTDHNNgO/NldTKxgZlDaka+jpP3PuOevt3VfNvcXGSPFGqT4HindJcX35x7jOkkTzpfmfls6sE5q3ybVnihN/gt3HJL7+qbj0rb/csPfxp4qjVmU2U/63XsW7MLuUQAAACgmgtEAAAAAAACAMpIyPH0raBX+q76IHVMilSsYjZvdezOdk/yDFwzBaDlC6Ez7LXVYRq7x+71n4ukOgtEAAEDJPd70sBx5f+Bycd17SjwabxHLMNczhOoOd45jDkbr/XlmY6hcHufOcRzj/PZwv8aA4h79d6bM1wIxu7zmvyErLEtWjnA6QrQBAAAAAAAAAAAAAIPEsqSa2YM9iuHNsqRQlbuMOqqwtk5aSrSYw9RMZfEDUqJZyvF5hSHNSbrHkGguTn/x/fmFofX2zv+6S2+BmBQZJ7W/7d3uwrXS/j9Lr39fan3TLas5Tjr2b6SjPuAGEsqRaua43zdvkNKdUuUxbvjaroelZJtUv1iqOqbwcQMAAPRCMBoAAAAAAABQRpJOwrM8aBX+NKaIHVVryv8Pr9zsni1iGYIR8gwoixsC1HKF0Jlei3wD2YrFPP53g9EM50caucEeAABg8CTSCT3Z7PFBP0kTw1M0I3Z8iUfkzRi+VeIQ3KHCL5TLUmYyWn/OXcLpMu4rkisYrce82G9OXm5h05ZlKWJHc15ncK0IAAAAAAAAAAAAAACyWLYUrnEXNRbW1km7oWKHg9JyBqr1WE8cGoijGV5SHeZQNEn6n1Ozy5pfldZ+3F0KMXqhVDFZsoLue6JqphSuk2Z8QerYKb34Nent/+duG6yUjvs7KTrBfS2j46TJl0qpTskKSJExUvN6qe0tafQCKdUubf6Z+5pH6qX6s6Sxp0nBCslxsp+6CAAAyhbBaAAAAAAAAEAZSRiD0Qr/VZ9fgNVh0TK7ib8UTOfEFBiW73a5ggXM+y1tWIZpf93BEeb3TL7nCAAAoFiea3nSGAZ8du17ZA2RD8LlE741svg9/bd3MJr3/DOfAGH/QDP3Ncln/u/3OkXtipzjGGoidizn+eNaEQAAAAAAAAAAAAAAFJVlu+FZ4TqpclphbdNJN1Std6Bawitkrdd6snVgjmckO/Csu/T2/A3ZZclW6cW/K96+Q7Xueygy+t33U6+vkdHeZYEKQtUAABhiCEYDAAAAAAAAykjSGIwWKrivfG5kzxXWNRIZgxGcTqWdtGzLNrZ1HMcYLJbr9ehP4EMxxR1DMJp1OBgtYmxb6rECAAA81vSQZ3nEiurk6nNKOxgfBKNlyj8Wze/c5Q4Q9ju/h/vNp//OdLvnNgEFFbILv1YbbPmEaHOtCAAAAAAAAAAAAAAAhgw7KEXGuEuh0olewWkHpd2rpA3fK/44MfASTe7StqWwdnaoV2Da6DwD1mrdtgAAoOgIRgMAAAAAAADKSMpJepb3JRgtnxvZ8wlPG2n8zluXE1fUMp+zpJNQWumC+/Wrj6c75TiOrBI9ocoUHnF4fLYVUMgKK+F0ebTNHU4BAABQLG93vqEtna971p1Ss0SxQEWJR2RmCsEt9VxvqHAKiEYzBhfnESrnNz893G9+wWje+4oGyvN6Kp9rxYjPdQ8AAAAAAAAAAAAAAEDZsENStN5dDpv0HqnhMmndddKBPw/e2FA66YTUudtdChWsMoeo+QWrBaukEfa5MAAACkEwGgAAAAAAAFAm0k7KGKrVl2C0fELP8rkhfqQxhVZIbviC33n1C17Ida5NgWtppZR0EgpZYd/2xWI6hp7jj9oxJVIEowEAgMG1pulBY93Zte8p4UhyM80x00qXdK43dJiD0axewWj5BJeZmALNevbrF1qXq59yDZrmWhEAAAAAAAAAAAAAAIx4406Xlj4jtWyW9r/71Q5LkbFSxRSp7kQp2SYlW92viVYp1eZdlmiVNt8x2EeEgZJscZf2twtrZwXMoWm5AtYCkYE5luEgnZT2PSUdeF6qmSONPVUKVkrxvVKoJvvcOWnJst1/px27pIpJUnCUuW/73ZiedEpS2g1XBAAMCILRAAAAAAAAgDKRdJLGuqBV+K/68rmRPWII4xrJ/M5bZ7pDNT5tfYMXcpxrv/3G050K2aUJyzAdQ8/xReyoWlLNWdsQjAYAAEqlPdWqZw897lk3I3a8JkWOKvGI/EWsoTHXGyrMsWiS1espqaZzF/eZex/ZxvGenwYUPBI+bQxGczqVdtKyLds8Ry7T6ym/MOhCtgEAAAAAAAAAAAAAACh7VdPdpb+6Dkpv/7/s8tN/KbVskl5e7t1u4e3SqKPcMKxHzvTeZuJF0mm/kLY/ID3z6ez6iilS7Vxp58q+jx/F56Sk+D53KVSgwiNEzSdY7XB5qMYNARuuWt6QnvigdPA573orIMUmSe3b/PupniUd8xk3IK1jl/TO/0iHXpe6DnhvHxkjTVwqVU6T9j/rBihOeZ/UcGn3+U51Sa98Q9rzuBSulWZ8Xpr07gNe0ynJSbj76Njlth+9wG3rOFLbFrcuFZcOrXdfz4bLpNjEvp0nACgTBKMBAAAAAAAAZSLpJIx1h2/aL0R+N7vnDk8baaI+5y1X8Ffc8QlGy3GufffrdKhS1b7ti8V0jD3HZ3pv+QXDAQAAFNPTzX9UwunyrFtct6zEo8ktmiN8t1RzvSHD8Y5Gs2RllfkFl+ViCk/LmNv6hNZ1OXFFrZg60+2e9bFARc4xDEV+1x6FbAMAAAAAAAAAAAAAAIB3Tf+MtO0/JSfdXRabLE25XNq92txu2selYIXbLjbRDU3qrfZEKTpOmv4p6ZhPukFrbW9LdXOlaH33do4jHXjWDeSqOV4KVUrxA9LeJ92wpdp50thTpa33SnvWuPvc9uvMfY09TQpWuWFxiWZp1x+kZJuU4nPiJZVqlzrapY4dBTa03FAur9C0XAFrgZhkZX9+a8hItEqrlkqtm83bOKncoWiSG0L2/Ffy33d8v/vvpqetv3C/BiulUFX2v90d/52739gkqWOnd91LX5fOfkByklKyQxp3hiTH3ZfjSJ17pJaNUvVs9+dDvnY+JL349264XN0CaeFt7/YtN3iu/W0pOkGKTXDfFyZdze5YTEF8Tto9z21vuT9XwjX5jxHAiEEwGgAAAAAAAFAmkk7SWDdQwWjc7J7N77zlCv7yC07Lda79gtNKGThmOoZIHuERpuAJAACAYko7aT3W9JBnXU1wtOZWnlziEeXmN8f0C9cdrhx5B6OpkGC0HKHFftv0nHv7ByN3KGrHjPPxfK65hqJ8ArIJ0QYAAAAAAAAAAAAAACjAhHOls34rvfotqWWzGzS08EdSICrVL3bDxpItmW3GneWGokluuNCiO6THL88MV7PD0tSPda9btlQ9y116syxpzKLMsshoqeESSZd0l838grscluqS7KA54OiwfWul3Y9KrVul2uOlUVOldFx64gPmNstelg6+KMX3SVv+zQ1j6qtQrXTsV6TIOKnrgNR1sPtrvOf6ATfMbURy3j0PBwtvakd6BKb1Ck3zC1gL17rvn4H29q/8Q9EGS7LVXfrCFIomuf9mHjnDu86yM39OTL7E/fkRqpLsd+89CkSldEra+4S072k38Gzbb6XOd7rbHXxOeuTMvo29p+pjpeh4ac9q8zbRCdLs66TwGCkQkYKjpPadUmSMNP5cN4Rx/5/c91X92W7g3Fv3Sa1bpNEnSXP+xm0DYFghGA0AAAAAAAAoE0knYawLWoX/qi+/m93L80b+gRSwAgpZYSWcrqy6XOELpnpbds5wO9+wjDxCH4qlP+ERcad04wQAACPXhvYXtDfxjmfdWTUXKdCHufNA85ubl3KuN9R5PW/UdO7yCQ82B5pFPb/3al8jqTPd7llfrkHTBKMBAAAAAAAAAAAAAAAMgIZL3aW3YEya/13pzz3CyIKV0tybstsv+YP07JekQ6+54WPzvifVHjew4w6E89tu7Knukq/Ri9xjqD3eXZ/9ZTcIqWWjG6QUGy/9Z62UaM5uO+YU6aK17ved+6R0l1QxKf99p7q6A8Jyhaj1rvN54P2wlo67oVmd3p/N8xWqNoSo+QWr1bn/DiyvT415OPh84eMarnqGoknSjv92l8FyaIO7+Ol8R3rhq/n192qv9Z0rpTf/VTr3Ee9QSABla+h94hsAAAAAAACAJ79gtL6EO+RzI3u53sg/0CJ2VImUVzCaf/iCX6iYleMPdiErLEu2HKWz6vIJfSiGpJNQSt5/yI1YucMjSjVOAAAwsq05+KBnua2Azqi9oMSjyY/fXG8kBqM5cgw12XNm0zVL0kko5SR9r5VM8/eeocT5hNaZXqNyvZ7KJyC7XI8NAAAAAAAAAAAAAABgSJrxeanmeDe8KFQtHfUB74CfCedLF6+X0knJLpO4kPHnSrsfzS6f9cXssopJmQFnM6+VXv1W9nYzPt/9fXRs4WMKhN3gtdj4wto5jpRsywxMix/IL2AtcajwcQ4XiUPu0ra1sHZWMDsszRSm1vTSgAwdZaJ9m7RytjT1Y1JwlBsON+4MafRJUrhWik7IP2QPwJBRJjMdAAAAAAAAAEmfJwuFrFDB/eVzI3s+4WkjUcSOqTWV/YfJXKEVpmCwfIIHLMtSxI6qM91e8H6LxS/YrOd7xfS+GYmhHgAAoLT2de3Wq23rPOvmVZ2qmuDoEo8oP0NhrjeUmILRLI9gtFzBZRWBSt96L5lzW/Nc/XD7Do/XTZKidoWx7VDWM/TYuA3XigAAAAAAAAAAAAAAAMVVf5a75KNcQtEkN6iodzBaqEZquDx322M+Jb1xp9S5p7usepYbHDcYLEsKVbrLqKMKa5tOSl1NPiFqPgFr6fjAHM9Q5yTd177n6w/42XJP9/eb78isO+dBaeJSAtKAMlJGsx0AAAAAAABgZEs6CWNdsA/BaPnd7J47sGskMp07v+AwSYr3IxhNcsPsvMMy/PdbLH6hHD2D9kzHMxJDPQAAQGk93vywMVRrce2yEo+mMKZgtFxzzJHE6/NIfgFdnemOfgejBayAQlZYCafLs3+3H+/XKJ8w6qEon9CziFWexwYAAAAAAAAAAAAAAIASm/pRqWO7tP67UuKQG2x2+i/dcLFcKhulC56UNtwiNb8qjV4kHf/3UrAMH1hoB6XoWHcpVLIjMzAt7hOidmT9gBvEZvg8HTDirF4mHfOX0sIfS4HwYI8GQB4IRgMAAAAAAADKRLGD0fK5ST+fG+JHItO5yxVQlk/wgh/TdqUKHPPbTySvYDRCPQAAwMBJpLv0VPP/etZNCh+l6bE5JR5RYaJ2TM0e5SNxDuU4aUNNdjKa33VNrnmyKXSud58RO6pEKjsY7XD/XoF2ucY2lOV3rViexwYAAAAAAAAAAAAAAIASsyzpuL+Tjr3RDe2KjiusfdV06eQ7BmZs5SIYk4KTpYrJhbVz0lKi2SM0LY+AtZT3Z6LKzqKfSH/+vHdd9SzpL9ZLlu2upxPSyyuk12+VUh1S/RJp3nekPyzybj/3ZmnOV6WWTdKh16Snr3HPd19M/ZjUcJm0c6W080E3RDDZJgWiUt0CKVwrJVqkvY/3rX+43rjLfV2nfniwRwIgDwSjAQAAAAAAAGXCLxgtYBX+q758wrjK9Ub+gWY6d6ZghcPijiEYzco3GM0UODYUgtGint/n2x4AAKC/1rU8obZUi2fd2XXLZFnZoVpDiWlOOBLnUI7hKaWWRzCaX0BXrnNnDC62egejxdSaOuTR3p3/5xuwVi5yhZ7ZCijYh2tQAAAAAAAAAAAAAAAAjGB2sPBQNPSPZUvhOnepnFZY21Q8OyzNFKLWu8xJDczx9MXEC6VgpZRsza6bfEl3KJok2SFp7rekE2+SUp1uIJ0k1S+W9qzJbj/l/W7wX/VMdxmzSHrH++GuOuUu6U9/6V13ZYcbgCZJUy7zP57OPdJz10tb73XXq2dLoVp37O3bpcar3fJEq7TxNv++vDRcLm3/rbl+yvukjl3SvqcL7/sw0/ksle33E4wGlAk+qQoAAAAAAACUiaST9Cy3FZDd848xecp1s7u7TX6BXSONKeDAFHx2pN4QmJDveTaFZeQKZCsW0/gtWQpbkSPr5mC00owTAACMTI81PeRZHrUrdHL14hKPpnDGOVSOOeZw5B2L5q3nPLS3XPNPY3Bxr9fCHFp3OBjNu5+oXeG7/6Eq1/VJxI4O+aBBAAAAAAAAAAAAAAAAAP0QiEixCe5SCMeRki3mMDW/gLWk94NR+2z8uW4g3NSPSpt+klkXqJBm/JV3O8vqDkWTpGNvkPY+kRn4NuX9UvWMzHaTLzUHo02+WLIC2aFx9Wd3h6LlI1ovnf7v7uI47lhN5n9X2ni7G2LWsVMK1UgtG6XWN723P365dOIK6eGF0oF13tuc9Rsp2SH9yuezcSfdJq37kmH8E6TzVkn3+dwDFaqREs3edXULpOmfkbb9RnrnEXMffkzHD2DIIRgNAAAAAAAAKBNJJ+FZHrJCfeovVzBa0Aoq2Me+h7u+Bn/FjYEJuUPqfPfrlCZwzBTA1jsYoa/BcQAAAH31Vudmbe3c5Fl3avWSvOdbg8k0Px+Z4bLe0WiWsj/EZVu2IlbUc67Z1+Di3u+XXKF1nel2z/p8wqiHolz/Xsrh3xMAAAAAAAAAAAAAAACAQWBZUqjaXUYdXVjbdELqasoMSzOFqGWUHXDb9jT2dOn0e93vF/xActLS1n+X0klp3BnSop9IlY35jWvyxdKSh6VNP5U6d0sTL5Lm3Ji9XcNl0rovK+vzb0d/yA00m329tOF73eWBqBtG1le5Hm4ZiErHfiWzrH2n9F+TvbcfNcX9OvNaae0nsusnLnW/Bn0+Pzbjr6RZXzQHox31fv9xW7Z00q3S2o9715+zUopNdI+tr8Fo8X19aweg5AhGAwAAAAAAAMpE0kl6lvc1vMx0c/+Reoub3U3MoRW5ghe863O9FoeZAghMgWXFZhy/FfVdP6xU4wQAACPPmoMPGuvOrn1PCUfSd8Zw2RxzzOHIKSAYTXLn0/GURzBazuBic/BvT36vTdJJGEOsY2UaIJbzWjHP6xcAAAAAAAAAAAAAAAAAyJsdkqLj3KUQjiOl2rtD02ITM/sIhKWT75BOuk2yg274VqEmnO8ufkZNcYPINtzSXRatl477qvv9vO9KdfOlnb+XIuOkqddIo+cXPpb+iI6XImOk+P7susPH13CZFLxWSrZl1k/9WPf345dIu1dl9zH1o+7XY/5SeuMuj/pr/McXHi1NOE+SpayAuegEd/yHtzM5+U7pmU+b63uH6AEYsvrw0xoAAAAAAADAYDDdbB+w+vb8A9PN/Ydxs7uZKRgtV/CXqd7UX/Z23q9JqcIy4o4p2C3Wa31wxwkAAEaW1tQhrWt5wrNuVsWJmhBpKPGI+oY5VN+Zzl1nn4OL85vfdqY7fK8B8p3nDzW5g9HK87gAAAAAAAAAAAAAAAAADEOWJQVHSRUNUt2J5mC1QLhvoWiFmPeP0tkPSDOvleZ+W7roGan2hO5xNl4tnf7v0knfL30omkVmrdIAACAASURBVCTZgcyAs8PGnyuNOtr9PlwrnfuoVDndXQ9Vu8d19JXd28+8NruPMadKY052v591XXZ42eRLpdEL3e8b3us9vhO/6b6Oky/Orpvxue7XL1jh3V5yg/GqZ5vru5rMdQCGlL7dMQkAAAAAAACg5FJO0rM82MdgtJAVliVLTu+nqLyLm93Non0MrTAHL+QXQmcKs4vnCGQrlnzHbxpn0kko5ST7HOYHAADg5enmPyrhdHnWLa5dVuLR9J1f+NZI4zje1yiW4UNp5lC5vgYXR3utm+bhnb77yBVGPVTluhY0XQ8BAAAAAAAAAAAAAAAAwIhmWVLDpe4yVM37rpTukrb8m5SKS5PeI53688xtxp4sXbpJ6tgtRca6gWo9TXmfdOavpNdvk9p3SBPOlxbc4h6/JNUeL134tPTGnVLrFql+sTTj8931R10pbX8gs087JDVc5n5/xn9I677kbhOqlqZ+XDr+a93bBqvMxxetl475tPT8V7zr03GpdavU9LK0f60UHiNNvUaKjpWctOQ42ccLYFBw9xkAAAAAAABQJhJOwrM8aIX61J9t2QpbEcUd77Crcr2JvxTMwQj+wQum+oiVX7CAXyBDKRjHn2dwhNtHpyoClUUdFwAAGLnSTkqPNT3sWVcbHKMTKheVeER9Zw73Ks1cbygxhTdbhu37Ok/ub/BvPN2hjpRfMJrPUymHsIjlfy1IiDYAAAAAAAAAAAAAAAAAlCk7KC38obTgB5KTlAIR87ax8ea6oz7gLibVM6X53/OuO/oqqWWT9OrNblBZZKx0xn1SbIJbH6yQTvkX6eQ7u8PUeqqb6wamJQ5llodHS7VzpYoGczCaJP1uauZ6723Do6WKKVL92e6+Nv5Yan7FDZSb9WVpwffdcXXuk+L7pMho6dBGN5Qt1S4l26TRC/3PLYCcCEYDAAAAAAAAykTSGIzW91/zRe2Y4qn8wgDQzRyMkCN4wRBCl++5HuywDHMwWqzXuvl4OtMdBKMBAICiebXtee1P7PasO6v2IgWs8nlqnymMKlf47sjiHY1mCurq9Dl3aSelLifuWdd7vm+a33amO3xfn3INmw5aQdkKKK2UZ32+wc4AAAAAAAAAAAAAAAAAgCHKDkgapM9YWpZ0wtelOTdKbW9JVTMky/bezksgIs34grT+O5nlM6+VAmEpNlE69xHp0Qv6Nr6uA+7S9GJ23eu3uku+Kqa4gWqxiVKkXho1RWr8iNS6xQ2Fa3ivW1eIdEJ69ovSsX8jVR1TWFugjBCMBgBDXHt7u5577jlt2rRJ+/btU2dnp2KxmMaPH6+ZM2dq/vz5CofDgz3MsnXOOedozZo1R9YdxxmQ/axevVpLliw5sr58+XKtWLFiQPYFAAAAYPhKpk3BaKE+9xmxY1LqoLkOnvyCEfyYAszyDUzoS+BDMZnG3/t8+L13ShXiBgAARobHmh70LA8oqDNqLizxaPrHGIJrCNcdzhx5/73GMgWjGYK6/Oae8bR3KJqUf/BvPN2pznS7Z11AwX5dqw0my7IUtWNqT7d61nOtCAAAAAAAAAAAAAAAAADot0BUqp7Vt7Zzb5Yi46S3/kOyQ9LRV0ozv9hdP/a04oyxv9q3uV87ezwE+I27ur//8+f73vfmn0on3SbN/CvvYDmgzBGMBgBDUCqV0q9+9Sv9/Oc/16pVq5RMJo3bRqNRXXTRRfrUpz6liy++uISjBAAAAACUWkre14f9C0bzvsE/V91I5xdQ5jiOLMNTaeKGALN8gwX6EvhQTPkHo5nfOwSjAQCAYtnbtUvr2573rJtfdZqqg7UlHlH/mOaEI3P+VFgwmilo2DcYzSdwrve8228ebgopjtox43VBOYjYUZ9gNK4VAQAAAAAAAAAAAAAAAACDyLKkY693Fy+BCqlymtT6ZmnHVWrrviRt+4106r+6xwsMI8T9AcAQ8+ijj2rOnDn60Ic+pEceecQ3FE2SOjs79cADD+iSSy7RokWL9Nxzz5VopIVpbGyUZVmyLEuNjY2DPRwAAAAAKEtJJ+FZHrT7E4xmDuQyhQvAHIyQVkpJx/ta3nGcvIPFTMyBD95hDMVmCo+IWJnjClsRcx8lGisAABj+Hm/6gxxDgNbi2mUlHk3/meaEI3H+5P2qSoZcNPO5c8znzu+89p53G0PrnA5zMFqgvK+n/K4HuVYEAAAAAAAAAAAAAAAAAAxpliU1fmSwR1Eae9ZIvz9B2vHgYI8EKCqC0QBgCPnGN76h888/Xxs3bswotyxLc+bM0YUXXqirr75a559/vmbOnJnV/tlnn9Vpp52mO++8s1RDBgAAAACUUCJtCEZTsM99+gVy5RvWNRL5BQGYAhYSTpfSSnvW5XuuzYEPnUo73n0Xkyn0ofe4bMs2hseZwtUAAAAK0ZWO6+nmP3rWNUQaNS02u8Qj6j/TXK8z3SnHMUaFDVPex2sZktH6EirnV9e7P2MwWrrTPEe2yjs8jGtFAAAAAAAAAAAAAAAAAEBZm3OjVLdgsEdRGoGINHr+YI8CKKq+3zEJACiq6667TrfeemtGWVVVlf72b/9WH/7wh3XUUUdltdm8ebPuvvtu3XLLLYrH45Kkrq4ufeYzn1FbW5uuu+66kowdAAAAAFAaSSfpWR60Q33u0y/gy69upPMLAog7HapUdXZ52hwIlm+wgN9r0uXEFR3g8AXTMXiNK2LHFE9lb+8XQAEAAJCvdS1PqC3d4ll3du0yWZZ3gNZQZprrOUor4XQpbEVKPKLBkzYGwZmC0czBZSadPnXhrGA0U/BapzrT7Z51sUCFsf9y4B+MxrUiAAAAAAAAAAAAAAAAAGCIC46SzntUWv9tac/jUmySVL9YClVL8X1S1wGp9U0pXCvtXi2lu6TWNwZ71H1z0g+l2MTBHgVQVASjAcAQcM8992SFop155pm677771NDQYGw3ffp03XTTTbrmmmt0xRVX6JVXXjlS95WvfEXz5s3TOeecM1DDHhZWr1492EMAAAAAgLylTMFoVt9/zed7s7uVX1jXSOQXUNZpCP7yC2XIN4TOL4Agnu4Y8DA7U6iZ1/soYkelVPa2fgEUAAAA+XAcR2sOPuhZF7MrtKj67BKPqDh8w3fTnQrbIycYTfIORjPF3ZnOnWluLpnn5yErrIAVyCgzzbMTTpfa062GMZV3eJjf+KN5BjsDAAAAAAAAAAAAAAAAADCowjXSvO8U3s5xpPZt0tpPSodekyJjpOh46Z1Hij/G/mp4r9T4ocEeBVB09mAPAABGuo0bN+raa6/NKDv99NP10EMP+Yai9TRz5kz98Y9/1LHHHnukLJ1O6yMf+Yj27dtX1PECAAAAAAZP0kl4lgetUJ/79AvSKvcb+QeSf0CZd8BC3DGHMkSsfIPR/MMyBpppH8ZgNM8+zOcBAAAgH1s7N+ntuPcT+U6rOc93zjSU+c0JSzHXG0ocYzCadzSa6brG77yZQ3+z+/J7TzUnDxY0pnLh937kWhEAAAAAAAAAAAAAAAAAMKxZljTqKOm8/5Uu3y4te1E669d96+uiP0tzvy1V9MgPmfVl6dxHpOP+XrIjUqg6u11kTO6+Ry+STvlXd7zAMBMc7AEAwEh3ww03qLW1+0nytbW1+s1vfqPKysqC+qmvr9evf/1rzZ8/X11dXZKkHTt26Jvf/KZuvfXWoo4ZAAAAADA4TMFoAavvv+bzu8Gfm93NQlZYlmw5SmfVdRoCFvxCGfIN7/ALVzDtt5jMwWjZ4+pLOAUAAEA+1jQ9aKw7q3ZpCUdSXL4huD4hu8OTdzCaDMFopmsX/2C0/of+SlJz8oBnedkHo/ldK1rlGT4IAAAAAAAAAAAAAAAAAECfBavMdWNPl/Y9lV1eO1cas9Bdjvtqdv2E86W53zT3+0ufwLPFv5cmnCcFIuZtgDJGMBoADKLXXntNK1euzCj7zne+owkTJvSpvzlz5uiGG27QzTfffKTsrrvu0ooVK1RXV9evsQ41mzdv1ksvvaQdO3aopaVFlmWpoqJC48eP19SpU3XCCSeooqJiwMcRj8e1Zs0abdmyRQcOHFB9fb0aGhp01llnDcj+d+3apT/96U/as2eP9u/fr8rKStXX12vRokWaNm1a0fcHAAAAYGgxBaMFrVCf+4xY5pv1o3mGdY1ElmUpakfVkW7PqjMFLJiCy2zZeb+GvmEZAxw45jiO8RgKCY8oRYAbAAAYvlqSzXqu5QnPutkVczU+PLnEIyoev7le5wgLlzXGohmeaOg393Qcx7Nd3DAv9Qo08ws5MwejDfzfqQaS3zETog0AAAAAAAAAAAAAAAAAGHEsSxp/nrT7j9l1J/9MWnWh1LEzs3zaJ/q3z/Boqcvjc4oTl0qTl/Wvb2CIIxgNAAbRrbfeKsfpvrVj7Nix+sQn+jexue666/S9731PiYR7s3xbW5vuvPNO3XjjjVnbfvzjH9c999xzZH3Lli1qbGzMaz+rV6/WkiVLjqwvX75cK1as8O3/sLfeest444okfexjH9Pdd9+dVR6Px3Xbbbfpzjvv1KZNm3zHFwgENG/ePF122WW6/vrrjSFl55xzjtasWXNkvefr4ae5uVlf//rXdffdd+vQoUNZ9VVVVbryyiv1jW98Q5MmTcqrT5NEIqG77rpLP/7xj/Xyyy8bt5sxY4ZuuOEGffKTn1QwyH/xAAAAwHCUdJKe5aH+BKP5hC9ws7u/iB0zBKN5ByyYgssidsz3OrmngBVU0Ap5huQNdOBY0kkqrZRnXdQjYM/03hroADcAADC8PdX8v8Z58eLa8v6AR8gKy5attNJZdaY55nBl+nuNJUMwmuU990wrpaST9LxmMob+evTld23UnDzoWe4XLFYO/K8VCdEGAAAAAAAAAAAAAAAAAIxAs6+X9qyWnB731zRcLtUeJ537R+nJq6SmF6VAhTTrS9KsL/Zzf38tvfQP2eXTP9O/foEyQGoKAAyihx9+OGP9mmuuUTgc7lef48aN0yWXXKL7778/Yz9ewWjlZNu2bbrooou0YcOGvLZPpVJat26d1q1bp6uuukrTp08v2lhefPFFLVu2TDt37jRu09LSon/5l3/R/fffr9/97nd93te6dev0wQ9+UG+++WbObTdt2qTPfvaz+slPfqKVK1dq8uTJfd4vAADlpjl5UK+2rdM78e0Dup+QHda02GzNrpirgBUY0H2NVK3JQ3q1bZ0OpZo1Z9Q8TY40DvaQMEy0JJv0Sts67YpvG+yhZAhYQTVGZ2jOqPkK2bmvB73CsCQp2K9gNPPN+uV+I/9AM507U/CXORitsFCBiB1VMpX9Xniy+X+0qf0VSZJlWZoUPkrHVZ6kykC1sS/HcfR6+0t6o2NDzsAy0/vv8Jiyy7zPzxsd63X/nruPrNcER2vOqPmaGJniu//dXTv0aus6NSU9nnQj9/06veI4zYgd5xs0V6p5Q6HCduTIPMO27D71sb1zqza0P6+WZHPebYJWSFNjszRn1DwFrOL+yeBgYp/Wtz2vuNOp40ctVH14YlH73xHfqvVtLyiRjmt6xRzNiB2fd8gggNxy/R8RtEKaFpulWRVzFbL7PhcBCpF2Unq86WHPutHBcTqhcmGJR1RclmUpYkc9w3cfb3pYr7W96NvetmxNjhyt40ctVCwwaqCG2S97unbp1bZ1OpjY57vdrq7Crt38rl1+u/duz2umzR3rPbf3mtuGrYix/4TTZeinvK+nCEYDAAAAAAAAAAAAAAAAAKCXycukJQ9Lm34qdb4jTbhQOu6rbl3NbGnZC1LnXilcJ9lFuEfjmL+U3vy51Nojb2Ls6dKk8n6YMJAPgtGAISblpNSU9L8RAP1XGxw76EEW27dv19atWzPKLrzwwqL0feGFF2YEo61du1aJREKhUHnenNbV1aWlS5dmhaKNHj1aJ5xwgsaPH69QKKSWlhbt2rVL69evV1tb24CMZf369TrvvPO0f//+jPLx48dr/vz5qq2t1e7du7V27Vp1dHTowIEDuvjii/W9732v4H2tXLlSV155pdrbM2+AmjhxoubOnavRo0erra1N69ev16ZNm47Uv/DCCzrllFO0du1aNTQ09O1AAQAoIzvjb+m2bct1KNVUsn0uqDpdn5h4fdHDQ0a6PV07ddu25TqQ3CtJ+q+9lj484a90es35gzwylLt34tt12/blakruz73xIJlVcYI+N/lrOW8uNwVT9efnkV+AADe7+zOdn850h2d53FBeaGBC1I6pLdWSVf5S6zNZZaOD4/TlKf9X4zwCqdJOWr/c/WM91fy/Be3fi2cwmuV9XLu6tmUFXfx2b0CfnHS9FlSd4dnmhZa1umvnLUop6T+Q/dKSuov1/nF/6RmQNRjzhkItqlqsayZ+qeDfXT3Z9Ih+ufvHcuT0ab/Hj1qoT0+6Ma+Qxnxs7dio27d/U21p9736X9Y9+sykr+r4IgXWPN38R/37O7fLUdot2C8trl2mD9Z/mnA0oAgcx9F9u+/QE81/yLntnFEL9NlJXy3azw/Azytt645cM/Z2Zu1FsodBiHnEjnkGo73Y+qe8+5gQbtCXGr6h2tCYYg6t315pfVZ37vxHY5BYPix5/z/vd+2yuun3Be3D6xrJtmxFrKjijn+YcE+xMg9G87tWJEQbAAAAAAAAAAAAAAAAADBiTTjfXUyi44q3r9hE6YKnpM0/lZpflcacLM34ghQwP/AVGC64gxsYYpqS+/QPb352sIcx7H1z2k81JjR+UMfw5JNPZpUtXFicG0NPOumkjPWOjg698MILWrRoUVH6z9ctt9yiFStWSJLOPPNM7dixQ5I0efJkPfHEE8Z2lZWVGes///nPtX79+iPrjY2Nuv3227V06VLZtp3V3nEcrVu3TitXrtRdd91VhCNxJRIJffjDH84IRZs4caJuvfVWXXHFFRljaW1t1T/90z/pW9/6lpqamnTjjTcWtK/169frqquuyghFW7p0qb7xjW/o5JNPztr++eef15e//GU9/vjjkqQdO3bo6quv1urVqxUIlP+NYAAA+Pnt3ntKHm7yXMtTWlh1tuZVnVrS/Q53K/fdl3GDuyNH/7H7Di2oOoMbbtEvv9v370M6FE2SXm9/WX9qXqWz697ju13S8Q6FClp9D8L2CxAoNLBrpDH9bIqnvcMSTOWFBtBFrPy3P5Dcq5X7/kOfmPTXWXWbO9YXJRRN8n6vFHJcaaV03zt3aG7lqVmBYGknpV/u/knuULR3rTq4UqdWn6sp0WlZdb/d+29DOhRNkv7cskYn1yzWcaMW5N2mM92hX+25s8+haJL0StuzWtfypE6tWdLnPnr6zd6fHwlFk9yfX/e+c7tuPuZf+x1c1pWO6z92/7Q7FO1da5oe1CnVS9QYm9Gv/gFIWzpfzysUTZLWtz2nZw6t0Rm1FwzwqADpsYMPeZYHraDOqBke78FihBO/07Vdjxz8rT5Q/6kijKg4HMfRL3f/pF+haJJfMFrxrl1Mr0HEjiqeyj8Yrdyvp/yvFQnRBgAAAAAAAAAAAAAAAACgJGLjpRO+PtijAEouO00GAFAS27dvz1gfP368xowZU5S+jz/++Jz7K4WxY8eqsbFRjY2NCga7sziDweCRcq9l7NixGf088MADGW0feeQRLVu2zDMUTZIsy9LChQu1YsUKbd26VUcffXRRjueHP/yhXnjhhSPrEydO1BNPPKEPfOADWWOprKzU8uXLdd9998m2bR08eDDv/aTTaV155ZVqa2s7UrZixQo99NBDnqFokjR//nw9+uijet/73nek7IknntC9996b934BAChHaSel19tfGpR9b2h7IfdGKMiG9uxzmnSSerPjtUEYDYaTcvn3ur79+ZzbJJ2EZ3l/gtFidoWxjlBCf6aAss50h2d53PEuLyToTJJigVEFbe/181WSXmt7saB+/Hi9V/zeW17a0i16u/ONrPId8bfUmmouqK/1bdn/ntx5Q/GOeSBt8Bi/nzc6NvQ7ZKQv+zXpTHfojY4NWeXNqYPa3bWj3/37He+GPH6WAsjt5dZnC9p+U8crAzQSoNuerp3GOfOCqjNUFawp8YgGRqFzKJNXCvx3PNDe6dpelMDqgOX97LdiXrtEDa+BqdykWK/lYIna3tcdIStsfB0AAAAAAAAAAAAAAAAAAACAYiAYDQAGyYEDBzLW6+rqitZ3NBpVJBLx3V85eeutt458P3fuXE2fPj3vtoFAQKFQ3wMCDkun0/rhD3+YUfazn/1M06ZN8213xRVX6Atf+EJB+7r//vv1yivdNxJ+8IMf1PLly3O2CwaDuueee1RfX3+k7JZbbilo3wDw/9m79zA56/r+/6/PHHZmctzNgUAJMWCMBAQRQQUMAaFgUBRRi1C/IlrlVxWlFbXW1hNopdJ+C/qzVdofWmurVRBPUMEDQUSI0SIIKIST4RSSzW4OuzOzc/j8/lg22Z293/fe95x39/m4Lq4rc99z3/dnDvchS+7nAtNNsVpU2Zc7su2h6q6ObHemqvqKhiq7A+cVqsNtHg1mklJ1REVf6PQwIrH2gfGsY16qgZvSD8wcHBgRWJF5rjKJeMGu2cYKIxSNMFq+Ejw9l4wXTFiVOyzW84cqu+W9nzQ9bmzMsiK7Sj2JzKTpq+bEG6ckDVUmn1/3BEybej2T96ditdCx64a49kQ4Hkx4frk5n2U973WQoM9xTL4J5/Ww726zXgMw2+0obYv1/GK12KKRAPvcOvg/5rx1vWe0cSSt9dyY13qWgfJ2VX21KetqhrDrgzgOyR0aOL0nkdFzss9ryjZWzTncmB79s0koaY51ujgk93wlAv5JyfPmTP4FTQAAAAAAAAAAAAAAAAAAAEAzEUYDgA6pDZX19vY2df216+vv72/q+jvlmWee6ch2b731Vj366KN7Hx977LF69atfHWnZj370o7HibFddddXePzvn9JnPfCbysvPmzdOFF1649/E999wzYdwAAMw0VnimHfIVYl3NVKza4apStdTGkWCmmU5hvSjHlbIP3h9Srv4gdDqR1qsWv6lmfSm9asm5da9ztsgmJwflJPt7V6gOBa/HCKxZXt57uhallkZ+vldVI35ysKbQhPNoyqUmfX/GrMyu1pHzXhJrfUHRrHpCWvmA97oZQa52iXvsasZnKTXvPRquBH/XJfs4Fkc+5PUWjAAhgHgGyvHCaNLkACfQTCPVon6x88eB8w7KHKKV2dVtHlHrrOtdr97U4obXU/blpsXImiHs/B3V3OR8nbroteb8Vy0+p6FotCQ9N7dGL5j74sB5r+h7jeYlF0Raz2mLztac5LyGxtJpc5Pz9ceLXjdhWsZl9cpFr+/QiAAAAAAAAAAAAAAAAAAAADBbNPavggEAXcs51+khNM2hhx6q++67T5K0ZcsWXXHFFbrkkkvaOobbbrttwuNzz40eCFi6dKlOO+00/eAHP5jyuUNDQ7rjjjv2Pj722GN18MEHRx+opJNPPlmXXnrp3sc/+9nPtHLlyljrAABguih6O6b1/DlHNBQKGrNt5Gk9U3py0vRmBUgwKizE0oyACmavsO/W6jlHKN2E40Rcg+UdeqL46KTpUUJIFV8OnN7ozf+nLHqt9us5UHfvuVOZRFYvnr9WB+dmTlyiVXJG0Mz63lkxCGs9lsXp/fT+FX+nX+z8sR4rbFZVFUlSsVrU5vy9gcsUqsPKJLI14wmOVy1OL9P+PQdOOY5lPQeGflcSLqF3/NEHdfvOH+uB4XsmfMc3D98XeB4POr9a+0ba9WhecoEGytsbWo8kPX/OkQ3vR/V4ZuQpbSs9NWl63ACr9VnmEnN1SO75k6bvKG3XUyN/iLyeuMKOvSU/0vD6CyHvT7NeAzDbBR1bJckpIa/qpOmeMBpa7Je7bjWP8ev6zphR/09kSc/+umTFZ3THzp/o0cKDgfvceBVf0e+GfxM4b6Dcr/mp5v5innpZ12Ipl9Lz5xwZuqxTQgdlD9FLFqzTspDr1BfMO0Z/edCntWn3bdo68nis8fW4jJ6bW6MTek9TTyIT+Jw/yqzQJSsu1527fqothYcDP5v5yV69YN4xetG842Jtv1u9ZsmbdVD2EN2759eam5yvlyw4ScuzKzs9LAAAAAAAAAAAAAAAAAAAAMxwhNEAoEMWLVo04fHOnTubuv7BwcHQ7U0n5513nq677rq9jz/wgQ/o+uuv1wUXXKAzzjhDBxxwQMvHsGnTpgmPX/rSl8Za/qUvfWmkMNodd9yhUmlf+OOQQw7Ro48+Gmtb1erEG3EeeuihWMsDADCdFEPiZO/8o79SLjm34W38dOD7+uYz/zppepSAEaILi5gQRkMjwvbVd/7RhzQnOa+Noxn1692361+f/PtJ08NCQmOs/aEZIcgj5h2jI+Yd0/B6ZpNMIhc43YpnFoxjXTZmGE2S+tJLdMaScyZMGyzv0F8/9DZzTAsjjvO4Ba+YtO56JV1Ka3tP19re0ydM/7tH/1Jbig9Pen6+Mvk9siJYS9MHaM3cF+rHA9+dvEzA/mSF6STpzw/8iBnAaKWbd3xb3972lUnT415nWJ/lc7Kr9O7lH500/c6dP9VXnr5y0vS4QTZL0Oc4phnn9bDjJfFaoHFVX9FgaUfgvL7UYu0ob2vziDDbee+1YfCGwHlzEvN0zPy1bR5R6y1KL418PVb1Vb3vgT9RRZMjygOl7VqRfW6zh1cX6/zdl1oaeL1Sr5W51VrZwsjzfj0H6Mwl57Vs/d3GOaej55+go+ef0OmhAAAAAAAAAAAAAAAAAAAAYBYhjAZ0md7UEl16yBc7PYwZrze1pNNDmBQqGxgYaNq6C4WCCoXChGmLFy9u2vrb7eyzz9bZZ589IY7285//XD//+c8lSatWrdLxxx+vE044QWvXrtWaNWuaPoatW7dOePy85z0v1vKrV0e7CWfLli0THn/961/X17/+9VjbqrVjR/BNjAAAzARh4YtMItuUbeSMWE2U/1AGSQAAIABJREFUgBGiK1Tsz5IwGhoRFvnJGlGrVrO2W6jm5b2Xc85cttTCMBrisz/L4O+dFeayzjXNGo8UHKqy4lXt2DesGFzQud063+eSc2KuJ/hzSSiptOuxhtpS9vjjXWdYxzrrs7TisWGh0ljjCRl/2U+OtsQV9v5wjQY0bldlZ2BgSRqNNRFGQ7s9XPi9Hi8+EjjvuIWv6EjctJskXEK96UXqLz0zad5gub8DIwpmxW479fcyAAAAAAAAAAAAAAAAAAAAAN2LMBrQZZIuqcXpZZ0eBtrgwAMPnPD46aefVn9/f1MCZvfee++U25tOnHP6xje+oY997GP6x3/8x0nRt82bN2vz5s3693//d0mjobQ3v/nNuuiiiyYF6OpVG65bsGBBrOUXLlwY6Xn9/c2/SWn37t1NXycAAN2iWC0ETk+7HiVcsinbaFawBOHCQiwlP9LGkWCmsQI5GZdt2nEirlwiOEjkVVXRF5R1dhjACgWmHD/m6wQraGaFvFodg8i4rJycvHykMdnBseDvaDPlktHPr9Y5IpvImefp4BBc8PufS8wJDRK2kvXZWxE9i3VdYh1vrOklP6KyLzUcWww7rzcjeBoWP+MaDWjcQGm7OW9ReqkUcIjyfvK5B2iWWwduMOet7V3fxpF0r97U4sAw2kA3hdGM6xvreg4AAAAAAAAAAAAAAAAAAADA7JXo9AAAYLY6/vjjJ03btGlTU9Zdu55cLqejjjqqKevulFQqpU996lN69NFHdcUVV2jt2rXKZDKBz928ebM+/vGP65BDDtE3vvGNNo+0MSMjzY9+cFMiAGAms2+qbU5gRgqP3lR9pWnbme3CAidlX27jSDDTWIGcrBFlaoewY5QVzhpTMfaHRiNGqI8dzzTCaFa8qknfR+dcSGgrXnCs1cygWcA4zYBbYm5IYC0oBNd9xwP7OsMOiwWxzqPZZPBnaYXRJDsgF2s8AWG6Mc0Io4XFz5oxfmC2GyhvC5yedj2al4z3CyOARu0qD+rXu28PnHfY3KO1X88BbR5Rd+pLLQmcHhY6bLdWXwsDAAAAAAAAAAAAAAAAAAAAmDkIowFAh6xYsUIrVqyYMO2mm25qyrpvvvnmCY9f+tKXqqenpynrHlOpdCYCsmzZMr3//e/Xrbfeqp07d+r222/XFVdcode+9rWaN2/ehOfu3LlT5557rq6//vqGt9vX1zfh8a5du2Itv3PnzkjPW7Jk4s1Ln/70p+W9b+i/L3/5y7HGCgDAdFKsFgKnZxLZpm0jLJZibR/xWdEbqTkBFcxeVizIihG1Qy4ZEiQKif1UfUVVVQPnEUbrDCsgVqzmVfWTPyszXtXE76Mda5u4be99aHCs1ewgWFDAzXrfcjEDa9bxoPUhOIs1/rIvq1SNfv6zX1vwZxkWILGCeXGEraNUbTwKHxY/C4umAYjGCimNhpdc4DwvfjkDWuP2nTerouA48Lre9W0eTffqTS0OnD5Y7v4wWjuivAAAADOVcy7lnHuJc+4C59wHnXN/45y72Dn3RufcC51zqU6PEQAAAAAAAAAAAAAAAKgHYTQA6KBXvvKVEx5/9atfVanUWPRh27Zt+u53vxu6nTGp1MR//1guB99cFGRgYCD+4Josk8nouOOO0/vf/35df/316u/v19e//nWtXr1673O893rve9+rajU4HhDVsmXLJjx+8MEHYy3/wAMP1LWdqMsBADBbFY2gS6aJN9WGxZPCAkaIJ18JCaj4xgMqmL3sm+87GEYL2XZY0Kfs7b+zpbi/rSOs75GX14gvTphW9iXzeNbMUJ8dRpt4ziz6ghmxaUecIlbQzIhgZRNzzLEWqnl5P/H1tSNMF1dYoKwQI1AWFo8LMickfteM65vhkLGHHcuiCjtWjviiKk3YBjCbDRghpb70YiOLBrRGxVf0s8EfBs5bnN5Ph889us0j6l596SWB0639uRPyxs9wOnktBgAAEMQ5d4hz7hzn3Gedc7c453Y55/y4/x7tgjE+zzn3JUn9ku6U9P9JulzSpZL+r6T/lnSXpF3OuZucc6/r2GABAAAAAAAAAAAAAACAOhBGA4AOet/73ifn9t1Ktm3bNl1zzTUNrfPKK6+cEFebO3eu3vGOdwQ+d8GCBRMeDw4ORt7OvffeG2tc419nq/T09Oicc87RnXfeqQMPPHDv9C1btuhXv/pVQ+s+5phjJjy+4447Yi1/5513RnrecccdN+G9uvnmmyfdyA0AAPYpVguB05sZdAm7QTcsyoF4aoM945WrxE1Qv7wRVGpmiCquHpdRwvixXFiQqOztkHbKpRseF+ILO9/UxrwKFfs418wYhB0Kqx2P/V3LJe1oVrNY+2DQuMKiXzkj8OVVVdFPvE7oxlBi2LateEjgc43AqPX+ZBI5OSNvFBYrjSrs+xV2LIu8/imuwcKuKwBMbUdpW+D0vtRSiTQa2uiePb80w15rF75SCZds84i6V18qOIw2WO7vmv/HYEVfO/l3MwAAgDHOuZOccz90zvVLekjS1yVdImmdpPkdHdw4zrmUc+6Tku6T9A5JC6ZYJCfpjyWd0+qxAQAAAAAAAAAAAAAAAM1EGA0AOuiwww7T+vXrJ0z70Ic+pK1bt9a1vvvuu0+f/exnJ0y74IILtGjRosDn77fffpOWj+qGG26INbZMJrP3z8ViMdaycfX29urss8+eMO2RRx5paJ0vf/nLJzz+r//6r8jLbtu2TTfddFOk5y5dulQvetGL9j5+4okndOONN0beFgAAs40Vvci4bNO2ERa9iRMsQbi8cYO01JyACmavbgwhOefM7YfFfsrejgQSRuuMbDIsalUTIgv5bHMh64nLiprVRgLDInzNDIya2zBec9C4rPN9Ljk3PE5Xs5wVp+tkjCNs23ECrNZ7ZL0/CZdQxpgXdk6OarjF5/WprsGsKCaAaAbK/YHT+9LB4SVJ8uqO8BJmllsHg382nnJpHb/w1DaPprv1phYHTi/7svZUdrV5NMGs83cn/24GAAAwzlGSTpMU/A9suoBzLifpO5L+VlJq3Cwv6beSbpD0n5K+++xjfusMAAAAAAAAAAAAAAAApi3CaADQYf/wD/+gOXP23fQxODios88+W3v27Im1nm3btukNb3iDRkZG9k474IAD9NGPftRc5uijj57w+Hvf+16kbf3whz/Uxo0bY42vt7d375+3b9+uUqm1cYtUKjXh8fgwWz1OPPFErVy5cu/jTZs26fvf/36kZT/5yU/Ger3vec97Jjy+5JJLYn8fAACYLYrVQuB0K/RRj7TrUVKpwHlxgiUIFxboKfkRcx4wFTuo1Nmb761YUVjMJywmlHLBxym0VpwoV3iIrHnfR2tMtees0FBbIjiu1ky5iOO0pkmjrzU0LDYpBhcc6+pkjCM8wBrtOsN7b75HVihPkuYYn/NwpfEwWtjYmxFGK0wRb+MaDWjMQGl74PRFqaVycsZShNHQXFtHntDvhn8TOO+Y+S/XvNSCNo+ou4WFCwfKwft0u9Vem41pR5QXAACgAUVJD3V6EM45J+nrks4YN7kg6ZOSDvLeH+G9f5X3/k+996/13h8haaGks55drrW/wRAAAAAAAAAAAAAAAABoMsJoANBhhx56qD73uc9NmHb77bdr/fr1evzxxyOt48EHH9Qpp5yi+++/f++0RCKhr371q1q6dKm53HHHHTchyvbtb39bmzZtmnJb559/fqRxjbdmzZq9fy6Xy/rpT38aabnh4WF97nOf0+7duyNva8+ePbruuuvM7dcjkUhMCpZdeOGFeuSRR0KXu+666/SFL3wh1rbe8pa36NBDD937+P7779frXvc6DQwMxFrPtm3bJr0PAADMNFbwKJPINm0bzjllk/EDRognLGDSjIAKZq9uDCFJdqzIGq8Uvi8kCaN1RMZlzUBMsUNhNCsUFjXUllBCadfTtPFYrNccdG63xppNzFE2JHJYu5x13WCd59sh4ZLKuODrFiseUmvEF1VVNXBeWDjO/gwav77Jh8TVSg2e10vVksq+HL59wmhA3UrVknZVgn8OGRZeApptw8CN5rwTe9e3cSTTw/zkQjPqPljub/NogpnXYh3+uxkAAMA4JUl3SfpXSRdKerGk+ZL+rJODeta7JL1m3OOnJB3tvf+Y9/6JoAW898Pe++9478+V9PZ2DBIAAAAAAAAAAAAAAABoFsJoANAF3va2t+nd7373hGm33XabDjvsMH3mM5/Rli1bApfbvHmz/uZv/kZHHHGE7rnnngnzLr/8cp1yyimh250/f77OOeecvY8rlYpe9apX6aabbpr03JGREV199dV62ctepq1bt6qvry/qy5MknXzyyRMeX3DBBfrCF76gX/3qV3r44Yf16KOP7v1v+/btE7b73ve+V8uXL9fb3vY2fe973wuNpG3cuFGnnHKKHnvssb3TXvayl2n16tWxxhvkve99r174whfuffzkk0/qhBNO0Le+9S1VqxNvQB4aGtInP/lJvelNb1K1Wo31fiWTSX3rW9/SggUL9k770Y9+pCOPPFL//M//HPr6d+zYoW984xs699xzddBBB+mqq66K8QoBAJh+it66qba5gZNWhkMwKiwyN1X8BAhj3XwfFgtqB+s4ZY1XCg+jpV264TEhPuec+VlOjnIFH+d6XEZJl2zamBodTy4xV84Fx96aydoHS35kwne96quTInPj1xEWp6t9jfZr7vDxwIi7Rb3OqDe6N8cMNDYhjNbC4GmU94VrNKB+O0MCSn0pO4zmWzEYzFqFal537PpJ4LwV2VVamWv85/0zTcIl1JteFDhvoLQ9cHq7mddiIaFbAACANvqKpAXe+xd579/hvf+S9/7X3nf+N7c451ZI+sy4SQVJp3rv7zcWmcR7/kcLAAAAAAAAAAAAAAAAppfgXxsNAGi7z3/+8+rr69OnPvUpeT96G9nu3bv14Q9/WH/913+tww47TAcddJD6+vrU39+vxx57TL///e8nrSedTuvKK6/Un//5n0fa7qWXXqpvf/vbGhwclCQ988wzOv3007Vq1SodeeSRymQy2rp1q+68804NDQ1Jkvbff39dfvnlOv/88yO/vje+8Y36yEc+oscff1zSaFSsNgY35vzzz9eXv/zlCdN27dqla665Rtdcc42cc1q1apUOOeQQ9fb2KpVKqb+/X7/97W/3rn/MnDlz9KUvfSnyOMOk02l97Wtf07p169TfP3qD4FNPPaU3vvGNWrZsmV784hdr4cKF2rp1q37xi18onx+9cXvhwoW6/PLL9c53vjPytg4//HBde+21esMb3qCdO3dKkh5//HG9613v0kUXXaQjjjhCK1as0IIFCzQ8PKzBwUE98MADk14/AAAznRVKySSyTd2OFUxpRjgEo8ICJo0GVDC75StDgdPDYkHtkEtYQaLg8UrhkcAUYbSOySbmBJ4Pao9rVgCy2VGuqDFPazzZZHPjopawfbBQyWteavQ7PeKL8kZuJ5uYszdOF+kzMM41nT4eZBNztFM7Jk2Pep1RCImLhn2/rNc9bBw3o/Lem8deqfHzepT3hWs0oH47ytvMeX3pJXY805NGQ/P8ctet5t8R1/Wub/Nopo/e1GL1l56ZNH0gJHjYLhVf1ogvBs7r9LUYAACAJHnvBzo9hhAfkTRv3ONPee/v69RgAAAAAAAAAAAAAAAAgHYgjAYAXeTSSy/VunXr9K53vUsPPvjg3unee91777269957Q5c/+uij9cUvflHHHHNM5G0eeOCBuvbaa3XWWWdp9+7de6dv3rxZmzdvnvT8gw8+WD/4wQ+0devWyNuQpFwup29/+9s666yz9MQTT8Ratpb3Xg8++OCE9yjIgQceqOuuu05HHHFEQ9sb7/DDD9ePfvQjnXHGGXrqqaf2Tt+6datuuOGGSc/v7e3Vd7/7XVUqldjbOvXUU7Vp0yade+652rRp097plUpFd911l+66664p19HX1xd7uwAATCfFaiFweibR3KhL1MgM6hf2Xpb8SBtHgpmmYAQUc8lOh9GM40oleLxSeEyIMFrnZI1zTu13zzrOZZv8XbTPWdHG0+xQmyVsH8xXhzRPC0b/HBLYGluHFaernWYFxDod48iZ36Fo1xlhEbCw75cVaCyEBBqjKPkRVWSHHBsNo0V5X8JicQDCDZS2B07PJeYqm8jJyQijAU3ivdeGgck/a5ekuYn5evH8l7d5RNNHX2pJ4PTBcvB+3U7W38uk9l1/AgAATEfOufmSzhs3aUjSlR0aDgAAAAAAAAAAAAAAANA2iU4PAAAw0amnnqr77rtPX/va13TKKacolQpvWGYyGZ155pn6zne+o02bNsWKoo15xSteoY0bN+q1r32tnAu+sW3p0qX6wAc+oLvuuktr1qyJvQ1JOuaYY3TffffpX/7lX3TWWWdp1apVWrBggZLJpLnMwoULtWHDBn3wgx/Ui1/84infD0l6/vOfr09/+tN64IEH9JKXvKSusYY56qijdP/99+uiiy7S/PnzA58zb948vfWtb9Xdd9+ttWvX1r2tVatWaePGjfre976nU089VZlMZspl1qxZo4suukg/+9nPdN1119W9bQAApgPrxtpMItvU7djRG6IbzRIWdSl7O64CTCVvBH46HUKytm+NVwqPCSUdv/+gU6LGM63jXLNDEFHPWdZ42rVvhG1n/Pk9LKIx9lrt0GBNGM0KJXbt8SDadYZ1PeLklHH2NdGcZHAYbbjBMFrYcUySStXGwmhR3peo7x2AyQaMgNKi9NLQ5bx8K4aDWeih/P16cuSxwHnHLTxFPYmpf0Y+W/WmFgdOt4KH7RT28xPr+hUAAACSpHMkzRv3+Frv/W7ryQAAAAAAAAAAAAAAAMBMwR2TANCFUqmUzjvvPJ133nkaGhrSr371K23evFnbtm3TyMiIMpmMli1bptWrV+voo4+OFMuayqGHHqrrr79e27dv14YNG/T4449reHhYy5Yt08EHH6y1a9dOiJKddNJJ8j7+zW4LFizQhRdeqAsvvDDS851zOvHEE3XiiSdKkvL5vO6991499NBDevrppzU0NCTnnBYsWKAVK1boyCOP1HOe85zI47nllltivwZpNNh21VVX6bOf/axuueUWPfLIIxoYGNDSpUu1fPlyrV27VnPn7rvBuN73Sxp9D1796lfr1a9+tQqFgu6880499thj6u/v19DQkObOnau+vj6tWrVKa9as0eLFwTc/AQAwExWrhcDpzb6pNpcIDofkK0Q3miXsJumwGBQQxnvftSGkXNKKadkRKCsSmFBSCcfvP+gU65xTe46wPttmh8hyRuxq8ni6N4w2PmoVdn4YOz/bcbp973nFV1T0xnWDsT+2ix12s48H49mRu5wZwB+dbwTZGry+Ga6Eh9EaPa/XBu8Cn0MYDajbDiOg1Jda8uyfgo8rhNHQLLcO3hg43cnpxN71bR7N9NKXXhI4fbDc3+aRTJYPua7pdLQaAACgy51c8/jmjowCAAAAAAAAAAAAAAAAaDPCaADQ5ebOnTshDNZqS5Ys0etf//q2bKseuVxOxxxzjI455phOD0WSlMlkdPrpp7dte9lsVuvWrWvb9gAA6HZWZCbT5DBaNhm8PqIbzVGqjpjBp7H5QD2KvmBGOjp9870Z06ojEph26aaMCfWxvku18c58NTgW1eyYp7W+QnVY3vu9oSwrftWuaGDSJdXjMhrxxUnzxp9frX0ioYTSrkeSHTYbv2wxJDqYa/JnEJc1/qjXGdbzrLDrmDlGRK/R65uplm80jBZ2nIzzHADBBsrhYTQ7twg0bmd5QP+7+xeB8w6f+2It6VnW5hFNL72p4F+aMlDun3Ad2Alh1wed/rsZAABAl3tJzeNfSJJzLifpdZLeJOlwSX8kqShpu6T/1WhA7b+897vbN1QAAAAAAAAAAAAAAACgeRKdHgAAAAAAAPXw3k+KzoxpdmTGCotYYTbEM1W8pNGACmavghF+ktoXf7K3Hz9IZAUEU4TROipqPLNQCT5nTBWvisv6bldVVcnvC01a3zUr0tUKVgRjfLTNHGdizt64h/WaowTWRtfV3M8gLmv8UeNeVuRuqusha7vDRsQvqqmWb/S8HiXcRrwWqN9AaVvg9L70kjaPBLPRzwdvUkXB17zrete3eTTTz1jAsFbZl7SnsqvNo5nIOjenXErpBH+fAQAACOKc65W0atykEUkPO+fWSbpX0tcknSnpEElZSQslPVfSGyR9UdIjzrn3tnXQAAAAAAAAAAAAAAAAQJMQRgMAAAAATEtlX1ZVlcB5GZdt6rassEjUYAnCTRUvsWJQwFRCQ0htjD8Fbj9CEKqWFRNKulRTxoT6RI1a5Y1YlBVWq5f13aodk7V/tDMamDP2wwlBM2OfGL9slPN02Lkm1+SgalzWZxY17mU9L5cMD76ZgcaQ41AU+cpUYbTGzutRrr/CjqUAwg2UtwdO3xdccoHzvXyLRoTZouIrum3nTYHzlqSXac3cF7V5RNNPX3qxOW+w3N/GkUxmnb87HagFAADocvvXPH5S0tmSfiLp4AjLL5Z0pXPuq87xQ2QAAAAAAAAAAAAAAABML/yDFwAAAADAtFSs5s15mSYHTqxITNRgCcJNFTgp+ZE2jQQzTXgIqbNhNCsIZcWzJKlixIRS3NPWUdY5p1Bznqp9PMaKU9XLioSNjmFYC9W398/By7dv3zADgROCZsHv2/hl7bDYvmXDQlntfM1Bosb1LHZoJPx6yAqn5atD8t7LueD4Ub3jGdPoeT3K9RfxWqA++cqwuf/0pUfDaM4IowGNunvPnWa8a23veiUcv+9rKvOTvUooGRiRHyhv10E6pAOjGmVfC3c2UAsAANDlemsez5P0H9r3y3Afk/T/SrpNUr+kRZJeLundklaOW+7NkrZKuqRZA3PO7SdpaczFntus7QMAAAAAAAAAAAAAAGDm465JAAAAAMC0VPR2GC2byDZ1W2ZwJSSygujyFTsEJUllX2rTSDDTWGGPhBLqcZk2j2Yi67hS8iOq+LKSAbGzkrEvpFy6qWNDPHaUa7jmcfCxbqp4VbPGMzqGcaEwY/9oZzQwSnjUigWOf9/MsNi484sV00q5lNKJninH2kpRv0MW63lTRfes962qqoq+oKyr77vZ6vN6WORuDPFaoD4D5e3mvEWpqe53980dDGadDYM3Bk5Pux4dv/CUNo9mekq4hHpTi7SjvG3SvIGSvX+3QzdEeQEAAKah2jDaknF//qak872f9D/L7nDOfV7Sv0t647jp73fOfcd7/7Mmje1dkj7WpHUBAAAAAAAAAAAAAAAAk/CrtQEAAAAA09L4uEutTJMjM7mkEVwhutEUYZ+lJJV9Wd4TWkB8YTffO+faPJqJwuJT1rHFigkRRuusnHHOqf3+5Y1j3VTxqrgyIXHQ8UFPK+7ZzjiFFYUbvw9Y54jx71vWOE+PX9ZaTzfEOKz3oVAJPz+OsUJhU0X3wr57U8XNQsdjxOzGNBpGixI94xoNqI8VRnNy6k0vGv2zcQnF1Toa8VRxix4Yvidw3jHz12pucn6bRzR99aWXBE4fKPe3eSQT2X83a+7PbwAAAGYY6992/lLSeQFRNEmS974g6bxnnzfe3zRxbAAAAAAAAAAAAAAAAEBLEUYDAAAAAExLxWrBnBcWhamHdaPuiC+q4itN3dZsNFVAxauqqnifEV+9saB2CAujWTGkctUKo6WaMibUxwprFWrOU+2KQSRcIlJwzApHWTHQVjDfu8r4oNnU75u1PxUivN6uOB4kgwNl+epQpDCodR6dKvoW9lk3EhYbnjKMVq573dLUQdXR5xBGA+oxUNoWOH1BsndciLWzcVnMTLcO3mjOW9e3vo0jmf76UsFhtEEjfNgueePvON0QqQUAAOhie4zpl3gf/gOWZ+f/Zc3k05xz+zVlZAAAAAAAAAAAAAAAAECLcdckAAAAAGBasqIYTgmlXU9Tt5VLBAdLRscxrLnJ+U3d3mwTJXBS8iUliT8hJiuMY0WI2iksAGBFjioKvtdtX6gEnWCFtcZ//7z3ZqivFd/HbGJO4LF1bEwVX9GIL5rLtosV5hq/D9iBwzmBfx5v/GdgHg9CzvHtYn2Hqqqq5EfU4zKhy1vn0am+W2GvvZEwWsH4zMaUfXDkMaqpgqrS6PfGey/nCDgBcQwY4aS+dHBoabwoIUcgSKGa1527fho4b2V2tVZkV7V5RNNbb2px4PSBUn+bRzKRHbsljAYAABAiKIz2mPf+1igLe+9vc849LOmQcZPXSfpmE8b2hTrW81xJ32nCtgEAAAAAAAAAAAAAADALcEcxAAAAAGBaKlYLgdOziWzTIxhWsEQijNYM+crUgZPRiIr9OQBBrLBP2D7dLlYQSrIjR1ZMKJUgjNZJVsyh7EsqVUtKJ9Iq+RFVVTGWb/73MZeYo0FNjl+M7RNWmGJs2Xaxg2b5cX+eej+2xlyo5lX1VSVcItJ6OiU8UDaknkR4GK3eY13a9SipVGB0MV8Juu82muEpwmWl6kjd65aiBVWrqkSKygGYaKBkhNFS+8JoTtbftQijoT4bd95iHtvX9a5v82imPytkOGiED9vFul4J+3sRAAAANBgw7Y6Y67hTE8Noa+ofzj7e+2ckPRNnGQL2AAAAAAAAAAAAAAAAiCPR6QEAAAAAAFCPonHjdKYlgZmQYEll6jgHwlk3SI9XrgYHoYAwVggpbJ9ul6RLKe16AufljahQydgPUo4wWieFxafGzlVhx7lWfB+nCo51SxjNDpoNjftz8Hk2l9z3vlmfgZfXiC9KkvIVKx7W+RhHeIB16uuMeo91zrkJ7+N4Uc7NlqmCp2U/OcTWzPXvfV4DrwGYrXYY4aS+9NI2jwSzhfdeGwZvDJw3L7lAR88/oc0jmv56U4sDpw+U++V95wKGdqS289diAAAAXewxScWaaU/FXMeTNY+DLxgBAAAAAADVtCxFAAAgAElEQVQAAAAAAACALkMYDQAAAAAwLRWrhcDprQijha2zYASMEF1YoGdM2RNGQ3x2CKn5x4l6WFEoa9xWTCjlUk0bE+ILizmMHd/CjnOt+D5a6xwbh/UdG122fXEKa1v5cTEwO6KRG/fnkM+gEv4ZdEOMI2wMYZ/VmEIDxzr7OFT/9c1UQbKKyqr6at3rjxKLG30eYTQgroGSEUZLLZly2c7lljCdPZi/V0+N/CFw3vEL/1jpRHBIGLY+I4xW9iXtqexq82j2sc7f3fJ3MwAAgG7kva9I+n3N5NpQ2lRqn5+tf0QAAAAAAAAAAAAAAABA+xBGAwAAAABMS9ZNtZlE8+/pSCfSSrl04Lx8xDgHbFMFVCSpRBgNdbCiOLnE3DaPJJgVQ7LGXSGM1pWyybB45ug5IixulUs2//tofrcqz44nLNQW8nqazYpyjd8HrLGOXzaXDAmLjcXgjPN12LLtkklk5eQC500V96r6ioo+OBYb5btlhtEaiIrlI0RjrePZVLz3kYNnUaJyAPbx3mugHBxGW5TeF0azjlek0VCPWwdvCJzulNDa3tPbPJqZoS9thwwHy/1tHMlE9t/NOn8tBgAA0OXurnncG3P52ud37qIQAAAAAAAAAAAAAAAAiIEwGgAAAABgWipWgyMg2URrgi5R4i2oTyFCuKRMGA11sMI+7Qw/hckaQSZr3NZ+YIUb0R5h552xc4R1rnBy6nGZ5o/J+I6PBaus8aRdT1u/T+Y+UBmW96OBHWus4+NvVghu/PIFI9YVtmy7JFxCGeN7NFWgzArFSlIuwjWRFU+LEjez5CtTL1vyI3Wte8QXVVU10nO5RgPi2VPZaV5r9KWihNGAeAbLO3TX7jsD5x0x7xgtTu/X5hHNDPOTC5VQMnCeFT9sB+vv/a36GQ4AAMAMUlsTPjzm8i+oefx4A2MBAAAAAAAAAAAAAAAA2oYwGgAAAABgWrJCIBmXbcn2rHDKVMESTC3Ke0gYDfWwojhW6LDd7OBi8PHN2g+SLtW0MSG+lEsr7XoC5+Wf/Syt41wmkVPCNf9HtFN9t6zxtHvfsM6tVVVU8iOq+qq5P4wfa4/LKGH8qHvsteaN9XRLjKPeAGvYOTSbCI6eRdluPkK0NEjFV1T0wfHa8cq+XNf641x3cY0GxBMWTOpLLzHnjfHyzRwOZoHbBn+oqiqB807sXd/m0cwcCZdUb2pR4LyBUgfDaNY1nRFpBQAAwF7fl1Qc9/hY51zwBV8N51yfpJfUTP5ZswYGAAAAAAAAAAAAAAAAtBJhNAAAAADAtFT07Q2cWOst1BkOwT5TRV8kqUQYDXWwojhWjKnd7ODiUOB0K4yWcummjQn1Mc8Rz34H2x3ps75be8djnLvavW+Evf58dVhFI6AhSdnkvmWdcyGveXQd1mvullBivQHWsIBZLsI1kRUjsY5DU4m6XL3B0zjXXVGuLwDss8MIJiWV0vxkb5tHg5mu4sv6+eBNgfOWpg/QoXNe2OYRzSxWzHCw3N/mkYwKC6d2S6QWAACgW3nvd0v61rhJGUnvibj4eySN/21Cj0n6bZOGBgAAAAAAAAAAAAAAALQUYTQAAAAAwLRkxVIyiWzg9EbZ4RCiG42K8h7WG1DB7NbtISRrHIVK8PGt7MuB09OE0TrODqONfpbtjvSZ361nx2GOJ9nefSMshFGoDoeeH2qXtdaVrww9uz4rqNodx4N6A6xh8a9sIvjaZbyc8Zx6w2hRw2X1ntfjXHdxjQbEM1AODqP1phcr4fb970TnXLuGhBnsrt13aGdlIHDeib3rJ3znEF9vanHg9IEOhdFCY7ddci0GAADQLs45X/PfSREW+1tJI+Me/7Vz7rgptnOcpL+pmfx33nsfb8QAAAAAAAAAAAAAAABAZ6Q6PQAAAAAAAOpRrBYCp2dCIiuNsKM3RDcaFeU9JIyGerQ7RhVXzohQWUEiaz9IEUbrOOs7NXZ8a3ekzxpP/tkohXXczbXoHGqxolzSaMis4iqRl7U/g7E4XfB+Ze2H7VZvgNWan3IppRNTHxvmWGG0iIGzWsMRg2r1ntfjXHdFjbQBGDVQCg6jLUotibQ899Yjjg2DNwZOT7seHbfwFW0ezczTZ+y31n7eauGx2+64FgMAAJAk59xyBf97yv1rHqeccyuN1ezx3jf1wst7/4hz7u+1L3SWkXSTc+6Dkv7V+30/aHHOpSS9XdIVknrGrWajpGuaOS4AAAAAAAAAAAAAAACglQijAQAAAACmpbHQSa1MItuS7VnxFmsciKbqK5HeQ8JoiKviKxrxxcB53RJCmiqmVcvaD5KOH/F1mh3PHItyGZG+Fn0Xp4p52tFAO1TWCplEVk5OXpNjOvnKkCqJsrls7Wu09utCdVgVX1bJjxjr6ZbjQX0BVmt+1M/S+g5aIbmpTBVyG1Oq87wedf1xnwtA2lHeFji9L10bWHKBzws6lgNBniw+ps35ewPnvWTBOs1JzmvziGae3vTiwOmD5f42j2RU2PVMu8O8AAAAU7hN0nMiPO9ASY8Y874i6a3NGtA4H5X0fElvfPbxPElfkPRp59wdknZIWiTpZZJ6a5Z9QtLrvTd+QAYAAAAAAAAAAAAAAAB0Ie6aBAAAAABMS8VqIXC6FRZplLXeesMhGGV9jrVKVcJoiCfs5vtuCSHlYofRgiNRKZdu2phQn6kid9Znan0HGh6PFQmr5OW9DxlPe8MUCZdQJpELHE+hmldFleDllFTa9UyYZn0G+epwaICzVZ9BXPbxIDweasW/on6W1nbrjYrlK9Gui8p1ntenCsXV+1wA0kBpe+D0vlRtGA1ozIbBG815J/aub+NIZq6+lB1G897LueDAYasUKvb1TLf83QwAAKDbee+9c+7/aDSAduG4Wb2SXhmy6EZJr/PeP9nK8QEAAAAAAAAAAAAAAADNRhhtFnHOzZf0cknLJS2RtFvSk5J+671/oInbSUs6QdIKSQdI2vPsdv7Xe/9os7YDAAAAYHazglqZloXR6guWIFzU8ErZE0ZDPGFBnG4JIYWFnIJY+wFhtM4zzxHPRiCsz7R1Mc/g8VRUVsmPKF+xxjO3JeMJkzXCaPnqkCpGDDCXnDMp6BEWGrRe79j2u0Hc48GYgvlZRjvO5YzPPGrgbNJyEYOx9Z7XrdcbPBbCaEAcA2UjjJZeOuFxe3NKmGnylWFt3HlL4LxDsofqoOwh7R3QDGUFDUt+REOV3ZqXWtDW8VjXBymXUjrREzgPAAAAk3nvi5L+H+fcNyV9SNIrJCWNp/9W0hWS/sN7H/zbBwAAAAAAAAAAAAAAAIAuRhhtFnDOnSDpbyWdIuMzd879RtK/SPqi997XuZ2lkj4h6RxJi4zn3C7pH73319azDQAAAAAYUzSCZNlEtiXbM4MrMQIdmKzVARXMXuEhpO4Io9nHleDjW9mIRKUcP+LrtGwyOK41FvyyIppWlKpRuZDYV6GaN8OBOeN1tFIuMUeD6p80vVDNq+qqgcsE7cN2wHR4ilBi+2NwQeq9zrDiX7lktNdlPa/oC6r4ipLOurfWGE/EoFq95/U4sTPitUB0FV/RzvJA4LzJgaXgNJpXXf9rCbPMnbt+qqIPjpyv61vf5tHMXL3p4DCaNBpBbHcYzTond8vfywAAAMZ471e2YRsN96a99z+W9ONn/63eyzT6i0vHfknqVkm3e+8fb3Q7AAAAAAAAAAAAAAAAQCdx1+QM5pxLS/qcpAsjPP2Fkv5Z0rnOuTd777fE3NZ6SV+WtN8UTz1e0vHOua9JutB7H+1OOQAAAACoUawG30ydCYnBNCKbDL5hN06gA5NZAahahNEQV1gIqVtuwLePK0Py3su5iffIWftByqWbPjbEkzXOPWPnCCtuZS3X+Hjs73ihOmyeu7IdiIRZY81XhlRJBMcAg8Jv5mdQCQ+jteq6Ia56rzOs1xb1uzUn5DMvVIc1Nzk/0nrGDEcMnpbqPK+HfZa1okbaAEg7yzvkFRyjXBQSWALi8N7r1sEbA+fNTy7UUfOOb/OIZq4FyYVKKKmqKpPmDZS36yAd0tbxNHq9AgAAgGDe+22SvtfpcQAAAAAAAAAAAAAAAACtQBhthnLOpTT6D59Or5lVknSnpMclzdVoEG3FuPknSrrZOXeC974/4rZOknS9pJ5xk72kX0t6WFKvpBdp9DdTjvlTSQucc2d574PvtgEAAAAAQ9VXVfTtDaMFRVikeIEOTJaPHFAZafFIMNNYMaGUSyud6I6QWM4IQlVVVcmPqMdlJkyv+OBIVMrxI75Os+Jehepo/NH6PuaSrQmRWd+t0THZobCw5VrF2mahmlfViPQEBdxyRlisUM1P6+PBVNcZ5ncrYuQu7DPPV4Zih9GiXhfVGzyNE6Qd2/8ATG1HaZs5ry81MYzm5Ixn+iaOCDPRA8P36OmRxwPnHb/wj7vmnDwTJFxSvalF2lGevG8PliL979+myhvn5G4JVgMAAAAAAAAAAAAAAAAAAADoPolODwAtc7kmR9GukrTMe7/We3+u9/413vvnPPu8h8c97/mSrnPOWXe37OWcWy7pOk2Mov1c0uHe+2O893/ivT9N0nJJ79NomG3MmZIui/vCAAAAAGDEF815GZdtyTaDIiwS0Y1GRX3/ykYQCrB0U/jJEhYuCooGWiGhlCMi0WlZI55ZfPYYZ30freUalUnY58J8SCisE3GKrBk0swNuQe+bHafrrhCcJWz8YRr9boXF+eJEyMYMV6IFT+sNo8UJ0kaNrwKQBsrbA6dnXHbS9YoVRiOLhqlsGLwhcLpTQmt7a/+XJhrVm1ocON3a31vJvl7pnmsxAAAAAAAAAAAAAAAAAAAAAN2FMNoM5JxbI+nimsnv996/z3s/UPt87/1Nkk7QxDjaiZLOibC5T0jqG/f4dkmneu/vr9lG0Xt/laQ/qVn+L51zz4mwHQAAAADYKyymFRaDaUTOCIyU/EjdcQ9Ej67wHiOufKX7b74PCxcFjb9EGK1rWYGtsWOcdawLi+M1IuGSZig0XxlSoRJ8Hs0ZkbJWCnvvrP04aJnQ9RjXDd10PLDGX6jmVfVVczn7PYr23Qp7D4brCIu1+rxuvd4gxGuB6AZKwaGkRemlivA7dIApDZS26+49GwPnHTnvWC1KL23ziGa+vvSSwOkD5f42j6T9kWAAAAAAAAAAAAAAAAAAAAAA0x9htJnpQ5r42f7Ie/+PYQt475+W9LaayZ92ziWtZZxzz5N0/rhJI5Le6r0vhGzneklfGTcpI+ljYWMDAAAAgFrFkNBFq26szYYERqzADKaWr0SLrhBGQ1xWEMeKD3VCLhlyXAmIB1j7QcqlmjYm1MeKS41FrazzVitjEFkjcranslMVlY3xtH//sN6DQnU4JKIxeZz2ZzCsghlK7J4YhzUWL68RXzSXazQ0kpwiohdXPmJMzQo9TiVO7Kw4RVQOwD4D5eAwWl8qOKwUxMs3aziYgW7b+UNVFXxMXtd7RptHMzv0phYHTh/sQBit0ZArAAAAAAAAAAAAAAAAAAAAgNmHMNoM45xzkl5VM/mKKMt67zdI+uW4SQdLOilkkfMkjQ+nXee9fzDCpi6vefwnzhl33wEAAABAgLAwWibRmr9e5JJ2YCRqBASTRQ2clKqE0RCPtV9asahO6HEZObnAefmA2FHFB8esUi7d1HEhPitCVazmVazmzVhMK0Nk1rqt+I3UmXCgFcTIV4YD9wNJygXsx3ZgLa9h63gwTUKJYYEyK4wWtr6oz63n+qbVwdM4Y/LyKlbN3+EBYBwzjJaeHEYb/d9QATxhNAQr+5J+Pnhz4LxlPQfq+XOObPOIZoc+I4w2ULKvBVvFDLmG/JwFAAAAAAAAAAAAAAAAAAAAwOxGGG3mOUzS+DtVRiTdEmP5/6l5/IaQ576u5vE1UTbgvb9f0p3jJs2VdFqUZQEAAABAkgohkYuMEUZpVFg8JWrcC5NFDZzUG1DB7GXtl50IP1kSLhESc5oYD6j6iqqqBj6XMFrnWZ+jl9dgeYe5XFDgq1lyxpjCYhjW62ilsH3A2o+DlgkLge00PoNWvv9xhb33YdcZVjwuzmdpHRetdYdp9Xk97jUX8Vogmh2lbYHT+1KTw2hAXHftvkO7KoOB807sXW/H9tCQoLChJA2W++XbHDKcDn83AwAAAAAAAAAAAAAAAAAAANBdUp0eAJpuec3jB733xRjL31Pz+FVBT3LO7S/pheMmlSX9PMZ2bpH00nGP10v6bozlgVljeHhYv/71r/Xggw9q+/btKhQKyuVyWrZsmVavXq0XvehF6unpacq2/vCHP+hLX/qSNmzYoAceeEADAwMqlfbdqHrNNdforW99a+CyGzdu1DXXXKPbb79dW7Zs0c6dO1Wt7rtp/5FHHtHKlSslSSeddJI2bNiwd167b8IBAADTX9G4qTbtepR0yZZsMyyMVk84BKOivneE0RCXFcMJ25c7IZeYG7gf1E4r+7K5DsJonRf2vRos99e1XKOsdQ+EjCeXsONirWIFzQrVvCpGDDDotYWFwAbKwTG4bjoehAdY7XOlNS9OaMT63AuVOsJoEZep97yer8QLnRGvBaKxjpPBYaXgiJUXP+NFsA2DNwROz7isXrbg5DaPZvboNcKGJT+iocpuzUstaNtYrOuVTkR5AQAAAAAAAAAAAAAAAAAAAEwPhNFmnkU1j4N/Bbut9vkHOecWeu931kx/Qc3ju733ce5Ku73m8eExlgVmvEqlov/+7//WNddco5/+9Kcql+0b4LPZrE4//XT92Z/9mV796lfXvc2rr75aF110kYrFOC1FqVwu613vepeuvvrqurcNAAAQV7FaCJyeaeFNtUmXVI/LaCSgPR0WLEG4qO9dyY+0eCSYaawYTpxYUDtYMYDaIFFYRCjl+BFfp2WT9YXRWvl9tNY9UAqO3zg5ZRLZlo3HYu0D+eqQKqoEzgt6bWFhMes1d9PxoMdllFBC1YAYnBURLVVHzGhinOhbzvj+DhuBSYv33oxS1ipV44fRqr6iog++BrQQrwWmNlItaqiyO3DeotTSSdOCs2hAsMcLj+qh/P2B845dsM4MpKJxwWHDUQPl7W0No+WNv5t1U6QWAAAAAAAAAAAAAAAAAAAAQHdJdHoAaLraO8UzMZcPev5hEaZtjrmdhyJsA5iVfvKTn+iwww7Teeedp5tvvjk0iiZJhUJB3/nOd3TmmWfq2GOP1a9//evY27zhhht04YUXxo6iSdJHPvIRomgAAKDtrOBRq4Mu1k27+QrRjXpFfe+s8AtgyVeC4zzddvO9FYOojfmE7QMpl27qmBCfFfeS7ChXQkmlXU+rhmR+1wfKwePJJHJKuPb/uDiXCN4HCtX8pEDgmKDXFhY5s+J03XQ8cM6Z47EiomFxUSt2Fvhc4zOIGjkbU/SFwLBbkHrO61YYNwzxWmBq1nlBCg8rAVHcOniDOe/E3vVtHMnssyC5UAnjnwKEhXtbwTofd1OkFgAAAAAAAAAAAAAAAAAAAEB3SXV6AGi62n/JfkDM5YOe/3xJv6iZtqrm8R9ibuexmseLnXN93vuBmOsBZpRPfOIT+sQnPiHv/YTpzjmtWbNGy5cv1+LFi7Vt2zb94Q9/0AMPPDDheZs2bdJxxx2nz3/+83rHO94Rebsf/vCHJ2zzvPPO09vf/nYddNBBSqf33WC/ZMnEG+G2bt2qf/qnf9r7uKenR3/1V3+lM844Q0uXLlUise+mm+XLl0ceDwAAwFSsMEZYmKYZcsk52lWZ/NcWohv1i/relX2pxSPBTGMFFOPEgtrBOm7V7hth+0DK8SO+Tsu4rJycvPykeVZwJpecI+dcy8aUTQZ/t0q+9vcqPPv8Fp9DLdZ2vbyK3jjfB+zHadejhJKqqjJpnvWauy3GkUvO0XB1z6TpVkS0NqA4XpzomxlGMwKTFitkF6RsfCZhwl6vuQzxWmBKVsBTknpTiydNcwo+dwWdAzG7DVf2aOOuDYHznptbo+XZle0d0CyTcEktTC0KvBYN2+9bIU7sFgAAAAAAAAAAAAAAAAAAAAAkwmgz0e9qHh/onFvuvX884vLHBUxbGDCtt+bxMxHXL0ny3u9xzhUkZWu201AYzTm3n6SlMRd7biPbBJrl4osv1pVXXjlh2vz58/XhD39Yf/qnf6oVK1ZMWmbz5s368pe/rCuuuELFYlGSNDIyone+850aGhrSxRdfPOV2f//73+vuu+/e+/iMM87Q1772tUhjvv766zUysu9G1ssuu0wf+MAHIi0LAADQiKIRPMq4bOD0ZrFu2q0n1IFRUcNoVtQGsOSrwUGfbrv53gwSxQqjpc15aA/nnLKJXOD5YKBc+3sMRrX6uxh3/dZ3sdXqeR9yATE155xyiTkaqu6Ose3OxOAs1nthnSvDrj/iRN+sYGTc65th47gbpJ7gadg1Q4/LaMQXA5aJF3cDZqMd5W2B0+clF6onkQmY07qoJ2aWO3b9NPDYLEnres9o82hmp77UkuAwmnF92gpVX4kVuwUAAAAAAAAAAAAAAAAAAAAASUp0egBoLu/905J+XzP5/0RZ1jk3V9LZAbPmB0ybV/M4uEoQrnaZoO3E9S5Jv43533easF2gIV/5ylcmRdFe/vKX67777tOHP/zhwCiaJK1atUqXXXaZ7r77br3gBS+YMO/973+/brnllim3vWnTpgmP3/CGN0Qed73L3nLLLfLe7/0PAAAgroIRRmt14MRavzUeTC1qdKXsyy0eCWYaa7+MEwtqB+u4kq/ECaPxuw+6Qcb4LAdLk2MUUuu/i3GDY52KhFlRrjBZI+IWN65Rz7ZbyTweGOfKQsU+h8b5PM1AYyVeVCzO8+s5r9ceF8frSwf/row812jAlAaM81RfanHMNfFzXuxT9VXdOnBj4LwFyV4dNf9lbR7R7NSbDt6Pg2JprRL285Kg2C0AAAAAAAAAAAAAAAAAAAAASITRZqr/qHn8QefcgRGWu1TSwoDpUcJowb/qO1ztv4SvXScwKzzwwAN6z3veM2Ha8ccfrxtvvFHLly+PtI7Vq1frxz/+sdasWbN3WrVa1Zvf/GZt3x5+g8vWrVsnPI66zUaXBQAAaESxGvxXkEwi29LtWhGbfDVeOAT7FCKH0ewoFFDLe28GdDoVf7JY8arafSMsIpRy6aaOCfWxzhED5f7A6XHDZXHFDU3kksFxrFar532wXlvc19zqzyAuK1BmnSutYFrGZZVwyRjbta5vop2j9z0/+vVQqY7zuvU+JJXS/GTQj7WlAtdowJSsQNIiIzjojPWQRcN4vx++W8+Ungycd0LvaVy/tklfakng9EHj+rQVwsJo3XYtBgAAAAAAAAAAAAAAAAAAAKB7EEabmT4vaee4x72SbgyLoznn/lLSxcbsaoRt1nPPC/fJAJIuueQS7dmzZ+/j3t5eXXvttZo3L14rcL/99tO3vvUt9fT07J32xBNP6NJLLw1dbvy2JSmdjn5DUiPLAgAANKLog2+szbQ4eGQGjCr2jb6wlaojobGn2ucCUZV9SRUFf7es8FCnWDGq2iBRWByQsER3sM4RVizKilE1S9zQRKeigT0uo0TMH1Nbry3+a+6uGIf1GViBMisUFjdyF/U4NJU4YbR6gqfWeLLJnB134xoNmNKO0rbA6VZQSc5KowH73Dp4Y+D0hBJau/D0No9m9upLLQ6cPlhqZxjNvp7otmsxAAAAAAAAAAAAAAAAAAAAAN0j1ekBoPm894POubdJunbc5CMk3e+c+xdJN0p6UlJO0lGS3i7p5eOe+7ik5eMeDwZsZk/N43runKxdpnad9fiCpG/GXOa5kr7ThG0Dsf3ud7/T97///QnTPvOZz2j//feva32HHXaYLrnkEn3605/eO+3f/u3f9PGPf1x9fX2By1SrUdqHwRpZthnuu+8+3XPPPerv79fAwICy2ayWLl2qNWvW6Mgjj1Qmk6lrveVyWRs3btTDDz+sbdu2qVgsaunSpVq5cqVOOOEEZbPZJr8SAAAQV7FaCJyeSbT2PJ1LGmG0mOEQjIoTXKknoILZK+y7lU12Jv5ksUJItceVsH0g6fgRXzeIGxZrdQgibnit1aE2i3NO2cQcDVej/Wgw5VJKJ3oC58V9Tzv1mi1WuLFQCT6mmaGwmN9FOyo2JO+9XMQIUt4YZ5Cyjx88NUNwiTkh12jRY23AbDVQDg4k9aWNMJrBe34XDkbtKG3T3Xt+GTjvhfNeqt50cKwLzddr7McD5e2xzvGNCLs+6LZrMQAAAAAAAAAAAAAAAAAAAADdg7smZyjv/XXOufdJ+r+SEs9Oni/pA8/+Z7lK0kJJ54+bNm3CaN77ZyQ9E2eZdvyjf8By5ZVXTrhhbMmSJbrgggsaWufFF1+sz372syqVRm+aHxoa0tVXX60PfvCDkqRHH31UBx98sLn8ySefHDj9mmuukaTQ8Vn70yOPPKKVK1fufXzSSSdpw4YNex/HuWluy5Yt+vu//3t985vf1NatW83n5XI5nXzyyTr//PP1+te/Xslkcsp133///brsssv0/e9/X7t27TLX+5rXvEaf/OQntXr16sjjBgAAzVWo5gOnxw2BxGUFV+IEvrBPnKBc2ZdbOBLMNGHfLSs81CnWeGqPK9Y+kFBSCZcInIf2ih3lMkJOzRJ3PK0OtYXJJaOH0cLGGTeu0cnXHMQKN1rXGXYoLN5xLpecFzi9orJKfkQ9Llp4fjhGhKye87odgpsTco0WfM0IYJT3XgOlbYHz+lJLA6c7Wf9PhTAaRv1s8IfyCv6lKif2ndHm0cxufangMFrJj2ioulvzkgtaPgbreiWplFIu3fLtAwAAAAAAAAAAAAAAAAAAAJieuGtyBvPeXyVpvaTfR3j6HknvlnSxpANr5j0d8PydNY+D75AxOOfmaXIYLSjABsxo//M//zPh8Vve8hb19PQ0tM6lS5fqzDPPDN3OdOS915tUPcUAACAASURBVGWXXaZVq1bp85//fGgUTZLy+bxuuOEGnXPOOdqyZUvocyuViv7iL/5CL3jBC/Sf//mfZhRtbL3f+MY3dPjhh+vKK6+s67UAAIDGFauFwOmZRLal27WiG3ECX9gnTlCu7EstHAlmmrDvVqsDinFZ4ylUasNowftAmphA17CiVubzWxzlijueuFGxZorzXoTtw7FjcDHfo1azrzOC4175ihUKa95nn48RO4tzPVSq47xuh+DmmK+hEGP8wGw0XN2jEV8MnNeXDg4qAWFK1ZJ+vvPmwHkH9Byk1bkXtHlEs1tfarE5b7DU35YxWJHSbDLHL68CAAAAAAAAAAAAAAAAAAAAYEp1egBoLe/9Tc65wyW9VtIZko6XtEzSfEnPSHpE0vWSvua9f1qSnHOH1qxmU8CqH6x5/JyYQ6t9/g7v/UDMdQDT2uOPP65HH310wrTTTjutKes+7bTTdN111+19fMcdd6hUKimdnp43zJfLZb3pTW/StddeO2ne/vvvryOOOEJLlixRsVjU1q1b9Zvf/EZ79uyJtO58Pq+zzjpLN91004Tp6XRaRx11lJYvX65MJqOnn35aGzdu1PDw8N4xXXzxxRoYGNDHP/7xhl8jAACIp2jcWJtpcfDIjm4QRqtHbfgpTMmPtHAkmGnCvlvdFkbLJecGTi/6gqq+ooRLSpLKvhz4vBRhtK4R97vV6u9i/EhYJ8No0d+LXCJ4n5GkXMzX0MkYXBBrPFbs0QyFNfF9yFeGtTC1KNJ6hivRI2Tlavwwmh2Cm2N+360YC4BRA6Xt5rxFqXhhNN/oYDAj/O+e27WnUvu7lUad2LueEFabLUj1KqGEqqpOmjdQ3q7lOrjlY7CuV1odCQYAAAAAAAAAAAAAAAAAAAAwvRFGmwW89xX9/+zdfZQkdX34+09VVz/OzM70zC4Py7LsCioBAYVFYIHFCIjL+cXEh9zk4rm/E0n8/WLIifeGXP3pzxuQHHz4eTw3JOolud5o4g1Jfh4fovcnETHyrCgPigIiyOOygLOzPTtP3T3dXd/7xzLLTPf3U13VD9XVM+/XORy3q7qrvtVdXVUza71X5Ksv/xfIcZzjRWTbqknPG2Oetzz10abHJ0Uc1quaHj8S8fXrVr1hZB+JuL7bVhTxUoO9Aefuu+9umbZr166eLPuss85a87hcLsuPf/xjOfvss2Xbtm3y1FNPHZn3l3/5l3LDDTccefxP//RPcu6557Ysc/PmwzfCvelNbzoy7Xd/93fl3nvvPfJ49XJX27Ztm3V6WFdffXVLFO3yyy+Xa6+9Vs4+++yW5/u+Lz/4wQ/kn//5n+WLX/xi4LKvuuqqNVG08fFxufbaa+X3f//3ZWxsbM1zy+WyfO5zn5OPfOQjUqlURETkuuuuk3POOUf27t3b4dYBAIBOVP2KdfqgIjNasATBorxvWhQKsNH2rayTOxIaS4p8wHGr4pelkBoVEZG6sUeEUg6/3kuKqHGHfke5oi5/kJGwoNhZs6BzfZTrgLSTSdz3R9uHtKCIdqyLvC8qgcagddifGyGMphzTggSF4NR4bYQIK7ARHaxPW6e74sq4V7TOc0T7vTppNIjcXvqWdXrWyckbN70p3sFAXCcl496klOqtEcRSfSaWMajn74QFqwEAAAAAAAAAAAAAAAAAAAAkS7Lu/EISXNz0+DbleT9reny64zgFY0zYO83Ob7O8DWtfSeRVH279l9vRW09+zJUdmwc7hn379q15fPTRR8vU1FRPlv26173Our6zzz5bPM+THTt2HJk+MTGx5nnHHHPMmvnNRkdHj/w5l8utmRf0uk7dcsst8ld/9Vdrpn3iE5+QD37wg+prXNeV3bt3y+7du+W6665rGeeKL3/5y/KFL3zhyOMTTjhBbrvtNnU78vm8XH311XLeeefJxRdfLJVKRYwx8id/8ify2GOPieu60TcQAAB0pOKXrdOzrv283yvajbuVRlmMMeI4g43vDpsoARUjvjRMQ1IJi1ohmfR4Tvj4UlxyAUGosr/UNozmJSzstJFFjVFFfX5U2YixiX6PJ3jd4ccaNM4o2zDIEJwmatxLD41E27askxNXXPGl9XeSUc7V0YKn0cNoZeX6L+cWJJeKFpUDcFip1hpLEhEZ9ybVmKweRsNG91zlSXmq8ph13hvH3yR55ViN/prwpuxhNOX732va728Gee0JAAAAAAAAAAAAAAAAAAAAIPkouKDZ7zc9/rztScaYF0TkoVWTPBG5IMJ63tT0+OYIrwXWhYMHD655XCwWe7bsXC4n2Ww2cH3D4rrrrlvz+A//8A8Do2jNJiYmrGE0Y8yaZXueJ9/4xjdCxd1WgmsrnnjiCfn6178eekwAAKB7Vb9inR41AhNVTokqNaTeUeBjo9NukNbUzHKfRoL1RovzRIkvxSUoYFReFUOqm7r1OZ6T7vmY0Bktnqk+v89xkJSTkoyTbf/Elw0yFJYPCAQ2C4poRNmGJMY4tLhX1VTEN42W6WUlmBZ12xzHUT+DciNCGC3Cczu5bqookba8W1A/+yixNmAjssWSREQm01siL8uI6XY4GHK3z35LnXfRxOUxjgSrFdP2fyVotj4Ty/q1yGoSr8UAAAAAAAAAAAAAAAAAAAAAJAdhNBzhOM4FsjZu9pgx5raAl3yt6fF7Qq7nZBE5Z9WkRRG5JcxrgfWkOVQ2MTHR0+U3L29mJp6bXHrpoYcekrvvvvvI47GxMfnkJz/Zk2V/73vfk5/97GdHHr/73e+W008/PfTrr7rqqjXBtW984xs9GRcAAGiv5tekIfZAUNZpDaL2UlD0hvBGdFECKiKdRVSwMVWU72OU+FJcgoIAq7dD2/8JoyVH1LhDHDGIYQmF5VLho3JBQbko26BFyAYp6DrDFhPVj3XRt017P7SYSbfPrXVwTi8rQdWcW1A/+5pZ5voBCFCq2cNoRc8eUgpCFm1jW2osyI/m7rDOe3X+VNma3R7ziLCi6E1Zp88qYcReqzTs5+9BRnkBAAAAAAAAAAAAAAAAAAAAJB9hNIiIiOM4BRG5sWnyf23zsn8Ukcaqx+9wHOfVIVb3wabH/90YUwnxOgAROI4z6CF07bvf/e6ax1dccYVs2rSpJ8v+zne+s+bx7/zO70R6faFQkDe+8Y1HHt955509GRcAAGivauw31YqI5AKCIr0QNmCEcKLG5OrGHsQDmpUb9n2r38eITqTdtBo3W/0dqftaGM3ry7gQXdT9K44YRJT4V1BwrN8iBc0CnhtpexN4PMgFxBtt50ztPNpJ9K2grDvKuTpK8LSTWFkl4Nge9H3SgiwAREpKGKmY1sNojgz/753Re98/9F2pmWXrvIuKl8c8Gqw2oYQOS7V4/jEd7Xclg4zyAgAAAAAAAAAAAAAAAAAAAEg+7pxcpxzH8YwJd8e44zijIvJNETl11eSvGGO+EvQ6Y8zjjuP8vYhc+fKkjIh80XGci7XQmeM4vykiv7dq0rKIfDTMOIH1ZnJycs3jQ4cO9XT5s7OzgesbBvfcc8+ax29605t6tuy77rprzePJyUl5+umnIy1jdaTt6aefFt/3xXVpjgIA0G9VX49bZN1cX9cdFN2IGvlC9Jhc3bffaA800/atQYafguTcgiw0Wn8mXL0dDbH/mkeLqiF+iQyj9Sg41m9R3oug9zlK7CyJMY6g8duOa9q1Ryf7lvZ+LEWInS350cJoxphIYX/92D7SNl47Kr0J7QPrzcHatHV6UQkpBTPdDQZDyze+3DH7b9Z5496knDF6Tswjwmpa6LBUPxD5XNwJPeSavEgtAAAAAAAAAAAAAAAAAAAAgOQgjLZ+/WfHcd4pIv8gIv/DGNNyd8vLQbR3isj1InLcqllPi8gfhVzPNSLydhEpvvx4t4jc6jjOHxhjfr5qXVkR+U8i8umm13/aGPNMyHUB60pzqKxUKvVs2ZVKRSqVtX3Cqampni0/Li+88MKax6eeeqryzOiee+65NY/PPffcrpbn+77Mzs4OZYAOAIBhU/WtHWYRiR6liSoovFZpEEaLKmpMrmZqfRoJ1puKElBMYghJ5HDEyBZGW/0dqSv7v+cSRkuKqPtXLoZQX5TzYhyhNk2U9y5onDl3pCfLGZSg8Vcaa49rvvHVWGw+wvtw5DXK/hg2Ylo3NamZ8AFTI0Z8aUgqwl9RqGEVNx8YviReC9j5piGz9YPWeYFhNCWiZAxhtI3q50s/kenaC9Z5F4y/RVIOfx09SEXP/ndDNbMsi/68jKb6Gw8dtp/NAAAAAAAAAAAAAAAAAAAAACQD/0/09csRkV9/+T/jOM5TIvKYiJREpCAix4jImSKSaXrdUyLyFmPMr8KsxBizz3Gcd4jIt1ct63wRecRxnPtF5EkRGX95XVuaXv7/icj/EXG71r1tRZEnP+YOehjr3rZi++f023HHHbfm8YsvvigzMzM9CZg9/PDDbdc3DGZmZtY8LhZ798E1L7sX5ufnCaMBABAD7aZaEZFsn8NorpOSnJu3joHoRnRBn6WNFoYCmpX9Rev0JIaQRPR41ergYs1XwmgOYbSkiBp3iGN/DDsmV1KSdpp/TRifKO9F0DblI1wHJDHGkXbT4jme1E29ZV7zca3qV8SIPULUSSi2oMTUtONpy/M6CMTWTC10LCcovJZ3RwK3mWs0wG6ucUh8aVjnTaab/zrnFY7Yw2jYuG4vfcs63ZWUXDDxlphHg2YTShhNRGS2NhNDGM1+Hk7qz2YAAAAAAAAAAAAAAAAAAAAAkoEw2sbgiMirXv4vyDdE5A+MMdNRFm6Muc1xnLeLyBfllfiZIyK7Xv7P5p9E5L3GGPtdNxuYl3Jkx+ZBjwJx2L17d8u0++67Ty677LKul33fffeteZzP5+X1r39918sdNMfp3U13y8v2m2m7YYz9hmQAANBbVb9ine6IG0vUJecWrEEv7WZf6MqNcLGVFYTREJYW3UtiCElEJJ/SgkSvHFdsoSQRES9kVAj9l0uFj1GlnUzoIFQ3wobC8qlCT3/mjiqXCv/dzAc8N8p3PKnHg5xbkIXGXMv05uNa0HWHdkwJXq/9NUshz9WdxMcOn9fD7aOVhh5Tzbl5STmeZJysLJtq62u5RgOsSjX9r4KKHn9JgXBmai/Jzxbvs857/di5Mu7xD4kM2rhXFFdc8cVvmVeqz8g22dnX9WvXCEm9FgMAAAAAAAAAAAAAAAAAAACQDO6gB4C+uUtEviwipTbPq4vIzSJyqTHmN6NG0VYYY74lIq8TkRvbrPMHIvIuY8wVxphod8AD68z27dtl+/bta6bdcsstPVn2d77znTWPzznnHMlk+h8J6bXNm9fegHfw4MG+LDuXy4nv+2KM6eq/HTt29Gx8AABApwWPsm4ulqhLTonMdBIE2eiihkpqhNEQkhbdyyf05nttXKu/Iw3CaImnnR9s4toXwwYnBh2miPJ+BL3PaTcT+jsRFFgbJO29aL7OCLruiLIvrigoMbWw5+qyH/1XvVrwMeo48i9H3bT9uNzgGg2wKdUPWKennYyMpMbU12k/cRnhH43YiO6c/bb62V80cXnMo4GN66Rkk1e0ztOOA71UUc7DnVyvAAAAAAAAAAAAAAAAAAAAANg4CKOtU8aYHxtj/icRmRKRk0XkHSLyJyLyERH5ryJylYhcKiKTxpjLjTG39mCdvzLGvE9EjhGRN4vIe0TkQy+v950i8ipjzHnGmK90uy5gvXjrW9+65vGXvvQlqdW6iz1MT0/LN77xjcD1DItjjz12zeNHHnmkZ8s++uijj/y5UqnIs88+27NlAwCA/qr6Fev0uG6qXYlvNNOCbdBFjcnVCaMhJO37mEtoCEmN+az6jmj7v+ek+zImROc5aUk74aLkcYXIwsa/Bh0NjPJ+aOfhqMsadAxOo42rOQwWJhQWhbYPLCmhyWZakDJI3V8O/dzAEFzq8DWgtr9HDbECG8XBmv3fySl6m9sEp/sfo8ZwqPnLcveh71jnHZvZLiflT4l5RNAUvc3W6bO1mb6u1zcNqRr773AGff0JAAAAAAAAAAAAAAAAAAAAINkIo61z5rDHjDFfM8b8tTHmemPMx4wxnzPG3GqMme/DOpeNMd8zxnzRGPOJl9f7VWPMU71eFzDs3v/+96+5yWx6elq+8IUvdLXMG264YU1cbWRkRN773vd2tcxBOf/889c8vu2223q27N27d695fMstt/Rs2QAAoL+qSvAo6+ZiWb8WYOskCLLRRQ2VEEZDWGXf/n1M6s332rgqhNGGTjZkpDOuSN+wRMLyEeKm7UKoYUOpcQVVo9LG1XzO1EJhrrihA31r19tdVEw77gapRTivB4XRVo6hYSKTAF5Rqh+wTi+m7QGl9kzng8FQun/+blls2P+a8aKJvW0Ce4hTMT1lna4dB3pFC9uLJDdaDQAAAAAAAAAAAAAAAAAAACAZCKMBwACdcsopsnfv3jXTPvjBD8pLL73U0fIeeeQR+dSnPrVm2nve8x6ZnJzseIyDdMkll6x5fNNNN8n8fG96jpdddtmax5///Od7slwAANB/2o21YWM03corN+9WlGAb7HzTiPyeEUZDGMYYdd8adPxJo8Z8Gu3DaCnH68uY0Jmwga8oIbBuhN3nBx0NzLkjEZ4bPNZ8yGUNeps1+ZR9/KuPByIilYY99pV3RzoK0RSU9S6FDJ4tKYHYoM8rynldC7SlncyR42CYyCSAV5Rq9iDSpLcl8HWO2I8xhjDahnPH7Les03NuXt44/qZ4B4NAE549eDjb5zBaUJw0qZFaAAAAAAAAAAAAAAAAAAAAAMlAGA0ABuzTn/60FAqv3Lg5Ozsr73jHO2RhYSHScqanp+Vd73qXLC8vH5l27LHHyp//+Z/3bKxxO/XUU+Wiiy468nhubk4+9KEP9WTZe/fulRNPPPHI4x/+8Ifyd3/3dz1ZNgAA6K+qsQePsk4ulvVrgQ+iG9FogbsgNZ8wGtqrmooa5khuCKn9caVu6tbnpJ10X8aEzoQNkUUJgXUjbHBi0NHAtJsWL2Tkr91Yh2WbNdr4m68ztNBILtVZZEQLylX9svjGb/t67TpoLDWuvkY7rtk0h+FWrB639t4FRVmAjeygEkQqpu0BJWC1ZypPyNOVx63zztn060SvEqaohNFKtZm+rjfo9yRhY7YAAAAAAAAAAAAAAAAAAAAANibCaAAwYCeffLL89V//9Zpp99xzj+zdu1f27dsXahmPP/64XHzxxfLoo48emea6rnzpS1+SLVu29HS8cWsOu332s5+VT3/606Fff+jQIalUWqMbnufJddddt2ba+973PvnqV78aeYy33nqrPPnkk5FfBwAAOlPx7WG0uG681kIqRDei6eT9qhvCaGivosRzRJIbQtKCbWV/8ciftf3fI4yWKGHPRfkBn7OaaXG+OIWJxXlOWtJu8D4fPk43+G220SIhzedNLTTSaQAyn7Kv14iRqnLttdrSquPVapu8CfU1NbOszmumbe/q75z23gWdF4CNbLamhNGUgFI79iwt1qs7Sjer8/ZM7I1xJAijmJ6yTi/VD4gx/fv2lgOuIYjnAQAAAAAAAAAAAAAAAAAAAAhCGA0AEuDKK6+Uq666as20u+66S0455RT5xCc+Ic8995z1dU888YR85CMfkdNOO01++tOfrpn3yU9+Ui6++OK+jTkub37zm+Xqq69eM+3P/uzP5G1ve5vcf//91tf4vi/f//735f3vf78cf/zx8uKLL1qfd8UVV8iVV1555PHy8rK8853vlHe/+93qskVEGo2GPPjgg/LRj35UTjnlFLn00kvl2Wef7WDrAABAJ6p+a/RURCTr5mJZvxYc0YIdsAt6v0bcMet0wmgIIyi6l4T4k40WaFodgiSMNhzCR7naR8B6IWyALQmRsDBjDTPOsN/z5B4P7O9D83lTO9Z1+lkGBdW06Nma8SjxsYI7Kq7y1xBRzuva9q4OuuVS9veOeC3QqubXZK4xa51XTAeH0RzHUeaQRtsoFhpzct/8ndZ5ry2cJsdmj495RGhHCx7WzLIs+Qt9W6/2c78rKUk7mb6tFwAAAAAAAAAAAAAAAAAAAMDw8wY9AADAYZ/5zGekWCzK9ddfL8Ycvolsfn5ePvShD8mHP/xhOeWUU+T444+XYrEoMzMz8swzz8hjjz3Wspx0Oi033HCDvO9974t7E/rmk5/8pDz77LPy5S9/+ci0b37zm/LNb35Ttm7dKqeddppMTU1JtVqVF198UR566CGZn58Ptewbb7xRSqWSfO1rXzsy7aabbpKbbrpJtmzZImeccYZMTU2J67oyNzcn+/fvl0cffVQqFXuQBQAA9N/qUNBqWkik17TgiBYEgV3Q+zXqjcvicuv1HGE0hBEU3UtC/MlGCxKVG0tijBHHcaRu6tbnpBx+vZckYfexvBJw6rXQ40nAdyNU9CzEc4Zpm23U64ym6x/tWNd5GE2P9ZUbSyJtGoxlJZ6WT41I2slI1bT+HiXKeT3M9Z+2DcRrgVaz9QPqPC2gtMIRLYyGjeL7h/5dambZOm/PxOUxjwZhTHhT6rxS7YCMpOxx8m5VlJ/7824hILIIAAAAAAAAAAAAAAAAAAAAAITRACBR/uIv/kIuuugi+aM/+iN5/PHHj0w3xsjDDz8sDz/8cODrzzzzTPmbv/kb2bVrV7+HGqtUKiX/8i//Iqeeeqpcf/31Uqu9cuPs/v37Zf/+/R0vO51Oy1e+8hX51Kc+Jddcc82a4Nn09LTceuutoZYxMqLfQAwAAHqr6tsDpVk3F8v6tQAb0Y1otIBKSjw1VlMjjIYQysp30RVXMk425tGEo4WMGlKXuqlJ2smoASHPaVMrQqzCRjpzARGqXgobyYorLho8hjDRs/bjDLvN2QRss412DmwOi2iB0U6Db/mU/jrtnB3mOXm3IJ6TVsJo9uBjlOWv/ry5RgPCKwWF0dLBYTTNyj/2gfXNN77cOXuzdd6ENyWnj74x5hEhjE1eURxxxYjfMq9Un5FtsrMv61XDpjFFggEAAAAAAAAAAAAAAAAAAAAML3fQAwAArHXJJZfII488Iv/4j/8oF198sXhecMMym83Kb/zGb8i//uu/yn333bfuomgrHMeRa665Rh577DF573vfK5OTk4HPHx0dld/6rd+Sr3/967J9+/a2y/7ABz4gTz31lPyX//Jf5IQTTmg7nrGxMbn88svls5/9rLzwwgty9tlnR9oeAADQuapyY21cgZN8yh6z0W74hZ32fuVTBUkroSctDAWspgVwcm5BHMeJeTThBAeJDm+PFhDyHP7dgyQJG3nIx3bOChfJ0s5tcQoz1jDRszBhsKyTk5STCjWuuOWU96H52KYe60J+5s08Jy1pJ2OdFyqM1rA/p5AaUY9TUc7rlYZy3bDq884rwUEtmAlsZAdr9jBawR1NRCwTyfXI4gNyoPaSdd6FE5cl9vy60aWclIx7Reu82fpM39Yb9LMZAAAAAAAAAAAAAAAAAAAAAAThzkkASCDP8+SKK66QK664QhYXF+X++++XJ554Qqanp2V5eVmy2awcffTR8prXvEbOPPNMyWazHa/r2muvlWuvvbaj1952222xvk5EZOfOnfK3f/u3cuONN8oDDzwgP//5z+XAgQOysLAgIyMjctRRR8nJJ58sp59+uqTT9qCG5phjjpGPf/zj8vGPf1yeeuopeeCBB2R6elpKpZK4ritjY2OydetWOfnkk+XVr361pFLc5AUAwCBU/Yp1elxhNC0UUPGXxBiT2PBS0miRkrxbEI8wGrpQbij7VoexoDgEhQEq/pJskgl1/9e+LxiMsJGHnBJw6rWwcZskRHBCRc9CxdPab0sStlejhd2az5tB59HO1z0itcZy67qV6Nna8difk3dHxHPTIo3WeTW/dV1Rl796v1Gv0ZSoGrCRler2MNpkenPb1zrCzzsb2e2zN1unp8ST3eOXxjwaRFH0NlsjaCUllNgL/bheAQAAAAAAAAAAAAAAAAAAALAxEEYDgIQbGRmRPXv2yJ49ewY9lERxXVd27dolu3bt6svyd+7cKTt37uzLsgEAQHcqvj1ukXVzsaw/r8RsfPFl2VQl68QzjmGnRVZyhNHQpYpy833YYNUgBIUBVmICehiNX+8lSdjgVj6mMFfK8STtZKRmggNU2rktTmECGWG+x6GeM4ShxJpZloapS+rl77wWGunmWJdPFWSuUWqZrq0rzHPy7oh4TsY6L8p5Xbv+Wx3Ly6fs+3HZXyReCzQp1aat0ye89mE0jRHT8WsxHA4svyiPLD5gnfeGsfNk3CvGPCJEMeFNWafPKqHEXhjGn80AAAAAAAAAAAAAAAAAAAAAJIM76AEAAAAAABBF1a9Yp4eN0XQraD3aTb9opQVOgsJoNZ8wGtrT4zzJvfk+G3RcaRzenoapW+dr3xcMRtj9LKcEnPohXHAsnnNo8BjajzPMtuRDRM+SHOMI+ixWH99Wjg3NujnWaYG8MGG0JSV4mk+NSFoJONaV45pNxdeDqq/82f7ercRrAbyipISQiukwYTR7ZJAw2vp3x+y/qZ/znom9MY8GUWnfb+140At6yHXw154AAAAAAAAAAAAAAAAAAAAAko0wGgAAAABgqFSVoFbWycWy/qDgSFmJlKBVWQmc5FMFSbv20FPdEEZDe1qgMMkhJNdx1TjASkygpuz/hNGSJex+lo8xBhEuOBZfqE0fQ28Cbr0KrA1K0GexOobWj2Od9r6UlejZCt/4avA0HxA8jXJeLwcs/5U/B7x3xGuBNUo1ewhp0tvS9rX2LBrWu2W/Kt8/9F3rvOOyO+TE/K/FPCJEVfSmrNNLtZm+rbPS0IPoAAAAAAAAAAAAAAAAAAAAABCEMBoAAAAAYGj4xpeqqVjnhYml9EIupd/AS3QjPC2gkutRQAUblxYoTHIISUSPA6xEBLX933O8vo0J0YU9F8UZgwgVE0vFvHdLFwAAIABJREFUF2pTxxBinGECbr0KrA1K0GdRXnWdUVauOfIB1ynt5FP291eLma6o+hUx4tuX6Y705LxeUY7tq79LQZ8r8VpgrYN1exitmN4c80gwLO6fv0sW/XnrvIsm9orjkMxLOu37PVufEWNMX9aph1yTey0GAAAAAAAAAAAAAAAAAAAAIBkIowEAAAAAhsayqarzsm4uljFknZw4Yr/pW4uUoJUWWckTRkOX9Jvvkx1G02JOKxHBuqlb52vfFwxG2MhDnKG+oKDniiSEA8MEvUJF3kI9Z/Dbqwn6LFaOBw1Tl5pZtj6nm23T1t0ujBY0P5/Sz+u1kOd1Y0yoEJwWdhMhXgusVm4sqd+JohcmjGb/WchIf8JKSIbbZ2+2Ts+7BTl700UxjwadmPCmrNOXTVWW/IW+rFMLogedswEAAAAAAAAAAAAAAAAAAABAhDAaAAAAAGCIVJWbakVEsiFjNN1yHEeNrhDdCK/cUAIn7oikuwyoYGMLE89JIi1mVG4sim8aYsS3zieMlixho1RxxTxF2kfP0k5GUo4X02h0Yd67cJG39qGNJB8PUo4naSdjnbcSIAsKsXYTudPeO+2c3Twum4I70nXwtGaWxZeGdd7q/SbjZInXAiGU6gfUeZPp9mE0x7F/z7B+PV3+hTxbecI679zxN8d6XYPOaWE0EZFSbaYv69SuEcLGhAEAAAAAAAAAAAAAAAAAAABsXIO/4w0AAAAAgJAqgWG0OCMzI9bARtD41osfzd0h3z/0XTWoMJraJKePvlHeXHybpJyUuhwtIpdz82J8ewAqbEAFG1vQvpVkWsyo4pelburq6wijJUuYcFfOzYsbcHzstXbBsTAhsTiECXqF+R6HCaWGDdgNSt4tSK2x3DJ95TqjEhAq6yqMllLCaAHhM5HDAUdNLiB4Gva8HjYE5zqu5Ny8co1GGA1YUapNW6c74gSGk9oypvPXItFun71ZnbdnYm+MI0E3xr1JccS1Bpdn6wdkm+zo+Tq135F0c70CAAAAAAAAAAAAAAAAAAAAYGMgjAYAAAAAGBpVv6LOizN6pK0rKAyyHtxRuln++Vd/E/icl+R5+WX5UfnV8n559zFXqc/TAiX51IjUTGsMRoQwGsLRAjpJiT9ptKBW2V8M3Pc9h1/vJUmYc1HcUa52Y0pKNDDM+xLme5x20+I56cDvTdLDaDm3IHON2ZbpK9cZQaGwMHE+jRYpCVpf0Py0kznyediEPa8HRc2a99+cW7COp902ABuJFjje5BUlFeK6wlGmk0Vbnxbqc3L//F3WeScXzpCjM8fFPCJ0KuWkZNwrymx9pmVeyTKtF/RodbKvxQAAAAAAAAAAAAAAAAAAAAAMnjvoAQAAAAAAEFbFL6vzsrGG0ew38QaNb9jV/Jp888BNoZ9/96HvyEvLz6vztUBJzs1L2snYx0AYDSFUGvq+lWRakKjil6Vu6urrtOAQBiPr5MRRkzGHaZ91v7QLT+RTyYgG5kMEvcJ+j9u9x3F/BlFpcbOV64ygyFc326aF58rKcXXFkhKGXVmedpyq+eHO60Hrb95e9VjaZhuAjeRgzR5GK3qbQy4h+DyH9eWeQ7eqIcs9E3tjHg26pX3PZ5VgYjd846u/I0n6z2YAAAAAAAAAAAAAAAAAAAAABo8wGgAAAABgaFT9inV62slIyknFNg4t3hIUKhl2jyw+IIv+fKTX3D93lzqvorxXebcgnuNZ52k35AOrad/DpMSfNFq8quwvBe772vcFg+E4TttQZ7tQWa+1C2UlJUwR5n0JG/1qt6y4P4Oo9FDi0pr/bXb4eqjzY4J+fWMPn7Wbv7I8z7WH0cKe17XtFWkN4wYdSwEcVlICSOHDaBrT5euRNL5pyB2zN1vnFb3Nctro2TGPCN2a8Kas00tKMLEb2u9vRJJ/LQYAAAAAAAAAAAAAAAAAAABg8AijAQAAAACGhnZjbdbNxToO7SbeoHDHsPvR/B2RX3P/vD2MVvOXpW7q1nl5d0Q8p7uACjauhmnIsqla5yUl/qTRQkjlxmKbMJr9+4LBabevhY179UrSxqMJ8x3NKeGuqMvKJ/x40C7uVW7ocdFuFFx7QLJmlqXm68chNUj58vLSXZ7XteXn3Ly4ztq/4tDibuv5Gg2ISgujTabDhdEccazTDWG0dedni/fLwfq0dd6FE5fFGidHbxTTShitPtPzdQWFVbXzNQAAAAAAAAAAAAAAAAAAAACsIIwGAAAAABgaVb9snZ6NOXCiBozWaXSj4pflpws/ivy6F5afk/3VZyzL09+nXCovaTdjnVfzlyOPARtL0L6VV4I/SaEFnyp+uU0YzevXkNChdnGqXCrec1a7mJgW4YpbyvEk42QDnxM2cJhPBX/fc23mD5oWbls5xmnHum4/y1zAcbISEDcpN+zzVkJr3QZPo2xvu6gcAJFSzR66KnrhwmiihNGw/txRutk63XM8OX/80phHg17QvuezfQijVZTf34gk5/oTAAAAAAAAAAAAAAAAAAAAQHIRRgMAAAAADA01jObkYh2HdhNvpbE+oxs/mb9XasYeJbts8p3y20f9gThKIOG+ubtapgXFSfLuiBp6qpt6iNFiIwuM7sUcUIxKDy4uBu77WnAIg9Mu9BB3pK9dqC3fJpwWp6D3Lu1kQu/v7b7vWngsKbRAWfnl6wztPNougtdO0L4QdO4uK9G0lfF0G0bT1m3bt7X9Pej8AGwkvvGlpASQiuktXS3bdPVqJM2vlvfLI0sPWue9YfR8GfMmYh4RemHCm7JOL9UOiDG9/RYHR6uTc/0JAAAAAAAAAAAAAAAAAAAAIJkIowEAAAAAhkZFCaPFHTzS1hcUDRlm983faZ2+KTUhv7H5Cvn14n+QE/OnWJ9z//xdLTdYB4fRCl0HVLBxlQPihHHHqKJSg4t+OXDfJ4yWPO3OSfGfs4LDE+3mxykozBXlfRumbbbJp+zbuhIY0UIj3UZGCgHHyaWGPX4moofRVpanBU9rIc/rWnjW9jlqn23Q+QHYSBYac+p1RdHbHGoZ9hyyCGm09eXO2X9T511U3BvjSNBLE2n793zZVNXzeae039+44krayfR0XQAAAAAAAAAAAAAAAAAAAADWH8JoAAAAAIChUTUV6/Ssm4t1HPmUPRyi3fg7zObrh+TRxQet884cu0BcJyUiIrvGLrA+Z7r2gjxXfXLNNC1wInL4s9RCTzWzHGbI2MC0WJCISE4JDSWFFjSq+mWp+fq+n1KCQxicdtGtuCN97YJi3ca0einovYvyvrXbpiRts01QKFFED4x2u11ZNy+OkjwKOr5q0bGV7dDiJ2GDp1G2V4vrrcdrNKATpfoBdV5RCSZh41n2q3LPoe9a5x2ffZXszL025hGhV4relDrvYE0/PnRCu3bIuQVxHD2xCAAAAAAAAAAAAAAAAAAAAAAihNEAAAAAAENEi1rEHUbTIjNlfzHWccThwfl7xBffOu/sTXuO/PkNY+eJo/ya4f75u9Y81gInOTcvrpMKCKjUwwwZG5i2b6WdjBrcSwotuGjEyKI/b53nSkpch1/vJU27EFm7+b3WLpbVLuQWp6CxRnnf2m1T3NcNUWnvw8p1hhYY7fazdB23o2scbV7h5eOadvwNG0ZTwyqWCJr2HqzHazSgEyUlfOQ5noylxkMtQwsaGTEdjwvJ8qO5O9Tj5p6JvUSthti4N6n+3D4bEE7shB5OTXawGgAAAAAAAAAAAAAAAAAAAEAycOck0GO2G0KM4YYgAMPN91tjKNwABwAYhKpfsU6P+8ZaLbqhhduG2X3zd1qnb04fLTtyrz7yeMybkNcWTrM+9/65u9b8XKTdZL/yvnqOZ51vxJeGaYQaNzYmNZ4zBDffB41xvn7IOj2d8NjbRpVLtQmjWWJO/dQultUunBanoO9BlPctaJuyTk5cJxVpXHFrd52hRSDzPdi38q490rjU0MNi2ryVZXUfRrNfX9k+Z+2zX4/XaEAnDtanrdMnvKkIsVXld4L8Nci6YIyRO2Zvts7LuyNr4tgYPiknJeNe0Tpvtj7T03VpP5tpQWgAAAAAAAAAAAAAAAAAAAAAWI0wGtBjrtv6tarVwt3kBwBJVa/XW6bZjncAAPRbVYlaZGOOHmnRjapfFt+0BkWH1cHatDxRfsQ6b9fYnpZQ6lljF9iXU5+Wpyu/OPK4XeBEC6iIhI+oYGMqN5Sb75XQT5IEjXGhMWedHvRdweAkLUTW7hwZd6gtSNB7F+V961VgbVC0bS03lsQYExCB7EEYTYmVaOsMmreyLC14Wjetv2uw0UJwtu3V3oNyQNgN2EhKtQPW6UVvS8wjQVI9VXlMnqs+aZ133vjFknGzMY8IvTbhTVmnl+r240On9PN38qPVAAAAAAAAAAAAAAAAAAAAAAaPognQY47jSCaTWTNtYWFhQKMBgN5oPo5lMpmWEAoAAHGo+hXr9LjDaFp0w4hRxziM7p+/S523a9OFLdNeP3auuJJquywtTpI7EkbLWOeLiNTMsjoP0KJ7w3DzfdAY5xuHrNO12BAGq12cqhfxqijSbjowohd3qC1IPiBaFuV9C1pOkrZXo21rQ+pSNzU9RNaLMJqyjCVfD4tp81aCj9r+F/acXlGjl61jVeO1piK+aYRaH7CeaeGjYnpz6GVovxE0YjoYEZLm9tLN6rw9E2+NcSTol6IWRqvN9HQ9+s9myb8WAwAAAAAAAAAAAAAAAAAAADB4hNGAPhgbG1vzeG5uTozhpiAAw8kYI3Nzc2umNR/nAACIi3ZjbdbNxTqOoOCKFisZRj+au8M6/bjsDtma3d4yfSQ1Jr828nrrax6Yv0d844uI/jmuxEzSrh7wqZt64JixsZW1OE/AdzYp0k5GUmIPnS0oYbQUYbREyrcJ8Q0izBW0ziTFKYLGEiVwGLyc5GyvJpfSt7XiL0lZudboxbZpyygrcbKavyx1U7POe+W8bg+e1n3761rWrW2v5dhum7ZCu/4ANpJSTQmjeeHDaFoajTDa8Juvz8qDC3db551SeIMcldka84jQD1oIUQsndqqfIVcAAAAAAAAAAAAAAAAAAAAA6x9hNKAPmoNBtVpNnn/+eeJoAIaOMUaef/55qdXW3qy8adOmAY0IALDRVf2KdXqUWEovBIVH1kt044Xqc7Kv+pR13tlje9TXnTV2gXX6bH1Gniw/KiJ6vGolZuIFxJ7CRlSwMWnfv2EIITmOowbc5utz1umeo0cEMTjt9rdB7I9B60xSnCJoLHl3JPRyehVYG5SgbS37S1JpBAdGu1FI2dddUc7dWrRs9bK0Y1XY2GmUsErQe7BertGAbmjho8n0lphHgiS6+9B31GPznuLemEeDfpnwpqzTZ+szPV2Pdv4ehmsxAAAAAAAAAAAAAAAAAAAAAIOn32kMoGO5XE7S6fSakND8/Lz88pe/lE2bNsno6Kh4nieuS5sQQPL4vi/1el0WFhZkbm6uJYqWTqclm80OaHQAgI2uqgQtsm4u1nEERTe06NewuW/+TnXeWZvs8TMRkTNG3yie41lvqL9//m45qXCqGlFZeV89J6Muv2aW1XmA9v1LUvgpSM7Ny0KjNYJmmyZCGC2psm1iD1oAr5+CAhR5JYQ1CL0KmvUqsDYoQdta9pfaBka7ob0/S2oYTb/uybnBwdOG1MU3vrhO8O9ItesG2/sUtA8dHivxJ2xcDVOXQ/WD1nlFJZRk44ijzOEfhhlmDdOQO2e/bZ036W2R142cFfOI0C9Fb7N1+mxtRowx4jjadzwaLeQ6DNFqAAAAAAAAAAAAAAAAAAAAAINHGA3oA8dxZOvWrfLss8+KMa/cDFSr1WRmZkZmZnr7r64DQFxWjm+9ujkKAICoqn7FOj1KLKUX0k5GXEmJL42WeRUl3jZMjDFy39wd1nkn5n9NptJHqa/Np0bklJEz5aGFH7bMe2D+bnnXUb+vvkcrN0inA2JPdVNT5wHt9q2k04JE841D1ulabAiDlW9zThrE/qit0xFHMk5ywteBYbQI0a/g5cR7zdCJoOuaufqs+OJb5/UiAqkdh8oNe5ys3NDDaIXUqIgERxzrpha4D/rGV8O4trEGvQdaoAXYKGbrB8Uo8bLJdPfRQLJow+1nC/dJqX7AOm/PxF5xnVTMI0K/TKTtYbSqqUjZXzxy/u6WGkQfQCQYAAAAAAAAAAAAAAAAAAAAwPDh7kmgTwqFgmzfvr0ljgYAw8pxHNm+fbsUCty4BAAYHC16lHVysY7DcRzJuwVZ9Odb5gUFQkREDtUPyrOVJ8VYoiY5Ny87cq+RjNs+UjNbPyjPVZ6UozPHyZb0MR2HS33TkH3Vp2S2fvDItFLtgEzXXrQ+f9fYhW2XuWvsQmsYbb5xSP699E05WPuV9XUrMZPggEq97fpFDsfdpmsvyIvL+0I9f8Wm1IQcnztRUiFu/F/2q/J05ReRYniuuLI9d5Js8ibaPrfmL8vTlcel7AfvU82Oy+4IjNd1quKX5enyL2TZVHu+7F45sPySdfqw3HyvxZAWG63HGpHg7woGp134bBAhMu07kHPz4jpuzKPRBX1X2wXnVguKn/UiHtZvrpOSrJOTqmkNwj6y+ID6ul5E97TPoFSftp7b91Wesj7fEffI9Vnayajrq5uaZET/TlT9ihpysh0z025GPMezXi88uvRj67VbGCnHkxNyJ8loalNHrweSoFSzR69ERIqePZTUSw3TkOcqv5S5xmyk123NnCCbM0f3fDzGGHlh+Vk5ULNfPx6V3ipHZ47bMP9AxO2z37JO95y07B6/JObRoJ+K3pQ670dzd0hRCadFdWjV7xhWG5ZoNQAAAAAAAAAAAAAAAAAAAIDBIowG9NFKHG3//v1Sq9UGPRwA6Fg6nZatW7cSRQMADFTd1KQh9ihWNkIspVdyqbw1rqFFshqmITe99Dn5/qHvBi437WTkPcf+qbx+7Fx9OS9+Tr4/98pyXls4Tf7zcR9Wo0qal5afl8/s+6jMKKGyZq64cubY7rbPe93oLkk7GamZ5ZZ5X5v+ovq6fGpEREQ8R/91hW2ZzcqNRbnx+Y/J4+WH2z7XZjxVlKu2XSPbcjvU5zw4f4988YW/DDUemwsn3iq/c9R/UoNEDy/cL5/f/ylrFCeMM0bPkSuPvVrSrh6jieIHh/5d/vHFz6nfwaQblpvvV74DzWwhRRERzyWMlkTt9rdBBFa080PSvhtB48m59u+HTVD8LGnbrMmlClKtt54DtHCNSG+ib3nlfT5Qe0lufP5jEZZTOLKvdxM8rfhL+jqUY2bOLchCY65l+rdm/iVwXWG8dfK35Tc2X7FhQklYX0r1aev0nJtXv082jmj7v/4PxOyrPCWf2XedzDVKodez2qkjZ8ofbP2AZN3eBLEP1Q/KXz/3Udm//Ezg87ZnT5Q/3naNjHrrO4r40vLz8vOln1jnnTV2wbrf/o1m3CuKI671Z4x/+dXf9n39UX9vAQAAAAAAAAAAAAAAAAAAAGBjst99C6BnCoWCnHjiibJz506ZmpqSTKY3N6UDQL9lMhmZmpqSnTt3yoknnkgUDQAwcFpwTER6doN8FFp8RAt43DF7c9somsjh8Nfn9/83OVQ/qC9nbu1yHlv6qXz1V19su+xm//fz/y10FE1E5OSR18uYN9H2eTk3L6eN7oo8npUbpF0nJa6krM+pm/bR6a9Of7HjKJqIyKFGSW58/noxxh53OFiblv9n/6c7jqKJiNw5+29yz6FbrfOWGgvyN/s/3nEUTUTkJwv3ys0zX+749au9WN0n//DiXw1tFE2kN7GgOESNBATFhjA4uVTyYg9aDCxp342g8eQjfD9Sjidpx/47uKRts6aTcfYi+tar92d1ZCkoeNruvF4OCKNpx8x+fsb/dvDL8pOFe/u2fKCfSrUZ6/SityXScqKGAX3jy//1/PUdR9FERB5efEC+eeCmjl/f7O9fuKFtFE1E5NnqL+X/fekzPVtvUt0xe7M676KJvTGOBHFIOZ5sCvFzfb8MS6QWAAAAAAAAAAAAAAAAAAAAwGDpdyQB6BnHcSSXy0kul5OjjjpKjDHi+756kz0ADJLjOOK6buSbHAEA6Leqr0eiosaEekG7mVcLeDwUIaLhiy8/W7hfzp+4tGWeFuN4aOFeuULeF3od08svhIoBrLZr7MLQzz1r7AJ5YP6eSMvPu69EVNJOWqqm0fKcMGG0XgRLDtanZV/1KTk+96qWeY8u/lh8aR1bVA8t/FAumHhLy/SHFx+Quuk+QvaThXvlbVve3fVyHlr4YdfLGLRhufl+9XcgjKDYEAYn6Jw0qCiX9h1I2ncj6L2LOta8W5BaozVgmbRt1kQdpyNOT0Kxq4NmXS1n1fiDIo7tzutacFZkcPv1Qws/lNePndvXdQD9cLA+bZ1eTG/uyfK1v+/YV31SSvUDXS//Jws/kHcddWXXy6n4ZfnF0s9CP//niz+RhqlLap1ed1X9ivzg0L9b523PnSQ78q+JeUSIQ9GbUmPs/TYskVoAAAAAAAAAAAAAAAAAAAAAg7U+/1/8QMI5jiOpVGrQwwAAAACGSlAYLZugMJoW8CjVZiItX4sH/GLpp9bpc41ZqZtaYHwkzPI1aScjZ4yeE/r5p46cJTk3LxW/HPo127I7j/zZc9JSNa2febuASs2vyUJjLvQ6g8zWZ+R4aQ2jzTVme7R8+2cwW4+2r0RdfvTl9GY8g7R630qyqOMclu3aaDwnLcdmjpcXlp9rmXd6hONoL2n7yrZcsvahCW9SRlPjstA4tGZ62snIUZmtkZa1LbtTHll6sHV6wrZZsy27U56u/CLS813H7Xq9x2V3iCOOGOnuH3RoPqdraqY1Xrdmvq/PzzhZdd3PVZ9sM8LOrYfzIjamUs1+bTjp9SaMpq+3N9+ZUm1GjDFd/2MOi435SJHjZVOVql+RQmq0q/Um1Y/mblfj3hdN7I15NIjL9txJ8nTl8djX64gjW7MnxL5eAAAAAAAAAAAAAAAAAAAAAMOn+zulAAAAAACIQTUgsJUbQBgtr4TRyg37TeVRAmGHn29fThBt3TaLjYVIy7508u2ST9m32SbjZuWyyXeFfv4pI2fK5szRRx57rj2iUvODw2gVfzH0OtvRAgHSZSym3fKjfI5BKn5ZfOP3YDm9Gc+gvLZwmhyT3TboYYRyxug5Mu5Nhnpuzi3IrrEL+zwidGqPJSSSEk/OH79kAKMRed3oWTKVPmrNtLSTkfPGLx7IeDSuk5ILJy5rmb57/BLJuPYIlubCibeKI2vjOTtyr5Ht2RO7GmNcdo9fHDp2KmLf5zox7hXl9aPndbUMz/Hk/PFLjzxOuxn1uXVTD1yWFkT1HE+NI+2euFQ8p3//JsywnxexcWlh5GI6Whit+djaTq++M740ZNlUu15Ou9CyTbexyKQyxsjtszdb5424Y3LW2AUxjwhxuWD8LZJ29PNzv7xhbLds8iZiXy8AAAAAAAAAAAAAAAAAAACA4dO/u4MAAAAAAOihql+xTnfEHcgNvTklElZWwlzadE0ncayyvyhjMh7quUtKGM0RR7Ju7sjjordFzh3/dbm4+LbI47l08u2SdtJyz6HvysH6r6zPGUuNy6kju+S3tvwva6ZrMZh2IYNyQIAu6+SsEZWqX7HGDirKZ2CMPYzgiCtZS7inYRpSM8utY1WWr+0rrrjWMJBvfGskwoiRql+JFLSzj8c+zpR4klYCdkkwmtokp46cJb+15T8OeiihjXqb5OrjPyZfm/4H+WX5EevnmnI8eVXuZLl88+8MTfBtI7qoeLmknJTcc+i78qvl/bI9d6JcOvl2Oalw6kDGk3Pz8qfHf0y+Nv338mT553JM9nh56+Q75YTcSQMZT5D/MPU/S87Ny31zd0rd1OXMsd2yd+q3Iy/njLFz5A+2/u9yW+l/SKl+QF5bOF3eseU9akwraXbkXyN/vO0auWXmK/J05XHxpWF93rGZ7XLBxFt6Grl7z9b/Taamj5KHFn4oc41S6Nc54soJuZPkLZPvkBMLv3ZkelCkrN4meFpTw2j6td+J+ZPlquP+XL598CvyTOUJMdJZJLRu6tbrDj2cCiRbqaaE0bxoYTSNFg/TvjPNP3ccWY4xUjX2n/3K/pL1NVG0Cy3brNcw2i/Lj8rz1aet884bvzhylBTDY1tup/zJto/KzTP/XZ6pPCENCQ6Vdmvcm5TTRs6Wt215d1/XAwAAAAAAAAAAAAAAAAAAAGD9IIwGAAAAABgKFSV4lXXtsat+y7v22JRtnA1Tt4axRESOyWyTF5f3WZbTGhBoFwVbaoSPry359jDacdkd8uEd/2fo5QRxHVfePPk2efNk9Khap2E02/u24voTPy+F1GjL9E8882fybOWJlulaxEELI5yYP1n+dPvHWqY/svigfGbfR61jNca07L/avr5r0x75vWP/15bpLy0/Lx996irrayr+UtdhNO09vWTyN+U3m4J26N7mzDHy3uM+MOhhoAcumLhMLpi4bNDDOKKY3ixXbr160MNoy3EcuXTy7XLp5Nu7XtYbxnbLG8Z292BUg/GawuvkNYXXxb5ez0nLO476PXnHUb/Xk+WlAv4aot15vW7soRbtOmHFa0dOl9eOnN5+cAHuPfQ9+fsXb2iZroVTgSSr+hVZ9Oet84rpLRGXZv/ZS7tG1q4lT8idJB844VMt02frB+XDv7zS+ppyY1EmvMmQ47Rrd9yx0cLIw+6O2Zut0x1xZM/EW2MeDeJ2YuHX5I8L1wx6GAAAAAAAAAAAAAAAAAAAAABg5Q56AAAAAAAAhFENCKMNQk4Jo9liWlpgS0Sk6G0OvZxKw/4evPKa8GG0xYY9jDZiCYcNQrrDMFrQe51z89bpWuQuahhNi0Roy/fFl2VTtazX/jlqy9H2xcPL6j7eUlYCMHl3pOtlAwDWP8dxOg6e1pWwrOf0/998yafs57lenFuBuJVqB9R52s+qBbXHAAAgAElEQVQjmqhJai36q13Date8ItF+3tF0EkYT9fp/eB2ql+TB+e9b550ycqZszhwT84gAAAAAAAAAAAAAAAAAAAAAAHgFYTQAAAAAwFDQbqjPOoMJo6kxrUbrzfpBQbNiOnwYrV0IYEmJndmfO2+dXnCTEUbTAiq1NiGDihLxyjo5cZ2UdZ4WZahEDJ84SiYiargsaogsOB7RfbxFj1nYQ3MAADTTgqftzutawEhbXi9p57llU5WGafR9/UAvlepBYbSpvq5bv7a1X8NmnKy4Yr9ut/2sFVUnYbT1l0UTuefQd6Qhdeu8iyb2xjwaAAAAAAAAAAAAAAAAAAAAAADWIowGAAAAABgKVb9inT6oOJMe02qNSAUFtoqePYxme40WqFrRLpy22pJvj6gVUskOo7ULGWghsFxKj4fpkTv7soz41umOYw+jBYbLbCE9bRuUfT3tZNR4RNS4m422X+UD3lMAAFbr9LyuhdO05fVSUNi02uaaDEgaLYw2lhqXtJuJtCwtBmyUfJh+bWv/jjmOo15n9iL62y7IaKNt27BqmIbcOftt67zN6aPllJEzYx4RAAAAAAAAAAAAAAAAAAAAAABrEUYDAAAAAAyFqrEHKLJuLuaRHKbfrN8akQq6gb+YtofRbFGuduGzJUtkS7PYsIfRRlJjoZfRT+kOAypRwwtB87RlGaWLYE9EBEfZooT08qkR+3qD4hFK3C0KLcgX9J4CALBap2G0uqlHWl4vBYZNI8RogSQ4WJu2TtcizYGUGLBG+1koKLJbcO3XvUs9+O61O+7YrLcw2kMLP5TZ+ox13oUTe8V1+OtjAAAAAAAAAAAAAAAAAAAAAMBg8f9sBwAAAAAMhapfsU7PuvmYR3JYXrlZv2aWpdEU8dBCV2knI6OpTdZ5ttdogaoVUSIdS0oYreCOhl5GP3UaUFHDCwFxEz1yp4TRlDCCo/yaJevk1HlRQnqB26DG3bqLR9RNTWpm2TqPMBoAIKzOw2j2c1AcYbSg81y5EXxNBiRNqX7AOr2Y3tLDtdivkXsaLu5B9Fc7rgTSyshD6o7Zb1mnp52MnDf+5phHAwAAAAAAAAAAAAAAAAAAAABAK8JoAAAAAIChoEXBcgMKowWttzlspcUA8m5BXc6yqbYE1sqN4MjVUpQwmq+E0VLJDqPV2gRU9PCC/nnpUbFoYTSN4zjq+pvXYYyRshJ8CNoGLR5RbhPTa6cSEH4JCrUBALBap+d1LZw26DBat+FRIG6lmhJG8zZHXpYjjnW61g7r5Pq8kLJHqKP8vKOpN/2MFUbU6/8ke6H6nDy29FPrvLPGLlDD3QAAAAAAAAAAAAAAAAAAAAAAxIkwGgAAAABgKFT9inV61s3FPJLD8q79Zn0RkUpT2EoPXRUCl9McWGt+3PL8NuG01RYbyQ6jpV178KTuBwdUtPc66H3Wo2La+20PI2iRiMPrV9bRNN66qUlD7LGGoG3Q427dxSO0kIVIcDAGAIDV0krITAufragp531teb2UdtNqgK3b8CgQt1JdCaOlo4fRotK+L8HX5/Z55R6E0bQgoxvwV6brKYx2x+zN6ryLipfHOBIAAAAAAAAAAAAAAAAAAAAAAHSE0QAAAAAAQ6Gi3FCfdfMxj+SwfEqPQjUHtbSx59y85ALGX2msfV1QpEpEZClkKKBhGuqyRtxkhNG0EEm7gIq2XbmU/j7rUTH7snzjW6c7jv5rlnzKHndoXkdQ/C5on9OWr4Xiwup0PAAArNbpeb1u7LFQTwmo9poWAW13TQYkiTFGSjV7GG3S610YTYuHNUejVwT9HFTQwmgRQtAa7biTdjLqa9ZLGK3il+Xeue9Z5+3IvVpOyJ0U84gAAAAAAAAAAAAAAAAAAAAAALAjjAYAAAAAGApVv2KdHnRDfT8Frbc5JlVWgmX5VEHyyk3/ttcFRapEwocCgp5XSA13GE17j4Le55wS+Co3lsSY8BEEJ2Cetr+E3VcOL0MPkWnL7zbcErTPDeq7BwAYPlrIrH0YzT5fu07oNS2e2u6aDEiSRX9elk3VOq+Yjh5Gc9Sr3tbrZmOM+n3RrsFF9ABvL757dV8Jo7l6GM22bcPoh4duU6PdeyYuj3k0AAAAAAAAAAAAAAAAAAAAAADoCKMBAAAAAIZCVbmBO+vmYh7JYSnHk4yTtc5rjlFpN5/n3ILkUuEDa5WGfTkrlgKiWqst+vPqvKSH0WptAipaCCwo4qVFT3xpSM0st0w3ahhBT6NpYbaw+8rhZQTEI5TldxuP0N7PtJORlON1tWwAwMahnteVQNGKuuU8HLS8XlPDow3CaBgepdoBdd6ktyXy8vQwWquaWRZfGtZ5HV3bhgxBB+kkuBihlZxYxhi5Y/Zm67zR1CY5a+z8mEcEAAAAAAAAAAAAAAAAAAAAAICOO1gBAAAAAJH9wws3yHTtxVjX+eLyPuv0bEDwqt/ybkGWG9WW6eWmWIYWp8q5BfGctKSdjDXA1RylKrcJn4UNBSwFPG8kNRZqGf2WVsIEWshgRfN7vyIovJALmFf2lyTjrg3gaWG0oEiEtv6WfUX5bBxxAvd1bRu6DaPp76c9VgEAgI2nxDTbndfrpm6drl0n9Fo+pYVNg2O1QJKU6vYwmisp2eRN9Gw9tivkoGvRoGtw9dq5y2tbET20rEWvDxv+MtoT5Udk//Kz1nm7xy+RtJuJeUQAAAAAAAAAAAAAAAAAAAAAAOgIowEAAAAAIttXfUr2VZ8e9DBERCTr5Aa27lyqIIcapZbpzUGz5scrVm74z7sFqTVaw2jNUap2EY524bQVS41563RXUgN9P1fzOgyjae91J+GFleWNS7FpavQwmh4uW2x6bB9/1s2L67jq8rVtqChhs7D093NwQUIAwPBJO/bgTrvzuhYw0q4Tek0734W95gKSoFSzh9EmvElxnVQP19R6jaxdS4oEX09qUcJefPe0405QGMxfB2G022e/ZZ3uiCMXTlwW82gAAAAAAAAAAAAAAAAAAAAAAAim31ELAAAAAMAQGGSgSYtRtcSulDjVSixLi2Y1hwTahQBqZllqfmtgrdmSv2CdXkiNiuPoca84dR5Gs8fj8ik9fhYUTbN9dkYLowW8d9r6m8fbaYgspyxfC62Fpb1ei1UAAGDT6Xldmx9fGC3c+RtIslLdHkYrpjd3tLygGHCzoO9K3tWvJ7V55UYfw2iBx5XhDqMdqh+UH8//wDrvdSO7ZCp9dMwjAgAAAAAAAAAAAAAAAAAAAAAgGGE0AAAAAMBQG0mNDWzdYWMZWuxqJZYVNmoVJsKx1CaeJiKy2LCH0UZSo21fGxctTFALCKgYYwLCYnr8LOvm1MCDbXnGKGG0gEiEtv7mz1gNkQWEIw7P708YTdvnBhkkBAAMH8/xrNPrph74ukGH0cJGcIEkO1ibtk4vep2F0TS2eHBQyCzr5tR5WoS3airSMI3og1tFP65k1NdoYeRhcdfsLeKL/X27qHh5zKMBAAAAAAAAAAAAAAAAAAAAAKA9wmgAAAAAgKGVdwuyM/+aga7fptxoDpoFx7q05TS/LigsEOU5S0oYreAmJ4ymBU+0kIGIyLKpii++dZ72HouIuI6rhr5sYTE9jKCH0fR9Ze3nVWloYTR9/CJBkb7uwmha+KXdeAAAWE07rwcFT0X0874WUO21sBFcIMlK9QPW6ZPpLZ0t0NGveZsFRXZdR/8ryqBrzW6vb7XjTiYgjDbMGqYud81+2zpvS/pYOblwRswjAgAAAAAAAAAAAAAAAAAAAACgPcJoAAAAAICh5Dme/Mdj3i8pxxvYGHIpJXbVFJMqBwQBRAKiWX5zYK19hEMLWa225CthtFSCwmhu9DCaLWK2QgubtJsfJbwQlIgIG1bRtkHb11Zo+1Dd1KTmB0dnglQa2r5LGA0AEF5aCQ7VzXLg67SAkRZa6zU1XquETIEkKtXsYbSit7mj5YXPorUPRGsK7og6rzlCHZUaXHT1MJpv7PHlYfCThXvlUKNknbdn4q2BgToAAAAAAAAAAAAAAAAAAAAAAAZlcHePAwAAAACG1p6Jy2W+MTuw9W9KFeXkkTNkKn3UwMYgEhDLaIpdVZRY2crr1WjWqpv+jTGhIl1LIcJoiw17GG0kQWG0tBI8CYp8BUVKtM9q9XxbLsAWKvPFHkZwAvrz+ZARPe0zbjv+gHBaxV+UtDsR+Hr9tZ3FLAAAWE0LmQUFT0VE6sp534spjKtHcAmjYTj4piGz9RnrvGK6szBaEGOMOM4r6TTtu9Lu2jYoChwmBB1EDaMpAcdhd3vpW9bpaScj541fHPNoAAAAAAAAAAAAAAAAAAAAAAAIhzAaAAAAACCyCybeMughJIIWh1p9s37Nr0nd1ANfr0ezXgkJLJuqGuRa85pG+1DAkhJGK7jJCaN1ElAJipQExRVEwsXpjjD2ZaxqQIRefs0sS8PUJfVy4EULPbSNRwTML/tlGZPOwmhqzKLN+wkAwGpayEy7RnplvhJGc+MJGOXdvHV6mFgtkARz9Vn1Z4ii12kYTb/oNWLEWTW/08hu3h1R53UdRlODi/afP0QOb9cw2l99Rh4vP2ydd/amPVJIUBgbAAAAAAAAAAAAAAAAAAAAAIDV3EEPAAAAAACAYaXdsP//s3evQZKlaWHfn5OXqszq7umunu7dZXeBXeEFA+Ky2l2WhWUGDCzM2FgXK5AEtqyLwxC6IFsKhxwmwjYKO8L2B4fsT3bYDiFHOPzFJqQIxw7Cus0uC5JASIAkECIwIUBcZnaqZ3q6srrzcvyhJ6ezqt/n5MlLZVX3/H5ftuu855aXOufNGvLPyWy08O88nDGPS+X7ebRtU/Rr0XGLUMDxLAmjXaIvxq8TRsue6yo6sV8NGo+Xx+kefz7zMEIeiWgKmy2+tifTUXGd5fGIfPxkg3jEujELAFiU3dfHDff1iPy+328IGG3TIJmjtZ2XwUV7bfJKOnbYXy+MVjXMec8alSLDsTz626266fz9uEUIukl23ek3BhefzDDay3deSseev/HiDs8EAAAAAAAAAAAAAABWI4wGAAAAaxp0hsXlo4Uv6zeFM+ZxqXQ/p4JZ7QIcoxahgHvTu8XlV7rXWh1jF/pVOUzQFFDJnutBZxhV1RxwyEJfi5G7uTpmxXU7DX9myeJ3Eadf2+wxZOG2uew9FJEHKdpIz0cYDYAV9DpJ8HT2oHG7LIzWq3obn1Mbw+T+OqnHMZ41R93gMjgav1pcvlftx5XOecz9TwfE0shuN5+7zg27y+PR68iuK3vJ54+IiFn95IXRRtPj+Aev/93i2AcHXxZfOPhduz0hAAAAAAAAAAAAAABYgTAaAAAArCn7sv6poFnDF/fncaksmrW4bVNgbdHx7M3l6yTxtIOGeNeuZcGTOmYxrafFsey5bhPxytYZzZaH5tpoij+MTr3O5eNl4ba5TtWN/WqwdP+rSmMWwmgArCALnk7qSeN2WRC1V5VDa9s2aJgb3S/EU+GyOZqUw2iH/VtLw8GZpq3O5sNKkeGIdnPJbH5+vOH8PA8u5mG0xx/Z5fcP3vi7cb8+KY49f/jijs8GAAAAAAAAAAAAAABWI4wGAAAAa8q+rH8yG0VdP/zyfFOUatAZnvrfs0bTdoG109s0hwLquo7j2d3i2EH3Wqtj7EJT8CSLGSw+X4vahBeydU6mj8cc6iSMUDVkIpribKdDeuV4RKu4WxLqa/veOauu6/Q5HXaF0QBoLwueZvf0ZePNAaPtGTaGTbcTT4Xz9No4CaP1bm2w1/ZBteyzUJu5bT4/Xz/6G5FfV/Y6+XUlm/9fVnVdx8t3Pl0cu9q9Hh+++g07PiMAAAAAAAAAAAAAAFiNMBoAAACsKfuyfh2zuF+fRET+xf39ahCdqhsRzUGrNoG1RcdLIh0P6vsxqSfFsYPu1VbH2IWmMNq4flBcngXA2kS8snVKz/v8NTmrqvJIRLfqxV61XxxbPO8sbNcm7pYFJtq+d84a1w9iFtO1zwcA5rL7elMYra7rdM7Sb5gnbFPT/S6LmcJlcjRJwmj9TcJoTU7Pk7P5eZu55EHyGWnZ551lLjq4uAu/NPon8VsPfr049o3Xvz36nd1cQwEAAAAAAAAAAAAAYF3CaAAAALCmLEQV8SiIlscAhkv3M4tZPKjvR0QezDpr2XrH0zfTsSudyxNG63fyMEEWSckCYG3CC9k6pdevjnIYLSIPozUdY/6azerp20G9s7J4Xpv9Z+/BZZqCL8OF9y8ALJOF0cYNYbRZTKOOWbK/3lbOa5mmOcRowzgT7EIaRuutH0arGua8Z+fJoyQS3fQ56tE65fnvpr972XVnryGMll2LLqvPHH26uLyKTnzTje/Y8dkAAAAAAAAAAAAAAMDqhNEAAABgTcNuUyzj+NT/njVYCF01RzfmgbU8UnV6/eZQwL2mMFr38oTRmoInk1k5ZpAFwNqFF5JoWXGf5TBaUyQiIn+/tHmN24TI0seQBCmWaXovtYnNAcBcPwmjTRrCaE3RtCy0tm3dqht71X5xrO3cDC7S0fiV4vKb/dvr77RqnvMuSiPRDZ+j5tIwWstgdCa77jRdV7Is8mV0NH41fvbNv18c+6qrH93stQcAAAAAAAAAAAAAgB0RRgMAAIA1NcWhTt6OXWWxruHCvxvCaG998X9Z8GzueEko4HiWh9EOLlUYLQ8TjOsHxeVpeKFFVCx7LUv7nK0bRltyjCyi9/D8ymGIU+uk4bX14hHNoTZhNADay+7rk3ocdV2+rzZF03YVRovI5wjrhkdhV8azB3F3+npx7LB361yOefbXOY1EtwkXL4kKryu7tux19tJtsuvUZfTjr/9YzGJWHHv+xos7PhsAAAAAAAAAAAAAAFiPMBoAAACsaa/aj07y0Xr0dhitHJdajAFkQavF7ZsiVYuOl0SwjqflMNp+NYhu1Wt1jF3oV3mYIIsZZIGSVuGFNFo2ilk9PbN0vTBaGlaZh9EaAittQmRNj2Edo4bI3n6L2BwAzGUhszrqmMXZ++xDk3qS7q/fEDDatizOlAVZ4bI4mnw+HdskjNY84300T67rOp2HtpvblsPATXPUNrLPEr2Gzx/Z/P+ymdTj+NydHyuOvav/3viyg6/e8RkBAAAAAAAAAAAAAMB6hNEAAABgTVVVpV/YP1kSu1qMAexXg6jSwNq9U/+7zGh6L+o6/+L+vend4vKD7tVW+9+VLKASkYdS0vBCQ3iuzTpn95s+vc2ViDQAMX+PnDS8xm3ibsvCa6vKo37D6FT+pARAe0339XESKZrMHjTsb3cx123fX2FXjiavpmOH/U3CaEsmvW+5X59EHbPi2Cbh4k1+92b1LP0ssdcQRqufkDDaP7779+KN6Z3i2HOHL5jDAwAAAAAAAAAAAADwxPB/AQ8AAAAbGHSHxeWPYlflL+4vxgCqqopBp7yf+fYn03Kk6qxpTGJc5yGR4yS+deXShdHy4MkkCahk8bhNomIRhTBaEnjoLPkzyyCJr70d0UtCZL2qH/1OHpSZy8Nr7aJ6j223wfMJAIuag6fl+3oWTFu2v23L7q/ZHA8ui6NxOYx2pXMt9juDcznmYkAsi+xGRPrZZ9GwWw5Qtw1Gl0yTKFpERK/z5IfRPnPnpeLyvWo/vv6Zb9nx2QAAAAAAAAAAAAAAwPqE0QAAAGADaYzqrS/sj5JoxvBMJCuPWs2jWe0DAFn8LCLieHq3uPyge631/nehU3WjE93iWBZ+y+IL2XPbdp1N4gunj5HFHeYRvfJx2px/RFN4rV1Ur+12bc8HAOaaAp+TWTmAlgXTInYbRssCTtkcDy6Lo8krxeWH/Vsb7rlqtdbJNP8dyaJnp9Zp+HxU1+uFypquK3tVUxjt8vuN+78avzz6Z8Wxr3vm+Ti4ZCFsAAAAAAAAAAAAAABoIowGAAAAGxgkX9ifR6VOkmjG2e3y/cyjWe3jVqNpHvK6N32zuPwgiXZdpH4SPcmCBtnjzp7btuucTE8/93WSRqiW/JklC6vMX+NREo/IgmqPr9cc6VtV2/cuACzTFDLL7uuTepJu028IGG1bOkebrhcehV05Gr9aXH7Y2yyM1i6L1hwPzObFi4ZJyGsakzSUvMzawcU1Q2y79PLRS+nYczde3OGZAAAAAAAAAAAAAADA5oTRAAAAYANZLGMeo8rjUqdjAMNutp/jU//bxnFDCOt4Vg6jXelea73/XcniBKVQyqyexv36pLh+Fgxb1O/sRa/qFcfOhsXqmBXXq5ZkIrLA2TyIlsXv2oQjmvafvQeXyUNtwmgArKYpODROw2hNAaPyPfs85HO09cKjsCuvTZIwWn+zMFqTxYBwNgetohP71WDpvprmnOv+/mXXm4iIvc5+OpbN/y+L0fRe/NQbLxfHvmT45fH+wQd2e0IAAAAAAAAAAAAAALAhYTQAAADYQBqjmj6MXGVBs7PbLYtarRK3Op6W42dNYwfdq633vyu9TjmiMp49eGxZFhWLyIMmZ2WRu7P7ruviarGki5aex8nb8bty4KH9+ZcDaiezUczq1WMOadSv2y7UBgBz/YYwWhZAG9eP3+8jIjrRiU7V3cp5tdF2fgCXzdG4HEa72bu94Z7zSW+bMNqgM4yqWjJxjoiD5PNRRMTxdL0wWnNwMb9OZdP/y+LvvfF30kj08zde3PHZAAAAAAAAAAAAAADA5oTRAAAAYANZJGoeuZoH0h7b7kzEKotajaZvhdGm7cNoWWAroiGM1rmEYbQkTlAKGjTFSbKgyVnDZL3H43blNEJnyZ9ZsvOYv15ZRG/QEIVYNOzm691fI97SNuoHAMs0BYeyUFG2vGlf5yGbH6wSrYWLcDQph9EO+89utN82UbOIprlky+hvQxx43d+/pjDaXrWXjtWXOI1W13V85s5LxbFnujfia699/Y7PCAAAAAAAAAAAAAAANieMBgAAABvIIlGj2XHUdZ1Gys5GrLL9nMyOY1ZP43590vqcRtM8jHZvVg6jXek+2WG0phhc6/hCy/DJbM0wQh5WGUVd12ngYZhE89ruPyIPUzTJzieL+AFApilmNk7DaJOV93Ue8rCpMBqX12h6L53LHfZu7eQcsrBz27nkfjVIw8PHDXP/Jk1htF5DGC0LI18G//z45+K3H/xGcewbb3z7zq+ZAAAAAAAAAAAAAACwDcJoAAAAsIGm2NW4fhCzmBXHzwYBht08unEyG610Tk2hgOPp3eLyg0sYRutXveLyUtDgZJo/R1nQpO16o8eiDuUwQhVV4/6z90odddyvTwrHmZ9XOZr3+Hr548zCGE2y913b5xMA5jpVJzrRLY5loaJsef+ShNHWubfCrhxNXk3HDvu3N9p304y3rh/Nk7O55NlAdHqcqsoj1Mm8eZnxrCmMll9bFh/XZfPynU8Xl3eiE5+8/h07PhsAAAAAAAAAAAAAANgOYTQAAADYwNnA2dxoei9GDcGMs5GNdD+z48b9ZMcumdXTdF8HncsXRutVe8Xl41IYLXlcvaoX/U55P2flcbrTz2edhdGq5jBaU1Cs6f2Snddj6zXuf/V4RPY+ajoOAGSyoFkWQBvPHhSX9zq7DaOl84Pp8aWOJfHO9tr4leLyKqq40bu54d6b57xzZ+fQc9nnnpK28/O2sutNxMPPDVnoOJv/X7TXxq/Ez735U8Wxr776dXHYv7XjMwIAAAAAAAAAAAAAgO0QRgMAAIANDLtXistPZsdprCvi8bjUsJPvZ9WoVRYKOG4ICFzpXlvpGLvQWyGgkkXFmmJkbdc9mY1O/ZxFULKQwlxT4OxkNkrfL20fQ7+zF72qVxxbJx5x9nG/fT4tQ20AsCi/r0+S5eWAUbaf85Ldh2cxjXFdjrfBRTuafL64/HrvZnST+eJ2PJonp3PJFebn2WekLOC7TNN15WHkuF307bL48Ts/FnXMimPP33hxx2cDAAAAAAAAAAAAAADbI4wGAAAAGzgbOJsbLQmanQ0CDDrD8n6mzYG1kuPpmystj4g4SAJvFymLfJWCBtlzlL0+q6x7NipWRzmMtiykkIUd5sfI4m6rPIa2cbc2spjaKucDAHO9TjloNp6V42JZMG3XYbSm+94691fYhaPxq8Xlh71bG++7KQa8OE/extw2i1CvE/2NiBgvCS5mjy2f/1+c8Wwcn3v9x4pj79l7f3zpwVft+IwAAAAAAAAAAAAAAGB7hNEAAABgA1mIalw/iHuzu8WxKqrY7wxOLcu+9H8yO06jApnjJBTQGEbrXFvpGLvQr/aKy0thtOw5yl6fVdZtGz1pikREPHw8neRPMaPZcZwkIb3txN1Wew/VdZ0+7lWeUwCYy4Jmpft60/Jdh9GyeG3E+nEmOG+vTV4pLj/sP7uzc8jmtqvMJbc1t51bdl15ksJo//jNn4i709eLY8/deCGqqvmzCQAAAAAAAAAAAAAAXGbCaAAAALCBpmjV0fjV4vL9zjA61emP5Fkg4EF9P+5Ny4G1zGhajnTcm5XDaJ3oNEY/LkoWPhkXggYnWwijpeGFM89nHbPiesvCaFVVxbBTDuCNpnkAb9DdPO6WvScy9+uTNACxSqgNAOa2FUbr7ziM1nTfaxtPhV3LPocc9m7v7BzycHH7zx353Hm9KOGy60rWEruMYbSXj14qLt+vBvHxZ75lx2cDAAAAAAAAAAAAAADbJYwGAAAAGxg2RKuOJuUgQSkG0BhYS/aTGc3KoYDjaTmMdtC9GlVWAbhAqwRURtNyeKHp9TkrC5CdjZ5skkXIjnF3eidmMS2OrRIiy8Joq4ZbTpLns+kYANCkX/WKyyf1pLi8FEKNyOcH52W/IeK0bpwJztud5PPDYf/WxvtuigEvBsSy+eewW46dlddNor9JdG2ZLIz26LqSldEuVxjt105+JX7l5BeLY193/ZtX+gwEAAAAAAAAAAAAAACXkTAaAAAAbKApEnU0LgcJhp3HYwCNYbRkP5njVcNonasr7X9X+jPjmQsAACAASURBVJ0kjDZ7PGhwksQRShG6TPYaPBZeSMIInWr5n1mGyfm8Nn6lYZttxCNWC7c0xSayuBsANFkleNq0fNdhtE7VSecTq4ZHYRdm9SwNK9/s3d7ZeWTzz9Xm5+V58Kpz27llwcUs+lZvlEbevs/ceSkde/7GCzs8EwAAAAAAAAAAAAAAOB/CaAAAALCBxjDapBy7KsUAmmJTWdggM5rei7oQ77o3vVtc/6B7OcNoqwRUspDXKlGx7LU8G12bxSzZQzmkcPoY5fNpeo23E4/IQ2clWWju4TGE0QBYXa/aKy4f1w+Ky/MwWm9r59RW2zkCXAZvTt+IST0pjh32b23hCPmcdzEgloUDmz4/nZXObafrhdGWXVeehDDa8fTN+AdvvFwc+9eGXxnv3f/iHZ8RAAAAAAAAAAAAAABsnzAaAAAAbKBbdWOv2i+OHY0/X1xeCks1xaaOxuVo1vXuYXH5LGZxvz55bPnxrBwQuPKEhdHGhaBBFiZZLSpWfg0m9TjGs3JEYdHyLFp+jOw1jogYdleJu5Uf76rhliyk1olO+n4HgCZZ0CwLOGUBo34SWDtP2f171fAo7MJr43KcOSLisLd5GK1qmvS+1Q+b1bO4n4TRVonsHiTz4HV/95ZdV56EMNpPvv6306Dk8zde2PHZAAAAAAAAAAAAAADA+RBGAwAAgA2lsatJOXY16D6+frfqpaGPbD+H/dvpOR1P3ywsu1tc96BzLd3PReonYbRS0GA0LccRhp1VomJ5pOFkISqXhRGqFn9myY6RvcZVVLFfDZbudy57vNnzk8lDcwdRNdYwAKAsC55moaJsebaf85Tdv1cNj8IuZPPKXtWPq91ndnIO92cn6Zy5ac7ddt1REnxeJr2udHZ/XVnHrJ7FZ+68VBy73j2Mr7329Ts+IwAAAAAAAAAAAAAAOB/CaAAAALChQbccoxrXD4rLs5BaGrVKvvh/syGMVtrmXiGWFhFxkJz/RVsloHIyGxXXHXSGrY83LATr5kYL+0/DaC16YdkxXp+8Vlw+6AxXCpFl+1813JKF1FZ5PgFg0SrB04iI8ezyhNGyuduq4VHYhTSq3Hs2OtXm/1mwinxuOp8nN809m+bcZx0kn49OZqOY1dPW+5lbdl2pkuenrsvz/137xeOfjVfGv1kc+8Ybn4pu1dvxGQEAAAAAAAAAAAAAwPkQRgMAAIANDVeMRQ2SuMaq0ambvYYw2vTxMNrxrBxGu9K9ttJxd2WVMFoWj1slvJBFTyIiThb2n4cRlgfMsmNksbUslpfJ3lurhtHy0Fz75xMAFvWqveLyLCSbBdN6nd2Hfwbd8hxt1fsr7MLR+JXi8sOGqPJqmua88zBaeS4Zsdp8smku33SMTHpdeSsolj2ybK6+a5+581JxeSe68ckb37HjswEAAAAAAAAAAAAAgPMjjAYAAAAbWjUWlcWxht3VIljXetejn0RGjguhsONpOYx20L260nF3JQujjQtBg22EvJrCdKOF/WdhhKpFGG3V98q23lujFcMt2wjNAcCiLGg2mU3Ky9OAUXl+cJ7y8OjqYSY4b0eTV4vLD3u3dnYO2VwyojlG/Pi6+eejpmNksuvKo89U5fn8ZQijfX78O/Hzb/50cexrr308bvRu7viMAAAAAAAAAAAAAADg/AijAQAAwIaavrBfkgW4VokEPNzPQRwkxx5NVwijdS5nGK2fhE/OBg0m9TjG9YPiuqs8p52qG/vVoDh2+vlcP4y26mu8aogsDaNNj6Ou2wcdthGaA4BFWdAsCxUtDxjtTh4eXT3MBOfttfH5htGa5rzz2WY2l+xEZ6Xf4abPWceFzzvLLAsu5o/t4sNon73zN6KOWXHsuRsv7vhsAAAAAAAAAAAAAADgfAmjAQAAwIYG3XLoLDPslr/gnwXT0v10DtJ9HZ8JddR1Hfdm5TDale7lDKP1Ou0CKifTcnghYvWQ1yAJkS3GHepNwmgrhs5WPv9k/WlM0hBESRZ6WTXsBgBzbYOnc+M0YNTb2jm1ld1fs/gTXKSjSTmMdrO/nTBaGyez4+LyYedKVNXyOfPb6zfMnUfJMZosu65k53bRWbTx7EH8xOv/b3HsC/a+KD40/ModnxEAAAAAAAAAAAAAAJwvYTQAAADY0LBTjpNlsgDaOvvJthlNT4etxvWDNDxy0LmkYbQkoDKenQmjNUQRVg2RZeGvxVBYXSdhtBaRh1VDZ6uGyLYVj8hic6uePwDMZff1bH6SLc/2c57S+cG0HBKFizKtJ/HG5Kg4dtg7/zDaPCA8mpbnnasGpbtVL/aq/eLYOr9/y64rWei4rmcrH2ubfubu5+LN6RvFsedufOdKsTkAAAAAAAAAAAAAAHgSCKMBAADAhlaNV2VxqdUjXlfioFsOox3PTocCjqdvpvs56F7OMFq/ZUClKfi1asgrW/9k9igUNg8+PG55kGDl0NnKsbymMFr7eES27qrvUQCYS4OnT0AYbZDc/xbnB3AZ3Jl8Pp2rHvZvb+UYWTzsoYfHzsLF60R2h8nnnVWiv3PZdaVf7b31rySMtvKRtuvlOy8Vlw86w/j49W/Z8dkAAAAAAAAAAAAAAMD5E0YDAACADa36Bf8sjrVyxKs7TMNZo+npsNW92d10P1e611Y67q5k4ZPzDKNlr83Z57NkeRYtYrBq6Kw7XGn9pvDaKvGWbN11YhYAENH+vr5s+aOA0e5k9791wkxwno7Gr6Zjh71bWzlGVS2f9Wa/G6tGgpu2WSX6O7csuNhJZ/QXl0b7lye/HL968kvFsY8/8y0x6Kz2eQEAAAAAAAAAAAAAAJ4EwmgAAACwoWF3xaBZ8uX+VUMBw86VGHbLoa3jM6GA44aw10Gyj4vWNqBykoQX9qr96FbdlY6ZvTaLx6hjVlynavFnluEWQ2cl+51hVEnQoU3cbS57ToUXAFhXf+Uw2qS4vFf1tnZObWX345PZKOr64oJJcNbRpBxGG3QOVv7Mso75b0M+l1wnjNYuBN3GeJaF0ebXlfI8ur7AMNrLRy+lY8/deGGHZwIAAAAAAAAAAAAAALsjjAYAAAAbWjlolkQJVg0FDDrDOOhcLY6NzoTR7k3vFtfbrwZpgOyiZQGVWcxiWk/f/nk0LYcXVn1dIvLX5mQ2evvfWRYhC5KdPqfVInSrrt+pOrGfxMtGSaBilXVXPR8AmGsbPJ0b1w9W2s95yuZodczifn2y47OB3GvjchjtZu/Wbk7grVBgNpdcJ7KbhaDPft5pI7vezK8r2Wz+osJob07fiJ+++9ni2JcefFV8wf4X7viMAAAAAAAAAAAAAABgN4TRAAAAYEOrB83K62dRrnw/wzjIQgHT06GA49mbyTEvb+iqKXyyGDU4ycILKz6fEXlMbTG8sEkYYdUYxDrxiGyb7HkqrpvE5tY5HwCIWD2MNpk1B4x2qSm2uhhPhYt2NCmH0Q772wujtYkBn0zLvxfrRHbz+Xn7ue1cdr3pd/Ye/qMqP7a6vpgw2t97/W+nkcjnb7yw47MBAAAAAAAAAAAAAIDdEUYDAACADTXFMs7qRCf2qv3i2CqBtf1qEJ2qm8YFzobQjqflMNqV7rXWx9y1tmG0LIqwyusyl70Gi9GTup4V16mq5X9m6VTd2K8Grc9nnXBd9p5oG4+Y1dO4X59s7XwAICK/r4+zMFo9Ke+ns/swWlNs9WyMFi7Sa+NXissPe7d3cvx5QHgxKrxo0F09spvObdf43UuvK29dn/Lo2+7DaLN6Fp+986PFsRu9Z+Orr358x2cEAAAAAAAAAAAAAAC7I4wGAAAAG1olaDboHERVlb9wv0rIax6oOkhCVcdnQgH3kjDaQedq62PuWr+zl44tRlROkuDXKq/LXPYatAkvZBmFs5riKo+tu8XHcDJtF0ZbjMA9vu/VYxYAEBHRT4Jmk0IYbVbPYhrlgFG/IZx6XgYN97+m+ybs2p3Jq8Xlh/1bWzxKPuudh9Gy34t1wsXDZO7cNvq7aFw/KC7vVb2IyMNou8+iRfzCvX8Ur4x/qzj2yeufim7V3fEZAQAAAAAAAAAAAADA7gijAQAAwIayL+uXNIU1VgusPdzPsFMOo53MjmNWz97++TgLo3UvbxhtHigomcweRVSyKELTc53JomWLcYc6SSNkIYWzVgrgrRGPyB5D23hE03qD5P0GAMv0kqDZ4j397WWFWNqy/Zyn/WoQVfKfU0az5fFU2JWj8eeLyw972wujtZnx5vPzdaK/SQh6jd+97Noyv67kYbRZcfl5evnOS8XlnejGN9741I7PBgAAAAAAAAAAAAAAdksYDQAAADaUfVm/uG43X7dpLDtmduw66ri/EPM6npXDaFcudRgtD58sRg1OpuXwwiqvy6NtsqjYo/DCpmG0VYIQ64TRsm1OWobRmtYbrhGbA4CIhjBaPSksu1xhtKqq0uDqYjwVLtL92Uncm90tjt3sby+M1kY2n1wvjJbMbZPPAE2ya0u/2lt5X+fp1Qe/Hf/03j8sjn342ifieu9wx2cEAAAAAAAAAAAAAAC7JYwGAAAAG+pXe9Fp+RE7i2osG8vWPWgImx0vxLzuTcuRhIPOkxlGG9cP3v73KAsvdFePeGWxhpPZKOr6YRBt/r+PqdqF0VaJnQ2624tHLMbdmpxM88DLOjELAIjI7+vTmMSsnp1aVoqlLdvPeds0PArn7Wj8ajp22NteGK0pBjwPCOfh4tXnkgdJPPq45dx2UXZt6VW9iIioqvJnuiyMfF4+c+el9JjP33hhp+cCAAAAAAAAAAAAAAAXQRgNAAAANlRVVQw75S/sn9UUltqvBq0Da8O3glkHDccdTR/FArJwQFNY7aL1q710bDFqcDIrh7zaviantym/PnXUcb8+efunkqZIxKljrBA7WycekcbdGoJni7KAWq/qRb+TvyYA0KTfEDSb1OPGn9vu5zxl99dREoCCXXtt8ko6dmOLYbRYMued1dOFefNp60R/B8mc/mR2Lw8WF9R1fSquvGgeXMwe2SrH2dSD2f34ydf/VnHsvXtfHF8y/IqdnQsAAAAAAAAAAAAAAFwUYTQAAADYgrZf8m8KXVVV1RhOO3W8t9Zrimwdz9589O/p3eI6V7rXWh3vIvSqXjq2GEw5SUJeg85w5WM2Pf/z0Fy9YRit7Wvcr/ai2/AcZLL3xGjWLtyShebanjcAlPS2FEZr2s95yu6vJy3vr3DejsavFpc/070R/c6ufm/qdC4ZETFcY36ehaAn9SQNnZVMY5KOzYPM2Xw+m/+fh39498fj3qz82e35wxejqtp95gAAAAAAAAAAAAAAgCeZMBoAAABsQdsv+S+LS7WNec0Da92qF/vVoLjO8fRRMOze9M3iOllo4DLoVN3oJH+6WIwgjJL4wnCNx9YUmptHHjYNozXF8U6vt95rk73HRklA7vH1yoGXtucNACXNYbTTwaKm2NFFhdHy+6swGpfD0aQcRrvRv7XV4zR1ueo6j+xGRAy2PD9f5ffv7HVmUe/tcFz24HYXRnv5zkvF5YPOQXzsmed2dh4AAAAAAAAAAAAAAHCRhNEAAABgC9p+yX9Z+GzYbbufR4GAbJt5CGtWT+MkiQZc6V5rdbyL0q/2issn9fjtf59My4+tbWTu9DZN4YWHz+emWYS2wbN1zv/h/suPoSlScXq97PkURgNgff3GMNr4zM8NAaMLCqPl91dhNC6Ho3E5jHazt90wWh4Pe6gpxts2Jn16m3zuPJq2C/9GRExm43SsV/UiIg8d7yqL9qujfxH/8uSXi2Nf/8y/sfbnAwAAAAAAAAAAAAAAeNIIowEAAMAWZLGMx9ZbEj5rvZ/FMFoSC5iHAkaz46iTr/MfdK+2Ot5FyeIn82BKXdcxSoIkbSNzi/aq/egkfy6Zh8XqelYcr6p2f2YZdLfzXkn3n7yH2oYj8jCaEAMA62sKmo3rB6d+bg4YXUwYLbsPCqNxWRxNymG0w/62w2hN6jiZ5jHedUK7TXPi7HNAydnrzKL5daWqsjDabtJon7nz6XTs+cMXdnIOAAAAAAAAAAAAAABwGQijAQAAwBa0/ZL/srhU6/0sxLUOkljA8exhCOve9M10Pwedyx5G6xWXT+qHwZRx/SBmMS2us07Iq6qqpaG5dNsohxTOWid+t4osHnG/PolZXX6uFo2m2wvNAcBcU9Bsfl/Pfj69n/Lc4Lzl4VFhNC6H18avFJcf9rYbRmua89ZRp7HAXtWLfmdv5ePtV4Ookv+cOZq1C/9GNF9X+tX8vJIwWhJG3qY3J2/ET9/98eLYv37wNfHuvfed+zkAAAAAAAAAAAAAAMBlIYwGAAAAWzDsto1dNcel1olmpSGvt0IBxw1htCvdSx5GS+IJ49mDiIgYJeGFiOXPdWbQLQfVTmajiHgYfChpl0XbXkQvM2zYbv4YmmQxi3XPBwAiInqdpjDa5NTP4/pBeR9VP6qq7R13u7K5Xpt7K5y3uq7jaPJqcexm//ZOzyWbn7edA5/1MFychQlXCaNN0rF5uPFiri4P/cTrfzONtz1344Udnw0AAAAAAAAAAAAAAFwsYTQAAADYgrZBs2VxqbbBgMXo10G3HAA7fisUcDwrh9E60Vk7ULAr80jBWfNoQBbxitgkLJaEF94KzdUxK45XLf/M0j5+t2bYrWG7ppDcsnXWPR8AiIjoVb10bDI7HQPKAkbZvGAXsjnTfH4AF+ne7G4aFDzs3drZedRxPpHdYfJ5Z5Xfvyw6FvHo+pTN57Mw8rbM6ml89vUfLY4d9m7FV1392LkeHwAAAAAAAAAAAAAALhthNAAAANiC9kGz5vWG3dUDa1mwah4KOJ6Ww2jD7pWoqqrV8S5KP4mozIMpo2ke+soCCstkr+XJbBQRsXEWofV7peV74bHtGvbf9HzNnUfMAgC60YsqyvOOs8GiLGB0kWG07P46nx/ARToav5qOHfZvb/VY2e/xQ3WMkt+JTSK7ebh4+dx2LgvHRTy6tmSP7LzDaP/03s/E58e/Uxz75I3viG7VPdfjAwAAAAAAAAAAAADAZSOMBgAAAFuwLHj29npLYlfto1mPwgIHSQDsePowjHZverc4fqVzrdWxLlKv2isun4cNsohXFVXsVftrHTN7DeahuSyN1qna/ZmlffxuvTBa03bZ87Uoi6dtErMAgKqq0rDZ2WBRHkYrB1N3IQ+ntg8zwXk5mpTDaJ3oxjPd61s9VnMYLeLk7TnzaZtEdrN56PzzThvZdSViMbpYfmznHUZ7+c5LxeXd6MU3Xv/2cz02AAAAAAAAAAAAAABcRsJoAAAAsAWDLcWu2gbWFsMCWShgHvI6nr1ZHM+CapdJFlCZhw1GSYxk0Bm2DpWdlb0G82BYXW8WRmgbGGv7Xjir3+mnz1v2fC06mY2KyzeJWQBARB42m9STMz+XA0b9JJi6C9l9+WQ2ilk93fHZwGlH43IY7UbvZnSq7s7Oo446RtNsLrne3DYiDwuvEiY8e52Z60bv7c8NVZVE3zac/zf5nQe/Gf/s3s8Ux37PtW+IZ3o3zu3YAAAAAAAAAAAAAABwWQmjAQAAwBa0jVgtW69tMGAxrpWG0aZvhdGmWRjtWqtjXaRlAZUshrBJeCGL3M2PVUc5jFBFElI4u/+WgbGN4hFpvOXe0m3T57Rl/A8AMsuCp3PjJIyWbb8LTffB+7OTHZ4JPO61ySvF5Tf7t7d/sCwe9pZsLpnFzdo4WBKCbmM8e1Bcvvh5I5vPn18WLeKzd15Kx547fPEcjwwAAAAAAAAAAAAAAJeXMBoAAABsQdsw2rLYVZtgQCc60a/23v75oHu1uN7xW6GAe0kY7UqnvN1lkgdUHoYNRucQRstey9GWwmj9ai+6UQ6+nTqPbjkA0Ub2+Eez0dJts+e07XscADJtw2hnf360/fL753lpug9m907YlaPxq8Xlh71bWz/WshnveczPB0kY7XjaPoyWXlc6j65LeRht1vo4q3gwux8/+frfLo69f/+D8bsGX3YuxwUAAAAAAAAAAAAAgMtOGA0AAAC2oM0X/bvRS4Mgq+xn2LkSVfXoS/sHSSjgZHYcs3oax7NyGC0Lql0miwG4ReO3wgYn0+1HvLLX4OStqFgWRlueiXhrrapqFcAbdIat9leSPf7s+Zqb1OMYvxWde/x8hNEA2Myy+/pcHkZrnkedp6b74IkwGhfsaJKE0fq3d3oedV2nvw+bzCUPkmDwKr972XUluy4tymb/m/rpu59NP6s9f+PFU5/5AAAAAAAAAAAAAADgnUQYDQAAALagTehq2D1Y+uX2NkGvQfd0MGuYhAIiIkaz4ziePrlhtCyAMg8bjLLwQovXI5O9BqPpvYf/qMtphFXCBW2iZ8MkeNdq/8njH83uNW53Mh01nI8wGgCb6VW94vKzwaI0YNRZHjA6L0337tEsv3/CLhyNkzBa79lzOFo+562jfjsmfNYmc8ls2+Np89x20aSeFJcvXpeq9LFtP41W13W8fPTp4tiwcyU+9sxzWz8mAAAAAAAAAAAAAAA8KYTRAAAAYAvaRKy2FcM6GwY4aNhmNL0X95Iw2pXOExBG6yQBldnDYMpJEkbbJLwwSLadRx6yLEIeUnjcOq/zKrJts1DFo/Hy8xmRPy8A0Nay4OnceFYOo2Xb70K/2otulOclJyvEmWDbZvU07kw+Xxw77N/a+vGWzXlHye9Dm89CmSwE3TR3PWtcPyguX7yuVFX5P5vWSRh5E7968kvxa/d/pTj2ievfGnud/a0fEwAAAAAAAAAAAAAAnhTCaAAAALAF+y2+6N8mLDXorr6fLBQQEXE8uxfHs3IY7aB7+cNo/WqvuHweUBklMYTNwgvl12k0exh5qGNWHF8ljNbuvbD9MNr8MWSy5zMif14AoK22YbSzPz/avhwm24WqqtJ52mhJeBTO0+uTo5gl89Obvds7Pps8xLtJZDeb2x4vmdsuyq8rC2G0ZNs6TSOv7+U7n07HnrvxnVs/HgAAAAAAAAAAAAAAPEmE0QAAAGALulU39qtB4zrZF/pXXeexMFrDNqPpvTiePrlhtCygMn4rbJCFF4adPBa3TBZtGNcPYlpPGrII7cNobSJjbd4LmewxjKZ5+CyiOYy2SWwOACIi+p1Nw2jl7XcluzefNNw/4bwdTV5Nxw77t7Z+vKYZbx11+vuwSWQ3m9vfn41iVpejcGdl15XTIebyo9t2GO3u5E78zN3PFce+/OBr4117793q8QAAAAAAAAAAAAAA4EkjjAYAAABbMljyZf8sVrWoW/Vir9pvXOdslKNTddN9/+hr/1eM6wfFsYPOkxtGm4cNRtN7xfFNIl6NobnZcUQSRuhU7cNoy94LnegsfR80ycITy8It2Xi/2otu1Vv7fAAgoiF4OnsywmhpeFQYjQv02rgcRtuvBuc038/nvNN6Eg/q+8WxNp+FMsNuOYzWFGI7a1JPist7C3PcKn1s2w2jfe71v5mez/OHL271WAAAAAAAAAAAAAAA8CQSRgMAAIAtWfZl/yxWtep+SgG2g045FvDPj38u3c+V7rVW53OR+kvCaCezUXE8iye00RRGO5keR11nYYT2YbSmY0Q8fA9UK4TWHt++/PiXhVtG0/L4MNkfAKxiWfD00c/lYFA2L9iVbI7WNswE5+FoUg6j3ejf2mg+uY5sbh6xfP7bpGku2jZMmMWiF69LWRhtm1m0WT2NH7/zN4pjN3u343df+cgWjwYAAAAAAAAAAAAAAE8mYTQAAADYkjaxq1b7WRJQKx1nnRDYQffqytvs2rKAymh2rzg+6AzXPmYpPDc3mh1HnaQRVslObCuil26fPP5l4Ygs7LLJ8wkAc23DaG0CRhchm+tlYVHYhaNxOYx22Hv2XI6XxcMi8rl5xKZhtIb5+TQ/5qKz15m5U2G0JCRX17NWx2jj59/86Xht8kpx7JtufGd0qu7WjgUAAAAAAAAAAAAAAE8qYTQAAADYkq2F0dbYz5XutVb7nquiioPOkx9GO5mNiuPDzuqhuEfbrhtGa/9nlmWv8SbhiIiIQfL4s/DZXBZOWye8BwBntQ2jtQkYXYRsLrfs/grn6SiJbN3s3z6fAzbUgJsigW0/C5U0RYOXhX/nJrNJcXm/s9vryst3Pl1c3qt68Q3Xv22n5wIAAAAAAAAAAAAAAJeVMBoAAABsybIv+7eNXa2zny87+OpW+577kuFX7DwCsI5+EkAZ1+OY1bO4n4TRBp3h2sfsVr3oV3vFsZOGMNoqloXGNglHPNx/efvR9DjqOj//LDS3yfMJAHPZfX1ST878fDnDaNn9VRiNi3Q0frW4/LB3a8dn0vy7MOiuP5/sVf10fj6a3Wu1jzbXlSqpvm1j/h8R8dsPfiN+8fhni2O/59on41rv+laOAwAAAAAAAAAAAAAATzphNAAAANiSLJYx1zYutSygVopmffL6t8cX7H1Rq/3vV4P4rlvf02rdi9ZL4m2Tehz3ZydppGBZeGyZ7DUYTY8jkmNmIYWSZe+FTcNo2fazmMa4fpBul8UsNj0fAIjIw2Zn701nQ2lzWVhtV7L74UgYjQv02qQcRrvZv30ux2ua82aRsn61t3HYcNgpz+9H03ZhtGwOvMsw2mfv/Gg69vyNF7dyDAAAAAAAAAAAAAAAeBr0LvoEAAAA4GmxLB7VNi61bL1SgO1a70b8+S/6r+MfvvHj8asnvxTTelbc9j3774sPX/2GeM/++1udy0XLAgqT2TiNeEW0j9Dl2x/EG9M7jy0/mR1HXSdhtKp9GG1Z/C4LP2xj/6PZcex19stj0/Jzuux8AaCN9L5ej0/9PD7z87LtdyWbX5zMRjs+E3hoPHsQb05fL44d9m6dyzGbw2hZZHezuXnEw/DxG9Ojx5YfJzG2s85eZ+ZOX1fOL4x2f3YSP/n63yqOfdH+l8QHBh/a+BgAAAAAAAAAAAAAAPC0EEYDAACALVkauyoEzdZZLwunXeleorFgUAAAIABJREFUi+cOX4jn4oVWx3kSZAGUcT1OwwsRm4fFBt2DiEI7YTQ7TsMITZGIs5ad36C7WTyi6b14MjuO63GYjhXPRxgNgC1oG0abzB6Ut+9cbBgtu7+Opu3CTLBtR5PPp2OH/fMJozXJIrvbmEtmv39NseRFk3pSXN5fuC7loePNw2g/9cZn0s8vzx++uFJkGQAAAAAAAAAAAAAAnnadiz4BAAAAeFosC6O1DQIsW2/ZcZ4m/YaASlMEYdA5n7DYSUMYLVYIoy0Ln20cdmt4jzTFW7JYQ9uoHwA06Sdhs7PBoixglIXVdiW7v57MRjs+E3joaPxKOnbY230YLZufb+Pzy0EyPz5uGSY8G2CcW7yupFm0DbtodV3HZ+58ujh20LkaH7n2yc0OAAAAAAAAAAAAAAAATxlhNAAAANiSwZJ4VNsgwLL13klhtCyAMqnHacSrG73oV3sbHTd7jkcNYbTOCmG0ZeGzTV/j/c4gquR8muItWcyibdQPAJpk9/XxmWBRFjDKgqm7koVCm2KtcJ6OJq8Wl1/pXou9zv65HDObY0ZEjGblSNmyz0ltZPto+/s3rh8Ul58Oo5X/s2keRm7nV0a/GL9+/1eLY5+4/q3n9loBAAAAAAAAAAAAAMCTShgNAAAAtmRbQbNlEap3UqQqC6jMYhbH07vFsUF3GFXVPlJW3EfyHJ9MjyOyMMIKxzzv+F2n6sSgMyyOZcGKh2PlsMQ7KcYHwPlJg6ez08GiLIyWbb8r2fzgQX0/pvVkx2cDeRjtZu/2js/kodE0i+yW56WrOEjCwsfTfG67aJL8jra5rmwaRnv5zqeLy6uo4rkb37nRvgEAAAAAAAAAAAAA4GkkjAYAAABbMky+rD/XNmg27C7ZT3fzsMCTot8QKrg7faO4fBvhuGG3vI/R7DjqrIsW7cNo+51B4/ggOf4qsuchi59FRJwkY++kGB8A5ycNo50JFo3rB8X1LjqM1hQKPZmNdngm8NBr41eKyw/7t87xqPmcN4/sNn++aSOf27YNo5WDi4ufN/L5/PphtDcmd+If3f3J4thXXPlw3N77grX3DQAAAAAAAAAAAAAATythNAAAANiSQac5WNY2aNa0n361d+FRkF1qeqx3J68XlzdFS9rKwgsns+OoY1YcWyWM1qm6ja/zNh5Dto+TaTlYUdd1nEzLUZfhkvc2ALTRq3rF5WeDRWdDaY+2v7xhtFFyf4XzdDT5fHH5Ye/8wmhV1RRGK0fKln1OauMgiUc3RX8XZWG0XoswWr1BGO1zr/9YTKN8TXvuxotr7xcAAAAAAAAAAAAAAJ5mwmgAAACwJcPky/oRqwXNhp18P9sIZj1Jmp6zN6flMFoWNVtFGhWbHadZhFXCaBHN57mVMNqK8Yhx/SCNNgwa3tsA0Fa/2isuXwwW1XWdBoz6FxxGa7p3n7SMM8E2HY1fKS4/zzBak+z3oOnzTVvZPkbTcoztrPHsQXF5r7MQRkuib3W9XhhtWk/js3f+RnHs2f674yuvfHit/QIAAAAAAAAAAAAAwNNOGA0AAAC2ZFuhq6Z1txH9epL0O3kA5W4SRttGVCx7nh9GxdYLI5x13q/zoDMsLs/CaCezUbqvYbIvAFhFFjwd14+CRbOYRp3ca9tGZs/LoJvfD4XRuAhHk1eLyw/7FxVGK88ns3npKvLob7sw2qQuB4BPX1eSMNqa8/+ff/On4s7k88Wx5258Z3Sq7lr7BQAAAAAAAAAAAACAp50wGgAAAGzJtkJXg27DfhrGnkZNAZS7k3IYbRtRsey1PJmO0jBCVa32Z5bGkN4WXudhpxyPyMItTVGJd1qQD4Dz0at6xeWLwaJxPW7Y/mLDaL2qH/1qrziWhUfhvIym99IQ2WHvYsJomW18hsnm521/9ybJtaW/cF2pkjDaumHkl+98OjnmXnzi+reutU8AAAAAAAAAAAAAAHgnEEYDAACALelXe9GJbnFs0Bm23k9TYK1p7GnUFEB5c1oOo20jKpbFG5riYVlGITPslsNlEXnUbBVZzGw0LccjsrDGw/N5Z73vADgf2X19Uo+jrh+GhyazyxtGi8jndFl4FM7La5NX0rGb/dvndtw8Hpbbxlwymx9P6nGMZw+Wbj+uy+u0ua6sk0X7rfu/Hv/8+OeKYx+59sm42n1mjb0CAAAAAAAAAAAAAMA7Q++iTwAAAACeFlVVxbB7EPemdx8bWyXWtVftRyc6MYvZY2NZ7Opp1a/20rE3JneKy7fxHGXxhtJr8shqkYimWN7+CiG9Vfd/b3a3+B69M/58w/kMNj4fAMgCRHXUMYtpdKMXkzoPo/U7Fx9GG3auxN1CnPX1yVHx/grn5bfu/3pxeRWduN67eW7HXSeMtpX5ecPnqdcmr7wdGht0htGtHv/Pn5N6Utx28brUqcr//6TGswcr/37/nTv/Tzr23I0XVtoXAAAAAAAAAAAAAAC80wijAQAAwBYNOuUw2ioxgKqqYtA5iOPZm4+NZcGup1WvEDWYu1+fFJdv4zkadq6svE1nxUhEdp771SC6VXfl4z+2/275MfzS8c/Hf/LL/17r/Qw6w+hs4XwAoN/Jg6fjehzdqjmM1jQv2JUsPPojr/xw/MgrP7zbk4GC673Drcwlt2m4hehv0/z8h/6/P/32v/erQXzFlQ/H977nT8dB92pEREzradRJ4DgLNi767Os/Gp99/UdXPOOyLx58KD4w/NBW9gUAAAAAAAAAAAAAAE+r8v/rcwAAAGAtWexqlTBaRMSwu539POk6VTc6K/75IguWnP8+Vg2jleMOg+S1X9W2InrvtPccAOenKWw2mT0Moo0bw2h5WG1XtnWfhvNy2Lt10afwmMEa0eGz2oaL79cn8Y/e/Mn4n3/jv3l7WVNwsb8QRqtWnM+v4/kbL5z7MQAAAAAAAAAAAAAA4EknjAYAAABblEWkVo1Upft5B8Y4eguxgjaG3S2EF9bYx6ohhSy+tq0Q2bb2s63AGgA03dPn4aK2AaOL4r7IZXfYP98w2jrxsGF383DxfmcQ1Qr/WfNfjP5JfH78OxERMa4fpOudvi6dbxjtSvdafOTaJ8/1GAAAAAAAAAAAAAAA8DQQRgMAAIAtut1/T3H5s/13r7SfW8l+bq24n6fBqs/dquuX7FeDuNq9vtI2N/u3V1r/9t75vsbZe3FV23g+ASAiYq/aT8fu1ycR0RxGWzWWeh7eiXMxnizv2Xv/ue6/V/Xj2grz5H61F9e6NzY+bqfqrPz799sPfiMiIib1JF1n8bry7Irz+VV9w/Vvi35n71yPAQAAAAAAAAAAAAAATwNhNAAAANiijzzzyceW9apefO21j6+2n2uP72ev2o/ffeWja5/bk+rD1z7Ret2bvdvxwcGXbnzMqqriI9e+sfX6Hxh8KA77t1Y6xlde+UjsV4PHlpde+3V8cPilcbO3edzho8980xbOBgAiBp2DdGw0PY6IiHFjGK239XNa1e+59o1RRXXRpwFFVXTiY888d77HqKr42qvt5+dfc/XjsdfJo4irWHWefDJ7eF2ZzNoFF7/m6tef2+/3oHMQ33Lj3zqXfQMAAAAAAAAAAAAAwNNGGO0dpKqqYVVVn6iq6k9UVfUXqqr6waqq/mxVVX+oqqoPVVW1lW97VFXVr6rqm6uq+qNVVf3Fqqr+dFVVv7+qqg9sY/8AAACX2Vdc+XD84Xd9Xww7VyIi4nr3ML7/fT8Yz/bfvdJ+PvrMJ+P33fqjMegMI+Jh8OvPvv+/jGu961s/58vuxWe/O77pxneeihaUvG//A/EDX/iXolNt588df+D2H4+PXXs+OtFtXO9Lhl8e3/++H1x5/wfdq/EDX/iX3n5v7FeD+K5b3xMff+ab1zndx3SqbvzAF/5QvG//A2ttv18N4t++9b3xsWvnG9cA4J1jvzNIo0NvB4ySMFonOtGpmu/Ju/DB4ZfFH33Pn4sr3WsXfSpwytXu9fi+9/2n8e699537sf7gu/5kfPTaN0U38lhhFZ346qtfF9/znj+1teP+m7f+cHzy+qdaRxLnwcXsuhIR0e88+ozxoYOvjH/3PX8mrnaf2exEz7jRezb+w/f+xbjRf3ar+wUAAAAAAAAAAAAAgKdVu28O8ESrquoTEfEfRcTvi4i9hlV/o6qq/y0i/oe6rl9b4zi3I+KHIuIPRcTNZJ2fiIj/vq7r/3vV/QMAADwpnjt8IT5541NxZ/JaHPZuxbod6k89+wfiW2/+3nhjchQ3es+uvZ8nXafqxh959/fHv3P7j8cr49+Mun58nau9Z+JGr/hRdG39Tj/++Hv/4/gjs++PVx/8dnGd673DjWJ1Hxx+afylD/5PcWfy+XimdyO6LSMPbb1r773xgx/4y3Fn8lq8OXmj9XadqhPv3nvv1s8HgHe2TtWJ/c7w7QjaotGSMFq/avrT9m59/Po3x8eeeS5eGf9mjGd5cAl2Za+zF7f7X7Czzwv9Tj/+xHv/QpzMRuk8+dn+7Rh2r2z1uN2qG9/znj8Vf/Bdf/LU54L/9V/9d/E743/12Prza824fpDu82x8+RPXvzU+/sy3bO33e7+zH8/23721eDMAAAAAAAAAAAAAALwT+HbrU6yqql5E/OWI+FMR0ebbMO+LiP88Ir6vqqo/Vtf1j65wrBci4ocj4l1LVv2GiPiGqqr+j4j4vrqu77U9BgAAwJOkU3XjZv/2xvvpVt047N/awhk9+fY6+/G+/Q/s/LiDzjDePzi/41ZVde6v8Y3eza2H4wBgHcPOQTGMdrIkjHY2XnTRHkZE33fRpwEX6rznyZmznwuu9a4Xw2iPgouTdF+la4vfbwAAAAAAAAAAAAAAuFjCaE+pqqqqiPg/I+IPFoZ/MSJ+ISJGEXE7Ij4aEYcL4++OiL9eVdXvbRNHq6rqmyPir0XE3sLiOiJ+JiJ+JSJuRMSHI2LxW97fGxHPVFX1++q6nrV8WAAAAAAAPMEGnYPi8nnAaDzLwmj+cwZQNuxcKS5fFlyMuHzRRQAAAAAAAAAAAAAAIKJz0SfAufkP4vEo2mci4qvquv7yuq7/QF3X31vX9aci4l0R8Sci4vWFdfci4q9WVXW96SBVVb0/In4kTkfRPhcRX1nX9Ufruv7ut47x/oj4cxGx+O2T74qI/2qNxwYAAAAAwBNomITRTqbNAaNeR7wIKBt0hsXloyVhtE50olt1z+28AAAAAAAAAAAAAACA9QijPb3+szM/fyYivq2u639ydsW6rid1Xf+ViPi2iLi/MPSuiPj+Jcf5oYg4XPj5J946zi+cOcb9uq7/x4j47jPb//mqqr54yTEAAAAAAHgKDLrlMNqygFGv2isuBxh2rhSXz4OL4/pBcbxXCS4CAAAAAAAAAAAAAMBlJIz2FKqq6qsi4gNnFv9AXSffKHtLXdc/HRH/y5nF39VwnA9FxL+/sOhBRPyxuq5PGo7x1yLiry4s2o+I/6LpvAAAAAAAeDoMO+Uw2snbYbRJcbxf9c7tnIAn26A7LC4fLbmuCKMBAAAAAAAAAAAAAMDlJIz2dPpdZ37+tbquf7bltn/9zM8falj3eyKiu/Dzj9R1/S9aHOO/PfPzd1dVNWhzcgAAAAAAPLkGneaA0bh+UBwXMAIyeXBxFBERk+T/b1DfdQUAAAAAAAAAAAAAAC4lYbSn05UzP//6Ctv+2pmfDxvW/f1nfv4rbQ5Q1/UvRMTfX1h0JSI+1WZbAAAAAACeXMPO2T9fP7QsYCSMBmQGSRhtHlxMrysd1xUAAAAAAAAAAAAAALiMhNGeTr915ufBCtueXfe10kpVVb0nIr5mYdEkIj63wnH+7pmfX1hhWwAAAAAAnkCDzrC4fDS9FxERk3pSHBdGAzJZGO3krTDaePagOO66AgAAAAAAAAAAAAAAl5Mw2tPppyLi/sLPX15VVfnbZo/7SGFfJb/7zM8/V9f1vZbHiIj4iTM/f+UK2wIAAAAA8AQadq8Ul5/MRhERManHxXEBIyAzzMJo04dhNMFFAAAAAAAAAAAAAAB4sgijPYXqur4bEf/7wqJBRPzJZdtVVdWNiD/z/7N370G2ZXV9wL+/3af7njN3YAaZGWAQGRkUmBJ5WoIgD8dIElO+5ZEyajQ+sICglq8KAYZoKkS0EsoiRKPySAoJQQQJhDg8FA1ItBBmBJIBh3dgiscwj3vvzNzbK390X+6hp0/3OX37nN2n7+dT1XX2Xnvtdb63qFpVQ+/+7i3DL58w/Yot5x+eOuCGj+yyHgAAAAAAh8yw2/4dHsfXN967cUe7fdvrqwqMgAmGK9sXo93WTmS9nZpYuGhfAQAAAAAAAAAAAACAg0kx2uH1y0k+Onb+b6vq2ydNrqrVJL+d5GFjw29L8toJt9x/y/nHZ8z3sS3nd6+qu824BgAAAAAAS2TUHd12/MT68SSZWGA0UGAETDDqti9GSzb2FvsKAAAAAAAAAAAAAAAsF8Voh1Rr7QtJnpjkvZtDoyRvqapXV9UPVtWDq+r+VfWoqvrZJNck+bGxJd6T5Adaa23CV1y45fyGGfPdkuTEluELZlkDAAAAAIDlMuxG247ftn486209J9dPbntdgREwyXCHYrTj68dyh2I0AABgBlV1v6p6SlX9elW9o6puqqo29vPRvjNuVVXnVdVHtuRsVfWyvrMBAAAAAAAAAMBeDPoOwPy01j5aVd+c5EeT/GSSRyR58ubPJJ9P8ptJfr21CX8psuH8LefH9xDxeJLh2Pld9rDGV6iqS5JcPONtl5/t9wIAAAAAsLvRytFtx1tabls/kZOTCow6BUbA9kY7FKOdWD82eV9RjAYAAGyqqick+ZUkj0zyVf2m2ZNfS3K/vkMAAAAAAAAAAMB+UYx2+K1s/tyWpCWpHeZ+Islzk/zBLqVoyZ2L0U7sIdvxJHfbYc29+Jkkz9uHdQAAAAAA2GfDbjTx2vH1WycWGK0qMAImGO5QjHb81ORiNPsKAAAw5qFJvqPvEHtRVY9K8qy+cwAAAAAAAAAAwH7q+g7A/FTVY5J8MMl/SPKY7P6/932S/H6Sj1fVP5vx69rsCfd0DwAAAAAAS2rUHZ147cT68dzRbt/22kCBETDBarc6cY84sX7MvgIAAJyN25J8pO8Qk1TVWpLfzZnnAm/uMQ4AAAAAAAAAAOwbxWiHVFVdmeTqJJeNDX8qyS8neViSC5OsJblnkr+f5OVJTm7OuzjJ71TVb1dVTfiKW7acj/YQc+s9W9cEAAAAAOAQGXaT/6/k4+vHcrKd3PaaAiNgJ8PuvG3Hj68fy8l1+woAADCVO5L8TZL/lOSnkjwiyV2SzPqC0UV6bpIrNo8/luQ/9pgFAAAAAAAAAAD2zaDvAOy/qro4yauSDMeG/zjJD7XWbtoy/bNJ3pLkLVX10iRvTHL3zWs/kY03Xr5wm685qMVoL0nymhnvuTzJ6/fhuwEAAAAA2MFqrWUlg5zKnYuKTqwfy8l2x7b3DcqvM4DJRt0ot5z60p3GT6wf32FfUYwGAAB82cuTvLS1dmLrhcnvFe1XVT0kyS+NDT09yTf3FAcAAAAAAAAAAPaVvyQ6nH4uycVj5x9K8uTtHtwa11p7d1U9JcnVY8PPq6rfb63dsGX61r8uuTgzqKrzc+ditBtnWWM7mzm3Zt0ty9l+LQAAAAAAU6iqDFdGufXUzXe6dvzU5GK01VqbdzRgiQ2787YdP37q1sn7SqcYDQAA2NBa+2LfGWZRVYMkv5czz3++qrX25qpSjAYAAAAAAAAAwKHQ9R2AufjBLecv3K0U7bTW2luTvHNsaJTkqdtMvW7L+X2nj7ft/C8s2wNmAAAAAADMbjShwOjE+rHcMaHAaFAKjIDJJhWjnVg/njva7dtes68AAABL7BeSPHzz+AtJnt1jFgAAAAAAAAAA2HeK0Q6Zqjqa5PItw2+dcZmrt5xv9ybJD245v/+M33G/LecfmPF+AAAAAACW0KQCo+Prx3JSMRqwB6OVyYWLJ9vJba/ZVwAAgGVUVQ9I8ryxoZ9vrd3QVx4AAAAAAAAAAJgHxWiHz4XbjH1mxjW2zr9omznXbjn/xqra/q9OtveYXdYDAAAAAOAQGk0oRjuxYzHaYJ6RgCW3t8JF+woAALBcqqpL8rtJjmwOva219rL+EgEAAAAAAAAAwHwoRjt8btxm7OiMa5y/5fyWrRNaa/8vyfvHhgZJHjvDdzxhy/mbZ7gXAAAAAIAlNbHA6NTkAqPVbm2ekYAlt5fCxdWyrwAAAEvnGTnzQtLjSX6qxywAAAAAAAAAADA3itEOmdbarUlu2jL8sBmXecSW889MmPe6Lef/dJrFq+qBSb55bOjWJP9zumgAAAAAACyz0coOBUbr2xcYDWp1npGAJTexcHH9WO6YUIxmXwEAAJZJVV2W5F+PDV3VWvtwP2kAAAAAAAAAAGC+Bn0HYC7ekeS7xs5/Msnbp7mxqu655d4keeeE6f8lyXOSrGyef19VfV1r7bpdvuaXtpz/19baiWnyAQAAAACw3BQYAfttNGFfOXHqWE7aVwAAgMPhd5Ic3Tx+X5Lf6CtIVV2S5OIZb7t8HlkAAAAAAAAAADicFKMdTq/OV5abPaWq/ntr7T/vdFNVHUnyyiTnjw3fkuQt281vrV1XVS9P8mObQ2tJXlZVV04qOquq707yo2NDtye5aqdcAAAAAAAcHpMKjI6v35r1nNr22qD8OgOYbLgyuXBxcjGafQUAAFgOVfXjSb5983Q9yU+01k72GOlnkjyvx+8HAAAAAAAAAOCQ6/oOwFz8QTbeCnlaJXlFVf37qrrXdjdU1ROTvDtnHqA67YWttS/u8F3PSzJ+/VuSXF1VD9yy/pGqemaS12y5/zdaax/bYX0AAAAAAA6R4YRitFtOfmniPYNanVcc4BAYdaNtx0/sUIy22q3NMxIAAMC+qKpLk7xobOjFrbX/3VceAAAAAAAAAABYBK9CP4Raa+tV9QNJ/iLJJZvDleRZSZ5RVe9P8ndJjif5qiQPS3LPbZZ6U5IX7vJdn6yq70vyliSn/4LkMUk+UFV/vfk9FyR5eJKLt9z+xiT/crZ/HQAAAAAAy2w0oRjt5lOTi9FWS4ERMNmwO7rt+In14+kmvCdK4SIAALAkXpLkws3jjyV5To9ZAAAAAAAAAABgIRSjHVKttQ9X1eOTvDLJI8cudUkeuvkz8fYkv5Pk2a21O6b4rndU1fcmeVnOlJ/V5vc+csJtr0ryE621U7utDwAAAADA4TFc2b4Y7ZZTN0+8R4ERsJNRN9p2/I52eyq17TX7CgAAcNBV1VOTfPfY0NNba7f2lWfMS5K8ZsZ7Lk/y+jlkAQAAAAAAAADgEFKMdoi11j5UVY9O8o+T/HSSRyUT/vpjw/Ekf5jkt1pr757xu95UVd+Q5KokT0lytwlT353kRa21186yPgAAAAAAh8Oo274YrWV94j2D8usMYLJhd3TitZa27bh9BQAAOMiq6qIkLx4belVr7c195RnXWrshyQ2z3FO102OLAAAAAAAAAADwlTzxf8i11k4meUWSV1TVBUkemeRrk1yY5EiSm5N8Mcm1Sa7ZnL/X77ohydOr6p8neUyS+ya5Z5Jbk3wqyXtba9efxT8HAAAAAIAlN5xQjLaTQa3OIQlwWIxWRjPfs1prc0gCAACwb16c5OLN4y8keXaPWQAAAAAAAAAAYKEUo51DWmtfSvLWBXzP7UnePu/vAQAAAABg+YwUowH7bNQdnfke+woAAHBQVdUDkjxtbOjfJTmvqi7b5dYLt5yfv+We9dbax882HwAAAAAAAAAAzJtiNAAAAAAAYGGGeyhGW+3W5pAEOCyOdKOZ71GMBgAAHGBb/yPnBZs/s/r+zZ/TvpQ7l6cBAAAAAAAAAMCB0/UdAAAAAAAAOHeMVmYvRhuU97wAk63UStbqyEz32FcAAAAAAAAAAAAAAOBgUowGAAAAAAAszLAbzXzPShQYATsbdbOVLq7W2pySAAAAAAAAAAAAAAAAZ0MxGgAAAAAAsDArNchaHZl6/qBWU1VzTAQcBsOV2YrRBrU6pyQAAABnp7X2N621mvUnyVVblnr5ljkX9vHvAQAAAAAAAACAWSlGAwAAAAAAFmrYTV9gtKq8CJjCaIZ9JUkGnb0FAAAAAAAAAAAAAAAOIsVoAAAAAADAQo1Wpi8wGihGA6YwS+FikgxqMKckAAAA26uqtuXnCX1nAgAAAAAAAACAg8gT/wAAAAAAwELNUmCkGA2YxmiGfaVSWfFrUgAAYExVfXW2f57ynlvOB1V12YRlbmmtfW4/cwEAAAAAAAAAwLnIE/8AAAAAAMBCzVJgpBgNmMashYtVNcc0AADAEvrzJPedYt69k1w/4drLk/zofgUCAAAAAAAAAIBzVdd3AAAAAAAA4Nwy7EZTz1WMBkxjtDJLMZp3RwEAAAAAAAAAAAAAwEGlGA0AAAAAAFioUXd06rmritGAKQy7WYrR7CsAAAAAAAAAAAAAAHBQeR06AAAAAACwUMOV0dRzFRgB0xh20+8rq7U2xyQAAMAyaq1dtoDvqDmv//wkz5/ndwAAAAAAAAAAwCJ0fQcAAAAAAADOLaPu6NRzB51iNGB3M+0rChcBAAAAAAAAAAAAAODAUowGAAAAAAAs1LAbTT1XgREwjdn2lcEckwAAAAAAAAAAAAAAAGdDMRoAAAAAALBQo+7o1HNXFaMBUxitTL+vKFwEAAAAAAAAAAAAAICDSzEaAAAAAACwUMNuNPVcBUbANGbZV1a7tTkmAQAAAAAAAAAAAAAAzoZiNAAAAAAAYKFGK0ennqsYDZjGqJtlXxnMMQkAAAAAAAAAAAAAAHA2FKMBAAAAAAALNexGU89VYARMY7Z9ReEiAAAAAAAAAAAAAAAcVIrRAAAAAACAhRp1R6eeq8AImMawO2/qufYVAAAAAAAAAAAAAAA4uBSjAQAAAAAACzXsRlPPXa21OSYBDosYiZDCAAAgAElEQVQj3TCVmmqufQUAAAAAAAAAAAAAAA4uxWgAAAAAAMBCjVaOTj13UKtzTAIcFl11OTJl6eKgBnNOAwAAAAAAAAAAAAAA7JViNAAAAAAAYKHW6kgqNdVcBUbAtEbdeVPNU7gIAAAAAAAAAAAAAAAHl2I0AAAAAABgobrqMuxGU81VYARMazh1MdranJMAAAAAAAAAAAAAAAB7pRgNAAAAAABYuGkLjFY7BUbAdEZTF6MN5pwEAAAAAAAAAAAAAADYK8VoAAAAAADAwk1bjDao1TknAQ6L4cq0hYv2FQAAAAAAAAAAAAAAOKgUowEAAAAAAAs3mroYbTDnJMBhMf2+ohgNAAAAAAAAAAAAAAAOKsVoAAAAAADAwg1XFBgB+2vYjaaaN6i1OScBAAAAAAAAAAAAAAD2SjEaAAAAAACwcKNOMRqwv4ZT7yuDOScBAAAAAAAAAAAAAAD2SjEaAAAAAACwcMNuNNW8VcVowJSmLVy0rwAAAAAAAAAAAAAAwMGlGA0AAAAAAFi4UXd0qnkDBUbAlIYr0xWj2VcAAAAAAAAAAAAAAODgUowGAAAAAAAs3LAbTTVPgREwrVE3bTHa2pyTAAAAAAAAAAAAAAAAe6UYDQAAAAAAWLjRytGp5ilGA6Y1nLoYbTDnJAAAAAAAAAAAAAAAwF4pRgMAAAAAABZu2I2mmqcYDZjWaMpitFX7CgAAAAAAAAAAAAAAHFiK0QAAAAAAgIUbdUenmrfaKTACpjOcshhN4SIAAAAAAAAAAAAAABxcitEAAAAAAICFG3ajqeYpMAKmNVqZshitW5tzEgAAAAAAAAAAAAAAYK8UowEAAAAAAAs3Wjk61TzFaMC0ht10xWirNZhzEgAAAAAAAAAAAAAAYK8UowEAAAAAAAs37EZTzVtVjAZMaTRlMZrCRQAAAAAAAAAAAAAAOLgUowEAAAAAAAs36o5ONU+BETCt1VpLl5Vd59lXAAAAAAAAAAAAAADg4FKMBgAAAAAALNywG001T4ERMK2qyqg7b9d59hUAAAAAAAAAAAAAADi4FKMBAAAAAAALt1prWclgxzldVtKVX2UA0xuu7F6MtqoYDQAAAAAAAAAAAAAADix/TQQAAAAAACxcVWW4MtpxjvIiYFajbud9JUkG9hYAAAAAAAAAAAAAADiwFKMBAAAAAAC9GHXn7XhdeREwq2F3dNc59hYAAAAAAAAAAAAAADi4FKMBAAAAAAC9GO5WjNYpLwJmM+xGu85RjAYAAAAAAAAAAAAAAAeXYjQAAAAAAKAXo92K0ZQXATPafV8ZpKoWlAYAAAAAAAAAAAAAAJiVYjQAAAAAAKAXQ8VowD4brthXAAAAAAAAAAAAAABgmSlGAwAAAAAAejHapcBotQYLSgIcFiOFiwAAAAAAAAAAAAAAsNQUowEAAAAAAL0Y7lpgtLagJMBhsfu+ohgNAAAAAAAAAAAAAAAOMsVoAAAAAABAL0YKjIB9ttu+smpfAQAAAAAAAAAAAACAA00xGgAAAAAA0IvhrsVogwUlAQ6L3fcVxWgAAAAAAAAAAAAAAHCQKUYDAAAAAAB6MVJgBOyz0Yp9BQAAAAAAAAAAAAAAlpliNAAAAAAAoBfDXQqMVhUYATMaKlwEAAAAAAAAAAAAAIClphgNAAAAAADoxWjXAqO1BSUBDovd9xXFaAAAAAAAAAAAAAAAcJApRgMAAAAAAHox3K3AqBssKAlwWAy70Y7XVxWjAQAAAAAAAAAAAADAgaYYDQAAAAAA6MVot2I0BUbAjEbd0R2vDzr7CgAAAAAAAAAAAAAAHGSK0QAAAAAAgF4MdylGW1WMBsxouDLa8brCRQAAAAAAAAAAAAAAONgUowEAAAAAAL0YrexcjDaotQUlAQ6LQa1mdYe9QzEaAAAAAAAAAAAAAAAcbIrRAAAAAACAXgy70Y7XBzVYUBLgMNlpb1lVjAYAAAAAAAAAAAAAAAeaYjQAAAAAAKAXKzXIWh2ZeH2gwAjYg1F3dOI1+woAAAAAAAAAAAAAABxsitEAAAAAAIDeDLvzJl5bVWAE7MGwG028phgNAAAAAAAAAAAAAAAONsVoAAAAAABAb0Yrk4vRFBgBe2FfAQAAAAAAAAAAAACA5aUYDQAAAAAA6M2wU2AE7K+d9pVV+woAAAAAAAAAAAAAABxoitEAAAAAAIDejBSjAftM4SIAAAAAAAAAAAAAACwvxWgAAAAAAEBvht1o4rXVToERMLsdCxftKwAAAAAAAAAAAAAAcKApRgMAAAAAAHoz6o5OvDYoBUbA7IY7FaPZVwAAAAAAAAAAAAAA4EBTjAYAAAAAAPRmuDKaeE2BEbAXo5XJxWir9hUAAAAAAAAAAAAAADjQFKMBAAAAAAC9GXVHJ15TjAbsxbCbXIxmXwEAAAAAAAAAAAAAgINNMRoAAAAAANCbYTeaeG1VgRGwByPFaAAAAAAAAAAAAAAAsLQUowEAAAAAAL0ZdUcnXlNgBOzFToWL9hUAAAAAAAAAAAAAADjYFKMBAAAAAAC9UWAE7Ldhd97Ea6v2FQAAAAAAAAAAAAAAONAUowEAAAAAAL0ZrRydeE2BEbAXo5XJxWgKFwEAAAAAAAAAAAAA4GBTjAYAAAAAAPRm2I0mXlNgBOzFsFOMBgAAAAAAAAAAAAAAy0oxGgAAAAAA0JsLBnfbdrxLl+HK5HIjgEnOX7lrugm/Bj1/5a4LTgMAAAAAAAAAAAAAAMxCMRoAAAAAANCbu6/eI/dau8+dxi8fPSjDbtRDImDZHemG+frzHnyn8UtWL81Fa/foIREAAAAAAAAAAAAAADAtxWgAAAAAAECvfuRez875Kxd8+fxug4vyQ/d8Ro+JgGX31Hv8dO6+esmXz8/rzs+PXfrzPSYCAAAAAAAAAAAAAACmMeg7AAAAAAAAcG77muHlueprX5KPHP9gulrJ/UdXZK070ncsYIldsnavPOeyF+f64/8nt7fb8vXnPTjDbtR3LAAAAAAAAAAAAAAAYBeK0QAAAAAAgN6NVo7mG85/ZN8xgEPkSDfMA48+pO8YAAAAAAAAAAAAAADADLq+AwAAAAAAAAAAAAAAAAAAAAAAAAAM+g4wi6p62+ZhS/K01toNe1znHkledXqt1tqV+5EPAAAAAAAAAAAAAAAAAAAAAAAA2JulKkZL8oRslKIlyfAs1hlurpWx9QAAAAAAAAAAAAAAAAAAAAAAAICedH0H2IPqOwAAAAAAAAAAAAAAAAAAAAAAAACwv5axGA0AAAAAAAAAAAAAAAAAAAAAAAA4ZM7VYrTB2PHJ3lIAAAAAAAAAAAAAAAAAAAAAAAAASc7dYrSLxo5v7S0FAAAAAAAAAAAAAAAAAAAAAAAAkOTcLUZ73OZnS/LpPoMAAAAAAAAAAAAAAAAAAAAAAAAAyaDvAGehzTK5qlaT3CvJdyT5F2OXrtnPUAAAAAAAAAAAAAAAAAAAAAAAAMDsDlwxWlWdmmZako9W1Z6/Zuz4DXtdBAAAAAAAAAAAAAAAAAAAAAAAANgfB64YLV9ZWrYf87bTNu//UJL/dhbrAAAAAAAAAAAAAAAAAAAAAAAAAPug6zvABG3O61eSv0ryj1prd8z5uwAAAAAAAAAAAAAAAAAAAAAAAIBdDPoOsI0/y+RitMdvfrYk70lyYso1W5LbktyY5INJ3t5ae+fZhAQAAAAAAAAAAAAAAAAAAAAAAAD2z4ErRmutPWHStapaz5nStKe01j6+kFAAAAAAAAAAAAAAAAAAAAAAAADAXHV9B9iD6jsAAAAAAAAAAAAAAAAAAAAAAAAAsL8GfQeY0VVjxzf2lgIAAAAAAAAAAAAAAAAAAAAAAADYV0tVjNZau2r3WQAAAAAAAAAAAAAAAAAAAAAAAMCy6foOAAAAAAAAAAAAAAAAAAAAAAAAAKAYDQAAAAAAAAAAAAAAAAAAAAAAAOidYjQAAAAAAAAAAAAAAAAAAAAAAACgd4O+A5yNqnpikm9L8rAklyS5IMnqjMu01trl+50NAAAAAAAAAAAAAAAAAAAAAAAAmN5SFqNV1ZOSvDjJ/ceH97hcO/tEAAAAAAAAAAAAwLSq6qIkt7XWbu47CwAAAAAAAAAAcHB0fQeYVVX9QpI3ZaMUbbwMre3hBwAAAAAAAAAAAFiAqrpvVb2iqm5M8tkkN1bVJ6vqV6tq1Hc+AAAAAAAAAACgf4O+A8yiqp6U5IWbp6fLzU6Xox1LcmOSO3qIBgAAAAAAAAAAAOeUqvqRJP9q8/TmJA9vrd02Ye43Jrk6yd3zlS9FvTTJryT5nqp6Qmvtc3OMDAAAAAAAAAAAHHBLVYyW5N9sfp4uRPtENorS3tha+3hvqQAAAAAAAAAAAODc87QkX52NZ/peukMp2iDJq5NctDnUtk5JckWS1yZ5/HyiAgAAAAAAAAAAy2BpitGq6vIkD8mZB6L+Msl3tNZu7i8VAAAAAAAAAAAAnHuqqkvy2LGh1+0w/YeTPCBfWYh2bZKT2XguMNkoR3tsVT2ltfbq/cwKAAAAAAAAAAAsj67vADN49OZnZePhqB9WigYAAAAAAAAAAAC9uCLJeZvHdyT50x3m/vjmZyX5UpJHt9Ye0lp7RJKHJ/lszpSmPX0OWQEAAAAAAAAAgCWxTMVol2x+tiTvba1d12cYAAAAAAAAAAAAOIddvvnZklzXWrtju0lVdc8kj9qc15L8amvtPaevt9ben+RZ2ShNqySPraq7zTM4AAAAAAAAAABwcC1TMVqNHX+4txQAAAAAAAAAAADAvceOr99h3uNypvTsZJLf22bO65J8afO4kjx0PwICAAAAAAAAAADLZ5mK0T41drzSWwoAAAAAAAAAAADg/LHjm3aY99jNz5bkXa21G7dOaK2dSvLesaH7n308AAAAAAAAAABgGS1TMdrfjh3fp7cUAAAAAAAAAAAAwOqU8x49dvyOHeZ9Zuz4rjOnAQAAAAAAAAAADoWlKUZrrV2T5NokleQRVXW3niMBAAAAAAAAAADAueqWseNtn+erqqNJHjo29Bc7rHdq7PjIWeQCAAAAAAAAAACW2NIUo236jc3PlSQ/32cQAAAAAAAAAAAAOId9buz4QRPmfHs2nvdLkpbkL3dY78Kx42NnkQsAAAAAAAAAAFhiS1WM1lp7eZLXJqkkv1hV/6DnSAAAAAAAAAAAAHAuunbzs5Lct6q+YZs5T938bEmuba3dtMN69x47/vw+5AMAAAAAAAAAAJbQUhWjbfqRJG9IMkjy+qp6QVVduMs9AAAAAAAAAAAAwP65NhsFZm3z/DeravX0xap6bJIfGLv+5kkLVdUgyRVjQ9fvb1QAAAAAAAAAAGBZDPoOMIuqeu7m4fuSfEuSi5L8iyQ/V1XvSvKBJF9Msj7Luq21F+xnTgAAAAAAAAAAADjMWmunqupVSZ6RjfKzK5O8v6r+OMkl2ShF65LU5vVX7rDcNyVZGzv/27mEBgAAAAAAAAAADrylKkZL8vyceXtkNo8ryXlJvm3zZy8UowEAAAAAAAAAAMBsfjXJP0ly183zByT5+s3j04VoLclrW2sf2GGd79n8bEk+3Fr74hyyAgAAAAAAAAAAS6DrO8A+OP3g1F7UfgYBAAAAAAAAAACAc0Vr7YYk35/kRM4UoX358ubYR5I8fdIaVdUlefLYve+YR1YAAAAAAAAAAGA5LGMxWu3jDwAAAAAAAAAAALBHrbW3JXlIklcnOZYzz+d9PslvJXlUa+3zOyzxXUnumzPP9L1pfmkBAAAAAAAAAICDbtB3gBk9se8AAAAAAAAAAAAAwBmttQ8neVqSVNVFm2Ofm/L265N879j5W/Y3HQAAAAAAAAAAsEyWqhittfanfWcAAAAAAAAAAAAAtjdDIdrp+e9L8r45xQEAAAAAAAAAAJbMUhWjAXCI3XhN8n9/Kzl1IvmaH0wu/c6kqu9UAAAAAAAAAAAAAAAAAAAAAAAsiGI0APr3mauTtz8paesb59e/InnwVcmDn9tvLgAAAAAAAAAAAAAAAAAAAAAAFqbrOwAA57jWkr965plStNP+9teSY5/sJxMAAAAAAAAAAPuiqi6sqvtU1df0nQUAAAAAAAAAADj4FKMB0K8b35fc9KE7j6/fnnziDxefBwAAAAAAAACAPauq76mq36uq66rqjiSfT/LRJH83Yf5lVfW4zZ9HLDIrAAAAAAAAAABw8Az6DnC2qmo1yaOTfGuSy5N8VZK7JElr7coeowEwjU//j8nXPv6a5AHPWlwWAAAAAAAAAAD2pKqelOTFSe5/emjKWy9P8idJWpLbq+rS1toX5xARAAAAAAAAAABYAktbjFZVR5P8bJJnJLl46+VsPCS13X1PS/Jrm6dfSPJNrbVt5wKwADdeM/na596V3Pb55MjdF5cHAAAAAAAAAICZVNVzkzw3G8/ubX1+r2WHkrTW2lur6oNJHpRkLclTkrx0fmkBAAAAAAAAAICDrOs7wF5U1Tcm+eskVyW5JNO/WTJJ/jjJ3ZNcluRhSf7efucDYAY3fWjytXYq+dQbF5cFAAAAAAAAAICZVNWzkjw/X/k84m1J/izJGzPd832vHjv+zn0LBwAAAAAAAAAALJ2lK0arqiuS/GmSr8tXvlny9Jsmd9RauyXJa8aGvn+/MwIwpba+czFaknzyjxaTBQAAAAAAAACAmVTV1yV5UTae42vZKET7xSR3b609Ickzp1zqDaeXTPKtVTXLy1IBAAAAAAAAAIBDZKmK0apqmI03SF4wNnxNkh9Pcr8kD8p0b5d8/djxlfsWEIDZHP9McurYznM+978WkwUAAAAAAAAAgFm9IMkgG8/tnUhyZWvtRa214zOu8/7N+5PkLtl4cSoAAAAAAAAAAHAOWqpitCTPSnJZNt4smSQvTvLw1trvt9Y+mjMPRu3m7ZtrVJKvrapL9jknwN7d+onkz5+cvO7eydWPTz7ztr4Tzc/xT+0+58QNye03zj8LAAAAAAAAAABTq6ojSb4rG8/itSTPaa29ay9rtdbWk3xwbOiBZ58QAAAAAAAAAABYRstWjPbMnClF+6PW2rM3H4iaSWvtliQfHRt60D5kAzh7J48lf/LY5OOvSY5/Ornhz5K3XZlc/8qktd3vXzbHpihGS5Kbr5tvDgAAAAAAAAAAZvWYJKNsvKD0WJKXnOV6nx47vvQs1wIAAAAAAAAAAJbU0hSjVdUVSe6djYeokuQXznLJj4wd3+8s1wLYH598Q3Ls43cef9cPJ3/01ckN71x8pnk6PmUx2o3XzDcHAAAAAAAAAACzumzzsyV5T2vttrNc76ax47uc5VoAAAAAAAAAAMCSWppitCQP3fxsSa5trf3dWa5349jxBWe5FsD++NirJl87/unk6scl17wg+ezbk7a+uFzzcmzKYrRPvXG+OQAAAAAAAAAAmNXFY8ef2Yf1ugnHAAAAAAAAAADAOWTQd4AZjD9Edd0+rDf+dsrz9mE9gLP3mT/Zfc41z9v4vPQfJt/6umRlbb6Z5un4/2fvvsPsLOv8j7/vaUlIIYUSCL1X6cIKCAKCggIWUHRXEVzLFt1V17KuhdV1159tXde2gmVVRBGkCdKb9F4iUhISkgAJ6ckkmUz5/v44MztnJqefM+fMmbxf13Wu8zz3/b3v5zuUk0nyzOd5sbS6xbdABKQ0sv1IkiRJkiRJkiRJkiSpVNn34I2rwX4zso5X1GA/SZIkSZIkSZIkSZIkSU2omZ6qOD7ruCtvVem2zDpeU4P9JKl67VNKr33xWnjuhyPXSz30lPjx270K1r80sr1IkiRJkiRJkiRJkiSpHK9kHe9Qg/0OyrO3JEmSJEmSJEmSJEmSpM1IMwWjLc063qoG++2WdbysBvtJUvVaxxevyTb3JyPTR730rC+9dvWfR64PSZIkSZIkSZIkSZIklWtu/3sCDk4pTax0o5TSocDWWUMPV9OYJEmSJEmSJEmSJEmSpObVTMFoL/e/J+CQajZKKc0A9s0aeq6a/SSpJiKga2nxumwrHoEVj41MP/XQazCaJEmSJEmSJEmSJElSk7ofWA0E0A6cV8VeH8s6nh8R86tpTJIkSZIkSZIkSZIkSVLzaqZgtLuBvv7jGSmlE6rY6zwyAWsAncCD1TQmSTXRtQx6Ostfd93BmVC1ZtS7ofRag9EkSZIkSZIkSZIkSZJGjYjoBX5P5l68BFyQUtqx3H1SSm8B3kUmYC2AX9WyT0mSJEmSJEmSJEmSJEnNpWmC0SJiBfBA1tCXUkopX30+KaVZwKcZvInqxojoK7xKkupgzTOVr33igtr1UU+960uvfeY7I9eHJEmSJEmSJEmSJEmSKvElMg88DWAqcFtKaf9SF6eUzgUu7l+fgA3At2vfpiRJkiRJkiRJkiRJkqRm0TTBaP2yb3g6CvhBOYtTStsCVwHTyNxEBfDN2rQmSVVa82zla5+8ALpX166XeiknGA1g2YMj04ckSZIkSZIkSZIkSZLKFhF/Br5D5n68AHYFHk4pXZRSOgXYZvialNKOKaXzU0r3ABcB47LWfyEiltTtC5AkSZIkSZIkSZIkSZI06jRVMFpEXAI82n+agPenlO5MKR1baF1KaWJK6UP9aw8mcwNVADdExF0j2bMklWzNM9Wtf+Gy2vRRT+UGoz39nyPThyRJkiRJkiRJkiRJkir1ceBGBsPN2oFzgWuBe/vHAEgpdQLzgP8BXp21BuB3EfH1ejUtSZIkSZIkSZIkSZIkaXRqa3QDFXg7mZulZvSfHw3cllJ6GXguuzCl9H1gL+AvGPpUyQQsAv6qTj1L0qZWPwPP/y9sWALbnZw5z2XaIdC9CtbOLbzffefDLu+C1nG173WklBuMtuj30NcNLe0j048kSZIkSZIkSZIkSZLKEhF9KaUzgO+RCUQbCDpLAyVZYxOyl2bV/Rj40Mh2KkmSJEmSJEmSJEmSJKkZtDS6gXJFxFzgTcDLDA062w44Jqs0AR8AjgfGD6tdCJwWEUvr1rgkZVv2IFz/apj9bzDnR/DHs2DBb3PXznozvOlpeP1dRTYNuOl46Oupdbcjp9xgtO6VsOSOkelFkiRJkiRJkiRJkiRJFYmIDRFxHvAOYDaDoWiblDI0EG0O8O6IeH9ENNFNL5IkSZIkSZIkSZIkSZJGStMFowFExP3AocB1DH2q5MB79s1T2XMJuBF4dUQ8XodWJSm3J78E3atKq528F7S0wdavgTc/W7h22b3w/M+r769eejfkHj/6kvxrFl09Mr1IkiRJkiRJkiRJkiSpKhFxaUS8CjgR+A/gj8ALQCfQDbwEPAp8Fzgd2CciftWgdiVJkiRJkiRJkiRJkiSNQm2NbqBSEbEYOC2ldBjwUTI3Um2Xp3wVcDPwnYi4vU4tSlJu0QeLriq9fvKeWcd7wHFXw+1vzl8//xLY/X2V91cvfd0QvbnnJsyCnc6GF36z6dyq2SPblyRJkiRJkiRJkiRJkqoSEbcCtza6D0mSJEmSJEmSJEmSJEnNp2mD0QZExEPAewBSSrsBOwIzgA5gKbAYmB0RfQ1rUpKydb5Qeu24rWD6IUPHtjkO2iZBz9rcaxbfAhtXQsfUynush971+efaJsC0Q3IHo21cMXI9SZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIapumD0bJFxFxgbqP7kKSCFt9Seu0+H4eW9qFj7ZPh0G/A/R/MvSZ64MXrYJdzKu+xHnoKBKO1jM8f7LZx5cj0I0mSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJElqqDEVjKbRIaXUDhwN7ARsB6wFXgQeiYh5DWxNarzVz8B955dWu+V+sM/Hcs/t8QGYfhj84fDc8y/fNPqD0XoLBKO1TYD2PMFo3QajSZIkSZIkSZIkSZIkjQYppYEnBAZwTkQsqXCfbYFfDewVESfWoj9JkiRJkiRJkiRJkiRJzcdgtDEopfRT4L012m5+ROxS4nW3Bi4A3gFMz1NzN/DNiLisRv1JzeX+D5Ree/j3oLUj//z0w2DPD8Oz3990bu6PoXs1zHoz7PJuaGktv9daWf8yPPc/MOciWPcCzDodDv0m9G3Mv6Z1AnTkCUbbuBIiIKWR6VeSJEmSJEmSJEmSJEmlOp5MKBrA+Cr2Gd+/F1n7SZIkSZIkSZIkSZIkSdoMGYymYtaXUpRSeiPwU2CbIqWvAV6TUvol8MGI6KyuPamJdK+BV+4srXbGq2Hb44rXTTsk/9yC32Zei66CYy5tTJDY2nlww5GwIethwIuuyrwO/Vb+da0ToGNa7rnohZ5OaJ9U01YlSZIkSZIkSZIkSZJUkYRhZpIkSZIkSZIkSZIkSZJqpKXRDZQjpXRASumW/tfNKaViIVy59ti2f+3APnuNRK9jyGXFClJKxwNXMDQULYCHgEuBG4Glw5a9G/hVSqmp/huUqtK1DKKvtNoZR5ZWN2Wf4jULLoOl95S2X6098cWhoWjZHv7H/OvaJkHH1Pzz6xZW1ZYkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkafRptlCqDwLHA8cBGyMiT9pOfhGxGOjO2ueva9jfaPEJYNcKXmcN2yeAHxe6UEppB+ByoCNr+C5g/4g4PCLOjoiTgR2Aj5L5Zz/gzcCXK/j6pObUs6b02hlHlFY3ucRsx+d/Xvq1a6W3KxPKVq62ydDSBu0FgtFuOArCBw1LkiRJkiRJkiRJkiSNEW1Zxz0N60KSJEmSJEmSJEmSJElSwzVbMNoZWcc/q2KfgbUJeEsV+4xKEbE0IuaV+wJOGrbVrRExt8jlLgCmZZ3fDZwUEU8N66krIv4LOHvY+o+llHau4MuUmk93GcFo00sMRuuYVrwGYG7BjMORsfgW6Flb/rqO/kC0ji3z13SvghWPVNaXJEmSJEmSJEmSJEmSRputso47G9aFJEmSJEmSJEmSJEmSpIZrmmC0lNJuwA79p33ANVVsdxzVuxAAACAASURBVDXQ23+8a0ppp2p6GwtSShOAdw4bvqjImj2B92YNbQTOjYgN+dZExBUMDbUbB3yhvG6lJlVqMFr7FJiyV2m1Le1kMh6LKaWmxhZeUdm6gWC01vEwbqv8dcsfrmx/SZIkSZIkSZIkSZIkjTav7X8P4MVGNiJJkiRJkiRJkiRJkiSpsZomGA04oP89gKcjYm2lG/WvfTpr6MBqGhsj3g5smXW+Ari8yJp3Aa1Z55dHxLMlXOurw87PTimNL2Gd1Nx6SgxG2/VcSCV+PKeUCRArpq+rtP1qJfpg4VWVre2YNng86/T8dT0+HFiSJEmSJEmSJEmSJGkUiXKKU0rtKaWdUkrvBz6bNfVEbduSJEmSJEmSJEmSJEmS1EyaKRht56zjOTXYL3uPnWqwX7M7f9j5LyNiQ5E1bxl2/pNSLhQRTwH3ZQ1NBE4uZa3U1LpLCEbb9gQ48PPl7VtKMBrAytnl7VuNZffDhpcrW9s+dfD40K/nr+upOB9TkiRJkiRJkiRJkiRJJUop9eZ7ZZcB8wrV5li7AXge+CEwJWuvCp/GJ0mSJEmSJEmSJEmSJGksaKZgtMlZx6tqsN/qrOMpeas2Ayml3YHXDhu+qMiamcBBWUM9wF1lXPa2YedvLGOt1Jx68gSjTdwVTrgJTn0cXncDjJtR3r6lBqMtvKK8favxSjkfB8Ok1sHjjmmZsLhcejorv4YkSZIkSZIkSZIkSZJKlQq8Sq0r9or+Pf4M/HbkvhRJkiRJkiRJkiRJkiRJo10zBaOtzzquRZBZdtBab96qzcN5DL1J7eGIeLTImgOGnT8eEeWkFN097Hz/MtZKzak7TzDa+G1g5okw9UBoac1dU0hLicFonfPK37tSa57JPb7tiXDmosJrezcMPW+fnLuuZ235fUmSJEmSJEmSJEmSJKkSUbykKgl4EHhTRHSP8LUkSZIkSZIkSZIkSZIkjWJtjW6gDEuzjneuwX47ZR0vq8F+TSml1Aq8d9jwRSUs3W/Y+XNlXnpOkf2ksacnTzBavuCvUrWWGIy2rkggWS2tfjr3+Jb7ZYLgCtnqL4aet07MXddTThajJEmSJEmSJEmSJEmSKnQH+YPRjut/D+B+YEOeuuEC6AJWAk8Bt0bEndU0KUmSJEmSJEmSJEmSJGlsaKZgtBf63xNwYEppRkRUFGiWUpoBvCprqI5pQaPOG4BZWefrgYtLWLfHsPMXclblN3/Y+YyU0rSIWFHmPlLz6M4TjNZWp2C0l66r7jqlWng1LLk999zkvaClyC89s04det4+KXddz9rye5MkSZIkSZIkSZIkSVJZIuL4fHMppT4GQ9PeERHl3kcmSZIkSZIkSZIkSZIkSUM0UzDavWSeENlBJhztb4F/rXCvvwFa+o97gLuq7q55nTfs/LKIWFnCuqnDzpeUc9GIWJtS2gBkJzptCVQVjJZS2gbYusxlu1dzTalk+YLR2qsMRmsZV3rt6mdgyl7VXa+QlbPhjtPzz0/ZO/M+9VWw8vEcBQmmHTp0qHVi7r16OitqUZIkSZIkSZIkSZIkSTWVGAxHkyRJkiRJkiRJkiRJkqSqNE0wWkR0pZTuBE7qH/pESul3EfFEOfuklA4A/onBG7HuiojNMl0npbQ18OZhwxeVuHzSsPP1FbSwnqHBaFWmQwGZ0Lsv1GAfqfZ68gSjtVX5n370ll57zd5wTh+kVN0185l/cf65lnaY8erM8azTcwejvX3Zpr21D/+46deztrIeJUmSJEmSJEmSJEmSVCsXZB2X8kBOSZIkSZIkSZIkSZIkSSqopdENlOnr/e9BJpjrupTSUaUuTim9GrgWmEjmKZXZe26O3gO0Z53PAW4vce3wpKINFVx/eJhanvQjaYzozhOM1l5lMFpfmf/73XQcbFhS3TXzWfFo/rltjoeOLTPH+38GtnvD4FzrFnDsZdAxbdN1bRNz72cwmiRJkiRJkiRJkiRJUkNFxAVZr9WN7keSJEmSJEmSJEmSJElS82uqYLSIuAG4jUyoWQDbA3eklC5KKb06pZSGr0kZR6SULgTuBHYY2A64MyKurU/3o9L7hp3/OCKiwr0qWVfptaTm1DNCwWi9ZQajvXInXH8kdM6v7rrDda+BFwt8pO73ycHjti3g+Gvh1CfhddfDmQtgx7fmXteWJzNx+UNQ8UeWJEmSJEmSJEmSJEmSqpVSaqp7ECVJkiRJkiRJkiRJkiSNfm2NbqAC7wQeBrYjE6zVBpzb/+pMKT0NrOifmw7sBQyk6gwEqiVgAXB2HfseVVJKRwH7Zw31Aj8tY4u1w84nVNDG8DXD96zE94BLy1yzO3BlDa4tFdadJxitrc7BaACd8+COt8AbH67u2tk9XL5t/vnpR8DMk4aOpQRT98+8CmmbmH9u1ZMw9cDS+5QkSZIkSZIkSZIkSVItvZBS+hFwYUQsanQzkiRJkiRJkiRJkiRJkppf0wWjRcSSlNIbgKuAXcgEnUEm7GwScNiwsf9bymAo2nPAGRGxpB49j1LnDzu/LiJeLGP9qAxG6/93Wta/15RS8SKpFnryBKO1NyAYDWDFI/DyLTDzhNzzfb0QPbBxOfT1wLitgIDoha5lmZqWdpiwPdx+OvSuz3+tAz9fWY8A7VPzzy2+zWA0SZKkRupeDa0ToaW10Z1IkiRJkiRJkqTG2B74PPDZlNI1wA8i4oYG9yRJkiRJkiRJkiRJkiSpiTVdMBpARDyZUjoM+C5wNtDCYBjakNKs4wT0Ar8EPhoRq0a80VEqpTQReMew4YvK3Gb4P7+ty+xhEpsGo60sswepuXTnCUZra1AwGsAtJ8Lu74fD/xtaxw2OL7gC7nxLdX1lm7B95Wu3OTb/XE/VeYqSJEmqxJo5cPe7YNkD0DEN9v4oHPA5MHhakiRJkiRJkqTNVRtwBnBGSul54IfATyJiaWPbkiRJkiRJkiRJkiRJktRsWhrdQKUiYkVEvAvYD/gW8ET/VBr2AngM+Dqwd0ScuzmHovU7C8hOYloMXFPmHs8OO9+5zPXD65dHxIoy95CaRwT05AlGa68yGK2vimA0gDkXwsP/OHi+6s+1DUUDmFjuR0SWcTPyz1UTCidJkqTK9HXDzcfDsvuBgI3L4YkvwLPfb3RnkiRJkiRJkiSp/jaSuU9v4CGmCdgN+A9gQUrpFymlYxrVnCRJkiRJkiRJkiRJkqTm07TBaAMi4pmI+HhEHAxsCewJHNX/2gOYEhGHRsQnI2JuI3sdRc4fdv6/EdFT5h5PDTvfo8z1uw07/1OZ66Xm0rseoi/3XFuVwWgd0/LPvelp2Oms4ns8+31Y8Vjm+KmvVdfPcFP2LRxuVoqZJ+ce7+uqbl9JkiSVb8kdsG7hpuPzL65/L5IkSZIkSZIkqdG2Bz4JPMfgg0yj/3gccA5we0rpiZTS36SUqrxRRpIkSZIkSZIkSZIkSdJY1zTBaCmlmSml07Ne04fXRMTaiJgTEff3v+ZGRGcj+h2tUkp7AcOfwHlRBVs9Oez8VSmlLcpYf3SR/aSxpXtN/rn2Ku/3POgrucd3+SuYshcc8xuYelDxfa47GC5OMPfH1fUz3LGXV79H6/jc470bqt9bkiRJ5Xnq67nHX7mrvn1IkiRJkiRJkqSGi4jlEfH1iNgbeD1wOdA7MN3/noD9ge8AL6aUfphSOrT+3UqSJEmSJEmSJEmSJElqBk0TjAa8Ffhd/+uXQFdj22la5w07/2NEPF3uJhHxEvB41lAbmwauFXL8sPPryu1Baio9IxiMtv2p0JZjj13ePXi8199Wd41K7fMx2HKf6vfJG4zmLwWSJEl1t3F5ozuQJEmSJEmSJEmjUETcHBFvB3YEPg8sIBOKBpmQtARMBN4PPJBSui+ldG5KKc+NIZIkSZIkSZIkSZIkSZI2R80UjDaVzI1RCXggIjob3E/TSSm1Au8ZNnxRFVv+btj5+0rsYx/gyKyhTuCGKvqQRr+edfnnWidWt/eE7eCEG2DL/QfPj7wItj9lsGa38+Cgr1R3nXJtc3ztrtkyLvd434ba7C9JkqTC+nrgyS/D9X8By+7PXxdRv54kSZIkSZIkSdKoFBGLI+LLwK7A6cC1ZILRyHpPwBFk7l97MaX0rf77yiRJkiRJkiRJkiRJkiRt5popGG15/3sALzWykSZ2KrBd1vka4NIq9vsl0Jt1/taU0p4lrPvUsPPfRITpRhrbetfnn2ubUP3+Wx0Fpz0Jb18BZy6C3c8bOt/SCvt/Bt4VsM1x1V+vmJmvh5NuhdY8gWblas3zYOBePzokSZLq4t73weOfg2X3Fq4r9H2vJEmSJEmSJEnarETGNRHxJjIhaV8BXiYTigaZewETmYemfgSYnVK6NaV0VkqprSFNS5IkSZIkSZIkSZIkSWq4ZgpGyw5Dm9iwLprb+cPOL4mIzko3i4hngZ9lDXUAP00p5UkwgpTSGcC5WUMbgQsq7UFqGoUCIlprEIw2oGMqpFS4Zud31u56+Rx3VW33yxew1ttV2+tIkiRpU53zYd4vS6vtqfi3mJIkSZIkSZIkaQyLiAUR8S/ATsDZwM3DSlL/67XAJcCClNKXU0o717dTSZIkSZIkSZIkSZIkSY3WTMFoj5B5QiTAXo1spBmllLYFThs2fGENtv4CsCLr/DXATSmlfYZdf1xK6e+BS4et/0ZEzK9BH9Loli8YraUDUp0/ind9D0x9Ven1bWVkUU7aDc5cAK158xErk2+/3g21vY4kSZKGWjsPHvkUg78dL8JgNEmSJEmSJEmSVEBE9EbEbyPi9WTuA/wGsIzMX0YEgwFp2wKfAZ5LKV2eUjqmUT1LkiRJkiRJkiRJkiRJqq+mCUaLiBeAe8nc9LR3SslwtPK8F2jLOn8yIu6vdtOIWAi8FdiYNXw08KeU0gMppV+nlP4ALAD+C2jPqrsG+Fy1PUhNIV8wWuuE+vYB0LYFnPIAHPqfhet2OhuO+gmcMPwBvVm23A+Ovw72/Sc45Bvwxkdgix1q2y9Ay7jc431dtb+WJEmSIAKe+BJcvTu88OvS1xmMJkmSJEmSJEmSSjcF2BLIfmJeZL0AWoEzgNtTStellHavb4uSJEmSJEmSJEmSJEmS6q2teMmo8jXg8qzjMxrYS7N537Dzi2q1cUTcllJ6C/BTYOv+4QQc3v/K5VfAX0dEb636kEa1nlEUjAbQ2gH7fBR2OgtuPBo65w2df+2VsMPpmeOVs/PvEwHbvyHzGkmt43OP924Y2etKqo3u1TD/N7DmGdj6WJh1GqSmyeeVpM3T0nvgic+Xv65nbe17kSRJkiRJkiRJY0ZKaQJwDvBBct9bloDu/tcWDAakJeAU4LGU0jsi4vd1aFeSJEmSJEmSJEmSJElSAzRVIkVEXAH8mMxNTm9KKX03pdRs4W51l1I6Gtgna2gj8ItaXiMirgUOAH4ArChQei/w9oh4V0R01rIHaVTrHWXBaAO22B7e/ByccDPs9xk4+tfwtmWDoWgAbYV6jAJzNWQwmtS8NiyBG4+B+/8anvoa3HE63Pd+iL5GdyZJKmTexZWt6/G3eZIkSZIkSZIkaVMppf1SSv8FvAj8iEwoWhqY7n+9BHwR2BnYHvg7YHb/XPS/tgB+k1LavZ79S5IkSZIkSZIkSZIkSaqfZgwV+yCwBvgo8CHguJTSN4CrImJZQzsbpSLiLgZvIhvJ6ywBPpxS+ihwNJkb1GYCncAi4JGIeH6k+5BGpXzBaAVDx+qkpRVmnpB55VIwvK1OwWgt43KP93XV5/qSKvfsD2HlE0PH5v4E9vgAbHVUY3qSJBX34rWVrTMYTZIkSZIkSSseh9lfga6lMP0QOPCL0Dax0V1JkhogpdQBnEXmPr/XDAz3v0fW+W3A94DfRURv1hbfA76XUnoj8DVgv/7x8cA/kglOkyRJkiRJkiRJkiRJkjTGNFUwWkrplqzTNcBkMjc7Xdg/vxBY0j9XqoiIE2vWpIiIjcCtje5DGlXyBaMVDB0bJUZDj63jc4/3bqhvH5LK98Tnc4+/8FuD0SRpNOusMNPaYDRJo0FfL0QPtOYJ2ZYkSZIkjZzVz8INRw7+Pd7im2HxrXDK/ZBaGtubJKluUkp7knkA6nuB6QPDZMLQov94LfBz4LsR8VSh/SLiupTSrcAfgUP7179+ZLqXJEmSJEmSJEmSJEmS1GhNFYwGHM/gkyJh8CapgadI7tj/CkozcLOVJI2ssRqMFnX6CG3J88PsfV31ub6k2ptzERz69UZ3IUkaLgKe/3nl63sNRpPUQH3d8PAn4PmfZn4Af7tT4KifwLgZje5MkiRJkjYfj35q04cbLX8IXroetn9jY3qSJNVFSqkVeAvwIeB1A8P975F1Phv4PvC/EbG21P0jYkNK6d+BS/uHdqy6aUmSJEmSJEmSJEmSJEmjUrMFo+VisJmk0a+Zg9FaOgpM1ukjuHV87vF1C+tzfUmVib78cx1T69eHJKl0L90A97638vXdJf/8kiTVRgSsnQOrn4FHPwmrZg/OLboa7nwbnHRbw9qTJEmSpM3KxlWw8He55xbfZjCaJI1RKaWdgQ8A5wHbDAyTualk4MGnvcAVwHcj4vYqLvenrOM8T9mTJEmSJEmSJEmSJEmS1OyaMRgtFS+RpFGmp4mD0VKBj91CoUe1lC8YDeCJL8EB/1K4T0mN8dz/5J8zGE2SRqdnvlPd+t7O2vQhSaXo7YL73g/zfpG/ZsntmdC0KXvVry9JkiRJ2lw9/vn8cwsuh0O+Wr9eJEn1NIfMPX0DN24MPGUvAS8B/wP8T0S8VINrrRt2DUmSJEmSJEmSJEmSJEljUFMFo0VES6N7kKSK9DZxMFpBdbrPdNzW+eee+Dxs93rY6qj69CKpNF3L4YEP559v37J+vUiSCls5GxZeARuWwIu/L23N9MNg+UObjvcYjCapjuZcWDgUbcBLNxiMJkmSJEkjbc1z8Ox/Fyio0wOXJEmN0ELmBpJgMCDtDuC7wO8iomcErpkwHE2SJEmSJEmSJEmSJEkas5oqGE2SmtacH+Ueb9uivn3UWtTpHtPph0DbxPxBG8//wmA0abRZeGXh+baJ9elDklTYgivgrrOhr7v0Ncf/AZ79LmAwmqQGm3dxaXWd80a0DUmSJEkSmd+jRYHws8550NsFrePq1pIkqa4SsBb4OfC9iJg9EheJiPlkgtgkSZIkSZIkSZIkSZIkjWHeJCRJI617bf651gn162NE1CkYrXU8bH1s/vlnv1ufPiSV7tnvFZ7v3VCfPiRJ+UUfPPT3ZYSiJTji+7D9KfkDLg1Gk1RPS+8urW79opHtQ5IkSZJU/IEp0Qdrnq1PL5KkensK+HtgVkT87UiFokmSJEmSJEmSJEmSJEnafLQ1ugFJGvNeuTP/XPvk+vUxEmaeVL9rTZhZv2tJqs7838DyBwvXGJwjSY23+mlYt7C02ld9Gfb/DKT+fPW2SbnregqEAktSLXUtK7121VP55/p6YeOKzHH7pEwwtyRJkiSpPJ0LYMXDxetWPwVTDxj5fiRJdRUR+ze6B0mSJEmSJEmSJEmSJEljS0ujG5CkMW/xLfnntn5t/fqoxt4fzTP+kfr10DGj8HznC/XpQ1Jxs79SvMZgNElqvGX3lV67/z8PhqIBtE3MXefnu6R6Wf1M6bUrH4NLp8Kjn4bejZmx3o1w/4fhsulw+daZ16VT4OYTMz/QL0mSJEkq3cIr88+1tMOs02HfT8LkPevXkyRJkiRJkiRJkiRJkiRJkppWW6MbkKQxLfrgqa/nn595Uv16qcbeH4UFv4N1WeFju50LW9bxie7jtio8f/2R8NaX6tOLpPw2rsgETxTTu27ke5EkbaqvN/M53dcN976veH3HdDjhJkhp6LjBaJIabf2i8uq7V8GfvpoJRDvsm/DwP8BzPxha09edCTe//nA480XoWQPLH4It94cJM2vXuyRJkiSNNYvyBKNN2Rve9Of69iJJkiRJkiRJkiRJkiRJkqSm1/TBaCmlg4HTgWOB3YHpwGQgImKTry+lNBWY0n/aFRGL69WrpM3Q0nvzz+3+19DaUb9eqjFpVzj5Hpj/K1jzHGxzHOx89qYBGSMpX/jGgA0vw7qFsMUO9elHUm6rny6tzuAcSaq/zvlw22mwanZp9ft8DPb6W5i026ZzbZNyr/HzXVK9dC2rbN3T34Ldz4e5P8tfs2EJXNKe+T1v9GXG9vk4HPK1+v4+WJIkSZKawcaVsPi23HM7nV3XViRJo1tKaQZwFnAksC2wHlgI3ARcHxEbG9ieJEmSJEmSJEmSJEmSpFGkaYPRUkoHAt8CXpc9XMLS1wG/7T/uTCnNjIh1te5PkoiAP38r//yMI+rXSy1ssT3s+/EGNlDCR/yL18Eefz3yrUjK78U/lFZncI4k1d99Hyg9FG2398Gh38g/ny+0tmdt+X1JUiU2VhiMBnDtASUUReb39QP+/A3Y6kjY6azKrytJkiRJY82qp+CPZ0P05J7f4cz69iNJqpuU0lbAq4CtgS5gLvBkxMCTBobUJuAzwD8DE3Js93fA/JTS30REiX/hLEmSJEmSJEmSJEmSJGksa2l0A5VIKZ0L3Esm5Gx4Uk5ssmCoK4EX+tdNBN5W6/4kiQi473xY8Nv8NT4hvTwTti1e0+fDg6WGWngVPHlBabU9nUODJiRJI6trObx8Y+n1+/5T4fm8wWgGX0qqk64qgtEqtfDK+l9TkiRJkkarZ38Iv98fVj2Ze36LHWHaIfXtSZI04lJKB6eUbgReAm4ELgYuAx4BFqWUPpVSas2qT8DPgC8BW5C5Zy/7fr+B812Aq1NK767H1yFJkiRJkiRJkiRJkiRpdGu6YLSU0tuAixj69MgELAAeZdOgtCH6n0r566yh02vdoySx9B6Y+5P88y3t0LFl/foZC2aelPnnVkjrFvXpRaq13g3w+Bfg5hPg3vfB8oca3VH5etbBHWeUsSCge9WItSNJGmbVnyieI55ly30Lz7cajCapwTYur/815/2y/teUJEmSpNFo/cvwyCco+OdNs06HVPD2DUlSk0kpvRO4HzgBaGUw1GzgtS3wFeCqlNLAfYkfBf6y/zgY/MVjYE1kvVqBH6eU9hvxL0aSJEmSJEmSJEmSJEnSqNZUwWgppe3IPEESBm+S+h6we0TsAry1xK2uHNgSOK5mDUrSgBevKzy/3Rvr08dY0jENdn1P4ZpiwWnSaBQBt54CT/4rLL4V5v4UbjoOlj3Y6M7Kc80+5a/pWlb7PiRJuW14qfTaPT5YvKZ9Uu7xnjWlX0eSquH3kpIkSZLUOAsuh561hWt2KOdhKpKk0S6ldATwc6CNoYFmAwbOE/AG4OMppcnAFxkahvYScA1wMfAHYAVDH4TaDnx7pL4OSZIkSZIkSZIkSZIkSc2hqYLRgM8DW5C5GaoPODsi/i4inu+fL/A44iEeALr7j2eklHatbZuSNnuzv1x4vmNqffoYa474QeH5znl1aUOqqSW3w5I7ho71dMIz/92YfiqxZg6sW1D+OsMsJKl+1j5fvGbA9qcVr2nfMvd47wbo7Sr9WpJUKb+XlCRJkqTGmf2VwvPtU2Abn1EnSWPM94FWhgagrSRzH96D/ccpa+4fgXOAKf3rlwFnRMQOEXF6RPxlRJwKbAN8ENjA4L1/J6SUdq/LVyVJkiRJkiRJkiRJkiRpVGqaYLSUUiuZm6UGbq76akRcVsleEdED/DlraJ/qO5SkLK3jC8+3G4xWkZa2wvOPfw6i1IxMaZR45ju5x5//WX37GNC7AZbeDyufKPz/U/TB8kdg+cPwxBcru1bX0srWSZLKV06A7HYnF68pFPTbvar0a0lSpbpXNua6i65pzHUlSZIkabToXgvrFxWu2f5UaO2oTz+SpBGXUjoSOJTB0LOlwFuBrSLiyIh4NbAV8BZgSX/dtsDH+rfoBk6KiKuH7x0RfRHxIzL3BQ4EqwGcNXJfkSRJkiRJkiRJkiRJkqTRrmmC0YCjyDxBMpG5Wer/VbnfwqzjHavcS5KGaptceL5QkISqs+yBRncglWfB5Y3uYNArd8E1+8INR8K1r4JbT4aNKzatW7coM/+HQ+EPh8G8X1R2vY3LqutXklS6tfNKqzt9DrSOK17XMS3/XK5fOySp1no6i9cc+K+1v+4z36v9npIkSZLUTB75p+I1O5w58n1Ikurpbf3vA/ftnRwRV0QMPmkrMq4ETgF6+of3IhN09ouIeLzQBSLiKuDW/msAHF7D/iVJkiRJkiRJkiRJkiQ1mWYKRtuj/z2AByJidZX7Za+fUuVekjRUX3fh+egpPK/8Dvr3wvNzLqxPH1ItrH6m8Hz0jXwP616EZ38A938YbjwGOucNzr18Ezz6z5uuuee9sGp2afuPm5F/rstgNEmqi1fugpeuK153+H/DpN1K27O9QNDvxpWl7SFJ1ehZV7zmwM/Bdm+o7XVL+TyVJEmSpLGkrxfm/wae+kbm/bkfFK5vaa/978UkSY12aP97AL+JiMfyFfYHoF3CYMAZwGUlXie7bv+yOpQkSZIkSZIkSZIkSZI0pjRTMNrWWccLarBfdtJIWw32k6SM7rXQXSQMYtIeheeV345vLTy//sX69CHVwqJrCs8//ImRvf7yR+C6g+GBD+f/Qaa5P4buNYPnG1fCkltL2//Af4U3PQ3bvDb3fNfS8vqVJJXviQsywZfFpDbY629L37dtIqTW3HMGo0mqh57O0urGbVX7a/s5J0mSJGlz0bsx82dLd70DHvlE5r2Y3c6Dji1HvjdJUj3tlXVc5C+5Abh22PnjJV5nIHAtAQWewCVJkiRJkiRJkiRJkiRprGumYLTIOs7z09dlmZ517E8zSqqdNc8Ur5lx+Mj3MVZN2avwfPTUpw81r+7V8Nhn4eYT4YG/gzXPNa6X9YsKzz/9LVhXpGa46IOnvwPX7AMXp8zr0U/DxlWb1j72z9D1SuH9+jbCpVMyU3VtCgAAIABJREFU+9z3flh4VeYaxUzeCw74Fxg3Azry3LPetaz4PpKkys25CJ74Ymm1O59T3t4pQcfU3HMbV5S3lySVK/qgd11ptTNeXfvrryz15zglSZIkqck9/Z+w7N7S63d8Oxz81ZHrR5LUKNmJl0+XUD+8ptS/GM5+staUEtdIkiRJkiRJkiRJkiRJGoPaGt1AGbJTO7avwX4HZB2byiGpdlYXuQd062Nh6oH16WWsmn44LH8w91xfd317UXPp7YKbjocVj2TOF98CL/wGTr4HJu9e/3561havWXQN7PGBTADNgL5eaMmTE3v/h2DOj4aO/emr8MKlcNpsaB0PfT2ZIImXri+v3zkXZV6lOPCLgz2P2yp3zUa/BZOkvCKGfvaX6/lfZAItS5HaYM8Pln+N9mm5Qy67zR6XNMJ615deu/M5mZDIjcsL142fCa/5BdxyUvE9bzoOzumr7nNakiRJkkar7L+DmPuT0te9bRmMm168TpLUjCZlHed4ItcmVmefRMSGEq+TXdde4prNSkppArAvsA+wNZl/N2uB5cCTwBMRPlFQkiRJkiRJkiRJkiRJza+ZgtFe6H9PwCEppfaIqCj9JqW0FzAra+jxapuTpP+z+s/55/b8Gzjka/XrZazq68o/t2p2/fpQ83nx2sFQtAFdr8BzP4RD/l/9++npLF7zwIcyL4CdzoJlD8KGxTDzRDjyQhi/TWau8wW47dT8/w+snQu/nlCbvov5i1/ALucMno+bkbuua2nucUnanEUfPP65zK9NvRth1pvhsP+E8VuXsUdkQjFLsc3xcNCXYeujy++1Y2ru8Y0Go0kaYaV8Hz1g/Fbwhofg3vfCkjvy1237usz32G94EB77bPEQ4aV3V/bZKUmSJEmj1ZI74eGPwcrHYOrBsNffFf57z2w7vMVQNEka27KfENBbQn0pNaNWSmk34Ajg8P73Q4HJWSXzI2KXOvZzKHAmcALwagqHxnWmlH4NfDsivCdSkiRJkiRJkiRJkiRJTaul0Q2U4R5gPRDABOCcwuUFfSTreHFEPF1NY5I0ROe83OM7vg2O+C60bVHXdsak3gLBaBsWwyv3ZEJFpOGe+2Hu8acaFFhYTqADwAuXQufz0LsOFl0NNx6bCb/p64HrDh4dwYDH/BZ2fffQsbzBaMtGvh9JajZPXACzv5L5jOxZA/Mvhnvek/m8L9XGFbDqydJqT7q18mCf9im5x7tXV7afJJWqZ1159ZN2gZNuhzc8DLu/H1qHBQZ3TIP9Pp05nn4YvO4PcMJNhfec+9PyepAkSZKk0ahnHbx8Czz1TbjptbD8QejrhuUPZAKmS7Xl/iPXoyRJdZBSOj6ldH1KaRkwB7gE+ARwHEND0erZ0/iU0hzgIeBzwNEUDkUDmAicBzycUvqPlFKxekmSJEmSJEmSJEmSJGlUamt0A6WKiK6U0s3Am/qH/i2ldFVErCxnn5TS0cAHyQSsAVxewzYlCdYtyj0+cef69jGW9RUIRgO48TUwZW847vcweff69KTm8NL1je5gqJ611a1f80wmPGfFw5kQnEYbvy1s/4ZNx8dtlbveYDRJGioC5v540/GX/pD5odQZR5S2T9fS2vaVT8u43OPRXZ/rS9p8lRswPGD6IXDkj+CQr8H8X8GyBzPfw+72Ppiy59DamSfChO1h/Yu595pzYWYvSZIkSWpWz/8S7vnL2uw1Ybva7CNJUuMcDJzc6CaGaQN2yzEewNPAC8BSYBJwwLDaVuBTwJ4ppXdERM8I9ypJkiRJkiRJkiRJkiTVVEujGyjTv/W/BzALuCGltE2pi1NKrwOuIvN1J6AX+Hqtm5S0mVtyW+7xCdvXtY0xrbdIMBrA6qfLe5K9FH31v2algQ7ZHv8XWDBKcl6PvBDaJm463jEjd33X0kwIkCQpo3cDrFuYe272v+Uez6VewWitHbnHezfW5/qSNl/Vfh/dMRX2/DAcdREc/JVNQ9EGTD2o8D6r/lRdH5IkSZLUKGueq10oGsDkPL+vkiSp+XUBcxrdBJn7HK8D3glsExH7RsQpEfHuiDgjInYHDgfuGLburcAX69uqJEmSJEmSJEmSJEmSVL2mCkaLiPuAS8iEmgWZm3n+nFL6XEppb3J8PSml1pTSiSmlS4CbgGlZ678dEfPq1b+kzcDCqyF6c89NmFXfXsayUn+44pW7YO28EW1FY0jXsvpfsxbBaLW23SmVrdvmeJj1ptxz4/IEo/V15Q8AkqTNUc/a/HMLryx9n1KD0aYfUfqeubTkCUbrMxhN0gjrrdP30X1FQrl/vz/0ddenF0mSJEmqpQW/q91e42fCtq+r3X6SJDVON/AocCHwQeAwYDLw/gb21AV8F9glIk6NiF9HRM6/CIqIh4ATgF8Nm/qnlNLOI9ynJEmSJEmSJEmSJEmSVFNtjW6gAucDewOHkAk3m0rmqYZfBIb89HVK6SlgV6B9YKh/TQLuBj5dj4YlbSb6euG+8/LPb7F9/XoZ6/b7JNx+Z2m1y+6HSbuMaDtqEp3zC8+vXwTjt65PLwMKBeA0wgFfgAO/AE9/Gx7+x/LWzjot/9ykXfPPvXgN7Pnh8q4lSWNVscDMNXNg8u7F9yk1GG3vj5RWl0++YLQwJEjSCOtZV5/r9G4oXvPUN2B//4hRkiRJ0ii28EqY9yugD3Z8O0w/DB79ZG32Hr8tnHATtDTjrSeSpDJF//tRKaVditTOzD5JKR1L5n69YmYWLxkxPwN+EBGb/KFgSqW0PiI2AHtERMlPG4uI3pTS+cAxwI79wx3A2cDXat+iJEmSJEmSJEmSJEmSNDKa7u7UiFifUjoFuITMEw4HbrpKwDgGg88SmQC1/1uaNXcDcHZE9Narb0mbgVf+WDiEYoLBaDWz7QkweU9Y82zx2rveATufPfI9aXRb/xJce1DhmnULYdrB9elnQLEAnHra6+/hVV/MHO/6VzD7y9C1rLS1HdNh53fmn5+wHUw9EFY+sencikfLblWSxqxivy4svBL2/VjxfbpeKV4zYRbscGZpfeXT0p57vHdj7nFJqpXeOgWjbXcyLL27cM2T/wq7vAsm7lSfniRJkiSpHM/+EB740OD5C5fWbu8dzoRjL4fGhcVIkuovAb+qYM1tZdQP3N9XVxGxot7XLCYieoCSQ9Gy1q1PKf0E+HzW8OswGE2SJEmSJEmSJEmSJElNpKXRDVQiIpYCrwc+BSxl8GaoyHrPftFfswr4LHBaRKyuW8OSxr71L8PNxxeu6ZhWl1Y2C21bwIm3wc7nlFa/fvGItqMmMPen0L2qcM3tb4Ybj4XlD9elJQB61tbvWvlM2RsOvAAO/ebg2LgZ8Pp7YNbpxddv90Z4/Z2wxQ6F62YcmXt848rSe5Wksa7YrwsLryhhj3Xw6Kfzz0+YBTu+DU6+B9onldffcC0ducf7DEaTNMJ6N9TnOju9o3hN73p4+r9GvhdJkiRpLFnxGFx/FFw6DW54DSy+tdEdjU0RMPvfRmbvg/4djvmtoWiStPnJfmBpsVf2vXulrvEXltp5ZNi5T3OUJEmSJEmSJEmSJElSU2lrdAOViogAvpZS+g5wDpmgtGPI3MSTHfi2ArgbuB74eUQUSUWRpDJFH9xyYvG61i1GvpfNyRbbw9EXwy7vygRaFTL/Ytj7H/zhjM3ZsgdKq3vlj3DzCXDqEzBxx5HtKSITXjNS9vs0HPzvla+fsiccdyVcsTOse2HT+SMvhN3PL32/9im5x7vXVNafJI1FPZ2F51+5EzYsgfHb5J5fOxduOy3/+l3eDa/5ReX9DWcwmqRG6e2qz3W23Ad2OzcTtFzIgsvgkK/5e05JkiSpFOsWwQ1/kQkZBlh6T+bveU59Eibt0tDWxpw1z8K6BbXf99BvwT7/UPt9JUnNIoqX1GSNqtMz7DzPX+pIkiRJkiRJkiRJkiRJo1PTBqMNiIgNwE/6X6SUEjCNzM08yyKiu4HtSdocLLkdVv2peF3r+JHvZXM08ySYMAvWL8pf8/DHYMHlcNzV0DG1fr1p9Fj4u9Jru1dl6vf+yMj1A/0/9JXn/u9tjoONK2HlY5XtvddHqgtFy7bjW+Dpbw8da2mHHc4sb5+2ybnHe1ZX1pckjUU9a4vXXL4tnLkQtpg1ONa7Ae7+K1jw28Jrpx9eXX/DGYwmqVH66hSMBnDkRZnvz1++GeblCZfsnAcrH4dpB9WvL0mSJKlZzfvlYCjagJ5OmP3lzAM5VDul/FlTJWYcMTL7SpJGsxcw3KzZ7DHs/KWGdCFJkiRJkiRJkiRJkiRVaNQHo6WUDgJOBvYDtuofXgo8BdwYEY9k10dEAMvr2qSk8kXAK3dlwqzWLcw8HX59/+uw78D0QxrdYemWPVhaXUoj28fmqnU8HPkj+OPZhX/A45U/wqOfhlf/oPieq/4EL/4h84M5Wx8D27zWf3/Nrn0KdJcRwFVK2GG1etblnzvsv2DKPnDZ9MwPhJVr/09X3tcme30WltwJKx7OnKdWOOL7/H/27js8ivNe+/h3dlWQRG+miI7pxQ2DjSvYuANuiUuKE6cnTk+cN8mJneqT3k5OihM7iePesA1umGLjgjumY3rvIARqSLvz/jHmSEgzszO7M7O70v25Ll1in/pDoN3ZlZ57Ke7mb53Cjvbt9Yczq09EpDXxep//1pfgnCahn8t/nDoUDaB8enp1OYkV2rcnlU8uIiFLRBiMZsRg8E3Wx6m/h8d6gploOW7r4wpGExERERHx4uAS+/b1/4AJf4VYPNp6WjO75y6ZKu4O3SYFv66IiOQ00zQHZrsG8e2aZrffyEoVIiIiIiIiIiIiIiIiIiIiIiJpytlgNMMwTgF+C5zlMuwOwzBeAb5umqbHZCIRyRkLprV8R3iAI+vzKxhtybezXYH0uQQuXwXPnAR1+53HbboXJvyvdbDdyYZ/w+s3g9nQ2Db0M1YQlNs8yW0lff0Fo6UTRuZX0iXMIV4M8SIovwo23eN/7Xa90q+rxVo9YNorsPtFqNkGPc+FDs3fXNqDwg727QpGExFptPNZb+O2zbKChUv7WuFAa/7obV7ZoPRrsxMrsm9PHg12HxGR5tyupcNU3NW6Ht49v2XfnoWRlyMiIiIikpc23+/cd3gtdBoRXS2tXRg/6xjxDYXXiYiI5DjDMCYAk5s1P243VkREREREREREREREREREREQkV+VkMJphGDOA+4B2gNGkyzw2pEnbWcBLhmHcYJrmrIhKFJFMGYYVVHRkXcu+6u3R15Ou5T/NdgVyTGm5FV728oecxzQcgaot0H6gfX/tPlj88Zbt6/4GA26AE84NpNRImSZsvAe2PwmFHWHQR+GE87NdVfSaBt150XAknDqacg1Ga2d9nvAnOLofdjztb23DSD3Gj3g76HNRZmsUOASjNSgYTUTk/2z8t/exs8qtYDI/IWRBPz4oGE1EsiWRpWA0gL6X2wejVa6KvhYRERERkXxTtcW9v3aXgtGCFPTPOnqeByO+HuyaIiIiEijDMAqBvzZrXmSa5hsB79MT6OFz2pAgaxARERERERERERERERERERGR1i3ngtEMwxgB3I8VigbHh6HZhaTxwdj7DMM41TRNnUIUyRelDsFoNXkSjLbhX7D0+9muQprqOz31mMrVzsFoj7n8zubO5/IzGO2978HKOxpvb/w3TH4Q+l+dvZqyoaHK5/iQg9FM0z3MIVZsfS7sAOfNgdq9VpDavtfh5Wvc1x5wQ3B1BqnQIRitXsFoIiIAVO/wP8dPAFn5TP/rp6JgNBHJFreQ4WM6DAtn787j7Ntr90DdASjuGs6+IiIiIiL5rmYnzD3bfUzdvmhqaSv8/mzETdcJcMGC4NYTERGRsPwSOLnJ7XrgyyHs8wXgthDWFREREREREREREREREREREREBIJbtAmz8BSvozPzgwwAagNeAh4CHP/hzPY1BaeYHc5q/26GI5LLScvv26jwIRtu9EBbflO0qpLl4MczY7D7m0Ar79n0p3hy3bm96NWXT0QpY/Zvj28wErPhJdurJpoZqf+N3vQCvfgzqK4OtY92dMGc0PNIVXrzceVy8+Pjb7XpY95ll/VPv0fuizGoMi1MwWrIOEgrQERGheku46/f/UPBrxgrt25P1we8lItKUW8jwMeN/Fs7eHUc49x1aGc6eIiIiIiKtwfq7Ur/+4fQzHElPUG8CU9QVLlgYzFoiIiISGsMwPgl8pVnz7aZpLslGPSIiIiIiIiIiIiIiIiIiIiIimcipYDTDMMYA59AYiAbwa6CXaZqTTdO8zjTND5umORnohfUOh01NNgxjXHQVi0hGSvrat9fkeDDaoVUw7/xsVyFOyvpDpzHO/bvm2bdvech93aMV6deULTuft0Knmju4BOoPR19PNiWq/M/ZdA8svCy4Gjb+B974jBWWUF8BRzY4j40V27e7hTAAdBwJA65Lv8YwFXZ07tu7KLo6RERyVc2OcNfvd1Xwa8aK7NuTCrwUkZDZPc9pqsdk6HNJOHuX9IECh9Dfnc+Fs6eIiIiISGtw4O3UY5bdDqYZeiltRn1AwWgXvgIFpcGsJSIiIqEwDONirDekbWo2cEcWyhERERERERERERERERERERERyVhOBaMBV3/w2cAKR/uyaZrfMk3zYPOBpmlWmKZ5K/DFJuMBQjjtLSKhKHUIRqvaHG0dfphJmDMq21VIKm7BH7vnQ0OzkCzThG2z3Nesz8NgtEPLnfvCDl/JJcl66yMde1+GtX8Npo71//A+1ikYrdAhgOGYS96BuENITbY5hUcArP97dHWIiOSq6hDDgftOh7jDY0smFIwmItniFox28q/gvGfCO7RvGND9DPu+VM8rRURERETasm2Pexu358Vw62grTBPe+Wrm63QeC51SvGmLiIiIZJVhGJOBR4HCJs0vAx82zdBSZ/8XGOPzY0ZItYiIiIiIiIiIiIiIiIiIiIhIK5RrwWgTPvhsAotN0/xTqgmmaf4FeAUrHA3g9JBqE5Gglfa3b6/aBDW7Ii3Fs5euzHYF4sXwr4Dh8BCXrINdLxzfdmgFHFnvvubRFhmduc/t91sPvBNdHdnWPAjPrzc/B/WHM69jz0Jv44wCiMWd+/tcZt9+0n9DvJ3vsiJT0su5b9/i6OoQEclVNSEGo/WaGs66TsFoiZpw9hMROSbhEMA4+CYY+Y3UgcKZKnc4v3doORxeF+7eIiIiIiL5ql1Pb+O2PRFuHW3FlocyXyNeAhP+kvk6IiIiEhrDME4F5gBN3yniDeAy0zSrw9rXNM09pmmu8PMBpPjFHBERERERERERERERERERERGRRrkWjDayyZ//5WPev5v8WW9XLJIvuk1w7tu7KLo6vHrzi7D9yWxXIV4Ud4VrXYKs9r12/O09L6Ve88DbkExkVlfUjh5w7nv1BtjxXHS1ZFNDAL/rOzvDyws/b8IcL3bvH/zxlm1GHAbc4K+mqBWUOfdVbYL1d0dWiohITqreYd/u9dCwEyMO/T+U2RpOYoX27TU7INkQzp4iImAFXtuJpbiWDkr5dOc+hTiIiIiIiNjrPM7buM0P+HtNXextfTz1mME3WW825GT6BuhxZmAliYiISLAMwxgHPA90atL8LnCRaZqV2alKRERERERERERERERERERERCQYuRaM1rnJn9/xMe/YWKPZGiKSy0r7Qvsh9n07no62llTW/A+s/d/U44bdYt9+yu+CrUdSKyiFftfY99XtP/521WZva27PswPuO59173/jM5CojaaWbGqoynyNmh1w8L305/v5OqcKc+h3DYy9HYwC63ZhJzj7USjrl3Z5kRnzX859b34e6l0CDUVEWru6vfbtncamv2ZRFzh3NpT0Sn8NN7Ei575ts8LZU0TapqrN8M434MUZsPIXUH/IflxUwWil5dDVIez93W9GU4OIiIiISL4xPb75TO0uOLQi3Fragj0LUo8Zcxuc+AX7vs7jw3tNSURERDJmGMYo4AWga5Pm5cA00zQrslOViIiIiIiIiIiIiIiIiIiIiEhwci0Yrem7F+53HNXSwSZ/7hBQLSIShZ7n2rdvvAcOrYq2FidbHoa3HQLPmjrxC9ZHQdnx7UVdod9V4dQm7oo62bc3D8qq2eFtvc0PZFZPlPYthiMb3MdUb4Fd86KpJ5sS1cGss+k/6c91Cm6wE08R5mAYMPY2uLYCLl0GV++D8hnp1xal0v7Ofck62PZkdLWIiOSaun327Z1G+V9r7A9hxma4ajf0uTizuty4BqPpPl1EAnJ4PTw7AVb/BrY/CUtuhZ3P2Y9NdS0dpH4znfvW/CG6OkRERERE8oXXYDSwrv0lM7V73Pv7XAbtB0LHYXDClJb9J342lLJEREQkc4ZhDAfmAT2aNK8GLjBN0+EHTiIiIiIiIiIiIiIiIiIiIiIi+SXXgtGa1uPjN6OPG5trfycRcdN7mn27mYBN90Vbi51EHbz8IW9jT/kNdBoBU16AE6ZCcTfofRFMXQBl/cKtU+zFy+zbN98PidrG2zuf9bbeloczrykqS2/zNm777HDryAWJmmDWWfUreOFcOPC2/7l+gtFi7byNKyiDzmMgVuC/nmwp7Ojev2NONHWIiOQip2C0zmOg/VB/a5WWQ1l/iBVmXpcbt2C0TfeEu7eItB1rfg91e72NjUUYjFbuEoy29DYwzehqERERERHJB76C0drAzy7CVuDyfnKFneCsJj/zOucJGHIzlPSBzmPhtD/BiZ8Pv0YRERHxzTCMocB8oFeT5rXAFNM0d2enKhERERERERERERERERERERGR4OVRkoaItErlM6G4h/0h5/1vRF9Pc2/dknqMUQDnzIL4Bwewu0+CqS+EW5d4U+AQjAbw2sfhrAehdp9zEImdZEPuB1GZJux/3dvYw++HW0suaBqC19zMrTDLR3Dhnpfg2dOsA0MdhkGn0RCLp55X6zHIARrvS1qjQpeDWCIibZ3T9UhxDxj3Q3j1I4DHkB23a6AguQWjiYgE5f0/eh8b5bV0x5FQNhCqNrXsq6+Amh1Q2je6ekREREREcl2ywfvY/W+AmQRD74mWNrfA/JlboaCk8XZhe5j49/BrEhERkYwYhjEIKxStT5PmDVihaDuzU5WIiIiIiIiIiIiIiIiIiIiISDj0m8Qikl3xYuh7mX1f8mi0tTR39CCsv9N9TL+r4eI3nf8Okl1uoSBbH4GanbD2T/7WPLIhs5qiULsb6g95G7t7PiQT4daTbYka+/ZYMZSWQ8fh/td8+Vp4ZjzMKoe9r7mP3XgPvHC297VjrTgYrUDBaCIithK10HDEvq+4Gwy8AabMhUEfs9pSHQqOLBjN5YCtiEgQ/AQnQLTX0oZhvSbgpC2EUIuIiIiI+GH6+FmEmYBVvwqvltbONKG+0r7vzPv1JiYiIiJ5yDCM/lihaE3f+W0zVijatuxUJSIiIiIiIiIiIiIiIiIiIiISHgWjiUj2lQ106EhGWUVL2+e490/6F5z9CHQ5KZp6xD+3UBAzCQfehTW/97dm7Z7MaopC5Sp/49f+OZw6ckWi1r493s76PPFuiJc2tvsJ76rdBS9eDg0O4WsVy+C1j3lfD6zAyNYq5WErI5IyRERyTt1+577i7tbnXlPhjH/BDSZcn4Bzn3KeU9A+2PqcOIWPiogEpWKpv/FRX0uP+5Fz37wpsPVxSGQ59D0f1eyG9f+A9XfB6t/Cxnvh8LpsVyUiIiIimfITjAaw5FZdB4IVcLblYVh6O7z9det5Rv1h9znJOjAdgqbL+tm3i4iISM4yDKMPMA8Y2KR5O1Yo2uasFCUiIiIiIiIiIiIiIiIiIiIiErKCbBdgw/zg8yTDMAZ6nNOr6Q3DMM7GR7KGaZoveR0rImFwyGjck+VvzT0LnfsKOsBgn2FHEj23YDSAd74KRw/6W7PhSPr1RMXvQaGtD8PwL4VTSy5wCm05FozW4wyYsQm2zYJYEfS+CJ6bCNVbvK1/9ADsfAb6XdWyb8vD/uuNteFgtM33weR7o6lFRCSX1O1z7jsWjNaCS855ZI8lLk+7DeWwi0iGDq2GZ0/1Nyfqa+mCUuh2Oux/w75/0VXQ9TSYMheKOkdbW77a+yosuKjlc+94iRUQ2v/a7NQlIiIiIpnzG4wGsOleGHtb8LXki6rNMG8qHFnf2Lbmt9BpFJw7G9oPcpjn8vONwo7B1igiIiK+GIZhNms63zTNhS7je2KFog1t0rzzg3kbgq9QRERERERERERERERERERERCQ35GIwGlinq+/PYO5CH+NNcvfrINI2xOLOfQffgy7jo6vlGNOE9f9w7h/00ehqkfSlCkY7vNb/mg2H06slSvWV/sZnO4QwbIla+/Z4SeOf2/WAoZ9uvN3zHNj0H+97LLoaupwEB5ekV+NxdbXLfI1cVZAiGA2gaiuU9Qu/FhGRXNJQ5dyXzmFVw3NOeGa6T3LuM5NQ+T50HBZNLdK6HdlgPT/b/6Z1kL5sIAy4DnpfmO3KJExL/8v/nE6jg68jla6nOgejARx4Cx7pAsNugZHfhLL+0dWWj16/2T6QPFEDb34e+s6AeFFj+5GNsOrXUF8BJ5wPg25yf50pSGYS1t0Ju+dDSW8YcjN0HhvN3iIiIiL5KJ1gtD2Lgq8jnyz57vGhaMccWgnLfwKTHH6WufLnzmt6eZ1eRESkjTIMoxz73yPs1ex2gcsbvh4xTdPlHXF81dMZmAuMaNJcBdwM1Pt401kATNPcFERdIiIiIiIiIiIiIiIiIiIiIiJRyNVAMBMr4MzvnGMiOgUuIoFINjj3bX0sO8FoS2517x/2xWjqkMykCkZz0uVkqNsP1Vta9tXnQTBasi7bFeQWx2A0lwCy4V/2F4wGwYSiAcdf0rQyXsJ9nugP19VDLFcvU0VEQuD0WAUQK7Zvb9fDeU5h58zq8aowxUHauWfC1IXQeUwk5UgrVbkWXjgHancd377hbph0Fwy+KStlSci9gnImAAAgAElEQVQStbDtcX9zOo1yD2wMy5BPwbq/pQ55eP+PVsDfpe9Bh6HR1JZvqrdD5Wrn/rr9sPdl6DXFun1oFTxzcuNz4E33wu6FcOY9oZcKwOJPwMZ/N95efxdMeQG6nx7N/iIiIiL5xumauXwmbJtl37d7HtQfgcL24dWVy3Y+49y3/Unnvg13OfelE8IvIiLSdrwMDPAwri+w0aHvX8BNAdVzEjCuWVsZ8HSa6+l3KkVEREREREREREREREREREQkb8SyXYAL0+dHOnNFJBeYSee+Qyuiq+OYimWw6pfO/ePvsA5cS+5LNxit/4ecgz7yIRjNLVzFSUN18HXkikSNfXu8xHlOtwkwZV449aRS2Ck7+0Yh7hDu09zeV8KtQ0Qk17iFeBoOZ1S6nALterZsL+0PHYcHV1sqZ97n3Fe3H9b8IbpapHVa+78tQ9EAMGHpDyCZIoxK/Nn7Ksy7AGb1h/kXQuX72amjck3qoLFjjALofy1MXZCdcN2up8CEv3gbm6iGp06E+wvgiYHw7rchWR9qeXmlelvqMUfWwXvfh/sMmDOqZTD4pv9YffOmBBhebePQquND0QAaDru/niQiIiLS1jld4/e+GPpd4zxv0VXh1JPrErVw9KBzf90+++fEqZ4npwq6FxERERERERERERERERERERERERERyQFZOC3oagsKLBNpe0r7OPfV7IyuDgDThKebv9lqM4M/EU0tEoA08z+HfQm2zbLvaziSfjlRSdSlHtNc3T4o6B98LbnALWzGTa8pcIMJtfvgsR7B1+WkqHN0e2VD/w/Blofcx2y6B044N5p6RERyQdLhsSrm8lgVi8OYH8BbXzq+fewPnMPUwlDUxb1//Z0w8W/R1CKtk1tgavVWOLIeOg6Lrp7WrGoLLLio8TlP9VZ49jSYvh7aRXg9DLBvceoxZz0C/a+2nsdHeb9nZ+inoL4C3v2Wt/FmAqo2WyFa1Vth8v3h1pcv3ILzj3njs97W2r0A5p4Fl62Csn6Z1WVn07327VsfgcRRiBcFv6eISNSObICa3VDSC8oGZv/xVkTyX7LBvt2Iw+jvWtdSdnbNtUJvu5wUXm25qG5/6jENlS1fm6na5D4nVph2SSIiIiIiIiIiIiIiIiIiIiIiIiIiIlHJqWA00zQHZrsGEcmCXhc490UdQrVrrnt/9zOg5IRoapHMJev9zzlhKhS2h8IO9v0NhzOrKQrJNIPRylprMFqNfXu8xNv8dt2hx2T3UI4gnTA1mn2yZeS3Ugejrf8HjL8j+gAOEZFsSTfEc9gXobQfbHnECkrrdy30vTT4+twUlEa7n7Q9Ttdyx1SuVjBaUJb/pOVz8IbDsOk/MOJr0dRgJq1wsdW/cR939uPQb6b151wJaRn5Teg8HhZM8zdv8wNQ0AFO/wsYaYZ7txZBvwbUUAUb7oKxtwW7LsDWR537HiqF0++EIQrWF5E8VbML5p4NR9Y1tpUNhClzocPQrJUlIq2AmbBvjxVAl/Huc9f+xbpmbku8BKMdPdQyGK1ytfP4XhdmVpOIiEgrF8XvLpqm6fkFTdM0FwI58gKoiIiIiIiIiIiIiIiIiIiIiEi02vhpOxHJCe0HQ8eR9n01O6KtZeN/3PtP+V00dUgwup6K798R7THZ+lzgEIxWnwfBaIk0gtG2zwHTDL6WXJBu2ExTp/wWirsHUw9AcTe45gAM/Ojx7f2vhf7XBLdPLup2Goz+bupxb381/FpERHJFJo9V5dPhzH/DpLujD0UDiHsIRks2hF+HtF7Jo+79bge+xbtkAtbfad934O3o6lh3Z+pQtFP/0BiKlmt6XwhXrEs9rrn1d8KSW4OvJ980VAW/pluAWSbcXhswE/D6J+HlD8O2J9N7ji4ikk2vXHd8KBpA1SZ46kRYcAm8ciOs+Bls+CfU7MxGhSKSr5yC0Yy4FRJ8+l+d5+5/M5yaclndvtRj6g+1bKva7Dy+rYXLiYiIiIiIiIiIiIiIiIiIiIiIiIhI3lIwmojkhtP+YN9ety+6A6TV22DTPc79Az8C3U+PphYJRrvu0OMsf3MG3mh9LszjYLSkQ7iKm2U/gLe+CGYy+HqyzTFspsT7Gt0mwKXLrNCZCX/OvKaZ26GoC5zxT5i6EE7+NUydD2feB7HCzNfPdeN/Ct0muY/Z8gDU7o2mHhGRbAvisSpbCjwEox09GH4d0nolUzwfVDBaMA6/79y36d7o6th8n3t//2th+C3R1JKuDkPgqjSuY1f9yvpoy8IIRqtYBttnB7+ul1q3PAQvzYC5k6HuQPA1iIiEoe4A7HnRuX/ns9bj9Xvfg8WfgNmjYLfLeBGRptyC0QCGfsZ57uE1rffNXZx4CUY7WtGyrWa7/djOY603qxIREREREREREREREREREREREREREckDCkYTkdxQ0se5r3ZXNDW8+QX3/vKZ0dQhwZr8AJQN8Db2jHug4zDrzwXt7cdsugcWXg6vfwpeuQGenQD3GfDC+fD+nyDZEEzdmUg3THDtn2H3wkBLyQmJGvv2eDt/65T0gsE3wYmfg37XpF/PkE9DvNj6sxGDE86FkV+HE86HWEH66+abY99rTsxkOAEGIiK5yDEYzedjVTbEPQSjeTnIK+IkedS9f8PdUBPRc8bWrGaHc19pv+jq2POSe/+A66OpI1PtusM1FVA+w9+8d78Fc8bAyl9Ag8PzmNas4Ug46y6+Kfivp59A8gNvw4qfBbu/iEhYanb6G19fAW98GpIOYUciIk2lCkYDOOsR+zENVdYbHLUlXl5Pafoz1K2zYPEnna89O44Kpi4REREREREREREREREREREREREREZEIKBhNRHKDWzBaze5oajjwlnNfURf/B5olN5T2gekbU4+7fDUM+kjj7cIOzmN3zIH1/4DN9zf+v9mzEN76Eiy6Ckwzo5IzlkwzGA1g+1PB1ZErwgibOfHzgOF/nlEAI7+Z/r6tSddTU4/Z92r4dYiI5AKncJV8CEYr8BCMtuOZ8OuQ1itVMBrA02Ogcm34tbRmRw8499UfiqaGnc+nHtNpdPh1BKWoE5z9OMzcBuc/B+c/D6XlqecdWgFLboV550PCw///1qShKpx16/bD7nnBrddQ7fw808mme6zwZxGRXGfW+59zeC3sfz34WkSk9fESjNZrqvP8vYuCrSfXHVqeeswr11lvlrPiDlh0pRUe7qS0b3C1iYiIiIiIiIiIiIiIiIiIiIiIiIiIhEzBaCKSGwo7OvclQjoY21QyAbUuAWyXLoVYQfh1SDgMA3qe69zfbSJ0HH58W3HP9Pba/hTsmpve3KA4HdAe8fXUc9f8LthacsGWh+zb4yXpr9lrCpz9KLQfat8/6ONw9mPQ5SQwYtbBri6nwJQXoOOw9PdtTfpdlXpM5Zrw6xARyQVhhHhGpahb6jFLvx9+HdJ6eQmGqtsPq38Tfi2tWd1+5776Sqg/En4Ni1JcH5b0hvZDwq8jSIZhhQ/0nga9L4STfu597v7XYdkPGm8nG2D17+Cp4fDkEFj6g/CCxLIlzL9PkCGddfv8z6ndAweXBFeDiEhYkmkEowHMnQwPlsAzJ8OmB4KtSaQ1OloBi2+Gx8vhuYmw8V5/87c8as17sBQeaAcPd4b5F0KFhyCtbPISjFbUGcoG2Y979Uao3Rt8Xblqx7Pexr3xWXjvu6nHlSgYTURERERERERERERERERERERERERE8odSfkQkNxgxK6QoUdOyr6E6/P3rK8BM2vdN/DuUlodfg4Rr1Hdg36stD/cZMTjtjy3Hl2ZwQOSdr8FlK9Kfn6lEnX17rBj6ToftT7rPP7weOgQcONBQBZWrrQNOnUZDrDD1HNOEqs0QK4K6Pdbfy4hDxxFQ2N7bvrsXgNlg31fgcQ0n/a60Pkzzg3o/uA8xYlYAwrExyQbAgFjcdpk2y8v9auXq8OsQEckFTsFosTwIRvPy+FbYIbz9kwk4sg7KBkK8OLx98k3VFuvrXtQl25VkLulwbdvcTo8HxsWeWzAaWEFQXq/B01H5fupQrGG35P81df9rYcUdcMhjYMXKn8Pwr0BBB1h8E2x9tLFv+Y+tsK3T/xJKqVnREGIAX5ChZOkEowEcWgVdTwmuDhGRMCQ9hNI6SdRa97evXm+FPPebGVxdIq2JacLCS2Hfa9btmu3w2kes174HXpd6/rYn4eVrjm9L1sGuF6yQwivWQrs03/glbE6v1RvNrvP7Xgbv/4/92HnnwSVL8/+5QSrJBqja6G3sxn95G6efdYqIiIiIiIiIiIiIiIiIiIiIiIiISB6JZbsAEZH/U1Bq357qcHQQ3A619poW/v4Svj4Xw9QFMOTmxrZBH4dLlkC3CS3Hl2QQjHZoJay/O/35mXIKj4i38xZMsum+4GoxTVj2I3i4Ezx7GjxzMjzSBTakOKhzeD08PQ6eHASz+lrznp8Ez02ARzrBe99zDjM8JlEL86Y493ce5//vY8cwrI9Y3Po4Fop2TKyg9R/SStcpv3Pvr9sLdQeiqUVEJJucgtHieRCMBlbAsZuwgo63z4bHesDsEfBIV1j163D2ySdVm+Hpk+CJAfBIN1h0DTTYhE/nC9P0Hs5RtSm//67ZlioYLRFyYPnO5937O46EEd8It4YoxArhotdhzH95n/N4H3i4w/GhaMes+ysc2RBcfdkW5us/h9cEt1aq7xcnr30EEhkEDomIRKH5m0qka9GVUB9i4KVIPju0vDEUram1/5t67rYn4KUZzv31lbDG5o1gcoWZsG83mr2XW7lLsOKhlbBjTnA15SqnELlMdDst+DVFRERERERERERERERERERERERERERCUpB6iIhIROKlgM3h0rAPYIN7MFpxt/D3l2j0mGx9TPx76rGl5Znt9fonYdfz0OFEqN4KBe1h0Meg62ktg7OClnAKRiuGAg/BaLueh7E+Durbqa+0wg1W/Qr2v358X0MVLL4JijpDuc0hLtOEl2ZaB8TsmElY8TOoWA5nP2YfOnb0oBXE5sQogD6XeP7rSEi8fC9UroEeZ4Rfi4hINuV7MNqoW2HZ7c79DVXW43uQ10BHNlrXC8cOVSeq4d1vQodhUH5FcPvkE9OEhZc3uYYyrSCldj1hgocD9rnI70Hwg0t03ZCuoymCnsIKrDJN2D0flnzbfdzZj0G8KJwaolZQCuN+BKO+Aw+VZb7egovh7Eeh89jM18q2hMP/s4Efsf4Pbnu8Zd+wL0O3063nmG73GXX7Ye9rwdxHuL2GlMrKn2f+fFtEJExuobSxQn/BaQ93gEl3Q68LMn+tVaQ12XiPffveRdbnhmrYvQCqt4ERs15rNxNQtQXW/in1+it+Ah2GQlEX6D0tt15bcAxGa/Yaf89zoLAz1FfYj3/rFqjZCV1OtsK+jFb4XnDJgIPROo2B9oODXVNERERERERERERERERERERERERERCRErfC3hEUkbxWU2rc3RBCMtvcV+/Z4iXNd0rqV9Ml8jc0PwPIfw4Z/wvv/A8+dDm98FpIOh3+CknQIV4kVQ2HH1PP3vgzb56S//+F18PRJ8PK1LUPRmnppJmx9rGX7wXecQ9Ga2v4kzCq3Drg3VbEMnhoORzY4z+15thXMJtnldBCuqcNrwq9DRCTb8j0YbeCNKQaYzn/HdG191P5xZJvNtUVbcXit/TXUlkes8Kl85BT462TumVC1OZxaWrtUQU9hPC9vqIYXr4D5F0Cixnnc+J9BpxHB759tBaXBBLEfXgtPj4cVd2S+VrY5BfAVlMGQT7ZsjxXDsC/CoBvh0qVwyu/gpP92Xn/umbD2r5nXmUkw2sZ/Zb6/iEiYnILP4iVw2Uo49Q/+1lv8CZg9ErY/nXltIq2F27XEkU3w/CR48XJ483PwxmesEPAlt3oLRTtm8U3w0gzrZxJHNmVYcICcXg9u/uYnsUIY+hnndaq3WF+f5yda9zNBh4jlAr9B4amM+Fqw64mIiIiIiIiIiIiIiIiIiIiIiIiIiIRMwWgikjviDgFkiQiC0Zbcat9e3D38vSU3xYuCOaTe3Po7Yeczwa/blFOARLwYDI8P/S9/CKq2+tt36yxYfDM8dSJUbfQ2Z9HVUF95fNuOZ73vWbsLFl5+fNsbn4O6ve7zJj/ofQ8Jj5cDa5Wrw69DRCTbnEJN8yUYrcNQOOMe9zFOYTfpevdb9u0b/hnsPvlky8P27XV7gw+mi0ryqP85Cy4Jvo624Mh69/5558GCi+HQysz2aaiGlb+E+wx4qAx2eAhkHvGNzPbMZT3OCWghE5Z+Hyo8BEznMseg0BLocymMvR2MD0IzirrC6X+BjsOs251GwoivwMhvQ0F75z3e/Bwsvd3//WLVVlj2Q3j1I7D61/7mNnVkffCPiSIiQXIKRosVWtf9w2+BGVug6wTvazYcgRcvgwaXIFSRtsTtzUve/or1xh9BqVgGK34S3HqZME0wk/Z9Rrxl25jve1t3479h2xPp15WrnO6P0zX4pmDXExERERERERERERERERERERERERERCZmC0UQkdxSU2bc3hByM5ra+gtHatqIQgtEA1v0tnHWPSToEo8XaQf1hb2skqp0DR+ws+zEsuhI23OV9zjGP9z3+9lKPB56O2b+4MUztaAXse819/Cm/hXY9/O0h4Sjrn3rMkQ3h1yEikm1O4SyxPAlGAxj0Ebh0qXN/QiEwWZWvITzpBKNVrmqdh+LDlGyAwymC0QB2PgdzRsPuF9PbJ1EL8y+EJd/2Pue8Z6zQ6tZq+C3BrWUmYWOKkMpclyrke+xtcOUOuOQ9mLHRPtzBMKDjcPd9lv8QXrzCe9jEkY0w90xYdjtsuheqNnub56Ty/czmi4iEyen6K1bY+OeyfnDRYrhspfVYPejj3tZ+fmLm9Ym0BoWdnPu2Pxn8fpvudw4ki5JbDXbBaIUd4FqPP8/Y8XR6NeUy08Obinh1yRLvb5ojIiIiIiIiIiIiIiIiIiIiIiIiIiKSI/QbsCKSO+Kl9u2JkIPRKtc497UfEu7ekttiBeGsu/0peOOz3kPKjknUwrvfhgdL4D7D+nhxOhx4p+U4O/FiaPCx55YHoWZ36nH1lbDip97Xba7hCDzaEyrXetvPzsJLrINVdfsB033s8K+kt4cEr89lEEsRdHH0YDS1iIhEYetj8PxkmDUAXvs41B2w2hM19uPjeRSMBlDsEjxasSK6Otoqu4Pkx7z1Je8BQLkknWA0gDc+F2wdrV3VJn+H7t/5Wnr7bJ8N+171Pj5WCN0mpLdXvjjhfDjnCSvIK9V1sRerfpEboRfpcgz5Lm78c7ue0GUcFHZ0XqfDsNR77XoBHiiCF86HJd+BuWfB7JHwyo1Qu/f4se//Caq3pV7Tq8rVwa0lIhI0p2vG5o9TRgw6jYQ+F8Oku72tXbEs83BJkdbA7TomDIlquD9u/TzhqeEwfxrsez3aGgDMhHOf0/PZwvbQeVzqtTfcBfVH0qsrVyUDDEbrMj64tURERERERERERERERERERERERERERCKiYDQRyR0FDsFoDSEHo70007lv7A/C3VvarnV/gxcvB9MlxKuhCmp2QaLOChOZMxpW/fL44LPtT8H8C44PFEu4HCbvc5m/Or0EF+xb7HyA3au6vTB7GGx/Mv013v5K6uC3S5eDYaS/hwSrsD2MSBGscbQimlpERMK27SlYdI312Fq9BTb+G+adbwXYNA9gOSZeEm2NmSooc+578TL/obDij1sw2pYHYfHN0dUSFKfrWoBupzv31e6CyveDr6e1qtnhb/zBd/1/fU0T1v7F35yBN0JxN39z8lH5dLh8NVxXBx+uzTwg7dUbg6krG5zCEP1+TToO9z52z0JY+XPY+4oVWLb5Ppg7GZJNgjtW/9rf/qnUbA92PRGRIDndFxuFznMMA6avh4IOqdd/73vW65xBBv6IiHeH34ddc2H+1OiDCt3CmA2XN6mZ4PF5xCvX+asn1/kJr3bT5/Jg1hEREREREREREREREREREREREREREYmYgtFEJHfEHYLREiEGozXUWMEUdow4dB4b3t4ie16CimX2fWv+CLP6w+O94cF28PQYOLLBfuzRg7DiZ423nULK4u2g9zT3Q0bNpQpJ2PsKLLjI+3qpvPGZ9Oeu+yvU7XPuv2QJdB6d/voSjvF3wMS7nPsVjCYircXaPwHNAlErlsKuF+DwGvs57QeGXVWwnK7nj9l8fzR1tFVuwWhgff2dQvhylVMwB8DZj7vP3fFMsLW0Zsl6/3N2Pu997KGV8FhP2D3P3x4n/cLf+NYgXgxX7XIf0/0M6Hqqc/+Wh8MPmA+LUxhivNjfOt0mZlbH4bWZhXan0lAT3toiIpkyHa4LUoVUth8Ml7wLQz7tPm7TvdbrnI92g033pVejSL5L5/r7mLKBx//cqvsZ6a3TUAXLbk+/jnSYCec+t+ezPTz+HXfMgQPv+KsplwUVIHni54JZR0REREREREREREREREREREREREREJGIKRhOR3FHgEKQQ5oHeytXOfX31LuoSgbdvafw/3lBjBQwsuhre/jIcPeB9nff/AKYJdQcg4XDIuqA9FHWG0/7gfd3qrdbn+iNWuMTGe6Dmg4P6Rytg/jTva2Wq9yXW38FJsh62PWXfFyuGLuPDqUsyYxgw5BNwpsNh2PpD0dYjIhKGhirY+Zx934KLIFFr39dxZHg1hSEWt4JYnWz4Z2SltEmG4d5vNsDWR6KpJShuwWgFpXC1SyjuoeXB19NapRPM8O43YOfc4++/qrbAhn/Bqt/Ae/8FS38Ai66FOaPdA4ztDP4ktOvhv67WoKgLTN8Ipf2bNBpw8q/hBhOmvQoXvwXdJtnPNxOwe0EkpQbO6Xs+VRhPcyec7/7c0Yt9r0HFcnj32+nNL+7m3Of0nF1EJBc4XRfEClPP7TAEJv4Nrk+mHltfCa/eCK9/yrp2WPtXqFjhr1aRfJVuMFpxd5i+AS5dal0X3mDCBS9CvCS99Tb8M7jwLS/SDUYD6HWBtz1W3OG9nlxnBvBv0/9a6H1x5uuIiIiIiIiIiIiIiIiIiIiIiIiIiIhkQUG2CxAR+T9xh2C0RIjBaIffd+4bdFN4+0p+KBsEh1aGu8eel+C502HS3dZBwIql6a/1/p+sQBInHYZan0/8PHQ/A1b+EjY7hFEds/LnMOB6eOW6xiDBWBGc/TjU7fX+/dn7Ihj6OTi8BpZ8x9ucpkp6w/lPW8ELz57q/O+y/Un79sIO/veUaBV1tm+vr7BC/1KFvYiI5KojG2G+xwO8zXUcEWwtUYiXOAe97XstmD0aFChjyy1E7JgjG8KvI0huf6dYkRWONuRTsP7vLfvdQrDleOkEMySPwoJp0HUCnDcbdr0Ar308mMP7RgyGfSnzdfJZ+4Fw6RLY+pgVSN3zHOg24fgxJ34e9i+2n//i5XB9wvpa5pNknX17rNjfOvFi6+uz6pfp17Lql5nNv/hd67lr3d6WfQpGE5FcFkRIpWFYwU1Pj0s9dv0/mk6E8T+B0d/1vpdIPjLTDEYbcEPL10hjhdbr9xvuSm/Nfa9Bz7PTm+tXJsFoA2+0nnOksvURWPVrGPkNf7XlonSeW53yWyjqar3hTZeToc8lel1dRERERERERERERERERERERERERETyVp6djhORVq3AIRitIcxgtLXOfeXTw9tX8kNUh/EPrbDC0TIJRQN4+xZ48wv2fQUdoKRP4+0uJ8G4H3lb95mTjg+WSB6FV2+AQ8u91zbx79BvJoy6Fdr18j7vmP7XWZ/j7eCS95zHVW2yby/s6H9PiVahQzBasl7BASKS3+ZNSS+MqmwQFLYPvp6wHT3o3m+ame/RcCTzNVojL4FxtTYBPbnMKSQJGoOSup5i37/3Zag7APWHYdWv4OUPwRufg13zYevjsPhmeOUGWPsXSLjs0xZkEmZ24E1477uw+BPBhKIBnPJ76HpyMGvls6IuMORmK9SheSgawKCPuM/f8nA4dYXJ6Xsx7jMYDWDsbZnVkq54KZz1EJT1g57n2o9J9VgpIpJNToGpsUJ/63QaA+2H+tzchPe+DwczfI1UJNelE0zc+yIY/2P7vpN/kX4tL5wDb38VDryT/hpeZRSM9lHvP69595tQ4eNnF7kqmcbzqxFfhcEfgzHfg76XKhRNRERERERERERERERERERERERERETymoLRRCR3FJTZtzdUhbfn3pft28tngqG7yDbvhClQNiDbVQSj44iWh2Ccvue8qD8EWx/zNrbTKCgtb7w9/qf+9yvp3fjnWAGM/La/+QUd/O8p0SpyCEYDeCuikEIRkaBtvNc5tDOVPpcEWkpkOpzo3h9EGEyi1r0/ncPDrUEyxdcFoHZP+HUEKXnUvt2IQeyDg/MdRzjPf7QbzBkF737LCola91eYPxUWXQUb7oLN98Obn4cXp0PCYa+2IJ1ghqbW/8P538qvS5fDcF37eWLE4Mz7nPvX3xVdLUFx+n8UK/K/VkEZnPY/mdXjV69pcOUO6H+tdTteYj9u478UyCgiucvxvthnMJphwOjvpFGAad1PirRmfq+/p6+H855xfvOP4m4w+nvp17Pm9/D8JNjxTPpreJFJMFosDqf9ES72GOD29Fgwk95ry0V+g6ebvjGOiIiIiIiIiIiIiIiIiIiIiIiIiIhIK6DUHxHJHfFS+/ZEdTj7NVTB7vn2fZ3HhbOn5Jd4EVzwknW4Od/1PKdlW7sToP2Q9Nc8ssHbuH7XHn+79zT/wYM9zjr+dmlff/MLFYyW89yC0TbcHUyQjohI1N79evpzB3w4uDqi1ONs9/66fZnvkahx72+rQQoNKb4uAHV7w68jSE5hZU1DkjqPAwz7cQDV21Lvs+t55+eGbUGmwWhBOWEKdB6d7SryS5+Lnfv2LICjh6KrJQhJh7CwWHF660UdMtp9IhR1arxd4BCMBrBrXvj1iIikw+m6IJ2QysGfhFN+AyU+X8db/Ru4z0BjXxoAACAASURBVGj8mD0SNj/kf3+RXOXn+nvoZ6H94JZvetLcwBsyr2nhpZB0CS/LlFuIeapgtGO6nARlA72N3b3A27hc5Tf0fcwPwqlDREREREREREREREREREREREREREQkSxSMJiK5o8AhGK0hpGC0ihXOB1D6Xh7OnpJ/yvrDlOfguobUQR+5bNgXW7YZBoz+f+HuW1oOI7/Rsm3Ip7yvccIU6D7p+Da/ByoLO/obL9ErdAlGA9j9YjR1iIgEpXob1O5Jf36+XncM+5L7gebqrZnvkSoY7fVPtc3ghGRt6jH5FjSadAhGMwob/1zcreW1Yjp2Pp/5GvnKzIFgNCMOJ/8q21Xkn6Iu0PcK+75kPex8Ntp6MuX0PR9PMxit/WAYcH369fgVb9fstksw2prfh1uLiEi6nO6LY4X27W4MA0Z8Da7cBtcehlFpvg5ZuRpe+TBs+Gd680VyjZ/r7+Ff9jau0ygovzK9epp6+RrnvoZqqN6e/tqmS+harMDbGoYBo7/nbeyuud7G5SrTJRittP/xt9sPhf4u/3YiIiIiIiIiIiIiIiIiIiIiIiIiIiJ5SMFoIpI74g7BaImQgtH2OLxbfEEZdD01nD0lf8XicOLns11FegZ/EtoPsu8bcjOcMwv6XR38vn0uh4vfhsIOLfsm/BlO/SP0vhgG3ADDv2Id3OpycuPHCefDuB/DeXOsA09NlfTxV0uBTQ2SWwpKoKirc3/VpshKERHJiGnCsh/BrH7przF9fcvHvnzR9WTr8d/J/Avgve9bX6d0pQpGA1j7p/TXz1cNHr4uTsHQucrpIHjzYI5BH818rzW/haW3g5nMfK18k3Q5cB+WE6ZCt0nQ5zLr+cDF71j3H+LfOU84921z6ctFiTr79lhR+mue8W/ockr68/2I+QhG29WGwxhFJLc5XS9mcl8MUNgexv8UzviP9Zphl5OtN0/wY5VCVKWV8Pq8bPBNVuCZV2c9CCf9HHpdaM2d9hrM3A7DbrGuvb3YNguObGxWbwO89WV4pDPMKofZI6Fiufe6jnELRnMLWG9u6Kfg7Meh31WAy2snK3/ufc1c5Pb/ZNprMPxr1s9QRn4TLlxkhYaLiIiIiIiIiIiIiIiIiIiIiIiIiIi0Ih7ffllEJAIFDsFoDSEFoy35jn17hxPBUG6k2Oh3FfS9ArY/lb0aSvpCzXZ/c4bf4t5fPsP6qN6WWYhLU6NuhZP+27nfiMHwL1kf6Sjr7298Uef09pFoDfmk8yHXRG20tYiIpGvzA7DstvTnn/wraD84uHqyoct4K+Sgept9/4qfQtlA6zBzOrwEox14N72181nSw2Nl9RY4vB46DAm/niA4BXbFmr2cNeRT8OYXMt9v+Q+tQOHBH898rXxiRhyYd119y39DSZ9hWCHea//csm/HHEgchXiGYTZujlbA7gVQvRWMAivoptvpVri4H2bSJQyxOP36YgVw5r0wZ2T6a3gVbx6M1s5+nIhILnMMRiu0b/fDMGDQjdbHMXPPgb2LvM0/tALW3Wm9jtmuZ+b1iGSLl2C0bqfDKb/1t26sEEZ92/po6rQ/WJ9X3AHvfTf1Ok8OhusaGq/nVv8a3v9jY3/lanh6LFx31N99Q1DBaAD9ZlofAI/1gtrd9uMOr4MOQ/2tnSucro2NAijtA6f+Jtp6REREREREREREREREREREREREREREIqbkHxHJHXGHYLRECMFoK3/h3NdhWPD7SesQL4azHoFzn4KR33YY4/D/OCiT7/c3vvsZ0Hm8t7Gl5TB9o/+amps63z0ULQglfaxAFa/0fZ0fhn7Wua9uX3R1iIhkYrWHg8sT74IPHYFzZ8MJU63HqbG3w7TFMPIboZcYieLu7v1bHkp/7QYPwWgNh60woLbEy9cFYPZwWP7TcGsJitPBeaNZqFasEKavD2bPxTdB3YFg1soXXoIZgqRQtOCVz7Rvr6+EA2+Ht+/BJTBnNCy6Ct7+Crz1RZh7Jrw003/IfdLlPjuWYbBbx+HRPCdsEYxW4jw2iIAhEZEwON0fGyHdb534eX/j3/gMzB4Bu+aHU49IFJyuv0v6wtgfwuQHrNfYg36zj0Efh4IO3sZu/Ffjnzf8037Mwsv97R9kMFpTbgFyT50Ippn+2tnkNShcRERERERERERERERERERERERERESklVIwmojkjgKnYLRaMJPB7ZOogyW3Ovd3OTm4vaT1iRdB38vh5J/D1AVQ2LGxr/xKuOYA9PF5IMir8XdAj7P8zZn4DzAM7+NL+/pbvykjBhe/Ayecn/4anvcynA//2+k4IrxaJDgdhjr3KRhNRPLBrhfgwJvuYwZ/EoZ8AgrKoO9lMPUFuGINjL0Nuk+Mps4opApG2zU3/bUTHgPAju5Pf498lKz1Ns5MwLIfwP63wq0nCKbDQfDmwWhgheYW9whm30VXBrNOvogyGK3XtOj2akt6nmc9rtipXBXOnqYJr38Gana07NsxGx7vA5Xve18vUefcFy/2X19ThgHnPG6FjYTJTzCaW5+ISDaZDtcFmYZUOhnwYRj2ZX9zjh6E+VPbXhCytB5O32fl02HsD6zvC6dru0yU9oFJd0Fxt9RjX78ZXpwBCy6FytX2Y3Y9DxUrvO8fVjBaqp/p3R+DRVfDax+HdX+HpEsducTx+bACdkVEREREREREREREREREREREREREpG1QMJqI5I64QzAaeA8/8GL3Avf+QR8Lbi9p3U44D67aAxe+DDM2wTmPWQe2h9xsP37KPJixBU78vLf1J90NF78N5z0DV++D0d/xF3I2czt0Gul9PECsEAo6+JsDUNofPlwLXSMMFvQTjOb36yDZ43QYVsFoIpLr9r0O8y9MPa7PxeHXkguCCqiy4/W5QV0bC0ZLeAxGAyt4ev3fw6slKI4HwW0OzRsxOPFzwey75yXY83Iwa+UDp69zGIZ+Krq92pJ4EXQcZd/3usPz00wdWuEeBlp/CJ473XsIY9Il3CaWYTAaQKdRMGMzTFsMA67LfD07zYPRXMcqGE1EcpRT2FgspCAeIwan/d56zfTc2f7ecOHFK8KpSSRsTsHEUQRe9b8GrlgH0163fu7gZvuTsDPFmKfHeH9jo7CC0Tp5eFOUrY/Bxn/DG5+Gl6+xQn5zndPztJhNULiIiIiIiIiIiIiIiIiIiIiIiIiIiEgrpGA0EckdBWXOfQ3Vwe1zaKV7f2mf4PaS1i9eDD0mQ9mAxrZ+M2HiXdB+CBgF0PNcuPx96DUFyvpZt70YfBN0PcUKUCnu5r2mrqdagWrp/l8u7up/zoUvh3dA0kmPydDuhNTjSvsd/+8jua24u317lMFo22fD/GkwewS8+QWor4xubxHJX8t+mHpMQXvo3UaC0coGhre2gtHsuYUK2Vn3V+8H2LMl6fMg+JjbYNStwez9zteDWScfOAUzZOqcWdDzPOt5QtkgOP2v0P/acPYS6OgSCFGxIti99r8FT49NPa7+EKz4qX3fkU2w6Gp4ehwsugYOvOO8TqworTJbrhOH7hPhzHth9Pes55MFZdDvauf7jo7Drf/HntZvFozmFlipYDQRyVWmw3VBUPfFTsr6Qd/L4JTfeZ+z63l4ajhseyK8ukTC4HT9HdXr60Wdofvp1s8dTr8z8/Xuj0Pl2tTjjh5w7sskGA3gCg/7H7NtFtwfg/kXeQ/xzQan58OGgtFERERERERERERERERERERERERERKRt0G/OikjuKCh17ksEGIx29KBz36j/F9w+0rYN+YT1kaxveaDJS0hXpzHOfQM/Cpvuse+b9hp0n+S9TjtFXaBqs/fx3SZahxejFiuA8T+D1292Hzfm+2AoCzZvtHMIRqveGs3+O56Fl2aCmbBuV66Bg0us8D/9PxIRN3tfTj1m3I+hsEP4teSCbqeFt7Zb0ExTR9taMJrDoWk3+9+yDsTnKtPnQfBYHE76bxh/BzQchlhx43PJwk7WY/nq38E7X0u994E3oaHKPcC7tQgjGK3PZdB3OpTPsH9OJMHr5BKMtuUh6OwhwNOLw+vguQnex2+b1bKt7gA8OajxdsUy2Pqo8xrxYu/7eWHEYPxPrMdlM2E9t6w7ABv+CbW7G8e1HwoXvwsFJdbfe+5Zx/c3V9jx+NvJOuexCkYTkVzlFLYb1WN5l3HWNcT2J72NP/y+9TrOuU9B38vDrU0kKNkORmtq6Kfg0HJY8/vM1pk9DGZsafw5Qd0B6+9T2AFME6q3wLwpzvOdwq+96jDUCqLf+az3Obuehz0L4JKl7tfS2eL0fDjTr5WIiIiIiIiIiIiIiIiIiIiIiIiIiEieULqDiOSOuEswWkNVcPtsf8K5r//Vwe0jAvaHmbqeBiW93ecNcQn7Gvpp+/aBH808FA2gqKu/8Z1dQtzCNuST7v2TH4Chn4mmFglG2SD79podsOO58Pdf95fGULRj9r0GB98Nf28RyW9uQb5lA+Dsx2D4V6KrJ9u6eghGW/yJ9AKZEjXextW1sWA0M42v5fMToXp78LUEpflj8jGpDoIbhhVQFC+2Qn+LujQGnLoFcjf3UHvY8C/v4/NVkMFoPc+BcT+x7vMMw2pTKFo0+riEwSz/UXD/zsvSCFjb8Uzjn2v3wqPd/M2PFfnf0wvDaLw/Ke4Kly6FoZ+zQjVGfAOmvWqFooEVtnHhK1Babr9WQRl0axYY5xQuBApGE5HclXAKRgs4pNLN2Y9aQbcdh3ufs+z20MoRCZzTc7dsXTeP/n7LgNd0bLgLanbDvKnW9d4jXeDRHvBod3hioPtcI575/ufN8T8nWQ8rfpb53mFwCj93CgoXERERERERERERERERERERERERERFpZRSMJiK5w+2AeoNL0IQf9YehYplzf9dTg9lHxE2sAE7+tfOBwm6T3AO/ekyGwTcd39b9DDjtD8HU5zcYreOIYPZN16S77ds7joQBH462Fsmc2/+nhRdD7b5w99/mEJ658hfh7isi+c00nQOcup8BMzZBvysbQ4LagtJ+qcds+Ce8e6v/tb0Go9VX+l87nzkdmk5l0VXB1hGkMA6CuwVy21l8Exx4O/39ckn1dtj6OOxeYN1vHWM6fJ27nAQF7b2tXX4lXJ+EC16EMd+DeEhBVuKsy7jGAEA7b34x8z2SDbD9Kf/zFl5qBaIBvHK9//nxiMJ42vWE0/8M5z8Dp/wK2vU4vr/DEJixBfpfe3y7EYPT/tSyzvIrnfdy+7cSEcmmZJ19e5SP7bECGP0duHw13GBa1xipHHgbqrfZ9x1aaV0DHXgn2DpF0uUUWGtkKRitXXcYlcZz8+b2vgqzymH3fOu2mYC6fXD0QOq5QQThGjGY8oIVWOvHpntg6W3w5hdg84OQqM28FgAzCQffg3V3wvbZ1s8nfc1XMJqIiIiIiIiIiIiIiIiIiIiIiIiIiLRt+s1ZEckd8RLnvoaqYPZ49jTnvvF3BLOHiBcDr4fOY61DQsmjUNwTDq+FjsOh/zUQb+c814jBxH9A/w/Bvteg4ygov8L/gR8nRV38je9xTjD7pqt8JsS/0DIkZeAN2alHMlPW3/r/73QAbddc6/snajU7o99TRPKHUygawEltNFjRMKxriqMH3cdteQhO/Y2/tb0GoyWP+ls33zkdrk9l/xtQsRw6jwm2niA4HgSPp79mOtfMK38OZz2U/p65YP3d8NYXG79/ekyG856FwvbO/3dK+8HU+fCITXByn0thwA1QvQU6jYK+09tW+GOumr4Jnuhv37fzuczXr1gK9YfSm7vlYeh7Geye53+uU6h4NhgGTH4QBlxvPR8v6mx9P3Q5qeXYLuOd13EKHhIRyTan+6ds3hcbBly2CuaMdB839xyYseH4tiXf+SDs/oNQ2ME3wcS7dN0i2eV0/R3LUjAawPCvwrLbnWsrv9K69ncLjd71fHp7d5sUXGhsr6lwyXuw9TGr3kQtrP976nnLf2R9Xvtn6/MVa6HD0PTrSDbAqx+BLQ82tpUNgHPnQOfR3tZwej4c0693iIiIiIiIiIiIiIiIiIiIiIiIiIhI26DfnBWR3BErsMLR7IIO6isyX79yDRx+37m/k8fDCCJB6Twm/QAKIwZ9LrE+glZsE3zgpKQvdHMJHIxCUWeY/AC8cj0kqq228pkw4mvZrUvSY8SgXW+o2mjfX7EUyEIwmg7MiliqtsKm/0D1Vuh5HvS/Vt8f4B5I1ZYPrI74Biz9vvuYmu2w7QnYOReKu8HAG6HjMPc5DR6D0dwObLdGToemvdj8YJ4Fo2XwfeUWyO1ky8PweDmc8msrnDif7veSCVj6X7CyWRD43lfgtY/COY+7BzMUdYHLV8P8C637foDO4+D0O6G0T7i1i39l/aBdL6jd1bKvegscPQRFnVr2JROw6V44+C6U9IITv2iF5jV3aGX6tVWuscL20pHO922YDAP6XWl9uI6LwdDPwLq/texLKBhNRHJUwiFcOJ7lkMpOI+D0v8FbX3IOQK7aCAeXQpdx1u3dC6yA26b+P3v3HSdXXe9//DWzfdN7L6SSBEJCIPTeI12QoldRwAJX9HcB9VqxYMGuV7nqtcBVUBSkd6T3ngBJCCSk9142m+zM/P445GY3O2f6zM7uvp6Pxzyy862f3cycPWfgvDP/T8Fjn68Hx+j6IcWsWkquHIPRKuvhgF/DC5e27qsdAEfcGpwDLX8QHj2psHsPO7uw63UbDROv3v181EXw5DnJz5HD3DU2uPYbdVFu/w3mqXOCzzqa27oQ7t0HJn0FJn4p+fl2c/EiXA9LkiRJkiRJkiRJkiRJkiRJ7UiB/vllSSqQmj7J2xvX5r/2on+k7h9U4Js5pPaqOotgtH2/Edzs3daGng5nr4BjH4HT5sERt0Fll7auSrkafm5437YlpaujhXYUgCIVy6a58MB0eP3LMO96ePo8ePHTbV1VeVh6V3hfZ75hdWyGr48nzoR5v4I3vgUPHAhrnks9Pr49s3UX3wrLHshsbEeQTzDa1oWFq6OQwm4EzytwMJHbtIal8PT58OxH89i7xOIx+NdxrUPRdllyexCQlggJZoi8H8zQfTycPh9OfBZOeR1OfsVQtHI24arwvs3zWrclEvDkWfDcx2Duz+C1L8E9k2BHkoD6TXNyr6thCWyem/28cVe0rzDCPfU5OHl73GA0SWUq7PgUrS5tHcmMuRTOXAK9poaPmf/H3V/P+034uDe+BffuC+teKVx9UqbCzr/bMhgNghCwZOcuYz69+3xs0InQZa/C7VndKwgpLKZ+h8Hp78Bxj2U3b9Et8NgMmPXt7ObNvKZ1KFpzb14Ltw9Nfr7dXGiAXif+nEmSJEmSJEmSJEmSJEmSJEmdShkkmUhSM9VFDEZLFVhx2F+hogxu7pLKQXWvzMbt9z0YfXFxa8lGVTcYeCx0G9O+b5xX6mC02v6lq6MFX1MSs38E21e0bHvnt7BxdtvUUy4S8dQBcW19Y3NbqukTnGdnY+cmmHVN6jHxHZmvN/Mr2e3fnoXdNJ2JxjWFq6OQErHk7fkEDoaFrWXqvT/DqifyW6NUlt4Jqx5PPeb5SzILoItWQt+DoddkiFYUrkYV3vjPh/dtej+YrGkbvHIl3BSBm6OtPy/Ztgj+0ev9/gq4uTL4+s1rw9c++eXUdS2+DV69OrPvobn9f5z9nHJSUZO8PWYwmqQyFRqMFnI8K7XafjD9t+H9c38WXKPFm2DR31KvtWM9vPGd4OsVj8Ajx8J9+8PL/wGN6wpXs7Sn0MCrNv78IFoJR98NQ88KwhBr+sDE/4R9vtZy3OFp3luZqu4Nxz4E1T0Ks14qlV1gwFFw6M3Zz5319eD4sH1V+rHb16Q+Z95l58bgfHvJneFjwsLPO3MAvyRJkiRJkiRJkiRJkiRJkjoVg9EklZeakGC0HXkGozWuhbXPh/ePOC+/9aWOpLp3+jEnvQiTvgQRTyVUBH0OCO9r2rb76+2rgkcsi4CcVBKJ8D7D9iRYGHLj63t/Lm0d5WbVk8EN9WE6+w2rA47Jfs7yB1KHfGUTALbu5cxuXu4Iwm6azkTj6sLVUUhh31M0j/dV15HhfWMvy2yNhVkG/rWVpSlust9l0xzY8m7yvrYOZlBuohXQY5/kfSsfga0L4d59Yc5PMlsvEQ8PKdxln69B7/3hlNezqzWdvf8jv/d7OQgLEoo3Bp9VFepaRpIKJey4FBb02BZSfW4E8MSZsHleZmst+WcQ+P2v42Hlo7D+VZj7U3jyrNSfE0n5CLumjZTB+XdNHzjyNjh3M5y9GqZ8t3Uwcvfxua9f1QM+tBUuTMA5a6H3tPzqzdbwc6HX/tnPW/koPHoKxNOcF69+Irtr8yfOgCUh/6iTwWiSJEmSJEmSJEmSJEmSJEnq5EwzkVRewoLRGvMMRpv7y/C+g36f39pSR1OTJhitblBw07tUTCPOT97etBXWz4Sbq+C2AcHjbzXw6tVBaEM+UgY+eNqsTi6RgKbNyfvm31DaWsrNsrtT93f2YKGKutzmbZkf3hfPMgBs09u51dDeZBMYt6fGNYWro5DC/q4jFcnbM9FjH+gyonV7z33hgP+CYR9Mv8a863Pfv1Te/T3M/1NmY1c9nry9HIIZlJs+05O3z/8j3DEy9TE2n/16TYbJ3y7cuiMvLNxabSUsSGjHeri1L9zWD2Z90/AdSeUj3pi8PSzosa2ctTy8b+ld8NwnMl/rhU+1blv1BCxNc60n5Srs2q2cPj+oqA7/hyKquucWgg5B8G1lfe515StaAcc/CntfCb0PzG7u+ldgUcg/GrDLtiXZ1/TE6clDKcOuh8vpdSJJkiRJkiRJkiRJkiRJkiQVkQkPkspLdRGC0RJxeOOb4f29puS+ttQR1Q1N3T/tlxDxFEJFVt0reXvjGnj4CEjscWPY7B/BnJ/mt2eqQJmwGwGlzmLH+vC+sMC0zmLjnNT90crS1FGuKmpzm7cpxc81kWUAWKq1OpJsA+OaK9dgtD1/3+8SyeN9FYkE57PR6t1tFfWw/0+CvoP/2LIvzM4yPfZtWwKvfQmevyT/tTr78as9G3JaafdrHowx9IzCrDn+/0HvaYVZqy2lCxLauQlmXROEGUpSOQgNRsvg/KiU6gZC/6PC+9c+l/8eS25r+TyRgA1vwsJbYOvC/NdX5xXbmry93AIIU8klDLf73jDh6sLXkq2q7rD/j+DkF+C87dBrauZzF9+Wur9hWW41vXBp67aw62Gv0yRJkiRJkiRJkiRJkiRJktRJmGoiqbzU9E7enuuN+k0NcM8+qcdkc9OD1Bl0GwPdJyTvO/DXMPyDpa1HnVNFffL25fcF4QHJLPjf/PaM78hvvtSRNSwP79u5KQii7ay2zEvdH6kqTR3lKprj97/2pfC+VEGWyXSWYLRsA+Oaa9oCse2Fq6VQwsLe8r0RfOhpcMqrsN/3YOoP4ZRXYODxQV9VNxj54fRrbH47vxqKYcH/wp1j4K0fFGa9zn78as/6HlS6vQYeD5Vddj/vkeYzmGQmfhEmfAH2+mgQsnHswzDtJ4WrsS1lGhC68K/FrUOSMhUL+WykogwDm8Z8qrjrL7hx99fxpiB49t594Onz4I6R8Ma1xd1fHVM8Bo3rkvfV9i1tLfnodxicsSi8P1IJXUYGj65j4MDrYcZMqKwrVYWZqaiBk54PArIzsfjW1NfO23IMRlt2XxC+2FzY9XA+QeGSJEmSJEmSJEmSJEmSJElSO+L/OSupvNQOTN6+5d3c1nvkaNg0O7z/yNshEsltbamjikTg8Fvg0ZOgodmNPPt9D8Z+pu3qUufSPFwhUxteD24gy/W4njIYzTxhdXINaW7sXPM89DukNLWUk/hO2JzmPDXfAKfOaumdsN+3k/cZjJZc2E3TmWpcA/VDC1NLoSRiydsLcSN4j4nBI5kp34dNc2HNM+HzN86B3tPyr6NQGtfCC5+CeGPh1sw12FBtr3YgVHYNQg+LbcgZLZ9HIjDhKpj9o8zmV/UMrjU76mcz0QyDhFY+Utw6JClTYecSmR7PSmnE+fDMhcVbPxEPAqxqegcBlvP/0LJ/5ldh4AnQd3rxalDHs2MdkEjeV9OOgtEAugyDczbAk2fDyn8FbbUD4OAbYPBJbVtbNqJVMOoiGHBc8L2sSxHUDnD3BOgyArqOglgjJJpg0S3BP/QR25ZbDY2rYfsKqBu0uy1hMJokSZIkSZIkSZIkSZIkSZI6NxMeJJWXbuOStzcsg52bs1vrxctg7Qvh/T0mwtAzwvulzqznPnD6Ajj+ySBA8OxVMOlLbV2VOpPK+tzm7Vif+56pgtE6alCDlKntK1P3L72zNHWUm60Lw29U3cUbVnOzYSZsmZ+8L93PfE+dIRgtHiP05vpMNa4pSCkFFXojeEVx963tD8c/DienuCF+9VPFrSFbi2+DWENh1zQYrf2KRKDb2OLvUz80CJHY0/DzMl9j0Akd+1y7ogyDhCQpldBgtOrS1pGJSAROnVvcPe4eHwQz7xmKtsvSO4q7vzqeVNdd7S0YDaC6Bxz7MJz8cnANddq89hWK1lyXYXDS88F/E0ll63uw6nGY/0dYeFMQiga5h6LtsmmP41nYZ9XFvh6WJEmSJEmSJEmSJEmSJEmSyoR3aEsqL93Hh/dtnge9psDmd2Ddy8Fj/StBCE6XkTD5O9BzUjB20zyYd33qvUZcWLCypQ6pohr6H97WVaizqsgxGK1hKdT0zm1uqmA0OnBYg5SJdGE7S+6AKd8rTS3lZPvq9GMMFoJBJ8Py+7Oft/RuGH9F6/b4zuzW2boAYtuhojb7GtqLTMPijnsMHjk6ed99U2HkR2C/7wY3hJeD0GC0EnycFa2E3tNgr4/Cghtb97/z38H7e/8fl8f7fPFt6cd0GwfHPAB37pXZmgY7tm/9DoP1r+Y+P1IZvAe7joa6wbDupZbnA30PgQN+BVVdW8/tMQmqesLODen3GfbB3GtsD2r7Zz72latg4hehtl/x6pGkipK2bwAAIABJREFUVOIxSMST95Vr0GP3cTD6Ynj398VZv3ENLH8AVj6avP/N78J+1xZnbxVXIg6xxiAMcNef8R2t25L1terfkXxOsrk7UpwfVfcp3fdfSJEI9N6/rasojEg0+G8ip86Bu/cu/PoH/xGe+3jyvkeOgRkzoee+wfOwfwCkukfh65IkSZIkSZIkSZIkSZIkSZLKkHc4Siov9cMgWhPcILKnZy6EhuWwc1PrvvWvwfIH4dTZ0GU4LLs39T7RKhj374WpWZJUeJU5BqNtW7b75rFspQraiURzW1PqKGJJzs2a2zQ7CKbtPrY09ZSLxjXpxxgsBOM/Dysezjy8a5cNbyRvzzYYLRGHrYs79usz05/JgKOgujfsWJe8/70/w8pH4ANvQnWvwtWXq3jIayZawvfV4A8kD0YDePuX0LQ5uLm9LcUaMwsfPPnlIMRqxiy4N4Pzpcq6/GtT2xl7efDaTfYZCsDoS+Dd/wmff+6m4LOZ6p7Z711ZBxOuhJlfSz2u11QYdk7267cntQMzHzvnx7D6aTjhKYhWFK8mSQqT7DP5XaJlGowGQbhvJsFoIy6EQ/8cXB/sWAuvfgEW3JB+3tv/lX+NuzSuDc6zO9vnTPGm9IFh+fZlG1KW7fVpsVV28fy7nHQfD4f/A54q8LlqtDoIMF79dPL+eyfDic8G55ANy5KPqelb2JokSZIkSZIkSZIkSZIkSZKkMuUd2pLKS7QCuo2FjUlCEDbNTT03tg3e+A4c9FtY82zqsacv8F9Vl6RyVtElt3kNS3PfM74jvG/9q7mvK3UEqW6Q32XpHdD9quLXUk4yCUaLVhW/jnI3+CQ45j741wnZzduxPnl7tsFoEAQf0IGD0bK5qb+mb3gwGgRh1Av+DOM/m39d+UrEkreXMnBw8ClQ2RWatiTvn/8nIAIH/U/bBVwsuT39mIEnBqFoAD0mQddRsGV+6jndJ+Zfm9pOj73hhKfhretg3Uu7jxN1Q2DE+TDmk6mD0SrrgDzCOSZ9JQh0WPhX2L4CmrZCVbcgiKSyC/Q/Cva9puMHgEUi2Y1f+xws+juMPL849UhSKimD0apLV0e2Mg0JGnlhcFyOVEBtfxj7mcyC0ZY/kF99AOtegWc+EoSKV/WESV+GCVdl/3sinUQiuF5KGhjWCLEdSdqKGVL2fn8iXtjvsyMy7Kr8DDqp8GtGq6D39PBgNIAHD0m9hq8VSZIkSZIkSZIkSZIkSZIkdRIGo0kqP93HJw9Gy8TSOyDx3xDfHj5m6o+hfkhu60uSSqOyPrd5Dcty3zNVMFrDctixAap75r5+udqyIAh+630AdBne1tWoXKV6f+zy3l+CG7s7ungTrHocYtth4c3px5cywKmcDTweqnunDuTa084NyduzCQHbZfvq7Oe0J5mExQ09M/izth9sfjv12AU3lEkwWsjfdbSE76uqbjDhapj1jfAx8/8I/Q6D0ReXrq7mVj+Tfszkb+3+OhIJXg9zfhI+PloTvG/VvvXcBw69Mbx//Odh7s9at4/6RP57RyIw5pLg0dmNuCCzc4Zd3v6FwWiS2kYsxXVfRU3p6shWJiFBwz4Ig2e0bOt7EOz1sczC0fKxfTXcP233850b4LUvwOJbYdjZ4WFiuYaUqX2qH9rWFWhPVV1h7ythzo8Lt2akCoaeDnN/mvsaBqNJkiRJkiRJkiRJkiRJkiSpk/AObUnlp/v43OduXwXLH4Ald4SPGfnh3NeXJJVGuQWjASy5E0Z9NPf1y00iEdyIO/tHu9smfQUmfzsIspCaizWmH7P+NVh2Hww+pfj1tJUt8+Hx02Hjm5nPiVYUr572Jlqd3fgdIcFomYSA7alxTfZz2pNMwuJ2BR1lchP1upfzq6dQ4iHfV6TE76uJXwxCjTbNCR/z/CUw5AyobYOb1FMF3Y35NOz7dagb1LI9XTDaXv8WBAGoYxt+TvJgtKFnlL6Wjmz0J7ILRlvzbPFqkaRU4imu+6LlHIzWJ3X/gdfDmE8m/6zj4D8G50VPnpXb3pFo6v5Nb8PdIf+9Y+3zwUOC4FpC5WfqD4MQs0S8MOtFq6Df4dB9AmyandsaBqNJkiRJkiRJkiRJkiRJkiSpkzAYTVL56bV/fvMfmxHe1+9wqBuQ3/qSpOKr6JLbvG1Lc98zXTDaq1d1rGC0Zfe2DEUDePNa6H8UDDqhbWpS+Up1g3xzj82AC+IdM1wvth3uHN3WVbRvFVmGKax7KXl7wmC0VsICxHaZ8AUYcmrwdXWa4IhdXroChp0FA47Jva5Nb8N7N8Ha54KwtX6HQd3QYM1hZ6c/VoQFvkVK/HFWRQ0cfR/cuVfqcY+dAie/WJqamgsLRht4Iky/Pnlf30Ohph80rk7SGYH9vluw8lTG+h4Kk78DM7+6u23CVTDktLarqSMacFz2c9a+BH0OKHwtKr1ty2DBDbBpLpBo62qk1HZuDu/L9ly+lKJVqfvHfCr8vDMSgWFnwr7XwKxrctg7TfjzC5dmv6Y6n2EfhPFXtHUVSiYSgVNeC0Lyt76X/3rRKohWwiE3wKMnwY712a9hMJokSZIkSZIkSZIkSZIkSZI6CYPRJJWfoadD/VDYtiR8TCSa27/Q7s0lktQ+VNbnNq9hWe57xtME7SQNDmnH5oUEpcz/k8Foai1dcGBz8/8Eoz9etFLaRKwR7hjR1lW0f9EcwhTe/jWMu6xlW7rjdTIdPRgtVVjcCU9Dv0N3P8/05/f2L4PH1B8GQUnZWvUEPHoKxLbtbltyR/DnvF/B6EvhoN+mXiMs8K3UwWgAXUfCmUvh9iHhY9a9BCv+BQOPLVlZxJvCb9Df873TXLQC9vk6vPzZ1n3n7wz61fFFIrDPV2DURbD+Veg5GboMb+uqOp5IBOoGQcPyzOc8cCAcejOMPL94dan4Ns6Bh4/o+Och6hzSBYC1tV5Tg99le+qyV3GDu1P9XLavDs6J1b5FKoJr2YqaJH9WJ++L1kBFdbOvQ+ZW1EGfA6HbuI4ZMN9R9NwXPvAmPHoirH66df+hf4G3fgAbZqZfa1eQY58D4YxF8PCRyY9dqdRkGHYuSZIkSZIkSZIkSZIkSZIktXMGo0kqP9EqOPZhePYiWPcCEIEeE6HX/tB7WvDotR/cfyBsmp3d2n2mF6NiSVKhVbRFMFoWwU8dwbJ7krcvvAkO+0tpa1H5izVmPvb5T2QXjBZvCm4gXfFQEHY04UoYfEr2NRbTO7+F7avauor2L5cwhde+AMPPgdr+u9vCwrJS6eiBJKl+Jl32CPXbsS67tV+9GrqNh6Gntd5zwY3w5rWwZX7QVjcEGpZmtu67vwseu+qr6gEDjoPJ34KqrkFbIpZ8brSNPs6qHxwEzT10WPiY5y6CMxeVrCR2rA8PDa9PE3A19jPQuArm/CwIsBtwDBz0B0PROqP6IcFDxZPL767XvxT8DmyrY56yl4jDnJ/A4tuCa9OtC9u6Iqlwcgk5LqV9vgpPfrB1e78U522FkOr47jEge/8XNJYiVCxaHRI0lkVfxgFn1Z4bK1BZD8c9Bq9eBe/+AZo2Q1VP2PfrMOICGHoWvHolzP8jxLaHrxOp2v11Vdfg+vLVK8P/AYtWdXSD7nvn9a1IkiRJkiRJkiRJkiRJkiRJ7YV3VUkqT93Hw0nPBjcUxpuCG2H2VNM3uzWHn9c6FECSVJ4qcwxG274SEgmIRLKf29mC0TqCxnXQtAWqe+2+cVbFEc8iGA1g6yLokiaQZ5dnPwoLb979fOUjcNRdMOTU7PYspoV/besKOoaKHMIUmrbCkjtgzKW72xI7s19n+8rs57Qn8RQ/k2hVy+fDPhgejhnmidPh+Meh/5HB79n4Tph9Hcz8WstxmYaiNdc8MGLDTFj3UrBXJAKJkKCJSBt+nNXvUDjyzuBnksy2xbBxNlR2CR6x7VDTBypqC1dDvCm4Vq6ohsa14eNq+qReJ1oRBNHt87XgZ5rL+ZOkzAw9MwiDzMbWhcFxsduYIAQRgjCNyvogTNL3bPl5+fPw9i/bugqp8CJRqKhr6ypSG3pWEPK68tHdbdEaGPfZzOb3PiC3fWPbIB5LHp6VT3h/0UVSB4MVIogsVeBY0j2r/d2m8hathGk/g6k/CsLz6wYGx0eAyjo48Ncw7efwwidh/p9C1tjj+rz5vPumwMa3Utcw7t8Le20pSZIkSZIkSZIkSZIkSZIklTGD0SSVt0g0POQk22C0Q/83/3okSaVR2SW3eYlYEHCWS/iOwWjtx7pX4LmLYMOslu3jPwdTf5z8hmTlJ9v3x5I7YHwGN6AvubNlKNouj58GR94BQ0OCh0pp+xpY82xbV9ExRHM4NgMsub1lMFqqELAwZR1KUABhAWLQOkRs0Am57THz67D/T+DFz8DaF3JbIxOrn4TlD8Dgk1MEo7XxcX7oaVA/LAhBS+aeia3b9vooHPBfUNUt931jjfD6l4PQnfhOGHwqjLwgfHy6YLRd9rw5X1LhDZ6RfTAawP3TgAiQaN037edB4I8hMuVhw5uGoqnj6nto+QeRRyJwxK0w5+ew/H6oGwz7fh16Tcls/sDjoKo77NyU/d5NW6C6R+v2Wdekn1vVE3pMTB04lk/YWFifobhS7qKVUD84pK8quFYMnRty7RWtghOfh1evhHd+m3zMtF/CuMuzq1WSJEmSJEmSJEmSJEmSJElqxwxGk9R+ZROMdvyT3uwtSe1JRX3uc5u25haMFjMY7f8suRP6HZZ5oEo+Eokg4KxhGVT3hqZN0HVU8NjT5ndh/Svw1IeSrzX358FNxZOvKWrJnVKsMbvxyYLRdmyA1U9B47rgtdVrCjxxRvgaT5wBp86B7uOzr3f9a7DyseA1NeBo6DI8s3k7N8Ga56BhRXCja+0AmPsLkoaRKHu5no8vuxe2LYH6ocHzXILR1r8KO9ZDda/caih3qX4me/7c64fCxP+Et76X3R6rHn8/oKcEFv09CEaLhwSjRcvg46wTn4Pbh2Q+fsGNUFEL03+T+55v/QDm/GT382V3B49kojX5nU9JKqzBM2DgibDiwRwmh5yHvPw5qBsCwz+YV2kqkHv3aesKpOKo7AZTvt/WVWSmulfweUAunwlU1MKU6+DFT2c/N1kw2tJ7g2uQVPa7FiZ9Ofv9JJW5FKGDqT4XqeoaXC/22AdevmJ3e2WX4L9x9p5auBIlSZIkSZIkSZIkSZIkSZKkdqAM7iSVpBxlGoxW2RX6HlLcWiRJhRWtgkgFJGLZz23aCjW9s5+XyCBoJ5GASIqb2zqKJ84AInD432D4ucXbp2krPHcxLPpby/ZIZXBz8ORvBs8TcXj9q5mF+Cy40WC0YohnGYy26nGIbQ9uLocgKO2JM7Pf9+694YIYRKKZjY83wdPnw+JbW7ZP/RFMuDL13DXPw5NnQcPyzOsbcQH0PgBeTbO23pciYK6iNnjNhLl9WHCD8JhPQiIkLCudW/vCEbfB0BSBfO1Vqp9JJMlHP/tdC/2PgqV3wrxfF6+uXM3/Q/A7YPWTyfuTfU+lVj8YJlwNs3+Y+Zx3fw/7fTe34NGmBph9Xebja/p0jnMWqb2oqIaj74X3/gLPfaxw68673mC0crBhVnbjR11UlDKkguu+Nww9C7qPa+tKSmPsp6DnvvDQYdnNa9rauu3d/0k958Rnoe/B2e0jqf2LZBAYP/6zwX/TXPJPiNbCmEuhbmDxa5MkSZIkSZIkSZIkSZIkSZLKTBncSSpJOartl9m44R+CaEVxa5EkFVYkApVdYOem7OcmuyF1l3gMlj8AK/8F9UNg9MVQ1T39vF0STZndwNYhJODZj8HA46G6V2GX3jIf3rsZZn41ZOsmeONbsHNzEIi16O+wbVFma29dAPGdQbieCie+I3n7gGNg5aOt2xNNQQDQuMuD9/HT5+e+980V0H1C8HXfg6HLSBh2VnDD+i5bF8GsbwZhSsm8ehW8dxP0mtKsMQ6rn4Eek2DQiUG4UTahaOOugAN+/v76BqNlpMe+sOqJ1u3R6iAY4L6pqee/8KngmBTPIMgymUQcnjoPzl4J1T1yW6PcrHkBltwOy+4OH5PseBiJwOCTgkfD8uCG63Jz+7DwvmiZfJw16uPZBaMlYvDSv8NhN2e/18pHMjtX2SWX8DVJxRWtgFEfDQIp1z5fmDVXPhL8fss0RFbFsf71zMd+aEtwrSupPPU7FMZ9Ft7+ZeZzYttat6U6vx7//wxFkzqrTD+v7HNA8JAkSZIkSZIkSZIkSZIkSZI6sTK5k1SSclA3JLNxE79Q3DokScVRUZ9bMFosJDQkkYCXLod3frO7bc5P4KQXoW5gEMKVTnxH5wrcijXAkjth1McKt+bqZ+DRk6BpS/qxc3+a2x4Lb4G9PpzbXCUXa0ze3nsarHoyCELb00v/HoT4dBkJse357b9pdss/3/wuHH4LDD0dVj4Ojxydfo31rwSPPW1+O4dQqAiMuSTLOWLEh4IwGBIt24efF4TWfWgr3JImKGTRreHBaEfeEbzmnrkwfH68EVY8CMPPzar0sjT/T/D8xUEgTiqRNCHRmQZO52P674LwtiV3FGa9dN9zqXTfG7qNhc3zMp+z8K/Qa2r216lLbs9ufLXBaFLZGnFB4YLRADa/C93HFm49ZW/b4szGHfeooWhSe1A7ILvxe4bXNiUJSmuu+/js1pfUzkTCuzrT58qSJEmSJEmSJEmSJEmSJElSnqJtXYAk5axucPoxR/zTG40kqb2qqMtt3v0HwFPnw4ZZLdtf+0LLUDSAbUtg1jeCrxfelH7tsDCejmzjW/mvEdsB8/4bHjoCHjoss1C0fLxgYFXBxXckb6/sCt1Gh8977Yvw9HlFqKcRXr0K1r+eWShaoY29DHruW/p927v+R8Ih/wv1Q4Pn0eogHGb69cHzyvogaCqVNc/SKlhtl+qeMOJ86DYu9RrblmRVdllqXAvPfTyDULRKiKS4KRugpn/h6kpm/OeCIMEDfhXUUwgNywuzTr4iERh2TvbzZl0D21elH7f6GXjsVPhHb3j399nt0efA7OuSVBrjr4B9vla49e6fCg8dGfxe2LqwcOsqMzs2wutfTj2mpl8QEjrg6JKUJClPVd2zG79nMNrmt1OP7zEhu/UldRwGo0mSJEmSJEmSJEmSJEmSJEkZMxhNUvtVPyS8b9RFcH4TDDuzZOVIkgqsojr3uYv+Bg8cBFsWBM/n/gJm/yj52Hd+C/NvaB2klkxnDEbL5Oeyp9j2lj+r1/8TXvwMrH6qcHWl279hZWn26izijcnbozXpg6yKZfM8uG9K6fftsQ/sd23p9+0o9vownLEIzlwC526Ew26Cyi67+7uMSD1/e4r39q4QsAlXpl6jYUXm9ZaT2PYgEC3eBLf2zWxONIMgstoiB6PVvX/dVj8E9vpoYdbsMakw6xTCxKuDwJtsxBpg4V+Dv0sIAu4ScUgkIB4LfoeteiIIE112D+xYn31doz6R/RxJpRGJwORvBZ9bjb44//WatsLqJ2H+n+D+A3M7Zig38SZ45NjUY87dDGctC0JCJbUPVd2yG79nMNrGOanHt9U1tKTSSBVOHjEYTZIkSZIkSZIkSZIkSZIkScpUBnfISlKZqhuUuj9aUZo6JEnFEcnzVDXWAHeOgklfhXd+k3rscxdltmZnDEZbfj9sXwO1GYTw7NwCz18MS+6ASBSGnwsjPwJzflL8Ovf0xjfhwF+Xft+OKhYWjFYNg04O/s47g0EnwaF/geoebV1J+xaJhIccpwtGq6gL74u+f4PxmE9CZVd45sPJx82+DhbeHBwjhpyavt62tmM9PPcJWHJ79nMzuem6JsOQtVwNOnH319N/C93Hw7J7g+fjPwfrXoY3swwb7Htw4erLV3UvOOk5mPkNeO/Pmc97+XPwyn9AIhac8ySaClfT6Iuhh4EbUtmLVkC3sYVds3E13DsFzlxY2HWV3Mp/wfpXwvvHfAqqupauHkmFUZltMNq2ls+X/DN8bO9p2YfqSuo4ogajSZIkSZIkSZIkSZIkSZIkSZmKtnUBkpSzilqoqE/eN/z80tYiSSq8Qt0o9uZ3goCAQojvKMw6bS2eTfhKAmZ+LbOhz30MFt0C8cYgmG7BjfDoiennFcO862HNC22zd0cU9tqvqAnC7/oclP8e9cPg4D9BpEzDbSd9BY65H2r6tHUlHVu6YLRUx/PmvzdGXghjPh0+dttiePw02PBGdvW1hacvzC0UDTJ7vVaGXFMVwqiPQ6/9dj+PVsDEL8DxjwWPYWfBuM9mt+aYT0HPyYWsMn9dR8Gh/wsXJlo+zgsJldwlEXv/zwKGovWeBgf8qnDrSSquwTNS99cPg3PWw/FPZr7mtkWw8rG8ylKGFt+aur/HPqWpQ1JhVWUZjBbb2uzr7cHnImGmfD8IipbUORmMJkmSJEmSJEmSJEmSJEmSJGXMYDRJ7duoj7duq+wKA44qfS2SpMKq7NrWFbQW39nWFRRGbHt24xfcAE3bUo9pXAdL7si9pmKY86O2rqDjiIeE+0RroKorHPcoTLgq9/WHngGnvAajPganvJ77Osn0PyoIb9v1qKjLfO7Ij8C4K+Coe2C/7xS2LiXXZWTq/g0zw/silS2f1/RNv9+8X6cf05a2LoTl9+c+f9BJ6cdUZhn8kE7X0TD2cjj873DQ79OPrxsQhP6kUzsQjrwjCP1qL2ESFdVw8svFW3/az2H/n8Koi2DUJ+DAX8MJTwehlZLahx77QI9Jyfv2/wl84C2o7gn9D4dpv8h83Xd+V5j6FG7rQnjnt6nH1A8uTS2SCivb8+OmZsFoS+8KHzfsbBh4fG41SWo/9vxsojmD0SRJkiRJkiRJkiRJkiRJkqSMpfg/cyWpHdj3Glj/Cqx5NnheURvcgF9R26ZlSZIKoNBBLYWQ6CjBaA3Zj3/7lzDxi+Fj1r8GiVh+dWWjsmsQ+LP41vAxi/4OjWuhpk/p6uqoYmHBaNXBn5V1MPWH0GUveOny7Nbe5xsw+Zrdz3tOgt4HwroXcyoVCMLQjvsXRJJkgSduhBcvg3f+O/UaZy6G+qGZ7Tf9d/DCpa3bR12U2Xzt1mVEVsMXNIzkjjWns6GpJ6ct68q0ns06MwpGuz4IkypXKx7Ob/6U76cf0+fA4L0c35HfXgDjPw/7/zj5ey+V6p5wwlPwxFnQuHqPvt7BNd7AY/Ovry303j8IWXzvz4Vfe8QFUNuv8OtKKp1IBA7+IzxxBjQsD9q6jAzOY7ru1XLs0NPh5SsyW3fhTTDiPBhyWvsJk2xvXrws/Zi6IcWvQ1LhVWX5eVTjut1fr3s1fNyIC3OrR1L7MvLDMPOrrdvrh6YOTZMkSZIkSZIkSZIkSZIkSZLUgv/3raT2rbYvHP94cMPR9uXQ/0io7tXWVUmSCqGqa3jfgdfDi58pXS27FCI0phxkG4wG8NqXoOtoGH5O8v7Z1+VXU7ZGnAdDz04djAZwa184aznUDSxNXR1V2Gt/VzDaLuMuC8I3MgmKABh9cctQtF2yDVVqrtdUOP6x8P5IBKZfH7yGHjkm+ZizV0Jt/8z3HDwDKrtA09aW7cPOzXwNBbIIRntu40HMmHU3G5qC8/9v/zzBHy+K89FD3n/9ZBKMBjDr27Dv17KttPi2vAfPX5L7/LNXBoFj6VR1g6FnwqJbct8L4NS50H1c7vP7HQanzYXVT0PDiqCttj/0OxxqeudXW1ub+kNYeifs3FS4NcdeZiia1FH0ORBOnQNrng/OgfodDhU1rcfVD4OKuszP5Z84A0ZfCgf9trD1Cja/C8vuTT+ubnDxa5FUeNkGo735HZj0peCacNOc8HFDTs2vLkntQ9eR0Gc6rH2hZfvw8wyslSRJkiRJkiRJkiRJkiRJkrKQx93mklQmolXQdzoMPcNQNEnqSCpTBKMN+yCMu6J0tewS31n6PYth41u5zXv1CxCPtWzbuQlevByWP5BfTZXdoH54+nHRahj5YZj2SxgyIwjJS+e1L+VXm8Jf+xXVrdvGfgb2/xlU9Ui95t5XwvSQoI5cg9H2+igc90hmYwccDcc/AV1H7doU+hwEZ7yXXSgaQP1gOOZB6PZ+KFTtAJj+m+A1quzUDsp46FcWfOf/QtEAEokIn705wc6mRNDQ54DMFpr1ddgyP5sqi6thBTz/Sbhzr/zWyeZ1fNDvg9+t0argMfRMGHF+5vMHnZJfKNou1b2CwIgxlwSPoae3/1A0CMI5J3+ngAtGYMr3CriepDZX1R0GnQADj0seigbB+VHfQ7Jb993fwd/qYf4NkEjkX6cCS+/KbJzhzFL7VJllMBrAg4fATRFY8s/k/cPPCz++S+p4jroLBhwbnL9V1AdhtVO+39ZVSZIkSZIkSZIkSZIkSZIkSe1KZVsXIEmSJCWV6kbUaDWMvhjm/wGatpSupo4SjDb3Z7nN27oA1r+6O2wokYAnzoKV/8ptvaoecNrbEKmEqm4Qb4Jb6sPHz5gZhFhVdtndNvbTMOaT8OgpsOLB5PMW3RIEqFXW5VanIBHy2o9UJW/f+3NBQFp8R3Dzd3wHNK4N/u4iFVBRl+am8EjmtfXaH054Aohm/3fc/wg47R1oWA4VtfkFMPU7FE6bC9vXQE0fiGTxPWi3aEVGwxrj1Ty64ZhW7Zu3w2NvwwkTge7jM9934S0wqQxCFHduhvsPgIal+a3T+8Dsxld1hSP+AU3bIBEPnq97FRb+Nf3cSAWMb4Ow0vZm7Kfh9a9A0+b81uk6Gk6dHQTYSep89r4SVj0WHKszFWuA5y6C7atg4tXFqqxz2fhG+jG1AzxWS+1VVQ7BaBtmpe4f/sHcapHUPtX2D4L7d2wMPm8yGFGSJEmSJEmSJEmSJEmSJEnKWrStC5AkSZKSquoa3hetgl6T4diHS1cPdIxgtMZ1sOKh3Oc/cCDM+WkQirb0rtxC0bqMhGEfhJNeDG4UrOkd/J2mC7WqG9IyFG2XSBTGXBI+L9YAKx/Jvk7tFm87yJnlAAAgAElEQVRK3h5NkbVdUR28j6NVwd9bl+FBYFh1z/Q3hKYKFZv+W+h/JPTYByZ+EU54Klg/1+C7SATqB+cXitZcbV9D0fI19jNph2xs6hHaN2dFYveTkf+W2Z5Lbs9sXDHt2Ah/755dKFq/w5O3Dz0jtxoq63f//u09FU58Drrvvbt/4Akw4w0Y//ngPTjoFDjqHhh8cm77dSbRKtjrI9nNqR8a/J6sHQC9pwVBoCc8bdCO1JkNmQFH3gWDToK6wVA3KPO5r30Bti4uXm2dybu/Tz9m8AeKX4ek4ohWQb8jCrtmtyxCmyV1HNU9DEWTJEmSJEmSJEmSJEmSJEmScpTiLnZJkiSpDQ06Cd78bvK+itrgz74HwYSrYfYPS1NTfEdp9imm9a9AIp7fGq/8B2xfCeteyW7ePl+Dyd9KPSZaHf5zruoePm/QyRCpgEQsef+S22HIqZnVqdYSIaGARQvnSREsNvIjMObSIu2rsrD3f8CSO1MGhG1qCj8edG1+z3HdwMz2XPs8vP3rIFCsfkiGhRbYMx/Ofs6oTwTBgMsf2N3WfQKM+VRhaup7EJw6u3X7tJ8WZv3OZvJ3YP6fgsDO5iKVcNjNMPycNilLUjszZEbw2GXVU/DYDGjanH7u3XvDeVuLV1sxNTXAhplAAvoc1HZBtOtfTz+mbhBMuLL4tUgqnv2uhYePLNx63cYWbi1JkiRJkiRJkiRJkiRJkiRJkjqBaFsXIEmSJCXV73CoH9q6feiZEGl2GlvKsKt4SDhUe1Ko7+GtH8CKhzIbO/YyOOru9KFoEITDhImm6KvqBnt9NLx/xSPp91ZyiXh4mF6qv6+8pAi62BWMqI6r2xg46YWUr6+NsR6hfV2aB6NV98x835cuh9uHwutfhUQi83mFsG0JLLsn+3lV3YLj60F/gDGfhv1/Bic+A7V9C1+j8lfTG85eAZO+GhzLolVBwOtJzxmKJil3/Q+Hk1+ECVelHxvbBhuTBF6Wu3WvwH37wYMHw4OHwAPTYVt4gGpRzfpm6v6uY+CU16DHxNLUI6k4+h8BtRmGLKdT1RMq6wqzliRJkiRJkiRJkiRJkiRJkiRJnYTBaJIkSSpPkSgcenNwA+ku3cbBAb9qOa7fETDpyy3bRl9SnJoSHSEYral0e03+NlyYgAN/BUM+kNmcVOFn6Uy5Lrxv63ulDzrqKBKx8L5iBaNFUlyqRlKEpqnjqB8M+3w1tHtjU3gwWn11s9dIVRbBaLu8eS2seDj7efnY8EaOEyPBcXP0x2H69bD357ILg1PpVXWH/b4N5zXA+Ttg6nXQe1pbVyWpves+Hqb+EI66JzjOpDLz66WpqVASCXj+Utg8b3fbupfgpc+WvpblD8KSf6Yec9rbUNu/NPVIKq6+hxRmnQHHFGYdSZIkSZIkSZIkSZIkSZIkSZI6EYPRJEmSVL76Hw5nzIej7oLjHoUZs4KwnOYiEdjvWjjtnSBI7ZTXYfpvi1NPfEdx1i2lVCFXhTT4AylDjUL1PiD3PWv7wonPhvcvfyD3tTuzeIpAwGhVcfbsOro466p9iVaHdm1IEYzWIgMxVcheKgtvym1erhqW5zbPEDRJUnNDZsBp82Cfr4WPWfwPmP3j0tWUr3Uvw/pXWrcv+SdsXVy6OmZ9Gx49KfWYg35viK/UkRTqXHvcZYVZR5IkSZIkSZIkSZIkSZIkSZKkTsRgNEmSJJW36l4w5FQYcDRUhIfk0G00jDwfek0Obkaf+KXC15IqIKq9SDSVZp9cf/4TrkrevtfHMptf2z+874VLs69HqV8z0cri7Dnu35O3D55RnP1UnqI1oV0bUwSjNcWbPUnEQ8eltOjW3OblatuS7OdUdoG+hxa+FklS+1bbHyZ/C3pNDR/z6lWw+Z3S1ZSPtc+H9y27uzQ1LPgLzPp6+nFV3Ypfi6TSqSpAMNr038CA4/JfR5IkSZIkSZIkSZIkSZIkSZKkTsZgNEmSJHVMoy4q/JodIRgtnkEw2oBj8tujz8HQ77Dc5g48HnpMatkWrYExn8xsfk3f8L5tS2Dn5tzq6sxSve4jVcXZs9cU6HfEHntFYexnirOfylNFbsFoseZZaN3H57Z30+bSBsZkErayp9GfhMq6wtciSeoYDvtr6v67xpamjnytezm8b/1rxd9/8e3w7EcyG1tpMJrUoVTnGYw2+NTgs4xIpDD1SJIkSZIkSZIkSZIkSZIkSZLUiRiMJkmSpI4p1zCcVDpCMFoilrq/y0g45iGY8gOo6p79+v2PgmMfzP3G32gVHP84jL4k+Dsc/AE45n7od2hm89OFEWyel1tdnVmqML1oZXH2jETg6Hth3Gehx0QYeCIceQcMObU4+6k8RatDuzbGwoPRmmKJ3U/6HQFVOQYa3DUWEon04/K14Y3U/X2mw4QvwJTrguDJ3gfAlO/D/j8qfm2SpPar+7j058ZrXypNLflY+2J4X+Oa4u0ba4QXPgVPnpX5nCqD0aQOJd9gtNEXF6YOSZIkSZIkSZIkSZIkSZIkSZI6oSLdxS5JkiR1QPEdbV1B/hIpQq4ilbDf9yBaARO/AGM+Cf/old36R9yWfyBATR846He5zU0XyLb4Vti5CbqOhi7Dctujs0mkCASMVBVv36qucMAvire+yl+0JrRra6xLaF/zXDQqqmHK9+DFz7Rct/f+sObZ9DXMux7GXZZBsXlY9I/wvn2/Cft+fffziVcXtxZJUscy7jJ46wfh/cvvhz4HlK6eTDWshK0LoKYfbHorfFwxg9Fe+iy8m+U1SWXX4tQiqW3UDsx97oBjYfCMwtUiSZIkSZIkSZIkSZIkSZIkSVInYzCaJEmSlKl4ioCo9iIRC+874Unoe/Du51U9sl+/OssgtVJ787vBA2D0JXDgfwdBcAoXTxGmF/WSUkVUER6MFk9EQ/ua9jzMjf00dN8bltwBlfUw/FzoNQWW3Q+vfQk2vB5ew0uXQ91gGHZmlsVnYcVD4X1Di7ivJKnjG/Xx1MFoM78W/I4cfk7pakolkYC3fwWv/L/Ugc67FCsYbecWeO9/s58X8dxY6lAGnRC8r/c8HtUNgpEfgZ0b4Z3ftp4XqYSj7w1CmiVJkiRJkiRJkiRJkiRJkiRJUk7C7ySWJEmS2rsJVxd2vQ0zC7teWwgLGOg6pmUoGkAkAt3HZ7d+JJJbXYWUaZDQu/8ThC689QOY+wvYurC4dbVXqUIpDH9QMUXDgwRiVT3D++JJGgccDdN+CvtdG4SiAQw+GWa8Bqe8lrqOJ8+ChpXp683VlvnJ22v6Qa/JxdtXktTxdR8P036ResxT58JLV8DG2aWpKZUFN8DLn80sFA2KF4y2aQ7Etmc3p6IOuo4qTj2S2kZ1LzjkxpbXvX0PhQ/MhqnXwfTfwGF/g2izQOfeB8CZS1KGPEuSJEmSJEmSJEmSJEmSJEmSpPQMRpMkSVLHNewcoIBBXfP/AItvL9x6bSERS94eDQm4GnFh8WoplhEXZD727V/Ca1+Clz8H906B1U8Xr672Kr4zvC9aVbo61PlEw8MEYtGuoX1NyYLRUum1Hww/L/WY5fdnuWiG4jthe0jo2iE3FmdPSVLnMv6zMO6K1GPe/iXcNxUW/7M0NSUz/0Z47uPZzWlcC4lsf/FnYNOc7OcMOR0q6wpfi6S2NfICOGMhHPZXOOFpOP4xqO6xu3/Eh+D0d+HQm+G4R+GEp6BuQJuVK0mSJEmSJEmSJEmSJEmSJElSR2EwmiRJkjquvtPh0L9ATd+W7ZVdcg90eumy4tx8XyrxpuTtkZBgtElfgbGX7Q4o6rlf0JbM2Mvzr68QRnwIBhyb/bydG+DVqwtfT3uXCHnNQPjrRiqEivBgtHi0S2hfLJdD9MF/SN3fsCyHRVPY8h48fjr8tRpIJB9TP6Swe0qSOq8RaQJAAeKN8OTZEGssfj172rkpCCrOViIGT5wJa1/Mv4Y1z8EzH4F/nQTP/lv28w/6n/xrkFSe6gcHx9F+hyb/LKl+CIw8HwYcnfIaRpIkSZIkSZIkSZIkSZIkSZIkZc5gNEmSJHVsIy+As1fCmYvhgljw5zkbYcabUFHXcmzdEDjldeh/ZPh6DcthwxvFrbmYwkKuIhXJ26MVcOCv4NwNcNZymPEaTPrP4GfVXEUdjLm0sLXm4/Bbcpu35tkgsKi59hyEVwjxneF9uQYMSpmIVod2xaJ14X25vGUr6+Ho+8L7m7bksGiIhuVw1xhYelfqcXseZyVJylXfQ4JHJh4+qri1JLP0niCkOKe5dwU1r3429/2X3QcPHwnv/QVWPJj9/HFXQFXX3PeXJEmSJEmSJEmSJEmSJEmSJEmS1ILBaJIkSer4IlGoH7r7z2gFdB8LJz4Dg06GLnvBiAvg+Meg1+TWgWl7um8/eORY2PxuScovqEQseXu0MvW8ilqoGxh8XdkFTnoeRpwf/OwGfwCOfQR67VfYWvNR0yf3uXfuBbd0gyfPhbsnwl+r4b5psOKRwtXXnsRDwvQg/etGyke0JrQrFqkN7WvKNctw8MlAJHlfId//s74ZfizepaIWqnsVbk9JUucWicAxD2Q2du3zsHNTcevZ07J785sfa4C5P819/pyfpA4DTqeqW+5zJUmSJEmSJEmSJEmSJEmSJEmSJLViMJokSZI6r15T4Jj74Iz5cNhN0G1M0J4ijOf/rHwUHj4KmrYVt8ZCCwu5ilRkt079EDjs5uBnd/Td0O+Q/GsrtOHn5T63aQss/gdsmh0EGK1/BR4/HTbOKVx97UUiRUhEpKp0dajzqUgVjJaiL9dgNAgCH5NZ+zw0rs1j4ffFm+C9P6cfVzswCLGRJKlQqrrB6EsyG7vulcLvn0jAlgWw+mmIbW/Zt/nt/Ndf9Pfc61r1RH571/bPb74kSZIkSZIkSZIkSZIkSZIkSZKkFgxGkyRJkvZU0yezcQ1LYcUjxa2l0BKx5O2RytLWUQqjPlbY9WLbgrC0ziYsTA8g2gFfNyof0erQrkSKYLSmfILRKruG9839eR4Lv2/WNdC0Nf24vmUYNilJav8qu2U2blOBw4CbtsKTZ8Odo+Chw+G2gbDi4d39jWsKs08uIaZNWyC+I/24ab+Eqh7J+wadkv2+kiRJkiRJkiRJkiRJkiRJkiRJkkIZjCZJkiTtKdNgNIA3v1u8OoohERJy1REDrgadDL2mFnbNjW8Wdr32IOw1QwQiXlKqiKJVoV0xwoPRYnkFo3UJ73vj27DuVXjz+/DKlTD3v2DrwszX3rkF3rw2s7Ejzs98XUmSMlWVaTDa3MLu+9Z1sOT23c93boR/nQDLHgieFyoY7ZUrs5+T6d6jPgqH3AgVtS3b9/8pdB+b/b6SJEmSJEmSJEmSJEmSJEmSJEmSQnXA9ANJkiQpTzV9Mx+7Y23x6iiGRCx5e6SitHWUQiQCh94E90wo3JqL/g6H3Vy49dqD+M7k7SlCq6Rii0XrQ/ua8gpG65q6//79Wz6f+VU46m7of3j6te/dJ7Maeu4Lg0/JbKwkSdnINBht87zC7vveX5K3P3Yy7PUx2LmpMPssuAEO+VN2czIJRqvsBlXdYejpcPp8WPkoxLZD/6Og2+icSpUkSZIkSZIkSZIkSZIkSZIkSZIUzmA0SZIkaU/ZBKO1t3CoeFPy9kgHvTSo7lHY9RIxSCSC0LXOItHJXjMqH11HBcfjPQNLKuqJ1w4MnRbLKxitS3bjd26Eh4+A0+ZBtzHh4zbNha0L069XOxAOvbn9/W6RJLUPVd0zG7f+FXjuYpj/h+B5RT0c/ncYMiP5+KYGeOsHsOpxaNoctFV2gwFHw9jLYcu74XstuCHj8jPSuBZq+gTn7Av/Cgvf/7069jIYeFyS8RkEozUPlKsbBCMvLFy9kiRJkiRJkiRJkiRJkiRJkiRJklqJtnUBkiRJUtmp7p352Eg7C68JDbmqKG0dpVLVs/Brzvxq4dcsZ/GdydsNblKxRaIw5tOt20d/glgiPJivKZbHnpX1uc27ayxsfie8f/FtqefPeAPOWg5nLYOek3KrQZKkdKI1mY1rWL47FA0gtg0e/wAs+EvrsYkEPHoSvPFNWPUYrHs5eKx6DGZdA3eOKkDhWXjr+0FNs66BZy6EpXcFv4f/dTy8d3Pr8Y1r06/ZPBhNkiRJkiRJkiRJkiRJkiRJkiRJUtEZjCZJkiTtKRHPfGy0unh1FEMiJDEoEh4y1K5V1kHvA5L3jb08tzXn/ASaGnKvqb0JC9OLdtDXjMrL5G/BlOug5+Tgse83YdrPicUToVNi4V3pxUNe75m4ayw8cixsmd+6b9m94fNGXBCEodUNhEgk9/0lSUpn5+b85r/5ndZtS++G1U+Gz2nKc8/m6galHzP7R/C3GnjjW637nrkQmra1bGtck37NSoPRJEmSJEmSJEmSJEmSJEmSJEmSpFIyGE2SJEnaU++pmY+taGfBaGGhPx055Gryt1sH2E35ARz4X7mtF9sOKx/Nv672Yvvq5O2RqtLWoc4pEoGJV8OM14PHvl+HSJQUuWg0heQ/ZiSWZ+jhykfhocMh1tiyfcf68DlDz8xvT0mSMtVnen7zN81pGSy2fRXM/Gp+a2ZjwPGZjYvvDO+7b0rL51sXpl+vymA0SZIkSZIkSZIkSZIkSZIkSZIkqZQMRpMkSZL21GUv6D4hs7HtLRwqEZIYFKkobR2lNPhkOOFpGHcFjP0MHHUPTPxCfms2rilMbeUskYC3roOXLk/e35HD9FT2YvHc+tKKFOBjkoblsPjW3c8TCdi2OHz84Bn57ylJUiZ67w81ffJbY1cw2qxvwe1DYcPM/OvKVEU1jL44vzU2z4N1L+9+vmlu+jlh11CSJEmSJEmSJEmSJEmSJEmSJEmSisJgNEmSJGlPkQgc/MfMxkbbWzBaU/L2SAcPuepzABzwczjw1zCkWQjRpC/ntl5Vt8LUVc5WPQ6vfTG8v72FAqpDSRV+1pRPMNrQM/KY3MwzH4YXL4d7JsF9+8HOTcnHjb0cqroWZk9JktKJVsKhN0G0Jvc1Yg2w/EGY9Q2I7yxcbZmIVsO+10DPffNb5/4DYO2Lwdeb5qQfv3NzfvtJkiRJkiRJkiRJkiRJkiRJkiRJyorBaJIkSVIyfQ+Cg29IP669BYolYsnbIxWlraNcDD8XiGQ/L58wifbivb+k7o+2s9e+OpR4IrwvVWhaWt0nQI+JeSzQzLxfw8a3YMOs8DGTv1mYvSRJytSgE+HMRXDIjTD+89nPjzXAnJ8Uvq5MRKuhfiic+BwcfV9+az0wHWZ9C7a+l35sWMCpJEmSJEmSJEmSJEmSJEmSJEmSpKIwGE2SJEkK031c+jGJncWvo7mdW2D2j+DxM+DFy2DbkuzmJ5qSt3fWkKteU+DQm6CqR3bz4juKU085efd/Uve3t1BAdSipws+a8glGi0Tg6HuDY0Ox1fSDmj7F30eSpD3V9oe9/g2Gn5P93LvHw/IHCl9TJqJVwZ+V9TD4ZOi+d37rzfoGkCJtdZemLfntI0mSJEn/n737jo/sru+F/zmSthfvet3WvdtUY7BxsE1wgiFwSR5aKAkhIaSQkEuAkHvTHi6hPJc0SCMJISEO3HATjAOEJJRQQzHFlBgwLtjGhV23NdtXqzbn+UO7rHZ2yhlpRpqR3u/XSy/p/OpXs6NBZ/DvIwAAAAAAAAAAAKAjTrIDAEAzK45pP2Zqf+/rOKisJf/5o8n9/3mo7c53J0+5Lll7ZrU1ak2C0ZZyyNXpz09OfU7yzdcn33xttTmLPRitrBAQcTCYAhbAVIunaKvQtErWnJY89WvJ3ruT5Ucly9YnYw8me++cDpIZWp6MrEtu+N/JDW+Y/T5zDXMBgLkaXr3QFXRmaPnh16tOTHbd1Pt9T3567/cAAAAAAAAAAAAAAAAAvm8Jpx8sbUVRnJ/kgiQnJ1mVZH+S+5PcmuT6siz3zmHtZUkuS3Jqks1J9iTZmuRrZVneMbfKAQDmUb8Fo9159eGhaEky/r3klr9IHv2mamuUU43bi+G51TbohoaTs168OIPRtnww+fqrk313Jkc9LHns3ybrz2k959a/br/uUg7TY8G1Cj+bczDaQWtOOfT1ik3THzNd8Ppk5fHJV142u/VPeOLsawOAbhgZ8GC0NafNz76n/9T87AMAAAAAAAAAAAAAAAAkEYy2pBRFsSHJy5O8ONOhZc1MFUXxX0muKcvy9zpY/9gkr03yvCRHNxlzbZI3l2X5z5ULBwBYKMuOmj583yoEaz6D0W76o8bt932i+hrlZOP2IbcGWXNqcvYvJbe+tf3YQQlG23FD8plnJLWJ6ev7P5185LHJ0+9Ilh/VeM5d1yTX/XL7tZdv7FqZ0Kla2byva8FoVZz335PxB5Nv/G7nc89+SdfLAYCODC9wMNrQiung0dGtFccvO/z6tJ9Ibr+q+3XNdOLTkmMu7e0eAAAAAAAAAAAAAAAAwGGkHywRRVE8J8lfJdlUYfhwksckOTlJpWC0oiiemuTvkxzXZuilSS4tiuJdSV5SluXeKusDACyIokiOvijZdm3zMfMVjFaWyfe+0rhv+391sM5U4/ZiuPOaFqOL/zI59tLk1rclD3y2+bhBCUb7xv86FIp20MSO5O5rkrN+7vD22kTyhRcnd/xDtbVPeGJ3aoRZaBV+NtnkZa5nHvGaZMMjky0fSEbvTfbekey6qfWci96SrDphXsoDgKZGFjAY7bxXJme8INl4YXL7O5L7Pp6sPnX6d/AHPtN4ztDyw6+PvyJZd26y+5bu13faTyTHPT458+eSIfdKAAAAAAAAAAAAAAAAMJ8Eoy0BRVG8JsnvNui6K8ktSR5IsjLJ5iSPSLKmw/WvSPL+JDNPppVJvprk9iQbklyY5JgZ/S9Isr4oimeUZdniSDsAwAI78amtg9Fq8xSMNrGrdf/4zmT5Ue3XqU02bi/cGiSZDsM744XJKc9OrtlwZKjYQYMQjDa5L7n7vY37vvjzyfE/lKw9M9lze7L1w8mXf6X62sc/MTnv5d2pE2ahVTDaVK2cv0IOOuWZ0x8H3fKXyVdf0fg15PQXJOe8dP5qA4BmhhcoGO2kH0se8+ZD12f97PRHknzpl5sHoxXLDr8eWpZc8vbkY4/vbn2P+r3kob/R3TUBAAAAAAAAAAAAAACAyqQfLHJFUbwqR4ai/WOSN5Zl+Y0G44eSPC7Js5P8SIX1T07y3hweiva5JL9QluWNM8atSPKSJH+U5OAJth9L8oYkv13x2wEAmH8rT2jdPzUPwWhTY8kn2/xqtvfOZPkj269VNglGG3JrcJiR1cnmpyZbPtC4fxCC0T799Nb9HzgrOfNFyZ1XJ1P7qq/7xE8lx146HUQBC6RV9tnUAuSiHeHclyabn5w8cG0ytTcZWj4dcHn0Rcmxl0+HMALAQhteuTD7nvEzzfuGV7ToW35k23GXJz++I7n9quSrr5x7bUmy6sTurAMAAAAAAAAAAAAAAADMivSDRawoiguS/N6MpokkP1mW5TXN5pRlWct0sNnniqKo8vx4bZKNM66vTXJlWZaHJYSUZTmW5M+KorgryftmdP1aURR/XZblnRX2AgCYfyOrW/ePbUsm9iTL1vauhruuTh78Yusxe+9INlYJRptq3F4Md1zWovcDVyX/vKlx33wE4s3F/geSez/Wftztf9/Zuhe/NTn+CbMqCbppqta8b7LJy9y8W3f29AcA9KuiSDY8ItlxxN/PSIqhpGzxP7j1hpYnx12R3Psf7cee8szW63Tat/yo5PxXJJsuST56afv921m1ee5rAAAAAAAAAAAAAAAAALM2tNAF0BsHQs3+LoeH372kVShavbIsJ9vscU6Sn5nRNJ7kRfWhaHVrvj/JO2Y0rUjymqo1AQDMu+E2wWhJ8h+XJJOjSVn2poab/qT9mL0Vc2ZrTX7Fq5SJu8SsODo5rkkI2NdfPb+1dKpKKFqnVhybnPHC7q8Ls9AqGK1VHwBQ56xfPLJt81Or3QfN9OM7kkf8r/bjHvI/p0PXmhle2byvWNZ67WMuSTY+qn0N7aw6ae5rAAAAAAAAAAAAAAAAALMmGG3xek6SR8+4/nhZlld1eY+fTDI84/q9ZVl+u8K836+7fm5RFC1OvAEALKCRCoEAO7+VXL06uWZD8pnnJPvv724N27/afsyDX2w/Zu9dyX0fb9xXDDduX+qGljfv6/a/czftv7e76534o8lTrqv28wDzoNYih3JSMBoAVHfef08uekuy4YJk9anJ2b+UPP6aZHJP9TVWn5qMrEo2Xth+7KrNbfpPbN7X6nfzZDpw7Yc/lpz+wmTlCcnRFyWX/mPyzK3Jyc9IVh7fvr7Vpybrzm0/DgAAAAAAAAAAAAAAAOiZkYUugJ55Sd31/+7BHs+su64UvFaW5Y1FUXwxySUHmtYkeXKSD3SxNgCA7hheVX3sxK7k7muSB7+UPP070wfz56o2UW3cHe9KfuAdyVCTgLOpseSjlzWfX7g1aKhV+MKd707Oe1nr+VNjyc4bkvXnz2+o2Ni2ua9x/quSR//R3NeBHphqEX7Wqg8AaODcX5n+mKuR1cmKY5OxB5qPaReMtv785n2Tu9vXsGJTcuk7j2z/wfcd2faddyWf/6kZDUXyiP/V/J4KAAAAAAAAAAAAAAAAmBddSGqg3xRFcXaSJ8xouiPJJ7u8xwlJLpjRNJnkcx0s8am666fOtSYAgJ6YTZjVvruS9x6XTI3Pff89d1Qf+8Bnmvdt+UCy77vN+x3+b6Js3rX71tZTb39ncs2G5MOPSa7ZmNz4pu6W1spcg9Eu/b/JhX/YnVqgB1qFn00KRgOAhfO4BqFkM7UNRjuved/UaOf1tHLGC5InfyE582eTc34leeInkrN+rrt7AAAAAAAAAAAAAAAAAB0bWegC6Ikfqrv+eFmWLRIdZuXhdddfL8tybwfzr627ftgc6wEA6I3hWQSjJcnYg8k3X59c8Pq57T92fz91sfoAACAASURBVPWxD3wuOf6Kxn0PXtd67u7bqu+zlLQKX2gVmrf9+uQLP3PoujaefO3Xkw2PSDY/uXv1zbTzW8k9H03Gv5fc+rbZr/OI1yWn/0T36oIemGpxh9sqNA0AqOiclybf/svO522of9u4ztqzWvevPCFZtiGZ2HFk37GXd15PO8dcMv0BAAAAAAAAAAAAAAAA9I2hhS6Annhs3fXnk6SYdmVRFFcVRfGtoih2FkWxtyiKO4ui+FhRFL9ZFMXpFfd4aN31rR3WWJ+8Ub8eAEB/aBV+1c7d75n7/hO7q4/9+v+b7Pr2ke1lmdz4h63nHuXXsYYm9zXvG17VvO+772/cfvf75lZPM7f+bfLBRyZffUXyzdfNYaEiOeOnulYW9EqtRfjZxNT81QEAi9bJz6g+dt3Zh75efXJy/A83Hnfs45PVJ7VeqyiSs3/+yPY1pyUbH1W9JgAAAAAAAAAAAAAAAGBgCUZbnC6qu77xQODZx5J8NMmLkjwkyfokq5OcmuSJSd6Y5JaiKP6iKIp2CSBn113f1WGNd9ZdbyqKYmOHawAA9N7wHILR9twxHUrWiS3/nnz+RckXXpxs/Ugysauz+f92bvLZ5yYfvzL52v9Mdt+WbPtC+3nrz+9sn6ViapbBaN/43cbtt751TuU0tG9r8qVfSMoupEFdfnWy9oy5rwM9NtXipXX/xPzVAQCL1uYnJY9+c7X7oYf8+uHXj3tncvTFh7cd/Zjksn+qtvfDX5Oc+pxD1+vOSa74cFL4vzMAAAAAAAAAAAAAAABgKRhZ6ALoic1116uTXJfkmApzlyV5aZLHFUXxtLIs72kybkPd9f2dFFiW5Z6iKPYnWTmj+agk2ztZp15RFMclObbDaWfNZU8AYJEbmUMwWm0smdybLFtbbfy335pc98uHrm+/Kjn2ss73ves905/v+3jynXckx/5g6/HrzkmOe0Ln+ywFky2C0YaWzV8drbz/pO6s89y9c3u+wzyaqjXv2zs+f3UAwKJ2/iuTs38p2XNbsuvm5LM/fuSYtWclxz/x8LbVJyVP+dJ0UPS+u5PVpyRrT6++77K104G9Yw8mY9uSdecmRTGX7wQAAAAAAAAAAAAAAAAYIILRFqf60LKrcigUbW+Styb5UJLvJlmT5IIkL05y+Yw5Fyb556IonlCW5USDPerTPUZnUedoDg9GWzeLNeq9NMlrurAOAMC04VVzmz/+YLVgtLKWfOO1R7Y/8Lm57b///uTua5r3H/v45HF/Xz28bamZahGMdvOfJee/osGc/b2rp96DX57dvGIkSS0ZWZcc/0PJRW8RisZAqZXN+27tKLYbAGhpZFWy4eHTH497Z/L5nz7Ud8KVyQ+8Ixle3nju2tM7C0Srt2LT9AcAAAAAAAAAAAAAAACwpAhGW2SKoliRZEVd88kHPn8ryVPKsry7rv+rSa4qiuJVSf5oRvvjkvxGkjc02Ko+OWM26Q+jSTa2WBMAYOEVQ3ObP7YtWXNa+3EPfjnZf+/c9pqNJ316/vccJJMtgtH2fie57e+Ss158ePu1L+xtTTPd94nOxj/rvmTlcb2pBebRVK11/7uvq+V5F8/x9RsAONwZL5z+AAAAAAAAAAAAAAAAAOghp4QXn+Em7TvTOBTt+8qyfFOSP65rfmVRFFUCy8qK9c11DgDAYNm/rdq4sft7W0cjF75p/vccNGWb9KXb/vbw6/3bku++t/WcqfG51TTTDW+sPnb5xmTFsd3bGxZQu2C0t3/W7SYAAAAAAAAAAAAAAAAAAAwiwWiLTFmW+5I0OiL+5lahaDO8OtMhagcdneSpDcbtqbteVa3ClnPq15yNv0zy8A4/nt6FfQGAxWz9ebOfu++uauPKBQjxWX3S/O85aC78g9b92z5/+PWuG9uHqX38h5LRe+ZWV5LsvTuZ2FF9/KrNSVHMfV/oA7U2L5kfu3F+6gAAAAAAAAAAAAAAAAAAALpLMNritLdB2zurTCzLcm+S99Y1X9FgaF8Go5VleX9Zljd08pHktrnuCwAscqc+/8i25Ucnz96WXPL25NJ3JcvWN577pV9Mtn+9/R7l1NxqnI1VgtHaOrFRRnALE7vbj9l2bfLhxyQPXDu7mg667e2djT/uirntB31kqk3+IAAAAAAAAAAAAAAAAAAAMJhGFroAemJHknUzru8ry/KODuZ/IcnPzrh+SIMxO+uuj+1g/RRFsTZHBqPt6GQNAIB58/DfSfbcntzxD0nKZNWJyRM+kKzYlJz14ukxt7wl2fb5xvO/+PPJeS9Ptv57suKY5IyfTjZddPiYhQhGW3vm/O85aNaclgyvTKb2Nx9TlklRTH89WSEYLUlG70k+fkVy7suSYjjZe2dy/BXJWb+YDA1XW+Obr6027qCzfq6z8dDHBKMBAAAAAAAAAAAAAAAAAMDiJBhtcbolySkzru/pcP7WuutNDcZ8u+76tA73qB//vbIst3e4BgDA/Bhallz6zuQxfzwdaHXUQ5Ni6PAxI+saz02S712XfP6nDl3f9jfJE/41OeHKQ21To92tuZ2jHp6sPnF+9xxUpzw7ueNdzfvLyaRYNv31RMVgtCSpTSQ3vfnQ9V1XJ/d9Mrns3YeC1pr5+muq75Mkpz43OfrRnc2BPlYr24/5yA1lfuRhbX6WAAAAAAAAAAAAAAAAAACAvjLUfggD6Ia667EO59ePX9lgzI1112d3uMeZddff6nA+AMD8W7Ep2fDwI0PRkmRZi2C0elP7k088KXnfycmXXzZ9Pbm3e3VWsfnJ87vfIBta0bq/Nn7o68kOgtEaues9yc5vNu67+/3JBx+V/N8i+ebrmq/x1P9KHvNnydqzkpXHJee9Irn4r+ZWF/SZqVr7Ma9+f4VBAAAAAAAAAAAAAAAAAABAXxlZ6ALoia/XXW/ocH79+AcbjKlPa3hkURSry7LcV3GPy9qsBwAwWDoJRjtodEtyy1uSXTdPh1h14gfekdz8p8n2r3a+b5Ic9bDZzVuKhpa37p8aS0bWTH89sWvu+9329uQxf3J42z0fTT777KRsE/S04YJk44GP814291qgT1UJRvvynUmtVmZoqOh9QQAAAAAAAAAAAAAAAAAAQFcMLXQB9MSHkpQzrs8simJlB/MfXnf93foBZVnek8MD2EaSXN7BHlfUXX+og7kAAP1nZBbBaAfd+9Hk1rd2NmfFMclZL579nuvPm/3cpaacaN1fGzv09cTuue9370ePbLv1be1D0ZLkjJ+e+/4wAKbK9mOSZNue3tYBAAAAAAAAAAAAAAAAAAB0l2C0Ragsy61JPj+jaVmSJ3awxFPqrj/TZNz76q5/tsriRVGcn+SSGU17k/xHtdIAAPrUsjkEo83GimOSM180y8lFsv4h3axmcZscbd0/NSMYbbILwWg7v5WUdalPd19Tbe65L537/tDnyrI84kekmXt29rYWAAAAAAAAAAAAAAAAAACguwSjLV5X1V3/WpVJRVE8PsljZzTVknywyfB3JZmacf2soijOqbDNb9RdX12W5f4q9QEA9K1l6+d3v5XHJCNrkif8W+dzT3xasuLo7te0WE21CUarzQhGm2gTjHb0Y5Infbb9nl/8+aQ21X7cTFd+Jhle2dkcGEC1iqFoSbJ1R+/qAAAAAAAAAAAAAAAAAAAAuk8w2uJ1VZIbZ1z/cFEULcPRiqI4LkcGql1dluVtjcaXZfntJO+Y0bQ8yd8XRdE0jaEoiqcnedGMpvEkr21VFwDAQBhZN7/7Ld904POGzude8rbu1rLYtQtGm6oYjLb+/OTyq5NjL0tWbW695u1/l9z+9uTrr0k+/az2NT76T5LjLm8/DhaBqVr1sffs7CBFDQAAAAAAAAAAAAAAAAAAWHCC0Rapsiynkrw8ycwj428qiuJPi6LYWD++KIork3wuyVkzmrcn+e02W73mwLiDLk3ysaIozq9bf0VRFC9L8p66+W8qy/LONnsAAPS/opjf/Zatn/48vKqzeatPbh/KxeHaBaPVxg99Pf5g4zGnPjd52reStWdOXxfL2u/7pZck33xd8t33tR535ouT81/efj1YJGodZJ1t3dm7OgAAAAAAAAAAAAAAAAAAgO4bWegC6J2yLD9aFMXLk/z5jOZfTfLLRVF8IcmWJKuSPCrJaXXTx5P8RFmW32mzx3eLonhWko8kWX6g+bIk3yqK4itJbk9yVJJHJzm2bvq/JXl1x98YAEA/GmsSiNUrB4PYhld3Nq9dyBdHahuMNpbc9KfJ7X+X7Ph64zHH//Dh4XlDyxuPm43jfrB7a8EAmKq1H3PQPYLRAAAAAAAAAAAAAAAAAABgoAhGW+TKsnxLURRTSf4oycHUjGVJHt9i2n1JnlWW5bUV9/hUURTPTPL3ORR+ViS56MBHI/+Y5BfKspyqsgcAQN9bqHCqkQ6D0c791d7UsZid8uPJg19q3n/DG5Ot/956jfXnH3599i8k//Ubc68tSTb/SHfWgQHRSTDavTvL3hUCAAAAAAAAAAAAAAAAAAB03dBCF0DvlWX5V0kemeQfkuxuMfTeJL+b5LyqoWgz9vhgkocneWuS7S2GfiHJj5dl+ZNlWe7tZA8AgL626ZJkZN387LVs/aGvVx7X2dxTntXdWpaC057Xur9dKFqSrD+vbs3nz76emTY/NVl1QnfWggFR6yDrbOuO3tUBAAAAAAAAAAAAAAAAAAB038hCF8D8KMvytiQvLIpiVZLLkpyc5IQk40keSHJ9WZZfn+Me9yf55aIoXn5gj9MO7LE3yZYkXyvL8jtz2QMAoG8Nr0gu+Zvk2hck5VRv97rwTTP2XVl93kP+R3LUw7pfz2K35tTkgjcm1//W7OYv25CsPL7Bmv9fcv3vzK22i98yt/kwgKZq1cfes7N3dQAAAAAAAAAAAAAAAAAAAN0nGG2JKctyNMnHerzHeJJP9nIPAIC+dNrzko2PSr70S8n9n+rNHsOrk1OfXX384/852f3t5NjLk2MuTYqiN3Utdg/7zdkHox3/hMaP+8N+OznhSdPPl+1f7XzdTY9N1p45u5pggHUajFaWZQqvfQAAAAAAAAAAAAAAAAAAMBCGFroAAABYVNafl1zwht6svWx9cvl7kuUbq8855VnJQ38jOfYyoWhztfrk2c3b/NTmfZsuTp706WRoeefrPnSWQW0w4Gpl9bETU8n4ZO9qAQAAAAAAAAAAAAAAAAAAumtkoQsAAIBFZ/mmuc0fXp1c8W/JxguT5RuS0XuTfXcnRz08GVl15PgVxyZjDxzZvvqUudXB4WoTs5u37qzW/SNrkrVnJbturL7mpkuSk35sdvXAgCs7CEZLktGJZMWy3tQCAAAAAAAAAAAAAAAAAAB019BCFwAAAIvOimPaj9lwQfO+/3Z9cvwPTYeiJcmqE5JNFzcORUuSR76+cftDfr19HVQ3tm1281ad2H7MU75ScbEiOe0nk8vfnQwNz64eGHC1ToPRxntTBwAAAAAAAAAAAAAAAAAA0H2C0QAAoNuWb2w/5ke+lGx+yuFtw6un29ed3dl+pz03WXfO4W1rz0xOe35n69DapsfObt6qk9qPGVmVnPHTrccMrUh+Yiq57F3JmtNmVwssAh3momV0oidlAAAAAAAAAAAAAAAAAAAAPSAYDQAAum1oODnxv7UeM7w8+cF/SS54Y3Li05IzX5Q86TPJpos732/5xuRJ1yYP+R/JCVdOf77yM8nK42ZVPk0c/8Ozm7dsfbVxJz+jdf+KTUlRzK4GWERqtc7GC0YDAAAAAAAAAAAAAAAAAIDBMbLQBQAAwKL0qN9Ltn6wcd9RD5/+PLw8edhvdme/lcckF/5Bd9aisfNfOf1vuv1r1edseGT1MLPNT05SJCkb9y/fWH1fWMRqTX5Emhkd700dAAAAAAAAAAAAAAAAAABA9w0tdAEAALAobXhE8v/c1rjvlGfNby10x4pNyZX/2dmc03+q+tiRNcnGC5v3Lzuqs71hkeowFy2jEz0pAwAAAAAAAAAAAAAAAAAA6AHBaAAA0Ctrz0ye+KnDA61OeXbysN9asJKYo2Xrqo8982eTc3+ls/Wf8IHmfa1C02AJqdU6G79fMBoAAAD0jU/cVOZX/6mWX39PLV+8vdP4cwAAAAAAAAAAAABgKRhZ6AIAAGBRO/4JybPuT773lWT1ycmaUxa6IuZqeHUyta9x3+YfSR7x2mTVCcma0zpfe/VJybkvS27588Pbi+HkjJ/ufD1YhDo9Mj063pMyAAAAgA79zWdqecn/OXRn/+efKPPuXxzKMy4sFrAqAAAAAAAAAAAAAKDfDC10AQAAsOgNL0+OfZxQtMXiob/ZuH3FpuTyq5NjLpldKNpBj35Tct4rptdLkg2PSH7w/ckxj539mrCI1DpMRhud6DRKDQAAAOi2qVqZ33nf4ffoE1PJq/+ltkAVAQAAAAAAAAAAAAD9amShCwAAABgoZ/5McutfJaP3HGpb/5DkKdclI2vmvv7QsuQxf5w8+s3J1Ggysnrua8IiUuvwvPToRG/q6Gej42W270uOW5eMDBcLXQ4AAADkc7cm2/Yc2X7D1mTrjjInbnD/CgAAAAAAAAAAAABME4wGAADQiTWnJk/6XHLTHyc7vpFsujh56G92JxRtpqIQigYNlB2OHx3vSRl9648/Wsvr/q3MztFk81HJX79wKD/6SIfLAQAAWFh3Ptj8jn7XaHLihnksBgAAAAAAAAAAAADoa4LRAAAAOrX2jOSiP1voKmBJqnWYjDY60Zs6+tG/Xl/mVe859ADdszN53l/XcuPrhnLqJuFoAAAA9KepTlPQAQAAAAAAAAAAAIBFbWihCwAAAACoquw0GG28N3X0o2u+cuSDMzqR/OV/OmEOAADAwmp1Z7pvCd27AwAAAAAAAAAAAADtCUYDAAAABkat02C0id7U0Y+uu6Pxg/MHHxaMBgAAwMJqFXS+d2z+6gAAAAAAAAAAAAAA+p9gNAAAAGBgdBqMtm+8N3X0o5vubd63e79wNAAAABbO/hbB5YLRAAAAAAAAAAAAAICZBKMBAAAAA6PsMN9r+97e1NGP1qxo3reUHgcAAAD6z54W4WdLKdQcAAAAAAAAAAAAAGhPMBoAAAAwMGodBqNt29PhhAG2alnzvt0tDqADAABAr+1tEX62d3zp3LsDAAAAAAAAAAAAAO0JRgMAAAAGRtlxMFpv6uhHy0ea9+0anb86AAAAoN7eFoHdrfoAAAAAAAAAAAAAgKVHMBoAAAAwMGqC0ZoaLpr37d4/f3UAAABAvVbhZ/vG568OAAAAAAAAAAAAAKD/CUYDAAAABoZgtObGJpv37RKMBgAAwAJqFYzWqg8AAAAAAAAAAAAAWHoEowEAAAADo+wwGG3naDI+2eGkAdUqGG33/qXxGAAAANCf9o41vy/dOz6PhQAAAAAAAAAAAAAAfU8wGgAAADAwarPI93pwT/fr6Eetg9Hmrw4AAACot69F+FmrPgAAAAAAAAAAAABg6RGMBgAAAAyMchbBaDtGu19HvynLsmUw2i7BaAAAACygyVrzvomp+asDAAAAAAAAAAAAAOh/gtEAAACAgVGbTTDavu7X0W8mp1qHxu0WjAYAAMACanXPOikYDQAAAAAAAAAAAACYQTAaAAAAMDBaBaONNHmXYykEo41Ntu7fJRgNAACAPjVVW+gKAAAAAAAAAAAAAIB+IhgNAAAAGBhli2C0jWsat+8YbTFpkWgXjLZXMBoAAAALqNWd+aRgNAAAAAAAAAAAAABgBsFoAAAAwMCoNTlJXRTJhlWN+3bs6109/aJdMFq7fgAAAOilVkHnk1PzVwcAAAAAAAAAAAAA0P8EowEAAAADo9lB6qEi2bC6cd+O0d7V0y/aBZ/tn2hxAh0AAAB6rNVd6WSzFHQAAAAAAAAAAAAAYEkSjAYAAAAMjGZnpYskG1Y17tuxr2fl9I3xtsFo81MHAAAANNIs6DxJJqfmrw4AAAAAAAAAAAAAoP8JRgMAAAAGRrNgtKGhZMPqomHfUghGG2sXjNamHwAAAHqpVTDaLffNXx0AAAAAAAAAAAAAQP8TjAYAAAAMjGYHqYeK5KjVjft2jvaunn7RNhhtYn7qAAAAgE7dfF+ydUeL5DQAAAAAAAAAAAAAYEkRjAYAAAAMjFqTc9JFknUrG/ft3r/4D1ePtQk+E4wGAADAQmp3Z37NVxb/vTsAAAAAAAAAAAAAUI1gNAAAAGBgNDsmPTSUrG8ajNazcvrG+FTrfsFoAAAALKSyTe7ZK94tGA0AAAAAAAAAAAAAmCYYDQAAABgYtVrj9iLJuibBaLuWQDBas8flIMFoAAAALCSxZwAAAAAAAAAAAABAVYLRAAAAgIFRa3KSeqhoHoy2ewkEo021OWE+KhgNAACABVRKRgMAAAAAAAAAAAAAKhKMBgAAAAyMZueoh4aS9Us4GK1Wa92/XzAaAAAAC0gwGgAAAAAAAAAAAABQ1chCFwAAAABQVbMAsCLJupVFGkWn7VoCwWhTbQ6YD3ow2te/W+aNHyzzlbvKDBfJRacXef3Ti5x+TLHQpQEAAFCBXDQAAAAAAAAAAAAAoCrBaAAAAMDAaHaQeqhI1q1s3Dc+mYxPllk+snhDtJoFxh00WUsmp8qMDA/eY3DjPWUu//1a9owdarv5vjIfuaHMja8byqa1g/c9AQAAAAAAAAAAAAAAAADQ2NBCFwAAAABQVa1sHI1WFMn6JsFoSbJ7f48K6hNTzRLjZhib7H0dvfAXnywPC0U7aNue5E8/XuEbBwAAYME1uZ0HAAAAAAAAAAAAADiCYDQAAABgYNRqjduHimRdi2C0XYs9GK3J4zLT/one19EL197W/PT8e7/qZD0AAMAgcPcGAAAAAAAAAAAAAFQlGA0AAAAYGM0OUrcNRhvtSTl9o1a2P2I+iMFotVqZm+9t3v+te5Jv3+d4PQAAQL+rcNsKAAAAAAAAAAAAAJBEMBoAAAAVPbC7zJs/WsvvvK+WD33DaVYWRq3JU68okg2rms+7b1dv6ukXU7X2YwYxGO3u7clom7r/5XqvRwAAAP1OMBoAAAAAAAAAAAAAUNXIQhcAAABA/7vzwTKX/34tW3YcbCnziiuLvPm58raZX80OUg8VybKRIsetS+7ffWT/1p1lkqKntS2kZoFxM7ULGOtHtz/Qfsxnbinz60/ufS0AAADMXpVctInJMstGFu+9OwAAAAAAAAAAAABQjRPsAAAAtPWGfy9nhKJN+9OPl7n+7irHWqF7mgWAFQfOTZ+4oXH/lu29qadfTNXajxmf7H0d3bZvvP2Ym+7tfR0AAAD03iAGegMAAAAAAAAAAAAA3ScYDQAAgLY+d+uRaVRlmbzxQ4LRmF/NgtGGDgSjndQsGG1H4/bFotnjMtP4VO/r6LbJCoFvt29Lxie9FgEAAPSzssJtW5VwbAAAAAAAAAAAAABg8ROMBgAAQFs33du4/eovCyNifjU7SH0wGO3EDUXD/q07FvdzdapCgNj4ZO/r6LaJCmFuU7Xktgd6XwsAAACzV+WufHSi52UAAAAAAAAAAAAAAANAMBoAAAAwMGpNTlIXB/LQNh/VuH/bnt7U0y8WbzBatUC7Ox/scSEAAADMSbOg85l27+99HQAAAAAAAAAAAABA/xOMBgAAwJzs3l8tuAi6odlB6qEDwWhHrWrcv2esN/X0i2aBcTONT/W+jm6bqFjzlh1ehwAAAPqZYDQAAAAAAAAAAAAAoCrBaAAAALRUtjm5es/OeSoE0jwArDgQjLZ2ZeP+xX64eqrWfsz4ZO/r6LbJisFoW3f0tg4AAADmpkqc9a7RnpcBAAAAAAAAAAAAAAwAwWgAAAC0NNYmTOkegUTMo2Y5fUMHgtHWrWjcv9iD0ZoFxs00NlnlGHp/magYjLbF6xAAAEBfa5O7nyTZOTp4960AAAAAAAAAAAAAQPcJRgMAAKCl0fHW/ffsdGiV+dMsAOz7wWgri4b9e8Z6VFCfmKq1HzPeJuSwH1UNRrtnh9chAACAQbdrkYeaAwAAAAAAAAAAAADVCEYDAACgpdGJ1v337Z6fOiBpHoxWHMhDW7uicf/+iWRyavGGZ1UKRqsYMtZPqgajbdnR2zoAAACYmyp35ILRAAAAAAAAAAAAAIBEMBoAAABtjI637t81Oj91QJKUTU5SDx0IRlu3svnc3Yv4gHWzwLiZxid7X0e3TVYIfEuSrYLRAAAA+lqz+/mZvMcEAAAAAAAAAAAAACSC0QAAAGhjf5swpV2LOGyK/tMsAOxALlrLYLQ9Y10vp29MVQgQG5/qfR3dNlGx5vt2JxOTFU7ZAwAAsCAqBaN5jwkAAAAAAAAAAAAAiGA0AAAA2hgdb92/a3R+6oAkaXaOeujAOxxrVzSfu31f18vpG80C42YabxNy2I+qBqOV5XQ4GgAAAP2pSpS195gAAAAAAAAAAAAAgEQwGgAAAG2MTrTu371/fuqAJKnVGrcPFdOf161sPvcPP1LlGPZgmmryuMw0iMFokxW+r4O2bO9dHQAAAMxNWeGWfNfo4r1vBwAAAAAAAAAAAACqE4wGAABAS6PjrfsdWmU+1Zo83Q7komXNiqQoGo/5/G2L97na7HGZaWwAg9EmpqqP3bqzd3UAAAAwN1XuyHcJ3wcAAAAAAAAAAAAAIhgNAACANkYnWvc7tMp8anaQeujAOxxFUaRsMmjZcE9K6gtTtfZjxjsIGesXnQSjbduzeIPvAAAAloJdowtdAQAAAAAAAAAAAADQDwSjAQAA0NLoeOuwIcFozKdakwCwYsbXTzy/8Zgdi/iAdaVgtMne19FtnQWj9a4OAAAA5qZZiPlM3mMCAAAAAAAAAAAAABLBaAAAALSxv02Y0q5FHDZF/2l2jnpoRjLaK65s/HbHjn3dr6df1CocMB/EYLRJwWgAAACLQpVgtJ3eYwIAAAAAAAAAAAAAkowsdAEAAAD05I0k1wAAIABJREFUt7GJ1v279s9PHZA0DwAbmpGFtmF14zFjk8n+iTIrlxWNBwywqVr7MeMdhIz1i4kOan5QMBoAAEDfqpCL5j0mAIAOFEXx6CTnJDnpQNOWJLeUZfm1hasKAAAAAAAAAAC6QzAaAAAALTULojpo12hSlmWKYvGFTdF/ak0CwGY++5oFoyXJ9r3J5g1dLakvtPs5TZKJyd7X0W2THQWjVTlmDwAAwEIoK9yy7R1Lpmplhoe8xwQALJyiKM5McnGSiw58fnSSdTOG3FmW5ekLUFqKoliW5FVJfj7JWU3G3Jrkb5O8uSzLNn/+CAAAAAAAAAAA+pNgNAAAAFpqF7g0WUv2TySrls9PPSxtzZ6OM89Mb1jVfP6O0cUZjDbVJDBuprEBDEab6CAYbdue3tUBAADA3FSNst69v3XgOQBALxRFcUWS38p0GNrRC1tNY0VRnJPknzId1NbK2Ul+L8lziqJ4flmWt/a8OAAAAAAAAAAA6DLBaAAAALTULhgtSXaOCkZjfjR7PhYzg9FaHKDesa+79fSLKj+n45NVj6H3j8kKgW8HCUYDAAAYfLtGBaMBAAviUUmevNBFNFMUxQlJPprktLquW5PckKRI8rAkZ83oe0yS/yiK4gfKsrx/XgoFAAAAAAAAAIAuEYwGAABAS1MVgol27U9OOKr3tSx27/piLVdfV2aoSJ7/2CLPu3hooUvqO2WTbK+hGcFoq5cnI0ONQ7UWazBalZ/T8ane19FtE1PVw9wEowEAAPSvZvfz9XaO9rYOAIAOjSX5bg4PHJtXRVEMJXl/Dg9FuyfJi8qy/I+6sU9JclWSEw40nZHkfUVRXF6WVX8jAwAAAAAAAACAhScYDQAAgJZqFY5J7HJodc5+/8O1/NZ7Dz3Y/3J9ma07annlk4SjzdTs+TgzGK0oimxY3Tgo695dZZLiyI4BVyU/bP9E7+votokOwtx2jiYTk2WWjSy+f18AAIBBVzWGY9f+3tYBANDCRJIbknw5yXUHPn8jyWVJPrmAdb0gySUzrr+X5NKyLO+oH1iW5YeLorg0yVeSbDzQfGmS5yX5px7XCQAAAAAAAAAAXeN0NQAAAC1VCkZzaHVO9k+U+YMPH/lAv/FDZcYnK54cXiKaPR+Luiys0zc1Hnfzfd2tp1/Uau3H7BzAAMNOgtGS5Hv7elMHAAAAc1P13Q3h+wDAAnlHkvVlWV5YluUvlGX5trIsv1qW5YL+yZGiKIaTvLau+dcahaIdVJbld5L8Wl3zG4qi8N+KAgAAAAAAAAAwMPzHLgAAALRUJXDJodW5+dpdyfYGgU7b9iTf3DL/9fSzsslJ6qG6YLTzTygajrv5nsUZNDdV4dvaMYChYZMdBqNt29ObOuhvd2wrc/3dZXbsW5w/3wAAsBg0u5+vt2u/3+sBgPlXluX2siz78c8AXZ7kjBnXW5L8Q4V5/+fA2IPOSnJpF+sCAAAAAAAAAICeEowGAABAS7UK51EdWp2bm+9r/vjd0qJvKWr2fCzqctDOPaHxuJvu7W49/aJKgOGOAQwwnOg0GG13b+qgP9VqZX7pH2o5+3dqufD1tZz527X881e8ZgIAQD+q+pv6rn6MIwEAWDjPrLt+Z1mWbd85PzCmPkDtWV2rCgAAAAAAAAAAekwwGgAAAC1VCkYbwMClfnLr/c37bmnRtxSVTZ6PQ/XBaMc3Hnf39qRstsgAq/JzumPf4H3vHQej7elNHfSnq64t87ZPl99//u/Ylzznr2vZtnuwnucAALAUVL0d3ek9JgCAmZ5Sd/2pDubWj33qnCoBAAAAAAAAAIB5JBgNAACAlqoELjm0Oje3tQg/u/ne+atjEDR7PtYHo52ysWg4bt/44ny+1mrtx0xMJaPjva+lmzoPRhOItZT8ycca/3sf96rawIUAAgAA04TvAwBMK4piRZKz65q/0MES19Zdn1MUxfK5VQUAAAAAAAAAAPNDMBoAAAAtVQlG2ztgYUv9Zu948wf5pnuE+8zU7PlY1OWgnbih+RpbdnSvnn4xVfFpsmPADphPVgh8m2n7vt7UQf+588EyN2xt3v+l78xfLQAAQHtVs4t37e9tHQAAA+S8JMMzru8vy3JX1ckHxm6b0TSc5Nwu1QYAAAAAAAAAAD0lGA0AAICWahWCifaM9b6OxWxyqnnfzfcltSrpdEtEs4PUQ3XBaJuPar7Glu3dq6dfTFUMENsxYMFhEy1+NhoRjLZ0fHNL6/73/ZfXTQAA6CdVf0PfNWCB3gAAPXR23fVds1ijfs45s6wFAAAAAAAAAADm1chCFwAAAEB/m6pwcnWvYLQ5aRX+tG88uXt7ctqm+aunnzXLiCvqgtGWjxQ5bl1y/+4jx27ZUSYpjuwYYFXD83YO2AFzwWg0s2+8df/HvlUmz5qfWgAAgPaaBZ3X271fyDEAwAEb6q7vn8Ua9XNa/FmZ6oqiOC7JsR1OO6sbewMAAAAAAAAAsDQIRgMAAKClWq39GMFoczPZ5jG+Y5tgtIOaHaQeapBzdtKGxsFotz3Q3Zr6QZUAwyTZtb+3dXRbs2C04aFkqsHPzY69DtAvFeNtnvSjE/NUCAAAUEnVu7VBC/QGAOihtXXXs/lNqX7OulnWUu+lSV7TpbUAAAAAAAAAAOAIQwtdAAAAAP2tVuHk6t4xYURzMdkk/OmgLTs8vgc1ez42CkY75/gGjUluumfxPZ5VAgyTZGzAwqKa/WwcW38c7IAdDtAvGeOTrfvbva4CAADzq1nQeT3BaAAA31f/Tvhs/vRJ/W9XTd5dBwAAAAAAAACA/jKy0AUAAADQ36oFo/W+jsVsom0w2vzUMQiaPR+LBhlo55/QeOxN93avnn4xVfGA+f7JMknjwLh+1Oxn47j1yb27jmzfvq+39dA/xtoEo23ZkZRlmaLRiwMAwCzcen+Zj9xQZvlI8rRHFDlxg98zoBce2L3QFQAA9K3Z/NWXxfeXYgAAAAAAAAAAWBIEowEAANBSlWC0PYLR5mSy1rp/q2C07yubPB+HGmQSPGRz47Hfvj+ZnCozMrx4ggxqbZ5DB41N9LaObmsajLaucfv2vb2rhf4y3iYYbd/4dFDe0Wvmpx4AYHH71+vLPO9ttew/8Pv0xtVlPvKKoVx0+uK5p/j/2bvzODnqOv/j7+qZyT2TmyQT7isBRBQvZFlF8b5W8WQFj3VX/Hlf6wEKKKIoiAouIMqxIIeCgghyiBwLBJCbJCSTkJPMlbmnp+fsru/vj84wPTP1ra7q6e6p7n49Hw8e6a5vVfWn6/h2VZHvO0Ch2e7nJ2ruIeQYAABgj74J72fnsI6Jy0xcZ64ulnRjyGUOkvSXPH0+AAAAAAAAAAAAAAAAyhzBaAAAAAAAX0GC0RLDha+jnBGMFpztePQaLn3YCkfS5AVGUtKWNmnV8ryWNq1SAQeYD2UJk4oa27mxtNZ733b1F7YeRMewJTQv06ZW6ZgDC18LCuOxrUYX3WtkJL3jCOnkYxzCMQAA08J1jb5w3VgompS+7nztj125l1VNX2FAiQl426qhJCHHAAAAe0Q2GM0Ys1vS7jDL8GwPAAAAAAAAAAAAAAAAYcSmuwAAAAAAQLS5WUK7JKlvsPB1lLORLAE/Td1Bhw+XP9uWiMUmD6g5dJnkMVmStKE5fzVFQSrAeSppXJhDKbCdG0vmeU/vHkgHV6D8DQU4lhtaOBZK1V3rjV5/rqvr/ml0/T+NPnml0Xf+zP4EAEyPR7dJu7q8235yR8ALcQAyIS7nCIgHAACQJPVMeL80h3XsNeE9V1oAAAAAAAAAAAAAAAAoCQSjAQAAAAB8BckYSgwXvo5ylswSjNaRKE4dpcAW1OcVgDarxtEBS7zn31BmgUlBs8CGkoWtI99swWh71XpPN0bqJaixIgxn6TclaWNL4etA/hlj9KXrJ3f2F91r1B4vr74bAFAaHttq//05/WajFMG8QCBhzhSC0QAAACRJmye83y+HdUxcZuI6AQAAAAAAAAAAAAAAgEgiGA0AAAAA4CtlCaLK1DdU+DrKWTLLNm7vK04dpcCWOeB4BKNJ0mErvKfv7MxPPVER5DyVpMGRwtaRT8YYezBanX25rv7C1INoGQ4Q8tfYVfg6kH9P7ZRe2D15+uCI9PCW4tcDAEB/liDwtY3FqQModSZEMlpTD4GDo7a2GTW0EMIIAECFapCU+ZR8L8dxLP9syGSO49RJyvznY1IiGA0AAAAAAAAAAAAAAAAlgmA0AAAAAICvIOMuh5NSMsUAzVzZwp9GdSbEANg9bFshZglGW1bn3dBZZmFzQQ+PoQBhUlHh952WzrPscEndBKNVhOEs/aYkxQfpN0vRX56x77e1jexTAEDxZQsCb48Xpw6g1IUKRusuXB2lIj5o9JYLUjr4dFeHneHq8DNcPd/E9TAAAJXEGDMkaeI/FfD6EKs4dsL7zXvWCQAAAAAAAAAAAAAAAEQewWgAAAAAAF9BA5cSDKXIWTJLwI9rpK7mTpm7rpO56dcyL24uTmER5Lre020xWYvneU/vSJTXYOKUZbtMVErBaH6Bgbb9KkldBKNVhKGR7PPE+V0qSbc+a++ft7YVsRAAAPZoyxKqXErX2ECpaO6Z7gqm3xevM7p349j7zbulj13myoRJmAMAAOXgzgnvjw+x7MR575hSJQAAAAAAAAAAAAAAAEAREYwGAAAAAPAVNBitjwCanCUDhFq1f/WjMj/6tMyvviFzylEy/7ix8IWVkJjlCcfiud7TO7KEG5SaoOfpYIAwqajwC0abXSPVzvJu60oUph5Ey3CWQElJ6h0ofB3Ir94Bo+d22dsf304IBACg+Fq6/X9/yi10GSiUMGdKc5bzrtwZY3T72snbYF2T9OjWaSgIAABMp5snvD/FcZyqbAvtmefkLOsCAAAAAAAAAAAAAAAAIotgNAAAAACAr6CBS4nhwtZRzvwCoEa192Rs4FRK5rzPywxXXhqd7Xh0LPPbgtEaWvNSTmSkAoTrSdJQsrB15JPfeVFTJS2c493W1V/ZA+grxUiAYzk+WPg6kF8vdvm3r2+SGlqicY4/vt3o89e6+vClKf32QVfGRKMuAED+9We51y230GWgUMJcLjX1FK6OUjCSkjotod9XP8p1JwAAFeZBSdsy3u+tyYFnXk6WtDLj/RZJD+exLgAAAAAAAAAAAAAAAKCgCEYDAAAAAPhyAwYu9RFAk7NkgG3cVrXX+AmJXmn9Y4UpKMJsx6NjSUZbPM+7YXBE6imjAK2gAYbDJRSMlvQJRqv2DUYrTD2IluEAgZLxysuOLHmNWYLRJOmwMwJemBTQAw1GbzzP1aUPGP3pKenUa4w+f135/KYAAMbLdt3RYQkvAjBemKulHR0FK6Mk+IXIbdnNdScAAKXMcRwz4b/j/eY3xqQknTlh8gWO4+zv8xn7S/rFhMnfM8ZM/4M1AAAAAAAAAAAAAAAAICCC0QAAAAAAvvwGY2ZKDBe2jnLmFwA1qqlmxeSJax/JfzERZzscY5YnHIvm2td17p3lM5g4aIDh4Ehh68inEZ/zoqbKvm8JpqgMQyPZz984gZ0lp6knWL/81I7p7b9/dpc7qT+97P+MmrvL53cFADAmW7gw159AMEGfL0lSc4/UO1C511Z+4eebdxevDgAAKo3jOHs7jrP/xP8kLZ8wa7XXfHv+W1KA0q6VlPkv5SyStMZxnLd5fIe3S3pE0sKMyWsk/aEAdQEAAAAAAAAAAAAAAAAFQzAaAAAAAMCX32DMTImhwtZRzvwCoEY1VtdPnjhrdv6LiTjb8RhzvKevmG9f11+eKZ9B1qmAX2UoWTrfOVsw2mJbMFpfYeqpBMYYbWw2aukxMmFSC6bBcIB+Mz4ouUF/xBAJjV3B5rt/0/Tu1zvWTZ5mjHTZgxxvAFCOsl13dBOMBgQS9hajobUwdZQCv9uYlp7i1QEAQAV6SNI2j/+unzDfSst82ySdn++ijDGupA9I2pkxeYWkuxzH2eQ4zs2O49ziOM5mSXdqfJDbdkknmqg/8AUAAAAAAAAAAAAAAAAmIBgNAAAAAOAraKZMH8FoOXFdE2gbN1WvmDwx0Zv/giIu5XpPtwWjHbTUvq6NLVJjV3mMBXIt22WioZHC1pFP2YLRFs3z3uldifLYp8W2qdXo2HNdHX6mq/r/dvW+X7uR3pbDyWDzJYYLWwfyq7E72HwbWwpbR66eb5ruCgAAhZDtuiM+GN1rJiBKwp4pDS2Ve275xZYMBbwXAgAA5cUY0yzprZKentB0iKT3S/o3SQdPaHtK0luNMRUcOQsAAAAAAAAAAAAAAIBSRTAaAAAAAMCXLYhqosRQ+AGrfYNGtzxtdNG9rtbuqswBr0G3b2N1/aRpprstz9VEn2tJkbMFozmOo+v+09IoaUdnPqqafkEDDAdLaAB10ufcqI5Ji+d6t3UkClNPOXNdo89c5eqxbWPTbl8rfePG6PbLQYPR4oOFrQP5tWV3sGNuU0RDMoaT0awLADA1foG9khQnJBwoiLb4dFcwfYLe4wMAgMpijNkk6XWSvitpq8+sW/bMc4wx5oVi1AYAAAAAAAAAAAAAAADkW/V0FwAAAAAAiLaggzH7Qg4Gb+01escvXT27a3SK0S8+6ugrJ1RWhne2QfajmmtWTJ7Y3ZHfYkqA7Xi0BaNJ0kdf4+jff+e9YHuZDLQOep4OjRS2jnzyOzdqqqTF87zbOvoKU085e2Sr9PCWydNvetLo0pONZlT7nGDTZChgMFrvgFS/oLC1IH8aWoPNtyngfIVgC+iUgh+XAIDSki2QtY8gViAQEzLsKzFcmDpKQdhtBQAA8sMYs38RPmNKD1uNMSOSzpV0ruM4r5J0qKTRf1mnSdImY8yTU6sSAAAAAAAAAAAAAAAAmH4EowEAAAAAfPkFgGRKhAxG++mdJiMULe0bfzT66KuNls+PXghPoSTdYPN1xzySfXra81tMCbAdjlU+eXqO42jvhdKurslt7X1GUukfb4GD0UootCdrMNpc77aORGHqKWcX/sP7AOobktr7ohksNhwwVLKlV1rtkSuJ6EkMGe3sDDZva1waSRrVTENon1/fFPS4BACUlmz9ezzkvTBQqcJmfYV9zlROgt7jAwCAyrYnAI0QNAAAAAAAAAAAAAAAAJQln2HDAAAAAAAEH4zZF3LA6m8emLxi10i3PFNZoz/9AlYyxWPzJk/sastvMSXAdjzGsmTjLPHYfFI69KkcBD1PB0cKW0c+ZQ1Gm+e909v7JGMqqx+Zqq3t9u3VEdFzZDhgyF9TN8dCqdi8O/i8xqRD76aDXzjOUAn1sQCA4LJdd8QHi1MHUOpst2nVlr+xEPY5UzkhGA0AAAAAAAAAAAAAAAAAAACVjmA0AAAAAICvoIMxE8Ph1jtgCQ+56uHKGv2ZdIPNF6+qk6sJQVAdzfkvKOKswWhZnnAstQSjbQoRxBNlbsDjyHbeRVHSJ3yoOibtVevdNpKSOhOFqalc1VTZ26IaHjgUMBitsbuwdSB/NjaH+/2frn3rF47jF5oGAChd2fp3gtGAYGzBaPNmeU9PVHAwWras72Sqsp6dAQAAAAAAAAAAAAAAAAAAoPIQjAYAAAAA8BU0GK1nIPg6E0P2lWYLuCo3fuFPEyVic8dP6OmQGa6skcK2ALCY4z191JJa7xmueMjIZBtxXAKCnqf9IQMMp9OIXzBalbRivr29uSf/9ZSzlE+wXkdEQ+b8wqkyNRGMVjIaWsPNP1371q9vCnpcAgBKi1/fL6WvsVNBL8iBCmY7S+bN9J5eSvev+ZatS6nk0DgAAAAAAAAAAAAAAAAAAABUhgobbg4AAAAACCvo+O7OvuADwVt77W1VWQKuyk22QfaZemN1kye2N+WvmBJgOx6zBaMtnmdve3Bz7vVERdDztJQGT9vOjeqY5DiOlnmcDqMIRgtnwCdwoD1E315MwwH7ToLRSsemkMFojd3Tc2z6hZ8NEYwGAGXHGBMo+LKUrrOBqKmd5T29bzCa9yLFkO2bV3JoHAAAAAAAAAAAAAAAAAAAACoDwWgAAAAAAF+uG2y+tnjwdfoGo1XYnWoy4PaVpHjMI92rvTl/xZSAXIPRDlhsbzvr1hA7IaKCBqOV0uBp27lRXZX+c0a1oyWWwLvmnsodQJ+LQZ+wj/a+4tURRpCAEklqi3MslIqOkCF8nYkCFZKFXygfwWgAUH6SAcNY44OFrQMoB8ZyuTdvpvf0RAndv+ZbtmdxlbxtAAAAAAAAAAAAAAAAAAAAUBkqbLg5AAAAACCsoIFLYcJzdvuEqFVaqEjQgfaSFI/VTp64e1f+iikBuQajfeCV9hnu3ySdWeLhaEHP06QrjSRLIyhqxHJu1FSNvV4x33ue5p7811POBnwG1XdENBgt6G9FxzSFZyG8sL//0xVAY+ubpOCBfQCA0uEXiJmJYDQgO9udqDUYbahgpURetnv8St42AAAAAAAAAAAAAAAAAAAAqAwEowEAAAAAfKUC5kW1hQjPae21j/CstBAbv4CViXq9gtEat+SvmBJgDUbL8oRj/yWO3neUvf3s24ye3lkagWFe3BC5bv0+IVhRYut7qjP29fI673nCBDVCGhyxt0U1GC1oAFWl/aaUMr/j0Mt0BdD4HXuN3dLQSOn+lgAAJgt6zVEq19jAdDKWyyRbMFpfBYd/ZbuiTNDnAAAAAAAAAAAAAAAAAAAAoMwRjAYAAAAA8GULopqoq19KpoLN3Nprb9veLnX3V06oSDJEoFWfRzCaeXFzHquJPlsAWMzJvuxZ7/N/DPK/j5TucRf0PJVKJ7TB9p2cjH29pNZ7x0c1zCuqBn0CPzoS0TsvjDEaDhgq2dGXnh/RNxQweGbUtAWjZTn2TrzE5ZgDgDISNMh6IGTAJ1CJrMFos7zv6xIVHIyWLfy8krcNAAAAAAAAAAAAAAAAAAAAKgPBaAAAAAAAX0EDl4xJh6MFsTtub0u60h3rSj9Q5KkdRm8+P6W6L6W077dT+uofXA0MT/5eYYLReqsmB6Op0oLRLIdGkGC0Q/fyb7/k/tI97lIhjqPSCUbz3h+Z+3rxPO9l2/tKd18WmzFGAz7HRHsEQ+ZSrj1UYaKhZOkc85XOFoxWU+U9PT44Ped5toCcO9ZJtzxTnFoAAIUXNIyV6w0gO9vV29yZ3tMTFXxeZbvS9buHAwAAAAAAAAAAAAAAAAAAAMoBwWgAAAAAAF9Bg9EkqTMRbL7dvf7tv7zHyARNvYmghhajV5/j6v5NUt+QtKtLuvAfRp+9ZvJ3yhawkqmjatHkic3bc66zFE0lGG3OTEf7Lba3j6SkxFBpHndhztNSCW2wdQGZ+3qJJRitI4JhXlGVTPkfP1EMRrMFaNlwPJSGoRHv6Us9MkElKT5YuFr8DAc4/s66NURaJQAg0oL0+xIhRUAQtnu82lne03sGpFSYm90yku1r93sE7wMAAAAAAAAAAAAAAAAAAADlhGA0AAAAAICvMGNQE0PB5rvxSf+VPr5detlZrja3ltZAT9c1+tZNrg47wzsQ5drHjLbsHv+dkiGC0Zqrl0+e2N0mkwyZElTCphKMJkn/9gr/GZ/cEbKgiCjHYLQg+9oWjBbFMK+oGrCEUY2KYqhY0ICSUS1ZwjgRDbbAO9t5HuVgtLWNKumAVwDAmKDXHYQUAblbMd97esqV2uLFrSUq3Cw5u6VyXw8AAAAAAAAAAAAAAAAAAADkimA0AAAAAICvbIMxMyWyDMw0xui6x4KtcEOztOr7rjY0l84A8yseNjr/bv96b3lmQjBaiO3bXL1i8kRjpK7W4CspcSnL9ooFfMLxrbc7OsxjM456z0UhdkiEVFQwWsa+XjzXex6C0YIbzBKM1jsoDSej1Q8PhwiUlKT7GqJVP8Zbu8vo8odcNXZ7t1uD0QKGsebbSMDjL4qhggCA8IJed2QLmwUg2a7K915gX6bJco1Y7rLdwZTKfT0AAAAAAAAAAAAAAAAAAACQK4LRAAAAAAC+wgQuJXxCSgaGjT7yG1cnXx4uoOaIM11dfH9phFVd/Uj273bfxvHzBA1YkaQmr2A0SWpvDr6SEmcNy3KCLV+/wNGj37U/DukbkoZGSi9EqSyD0WwheBn7esk87x3f1R+9MK+oyhaMJkmdicLXEcZwMtz8D23mWIiqs29zddQPXf3X1fZ9tNRynvcOFKoqf0EDcpp6ClsHAKA4gt6vlco1NjCdjOWSb2mto2rLbbotPLfcZbvHp88BAAAAAAAAAAAAAAAAAABAuSMYDQAAAADgK0zg0ieucPWPDd4L/PEJoz89lVsNX7zOTAoUixpjjNY2Zp9vQ8v498lQwWj13g0dBKMFDUaTpNpZjt59pL39hbZwNRWKMUa/f9TVKZe7+u+bXD3fZD8HbCFiXkplAHWQfb1ivn35LRHZj1E3ECAYrb2v8HWEMRQyGK0tXpg6MDVP7zT6wV+z/7Yvnuc9PT6Y54ICChq62NhV4EIAAEURNJA1yDUVAG9VMfu9XVN3tJ8FFYotRG4UfQ4AAAAAAAAAAAAAAAAAAADKHcFoAAAAAABfqRCBS+190tt+6eqKhyYvdNOTUxvMesIFrh7fHt0Bsa29Us9A9vm2d0iDI2PfIxli+zZVr/Bu6Gjxnl6GbAFgYYLRJOnrb7U/EtkQkZy5L11v9IkrjK59zOjndxsd8xNXj271PgfCBBgmhqN7HmUKEox20FL7vt9YOafFlAyWYDBa0ICSUfGhwtSBqblyjQnUdy2t9Z4+MCL1DhS/PxsJGGjaWKEhHgBQboJed5RK+DAwXUyWpK+VC72nN/cUoJgSkO06mT4HAAAAAAAAAAAAAAAAAAAA5Y5gNAAAAACArzCBS5JkjHTGrUbJ1PgFb1879Vq+9ocQKWJ50Dtg9L1bXB10WkqvPSflGfg2KmgIkzHSptax90EDViSpr6pW8di8yetsj0iSVxEECcsK4k2r7Qtc7rN+Ln3tAAAgAElEQVSfi+XFTqOL7x//ZfuGpGPPdT0HlIc5T+ODU62uOGzfycnYdTNrHB241Hu+jS2EEgUxECAYrSNqwWgh+k2pdI75SvO7B4Odo4cus7c9uytPxYQQNCCnqUJDPACg3AS9zh4gpAjw5ZeL5khaOvlRhySpO0AAfTkiGA0AAAAAAAAAAAAAAAAAAACVjmA0AAAAAICvsMFoktTULW0ImdV1w2ezJ1ut2ZIOjCqWL11v9OO/GW1rl57YIf3n1Ub/c593aNa29uB1vdg59npigFw2TdUrJk/sIBitKocnHO9/hff0u9ZLm1unN1Tr7uftn//zv1d2MNrEELxVltCkrW35radcDQUIRmvvi1bIXJCaM/VWaJhClCWGjAYD7sdDlzlaMMe77amdxT82gwbzbaMPAoCyEPQ6m5AiwJ/fqeQ40oI53s+EevoLU0/U+QXJSfQ5AAAAAAAAAAAAAAAAAAAAKH8EowEAAAAAfOUSjCZJG1rGFhwY9l/J8jrpA69w9LbDs693v++42t1b+CCUZ180uubRyZ9z8f3en93YHXzdPQNj60h656xZNVbXT57YTjDaxLCsIFavsC+06vuu3FwP/jy453l722l/NjITRkmHKbW3VILRLOfGxH2972Lv/djcHa0wr6gKcux0JApfRxhBg6lG9Q1p0jmD6dUU4jdzdo109L7ebU/vzE89YYwEPP4apjlgEwCQH0EvIQZCBrcCGOM4Ut1s77bu/sq8psp2nzZAMBoAAAAAAAAAAAAAAAAAAADKHMFoAAAAAABftnCibDZkZHWdfbv/iM6LToqpptrRrz4W01612dd9xJljoVWPbTW67jFX/9yW38Gyv7jHe30bmqX+ocltYUJeegbGXgcNWBnVXL1i8sSOlnArKWHWYLQcnnActty//bIHp28A9rxZ9rakK8Uzws2MMYEDG6Txy0aZ7StNDEZbucB7vjBhhZUsSDBae1/h6whjOBluftdI/QQHREqY38yZ1dIr9/UOQHxqR/H76aDHX0MLgXwAiqO7P30/dMvTRh199Dv5FnSLElIE+PO7LHIkLZjj3dY94D293GW7jMz2DxAAAAAAAAAAAAAAAAAAAAAApa56ugsAAAAAAERbkNAcL5tax17f9qx9JU+cHtPR+6UDT1Ytd7T5nJhe/SNXm3fb192RkI7+kasj6h1d/8/RdRt95jhHl53iyHG8A1TCuHu9veaOhDRn5vhpTd3BN1TmwN5kyOC5Jq9gtKatMsmknOryv823BfVNDMsK4rAVjvyiDq591Ohzbwy/3nzoyxJe1pmQ6manX4fN3YmXyMDyoCF4tmC0pp781lOughw/HSUejCalAwHnzsw+H4qjqSd4xzWzRjp6X++2DS3ScNJoRvXUf/eDGg4YaNrVL7XFpb3qClsPgMr2xHajEy5w9wTfGtUvkG79wtj9FaYu6P1wPyFFgC/fYDRHWjDbu627vzD1RF22vofgZwAAAAAAAAAAAAAAAAAAAJS7WPZZAAAAAACVLNdgtBc7xxYc9AmxmThov3aWo3VnxfThV/kP5n9ulzJC0dIuf8io6lRXH/+dq9884CqVa/GShnxqbvcICWrqDr7unoxgqpGAASujmms8gtH6eqS1a8KtaAqM68rc9ye5554q99LvyXS0FO2zrWFZOWQ/HL5CmuGTJffwFsmETR3Lk2yhQV0Zg8PDHubxwdIIbQgagle/wHvnt8WloZHS+K7TKcjx0zMQre3o1z/b9GYJG0RxNYb4zZxZLR250vs8T7lSS5FDEFMhAk0bWrPPAwBTccrlo6FoaU3d0lduCJm8DF9BbwfiXGsAvrKdSgvmeE/vLpFg73wjGA0AAAAAAAAAAAAAAAAAAACVjmA0AAAAAICvXLPFMkNPeiwDWV9W7z29ptrRH06N6Ten5JB2pXRg2v+71ujDl7o5B1v5BZ94BaPt7Ay+7sztkQwZjNY0Y2/P6WbN7eFWNAXmZ/9P5ox/l26/Srr2PJlPHi2zY2NRPjufwWhzZjr6/PH+C976bPj15kO242lKwWhD4euZDkH39coF9nW09OavnnIV5PjpjVgYwXDKu+hqnyedhJVES5gw0ZnV/ud5c5GD0cL0uRtbohUqCKC8NHUbzwDGh7dIW3bT/+RL0H6/uz/7PEAl83s04zjSgtne9+aVem5le5RFMBoAAAAAAAAAAAAAAAAAAADKHcFoAAAAAABftoHgPznR0YeOti/X1K2XQslswWg/PtH/tvS//jWm1+wfoEiLW56Rqk51dcjpKX3rJleDI8FGtSdTRr0+ITodfePX05Uw2h0PXldmyFDSJ4DNy721J3g3PPTXnEPgwjD3/CEdiJapp0Pm+l8U/LOl/AajSdK5Jzr6zHH2hT9wsavz73bl5poQmIP+IZM9GC0x9tovxM9L1EKubILu63qfwKTGEOFLlSpQMFrEQsVsx/yCOfZlSuW4rxTNIc7NWTXpfTurxru9qdjBaCH63IaWwtUBAH7XOY9uIxgtX4LeYnVzrQH48juVHNmv5XsHVdT78ajI9pUJRgMAAAAAAAAAAAAAAAAAAEC5IxgNAAAAAODLFkCzZJ70x89V6eFve99aDiWljj5pcMRoOOm9jgWzs3/+3V+d+q3rljbp/LuN/uVcV+ubjJ7bZfR8k1Ey5T3StDPhOfkl7X3j3ze0hqunp3/sc0dS4ZbtNLVqq1oyuWHXFmlnQ7iVBWTiXTKbnpF59iGZH3zCe6ZH7izIZ09kDcvK8TCZUe3ot5+IaWmtfZ5v3WR09u3FG4i9eXf2AIaujGMo7BjxeMRCrmyCBqPNny3NmeE9bxPBaFmVYjCareYZ1dK8md5t/9xeeWEKUdbYHXx/1FRJjuOofr53e1OIdeVDmE97MUvIJQBMxWxLYKQkbQ55fwK7oNfa3f2FrQMoZ45jD0YzJvszmnKU7ZnAwEhx6gAAAAAAAAAAAAAAAAAAAACmC8FoAAAAAABf2cKJ9l1kX7axW+oZsLfPDxCMNn+Oo+bz83P7+vSL0pFnuXrFD1297CxXS77m6ppHJie/7Y77r6dtQjDac7vChbJ0Z2yTZMhgNEm6cNEXvBseuzv8ynyYRK/cM0+Weddymc+8TuaLJ9hn7myRiRc+hcq1BPVNDMsK6/hD/Vfwg78avbC7OOE7G1uyf05XRvBC2GC0qIVc2di+l+NMfO+ofoH3vGHClyqV7ZzK1OvTj08HW81VjnTU3t5td6zlWIiSoKGFc2emz3FJWmEJRmvuyVNRAYXpc+ODHHcACsevP3phd/HqKHfZwolGdfVLJujMQAXyOz0cScvr7O1NRb7ei4Js15z9w8WpAwAAAAAAAAAAAAAAAAAAAJguBKMBAAAAAHxlC6JaVmcPpcoWjLZgTrAaltU5evr7+b+F7R2UPnml0X9c5eo7f3Z18u9c/eQOVy//gX9S0I6O8e//FjJwpy0jeC1p+aiFqU7r8n9ecpLndLN1fag6bIwxMs88KPOOpdK9NwZfcOemvHy+n2xBfbk694PZV/CqHwVIkMqDiceXl87E2OsgwVaZSiW0IUwI3kpLMFrQ8KVKFiTkKWphetZ+ICa99yjvc3ltY2kc94XSO2B04xNGtz5j1JmY3u1gjAkcbjF3xtjr+gXe+7bY53mYPjcesXMHQHnx+w1v6a3c37x8CxqImXKlxFBhawFKmW8wmuP/bKkS7+sIRgMAAAAAAAAAAAAAAAAAAEClIxgNAAAAAODLNhizas8dZXWVo+XzvefZ1WV8Q57mzw5ex1H7ONrww8Lcxl61xuhndxpd90+j02/OPvK9oWVsHmOM7m/wnm+/xd7TG7vHAnpGUt7zvGLwWfvna1+1VC2b3LDDUkgIZmRY5jsnynzpLeEX3rFxyp+fTaGC0Q5Y4ui0d/mvJD4obWwufMhEY4BB3139Y6+DhjWMGhwpjdCGMPs6KoFJpSjI4TM4Ig0noxOwkvIJzTvmQO9joatfau8rYFER9vROowO+6+qjl7l6/8Xp8M+ndkzf/uxMpI+pIObNHHu9whKA2NxT3O8Sps+NWqgggPJi+z2UxofoYmrC/Mp0+4SCA5Uu27lUXeVoWZ13W2N3dO5FiiVbpnP/cGUHPwMAAAAAAAAAAAAAAAAAAKD8EYwGAAAAAPAVJJxob0tYSWO3dPrN3iP2HWd84EkQq5Y7uuurMS2eG265fGtoHRuAmhiyB5985jjvgJ7+Yal3z6D5pCXQoMYk9bed77XW0FhTP3nijo2hB8Y+ttXoC9e5+tZlzXr2Z+fLvLlWWvO3UOsYZXZOPZgtG79ApKn6/rsdffx1/is6/ExXL+wOt40f2mz0lRtcffkGVw9uzr5sU4BB391TCEaTpLYSCIiyfa2Yx9OseksfdO1jhsHiWbg+oSqZeiMU9OH3u7R6uX25jS2FqSfqPnmFOy5Msalb+vINAXd8AWxqDT7v3IzrhHpLCGtzz9TqCStMnxsnGA1AAfn1R5n9PqYm6LWSNP4aHcB4frdlzp7bcNt9XSUGXge55gwaNgwAAAAAAAAAAAAAAAAAAACUIoLRAAAAAAC+ggSjrVzoPU9jt7SlzbutbpYUyyHN6q2HO9p+bkz3fzOmWz4f07qzYhq+JKa1Z6Xf//zDeUjIyqK7X2qLp1+3+wRMHXOAvZbGPQN7kynv9mqT1FsS91qXb6taMnlivEvavsFe0AS/fdDV6891dcn9Ruc/sZeO2fT/dNu8dwZefpIdG3NfNiDr8ZiHJxwzaxxd/R+Obv+S/8pe9SNXT+8Mloxz7WOujj/f1UX3Gv36XqM3ne/q6kf80xUaAwz67kqMfX4uwWi7e8MvU2y2EAqvbmOlZQC9JH3rTwSj+Ql6/NgCIKeDreaqmLS0Vlowx7t9S1vlHQvN3UbrmiZPX7NF2tY+PdujoTX452ae7ysswWjFDsogGA1AVPgFdnUlildHuQvza9nJdges/M6l0Us+231dU5GDcKMgSL73AMFoAAAAAAAAAAAAAAAAAAAAKGMEowEAAAAAfAUJoqpf4B0A1tRl5FiywXoGcq9p7kxHbzjU0fte4ejwekfVVY6OqE+//9pbY7r1izGtWpb7+oNoaE3/6ReMduTe9rbRIJcRWzCakorJaK9kq2d7e81S7wUfus3+oRkau4xOvWb8zh2KzdKZS88MNfh/nBChbLmyB/XlJxDPcRy980hHbz3MPk98MB2O1hb331LJlNFpfzbjanaNdPrNRsmU97LGGD26NXudXf3j1xlWm89xGxVBQhlH1fsEo/38bqMlX0vpw5emtL5p/Ep39xp94TpXR5yZ0nE/TenOdZUXnOUGGXGv0ghGiznpc3gfS1hnJYbE7Oy0tz26dXqO940twedNZoT+2K412vuk4WTxvkuoYLShwtUBAJbLSUnp320T8Dce/sJsxuYetjlg43cujd7Or/B5tlRpglxz9g8Xvg4AAAAAAAAAAAAAAAAAAABguhCMBgAAAADw5bre0zODqFZaQole7Bof4JTpW+/IT5CVl/e83NGGs6vkXlalR79bmFvfhpb0KFVbMFpVTFo6T1pa692+rSO9fNKyfWvMiCRpabLds71t79d4TjcNT1kqHm+fb3t/8LOzXq7m6hXeCzmOnGuekfOd32jAmaX1Mw7TgDNrrH3XFpmmbYE+P1dhwrKm4n8+nv24WfYNV/FB+2jlDc3pc2Cixm5pfZP3Mv95dbAB350ZAU+2c9RPtlC3KAizr1daBtCP6kxIf3pKetP5rjr60it2XaMPXOzqkvuNNjRLa7ZI77rQ1QMN0d82+RQ05Kl3CmGW+Zbt2Fg4x7vd9ntUzvz274s+oWmFtN37Z81Talwwmn2+HR251xNWmD53OCkNjVRWnwKgeLL1R1MJosaYoCGyUvo6H0B4o3dztmdLTT1FKyUyCEYDAAAAAAAAAAAAAAAAAABApSMYDQAAAADgK0g4kW3w6vomyTaO/KOvLlwwWqbXHuDoye/F9KGjx0+vnSUdtbf/sm89zN7W0Jr+0xYwtWSeFIs5Omip9/Kb9yyfTHm3V5tkej0p7wSZ9mUv815wZ4P39Az/c59/ikLDjEMmT3z3p+X8YaOSe6/W5xpP1OJDm3XUQU9q4apWfWuvc5RUVXq+h2/L+vlTYQ/qy+/nHLyXo6oAT03mf9nVbx/0Lmp9k30k8zqPtmTK6MYnggUvZAY8+Q2YnjvTe3pbPNDHTKswwWh+gUmZ2vukn92VXvHX/mj0yNbJ87zp564GKyjIKHAw2mBh6wgjlaUfWGAJRuuuwICYxJC9bXsRw8QyNfcEP78yw0P3Xyw5lr5+9De5GML2DvEInTsAyku23/Bv3GhkQoR6wVuYTUgwGmDndy6NXuPVz/dub/QIHC93QfoegtEAAAAAAAAAAAAAAAAAAABQzghGAwAAAAD4yhZAI0krF4ZPpVoyL8eCcvDKfR398XNVci8b+6/nwio9fUaVei+M6Yj68fN/9g2O3MuqdNfXqnTKMd7fbVdn+s/2Pu/PHP1+h+zlvfzm1vQo1xFbMJpGg9G8k2vaZ9Z7Tte252WSSe82SfFBoy9d7z/CdtOMQ8e9d367RrHvXCpnxf764e1Gv31iroZj6cStpFOjCxZ/TbMOi+v3dSep78G/+657qsKEZU1V0FWeeo3R2be5Gk6OL25Lm32ZrR5tW9qkPp8Qo0zdA5K7Z2P4hWIsq/We3mY5bqPE9r28gpFsA+i9nHeXUWuv0UX32jfct/5UOSEitrDBiXoHorNNrP3AniedC+Z4n73diQIVFGF+YQmbWqdnnzb3BJ83Mzx09gxH+y3ynm9jS/G+S9AwwVHxgP06AISVrT+68mGjm58uTi3lLEy/30wwGmDldyq9FIy2wPs6vjWeDhKvJEH6nqkEo7mu0VM7jK59zNXWtsratgAAAAAAAAAAAAAAAAAAACgNBKMBAAAAAHwFCaJauSD8ehfPza2efJs3y9FT34vpik85+smJju7+akyXnjx2u1xv+W5NPekNszvu3f5SMNoy7/bNu9N/2oLnakw63Gxpqt2zfVtqqfeCknTNudam6399t325PRpmHDL25u0fl7P6VS+9/f2j9gGzn1p5ueYP3qzH14dIvQnJdjxWFeAJxxsPzT7PqDNvNXrDz1x19I0VOLqPvTyxffIX2dAc/POMkXoH0699g9HqvKe3W47bKLEFdnmF4M2scTRnRvB1/+QO/4Hf1z9mKmbgfdBv2TNQ0DJCsR0bVXuOjQVzvNu7IxTuViyJYft33thSxEL2MMaoKURoTHLCvl613Hu+hiJ+l6BhgqOidO4AKC+2+4hM594RstPCJGGuHhq7K+9aAwjKBDg9bM+WjAkXrlsOgvQm/TkG8A4njU76rdGrz3F1yuVGB5/u8nsBAAAAAAAAAAAAAAAAAACAyCEYDQAAAADgyzbgPjOIKmww2pwZ0pyZHulG06Sm2tGnjo3p2++I6S2Hj69rxXzvZUYH5W7Z7T1cdXldej37L/ZeviOR/nNi6Muo6j3BaPuO7PRsf7BxrnpqFnm2mSvOlhmanMRitqzTrU8lvT8wwyWLTk2/eP075Xz9Vy9N7+k32tGRdXH911UjSvmldU1BkKC+fPnE68Ot9J/bpaVfd18KPWuL27fB3zdI/UPj2ze2hNtmXf3pP3MJRvOrLSrC7usz3hN8f134D//v35GQ1mwJvLqSFvRUHQ3iiwLrsbHnd2nBbO/2rkRh6omyhE9YQlO31FvksLj4oNQ/HHz+idcgB+/lfZ43dhXve4T9edvaVpg6ACBIf/TEDqmJsK4pCROIWYnXGkBQfj3R6BXePt6POCT5B4+XoyB9z8BIbuu+8mGjG58cv0dOu9nomRf5vQAAAAAAAAAAAAAAAAAAAEB0EIwGAAAAAPBlDe6qGns9b5aj+ZYgGi9L5k2tpmJasfUBz+nN3UbGGG1s8V5u1fL0n/O7t3u298TTyTAjSe+Bp9VKB5idkLjPs30k5eifh3/SUrWkJ+6dNMn96xVaM/t19mVG1+3M0IVf2i7npzfLmVP7Up37fzdYKsBzPQv16NZAs4aWLRApnz54tJPTsfraH7u6+Wmj7n77PIMj0lMTMu8aLMeSTeee4AVbeKEk7VXnHSLU1hfus6ZD2H196hvym453yzOVMSg8aNhH7+SsxWljO+ZHQ/MWzvVu747QdyiWRJYQsi1FDu1a1xRu/tfsP/69LYi1qSencnISNhgtbOglAAQVtD+6fS390FSE2XpdPtf/QKUzPieTs+c6fsEcR0trvec59ZoQKYVlIEgfnxjKrX//n/u8l/v9o/xeAAAAAAAAAAAAAAAAAAAAIDoIRgMAAAAA+LIF0FRPuKO0hZV4KZVgNDMyrOV3XejZlhh21BVPatNu72VX7wlGq7vvas/2QTNDg2v+bg2eqzEjkqSjB5/W0qT3hzx1wAfsxW/fMO6teeE5td5yk7qrFtqXyfDd+/dS31D6dWLIaM4XXfWECBX6+h/Hf7G71xu9+fyU6r+Z0ht+ltK1j+U2qNkW4hTLbyaWJGnOTEf/998xvf7A8Mt+8BJXj2QJh5sYlnPD4+EGIXftCUbzGzC9rM57+u54qI+aFraB87Z9PX+Oox+9P38Hwi/vMXLDJiCVoKBfsXewsHWEYQ3NGw1UsAR1VmJYSX+WYLS2IvcFd6wLd0599S3jLzbqLdcajV25VhRe2G5hU2th6gAAv3DcTH97rvyvZwopTL9fiSGsQD5k3sWNPkuZaEub1BavnP4syDcN8oxmzRajt/8i/Sxm2TdSOvrslDWs+IK/V872BQAAAAAAAAAAAAAAAAAAQPQRjAYAAAAAsHJdYx0IXgnBaNqyVvWd663ND/z0NxpOeretWu7IGKP56++1Lt992qc1kvTewFUmvWJH0uFDGzznOb3h1TJKD5iNx+Zp0Jn5UpvZ0TD2unm7zKdfo4/tfY21lomGktI1jxo932R05Flu4OCFUY9vTw/ANf1x3ft0n97xK1f3b5JaeqWHXpBOudzoqjXple7uNdrVFWwAbrZApHxbvcLRw9+p0uDFMX3lhPx+yMaWsdebWo2GLMeSzWjIky0sTpKWW4LRih2GlItc9vXHXpPfffSBi3ML8CslQcM+4iUQjFa153dp0Vzv42B3r6x9brlKDPm3t/cVd3us2+X9eXsvlOpmjZ927EHScQePn7Zygfe+7UhIQyPF+S5hg9F2dFTWMQegeIL2R0/uDL/uzoTRhmajrW1GxpZWWyHCfP3EUOVdawBB+Z1LTsYl3qHL7Pd0f322cs4vv/v8UdmCn5950eiN57n6+4b0s5i2uPTMi/mpDwAAAAAAAAAAAAAAAAAAACg0gtEAAAAAAFZ+YVhVE4PRFgYPJFo8r0ApVvm2o0F7jzSq2ox4Nt+62Z7wdugySR3Nmp9oss7TE6vTyBbv0LNqM5aStXp4k3UdFx57lQ4+aIMWrtqt/Q/epIsXnppu2LJWkmSM0baPv1Wv3/8BPTTnOOt6vHzxOqOXneVqe0eoxV5y3E9dDb1rb73lktme7Z/7vdGrzk5p+Tdd7fttVwefltKjW/0HOhc7GG3UjGpHF3zE0UUnOZpZnZ91NrSMfZmL7g0/wLurP72MXyjGsjrvDdM/LPUPRXtQeS77er/F+a3hr89JPf3R3k5TFTRUpXcgOtsh27Gxv+U4SLrSthz7s1K0vd3ox3/z32/tfUUqZo/Gbu/pnznO0f3/HdOn/8XRvx4infYuR3d+JabqqvEnfL1PCOuNTxYpGC1kXmJHkbcxgMoRtD/a1SX1DQbrIxu7jI4/L6UlX3N1xJmuDj7d1fJvuvpTkfrYKAobiNkzUJg6gFLndyplBqO95+X2G74711VOXxTkm3Zn6W/OuT18yD0AAAAAAAAAAAAAAAAAAAAQFXkaygsAAAAAKEdJnwGU1VXj3/uFlUy02J4nFilmZ4NqlNTBw1u0cebqSe1/qX2P53L7LpLmznRk1jVovttrXX9P1Xwl21ukuYdPaqvRWDDaEUPPW9fxja6PSDPSr9url+rLy3+h1UMb9eZND8jc/r9yXVdv3/d2bZlxkHUdhTT3kHZr23BSevrFsfdb26W3XOBq509jWjR38mBoY+xDgwsdjCZJjuPoC29y9IU3Sade4+q3D05tUPbGlozXzfZ17b9YnuF0Xf3pP/2D0extbX3SfjOzFDmNcglGq4o5elm9tM6eRxja3zdIH3pV/tYXNYGD0QYLW0cYtsH9o8fGIcvS4QpeXcbG5j3BlWXOGKN3X5Q9BaHYwWhNPd7TVy6QXrGPo8s/6d+Z77MwHczqdQycfZvRx19n5DiF/UHw+Sny1JEoTB0AECaw6+s3Gh29r/8CxkhfuG7yPG1x6cO/cfXsGTEduXeJBFznUdh+v3tAWlJbmFqAUhb0XHr3kfa2zbvzU0spCNLHd/fb2wZHjO5YF+4zi/FcBQAAAAAAAAAAAAAAAAAAAAgqNt0FAAAAAACiyxY+I0nVE+4oV4YIRltSIsFo2tEgSVo1vMmzubtqoef0VfPSYWjmzI+rzu2VY7w3ZE+sTiOq8WyrNmPBaCf23hK4ZEn68ZJvpz//3M/qtCt3T1somiQZJ9yjh/5h6eanvUcA+w0MjhX5CcdvTonpzq/E9I235T5yeFt7erCyZA8LkqSDlnpP79wTtpNzMFo8S4HTzBqMlmVff+y1+R3Nfe/GqQXgRZ2bPTtLktQ7UNg6wsgWmjerxtEBi73naWgt7/056vRbjDY0Z5+vmMFoKdeoxRqMFuy8nTfL0VsO827bvFt6YkeOxYVgO4Js1zadCf9gTwDIld+92kS/e9Do89f6/+cVipbpqkcqsy8LE0An+QcVAZXM71TKvBKsrrKH5frdN5ebIPdpfv3N49vTz1fCqOJvjgAAAAAAAAAAAAAAAAAAACBC+OutAAAAAACrpF8wWtX490FDTaPm5OkAACAASURBVKQSCkbbmQ5GO3xoQ6jF9t9xn8yWdVJPh2IyqnW9E6h6q+Yr6VR7ttWYkZdeL0+1hvr8++cer46qRdo441Cdt+SbWef/9b/nHiT12cX/1LWNn8h5eS8bW7yn+w0MjuU3CyuQtx3h6LwPxeReVpVTQJprpBd2p183WwZ4n/MBRwvneLd19Y+tx2bRXPvg5sgHo1n2d7Yt/dUTHJ34yvzV8djW8g4BCfrtekogGC3zWD/QEijY2pv/eqKmd8Do3DuC7dmOIgajtfba9119iHDVs95rf6T93K7Cn6+2vmlprff0oWT4UAoACCJsYNdUPbipvK+JbMJmWxKMBnjzO5ecCTd5+yz0vutri0tDI5XRFwX5lt399rnWN4XfTpnPVZ550ej7f3H17T+5WrOlMrY5AAAAAAAAAAAAAAAAAAAAooVgNAAAAACAVTJlb6uecEe5cmHw9ZZCMJpJpaRdL0iS3py4L9SydZ1bZK4656X3813vJJ6u2AKNODWebdVKjnv/kZeFSyVaM/sYfX75hVnn++dpMZ38uvChXld+ytH2n8R0yVf31msHHg+9vJ+mbu/pKZ+xuNMRjJbpvA/F9Kljwxfx0AtGA8PGGqDw+gMdLZjrvd6uRHqD+AXGVcfs51tbX7QHN9vCPrLt6zkzHd34uZgazo7pxlNj+peDgn3em1Z5T3/6xbFtXY6Chqr0Dha2jjBsx3zmsbFknveB0pkoQEER88qzfTqFCXIJTMiVrW+XwgWjve5AR4ev8G5rsARr5pPtnFnqc21TzAA6AJXDDZvYNUVP7JA6In79WAhhv3F3hMJkgSjxDUab8N7v+VJLBQQdS8H6eL8gRlvgvJ/RfwDhjrVGx/zE1Tm3G513l9Ebfubq948Gv8cAAAAAAAAAAAAAAAAAAAAA8oFgNAAAAACAVdJn3GPVhDvKvUMEo61cMM0pVkG0bJdGhiVJx/Wv0Uw3eCpQrdsn3f/nl94vTbZ7f0T1MiVicz3b5rrjR7gurg13C/+BfW7S/819g+88f/hsTK/e31HdbEcXfCT7PnEc6V8Okjb8MKZPHhvTvosdOcv2Uf3b3h6qtmwau7wHAPsFgE13MJokXXqyo2+8zVHtrODL3PqMUXOPvX3FfHuw2WjQjl+wVcyxh/XsjgercbpYg9EC7GzHcXTIMkcffJWjTwYMrPvSm+3n2PHnl+8gcL/zKlNvhEI+7MfG2OtF3l1r2Qa67Ogw+vffuop9NqVt3j85np5vlra2FWeb2ILRaqqkxZb9ZfPq/b3P64aWwn8X2/HnF/ra6RNaMd2MMfrD466O+2lKrzknpXPvcDU4Em47/v5RV286P738mbe6SvolmQLIm6Dhpvn0q39U3vkddjv3DVXeNgKmyplwaVc/3z6vX9huOQmSfdnlc42Zy3Vx1Z798J0/uxrOyOp3jfTfNxm50/HDAwAAAAAAAAAAAAAAAAAAgIpVPd0FAAAAAACiyy8YrXpChtDSeelwk5FU9vWuXj61uopiR8NLL2uU1MHDW7R+1hGBFq1L9Y57vzzZ4jlfS/Vy9cbqvNfhjl/H4vn5u4V3ZDR0SZWqq8ZGH3/lBEd/W2t0z4bJ81/wEUcnvdbRvJnS3JmTw2hmfeGHWvqVNrVVL81LfY2Wgc6+AWARiH6fUe3ovA85+umJRv+3WXrzz7MnTt3bIK1ttLf7BaO1Bw1Gq/VuayvVYLSQIXjvOtKR5D+A+/PHO3rVfvb2tY3SI1uMXn9QBBL48izo2PaBEWkkaVRTPf3bIGU5tTKPjcWW86Yzkf96pltPv9ExP3HV2pt9Xi9P7DA6cGnh92tjt/fBVr8gWOBhpkOXeU9vaA1bVXi2c2bRPEeOYzxDLBq7pFfsU9i6ghoYNoo56fNlJCX98Umj/7hqrOgndxhtaZN+/mGpdlY6aNLP7x509dlrxi+/rU26+jPT31cA5c72e1hID22uvFCcIOFEmRJDhakDKHV+p9LEy4262dLcmd7n0/aO8rwvmyjIfVq3T3j1hubwn1kVk1p6jOczitZeac0W6bhDwq8XAAAAAAAAAAAAAAAAAAAAyAXBaAAAAAAAK7/B9tVV49/HYo5WzJd2dvqvc2mttHheCQxi3dkw7u0hwy8EDkardfvGvV9hCUZrrl6u3ph3alVdanxq1eK6amULdwqq7SubVF11+LhpjuPoL1+I6Zy/Gd3zvFHPgHTQUunUN8b03qP895dTu1Bvn3GXfu++JS/1NXZ7BzBlCwCLiljM0fGrpGfOiOmc212tf3yLulJz1FyzYtK8w0npl/d4n2hLa6W62Y6WzPP+4oGC0WLS0lrvYLCoB6PZQijC7uv6BY5WLfMPTLropPRK62ZJvYPe83z/L67u+XqVd2MJCxqMJknxIWlRBJ4m2mquyghIXDzXe56OMgxG+5/7Tc6haJLU4P0TlXdNPd7T6+eHX9fq5d792pY2aThpNKOAAX6u5QCsqZL2Weh9HdTQavRuTe8PlTFG5/zN6Iy/ZD/pL3/I6PKHjF69n3TRSTG97kB77Rf+Y/L6rvun0U8/aLRiQYR+nIEyZPs93KtWOvWNjv7+vFFXDr97RtImy3XT5t3h11fqwlwrSVIfwWiAJ7+QwYlXDI7j6MAl3iHitv6p3AQJZezuT1/jTQyyTQyZrM/mvFTFpB6fsLUdnUbHTfM1LQAAAAAAAAAAAAAAAAAAACpHBIYyAgAAAACiKpmyt1XHJk9buSB7MNrq5VOrqVjM1ufHvT90eFPgZWvd8YlTyy3BaI019YpX1VnWkZFyM2uO9lnkHQITxkx3UE8ffokWHfFNz/bZMxz96P2OfvT+8Os+7bMH6/eXTqm8lwyOSA++IL159fjppRKMNurlezu64aQemd8fKVeO9j94s5pq6ifN94Dl0Bo9V5bM89737X3pQdDZtsuSed5t7X35CdorFNv3ymVff+JYR6ff7L3Cx06LvTSQ/LJPOPrYZd7z3btRuuVpo9kzpDev0qTgvlIVJuyjd0BaZAkcK6Ygx8Ziy3Ef1WC0jj6j53ZJ65uMDljiaN9FUmdC2rzbqG62dOxBjvZeOPmY60wYfe+WYDvxA6+Ubn568vRiBaM1dnlPr18Qfl2rLNcSKVfa2iatnpxDmTd+x9/q5d7XQRuLtI39/PzvwULRMj2xQ/rwb1ytOyumutmTj7+RpNG6psnLuUb645NGXzmhPPpJIKps/dHsGdIP3hfTD96X+7q//kdXv7xn8gc0dkt9g0bzZlXO+R0knChTgmA0wFPYu89Dl3kHo20ukWC0+KDRA5ukBbOl1+wvzawJ128GuU8bSUn9w9LcmeOn5xoe194n3fSk/YNdn388AQAAAAAAAAAAAAAAAAAAAMg3j2HsAAAAAACkJX0GPVZZgtGy+ddDoj+I3vR0SHdcPW7acf1rAi8/MRhthSUYbdOMQ6zrqMtcx8w5euvhgT/e6qup67T6696haFO1+uiDtGvV2frB7h/kZX1/f37yYNxSC0aTJLWlE2NiMnpv3+2hFl21PP2lbMFmSTcdVOU3ODnmSEtrLaXFvadHhS2EIpbD06xPHONo3szJ0z9znKPX7D928Hzk1THtZdleknTiJa7e+StXq89w9XxTtIPlggoVjDZYuDrCCBSMNte7U+hMSG6YL10EDzQYHXGmqxMucPXlG4ze+2tXR/3Q1Zt+7uqz1xh97DKjg093ddWa8Sf7/Q1GS74WLJ3gxZ/GdOgy723S0Fqc7dHc4/059QvCd+AHL7X3+w0FDsvwO/4OXe5d1KaW6T3mrnzY1bduyq2GXV3SlWu8l437hP/kGsgBILiU5ScgH9fFX3yTfSXPeQQVlbOwlw2J4cLUAZQ6v5BBx6PLOcRy7bqpSNeuU/HwC0b7fMvV+37t6g3nuXrtj101dYerO2jf090/eVrDFK49v+8TpBux2ygAAAAAAAAAAAAAAAAAAACUOYLRkFeO49Q4jnO84zifcBzn247jfMFxnA84jrP/dNcGAAAAlCvT0yFz9blyf/k1ud85Ue7F35W581qZVGrK6/YLRqv2uKOsX5h9FP67j4xqglWacV2ZEw+cNP3N/fdrjpsItI6JwWgrk97pAd1VC63rqHN7x97MmqPaWY5OfePUtt0pb5w9peWzWfHl03T6ERt1Us8NU17XhmaPYLQsAWCR1N700sv3xf8aatEDnXSgni3YTJIeekH6xBX2DVMVkzXoK+rBaEHCr4JaudDRZac4mp9xCrzvKOnXJ01e2VPfz/64bFu79F9XuzJ+o/tLRJiv0DNQuDrCCBIEYztvUq7U3pf/mnLlukafvsrV7izn43BS+o+rjGKfTekVP0zp33/r6s0/zx6KNmeGdO1/Olq50NHq5d7zNLSoKMdyh2W7L6sLv66ZNY72WeTd1tpb2O/i1zfZtvFG73zUvNnYbPTD21x9+kpX59/tqisxVuTd640+879T2yY//Kv38n0+YYnxiPQXQDnL57XSRPstlmbXeLfdsa70r3/CCPsT6dc3ApXMNxjNY9qhy7znbWgtzrVrrlzX6MOXuuNCpdc2St+8MVzNQb9it8c1V6HudwhGAwAAAAAAAAAAAAAAAAAAQDFVT3cByD/Hcc6SdOYUVvG/xphPhfzMpZJ+IOmjkjyHJTqOs0bSBcaYP02hNgAAAAAZTNM2mf98vRTvGpv48O0yknTPDdJ5t8pxch8ZbwufkaTqqsnTVi7Ivs5D9sq5nIIzxsiccZI0PHk0+ywzpLf13aNb6v4t63pq3fGjUFcPNYSupS6VkZIzK53mdNHHHP3mgdxGoh46tEmrD7OMLM4Tp2aGnHP+qO88sknXXzm1dXmFyPgNwo1FNfo9Ixjt+P7/U22qV/GqYClAC2/6icwB79CSV73LOs97f+0fjOQ4zp6AqMkbry1C4VBe/ILwcvGx18b0lsOM1jZKC+dKr9jHu2+sX+Do7UdId633X98jW6VnXpReuW9+6yy2MIPbu/sLV0cYQYJg6ufbl2/slvbKIYyrEB7bJm3vCLfMc7uk53Zl33G3fjGmYw6QltSmN8yq5Y68+oK+IampW1ppz+rMiy7L8bNwTm7rWzpP2uGx7QodfGcLqYjFpFXLvLfx7rjUlTBaODf/KZ73Nxi999euEkNj0359r9Gj342poUV6x6+m3pl29aevkSZeU8aHLAtI6h0kOQMoNNu1UlUerourYo6OXyXdsW5y25oXKuv8DhsE1D9cmDqAUud3Knk9tjrUcl0VH5Rae6XlPtf70+npF6WW3snTb3jc6PefMYoFTK8M2vd0eeT39xYooJFgNAAAUIqMMXLd8vhHTgCUFsdxFIvFpvR3NQAAAAAAAAAAAACg0hGMhilzHOedkq6SlC3e4FhJxzqOc62kU40xHn9VGwAAAEAY5uLvjg9Fy/TY3dK9N0knfDjn9SdT9rZqjwH32YLRZlRLi+flXE5BmVRK5vwvSg/cYp3nfTMe1y0KEowWH/f+gJHtqjHDGnFmBK6nzs0YSTsznRpTXeXols/H9P6Lw4ecfHDgr3Je9rnQy+XiyNcfqptmGn3o0tzDWDa1Sv1DRnNmjv1lcb9BuFVR/TvlbWPBaDPNsE5I3BcoXE+SFg63yVxymuZe/U4tq0sP/g5jdLz1Uss5Fx+UBkeMZtVEc+NZw6+mEPaxpNbRm1Znn+9lKx3dtT77QKmbnjR65b7R3H5BhRnc3txjJE3/97XVXJURMrBXXToYxivgs6k7OoF2Da2FGZB35nsdvefl4/fVKp9szI0tpReMtsTStxU6GM0vmG/1cvtyDa3SMQfmv57Tbx4fiiZJOzul4893tak1f5/T1S8tmjt+Wp9P6EbvQP4+G4C3IEGhU/GWwxzdsW7yh9zXIPUOGNXNLu41wTWPuLpqjdHgiPSeoxx9++1O4IChqQj7S91HMCQQmmcwms//dd7UGt1gNK9+c1RnQlpSG2w9QXM7uj2uuQhGAwAAlcwYo8HBQcXjccXjcQ0Pk14NYHrNmDFDtbW1qq2t1axZswhKAwAAAAAAAAAAAIAQ8vDvxqOSOY5zvKRbND4UzUh6UtKNkv4uqX3CYh+XdL3jOBx/AAAAwBSYvh7p4dv857n7uil9RtIn16rK44p+74X+f5G3fr6i+5d9b7xQuu0K31neffK/BgoaqHXHp7JUK6VDhl8IVc5s8//Zu+/wKKr9DeDvmU0DQgoJhA7Su14EVEQFARuKyvXaC9ixYa8/FRuK2JVrV7Bju4IdUVAQEZEi0ovUhISE9J6d7++PJZBk58zObDbJAu/nefIkO6fM2dnZKZucN1Vmt8bsT40ZfYTCBYOsBxHfCNj4mIE4T/WElJYVu3DbcSVQTeJcjaE2xvRX8L5qoPy0t7BrfTvkr22GMXn/c9VH34eq74B2k3BrE5ZVlyQztdrj3qWrHbeNN3OBrWuhdm3ByZ3dZ4vvC0azmXidVccBQrVR12EfduzCjapyEp4W7kwX+YWpOXU3Djd0Y656HPAYCq00YQk7c8LnddtTB/82oEVT4KYT/d8oiU0UWmiOB3UV0FbJNAU5umC0JsG9qZNjrdvVxTatyu7Y1DoBiI22Lt+8O7TbuMIryMgT/LbZujyUoWgAkJbrvyzfJnQjI983EXVPoUCcJnsQkStW4Z9A6K6V+rTRd9TiNhOFpfX33n7lZxOXvS2Yuw74bTNw3/8E49+vn/W7uVYCgELOuSeyZHc5YHW0SW6q/EJZK62v42vX2oi2+bd0u13cfzsNIcsp8q+YW0cBtU6Ph6Xlgp3ZvAYkIiKi+ldUVIRNmzZhy5YtyMrKYigaEYWFsrIyZGVlYcuWLdi0aROKijS/LCEiIiIiIiIiIiIiIiIiIj9hOm2YQuwCAIe5+LrdSadKqbYAPgcQVWXxrwB6i8gAETlXRE4C0BbABADlVeqdAeDRWjwnIiIiIiJa/ANQUW5fZ+E3kKL8oFdhF4wWYXFH2beN/UT8NglBD6VOybZ1kKl321dKaoXmJ52Gw9vaVzPEiwSvf3rQgOI/XY2p2maMblStbNpYhYfPVGhZJefs9H7AmocNdGqusOLRRhjbYTOGGH9jrPE9Fp74IxJvuN/V+kNBKQWjzWFI9mahkZRgdL59kF9N/2QC/2Tun0hrG4wWpnl7qBGM1qNsneOmCV5fCo2c1xNnfHml61VXhkTFN9LXsQu1aWgNGYx2cm9lGf5Y09JtwC/rD+zJ3k4n3APAzjAJRvM63Dd055xweR6AddhUbaTEAX/cZ2jDxnShf2t3hXYcNeWX6Pe1xMbWywNJirVenplfxyFvmu6V8p332jezLg/Va71ul+CYx72IGm+i5e0u03pqIc3ifVNQ6r+s0uo0oM0dJpJvMdHhbhNf/XVgHyuJwpHueOTkGsYJu6DYsgqg6Y0mLnjNREFJ3b+/n5vjv45pCwVZBXW/brdrsDs2Eh3Kgnm3dkuxXh7qANhQionUl2XkOe/H6X1atsV8+nxNMNqxnZ2v34ruPqxSSbngsrdMNLvZRLu7TLS/y8QHv9ff9SoREREd2oqKirBt2zaUlwf4vSkRUQMqLy/Htm3bGI5GREREREREREREREREROQQg9EODbtEZIuLr0yH/T4EILHK44UARojImqqVRKRURF4AcG6N9rcqpToE/7SIiIiIiA4NYpqQVYshi76rFnImCxyGTM35OOh1V3j1ZREe/2WJTRSO76pv0zYx/NKrRARyUb+A9dQrPwMAerayfw7NvHvggf/Ez9EFXzseU8/SNdUXxFRPjYmMUPi/UQZSn/LAfM33NesGD1rG+8bWIUnhrfu64pdXDsdbr5yGjhdfCqUaaNu3777vx3PzPsXgooWumn+xrEowms182nAMRhMR4I851Zb1KHUTjLY/hWZkwRxEm+5SzCq3SZxNMFpeGAejSQMGo7VNVLjnVGcrGvqUCa+bdLEgFJcJvlkpmLdOUFYR2nW5GXpqTngEG+mOBTX3jbaJ1vW2OP3kqx7sCnEwWuoUA+2a6ffdbi2ty9bvqtvX1iqwoVKwwWjJmmC0P7cF159Tgfa/lvHW5YGC0QpLBT+sFrz/u4nVqdavR0m5oOcDJn7/x+FgXYj0AEfafFKblus/pvwAYUi79oZ/7MgGzpqqf15EFJy6DpFtkwA0jbGvM2OJ4Nr36va9XVAiliFI5V7gf8vq/rji9jKvkMFoRJZ093eAL2DWSrcUzbVrevheU5RV6Mt2Fzjvx257VevT4n8h5Gmu0Y7sqHDT8OBPEqUBMkZu+FDw7iJB8d56O3OAS94SzN8Qvq8XERERHRwqQ9HE6UUUEVEDEhGGoxERERERERERERERERERORTR0AOgA5NSqiuAy6osKgMwVkS0U6pF5Aul1PQq7aIBPAjg8jobKBERERHRAU6yd0MmXgwsnedbEJ8E3PsG1ODTgGU/O+tjynVAcitfG5e8QQRRnfUvhXnrrScfHNPZ9RDqnLz5UMA66pbnoFr60kK6tbSvm+zNslw+smAOYjxelHgtEuVqOKXg++oLYoJMjQkHLdoCjZoAxYWIQjnmbj0J0+MvwaTku5DricO4nOloYhbhkeb3WTafs0Zwy0jfz3ahBOEWjCalJZDHrwLKqicj9CldhQRvNnI8msSmKhLM/Sk6sVKIC/I+xrSESx2PoXKbNInS18kP42A0UzOJqb5e64fPNDDoMMHol2wOhHtd977g1UvqZmB/bBGc8py5L1iqT2tg5g0GDksOzfrchH3szAlcpz7o5rd5avwLiE7NFQD/yuEUpLB5d+jG8s/jRsAQzB6ac9iy7YBpCow6eoPVRTBakiYYLT0PeOYHE7eOrJv/CRIoiKhVvPV+ZxeCt2K74MypJrbtqVwiuOo4hVcuVvte04w8QcvbAx+PnDi6E3DUYQptEn3nAQXgkqMVOrdQMK62TsXdbBEoWOAi/McU4O2FginnhNkJm+gAprtXC9Wh3DAUzh2g8OYC+3PVJ38KXrpQkNC4bt7fhWX6sg0ZdbLKatzOq3dzbCQ6lNgGo2mWd21hvXz5dt9E8gYLgLdhd4+dkS/QP9vqnN6npVpcY+YVW9eNbwRMPEPhpF4Kp7/o/rqy1Cb0rbxC8OkS/0GLADP+EBzXNfxeKyIiIjo4iAhSU1P9QtEiIyMRFxeH2NhYREZGhuW1IxEd3EQE5eXlKCgoQF5eHsrLy6uVpaamonPnzjw+ERERERERERERERERERHZYDAaBetCAFVn838uIhsctJuM6oFq5yqlrrMLVCMiIiIiOpTJczfvD0UDgNwsyF1nA7e/BGSmOu/nrrOBb9Khmia4Wn+FZp5khAHtH+meeYTCzTOsZ3CeeUR4/WGvbFgBTH88cMUBJ+77sXcr68CTSkmaYLQm/x6HER4PvvrLflXHFv2Kibsfrb4w+sANRlNKQdp3B9YtBQB4YOLy3Om4PHd6tXq6YLTVaft/PpCC0fDNdODHj/0WR6ICpxTMxkfx5wXsIt5bfYbzYxkPYFV0T/zRaKCjIVRuE8NQaBpjPUE7L4zvxrXhQ3WTdWTp9H4KP99h4JxXTOzO19d7fb7g0bMEzZuGdkcUEfznFbNaqNTfqcBNH5r48sbAIYvO1uG87p7CkKyy1nT7Rs3TUrcU63rr0sMjSCG7UPDbZvs6bROBj642MHO54OnZYvncYyKBVy5W6JAU+Pn00pzDducDi7f4ArPqgl0wWkKQp7iWcfrz8e2fCIZ2E/TvEPrXOFAwWst46/K03OoNswsFb/4q2J0PTPnev9PX5wteny+4daTCfacpPDArdCF6C+/WHz9O7wfLa5XZqwQPnlF9mdtwzadnC6ac464NEenVx7XSo2cFDkYr9wLHPG7i9MMVTu6lMKJXaI+9RTbBaHl5pQAahXR9NbkNRrMbL9GhzO6tpLss76m5dt22B1iVCvRpE5KhhVS+TTii3T1lTU4PPWk5/jVzNcFocTG+z2hO6wv89yKF6953d4ArKdeXZRboP1/4cU34BFMTERHRwaekpKRa2BAANG3aFG3atGnwz3+JiCIjI9G4cWM0b94cO3fuRH7+/hvD8vJylJaWIiYmpgFHSEREREREREREREREREQU3upxKikdZM6u8fhtJ41EZA2A36ssagLgpFANioiIiIjoYCJ//Qr89Kl12VM3uO9vzGGu21R4rZd7bO4mOyQpXHaM/2SDS49xFtpSX2Ttn5DLBwWuePgQqPbd9z0c2t3++SdHWcyCHTUWxoRncKSDgJZ5W0eiidRIkIk+wP8gukOPgFVmbh9juXxrFlBY6ptEaxuMFmafcIhFKFql/iXLArZvbBYiCtUn86R4M/DLluGYv2Uo3k69Em+fss22j6phcU01u1B+SfhOUDY1wYz1HYJ3XFeF9Y8YeONS+xWn3KYZcC2sTvNN+q/p65XA9j2hee3s3lc15diEW9WnQMFUlbqlWL9mOUXAxowQDyoIgybp95mXLlSYfbOBtQ8bGNxZYfK/Dax52MDsm33ff7vbwPRxCp+PN7B5koFLj3F2EBzSBYjW/KuMmcvr7niQrQnVaxoDRHiCe1N3b2lfPuAxE+UVoX9Ogfa/VppgtB3Z+3/emCE44mETd34qlqFoVT3zgyDpFhOv/RKa55ISZ19+Qjfr12PRP0BmfvUxFNgEfxBR3dMdj4I8rFpKiVMomhr4HLMu3Rd+eNJzJh75KrTXRIU2x5rcn2dDMtP0FULAzbUSABQzGI3INV1ehd3nL7NWhOe9bJ4mlAwAMlwEo+nuh2tKzbEYgyagLK5KjmRCEJmSpRX6MrtQyEIeF4mIiKgOVQ0ZAnwhRAxFI6Jwo5RCmzZtEBkZWW15Xl5eA42IiIiIiIiIiIiIiIiIiOjAEGbThulAoJRqCeDwKosqAPzqoot5NR6fWtsxEREREREdjGTK9aHtsKQIsmWNqyYVmomYER77ds+cqzB2sIJSvgmuYwcreNMYbgAAIABJREFUPHNueExCkIwdMB8ZB7lqcODKR50E9chH1RYlxSoc31XfJPmoQcCxo3wPIqOA8yZA3foCAKB7iv3qLsz9EJZbKTI68FjDmOrQPWCdHqXrtGXr033fbYPRwmP32m/FAm1Rd2NnwObNKzItl0eiAscUL8YluR/gkj3TcctI/ROvGhYXpw1GCziUBuM0/Ko+xDdWuHyIgfFD7Vd+3fsmREI3Qd9qknslJ0EAO7IF49420ftBLwY/4cXTs014a2xYN2EfBaVAhbfhAwi8DkPzerfW9/HGgvp9HhVeweTvTLS90wvjat/Xpt3WddslAuNPUBjRS6Fx9P4n1TXFt6zbznkYOPUMXPTucJy5cjJSom3SF2qIjVEYrsmqrNNgtCLrvhMbB99n5+aB68xaEXz/Otpj095jbvtm1seJfzL3v3+mfC/Ynm1Zrc5dfqz9cWxUX+tyEeD71dWffHG5ZVVb4RzISXSgCXQ8CpWYSIUNjxoY0sVZ/Ue+EqTnhe69bhuMVhYBefeJkK3LittnUmITHER0KLO7TdJdnTRronBsZ+uyb1aG5zVFgc099ortzsfs9D4tLdd/mS6cLb5KGFpiE/c31iU21352wWghvEUmIiIi8lMzGC0uLo6haEQUlpRSiIur/p9Lah7DiIiIiIiIiIiIiIiIiIioOgajUTD61Hj8l4gUumi/sMbj3rUcDxERERHRQUcKcgGXIWaOLPreVXVd+ExEgLvJxCYKb401UDLV9/XWWAPNgph0GWqSkwkZNxCY/UHAuurrNBhPfQmV6J+8cuYR+ufSvEVTGE98DjW3AGp2NowbnoSK8gWb9WgVIIyk4FvrAk+AJLpw1z5wMFrH8q2INq1nEK/d5ZtFq9sfgfAKRpO5n9mW9xxxdMA+WlekBl7R/FloHqsvNqtsr6aaYLS8AzAYrSHnNL1wvv3KX/lZcM//JGThaHaTy5dssW+bWyToO9HE9N8Ea9KARZuBOz4V3PJx8MFoQHjsM7oxe2qcm5o1URjU0bruc3MEa9Lqb4b++PcF93wutmF3lU7rp7ST92TxD5CbTwEW/wCsXAh5/UHIY1f41zNNSJFvQo2U+3YkKS2GpG/HGZ2sB7F2F7A+vW62SY4mnKE2wWhREQpdW9jX+ebv0D8f3du78jzUTROCWmECW7J8P3/pINiwLiQ2DhyM1r0l0CnZuuzPrdUf24Vj6Pyy3n0bIrLmNCg0FDq3UPjlTg/O6Be4boUJ/LgmdMc5u+uhHCMe+OkziGlzo1BLbrsuq4BfEC2RU1JRASl1Hnp7IAn2XXHG4dYHtZWB88YbhF0I7MJNQIHDkFin2ysjHyiv2F9bRJCr2YXiYvZvy4RG1nXslNoEP9oGo7lfFREREZEjIoKysuoXIrGxNr80ISJqYDWPUWVlZSH9h0tERERERERERERERERERAcbBqMdGq5RSs1RSu1USpUopfKVUluUUj8rpR5TSh3nsr9eNR5vdNl+U4D+iIiIiIhoW92kRsjX01zVrwgyGK1SZIRCZEQYJVbNegPI2xOwmnr6K6i4ZtryMf0VoiKsy0b09D1fFREJFVG9Up/WQNtE63bx0V6cUjDbutCjWdmBoueRAat4YKJb2QbLsrW7fN/t8gXCKhjt+dv0hWPvw2HX3oDkAHNz2jgJRtu8Cn2LlmuLqwZYxWmC0fLDIORKR/d6N+Rr7TEUfrnD/gD45HeChAkmXvm59gEddpPq1/6+BrLbPw1gd77g6EleJN5sWk6If+knwZIt+/t1G/aRU+Sufl0wNTuH1b4xpr/1DlPuBW74wKzzCSemKbj6XRNvLnC+nvMG+I9ZigthPnYF5LbT/RvM+xwy83VfPRHI+09BRreFnJwM87hoyIlNfd9HJEDO6YLTn+6vXffM5XWzPbI1/1KhNsFoADDaJqgUAN7+NfTPJ9CxqYt/nuo+G9KBvGLBrryQDwsAEBsNtNNcZ1w4SOGXOw10bmG/zZRSOL6bdZ1Xfq7+5IMJRvt+NSd5EYWK06DQUBrWw9mF2MVvSrWgntootAnbSY9IAXJ2Axv018S1pXsWjaP0bYI5PtKhTbxemC/cBjmjNeSU5jBvOx2Sk9nQwwopu8tuu/Dr/u2tC/NLgApv+F1X5Jfal78419mY3dynVb22LCnXf5YXVyUMLSGI63C7Y5tdMJpdyD0RERFRbZgWF02RkZENMBIiImciIvx/5291LCMiIiIiIiIiIiIiIiIiIh8Gox0azgcwHEBrANEAYgF0AHA8gHsB/KKU+kMpNcJhf11qPN7mcjxbazxOUkpppuwRERERER2itq0Lrl3zNsCJ/9GXb1kDyc5w3J1ukmldTravS7J8fuBKY66FGjTStkrbRIWJZ/hPzv13f+CEbvp2ER6FJ/+t/ILllAImn5iJeFOTlHKAB6OplPZAl34B63Uvsw4EnL3Ktx/a/V14uASjSWYqkJVmXdg0Eery++HxGDi9n/2AW5dXCUaLTdDWG/b8UEfjaqoJRsuzCM4KF+EYjAYAQ7oqJDWxr5NfAlz3vmDc2yZScwJPfDdNwapUwYeLTSzavD9IpMBmUv268hSYF/XzC/b6zysmFm+xX9+gSfsDwewCB62ERTCabt+wODddc7xCSpx1/bnrgA8X122YwtsLBW/Md7eOod2r7+RSXAi54ijgu/e0beSpGyDFhcA370BeuQ/IzdLWbVWxC4OKF1uWBbM9TFMwf4Ng4SZBYal1+2zNfpMY4L0UyM3DFTol29epGgQYCrr9rzLQo3G00oagrs8QbHB+GebKqL5A7gsGtk72wHzN/+u9Kw30bu3sANo1xXp5STmwLUuqPXZrQ3r4BZgQHah018Z1ea10Wl/nnR92r4lXfzaxOrV273vduQUAUiNa+YLLNv1dq3XY0R33m0Tr2xTbBAQRWZE3JgKfvAQU5AIV5cDiHyB3j2noYYWUbTCaTTu7AK+8MAz6tgqnrurzpc6OiW6OnKk5+3+22yZVA9ObN3Wxgr3KKvRldsFoPCYSERFRXbH6pxfKLnWXiKiBGRa/yKrrf+BDRERERERERERERERERHQgO0CnslMdGABgtlLqMRX4L4Rqzsh2NZ1PRAoA1Pyz7Hg3fRARERERHexk/fLgGsY1g5r4LtB/qL7OrDcdd1ehmWwf4XE3rLDxxxz78q6HQ938nKOu7j7VwA+3GLh5hML4oQofXKnw0dUGPAGSCM4fZGDh3QbuPU3h0mMUbj9JYf6dBq4aqE8bUgd4MBoA4LjRAat0L7UORvv9H+Dhr0zbACerQKSGIA+P1RcOHL5vUs5ZR9jvJ21HDgcuvA1qwjNQX2wFeg60rBcjNslZVcQ1sl5ffhhOJK/UEGEfTm2a5GyHm/6boO2dJl6ep0/1KywVjHnZRN+JJi56QzD4CRNDnjSRliO2r0+OJxH/VCRDzuoIKfSFKm5IF/yywdlzWLI3tt51MFoYhOl5Xewb8Y0Vppyj32lu/0SQW1Q3k05yigRXveOu751PVt+3ZNkvkLM7AtsdvLA/fAj56i1H6xmd/5Xl8uXbgW9XOh/z1ixB/0dNnDDFxJDJJo542MTSrf7tdYF6CY1r94Zuk6iw7AEDZ9hkb776S4iD0Rzsf900wWIb0oGNGaEdzzUnKEwfp/DF9UbIJn52a6Hv56W5VYPR3D+XqsEdRFQ7mgzrOr1W6pai0Eaf2VtNag4w/n1Bn4kmrnzHDHqSZ2HGbm1ZidEIuUY8JNhgcQd0w24cpW9THERwJB3ifpzhv2zV75AdG+t/LHXE7ghgdwljF4wWDqHNNe0ptC//c6vvPiEQN/dpqbn7f7YLZotvtP/nZk0UurRwvg4AKLa59rMLRiss40R/IiIiIiIiIiIiIiIiIiIiIiIiIiJyL0ymDVMd2QngdQBXARgCoBeAHgCOBXAjgO9r1FcA7gUwKUC/sTUeBzMltmabIP4vtT+lVAulVG83XwA6h2LdREREREShIiLAr9aBJQE1bw2lFNSVE/X9L/jScXfaYLQD8G5SSgMnQKl7XncVKjK8p8Iz5xqYeqGB8wcFDkWrNKCjwqNnGZg2zsCT5xgY3FkBkTYz6w+CYDTlIBjt8NK/tGUTZwlW7NBPpI0Jg00kqZuBZT9ry9XNz+77eWQv+zCFHoP7wBg/Ceqc66GiY6COP1Nb992dYy2XD+q4/2fdZPKM/PCdnKwbWTgEo8U1UvjqRucHwus/EPSd6EXENV6cMMWLXzfuf3Yv/iSYtaJ6/T+2AG3uNHHXZ/avz5exo4A9u4DPXgYArNjheEhYvt3Xt9v56eEQPqALCdDtGxcdpXBCN+uyXXnAA7Pq5n1w68fO+20UCbx72lakfPYIzGcnQN5/CuYbEyE3jQT2Bt8FIlOuB/5e5KiuLhgNAEa9aMLrMIlhxDMm/qqy323aDVzznn/4TbYm/CHRJujCqaYxCm9epn8/rkoNcTCag/2viyZYbEO6IN3Zy+lI0VQDL19k4JJjnF+DOHF4O33ZrBVVg9Hc952WG7gOETnTUCGy/xngfgVvLRBMnev8eCy/z4Y59S6U3n42XpyRals3NaIVsM06YDkUdMd9BqNRqIjXC6RttS777r16Hk3dsbvvsA1Ga6QvC4d7k5qyHYxpp4OgWN0x3kpqzv6Nm2fzW/u4mOqPzwwQ2F5Tgc3HakVl+hfYawKlFa5WRURERERERERERERERERERERERERExGC0g9RiACcDaCciV4vIGyLyq4isEZF1IrJQRF4SkVMADASwoUb7u5VS+hnX/sFogdMF/NX8s+yafQbrOgB/u/yaGaJ1ExERERGFxuZVQOo/QTVV/Yf6fuhztL7S2j8hu3c66s97MAWjPXKZfYUjhwFd+tXPYKxERuvLjANwg9fUpR/QsoNtlVMKZiPRu0dbPn2h9UTbRpFA4+iGT8uSr6frC4eOgUpsse9hoyiF64Zaj7llHHBSrxoLTx+n7XpM/hfo2sh/ZvV5A/f33zreuu3ObP2QG5o2fChM3g6n9VX4doLzwaxK9T2n+RuA45408fBXvgPsjD+CD22a33gIAEC+9e17O3Oc97V2l++7w/yrfXI0AVf1STdmj+blUEph6oWG9tw1da5g2bbQP68fVjvr85NrDGwc+QUueK4PMO0x4PNXIK/cB0x/PORjqtSzbC26lG3Uli/cFLiPV342sWm3//I/t/r296qyC637CEUwGgAkN9WfA9btgl9QW204CUbrlmJdZ+NuIEuzLSrFRgPbJwc+tvx+r4GYyLo59+mC3QBgfTqwNs23EYIJRsssAErLG/44QnQwcHs+DJWbhwd37LnpI0FGXuD3v/nyvZDbz0DpjP/imIz7sSLG/h5te2RbYNu6oMbkhO4UYhuMVlY3Y6GDVIXNCbXg0EgUtTuqxNkFowXzr7vqUFmFoLA0cL3M/MB13FwtpVb5OCDP5rf2sTWC0W4YphDtImTebnsXBTjuOdkuREREREREREREREREREREREREREREVYXJVFIKJRH5RkRmi4MZfyKyBMDRANbXKHpCKeVxukq3YwyyDRERERHRoWH+rODbHjcagC8ERr0wW1/v168ddVfhtV4e4fRuIUzInI+Bn7/QV+g/FOr/3oZSDRiu5bGZjWpXdoBQSgHHnWFbp7EU49GMidryv3ZYL09WuTDHD4X5wIWQZT/XYpS19NU0fVnzNn6LHhqtcOVxCpFV3k//agfMvd1AVET1fVElJAP/ucGy62gpwyfld2JQR9/j2GjgrlMUbh6xv482idbD2plWAPPifjDvPAvyS3jlhpuaYEaj4TPw9jm5t8L7VyokBxH3PnGWwLjaixWa/dqJddHdfD/s2IT8vBLcMsP5xy3r9gYbuQ1GKwiDCe1Ogqlq6tVa4daTrCuYArz4U2g+qsotEtz1mYn+j3ix0z+vsJpLjlbYPcXE2cseRsrTFwJezUm3DigAZ+Xp3/OzVthvDxHB9R/o6/y9s3pZdpF1vcQmtqtx5csbrD/qzi4CdjsIn3DKyf53WLL1vpaaA2QV6PvulAzMusFAm0SF2TfrP7p/41KFgR3r9mC4cqJ+/ZX7R3EQwWgAsCsvuHZEVF0w58NQaJ+k8PWNwf16seXtJvJL/AcuInhzgYkTb9+EfosuQKcua9GkRw6WxxwesM9NUZ2Bresge8OlKryC+2eaMK72wrjaixa3evHVX8Gf53Xb2TYYLcjjIx2ivDY7TEmYJX/Vgt270O6jGI+h0DTGuixHc43ZUHTXvDXttrkerOTmPi2tSn5enmaXaRrj25ZVdUhS+N91Btrt/bwg0PnDbnszGI2IiIiIiIiIiIiIiIiIiIiIiIiIiEKNwWgEEdkD4AJU/5v0HgCGaZrU/HNtm//VrVWzjYM/ASciIiIiOjRIsMFox42Gattl30P1rxOAw3pZr2PBl/ZjKPHNdqzQBBN5griblNJiOMhvDjlZ8iPkoUv0FfoPhfH891DJrepvUFaiNDN9AaB9t/obRx1Se4P77FyZ85a2LKvQenly3j/A378Bcz+D3HY65M+5wQ4xKFJcCEn9B9izS1tH9TjSb1mjKIXXLjGQ94KBDY8a2P2MgT/v96B7S+vZyOr6J7X991n1AX4bn4WCFw2kP23g8TFGtaC/1vHWfWZLLIq3bQV++xZy37mQ7z/QrqO+NVTYh1sXDPJt8yfG1P/ANkZ1RjkiYELhpIkZrtpu2u37fiAGo3mDDM27f5TaN+m/pp/W1v78ZJqCk58zMeV7wfLt+nrPnqdQNNXA9MsNJD53BTB9Uq3XHYxb9ryoLVuyxX57bMkC7E7p62vsjtpgtMa2q3FlYEd92ebM0K1He2yqcm3UJsG6TmkFsDHDuoNT+wAbJ3kwtLtvRx7RS+HGE/136hcvULh8SN1/rN+7tcLgztZllftHSZDBP6kBQgOJyJlgz4ehcGpfhfJXDBS8aCD7OQN/3Of8uDTiGRNZBdWPhY9/K7jqHcG8vI5YHd0L2yLbO+5vY9Teg9WnLwEA/vOKice+3t9/ZgEw+iUT0xeaKC5zf77Xne9sg9ECBAQRVVNus8OUhlnyVy3U5uOgBM1vonOKwuv/cO3RfGZR07hpmgN4FW62V1ru/sq5xdYN4zQfOZ3SR2HLEwZ2PGkg61n7Y3mOTU5foGC0cLiPJCIiIiIiIiIiIiIiIiIiIiIiIiKiAwuD0QgAICJLAcyusfgUTfVwDkb7L4A+Lr/ODNG6iYiIiIhqTdK3AeuXBdVWTXjaf+GQM6wrL50HKcr3X/8Xr8E8+zDISc1gXns8KnanWzaPcHE3KTs3wbxuGOTkJMiYTpAZzztvHALy+kTbcjX6yvoZSACqUROg91H+BU0TgYEj6n9AdaHvsUCLtrZVPDBxccHHrrpNqqiSeFNeBvl0ajCjc03StsC8YTjk1OaQ83rYV7Z5DaMjFTq3UEiKtU+xUB4P1FRN6JtpQp67BY2jFRpF+ffTRhMGBQCpEftDAeXdybZjqE+68CEVZsFoAKCUwp2nGJj87/odXLmKwj9RHfFjk2H4vaCNq7Y79wYTuQ1GKwyDCe3BhuY1iVZ46EzrSrvyUOvwzts/FSzeErjejcMUYiIVZNPfwJwZtVpnbaR4M3DjHuvj5bo0+7CGtWn2fa9O3f+ziNgEo4XuPdO8KRATaV2Wlhuy1cB0EETUWhOMBgArd1ov79Xaf1tMOUfh2fMUBnUEju0MvH+lwvgT6u84M6yH9bo+Xer7rgtGu2KIwn+O1I8zlK8H0aFMdz4MJsQ6GB5DoXG0QnxjhSM7KPx6l4GTewdu98cWoPmtJtre6cWXKwQv/mTi/74I/hy8PqorAECmTcK6XYKZK6zrjZsmSJhg4rTnvcjIc74+XU2PAqIjrMuKgwyOpENUhc0OU3JoBKMFurpJ0ITpfrkivILRdNe8NRWWwi8gsiY392lVQ2fzSqzrxNn8Nl8phdYJvuO5nZwi/T1ToGC0QgZGEhERERERERERERERERERERERERGRSwxGo6q+q/G4n6Zezalrzd2sRCkVC/9gtByrum6JSIaIrHLzBWBTKNZNRERERBQS6duBVh1dN1N3vwaV0t5/uS4YrbwM+L16NrLM/Rzy9I1AZqpvxuqq31Hxv9ctmzsNRpOyUsiNI4GVCwGvF8hMhbx0J+S795x1EAQpKYIsnw9ZswTy9yJg9WL7BsP+XWdjcUtd8wgQU2XGr1JQ4ydBRWiSXg4wKiICasIzgEeTILBXi1JNaoxGsjer+oIFX7odmiuSuhky9zPIud2BFQt8+7ady+6FSnR166zX9xigbRfrsp8+haRutixqHa/vMj2ixf4HW9dCcrP0letRsOFXDemOkw08NLp+B7guqjt+bTTYdbuCUiC/RLQhTzoNPaG9wiv4/R/rMidBMD1bWr8+ZRVAbnHw40rNETw3J3B6Qf/2gGEoiAjk9QeCX2HbzsG1O+ZUqE837ns4Kv8by2q78g3kFOmfz9pd9s/1h9WCCq+vTkEp4NXsZ4makItgKKXQSnOsS8sNXWiGrqeqx6aWcfoQR10oWLMm/suiIhQmDDew6F4P5t/lwQWDDBj1eBDsnqIve/VnUxuAcdRhwIxrDHTWnPpSc8IrxIToQBVu10rHdFb4doIH301wdrOYmgOcOdXEhI9qd0zYF/JbUoQF6yts65Z7ge9WAWe85PwCyC6st1GUdVkxA4DIDbtgtNJaXKCGGbt3eqDw6+RY6+UzVwAfLzFRVhEe1xZ7Cp3XXbLVvjzoYDTNLhMX47w/nXKv/vgWKBgt5+DJ+CMiIiIiIiIiIiIiIiIiIiIiIiIionrCYDSqakuNx7pZ2xtqPO7gcj016+8RkWyXfRARERERHZRUv2OhZqyFmvYn1BUPAt3+FbhRoyZQoy6zLutxJJDUyrJI/vyp+uNvpvnVeTZmnGXbCE/gYQEA/loA7PYPuZIfPnLYgTuyfD7kwj6QG0dArj4WMv4E2/rqvRVQRvjcGqt/nQD12q9Qlz8AXHgb1Es/Qp1xeUMPK6TU8WdCvboAuOh24PgzLeskeDWpMRp+wWh1yJx6N+S8npAHLnTcxrjywZCtXykFHDdaWy7n9YSI/wzqJtFAjCZfL8uTXH3BtvW1GWLIhFvYh1P3n27gp9sMDNj76UenZPv6tbU2qhvWRXcLqu3ObF8OphsFpUGtKiR2ZAsGPGYiv8S63Mm+kRKnL0vPC25cADDjD2cb8tguCpKbBblxBPDr1+5XNHA41B1ToaYthZrwtKum6ooHoZ74HCqlHdTVjwAAupfp3+/rdun7Wr7dfl3ZRcD8vZ8gZtsERCRahIHVhi4Ybdby0IVl2AXkVIrwKKQ0dddvUoi3RSh0baF/U41/X7BFc/qtPN/oXo9Ud6d5ItLQXis18O3NSb0V1j9af4PI8iT5fvBWYPVGZyfzP7YAf+90dm7QXSsZCmikub4uLg+PkCY6QFTYJEr9Maf+xlHH7O47AgWjHdlBX+H81wTd7zfx++aGf9/tKXQ+hnd+s6/r5j4tqxAoLvM10IU9x9f8l2VBSs+3Xh4oGC2roOFfHyIiIiIiIiIiIiIiIiIiIiIiIiIiOrCEz+xvCgc1/1Ra9yfSa2o87uJyPZ1qPF7tsj0RERER0UFNKQXVuQ/U2HthvLkI6pbn7Ou/tVhfZhjA0adYF37/AczXHoD50p2Qn78AFn1frXhJTH+kRra2bOpxeDcpbz5sXbD4B2cduCAlRZDHrrAMYrOibn0eqkOPkI+jttRhvaDG3Qdj/CSofsc29HDqhOr+LxjXPgbjsY+Bwaf5lSeaOa76a12R6rdMvN6gx6djvnwv8NGz7hqdeE7Ix6E0gXL7fPmmfxulkBxrXT2zMkxiL1n4TbBDCynTtF4e7sFoADC0u8Li+zwwX/Ng4yQPXruk7ga9Lro71kXpg9GePU+/7tRcwO309MKCUsjnL8Mc0wnmdcMgv31rGcZXFyZ8ZOKvHfpyJ0EwLWzCqmoTjLYqzVm90W13QU5vDaxY4Hod6p7XYTzzDdToK6GiY4Ax1zlve+vzUGPv3R8GesGtwPBz0aYiFU3MAss2a6dMhnn5UTCfuh7y9qOQDSsAAF5T8M3KwK/5zBW+OtlF+jqJjR0/BUd0QVyzVwOmLkHIJafHpraJ7vptkxB+B7ceLYFIp2G4VcRE+p5La81zSnN3miciDW8YXyt1aaHw5mX1M5BMT9K+65nSHOcn8zlrnJ0X7AIx9cFojodBBFTY7zBSHiBx6iAQ6Ghxej/7GluzgLFvmyiraNjwLbvr3po+XCy216duL103Z/q+52lCpONinPUzcbT9tn70a+uBFQfYTTOtbzmIiIiIiIiIiIiIiIiIiIiIiIiIiIi0GIxGVSXXeJypqfd3jcf9lFJupjHWnNlfsz8iIiIiIqpq9FVAp97WZWdeCdXWPqtYtdOUlxQB704GZjwP+b/z/Iq/iz1J22eE07vJEhezQmvrt2+BXVud1R15PtTZ19bteMiZlh38FsV7c111MazwZ/+FxaGddSsfPQd88LTrdmrU2JCOAwDQ+yjbYplyPSQ7w2+502A0vPck5Nevgx1dyOgmgodD2IdbVx5nYNtkAy9fpHDTcIW7T9U/iZcuVPhugoHnz1d4bUw+Xkm7HlPS70JKRbpl/b+je2FjVGfLssfPNDFhuIFmTazXtW2PaEOedAp+nw959mZfCOXKhZA7z4JMvLjOw9EKSwWzVtjXcbJvNI5WiI22LsvIdz+uSqnZgZ9/35KVOOGemv8vwBn16Qao0y6tvswwoKb9Gbjx6Cv8znkqIgLqwXfgmfA0upVttGy2Nh3AhuXAzDcgbz0CueoYyPcfYH06kFUYeLULNgQORkvQ/VuGIKXE6XeCJQ4vEQJxemzq3tL5wSrCAI51+68n6kF8Y4WOSYHr1VQZFKQLqkvLbdjQEqKDhe545AmTi6XzBii0jAt23je8AAAgAElEQVRdf31LVlouLzViULT3V1Rp6c7vP52e93WXOIYCYnTBaAd/jhWFUkWFffkyi/vdA5Dd2V8FOGwNcXCdtC4d+KGB/xXXHgfXyFXZXZ+6vb1at8v3PV8TjNa0kbNzwzn97et9skQs7/0KS+0HzGA0IiIiImpoHTt29P1zsr1f8+bNa+ghERERERERERERERERERERUQAMRqOqas6sTrWqJCJpAP6qsigCwBAX6xla4/G3LtoSERERER1yVEQE1CMfAq06Vi849VKoCc8G7qB5m6DWm+FpoS37V3uHk+1tZnLKb6G9FZCnb3JcV51zQ0jXTcFTCTUzuoFSpUkt0hhQYhEMVBQ46UBS/4H5yDiYx0X7vq44GuZlR8KccDLMe86BrPrdV++XmZCpd7kaE2IToG5/CWrQSHftHFBKQb29xLaOjG4HqbENdMFouyP8XwP5790Qt4lZIaY7ehgH6KdZbRMVrjnBwHPnGZh0toGvbjTQOmF/eaNI4NGzFK49XuGk3go3nmjgip67cGXO27hlz4t4JGOiZb9LGg1AkWGdfDY4bgcAoEMz6zGtT9eHqugUVnj8F/70KfDrV+46cmlDBuANsEt6HO4bKZqQlvS84MOaUgPkOTYyi/Bm2jUwbCMhLBxxvC8ULaW9ZbHq3AfqwXeAFu20XajzJlgvVwo4+1p0F+tEhvVRXasv8Hohj47D9uXrHA196TbgkjdNjHnZ+oWLjQYiI0Ib3jOwo77snd9CE8blNBitW4rzPgcdBiQ0Do8go5oW3eP+oFsZFKR7r4VDMMY/mYLL3jJx7BNe3DzDRGoOw9rowKO7VAuTXDQ0jlb4+qbaXbhFG17cVvAyStY0xYydF2vrVQb9pu0pd9x3WYAsqkq6475SQBPNbUsRg9HIjYoAO8zWtfUzjjpWmxxlw1CYd3vg40morveCZRcIbGX7Hn2Z2/u0dem+BrlF1g3jYpz106u1wpc36Ld1QanvPrKmQMe9cLj+IyIiIiIiIiIiIiIiIiIiIiIiIiKiA8sBOpWUQk0pFQNgTI3F82ya/K/G43EO19MD1QPYCgHMdtKWiIiIiOhQptp3h/HxOqjvdkN9uhHqxzwY974OFRkVuHFyq6DWWab0fY8d7DQYTZ9iI3ePgcz9zO2wrPta8CWQm+ms8jGnQvUaGJL1UgjEJ/kt6la23nHzm7JehOXeGCAYTVL/gYwbCMz+YP/C9cuAzX8DS+cBC76EXHs85N0nIfed62gs6s6Xod7/C2rGGqiv06DOvMrx83BLdekLHDvKto7cMBzi9e57nBxr/b7N8vgHo2HbemCbs/CjuuIm7EPKSrX92JU1pNP6KmyfbGDL4wbWPWIg53kD955mwKj6BPdk7PvxyJKlrteR+M9iAECPVtav/bpd4nrCfYFhnbAn377rriOXrn03cFCf0yCYFk2tl6fnuRhQDf/YnII8UoE3U69B/5LlgTs65WKoX0qgPlkP9XUajBd/0IaiVVIjzoP6aDXU3a/5Fx59ClT77vq2Hg+6tbYIuwOwLrqb5fK0qZNtx1PV+78LcjQBEYmNHXfj2Jj++p3gv/MEi/+pfViGNiCnRuhdj5bOk4k6JoVJipGFxCYKL5zvbnyVwWhJmkDOrMJaDipI+SWCknLB3zsFRzxs4t1Fgt82Ay/8KBj+tIkcTZBIICIC0+3BlCgEvA6DGhvSv9orrJzo7leRL+y6BasHvI21jxjIfSkST753HSJnrELyhwu1bbIiklCqorBSDnO8nrQAoaaVdGFOCkATzS1zQXheflK4qrAP9JPtG+ppIHXLLhjNyWHr+G4K/9JnAQMAfl7fsOfkbJfXOFmF+rG6fRrrd/m+55VYl8c3ct7XqH4KD43WvyrLtvkPrjBAMFoWg9GIiIiIiIiIiIiIiIiIiIiIiIiIiMglBqNRpbsAtKny2Avga5v67++tU2mMUqqrw/VU9bGIaP5Em4iIiIiIalJN4qBS2kFFRTtvlNw6qHWVqUjL5d1SfBPcHdElG+0tkxnPBzGy/aSoAObk8ZB7znHW4D83QD3yYa3WSSEW7x/KNcBFANSjuydaFxQGCEb7dGrA8DQAkNfudzaQgcOhzrgcqn13qNadoIy6/8hFTfrUvsKGFZDXH9j3UBdQs9sqGG1v+4akmwheNexDvp4G89xukJEJMMefANmyZn/Z3M98ZSPiYV41GLL2zzoesXtKKbRPUuiaohAZ4X9clZfv3fdz79LVaGRqEqY0EpZ+BQDonmJdvnaX+wn3RYYmzeqXmZAAoQ7B2pUrWLwlcD2nQTApcdbLgwlGy8gTnPKcF/maT7c8UoGftwzHufnOgkDVeROglIJq2QEqrpnjcajIKKhRl0E98hFw5DCgUx/g/FugHp0RsG2P/tYhMhsjO6MC/qFpaREtHY/LTpcWIemmmqYxCsfbfEL54KzAAXuBaI9NU8bDPL0NzFfvh3i9GNDReZ9tEms9rDp1/TCFNy51nrQUHeH7ntREE8hZz8EYizYL+k30Iv4mE42vN9HvIdPvPbsuHZi53H2Qyp9bBcOeMhE13kS7O72Y8Uft9zEip9yEyDak3q0VFl6fi5YVu/zKUirS930NLlqIdzKvw/XjeqP7VVegW4pCVISCMgyo1ochMbmp9rllepLwW6OjUKgJcLWSmuPsPW93TRobY11WyGA0ciPQNfTBEoxmU6YcHreG97SvmJEPR/cNdSXbJujMil1YrF2QnJV16b4GumC0OBfBaABw/+n6zzR25vgvC3TcyyxgiCwREREREREREREREREREREREREREbkT0dADoNBSSl0CYLaIpLtocxWAB2ssniYiW3VtRGSDUmo6gMv3LooCME0pNVwXdKaUOhPA2CqLygA85HScREREREQUpBZtg2pWpqIslx/X1cVMewkQDrHqdxcjqtKtCLB9PeS6YUBuVuAGHg/UA+9AnegwQI3qT3yS36JoKcNxhfMxv8lxtk07lm1BYym2Lty5Ceg9yG+x7EkH1i0FPnkxqOFaatfVUfhQqCnDAJ74DHL3v/WV3n8K8p8boZJaonlT6yrbI62PEfLwZVAjzw/BSIOjC6FQq3+HRGUA2RmQp27YX/D3IshNJwEfrvKFwj1w4f6ytX9CbjkVeO8vqKTQhDqFgmTt8u2Ppf4fpcjiH4A1f+x7HAEvjihZgd8aH+O4/8SlsyAFueiasRKAf7ud2YLerazbRkcApRX+ywvsAke2bwQO6+l4fE61v8tZ0JDjYLR4Batohm173E3WFxFc8LqJuev0dVZu7o9uZRuddXjW1VBd+rkaQ01q6NlQQ8921ab7MX2AH/2fe5kRjS2RHdClfHO15btCFIw2oGPdJPcM7a7wywbr1/L7VUBOkSChcfDr1gYRmeVAbibw3pMQpXDY1Q+jVytgdVrgPtskBD2ceqGUwuVDFI7rKjh2sonMAMFmSXmbIX/tQrPNAHC0X3lBKVBaLoiOrLv0psJSwYodwKpUwTXvOntv/7EFuGyw83XkFgnOnGoidW84yM4c4ILXBS2aCob1UNhTKFi6FejeEmjXLMySquigoAvN8YTZv0SSjX9h0Cs3YseGRfYVz70Jxo2vaos9hkJiY+sgoT2eZihW7lJ/duU6q6c7giil0CTKukYBg9HIjfIy+/LtDq8lw5xd0JfTYLQeDi5DZy4XHN2pYc67e9zlWGOPTTCa2wDr9Xv/MiBP8xFJnCbI0c6InsCcNf7LV6UCc1YL+rYFUuJ827oowG6c7XLbEBERERERERERERERERERERERERERMRjt4HMFgFeVUp8A+BjAPBGx/LNqpdQAAPcCqDlbcieA/3Owrgf3tk3c+3gwgDlKqStFZG2V9UQDuBrA0zXaP20XvkZERERERKGhYhpDOvcFNq101a5cRVouj/S46MRu5mtlFa8XyuO8UykrhUy6EvjxY2cNzr8Zatg5UL0GOl4H1aOE5paL78l6MmAw2jl5n2nL5JGxQGEe1NnX7F/2+cuQF+8AKsqDGakldd3jwJlXQTXWpI7VMXXs6ZA+RwN/2wRNLPoeGHUZulhvaqyP6govDHjgn/YjmWlQyZrkrDrm1YQPqTkfQT55xbowOwNYPAfyyxf+ZQW5wK9fAaOvDN0ga0E+fgHy33sAr0X6mMbAkj8dB6NFmyVoJCWQSVcieVssYNEuv0RQYVqHBsQ1Anbn+y8vVI31K926NuTBaDuzBRXOctEcB8F01rwX1u1y1r7Skq2wDUVLqshE57LN+gpVqIfeB4bZhBzWoe4p1kFxALAuuptfMFpaqILROtRNYMV/Big8/JX++uOSN018eaObi5nqdD0bVcNgv30XcuVE/Ku9wuq0wNdCbRIOjNCsrikKy+438OavgrVpwEd/+D+3LmUb0f76fhAAzaJ7AZ2WWPaVVQi0rqNAuDmrBZe+ZWJXnrt2ny0VvHRh4HqVXpsv+0LRqpo618SGDIXrP5B957LxQxWeP08hwnNgvNZ0YNCGyIbJbiZFBZA7zwJWzA9ceeBwqBueDFgtKdY6GC3T4x+2HIhVP1a0gZgKaKIJGgoUEERUjTfA/Wn6NkhpMVS0u/C/cGN3ReT0sNW9pf66tdKsFYLHxzgdVWhlOzyuVMqyCZvVfZzWJBootAhf3FMIZOYLcjXBaPGN3J8cWidYb+9pCwXTFvqW3zdK4eHRCoUBjnvFofsYhoiIiIiIiIiIiIiIiIiIiIiIiIiIDhEMRjs4NQJw6d4vUym1AcAWALkAvACSABwOIMWi7R4Ap4hIwKmgIrJDKTUGwPcAovYuPhbAaqXUnwA2A4gH0B9AzSmnXwG4393TIiIiIiKioA053XUwWpmKslwe5eZO0vQGrlNRBnicT/CVaY85DkVTX+6ESkh23Dc1gOatLRfHee3TTI4t+hV37HnWto48cxNw5FCo9t0hG/+CPHtz0MP0k9QK6vPNUIbDJKY6pCZ9AhndTlsuOzZCAeihmUReasRga2R7dCrf4t9400qgnoLRSssFny8TLNnqmwS+Os26XqxpP9tcPnoWWL3Yuuy796EaOBhNVv8BefcJYMFXrtseWbzUcd1Ec29az/xZSIj5F3CYxVhgICe7GL6PkqqLjbYORisyAgSjhdjUeYFDpSoZDuf6d2th/V7YugcoLhM0inLW0RfL7Md2esG3loGD1StdDnXnf6EaMMWmcbRC+2bAtj3+ZeuiumEUvqu2LMOjSZZzaWDHkHTjp3drhUlnK9z7P+vX5+uVwLYsQfuk4La5Noio6j6VmQoU5qJVfLyjPusqIKwutElUeOB037a7b5TgjEfSscXr2ycSvNl4f+dl+8JNkiuytP1kFQR+3hl5gpkrfOFjJ/VSOKZz4Ncsv0Qwdpr7UDQA6G71abmNh7603hk+XwZ8XuP48PI8Qf/2wBVDwiSxivYxTV+AnVd8AVhe8YWzVvsKsMx03Ub827rswxRgyVbrfTAMLk8BADL5GmehaADUk7McnQuTY4H16f7LszxJiJESV+PbU+h7LTwBLiB0Z3ulgCbWt8woLHV+/ULkKLh7xyagc5+6H0sDcXop3Ls1EGHANjh5TRqwPl3QLaX+z7m68K/YaKDAMsxMf6zQXXP2bOkLaLayLh3I0xwK44LI1Wvl4FL2sa8FRx+mAgZCMjCSiIiIiIiIiIiIiIiIiIiIiIiIiIjcYjDawc8A0H3vVyA/AhgrIjucdi4i85RSZwOYhv3hZwrAgL1fVj4EcJWIOEhIICIiIiKiUFBnXgWZ/rirNtpgNI+LTswAgTCAbxJwtLMZmrJzE/DuZEd11d2vMRTtAKDikyCdegObV1VbHiv68Kv7B6Xi3umnIhIVAfuX2R8BY++DjBtY67FWpS6+PSxC0QBAJbYA5uRCRmhmLYvvfdjNJvBlfVRX62C07RuAo06q/SADKCgRnPaCiQUbA9ftUhagUobNxxqb/3Y3sBCTz/4Lef5WX/JbEHqWOQ8eS/Rm7/s5wZujrZedkQurYDRd0Eex0RgCwCpmQP7+zXJ5sMa/b+LVn0MfjNa9pfVyEWDTbqBPG2f9zFyuH5uC4KY9L9m2V09+AXXMqc5WVsd6tNQEo8X28/0bhSoyPbU/tyY1ATok1bobrbtPNTB/gxffat7y7y4S3DcqyGA0zaWNUTMELycTbRKdBaM1bxrUUBpcr1bAii1HYR6OQJmKxkkFP6CJFO0rb+a12Kn2yrLPuMSGdMHIZ819++VDXwqmnKNw20n2597PlvqC1Opaep64Dvi46h3BOf0F8Y3d7XsiYhm8VZtALb8yyzZiH/7lcL124/QfiyDgWB0sq9YuQP2DkScM8vdk1e/AT586qqum/QkV4ezXlUlNrJdneZKqXfs4YQqQUwQkxQauZ8VQQJNo6zKrACQirYrA97XYsfGAD0azuwVyethKaKwwpr/Cx0vs7xFmLhfccXL9Hwx155UWTa2PCxkWQdSVdMeeVvFA0xgg3yIAbdk20Y6haYx+XTptHIb3TltoojDAcY/BaERERER0qBARLF26FGvXrkVGRgZKS0vRvHlztGnTBkOGDEFsbIAPIsLY9u3b8ccff2DHjh0oLi5GcnIy+vbtiwEDBsCo5e9MMzIyMH/+fKSmpqK4uBitW7dGp06dcPTRR9e6byurV6/GypUrsXv3buTl5aFZs2Zo1aoVhgwZgqSkOvzlBRERERERERERERERERERucJgtIPP8wB2AjgWQAcH9QsBzAYwVUR+DGaFIvKNUqoPgIcAnAcgUVN1EYCnROSzYNZDRERERETBU83bQEaNA75+23GbMhVpuTzKzZ2kOEgbKA88O1IyUyHvTgY+f8XRatXlDwCnXuKoLoWBY071C0brVroB8d4c5Hqqz8RtGgPc0XO9o1A0AMCKBcB374ZqpD5HnwKcdW1o+6wlFR0Dad8N2Lbev9DryyWPjVFoFQ+k5fpX2RnpnwQlAF7/qxm+Tfe1v/FEA8N7Wk8uX7RZ8NT3JgrLgFP6KIw/QSEqwlf3l/WC134R/J0qEAG6tgCuH2ZgWI/9fb27SByFogFAjzKL51hVZqq+LEmTiBVi4vUC370HeeLq/QsTWwDZGbXqt1vpBsd14737X+gE0+JF32tPESyTCHRBHwBQqqIRIxYz3xd9DynKh2pc+5Snjxa7C0UDAKdzYzolAx7DOrhg3S5nwWjr0wWr0/Tl73SeicPXrLQubN4G6p7XoAaOcDbgetCtpcLs1f7be32/84H8e6vtu7sjah+MNqw7oFTdhlXcfpKBb/+2vg75coXgvlHO+yqvEEz/TfDJEsGuPOs6Rs1rntwstIrv7Kh/XdBPuJLtGyCTxwMr5qMJgFH4zrJeFMrR1JuHfE+cX1lmgf06HvtG/ML67v5cMHawIClWv+98tDi44EkAyC12Xvfrv4JbT+LNJjoluwv+0gWjEOk0dHavpG6GXHu8o7rq/96GchH25Hv/+78psjzNEGV1bRJAZkHgYDRdmJNSQKzmeilQQBBRNQ4+E8HunXU/jjoWZDa0n1cvViguE3y9Un+OvOszwR0nh2Z9bujG064ZsDnTf/mGdH1fuu1lKKB7CrBkq3/ZcpuMcN3xys6AjtbH3Jo+Wxq4LwajEREREdHBLjMzE5MmTcJ7772H3bt3W9aJiorCiSeeiIkTJ+Koo45y1O/YsWMxffr0fY//+ecfdOzY0VHbefPmYdiwYfseP/jgg5g4caK2ftXP7E844QTMmzcPALBw4UI8+OCD+Omnn2Ba/OeQlJQU3Hfffbj++utdh5gtW7YMd9xxB+bOnWvZd9u2bXHNNdfg7rvvRkREBCZOnIiHHnpoX/ncuXMxdOhQR+vKysrClClT8N5772HnTuv7bMMwMHjwYDz44IMYMSJ8fodDRERERERERERERERERHSoauDpERRqIvI/EblIRDrCF1A2BMAFAG4GcC+A/wNwA4CLAPQHEC8iY4INRauy3gwRGQ+gJYATAYwDcA+AmwD8G0AnETmGoWhERERERA1H3TEV6DnAcf3yUASjOUlyqLCfHSm5WZBrjnMeivbpRqhx90E1dCIAOaY6+YchRKEcV2e/4bd8/FCFJmU5zjvfsgYy+8PaDK+6Y06FMWUmVEQYZs2362q93PTu+7FNgnWVnRGt4YWBArU/nee2FpMxfte5mLUCmLUCGPmsiWkLTZRVCPKKBbJ3pvbXfwkGP2Hi82XA96uAW2YIrnrHV/bDasHIZ018sFjw1w5g5U7g82XAiGdNfLty//HhK4cBM80qspDszXJU11JC8+DbuiCv3V89FA2odSgaAMRKIdo1KnRUN9Hc/z6pGpJW0x6xTgOxC0YrVo20ZXLjyMCDC2BPoeDCN9wnJxiarKTKfVUqygEAkREKnRpZb5N16eLXzsrM5fqybZMNXBDzq3Vhp95Qn20Kq1A0AOihyQxcm2FAzVi777EJhSxPkmXdRzMegAdey7KqlALuOa3uz9FDu+vLFm8BduU638du+1Rw9buCH9bo6xioGYyWiXaJgcPfPAYQr39LhR1J2wK5sA+wYr6j+knePZbLswrst/87v/mXe03gC5v3XnGZYF6A7Ew7boLRZq0IPt1lcyawNQvYkQ2k5gDpeb5wpuwiIK/EF6hUUg6UexmKRsGJacDLVMnPgZzX01FdddNTUCdf6Kp/XYhZlqcZio3GlmWDOur7y3JwWWUXTqS7XipgMBq5sfca1Y7YhT8fIOxOaW7ycuMbK8y8wYPMZw3ceYq+4Ys/OQjqDzGr4GUA6NHKepxZhUBmvvWW0V0DKAV0b2nd35pU/VaOsf6Iz9ZRh7lvo1NUZn9/RURERER0IPviiy/QqVMnPPvss9pQNAAoKyvDd999h6OPPhrXXHMNKioc/hOoBjRp0iQcf/zxmDNnjmVwGQCkp6fjpptuwjnnnIOyMuepyM888wwGDhyIH3/8Udv3jh07cP/99+OEE05AerpNunQA77zzDjp16oTJkydrQ9EAwDRNLFiwACNHjsQll1zi6vkQEREREREREREREREREVHocZb4QUxEckTkVxH5SESeF5HHReQxEZkqIh+IyDIRCTxb0d06y0RkrohME5EnRORFEflcRP4J5XqIiIiIiMg95fFATf4COOtqoFMf4IjjoZ79FjjJejJ6mYqyXB7lcbFSJ5MeywP8QfG37wAZOwL3c+woqPdWQKW0czY2Ch/tu1kunrT7ATwR+yGOaAcM7Ag8eY7C42croEAf8uTHMByHtwAA+g8FDj/Of3mH7sBFt0M98pHzvuqb0nzMI/snE+iC0R5u/n+I7lmAhB670aHLBrwTfxFeTbzKr97l0wQx15lImGDCc83/s3ff8U3V+x/HX9+ke9CWtoyydwGZiiKCIkNRZAiK4p4o4h7g1qu/K6I4roqgXlCc14kILtyKqCiKomyQPbso3W3y/f0ROtKeb3LSpgP8PB8PHuSc70yanJyc9vuOG8ckF6OeqbpY4ZUfNSu2ah5b4qbY4sqD1nDX++Xt1ttcy9C34Dd7FU3y7YWK1YTeux1ef6x6jUPDIC6x/F9YhFexuu9lurSNNjT2luDKLLsdgosY10HLerkO64SRKOu3AADyHT5SnNb/hrZzzPbhuIeqF2LgrPAS0Hu3475nIu5B4egTIzz/nxyDe1A47ufvpfMe6+Cy9Zuy+Gy1xjHJVfYcd0xy8eVa7/czUzDace2gZYKP41THXqhAkh/qSJem1nPafxDSSqLghJEAZDoTcCnrxJ1huV/yqftGhqRCjxaefa0SyoMuHAqGpMKyaQ76tK79x0ApxYq7zZe/7QYyrt2tmfWV/7pVgtGy0jm6DcT4CBkESIwGhynVrwHSL9wfUH1jMJqPw7HbRxrY56vN7T5fA0U1WEtoNxituETzmY95CFHfTuhY+8cU/cf3uK8ahHtoHO7zjkL/8gU6cx/69Ka22qvbn4Ozrg143CRTMFpIErnKOhgttbki0hAIlGZ9euTF9JFWKfMxPleC0UQgXP6D0UjbXfvzqGW+Lg9V5/Q4PkpxUX9zw0c+qfsQLlMwWrfm5jZr91jvN83eoaCNdU4xm8z5C9UKzVRKccmA4LynaA2FDT/zQQghhBBCiIDNmzeP8ePHc/Cg90WGDh06MGrUKM455xyOP/54nE7vX7A///zzjBo1qkGHo82cOZO77roLl8vzi74uXbowevRoJk6cyODBg4mI8P4d1oIFC7jnnnts9f3YY49xyy23lPVdqlu3bowZM4YJEybQv3//ssdt2bJlTJgwoUp9O+69914uvvhisrOzy/YppUhNTWXUqFGcd955nHbaaSQne3+50quvvsrpp5/eoH9GQgghhBBCCCGEEEIIIYQQQghxpKvH740XQgghhBBCCFHXVEIy6panvXcefTK6uBC+etdrd7EhGC00oGA0G+E2Jb4XAeuV/kOt1H9/QHXpa3dWoqExBKMp4Nb9M5n6+AVe+3VuAMFoGTYTt0JCUR/uRkXF2u+7oXEaXpwVFgmkJCjMS6w9doa24LKUF2o8nXsXulniIzhm5XbYvF/TMgG2pNvr8/ScT2o2qZysmrW347uF1Wqmbn0GNaZqGF1lqWluPl/jf5F/gsv7vsa7D5DjtP/8jg4zP1cKlJ+kp+8+gPHX2B6rom/WaZ8L+n0pzZbSbjf6XxfBqmXWFV+ZQecmD/Ehp1cp+uS3Al5eVfW9a9jjblb/y0Fqc8XebM0Pm627HtP70CRMwWgxcf7uRr1IbWYuu/JlNwsGjUZ//yFpTkMKA5Bcsp9jNs7n5BdmNZjwtz6tFanNrAMnFv+hucIiB7Oy+T9oWzmvjsqvlwNphIUoZoxXTHnd3IEp5Kch0kWF8NkbAbVp7LI+wPsKRsvyEVAWYQg3Aljwm/lxdjpg8XUOTu2u+PQvzWn/qfo6zy4ArbXf5++OLMi3kWEjRH04uQuM7FG7Y+iMvXqme70AACAASURBVOgpQ8p3bN+Avqnqe6qJ+t9qVIsO1Ro70ZAPm+5sTJ7DOhgtKgwSY2BHZtWytByN51OHma9womhDkGyOBKOJQPgLiwfYv7P251HLfJ1OVffMsWtzaN0YtlnksO7Mgqw8TXxU3Z2XmrJdU+IUjSI02QVVy7ZmaAZaPAKmkDWlzIHn+3yEPfo6h/Kli4/PCYGa9ZXmllMaxucEIYQQQghdUgL7a/YFH8Km5JaokCPzz5RXrlzJ5MmTcbvLT+B79+7NrFmzGDBggFfd/fv3c8899/Dcc8+V7fvkk0+49957eeihh+psznatWrWK777z/I5+7NixTJ8+ndTUVK86mZmZ3Hzzzbz00ktl+x577DEmT55M27ZtjX2vWLGC22+/3Wvf4MGDeeaZZ+jevbvX/v3793PvvfcyZ84cvv32W1avDuwbK+bPn8+DDz5Ytu1wOJgyZQq33norrVu39qqrtWbhwoXccMMNbNu2DYAvvviCe+65h+nTpwc0rhBCCCGEEEIIIYQQQgghhBBCiOA4Mv/iQAghhBBCCCGEbUopuP9VdKVgtCKsV02GBfJJ0l3zYDS2rfdd3newhKId5lRUrHmR9JY16LyDXoFlOt1m2FkgBo87vEPRAJTDen+FgELTAura8PGf/uss+kMzorsyLvquKNKdx9kH36vZpExhVUGiC/LQ/7klsEb9hqIumIrqO9hW9S5N7XUbXykYLc51gB2hLW1PK8pH9lm+ivTZVq/6AVXNYLRHPrXxZDDIK82U+OULcyjaIV2KNlju3xdifoBnfa15eqLiizXmoKyx/oLRYuvwRRiAlHiICbcOcvngdyg5fwzOmGnsdyUZ+0h2pYEugW8Xwklja3G2gRnVS7F2T9Uf2GerIb9IExnmO5zhrV9spKIBjkphsDorDQVMHuzgh01uXv3Jup/EwykYbd4DAbdJMgSjpf29C7A+Jq3Zbe4v3BDqsStL89Iy88/ql7sc9Grl+VnHGQ5hLrfnNRAbYR4fIC3Hd7kQpZyOQ/9UhduH/jmUuczXPoehLDpccWJnOP845fe4VlN6TGv/lawMHoe66UlUY5snMxYSY6yDW9OcieQ6rFPTosM9IZTWwWj+x/T1kTY63Ho+uRKMJgLh75oIwM7NtsI7GzJfQbPVvVtKKUb1Usz6yrrzL9bA+KOr13d1mD7XOh3QqjH8tatq2U6LY5PvvhQt4v0HnldW3WC0lCDmOs/5RnPLKcHrTwghhBCiRvbvQE/oUt+z+EdQb62D5m3rexq14vLLL6eoqDzseuDAgXz66adERVUNb09OTmbOnDl07NiR2267rWz/jBkzmDhxIj161HLSfYAyMjwJ1FOnTmXGjBmWdRISEnjxxRfJzMxk4ULPlwa5XC7mzp3rFUZW2ZQpUygpKSnbHjduHG+++SYhFgF6ycnJzJ49m/bt2zN16lTS0tJs34etW7cyefLksu3w8HDef/99RowYYVlfKcXYsWMZMGAAJ5xwAhs3bgTg0UcfZdKkSbRr18722EIIIYQQQgghhBBCCCGEEEIIIYJDgtGEEEIIIYQQQqAcDvSQs+HLt8v2Fakwy7phzgA61jYCboqLjEX6YBZstw6vKaXOuzmACYmGSj3wOvre8yzL9BM3oe76b/mO5UuCO3j77qir/x3cPuuDw/DidLvKbtZlMJodN72paTPZ/yr4MHchz+y5keYle2o2YO4BtNuNchhC5GpA79uBPu8o+w0cDtSUGagJ1wc0Tmoze4vgE9zeK+wbuzICGifaVzCaw3cwGvnVSw06WKD5Ym21mgKw6e8DuGc/Cq8/5rduJ0Mwmi9LN3ged6tAA4BOTSC1eWkwWpZlHRUTxGSBIFJK0bMlLNtkXf793nhOmjqbtCfetSyPcucSpfMB0HefA1/noZyBnDDUnlE9FY9+WvU1k18MS1bDmN7BGUdVfl3u+rvs5sPjlTEYrUPy4RFwovNy4LWZAbdLNBx70n9bic6JtXxNTHndfP4YaQj1GDvL3ObdyeWhaOAJSDLZkgY9/GRIph30XX44Ucp/MFeVIK4AgrwclmXKO+grgPAvf/u82inzmJbzrEZIma/Hx+E4PF7bgdK/fFmtdurfb6FOHFPj8U2v3zxHNOnOxpZlUWHmdum5/sc0nXU5HJ5QUSv5xeBya5xH6PNABJmdYLS922DLGmjXrfbnUw9q8kqZMc4cjHb2c27cz9fdOanbcMBwOjyfxa0+R+wy5Cn7CllrmRD43KobjNYiIfAQNpNN+4PSjRBCCCGEEA3CV199xa+//lq23ahRI958803LULSKbr31Vr755hsWL14MgNvt5oknnmDevHm1Ot/qGDhwINOnT/db79///ndZMBrAl19+aQxG+/nnn/npp5/Ktps3b868efMsQ9Equu222/j8889ZssT+74gfffRR8vPzy7afeOIJYyhaRU2aNOH111/n2GOPBTxhb0888QRPPfWU7bGFEEIIIYQQQgghhBBCCCGEEEIEhwSjCSGEEEIIIYTwqBRgUqysV02GBfJJUttYPPnr19C5aiqJPpCOPiPFd9sufeGYYQFMSDRYx59mLvv1q7KbOjcbNv9V8/Hik1GX3AktO0DvE1HhfoKeDgemsC93+YrqlLjgLGgOpnGzzWE2T+y5hXj3AQblLaVt8baaD+Z2ewKrGlkHZ1SXXv0z+paRUJjvu+KZV6Fad4bIWOhxvOd2gFKb2asX7/JeYZ9SsjugcaKsszEByFcRvhunVy/AbslfUFRSraYANFv0CKQ/bqtul8LAg9F+3wFaa9btsX4dHdO2QqRDjiHhIKaBpRNWcN5ximWbrO/bwpWaweeMY3/eSbCwanlySZrXtn7oCtQ9L9bGNAN2fAdIjLYOvznzWTdFsx2EOM1xHBk2QnMAFJWOZdvWld1MiVdMOEbx1i9VH9+Jxx4moTnfWvzgbTCFMqY7G8M3C2DkJV773W7NHzvM/Vk9QwuKNb8b2kSEwimVMmTaNIZQJxS7qtZfu8dGMFpOYO+lY3t7jg/xUf6Cv5StUC5z+FfgIWVKHSbPP9Eg6MIC9E0+ztlNjhkSlFA08BzPTXaEWr94o1Z+RlLz4VgdQdJsZLmago4UvoNk84og1s8pkxCAvWA0gJXfHtbBaHYuD1VHVLjiqBT40xBePOcbN1efFPxgbCu+wsxS4q0DxnZlWj8wxr4UtAgwGE0pz7lPdaQ0zFxnIYQQQggh6t38+fO9tqdMmUJKip/fax/y8MMPlwWjAbzxxhvMnj2b8HAfFxrqwV133YXDxhcNde/enbZt27JlyxYAVq5caaz7xhtveG1fe+21xMXZ++Bxzz332A5Gy83N9Qqba9++PVdddZWttgD9+vVj0KBBfPfddwB88MEHEowmhBBCCCGEEEIIIYQQQgghhBD1QILRhBBCCCGEEEJ4OLxXSRYp61ScysFoWmtY9iF60TwIj0INPbt84bvbHHhU1n7WNNS5N3puf78Y/fGrkHcQfv7cd8Ou/VB3z0U5q7m6UzQoKiIKHRYBRQVVC/ftQBcVosLCIXNfcMa7aBpq/DVB6avBcBheCxVehy0auYDD4zUzPOczrsucHfyOl38Gw86pcTfa5YJ3Z6F/+Bh++dJvffWv11BDzqrxuCnxEBMOOYW+6yW4sry2mwcYjBYe4lnAb7UgP9/hJ0hw23q01gEH7iz6w39aQqsE2J5pXXZqzme2x2rq2kuboq1sDWtjuw3AvoOwxpD71uVQaJ3WGg4aJhndcJMFrj5Rce3r1j+DRb9rnjgH0kjAKtAh2eUdjMaS19FDxqNOOKMWZmpNp+1CP30bfPmOZ8ewc1DXP4YzIZmRPRUv/2B938ImuxnZA07prmgUAQt+0+w7CEe3Udw+QnHAT95hKYeu9GLZsRHtcpWdpzwzUZFToPnoT09xowiYPk4xvFvDDqbSBzPRL/4fvP1MtdqbgtEOOOPQSxejKgWjWQXYVZRrcezbsNc65Azg6NYQHe79GIeGKDoke0LQKlu3V+OJOzLzN8eKXrtCMfHYugljEaLWLZhTrWbq3peDNoWkGHPZnhDr9NioXz6i8elHA1WThNJtBB2awpyU8pyTmeQWSjCasEfv2Wqv3vYNft6hGjZfr7aa5nQe117x5y7rEa55TXPZCZqwkNp/9ExBig7l+RxnZZchT9l07HE6IDkG4iKxfZ4aEVL9MNRAQ9iEEEIIIYT4p1i6dKnX9gUXXGC7bffu3enbty+//vorAAUFBaxYsYIBAwYEdY41ERkZyZAhQ2zX79q1a1kwWl5eHjk5OcTEVL2Qs2zZMq/tCRMm2B5j4MCBpKSksGuXIRm7gqVLl5KfX/6h6ayzzrIV8lbRySefXBaMtnXrVrZt20br1q0D6kMIIYQQQgghhBBCCCGEEEIIIUTNSDCaEEIIIYQQQggP5f3HwEUq1LJamLPSYsr3n0c/fn3Zpv7ybbh+Jurs68BtSKmoRGfugx8+QU+/0t5cux2LmvNttRd2igZqwvXw6iPWZe/NhnNv9ITeBMMp5wWnn4bE9Af9FYPRYko4XILROhdtrJV+9b8ugl4DUcktatbPvy+Dz/5nq6669pGghKKBZ0F7ajP4xU9+QrzbO5irRYn/hSJe42hNZKh1AFuB8hOMlp8D6bshKSWgMZdtsl79f8UgxayJit0HoFVjWLgSxs32DqEakLeMHoV/2h5LAddkzmFa0+kBzfH1nzRrDBlzqaV5LKt/htxs60qxhkSEBsDhULx4ieLSl6r+HDanQdpBzf4c67aJrvQq+/Tt4+GpJag+JwV7qt7jFBdB+m702Z29Cz5/E/3jp/DmGkb1TDAGowF8uAo+XOVd/uNmzXPf+A/MKeWgUjBacRHs2QItOgCQFKtYfL2T9BzN3mxPkJ7T0bDPY3ReDvrSY2HvtsAaxiV5zgEPZhLvsk77yHLGe14rlezMsqhcQV5R1X3r9prrP3q29XtjajPrYLTN+32PD5BmeB1U1iYRzuzTsH/GQgRCfzQ/sAYxcaj3t6HCg5cO1jg68DbR7lwS9/wBVH0/svN69hV0FO0jGM1fiK0QcOhayMIX7FXevqF2J1PLTEFfUPNgtCknK+YuNQ/wzXoY3q1mY9hhFSoNnjAzUzDaHkMwmqkvh8Nz3n5qd8Vbv9g7V42wvrxnS2xEcM9lqhOgLYQQQgghREOTmZnJpk2byrbj4+Pp2rVrQH0MGDCgLBgN4Oeff25QwWgdOnQgLMz6S9SsJCR4pyofOHDAMhjt999/L7sdHx9Px44dA5rXMcccwwcffOC3XuXgupSUlLLgNrsq3//NmzdLMJoQQgghhBBCCCGEEEIIIYQQQtSxwL4CSwghhBBCCCHEkcvpHZZUpKz/2Dm0QjWdm42ec1eVOvq1x9AlJaANKzkry0pHvzLD9lTVuMmykPIIpC6921imZ01D5+XAso9qPs6tz6DiEmvcT4PjMASeVQgobBRWQozrYNCGjIuEHi3gkbMU718T3MtMvQt+91+puj55rdpN9bZ1uM9oYTsUDUCdc0O1x7PSp7X/419SiXdQVUqJIc3LQL0xk8gS6+dKvsNGwMnfqwMa72CBZuM+67JTuylCQxStExVKKcb2USy4xsGgTtA+CSYn/8wH28fjwH6IFUPO5hb9BvGuTP91K7jlbfMYR7dWaK3RVw+yrqAUdDgqoPHq2vBu5udWk1vczDMETiSXWKdJ6etPQW/8Iyhzq9L3ljW4rx2KHp5QNRStVE4WLPwvp3Sv3hglNk9jwCIYDWDruiq7EmMU3VJUgw9FA+DjlwMPRQPU+MmoZ76AgaOIi7M+nzzgaAQZe9A53mkgu/wEo+UWVn0Ort1jfl32b2/9OKfEW+/PyPV/HPEVpNQuCVrEw8RjFcumOYgIPQx+zkL4obdvwH1u18De29t3R72yMqihaAAhTkV8VGBtotx5JG1bbllmJxjNFOakFET7WB+cK8Fowo4lb9ivu2197c2jDvgMRqth371bKUb2MJef+3wAJ3U26MUv4j67M+7TmuK+eST60PmSy0eQYmPDsetAvvV+U1/OQx+7B3exP9+aBKMFW7G9708QQgghhBCiQdu/3/t6eKdOnQL+vXVqaqrX9r59hl+Q1JPKQWf+hIZ6f/AoLi6uUic3N5eCgoKy7eqEjNlts337dq/tG2+8kXbt2gX07+67vX9vnZGREfB8hRBCCCGEEEIIIYQQQgghhBBC1ExIfU9ACCGEEEIIIUQD4fAONTIFo4VV/CT57ULIswjOSd8NOzb4Xvla0YE02LHRXt0OPWDYOfbqisOKCgtHt+oE2zdYlutz/Xzb+plXwYLnfNcZPA415spqzrCBU4ZgMneFReCuEtoU7+AvZ2ApQZdlvcTzu69BTXoQkltAi/bQqRcqwnt19xc3Oxj6eM0XnSvt5vScT2rcj4l+/h5o3w2at4O2XVEOc6ibLimGdb9B1n7ISkM/PMn+QDHxqDnfBGHG3kb1Urzwne/ja6LLe4FGSvGugMZwFOQSWZAJobFVyvJVpN/2+qclqH7DbI+3aqe5rI/FOpfRqfmMDvkDMveh7zzb9jg4Q1D3vYI6eRxaa1YNaUuHDmsocoTb78NC1+bQoYlCvzbTXKnfMFRCkxqNU9uax0GjCMgusC7PMYS8JLnSjH3qS/vBR3tRsfEBz0cX5sPqn2HvdgiPhLDyn5O+fZy9Pj59ldgLpzJ5sGL21wGE5wXIYRUGu209DDi91sasCV1cBDs2eUJs23WrsnBPFxag33oq8I5btIdRl6OSmqOmv0PjDRoerfrY5DuiKFRhuDZt5PfovnRuCsmxip1Zvn9GVs/B9Xus647pZe4nMcZ6f0auz+EBSM+xnuMVgxTPXyjfRSOOHLqkBNb9ag78NGnSCvXSiloLsm4SC1l59utH6TwS9/4JLaqWpdsIRnMbPtM6FMT4yH3LLbI5QfGPpt/8j/3Ku/5G52ajohvV3oRqQV6h5uct8P0m83t8MA4Xb1zpoNH11p9FM/PgnoVupp6qiI2o2WB62UfoGVeX7/j5c/R1w9GvrzZeAnM6IC5SgUWQc3YBaK2rHDNdho/VpcFoLROs+7NS02C0/u3hx80166NUQXGl64pCCCGEEPUluSXqrapfaiBqQXLL+p5B0GVmen/hSlxcXMB9VG7T0EK3HD5+b1ZdWVne34oRG1v190/+NGpk7zNxenq6/0oBOngweF88JYQQQgghhBBCCCGEEEIIIYQQwh75s1MhhBBCCCGEEB4Op9dmsbJeORlWoZr+frG5v7RdkJtta2j946e26gGoF5ahnE7/FcXh6fjTjMFoZPr+tnQ1cBTaRzCauu1ZGHlJDSbXwDlNwWiu8tuuEkblfMhfEdbBaO2T4IyCz/h7tyd5Js51gGG5X3J+9hvAoUCxip74CHXM0LLNQZ2gQzJs2l+1767N4bUrHPR90H9w2mk5n9LU5fvnXVP69vGeGx17wsPvoZq2qlpn9c/oO86CDEPqji9xiaj//oBq1qaGM61qaCpEh0OuIaQKINHlvegjpWR3QGM4cBPpzrcsK1A+UkBKLf8soPFW7bBe1B8bAW0Tvffpbxei/+9SyLeRYFTqpDOhSUvUkLNQR/UHQClF8zHjuGLpizzb+Go/Hfg2upcnyEB//LKxzuEQyqiUIrUZLN8SWLtkH8FoACyeBxNvDqhP/e1C9F0TApuIla3rcD9+PU9f/wSzv655dyYOqh7b9LZ11E4sUM3ov1ej778QNv/p2dFrEPzrVVRiM0/5+pXoy4+z1Zea+xP89SN6zQpUmy4w4oKyfgDifOQoPh9/ObfP7kHhoQDP64cq4v3kLlod99busT5+dGlufvQbR1vvT7cVjGa9P8kQtibE4Ujv3uI5Bm/4PfDGp11Qa6FoAP3aKtbvtR90Ge3OJUSXWJYdyLcOJKrIFHSkgPAQT0Ca26LO5v2aAR0a4ruAaFD2+0gHtrLhd+gdYFhhPXrrFzcXz9MUWr8EywTjmBEToZh9vmLya9Yv2n9/qHnqC828ix2MP7r64+kX7qu6c/cW3Ms+AqwDcR0KGhnOcYpdUFhSNbzMZXVgAZyHpt4igMzhyBoGo13QX/Hj5uAEDBcUmx8LIYQQQoi6pEJCoHnb+p6GOEzpShcLgvGZpjavpTQU4eHeX1BTVBR4qrzdNtXp25/KP3chhBBCCCGEEEIIIYQQQgghhBC1L/hf6yWEEEIIIYQQ4vBUIWzMhQOXss7SDju0WxcXwS9fGrvTH79qf+zXHrVVTb2zARUaZr9fcdhRF99R/cbHDIVxFuFGkdGo6e+gRl9+ZIfqKcNlHl0hrKekmFvSn+SEvO+rVOuYUMSnNzp44p6+LNgxgQU7JvDS7iu5IPsNY7CPvul03LPvRKd7gsNCnIoXhm8lIaTAq975od/wx5Zj6fXLc6y4aCPNwwypMoc8vvc2n+Xqtlk4viuEo473Wc+WjX+gH72mym5dUoK++5zqhaIB6v1ttRKKBhAZphhhnW0HQKMICD3tPK99KaeeGtAYDtxE6gLLsnyHjWC03VsCWiSyLcN6/1Ep4HCUPwN15n70/RcEForWYwCO//sfjutnloWilVIXTOXhfXdxXN5PZftCdDGXZJkDzqyMPrgYvXc7bF1nXSEkFAaMDKjP+tKjZeALsJIHneizXD97B9rl8lnHq376nuCEopVa8Byc15Wvx6wKXp+VWAWjsW19rY1XHbqwAP3Jq+iL+pSHogH8/h16bBvcs25HvzbTdigaSkGbVNSZV+O48wXU+bd6haIBPoPObmr2GIXu8vflp77QPLDY93GjcjCa1pp1e63rdmlq7ifRFIzm++0JgDQJRhP/AHrmtdULRet5AirAIMxAndEzsPpR7nzi3Acsy0rckO9nnazpqORweBYtR4dbl180TxbLilqw/rf6noFtW9M1E1/wH4oWTOf0U4T4+OuHgwVw9nNulv9dvdene+fffL0rjocSp/JW7HjyVPmJjmut+WfjdHg+o5kcsMijdhnyxEvz0FMCCEarHLoWqEsHBC+goaA4aF0JIYQQQghRbxo3buy1feCA9XUHXyq3SUhIqNGcrLgCuCZfFyrfx8zMzID7yMgw/DKpkqSkJK/tZcuWobWu0b9LLrkk4PkKIYQQQgghhBBCCCGEEEIIIYSoGetV7kIIIYQQQggh/nkc5cEUxcq8arI0GI3Nf0Jutrm/Ja8HaWIe6p2NqKatgtqnaHhUo8Zw83/Qj98QeFuHA258Es64DNb8jN6zDZV6NHQ9BpXcohZm28CYQt8qLnxwlZDgzuKzrafzQ9RxrAzvhVs56Fy0gZPueJJGTdoBTdAXToNXZtgb9/XH0K8/BrO+gl1/c+LDk/iLBL6MHky6M5G+Bb/SP385CtCP30Av4A9HPGe0WsBPUVXDd3avb02yK808XngknDweAHXezeg7z7Y3T1+Wf4bOSkPFV1go8ft3sH9ntbpTc39ChdTuZbfRvRTv/mq9oD+7ABx3voAeOwl2/Q0tOxCdejQJN7rIzLPXv0IT4bZYoQ/kVwgAICwcigqrVirIg7yDEN3I1ni7DeuGWiZUWoT/zQIo9pNgUom6wBy0p5KaE33N/Xw3awhfRJ9MujORPgUraVW8g/lxF6BNgYMVNCvZQ7//TkD/10fAwugrav05ESyXDFDMXRpYWESToadC+A3w5n+MdfSkE+C5pbYeBz22FkIFd29l4MPHcd6AZbye2Tvo3Sur6JwGFIym03ahbzkDNv9lrvS/J4wBQJaatUGF+w5KjI8KpEP/DlY63OzN9oScWEltZg7xSIxWWMUdZeR6wtaUMrc1BaOZwtaEONzoXZth+We26qr7XoHIKM/5Rtuu0Gdwrb/f9W1t/fo1ida5ON3mhcBZ+RBlCDcDcBvCiUqPEqZjEEBeoSYqPHiBQuLIok1PLl9t1v1mDK1uaBau1ASQkxwU8VGKAR3g2w2+6/Wf7mbpNAcDOgT2aN40L4un23xatn10/q98tH00ia4MXCu+Ae6ybOdQEOcjLDY7H5pW+tjkLxgtOQZCnVBsI+egpsFokWGKt69ycPZzgT9nKyuow6A8IYQQQgghaktycrLX9vr1gV8HXrfO+0tWmjRpYlkvpNJ1lpIS+yfV1Qkeq01Op5MWLVqwc6fnd2+bN28mLy+PqCj7F5FXrbL35SdNm3p/a8b69es5/vggfNmSEEIIIYQQQgghhBBCCCGEEEKIOuV/ZZ8QQgghhBBCiH+GCuEvRSrMWC3k67dx3zYafUUd/vFwn5MkFO2fZOxV1W6qlEJ16oUafQWOSQ+gThzzzwhFA6/XsBddYfGyy7NgIoxiTspbyg2Zs7gp42lG5nxCbFR5sJoadk7Aw+spJ6P/fRm4Smji2s+52W8zJXMOxx8KRasowZ3F11uHc23Gszi1Z069Cv7gx78H+g5FA9TMRajYQ98qP3BUwPO0nryG377B/eRNuO8Yj/u5e9DvzAq8n6hY1J3/RXUOfuhSZSN7+l/Er7r1Qw2b4AkIBFrE2+8/0ZVBlLZOUct1VEj/adLS3EnaLtvj7T5gnZrQvMKcdV4O+rHrbPdZSg043XeFCdfjQDM890vOzX6bLkUbiNL5dCraaKv/Mw5+hMNPQIu69hG70613J3RUPH+hCihAITkW1OTp4OuxXv8bfPwyOn0P7gcuwT0o3PNvxmT0gfSyavrHT2owe/+e+fFUzuqY7r9igNxWl9oz9+G+9zz0ht+DPl6g9FtP+w5Fq45ux/qtEhPuCQMJln3ZnuCyUjuzzHU7JJvLEmOs95e4fYccaa2NwWhJMYdLVI0QZlpr9N3n2m/QuTfqhDNQZ1+H6jesTkJA2yaWBwPZEeXOI95tSGDFE8765OduRj/j4sqX3fyd5v2ebnqHt3NsMx0vhAAgc1/gbdb/Fvx51JKtGfUz7oJr7B0gBs5w45jkYshMJflFWQAAIABJREFUF2t3+09w+22b5untPb32rYjsy7MJnusX7gLrUGnwHLMa+QhGO2DR1F8wmsOhaJXgc8plahqMBhBlvkwYkILi4PQjhBBCCCFEfUpISKBDhw5l21lZWaxZsyagPpYtW+a13a9fP8t6jRp5pyhnZfm4IFrJX38F+XpwEPTv37/sttvt5ptvvrHdNiMjg99/t3etfcCAAV7bS5YssT2OEEIIIYQQQgghhBBCCCGEEEKIhkOC0YQQQgghhBBCeDjLQ5GKlXnVZOjrD8OPn9bFjMqoSQ/U6XiifimloN+wwBod1d9/nSOdw2m93+0qv+3y8U3yzvIgC9W+O5w0NkgTsxZKCU/uvZW961uxbUMHlv89gGMKfjU3aNYG9U0+qveg8nkqhXr9z6DMR997Hrz7LCxdDK8+AksX2W6r3l6Pmv8r6sPdqNMuDMp8/GkcrWjayLpsZA/r/SkBBKN1KVxHjDvXsizPEVW+0cRHaGX6Htvj7TKs5UmJ8/yvi4vQkwZYV/JBvfiL/zoOB+rWZ6rsn5I5x9YYo3IW+67QujMqNEhJAnXkikEOsp9y0NtmJmlSDCinE/Xwe9C4qbGefuNx9Pj28Nkb5TsXz0Of3wNd4Ani0x+9XL1JN24KJ53pt1oj90H+t6gV+2fC8ts1v0wtpmcQ8jOj3IYwjK/eRU8Zgl7j/7lYG3RxEbq4CL54K7gdO0NQ46/xW83hUMT5CAIJVH4xZFd4qE3HjlCn53lp0jjaXLbbnJ/EwQJPeJoVX+MJcbjQ/70fAglzTGlXa3MxCQ1RtEuyXz/anUe8y7xoeOhjLm5+S7P4D5i7VNPrX25W7yoPSXIb8pKUjWC0Ah+n3kLw10+Bt9m2Dl1UGPy51IJ0m8GA4UHOU0yIVsy92H5Y6dfrodt9bn7Zoskv8v7nqnAAeHuF9cHgg1hPWLdr51bjGE4HxEaY55BtEcrqMhx7KgZDdm1u7rOiiCA8xmFB+jlJMJoQQgghhDhSDBw40Gv7tddes912zZo1rFixomw7IiKCo48+2rJukyZNvLZXr15te5yPPvrIdt26MmyY9+9/X3jhBdtt58+fT1FRka26Q4cOxVnhbx8++OAD9u2rRkC5EEIIIYQQQgghhBBCCCGEEEKIeiXBaEIIIYQQQgghPCqEKhUpc4BLmLb3B8fBomYuQkno1T9P5z4BVVejLq+liRxGHIbLPO4KCS4ul3Ud8ApGA1B3vwhnTQnCxHyLdx8gpWQ3TgxJMwAjLkQ9vxRlcR9Vq06o57+vxRn6cfZ1qGZtUO27o0LMoZK14f/GWi/4H97Nen9KvP2AgC5FG4g2BKPlOCqk/0REQaPG1p3s22l7PFMQUfNDwWh88TZsXWe7PwB1+X2ojoaUuMpOOKPKLjvBaIklaQzN/cp3pXbd7M2hgQlxKm4cZu85kxzr+V8pBb7CAbdvsD4OHUhHD09AvzMLvno38MmOuQL1vzWoB99AXfeorSYJI6Poe3E0vS+NY9nSFG6JWEjbhOol2IS5C+lZuMpcIT8H/fbT1eq7uvSKr3Bfcgx6SCx6SCzs2xG8zvuchJr5AarH8baqm0IcqyvhRjd3LnCTX6TZmWWdGtI8zhPKZtIi3hxqtNHH+rg0HyEvEowm6ov+43vcU4bgPq0J7sv7o1f/XL1+CvLgf0/ab3DMkDo/9ynVt7X9c5oonUeELiDU8Dk2u8C7r5xCmLmk/NiiDeFEPg4xZfLq9qOzOMzoHz4JvJHbDTs3B38ytSA9x/DiqeT49sEf+5IBnnC0+Cj/dUsd+5Cb6Gu9/8Vd7yZ6iovkm1w8/LH1/fktojcacBWbE78cCpwORUy4dXm2Rb6uy/Dx2Fnh2NOlmb1jYUQQDtWhhhz2QOXLcVEIIYQQQhwhLrroIq/tZ555hj177H1ZzB133OG1fe655xIebv2BoW/fvl7bixbZ+1KfTz/9lOXLl9uqW5fOP/98YmNjy7YXLFjAp5/6/0K2nTt38sAD9r9ILSEhgfPPP79sOycnh1tvvTWwyQohhBBCCCGEEEIIIYQQQgghhKh3EowmhBBCCCGEEMKjYjAa5lWTdRmMpp5bijrulDobTzQcamDVkCKfThpbOxM5nDgMK5XdFUKIXD5CfyoFW6iIKBw3PI56dKE5dK2OqDtfQCU0MZd3PQbOv60OZ3RIYnPUpXfV/biHXDJAcUIH732pzeC8Y03BaPb6beQ6QJIrjWh3nmV5rqqQMOAMgaQUy3r696W2xssp0MawoZR4hS7MR7883VZfXkbbD0xUSc1Rkx6ssv/XzccS68o2tnt4391E6ELffQ8aY3seDU3X5v7DFsJCIC6yfFtNvLna4+n/BNhWKdRd83DcOgsVGY1SCjXherhwWkDdRBRkMeO3iWzc1ofHzvJd96zeLpzKOxjjX/sfIFIX+G74e90FOOrNf6FvHAGbfIS1VUf341Bf5+F4agnqmKG2m9k99gTi4Y81932g2bzfuryFnzEjwxSt4q0TR9bvNQe5bMsw9ynBaKI+6P070VPHwh/fQ84BWP8b+qqB6F3VCE7atAqK/BzLSkVGoy69O/AxguSMnvbrRrnzUEC8K8t2my/Xlh8H3IZDQmm44oju5n7yimBftmbVDk1Grr2QKPEPsmGlsUjd8Lj5M9j29bU0oZorLNYs/1vz7XrN32n+60eEwr2jgv9ZUynFpSc4yHjSya2n2A9SrCyvCPKLId06L7rMzpAWuH382YXzUFGjSOvyA/lVjw/GYLQKw3Rt7ntepSJCq/8YlOpo/jgekILq5RALIYQQQgjR4AwZMoTevXuXbR84cICJEyeSn2+RfFzBE088wcKFC8u2lVLcdNNNxvrHH388UVHlv5NZsGABv/zyi88xNmzYwMUXX+zvLtSL2NhYbrjhBq99EyZM4KuvzF9As2XLFoYPH05Wlv1rOwD333+/V+DcK6+8wrRp03D5+hIpC6tXr+bbb78NqI0QQgghhBBCCCGEEEIIIYQQQojgkGA0IYQQQgghhBAezvJQpQhdyLkH3mRc9gLOcPzIqd3h5Mh1nJD3vTEoJ+g69oTUo+tmLNHwdDvWdlX15Ceo6Ea1OJnDhGnhvLvCimpfwWjOEMvdqv8I1LyfYcwVNZhczSjlfyG3uqAOg9E69IBL7kK98hsqNqHuxq3E6VB8drOD2ecrLhmgeGCM4qc7HSTFWj9e/oKCSrUt3ooCot3WaWW5jugKkwiBrsdYd/TLF7bGW7/XXNZ+57foce1h+wZbfZXpNRDVuGlATdSFU1GPLYbWncv29Sz8k5//HsDN6U9w+sGPOS3nE07L+YQrM+fy2dYRXHrgZd+dxsTDCSMDm3sD0sXGQ9i1mfdrVMUlohbvqp0Jjb4cddm9MGg0jLkC9Z8lqBHnV6mmRlxQJezRlh2buOG3a2kUYV0c5i7k2cXdWd7paa7JmMPFWa+wcPs4bs14wn/fGXvQuvZDcfS639AX9w1+x6MuQz31GcppCOH0oUV8zcM4rMxcopm5xPox9RXGprVGv/hvOm23XmznKxht7R7rssRoiIuqnfsphC/6tZmQWzXAU5/TNfBjjq9QtA49UPe9AiMuhIk3o+Z8h+p5QoCzDZ5Bney93iLc+TjxnAvHuw7Y7n9bBqQd9Dx+poexdAYje5rncvu7btre4abXA25aT3Mzd6kh6Uj842itYds668LhE1FnTYHmba3LtzXMYLSlGzTt73TTf7qbwTPdrN5trjs0FW49RfH9NAeDu9Tu++eM8YrTjqrVIVgb1hmXMp8jOQ7dxThDMFq2xeHXTjBa68b2HruocP91/EmJVxzbtub9FBTXvA8hhBBCCCGCYc+ePWzZsqVa/0rNnTuXsLCwsu2vv/6aQYMG8dNPP1UZLy0tjSlTpnDzzd5fDjJ16lR69jQnwMfGxnLOOeeUbbtcLkaOHMmSJUuq1C0qKuKFF16gf//+7N27l4SE+vv9lS/33HMPPXr0KNvOzs5m6NChTJgwgXfeeYc//viDtWvXsmTJEm688Ua6d+/OmjVriIiIYMwY+19E065dO55//nmvfY888ggDBw5k0aJFlJSYf2e6ZcsWZs2axZAhQ+jevTtffvll4HdUCCGEEEIIIYQQQgghhBBCCCFEjVmveBVCCCGEEEII8c/jKF/E2dS1j1d3XerZSBqE44bPcT81D359us6mo6bNQZmCnsQRTzkc6IvvhPkP+a/cd3Ctz+ew4DAsxHZX+OZzH3/kbwpGA1AdjkLdOgtunYUuKUafHFPNSdYeFROHbtYG9mytvTEmP4Q675Za6786IkIVV52kuOok/3VT4hXgPyRl/q7LAYjW1kGYOZWC0VT/EegPX6pace82dEkxyk9AlSmEKDxE0/LxiXAww++cvSQ2R13/WGBtDlHHDke9tgoAveA59OPX07F4M4/su6t6/U2bg4qJq1bbhqBRpKJJLOw7aK7Tp3XVQAYVl4iecD289VRQ56POnIzq2AN/ERCqdWeY/BD62Tt8B0JaWTyPn09N4qitd1KswryKXtp1BY0PbqPxwtsJ+J6VFMOBdIhPCrSlTzptN/zwsSfQ6LhT0Ff0D2r/ADRvg2Pq7Oo3txnKGEytE308S75fjJ73AB2aPYVVfOOe7elAE8um6/ZYd9klIR/95lxIbAaDxqDCDel6QgSR1hrefdZc4aOXYeTF9jssLjIWqdueRXU/FjVsQgAzrD2tEiAyFPL9BOxEVQj1TnBnBjTG5fPdLLzWidtw6lT6UfWKgYrr3rCutHRj+e28Ipj0imZQJ03nphKk+I+3fyfk51oWqfGTPTdadYadm6uU623r/Z4L1bX8Is3EF9zstpE/+MaVinP61d21HqUUH1zr4NQn3Xy5tnbGWBfehR6FfxnLS8PMTOG72flV95mC0RwVfvh2g69jghCMBjDnQs/juP/QZ4OEKFhyk4NeLWHsLDcf/em/j4JiDQ3uGSyEEEIIIf6JJk6cWO22pWH0ffv25ZlnnuHqq6/GfehLilasWEH//v3p2LEj3bt3JyIigu3bt7N8+fIqQVzDhw/nwQcf9Dvegw8+yIIFC8jKygJg3759nHrqqXTs2JGePXsSHh7O3r17+emnn8jN9XzWbNasGTNmzODiiwO4NlRHwsLC+PDDDxkyZAgbN3ounmitefvtt3n77bct2yilmDVrFtu2bWPhwoVe+3256KKL2LNnD3fccUfZz+jHH39k9OjRREVF0adPH5o2bUpkZCQHDx4kLS2N1atXlz3WQgghhBBCCCGEEEIIIYQQQggh6pcEowkhhBBCCCGEAEAph3Vcjj60GjM7wGCamjjqeFTq0XU3nmiQ1BmXoP0Fo/Ub6veP3v8xTEGC7gorqn0FBPkIRqtIhYTCiz+jL+3nu96jCyEvBz3zWjhoCKJo1sYTNJafg559p63xfRpxAbz075r3Y2Xc1Q0uFC1QdhbOR7tzyhb1R7utwxpyKwWj0aqTdWdaQ8ZeaNLS55gb91vv7xiRifNgut85lwmPRN39IvQ5ERWXaL+dybBzYNY0KLRIKrBBTX8HNXBUzedRz/wFo/Vtbb1fjZ2EfvfZwIPJTNp2hQ5H2a6uJlwP/UfAqh/QD08KaKgOnz5CpvoPC2LH8F7sWAbk/8CE7HdpUbIr0Fl7S98T1GA0vfI79N3neALXapGa93ON2tsN7QimEzuZzw30d4sASHKlWZan787EFIy2wRDk2OXPt9CfTfVsdOoFj7yPSkqxP2EhqmPvNp/F+uFJcOJoVGyCvf58BaN1PzaQmdU6h0PRpRms3O67XsWQ15Ti3RBpf4zSUDNtCEYrPcqEhyoSoyHd+rTJi9Yw73vNw+Pk88s/3vYN5rLWncv///ETi7bra2dONbDoD81Om2vGk2Lq/vnvdCg+u8lBj/vdrN4d/P7Xh3XCpQxB5ZSHmZmC0Q5YBaMZjj3OCh/77Z5jRQcpGK13K8Xqfzn4eh2UuDXDuioSD/08F13n4Kt1sGm/pn87xRlPu9lucRmgwE+gpRBCCCGEEIebK6+8koSEBC699FJycnLK9m/cuLEs9MvKZZddxpw5cwgN9f3FMgAtWrTg3XffZezYsRw8WH6x3jRGu3bt+PDDD9m7d2+A96butGrViu+++45rrrmGBQsW+KybmJjI/PnzGTlyJNOmTfMqi42N9TvW1KlT6dmzJ5deeil79pR/80VeXh7ff/+9rfkmJNi8viaEEEIIIYQQQgghhBBCCCGEECKo6u7rmIUQQgghhBBCNGxOwyJOt8vzf3otrB41iYyqu7FEw9Wklf86ccELmDnsOUyv4QrBaKaAMl/tLaiOPVF3/te6sEV71H9/QPUfgRpyFmrRTnM/F92OOvOqoAWOqQunwekXQ2lYnum4Vp2+r388aH3Vly7Nyhflm/Qu+L3sdozdYLRkH+E/+/0HSWUYgkRa7QksjEn951PU4DODE4oGqNh41MxF/isOGg09BpRvh0eibnv2iAhFA0iK8V3et431k0q16oS6dz7ExNV8Eu2PQs1YEHAQpmrdGTXyYjjlvICHjNCFTMx+i7d3nsdNGU/bD0Xz9fwL4rmU1hp93bCghaKp+16Bxk29dzZuhnr6c1QNf4atG9d9AMrwrj4K164AIKnEEIyWZ/61iSn0pX3R5vKNDb+j35nlb4pC1Ny+Hf7rvPOs/f5MQZYx9ZBuaEOXpv6PLVHO8vuUUhLYMTgzD3ILNW5DOFHFc6pYQ9iRlc9XGzoU/yyZhmTgmPiyMENVGpBW2bb1aFNiXz355E/7dRP9nFvWFqUUS6c5GNUz+H2vDeuM28efXZSGmcUZwhmzC6ruc7mr7qvYF0CjSIgK8z+/mCAFowEkxijGH604p5+jLBQNPI/vkFTFlYMc9GipiDBkO0gwmhBCCCGEOBKdddZZbNq0iRtuuIGkJPPvLUNDQznllFP4/vvvmTt3rq1QtFJDhgxh+fLljBkzxnidPDk5mdtuu42VK1fStauvC6QNQ7NmzXjvvffKAtK6detGfHw8ERERtG/fnmHDhvHcc8+xadMmRo4cCUBWlvcF2rg4e9euR4wYwd9//82sWbPo3bu33981hIaGMmDAAO6//37Wr1/PDTfcUL07KYQQQgghhBBCCCGEEEIIIYQQokZC6nsCQgghhBBCCCEaCFMokutQMJqdhffBkrGv7sYSDZZyONAde8LGP8yVghSAdCRQyoHl8njtWVGtiwrRt4+zbuxwoByB5eer0y6EIWd5gn4y9wMKGiVAy45eCwqU0wlzvkNfPci7gzapMOKCgMb0O6ewcNQdz6OvexR2bITWndGjW0Fhfs36ffEXz/04zMVGKLqnwCpzVh2phevLbkfbDUaLTYCwCCiyWNGf5j9MKivPen+Cy0eQX2Vd+kK3Y+3Xt0n1HgTPfIG+dqi5zhmXogacjk7bDZn7oE0qKiyI6QP1zFcwmlLQs4WP8iFnwYljYMvaqq/DkFD0Z2/Am//xOb6a+xOqc+8AZmzRxyV3ope8XqM+bI1z+X1w/q3oIbHWFYJwLqVdLtAa/WSQF2INHuf5eW1bB7kHIToWWncJ+L3BSpem/usE05heEBXuY2HboeN5kss6VC5NN0Jrbbk4zhSM1rKk0oH1m/fh6n/bmq8Q1Za+x28V/eXbqEvvstdfcZH1/lAbqTv1oEsz/3WiW7eGnXGQc4AUuwGXFazfi/X5NeU5vGAvmKjUr9sCnoY4Eh2wDuckvsICelMwWnYG/L0a2ncP/ryq6fft9oPa/IXu1qb4KMXCa53szdbsyoIQB+RVOvS5NAycYUglM1gf3hmXjWC02EiF1VEl2+Ljqp1gNKUULeJhg59LaMEMRrPLGIxmyOAUQgghhBCitm3ZsqVW+2/SpAlPPvkkjz/+OCtWrGDt2rXs37+fwsJCkpKSaNmyJQMHDiQ21nDt2IbU1FTef/990tLS+Oabb9ixYwd5eXk0bdqUdu3aMWjQIEJCyv8kfPDgwQEFa9ckhPull17ipZdeqlbbgQMHMnDgQFt1V69eXXZbKUWTJk1sjxMREcE111zDNddcQ0ZGBj/++CO7d+8mIyOD4uJiYmJiaNKkCZ07dyY1NZWoKPkiNyGEEEIIIYQQQgghhBBCCCGEqG8SjCaEEEIIIYQQwsMUfOF2oUtKYNff5rbtu0OPAbDwheDMpcA6jEf886hL70bfNcFcHmf+5vV/HFNwV2m44YovfbSt3iUiFR4JKe09/3zV634szFyEnvsAZO2H7sehrnoQVUtBGyomDlKPBkD7+dZ3n47qj5r0AKpjjyDNrP4tv9NB5BTzQv8uRevKbhuD0VSFxSBOB0opdHIK7NxctfJ+Hylsh2TlWS+2iXcd8NsWgBEXoK5/zDLEKBhUr4HwwBvoeydWLYxLhKOHeOolNYek5rUyh/rUOMY6wAGgSSzERPh+3FVIKJheQ517Q/uj0NOvtG577SM1DkUDUK06wayv0LeOgvycGvdn1G8oKjQM3fUYWPNLlWL98+eoMy4NqEtdmI9+ZQbMn16zuTVrA8cMhcXzqpb1OQlVumCubdeajWOhfbInxMMU8BFs5/TzcywoKQYg0RCMlu5IwJ2+D2eSd6JbYbEmzfD0aV6823vHjo3GcLV/Iq2153zEXeGfy3Dba9t96F+AbUpva3fAbXTZuAGMU7FMuw1z9XM/vOZq6sNi258ta+z/oA6zYLRUG8FoyXFO1PPfo5++jZTN2QGP8dcujdtw7HJUeHmbAoCsKAW5hZpoXwGO4siXnWG9v2IwWseenus0Vk/C7z9sUMFoWQHkUCdG+69T25o2UjRtZC7fPdPBTXMz+XJVAQcccQC0Ld5K85LdfB09uEr97aGtyHaaOyw9XsRFWpdn51c91zYGo1U6dLRL8h+MFt2QgtGK63YeQgghhBBC1DWHw0G/fv3o169frY2RlJTE+PHja63/hio3N5dff/21bLtz587VDppr3Lgxp59+erCmJoQQQgghhBBCCCGEEEIIIYQQopZIMJoQQgghhBBCCA+HIVTJ7YK9W8tCJCpTL/6C6tgD7Xajv/sAMvbWeCpq7FU17kMcIQaN9l2eaCMR4Z9CGcINtRutNfq1mea21QxGC4Q67hTUcafU+jhVxj3/NvTcfwXebtKDqAun1sKM6ld4qOKSAYqXllkHXXUpWl922xSMluOIKd8ofe4kWQej6S2r8Rf7kZVnvT/ObQ5GUzMWoAbU3aIVdfI4uP159MOTvPdf+wgqPKLO5lEfkmLMZfGGcAe7lFJw+kXQbyj6oj6QU+FnPuB0mHB9zQaoOFbPAaglVYOw3E/fBm89FZxB2qR6/m/Z0TIYjS/fQd85N6DnjH7hPnjzP9WfU7djUbO/QR0KwHXHNYaK7wdhEaiL76h+/zaEhSg6JMP6mp8i2jLhGD9HnTxPulmSIRjNrZxkbdxMYqVgtN0+shpblOyqunP1cnTnPrDhd8jJsgj8MgRgGQOxyutqY/hWxW1TuJeP/f7m4TWujbmXbovDQ4khGC0kgNSvOpTa3BzcWSolXqFadUI98j5t1mp4PLCExs9Wm0eomHvo6/hQmdaefsf2CWgq4gijs9KsC+ISy26q2AR0jxPg9++qtl//m99z7Lp0sMBevagwiAxrSDP3pnOzYeMfNCkq4NX3RlYp3xzals4dV1u2XRfW2div89BH9UaGU8Bsi8fPGIxW6WN/p6aKJat9Hwtj6iGIUYLRhBBCCCGEEME2f/588vLKf6F0/PHH1+NshBBCCCGEEEIIIYQQQgghhBBC1AUJRhNCCCGEEEII4eE0BKO5XLBjo7ldyw4AKIcDfdqF3mEb1VUP4UmiYVJKwXub0ePaW1fof2rdTqghcxiC0bZvQJ93lO/XsSlU7Ugw4HSwCkYbNxnem21u161f7c2pnl18vHUwWrzKZcilI1HR49APTyJaWwejFToiKMFJCK7yYLT4ZOvBFv4X3aQVXDjN83quRO/dTtbag+DoUnU+rizLLtW85ahOvQz3rvaokRdDq07oj+YDCjXyYlSPI3/hjc9gtKjgjKGSW8Brq9D/exKy0lDd+sEZl1k+Z4JNXfsIeuMf8OvXNesooQkqJs7TZ6tO5qieL97yhMHZoDP3wTvP1Gha6unPy0LRANRV/wedeqN/+BgaNUadej6qS+2n86Q2q5tgtDUPOHA4/Dxv9m4DINEQjAawf/N2Evt7v753Wh+SAEgp2V1ln776RN/zEKKhKTYEo4WG1e08bOrW3H+dlPjy2yd0DHyMD1dpUg05zI5qBqMBfPynZmyfhhsOJerAAcN7UFyS93bvQZbBaHz9HnrvdlTTVsGfWzXkFNqrlxhdu/OoCf3us+hnphq/FACgTfE2wt0FFDqqJpytDu9qbFd6vGhkCBU+kF91n8twMlk5GK1LU+t6FUXXw2E8wvBXKBKMJoQQQgghhKiOHTt2cM8993jtu+gie9fZhRBCCCGEEEIIIYQQQgghhBBCHL6O4FWvQgghhBBCCCECYgpG0m5I22NdltgcFVGeiqIumApdj6nZNC67F9WuW436EEcWldwCdeszUCkgR133KKpJy3qaVQNkCkbLzvAdigaQnxP8+QTqkrus94+/pmb9duoFF0z13tdvqCccqEtf6zYx8dBrYM3GbcBO6qK4Yaj36yksBGZfEUP0hEkQFg5AI9dBYx9ZzkNJI2XBaInGuvqF++Dnz6vu37IGfVZHskrCLdvFu6umjKhP0+slFK1s/J4DcNz+HI7b5/wjQtEAkmPNZcEKRgNQjZviuGY6jjtfQI2dhAqpm+/0UEqhHv8IBp5RtTA2AfX05zBotP+OOvYov92uu7Ga/u4D23PTbz/jCaitjvZHoRZuQ4V5v76UUqihZ+O4ex6O62fWSSgaQOem1Q8AWrexO2dmv++33kNnKro08z2OXrqo7HaTkv3Gepu3VD3+bN5vnVAS7c6hkTvn4DNdAAAgAElEQVTb7/yEqC963W9oO8eSEkMwmjM0uBMKkrAQxYRjfL/mkyuEe4aFKO44LbBjUUYuLNtkXVaT7M6/dhnjM8U/xYE06/1x3ufUqk3V8OBS+v4LgjmjaitxadthV74Cd+uT/vNH9JM3+QxFA3DipkPxZsuynSEtzO0OfVSPMwSjZRdU3edy++6rVNfm/g9GMVVz3GpdpCGMTYLRhBBCCCGEEADvvvsud955J/v3m6/Rlvrtt9848cQTycjIKNvXq1cvTj755NqcohBCCCGEEEIIIYQQQgghhBBCiAagblaXCSGEEEIIIYRo+JxO6/1uF2SnW5fFJ3ltqpg4mPUVLF8CW9ZC01awYxN67r8sm6tpc+CU82Dlt7BzM/Q8AdXhqJrcC3GEUmOuhD4nwa9fe8L6+pyEatu1vqfVsDgMr+HDhDpxDHr+Q6C9gyLUSWNr1q9SqKseRJ88Hv76EVp2hD6DPaFLs75ED4uv2mbCdaiQhhkCEixPnOPg3H6aHzZrosNhWFdFu6RDi+oPJX0kuQyBDcA+ZzJJrvTyYLS4JGNdAP3BXNSxw8u3P3oZPf1KALKccZZt4l1ZXtvqmumoqAaapnAES4lTgHWAS/gRcnVZOZ3w0Duw4ivYsBKKiyE5BY4djkpsBgW5fgPN1KkVwkmOH2GuuPJbtNYoP4k6+qOX4ZUZgdwNjxEXoAaNhuNOQYUb0jfqQWqz6rftUPw3/9t5AW8fHM8FLeZXKe/ZEl6+zEHPlv6DQfQrj5TdjtL5tCjeyc7QqkEm67YVcHqlfRv2WffZqWgTNchHEqLW6Sv6Q1Qs+qj+qF4DoecJ0LUfKrxSUk6xIRgt1JBu0wDcPFzx1i/mkLG2id6vzv8bq/jfz5q/K53ixLmyKFah5DmibY9dsedOTczHCCtrdmPrvUAcwTKsnzCqUjAarc3BaPz5I3rfjnoPC88ptF83sQGeyuviIvTkk2zXTy7ZDxa5zvtCko1tHIde6o0irM+rD+RXbWM3GK1/e885eWGJcXii6+EwHhFqfV8LfMxTCCGEEEII8c9x8OBBpk+fzsyZMxkxYgRDhw6lV69eNGnShJCQEDIyMli1ahWLFy9m0aJF6Aq/OwwLC2P+/KrXiYUQQgghhBBCCCGEEEIIIYQQQhx5jpCla0IIIYT4f/buOzyqKv/j+OfMTHoggSSU0HuVJoiAIIK42FgLKthWdC3outZ117ViXV3Xsquua8Gy9rVXXAvqCvpDsaBrwUWaSi+hhbQ5vz8Gkgxz78ydSSb1/XoeHnLP+Z5zv0kmk5lJ7icAANSYW6hSRYVs0UbnuT0v2pVkUlKlMYeF/kmy3y6UnILROvaQDj0ldDF4tbAcwI3p3Fvq3Lu+22i4fL7YNQ2Y6TVYuvxB2Vt+IxVvkzKyZGbeKDPU+0XqUffvPUTqPSR8LC1D+scHsjf8Wlr+bSgQbPJJ0gm/q5VzNnQjuxuN7O4QyGFCt6WCKMFo6wL5Uqkqg9FMy9Yu0Vm7vPe8Xp/1Nz2de5xKUlvo1y88ovGSgjIq8jkHo+UEi8IHeuwV7QxIksLI7MBKO1wydBojY4w0fELo355G/kJm5g2y910llZeFz/n90vEXS5OmVe2VliGddb3sPZdF7rWtSNqwWspv79qL3bC6Mjgwrvfh0vtkDjk57nV1oU8794C9aJ5beawkya+gpm35lzKDxZpReK+K/LkK2DJd0f0TXf6HMZ7Chezm9dLXC8L7Kv3OMRht8cZU2c3rZaqFAC/+qVRSZGhmz9L/xfleAfVgx1ZpwZuyC94MHaekyvYdLg0aLTNojLTX6Mj7t90acDDaPt2M7phmdN6TkfcvxkhDOu05ZvTmBT6d8mBQH+z60j1062u6b9VMndX+Tr3U4nDP506vdncwY4zRH5/3fh+3aYe0dqvUtqXnJWhCbDAo/bTEeTJvj8cHXfqEvgbdggt/XirVczDa1p3eawtzG04YoK2okF68V/a28+Nal1/h/IcD1vrdg9F2h5m1ynSeLyqWyiusAv6qj49rMNoeH8KsNKMJfaXXv3I9vbLT3eeSJd0lZ7zE5VsNAAAAgOaprKxML7/8sl5++WVP9RkZGXrkkUc0ePDgJHcGAAAAAAAAAAAAAGgICEYDAAAAAIS4BaMFK6Qtzhd+qmXrmNuavnvLDhojLZoXPn7WDZ5CLAB45PY13IiYg6ZLE6ZKK7+XOvYMBS0m+5z9R0gPLZTWrpTSMmTy2iX9nA3erpC9dFuiFhVbtNUfmdqx3r8rLGhXMJpy8iNqqvt7qzN07k9nSz+Fjp/s8oZm/3y6Jm/7t6xxDvXLrdgjGK1rP+/vA2pNtGC07SV110d9MsZIx18kHXGGtHmdlFcobd0orflR6tZfJjM7ctGhp0hOwWiStOK76MFoR3SJv8fTr2mwoWiS1DfBu9b9d7wfdjxl2ytas7iTvkvtrW5ly5RZeJiM2c/bZt9+EtlXyWK9kxUZhvdDoEsoRG30IZVjy5YXSYq8r+tZ6hJug7rh94ceA/n8oe9fvmrH1ef80eb8oVDQsPE9j/d4O2KdL3qdzy9Tfc6Y2HtHvO0Lfx+r1dh/XCF99aH3j1tZqfTlfOnL+bKP3RLqJ8slpSvQcIPRJOncCT6VlAd1yTPhwWRTBkmd8yKfb3YvMHrvdz4t3yD5X39QHe6dKUkaWPLfuILRstKq3j6m/zb98fmsuPp+9zur40bwfLhZWrtSKil2nuvSJ+zQpGfKHjVTeuoO5/oNq2u5ufhti+PxYO+2yesjHtbaUDj2vx/3vqh9V5l/fq78+7dKX0ROrw20cV3q2/Wlnt/CrZ9QYGJBtXnXYDSHp06HDzZ6/Sv3cMbsNNeppElz+S2UnQSjAQAAAJCUm5srv9+viooKz2vGjBmj22+/XcOHD09iZwAAAAAAAAAAAACAhoRgNAAAAABAiGswWlDastF5rmUrT1ubm56XvfP30hfvS4FUmRMulsb9MsFGATjyOYdLNTYmkCJ161/H5wxIhd3q9JwNWrWgsoKK9Y7BaOv8BaHSXcFoL2/po8u7LdCaQBtN2P6url13tbqXLZMklZhUXZ//h4g9Ti28L2obnctWVh106iUVdIj3PUEtaJHuHtqyo7QOG2kATGYLKXNXYkVaoZRf6F6bmy+bkycVOYTLLvtGGjbecZ39vzfib+zQU6STLol/XR3KyzbKy5I2bPe+Zu/iT5UT3BIxHlCFBpR+EzpY/7P3DZd/FzHUsfxHx9IN/nxpxQdhwWg/r90ppUTWdi1b7r0HKXQb2jPEq3rwVayArLAAL5cwLsc99gjVclljItZEOY/jHj6XXj2u8e1a5yE0zDSRxz614ubnZQ+pQbirtdK2Iue5FIcbfgNz4YFGmanSX9+2MpIOGmB009Hu37+MMeqaL9kTZ8gu/0B64zH1Lvk+rnNmVcuL6/7xP3V8UY4ez5nuef30+6xOebBCfl8o6Ciw5/9+yW/C3w74w2sc11XOmbB1Ps/rInvYfd7IHkz0PV3Xxeil2vvu8zXB8DiH70eVOveOGDIzb5R1C0ZbsbiWmkrc1p3ea/u0rd/Pp138uewdF0YE90fVopU0bH+Z826VSctQfsc06YvIELI1UYLRdoeZ5Ttk6e62flt4MFrQJefM94/LZEuGyxxwdOXYYYOMzn7MPRitnUvuZTKlu3zr2Fnm3icAAACA5uOII47QmjVrNGfOHM2bN09ffvmlli9fro0bN2rnzp3KyMhQ69at1aVLF40dO1aHHHKIxowZU99tAwAAAAAAAAAAAADqGMFoAAAAAIAQt2CBYIVU5BaMludpa5OdI/OHexJsDIAnbuGGXvQaUnt9oPEzVYEF+RXr9YO6R5SsC+SH3vD59ebXVke8NVRKDw09lXOsvk7rpwVLxyhF5foqbYBWB+ILa2lVsVFtKtbuOodP5tdXy5gmGIzRSKQFpJLyyPEzxvE5iapzH+nL+RHD9uO3ZI6aGTleXiZ78ZT4znHUWfJd4BKW0sD0bSfNWxI53raldMxwozvfqQrKSLGlumL99bE3jSMYza6MDI/JL3cIrpO0PpAnu+I7lZRZfb5Syv3qTa0K7O9Y2758lXTkmdLz/4jZgzn9GpmTf++5Z8CzjBaxaxIVSI1dU898PqOzxxudPT6+dcYYmctnKyip/3v/jWttdlrV90D7zjM6oSgzrmA0yfl7a+2pi/Ch5J/DmERC4eIJd5MCPlNZ66tRGF2085qqt/8r+bImKC1YoiEli9QyuDX0zrZuJ5MVmWBl/H7ZoftLn70XMWdnXyMz47Ja/7gX7bD6abPUvUBKT4n+eG9bifd9+7WvYWM1YDeslj1tpPcF086X75ybIobdws12+LJct/LZoCS/8txLtH5b+HFF0LnOv36l7JW3Sre+KjPiQElSx1ZGQztJn62MrD9uuKmXgEH3YLS67QMAAABAw5WXl6cTTjhBJ5xwQn23AgAAAAAAAAAAAABooAhGAwAAAACEuIUqBYPSFufQCJPTOokNAYiLcQk39GKYc9gLmqlqAWQF5esdS9b5C0Jv+P26463Iq/a/TN9LT+Qcp5OLHtN3qb3jbqFPyWIZSTrkVzKTT5QZOi7uPVB7Lphk9KfXI8NPDhtEMFpUA/d1DEbTJ+/IlpfLBPZ4ef6dZ2JuaS57QPabT6QtG2XG/VLa/8haajb5jhpmNG9J5O3o1mONpo0wGt1devmNpWq56E2dWPSYRhUviL3p+p9lrY0ZnGhLiqUX748Yz69wCUbz5+nB/3XSuecHdwV4TJRcTtFh5kUyh4+VBu0ne/2pUnmUxI/0jKh9AokygUDyIqoCLuk2TYj54/0a2vsu6S3va7LSqh18OV99UjrXel+QrJXKrVTuEhJVS2dJ5uYO55godZ4oSQrYMv124526ae1l0V9fyXdPFLNLvpLpMbBWugwGrW56w+qKF6yCVmqfI912nNGxw92fa27Y5joVZlDHeg5GO7pHXPVOoWiSooabue41/xVp4i+VkWqUlSZtdwiTiwhGc7lZ+m2FJMnOvq4yGE2STt3P6NwnIhedul/9PF53C0YrJhgNAAAAAAAAAAAAAAAAAAAAHtXgilkAAAAAQJPidwtGq5A2rnWey8lPXj8A4uP2NRxLarrMry6t3V7QuPmqXjJ0Cw3a5M8NveEP6O1vnbc5tfA+HdHxX7ox/5K4WxhY8rXMqVfKd+m9hKI1ABceaDSia/jYLccYdWpNMFo0ZsyhzhM7d0hrlkcM2/dfiL7h8RfJTD5Rvgtul++qR2QOOFrG13he4v/1WKMJfcPHLpkcCkUzxmjaPj49ut/numv1ed5C0SSptETauil23bN3Ow63drmP2+HL0un6/a5QtOgKR4+UMUbmwGPlm7tN5t0dUka2c/FQgkiRRB17us/1GiLtO1nKzol/39ZtE++pkTA+n/zHnqvZLf7ueU32rmA0uysMsXPZSrWsKEpGe2jCyk2Kbs27QA/lnCylR0nc6uAe6mUfubHW+nl5kXTZ86FQNElaVSRNu9dq6Xr38Li3vokdLJefLd1+nC9mkGlts+Vlsm89reCMEVJFubdFuQUy9zkE2+5S0CL+98H3zxsq33YLVlu/LfzjWOESBuhXKBhNX30ou3FN5fiZ44x+MSC8duZ4o0n9G1YwmpfHVgAAAAAAAAAAAAAAAAAAAIAkBeq7AQAAAABAA+FzCVUqKZa2b3Gey2+fvH4AxMckFo5jXl0lk55Zy82gUasWWJBb4Rw4tMnfSpL0xY62KomSMfBKC5dgqBhOLHpMyvhlQmtR+/JbGL17sU/vfCstXW81vo/RwA6EosXUe6j73IrFYSEntmSn9F6UYLQDj5Nv5g3u841Ai3Sj13/r01vfSN+vtRrT02hYZ4WHpKSkxr/xsm+kQWOiltgnb3ccdwt/9Mpvy9WmdXjPxu+XPWia9OL94cVd+kg9B9XofEBU+x8pPfbnyPGMbJm/vyeTli5bUSEt/a/0xQeyi+ZJX8yTNqyKuq0Ze3iSGm54fjWxpc57dou2+lvGrM3aFYymNSskST5Z7b/jP3q5xWFJ7BBN1YstDteMjBWu82bCVNmHrneefOcZ2X4jZKadX+M+/vmhcxpXjz8GVfGPyGCzYNDqlUXOwWi/HCxNGWKUGpAm9jVql1PHoWib18uec0DoMZdH5re3SAceJ9OqjWtNYQL5kr4liyrfzs+WVmyMrFm/LfzYNRjNVpuY96p0+KmSpIDf6LXf+vTvr6WVG60GFBqN6lF/j9fTXX4LhWA0AAAAAAAAAAAAAAAAAAAAeEUwGgAAAAAgxC0YzS0UTZLyOySnFwDxc/sajubwUwlFQ6RqIXu5wSLHks2+UCLAtEWTav30bcrXaL/iD6X042t9byQuI9Xo0EGSRCCaVyYjS7ZNJ2ntysjJld/L7jtZev2fsnMelT57L/peR56VpC7rVkrA6OC9pIPdbkcpac7jUdj5r8lECUaz81+TNq11nKtpMFq77Ar5fJHvi5l5o+zan6QPXw8NdOolc+OzEYEyQG0yp10p+/MP0txnw8dveUkmLT30tt8fCujrOUjm6LNlrZVWLZW+mCf7xTxp0QfSyu9DC9MyZGZcLjPyF3X9rtSfUQfrzAfu1y15F8Yszd59d7Wt6vnyIz+fqlZ9nO9vOpWt1MqUTrXRJZqgn1I6SBlZrvOmW3/ZXkOk7z93nLd3/V4aNVmmS9+w8Y3brW75t9VD86xWb5H26Sp1yzc6clgooOrVRdL6baFgs06tjZ77zL1H/5lBnTLaaHwf6aR9jYwxWrhCWuX8dEEn7OvT1L3r5/ueLS2RPTy+16vMba/LDJ8Qs65Dq/j78Skoa62MMcrPdq7xGozmU9WEnfeKzK5gNCkUNvuLAVJDeLyenuI8TjAaAAAAAAAAAAAAAAAAAAAAvCIYDQAAAAAQ4vPFrtlTfvva7wNAYuL9Gs7IlvnVpcnpBY1btdtSq4pNjiVF/hztMBlauqNFrZ46PVisL3/YO3QQcLmaHmhMOvdyDEazKxZLd1woPXt37D16DZb2GpWE5hqg1PiD0fTV/7lO2X8/IXvtKa7zrSo2yRjJ2vhPK0mFrZ1DSU1WS5mbX5DdsFratlnq3IdQNCSdSUmVueZx2XU/ST/9ILVuK7XrIhPl68oYIxV2lwq7yxx8kiTJblorbV4v5bWTadm6rtpvEEyrAk1ps1y3VMSuzdr9YS0prhxrEdymx388Scd3/GdY7eCdi7Rg6WitDbTR9yk9VDH5JAUnn6KKoFQeDAUglVdIFdZWe3vX/9VqwuqDUeb2WB8M28s61tbWectdwpwQXbFJl9Ldg9EkyVz9iOwJg1zn7YmDpfd3Vn6/KdphNXhWUD9trqpZsExasMzqqU8cd4jZ50PzrR6aL/3fUumu441e+sJ5TWpAuwK66p61Vva8+AIdzT3vywwY6am2VaaUFpBKyj3ubYOhmLIdW6WslsrPNnL6WG/wHIxW7Q7q47dli7fLRAnVqy+uwWgeP24AAAAAAAAAAAAAAAAAAAAAwWgAAAAAgJB4Q5XSM6XsnOT0AiB+PudwFkeDx8qcMUumbefk9YPGq1p4T25FkWPJJn8rvZs5TmU2jttdFOnBYo0sXqA71lykvIqNtbIn0CB06iV98k7k+Iv3ed7C3D6n+YRqpabHv2blYsdhW14ue3f0AFD/6MnqkyZ9uzr+00pSu9bRf8Ri8tpJee0S2xxIkCnoIBV0SHx9qzZSqza12FHjMmpCX3V6baVWpnSKWpeVuuuN0uKw8WO2PqvinzN0U97FWhfI10Hb3tJf1vxefgXVvny12pevlp6fJz1/VmLh5I1AUEYV8qvC+FWuwB7/h8Yr5Fe5CVT9b3wRtVU1vsraisr/q/aqXLd7Tn6VG+fzO+0VeY7IfsP3ruo3GNGvw/smf2V9iUlTqS8yrLDYZEgZ2dE/sJ16S936S0u/dq95/C/SCRdLkm543YaFotWme9+3uuQXVi997hyMNqGP1CK99h+72OLtsg/Mkt57QZJkDj1FOvkPMtW+luzsa6WvPvS2YadeMr+52XMomhQKlCzMlZau91bv3x1kVrRBymqpPJdP84Zt4R/LCpecOr+tFoxWulP6+C1p3C+9NVOHXIPRyuq2DwAAAAAAAAAAAAAAAAAAADReBKMBAAAAAELiCVWSpNZtm09IB9AYeAxWMKddJXPKH5PcDBo1U3Vbygk6B6Nt9uXo8/TBCZ/ijtUX6pxN90gTj5XefjrhfYCGznTuLZdcC2/rr3tKpmXrWuunwUuJDIuJaeMa2a2bZFq0Ch//cr60YVXUpebkS3Xw10bfrk7ss1SYy2NhoKnxTfm1bn5whqZ3fDRqXdbuu6uS8GA0I+lXRY/qV0XR10uSgsHEmmzgfJJ8qpBLLlKz9mTLY3Rih4cjxot96VJGZtS1xhhp5g2ylxzhWmPvuUw6bIY+29xaf36jJo9AoqsISne/a/XlT87zhw9OzvdHe+0p0n9eqjp+YJZUViJz+izZYFD6eoH00PWe9jJXPCRz0PSE+ugQTzCarRaMVthN+S7BaOu3hR9XuNw9VAat7WLnvSrTIIPRjOTwKJhgNAAAAAAAAAAAAAAAAAAAAHjVNP8UOQAAAAAgfv44g9GyWianDwCJ8RpuOHRccvtA41ctZC+3YrNjyU5fhhal75XQ9nsXf6qzNt0rc+XDMmdck9AeQKPRqXfN1o84sHb6aCwSCUaTpBWLI4bsBy9HX3PA0TID9tE+XRM7pSQV5iS+FkDDZNLSdezlJ+nN5ZOj1gX8u4KfSnbWQVdoKjKCzreXYpMhpWfFXG9GHSxzzROu8xXy6eJbF2v49ckP3YsWvFbbwWg2GFTw8mlhoWiVXnpAdslXsoe0lZ25v6f9zG9vSTgUTZJ6tvH+/vm063OxeoUk1TwYzYYHo2n+a7IVFc7F9Sjd5c/zEYwGAAAAAAAAAAAAAAAAAAAArwhGAwAAAACE+F2uWnSTlpmcPgAkxufxZZ4ufZPbB5qAqgv9c4NFrlULMkY4jh+zt3tQQPfSH/TUT8cr8M9PZSZNkwo6SOku30+aWyAUmqYufRJfO/oQmUyX9IymKjU1sXXLv5Mk2fIy2bnPyr75pPT0X93r+wyTueAOSVKH3MTDW3oUJLwUQANmRh+iA3a8r72LP3Wc7+lfU3VQUlxHXaEpSLfOt5diX4ZMhrfv+eaAo6R9I4P7PksbrPFd3tRtq/apUY81Nayz1LFV7QWj2fJy2cuPk9573rlg8zrZU/aWtm/xtuGMy2WOObdGPfVu6712d5CZveE0SVJ+tvPHpnowWjDoHjrn1x4haJvXSf/9yHtDdSQ9xXm8pFyy1v39AwAAAAAAAAAAAAAAAAAAAHaL86p3AAAAAECTFYgziCI9Izl9AEiMl2C0nDyZ3Pzk94LGrdptqVXFZteyFSmdHcd/MUB68BSfZt/1np7+1Khr6XJ1LVuugSX/1YHb31GrZz6TKeggSTIpqbKjD5HeeSZ8kz7DZNp2qvn7AtS3tp2ldl2k1cvjXmqO/W0SGmrgUtISWmZXLJY2rpGdub/089LoxWOnyFz5sMyuUMbC3IROKUk6bFDtBb8AaFjMSz/q6Bm3amHGsIi5X256RrbsLJmUVILREJeMoPPtpdykqFw+uWRJRTA3/Et2QovK42vzL9WsgitqocOaO3xwLYaiFW2Q/c1Eadk3tbKf+dtbMkPG1nifvu2MJG/hXj4FQ2/s3CEbDLoGoxUVSzvLrNJTjF7/yn2/3UFrYT57Xxo0xlM/dcUtGE0KhaNFmwcAAAAAAAAAAAAAAAAAAAAkycMVswAAAACAZiEl3mC0zOT0ASAxxsPLPN0GJL8PNH7Vbkt5FRviXt63vVFmmtE5543Vu0Of0UOrz9DV66/TVL2rVrc+VRmKVnm6i++SBlcLKOjaT+a6JxNuH2hIjDHS6IPjX3jQ8TJ7H1D7DTV0qemJrVv+rexfL44diibJXPjXylA0SWqfk9gp92mxWi0zCEYDmirTqkAXHlChUzY/EjZ+9JbndM3Pl0mfvRcacAtG67GXzNPfSQNHJblTNCbptsR1bsfa9Z73MSmpMjf8S5J0R6tzaiUU7aXf+DR5gGRq+K3tl0OqNrClJbLP3KngVScoeP8s2TUrQuOb1yt45yUKjk0L/bvnMtnvv1Dw7ksVvOoE2RfulS0vk73vytoLRbvn/VoJRZOkoc750I78qhZktmVj1McdS9ZJO0qsTn046G2/Xey/7vTeUB3JiPIS486yuusDAAAAAAAAAAAAAAAAAAAAjVegvhsAAAAAADQQgTiD0dIIRgMaFL8/ZokZeVAdNIJGr1oaQobdqdblG7QxkOd5eZ+2u7bx+2Uu+pvsGddIq5ZL3QfKBCJfjjQtcmXufCsUlFCyU+rUKxQmBTQRZvShss/dE9+a8/6SpG4auNS0xNZ9+JpUERkUEsHvl1q3DRvKSDVqnWm1cUd89ztn9FkhqUPMOgCNV8rZ1+n+l/J109o/6su0AepX8p3aVqwNTf5vkbTPJKnUJegqLUOmfVfp7rnSysWhupKdUvG2OusfDU/m+nTpOee5km6D49rLjJ2iO3pfr4v8F3iq/2Dp/rqr9Uw9kTMtYi7bFOvQvbJ02CC/Nm63WvRj6DH94wusfveM9dzTwQOlIZ1C309tebnsH46SPn6rct6+/oh0w79kLzlS2ri6auFjt8g+dktV3TvPSB++Ln36rudzu0rPlHl9rUwgpeZ77dIlz2hiX+ntb2PX+my1kLMNq9W9S578PqnCIfvs21XS92ukdVvd9/Nbh4VF62VfekBmymmxG6ojXfOkJ88wSg8Ypaco7F92gg/3AAAAAAAAAAAAAAAAAAAA0LwQjAYAAAAACEmJMxgtnWA0oEExvtg1e41Kfh9o/Hzht6UO5T97DkbLz5byssPDhUyLVlKLVjHXmqpv4mMAACAASURBVLadvfcINCZD94+vvms/T18zTVJK9KQMc9pVsg/MipzwEoomSS3zZHyR3y+HdTF66xtvW+w2rhcBjkBTZ1JSZfuNUN4XH2j8jv+Ezdm//1EadbBsSbHz4rSM0B7GSJ37JLtVNBKZa630nEOwlaTiAePi2mtLsdWVqedIHr4FFn/TUikqlzbKMRjtwKJ/S990kvqPUOsso/G7brLnTQz97yUc7djhRv84sdr3xi/+ExaKJkla+6Ps2QdIpTtjNz3/tdg1HphTr6jVULTdbp7q097XOX8uq/NX/wRtWKWU/Pbq7ivR98G2EbXH/CPO/aqx914pHTbD8XFOfcjNNDp2OI+VAAAAAAAAAAAAAAAAAAAAkLiG8ZuxAAAAAID6F++Forsu9AbQQPj9sWuycpLfBxq/PUL2CstXeV7at11tNwM0fiY1TTrp997rf/XHUJBOcxTt8Wh2rjTt/Jo9Bs1xDnm84rD4flRyyuZH1KNH68T7ANB4+N3/xpQ9+wDpx/85T6alJ6khNGYZUb7N7cwpjGuv17+y2lYRO+D++ZXHhELRJO2782OdtPnRsPnM4HZdsuEv0oI3I9YG/EYXHeTTwsujf5+cOd7oyTN8ysmsevxin7zdudhLKFpt6dBdOurspGw9tLNRew9Pr32qFiq3YbXstaeo96aFCZ/Xb12S8IrWSz//kPC+AAAAAAAAAAAAAAAAAAAAQENDMBoAAAAAICQl9gW1YdIzk9MHgMQYDy/zZLVIfh9o/Hzht6UO5T97Xtq7XTMNcwJi8J1xjac6c9trMgcem+RuGi5jjLTvZOe555fKpGdK/fdJ/AQ5+Y7DY3sZjUv52nFu9I75mrV2liZte1OHb31Fd646T/euminlxxdgA6CRihY+vG2z9PbTznMEicNBRpSXXYrLvO9TEbSafp+NWde/5Gsdvu3VsLF7V52t+34+S0dseVG/3jRbnywdpX12fiL7wCzXfYZ2NjpqqPt57jre4bnoR3Ni9pdUx5wrc/9HMkkMKezXPnZN9SAz+84z0v/9W13KViR8Tr9cgtEkaevmhPcFAAAAAAAAAAAAAAAAAAAAGhr3P3MOAAAAAGhe4gxGMwSjAQ2LL0pow26ZBKPBi/Bws8Iy78FofdvVdi9A02Hu/1D216Pc5295WWb4xDrsqGEy594su/hzaePq0EBKqswfH6h67Nm5l/TZe4ltnpvnOvWvAa9o4kdBfZU+sHKsXflq3b36txpY8rW0oVpxVkuZzOzEegDQuHh5jO0klWA0RMpIcZ8rLvW2x6fLrU6eHfRUO2fF4RFjKSrXjKJHNKPokYg5u/J7mU69HPeafYpPyzcGtXB51Vh+tvTqbxvW32EzVzwkc9D0OjlX77ZG73wbPaAuLMhsV1hc+/JVCZ+zetBahO1FCe8LAAAAAAAAAAAAAAAAAAAANDQEowEAAAAAQgLxBaMpjQu9gQbF5+GCdILR4MUet6WCivWel/Zpa2IXAc2U6TNMUaMz8gvrqpUGzXTuIz28MBQesmOrtPcBMl36Vs136h394xhNjnswWn73TvrwyXF6scXh+jqtn7qWLtfh2151vg/Mb59oBwAaG3+CP0rl+TIcpEcLRiuLvf4PzwV18xxv3wUf+PkMFcYZwGWPHyi9v1PGRD6mb5lhNO/3Pr3wudVXP0mdWkuHDzJql9PAHv+PnVJnp+rdNnaNz0aG2HUo9x48vaewoLU9bduS8L4AAAAAAAAAAAAAAAAAAABAQ0MwGgAAAAAgJCXOYLT0zOT0ASAxJkYwWmqaTLxf52ie9ghGy48jGG0AuU5AdDl5UtEG5znuoyuZ3Hxp8onOk90HJL5vt/7uk90GKMPu1LQt/4q9UbfEewDQyCQcjJZeu32gSTDGKD1F2ukQglZcGn3th0us51A0Y4OatP3tBDqU7Lh02YnHygzbXzp0hozfXzmXGjA6drjRscMT2jrpzNk3ymRk1dn5QqHQ0T8nTkFm7eMMrKvOKkoQ3fai8Nr1P8v+/TLp34+HBg4/VWbyiTKDxiR+/s/el333WSkYlBl/lMzeByS8FwAAAAAAAAAAAAAAAAAAABBNjCtmAQAAAADNRiDOMI40gtGABqXaBeuOMlrUTR9oAsIvts8v9xaM1rut1C0/Gf0ATYgvyn01wWje7DVaSstIbO34o9zneg6Scgs8bWMOPzWx8wNofKLdb0eTSjAanGWkOI8XO4SlVffwh95C0STpsG2vqbAG4Vt6+2nZP58je9UJie9RHyafVKen6902do3PBiPGOpT9nPA5U2yUG8q2qmA0+/NS2SO7VYWiSdLLs2XPPVD2nWcSOrd980nZ838hPXeP9MK9shccLPvqwwntBQAAAAAAAAAAAAAAAAAAAMRCMBoAAAAAICTgcnWum3SC0YAGxcR4mSczu276QOPnC78t5Vds8LTsoAFGxpjYhUBzRjBajZn0TGn0IfGv+9NzMvmF7vN+v7T/EbE3atNRZp9JcZ8fQCPlDyS2jmA0uMh0+Xa/vcQ9+CwYtLr3/djBaC3TpVO6LdOj5jr3ouxcmQc/ibmXJOm95xUcmyb74HWy5eUxy+1n7yn4mwMVnN7f2/61KZAi5eTV6Sm75oc+5tH4VREx1r1sqVKDJXGfr035GnUrW+Y6bzdXBVrbv//RuSgYlL3qBNnS+M5vrZW97yopGKw+KHv/1bLWe2gfAAAAAAAAAAAAAAAAAAAA4BXBaAAAAAAASbvCIPxRwjr2lMaF3kCDEuvrN7NF3fSBxs8kFow20D1vCMBu0QJ2AgSjeWVmXBH/olEHx9735D9I2bnuBbkFMrMXxH9uAI1XPM+RqzGEXcJFdprz+PZS9zWH3xl0n5QU8ElvXuDTxtt9mn1pD7V4/GOZd7bKnH1jRK054xqZnntJIw703LOdfa3sPS5BW7trfviv7AWHSF/8R/pxiee941LQwX0ur72Mr25/9cHvMzooRgZcuo0MIEu3JZq4Y27Udf3bR45dtv4m+RQlhOzRmyVJdsdW6T8vRd3fHtNLdueOqDVhVn4vrVoWOb7+Z2nxZ973AQAAAAAAAAAAAAAAAAAAADwiGA0AAAAAUCWeQI60jOT1ASB+JsbLPFkt66YPNH7GhB3mV6z3tKxfexO7CGju/FHuq1NdklIQwXTrJ/Pwp94XTJrmKSzFtOko8+AC6YgzpIGjpH0mST0HSWOnSEefLfPgxzI5eTXoHECjEy3QMppASu32gSYjy+Xb/badzuNl5VbvLXbf74gh0vuX+DSxn5HPV/V43KSkStMukLn5BWn/I6T9j5S55SWZI88Mzd/ycnyNP3u37JaNrtP2vqukivL49oxHZgupZWv3+XyHJLE6MHV49OdAA3d+5Tg+ZesrUde9fZFPz870aZpvro7c8oL+9eN0nbPpnpj92PU/Sx/Oif252LhGdlIrBe/6g2wwevCeJCnK516b1sZeDwAAAKBWrFixQpdffrnGjh2rtm3bKjU1VcaYyn8PPfRQfbcIAAAAAAAAAAAAAECtSfC3+QEAAAAATVJKqlRS7K02NT25vQCIT6zQhszsuukDjd8e4UFptlStyzdoYyB6GFD/+skiABoXn999Lp6AWsh0HyCdfo3sfVdGL2zXReaUy7zv266LzEV/q2F3AJqMRIPRUrhPh7Nsl2C07aXO4ys3STtc5kZ2k5472/2xhTFGGnWwzKiDI+d8PumON2QvnSrt2Bqrbam8TPbP54RC1vqPkCnsXjllt26WPogzaK26vQ+QFs6NXpPfPnqIbOu2iZ+/Bo4aajSoo9WiH53nD9v2muv4TJc9jx1u1Lal0ZFDpV/6rpd+mu+9oS8/lH3/Re/1T94mW7xVGrK/VNhNpv8I5zpr3fcwBGQDAACg4evatauWL19eeTx37lyNHz++/hpKwH333adzzz1XJSUl9d0KAAAAAAAAAAAAAAB1whe7BAAAAADQbMQTyEEwGtCwBGIFo7Womz7Q+Dlc2D66+KOoSwYWSnnZXBAPxBQ1GC2l7vpoKk66ROrQPXK8dTuZs66XuewBmfs/lOncu+57A9A0+BL8UWpKlAAnNGtZbsFoLte1rypy3+vs8TV7/G2GjZd5eKHMebdKLVrFXvDuc7KzTpY9YZDsc3+XJNlNa2UPqVkomRn3S6lNx+hF+YXRv66ycmrUQ6ICfqO7jvfJ5/Cp6NiiTIedNNZxXfvy1Tqu6OmIcaOgHj2t2mYV5XH1Y688Xnr32bjW6MX7ZWedJHvmfgpePk02GIxvPQAAAICke+2113TmmWd6DkV79913ZYyp/Hf11Vcnt0EAAAAAAAAAAAAAAJKAYDQAAAAAQJUUgtGARivW129my7rpA42fQzDakVtfjLrkiKGEogGeRAlGM4mG7zRjxhiZ2+dI/fepGuw3XObud2ROuFhm8okyOXn11yCAxs8fI3zYTTzPrdGsZLncNLYlEIx24r41fwxu2nWRmXqOzF/f9L6ovEz2tvMVHJsmO6VTjXtQQQeZPz0XvabHQCk1SjBaZnbN+0jQmJ5Gj59ulF4t47Z9jvTEzDRlTj9H5qUfpaH7R6z7y5rfa9z29yuPB+z8rxam/UYBf+LBaJKkmgSbvfe89MrsyPGoffBcEAAAAEi2Sy+9VNbayuPjjz9eb7/9thYvXqylS5dW/ps6dWo9dgkAAAAAAAAAAAAAQO1K8Lf5AQAAAABNUiAlds1u0S5IBVD3/DG+fuvxQnE0MiYynOmwba/Jb8tVYZxfTjySYDTAm0QDduDKtOsi3fO+tOQrKTVVKuwuE89jWgCIJkqgZVQBgtHgLDvdSLIR4ztcg9EiayWpR0EoILS2mJ57yQ4eK33xn1rb07P8Qpleg6W3imR/O0n6ekH4vD8gM/kk2fuvdt8js0VSW4zl2OE+HT7I6uNlUmpAGtJJSk8JfX5MqwLp9jnSj99Lq5ZL3fpLc59Vuzsv0dsrJuvr1H4qMykaWPJfBTr3CN/YLZDM56tZAFoU9um/yUz5dfhgmcsNVEosvA0AAACAZ999950WLVpUeXzIIYfoscceq8eOAAAAAAAAAAAAAACoG5FXOQIAAAAAmq+UOC7eTk1PXh8A4hcrBKaeLxRHI+KLfMkwr2KjJm6f61jes03own8AHvgTDNhBVMYYmZ57yXTuQygagNqVaKBlPM+t0axkutw0tpc6B6CtLnKub59TSw1VY254WjrwOCknv/Y3j6agMHT+tHSZO96QjjxTys6VjJF6DZa5+QWZ3kOiBvSbBvB8NyPVaFxvo327m8pQtN2Mzxd6nDLyIJk2HaWCDqFxSQNKv9GQkkUKqEJasTh8U7fQsb0nJOE92GX5t7KrloWPle50ry+NEpoGAAAAoMY++eSTsOOpU6fWUycAAAAAAAAAAAAAANQtgtEAAAAAAFUCBKMBjVaM8AWTmV1HjaDRM8Zx+Jp1s5QaLIkovelon4zLGgB78BGMBgCNCsFoqGXZLi+lbHPJnVrlEozWrmXt9FOdadlavqseke+Vn2Se+rb2T+DEH5Bata3qIT1Tvgv/KvPqKpk3N8s3e4HMPpNCk6kZ7vs0tue7+e1dp+xn71cduASjmf0Ocwy0rjXffRZ+HC38rMx5zlZUyG5aK7t9Sy02BgAAADQ/a9asCTvu2LFjPXUCAAAAAAAAAAAAAEDdIhgNAAAAAFAlnou30whGAxqUQEr0+awkXDmPpsk4v2Q4fOenmr9sf524+TEN3/mpjtnb6N/n+3TkUELRAM8IRgOAxsWf4P12rMfmaLayXF522V7qPL66yDqOt8tN7mNwU9hNatOpdjbrOUgaMNJ5buRBMg5fZ8bnk9nzdadWBe7naGzPd/MLXafs3y+tOnAJRlNKmszjX9VyU9Us3yMYr8QluU+SSiPn7DefyJ42UnZKJ9nDChW88xLZiopabhIAAABoHrZt2xZ2nJLCaw4AAAAAAAAAAAAAgOYhwT9zDgAAAABoklLSvNemEowGNCj+GBdCZLaomz7Q+Pnc/5bCkJJFemjV6VJOnnxn/lyHTQFNgznmN7LX/CpyolOvum8GABCbP8EfpcYTOo5mJdvlZZdtJc7jq4qcx9vn1E4/0ZirHpY9Z0LNNsnOkTnnT1KPQbLnTpSWf1c117qtzOnXeO+noFDOMXFqfM938wul1DSp1OET/8N/ZXfukEnPlNzCxPwBqV3XUHhjEgLH7PLvFBa95xB+VjVXIrt1s/TxW1JmtjRgpOwZY6rmy8ukp+6Q/eBlaeo5MlN/U+v9AgAAAA2FtVaffvqpvv32W61du1YlJSUqKChQhw4dtN9++yk7OzvuPYPBYBI6BQAAAAAAAAAAAACg4SMYDQAAAABQxevF2z5f4heIA0iOQIxgtIz4L7ZAM2Xcg9EqpWclvw+gKRpzqJSWIZUUhw2bSdPrqSEAQFQ+f2Lr4gkdR7OS5RaM5pA7VV5h9cWPzvV1Eow2aIzsxGOlt5+Ob93jX0nzXpXS0qXRh8i07RyauO9D6Z1nZJd9I9OpV2guv733jfOi1GY2rue7JjVNtnMf6X+LIidLiqVvPpGGjpMqyp038Adk/H7ZvPbSWpcbSU2sXBx+HCUYzf7nJeneK6Vtm6Pv+dMPsndcRDAaAAAAmqT169frhhtu0KOPPqp169Y51qSmpmrChAm6+uqrNXLkSNe9li1bpm7durnOH3DAAY7jDz74oGbMmOE4N2vWLM2aNct1z7lz52r8+PGu8wAAAAAAAAAAAAAA1AeuYgcAAAAAVIkVrLRbarqMMcntBUBcjN8vG60gs0VdtYLGzsv9ewbBaEAiTGYL6abnZf94jLRja2jwgKOlE39Xv40BABwZfyD6Y2w3XkPH0ezkZDiPb9oROfb8Z+77tGtZN6/JmEv+Llu8TZr/mrcF+0wKhZ5NOz9yr4ws6dBfKeHOs6OkwXkJd25gzJ9fkj2yq/PkhlWh/6MEo0mSug9ITjBa0fqwQzvvFffaj9+q/fMDAAAAjcgLL7ygk08+WVu3bo1aV1paqjlz5mjOnDk644wzdNdddykQ4Fe4AQAAAAAAAAAAAABww0/VAQAAAABVvF68nZqe3D4A1D6C0eCVz0OoAMFoQMLM3gdIL/8kffep1KajTNtO9d0SAMCNP8EfpQYIRoOz/GwjOcTtbdohlVdYBfxVsWFPfRx03ad9lIyw2mQys2Vuel526TfSzu2hIK6iDdJn78teN2OPYiMz4/LkNZNf6D6X1TJ5500Sk99etmNP6cf/RU4WbQj9HyMYzRx2quxHb0Q/0fQLpSduja+5rUWVb9oHr5M+eSe+9W68PNcEAACoC8FyaUcSAmYRKbOj5Gu6v6Y8e/ZsnX766QoGw5+/9ejRQ/3791dmZqZWrFihBQsWqKKionL+3nvv1YoVK/Tyyy8TjgYAAAAAAAAAAAAAgAt+og4AAAAAqEIwGtB0ZWTWdwdoLIyXYLTs5PcBNGEmNU3aa1R9twEAiCXREB+vz63R7ORHeRi9cbvUplq+13Ofudf2bVd7PXlhuvWrOmjTUfrF8VLXvrK3Xyh9/7nUuq3MWdfLDNw3eU10HyjltZc2rAofb9FK6jk4eedNppw8x2A0u/ZHGSlKMJpfkmT2P0L2qLOk5+5xPYXJzZftPlD64SvvfW3brOCvR4WCfAEAAJqiHT9KL3Wr7y6ahylLpeyu9d1FUnz++eeaOXNmWCjakCFDdNddd2n06NFhtevWrdMVV1yhf/zjH5Vjc+bM0ZVXXqkbbrghrLZjx45aunRp5fHtt9+uO+64o/L4iSee0L77Rj73ys/P1/jx4yVJH330kaZPn145d9555+n88893fV/atavjJ5kAAAAAAAAAAAAAAHhAMBoAAAAAoErAazBaWnL7AFD70jLquwM0FsbErkknaA8AADQD/gR/lBpIqd0+0GREC0Zbv60qGO2zFda1rn97KS3Fw2P2JDN9hsn8/d26O5/fL514sewdF4WPH3+RTKCR/tpDy9bO44//Rfbgk6RtRc7z1e6bzIwrZKMEoykjW+bE38lee4pk3W9XEQhFAwAAAKI67bTTVFpaWnm833776Y033lBmZuTPTwoKCnTPPfeoZ8+e+t3vflc5ftNNN2n69Onaa6+9KscCgYC6du1aeZybmxu2V7t27cLmq8vODj3pXLZsWdh4bm6u6xoAAAAAAAAAAAAAABqqRvobwgAAAACApEjxGoyWntw+ANS+VILR4JHxxa7JiJLoAAAA0FT4/Ymt8/rcGs1OXoxgtN0ufS7oWvfQDA+P15soM/U3Uqu2su/8SyorlZlwjMzkE+q7rcTl5LlO2ZOGuK+rHgSXkxe6zykrda7NyJKZNE3Kain72sPSey8k2GwNtG4rtWoj+ZrvbRcAAABNy9y5c/Xpp1Vhwi1bttRTTz3lGIpW3cUXX6z33ntPr7zyiiQpGAzqtttu0+zZs5PaLwAAAAAAAAAAAAAAjRG/eQoAAAAAqBIgGA1ostIIRoNHXi5WzyQYDQAANAP+BP/GFMFocJGeYpSd5jy3OxittNzqwx+ca3xG6tMuOb01FmbiMfJd/7R8N7/QuEPRJGlbUWLrqoVZG2Ok/PbutbtCrc3oQ+S77imZ659O7JyJOnSGfC+ukO+hT+SbvaBuzw0AAAAkycMPPxx2fM4556iwsNDT2j/96U9hx0888YRKSkpqrTcAAAAAAAAAAAAAAJoKgtEAAAAAAFVSUrzVEYwGND4Eo8ErY2LX5BYkvw8AAID6lnAwmkvyFSAp3yVjeN1WK0n6z/fS1p3ONT0KpBbpHh6vo1EwvYcmttDnDz/O7+Bem54Zfpzo/VqCzCV31+n5AAAAgLrwwQcfhB2feOKJntcOGDBAw4YNqzzeuXOnFi5cWGu9AQAAAAAAAAAAAADQVBCMBgAAAACoEkj1VpfisQ5Ag2H8/thFgCSZ2C8Zmtz8OmgEAACgnu0ZPuQVz5kRRZ5LMNrm4tD/ryyyrmvfOJ8f7zcpPfdKbJ1vj9tB6zbutRl73OD6DfcWhl1T7bvKPPixzJ69AgAAAI3cpk2btGTJksrj3Nxc9evXL649Ro8eHXb88ccf10pvAAAAAAAAAAAAAAA0JXX754ABAAAAAA2b14u3AzydBIAmy8uF67kFye8DAACgvvkTfO7rNXQczVJuhvP45h2h/z9c4hyMdvQwqWt+HQRaoe7sOzmxdXuGWecXutdmZIUvbd1WduRB0kdvJHbuaG3NekzauUPq1EvqPVQmLb3WzwEAAFArMjtKU5bWdxfNQ2bH+u6g1q1bty7suFevXjJxhg/37ds37Hjt2rU17gsAAAAAAAAAAAAAgKaGK9kBAAAAAFW8BqP5U5LbBwCg/ni5gCc3P/l9AAAA1DefP7F1AZ4zw12OWzBasWSt1WKX6+En9ScUrakxKanSdU/JXn5cfAv3CLM2bTrKOU5PUmpa5HmvflT25rOlea9IJcXxndtJ594yt74q07ZzzfcCAACoC76AlN21vrtAI7Vp06aw45ycnLj32HPNxo0ba9QTAAAAAAAAAAAAAABNEcFoAAAAAIBKJpDqfiFldQGeTgJAk2V8sWtatUl+HwAAAPUtwee+xufh8RSarZxMIzm8+lK0Q1q/Tdq8w3ld//YEozVFZv8jZPedLH00J45Fe9wWBo5yr82JDLU2WS1lZj0qW1YqPf1X2Xsui33O7gPle3ihbHmZVLpTKi2RMrJl0tK99w0AAAA0AdaGP58zXv7YTAy1sQcAAAAAAAAAAAAAAE0Nv5UPAAAAAKiSkuqtzp+S3D4AAPXHS5BHbuTF9QAAAE2OP4FgtBETa78PNCm5mc7jm3dYLV7jvq532+T0g/pnbnwmzgV7PGcbMFJq3yWyrvsAmSjP3UxKqjRhqhSI/TqfmXJa6P9AikxmC5ncfELRAAAA0Cy1bt067LioqCjuPfZc06pVqxr1BAAAAAAAAAAAAABAU0QwGgAAAACgiocLIeOqAwA0QiZ2SQ7BaAAAoBnw+eNeYs65OQmNoCnJzXAeLyqWFq+xjnM5GVJBiyQ2hXplAikyLyyXuvbztmCPMGvj98v85s9SalrVYGq6zG//Evvc7bvKnHpl9KLeQ6WDT/LWGwAAANDEFRQUhB0vXrw47j2+++67sOM2bdrUqCcAAAAAAAAAAAAAAJqiBP7MOQAAAACgyUpJ9VZHMBoANF2+GH9LISdfpvoF9wAAAE2VP85gtBETZXoMTE4vaDJyM53HNxdLi9c4z/VuKxnjIcAYjZbJayfd/6Hs5AKpvCxGceRzNjPul9L9H0kfvi4Fg9L+R8h06uXt3CddIg0aLfvRG9Ibj0nrfgpNtOkk8+urpInH8hwQAAAA2KVVq1bq0aOHlixZIknavHmzvvnmG/Xr5zHoWNL8+fPDjkeMGFGrPfL8EQAAAAAAAAAAAADQFBCMBgAAAACoEvAYjObn6SQANFkOF9mHyW9fN30AAADUN198wWjmpN8nqRE0JbkZzuObd0jfr7GOc73bclF7c2DSMmRP+r304HXRC13CrE23/lK3/omde/B+MoP3k868NqH1AAAAQHOy3377VQajSdJjjz2m666L8Th+l2+++UYLFy6sPE5PT9fee+9dq/2lpYUHG5eUlNTq/gAAAAAAAAAAAAAA1IUYVzkCAAAAAJqVFI/BaAGC0QCgyTIxQhcKCuumDwAAgPoWTyh4597S4LHJ6wVNRm6m8+PtdVuleUscp9SrbRIbQoNicvI8FPFrHgAAAEB9Ovnkk8OO77zzTq1evdrT2ksvvTTseNq0aRFBZjWVm5sbdrxq1apa3R8AAAAAAAAAAAAAgLrAb8wCAAAAAKp4DkZLSW4fAID644vxkmEewWgAAKCZiBWMlpMfqhk2Xua212ViPY4CJBXmOo+XB6U1W5zn9uoQI7wYTUdOfuwa7msAAACAejVhwgQNGTKk8rioqEjTp09XFVSUYwAAIABJREFUcXFx1HW33XabXnzxxcpjY4wuuOCCWu+ve/fuSk2t+rn/3LlzVVZWVuvnAQAAtcdaq29XWd3xdlB/fiNY3+0AAAAAAAAAANAgxPFnzgEAAAAATV7AYzBarIvDAdSPbv2lpV9HjnfoXve9oNEyxshGK8hvX1etAAAA1K/UNPe5fSbJ/PklqaxUJi297npCo9enbXz1qQFpYt/k9IIGKKd17BpDMBoAAABQE6tXr9ayZcsSWtu1a1dJ0gMPPKBRo0aptLRUkvTuu+9q7NixuuuuuzRy5MiwNevXr9dVV12lu+++O2z8kksu0aBBgxLqI5rU1FSNGTNGc+fOlSStWLFCU6ZM0VlnnaVevXopMzMzrL5du3ZKT+e1DQAA6tqWYqs3v5be+Nrq3/+1WrExNJ6XJV04ycrv4w9mAAAAAAAAAACaN65kBwAAAABUSUnxVuf3WAegTpkTL5G99pTI8V9fXcedoNHz+aSg818hNtkt67gZAACAetK5j/tcRpaMzycRioY4ZacbdWwl/bjJW/3EvlLLDC6AazZy8mPX+AhGAwAAAGpi+vTpCa+1NvSnZYYNG6Y777xTZ511loK7fp6ycOFC7bvvvurZs6cGDBig9PR0rVy5UgsWLFB5eXnYPpMmTdK1116b+DsRw4UXXlgZjCZJc+bM0Zw5cxxr586dq/HjxyetFwAA4Gz+EumYf0T+XsaG7dKnK6QRXeu+JwAAAAAAAAAAGhJ+YxYAAAAAUCWQ6rGOYDSgQdr/SGnEgeFjIw6Uxk6pn37QeJkowQtpmXXXBwAAQD0yuflSx57Oc/1G1HE3aEr6tvNeO2UwoWjNSkGH6M/HpNjzAAAAAOrE6aefrqeeekrZ2dlh4//73//04osv6qmnntL8+fMjQtFOPfVUvfrqq0rx+kfLEnDYYYfpuuuuk9/vT9o5AABAzYzrJaUFnOfOeMT5D9kBAAAAAAAAANCcEIwGAAAAAKiS4jEYze/yW1kA6pVJS5e58VmZWY9Jx18kc/WjMn96TiYto75bQ2NjorxsmE4wGgAAaD7Mib9znhh5UN02gialTzvvwVajehCC1ZyYVgXSsPExirhNAAAAAA3F1KlTtWTJEp133nnKz893rUtJSdFBBx2kefPm6YEHHkhqKNpul112mRYtWqQ//OEPGjdunNq1a6eMDH5mCABAQ5GZZjSul/PcFz9KvjMqNPKGCp37RFAfLrGy1tZtgwAAAAAAAAAA1DOuZAcAAAAAVEnzFnZjAsn/RW0AiTFp6dKEqTITptZ3K2jMfASjAQAASJImnyQtmi+99nDo2B+Q+c1NMj0H1W9faNT6tvNe27MgeX2gYTIX/U32+IHuBdGerwEAAACIsGzZsqTu36ZNG91+++269dZbtXDhQn377bdat26dSkpKlJ+fr44dO2q//fZTixYt4t776quv1tVXX51wb/3799eNN96Y8HoAAJBcBw0wevMb98Czj5dJHy+z/8/enUfLddV32n92zXcepCvJlmTLxgg8QGyMwRiS2C95ISFkaKATArwMTQIhhMQdIAkdXmKMkyYJazUm6SyGJoZOdwhTAoSX0A6TAYMbTAPG4NmWZE1X0p2nqlvDfv/YV7rz1ZV0Bw3PZ61aVWefffb5nVOnbg23zrf4r1+NvP0XAzf/ij+aIEmSJEmSJEk6dxiMJkmSJEma1tG9vH4Go0nSWW6JL9MWm9auDEmSpHUWslnC2z5I/I3/CAd2wZOvJnRtWu+ydIZ78pYALH6y21Hbu6C56Ilu55qw/YlLHx3BYDRJkiTpdJTJZLjmmmu45ppr1rsUSZJ0hvj5KwJv/dTxPysGuOX/i7zqWZEnbPIzY0mSJEmSJEnSucFvzEqSJEmSpnVsWF6/bHZ165Aknb5KzetdgSRJ0poLOy4lPOsXDEXTinjaBRCWce7azs2rX4vOQBm/5iFJkiRJkiSdDS4/P/DkLcvv/7UHlxeiJkmSJEmSJEnS2cBvzEqSJEmSprV0LO/kylx+9WuRJK2f2uTi84oGo0mSJEmnoqslcOPPHT8Z7Ymbl5GepnNP8GsekiRJkiRJ0tnia29Z/ud9R0ZXsRBJkiRJkiRJkk4zfmNWkiRJknRMyGSgrev4HQ1Gk6SzW6Ox+LySwWiSJEnSqXrPS44ferZz8xoUojPPcn7UQJIkSZIkSdIZYVN74P53ZXhCz/H7Dk2sfj2SJEmSJEmSJJ0u/MasJEmSJGm29u7j98kajCZJ56xS03pXIEmSJJ3xQgg8//Kl++zcfPzwNJ2Dgl/zkCRJkiRJks4mOzcHfvLODN/9kwyf+93FP/8zGE2SJEmSJEmSdC7xG7OSJEmSpNk6Nhy/Tza3+nVIkk5Pxeb1rkCSJEk6K5zXsXjwWSbAtRevYTE6c2T8mockSZIkSZJ0tsnnAldfGHjhUwOvvm7hz46HDUaTJEmSJEmSJJ1D/MasJEmSJGm25rbj98nlV78OSdLpqWQwmiRJkrQSLtq4+LxrdkB3y+LBaTqHBb/mIUmSJEmSJJ3N2psWbh+aiGtbiCRJkiRJkiRJ68hvzEqSJEmSZisUj9/HYDRJOncZjCZJkiStiOdeunjw2b+7ylA0LSJ4bEiSJEmSJElns45Fg9HWtg5JkiRJkiRJktaTwWiSJEmSpNnyywhGy+ZWvw5J0mkpGI4pSZIkrYhrL4KtnQvP++WfMvxKi8j4NQ9JkiRJkiTpbGYwmiRJkiRJkiRJBqNJkiRJkuZaTjBazmA0SZIkSZKkU5HJBP7yJfMD0P7DcwJPPs9gNC0i+DUPSZIkSZIk6Wy2WDDa4Pja1iFJkiRJkiRJ0nryTHZJkiRJ0mzLCkbLr34dkiRJkiRJZ7mXXhNoLgRu/VKDcg1e9LTAm24wFE1LyBiMJkmSJEmSJJ3NOpoCEOe1949BjJEQ/AxZkiRJkiRJknT2MxhNkiRJkjRboXD8PlnfTkqSJEmSJJ2qEAK/ciX8ypXZ9S5FZ4pgMJokSZIkSZJ0NtvSvnD7aAUOj8CmReZLkiRJkiRJknQ28RuzkiRJkqTZ8sXj98nlV78OSZIkSZIkSbNl/JqHJEmSJEmSdDbbuXnxeQ/0rl0dkiRJkiRJkiStJ78xK0mSJEmaLV84fp+swWiSJEmSJEnSmgt+zUOSJEmSJEk6m/W0QWfzwvMe7I1rW4wkSZIkSZIkSevEb8xKkiRJkmbLF4/fJ5tb/TokSaeflvb1rkCSJEmSzm0Zv+YhSZIkSZIknc1CCOzctPC8Pf1rW4skSZIkSZIkSevFb8xKkiRJkmYJywlGy+VXvxBJ0umnvWu9K5AkSZKkc1vwax6SJEmSJEnS2a6jaeH2an1t65AkSZIkSZIkab34jVlJkiRJ0myFwvH7GIwmSeema35uvSuQJEmSpHNbxq95SJIkSZIkSWe7XHbh9prBaJIkSZIkSZKkc4TfmJUkSZIkzZYvHr9PLrf6dUiS1s8v/YcFm8PL3rzGhUiSJEmSZglhvSuQJEmSJEmStMpyi5ztVWusbR2SJEmSJEmSJK0Xg9EkSZIkSbMtJxgtazCaJJ3NwiveCj1bZze++HcIW5+wPgVJkiRJkpLg1zwkSZIkSZKks10uu3C7wWiSJEmSJEmSpHOFZ7JLkiRJkmYrLCMYLZdf/TokSesmnH8xfOAb8OVPEHsfJ1z1s/DTv7zeZUmSJEmSMgajSZIkSZIkSWe7XCYAcV57rb72tUiSJEmSJEmStB4MRpMkSZIkzZY3GE2SBKFnK7z0PxLWuxBJkiRJ0jEh+C5NkiRJkiRJOtvlsgu31xprW4ckSZIkSZIkSevFYDRJkiRJ0mz5wvH7ZH07KUmSJEmSJEmSpLNXCOEi4ErgfKAVOADsBr4VY6yuY13dwNOBi4BOIABDwF7guzHGg+tVmyRJkqSVkV3k9xFq9bWtQ5IkSZIkSZKk9eKZ7JIkSZKk2ZYTjJbLr34dkiRJkiRJkiRJ0hoLIbwE+APgWYt06Q8hfBx4R4zxyBrVFIBfB94IPOc4fb8PvB/4uxhjbQ3KkyRJkrTCctmF2+uNta1DkiRJkiRJkqT1klnvAiRJkiRJp5l88fh9sgajSZIkSZIkSZIk6ewRQmgNIXwM+CSLh6IBdANvAO4NITx/DeraAnwZ+BjHCUWbchXwAeCuEMIlq1mbJEmSpNWRXeRsr5rBaJIkSZIkSZKkc0RuvQuQJEmSJJ1mCssJRvPtpCRJkiRJkiRJks4OIYQs8HHgBXNmHQa+DwwBTyCFjoWpeZuBz4YQfi7G+M1VqqsH+Crw5DmzqlN17QYawDbgaqA0o8/VwFdDCM+JMe5ejfokSZIkrY5cduH2usFokiRJkiRJkqRzxCK/ISJJkiRJOmc1tx+/Ty6/+nVIkiRJkiRJkiRJa+PdzA5FqwJvArbFGJ8fY/y1GOPVwBXAt2f0KwKfCSGct0p1vZf5oWjvn6rrmVN1vTTG+BzgvKntmBmVsA34wCrVJkmSJGmV5BY526tWj2tbiCRJkiRJkiRJ68RgNEmSJEnSbBfshKaWxeeHQMgu8pOUkiRJkiRJkiRJ0hkkhHAx8Ptzmv99jPFvYoyTMxtjjD8BnsvscLQNwJ+uQl07gJfNaf7PMcY3xBgPze0fYxyMMb6N+dvy/BDCM1e6PkmSJEmrZ9FgtMbC7ZIkSZIkSZIknW0MRpMkSZIkzRIKRbjyZxbvkMuvXTGSJEmSJEmSJEnS6vpTYOY/wD4SY/zsYp1jjBPAq4GZoWmvnQpYW0m/NGe6F3jnMpb7r8A9xxlLkiRJ0mkst8jvltbqa1uHJEmSJEmSJEnrxWA0SZIkSdJ87d2Lz8vm1q4OSZIkSZIkSZIkaZWEEJqAl8xp/ovjLRdjfBD4zIymHPCyFSwNYG7Q2u0xxsrxFooxRuBf5jQ/ccWqkiRJkrTqcouc7fWFe+H7eyKTtbi2BUmSJEmSJEmStMY8m12SJEmSNF++uPi8XH7t6pAkSZIkSZIkSZJWz/OB5hnT344x3r/MZW8Dfm3G9IuAW1aqMKBlzvTeE1j28TnTXadYi3TWGh8f5//8n//DQw89xJEjRyiXyzQ1NbF582Z27tzJVVddRaFQWJF17dmzhw9+8IPccccdPPjggwwMDFCtVo/Nv+2223j1q1+94LLf+c53uO222/jWt77F448/ztDQEI1G49j8xx57jB07dgBw/fXXc8cddxybl/ISJUnSmSSXXXze1bc0aC3C+34j8OrrFklQkyRJkiRJkiTpDGcwmiRJkiRpvqW+2J01GE2SJEmSJEmSJElnhZ+fM/21E1j2G0CN6e9hXhVC2Bxj7F2JwoCDc6ZLJ7Ds3L79p1iLdFap1+t84hOf4LbbbuOrX/0qtVpt0b6lUonnP//5/OZv/iYvfOELT3qdH/rQh3jTm95EpVI5oeVqtRq/8zu/w4c+9KGTXrckSTrzZMPS80cr8NqPRn5qW+SqC47TWZIkSZIkSZKkM5DBaJIkSZKk+XJLBaP5VlKSJEmSJEmSJElnhSvmTH97uQvGGMdCCD8CrprRfDmwUsFo35gz/bQTWPbqOdPfPcVapLPGV77yFd7whjfw4IMPLqt/uVzms5/9LJ/97Gd5+tOfzgc+8AGe9rQTeTjCF77wBV7/+tcTYzzhev/kT/7EUDRJks5Btcbx+8QIV9/S4JZfDRRz0NUMEcgEKOagszkQIxwcjtQbsL0r0D+ebk/WoJBLbddeDE0Fw9UkSZIkSZIkSacXz2aXJEmSJM2XLy4+L5dfuzokSZIkSZIkSZKk1XPpnOmHT3D5R5gdjHYZ8JVTqmjal4EHgCdNTf90COGpMcZ7lloohLAVePGMpirwsRWqSTqjvfOd7+Sd73znvICyEAKXXnop27ZtY8OGDRw+fJg9e/bMC0+7++67edaznsXf/M3f8Fu/9VvLXu/b3va2Wet82ctexmtf+1q2b99OPj/9//eNGzfOWq63t5f3vve9x6YLhQJ//Md/zAte8AJ6enrIZDLH5m3btm3Z9UiSpNPfPXuXH6j69s8s1ndu+0L9Ils74V/elOHK7YajSZIkSZIkSZJOHwajSZIkSZLmyxcWn5fzraQkSZIkSZIkSZLObCGEbqB7TvOeExxmbv8nnnxFs8UYGyGE/0AKWisCGeBTIYTnxRh3LbRMCGEz8BmgeUbzLTHG/StVl3SmuvHGG7n11ltntbW1tfG2t72Nl7/85VxwwQXzlnn44Yf5yEc+wnve8x4qlQoAk5OTvO51r2NsbIwbb7zxuOt94IEHuOee6TzDF7zgBfzP//k/l1XzZz7zGSYnJ49N33LLLbz1rW9d1rKSJOnMdtUFgc/fs/xwtFOxbxBe9XcNfvCODCEYjiZJktZHoxEJAV+PSJIkSZKO8Wx2SZIkSdI8IV9c8PchAcj6VlKSJEmSJEmSJElnvM450+MxxrETHOPQnOmOU6hnnhjjt0IILwT+AeghBa/dE0L4MPBFYDcQgW3Ac4HXARtmDPEB4F0rWVMIYdNULSfiCStZg3SiPvrRj84LRXvOc57Dxz72MbZt27bocpdccgm33HILr3zlK3nxi1/Mvffee2zem9/8Zq688kquv/76Jdd99913z5p+yUtesuy6T3bZr33ta8tehyRJOj096+IAi3+Db8X9aB9c+58b/PwVgQDs6Yf//u1II8LPXw5HRqGrGbpaAs0FyGQgTpXXXoLmAkxUodaAfBZKORguw8GhyCWbApkAlRq0N8HeARiZgJ1b0vJjFSjkoKUAoxUo5uDaiwPPv9xgFEnS4sYrkb+/K/IvP4zs6YfJOjQi1BvpuqMJrtoeeO6lUMwFclnIBMhmYKwSOTAEh0dgfBLqESpVGByHliIcHonUG9BahHwuPTcCNBVgSwf0tKZxchkIIT1PDo6n9Y5PQu9w5JkXBTIZ6G6G7d2BzmZoNKB/DA4MRXb3Ty/fPPUcmMvA/sE0VqmQnhsv3AAHh2BgPG1bSzE93w6OwWQ98r3dabt+7rJwrKamPAxOpOfY0XJk7wA8eiQ9V+/YkPpM1tPz9fmdacx6A3b1wcRk2sZGAx45DDs3wyWbAyMTUK2n/ZL2RWCkHDk0AvsGoJSHC7rTfm/E9DqhMXUZKad1V2pQrUMg1ZfLpNcAlWqaPzSRXlc8ZSu0lVLb3oG0f7e0w9hk2qYQ0n4EuOJ8uPz8wK9cCT+1PTA8AZ3N0+NO1tN6K1Prz4R0P5anphsNGC5H7juQXv/0jUbK1VTno0fSvu5qTnU9chgOjaTbF26A8zrgkk2B8ztTrfsGoFaHwYnIdx5L+2THhvSaqDH1uqlWnz6W6o10HI2W0zFwxda0T/vH0vHQ1Qyb2gOXbErb31pM6+tpg/sPpnEu6UmvvfYPpX0yPhmPratcTcdOrQH3H0jHy2Xnh2P3TT6baizmUl2tpbRtMcKOjYHLz0/HY0dT6lPKw4GhtP8na+n20ERa57auwAXdaTvy2VT/WCWtZ3N76jtSTvf9ldtTv/sPphqbCulYyGamH1czr7OZtD0HprYFOPaYDGH6diaTbmdCas+E2bfnXs9qm7P8QmMZ2idJkiStD89mlyRJkiTNVygsPi+XX7s6JEmSJEmSJEmSpNXROmd64iTGmLtM20nWsqgY45dCCJcCNwIvBy6aun3jEovdD7wjxvjJla4H+B3gT1dhXGlVPPjgg/zu7/7urLbrrruOf/3Xf6W1de6fgYXt3LmTL3/5y1x//fXcd999ADQaDV7xilfwgx/8gI0bNy66bG9v76zppYLYVnJZSZJ0ZvvZnSno4979a7fO7+6C7+6aH8b2xR/PnDqZsLaTW6a9BC97ZqBcTSEzh0ciE1XY1AYXbgiMT6bwksMjKTylEVMISimXgk4KuRTusq070FZKAR6TdXjscDwW9HI0rCUToG8sBeRctDEF0mQzKXwjE1IQSXMBeochl03LDE2koI8t7bChJYW1DIxPh+7EqXCeo0EihVwad6Kawkc6m6dDP0r5dD1amQ4O6WhKASl/9ZLA1i5DOCRppsla5Pr3NLh799L97tkb+ei34dTCRk9u2X/+/szlVj/s9L99Y3nreHD2Rw0LvtZ4aMZPQRwchq8/tNDY89t29S2rhCUNl+HOR+a3Dy3yye29++He/ZGP371wTSth/+Ds6eFyCpX90T64/SdLr3NP//LX8/3Hl7OfT20bZx+XSznR9axdoO96WzBsjRSmdiIha4sGty0x1moFvmVCWHLMcFJjrmR9J7uvlt6uZdUyZ8yhien3JfksdDUHWoopZLE+9fr/aEDn9O04r32yDud3BJ53OZTygUYjjZnLQDGfXvvHGBmtpHUXsun4OzQV6NmIqR5I8za2pvcUY5XU1tEcODwSuXffVOhkU3ovUmtEelrT+6NsZvq9S72R3qd0NsElm9J7o3v3pfU8/cIUkD1TvRHZP5jq7WiCfYPpr8CevvQ3MpuBkXIkn4XWYmC4HGkrBdpLs0NMq3X40b5ItZ7e041Pwq4jaTuO1relI91+5BBUaik88pkXp/DGGFPAYrmW3vsdvR1jGq+9lLa9rRjS9ay2FAiZzfheS5Kk053BaJIkSZKk+XIGo0mSJEmSJEmSJOmsNjcRqXwSY8w9JW95KUsn7uh3PSvL6Pst4CbgS6tUi3RGectb3sLo6Oix6c7OTj796U8vOxTtqE2bNvGpT32Kq666isnJSQD27dvHu971Lm699dZFl5u5boB8fvn/bz+VZSVJ0pmtqRD419/P8I7PRb5yf2R7F7z9FzP83Z2RT9x9bgRPDJfh/Xcstq0nsg8W7vvI4YV7HxlduH0hI2V4+NDx+52MxwdS0MsdD0buvSkzL4xAks5l/+VL8bihaJK0GhoRiFBf70JW1Nn6/mIttmvlgzfbSymgeXzyFIY+ifUuJZ9NIWalPDTlUyD0ia9v5e6PhQM7l1PDfC3FqbC00lRw2lRoWntTCpCb3QbtpbBAWxonBN+zSZK0GgxGkyRJkiTNVyguPi/rW0lJkiRJkiRJkiSddU7mrIxVP7MmhPBbwH8BWpa5yHXA7cC9IYTfjjHeuWrFSae5+++/n89//vOz2t797nezZcuWkxrvsssu4y1veQt//ud/fqztwx/+MDfddBNdXV0LLtNoNE5qXae67Er4yU9+wo9+9CP6+voYGBigVCrR09PDpZdeylOf+lSKxSW+V7CEWq3Gd77zHR599FEOHz5MpVKhp6eHHTt28OxnP5tSqbTCWyJJ0plpa1fgw6+afWL1cy+FG54En/lB5Mf7oTZ1cvrYJLQWU1DD4ZF0En0+CyHAZG2dNkAr4sAQ/N2dkd+9AfrG0kn3gxOwuQ3yucBkLXJgKB0LG1vTm9QHDqa+h0ciTQV48pbAkdEUZpDLQDGXjpn+schoJbXHqWPnyChcfSF0NAXqDWjESLmajqULuwOVWjq+6g0Ymojcsy8da8MT8Hh/ZGAculugqzlQKkDfSCQCm9oDuQxkM9DRlLZttAIXbYRrLwp8b0/k8X44PAqDY+mt9iOHoVKD518eaMQURHdeBzQVIJDmPXYkHeMb21INh4bTNm1shV+5MvArVwYOjUD/1L5rRHiwFwo5ODIaGZqAickUZJDPpkC+GNM21hpQyqWxmgppfZO12dfDZegfhSduTmMf3TdHL0f75rKwbyBtVyEH3S2B8UqkuzVtW62e+hVyUMxDcyHtpyOjabsyIe3vah02tAQ2tMJEFXqHIk2FQDaT7sdyNVLMBc7vTPs6E9L9PVqByTp0N8P/fVng2ZcY2nCmiDEeC9mo1SMTVdh1JB1z5WoK6wikY3F8Mh2HMU5fl6spsGNwPIWYhJDaW4vp+Mpm0jFeb6TH10g5PQ7z2dSn3kiPhVo9HWMHhqBSi/S0pcd0vZHGmKimxxikdUCq6+h0tQ5jlVRPT1tapphLj830tyb9/ao30vPa8AR0Nqf2C7pTzRHYsSHV9uFvnq0hPpKkc93wyfyEzyqrTiUBlqvpcjYZq6TLgaG5c04spDuEFJR2NDTtWNBaCdpKgbZ5bSlkrb1pbtvU+x1D1iRJOsaz2SVJkiRJ8+WX+AJzzl+hliRJkiRJkiRJ0hlvdM5000mMMXeZuWOekhDCnwC3zGm+G/hb4BvAfqABbAGuBV4H3DDV7wrgjhDCa2OMH13Bsv4W+OQJLvME4LMrWIO0LLfeeisxTp+otHHjRl7zmtec0pg33ngjf/VXf0W1ms4AGxsb40Mf+hB/+Id/CMCuXbu46KKLFl3+hhtuWLD9tttuA1iyvsVOhnrsscfYsWPHsenrr7+eO+6449j0zH1wPI8//jh/+Zd/ySc/+Ul6e3sX7dfU1MQNN9zAq171Kl784heTzWaPO/Z9993HLbfcwuc//3mGh4cXHfeXf/mXufnmm9m5c+ey65Yk6WTFx34CBMJFl653KcuSzQRe/7OB1//s0v2qtUg+N/u1w8RkCtT54r2RV3zYQJkzyVs/FXnrp+bfZz1tKezoaFDB4lYqB/xExpnbd6lllx73/oMnd7z+yz2R3/zvp+uxHudcn8yyy52e7ebPp/ndLSkEAqZD00pToWwT1RSy1VKA5zwxheS1FNO8o8v0j8VjYVn7BlOIVXdLCngbraS2egMKWajH6bC4Yg62dEyHdzUiNBrTt+uNFM5VjynYraNpOpwL0nQuk8InxiqpfbSctnqylsYYLqfbT9qcQr8mqtPLj0/CoeEUONFegs3tsKktzZuoptoHxuD8Tnji5sBl58GmtsBIJdI7PB0Qdng07a9aPQXfNeXTOsu1FBgyOXU9PpkC+OpT69/cDtmQgg3HKpHzOgMTkzBaTqF+I2XYPwR9U2GGldM23PJ0fWxJkiStvTj1GnS4nF4Hz5m72FILtmYz88PS2pumgteawry2FK4WFmhLr70NWZMknekMRpMkSZIkzZcvLD4vazCaJEmSJEmSJEnrOTk3AAAgAElEQVSSznindTBaCOH/At41p/km4OY4P+Vo19TlH0MIrwPeDwQgC3w4hPBwjPHOlagrxngIOHQiy3jShdbLF7/4xVnTr3zlKykUlvhf+DL09PTwS7/0S/zTP/3TrPUcDUY7U8UY+bM/+zPe9a53MTk5edz+ExMTfOELX+ALX/jCvGC2uer1Om95y1t43/veR6PROO64H//4x/n0pz/Ne97zHn7/93//RDdFkqTjiof2wpc+TvzwzTBZhpZ2+MxuQql5vUtbMXND0QCaCoGmAvza0+F9X458Z9fa16WVdXhkvSvQmax/bPZ039jCfT72nZUPwNrVt/y+ewdOfj0P9KbLQobL0DsMDy3yCce9++H2n5xKgN3xrObYkiRJOlPVGykAe3B8obknFrKWz84IWJsRmtZeCrTOazsaxBam+88IaCss8DmDJElrwWA0SZIkSdJ8+eLi83K+lZQkSZIkSZIkSdIZb2jOdHMIoSXGuMCpwIvaNGd63u/An4I/I4WbHfXRGOM7j7dQjPGDIYTtwNunmrLArcDTV7C2M1atHk/ppGot37YuyGXX70SZvXv3smvXrlltz3ve81Zk7Oc973mzgtHuuusuqtUq+fyZ+SNjtVqNl770pXz605+eN2/Lli085SlPYePGjVQqFXp7e/nhD3/I6OjyciAnJib41V/9VW6//fZZ7fl8niuvvJJt27ZRLBY5ePAg3/nOdxgfHz9W04033sjAwAA33XTTKW+jJEkA8ftfJ952C/zg6zAza3hsmPjaZ8LffIXQ1bN+Ba6yODoEfQfIdm3iK2/u5NZ/a3DXrsDYZDpZenwSJmtQqcEPHp+97JM2w4ZW2NQGzYX0Gi8EKFcjvcNQyEEpBxNVKFehlIf9g2nMXDZNdzfD/qEU5rW9G2p1aCmm60aEnxxYh50iSTqrvP8VgU99L/Kl+2a3ZzPQWkxP//WYAkfyWbigO1329EPfaHpeuuw8uGBDIJ+FoQkYLUPvcKRSg7FKGqvemB6n3kiBIT1taf6djyyv1p426GlNz5sT1fS8el4HDIzBo0dm1z00kaafug22tKfn2KGJFIFSzKXn51oDmvLQVIBGAzqaoL05bUcpB90tabyxCoxW4J69keYC7NwcqMdUx8GhSC4DI2XIBOgdgc1tsKE1BaQU85AN6Xl7oppCUoq59FyeyaTXEZCWzYS0TZmQXge0ldIHnYdG0jYV89NhLYUcFHOB/rHInv70WqGtlO6P5gK0FKBcg919cGg4tT9yOPKNh07teAkBcplU4xN6YOdmaC0GNrWnfdtSSLX2jaX901RI+68RU11DE/B4f6RvNL3e2daZQmN29UWyGdjSHjivM61rU1va/7lM6lupputHDsMPH49pPzbggu5AMZ/uw/sOpM8x+8fS/p5bO8x+SduUT6/jGnF6+gk9qdbeEajW0/HT2QwTkzA4AcMT0NWc7oOBcXjsyIntw6OPB0nS6alaT89j80OQlwrnXXheMbdIkFpToHVeuBq0lcICbemynv87kiSdeTybXZIkSZI0X26JL2xnfSspSZIkSZIkSZKkM1uMsS+EMAB0zWi+ALhvkUUWcuGc6VM8HS8JIWwFrp3TfNxQtBneDbwZaJqavjqE8NQY4z0rUd+ZbO8AXPyfPFtvLTz65xl2bFy/9d95553z2p7+9JXJB7z66qtnTU9MTPCDH/yAa665hm3btvHYY48dm/fe976XW2+99dj0xz72Ma69du7DGzZuTDvr+uuvP9b20pe+lP/9v//3semZ4860bdu2k9qOo9785jfPC0V7wQtewE033cQ111wzr3+j0eCuu+7iH//xH/nIRz6y5NhvfOMbZ4WidXR0cNNNN/Ha176Wtra2WX0nJib427/9W97+9rdTLpcBuPnmm3nmM5/JL/zCL5zk1kmSNEO1At+/Y+F5ex4k/vI24q++DiYrMNwH9To0tcLAoZQ+0bWJ8LP/jnDDi1aspBgj3P89uPfbxEN74fB+woVPJpbHoNhEyOag1AytnTAyAK0d0LUJJkZhZBAGj0BXT0rFaGpJP4gaGzA6BCODxN7dcHAPPHYfHJpOOysBfwTQvQWe91LCb91MKCzxY6prZHdf5K/+V+SbD6cgkPM7UkjJ4AR88+EU0Lap7WhQSqC5yLHAl3ItBXMEUkjH4/2RpnxqbzRS4Ee9AQeGUrjIBd3Q1ZxO1K41oG80hbFsboNrLgqEkMJpKlMhL22lFDLTWkwBL8PlFCoyPpmCRNpKKVgEUttENQWq5LJToTeTKXTnyGhk55bAhpa03rEKHJkK47ntzki5uujukSQt4ZOvz/DiqwOv+5n0/HpgKD1HbGyFENY2fCPGeGydk7X0t/1oWFg2MxWQdZxAkEYjEoFs5lwKDjnxbe0djjzUm56HxyZT2FyY2s/F3OxLLguD4ynQbEsHlPJnzr6NMfJg7/Rrjgu60/F0eGR6W3vaTv1YjzHyo31w775IPhtoKqQgm3w2vY7a3D79+uVJW1LoTaMR2TeYgvFqjbSPJ6pw0cbUb/8gnNcJl/TAwWF49HAK6qnU0njbuqZCCxtp+ZnXR2/X6inQrbtlOgwuMuN2TNONmG7PvF6oLZJeH868PXf5BZc7qTHjiY85p6aF6lup5ZfalrjAWMeWm/obtS77fIWXnzvWyZj5933m7WxIwZFH/+QfHD658c9UIaR9Wsilx/3R/Xs0OPPofVLMpfDsXCb1a8rDvftT32IuhZbuH4Le4enlN7SkfqWpy8zbMcJIJQV9Dk+k924j5engSJ2cSi097xwemTtnsR27+A5vLswOS2svTYWulcKx8LTpNmifap/dlt6fZ86p10qSdG7ybHZJkiRJ0nxLfclpqdA0SZIkSZIkSZIk6cxxH3DdjOlLOLFgtIsXGG8lXDln+tEY42PLXTjGOBZCuAu4YUbzM4FzPhhN5469e/fOmt68eTMbNmxYkbGvuOKKBdd3zTXXkMvl2LFjx7H2zs7OWf22bNkya/5cra2tx26XSqVZ85Za7mTdfvvtvO9975vV9u53v5s/+qM/WnSZTCbDddddx3XXXcfNN988r86jPvnJT3Lbbbcdm77wwgv52te+tuh2NDU18eY3v5lnPetZPPe5z6VcLhNj5Pd+7/d44IEHyGQyJ76BkiTN9LQbUhBY/8HF+3zmg0sOEb/8CXj9LYRXvPWUy4nVSeI7Xwl3/PPs9kVur4r+g/CP7yX2HyL8v7cdv/8MsV6HRj19n3DwcApqO/9iGOmfDm4b7odiE2zeDhvOB6bSBvoPpvnjIzAxli7DfVzQd5C/zmThsrZ0f1102ZqH2aynZ17U4NW3eba+JJ2oi7O9vOAbt9L43L4UbprJsqXUDLkCcXyYODYCLe0wNgy1agoTLRThwG5o64Tx0XR99Lktm4Mj+4EI2TxUJ6HUlAJTi1MpmF09afrwXii1pOe7fAE6U/B5HBsm9Gwlf9kzyG/YAn0HoFKGoT4Y7p/9fD86lFJe6jVCezexPA7jI4Rsjgakeob70nNnow5NbSnwdbg/BaI2tabrfY/CxvOgrzfVkc1CrQZbnwAP/xAKpbR8rZqCVtu709gToylcNV+E8WHY+0ja9tzU9ux/DHbfn7bvBa9Mz+UT43B4H9RrKbi1tSPt4wO7UnBrvZa2iZCuj14KpdQvNqBjYwqALTal+6AynvZv34F0X1UraazKRKq5Vk1hsY36VOppkZ62LnrqNSiWpu+/Rn327UYd6g1iSxsdnT10bN4OIUPj6GuMRj3V25j6MYWRgVRnvQb33gXdm+Dya9P+nrr/UqpPBtq6p7ZzSiaT9sXYcNpf+WLax7XJdN1oTK+vfvS6loJsx4Zgw5a0b4+Oc8GTCBddBlsuYGf35rS/hmqwvwa1KheWJ2B0EM7bARvPIx7ck+prNGbs90xa/8Ah4lB6fFCZSP36DsL2S9J2VCZg4BBXVCa4oqkVymPp2C41pWVCSPfHwKH0+q86SWPqvt5ar6Vw4WolbUeukI7LEHjyxGjaHx0b2N7cyvZIegxOltNjIpOZPk4yIa1r41YolgjXvwg6NqT7vjqZjpsYob+XeGgvYdO2tM+6NqVxZqZaHbsdZ0/PvV5O37m3T3acuMAr/VOp61jKFBDmtGVOcp3H7bNAfae6nccbbznrnNEnHq/PQvt4xvWxQDgCjRiIMdIgEDM5stlAMZ+l0dSajslalWwum/7eZnPpsZHNTV9mTWfJ/v0vzt/uKR961j10jB+g0dJJpWUDBWpsyo/TnJmkQoFGtQqZDDtaxskXcsRaDRp1+icL9B4uM1ZpkG9ro5Zvolxop1TI8JSWw5yfH2GYZpoH99EysIdKI0ulPEnjyEHquSKN5g4aA0fIDRzksZYn0t9opVQe4MLKboY6L+CBrmugtYPYtZl97U+iXM9Ao0FbY4Se7AitXe3Q1Eq2VqaVca7oGCJfK1MsD5KrjlOu5yiWB2mQIVz0ZEJlgpDJQHsX5PLEzs3EiTEyI33pPjq8P/1tqlVhdJD4wPfTc9BkBZ74U4TLnwlbL05/b6qTMDZC3DX1r7lMBqoVQltX+tswI3Azxsh4PcdILcdwLc9wNc/IsescI7UCw7X81PwCI9Xc1PRUv1nXhUXvRy3P+FTIeO+8sMATD1lrzU7Snp2kLTtJey5dt2UnyYbIUK3IcL1AyOXpLlXZ1p3h4s4qV5b2siE7znjrFvbX2jk8UOWi2m66myOPNzYyXoXNrQ1am3I82lvl4GQrFErkMpFaI1Cv16k1MtTzTdQi1Kt1apk89RhoCxM0F+BArZ09IwU68jV+6RnNvOTqsO6fb8RGIz1PZ7LQ3JZei4wPp+fgkQHo2EhoaSdWJ9PrgnoNHn8ovSaA9JlPeze0tK/ptsRGI4X9T4ylv6f5ArR2Eto6j7+wpLOCwWiSJEmSpPnySwSjFZsWnydJkiRJkiRJkiSdOe5ldjDas4B/Wc6CIYQW4KkLjLcS5n6Te4nkhkXNXWbjSdYinZH6+/tnTXd1da3Y2KVSiWKxSKVSWXR9Z4qbb7551vRv//ZvLxmKNtfc4LejYoyzxs7lcnzuc59bVrjb0cC1P/zDPwTg4Ycf5jOf+QwvetGLll2XJEkLCbkc8bn/Hj7516c0TvzA24n9vYTOHigUoLk9BXlUJ1Nww8bz0wmmPefDob2pPZNNoSOH9hJ7H08nbH/lU7D34RXaulN0+z/QuP0fYMuFKVhi68WEHZcSa1VCNkccOpJqHTicTlQfPDQdHrJcISwcgHAc8eIr4NF7ob2b8Kq3QaNOHB8lNE+F0wz1pZNis7l00m6tmgJAzrsQrvxpQs/WE17nvBqG++HIAThvB6GpZeE+MaZ15/KzThCOjUYK/qhOpoCTo4b60v4MwKZthOY2uppPudQl5bORan3+ycuZAI0Zd01TPlLKQ4ZIvQFj1UCtDpFAJkSa85FcJjJYzh5bZmtnpCnXYFtH5NKtWcargdHhcfpG4fAIPLF1hGypyGQo8OhQkR8fzM6rA2BDC/S0waGhOhtKNTaWakyUazRqNbL1KiOhmdFajiJVag0gZNhSnGBLW51iU4GvP97Mkcnlf8d1e3uVbIBGJksx06CzNUuDQFMe7j8II2XY2AqFHBRz6bqQTbfzWegfh4ExqNRgSwec3wG5LGQDZDOQywYKWegfi0xUodZID51sBs7rCNQbMfXJpUOhfzxSyKZ91jeW9kc+CxtbA81FGC3DaCUei3hobwrks9P3X60OtUbkwBBU69BWgskafPM0+VOjs0Muk47llZTPQr0x+2/Rcm2u9XLbrt+geO9dK1vUCjiZqMtTjsd87Cfz275/x6mOmlQn4bP/bWXGOlnjI7OnD+5e/XWODMDuB1Z/PQCjQ7OnH75n9YNyv/ullR9zsjL/vhrqS5fl2PcoAPE7/7ZkN+NktRqmIh1Z6icaZs47kePwxk3/mfdu+P157ZdW7uM1f3ftCYw07Xxg/s94zHb0n0MRKExdFtK9QNtTTqqq6fUdPTNt0X2WyRAajeXtx4d+QPzCR5e13oU0T102L2ddS2gQGMu0MJxpZyTTynCmneFMG6PZNoYzbYxk0vVwpo3RTBvD2em2kaPLZNP1WKb1+CvUkkbrBUbrywyrO3D0xkKfE+xYmYLm/Ys3z//4QQQiT2I3bYzTzjhtjFNikjIF2sIEO3mcPHXy5WGuOng7143fRZ5aCmtt7YShIxwLrs0Xpl8zZDLTn8+EkM75bOuCXC71naykz6NGB2d/jpPLp88w5ohHx1nq85t8gdi1eToouDIBHd0paO2H30yfgeQL6fOxo0Gw2akQyfYNad7R0Nujl0Y9fUYyMZrW0dqRPp+arMCRfWmchWp92vWE17ydcOVPL+vekXRmMhhNkiRJkjRffokPBZvb1q4OSZIkSZIkSZIkafV8EXjdjOnrT2DZn2b2dzC/H2PsXYmigME50wufeb+0uWdTjJ5kLdIZaW5Q2WIBXiers7OT3t7ph3xf3zJP7DyN3HPPPdx5553Hptva2viLv/iLFRn7q1/9KvfeO50V+fKXv5ynPnVuluTi3vjGN/KOd7yDcrkMwOc+9zmD0SRJKyI87zeIpxiMBsAn//rsDGI4uDtd7vvuse1bse08iVA0IIWiAQz3E//6rdPDLXe1MB2clsunE3O7p06Fr9emw9TqtXQy78RYCrIbH0lBKAuNB+lE4YsuTyf8jgxMB320dhCLzVAemw5Em2mxk487e+huPBm2/q9Ft+WLu38RgH35reRjGiMQGcp0sLl+iAaBQpzkssp9bK/uJRCphjyD2U5aGmN0NIYhm6XcyBGIFPKBsdhES32Y0GikE65rkwuG3kWgRo4cNWZGqw1l2mlvDDM/bu349uXOZ3d+O531IXZUd9McJ9JJ3JWJkxhtWo0s95SewlCmndZslc1Pv4ruOExvpUh9cpLOyX56hh8h7HtkwfuCfCHti+zUieRtnel+e84LCa0dUK8T9z8Kux6E3j1pmUwG9k+d6J3NpeM9l0/HQK6QThZvbk3XE6NpvYeK6Vgrj0N/L4wMwuDhdCxCGmvTNqiU0zEbYzrxPGQgTiWsNRrpNgE2bEnL1Krp+JysQF85Hcu9u3hspMi3mp7FUOtWWijTUumnVBvhcNsT2M8Gzht5hCx1vld6Gn/f8TI21PvJ0CBPnQsyhxjPt1PMNBgPTWRqFY40WtnQGODi7GGqjUA15OkplOmoHKZ54ggtjXFaKaddUhkjW6+SaW7mUKabMiUyIZIZGyTT1UP2p64jU2oiMzpIGB2gqTIAITARC9TLZTK1KvlGhTFK9MZOamQphiq5WCOWJzhSbaapMU42l6VYyHA3TybbqLGxvI/O8YN05yboLNQglyOTzdCaq1PMRfZmtnB/ZTMxBFor/TTFCfLUOBK6uCt3JY9mtlOJOVoKkVIOMtlAUy6SpUFXrkxrZpKxWpZ8pkExGylm6hRr45RyDYotzZSydUpU6Qhj5GsTlAcGuH34idxduXDWIdccKjw99yjPiPfSGifozFdoClWKpRwjjRIj9QKhMk5LuZ8L9n+b3p4riG3dDOa72XzhZrqf/TNsKZVpG+slOzZAKBQI+QIBGKtliUB26DDnVQ/Qn+0m09YB+Tzn9TRRHR5i93gro9lW6mTY1Ohj71CGA+NFtrdN8qS2YXLNLeRCg3y9QmFigGyIVIutxI4ectsuZiQ0U29AcyEdepAO16N/9iu1yOBYpFgdZWOhTN+BAeoxUGnupqm7ky1dOTKZQLUW6RtLYY2lPNRrDe49GBgvR0Ym6jy4r8Zgvcjw0AQtP/w3Cnsf4JLJR3jJyD/R1vBjL0nS6e8vD/2nBYPRXjt42zpUc5o40cDt00CGSFtjdEVef9TIMpppPRawNh2aNiNgbSpEbWTRILbUVs4sPyBa6+MBLlx4xswPOIrAhW8B4Nnjd3J55T5GMy1szB2hFMucVzvIwdwWHuq4hEoo0tYYoRryfLo9/f/kZ8a+zrbaPrKxTrE6SQyBkdZWNjb10dYYmfp8YJRqKNCX7SYfa+RijR3VXWyop/+r1UKOC6p7yMUak6HIWKaZ/mw3dTKUMyWOZDcwmO2iMZyhZXCMWshR6J+kQYbHNr2BQKS1MUopVviZyjfYk99Oo5Gh0cgwOtBCjhqbaoe5oPo4hVilszFAV32QOu1Mlgo8WriIkUwb2ZE6IUa6mgeZCCVGM60MZDupkSOGQFt9hI5Hhhl/5z9x5AUXMNC2nVw2hVv2DsMjhyPDEzA+CQeGoLMZJiahuwU2t8P+wbTrWwop6HxrZyCbSWHNh4YjD/RCSxGa8ikcvZibfs/TiLC7D34yFbaXz8KmNtjWBWMVqE+9H2oupLDyYh62d6WQ6UMjsG8QJqrQVoQjoyk8/TXPDrQWU9h6/xgcnAo839ye+sYIwxPQNHXK7/gkPPdS2NAS2DcYeegQHBqGf3zdUtGe0pnJYDRJkiRJ0nz54uLzmv1FCkmSJEmSJEmSJJ0V/hcwARw9W+BZIYQnxxjvX8ayr54z/c8rWNf+OdNPCiE0xxjHT2CMp82ZPniKNUmaIYSTiX44vXz5y1+eNf2yl72M9vb2FRn73/7t32ZN//qv//oJLd/c3MwznvEMvv71rwPwjW98Y0XqkiSJJz0Nrr4BvvfV9a5Ea6k6OR1QNjoEu+479TFjnA5tm2l0KF0Ws1AQF8DgYc7LL34i+7PH7+Tnxk/8uM3HGs21GUFj9Tol6un2JLRSmZ43WV50nADkqc1r72gMn3BNR22t7Wdrbc7b31MMRQPIUedp5R9MN3z128D89PBFzTxeAPqn3k4/8qO1DUSs1+HA7qkaTj2H/SLgoupumHuXzTlcXzX0P3hf7x+c8vqW7RDwwNqt7kTUSSeUZ1m5wI6bp8b9cfEy+rNdPHHykfmPg+MZ/dfp298D/mn5i86NDC8Cl89pu+Q4Y0Rmn5TcDtDZkyYmy9PBfTFCbFBq1Omo14/13zyvqB4am7aRrUywqVpJy1cqMNDLs082VFOSpNNQhsijD+3kVed/mDubr6O9Mcwb+9/P7/X/1/UuTeskR53OxhCdjSFg3ymNVSWXwtSyM0LVMu2MHgtbmxGqNjV/5Fi42uwgtmoorMwG6pTc2fxs7mx+9gkt8/WWn1mlak7ORzv/n7VZ0XfheBH6vVPvhYfLsGvObx090Hv85ZdSraews31zf/pshu/tXnqMv/jiia//E3fD3Lo/8IpIR/OZ/z9MaSaD0SRJkiRJ8y0VjNZkMJokSZIkSZIkSZLOfDHG8RDCp4CZ38r+I+A1Sy0XQtgJ/LsZTTXgH1awtHuAAaBraro0VeMHlrNwCOGFwNY5zd9cseqkM0B3d/es6aGhJcIpTsLg4OyzG+au70zwrW99a9b09ddfv2Jjf/Obs//kdHd3s2vXrhMaY2ZI265du2g0GmQy/tK9JOnUhBDg7bcRX//TcOjx9S5HmmVHdQ9PLd/DPaWnzpu3c/LhdahIOretZCDa3HGfWlkgWPFMNnj41JY9leUlSTqDXFDby1f3PJ+x0ExTnCCzttG7OovlqdHdGKC7MXDKY1VCgeHMdJjayLFwtekAtWPX2dn9RqbC1Y621YNxNtJaeugQPH3HelchrSyfSSRJkiRJ8+Xzi84KzW1rWIgkSZIkSZIkSZK0qm4CXgoc/QfZq0MI/xxj/NxCnUMIJeA2YObPpX84xvjIUisJIcw9u+WGGOPXFuobY6xPBbb91ozmd4cQ7owxLnnmbAjhAuD9c5rvjDEeWGq5c8W2Lnj0zw1WWgvbuo7fZzXNDSobGDj1k4GOKpfLlMvlWW0bNmxYsfHXyoEDs/8sXH755Ss29uOPzw6aufbaa09pvEajweDg4BkZQCdJOv2EjecRPv0w8ch+4if/Bnofh0Z9ukO1ArsfgO7N8MN1yBfeeRXECBOjMDYM5fFUU74AxWYYHYRadbp/vgDVyXS71AzN7ZDNQjYHLe2w8yrCRZfCjkthw3lwz53EW/9g7bdLy/LHR/6Kl237+3ntLxn+9DpUI0mSJGk1tMTx9S5BWlQxTtJTP0JP/cgpjROBcigxnGmfClGbDlVLwWrToWujU0Fqaf5CbW3E4P/3pON5+FDk6TvCepchrSiD0SRJkiRJ8+ULi89ralm7OiRJkiRJkiRJkqRVFGN8NIRwK/CWGc2fCiH8AfDBGOPk0cYQwqXAfwOum9G3D3jnKpR2M/AKoGlquhP4VgjhPwF/F+Pss2ZCCAXgN4D3ABvnjPW2VajvjJTLBnbM3Ts6K23dunXW9MGDB+nr61uRALMf//jHx13fmaCvr2/WdFfXyqXZzR17JYyMjBiMJklaUWHj+YQ3/PmSfWJ1kvjqq2HPg2tT0++9h/Dv33TcfrFWhWyOENKJjnFkAAiEts7jr2TnlVCZIH7oT6FeO8WKV0A2l76TWGqBI/vXu5p192sjn6b/QDc3bnkPtZAnE+vcdPhdPG/sS+tdmiSd/i6+HPJF2HpxChONEWIjPdeUmiBXILR2EIf6YGwEQkjhqI06dPZMPy+2dqTn1EYDcvkUNFqZgLERYnkstQ8cgslyGhugUITxUTi8H+77bpo3UwiQyabrrk0pgDWTTfMq49B3MLXHmPr0bE31TIxCUyu0dUJ7d1rf+Ggav3tzClAd7oORIRgbSsvmCjB0JN3e9+hUfaXpmi57Blx2DQwPpPVVxtO8GKGlIwWstnWlgNbxEfjG59K6N22DzdvTvh0fhpHB1DY09RlAsQk6NqRlW9oJLe1AnLof0iX296Z9P3QkjX20tuZWGDyStrm9Gy6+nJArQPcmqNeIvY+n/Z4vpNdApea0bL2e2mpVyGTSPs1m0/XM20cOEI/uJ6Z+vyJOXTcaMHh4uv6WdqhNwoHdcHhfuk+fcAWcf3H68fkDu9Jx0dYNXT1puaPK42m/1ibTsh0b0kyITZMAACAASURBVDE5MpD2VS6f7sPMVIjtVH0hk0mv55paCe3d0NRCPLgH7r8bHvg+DPfPPp6y2VR/ozH/cVBqhtbO6f3OVL9MFto60ryBQ6nWYgk2X5iOs0IpLVsopuX6DqZjqrkdOrrT/Z7NQlMbtLan4N6Bw/8/e3ceZ9ld1wn/86u1u6v39JI0WToJwZAQNuMy4AMqKEYeZH1kBpwRQVScBR/hUXFhURllEJ8HBQcHWRwEZHBhGR1FeAgOZJAJwQlZYJIQkgnZOp2kt3R39fKbP051ddWt6u6quvfWrbr1fr9e59V9zj3n9/vdc3/3c6tOnfpWsnFLytk7m1N6163Na79xS7JlR/OaDI8277GHdyXjh1MPH0yOjKeMrErWb2rm3IkxHjua+oG3NOd4Nus3N18zpiZloJm3hx6Z/n6b+Pp48t9p/y/d3Wfqvp3a54x9Tmlu0cY1y/gWsk+n25vTPpm5fqp2pu5z8EDzfjh4oHlfP/xA817ZsKWZ30ePNPl1Yjl6pMmnaestj8/FwMDs7/NTWb22eT/PZt2mic+WI01+H9jbfLat3ZisWdfk1Oq1yWVXNu/3kVXJHV9LbvrS3PvvhpHRZPzwzO3DI02+DI80Yx1dlaQkd38j2Xx2k9cznKJQUOv8ON32U+27VNqeT3+nanu+bZym7ZLmh5yrk2yf3Hf/xDLlD7fMoe2a5EBdnX1lLHuzJnszln1ZM7nszdiMbUeO1mw5dE8GjhzMAwObc8Po5bl+1eNPMd4ze+Kh/5GRejhD9WgG67EM5cS/x1JSs2twS/YMbMhQjubm0ccuuB9oxy3393oE0HkKowEAADA/m7b3egQAAAAAAADQSb+U5PIkV02sDyf5/SS/Vkq5Lsm+JBcleXKm/5bAeJLn11qn3L3fGbXWu0opL03y0SQTvyWZdRPj+nellC8nuTvJ8SRnJ7kyydpZmvqVWut/7fT4YKl7ylOeMmPbtddem2c961ltt33ttddOW1+9enWe+MQntt1ur5VT/gLT/I2Pj595p3mqJ35hGQAWURkeSd7196nv+83kxi81v8S+Zl3zy+lHx5tfJN+zO9m/p/ll7D0PLLyvn3xj8vyfmdu+Q9N/ybusm1+B0/LS1ybf94Lk5i+n3vSllHMfnaQmD+9OPfxIcvO1yT23N4VLtpzTFPLYuC1lx87meW7ZkWx7VFPQ48h4UzxjYKI4xcatTdGKo0eaogHHjzeFNR6892RhjPWbm1/KX7MuZWR02tjqF/4q9Qv/ObnvfzV93fSlpqjAngeac3/2BU3BkgN7ThbBGBxufiF+aLh5LR5+INn/8LzOyVLyMw+/Oy/d++HcMHpZHnv469l4fE+vh9R7o6ub13j/nmaObd3RvPcOHmiKOAAr22XfmfIHV6cMDp5535yyvEhHj60HDzRFyY4fa4p7bdjSfF2xwi303HfiikXnrnp0R+v4pq7Xwweb/wwOTSuOmyT1wN5k9z3JkSPJ5m0pm7Z1faynMpdzfKZ9ynNe3lwD2r+nKZ47ONR8bTe2fsbXjbBc1WPHknu/2RQrW702ueV/NN9PXfS45nPjvjuT9WelbNqa+si+5PCh5v0wurr53mpgIGXz9tSjR5vvi8bWT36PWMcPJ1/7clNQ7MLLJnosKaOrFjbWWpMbvph867bm+7nVY82YR0ab7wUHBpvvk4eGJ4tXZmAwWbsh2bil+V5u9Vhy/11NQcXR1c2+j+xrCrQ9eF9TnG3jlpPFFA8fbL7OP/v8lA3NHzqpD9yTfPWa5nvJx313ytSilKwY6yeWhfyZmhPvl/27bsuRkbUZ2rw1I8cPZfTYoTxy4HDuGl+XgbF1Gd+zN2vGH865Zw2l1GMZGD+Ysmlrc/1h7DHNfB9Zlex7sCnat2pNM6dPFEfdd19zvePwzfnmdV/Pn9y0IffWTdkxciAbBg9n37Hh7Ds2kvvH1+Ta/dvz1QNbU5f8VyksJ7ft6vUIoPMURgMAAGCmrec2f3XqoZYy8SOjyXc+szdjAgAAAAAAgC6otR4rpfxokj9K8uIpD21L8kOnOOz+JD/ezaJjtda/LKU8N8l7MvHH1CesTvI9Zzj8QJJfqrW+o1vjg6Xs/PPPz/nnn58777xzctunPvWpjhRG+7u/+7tp69/1Xd+VkZHl98vNW7Zsmbb+4IMP5lGPWsivFM3e9t13350kWbVqVR555JGOFl4DgMVU1m1K+Tdvm9O+9fjx5hfZ9+9piqHU48l5lzS/rP7IgWTHhSlr1qbee0fyxb9tfoH2in+S8qiLu/wsZio7Lkp2XJTyjP9r+vZudLZpa5Ir5rRreeqzU5767La7rPffldx9e1Og7djRZnloV+rtNzav0eq1TfGAiQIjGRpullVjzes2uropxnbsWHLsaOo3v5Zy7qNTDx2YLIhXLrys+YX/E0XgNpyVPHBPUkpTxG10dfML08MjzS/873uoKRQ3PJqctb0pOHf0aFMU4f5vNfufe3FyYG/WHxnPU8YPNX0NDjW/WL1hSzK2bqLgwEThgYHBpnDCoUeacSRN20fGmzGMH0oOHZwoXHe4KVB38ECz35q1zfEDA0lKcnB/MydH1zRtD48mIyPJ0Ehz7+iJIgV7H0q+dm2yZ3fqoUeaQj/nPSZZt7E5H+OHmuWBe5rCBY9+fPLQrua81tqcgxNFD46ON30myV23Jvv3Jhs2N8dt3JKUgaYQ2qo1KQMDp3699+9p2l491jyXq/889SufS47Xpo/hkeb8jq5uiiisWpNsO68psLZmfVNI78jhk3Pl2LHk4IHUv/9Y89o9sr8Z84nzVQaStetTrnhqsv28Zk4dO3ry34OPpD50f8rGrc25O3igKWpxcH9z/k+0c2BP8vDu5jW74NLknjua12jz9qbAxYYtyeBQ6pHDzfMbP3Ty2InxlDKQ+sje5nU5fqyZZ+s2J2vXN/NvZFXK6rHmvA8ONoUskmbfgcFm3h/cn+zfk/rVa5JHXZxy0eMmCg0+3BTaSW2KbBx+pNn3kf1NkZodO1PO3pkMjzSFefbvaR7b9qiU9Zua99PAYPMaHDvWjCc19b9/JvnMf5r+Ig4OJWdNFGLctLUplHFw/8TrurbZtv28iRd8omjy+KFmXp91dsrY+tQ9u5tjJopFlo0T3/McGU/GD6c+eG8zF1KasRzc37x3Vq1O2X5+6u57k6/+t+Tm/z6/wJl4XkmasR4Zb4p9JM28WzXWzM39Dzf9DQ6dfD3H1ic7H9sUobzthuY9tPOxzRw7fqzZ98H7ki/+zcT7dt3Jtudr89nNa3hg78KOX4oGB5MnPi3l1z8056Joi6WsHksePbfPPjiT0xUAKmPrmyzpI6WU5uuKEzZt7d1goAvK4GAy9XvAy75j+g4XXHpy3zXrms//E7acc/KxoaHme5CpbY+MJo+f+UdDFjzWUpIr/kmztOPE13EnzLOIY9lyTvJ9L2xvDKxoJ94v66a9Z4aTrMvYpuTbTmzavjHJxhnHzzC6Y/r6+s3N9zJTXHjx4/JrZ2jm0JGakcFkYKDkjt01f/blmr+7qebevcna0eSsseT+fcmBw8ldDzfrG9ckj9lesnFN8tW7aj5/68n2HrM9+fYLSr56V80Nd0/v6zt3JoMDyQP7k90HktXDyc6zktHh5KEDyb7DybHjyaEjTZ8DJVk13Cyb1jT/JsnYSNPGbbuSi7YmOzYkR48nDz/S7HPdyR/LpZTk3I3Nv0eONf2OH03GRpM1I8neg8nho9PHOTyYnL85+ebuZjwnnLMh2bH2SEZuuTY1JfsG1mXf4LoczVBG6+FsOfZABurxjNUD2XZ0Vw4MjOXhgQ3ZeeSOlNQMpObSw19LTcn9Q1tTUrPu+P7sHViXvQMbcqQMZSA1ZWI5UNbkWBnMjiN3Z8ux3TlcRrNvYG2OlaEcK4O5ZvV3Z9vR+3PloetysKzKhuN7M1SPZuz4gQznaPYOrMv9g1tTy0BGjx/K/omxHi8D2Xx0d/YNrs8fbnrl5PMbrEez5djubBg4mNF6OAP1eIaPH87WI/fn9qHzc7CsTi0l/2vo3Kyqh3K4jGZ1PZiakk3HHs6jx2/NJUduy9Mf/WNpbiWA/qEwGgAAADOUgYHU57w8+Y+/Pf2BH3hJ88MzAAAAAAAA6CO11v1J/mkp5c+SvCbJd59i1weTfCTJG2qtXf+by7XWvyqlXJbkp5O8IsmZKibcl+QDSd5Ra72j2+ODpeyHfuiH8h/+w3+YXP/ABz6Q3/7t387w8PCC29y1a1c+8YlPzOhnOTrnnHOmrd9000254orO/NL29u3bJwujHTp0KHfeeWcuuOCCjrQNAEtZOVGsaOOWZjmh9ZfVz74ged5PLfLoVpay7dwZv5ScLLzwW2n5t6Muflx7x194WWfGMVfbzp0s9jPn8zHLazHDzscueEhl7YbpG5754pRnvnj2nefT7rNesvBjz7DeTlvzfbwT/XRyDOXZL0ve+IHUR/YnI6NNkcIOaHeMUx+v44eTe25vCrolTbGzA3tOFiYZP5xs3ZFyzs4Z7dRam0KFQ8MzCkTXWlNKafYZP9w8/wUUka4P3JNc89fJ+MHmj2FvP695nw0MNsXChkdPFpBLmrEMNwW967FjTVG4h+5vCjgceqQpvjY41LQzNlHg8PDBZp99DyUXXZ6sWZ8yONgcf/3nU//mg815WbU6Zdt5E8eub/ovAyeLCKY2+20+uykcNzTUFIzb+2DT7923p+76VlP4adO25jmU0hSTGxqeKCK4rykId9bZTZHILec0Bfe27GgKxgAAwDK0avjk9wIXnFXymh8sec0Pdqbtg+NNcbR1o8m3nZ1F/eM1d+6uTVG0TTP7PXqsZnCg2X7seM2ufU2xtGM12bwmWbsqGRxojnnoQM0D+5tCaaPDJfXo8dTve8aiPY9ue+e9r87+MpZDA6ty1rHdc/6++sR3erPtX7ZdmeRJnRkgLBEKowEAADCr8pNvTEbXpH7qg81finvac1N+8k29HhYAAAAAAAB0Ta31z5L8WSnlwiRPTrIjyViSe5PckeQLtdbxBbS74LvNa60PJvmtJL9VSjk3ybcnOSfNnywvSfYk2ZXkK7XWW0/ZEKwwr371q/Pud7+7+YXzNEXN3ve+9+WnfmrhRUje/va358iRI5PrY2NjeeUrX3maI5aupz71qfnoRz86uX711VfnxS9uv3hEkjzlKU/JV77ylcn1T33qU8v2PAEAAN1R1qzt9RBOqYyMJhdcurBjS0kmipDN+tiJf0dXLXx8W85JfuQVCzt2cDBZu6FZkqZ45/bzpu80tDZZszbZtHX245/09JQnPX1B/U+aUjBx8Uo0AADAyrB6pOQ7dvam7/PPOvVX+EODJx8bHCg5e8Mpd82msZJNYyfXy9Bw6tqNyf6HOzHMJWFtPZC1xw7M65jTfv/0zZuTb1MYjf4y0OsBAAAAsDSVUlL+xS9m4E+uz8CHbsjAz7w5ZUh9bQAAAADoqme/bPbtq8dm3w4AdEWt9fZa65/XWn+/1vrbtdb311o/u5CiaB0e11211o/XWt81Ma7fqrX+Qa31o4qiwXSXXXZZrrrqqmnbfvEXfzH33Xffgtq76aab8ta3vnXatp/4iZ/I5s2bFzzGXnrmM585bf1DH/pQ9u3b15G2n/WsZ01b/6M/+qOOtAsAAAAAAMAKtXNhBaxXinr7Tb0eAnScwmgAAAAAAAAAAEtEecGrZt/+8tcv8kgAAGD5e9vb3pY1a9ZMrj/88MN5wQtekP3798+rnV27duVFL3pRxsdP1kY855xz8vrXL9+v0y+//PI8/elPn1zfu3dvXve613Wk7auuuioXX3zx5PqXvvSlvPe97+1I2wAAAAAAAKw85ap/3ushLG133NzrEUDHDfV6AAAAAAAAAAAANMpjnpj6E7+avO83T278zh9Inv/TvRsUAAAsU5deeml+//d/P694xSsmt11zzTW56qqr8uEPfzjnnnvuGdu45ZZb8sIXvjA333zylwkGBgbygQ98IFu3bu3KuBfL61//+jzjGc+YXH/nO9+ZCy+8MK95zWvmdPyePXsyOjqaVatWTds+NDSUX//1X89LX/rSyW2vetWrsnHjxrzgBS+Y1xg//elP56KLLspFF100r+MAAAAAAADoI895Rcq+h1P/0+8lD96XlJJsPz85+4Lk7m8kA4PJhrOSoeHkyHjz+DdvTradm5z/mGTtxmTN2uSBe5KH7k+OH09WjyXrNycH9iaP7E/2PJAcPtg8tn5zctb25K7bknu+2YzhrHOafY4emT62gYHmmNkMDjaP1dq5czE0nIytb577zsem7Hxs8tgrO9c+LBEKowEAAAAAAAAALCEDL/+11Kc9L/nqNcnOxyZX/JOUoeFeDwsAAJall7/85bnuuuvyzne+c3Lb5z//+Vx22WX55V/+5bz0pS/NeeedN+O4W2+9Ne9///vzO7/zOzl8+PC0x97ylrdMKyi2XH3/939/XvOa1+Rtb3vb5LbXvva1+dznPpc3vOEN+fZv//YZxxw/fjz/8A//kD/90z/N+973vlx//fXZuXPnjP1e8pKX5DOf+Uze+973JknGx8fzwhe+MC95yUvy8z//87O2nSTHjh3L9ddfn0984hP5yEc+kptvvjmf/exnFUYDAAAAAABYwUopyUtfm7zkNcme3cn6zSkDA13vt9aa1DprX/X48eT4saYo25HDTYG1gcGmGNrAYDI8mjIymnr4ULLvwWTjtpShptRT3b8n+fwnm0JtQ8PJ8EgyPJqMjCZDI8mq1U3xsxNF1dZvbgq/bdqWMjLa9ecNS4HCaAAAAAAAAAAAS0x59BXJo6/o9TAAAKAvvOMd78imTZvy5je/ufnlhST79u3L6173uvzyL/9yLrvsspx33nnZtGlTdu/enTvuuCNf//rXZ7QzPDyct7/97XnVq1612E+ha97ylrfkzjvvzEc/+tHJbZ/85CfzyU9+Mjt27MgVV1yRs846K4cPH869996b66+/Pvv27ZtT2+9617vy0EMP5S//8i8nt33oQx/Khz70oWzdujVPeMITctZZZ2VgYCB79+7N3XffnZtvvjmHDh3q+PMEAAAAAABg+SulJBu3LG5/pcz+2MBAcqJg2ujqZpltv9FVyeiO6dvWbkh+6Mc6OlboNwqjAQAAAAAAAAAAAAB97Td+4zfy9Kc/PT/7sz+bW265ZXJ7rTU33nhjbrzxxtMe/+QnPzl/+Id/mCuvvLLbQ11Ug4OD+chHPpLLL788b37zm3PkyJHJx+6+++7cfffdC257eHg4f/7nf563vvWtecMb3jCt4NmuXbvy6U9/ek5tjI2NLXgMAAAAAAAAACw/A70eAAAAAAAAAAAAAABAtz3zmc/MTTfdlA9+8IN5xjOekaGh0/+N6dHR0TznOc/Jxz/+8Vx77bV9VxTthFJK3vCGN+TrX/96XvnKV2bz5s2n3X/t2rV53vOel4997GM5//zzz9j2L/zCL+T222/PL/3SL+WCCy4443jWrVuXH/7hH8473/nO3HPPPfmO7/iOeT0fAAAAAAAAAJa3Umvt9Rigp0oplye54cT6DTfckMsvv7yHIwIAAAAAAAAAWJgbb7wxj3vc46Zuelyt9cZejQcAOn2P3tGjR3PLLbdM23bJJZecscAVzObAgQP58pe/nFtvvTW7du3K+Ph4RkdHs3379jzmMY/Jk5/85IyOjvZ6mIvu+PHjue666/K1r30tDzzwQPbv35+xsbFs27Ytl156aR7/+MdneHh4we3ffvvtue6667Jr16489NBDGRgYyLp167Jjx45ceumlueSSSzI4ONjBZ9RbcgsAAAAAAAD6g/vzFo+fptJRpZThJE9Ncn6Sc5LsT3J3kq/UWr/Zw6EBAAAAAAAAAAAAwKSxsbE87WlPy9Oe9rReD2VJGRgYyJVXXpkrr7yyK+1feOGFufDCC7vSNgAAAAAAAADLn8JoK1gp5U+TvLhl8x211p0LaGtrkjdNtLf5FPtck+R3a61/Pt/2AQAAAAAAAAAAAAAAAAAAAAAA6G8DvR4AvVFK+ZHMLIq20LauSnJDklflFEXRJjwlyZ+VUv6klDLWib4BAAAAAAAAAAAAAAAAAAAAAADoD0O9HgCLr5SyMcm/71Bb35vkY0lGpmyuSa5L8o0kG5M8KcmWKY+/NMn6Usrzaq3HOzEOAAAAAAAAAAAAAAAAAAAAAAAAlreBXg+Annhbkh0T/9+30EZKKecm+YtML4r2hSSX11qvrLX+aK31B5Ocm+TVSY5M2e85SX5zoX0DAAAAAAAAAAAAAAAAAAAAAADQXxRGW2FKKc9M8vKJ1aNJXt9Gc29KsmnK+jVJnllrvXnqTrXWw7XW30vyoy3H/3wp5YI2+gcAAAAAAAAAAAAAAAAAAAAAAKBPKIy2gpRSxpK8e8qm303yjwts65IkPz5l03iSl9VaD53qmFrrx5L88ZRNo0nesJD+AQAAAAAAAAAAAAAAAAAAAAAA6C8Ko60sv5Vk58T/v5HkjW209ZIkg1PW/6LWesscjntLy/qPllJWtTEOAAAAAAAAAAAAAAAAAAAAAAAA+oDCaCtEKeUpSf7llE0/XWs92EaTz29Zf99cDqq13pzkH6ZsGkvyg22MAwAAAAAAAAAAAAAAAAAAAAAAgD6gMNoKUEoZTfLenHy9/7jW+uk22js7yROmbDqa5AvzaOLqlvWrFjoWAAAAAAAAAAAAAAAAAAAAAAAA+oPCaCvDG5N828T/dyV5TZvtPa5l/fpa64F5HH9Ny/rlbY4HAAAAAAAAAAAAAAAAAAAAAACAZU5htD5XSnlyktdO2fRztdbdbTZ7Wcv6rfM8/rYztAcAAAAAAAAAAAAAAAAAAAAAAMAKozBaHyulDCV5b5KhiU1/U2v9UAeafnTL+p3zPP6OlvWzSimb2hgPAAAAAAAAAAAAAAAAAAAAAAAAy9zQmXdhGfulJE+Y+P+BJK/qULsbW9bvn8/Btdb9pZRDSVZN2bwhyUPtDqyUsi3J1nkednG7/QIAAAAAAAAAAAAAAAAAAAAAANAehdH6VCnlsiS/OmXTr9Vav9mh5te2rB9cQBsHM70w2rqFD2ean03yhg61BQAAAAAAAAAAAAAAAAAAAAAAwCIZ6PUA6LxSykCS9yQZndj05SS/18EuWgujHVpAG63F1FrbBAAAAAAAAAAAAJimlDJjW621ByMBmJvjx4/P2DZblgEAAAAAAADQUBitP706yXdP/P9okp+stR7rYn8LuaPIXUgAAAAAAAAAAADAvAwMzLz19ciRIz0YCcDcHD16dMa22bIMAAAAAAAAgMZQrwdAZ5VSLkrym1M2/W6t9R873M3+lvXVC2ij9ZjWNhfqD5J8dJ7HXJzk4x3qHwAAAAAAAAAAAOiSUkpGRkYyPj4+uW3//v1Zs2ZND0cFcGr790+/TXpkZCSllB6NBgAAAAAAAGDpUxitj5TmJ+TvTnLi7p5vJHljF7pasoXRaq33J7l/Pse4sQAAAAAAAAAAAACWj3Xr1mX37t2T63v37s3WrVvdDwgsObXW7N27d9q2devW9Wg0AAAAAAAAAMvDQK8HQEe9Msn3T1n/6VrrwS70s6dlfet8Di6lrM3MwmgPtzUiAAAAAAAAAAAAYEVoLSp05MiRfOtb30qttUcjApip1ppvfetbOXLkyLTt69ev79GIAAAAAAAAAJaHoV4PgI5605T//3WSW0spO89wzNkt60OzHHN3rXV8yvotLY9fMMfxnWr/B2utD82zDQAAAAAAAAAAAGAFWrVqVYaHh6cVG9q3b19uu+22rF+/PmvXrs3Q0FAGBvz9YGBxHT9+PEePHs3+/fuzd+/eGUXRhoeHMzo62qPRAQAAAAAAACwPCqP1l9VT/v/DSW5fQBuPmuW4JyX5xynrN7c8/uh59nFRy/pN8zweAAAAAAAAAAAAWKFKKdmxY0fuvPPO1Fontx85ciS7d+/O7t27ezg6gNmdyK5SSq+HAgAAAAAAALCk+VN4LMQNLeuPL6WsmcfxTz1DewAAAAAAAAAAAACntGbNmpx//vkKDAHLQikl559/ftasmc8t1wAAAAAAAAArk8JozFut9Z4k10/ZNJTke+bRxPe2rP+XdscEAAAAAAAAAAAArCwniqMNDw/3eigApzQ8PKwoGgAAAAAAAMA8DPV6AHROrXXjfI8ppXxvks9O2XRHrXXnHA79yySPn7L+E0k+NYf+Lk3yXVM2HZjLcQAAAAAAAAAAAACt1qxZk4svvjiHDx/O3r17s2/fvoyPj/d6WMAKNzIyknXr1mX9+vUZHR1NKaXXQwIAAAAAAABYNhRGY6E+mORXkwxOrL+glHJJrfWWMxz3iy3r/6nWeqjjowMAAAAAAAAAAABWhFJKVq1alVWrVmXbtm2pteb48eOptfZ6aMAKU0rJwMCAQmgAAAAAAAAAbVAYjQWptd5SSvnjJC+f2DSS5P2llGecqtBZKeW5SV42ZdN4kjd1daAAAAAAAAAAAADAilJKyeDg4Jl3BAAAAAAAAABgyRno9QBY1t6Q5KEp609J8ulSyqVTdyqljJZS/nWSj7Yc/7Za6x1dHiMAAAAAAAAAAAAAAAAAAAAAAADLwFCvB8DyVWu9q5TygiR/m2RkYvNTk9xUSvlykm8k2ZDkyUm2thz+n5P82mKNFQAAAAAAAAAAAAAAAAAAAAAAgKVNYTTaUmu9upTy/CTvz8niZyXJlRPLbD6c5JW11mPdHyEAAAAAAAAAAAAAAAAAAAAAAADLwUCvB8DyV2v96ySPS/KuJA+dZtcvJnlRrfUltdYDizI4AAAAAAAAAAAAAAAAAAAAAAAAloWhXg+A3qq1Xp2kdKCd+5O8qpTy6iRPTXJBkrOTHEjyrSRfqbXe3m4/AAAAAAAAAAAAAAAAAAAAAAAA9CeF0eioWut4ks/2ehwAAAAANQ/O7gAAIABJREFUAAAAAAAAAAAAAAAAAAAsLwO9HgAAAAAAAAAAAAAAAAAAAAAAAACAwmgAAAAAAAAAAAAAAAAAAAAAAABAzymMBgAAAAAAAAAAAAAAAAAAAAAAAPScwmgAAAAAAAAAAAAAAAAAAAAAAABAzymMBgAAAAAAAAAAAAAAAAAAAAAAAPScwmgAAAAAAAAAAAAAAAAAAAAAAABAzymMBgAAAAAAAAAAAAAAAAAAAAAAAPScwmgAAAAAAAAAAAAAAAAAAAAAAABAzymMBgAAAAAAAAAAAAAAAAAAAAAAAPTcUK8HAEvAyNSVW2+9tVfjAAAAAAAAAABoyyz3PYzMth8ALCL36AEAAAAAAAAAy5778xZPqbX2egzQU6WUH0ny8V6PAwAAAAAAAACgC55ba/1ErwcBwMrlHj0AAAAAAAAAoE+5P69LBno9AAAAAAAAAAAAAAAAAAAAAAAAAACF0QAAAAAAAAAAAAAAAAAAAAAAAICeK7XWXo8BeqqUsiHJ06ds+l9Jxtto8uIkH5+y/twkt7XRHsB8ySFgKZBFQK/JIaDX5BDQa3IIWApkEdBrKzWHRpKcN2X9c7XWPb0aDAC4Rw/oQ3II6DU5BPSaHAJ6TQ4BS4EsAnpNDgG9tlJzyP15i2So1wOAXpsIl090qr1SSuum22qtN3aqfYAzkUPAUiCLgF6TQ0CvySGg1+QQsBTIIqDXVngOfaXXAwCAE9yjB/QbOQT0mhwCek0OAb0mh4ClQBYBvSaHgF5b4Tnk/rxFMNDrAQAAAAAAAAAAAAAAAAAAAAAAAAAojAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8pjAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8pjAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8pjAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8pjAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8N9XoA0Id2JXlTyzrAYpJDwFIgi4Bek0NAr8khoNfkELAUyCKg1+QQAPQnn/FAr8khoNfkENBrcgjoNTkELAWyCOg1OQT0mhyiq0qttddjAAAAAAAAAAAAAAAAAAAAAAAAAFa4gV4PAAAAAAAAAAAAAAAAAAAAAAAAAEBhNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnhno9AGYqpQwmeXSSy5LsSLIhyeEkDyW5Lcm1tdYDHe5zOMlTk5yf5Jwk+5PcneQrtdZvdrKvxVJKuTzJE5NsTTKa5N4kdyX5Qq31UC/HtphKKZuSXJ7kkiSbk6xK8nCSXUm+XGu9rYfDm6GUcmGa121HkrVJ7klyR5Jraq1Hejm2lUQOdYYcasghFkoWdYYsasiiU/ZjfpyGHOoM86yx3HKIpUEOdYYcasih6Uop56U5F+cm2ZJkdZLxJHuS3JnmnOzq3QiXBjnUGXKoIYdYKFnUGbKoIYtYCDnUGXKoIYdmZ34AveAzvjNkeGO5fca7N2ZpkEOdIYcacoiFkEOdIYcacuiU/ZgfpyGHOsM8ayy3HGJpkEOdIYcacmg69+fNnSzqDFnUkEUshBzqDDnUkEMshBzqDDnUkEOzW9bzo9ZqWQJLmsD8uST/Oc039/U0y9Ek/yXJszvQ79Ykf5Bk92n6+0KSF7bZz0VJXpzkrUmuTrK3pY9vdug8rkvyK0m+dZrnszfJB5Jc3MPXu2vnI8lwkmcleUeSG84wl+rEufr1JGf3+D3woiTXnGacuyfm6pYFtH2mc3CmZWcvz80ivgZyqDPnUQ7Joalt7uxABk1dXtbLc7RIr4Ms6sx5lEWyaNnPjx6+BnKoM+dxWcwzOdSz+TGW5HuS/N9JPpjkfyY53tLXy3p1Hnq9yCE5JIe6dj4uSfJvk3w2zQ81znQ+apLrkvzLJKO9Oic9eh3kUGfOoxySQ7O1P5fsOd2ys1fnpgevhSzqzHmURbJoars7O5BDU5eX9eocLdLrIIc6cx7lkBxa9vPDYrH01+IzfmVluM/4WcftHr0eL3JIDskh9+j1epFDckgOuT+v14sckkMrOYcWcX64P+/050cOdeY8yiE51Nq2+/Pmd75kUWfOoyySRbO1P5f8Od2ys1fnZpFfBznUmfMoh+TQ1HZ3diCDpi4v69U5WqTXQQ515jzKITm07OfHGZ9HrwdgqUnyoTY+0D6ZZPsC+70qyX3z6OtPkozNo/3vTfK3Z/hQ6NgbM8l3panCOdfncyDJqxbxde76+Zg4Bw8ucC49lOTHejD/1yb58DzGeW+SZ82zj4W+v04sOxf7vPTgdZBDckgOdSGH0vlvZF+82OdnkV8LWSSLZFEXsmg5zY9eL3JIDq3EHFrM+ZHmwvFX01yQPlNfL1usc7CUFjkkh+RQ9+ZHkp9s4/319STftVjnpJeLHJJDcqi786ON99eJZedinZdeLrJIFsmirp2PnR3IoalL316vjhySQ3Joxc8Pi8XSn4vP+JWR4T7jTzlm9+gtgUUOySE55B69Xi+RQ3JIDrk/r8eLHJJDKzGHFnN+xP15czlHckgOyaEuzY+4P28+50oWySJZ1MX50cb768Syc7HOS68WOSSH5FDXzsfODmTQ1MW1ajk0l/egHJJDy3J+zGcZCkvBY06x/VtJbkkTrkNpqv49IcnAlH3+zyR/X0p5eq313rl2WEr53iQfSzIyZXNNU2X9G0k2JnlSki1THn9pkvWllOfVWo/PoZsnJvnBuY6pHaWUZ6apBjra8tAdSa5P8yY8N82bd3jisTVJ/qCUMlBrfeciDHMxzsfWJJtm2T6e5uL2vWkqpp6V5MqJf0/YmOQDpZRttdbf7fI4kySllMEkH0nywy0P7UrylYmxXpxmLpaJx7Yn+Xgp5Zm11s8vxjhXCDnUJjk0SQ51zyNpKlr3M1nUJlk0SRbN3s9ymB+9JofatEzmmRyabtHmR5KXJNmwSH0tV3KoTXJokhw6s5rmIv+taX6w8Eiav5h7YZLLc3J+JM178zOllGfXWj+32ANdZHKoTXJokhyiHbKoTbJokizqnn6/Xi2H2iSHJsmhWSyT+QH0J5/xbVomGe4zvsUyuzem38mhNsmhSXKoe1zzkEOnJYcmyaHZ+1kO86PX5FCblsk8k0PTuT9vaZFDbZJDk+TQmbk/79RkUZtk0SRZxELJoTbJoUlyqHtcq5ZDpyWHJsmhWSyT+TF3va7MZqlJcm1OVtG7Lsm/SnLxKfZ9VJI/zMzqe/81SZljf+dmZtXDzyd5bMt+o0n+TZo3/dR9/+0c+/m5WcZZkxxKc0GjIxUL01RPba2KeGuSH5hl301Jfr9l32Oz7duF17nr5yPNB/mJNvYleU+SZyRZPcu+Jcnz04RX65i6fj4mxvDWln7HJ+b/SMt+lyW5pmXfB5KcM8d+ph73xYk5M59laDHORy+XyCE5JIe6kkNpvvE6U8acavl8S3/vX4xz0sslskgWyaKufU20XOZHrxc5JIdWYg4t1vyY6OvhU/R11yyPvazbz30pLnJIDsmhrs6PVyT5WpqvvZ6dZNNp9t2Y5OfT/ABkav/fSrKh2+ekl4sckkNyqOtfD01ty7XqU58nWSSLZFF3zofr1XM/V3JIDsmhFT4/LBZLfy4+41dGhvuMn3W87tFbIkvkkBySQ13JobjmMZ/XQg7JITnUpa+Hlsv86PUih+TQSsyhxZofE325P+/M50gOySE51L354f68uZ8rWSSLZFF3vyaa2pZr1bOfIzkkh+RQd86Ha9VzP1dySA7JoRU+P+b1nHo9AEtNkv+eptrelfM45mdnmfD/dI7HvqfluC8kWXWa/Z83yxvrgjn083MTof+VJO9O8lNJnpymYuD3dvCN+eGWtm5Jsu0Mx/xCyzE3Jhns8uvc9fMxEdz3JXlNkrE5HnNWkpta+r85c/xCoI3zcVFmflHw3NPsvzozf9D4rjn2NfWYq7v5vJbrIofkkBzqbg4tYGyPSnK0pa//o5vnYyksskgWyaLuZdFymR+9XuSQHFqhObQo82Oir4fT/KWFv0ryponztH3isatb+npZN5/3Ul3kkBySQ12dH8MLOOaJSfa3jOEXu3k+er3IITkkh7r+9dDUtq7u5vNazosskkWyqLtZtICxrbjr1XJIDskh88NisfTn4jN+ZWS4z/gZ/bpHbwktckgOyaHu5tACxuaax9yOkUMn+5FDJ/uQQ8t0fvR6kUNyaIXmkPvzltAih+SQHHJ/3lJYZJEskkXu0ev1IofkkBxyf16vFzkkh+SQ+TGv59TrAVhqkuxc4HF/1jK5/moOx1zS8sF4OMklczju/S19vXcOx2w61QdCB4PqojQVB6e29T1zPPb/bznu5V1+nRfjfGyda2C3HPeEWc7jd3T5fPxxS3/vm8Mxj5mYsyeOOZLkojkcN7Wfq7v5vJbrIofkkBzqbg4tYGy/0jK2/9nNc7FUFlkki2RRd7JoOc2PXi9ySA6t0Bzq+vmY0t4p/4Ju3Hh14jzsXOBxckgOtbYjhzo3vl9vGcMXF3sMi/x8dy7wODkkh1rbkUOztze1rau7+byW8yKLZJEs6s75aGNsK+56tRySQ3LI/LBYLP25+IxfGRnuM35Gn+7RW0KLHJJDcqi7ObSAsbnmMffj5JAcam1HDi3T+dHrRQ7JoRWaQ+7PW0KLHJJDcqg756PN8a2o+/MmnvPOBR4ni2RRazuyaPb2prZ1dTef13Jd5JAckkPdOR9tjM216rkfJ4fkUGs7cmiZzo/5LAOh52qt31zgoe9sWf++ORzzkiSDU9b/otZ6yxyOe0vL+o+WUlad7oBa60O11kNzaLsdz06mzeMv1lo/P8djf6dl/Sc6M6TZLcb5qLXuqrUeWMBx/yNJ63mby3xakFLK6iQvatncOsdmqLX+zyQfm7JpKM2cpk1yqC1yaHofcqhNpZSSmXPhPZ3sY6mSRW2RRdP7kEXTLZv50WtyqC3LZp7JoRl9Lsb8ONHXPYvRz3Imh9oih6b3IYc6569b1h/dk1EsEjnUFjk0vQ85xILJorbIoul9yKI2rdTr1XKoLXJoeh9yaLplMz+A/uQzvi3LJsN9xp+0lO+NWankUFvk0PQ+5FCbXPOYNzkkh1r7kEPTLZv50WtyqC3LZp7JoRl9uj9vCZFDbZFD0/uQQ52zou7PS2RRm2TR9D5kEQsih9oih6b3IYfa5Fr1vMkhOdTahxyabtnMj/lQGG15+0rL+upSysYzHPP8lvX3zaWjWuvNSf5hyqaxJD84l2O77Gkt6387j2M/k2R8yvpTSinntD+kZat1Pu3oYl/PSrJmyvp/q7V+bY7Hts7ZF3RmSCyQHJJDnSSHGk9PcvGU9aNp/mIdpyaLZFEn9WMWmR/dJ4fMs05azByif8ghOdRJcmi6B1vW1/VkFEufHJJDnSSHWChZJIs6SRY1XK+eHzkkhzqpH3PI/ACWK5/xMryT+vHn0XSfHJJDnSSHGq55zI8ckkOd1I85ZH50nxwyzzqpH6+90n1ySA51khyazv15cyeLZFEnySIWQg7JoU6SQw3XqudHDsmhTurHHOrL+aEw2vJ2dJZtI6fauZRydpIntBz/hXn0d3XL+lXzOLZbzm1Zv2GuB9ZaDye5dcqmgSyN59QrrfPplHOpA36oZf3qeRz7XzN9rE8qpWxve0QslBySQ50khxqvaFn/q1rrvR1svx/JIlnUSf2YReZH98kh86yTFjOH6B9ySA51khya7oKW9bt7MoqlTw7JoU6SQyyULJJFnSSLGq5Xz48ckkOd1I85ZH4Ay5XPeBneSf3482i6Tw7JoU6SQw3XPOZHDsmhTurHHDI/uk8OmWed1I/XXuk+OSSHOkkOTef+vLmTRbKok2QRCyGH5FAnyaGGa9XzI4fkUCf1Yw715fxQGG15e3TL+tEkD5xm/8e1rF9faz0wj/6uaVm/fB7HdsvmlvWH53l86/5XtDGW5a51Pt3Txb5a5+J/m+uBE3P2qy2bl8JcXKnkkBzqpBWfQ6WUDUle2LL5PZ1ou8/JIlnUSf2YReZH98kh86yTFjOH6B9ySA51khya7l+0rH+2J6NY+uSQHOokOcRCySJZ1EkrPotcr14QOSSHOqkfc8j8AJYrn/EyvJP68efRdJ8ckkOdtOJzyDWPBZFDcqiT+jGHzI/uk0PmWSf147VXuk8OyaFOkkPTuT9v7mSRLOokWcRCyCE51EkrPodcq14QOSSHOqkfc6gv54fCaMvbi1rWr621Hj/N/pe1rN86616ndtsZ2uuF8Zb10Xke37r/UnhOi66Usj7JD7Rs/lIXu3xsy/pizsXzSynvK6XcWEp5qJQyXkq5b2L9T0opP1VKaQ18Tk0OyaGOWGE5dDr/LMnqKev3JPkvHWq7n8kiWdQRfZxF5kf3ySHzrCN6kEP0DzkkhzpCDk1XSvmXSX5syqajSf6/Hg1nqZNDcqgjVlgOuVbdebJIFnXECsui03G9ev7kkBzqiD7OIfMDWK58xsvwjujjn0fPxnWPzpJDcqgjVlgOnY5rHvMnh+RQR/RxDpkf3SeHzLOO6ONrr3SfHJJDHSGHpnN/3rzJIlnUESssi1yr7iw5JIc6YoXl0Om4Vj1/ckgOdUQf51Bfzg+F0ZapUsraJK9o2fyXZzistWLhnfPs9o6W9bNKKZvm2Uan7W5ZP2eex7fu/21tjGU5++kka6as70mXqutPfJPY+o3ifOdi6/6XzOPYC5O8LE0Ib0wynGTbxPpLk/xhkjtLKf/vxPuMU5BDk+RQZ6ykHDqd1vfUH9daj3ao7b4kiybJos7o1ywyP7pIDk0yzzpj0XKI/iGHJsmhzljROVRKGSulfFsp5cdLKZ9L8o6WXV5Xa72+F2NbyuTQJDnUGSsph1yr7iBZNEkWdcZKyqLTcb16HuTQJDnUGf2aQ+YHsOz4jJ8kwzujX38ePRvXPTpEDk2SQ52xknLodFzzmAc5NEkOdUa/5pD50UVyaJJ51hn9eu2VLpJDk+RQZ6zoHHJ/3sLJokmyqDNWUha5Vt0hcmiSHOqMlZRDp+Na9TzIoUlyqDP6NYf6cn4ojLZ8/VaSs6esP5zkj85wzMaW9fvn02GtdX+SQy2bN8ynjS64uWX9u+d6YCnl/CQ7Wjb3+vksulLKziS/1rL57bXW1mqQndI6Dx+ptR6YZxutc7fTr9tYkp9L8uVSyuUdbrufyKGGHGqTHGqUUq5IcmXL5ve02+4KIIsasqhNfZ5F5kd3yaGGedamHuQQ/UMONeRQm1ZaDpVSNpZS6tQlyf4kX0vy/iRPm7L7/iQ/VWv9nR4MdTmQQw051KaVlkNz5Fr13MmihixqkyxquF69IHKoIYfa1Oc5ZH4Ay5HP+IYMb1Of/zx6oVz3mBs51JBDbZJDDdc8FkQONeRQm/o8h8yP7pJDDfOsTX1+7ZXukkMNOdSmlZZD7s/rOFnUkEVtWmlZNEeuVc+NHGrIoTbJoYZr1QsihxpyqE19nkN9OT8URluGSinPT/KvWjb/Sq31wTMc2lqt+OACum89Zt0C2uikz7Wsv7CUsmbWPWf6F7Ns6/XzWVSllJEkH8n05/3NJP+ui932ah4eTXJ1kl9N8iNJnpzmrzY9Kclzk/xOZn4x85gkny6lXLCAMfY1OTSNHGrDCsuhM2mtVP25WuutHWi3b8miaWRRG1ZAFpkfXSKHpjHP2tCjHKIPyKFp5FAb5NAp3ZfkV5JcWGt9d68HsxTJoWnkUBtWWA65Vt1hsmgaWdSGFZZFZ+J69TzIoWnkUBtWQA6ZH8Cy4jN+GhnehhXw8+ipXPfoIDk0jRxqwwrLoTNxzWMe5NA0cqgNKyCHzI8ukUPTmGdtWAHXXukSOTSNHGqDHDol9+fNgSyaRha1YYVlkWvVHSSHppFDbVhhOXQmrlXPgxyaRg61YQXkUF/OD4XRlplSyhOS/MeWzZ9K8u/ncHhrcLdWp5yL1uBubXOx/VWaap4nbEzyxjMdVEo5L8lrZ3losJSyujNDWxb+KMl3Tlk/luTHF/DXkOajF/PwV5M8qtb6fbXWN9daP1lr/Uqt9dZa6z/WWj9Ra/1/klyQ5LeT1CnHnp3kL0opZQHj7EtyaAY51J6VkkOnNfGF9I+1bFbd+zRk0QyyqD39nkXmRxfIoRnMs/b0IodY5uTQDHKoPXJodtuT/EySV5VS1vd6MEuNHJpBDrVnpeSQa9UdJotmkEXtWSlZdFquV8+PHJpBDrWn33PI/ACWDZ/xM8jw9vT7z6NPcN2jg+TQDHKoPSslh07LNY/5kUMzyKH29HsOmR9dIIdmMM/a0+/XXukCOTSDHGqPHJqd+/POQBbNIIvas1KyyLXqDpJDM8ih9qyUHDot16rnRw7NIIfa0+851JfzQ2G0ZaSUcn6aiTg1LO9I8mO11jr7Uae1WMd0Ta11X5K3t2x+bSnl1ac6ppRybpK/SbLhVM12aHhLWinlN5L885bNr6u1/v0iD6Xr83Dim9fW6t2z7Xeo1vq6JP+65aEnJ/ln8+mzX8mhmeTQwq2kHJqD5yY5a8r6nv/d3v3HWpMX9B3/fJctIIJSi0AVdSn+wlBSFFMBTTcUDNSAsqAQmoYVtLbYJrVt0pSadGsbTNNo7R+NUotiKdBSBEREQMSVVuOvZlGoW0oqawVd5JdF9vey3/5x7tN77px75sycHzNzzrxeyflj5p4zZ57zfJ/33Od7J9+b5A17fo+ToUWrtGh7c2iR8bF/OrTKONvehDrEEdGhVTq0vRl36NNJHr30eEwWc0DXJfnXST529rwvSfIDSd5XSvn6Ec5zknRolQ5tb04dMle9X1q0Sou2N6cWdWC+uiMdWqVD25tDh4wP4Fi4xq/S8O1N6BrvHr0jokOrdGh7c+pQB+Y8OtKhVTq0vTl0yPjYPx1aZZxtb0Id4ojo0Cod2t6MO+T+vB1p0Sot2t6cWmSuen90aJUObW9OHerAXHVHOrRKh7Y3hw6d6vi4euwToJtSysOT/EKSL17afWuSp9daP3b5q1Z8prG9zcp8zdc0jzmGlyd5Zs5XZixJfqSU8rwsVkd9bxYrcX7R2fP+ds4vfh9O8qilY91Za11Z6bOUck3Xk6m13tLr7EdQSvl7Wax6veyHa63/quPrr+n6Xpd8HpMfh7XWf1tK+eYkz17a/dIkr93n+xwbHWqlQz3p0IqXNLZfW2ttriJNtGgDLeppZi06+PiYCx1qpUM9jdwhjpQOtdKhnubcoVrrfUluueRLNyV5Uynl+5P8yyR/52z/lyZ5VynlKbXW9w9zltOkQ610qKc5d6gLc9XraVErLepJi1aYr+5Ah1rpUE8z65C5amDSXONbucb3NLOfR/dm3uNyOtRKh3rSoRXmPDrQoVY61NPMOmTOY090qJUO9TSzuVf2RIda6VBPc+6Q+/N2o0WttKinObeoC3PVl9OhVjrUkw6tMFfdgQ610qGeZtahk5urtjDaESilfEGSdyX5yqXdH0/ytFrrB3sc6iTDXWu9u5RyXZK3JXn80pe+8eyxziey+MbhHUv7/mTNcz/U45RKj+cOrpTy3Ul+uLH7R2ut/6DHYXb5PI5lHP5gLv5H9htKKQ+tta4bIydNh9rpUD86dFEp5UuSPL2x+5XbHu+UaVE7Lepnbi0aaHycPB1qp0P9TKBDHCEdaqdD/ehQu1rr7Un+binlniTfd7b785L8h1LK1235G4aOng6106F+dKgzc9UNWtROi/rRoovMV3ejQ+10qJ+5dchcNTBlrvHtXOP7mcA1/ljGoXmPJTrUTof60aGLzHl0o0PtdKifuXXInMd+6FA7HepnAh3iCOlQOx3qR4fauT9vPS1qp0X9aFFn5qqX6FA7HepHhy4yV92NDrXToX7m1qFTnKu+auwToF0p5fOTvDPJX1za/aksVrL8Hz0P938b21/Y81wenNVwT2Ig11o/kuTJSV6R5J4OL/mlJE9Mcltj/617PrVJKaX8jSQ/losx/ckk3zvgaTTH4YNKKZ/b8xgPb2wfYhz+Rhb/1q64X5KvOcD7TJ4OdaND3ejQpa7Pxe/JfrvW+t93ON5J0qJutKibubbI+NiNDnVjnHUzkQ5xZHSoGx3qRod6+SdJ/nBp+wlJnjbSuYxKh7rRoW50qBdz1Uu0qBst6kaLLnV9zFe30qFudKibuXbI+ACmyDW+Gw3vZiLX+KndG7OOeY8zOtSNDnWjQ5e6PuY8WulQNzrUzVw7ZHzsRoe6Mc66mUiHODI61I0OdaNDvbg/b4kWdaNF3WhRL+aqz+hQNzrUjQ5d6vqYq26lQ93oUDdz7dCpjQ8Lo01YKeUhSd6e5OuWdn86yTNqre/d4pDN1S+/rOfrm8//ZK31U5c+cwS11ttqrX8ryVdlMSHyS0k+nOSOJH+a5OYkP5XFKqp/tdZ6S5LHNg7zW4Od8MBKKS/IItLL/+5fk+S7hlxBv9b6iVz8D2KSfGnPwzTHYp+VXTuptd6X5P80dvf6ZucU6FA/OtROh1aVUkqS72zstrp3gxb1o0Xt5t4i42M7OtSPcdY3m3gKAAARjElEQVRuKh3iuOhQPzrUTof6qbXekeTNjd3PGONcxqRD/ehQOx3qx1z1OS3qR4vaadEq89Wb6VA/OtRu7h0yPoApcY3vR8PbTeUaP6V7Y9qY91jQoX50qJ0OrTLnsZkO9aND7ebeIeNjOzrUj3HWbiod4rjoUD861E6H+nF/3jkt6keL2mlRP+aqF3SoHx1qp0OrzFVvpkP96FC7uXfolMbH1WOfAJc7+200b0vyDUu7P5PkmbXW39jysDc3tr+85+v/QmP7d7c8j4OqtX4oycvPHps8qbH962uOWS7bfyxKKc9N8uosVqm+4r8kedHZf9h62cPncXMWK0xe8eVZHZ9tmmOxz2v7uKOx3VzR9aTp0PZ0aJUOrfXUJI9e2r4ri2+qOaNF29OiVVp07hDj41Tp0PZ0aNUEO8QR0KHt6dAqHdraBxrbff/NHDUd2p4OrdKhrc16rjrRol1o0SotWst8dQsd2p4OrdKhc+aqgbG5xm/PNX7VBK/xU7k3ZpNZz3vo0PZ0aJUOrWXOo4UObU+HVunQOXMe3enQ9nRo1QQ7xBHQoe3p0Cod2tqs789LtGgXWrRKi7ZmrlqHtqJDq3RoLXPVLXRoezq0SofOncJc9VWbn8LQSimfk+StSb5xafftSb6l1vqrOxz6/Y3tx5dSHtTj9U/ZcLyjcraq6lMbu395jHM5pFLKs5O8LhcXQnxzkhfWWj87zlmtjJ1mINc6+6bm8RuOty8Pa2x//EDvMzk6NAwd0qEkL25sv7HW+sktj3VytGgYWqRFG95nFuNjHR0axlzG2UQ7xMTp0DB0SIc6uKex/YBRzmIEOjQMHdKhDmY7V51o0VC0SItivnotHRqGDulQm7mMD2BYrvHDmEvDJ3qNn/zPo8/Mdt5Dh4ahQzoUcx5r6dAwdEiHNrzPLMbHOjo0jLmMs4l2iInToWHokA51MNv78xItGooWaVEH5qp16KB0SIdirnotHRqGDulQmymPDwujTUwp5YFJ3pLk2qXddyZ5dq31Pbscu9b6R0l+Z2nX1bl4cdjk2sb2z+9yPhPw1CTXLG3/cq31gyOdy0GUUv5aFitX/pml3T+X5Pm11nvHOaskydsb29f2eO035eJF6KZa60d3PqOGUsrDsrqK6x/u+32mSIcGpUPjGb1DpZSHJrmusfuVfY9zqrRoUFo0ntFb1MHJj491dGhQJz/OJtwhJkyHBqVDbPKoxvYhvu+aHB0alA6x1pznqhMtGpgWzZj56vV0aFA6RJuTHx/AsFzjB3XyDZ/wNX7yP4+e87yHDg1Kh8YzeofMeaynQ4PSofGM3qEOTn58rKNDgzr5cTbhDjFhOjQoHWKTWd6fl2jRwLSItcxV69BAdGjGzFWvp0OD0iHaTHZ8WBhtQkop90/yxiRPW9p9V5Jvq7X+4p7e5k2N7e/seG5fneQvL+26Lck793ROY/lHje1XjHIWB1JKeXqSn05y/6Xd70zy3Frr3eOc1f/3jiR3LG0/6WyMdXF9Y7s5pvflBbnYyI8muflA7zUZOjQ4HRrPFDr015M8cGn7liTv3vJYJ0WLBqdF45lCizY56fGxjg4N7qTH2cQ7xETp0OB0iE2+ubE9icn9Q9KhwekQbWY5V51o0Qi0aN7MV19ChwanQ7Q56fEBDMs1fnAn3fCJX+OP4efRs5z30KHB6dB4ptAhcx6X0KHB6dB4ptChTU56fKyjQ4M76XE28Q4xUTo0OB1ik9ndn5do0Qi0iDbmqs/p0OHo0LyZq76EDg1Oh2gz2fFhYbSJKKVcneT1SZ65tPueJM+rtb5jj2/1miSfXdq+rpTyFR1e1xzEr6+13rm/0xpWKeVFSZ6+tOu9Waz8eBJKKX8lyc/k4jdI787im4C7xjmrc7XW25O8obG7OcZWlFK+Mslzlnbdm+S1ezy1K+/ziCTf39j9s7XWuu/3mhIdGpYOjWsiHXpxY/snTr0zXWjRsLRoXBNpUdv7nPT4WEeHhnXq42zqHWKadGhYOsQmpZRvSfLExu6fGeNchqJDw9Ih2sx1rjrRoqFpETFfvUKHhqVDtDn18QEMyzV+WKfe8Klf44/g59GznPfQoWHp0Lgm0iFzHg06NCwdGtdEOtT2Pic9PtbRoWGd+jibeoeYJh0alg6xyRzvz0u0aGhaRBtz1To0BB0i5qpX6NCwdIg2Ux8fFkabgFLK/bII6rcu7b43yfNrrW/d53vVWj+Y5KeWdt0/yatKKQ9c85KUUr41F3/jzd1J/tk+z2tXZxe+rs+9LsmPL+26N8mLa6337v3ERlBKeVKStyb5nKXd70nyrFrrHZe/ahQ3ZPHNyRXXl1Keve7JZ2P0J3Nxhc5X1lr/d8trvqqU8qw+J1VKeWQWn98jlnbfneQH+xzn2OjQ7nTonA5tVkr5S0m+dmnXfUle1fc4p0aLdqdF57To0tcaHxvo0O6Ms3NH1CEmRId2p0PndOhcKeWJpZTnbH7myuu+PsmrG7vfU2t9337ObHp0aHc6dE6Hzpmr7keLdqdF57RoM/PVq3Rodzp0TodWGR/AWFzjd6fh547oGn9D3KM3GTq0Ox06p0ObmfNYpUO706FzOnTpa42PDXRod8bZuSPqEBOiQ7vToXM6dM79ef1o0e606JwWnTNX3Z0O7U6HzunQZuaqV+nQ7nTonA6tOrXx0fkPw0H9RJLvaOx7WZKbSinX9DzWrR1WmvynWfwGmz97tv3kJO8qpXxXrfV/XnlSKeUBSf5mkh9qvP6Haq2/3+VkSimPyuXj7JGN7atb/qyfqbV+fMNbva+U8nNJfjrJr9da77vkXB6X5B8neWHjSy+rtd604fh7cejPo5TyhCQ/n+TBS7s/kOR7kzy8lNLndO+std7a5wV91Fp/r5Tyb5L8w6Xdbyil/P0k/67WeveVnaWUxyb591mM1Ss+kc3fQPz5JG8ppbwvyX9M8qazb15WlFIekuRFWazs/YjGl/9FrfX3OvyxjpkO6ZAOLey7Q+u8pLH9jlrrH2x5rFOiRVqkRQuHatFRjI+R6ZAOza5DyXDjo5Ty4CQPW/Pl5oTyw1re68NTmlzbMx3SIR26aF/j41FJ3lhKeX8WP0B7c5IP1Hr5b1kqpXxNku9J8tLGed15tu+U6ZAO6dBF+xof5qr70SIt0qKL9j0+msxXr9IhHdKhi2Y5PoCT5Bo/k4a7xp9zj97k6JAO6dCCe/TGo0M6pEML7s8bjw7p0Ow6lLg/b2J0SId06CL3541Di7RIiy5yj97wdEiHdOgi9+cNT4d0SIcumuX46KzW6jHyI0nd4+Paju95bZK7Gq+9L8lvJvnPSd6e5I8vOf7PJrlfjz/bLXv4M72qw/t8fOn5f5rkV7P4R/qaJO9sOY9/PvDf9UE/jyx+o9G+xtKNA3we90vytkve+6NZXIBen+S3zsbm8tfvSvJNHcd589h/kuS/ZTHB9uokbzp7j3vWfA6vGLsRA41NHdIhHTpAh9a85wOyuFFi+XjPHbMBU3nscexokRbdsMexdOMAn8cgLTqW8THmY4/jRocmPs4O/Xnk+Do01Pi4fk+fyTVj9+KAfxc6pEM6dJjP49suef6nz8bHW7K4AeL1Sd6V5NY1x789ydPG7sQAfxc6pEM6dJjP49pLnm+uev3npUVapEUHHB+N9zRfffnnokM6pEPGh4eHxwk+9thk1/iJN/zQn0eO7xrvHr2JPPY4bnRIh27Y41i6cYDPwz16E3nscdzokA7dsMexdOMAn4f78yby2OO40aGJj7NDfx45vg4NNT6u39Nncs3YvTjg34UO6ZAOHebzcH9ev78PLdIiLTrM53HtJc83V335Z6VDOqRDBxwfjfc0V33556JDOqRDxkfnx2UryTEDtdYbSynPSfKqJF94trskeeLZ4zKvS/LdtdbPHv4Md/LgJE/a8JxPJXlprfU/DXA+rFFr/Wwp5Tuy+M1Kz1/60sOTPGPNy/44yYtqrf91y7f9/CRP6fC825J8X631x7d8HzbQIR2agpE69JwkX7C0/bEsJvoZgRZp0RSM1CLjYyJ0yDiDsemQDs3YQ7J5fFzxa0m+p9b6Owc8n9nSIR2aMXPVE6JFWjRj5qsnQod0aMaMD+CkucZr+BS4R2/edEiHpsA9evOmQzo0Be7PmzcdMs5gbDqkQzPm/rwJ0SItmjFz1ROhQzo0Y+aqJ0KHdGjGjn58XDX2CTCeWuvbkjwuyY9lMVDX+bUkz6u1vrDWetsgJ9ffjyS5KYtVOdv8QZIfSPKYqf6jnJta62dqrS9I8u1ZjLV1PpnkR5M8rtb69o6HvznJy5P8SpI7Or7mfyV5WRa/4cR/Yg9Mh3RoCg7cocu8pLH96lrrPTscjx1pkRZNwUAtMj4mSoeMMxibDunQDLw7i9+K+7okH+74mtuTvCHJs5I82U1Xh6VDOjQD5qqPgBZp0UyZr54QHdKhGTE+gFlxjdfwKXCP3rzpkA5NgXv05k2HdGgK3J83bzpknMHYdEiHZsD9eUdAi7RoBsxVT5wO6dBMmaueEB3SoRk5qfFRaq1jnwMTUEq5fxarHn9ZkkdmsbrxR5LcVGv90Jjn1kcp5fOSPCHJo7NYqfOBWfwH5iNJfrvW+rsjnh4dlFIeneRrk3xRks9NcmuS30/yK7XWu3c47lVJviLJY5J8cZKH5nx8fCrJHyX5zVrrx3b6A7A1HWIqDtUhjoMWMRWHbJHxMW06BIxNh5iDUsojkjw2i3H+55I8KMk9ST6d5BNJ3p/kA0fwm31Okg5x6sxVHwctAsamQ8yB8QHMkWs8U+EevfnSIabCPXrzpUNMhfvz5kuHgLHpEHPg/rzp0yJOnbnq6dMhYGw6xBycyviwMBoAAAAAAAAAAAAAAAAAAAAAAAAwuqvGPgEAAAAAAAAAAAAAAAAAAAAAAAAAC6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADC6/wfh0VgquWOTFwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 5), dpi=300)\n", + " configs = get_known_configs()\n", + " to_display = configs[\"Relative humidity\"], configs[\"RAM available\"]\n", + " for i, config in enumerate(to_display, start=1):\n", + " plot = figure.add_subplot(1, 2, i)\n", + " coros.append(plot_sensor(config, plot, {}))\n", + " await asyncio.gather(*coros)\n", + "\n", + "display(figure)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAE0YAAAUsCAYAAAC9bUPVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdd5h1Z1kv/u8dAqEEEnoRSIBIVUA6AiYRPDSlKr0EIgiCla6IAVEPR1DPQQRF6aKIQEDqT8HQu1IUBUKJEECQloSSEHL//lj7lXnX7Cl7z57Z8877+VzXXGQ9az1l773WzsXMN/dT3R0AAAAAAAAAAAAAAAAAAAAAAACAZTpk2QsAAAAAAAAAAAAAAAAAAAAAAAAAUBgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAYKSqjq6qHv2csOx17aSqOmX0+k9Z9pr2Iu/zga2qThp/VxwI87vvAAAAAAAAAAAObgdq7gUAAAAAODgojAYAAAAAAAAAAAAAAAAAAAAAAAAs3aHLXgAAAACwO1XV0Uk+M0OXs5OckeSbST6V5F+SvCfJG7r7nEWvDwAAAAAAAAAAAFaqqsqQeztqdOr7SY7q7tN3flUAAAAAAMzikGUvAAAAANgzDkty6STHJLltkscnOTnJ6VX1tKo6fJmL2+uq6gVV1St+PrvsNQF7S1V9dvQ984JlrwkAAAAAAAAAYOQ2WV0ULUnOl+SEnV0KLEZVHTfK7XRVHbfE9cgrwgJ5pgAAAGA1hdEAAACA7XapJI9N8q9VdfNlLwYAAAAAAAAAAIA968R1zj24qmrHVgIAAAAAwFwOXfYCAAAAgAPKt5Kcusa5Cye5RJJLrnH+qCRvrKpju/tD27E4AAAAAAAAAAAADk5VdYkkd1nnkqsmOS7JP+3IggAAAAAAmIvCaAAAAMAsPtDdx613QVVdMcnPJHlUkquNTl8syd9V1bW6+3vbs0QWYaPPGUi6+6QkJy15GTPzfAMAAAAAAAAAe9T9khw2auskteL4xCiMtnQHau4GAAAAANgZhyx7AQAAAMDe0t2f7+5nJ7lekldOueRqSX5hZ1cFAAAAAAAAAADAHvfg0fEnszrDdreqOmKH1gMAAAAAwBwURgMAAAC2RXd/K8l9k/z7lNP33+HlAAAAAAAAAAAAsEdV1Y0ybOa50ouSvHDUdqEk99mRRQEAAAAAMBeF0QAAAIBt093fTfL7U07dqKousdPrAQAAAAAAAAAAYE86cXTcSV6c5A1JvrzBtQAAAAAA7CKHLnsBAAAAwJ73xilthyS5RpJ3zztoVR2S5MeSHJ3k0kkukeSMJF9JcmqSf+nu8+Ydf5Gq6oeSXDPDWo/IsOvoGUm+luQ/k7x/UkSObVBVF0pykySXT3KZJIcn+WqGe+XD3f2pJS5vU6rq0kluluSqGdb/zQyBzfd292nLXNt2q6ojMrz2H87w/Hw3yelJ3j3La6+qKyS5cYbn8PAMz9/nk7y1u89Y8LLnUlWHJblFkisnuVyS7yf5ryQfTfKh7u4lLg8AAAAAAAAAYFea5IPuPWp+275sSVW9NMmvrjh3w6q6Xnd/eJvXdf4MuaVrJ7nkpPm/kvzzLHNX1cUy5F6ukeTIJN9K8qUk7+zuzy900avnvmSSmya5WpKLZcgtfSG7NHdVVVdMcr0MmcJLZyiQ95UkX0zynp3ICVXVDye5YZIfSnJYhqzaF5K8o7u/vt3z70VV9SNJjsmQ/7tkkm9n+Fw/myF/+b1tnt+zPP+8u+WZvF6SK2bIDp6T5Ivd/eJN9pcB3gZVdYEkN8rwPFwqw/flGRlyse+dYZxjMjyb++6xs5P8d4Z86Hu6+zsLXjoAAAA7RGE0AAAAYFt191eq6owMQYqVLjXPeFV1qySPSPJTGYqhreVrVfX6JL/f3R+bZ655VdWlktw1yW2SHJvksht0Oaeq3pPkT5K8YrMF3arqs0mOWuP0UVW1mSJKx3f3KVPGPiXD2vd5a3cft8Y6PprkR1Y0fSXJD20lbFRV907y0lHzI7r7TzfZ/5Ak901yvyQ/keSC61z7mSR/m+Tp3f3f8614e1TVcUl+I8mtMxQUnHbNx5L8XpKXzlI4q6pOSPL8UfNVuvuzc6xzPO+Tu/ukDfqclOS3V7Z1d604f+MkT0xyh6zxe8yqemuSx3f3e9aZ52eSPC7JjyepKZecU1WvSvLY7v7P9dY862uYYZyjk5yU4Xtj/F25z5eq6jlJntHdZ806x2i+U7KJ53uyrs+sM9QDq+qBG8237z2ZBPtOzxAu2+eU7j5+w0Wvo6r+b5JfHjVff7vDywAAAAAAAADArvGzGYrVrPTC0T//6uj8g5P8yjyTTTI9/zRq/p8c1mQDv99Mcv8kF11jjE8keep6hXmq6roZ8jN3ylAwZto1707ymO5+52yvYn1VdWx+kFs63xrX/HOSZyf5y1k3/FtU7mYy1mWS/FqSn0lynXUuPbeq3pvkWUleNuvGq+tlpCZ5tQcm+fXsn6Vb6fuT3M4T18s7rZjvpIzeo5F/qtrwLXthd5+w0UWbsZ15xTXmu26G5/a2Sa6wzqVnVdU/JnnaZt7X0RzH5QB/ljeRw9vWZ3mN8XbDM3mRJL+U5CEZNqSdZupndqBngDe6r2cxZY0bfqdslE2tquskeWySuye5yJQhXphk3cJoVXWVDN+3d8jan2+SfLeq3p7kj7r7DeuNCQAAwO4z9T+mBAAAAFiwaUV81ir+M1VVXX1S6OxtSe6Z9YuiZXL+fkk+WlV/UVVrFsZapMnuol9M8udJ7pGNAxFJcoEMxbv+Nsm/Tv7ofyAZBxguneSOWxzzhNHx2Un+ejMdq+p2ST6a5EVJ/lfWKYo2cZUMhbM+XVVzhR0XraoOq6rnZgin/FTW/z3etZO8JMkbJ2GeA1oNfifJezIEwdbb3OHYJO+qqkdPGeeIqnpFktckuUWmF0VLhufvnkk+VlW32dLi5zC55/4tQzByve/Fy2UonvZvVXXDHVjawk1293zJqPm4qrrWvGNOdnx+wKj53YqiAQAAAAAAAMBB5cTR8beT/N2+g+7+UJKPjK65X1VNLVC0FVV1tyQfS/KLWaOQ0sTVk7yoqv52vI5JfuZJSf45yc9ljUJKEzdP8vaq+o2trfx/5j5fVf1JklMyZK+mFlKauEGS5yZ526RIzY6qqgtU1VOSfDrJ47N+AaZkyCHdIsOGnR+eFKtaxDqumOQdSZ6XtYuiJcN7eesk766q313E3HtRVV2+qv4qyYeSPCjrF0VLhk0a75LhfT25qjbKlm52HZ7l2efcLc/kTTN8dr+f9YtmTet7MGaAd0xVPTHDs/2ATC+KtlH/i03u648neWQ2/nwvmCGD+/qqentVXXnWOQEAAFgehdEAAACAnXDklLYzNtu5qm6dYfev288x9yEZgm9vrarNBBS26sezfiGnjVwryXuWUaBpC16S5HujtgfNO9gkKDZ+/Sd399c30ffRSV6XoVjYrC6a5I8nhfS28hluyaSI3xuS/PyMXf9XhvDGegGmA8FzMuyOudnfXVaSP6iqh/5PQ9WRSd6c5G4zzHuRJK+pqhvP0GdLJgHHP05y4Rm6XTnD99kBWRwtw66YYw/bwnj3zup/xzx7C+MBAAAAAAAAAAeQqjomQ0GalU7u7jNHbS8cHV8iQzGlRa7lfhkKsh0xQ7efy1BQa98YlaFA0ZOzfiGj/aZO8rtV9cgZ5l09yDD3S5I8Ysaut8yQZ5mpANFWTIpf/X9JfitzFNfJUMDsnVX1M1tcx1UzbAB58xm7/kZVPXUrc+9FVXW9JO9Lcp+svRHmeu6cIX959S2uw7M8+5y75Zn8iQzF4OYtgHUwZoB3xKSg2e9kzve3qo5K8s4M9/X55xjilkneV1U3m2d+AAAAdt7S/gNPAAAA4OBQVVfL9KI/n95k/59J8oqs/iP2OUnekqFg2ueSfDPDzn9HJ/nJJLcaXX+TJCdX1U9097iI13b5foad/v4tyX8k+WqGgnCV5GJJfjjJzTLseLeyCNThSf6mqn6suz+3zvgfS/KNyT9fOcnFV5z73uT8Rs7axDXr6u4vV9XrM4SK9rlDVV2mu788x5APyOqiWM+bduFKVfW/kzxuyqmvJfmHJB9M8uUMO8IemWE3wtslucbo+hMzvK+PnmnVi/O8JMevOP54hkJp/5HhtRyR5MeS3D2rdyP8iSS/luTp27/MxauqX0ny0BVNpyX5+yT/muG1H5nkphlCZBcbdf/jqnpThu+Dv0mysnDYB5O8MclnkpyZ4X37ySR3yv732oWSPLeqbtTd5y7oZU1VVb+eZNrunmdP1vq2JF/IEBK7Sobna9+OshdJcnJW7Gy8Tc5J8uEVx9fO/t/FX0/yn7MM2N3/VlWnJDluRfMDquoJ3f3tOdb48NHxV5O8fI5xAAAAAAAAAIAD04OzuoDSuAhakvxVkv+T/QsUnZjkZQtax42S/N6KtXwjyeszFM36coZcyrWS3CNDxm2l+1TVyd398gx5khNXnDstyWsz5Ge+miE/c5PJOOP8zNOq6rXd/dk5X8OjktxrxfGZSV6d5P1J/msy9zUz5JauNOp7pSRvqarrd/c3so0mmya+c7KWsX9N8tYMmb1967hMhsJld8iweeY+hyd5eVXdors/OMdSLpoh1/VDk+NO8q4k/5ghU3NWkktnyAfeNckFR/2fUFV/393vXWP8L+UH2Z3Dk1xtdP5T2Tj/N1O2ZwPbmlesqhsl+acMr3Wl85K8PcN7+5nJGi6U5IpJjk1y6+z/XP9whg1Gb9jd39zEmsY8yzM+y7vombxckldm/2ftfRkKtp2W4X24fIYc3M9tYryDIgO8Qx6S/Qv1nZUh1/vODPfkIRme6eMzvO/7mRRFe29WZ2aT4TN+Z4as7deTXCDD5/zjGTbkPmzFtZdN8rqqukF3n7a1lwQAAMB2q+5e9hoAAACAXaiqjs4QIlnprd193IzjPDbJ00bNX09yqe4+b4O+V8kQKjhyRfO5Sf4oyR9091fW6Xv9JH+R/YsjJckfdvejNpj36Kx+7Q/q7hes12/S9xNJPppht723bCZYM/mD/e8nuffo1Ou6+6c36j8Z4wVJHrii6bTuPnozfdcY75QMoaF91v3sq+pOGYIzKz2qu/9wjrk/kSEwss/nkxy13v1SVXfNEGhZ6etJHp/kRd393TX6VYadX5+TIWyz0p27+zUzLn8mU97n7+YHoZwvJfml7p5a/KqqDk/yrAyF5Fb6RpIrdPd3Npj7hCTPHzVfZZ4wVVWNf8n45O4+aYM+JyX57VHz2RlCKN/OEM56bndPC7lcNkPBxFuMTv15hnDLMybHn07y0O5+8xpruFGS12X1Z3+f7v7r9da/1mvo7g13Kq2qayT5UFaHHd8wWe/n1+h31yTPzg/CPd/JELSbdf5TMsPzvaLfZ5MctaLphd19wkb9poxz96wu6nZid29YAHE0zg2TfGDU/PTufsysawIAAAAAAAAADjxVdb4MhZ+usKL5C0muNC1rVFWvy1CIZ5/zklx11uIoVXVchgJOK+3LvSTJM5M8aVpRoao6LEO25RGjUx/PkAN6d4YCMRvlZy6XIT/z46NTf97dv7CJ13BSVmd3VmaXnp/k19d4DYdk2LzxqVmdf3lBdz9onvk3k3uZ9H1VhszXSu+arHetImP7ijf9Voa1r5zrs0mu291nbjDvOCO18v16b5Jf7O5/XqPv0Rk+rxuMTr2pu2+33ryT/sdl9T13fHefslHf7bANecWLZ8iKjsd4fpKTunvNAm+TzXufleS2o1Ov7O67bzDvcfEsb+lZnoyzW57J7+cHRfI+kuRh3f3uNfpecFqudC9kgBf5fTFPZnCNbOrKz+Y5SZ7Y3V9do/9+n01VXSDJO5LceHTpa5M8trv/fZ21XC7JHyS53+jU+5PcfNozCQAAwO5xyMaXAAAAAMynqi6f5NFTTv31RkXRJv4q+xdF+3aS23b3Y9cripYk3f2hDEGRfxid+qWqGu9wt0g37u67d/erNrvbYHef1t33SXLS6NQdqmraDnq70esz7Nq20gmzDlJVt8j+RdGSIUixXlG0y2R1iOKTGYIxf75WUbQk6cGrMuzyOC5G9fuTwmk7aV+46NNJbrZWUbQk6e6zMrzHbxqdOjLDTo4Hon1F0W7T3c9ZK3TS3f+V5Kcz7MC50v2SPGXyz/+WIbgytSjaZJwPZPp7talA1xY8O6uDZH+b5KfXKoqWJJN79dj84HVfaK1rd7mTs/p5e/gc44z7dJI/m2tFAAAAAAAAAMCB6PbZvyhakrxknazRC0fHh2SOjNMa9hVS+pXu/uVpRYiSpLvP7u5HZnXm5xpJ/n6yprOS/OQG+ZkvZcjPjHN096qqeTMl+/Is/7u7H7zOazivu5+R5OcybHS60glV9RNzzr+hqnpoVhdg+tMkt1yvAFOSdPc3Jpuqnjg6dXSSX5xjOfver9cmOW6tomiTuT+b5KeyOmP3U1V15Tnm3muelf2Lon0/yf0m9+GaRdGSpLs/leG7YJwhvFtV3XSOtXiWB5t6lnfZM7mv8NY7k9xqraJok7nXypUerBng7bbvs3lUdz98raJoydTP5qSsLor2+O7+mfWKok3G+lJ33z/Jk0enbpzkZzdeNgAAAMukMBoAAACwLSa78L0xyaVHp76dYWe0jfr/VJKbj5of3N1v2ewauvucDIGN/17RfP4kv77ZMWa12SDEGp6SYReyfSrJg7e2op3R3edm2CFvpR+tqhvOONS0glTjwNLYryQ5YsXxt5Pcbr0CU2Pd/bkk9xo1XzvJnTY7xgJ9L8k9NrMTbXd3pt/P490vDyS/ul4gaZ9JWOvpo+YLJ7lIhh0v79Hd48Jp08Z5R4bvqpWOr6px4bKFqKofTXL8qPnUJA/YTMHI7t63o+gBaxLyGxcwu1FV3WizY1TVEVm9w+Y/dPepW10fAAAAAAAAAHDAGBfTSZIXrXP9q5OMCwQ9qKoW9d/YvbS7/98mr/2tKW2Xmfzvr2xUUChJuvvrSZ4xar5Yhg1F53VKdz9hMxd292uTPHXKqV/ewvxrqqpDk/zGqPmN3f2ISY5qU7r7+Un+YtT8a1V12LTrN/DZDAW81ty8c8W8X8vq4jyHZCiYdtCqqmskueeo+Te7+682O8bk8/+FJOMiSY+fc1me5cG6z/IufSa/meSe3X3GHH0P2gzwDnlFd//hLB2q6uJJfmnU/Jzuftos43T3SVm90fa83w8AAADsEIXRAAAAgIWoqgtW1Q9V1R2r6s+TfCTJdadc+pBNFqx63Oj47d39slnXNQkp/N9R811nHWcnTIIgLx4133IZa5nT86a0nbDZzlV14ST3GDW/bbKj41p9Ds/qnQGf0d2f3uy8+3T3O5O8edS8jHvlpd39wc1e3N0fSzLebXTWgnS7xSeyOuC0nles0f7iyfuyWX83Oj40yY/O0H8WD5vS9qjuPnuzA3T3mzLsKnog+/Mk54zaHj5D/wdmKIS30nO2tCIAAAAAAAAA4IBRVZdJcsdR8z9397+t1WeSzxhn0I5KcusFLOn7WV0gaE3d/f4k/znl1Mez8UaSK41zL0lygxn6j81a1OxpScZ5wDtX1eW3sIa13CvD57VPZ3XBnM16yqT/PpfN6o1cN+PJMxZS+psM98pKB2rWa1Eek/3/O9fPZPWGmRvq7u8l+b1R8+3n2CDTs/wDGz3Lu/GZ/MPuPn3ONWzJHsgAb6fzkjx6jn6PSHL4iuOzsjpfvllPGR1fv6qOnnMsAAAAdoDCaAAAAMAsjq2qnvaT5DsZQhGvTfKQrC5Y8+0k9+3ul240SVVdIslPjppnKZY09rrR8VFVddTUK5fvk6PjG1TV+ZeykhlNClG9b9R8nxl27bt7kouO2jYKBt0myZGjtr/c5HzTjO+VY7cw1ryeO0ef8ft+9UUsZAmeP+NOkZ/OsMPj2Kz3wL9MabvGjGNs1u1Hx1/M6vtuM/5sAWtZmu7+cpKXj5rvVVXj53ktvzA6Pj0HfrE4AAAAAAAAAGDzHphknKt64Sb6vWhK24lbX07+sbtPm7HPh6a0zZqf+VSSM0bN8+Ze3tPdH52lQ3d/N6sLAR2aIde1aD87Oj6lu0+dZ6Du/lyS8WudNSv2rSQb5iFH8349qzOC25VT2vWqqpLcbdT8gu4eF4/brNePjg9LctMZx/As/8BGz/JueyY70zf43UkHbAZ4m72luz87R7/xPfby7h4/J5v1riTfGLUtIyMMAADAJimMBgAAAGy3MzMUNbvmZoqiTdwqSY3a3rWFNXxmStuPbWG8Tauqw6vqDlX1+Kp6UVW9rqreXlX/XFUfGv8k+ZPREIdl2PnuQDEuZHaJJHfaZN8HjY7PyurCSWPjUMLpc4SSVhrfK0fPUKhpEb6T1UXONuNTo+PzVdXhU6/c3d42R5/xbpvfTvLBGcf47JS2hX/uk52KrzJqfvWcQb43ZQhXHsjG33cXTvKAjTpV1bFJrj1qfm53n7uohQEAAAAAAAAAu96DR8fnJvnrjTp197uyunDNXSabeW7FPLmXaTmnty9gnHlzLyfP2e+VU9puNudYU00KaN1q1LyVTGGyOis2a6bwPd19zhzzjrNeR8wxxl5x3SQXH7XN/bl299eyeqPNWT9Xz/L+pj7Lu/SZPLW7P7/FNeznIMwAb5d/mrVDVV08yY+Omrfy/XBeVj9jO5IlBwAAYD6HLnsBAAAAwJ73gSTPnOzmtlm3mNL2iqra9O55m3CpBY61SlXdMMljMhQFu9AWhzsyyULDGtvor5P8YfZ/zSdkgwJnVXVUkuNGzX/b3RsVfhrfKxefhEvmNa2Y2KWyepe47XJad39vjn7jMFcyBObO2uJ6dto8u0WeOTo+bY4CWeMxku0JHN5wStusRdySJN19blV9JMnNt7ak5enu91TVB7P/+/KwJP9vg64PHx2fm6EAJwAAAAAAAABwEKiqWyS55qj5Dd39lU0O8aIkv7Pi+LAk903yzC0saxG5l0WNM2/uZa4cS5KPJvlekvOvaJuWk9mKa2XYpHOlB1bVT29hzCuPjmfNFI4L7G3WOOt1MBdGm5YVfWZVnb2FMS88Op71c/Usb+5Z3o3P5D9vYe79HMQZ4O0yz2dz8ySHjNqeUFWP3MI6jhkdb2uWHAAAgK1RGA0AAACYxbcyPaxx/gy79l1+yrnjk7y/qk7o7g135Jy44pS2626y72ZdcsHjJUmq6vxJ/ihD4Z7xH+TndcAEn7r7m1X1qiT3WdF826q6fHd/cZ2uJySpUdvzNzHl+F65cJLrbaLfLC6Z+UJK8/janP2mFVM7/5S23e7rc/QZv/aZx+ju7w0bWO5nO96/y0xp+/gWxvuPHMCF0Sb+JPs/69eqquO6+5RpF1fVZZLcddT8mu4+fZvWBwAAAAAAAADsPidOaXvhDP1fnOQp2T+vdGK2VhhtEbmXRY0zb+5lrhxLd59dVZ9N8sMrmqflZLZiWqbwimu0z2vWTOGisl4HYs5rUaZ9fuOih1s16+fqWd7cs7wbn8kvb3XCgz0DvI3m+Wym3UtX3epCRrYlSw4AAMBiLOr/mAMAAAAHhw909/Wn/Fynu6+Q4Q/EJ2Qo1rPSBZK8uKp+ZpPz7MQfmre6g9sqk0DEy5M8Iov9vcuBFnwaFzQ7X5L7r3VxDRWpHjBq/mR3v2MTc413HNwOC79X1jEtIHXQ6O5FvP7d/B4eOaVtvAPsLLbSd7f4myRfHbU9bJ3rT8zw75SVnr3QFQEAAAAAAAAAu1ZVHZ7kHqPmryd57WbH6O7Tkpwyar5eVd1wC0tbSGZlQfmZeS0yxzItJ7MVuzFTuJtzSgeKPfu5HgTP8m787M7YymQywNtqns9mN95jAAAA7CCF0QAAAICF6e6vdfcLk1w/Q7Gblc6X5CVVdfQmhrr4gpe2Ux6X5M5T2k9P8qdJ7pfk5kmulCEscsHurpU/SY7fsdVunzcnOW3U9qB1rj82q3dxGxdXW6WqLpzksNmWBkt10Slt39rCeFvpuyt093eT/OWo+W5VddnxtVV1SJKHjpo/meE7BwAAAAAAAAA4ONwryUVGbS/r7rNnHOeFU9pOnG9Je8YicyzTcjJbcaBmClmfz3V77MSzvBs/u3O32F8GePvM89nsxnsMAACAHXToshcAAAAA7D3dfXZV3T/JZbP/H/kvlqEAzq03GOI7o+NvdPeu/gN3VV0myRNGzecmeUySP+nuzf5R/4Dffay7u6pemORJK5qvWVU36+73TOkyLpr2/SQv2sRU301yXvYv/ioagZ8AACAASURBVH9yd991pgXDzjlzSts4qDuLrfTdTf40yaPzg2f5/BmCxr83uu72SY4etf1Zd/e2rg4AAAAAAAAA2E2mFS97WFU9bAFj37uqHtXd4/zaweIiSc7YQt+VpuVktmLaZ3KX7n71gudhZ037XC/e3d/Y8ZXsLTvxLO+pZ1IGeFeado9dv7s/vOMrAQAAYCkO2fgSAAAAgNlNQgAPyOpwxU9W1T036P7fo+Mjq+rIhS1ue9wpyYVHbY/r7j+eIRCRJJdY4JqW6QVJxsWKThhfVFWHJ7n7qPn/6+7TN5qgu89LMg5AXWXzS2QRqur8y17DAWRaYO+ILYy3lb67RnefluS1o+aHVtX499cPHx1/N8N3DQAAAAAAAABwEKiqaye52TZOcWSSu23j+LvdInMsiy5sNc4UJrJie8G0z/XonV7EHrQTz/JeeyZlgKdbZj50r91jAAAAzEhhNAAAAGDbdPfnkzxpyqnf26CY0n9NabvuYla1bX5qdPz1JH8yxzhXXcBalq67P5PklFHzvarqgqO2e2T1DoPPn2Gq8b1y9ao6bIb+B7PvTWmbJ8Ryya0u5CDy5Slt19jCeNfcQt/dZvx9eVSS2+87qKr9jif+tru/ut0LAwAAAAAAAAB2jRP3yBy71dXn6VRVF8jqYlbTcjJbcSBmCtmYz3V77MSzvNc+u72UAV5UNjRZbqG3vXaPAQAAMCOF0QAAAIDt9uwknx61XTXrB8jeN6VtXBBnt7nS6Pi93X3OHOPcfBGL2SXGBc6OSHLXUdsJo+OvJXnNDHOM75ULJTluhv4HszOmtF1sjnGO2epCDiIfnNJ2w3kGqqpDs7dCPv+Y5OOjtoev+OeHZvXvs5+9rSsCAAAAAAAAAHaNyUac9x81n5Pkw1v8+dpozOOqajcUtlmGuXIsGTIs46I703IyW/GRJN8dtd1uwXOw8w7ErOiBYCee5b32TO6lDPBCsqFVdcUk482Qd9J7p7T5fgAAADiIKIwGAAAAbKtJMOApU079ZlUdtka3f5jSds9JIaDd6lKj43FgbkNVdakkx885/7mj4/PNOc4ivSKrAxYP2vcPVXW1JLcanf+r7j57hjmm3Sv3m6H/wewbU9rmCXUeu9WFHCy6+8tJPjNqvlNVzfN72tsmucjWVzWTbfue6e5O8qej5ttX1VGTYPO4mOaHuvs9i5ofAAAAAAAAANj17pTk0qO2V3X39bfyk+SJozErKzJOB5m7zNnvblPaFprr6O7vJnnHqPnyVXXrRc6zi41zO8lyM4KLyhG9K8m3Rm13rKqLzzkeg21/lvfgM7mXMsB7Ihva3aclOXXUfJOquvoy1gMAAMDOUxgNAAAA2AkvSfKJUdsVkzxk2sXdfXpW7zJ3lSQnLHxlizMO54xDEpvxiMy/u9qZo+PD5xxnYbr720leNmq+dVXt21nvhCndnj/jNG/K6l0H711V15hxnIPRx6e03WSWAarqfEkevJjlHDTeMDq+QpI7zjHO1O/Pbbbd3zMvSHLWiuNDkjw0yV2TXHZ07bMXPDcAAAAAAAAAsLuNN1VLhlzaVr0syTmjthPm3OjuQHfzqrrOLB0mm6Pef9R8bpJ/XNiqfuDVU9pO2oZ5dqNxbidZbkZwITmiyca7bxw1XzTJo+YZj/+xU8/yXnom91IG+PTsn8NLZsyGTjx0C2tYlPE9dkiSJy1jIQAAAOy8g/EXtAAAAMAO6+7vJ/mdKaeeUFVrhQB+d0rb03fxTl9fHB3/eFVdZLOdJyGUJ2xh/q+Pjo/cJbsmjgudHZLkAZPg4ANG5z7c3f8yy+Dd/d9J/nzUfL4kL62qC8200oNMd385yedHzfeYFDvbrEdkvp0ED2bPmdL29Kq6wGYHqKrbJLnz4pa0aePvmYV+9t19RpIXj5pPTPJLo7Yzkrx0kXMDAAAAAAAAALtXVf1Qkv81av5KVhdUmll3fy2rN7q7YpLbbnXsA9T/nfH6x2Z4v1Z6dXeP83SL8JdJvjRqu2VVPW4b5tptxrmdZLm5rUXmFadlRR9bVbecczwGO/Es76Vncs9kgLv7vCQfGjXfsaqO2OwYVXWnJD8xz/wL9oys3jz5vlV1z2UsBgAAgJ2lMBoAAACwU16a5D9GbVdI8rBpF3f3q5J8YNR8RJI3zLqT3T5VddGqekxV3W+e/ht4++j48CS/vZmOVXV0ktckOWwL8390StsdtjDeQnT3u7P6cz8hya2TXHnU/rw5p/n9rN6t7wZJXjVvMKSqjqqqZ1bVj8y5pgPFONR55SS/upmOVXXrJP9n4Sva47r7o0n+adR89STP38xOw1X1w1ldPGynjL9nfqSqrrTgOf5kdHzZJOOQ40u6e7yjJQAAAAAAAACwdz0ow2aJK72su89d0PgvmdJ24oLGPtDcuqqeupkLq+r2SX5ryqn/t9glDbr7O5leROv3quqR845bVberqj+df2U74nNJvjlqW2Y+cGF5xclmqq8YNZ8/Q/5vrsJMVXVYVT20qn5tnv57xLY/y3vsmdxrGeBxNvRCSTZ7P1w3qzdFXopJYb5nTTn1vKq6+zxjVtX5quqeVTXt3gUAAGAXURgNAAAA2BGTHciePOXU46vqwmt0u3eSr43arprkvVX1m5vZvayqDqmq46vqOUn+M0Mhp8vNsPTNekWS80Ztj6mq36mqQ9dZ372TvDs/2L3xjDnnf8+U+Z9RVXeuqvPPOeaijAMSx2T1boTnJPmreQbv7i8leWCSHp26bZIPVtX91vsM9qmqi0zCDq9McmqSRya54DxrOoD8xZS2p1XVL1RVTetQVRec7Oj4hgxBnvFufGzsF7P6fbtPktdMdjieqqrukuRt+cF32He2Z3lretfo+JAkL6+qGy1qgu7+WFYXjht7zqLmAwAAAAAAAAB2t0mG5UFTTk0rZjavv8/qolN3qqpLL3COA8G+PMtvVtVz18rnTTJ5v5rklRkKWK30gu5+2zau8VlJXj1qOyTJM6vqVVV1vc0MUlVXqarHVdVHMuSg5irAtVO6uzPkDFe6TVX9flVdZglLWnRe8ReSfGbUdqkkb66qP6iqTWU+q+qmVfWMJJ9N8mdJrjbHWvaCnXyW98ozudcywC9I8v1R2yOr6slrvZ5JwbATk7wjySUyZHLPmWPuRXtikveN2i6c5O+q6i+qalPPeVX9SFU9JcknkvxNkk3dmwAAACzPhv9BKAAAAMAC/W2GP1BfZ0XbZTMUCXr6+OLuPrWq7pHk9UkusOLURTLsXPaEqnpHkncm+WKSb2T4Y/eRSa6U5AaTnyMX/kpWr/UTVfWSJA8YnXpikhOq6u+SfCTJWRkCA9dIcqfsH7z5dpLHJXn2HPN/saremP13iLtskpOTnFNVn0vyrawuHvbz3f2BWeeb0YuT/F7237X1WqNr/r67vzrvBN39iqp6UpLfGZ26ymT+p1fVKUk+kOQrGd6Li2W4N45JcqMk183Wduw74HT3+6rq1UnuvKL5fBkKTz2iql6VoUjcOUkuneSGGe6xlWG6X41CVTPp7v+oqt9M8ozRqTsmObWq3pBhB8ovZtip8aoZPqMfXXHt6UlenuH93ymvzlCs8hIr2m6a5P1VdWaSL2RKobzuvv6M8zwryfFrnHtHd0/bHRMAAAAAAAAA2JuOzw8Kzuzzye5+76Im6O6zq+rlSX5+RfP5k9wvyR8tap4DwJMybDyaDO/FParq5CTvT/LlDFmraya5e5IrT+l/WpJf284FdndX1f0yFO4ZF7W5S5K7VNWHk5yS5JNJ9mXSjsxQaOu6GTJQ43vqQPC8JLcbtT0+w+a0X8yQ6zl3dP413f2kRS9k0XnF7v5qVd0pw+e6sojXoUkeneSXq+rdGTaV/HySr2fI+h2Z5PJJfixDBvBgK2a4lh17lvfKM7nXMsDd/YWqemZW5wuflOS+VfWKJP8+WfMlM2QT75j974enZdjg+qhZX88idfd3q+quGYrHXWl0+sQMn88Hkrw1Q1HEr2XIwR6ZIet6/QzfD2tuWgsAAMDupDAaAAAAsGO6+7yqenKGAmkrPbaqnt3d35rS581Vdaskf5fVf9C+SJLbTn52g19OcpMMgZGVrpiNixd9L8nPZQgZzOsxSY7N8L6sdIGsvfPh4VuYb1NWBDbuuM5lz1vAPE+tqi9kKKp0wdHpyya55+SH/T0syY2TXGHU/qPZvxDXNH/Q3X9WVQqjzai7/7CqLpXkCaNTF0xy18nPWr6VITT209u0vKkmAaNfS/LCKacvmiHstQgnJ/lcVn/nJ3OExgAAAAAAAACAA9qJU9pesg3zvCT7F0bbN/fBVBjt6RmKx9xjcnyxDEWCxoWCpvl8kp/s7m9s09r+R3efNckUPj9DYaex62V1gaa94BVJ3pzk1lPOXX7yM/ahbVzPQvOK3f2vVXXjJK9M8iNTxjx28sPGdvRZ3kPP5F7LAP9mkttk9fN0tSSP3WAtL5v0v/cG1+2ISaG3m2RY10+MTp8vwwavN93xhQEAALCtDln2AgAAAICDzr5d01a6dJJfWqtDd78vyQ0yhCa+t4W5O8Ouc2/fwhhrD979zQwhgvfM2PULSW7T3a/f4vwfS/JTSU7dyjjbZL3CZ19M8qZFTNLdz0ty8yRv2eJQ303yN0n+c8uL2uW6+0tJbpnZ7ptzkjy6uzcKx7CO7v6NDDtrzhKG+nyS46ft8rgTuvtFGULAZ27jHN9P8mdTTn0lQ8ATAAAAAAAAADgIVNWRSe425dRfbcN0b8vqrNB1quqgKbTS3Z3kvklm3STxnUmO7e5PL35V03X3md39s0kenuT0LQ73nxmyibtad5+X5GeTvHTZa0m2J6/Y3Z/MUNzoDzNsHrkVH0iypUzmgWoZz/JeeCb3Wga4u7+d5Lgk75ulW4bCeveZfOfsGpOs662TPDHJ17Y43L9n9SbfAAAA7DIKowEAAAA7ahK4OGnKqUdX1UXX6fff3f3gJMdk+KP7v2X4A/xGzkzyugzFh67S3cd393tnXvgmdffpGXYje2SSjcIhpyX5rSTX7O63LWj+d2fYre4OSf40yTsyhC7OSrLMkMLfJ/nvNc69aFIIaSG6+0PdfeskN0vyogyFpDbjixl2fn1gkst19727+8uLWtdu1t2fSXLdJL+R4X1YyzkZdtz7se5+xk6sba/r7j9Ocp0kL0xyxjqXfjnJU5Ncp7vfvxNrW0t3/2WSH0ryoCQvTvIvGdb3nQVOM63w2/O6++wFzgEAAAAAAAAA7G73TXLBUdu7u/tTi55okmubVnDtxEXPtZt197nd/fAMxYHekvUzZ/+S5CFJbrWTRdFW6u7nJLnqZB3/mM1tUHhehrX/QZLjkxx9oGShuvsb3X3fDBnBk5K8Nsmnknw9W9t0dt71LDyv2N3f7u5HJTk6w2v8QJLN5Au/m+Ge/Y0MGasbb7VQ1YFsWc/ygf5M7rUMcHd/NcktMhSsW+/fnd9P8oYkt+jux+y2omj7TO7r301yVJJHZXh/ztlE13OTvCvJU5LcpLuvPdkkFgAAgF2sht/ZAgAAABx4qurSSW6Y5NJJLpnk8Ay7BJ6ZoRjWfyQ5rZf4C5CqunqSm0zWeJHJ+j6f5CPd/fFlretgU1XHJLl2hvvkkkkukCEo8s0kn0nyHwdLEbTNqKrrJrlekksluXCG9+njGYKlZy1zbXtZVR2W5JZJrpzkchmCTP+V5CNJPrRbw0bboapemuTeK5o6yTHLCtECAAAAAAAAAByMqupSGTaovFqGfN4ZGTZe/JftKFC3VVV1gQyZwitmyD5dPENBnDMzbOz5iSSf6O5FbgDINquqI5LcOMllMuT/jsiwieOZGYpGfTzJpxe5QeuBoqpOSvLbK9u6u6Zct5Rn+UB/JvdaBnjyem6Y4Vm6aIbP4VNJ3tXdX1vm2uZVVRdOcqMkV8jw/XBkkrMzvLYvZ/h+OLW7N1NADQAAgF1EYTQAAAAAAHaNSdHLzyU5bEXzG7v79ktaEgAAAAAAAAAAwK6z2cJoAAAAAAeaQ5a9AAAAAAAAWOEh2b8oWpI8axkLAQAAAAAAAAAAAAAAAGBnKYwGAAAAAMCuUFUXSfIro+ZTk7x+CcsBAAAAAAAAAAAAAAAAYIcpjAYAAAAAwG7xlCSXGbX9cXeft4zFAAAAAAAAAAAAAAAAALCzFEYDAAAAAGCpquoSVfX0JL8+OnVakucuYUkAAAAAAAAAAAAAAAAALMGhy14AAAAAAAAHl6r6iyQ3mhxeKskVktSUSx/T3efs2MIAAAAAAAAAAAAAAAAAWCqF0QAAAAAA2GnHJLneBte8qLtfvhOLAQAAAAAAAAAAAAAAAGB3OGTZCwAAAAAAgJGXJPn5ZS8CAAAAAAAAAAAAAAAAgJ116LIXAAAAAADAQe87SU5P8u4kz+vuU5a7HAAAAAAAAAAAAAAAAACWobp72WsAAAAAAAAAAAAAAAAAAAAAAAAADnKHLHsBAAAAAAAAAAAAAAAAAAAAAAAAAAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdIcuewGwbFV1RJJjVzR9Lsk5S1oOAAAAAAAAAMBWXCDJlVYcv7W7v7msxQCAjB4AAAAAAAAAsEfI5+0QhdFgCFy9etmLAAAAAAAAAADYBndO8pplLwKAg5qMHgAAAAAAAACwF8nnbZNDlr0AAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgKU7dNkLgF3gcysPTj755BxzzDHLWgsAAAAAAAAAwNxOPfXU3OUud1nZ9Lm1ruX/Z+/Owyyr6nvh//bpmrrpEehmVJtJQKIiyhtoGkRARcwbjfGS+JKHaHzVKDF4fRH1GgbjjUOccm/kxuGiYDSGoIISofFGmVFB0NgJIIJAM3dDz0ONZ71/dHdRw9nn7FN1qs6pU5/P8/RD77X3GvbuemBteq3vBmCaWKMHAAAAAAAAAMx41udNH8FoENE/8uDQQw+No446qlljAQAAAAAAAABopP7alwDAlLJGDwAAAAAAAABoR9bnTZFSswcAAAAAAAAAAAAAAAAAAAAAAAAAIBgNAAAAAAAAAAAAAAAAAAAAAAAAaDrBaAAAAAAAAAAAAAAAAAAAAAAAAEDTCUYDAAAAAAAAAAAAAAAAAAAAAAAAmk4wGgAAAAAAAAAAAAAAAAAAAAAAANB0gtEAAAAAAAAAAAAAAAAAAAAAAACAphOMBgAAAAAAAAAAAAAAAAAAAAAAADSdYDQAAAAAAAAAAAAAAAAAAAAAAACg6QSjAQAAAAAAAAAAAAAAAAAAAAAAAE0nGA0AAAAAAAAAAAAAAAAAAAAAAABoOsFoAAAAAAAAAAAAAAAAAAAAAAAAQNMJRgMAAAAAAAAAAAAAAAAAAAAAAACaTjAaAAAAAAAAAAAAAAAAAAAAAAAA0HSC0QAAAAAAAAAAAAAAAAAAAAAAAICm62j2AGA2SilFuVyOlFKzhwIwTpZlUSqVIsuyZg8FAAAAAAAAAADqZo0e0KqszwMAAAAAAACoTTAaTIOUUvT29saWLVtiy5Yt0d/f3+whAdTU1dUVCxYsiAULFkRPT4+FWAAAAAAAAAAAtCRr9ICZxvo8AAAAAAAAgHyC0WCKbd++PZ544okYGBho9lAA6tLf3x/PPvtsPPvss9HZ2Rn7779/zJs3r9nDAgAAAAAAAACAYdboATOR9XkAAAAAAAAA+UrNHgC0s+3bt8eaNWssuAJmvIGBgVizZk1s37692UMBAAAAAAAAAICIsEYPaA/W5wEAAAAAAACMJhgNpsjuBVcppWYPBaAhUkoWXwEAAAAAAAAA0BKs0QPaifV5AAAAAAAAAM/paPYAoB2llOKJJ54Yt+Cqs7MzFi5cGPPnz4/Ozs7IsqxJIwTIl1KKgYGB2Lp1a2zevHnUF3V3//vtkEMO8e8wAAAAAAAAAACawho9YKayPg8AAAAAAACgNsFoMAV6e3tHLVSIiFiwYEEccMABFioAM0JnZ2fMmzcvli5dGo8//nhs2bJl+NzAwED09fVFT09PE0cIAAAAAAAAAMBsZY0eMJNZnwcAAAAAAABQXanZA4B2NHKBQsTOBQwWXAEzUZZlccABB0RnZ+eo8s2bNzdpRAAAAAAAAAAAzHbW6AHtwPo8AAAAAAAAgMoEo8EUGLvoauHChRZcATNWlmWxcOHCUWVj/z0HAAAAAAAAAADTxRo9oF1YnwcAAAAAAAAwnmA0aLCUUvT3948qmz9/fpNGA9AYY/891t/fHymlJo0GAAAAAAAAAIDZyho9oN1YnwcAAAAAAAAwmmA0aLByuTyurLOzswkjAWicjo6OcWWV/n0HAAAAAAAAAABTyRo9oN1YnwcAAAAAAAAwmmA0aLBKX2jLsqwJIwFonFJp/JTBFykBAAAAAAAAAJhu1ugB7cb6PAAAAAAAAIDRBKMBAAAAAAAAAAAAAAAAAAAAAAAATScYDQAAAAAAAAAAAAAAAAAAAAAAAGg6wWgAAAAAAAAAAAAAAAAAAAAAAABA0wlGAwAAAAAAAAAAAAAAAAAAAAAAAJpOMBoAAAAAAAAAAAAAAAAAAAAAAADQdILRAAAAAAAAAAAAAAAAAAAAAAAAgKbraPYAmB5ZlnVGxAkR8fyI2C8itkbEExHxi5TSww3u66CIODoi9o+I+RHxZEQ8EhG3p5QGGtkXAAAAAAAAAAAAAAAAAAAAAAAA7UEwWpNkWXZwRBwbEa/Y9c9jImLBiEseSSktb0A/SyPioxHxRxGxZ841t0fE51JK35lkX2+OiPdHxPE5l6zPsuyKiLgwpfTMZPoCAAAAAAAAAAAAAAAAAAAAAACgvQhGm0ZZlp0cER+OnWFoFUPKGtzf6yLisohYVuPSFRGxIsuyb0bEu1JK2+rsZ35EfCUi/rjGpXtGxLsj4k1Zlv1pSun6evoBAAAAAAAAAAAAAAAAAAAAAACgfZWaPYBZ5uiIeE1MTyjayRFxdYwORUsRcVdEXBkR/ycinhlT7ayI+FaWZYV/LrIsmxMRV8T4ULR1EfHDXX3dvavv3faJiO9lWbayaD/QzpYvXx5Zlg3/uvHGG5s9JAAAAAAAAAAAAJjxrM8DAAAAAAAAgJlHMFpr6IuIBxvVWJZlB0bEdyOia0TxbRFxVErpFSmlM1NKr4mIAyPi3IgYGHHd/x0R/72O7j4ZEWeMOB6IiPdGxIEppdfu6uvlEfE7EfGTEdd1R8TVWZbtV0dfAAAAAAAAAAAAAAAAAAAAAAAAtCnBaNNvICJ+GRH/OyLeFREvj4gFEfH/NrCPj0bEkhHHt0fEaSmle0delFLqSyn9z4g4c0z992dZ9oJanWRZdnDsDFYb6b+klL6QUuof09c9EXFqjA5H2ysiLqrVDwAAAAAAAAAAAAAAAAAAAAAAAO1PMNr0ujwiFqaUXpZSekdK6csppbtTSgON6iDLssMi4k9HFPVHxFtTSr15dVJKV+8a227dUSyw7KKI6BxxfFlK6XtV+tkREW/dNabd3r4rYA0AAAAAAAAAAAAAAAAAAAAAAIBZTDDaNEopbagWUNYg/09EzBlx/N2U0m8K1PvUmOMzsyzrybs4y7K5EfHmGm2Mk1K6PyKuHlHUETvHDAAAAAAAAAAAAAAAAAAAAAAAwCwmGK39/MGY468VqZRSujcifjaiaI+IeE2VKq+NiHkjjn+SUrqv0AjHj+lNBesBAAAAAAAAAAAAAAAAAAAAAADQpgSjtZEsy/aNiJeOKBqMiNvqaOLGMcevq3Lt6TXqVnNL7Bzbbi/LsmyfOuoDAAAAAAAAAAAAAAAAAAAAAADQZjqaPQAa6nfGHP8qpbStjvq3jzk+qo6+flK0k5TStizLVkfEy8b09XTRNoD6pZTi7rvvjvvuuy/Wrl0bfX19sXTp0jjggANi5cqVMX/+/GYPccIeffTRuPPOO+Oxxx6LHTt2xN577x0vfvGL4xWveEWUSpPLAF27dm3ccsst8cQTT8SOHTti//33j4MPPjiOO+64SbddyT333BOrV6+OdevWxebNm2PPPfeM/fbbL1auXBl77bVXw/sDAAAAAAAAAABgcqzPmxjr8wAAAAAAAACoRDBae3nRmOMH6qz/YI32RjqyAX2NDEZ7UUT8uM42gAKeeeaZ+PjHPx7f+MY3Yt26dRWv6erqilNOOSUuvvji+N3f/d1C7b71rW+Nyy+/fPj4oYceiuXLlxeqe+ONN8arXvWq4eOLLrooLr744tzrsywb/v0rX/nKuPHGGyMi4vbbb4+LLroofvzjH0e5XB5Xb5999omPfOQjcc4559S9SOoXv/hFfOADH4gbbrihYtsHHnhgvOtd74oPfehD0dHRERdffHF89KMfHT5/ww03xMknn1yor2effTY+/elPxze+8Y14/PHHK15TKpVixYoVcdFFF8Vpp51W170AAAAAAAAAAADQeNbnWZ8HAAAAAAAAQOMJRmsvh445XlNn/UfGHO+VZdmSlNKGkYVZlu0ZEXtOsq+x1x9WZ32ggKuvvjrOPvvs2LJlS9Xr+vv7Y9WqVbFq1ap45zvfGZdcckl0dLT2fyI+/vGPx4UXXhhDQ0O51zz99NPxl3/5l3HDDTfEP//zP0dXV1ehtj/3uc/F+eefX7Xtxx57LC644IK47rrr4rvf/W7d49/t61//erz3ve+NzZs3V72uXv0wVQAAIABJREFUXC7HrbfeGq9+9avjT/7kT+LSSy8tfD8AAEB72zG0PR7q/XX0l/vqqrd3576xf/fzo5RV36gylIbi0d4HY+Pg+skMs210lbrjoJ4Xxtw5ezS87a1Dm+ORHb+JgTQw7lx3qScOmnt49JTmNrzfRhkoD8Qjvb+JJZ17xV6d+zR7OAAAM8LWoc3xVN+jsW/382L+nIXNHk5LWj+wLh7reyjKafxG+QVzFsUL5h4aHVlnw/vdNLghnu5/PJ7fc8ik5uG95R3x8I77o7e8o4Gjmzr7dB0Q+3YdOCoYoZKd8//7Y+tQ9b+HnDdnfrxw3u80cogAANAyrM+zPg8AAAAAAICJGxxKcfeaiMXzIg5bFjXXrQGzS2v/rTr1WjzmeG09lVNKW7Ms642InhHFiyJiw5hLx/azPaW0rZ6+KoxtUZ31gRq++tWvxjve8Y5xX1M85JBD4kUvelHMmzcv1qxZE3fccceoBUZf/vKXY82aNXHNNde07OKrz3zmM/GRj3xk+Pjwww+Pww8/PPbYY4948skn46c//Wn09vYOn7/qqqviggsuiE996lM12/7sZz8b55133rjyF73oRXHYYYdFd3d3rFmzJu68884YGhqK22+/Pc4888w46aST6r6PCy+8MD72sY+NKsuyLA4//PA47LDDYsGCBbFhw4b4+c9/Puprot/4xjfiySefjFWrVrXsnxEAADA9btpwbVy59n9HOcYHBBSxf9fz4y+ed3Es7hibgb/Tk32Pxt8/dnFsHHx2EqNsP6UoxZnL3hEnLXldQ9pLKcV1z/5L/ODZf44UqUq/c+Ksfd8Txy86tSH9NtL921fHFx//RPSWt0dExEvm/1/x9v3Oi86STUMAAHmufeaKWLX+yhhMg5FFFm9e9vZ41ZLfa/awWsZQGoyvPfn5uHvLbVWv26O0IN5z4F/FQXMPb0i/5VSOK9Z+OW7ZuCoiIuZER5y931/GsQvr/7ugn226Mb7x1BdiKAYbMrbp8oKew+KcAy/IDev79fbV8aXHP14o7G15z2Fx/gs+3eghAgBA01mfZ30eAAAAAAAAE/cfj6d47d+V48lNO49XHhpxzV+UYtE84WjATv62tr3MH3M8kU9O74jRwWgLprCfkSr1U7csy5ZFxNI6qx3SiL4bJQ0ORqx7rNnDaH9LD4ysjRes/PKXv4x3v/vdoxZdHX300XHJJZfEihUrRl27bt26uOCCC+JLX/rScNmqVaviwgsvjI9//OPTNuaiVq9eHbfccktERLzxjW+MT3ziE3HEEUeMumbDhg3x/ve/Py677LLhss9+9rPx7ne/O5YvX57b9l133RUf+tCHRpWdfPLJ8YUvfCGOOuqoUeXr1q2LCy+8ML74xS/GzTffHPfcc09d93H55ZePWnRVKpXinHPOifPOOy+e//znj7o2pRTf+9734txzz401a9ZERMSPfvSjuOCCC+ITn/hEXf0CAADtY03vA3HF2i9Pqo0n+tfEPz75P+O9z7t43LmUUnzp8U8IRaugHOX457VfioPmHh7P6zl40u3ds/0X8a/PfqtAv0Pxj0/9fSzveWHs1/28SffbKP3lvviHx/4m+tJzm6B+tfWOuO7ZK+P3l57VxJEBALSu1VvvHDUHTJHiyrX/O5b3HNawgK+Z7ofrv1szFC0iYlt5S/yvx/97fPKQr8WcbPJ///eTTT8aDkWLiBiKwbjsyc/HQT2Hx95d+xRuZ23/E3H5U3836fE0wyO9v4krnv5yvH3/8WEFfeXe+OKY+T8AwExifd40auM1etbnWZ8HAAAAAADAxKWU4vf+/rlQtIiIWx+IOPeKFJe9TTAasFN7rjiYvcYGlk1kJfKOiFhSpc1G9lOtzYl6T0Rc1KC2mmPdY5HOtNlhqmX/8uuI/ZY3exhT5u1vf3v09/cPH69cuTKuv/76mDdv3rhrly5dGl/84hfj0EMPjQ984APD5Z/61KfiLW95S7z4xS+eljEXtX79+oiIOP/883O/MLlkyZL42te+Fhs2bIjvfe97ERExNDQUl1566bgvQI50zjnnxODg4PDxm970prjiiisqfvVx6dKl8Q//8A9x8MEHx/nnnx/PPPNM4Xt45JFH4t3vfvfwcXd3d1x99dVx+umnV7w+y7J44xvfGCtWrIgTTjghHnjggYiI+PSnPx3vfOc746CDDircNwAA0D7+Y+tdDWnn19tXR295R/SU5o4qXzvwRKwdeKIhfbSrX229oyHBaL/ackdd16/eemdLBaP9evvqiqEIv9r6M8FoAAA5rnv2yorlv9z6U8Fou9TzzrNtaEs8uOO+eOG835l0v6u33TmuLEWK1dvujFd1/V7xdraOb2cm+Y+tP4+hNBRzsjmjyu/Pmf8DAMwY1udNm3Zeo2d9nvV5AAAAAAAATNydD0esWT++/Os/SXHZ26Z9OECLKjV7AEyp1GZ1gAJuuOGGuPvuu4ePFy5cGFdccUXFRVcjnXfeefF7v/fcZo5yuRyf//znp2yck7Fy5cpCX2L8m7/5m1HHP/7xj3OvvfPOO+NnP/vZ8PF+++0XX/3qVysuuhrpAx/4QLzmNa+pOZaRPv3pT8eOHc/lQ37+85/PXXQ10rJly+Kf/umfho+HhoZa9s8IAACYepsGNzSknXIMxdbBzePKNw4825D229mmwQp/CzMBGwfre9abhhrTb6Nsyhl/o35GAQDazZreB+Lh3vsrnts40FpzvWbaMrSxrusbNj/PeReqd35b7zy/1fSl3ugrj/3eWcTGBj1nAACYqazPe471eQAwC6QUUR5o9igAAAAAaDM/WC1yBqhNMFp72TrmeO4E2hhbZ2yb09kPMAGXX375qONzzjkn9t9//0J1P/nJT446/ta3vhV9fX0NG1ujfOQjH4lSqfZ/wo466qhYvnz58PEvf/nL3Gu/9a1vjTr+i7/4i1i0aFGh8VxwwQWFrouI2LZtW3z1q18dPj744IPjXe96V+H6xx57bJx44onDx9///vcL1wUAANrLYGrcwtO+NH6ze2+FDfCM1qhn1Jd6m9Jvo/SVK4+/0s8VAAARN228LvecOdRz6l32lDcvrVfe/LxSSFg1rTZvn4hK91DvcwAAgHZjfd5zrM8DgDZ33/+I+P5BEf+yIOLHr43Y/lizRwQAAAAAwCxS/TNbzDSC0SL+V0RcWWedQyLiew3qH5ru1ltvHXX8J3/yJ4XrHnXUUXHMMccMf9Gyt7c37rrrrlixYkVDxzgZc+fOjVNOOaXw9UceeWQ8/PDDERGxffv22Lp1a8yfP3/cdbfffvuo4zPPPLNwHytXroz9998/nnjiiZrX3nrrraO+RvnmN7+50CKykV71qlfFLbfcEhERjzzySKxZsyae//zn19UGAAAw8+UFo82JjugqdY0rTxHRW95esU5vhQCBamFdc0vzig2yTQyk/hhMg+PKGxa8UGc7jeq3UfLGM5gGYzANREfWOc0jAgBoXduGtsTPN9+Se77V5nrNVV80WqMCu/ICzRoVjJb3ztYsKVKVex7/85h3bSlK0V3qGVdeqQwAAGYy6/NGsz4PANrUg1+LuPt9zx0/9cOIf3tVxO/dG1GyFQ0AAAAAgKnn/0a3l01jjpfWUznLsvkxPrBsY4F+5mVZtkdKaVsd3S0r0E/dUkprI2JtPXWyLGtE19ASNmzYEA8++ODw8eLFi+PII4+sq40VK1YML7yKiLjzzjtbauHVIYccEl1dxTeLLFmyZNTxpk2bKi68+vd///fh3y9evDgOPfTQusb1ile8otDXIccujNt///2HF4YVNfb+f/vb31p4BQAAs1CloK6IiBWLT4u37PPn48pTSvHe+/8wylEed67SBv+8ze5LO/eLjx78D3WOdmb7/rpvxqr147P4855RvfICFjqyjikNZGuUas+hr9wbHXMEowEA7PaTTT+KgdSfe75R4V7tIKV6g9GmNri43vbzgqlPXnJG/OGyP6t7XFOlt7wj3v+bt1Q8V+nnMe85HLnH0XHOgRc2dGwAANBqrM8bz/o8AGhTD39zfNnWByKevTNi6fHTPx4AAAAAAGYdwWjt5Tdjjl9QZ/2x169PKW0Ye1FK6dksyzZExMjVDM+PiHsn0dfYsQMTsG7dulHHhx12WN3hf0ccccSo47Vr68oanHJjF1LV0tk5evP1wMDAuGu2bdsWvb3PbeKYyCKmonUeffTRUcfve9/74n3ve1/O1cWsX79+UvUBAICZaTCNf7+JiOjMKodQZVkW3aW5saM8Ptu+ns3uPaWxufrtL++e+1JjghfygsUWzlkS6wfXjStvtbCMagERfeXe2GPOgmkcDQBA6yqnctyycVXVa1otBHcmaURwcUqpgcFolcfT3WLvVF1Zd2SRRYrxQXSV7jnvfaTV7gsAAKaC9XnjWZ8HAG3q6R9VLl99ccQp10/rUAAAAAAAmJ0Eo7WXscFk9X1OLeLgMcf31Ohr5CfqDq3Qfz191VO3vS09MLJ/+XWzR9H+lh7Y7BFMiQ0bRmcZLlq0qO42xtZptUU9pVKp4W1u3Lhx1PGCBfVv2F64cGGh65599tm6265ly5YtDW8TAABofXnBaHOy/P/l113qyQlGq2eze0/BEbaPvHtuVEBZXsDCoo49c4LRWissoy/lP4dWGysAQDPdu+0XsW7gqarXmD89p1JQVzWNeHYDqT9SlCueqzd4Le/6uaV5dY9rKpWyUnRl3RWDnyvdQ95zno3vigDADGV93vRpwzV61udNjPV5ANBG0mCzRwAAAAAAwCwhGK29/MeY45dkWTYvpbS9YP0TarQ39tzIYLTjI+KaIp1kWbZHRLykjr5mlayjI2K/5c0eBjNUSqM3iNT7NcpKGtFGq+vu7h513N/fX3cbRetMpO1axv65AwAAs0NeMFpH1plbp7s0t2J5fcFoldtoZ/U8t3qllHLbWdixpGJ5vYEMU63ac2i1sQIANNNNG6+reY1gtOfkBaOVohTlCuFl1QJ7i6oWflwpOKyavLlwK75TdZfmRt9QhffCCvec9xy6s9a7LwCASqzPYzKsz5sY6/MAAAAAAAAAqJdgtDaSUnoyy7JfxXOhYx0RsTIifliwiZPHHFdbmb8qIt5ZpW41J8bon71fpJSerqM+kGPPPfccdbxp06a62xhbZ8mSypuwJ2NoaKjhbU7G2Hsc+2XPIop+uXPvvfcedXz77bfH8ccfX3d/AAAAgzlf4a0WjNaTswG/0ob9/E38PQVG117y7rkRoV+DaTDKUfk9eWHH4orlrRaWUW081YIlAABmk2f6n47/3HZXzesaEe7V7rpLc2NHedu48kbMkxs5t+0tV/5+WU9pXl3tTIee0tzYPDT+78fqeVfMe98EAIB2Yn3exFifBwAAAAAAQFEppVnxcSGgtlKzB0DDXTXm+G1FKmVZdkRE/O6Iom1RPVDt+ogYueL5+F1tFPHWMcdjxwxM0NKlS0cd33///XW38etf/3rU8bJlyype19ExOltzcLDyhvxKJrKwaSrNmTMnDjjggOHj3/72t7F9e+XNKnlWr15d6Lp99tln1PFE/owAAAAiIgbTQMXyasFoeQFflTb/5wUCzMbN7nn33FfujZTSpNquFnyxaE7lzVCtFjZWLSCu1ULcAACa5eaN10WK2nPHwTSYO9efbfKeVz2Bz/Wq1kZvnXPbvHl7TwuGTTfiXXE2hmgDADD7WJ83MdbnAQAAAAAAAFAvwWjt55sRMfJTb2/KsuywAvU+OOb4X1JKuSu7U0rbI+LbNdoYJ8uyF0bEH4woGoyIfyowPqCAJUuWxCGHHDJ8vHHjxrj33nvrauP2228fdXzsscdWvG7hwoWjjjdu3Fi4j//8z/+sa0zT4bjjjhv+fblcjptuuqlw3fXr18e///u/F7p2xYoVo45/+MNqGZQAAAD5BlPlDTAdWUfF8oj6AgTyAgFm42b3vHtOUY6B1D+ptquFnC3q2LNyndQb5VSeVL+NVC38rBHhFAAAM11/uS9+sulHha8XLrtLTghxteDiyarWRj0BxQPlgdx3tp7SvLrHNdXyg9HG33Pec5iN74oAAMw+1udNnPV5AAAAAAAAANRDMFqbSSn9JiIuH1HUFRGXZVmWuwo5y7I3RMRbRxT1R8RHC3R3cUSM/Fz5W7Ms+/0q/fRExNd2jWm3S1NKDxboCyho5cqVo46/+c1vFq577733xl133TV83NPTEy9/+csrXjv2S5X33HNP4X6uvfbawtdOl9NOO23U8Ve+8pXCdS+//PLo7y+2Ef7UU0+NOXPmDB9///vfj7Vr1xbuCwAAYLeh3GC0ztw63Tn/i6gvVdrsXjkQIC+EoJ1Vu+fJBn9VC15Y2LE491x/6ptUv41ULSCiL//bCwAAs8bdW26LbeUtha8XjLZT5Vi0/GCxhgSjVZm/DqT+KKeh3POjx5I/R27Fd6ru3LC54iHarXhfAAAwFazPmxjr8wAAAAAAAACoh2C0aZZl2YFZli0f+ysi9h1zaUel63b92rtGNxdFxIYRxysi4t+yLDtizFi6syx7b0RcOab+Z1NKj9S6l5TSbyPif4wp/naWZX+RZdnI8LPIsuzIiPjRrrHs9mwUC2AD6nD22WePOv7CF74QTz31VKG6H/7wh0cd//Ef/3F0d3dXvPaYY44ZdXzNNdcU6uP666+PO+64o9C10+mss86KBQsWDB9fddVVcf3119es9/jjj8df//VfF+5nyZIlcdZZZw0fb926Nc4777z6BgsAABARg2mgYnlH1pFbp7uUE4xWIUAgbyN/dzb7NrvnPbeI6oEHRVQLb1jUsWTK+m2kauERQj0AACJu2nhdXdebQ+2UolyxPP+9ZvJz5FrBx0X/bKq1kxfs1kz1vStWfgbV3psAAKCdWJ83MdbnAQAAAAAAAFAPwWjT79aIeKjCr2+Nue6AnOseiojPVOsgpfRYRLwpIkZ+Hu2EiLgny7I7syy7IsuyVRHxaET8z4joHHHdv0bEBXXcz4ciYuRK/s6I+PuIeDTLsuuyLPuXLMt+HhH/GaND0foj4g9SSk/W0RdQwCmnnBJHH3308PGmTZviLW95S+zYUX0jx+c///n43ve+N3ycZVn81//6X3OvP/7442PevOc2blx11VXx85//vGofv/nNb+JP//RPa91CUyxYsCDOPffcUWVnnnlm3HDDDbl1Hn744Xj1q18dGzdurKuviy++eNSCtn/8x3+MD37wgzE0NFRXO/fcc0/cfPPNddUBAADaR34wWmfF8oiI7lLlULNKAQJ5YVezcbN73nOLqB2cUEteqEAWWcyfs6jues1QbSytFOAGANAMD+/4TTzS+5u66kx2jtkuUk55T+57zeTnyLXmr8WD0bbnnssbfzMVDUZLKeWHaLfgfQEAwFSwPm9irM8DAAAAAAAAoB6C0dpUSunGiPiDiFg3ojiLiFdExJkR8dqIWDqm2rci4o9TSoX/5n/XtWdGxBVjTi2LiNMj4r9ExMt39b3b2oh4Q0rplqL9wGzy1FNPxcMPPzyhX7tdeuml0dXVNXx84403xoknnhg/+9nPxvX3zDPPxDnnnBPvf//7R5Wff/758ZKXvCR3nAsWLIg/+qM/Gj4eGhqK17/+9fHDH/5w3LX9/f3xla98JY477rh4+umnY8mSJfU8kmlzwQUXxItf/OLh482bN8epp54aZ555Znz729+OX/3qV3HffffFD3/4w3jf+94XRx11VNx7773R09MTb3jDGwr3c9BBB8WXv/zlUWV/+7d/GytXroxrrrkmBgcHc+s+/PDDcckll8Qpp5wSRx11VPz4xz+u/0YBAIC2MJAbjNaRW6foZveI/DCG2bjZvTvLv+fJhi/kP+eeqoEJrRKWMZQGc0P6IgSjAQDcvPHauuuYQ+1WORqtpzSvYnlfmvxzqzXPzguQrqedVnynynv3GHsfg2kgylGueG0r3hcAAFRifV7zWJ8HAAAAAAAAQFH5uySZ8VJK12ZZ9jsR8dGI+KOIyFvp8NOI+ExK6TsT7GdrRPxxlmXfjoj/LyKOy7l0fewMULsopbQu5xqY9d7ylrdMuG5KOzeIHHPMMfGFL3wh/vzP/zzK5Z2bE+6666447rjj4tBDD42jjjoqenp64tFHH4077rhj3EKfV7/61fGxj32sZn8f+9jH4qqrrhr+IuPatWvjta99bRx66KHxkpe8JLq7u+Ppp5+On/3sZ7Ft27aIiNh3333jU5/6VEt+mbKrqyt+8IMfxCmnnBIPPPBAROx8pldeeWVceeWVFetkWRaXXHJJrFmzZtwXPas5++yz46mnnooPf/jDw39GP/3pT+P3f//3Y968efGyl70s9tlnn5g7d25s2bIlnnnmmbjnnnvq/volAADQvoZS5U0bHVlnbp2im90j8gO/qoV1tavOUmfMiY4YivHPfLKhFXn1u0tzc4PsdtabXCBbo9QaR6uMEwCgGbYObo6fb7m14rkj5r00Htrx64pBW+ZQO6U6g9EGd4X2VnsnqqX2/LbY/L+3vL1ieUfWEZ2liY9vquSFQY/9+az2fLqz/PcXAABoJdbnNY/1eQAAAAAAAAAUJRhtmqWUlk9zf2sj4t1Zlp0bESdExAsiYt+I2BYRj0fEL1JKDzWor29HxLezLDsoIo6JiP0jYo+IeCoiHomI21JK/Y3oC6jtHe94RyxZsiTe9ra3xdatW4fLH3jggeFFRZX82Z/9WXzxi1+Mzs7amzIOOOCA+M53vhNvfOMbY8uWLTX7OOigg+IHP/hBPP3003XezfR53vOeF7fccku85z3viauuuqrqtXvttVdcfvnl8frXvz4++MEPjjq3YMGCmn3t/urn2972tnjqqaeGy7dv3x633XZbofG26tc9AQCAqTeYBiqWVwsB6M4JNRu7uT2llLvhvVpYVzvrKc2NbeUt48orBVnUI/c5Zz0xJ+uIjqyz4p91pTC7Zqg1DqEeAMBsdvumf8udt5+0+HXxRN+a6BuqEIw2yTlm26ici1Y1rLmv3Bsdc6YuGK3oPLw3932qNYOm857p2OdR7f5nY4g2AACzm/V5E2N9HgAAAAAAANWkFFHjGznALFFq9gCYHiml/pTSDSmly1JKn0wp/X1K6buNCkUb09dDKaXv7Orjk7v6vEEoGky/N7/5zfHggw/GueeeG3vvvXfudZ2dnfGa17wmbrvttrj00ksLLbra7ZRTTok77rgj3vCGN+R+hXHp0qXxgQ98IH75y1/GkUceWfd9TLd99903vvvd7w4vwHrRi14Uixcvjp6enjj44IPjtNNOiy996Uvx4IMPxutf//qIiHFfily0aFGhvk4//fR46KGH4pJLLomjjz665pcsOzs7Y8WKFXHxxRfH/fffH+eee+7EbhIAAJjRymkoylGueK56MFrlULOxm90HUn+knPZn62b3vGc32YCyvNCL3f0VDSholkYFRwAAtJtyGopbNq2qeG5Jx97x4vnHFp6fz1YpJxmtVjDaZPQ1KPi3t7y9YnlPaV7dY5oORd93+lL+85mtIdoAAMxu1udNjPV5AAAAAAAAANTS0ewBAMx2Dz/88JS2v2zZsvi7v/u7+NznPhd33XVX3HfffbFu3bro6+uLvffeOw488MBYuXJloS8o5jniiCPi6quvjmeeeSZuuummeOyxx2L79u2xzz77xEEHHRQnnnhidHQ895+ck08+OVKqvJmlknquHeuyyy6Lyy67bEJ1V65cGStXrix07T333DP8+yzLYtmyZYX76enpife85z3xnve8J9avXx8//elP48knn4z169fHwMBAzJ8/P5YtWxYvfOEL44gjjoh581pz0wwAADB9BtNg7rmOLP9/+eWHbI3e3F4tzGq2bnbvnqKAsrz6u/vrLvXE1qHNFeq1RuBYrfvPC34DAGh3/7nt7nh2YG3FcysXvzbmZHOmLHy3XTQnGK3G/LZg+3nz9VYNms4P6RsTjFbl/mfruyIAAK3P+rzarM+zPg8AAAAAAACg1QhGA5glSqVSHHvssXHsscdOWR977713/OEf/uGUtd+qtm3bFnfffffw8Qtf+MIJL2Tbc88944wzzmjU0AAAgDY1mAZyz3VknbnnurOcze6pN8qpHKWstPO4ajBaa27kn2pTFVqR96x399edFQuza5Za45hsMAUAwEx108brKpbPiY44YdGrI6J4cPHsVXljfrV3kknPz1P1+kXb31HeXrG8dYPRigVB591/KUrRmXU1fFwAADCTWJ83dazPAwAAAAAAAJh9Ss0eAADMdJdffnls3/7cBpfjjz++iaMBAABmg8E0mHuuajBalU34/alv+PfVNvvnBYS1u/zQiskFf+U969395T3vvtQagWO1xjHZYAoAgJloXf+Tcc+2uyueO2bBiljYsTgiqsz1hMtGRF4s2s7nlkVW8dxkQ+V6azz7on82eeNo3WC0vJ/FHZFSGnFc+f67Sz2RZZX/TAAAACbL+jwAAAAAAACA2UcwGgBMwmOPPRYXXHDBqLKzzz67SaMBAABmi8E0kHtuTtaRe65aqNnIjfvVNvu36kb+qVYtKGAyqgULVOu3VQLHat3/ZJ8PAMBMdPPGVbnnTlpyxvDvBaPVUjkaLYtsyp5do+a3+QHI8+oe03TIC9EuR3nU+2f++8vsfE8EAACmnvV5AAAAAAAAALOTYDQAGOE73/lO/Lf/9t9i3bp1Na/9xS9+ESeddFKsX79+uOylL31pvOpVr5rKIQIAAFQNRuuYcDBa74jfV97EPyc6oiPrLDDC9pO30X+qg9HyguhaJSyj1jhaZZwAANOlv9wXP9n0o4rnDuw+KA7uOXz4uDtr7bles6WUE4yWZdGdTU2AcK1nX7T9/GC01gwQ65nku6JgNAAAoCjr8wAAAAAAAAAoIn+XJADMQlu2bIlPfOIT8ZnPfCZOP/30OPXUU+OlL31pLFu2LDolexdaAAAgAElEQVQ6OmL9+vWxevXq+Nd//de45pprRm3K6erqissvv7yJowcAAGaLwTSYe66zSnBZtU34Izfu96XKYQCtuol/OuSFyk06eCHnWe8OycgLGJhsv41Saxx95d5IKUWWZdM0IgCA5vr5lltie3lrxXOvXHzGqHlRbvhuao25XivrLs2NGNowrjxvfl1UreDjou3PtGC0vJC+iJ33Mj8WRkTtYGcAAIBarM8DAAAAAACgmsqfVAVmI8FoAFDBwMBAXHPNNXHNNdcUun7u3Lnx9a9/PV760pdO8cgAAAAiBtNA7rmOKsFoecELEaM3uOdt4p/Nm93zAgzyggGKqvWsp6rfRqk1jnIMxWAaiM6sa5pGBADQPCmluGnDtRXPzS3Ni2MXnjSqLG9+XSuca7YoR7lieRZZlWc32WC06vWLtt9b3l6xvNo7WTNVe9cbGdSX+/6Szd53RQAAYGKszwMAAAAAAACgmlKzBwAArWTx4sUxZ86cuuqccMIJcfPNN8eb3/zmKRoVAADAaNWC0eZk+d9CmJPNyQ2oGrnBPW+zf6tu4p8OeRv984IBisp71rsD0Vo9LKNIMESrhLgBAEy1h3vvj0f7flvx3PGLTo2uUveosqkK92p/We67yWTnybWD0Yq1n3fd3NK8usc0HfICmSNGP5ORIWlF6wMAAIxkfR4AAAAAAAAAReTvkgSAWeiNb3xjPP3007Fq1aq47bbbYvXq1fHII4/E+vXro7e3N+bOnRt77rlnvOAFL4gTTzwxzjjjjDjhhBOaPWwAAGCWqRaM1pF1Vq3bXeqJgaH+ceUjN7vnhX3lBTfMBnkb/ScbWpEXmLD7WecHPrRGWEahYLS0I+bHwmkYDQBAc9208drccyctft24MsFo1aVIFctLkU1JgHA5laMv1QpGK/ZnsyN3nt+aAWIdWWeUohTlKI87VyxEe/a+KwIAAPWxPg8AAAAAAACAIgSjAcAYe+21V5x11llx1llnNXsoAAAAFQ2mwYrlpZgTpaxUtW53qSe2Dm0eV95XYLN7XjjYbJAbUJYmHrwQUTtYYCoCHxqpyP3nBe0BALSTLYMb4+4tt1U8d+S8o2NZ1/7jyvPm1+ZPu1UORousWjDaxEPl+lNfzWuKtp83X2/Vd6ps1zPdUd4+7pwQbQAAoNGszwMAAAAAAACgluq7JAEAAACAljOYBiqWd2adNet2ZzkBX6OC0Wx2Hys3GG0SwQsppSrBaDv7684qP/NWCcsoMo7JPCMAgJnitk3/lhtg/MolZ1Qsn4o5ZjtJeblokU1JqFyR8OGi7fdWCBiLaN1gtIhqP49CtAEAAAAAAAAAAACYXoLRAAAAAGCGyQtcmJN11KybF27Wl57b4J4fjDZ7N7vnPbfJBC8MpoEox1BOfzufdV7AwMg/r2YqEtoh2AMAaHflNBS3bry+4rk9O5bG7+zx8orncufm5k8REZEiJxktpubZFQv9rX3NQHkg952tlQPEigT11Qp2BgAAAAAAAAAAAIBGEIwGAAAAADPMYBqoWN6Rddasm7cRf2QIQF4gQF74wGyQ99wG00AM5YQe1FIttKE72/ms8wMfJh7I1khFgicmEx4HADAT/Me2u2L94LqK505cfHqUsjkVz+2e8401FIO5c/7ZpXIwWhZZdGeNDxAuFPpboP1qc/We0ry6xjSdioTN5Ydoz953RQAAAAAAAAAAAAAaTzAaAAAAAMwweUFcHVlHzbrFNrtX3uyfFw42G1Tb6F8kQKFivVQtMKFn1z/zAtlaIyyjUHjEBJ8PAMBMcdOGayuWd2QdsWLRabn1pmKO2U4qx6LtDEYrEvhcr2Jz29rtVxtDK79TFXmmec+ou4XvCwAAAAAAAAAAgJkj5S0eBGYdwWgAAAAAMMMM5ARidWSdNevmbVgfucE9byN/d5Yf3NDuqgUYTDR8oVrwwu6QjGoBA/3lvgn120hFgiGKXAMAMFM93f943Lv9lxXPHbNgZSzoWJRbdyrmmO0lf3VTkcDnehV55kUCinvL23PP9ZTm1T2u6ZL3vjcy0Nm7IgAAAAAAAAAAAADTQTAaAAAAAMwweRvxO7KOmnXzwhdGbnDPCxOoFtzQ7vKCFyImHr5QPRhtbs1+WyEso8i9TyacAgCg1d2ycVXuuVcuPqNq3WohuOZQESknGC2LrEow2sTnyEWfea2A4mrz9Gp/5s2W97438rnkPd/Z/K4IAAAAAAAAAAAAQOMJRgMAAACAGWYoDVYs78g6a9YtEiDQlypvdm/lTfxTrXpoxcTCF/ICE7IoRWfWVaDf5odl5P2s1HsNAMBM1FfujZ9s+lHFc8/rPjiW9xxWtf5UhO/OClmWO0+eXDBasbq1Aop7y9srlndkHdFZqv3O1ix5P4+777ecytGfKofCVftZBgAAAAAAAAAAAIB6CUYDAAAAgBlmMA1ULC8WjJYXINBb8fdF6s4GXVl37rlawQh58p9zT2RZNvz7RvfbKINpIAZzQvpGEuoBALSrOzffHDtyQrBeueSM4Tldns6sK7KofM1kAr7aQUop91wW1QKfe6vWraboM681v+2doe9T1Z5pRER/6osUlZ9tq98bAAAAAAAAAAAAADOLYDQAAAAAmGFyg9FKRYLR8ja7PxcCkBe4VS2kq92VslJ0Z5Xvf+LBaLWfc1fW3bJhGf3lvkLXCUYDANpRSilu3nhtxXPzSvPjFQtOrNlGKSvlBvA2OwS32fICuHbKcoO4ylHOfV+qpS8Vm7fWmofnne8pzat7TNOpVoh2tXl9j2A0AAAAAAAAAAAAABpIMBoAAAAAzDAD5ZxgtOioWTcv3Gt3CMBQGswNEpjtm91rBQXUK6/eyD+jVg7LKNp/s8cJADAVfrvjvnis7+GK545fdGp0lSrP4cbKm2PP9nDZasFopciip0po88SDi4s981rt95a3Vyxv9fep/PedHbv+mf98ZnOINgAAAAAAAAAAAACNJxgNAAAAAGaYoRisWN5R6qxZN28zfq/N7jXlh1ZMMHgh5QSjjXnOrRqWUbT/Zo8TAGAq3LzxuorlWWRx0uLTC7eTG0aVM1ecPfKD0SKy6M7yQ8YmOv8sGqhWq/28dlo/GC0nRHvX/VZ775nt74oAAAAAAAAAAAA0Rqq2fBCYVQSjAQAAAMAMM1jOCUbLOmrWrbXZvVoYQKtv5J9quc9ugqEVRQMTWjUso2gg3ESD4wAAWtXmwY1x95bbK5570R4vi6Vd+xVuq9b8fLZKVYLRssiqBnH1pQkGFxcN/q0xD+8tb69Y3urvU7WCoAWjAQAAAAAAAAAAADBdBKMBAAAAwAwzmAYqlndknTXr5m12H0wDMZQGq4YBzPbN7nkBZdXC5KrJe9Zj+8kPy2hu4Fjh4IhZHuoBALSf2zb9nxiKymHFJy0+o662WnWu12xVv/iYZVVDxnonOP8sOq+vdV3e+bz3iVbRnVX+WewdDkar/Fw7so5C76IAAAAAAAAAAAAAUJRgNAAAAACYYfKC0eZkHTXrVtuM31furRrA0Oob+adaXvjCRIO/8p712HCMvOfe7MCxvlSs/4kGxwEAtKKhNBS3bFxV8dxenfvEUXu8rK728ud6s30OlZ+MlsXOUOhSznKHiT67ovVqzcPz5r9zS/PqHtN0ygvp6099UU7l/MC3bHa/JwIAAAAAAAAAAADQeILRAAAAAGCGGUyDFcs7ss6adfM2u0fs3MBfLcSqK+uuPbg2lvfsJh68UDlQYXwwWuV+mx04VrT/ogFqAAAzweqtd8bGwWcrnjtp8elRyubU1V7+HHN2z6FS1WC0LLIsa/izK1qv1vw/N0CsxYOm84KgU6QYSP258/pq75gAAAAAAAAAAAAAMBGC0QAAAABghhlMAxXLOwsFo+Vvxu8r9+aHdWU9Ucpm9/9OzAsKaHTwwthggfx+mxuMVjw4YnaHegAA7eWmjddWLO/IOuP4RafW3Z5gtInIIiL/3Wbi8/OCwb812u8tb69YnjevbxXV3hWrhWi3euAbAAAAAAAAAAAAADPP7N7JCAAAAAAzUF4w2pyso2bdvOCFiJ1BADa758t7dnnPrJa8emMDE1o1LKOe4IiU0hSPBgBg6j3V91j8evuvKp57xYKVMX/Owrrb7M5ywr3S7A5GS5E/f8x2/TM/GG1i8/Oiz7xW+3nnWz8Yrdq7YpUQ7Sr1AAAAAAAAAAAAAGAiBKMBAAAAwAyTF4zWkXXWrNuVdUc2HCUwWl+5NzcMoNU38U+H6QpeGBuOkffsJxrI1ihFg9lSlGMg9U/xaAAApt7NG6/LPXfS4jMm1Gajw3fbRbVgtN3RaI0OEC5ar9Z1O3KD0ebVPabpVO2dr6+8I/e+vSsCAAAAAAAAAAAA0GiC0QAAAABghhlMgxXLiwSjlbJSdGXdFc/1lnfkhnzlhQ7MJt1ZY0Mr8oIFxj7rRgc+NEo9/U80PA4AoFX0lnfETzffUPHcC3oOi+VzD5tQu3mhUs2e67WyLNsVjJYzP+9LE5t7Fp3X5wUcD5/PDUZr7QCxau98fd4VAQAAAAAAAAAAmAbVPqsKzC6C0QAAAABghhlMAxXLiwSjRUR054UvpN4qYV2tvYl/OjQ6tKJosEB3ltdvc8PG6gmEm2h4HABAq7hj803RW95e8dwrF79uwu3mh+DO7vlTSvlLm7Jd/8ybn09k7jmUBnPfs+ptP+/npNWD0eZkHbnvlH3l3irvL619XwAAAAAAAAAAAADMPILRAAAAAGCGGUyDFcs7so5C9asFCORt8s8LbJhNGh1aUTSELrffNLFAtkapJxBuouFxAACtIKUUN2+4ruK5PeYsiJcvWDnhtvPnmLN9/lTtm487o9Ea+ewaNbcdTAO572utHowWkf9Me8s7qry/eFcEAAAAAAAAAAAAoLEEowHQEGvWrIm/+qu/ihNPPDH22Wef6OrqiizLhn9ddtllzR4iAABA2xhMAxXLO7LOQvWrBQjkhXzNhE38U21sYNluEwkoSynlPuuxfz55/eaF2E2XvlS8f8EeAMBM9uCOe+KJ/kcqnlux6LToLHVNuO3cOeYsnz+lKsFo2RQEo9Uzt64WjFytnZ7SvLrG1AzdWX4oc26Idk4dAACgsazPAwAAAAAAAGA26Wj2AABmu+XLl8cjjzy3meaGG26Ik08+uXkDmoCvfOUr8d73vjf6+vqaPRQAAIBZYSgNVizvyIr97778AIEduSECeXVmk7xwuL5yb6SUIsuywm0NpoEoR7niubHhGNX6baZ6+p9IeBwAQKu4aeN1FcuzyOLERadPqu28eXZveUfdc8x2UiQYLW+ePJEA4XrmttXa7x2qFozW+mHT1d498p7RTLgvAABmN+vzAAAAAAAAAGDmKTV7AADMbNdee228613vKrzo6sYbbxz1pcqLL754agcIAADQhgbTQMXyjqyzUP2xwVu79ZV35G7yt9k9/7mlSNGf6tuMVC14oTsbHY6RH2S3M5CtWRoVHgEA0Mo2Da6PX2z5ScVzR+3x8ti7a59Jtd+TVZ5jlmMoBnMCkWeDasFosSsYLf+9pv5Q3rpCf6tcW23e21OaV9eYmiHvmfZWeVfMqwMAADSG9XkAAP8/e3ceJldx2Hv/V71M94xG0khoAwQIIbFjFiMQIDYvAhTsxEsMxH68hmAnuRdCiK95c21JFwfj1yQ2tnFsEwK8jzEh18bGwSDHxpJAYMAIsACJ1QgQCC1IM0gz0z291PuHNKPpnlOnz+npvb+f5+FBp+qcqurTrVGdmarfAAAAAAAAAADaUazeAwAANLerr766YBP2X/zFX+hzn/ucDjroIMXj+zbkT5s2rR7DAwAAAICWlHEGowX7dp9f0Fbaudnd+5p24ncPUvnBUPcobf0CE4IFo1nllbFD6jCJwP1WkuuzMt5zAQAAGslDvb9WXjnPurOnLBl3+35zyLQdVFzBwo9bjk8umtmTi+bzXBN+7hlubrsnoNgMD2SUVH7AeV0zBIj5Pita70A4nhUBAACA6mJ9HgAAAAAAAAAAAACgHRGMBgAo2/PPP69169aNHC9ZskS33357HUcEAAAAAO0hZ7Oe5TETLDQh6diQn8oPKp13bHY3jb+Jv9pc902S876Vc35xYIJ/v4PqiNQrGC34aw57fwAAABpBzmb1YN+vPOumx2fpqK4Txt2HbzBaPqXu6KRx99GMrE8ymtGeQDJX0Fg5c09X6JeXvHLK2ozipsOjb++AtahiikcaP+TOfU/dz4p+zysAAAAAxof1eQAAAAAAAAAAAACAdhWp9wAAAM3r8ccfLzj+6Ec/WqeRAAAAAEB7ydqMZ3nQYDRX+EI6n1LKsZHfL7ChXfiHVnjfNxfXffbqx69fv3aqLUzgRD3HCQAAUK4/7H5MfdkdnnVn9pyviBn/j9tdQVRS+Dlma3EHo2k4GM24nmvC37ew17jmwoOOdpLR5ggPcz8rDjrvEc+KAAAAQPWwPg8AAAAAAAAAAADtxvotHwTQVghGAwCUbcuWLQXHs2fPrtNIAAAAAKB95G1OeeU96wIHoxnvTflpm1Laem/wT/oENrSLSgajuYIUjCKKm46ifv3CMoKHk1Va2gZ/zfUcJwAAQLlW77zXszxuOnTa5PdWpA+/eXY7z6H8Y9H2BqO5QrwczzR+UiHvtWsu7HouaJbnKdc9Hcj3K2OHQl0DAAAAYPxYnwcAAAAAAAAAAAAAaFcEowEAyrZ79+6C43g82AZ8AAAAAED5sjbrrIuZWKA2XJvyU/lB50Z+v3CudhEzcec9TlUoGC0RScoYU1jmCLIrp99KydqM72exWDuHegAAgOb0Zvo1vTj4jGfdyZPO1IToxIr0EzcdI0Ffxdp5DmV9o9H2cD3XpPMp2ZC/MjJs0LFrHp7KD3iWJyNdodqvF9c93ZXtC30NAAAAgPFjfR4AAAAAAAAAAAAAoF0F2ykJAGh61lo98cQTeu6557R161al02lNnz5dBx54oBYtWqTu7u7Qbebz+SqMFAAAAADgJ2szzrqYCbYhJhFJepan84PO8AU2u++RiHQqm9s1pjxsaIU7gG7sexOPxBVVTDmNDSJL2/qEZVTq9QIAADSqB3tXOOvO7llSsX6MMUpEkp5BW/UKwW0M7mCz4SA5V3izldWQTSthvJ97vISf33qf73rPmuV5ynXP+rI73Nc0yWsDAAAAqo31eQAAAAAAAAAAAAAAVA7BaADQ4rZv365rr71WP/rRj7Rt2zbPczo6OvSe97xHy5Yt06mnnupsa+PGjTr00EOd9eeee65n+S233KLPfOYznnXLly/X8uXLnW2uXLlS55xzjrMeAAAAANpN1o4NxxoWPBjNe+P6rmyfrCOAwBWm1m4SJql+jQ1GCxtaETaALhFJaiC/26Od+oRlhA6OsO0c6gEAAJpNKj+oR99Z6Vl3aPIIHZw8rKL9JUxSKY2dL4Wdc7USdyzanjA5yf8ZJZ1PhXqGqdR8PpUf8CxvmmA0xzjfye10XxMigA4AAABoRazPAwAAAAAAAAAAAACg8iL1HgAAoHp+/vOfa+7cufrmN7/pXHQlSUNDQ1qxYoUWLlyoyy67TNmse5M9AAAAAKC+sjbjrIuZYL8HwRUQ4BW8te+a5tjIX22uQIO0DRda4QpecIUKuN6zeoVlhA5Ga+NQDwAA0Hwe7VvpnK+d1XNBxftzzbXrFYLbEKxfNNoefsFnlQo6C9u+c57fJM9Trucdv4DuZnltAAAAQDWwPg8AAAAAAAAAAAAAgOoItlMSQO3ks9LApnqPovV1zZYirf0l8N///d916aWXKp/PF5QfdthhOvroo9XV1aXXXntNjz32mHK53Ej9D3/4Q7322mv6r//6L8VirX2PAAAAAKAZ+QWjRccZjFbpa1pRpUIrXEFqrvvsCigIG/hQKaFfL8FoAACgSVhr9UDvfZ513dHJOmniGRXv0xmCGzJ8t5VYuYPRjIwk9xxZqv581XW+a37eGekK1X69lPesmKjCSAAAAKqI9Xm10+Jr9FifBwAAAAAAAAAAAABA9fATdaDRDGySfnFovUfR+j74itQ9p96jqJqnnnpKX/jCFwoWXZ1wwgm68cYbdfrppxecu23bNn35y1/WD37wg5GyFStW6Ctf+YquvfbagnNnz56tV155ZeT4W9/6lm644YaR4zvuuEMLFy4cM55p06bpnHPOkSQ98sgjuuSSS0bqLr/8cl1xxRXO1zJr1qwSrxYAAAAA2kvWZp11cRMP1IZfgEAlr2lFrqCAsAFlriAFV/CaMyyjTsFoYV9vvQLcAAAAwnpx8BltHnrds+6Mye9TPBJszh2GO3yXYDQvw8FofiFeoYPObNj5vPf5rnmv6z1uNGGD0eKmQxETrdJoAAAAqoT1ebXTwmv0WJ8HAAAAAAAAAAAAVId79SCAdkMwGgC0oM997nMaGhoaOV60aJF+9atfqatr7G+jnz59ur7//e9r3rx5+od/+IeR8q9//eu65JJLdNxxx42UxWIxzZkzZ+S4p6enoK1Zs2YV1I/W3d0tSdq4cWNBeU9Pj/MaAAAAAMBYWZtx1sUCBqOF3exe7jWtqFKhFa4gBVcAXaOFZYR/ve0b6gEAAJrL6p33eZYbRbSo57yq9NloIbiNbjgYLWbiiiqmnMaGR4e9d+HP957fhp3nN5qwAW7N8roAAACASmN9HgAAAAAAAAAAAAAA1RWp9wAAAJW1cuVKPfHEEyPHkyZN0p133um56Gq0q666ShdeeOHIcT6f1ze/+c2qjRMAAAAAUJ5KBKOF3bweM7HAbbc6171LVShIwRWK4SoP22+lpC3BaAAAoPX0Zt7WH3Y/4ll3XPfJ2i8+oyr9NtpcrxFY5X1qzcifXPPzas9X09b7vUnlBzzLmyVALBkyEJsAbQAAALQj1ucBAAAAAAAAAAAAAFB9BKMBQIu57bbbCo7/5m/+RgcccECga6+77rqC4zvuuEPpdLpiYwMAAAAAjJ9fMFrUxAK1kTDhNuWHPb+VuTb+hw1ScIVcuNp3Bj7UKXAsdHBEG4d6AACA5rGm77+VdwRyndVzQdX6bbS5XiOw1l1n9uWiVX1+7uJq39VOMuIfkNAoEiED3Jol8A0AAACoJNbnAQAAAAAAAAAAAABQfQSjAUCLWbNmTcHxJz7xicDXHnPMMTrppJNGjlOplNauXVuxsQEAAAAAxi9rs57lEUUVMcG+3ecKD6jU+a3MHVpRmSAF1712hdPVK3As9Ou1KeWtd8gIAABAI8jajNb0/rdn3Yz4ATqy6/iq9V2pcK/W4pOMpn3JaK57V6mgMxdX++5gtOYIEAsbjBb2fAAAAKAVsD4PAAAAAAAAAAAAAIDqIxgNAFrIzp079fLLL48c9/T06KijjgrVxumnn15w/Pvf/74iYwMAAAAAVEbWZjzL4yYeuI2YiSuiaODz2ey+j+tehA1SSFtHMJojAK3RwjJcgQ8xn8/hkE1XazgAAADj9oddj+qd3E7PurN6zg8cQlwOZwiuY87YDqxPMJopCEarbnDxhMjEUOe75snN8kyVMCFDtEOeDwAAADQ71ucBAAAAAAAAAAAAAFAbsXoPAECRrtnSB1+p9yhaX9fseo+gKrZt21ZwPH/+fBljHGd7O/LIIwuOt27dOu5xAQAAAAAqJ2uznuVRE/xbfcYYJSJJDeb7A52fbJJN/LXgCihzBSC4uIIUXO273oN6hWW4xj85NkVvZ7y/l5DOp/gsAQCAhrW69z7P8g6T0MLJ76lq340WgtsI3LFohSpx76y1zvn8pFiP+od2BWo/azPOIOvOJpkHJyKJkOc3x+sCAAAowPq82mnBNXqszwMAAAAAAAAAAAAAoDYIRgMaTSQmdc+p9yjQpHbu3FlwPHny5NBtFF+zY8eOcY0JAAAAAFBZro32MRMP1U4y0hk4GM0VNtCOnAFloYPRvM93BQtUKpCtUlxBE5OifsFog5KmVHFUAAAA5XkjvVEvDT7rWbdg0lnqinZXtf9Gm+s1Bnc0mtG+0IFKBKNlbVZ55TzrJsWmaPPQ6x7tj31v/N6vZgkQi5ioOkxCQzYd6HyeFQEAQFNifR7GgfV5AAAAAAAAAAAAAADURqTeAwAAVI61hZtEwv42Si+VaAMAAAAAUDk5m/Usj5lwvwMhzAb2ZtnEXwsJM/7ghT3nu4LRvNt3vQdhA9kqxRmMFusJfQ0AAEC9PbBzhbPu7J4lVe+/UuG7rcQGDEZz3bswoXJ+93lyzDvY16v9VM7dTmekK/B46i3csyLBaAAAAGgvrM8DAAAAAAAAAAAAqsu6lw8CaDMEowFAC5k6dWrBcV9fX+g2iq+ZMsV7wwcAAAAAoD4yNuNZHjPxUO2ECTtjs/s+ztAKGzx4wVrrDAlzB6N5l6fqFDbmer2THMERUnsHewAAgMY1mOvXY++s8qw7rPMozU4eWvUxuOZ6BMs6jAoNSBhXqFzwe+c3l58U9Z7ferXvF8bWTGHTrmee8Z4LAAAAtALW5wEAAAAAAAAAAAAAUBsEowFAC5k+fXrB8QsvvBC6jeeff77geMaMGeMaEwAAAACgsrLOYLRYqHaSIcLOCEbbx3UvsjbrfG/GnptRXnlH+97BAu6wjPqEjbn67Yp0O0P6/IIiAAAA6uWRd1Yqbb1DtM7qOb8mY3DNAdP5lGyb/upDv9dtRv3ZOU92vKee5/qEqE12BP96tZ/KDzjbSUa6Ao+n3sI8//GsCAAAgHbD+jwAAAAAAAAAAAAAAGqDYDQAaCFTpkzRYYcdNnLc29urDRs2hGrj4YcfLjhesGBBRcY2zBhT+iQAAAAAgFM27wpG8w6jcnGFL3hJhji31fndN79AhaDnuQLrXO9Bxg4pZ3OB+q0k12tIRJI+IW7BwykAAABqwVqrB3pXeNZNjE7WCd2n12QcCeM9f8orFzh8t9VY+QWj7Vvm4JonhwkQ9gvwneQKRvO4xtVnVDHFI65Z5bAAACAASURBVOGe1+opzLNimHMBAACAVsD6PAAAAAAAAAAAAAAAaoNgNABoMYsWLSo4vv322wNfu2HDBq1du3bkOJlM6t3vfnfFxiZJiUSi4DidTle0fQAAAABodTllPctDB6OZEJvdHUEN7chv479foMJoaes+z/W++PU7VIfAMb9gNGc4hSUYDQAANJbnB9Zpy9Amz7ozJi+uWZhVJcJ328noLf7uUN7gwWiue2wUUXd0kvMaawvD2wYdfSajzRUeRog2AAAA4I/1eQAAAAAAAAAAAAAAVB/BaADQYj75yU8WHH/3u9/VW2+9Fejaq6++uuD44osvHrNQarx6enoKjjdv3lzR9gEAAACg1WVtxrM8FjK0wRUg4IXN7vv43YugoRV+AWqu96US/VaSq89kpNMZpBc0OA4AAKBWVvfe51luFNGinsU1G0fSZ27uF6rbyqysT+2+aDR3MFrwOXI5ob9WVhk7VNSOIxityZ6nwgRjh3muBAAAAFoF6/MAAAAAAAAAAAAAAKg+gtEAoMW85z3v0QknnDBy3NfXp0suuUSDg/4bZ775zW/q7rvvHjk2xujv/u7vKj6+uXPnqqOjY+R45cqVymS8N/UDAAAAAMbK5B3BaIqFaifMBvZEk23krya/++YKQhh7njukwdW+XzhBPQLHXH0mIknn56UeAW4AAAAuOzPbtW73Y5517+o+RVPj02s2Fv85ZrvOodzBaCZAMFqYObLr3GSk0/dZqPg6dztdgcfSCEI9K4YIUQMAAABaBevzAAAAAAAAAAAAAACovnC7JQEAVffWW29p48aNZV07Z84cSdLNN9+s0047TUNDe35T/apVq3TmmWfqxhtv1Kmnnlpwzfbt27V06VJ973vfKyj/4he/qHe9611ljcNPR0eHzjjjDK1cuVKS9Nprr+mDH/ygPv/5z2v+/Pnq6ircHDJr1iwlk2yqAAAAAIBhOWU9y2OReKh2kiHCzghG26fDJGRkZD2CGoKGVrjOM4oobjo86/zeg7StfViG6zUkIp3OIIX2DfUAAACNaE3fr2SV96w7u+eCmo7Fd67XpnOovHUHo43KRatIKK8r4HhP6G+pYOSekeNUfsDzvDDPXo2AZ0UAAAC0OtbnsT4PAAAAAAAAAAAAAND4CEYDgAZzySWXlH2t3btJ5KSTTtJ3v/tdff7zn1c+v2dTz9q1a7Vw4ULNmzdPxxxzjJLJpF5//XU99thjymYLN9W///3v1zXXXFP+iyjhyiuvHFl4JUkrVqzQihUrPM9duXKlzjnnnKqNBQAAAACaTTbvCEYz4b7V57fBfzzntjpjjBKRpFIe4QleZV5cIQ3JSFLGGM+6RCThbC9ov5WStRlnQF/CJH3CKWo7TgAAAJeszeih3l971s3smK0juiq/Md1P3HTIKOIZ1FbruV7jcAejmVHJaK6555BNK29ziphoyZ6cob+mVDBa4XWu96rZgtF4VgQAAECrY31eIdbnAQAAAAAAAAAAoJH4/V5VAO0lUu8BAACq49JLL9Wdd96p7u7ugvKXXnpJd999t+688049/PDDYxZdffazn9Uvf/lLxePxqo3twgsv1Fe/+lVFo6U3owAAAAAACmVtxrM8ZsI9x4XZnN9sG/mrbbzBX67zXO1KUsREFTcd4+q3UlzBEdKeYARXOALBaAAAoFE8uet3eifX61l3Vs/5zrDaahkO3/XiN/dqZTZoMJrxCy5LB+orbd3zc79noeIgtFR+wNlOMwkXjNZcrw0AAACoJNbnAQAAAAAAAAAAAABQPQSjAUAL++hHP6qXX35Zl19+uaZNm+Y8Lx6Pa/HixXrooYd08803V3XR1bB//Md/1Lp16/SlL31JZ511lmbNmqXOTjZPAAAAAEAprmC0qImFaifcZvfg57YDV/hCcTCCi+u8UvfZFcrQWMFonYR6AACAhvdA732e5QmT1MJJ59Z4NHv7Jly2LH7BZWkbbP7pmqcmIknFTFxReT9rFbfvaqcz0hVoHI0iTNgZIdoAAABod6zPAwAAAAAAAAAAAACgOsLtlgQAVNzGjRur2v6MGTP0rW99S//yL/+itWvX6rnnntO2bduUTqc1bdo0zZ49W4sWLdLEiRNDt71s2TItW7as7LEdffTR+trXvlb29QAAAADQjrI261keM+E20bDZvXzugLJxBi84AtdG6iNJ7cr1ld1vpfgFwCUiyXHfHwAAgGralHpFLw9u8Kw7ZdI56oxOqPGI9nDNBdt1DmVlnXVGZuTPfuHCQUPlXPd4eF6biCQ1kN9d8rrB/IBnO2GevRpBmOc/QrQBAADQDFifx/o8AAAAAAAAAAAAAEDzIRgNANpEJBLRggULtGDBgnoPBQAAAAAwDlmb8SyPVzEYjc3uhVz3I20DBi9YRzBaifekUQLH/PpLRjqdoR5+gWoAAAC1srr3XmfdWVPOr+FICrnnmO0ZjCafYDRVOBjNNU8dbjsZ6XQEow36Hg9rtqDpoM+KRkYdJlHl0QAA0FyMMYdKOkHSAZK6JW2W9Kqkh611fGO3vH7iks6QdLCk/SXtlvSmpCettRsr1Q+AcFifBwAAAAAAAAAAAABA5RCMBgAAAAAAADQRVzBaLGwwmiO8yvPcJtvIX22u+xE0oMx1XqkAOle/tQ4ccwU+GBnFTYf7/rRtqAcAAGgUA7nd+v07D3jWzes8Wgcm5tR2QKO4wrPaNVzWNxbNjA5Gcz+rpMY9P+/c+/9gwb+p/IDnec0XjBbsWTERSRa8FwAABGWMmStpgaST9/7/JEkTR53yqrV2Tplt+00jgji0nGAxY8xHJV0p6TTHKTuMMXdK+oq1dnu5gzPGTJe0XNJFkqY6znlY0r9Ya39abj8AAAAAAAAAAAAAAABAvRGMBgAAAAAAADQRVzBa1IT7Vl+YzfkdJhGq7VY33tAKV7BYqfdkvIFsleLqr8MkFDER5+twvW4AAIBaeaTvtxqyac+6s3qW1Hg0hRplrtcorA2WaRI1UcVNhzJ2aExd8OBi//m5KyisuH3X80DTBaMFDNEOE7YNAIAx5hxJV2tPGJpnoFczMsZ0S7pJ0sUlTp0q6QuSPmyM+ZS19ldl9HWBpFslzShx6umSTjfG3C7pMmttf9i+AAAAAAAAAAAAAAAAgHojGA0AAAAAAABoIlmb9SyPmXiodlyb+8ecZ5KKmEiotltd0GAEF9d5pd4TV/BA0EC2Sklb1/jDBUcAAADUUt7m9UDvCs+6SdEpOmHiqTUeUSH3HKpdw2XdwWgRFT6fJCJJZXJewWjB7p1rPj38nrhD6wqvcwejdQUaR6MIGuTmui8AADicIGlxvQdRScaYqKQ7JRUn7G6T9KSkPkmHSTpRktlbN1PS3caY91lr14To6xxJP5fUMarYSnpC0h8l9eztZ9qo+o9LmmSM+TNrbT5oXwAAAAAAAAAAAAAA1FOwX6sKoB0QjAYAAAAAAAA0kazNeJZXLRiNze5juO5J0ICyUsEL7n4bI3CsdHBEYwS4AQAAjPb8wDptzbzpWbeoZ3Ho+XSlNcpcr1GEWdiUiHRqd+6dMeXjDi42/vPb4uvc8+TmeqYK/qwY7DwAAEpIS9qkPQFilfaopItDXrMpxLnXqTAULSPpSkk/tNaOpLYaY46W9G+STttblJD0c2PMcdbazaU6McbMlnSXCkPRHpJ0qbV2w6jzEpIuk3S9pOHJ7QckfVXS/xPidQEAAAAAAAAAAAAAAAB1RzAaAAAAAAAA0ESyNutZHjPhvtUXdHN+ssk28deC656kAwZ/OYMXStxrZ7+2toFjrvEPj88VkJCxQ8rbnCImWrWxAQAAuKzuvdezPKKIFk1eXOPRjEW4bDF3NJqRKTgeDjArFnh+bv3n5wnjmv/vuy5rM84Q684me6YK+qzYbIFvAICGkJH0rKTHJf1+7/+flnSGpJVV6C9lrd1YhXZljJkr6fKi4j+31t5dfK61dr0x5r2S7te+cLT9JC2V9PkA3S2XNGXU8cOS3mdt4STGWpuW9G1jzGuSfjaq6kpjzA+sta8G6AsAAAAAAAAAAAAAAABoCJF6DwAAAAAAAABAcK7N9jETD9VO1EQVNx0lz3MFNLQz1z1xBYaNOc8VvOAIdCjdb62D0bz7Gx6fX5heOp+uypgAAAD87Mhs09O7H/esO757oXri+9V4RGO5w3eDzTFbjfUJRlNxMNo4Q+XKnd+Obt+vr2YLEAsajk2INgAgpNskTbLWnmitvdRa+0Nr7RPWOr7Z2fiWShr9DdlbvULRhllrByV9WtLQqOLP7Q1YczLGzJf0qVFFQ5I+XRyKVtTXz7Xnfg9L7B0vAAAAAAAAAAAAAAAA0DQIRgMAAAAAAACaSM5mPctjJha6rSAb9JttE38tuO5J8OAFRzBaiRA6V7+1DssoNX6/z0ytQ9wAAAAk6cHeFbLKe9adPeWCGo/GW8I45nruzIuWZq07GM0U5qK5Q+UC3DtrrXN+O9yuM6B4VPupnHue2xnpKjmORhI3HTJF4XNeCNEGAIRhrd3pF+bVTIwxnZI+WlT89VLXWWtfkPTzUUUxSX9R4rK/kBQddXyXtfbFAMMsHs/HjCnxWxkAAAAAAAAAAAAAAACABkIwGgAAAAAAANBEsjbjWR4z8dBtBdnIzmb3sRKOPYRBA8pc4WClQuhc70XQQLZKcY9/bzCazx7Ldg32AAAA9ZPJZ/RQ32886/bvOEjzO4+t8Yi8OcO3ahyC2yisfILRikK7xnPvMnbI2VeiVDDaqHmx35y82cKmjTE8KwIA4O88SaOTT39nrX0u4LW3FB1/uMT5HypxvSdr7QZJj44qmiBpcZBrAQAAAAAAAAAAAAAAgEZAMBoAAAAAAADQRDLOYLRY6Lb8AqyGJZtsE38tuO6JKzAs6HmlggXc/dY2LMPV377gCPdnJug9AgAAqJQndj2k3bk+z7qzei6QMcazrtaChG+1F3cwmsYEo3nPP4MECPsHmu15T4LM//3ep2Sky1nXqIKEufGsCABoY+cXHa8Kce2DkrKjjk80xsz0OtEYM0vS8aOKspIeCtFX8bguCHEtAAAAAAAAAAAAAAAAUFcEowEAAAAAAABNJOsMRouHbivIRvZSYV3tyBmMYFPK27zvtdZaZ7BYqfdjPIEPlZS2jmA0MxyMlnBeW+uxAgAAPNB7n2d5wiR1yqRzajsYHwSjFQoei+Z370oHCPvd3+F2g7Sfyg94nhNVTPFI+Ge1egsSos2zIgCgjR1bdPy7oBdaa/slPV1UfEzAftbtvT6ohwP2AwAAAAAhNMYvGwEAAAAAAAAAtD6C0QAAAAAAAIAmkrNZz/JygtGCbGQPEp7Wbvzu25BN+16btRnl5R2eVur98AtksNYvOqKyXOERw+OLmKjipsNxbelwCgAAgEp5LfWyXkk971l36uRz1RntqvGI3FwhuLWe6zUKGyIazRlcHCBUzm9+OtxusGA0776S0eZ8ngryrDgcjAwAQAM72BhzizHmWWPMTmPMkDFmy97jHxlj/soYM7WMdo8qOn4p5PUvFx0f7TivuLxa/QAAAABACO33/WoAAAAAAADUVhsumQTgQDAaAAAAAAAA0CTyNucM1SonGC1I6FmQDfHtxhVaIZUOX/ALXih1r5OO4IG8csrajO+1leR6DaPH7w6nIBgNAADUzuree511Z/VcUMORlOaaY+aVr+lcr3G4VzaZomC0IMFlLq5As9Ht+oXWlWqnWYOmeVYEALSIQyV9WnsCwXokxSXN2Hv8cUk/kPSaMeabxpjuIA3uDVIrDlN7LeS4is+f7zhv3jj7ebXoeD9jzJSQbQAAAAAAAAAAAAAAAAB1Eav3AAAAAAAAAAAEk7VZZ13MhP9WX5CN7AlHGFc787tvqfygJvtc6xu8UOJe+/WbzqcUj3T4Xl8prtcwenyJSFK7cn1jziEYDQAA1MpAbrcef+dBz7r5ncfqgMTBNR6Rv4RpjLleo/D7hY/GFAWjOe5dqdBiSUpb7/lpVLGR8GlnMJpNKW/zipiIe47cpM9TfmHQYc4BAKAJTJB0haQlxpgPW2ufLXF+T9HxgLW2P2SfW4uOXd9OLO6r+Dpf1trdxpiUpNGTpcmSdoZpx4sxZoak6SEvO2y8/QIAAAAAAAAAAAAAAKB9EIwGAAAAAAAANImszTjrhjfthxFss3vp8LR2k/S5b6WCv9LWJxitxL327dcOqluTfK+vFNdrHD0+12fLLxgOAACgkn7Xd78ydsiz7uwpS2o8mtKSJcJ3azXXaxjWOxrNyIwp8wsuK8UVnlYwt/UJrRuyaSVNp1L5Ac/6zmhXyTE0Ir9njzDnAABQJ1lJayT9RtI6SZsk7ZLULelgSWdK+qSkGaOuOVzSb4wxC621r/q03V10XM43u4qvmVjlvkZPZlx9hfXXkpZWqC0AAAAAAAAAAAAAAABgDILRAAAAAAAAgCaRtVlnXbWC0djsPpbffSsV/OUXnFbqXvsFp9UycMz1GhIBwiNcwRMAAACVlLd5PdB7n2fd5NhUHd99So1HVJrfHNMvXLdVWXkHoylMMFqJ0GK/c0bPvf2DkQeVjHQ65+NBnrkaUZCAbEK0AQAN6n9Luslau9VR/5SkXxhjvqw9wV7/S/smGLMk3WWMOdlaR0rr2LCy0hOOsYonDsVtVrqvKQH6AgAAAAAAAAAAAAAAABpKpN4DAAAAAAAAABBM1macdTET/ncgBNvs3pwb+aspaqKKmw7PulLhC676iCIlw+18wzIChD5UynjCI9K2duMEAADta8PAU9qWecuz7szJ5ylaxty52vzm5rWc6zW6sbFo7nsXJDzYHWiW9Pyz6/pUfsCzvlmDpglGAwA0K2vtP/mEoo0+L2WtvVrS/yiqOknSJWG6DDO+cVxT674AAAAAAAAAAAAAAACAumq8Fd8AAAAAAAAAPPkFo5UT7hBkI3uzbuSvtkQkqUxuaEx5ukT4gl+omDFeMQ/7xE2HjCKyyo+pCxL6UAlZm1FOWc+6hCkdHlGrcQIAgPa2eue9nuURRXVGz/trPJpg/OZ67RiMZp0ZHmPnzK5nlqzNKGezvs9Krvn76FDiIKF1rveoWZ+nggRkN+trAwBgNGvtjcaYxZI+OKr4ryX92HHJ7qLjcv5BLL6muM169BXW9yT935DXHCbp7gr1DwAAAKBu/Nc1AAAAAAAAAABQKQSjAQAAAAAAAE0ia70DqSQpbuKh2wuykT1IeFo7SkQ6tTv3zpjyUqEVrmCwIMEDxhglIkml8gOh+60Uv2Cz0Z8V1+emHUM9AABAbW0f2qJn+9d61p0wcaEmx6bWeETBNMJcr5G4gtGMx6a7UsFlXdFu33ovhXNb91x9+PpBj/dNkpKRLue1jWx06LHzHJ4VAQCt42sqDEZbaIzpsdb2epxLMJoka+1WSVvDXFPql0IAAAAAaBauX2oBAAAAAAAAAEBlReo9AAAAAAAAAADBZG3GWRcrIxgt2Gb3cvbbtT7XvfMLDpOk9DiC0SR3mJ2r3UrzC+UYPTbX62nHUA8AAFBbD/atcIZqnd2zpMajCccVNFVqjtlOvPI0/AK6Ss/PSwejRU1UcdPh275rPh4kjLoRBQk9S5jmfG0AAHh4TNLOUcdRSUc7zu0rOu4yxkwI2d+MomOvADavvqaH6cQY062xwWiuvgAAAAAAAAAAAAAAaAhE8wMYRjAaAAAAAAAA0CQqHYwWZJN+kA3x7ajcgLIgwQt+XOfVKnDMr59EoGA0Qj0AAED1ZPJDerjvN551B3QcrHmdrnyLxlDvENxGYm3eUTM2Gc3vuabUPNkVnFbcZql5eCo/EKidZhHsWbE5XxsAAMXsnonHa0XFniFk1tq3VRiiJkkHh+zykKLjFx3nFZcXXxe2nx3W2uKxAwAAAAAAAAAAAAAAAA2JYDQAAAAAAACgSfgFo0VNLHR7QcK4mnUjf7W57p0rWGFY2jqC0UzQYDRXWEYjBKMlPf8c9HoAAIDxWrtrjfpzuzzrzpqyRMaMDdVqJK45YTvOoazjdz4aj2A0v4CuUvfOGVxsioPR/EPrggasNYtSoWcRRRUr4xkUAIAGVvyPud8/hhuKjueF7Gtuifaq1c/6kNcDAAAAAAAAAAAAAAAAdUMwGgAAAAAAANAksjbrWR5RVBET/lt9pTa77zknWGBXu3EFHLiCz0bqHYEJQe+zKyyjVCBbpbjGb2TUYRIjx+5gtNqMEwAAtKcHeu/zLE9GunTKpLNrPJrwnHOoEnPMVuQdi+Zt9Dy0WKn5pzO4uOi9cIfWDQejebeTjHT59t+oSj2fJCLJhg8aBAAgpGlFx9t9zn2m6Pi0oJ0YYyZIeleJ9lzl7zLGhJlcnBGwHwAAAAAAAAAAAAAAAKDhEIwGAAAAAAAANImszXiWx028rPZKBaPFTEyxMttudeUGf6WdgQmlQ+p8+7W1CRxzBbAVByOUGxwHAABQrldTL2lj6kXPuoWTzg0836on1/y8PcNlvaPRjMaGcUVMxB1cVmZwcfHnpVRoXSo/4FkfJIy6EZX6+9IMf58AAAjKGDNN0tyi4jd9LllRdHxOiO7OlBQbdfyktXaL14nW2s2S1o0qiklaFKKv4nF5pwgDAAAAAAAAAAAAAAAADYhgNAAAAAAAAKBJZG3Ws7zc8DLX5v6ResNmdxd3aEWp4AXv+lLvxTBXAIErsKzSnOMvCqJwBVPUapwAAKD9rN55r7PurJ4LajiS8jnDZUvMMVuRDRGMJo0nuNgd/Dua33uTtRlniHVnkwaIlXxWDPj8AgBAk7hYhesot0ja4HP+rySNnkScZow5MmBfny46/lmJ84vrPxOkk73jOXVUUb+k/w5yLQAAAAAAAAAAAAAAANAICEYDAAAAAAAAmoRrs33UxMpqz7W5fxib3d1cwWilgr9c9a72xp7nCnyoTVhG2rqC3TqLjus7TgAA0F52597R2l1rPOuO6HqXZiVm13hE5WEOVT7XvUuVHVwcbH6byg/6PgMEnec3mtLBaM35ugAAKGaMmSnpfxcV/5e11julVZK1dkDST4qK/1eAvg6X9KFRRVlJPy5x2e2ScqOOP2yMmV+qL4/x/Ke1jm/sAQAAAAAAAAAAAAAAAA2IYDQAAAAAAACgSeRs1rM8VmYwWtx0yMg469ns7pYsM7TCHbwQLITOFWaXLhHIVilBx+8aZ9ZmnJ9jAACAcv2u735l7JBn3dk9S2o8mvL5hW+1G1cWiTHeSxzcoXLlBhcni45d8/CUbx+lwqgbValnQdfzEAAA9WKMOcIY84GQ18ySdI+kmaOKhyR9LcDlyySN/i0WnzbGfNCnr6SkWyR1jCq+2Vr7sl8n1toXJd02qqhD0q1723P19aeSPj2qaEjScr9+AAAAAAAAAAAAAABoFO5fZQag3RCMBgAAAAAAADSJjM14lsdMvKz2IiaiDpNw1jfrJv5acAcj+AcvuOoT7r2MAfv1D2SrFOf4AwZH7GmjNmMFAADtIW9zeqB3hWddT2w/Hde9oMYjKp873Kv95k9WjmA0x/nlzpPHG/ybzg9qMOcXjNbl23+jShj/Z0FCtAEA5TDGzDbGzCn+T9KsolNjXuft/W+ao/n9Jf3CGLPOGPNFY8x8n3FMNMb8raSnJJ1cVP1Va+0fS72WvefcUFT8E2PM3xpjRoefyRhzlKT7JZ0+qvhtBQ8rWypp56jj0yX9xhhzZFE/CWPM/5D0f4uu/2dr7asB+wIAAAAAAAAAAAAAAAAaQqzeAwAAAAAAAAAQTNYZjFb+t/mSkU6lc8HCALCPOxihRPCCHd+9rndYhjsYrbPo2P16UvlBdUW7KzouAADQvp7tf1JvZ7Z41p3Zc56iJlrjEZXPFUZVKny3vXhHo7mCulI+9y5vcxqyac+64vm+a36byg/6vj/NGjYdMzFFFFVeOc/6oMHOAAAUWSPpkADnHSjpFUfdbZI+7XPtcZK+Lunrxpg+Sc9I2i5pl6RuSQdJOl7e6yZ/aK29JsD4hn1J0jGSLth7HJf0HUlfNsY8sbfPuZJOUuEkZkjSh6y1m4N0Yq3dZIz5sKRfSRoOXTtD0npjzFpJf5Q0eW8/04suv0fSl0O8JgAAAAAAAAAAAAAAAKAhEIwGAA1uYGBATzzxhF588UVt375dqVRKnZ2dmjlzpg4//HCdeOKJ6ujoKN0QPJ1zzjlavXr1yLG1tir9rFq1Sueee+7I8dKlS7Vs2bKq9AUAAACgdWXzrmC0eNltJiKdUm6nuw6e/IIR/LgCzIIGJpQT+FBJrvEX3w+/z06tQtwAAEB7eKD3Xs/yqGI6Y/LiGo9mfJwhuI5w3VZm5f3zGuMKRnMEdfnNPdN571A0KXjwbzqfUio/4FkXVWxcz2r1ZIxRMtKpgfxuz3qeFQEATWKy9gSIldIv6e+stTeFadxamzPGfEzSv0m6aFTVDEnnOy7bKulT1toHQ/a1yhjzIUm3al/4mZF08t7/vNwh6VJrrXfSKYARrM+rLtbnAQAAAAAAAAAAAADKQTAaADSgXC6n//zP/9Qtt9yilStXKpvNOs9NJpM677zz9Jd/+Ze68MILazhKAAAAAECt5eT9fDi+YDTvDf6l6tqdX0CZtVbGeAc2pB0BZkGDBcoJfKik4MFo7s8OwWgAAKBStg1t1vr+Jz3rTpx4mibFemo8ovFxzQnbc/4ULhjNFTTsG4zmEzhXPO/2m4e7QoqTkU7nc0EzSESSPsFoPCsCABrOBknXSjpb0kmSgnyz7QXtCRq7yVq7vZxOrbW7JV1sjPmJpL+XtNBx6g5Jd0paaq3dVmZf9xpjjpW0XHuC2KY4Tn1E0vXW2p+W0w/QLlifBwAAAAAAAAAAAABAYyMYDQAazG9/+1t94Qtf0AsvvBDo/FQqpbvvvlt33323Tj75ZP3gBz/QSSedVOVRhjdnzhy9+uqrkqRDDjlEGzdurO+AAAAAAKAJZW3GWIaAlgAAIABJREFUszwWGU8wmnuPoCtcAO5ghLxyytqs4h5hddbawMFiLu7AB+8whkpzhUckTOG4OkzC3UaNxgoAAFrfg72/knUEaJ3ds6TGoxk/15ywHedP3u+q5MhFc9876753fve1eN7tDK2zg+5gtGhzP0/5PQ/yrAgAKIe1dk4V294i6R8lyRgTkTRf0mGSDpTUIykpaVDSTkmbJf2+3IAyR/8/kfQTY8yh2hPMdoCkCZLekvSqpIestUMV6GerpC8YYy6XdIakQyTNktQv6Q1JT1prXxlvP0CrY30eAAAAAAAAAAAAAACNj2A0AGggy5cv1/Lly2Vt4XYPY4yOOuoozZ49W/vtt5+2bdum1157bczirMcff1ynnXaavvvd7+rSSy+t5dABAAAAADWQyTuC0cbxbT6/QK6gYV3tyC8IIJ0fVNwjrC5jh5RX3vOaoPfaHfiQUt7mFTGRQO2UyxX6UDyuiIkoYZKeQWqucDUAAIAwhvJp/a7vfs+62Yk5mtt5ZI1HNH6uuV4qn5K1VsY4UsFaknc0mnEko5UTKudXV9yeMxgtn3LPkU1zh4fxrAgAaFbW2ryk5/f+V+u+X5FU9WCyvSFrK6vdD9CKWJ8HAAAAAAAAAAAAAEBzIBgNABrEFVdcoRtuuKGgbOLEibr66qv18Y9/XAcffPCYa1566SXdeuutuv7665VOpyVJQ0ND+qu/+iv19/friiuuqMnYAQAAAAC1kbVZz/KYRwhXUH4BX3517c4vCCBtB9WtSWPL8+5AsKDBAn7vyZBNK1nl8AXXa/AaVyLSqXTOIxjNJ4ACAAAgqLW71qg/v8uz7qyeJU0ZIuaa61nllbFD6jCJGo+ofvLWOxhNzmA0d3CZS8qnrmNMMJoreC2lVH7As64z2uVsvxn4B6PxrAgAAIDmw/o8AAAAAAAAAAAAAACaR6TeAwAASLfddtuYRVeLFi3S+vXrdfXVV3suupKkefPm6atf/arWrVunY489tqDu7//+77Vq1apqDbllrFq1Stbakf8AAAAAoJHlXMFopvzff+C72d0EC+tqR34BZSlH8JdfKEPQEDq/AIJaBI65+vD6HLk+W34BFAAAAEFYa7V6572edZ2RLi2YdFaNR1QZvuG7bTeH8v6ZjSvuzj33dM+RXfc0bjoUNdGCMtd8PWOHNJDf7RhTc4eH+Y0/GTDYGQAAAGgUrM+rH9bnAQAAAAAAAAAAIAx+pARgGMFoAFBnL7zwgv72b/+2oOz000/Xfffdp9mzZwdq4/DDD9f999+vo446aqQsn8/rE5/4hLZv317R8QIAAAAA6idrM57lMRMvu02/QK5m38hfTf4BZd4BC2nrDmVImKDBaPUNy3D1ESYYrRYBbgAAoLVtTL2o19Ive9adNvm9vnOmRuY3J2y3YDTrDEbzjkZzPdf43Td36O/Ytvw+U33ZnaHG1Cz8Po88KwIAAKCZsD4PAAAAAAAAAAAAAIDmQzAaANTZVVddpd279/0m+Z6eHv30pz9Vd3d3qHZmzJihn/zkJ+ro6Bgpe+ONN3TNNddUbKwAAAAAgPpyBaNFTazsNv02+LPZ3S1uOmQc315NOQIW/EIZgoZ3+IUruPqtJHcw2thxlRNOAQAAEMTq3nuddWf2nF/DkVSWbwiuT8hua3L9ykfvYDTXs4t/MNr4Q38lqS+7w7O86YPR/J4VTXOGDwIAAKA9sT4PAAAAAAAAAAAAAIDmU/6OSQDAuD333HO65557Csquu+46zZo1q6z2jj76aF111VW69tprR8puvvlmLVu2TFOmTBnXWBvNSy+9pHXr1umNN97Qrl27ZIxRV1eXZs6cqUMPPVTHHXecurq6qj6OdDqt1atX65VXXtGOHTs0Y8YMzZ49W2eeeWZV+t+8ebMeffRRbd26VW+//ba6u7s1Y8YMLViwQHPnzq14fwAAAAAaiysYLWbiZbeZMO7N+smAYV3tyBijZCSpwfzAmDpXwIIruCyiSOD30Dcso8qBY9Za52sIEx5RiwA3AADQunZl+/TErjWedUd2Ha+ZHQfWeESV4zfXS7VZuKwzFs24gtHcc09rred1ace81CvQzC/kzB2MVv2fU1WT32smRBsAAADNgvV55WN9HuvzAAAAAAAAAAAAAKCeCEYDgDq64YYbZO2+rR3Tpk3TZz7zmXG1ecUVV+gb3/iGMpk9m+X7+/t100036Ytf/OKYcz/96U/rtttuGzl+5ZVXNGfOnED9rFq1Sueee+7I8dKlS7Vs2TLf9oe9+uqrzo0rkvSpT31Kt95665jydDqtb3/727rpppv04osv+o4vGo3qhBNO0J/92Z/pyiuvdC6COuecc7R69eqR49Hvh5++vj595Stf0a233qp33nlnTP3EiRN10UUXafny5TrggAMCtemSyWR0880363vf+56efvpp53nz58/XVVddpc9+9rOKxfgnHgAAAGhFWZv1LI+PJxjNJ3yBze7+EpFORzCad8CCK7gsEen0fU4eLWpiipm4Z0hetQPHsjarvHKedUmPgD3XZ6vaAW4AAKC1Pdz3G+e8+OyeJTUeTWXFTYciiiiv/Jg61xyzVbl+XmPkCEYz3nPPvHLK2qznM5Mz9NejLb9no77sTs9yv2CxZuD/rEiINgAAAJoD6/O8sT6vEOvzAAAAAAAAAAAAAKDx8FNZAKijFStWFBx/8pOfVEdHx7janD59uj7wgQ/orrvuKujHa+FVM3n99dd13nnnacOGDYHOz+VyWrt2rdauXauLL75Y8+bNq9hY/vCHP2jJkiV68803nefs2rVL//Zv/6a77rpLv/jFL8rua+3atfrYxz6mP/7xjyXPffHFF3XZZZfpX//1X3XPPffowAMPLLtfAACaTV92p57tX6u30puq2k880qG5nUfqyK7jFTXRqvbVrnZn39Gz/Wv1Tq5PR084QQcm5tR7SGgRu7K9eqZ/rTanX6/3UApETUxzkvN19IQTFY+Ufh70CsOSpNi4gtHcm/WbfSN/tbnunSv4yx2MFi5UIBFJKpsb+1l4qO+/9eLAM5IkY4wO6DhYx3S/W93RSc62rLV6fmCdXh7cUDKwzPX5Gx7T2DLv+/Py4HrdtfXWkePJsak6esKJ2j9xkG//W4be0LO716o3u8OzPhnp1LyuYzS/8xjfDV+1mjeE1RFJjMwzIiZSVhubUhu1YeBJ7cr2Bb4mZuI6tPMIHT3hBEVNZX9ksDOzXev7n1TapnTshJM1o2P/irb/Rnqj1vc/pUw+rXldR2t+57GBQwYBlFbq34iYiWtu5xE6out4xSPlz0WAMPI2pwd7V3jWTY1N13HdJ9d4RJVljFEikvQM332wd4We6/+D7/URE9GBiUN07IST1RmdUK1hjsvWoc16tn+tdma2+563eSjcs5vfs8vPtt3q+cz00uB6z/O95rYdJuFsP2OHHO009/MUwWgAAABoBazPC471eazPAwAgGH4eCwAAAAAAAACoDYLRgAaTszn1Zv03AmD8emLT6h5ksWnTJm3cuLGgbPHixRVpe/HixQULrx555BFlMhnF4825OW1oaEjnn3/+mEVXU6dO1XHHHaeZM2cqHo9r165d2rx5s9avX6/+/v6qjGX9+vV673vfq7fffrugfObMmTrxxBPV09OjLVu26JFHHtHg4KB27NihCy+8UN/4xjdC93XPPffooosu0sBA4Qao/fffX8cff7ymTp2q/v5+rV+/vuA3dD711FM69dRT9cgjj2j27NnlvVAAAJrIm+lX9e3Xl+qdXG/N+jxp4un6zP5XVjw8pN1tHXpT3359qXZkt0mSfr7N6OOz/kanT35fnUeGZvdWepO+vWmperNvlz65To7oOk6fP/AfS24udwVTjefrkV+AAJvd/bnuTyo/6FmedpSHDUxIRjrVn9s1pnzd7sfGlE2NTdflB/0fTfcIpMrbvH685Xt6uO83ofr34hmMZrxf1+ah18cEXfxsW1SfPeBKnTTxDM9rntr1iG5+83rllPUfyNvSuVMu1Eenf84zIKse84awFkw8W5/c/3+G/t7VQ72/1o+3fE9Wtqx+j51wsi494IuBQhqD2Dj4gm7cdI3683s+qz83t+mvDviSjq1QYM3v+u7Xj966UVb5PQVvS2f3LNHHZlxKOBpQAdZa3bHl+1rT96uS5x494SRddsCXKvb1A/DzTP/akWfGYot6zlOkBULME5FOz2C0P+x+NHAbszpm63/OXq6e+H6VHNq4PbP7cd305v/rDBILwjg23fk9u6zq/WWoPryekSImooRJKm39w4RH62zyYDS/Z0VCtAEAQDNjfV7t1HuNHuvzgmN9HuvzAAAIrryfRwMAAAAAAAAAEBY7uIEG05vdri//8bJ6D6PlXTP3B9ovPrOuY3jooYfGlJ18cmU2hr773e8uOB4cHNRTTz2lBQsWVKT9oK6//notW7ZMkrRo0SK98cYbkqQDDzxQa9ascV7X3d1dcHzLLbdo/fr1I8dz5szRjTfeqPPPP1+RSGTM9dZarV27Vvfcc49uvvnmCrySPTKZjD7+8Y8XLLraf//9dcMNN+gjH/lIwVh2796tf/7nf9Y//dM/qbe3N/RvBF2/fr0uvvjigkVX559/vpYvX65TTjllzPlPPvmkLr/8cj344IOSpDfeeEOXXHKJVq1apWi0+TeCAQDg52fbbqt5uMkTux7WyRPP0gkTF9a031Z3z/Y7Cja4W1n9x5bv66SJZ7DhFuPyi+0/auhQNEl6fuBpPdq3UmdNucD3vKz1DoWKmfI32vgFCIQN7Go3rq9N6bx3WIKrPGwAXcIEP39Hdpvu2f4f+swBfzem7qXB9RUJRZO8PythXldeOd3x1vd1fPfCMRvl8janH2/519KhaHut3HmPFk56jw5Kzh1T97Nt/19Dh6JJ0u93rdYpk8/WMRNOCnxNKj+o/9x6U9mhaJL0TP/jWrvrIS2cfG7ZbYz20223jISiSXu+ft3+1o269rB/H3dw2VA+rf/Y8oN9oWh7re69V6dOOldzOuePq30A0iup5wOFoknS+v4n9Ng7q3VGz/urPCpAemDnfZ7lMRPTGZNb4zNYiXDit4Y26dc7f6Y/n/GXFRhRZVhr9eMt/zquUDTJLxitcs8urvcgEUkqnQsejNbsz1P+z4qEaAMAgObF+rzaqfcaPdbnsT7PD+vzAAAAAAAAAAAAGhPR/ACGjf1pNQCgJjZt2lRwPHPmTO23334VafvYY48t2V8tTJs2TXPmzNGcOXMUi+3L4ozFYiPlXv9NmzatoJ2777674Npf//rXWrJkieeiK0kyxujkk0/WsmXLtHHjRh1yyCEVeT3f+c539NRTT40c77///lqzZo3+/M//fMxYuru7tXTpUt1xxx2KRCLauXNn4H7y+bwuuuiigt+quWzZMt13332ei64k6cQTT9Rvf/tbffjDHx4pW7NmjW6//fbA/QIA0IzyNqfnB9bVpe8N/U+VPgmhbBgYe0+zNqs/Dj5Xh9GglTTL39f1A0+WPCdrM57l4wlG64x0OesIJfTnCihL5Qc9y9PWuzxM0JkkdUYnhDrf6+urJD3X/4dQ7fjx+qz4fba89Od36bXUy2PK30i/qt25vlBtre8f+/dpz7yhcq+5mjZ4jN/Py4Mbxh0yUk6/Lqn8oF4e3DCmvC+3U1uG3hh3+36vd0OAr6UASnt69+Ohzn9x8JkqjQTYZ+vQm84580kTz9DE2OQaj6g6ws6hXJ4J+fe42t4a2lSRwOqo8f7db5V8dkk63gNXuUul3st6SUa8nzvipsP5PgAAAACNhPV5rM9zYX0eAAAAAAAAAAAAADQ+gtEAoE527NhRcDxlypSKtZ1MJpVIJHz7ayavvvrqyJ+PP/54zZs3L/C10WhU8Xj5AQHD8vm8vvOd7xSU/fCHP9TcuXN9r/vIRz6iv/7rvw7V11133aVnntm3kfBjH/uYli5dWvK6WCym2267TTNmzBgpu/7660P1DQBAs0nn08rabF367s+/U5d+W1Xe5tSf2+VZl8oPeJYDQWTyQ0rbVL2HEYjr78Borq95sXFsSj8wcahniMDBicOUiIQL7Go3rmCEtCMYbTDnXd4ZDReYMK/z6FDn9+d2ydqxvzMnbNiYy8HJeeqIJMaUz+sKN05J6s+N/fd1t0dZ6XbG/n1K51N1mzeEtTvA14OC87OVeS/LuddevN7HYYMV+Hfd77NbqdcAtLsdmW2hzk/n01UaCbDPA70rnHVn9yyp4Uiq67CQcz2Xndntytt8RdqqBL/5QRhzO4/0LO+IJHRIcn5F+pjXdYyjPPh7E1HUOdZmMbfzCEU8lpTM7xobAAEAAAA0ItbnBcf6PNbnAQAAAAAAAAAAAECjIRgNAOqkeCFUT09PRdsvbu/tt9+uaPv1snXr1rr0+8ADD2jjxo0jxwsWLNCFF14Y6NqvfOUroRZ/ffvb3x75szFG1113XeBru7u7ddlll40cP/300wXjBgCg1biCZ2phMEdYVyWl8+7gqkw+U8ORoNU0U7BekK8rWev99yFmyt9wEo/E9Sf7XVzUXkx/Mu2SsttsF8no2EA5yf25S+X7vdtxBKy5LOo5T1Nj0wOfb5XXkB0bWJOqwL+jMRMb8/kZNid5uN7VfUqo9rxCs8oJ0hr0uNeVCOSqlbBfuyrxXkqVu0cDOe/PuuT+OhbGoM/rTTkCCAGEszMbLhhNGhvACVTSUD6t3/Xd71l3UGKu5iQPr/GIqufsngvUE9tv3O1kbbZiYWSV4Pfvd1ATohP1vql/6qz/k/0uGldotCQd1nmUjp3wbs+690z5oLqjkwK1s3jqh9UV7R7XWOptQnSi3j/1QwVlCZPU+VM/UqcRAQAAAOGwPq88rM/zx/o8AAAAAAAAAAAAAKiN8a0KBgA0LGNMvYdQMUceeaTWr18vSXr99dd1/fXX66qrrqrpGNasWVNwfMklwQMCpk+frsWLF+uXv/xlyXP7+/v1yCOPjBwvWLBAhx56aPCBSjr33HN1zTXXjBw/+OCDmjNnTqg2AABoFmnrDtM6ouu4cQUFDds29Ja2Zt4cU16pABLs4RfEUokAFbQvv8/W4V3HKV6BrxNh9WZ36I30xjHlQYKQcjbrWT7ezf/vnfqnmtFxoNbtflSJSFLvnnimDu1snXCJaul0BJq5PneuMAhXOy77xWfo7w/+mn7Xd79eTb2kvHKSpHQ+rZcGn/W8JpUfUCKSLBqPd3jVfvGZmtVxYMlxzOw40PezEjERXXrAF/Vw3/16YeDpgs/4SwPrPf8d9/r31fV3I2461B2dpJ3Z7eNqR5KO6HrXuP8elWPr0GZty2weUx42gNX1XnZGJmhu5xFjyndktmvz0GuB2wnL72tvxg6Nu/2Uz/2p1GsA2p3X11ZJMorIKj+m3BKMhir7/TsPOL/Gnz1lSUv9TGRaxyxddfB1eqTvt9qYetHz79xoOZvTcwN/8KzbmX1bE2OV3fhfLtdcLGZiOqLrXb7XGkV0UHKuTpl0tmb6zFOP7T5ZVx50rR7ftUZbhjaFGl+HSeiwzqN0Rs9idUQSnucckDhYVx38df3/7N17mCRlfff/z92H6e49zuzBhbAgkg1hQVAR5LiAwUeyRCNBExT9RdFEEg1KHjzEmCdBRH8STX6BeBkTkwtMHhONgogGImhgUQiQ1RAUEFg5CArr7uzMsrvTPdOH+/fH7MxO99zf6qqePs3M+3VdXBdd1VV197FqZqvec+/zt+vp0uPB12Z5elAvXnaCXrbslETb71e/vuYtOjR/hB7c+30tTS/XK1acpfX5w3s9LAAAAKAvLKSfRTk/j/PzAAAAAAAAAAAAAKDfEEYDgB5ZtWpV3e3du3e3df2jo6OR25tPLrzwQt1www3Tt9///vfrxhtv1EUXXaRzzz1XBx98cMfHsHXr1rrbJ510UqLlTzrppFgnXt1zzz0qlw+EP4444ojEf1GyVqu/EOfHP/5xouUBAJhPxiPiZO/8hT9SIb10ztu4feQb+vLP/37W9DgBI8QXFTEhjIa5iPqsvvMXPqgl6WVdHM2k7++5W3//sz+fNT0qJDTF+jy0IwR57LITdOyyE+a8nsUklyoEp1vxzJLxXZdPGEaTpKHsGp275oK6aaOVXfrjH7/dHNPKmOM8ZcWvzFp3q9Iuo02D52jT4Dl10//fJ/+3nh5/fNb9i9XZz5EVwVqbPVgbl75E3x65afYygc+TFaaTpN8/5MNmAKOTbtv1VX11x+dnTU96nGG9li/Mb9C71//prOn37r5dn3/u6lnTkwbZLKHXcUo79utR35fEa4G5q/mqRsu7gvOGMqu1q7KjyyPCYue915bRm4PzlqSW6YTlm7o8os5blV0b+3is5mt676O/papmR5RHyjt1WP4X2z28llj776HM2uDxSqsOLxypwzsYeX7BwMF67ZoLO7b+fuOc0/HLT9Pxy0/r9VAAAACAxDg/Lz7Oz3sy0bY4Pw8AsLgtnDgsAAAAAAAAAKC/EUYD+sxgZo0+esTf9noYC95gZk2vhzDrRKiRkZG2rbtUKqlUKtVNW716ddvW323nn3++zj///LqTr+666y7dddddkqQNGzbo1FNP1WmnnaZNmzZp48aNbR/D9u3b627/0i/9UqLljzwy3kU4Tz/9dN3tL37xi/riF7+YaFuNdu0KX8QIAMBCEBW+yKXybdlGwYjVxAkYIb5S1X4tCaNhLqIiP3kjatVp1nZLtaK893LOPom03MEwGpKzX8vw+84Kc1n7mnaNRwqHqqx4VTc+G1YMLrRvt/b3hfSShOsJvy4ppZV1A9ZQO8oef7LjDOu7znotrXhsVKg00Xgixl/xs6MtSUU9PxyjAXP3fHV3MLAkTcaaCKOh2x4vPaJnxp8Izjtl5a/0JG7aT1IupcHsKg2Xfz5r3mhluAcjCrNit736uQwAAACLF+fndU+vz9Hj/Lz4OD+P8/MAAIjP93oAAAAAAAAAAIBFgjAa0GfSLq3V2XW9Hga64JBDDqm7/dxzz2l4eLgtJ0g9+OCDTbc3nzjn9KUvfUl/9md/pr/8y7+cdVLZtm3btG3bNv3jP/6jpMkTsd7ylrfokksuadtf4mw8MW7FihWJll+5cmWs+w0Pt/8ipT179rR9nQAA9IvxWik4PesGlHLptmyjXcESRIsKsZT9RBdHgoXGCuTkXL5t3xNJFVLhIJFXTeO+pLyzwwBWKDDj+DVfL1hBMyvk1ekYRM7l5eTkAyciJwuOhd+j7VRIx9+/WvuIfKpg7qfDIbjw819ILYkMEnaS9dpbET2LdVxifd9Y08t+QhVfnnNsMWq/3o7gaVT8jGM0YO5GyjvNeauya6XAV5T3XASDzrlz5GZz3qbBzV0cSf8azKwOhtFG+imMZhzfWMdzAAAAQKdwft7iwfl58XF+3txwfh4AAAAAAAAAAAAAtF+q1wMAgMXq1FNPnTVt69atbVl343oKhYJe+tKXtmXdvZLJZPSxj31MTz75pD71qU9p06ZNyuVywftu27ZNl19+uY444gh96Utf6vJI52Ziov3RDy5KBAAsZPZFte0JzEjR0Zuar7ZtO4tdVOCk4itdHAkWGiuQkzeiTN0Q9R1lhbOmVI3Pw1wjRmiNHc80wmhWvKpN70fnXERoK1lwrNPMoFlgnGbALbU0IrAWCsH13/eBfZxhh8VCrP1oPh1+La0wmmQH5BKNJxCmm9KOMFpU/Kwd4wcWu5HKjuD0rBvQsnSyC1KBuXq+Mqrv77k7OO/opcfrBQMHd3lE/WkosyY4PSp02G2dPhYGAAAAgEacn5cM5+e1jvPzAAAAAAAAAAAA2od/egEwhTAaAPTIYYcdpsMOO6xu2q233tqWdd922211t0866SQNDAy0Zd1TqtXeREDWrVunyy67THfeead2796tu+++W5/61Kf0ute9TsuWLau77+7du/WmN71JN95445y3OzQ0VHf7+eefT7T87t27Y91vzZr6i5c+/vGPy3s/p/+uu+66RGMFAGA+Ga+VgtNzqXzbthEVS7G2j+Ss6I3UnoAKFi8rFmTFiLqhkI4IEkXEfmq+qppqwXmE0XrDCoiN14qq+dmvlRmvauP70Y611W/bex8ZHOs0OwgWCrhZz1shYWDN+j7ofAjOYo2/4isq1+Lv/+zHFn4towIkVjAviah1lGtzv+gsKn4WFU0DEI8VUpoML7ngPC/OQEBn3L37NlUVjgOfObi5y6PpX4OZ1cHpo5X+D6N1I8oLAAAAYHHi/LzWcH4e5+cBAAAAAAAAAAAAQD8gjAYAPfSrv/qrdbf/6Z/+SeXy3KIPO3bs0E033RS5nSmZTKbudqUSvrgoZGRkJPng2iyXy+mUU07RZZddphtvvFHDw8P64he/qCOPPHL6Pt57vec971GtFo4HxLVu3bq624899lii5R999NGWthN3OQAAFqtxI+iSa+NFtVHxpKiAEZIpViMCKr79f7Ubi4d98X0Pw2gR244K+lS8/TNbxmXMeegc633k5TXhx+umVXzZ/D5rZ6jPDqPV7zPHfcmM2HQjTpEoaGZEsPKpJeZYS7WifMOfCepGmC6pqEBZKUGgLCoeF7IkIn7XjuObsYixR32XxRX1XTnhx1VtwzaAxWzECCkNZVcbWTSgM6q+qu+MfjM4b3X2BTpm6fFdHlH/GsquCU63Ps+9UDR+h9PLYzEAAAAACx/n580N5+cBAAAAAAAAAAAAAHqFMBoA9NB73/teOXfgUrIdO3bo2muvndM6r7766rqTt5YuXarf/d3fDd53xYoVdbdHR0djb+fBBx9MNK6Zj7NTBgYGdMEFF+jee+/VIYccMj396aef1ve+9705rfuEE06ou33PPfckWv7ee++Ndb9TTjml7rm67bbbZl3IDQAADhivlYLT2xl0ibpANyrKgWQagz0zVWrETdC6ohFUameIKqkBl1PK+LXBplxvAAAgAElEQVRcVJCo4u0LdTIuO+dxIbmo/U1jzKtUtb/n2hmDsENhjeOx32uFtB3NahfrMxgaV1T0q2AEvrxqGvf1xwn9GEqM2rYVDwne1wiMWs9PLlWQM/JGUbHSuKLeX1HfZbHX3+QYLOq4AkBzu8o7gtOHMmsl0mjooh/s/S8z7LVp5a8q5dJdHlH/GsqEw2ijleG++TcGK/ray5/NAAAAACx8nJ/XXpyfBwAAAAAAAAAAAADoFsJoANBDRx99tDZv3lw37YMf/KC2b9/e0voeeughffKTn6ybdtFFF2nVqlXB+7/gBS+YtXxcN998c6Kx5XK56f8fHx9PtGxSg4ODOv/88+umPfHEE3Na5+mnn153+1/+5V9iL7tjxw7deuutse67du1avexlL5u+/dOf/lS33HJL7G0BALDYWNGLnMu3bRtR0ZskwRJEKxoXSEvtCahg8erHEJJzztx+VOyn4u1IIGG03sino6JWDSGyiNe2ELGepKyoWWMkMCrC187AqLkN4zGHxmXt7wvppdFxuoblrDhdL2McUdtOEmC1niPr+Um5lHLGvKh9clxjHd6vNzsGs6KYAOIZqQwHpw9lw+ElSfLi4lG0352j4d+NZ1xWp658VZdH098GM6uD0yu+or3V57s8mjBr/93Ln80AAAAALHycn9cZnJ8HAMBixh/RAQAAAAAAAAB0B2E0AOixv/iLv9CSJQcu+hgdHdX555+vvXv3JlrPjh079IY3vEETExPT0w4++GD96Z/+qbnM8ccfX3f761//eqxtffOb39R9992XaHyDg4PT/79z5866v5rZCZlMpu72zBO/WnHGGWfo8MMPn769detWfeMb34i17BVXXJHo8f7BH/xB3e33ve99id8PAAAsFuO1UnC6FfpoRdYNKK1McF6SYAmiRQV6yn7CnAc0YweVenvxvRUrior5RMWEMi78PYXOShLlig6Rte/9aI2pcZ8VGWpLheNq7VSIOU5rmjT5WCPDYrNicOFYVy9jHNEB1njHGd578zmyQnmStMR4nceqcw+jRY29HWG0UpN4G8dowNyMlHcGp6/KrJUzL3YhjIb22j7xU/1o7H+C805YfrqWZVZ0eUT9LSpcOFIJf6a7rfHYbEo3orwAAAAAFjfOz+sMzs8DAGCx4t+EAAAAAAAAAADdQRgNAHrsqKOO0l//9V/XTbv77ru1efNmPfPMM7HW8dhjj+nss8/Www8/PD0tlUrpn/7pn7R27VpzuVNOOaXupK+vfvWr2rp1a9NtvfWtb401rpk2btw4/f+VSkW33357rOXGxsb013/919qzZ0/sbe3du1c33HCDuf1WpFKpWSdEXXzxxU3/0uUNN9ygz3zmM4m29du//ds66qijpm8//PDD+o3f+A2NjIwkWs+OHTtmPQ8AACw0VvAol8q3bRvOOeXTyQNGSCYqYNKOgAoWr34MIUl2rMgarxT9WUgTRuuJnMubgZjxHoXRrFBY3FBbSill3UDbxmOxHnNo326NNZ9aonxE5LBxOeu4wdrPd0PKpZVz4eMWKx7SaMKPq6ZacF5UOM5+DeZ+fFOMiKuV57hfL9fKqvhK9PYJowEtK9fKer4a/j1kVHgJaLctI7eY884Y3NzFkcwPy9Mrzaj7aGW4y6MJM4/FevyzGQAAAICFj/PzonF+HufnAQAAAAAAAAAAAEA/IowGAH3g7W9/u9797nfXTfvud7+ro48+Wp/4xCf09NNPB5fbtm2b/uRP/kTHHnusfvCDH9TNu+qqq3T22WdHbnf58uW64IILpm9Xq1X92q/9mm699dZZ952YmNDnPvc5nXzyydq+fbuGhobiPjxJ0itf+cq62xdddJE+85nP6Hvf+54ef/xxPfnkk9P/7dy5s26773nPe7R+/Xq9/e1v19e//vXIk7Duu+8+nX322Xrqqaemp5188sk68sgjE4035D3veY9e8pKXTN/+2c9+ptNOO01f+cpXVKvVX4C8b98+XXHFFXrjG9+oWq2W6PlKp9P6yle+ohUrVkxP+9a3vqXjjjtOf/M3fxP5+Hft2qUvfelLetOb3qRDDz1U11xzTYJHCADA/DPurYtq2xs46WQ4BJOiInPN4idAFOvi+6hYUDdY31PWeKXoMFrWZec8JiTnnDNfy9lRrvD33IDLKe3SbRvTXMdTSC2Vc+HYWztZn8Gyn6h7r9d8bVZkbuY6ouJ0jY/Rfsw9/j4w4m5xjzNaje4tMQONbQijdTB4Gud54RgNaN3uiIDSUMYOo/lODAaLVqlW1D3P/0dw3mH5DTq8MPff9y80KZfSYHZVcN5IeWdwereZx2IRoVsAAAAAaBfOz+P8vJk4Pw8AAAAAAAAAAAAA+l/4z0YDALru05/+tIaGhvSxj31M3k9eRrZnzx596EMf0h//8R/r6KOP1qGHHqqhoSENDw/rqaee0iOPPDJrPdlsVldffbV+//d/P9Z2P/rRj+qrX/2qRkdHJUk///nPdc4552jDhg067rjjlMvltH37dt17773at2+fJOmggw7SVVddlegvU/7mb/6mPvzhD0//lc2f/exns042m/LWt75V1113Xd20559/Xtdee62uvfZaOee0YcMGHXHEERocHFQmk9Hw8LB++MMfzvornkuWLNHf/d3fxR5nlGw2qy984Qs688wzNTw8eYHgs88+q9/8zd/UunXr9PKXv1wrV67U9u3b9Z//+Z8qFicv3F65cqWuuuoqvfOd74y9rWOOOUbXX3+93vCGN2j37t2SpGeeeUbvete7dMkll+jYY4/VYYcdphUrVmhsbEyjo6N69NFHY/8VUwAAFgorlJJL5du6HSuY0o5wCCZFBUzmGlDB4las7gtOj4oFdUMhZQWJwuOVoiOBGcJoPZNPLQnuDxq/16wAZLujXHFjntZ48un2xkUtUZ/BUrWoZZnJ9/SEH5c3cjv51JLpOF2s18DY1/T6+yCfWqLd2jVretzjjFJEXDTq/WU97jHjezMu77353SvNfb8e53nhGA1o3a7KDnPeUHaNHc/0pNHQPv/1/J3mz4hnDm7u8mjmj8HMag2Xfz5r+khE8LBbqr6iCT8enNfrYzEAAAAAiwfn5x3A+XmcnwcAAAAAAAAAANCvOCsZwBTCaADQRz760Y/qzDPP1Lve9S499thj09O993rwwQf14IMPRi5//PHH62//9m91wgknxN7mIYccouuvv17nnXde3V863LZtm7Zt2zbr/i960Yv0b//2b9q+fXvsbUhSoVDQV7/6VZ133nn66U9/mmjZRt57PfbYY3XPUcghhxyiG264Qccee+yctjfTMccco29961s699xz9eyzz05P3759u26++eZZ9x8cHNRNN92karWaeFuvetWrtHXrVr3pTW/S1q1bp6dXq1Xdf//9uv/++5uuI+lfDgUAYL4Zr5WC03Op9kZd4kZm0Lqo57LsJ7o4Eiw0JSOgWEj3OoxmfK9Uw+OVomNChNF6J2/scxrfe9b3XL7N70V7nxVvPO0OtVmiPoPF2j4t04rJ/48IbE2tw4rTNU6zAmK9jnEUzPdQvOOMqAhY1PvLCjSWIgKNcZT9hKqyQ45zDaPFeV6iYnEAoo2UdwanF1JLlU8V5GSE0YA28d5ry8js37VL0tLUcr18+eldHtH8MZRZE5w+Wgl/rrvJ+rlM6t7xJwAAAABInJ8XF+fncX4eAAAAAAAAAAAAAPRaqtcDAADUe9WrXqWHHnpIX/jCF3T22Wcrk4luWOZyOb32ta/V1772NW3dujXRSVdTfuVXfkX33XefXve618m58IVta9eu1fvf/37df//92rhxY+JtSNIJJ5yghx56SJ/97Gd13nnnacOGDVqxYoXS6bS5zMqVK7VlyxZ94AMf0Mtf/vKmz4ck/fIv/7I+/vGP69FHH9UrXvGKlsYa5aUvfakefvhhXXLJJVq+fHnwPsuWLdPb3vY2PfDAA9q0aVPL29qwYYPuu+8+ff3rX9erXvUq5XK5psts3LhRl1xyib7zne/ohhtuaHnbAADMB9aFtblUvq3bsaM3RDfaJSrqUvF2XAVopmgEfnodQrK2b41Xio4JpR1//6BX4sYzre+5docg4u6zrPF067MRtZ2Z+/eoiMbUY7VDgw1hNCuU2LffB/GOM6zjESennLOPiZakw2G0sTmG0aK+xySpXJtbGC3O8xL3uQMw24gRUFqVXRu5nOdvs6FNflx8WD+beCo475SVZ2sg1fx35IvVYGZ1cLoVPOymqN+fWMevAAAAANApnJ9Xj/PzOD8PAAAAAAAAAAAAAPoRV0wCQB/KZDK68MILdeGFF2rfvn363ve+p23btmnHjh2amJhQLpfTunXrdOSRR+r444+PdTJOM0cddZRuvPFG7dy5U1u2bNEzzzyjsbExrVu3Ti960Yu0adOmupOezjrrLHmf/GK3FStW6OKLL9bFF18c6/7OOZ1xxhk644wzJEnFYlEPPvigfvzjH+u5557Tvn375JzTihUrdNhhh+m4447TC1/4wtjjueOOOxI/BmnyhLBrrrlGn/zkJ3XHHXfoiSee0MjIiNauXav169dr06ZNWrr0wAXGrT5f0uRz8JrXvEavec1rVCqVdO+99+qpp57S8PCw9u3bp6VLl2poaEgbNmzQxo0btXp1+OInAAAWovFaKTi93RfVFlLhcEixSnSjXaIuko6KQQFRvPd9G0IqpK2Ylh2BsiKBKaWVcvz9g16x9jmN+wjrtW13iKxgxK5mj6d/w2gzo1ZR+4ep/bMdpzvwnFd9VePeOG4wPo/dYofd7O+DmezIXcG8wG5yvhFkm+PxzVg1Oow21/16Y/AueB/CaEDLdhkBpaHMmv3/F/5eIYyGdrlz9JbgdCenMwY3d3k088tQdk1w+mhluMsjma0YcVzT62g1AAAAgMWJ8/MO4Pw8zs8DACAZ+9+gAQAAAAAAAABoJ8JoANDnli5dWnfiUaetWbNGr3/967uyrVYUCgWdcMIJLf3lzU7I5XI655xzura9fD6vM888s2vbAwCg31mRmVybw2j5dHh9RDfao1ybMINPU/OBVoz7khnp6PXF92ZMq4VIYNZl2zImtMZ6LzXGO4u1cCyq3TFPa32l2pi899OhLCt+1a1oYNqlNeBymvDjs+bN3L9an4mUUsq6AUl22GzmsuMR0cFCm1+DpKzxxz3OsO5nhV2nLDEienM9vmm2/FzDaFHfk0nuAyBspBIdRuNSF3TS7sqI/nvPfwbnHbP05VozsK7LI5pfBjPhi7JHKsN1x4G9EHV80OufzQAAAACA8/PqcX4e5+cBABCNP5YDAAAAAAAAAOiOVK8HAAAAAABAK7z3s6IzU9odmbHCIlaYDck0i5fMNaCCxatkhJ+k7sWf7O0nDxJZAcEMYbSeihvPLFXD+4xm8aqkrPd2TTWV/YHQpPVesyJdnWBFMGZG28xxppZMxz2sxxwnsDa5rva+BklZ448b97Iid82Oh6ztjhkRv7iaLT/X/XqccBvxWqB1I+UdwelD2TVdHgkWo7tGb1VV4WPeMwc3d3k0889UwLBRxZe1t/p8l0dTz9o3Z1xG2RQ/zwAAAAAAAAAAAAAAAAAAAACoRxgNAAAAADAvVXxFNVWD83Iu39ZtWWGRuMESRGsWL7FiUEAzkSGkLsafgtuPEYRqZMWE0i7TljGhNXGjVkUjFmWF1Vplvbcax2R9ProZDSwYn8O6oJnxmZi5bJz9dNS+ptDmoGpS1msWN+5l3a+Qjg6+mYHGiO+hOIrVZmG0ue3X4xx/RX2XAog2UtkZnH4guOSC8718h0aExaLqq/ru7luD89Zk12nj0pd1eUTzz1B2tTlvtDLcxZHMZu2/ex2oBQAAAAAAAAAAAAAAAAAAANCfCKMBAAAAAOal8VrRnJdrc+DEisTEDZYgWrPASdlPdGkkWGiiQ0i9DaNZQSgrniVJVSMmlCGM1lPWPqfUsJ9qvD3FilO1yoqETY6heSgsKqzWbmYgsG6c4edt5rJ2WOzAslGhrG4+5pC4cT2LHRqJPh6ywmnF2j5533rgqNP79TjHX8RrgdYUq2Pm52coOxlGc0YYDZirB/bea8a7Ng1uVsrxz9rNLE8PKqV0cJ4VPewW+1i4t4FaAAAAAAAAAAAAAAAAAADQX+ZwOQOABYYzyAEAAAAA89K4t8No+VS+rdsygysRkRXEV6zaIShJqvhyl0aChcYKe6SU0oDLdXk09azvlbKfMANoZeOzkHHZto0LydlRrrGG2+HvumbxqnaNZ3IMM0Jhxuejm9HAOOFRKxY483kzw2Iz9i9WTCvjMsqmBpqOtZPivocs1v2aRfes562mmsZ9Kda2Qzq9X4+K3E0hXgu0JiqctCqztsnSnIGAudkyektwetYN6NSVZ3d5NPNTyqU0mFkVnDdS7nUYrfdRXgAAAAAAAAAAAAAAAAAAAADzB2E0AAAAAMC8NDPu0ijX5shMIW0EV4hutEXUaylJFV+R5089oAVRF98757o8mnpR8Snru8WKCRFG662Csc9pfP8Vje+6ZvGqpHIRcdCZQU8r7tnNOIUVhZv5GbD2ETOft7yxn565rLWefohxWM9DqRq9f5xihcKaRfei3nvN4maR4zFidlPmGkaLEz3jGA1ojRVGc3IazE7GlqxDKI7WMRfPjj+tR8d+EJx3wvJNWppe3uURzV9D2TXB6SOV4S6PpJ79s1l7f38DAAAAAAAAAAAAAAAAAAAAYGEgjAYAAAAAmJfGayVzXlQUphXWhboTflxVX23rthajZgEVr5pq4nlGcq3GgrohKoxmxZAqNSuMlmnLmNAaK6xVathPdSsGkXKpWMExKxxlxUA7wXzuqjODZs2fN+vzVIrxePvi+yAdDpQVa/tihUGt/Wiz6FvUaz2XsNhY0zBapeV1S82DqpP3IYwGtGKkvCM4fUV6cEaItbdxWSxMd47eYs47c2hzF0cy/w1lwmG0USN82C1F42ecfojUAgAAAAAAAACS4N+KAAAAAAAAAADdQRgNAAAAADAvWVEMp5SybqCt2yqkwsGSyXEQ3pirOIGTsg8HoYAo1ufTihB1U1QAwIocVRWOCR0IlaAXrLDWzPef994M9XXi/WjH2ibHUPVVTfjxRMt2ghXmmvkZsAOHS4L/P9PM18D8PojYx3eL9R6qqaayn2i6vLUfbfbeinrscwmjlYzXbEpljvv0ZkFVafJ9EycqB6DeiBFOGsqGQ0sz8ZlDq0q1ou59/vbgvMPzR+qw/IYuj2h+G8ysDk4fKQ93eST17NgtYTQAAAAAAAAAAAAAAAAAAAAAsxFGAwAAAADMS+O1UnB6PpWXc+39y5RWsEQijNYOxWrzwMlcIypYnKywT9RnulusIJRkR46sz0EmRRitl6yYQ8WXVa5NvmZlP6Gaqsby7X8/FowxTX0movZd1rKdYAfNijP+v/nn2BpzqVZUzddir6dXogNlMSJgLT62rBtQWpnwOqt7m27XMtZkzOVa89hblDhB1ZqqsaJyAOqNlI0wWuZAGM3J+lmLMBpac9/uO8zv9jMHN3d5NPOfFTIcNcKH3WIdr0T9XAQAAAAAAAAA6Ef8mxAAAAAAAAAAoDsIowEAAAAA5qVx48LpXEcCMxHBkmrzOAeiWRdIz1SpEUZDclYIKeoz3S1pl1HWDQTnWSGksvE5yDjCaL0UFZ+a2ldFfc914v3YLDjWL2E0O2i2b8b/h/ezhfSB5816Dby8Jvy4JKlYteJhvY9xRAdYmx9ntPpd55yrex5nirNvtjQLnlZ8peV1x1n/9P2I1wKJ7TLCSUPZtV0eCRYL7722jN4SnLcsvULHLz+tyyOa/wYzq4PTRyrD8r53F6vZkdreH4sBAAAAAAAAAAAAAAAAAAAA6D+E0QAAAAAA89J4rRSc3okwWtQ6S0bACPFFBXqmVDxhNCRnh5Da/z3RCisKZY3bigllXKZtY0JyUTGHqe+3qO+5TrwfrXVOjcN6j00u2704hbWt4owYmB3RKMz4/4jXoBr9GvRDjCNqDFGv1ZTSHL7r7O+h1o9vmgXJqqqo5mstrz9OLG7yfoTRgKRGykYYLbOm6bK9yy1hPnus+KCenfhJcN6pK/+XsqlwSBi2ISOMVvFl7a0+3+XRHGDtv/vlZzMAAAAAAAAAAAAAAAAAAAAA/YUwGgAAAABgXrIuqs2l8m3fVjaVVcZlg/OKMeMcsDULqEhSmTAaWmBFcQqppV0eSZgVQ7LGXSWM1pfy6ah45uQ+IipuVUi3//1ovreq+8cTFWqLeDztZkW5Zn4GrLHOXLaQjgiLTcXgjP111LLdkkvl5eSC85rFvWq+qnEfjsXGeW+ZYbQ5RMWKMaKx1vdZM9772MGzOFE5AAd47zVSCYfRVmUPhNGs7yvSaGjFnaM3B6c7pbRp8Jwuj2ZhGMraIcPRynAXR1LP/tms98diAAAAAAAAAAAAAAAAAACgf3hOSwawH2E0AAAAAMC8NF4LR0Dyqc4EXeLEW9CaUoxwSYUwGlpghX26GX6KkjeCTNa4rc+BFW5Ed0Ttd6b2Eda+wslpwOXaPybjPT4VrLLGk3UDXX0/mZ+B6pj8/n/JssY6M/5mheBmLl8yYl1Ry3ZLyqWUM95HzQJlVihWkgoxjomseFqcuJmlWG2+bNlPtLTuCT+ummqx7ssxGpDM3upu81hjKBMnjAYkM1rZpfv33Bucd+yyE7Q6+4Iuj2hhWJ5eqZTSwXlW/LAbrJ/7O/U7HAAAAAAAAAAAAAAAAAAAAADzG2E0AAAAAMC8ZIVAci7fke1Z4ZRmwRI0F+c5JIyGVlhRHCt02G12cDH8/WZ9DtIu07YxIbmMyyrrBoLzivtfS+t7LpcqKOXa/yvaZu8tazzd/mxY+9aaqir7CdV8zfw8zBzrgMspZfyqe+qxFo319EuMo9UAa9Q+NJ8KR8/ibLcYI1oaUvVVjftwvHamiq+0tP4kx10cowHJRAWThrJrzHlTvPjTbEjmu6PfVE3V4LwzBjd3eTQLR8qlNZhZFZw3Uu5hGM06pjMirQAAAAAAAAAAAAAAAAAAAAAWN8JoAAAAAIB5adx3N3BirbfUYjgEBzSLvkhSmTAaWmBFcawYU7fZwcV9welWGC3jsm0bE1pj7iP2vwe7Hemz3lvT4zH2Xd3+bEQ9/mJtTONGQEOS8ukDyzrnIh7z5Dqsx9wvocRWA6xRAbNCjGMiK0ZifQ81E3e5VoOnSY674hxfADhglxFMSiuj5enBLo8GC13VV3TX6K3BeWuzB+uoJS/p8ogWFitmOFoZ7vJIJkWFU/slUgsAAAAAAAAAiMv1egAAAAAAAAAAgEWCMBoAAAAAYF6yYim5VL4j27PDIUQ35irOc9hqQAWLW7+HkKxxlKrh77eKrwSnZwmj9ZwdRpt8Lbsd6TPfW/vHYY4n3d3PRlQIo1Qbi9w/NC5rratY3bd/fVZQtT++D1oNsEbFv/Kp8LHLTAXjPq2G0eKGy1rdryc57uIYDUhmpBIOow1mVyvlDvxzonNc7IK5u3/PPdpdHQnOO2Nwc917DskNZlYHp4/0KIwWGbvtk2MxAAAAAAAAAEBcvtcDAAAAAAAAAAAsEpleDwAAAAAAgFaM10rB6bmIyMpc2NEbohtzFec5JIyGVnQ7RpVUwYhQWUEi63OQIYzWc9Z7aur7rduRPms8xf1RCut7t9ChfajFinJJkyGzqqvGXtZ+DabidOHPlfU57LZWA6zW/IzLKJtq/t2wxAqjxQycNRqLGVRrdb+e5LgrbqQNwKSRcjiMtiqzJtby3nMRDOLbMnpLcHrWDeiUlb/S5dEsPEPG59b6nHdadOy2P47FAAAAAAAAAAAAAAAAAAAAAPQXwmgAAAAAgHlpKnTSKJfKd2R7VrzFGgfiqflqrOeQMBqSqvqqJvx4cF6/hJCaxbQaWZ+DtONXfL1mxzOnolxGpK9D78VmMU87GmiHyjohl8rLyckH/qJ0sbpP1VTFXLbxMVqf61JtTFVfUdlPGOvpl++D1gKs1vy4r6X1HrRCcs00C7lNKbe4X4+7/qT3BSDtquwITh/KNgaWXPB+oe9yIORn409pW/HB4LxXrDhTS9LLujyihWcwuzo4fbQy3OWRTIo6nul2mBcAAAAAAAAAAAAAAAAAAADA/JDq9QAAAAAAAGjFeK0UnG6FRebKWm+r4RBMsl7HRuUaYTQkE3Xxfb+EkAqJw2jhSFTGZds2JrSmWeTOek2t98Ccx2NFwqpFee8jxtPdMEXKpZSLiMpZYauU0sq6gbpp1mtQrI1FBjg79RokZX8fRMdDreco7mtpbbfVqFixGu+4qNLifr1ZKK7V+wKQRso7g9OHMo1hNGButozeYs47Y3BzF0eycA1l7DCa992PGJaq9vFMv/xsBgAAAAAAAAAAAAAAAAAAAKC/ZHo9AHSPc265pNMlrZe0RtIeST+T9EPv/aNt3E5W0mmSDpN0sKS9+7fz3977J9u1HQAAAACLmxXUsgIrc2VHb6KDJYgWN7xS8YTRkExUEKdfQkhRIacQ63NAGK33zH3E/giE9Zp2LuYZHk9VFZX9hIpVazxLOzKeKPlUIfh5Ldb2qWrEAAvpJXLO1U+LiNNZj3dq+/0g6ffBlJL5Wsb7nisYr3ncwNms5WIGY1vdr1uPNzwWwmhAEiMVI4yWXVt32wXvBcRTrI7pvt13BOcdkT9Kh+aP6O6AFigraFj2E9pX3aNlmRVdHY91fJBxGWVTA8F5AAAAAAAAAAAAAAAAAABgcer+n4AF0K8Ioy0CzrnTJP0fSWfLeM2dc/8j6bOS/ta3+KfCnXNrJX1E0gWSVhn3uVvSX3rvr29lGwAAAAAwZdwIkuVT+Y5szwyuJAh0YLZOB1SweEWHkPojjGZ/r4S/3ypGJCrj+BVfr+XT4bjWVPDLimhaUaq5KkTEvkq1ohkOLBiPo5MKqUEmqwYAACAASURBVCUa1fCs6aVaUTVXCy4T+gzbAdOxJqHE7sfgQlo9zrDiX4V0vMdl3W/cl1T1VaVdOtZ6pscTM6jW6n49SeyMeC0QX9VXtbsyEpw3O7AUTqN5TkFADPc+f7vGfThyfubQ5i6PZuEazIbDaNJkBLHbYTRrn9wvP5cBAAAAAAAAAAAAAAAAAAAA6D+pXg8AneOcyzrnPivpu5LOUXQI7yWS/kbSHc65Q1vY1mZJP5T0+zKiaPudKukrzrn/65zrj6sOAQAAAMxL47XwxdS5iBjMXOTT4Qt2kwQ6MJsVgGpEGA1JRYWQ+uUCfPt7ZZ9C3Xrrc5Bx2baOC8nljX3P1D7CiltZy819PPZ7vFQbM/dd+R5EwqyxFqv7zHhmKPxmvgbV6DBap44bkmr1OMN6bHHfW0siXvOo580yFjN4Wm5xv55kTHEjbQCk3ZVd8grHKFdFBJaAJLz3unP0luC85emVeumyU7s8ooVrRXqlUgrHTUcqO7s8mrkfrwAAAAAAAAAA+kn4j+gAAAAAAAAAANBuUaEszGPOuYykr2syiDZTWdK9kp6RtFSTQbTDZsw/Q9JtzrnTvPfDMbd1lqQbJQ3MmOwlfV/S45IGJb1M0syrZ94saYVz7jzvffhqGwAAAAAw1HxN4767YbRQhEVqLRqCA6zoTaOyn+jwSLDQWDGhjMsqm+qPkFjBCELVVFPZT2jA5eqmV30leP+M41d8vWbFvUq1yfij9X4spDsTIrPeW5NjskNhUct1irXNUq2omhHpCQXcCkZYrFQrzuvvg2bHGeZ7K2bkLuo1L1b3aWl6eaz1TIl7XNRq8DRJkHbq8weguV3lHea8oUx9GM2ZF7vMjroCMz069gM9N/FMcN6pK/9X3+yTF4KUS2sws0q7KrM/26PlWP/821ZFY5/cL8FqAAAAAAAAAEAS/JsQAAAAAAAAAKA7Ur0eADrmKs2Ool0jaZ33fpP3/k3e+1/33r9w//0en3G/X5Z0g3Ou6Z9ycc6tl3SD6qNod0k6xnt/gvf+t7z3r5a0XtJ7NRlmm/JaSVcmfWAAAAAAMOHHzXk5l+/INkMRFonoxlzFff4qRhAKsPRT+MkSFS4KRQOtkFDGEZHotbwRzxzf/x1nvR+t5eYql7L3hcWIUFgv4hR5M2hmB9xCz5sdp+uvEJwlavxR5vreiorzJYmQTRmrxguethpGSxKkjRtfBSCNVHYGp+dcftbxihVG4xIYNLNl9ObgdKeUNg02/pMm5mowszo43fq8d5J9vNI/x2IAAAAAAAAAAAAAAAAAAAAA+gthtAXIObdR0qUNky/z3r/Xez/SeH/v/a2STlN9HO0MSRfE2NxHJA3NuH23pFd57x9u2Ma49/4aSb/VsPz/ds69MMZ2AAAAAGBaVEwrKgYzFwUjMFL2Ey3HPRA/usJzjKSK1f6/+D4qXBQaf5kwWt+yAltT33HWd11UHG8uUi5thkKL1X0qVcP70YIRKeukqOfO+hyHlolcj3Hc0E/fB9b4S7Wiar5mLmc/R/HeW1HPwVgLYbFO79etxxtCvBaIb6QcDiWtyq5VjL+hAzQ1Ut6pB/beF5x33LITtSq7tssjWviGsmuC00cqw10eSfcjwQAAAAAAAAAAAAAAAAAAAADmP8JoC9MHVf/afst7/5dRC3jvn5P09obJH3fOpa1lnHO/JOmtMyZNSHqb974UsZ0bJX1+xqScpD+LGhsAAAAANBqPCF106sLafERgxArMoLliNV50hTAakrKCOFZ8qBcK6YjvlUA8wPocZFymbWNCa6y41FTUytpvdTIGkTciZ3uru1VVxRhP9z8f1nNQqo1FRDRmj9N+DcZUMkOJ/RPjsMbi5TXhx83l5hoaSTeJ6CVVjBlTs0KPzSSJnY03icoBOGCkEg6jDWXCYaUQL9+u4WAB+u7ub6qm8HfymYPndnk0i8NgZnVw+mgPwmhzDbkCAAAAAAAAAAAAAAAAAAAAWHwIoy0wzjkn6dcaJn8qzrLe+y2S/mvGpBdJOitikQslzQyn3eC9fyzGpq5quP1bzhlX3wEAAABAQFQYLZfqzI8XhbQdGIkbAcFscQMn5RphNCRjfS6tWFQvDLicnFxwXjEQO6r6cMwq47JtHReSsyJU47WixmtFMxbTyRCZtW4rfiP1JhxoBTGK1bHg50CSCoHPsR1YK2rM+j6YJ6HEqECZFUaLWl/c+7ZyfNPp4GmSMXl5jdfMv+EBYAYzjJadHUab/GeoAE8YDWEVX9Zdo7cF560bOES/vOS4Lo9ocRgywmgjZftYsFPMkGvE71kAAAAAAAAAAAAAAAAAAMDixGnJAKYQRlt4jpY080qVCUl3JFj+3xtuvyHivr/RcPvaOBvw3j8s6d4Zk5ZKenWcZQEAAABAkkoRkYucEUaZq6h4Sty4F2aLGzhpNaCCxcv6XPYi/GRJuVREzKk+HlDzVdVUC96XMFrvWa+jl9doZZe5XCjw1S4FY0xRMQzrcXRS1GfA+hyHlokKge02XoNOPv9JRT33UccZVjwuyWtpfS9a647S6f160mMu4rVAPLvKO4LThzKzw2hAUvfvuUfPV0eD884Y3GzH9jAnobChJI1WhuW7fMbQfPjZDAAAAAAAAAAAAAAAAAAAAEB/yfR6AGi79Q23H/PejydY/gcNt38tdCfn3EGSXjJjUkXSXQm2c4ekk2bc3izppgTLA4vG2NiYvv/97+uxxx7Tzp07VSqVVCgUtG7dOh155JF62ctepoGBgbZs6yc/+Yn+7u/+Tlu2bNGjjz6qkZERlcsHLlS99tpr9ba3vS247H333adrr71Wd999t55++mnt3r1btdqBi/afeOIJHX744ZKks846S1u2bJme1+2LcAAAwPw3blxUm3UDSrt0R7YZFUZrJRyCSXGfO8JoSMqK4UR9lnuhkFoa/Bw0Tqv4irkOwmi9F/W+Gq0Mt7TcXFnrHokYTyFlx8U6xQqalWpFVY0YYOixRYXARirhGFw/fR9EB1jtfaU1L0loxHrdS9UWwmgxl2l1v16sJgudEa8F4rG+J8NhpXDEyovf8SJsy+jNwek5l9fJK17Z5dEsHoNG2LDsJ7SvukfLMiu6NhbreKUXUV4AAAAACOH8PAAAgCT4gycAAAAAAAAAgO4gjLbwrGq4Hf4T7LbG+x/qnFvpvd/dMP3FDbcf8N4nuSrt7obbxyRYFljwqtWq/vVf/1XXXnutbr/9dlUq9gXw+Xxe55xzjn7nd35Hr3nNa1re5uc+9zldcsklGh9P0lKUKpWK3vWud+lzn/tcy9sGAABIarxWCk7PdfCi2rRLa8DlNBFoT0cFSxAt7nNX9hMdHgkWGiuGkyQW1A1WDKAxSBQVEco4fsXXa/l0a2G0Tr4frXWPlMPxGyenXCrfsfFYrM9AsbZPVVWD80KPLSosZj3mfvo+GHA5pZRSLRCDsyKi5dqEGU1MEn0rGO/fMSMwafHem1HKRuVa8jBazVc17sPHgBbitUBzE7Vx7avuCc5blVk7axqXuiCJZ0pP6sfFh4PzTlxxphlIxdyFw4aTRio7uxpGKxo/m/VTpBYAAADA4sP5eQAAAK0iuAoAAAAAAAAA6I5UrweAtmu8UjyXcPnQ/Y+OMW1bwu38OMY2gEXpP/7jP3T00Ufrwgsv1G233RZ50pUklUolfe1rX9NrX/tanXjiifr+97+feJs333yzLr744sQnXUnShz/8YU66AgAAXWcFjzoddLEu2i1WiW60Ku5zZ4VfAEuxGo7z9NvF91YMojHmE/UZyLhsW8eE5Ky4l2RHuVJKK+sGOjUk870+UgmPJ5cqKOW6/+viQir8GSjVirMCgVNCjy0qcmbF6frp+8A5Z47HiohGxUWt2FnwvsZrEDdyNmXcl4Jht5BW9utWGDcK8VqgOWu/IEWHlYA47hy92Zx3xuDmLo5k8VmRXqmUcSpAVLi3E6z9cT9FagEAAAAsLpyfBwAAAAAAAAAAAABA/8v0egBou8Yz2Q9OuHzo/r8s6T8bpm1ouP2ThNt5quH2aufckPd+JOF6gAXlIx/5iD7ykY/I+/q/pOSc08aNG7V+/XqtXr1aO3bs0E9+8hM9+uijdffbunWrTjnlFH3605/W7/7u78be7oc+9KG6bV544YV6xzveoUMPPVTZ7IEL7Nesqb8Qbvv27fqrv/qr6dsDAwP6oz/6I5177rlau3atUqkDF92sX78+9ngAAACascIYUWGadiikl+j56uwfW4hutC7uc1fx5Q6PBAuNFVBMEgvqBut7q/GzEfUZyDh+xddrOZeXk5MP/GVkKzhTSC+Rc65jY8qnw++tsm/8uwr779/hfajF2q6X17g39veBz3HWDSiltGqqzppnPeZ+i3EU0ks0Vts7a7oVEW0MKM6UJPpmhtGMwKTFCtmFVIzXJErU4zWXIV4LNGUFPCVpMLN61jSn8L4rtA/E4jZW3av7nt8SnPeLhY1anz+8uwNaZFIurZWZVcFj0ajPfSckid0CAAAAQKdxfh4AAAAAAAAAAAAAAPMDV00uPD9quH2Ic2699/6ZmMufEpi2MjBtsOH2z2OuX5Lkvd/rnCtJyjdsZ05hNOfcCyStTbjYL85lm0C7XHrppbr66qvrpi1fvlwf+tCH9OY3v1mHHXbYrGW2bdum6667Tp/61Kem/5rkxMSE3vnOd2rfvn269NJLm273kUce0QMPPDB9+9xzz9UXvvCFWGO+8cYbNTFx4ELWK6+8Uu9///tjLQsAADAX40bwKOfywentYl2020qoA5PihtGsqA1gKdbCQZ9+u/jeDBIlCqNlzXnoDuec8qlCcH8wUmn8OwaTOv1eTLp+673Yaa08D4VATM05p0JqifbV9iTYdm9icBbrubD2lVHHH0mib1YwMunxzZjxvRvSSvA06phhwOU04ccDyySLuwGL0a7KjuD0ZemVGkjlAnM6F/XEwnLP87cHv5sl6czBc7s8msVpKLMmHEYzjk87oeariWK3AAAAANBJnJ8HAAAAAAAAAAAAAMD8kWp+F8wn3vvnJD3SMPn/ibOsc26ppPMDs5YHpi1ruB2uEkRrXCa0naTeJemHCf/7Whu2C8zJ5z//+VknXZ1++ul66KGH9KEPfSh40pUkbdiwQVdeeaUeeOABvfjFL66bd9lll+mOO+5ouu2tW7fW3X7DG94Qe9ytLnvHHXfIez/9HwAAQFIlI4zW6cCJtX5rPGgubnSl4isdHgkWGutzmSQW1A3W90qxmiSMxt8+6Ac547UcLc+OUUidfy8mDY71KhJmRbmi5I2IW9K4Rivb7iTz+8DYV5aq9j40yetpBhqryaJiSe7fyn698XtxpqFs+G9lFDlGA5oaMfZTQ5nVCdfE73lxQM3XdOfILcF5K9KDeunyk7s8osVpMBv+HIdiaZ0S9fuSUOwWAAAAADqF8/MAAAAAAAAAAAAAAJhfCKMtTP+34fYHnHOHxFjuo5JWBqbHCaOF/9R3tMYz4RvXCSwKjz76qP7gD/6gbtqpp56qW265RevXr4+1jiOPPFLf/va3tXHjxulptVpNb3nLW7RzZ/QFLtu3b6+7HXebc10WAABgLsZr4R9Bcql8R7drRWyKtWThEBxQih1Gs6NQQCPvvRnQ6VX8yWLFqxo/G1ERoYzLtnVMaI21jxipDAenJw2XJZU0NFFIh+NYndbK82A9tqSPudOvQVJWoMzaV1rBtJzLK+XSCbZrHd/E20cfuH/846FyC/t163lIK6Pl6dCvtaUSx2hAU1YgaZURHHTGeri8FjM9MvaAfl7+WXDeaYOv5vi1S4Yya4LTR43j006ICqP127EYAAAAgIWL8/MAAAAAAAAAAACA+YPzkgFMIYy2MH1a0u4Ztwcl3RIVR3PO/W9JlxqzazG22cq+hf0RIOl973uf9u7dO317cHBQ119/vZYtS9YKfMELXqCvfOUrGhgYmJ7205/+VB/96Ecjl5u5bUnKZuNfkDSXZQEAAOZi3IcvrM11OHhkBoyq9oW+sJVrE5Gxp8b7AnFVfFlVhd9bVnioV6wYVWOQKCoOSFiiP1j7CCsWZcWo2iVpaKJX0cABl1Mq4a+prceW/DH3V4zDeg2sQJkVCksauYv7PdRMkjBaK8FTazz5dMGOu3GMBjS1q7wjON0KKslZaTTggDtHbwlOTymlTSvP6fJoFq+hzOrg9NFyN8No9vFEvx2LAQAAAFi4OD8PAACgnfi3IgAAAAAAAABAd2R6PQC0n/d+1Dn3dknXz5h8rKSHnXOflXSLpJ9JKkh6qaR3SDp9xn2fkTTzz8qNBjazt+F2K1dONi7TuM5WfEbSlxMu84uSvtaGbQOJ/ehHP9I3vvGNummf+MQndNBBB7W0vqOPPlrve9/79PGPf3x62j/8wz/o8ssv19DQUHCZWi1O+zBsLsu2w0MPPaQf/OAHGh4e1sjIiPL5vNauXauNGzfquOOOUy6Xa2m9lUpF9913nx5//HHt2LFD4+PjWrt2rQ4//HCddtppyufzbX4kAAAgqfFaKTg9l+rsfrqQNsJoCcMhmJQkuNJKQAWLV9R7K5/uTfzJYoWQGr9Xoj4Dacev+PpB0rBYp0MQScNrnQ61WZxzyqeWaKwW71eDGZdRNjUQnJf0Oe3VY7ZY4cZSNfydZobCEr4X7ajYPnnv5WJGkIrGOEMqPnnw1AzBpZZEHKPFj7UBi9VIJRxIGsoaYTSD9/wtHEzaVd6hB/b+V3DeS5adpMFsONaF9hs0PscjlZ2J9vFzEXV80G/HYgAAAAAWJs7PmxvOzwMAAAAAAAAAAAAA9ApXTS5Q3vsbnHPvlfT/SUrtn7xc0vv3/2e5RtJKSW+dMW3ehNG89z+X9PMky3TjpH/AcvXVV9ddMLZmzRpddNFFc1rnpZdeqk9+8pMqlycvmt+3b58+97nP6QMf+IAk6cknn9SLXvQic/lXvvKVwenXXnutJEWOz/o8PfHEEzr88MOnb5911lnasmXL9O0kF809/fTT+vM//3N9+ctf1vbt2837FQoFvfKVr9Rb3/pWvf71r1c6nW667ocfflhXXnmlvvGNb+j555831/vrv/7ruuKKK3TkkUfGHjcAAGivUq0YnJ40BJKUFVxJEvjCAUmCchVf6eBIsNBEvbes8FCvWONp/F6xPgMppZVyqeA8dFfiKJcRcmqXpOPpdKgtSiEdP4wWNc6kcY1ePuYQK9xoHWfYobBk33OF9LLg9KoqKvsJDbh4F7aNJYiQtbJft0NwSyKO0cLHjAAmee81Ut4RnDeUWRuc7mT9mwphNEz6zug35RW+aPuMoXO7PJrFbSgTDqOV/YT21fZoWXpFx8dgHa+klVHGZTu+fQAAAADg/LxJnJ8HAADah38TAgAAAAAAAAB0B1dNLmDe+2skbZb0SIy775X0bkmXSjqkYd5zgfvvbrgdvkLG4JxbptlhtFCADVjQ/v3f/73u9m//9m9rYGBgTutcu3atXvva10ZuZz7y3uvKK6/Uhg0b9OlPfzrypCtJKhaLuvnmm3XBBRfo6aefjrxvtVrVH/7hH+rFL36x/vmf/9k86WpqvV/60pd0zDHH6Oqrr27psQAAgLkbr5WC03Opzv7laCu6kSTwhQOSBOUqvtzBkWChiXpvdTqgmJQ1nlK1MYwW/gxkiQn0DStqZd6/w1GupONJGhVrpyTPRdRnOHEMLuFz1Gn2cUY47lWsWqGw9r32xQSxsyTHQ+UW9ut2CG6J+RhKCcYPLEZjtb2a8OPBeUPZcFAJiFKulXXX7tuC8w4eOFRHFl7c5REtbkOZ1ea80fJwV8ZgRUrz6QJ/vAoAAABAV3B+XnycnwcAAAAAAAAAAAAA6CeZXg8AneW9v9U5d4yk10k6V9KpktZJWi7p55KekHSjpC9475+TJOfcUQ2r2RpY9WMNt1+YcGiN99/lvR9JuA5gXnvmmWf05JNP1k179atf3ZZ1v/rVr9YNN9wwffuee+5RuVxWNjs/L5ivVCp64xvfqOuvv37WvIMOOkjHHnus1qxZo/HxcW3fvl3/8z//o71798Zad7FY1Hnnnadbb721bno2m9VLX/pSrV+/XrlcTs8995zuu+8+jY2NTY/p0ksv1cjIiC6//PI5P0YAAJDMuHFhba7DwSM7ukEYrRWN4acoZT/RwZFgoYl6b/VbGK2QXhqcPu5LqvmqUi4tSar4SvB+GcJofSPpe6vT78XkkbBehtHiPxeFVPgzI0mFhI+hlzG4EGs8VuzRDIW18XkoVse0MrMq1nrGqvEjZJVa8jCaHYJbYr7frRgLgEkj5Z3mvFWZZGE0P9fBYEH47713a2+18W8rTTpjcDMhrC5bkRlUSinVVJs1b6SyU+v1oo6PwTpe6XQkGAAAAAAkzs9LgvPzAAAAAAAAAAAAAAD9hjDaIuC9r0q6Yf9/kZxzh0paP2PST733Pw3c9eGG2xsSDuuIhtsPJVx+wapUvZ4hEddx64ekTLq3F+Dcdddds6adcMIJbVn3y1/+8rrbxWJR999/v0488UStX79eTzzxxPS8v/qrv6r7y4r/8i//opNPPnnWOtesmbwQ7qyzzpqe9sY3vlH33nvv9O2Z651p/fr1welxXXbZZbNOujr33HN1+eWX68QTT5x1/1qtpnvuuUdf/OIXdd1110Wu+93vfnfdSVcrV67U5Zdfrne84x1avnx53X2LxaI+85nP6E/+5E9UKpUkSVdccYVOOukkbd68ucVHBwAAWjFeKwWn9yoyYwVLEC3J82ZFoYAQ672Vc/np0Fi/KER8b5VqRS1JL5MkVXw4IpR2/HqvXySNO3Q6ypV0/b2MhEXFzhpF7euTHAdk3UDffX6s95AVFLG+6xK/F41AY9Q2wvdNEEYzvtOiRIXgzHhtgggrsBjtquwITk8ppZWZoeA8J+v36qTRIG0ZuTk4PefyesWKs7o7GCjl0lqZWaWRyuwI4khluCtjMPfffRasBgAAwOLC+Xnd0+tz9Dg/Lz7OzwMAAAAAAAAAAAAA9Jv+uvIL/eDshtt3GPf7YcPt45xzS7z3ca80O63J+hatZ0akI/549l9uR3s9/vGUDl/T2zE888wzdbfXrVun1atXt2XdL37xi4PbO/HEE5XJZHT44YdPTx8cHKy730EHHVQ3v9GyZcum/z+fz9fNi1quVbfeequuueaaummf+MQn9MEPftBcJpVK6dRTT9Wpp56qK664YtY4p3z5y1/WtddeO337hS98oe644w7zcRQKBV122WU65ZRTdPbZZ6tUKsl7r/e85z165JFHlEqlkj9AAADQklKtGJyeS4X3++1iXbhbqhblvZdzvY3vzjdJAipeNVV9Vek+i1qhP9nxnPjxpW7JRwShirWxpmG0TJ+FnRazpDGqpPdPKpcwNtHp8URvO/5Yo8aZ5DH0MgRnSRr3skMjyR5bzuWVUko1zf6dZJJ9dbLgafIwWtE4/sunliifThaVAzBppDw7liRJKzOrzJisHUbDYvd06XE9UXokOO8VK89SwfiuRmcNZlaHw2jG57/drN/f9PLYEwAAAOD8vO7p9Tl6nJ8XD+fnAQAAAAAAAAAAAAD6Ef9CjEbvaLj996E7ee+flfTAjEkZSacn2M5ZDbdvSbAssCDs2rWr7vbQ0FDb1p3P55XL5SK3N19cccUVdbd/7/d+L/Kkq0aDg4PBE6+893XrzmQyuummm2KdPDZ1QteUbdu26cYbb4w9JgAAMHfjtVJwetIITFJ5I6pUVaWlwMdiZ10gbSn7iQ6NBAuNFedJEl/qlqiAUXFGDKniK8H7ZFy27WNCa6x4pnn/DsdB0i6tAZdrfsf9ehkKK0QEAhtFRTSSPIZ+jHFYca9xX1LNV2dNLxrBtKSPzTlnvgbFaoIwWoL7tnLcVDIibYXUEvO1TxJrAxajUCxJklZl1yZel5ef63Awz20Zvdmcd+bguV0cCWYayoYLBKOV4a5s34qs9uOxGAAAAICFh/Pz4uH8PAAAkAx/RAcAAAAAAACd5TktGcB+hNEwzTl3uurjZo947++IWOSrDbcvirmdoySdNGPSPkm3xlkWWEgaT4Rq/MuQc9W4vuHh7lzk0k4PPPCA7rrrrunby5cv11VXXdWWdd9+++364Q9/OH37zW9+s4477rjYy7/73e+uO6Hrpptuasu4AABAc+VaWVWFA0E5F/5L1O0SFb0hvJFckoCK1FpEBYtTyfg8JokvdUtUEGDm47De/4TR+kfSuEM3YhDzJRSWT8ePykUF5ZI8BitC1ktRxxmhmKj9XZf8sVnPhxUzmet9yy3s04tGUDWfWmK+9mU/wfEDEGGkHA6jDWXCIaUonH+wuI1V9+q/nr8zOO+XCsfoF3KHdXlEmDKUWR2cPmqEEdutVA3vv3sZ5QUAAACweHB+XnOcnwcAAAAAAAAAAAAA6FeE0SBJcs4tkfTZhskfbrLYFyRVZ9w+3zn3SzE21/in5P7Ve1+KsRyABJyb/3+N6dvf/nbd7QsvvFArVqxoy7pvu+22utsXXHBBouWXLFmiV7ziFdO3v/Od77RlXAAAoLlxH76oVpLyEUGRdogbMEI8SWNyFR8O4gGNitXwe6vT3xGtyKayZtxs5mekUrPCaJmOjAvJJX1/dSMGkST+FRUc67REQbOI+yZ6vH34fZCPiDeG9pnWfrSV6NsSY9tJ9tVJgqetxMpKEd/tUZ8nK8gCQBoxwkhDWTuM5jT/f++M9vvP3d9W2U8E5505dG6XR4OZBo3Q4Ui5OxfrW78r6WWUFwAAAADahfPzonF+HgAACxV/LgcAAAAAAAAA0B1cOblAOecy3se7Ytw5t0zS1yUdM2Py9d7766OW894/5pz7vKS37580IOk659zZVujMOfc6SW+bMWlC0kfijBNYaFatWlV3e/fu3W1d/+joaOT25oO777677vZZZ53VtnV/97vfrbu9atUqPfnkCQR+aQAAIABJREFUk4nWMfMksCeffFK1Wk2pFM1RAAA6bbxmxy1yqbw5rx2iohtJI19IHpOr1MIX2gONrPdWL8NPUfKpJdpbnf0z4czHUVX41zxWVA3d15dhtDYFxzotyXMR9TwniZ31Y4wjavyh7zXr2KOV95b1fIwliJ2N1ZKF0bz3iS4ctL/blzaN1y5Tey7kAxaaXeUdwelDRkgpGhfBLFY1X9Odo/8enLcys0ovWXZSl0eEmazQ4UhlZ+J9cSvskGv/RWoBAAAALDycn9cc5+cBAAAAAAAAAAAAAPoVYbSF62Ln3Osl/aOkf/Pez7q6ZX8Q7fWSPibpkBmznpT0rpjb+TNJvyFpaP/tUyV9yzn3O977H83YVk7SOyX9RcPyf+G9fyrmtoAFpfFEqJGRkbatu1QqqVSq7xOuXr26bevvlmeffbbu9jHHHGPcM7mnn3667vbJJ588p/XVajWNjo7OyxPcAACYb8ZrwQ6zpORRmqSiwmulKmG0pJLG5Mq+3KGRYKEpGQHFfgwhSZMRo1AYbeZnpGK8/zMpwmj9Iun7K9+FUF+S/WI3Qm2WJM9d1DjzqaVtWU+vRI2/VK3/Xqv5mhmLLSR4HqaXMd6PcSOmFV9W2ccPmHp51VRVOsE/UZhhlVQhMnxJvBYIq/mqRiu7gvMiw2hGRMl7wmiL1Y/G/kc7ys8G552+8tVKO/45upeGMuF/Gyr7Ce2r7dGydGfjofPtZzMAAAAACwvn5zXH+XkAAAAAAAAAAAAAgH7FmegLl5P0yv3/eefcE5IekTQiaYmkgyQdL2mgYbknJL3ae//zOBvx3j/jnDtf0jdnrOs0SQ85574n6XFJK/dva23D4t+Q9H8SPq4Fb/2Q9PjH+Yt2nbZ+qPl9Ou2QQw6pu/3cc89peHi4LSdIPfjgg023Nx8MDw/X3R4aat8L17judtizZw8nXgEA0AXWRbWSlOtwGC3l0sqnCsExEN1ILuq1DLHCUECjYm1fcHo/hpAkO141M7hYrhlhNEcYrV8kjTt04/0Yd0wppZV1jb8m7J4kz0XUYyokOA7oxxhHNpVVxmVU8ZVZ8xq/18ZrJXmFI0T/P3t3HibJXd95/vOLzKzKrOrqrupDRyO1JCRAlhCHEAaE1LKRhGg9BnN5PBaPx4Y16wfjGWaN1zasxwJ7AWMW7zDGDHgZG5tBuwwPYJtdZAO2dSFA6DBgJIMEultHH1Xd1VWZWZkZv/2jVa2srN83MvKKzKx6v55HjzojMiN+eUZkVcS7ugnFThkxNevzdN31ugjE1nwtdSwnKbxWiqYT7zP7aEDY0cYRxWoE520vtP4652lO4TAaNq8b578cnB4pp0tmX5nxaNBq1gijSdJC7VAGYbTwdnhUv5sBAABgc+D4vOwM+xg9js9rj+PzAAAAAAAAAAAAAACjijDa5uAkPfOp/5L8raRf8d4f6GTh3vsbnHOvk/QpPR0/c5Iueuq/kP9b0lu99+GzbjaxfM7pzJ3DHgWycPHFF6+bdvvtt+uqq67qedm33377msulUkkveMELel7usDnXv5PuVlbCJ9P2wvvwCckAAKC/qnElON0pyiTqUoymgkEv62Rf2MqNdLGVVYTRkJYV3RvFEJIklXJWkOjpz5VQKEmS8imjQhi8Yi59jKrgJlIHoXqRNhRWyk319Tt3p4q59O/NUsJ1O3mPj+rnQTGa0rHG0XXTWz/XkvY7rM+U5PWGb7OcclvdTXzs+HY93Wu00rBjqsWopJzLa8JNasVX19+WfTQgaL5m/ypoLs8vKZDOodoT+pel24PzXjDzUm3Lc6LysG3LzylSpFjxunnz9UM6TWcNdP3WPsKo7osBAABgc+D4vM2D4/M6x/F5AAAAAAAAAAAAAIBRwZ+927hukfQ5SfNtrleXdL2kK733P9tpFG2V9/7Lkp4r6eNt1vlNSW/03l/jve/sDHhgg9mzZ4/27NmzZtpXvvKVviz7q1/96prLL3nJSzQxMfhISL/t3Ln2KMTDhw8PZNnFYlFxHMt739N/Z555Zt/GBwAAbFbwaDIqZhJ1KRqRmW6CIJtdp6GSGmE0pGRF90ojevK9Na7m90iDMNrIs7YPIVm9FtMGJ4Ydpujk8Uh6nAvRROr3RFJgbZisx6J1PyNpv6OT1+KqKSOmlnZbXY47/1GvFXzsdBylp6Ju1uu43GAfDQiZrx8MTi+4CU3nZszbWd+4vDgpdTO6eeHvzef+stmrMx4NQiKX09b8XHCe9TnQTxVjO9zN/goAAAAAdIrj89rj+DwAANC54f3RNQAAAAAAAGwO/K0cAKsIo21Q3vt/9t7/G0k7JJ0r6fWS/oOk35X0v0l6u6QrJW333l/tvf9aH9b5pPf+bZJOkfQKSW+W9K6n1vsGSc/03r/Me//5XtcFbBSvetWr1lz+9Kc/rVqtt9jDgQMH9Ld/+7eJ6xkXp5566prLd999d9+WffLJJ5/4d6VS0UMPPdS3ZQMAgMGqxpXg9KxOql2Nb7Sygm2wdRqTqxNGQ0rW+7E4oiEkM+bT9B6xXv95VxjImNC5vCuo4NKd9JRViCxt/GvY0cBOHg9rO9zpsoYdg7NY42oNg6UJhXXCeg0sG6HJVlaQMkk9Xkl93cQQXO74PqD1eu80xApsFodr4b+TM5ff2SY4zckuOK4Wr+jrR74anHfqxB6dUzov4xHBMpffGZy+UDs00PXGvqGqD/8MZ9j7nwAAAAA2D47PS8bxeQAAAAAAAAAAAACAUUUYbYPzx/3Ae/9F7/2feO/f571/v/f+Y977r3nvFwewzhXv/T957z/lvf/Dp9b7Be/9/f1eFzDu3vGOd6w5yezAgQP6i7/4i56W+ZGPfGTNwVvT09N661vf2tMyh+XlL3/5mss33HBD35Z98cUXr7ncr78GCgAABq9qBI8mo2Im67cCbN0EQTa7TkMlhNGQVjkOvx9H9eR7a1wVwmhjZzJlpDOrSN+4RMJKHcRN24VQ04ZSswqqdsoaV+s20wqFRYpSB/rWrre3qJj1uZuk1sF2PSmMtvoZmiYyCeBp8/WDwelzhXBAqT3+NNtmc8fi17XUCP+a8bLZfW0Ce8jSXGFHcLr1OdAvVtheGt1oNQAAAICNh+PzknF8HgAA6By/EwIAAAAAAAAAZIMwGgAM0Xnnnad9+/atmfbbv/3beuKJJ7pa3t13360PfehDa6a9+c1v1vbt27se4zBdccUVay5fd911WlzsT8/xqquuWnP5k5/8ZF+WCwAABs86sTZtjKZXJePk3YoRbENY7BsdP2aE0ZCG9958bQ07/mQxYz6N9mG0nMsPZEzoTtrAVychsF6kfc0POxpYjKY7uG7yWEsplzXs+2wp5cLjb/48kKRKIxz7KkXTXYVopoz1LqcMni0bgdik56uT7boVaCu4iROfg2kikwCeNl8LB5G253cl3s4p/BnjOQlm07lp4cvB6cWopJ/c9lPZDgaJZvPh4OHCgMNoSXHSUY3UAgAAANh4OD4vGcfnAQAAAAAAAAAAAABGFWE0ABiyD3/4w5qaevrEzYWFBb3+9a/XsWPHOlrOgQMH9MY3vlErKysnpp166qn6vd/7vb6NNWvnn3++LrvsshOXjx49qne96119Wfa+fft09tlnn7h822236c///M/7smwAADBYVR8OHk26YibrtwIfRDc6YwXuktRiwmhor+orZphjdENI7T9X6r4evE7BFQYyJnQnbYiskxBYL9IGJ4YdDSxEBeVTRv7ajXVc7rPFGn/rfoYVGinmuouMWEG5alxW7OO2t7f2g2Zy28zbWJ9rIa1huFXN47Yeu6QoC7CZHTaCSHOFcEAJaPZg5T49ULk3OO8lW3+a6NWImTPCaPO1QwNdb9LPSdLGbAEAAACgHzg+z8bxeQAAAAAAAAAAAACAUUUYDQCG7Nxzz9Wf/MmfrJl26623at++fXrkkUdSLePee+/V5ZdfrnvuuefEtCiK9OlPf1q7du3q63iz1nrg2J/+6Z/qwx/+cOrbHzlyRJXK+uhGPp/X7//+76+Z9ra3vU1f+MIXOh7j1772Nf34xz/u+HYAAKA7lTgcRsvqxGsrpEJ0ozPdPF51TxgN7VWMeI40uiEkK9hWjpdO/Nt6/ecJo42UtNui0pC3Wa2sOF+W0sTi8q6gQpT8mk8fpxv+fQ6xIiGt200rNNJtALKUC6/Xy6tq7Hs1W276vGq2NT9r3qbmV8x5raz72/yesx67pO0CsJkt1IwwmhFQaiecpcVGddP89ea8vbP7MhwJ0pgr7AhOn68flPeDe/eWE/YhiOcBAAAAyBLH5yXj+DwAAAAAAAAAAAAAwCgijAYAI+Atb3mL3v72t6+Zdsstt+i8887TH/7hH+rhhx8O3u6+++7T7/7u7+qCCy7Q9773vTXzPvjBD+ryyy8f2Jiz8opXvELvfOc710z7zd/8Tb3mNa/RHXfcEbxNHMf6xje+oXe84x06/fTT9fjjjwevd8011+gtb3nLicsrKyt6wxveoDe96U3msiWp0Wjorrvu0nvf+16dd955uvLKK/XQQw91ce8AAEA3qvH6g6olaTIqZrJ+KzhiBTsQlvR4TUczwemE0ZBGUnRvFOJPIVagqTkESRhtPKSPcrWPgPVD2gDbKETC0ow1zTjTvs9H9/Mg/Di0bjetz7pun8ukoJoVPVszHiM+NhVtUWT8GqKT7bp1f5uDbsVc+LEjXgusV4trOtpYCM6bKySH0ZxzxhzSaJvFscZR3b54c3Dec6Yu0KmTp2c8IrRjBQ9rfkXL8bGBrdf63h8pp4KbGNh6AQAAACCE4/NsHJ8HAAAAAAAAAAAAABhF+WEPAABw3Ec/+lHNzc3pfe97n7w/fhLZ4uKi3vWud+nd7363zjvvPJ1++umam5vToUOH9OCDD+oHP/jBuuUUCgV95CMf0dve9ras78LAfPCDH9RDDz2kz33ucyemfelLX9KXvvQl7d69WxdccIF27NiharWqxx9/XN/97ne1uLiYatkf//jHNT8/ry9+8Ysnpl133XW67rrrtGvXLj3/+c/Xjh07FEWRjh49qv379+uee+4J/pVLAACQjeZQUDMrJNJvVnDECoIgLOnx2pLfpqWV9ftzhNGQRlJ0bxTiTyFWkKjcWJb3Xs451X09eJ2c48d7oyTta6xkBJz6LfV4RuC9kSp6luI643SfQ8z9jJb9H+uzrvswmh3rKzeWpTYNxrIRTyvlplVwE6r69T9H6WS7nmb/z7oPxGuB9RbqB815VkBplZMVRsNm8Y0j/6iaXwnO2zt7dcajQRqz+R3mvPnaQU3nwnHyXlWM7/2laCohsggAAAAAg8PxeTaOzwMAAAAAAAAAAAAAjBrOnASAEfIHf/AHuuyyy/Rrv/Zruvfee09M997r+9//vr7//e8n3v7CCy/UJz7xCV100UWDHmqmcrmcPvvZz+r888/X+973PtVqT584u3//fu3fv7/rZRcKBX3+85/Xhz70IV177bVrDqg6cOCAvva1r6VaxvS0fQIxAADor2ocPgB6Mipmsn4rwEZ0ozNWQCWnvBmrqRFGQwpl470YKdKEm8x4NOlYIaOG6qr7mgpuwgwI5V2bWhEylTbSWUyIUPVT2khWVnHR5DGkiZ61H2fa+zw5Avc5xNoGtoZFrMBot8G3Us6+nbXNTnOdUjSlvCsYYbRw8LGT5Tc/3+yjAenNJ4XRCslhNMvqycTY2GIf6+aF64PzZvM79LwtP5nxiJDG1vycnCJ5xevmzdcP6TSdNZD1mmHTjCLBAAAAABDC8XlhHJ8HAADS4w9fAAAAAAAAYLA4KhnAqmjYAwAArHXFFVfo7rvv1mc+8xldfvnlyueTG5aTk5N69atfrb/5m7/R7bffvuEOulrlnNO1116rH/zgB3rrW9+q7du3J15/y5Yteu1rX6u//uu/1p49e9ou+7d+67d0//3363d+53d0xhlntB3PzMyMrr76av3pn/6pHnvsMb34xS/u6P4AAIDuVY0Ta7MKnJRy4QOurRN+EWY9XqXclApG6MkKQwHNrABOMZqSc6N5cGZykOj4/bECQnnH3z0YJWkjD6XMtlnpIlnWti1LacaaJnqWJgw26YrKuVyqcWWtaDwOrZ9t5mddyue8Vd4VVHATwXmpwmiN8HWmctPm51Qn2/VKw9hvaHq+S0Zw0ApmApvZ4Vo4jDYVbRmJWCZG191Ld+pg7YngvEtnrxrZ7etml3M5bcvPBect1A8NbL1J380AAAAAYJg4Pi+M4/MAAEA6nJYKAAAAAAAAAMgGZ04CwAjK5/O65pprdM0112hpaUl33HGH7rvvPh04cEArKyuanJzUySefrGc/+9m68MILNTk52fW63vOe9+g973lPV7e94YYbMr2dJJ111ln6sz/7M3384x/XnXfeqX/913/VwYMHdezYMU1PT+ukk07Sueeeq+c973kqFMJBDcspp5yiD3zgA/rABz6g+++/X3feeacOHDig+fl5RVGkmZkZ7d69W+eee66e9axnKZfjJC8AAIahGleC07MKo1mhgEq8LO/9yIaXRo0VKSlFU8oTRkMPyg3jtdVlLCgLSWGASrysrZo1X//W+wXDkTbyUDQCTv2WNm4zChGcVNGzVPG09vdlFO6vxQq7tW43k7aj3a97WrXGyvp1G9GzteMJX6cUTSsfFaTG+nm1eP26Ol1+8+vG3EczomrAZjZfD4fRthd2tr2tE993NrMbF64PTs8pr4u3XZnxaNCJufzOYARt3ggl9sMg9lcAAAAAoF84Ps/G8XkAAAAAAAAAAAAAgFFAGA0ARtz09LT27t2rvXv3DnsoIyWKIl100UUD+wucZ511ls4666yBLBsAAPSmEofjFpNRMZP1l4yYTaxYK76qSZfNOMadFVkpEkZDjyrGyfdpg1XDkBQGWI0J2GE0frw3StIGt0oZhblyLq+Cm1DNJweorG1bltIEMtK8j1NdZwxDiTW/ooavK/fUe94KjfTyWVfKTeloY37ddGtdaa5TiqaVdxPBeZ1s1639v+ZYXikXfh2X4yXitUCL+dqB4PTZfPswmsXLd31bjIeDK4/r7qU7g/NeOPMybcvPZTwidGI2vyM4fcEIJfbDOH43AwAAALA5cXxeGMfnAQAAAAAAAAAAAACGKRr2AAAAAAAA6EQ1rgSnp43R9CppPdZJv1jPCpwkhdFqMWE0tGfHeUb35PvJpM+VxvH70/D14Hzr/YLhSPs6KxoBp0FIFxzLZhuaPIb240xzX0opomejHONIei6aP99WPxta9fJZZwXy0oTRlo3gaSk3rYIRcKwbn2shldgOqj797/BjtxqvBfC0eSOENFdIE0YLRwYJo218Ny38nfk8753dl/Fo0Cnr/W19HvSDHXId/r4nAAAAAAAAAAAAAAAAAAAAgNFGGA0AAAAAMFaqRlBr0hUzWX9ScKRsREqwXtkInJRyUypE4dBT3RNGQ3tWoHCUQ0iRi8w4wGpMoGa8/gmjjZa0r7NShjGIdMGx7EJt9hj6E3DrV2BtWJKei+YY2iA+66zHpWxEz1bFPjaDp6WE4Gkn2/VywvKf/nfCY0e8FlhjvhYOIW3P72p723AWDRvdSlzVN478Q3DeMybP1Nmln8h4ROjUXH5HcPp87dDA1llp2EF0AAAAAAAAAAAAAAAAAAAAAEhCGA0AAAAAMDZiH6vqK8F5aWIp/VDM2SfwEt1IzwqoFPsUUMHmZQUKRzmEJNlxgNWIoPX6z7v8wMaEzqXdFmUZg0gVE8tlF2ozx5BinGkCbv0KrA1L0nNRbtrPKBv7HKWE/ZR2Srnw42vFTFdV44q84vAyo+m+bNcrxmd783sp6XklXgusdbgeDqPNFXZmPBKMizsWb9FSvBicd9nsPjlHMm/UWe/vhfohee8Hsk475Dq6+2IAAAAAAAAAAAAAAAAAAAAARgNhNAAAAADA2FjxVXPeZFTMZAyTriin8EnfVqQE61mRlRJhNPTIPvl+tMNoVsxpNSJY9/XgfOv9guFIG3nIMtSXFPRcNQrhwDRBr1SRt1TXGf79tSQ9F6ufBw1fV82vBK/Ty32z1t0ujJY0v5Szt+u1lNt1732qEJwVdpOI1wLNyo1l8z0xl08TRgt/F/IaTFgJo+HGheuD00vRlF689bKMR4NuzOZ3BKev+KqW42MDWacVRE/aZgMAAAAAAAAARh1/LAUAAAAAAACDNaC/9wpgDBFGAwAAAACMjapxUq0kTaaM0fTKOWdGV4hupFduGIGTaFqFHgMq2NzSxHNGkRUzKjeWFPuGvOLgfMJooyVtlCqrmKfUPnpWcBPKuXxGo7GleezSRd7ahzZG+fMg5/IquIngvNUAWVKItZfInfXYWdvs1nGFTEXTPQdPa35FsRrBec2vmwk3SbwWSGG+ftCct73QPozmHCe7bDYPlH+ohyr3Bee9dNsrMt2vQfesMJokzdcODWSd1j5C2pgwAAAAAAAAAAAAAAAAAAAAgM1r+Ge8AQAAAACQUiUxjJZlZGY6GNhIGt9G8e2jN+kbR/7BDCpsyW3V87b8pF4x9xrlXM5cjhWRK0Yl+TgcgEobUMHmlvTaGmVWzKgSl1X3dfN2hNFGS5pwVzEqKUr4fOy3dsGxNCGxLKQJeqV5H6cJpaYN2A1LKZpSrbGybvrqfkYlIVTWUxgtZ4TREsJn0vGAo6WYEDxNu11PG4KLXKRiVDL20QijAavmaweC051cYjipLf4024Z148L15ry9s/syHAl6sS2/XU5RMLi8UD+o03Rm39dp/Yykl/0VAAAAAAAAAMCw8TshAAAAAAAAAEA2CKMBAAAAAMZGNa6Y87KMHlnrSgqDbAQ3zV+v/+fJTyRe5wk9qh+V79GTK/v1plPebl7PCpSUctOq+fUxGIkwGtKxAjqjEn+yWEGtcryU+NrPO368N0rSbIuyjnK1G9OoRAPTPC5p3seFqKC8KyS+b0Y9jFaMpnS0sbBu+up+RlIoLE2cz2JFSpLWlzS/4CZOPB8habfrSVGz1tdvMZoKjqfdfQA2EytwvDU/p1yK/QpnTOcUmI3pWP2o7li8JTjv3Knn6+SJZ2Q8InQr53Lalp/TQv3QunnzgWn9YEerR3tfDAAAAAAAAAAAAAAAAAAAAMDwRcMeAAAAAAAAaVXisjlvMtMwWvgk3qTxjbtaXNOXDl6X+vpfP/JVPbHyqDnfCpQUo5IKbiI8BsJoSKHSsF9bo8wKElXisuq+bt7OCg5hOCZdUc5MxhxnPdeD0i48UcqNRjSwlCLolfZ93O4xzvo56JQVN1vdz0iKfPVy36zwXNn4XF21bIRhV5dnfU7V4nTb9aT1t95f87O0zX0ANpPDtXAYbS6/M+USkrdz2FhuPfI1M2S5d3ZfxqNBr6z3+YIRTOxF7GPzZySj/t0MAAAAAAAAAAAAAAAAAAAAwPARRgMAAAAAjI1qXAlOL7gJ5Vwus3FY8ZakUMm4u3vpTi3Fix3d5o6jt5jzKsZjVYqmlHf54DzrhHygmfU+HJX4k8WKV5Xj5cTXvvV+wXA459qGOtuFyvqtXShrVMIUaR6XtNGvdsvK+jnolB1KXF7z/1bH94e6/0yw92/C4bN281eXl4/CYbS023Xr/krrw7hJn6UAjps3Akjpw2gW3+PtMWpi39BNC9cH583ld+qCLS/OeETo1Wx+R3D6vBFM7IX18xtp9PfFAAAAAAAAAAAAAAAAAAAAAAwfYTQAAAAAwNiwTqydjIqZjsM6iTcp3DHuvr14U8e3uWMxHEarxSuq+3pwXimaVt71FlDB5tXwDa34anDeqMSfLFYIqdxYahNGC79fMDztXmtp4179MmrjsaR5jxaNcFenyyqN+OdBu7hXuWHHRXsxFYUDkjW/olpsfw6ZQcqnllfocbtuLb8YlRS5tb/isOJuG3kfDeiUFUbbXkgXRnNywemeMNqG8y9Ld+hw/UBw3qWzV2UaJ0d/zBWMMFr9UN/XlRRWtbbXAAAAAAAAAAAAAAAAAAAAALCKMBoAAAAAYGxU43Jw+mTGgRMzYLRBoxuVuKzvHft2x7d7bOVh7a8+GFie/TgVcyUVoongvFq80vEYsLkkvbZKRvBnVFjBp0pcbhNGyw9qSOhSuzhVMZftNqtdTMyKcGUt5/KacJOJ10kbOCzlkt/vxTbzh80Kt61+xlmfdb0+l8WEz8lKQtyk3AjPWw2t9Ro87eT+tovKAZDma+HQ1Vw+XRhNRhgNG89N89cHp+ddXi/fdmXGo0E/WO/zhQGE0SrGz2+k0dn/BAAAAAAAAAB0g98VAQAAAAAAAACyQRgNAAAAADA2zDCaK2Y6Dusk3kpjY0Y3vrP4LdV8OEp21fY36OdO+hU546C324/esm5aUpykFE2boae6r6cYLTazxOhexgHFTtnBxaXE174VHMLwtAs9ZB3paxdqK7UJp2Up6bEruInUr/d273crPDYqrEBZ+an9DGs72i6C107SayFp2102ommr4+k1jGatO/Tatl7vSdsHYDOJfax5I4A0V9jV07J9T7fGqHlyZb/uXr4rOO+FW16umfxsxiNCP8zmdwSnz9cOyvv+vouTo9Wjs/8JAAAAAAAAAAAAAAAAAABGC8clA1hFGA0AAAAAMDYqRhgt6+CRtb6kaMg4u33x5uD0rblZvXrnNfrpuZ/R2aXzgte5Y/GWdSdYJ4fRpnoOqGDzKifECbOOUXXKDC7G5cTXPmG00dNum5T9Nis5PNFufpaSwlydPG7jdJ9DSrnwfV0NjFihkV4jI1MJn5PLjXD8TLLDaKvLs4KntZTbdSs8G3oerec2afsAbCbHGkfN/Yq5/M5UywjnkCUOQdhYbl74O3PeZXP7MhwJ+mm2EH6fr/iquT3vlvXzm0iRCm6ir+sCAAAAAAAAAGSJ3wkBAAAAAAAAALJBGA0AAAAAMDaqvhKcPhkVMx1HKRcOh1g5YW0NAAAgAElEQVQn/o6zxfoR3bN0V3DehTOXKHI5SdJFM5cEr3Og9pgerv54zTQrcCIdfy6t0FPNr6QZMjYxKxYkSUUjNDQqrKBRNS6rFtuv/ZwRHMLwtItuZR3paxcU6zWm1U9Jj10nj1u7+zRK9zkkKZQo2YHRXu/XZFSSM5JHSZ+vVnRs9X5Y8ZO0wdNO7q8V19uI+2hAN+brB815c0YwCZvPSlzVrUf+ITjv9Mln6qziczIeEfplLr/DnHe4Zn8+dMPadyhGU3LOTiwCAAAAAAAAAAAAAAAAAAAAgEQYDQAAAAAwRqyoRdZhNCsyU46XMh1HFu5avFWx4uC8F2/de+LfL5x5mZzxY4Y7Fm9Zc9kKnBSjkiKXSwio1NMMGZuY9doquAkzuDcqrOCil9dSvBicFymnyPHjvVHTLkTWbn6/tYtltQu5ZSlprJ08bu3uU9b7DZ2yHofV/QwrMNrrcxm5qKt9HGve1FOfa9bnb9owmhlWCUTQrMdgI+6jAd2YN8JHeZfXTG5bqmVYQSMv3/W4MFq+ffQm83Nz7+w+olZjbFt+u/m9fSEhnNgNO5w62sFqAAAAAAAAAAAAAAAAAAAAAKOBMyeBPgudEOI9JwQBGG9xvD6GwglwAIBhqMaV4PSsT6y1ohtWuG2c3b54c3D6zsLJOrP4rBOXZ/Kzes7UBcHr3nH0ljXfi6yT7Fcf17zLB+d7xWr4RqpxY3My4zljcPJ90hgX60eC0wsjHnvbrIq5NmG0QMxpkNrFstqF07KU9D7o5HFLuk+TrqjI5ToaV9ba7WdYEchSH15bpSgcaVxu2GExa97qsnoPo4X3r0LPs/Xcb8R9NKAbh+sHgtNn8zs6iK0aPxPk1yAbgvdeNy1cH5xXiqbXxLExfnIup235ueC8hfqhvq7L+m5mBaEBAACATnGMHoCNhuPzAAAAAAAAAAAAAGAtwmhAn0XR+rdVrZbuJD8AGFX1en3dtNDnHQAAg1Y1ohaTGUePrOhGNS4r9usPWB5Xh2sHdF/57uC8i2b2rjsQ+0Uzl4SXUz+gByo/PHG5XeDECqhI6SMq2JzKDePkeyP0M0qSxniscTQ4Pem9guEZtRBZu21k1qG2JEmPXSePW78Ca8Ni3ddyY1ne+4QIZB/CaEasxFpn0rzVZVnB07pf/7OGECsEF7q/1mNQTgi7AZvJfO1gcPpcflfGI8Gour/yAz1c/XFw3su2Xa6JaDLjEaHfZvM7gtPn6+HPh27Z2+/Rj1YDAABgPHCMHoCNhuPzAAAAAAAAAAAAAGAtfmMK9JlzThMTE2umHTt2bEijAYD+aP0cm5iY4C9SAgCGohpXgtOzDqNZ0Q0vb45xHN2xeIs576Ktl66b9oKZlypSru2yrDhJ8UQYbSI4X5JqfsWcB1jRvXE4+T5pjIuNI8HpVmwIw9UuTtWPeFUnClEhMaKXdagtSSkhWtbJ45a0nFG6vxbrvjZUV93X7BBZP8JoxjKWYzssZs1bDT5ar7+02/SKGb1cP1YzXusrin0j1fqAjcwKH80VdqZehvUTQS/fxYgwam6cv96ct3f2VRmOBIMyZ4XRaof6uh77u9no74sBAABgPHCMHoCNhuPzAADjg+0TAAAAAAAAACAbhNGAAZiZmVlz+ejRo/Kek4IAjCfvvY4ePbpmWuvnHAAAWbFOrJ2MipmOIym4YsVKxtG3j94UnP6MyTO1e3LPuunTuRn9xPQLgre5c/FWxT6WZD+PqzGTQmQHfOp+/V/KBlaVrThPwnt2VBTchHIKh86OGWG0HGG0kVRqE+IbRpgraZ2jFKdIGksngcPk5YzO/bUUc/Z9rcTLKhv7Gv24b9YyykacrBavqO5rwXlPb9fDwdN6HL7dunVb9zfw2R6atsra/wA2k/maEUbLpw+jWSe7EEYbf4v1Bd117OvBeedNvVAnTezOeEQYBCuEaIUTuzXIkCsAAACwimP0AGwUHJ8HAAAAAAAAAAAAAOsRRgMGoPWAhFqtpkcffZQDrwCMHe+9Hn30UdVqa09W3rp165BGBADY7KpxJTi9k1hKPySFRzZKdOOx6sN6pHp/cN6LZ/aat3vRzCXB6Qv1Q/px+R5JdrxqNWaST4g9pY2oYHOy3n/jEEJyzpkBt8X60eD0vLMjghiedq+3Ybwek9Y5SnGKpLGUounUy+lXYG1Yku5rOV5WpZEcGO3FVC687oqx7baiZc3Lsj6r0sZOOwmrJD0GG2UfDeiFFT7aXtiV8Ugwir5+5KvmZ/PeuX0ZjwaDMpvfEZy+UD/U1/VY2+9x2BcDAADA+OAYPQAbAcfnAQDGD/vbAAAAAAAAGCx+5QtglX2mMYCuFYtFFQqFNQcqLC4u6kc/+pG2bt2qLVu2KJ/PK4poEwIYPXEcq16v69ixYzp69Oi6g64KhYImJyeHNDoAwGZXNYIWk1Ex03EkRTes6Ne4uX3xZnPei7aG42eS9PwtP6m8ywdPqL9j8es6Z+p8M6Ky+rjm3YS5/JpfMecB1vtvlMJPSYpRScca6yNooWkSYbRRNdkm9mAF8AYpKUBRMkJYw9CvoFm/AmvDknRfy/Fy28BoL6zHZ9kMo9n7PcUoOXjaUF2xjxW55J+RWvsNoccp6TV0fKzEn7B5NXxdR+qHg/PmjFBSiJMz5nAEwjhr+IZuXvj74Lzt+V167vSLMh4RBmUuvzM4faF2SN57OWe9xztjhVzHIVoNAACA8cExegDGFcfnAQAAAAAAAAAAAEB7hNGAAXDOaffu3XrooYfW/AXKWq2mQ4cO6dCh/v7VdQDIyurnW79OjgIAoFPVuBKc3kkspR8KbkKRcorVWDevYsTbxon3XrcfvSk47+zST2hH4STztqXctM6bvlDfPXbbunl3Ln5dbzzpfzIfo9UTpAsJsae6r5nzgHavrVFnBYkWG0eC063YEIar1GabNIzXo7VOJ6cJNzon1iSG0TqIfiUvJ9t9hm4k7dccrS8oVhyc148IpPU5VG6E42Tlhh1Gm8ptkZQccaz7WuJrMPaxGcYNjTXpMbACLcBmsVA/LG/Ey7YXeo8GkkUbb/9y7HbN1w8G5+2d3afI5TIeEQZlthAOo1V9ReV46cT2u1dmEH0IkWAAAABsXByjB2Aj4vg8AAAAAAAAAAAAADiOsyeBAZmamtKePXvWHXgFAOPKOac9e/ZoaooTlwAAw2NFjyZdMdNxOOdUiqa0FC+um5cUCJGkI/XDeqjyY/lA1KQYlXRm8dmaiNpHahbqh/Vw5cc6eeIZ2lU4pesDo2Pf0CPV+7VQP3xi2nztoA7UHg9e/6KZS9su86KZS4NhtMXGEf3j/Jd0uPZk8HarMZPkgEq97fql43G3A7XH9PjKI6muv2prblanF89WLsWJ/ytxVQ9UfthRDC9SpD3Fc7Q1P9v2urV4RQ9U7lU5Tn5NtXrG5JmJ8bpuVeKyHij/UCu+2vdl98vBlSeC08fl5HsrhrTUWP9ZIyW/VzA87cJnwwiRWe+BYlRS5KKMR2NLeq+2C841S4qf9SMeNmiRy2nSFVX164Owdy/dad6uH9E96zmYrx8IbtsfqdwfvL5TdGL/rOAmzPXVfU0Tst8T1bhihpxCn5mFaEJ5lw/uL9yz/M/Bfbc0ci6vM4rnaEtua1e3B0bBfC0cvZKkuXw4lNRPDd/Qw5Uf6WhjoaPb7Z44QzsnTu77eLz3emzlIR2shfcfTyrs1skTz9g0J6DeuPDl4PS8K+jibVdkPBoM0lx+hznv20dv0pwRTuvUkaafMTQbl2g1AAAAxgfH6AHYSDg+DwAAAAAAAAAAAACeRhgNGKDVA6/279+vWq027OEAQNcKhYJ2797NQVcAgKGq+5oaCkexJjuIpfRLMVcKxjWsSFbDN3TdEx/TN478Q+JyC25Cbz71N/SCmZfay3n8Y/rG0aeX85ypC/Srz3i3GVWyPLHyqD76yHt1yAiVtYoU6cKZi9te77lbLlLBTajmV9bN++KBT5m3K+WmJUl5Z/+4IrTMVuXGkj7+6Pt1b/n7ba8bsi03p7efdq1OK55pXueuxVv1qcf+c6rxhFw6+yr9/En/sxkk+v6xO/TJ/R8KRnHSeP6Wl+gtp75ThciO0XTim0f+UZ95/GPme3DUjcvJ96vvgVahkKIk5SPCaKOo3ettGIEVa/swau+NpPEUo/D7IyQpfjZq99lSzE2pWl+/DbDCNVJ/om8l43E+WHtCH3/0/R0sZ+rEa72X4GklXrbXYXxmFqMpHWscXTf9y4c+m7iuNF61/ef06p3XbJpQEjaW+fqB4PRiVDLfTyFO1uvfPvn8kcr9+ugjv6+jjfnU62l2/vSF+pXdv6XJqD9B7CP1w/qTh9+r/SsPJl5vz+TZ+vXTrtWW/MaOIj6x8qj+dfk7wXkvmrlkw9//zWZbfk5OUfA7xmef/LOBr7/Tn1sAAAAAaXCMHoCNgOPzAAAjhegwAAAAAAAAAGAEhM++BdA3U1NTOvvss3XWWWdpx44dmpjoz0npADBoExMT2rFjh8466yydffbZHHQFABg6KzgmqW8nyHfCio9YAY+bFq5vG0WTjoe/Prn/j3SkftheztG1y/nB8vf0hSc/1XbZrf6vR/8odRRNks6dfoFm8rNtr1eMSrpgy0Udj2f1BOnI5RQpF7xO3bc/oeULBz7VdRRNko405vXxR98nbxzkd7h2QP9t/4e7jqJJ0s0Lf6dbj3wtOG+5cUyf2P+BrqNokvSdY9/S9Yc+1/Xtmz1efUR/9fh/GdsomtSfWFAWOo0EJMWGMDzF3OjFHqwY2Ki9N5LGU+rg/ZFzeRVc+Gdwo3afLd2Msx/Rt349Ps2RpaTgabvtejkhjGZ9Zg7yOf67w5/Td459a2DLBwZpvnYoOH0uv6uj5XQaBox9rP/66Pu6jqJJ0veX7tSXDl7X9e1b/eVjH2kbRZOkh6o/0n9/4qN9W++oumnhenPeZbP7MhwJspBzeW1N8b1+UMYlUgsAAIDxwzF6AMYRx+cBAMYTf0QKAAAAAAAAAJAN+4wkAH3jnFOxWFSxWNRJJ50k773iODZPsgeAYXLOKYqijk9yBABg0KqxHYnqNCbUD9bJvFbA47sdRDRixfqXY3fo5bNXrptnxTi+e+xbukZvS72OAyuPpYoBNLto5tLU133RzCW6c/HWjpZfip6OqBRcQVXfWHedNGG0fgRLDtcP6JHq/Tq9+Mx18+5Z+mfFWj+2Tn332G26ZPaV66Z/f+lO1X3vEbLvHPuWXrPrTT0v57vHbut5GcM2LiffN78H0kiKDWF4krZJw4pyWe+BUXtvJD12nY61FE2p1lgfsBy1+2zpdJxOri+h2OagWU/LaRp/UsSx3XbdCs5Kw3tdf/fYbXrBzEsHug5gEA7XDwSnzxV29mX51u87Hqn+WPP1gz0v/zvHvqk3nvSWnpdTicv64fK/pL7+vy59Rw1fV26D7ndV44q+eeQfg/P2FM/RmaVnZzwiZGEuv8OMsQ/auERqAQAAMJ44Rg/AuOD4PAAAAAAAAAAAAABob2MexQ+MOOeccrncsIcBAAAAjJWkMNrkCIXRrIDHfO1QR8u34gE/XP5ecPrRxoLqvpYYH0mzfEvBTej5W16S+vrnT79IxaikSlxOfZvTJs868e+8K6jq1z/n7QIqtbimY42jqdeZZKF+SKdrfRjtaGOhT8sPPwcL9c5eK50uv/Pl9Gc8w9T82hplnY5zXO7XZpN3BZ06cboeW3l43bzndfA52k/Wa+W04mi9hmbz27Ult03HGkfWTC+4CZ00sbujZZ02eZbuXr5r/fQRu8+W0ybP0gOVH3Z0/chFPa/3GZNnysnJq7eTRVu36ZaaXx+vWzM/tudPuElz3Q9Xf9xmhN3bCNtFbE7ztfC+4fZ8f8Jo9nr7856Zrx2S977nk0WXGosdRY5XfFXVuKKp3Jae1juqvn30RjPufdnsvoxHg6zsKZ6jByr3Zr5eJ6fdk2dkvl4AAABsXhyjBwAAAAwC4WEAAAAAAAAMFn/7CsCq3s+UAgAAAAAgA9WEwFZxCGG0khFGKzfCJ5V3Egg7fv3wcpJY6w5ZahzraNlXbn+dSrnwfQ6ZiCZ11fY3pr7+edMXaufEyScu56NwRKUWJ4fRKvFS6nW2YwUC+nWAn7X8Tp7HJJW4rNjHfVhOf8YzLM+ZukCnTJ427GGk8vwtL9G2/PZU1y1GU7po5tIBjwjd2hsIieSU18u3XTGE0UjP3fIi7SictGZawU3oZdsuH8p4LJHL6dLZq9ZNv3jbFZqIwhEsy6Wzr5LT2njOmcVna8/k2T2NMSsXb7s8dexUCr/murEtP6cXbHlZT8vIu7xevu3KE5cL0YR53bqvJy7LCqLmXd6MI108e6XybnB/E2bct4vYvKww8lyhszBa62drO/16z8RqaMVXe15Ou9BySK+xyFHlvdeNC9cH501HM3rRzCUZjwhZuWTbK1Vw9vZ5UF44c7G25mczXy8AAAAAAAAAAAAAAAAAAACA8TO4s4MAAAAAAOijalwJTneKhnJCb9GIhJWNMJc13dJNHKscL2lG21Jdd9kIozk5TUbFE5fn8rv00m0/rcvnXtPxeK7c/joVXEG3HvkHHa4/GbzOTG6bzp++SK/d9YtrplsxmHYhg3JCgG7SFYMRlWpcCcYOKsZz4I0/O+EUaTIQ7mn4hmp+Zf1YjeVbr5VIUTAMFPs4GInw8qrGlY6CduHxhMeZU14FI2A3Crbktur86Rfptbv+3bCHktqW/Fa98/T364sH/ko/Kt8dfF5zLq9nFs/V1Tt/fmyCb5vRZXNXK+dyuvXIP+jJlf3aUzxbV25/nc6ZOn8o4ylGJf3G6e/XFw/8pX5c/ledMnm6XrX9DTqjeM5QxpPkZ3b8gopRSbcfvVl1X9eFMxdr346f63g5z595iX5l9/+qG+b/P83XD+o5U8/T63e92YxpjZozS8/Wr592rb5y6PN6oHKvYjWC1zt1Yo8umX1lXyN3b979v2jHgZP03WO36WhjPvXtnCKdUTxHr9z+ep099RMnpidFyuptgqc1M4xm7/udXTpXb3/G7+nvD39eD1buk1d3kdC6rwf3O+xwKjDa5mtGGC3fWRjNYsXDrPdM6/eOE8vxXlUf/u5XjpeDt+lEu9ByyEYNo/2ofI8erT4QnPeybZd3HCXF+DiteJb+w2nv1fWH/ocerNynhpJDpb3alt+uC6ZfrNfsetNA1wMAAAAAAAAAAAAAAAAAAABg4yCMBgAAAAAYCxUjeDUZhWNXg1aKwrGp0Dgbvh4MY0nSKROn6fGVRwLLWR8QaBcFW26kj68tx+Ew2jMmz9S7z/w/Uy8nSeQivWL7a/SK7Z1H1boNo4Uet1XvO/uTmsptWTf9Dx/8TT1UuW/ddCviYIURzi6dq9/Y8/510+9euksffeS9wbF679e9fq3X+kVb9+qXT/2P66Y/sfKo3nv/24O3qcTLPYfRrMf0iu0/q59tCdqhdzsnTtFbn/Fbwx4G+uCS2at0yexVwx7GCXOFnXrL7ncOexhtOed05fbX6crtr+t5WS+cuVgvnLm4D6MajmdPPVfPnnpu5uvNu4Jef9Iv6/Un/XJflpdL+DVEu+163YdDLdZ+wqrnTD9Pz5l+XvvBJfjWkX/SXz7+kXXTrXAqMMqqcUVL8WJw3lxhV4dLC3/3svaRrX3JM4rn6LfO+NC66Qv1w3r3j94SvE25saTZ/PaU4wxr97kTYoWRx91NC9cHpzs57Z19VcajQdbOnvoJ/frUtcMeBgAAAAAAAAAAAAAAAAAAAAAERcMeAAAAAAAAaVQTwmjDUDTCaKGYlhXYkqS5/M7Uy6k0wo/B07dJH0ZbaoTDaNOBcNgwFLoMoyU91sWoFJxuRe46DaNZkQhr+bFirfhqYL3h59FajvVaPL6s3uMtZSMAU4qme142AGDjc851HTytG2HZvBv833wp5cLbuX5sW4GszdcOmvOs7yOWTpPUVvTX2oe19nmlzr7vWLoJo8nc/x9fR+rzumvxG8F5501fqJ0Tp2Q8IgAAAAAAAAAAMDo23u9GAAAAAAAAAADjZ/BnDwEAAAAA0AfWCfWTbjhhNDOm1Vh/sn5S0GyukD6M1i4EsGzEzsLXXQxOn4pGI4xmBVRqbUIGFSPiNemKilwuOM+KMlQ6DJ84IxPRLlzWGvfrNESWHI/oPd5ixyzCoTkAAFoVXCEYI2q3XbcCRlZAtZ+s7dyKr6rhG8oZ+xXAKJqvJ4XRdgx03fa+bXgfdsJNKlJOsRqBZQ0njLYRT/259chX1VA9OO+y2X0ZjwYAAAAYDOfcnKTzJT1L0nZJRUkLkg5IusN7/6MhDq8nzrmCpJdL2iPpVEnHJO2XdJf3/oEhDg0AAADAhtfpn9EBAAAAAAAAAKA7hNEAAAAAAGOhGleC04cVZ7JjWusjUkmBrbl8OIwWuo0VqFrVLpzWbDkOR9SmcqMdRmsXMrBCYMWcHQ+zI3fhZXnFwenOhQ/8SwyXNZY0m9++Zpr1erFe6wU3YcYjOo27BcdovK5KCY8pAADNut2uW+E0a3n9lBQ2rcblkdlnAtKwwmgzuW0qRBMdLcuKAXsjH2bv24bfY845lXJTWgqEnPsR/W0XZAyx7tu4aviGbl74++C8nYWTdd70hRmPCAAAAJuNc+6Zkl4s6aKn/n+hpJmmqzzovT+zi+UWJL1C0qsl/ZSOR9GSrr9f0n+T9DHv/eMdrus9kq7tdIxN/tJ7/8ud3sg5t0vSeyX9vI7H3kLXuVXSH3vvP9/D+AAAAAAAAAAAAAAAAIChIowGAAAAABgLVR+Ogk1GxYxHcpwVhQpFpJJO4J8rhMNooShXu/DZciN9GG2pEQ6jTedmgtOzVugyoNJpeCFpnrUsb3QRrL+HmhRl6ySkV8pNh9ebFI8w4m6dsIJ8SY8pAADNug2j1X29o+X1U2LYNF4ijIaxcrh2IDjdijQnMmLAFuu7UFJkdyqaDu7bLncQgra0+9wJ2WhhtO8eu00L9UPBeZfO7lPkooxHBAAAgM3AOfdTkt6l4zG0YNCrx+W/RNL1kuY6uNluSf9J0r93zv177/1/7/e4+sk5t0/SpySd1OaqF0u62Dn3GUm/6r3v/csUAAAAAAAAAAAAAAAAkDHCaAAAAACAsVCNK8Hpk1Ep45EcV4rCkaqaX1HD15VzT3/ltkJXBTehLbmtwXmh21iBqlXtwmnNlo0w2lQ0GpGPbgMqZnghIW5iR+6MMJoRRnAKBwQmXVFOkbziwDrSh/QS70MUDqNVeoxH1H1NNb8SnEcYDQCQVvdhtPA2KIswWtJ2rtwoS4MfAtA38/WDwelzhV19XEt4H7mv4eI+RH+tz5VEVhl5TN208OXg9IKb0Mu2vSLj0QAAAGATeYGkVw5w+bsUjqKtSPqepMclHZG0Q8fjbDuarjMr6dPOuZO89388wDF27amw3F9Lmmia7CXdKenHOn4fXiipuYD9JklbnXOv9d6v/wUFAAAAAHRlY/3eBAAAAAAAAKOHn0ABWEUYDQAAAAAwFqwoWHFIYbSk9Zbj5TXBMysGUIqmzOWs+Oq6wFq5kRy5Wu4kjBYbYbTcaIfRam0CKnZ4wX6+rOCYtSwrjGZxzqkYlYIRtNZ1eO9VNoIPSffBikeU28T02qk07NsnhdoAAGjW7XbdCqcNO4zWa3gUyNp8zQij5XcGpydxcsHpVjusm/3zqVw4Qt3J9x1L3dc7vk2n+/+j7LHqw/rB8veC8140c4kZ7gYAAAAGqCrpEUln93GZxyT9D0nXSbrVe7/mB93OOSfptZL+s6Q9TbM+7Jz7nvf+q12s8xckfbPDMabinDtN0he0Nor2dUlv9d7f03S9SUm/Kun/0NNJ91dL+t8lvbuDsQEAAAAAAAAAAAAAAABDRxgNAAAAADAWqnElOH0yKmY8kuNKUfhkfUmqNNaG0ezQ1VTicloDa2UjKvD0etKHApYaox1GK0Th4Ek9Tg6oWI910uNsR8WsxzscRrAiEcfXPxUMo7WOt+5raigca0i6D3bcrbd4hBWykJKDMQAANCsYITMrfLaqZmz3reX1UyEqKO8KwTH2Gh4FsjZfN8Johc7DaJ2y3i/J++fheaH96U5ZQcZIkWLFwXkbKYx208L15rzL5q7OcCQAAADYpGqSvi/pdknffur/35P0ckn/1IflPynpjyR93HtvfoHw3ntJX3TO3STpZkk/0TT7vzjnznvqOp143Hv/QKcDTum9kuaaLt8q6Qrv/ZpfnHnvqzo+/ockfbFp1m845z7hvX9wQOMDAAAAAAAAAAAAAAAA+i4a9gAAAAAAAEijYpxQPxmVMh7JcaWcHYVqDWpZYy9GJRUTxl9prL1dUqRKkpZThgIavmEuazoajTBavsuAinW/ijn7cbajYuFlxT4cTHDO/jFLKReOO7SuIyl+l/Sas5ZvheLS6nY8AAA063a7XvfhWGjeCKj2mxUBbbdPBowS773ma+Ew2vZ8/8JoVjysYkai7f3zKSuM1kEI2mJ97hTchHmbjRJGq8RlfetouDVxZvFZOqN4TsYjAgAAwCbzl5K2eu9f6L1/q/f+z7z3d3rf5ocD6X1L0jO99x9OiqI1894fkvQL0ppK8rmSLurTmHrmnHuWpF9qmrQi6Zdbo2jNvPd/reOP96pJSdcOZoQAAAAANqSOW9EAAAAAAAAAAPQfYTQAAAAAwFioxuFzPJJOqB+kpPW2xqTKRrCslJtSyTjpP3S7pEiVlD4UkHS9qdx4h9GsxyjpcS4aga9yY1m+gwP9XMI86/WS9rVyfBl2iMxafq/hlqTX3LDeewCA8WOFzNqH0cLzrf2EfrPiqe32yYBRshQvasVXg/PmCp2H0Zy517t+v9l7b75frH1wyQ7w9uO9V4+NMFpkh9FC920c3XbkBjPavXf26oxHAwAAgM3Gez+fFPPqw/IPpA2itdzuO5JuadWc6psAACAASURBVJn80/0ZVV9cIynXdPkL3vt7U9zugy2X/41zrti/YQEAAADYvJKOkAIAAAAAAAAAoH8IowEAAAAAxkLVOIF7MhrOeRw5l9eEmwzOa41RWSefF6MpFXPpA2uVRng5q5YTolrNluJFc96oh9FqbQIqVggsKeJlRU9iNVTzK+umezOMYB/4Z4XZ0r5Wji8jIR5hLL/XeIT1eBbchHIu39OyAQCbh7ldNwJFq+qB7XDS8vrNDI82CKNhfMzXDprztud3dbw8O4y2Xs2vKFYjOK+rfduUIegk3QQXO2gljyzvvW5auD44b0tuq1408/KMRwQAAACMlLtaLu8eyijCXtdy+S/S3Mh7f4+kbzVNmpb0yn4NCgAAAAAAAAAAAAAAABg0zmAFAAAAAHTsrx77iA7UHs90nY+vPBKcPpkQvBq0UjSllUZ13fRySyzDilMVoynlXUEFNxEMcLVGqcptwmdpQwHLCdebzs2kWsagFYwwgRUyWNX62K9KCi8UE+aV42VNRGsDeFYYLSkSYa1/3WvFeG6cXOJr3boPvYbR7MczHKsAACAkb8Q0223X674enG7tJ/RbKWeFTZNjtcAoma+Hw2iRctqan+3bekJ7yEn7okn74Oa+c4/7tpIdWrai18eNfxntvvLd2r/yUHDexduuUCGayHhEAAAAwEhp/QHESOwgO+dOkfT8pkl1SV/vYBE3SHpJ0+V9kv6295EBAAAAAAAAAAAAAAAAg0cYDQAAAADQsUeq9+uR6gPDHoYkadIVh7buYm5KRxrz66a3Bs1aL69aPeG/FE2p1lgfRmuNUrWLcLQLp61abiwGp0fKDfXxbJbvMoxmPdbdhBdWl7dNcy1TOw+j2eGypZbL4fFPRiVFLjKXb92HihE2S8t+PIcXJAQAjJ+CC59P3G67bgWMrP2EfrO2d2n3uYBRMF8Lh9Fm89sVuVwf17R+H9nal5SS9yetKGE/3nvW505SGCzeAGG0Gxe+HJzu5HTp7FUZjwYAAAAYOee0XH5sKKNY77ktl7/rve/ki9GtLZfP73E8AAAAAKCN8AdlAAAAAAAAAADjwT6jFgAAAACAMTDMQJMVo1oXuzLiVKuxLCua1RoSaBcCqPkV1eL1gbVWy/Gx4PSp3BY5Z8e9stR9GC0cjyvl7PhZUjQt9Nx5K4yW8NhZ628db7chsqKxfCu0lpZ1eytWAQBASLfbdWt+dmG0dNtvYJTN18NhtLnCzq6WlxQDbpX0XilF9v6kNa/cGGAYLfFzZbxP8DlSP6x/XvxmcN5zpy/SjsLJGY8IAAAAGB3Oua2SrmyZfFsXi/pV59zXnHOPOucqzrlF59wDzrkbnXPvc85d2sUyz2u5fF+Ht/9Rm+UBAAAAAAAAAAAAADBy/HgfugugjwijAQAAAADG2nRuZmjrThvLsGJXq7GstFGrNBGO5TbxNElaaoTDaNO5LW1vmxUrTFBLCKh47xPCYnb8bDIqmoGH0PK88dPVpEiEtf7W59gMkSWEI47PH0wYzXrNDTNICAAYP3mXD06v+3ri7YYdRksbwQVG2eHageD0uXx3YTRLKB6cFDKbjIrmPCvCW/UVNXyj88E1sT9XJszbWGHkcXHLwlcUK/y4XTZ3dcajAQAAAEbOr0pq/gHAEUn/1MVy/q2kyyXtljQpaYukMyTtlfRuSTc5577tnLuig2We03L5oQ7H9GDL5R3OubkOlwEAAAAAAAAAAAAAAAAMBWE0AAAAAMDYKkVTOqv07KGuP6TcaA2aJce6rOW03i4pLNDJdZaNMNpUNDphNCt4YoUMJGnFVxUrDs6zHmNJilxkhr5CYTE7jGCH0ezXytrnq9Kwwmj2+KWkSF9vYTQr/NJuPAAANLO260nBU8ne7lsB1X5LG8EFRtl8/WBw+vbCru4W6Ox93lZJkd3I2b+iTNrX7HX/1vrcmUgIo42zhq/rloW/D87bVThV5049P+MRAQAAAKPDOXempP/UMvkj3vuVAa3yIklfcc69z7lUX65mWy4/2cnKvPfHJFVaJm/rZBkAAAAAAAAAAAAAAADAsOSHPQAAAAAAALqRd3n9u1PeoZwb3lfbYs6IXbXEpMoJQQApIZoVtwbW2kc4rJBVs+XYCKPlRiiMFnUeRgtFzFZZYZPm+aHbdxJeSDqLKW1YxboP1mttlfUaqvuaanFNBePxbKfSsF67hNEAAOkVjOBQvc15xlbAyAqt9ZsZrzVCpsAomq+Fw2hz+Z1dLS99Fq19INoyFU2b88qNZU3nZjoYxVpmcDGyw2ixD8eXx8F3jn1LRxrzwXl7Z1+VGKgDAAAANjLn3ISkz0pq/oLxgKQ/6nBRj0r6sqTbJN0j6bCkWNIOSRdK+hlJVzWvWtK7dfwP2r6rzbJbf2nTTam9LKnYdLn7L1RNnHMnSeq0uH12P9YNAAAAIAvWH40EAAAAAAAAACA7hNEAAAAAAB3bO3u1FhsLQ1v/1tyczp1+vnYUThraGKSEWEZL7KpixMpWb29Gs5qiG977VJGu5RRhtKVGOIw2PUJhtIIRPKnFdhgtKVJiPVfN80O5gFCoLFY4jOBkRwVKKSN61nPcdvwJ4bRKvKRCNJt4e/u23cUsAABoZoXMkoKnklQ3tvv5jMK4dgSXMBrGQ+wbWqgfCs6bK3QXRkvivZdzT6fTrPdKu33bpChwmhB0EjOMZgQcx92N818OTi+4Cb1s2+UZjwYAAAAYKZ+U9JNNlxuSfsl7n/ZLx206Hjz7qvfeKgbcKumjzrmLJF0n6VlN837HOfdN7/3fJKyj9Zc2lZRja1aWNJewzG79mqRr+7QsAAAAAGOlkz+jAwAAAAAAAABA9wijAQAAAAA6dsnsK4c9hJFgxaGaT9avxTXVfT3x9nY06+mQwIqvmkGuNbdptD9nZ9kIo01FoxNG6yagkhQpSYorSOnidCcYpzi5hOP+rOXX/Ioavq7cU4EXK/TQNh6RML8clzWj7sJoZsyizeMJAEAzK2Rm7SM9Pd8Io0XZBIxKUSk4PU2sFhgFR+sL5neIuXy3YTR7p9fLyzXN7zayW4qmzXk9h9HM4GL4+4d0/H6No/3VB3Vv+fvBeS/euldTIxTGBgAAALLknPsDSb/YMvld3vub0i7Dex+uEIeve7tz7qWSviHp2U2z/tA59/967xtpF5V2nT3eBgAAAAAAAAAAAAAAABi6aNgDAAAAAABgXFkn7FfictO/7XDGalzKXs7Tt02KfjVbThEKWI6NMNoInRjfTRjNeqydIk26YuL67Djd+sfTDiPYkYiksFnzc1tplIPXaR+PsOdXeohHdBuzAACgmbVdryVs1yV7u19ICBj1U9HYR0u7XwYM2+H6AXPeXKG7MJpL2OdtVQ5FhtU++ptzOXP/fTlFCDqJ9blTSAwujmdH4MaF6815l81eneFIAAAAgNHhnPuPkn63ZfIfe+8/NMj1eu8PS/oFrf2Cca6kn064Wesvc8IF92Sttwn/gggAAAAAUhvP35sAAAAAAAAAAMZPftgDAAAAAABgXBWj8Dko5aaT9ZPCGatxKXM5a4JZ6QIc5RShgKXGYnD6dG4m1TqyUHDhMEFSQMV6rItRSc4lBxys0Fdz5G6VVxy8bpTQn7fid9Lx53ZLbqsk+z5Y4bZV1mtIsoMUaZjjIYwGAOhAPjKCp/FK4u2sMFreZfOrjZKxfa37mmpxTQXjfgGjYr52MDh9wk1qOhrEvv/aE2HMyG6u/bn8pdy0qvXKuulJ4ek0rM+VCeP7hyTFfvxO8Ck3lnXbkRuC884qPkenF5+Z7YAAAACAEeCce6ukP26Z/F+99+/MYv3e+zudc1+RdFXT5FdJ+ppxk1EOo31M0uc6vM3Zkv6mT+sHAAAAAAAAAAAAAGxQ43fkLoBBIYwGAAAAAECXSrlw7GpN0CzhxP3VuJQVzWq+bVJgrdly3P6clmUjnjaVEO/KmhU88YrV8A3lXG7dPOuxThPxsq5TjtuH5tJIij+U1zzP4fVZ4bZVkctp0hVV9evjEWlfOyFmzIIwGgCgA1bwtO7ribezgqh5l02QrJiwb1SNy4TRMPLm6+Ew2lxhZ9twsCXpVq0HIYQiw1K6fclSNKUFHVo3fbnH/XM7uGiH0cbx8Irbjt4Q/G4gSZfNXZ3xaAAAAIDhc879oqSPa+3Xmr+Q9PaMh/J3WhtGe17CdY+0XN7VyYqcc1u0Poy20MkyLN77JyU92eF4+rFqAAAAAAAAAAAAAAAAbBLRsAcAAAAAAMC4smJalbgs74+fPJ8UpSpGpTX/b1VupAusrb1NcijAe6/leDE4byo3k2odWUgKnlgxg+bHq1ma8IJ1nUpjfczBG2EEl5CJSIqzrQ3pheMRqeJuRqgv7WunlffefExLOcJoAID0rOCptU1vNz85YNQ/pcSwaX/iqcAgHa4ZYbT8zh6Wmv5Eduu7UJp9W3v/vPvor2R/rkxE9ueKtf8/qrz3unHhy8F5W3Lb9MItF2c8IgAAAGC4nHP/VscjaM3HSn5G0q/41V/mZOeBlstJsbN7Wy6f0eG6Wq9/2Hs/3+EyAAAAAAAAAAAAAAAAgKEgjAYAAAAAQJesk/W9YlV9RZJ94v6kKypyOUnJQas0gbVmy20iHSu+qrqvB+dN5bakWkcWksJoNb8SnG4FwNJEvKzrhB536zwp5+xIRM7lNeEmg/Oax22F7dLE3azARNrXTquaX1GsRtfjAQBglbVdTwqjee/NfZZCwn5CPyVt76yYKTBK5utGGK3QSxgtydr9ZGv/PM2+5JTxHand9512hh1czMIPy/+ix1ceCc57+bYrVYiy+QwFAAAARoFz7g2SPi0p1zT5c5J+yXsfD2FIrT9QsKvs0j0tl8/pcF3PbLl8d4e3B/D/s3enQZLmeWHff08eVZnV09NdPd27y+4Ci/CCYLmWXViWXWbAwMKsjThEIAksDEISWEjIlsIhh7EtobAjbEfIIfmVFLZD4AhZEZKFpAhpZ8ESYvYAZC4BkjiNkGDFMbNTPdPdldWdx+MX1dmdnf38nnzyrOruzydiYjqfO68n/1lV+U0AgCfWo/WlMQAAAAAAPJ6E0QAAAGBFWYgq4n4QLY8B3P+sS7adSUziTnk7IvJg1rxFyx2Pb6bzLrTOTxit28rDBFkkJQuANQkvZMtU3X9l+sd/eRitbh/T+2xSju8F9eZl8bwm288eg4vUBV/6rbrPagHAg7Iw2rAmjDaJcZRR/fnkTtHZyHEtUjeGGKwZZ4JdSMNondXDaEXNmHd+nDxIItF176PuL1M9/l33uZedd/ZqwmjZuei8+tDRByqnF9GKL7n8VTs+GgAAODtFUfyBiPjbETH7g4R/EBHfXJZl9beCbN/8G7LqN26n/uXc5c8pimKZby15z4LtAQAArKD+76MAAAAAAGBThNEAAABgRf12XSzj+IH/z+vNhK7qoxvTwFoeqXpw+fpQwK26MFr7/ITR6oIno0l1zCALgDULLyTRssptVofR6iIREfnjpcl93CREll6HJEixSN1jqUlsDgCmukkYbVQTRquLpmWhtU1rF+3YK/Yr5zUdm8FZOhq+VDn9Svfa6hstmn/YJY1E17yPmkrDaA2D0ZnsvFN3XsmyyOfR0fDl+Lmb/7xy3mc/9c717nsAAHiEFEXx/oj4uxExO9j/xxHxh8oy+faV3XjX3OV/ny1YluVvR8TPz0zqRMR7l9jXl85dfmGJdQEAAAAAAAAA4EwJowEAAMCK6uJQJ/diV1msqz/z75ow2t0P/i8Knk0dLwgFHE/yMNrBuQqj5WGCYXmncnoaXmgQFcvuy6ptTlYNoy3YRxbROz2+6jDEA8uk4bXV4hH1oTZhNACay17XR+UwyrL6dbUumrarMFpEPkZYNTwKuzKc3Ikb41cr5x12rm5ln/NP5zQS3SRcvCAqvKrs3LLX2kvXyc5T59FHXv3hmMSkct5zl9+/46MBAICzURTFV0bE34uI2YH+D0fEHyzL5BcMO1AURS8ivmFu8o8uWO3vz13+9ob7+v3xYITtVpzeBgAAAGt6dH5vAgAAAADAo00YDQAAAFa0V+xHK3lrPbgXRquOS83GALKg1ez6dZGqWccLIljH4+ow2n7Ri3bRabSPXegWeZggixlkgZJG4YU0WjaISTmem7paGC0Nq0zDaDWBlSYhsrrrsIpBTWRvv0FsDgCmspBZGWVMYv519tSoHKXb69YEjDYtizNlQVY4L45GH0/nrRNGqx/x3h8nl2WZjkObjW2rw8B1Y9QmsvcSnZr3H4/KB3xG5TA+er26c/C67hvj0w8+Z8dHBAAAu1cUxXMR8Q8jojcz+Uci4uvKsrx9Nkd1z1+IiDfNXB5HxD9esM7furvc1DcURfHWhvua9XfKsjxpsB4AAAAAAAAAAJwLwmgAAACwoqIo0g/snyyIXc3GAPaLXhRpYO3WA/9fZDC+FWWZf3D/1vhG5fSD9lONtr8rWUAlIg+lpOGFmvBck2Xmt5vevPWViDQAMX2MnNTcx03ibovCa8vKo379aBV+pARAc3Wv68MkUjSa3KnZ3u5irpt+fYVdORq9nM477K4TRlsw6L3rdnkSZUwq560TLl7nuTcpJ+l7ib2aMFr5iITR/sWNn4jXxtcr5z17+LwxPAAAj72iKN4dEf8oIma/2eNDEfE1ZVmu9g0i1fv5o0VRvH7Jdf5ERPzFucnfX5blv61bryzLX42IH5iZtBcR318URS9ZJYqi+NqI+LaZSXci4vuWOV4AAAAAAAAAOCs1H40EnjC7+/QQAAAAPIZ67X7cmjwcG7sfu6r+4P5sDKAoiui1+pXxs+n6J+Nmn9kZxyiG5Z3YK/Yr5x8n8a0L5y6Mlv/IYpQEVLJ43DpRsYjTQNhsOC4LPLQW9Od7SXztXkQvCZF1im50W3lQZioPrzWL6j203hq3JwDMqg+eDuPBzyufyoJpi7a3adnrazbGg/PiaFgdRrvQuhj7rfTz82uZDYhlkd2I09DuIv12dYC6aTC6yjiJokVEdFqPfhjtQ9dfqJy+V+zHFz39ZTs+GgAAeFhRFG+O6r9XfMPc5U5RFG9JNnOzLMuH3vAURfH2iHghImZ/2fHLEfHdEfG6omgWeb7rpCzL36mZ/x0R8TeKovi7EfF3IuJHy7KsfLNSFMU7I+K/joivn5v1sYj4bxoez1+8u/7h3ctfHBH/pCiKP16W5S/N7Gs/Iv5kRPyVufX/yqIAGwAAAAAAAAAAnDfCaAAAALCGNEZ19wP7gySa0Z+LZPVbB5Uf8p8G1pYJABxPbsVeKwmjjR+OuEVEHLQvNt7+LrSKdrSiHZMYPzRvWN6pXCeLL2T3UdNlTm/7awu3sXgfWdxhGtGrvo+bHH9EXXitWVSv6XpNjwcApuoCn6PJMKJdMf2chNGygFM2xoPz4mj0UuX0w+7VNbfcLCZwMs6fI1n07IFl0ujvcZRlGUtGDSKi/ryyV9SF0c6/j93+jfi1wb+unPeFTz/3QOgZAADO0Eci4pMbLPemiPg3ybwfiIhvq5j+tRFxaW7ap0fELzQ9uBkvRsSXLlimHxHfeve/SVEUvxoRvxERr0bEOCKeiYjPjYjXV6z7SkR89YL42j1lWf5WURTfEBE/FBHTNy/viYh/XRTFT0fEr8fpdf/8ePiXGf8oIv7bJvsBAAC4p3wUfjsCAAAAAMDjThgNAAAA1tBLPrA/jUqdJNGM+fXy7UyjWc3jVoPxrbjcuVI579b4ZuX0gyTadZa6RTdulw+H0bKgwWBcHRbLbtumy5yMH7ztyySNUERrwT6qwyrT+3iQxCOyoNrDy9VH+pbV9LELAIvUhcyy1/VROUrX6dYEjDYtHaONVwuPwq4cDV+unH7YWS+M1jRHVhcPzMbFs/pJyGscoxiWd2KvqA5B11k5uPgIfPjnxaMX0nnPXn7/Do8EAACeSK04jbB9eoNl/2lEfFtZlr+1zA7KsvzRoii+PiK+P+7Hz4qIeOfd/6r87Yj4E2VZ8YsWAACAlS3/5TUAAAAAALCK+k/sAgAAALWyWMY0RpXHpR6MAfTb2XaOH/h/E8c1IazjSXUY7UL7YuPt70oWJ6gKpUzKcdwuTyqXz4Jhs7qtvegU1f34+bBYGZPK5YoFf/iXBc6mQbQsftckHFG3/ewxuEgeahNGA2A5dcGhYRpGqwsY7e47X/Ix2mrhUdiVV0ZJGK27XhitzmxAOBuDFtGK/aK3cFt1Y85Vn3/Z+SYiYq+Vh9ay8f95MRjfip987cXKeZ/a/4x4c+8tuz0gAAB4/P21iPi/IuLfNlz+VkT8/Yj4irIsv2LZKNpUWZYfiIjPioi/HhFHNYv+RER8Y1mW31yWpR9gAAAAAAAAAADwSNrdp4cAAADgMZTGqMankassaDa/3qKo1TJxq+Nxdfysbt5B+6nG29+VTqsbVQ2C4eTOQ9OyqFhEHjSZ12sdxM3xawu3XZYPLXJqwReiZsdxci9+V/35pObHXx1QO5kMYlJOolUs18dPo37tZqE2AJjq1oTRsgDasHz49T4iohWtaBXtjRxXE1kEt27sAefB0bA6jHalc23NLeeD3iZhtF6rH0WxYOAcEQfJ+6OIiOPxrbjUubJwG/Pqg4v5eSob/p8XP/HaP0sj0c9dfv+OjwYAAHJlWb5li9v+SxHxl7a1/bl9/f04DZ1FURSXI+JtEfGJEfH6iDiI0y+rvR6n8bJfjIifL8tyvKF9/15E/GdFUfzZiHhPRHxyRLwhTuNrH4uIny3L8t9sYl8AAAAAAAAAAHCWhNEAAABgDVkkahq5mgbSHlpvLmKVRa0G47thtHHzMFoW2IqoCaO1zmEYLYkTVAUN6uIkWdBkXj8Joz0ct6tOI7SiPjyWHcf0/soier2aKMSsfjtf7vZkUDu/+riaRf0AYJG64FAWKsqm121rG/ppGK352AzOwtGoOox22H1mre02iZpF1I0lG0Z/a+LAqz7/6sJoe8VeOq88x2m0sizjQ9dfqJz3dPtyfN7FL9rxEQEAwJOlLMvrEfHRM9jvnYj4Z7veLwAAwPn/ShkAAAAAAB4X9Z/YBQAAAGplkajB5DjKskwjZfORqmw7J5PjmJTjuF2eND6mwTgPo92aVIfRLrQf7TBaXQyucXyhYfhksuIf+OVhlUGUZZkGHvpJNK/p9iPyMEWd7HiyiB8AZOpiZsM0jDZaelvbkIdNhdE4vwbjW+lY7rBzdSfHkIWdm44l94teGh4+rhn716kLo3Vqwmjn+QM+v3z88/G7dz5WOe89l79y5+dMAAAAAAAAAAAAAFikPL9/ngucI8JoAAAAsIa62NWwvBOTmFTOnw8C9Nt5dONkMljqmOpCAcfjG5XTD85hGK1bdCqnVwUNTsb5bZQFTZouN3go6lD9k9ciitrtZ4+VMsq4XZ5U7Gd6XNXRvIeXy69nFsaokz3umt6eADDVKlrRinblvCxUlE3vnpMw2iqvrbArR6OX03mH3WtrbbtuxFvO/IVCNpacD0Sn+ymKPEKdjJsXGU7qwmj5uaU8x3958eL1D1ROb0Ur3nvpq3Z8NAAAAAAAAAAAAACwnnP8p7vAjgmjAQAAwBrmA2dTg/GtGNQEM+YjG+l2Jse128n2XWVSjtNtHbTOXxitU+xVTh9WhdGS69UpOtFtVW9nXh6ne/D2LLMwWlEfRqsLitU9XrLjemi52u0vH4/IHkd1+wGATBY0ywJow8mdyumd1m7DaOn4YHx8rmNJPNleGb5UOb2IIi53rqy59fox79T8GHoqe99Tpen4vKnsfBNx+r4hCx1n4/+z9srwpfj5mz9ZOe9znvrCOOxe3fERAQAAAAAAj4fz+bsRAAAAAB4fCz6GBxARwmgAAACwln77QuX0k8lxGuuKeDgu1W/l21k2apWFAo5rAgIX2heX2scudJYIqGRRsboYWdNlTyaDBy5nEZQspDBVFzg7mQzSx0vT69Bt7UWn6FTOWyUeMX+97x1Pw1AbAMzKX9dHyfTqgFG2nW3JXocnMY5hWR1vg7N2NPp45fRLnSvRTsaLm3F/nJyOJZcYn2fvkbKA7yJ155XTyPGj9RcWH7n+w1HGpHLec5ffv+OjAQAAAAAAngyP1u9TAAAAAAB4dAmjAQAAwBrmA2dTgwVBs/kgQK/Vr97OuD6wVuV4fHOp6RERB0ng7Sxlka+qoEF2G2X3zzLLzkfFyvRbUReE0ZKww3QfWdxtmevQNO7WRBZTW+Z4AGCq06oOmg0n1XGxLJi26zBa3eveKq+vsAtHw5crpx92rq697boY8Ow4eRNj2yxCvUr0NyJiuCC4mF23fPx/doaTYXz01R+unPeGvTfHpx189o6PCAAAAAAAAAAAAAAANkcYDQAAANaQhaiG5Z24NblROa+IIvZbvQemZR/6P5kcp1GBzHESCqgNo7UuLrWPXegWe5XTq8Jo2W2U3T/LLNs0elIXiYg4vT6t5Ecxg8lxnCQhvc3E3ZZ7DJVlmV7vZW5TAJjKgmZVr+t103cdRsvitRGrx5lg214ZvVQ5/bD7zM6OIRvbLjOW3NTYdmrReeVRCqP9i5s/FjfGr1bOe/by81EU9e9NAAAAAAAAAAAAAADgPBNGAwAAgDXURauOhi9XTt9v9aNVPPiWPAsE3Clvx61xdWAtMxhXRzpuTarDaK1o1UY/zkoWPhlWBA1ONhBGS8MLc7dnGZPK5RaF0YqiiH6rOoA3GOcBvF57/bhb9pjI3C5P0gDEMqE2AJjaVBitu+MwWt3rXtN4Kuxa9j7ksHNtZ8eQh4ubv+/Ix86rRQkXnVeylth5DKO9ePRC5fT9ohfvevrLdnw0AAAAAADAk+P8/d4EAAAAAIDHkzAaAAAArKFfE606GlUHCapiALWBtWQ7mcGkOhRwPK4Oox20n4oiqwCcoWUCKoNxdXih7v6ZlwXI5qMn6/x5X7aPG+PrMYlx5bxlQmRZGG3Z+5MAfQAAIABJREFUcMtJcnvW7QMA6nSLTuX0UTmqnF4VQo3Ixwfbsl8TcVo1zgTbdj15/3DYvbr2tutiwLMBsWz82W9Xx86ql02iv0l0bZEsjHb/vJKV0c7XB3x+8+TX49dPfqly3hde+tKl3gMBAAAAAAAAAAAAAMB5JIwGAAAAa6iLRB0Nq4ME/dbDMYDaMFqynczxsmG01lNLbX9Xuq0kjDZ5OGhwksQRqiJ0mew+eCi8kIQRWsXiH7P0k+N5ZfhSzTqbiEcsF26pi01kcTcAqLNM8LRu+q7DaK2ilY4nlg2Pwi5MykkaVr7Subaz48jGn8uNz6vHwcuObacWBRez6Fu5Vhp58z50/YV03nOXn9/hkQAAAAAAAAAAAADAZp2vv9wFzpIwGgAAAKyhNow2qo5dVcUA6mJTWdggMxjfirIi3nVrfKNy+YP2+QyjLRNQyUJey0TFsvtyPro2iUmyheqQwoP7qD6euvt4M/GIPHRWJQvNne5DGA2A5XWKvcrpw/JO5fQ8jNbZ2DE11XSMAOfBzfFrMSpHlfMOu1c3sId8zDsbEMvCgXXvn+alY9vxamG0ReeVRyGMdjy+Gf/vay9WzvsP+m+LN+5/8o6PCAAAAAAAePycn9+NAAAAAADw5BJGAwAAgDW0i3bsFfuV846GH6+cXhWWqotNHQ2ro1mX2oeV0ycxidvlyUPTjyfVAYELj1gYbVgRNMjCJMtFxarvg1E5jOGkOqIwa3EWLd9Hdh9HRPTby8Tdqq/vsuGWLKTWilb6eAeAOlnQLAs4ZQGjbhJY26bs9XvZ8CjswivD6jhzRMRhZ/0wWlE36L37GZlJOYnbSRhtmcjuQTIOXvW5t+i88iiE0X781R9Jg5LPXX5+x0cDAAAAAAA8eZr8hRQAAAAAAKxPGA0AAADWlMauRtWxq1774eXbRScNfWTbOexeS4/peHyzYtqNymUPWhfT7ZylbhJGqwoaDMbVcYR+a5moWB5pOJmJymVhhKLBj1myfWT3cRFF7Be9hdudyq5vdvtk8tDcQRS1NQwAqJYFT7NQUTY92842Za/fy4ZHYReycWWn6MZT7ad3cgy3JyfpmLluzN102UESfF4kPa+0dn9eWcWknMSHrr9QOe9S+zA+7+IX7fiIAAAAAAAAAAAAAABgO4TRAAAAYE29dnWMaljeqZyehdTSqFXywf8rNWG0qnVuVcTSIiIOkuM/a8sEVE4mg8ple61+4/31K4J1U4OZ7adhtAa9sGwfr45eqZzea/WXCpFl21823JKF1Ja5PQFg1jLB04iI4eT8hNGysduy4VHYhTSq3HkmWsX6vxYsIh+bTsfJdWPPujH3vIPk/dHJZBCTctx4O1OLzitFcvuUZfX4f9d+6fjn4qXhb1fOe8/l90W76Oz4iAAAAAAAAAAAAAAAYDuE0QAAAGBN/SVjUb0krrFsdOpKpyaMNn44jHY8qQ6jXWhfXGq/u7JMGC2Lxy0TXsiiJxERJzPbz8MIiwNm2T6y2FoWy8tkj61lw2h5aK757QkAszrFXuX0LCSbBdM6rd2Hf3rt6jHasq+vsAtHw5cqpx/WRJWXUzfmnYbRqseSEcuNJ+vG8nX7yKTnlbtBseyaZWP1XfvQ9Rcqp7eiHe+9/FU7PhoAAAAAAODJdD5+bwIAAAAAwONPGA0AAADWtGwsKotj9dvLRbAudi5FN4mMHFeEwo7H1WG0g/ZTS+13V7Iw2rAiaLCJkFddmG4ws/0sjFA0CKMt+1jZ1GNrsGS4ZROhOQCYlQXNRpNR9fQ0YFQ9PtimPDy6fJgJtu1o9HLl9MPO1Z0dQzaWjKiPET+8bP7+qG4fmey8cv89VfV4/jyE0T4+/L34hZs/VTnv8y6+Ky53ruz4iAAAAAAAAAAAAAAAYHuE0QAAAGBNdR/Yr5IFuJaJBJxu5yAOkn0PxkuE0VrnM4zWTcIn80GDUTmMYXmnctllbtNW0Y79olc578Hbc/Uw2rL38bIhsjSMNj6OsmwedNhEaA4AZmVBsyxUtDhgtDt5eHT5MBNs2yvD7YbR6sa809FmNpZsRWup53Dd+6zjivc7iywKLubX7ezDaB++/kNRxqRy3rOX37/jowEAAAAAAAAAAAAAgO0SRgMAAIA19drVobNMv139Af8smJZup3WQbut4LtRRlmXcmlSH0S60z2cYrdNqFlA5GVeHFyKWD3n1khDZbNyhXCeMtmTobOnjT5YfxygNQVTJQi/Lht0AYKpp8HRqmAaMOhs7pqay19cs/gRn6WhUHUa70t1MGK2Jk8lx5fR+60IUxeIx873la8bOg2QfdRadV7JjO+ss2nByJ37s1f+nct4n7H1SvLX/th0fEQAAAAAA8Fhb4ssXAQAAAGDT/HgKmBJGAwAAgDX1W9VxskwWQFtlO9k6g/GDYatheScNjxy0zmkYLQmoDCdzYbSaKMKyIbIs/DUbCiuTn642iTwsGzpbNkS2qXhEFptb9vgBYCp7Xc/GJ9n0bDvblI4PxtUhUTgr43IUr42OKucddrYfRpsGhAfj6nHnskHpdtGJvWK/ct4qz79F55UsdFyWk6X3tUk/c+OjcXP8WuW8Zy9/9VKxOQAAAAAAgPX4vQQAAAAAALshjAYAAABrWjZelcWllo94XYiDdnUY7XjyYCjgeHwz3c5B+3yG0boNAyp1wa9lQ17Z8ieT+6GwafDhYYv/8G/p0NnSsby6MFrzeES27LKPUQCYSoOnj0AYrZe8/s2OD+A8uD76eDpWPexe28g+snjYqdN9Z+HiVSK7/eT9zjLR36nsvNIt9u7+KwmjLb2nzXrx+guV03utfrzr0pft+GgAAAAAAAAAAAAAAGD7hNEAAABgTct+wD+LYy0d8Wr303DWYPxg2OrW5Ea6nQvti0vtd1ey8Mk2w2jZfTN/e1Zp8n2ovWVDZ+3+UsvXhdeWibdky64SswCAiOav64um3w8Y7U72+rdKmAm26Wj4cjrvsHN1I/soisWj3uy5sWwkuG6dZaK/U4uCi610RH92abR/d/Jr8Rsnv1I5711Pf1n0Wsu9XwAAAAAAAAAAAAAAgEeBMBoAAACsqd9eMmiWfLh/2VBAv3Uh+u3q0NbxXCjguCbsdZBs46w1DaicJOGFvWI/2kV7qX1m983sPsqYVC5TNPgxS3+DobMq+61+FEnQoUncbSq7TYUXAFhVd+kw2qhyeqfobOyYmspej08mgyjLswsmwbyjUXUYrdc6WPo9yyqmz4Z8LLlKGK1ZCLqJ4SQLo03PK9Xj6PIMw2gvHr2Qznv28vM7PBIAAAAAAICIs/xCGQAAAAAAnizCaAAAALCmpYNmSZRg2VBAr9WPg9ZTlfMGc2G0W+MblcvtF700QHbWsoDKJCYxLsf3Lg/G1eGFZe+XiPy+OZkM7v07+/O+LEj24DEtF6FbdvlW0Yr9JF42SAIVyyy77PEAwFTT4OnUsLyz1Ha2KRujlTGJ2+XJjo8Gcq8Mq8NoVzpXd3MAd0OB2VhylchuFoKef7/TRHa+mZ5XstH8WYXRbo5fi5+68eHKeZ928NnxCfufuOMjAgAAAAAAAAAAAACA3RBGAwAAgDUtHzSrXj6LcuXb6cdBFgoYPxgKOJ7cTPZ5fkNXdeGT2ajBSRZeWPL2jMhjarPhhXXCCMvGIFaJR2TrZLdT5bJJbG6V4wGAiOXDaKNJfcBol+piq7PxVDhrR6PqMNphd3NhtCYx4JNx9fNilchuPj5vPradys433dbe6T+K6utWlmcTRvuJV38kjUQ+d/n5HR8NAAAAAAAAAAAAAADsjjAaAAAArKkuljGvFa3YK/Yr5y0TWNsvetEq2mlcYD6EdjyuDqNdaF9svM9daxpGy6IIy9wvU9l9MBs9KctJ5TJFsfjHLK2iHftFr/HxrBKuyx4TTeMRk3Ict8uTjR0PAETkr+vDLIxWjqq309p9GK0utjofo4Wz9Mrwpcrph51rO9n/NCA8GxWe1WsvH9lNx7YrPPfS88rd81Mefdt9GG1STuLD1z9YOe9y55n4nKfeteMjAgAAAAAAnhxn86UxAAAAABDhp1PAfcJoAAAAsKZlgma91kEURfUH7pcJeU0DVQdJqOp4LhRwKwmjHbSearzPXeu29tJ5sxGVkyT4tcz9MpXdB03CC1lGYV5dXOWhZTd4HU7GzcJosxG4h7e9fMwCACIiuknQbFQRRpuUkxhHdcCoWxNO3ZZezetf3esm7Nr10cuV0w+7Vze4l3zUOw2jZc+LVcLF/WTs3DT6O2tY3qmc3ik6EZGH0c7ijyt+8dbPxkvD36mc995L74t20d7xEQEAAAAAAEQ0/wspAAAAAABYjzAaAAAArCn7sH6VurDGcoG10+30W9VhtJPJcUzKyb3Lx1kYrX1+w2jTQEGV0eR+RCWLItTd1pksWjYbdyiTNEIWUpi3VABvhXhEdh2axiPqlusljzcAWKSTBM1mX9PvTauIpS3azjbtF70okl+nDCaL46mwK0fDj1dOP+xsLozWZMSbj89Xif4mIegVnnvZuWV6XsnDaJPK6dv04vUXKqe3oh3vufy+HR8NAAAAAAAAAAAAAADsljAaAAAArCn7sH7lsu182bp52T6zfZdRxu2ZmNfxpDqMduFch9Hy8Mls1OBkXB1eWOZ+ub9OFhW7H15YN4y2TBBilTBats5JwzBa3XL9FWJzABBRE0YrRxXTzlcYrSiKNLg6G0+Fs3R7chK3Jjcq513pbi6M1kQ2nlwtjJaMbZP3AHWyc0u32Ft6W9v08p3fjX9166cr57394rvjUudwx0cEAAAAAAAAAAAAAAC7JYwGAAAAa+oWe9Fq+BY7i2osmpcte1ATNjueiXndGldHEg5aj2YYbVjeuffvQRZeaC8f8cpiDSeTQZTlaRBt+v+HFM3CaMvEznrtzcUjZuNudU7GeeBllZgFAETkr+vjGMWknDwwrSqWtmg727ZueBS27Wj4cjrvsLO5MFpdDHgaEM7DxcuPJQ+SePRxw7HtrOzc0ik6ERFRFNXv6bIw8rZ86PoL6T6fu/z8To8FAAAAAAAAAAAAAADOgjAaAAAArKkoiui3qj+wP68uLLVf9BoH1vp3g1kHNfsdjO/HArJwQF1Y7ax1i7103mzU4GRSHfJqep88uE71/VNGGbfLk3uXqtRFIh7YxxKxs1XiEWncrSZ4NisLqHWKTnRb+X0CAHW6NUGzUTmsvdx0O9uUvb4OkgAU7Noro5fSeZc3GEaLBWPeSTmeGTc/aJXoby8Z059MbuXB4gplWT4QV541DS5m12yZ/azrzuR2/Pir/7Ry3hv3Pjk+tf+ZOzsWAAAAAACAh+32C2UAAAAAAHhyCaMBAADABjT9kH9d6Kooitpw2gP7u7tcXWTreHLz/r/HNyqXudC+2Gh/Z6FTdNJ5s8GUkyTk1Wv1l95n3e0/Dc2Va4bRmt7H3WIv2jW3QSZ7TAwmzcItWWiu6XEDQJXOhsJoddvZpuz19aTh6yts29Hw5crpT7cvR7e1q+dNmY4lIyL6K4zPsxD0qBylobMq4xil86ZB5mw8n43/t+Gnb3wkbk2q37s9d/j+KIpm7zkAAAAAAAAAAAAAAOBRJowGAAAAG9D0Q/6L4lJNY17TwFq76MR+0atc5nh8Pxh2a3yzcpksNHAetIp2tJIfXcxGEAZJfKG/wnWrC81NIw/rhtHq4ngPLrfafZM9xgZJQO7h5aoDL02PGwCq1IfRHgwW1cWOziqMlr++CqNxPhyNqsNol7tXN7qfui5XWeaR3YiI3obH58s8/+bPM7M698Jx2ZXbXRjtxesvVE7vtQ7iC55+dmfHAQAAAAAAAAAAAAAAZ0kYDQAAADag6Yf8F4XP+u2m27kfCMjWmYawJuU4TpJowIX2xUb7OyvdYq9y+qgc3vv3ybj6ujWNzD24Tl144fT2XDeL0DR4tsrxn26/+jrURSoeXC67PYXRAFhdtzaMNpy7XBMwOqMwWv76KozG+XA0rA6jXelsNoyWx8NO1cV4m8akH1wnHzsPxs3CvxERo8kwndcpOhGRh453lUX7jcGvxr87+bXKeV/09H+48vsDAAAAAACA5ezuS2MAAAAAYF7px1PAXcJoAAAAsAFZLOOh5RaEzxpvZzaMlsQCpqGAweQ4yuQP1g7aTzXa31nJ4ifTYEpZljFIgiRNI3Oz9or9aCU/LpmGxcpyUjm/KJr9mKXX3sxjJd1+8hhqGo7Iw2hCDACsri5oNizvPHC5PmB0NmG07HVQGI3z4mhUHUY77G46jFanjJNxHuNdJbRbNybO3gdUmT/PzJqeV4oiC6Pt5q8rPnT9A+m85w6f38kxAAAAAAAA1Kv/Eh0AAAAAANgUYTQAAADYgKYf8l8Ul2q8nZm41kESCzienIawbo1vpts5aJ33MFqncvqoPA2mDMs7MYlx5TKrhLyKolgYmkvXbfiHf6vE75aRxSNulycxKatvq1mD8eZCcwAwVRc0m76uZ5cf3E712GDb8vCoMBrnwyvDlyqnH3Y2G0arG/OWUaaxwE7RiW5rb+n97Re9KJJfZw4mzcK/EfXnlW4xPa4kjJaEkTfp5ui1+KkbH6mc9/sPPjdev/emrR8DAAAAAAAAAAAAAACcF8JoAAAAsAH9dtPYVX1capVoVhryuhsKOK4Jo11on/MwWhJPGE7uRETEIAkvRCy+rTO9dnVQ7WQyiIjT4EOVpt+HuqmIXqZfs970OtTJYharHg8ARER0WnVhtNEDl4flneptFN0oirP5BvJsrNfktRW2rSzLOBq9XDnvSvfaTo8lG583HQPPOw0XZ2HCZcJoo3TeNNx4NmeXUz/26j9J423PXn5+x0cDAAAAAAAAAAAAAABnSxgNAAAANqBp0GxRXKppMGA2+nXQrg6AHd8NBRxPqsNorWitHCjYlWmkYN40GpBFvCLWCYsl4YW7obkyJpXzi4Y/Zmkev1sx7FazXl1IbtEyqx4PAEREdIpOOm80eTAGlAWMsnHBLmRjpun4AM7SrcmNNCh42Lm6s+MoYzuR3X7yfmeZ518WHYu4f37KxvNZGHlTJuU4PvzqByvnHXauxmc/9QVb3T8AAAAAAEBz2/29CQAAAAAATAmjAQAAwAY0D5rVL9dvLx9Yy4JV01DA8bg6jNZvX4iiKBrt76x0k4jKNJgyGOehryygsEh2X55MBhGx/p/3NX6sNHwsPLRezfbrbq+pbcQsAKAdnSiietwxHyzKAkZnGUbLXl+n4wM4S0fDl9N5h91rG91X9jw+VcYgeU6sE9nNw8WLx7ZTWTgu4v65Jbtm2w6j/atbPxMfH/5e5bz3Xv6qaBftre4fAAAAAAAAAAAAAADOG2E0AAAA2IBFwbN7yy2IXTWPZt0PCxwkAbDj8WkY7db4RuX8C62LjfZ1ljrFXuX0adggi3gVUcResb/SPrP7YBqay9JoraLZj1max+9WC6PVrZfdXrOyeNo6MQsAKIoiDZvNB4vyMFp1MHUX8nBq8zATbMvRqDqM1op2PN2+tNF91YfRIk7ujZkftE5kNxuHTt/vNJGdVyJmo4vV123bYbQXr79QOb0dnXjPpa/c6r4BAAAAAAAAAAAAAOA8EkYDAACADehtKHbVNLA2GxbIQgHTkNfx5Gbl/Cyodp5kAZVp2GCQxEh6rX7jUNm87D6YBsPKcr0wQtPAWNPHwrxuq5vebtntNetkMqicvk7MAgAi8rDZqBzNXa4OGHWTYOouZK/LJ5NBTMrxjo8GHnQ0rA6jXe5ciVbR3tlxlFHGYJyNJVcb20bkYeFlwoTz55mpdnTuvW8oiiT6tub4v87v3fnt+Ne3fqZy3udf/OJ4unN5a/sGAAAAAACotMXfjQAAAAAAQFPCaAAAALABTSNWi5ZrGgyYjWulYbTx3TDaOAujXWy0r7O0KKCSxRDWCS9kkbvpvsqo/uO/IpKQwvz2GwbG1opHpPGWWwvXTW/ThvE/AMgsCp5ODZMwWrb+LtS9Dt6enOzwSOBhr4xeqpx+pXtt8zvL4mF3ZWPJLG7WxMGCEHQTw8mdyumz7zey8fw2P/rz4esvpPOePXz/FvcMAAAAAACwimZ/HwUAAAAAq9LtB6aE0QAAAGADmobRFsWumgQDWtGKbrF37/JB+6nK5Y7vhgJuJWG0C63q9c6TPKByGjYYbCGMlt2Xgw2F0brFXrSjOvj2wHG0qwMQTWTXfzAZLFw3u02bPsYBINM0jDZ/+f76i18/t6XudTB77YRdORq+XDn9sHN14/taNOLdxvi8l4TRjsfNw2jpeaV1/7yUh9EmjfezjDuT2/Hjr/5I5bw3739K/L7ep29lvwAAAAAAAAAAAAAAcN4JowEAAMAGNPmgfzs6aRBkme30WxeiKO5/aP8gCQWcTI5jUo7jeFIdRsuCaufJbABu1vBu2OBkvPmIV3YfnNyNimVhtKbfiFoURaMAXq/Vb7S9Ktn1z26vqVE5jOHd6NzDxyOMBsB6Fr2uT+VhtPpx1DbVvQ6eCKNxxo5GSRite22nx1GWZfp8WGcseZAEg5d57mXnley8NGtbXzr3Uzc+nL5Xe+7y+x94zwcAAAAAAAAAAAAAAE8SYTQAAADYgCahq377YOGH25sEvXrtB4NZ/SQUEBExmBzH8fjRDaNlAZRp2GCQhRca3B+Z7D4YjG+d/qOsTiMsEy5oEj3rJ8G7RttPrv9gcqt2vZPxoOZ4hNEAWE+n6FROnw8WpQGj1uKA0bbUvXYPJvnrJ+zC0TAJo3We2cLe8jFvGeW9mPC8dcaS2brH4/qx7axROaqcPnteKtLrtvk0WlmW8eLRByrn9VsX4guefnbj+wQAAAAAAFjftr5SBgAAAAAAHiSMBgAAABvQJGK1qRjWfBjgoGadwfhW3ErCaBdaj0AYrZUEVCanwZSTJIy2Tnihl6w7jTxkf96XhxQetsr9vIxs3SxUcX9+9e0Zkd8uANDUouDp1HBSHUbL1t+FbrEX7agel5wsEWeCTZuU47g++njlvMPu1Y3vb9GYd5A8H5q8F8pkIei6seu8YXmncvrseaUoqn9tWiZh5HX8xsmvxG/e/vXKee++9OWx19rf+D4BAAAAAAAAAAAAAOBRIYwGAAAAG7Df4IP+TcJSvfby28lCARERx5NbcTypDqMdtM9/GK1b7FVOnwZUBkkMYb3wQvX9NJicRh7KmFTOXyaM1uyxsPkw2vQ6ZLLbMyK/XQCgqaZhtPnL99evDpPtQlEU6ThtsCA8Ctv06ugoJsn49Ern2o6PJg/xrhPZzca2xwvGtrPy88pMGC1Zt0zTyKt78foH0nnPXv7qje8PAAAAAAAAAAAAAAAeJcJoAAAAsAHtoh37Ra92mewD/csu81AYrWadwfhWHI8f3TBaFlAZ3g0bZOGFfiuPxS2SRRuG5Z0Yl6OaLELzMFqTyFiTx0Imuw6DcR4+i6gPo60TmwOAiIhua90wWvX6u5K9Np/UvH7Cth2NXk7nHXavbnx/dSPeMsr0+bBOZDcb29+eDGJSVkfh5mXnlQdDzNXXbtNhtBuj6/EzNz5aOe8zDj4vXrf3xo3uDwAAAAAAYDmb/9IYAAAAAABYljAaAAAAbEhvwYf9s1jVrHbRib1iv3aZ+ShHq2in2/7gK/93DMs7lfMOWo9uGG0aNhiMb1XOXyfiVRuamxxH9sd/raJ5GG3RY6EVrYWPgzpZeGJRuCWb3y32ol10Vj4eAIioCZ5OHo0wWhoeFUbjDL0yrA6j7Re9LY338zHvuBzFnfJ25bwm74Uy/XZ1GK0uxDZvVI4qp3dmxrhFet02++Gfj776T9Ljee7w/RvdFwAAAAAAwGY1//soAAAAAFiFbD8wJYwGAAAAG7Low/5ZrGrZ7VQF2A5a1bGAXz7++XQ7F9oXGx3PWeouCKOdTAaV87N4QhN1YbST8XGUZfbj1eZ/+Fe3j4jTx0CxRGjt4fWrr/+icMtgXD2/n2wPAJaxKHh6/3J1MCgbF+xKNkZrGmaCbTgaVYfRLnevrjWeXEU2No9YPP6tUzcWbRomzGLRs+elLIy2yT+umJTj+Mj1H6qcd6VzLT7rwjs2uDcAAAAAAAAAAAAAAHg0CaMBAADAhjSJXTXazoKAWtV+VgmBHbSfWnqdXVsUUBlMblXO77X6K++zKjw3NZgcR5mkEZbJTmwqopeun1z/ReGILOyyzu0JAFNNw2hNAkZnIRvrZWFR2IWjYXUY7bDzzFb2l8XDIvKxecS6YbSa8fk43+es+fPM1ANhtCQkV5aTRvto4hdu/lS8Mnqpct6XXP7qaBXtje0LAAAAAAAAAAAAAAAeVcJoAAAAsCEbC6OtsJ0L7YuNtj1VRBEHrUc/jHYyGVTO77eWD8XdX3fVMFrzH7Msuo/XCUdERPSS65+Fz6aycNoq4T0AmNc0jNYkYHQWsrHcotdX2KajJLJ1pXttOzusqQHXRQKbvheqUhcNXhT+nRpNRpXTu63dnldevP6ByumdohNffOkrdnosAAAAAAAAy6v+uykAAAAAANg0YTQAAADYkEUf9m8au1plO59+8DmNtj31qf3P3HkEYBXdJIAyLIcxKSdxOwmj9Vr9lffZLjrRLfYq553UhNGWsSg0tk444nT71esPxsdRlvnxZ6G5dW5PAJjKXtdH5Wju8vkMo2Wvr8JonKWj4cuV0w87V3d8JPXPhV579fFkp+im4/PB5FajbTQ5rxRJ9W0T4/+IiN+987H4peOfq5z3+RffGxc7lzayHwAAAAAAAAAAAAAAeNQJowEAAMCGZLGMqaZxqUUBtapo1nsvfWV8wt4nNdr+ftGLr7n6zY2WPWudJN42Kodxe3KSRgoWhccWye6Dwfg4sm8+zUIKVRY9FtYNo2XrT2Icw/JOul4Ws1j3eAAgIg+bzb82zYfSprKw2q5kr4cDYTTO0Cuj6jDale61reyvbsybRcq6xd7aYcN+q3p8Pxj094j4AAAgAElEQVQ3C6NlY+BdhtE+fP2D6bznLr9/I/sAAAAAAAAAAAAAAIDHQeesDwAAAAAeF4viUU3jUouWqwqwXexcjj/3Sf9D/PRrH4nfOPmVGJeTynXfsP+mePtTXxxv2H9zo2M5a1lAYTQZphGviOYRunz9g3htfP2h6SeT4yjLJIxWNA+jLYrfZeGHTWx/MDmOvdZ+9bxx9W266HgBoIn0db0cPnB5OHd50fq7ko0vTiaDHR8JnBpO7sTN8auV8w47V7eyz/owWhbZXW9sHnEaPn5tfPTQ9OMkxjZv/jwz9eB5ZXthtNuTk/jxV/9p5bxP2v/UeEvvrWvvAwAAAAAAYDM286UxAAAAAACwDmE0AAAA2JCFsauKoNkqy2XhtAvti/Hs4fPxbDzfaD+PgiyAMiyHaXghYv2wWK99EFHRThhMjtMwQl0kYt6i4+u114tH1D0WTybHcSkO03mVxyOMBsAGNA2jjSZ3qtdvnW0YLXt9HYybhZlg045GH0/nHXa3E0ark0V2NzGWzJ5/dbHkWaNyVDm9O3NeykPH63/45ydf+1D6/uW5w/cvFVkGAAAAAAA4O36nAQAAAADAbrTO+gAAAADgcbEojNY0CLBouUX7eZx0awIqdRGEXms7YbGTmjDaMn/4tyh8tnbYreYxUhdvyWINTaN+AFCnm4TN5oNFWcAoC6vtSvb6ejIZ7PhI4NTR8KV03mFn92G0bHy+ifcvB8n4+LhhmHA+wDg1e15Js2hrdtHKsowPXf9A5byD1lPxjovvXW8HAAAAAAAAAAAAAPCYWPdvd4HHhzAaAAAAbEhvQTyqaRBg0XJPUhgtC6CMymEa8WpHJ7rF3lr7zW7jQU0YrbVEGG1R+Gzd+3i/1YsiOZ66eEsWs2ga9QOAOtnr+nAuWJQFjLJg6q5kodC6WCts09Ho5crpF9oXY6+1v5V9ZmPMiIjBpDpStuh9UhPZNpo+/4blncrpD4bRqn9tmoeRm/n1wS/Fb93+jcp577705Vu7rwAAAAAAAAAAAAAA4FEljAYAAAAbsqmg2aII1ZMUqcoCKpOYxPH4RuW8XrsfRdE8Ula5jeQ2PhkfR2RhhCX2ue34XatoRa/Vr5yXBStO51WHJZ6kGB8A25MGTycPBouyMFq2/q5k44M75e0Yl6MdHw3kYbQrnWs7PpJTg3EW2a0ely7jIAkLH4/zse2sUfIcbXJeWTeM9uL1D1ROL6KIZy9/9VrbBgAAAAAAAAAAAACAx5EwGgAAAGxIP/mw/lTToFm/vWA77fXDAo+Kbk2o4Mb4tcrpmwjH9dvV2xhMjqPMumjRPIy23+rVzu8l+19Gdjtk8bOIiJNk3pMU4wNge9Iw2lywaFjeqVzurMNodaHQk8lgh0cCp14ZvlQ5/bB7dYt7zce8eWS3/v1NE/nYtmkYrTq4OPt+Ix/Prx5Ge210PX72xo9XzvvMC2+Pa3ufsPK2AQAAAAAAdm+9L5QBAAAAAICmhNEAAABgQ3qt+mBZ06BZ3Xa6xd6ZR0F2qe663hi9Wjm9LlrSVBZeOJkcRxmTynnLhNFaRbv2ft7Edci2cTKuDlaUZRkn4+qoS3/BYxsAmugUncrp88Gi+VDa/fXPbxhtkLy+wjYdjT5eOf2ws70wWlHUhdGqI2WL3ic1cZDEo+uiv7OyMFqnQRitXOMDPh999YdjHNXntGcvv3/l7QIAAAAAAAAAAAAAwONMGA0AAAA2pJ98WD9iuaBZv5VvZxPBrEdJ3W12c1wdRsuiZstIo2KT4zSLsEwYLaL+ODcSRlsyHjEs76TRhl7NYxsAmuoWe5XTZ4NFZVmmAaPuGYfR6l67TxrGmWCTjoYvVU7fZhitTvY8qHt/01S2jcG4OsY2bzi5Uzm905oJoyXRt7JcLYw2Lsfx4es/VDnvme7r420X3r7SdgEAAAAAALZqxd+NAAAAAADAJgmjAQAAwIZsKnRVt+wmol+Pkm4rD6DcSMJom4iKZbfzaVRsM3/8t+37udfqV07Pwmgnk0G6rX6yLQBYRhY8HZb3g0WTGEeZvNY2jcxuS6+dvx4Ko3EWjkYvV04/7J5VGK16PJmNS5eRR3+bhdFGZXUA+MHzShJGW3H8/ws3fzKujz5eOe/Zy18draK90nYBAAAAAADOznJfHAkAAAAAAKsSRgMAAIAN2VToqteu2U7NvMdRXQDlxqg6jLaJqFh2X56MB2kYoSiW+zFLbUhvA/dzv1Udj8jCLXVRiSctyAfAdnSKTuX02WDRsBzWrH+2YbRO0Y1usVc5LwuPwrYMxrfSENlh52zCaJlNvIfJxudNn3uj5NzSnTmvFOkHeVYLo714/QPJPvfi3Ze+fKVtAgAAAAAAAAAAAADAk0AYDQAAADakW+xFK9qV83qtfuPt1AXW6uY9juoCKDfH1WG0TUTFsnhDXTxs2e9D7berw2URedRsGVnMbDCujkdkYY3T43myHncAbEf2uj4qh1GWp+Gh0eT8htEi8jFdFh6FbXll9FI670r32tb2m8fDcpsYS2bj41E5jOHkzsL1h2X1Mk3OK6tk0X7n9m/FLx//fOW8d1x8bzzVfnqFrQIAAAAAAAAAAADA4221rzQGHkedsz4AAAAAeFwURRH99kHcGt94aN4ysa69Yj9a0YpJTB6al8WuHlfdYi+d99roeuX0TdxGWbyh6j65b7lIRF0sb3+JkN6y2781uVH5GL0+/HjN8fTWPh4AyAJEZZQxiXG0oxOjMg+jdVtnH0brty7EjYo466ujo8rXV9iW37n9W5XTi2jFpc6Vre13lTDaRsbnNe+nXhm9dC801mv1o108/OvPUTmqXHf2vNQqqr9Paji5s/Tz+59d/0fpvGcvP7/UtgAAAAAAAAAAAAAA4EkjjAYAAAAb1GtVh9GWiQEURRG91kEcT24+NC8Ldj2uOhVRg6nb5Unl9E3cRv3WhaXXaS0ZiciOc7/oRbtoL73/h7bfrr4Ov3L8C/Ff/tofbbydXqsfrQ0cDwB0W3nwdFgOo13Uh9HqxgW7koVHf/Cl748ffOn7d3swUOFS53AjY8lN6m8g+ls3Pv++f/Pd9/69X/TiMy+8Pb7lDd8dB+2nIiJiXI6jTALHWbBx1odf/WB8+NUPLnnE1T6599Z4S/+tG9kWAAAAAADA7pVnfQAAAAAAADwhqr/6HAAAAFhJFrtaJowWEdFvb2Y7j7pW0Y7Wkj++yIIl29/GsmG06rhDL7nvl7WpiN6T9pgDYHvqwmajyWkQbVgbRsvDaruyqddp2JbDztWzPoSH9FaIDs9rGi6+XZ7Ez9788fgbH/sf702rCy52Z8JoxZLj+VU8d/n5re8DAAAAAAAAAAAAAAAedcJoAAAAsEFZRGrZSFW6nScwxtGZiRU00W9vILywwjaWDSlk8bVNhcg2tZ1NBdYAoO41fRouahowOiteFznvDrvbDaOtEg/rt9cPF++3elEs8WvNXx38y/j48PciImJY3kmXe/C8tN0w2oX2xXjHxfdudR8AAAAAAADrK8/6AAAAAAAAQBgNAAAANula9w2V05/pvn6p7VxNtnN1ye08Dpa97ZZdvsp+0Yun2peWWudK99pSy1/b2+59nD0Wl7WJ2xMAIiL2iv103u3yJCLqw2jLxlK34Ukci/FoecPem7e6/U7RjYtLjJO7xV5cbF9ee7+torX08+9373wsIiJG5ShdZva88syS4/llffGlr4hua2+r+wAAAAAAANiu7X7RDAAAAAAATAmjAQAAwAa94+n3PjStU3Ti8y6+a7ntXHx4O3vFfnzWhXeufGyPqrdffHfjZa90rsWn9D5t7X0WRRHvuPiexsu/pffWOOxeXWofb7vwjtgveg9Nr7rvV/Ep/U+LK5314w7vfPpLNnA0ABDRax2k8wbj44iIGNaG0TobP6Zlff7F90Thj/05p4poxRc8/ex291EU8XlPNR+ff+5T74q9Vh5FXMay4+STyel5ZTRpFlz83Ke+aGvP717rIL7s8n+8lW0DAAAAAAAAAAAAAMDjRhjtCVIURb8oincXRfHHiqL480VRfG9RFH+mKIo/VBTFW4ui2MinPYqi6BZF8aVFUXxrURR/oSiK7y6K4uuLonjLJrYPAABwnn3mhbfHH37dd0a/dSEiIi61D+O73vS98Uz39Utt551Pvze+7uq3Rq/Vj4jT4NefefNfioudSxs/5vPu/c98U3zJ5a9+IFpQ5U37b4nv+cS/HK1iMz/u+IZr3x5fcPG5aEW7drlP7X9GfNebvnfp7R+0n4rv+cS/fO+xsV/04muufnO86+kvXeVwH9Iq2vE9n/h98ab9t6y0/n7Riz9w9VviCy5uN64BwJNjv9VLo0P3AkZJGK0VrWgV9a/Ju/Ap/U+Pb33Dn40L7YtnfSjwgKfal+I73/Rfxev33rT1fX3j674j3nnxS6IdeaywiFZ8zlNfGN/8hj+1sf3+R1f/cLz30vsaRxKnwcXsvBIR0W3df4/x1oO3xX/yhj8dT7WfXu9A51zuPBN/8o1/IS53n9nodgEAAAAAAAAAAADgcVOWZ30EwHnR7JMDPNKKonh3RPznEfF1EbFXs+jHiqL4PyLir5Vl+coK+7kWEd8XEX8oIq4ky/xYRPwvZVn+vWW3DwAA8Kh49vD5eO/l98X10Stx2Lkaq3ao3/fMN8SXX/naeG10FJc7z6y8nUddq2jHH3n9d8UfvPbt8dLwtyt/uPlU5+m43Kl8K7qybqsb3/7G/yL+yOS74uU7v1u5zKXO4Vqxuk/pf1r85U/563F99PF4unM52g0jD029bu+N8b1v+atxffRK3By91ni9VtGK1++9cePHA8CTrVW0Yr/VvxdBmzVYEEbrFnU/2t6td1360viCp5+Nl4a/HcNJHlyCXdlr7cW17ifs7P1Ct9WNP/bGPx8nk0E6Tn6mey367Qsb3W+7aMc3v+FPxTe+7jseeF/wv//7/zl+b/jvH1p+eq4ZlnfSbc7Hl9996cvjXU9/2cae3/ut/Xim+/qNxZsBAAAAAAAAAAAAAOBJ4NOtj7GiKDoR8Vcj4k9FRJNPw7wpIv67iPjOoii+rSzLDy6xr+cj4vsj4nULFv3iiPjioij+VkR8Z1mWt5ruAwAA4FHSKtpxpXtt7e20i3Ycdq9u4IgefXut/XjT/lt2vt9eqx9v7m1vv0VRbP0+vty5svFwHACsot86qAyjnSwIo83Hi87aaUT0TWd9GHCmtj1Ozsy/L7jYuVQZRrsfXByl26o6t3h+AwAAAAAAZCq+0RIAAAAAALZAGO0xVRRFERF/OyK+sWL2L0XEL0bEICKuRcQ7I+JwZv7rI+IfFkXxtU3iaEVRfGlE/IOI2JuZXEbEz0TEr0fE5Yh4e0TMfsr7WyLi6aIovq4sy0nDqwUAAAAAwCOs1zqonD4NGA0nWRjNrzOAav3Whcrpi4KLEecvuggAAAAAAAAAAAAAAES0zvoA2Jo/Hg9H0T4UEZ9dluVnlGX5DWVZfktZlu+LiNdFxB+LiFdnlt2LiB8oiuJS3U6KonhzRPxgPBhF+2hEvK0sy3eWZflNd/fx5oj4sxEx++mTr4mI/36F6wYAAAAAwCOon4TRTsb1AaNOS7wIqNZr9SunDxaE0VrRinbR3tpxAQAAAAAAPJrKsz4AAAAAAAAQRnuM/ddzlz8UEV9RluW/nF+wLMtRWZZ/MyK+IiJuz8x6XUR814L9fF9EHM5c/rG7+/nFuX3cLsvyf42Ib5pb/88VRfHJC/YBAAAAAMBjoNeuDqMtChh1ir3K6QD91oXK6dPg4rC8Uzm/UwguAgAAAAAALKc46wMAAAAAAOAJIYz2GCqK4rMj4i1zk7+nLJNPlN1VluVPRcT/Njf5a2r289aI+E9nJt2JiG8ry/KkZh//ICJ+YGbSfkT8xbrjAgAAAADg8dBvVYfRTu6F0UaV87tFZ2vHBDzaeu1+5fTBgvOKMBoAAAAAAAAAAAAAAJxPwmiPp983d/k3y7L8uYbr/sO5y2+tWfabI6I9c/kHy7L81Qb7+J/mLn9TURS9JgcHAAAAAMCjq9eqDxgNyzuV8wWMgEweXBxERMQo+d6grvMKAAAAAAAAAAAAAACcS8Joj6cLc5d/a4l1f3Pu8mHNsl8/d/lvNtlBWZa/GBH/fGbShYh4X5N1AQAAAAB4dPVb8z++PrUoYCSMBmR6SRhtGlxMzyst5xUAAAAAAAAAAAAAOE/K8qyPADgvhNEeT78zd7m3xLrzy75StVBRFG+IiM+dmTSKiI8usZ8fnbv8/BLrAgAAAADwCOq1+pXTB+NbERExKkeV84XRgEwWRju5G0YbTu5UzndeAQAAAAAAWJZPpQIAAAAAsBvCaI+nn4yI2zOXP6MoiupPmz3sHRXbqvJZc5d/vizLWw33ERHxY3OX37bEugAAAAAAPIL67QuV008mg4iIGJXDyvkCRkCmn4XRxqdhNMFFAAAAAAAAAAAAAAB4tAijPYbKsrwREf/nzKReRHzHovWKomhHxJ+em/wDyeKfOXf51xof4Kn/b8H2AAAAAAB4zPRa1d/hMZicfu/GsLxTOf//Z+/uo2W/6/rQvz+z9z6ZyQnkgSQECoaQgFBBwdDLIqlXEBaoqxcFEbiUXmJv1dorpVeWFttqROtawq3epe2yVsviwStoxSAtRdMFQos8yC1QkCb0hgBBeTAKCSYn5yTn4Xv/2HM8k8mevWf2mZnf7L1fr7Vmze/h+/t+Pr/FWt9wZs+8fxsCjIAJ+mtbB6Pd247lVDs5MXDRugIAAAAAAAAAAAAAAKtJMNr+9aoknxvZf21VPWvS4KraSPKrSZ48cvgPkvzOhEuuGtv//Iz93Ta2/5CqunDGOQAAAAAA2EMGvcNbHj926miSTAwwWhdgBEww6G0djJZsri3WFQAAAAAAgBm01nUHAAAAAACQ9a4bYDFaa1+tqmckuSGbYWeDJDdW1VuTvDXJp5IcTXJxkqcl+cEkXz8yxYeTvKC1iX/RuGBs//YZ+7u7qo4l6Y8cPj/JHbPMAwAAAADA3tHvDbY8fu+poznVTuXEqRNbnhdgBEzS3yYY7eipe3JcMBoAAAAAAMCcVNcNAAAAAABwQAhG28daa5+rqqcmuS7JDyS5OskLh69JvpLkF5L8X61N+KXIpvPG9o/uosWjuX8w2oN2Mcf9VNWlSS6Z8bIrz7YuAAAAAAA7G6wd3vJ4S8u9p47lxKQAo54AI2Brg22C0Y6dumfyuiIYDQAAAAAAAAAAAAAAVpJgtP1vbfi6N0nL9o9n+ZMkP5nkN3cIRUseGIx2bBe9HU1y4TZz7sY/SHL9HOYBAAAAAGDO+r3BxHNHTx2ZGGC0IcAImKC/TTDa0ZOTg9GsKwAAAAAAAAAAAACwWlrXDQAro9d1AyxOVV2b5OYk/zrJtdn5f+9HJnl9ks9X1d+bsdxu/tviv0cAAAAAAAfIoHd44rljp47meLtvy3PrAoyACTZ6GxPXiGOn7rGuAAAAAAAAAAAAAADAHiMYbZ+qqmcmeVeSR40c/kKSVyV5cpILkhxKclmSb0/yxiQnhuMuSfJrVfWrVVUTStw9tj/YRZvj14zPCQAAAADAPtLvTf4o+eipe3KindjynAAjYDv93rlbHj966p6cOGVdAQAAAAAAmI/WdQMAAAAAABwQ6103wPxV1SVJ3pKkP3L4PyR5aWvtL8eG/1mSG5PcWFW/kuQdSR4yPPf9SW5N8potyqxqMNovJ/ntGa+5Msnb51AbAAAAAIBtbNShrGU9J/PAoKJjp+7JiXZ8y+vWy58zgMkGvUHuPvm1Bxw/duroNuuKYDQAAAAAAAAAAAAAAFhFfkm0P/1IkktG9j+V5IWttWPbXdRa+1BVvSjJu0YOX19Vr2+t3T42fPzXJZdkBlV1Xh4YjHbnLHNsZdjneK879XK2ZQEAAAAAmEJVpb82yJGTdz3g3NGTk4PRNurQolsD9rB+79wtjx89eWTyutITjAYAAAAAAPBAresGAAAAAAAgva4bYCG+d2z/NTuFop3WWnt3kveNHBokefEWQ28Z2798+va2HP/V1todM84BAAAAAMAeM5gQYHTs1D05PiHAaL0EGAGTTQpGO3bqaI63+7Y8Z10BAAAAAACYVXXdAAAAAAAAB4RgtH2mqg4nuXLs8LtnnOZdY/tP3WLMzWP7V81Y49Fj+zfNeD0AAAAAAHvQpACjo6fuyQnBaMAuDNYmBy6eaCe2PGddAQAAAAAAAAAAAACA1SQYbf+5YItjX55xjvHxF28x5pNj+99YVVv/6mRr1+4wHwAAAAAA+9BgQjDasW2D0dYX2RKwx+0ucNG6AgAAAAAAAAAAAAAAq0gw2v5z5xbHDs84x3lj+3ePD2itfSnJJ0YOrSf5mzPUePrY/u/NcC0AAAAAAHvUxACjk5MDjDZ6hxbZErDH7SZwcaOsKwAAAAAAAAAAAACwSlrrugNgVQhG22daa0eS/OXY4SfPOM3VY/tfnjDubWP73zfN5FX1uCRPHTl0JMl/mq41AAAAAAD2ssHaNgFGp7YOMFqvjUW2BOxxEwMXT92T4xOC0awrAAAAAAAAs/KrVAAAAAAAlkMw2v703rH9H5j2wqq6LMlzxw6/b8Lw30hycmT/+VX1mCnK/OOx/X/XWjs2ZYsAAAAAAOxhAoyAeRtMWFeOnbwnJ6wrAAAAAAAAAAAAAACwpwhG259+a2z/RVX10p0uqqpzkvx6kvNGDt+d5MatxrfWbknyxpFDh5K8oar629T4riTXjRy6L8mrd+oNAAAAAID9YVKA0dFTR3Lqfs/iOGO91hfZErDH9dcmBy5ODkazrgAAAAAAADxAa113AAAAAAAAgtH2qd9M8vGR/Urypqr6xap62FYXVNUzknwoybPGTr2mtXbHNrWuTzJ6/pok76qqx43Nf05VvTzJb49d//Ottdu2mR8AAAAAgH2kPyEY7e4TX5t4zXptLKodYB8Y9AZbHj+2TTDaRu/QIlsCAAAAAADYh6rrBgAAAAAAOCA8Cn0faq2dqqoXJHl/kkuHhyvJP0zyw1X1iSSfSXI0yUVJnpzksi2memeS1+xQ60+r6vlJbkxy+hck1ya5qao+MqxzfpJvTnLJ2OXvSPITs90dAAAAAAB72WBCMNpdJycHo22UACNgsn7v8JbHj506mt6E50QJXAQAAAAAAAAAAAAAgNUkGG2faq19uqq+NcmvJ3nKyKlekicNXxMvT/JrSf5Ra+34FLXeW1XPS/KGnAk/q2Hdp0y47C1Jvr+1dnKn+QEAAAAA2D/6a1sHo9198q6J1wgwArYz6A22PH683ZdKbXnOugIAAAAAAAAAAAAAAKtp60eksy+01j6V5GlJXpbkg9kMPNvO0SS/keSa1toPttaOzlDrnUmekORXktyxzdAPJXlBa+0lrbUj084PAAAAAMD+MOhtHYzWcmriNevlOS/AZP3e4Ynn2oQ/j1lXAAAAAAAAAAAAAABgNfnG/z7XWjuR5E1J3lRV5yd5SpIrklyQ5Jwkd2UzyOyTSf54OH63tW5P8kNV9Yok1ya5PMllSY4k+UKSj7XWPnsWtwMAAAAAwB7XnxCMtp312lhAJ8B+MVgbzHzNRh1aQCcAAAAAAAD72dYPpAEAAACAefEJFHCaYLQDpLX2tSTvXkKd+5K8Z9F1AAAAAADYewaC0YA5G/QOz3yNdQUAAAAAAAAAAAAAAFZTr+sGAAAAAACAg6O/i2C0jd6hBXQC7Bfn9AYzXyMYDQAAAAAAYCut6wYAAAAAAEAwGgAAAAAAsDyDtdmD0dZrfQGdAPvFWq3lUJ0z0zXWFQAAAAAAgFlV1w0AAAAAAHBACEYDAAAAAACWpt8bzHzNWgQYAdsb9GYLXdyoQwvqBAAAAAAAAAAAAAAAOBuC0QAAAAAAgKVZq/UcqnOmHr9eG6ny5HFge/212YLR1mtjQZ0AAAAAAAAAAAAAAABnQzAaAAAAAACwVP3e9AFGG8KLgCkMZlhXkmS9Z20BAAAAAAAAAAAAAIBVJBgNAAAAAABYqsHa9AFG64LRgCnMEriYJOu1vqBOAAAAAAAA9qvWdQMAAAAA7HPNR1DAkGA0AAAAAABgqWYJMBKMBkxjMMO6UqmsRTAaAAAAAAAAAAAAAACsIsFoAAAAAADAUs0SYCQYDZjGrIGLVbXAbgAAAAAAAPaq1nUDAAAAAAAgGA0AAAAAAFiufm8w9VjBaMA0BmuzBKOtL7ATAAAAAACA/cqDZwAAAAAAWA7BaAAAAAAAwFINeoenHrshGA2YQr83SzCadQUAAAAAAAAAAAAAAFaVYDQAAAAAAGCp+muDqccKMAKm0e9Nv65s1KEFdgIAAAAAAAAAAAAAAJwNwWgAAAAAAMBSDXqHpx673hOMBuxspnVF4CIAAAAAAAAAAAAAAKwswWgAAAAAAMBS9XuDqccKMAKmMdu6sr7ATgAAAAAAAAAAAAAAgLMhGA0AAAAAAFiqQe/w1GM3BKMBUxisTb+uCFwEAAAAAADYjdZ1AwAAAADsc81HUMCQYDQAAAAAAGCp+r3B1GMFGAHTmGVd2egdWmAnAAAAAAAAe5hfngIAAAAAsAIEowEAAAAAAEs1WDs89VjBaMA0Br1Z1pX1BXYCAAAAAACwX1XXDQAAAAAAcEAIRgMAAAAAAJaq3xtMPVaAETCN2dYVgYsAAAAAAAAAAAAAALCqBKMBAAAAAABLNegdnnqsACNgGv3euVOPta4AAAAAAAAAAAAAAMDqEowGAAAAAAAsVb83mHrsRh1aYCfAfnFOr59KTTXWugIAAAAAAAAAAAAAAKtrvesGAAAAAACAg2Wwdnjqseu1scBOgP2iV72c0xvk2Kl7dhy7Xv5ECgAAB0VVbSS5NsnXJXlYkruTfDHJx1prn5tzrSuSPCnJw5Ocl+RLSW5L8oHW2vE51lnaPQEAAAAAAAAAQBd86yO3vQAAACAASURBVB8AAAAAAFiqQ3VOKpWWtuNYAUbAtAa9c6cMRhO4CAAAXamqRyf5G0meMnz/5iQPGhlyW2vtUXOoc0mSVyd5UZKLJoz5QJJfaK39zlnWekGSH0nytAlDvlpVv5XkJ1trf3EWdZZ2TwAAAFvb+e+7AAAAAAAwD35NBAAAAAAALFWveun3BjkqwAiYo37v3KnGrdehBXcCAACMqqqnJ/nxbIahbRnoNed635HkDUku3WHoNUmuqarfSPKDrbUjM9Y5L8mvJXnxDkMvSvJDSZ5fVS9rrd04S51hraXcEwAAgPAzAAAAALrk0yngNMFoAAAAAADA0vV7504VjLbRE2AETGcwdTCaP5ECAMCSPSnJs5dRaBjC9rtJRj9QaEk+muQzSS5I8uQkF4+c/9tJHlxV391aOzVlnbUkv5XkO8dO/XmSjyX5WpIrh7VqeO6hSd5eVc9qrf3hqt0TAADAzmrnIQAAAAAAMAe9rhsAAAAAAAAOnv7UAUYbC+4E2C/6a9OtKxs96woAAKyIe5PcOq/JquoRSW7I/QPE3p/kG1prT2mtvbC19uwkj0jyiiTHR8b9L0n++Qzlfi73D0U7nuTlSR7RWnvOsNbVSZ6Q5IMj485J8rtV9bAVvCcAAAAAAAAAAFgJgtEAAAAAAIClG0wdjLa+4E6A/WL6dUUwGgAAdOB4kv+W5N8m+cEkVyd5UJK/N8car05y4cj+B5I8q7V28+ig1tq9rbVfSvLCset/pKou36lIVT06myFko763tfavWmv3jdW6Kckzc/9wtIckuX6nOkNLuScAAAAAAAAAAFglgtEAAAAAAICl668JMALmq98bTDVuvQ4tuBMAAGDMG5M8uLX25Nba97fWfrW19tHW2vF5FaiqxyR52cih+5Jc11o7Numa1trvDns77ZxMF1h2fZLRDyze0Fp7+zZ1jia5btjTaf/7MGBtoiXfEwAAAAAAAAAArAzBaAAAAAAAwNINeoLRgPnqT72urC+4EwAAYFRr7Y7twrzm5CVJ1kb2b2it3TLFda8Z239hVfUnDa6qQZIX7DDHA7TW/r8kvztyaD2bPW9nKfcEAAAAAAAAAACrRjAaAAAAAACwdP3eYKpxG4LRgClNG7hoXQEAgH3peWP7r5/motbazUn+aOTQ4STP3uaS5yQZ/cfHB1trn5qqwwf29Pwdxi/rngAAAKbUum4AAAAAAIADQjAaAAAAAACwdIPe4anGrQswAqbUX5suGM26AgAA+0tVXZbkm0YOnUjy/hmmeO/Y/ndsM/bbd7h2O+/LZm+nPbmqHrrVwCXfEwAAAAAAAACshCabHxgSjAYAAAAAACxdvzeYapwAI2Bag960wWiHFtwJAACwZE8Y2/9Ea+3IDNd/YGz/G2ao9cFpiwx7+uMpay3zngAAAEb45SkAAAAAAN0TjAYAAAAAACzdYO3wVOMEowHT6k8djLa+4E4AAIAl++tj+5+e8fpbd5hv1OOXVGuZ9wQAADCl6roBAAAAAAAOCMFoAAAAAADA0vV7g6nGCUYDpjWYMhhtw7oCAAD7zVVj+5+f8frbxvYfUlUXjg+qqouSXHSWtcbHP2bCuKXcEwAAAAAAAAAArCKPQwcAAAAAAJZu0Ds81biNngAjYDr9KYPRBC4CAMC+c8HY/u2zXNxau7uqjiXpjxw+P8kdO9S5p7V2ZJZaW/R2/oRxy7qnmVXVpUkumfGyK8+2LgAAAAAAAAAAB4dgNAAAAAAAYOn6vcFU4wQYAdMarE0ZjNY7tOBOAACAJTtvbP/oLuY4mvuHiD1ogXVGbVVnnrV2uqfd+AdJrp/TXAAAAAAAAAAA8AC9rhsAAAAAAAAOnsHa4anGCUYDptXvTReMtlGeHQUAAPvMeIjYsV3MMR48Nj7nMussuxYAAMCUWtcNAAAAAABwQAhGAwAAAAAAlq7fG0w1bkMwGjClwZTBaAIXAQBg39vNL/VX+Zpl1wIAAAAAAAAAgE55HDoAAAAAALB0g97hqcYJMAKmtVGH0staTuXktuOsKwAAsO/cPbY/XRr79teMz7nMOsuuNatfTvLbM15zZZK3z6k+AACwSE3GMgAAAADd8ekUcJpgNAAAAAAAYOn6vel+zyvACJhWVWXQOzdHTt217TjrCgAA7DuC0c6u1kxaa7cnuX2Wa6pqHqUBAIDO+f/2AAAAAAAsR6/rBgAAAAAAgINnow5lbYfnt/Syll75UwYwvf7auTuO2RCMBgAA+83XxvYvmeXiqjovDwwRu3OKOudW1eFZaiW5dIo6W9Va1D0BAAAAAAAAAMDK8WsiAAAAAABg6aoq/bXx3+fen/AiYFaD3vbrSpKsW1sAAGC/uWVs//IZrx8f/9XW2h3jg1prX0kyfvzrzrLWeO+Tji/kngAAAAAAAAAAYBUJRgMAAAAAADox6J277XnhRcCs+r3DO46xtgAAwL5z89j+VTNe/+ix/ZuWWGt8vkXV2e6eAAAAAAAAAABgpQhGAwAAAAAAOtHfKRitJ7wImE2/N9hxjGA0AADYdz45tv+NVbX9hw73d+0O82137mnTFqmqw0m+ccpay7wnAAAAAAAAAABYKetdNwAAAAAAABxMg52C0YQXATPaeV1ZT1UtqRsAANhabf6f0h9N0h85/KbW2ufOct4rkvydkUP3tNb+xdnMuRe01r5UVZ/ImdCx9SR/M8l/mnKKp4/t/942Y38/yQ9sc+12viX3/87mx1prf7bVwCXfEwAAwJRa1w0AAAAAAHBACEYDAAAAAAA60ReMBsxZf826AgDAnvCSJD+XM78ov+FsQ9GSpLX22ap6YpLnnz5WVZ9prd1wtnPvAW/LmRCxJPm+TBEiVlWPS/LUkUNHdrjuxiRHkwyG+0+rqse11j41RY/Xje2/bYfxy7onAACAEcLPAAAAAADoXq/rBgAAAAAAgINpsEOA0UZ5vgswm4HARQAAVlxV9ZL89OndJLckedkcS1yX5Nbh3JXkZ+c49yr7jSQnR/afX1WPmeK6fzy2/+9aa8cmDW6t3ZPkrTvM8QBV9dgkzxs5dCLJm3e4bCn3BAAAML3qugEAAAAA9rkmtx8YEowGAAAAAAB0or9jgNGhJXUC7Bc7ryuC0QAA6NyzklyRpA1fPz4M25qL1tqRJK8aOfTYqvq2ec2/qlprtyR548ihQ0neUFX9SddU1XdlM0jutPuSvHqKcj+V5PjI/nVV9dxt6vSTvH7Y02mva63dul2RJd8TAAAAAAAAAACsDMFoAAAAAABAJwYCjIA522ld2bCuAADQvZeObH+ktfa2eRdord2Q5CMjh/72vGvMqqoeUVWPGn8luWxs6PpW44avi3coc32SO0b2r0nyrqp63Fgv51TVy5P89tj1P99au22ne2mtfSbJL44dfmtV/XDV/VPeq+rxSd497OW0r2T6sLKl3BMAAAAAAAAAAKyS9a4bAAAAAAAADqb+jsFo/owBzGbndUUwGgAAnfv2ke3XLbDO65JcnaSSfOcC60zrD5NcPsW4v5bksxPOvTHJdZMubK39aVU9P8mNSU4HlF2b5Kaq+kiSzyQ5P8k3J7lk7PJ3JPmJKfo77VVJviHJdwz3N5L8yyQ/UVUfTXJXkkcPa9XIdfcleV5r7UvTFFnyPQEAAAAAAAAAwErodd0AAAAAAABwMA0EGAFzNlizrgAAsLqq6vIkF48cescCy43OfWlVPXKBtVZGa+29SZ6X5M9HDleSpyR5YZLn5IEBYm9J8uLW2skZ6pwczvdbY6cuzWb43ffmTDDdabcn+a7W2vumrTOs9d4s4Z4AAAAAAAAAAGBVCEYDAAAAAAA60d8hwGhDgBEwo77ARQAAVts3Dd9bkltba19YVKHW2p8m+fTIoSctqtaqaa29M8kTkvxKkju2GfqhJC9orb2ktXZkF3Xubq29OJshaB/aZuhXk/zrJE9orf3+rHWGtZZyTwAAANtrXTcAAAAAAMABsd51AwAAAAAAwME02DHA6NCSOgH2i53XFcFoAAB06pKR7S8uod4Xk1w13L50CfUmaq09asn1bk/yQ1X1iiTXJrk8yWVJjiT5QpKPtdY+O6dab03y1qq6Isk3J3l4ksNJvpzktiTvb63dN4c6S7snAADgIBN+BgAAAABA9wSjAQAAAAAAnejvFGDU82cMYDb93mDb8xuC0QAA6NaFI9tfXkK90RoXLKHeyhkGkr1nSbU+m2ThwWTLvCcAAID7q64bAAAAAGCfa3L7gaFe1w0AAAAAAAAH02CnYDQBRsCMBr3D255f71lXAADo1KGR7WV8d2+0xjlLqAcAAAAAAAAAAHDWBKMBAAAAAACd6O8QjLYhGA2YUX9tsO15gYsAAHTsnpHtS5ZQb7TGPRNHAQAAAAAAAAAArBDBaAAAAAAAQCcGa9sHo63XoSV1AuwX67WRjW3WDsFoAAB07Msj25cvod5ojT9bQj0AAAAAAAAAAICzJhgNAAAAAADoRL832Pb8eq0vqRNgP9lubdkQjAYAQLduHb5Xksur6qpFFaqqK5M8aovaAAAAAAAAAAAAK00wGgAAAAAA0Im1Ws+hOmfi+XUBRsAuDHqHJ56zrgAA0LGPJ7kvSRvuP3eBtb57ZPt4kv+2wFoAAAAcCG3nIQAAAAAAMAeC0QAAAAAAgM70e+dOPLchwAjYhX5vMPGcYDQAALrUWrsvyX9OUsPXj1XV5GTfXRrO+aPZ/MV6S/JfhrUBAABge034GQAAAAAA3ROMBgAAAAAAdGawNjkYTYARsBvWFQAAVtxbhu8tySVJXruAGj+X5NJshq8lyZsXUAMAAIADp3YeAgAAAAAAcyAYDQAAAAAA6Ey/J8AImK/t1pUN6woAAN17c5IvDbcryd+vqn8yr8mr6lVJ/o9sBq8lyZ9FMBoAAAAAAAAAsAe0nYcAB4RgNAAAAAAAoDMDwWjAnAlcBABglbXW7kvy49kMRWvD95+pqt+sqgt3O29VXVBVb07ysyPztiT/ZFgTAAAAAAAAAABgTxCMBgAAAAAAdKbfG0w8t9ETYATMbtvAResKAAAroLX2piRvz/3D0b43yS1V9dqqesy0c1XVVVX12iS3JHnRcK4M5/0PrbU3zLN3AAAAAAAAAACARVvvugEAAAAAAODgGvQOTzy3XgKMgNn1twtGs64AALA6/k6SP0jylJwJR7soySuTvLKqvpTkw0luTnLn8JUk5ye5IMnjk/xPSR4+PD4aiFZJPpLkpQu/CwAAAAAAAAAAgDkTjAYAAAAAAHSmvzaYeE6AEbAbg7XJwWgb1hUAAFZEa+3uqnpmkjckeV42A82SMwFnD0/yXcPXJDWyPXr925O8rLV299waBgAAgL/6pycAAAAAACxWr+sGAAAAAACAg2vQOzzxnGA0YDf6vcnBaNYVAABWSWvtrtba9yR5ZZKj2Qw1ayOvDI9t9crY2EpyLMmPtdae11r7y2XdBwAAAPuJ8DMAAAAAALonGA0AAAAAAOhMvzeYeG5DgBGwCwPBaAAA7DGttf87yeVJfjbJnbl/AFqb8Bodc+fw2stba/9i2f0DAABwUNTOQwAAAAAAYA7Wu24AAAAAAAA4uAa9wxPPCTACdmO7wEXrCgAAq6q19pUkP1FVP53kqUm+Ncm1Sf5akouSPGQ49KtJvpLki0nen+Q/J/mj1tp9S28aAAAAAAAAAGCOWuu6A2BVCEYDAAAAAAA6I8AImLd+79yJ5zasKwAArLjW2vEkfzh8AQAAAAAAAAAAHDi9rhsAAAAAAAAOrsHa4YnnBBgBuzFYmxyMJnARAAAAAAAAAAAAAABWm2A0AAAAAACgM/3eYOI5AUbAbvR7gtEAAAAAAAAAAAAAAGCvEowGAAAAAAB05vz1C7c83ksv/bXJ4UYAk5y39uD0JvwZ9Ly1By+5GwAAAAAAAAAAAAAAYBaC0QAAAAAAgM48ZOOhedihRz7g+JWDx6ffG3TQEbDXndPr57HnPvEBxy/deHguPvTQDjoCAAAAAADYK1rXDQAAAAAAgGA0AAAAAACgWy972D/KeWvn/9X+hesX56WX/XCHHQF73Ysf+vfzkI1L/2r/3N55+bsPf2WHHQEAAAAAAAAAAAAAANNY77oBAAAAAADgYPu6/pV59RW/nFuP3pxereWqwV/Pod45XbcF7GGXHnpY/tmjfimfPfo/cl+7N48994np9wZdtwUAAAAAAAAAAAAAAOxAMBoAAAAAANC5wdrhPOG8p3TdBrCPnNPr53GHv6nrNgAAAAAAAAAAAACAKbSuGwBWRq/rBgAAAAAAAAAAAAAAAAAAAAAAAADWu25gFlX1B8PNluR/ba3dvst5HprkLafnaq09cx79AQAAAAAAAAAAAAAAAAAAAAAAALuzp4LRkjw9m6FoSdI/i3n6w7kyMh8AAAAAAAAAAAAAAAAAAAAAAADQkV7XDexCdd0AAAAAAAAAAAAAAAAAwMHRum4AAAAAAIADYi8GowEAAAAAAAAAAAAAAAAwT034GQAAAAAA3TuowWjrI9snOusCAAAAAAAAAAAAAAAAYOVV1w0AAAAAAHBAHNRgtItHto901gUAAAAAAAAAAAAAAAAAAAAAAACQ5OAGo/3Pw/eW5ItdNgIAAAAAAAAAAAAAAAAAAAAAAAdZa113AKyK9a4bOAszLWVVtZHkYUmeneSfjpz643k2BQAAAAAAAAAAAAAAAAAAAAAAAMxu5YLRqurkNMOSfK6qdl1mZPvf73YSAAAAAAAAAAAA6FpVXZ3kiiT3Jrm5tfbpjlsCAAAAAAAAAADYlZULRsv9Q8vmMW4rbXj9p5K89SzmAQAAAAAAAAAAgLmoqn6Sh48cuq21NvFho1X13CS/lOSRY8c/mOQHWms3LaRRAAAADqDWdQMAAAAAABwQva4bmGDRn5RXkv+a5G+11o4vuBYAAAAAAAAAAABM45VJbhm+3pPk1KSBVfXCJDdkMxStxl7XJPmjqrp60Q0DAACwnwg/AwAAAACge+tdN7CF/5LJn6J/6/C9JflwkmNTztmS3JvkziQ3J3lPa+19Z9MkAAAAAAAAAAAAzNl3ZzPYrCV5XWtty+/SVdWFSf5NNh+O2oavGp4+fc3hJDdU1de31qb9rh0AAABMUDsPAQAAAACAOVi5YLTW2tMnnauqUznzpa0XtdY+v5SmAAAAAAAAAAAAYIGqapDkSTnzHbl3bDP85UnOz5lAtC8kuSHJiSTPT3L5cNwjkvzDJK9dQMsAAAAAAAAAAABz1+u6gV3weBEAAAAAAAAAAAD2mycmWcvmd+SOtNY+us3Yl+ZMKNr/SPKE1torWmuvHM7z/w7HVZLrFtYxAAAAAAAAAMCctLbzGOBgWO+6gRm9emT7zs66AAAAAAAAAAAAgPm6Yvjektw0aVBVPS7JVcNxLclPtta+dvp8a+3uqnp5kg8ND319VT2ytfYni2kbAAAAAAAAAABgfvZUMFpr7dU7jwIAAAAAAAAAAIA956Ej21/aZty3DN8ryV1J3jY+oLX24ar60ySPGB76xiSC0QAAAAAAAAAAgJXX67oBAAAAAAAAAAAAIOeObN+1zbhrh+8tybtbaycmjPvkyPbXnU1jAAAAsPnPUAAAAAAAWDzBaAAAAAAAAAAAANC9Gtne2GbcNSPb79tm3FdGth+8q44AAAA4YISfAQAAAADQPcFoAAAAAAAAAAAA0L27RrYfutWAqrosyVUjhz6wzXzro5eeRV8AAAAQ/7QEAAAAAGBZ1ncesrqq6hlJvi3Jk5NcmuT8bP+kzK201tqV8+4NAAAAAAAAAAAAZvCF4XsleeKEMd85sn1vko9uM98FI9tHzqIvAAAAAAAAAACApdmTwWhV9Zwkv5T7P/lyt48daWffEQAAAAAAAAAAAJyVT4xsX1RVz2mt3Tg25vuG7y3Jh1trx7eZ79Ej21+eR4MAAAAAAAAAAACL1uu6gVlV1Y8meWc2Q9FGw9DaLl4AAAAAAAAAAADQudbarUluyeZ32yrJL1fVFafPV9Urk1w7csnbJ81VVefl/g8evXW+3QIAAAAAAAAAzJcwIOC09a4bmEVVPSfJa4a7p8PNToej3ZPkziTbPQETAAAAAAAAAAAAVtW/zeZ35FqSK5J8qqo+nuTSJI/Mme/MHUvy/2wzz9Nz5rt1J5L89wX1CwAAAAAAAAAAMFd7Khgtyc8N309/uetPsvklsHe01j7fWVcAAAAAAAAAAABw9n4xyfcl+fpsfk9uI8nVORNydvqBor/QWvvzbeZ53sj4j7fW7l1MuwAAAAAAAAAAAPO1Z4LRqurKJN+UzS9qJckfJXl2a+2u7roCAAAAAAAAAACA+Wit3VdVz0ny+0kePzxcOfMw0UryO0munzRHVZ2X5Hty5rt2715YwwAAAOwvre08BgAAAAAAFmzPBKMledrwvZKcSvK/CUUDAAAAAAAAAABgP2mt/UlVPSnJ303y3CSXD099KsmbW2s37DDFdUkePLL/H+feJAAAAAAAAAAAwILspWC0S4fvLcnHWmu3dNkMAAAAAAAAAAAALEJr7XiSfzN8zep1SX59ZK6vzasvAAAAAAAAAACARdtLwWg1sv3pzroAAAAAAAAAAACAFdVaO5rkaNd9AAAAAAAAAAAA7Eav6wZm8IWR7bXOugAAAAAAAAAAAAAAAAAAAAAAAADmbi8Fo/33ke1HdtYFAAAAAAAAAAAAAAAAAAAAAAAwN6113QGwKta7bmBarbU/rqpPJnlCkqur6sLW2h1d9wUAAAAAAAAAAACLVlWPSPLoJBcleVCSaq29qduuAAAAAAAAAAAA5mvPBKMN/XyS1ydZS/LKJP+s23YAAAAAAAAAAABgMarq8iT/Z5LnJrl8iyEPCEarqm9J8ozh7h2ttX+5uA4BAADYX1rXDQAAAAAAwN4KRmutvbGq/laS70nyY1X1/tba73XdFwAAAAAAAAAAAMxLVfWS/EySH83mg0Rri2GTfq3+F0l+6vT5qnpna+3WBbQJAAAAAAAAAAAwd72uG9iFlyX599kMdXt7Vf10VV3QcU8AAAAAAAAAAABw1qpqI8nvJ3lVtn746aRAtM2Trd2c5D05E6b2krk2CAAAAAAAAAAAsEBbfWlqZVXVTw43P57kmiQXJ/mnSX6kqj6Y5KYkdyQ5Ncu8rbWfnmefAAAAAAAAAAAAsEuvS/KsbAagtWwGnL0vm2Fn9yX551PM8TtJnjHcfnaSn5l/mwAAAAAAAAAAAPO3p4LRkvxU7v+0y9Nf+jo3ybcNX7shGA0AAAAAAAAAAIBOVdUzk7w0Z74b9+kkL2mt/dfh+cszXTDaf0zyr4Zz/I2q6rfWji2mawAAAAAAAAAAgPnpdd3AHJx+KuZu1DwbAQAAAAAAAAAAgLNw/fC9ktyW5JrToWizaK3dluTO4e5GksfNpz0AAAAAAAAAgMVou00QAvadvRiMVnN8AQAAAAAAAAAAQOeq6qIk1+TMw0Jf0Vr7i7OY8qaR7ceeTW8AAAAAAADA/8/enYfZWdd3H39/ZyYLBAgh7Ci7yC7ghkUKCIorWhdcerkA1qV1aa1a21oRa/WxdXnaurUa3K2KIiAF2UFEWWSRgAghEEgCSci+LzPzff44Z545OZlz5pw525zJ+3Vd93Xu33p/x+BJZuY+n1uSJEnt0tfpAup0WqcLkCRJkiRJkiRJkiRJkiSpBV7I8MNOl2TmZQ3uVxqqtmeDe0mSJEmStgeZna5AkiRJkiRJkqTuCkbLzJs6XYMkSZIkSZIkSZIkSZIkSS2wT/E1gd81Yb81Jec7NWE/SZIkSZIkSZIkSZIkSWq5rgpGkyRNYCtnw0NfhoGNsP8bYN9XQESnq5IkSZIkSZIkSZIkSWqX3UrOVzRhvx1Kzrc0YT9JkiRJkiRJkiRJkiRJajmD0SRJnbfoWrjhTMjBQvvR78IxF8Axn+hsXZIkSZIkSZIkSZIkSe2zuuR85ybst1fJ+fIm7CdJkiRJkiRJkiRJkiRJLdfT6QIkSdu5TPjd+4dD0Ybc/y+wfkFnapIkSZIkSZIkSZIkSWq/p0rOn9HIRhHRCxxf0vVkI/tJkiRJkiRJkiRJkiRJUrsYjCZJ6qyVv4fVf9y2f3AzzL+4/fVIkiRJkiRJkiRJkiR1xuziawDPjIinNbDXy4Adi+cJ3NpIYZIkSZIkSZIkSZIkSZLULl0fjBYRkyLiTyPiHyPiwoi4JCKui4jrOl2bJKkGT/yy8tjjF7WvDkmSJEmSJEmSJEmSpA7KzAeAhcVmAH87ln0iogf4h6Ftgd9n5srGK5QkSZIkSZIkSZIkSWqd7HQBksaNvk4XMFYRMQ34G+B9wB7lw1R4r4uINwP/UmwuB56bmb4vSlKnrJxdeWzpb2HTMpgys331SJIkSZIkSZIkSZIkdc4PgI9SuAfufRFxRWZeU+cenwFOLGl/o1nFSZIkSZK2Z378SpIkSZIkSZLUHj2dLmAsIuJY4E7gAmBPCjeB1eoXwEzgQOB44MXNrk+SVIfVf6w8lgOw8PL21SJJkiRJkiRJkiRJktRZ/wqspvBp817g0oh4Vy0LI2L3iPg28BGGP62+CLiwBXVKkiRJkiYkw88kSZIkSZIkSZ3XdcFoEXEkcBPwDAqBaEM/cQ9qCEjLzLXARSVdr2t2jZKkGuVg9WA0gAWXtKcWSZIkSZIkSZIkSZKkDsvM5cAHGL43birwtYiYExGfBc4qnR8Rz4uIt0bE94C5wFsZvpduADgnMze382uQJEmSJE1Uo35sS5IkSZIkSZKkpujrdAH1iIipwOXAdIYD0WYD/w7cAEwBHqhhq0uBc4vnpze5TElSrTYsgoH11ecs/U17apEkSZIkSZIkSZIkSRoHMvO7EXEo8HEK98kFcAjw0bKpAfy2rJ0la/4+M69ufcWSJEmSJEmSJEmSJEmS1Dw9nS6gTh8ADmQ4FO0/gBMy81uZOQ/Yipk/qAAAIABJREFUWOM+NzB889dBEbFnk+uUpLFbNx9+fTb8fD+49hRYdH2nK2qdDQtHn7NxCWxe2fpaJEmSJEmSJEmSJEmSxonM/ARwDsP3xA3dM1cafjZ0D1yUzAlgM/D2zPx82wqWJEmSJEmSJEmSJEmSpCbptmC09zN8g9clmfnXmTlY7yaZuRaYV9J1RBNqk6TG9a+Ha14Ij18EG56AJb+C60+HR78HmaOv7zbrawhGA1gzp7V1SJIkSZIkSZIkSZIkjTOZ+R0K97Z9lUJA2lAAWrB1INpQ3yDwXeCIzPxeG0uVJEmSJEmSJEmSJEmSpKbp63QBtYqII4H9is0EPtLglnOBg4rnBwM3NbifJDVuwWWw/vFt+3/7NrjnY3DSj2DPk9tfV6tsqDEYbeVsmPnc1tYiSZIkSZIkSZIkSZI0zmTm48D7IuKjwAuLx9OBmcBkYCmwGPgNcF1mruxUrZIkSZIkSZIkSZIkSaPJ7HQFkrpB1wSjAccVXxO4LzMfaXC/0hvApje4lyQ1x2P/U3lswxNw7Z/CMRcUwtH2PAWip321tcL6GoPRFl4Oh5zb2lokSZIkSZIkSZIkSZLGqcxcD1xdPCRJkiRJkiRJkiRJkiYcQ9MkDemmYLQ9Ss7nNGG/TSXnOzZhP0lq3KJrRp8z+/zC674vh5N/Dr2TW1tTK214orZ5i68v/As2orX1SJIkSZIkSZIkSZIkSZIkSZK03fKTp5IkSZIkSZKkzuvpdAF1mFpyvqnirNpNLzlf04T9JKlxk3apfe4TV8DD/9W6Wtqhv8a33y2rYMOTra1FkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJktRR3RSMtrTkfPcm7HdwyfmyJuwnSY3rnTr6nFKPfKs1dbRL/4ba567+Y+vqkCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiR1XF+nC6jDouJrAMc3slFEzASOKOl6uJH9JKkpMmHT0tHnlVpxN6z4Pcx4VmtqarWBOoPR9n5R62qRJEmSJEmSJEmSJEkahyJiEvAC4GTgEGA3YGeAzDy9g6VJkiRJkiRJkiRJkiRJUtN1UzDab4BBoAeYGREvyszrx7jXuRQC1gDWAb9rQn2S1JhNy6B/Xf3rrjwO3jwIEaPPHW8GNtY+d/UfW1eHJEmSJEmSJEmSJEnSOBMR04C/Ad4H7FE+DGSFdW8G/qXYXA48NzNHnCtJkiRJkiRJkiRJkiRJ401PpwuoVWauAO4o6frniPpTgCJiP+BjFG4KS+CazBxsTpWS1IA1D4197ewLmldHOw1sqH3uQ//ZujokSZIkSZIkSZIkSZLGkYg4FrgTuADYk+EHgdbiF8BM4EDgeODFza5PkiRJkiRJkiRJkiRJklqla4LRiv695PxE4Ov1LI6IvYDLgBkM3yj2xeaUJkkNWjNn7GvvuwC2rG5eLe1STzAawLLftaYOSZIkSZIkSZIkSZKkcSIijgRuAp5B4T63HBqihoC0zFwLXFTS9bpm1yhJkiRJksaBNQ/DrefBlcfDbX8Bax/tdEWSJEmSJEmjyjGOSdq+dFUwWmb+CLin2AzgnRFxc0ScXG1dREyLiPcU1x5H4X0wgasz85ZW1ixJNVvzUGPrH/9Zc+pop3qD0R78v62pQ5IkSZIkSZIkSZIkaRyIiKnA5cD0ku7ZwHnAwcAR1BCOBlxacn560wqUJEmSJI0sE+7/LFzxLPjfo2H2pyAHO11V/dKPnnaN9Qvh2lPhkQthxT0w95tw7Smw4clOVyZJ0taW3Aw3v67w76TffQA2ryz0b1wCt78X/vcY+PUbYdkdna1TkiRJkjSu9HW6gDF4PXArMLPYPgm4MSIWAQ+XToyIrwGHAS8ApjD89MwAFgJvbVPNkrSt1Q/Bo98t/ABvn5cU2iOZcTxsWQVrH6m+323nwYFvgd4pza+1VeoNRlv4vzC4BXomtaYeSZIkSZIkSZIkSZKkzvoAcCDDD0H+D+BDmYVP00fEATXucwPD98odFBF7ZuaSJtcqSZIkSRry+3+EP3x2uD37fNi8Ap79pc7VpInt8Ytgw8Kt+9bPh/k/h8P+sjM1SZJUbumtcMOZw58jXHkvLP0tnHYVXHcarPpDoX/VffDElfDiX8OMYztXryRJkjSerX0E7v4IPPUb2PVoOOofYa9TO12V1DI9nS6gXpn5CPBKYBFbB53tA7ywZGoA7wJOBaaWzV0AvCIzl7atcEkqtex3cNXz4P5/gbnfgF+/Aeb/dOS5+70KXvkgvPiWUTbNwtN+BvubXW3r1BuMtmUlLPlVa2qRJEmSJEmSJEmSJEnqvPczHIp2SWb+9VAoWj0ycy0wr6TriCbUJkmSJEkaSQ7C3P/etn/urMKDwaVWuOtvRu7/3V+1tw5Jkqp5+BvbfoZw+e/gvk8Ph6IN6V8Dj36nfbVJkiRJ3WTT8kKeyPyLYeMiWHQt3PhyWH5npyuTWqbrgtEAMvN24ATgSgpBZzB8M1iWHJSNBXAN8LzMvLcNpUrSyO77Z9iyqra5Ox8GPX2wx5/Aq+ZUn7vsVnj0e43X1y4DG0fuP+lHldcs/EVrapEkSZIkSZIkSZIkSeqgiDgS2I/he+I+0uCWc0vOD25wL0mSJElSJSt+D5uWbdvfv8YHg0uSpO3bIxeO3P/gl0bu/+MXW1eLJEmS1M2evArWz9+6b2ADPPqDztQjtUFXBqMBZObizHwF8Fzg+8AiCjeEjXSsBi4GTsvMMzNzUWeqliQKT4NaeFnt83d+Rsn5oXDKKMFgj1UJFRtPBrdADow8tsN+sP/ZI4+tur91NUmSJEmSJEmSJEmSJHXOccXXBO7LzEca3G9lyfn0BveSJEmSJFUyuHlsY5IkSZIkSZJUi9veOXJ/pdBhaQLo63QBjcrMO4G3AUTEwcDTgZnAZGApsBi4PzMHO1akJJVa93jtc6fsDrsdv3XfnqdA307Qv3bkNYuvh80rYfKuY6+xHQY2VB7r2wFmHA+P/2Tbsc0rWleTJEmSJEmSJEmSJElS5+xRcj6nCfttKjnfsQn7SZIkSZIkSZIkSZIkqd0G1ne6Aqntuj4YrVTxCZmNPiVTklpr8fW1zz38b6Fn0tZ9k3aGE74At7975DXZD09cCQe+eew1tkN/lWC0nqmVg902rxy5X5IkSZIkSZIkSZIkqbtNLTnfVHFW7aaXnK9pwn6SJEmSJEmSJEmSJEmS1HITKhhN40NETAJOAvYH9gHWAk8Ad2fmvA6WJnXe6ofgtvNqmzv9SDj8QyOPHfou2O3Z8MvnjDy+6NrxH4w2UCUYrW8HmFQhGG2LwWiSJEmSJEmSJEmSJGlCWlpyvnsT9ju45HxZE/aTJEmSJE142ekCJEmSJEmSNMFllR9BVRuTtH0xGG0CiohvA29v0naPZeaBNV53D+AC4I3AbhXm/Ab4Ymb+rEn1Sd3l9nfVPvc5X4XeyZXHd3s2POO9MOdr2449ciFsWQ37vQoO/HPo6a2/1mbZsAge/m+YOwvWPw77nQUnfBEGN1de07sDTK4QjLZ5ZeFfsxGtqVeSJEmSJEmSJEmSJKkzFhVfAzi+kY0iYiZwREnXw43sJ0mSJEmSJEmSJEmSJEnt0tPpAjTubahlUkS8DLgPeC8VQtGK/gT4aUR8PyKmNaE+qXtsWQNP3Vzb3JnPg71OGX3ejCr3wM7/Kdz6drjljZ2LxV07D658Fsw+vxCKBrDwMvjFofDkVZXX9e4Ak2eMPJYD0L+u6aVKkiRJkiRJkiRJkiR12G+AweL5zIh4UQN7nUshYA1gHfC7RgqTJEmSJEmSJEmSJEmSpHbpqmC0iDg6Iq4vHtdFxJ5j2GOv4tqhfQ5rRa0TyM9GmxARpwKXAKV/HgncCVwEXAMsLVv258D/RERX/TcoNWTTMsjB0ecBzHx+bfN2OXz0OfN/Bkt/W9t+zTb7k7Bxychjd/1N5XV9O8HkXSuPr1/QUFmSJEmSJEmSJEmSJEnjTWauAO4o6frniIhK8yuJiP2Aj1G4hyuBazJrvWlFkiRJkiRJkiRJkiRJkjqr20Kp3g2cCpwCbM7MCmk7lWXmYmBLyT5/0cT6xosPAweN4XhD2T4JXFjtQhHxNOBiYHJJ9y3AUZn5nMw8OzNfAjwN+CCF/+2HvAr49Bi+Pqk79a+pfe7M59Y2b+casx0f/V7t126WgU2FULZ69e0MPX0wqUow2tUnQubYa5MkSZIkSZIkSZIkSRqf/r3k/ETg6/Usjoi9gMuAGcBQqNoXm1OaJEmSJEmSJEmSJEmSJLVetwWjvbrk/DsN7DO0NoA/a2CfcSkzl2bmvHoP4IyyrW7IzEdGudwFFG6iG/Ib4IzMfKCspk2Z+R/A2WXrPxQRB4zhy5S6z5Y6gtF2qzEYbfKM0ecAPFI147A1Fl8P/WvrXze5GIg2eXrlOVtWwYq7x1aXJEmSJEmSJEmSJEnSOJWZPwLuKTYDeGdE3BwRJ1dbFxHTIuI9xbXHUXgoZgJXZ+YtraxZkiRJkiRJkiRJkiRJkpqpa4LRIuJg4GnF5iBweQPb/QIYKJ4fFBH7N1LbRBAROwBvKuueNcqaZwBvL+naDLwjMzdWWpOZl7B1qN0U4Pz6qpW6VK3BaJN2gV0Oq21uzySGH+5bTS1zmmzBJWNbNxSM1jsVpuxeed7yu8a2vyRJkiRJkiRJkiRJ0vj2emAZhWAzgJOAGyNiIfDd0okR8bWIuA54CvgKsNfQEPAE8Na2VCxJkiRJ27UcfYokSZIkSZIkSapZ1wSjAUcXXxN4MDPXjnWj4toHS7qOaaSwCeL1wPSS9grg4lHWvAXoLWlfnJlzarjW58raZ0fE1BrWSd2tv8ZgtIPeAVHj23NEIUBsNIObatuvWXIQFlw2trWTZwyf73dW5Xn968a2vyRJkiRJkiRJkiRJ0jiWmY8ArwQWUQg4y+LrPsALS6YG8C7gVGBq2dwFwCsyc2nbCpckSZIkTQCGvEmSJEmSJKm1ssqPoKqNSdq+dFMw2gEl53ObsF/pHvs3Yb9ud15Z+weZuXGUNX9W1v5WLRfKzAeA20q6pgEvqWWt1NW21BCMtteL4JhP1LdvLcFoACvvr2/fRiy7HTYuGtvaSbsOn5/w+crz+secjylJkiRJkiRJkiRJkjSuZebtwAnAlRSCzmD40+lZclA2FsA1wPMy8942lCpJkiRJ+v/ftkmSJEmSJEmSpGbopmC0nUvOVzVhv9Ul57s0Yb+uFRGHAH9a1j1rlDV7A88q6eoHbqnjsjeWtV9Wx1qpO/VXCEabdhC86Fp4+b1w2tUwZWZ9+9YajLbgkvr2bcRT9bwdlIne4fPJMwphcSPpXzf2a0iSJEmSJEmSJEmSJI1zmbk4M18BPBf4PrCIwqftRzpWAxcDp2XmmZk5xifaSZIkSZIkSZIkSZIkSVJn9XW6gDpsKDlvRpBZadDaQBP262bnsvXjae7KzHtGWXN0WfvezKwnpeg3Ze2j6lgrdactFYLRpu4Je58+9n17agxGWzdv7Neo15qHRu7f63R4wXfhkv0qrx3YuHV70s4jz+tfO7baJEmSJEmSJEmSJEmSukhm3gm8DSAiDgaeDswEJgNLgcXA/Zk52LEiJUmSJEmSJEmSJEmSJKlJuikYbWnJ+QFN2G//kvNlTdivK0VEL/D2su5ZNSw9sqz9cJ2XnjvKftLE018hGK1S8FetemsMRlu/sLHr1GP1gyP3Tz+yEARXze4v2LrdO23kef31ZDFKkiRJkiRJkiRJkiSNbxGxM3BQSdfc8odVZuYjwCNtLUySJEmSJEmSJEmSJEmS2qin0wXU4fHiawDHRMTMsW5UXHtsSVcb04LGnZcC+5W0NwA/rGHdoWXtx0ecVdljZe2ZETGjzj2k7rKlQjBaX5uC0Z68srHr1GrBL2DJTSOP7XwY9IySybnfy7duT9pp5Hn9a+uvTZIkSZIkSZIkSZIkafx6M3B38bgdmNLZciRJkiRJkiRJkiRJkiSp/UZJpxlXbgU2AZMphKP9FfCpMe71lwyHwvUDtzRcXfc6t6z9s8xcWcO6XcvaS+q5aGaujYiNQGmi03RgRT37lIuIPYE96lx2SCPXlGpWKRhtUoPBaD113AO7+iHY5bDGrlfNyvvhV2dVHt/lmYXXXY+FlfeOMCFgxglbd/VOG3mv/nUj90uSJEmSJEmSJEmSJHWn3SncGwdwR2Yu72QxkiRJkiRJkiRJkiRJktQJXROMlpmbIuJm4Ixi14cj4ueZObuefSLiaOAjQBa7bsnM7TJdJyL2AF5V1j2rxuU7lbU3jKGEDWwdjNZgOhRQCL07vwn7SM3XXyEYra/B//RzoPa5lz8T3jwIEaPPHYvHflh5rGcSzHxe4Xy/s0YORnv9sm1rm1T+dlPUv3ZsNUqSJEmSJEmSJEmSJI1Pq4qvCSzoZCGSJEmSpO1U5uhzJEmSJEmSJElqsZ5OF1Cnzxdfk0Iw15URcWKtiyPiecAVwDSGn6z5+corJry3AZNK2nOBm2pcW55UtHEM1y8PU6uQfiRNEFsqBKNNajAYbbDO//tdewpsXNLYNStZcU/lsT1PhcnTC+dH/T3s89Lhsd4d4eSfweQZ267rmzbyfgajSZIkSZIkSZIkSZKkieXJkvPJHatCkiRJkiRJkiRJkiSpRapF8xvbL2lIVwWjZebVwI0UQs0S2Bf4VUTMiojnRUSUr4mC50bEN4GbgacNbQfcnJlXtKf6cemcsvaFmWN+tMtY1vn3kbYv/S0KRhuoMxjtqZvhqufDuscau265LWvgiSpvqUd+dPi8b0c49Qp4+X1w2lXwmvnw9NeOvK6vQmbi8jt9GpUkSZIkSZIkSZIkSZpI7is5P6hjVUiSJEmSJEmSJEmSJElSB/V1uoAxeBNwF7APhWCtPuAdxWNdRDwIrCiO7QYcBgyl6gwFqgUwHzi7jXWPKxFxInBUSdcA8O06tlhb1t5hDGWUrynfcyy+ClxU55pDgEubcG2pui0VgtH62hyMBrBuHvzqz+BldzV27dIaLt6r8vhuz4W9z9i6LwJ2PapwVNM3rfLYqvtg12Nqr1OSJEmSJEmSJEmSJGmcysyHIuJe4Fjg2IjYLzMXdrouSZIkSdJofOC3JEmSJEmSJEnN1HXBaJm5JCJeClwGHMjwbw+CQgDas8v6/v9ShkPRHgZenZlL2lHzOHVeWfvKzHyijvXjMhit+Gda159rRIw+SWqG/grBaJM6EIwGsOJuWHQ97P2ikccHByD7YfNyGOyHKbsDCTkAm5YV5vRMgh32hZvOgoENla91zCfGViPApF0rjy2+0WA0SZKkTtqyGnqnQU9vpyuRJEmSJEmSJGmi+E/gGxTuc/sU297nJUmSJEmSJEmSJEmSJEkTWtcFowFk5n0R8WzgK8DZQA8jP16ltC+AAeAHwAczc1XLCx2nImIa8May7ll1blP+v98eddawE9sGo62sswapu2ypEIzW16FgNIDrT4dD3gnP+TL0Thnun38J3PxnjdVVaod9x752z5Mrj/U3nKcoSZKksVgzF37zFlh2B0yeAc/8IBz9T2DwtCRJkiRJkiRJDcnMWRHxGuAVwDsi4sHM/NdO1yVJkiRJqsb7piRJkiRJkiRJaqaeThcwVpm5IjPfAhwJfAmYXRyKsgPg98DngWdm5ju251C0ojcApUlMi4HL69xjTln7gDrXl89fnpkr6txD6h6Z0F8hGG1Sg8Fogw0EowHM/Sbc9TfD7VV/bG4oGsC0et8iSkyZWXmskVA4SZIkjc3gFrjuVFh2O5CweTnMPh/mfK3TlUmSJEmSJEmSNFG8Gfg5hfvfPhsRV0XEaR2uSZIkSZIkSZIkSZIkSZLaoq/TBTQqMx8C/hYgInYC9gKGUnSWAoszc12Hyhuvzitrfzcz++vc44Gy9qF1rj+4rP2HOtdL3WVgA+TgyGN9DQajTZ4BG5eMPPbKB+Hej8PjF1XfY87X4NB3w4xnwQP/1lg95XY5onq4WS32fgksunrb/sFNje0rSZKk+i35FaxfsG3/Yz+Ew/6y/fVIkiRJkiRJkjSBRMSFxdPVwBoKD8A8AzgjItZQeEjokuJYrTIzy+8ZkyRJkiRpBNnpAiRJkiRJkiRJ6p5gtIjYG3heSdevM3N56ZzMXAusBea2s7ZuEhGHAS8s6541hq3uK2sfGxE7Zub6GtefNMp+0sSypcq9qJMaDEZ71mfgtndu23/gW2GXw+CFP4ErjoOVv6++z5XHNVZHJSdf3PgevVNH7h/Y2PjekiRJqs8Dnx+5/6lb2luHJEmSJEmSJEkT0zvY+lPoCUTxfBe2vfdrNFHcw2A0SZIkSZIkSZIkSZIkSV2hp9MF1OG1wM+Lxw+ATZ0tp2udW9b+dWY+WO8mmfkkcG9JVx/13XR3aln7ynprkLpKfwuD0fZ9OfSNsMeBfz58fthfNXaNsTr8QzD98Mb3qRiM5l8FkiRJbbd5+ehzJEmSJEmSJElSM2XJIUmSJEmSJEmSJEmS1LWyyt0P1cYkbV+6KRhtVwpPrwzgjsxc1+F6uk5E9AJvK+ue1cCWPy9rn1NjHYcDzy/pWgdc3UAd0vjXv77yWO+0xvbeYR940dUw/ajh9vNnwb5nDs85+Fx41mcau0699jy1edfsmTJy/+DG5uwvSZKk6gb74b5Pw1UvgGW3V57nTx0lSZIkSZIkSWqGaOIhSZIkSWo575uSJEmSJEmSJKmZ+jpdQB2WF18TeLKThXSxlwP7lLTXABc1sN8PgI8DvcX2ayPiGZk5Z5R1f1fW/klmmm6kiW1gQ+Wxvh0a33/3E+EV98HmlTBpOkTZfa09vXDU3xeOa0+FJTc1fs1q9n5xIaytWXqnjtw/4FuHJElSW9x6Dsz7/ujzBjZA346tr0eSJEmSJEmSpInroE4XIEmSJEmSJEmSJEmSJEmd1E3BaKVhaNM6VkV3O6+s/aPMXDfWzTJzTkR8Bzi32DUZ+HZEnF4p6CwiXg28o6RrM3DBWGuQuka1YLTeJgSjDZm86+hzDnhT64PRTrmsufv1Thm5f2BTc68jSZKkba17DOb9oLa5/esMRpMkSZIkSZIkqQGZ+Vina5AkSZIk1StGnyJJkiRJkiRJkmrW0+kC6nA3kMXzwzpZSDeKiL2AV5R1f7MJW58PrChp/wlwbUQcXnb9KRHxfuCisvVf8GY+bRcqBaP1TIZo81vxQW+DXY+tfX5fHVmUOx0Mr5kPvVPrr6uaSvsNjJjBKEmSpGZZOw/u/juGvx0fRf+Ys7clSZIkSZIkSZIkSZIkSZIkSZIkSZIkib5OF1CrzHw8Im4FXgA8MyIOy8yHOl1XF3k7W/9535eZtze6aWYuiIjXAlcBk4vdJwF/iIg7gUeA6cAJwB5lyy8H/qnRGqSuUCkYrXeH9tYB0LcjnHkHzPka3PXXleftfzbs+zLY5Qi4+sSR50w/Eo7/Aiy+HqbuDYe+Eybt0vyae6aM3D+4qfnXkiRJEmTCfZ+G+z4JOVj7OoPRJEmSJEmSJEmSJEmSJG13anzwpCRJkiRJkiRJqknXBKMV/Rtwccn5qztYS7c5p6w9q1kbZ+aNEfFnwLcZDj8L4DnFYyT/A/xFZg40qw5pXOsfR8FoAL2T4fAPwv5vgGtOgnXzth7/00vhaWcVzlfeX3mfTNj3pYWjlXqnjtw/sLG115XUHFtWw2M/gTUPwR4nw36vgOjpdFWSpGqW/hZmf6L+df1rm1+LJEmSJEmSJEmSJEmSJKlNDHmTJEmSJEmSJHVeVwWjZeYlEXEhcC7wyoj4CvDBzOzvcGnjWkScBBxe0rUZ+H4zr5GZV0TE0cAFwBuBGRWm3gp8PjN/1szrS+PewDgLRhuy477wqodhyU2w6FqYcRzsfQZM2W14Tl+1Gtv0S0+D0aTutXEJXH8GrJxdaD/wb3DwOfD8bxqOJknj2bwfjm1d/7rm1iFJkiRJkiRJkqStRMRBwHHAvsBOwJPAY8BvMnNLJ2uTJEmStl/R6QIkSZIkSZKkrlEtpcLYfklDuioYrejdwBrgg8B7gFMi4gvAZZm5rKOVjVOZeQtt+C1LZi4B3hsRHwROAg4A9gbWAQuBuzPz0VbXIY1LlYLRqoaOtUlPL+z9osIxkqrhbW36Z2XPlJH7Bze15/qSxm7Ofw2Hog155Ftw6Ltg9xM7U5MkaXRPXDG2dQajSZIkSZIkacW9cP9nYNNS2O14OOaT0Det01VJkia4iPg28PYmbfdYZh5Y5VqN3jBzUGbOq3dRRLwe+BDwggpTlkfEj4FPZObSBuqTJEmSJEmSJEmSJEmSOqqrgtEi4vqS5hpgZ+BI4JvF8QXAkuJYrTIzT29akSIzNwM3dLoOaVypFIxWNXRsnBgPNfZOHbl/YGN765BUv9mfGLn/8Z8ajCZJ49m6MWZaG4wmaTwYHIDsh94KIduSJEmSpNZZPQeufv7w7/EWXweLb4Azb4fo6WxtktQlIuJtTdwuKdxLtwpYBPwxM3248ugq3OjTGRGxE/AN4E2jTN0NeC/w2oh4e2Ze1fLiJEmSJEmSJEmSJEmSpBboqmA04FQKN2sNSSCKB8DTi0etN29FHXMlaewmajBau+6V7anwYfbBTe25vqTmmzsLTvh8p6uQJJXLhEe/N/b1AwajSeqgwS1w14fh0W8XPoC/z5lw4rdgysxOVyZJkiRJ2497/m7bhxstvxOevAr2fVlnapKk7vNtWndP27qIuAP4DvDjzPTGi5H9rNMFDImIXuDHwMvLhp4C7qYQencIcDzD91HuBVwaEWdk5q/bVaskSZIkSZIkSZIkSZLULN0WjDYSg80kjX/dHIzWM7nKYJvegnunjty/fkF7ri9pbHKw8tjkXdtXhySpdk9eDbe+fezrt6xtXi2SVItMWDsXVj8E93wUVt0/PLbwF3Dz6+CMGztWniRJkiRtVzavggU/H3ls8Y0Go0lS/WL5V3KCAAAgAElEQVT0KXXbicLDSU8FPhsR52Tm1S24Tid8GPjkGNY9B7iopJ3AhXWsvw14U53XrOeGl//D1qFoW4APAf+dmZuHOiPiSOCbwAuKXVOASyLimMx8ss76JEmSJEmSJEmSJEmSpI7qxmC0VtzwJUmt1d/FwWhR5W23WuhRM1UKRgOY/c9w9Mer1ympMx7+78pjBqNJ0vj00H82tn5gXXPqkKRaDGyC294J875fec6Smwqhabsc1r66JEmSJGl7de8nKo/NvxiO/1z7apGk7ld6E0RW6C9X/nS7keZmydg+wJUR8YHM/Er9JY4vmbkUWFrvuoj4WFnXDZn5SB1bbMzMefVetxYRcTDwwbLuN2TmpeVzM/MPEXE6cB3D4WgzgfOB97SiPkmSJEml2vTAcUmSJEmSJEmSthNdFYyWmT2drkGSxmSgi4PRqmrTL3Cn7FF5bPYnYJ8Xw+4ntqcWSbXZtBzueG/l8UnT21eLJKm6lffDgktg4xJ44n9rW7Pbs2H5ndv29xuMJqmN5n6zeijakCevNhhNkiRJklptzcMw58tVJrTpgUuSNDGcU3zdGfgEhXCroPBmeitwB/A4sBqYDOwGHAOcDOxdXJvAj4FfAjsAuwJHFuccwNYBaV+KiAcy8/qWflXjUETsALyprHtWJ2qp4HxgUkn72yOFog3JzA0R8Q5gNoX/NgDOi4h/rTPsTZIkSdL2LA15kyRJkiRJkiR1XlcFo0lS15r7jZH7+3Zsbx3N1q5feu52PPRNqxy08ej3DUaTxpsFFe/FLuib1p46JEnVzb8EbjkbBrfUvubUX8KcrwAGo0nqsHk/rG3eunktLUOSJEmSROF7tKwSfrZuHgxsgt4pbStJkrpVZn4nIp4BXEYhFA3gG8CnM3N+pXUR0QO8Gvg8cBDwBuCBzPxU2byXA/8OHEIhIK0P+AJwfJO/lG7weqD0qV4rgIs7VMtWiqFtry/r/txo6zLzoYi4BDi72NUHvAX4dHMrlCRJkrS16HQBkiRJkiRJkiRNKD2dLkCSJrwtayuP9e7Qvjpaok3BaL1TYY+TK4/P+Up76pBUuzlfrT4+sLE9dUiSKstBuPP9dYSiBTz3a7DvmZUDLg1Gk9ROS39T27wNC1tbhyRJkiRp9Aem5CCsmdOeWiSpy0XEjsAlwDOBfuDNmfnuaqFoAJk5mJk/B44Ffk3h3sDzI+IdZfOuAE4A7i7pPjYiXty8r6JrnFfW/kFmjpdfZp8JlD5x8beZ+cca136rrP3a5pQkSZIkSZIkSZIkSVLjskpMRbUxSdsXg9EkqdWeurny2KSd21dHK+x9RvuutcPe7buWpMY89hNY/rvqcwzOkaTOW/0grF9Q29xjPw1v7odnvKfQ7ttp5Hn9VUKBJamZNi2rfe6qByqPDQ7AxqWFw/BeSZIkSRqbdfNhxV2jz1td5fszSVKpTwFHUHha3ecy8yf1LM7MdRSCsJYDAXw5IvYom7MGeD2F4LWhW4pf0mDdXSUiDgH+tKx7VidqqeClZe0b61h7M4U/2yHHR8ReDVckSZIkSZIkSZIkSZIktYnBaJLUaouvrzy2R/n9lePUMz9Yof8D7ath8szq4+seb08dkkZ3/2dGn2MwmiR13rLbap971D9AlPwIoW/ayPN8f5fULqsfqn3uyt/DRbvCPR+Dgc2FvoHNcPt74We7wcV7FI6LdoHrTi98oF+SJEmSVLsFl1Ye65kE+50FR3wUdn5G+2qSpC4VEX3A24rNTcDnxrJPZi4F/qvY3AF4ywhzHgUuohCeBnDSWK7Vxc5l+GsHuCsz7+lUMSM4uqz921oXFsPxZpd1H9VwRZIkSZIkSZIkSZIkSVKbGIwmSa2Ug/DA5yuP731G+2ppxDM/CDvuv3Xfwe+A6eX3YLbQlN2rj1/1/PbUIam6zSsKwROjGVjf+lokSdsaHIDld8HS2+DWc0afP3k3eOldELF1v8Fokjptw8L65m9ZBX/4XCEcDeCuv4aHvw5bVg/PGdxSCDe/6jmF98vNK2HRdbBhUfPqliRJkqSJaGGFYLRdnglv2gynXArHfw5mHNfeuiSpO70Q2B1I4PZiwNVYXV1y/poKc64qvgbwtAau1VUiohd4e1n3rDFut39EfCsi7o+IFRGxOSIWF9vfj4h3RcRuY9j3iLL2w3Wun1vWPnIMNUiSJEmSJEmSJEmSJEkd0dfpAhoVEccBZwEnA4cAuwE7A5mZ23x9EbErsEuxuSkzF7erVknboaW3Vh475C+gd3L7amnETgfBS34Lj/0PrHkY9jwFDjh724CMVqoUvjFk4yJYvwB23G7u05XGp9UP1jbP4BxJar91j8GNr4BV99c2//APwWF/BTsdvO1Y304jr/H9XVK7bFo2tnUPfgkOOQ8e+U7lORuXwI8mFb7nzcFC3+F/C8f/W3u/D5YkSZKkbrB5JSy+ceSx/c9uaymSNEGUPrXuiQb3erLk/IAKcx4oOZ/R4PW6yUuB/UraG4AfjnGvg4pHqT2Lx5HAnwNfjIhvAP+UmWtH27AYpFYepvZ4nXWVz39GneslSZIk1SU7XYAkSZIkSZIkSRNK1wajRcQxwJeA00q7a1h6GvDT4vm6iNg7M9c3uz5JIhP++KXK4zOf275ammHHfeGIv+1gATW8xT9xJRz6F60vRVJlT/yytnkG50hS+932rtpD0Q4+B074QuXxSqG1/aN+lkeSmmPzGIPRAK44uoZJWfi+fsgfvwC7Px/2f8PYrytJkiRJE82qB+DXZ0P2jzz+tNe0tx5Jmhj2KTkf5Qlyo9qx+BrA3hXmrCg5n9Lg9brJuWXtn2XmyhZebxrw18DLI+K1mTnaL2x2LWuvz8x6f8m+pKw9vc71FUXEnsAedS47pFnXlyRJktRqhrxJkiRJkiRJkjqvK4PRIuIdwFeAqRRu3Cr9qXtSPT3nUgpPQzyAwg1HrwO+15JCJW2/MuG282D+TyvP8Qnp9dlhr9HnDG5ufR2SKltwGdx3QW1z+9cV3iujllxbSVLDNi2HRdfUPv+Ij1QfrxiMZvClpDbZ1EAw2lgtuNRgNEmSJEkaMue/4I73UvFDkjs+HWYc39aSJGmCWF1yfmSDex1Vcl7pySZTS843NHi9rhARewCvKuueNYat+oFfA9cC9wILgDXATsD+wMnA24A9S9YcBlwbESdm5mNV9t6prD2WP5vyNTuPYY9K/hI4v4n7SZIkSROA98NKkiRJkiRJktRMPZ0uoF4R8ToKNyLtUNoNzAfuYZTfJmTmIPDjkq6zml2jJLH0t/DItyqP90yCyU17EOv2Ye8zCv+7VdO7Y/Vxabwa2Aj3ng/XvQhuPQeW39npiurXvx5+9eo6FiRsWdWyciRJZVb9gbqe5Dn9iOrjvQajSeqwzcvbf815P2j/NSVJkiRpPNqwCO7+MFV/3rTfWT4cRZLGZkHxNYCDI+L5Dez11uJrluxbbu+SOU81cK1u8jag9AaUucBNde7xcWC/zDwtM/8lM3+RmXdn5sOZeU9mXpaZH6Hw8Nb/w9Z/ae4NXBxR9S/K8mC0jXXWB9sGo5XvKUmSJEmSJEmSJEmSJI1bXRWMFhH7AN8pNoduFvoqcEhmHgi8tsatLh3aEjilaQVK0pAnrqw+vs/L2lPHRDJ5Bhz0tupzRgtOk8ajTLjhTLjvU7D4Bnjk23DtKbDsd52urD6XH17/mk3Lml+HJGlkG5+sfe6h7x59zqQKn53pX1P7dSSpEf5bUpIkSZI6Z/7F0L+2+pyn1fMwFUlSiZuALRTujQvgqxFR91PiIuKNwEsYvsfumgpTTyg5n1fvdbrUOWXtCzOzjqfLQDEMbUkN8zZm5t8D7y8bOgF4cz2XrKe+BtZIkiRJGjP/CS5JkiRJkiTVqtpv6ev7Db6kiayrgtGATwA7UrjpaxA4OzPfl5mPFsdrfXu7g8INZAAzI+Kg5pYpabt3/6erj0/etT11TDTP/Xr18XXz2lKG1FRLboIlv9q6r38dPPTlztQzFmvmwvr59a8zzEKS2mfto6PPGbLvK0afM2n6yP0DG2FgU+3XkqSx8t+SkiRJktQ593+m+vikXWBPn1EnSWORmauByyncH5fAccBVEfH0WveIiHdSePjoULhaAt+vMP3MkvPfj6XmbhIRJwJHlXQNAN9u9XUz8yvAZWXdf1llSXkC6Q5juGz5mlFSTevyVeDoOg9TUyVJkiRJkiRJkiRJklSzrglGi4heCk9JzOLxucz82Vj2ysx+4I8lXYc3XqEkleidWn18ksFoY9LTV3383n8yAljd56H/HLn/0e+0t44hAxth6e2wcvYocduDsPxuWH4XzP7k2K61aenY1kmS6ldPgOw+Lxl9TrWg3y2rar+WJI3VlpWdue7CyztzXUmSJEkaL7ashQ0Lq8/Z9+XQO7k99UjSxPRhYGNJ+yTgDxHxtYh4UUTsUr4gIg6LiHdHxB3AfwGTGQ5Fm5WZs0dY83TgVIYfRnpzc7+Mcem8svaVmflEm6792bL2iRFR6Rcu4zoYLTOXZOb99RzA3GZdX5IkSRqfotMFSJIkSZIkSZI0oXRNMBpwIrALhd8WbAH+tcH9FpSc1/xETUmqSd/O1cerBUmoMcvu6HQFUn3mX9zpCoY9dQtcfgRc/Xy44li44SWwecW289YvLIz/8gT45bNhXqWHi49i87LG6pUk1W7tvNrmnTUXeqeMPm/yjMpjI/3dIUnN1r9u9DnHfKr5133oq83fU5IkSZK6yd0fGX3O017T+jokaQLLzEeBc4HBoS5gGvAu4BpgRUSsiIjHI2JRRGwAHgC+Cjyb4UA0gNuAD1W41Mco3D8YwKbi3hNWREwD3ljWPauNJdwOlP4SpRc4ssLc8qfQ7Fisvx57lrU79LQJSZIkSZIkSZIkSZIkqX7dFIx2aPE1gTsyc3WD+5Wu3+YpmpLUkMEt1cezvz11TETPKn+Abpm532xPHVIzrH6o+ngOVh9vhvVPwJyvw+3vhWteCOvmDY8tuhbu+Ydt1/z27bDq/tr2nzKz8tgmg9EkqS2eugWevHL0ec/5Mux0cG17TqoS9LvZz9VIaoP+9aPPOeafYJ+XNve6tbyfSpIkSdJEMjgAj/0EHvhC4fXhr1ef3zOp+d+LSdJ2KDN/BPw5sIatg86ieEwHnkYh/GpKSX8WjwCuAl6WmZWeMvA94LTicXKVeRPFG4DSJx0uBi5v18UzcxB4vKx7jwpzl7F1iBrA/nVe8oCy9pw610uSJEnabuXoUyRJkiRJkiRJarFuCkYrvQlofhP2K00a6WvCfpJUsGUtbBklDGKnQ6uPq7Knv7b6+IYn2lOH1AwLR7nH+q4Pt/b6y++GK4+DO95b+YNMj1wIW9YMtzevhCU31Lb/MZ+CVz4Ie/7pyOObltZXrySpfrMvKARfjib64LC/qn3fvmkQvSOPGYwmqR36a/yM5pTdm39t3+ckSZIkbS8GNhd+tnTLG+HuDxdeR3PwuTB5eutrk6TtQGb+BDga+AkwQCHsDIbDz0qPIQHMA96ZmS/LzFVV9r81M28qHne24EsYb84ra383s+1PNtxQ1t6hytwHytr13mxU/jSc8v0kSZIkSZIkSZIkSZKkcaubgtFKb+Cq8OnruuxWcu6nGSU1z5qHRp8z8zmtr2Oi2uWw6uNtv2dVXWfLavj9P8J1p8Md74M1D3eulg0Lq48/+CVYP8qccjkID/4nXH44/DAKxz0fg80j3O/++3+ATU9V329wM1y0S2Gf294JCy4rXGM0Ox8GR38cpsyEyTNHnrNp2ej7SJLGbu4smP3J2uYe8Ob69o6AybuOPLZ5RX17SVK9chAG1tc2d+bzmn/9lfc2f09JkiRJGo8e/L+w7Nba5z/99XDc51pXjyRthzJzQWa+CTgA+CDwY+BBYBmFsLT1wELgFuALwMuAQzPzws5UPD5FxGFA+ZNkZnWglPInOVR7mth9Ze0X1HqRiJgGHDvKfpIkSZIkSZIkSZIkSdK41U3BaKWpHfs2Yb+jS85N5ZDUPKsfrD6+x8mw6zHtqWWi2q1KsNzglvbVoe4zsAmuPRXu/wwsvh7mfAWu/hNYM7cz9fSvHX3Owsshc+u+wYHK829/D9z5ga3fi/7wOfjlCTCwsbi+vxAQ9+RV9dU7dxb8P/buOzyO8l77+PdRtST33jEYXDBgmunV9N4J7QQSckIaSU4K5KSQHt4USM9JQghJCL33YmxjbIPpxtjYYNx7r2qWtM/7x1jRSp6Znd2dmS26P9elS7tP/UkYbZu5Z9a1wcYe+AMnNAegsuOx3bvt0lMwERFPHf/2p2vJv51AyyBMGex3Q/p7lPdyb29S9riIRKylPvjYva6Eit6px3UZCBNfCrbmSydm/3daREREREQkXyV/BrH4ruDzLtkExz8EFT3Cr0lERLDWrrHW/t5ae6W1dn9rbX9rbYW1tpu1dri19nhr7TettS9YqzevXHy6w/0Z1toUB/iEyxjTF9inQ/NqnynPd7h/UhrbHQ+UJd1/11q7Lo35IiIiIiKSNr0UExERERERERERCcrv3TS90yYirQopGG357u8GOMQYU57pQruvADkkqWlONoWJiLSzfYF3335fgJM7HrcoaUs0evdtmxdfHVJ4Vj8LW95t39a4AT7+S27qaa5NPebNz8F9JXCvgRmXwxP7wEPdYdr50LC+bVztcnjmAFh0h/s6OxfDA1XOOveXw0M9iOyl4dH/hhFXtt2v7OM+rtHv4tciIp2UTcB734FH+8GD3WHm1dCwIfW8dmtYJxQziP4nwakvQ79j060UKnq6t+9SMJqIRCzI8+hWXfrCmW9D/xP8xw04GQaeAme+BYPOSL3uxleD1yAiIiIiIlII1k+H5yfAg1Xw/BGw+F/+n3smG3oRVAYIpRYREckBY0wp8MkOzXfmoJQraH+85jpgvs/4F4Dkq0QcbYwZE3Cv6zrcfyzgPBERERERERERERERERERERGRvFBIwWiv4RzoY4Eq4Er/4b6+nHR7XdxXfxSRIle71L192CUw4Y9QVh1rOUWpxScYrWEdbHjNCRUR6cgrAG3+L+Oto1U6gQ4Ayx+C2iXQUgernoJJxzvhN4lmeO7g/AgGPO5h2Pvq9m2ewWiboq9HRKTQvP9DmPcz529k8w5Ydi+89knn731Qu7bAtrnBxp46NbNQNIDy7u7tTdszW09EJKjmuvTGdx0Bp06DM9+BkZ+B0qr2/RW9YP9vObd7H+YEmk98yX/Nxf9IrwYREREREZF81FwHa6fA/NvhpRNg81uQaILNb8Ksa4Ov02NcdDWKiIhk72xgUNL9HcBDcRZgjBkAfLdD81PWen8AZK2tAx7u0HxzgL1GARclNTUD9wYsVUREREREMmZyXYCIiIiIiIiIiIiISFEpmGA0a20jMBnn0wID/NQY0zPddYwxxwI34ASsWeDRMOsUEaFulXt7zV7x1lHMEj7BaACTjoFn9ocdi+KpRwrHmhdyXUF7zTuzm7/jIyc8Z+YnnBCcXOsyAAafuWd7ZV/38QpGExFpz1pY/Pc929c875yUGlTjxvBq8lNS6d5um+LZX0Q6r3QDhlv1PgSOvAMuWg0T/gT7fBr2/184/XXodVD7sQNPgarB3mst+ltmNYiIiIiIiOSLJffAgzUw5RR49+vZrVU1KPUYERGR3Lm+w/37rbUZvclojBltjDkvzTkDgaeBAUnNu4BbA0z/AZD8wct1xpjzffbqAtwFVCQ132mt1QE0IiIiIiIiIiIiIiIiIiIiIlJQCiYYbbef7v5ugSHAi8aY/kEnG2NOBp7E+bkN0AL8KuwiRaSTW/+ye7vfCdWSnpYUwWgA2z9M70r2IjYR/56ZBjokm/NdWJEnOa9H/g3KavZsr+jjPr5xoxMCJCIijpYGqFvp3jfvp+7tbuIKRiutcG9v2RXP/iLSeWX7PLqiJ+z3eTjqTjj4Z9B9P/dxPcf7r7Ptg+zqEBERERERyZUdH8Nr14S3XjeP11UiIhIqY0y5MeZYY8wnjTFfNcZ8zxhzS67rymfGmAHAOR2as7nqwSDgSWPMHGPMTcYYzwdBY0w3Y8yXgNnA4R26f2KtXZxqs91jftuh+WFjzJeMMe0+qDHGjMW58OwxSc2bgB+m2kdERERERMJQRMfD6theEREREREREREREckDZbkuIB3W2teNMfcDV+B8anA4sMAY82vgQZwrKbZjjCkFTgL+G7gMJxCN3fN/a61dGn3lItJprHwKbIt7X9WQeGspZt32g4a1qcdtmAk7l0LXEVFXJMWgcRN06RfvnmEEo4Vt0Bmw5oX05/U/CYac695X6RGMlmh0AoBqhqW/n4hIMWre6d238ong6wQNRus9Ifiabko8gtESCkYTkYi1xPQ8OpEilPuZcXDFLigpj6ceERERERGRsKx4LLy1ugyEASeHt56IiOzBGHMc8A3gdKDSZciPXOacCVy+++5ma+03oqswr11L+2Mk51pr3whh3QOBnwM/N8ZsA+YCG4EdQFdgGDAe9+Mz/2qt/XEae30LGAectft+OfB74HvGmHd277kPcChtx0aCcyzlRdbaNWnsJSIiIiIiIiIiIiIiIiIiIiKSF0pyXUAGrgfexTmIxwI9gR8AH+z++g9jzHygFniRtlC01kuXvIpz0JCISDgSLfD6p737qwfHV0ux2/+m4GM3hXE8qxSF2mX+/fWr4qkjmV8ATi4c8H046Tk49Nfpzx3S8SLbSbru7d23+un09xIRKVapAjN3LAq2TtBgtNFfDjbOi1cwmm3Kbl0RkVSa6+LZp6Uh9Zj5t0Vfh4iIiIiISDZWPgEzroAZl8OyB533mGan8Vmbny4DYOJLUFJQ1+QTESkYxpgaY8w9wDTgPKALzvFvyV9e5gH/hRMM9j/GmPERl5uvPtXh/p0R7NEDOBa4ALgGuBA4jD1D0WqBz1prb0hncWttC07I3QMduvoDZ+IcF3kY7f89rAcusNZOT2cvERERERHJht9LNBERERERERERERERSVfBBaNZa+uBM4AptA86MzhXxEy+PxqooO0TBrv79ovAObsPGhIRCceGGf4hFFUKRgvNgInQbb9gY2d+ItpapDDUr4FnUxznXbcynlqSpQrAidOoG+GgH4AxsPd/QWWf4HMresNeV3j3Vw2Cnge6922ZnVaZIiJFLdXjwsongq3TuCH1mKohMPTCYOt5KSl3b2/Zld26IiKptMQUjDbo9NRj5v4IapdHX4uIiIiIiEgmFv4FXrkQlj8Ayx9yPjd7at9w1h56IVy0BnqOC2c9ERFpxxjTHefCn1fgfna9dWlr67R2BfBs0lyfD3SLkzHmWGBMUtMu4N9ZLjsf+BkwE6gPOOcj4NvACGvtHZlsaq3daa29AicEbZbP0M3A/wEHWGufz2QvERERERHJlO/LNBERERERERERERERSVPBBaMBWGs3AqcBNwMbaR981vo9+YvdY7YB38EJRdseW8EiUvzq18Lkk/zHVPSKpZROoawaTnkZ9roy2Pj6dZGWIwVg8T+gaZv/mGnnwaTjYfM7sZQEQPPO+Pby0n00HPhDOPT2trbKPnDaazDk/NTzB50Fp02H6qH+4/oc6d6+a2vwWkVEil2qx4WVjwdYow5mf8u7v2oIDLsETn8NyrumV19HJRXu7QkFo4lIxFoa4tlneICg7ZZ6+PB30dciIiIiIlJMtrwHLxwFD/WCF4+BdVNzXVFxshbm/TSatcffCsc97FxsRUREovIwkHz1qV3A3cCngetwD0vr6LGk26eFVlmBsNbOtNaapK/K3ccdZrPmOmvtd6y1xwFdcYLXzgE+C9wE3AJ8E/jM7vb+1trR1tpbs9179/4PW2uPBvYBLgW+DPwv8ClgIjDIWvsFa22Aq+iIiIiIiIiIiIiIiIiIiIjkhvW5zoBfn4h0LmW5LiBT1loL/NIY83vgSpyDt44DBtM+8G0LztUzXwDuttamSEUREUmTTcCUU1KPK62OvpbOpHowHHsvjLjKCbTys+xeGP1VnZzRmW16M9i4DTNg8kQ4+32oGRZtTdY64TVR2f9bcPCtmc/vvh+c+AQ8vhfULd+z/8i/wcjrg69X3t29vWlHZvWJiBSj5lr//g3ToWE9dOnv3r9zMbx8jvf8EVfDMf/OvL6OFIwmIrnS0hjPPj3GwD7XOUHLflY8Aof8Uq85RURERESCqFsFLx7thAwDbHzN+Zzn7LnQdUROSys6OxZC3Yrw1z301zDmq+GvKyIi/2GMuRQ4lbYLgr4GfMJau3J3/14Bl3q+dUlgvDGmq7U2D67eVRystQngw91fce+9BFgS974iIiIiIuJHxwyIiIiIiIiIiIiIiISpJPWQ/GatbbDW3mWtvcpaOxwoB/riBKRVWmv7WGvPs9b+QaFoIhKJ9dNg2wepx5V2ib6WzmjgqVA1xH/MO1+Dl06AXVvjqUnyz8rHUo9p1bQtvfGZaqmn7Tj2DvqfCD3HZ772qC9nF4qWbNhFe7aVlMPQC9Nbp6ybe3vz9vRrEhEpVs0BzkV6dIBzAnGylgaYfhk8ORK2L/Ce2/vw7OrrSMFoIpIriZiC0QCOvBOOugtGXOM9pnYpbJ0TW0kiIiIiIgVt6T1toWitmmth3k9yU08xC/JeUyb6TIhmXRERSfbtpNtzgdNaQ9HSYa1dC6zffbcEGBtCbSIiIiIiIiIiIiIiIiIiIiIiIpHL+2A0Y8x4Y8w3jTF3GWOe2v11lzHmJmPMIR3HW8dma+1aa21TLmoWkQCshfUzYNkDMP82ePtrMOMTMOk42PxurqtLz6a3go0zugpUJEq7wJF3QFlX/3EbZsDsbwVbc9sHMP92mPtTWDfN+fcqha28e3rjg4QdZqu5zrvvsN/BGW9AWU1ma48L+G890FrfgV6Htt03pTDh/6CyT3rreP03aNqReW0iIsWmuTbYuLe+1P7+3KxeMQcAACAASURBVB/DiodTzxt6fvo1+Skpd29P6KW4iESsJcZgNFMC+1wHx9wNl2xyng+7WRFDuLKIiIiISDHYMtu9fdGdkGiJt5ZiZyP4fVb2hT5Hhb+uiIj8hzFmEHBwUtON1lqfD5dTSr6iyn5ZrCMiIiIiIiK+iul482L6WURERERERERERESkUJXlugAvxphDgV8Dx/kMu9UYMxP4mrU2YDKRiOSNqafveUV4gJ2LoPceuYf5a/ZNua5ABp8F586H5w6Gxk3e45beAxP+5JzY7mXxv+D168E2t7Xt+1knCMpvnuS3qiHQtD34+KDBNNlI+IQ5lFZCaQUMvRiW3p3+2l0GZl7XHmv1g9NnOiGB9Suh/4nQbd/01ynv5t6uYDQRkTZrng82buXjULcKqoc44UAf/j7YvJq9M6/NTUmFe3tiV7j7iIh05PdcOkqVvZ3nw+um7Nm3/uXYyxERERERKUjL7vPu27EQeoyJr5ZiF8VnHWO+DiUegdEiIhKWo3d/t8AKa+0rWa63Oel2mle/EhERERERERERERERERERERERyY28THgxxlwATMcJRTNJX/8ZkvR1HPCKMebCuOsUkSwY4wQVualbFW8t2Zj701xXIK2qhzrhZX6ad0Ltcu/+ho0w69r2oWgAH/8V1k/PvsZcsNYJe5t+Kcz6NKybmuuKcqPjf9NUmndGU0cy32C0Ls73CX+EwWenv7Yxqceko7QLDD4DRl6fWSgaQJlHMFqzgtFERP5jyb+Cj318KNxfCQ90Cf63NOzHBwWjiUiutOQoGA1gyLnu7dvnx1uHiIiIiEgh8vuMBqBhbTx1dBZhf9bR/yQY87Vw1xQRETfJV8F6L4T1kh8QuoawnoiIiIiIiLgK+dgsEREREREREREREZFOLu+C0YwxY4D7gCqcTwbs7i9oH5Bmk766APcaY8bGW62IZKXaIxitvkCC0Rb/E+Z8N9dVSLIh56ces32Bd9+j/bz71ryQfj354L3vOGFvKx6BxXfBlNNg+SO5rip+zbVpjo84GM1a/zCHkkrne3k3OOkZuHg9XLgCjns49dp7XRVOjWEr9whGa1IwmogIAHWr05+TTgDZ0AiyxBWMJiK54hcy3KrbqGj27nmQe3vDemjcHM2eIiIiIiLFoH4NTDref0zjxnhq6SzS/WzET+8JcOpUKPV4P0hERMLUI+n29hDWSw5DawhhPRERERERERERERERERERERERkcjlXTAa8GecoLPW0DMDNAOvAQ8CD+2+3UT7kLQuwF/iLlZEslA91L29rgCC0da9DLOuy3UV0lFpJVywzH/Mtnnu7Rvf8J/XuCGzmnJp11ZYcHv7NtsC836Sm3pyqbkuvfFrX4JXPwlNYRxnnuTjO+CZcfBwb5h2rve40sr297v0c/5m1gxPvcegM7KrMSpewWiJRmhRgI6ICHXLo11/+OXhr1lS7t6eaAp/LxGRZH4hw63G/yyavbuP8e7b9kE0e4qIiIiIFINFf0/9/ofXZziSmbAuAlPRG059OZy1REQkiC1Jt3t4jgpucNJtJfuLiIiIiIhExua6ABERERERERERkYKhd9NEJIi8CkYzxhwAnEBbIBrAbcBAa+2x1torrLWfsNYeCwwEftlhiWONMQfFV7GIZKVqiHt7fZ4Ho22bD5NPznUV4qVmOPQ4wLt/7WT39uUP+q+7a2vmNeXKmhed0KmOtsyGph3x15NLLbXpz1l6N7x8Tng1LPk3vPFZJyyhaSvsXOw9tqTSvd0vhAGg+1jY64rMa4xSeXfvvg3T46tDRCRf1a+Odv1hF4e/ZkmFe3tCgZciEjG31znJ+h0Lg8+KZu+qwVDmEfq75oVo9hQRERERKQab30495v0fgNXhTqFpCikY7bSZUFYdzloiIhJE8lXbxmWzkDGmEjg4qWllNuuJiIiIiIiIiIiIiIiIiIiIRE1HEYpIq7wKRgMu2f3d4Pyt+rK19pvW2i0dB1prt1prbwa+mDQeIIKzvUUkEtUewWi1y+KtIx02Ac/sn+sqJBW/4I91U6C5Q0iWtbDycf81mwowGG3bXO++qMNX8kmiyfnKxIYZsPAv4dSx6M7gY72C0co9AhhanfUOlHqE1OSaV3gEwKK/xVeHiEi+qoswHHjI+VDq8diSDQWjiUiu+AWjHfIrOOm56E7aNwb6Hu3el+p1pYiIiIhIZ7bysWDj1k+Lto7Owlp456vZr9PzQOiR4qItIiIStnd2fzfACGNMNn+ILwFa38xvBmZlU5iIiIiIiIj4MbkuQERERERERERERESkqORbMNqE3d8tMMta+8dUE6y1fwZm0vYpwhER1SYiYase7t5euxTq18ZaSmCvXJTrCiSI0V8B4/EQl2iEtS+1b9s2D3Yu8l9z1x4ZnfnP+uQhb37Hu6/YdAzCS9ebn4OmHdnXsf7lYONMGZSUevcPPse9/eD/B6Vd0i4rNlUDvfs26vh7ERHqIwxGG3hKNOt6BaO11Eezn4hIqxaPAMZ9roOxX08dKJytoRe4t2+bCzs+jnZvEREREZFC1aV/sHErn4i2js5i+YPZr1FaBRP+nP06IiKSFmvtEiD5Tab/zWQdY0wl8J3WZYE3rbVZfnguIiIiIiIi3nyO2y44xfSziIiIiIiIiIiIiEihyrdgtLFJt/+Zxrx/Jd3W5YpFCkWfCd59G6bHV0dQb34RVj2Z6yokiMrecJlPkNXG19rfX/9K6jU3vw2Jluzqituuzd59r14Fq1+Ir5Zcaq7Lfo2ns3x64RdS11FppX//Ptfu2WZKYa+r0qspbmU13n21S2HRXbGVIiKSl+pWu7cHPWnYiymF4Zdnt4aXknL39vrVkGiOZk8REXACr92UpHguHZah53v3KcRBRERERMRdz4OCjVt2f3rvqYu7FY+lHrPPdc7Fhrycvxj6HRNaSSIikpbWD08NcI0xxuVDYm/GmBLgDtofi5fyAqUiIiIiIiIiIiIiIiIiIiIiIiL5It+C0Xom3X4njXmtY02HNUQkn1UPga4j3ftWPxtvLal8+AdY+KfU40bd6N5+6G/CrUdSK6uGYZe69zVuan+/dlmwNVcV2Anua57373/js9DSEE8tudQcwkWv61fDlvcyn5/O7zlVmMOwS+HAH4Apc+6X94DjH4GaYRmXF5sDvufd9+bnockn0FBEpNg1bnBv73Fg5mtW9IITn4aqgZmv4aekwrtv5ePR7CkinVPtMnjn6zDtAvjgF9C0zX1cXMFo1UOht0fY+7vfiKcGEREREZFCYwNefKZhLWybF20tncH6qanHHPB92O8L7n09x0f3npKIiATxW2A9YHGOh7vTGPMzY0x1qonGmP2BF4Grd8+3wMfA/dGVKyIiIiIiIs7LNxERERERERERERERCUu+BaP1SLq9yXPUnrYk3e4WUi0iEof+J7q3L7kbts2PtxYvyx+Ctz0Cz5Lt9wXnq6ymfXtFbxh2cTS1ib+KHu7tHYOy6lcHW29ZAR0nvHEW7FzsP6ZuOaydHE89udRSF846S/+d+Vyv4AY3pSnCHIyBA78Pl22Fs9+HSzbC0Asyry1O1cO9+xKNsPLJ+GoREck3jRvd23vsn/5aB/4QLlgGF6+DwWdmV5cf32A0/U0XkZDsWATPT4AFt8OqJ2H2zbDmBfexqZ5Lh2nYhd59H/4uvjpERERERApF0GA0cJ77S3Ya1vv3Dz4Huo6A7qNgwMQ9+/e7IZKyREQkGGttHXAtkMAJNisBbgbWGGPuA9olWxpjPmGM+Z4xZjowBzgZ54x8AzQCV1prbYw/goiIiIiIiIiIiIiIiIiIiIiISFbyLRgtuZ40joxuNzbffiYR8TPodPd22wJL7423FjctjTDj8mBjD70deoyBiS/BgFOgsg8MOgNOmQo1w6KtU9yV1ri3L7sPWhra7q95Pth6yx/Kvqa4zPl+sHGrno62jnzQUh/OOvN/BS+dCJvfTn9uOsFoJV2CjSurgZ4HQElZ+vXkSnl3//7Vz8RTh4hIPvIKRut5AHTdN721qodCzXAoKc++Lj9+wWhL7452bxHpPD78LTRuCDa2JMZgtKE+wWhzvg86z1REREREpL20gtE6wWcXUSvzuZ5ceQ84LukzrxOegJHXQ9Vg6HkgHP5H2O/z0dcoIiK+rLUv4ASgtYajgXPB0MuBbyQNNcC9wA+AY2h/7FwzcL219p2o6xUREREREREdJyAiIiIiIiIiIiIiEqYCStIQkaI09EKo7Od+kvOmN+Kvp6O3bkw9xpTBCY9D6e4TsPseBae8FG1dEkyZRzAawGvXwnEPQMNG7yASN4nm/A+ishY2vR5s7I6Poq0lHySH4HV04Qp4PI3gwvWvwPOHOycMdRsFPcZBSWnqeQ0Bgxyg7W9JMSr3ORFLRKSz83o+UtkPDvohvHoNgQ+e83sOFCa/YDQRkbB89PvgY+N8Lt19LNSMgNqle/Y1bYX61VA9JL56RERERETyXaI5+NhNb4BNgNE10TLmF5h/4Qooq2q7X94Vjvxb9DWJiEjarLV3GGMWAfcAA2j/QUHybZN03+6+vxH4hLV2ahy1ioiIiIiIiIiIiIiIiIiIiARlfU6V9OsTkc5FRxKLSG6VVsKQc9z7ErviraWjXVtg0R3+Y4ZdAme+6f0zSG75hYKseBjq18DCP6a35s7F2dUUh4Z10LQt2Nh1UyDREm09udZS795eUgnVQ6H76PTXnHEZPDceHh8KG17zH7vkbnjp+OBrlxRxMFqZgtFERFy1NEDzTve+yj4w4iqYOAn2/qTTluqk4NiC0XxOsBURCUM6wQkQ73NpY5z3BLx0hhBqEREREZF02DQ+i7AtMP9X0dVS7KyFpu3ufcfcp4uYiIgUGGvtFGBf4CZgBU7oWccvkm5vAn4EjFQomoiIiIiISJxM6iEiIiIiIiIiIiIiIhJYWa4LEBGhZoRHRyLOKva06hn//qP+Cft8Mp5aJDN+oSA2AZvfhQ9/m96aDeuh+6js6ora9vnpjV/4fzD6S9HUkg9aGtzbS7s434+8C6acCi11zv2ybtC8I9jaDWth2rlw4Uooq9qzf+v78FqafydKizgYLeXJVjooREQ6qcZN3n2VfZ3vA09xvo7+p3N/1dMw7Tz3OWVdw63Pi1f4qIhIWLbOSW983M+lD/oRLLjNvW/yRDj+URh8DpRWxFtXoatfB6ufBowT+l3ZH/oeCd32zXVlIiIiIpKNdILRAGbfDMMu1vPApu2w5gXYOs+53f94GHiq//vtiUawHkHTNcOiqVNERCJlra0FfgX8yhgzCjgOGAb0ASqAjcA64FXgHWt17WQREREREZH46aWYiIiIiIiIiIiIiEiY8jEYrfXTgKOMMSMCzhmYfMcYczxpJGtYa18JOlZEolDi3rw+x/9rrn/Zu6+sm0LRCoFfMBrAO1+FXVvSW7N5Z+b1xGXHx+mNX/FQkQejeYS2tAaj9TsaLlgKKx+HkgoYdAa8cCTULQ+2/q7NsOY55wStjpY/lH69JZ04GG3ZvXDsPfHUIiKSTxo3eve1BqPtweM5NMT4WOLzstv41CciEsS2BfD8YenNifu5dFk19DkCNr3h3j/9Yuh9OEycBBU9462tUG14Faaesedr79IqJxx0+GW5qUtEREREspduMBrA0nvgwO+HX0uhqF0Gk0+BnYva2j78NfTYH058Grru7THP5/ON8u7h1igiIrGz1n4EfJTrOkRERERERCQdBXbhYOVti4iIiIiIiIiIiEgeyMdgNHDe9b8vi7kvpzHekr+/B5HOoaTUu2/Le9BrfHy1tLIWFt3p3b/3f8VXi2QuVTDajoXpr9m8I7Na4tS0Pb3xuQ4hjFpLg3t7aVXb7S79YN//brvf/wRY+u/ge0y/BHodDFtmZ1Zju7q6ZL9GvipLEYwGULsCaoZFX4uISD5prvXuy+RkVRPTgXR9j/LuswnY/hF0HxVPLVLcdi52Xp9tetM5kb5mBOx1BQw6LdeVSZTmfC/9OT3GhV9HKr0P8w5GA9j8FjzcC0bdCGO/ATXD46utEL1+vXsgeUs9vPl5GHIBlFa0te9cAvNvg6atMOBk2Ps6//eZwmQT8PEdsG4KVA2CkddDzwPj2VtERESkEGUSjLZ+evh1FJLZ324fitZq2wcw9ydwlMdnmR/83HvNIO/Ti4iIiIiIiIiISMgUNCYiIiIiIiIiIiIikq6SXBfgweIEnKXzZZO+0p0rIrmUaPbuW/FofHUkm32zf/+oL8ZTh2QnVTCal16HQLXHyepNBRCMlmjMdQX5xTMYzSeAbPSX098njFA0oKgPfggS7vPEcP/HBRGRYuT1WAVQUune3qWf95zyntnVE1R5ihNpJx0DW+fGU4sUr+0L4cVjYd7PYO0kJ4Bo8d9h6hmw+B+5rk6i0tIAKx9Lb06P/f0DG6My8jNgAgRxffR7eHos7Pg4+poKVd0q2L7Au79xE2yY0XZ/23znd7rwj7D0Hnj9MzDrusjL/I9Zn4I3PwfLH4QPf+v8rdroE5InIiIi0tl5BaMNvdB7zrrJ0OQSnNtZrHnOu2/Vk959i//u3ZdJCL+IiIiIiIiIiIgEoFOTRERERERERERERETClK/BaNA+6CzIVyZzRSQf2IR337Z58dXRauv7MP+X3v3jb3VOuJb8l2kw2vDLvYM+CiEYzS9cxUtzXfh15IuWevf20irvOX0mwMTJ0dSTSnmP3Owbh1KPcJ+ONsyMtg4RkXzjF+JpPA6Y63UodOm/Z3v1cOg+OrzaUjnmXu++xk3w4e/iq0WK08I/QcNalw4Lc26BhMeJ9ZKZDa/C5FPh8eEw5TTY/lFu6tj+oXdoQkemDIZfBqdMhZKyaOty0/tQmPDnYGNb6uCp/eC+MnhiBLx7EySaIi2voNStTD1m58fw3nfhXgPP7L9nMPjSfzt9kyeGGF7tYtt8WPKv9m3NO/zfTxIRERHp7Lye4w86E4Zd6j1v+sXR1JPvWhpg1xbv/saN7q+JU71OThV0LyIiIiIiIiIiIhnSKUoiIiIiIiIiIiIiImHKwdmCvpajTwNEOp/qwd599WviqwPAWnj2IP8x+3wqnlokBBnmf476Eqx83L2veWfm5cSlpTH1mI4aN0LZ8PBryQd+YTN+Bk6Eqyw0bIRH+4Vfl5eKnvHtlQvDL4flD/qPWXo3DDgxnnpERPJBwuOxqsTnsaqkFA64Bd76Uvv2A2/xDlOLQkUv//5Fd8CRf42nFilOfoGpdStg5yLoPiq+eopZ7XKYekbba566FfD84XD+IugS4/NhgI2zUo857mEYfonzOj7Ov3tu9v0MNG2Fd78ZbLxtgdplTohW3Qo49r5o6ysUfsH5rd64Idha66bCpOPgnPlQMyy7utwsvce9fcXD0LILSivC31NEJG47F0P9OqgaCDUjcv94KyKFL9Hs3m5KYdy3nedSbtZOckJvex0cXW35qHFT6jHN2/d8b6Z2qf+ckvKMSxIRkXgZY0qAA4DxwHCgH1CFc2xdPbAe51i794B51lodcyciIiIiIiIiIiIiIiIiIiIiIkUjr4LRrLUjcl2DiOTAwFO9++IOoVo7yb+/79FQNSCeWiR7iab05ww4Bcq7Qnk39/7mHdnVFIdEhsFoNcUajFbv3l5aFWx+l77Q71j/UI4wDTglnn1yZew3UwejLboTxt8afwCHiEiuZBriOeqLUD0Mlj/sBKUNuwyGnB1+fX7KquPdTzofr+dyrbYvUDBaWOb+ZM/X4M07YOm/Ycz/xFODTTjhYgtu9x93/GMw7ELndr6EtIz9BvQcD1NPT2/esvuhrBsc8WcwGYZ7F4uw3wNqroXFf4cDvx/uugArHvHue7AajrgDRipYX0QKVP1amHQ87Py4ra1mBEycBN32zVlZIlIEbIt7e0kZ9BrvP3fhn53nzJ1JkGC0Xdv2DEbbvsB7/MDTsqtJRERiYYw5AbgBOAvoEXDaFmPMM8Ad1toZkRUnIiIiIiIiPvLk+AUREREREREREZEC4Hf5N10aTkRadfKz7UQkL3TdB7qPde+rXx1vLUv+7d9/6G/iqUPC0fsw0v6Qud+xzvcyj2C0pgIIRmvJIBht1TPF+yoh07CZZIf+Gir7hlMPQGUfuHQzjPiv9u3DL4Phl4a3Tz7qcziM+3bqcW9/NfpaRETyRTaPVUPPh2P+BUfdFX8oGkBpgGC0RHP0dUjxSuzy7/c74VuCS7TAojvc+za/HV8dH9+ROhTtsN+1haLlm0GnwXkfpx7X0aI7YPbN4ddTaJprw1/TL8AsG37vDdgWeP3TMOMTsPLJzF6ji4jk0swr2oeiAdQuhaf2g6lnwcyrYd7PYPE/oH5NLioUkULlFYxmSp2Q4CP+4j1305vR1JTPGjemHtO0bc+22mXe4ztbuJyISIExxuxvjJkKTAWuAHriHPAQ5Ks3cA0wzRjzkjFGV5MQEREREREREREREREREREREZGCpmA0EckPh//Ovb1xY3wnkNathKV3e/ePuAb6HhFPLRKOLn2h33HpzRlxtfO9vICD0RIe4Sp+3r8F3voi2ET49eSaZ9hMVfA1+kyAs993Qmcm/F/2NV24Cip6wdH/gFNehkNug1OmwDH3Qkl59uvnu/E/hT5H+Y9Zfj80bIinHhGRXAvjsSpXygIEo+3aEn0dUrwSKV4PKhgtHDs+8u5bek98dSy7179/+GUw+sZ4aslUt5FwcQbPY+f/yvnqzKIIRtv6Pqx6Ovx1g9S6/EF45QKYdCw0bg6/BhGRKDRuhvXTvPvXPO88Xr/3HZj1KXh6f1jnM15EJJlfMBrAvp/1nrvjw+K9uIuXIMFou7bu2Va/yn1szwOdi1WJiEheMsZcDrwBnEBb2Jl1+Wrl1tc6byLwtjHmkrjqFxEREREREWj/sq3QFdPPIiIiIiIiIiIiIiKFSsFoIpIfqgZ79zWsjaeGN7/g3z/0wnjqkHAdez/U7BVs7NF3Q/fdF04u6+o+Zund8PK58PpnYOZV8PwEuNfASyfDR3+ERHM4dWcj0zDBhf8H614OtZS80FLv3l7aJb11qgbCPtfBfp+DYZdmXs/I/4bSSue2KYEBJ8LYr8GAk6GkLPN1C033FBcpt4loAgxERPKRZzBamo9VuVAaIBgtyIm8Il4Su/z7F98F9TG9Zixm9au9+6qHxVfH+lf8+/e6Mp46stWlL1y6FYZekN68d78JzxwAH/wCmj1exxSz5p3RrDvruvB/n+kEkm9+G+b9LNz9RUSiUr8mvfFNW+GN/4aER9iRiEiyVMFoAMc97D6muda5wFFnEuT9lOTPUFc8DrM+7f3cs/v+4dQlIiKhM8ZcBtwLVNM+EK016AxgA/ARMAsnQG0hsDFpTPI8gBrgPmPMRfH8FCIiIiIiIiIiIiIiIiIiIiIiIuFSMJqI5Ae/YLT6dfHUsPkt776KXumf0Cz5oXownL8k9bhzF8De17TdL+/mPXb1M7DoTlh2X9u/m/Uvw1tfgukXg83xVbISGQajAax6Krw68kUUYTP7fZ62Y9DTYMpg7Dcy37eY9D4s9ZiNr0Zfh4hIPvAKVymEYLSyAMFoq5+Lvg4pXqmC0QCePQC2L4y+lmK2a7N3X9O2eGpY82LqMT3GRV9HWCp6wPGPwYUr4eQX4OQXoXpo6nnb5sHsm2HyydAS4N9/MWmujWbdxk2wbnJ46zXXeb/O9LL0bif8WUQk39mm9OfsWAibXg+/FhEpPkGC0Qae4j1/w/Rw68l32+amHjPzCudiOfNuhekXOeHhXqqHhFebiIiExhgzGrgL5xi+5EC07cBvgHOAvtbagdbasdbaY6y1R1lrx1hrBwD9gPOA3wE7aB+QVgb80xizX9w/l4iIiIiISOeUwXHFIiIiIiIiIiIiIiLiScFoIpIfyrt797VEdGJsskQLNPgEsJ09B0rKoq9DomEM9D/Ru7/PkdB9dPu2yv6Z7bXqKVg7KbO5YfE6QXvM11LP/fA34daSD5Y/6N5eWpX5mgMnwvGPQNd93fv3vhaOfxR6HQymxDmxq9ehMPEl6D4q832LybCLU4/Z/mH0dYiI5IMoQjzjUtEn9Zg5342+DileQYKhGjfBgtujr6WYNW7y7mvaDk07o69heornh1WDoOvI6OsIkzFO+MCg02HQaXDwz4PP3fQ6vH9L2/1EMyz4DTw1Gp4cCXNuiS5ILFei/HnCDOls3Jj+nIb1sGV2eDWIiEQlkUEwGsCkY+GBKnjuEFh6f7g1iRSjXVth1vXw2FB44UhYck9685c/4sx7oBru7wIP9YQpp8HWAEFauRQkGK2iJ9Ts7T7u1auhYUP4deWr1c8HG/fGDfDet1OPq1IwmohInvoDUE1bIJoFfggMs9Z+zVr7nLV2i9dka+0ma+0z1tqvAsOAH+9eo1VX4PeRVS8iIiIiIiJJcnxhbRERERERERERERGRIqOUHxHJD6bECSlqqd+zr7ku+v2btoJNuPcd+TeoHhp9DRKt/b8FG1/d8+Q+UwKHuxwHXJ3FCSLv/A+cMy/z+dlqaXRvL6mEIefDqif95+9YBN1CDhxoroXtC5wTnHqMg5Ly1HOshdplUFIBjeudn8uUQvcxUN412L7rpoJtdu8rC7iGl2EXOV9294EMrX9DTIkTgNA6JtEMGCgpdV2m0wryd3X7gujrEBHJB17BaCUFEIwW5PGtvFt0+ydaYOfHUDMCSiuj26fQ1C53fu8VvXJdSfYSHs9tO1oT8IRxcecXjAZOEFTQ5+CZ2P5R6lCsUTcW/nPq4ZfBvFthW8DAig9+DqO/AmXdYNZ1sOKRtr65P3bCto74cySl5kRzhAF8YYaSZRKMBrBtPvQ+NLw6RESikAgQSuulpcH5e/vqlU7I87ALw6tLpJhYCy+fDRtfc+7Xr4LXrnHe+x5xRer5K5+EGZe2b0s0wtqXnJDC8xZClwwv/BI1r/fqTYfn+UPOgY/+iyAqkQAAIABJREFU4D528klw1pzCf22QSqIZapcEG7vkn8HG6bNOEZG8Y4w5FjiFtlC0HcDF1trJmaxnrd0BfN8YMx14FKjZve5pxphjrLWvhlO5iIiIiIiIpM/kugARERERERERERERkYJTkusCRET+o6zavT3VydFh8DupdeDp0e8v0Rt8JpwyFUZe39a297Vw1mzoM2HP8VVZBKNt+wAW3ZX5/Gx5hUeUdgkWTLL03vBqsRbe/xE81AOePxyeOwQe7gWLU5yos2MRPHsQPLk3PD7EmffiUfDCBHi4B7z3He8ww1YtDTB5ond/z4PS/3ncGON8lZQ6X6bDwQslZcV/klamDv2Nf3/jBmjcHE8tIiK55BWMVloAwWjgBBz7iSroeNXT8Gg/eHoMPNwb5t8WzT6FpHYZPHswPLEXPNwHpl8KzS7h04XC2uDhHLVLC/tnzbVUwWgtEQeWr3nRv7/7WBjz9WhriENJOZzxOhzwveBzHhsMD3VrH4rW6uO/wM7F4dWXa1G+/7Pjw/DWSvX/i5fXroGWLAKHRETi0PGiEpmafhE0RRh4KVLIts1tC0VLtvBPqeeufAJeucC7v2k7fOhyIZh8YVvc202Ha7kN9QlW3PYBrH4mvJrylVeIXDb6HB7+miIikq0v7P5ucMLRbsg0FC2ZtfYl4IakdQE+n+26IiIiIiIikg2beoiIiIiIiIiIiEgn4veOmd5NE5FWCkYTkfxR6hGMFvUJ2OAfjFbZJ/r9JR79joUj/wZXWefr6H9AzwPdx1YPzW6v1z8NM6+EObfArE/BWzfCpjedcIeotXgFo1VCWYBgtLUpQgmCaNoOyx+GF4+G97/f/oSn5lqYdZ1zEpcba+GVC50TxFz7EzDvZ/DKRZDwOJFq1xZ4Zpx3faYMBp8V6EeRCHUMkXOzPcQAAxGRfFXowWj73+zf31wb/nOgnUuc5wu7tjj3W+rg3W/AyqfC3aeQWAsvnwtb32ttcIKU3i3gMKl0TwTfMjuaOjqDXSmCnqIKrLIW1k6G2Tf5jzv+USitiKaGuJVVw0E/gstD+p1OPRO2vh/OWrnW4vE7GXENDL3IvW/Ul+Hof+8ZptFR4ybY4BJAkgm/95BS+eDn4dQgIhIVv1DakvL01nqoGyz+B9StzKokkaKz5G739g3Tne/NdbDqGVj4F/j4DicE/INfwJtfcl4HpzLvJ86FSVY+6f1+Q654BqN1uLBI/xOgvKf3Om/d6Px+Nr6R+gIqhSoRcjBajwOg6z7hrikiIlkxxlQC5+Ecy2uBR6y194e1vrX2PuARnHA0A5xvjCmSN9hERERERETyVYBjYkVEREREREREREREJDAFo4lI/ijzCEZrjiEYbcNM9/bSKu+6pLhVDc5+jWX3w9wfOycAfvQHeOEIeOMG7zCvsCQ8TnYqqYTy7qnnb5jhnHiVqR0fw7MHw4zLYNPr3uNeuRBWPLpn+5Z3vEPRkq16Eh4f6pzgnmzr+/DUaNi52Htu/+OhwufEKomH14lwyXYoGE1EOoFCD0YbcXWKATb8k7FXPOL+OLLS5blFZ7FjoftzqOUPxxPOGwWvwF8vk46B2mXR1FLsUgU9RfG6vLkOpp0HU06FlnrvceN/Bj3GhL9/rpVVhxPEvmMhPDse5t2a/Vq55hXAV1YDIz+9Z3tJJYz6Iux9NZw9Bw79DRz8/7zXn3SME6CRrWyC0Zb8M/v9RUSilGhyby+tgnM+gMN+l956sz4FT4+FVc9mX5tIsfB7LrFzKbx4FEw7F978HLzxWScEfPbNsPCPwfeYdR28coHzmcTOpVkWHCKv94NLOgSjlZTDvp/1XqduufP7efFI5+9M2CFi+SDdoPBUxvxPuOuJiEgYjgK60nbW/O0R7HFb0u2uwNER7CEiIiIiIiL/UaDH57gp1GONRERERERERERERKSoKBhNRPJHqUcAWUsMwWizb3Zvr+wb/d6Sn0orwjlJvaNFd8Ca58JfN5lXgERpJZiAD/0zLofaFentu+JxmHU9PLUf1C4JNmf6JdC0vX3b6ueD79mwFl4+t33bG5+Dxg3+8459IPgeEp0gJ6xtXxB9HSIiueYValoowWjd9oWj7/Yf4xV2k6l3v+nevvgf4e5TSJY/5N7euCH8YLq4JHalP2fqWeHX0RnsXOTfP/kkmHombPsgu32a6+CDX8K9Bh6sgdUBApnHfD27PfNZvxNCWsjCnO/C1gAB0/nMMyi0CgafDQf+AMzu0IyK3nDEn6H7KOd+j7Ew5isw9iYo6+q9x5ufgzk/SP/vYu0KeP+H8Oo1sOC21OO97FwU/mOiiEiYvILRSsqd5/2jb4QLlkPvCcHXbN4J086BZp8gVJHOxO/iJW9/xbnwR1i2vg/zfhLeetmwFmzCvc+U7tl2wHeDrbvkX7Dyiczryldef48ztc914a4nIiJhaA0ps8B8a+2ssDfYvWbyG3oKRhMRERERERERERERERERERERkYKhYDQRyR9lNe7tzREHo/mtr2C0zq0igmA0gI//Gs26rRIewWglXaBpR7A1Wuq8A0fcvP9jmH4RLP578DmtHhvS/v6cgCc8tdo0qy1MbddW2Pia//hDfw1d+qW3h0SjZnjqMTsXR1+HiEiueYWzlBRIMBrA3tfA2XO8+1sUApNThRrCk0kw2vb5xXlSfJQSzbAjRTAawJoX4JlxsG5aZvu0NMCU02D2TcHnnPScE1pdrEbfGN5aNgFLUoRU5rtUId8Hfh8uWg1nvQcXLHEPdzAGuo/232fuD2HaecHDJnYugUnHwPs/gKX3QO2yYPO8bP8ou/kiIlHyev5VUt52u2YYnDELzvnAeaze+9pga794ZPb1iRSD8h7efaueDH+/pfd5B5LFya8Gt2C08m5wWcDPM1Y/m1lN+cwGuKhIUGfNDn7RHBERidO4pNszI9xnhseeIiIiIiIiEjqT6wJERERERERERERERIqKjoAVkfxRWu3e3hJxMNr2D737uo6Mdm/JbyVl0ay76il444bgIWWtWhrg3ZvggSq41zhf086Hze/sOc5NaSU0p7Hn8gegfl3qcU3bYd5Pg6/bUfNOeKQ/bF8YbD83L5/lnFjVuAnnoto+Rn8lsz0kfIPPgZIUQRe7tsRTi4hIHFY8Ci8eC4/vBa9dC42bnfaWevfxpQUUjAZQ6RM8unVefHV0Vm4nkrd660vBA4DySSbBaABvfC7cOopd7dL0Trp/538y22fV07Dx1eDjS8qhz4TM9ioUA06GE55wgrxSPS8OYv4v8iP0IlOeId+Vbbe79IdeB0F5d+91uo1Kvdfal+D+CnjpZJj9LZh0HDw9FmZeDQ0b2o/96I9QtzL1mkFtXxDeWiIiYfN6ztjxccqUQI+xMPhMOOquYGtvfT/7cEmRYuD3PCYKLXVwX6nzecJTo2HK6bDx9XhrALAt3n1er2fLu0LPg1Kvvfjv0LQzs7ryVSLEYLRe48NbS0REwpR8MEqUD87Ja+sAGBERERERkUilOH5ZRERERERERERERETSomA0EckfZR7BaM0RB6O9cqF334G3RLu3dF4f/xWmnQvW50Pw5lqoXwstjU6YyDPjYP4v2wefrXoKppzaPlCsxedk8sHnpFdnkOCCjbO8T2APqnEDPD0KVj2Z+RpvfyV18NvZc8Hoimx5o7wrjEkRrLFrazy1iIhEbeVTMP1S57G1bjks+RdMPtkJsOkYwNKqtCreGrNVVuPdN+2c9ENhJT1+wWjLH4BZ18dXS1i8ntcC9DnCu69hLWz/KPx6ilX96vTGb3k3/d+vtbDwz+nNGXE1VPZJb04hGno+nLsArmiETzRkH5D26tXh1JULXmGI6f5Ouo8OPnb9y/DBz2HDTCewbNm9MOlYSCQFdyy4Lb39U6lfFe56IiJh8vpbbMq95xgD5y+Csm6p13/vO877nGEG/ohIcDs+grWTYMop8QcV+oUxG5+L1EwI+Dpi5hXp1ZPv0gmv9jP43HDWERGRKAxIuh3lA3Py2gMj3EdERERERER86dhlEREREREREREREZF0KRhNRPJHqUcwWkuEwWjN9U4whRtTCj0PjG5vkfWvwNb33fs+/D08PhweGwQPdIFnD4Cdi93H7toC837Wdt8rpKy0Cww63f8ko45ShSRsmAlTzwi+XipvfDbzuR//BRo3evefNRt6jst8fYnG+FvhyL979ysYTUSKxcI/ssdVQbfOgbUvwY4P3ed0HRF1VeHyej7fatl98dTRWfkFo4Hz+/cK4ctXXsEcAMc/5j939XPh1lLMEk3pz1nzYvCx2z6AR/vDusnp7XHwL9IbXwxKK+Hitf5j+h4NvQ/z7l/+UPQB81HxCkMsrUxvnT5HZlfHjoXZhXan0lwf3doiItmyHs8LUoVUdt0HznoXRv63/7il9zjvcz7SB5bem1mNIoUuk+ffrWpGtP/cqu/Rma3TXAvv/yDzOjJhW7z7/F7P9gv4M65+Bja/k15N+SysAMn9PhfOOiIiEoXkKwJE+YFo69oG6B3hPiIiIiIiIuLL50LaIiIiIiIiIiIiIiLiSsFoIpI/yjyCFKI8oXf7Au++IbqKusTg7Rvb/o031zsBA9Mvgbe/DLs2B1/no9+BtdC4GVo8TrIu6woVPeHw3wVft26F871ppxMuseRuqN99ov6urTDl9OBrZWvQWc7P4CXRBCufcu8rqYRe46OpS7JjDIz8FBzjcTJs07Z46xERiUJzLax5wb1v6hnQ0uDe131sdDVFoaTUCWL1svgfsZXSKZkUV5a1zbDi4XhqCYtfMFpZNVziE4q7bW749RSrTIIZ3v06rJnU/u9X7XJY/E+Yfzu89z2YcwtMvwyeGecfYOxmn09Dl37p11UMKnrB+UugenhSo4FDboOrLJz+Kpz5FvQ5yn2+bYF1U2MpNXRe/8+nCuPpaMDJ/q8dg9j4GmydC+/elNn8yj7efV6v2UVE8oHX84KS8tRzu42EI/8KVyZSj23aDq9eDa9/xnnusPAvsHVeerWKFKpMg9Eq+8L5i+HsOc7zwqssnDoNSqsyW2/xP8IL3woi02A0gIGnBttj3q3B68l3NoT/NsMvg0FnZr+OiIhEJTkJPspgtOQPW33ewBcRERERERERERERERERERGJj/W5loBfn4h0LmW5LkBE5D9KPYLRWiIMRtvxkXff3tdFt68Uhpq9YdsH0e6x/hV44Qg46i7nRMCtczJf66M/OoEkXrrt63zf7/PQ92j44JewzCOMqtUHP4e9roSZV7QFCZZUwPGPQeOG4P9/DjoD9v0c7PgQZn8r2JxkVYPg5Ged4IXnD/P+77LqSff28m7p7ynxqujp3t601XkFmyrsRUQkX+1cAlMCnsDbUfcx4dYSh9Iq76C3ja+Fs0ezAmVc+YWItdq5OPo6wuT3M5VUOOFoIz8Di/62Z79fCLa0l0kwQ2IXTD0dek+Ak56GtS/Ba9eGc/K+KYFRX8p+nULWdQScPRtWPOoEUvc/AfpMaD9mv8/Dplnu86edC1e2OL/LQpJodG8vqXRv91Ja6fx+5v8y81rm/zK7+We+67x2bdywZ5+C0UQkn4URUmmME9z07EGpxy66M3kijP8JjPt28L1ECpHNMBhtr6v2fI+0pNx5/37x3zNbc+Nr0P/4zOamK5tgtBFXO685UlnxMMy/DcZ+Pb3a8lEmr60O/TVU9HYueNPrEBh8lt5XFxHJb8lveGT4BCGQ5AeVAInHIiIiIiIikrGiOluzmH4WERERERERERERESlUBXZ2nIgUtTKPYLTmKIPRFnr3DT0/un2lMMR1Mv62eU44WjahaABv3whvfsG9r6wbVA1uu9/rYDjoR8HWfe7g9sESiV3w6lWwbW7w2o78Gwy7EPa/GboMDD6v1fArnO+lXeCs97zH1S51by/vnv6eEq9yj2C0RJOCA0SksE2emFkYVc3eUN41/HqitmuLf38YBwA278x+jWIUJDCuwSWgJ595hSRBW1BS70Pd+zfMgMbN0LQD5v8KZlwOb3wO1k6BFY/BrOth5lWw8M/Q4rNPZ5BNmNnmN+G9b8OsT4UTigZw6G+h9yHhrFXIKnrByOudUIeOoWgAe1/jP3/5Q9HUFSWv/xdL0wxGAzjw+9nVkqnSajjuQagZBv1PdB+T6rFSRCSXvAJTS9LMT+hxAHTdN83NLbz3XdiS5XukIvkuk2DiQWfA+B+79x3yi8xreekEePursPmdzNcIKqtgtP8K/nnNu9+ArWl8dpGvEhm8vhrzVdjnk3DAd2DI2QpFExERERERERERySt6v05EREREREREREREJF0KRhOR/FFW497eXBvdnhtmuLcPvRCM/kR2egMmQs1eua4iHN3H7HkSjNf/c0E0bYMVjwYb22N/qB7adn/8T9Pfr2pQ2+2SMhh7U3rzy7qlv6fEq8IjGA3grZhCCkVEwrbkHu/QzlQGnxVqKbHptp9/fxhhMC0N/v2ZnDxcDBIpfi8ADeujryNMiV3u7aYESnafON99jPf8R/rAM/vDu990QqI+/gtMOQWmXwyL/w7L7oM3Pw/TzocWj706g0yCGZItutP7v1W6zp4Lo/XcLxBTAsfc692/6O/x1RIWr39HJRXpr1VWA4f/Ibt60jXwdLhoNQy/zLlfWuU+bsk/FcgoIvnL829xmsFoxsC4b2VQgHX+TooUs3Sff5+/CE56zvviH5V9YNx3Mq/nw9/Ci0fB6ucyXyOIbILRSkrh8N/DmQED3J49EGwieG35KN3g6eQL44iIiIiIiIiIiEgeCuFikiIiIiIiIiIiIiIinYxSf0Qkf5RWu7e31EWzX3MtrJvi3tfzoGj2lMJSWgGnvuKc3Fzo+p+wZ1uXAdB1ZOZr7lwcbNywy9rfH3R6+sGD/Y5rf796SHrzyxWMlvf8gtEW3xVOkI6ISNze/Vrmc/f6RHh1xKnf8f79jRuz36Ol3r+/swYpNKf4vQA0boi+jjB5hZUlhyT1PAjfq+rWrUy9z9oXvV8bdgbZBqOFZcBE6Dku11UUlsFnevetnwq7tsVXSxgSHmFhJZWZrRd3yGjfI6GiR9v9Mo9gNIC1k6OvR0QkE17PCzIJqdzn03Do7VCV5vt4C26He03b19NjYdmD6e8vkq/Sef697w3QdZ89L3rS0Yirsq/p5bMh4RNeli2/EPNUwWiteh0MNSOCjV03Ndi4fJVu6PsBt0RTh4iIiIiIiIiIiIiIiIiIiIiIiIiISI4oGE1E8keZRzBac0TBaFvneZ+AMuTcaPaUwlMzHCa+AFc0pw76yGejvrhnmzEw7n+j3bd6KIz9+p5tIz8TfI0BE6HvUe3b0j2hsrx7euMlfuU+wWgA66bFU4eISFjqVkLD+sznF+rzjlFf8j+huW5F9nukCkZ7/TOdMzgh0ZB6TKEFjSY8gtFMedvtyj57PlfMxJoXs1+jUNk8CEYzpXDIr3JdReGp6AVDznPvSzTBmufjrSdbXv/Pl2YYjNZ1H9jryszrSVdplw73fYLRPvxttLWIiGTK629xSfn/Z+++49uq7/2PvyR5z9jZibP3TsgCwl6BkJCEUUZ7KWW1hZb2Fkq5LaW0QCfQ9Wtp6aXQCaVlBMIegbASRgIJIZNMZyfO9oot/f744uulc3SOdDT9fj4eesQ63/WxI8lHsr5vhT9ux+eD4f8NcyvhokMwMsrXIQ+ugrcuhvUPRTdeJNW4Of8edoOzfqUjoWJudPW09OaF1m0N1VC9Nfq5Qzaha/4sZ3P4fDDqe8767njJWb9UFbIJRivo2/p60WDoa/N/JyIiqSz02b/H+ny+k+JxAaYm8xsUERERERHpWEKRu4iIiIiIiIiIiIiIiGMO32UsIpIAAYtgtMY4BaPtsvi0+KxCKJ8YnzUlffkDMOSrsPuNZFfi3sAroWhA+LZBV0FuF9jwN9jymLfr9poJxz4A2cXt2ybfB6VjYNszkFMOeV3hyGY4srG5T04nE4o24iaz4aml/F7uaskKU4Oklqx8c1uorwrf3vK2ISKSykIh+PgOWP6D6Oc479P2v/vSRfkEOPsDeG58+PZXzzCbmMfeEf33GCkYDWDt76Df56KbP101OPi5WAVDpyqrjeBtgzkG/BfseSe2tVb/0oTpjrkNfB3scwSCNhvu46X76dBwxATbZZfCyO9A2djE15EJTpoHD1vcZivnQb+LE1tPLBrrwh/350Q/53F/hYOrYd+S6Odwyu8iGG1HBw5jFJHUZnW+GMtjMUB2EYy7C0pHwaZHoGYr1O02gdJOrbwbBl4RWx0iqcDp87KBV5jAM6dO+Bes+iXseBkKesPgL5sArU9+Cnvfg72LIs9R+SQc3tD67wnBBljyLVj3B1N7yXA44d/QabTz2sA+GM0uYL2twVebv2ls/BtseQLLjYaf/AzG/9RViSnF7nZy1jvmMXH/h+bvmcNvNM+tREQkXfmAh+O8RuizdURERERERERERERERERERERERNKGgtFEJHVkWQSjNcQpGO3DW8IfLx7S8TbCizN9zofes2Dr08mrIb+32TjoxrCv27dXzDaX6kp4sk/0tbU08jv2m458fhj2NXOJRmFfd/1zOkW3jiTWoCvNhq5wGmsTW4uISLQ2PRJbKNqEu6FooHf1JEPZOCiosA45WHEXFPY3m5mj4SQYrWppdHOns6CD35XVm+HQp1A8KP71eMEqsMvf5uWsQVfDe9fFvt7HPzQBAAO/GPtc6SSU4MC8S462/z+U6Pl8JsR77X3t27Y9A431EIgxzMZO/X7YuQCqt4AvC8omQOcpJlzcjVDQJgwxN/r6/Flw/D/gmRHRz+FUoG0wWl74fiIiqcwyGC07/HE3fD4Y8HlzafLSSc4/iOLAClj3J/M6Zl632OsRSRYnwWidp8Axv3Q3rz8bRt5sLi1N+o35d8VP4KPvRp7nqYFwSUPz+dyqe2DNb5vbD66CZ8fAJfXuHhu8CkYD6DPHXAAe7wG1O8P3O7QOige7mztVWJ0b+7KgoBdMvDex9YiISDwlIrTMIklUREREREREREREREREREREREQkdSn5R0RSR8AiGK0xDsFon/zcuq14qPfrSWYI5MIJ/4GTn4YRN1v0sbgde2Wayw+L7nIcdBrnrG9BBZy3wX1NbZ3+qn0omhfye5lAFad0v04Pg79s3Va3J3F1iIjEYpWDjctT/wyfOwwnz4fup5vfU2Nuh7MWwYgb415iQuR2sW/f/Gj0czc4CEZrOGTCgDoSJz8XgPnD4OO74luLV6w2zvvahGr5s+G8T71Zc9EVUFflzVzpwkkwg5cUiua9ijnhjx89CFUfxG/dfR/CM6PgjfPhg2/A+9fDS8fDwjnuQ+6DNo/Z/hiD3UqGJeY5YbtgtHzrvl4EDImIxIPV47EvTo9bQ77qrv+718L84bDj1fjUI5IIVuff+b1hzA9h2iPmNXavP+xjwBchq9hZ3w1/af56/UPh+7w20936XgajtWQXIPf0EAilaQ6M06BwERHJFKE4X0RERERERCQhMukpWCZ9LyIiIiIiIiIikorsXoHSq1Mi0kTvnBWR1JFlFYxWC6Eg+DzKcmysgw+/Y91eNsGbdSQzBXKg90xz6XUOLJxtNpsDVMw1wWVvXAjb5nu/9rifQNcT3I2Z+gD4XHzAdEFvd/O35PPD9PehPAH3IZ/PbP5f/Stn/UuGx7ce8UbxYOs2BaOJSDrY8TJUvWffZ+CVMOhL5uve55pLJooUjLbjpejnbnQYAFa/F/J7Rr9OugnWOusXaoTlt0HP6dB5UnxrilXIYiN422A0MKG5uV2hbnfs674xF854PfZ50kUig9F6nJW4tTqSbqdAViE0HGnfdnAldD3O+zVDIVh8LdRsa9+2bT480QumvwslDgPJGuus2wK50dXYxOeDk56AV8+Cmq2xzWXHTTCaXZuISDKFLM4LYg2ptNLvYtizCNb8xvmY+n3w6ulwcZ15rVYk3VjdzyrOgzG3xW/dgl5w7J/hva9A3V77vouvgsp55rnCwVXh++x4EfavgE6jnK0fr2C0SH/Te9gPfc6HrCLoeiIM/BL4Y1gvUSyfDytgV0Qkg2xG7+MVERERERHpQFy8lzvVuXlfuoiIiIiIiIiIiIhIDBSMJiKpI2ARjAYm/CCr0Jt1di6wbx9wuTfrSObrfgqcvwuq3oeCCijsZ44Puip8MNppr0DxEPjkJ7D2vsjzH/sgdBoLtbug82TI7eyuvjlbzWYnN/zZkFUMDYfcjSvoC+etM+MTxU0wWumI+NYi3hl6Q/jNsApGE5FUt2cxvHpm5H69zo5/Lakgt2v85nYajFbXwYLRGh0Go4EJnv70f9M4GC3MJnafH4Z8BT6+I/Z1dy2EXW9CN5ehxOnK6uccD4OvTtxaHUkgB0pGhg/nXHwVDLrS+zUPrLAPAz16AF6YAqe97OyxJlhv3eaPMRgNoHQkzN5knr+v/hVseiT2OdtqG4xm21fBaCKSohotHo/j9Zqfzw+Tfg0jboL9y2DVPZFfv2/y+iw47YX41CUST1bBxIkIvOp7IfQ4Aw6ugfoqeO0c675bn4o837Oj4dJGZx9sFK9gtFIHH4qy5XHz74a/wrZn4MTHU3/jntXzNL/e3iEikilCoVD/ZNcgIiIiIiIiiZRB2dihDPpeRERERERERERERCSlOXiXsohIgtgFnzVUe7fOgU/s290GSUnHFsiFrtOaQ9EA+syBqX+GokHgy4JuJ8PMNdDjNCjsY647MfAKKD/GBKi4CUUrnwhnfxD9bTm33P2YM99MbCgamJ97XvfI/Qr6tP7/kdSW2yX88UQGo22dD6+eBfOHw3vXwdGDiVtbRNLX8h9G7pNVBD07SDBaYf/4ze0mGK0jsQsVCmfdH01AWioLutwIPvoHMPI73qy95FvezJMOrIIZYnXSk9DtFPM8oXAATPkj9L0oPmsJlNgEQuxf4e1ae9+HZ8dE7ndnMFE6AAAgAElEQVT0AKy4K3zb4Y3wxgXw7Fh440KoWmI9jz8nqjLbzxOALlPh+H/AqO+Z55NZhdDnAuvHjpJh5nbsaP42wWh2gZUKRhORVBWyOC/w6rHYSmEf6H0uHOPwQxAAdrwITw+Dynnxq0skHqzOvxP1+npOJ+gyxfzdYcqfYp/v4QAcXBu5X32VdVsswWgAsxys36TySXjYD69ON+e1qcrq+bBPwWgiIiIiIiIiIiIiIiIiIiIiIiIiItIx6J2zIpI6sgqs2xo9DEar32fdNvJ/vFtHOrZBXzKX4NH2G5qchHSVjrZu6/9fsPFv4dvOege6HOu8znByyuDIJuf9O081mxcTzZ8F434Mi6+y7zf6VvApCzZt5FkEo1VvScz6256HhXMg1GiuH1wN+z404X+6HYmInd1vRu4z9g7ILo5/Lamg86T4zW0XNNNSfUcLRrPYNG1n7/tmQ3yqCrncCO4PwPifwrifQMMh8Oc2P5fMLjW/y1f9Cpb8d+S1q96DhiP2Ad6ZIh7BaL3Ohd7nQcXs8M+JxHulNsFomx+FTg4CPJ04tA5emOy8f+WT7Y/VVcFTA5qv718OWx6zniOQ63w9J3x+GHen+b0cajTPLeuqYP1DULuzuV/RYDh7KWTlm+/7pRNat7eVXdL6erDOuq+C0UQkVVmF7Sbqd3nZWHMOsfUpZ/0PrTGv45z8NPSeGd/aRLyS7GC0lgZfDQc+htW/jm2e+UNh9ubmvxPUVZnvJ7sYQiGo3gyvnGY93ir82qniwSaIfvvzzsfseBF2LYBzltmfSyeL1fPhWH9WIiIiIiIiIiIiEj+hULIrEBERERERERERERHJKEp3EJHUEbAJRms44t06W+dZt/W9wLt1RCD8ZqbySZDf037cIJuwr8HXhD/e/79iD0UDyCl317+TTYhbvA260r592iMw+NrE1CLeKBwQ/njNNtj2QvzXX/eH5lC0JnvegX1L47+2iKQ3uyDfwn5w4uMw7BuJqyfZyh0Eoy36UnSBTI01zvrVdbBgtFAUP8sXp0L1Vu9r8Urb38lNIm0E9/lMQFEg14T+5pQ1B5zaBXK39WgRrP+L8/7pystgtG4nwdg7zWOez2eOKRQtMXrZhMF8/CPv/p+XRxGwtu255q9rd8Njnd2N9+e4X9MJn6/58SS3HGYsg8FfMaEaw2+Es942oWhgwjbOfAsKKsLPlVUIndsExlmFC4GC0UQkdTVaBaN5HFJp58THTNBtyTDnY5bfHrdyRDxn9dwtWefNo25tH/AajfV/hpqd8Mrp5nzvP2XwWFd4rAvM628/1heIff1TnnE/JngUVvw49rXjwSr83CooXERERERERERERFKcL9kFiIiIiIiIiIiIiIikHQWjiUjqsNug3mATNOHG0UOwf7l1e/lEb9YRsePPggn3WG8o7HysfeBX12kw8IrWx7ocB5N+4019boPRSoZ7s260jn0w/PGSEdDv4sTWIrGzuz29djbU7onv+pUW4Zmf/Dy+64pIeguFrAOcuhwHszdCn7nNIUEdQUGfyH3WPwRLv+N+bqfBaEcPup87nVltmo7kjfO9rcNL8dgIbhfIHc6iK6Dqg+jXSyXVW2HLE7BzQetPKQ5Z/JzLxkNWkbO5K+bCpUE443UY/T0IxCnISqyVjW0OAAznvetjXyPYAFufdj/utRkmEA3grUvdjw8kKIwnrxtMuQ9OfQ6OuRvyurZuLx4EszdD34taH/f5YdLv2tdZMdd6Lbv/KxGRZArWhT+eyN/t/iwYdQvMXAWXhcw5RiRVH0B1Zfi2A5+Yc6CqJd7WKRItq8BaX5KC0fK6wMgonpu3tftteLICdr5qrocaoW4P1FdFHutFEK7PD6e9bAJr3dj4N1j2A3jvOtj0L2isjb0WgFAQ9n0E6/4EW+ebv0+6Gq9gNBERERERERERkcwSitxFRERERERERERERERa0TtnRSR1BPKt2xqOeLPG85Os28b9xJs1RJzofyl0GmM2CQXrIbcbHFoLJcOg74UQyLMe6/PD1Aeg7+dgzztQMhIqZrnf8GMlp8xd/64nebNutCrmQOC69iEp/S9LTj0Sm8K+5vZvtQFtx0vm/pNoNdsTv6aIpA+rUDSA8R00WNHnM+cU9fvs+21+FCbe625up8FowXp386Y7q831kex9F/Z/DJ1Ge1uPFyw3ggeinzOac+ZPfgYnPBr9mqng0wfh/eub7z9dp8Epz0N2kfVtp6APnP4q/CdMcHKvGdDvMqjeDKUjofd5HSv8MVWdtxHm9Q3ftv2F2OffvwyOHohu7OZ/Q+9zYecr7sdahYong88H0/4F/S41z8dzOpn7Q9n49n3LxlnPYxU8JCKSbFaPT8l8LPb54NyV8MwI+34vnQSz17c+9uEtn4Xdf7bZaOAVMPXPOm+R5LI6//YnKRgNYNg3Yfnt1rVVzDXn/nah0TtejG7tzsd6Fxrb43Q45yPY8ript7EWPv3fyOM+/pH5d+195t9Za6F4cPR1BBvg7S/A5n81HyvsByc/A51GOZvD6vmwX2/vEBERERERERERSV0ZFH4WyqDvRUREREREREREUpLdS1B6eUpEmuidsyKSOvxZJhwtXNDB0f2xz39wNRxaY91e6nAzgohXOo2OPoDC54de55iL13LDBB9Yye8NnW0CBxMhpxNMewTeuhQaq82xijkw/L+TW5dEx+eHvJ5wZEP49v3LgCQEo2nDrIhxZAts/DtUb4Fup0Dfi3T/APtAqo68YXX4jbDsVvs+NVuhch5sfwlyO0P/z0PJUPsxDQ6D0ew2bGciq03TTmz6V5oFo8Vwv7IL5Lay+d/wRAUcc48JJ06nx71gIyz7PnzSJgh891vwzn/BSU/YBzPklMHMVfDqmeaxH6DTWJjyJyjoFd/axb3CPpDXA2p3tG+r3gz1ByCntH1bsBE2/gP2LYX8HjDkehOa19aBT6Kv7eBqE7YXjWjut/Hk80GfueZi288Pg6+Fdfe3b2tUMJqIpKhGi3DhQJJDKkuHw5T74f2vWQcgH9kA+5ZB2VhzfecCE3Db0vqHzGX0beYxuqB3PKsWCS8Vg9GyCmDS7+Hda9q35XWHEx8z50DbX4QF071du8/53s5XPAhGfrv5+sAr4I0Lw58jW3l6iHnuN/CK6P4G8+aF5rWOlo5sgmdHw6jvwchbwp9vtxSMw/NhERERERERERERSaI0eq9JJOn0vhkRERERERERERERSWseffyyiIhHcjuHP163N/a5N//Hvr2nx5s5RNJVjotgtDE/MJu9k63iPDh/B5z2CsxaCyc+DlmFya5KotX3Iuu26srE1dGK3sghwsHV8MIU+Oi7sPY+eOtieO8rya4qNWx92rqtI29YHeLw9rFwDqz9HXz8I3hhMuxZZN8/WOts3i2PwbYXnPXNBLEEox3Z5F0dXrLaCB5T4GCUHxlSsxXeugTeuTyGtRMs2Aivnt4+FK1J5ZMmIC1kEczg+yyYoWQYnLceznoHzvkIzl6iULRUNuIm67ZDa9sfC4Xgjbmw6Iuw+lfw4S3wzCioDxNQf3BV9HXVVMKh1e7HDb0hvd9U3fnY8MeDCkYTkRRl9fjkz0lsHeEMvgbmVELZBOs+6x9s/nrtH637ffwjeHYMVC3xrj4Rp6zOv5MZjAYmBCzcucvgrzSfj/U8CwoHeLdmTpkJKYynrtPgvHVw+mvuxm1+FF6bAcvvcDdu2e3tQ9FaWnEXPFkR/ny7JcsAvQ78OpOIiIiIiIiIiEhai/L9KqkolEHfi4iIiIiIiIiIiIiktBRIMhERaSEnjsFodoEV0x6BQAps7hJJBTllzvqN+wkMuiq+tbiRXQw9ToPiwem9cV7sg9HyuiWujlZ0mxJh5d1Qu6P1sXX3w4GVyaknVYSC9gFxyd7YnEy5nc15thtHD8Ly2+37BOudz7fse+7WT2dWm6adqNvjXR1eCjWGPx5L4KBV2JpTG/8OuxbGNkeibH0Kdr1u32fx1c4C6PxZ0OVYKBsL/oB3NYr3hn3Tuu3gZ8FkDdWw5Eb4pw8e9rd/vaR6M/yn7LP2ADycZb5ecZf13Gd/YF/Xlsdh6bedfQ8tHXOP+zGpJJAb/nijgtFEJEVZBqNZPJ4lWl5XmHK/dfvqX5nnaMEG2Pwv+7nq98HHd5qvd7wCr5wGzx0DH3wL6qq8q1mkLcvAqyS/fuDPglPmQ8VcE4aY2xlG/g+M/n7rfidEuG85lVMOp70EOaXezGcnqxC6nwzHP+x+7PLbzOND7a7IfWv32J8zNzl6wJxvVz5l3ccq/LwjB/CLiIiIiIiIiIiIiIiIiIiIiIiIiEiHomA0EUktuRbBaPUxBqPV7YW9i63b+10c2/wimSSnPHKf6e/BqFvAp1MJiYPOk6zbGqqbv67dZS6NLgJy7Nh9ip3C9kRgk8XG141/T2wdqWbXG2ZDvZWOvmG1+6nux2x/wT7ky00AWNUHzjYvZwKrTdNO1O32rg4vWX1P/hjuV0X9rduGXOdsjk0uA/+SZavNJvsmB1fB4U/DtyU7mEGi4w9A6ejwbTtfgSOb4NkxsOpeZ/OFgtYhhU1Gfx/Kj4FzPnJXayTDvxXb/T0VWAUJBevMa1VePZcREfGK1eOSVdBjMti9bgSwcA4cWutsrsonTOD3q2fAzgWwbyms/iW8Mdf+dSKRWFg9p/WlwPl3bmc46XG46BCcvxvG/7h9MHLJsOjnzy6Fzx2By0Jw4V4onxhbvW71vQjKjnE/bucCWHAOBCOcF+9e6O65+cLZUGnxoU4KRhMREREREREREUlD+tuCiIiIiIiIiIiIiIiXlGYiIqnFKhitLsZgtNW/tW6b+kBsc4tkmtwIwWj5Pc2md5F46ndJ+OMNR2DfMng4Gx7vbi7/yoWl3zahDbGwDXzQabN0cKEQNBwK37b+L4mtJdVsm2/f3tGDhQL50Y07vN66LegyAOzgmuhqSDduAuPaqtvjXR1esvq/9gXCH3eidDQU9mt/vNMYmPT/oM8FkedYe1/06yfKpw/A+oec9d31evjjqRDMINHpPCX88fUPwrz+9o+xsaxXNhbG3uHdvP0v826uZLEKEqrfB491gce7wvIfKnxHRFJHsC78caugx2SZu926bevTsOhK53O9++X2x3YthK0RnuuJRMvquVsqvX4QyLH+oIjskuhC0MEE32YVRF9XrPwBOGMBDL8Ryie7G7tvCWy2+NCAJtWV7mtaeF74UEqr58OpdDsRERERERERERERF/ThvCIiIiIiIiIiIiIibinhQURSS04cgtFCQfj4h9btZeOjn1skE+VX2LdP/C34dAohcZZTFv543R54+UQItdkYtvJuWPXL2Na0C5Sx2ggo0lHU77NuswpM6ygOrLJv92clpo5UFciLbtxBm59ryGUAmN1cmcRtYFxLqRqM1vb3fRNfDPcrn8+cz/pzmo8FCuCYe03bsQ+2brNyNEUf+6or4cNbYPHVsc/V0R+/0lnvWYldr2UwRsVsb+Yc9t9QPtGbuZIpUpDQ0YOw/HYTZigikgosg9EcnB8lUn4P6HaydfveRbGvUfl46+uhEOxfAZsehSObYp9fOq7GI+GPp1oAoZ1ownBLhsOIb3tfi1vZJXDM3XD2u3BxLZRNcD52y+P27TXboqvp3WvaH7N6PqznaSIiIiIiIiIiImlKH5YlIiIiIiIiIiIiIuKWUk1EJLXkloc/Hu1G/YYaeGa0fR83mx5EOoLiwVAyInzb5N9D3wsSW490TIGC8Me3P2fCA8LZ8LfY1gzWxzZeJJPVbLduO3rQBNF2VIfX2rf7shNTR6ryR/n9733fus0uyDKcjhKM5jYwrqWGw9BY610tXrEKe4t1I3jFLDhnKYz7CUz4BZyzBHqcYdqyi6H/5yPPcWhNbDXEw4a/wVOD4ZOfeTNfR3/8SmddpiZurR5nQFZh8/XSCK/BhDPyOzDiZhhwuQnZOO1lmHivdzUmk9OA0E2PxLcOERGnGi1eGwmkYGDT4C/Hd/4Nf23+OthggmefHQ1vXQzz+sPHd8V3fclMwUaoqwrfltclsbXEous0mL3Zut2XBYX9zaVoMEy+D2Ysg6z8RFXoTCAXpi82AdlObHnM/rlzdZTBaNueM+GLLVk9H44lKFxERERERERERETEMQW5iYiIiIiIiIiIiEjy6Z2zIpJa8nqEP3740+jme+UUOLjSuv2kJ8Hni25ukUzl88EJj8KC6VDTYiPPuJ/AkK8mry7pWFqGKzi1/yOzgSzax3XbYDTlCUsHVxNhY+eexdD1uMTUkkqCR+FQhPPUWAOcOqqtT8G4O8K3KRgtPKtN007V7YGCCm9q8UqoMfxxLzaCl440l3DG/xQOroY9b1uPP7AKyifGXodX6vbCu1+GYJ13c0YbbCjJl9cDsopM6GG89Z7d+rrPByNugpV3Oxuf3ck818zU12b8DoOEdr4S3zpERJyyOpdw+niWSP0ugbcvi9/8oaAJsMotNwGW6//cun3ZrdDjTOgyJX41SOapr8JyM1luGgWjART2gQv3wxvnw85XzbG87nDsX6DX9OTW5oY/GwZeAd1PN99LlU1QO8D8EVDYD4oGQmMdhBpg86Pmgz4aq6OroW431O6A/J7Nx0IKRhMREREREREREUk7bT8AIVNl6t/3RUREREREREQkoexeTusoL7WJSGRKeBCR1FI8NPzxmm1w9JC7ud67Dva+a91eOhIqZlu3i3RknUbDeRvgjDdMgOD5u2DULcmuSjqSrILoxtXvi35Nu2A0vZFDOrranfbtW59KTB2p5sgm642qTbRhNTr7l8Hh9eHbIv3M2+oIwWjBRmL+pNa6PZ6U4inLjeCB+K6b1w3OeB3OttkQv/vN+Nbg1pbHobHG2zkVjJa+fD4oHhL/dQoqTIhEW30vdj5HzzMz+1w7kIJBQiIidiyD0XISW4cTPh/MXB3fNeYPM8HMbUPRmmydF9/1JfPYPe9Kt2A0gJxSOO1lOPsD8xxq1tr0CkVrqbAPTF9s/iZi58hG2PU6rH8QNv3ThKJB9KFoTQ62eTyzeq063s+HRUREREREREREJE4y6O/i2pUqIiIiIiIiIiIiIgmiHdoiklpKhlm3HVoLZePh0Dqo+sBc9i0xITiF/WHsndBplOl7cC2svc9+rX6XeVa2SEYK5EC3E5JdhXRUgSiD0Wq2Qm55dGPtgtEy6U0pItGIFLZTOQ/G/yQxtaSS2t2R+yhYCHqeDdufdz9u63wYdkP748Gj7uY5sgEaayGQ576GdOE0LO701+CVU8K3PTcB+n8Bxv3YbAhPBZbBaAl4OcufBeUTYcDlsOGv7dvX/cHcv4+5JzXu51sej9yneCic+gI8NcDZnAp2TG9dp8G+pdGP92WZ+2DRIMjvBVXvtz4f6HIcTPodZBe1H1s6CrI7wdH9kdfpc0H0NaaDvG7O+y65CUZ+B/K6xq8eERE7wUYIBcO3pWrQY8lQGHQVfPpAfOav2wPbX4CdC8K3r/gxjLsrPmtLfIWC0FhnwgCb/g3Wtz8Wrq1de334MeHG1tucH+V0Ttz37yWfD8qPSXYV3vD5zd9EZq6C+cO9n//YB2HRl8K3vXIqzFgGncaY61YfAJJT6n1dIiIiIiIiIiIikgAKExMRERERERERERERcUs7HEUktRT0AX+u2SDS1tuXQc12OHqwfdu+D2H7izBzJRT2hW3P2q/jz4ahX/OmZhER8V5WlMFo1duaN4+5ZRe04/NHN6dIpmgMc27W0sGVJpi2ZEhi6kkVdXsi91GwEAz7Jux42Xl4V5P9H4c/7jYYLRSEI1sy+/bp9GfS/WTIKYf6qvDtG/8OO1+Bc1dATpl39UUraHGb8SfwftXr3PDBaABrfgsNh8zm9mRqrHMWPnj2BybEasZyeNbB+VJWfuy1SfIMud7cdsO9hgIw6Gr49H+tx1900Lw2k9PJ/dpZ+TDiRlj2fft+ZROgz4Xu508neT2c9111D+x+C858E/yB+NUkImIl3GvyTfwpGowGJtzXSTBav8vg+L+b5wf1e2HpzbDhL5HHrfl/sdfYpG6vOc/uaK8zBRsiB4bF2uY2pMzt89N4yyrU+XcqKRkGJ/wH3vT4XNWfYwKMd78Vvv3ZsXDWO+YcsmZb+D65XbytSURERERERERERDyk8DMRERERERERERERES9ph7aIpBZ/AIqHwIEwIQgHV9uPbayGj++EqffDnnfs+563QZ+qLiKSygKF0Y2r2Rr9msF667Z9S6OfVyQT2G2Qb7J1HpTcFP9aUomTYDR/dvzrSHW9psOpz8GrZ7obV78v/HG3wWhggg/I4GA0N5v6c7tYB6OBCaPe8HcY9vXY64pVqDH88UQGDvY6B7KKoOFw+Pb1DwE+mPq/yQu4qHwycp8eZ5lQNIDSUVA0EA6vtx9TMjL22iR5SofDmW/BJz+HqvebHyfye0O/S2DwtfbBaFn5QAzhHKO+ZwIdNj0CtTug4QhkF5sgkqxC6HYyjLk98wPAfD53/fcugs3/hv6XxKceERE7tsFoOYmrwy2nIUH9LzOPy74A5HWDIV91Foy2/YXY6gOoWgJvf8GEimd3glHfhRE3uf89EUkoZJ4vhQ0Mq4PG+jDH4hlS9ll7KOjt95mJFHaVenpO935OfzaUT7EORgN48Tj7OXRbERERERERERERSVMe/01ARERERERERERERKQDUDCaiKSekmHhg9Gc2DoPQn+AYK11nwn3QEHv6OYXEZHEyCqIblzNtujXtAtGq9kO9fshp1P086eqwxtM8Fv5JCjsm+xqJFXZ3T+abPyH2did6YINsOt1aKyFTQ9H7p/IAKdU1uMMyCm3D+Rq6+j+8MfdhIA1qd3tfkw6cRIWVzHH/JvXFQ6tse+74S8pEoxm8X/tT+D9KrsYRnwblv/Aus/6B6HrNBh0VeLqamn325H7jP1R89c+n7k9rLrXur8/19xvJb11Gg3H/9W6fdg3YfWv2h8feGXsa/t8MPhqc+no+l3q7JyhyZrfKBhNRJKj0eZ5XyA3cXW45SQkqM8F0GtG62NdpsKALzoLR4tF7W54fmLz9aP74cObYctj0Od86zCxaEPKJD0VVCS7AmkruwiG3wir7vFuTl82VJwHq38Z/RwKRhMREREREREREUlToWQXICIiIiIiIiIiIiKSdrRDW0RST8mw6MfW7oLtL0DlPOs+/T8f/fwiIpIYqRaMBlD5FAy8PPr5U00oZDbirry7+dio78HYO0yQhUhLjXWR++z7ELY9B73OiX89yXJ4Pbx+HhxY4XyMPxC/etKNP8dd/3qLYDQnIWBt1e1xPyadOAmLawo6crKJuuqD2OrxStDi+/Il+H418jsm1OjgKus+i6+G3rMhLwmb1O2C7gZ/BcbcBvk9Wx+PFIw24L9MEIBktr4Xhg9Gq5id+Foy2aAr3QWj7XknfrWIiNgJ2jzv86dyMFpn+/bJ98Hga8O/1nHsg+a86I250a3t89u3H1wD8y3+3rF3sbmIgHkuIalnwi9MiFko6M18/mzoegKUjICDK6ObQ8FoIiIiIiIiIiIiIiIiIiIiIiIiIiLSQSgYTURST9kxsY1/bYZ1W9cTIL97bPOLiEj8BQqjG1e9Nfo1IwWjLb0ps4LRtj3bOhQNYMVd0O1k6HlmcmqS1GW3Qb6l12bApcHMDNdrrIWnBiW7ivQWcBmmUPV++OMhBaO1YxUg1mTEzdB7pvk6J0JwRJP3b4A+c6H7qdHXdXANbPwn7F1kwta6ToP8CjNnn/MjP1ZYBb75EvxyViAXTnkOnhpg3++1c+Ds9xJTU0tWwWg9zoIp94Vv63I85HaFut1hGn0w7seelScprMvxMPZOWHZr87ERN0HvWcmrKRN1P939mL3vQ+dJ3tciiVe9DTb8BQ6uRp8CLynv6CHrNrfn8onkz7ZvH/xl6/NOnw/6zIExt8Py26NYO0L487vXuJ9TOp4+F8CwG5JdhYTj88E5H5qQ/CMbY5/Pnw3+LDjuL7BgOtTvcz+HgtFERERERERERERSWCb9PTCTvhcRERERERERERERSVcKRhOR1FNxHhRUQHWldR+fP7pPaNfmEhGR9JBVEN24mm3RrxmMELQTNjgkja21CEpZ/5CC0aS9SMGBLa1/CAZ9KW6lJEVjHczrl+wq0p8/ijCFNb+Hode1Phbp8TqcTA9GswuLO/Mt6Hp883WnP781vzWXCb8wQUlu7VoIC86BxurmY5XzzL9rfweDroGp99vPYRX4luhgNICi/jBnKzzZ27pP1fuw41XocVrCyiLYYL1Bv+19pyV/AEbfBh98vX3bJUdNu2Q+nw9Gfw8GXgH7lkKnsVDYN9lVZR6fD/J7Qs1252NemAzHPwz9L4lfXRJ/B1bByydm/nmIdAyRAsCSrWyC+V3WVuGA+AZ32/1canebc2JJb76AeS4byA3zb074Nn8uBHJafG0xNpAPnSdD8dDMDJjPFJ3GwLkrYMFZsPut9u3H/wM++RnsXxZ5rqYgx86TYfZmePmk8I9ddnIdhp2LiIiIiIiIiIiIiIiIiIiIiIiIpDC7aH7F9otIEwWjiUjq8WfDaS/DO1dA1buAD0pHQtkxUD7RXMrGwfOT4eBKd3N3nhKPikVExGuBZASjuQh+ygTbngl/fNM/Ydo/EluLpL7GOud9F1/pLhgt2GA2kO54yYQdjbgRep3jvsZ4Wnc/1O5KdhXpL5owhQ9vhr4XQl635mNWYVl2Mj2QxO5nUtgm1K++yt3cS78NxcOgYlb7NTf8FVbcBYfXm2P5vaFmq7N5P/2TuTTVl10K3U+HsT+C7CJzLNQYfqw/SS9nFfQyQXMvTbPus+gKmLM5YSVRv886NLwgQsDVkK9C3S5Y9SsTYNf9VJj6Z4WidUQFvc1F4iea310f3WJ+BybrMU/cCwVh1b2w5XHz3PTIpmRXJOKdaEKOE2n0rfDGBYn/YfoAACAASURBVO2Pd7U5b/OC3eO7HgPc+7+gMZtQMX+ORdCYizbHAWc5OjcWI6sATn8Nlt4En/4ZGg5BdicYcxv0uxQq5sLSG2H9g9BYaz2PL7v56+wi8/xy6Y3WH2DRro5iKBke07ciIiIiIiIiIiIiSRLSVk4REREREREREREREbe0q0pEUlPJMJj+jtlQGGwwG2Hayu3ibs6+F7cPBRARkdSUFWUwWu1O8wYSn8/92I4WjJYJ6qqg4TDklDVvnJX4CLoIRgM4shkKIwTyNHnnctj0cPP1na/AyU9D75nu1oynTY8ku4LMEIgiTKHhCFTOg8HXNB8LHXU/T+1O92PSSdDmZ+LPbn29zwXW4ZhWFp4HZ7wO3U4yv2eDR2Hlz2HZ91v3cxqK1lLLwIj9y6DqfbOWzwchi6AJXxJfzup6PJz0lPmZhFO9BQ6shKxCc2mshdzOEMjzroZgg3muHMiBur3W/XI728/jD5ggutHfNz/TaM6fRMSZijkmDNKNI5vM42LxYBOCCCZMI6vAhEnqPpt6PvgmrPltsqsQ8Z7PD4H8ZFdhr2KuCXnduaD5mD8Xhn7d2fjySdGt21gNwcbw4VmxhPfHnc8+GMyLIDK7wLGwa+bod5ukNn8WTPwVTLjbhOfn9zCPjwBZ+TD59zDx1/DutbD+IYs52jw/bznuufFw4BP7GoZ+zdvnliIiIiIiIiIiIuIthZ+JiIiIiIiIiIiIiHhKwWgiktp8fuuQE7fBaMf/LfZ6REQkMbIKoxsXajQBZ9GE7ygYLX1ULYFFV8D+5a2PD/sGTLgn/IZkiY3b+0flPBjmYAN65VOtQ9GavD4LTpoHFRbBQ4lUuwf2vJPsKjKDP4rHZoDKJ1sHo9mFgFlJ6VACD1gFiEH7ELGeZ0a3xrLb4Jh74b2vwt53o5vDid1vwPYXoNfZNsFoSX6cr5gFBX1MCFo4z4xsf2zA5TDp/0F2cfTrNtbBR981oTvBo9BrJvS/1Lp/pGC0Jm0354uI93rNcB+MBvD8RMAHhHkD/cRfm8Afhcikhv0rFIommavL8akfRO7zwYmPwapfw/bnIb8XjLkNysY7G9/jdMgugaMH3a/dcBhyStsfX3575LHZnaB0pH3gWCxhY1ZtCsUViZ4/Cwp6WbRlm+eKlmMtnnv5s+GsxbD0Rlh3f/g+E38LQ693V6uIiIiIiIiIiIiIiIiIiIiIiIiIiEgaUzCaiKQvN8FoZ7yhzd4iIukkUBD92IYj0QWjNSoY7f9UPgVdpzkPVIlFKGQCzmq2QU45NByEooHm0tahT2HfEnjzc+HnWv1rs6l47O1xLblDaqxz1z9cMFr9ftj9JtRVmdtW2XhYONt6joWzYeYqKBnmvt59H8LO18xtqvspUNjX2bijB2HPIqjZYTa65nWH1b8hbBiJuBft+fi2Z6G6EgoqzPVogtH2LYX6fZBTFl0Nqc7uZ9L2515QASP/Bz75ibs1dr3+WUBPAmz+twlGC1oEo/lT4OWssxbBk72d99/wVwjkwZQ/Rr/mJz+DVfc2X98231zC8efGdj4lIt7qNQN6nAU7XoxisMV5yAffgPze0PeCmEoTjzw7OtkViMRHVjGM/2myq3Amp8y8HhDNawKBPBj/c3jvK+7HhgtG2/qseQ5iZ9xdMOq77tcTkRRnEzpo97pIdpF5vlg6Gj64ofl4VqH5G2f5BO9KFBERERERERERERERERERERERERERSQMpsJNURCRKToPRsoqgy3HxrUVERLzlzwZfAEKN7sc2HIHccvfjQg6CdkIh8NlsbssUC2cDPjjhX9D3ovit03AEFl0Fm//V+rgvy2wOHvtDcz0UhI9udRbis+GvCkaLh6DLYLRdr0NjrdlcDiYobeEc9+vOHw6XNoLP76x/sAHeugS2PNb6+IS7YcSN9mP3LIY35kLNduf19bsUyifB0ghzy2dsAuYCeeY2Y+XJPmaD8OBrIWQRlhXJY13gxMehwiaQL13Z/Ux8YV76GXcXdDsZtj4Fa38fv7qitf7P5nfA7jfCt4f7nhKtoBeM+Das/IXzMZ8+AON+HF3waEMNrPy58/65nTvGOYtIugjkwCnPwsZ/wKIvejfv2vsUjJYK9i9313/gFXEpQ8RzJcOhYi6UDE12JYkx5MvQaQy8NM3duIYj7Y99+r/2Y856B7oc624dEUl/PgeB8cO+bv6mWfkE+PNg8DWQ3yP+tYmIiIiIiIiIiEic6YM5RURERERERERERETcSoGdpCIiUcrr6qxf38+BPxDfWkRExFs+H2QVwtGD7seG25DaJNgI21+Ana9CQW8YdBVkl0Qe1yTU4GwDW0YIwTtfhB5nQE6Zt1MfXg8bH4Zlt1os3QAf/wiOHjKBWJv/DdWbnc19ZAMEj5pwPfFOsD788e6nws4F7Y+HGkwA0NDrzf34rUuiX/vhAJSMMF93ORYK+0OfuWbDepMjm2H5D02YUjhLb4KN/4Sy8S0OBmH321A6CnqeZcKN3ISiDb0BJv36s/kVjOZI6RjYtbD9cX+OCQZ4boL9+He/bB6Tgg6CLMMJBeHNi+H8nZBTGt0cqWbPu1D5JGybb90n3OOhzwe9pptLzXaz4TrVPNnHus2fIi9nDfySu2C0UCO8/zWY9rD7tXa+4uxcpUk04WsiEl/+AAy83ARS7l3szZw7XzG/35yGyEp87PvIed/PHTbPdUUkNXU9HoZ+Hdb81vmYxur2x+zOr4f9t0LRRDoqp69Xdp5kLiIiIiIiIiIiIpJmMij8LJRB34uIiIiIiIiIiIiIpK0U2UkqIhKF/N7O+o28Ob51iIhIfAQKogtGa7QIDQmF4P3rYd0fm4+tuhemvwf5PUwIVyTB+o4VuNVYA5VPwcAvejfn7rdhwXRoOBy57+pfRrfGpkdhwOejGyvhNdaFP14+EXa9YYLQ2nr/aybEp7A/NNbGtv7Bla3/XfFjOOFRqDgPdr4Or5wSeY59S8ylrUNrogiF8sHgq12OEfp9zoTBtH0TYN+LTWjd547AoxGCQjY/Zh2MdtI8c5t7+zLr8cE62PEi9L3IVekpaf1DsPgqE4hjxxchJNpp4HQspvzJhLdVzvNmvkjfc6KUDIfiIXBorfMxmx6Bsgnun6dWPumuf46C0URSVr9LvQtGAzj0KZQM8W4+ca96i7N+py9QKJpIOsjr7q5/2/DahjBBaS2VDHM3v4ikGZ91U0d6XVlEREREREREREQyl8/mdVARERERERERERGH7LL5ldsvIk38yS5ARCRq+b0i9znxCW00EhFJV4H86MY9PwnevAT2L299/MObW4eiAVRXwvIfmK83/TPy3FZhPJnswCexz9FYD2v/AC+dCC9NcxaKFot3FVjluWB9+ONZRVA8yHrch9+Bty6OQz11sPQm2PeRs1A0rw25DjqNSfy66a7bSXDc36Cgwlz355hwmCn3metZBSZoys6ed7D8dNWcTtDvEigeaj9HdaWrslNS3V5Y9CUHoWhZkd+MmNvNu7rCGfYNEyQ46XemHi/UbPdmnlj5fNDnQvfjlt8Otbsi99v9Nrw2E/5TDp8+4G6NzpPd1yUiiTHsBhj9fe/me34CvHSS+b1wZJN384oz9Qfgo+/a98ntakJCu5+SkJJEJEbZJe76tw1GO7TGvn/pCHfzi0jmUDCaiIiIiIiIiIhIB5ZBOzm1K1VEREREREREREREEkTBaCKSvgp6W7cNvAIuaYA+cxJWjoiIeCyQE/3Yzf+CF6bC4Q3m+urfwMq7w/dddz+s/0v7ILVwOmIwmpOfS1uNta1/Vh/9D7z3Vdj9pnd1RVq/Zmdi1uoognXhj/tzIwdZxcuhtfDc+MSvWzoaxt2V+HUzxYDPw+zNMKcSLjoA0/4JWYXN7YX97MfX2ty3m0LARtxoP0fNDuf1ppLGWhOIFmyAx7o4G+N3EESWF+dgtPzPnrcV9IYBl3szZ+kob+bxwshvm8AbNxprYNMj5v8STMBdKGjeOBpsNL/Ddi00YaLbnoH6fe7rGnil+zEikhg+H4z9kXndatBVsc/XcAR2vwHrH4LnJ0f3mCHRCTbAK6fZ97noEMzdZkJCRSQ9ZBe76982GO3AKvv+yXoOLSKJYRdO7lMwmoiIiIiIiIiIiIiIiIiIiIiIiIiIiFMOdsiKiKSo/J727f5AYuoQEZH48MV4qtpYA08NhFG3wro/2vdddIWzOTtiMNr256F2D+Q5COE5ehgWXwWV88Dnh74XQf8vwKp7419nWx//ECb/PvHrZqpGq2C0HOh5tvk/7wh6Tofj/wE5pcmuJL35fNYhx5GC0QL51m3+zzYYD74Wsorg7c+H77fy57DpYfMY0Xtm5HqTrX4fLLoSKp90P9bJputchyFr0ep5VvPXU+6HkmGw7Vlzfdg3oOoDWOEybLDLsd7VF6ucMpi+CJb9ADb+3fm4D74BS74FoUZzzhNq8K6mQVdBqQI3RFKePwDFQ7yds243PDse5mzydl4Jb+ersG+JdfvgL0N2UeLqERFvZLkNRqtufb3yCeu+5RPdh+qKSObwKxhNREREREREREQks4WSXYCIiIiIiIiIiIiISEbxJ7sAEZGoBfIgUBC+re8lia1FRES859VGsRV3moAALwTrvZkn2YJuwldCsOz7zrou+iJsfhSCdSaYbsNfYcFZkcfFw9r7YM+7yVk7E1nd9gO5Jvyu89TY1yjoA8c+BL4UDbcd9T049XnI7ZzsSjJbpGA0u8fzlr83+l8Gg79i3bd6C7w+C/Z/7K6+ZHjrsuhC0cDZ7TXL4jmVFwZ+CcrGNV/3B2DkzXDGa+bSZy4M/bq7OQd/GTqN9bLK2BUNhOP/BpeFWl8utgiVbBJq/OxfD0PRyifCpN95N5+IxFevGfbtBX3gwn1wxhvO56zeDDtfi6kscWjLY/btpaMTU4eIeCvbZTBa45EWX9ea10WsjP+pCYoWkY5JwWgiIiIiIiIiIiIiIiIiIiIiIiIiIiKOKRhNRNLbwC+1P5ZVBN1PTnwtIiLirayiZFfQXvBosivwRmOtu/4b/gIN1fZ96qqgcl70NcXDqruTXUHmCFqE+/hzIbsITl8AI26Kfv6K2XDOhzDwi3DOR9HPE063k014W9MlkO98bP8vwNAb4ORnYNyd3tYl4RX2t2/fv8y6zZfV+npul8jrrf195D7JdGQTbH8++vE9p0fuk+Uy+CGSokEw5Ho44d8w9YHI/fO7m9CfSPJ6wEnzTOhXuoRJBHLg7A/iN//EX8Mxv4SBV8DAK2Hy7+HMt0xopYikh9LRUDoqfNsx98K5n0BOJ+h2Akz8jfN51/3Jm/rE2pFNsO5++z4FvRJTi4h4y+35cUOLYLStT1v363M+9DgjuppEJH20fW2iJQWjiYiIiIiIiIiIdFyhULIrEBERERERERERERFJOzbvzBURSQNjbod9S2DPO+Z6IM9swA/kJbUsERHxgNdBLV4IZUowWo37/mt+CyO/Y91n34cQaoytLjeyikzgz5bHrPts/jfU7YXczomrK1M1WgWj5Zh/s/Jhwi+gcAC8f727uUf/AMbe3ny90ygonwxV70VVKmDC0E5/FXxhssBDf4X3roN1f7CfY84WKKhwtt6UP8G717Q/PvAKZ+OlWWE/V9031PRn3p7z2N/QiVnbipjYqUWjo2C0+0yYVKra8XJs48f/NHKfzpPNfTlYH9taAMO+CcfcE/6+ZyenE5z5JiycC3W727SVm+d4PU6Lvb5kKD/GhCxu/Lv3c/e7FPK6ej+viCSOzwfHPggLZ0PNdnOssL85jyka0LpvxXnwwQ3O5t30T+h3MfSelT5hkunmvesi98nvHf86RMR72S5fj6qrav66aql1v36XRVePiKSX/p+HZbe2P15QYR+aJiIiIiIiIiIiIukvo8LPMul7EREREREREREREZF0pXffikh6y+sCZ7xuNhzVboduJ0FOWbKrEhERL2QXWbdNvg/e+2riamniRWhMKnAbjAbw4S1QNAj6Xhi+feXPY6vJrX4XQ8X59sFoAI91gbnbIb9HYurKVFa3/aZgtCZDrzPhG06CIgAGXdU6FK2J21CllsomwBmvWbf7fDDlPnMbeuXU8H3O3wl53Zyv2WsGZBVCw5HWx/tc5HwOMVwEoy06MJUZy+ezv8Gc/9/x6xAPXhHk8uM+u/04CUYDWH4HjPm+20rj7/BGWHx19OPP32kCxyLJLoaKObD50ejXApi5GkqGRj++6zSYtRp2vwU1O8yxvG7Q9QTILY+ttmSb8AvY+hQcPejdnEOuUyiaSKboPBlmroI9i805UNcTIJDbvl9BHwjkOz+XXzgbBl0DU+/3tl6BQ5/Ctmcj98vvFf9aRMR7boPRVtwJo24xzwkPrrLu13tmbHWJSHoo6g+dp8Ded1sf73uxAmtFREREREREREQkM+i1ThERERERERERERFJkBh2m4uIpAh/NnSZAhWzFYomIpJJsmyC0fpcAENvSFwtTYJHE79mPBz4JLpxS2+GYGPrY0cPwnvXw/YXYqspqxgK+kbu58+B/p+Hib+F3jNMSF4kH94SW21ifdsP5LQ/NuSrcMyvILvUfs7hN8IUi6COaIPRBlwOp7/irG/3U+CMhVA0sGlR6DwVZm90F4oGUNALTn0Rij8LhcrrDlP+aG6j4k5eT8ddv7fhzv8LRQMIhXx8/eEQRxs++8TSzpOcTbT8Nji83k2V8VWzAxZfC08NiG0eN7fjqQ+Y363+bHOpmAP9LnE+vuc5sYWiNckpM4ERg682l4rz0j8UDUw459g7PZzQB+N/4uF8IpJ02SXQ80zocXr4UDQw50ddjnM376d/gn8VwPq/ZNinkyfZ1qed9VM4s0h6ynIZjAbw4nHwTx9UPhG+ve/F1o/vIpJ5Tn4aup9mzt8CBSasdvxPk12ViIiIiIiIiIiIiDf0t2cREREREREREfGA3atMIdtWEelIspJdgIiIiIhIWHYbUf05MOgqWP9naDicuJoyJRht9a+iG3dkA+xb2hw2FArBwrmw89Xo5ssuhVlrwJcF2cUQbIBHC6z7z1hmQqyyCpuPDfkKDL4WFpwDO14MP27zoyZALSs/ujoFQha3fV92+OPDv2EC0oL1ZvN3sB7q9pr/O18AAvkRNoW7+FTJsmPgzIWA3/3/cbcTYdY6qNkOgbzYApi6Hg+zVkPtHsjtrE/GjJY/4KhbXTCHBftPbXf8UC28tgbOHAmUDHO+7qZHYVQKhCgePQTPT4KarbHNUz7ZXf/sIjjxP9BQDaGguV61FDY9EnmsLwDDkhBWmm6GfAU++h40HIptnqJBMHOlCbATkY5n+I2w6zXzWO1UYw0sugJqd8HIb8erso7lwMeR++R112O1SLrKjiIYbf9y+/a+F0RXi4ikp7xuJri//oB5vUnBiCIiIiIiIiIiIqKNnCIiIiIiIiIiIiIirvmTXYCIiIiISFjZRdZt/mwoGwunvZy4eiAzgtHqqmDHS9GPf2EyrPqlCUXb+nR0oWiF/aHPBTD9PbNRMLfc/J9GCrXK7906FK2Jzw+Dr7Ye11gDO19xX6c0CzaEP+63ydoO5Jj7sT/b/L8V9jWBYTmdIm8ItQsVm3I/dDsJSkfDyO/AmW+a+aMNvvP5oKBXbKFoLeV1USharIZ8NWKXAw2llm2rdrR4I2H//3K2ZuWTzvrFU/0B+HeJu1C0rieEP14xO7oasgqaf/+WT4CzFkHJ8Ob2HmfCjI9h2DfNfbDnOXDyM9Dr7OjW60j82TDgC+7GFFSY35N53aF8ogkCPfMtBe2IdGS9Z8BJT0PP6ZDfC/J7Oh/74c1wZEv8autIPn0gcp9e58a/DhGJD382dD3R2zmLXYQ2i0jmyClVKJqIiIiIiIiIiEiHovAzEREREREREREREREv2exiFxERERFJop7TYcWPw7cF8sy/XabCiG/Dyl8kpqZgfWLWiad9SyAUjG2OJd+C2p1QtcTduNHfh7E/su/jz7H+OWeXWI/reTb4AhBqDN9e+ST0numsTmkvZBEKGLdwHptgsf5fgMHXxGldSQnDvwWVT9kGhB1ssH48KGq55zi/h7M19y6GNb83gWIFvR0W6rG3P+9+zMArTTDg9heaj5WMgMFf9qamLlNh5sr2xyf+0pv5O5qxd8L6h0xgZ0u+LJj2MPS9MClliUia6T3DXJrsehNemwENhyKPnT8cLj4Sv9riqaEG9i8DQtB5avKCaPd9FLlPfk8YcWP8axGR+Bl3F7x8knfzFQ/xbi4RERERERERERERERERERERERERERERkQ7An+wCRERERETC6noCFFS0P14xB3wtTmMTGXYVtAiHSidefQ+f/Ax2vOSs75Dr4OT5kUPRwITDWPHbtGUXw4DLrdt3vBJ5bQkvFLQO07P7/4qJTdBFUzCiZK7iwTD9Xdvb14HGUsu2wpbBaDmdnK/7/vXwZAV8dCuEEvwJrtWVsO0Z9+Oyi83j69Q/w+CvwDG/grPehrwu3tcoscsth/N3wKhbzWOZP9sEvE5fpFA0EYletxPg7PdgxE2R+zZWw4EwgZeprmoJPDcOXjwWXjwOXpgC1dYBqnG1/If27UWD4ZwPoXRkYuoRkfjodiLkOQxZjiS7E2TlezOXiIiIiIiIiIiIiIikqQS/F0lEREREREREREREJAMoGE1EREREUpPPD8c/bDaQNikeCpN+17pf1xNh1HdbHxt0dXxqCmVCMFpD4tYaewdcFoLJv4Pe5zobYxd+Fsn4n1u3HdmY+KCjTBFqtG6LVzCaz+apqs8mNE0yR0EvGH2rZfOBButgtIKcFreRbBfBaE1W3AU7XnY/Lhb7P45yoM88bg76Eky5D4Z/w10YnCRedgmMuwMuroFL6mHCz6F8YrKrEpF0VzIMJvwCTn7GPM7YWXZbYmrySigEi6+BQ2ubj1W9D+9/PfG1bH8RKp+w7zNrDeR1S0w9IhJfXY7zZp7up3ozj4iIiIiIiIiIiIiIpLaMen9iJn0vIiIiIiIiIiIiIpKuFIwmIiIiIqmr2wkwez2c/DScvgBmLDdhOS35fDDuLpi1zgSpnfMRTLk/PvUE6+MzbyLZhVx5qde5tqFGlsonRb9mXhc46x3r9u0vRD93Rxa0CQT0Z8dnzaJB8ZlX0os/x7Jpv00wWqv3GNqF7NnZ9M/oxkWrZnt04xSCJiIiLfWeAbPWwujvW/fZ8h9YeU/iaopV1Qewb0n745VPwJEtiatj+R2wYLp9n6kPKMRXJJN4da499Dpv5hEREREREREREREREUkF+puoiIiIiIiIiIiIiCSIgtFEREREJLXllEHvmdD9FAhYh+RQPAj6XwJlY80bL0be4n0tdgFR6SLUkJh1ov35j7gp/PEBX3Q2Pq+bddu717ivR+xvM/6s+Kw59Gvhj/eaEZ/1JDX5cy2bDtgEozUEW1wJBS372dr8WHTjolVd6X5MViF0Od77WkREJL3ldYOxP4KyCdZ9lt4Eh9YlrqZY7F1s3bZtfmJq2PAPWH5b5H7ZxfGvRUQSJ9uDYLQpf4Tup8c+j4iIiIiIiIiIiIiISKpo9amVIiIiIiIiIiIi0bF7mUkvQYlIEwWjiYiIiEhmGniF93NmQjBa0EEwWvdTY1uj87HQdVp0Y3ucAaWjWh/z58Lga52Nz+1i3VZdCUcPRVdXR2Z3u/dlx2fNsvHQ9cQ2a/lhyFfjs56kpkB0wWiNLbPQSoZFt3bDocQGxjgJW2lr0LWQle99LSIikhmmPWLf/vSQxNQRq6oPrNv2fRj/9bc8Ce98wVnfLAWjiWSUnBiD0XrNNK9l+Hze1CMiIiIiIiIiIv+fvfuOl7Os8///uk5NTnovhAQSQu9VAghSpLgrRVDBhthx7bvquiqiu2v5Ka5lbasifBcLIGADpCiKFKlK7ySUBEJCek6Sc2au3x+TbOZMZu65p50y5/V8POaRXP2TcHKYOXPP+5Ykaejyk5ySJEmSJEmSJFXMYDRJkiQ1p2rDcJI0QzBazCSPj9oBXnU97PtlaB9b+f5Tj4Sjr6v+g78t7XDsn2DeO3P/DWe+Bl51LUxZkG59uTCCNY9XV9dwlhSm19LWmDNDgKOuhp0/AON2h+mvhlf+Crb7h8acp8GppaPk0KpM6WC03kzehYRTjoD2KgMNfjO/fy5KXPlA8vikg2G3j8O+X8kFT048EPb9Euz/1cbXJkkausbuXP658fK7+qeWWiy/s/TYxmWNOzezEe54D9x8avo17QajSU2l1mC0ee+oTx2SJEmSJEmSJGmIMPxMkiRJkiRJkqR6atCn2CVJkqQmlN000BXULiaEXIU22OeL0NIKu38cdno3XD6hsv2PuKL2QIDOSXDI/1S3tlwg27O/hJ7VMHoejNq+ujOGm5gQCBjaG3du+2g48JuN21+DX0tnyaF1mVElx/Jz0WjtgH2/CHe+r+++E/eHZbeVr+Hx78LO56YotgbPXF56bK/zYa/Pbm3v/i+NrUWS1Fx2Phce+nLp8SXXwqQD+6+etLpfhHVPQ+cUWP1Q6XmNDEa76wPwZIWvSdpGN6YWSQNjxPTq1047GmaeVL9aJEmSJEmSJEmSJEmSJEmSJEkaZgxGkyRJktLKJgREDRUxU3rsuJth8iu2ttvHVb5/R4VBav3twf/MPQDmvRMO+l4uCE6lZRPC9Fp8SakGai0djJaNLSXHegu/zc1/L4zdFZ77FbR1wewzYMK+sPha+NsnYeXfS9dw1/th5EzY/pQKi6/AC9eXHpvVwHMlSc1v7tuTg9Hu+0zu/5GzT++/mpLECI/9N9zzkeRA5y0aFYzWsxYW/r/K1wWfG0tNZcZxuX/Xhd+PRs6AHd4MPavgiR9suy60wVFX50KaJUmSJEmSJEmSAIjlp0iSJEmSJEmSpD5Kf5JYkiRJGup2+5f67rfyvvruNxBKBQyM3qlvKBpACDB2l8r2D6G6uuophHMn4gAAIABJREFUbZDQkz/MhS489GV49JuwblFj6xqqkkIpDH9QI7WUDhLItI8vPZYt0jntKDjg67DPf+RC0QBmngAn/Q1O/FtyHTefCt0vlq+3WmufKt7fOQUm7N24cyVJzW/sLnDAN5Pn/OUMuOuDsOrh/qkpydMXwd0fSBeKBo0LRlv9CGQ2VLamdSSMntuYeiQNjI4JcOjFfV/3Tl4Ar3kY9vsKHPx9OOwX0JIX6DzxQDjlucSQZ0mSJEmSJEmSpEEvGuQmSZIkSZIkSRp4BqNJkiSpeW1/OlDHoK6nfgzPXlW//QZCzBTvbykRcDXnrMbV0ihzzkw/97Fvwd8+CXd/CK7eF166pXF1DVXZntJjLe39V4eGn5bSYQKZltElx3qLBaMlmbAPzH5D8pwl11a4aUrZHthQInTt0Isbc6YkaXjZ5QOw8weT5zz2LbhmP3j2yv6pqZinLobb317Zmo3LIVb6P/4UVj9S+ZrtXgttI+tfi6SBtcOZcPIiOOzncNwtcOxN0DFu6/ic18Nrn4QFP4Nj/gjH/QVGThuwciVJkiRJkiRJ0kAaJmFig+HmuZIkSZIkSZKkYcFgNEmSJDWvyQfDgkugc3Lf/rZR1Qc63XVuYz5831+yvcX7Q4lgtD3+DeafuzWgaPw+ub5i5r+/9vrqYc7rYdrRla/rWQn3/kv96xnqYomvGSj9dSPVQ2vpYLRsy6iSY5lqvkW/4sfJ492Lq9g0wdqF8KfXws87KHlRZNd29T1TkjR8zSkTAAqQ3Qg3nwaZjY2vp1DP6lxQcaViBv58Ciy/s/Yalt0Ot74Z/nA83PaWytcf8sPaa5A0OHXNzH0fnbKg+M+SuraDHd4I045KfA0jSZIkSZIkSZLUFOIwCYCTJEmSJEmSJA04g9EkSZLU3HY4E057EU55Fs7M5H49fRWc9CC0juw7d+R2cOLfYeorS+/XvQRWPtDYmhupVMhVaC3e39IKB/03nLESTl0CJ/0N9vjX3N9VvtaRsNO76ltrLQ6/tLp1y27LBRblG8pBePWQ7Sk9Vm3AoJRGS0fJoUzLyNJj1fyTbeuCo64pPd67topNS+heAr/ZCZ7/TfK8wu+zkiRVa/KhuUcaNxzZ2FqKef53uZDiqtb+JlfzS7dVf/7ia+CGV8LCS+CF6ypfv/MHoX109edLkiRJkiRJkiRJanKGiUmSJEmSJEn5kvL3zeaXtIXBaJIkSWp+oQW6Zm39taUVxs6HV98KM06AUTvCnDPh2Jtgwt7bBqYVumYfuPFoWPNkv5RfVzFTvL+lLXld6wgYOT33+7ZRcPxfYc4bc393M18DR98IE/apb6216JxU/dpf7wiXjoGbz4Df7g4/74BrDoAXbqxffUNJtkSYHpT/upFq0dJZcigTRpQc6602y3DmCUAoPlbPf//3n1/6e/EWrSOgY0L9zpQkDW8hwKt+n27u8r9Cz+rG1lNo8dW1rc90w6Nfr379IxckhwGX0z6m+rWSJEmSJEmSJEmSmoOf1pQkSZIkSZIkqa4MRpMkSdLwNWFfeNU1cPJTcNhPYcxOuf6EMJ7/8+If4YYjoXd9Y2ust1IhV6G1sn26toPDfpb7uzvqtzDl0Nprq7fZb6h+be9aePZyWP1wLsBoxT3wp9fCqkfqV99QERNCIkJ7/9Wh4ac1KRgtYazaYDTIBT4Ws/yvsHF5DRtvlu2Fhf9bft6I6bkQG0mS6qV9DMx7Z7q5L99T//NjhLVPw0u3QGZD37E1j9W+/zOXVV/X0j/XdvaIqbWtlyRJkiRJkiRJkiRJkiRJkiRJktSHwWiSJElSoc5J6eZ1Pw8v3NjYWuotZor3h7b+raM/zH1bfffLrM+FpQ03pcL0AFqa8OtGg0dLR8mhmBCM1ltLMFrb6NJjj36jho03u/9z0Luu/LzJgzBsUpI09LWNSTdvdZ3DgHvXwc2nwa/nwvWHwxXT4YUbto5vXFafc6oJMe1dC9lN5ecd8C1oH1d8bMaJlZ8rSZIkSZIkSZIkSZIkSZIkSZIkqSSD0SRJkqRCaYPRAB78z8bV0QixRMhVMwZczTgBJuxX3z1XPVjf/YaCUl8zBAi+pFQDtbSXHMpQOhgtU1Mw2qjSYw98AV6+Fx78EtzzMXj027BuUfq9e9bCg/+Rbu6cN6bfV5KktNrTBqM9Wt9zH/oKPHfV1nbPKvjDcbD497l2vYLR7vlY5WvSnj33rXDoxdA6om///l+HsfMrP1eSJEmSJEmSJEnS8BHjQFdQoaFWryRJkiRJkiSpGTVh+oEkSZJUo87J6eduWt64OhohZor3h9b+raM/hAALfgq/261+ez5zGRz2s/rtNxRke4r3J4RWSY2WaekqOdZbUzDa6OTxa/fv277v03Dkb2Hq4eX3vnrPdDWM3wtmnphuriRJlUgbjLbm8fqeu/CS4v03nQA7vg16VtfnnKcvgkN/UtmaNMFobWOgfSzMei289il48Y+Q2QBTj4Qx86oqVZIkSZIkSZIkSVKzGSZhYiEMdAWSJEmSJEmSpGHCYDRJkiSpUCXBaEMtHCrbW7w/NOlLg45x9d0vZnJ3bxxOF/fEYfY1o8Fj9Nzc9+PCwJLWLrIjppdclqkpGG1UZfN7VsENR8A/Pg5jdio9b/WjsG5R+f1GTIcFPxt6/2+RJA0N7WPTzVtxD9z+Dnjqx7l2axccfhlsd1Lx+b3d8NCXYemfoHdNrq9tDEw7Cua/H9Y+Wfqspy9KXX4qG5dD56Tcc/ZFP4dFm/+/Ov9cmH5MkfkpgtHyA+VGzoAdzqpfvZIkSZIkSZIkSZIkSZIkSZIkSZK20TLQBUiSJEmDTsfE9HPDEAuvKRly1dq/dfSX9vH13/O+T9d/z8Es21O83+AmNVpogZ3eu23/vHPIxNLBfL2ZGs5s66pu3W/mw5onSo8/e0Xy+pMegFOXwKmLYfwe1dUgSVI5LZ3p5nUv2RqKBpBZD396DTx9ybZzY4Q/Hg8PnA9Lb4KX7849lt4E938Ofj23DoVX4KEv5Wq6/3Nw61nw/G9y/x/+w7Gw8Gfbzt+4vPye+cFokiRJkiRJkiRJklSxONAF1E9soj+LJEmSJEmSJGlQMxhNkiRJKhSz6ee2dDSujkaIJRKDQumQoSGtbSRMPLD42Pz3V7fnIxdAb3f1NQ01pcL0Wpr0a0aDy96fh32/AuP3zj32Oh8O+AaZbOkL7DK1XHuXLfH1nsZv5sONR8Pap7YdW3x16XVzzsyFoY2cDiFUf74kSeX0rKlt/YP/vm3f87+Fl24uvaa3xjPzjZxRfs7DX4VfdMIDn9927NazoHd9376Ny8rv2WYwmiRJkiRJkiRJkqRyDAyTJEmSJEmS0kr6aZo/aZO0hcFokiRJUqGJ+6Wf2zrEgtFKhf40c8jV3l/YNsBu3y/DQd+ubr/MBnjxj7XXNVRseKl4f2jv3zo0PIUAu/8LnPT33GOvz0JoISEXjd4S+Y+pZGoMPXzxj3D94ZDZ2Ld/04rSa2adUtuZkiSlNeng2tavfqRvsNiGpXDfp2vbsxLTjk03L9tTeuyaffu21y0qv1+7wWiSJEmSJEmSJEmSJEmSJEmSJElSfzIYTZIkSSo0akcYu1u6uUMtHCqWSAwKrf1bR3+aeQIcdwvs/EGY/z448new+8dr23PjsvrUNpjFCA99Be56f/HxZg7T06CXyVY3Vlaow49JupfAs7/c2o4R1j9bev7Mk2o/U5KkNCbuD52TattjSzDa/Z+Hq2bByvtqryut1g6Y947a9ljzOLx899b26kfLryn1GkqSJEmSJEmSJEmSJEmSJEmSJElSQxiMJkmSJBUKAV5xYbq5LUMtGK23eH9o8pCrSQfCgd+Ag74D2+WFEO3xqer2ax9Tn7oGs6V/gr99ovT4UAsFVFNJCj/rrSUYbdbJNSzOc+ub4M73w+/2gGv2gZ7VxefNfz+0j67PmZIkldPSBgt+Ci2d1e+R6YYl18H950G2p361pdHSAXt9DsbvVds+1x4Iy+/M/X71I+Xn96yp7TxJkiRJkiRJkiRJw1wc6AIqNNTqlSRJkiRJkiQ1I4PRJEmSpGImHwKvuKj8vKEWKBYzxftDa//WMVjMPgMIla+rJUxiqFh4SfJ4yxD72ldTySZce5cUmlbW2N1g3O41bJDn8e/Aqodg5f2l5+x9fn3OkiQprRmvhlOegUMvhl0+XPn6TDc8ckH960qjpQO6ZsGrb4ejrqltr98fDPd/HtYtLD+3VMCpJEmSJEmSJEmSJG0RDROTJEmSJEmSJKmeDEaTJEmSShm7c/k5safxdeTrWQsPfxX+dDLceS6sf66y9bG3eP9wDbmasC8s+Cm0j6tsXXZTY+oZTJ78YfL4UAsFVFNJCj/rrSUYLQQ46urc94ZG65wCnZMaf44kSYVGTIUd3wKzT6987W93gSW/r39NabS0535t64KZJ8DYXWvb7/7zSHWn8961tZ0jSZIkSZIkSZIkSZIkSZIkSZIkqSJ+kl2SJEkqpXNy+TmZDY2vY4uYhT/9Ayz909a+Rb+AE+6E0XPT7ZEtEYw2nEOudngjzD4DHvgCPHB+ujXNHoyW5u6VW4IppAGQSfgSTQpNS2XUHDjxXlj3LHSMg/axsHE5rFuUC5Jp6YC2MfDgf8KD/179ObWGuUiSVKvWroGuoDItHX3bI2fC6kcaf+6skxt/hiRJkiRJkiRJkiQNCSmuLZQkSZIkSZIkqQ6GcfrB8BZC2BXYB5gFjAQ2AEuBJ4C/xxjX1bB3O3AYMBuYAawFFgP3xhgX1la5JElSPxpswWiLLu0bigaw6WV47L9h/6+l2yNmiveH1tpqG+paWmHeOc0ZjPb81XDfZ2D9Ihi3Bxz8Qxg7P3nNE98vv+9wDtPTgEsKP6s5GG2LUdtv/X3npNwj3z5fgBHT4O4PVLf/9GOqr02SpHpoG+LBaKPm9M+5O7y5f86RJEmSJEmSJEmS1JzS3KhUkiSpGfk8SJIkSSUkPVX0aaSkLfwk+zASQhgPfAg4h1xoWSmZEMLfgMtjjF+qYP8pwPnAG4CJJebcClwQY/xl6sIlSZIGSvu43Ifvk0Kw+jMY7ZGvFu9/8Q/p94i9xftbfGnAqNmw03vhie+VnztUgtFWPgg3nwLZnlx76Z/h9wfDyQuhY1zxNc9cDne+r/zeHRPqVqZUqWzCDzfrFoyWxi7/BJuWw/2fq3ztTu+pezmSJFWkdYCD0Vo6c8Gj3YtTzm/v255zJjx1Yf3ryjfzNTB5QWPPkCRJkiRJkiRJktQE/LSmJEmSJEmSJEn1ZPrBMBFCOAP4LjApxfRW4ABgFpAqGC2EcCLwE2BqmakLgAUhhEuA98QY16XZX5IkaUCEABMPhGW3lp7TX8FoMcLLdxcfW/G3CvbJFO8PrZXX1IwO+g5MWQBP/ABe+kvpeUMlGO3+z24NRduiZyU8eznMe0ff/mwP3H4OLPzfdHtPP6Y+NUpVSAo/6y3xba5h9joPxu8Nz/8aul+AdQth9SPJaw78Noyc3i/lSZJUUtsABqPt8hHY8U0wYT946iJ48Ubomp17Dv7SzcXXtHT0bU87CsbsDGseq399c86EqUfA3HdAi6+VJEmSJEmSJEmSJEmSJEmSJEmSpP5kMNowEEI4D/hckaFngMeAl4ARwAxgL2BUhfsfBVwF5H8yLQL3AE8B44H9gMl5428CxoYQTokxJnykXZIkaYDNPDE5GC3bT8FoPauTxzetgo5x5ffJ9hbvD740AHJheDu+BbZ/HVw+fttQsS2GQjBa73p49oriY399J0x7FYyeC2ufgsXXwl3vT7/3tGNglw/Vp06pCknBaJnsANx9dftTc48tHvsO3PPh4t9DdngTzD+3/2qTJKmU1gEKRtvuH+GAC7a257099wC4432lg9FCe992Szsc8iO44Yj61rfvl2D3T9R3T0mSJEmSJEmSJEnD2ABczyRJkjQo+DxIkiRJklQ90w+aXAjhY2wbivYz4IsxxvuLzG8BDgVeBxyfYv9ZwBX0DUW7BXhXjPHhvHmdwHuArwJbPsH2j8C/A59K+ceRJEnqfyOmJ49n+iEYLbMR/ljmqdm6RdCxd/m9YolgtBZfGvTR1gUzToTnf118fCgEo/355OTxX8+DuWfDokshsz79vsfcBFMW5IIopAGSlH2WGQzvn+98Lsx4Nbx0K2TWQUtHLuBy4oEw5fBcCKMkSQOtdcTAnLvj20qPtXYmjHVs2zf1cDh9JTx1IdzzkdprAxg5sz77SJIkSZIkSZIkSRpGBsNFS3USm+jPIkmSJEmSJEkaskw/aGIhhH2AL+V19QBnxRgvL7UmxpglF2x2SwghzdfH+cCEvPatwLExxj4JITHGjcA3QwjPAFfmDX00hPD9GOOiFGdJkiT1v7au5PGNy6BnLbSPblwNz1wKy/+aPGfdQpiQJhgtU7w/tFZcVtN7xYXwy0nFx/ojEK8WG16CF24oP++pn1S270Hfg2lHVlWSVE+ZbOmx3hLf5vrdmJ1yD0mSBqsQYPxesHKb+2dAaIGY8D/cQi0dMPUoeOG68nO3PzV5n0rHOsbBrh+GSYfA9QvKn1/OyBm17yFJkiRJkiRJkiRJkiRJkiRJkiSpai0DXYAaY3Oo2Y/pG373nqRQtEIxxt4yZ8wH3pbXtQk4uzAUrWDPq4CL8ro6gfPS1iRJktTvWssEowFcdwj0djfuLnmP/Ff5OetS5sxmSzzFS5WJO8x0ToSpJULA7vtM/9ZSqTShaJXqnAI7vqX++0pVSApGSxqTJEkF5r17274ZJ6Z7HZTv9JWw12fLz9vt47nQtVJaR5QeC+3Je08+BCbsW76GckZuV/sekiRJkiRJkiRJktSUGnSdrCRJkiRJkiRJBQxGa15nAPvntW+MMV5Y5zPOAlrz2lfEGB9Pse7LBe3XhxASPvEmSZI0gNpSBAKseggu7YLLx8PNZ8CGpfWtYcU95ecs/2v5OeuegRdvLD4WWov3D3ctHaXH6v3fuZ42vFDf/Wb+A5xwZ7p/D1I/yCZcX9drMJokSent8k9w4Ldh/D7QNRt2ei8ccTn0rk2/R9dsaBsJE/YrP3fkjDLjM0uPJT03h1zg2tE3wA5vgRHTYeKBsOBncOpimHUKjJhWvr6u2TBm5/LzJEmSJEmSJEmSJCmtRt10V5IkabDzeZAkSZIkqQZtA12AGuY9Be3/bMAZpxa0UwWvxRgfDiH8FThkc9co4NXAr+tYmyRJUn20jkw/t2c1PHs5LL8DTn4698H8WmV70s1beAm84iJoKRFwltkI1x9Wen3wpUFRSeELi34Bu3wgeX1mI6x6EMbu2r+hYhuX1b7Hrh+D/b9a+z5SA2QSws+SxiRJUhE7vz/3qFVbF3ROgY0vlZ5TLhht7K6lx3rXlK+hcxIsuHjb/ldeuW3f05fAbW/O6wiw12dLv6aSJEmSJEmSJEmSpFIM/ZAkSZIkSZJSS/ppmj9pk7SF6QdNKISwE3BkXtdC4I91PmM6sE9eVy9wSwVb3MTWYDSAEzEYTZIkDUbVhFmtfwaumAqnLIbWhGCtNNYuTD/3pZth2lHFx57/Nax/rvRaP/xfQsKPUNY8kbz0qYvhzvdAZkMuYG2f/4TdPlbf8kqpNRhtwU9hzhvrU4vUAEnhZ70Go0mSNHAOvRhuOrH0eNlgtF1Kj2W6q6uplB3fBGN2gie+D61dMPv00q+nJEmSJEmSygghtAOHAbOBGcBaYDFwb4xxYZ3P2hHYF5gJjAaWAIuAW2OMKe+8JUmSJEmSJEmSJEmSJA1eBqM1p1cVtG+Mse63n9mzoH1fjHFdBetvLWjvUWM9kiRJjdFaRTAawMbl8MAXYJ8v1Hb+xqXp5750S+kP8i+/M3ntmifTnzOcJIUvJIXmrfg73P62re3sJrj3n2H8XjDj1fWrL9+qh2DJ9bDpZXjiB9Xvs9fnYYcz61eX1ACZhFe4SaFpkiQppfnnwuPfqXzd+MIfGxcYPS95fMR0aB8PPSu3HZtyeOX1lDP5kNxDkiRJkiQ1hRDC54Dzatjiohjj2RWeOQU4H3gDMLHEnFuBC2KMv6yhNkIIpwMfBQ4tMeXlEMIvgM/GGGu8k5IkSZIkSZIkSZIkSZI0cFoGugA1xMEF7dsAQs6xIYQLQwgPhRBWhRDWhRAWhRBuCCF8MoSwQ8ozdi9oP1FhjYXJG4X7SZIkDQ5J4VflPHtZ7ef3rEk/975Pw+rHt+2PER7+/5LXjvPpWFG960uPtY4sPfbcVcX7n72ytnpKeeKHcPXecM+H4YHP17BRgB3fXLeypEbJJoSf9WT6rw5JkprWrFPSzx2z09bfd82CaUcXnzflCOjaLnmvEGCnd27bP2oOTNg3fU2SJEmSJEn9IIRwIvAA8D5KhKJttgC4PITwvyGEUVWcMzqE8DPgMkqHorG5hvcBD4QQjq/0HEmSJEm1SLjTY+LYYDTU6pUkSYOXzyskSZIkSdUzGK05HVjQfnhz4NkNwPXA2cBuwFigC5gNHAN8EXgshPDfIYRyCSA7FbSfqbDGRQXtSSGECRXuIUmS1HitNQSjrV2YCyWrxPO/g9vOhtvPgcW/h57Vla3/7c7wl9fDjcfCvR+HNU/CstvLrxu7a2XnDBeZKoPR7v9c8f4nvldTOUWtXwx3vAtiHdKgDr8URu9Y+z5Sg2USvrVu6Om/OiRJalozjoP9L0j3emi3f+7bPvRimHhQ376JB8BhP0939p7nwewztrbHzIejroXg2xmSJEmSJGnwCCEcBVwFTM3rjsDd5ALMrgeWFSx7E/CzENL/oCOE0Ar8AnhjwdBLwHWbz7qHvp8wnAb8KoRweNpzJEmSJEmSJEmSJEmSpMGkbaALUEPMKGh3AXcCk1OsbQfOBQ4NIbwmxrikxLzxBe2llRQYY1wbQtgAjMjrHgesqGSfQiGEqcCUCpfNq+VMSZLU5NpqCEbLboTeddA+Ot38x78Hd75va/upC2HKYZWf+8xluV9fvBGevgimvDJ5/pj5MPXIys8ZDnoTgtFa2vuvjiRXbVeffV6/rravd6kfZbKlx9Zt6r86JElqart+BHZ6L6x9ElY/Cn85fds5o+fBtGP69nVtByfckQuKXv8sdG0Po3dIf2776Fxg78blsHEZjNkZQqjlTyJJkiRJkoavM4EUd5H6P2vTTAohzAKuADryum8B3hVjfDhvXifwHuCr5K7LA/hH4N+BT6Ws6UvASXntHuCjwA9ijP/3rkgIYXfgh8Chm7s6gatCCHslXAMoSZIkSZWp9GbBkiRJkiRJkiRVyWC05lQYWnYhW0PR1gHfA64BngNGAfsA5wD5d4jcD/hlCOHIGGNPkTMK0z26q6izm77BaGOq2KPQucB5ddhHkiQpp3Vkbes3LU8XjBazcP/52/a/dEtt529YCs9eXnp8yhFw6E/Sh7cNN5mEYLRHvwm7frjImg2Nq6fQ8ruqWxfagCy0jYFpr4IDv20omoaUbML1dU9UFNstSZIStY2E8XvmHodeDLe9devY9GPhFRdBa0fxtaN3qCwQrVDnpNxDkiRJkiSpei/EGBc2YN/zgQl57VuBY2OMfd4ojDFuBL4ZQngGuDJv6KMhhO/HGBclHRJCmAt8qKD7jBjjrwrnxhgfCiEcA9zI1nC0SeSupXtvij+TJEmSpIYxTEySJA1XPg+SJEmSJFXPYLQms/kuk50F3bM2//oQcEKM8dmC8XuAC0MIHyN3d8otDgU+Qe4OlYUKkzOqSX/opu8FYqZxSJKkwSe01LZ+4zIYNaf8vOV3wYYXajurGsf9uf/PHEp6E4LR1j0NT/4Y5p3Tt//WtzS2pnwv/qGy+ae9CCOmNqYWqR9lssnjv7gzyxsOqvH7tyRJ6mvHt+QekiRJkiRJw1gIYT7wtryuTcDZhaFo+WKMV4UQLspb10kusOycUms2Ow9oz2v/pFgoWt453SGEs4H7gS1p9u8IIXwlxvhUmbMkSZIk1cTQD0mSJEmSJEmS6slPCTef1hL9qygeivZ/YoxfA75e0P2REEKawLJq3sXxnR9JktT8NixLN2/j0sbWUcx+X+v/M4eaWCZ96ckf9m1vWAbPXZG8JrOptpryPfjF9HM7JkDnlPqdLQ2gcsFoP/qLLzclSZIkSZIkSVJDnEXfa/SuiDE+nmLdlwvarw8hjCg1OYQwEji9zB7biDE+BlyV19VGrmZJkiRJkiRJkiRJkgaFmPDxv6QxScOLwWhNJsa4Hij2EfELkkLR8nyGXIjaFhOBE4vMW1vQHpmuwsQ1hXtW4zvAnhU+Tq7DuZIkqZmN3aX6teufSTdvIF6pd23X/2cONft9JXl82W1926sfLh+mduOroHtJbXUBrHsWelamnz9yBoRQ+7nSIJAt8y3zhof7pw5JkiRJkiRJkjTsnFrQvjDNohjjw8Bf87pGAa9OWHI80JXXvi3G+EiqCret6bSU6yRJkiRJkiRJkiRJkqRBwWC05rSuSN/FaRbGGNcBVxR0H1Vk6qAMRosxLo0xPljJA3iy1nMlSVKTm/3Gbfs6JsLrlsEhP4IFl0D72OJr73g3rLiv/BkxU1uN1RhpMFpZM4tlBCfoWVN+zrJb4doD4KVbq6tpiyd/VNn8qUfVdp40iGTK5A9KkiRJkiRJkiTVWwhhOrBPXlcvcEsFW9xU0E56M/KEMmuT3Eyuti32CyFMq2C9JEmSpHoaiBvn1mSo1StJkgatIfc8SJIkSZI0mBiM1pxWFrRfjDEurGD97QXt3YrMWVXQnlLB/oQQRrNtMFph3ZIkSYPDnv8GO7wFCLn2yJlw9HXQOQnmnQM7nAXj9ii9/q/vhKcvgVvOgrs+CMvv2nbOQASjjZ7b/2cONaPmQOuI5Dn5b9b1pghGA+heAjceBfd8DO79OPzlDfD4dyFbwdfBA+ennwsw7x2VzZcGMYPRJEmSJEmSJEnSANizoH3f5huRplV456Sk2cPnAAAgAElEQVSEN5m3Oeu2tIdsrun+Cs6SJEmSVCtDPyRJkiRJkiRJqqu2gS5ADfEYsH1ee0mF6xcXtCcVmfN4QXtOhWcUzn85xriiwj0kSZL6R0s7LLgYDvh6LtBq3O4QCjKG28aUXv/ynXDbm7e2n/wfOPI3MP3YrX2Z7vrWXM64PaFrZv+eOVRt/zpYeEnp8dgLoT33+56UwWgA2R545IKt7WcuhRf/CIf9AkJIXnvfeenPAZj9epi4f2VrpEEsm+I6wt8/GDl+jzL/liRJkiRJkiRJUjN7Twjh0+RuDDoJ6AGWA4uAvwDXxhhvrmC/3QvaT1RYz5Nl9stXeDPTas7ar+CsP1S4hyRJkiRJkiRJkiRJkjQgWspP0RD0YEF7Y4XrC+ePKDLn4YL2ThWeMbeg/VCF6yVJkvpf5yQYv+e2oWgA7QnBaIUyG+APx8GVs+CuD+TavZXcSLwOZry6f88bylo6k8ezm7b+vreCYLRinrkMVj1QfOzZq+DqfeGnAR74fOk9TvwbHPBNGD0PRkyFXT4MB323trqkQSaTLT/nM1elmCRJkiRJkiRJkprZG4FjgJlAJzCa3A09Xwl8CvhzCOHOEMKxpbfoo/AauWcqrGdRQXtSCGFC4aQQwkRgYo1nFc6fX+F6SZIkSSoixR0tJUmSJEmSJEmqg7aBLkANcV9Be3yF6wvnLy8ypzCtYe8QQleMcX3KMw4rs58kSdLQUkkw2hbdz8Nj34bVj+ZCrCrxiovg0W/AinsqPxdg3B7VrRuOWjqSxzMboW1U7vc9q2s/78kfwQH/1bdvyfXwl9dBLBP0NH4fmLD5scsHaq9FGqTSBKPdtQiy2UhLS2h8QZIkSZIkSZIkaag6ELguhPBF4NMxxqRP+RdeV7e0koNijGtDCBvoe6PSccCKMuesjzFWeqetwtrGVbi+pBDCVGBKhcsqfENckiRJGmqSXkoYJiZJkoYrnwdJkiRJkqpnMFpzuobcTwy2fPp7bghhRIxxQ8r1exa0nyucEGNcEkK4D9h7c1cbcDhwXcozjipoX5NynSRJ0uDUVkUw2hYvXA9cX9mazskw7xy4q8pgtLG7VLduOIo9yePZjVt/37Om9vNeKPK18MQPyoeiAez41trPl4aATMr3yJethaljG1uLJEmSJEmSJEkadJ4HrgbuAB4GXgaywCRgf+AfgOPz5gfgU0AL8K8J+44uaHdXUVs3fYPRir3RXK9z8tXwhvY2zgXOq+N+kiRJkiRJkiRJkqRhJOmWZYm3M5M0rLQMdAGqvxjjYuC2vK524JgKtjihoH1ziXlXFrTfnmbzEMKuwCF5XetIH6gmSZI0OLXX8zryFDonw9yzq1wcYOxu9aymufWW+ZxBJi8YrbcOwWirHtr2JzfPXp5u7c7n1n6+NMjFGFP/cHPJqsbWIkmSJEmSJEmSBpU7yAWebR9jfHeM8YcxxltijA/HGB+NMd4aY/x2jPEE4CDg8YL1nwwhnJywf2FgWdobleYrfPOxcM/+PEeSJEmSJEmSJEmSJEkalAxGa14XFrQ/mmZRCOEI4OC8riy5u2cWcwmQyWufFkKYn+KYTxS0L40xVnPxliRJ0uDRPrZ/zxsxGdpGwZG/rXztzNdA58T619SsMmWC0bJ5wWg9ZYLRJh4Ax/2l/Jl/fSdkM+Xn5Tv2ZmgdUX6eNMRlK7jjw+KVjatDkiRJkiRJkiQNLjHGq2OM18VY/hYrMca7gFcAjxUMfSmE0Jr2yEprHORrJEmSJDXEEHt6nvaulZIkSWX5vEKSJEmSVL22gS5ADXMhuTC03Ta3jw4hfDTGeEGpBSGEqWwbqHZpjPHJYvNjjI+HEC4Cztnc1QH8JIRwTKmgs8131Dw7r2sTcH65P4wkSdKg1zamf8/rmLT51/GVrz3kB/WtpdmVC0bLpAxGG7srHH4pjJ4LI2dA95LSc5/6MUw+BNY/DyvvL1/j/v8FUw8vP09qApls+rlLVkUgNKwWSZIkSZIkSZI0dMUYXw4hnAncxdY3FHYFXgXcUGTJ2oL2yCqOLVxTuGd/nlOt7wCXVbhmHvCrOtYgSZIkDTKGfkiSJEmSJEmSVE8GozWpGGMmhPAh4FqgZXP310IIc4DPxRhX5M8PIRwLfJfcBUhbrAA+Veao84BTgQmb2wuAG0II74wxPpK3fyfwbuBrBeu/FmNclP5PJkmSNEiFfg7eaR+b+7W1wmvgu2blQrmUXrlgtOymrb/ftLz4nNmvh8N+vvXrJLSXP/eO96Srb+45sOuH0s2VmkC2gmsIF69qXB2SJEmSJEmSJGnoizHeE0K4Djg+r/sEDEYrKca4FFhayZrQ3++nS5IkSZIkSZIkSZIkaUgzGK2JxRiv3xyO9q287g8C7wsh3A48T+4CqH2BOQXLNwFnxhifLnPGcyGE04DfAx2buw8DHgoh3A08BYwD9gemFCz/LfCZiv9gkiRJg9HGEoFYjbLlwvHWrsrWlQv50rbKBqNthEe+AU/9GFbeV3zOtKP7hue1dBSfV42pr6zfXtIQkMmmn7vEYDRJkiRJkiRJklTetfQNRtu7xLzCdx4Kr4dLFEIYzbaBZStTnNMVQhgVY1xXwXFTU5wjSZIkSRWq4K6WkiRJkiRJkiTVwGC0Jhdj/HYIIQN8FdiSmtEOHJGw7EXgtBjjrSnPuCmEcCrwE7Ze7BWAAzc/ivkZ8K4YYybNGZIkSYPeQIVTtVUYjLbzBxtTRzPb/nRYfkfp8Qe/CIt/l7zH2F37tnd6F/ztE7XXBjDj+PJzpCZSSTDaC6u8EE+SJEmSJEmSJJW1sKBdKvDs8YJ24c1Iyymc/3KMcUXhpBjj8hDCCmBCXvds4OEaziqsXZIkSVI9xYTrlJLGJEmSmpnPgyRJkiRJNWgZ6ALUeDHG75K7i+X/AmsSpr4AfA7YJW0oWt4ZVwN7At8DtrlYK8/twOkxxrMqvIOlJEnS4DbpEGgb0z9ntY/d+vsRhTf6LmP70+pby3Aw5w3J4+VC0QDG7lKw5xurryffjBNh5PT67CUNEdkK3h9fvLJxdUiSJEmSJEmSpKbRXdAeWWJeYTDZThWeM7eg/VDC3HqfVUmomiRJkiRJkiRJkiRJkjSg2ga6APWPGOOTwFtCCCOBw4BZwHRgE/AS8PcY4301nrEUeF8I4UObz5iz+Yx1wPPAvTHGp2s5Q5IkadBq7YRD/gdufRPETGPP2u9reeeOSL9ut3+BcXvUv55mN2o27PNF+Pu/Vre+fTyMmFZkz/+Av/9bbbUd9O3a1ktDUCabfu6SVY2rQ5IkSZIkSZIkNY3JBe1lJeY9UNDeO4TQFWNcn/Kcw8rsVzi2IK99KPCbNIeEEEaRu5Fq2rMkSZIkSZIkSZIkSRoU4kAXIGnQMBhtmIkxdgM3NPiMTcAfG3mGJEnSoDTnDTBhX7jjvbD0psac0doFs1+Xfv4Rv4Q1j8OUw2HyAgihMXU1uz0+WX0w2rQji/+97/EpmH5c7utlxT2V7zvpYBhdeKN3qflVGowWYyT4vU+SJEmSJEmSJJV2SEF7cbFJMcYlIYT72Bo61gYcDlyX8pyjCtrXJMy9Fnh3wtokR9D32tB7Y4wvVrBekiRJ0rDmR08lSVK9+LxCkiRJklS9loEuQJIkSWoqY3eBff69MXu3j4XDL4OOCenXbH8a7P4JmHKYoWi16ppV3boZJ5Yem3QQHPdnaOmofN/dqwxqk4a4bAXvj/dkYFNv42qRJEmSJEmSJElDWwhhBHBaQfdNCUuuLGi/PeU5u9I3gG0dyYFqvwe689qHbt4jjbML2oU1S5IkSaq7pIuaDASRJEmSJEmSJKlSBqNJkiRJ9dYxqbb1rV1wzB/g9BVwVoRTl8Dxd8CpL8B2J207v3NK8X26tq+tDvWV7alu3Zh5yeNto2B0mTmFJh0C2/1jdfVIQ1ys8DrB7ir/6UqSJEmSJEmSpGHhE8B2ee0M8LuE+ZdsnrPFaSGE+SnPyXdpjHFDqckxxvXA5WX22EYIYWfg1LyuXuCnKeqTJEmSJEmSJEmSJEmSBg2D0SRJkqR665xcfs74fUqPnfR3mPYq6Bifa4+cDpMOgraRxefv/YXi/bv9c/k6lN7GZdWtGzmz/JwT7k65WYA5Z8Hhv4CW1urqkYa4bKXBaJsaU4ckSZIkSZIkSRo8QghvCSFMq3DNu4DzCrp/EmNcVGpNjPFx4KK8rg7gJyGEEQnnnAycnde1CTg/RYmfA/JvAXN2COG1CeeMAC7cXNMWP4oxPpniLEmSJEkqr9K7WkqSJEmSJEmSVCWD0SRJkqR665hQfs7xd8CME/r2tXbl+sfsVNl5c14PYwpuQj56Lsx5Y2X7KNmkg6tbN3K78nPaRsKOb02e09IJZ2bgsEtg1JzqapGaQKWX1nX3lJ8jSZIkSZIkSZKGvHcAT4cQLgohvCaEMKrUxBDCgSGEK4AfACFv6Hng0ynOOg9YkddeANwQQti14JzOEMIHgMsK1n8tKXxtixjjU8A3CrovDyH8UwghP/yMEMJuwI2ba9liOekC2CRJkiQ1lGFikiRpuPJ5kCRJkiSpem0DXYAkSZLUdFpaYeZJsPjq0nNaO+CVv4JHLoCX/gIjpsDOH4CJ+1d+XscEOO5WePgrsOJemLAf7PJhGDG1+j+DtjXtaFh2W+Xr2semmzfrFHj64tLjnZMghNLj0jCRzVY232A0SZIkSZIkSZKGjZHAWzc/siGEx4GFwCogA0wC9gGmFVn7MnBCjPGFcofEGJ8LIZwG/B7YElB2GPBQCOFu4ClgHLA/MKVg+W+Bz1TwZ/oksAdw4uZ2O/At4DMhhHuANcDczWflv5m4CTg1xrikgrMkSZIkVSsa+iFJkiRJkiRJUj0ZjCZJkiQ1wr5fKh2MNm7P3K+tHbDHJ+tz3ojJsN9X6rOXitv1I7n/pivuTb9m/N7pw8xmvJrcZxVKXCDVMSH9uVITy1Z4DWH3psbUIUmSJEmSJEmSBrUWYJfNj3JuBM6OMT6XdvMY400hhFOBn7A1/CwAB25+FPMz4F0xxkwF52RCCK8Hfgi8IW9oKnBCiWVLgbfFGG9Oe44kSZIkSZIkSZIkSZI0mLQMdAGSJElSUxq/F7z2yeJj25/Wv7WoPjonwbF/qmzNDm9OP7dtFEzYr/R4+7jKzpaaVKX3Vu3uaUgZkiRJkiRJkiRpcPkG8FNgUcr564ArgWNjjMdWEoq2RYzxamBP4HvAioSptwOnxxjPijGuq+KctTHGNwJnbN6rlJeB7wJ7xhivrfQcSZIkSQIgVnqFliRJkiRJklSZpB9B+eMpSVu0DXQBkiRJUtMaPReOuQn+fDL0rMr1bf862ONfB7Qs1aB9TPq5c98OO7+/sv2P/DVcNav4WFJomjSMZLOVzd9gMJokSZIkSYPGHx6JXPW3SEcrnHFA4JC5YaBLkiRJTSLGeCW5oDNCCOOBPYDtgWlAF7mbyK4kF2D2MHBfjDFTh3OXAu8LIXwIOAyYA0wnF7z2PHBvjPHpWs/ZfNblwOUhhB2B/YGZwCjgBXKBcLfEGDfV4yxJkiRJlfKTnJIkSdvweZAkSZIkqQYGo0mSJEmNNO1IOG0pvHw3dM2CUdsPdEWqVWsXZNYXH5txPOx1PoycDqPmVL5313aw8wfgsW/17Q+tsONbK99PakKVvj3e7cd/JEmSJEkaFP7n5izv+X9bX9l/6w+RX7y7hVP2MxxNkiTVV4xxJXBLP5+5CfhjP531NFCXsDVJkiRJkiRJkiRJkiRpMGoZ6AIkSZKkptfaAVMONRStWez+yeL9nZPg8Eth8iHVhaJtsf/XYJcP5/YDGL8XvPIqmHxw9XtKTSRbYTJad493GpMkSZIkaaBlspF/u7Lva/SeDHzmV9kBqkiSJEmSJEmSVDmvxZIkSZIkSZIk9Y+2gS5AkiRJkoaUuW+DJ74L3Uu29o3dDU64E9pG1b5/Szsc8HXY/wLIdENbV+17Sk0kW+Hnpbt7GlPHYNa9KbJiPUwdA22tYaDLkSRJkiSJW56AZWu37X9wMSxeGZk53tevkiRJkiRJkiRJktRcDFWVJEmSJFXPYDRJkiRJqsSo2XDcLfDI12Hl/TDpINj9k/UJRcsXgqFoUhGVvj3evakhZQxaX78+y+d/G1nVDTPGwfff0sI/7O2HyyVJkiRJA2vR8tKv6Fd3w8zx/ViMJEmSJEmSJNVd0lVNBoJIkiRJkiRJklQpg9EkSZIkqVKjd4QDvznQVUjDUrbC6wS7expTx2D0m79HPnbZ1r+gJavgDd/P8vDnW5g9yXA0SZIkSdLglPEzgZIkSZIkSZIkSZIkSZIkSZLytAx0AZIkSZIkSWnFSoPRNjWmjsHo8ru3/cvp7oHv/MlPmEuSJEmSBlbSK9P1w+i1uyRJkiRJkiQNfl5rJEmSJEmSpMZK+gmUP52StIXBaJIkSZIkacjIVhqM1tOYOgajOxcW/8v5yrX+OFiSJEmSNLCSgs7Xbey/OiRJkiRJkiSpIRLv9ui1O5IkabjyeZAkSZIkqXoGo0mSJEmSpCGj0mC09ZsaU8dg9MgLpcfWbPDCAkmSJEnSwNmQEFxuMJokSZIkSZIkSZIkSZIkSZKkfAajSZIkSZKkISPx5qpFrFjXmDoGo1GdpceG09+DJEmSJGnwWZsQfjacQs0lSZIkSZIkSZIkSZIkSZIklWcwmiRJkiRJGjKyFQajLVtb4YIhbGR76bE1CR9AlyRJkiSp0dYlhJ+t2zR8XrtLkiRJkiRJ0tDmz3MlSZIkSZIkSf3DYDRJkiRJkjRkxIqD0RpTx2DU0VZ6bHV3/9UhSZIkSVKhdQmB3UljkiRJkiRJkjQ0JFzUVOkFT5IkSc3C50GSJEmSpBoYjCZJkiRJkoaMrMFoJbWG0mNrNvRfHZIkSZIkFUoKP1u/qf/qkCRJkiRJkiRJkiRJkiRJkjT4GYwmSZIkSZKGDIPRStvYW3pstcFokiRJkqQBlBSMljQmSZIkSZIkSZIkSZIkSZIkafgxGE2SJEmSJA0ZscJgtFXdsKm3wkVDVFIw2poNw+PvQJIkSZI0OK3bWPp16bpN/ViIJEmSJEmSJKkMrzOSJEn14vMKSZIkFZf0GcFKPz8oqXkZjCZJkiRJkoaMbBU/2Fy+tv51DEbJwWj9V4ckSZIkSYXWJ4SfJY1JkiRJkiRJ0tCQdFGTn+SUJEmSJEmSJKlSBqNJkiRJkqQho5o7Pqzsrn8dg02MMTEYbbXBaJIkSZKkAdSbLT3Wk+m/OiRJkiRJkiRJkiRJkiRJkiQNfgajSZIkSZKkISNbTTDa+vrXMdj0ZpJD49YYjCZJkiRJGkBJr1l7DUaTJEmSJEmSpKGhmrtaSpIkSZIkSZJUBYPRJEmSJEnSkJEUjNZW4qccwyEYbWNv8vhqg9EkSZIkSYNUJjvQFUiSJEmSJElSjRIDwwwTkyRJw5XPgyRJkiRJ1TMYTZIkSZIkDRlJ1xBOGFW8f2V387+pXi4YbZ3BaJIkSZKkAZT0yrzXYDRJkiRJkiRJkiRJkiRJkiRJeQxGkyRJkiRJQ0a2xCepQ4DxI4uPrVzfuHoGi3LBaOXGJUmSJElqpKSg895M/9UhSZIkSZIkSZIkSRrkkt5gliRJkqT/n707j5MkrevE/42q6pmenu6Zhjm7BxFW5VLExWN11/VC3V113RWXdf0puL91d3FFXFAXDxRQVA7RVTxAEGRBhlNADmFGLndgmIFhDmaG6Z6h566qvrvuMytj/6iu6equiMiIqsysyMz3+/Wa11THE5n5zbgy4sl4PsnAEIwGAAAA9Iy877mHkoi9u7LbJuY7V09dtAo+W1h2gwAAAADbp+iqtJGXgg4AAAAAQPcJIgEAAACgw4q6oHRPAWsEowEAAAA9I2+sdBIRey/IbpuY61g5tbHUMhitO3UAAABAlqIblRor3asDAAAAAKAzjOQEANjAeRAAAABbIBgNAAAA6Bl5wWhDQxF7dyWZbYMQjLbYKhitRTsAAAB0UtH97ncf6V4dAAAAAAAAAAAAAED9CUYDAAAAekbeQOqhJOLiXdltk/Odq6cuWgajLXenDgAAAKjq4JGIsQm/FA4AAAAAUH/6cgGAbnDOAQAAgGA0AAAAoIc0c77nTiJiz87stumF/v9yfLFF8JlgNAAAALZTqyvz936x/6/dAQAAAIB+po8TAGAj50gAAGxNs5nGTfen8abPNOOO0TTS1DkmDJKR7S4AAAAAoKy8rsuhoYiLcoPROlZObSytFLcLRgMAAGA7tboX6QXvSuMXn9GdWgAAAAAAustgTQAAAAB6S/rRt0X6sb+JmJuO5F/8SMSzfzWS4eGu1rDSTONn3pzG1Z9f619L41d+MIlX/XhEkiRdrQXYHoLRAAAAgJ7RbGZPTyJiT04w2tQABKPlLZc1gtEAAADYTob9AQAAAAAAAFBKmq7eHA4AwLZIP/CGSP/w+Wf+feCLEUcfiuRFr+tqHVffuD4UbdVrrk3jh56axPc8saulANtkaLsLAAAAACirmTOSeijJD0abHoBgtJUWI8znBaMBAACwjVLJaAAAAAAAPUKHLgAAAMAgS9/75xsn/v1bI52b7modr/hodj/V//6HZlfrALaPYDQAAACgZ+Tddjc0FHHRAAejNVv05y4IRgMAAGAbCUYDAAAAAPpaYSeoDlIAYED5ohgAoOekczMRDxzY2LDSiPjke9v3OiXaDhzObv/Ql9pWBlBzI9tdAAAAAEBZeQFgSUTs2ZlEVrfo1AAEo620uG+g14PRvvRwGq/4+zS++GAaw0nEtzwuiZf/uyQed2my3aUBAABQgtvdAQAAAAAAAABggKTNiEgiEuM+oKc0V/LbZqe6VwdACEYDAAAAekjeQOqhJGLPzuy2pUbEUiON80b698uUvMC4NY1mRGMljZHh3lsGd42n8Z2vasbM4plpB4+kcc2dadz1O0Nxye7ee08AAAAAAAAAANBzUj+DAQB0g3MOgJ7WmIu46XkRD38wYmRXxOOfE/GNL49Ihra7MgCgxzh7AAAAAHpGM+fmuiSJuCgnGC0iYnqhQwXVxEqJ7/8XG52voxP+/FPpWaFoa47PRPzJJ9z4AAAA0AuMlQMAAAAAAAAAgAHw2Z+MuPctEUsnI+Yejrjz9yO+9NLtrgoA6EGC0QAAAICe0WxmTx9KIvYUBKNN9XswWs5yWW9hufN1dML1h/JHz7/vZiPrAQAAeoGrNwAAAACgvxX0gvrlCABgYDkPAhg4iyciRj+0cfp9b3V9DABUJhgNAAAA6Bl5X4O0DEab70g5tdEs8QVRLwajNZtpHDyc3/7l8Yh7jvhyDAAAoO7c1wgAAAAAAAAAAH3ugXdF5sifuQcjlie6Xg7AwHCTJn1KMBoAAAClHJtO44/+oRkvfn8zPnq7jhK2RzNn00uSiL0X5D/uyFRn6qmLlWbreXoxGO2hUxHzLer+u9scjwAAAOrOPTcAAAAAAL1Chy4AsN2cjwD0rGbBABA3EAEAFY1sdwEAAADU3wMn0vjOVzVj9JEf50jjBd+fxB/9R3nbdFfe9yBDScSOkSQu3xNxdHpj+9hkGhFJR2vbTnmBceu1Chiro3uPtZ7nurvT+JUf7HwtAAAAbF6Z2xqXG2nsGOnfa3cAAAAAoJ8Z3A0AsJFzJAAAADbPCHYAAABa+t2PpOtC0Vb9ySfSuO0hX1bSXXkBYMnpcdP792a3j57qTD11sdJsPc9So/N1tNvcUut5DhzufB0AAAB0Xi8GegMAAAAAtOYeOwAAAHhk4A9ARKQFXWZFbeSx0OhPgtEAAABo6bNf2dgxkqYRr/ioDhO6Ky8Ybej09yNX5QWjTWRP7xd5y2W9pZXO19FujRKBb/cej1hqOBYBAADUWZkblcqEYwMAAAAAAADQ5yRhAAAAEILRAAAAKOHA4ezp777Jl450V9733GvBaPv3Zv+CzNhEf2+rKyUCxJYana+j3ZZLhLmtNCMOHet8LQAAAGxemavy+eWOlwEAAAAAwJb09z1YAAAAAADUh2A0AAAAoGc0c+6tS07noe27OLv9+Exn6qmL/g1GK3cz5QMnOlwIAAAAW1LmB72nFzpfBwAAAABARxR1gpbpIAUA6EfOgwAAANgCwWgAAABsyfSCLyzpnrzvx4dOB6NdfEF2+8xiZ+qpi7zAuPWWVjpfR7stl6x5dMJxCAAAoM4EowEAAAAAAAAAAAB0gFBi+pRgNAAAAAqlLTpFxie7VAhEfgBYcjoYbffO7PZ+H1y90mw9z1Kj83W0W6NkMNrYRGfrAAAAYGvK3HIzNd/xMgAAAAAAaMUgSgBg2zkfAQAAQDAaAAAALSy2CFMaF0hEF+Xddzd0Ohhtz/nZ7f0ejJYXGLfeYqP3bhJYLhmMNuo4BAAAUGtlxtFNzvfedSsAAAAAwCr9mwAAAAD0AaH5QI0IRgMAAKDQ/FJx+/ikzi66Jy8A7JFgtJ1JZvvMYocKqomVZut5llqEHNZR2WC08QnHIQAAgF431eeh5gAAAADAoHJfCwAwqJwHAbCOsCVgnaIjgqPFZlhq9CfBaAAAABSaXy5uPzLdnTogIj8YLTmdh7b7/Oz2heWIxkr/dvCVCkYrGTJWJ2WD0UYnOlsHAAAAW1PmilwwGgAAAAAAAABCHQAAtpNzMaA+BKMBAABQaH6puH1qvjt1QET+D8QMnQ5G27Mz/7HTfTzAOi8wbr2lRufraLdGicC3iIgxwWgAAAC1VuYHX/UxAQAAAADUnYGxAAAAAAB0h2A0AAAACi20CFOa6uOwKeonLwDsdC5aYTDazGLby6mNlRIBYksrna+j3ZZL1nxkOmK54cZLAACAuioVjKaPCQAAAADoWUWdoO5pAQAGlfMgAICeU+ZmP4AuEYwGAABAofml4vap+e7UARH5X48Pne7h2H1+/mNPzbW9nNrIC4xbb6lFyGEdlQ1GS9PVcL8/ECEAACAASURBVDQAAADqqcytUvqYAAAAAAAAAAAAAKoSaEd/EowGAABAofnl4vbphe7UARERzWb29KFk9f97duY/9g+u6d8OvpWc5bJeLwajNUq8rzWjpzpXBwAAAFtT5kckp+b797odAAAAAKB36KsFALZZmS+YAQDoDOdiQI0IRgMAAKDQ/FJxu0GrdFMzZ3M7nYsWF54fkSTZ83zuUP9uq3nLZb3FHgxGW14pP+/YZOfqAAAAYGvKXJFPCd8HAAAAAAAAAACA7SMYDagRwWgAAAAUml8ubjdolW7K61odOt3DkSRJbv/rjuGOlFQLK83W8yxVCBmriyrBaMdndLwDAAD0sqn57a4AAAAAAGCTigaMGkwKAAwq50EAAABsgWA0AAAACs0vFX8hKRiNbmrmBIAl6/5+xpOy55no4wHWpYLRGp2vo92qBaN1rg4AAAC2psz97vqYAAAAAAAAAACgXwnMhJ7QpXBbvzPQZhYafUowGgAAAIUWWoQpTfVx2BT1k9dFN7QuGe0F35/d3TEx1/566qJZou+yF4PRGoLRAAAA+kKZe24m9TEBAAAAANSbAZYAQFc45wDoWUmS3+aaEgCoSDAaAAAAhRaXi9unFrpTB0TkB4ANrevh2Lsre57FRsTCcn9+kbLSbD3PUoWQsbpYrlDzCcFoAAAAtVXmalwfEwAAAADQu/rzniQAAAAABo1+LqA+BKMBAABQKC+Ias3UfETqVzvokmZOANj635TJC0aLiDg129ZyaqPVfhoRsdzofB3t1qgUjOY4BAAAUFdluo5mFyNWylzgAgAAAAD0FP2eAMCgch4EwHo+FwA6xzGW/iQYDQAAgEKtxqM2mhELy92pBfI2x6F1yWh7L8h//MR8W8upjZWcwLj1FnswGG25QjDa8ZnO1QEAAMDWlL3lZnqho2UAAAAAAAAAUHtCHQAAtk2ZX0EF6BLBaAAAABRqFYwWETHZp2FT1E/e9pisD0bblf/4ibn21lMXZfbTpUbvdUw3SgS+rRGMBgAA0Pum9DEBAAAAAGyz3rvHCAAAgF7gehMAqGZkuwsAAACg3lZKBBNNLURceXHna+l3b7+xGe/+QhpDScR/+rYkfuJb5ZmfK+9HJ4bWBaPtOi9iZCg7VKtfg9HK7KdLK52vo92WV8p/8SUYDQAAoL7K/oik8H0AAAAAoDcVdYIa+A0ADCrnQQAAPafszX4AXSAYDQAAgELNEn1ZUwatbtmrPtaMX3/fmYX9d7elMTbRjBf+gHC09fK2x/XBaEmSxN5d2UFZh6fSiEg2NvS4MvlhC8udr6PdliuEuU3ORyw30tgx0n/rFwAAoNeVvVdqaqGzdQAAAAAAAAAAANtA2BJABznG0p+MrgYAAKBQqWA0g1a3ZGE5jVd/bOOCfsVH01hq6JRaL297TM7JwnrcJdnzHTzS3nrqotlsPc9kDwYYVglGi4g4OdeZOgAAANiasr0bwvcBAAAAAOrMvWwAQBcIzgEA2D5dOhcrehmng8AawWgAAAAUKhO4ZNDq1tzyYMSpjECn4zMRd4x2v546y+vYHDonGO1JVyaZ8x0c78+e0ZUSb2uiB0PDGhWD0Y7PdKYO6u3+42nc9lAaE3P9uX8DAEA/KHuj0tSC83oAAAAAoAcZrQkAAAAtuHaG3mBfBepjZLsLAAAAoN6aJfqyVgetZgdR0drBI/kL+e4jaTz9qy3bNXnbY3LOInrCldnzHTjc3nrqokyA4UQPBhguVw1Gm+5MHdRTs5nGz1+dxl9dl0Yzjdi7K+KNzx6KH/9mx0wAAKibsrdKTS10tAwAAAAAgO4TmgYADCrnQQCcxecCQMc496ZPDW13AQAAANRbqWC0HgxcqpOvHM1vu7ugbRDl9dENnRuMdkX2fA+dikj7sKOvzH46Mdd7771yMNpMZ+qgnv76+jTe8H/TR7b/ibmIZ/1lM45P99Z2DgAAg6Ds5eikPiYAAAAAAAAAAADYHj029gzob4LRAAAAKFQmcMmg1a05VBB+dvBw9+roBXnb47nBaF/1qCRzvrml/txem83W8yyvRMwvdb6WdqoejKbzfZD88cez1/flv9zsuRBAAABglfB9AAAAAIBt5p4LAGDbOR8B6EuuNwGAigSjAQAAUKhMMNpsj4Ut1c3sUv5CPjCu43+9vO0xOScHbf/e/OcYnWhfPXWxUnIzmeixAeaNEoFv652a60wd1M8DJ9K4cyy//fP3da8WAACgtbL3NU4tdLYOAAAAAIDOcI8XAAAAAH1AiCFQI4LRAAAAKNQsEUw0s9j5OvpZYyW/7eCRiGaZdLoBkde3OnROMNq+i/OfY/RU++qpi5WSAWITPRYctlywb2QRjDY47hgtbn//rY6bAABQJ2XP0Kd6LNAbAAAAAKA19zAAAIPKeRAA6/lcAOgcx1j6k2A0AAAACq2U6BOZFYy2JUXhT3NLEQ/1YZDXZuVlxCXnBKOdN5LE5Xuy5x2d6L+OvrLheZM9NsBcMBp55paK2z/+5f7bzwEAoJeV/RHJ6QXn8gAAAAAAAACDzffGAADbpuzNflt9mU22AYNFMBoAAACFms3W8whG25pGi2V8//Hu1NEL8vpWh5KN067amz3voWPtq6cuygQYRkRMLXS2jnbLC0YbzunRmpjV9T0ollps9PPLXSoEAAAopezVWq8FegMAAAAADBb35gAAALBZrikBgGoEowEAAFCoWaLfeXZR5/RWNHLCn9aMTli+a/K2x6xgtK+7ImNiRBwY77/lWSbAMCJiscfCovL2jct2Z0+fMIB+YCw1ittbHVcBAIDuKvsjkoLRAAAAAICeVNgJ2n/3KgEAlOM8CACg9ziHA+pjZLsLAAAAoN7KBaN1vo5+ttwyGK07dfSCvO0xychAe9KV2fMeONy+eupipWSf80IjjYjswLg6yts3Lr8o4vDUxumn5jpbD/Wx2CIYbXQiIk3TSLIODgAAm/CVo2lcc2ca541E/PBTk9i/13kGdMKx6e2uAAAAAAAAAAAAaLuyv6wIbC/7ao+y3uhPgtEAAAAoVCYYbUYw2pY0msXtY4LRHpHXtzqUkUnw5H3Z895zNKKxksbIcP8EGTRbbENrFpc7W0e75Qaj7cmefmq2c7VQL0stgtHmllaD8h59YXfqAQD624duS+Mn3tCMhdPn04/alcY1LxiKb3lc/1xTQKeVvVdqfFLIMQAAAADA9jKIEgDYZsI4APqU4zsAUM3QdhcAAABAvZUJRptd6nwd/UwwWnl522PWcOkn78seRL28EnHoWPtqqoOVkt8PLbYIk6qbvH3jsj3Z6/bUXAeLoVaWckLz1rv7SOfroHNuvDeNn/6rZvzUXzXjbZ9rRupGJwC2SbOZxvOuPhOKFrF63vltv18ynRiIiPK3NS42XNsBAAAAAL3Id9oAAAAA9AFjN4AaEYwGAABAoWaJsd4zC52vo58ttwj4GZvQobgmb0kMDW0MynrCFREZkyMi4q7x9tVUByslMxnWhzn0grx949Ld2dMn5leDK+h/iyW25YOHbQu96po70/iOVzbj6s+n8Y7Pp/Ezf53Gr73P+gRge9xwX8TDp7LbXvFR4WhQVpV7pQTEAwAAAAB9xWBSAGBQOQ8C4Cw+FwA6xrk3fUowGgAAAIXKZAzNLnW+jn7WaBGMdmK2O3X0grygvqwAtJ07knj8pdnz39VngUlls8AWG52to93ygtEu35M9PU0jpgQ1DoSlFsfNiIgDhztfB+2Xpmk8/x0bD/Z/+sk0jk/317EbgN5w4735nz8vfn8aK4J5oZQqe4pgNAAAAAAAAIBB5l4MAIBtI2ALqBHBaAAAABRayQmiWm9msfN19LNGi2V8fKY7dfSCvMyBJCMYLSLiyfuypz94sj311EWZ/TQiYmG5s3W0U5qm+cFoF+U/7tRcZ+qhXpZKhPyNnup8HbTfzQ9GfOXoxukLyxGfPdT9egBgrkUQ+O2j3akDel2Ve6XGJt1YtebeY2kcPCyEEQAAAACoCQNjAQAA2CzXlMA6RYcEhwtgjWA0AAAACpUZd7nUiGis6HHarLzwpzUnZ8MA2NPylsJQTjDaFRdlN5zss7C5spvHYokwqbooek+X7c5Z4RExIRhtICy1OG5GREwvOG72or+7NX+93T5qnQLQfa2CwI9Pd6cO6HWVgtEmOldHr5heSOP7/2glvvbFzXjyS5rxlJc048tjzocBAAAAoL703wEAbOQcCQCg9ziHA+pDMBoAAACFygYuzbYYLE6+RouAn2YacWr8ZKTXXB3pe/8s0ofu6U5hNdRsZk/Pi8m6ZHf29BOz/dVJu5KzXM7VS8FoRYGBees1IuKUYLSBsLjcep5pn0s96YO35R+f7z3WxUIA4LRjLUKVe+kcG3rF+OR2V7D9fuHqND554My/7zka8Z/e0IzUT2ECAAAAQA/SrwcAAACujwE6yTGW/jSy3QUAAABQb2WD0WYWIy7e1dla+lWjRKjV8Rf8RDz68HWr/xh+UcRv/Z9InvGszhbWQ4Zyot8vuTB7+okW4Qa9pux+ulAiTKouioLRLtgRsWdnxPTCxrZTs52rifpYahEoGRExNd/5Omivqfk0vvRwfvsX7vdFDQDdd3ii+PNnNXQ5L6oZWFPlTG68xX7X79I0jY/cvnEZ3DEWccO9Ed/xNdtQFAAAAAAwQAa7jxYAqAPnIwAA28aPdwI1kjNsGAAAAFaVDVyaXepsHf2sKABqzfHJdQt4ZSXSP/j5SJcWO1dUTeVtj3kxBHnBaAePtKWc2lgpEa4XEbHY6Gwd7VS0X+wYjnhUThDjqTkd8INgucS2nBWcR709dKq4/c6xiIOH67GPf+H+NH7+7c141utX4o3XNSP15R9A35prca3bb6HL0ClVTpfGJjtXRy9YXok4mRP6/dYbnHcCAAAAQC35zhgAAABacO0MPUE/F1AjgtEAAAAo1CwZuDQjgGbTGiWW8bHhy8+eMDsVceeNnSmoxvK2xyQnGe2S3dkNC8sRk30UoFU2wHCph4LRGgXBaCOFwWidqYd6WSoRKDk9eNmRPW+0RTBaRMSTX1LyxKSD/vFgGt/9B814/T+m8bc3Rzz3bWn8/NX985kCwNlanXecyAkvAs5W5WzpgRMdK6MnFN1Xduio804AAAAA6D369QCAQeU8CGDw5AzuiRC2BNBRjrH0J8FoAAAAFCrb7zy71Nk6+llRANSasR37Nk68/XPtL6bm8jbHoZwejkdfmP9cr/xY/3T4lQ0wXFjubB3ttFywX+wYzl+3gikGw+Jy6/13WmBnzxmbLHdcvvmB7T1+v/qa5obj6Rv+bxrjE/3zuQLAGa3ChZ1/QjlV7mscn4yYmh/cc6ui8PN7jnavDgAAAAAAAAAAAAaMEEOgRgSjAQAAUKhoMOZ6s4udraOfFQVArRkd2b9x4s4L2l9MzeVtj0M5Pyqz7+L85/q7W/uno3al5FtZbPTOe24VjHZJXjDaTGfqGQRpmsaB8TQOT6aR1vyLjKUSx83phYhm2Q8xamH0VLn5Pn339q7Xj96xcVqaRrzhOtsbQD9qdd4xIRgNSql6iXHwSGfq6AVFlzGHJ7tXBwAAAADARr4XBwC6oOb3sAKwWY7vwBl1H7cE1INgNAAAAAqVzZSZEYy2Kc1mWmoZj43s2zhxdqr9BdXcSjN7el4w2tdclv9cBw5HjJ7qj07UZs5yOdficmfraKdWwWiP3p290k/N9sc67ba7j6Txz1/ZjKe8tBn7/1czfvTPmrVelkuNcvPNLnW2DtprdKLcfAcOd7aOzfry2HZXAEAntDrvmF6o7zkT1EnVPeXg4cHdt4ru91oseS0EAAAAAHTb4PZpAgAAANBHahBYtv0VAHUhGA0AAIBCeUFU55pdrN7lNLOQxgduSeNPP9mM2x8ezC6rsst3dGT/hmnpxLE2V1N/zZwUubxgtCRJ4ur/mtMYEQ+cbEdV269sgOFCDw2gbhTsGyNDEZdcmN12YrYz9fSzZjONn31LM26878y0j9we8cvvqe9xuWww2vRCZ+ugvQ4dLbfN3V3TkIylRj3rAmBrigJ7IyKmhYRDRxyb3u4Ktk/Za3wAAAAAoEfUYDApAMC2cB4EwHo+FwA6xzGWPiUYDQAAgEJlB2POVBwMfmQqjX/56mY883XN+J/vTONpv9OMP/lEyZSwPtJqkP2a8R37Nk6cONHeYnpA3vaYF4wWEfET35rfeLxPBlqX3U8XlztbRzsV7Rs7hiMu2Z3ddmKmM/X0s8/dG/HZQxunv/eLaW2DnhZLBqNNzXe2Dtrr4JFy891dcr5OyAvojCi/XQLQW1oFss4IYoVSqt5zM7vUmTp6gfuTAAAAAIBtpZMSANh2zkcAALaPczGgPgSjAQAAUKgoAGS92YrBaK/6WBq3PXz2tF9+dxqHJwer86xRMgtuYmjvxomTx9tbTA/I2xyHC3o4kiSJxzwqu+34TH9sb6WD0XootKdlMNqF2W0nZjtTTz977SeyN6CZxYjjNQ2aWyoZKnl4qrN10D6zi2k8eLLcvEemI5a3KbSv6NhUdrsEoLe0Or5PV7wWhkFV9eytaj9TPyl7jQ8AAAAAAAAAAL3DTTEAQDWC0QAAAChUdjDmTMUBq3/5jxufuJlGfODWweroLgpYWW96aPfGiaeOtbeYHpC3PQ4lxY+7NGPxRdQ39KmqsvvpwnJn62inlsFou7NX+vGZiNQv11Zy7/H85XWipvvIUsmQv7EJ20KvuOdo+XnTdPtC74rCcRZ76BgLQHmtzjumF7pTB/S6vMu0kZw7Fqr2M/UTwWgAAAAA0It07AEAbOQcCWDwOPZDzzMmC6gRwWgAAAAUKjsYc3ap2vPO54SHvOWzg9V51miWm296+KJoxjlBUCfG219QzeUGo7Xo4bgsJxjt7gpBPHXWLLkd5e13ddQoCB8aGYq4fE922/JKxMnZztTUr3YM57fVNTxwsWQw2uhEZ+ugfQ6MV/v83651WxSOUxSaBkDvanV8F4wG5eTdK7V7Z/b02QEORmt1X1ljZbD6zgAAAACg9+nTAwAAANfHAJ3kGEt/EowGAABAobLBaJPz5Z9zdjH/SVsFXPWbovCnc80OXXj2hMkTkS4N1kjhvACwoSR7+ppL92TP8ObPpJH2wS9ZlN1P5yoGGG6n5aJgtOGIfRfnt49Ptr+efrZSEKx3oqYhc0XhVOuNCUbrGQePVJt/u9Zt0bGp7HYJQG8pOvZHrJ5jr5Q9IYcBlreX7D4/e3ovXb+2W6tDyiCHxgEAAAAA2813IgBAF/TBvd0Ag6tgcI/jO/QG+ypQIwM23BwAAICqyo7vPjlTvtPryFR+23CLgKt+02qQ/XpTQxdtnHh8rH3F9IC87bFVMNolu/Pbrrtn8/XURdn9tJcGT+ftGyNDEUmSxBUZu8MawWjVzBcEDhyvcGzvpqWSx07BaL3j7orBaKMT27NtFoWfLQpGA+g7aZqWCr7spfNsqJs9O7OnzyzU81qkG1q980EOjQMAAACA2jJgFAAAAIB+0KVurqKX0dUGrBGMBgAAQKFms9x8x6bLP2dhMNqAXak2Si7fiIjpoYx0r+Pj7SumB2w2GO3xl+S3veyDFVZCTZUNRuulwdN5+8bI8Or/zxtJ4tKcwLvxST3gVSwUhH0cn+leHVWUCSiJiDg2bVvoFScqhvCdnO1QIS0UhfIJRgPoP42SYazTC52tA/pB3o1Ku8/Pnj7bQ9ev7daqL26Qlw0AAAAA9Cb3LgAAA0qiBQBn8bkA0DmOsfSnARtuDgAAQFVlA5eqhOccLQhRG7RQkbID7SMipof2bJx49OH2FdMDNhuM9mP/NH+GT98d8dIeD0cru582mhHLjd7o6FzO2Td2DJ/5e9/F2fOMT7a/nn42XzCo/kRNg9HKflac2KbwLKqr+vm/XQE0ecemiPKBfQD0jqJAzPUEo0FreVeiucFoix0rpfZaXeMP8rIBAAAAALqhN+4tAgAAAKAT9A0B9SEYDQAAgEIrJfOijlUIzzkyld9BNmghNkUBK+eaygpGGz3UvmJ6QG4wWosejsddmsSPPi2//eUfTuOWB3u347ZZIddtriAEq07yjj0j69b1lRdlz1MlqJGIheX8troGo5UNoBq0z5ReVrQdZtmuAJqibW90ImJxuXc/SwDYqOw5R6+cY8N2yvsh8LxgtJkBDv9qdUY565gDAAAAAAAA9DX34QH0J8d3AKAawWgAAAAUyguiOtepuYjGSrmZj0zlt91/PGJibnA6uxsVAq1mMoLR0ofuaWM19ZcXADaUtH7sy360uBvk/3yud7e7svtpRO+ENuS9p2Tdur50T/aKr2uYV10tFAR+nJit336RpmkslQyVPDGzOj/1t1gyeGbNtgWjtdj2nvm6pm0OoI+UDbKerxjwCYMoNxhtZ/Z13ewAB6O1Cj8f5GUDAAAAAPXle2IAAAAA+oDxEECNCEYDAACgUNnApTRdDUcr4+h0flujGfHRO3q/A+3mB9L4vtesxEXPX4nH/upKvOBdzZhf2vi+qgSjTQ1vDEaLQQtGy9k0ygSjPeHy4vbXfbp3t7uVCttR7wSjZa+P9ev6kt3Zjz0+07vrstvSNI35gm3ieA1D5laa5b9nWWz0zjY/6PKC0XYMZ0+fXtie/bxVQM5H74j4wK3dqQWAzisbxup8A1rLO3u78Pzs6bMDvF+1OtMtuoYDAAAAAGrIYFIAYGA5DwJgHdfHAJ3jGEufEowGAABAobLBaBERJ2fLzXd0qrj9jz+eRtrDnTEHD6fxLb/XjE/fHTGzGPHwqYjXfiKN//62je+pVcDKeieGH71x4vj9m66zF20lGG3X+Ul89SX57csrEbOLvbndVdlPeyW0Ie8QsH5dX5oTjHaihmFeddVYKd5+6hiMlheglcf20BsWl7OnX5aRCRoRMb3QuVqKLJXY/l72wQpplQDUWpnjfoSQIigj7xpvz87s6ZPzEStVLnb7SKu3PZcRvA8AAAAAAADQP3wnCgCwbXp4TCfQfwSjAQAAUKjKGNTZxXLzveeLxU/6hfsjvuFlzbjnSG91pDWbabzovc148kuyA1HefmMah46e/Z4aFYLRxkeu3Dhx4likjYopQT1sK8FoERH/7puKZ/ziAxULqol+DEYrs67zgtHqGOZVV/M5YVRr6hgqVjagZM3hFmGc1ENe4F3efl7nYLTbR6OnA14BOKPseYeQIti8fRdnT19pRhyb7m4tddFskbPbK9f1AAAAADBYBuS7At+FAwAAsGmuKQGAagSjAQAAUKjVYMz1ZlsMzEzTNK6+sdwT3jUe8cTfasZd473T8f3mz6bxmmuL6/3ArecEo1VYvuMj+zZOTNOIU0fKP0mPW8lZXkMlezhe9K+SeHLGYlzzI39aYYXUyEAFo61b15dcmD2PYLTyFloEo00tRCw16nUcXqoQKBkR8amD9aqfs93+cBpv+kwzRiey23OD0UqGsbbbcsntr46hggBUV/a8o1XYLJB/W+Nj9uY/ZiznHLHftbqC6ZXregAAAAAAAGDQuX8TgPV8LkBP6FIwftHLyObfDAuN/iQYDQAAgEJVApdmC0JK5pfS+I9/2YyfflO1Tpavf2kz/uLTvRFW9dbPtX5vnzpw9jxlA1YiIsaygtEiIo6Pl3+SHpcblpWUe/z+vUnc8Ov53SEzixGLy73XEdiXwWh5IXjr1vWlu7NX/Km5+oV51VWrYLSIiJOzna+jiqVGtfk/c49toa5e/uFmPO13mvHf3pq/ji7L2c+n5jtVVbGyATljk52tA4DuKHu91ivn2LCd8m5UumxPEiM5l+l54bn9rtU1vmMOAAAAAPSaXrtvodfqBQAAAKB99A0B9SEYDQAAgEJVApee8+ZmfOKu7Ae8+6Y0/vbmzdXwC1enGwLF6iZN07h9tPV8dx0++9+NSsFo+7MbTghGKxuMFhGxZ2cSP/zU/PavHKtWU6ekaRp/c0Mznv2mZvyv9zbjy2P5+0BeiFiWXhlAXWZd77s4//GHarIe626+RDDa8ZnO11HFYsVgtGPTnamDrbnlwTR++0OtP9sv2Z09fXqhzQWVVDZ0cfRUhwsBoCvKBrKWOacCsg0P5V/bjU3Uuy+oU1r92qVjDgAAAAAAANDXWn1pCkBvcnwHACoSjAYAAEChlQqBS8dnIn7wj5vx5s9sfNB7v7i1Duxn/FEzvnB/fTvBj0xFTM63nu/+ExELy2feR6PC8h0b2ZfdcOJw9vQ+lBcAViUYLSLil34gv0vkrprkzD3/HWk8581pvP3GNP7w2jS+/RXNuOHe7H2gSoDh7FJ996P1ygSjfc1l+ev+wODsFluy0IPBaGUDStZML3amDrbmr69PSx27LtuTPX1+OWJqvvvHs+WSgaajAxriAdBvyp539Er4MGyXtMVNjVc9Knv6+GQHiukBrc6THXMAAAAAoIYM7gYAAACgH+jnAmpEMBoAAACFqgQuRaz2fb3kg2k0Vs5+4Edu33otL3xXhRSxNpiaT+M3P9CMr/mNlfi231vJDHxbUzaEKU0j7j5y5t9lA1YiImaG98T00O6Nz3m8JkleXVAmLKuM731S/gPeVLCeu+Whk2n8xafPfrMzixH//JXNzAHlVfbT6YWtVtcdee8pWbfqzt+RxD+5LHu+A4d1xJcxXyIY7UTdgtEqHDcjemebHzR/dV25ffQJV+S33fZwm4qpoGxAztiAhngA9Juy59nzQoqgUNF9UklEXLaxqyMiIiZKBND3I8FoAAAAANBnDCYFAAaV8yAAzuJzAaBjnHvTpwSjAQAAUKhqMFpExNhExF0Vs7re+d9bJ1tdf2g1MKpbnv+ONH7/79O473jETQ9E/Ne3pvHnn8oOzbrvePm6Hjp55u9zA+RaGRvZt3HiCcFow5vo4fj335Q9/Zo7I+45sr2dgdd+Of/1//AfBjsY7dwQvCfmhCbde6y99fSrxRLBlfGueQAAIABJREFUaMdn6tU5Xqbm9aYGNEyhzmYX01gouR6fcEUSe3dlt938YPe3zbLBfPc5BgH0hbLn2UKKoFjRrpQkEXt3ZfcJTc51pp66a3V/kmMOAAAAAAAA0N/qdd8qAMBAEbAF1IhgNAAAAAptJhgtIuKuw2ceOL9U/CRXXhTxY9+UxA8+pfXzfvWvNePoVOc72G57KI233bDxdf7i09mvPTpR/rkn5888RyM7Zy3X6Mj+jROPC0Y7NyyrjCfty3/QE3+rGc3Nbvxt8PEv57f9xvvSSM/pZK5S6lSvBKPl7BvnruvHXpK9HscndMSXUWbbOTHb+TqqKBtMtWZmMTbsM2yvsQqfmRfsiHj6Y7PbbnmwPfVUsVxy+zu4zQGbALRH2VOI+YrBrcAZSRJx0QXZbRNzg3lO1eo6bV4wGgAAAACwbQaz3xYAAIB2cE0JAFQjGA0AAIBCeeFErdy1Lqvr5R8p7rz+058cih0jSfzJfxqKy/e0fu6vf+mZ0Kob703j6hub8fn72ttB/r8/nv18d41HzC1ubKsS8jI5f+bvsgEra8ZH9m2ceOJwtSfpYbnBaJvo4XjylcXtb7hu+7502b0zv63RjJheF26WpmmlH+OY7pFgtLy3dG4w2lV7s+erElY4yMoEox2f6XwdVSw1qs3fTCPmBAfUSpXPzPNHIv7pY7MDEG9+oPvH6bLb38HDAvmA7piYW70e+sAtaZyYcdxpt7JLVEgRFCs6LUoiYu+u7LaJ+ezp/a7VaWSrHyAAAAAAALaDfjsAAAAA+kCXxkEUvYqeNmDNyHYXAAAAQL2VCc3JcveRM39/+Lb8J7npxUPx9K9eDTx54pVJ3PN7Q/Etv9uMe47mP/eJ2Yin/24zvn5/Eu/4/Npzp/Gz35nEG56dRJJkB6hUce2d+TWfmI3Ydf7Z08Ymyi+o9QN7GxWD58aygtHG7o200YhkpP8v8/OC+s4NyyrjyfuSKOoqffsNafzcd1d/3naYaRFednI24qILVv+u2t883SMDy8uG4OUFo41NtreeflVm+znR48FoEauBgBee33o+umNssvyB6/wdEU9/bHbbXYcjlhppnDey9c/9spZKBpqemos4Nh1x+UWdrQcYbDfdn8Yz/qh5Ovg2jf17Iz74vDPXV2xd2evhOSFFUKgwGC2J2HtBdtvEXGfqqbtWxx7BzwAAAADQa3yPAAAMKudBAKzjR6cBOsgxlv401HoWAAAABtlmg9EeOnnmgQsFITbnDtrfszOJO142FM/65uLB/F96ONaFoq1602fSGH5uM37qr5rxl//YjJXNFh8RiwU1H88ICRqbKP/ck+uCqZZLBqysGd+REYw2Mxlx+/XVnmgL0mYz0k/9bTRf+dxovv43Iz1xuGuvnRuWtYnsh6fsizivIEvus4ci0m364qVVaNCpdYPDq27m0wu90dFZNgRv/97slX9sOmJxuTfe63Yqs/1MztdrORYdn/NMtQgbpLtGK3xmnj8S8dSrsvfzlWbE4S6HIK5UCDQ9eKT1PABb8ew3rYWirRqbiPif76yYvEyhspcD0841oFCrXWnvruzpEz0S7N1ugtEAAAAAgG1loDoAsO2cjwD0rqLBPY7v0Bvsq0B9CEYDAACg0GazxdaHnkzmDGT9hv3Z03eMJPGu5w7FXz57E2lXsRqY9j/ensazXt/cdLBVUfBJVjDagyfLP/f65dGoGIw2dt5jMqen13+k2hNtQfrq/xHpS/6/iI+8JeLtfxDpzzw90gcOdOW12xmMtuv8JH7+e4of+MHbqj9vO7TanrYUjLZYvZ7tUHZdX7U3/zkOT7Wvnn5VZvuZqlkYwdJKdtEjBT2dwkrqpUqY6Pkjxfv5eJeD0aoccw8c9oUg0DljE2lmAONnD0UcOur40y5lj/sTc63ngUFW1DWTJBF7L8i+Nh/UfatVV5ZgNAAAAACoI9/PAAAAANAHhOYDNSIYDQAAgEJ5A8Ff8cwk/sPT8x83NhGPhJLlBaP9/jOLL0v/278cim99XIkic3zg1ojh5zbj6168Ei96bzMWlst1zDVW0pgqCNE5MXP285yaTePodPm61ocMNQoC2LJ8cs8zshs+86FNh8BVkX78XauBaOtNnoj0Hf+7468d0d5gtIiIVz4ziZ/9zvwH/9hfNOM11zajudmEwE2YW0xbB6PNnvm7KMQvS91CrvKUXdf7CwKTRiuELw2qUsFoNQsVy9vm9+7Kf0yvbPeDYrzCvrlzx+q63bkju32s28FoFY65Bw93rg6AovOcG+5zQ0K7lL3EmnCuAYWKdqUk8s/lpxaiq9fjddHqLQtGAwAAAAAAAHrD4H3fC0ARnwsAneMYS38SjAYAAEChvACaS3dHvPvnhuOzv5p9abnYiDgxE7GwnMZSI/s59l7Q+vWvfcHWL10PHYt4zbVp/ItXNuPOsTS+9HAaXx5Lo7GS3eFzcjZz8iOOz5z974NHqtUzOXfmdZdXqj32ZLonjg1furHh4UMRDx6s9mQlpdOnIr371khv+0ykv/2c7Jk+97GOvPa5csOyNrmZnDeSxBufMxSX7cmf50XvTePlH+le5+A9R1sHMJxatw1VHSM+XbOQqzxlg9EuviBi13nZ844JRmupF4PR8mo+byRi9/nZbZ+/Xwd/nYxOlF8fO4YjkiSJ/Rdnt49VeK52qPJqD7UIuQTYigtyAiMjIu6peH1CvrLn2hNzna0D+lmS5AejpWnrPpp+1KpPYH65O3UAAAAAAO3ingUAAAAAekTZXxUG6ALBaAAAABRqFU702EfnP3Z0ImJyPr/94hLBaBfvSmL8Ne25fL3loYinvqwZ3/Q7zfiGlzXj0hc2422f25j8dnS6+HmOnROM9qWHq3X4TaxbJo2KwWgREa999POyG268tvqTFUhnp6L50p+O9IeujPRn/1mkv/CM/JlPHo50uvMpVM2coL5zw7Kq+p4nFD/Bb38oja8c7U7H7oHDrV/n1LrgharBaHULucqT976S5Nx/J7F/b/a8VcKXBlXePrXeVMFxfDvk1TycRDztMdltH73dtlAnZUMLLzx/dR+PiNiXE4w2PtmmokqqcsydXrDdAZ1TdDz6ytHu1dHvyt7bcWouInUjCOQq2j2SiLjyovz2sS6f79VBq3POuaXu1AEAAAAAsJHvQwCALnAPBkB/cnwHACoSjAYAAEChVkFUV1yUH0rVKhht765yNVxxURK3/Fb7L2GnFiJ+5q/T+C9vacavva8ZP/1XzXjFR5vxjb9dnBT0wImz//33FQN3jq0LXmvkvNSjVk7mPv59l/5k5vT03jsr1ZEnTdNIb70u0n99WcQn31P+gQ/e3ZbXL9IqqG+zXvnjrZ/gm3+3RIJUG5y7fWU5OXvm7zLBVuv1SmhDlRC8q3KC0cqGLw2yMiFPdQvTyz0ODEX826dl78u3j/bGdt8pU/NpvOemND54axonZ7d3OaRpWjrc4sLzzvy9f2/2uu32fl7lmDtds30H6C9Fn+GHpwb3M6/dygZirjQjZhc7Wwv0ssJgtKS4b2kQr+sEowEAAABADxrgexIAAADgDNfH0PP0cwE1IhgNAACAQnmDMYdPX1GODCdx5cXZ8zx8Ki0Mebr4gvJ1PO2rkrjrdzpzGfuW69N49cfSuPrzabz4/a077w4ePjNPmqbx6YPZ8331JdnTRyfOBPQsr2TP800Lt+W/fjw2Dg9fsbHhgZxCKkiXlyL9tWdG+vzvr/7gBw5s+fVb6VQw2uMvTeI3fqj4SaYXIg6Md75zd7TEoO9Tc2f+LhvWsGZhuTdCG6qs67oEJvWiMpvPwnLEUqM+X2ysFITmffs/yd4WTs1FHJ/pYFE1dsuDaTz+15vxE29oxr//i9Xwz5sf2L71eXJ2dZsqY/f5Z/7elxOAOD7Z3fdS5Zhbt1BBoL/kfR5GnB2iy9ZU+ZSZKAgFh0HXal8aGU7iiouy20Yn6nMt0i2t7iubWxrs4GcAAAAA6Dn68+gE2xUAvcDnFQBn8bkAnFF0qug0chMsNPqUYDQAAAAKlQknekxOWMnoRMSL3589Yj9Jzg48KeOJVyZxzQuG4pILqz2u3Q4eOTMAdXYxP/jkZ78zO6Bnbili6vSg+UZOoMGOtBF//+C/za1hdMf+jRMfOFB5YOyN96bxvKub8aI3jMdtr35NpN+3J+L6v6/0HGvSB7cezNZKUSDSVv3WDyfxU/+s+Ime8tJmfOVotWX8mXvS+J/vbMYvvrMZ193T+rFjJQZ9T2whGC0i4lgPBETlva2hjN6s/TnHoLffmBos3kKzIFRlvakaBX0UfS496cr8xx043Jl66u5n3tw8K0xxbCLiF99ZcsV3wN1Hys974brzhP05Iazjk1urp6oqx9xpwWhABxUdj9Yf99masudKEWefowNnK7osS05fhudd1w1i4HWZc86yYcMAAAAAANW51wYA2G7ORwAAto1xWECNCEYDAACgUJlgtKselT3P6ETEoWPZbRftjBjaRJrVDzwliftfORSf/pWh+MDPD8UdLxuKpdcNxe0vW/33Hz6rDQlZLUzMRRybXv37eEHA1Lc/Pr+W0dMDexsr2e0jaSO+f/aTuY8/NnzpxonTpyLuvyu/oHO88bpmfMcrm/G6T6fxmpsuj2+/+3/Eh3f/m9KP3+CBA5t/bEm522MbejjO35HEW/9LEh95fvGTffPvNuOWB8t18r79xmZ8z2ua8aefTOPPPpnG976mGW/9XHG6wmiJQd+nZs+8/maC0Y5OVX9Mt+WFUGQdNq7KGUAfEfGiv9UhX6Ts9pMXALkd8moeHoq4bE/E3l3Z7YeODd62MD6Rxh1jG6dffyjivuPbszwOHin/uuv39305wWjdDsoQjAbURVFg16nZ7tXR76p8Wp603CFX0b60dsqXd1031uUg3Dooc1/ZvGA0AAAAAKiZwbsnAQAAACoRtgQAVCQYDQAAgEJlgqj2780OABs7lUaSkw02Ob/5mi48P4nvekISP/pNSTxlfxIjw0l8/f7Vf7/wB4big78wFE+8YvPPX8bBI6v/LwpGe+pj8tvWglyW84LRohFDkcbljSOZ7cd3XJb9wM98OP9F1xk9lcZz33b2yl0c2hkvveylm79Nr0Io22blB/W1JxAvSZL4N09N4geenD/P9MJqONqx6eIl1VhJ4zfel55VczONePH702isZD82TdO44d7WdZ6aO/s5qzpWsN3WRZlQxjX7C4LR/vDaNC594Uo86/UrcefY2U96dCqN513djK9/6Up856tW4mN3DN4Xbc2SXy72QjDaULK6D39VTljnIIbEPHgyv+2Ge7dnez9wuPy8jXWhP3nnGsdnIpYa3XsvlYLRFjtXB0DO6WRErH5up24gaosqi3F80jKHPEX70trl/L6CvqVBU+acc26p83UAAAAAAAAAAEA1RWN7Bu8+IOhN9tXeZL3RnwSjAQAAUKjZzJ6+PojqqpxQoodOnR3gtN6L/nV7gqyy/Mg3JnHXy4ej+YbhuOHXO3Ppe/DwamdRXjDa8FDEZbsjLtuT3X7fidXHN3KW7450OSIiLmscz2w/9phvzZyeHrw5p+KzfdWvZr/wbTu/McZH9mU/KEkiedutkfzaX8Z8sjPuPO/JMZ/sPNP+8KFIx+4r9fqbVSUsayv+/KdabzdX/HIzphfyOw3vGl/dB841OhFx51j2Y/7rW8t1Qp5cF/CUt48WaRXqVgdV1vVVOQPo15ycjfjbmyO+9zXNODGz+sTNZho/9hfNeN2n07hrPOL6QxE/9Npm/OPB+i+bdiob8jS1hTDLdmu1bTxqV3Z73udRPytavw8VhKZ10v3ZH2uZVs4KRsuf74ETm6+nqirH3KVGxOLyYB1TgO5pdTzaShA1Z5QNkY1YPc8Hqlu7msvrWxqb7FoptSEYDQAAAAD6je+N6QTbFQC9wOcVAAAAmycYDQAAgEJlwonyBq/eORaRN478J76lc8Fo633b45P44m8OxX94+tnT9+yMeNpjih/7A0/Obzt4ZPX/eQFTl+6OGBpK4msuy378Pacf31jJbh9JG6vPs5KdIHP8im/IfuCDB7Onr/PnnypOUTh43tdtnPjD/38k7zoQjcc8KX5u9JlxyRPG42lf88V41BOPxIsu/71oxPDqfJ/9cMvX34r8oL72vs7XXp7EcIlek4t/sRlvvC67qDvH8r/MvyOjrbGSxntuKncDwPqAp6IB0xeenz392HSpl9lWVYLRigKT1js+E/Hqa1af+IXvTuNz926c53v/sBkLAxRkVDoYbaGzdVSx0uI4sDcnGG1iAANiZhfz2+7vYpjYeuOT5fev9eGhj7skIsk51q99JndD1aPDdI32HaC/tPoM/+X3pJFWCPUiW5VFKBgN8hXtS2vnePsvzm4fzQgc73dljj2C0QAAAACAbeH7JwCgK5xzAPQnx3foCfp/gBoRjAYAAEChVgE0ERFXPap6KtWluzdZ0Cb808cm8e6fG47mG878N/na4bjlJcMx9dqh+Pr9Z8//378rieYbhuOaFw7Hs789+709fHL1/8dnsl9z7f193eXZj7/nyGon4XJeMFqsBaNlJ9ccP39/5vS478uRNhrZbRExvZDG899R3EF593lPOOvfyRuvj6Ffe30k+x4Xv/ORNN5404WxNLSauNVIdsQfXfLC2Pnk6fibi34yZq77h8Ln3qoqYVlbVfYpn/u2NF7+4WYsNc4u7tCx/Mfcm9F26FjETEGI0XoT8xHN0wujKBTjij3Z04/lbLd1kve+soKR8gbQZ/mDa9I4MpXGn34yf8G96G8HpxM/L2zwXFPz9VkmuceB0z2de3dl770Tsx0qqMaKwhLuPrI963R8svy868NDLzgvia9+dPZ8Bw53772UDRNcM13yuA5QVavj0V9/No3339KdWvpZleP+uGA0yFW0Kz0SjLY3+zz+yPRqkPggKXPs2UowWrOZxs0PpPH2G5tx77HBWrYAAAAA0Dn62gAAAADoA4LRgBoRjAYAAEChMkFUV+2t/ryXXLi5etpt984kbv7NoXjzf07iFc9M4toXDMXrf/rM5fL+nPc2Nrm6YI5OZ7c/Eox2RXb7PUdX/58XPLcjXQ03u2zleGb7fSuXZT8wIuJtr8xtesefXZv/uNMOnvd1Z/7xr34qkid98yP//Jsb8js3//NVb4qLF94fX7izQupNRXnb43AHeji++wmt51nz0g+m8V2vbsaJmTMFrq3jLDfdv/GN3DVe/vXSNGJqYfXvwmC0i7KnH8/ZbuskL7ArKwTv/B1J7Dqv/HO/4qPFnfTvuDEdmIH3Zd/l5HxHy6gkb9sYPr1t7N2V3T5Ro3C3bpldyn/PBw53sZDT0jSNsQqhMY1z1vUTr8ye72AX30vZMME1ddp3gP6Sdx2x3is/WvGgxQZVzh5GJwbvXAPKKnOfVF7fUppWC9ftB2WOJnObDOBdaqTxk29M41t+rxnPflMaX/vips8LAAAAAIBeZJAyAD3B5xUA67iOAeggx1j6k2A0AAAACuUNuF8fRFU1GG3XeRG7zs9IN9omO0aS+M//fCh+9V8Pxfc/5ey69l2c/Zi1QbmHjmZ3Gl150erzPO6S7MefmF39/7mhL2tGTgejPXb5wcz260YvjMkdj85sS9/88kgXNyaxpIfuiA/e3Mh+wXVe9+jnrv7xHf8mkl/6k0emT86l8cCJlg+P//aW5VgpSuvagjJBfe3ynO+o9qSfvz/isl9qPhJ6dmw6fxn8w10Rc4tntx84XG2ZnZpb/f9mgtGKaquLquv6JT9Sfn299hPF7//EbMT1h0o/XU8ru6uuBfHVQe62cfpzae8F2e2nZjtTT53NFoQljE1ETHU5LG56IWJuqfz8556DfO3l2fv56KnuvY+qH2/3HutMHQBljkc3PRAxJqxrS6oEYg7iuQaUVXQkWjvD+6rsLo6IKA4e70dljj3zy5t77r/+bBrv+eLZa+Q33p/GrQ/5vAAAAACAzumx/jcD1fuD9QgAAABsRpf6FIpeRq8GsEYwGgAAAIVyg7uGz/y9e2cSF+cE0WS5dPfWauqmfff+Y+b08Yk00jSNA4ezH/fEK1f/f/HE/Zntk9OryTDLjeyuupFYDTB7xuynMtuXV5L4/FN+JqfqiLjpkxsmNT/05rj+gn+W/5i1507Oi9c+//5IXvX+SHbteaTOx/16uVSAL00+Km64t9SslbUKRGqnH396sqlt9dt+vxnvvyWNibn8eRaWI24+J/PuYM62lOfk6eCFvPDCiIjLL8oOETo2U+21tkPVdf3c72pvOt4Hbh2MbvSyYR9TG7MWt03eNr8WmveoC7PbJ2r0HrpltkUI2aEuh3bdMVZt/m993Nn/zgtiHZvcVDmbUjUYrWroJUBZZY9HH7ndcWgrqiy9UwXn/zDoim5gSk6fx+/dlcRle7Lnee7bKqQU9oEyx/jZxc0d3//8U9mP+5sbfF4A0H+SJBlOkuSJSZL8WJIkz0uS5DeSJPnlJEn+S5Ik350kSU5PYm9IkuTx697bryZJ8pzT72vHdtcGAAAAALAlAj4B+pTjOwBQjWA0AAAACuUF0Iycc0WZF1aSpVeC0dLlpbjymtdmts0uJXFquhF3H81+7JNOB6Nd9Km3ZrYvpOfFwvX/kBs8tyNdjoiIpy/cEpc1sl/k5sf/WH7x99911j/Tr3wpjnzgvTEx/Kj8x6zz65++PGYWV/+eXUxj1y80Y7JCqNAvvfvsN3btnWl832tWYv+vrMR3vXol3n7j5gY154U4DbU3EysiInadn8T//V9D8R3/pPpjf/x1zfhci3C4c8Ny3vmFal/ynDodjFY0YPqKi7KnH52u9FLbIu+ehrx1ffGuJH7337dvQ/jjj6fRrJqA9P/Yu+/wKKr9DeDvmU2DkEAgkFAEpEvRaxdFRcEuqFy71+5Pr+1i16tXxYINe+/itVwLKmJBEQuCqKACSgu9hkAI6SFt5/v7YwnZ7M6ZndnsbjbJ+3keHjIzZ86cnZ2+e95thpy+xJLK6LbDDW1oXl2ggiaoszWGlVSECEbLj/GxYPpid/vUdaMbXmx001xrbC4Mt0XuuT0srNganXYQEdmF4/r78s+Wfz0TTW6O+60xhJUoEvzv4uqepQRanQ/kl7ae45mTV+rkGc3c1YLjnvA9i8m60Yv97vNqw4of/6b1rF8iImrZlFI9lVLXKaU+B7ADwHIAHwN4FsBEAI8CeA3ADwCKlVLTlVInhbksaeS/3mEu93Sl1FwAa/xe20MA3tz1uvKUUs8rpTLDqZ+IiIiIiMLE8A4iIiIiIiIiImoR+JyLiOIHg9GIiIiIiIhIyzRF2xG8NQSjYfVf6LZjiXbyrIdfQnWt9bSB2QoigvZLvtPOX3T7xaiptV7BHvFVrAAMrlpmWeaOnAMg8D1uLDXaoVIl754m63Pq/96yDnLxgTi7x1vatgSqqgXe+kWwNFcwbILpOHihzvx1vg64UlGK7xaU4finTPywAsgrAeasAs5/TTB5rq/SbSWCTYXOHpqGCkSKtEFdFX66zYPK5w2MHxXZhSzPq/97xVZBlWZb0qkLedKFxQFAtiYYLdZhSOEI570++8DIvkenPR9egF9z4jTso7QZBKN5dp2XOqZabwfbSqA95rZU5VX207eXxXZ9LN5kvbweGUB6SsNxh/YFRvRrOK57B+v3tqAcqKqJzWtxG4y2vqB1bXNEFDtOj0e/b3Bf945ywbItgjX5AmnlnXjcvPzyqtZ3rUHklN2+pPwu8QZk6e/pPlvUevYvu/v8OqGCnxduFBw5ycQ3y3zPYvJLgYUbI9M+IiKieKWUehfAegBPADgJgOYJ+W4eAMcD+Fwp9ZlSKivKTWwUpVQ7pdT/AHwIYLhN0Y4ArgSwWCl1XEwaR0RERERE9lr55y0ULdyuiIioGeB1EBERNcDzAhFR1PDam1ooBqMRERERERGRll0YlicwGC3DeSBRp3ZRSrGKtPU56FGzGQlSYzl52kp9wtuALAAFW9C+PFdbpthIR81q69CzBKlPyRpUvUJbx9OHTka/vsuQMXAbevdbgeczrvBNWP0XAEBEsPa8YzC89yzMaTtCW4+Va94VDJ1gYl2Bq9l2G/GwiaoTe2D0C20sp//zbcH+93mRfZOJnrea6He7F7+ssX8IF+tgtDpJCQqPn6nwzDkKyQmRqTMnr/7FPPOd+4ePhRW+eexCMbLSrVdMRTVQURXfDzzDea97dYpsGz77EyiuiO/11FhOQ1VKdsbPegi1bfTWbAe1JrA2zONZc7Ruu+CBL+3ft+1lMWrMLpuLrMdfOkLhh5sNXHyYwuH9gdtPVPhqvIEET8MdvptNCOuHv8coGM1lXmJBjNcxEbUeTo9HmwqBskpnx8jNhYKRk7zIvN7EkLtN9LvDRPZNJj6K0TE2HrkNxCzeGZ12EDV3druSfzDayXvrb/i+Wtx6jkVOXmlRiOPNxC/ch9wTERG1AAM04zcD+AHA+wA+ArAAQOCZ8mQAPyqlsqPWukZQSnnga//ZAZPyAcyALyztDzS8lMgC8KlSyt2HQ0RERERERNRCtJ7n6kRE1BLxPEZE1CIxtIeoeeC+SkRxJEJdeYmIiIiIiKglqrXpQJngaThsF1YSqJM+TyyuyIYcJKIW/apXY3nyoKDpn6adbDlfz45AarKCLM5Be7NEW3+xpz1qt+cBqYODpiWiPhhtSNVSbR03Fp4JJPn+3p7QGf/KfgKDqpbj6BWzIF+8CdM0cVzPL7A6qa+2jmhK7b9dO626FliwsX54zXZg9OMmNjxsoGNqcGdosXmwGu1gNABQSuHqoxSuPgq44i0Tr8xu3IPe5Xl+f2/R19W7EyzD6QorfP/bB6Ppp+WXAb2SQzSyCYUTjOYxFIZ2Axbr8whd+2YZcPr+kasv3jgORquMbjvc0HXur9s2+mf5whWsDhnLt+wKrmzhRAQnPRM6BSHh++xxAAAgAElEQVTWwWi5xdbju3cA/raHwmsX2h/M98jwBbNabQP3fS4472CBUtE9Ibj9jK+gPDrtICJyE9h1w4eC/XrazyACXP1ucJn8UuCMl0wsusvAsB7NJOA6gtwe94t2Aplp0WkLUXPmdF86aZh+2sptkWlLc+DkGF9UoZ9WWSOYvtjdMmPxXIWIiCjGFgB4HcB0EVkdOFEp1R3AXQAu9xs9AMCHSqkjxO4DCWu/Iji0LJRNLso+BOBEv+EaADcAeFlEqutGKqUGA3gVwPBdo5IBTFVKDRORLS7bR0RERERErrSWDqOt5XUSERERERERERERUVNjMBoRERERERFp6cJnACDBaDjc3UUwWmYzCUbD+hwAwMDqFZbBaEWeDMvZBrYrAZABufs8pJslUGJClBFUrthIRw0SLetIkPpgtHElU/Gv7CccN/uBzFtx9IZZkIcux+2d78XqzKYJRQNg+brtVFQDnywQXDoiuEeuXcdgw91iGu2l8w38fT/BN8sEj80I7wt/a7f7OiunJCptWBAA9O1sHYy2Y1fYTtjBaKVAr07O2toUtMFoId7rsw9S+M/UyH0J87vlgtP3b7k9xM3Q2VkAgJKd0W2HG6FC81ISFfbs5AtbDJSzVQC03Pezzh1TBcscdHOMZTCa1xTkaYPRnL0n7VIURu8FfL0keNrKbcBv64EDe4ffRid0R5fMdtbrc0e5L6gu2oFtRNT62N2rBXq1kYG+ADD5Z8FjZ7S+Y5mbADrAPqiIqDWz25X8jywJHl9Y7qVvBs9hd9/c0ji5T7M73sxf53u+4oYnxs9ViIiIokQAfAFggoj8ZltQZDOAK5RSiwA85zdpBICzALznctmVIrLO5TyOKKX6ABgfMPoMEfk0sKyILFVKjQLwLerD0ToBuBvAP6PRPiIiIiIiImoqDKkjIiIiIqLmhvcxRM2C698Ro/jA941aJn69lYiIiIiIiLRq7YLRPA2HnYaaAM0oGG2DLxhtcNUyV7P1Xv89ZPVioLgABgRpZqlluRJPe9Qq68zyRKnZ/Xe2d6ur5f+QOhIFno5YnjQAkzJvCln+2XPDDzi4vNM8vLP5grDnt7I8z3q8XcdgowkyGo4dojDpdAPmyx7ceKz7BpgCrNrm+3uLpoP3xNMUMtpaTyusqK9Hp2OqvnNzvvVmGTd073eoNX3dKIVx+0auHb+uadkPhp2+uuJmEIzmv6336WxdZmtJ5NsTb0p2Ch6a7uydLYhhMNrWEv17181FuOqEMfpH2n9uiv7+qjs2dU6zHl9V6z6UgojICbeBXY01e0XLvibScfvdDgajEVmz25cC82P3yLC+68svBapqWsexyMmrLKrQl1qS6349+T9XWbhRcOenJm79yMTc1a1jnRMRUYtxhoicHCoUzZ+IPA/go4DR50e2WY12N9DgV3YmW4Wi1RGRnQAuAuD/VOrSXQFrRERERETUJJrbc7bm1l6yxE7MREQUF3g+IiIiImp2YvRMwW4pfKxBRHUYjEZERERERERatV79tISAO8ruGc7rbQ7BaOL1AptWAQCOLv/e1bzpO1ZDJk/cPdzetE7iKTQ6oEYlWk5LQG2D4TOHukslmtvmEFyV/XTIcvNuN/CPg92Her1xkcK6Bw28cF0PHLRzvuv57eQWWY/32jzUbIpgNH+TTjdw0aHuGzFnlWBntWgDFIb3UeiQal1vYblvhdgFxiUY+v0tvyy+nxLrwj5CvddtkxU+/KeBnPsMfHiFgcP6OlveUQOtxy/YWL+uWyKnoSolldFthxu6bd5/28hsZ72h7CiPQoPizL732RwUAoQTmBAu3bEdcBeMdnAfhcFdraflaII1I0m3z3S2ubaJZQAdEbUeZow/8f9tPVAQ59eP0eD2FRfFUZgsUTyxDUYLGLZ7vpTXCoKOAWfHeLsgRl3gvJ26H0CY/pfgkAdNTPxCMOlrwRGPmHj7F+f3GERERE1JRNaFOetzAcNHNbIpEaOUagPg9IDRD4eaT0RWAJjqNyoBwLkRbBoRERERERERERFRFLW+76gQEbUOPL4TERGROwxGIyIiIiIiIq1am36PnoA7yh4ugtG6d2jiFCsn8tYBNdUAgBEVc5FsOk8FSjPLgB8+3j3cuXa79SISslBupFpOSzUb9nDtlObuFv60Pabgx9QjbMu8f7mBA3orpLdRePzM0O+JUsBhfYFl9xq48FADPTspqKw90O3Y41y1LZTNhdYfdtgFgDV1MBoAvPgPhRuPVUhLcT7PtIWCLcX66V3b64PN6oJ27IKtDKUP69lW6qyNTUUbjObgzVZKoX+Wwt/3V7jQYWDdtUfr97GRj7bcTuB2+5W/kjgK+dBvG/V/d7Q+tLbYQJf1BYJzXzFhXO7FWutTjqWlW4A1+bFZJ7pgtEQP0Enzfukc0Nt6v87Ji/5r0W1/dqGvO2xCK5qaiOD9+SZGPOzFgRO9eGi6icoad+vx7V9MHPWob/67p5motUsyJaKIcRpuGklPfdv69m+367msqvWtI6LGUgGXdt3a68vahe22JE6yLwttrjHDuS727HofbvvYRLVfVr8pwM1TBGZTnHiIiIhiZ0HAcBullIso/6g6DkBbv+GfRWS5w3nfCBgeF5kmERERERGRpRj/qA0REREREREREVF08DkXEcWPhKZuABEREREREcUvu2C0hIAMoc7tfOEmNd7Q9Q7Kbly7YmJ9zu4/E1GLftWrsSRliKNZ070lDYaza/Msy+UlZKPESLeuw2xYR6f2kbuFVxBUveBBgqe+9/H4UQpf/iWYuSy4/ONnKpxzkEK7ZCA1OTiMJuXqe9F5fD7yEzpHpH2bNR2dbQPA4iD6PSlBYdLpCg+PE/y4Ejj6sdCJU9/lAH9t1k+3C0bb7jQYLc16Wn5zDUZzGYJ34jCFUA/lrxqpsH8v/fS/NgM/rxYM7xsHCXwR5rRv+84aoKZWkJjQ9OvAq9m1/LeNTpr9Zkd55NvT1IorBIc8aGJrSeiyVn5bL+jTOfrv6+Yi642tWwdngYf+BmRZj8/Z6rZV7un2mY7tFJQSy++6by4E/rZHdNvl1M5qgaF8+0uNF/jgd8Elk+sb/ft6wep84LEzgLQUX9CknVdnm7j8rYbzr80H/ntp0x8riFo63fkwmuasbH1fdHDbh6m8KjrtIGru7HalwMuN9DZAarL1/rSuoGXelwVycp9WZBNevWyL+2V6DCCvWCyfUWwtAeauBkb0d18vERFRM1FrMS4p5q2wdnzA8A8u5p0N32ur+4BpX6VUlojE4CkaERERERERRR3D+IiIqFng+YqIiPzwPoaIKIp4jKWWicFoREREREREpGXX2T7B03DYMBS6tgc27LCvs3Ma0KldM+jEuiGnwWD/6lWOg9HSzLIGw101wWhbErJRYlinVqV7G6ZWdUpPQKQeUOWPX4EEz+AG45RS+PRqAxO/FMxcKijeCfTtDFxxpIEx+9i/XyotA8clfY23zdERad/mIusAplABYPHCMBRGDgQW3mVg4hcmlsxfjUJvW2xJ7BpUtroWeHKm9Y7WOQ1Ib6OQ2c76hTsKRjOAzmnWwWDxHoym+8zL7XvdrYPCwCz7wKRnzvFVmp4ClFRal7nzUxMzb/BYT2zGnAajAUBpFdAxDp4m6trs8QtI7JRqXaagBQajPfeDhB2KBgA51qeoiMstth7frb37ugZlWx/XVucD1bWCpCgG+JmaDTDRA+yRYX0dlLNVcBKa9kQlIpj4peCuT0Pv9K/NEbw2R3BAL+CZcwwc3Eff9qe/Da7v3XmCh/8u6Nohjk7ORC2Q7nzYJQ244kiFb5YKCsM47wmAFZrrppXb3NfX3Lm5VgKAMgajEVmy+05j4BWDUgp9Mq1DxHXHp5bGyXdAiyp813iBQbblVRLy2ZwVjwEU24Strd8hGNHE17RERERR1C9guBbA9qZoiIWhAcM/O51RRMqVUn8B2Ndv9BAAreSqioiIiIgonrBTIjUFbndERNSMMTiHiIiIqOnYXYvxOo2IYiwOujISERERERFRvKr16qclGMHjuncIHYw2KLtxbYoVWbO0wfCA6hWO500zGyZOZWuC0TYndkOpJ11Th1/KTUpb7NHROgTGjWSzEgsGv4COQ26ynN4mSeH+UxXuP9V93bdf3g9vv9io5u1WWQPMXgUcPajh+OYSjFZn7x4K751TDHl7GEwo9O63ErmJ3YLKzdJsWnX7SmY76/d+e5mvE3So9ZLZznra9rL4fhite13hvNcXHKpwxyfWFf56u7G7I/nLFyic/bJ1ue+WA1MXCNokAUcPRFBwX3PlJuyjZCfQURM4FktOto1Omu0+XoPRCsoEf24CluQK9sxU6NkR2FEOrNwmSG8DHNpXoUdG8Da3o1zwn6nO3sTT9gU+WRA8PlbBaJsLrcd36+C+roGaawmvCazJBwYF51BGjN32Nyjb+jpoeYzWsZ3HvnEWiubvt/XAGS+ZWDzBQHqb4O2vplawODd4PlOAD34XjB/VMo6TRPFKdzxqkwTcM9bAPWPDr/uGD0w8OTN4AZuLgLJKQbuU1rN/u/3+RjmD0Ygsub37HJBlHYy2splEeJRWCmatADq0AQ7sDSQnujtuOrlPq/ECFdVAanLD8eGGx20vA6b8rl+wafPjCURERC3A6QHDv4mI27NfT6XUGwAOAtANQCqAQvgC1hYA+BHAFBFxG2G6V8DwKpfzr0bDYLTBAL5zWQcRERERETkS39/DiZzW8jqJiIiIiIgo8nhPSURERO5YdGMnIiIiIiIi8qm16fbh0QSjhXJ4//jvRC/FBcD0/zYYN6JiruP5A4PRumqC0VYk9dfWke5fR3JbHDPY8eK1rvO+i0E3WIeiNdag/fpi08D7cM+2eyJS3zdLgz/waG7BaACAfF9ijAHBmLIvXM06MNv3onTBZrWmL6jKrnOyoYDOaZqmlVqPjxe6EAojjKdZFxyi0C45ePylIxQO7F2/8Zx5gIEumvUFAONeMHHCUyYG3WViaW7L+FDOVTBaZfTa4YajYLRU64PCjnLAdPOiY2BWjmDI3SZGPW7iX+8JxjxrYp97TRz1mInL3xKc/bKg3x0mJs9tuLP/kCPIvN5Z/8yNDxsYkGW9TnK2xmZ9bCm2Xk63Du4P4P0664/7OVEOy7Db/gZkWzdqRV7TbnNv/GTilinhtWFTIfDGXOt5S23Cf8IN5CAi57yaU0AkrouvOUpfyZ8WQUUtmdvLhvLq6LSDqLmzCxlUFoec/ppr1xUxunZtjJ9WCfa4xcTYZ00cMcnEQQ+YyC1y126nx56iiuBxOY249rzTJkg3zm6jiIiIIkYp1Q7ApQGjPwmjqj0BXARf8FgHAIkAuuwaPg/ASwA2KKWe2LVMJ23rCKBjwOgNLtsVWF7/wRQRERERERERERERERFRVPELKETNgu2vCnM/jltufw2aqJlgMBpFlFIqUSk1Uil1gVLqVqXU1Uqp05RSvZu6bURERERELZUUF0D++xDMJ6+Heds4mM//G/LVOxCvt9F12wWjJVjcUXbLCN0L/6Rh8Zpg5SOmCRnXJ2j80RU/oK1Z7qiOwGC07rXW6QFFngxtHelmSf1ASlukpShccWTj1t35R7Zp1PyhdP3X7bhjyHKcU/xeo+tatsUiGC1EAFhc2p67+8+xpZ+5mrWP8gXq6YLNAGDOKuCC1/UrxmNAG/QV78FoTsKvnOqeofDy+Qrt/XaBsfsAz54TXNkfd4Z+XLZ2O/B//zUhLeChsZuXULwzeu1ww0kQjG6/8ZrA9rLItylcpim4eLKJbSH2x+pa4JLJAuNyL/52rxfnvmLi6MdCh6K1TQLeuUyhe4bCoGzrMjl5iMm2XKBZ71np7utKTlTYI7BL6C5bS6L7WuyOTbp1vNw6HzVilm8R3Pu5iYvfMPHoDBOF5fWNnLFEcOmbjVsn935mPX+ZTVhiaZwcL4haskheKwXq1Qlok2g9bfri5n/944bbU6TdsZGoNbMNRrMYNyDLumzO1thcu4bLNAVnvGg2CJX+azNw04fu2uz0JRZZXHNF636HwWhERNSCPQjA/6lOEYBXo7SsVADXAfhdKTXEQfnAnyOqEBFnH1TV2xYw3N7l/EREREREFAlx/FzTWnNrb2sV6n3i+0hERHGg2V0HERERERERUTxJaOoGUOQppSYAuLsRVbwpIhe5XGZnAPcAOAvBv1RZV2YugMdF5KNGtI2IiIiIiPxI7lrIZcOB0sL6kT994ftKy8z3gEnToFT4PeN14TMAkOAJHtc9sIuGhf5dwm5O1IkI5K5zgOrg3uwpUoVjy2ZiavopIetJMxv2Qh1UleO6Lelev5ScFF+a0zNnK7w0K7wPiAdUrcCgvTQ9iyNEJSZBTfwAt/28Av97o3F1WYXI2HXCNeI1+t0vGG1kxY9I85ag1OMsBShjyoOQPY9H5v4nasuMedY+GEkptSsgKnjl5cdROJQVuyC8cJx9kIHRewn+2gxkpAJ/28P62Nitg8JxQ4Cvl9jX9/MaYOFGYN+ekW1nrLnp3F5UEb12uOEkCKabTfe+zUVAlzDCuKLh17XAugJ38/y5CfhzU+g3bto1Bg7ZE8hM862YgdkKVseCsiogtwjors/qjIhCzfaT0Ta8+jq3A9ZbrLtoB9/pvqdlGMDALOt1vK0UKCwXZKRGPsXzhxzBmGdNlFfVj3v2O8Ev/zaQkwcc/1TjD6aFFb5rpMBrytIqzQwASir5hTaiaNNdK3kicF3sMRRGDgSmLw6eNndV69q/3QYBVVRHpx1EzZ3drmT12GqA5rqqtBLYWgJkx2mcx4KNQF5J8Pj35gvevlRgOEyvdHrsKbSIRSmJUkAjg9GIiKglUkqdBuCagNF3iMgOF9XUApgDYCaAPwFsAlAKoB2AngAOB3ABAP9PxwYAmKmUOkRE1tvU3S5gOJwo+sB5bH6KxTmlVBcAnV3O1jcSyyYiIiIiIiIiIqLWgB9QEhE1XzbHcAZmEjUPdvtqBPfjGC2GiJq5eO02TM2IUuoEAIsBXAlNKNouhwKYopR6WymVGpPGERERERG1cPL8vxuGovn7dQbw3ZRG1V/r1U9LsLijDBWMlpQAdArsxhEnxOuFPHIVMGuqtszYpPmO6kozSxsM71mzDonirod8uunXkzbZlxqT4FGYelV4t/J/3/kZ1NCDw5rXrWHDB2DKPxv3yGHFVqCiquFTTLtOuJ7IZ81ERn59MFqyVGNU+feOZ82ozoe8cDtSkwRZYYQ41fW37qzZ50orgcqa+H1SrA2/asSmlZmmcNQgpQ1FqzO0u7MNasrv8bv+nHLTuX1LcXy8Xl2bPX4hA13S9cEwuUVRaFSYcrZGZ53ePUbh5L3V7lA0ABhok41pFUYZaZEORsvUHNuiHYxmF8w3KFs/X87W6LTnjk8ahqIBwIYdwMhHTRz1WOQSJq3evzKb0I2ScLrpEpErToJCG2P0XtYVfZ8DlOyM/TXBWz+bGPWYF4c95MWD002YMUrocbuUMgZDErlmGYxmE6q/IkrXVZEwfbH+GLDDIsRMx+mXuoosrrkYjEZEROSMUmofAP8NGD0DwAsuqvkPgO4icpSITBSRz0RkgYisEpGFIjJNRG4G0AvAQ2h4i5EN4GNl/+tGgU/AwjnTB14xROpTuqvg+76gm3+fRmjZRERERERxig/RiIiIiIiIiHh/TNQSMLGMiOIHg9GoUZRSIwFMRcNftRQAvwP4EMA3ALYHzHYegP8ppbj9ERERERE1gpQVAz99bl9mxruNWkatTZ6GVeBMjwz7Xvjd2gP2fTya0IdPA5+/blvkpH8c7ihoIM1smMqSAC/6V69y1Zw24tdXJaU+NWbs3xTOOci6Ee3bAKsmGkj3NExIya7Nw42HV0KlhpGuFaZx+yl4XzJQc+LryFuxB0qXd8S4kk9c1THsnoYboF0n3MaEZUWTbM9tMDykaqnjedubxcD65VB563BcXxc9qHfZHYyWpi9TEOUAocaIdtiHHbtwI39fL2n+D/RNF7lJ8RIopmuz/3HAYyh0bW9dbnNR/LxvbsIRnOqSBvzr6OAdJSNVoYvmeBCtgLY6piko0gWjpYa3U2e2s54vGuvUn92xqVsHoF2y9fQ1+ZFdx7VewbYSwc9rrKdHOjBkS3HwuFKbrrjbSgERwY5ygfDDT6Ko8OrOhxG6VrILiu1yo4nyqtjt2y/OMnHhG4Lvc4Cf1wB3fCK48p3YLN/NtRIAlLvLwyZqNewuB6yONplpCh01P7O1IsrXro2RnKCflu/i/ttpCFlRRXDB4igF1Do9HlbVCDYX8hqQiIjim1KqJ4Av0DAkbD2Af4iLk9iuMLRtDspVisi/AVwbMGk/AOc4XR7C60XCkzIREREREVGLxVs+IiIiIiJqbngfQ0QUPTzGUssUp92GKcLOAbCni383OalUKdUDwMcAkvxG/wRgiIgcICJnisixAHoAGA+gxq/cGAD3N+I1ERERERHRvG+A2hr7MnO/hFSUhr0Iu2C0BIs7ymHd7Tvid+8QdlOiSjbkQJ67zb5Qp67ofOyJ2KeHfTFDvOjgDU4POmDn767a1GA1JrdpMG3yRQr3nqKQ7ZdzdvLewLJ7DfTprLDo/ja4qNcajDAW4yLja8w9+ltkXHOnq+VHglIKRvc9kektQBupxNhS+yC/QGu3A2u31z+Usw1Gi9O8PQQEow2qznE8awevL4VGztoLYz67zPWi60Ki2rfRl7ELtWlqTRmMdtwQZRn+GOiPDcCPK5r3g2OnHe4BYHOcBKN5HW4bunNOvLwOwDpsqjGy0oH5dxjasDFd6N/yvMi2I1BppX5by2hrPT6UTu2sx28vjXLIm6Z6pXznvZ4dradH6r3OyRMMf9CLpCtNZN/kMq2nEbZY7DdlVcHj6izdAnS/2UTm9SZ63Wbi8z+b97GSKB7pjkdOrmGcsAuKra4F0q41cc7LJsoqo79/PzkzeBmT5woKyqK/bLdLsDs2ErVm4eytA7Ksx0c6ADaSUhL107aVOK/H6X1aoUX4cKkmGO2wvs6Xb0V3H1anskZw4esmOl5nYo9bTfS81cS7v8buepWIiMgppVQX+H7os7vf6DwAx4hIfjSXLSLPAZgWMPoqm1kCo1VtnvZrBc4Txz+XQkRERETUkvHzUmoC/AELIiKKCzwfERG1OrwXIWr+7PZj7uNEFGMMRmsd8kRknYt/2x3Wew+ADL/huQBGi8gy/0IiUiUiTwM4M2D+G5RSvcJ/WURERERErYOYJmTJPMgvXzUIOZM5DkOmZn4Q9rJrvfppCZ7gcRmpCkf018/TIyP+0qtEBHLe3iHLqRdnAQD26mr/Gjp6d8CD4I6fY8u+cNymvaqWNRyR0jA1JjFB4T8nGch91APzZd+/add4kN3e17ZenRRev6M/fnxxH7z+4ono/Y8LoFQTrfueA3f/eWbJFBxaMdfV7FMX+AWj2fSnjcdgNBEB5s9sMG5QlZtgtPoUmmPKZiLZdJdiVrdO0m26SpXEcTCa7ll5LN7rHhkK/z7B2YJGPmrC6yZdLAw7qwVf/iX4IUdQXRvZZblpem5RfHyAoTsWBG4bPTKsy61z+uQrBvIiHIyWO8nAHh312+6AbOtpK/Ki+95aBTbUCTcYLVMTjPb7hvDqcyrU9pfd3np6qGC08irBN0sF7/xqYmmu9ftRWSPY6y4Tv6512FgXEj3A/jZParcUB7epNEQYUt6u8I9NhcCpz+lfFxGFJ9ohst07AGkp9mXe/03wz7eju2+XVYplCFKNF/hkQfSPK24v88oZjEZkye67ULrHFQOyNNeuW+P3mqK6Vj8t30UEidPvjuVb/BZCieYabf/eCv8aFf5JoirEbzNc8z/BW78Idu4qt7kIOP91weyV8ft+ERFR66OU6ghgJoABfqO3w/d9t5UxasaDAcOHKKV0PysUz8FozwMY6vLfKRFaNhERERERNSV2fiUiIqKY4DUHEVHLxOM7ERERucNgNAqLUqo/gAv9RlUDuEhEtF2qRWQqgDf9RiUDuDs6LSQiIiIiahmkMB9y/QmQfx4OufkUyJkDIXO/9E1cMMtZHZOuqp/HJW8YQVSn7qvvZDm8b1jNiCp57Z6QZdT1T0Jl+9JCBmTbl830FliOP6ZsJlI8Nklzfo4v+7rhiJQwU2PiQZceQJtUAEASavD9+mPxcu6V6F29DhneHbih4AncmT9RO/vMZX7BaDafgcRbMJpUVULuuQCobpiMMLRqCTp4Cx3V0cGsT9FpJ+U4p8RdyGHdOklN0pcpjeNgNFPzRcpYvdf3nmJg2jXOHp1d9U70PqCbv07Q4xYTJz9j4ujHTBxwv4m12yO3PDdhH5uLQpeJBd13bD0Bb1efzvEfpLAmP3JtWfugETIEc5DmHLZgI2BGMeAvGsFonTTBaFtLgMe/sbmAaaRQQURd21u/B3YheIs2CobcbeK4J02c/5pg6AQTV7xl+gI2d9lWImh7dWRe1yF9gPGjFB45XeHOkxXuOllh6T0G5t9hkXq7yxqLQMEyF+E/pgBvzI2ffY+oJdDdq0XqWskwFM48IHRlH/4uKKqI3v5dXq2ftnJb1Ba7m9u+PW6OjUStiW0wmmZ8/y7W4xduRIPrpHhid4+9rdR5m51emudaXGOW7LQu274N8MSZCp9fG95XRKpsQt9qagVTfgtutAjw/vz4fK+IiKj1UUq1BzADwDC/0YUAjhGRJTFsyrxdy63jATBYUzbwbN9WKZXqcnmBV1URecorIttEZImbfwBWR2LZRERERERxK06fWxIRERERERHFFu+PiZo9PuciojjCYDQK17nwfTGrzscOfznz4YDhM5VSKZFrFhERERFRyyJPXgf88UP9iOICyK2nQT59Bdie67yeW0+DlLrv61Cr6WyfYEAbvnLK3/Sd5+2mNQVZuQh488HQBQ84evefQ7rav4ZOmmC01L9fjNFD9IEjdfrzLNQAACAASURBVA6r+AkT8u9vODK5+QajKaWAngN3D3tg4pLiN7Fq9WDkr+iBR7bdgbu364PRlm6p/7s5BaPhyzeBb4ODzBJRi+PLZjiqor23YZ+nidvuwoE75ztuQt06MQyFNM2dd0lcB6NZjzdi+DTr5L0VZt1soHOafblXZgvyXXRyd0pEcMaLZoNQqcW5wL/+F7nQJzefV+woj9hiG0W3bQSelgZkWZfL2RofQQqF5YKf19iX6ZEBzLnVwM3HKe1xLiURmHyxQq9OoQ+EgzXnsPxSYN66kLOHzS4YrUOYp7jsdP3rvelDwR/ro/MehwpGy25vPX1LccMZC8sFj84wcetHJva9z8SGHQ3LvzJb4LnCxE0fmigsF9w1LXKvZ+5tHjxxloGbjjVwz1gDE8Ya6NvF9wJO3tt6nhlLgpfvNlzzsRlNv98RtSSxuFa6/9TQ55YaLzD8QRM3TzExc2nk9/MKm2C0kpLop5C5vWSway9Ra2a3K+myfffSXLtu2AEscf5ILKZKbQ5L+aXO63F66NlSFFyyWBOMlp7ie0Zz4jCF589z/xClskY/bXuZ/vnCt8t4DUhERE1PKZUG4CsA+/uNLgFwvIgsjGVbRMQEsCFgdGdN2QI0DFEDgJ4uF9krYNjJ9/uIiIiIiKi1i4PvVJADId8nvo9ERBQPeD4iIiI/vN8kIooiHmOpZWIwGoXrtIDhN5zMJCLLAPzqNyoVwLGRahQRERERUUsif/4EfDfFetqj17ivb9yeruep9VqP99jcTfbqpHDh8OAOlhcMdxbaEiuy/HfIJQeFLrjPCCi/YK+RA+1ff2aSRS/Yky6CMf5x7N8r9Ov/Yf0xSJWABJnkZp4n3WtQyCKfbhxnOX59AVBe5XswZxuMFmdPOMQiFK3OfpULQs7f1ixHEhr2Os7ybsOP60Zh9rqReCP3MrxxfGDfqYb8Q5R0wWillfH70NPUZH/FOgTv8P4KK+4z8OoF9gvOujFyYWV1lm5BUFgSAHzxF7BxR2TeO7v9KlCRTbhVLIUKpqozIMv6PSuqAFZti3CjwnDQA/pt5tlzFWZcZ2D5vQYO7avw8N8NLLvXwIzrfP//fJuBNy9W+PhKA2seMHDBcGcHwRH9gOQE62mfLoze8aBQE6qXlgIkeMLbqQdm208/YKKJmtrIv6ZQ219XTTDaJr8urKu2Cf52r4lbpggmfW3fxse/EXS63sTLP0bmtWSl208/coD1+/HLWmB7QABkWfTziIjIhu54FOZh1VJWukLFc6HPMTlbfeGHxz5p4r7PI3tNVG5zrCmeNQOyfYu+QAS4uVYCgJ0MRiNyTReMZvf8Zdqi+LyXLdGEkgHANhfBaLr74UC5Fr+BoAsoS29T/3eHNtZl7FTV6qfZhUKW87hIRERNTCmVCuBLAIf4jS4DcIKIzGuaViHwqsHu7LwsYLify2X1CVEfERERERHFRHw+0yQiIiKKWwzOISJqxuyO4Ty+EzULdtdivE4johiLs27D1BwopbIB7OM3qhbATy6q+CFg+ITGtomIiIiIqCWSSVdHtsLKCsg6d/0dajUdMRM89vM9fqbCRYcqKOXr4HrRoQqPnxkfoWiybRPM+y6G/N+hoQsffCzUfe81GNWpncIR/fWzZB58EHDYSb6BxCTgrPFQNzwNABiYZb+4c4v/B8u1lJgcuq1xTPUaGLLMoKoc7bQVW33/2wajxcfmVW/RHO2kgcbmkLN3rt1uOT4RtRi+cx7OL34X5+94E9cfo3/h/mFx6dpgtJBNaTJOw69ioX1bhUtGGLhypP3Cr3rHhETwIb9VJ/c6ToIANhUKLn7DxJC7vTj0IS8em2HCG7Bi3YR9lFUBtd6m/xDD6zA0b0g3fR2vzont66j1Ch7+ykSPW7wwLvf9W51vXXaPDODKIxVGD1Zom1z/ovpn+cYN2PwDDnxuDM57axRO+ethZCXbpC8EaJeiMEqTVRnVYLQK67oz2oZfZ9/OoctMWxR+/TraY9OuY27PjtbHibXb6/efSV8LNhZaFou6Sw6zP46dNMx6ugjw9dKGL35njWVRW/EcyEnU3IQ6HkVKSqLCyvsNjHDY9f6+zwVbSyK3r9sGo1UnQN56KGLLsuL2lVTaBAcRtWZ2t0m6q5OOqQqH9bWe9uVf8XlNUWZzj71oo/M2O71P21IcPE4XztbeL24lI9X9jXWlzbWfXTAavwdHRERNSSnVBsDnAEb4ja4AcJKIzG2aVgEAMgOGrT8Q8FkcMDzc6UJ2hcLtHaI+IiIiIiKKGD4MIyIiIiIiIiIicooxikTkBIPRKBxDA4b/FJFyF/MHfrFsSCPbQ0RERETU4khZMeAyxMyRX752VVwXPpMQ4m4yI1Xh9YsMVD7n+/f6RQY6htHpMtKkaDvk4gOBGe+GLKu+2ALj0c+gMoKTV075m/61dO6SBuOhj6G+L4OaUQjjmkegknzBZoO6hggjKZtuPcETIoku3vUMHYzWu2Y9kk3rHsTL83yPM3XbIxBfwWjy/Ue20/cafUjIOrrV5oZe0Oxp6NxOP9n0W19pmmC0kmYYjKaa8L1++mz7hb84S/DvTyRi4Wh2nct/W2c/b3GFYNgEE2/+LFi2BfhlDXDzFMH1H4QfjAbExzaja7Mn4NzUMVXhoN7WZZ+cKVi2JXYflVz5juDfH4tt2F2dE/dWUJoNXeZ9A7nueGDeN8BfcyGv3A2ZeGlwOdOEVJT6/q7xbUhStROydSPG9LFuxPI8YMXW6KyTIk04Q2OC0ZISFPp3sS/z5eLIvx7d7l13HhqgCUGtNYF1Bb6/P3MQbBgNGW1DB6MNzAb6BHbN3eX39Q2H7cIxdH5c4X4eIrLmNCg0Evp2UfjxFg/GBHant1BrAt8ui9xxzu56qMhoD3z3EcS0uVFoJLdVV9ciKIiWyCmprYVUOQ+9bU7C3SvG7GN9UPsrdN54k7ALgZ27GihzGBLrdH1tKwVqautLiwiKNZtQekr9uuzQxrqMnSqb4EfbYDT3iyIiIooIpVQKgGkARvqNrgQwVkR+bJJGAVBKZQLoEzDa7gOBrwKGR7pY3OEAEvyGF4jIVhfzExERERERUVzjE1giIiIiIopDdn0p+At7RM0E9+Nmie8NtVAMRmsdrlBKzVRKbVZKVSqlSpVS65RSs5RSE5VSh7usb3DA8CqX868OUR8REREREW2ITmqEfDHZVfnaMIPR6iQmKCQmxFFi1bRXgZIdIYupxz6HSu+onT5uP4WkBOtpo/fyvV6VkAiV0LDQ0G5Ajwzr+done3F82QzriR7NwpqLvfYPWcQDEwOqV1pOW57n+98uXyCugtGeulE/8aI7sOc/r0GmTaAZAHR3Eoy2ZgmGVSzUTvYPsErXBKOVxkHIlY7u/W7K99pjKPx4s/0B8JGvBB3Gm3hxVuMDOuw61S//dRkkPzgNIL9UcMgDXmRcZ1p2iH/2O8Fv6+rrdRv2UVThrnw0mJqNw2rbGLef9QZT4wWuedeMWIidjmkKLn/LxGtznC/nrAOC2yw7y2FOvBRy48nBM/zwMeTTV3zlRCDvPAoZ2wNyXCbMw5MhR6f5/h/dAXJ6P5z82H7aZX+6MDrro1DzkwqNCUYDgLE2QaUA8MZPkX89oY5N/YLzVHdbuRUo2SnIK4l4swAA7ZKBPTTXGecepPDjLQb6drFfZ0opHDHAusyLsxq++HCC0b5eyg/biCLFaVBoJB01yNmF2D9ekwZBPY1RbhO2szUhCyjKB1bqr4kbS/cq2ibp5wnn+Eitm3i9MJ++ETKmG+T4zjBvPBlStL2pmxVRdpfdduHX+/W0nlhaCdR64++6orTKfvoz3ztrs5v7NP9ry8oa/bO8dL8wtA5hXIfbHdvsgtHsQu6JiIiiRSmVBOBjAKP9RlcBOFVEvm2aVu12Nhp+Z3MrALtfSvoagP+T3uFKqUEOl3VRwPAnDucjIiIiIqJIY6dEahLc7oiIKA7wOoiIiIiIiIgagcForcPZAEYB6AYgGUA7AL0AHAHgdgA/KqXmK6VG66tooF/A8AaX7VkfMNxJKaXpskdERERE1EptyAlvvs7dgaPP0E9ftwxSuM1xdbpOptHsbB9NsnB26ELj/gl10DG2RXpkKEwYE9w59+/7AUcO0M+X4FF45O8qKFhOKeDho7ejvalJSmnmwWgqqyfQb++Q5QZWWwcCzlji2w7tOgbHSzCabM8FCrZYT0zLgLrkTng8Bk7e277B3Wr8gtHaddCWO+qpkY7alaYJRiuxCM6KF/EYjAYAI/ordEq1L1NaCVz1juDiN0zkFoX+UodpCpbkCv43z8Qva+qDRMpsOtXn1GTBPG/voGCvM140MW+d/fIOeqA+EMwucNBKXASj6bYNi3PTFUcoZKVbl/8+B/jfvOh+6eaNuYJXZ7tbxsiBDTdy2VkOufRg4Ku3tfPIo9dAdpYDX/4X8uIdQHGBtmzX2jwctHOe5bRw1odpCmavFMxdLSivsp6/ULPdZITYl0K5bpRCn0z7Mv5BgJGg2/7qAj3aJittCOqKbYKVzi/DXDlpGFD8tIH1D3tgvhz87+3LDAzp5uwA2j/LenxlDbChQBoMu7VyK7/oRhQpumvjaF4rnTjMeeV73m7ipVkmluY2br/XnVsAIDehq687x+rFjVqGHd1xPzVZP89Om4AgIivy6gTgw2eBsmKgtgaY9w3ktnFN3ayIsg1Gs5nPLsCrJA6Dvq3Cqf19/IezY6KbI2duUf3fduvEPzC9c5qLBexSXaufZheMxmMiERHFmlIqAcAHAE7wG10D4HQR+bppWuWjlMoC8J+A0Z+Jza83iEgFgCkBo291sKwBAE7zG1UL4F2HTSUiIiIiIrLBz3yJiIgoFnjNQUTUfNkdw3l8J2oW7L7wx+BbIoqxZtqVnaLgAAAzlFITlbL7XW4AQGCPbFfd+USkDEDg17Lbu6mDiIiIiKilkxULw5sxvSPUhLeA/Ubqy0x7zXF1tZrO9gked82KG/Nn2k/vvw/UdU86quq2Ewx8c72B60YrXDlS4d3LFN673IAnRBLB2QcZmHubgdtPVLhguMJNxyrMvsXA/x2oTxtSzTwYDQBw+NiQRQZWWQej/boWuPdz0zbAySoQqSnIvRfpJx44CnW33Kf+zX476XHMKODcG6HGPw41dT2w14GW5VLEJjnLT3ob6+WVxmFH8jpNEfbh1OoHnG1wb/4s6HGLiRd+0Kf6lVcJxr1gYtgEE+e9Kjj0IRMjHjGxpUhs358iTwbW1mZCTu0NKfeFKq7cKvhxpbPX8Nuu2HrXwWhxEKbndbFttG+rMOl0/UZz04eC4orofDBTVCH4v/+6q3vzIw23LVnwI+S03sBGB2/sN/+DfP66o+WMLf3ccvzCjcD0v5y3eX2BYL/7TRw5ycSIh0387V4Tf6wPnl8XqNehbeN26O4ZCgvuMjDGJnvzpR8jHIzmYPsboAkWW7kVWLUtsu254kiFNy9WmHq1gdCPdZ0Z0EVfz7Pf+wejuX8t/sEdRNQ4mgzrqF4rDchS6K7P7G0gtwi48h3B0AkmLvuvGRTm6lT5tnzttEqjDYqN9pBwg8Ud0DW7bZJ+np1hBEdSK/ft+8HjlvwK2bQq9m2JErsjgN0ljF0wWjyENgfaUW4//ff1vvuEUNzcp+UW1/9tF8zWvk393x1TFfp1cb4MANhpc+1nF4xWXo2wzwFERERuKaU8AN4BcIrf6FoAZ4mI9QOx8JYzUCk1xuU82QA+B+D/5KgawIMOZp8AX7hbnYuUUtoPXZRSKQDeAOB/5/KaiKx23GAiIiIiIgoDn4MREREREREREVELYPt9Lz4DI6LYipNuwxQlmwG8AuD/AIwAMBjAIACHAbgWQOCvYCoAtwN4IES97QKGw+kSGzhPGL9LHUwp1UUpNcTNPwB9I7FsIiIiIqJIERHgpzD7Z3TuBqUU1GUT9PXP+cxxddpgtGZ4NylVoROg1L9fcRUqMmovhcfPNPDcuQbOPih0KFqdA3or3H+qgckXG3jkdAOH9lVAok3P+hYQjKYcBKPtU/WndtqEaYJFm/QPT1PiYBVJ7hpgwSztdHXdE7v/PmawfZjCoEOHwrjyAajTr4ZKToE64hRt2bc2X2Q5/qDe9X/rOpNvK43fB9K6lsVDMFp6G4XPr3V+ILz6XcGwCV4kXOHFkZO8+GlV/at75jvBtEUNy89fB3S/xcStH9m/P5+1OwnYkQd89AIAYNEmx03Cwo2+ut32T4+H8AFdSIBu2zjvYIUjB1hPyysB7poWnf3ghg+c19smEXjrxPXI+ug+mE+Mh7zzKMxXJ0D+dQywK/guFJl0NbD4F0dldcFoAHDSMya8DpMYRj9u4k+/7W51PnDF28HhN4Wa8IcMm6ALp9JSFF67UL8/LsmNcDCag+2vnyZYbOVWwVZnb6cjFc8ZeOE8A+cPd34N4sQ+e+inTVvkH4zmvu4txaHLEJEzTRUie8YB7hfw+hzBc987Px7LrzNgPncrqm46Dc+8n2tbNjehK7DBOmA5EnTHfQajUaSI1wtsWW897au3Y9ya6LG777ANRmujnxYP9yaBCh20abODoFjdMd5KblH9yi2x+dQ+PaXh8CkhAtsDldk8Vquo1r/BXhOoqnW1KCIiosZ4HcCZAeNuB7BAKdXb5b8Ui/rrdAUwTSn1p1LqFqVUf11BpVSaUuoaAAvh++FSf/eLyJpQL2pXmacCRk9RSl2jlGpwd6KU2gvAtwAO9RtdAOCeUMshIiIiIiKqF7/fJyJ/Id4n/mgFERHFBZ6PiIhaHwYqERE1DR5jqWVqhl3ZyYF5AI4DsIeIXC4ir4rITyKyTERyRGSuiDwrIscDOBDAyoD5b1NK6XtcBwejhU4XCBb4tezAOsN1FYDFLv99GqFlExERERFFxpolQO7asGZV+430/TH0EH2h5b9D8jc7qs/bkoLR7rvQvsD+RwH99o5NY6wkJuunGc1whQfqtzeQ3cu2yPFlM5Dh3aGd/uZc6wd0bRKBtslNn5YlX7ypnzhyHFRGl92DbZIUrhpp3ebsdODYwQEjT75YW/W40qno3ya4Z/VZB9bX36299bybC/VNbmra8KE42R1OHKYwfbzzxizJ9b2m2SuBwx8xce/nvgPs+/PDf/A8u+0IAIBM9217m4uc17U8z/e/w/yr3Yo0AVexpGuzR/N2KKXw3LmG9tz13PeCBRsi/7q+Weqszg+vMLDqmKk458mhwOSJwMcvQl68A3jzwYi3qc5e1cvRr3qVdvrc1aHreHGWidX5weN/X+/b3v0VllvXEYlgNADITNOfA3LyEBTU1hhOgtEGZFmXWZUPFGjWRZ12ycDGh0MfW3693UBKYnTOfbpgNwBYsRVYvsW3EsIJRtteBlTVNP1xhKglcHs+jJTrRoV37PnXe4JtJaH3f/OF2yE3jUHV+89j+LY7sSjF/h5tY2IPYENOWG1yQncKsQ1Gq45OW6iFqrU5oZa1jkRRu6NKul0wWjg/3RVF1bWC8qrQ5baXhi7j5mop1+9xQInNp/btAqJdrjlKIdlFyLzd+q4Icdxzsl6IiIgi5AKLcY8AWBvGP5sP2nYbBuBhACuUUkVKqTlKqalKqbeUUp8opX4DsAPAMwACnxi9LCL3uXhttwGY7jecuKvejUqp6UqpD3YtbwkahqJVAzhNRLa4WBYREREREUUcPyMlIiIiIiIiIqJmwq7/BYPYiSjG4qQrKUWSiHwpIjPEQY8/EfkNvi9yrQiY9JBSyuN0kW7bGOY8REREREStw+xp4c97+FgAvhAY9fQMfbmfvnBUXa3XenyC07uFOCEzPwBmTdUX2G8k1H/egFJNGK7lsemNajetmVBKAYePsS3TVnbi/m0TtNP/3GQ9PlMVw7xyJMy7zoUsmNWIVjbS55P10zp3Dxp1z1iFyw5XSPTbn/bdA/j+JgNJCQ23RdUhEzjjGsuqk6UaH9bcgoN6+4bbJQO3Hq9w3ej6OrpnWDdr85YymP/YG+Ytp0J+jK/ccFMTzGg0fQbebscNUXjnMoXMMOLeJ0wTGJd7sUizXTuRkzzA98em1SgtqcT17zt/3JKzK9jIbTBaWRx0aHcSTBVocDeFG461LmAK8Mx3kXlUVVwhuPUjE/vd58Xm4LzCBs4/RCF/konTFtyLrMfOBbyak24UKACnluj3+WmL7NeHiODqd/VlFm9uOK2wwrpcRqrtYlz57BrrR92FFUC+g/AJp5xsf3tmWm9ruUVAQZm+7j6ZwLRrDHTPUJhxnf7R/asXKBzYO7oHw78m6Jdft33sDCMYDQDySsKbj4gaCud8GAk9Oyl8cW14Hy9m32SitDK44SKC1+aYOPqm1dj7l3PQp99ypA4qwsKUfULWuTqpL7A+B7IrXKrWK7jzUxPG5V4Yl3vR5QYvPv8z/PO8bj3bBqOFeXykVsprs8FUxlnyVyPY7YV2j2I8hkJaivW0Is01ZlPRXfMGyre5Hqzj5j5ti19+Xolmk0lL8a1Lf706KXxylYE9dj0vCHX+sFvfDEYjIiICALQHcBiAUwD8A8CpAPYHEPgBTzmAy0XkCjeVi4gXwJkA3g+Y1AXA8QDO2LU8/7P6NgCniMhsN8siIiIiIqIwsVMoERERUeTw2oqIqPlioBIROcTDBRE5wWA0gojsAHAOGn4nfRCAozSzBH5d2+a3urUC53HwFXAiIiIiotZBwg1GO3wsVI9+uwfVvkcCew62Xsacz+zbUOnr7VirCSbyhHE3KVU74SC/OeLkt28h95yvL7DfSBhPfQ2V2TV2jbKSpOnpCwA9B8SuHVGkdgX32bms6HXttIJy6/GZJWuBxT8D338EufFkyO/fh9vEsMjOckjuWmBHnraMGrR/0Lg2SQovn2+g5GkDK+83kP+4gd/v9GBgtnVvZHX1I9r6hy55Fz9fWYCyZwxsfczAg+OMBkF/3dpb11ko7bBzw3rg5+mQO86EfP2udhmx1lRhH26dc5BvnT80LvYNW5XUFzVIgAmFYydsczXv6nzf/80xGM0bZmjenSep3Z3+A323vPHnJ9MUHPekiUlfCxZu1Jd74iyFiucMvHmJgYwnLwXefKDRyw7H9Tue0U77bZ39+lhXYP9B04qAzVEbjNbWdjGuHNhbP23N9sgtR3ts8rs26t7BukxVLbBqm3UFJwwFVj3gwciBvg159GCFa48O3qifOUfhkhHRf6w/pJvCoX2tp9VtH5VhBv/khggNJCJnwj0fRsIJwxRqXjRQ9oyBwicNzL/D+XFp9OMmCsoaHgsfnC74v/8KfijpjaXJg7Ehsafj+lYl7TpYTXkWAHDGiyYmflFf//YyYOyzJt6ca2Jntfvzve58ZxuMFiIgiKiBGpsNpirOkr8aoTGPgzpoPokuqoivbz7t0DyzCHTxZM0B3I+b9bWluL5w8U7rGdM1j5yOH6qw7iEDmx4xUPCE/bG8yCanL1QwWjzcRxIREUXYMgAPAPgJgNM02xUAbgfQW0ReCWehIlImImfDF4L2i03RHQBeADBURL4KZ1lERERERETUDIR8mBxfz9GJiIiIiIh4n0LUTDCxrJnie0MtE4PRCAAgIn8AmBEw+nhN8XgORnsewFCX/06J0LKJiIiIiBpNtm4AViwIa141/rHgkSPGWBf+4wdIRWnw8qe+DPO0PSHHdoT5zyNQm7/VcvYEF3eTsnk1zKuOghzXCTKuD+T9p5zPHAHyygTb6WrsZbFpSAiqTSow5ODgCWkZwIGjY9+gaBh2GNClh20RD0z8o+wDV9V2qvVLvKmphkx5LpzWuSZb1sG8ZhTkhM6QswbZF7Z5D5MTFfp2UejUzj7FQnk8UM9pQt9ME/Lk9WibrNAmKbie7powKADITagPBZS3HrZtQyzpwodUnAWjAYBSCrccb+Dhv8e2cTUqCWuTeuPb1KPwa1l3V/Nu3hVM5DYYrTwOOrSHG5qXmqxwzynWhfJK0OjwzpumCOatC13u2qMUUhIVZPViYOb7jVpmY2R5t+HaHdbHy5wt9mENy7fY1700t/5vEbEJRovcPtM5DUhJtJ62pThii4HpIIiomyYYDQD+2mw9fnC34HUx6XSFJ85SOKg3cFhf4J3LFK48MnbHmaMGWS9ryh++/3XBaJeOUDhjf307I/l+ELVmuvNhOCHW4fAYCm2TFdq3Vdi/l8JPtxo4bkjo+eavAzrfYKLHLV58tkjwzHcm/jM1/HPwiqT+AACZ/ABy8gSfLrIud/FkQYfxJk58yottJc6XpyvpUUBygvW0nWEGR1IrVWuzwVS2jmC0UFc3HTRhup8tiq8v8eiueQOVVyEoIDKQm/s0/9DZkkrrMuk2n+YrpdCtg+94bqeoQn/PFCoYrZyBkUREFCMioiL47web5WwVkTtEZASAdvD9AOlJAC4HcAuAuwDcDOCyXeO7iMhAEXlQRBod4S8iU0RkOIA+AE4H8C8A/wZwMYCjAXQVkatEJL+xyyIiIiIiokiJr+eZRERERDHD4AwiolaIx34iIiKKHAajkb/AX4jcW1MusOtaZzcLUUq1Q3AwWpFVWbdEZJuILHHzD8DqSCybiIiIiCgitm4EuvZ2PZu67WWorJ7B43XBaDXVwK8Ns5Hl+48hj10LbM/1fQi55FfUfmL9o/VOg9Gkugpy7THAX3MBrxfYngt59hbIV287qyAMUlkBWTgbsuw3yOJfgKXz7Gc46u9Ra4tb6or7gBS/Hr9KQV35AFSCJumlmVEJCVDjHwc8mgSBXbpUaVJjNDK9BQ1HzPnMbdNckdw1kO8/gpw5EFg0x7dt27nwdqgMV7fOesOGAz36WU/7bgokd43lpG7t9VVuTehSP7B+OaS4QF84hsINv2pKNx9n4J6xsW1gTtJA/NTmUNfzlVUBpZWiDXnSaeoO7bVewa9rrac5CYLZK9v6/amuBYp3ht+u3CLBkzNDf4i7X0/AMBREBPLKXeEvsEffri6bOgAAIABJREFU8OYbfgLUlFW7B08q/dKyWF6pgaIK/etZnmf/Wr9ZKqj1+sqUVQFezXaWoQm5CIdSCl01x7otxZH7gF1Xk/+xKTtdH+KoCwXrmBo8LilBYfwoA7/c7sHsWz045yADRgwPggOz9NNemmVqAzAO3hN4/woDfTWnvtwifuGBKBLi7VppeF+F6eM9+Gq8s5vF3CLglOdMjH+vcceE3SG/lRWYs6LWtmyNF/hqCTDmWecXQHZhvW2SrKftZAAQuWEXjFbViAvUOGO3p4cKv85sZz3+00XAB7+ZqK6Nj2uLHeXOy/623n562MFomk0mPcV5fTo1Xv3xLVQwWlHLyfgjIiIKIiKmiOSIyJci8oqITBKR+0TkURF5bdf4qASUichaEflIRJ4RkYdEZLKIfC8ivCshIiIiIiIiIiKiZi4+PgcmIqJI4/GdqHmw2VcZfEtEMcZgNPK3LmBY12t7ZcBwL5fLCSy/Q0QKXdZBRERERNQiqb0Pg3p/OdTk36EuvRsYsG/omdqkQp10ofW0QfsDnbpaTpLfv2s4/OXkoDJPpFxsOW+CJ3SzAAB/zgHyg0Ou5Jv3HFbgjiycDTl3KOTa0ZDLD4NceaRtefX2Iigjfm6N1b5HQr38E9QldwHn3gj17LdQYy5p6mZFlDriFKiX5gDn3QQccYplmQ5eTWqMRlAwWhSZz90GOWsvyF3nOp7HuOzuiC1fKQUcPlY7Xc7aC2LxkDk1GUjR5OsVeDIbjtiwojFNjJh4C/tw6s6TDXx3o4EDdj396JNpX76xlicNQE7ygLDm3Vzo/jOJsqqwFhURmwoFB0w0UVppPd3JtpGVrp+2tSS8dgHA+/OdrcjD+ilIcQHk2tHAT1+4X9CBo6Bufg5q8h9Q4x9zNau69G6ohz6GytoD6vL7AAADq/X7e06evq6FG+2XVVgBzN71BLHQJiAiwyIMrDF0wWjTFkbuwze7gJw6CR6FrDR39XaK8LqIhP5d9DvVle8I1mlOv3XnG937kevuNE9EGtprpSa+vTl2iMKK+2PXiAJPJ98f3losXeXsZD5/HbB4s7Nzg+5ayVBAG8319c4afumDXKi1yayYPzN27Ygyu/uOUMFo+/fSFzj7ZcHAO038uqbp97sd5c7b8N+f7cu6uU8rKAd2Vvtm0IU9tw/8ybIwbS21Hh8qGK2grOnfHyIiIiIiIiIiouhrLc/BWsvrJIoR0wvUlDV1K4iIiIiIIoj3jURERBQ58dP7m+JB4FeldV+RXhYw3M/lcvoEDC91OT8RERERUYumlILqOxTqotthvPYL1PVP2pd/fZ5+mmEAhxxvPfHrd2G+fBfMZ2+BzJoK/PJ1g8m/peyH3MRulrN6HN5Nymv3Wk+Y942zClyQygrIxEstg9isqBueguo1KOLtaCy152Coi++AceUDUHsf1tTNiQo1cF8Y/5wIY+IHwKEnBk3PMItc1detNjdonHi9YbdPx3zhduC9J9zNdPTpEW+H0gTK7fbZa8HzKIXMdtbFt9eFSewic78Mt2kRZZrW4+M9GA0ARg5UmHeHB+bLHqx6wIOXz49eo3OSByInSR+M9sRZ+mXnFrv/2LG8rAry8Qswx/WBedVRkJ+nW4bxRcP4/2fvvqOjqP42gD93Nj2BJIQapAjSBQTBgqIodqzYey9YsPdeXhV7w94rVn4o2LuIiCi9hd7SSEIS0pOd7/vHElJ27uzMZjdswvM5h0N25rYtc3dmd+bZKSYWbtKvdxIE09EmrKopwWhLspyVO363bMix6cCCma77ULe/BuOpr6GOvwQqNg4Yf6Xzujc8C3XBHXVhoGfeAIw9DV1rMpFoWp9cufzxSTAv2hfmE1dB3noIsnIBAMBrCr5eFPg5n7bAV2Zrmb5MaoLju+CILojr+6WAqUsQcsnp3LRbqrt2u6ZE3uTWvzMQ7TQMt564aN99Sdfcpyx3b/NEpOGN4H2lPToqvHF+8wwkz5O2Y3+mstD5m/mPy5y9L9gFYuqD0RwPgwiosX/BSHWAxKlWINBscewQ+xLr84EL3jJRVbNzT6q02+9t7KM5Yrt/6nbXdU2e7/9iTYh02zhn7dx3vP1j/dAM64GVB3iZ5vF6LiIiIiIiIiIiIqIwCPRhMsMImkVlATB3IvDNMODPM4E8/fm8DYgA824FPm8PfJYC/DgGKPM/D5KItsv+EfjlKN82893+wKpXd/aIiIiIKBjNdN0BETWR7bbK7ThicY6lVorBaFRf+0a38zTlFje6PUQp5eYyxsZX9jduj4iIiIiI6jv+UqDXIOt1J1wCtZt9VrHqpllfUQa8Nwn4+FnIXaf7rf426Qhtm1FOjyYrXFwV2lR/fQNkr3dW9vAzoE66IrzjIWc69/BblOwtctXEIaW/+S8sD+1VtzLlGeDDJ13XU+MuCOk4AACD9rVdLY9fBdma67fcaTAa3n8M8ueMYEcXMroLwSMh7MOtS0Yb2DDJwEtnK0wcq3Db0fo78cJZCt9ea+DZMxReHb8NL2ddhcdzbkWnmhzL8otjB2JVTG/LdY+cYOLasQbaJVr3taFAtCFPOiV//wF5+jpfCOWiWZBbToTcd07Yw9FKKwVfLrAv4+S1kRCrkBRrvS53m/tx1crcGvj+D65YhINvb/x7Ac6oz1ZCHXNew2WGAfX2v4ErH3+x33ueioqCuvddeK59En2rVllWW54DYOV8YNrrkDcfhFy6P+S7D5GRA+SXBu525srAwWgpup9lCFKntvoXwVyHuwiBOJ2b+nV2PllFGcABbn96ohkkJyj0TAtcrrHaoCBdUF1WEb9wIwoF3XzkiZCdpdNHKHRuG7r2BlcsslxeacShbPtXVFk5zo8/nb7v63ZxDAXE6YLRWn+OFYVSTY39+nkWx7stkN27vwowbR3oYD9pRQ7ww07+Ka4CB/vI9dntn7o9vFqR7ft/myYYrU28s/eGU4bbl/t0rlge+5VW2g+YwWhERERERERERLTLa3EXJba08RLtJDXlwM9jgYznga3zgfVTfLe3zg9cd+kkYNljQHUhIF4g9zfg58Na4HxB1AxyZwK/jgOyvgMq84H82cCcy4GMyTt7ZOQI5zUiol0O92mJWj6b7Tjc1w4RETXGYDSqr/GV1ZY/NSEiWQAW1lsUBeBAF/2MaXT7Gxd1iYiIiIh2OSoqCurBj4AuPRuuOPo8qGufDtxAh65B9Zvr6ahdN6y7w4vt7T4I+yu0hwLy5ETHZdUpV4e0bwqeSmmc0Q1UKk1qkcaICotgoLLASQeSuRbmgxfCHB3r+3fxfjDP3xvmtUfCvP0UyJK/feV+nwaZfKurMSEpBeqmF6D2OdxdPQeUUlBvzbUtI8d3gzR6DHTBaFui/J8DefE2iNvErBDTzR5GC/00a7dUhcsPNvDM6QYePsnA9GsMpKfUrY+PBh46UeGKgxSOGKRwzaEGLh6QjUsK38L1Bc/jwdz7LNudGz8CZYZ18tmotpsAAD3aWY8pI0cfqqJTWuPxX/jzZ8Cf09015NLKXMAb4CXpcfja6KQJackpDv4LmswAeY7xZhneyLochtuTfPY6yBeK1qm75WrVe0+oe98FOnbTNqFOv9Z6uVLASVegn1gnMmTE9Gm4wOuFPHQhNs5f4Wjo/20Azn3DxPiXrJ+4pFggOiq04T0je+rXvftXaL6AcxqM1reT8zb32R1ISYiMIKPGZt/uftKtDQrSbWuREIyxNk9w/psmDnjUi+s+NpFZyC9oqeXR7apFSC4aEmIVZkxs2o5brOHFjSUvoWJZG3y8+Rxtudqg36yCasdtVwXIoqqlm/eVAhI1hy1lDEYjN2oCvGDWL2+ecYRZU86FMgyFX28KPJ+Ean8vWHaBwFY2FujXuT1OW5Hjq1BUZl2xbZyzdgamK3x1tf6xLqn0HUc2Fmjei4T9PyIiIiIiIiIiIiKikMv9zT8EraYEWP1m4LobPvZfVrwMKFocmrERtSZr3gJMiy+kVr7c/GOhZsTzuYiIWifO70REROROC72UlEJNKRUHYHyjxb/aVJna6PaFDvvpj4YBbKUAvndSl4iIiIhoV6a694PxyQqob7dAfbYK6qdiGHe8BhUdE7hy+y5B9Vml9G1fMMppMJo+xUZuGw/55XO3w7Jua+ZXQFGes8L7Hw01cGRI+qUQSE7zW9S3KsNx9Yn5z8Py1RggGE0y10IuHAl8/2Hdwox5wJrFwH+/AjO/glxxEOS9xyB3nuZoLOqWl6A+WAj18TKoGVlQJ1zq+H64pfYYDBwwzraMXD0W4vXuuN0+yXq7zff4B6NhQwawwVn4Ubi4CfuQqkptO3brdqZjBitsnGRg3SMGVjxooPBZA3ccY8CofwcLcnf8uXfFf677SF07BwDQv4v1c78iW1xfcF9iWCfsyTfvuWvIpSveCxzU5zQIpmMb6+U5xS4G1Mham7cgj9TgjczLMbzCwa/BHnUO1O8VUJ9mQM3IgvH8D9pQtFrqsNOhpiyFuu1V/5X7HQXVvZ++rseDvukWYXcAVsT2tVyeNXmS7Xjq++BvQaEmICI1wXEzjo0frn8RvPirYM7apn+Zrg3IafRFff/OzpOJeqZFSIqRhdREhefOcDe+2mC0NE0gZ35pEwcVpG0VgopqweLNgr0eMPHebMFfa4DnfhKMfdJEoSZIJBARgel2MiUKAa/DoMadaVh3hUX3ufsq8rns67F0xFtY/qCBohei8dj7VyL64yVo/9EsbZ38qDRUqhgskt0d95MVINS0li7MSQFI1Bwyl0Tm7idFqhr7QD/ZuLKZBhJedsFoTqatg/oqDNNnAQMAfsvYue/JW13u4+SX6sfq9m5kZPv+L66wXp8c77ytcUMU7j9e/6zM2+A/uNIAwWj5DEYjIiIiIiIiIqJdAr8zpOYW4DXXlF8tIWfm3Wy9POP5wHUbB6rVWv5M8OMhaq3WT7FeXrTY9jx1IiIi2ll4LELU4tl9phDCzxtsuwlZL0TU0jEYjWrdCqBrvdteADNsyn+wvUyt8UqpPg77qe8TEdGcok1ERERERI2pxLZQnbpBxcQ6r9Q+Pai+qlS05fK+nXwXuDuiSzbavk4+fjaIkdWRshKYkyZAbj/FWYVTr4Z68KMm9UkhluwfyjXCRQDUQ1vus15RGiAY7bPJAcPTAEBevdvZQEaOhTruIqju/aDSe0EZ4f/IRT38mX2BlQsgr92z46YuoGaLVTDa9vo7k+5C8PphHzLjbZin9YUcngJzwsGQdcvq1v3yuW/dYckwLx0FWf5vmEfsnlIK3dMU+nRSiI7yn1flpTt2/D2ociniTU3ClEbKf9MBAP06Wa9fnu3+gvsyQ5Nm9fs0SIBQh2BlFwnmrAtczmkQTKe21suDCUbLLRYc9YwX2zSfbnmkBr+tG4vTtjkLAlWnXwulFFTnHlBt2zkeh4qOgRp3PtSDU4C9DwF67QmccT3UQxa/LttI/+HWITKronujBv6haVlRnR2Py84eHUPSTANt4hQOsvmE8t4vm34inHZuenwCzGO7wnzlbojXixE9nbfZNbXJwwqrqw5ReP0850lLsVG+/9MSNYGczRyMMXuNYMh9XiRPNJFwlYkh95t+2+yKHGDafPdfn/67XnDIEyZiJpjodosXH//Dky2p+bgJkd2ZBqUrzLqqCJ1rsv3WdarJ2fFvVNksvJt3Ja66cBD6XXox+nZSiIlSUIYBlb47Utu30d63PE8a/orfF6WaAFcrmYXOtnm7fdKkOOt1pQxGIzcC7UO3lmA0m3XK4bw1doB9wdxtcHTcEC5bbYLOrNiFxbo9d2xFjq+CLhitrYtgNAC4+1j9ZxqbC/2XBZr38kp4mhoRERERERERERERtUIla3b2CIh2DV6b8yYZAtkC8DkiIqL6+L5ARBQ+nGOpdYra2QOg0FJKnQvgexHJcVHnUgD3Nlr8tois19URkZVKqXcAXLR9UQyAt5VSY3VBZ0qpEwBcUG9RFYD7nY6TiIiIiIiC1HG3oKpVqRjL5aP7uLjSPtAvcS3528WI6jUrAmzMgFx5CFCUH7iCxwN1z7tQhzoMUKPmk5zmtyhWqjC69A/8kTjatmrPqnVIkHLrlZtXA4P28VssBTnAiv+ATx38KqNT3fo4Ch8KNWUYwKOfQ247WV/ogycgp14DldYZHdpYF9kYbT1HyAPnQx1+RghGGhxdCIVa+jckJhfYmgt54uq6FYtnQyYeAXy0xBcKd89ZdeuW/wu5/mjg/YVQaaEJdQoFyc/2vR4r/T9KkTk/AMv+2XE7Cl7sVbEAfyXs77j91P++hJQUoU/uIgD+9TZvFQzqYl03NgqorPFfXmIXOLJxFbD7AMfjc6r7rc6ChhwHoyUrWH3gv6HA3ZcAIoIzXzPxywp9mUVrhqNv1SpnDZ54GdQeQ1yNoTE15iSoMSe5qtNv/z2Bn/zve5URi3XRPbBHdcOTOLNDFIw2omd4knvG9FP4faX1c/ndEqCwTJCSEHzf2iAisxooygPefwyiFHa/7AEM7AIszQrcZteUoIfTLJRSuOhAhdF9BAdMMpEXINgsrXgNZGE22q0BgP381pdUApXVgtjo8KU3lVYKFmwClmQKLn/P2bb9zzrg/FHO+ygqE5ww2UTm9nCQzYXAma8JOrYRHNJfoaBU8N96oF9noFu7CEuqolZBd26vJ8J+EklWLcQ+L1+DTStn2xc8bSKMa17RrvYYCqkJ1kFCBZ52KFfuUn+yi5yV080gSikkxliXKGEwGrlRXWW/fqPDfckIZ3c9gtNgtP4OdkOnzRfs12vnvO8WuMuxRoFNMJrbAOuM7WcGFGs+ImmrCXK0c9gA4Mdl/suXZAI/LhUM3g3o1Nb3WJcFeBlvdfnYEBERERERERERtT68KJGIiCg8TMDixz+pFWDoHRFRC2Yzh3N+J2r5uB0TUTNjMFrrczGAV5RSnwL4BMCvImJ5WrVSagSAOwA0vlpyM4C7HPR17/a6qdtvjwLwo1LqEhFZXq+fWACXAXiyUf0n7cLXiIiIiIgoNFRcAqT3YGD1Ilf1qlW05fJoN98fO/iwS7xeKI/zRqWqEvLwJcBPnzircMZ1UIecAjVwpOM+qBmldLBcfHv+YwGD0U4p/ly7Th68ACgthjrp8rplX7wEef5moKY6mJFaUlc+ApxwKVSCJnUszNQBx0L23A9YbBM0Mfs7YNz52MP6oUZGTB94YcAD/7QfycuCaq9JzgozryZ8SP04BfLpy9Yrt+YCc36E/P4//3UlRcCf04HjLwndIJtAPnkO8uLtgNcifUxjZMW/joPRYs0KxEsF5OFL0H5DEmBRb1uFoMa0Dg1oGw9s2ea/vFQl6DtdvzzkwWibtwpqnOWiOQ6C6a3ZFlZkO6tfa+562IaipdXkoXeVs1+GVfd/ABxiE3IYRv06WQfFAcCK2L5+wWhZoQpG6xGewIpTRyg8MF2//3HuGya+uib4k+F0LRv1w2C/eQ9yyX0Y1l1haVbgfaGuKS0jNKtPJ4V5dxt440/B8ixgyj/+922PqlXoftUQCIB2sQOBXnMt28ovBdLDFAj341LBeW+ayC52V+/z/wQvnBW4XK1X/5AdoWj1Tf7FxMpchas+lB3vZRPGKDx7ukKUp2U819QyaENkI+RlJmUlkFtOBBb8EbjwyLFQVz8WsFhaknUwWp7HP2w5EKt2rGgDMRWQqAkaChQQRNSAN8Dxac4GSGU5VKy78L9IY7dH5HTa6tdZv99a68sFgkfGOx1VaG11OK/UyrcJm9V9nJYYC5RahC8WlAJ52wRFmmC05Hj3bw7pKdaP99uzBG/P8i2/c5zCA8crlAaY98pD9zEMERERERERERFR5NpVLgrdVe4nERG1DHxfIiIiijx8fyYiIqIQYjBa6xQP4Lzt/0yl1EoA6wAUAfACSAMwFEAni7oFAI4SkYCXgorIJqXUeADfAYjZvvgAAEuVUv8CWAMgGcBwAI0vOZ0O4G53d4uIiIiIiIJ24LGug9GqVIzl8hg3R5KmN3CZmirA4/wCX3n7/xyHoqmvNkOltHfcNu0EHdItF7f12qeZHFD2J24ueNq2jDw1Edh7DFT3fpBVCyFPXxf0MP2kdYH6Yg2U4TCJKYzUw59Cju+mXS+bVkEB6K+5iLzSiMP66O7oVb3Ov/LqRUAzBaNVVgu+mCeYu973XdjSLOtySab91eYy5Wlg6Rzrdd9+ALWTg9Fk6T+Q9x4FZk53XXfv8v8cl001t6f1/PElUuKGAbtbjAUGCreWw/dRUkNJsdbBaGVGgGC0EJv8q/MvRg2H1/r37Wi9LawvAMqrBPExzhr63zz7sR1b8o1l4GDDQhdB3fIi1E5MsUmIVejeDthQ4L9uRUxfjMO3DZblejTJci6N7BmSZvwMSld4+CSFO6ZaPz8zFgEb8gXd04J7zLVBRPVfU3mZQGkRuiQnO2ozXAFh4dA1VeGeY32P3Z3jBMc9mIN1Xt9rIsW7FR9sPn9HuEn7mnxtO/klge93brFg2gJf+NgRAxX27x34OdtWIbjgbfehaADQz+rTchv3f2X9YvhiHvBFo/nhpV8Fw7sDFx8YIYlVtINp+gLsvOILwPKKL5y1wb8Ay0zXdcS/rss2TAHmrrd+DUbA7ikAQCZd7iwUDYB67EtH74Xtk4CMHP/l+Z40xEmFq/EVlPqeC0+AHQjdu71SQKL1ITNKK3liF7ngJLh702qg957hH8tO4nRXeFA6EGXANjh5WRaQkSPo26n533N14V9JsUCJZZiZfq7Q7XMO6OwLaLayIgco1kyFbYPI1eviYFf2/2YI9ttdBQyEZGAkERERERERERERURgEDBvgd1ZEtCvgXEdERNSy8L2bqEWw/cyB23HEYjAltVIMRmv9DAD9tv8L5CcAF4jIJqeNi8ivSqmTALyNuvAzBWDE9n9WPgJwqYg4SEggIiIiIqJQUCdcCnnnEVd1tMFoHheNmAECYQDfRcCxzq7QlM2rgfcmOSqrbnuVoWgtgEpOg/QaBKxZ0mB5kujDr+7eJxN3vHM0olETsH35fgpwwZ2QC0c2eaz1qXNuiohQNABQqR2BH4sgh2muWhbfdtjXJvAlI6aPdTDaxpXAvkc0fZABlFQIjnnOxMxVgcvuURWgUK7NxxprFrsbWIjJ5y9Cnr0h6A+bB1Q5Dx5L9W7d8XeKt1BbbmtuEayC0XRBH+VGAgSAVcyALP7LcnmwJnxg4pXfQh+M1q+z9XIRYPUWYM+uztqZNl8/NgXBxIIXbOurx/4Htf/RzjoLs/6dNcFoSUN8P6NQT56n6e+taYlAj7QmN6N129EG/ljpxTeaTf692YI7xwUZjKbZtTEah+AV5qFrqrNgtA5tghrKTjewC7Bg3b74FXuhSsXiiJIfkChlO9a381q8qLbLt8+4xMocweFPmztel/d/JXj8FIUbj7B/7/38P1+QWrjlFIvrgI9L3xWcMlyQnODutScilsFbTQnU8ltnWUfsw78c9ms3Tv+xCAKO1cGyBvUClG+NPBGQvydL/gZ+/sxRWfX2v1BRzr6uTEu0Xp7vSWuw7+OEKUBhGZCWFLicFUMBibHW66wCkIi0agIf12LTqhYfjGZ3COR02kpJUBg/XOGTufbHCNPmC24+svknQ937Ssc21vNCrkUQdS3d3NMlGWgTB2yzCECbt0G0Y2gTp+9Lp6vD8N63Z5koDTDvMRiNiIiIiIiIiIh2eS3tosSWNl4iItqF8T0r4nG/gohoF8S5n4iIiEKHwWitz7MANgM4AEAPB+VLAXwPYLKI/BRMhyLytVJqTwD3AzgdQKqm6GwAT4jI58H0Q0REREREwVMdukLGXQjMeMtxnSoVbbk8xs2RpDhIG6gOfHWk5GVC3psEfPGyo27VRfcAR5/rqCxFgP2P9gtG61u5EsneQhR5Gl6J2yYOuHlAhqNQNADAgpnAt++FaqQ++x0FnHhFaNtsIhUbB+neF9iQ4b/S68slT4pT6JIMZBX5F9kc7Z8EJQBeW9gO3+T46l9zqIGxA6wvLp+9RvDEdyZKq4Cj9lSYcLBCTJSv7O8Zgld/FyzOFIgAfToCVx1i4JD+dW29N1schaIBQP8qi/tYX16mfl2aJhErxMTrBb59H/LoZXULUzsCW3Ob1G7fypWOyyZ7657oFNPiSd+uoAyWSQS6oA8AqFSxiBOLK99nfwcp2waV0PSUpylz3IWiAYDTrMJe7QGPYR1csCLbWTBaRo5gaZZ+/bu9p2HoskXWKzt0hbr9VaiRhzkbcDPo21nh+6X+j3fGkDOAbXc0eO1uiWp6MNoh/QClwhtWcdMRBr5ZbL0f8tUCwZ3jnLdVXSN45y/Bp3MF2cXWZYzG+zxF+eiS3NtR+7qgn0glG1dCJk0AFvyBRADj8K1luRhUo423GNs8bf3W5ZXY9/F/X4tfWN9tXwguGCVIS9K/dqbMCf5kiqJy52VnLAyun9TrTPRq7y74SxeMQqSzs7N7JXMN5IqDHJVVd70F5SLsybf9+28U+Z52iLHaNwkgryRwMJru/FylgCTN/lKggCCiBhx8JoItm8M/jjAL1bnur5yjUF4lmLFI/x556+eCm48MTX9u6MbTrR2wJs9/+cocfVu6x8tQQL9OwNz1/uvm22SE6+YrOyN6Ws+5jX3+X+C2GIxGREREREREREREREREYcHQrVaMzy0RUevE+Z2oRbDbz+Y+OBE1MwajtTIiMhXAVABQSqUAGASgG4BOABIAGAAKAWwFsAzAQhHxhqDfXAATlFLXoi6UrTN8wWubAcwTkbVN7YeIiIiIiIKnbp4MWbMIWDbXUfnqUASjOUlyqLG/OlKK8iGXjwZyba7wrEd9tgqqUzdHZSkyqF57+n29EYNqXLb1dTze/qYGyyeMUUisKnT+dci6ZZDvPwrFMH32PxrGY/8LXXuh1K2PdTCaWXfY3zVFE4wWlQ4vDJSreCRJKQDgxo6T8Fz2aUDBxMzBAAAgAElEQVS2r8yXC0y8eYHCWfsoVFT7QuqUUpixUHDcC3WBQN8tEfy3HnjnIoUflgqOfd5Edb1PHhZtBqbONzH9agNHD/aF20x3GDDTriYf7b35jspaSukQfF0X5NW7gQ+fbLiwiaFoAJAkpegWX4qN5YFTlFLNwh1/1w9Ja6xAklwHo5WreOtgNAByzeFQb8wOOD47BaWCs153/2WJoclKEhEopSA11VBR0YiOUugVX4SVpcl+ZVfkCGofkNp6VqbN149vwyQD6e/+ab2y1yCot/8NeyiYW/01mYHLcw2oj5dDjmgHADChkO9Jsyz7UO49uLfjvfDCY9uXUsDtx4Q/tWdMP/26OeuA7CJB52Rnz8ONnwle+Nn+NWmgcTBaHrp1Dhwm4TGA5HhHw4gIkrUOcpaLECNvgWUwWn5J3bZm5d2//B83rwn8b77g4gOt65VXCX4NkJ1px00w2pcLgv9C1yoYhSiU4nbiN3+yrRBy+gBHZdXEJ6COPMtV+7oQs3xPO20Q7D49ffO+Zb3SwH3ahRPp9pdKGIxGbtRUBywieZk275otg907p5td4+QEhWlXe1BYJnj0W8Fj31q3/PzPJq45tHmTIq2ClwGgfxeF3zIsQh1LgbxtgvZt/B8A3cdpSgH9OivMXe9fYFmm/lGOs/6Iz9a+u7uvo1NWZX98RURERERERERE1DrwolCKNHxNEtGugHMdERFRxGFoElHL10zBaJwtiMiJnfy78RROIlIoIn+KyBQReVZEHhGR/xORySLyoYjMC0UoWqM+q0TkFxF5W0QeFZHnReQLhqIREREREe18yuOBmvQ/4MTLgF57AnsdBPX0N8AR1hejV6kYy+Ux9nknDTn5sKvaPhgN37zrLBTtgHFQ7y9gKFpL1L2v5eKHt9yDR5M+wl7dgJE9gcdOUXjkJAWU6EOe/BgGsOAP5+WHjwGGjvZf3qMfcPZNUA9Ocd5Wc1Oaj3mk7ursrinWRR7ocBdiB5Qgpf8W9NhjJd5NPhuvpF7qV+6itwVxV5pIudaE53ITxmXeBqFotd6bLfh3veDJ7xuGou0YkgB3/q+uXkaO/V2rNbxinrOCOuUO0i+aSHI2+oeiORUdAySn1f2LiWuwWt37Lvr1DByKBgCp3q07/o6CF0nebZblSg3rhJEE67cAAEC5YZPilDEP4jDIUmffhzWJAgF46m0CkrMR5t1nwhwdCzkozvf/IUkwR8fCfPUe9M22Di7LWF2IH5YKjMu8O17jxmVe/Ly84fuZLhht392B3VJt5qk9hkZkGEC/TtZj2rINyKtJAA4YBwDY6kmFV1kn7hxW+jO+M6/Dof2BwV19y7ql1gVdGAo4tD8w61YDw7qH/zFQSuHfu/QffzsNZFyeJZj8S+CyfsFohfnYuweQZBMyCABpiYChS/WLQPLafa7Kp3kLLJfbhRGZNsG6Py7V1/txGVBV43Rk/pwGo1XXCH6wGQfRznbAHuGfU2ThnzAvHw1zbDLMs/aEzP0JsjUXckwnR/XVba8Ap1ztut/2umC0qPYoVQmW6/p3UYjXBALlWe8eNaA7pFVKP8eXMhiN3PAGDkZDXlb4xxFmdh8PBbN7nJKgcN5++oq6wLRw0gWjDeyir7M823q5bvSGAnpY5xRj9RZ9P8GEZiqlcMGo0LyniACVTdhPIyIiIiIiIiIiIiIrvHy4deLzSuQOtxkiIqIWhaFpROQQp4tg8EGj1mkn/m48ERERERERNTeV2gHqxucbLtz7EEh1JfDL5w0WV2uC0aJdBaM5CLepsb8IWOYHDrVSr/8F1W+401FRpNEEoykAN215Arc8dU6D5VLqIhitwGHiVlQ01IwsqIQ2ztuONB7NxumtSyZLT1UI9EHn5uiuuCj9tSYP555pJr63CY6ZvxFYs0WwWyqwLt9Zm8eUfNu0QZUUNq2+E39MC6qauukFqBP8w+ga659n4sdlgT+sTvU2vK8pZhFKPM5f34kx+tdKhQqQ9PTHl8DJVzruq77fVojtBf12arOlxDQh958HLJplXfC9Sejb8WHMwDF+q76dV4F3F/m/dx32lIml9xvo30Uhp1jw1xrrpk/Ya/sgdMFoScmB7sZO0b+zft2l75qYOvp4yJ8zkOfRpDAA6FCzBSNWvYNDXpscMeFvw7or9O9sHTgxfaHgEosczMbe+UscfalmNN5eivIQE6Uw6WSFqz7UN6AL+YlEUlUJ/PCRqzrtvNYTvF0wWqFNQFmcJtwIAKbO0z/OHgOYfo2BIwcpfLdEcPSz/tt5cQUgIgFfv5sKgXIHGTZEO8Mh/YBxg8PbhxTkQK46tG7BxpWQ6/3fU3XUlKVQXXsH1XeaJh8239MOZYZ1MFpCDJCWBGza6r8ur0TgO+rQswsnStQEyZYwGI3cCBQWDwBbNod/HGFmtzsV7J7jgC5A93bABosc1s2FQGGZICWh+fZLddmu6ckKbeMExRX+69YXCA60eAR0IWtK6QPPc23CHu32oez0szlOcGvyL4Ibj4iM4wQiIiIiIiIiIqLmx4sSiVonbttEOx3TEloAPkdERLsezv1ELZ/Ndsx9cCJqZgxGIyIiIiIi2sUppYD73oc0CkargvVVkzFujiTNpgejYUOG/frhYxiK1sKphDb6j0zXLYOUbWsQWCb5DsPO3BgzvmWHogGAMqyX1wso1F1AHQ7fLA5c5quFgqMGKe1F3/XFm2U4ddsXTRuULqwqRKSiDPLsje4qjRwLdc4tUMPHOCrer5OzZlMaBaMle4uwKXo3x8NKsMk+K1fxtnVl0V9QQQajPfadgxeDRlltpsTcn/ShaNv1q1ppuTw3Sv8AT/5V8PyZCj8t0wdlnRgoGK1NM26ELqSnAEmx1kEuXy4Aas4+AZ6kW7HF217bRgdvHiA1wO/TgINPDONo3TluqMLybP8n7IelQHmVID7GPpzhk7nOvrgzGoXBSmEeFIAJYwz8tdrE+39bt5PWkoLR3nzAdZ32mmC0vLWZAKznpGVZ+vZiNaEemYWCt2fpn6u5dxoY2s33XCdrpjCv6dsG2sTp+weAvBL79US1PMb2f6re39v/GUq/zm6ZoVmXGKtwUF/g7H1VwHmtqeSE7sFVHDMe6vpnoNo53JmxkJZkHdya50lDqWGdmpYY6wuhtA5GC9yn3SFtYqz1eEoZjEZuBPpMBAA2r3EU3hnJ7M6FCvZuKaVw3FCFyb9YN/7TMuDkvYNrOxi641qPAXRrByzJ9F+32WJusm9LoWtK4MDzxoINRksPYa7zy78JbjwidO0RERERERERERFFnl3lotBd5X4S7Swt9/sgop2D70utF59bIqLWifM7ERERucNgNCIiIiIiIoIyDMihpwI/f7pjWZWKsSwb43HRsDgIuKmu0q6SbYXARuvwmlrqrBtcDIgilXrgQ8g9Z1muk6evh7rz9boFc74Pbee9BkFd8X+hbXNnMDQbp+nd8WdzBqM5cf3Hgh4TAp/MFWNW4oXs69ClJrtpHZYWQUwTytCEyDWB5G6CnLWn8wqGAXXVJKjTJrrqp39nZxfBp5oNr7Bv5y1w1U+iXTCaYR+MhvLgUoO2VQh+Wh5UVQDA6rVFMF96HPjwyYBl+2iC0ezMXOl73K0CDQCgT0egf5faYLRCyzIqKYTJAiGklMKQ3YBZq63X/5mTgoNveQl5T39uuT7BLEWClAMA5K7TgV/LoDxudhjC57ghCo9/57/NlFcD3y8FTtgrNP2oxttl5todfz56stIGo/Xu0DJOaJWyEuCDJ1zXS9PMPfnz5kNK2lhuE1d9qN9/jNeEepw4WV/n8wl1oWiALyBJZ10eMDhAhmTeNvv1LYlSgYO5/IK4XAR5GZbrVMOgLxfhX4GWNain9H1ajjOIkDK7x8cwWsa27ZbM/Tmoeur/PoE66IQm96/bfsuMROR72lmuS4jR18svDdynbq/LMHyholbKqwGvKfC00tcBhZiTYLScDcC6ZcDuA8M/np2gKVvKpPH6YLRTXzFhvtp8+6SmZsLwGL5jcavjiExNnrJdyNpuqe7HFmwwWtdU9yFsOqu3hKQZIiIiIiIiIiIiItohwOe3dr9aQiHC7wOJdjon56kTERFRM7M7FuFxClGLYPeZAj9viGB8bqh1YjAaERERERER+TQKMKlW1ldNxrg5knTyYdd/vwJ9/VNJpCgfcmy6fd1+w4ERh7kYEEWs/Y/Wr/vvlx1/SmkxsGZJ0/tL6QB1wR3Abr2BvQ6Cig0Q9NQS6MK+zLoTP9KTI+9DzvEv6U9MeTr7RqSYRRhdNhM9qzc0vTPT9AVWtbUOzgiWLP0HcuM4oLLcvuBJl0N17wvEtwEG7+/726X+nZ2VS/E2vMI+vSbLVT8J1tmYAIByFWdfOT+4ALvvlwBVNUFVBQB0/uoxIP8pR2X7VboPRluwCRARrMi23o5G9Kx3smOJJuEgKcLSCes5a1+FWaut79u0+YIxp4/HlrKDgWn+6zvU5DW4LQ9fAnX3W+EYpmv79wbSEq3Db0560UTVSwaiPPoTVQschOYAgEKjuWzDih1/pqconDZC4ZO5/o/vmfu0kJNkf7d44h3QhTLme9oBv00Fxl3QYLlpChZu0rdn9QqtqBYs0NSJiwaOaJQh06MdEO0Bqr3+5ZdnOwhGK3H3XnriXr75ISUhUPCXchTKpQ//ch9SplQLef1RRJDKCsj1NvvsOiMODUkoGuCbz3U2RVtvvAnzf0D7LofDagbJc5Dlqgs6UrAPki2rAtoE2GUiAuAsGA0A5v/eooPRwnUuVEKswp7pwGJNePHLv5m44uDQB2NbsQszS0+xDhjL3Gr9wGjbUkBXl8FoSvn2fYKRHpm5zkRERERERERERBR2kXd+ERERkTW+Z0U+PkdEREREREQUPAajERERERERkY/R8CrJKmWditM4GE1EgFkzIF+9CcQmQI09te7CdzPwL3HJ5FuhzrjO9/ef0yHfvA+UbQP++dG+4oCRUHe9AeUJ8upOiigqLgESEwdUVfivzN0EqaqEiokFtuaGpr/zboU6+cqQtBUxDM22UG877NrWC6BlbDOHl/yAa7a+FPqG5/wAHHZ6k5sRrxf4fDLkr2+AuT8HLK/u/wDq0FOa3G96CpAUC5RU2pdL9RY2uN3FZTBabJTvAn6rC/LLjQBBghsyICKuA3e+Whj4BJhuqcDGrdbrjiz5wXFfnbw56FG1HutjejiuAwC524Blmty3fttD60QE2KYZZGLkJgtccZDC1R9aPwdfLRA8fTqQh1RYnajUwdswGA3ffwg59GSoA44Nw0itSV4m5PmbgZ8/8y047HSoiU/Ck9oB44YovPuX9X2LmWBi3GDgiEEKbeOAqfMEuduAvXso3HaUQlGAvMNaRuNfH920CuL17thPeeFMhZIKwdeLfavbxgGPjFc4fGBkB1PJtq2Qtx4CPn0hqPq6YLQiTzJk5nSoRsFoVgF29ZVazH0rc6xDzgBg7+5AYmzDxzg6SqF3B18IWmMrcgSBftE50Bjr++AShTP3aZ4wFqKwm/pyUNXUPe+GbAjtk/TrsqOs02MT5n6NdsfsDcA/SSjfQdChLsxJKd8+mU5pJYPRyBnJXu+s3MaVAd6hIpvd1tbUnM59eykszrTu4coPBBcdIIiJCv+jpwtSNJTvOM5KpiZPWTf3eAygQxKQHA/H+6lxUcGHoboNYSMiIiIiIiIiIiIdBoIQUT3h+kUZol0St6dWi3MlEVHLZTeHc34nahlst1Vux0TUvHhFDhEREREREfmohoeIVSrasliMp9HFlP97FXLbycCfM4CfP4XceRrk0+d960xNSkUjsjUX8vW7vnZ+mxo4FG3gPlCv/AHVvZ+j9qmFOG2ift0XvoAsef7m0PR1xFmhaSeSGJqPeeoHoyXVNNNgmq5v1aqwtCv3nwfZsrnp7fzfRb7Xo5NQtKsfC0koGuC7oL2/de5HAylmw2CurjWZ7voRQbz12wAqVIBgtPISIN9dEBsAzFpt/QXJJaMVKl80sO4RA+seNfDFBP/X+qiyWRhcudhxXwrAlVvdB7x8+Ldgmeau7Xhelv4DlBZbF2qjSUSIAIah8NYF1oEJa/KAvG2CLSXWddO8+X7L5LaTIfN+C+UQLUl1FSR7PeSk3etC0QDgx48hZ+0JKS7AcUPsgyBmLAKunSK48G3BlwuA2WuAyb8Idr89cMBrLQONylZXAdnrdtxs30Zh+kQPtjxlYPF9BvKfMTBhTGR/PC9lJZAL93EfipbcHmjjS9FI8VqnfRR6UnzbSiObCy0K11NW5b9sRY6+/OOnWj/Gunl0zRb7/gEgT7MdNNYjDThpWEuOsCFqSL5+x12FpGSoH4ugUjuEbAztEt3XSTRLkZa90HKdk+3ZLugo0SYYLVCILRHg+ywE015zVnjjyvAOJszszpNqajDaVYfYN/BbRtPad8oqVBrwhZnpgtGyNcFourYMw7fffuQg5w9anOa4zok2caHdlxGe3EpERERERERERK0ZP/+iiMPXZOTic0MUMnz/JSIiIiIiImrVIvvKKyIiIiIiImo+Hk+Dm1UqxrJYdL1iUloMeflOvzLywZOQmhpAHAaKFOZD3pvkeKhq/ASopl45SxFHXXiXdp1MvhVSVgLM+rrp/dz0AlRyWpPbiTiGx3p5vYDCtjE1SPJuC1mXyfHA4K7AY6co/O/K0H7MtFfFgpC218C3HwRdVTasgHlsV+CHKY7rqNOvDbo/K8O6B57/2tc0DKpKr3EXVKY+egLxNdavlXIjLnADa5e66m9bhWBVrvW6IwcqREcpdE9TUErhxGEKU680MLoP0Ks9MKHDP/hy48kw3Jw0eOipuFE+Qop3a+Cy9dz4qb6PvbsriAjkitHWBZQCeu/pqr/mdvhA/Wur440m3pxpff871FinScnEIyCrrMNomkrWLYN59VjI4amQU/taFyopBKa9jiMGBddHjfNcNP9gNABYv8JvUVqSwsB0BY/RAvZjvnkXyNngupo6eQLUCz8BBx6H5GTr/ckioy1QkA0paZgGkhkgGK200v81uDxbv13u18v6cU5PsV5eUBp4HrELUtq9PdA1BThzH4VZtxqIi24BzzNRALJxJcwzBrh7b+81COq9+VCxDvYZXIjyKKQkuKuTYJah/YY5luucBKPpzqFWCki0nuIAAKUMRiMnvv/IedkNzZTuFSa2wWhNbHuvbgrjBuvXn/Gqi506B2T6WzBP7Qvz6E4wbxgH2b6/5LUJUmynmbuKyq2X69rybD/sHuPidwKaEowWatXOfj+BiIiIiIiIiIiIiJxgGFDLxeeOKIS4PREREUUeu/dnvncTtQh2x60hPKZtpm52HXzQqJWK2tkDICIiIiIioghhNAw10gWjxdQ/kvx9GlBmEZyTnwVsWun8A5WiPGDTKmdlew8GDjvdWVlqUVRMLKRbH2DjSsv1csYA+wZOuhyY+op9mTHjoU64NMgRRjilCSYz610E7q1Bj+pNWOJxlxJ0UeHbeDXrSqjLHgQ6dAW69gL6DIWKa3h19083GBj7VNMvOldi4piSb5vcjo68ejfQayDQZXeg5wAoQx/qJjXVwIp5QOEWoDAP8uhlzjtKSoF6+bcQjLih44YqvPaH/fya5i1ocDu9OtNVH0ZFKeIrtgLRbfzWlav4gPXl7++hRh7muL9Fm/XrhnX3X3Z8/3IcH7UQ2JoLueNUx/3AEwV173tQh4yHiGDRoT3Ru/cyVBmxztuwMKAL0LujgnzwhL7QyMOgUjs2qZ9w65IMtI0Diius15doQl7ae/O0bcqFI4Gvc6DapLgej1SWA0v/AXI2ArHxQEzd8yS3jXfWxnfvo825t2DCGIWXfg3fFz2GVRjshgxg1DFh67MppLoK2LTaF2K7+0C/wFmprIB88pz7hrv2Ao67GKp9F6hHPkO7lQI87v/YlBsJqFQx8K5ehQWJw9G3E9ChjcLmQvvnyOo1mJFtXfaEofp20pKslxeU2nYPAMgvsR7jJaMVXj2Xv0VDrYfU1AAr/tMHfup07Ab19r9hC7Lu2AYoLHNePkHKkJazGOjqvy7fQTCaqTmmNRSQZJP7VlrlcIC0S5OPn3VeOHMtpLQYKrFt+AYUBmWVgn/WAX+u1r/Hh2K6+OhSA20nWh+Lbi0D7p5m4pYjFdrENa0zmfU1ZNIVdQv++RFyzeGQD5dqPwLzGEByvILViZ3FFYCI+M2ZXs1hdW0w2m6p1u1ZaWow2n69gNlrmtZGrYrqRp8rEhERERERERER7Sp4USIRNcA5gShk+B4b+fgcERERERERURPwtFMiIiIiIiLyMTwNblYr6ysnY+oVkz+n69vLywRKix11LbO/c1QOANRrs6A8nsAFqWXa/2htMBq25tpWVQceB7EJRlM3vwiMu6AJg4twHl0wmrfub28NjiuZgSVx1sFovdoDx1b8gLVZvuSZZG8RDiv9GWcXfwRge6BYfU9/DTVi7I6bo/sAvTsAq7f4tz2gC/DBJQaGPxg4OO3oku/QyWv/fDeV3Hay7489hgCPfgHVqZt/maX/QG4/BSjQpO7YSU6Dev0vqM49mjhSf2P7A4mxQKkmpAoA0rz5DW6n12S56sOAiXiz3HJdhbJJAak15wdX/S3aZH3yS5s4oGdaw2Xy+zTIQxcC5Q4SjGodfBLQcTeoQ0+B2nM/AIBSCl1OGI9LZr6FF9tdEaABe8cP9QUZyDfvasu0hFBGpRT6dwbmrHNXr4NNMBoAYPqbwJk3uGpTfp8GufM0dwOxsn4FzKcm4vmJT+OlX5venI4B/7lNNqxAeGKBmkbWLoXcdy6wZrFvwdDRwP3vQ6V19q3PmA+5eF9Hbak3/gaWzIYs+xeqRz/gqHN2tAMAyTY5iq+mXIzbXhqMyu0BnhPHKqQEyF20mveWZ1vPH/266B/9donWy/MdBaNZL2+vCVsjaokka51vDl65wH3lo88JWygaAIzsqZCR4/yk2USzFFFSY7muqNw6kKg+3fm5CkBslC8gzbQos2aLYFTvSHwXoIiyxSYd2MrKBcBeLsMKd6JP5po4/01BpfUmuEMo5oykOIWXzlaY8IH1Rvt/MwTP/SR483wDJ+8dfH/y2r3+C7PWwZz1NQDrQFxDAW01+zjVXqCyxj+8zGs1sQDwbB96VxeZw/FNDEY7Zz+F2WtCc7FCRbX+sSAiIiIiIiIiIqIWguEmRPUEuz3Y1eM2RuQOt5nWi88tEVHLZTOH85iSqIXgdkxEkUNzxSwRERERERHtcuqFjXlhwKuss7Rjti+W6ipg7s/a5uSb9533/cHjjoqpz1ZCRcc4b5daHHX+7cFXHjEWGG8RbhSfCPXIZ1DHX9y6Q/WU5mMeqRfWU1ONG/OfwQFlf/oV2yO1Ct9dZ+Dpu4dj6qbTMHXTaXg761KcU/yRNthHrj8G5kt3QPJ9wWFRHoXXDl+P1KiKBuXOjv4NC9ftg6FzX8G/561ClxhNqsx2T+XcbLte3TwZxh+VwJ7725ZzZNVCyONX+i2WmhrIXacHF4oGQP1vQ1hC0QAgPkbhKOtsOwBA2zgg+uizGixLP/JIV30YMBEvFZbryg0HwWhZ6yAuvvDYUGC9fM90wDDqXoGydQvkvnPchaINHgXjoSkwJj6xIxStljrnFjyaeyf2Lft7x7IoqcYFhfqAMyvHb5sOydkIrF9hXSAqGhg1zlWbO8vg3dwHRXQYfZDtennxdojXa1umQfn87NCEotWa+gpw1gD8esKi0LXZiFUwGjZkhK2/YEhlBeTb9yHnDasLRQOABX9ATuwBc/JtkA+ecByKBqWAHv2hTroCxh2vQZ19U4NQNAC2QWfXd34SlWbd+/JzPwkemG4/bzQORhMRrMixLtuvk76dNF0wmv3bEwAgj8FotAuQJ64OLhRtyAFQLoMw3Tp2iLvyCWY5ks0iy3U1JlBeZV9fNysZhi/MKTHWev15b/LEDwqDjHk7ewSOrc8XnPla4FC0UDp9pEKUzdkP2yqAU18xMWdtcNunuXktfs1MxsNpt+CTNiejTNXt6HiX658bj+E7RtMpssij9mryxGvz0NNdBKM1Dl1z68JRoQt5rKgOWVNEREREREREREQRiN8NUHML9JrjazJi8SJyohDi9kREREREFHJ2x608piWiZmZ9lTsRERERERHteoy6YIpqpb9qsjYYDWsWA6XF+va+/zBEA/NRn62C6tQtpG1S5FFt2wE3PAt56lr3dQ0DuO4Z4NiLgGX/QLI3QPXfGxgwAqpD1zCMNsLoQt/qhxF5a5BqFuKH9cfgr4R9MT92KExloG/VShx8+zNo23F3AB0h594KvDfJWb8fPgn58Elg8i9A5loc9OhlWIJU/Jw4BvmeNAyv+A/7lc+BAiBPXYuhABYaKTi221T8neAfvpOV0R0dvHn6/mLjgUNOBgCos26A3HGqs3HamfMDpDAPKqV93bIFfwBbNgfVnHrjb6io8H7sdvxQhc//s/5CobgCMO54DXLiZUDmWmC33kjsvzdSr/Nia5mz9hUEcabFFfoAyusFACAmFqiq9C9UUQaUbQMS2zrqL8s6rwS7pTa6CP+3qUB1gASTRtQ5+qA91b4LEq+8D39MPhQ/JR6CfE8ahlXMR7fqTXgn+RyILnCwns412Rj5+mmQ122+4Dn+krC/JkLlglEKb8x092VVx7FHArHXAh8/qy0jlx0AvDLT0eMgJ4YhVDBrPQ58dF+cNWoWPty6V8ibV1Yn2UVQMJrkZUJuPBZYs0RfaMrT7k4V7NwDKtY+KDElwU2DgW1rNN3kFPtCTqz076wP8UhLVLA6MbKg1Be2ppS+ri4YTRe2RtTSSOYaYM4Pjsqqe98D4hN8+xs9BwDDxoT9/W54d+vtVydRSuEx9eGcheVAgibcDABMTThR7Syhm4MAoKxSkBAbukAhal1E9+Kyq7Ninja0OtJMmy/Nfv5TSoLCqN7A7yvtyze4V0AAACAASURBVO33iImZtxoY1dvdo3n9m4V4vsd3O27vXf4fvt54PNK8BfD++xuAOy3rGQpItgmLLS4HOjU6bAoUjNYhCYj2ANUOsoebGowWH6Pw6eUGTn3F/Wu2sYpmDMojIiIiIiIiIiKipuAFrkThZfeZe0v5NogoQjCUgYiIKPLYvj/zvZuIKHw4x1Lr1DKuxiMiIiIiIqLwqxf+UqVitMWifv0U5kvvA7O/05YJuWEHMxRtV3Li5UAQwWgAfEEmfYYCfYbueqcI6QKcpN6JVF7fVcgxqMbBZTNxcNnMuuoJdcFq6rDTIU6D0Wq7ueqQHX93xBacUfyptmyqWYhf1x+Omzs9ipdSL4NXRWFoxUK8knWlfSgaAPXEV1BtUn03DjzO1Ri1RIB5v8FcMBPI2QD0HAisW+a+nYQ2UNc9DdU39KFLjY0bEjgURA0cCQwcueN21xQ4DkZL8xYgQawLlxr10n867gZsWm3dSF6mi2A06/vSJaXubykrgTx5jaP26lOjjrEvcNpEGJNvxeGlPzdY3KdqFTJi+wZs/9htX8MI9Fxc/VjAdiLFAXsovHquwsQpgopqZ3U6tAHUhEcgG1cCs762LpQxD/jmXcioYyCTbwN++Mi3/NiLoK54CCo5DQAgs78Nwb3Qe2H2kagatxSfrUoLabsmLObgrbkw7zkL6txbofoMDWl/bsknz9uHogVj4D4BiyTF+sJAzBB9x5Zb3DC4bHOhvmzvDvp1aUnWy2tMX8hRW014iYhog9HaJ+1yex7UCokI5K4znFfouxdU98DvlaHUM80XDKQLDWoswSxDvOjTy7KKgE/mmvh5uaBTW4U7jlHYvX3d9qybvgwHm3xeCdDdJnSNdnFbc93XyZgX+nGEyfqCndPv1CsNpF0feII4cJKvzJi+wItnG+jfxX6jnrdB8PzGIQ2W/Rs/HC+mXo678x6BWVEOaLZ3j6HftwCAIos86kDBaIah0C0VWGN/+Ayg6cFoAJCg/5jQFafHF0RERERERERERK0PL0okap2CPE+AQU5EIdT0H/ehcOOcR0RE9fF9gahFYMAhEUUQzRWzREREREREtMvx1IUiVSv9VZPRHz7avKFoANRlDzRrf7RzKaWAkYe5q7TnfuEZTEtieKyXm966v7cHo1ny1OXnq16DgINPDNHArEWjBs/k3IScjG7YsLI35qwdhREV/+krdO4B9Vs51F6j68apFNSHi0MyHrnnLODzF4GZ04H3HwNmfuW4rvo0A+qd/6BmZEEdfW5IxhNIu0SFTprMsXGDrZenp1gvt9KvcgWSzFLLdWVGQt2NjjahlfnZjvvL1IQbpSf7/pfqKshloxy3V0u9NTdwGcOAuukFv+VXbX3ZUR/HlUy3L9C9L1R0iJIEmsklow0UP2dgL4eZpO2TAOXxQD36BdCuk7acfPQU5ORedaFoADD9TcjZgyEVviA++frd4AbdrhNw8EkBi7U1t2HKV92w5Qlgzm2CubdUY0jX4LqsL8G0SLQAgF8+h1x1KGRZ4NdiOEh1FaS6Cvjpk9A27ImCOvnKgMUMQyHZJgjErfJqoLjeQ62bO6I9vtelTrtE/bqsIv26bRW+8DQrdv0RtRTy+n3AygXOK6TvHrax6ERHKeze3nn5RLMMKV59iuLYJ7244RPB9IXAGzMFQ+83sTSz7qQNXbCjcnCNQ4XNrjcRlvztvs6GFZCqytCPJQzyNUGijcWG+GfcUhMV3jjf+UVIv2YAA+81MXedoLyq4T9vvQng03+tJ4Mv2/jCur2b12v78BhAmzj9GIotshu9mrnHU+/sjgFd9G3WFxeCxzgmRM8Tg9GIiIiIiIiIiKh140WhFGEYvhXB+NwQhQznulaMzy0RUcvFOZyIiIhCh8FoRERERERE5FMvVKlK6QNcYqSqOUazg3riKyiGXu16+g5zVVwdd3GYBtKCGJqPecx6CS5er3UZoEEwGgCou94CTrkqBAOzl2IWIb0mCx67X+476lyoV2dCWdxH1a0P1Kt/hnGEAZx6DVTnHlC9BkFF6UMlw+GhE60v+D98oPXy9BTnAQH9qlYiUROMVmLUS/+JSwDatrNuJHez4/50QURdtgej4adPgfUrHLcHAOrie6H20KTENXbAsX6LnASjpdXkYWzpL/aFdh/obAwRJsqjcN1hzl4zHdr4/ldKAXbhgBtXWs9DRfmQw1Mhn00Gfvnc/WBPuARqyjKoBz+CuuZxR1VSxyVg+PmJ2OvCZMyamY4b46ahZ2pwCTYxZiWGVC7SFygvgXz6fFBtB0v+/QXmBSMgh7aBHNoGyN0UusaHHQz1xJdQg/d3VFwX4his1OtM3DHVRHmVYHOh9ckTXZJ9oWw6XVP0oUarcvV959mEvDAYjXYWWfgnzKsOhXl0R5gX7wdZ+k9w7VSUAVOecV5hxKHNvu9Ta3h35/s0CVKGOKlAtOY4triiYVsllcAT39fNLbpzqG2mmB3KmvfQmVoY+etb95VME9i8JvSDCYP8EmcnOO7fK/R9XzDKF46WkhC4bK19HjaReHXDf8kTTSRe5UWH67149Bvr+zMvbi8IAG+1PvHLUIDHUEiKtV5fbJGv69UcHnvqzT39OjubC+NCMFVHa3LY3SrnvEhEREREREREREQUOgwDasH43BGFDrcnIiKiFoXHMUQtg922yu04gvG5odaJwWhERERERETkUz8YDfqrJpszGE29MhNq3yOarT+KHOpA/5AiWwefGJ6BtCSG5kpls14Ikdcm9KdRsIWKS4Bx7VNQj0/Th641E3XHa1CpHfXrB4wAzr65GUe0XVoXqAvvbP5+t7tglMIBvRsu698ZOGsfXTCas3bbeovQ3puHRLPMcn2pqpcw4IkC2qdblpMFMx31V1Ih2rCh9BQFqSyHvPuIo7YaON55YKJq3wXqsgf9lv+3Zh+08RZr6z2aexfipNK+7dEnOB5HpBnQJXDYQkwUkBxfd1udeUPQ/cmzLusqBXXnmzBumgwVnwilFNRpE4Fzb3XVTFxFISbNOxOrNgzDk6fYlz1lLy88quEXRvdveQDxUmFfcUHzBTjKmiWQ644CVtuEtQVj0L5Qv5bBeO57qBFjHVdzOve48eg3gnu/FKzZYr2+a4A+42MUuqVYJ45k5Oi/ENxQoG+TwWi0M8iWzZBbTgQW/gmUFAEZ8yCXHwjJDCI4afUioCrAXFYrPhHqwrvc9xEixw5xXjbBLIMCkOItdFzn5+V184CpmRJqwxWPGqRvp6wKyC0WLNokKCjlyQbUyMr52lXq2qf0x2AbM8I0oKarrBbMWSv4PUOwNi9w+bho4J7jQn+sqZTChQcYKHjGg5uOcB6k2FhZFVBeDeRb50XvsDmqK0yb0y4821e1jbdeX1TuPz9og9HqdTOgi/24asVFB/8Y1NpDfzjuSkVwOcRERERERERERERERK0LLyInCiFuT5GPzxER0a6Hcz8ROWM3W3AmIaJaUTt7AERERERERBQhPHWhSnFSiTOKPkaVikFVShdUD9gPVWtWoCpfH5QTcnsMAfrv3Tx9UeQZuI/jouqZb6ES24ZxMC2E7sJ5s94V1XbBaB7rj4nUfkcBb/4DmfoSMO31JgwweEoFvpBbnXMz5IPHm2E0AHoPBkYfD3XaNVBtUpunTwseQ+GHGwy8M0vw91qgVwfg2rEKbeKsH69AQUG1elavhwKQaFqnlZUaifUGEQUMGAGsWexfcO5PjvrLyNGv67X5d8hNZwDFNmlEVoYeCNWuk6sq6txbgH7DfOFcG3yBE0MqF+OftaPwaurFWB7TH7L9tbhb9WacVvwpDin73b7RpBTggHHuxh5B+jl4CAd0briNquQ0YHom5FjrwLwmOf5iqPZdISvnA+06Qo09HWrYQX7F1FHnQD56Cqipdtf+ptW4dt7VuD/uBRRbZAPFmJV4cfpQ3H7olXhjdgxKjUSM3zYVx5R8G7jtgmyIiKP5rClkxTzIJfuFvuHjLoK67hkojyaE00bXFIVwfDX5xPf6Nu3C2EQEePth9Nk4EhuS/APe7ILRlmdbr0tLBJITwvvcElmRD54ASv0DPOX0AcDvFe7mHLtQtN6Doc65BfL390BqB6ijzoHqZZMIFmaj+zibV+LMcnjg2xdO8RZhS5SzZJ8NBUDeNkH7Nkp7TULtIztuiMK3S6wL3fa5ibnrgYpqICEGePYMhYsP5G9W0fb3og0rrFcefibUKVdBPnsB2GwRcrghMoPRZq4UnP6qiayiwGXH9geGdVc4cx+FYd3D+/456WSFJZmCbywOV0JleUxfDK3UB9Ia2+9icjyQaZHRaLXf6SQYrXs7Z3NhQmzAIgGlpyjs0xOYs65p7VS43D0nIiIiIiIiIiJqPXgpJxHVxzmBKGQYNNh68bklImqlOL8TtQh2+2LcTyOiZsZgNCIiIiIiIvIx6oIuOnlz8X7mhb4b7UfDuPZHmM+9Cfz3fLMNR936MpQu6IlaPWUYkPPvAN55OHDh4WPCPp4WwdCE1Zjeur9r3AejAYDqvSfUTZOBmyZDaqohhyQFOcjwUUnJkM49gOz14etjwsNQZ90YtvaDERetcPnBCpcfHLhsusNwoncyLwYAJIp1EGZJo2A0td9RkBlv+xfM2QCpqYaKirbtTxdCFBsl2O2pM4FtLkPR0rpATXzSXZ3t1D6HQ33gCzWQqa9AnpqIParX4LHcO4Nr79aXoZKSg6obCdrGq/9n777Do6jzP4C/P7ObnpCEJAQCoZPQixQFBRQsqKBiwQYKnqJYz3L208N6ep5n1xPFdnbsXRF7+WEFESlKlR4ggZC6u9/fH5u22ZnZmc3uZnfzfj0PD9n5lvkkszM7u5l5Bx0ygO17jfvohVlIZg7UtIuBl+4LaT0ydQ6k9yAEis+QrkXAnNugHrrGPBBSz9vz8d0RuRi4/lrUSqJP05Obz0b7vRvQ/o2rYfs7c9UCZTuBrFy7I02pki3AN+95A432Pzw8oWidukG78uHgh1sMZQylrjkmz5Kv3oaafxN6dbwPevGNWzfuBKAfnrRyq/6UxdmVUC8+DuR0BMYeC0lKtl0zkV1KKeCVh4w7vPs0cPSZ1iesrTFskr89BBkwCnLoNBsVhk9hNpCSAFQGCNhJbRLqne3ZbWsdf3nKgzcudMBjcOpU/1b17IMEFz2v3+nL3xu/rqgBZj+jMLaPQlE+gxTbvB2bgMp9uk1ywhzvF4VFusFoasOqgOdCkVZZo3DqPGuhaM+fIzh5ZOQ+6xERvHmhhiPu8WDRivCsY2VSMQZV/2rYXh9m1s7g9GBPpf8yo2A0rcnGtxp8nR6CYDQAeGSG9+e4o+69QXYq8OGlGoZ0AY570IN3LYTPVdUqIOqewURERERERERERCHSZm4KbSvfZywItC24rcIv2J+x2ThuNyJ7uM8QERFFnTbz/piIiIgigXeYExEREREREQBAxOAtoqq7G3OPzWCalhg4GtJ3eOTWR1FJJs8M3GnkRIjwploAjekMzXma3FFtFhBkEozWlDgTIE98F7jfv96AzH0WyMg27tSxG+Sy+yBzLATgWTFpemjm0XP8eVEXimaXlRvn0zzlDTf1p3n0wxr2NQtGQ2Ef/cmUAnZtC7jO33foL++dvBuOvTsDjm+QlAK5+QXIUz9AioZaH2fk0JOBpJSgh8vtCyAHT215Ha2sQ4Z5+35d9ZfLcbMtH1cs6d4P6DXQcneZdjHk6Z8gVz9qe1W9PrgTu1fm45lNMzF1z+v417arsH51b0zb+4rtuXzsNEjVCpL6+QuomcOh7pwDdc+lUKcOCOn89WR+4GO+GauhHaE0ro/xuYH64i0AQK67RLd95xbj8KTVBkGOxctegnrgSqi5Z0DNGQdVstlGtURB2rbBtFn9czbUXhthYGbBaANGWZ8nAjRNUNwxcL+mIa8FtVtsraM+1MzoGq36o0xSgiAnTb9Pc0oB87/iRV8EYONq47auRb7/+41dFfp6WuitpQqbSq31zU2P/Pt3hyb46FIN/TuFZ/5ViX3gFoOgcjSGmRkFo5XpBaMZHCocTd72Wz3HSgtRMNrQQsHyuRpePlfD8+cIVt2iYXg3gdMheOsiDQsv0/DfGYIlN2goNPgYoCpAoCURERERERERERFFCd7EThRe3MeIQoj7ExERUWzhazdRbDDZVyP4nlbx/bM9/HlRnGIwGhEREREREXk5DG7i9Li9/++0dyN5i6SkRm5dFL06FAbuk5kb/jpihWa0DzcJRjMLxzAar0N6D4Zc+5h+Y+eekMe+gRwwCTLhRMhbm4znOeNqyNRzQxY4JjOuAo46E6gPyzM6rgUz98V3h2yu1lLcsfGmfCNDq5Y0fJ1uNRgtr8B4wh2Bw4F26a8GhVvthTHJvR9ADp4KycyxNc5wvowsyF1vBe449hhg0JjGx0kpkL89BDloSkjqaG256ebt+3XTf1JJYR/IDU8B6ZktL6LnQMgdr9kOwpSuRZCjzwQOP832KpNVNU7d8xJe3nQaLt11Pzq7LAZdmT3/QngupZSCuuhQoMxGeKAJufEZoH2+78L2HSH3L4S0cBt2bR/5AJTD+pk0rvgBAJDrMghGqzD+tYlR6EvPmjWND1YvgVrwYKASiVpu+5+B+yx4yPp8RgG66a2QbmhBcX7gY0uqo/F7KnDZOwbvrgD2VSt4DK4RaHpOlWEQdqRn4XJedEAAdhskA6dnQeqCpcUoGG3Dqqi72Of9Zdb75gQ4twwXEcGXV2mYMjj0c69ILILH5LKL+jCzTIPM5T1V/svcHv9lTecCgHYpQGpi4PrSQxSMBgA56YIThgtOHqkhp0nInYhgQl/BOWM1DOoiSE7QH89gNCIiIiIiIiIiarOi7HNdImptPCYQhQxfY6MftxERURvEYz9RzDM9h+M+TkSR5WztAoiIiIiIiChKGIUiueuC0azceB8qu7ZHbl0UtUTToHoPBn5fatwpRAFI8UBE0/94WXnvqFY11VBXH68/WNMgmr38fDlyBjDhRG/Qz+4dAARolw106e0TXiQOB/DIF1DnjfWdoFtfYNJ0W+sMWFNiEuSaR6Eu+hfw5+9A1yKoYwqB6sqWzfvE997vI8ZlJAsGFAC/GGfVoW/1qoav06wGo2VkA4nJQI3OHf0lgcOkSiv0l2e7TYL8miveD+g/ynp/i2ToWOCBj6EunGjcZ/IsyJijoEq2ALu3A936QhJDmD7QysyC0USAwZ1N2iecCIw7Fli3wn8/dCZAffQ88OK9puuXx/8PUjTURsU6c8y8FurD51o0h6X1/OVG4PQroCZk6HcIwbmUcrsBpaDuuaTFc/k4+Hjv9tqwEti3F0jLALoW235t0FOcH7hPKB07BEhNMglMqjue57r1Q+VKVDsopXSD+IyC0bq4mh1YP3sdOO9WS/USBW3n1oBd1KKXIbOuszZfbY3+8gQLqTutoLhj4D5pXbsCmzKB8jIUWA24bGLVNuPLN5oeIqwEE9X7cYPtMigelemHcyKrSfC3UTDanl3A2uVAzwGhrytISzZav9ApUOhuOGWlCt640IFtexQ2lwJODahoduhzK+CgOwxSyQysSiqC20IwWkaKQO+oskfn7aqVYDQRQecsYHWAj9BCGYxmlWEwmkEGJxERERERERERUXzgTaEUZRhEEwFB/qE4Zfa7iMj/8Tmi2Gbvd3sUS/g6RkQUu0yO4XyfQkQ28JBBRACD0YiIiIiIiKieUfCFxw3lcgGb1xqP7TkAGDQGeGNeaGqp0g/jobZHZl0Pdd004/bMXMO2NscouKs+3PCHRSZjg/uISJJSgIKe3n9m/QaMAu56C+rxm4DSHcCA/SHn3gwJU9CGpGcCfYcDAJROsI1lAw+AzL4J0ntQiCprfYuv1ZBygfHFQMU1Kxu+NgxGk9TGBw4NIgKVVwBsWuPfeYdJClud0gr931ZkucsCjgUATJoOufjfuiFGoSBDDgJueh7qhlP9GzNzgOETvP1yOwG5ncJSQ2tqn64f4AAAHTKA9GTzn7s4EwCjfahoKNBzINTt5+iPvfDOFoeiAYAU9gEe/ATqiilAZXmL5zM0ciIkIRGq3wjgt+/9mtV3CyGTZ9maUlVXQj1zB/DU7S2rrWM3YMRE4O35/m3DxkOcda8D3fu1bD06euZ5QzyMAj5C7eSRAY4FrloAQI5BMNpOLRuendvhyPVNdKuuVSgxePp0qt3iu+DP3w3D1doipZT3fMTT5J/b4Gufx566fzbH1H+tPLbHqIb12lhP0zblMag1wPfhU6vRHDqPA1n3m/UNFWPBaH0tBKPlZTogj34Fdf/fULBmj+11/LpZwWNw7NKa7N5GAUB6RIB91QppZgGOFP/27NJf3jQYrfdg7+c0ek/Cr96JqmC0Uhs51DlpgfuEW347QX474/Ytd2m49PHdWPRLFcq0TABA99r16OTagk/TDvbrvzGhEHscxhPWHy8yU/Tb91T6n2sbBqM1O3T0yA0cjJYWTcFotZGtg4iIiIiIiIiIiCi+8e7g2MVtRxQyTEogIiKKMXztJooJZufZETwH5xHDLv7EKD4xGI2IiIiIiIi8NINQJY8b2La+IUSiOXnie0jvQVAeD9QXbwK7trW4FDnu3BbPQXFi7DHm7TkWEhHaCjEIN1QeKKWgnr3LeGyQwWh2yP6HQ/Y/POzr8Vvv6X+Denyu/XGzb4bMuDIMFbWupATBzDGCJ7/W/8C7uGZVw9dGwWjlWnrjg/rnTq5+MJpatzzg3zEtrdBfnukxDkaTO16DjDkqwMyhI4ccD1z9KNQ/Z/suv/BOSFJyxOpoDbnpxm1ZBuEOVokIcNQZwMiJUGcMA8qbbPMxRwHTLm7ZCpqua/AYyIf+QVie+/8GvHRfaFbSra/3/y69dYPRsGgB1LWP23rOqHk3Ai/eG3xN/UdBHv4MUheA68lsDzR9PUhMhpx5TfDzW5DoFPTKA1a1/BTRkmkjAhx1KrzpZrkGwWgecaD09zXIaRaMtsUkq7Gza7P/wuWLoYqGAauXAOWlOoFfBgFYhoFYjX2VYfhW08dG4V4mywPV4bNeC7XXP6bY4DIIRnPaSP2KoL6djIM76xVkCaSwD+TO19FthQLutpfQ+NFy4zU0zT00Oz40p5R33uOG2SqF4owqLdFvyMxp+FIysqEGHQgs+cJ//KqfAp5jR9LeKmv9UhOBlMRoqtyX2rcH+H0pOtRU4X+vHu3XviahO4p6L9cduzKxyHBeR91b9XYGp4B7dH5+hsFozd7298kXfLjc/FiY3gpBjAxGIyIiIiIiIiIiIiIywSAnohDi/kRERBR1eL5LRBZFSf4aEUU5BqMRERERERGRl8MgGM3tBv783Xhcl14AANE0qCNn+IZtBKsVwpMoOokI8OoaqON76nc44IjIFhTNNINgtI2roU4baL4fG4WqxYMxRwF6wWjHzwFefdh4XP+R4auplZ05Wj8YLUv2YcKsoyFpx0P9czbSlH4wWrWWDBcccMLdGIyWlae/sjceg+pQCMy4yrs/N6O2bUTpir2AVuxfj7tUd0qZvxjSZ4jBdxc+cvSZQGEfqHefAiCQo8+EDBod8ToizTQYLTU065C8zsCzv0C9cA9QWgLpPxKYfJbucybU5MI7oX5fCvz4acsmyu4ASc/0zlnYx/iSu49f8obBWaB2bwcWPNCisuT+hQ2haAAg594C9BkK9c17QLv2kCNOhxSHP52nb8fIBKP9dpMGTQvwvNm2AQCQYxCMBgA71mxEzgG++/cm/UMSAKDAtcVvmTpvnHkdRNGm1iAYLSExsnVY1L9T4D4FWY1fH9jb/jre+UWhr0EOsxZkMBoAvLdM4bhh0RsORRFQZvAalJnr+3joWN1gNHz6KtS2jZD8wtDXFoTyamv9ctLCW0dLqFcegnrgSsM/CgAA3Wo3IMlThWrNP+FseVI/w3H1x4t2BqHCZZX+y9wGJ5PNg9GK8/X7NZXWCofxZIOrUBiMRkREREREREREbRfv5KTWwOdd9OK2IQoZpiXEgGC3EbctEVF84vGdKCZESWIZT/eJCADi+K5XIiIiIiIissUoGEl5gJKt+m05nSDJjakoMv1KoN+IlpVx1g2QHv1bNAfFF8nrDLniAaBZQI5c9C9Ihy6tVFUUMgpG27PLPBQNACrLQ1+PXTOv019+wvktm7fPEGD6lb7LRk70hgMV76c/Jj0LGHJQy9YbxcYXCy6Z6Ls/JTqBh89OR9q02UBiEgCgnXuv4RyljrqkkYZgtBzDvmrejcB3C/2Xr/sN6sTeKHUl6Y7L8vinjMgHO1slFK1h/YPHQLv6v9CufqRNhKIBQF6GcVuogtEAQNrnQzv/dmjXzoMcNxvijMzf9BARyN3vAgdN9m/MyIbcvxAYe0zgiXoPavy6xwDDbuqLNy3Xpl5+wBtQG4yeAyFvbIAk+u5fIgKZeBK06+dDu/iuiISiAUBRfvABQCt/H4Cpe14P2O+2qYLijubrUV++1fB1B9cOw35r1vkff9bs0P/NapqnHO08ewLWR9Ra1MqfoKwcS1wGwWiOhNAWFCKJTsG0Eeb7fF6TcM9Ep+CaI+0di3btA77+Q7+tJdmdv27mlRptXlmJ/vJM33Nq6eYfHlxP/WN6KCsKmsutLIddmQXutia17Fuoey41DUUDAAc86FW7Rrdtk7Oz8bi6t+qZBsFoe6r8l7k95nPV69cp8MEo3T/HLexSDMLYGIxGRERERERERERxrc3cqdlWvs8Y0Gaec/GI244odLg/ERERRR++PhMREVHoRObuMiIiIiIiIop+Dof+co8b2LNTvy0r1+ehpGcCD34CLP4QWLcCyC8E/vwD6vG5usPlqkeAw08Dfv4c2LQGGHwgpNfAlnwXFKfk2HOAYeOBHz/1hvUNGw/p3q+1y4oumsE+HCNk3LFQT93md9GejD+uZfOKQM69GeqQE4BfvwW69AaGHewNXXpwEdShHzoXrAAAIABJREFUWf5jpl0EcUZnCEio/OdkDaeMVPhmjUJaEnBoP0GP3Lqb6uuSPnLdBoENALY78pDr3tkYjJaZa9gXANSbj0NGHdb4+N2noW4/BwBQ6sjUHZPlLvV5LOffDkmN0jSFOFaQKTD6BXVSnHy6LA4HcNsC4IdPgNU/A7W1QF4BMOowSE5HoGpfwEAzOaJJOMnoScYdf/4cSilIgEQd9e7TwDN32Pk2vCZNh4w9Btj/cEiSQfpGK+jbMfixvWrX4oVN0/Hy3hMwvfNTfu2DuwBPn6VhcJfAwSDqmTsbvk5VlehcuwmbEvyDTFZuqMJRzZat3q4/Z5+aP9CCfCSisFNnHwCkZkANPAAy5CBg8IFAv5GQpGZJObUGwWgJBuk2UeCywwQvfW98EVX3HN+985bjBC98p7C22SlOprsUtZKACi3N8rqbztyng/ExQs9vW2DptYDi2C79J4w0C0ZDV+NgNCz7Fmr7n60eFl5ebb1vThSeyqvaGqg54y33z3PtAHRynbc78wzHaHW7ertk/fPqskr/MVaD0Q7o6T0nr3YZrh5prXAYT07Q/16rTOokIiIiIiIiIiKiaMKb2ImsCXJfYagdUQhxfyIiIoopPBcmihEm+2oE92MeMuziD4ziU5zcukZEREREREQtZhSq5HZDle3Sb2t+0y4ASUgEDpzs/QdArfgB0AtG69ILOHqm92bwJmE5REakaxHQtai1y4hemha4TxSTPkOA65+AuutCoLIcSEmDzLkdMsz6Teqm8xcNBYqG+i5LSgH++yXUbWcD61d4A8EmzQBO/1tI1hnt9u8p2L+nTiCHeJ9LeSbBaDucuUANGoLRpF1784/QP3sN7829Hy9lnYzqxAyc/frTOBiAB4IyTT8YLdNT5rug1yCzNVCYFPhnBzaoMMjQiUUiAoyY4P3X3P5HQObcBjXvRsBV69vmcACnXQEcdkrjXEkpwHm3Qj1ynf9c5WXAzq1AbifDWtTOrQ3Bgba+h2vmQY46w/a4SCjuaBywZ+bVjdMAAA54cMqel5HqqcSsgkdR5siCU9Xi7z2/x/VXH2gpXEiVlgDLF/vWVbNSNxht1a5EqNISSJMQ4FWbagD4h2b2rvnd5ndF1Aoq9gKLP4Ja/JH3cUIiVN8RwOAxkMEHAoPG+B/f6kVxMNqoHoJ7TxFc8oL/8UUEGFrYfJngo0s1zHzCgy/rdt2j976LeVvm4LxOD+DNjCmW153c5HAw60DBta9ZP8btrgC27wXy21keQnFEeTzApj/0G3OanR90K/bug0bBhZvXAq0cjLa3ynrfgqzoCQNUbjfwxqNQ//mrrXG5bv0/HLDdYRyMVh9mlp2q315WCbjcCk5H48/HMBit2Y8wLUkwoS/w3jLD1SM92bgtXJINcsarDV5qiIiIiIiIiIiIiIjaFrPfLfImZiJbmJQQA7iNiIjaHh77iYiIKHQYjEZEREREREReRsFoHjewR//GT7RrH3Ba6TscavCBwNKvfJefd5ulEAsisshoH44hcvipwIQTgY2rgS69vUGL4V5n/5HAkz8A2zcCSSmQnI5hX2fUqwvZS1bVyHDvwV6Hf2pHiaMuLKguGA2ZuX59mno4ezYu2nQ+sMn7+IVuH2D+5nMwqfxDKNEP9ctyNwtG697P+vdAIWMWjLavOnJ1tCYRAU67HDhuNlC6A8gpAPbuArb9CfToD0lN9x909ExALxgNADasNA9GO66b/RrPuSlqQ9EAoG+Qh9bxFZ/7PD6m/G1sW1WIlYlF6FG7DqkFkyFykLXJVnzvX1f1KixK8w/DW+Ps5g1RG3NUw7J168sA+B/retcYhNtQZDgc3nMgzeF9/dKaPG7a5jBrc3hDQX2WN3/c7Gu/cZp5P80BadomEnhuv6813++xSR/1378Dy76x/nOrrQF++Rr45WuoZ+/y1pNmkNLljN5gNAC4aIKGapcHVy7wvZjqmMFA1xz/95s98wSf/U3D+p2A470n0PnROQCAgdW/2gpGS0tq/Pqk/uW49rU0W3V/ulLh5JF8P9wmbd8IVFfqt3Ur9nkoyalQx88BXrxXv//OrSEuzr5yG+eDRfnhq8MOpZQ3HPvD56wP6tQd8szPyH1sL7DEv3m7s4PhUK1uV8/NMKrHG5iY16TdMBhN563TlCGC95YZX1CanmTYFDZJBlehVDEYjYiIiIiIiIiI4hqDjija8HkXvbhtiEKH+1PcYugdEVGc4vGdKCaYnotFbj/mEYOIAAajERERERERUT3DYDQPsGeXflu7bEtTyx2vQT1wFbDkc8CZCDn9CmDcsUEWSkS6NP1wqVgjzgSgR/8Ir9MJFPSI6DqjWpOgsjx3iW4w2g5HnrdrXTDaW3uKcX2Pxdjm7IAJ+z7FzTv+gZ616wAA1ZKIW3Ov9pvjrIJ5pmV0rd3Y+KCwD5DX2e53QiGQkWwc2lJRE8FCooCkZgCpdYkVSQVAboFx36xcqMwcoEwnXHbdb8B+B+uOU//3gf3Cjp4JzLjS/rgIykkX5KQBO/dZHzO88kdkevb4LXfCjQE1v3kflGy2PuH6lX6Lurj+1O2605ELbPjSJxht8/YqIMG/b/fa9dZrALzPoeYhXk2DrwIFZPkEeBmEcenO0SxUy2CM+I0xWY/uHJpBrRbHaHXjLISGSZyc+4TEna9BHdWCcFelgPIy/bYEnSd+lLnsUEFqInDfxwoC4PABgjtOMH79EhF0zwXU9FlQ678EPngWRdWrba0zrUleXM/vnsFpZZl4LvNUy+NPnacw8wk3HJo36MjZ/H8H4BDfr50O3z664xraxGecZnmcfw316/WvQcznNBwXoJYm37umxWF4nM7rUYOuRX6LZM7tUEbBaBtWhaio4O2tst63OL91t6da9TPUvZf5BfebysgG9hsPueRuSFIKcrskAUv8L7faZhKMVh9mlquTpVuvpNw3GM1jcEWX9t/roKpHQA45oWHZ5MGC8581vgSso0HuZTglG7x0VNXyUjUiIiIiIiIiIiKi0OFnrq0vyN99MOyHKIS4PxEREUUdnu8SxT7ux0QURRiMRkRERERERF5GwQIeN1BmFIyWY2lqSc+EXP1IkIURkSVG4YZW9Bkaujoo9knjRXu57hKsQU+/Ljucud4vNAc+Wq5w3MJhQLJ30YuZ07A8qR8Wrz0QCXBhWdIAbHXaC2vJdu9CB/f2unVokLP/AZE4DMaIEUlOoNrlv3z2OG4TU12LgV++9lusvlsIOX6O/3JXLdQVx9hbx/HnQbvUICwlyvTtCHz1h//y/HbASSMEDyxq/AVqgqrB30tuDTypjWA0tdE/PCbXpRNcB6DEmQO1YSWqaxV+3ghkLfsIW5zjdft2cm0Bpp4LvPbfgDXIOTdBzrjKcs1ElqVkBO4TLGdi4D6tTNME5x8sOP9ge+NEBHL9fHgA9P/sV1tj05MaXwPVogU4vSzVVjAaoP/aGjqRuCgl/OsQCSYUzk64G+DUpKGv1qIwOrP1SuPXvwJa2gQkeaoxtHop2nn2er/Z9h0haf4JVuJwQA0bD/z0mV+bmn8TZNZ1If+5l1UobCoFeuYByQnm53vl1dbn7dephYW1gNq5Feov+1sfcMpfoV1wh99io3CzCi3NcCpNeQA4kGPcBSXlvo/dHv1+jpKNUDfcDdz9DmTkoQCALtmCYYXATxv9+588QlolYNA4GC2ydRARERERERERERERRSez37PxWhwiW5TBL9aIiIgoSjFsiSjmRTA0jflsNvEHRnGKwWhERERERETkZRSq5PEAe/RDIySzfRgLIiJbxCDc0Ir99MNeqI1qEkCW5yrR7bLDkef9wuHAvQv9Ly76JXkQns88GWeUPYuViUW2SyiuXuW9zO+oMyGTpkOGjbM9B4XOpYcJ/vme/y9JJg/mxZimBh6gG4yG7xdBuVwQZ7OP5xctCDilXPc41G/fA3t2QcYdC4yfGqJiw+/4/QRf/eH/PLp7muCUkYIxPYG3PliLdks/wvSyZzG6cnHgSUs2QykVMDhRVVcCbzzmtzzXbRCM5sjBE78X4qK/euoCPCYaXnvcec7lkCljgcEHQd16FuAySfxITjGtkyhY4nSG73Ihp0G6TRyRax/DsKIHgYXWx6QlNXnwy9coTuga8rrIe42GSwGusF7LHukQuYlA14kAAKeqxcW7HsAd268z/3wl1zhRTP2xDNJrYEiq9HgU7vhA4e+vK3gU0CkT+M/JgmkjjN9r7iw3bPIxuEsrB6Od0MtWf71QNACm4WaGc339NjDxWKQkCtKSgH06YXJ+wWgGT0uHcgMA1PxbGoLRAOCsgwQXPe8/6KyDWud83SgYrZLBaERERERERERE1FbxpkRqDXzeRS8GORGFEI91UY+vR0REbZDJsZ+vC0SxwWxfDeF+bLqakK2FiGJdC+6YJSIiIiIiorjiMApGcwO7tuu3ZeaGrx4issdoHw4kMRly5jWhrYVim9b4kaFRaNBuR5b3C4cTH6/Qn+asgnk4rsvLuD33StslDKxeDjnrBmjXPMpQtChw2aGCkd19l911kqCwPYPRzMiBR+s3VFUA29b7LVafv24+4WmXQyZNh3bpPdBufBpyyAkQLXY+4j97rGBCX99lV07yhqKJCE4ZpeF/B/2MB7deYi0UDQBqqoG9uwP3e+Uh3cXtDY5xFVoazsFVdaFo5grG7A8RgRw6Ddon5ZBPK4CUdP3OwxhESmHUpbdxW5+hwAGTgPRM+/O2zw++phghmgbHtIswP+Nhy2PS64LRVF0YYtfajWjnLgtHeRTHXJKAu3MuxZOZZwDJJolbnY1DvdTTt4esnreWAte95g1FA4AtZcApjyqsLTG+xGjhb4EvP8pNB+45WQsYZBpqylULtfAleGaNBNwua4Oy8iDzdIJt6+Rl2P8etGdua/jaKFitpNz35+g2uB/KAW8wGpZ9A7VrW8Pyc8cJjhjg23fOwYLD+kdXMJqVcysiIiIiIiIiIqLY1UZu1+RN7FGE2yJ2cdsRhQxfl+IYty0RERFRW8czQiICAGdrF0BERERERERRQjMIVaquBPbt0W/L7RS+eojIHgkuHEfe2QJJTg1xMRTTmgQWZLn1A4d2O7IBAEsq8lFtkjHwdoZBMFQA08ueBVKODWoshV5uhuDTKzQsWgGsLVE4uFgwsDND0QIqGmbctmGVT8iJqq4CPjMJRjv0ZGhzbjNujwEZyYL3Ltaw8Ddg9XaFA3sL9usK35CUhET7E6/7DRh8oGkX9cI9usuNwh+tcigXOrT3rVkcDqjDTwHeeMy3c7dioPfgFq2PyNT4qcCz//JfnpIOefgzSFIylNsNrP0VWPIl1NKvgCVfATu3mE4rY6eEqeDoc+bEdrjklT3Y62gXsG9aXTAatm0AAGhQGF/xBd7KmBzGCilevZExBbNSNhi2y4QToZ68Vb9x0QKofiMhp/y1xXU8841+Glevaz1w/9c/2MzjUXh7qf6lR8cOAY4ZKkh0AhP7CjpmRjgUrbQE6oJDvOdcFsnFdwGHngzJ7mDYpyCIfEntj6UNX+emAxt2+fcpKfd9bBiMppo0fPUOMOUsAIDTIXj3Yg0fLgc27lIYUCAY3av1zteTDa5CYTAaERERERERERFRrOBtp0ThxX2MKHS4PxEREUUd0+BSvnYTxQaTfZXhxFGM24biE4PRiIiIiIiIyMsoGM0oFA0AcjuHpxYiss9oHzYz5SyGopG/JiF7WZ4y3S6lmjcR4JSlh4V89R1c23BQ5TdA8mkhn5uCl5IoOHowADAQzSpJSYPqUAhs3+jfuHE11AGTgPeegXr/f8BPn5nPNfW8MFUZWQlOwZGDgCONnkcJSfrLTaiv34WYBKOpr98Fdm/XbWtpMFrHdDc0zf97kTm3Q23fBHzznndBYR/I7a/4BcoQhZL85QaozWuAT17xXX7Xm5CkZO/XDoc3oK/3YMgJ50MpBWxZCyz5CmrJV8DSL4GNq70Dk1Igs66H7H9EpL+V1jP6SJz7+GO4K+eygF3T6w9X5Y3vl5/efBayi/WPN4W1G7ExoTAUVVIc2pTQGUhJM2yXHv2h+gwFVv+s264evAoYPQnSra/P8l37FO76UOHJrxS27gFGdQd65Aqm7ucNqHpnKVBS7r0QprC94NWfjGt0nOvBzDGCg4uBGQcIRAQ/bAC26L9dwOkHaDhxeOu87qmaaqgp9j6vkv+8BxkxIWC/ztn269HggVIKIoLcdP0+VoPRNDQ2qK/ehtQFowHesNkjBgDRcL6enKC/nMFoRERERERERERERBRfgrzhmDeRE4UQ9yciIiIionjFt89EBDAYjYiIiIiIiOppWuA+zeV2Cn0dRBQcu/twSjrkzGvCUwvFtibPpWz3bt0uZY5MVEgK1lZkhHTVyZ5K/LJmuPeB0+BueqJY0rWPbjCa2rAKuPcy4JWHAs/RZwgwaHQYiotCifaD0bDs/wyb1IfPQ90807A9270bIsH/0rSgvX4oqaS1g9z5OtTOrUB5KdC1mKFoFHaSkAi56TmoHZuATWuA9vlAx24Qk/1KRICCnkBBT8iRMwAAavd2oLQEyOkIadc+UuVHBcnOwzEd1uMud+C+afU/1urKhmUZnnI89+cMnNblGZ++Q6qWYvHaMdju7IDVCb3gnjQDnkkz4fYALo83AMnlBtxKNfm67v8mfXz6e0zamo33+MyldPuGar0ugzAnMlcpyUCycTAaAMg/noY6fbBhu5o+BPi8quH1pqxCYchcDzaVNvZZvA5YvE7hxe91ZwhY55NfKzz5NfB/a4EHTxO8uUR/TKITdQFdkaeUgrrEXqCjPPI5ZMD+lvpmpwJJTqDaZXFu5fHGlFXsBdLaITddoPez3mk5GK3JAeq7j6Eq90FMQvVai2EwmsWfGxERERERERERUfzhXZzUGvi8i17cNkQhw6SEGBDsNuK2JSKKXWbHcB7fiWKC6Xk292MiiiwGoxEREREREZGX3VCl5FQgPTM8tRCRfZp+OIuuIWMhs+dC8ruGrx6KXU3Ce7LcZbpddjuy8WnqONQqG887E8meSuxfuRj3brscOe5dIZmTKCoU9gG+X+S//I15lqeQe95vO6Faicn2x2xcpbtYuVxQD5kHgDrGTEJxErBiq/3VAkDH9ua/YpGcjkBOx+AmJwqS5HUG8joHPz67A5DdIYQVxZbRE/qi8N2N2JhQaNovLbHui5pKn+Un7X0FlZtTcEfOFdjhzMXh5Qvx721XwQEPOrm2opNrK/DaV8Br5wUXTh4DPBC44YBbHHDB2ex/73I3HHCJs/F/0fz6NvbRGvq6G/5vnKthXH0bHHCJ/vr15vJfh3+9vnM31uvxq1fne4OjoX+1JKFG8w8rrJQUICXd/AdbWAT06A+sXW7c57l/A6dfAQC47T3lE4oWSo9+rnDlEQpv/qx/gdOEYiAjOfTnLqpyH9Tjc4HPXgcAyNEzgTOuhjTZl9T8m4Fl31ibsLAP5MI7LYeiAd5AyYIsYG2Jtf6O+iCzsp1AWjvkGGzmneW+P0u3wbVjDtUkGK2mCvhuITDuWGvFRJBhMFptZOsgIiIiIiIiIiKKKAazUKTxORfDeIM5UehwnyEiIiIiilf86IOIAAajERERERERUT07oUoA0D6/7YR0EMUCi8EK8pcbITOvDXMxFNOk8bmU6dEPRivVMvFz8pCgV3Hv1stwwe5HgInTgI9fCnoeomgnXYtadPmd3PIipF37kNUT9RL8w2IC2rUNau9uSEa27/JfvgZ2bjEdKmdcgyOXC1ZsDW4rFWTxXJgo3mjHnI07n5iFU7v8z7RfWv3hqto3GE0AnFn2P5xZZj4eAODxBFdklNMAaHDDIBepTXuh3UmY3vkpv+WVWjKQkmo6VkSAObdBXXmcYR/1yHXA5Fn4qbQ9/vVB+K4IcnuAhz5V+GWTfvuUIeF5fVQ3zwS+eLPx8eNzgdpqyDlzoTweYPli4MlbLc0lf38ScvipQdXR2U4wmmoSjFbQA7kGwWgl5b6P3QaHh4agtTrqq3cgURmMJtC7CYXBaERERERERERERERE4J3dRCHF/YmIiCj6mLw+81yYKDaY7avcj6MYtw3Fp/j8U+RERERERERkn8NmMFpau/DUQUTBsRpuOGxceOug2NckZC/LXarbpUpLwdLkQUFNP7zyR5y3+1HIDU9BZt8U1BxEMaOwqGXjRx4amjpiRTDBaACwYZXfIvXlW+ZjDjkBMmAURnUPbpUAUJAZ/Fgiik6SlIxp18/AR+snmfZzOuqCn6qrIlAVxYsUj/7zpVJSgOS0gONl9JGQm543bHdDwxV3r8KIW8MfumcWvBbqYDTl8cBz/Sk+oWgN3nwc6o9lUEflQ80Zb2k+ufiuoEPRAKB3B+vfn4a6bbF1AwC0PBhN+Qaj4et3odxu/c6tKNngz/MxGI2IiIiIiIiIiIgokngzbPgF+zsRbhuikGEoQwzgNiIiIiKi4PBMkogABqMRERERERFRPYfBXYtGklLDUwcRBUez+DFPt77hrYPiQONFe1meMsNei1NG6i4/abjxRX89a9bgxU2nwfnMj5DDTgHyOgPJBq8nbS0QiuJTt+Lgx445CpJqkJ4RrxITgxu3fiUAQLlqoT55BeqjF4CX7jPuX7wf5NJ7AQCds4IPb+mVF/RQIopiMuYoHFLxOYZX/qjb3tuxrfFBdWWEqqJ4kKz0ny+VWgokxdprvhxyPHCAf3DfT0lDcHC3j/CfLaNaVGNL7dcV6JIdumA05XJBXX8y8Nlr+h1Kd0DNHA7s22NtwlnXQ066qEU1FeVb71sfZKZu+wsAIDdd/2fTNBjN4zG+nMuBZiFopTuAX7+1XlCEJCfoL692AYo3pxARERERERERUdwy++wrnj4Xi6fvhaiVmH5WHto/QEMU91T4/2gUtRL+XpGIKHaZHsN5fCeKCWb7cQjP00yPFjxcEFEdm3e9ExERERERUdxy2gyiSE4JTx1EFBwrwWiZOZCs3PDXQrGtyXMp211q2G1DQlfd5UcMAJ6YqWH+g5/hpR8F3WvWo3vtegys/hWH7luE7AU/QfI6AwAkIRFqzFHAogW+kxTvB8kvbPn3QtTa8rsCHbsBW9fbHirTLg5DQVEuISmoYWrDKmDXNqg544HNa807jz0GcsNTkLpQxoKsoFYJAJg8mBckE8UrefNPnDDrbvyQsp9f27G7F0DVngdJSGQwGtmS4tF/vrgkAS5oMMiS8iO3vQw1IaPh8c2512Bu3t9DUGHLTRkSwlC0sp1QF04E1v0Wkvnk/oWQoWNbPE/fjgKrF2lqqLsRo6oCyuMxDEYrqwSqahWSEwTvLTOerz5ozcdPnwODD7RUT6QYBaMB3nA0s3YiIiIiIiIiIiIisop3CMcuBjkRhQ6PhURERLGFr91EscEsGC2CVfCQYQ9/YBSnLNwxS0RERERERG1Cgt1gtNTw1EFEwRELH/P0GBD+Oij2NXku5bh32h7et5MgNUlwwSVj8emwBXhy62z8o+QWnIhPkX33iw2haA2ru+JBYEiTgILu/SC3vBB0+UTRRESAMUfaH3j4aZDhh4S+oGiXmBzcuPUroO67InAoGgC57L6GUDQA6JQZ3CpHZWxFuxQGoxHFK8nOw2WHuDGz9Gmf5SfseRU3bb4O+Okz7wKjYLRegyAvrQQGjg5zpRRLklW1YVvF9hLL80hCIuS2lwEA92ZfEJJQtDcv1DBpACAtfGk7dmjjBKqmGmrBA/DceDo8j82F2rbBu7y0BJ4HroRnbJL33yPXQa1eAs9D18Bz4+lQrz8K5aqFmndD6ELRHvk8JKFoADBMPx9alwNNgsz27DI97/hjB1BRrXDWU8Y3Q/nMV0e9/ID1giIkxeQjxqrayNVBREREREREREREQeJNlEThxX2MKIS4PxEREUUfvj4TERFR6DhbuwAiIiIiIiKKEk6bwWhJDEYjiioOR8Ausv/hESiEYl6TNIQUVYX2rp3Y5cyxPLw4v24ahwNy+f1Qs28CtqwHeg6EOP0/jpSMLMgDC71BCdVVQGEfb5gUUZyQMUdDvfqIvTGX/DtM1US5xKTgxn3zLuD2Dwrx43AA7fN9FqUkCtqnKuyqsHfcmV28AUDngP2IKHYlnH8LHnszF3dsvxa/JA1Av+qVyHdv9zb+vhQYdRhQYxB0lZQC6dQdeOgTYOMqb7/qKqCyPGL1U/RJLUkGXtVvq+4xxNZcMvYY3Ft0Ky53XGqp/5drx+PB9nPwfOYpfm3pUomjB6Vh8mAHdu1TWPqn95z+ucUKf1tg/ULFIwcCQwu9r6fK5YK6+njgu4UN7eq9p4HbXoa6ciqwa2vjwGfvgnr2rsZ+ixYA37wH/Pip5XUbSk6FvLcd4kxo+Vx1uuUIJvYFPl4RuK+mmoSc7dyKnt1y4NAAt0722YotwOptwI69xvM5lM7AshKoNx+HHPOXwAVFSPcc4IXZgmSnIDkBPv/SgzzdIyIiIiIiIiIiimkMQaLWwOddBAT7M+a2IQoZHuuiH7cRERE1xdcFothgtq9GcD/mEYOIAAajERERERERUb0Em8FoyQxGI4oqogXuM2h0+Oug2Kf5Ppc6uzZbDkbLTQdy0n3DhSQjG8jIDjhW8rtar5Eolgwbb69/936W9pm4lGCelCF/uRHq8bn+DVZC0QCgXQ5E83+93K+bYOFv1qaoN64PAxyJ4p0kJEL1G4mcJV/i4IovfNrUw9cCo4+Eqq7UH5yU4p1DBOhaHO5SKUakblfAqzrBVgAqB4yzNdeeSoUbEi8ALLwEVv7WDglwAbugG4x2aNmHwG+FQP+RaJ8mOLjuKXvJRO//VsLRpo0Q/Hd6k9fGJV/4hKIBALb/CXX+IUBNVeCiv343cB8L5Ky/hzQUrd6dJ2oYfov+tmzK0XQD7dyChNxO6KlVY7Un36/vSf+1OV8T6tEbgMmzdM9zWkNWqmDaCJ4rERERERGML+8QAAAgAElEQVQRERFRW8NbNSnS+JyLXdx2RJYFDF3g/hS/uG2JiGIXj+FEFBrMUiQiAIiOK2OJiIiIiIio9dm9UbTuRm8iihIOR+A+aZnhr4NiX7OQvQLXFstD+3YMdTFEsU8Sk4AZV1nvf+a13iCdtsjsfDQ9Czjlry07B83UD3n8+2R7vyqZWfo0evVqH3wdRBQ7HMZ/Y0qdfwjw5+/6jUnJYSqIYlmKyctcVWaBrbneW6ZQ7g4ccP/axpO8oWgADqj6DjNK/+fTnurZhyt3/htY/JHfWKdDcPnhGn643vx1cs7Bghdma8hMbTx/US/co9/ZSihaqHTuCRx/flimHtZV0MnC22ut6YWeO7dC3TwTRbt/CHq9DmWQhFdWAmxeE/S8REREREREREREREQUQaZ3dvOubyJfDEYjIiKKL3ztJooJfN8ao7htKD4xGI2IiIiIiIi8EgLfUOsjOTU8dRBRcMTCxzxpGeGvg2Kf5vtc6uzabHloUcc2GuZEFIA2+yZL/eQ/70IOnRbmaqKXiAAHTNJve20tJDkV6D8q+BVk5uouHttHMC5huW7bmIqvMXf7XBxW/hGm7H0bD2y5BI9umQPk2guwIaIYZRY+XF4KfPySfhuDxElHisnHLpW11udxexROnRf4Apb+1csxpfwdn2WPbjkf8zafh+P2vIGzd8/H92tHY1TV91CPzzWcZ1hXwfHDjNfz4Gk670W/fT9gfWF10kWQx76FhDGksF+nwH2aBpmpRQuA//sQ3Wo3BL1OBwyC0QBgb2nQ8xIRERERERERERFRPOLNsK2KN5EThYbpvmShnYiIiCKPr89EFCI8nBARABj/mXMiIiIiIiJqW2wGowmD0Yiii2YS2lAvlcFoZIVvuFlBrfVgtL4dQ10LUfyQx76BOnu0cftdb0FGTIxgRdFJLroTatXPwK6t3gUJiZBrH2889+zaB/jps+Amz8oxbHp5wNuY+K0Hy5IHNizr6NqKh7ZejIHVy4GdTTqntYOkpgdXAxHFFivn2HoSGYxG/lISjNsqa6zN8eN6hTPmeyz1fX/DFL9lCXBhVtnTmFX2tF+b2rgaUthHd675MzWs3+XBD+sbl+WmA+9cHF1/h03+/iTk8FMjsq6ifMGiFeZXXvkEmdWFxXVybQl6nU2D1vzsKwt6XiIiIiIiIiIiIgoBhiARtUFmf0BSmbTzmEBkXaD9hftT9AtyGzEFg4gohpkcw3l8J4oNZvtqCPfjCK2GiGIcg9GIiIiIiIjIy2kvGA1JvNGbKKpoFm5IZzAaWdHsuZTnLrE8tDjf7II/orZNivczv8wrtyBSpUQ16VoMPPWDNzykYi8w/BBIt76N7YVFwV/SmGkcjJbbsxDfvDAOb2RMwfKkfuhesx5Tyt/RPwbmdgq2AiKKNY4gf5XK98ukI9ksGK028PirX/XgzvetvQo+vnk2CmwGcKnTBgKfV0HE/5y+XYrgq6s0vP6zwrJNQGF7YMpgQcfMKDv/H3tMxFZVlB+4j6b8Q+w6u6wHTzfnE7TWXPmeoOclIiIiIiIiIiIiso53pUYN3iEc3ZQyyUXjtiOyLsD+ovP7OCIiIiIiig9890xEAIPRiIiIiIiIqF6CzWC05NTw1EFEwZEAwWiJSRC7+zm1Tc2C0XJtBKMNYK4TkbnMHKBsp34bj9ENJCsXmDRdv7HngODn7dHfuLHHAKSoKpyy5+XAE/UIvgYiijFBB6Mlh7YOigsiguQEoEonBK2yxnzsN38oy6Foojw4bN/HQVQIqHHJUBOnQfYbDxw9C+JwNLQlOgXTRgimjQhq6rCT82+HpKRFbH3eUGjzbaIXZNbJZmBdU8rwDioA+8p8+5Zshnr4OuDD57wLppwFmTQdMvjA4Nf/0+dQn74CeDyQg4+HDD8k6LmIiIiIiIiIiIhiidqyDvjqHaC2Ghh9JKR7v1auKNx42ylRy5ntR2ZtUfZHaYhaW8DgM75mERERRZ9gz4WJKHqY7KsM+45i3DYUnxiMRkRERERERF5Om2EcSQxGI4oqTW5Y15WSEZk6KA74XmCX67IWjFaUD/TIDUc9RHFEMzlWMxjNmkFjgKQUoLrS/tiDjzdu6z0YyMoDSncEnEamnGV/3UQUm8yO22YSGYxG+lKMgtF0ljX11DfWL1iZXP4uCloQvoWPX4L6+CVg8ULILS8EP0+kTZoR0dUV5Qfuo+ncqNG5dnPQ60xQJk+U8sZgNLV5LdTJfX3b35oP9c6TwI3PQCacaHvd6qMXoG6ZBXi835N6Yx5w1X8hR59pey4iIiIiIiIiIqJYopZ9C3X5ZKBir3fBozcAt7wAOXBy6xZGFBBvhm1dZjeRBwp6IqJGgY5lPNZFPQZnxL23lii8uUQhMwU4dZRgeDeGfBKRGb4uEMUEs3O4CJ7f8VSSiABAa+0CiIiIiIiIKEo4E+z1T2YwGlFUkQAf86SmR6YOin2a73Mp173T0rDDBwhEeEEDkSkGo7WYJKcCY46yP+6fr0JyC4zbHQ5g/HGBJ+rQBTLqMNvrJ6IY5Qjyb0wxGI0MpBq83O+rNr6Cx+NRePTzwFf4tEsGZvZYh//JLcad0rMgT3wfcC4AwGevwTM2CeqJW6BcroDd1U+fwXPhofCc2t/a/KHkTAAycyK6yu653p+5GQfcfst61q5Foqfa9vo6uLahR+06w3ZV2hhorR6+Vr+TxwN14+lQNfbWr5SCmndjQyha3UKox/4BxavPiIiIiIiIiIgozqn7rmgMRQMAVy3UXRfpfDZm9lkZP0ejcODzqvUFe6M4tx2RZYF+F8XfVcUxbttYcMf7Hhz7oAePf6lw90cKB93hwcLl3HZEbR5fn4mIiCiEGIxGREREREREAOrCIBwmYR3NJfFGb6KoEmj/Tc2ITB0U+yS4YLSBxnlDRFTPLGDHyWA0q2TW3+0PGn1k4HnPuBpIzzLukJUHmb/Y/rqJKHbZeY/chDDskgykJ+kv31djPGbKAx7jRgBODfjoUg277tEw/5peyHjuO8iivZDzb/frK7NvgvQeBIw81HLNav7NUI8YBG3V91nzK9SlRwFLvgD+/MPy3LbkdTZuy+kE0SJ76YNDExweIAMuWfkHkCWrakys+MR0XP9O/suuK7kDmtnF//+7EwCgKvYCX7xpOr86qQ9UVYVpHx8bVwNb1vkvL9kMrPrJ+jxEREREREREREQxRu3ZBfz2nX9DyWbg1/+LfEFEFEMYjEYUGoH2F+5PRK2lskZh7lu++2C1C5j7lvk1DkTUxjE0jSg2REnYN48YNvEYS3GKwWhERERERETUyE4gR1JK+OogIvskwMc8ae0iUwfFPhGfh7nuEkvD+nWSwJ2I2jqHybE60SAphfxIj36Qp360PuCwUyyFpUiHLpAnFgPHzQYGjgZGHQb0HgyMPQY44XzIE99BMnNaUDkRxRyzQEszzoTQ1kFxI83g5b68Sn95rUvhs1XG8x03FPj8Sg0T+wk0rfF8XBISgVMuhdz5OjD+OGD8VMhdb0Kmnuttv+ste4W/8pD3BkADat6NgNtlb047UjOAdu2N23N1ksQi4MQR5u+BBlYt011+zN63Tcd9fLmGV+ZoOEX7BFP3vI6X/zwVF+x+JGA9qmQz8M37gbfFrm1Qh2XD8+DVUB4LF6WbbHvs3h54PBERERERERERUazau9u47c/fG7/2uICa0vDXQ2QHb4ZtZSY/f24bIhsYjEYUrV77SaGq1n/5V38ALjf3TaK2jccAIiIiCp0gr+YnIiIiIiKiuJSQCFRXWuubmBzeWojInkChDanpkamDYl+z8KAkVYP2rp3Y5TQPA+rfOlkERLFFcxi32QmoJUjPAcA5N0HNu8G8Y8dukJnXWZ+3YzfI5fe3sDoiihvBBqMl8JhO+tINgtH21egv37gbqDBo278H8Or5xucWIgKMPhIy+kj/Nk0D7v0A6poTgYq9gcoGXLVQ/7rAG7LWfySkoGdDk9pbCnxpM2itqeGHAD98Yt4nt5N5iGz7/ODX3wLHDxMM7qKw9E/99snl7xoun2Mw57QRgvx2gqnDgGO1W4FNX1sv6JdvoD5/w3r/F/4DVbkXGDoeKOgB6T9Sv5/ZDVrCgGwiIiIiIiIiImqrxPvZ2ZLrgNUPAbVlxl0ZgkTU9pju98G2EbVBgV5DW/s1tnYvsOVDYN86IH8C0H5Y69YTlYLdRjweRru1Jn9z2cPNR0SGeIAgiglm59kRPAdv7dN9IooOWuAuRERERERE1GbYCeRgMBpRdHEGCkbLiEwdFPt0bmwfU/mt6ZCBBUBOOm+IJwrINBgtIXJ1xIsZVwKde/ovb98Rct6tkOsehzz2DaRrUeRrI6L4oAX5q9QEkwAnatPSjILRqvWXbzG5j+78g1t2/i37HQx56gfIJXcDGdmBB3z6KtTcM6BOHwz16sMAALV7O9RRLQslk3HHAh26mHfKLTDfr9IyW1RDsJwOwYOnadB0NkWXjFpMnjFWd1wn11acXPaS33KBB//7S5PJ3C5b9agbTgM+fcXWGLzxGNTcGVDnHgTP9adAeTz2xhMREREREREREbVlK+8Blt9uHooWb3hHahThtohuJp+3cz8isiHQ/tKK+1PVduDD0cCXJwI/XQG8vx+w4j+tVw9RFOFLHVFbx4MAEVnD2HAisoLBaERERERERNQogcFoRDEr0P6b2i4ydVDs0wlGm7r3DdMhxw1jKBqRJSbBaBJs+E4bJiKQe94H+o9qXNhvBOShRZDTr4BMmg7JzGm9Aoko9jkChA8bsfPemtqUNIOnRnkQwWjTD2j5Obh07AY58QLIfR9ZH+SqhfrPX+EZmwR1TGGLa0BeZ8g/XzXv02sgkGgSjJaa3vI6gnRgb8Fz5wiSm2TcdsoEnp+ThNRTL4C8+ScwbLzfuH9vuwrj9n3e8HhA1a/4IelCOB3BB6MBAFoSbPbZa8Db8/2Xm9bB94JERERERERERNSGrff/Awjxgbeexgdux/Az+YzcNBGG24bIugD7S2umLy27FSj71XfZj5cBFZtbpx6iKOLhSx0RGeIBgigmmJ1nR/AcnGGrdvEHRvEpyKv5iYiIiIiIKC45EwL3qWd2QyoRRZ4jwP7bijeKU4wR/3CmyeXvwqFccIv+x4lTGYxGZE2wATtkSDp2Ax75HPhjGZCYCBT0hNg5pyUiMmMSaGnKyWA00peeLNC7+KTCMBhN/0KVXnnegNBQkd6DoIaMBZZ8EbI5LcstgPQZAiwsg7r4MGD5Yt92hxMyaQbUY/8wniM1I6wlBjJthIYpgxW+WwckOoGhhUBygnf7SHYecM/7wJ+rgS3rgR79gU9eQccHrsTHGyZheWI/1EoCBlb/CmfXXr4TGwWSaVrLAtBMqJfuhxxztu/CWoMnKBBceBsREREREREREVFcUMDOb1u7CCKKWsEGo/EaLCIfAZMQwvM7M0tW3ae//I/HgEE3RLYWoijjbsVdk4iiAJOMiIiIKIT873IkIiIiIiKitivBxs3bicnhq4OI7AsUAtPKN4pTDNH8PzLMce/CxH2f6Hbv3cF74z8RWeAIMmCHTIkIpPcgSNdihqIRUWgFG2hp5701tSmpBk+NfTX6FwRuLdPv3ykzRAU1Ibe9BBx6MpCZG/rJzeQVeNeflAy59wNg6rlAehYgAvQZArnzdUjRUNOAfomC97spiYJxRYIDekpDKFo90TTvecr+h0M6dAHyOnuXAxhQ8xuGVi+FE25gwyrfSY1Cx4ZPCMN3UGf9Cqgt63yX1VQZ968xCU0jIiIiIiIiIiKKdSH7AxW8KZzCgGEDUSDI8DNuOyIbAuwv0bg/bX6vtSuIMkFuo2jctmSZh5uPiIzw+E4UI6LjPS2PGEQEMBiNiIiIiIiImnIyGI0oZgUIX5DU9AgVQjHP4MLem3bMRaKn2q/rHSdokJBdDEwU5zQGoxERxRQGo1GIpRt8lFJukDu1xSAYrWO70NTTlLRrD+3Gp6G9vQny4orQr0CPwwlk5zfWkJwK7bL7IO9sgXxUCm3+Ysiow7yNiSnG88Ta+93cToZN6qfPGx8YBKPJQZN1A61DZuVPvo/Nws9q9duU2w21ezvUvj0hLIyIiIiIiIiIiIiIKEaY3ijOW7uJrAu0v0Tj/hSNNRFFFoPRiNo6ngsTxTyGGEanQNuF243iFIPRiIiIiIiIqJGdm7eTGIxGFFWcCebtaWG4c57ik+h/ZDii6kd8vW48ppc+ixFVP+Kk4YIP/6ph6jCGohFZxmA0IqLY4gjyuB3o3JzarDSDj1321egv31qmf6FKx6zwnoNLQQ+gQ2FoJus9GBiwv37b/odDdPYz0TRI88+dsvOM1xFr73dzCwyb1MPXND4wCEZDQhLkuWUhLqqJ9c2C8aoNkvsAoMa/Tf32PdRf9oc6phBqcgE8D1wJ5XaHuEgiIiIiIiIiIqII4M2EFNP4/G1dJj9/5YlcGUSxLuBrMY91RNGIwWhERETxLHIv9PxojogABqMRERERERFRUwlJ1vsmMhiNKKo4AoQvpGZEpg6KfZrxR4ZDq5fiyS3n4Ntdx+LFczVM7MdQNCI75KQL9RsK+0S2ECIissbhDG6cndBxalPSDT52Ka/WX76lTH95p8zQ1GNGbnyq5ZOkZ0Iu+Cfk9leAbsW+be3zIefcZL2ePOMwsZh7v5tbACQaPBnW/ApVVeH92ihMzOEEOnYPPrwxALV+pe8CnfCzxrZqqL2lUIsWQH37PtTe3VCzDwT++MXb7qoFXrwX6vSBUAseCEu9REREREREREREYeNheBERBcvs7m3e2U1kXYD9JSqTEnhNpY+o3EYUCmZb1s3TaKI2jufCRDHP7ByO53dEFGFBXs1PREREREREccnqzduaFvwN4kQUHs4AwWgp6ZGpg2KfWPhbCslp4a+DKB4deDSQlAJUV/oslsNObaWCiIjIlBZk6JCd0HFqU9KMgtF0cqdcboUlf+r3j0gw2uADoSZOAz5+yd6455YBX70DJCUDY46C5Hf1Nsz7Bli0AGrdb5DCPt623E7WJ84x6ZsaW+93JTEJqmsx8PtS/8bqSuC374Fh4wC3S38ChxPicEDldAK2GzxJWmLjKt/HJsFo6os3gUdvAMpLzefctAbq3sshJxoEBRMREREREREREUUjFapEh3i6YTSevpdYx20R1UxvFOe2I7IsYOgC96f4xW0byzzcfERERBQCPKUgIoDBaERERERERNRUoGCleonJEOFftCKKJuJwmH/om5oRqVIo1lk5vqcwGI3o/9m78zhZ9oK++99fbb3NPnPOnDnn7vdyd9Z4lYsQhAsRCUFF8EV4IAoxL01iXPCRPElMhMgrbnGL0fgQn4fogxrQKK5IAsqDyEXhEZDlwt3XM2ebfaanl6r6PX9Uz9Jzuqt7eqaX6f68X68+3V31q6rfdFX9qqpP/b7dCZMfl37y92T/9Ruk4kYy8GXfJr35h/tbMQBAQ8b1Oruxot3QcYycyVzj4SvFq4f93mebz+fMRG++kzHv+C+y25vSJ/+kvQm+9pVJ6Nkbf+DqeeUK0t//js5/H30sJQ2unXDnAWN++g9kv/WGxiOXFpPnlGA0SdJNd3UnGG3tSt1b+5d/1Lzspz9y/MsHAAAAAAAABkV8XMFoJ0zLEBqcCKzHPkv5/AlNAw6BYDRgUKX93/+onkYDqEk73+U6BTgZerQf01wcFtdHGE0EowEAAAAA9rTbeTvIdrceAI4fwWhol9NGqADBaEDHzN95mfSHz0hf/Rvp9DUy89f2u0oAgGbcDv8r1SMYDY3NjRk1uvlkpSiFkZXn7t06/P5PN79TeCElI+w4mfyYzE/+nuxjD0ilrSSIa21J+uzHZd/91gOFjcxbf6R7lZk723xcYaJ7y+0SM7cge80t0tMPXz1ybSl5bhGMZl7zNtlPfTh9Qf/w7dJv/ezhKrextvvSvvfd0mf+7HDTN9POtSYAAAAAAAAwSOiBCSBVSiSMTUuEoW0B2tdif+FYDQykmF0TAAAcg1an+9ZaGdObH5kF0D/ceQoAAAAA2EMwGjC8cvl+1wAnhWknGG2s+/UAhpgJMjLPvpdQNAAYdJ2G+LR7bY2RM5dyGr28Vf/+dz/bvOztZ46nPu0yN94hc8fXyGRyMqevkfnGN8n86v3S3fdKmZy0cIPMO98nc/cLu1eJm+6WZheuHj4+Ld3y3O4tt5smZxsOtpeeTl40DUZzJUnmpd8ive57UhdhpuaSz+4wNlcVf9e9il+Skf2/f+xw0wIAAAAAAADDJE4LNjoEQlvQFWxXgy1t/XQ6DhhBLY+h7DODr9N1xLo9yQhGA0Yd57vAUOvh91x8pQZAIhgNAAAAALCf124wWqa79QBw/DK5ftcAJ0U7v5iSJWgPAACMANfrbDrPP956YGikBaNd2dx7/dknm9/Rc+eClPH7/yuH5rYXyPkvH5PzkVU5H/iqzMtf393lua7Mm//3q4e/6YdkvA731X6bmGk8/Dd/RvbxB6TNtcbj97VN5q3/Nn0ZuTGZN/9we9d5+331bw5XHgAAAAAAABhGNiUYjZ6ZANJCHdLaiE7HASOpRUhp2rEaQFelHbEidk0AANADXEIDo+GE3iEMAAAAAOgKv91gtGx36wHg+AUEo6FNpo3fUsilJDoAAAAMC9ftbLp2r60xcmbbDEb7V7/b/C7h//bW0f3tM/P675Wm52X/7LelakXm5W+QedX/1u9qdW5ytuko+5bnNZ9ufxDc5GzS5lQrjcvmCjKvfKNUmJD9k1+T/t8PdljZI5iZl6ZPS87obrsAAAAAAAA4oWISHXCS0Tu4v9I+/07HASOoZdIB+wwwiGJ2TWDEcb4LnHip5+G9249pMQ7g+ggjimA0AAAAAMAej2A0YGhlCEZDm9rprJ4nGA0AAIwAt8P/SiUYDU1kfaOxjLRZvnrcTjBaJbS6/9HG0ztGuu1M9+p3Epj73iBz3xv6XY3jsbnW2XT7wqyNMbJzC9LiE43L1kKtzYteLfOiV8t+/Pdl/823d7bcTvz9t8r5P36ld8sDAAAAAAAAjlMcNR/XsiMigNHWYSdy2hbgADr+n3yso2FlUsYRjAagKc53ARwjWhRgNPCTvAAAAACAPb7fXjmC0YCTh2A0tMuk3a5QM3Wq+/UAAADot46D0TLHWw8MlbkmGcOXN5LbdP7iIWmj1LjMzaek8Wwb5+s4Ecytz+9sQsetfz93rnnZbL7+faftWofMO365p8sDAAAAAAAAjlUcp4w8TNfLYeqmOUx/ywlHoMBgS1s/9rjaFmAUtNgnaAuHF+v2RCMYDRhxtOHAyZd6Tdu7fZzmBIBEMBoAAAAAYD8vaK+c32Y5AAPDuG7rQoAkmdZfGZqpuR5UBAAAoM8Ohg+1i2tmpJhtEoy2up08/9HfNr+b58M/wH/vD5Vbnt3ZdM6B7WDmdPOyuQMb3B1f014Y9lEt3CDz3k/LHKwrAAAAAAAAcJKkhheljTvp6HU6HFiP/dVpJ3LWG1CnZRIC+wwwiFLzhQGMOI7dwInQo2C01MUccfrhRHA0RlNvfw4YAAAAADDY2u287XE5CQBDq52O61Onul8PAACAfnM7vPZtN3QcI2kq13j4ajF5vv+RxjenfNsLpBvmehBohd554as6m+5gmPXc2eZlc4X6SWfmZb/u70mf+nBny06r1rt+QyoVpWufJd36fJlM9tiXAQAAAAAAAPRUaqIDaQ8A0nQYfkYnZuAAOv4Dgypt74vYNYERRyMA4HjQmgCQJH6eFwAAAACwp91gNNfvbj0AAP1j2ghbmJrrfj0AAAD6zXE7m87jmhnNTTYLRtuWrLV68FLj8a+8k1C0YWP8QObd7z/8hAfCrM3pa5qXDTJXL/ed75Ne/gYp02RjPKzrbpX5nYdkXv56mVf/I5ln30soGgAAAAAAAIaDTQs/o2sm+o1tsP9S/u+m4/aD9QrUa7VPsM8MPMLrRlJqvjCA4Zfa9nNcAE6GkxHoPUBVAdBFHf7MOQAAAABgGBkvaO9rZo/LSQAYWqaN31KYPt39egAAAPRbh9e+xuG3qdDcZN6o0Y1Da0Xpyqa0Wmw83Z0LBKMNI/PSb5F94aukT/3pISY6sC3cfW/zspNXh1qbwoTMu94nW61IH/hPsr/yb1ov86a75fza/ycbVqVKSaqUpdwYAWgAAAAAAAAYbqmJDofoeUkvTWAEddiJPDVQDRhBLY+hHGOHF+t20KXdwRCz+gAAwDFodTnAKQcwGrgrHwAAAACwxw/aK+f63a0HAKB/2gnymLq6cz0AAMDQcTsIRrvnvuOvB4bKVL7x8NWi1YMXm09363x36oP+Mz/+O4ec4MA1211fJy1cf3W5m+6SSbl2M34gvfz1ktf6ez7z2n+cPHu+TH5cZmqOUDQAAAAAAAAMv7SAIsKLMOgI5OuBDsPPUrtus96Aeq2SEPp0PKaNBVIRjAaMuk7PkwEMjI6vadFdBEdjNBGMBgAAAADY00ZHyEOVAwCcQGm/41YzSTAaAAAYAY576EnMP/+pLlQEw2Qq13j42rb04MXGN6ZM5qRT412sFPrKeL7MB5+QbrijvQkOhFkb15X53p+WgszewCAr830/03rZCzfIvO3fpRe69fnSN72lvboBAAAAAAAAwyROC0aLelcPACcQwWjA8RjUjv/sq0AagtEAAMBxaJWlSNYiMBo6+JlzAAAAAMDQ8oP2yhGMBgDDy2nxWwqTczL7O9wDAAAMK/eQwWj33Cdz893dqQuGxlS+8fDVbenBi43H3TovGdNGgDFOLDN7RvrV+2VfdUoKqy0KX33NZv7uN0u/+inp/g8lnTVf+i0y1z6rvWW/5R3Sc14k+6kPSx/+DenyM8mI09fKfNePSvd9O9eAAAAAAAAAGE1xSvhZHB5iRvTSRBfQ+3fApayftHXHegXqDWoSgk0JT8UBna4j2sNBl7aGInYRYMQRBHO2JPEAACAASURBVAyceFy3AhggBKMBAAAAAPZ4bQajuVxOAsDQatDJvs7cQm/qAQAA0G/O4YLRzFv+ZZcqgmEylWs8fLUoPXSx8U1Dt84TijYKTCYn+5Z/Kb333ekFm4RZmxvvlG68s7NlP/fFMs99sfTdP9bR9AAAAAAAAMBQilMSHWxKaNqJR+fX4cC66qvUfYWgCKB9rfYJgtGAQRRzOAPQDNeUAA5hQK8G+qdlGzpynwhGRItejgAAAACAkeK3GYzmEYwGAEPLtAhdOHW2N/UAAADot8OEgl93q/Tcl3SvLhgaU/nG59uXN6S/fKTxNM+a72KFMFDM5GwbhbjNAwAAAAAAAOiJtNCTeJiD0QAcXVrAYFqgEp2YgToD2/GfYDQg7U5jgtGAEUf4GXDype3Hx7iPp8aG05QAqOGOWQAAAADAnraD0fzu1gMA0D9Oi68MZwlGAwAAI6JVMNrkXFLmBd8g83Mfkml1HgVIOjvVeHgYSxfXG4979rkW4cUYHpNzrcvQ1gAAAAAAAAC9EacFo4W9qweAkye1B3dvOpgDw6HFPtGvfcYSkNo+2rVRlHYaDWDUcVwATobBuG5ttSguoYHRcIifOQcAAAAADD2vzWC0Vp3DAfTHjXdKj3356uHnbup9XXBiGWPS/8txbqFXVQEAAOivINN83Ne+Uuan/0CqVmQy2d7VCSfebfOHKx940n23d6cuGECTM63LGILRAAAAAAAAgJ6wacFohwlEoZcmuoHtarClJcJ0GJoGjKRW+0S/gtFIfeo6Ui5OtJjVB4w4GgEAAHB8uGMWAAAAALDH99sr57ZZDkBPmTe/o/Hw73pnT+uBIeA0/9rQjE30sCIAAAB9dN1tzcflCjKOQygaDm0sa3TNdPvl77tdmsiZ7lUIg2VyrnWZlOs1AAAAAAAAAMcoTgk9sWHv6gF0gkCZHkj5/5u0zz91HGFLQJ2WbdkABqMZ/m8XoyFt74s4nAFoiusU4CSwqefhvduPW14NjFyT0uIPHr0PBCOCO2YBAAAAAHu8oM1yBKMBA+ml3yrd84r6Yfe8QnrJa/tTH5xcaTfnZPK9qwcAAEAfmak56ZpbGo+7454e1wbD5PYz7Zd97XO5cX6knDrXurMEnSkAAAAAAACA3kjrTBhHvasHgAHVaUfxwehgDpwMg9rxn9QnIE47VeZwBow4GgEAvUFrA4wGgtEAAAAAAHv8NoPRXK+79QDQEZPJyvz4/5B5129Ib/ohmXe+T+Ynflcmk+t31XDSmJSvDbMEowEAgNFh3vzDjUd83d/rbUUwVG47036w1b03E4I1Ssz0KekF39CiENsEAAAAAAAA0BNRSviZJRAF/Ub338HWYfhZ30KegEHVap/o0/GY84D2ddyu0R4OujhlNyAYDUBTnO8CJ0PavtrD/ZgmA4BEMBoAAAAAYL9Me2E3xvO7XBEAnTKZrMzLXy/nn/4HmfveIBNk+l0lnEQOwWgAAACSpFe9RXr1d+y9dz2Z7/8ZmVue07864cS7/Uz7ZW851b16YDCZH/rF9AJp12sAAAAAAAAAjk9a6EkcHmI+J6wXZ2p9T9jf0ivbF6Snflda+/IAre9BqceI6rgTOesNqNMqgKxfbW5avQbmOAB0V1r4GcFowIjjWAigR2hugNHg9bsCAAAAAIABMjnTXjmC0QBgyJnmozK53lUDAACgz4zryvyr98j+wx+UFh+Xbv87MtOn+10tnHC3nzFqp2PLtdNSPpNybo6hZK59VvrWYQhGAwAAAAAAAHoiTgs9iVJvrcAIefg90l9/9977a18vff1vSg73WI62TsPP6NUN1Gu1TwxgMBowIqK0DGF2EQBNcb6LPrIx9121q+Ow7+NdDMFnBw3o9RHQZbTcAAAAAIA9k7PtlXPd7tYDADC4svl+1wAAAKDnzA13yNz7TYSi4Vi84DrJtNFh7tb57tcFJ5DDbR4AAAAAAABAT6SFnpD2AEnaeLg+FE2Snvod6cFf7k99MEA67EROr2+gXst9ol/7DOcBQJyy+0UczoARRxAwBsz5D0t/eo/0gYL0kZdKK5/vd43QpkG9GgDQW9wxCwAAAADYU5hsr3Olx68ZAsBQCyvNx2UIRgMAAACOYrpg9AOvaJ2M9qz5NtLTMHr45VIAAAAAAACgN9LCz2x0iBnRTXNoPfprjYd/9ee7v2wCtAZb6vohKAJoX4t9ol9tYVp4Kg7odB3RHg66tGA0MoQBAANj6TPSx18rLX9GikrSpY9LH32ZVDzf75oNOAK9AQwO7pgFAAAAAOwyjiONT7cuSDAaAAy3tLsSsgSjAQAAAEf1H1/fOvTs1vkeVAQnTzs/agAAAAAAAADg6NJCTw4VjIah9dWfazx86/GeVqMxOir3V1on8rS0GNYbUK/VPkEwGtAvqcFoHM6AEUegEgbIE/9diiv1wyor0vk/6k99TooB2VdbVWNAqtk7Lf/gUftAMCq4YxYAAAAAUG9ipnUZl2A0ABhZ2Vy/awAAAACceMYYfeNd6WVunW8dnoYRZLjNAwAAAAAAAOiJlB+VszHBaABS/h+n0/CzkevVDbQwqEkIBKQCBKMBAE6Gr/xM4+F//d29rccw4boVQI9xxywAAAAAoN7kbOsyrtf9egAABlMm3+8aAAAAAENhYbJ5hxnHSC+8qYeVwcnhcJsHAAAAAAAA0BNpwUYEoqDv6Ijcf2nroNNxaYFqwChq1db1qy1kX20fx6thFaXsBmnjAIyA1NAkjgvAiTAg+3HLqwGaFGAkcMcsAAAAAKBefrx1Gc/vfj0AAIMpSzAaAAAAcBxunGs+7p4bpJlC8+A0jDDDbR4AAAAAAABAT0Qp4WeHCkYbpl6aw/S3DDl6B/dZyueftm5Yb8ABAxqMlhaeavg/3mNBezjw4pRVFLP+AAAAABwT7pgFAAAAANQLMq3LEIwGAKOLYDQAAADgWNx3R/Ob4r/1+dwwjyboTAEAAAAAAAD0RlroSXyYYLSThiAL4MhSA2E6HQeMoFbhSmnH6m7q13KBARKnnSpzOANGHOe7wIk3IIHeLS8HelONAdLqAxm9TwSjgWA0AAAAAEA9v41gNNfrfj0AAAPJEI4JAAAAHIsX3iidm2o87rXPJfwKTTjc5gEAAAAAAAD0RFragx3mYDQAR0cwGnA8Wu0TfdpnCEYDUsPPCEYDAADtOOrVMTlgwGjgjlkAAAAAQL12gtE8gtEAAAAAAACOwnGMfur1Vwegve3FRrcvEIyGJgy3eQAAAAAAAAA9kRZ6cphAFHppoisGNCwIibT9vtNxwChqtU/0bZ8hGK1tHa8j2sNBlxqMxi4CjDjOd4ETb0CuW2kyAEgSPdkBAAAAAPXaCkbzu18PAAAAAACAIffGe4zygdEvfCRWKZRe9wKjf/EyQtGQwiEYDQAAAAAAAOiJtEQHG/WuHgBOoLTe252OA0bRgIZAHiYgFRhSUcpuEHE4A9AUDQSA4zN6LcqAXh8BXUYwGgAAAACgXhC0LuNyOQkAAAAAAHBUxhh98/Okb36e2++q4KQwBKMBAAAAAAAAPZEWekIwGoBUBKMBx2NAO/6nniOwH2M0xCmbelq+MIARwLEQGAIp+3EP93FaEwCSxB2zAAAAAIB6fqZ1Gc/vfj0AAAAAAAAA1HO4zQMAAAAAAADoibREh7RAFKAXCBsYAKb5qNTQJAKVgLa12if6ts9wHgCk7X5poWkARgFBwAB6g0toYDRwxywAAAAAoJ4ftC7jEowGAAAAAAAA9JzhNg8AAAAAAACgJ1LDi6LDzOjIVRkY9Dg9QVhX3ddp4ANBEUD7Wu0TfdpnCEg9hE7XEe3hoEsLPyMYDQCAEy71+5/eHej5GgqARDAaAAAAAOAgP9O6jOt1vx4AgMFTmOh3DQAAAABgtDnc5gEAAAAAAAD0RJQSfjbMgSj0Om0fnxWaSds2UscNcdsCdGRQg9EOE5AKDKc45ZBFMBow6jo8FwYwODq9pu2xAapKb7T8g0ftA8Go4I5ZAAAAAEAd004wmud3vyIAgMEzMd3vGgAAAADAaDPc5gEAAAAAAAD0RGonUAJR0MLI9c5FvbT13+k4YAS1akv7FSZIiCGgKGX3jNhFAADAMeAKGYBEMBoAAAAA4KAgaF2GYDQAGE33vKLfNQAAAACA0eZwmwcAAAAAAADQE3FKogOBKJAkY5qP6/o20iosiO7D/dVh+BnrDTigVVvap32G84BDoF0bVmmnyjGrHRhtqee0NBDAiZD6YwHHtx8fdTG0KMBo4I5ZAAAAAEA9P9O6jOd1vx4AgP75B29rONi86Yd6XBEAAAAAQJ20jnYAAAAAAAAAjk9a6ImNDjOjI1cFJ5Ct9rsG6KeOe3fTXgB1WqUh9C1MMOUcgf/LOx4ERQ68tPAzgtEAAMBxGNjLAQA9RTAaAAAAAKBeO8FoLsFoADDMzJt/WDp1rn7gt/0zmXM396dCAAAAAICE4TYPAAAAAAAAoCfitGC0lHGAJMVhv2uAvuo0/Ixe3UC9VvtEn/YZzgMAxSlJJGmn0QBGAee7wMnXadg3uoukOIwmerIDAAAAAOoFbQSjeX736wEA6Btz9ibp//wL6aMfkL34lMzzXyq95LX9rhYAAAAAwCEYDQAAAAAAAOgFmxZ6QiAKpPQOp7bbwWh0du2/DgMfUrcb1itQb0A7/nMeAChK2Q1iDmcAmuF8F8AhtGoyaFGA0UAwGgAAAACgnk8wGgBAMqfOSW/8QZl+VwQAAAAAsMsYrtIAAAAAAACAnoiPKRiNjt+jKa72uQJsd13XccBZp+OAEdTyGNqvfSbtHIH9uE7Hnwef46BLCz9LC00DMAI4FgInH/sxgAHCTwkDAAAAAOr5QesyLjnbAAAAAAAAAAAAAAAAAIAhFUdpI3tWjd4jtOlY2LDfNUDXpe0PaW0E+xjQvgENRksNSB3mcwRgT1owWto4AKOOBgI9RLjXidfyamDkVvGAXh8BXUYwGgAAAACgXjvBaJ7f/XoAAAAAAAAAAAAAAAAAANAPcUqwiU0LTQMkxdV+1wDdlhaMlNY7O3U6ApWAei069vcrCYH9GEg9VSYYDRh1NAIYEASWdy71mrZ3+/joBZ8BaIRgNAAAAABAPT/TuoxLMBoAAAAAAAAAAAAAAAAAYEgReoKj6HYH7Ja9g+k93H1pn3E3xgEjaFDbOs4RgNTwM4LRADRFyhF6icDyzvUoGC11MUecHsDw8PpdAQAAAADAgAnaCUbjchIAAAAAAAAAAAAAAAAAMKTi4wo9ad5L05aK0sUnpZXL0ulz0vz1Mq57iHljYNEBewR02FG8Rx3MgeHQYp/oWwhZ2jlC1LtqnAgdtmu0hwMvStkNCEYDRh2NAAZEtwPL0XW0Ju2pxL6WqzNaupTXLbNWGd/0u0rAsaInOwAAAACgXn6idRnP7349AAAAAAAAAAAAAAAAAADoh9SwlaMFsdj7PyT7mz+rX3v8euWiol6z+SfK223pOV8vvfv9MtOnjjR/HI21VltlKfCkwOuwM2m81wHb1sJdjKFj6lBJDe3pxjjgZKqEVhfWpLGsVKpK41lpLFPfJpaqVuXqTrsruU5tXMtwrD7tM6nhZ/0KaxtO1loVK1LW37ddYCCkhZ+lhaYBGHWc76J3SuWq3NiT7xCQdngnI9B7cGrSuTCyurwhXdmUKpEURlIYJ+dTxYpU3rf5bhddPf3k2/VM5Zy+tHWXHtm+SVeqc9qIan2B75e++E7pzrN9+VOAriEYDQAAAABQ77pbpVxB2t5qPN4YfpUSAAAAAAAAAAAA6CNjzI2SnifprKQxSYuSnpD0SWtttZ91AwAAAIZCnJLokBqIkjJZHMv+zPdKf/B/KZKjH7nlvVr0FzQWbej5pc9pZnlF629/UCunjIwx8kwsV1aeiZVxIq1WfW2Fniqxo63IUyUymvCqunlsU+cKZc1kQ02PuZo/ldWZ+YLmZ7MaGws0kXN0ekLK+sMbKBLFVo9clr50XrqyaRXHUmST1RhbqRpJz6xKTy9bXd6U1rYl3036807nJWOSzqYX16Unl5POpzuMkRwjGVk5+1/b8zKyyjolZZ2SYusosq5iOYo+NaVYFYWx0VbFyGrvszeyMkYykhyz93qnlDF7rzNurNlMVVk32p1Wkow9LYWfrpWz9eOMlf4qK8WPSrXxxiYfhjFWMo528ohM7R+z7++c87Z17VhJ1+S3lR0f15lzE7r92oxuvWFM3vikHG847x+11uriurRZrh++XUm2ncsbSThPKZQ2S9Lywz8lx8SKraOVcEqr4bSsNXJNJPfSs2Xyse5/xKoUSi+7zShwpfWSldl8jdy165JyJpJnQmWdbW1HeYX+nKpPRAojq82SVdaXpnLJOt3te24lu6/7985wa+1ur3Bb+7d+GklxLBvV2i/XlY1jqVqRjW0SBmltMj6sJK9lJOPImuRZjpss29pkGlkpilSNjbZjX55j5TpJoODpSUc3zvu64ZqCnnU20JnJJNhoLCPlg+EOCiyWrRbXpNVtyXWStmbn8ZVF6W+fScY7RvIcyXOlTC0QbG1burwhrWwl6891kjAo10nKViOpWLGKk9UgqwPPbQxb207auiubSfu4U7esJ03lkzZxZ9NxjbS0lXTK99ykDq4j5fykztVap/1qlOw7lTApu9P+RnGs1W3nqs8o64SaDqqqxkbFyFMxqu/mPOaHOjse6WzhOTpb/nUtZBZ1Njivs5nzOhss1p7PK9e3YLS0c4TOEqGstXrokvTAorRatJodM6pG0nbFqlRN1teF9WTdrW8n20AYS3EYKYqlami1WZYiaxRb7W4jyevkCLEzfLtqtFxMxvuuFLhJYJ0knV8z8t3kc61GyX5ayEinx7V7DHSM5Dg7x7Fk2/3sU3vt0b03WnkmSgaUv17a+vPDfyBfuUXr4boeXs1oK/RkZDXnb2vGL6tiHW2EgULryDOxPMfKN7Gm/IrmM9tayG7rTLakhWlXZ07ndfrMhKbnp3V60tGp8SOEng65OLZaLyXrNR9IfovPKS0YLW1cM6Wq1fp20obEtv65EknLW8n52cFxca29ObjIRpkt9kCphmUaTtdZuZM0/7brMILzv7AufWXRqrhZlmtDZZ2qZr2STmUr8p1kq0qOs6b+GCxz4Bi8N16SrjuT1Rvum9P1c8N1bm2t1Xo5p+3yfHJdZF1F1lXFBnq6fI0WH3q+VtZizRSk2TEj1ySf0TOrybn40mYyn4mcNJFNjjPFSnIcvLKZfH7ezrmLn5TNeNJ2VVotJsfQAcpsQp9cWJc+84Rk7ZSkkiTJVSjHxHJNJEexPBNq8vORpgvJuW0+kM5MGmX95Jw38JLzI99Nzn8dU/9cCKRckGx/Gc+okEkCrXaCrWztemynHdg9f985T4utbFRVXKnIGkdPr3mKjaNrZoyscevP5WOruLwtWyrKRnHyPo5l41iVSqzl9arCyKrgx5rKxnpiK6/xnKOiNyZXkbxCQUE20KlxozOT0sKk0ZkJaWFSGssO9nlRq/35uPb3jZLVlc3kmsiY2jVN7bomiqX1benSRnJNX6pKG6XauflqrMvrsaphrCiKFYeR4p3zcRmVYk/lSqTxwGo6b3fPnSuR0VLR1cNLrhY3rr5eai4r6adSS1xZqUhnM0f6PIBBQzAaAAAAAKCOCTKyz/u70v0falzA83tbIQAAAAAAAAAAAACSJGPM6yW9XdK9TYosG2PeL+nfWWuv9K5mAAAAwMlgP/J+2Z9/e5Lo4bi1ZA+n9mz23j/9cPOZPPx56do2l/eF+2X/4LVSpSz9zcd2h/95/qVa9BckSZvuuP6i8JK9iVbb/3tWwqyeKI1LqWf/SUjLtNnUvL+lqUykuVxVp8akXD6QF/jyAk9e4CtXep7yV35IgVNRYCqa8NY1460o65QUZAvKPmFVCJLOwTshObkgCTvy3aOFHVlrtVpMQqieWZWeWbG7r8+vWi1v7XV6fexK0glVkm6blx5fSoLNusHapDOstP9vM0oyqqXNaPzqiVLiqndCEqQkwCbNZigtlYMmY0+lTnsk6/tef7Z+1HR8RePaVsZEKrhVzQYljfuR8hlH4zlH2SAJ4ZsaczU5ESiTDRTkA40VAs1MeMoVssoErrK+NDuWbDueIznO8XXILletLqzvbDvJ9nNxXdoqRVqrhSWslR0VK0bVMNbWdqSHrxitlA7T1fIHm4+6Iu2P2fjAZ/b31r6l9mjiGWknKq838t2Z7dOSvrTzpj4oylWkCaekca+qvG81HVQ1nalqMhNrvOArN5ZVNp/R9JiryQlP2cBVLpBmC0YTub0gp7FMEojh7wvH8Nzj+dyKZavza9IzK9L5Nbu7LW2UpHJV2qokQXnhvmCwpU1pcU1aLx1LFfbpbrpHJUweW+UkBO14Ne7kX4o9Labsb5tVTw8ue3pw+bSkNzUtV/jLonyzuRuONeaFyrp2d5vIebFybrR3nHONfE8az+yE0RnlMo7GxgJlMt7uuJmCUeDtBV+4+wLhJnPSVNFVWDkl31RVcLcUOHuNvo1jXVhN2qArm9KFteT10pZUqiZhi8tbVmtFq+1yrPVS8tlf3jLaKO//vNpd70cL1CmHyWNjXyjkTiDajq2y9NiB0Mg09z9mtNd1faH2OKS1+rdWRpereV2uNm+znipJX9hIm2nSFnkKNe6UNReUNeZHKvixxrJSNnCUDRzNTbo6NZ1RYTwj33eVqQWjFIIk9GQnJCXwktCemcLgBD5GcXK8u7QhLa4mYULFShLS+dhiRV96sqIrG1aKQimKJMfRetnR4nZGq9VA8b599oy7plsyS7p9cktnphzNz2Z05kxBC2cnNTOTT23rDuYLP7Fk9cdfsPrbp6wuX95UtL2tqFxRqRSqUol0sVrQQ9VTsk3aDGAwZGqPY/Il6R0flZ43u6pX3mmUy3rKZhwVcp6yWXc3jNRzpHxgNDuWBDFlakGzOX/vemznPOg426HNktXfPiM9uWT11EpyHuQ60qnx5PpocU26sCZd2tgLj96uSg9dki5vvL/F3O2BZ6D7InmKrFTdt9mtr0hPrewv1ek22el0fu3RzvxytcdRXL3vFZyKFrLbmshKhZyjsaxRoXhZk1++Q9Onfkw5W1LWljQeb6oQbykfF1WIr1fuAaup2mnZwe+IxrPJ46ht0lPL0m/9dfpn++MfsnrBdVanJ8zuddrimnR+Odb5K2UtrsRa3HAURlYZJ1beDZUzFYXVWNU4CShbrI5rLe70szVKzsfTzsl7G+m09JlPS3e9uKfLBLqNYDQAAAAAwNUmZpqPc7mUBAAAAAAAAAAAAHrJGDMm6b9KemOLojOS/qmk1xljvsNa++GuVw4AAAA4Scrb0toRM4QP07dzeVH61NWn5b812erU/vit2DGtVMakiqQNSZcalXpR7dHEX8XNx0nyTaSCFynrxfKcvY764zmjwDPyHFsbbjUWJK+LVaP1kvSli65Wyof/4davXjz0JDiCFWdaK5pO3sSSSrVHahjNQVdvR44iZVTVuCkpMJECJ1beqSrvhrvbjO9IWd8q7yfbl2uSzteB76gUSl9cyuvJ7YKuhIUmy20UuOI0GY5uieRqJS5opaKkPWoZxtV+eEbWCZVxIuWcUGNeKN/dCbUycl2jjCflfemjTyWBhm9+7paymSQksxK7euDJsh5a8rRabRZIiEGyFR8IyaocZW62yetGXiVpcfddxpSUd4sadzdUjMd05Q/Tj5WJnRAF9FooTyuxp5VSITl+pWp/uyg4FY25FQWuVeBYTWYiTWcjZfzkHCif8zSWkTImVN63Gg9iZTKOctNTGit4ygdGWV+azu8Fz07lkuOcWzvmuU7yvhDsBYo+sWT1p18I9Rsf39Zfnc+pGjc7pjULX2nsQjSpC8VJfaKo/Zt7W378Q1alxx+Uokh/fvGUPrc2vW/smHbCZQFIn1sa1+f+4uDQg+1N63Mg18TKuLECV8q4tTbGk3zPKBcYGSNN5aWxrCPPd+W7Ru6BoFlrpYcuShfXrT71aKxKxDkyMOy24kAPFwOpuH/omDR9Y/OJQkk/l36+65pYGScJL/aMVeBZjde+A/JcyfMcea7Rp59ufm7y6/e3bvt++WPNrhWNpGzL6YfRUgffqwGDjt7sAAAAAICr+Sm/ZOLxBQkAAAAAAAAAAADQK8YYV9L7Jb36wKjLkj4raU3SzZKer72IhnlJv2+MeYW19hO9qiuAAWZrHUPMYZJcAAAYQlHU7xpo22T1u+Pf3O9qdEXVulqtulL1wIjVvlQHJ0gsV9tytW2zSZ/mdnKFgANKsadS7GlNmbZCst73+YMhevmG5YA0ZZtVOcxqJUz5YXIMva040FYc7J0DFVOLH2DVTvDRDkeRxkxZZeurLF9JwGezUND++LkHbu53FYCREllHxdBRMUzeX2zZBrVqcwhFA9C5yDoqRo608xVcRbpwqHMjdGq5Qsg3hg/BaAAAAACAqwUpX4K4BKMBAAAAAAAAAAAAPfQTqg9Fq0p6u6T3WGt3u/kaY+6U9KuS7q0Nykj6oDHm2dbaxV5VFgNi6dPSY7++995aKSpKlVXJ8SR/UsrOS8G05GQkx5ecIHm4gWT8vdc7w/eXaTTMeNrtyGlt+6/3D4tKycPGko0k1Z5tLMWhFG4kzzaqHx+HUrgpxVVp7UvJ3xluSPlrJK+wN4+d6cJiEhAWVa6el42TR7SdPJIPsP6zbDps//AW0+y8bjhtq/H75x1J4VZ93RXvvd75u6Ni7e+sMY6SLEVTC0tzas9mb5xxJS+fvN75nGwkVVb25pO/LtkOjJs8HE/yxpLtYXc+Kc/GlTKzUvZ0Ml1cldys5I1LXi4Zr1q5nfJuNlmvO9ueV5DiSm3YvroYtzZ+rMHfWwuIIyju6OIwWW/7t5GdbS4q7dvX4/rng8PCrdr6tlJUrs38KPtRl/fRqLzXTpSXOjCgMwAAIABJREFUpNx80nZ2zErVjaRd9sdVv62afdvqwe34wDa98964yT7hZmvteXZv33S82j7q1fYZ9gOMGHsMaUtH7CP+R2Ov1oY7cfR6AAAAYOTEcrVuCXIEAABAvaUywWgYPgSjAQAAAACu5qUFo3EpCQAAAAAAAAAAAPSCMeYmSd9/YPAbrLW/f7CstfbLxpj7JH1Ue+Fos5J+VNL3dLWiGDzrD0oP/ud+1wKDbH8ojG1eTNW19PkUnzyW6vRfs6CpfQFqTpCEZNkwvbxxrh5XulS/uMINtWBBPwmBqwt085JlSUk4nBxdFeaVFvR1VchXs+HtlI2TILzS5b1wvf1Bg3FVisvCCeb4kltIQtT8CcnNJAFvXiEJLXQytSC1fdunP5YM391ePcnNJduD4+9tG9lTSYDcbmDjvgBHW5VKV6TylSSEM5jZW5YTSMGUlDmVhF5KybD9wZhxJQml8ydrgW8H9sVGYYh1w9zk7zDeXpm68QeCHB0/Caxzs5KbT/aHuFoLmHP36i1Hctxer8XREEfH99nGjYLRrORqr+lv9HBrD0kmn3bwPMCRlLG7mZCy0h3VB/Q9K+/Rb4+/TkveXMd/CgAAAAAAAIDh49mqcvG2zL7/0zkzdkELwQXdlHtEdxW+rOsyT2rOX9Ksv6Tpj61p7s6flnRX/yoNdAG92QEAAAAAV/Mzzcd5R/l1WwAAAAAAAAAAAACH8KOS9v8H3X9rFIq2w1q7bYz5TklfkLTza0j/2BjzU9baR7tXTQA46Wx92FijvJuodHyL23r8+OYFHEVcleJVqboqbT/T79oMB8fX1aGJOvB+X+hiXdkD5dys5GT3jWvBWinaSgLb3FwtqHF/yNtOcGPt2c0mgXOytWEHyu9M43i1ADp338NJnt1sEqQnSdsXpa1HpYk7pLEbDyzvwLydIAmZk62F59l9IXq196XL0pd/ItlObZgs48wrk2C8uJqE45UuSXFp7+/fbc93Hqp/b60UVWX+SXXvc9ufh9cF5gYr87Zq3bDn6PP6peif6ef0dv2v9VfpE6sv0lJlWjlTVN4pata9Is9ECq2r0PoqxVmV4qymnFVNOJvKmJKypqzACXW+sqDHSjfoSjij1XBSy+GMLoTzWgwXVFHKfYBDylGka92nlFFFjonlmlCOsXJMLM+t6obs43pW/mFNByuq2EBGVivhtBzFyjhlTXprujbzlBYy57XpZLTh5rTuZrXlZrTpBdp0s9p0M9p0M9pyM9pyMqpGGUWRJ+PEMrLJs4lljJUxsTyvLMdJAvmsTTa45LSj/nUyTpI1srX3YTWjcmlcsXX2NmkZyRpNV4q6c+2y5subu9Na7T3vvm4wbrfMgXHlOKPzlQU9Xb5W58sL2o5zerJ0nSK6IGrGLGnWWVbWKSnnbmsmvyxrjYyxmnTXNO0vyzdVRdZVJFer1WktVha0Fk4o55b0rNxDmvRWJUmRdRXLUWRdVeKMtuOcCu6WfFORZ0J5JlTWKasUZ7QRje92gt7fGdqYBsMavN4pVzfsYDkrGbsX4JgchkzyemeafcHKe/NJyjk2VsHZUhR5qlpPxSirJ6vX6vHKjXq0eqO27NgRP/3hci5+WneWH1BGZYXyFBpPRZNXxQQajzc0Fy9pzl6RZyNFxlUoV5FxVZWvkslqLl5SoFJtL689HCtjrYxN1vnucLPv2bEysVXObmtel3TKXlJgqqoaT1Xjq+jltWqmtGKmku3GSOvOhObskqbMqiK5Co2n0PG05RQUGXd3e/XcUDmnqJy7LVdRrf2N5CqSZ0L9TeUFqiijyPX0TZMf1mo8qY14TBm3oqzZ1nSwrLxXVNV4KjtZXaqe0vnyWZ0vn9ViZUHnK2d1vrygxcqC1qPJfq/Cvrjb/aLOOItacC5oxluW71blulHyMJFcJ9KYtynfrcpYK8fdOxY5iuXsvDaxfKeq2WBFgVNRJQ5UijPajMa0Gk7p+x/+haZ1ePP8+/TiyU/Iyii2jmI5+hcP/WLT8v/2+h+Ta6KO/2bHxrou84RuzD6urbigi9XT2ogmlHVKKrhbCkxFUewpjD2Vo4yuVE7rQnlei9UFXajM60J1XovhGa3FUx3XAYPFtaFcm7QtjmI5NparSEZWjr06/Hj/8a7ZsMZlrtawnO10/kcYZrs3/07/xiPN/xiXeaR12aIeRlZnwgvJcTpa0mV3TkverGI59cfj/Y/aedT+x1PeNfpc9rkNajU6Jpw1FapbqhpfK2Z6d3heRZ3TeU1rWTmVtKgFhcaTr6oyKmtaKzqly/JVVdX4qhpfm2ZMrkJVTKCcU9K4u6EZd1m+qo0X3uZXK313Eup5EuooyQ0i3Tr9oG7JPbJ7nRZZV7F1VLG+lp+a0Xo8qbLJaNWd1OXsKVUqvqoVX2Wb0ZYd25tOyXSRXIXytBkXVLYZlW1yPVeM8wpMRb6pyjXJcWr//u+Y+Ko2oRjntRQ3Dsufcy5r1l3am17xzjcIe++NlatIU86qPlJ6Repn8WL/E7oYz+tCPK8NO9GFT3v4OTbSdLSinC0pF29rLrqiM+FFzUeXlIuLchTLtZEc2dpzLN9WFdiK1t0JLbszsjIK5Sljy8rHW5qM13R3+cu6PnxCp8PLKtgteUrOdzwTykkuyvdkJOcfNWnjJMUFV8Zsdf/DAHqMbyUBAAAAAFfzg+bjPC4lAQAAAAAAAAAAgG4zxuQkvf7A4J9sNZ219kFjzAclfXttkCfpTZLefbw1BAAAwFXi5p3TRsblv+zevC/8ryPPwkgD0ZvKuFJGJb1m+oN6zfQHj33+1kqb0ZiKcV4r1WldqJzRYuWMLldPaSWc1uXKnJaqc6paX5F1FVpPVetrKyqoFGdUsYFKcVYr4bTWwklVbco9hV1gFOu0f0nnMs/oXOa8zmae0Zngot71+I82neZnb367vvvse5RzW4eZWkkrflZPFqZ1PjeuVT+nNT+jNT+nz/oZfdyfVbyblhdJKtYeiVzt0bgLc+9sSprfXNJrn3lAt24udWUZ5TjQA1t36JnKOVViXxUbaDvKqRRntRZNark6o2Kc01Y0ps1oTOU4o2KU13I4rY1oXNU4CfdbDadUttmu1DFNzinqXOYZnQ0WNeWtKu8mHZYnvVVNeBu7ndfng4u6Nf+Qbsw+Jkf14SpZp6RZf6ntnErsiayji5V5bcfJNrMeTmg9mtBaOKFilNdmNKalcFYr1SmtR5N129BSOKONcFxluxPaNN16gV0w5a3obHBe5zLnNesvKeuUlHW2NeZuyTdVeSaUb6oquFtaCBZ1NrOohWBRc/6VpOO79VSuBeDN+kua9Zf78nf00zfrD49tXpthQYuVBT1TPqfNaExV6ym0nio20EY4rooNVLW+qrGvrbig7SiXBFjUjnXlOKutqKBKHKhsk21tK8qran2V44zWokmtVKd3gzOsjpacOudf1kKwqNP+ZeXdojJOWVPeiqa9VRXcLY27Gyq4W/qeB3+l6Tz+53O+Ua+Y+eiR6tEuI6vve/g/NRz36pk/0RvnP1A3LOds67u++qtXlb0z/yW968Z3daWOhxXGrlbCaV2qntZydUZbUUFr0UTt+JXXRjietD020FZU0OXKaV2pzqlifVXiQNtxTuvRhLajnLbikxv0+Lyxz+o2/6u6LfOgAqeinZQNR5HOTTyj08FlzXpLUuxpKZzVI9s364ubd+h8ZUFL1RktVs5osbqgbZvvvA7B5/Q1wWfkmVCBEynvVRSMbSjrlHRz9nHd5l+W70ZyHCvXsbXnWK4Ta9pbVd4tSYolVZScn+0LnG52kG4QstXcYcoe1iDUo0t1ONRnfBiD8Jntm7cxkuPuvm68xbWux+VNV//PxTfrgeLtKsdZFaO8NqJxleOMSnFWG9GYqtZXaD1F1lXV+loPJ1SMC8f1Bx1KwdnUddkndW3maVkZXaqckiSdCS5qIbOo+eDibrBccoxb1d2FL+lscD4JSlUtwNNEmvTWNOmt9+XvABo61e8KSD/xxDv0rx/7D3XDfuT6d+vf3/jOQ83n3Cef1GLlbMNxB88lt6J88h1ROQmTvVQ9ra2ooM1oTBvRuLaivFbD6eQavnYdsx6Oqxgn12/FKN+Xa/v9vmHsY6paX8U4p0fLNymUp8BUFJiKTnuXteCd11lvUWe98zrrnlfO3VY5Ts7lKllPvlcLJS8GmgrPJwH52QuqWl/OTBLy7IRGrvHkulY5r6wZf1WOo9p5R60ipvaPkSQrlUtSaas+zGzntetK2bwUb8vs/ADEMXNeFsleV2xdEDhhBuCrfAAAAADAoDF+pvlX8i6XkgAAAAAAAAAAAEAPfKOk/T3N7rfWfqXNad+rvWA0SXqdCEYDAAAARoYx0ri3qXFtaj64pNsLXz3S/KxV0uk0yms7zimsBdFUra/NaEylOKtKnISpbUaF3c781VqoyEY0vjtsJyRoMyoosq62ojFl3W09u/BFPafwBd2Ue1QLwaJ85+qOon+9fo8+tPzqhnW86Zq/0eMT45LGG44vO66ezk/qyfyUnihMacPvb0fe4/LI2Kx+/rYXa7KyLefAnZ/GSjOVoq4vrur6rVVdV1zVqfJWXR9dK2nLDbQaZLXpBbINYh6yk+f1nPAxTVVLKoSVjmOCynGgShzsBhgthbMqxVlV42TbSALWCrsBRUlQX7Zue9uK8irbzG5YRGS9ZB7W143Zx3R34Yu6LvuUzgbndTZzXhPuOoFmfeSaWGczi8cyr8g6u21NOc5oI6qFYMX+brBjMc6rHCfhRltxobaNJIFYv/D09+nJ8vUN5z3urus1s3+sWf+KnlP4gp6Vf3h3Gyq4dCzvp5LjadXPat3PKNoNrFzTvNY0X3vnx5GmqiVNVkvybdxsVh2xVrvb0FZc0Fo4qZVwWhlTVmg9bUTj2ojGtRpO6lLltPJuUbfkHtFdhS9pxltueCxr5Oef/n59pXhHw3G+c3zBu7GkTS+jNT+rbdfTWFjRVLWkXFSVkTTlrTaddtrfG2clbbu+vvbcn8t/qKxqnKkr++2nf/vY6nxUnhPpVHBFp4IrR57XTju0P/RzJZyuBayNaTvO7YXLVqe1Fk3W2qxAxbiwex61Ewy5E8a2Ewq5FRU6Dhp5TuHzGnO39Mn1F9UNv2f807r/BS+SY44eHGWttB5N6Ep1To9s36xLlVM6Xzmr+9fulTFW096yilFh9zMoxVmdDc7r6yb+Sv9g7o90ffbJo1XgeHdv4PCio8/iVCC9/dqfP/R05Xhvv9oJAj14vZWcZ/vajnPajMbqzrslaaUWcpScR9dCRWvTVa2vxcoZXanO6ebso3rFzEf0mtk/1j3jnz6W9gNAY++47qd1Jrig/7r4T2Rl9NYz79XbFt576Pm4pnkDlQSi7im4Rd2ce1Q35x499HJ2FKOcyrXzv51r9qpNrstWwymthlO16/jkPDoJmC3sXsfvfC+0HM5oK8pruTqrDy2/Sp4J9ZLJT+gPll7bdNmPvfCmo59TdMoqPQPTUf3/7NeJpGjj2Kt0kMl0HmILDCp6swMAAAAArhak/Lqj5/euHgAAAAAAAAAAAMDoetWB9x87xLR/ISnU3n2izzfGzFtrLx5HxQAAAACMFmOkwFQVOGua0lpPlrnqZ/X5qTN6rDCjlSCnNT+rBx4/LS03Lv8/br9FhbHZntRtEK0FuYbDlzN5PTw+t/s+F1Z0zfaaQuNqrRY2FDpu28tx41iTtQCiiWMJISrXHpK0F7rjSpqJYy2UNvT1V56QF3e2nKqSv821sdzUHsytxZJC0/iz2nY9rflZrQVZrflZrfrJc7nJjxF7cayJsKyJ2uc4US1rslrSeFiWFx89fMLIHntAVL+5JlbBLe4GlZ3R4b7iyDol/fOHfqnhuD9/3n16wfhnj1zHYWclVY0jNQhQbKbqOFr3M1r3kvZm3c9qrfYcN0gtjGW06QVarbX7zfahZgphRZPVkqYq28lztaTJSklT1e3d17movbAySbt/qqNQ41rTeLCma9ReEIOVVFF77WujUMrdKjihKrW2xxqp7Hi7n+H+z3PL9WUbfKZV42jdz2q11j7F5up4Sz8ONVUp6TH3JqnJzzJ8/Loz+tLZr0/auCCrqpOsm5fm/rP+7E+/T3GU9DG4+fq/lvPyv9J7dI+8LrdD+bCqid1jUnn3+JSNQx1Hjo+jWJ7dm9FOO5Ss1jWdyRz/V63FKKfIurWwtXFFcndDHiPrqmp9LYcz2o6yCpyqCu6W7sg/oNPBZUnS/1x+pf794/9Wq+GkXjT1l/rRG9+l0Gkv0rTVsdIYadJb16S3fqQwFWBQ7M+32WmHrdn3WtLOgcDIyrPxIY6Ax6NqHFkZGTdSzt1STluaziwdej4H27M0SXCyr3U/q6/4c3XHkC2vcV8zY+1u2ObkvmPvRLUst83ldi5ZY461MrXX5CLjpHCM1Xcu/Lq+c+HXjzQfk3L8Dkyl6bhO5d1t5d3tY5/vju/56i/pPYvf3XDcmeBC15Y7iNK+h9jPs1HHIfbAoCMYDQAAAABwtSZfVifjCEYDAAAAAAAAAAAAeuDuA+/vb3dCa+2WMeYLkp6/b/Bd0iF7DePkKlwrXfu6+mFORgqmJRtK5SWpdFEKN6W4IkUVyVaT1/vfR2Wl//x5Hzi+ZFxJTvJsXKm62nIyLbxKcoKkvJuRbCy52b1hxtk3XycZ7uWT91LS+3PXvte7wxuMbzhNo2lbjW+xbK+QrF/j7NV/5yEnKefmkr9JVrK1bn823vc+3hu+M86GUriVLNO40iffpKae++OSPy7F1WS7slGT+cf1y4/LUulSsj1GpWTdhMVkHlG5Vj7am5+NkjpF3et0gwFgXPVkP2q2X6eNNyZpQ9OM3Zw+fr/NR5qP88Zqn8W+/VY68L7JOBvtGwYAJ4OVdCE7rs9PndHnpxb0RGH6qjKNQnR2ZDJbXazd8Nj2Aj00fqrj6SPH0XImr+VM/hhrle73rrnryPNIwhrKu8FIO+E5hbByVXCClVRy/STcrBYCsRMi1yhQaFDlwqqmqrVwqNrfPB6W5RxDOIXRXgDVzvwDGx290l1078Snmo67Ift47yrSIyXH2wvpC7Iquoe7/zsyjtb8jFaD3G7Q3/4wrEG15QXa8gKdz030uyqHcvHzY1Kx8bhfvPPr9N/nO2+321F1PF3OjulSvtC0zEPTU1rZF7S545bbP6lz131BlxZv1djEZc3MPaXzJq/z6t1xopsahe2NVSupASTHJ649qpIkz8b6/9m783jJ8ro++J9f3bpLr/d2T3fP9Cw9PdMzMMzgDMIExhlAlE0kiqABxW0QlxA1atBgngSRPGqSx0fNo9FHY1BMFMWgAhoVFyQoIxhZwi7MwGzAMFsv0/tdTv6o27fr1l36LlV17vJ+v16nb51T5/zOt06d+lTd6qrv3Tl+OteN3znTVPNcI7MjgyO5Z+tYTl96X1721Nfk3m1jOdEcyk/mlmXtcc+ZE7ni5NFcPj1dcepoRsdPpySZTMnRweEcHdySo0MjOdYcXvS1Wa+ca1ZVlY75ZHpZafsNuX29tmZX082vZjXFKud+y25fr8xtnlU69tm23sw+Z/bRUU/Hesl8jbgy0+Sw6lhv1j47jsF86y12DOZb78LHYP7btvgxmHvbltKM7EK3rX29C92uObd/Fedtc2oyA1WVZjWZ5lTr50BVpTk1mWZ1bn4qg1NTGaim0qym0pya/llNZaDtcvvyUs1ukfmJnXvzkbH9KVW1qnrbbZs4m9Gzp2aal42Nn87g1OT069zWa4Zjg8M5OjiyrMbJa1GZbpLWqDqaplVpWz7dRK2q0phzXfvyKq22sK11zi2bO98xdtt1jY7xZq/bXu+5/XTUNM/2i92mxWqYtd/FrutcPt/tXaimWTV01j+930Vuby+b202mzJznR4a21PZc1k0lydlFHrNDje43Ruu1b7r4zfM2Rrti+N4Mr8Pbs5gqyUPD23Lv1rE8PLx1+ne41mutI8t4H+J1H/2LXHzG+2JsTGv7XQgAAADqMTS88HXL/MtbAAAAAAAAwIo8oWP+zmVuf1dmN0a7Psk7V1UR68e+Z7ambpiaPN80bXK6cVo1fv7y1NlWM6xqPDn3lZVS5l6eb9msy2k192pua2tU1sispmUDW6abfXW4+3eSO75p8dvx5X+YrPEvcK95izVGu+a7k+Hd/avlXOOnyVOtRmoDQ62f1URr+dRk6/LUmVYjtfYmUue2n9NUquO6zuUTJ843zVto+87LD70n+dTPz38bDrw02XNrWyO5tulcQ7qpM20bdDbrKt1dvtB6ze3JyN5kcDQzzQjbp8HtSZluWNhoW94YaTUXbG/Qd+5naX2dcOZnSqtRYTXV2ufAIn/Qby04fnfy9qsWvv5rl/GU/dYrkpP3z3/d8+5Ixr5kWaXNqKpk8uT57J48Of1YOPfYmGxdN/HYdDPCx5Lx4+fzfvxYqwFcNZFMTZw/N6fOTjfVnGgba7w1dqPZug8nT08/Xkpbprc3tJz+OTSWDO9pbX/2yPS+p5tynnm4NTW3thpiVpPT2zbPjzcw3Npu6szcx965xoztj8v2ZVPj083jYG061mx9SbcuE9PNcI52NMM50RyaaTDQC6cGBvPI8MINWZIkZeEKmoP1fjm2JNmW4TTan9/aX/eeW6ltvlEGsiPDGX34AzMNpkbHT2fH+JkMVFXrefa230mSTFYTee+xd+bDx/+u3zdtQ6hKyWODI3lscCT3bYxePRd0qjmYU83BfKFPDaK2TJzN6PiZNHv8HDs4NTXT0GP07OmZ5m9bJ8bnbXJ3ojmUo4MjefTiU9nzyc/n4ROXzlrnyv0fzi/feOPM/NaJ8Vx+6miuPHEkV548kr1nTnSlMcN4aeTo4EhOLbNB2Xij0dbg7Hwun1jgD12PNwZydHAkp5e5H9auRqN/r1svueyT89cwMJ7RXQ8suN2WrY/lykPv71VZtVrLzfZKVWXbxNk0UuVYl147Pjy8LQ8Pb8sHd53Pyu3jZ9JIlceaw11r0ATr1URjIBNJzvSpRUc3H3MzeZbRro25VrUa8JVMiax1aznN7ea/bnbjtiQ50RzOscGN+Vx2ornw++lvPHRT/vSiC7+OGZmcyL4zJ/LMhz672FsvfXFg+KO5ePgL+eKZ/bOWf9Wlb8/9W3Zmz5mTGZmaqKm6CztbBnJkaCRn5vk/ySrJ4aEtuXvbrtyzbSz3bh3LyUXuP0BjNAAAAOYzuEhjtAX+Ix0AAAAAAADojlLK7iSdHYbuXeYwnetfu/KK2NQaA0kGWk2L1up/F1/ynAuvoylabzUv0MSk20ppNUhq7EgGd7SWDe3qbw1LcelXJ3f951ajqHaNoeSpv9JqDMX6M9CnZkWreVyda0qWPj8214uqajV5a2+YNt/PqkoylRz+UPJXz59/rC//o2T4ounH+bmma0tovjjrusxdt7253XKMH281k2sMtWpvvx0zP6enieOtBnNl4Pyymds+dX7dmSaTU9MN8dp+ThxL7n/bwvXsvrljzOp8A72p05ndOLExu3FiabTWO/6Z1lgH/kkyvLeVnWWw9Vgc2ddq4HjBBqznLmeB6xqtx0xjsK2hY1uj1jRa1zW3JZ3tccpAq4nf+GOt+YGRVnPBieOzj2P75clTycSpuefC9DH6u/GP5PfP/q/l3febxA03/lnu/czNc5bvHF24WctqNdLIzuaujDZ3Z7S5KzsHdmWsuXvWstHm7uwY2JlGGVj+Do7fnbxvgYabQ2eT7edv75N23JK7T30qf/jwm/KJkx9a2Q2CHjnVHMqpNf6F7qc+/w35s7f/SCYmWq/nRrYczc3P/m+5f+vs1+Wf2rl35vKWibOtBmmnT6SxjPaQZ6cblJ1raLZYswJItXCDjkajf00ftm47kv2XfyxfuP+GWcsPXPWBDA6eWWAr6lKVkuOLfe+jS/qxDwBop7ld9zy8bUsmti7t/yHu3LEnd+y5sscVLc0z9v10/vSt/yrHH2v9bnbVte9N9YL35KcGvyKNaipXH3801x97MDcc/WIuP3WsK82sO1VJHh3akvu2juX+LTsX/J3u9EAzR8/9YYHBLTnlu7fQVf6HHwAAgLkGF/nPd39BDAAAAAAAAHqt8xPqJ6uqOrHMMR7smB9dRT2wto3sSR7/Q8k//FzdlWxeDV/yn9fg9uTgtyZ3/ers5Vd+k6Zo69nAli4OtshXtgY0NeuZUloNwZbqkucmY1+SHPnI7OX7nplc9sLu1rYevWmR8/irNlFzr+bW85eHVvnS+9Gp5KFNdOyW4bIDH8ng4KmMj8/O4quued+Kx9w7uD/7h69oNTkbmN3sbLS5O9sHdqys4dlSNbcva/WDWx6X77/ix3PnyY/l7Q+/KXee+liPCoON58BVH8rLXvGDue/umzIwMJ4rDn4oW7cdXXSbU82hfHLnvnxyZ5+KhA6Ngf41RkuS57zwZ/Onb/1XeeiL1yRJ9l/28Tzreb/U1xoAAOiOfr+W7JY9++7JN3/Xq3L4kcszsuWxbN12ZOa6qdLInTv25M4de/L2y67PaIZzfS7KNRlLM6XtDxBUrT/4UBrJPW9eeGe7n5zsvC6ZOpvx8SP5fDmV+4YGc3/jTE5lvPc3thu+8i+S5t5kZO+F14V1RmM0AAAA5lrsr/o0/SoJAAAAAAAAPdb5zfhTKxijc5sdK6xlRillX5LlfqL60Gr3C0vy5J/RGK1OZZGmOJvdzf+p1YDpnt9JUiUHXpo82bm6rvWrMdrg8hrl0EOlJE/9L8m7vyY5Pd17dusVyc2/WG9dsAk1B8/meV/7/+Qdb/+XmZhujnb5gQ/nqbe+JY0s3ryspGS0uSsHRg7lypFrc+XINTkwcihbB2rO2xXm/TVbb8gPXfETeXj8gdxz+s5MVHO/7Hxy6njuO/2Z3HP60/ni2ftTLWHcRjWVlIEkjZllVaZSLWlrWPt27HygV20BAAAgAElEQVQo19/4F3WXwQrMn/NVpjLV91q6riycsQON/jaz2Lb9SL7+W16TY0f3ptGYzPYdj/Z1/wAAdE+jz68lu6mUKrv33HfB9Y7mTP42n8/f5vPTG+b8z3NvbVx98wVG+VRr3ZmvzZ5Zbrn12nZFMnRZ3VVAT/g2OwAAAHM1Bxe+bsCvkgAAAAAAANBjnd+MP72CMTobo3Xj2/7/LMnrujAOdJ/GXKxVA0PJzb+QPOXnk1RJaVxwE9a4xiKfq+mmrjZgY9X2PDX5x/+QPPjXSaOZ7H16MrjqvrPAElw6dGWesO2m7B7cl9Hm7owe2J3mrSfy8XuGcmD3YK7f/6SU8qa6y1y5xiJ/yHaxBppJSinZO7Q/e4f2X3A3pz//R7nv72/PPVvHcnhoS4anJjI6fjpjZ0+3fo6fzo7xMxlIldz628nBb5zZdqqazGOTx3J04tEcmXgkRycO58jEIzk+cSxVDxoSHZl4NB898fddH7cfGmlkZ3NXxpoXZbS5O9sHdqR03I9VqpyeOpVjE4dzdOJwjk0eyempkzVVDP2ztbE9O5tj2dncldGBXRlujMxeoaqS05/PyNkTGdv2uIzuvDGjzd3Tj6ddGWwMzTvu6alT0/n0aI6MPzJz+ejEI9M/W/NTmezDrey+xsD8zSxKGtkxMDpzTHcOjKZZ5v6uUtLIjubo9LHcPXNMtzS25bHJI+eP3UTr2J08+0hy+gvJnmay5ZKknP/uwNaB7TPjnMu5HQNjOfnR1+XoXb+UI0MjOTK4JUcHR3J8cChVSrL/q5JtB1Z3EO78z3MWTZaSx5rDOXbxbTk6eTiPTRzZGE3yANaYHQOt55DR5q7sGBhLs8z9Ttl4NZ5jE4dnnndPTh2voVJgPgMLvJYEWC98mx0AAIC5hhb5oM1iTdMAAAAAAACAXqj6tA0AvVJKLtTchHWim40YFxtLE721Z2gsufxr6q4CNrySkqu3XJebtj8tN25/WvYt0PTryif2ubBe6VOD35HmWK49/kiuPf7IhVdubp012ygDGW3uymhzVw7kUI8qnOvI+CM5MrGEei+gSnJq6kSOTjdqONfY7ejEozkzdWbebQbL4HQDiPONhEabu7JtnkZnSTJQmtON0HamsYLn8LNTZ3Js4nCOTz6Wbvw6f7Y6k6MTh9saRLWaHp2cPLHqsZNksprQ0G0d2dbYke3N0TSy9HOzJNneHJ3VAGuseVF2DoxloAwsfZzSyPaBndk5MLZgY7PVGmlsycjQZbl46LIF15mqpnJ8usHjZLWE5hBVlZy4Jzn7SDJ6QzIwcuFtVuHPB/flyALX/eCB12Zs2/mGXwOlmZ3NXdk+sHNZ98V8djf2Zvfg3lWNkSSjAzsyeupoDpw6OvfKa38uufgrVreDd37vwtc97b1JWvfxicljOTpxJBPV2cXHmziV/OWz5r9uZF/y5X+YJDkzdXomQ49OPpoj460sPT3V+fco+qHKqamTOTZxZNEmfxcN7suVI9fkyk/8aq44eSQjk/Oc789/3zyjJ0cnHs39Zz6b+898Nved/kwOTzy84H6a08+TQ2WxBq+LqKaSk/cmE23Nk4Z2J1v2ZynvnZTpf0sp5y+3XUopHUvaLpW29dqvWWCs8+MtbayZf0v7CB3rzbqubdwyd+kFryvz3JZzl0qZ97r2/c+ppMyz/jzXzRq3LDDWYvdFxzYL3xeN1rXz1HXB++GCdS10P8weKUmmMpWJajwT1Xgmq4npy7N/zl2+0HUTmWy7PFGNZ6qav7HjlsbWHNr6hHzp9i+b9/qlas+z9teGE9V4djbHZl7rjg6cf9072tydnc2xDMzTCO1Czk6dydGJR3Ni8rFV1b0UVVr3T1VNpUo163KVKlPVZNvlqVSZXq+aXntm3am2dapU1VRrrOnL58euZi0/f/nc8qk5l+fse7rGqentWkumZi7PqqOjxql51pl7m8/vq1XL5OwaZ7abezvbb8+5ujaqVT+XrQVHP5qJC/z+uVCTXdaWkpKLhy7LRYMXz2pmvFDD9U67mnv6VCn0n8ZoAAAAzDW4yJt6w/4aLQAAAAAAAPTY8Y75lfwnXec2nWMCAADMqzk1mdHx0xk7ezqjO56QsV1Py86BXSv6UvxyjDZ35/Fbn5gdzbGe7mdT6mh2tvi623pXxzKMDV6UscGL6i6jL4Yaw9kzdEn25JK6S1mW01Oncqyt0dxjk8dSVb3s017lZFuTuyMP/VWODo7k+GKfe06yY2B0TqO7LY2t6Wy+M5XJfOHMvbnn9J154Oz9qdZIz/nBMtTWnGz3TKOSRuY2xWqURnYMjE03NNudnc1dGWqs42YPXdIojexsjmXncp5ftj6+dwV1aC7S6Oqa7YeyfWSNN9lerCHHQH+eUxqlkR3NsaW9hqimkpMLtaLbnmx5XFdr66apaionJ4/n2OThHJ04nGMTh3OmOpOLmntzYOSa7GiOtlZ812sWHmSR2/ekHbfMXD4+eSz3n/5sHhp/IANlIGPNi2YyaGtj+0wzqpXfmPHkgXcmxz6e7P5Hyd7b+tYwFuitocZw9g7tz97M3+Sa9WVu87bOBmtzG8bNadDWNn++udu5y53N3dqbwc1u2DZfk7jFmtu1jz3c2DL9PHZRxgZ3Z1tjx+qfy+r2plb9bzx7asH/BH7J5/93Rpqnky/96WSe93Q+d+buvPfYO1PSSLWBG+GtNRcNXtxqZjtyba4cuSYHRg5lpOE7uzAfjdEAAACYa3CRv8i1dUf/6gAAAAAAAIDNaa02RvulJP99mdscSvK2LuwbADagdf7lO0iS0ScmRz86d/nup/S/lg3iy8demNtGn9vfnR75WPLntyVpJdPw1MT5hHrKS5N9r+xvPXTfwDIaoy1nXTa1kcaWjAxtyb6hS+sp4O6PJ/e+OROlZLy0NQm76KnJV/5ZkmSwMZRmGVz20KenTuW+05/JvafvzOfO3J0zU6eXtX0pjewc2DXTROjczx3N0TSySBOpecYZLiPrv2kDKza03r8FvpzGnMs1OLqy7RZr5LbGNUoj25s7s725M5cOX9nTfW0f2Jnrtt2U63JTb3bQGEwufX5rAmDNKqWkZKDVlNdL0rVl3zOTB9+96CrPf/gf0mxMJhe9ZMF1vm3/P8/41NlMVOPdrrDrHhl/KB8/8YF87MQHctepT2RqkQbD3bR3cH8uGbo8zXmayw2UZnY2d2X0+GRGf/EnM3rkTEaPnM7242dTzvXafvZL0/jh/zSzvubVsHTr/VdiAAAAemGxv5y2dXv/6gAAAAAAAIDN6WjH/NZSyraqqk4sY4x9HfNHVllTqqp6MMmDy9nGF3dhAynNpJqouwrYWK78xuTj/77uKmB1nvAjyXu/fe7y6364/7VsEIONwQxm+U18VmV4TzLleX7NOfAN3RtrOY1petnEBrrp0CuTe9+cZlWl2f67yqHvSQa2rWrokcaWXLv1hly79YZVFgmrMzhw4XVqV1ULX9dc3WMxSXLTv0v+97+au/xJ/2H1YwMArFfX/fAFG6MNlMlUD2+5YE+7wcZQBjPUvdp65PKBbbl85GCed9FLcmryZP7h5IfzsRPvz12nPpGTk4v8N/rpLyaZmv+6kf0zF0uSnc1duXz4qlw+clWuGL46lw0fzJYlNJCvpu5J9XffN/+VE400Vvk7KmxWGqMBAAAw12KN0bZojAYAAAAAAAC9VFXVI6WUw0l2tS0+kOQTyxjmyo75T6+6MGBzu/kXkv/1qrnLH/8D/a8FNopDr5y/Mdr1P9r/WmClDnx98plfTx581/llFz87ufxFtZXECgxsqbuCze2G/yv52E/NXX7tPK+9VmoJX+Jd0bpQp4u/Mjn0Xcldv3p+2eUvTq58WX01QZet+z860I3GaAdfnvzDf5xuaDFt25XJFS9Z/dhzrPPjfc7Wy5OT99ddBQDQS/uf13oPbjFTSfXpXRvlFc4sWwa25kk7bsmTdtxy4ZXf/XXJ/W+b/7qXL9Lkdzmaa7+xHKxHjboLAAAAYA0aXPivTZatO/pYCAAAAAAAAGxanU3Qrlnm9ldfYDyA5bn8RcnQrtnLGoPJwW+upx7YCHZckzzxtbOXjd2YXPdD9dQDK9Hcljzrj5NbfqPVLPPL/mvyrD9KmhptrSuDowtft/vJ/atjs3rc9yc7nzB72TXfnYzd1L19NJfR7Kwx0L39Qi81BpKn/kry3L9JnvxzybPfmTz9d5OBRf5ANNB9izU/60azzW0Hkuf8dXL1K5JdX9pqiPicv05G9q5+7E6X/ePuj1mHm/7d/Ms14QaAjWNguPUe3NDuBVep/qiZfHF7H4tao677F/MvP/TK7u1jyO+h0AvNugsAAABgDRpcpEP9li781SYAAAAAAADgQj6a5Na2+S9L8odL2bCUsi3JjfOMB7ByW/Ynz/6r5O+/P3nk75KxJyY3/kRy0T+quzJY3278t8n+r0oe/J/J9kPJpS9IBv3hQtaZ5pbk6m9L8m11V8JKNbcmF39l8sV3zl4+ckmy58vqqWkz2XJJq7HTfb+fPPapZO8zWo1ZSunePgZGlr7u0EXd2y/0WinJ3ttaE1CPK74+ef8/n7t86+WLN01bjp3XJrf8WnfGSpLrXp188mfmLr/2Vd3bR50u+5pk21XJic+eXzY4mlzl9ToAbCgDI0lzcOHrP99I9lf9q2et2nNbsufW5OE7zi9rbu/ua7/mIt/HBVZMYzQAAACWZ9fFdVcAAAAAAAAAm8GfJvnutvlnLWPbZ2T2Z0Q/WFXVF7tRFKxpo09Mjs7TA3DfM/tfy0a166bkue9OqqmkNOquBuqz43GtxjWdDn7Lysbbe2trAqjTU/5j8s7nJKcfbM03hpOnvcFzfr8M706u+c7ejV8aySXPTR7488XX2/uMZGi0d3UAsPFsvTS55DnJA38xe/lV39bdJp/d9PgfSO5/a3L8rvPLDn1n672ljWBoNHnuXycffm3yyPtat+v6H01Gn1B3ZQAA/dcYSL7iHcnHfip56N3J9muSx39/svsp3dvHoMZo0AsaowEAADDX3suTXfuSww/OXj40nDz1OfXUBAAAAAAAAJvLO5KcSrJlev7LSinXVVX1ySVse3vH/B90szBYs65/TfK33zp3+XWv7n8tG50GKWx2T3h18nffM3f5tf+0/7UAdMvYlyRf/ZHkC+9IJk4k+5+XbL+67qropht/Innk75Lxo/NfP7w3ufkX+lsTABvDM34ved93JZ//46S5Nbnq9uTG/7vuqha27YrkeXck9/xucvzOVlP9y1+8dhu5rcTWy5Jbfq3uKgAA1obB7cmTfqp34zcHezc2bGIaowEAADBHaTRSfc13JP/138++4rkvT9m2s56iAAAAAAAAYBOpqupkKeUtSdq7PL0mySsW266U8rgkL25bNJHkTd2vENagA/8kufd3k8/9YduylyWXvqC+moCN6apvTz73P5LPvf38suteney5tb6aALphZF9y1TyNZtkY9jw1+ar3J/f9fnL2cHLZC5OtB5IH/ixpjLSa4Y3srbtKANajwZ3J09+cTE0kZWB9NBgb2Zc8/vvqrgIAoLequgvYHEopixzqdfDaGNYojdEAAACYV/nOH0+Gt6b6s99KpqaSZ74o5TtfX3dZAAAAAAAAsJn8eJJvTHLuT0zfXkr5g6qq3j7fyqWUkSS/nmSobfEbqqq6q6dVwloxMJw84/eSL/x5cviDye6bk0uenTR8ZBrosnN58/AdyZGPJHtuSXY9eX18+R+AzW3HoeT6H5m97NAr66kFgI3HezAAAAB0SaPuAgAAAFibSikp3/aaNH7zw2m86aNp/NOfTGn6j0oAAAAA6KkX3j7/8i3b+loGALA2VFX1mST/X8fit5RSvq+U0t78LKWUJyT5yyS3ti1+JIm/fsTm0hhMLvvq5In/Orn0+b6QC/ROo5nse2byuO9Ndj9FUzQAAGBFXnHb/L9LjAzOuxgAAGZ8yy2Lvy9dvvVf9qkScsmV8y4uX/MdfS4ENg6N0QAAAAAAAAAA1ojyklfNv/w7fqzPlQAAa8iPJvmTtvnBJL+Q5L5Syp+UUn63lPL3ST6W2U3RziZ5cVVVX+hfqQAAAADAcnzrLWXePss/8nzNlwEAWNwrnz7/a8bXPvSTyeBQ8oyv7XNFm9izXzp32Z5Lkxue1v9aYIPQGA0AAAAAAAAAYI0oj3tS8op/M3vhU5+bvPh76ikIAKhdVVWTSV6a5M0dV+1L8lVJ/kmSpyRp/9T7g0leVFXVX/elSAAAAABgRfaPlfzat89ujvbs65LXaIwGAMAFXL235Ke/YfbrxltP3pEfOvlfUn7yd1N27aupss2nvPLHkud+U9KYbuV06VUpP/vHKQMD9RYG61iz7gIAAAAAAAAAADiv8R2vTfXMr0s+ckdy8AnJl3xZSnOw7rIAgBpVVXU8yTeWUt6S5NVJbllg1UfTaqD2uqqqHupXfQAAAADAyn37rY089/oq7/5UlUP7Sp58IBloaIwGAMCFvfp5jbzgiVXe/ekqh7YczTOGhjJ8/adThobrLm1TKYNDKT/2xlQ/9HPJkYeTy69JKV7Tw2pojAYAAAAAAAAAsMaUa74kueZL6i4DAFhjqqp6S5K3lFKuSvLkJJcm2ZbkgST3JHlPVVVnaywRAAAAAFiBS8dKvvGpGicAALB8119acv2lJcmuJE+ru5xNrezYlezYVXcZsCFojAYAAAAAAAAAAACwjlRV9dkkn627DgAAAAAAAAAA6LZG3QUAAAAAAAAAAAAAAAAAAAAAAAAAaIwGAAAAAAAAAAAAAAAAAAAAAAAA1K5ZdwFsLKWUwSS3JTmQZH+S40k+n+SDVVXdXWNpAAAAAAAAAAAAAAAAAAAAAAAArGEao21ipZTfSfKyjsX3VFV1cAVj7U3y+unxdi+wzh1Jfraqqt9b7vgAAAAAAAAAAAAAAAAAAAAAAABsbI26C6AepZSvzdymaCsd6wVJPprkVVmgKdq0W5O8pZTym6WUbd3YNwAAAAAAAAAAAAAAAAAAAAAAABtDs+4C6L9SyliS/79LYz0ryVuTDLUtrpJ8IMlnkowl+dIke9qu/+YkO0spX1dV1VQ36gAAAAAAAAAAAAAAAAAAAAAAAGB9a9RdALX4mSSXTl9+bKWDlFIuT/L7md0U7T1Jbqiq6uaqql5aVdXzklye5AeSjLet9zVJfmKl+wYAAAAAAAAAAAAAAAAAAAAAAGBj0RhtkymlPCfJd0zPTiT5sVUM9/oku9rm70jynKqqPtG+UlVVZ6qq+vkkL+3Y/l+UUq5cxf4BAAAAAAAAAAAAAAAAAAAAAADYIDRG20RKKduS/Grbop9N8qEVjnVtkm9vW3Q2ye1VVZ1eaJuqqt6a5DfaFg0ned1K9g8AAAAAAAAAAAAAAAAAAAAAAMDGojHa5vLvkhycvvyZJD++irFenmSgbf73q6r69BK2+w8d8y8tpYysog4AAAAAAAAAAAAAAAAAAAAAAAA2AI3RNolSyq1Jvrdt0fdUVXVqFUO+uGP+15eyUVVVn0jyvrZF25I8bxV1AAAAAAAAAAAAAAAAAAAAAAAAsAFojLYJlFKGk/xazt/fv1FV1V+sYrxLktzUtmgiyXuWMcS7OuZfsNJaAAAAAAAAAAAAAAAAAAAAAAAA2Bg0RtscfjzJ46cvP5Tk1asc74kd8x+uqurEMra/o2P+hlXWAwAAAAAAAAAAAAAAAAAAAAAAwDqnMdoGV0p5cpIfblv0g1VVPbLKYa/vmL9zmdvfdYHxAAAAAAAAAAAAAAAAAAAAAAAA2GQ0RtvASinNJL+WpDm96E+rqnpTF4a+pmP+3mVuf0/H/EWllF2rqAcAAAAAAAAAAAAAAAAAAAAAAIB1rnnhVVjHfjTJTdOXTyR5VZfGHeuYf3A5G1dVdbyUcjrJSNvi0SSHV1tYKWVfkr3L3OzQavcLAAAAAAAAAAAAAAAAAAAAAADA6miMtkGVUq5P8m/aFr22qqq7uzT89o75UysY41RmN0bbsfJyZvlnSV7XpbEAAAAAAAAAAAAAAAAAAAAAAADok0bdBdB9pZRGkjckGZ5e9P4kP9/FXXQ2Rju9gjE6m6l1jgkAAAAAAAAAAAAAAAAAAAAAAMAmojHaxvQDSW6ZvjyR5Durqprs4f6qPm0DAAAAAAAAAAAAAAAAAAAAAADABtWsuwC6q5RydZKfaFv0s1VVfajLuzneMb9lBWN0btM55kr9UpL/vsxtDiV5W5f2DwAAAAAAAAAAAAAAAAAAAAAAwApojLaBlFJKkl9NsnV60WeS/HgPdrVmG6NVVfVgkgeXs03rsAEAAAAAAAAAAAAAAAAAAAAAAFCnRt0F0FXfleQr2+a/p6qqUz3Yz9GO+b3L2biUsj1zG6MdWVVFAAAAAAAAAAAAAAAAAAAAAAAArGvNugugq17fdvmPk9xZSjl4gW0u6ZhvzrPN56uqOts2/+mO669cYn0Lrf9oVVWHlzkGAAAAAAAAAAAAAAAAAAAAAAAAG4jGaBvLlrbLX53ksysY47J5tvvSJB9qm/9Ex/XXLHMfV3fMf3yZ2wMAAAAAAAAAAAAAAAAAAAAAALDBNOougHXpox3zN5ZSti5j+9suMB4AAAAAAAAAAAAAAAAAAAAAAACbjMZoLFtVVV9I8uG2Rc0kT1/GEM/qmP+T1dYEAAAAAAAAAAAAAAAAAAAAAADA+qYx2gZSVdVYVVVlOVOSr+gY5p551vvQPLv7g475VyylxlLKdUme1rboRJI/W/KNBAAAAAAAAAAAAAAAAAAAAAAAYEPSGI2V+q0kk23zLymlXLuE7V7TMf+7VVWd7l5ZAAAAAAAAAAAAAAAAAAAAAAAArEcao7EiVVV9OslvtC0aSvLGUsrIQtuUUl6U5Pa2RWeTvL4nBQIAAAAAAAAAAAAAAAAAAAAAALCuaIzGarwuyeG2+VuT/EUp5br2lUopw6WU70/y3zu2/5mqqu7pcY0AAAAAAAAAAAAAAAAAAAAAAACsA826C2D9qqrq/lLKS5K8I8nQ9OLbkny8lPL+JJ9JMprkyUn2dmz+R0le269aAQAAAAAAAAAAAAAAAAAAAAAAWNs0RmNVqqp6VynlxUnemPPNz0qSm6en+fx2ku+qqmqy9xUCAAAAAAAAAAAAAAAAAAAAAACwHjTqLoD1r6qqP07yxCS/nOTwIqu+N8k3VFX18qqqTvSlOAAAAAAAAAAAAAAAAAAAAAAAANaFZt0FUK+qqt6VpHRhnAeTvKqU8gNJbktyZZJLkpxI8rkkH6yq6rOr3Q8AAAAAAAAAAAAAAAAAAAAAAAAbk8ZodFVVVWeT/FXddQAAAAAAAAAAAAAAAAAAAAAAALC+NOouAAAAAAAAAAAAAAAAAAAAAAAAAEBjNAAAAAAAAAAAAAAAAAAAAAAAAKB2GqMBAAAAAAAAAAAAAAAAAAAAAAAAtdMYDQAAAAAAAAAAAAAAAAAAAAAAAKidxmgAAAAAAAAAAAAAAAAAAAAAAABA7TRGAwAAAAAAAAAAAAAAAAAAAAAAAGqnMRoAAAAAAAAAAAAAAAAAAAAAAABQO43RAAAAAAAAAAAAAAAAAAAAAAAAgNppjAYAAAAAAAAAAAAAAAAAAAAAAADUrll3AbAGDLXP3HnnnXXVAQAAAAAAAACwKvN87mFovvUAoI98Rg8AAAAAAAAAWPd8Pq9/SlVVddcAtSqlfG2St9VdBwAAAAAAAABAD7yoqqq3110EAJuXz+gBAAAAAAAAABuUz+f1SKPuAgAAAAAAAAAAAAAAAAAAAAAAAAA0RgMAAAAAAAAAAAAAAAAAAAAAAABqV6qqqrsGqFUpZTTJl7ctui/J2VUMeSjJ29rmX5TkrlWMB7BccghYC2QRUDc5BNRNDgF1k0PAWiCLgLpt1hwaSnJF2/z/rKrqaF3FAIDP6AEbkBwC6iaHgLrJIaBucghYC2QRUDc5BNRts+aQz+f1SbPuAqBu0+Hy9m6NV0rpXHRXVVUf69b4ABcih4C1QBYBdZNDQN3kEFA3OQSsBbIIqNsmz6EP1l0AAJzjM3rARiOHgLrJIaBucgiomxwC1gJZBNRNDgF12+Q55PN5fdCouwAAAAAAAAAAAAAAAAAAAAAAAAAAjdEAAAAAAAAAAAAAAAAAAAAAAACA2mmMBgAAAAAAAAAAAAAAAAAAAAAAANROYzQAAAAAAAAAAAAAAAAAAAAAAACgdhqjAQAAAAAAAAAAAAAAAAAAAAAAALXTGA0AAAAAAAAAAAAAAAAAAAAAAAConcZoAAAAAAAAAAAAAAAAAAAAAAAAQO00RgMAAAAAAAAAAAAAAAAAAAAAAABqpzEaAAAAAAAAAAAAAAAAAAAAAAAAUDuN0QAAAAAAAAAAAAAAAAAAAAAAAIDaaYwGAAAAAAAAAAAAAAAAAAAAAAAA1K5ZdwGwAT2U5PUd8wD9JIeAtUAWAXWTQ0Dd5BBQNzkErAWyCKibHAKAjclzPFA3OQTUTQ4BdZNDQN3kELAWyCKgbnIIqJscoqdKVVV11wAAAAAAAAAAAAAAAAAAAAAAAABsco26CwAAAAAAAAAAAAAAAAAAAAAAAADQGA0AAAAAAAAAAAAAAAAAAAAAAAConcZoAAAAAAAAAAAAAAAAAAAAAAAAQO00RgMAAAAAAAAAAAAAAAAAAAAAAABqpzEaAAAAAAAAAAAAAAAAAAAAAAAAUDuN0QAAAAAAAAAAAAAAAAAAAAAAAIDaaYwGAAAAAAAAAAAAAAAAAAAAAAAA1E5jNAAAAAAAAAAAAAAAAAAAAAAAAKB2GqMBAAAAAAAAAAAAAAAAAAAAAAAAtdMYDQAAAAAAAAAAAAAAAAAAAAAAAKidxmgAAAAAAAAAAAAAAAAAAAAAAABA7TRGAwAAAAAAAAAAAAAAAAAAAAAAAGrXrLsA5iqlDCS5Jsn1SS5NMprkTHZQCE0AACAASURBVJLDSe5K8vdVVZ3o8j4Hk9yW5ECS/UmOJ/l8kg9WVXV3N/fVL6WUG5I8KcneJMNJHkhyf5L3VFV1us7a+qmUsivJDUmuTbI7yUiSI0keSvL+qqruqrG8OUopV6V1v12aZHuSLyS5J8kdVVWN11nbZiKHukMOtcghVkoWdYcsapFFC+7H+bEIOdQdzrOW9ZZDrA1yqDvkUIscmq2UckVax+LyJHuSbElyNsnRJPemdUweqq/CtUEOdYccapFDrJQs6g5Z1CKLWAk51B1yqEUOzc/5AdTBc3x3yPCW9fYc77Mxa4Mc6g451CKHWAk51B1yqEUOLbgf58ci5FB3OM9a1lsOsTbIoe6QQy1yaDafz1s6WdQdsqhFFrEScqg75FCLHGIl5FB3yKEWOTS/dX1+VFVlWgNTWoH5g0n+KK1f7qtFpokkf5LkhV3Y794kv5TkkUX2954kX7/K/Vyd5GVJfjrJu5Ic69jH3V06jjuS/Oskn1vk9hxL8t+SHKrx/u7Z8UgymOT5Sf5Tko9e4Fyqpo/Vv01ySc2PgW9IcscidT4yfa7uWcHYFzoGF5oO1nls+ngfyKHuHEc5JIfaxzzYhQxqn26v8xj16X6QRd05jrJIFq3786PG+0AOdec4rovzTA7Vdn5sS/L0JD+U5LeSfCrJVMe+bq/rONQ9ySE5JId6djyuTfJTSf4qrf/UuNDxqJJ8IMn3Jhmu65jUdD/Ioe4cRzkkh+YbfynZs9h0sK5jU8N9IYu6cxxlkSxqH/dgF3Kofbq9rmPUp/tBDnXnOMohObTuzw+TybSxJs/xmyvDPcfPW7fP6NU8ySE5JId8Rq/uSQ7JITnk83l1T3JIDm3mHOrj+eHzeYsfHznUneMoh+RQ59g+n7e84yWLunMcZZEsmm/8peTPYtPBuo5Nn+8HOdSd4yiH5FD7uAe7kEHt0+11HaM+3Q9yqDvHUQ7JoXV/flzwdtRdgKlKkjet4gntD5NcvML9viDJF5exr99Msm0Z4z8ryTsu8KTQtQdmkqel1YVzqbfnRJJX9fF+7vnxmD4Gj67wXDqc5FtqOP+3J/ntZdT5QJLnL3MfK318nZsO9vu41HA/yCE5JId6kEPp/i+yL+v38enzfSGLZJEs6kEWrafzo+5JDsmhzZhD/Tw/0nrj+CNpvSF9oX3d3q9jsJYmOSSH5FDvzo8k37mKx9c/JHlav45JnZMckkNyqLfnxyoeX+emg/06LnVOskgWyaKeHY+DXcih9mnDvl8dOSSH5NCmPz9MJtPGnDzHb44M9xy/YM0+o7cGJjkkh+SQz+jVPUUOySE55PN5NU9ySA5txhzq5/kRn89byjGSQ3JIDvXo/IjP5y3nWMkiWSSLenh+rOLxdW462K/jUtckh+SQHOrZ8TjYhQxqn7xXLYeW8hiUQ3JoXZ4fy5maYS143ALLP5fk02mFazOtrn83JWm0rfOPk7y7lPLlVVU9sNQdllKeleStSYbaFldpdVn/TJKxJF+aZE/b9d+cZGcp5euqqppawm6elOR5S61pNUopz0mrG+hwx1X3JPlwWg/Cy9N68A5OX7c1yS+VUhpVVf1iH8rsx/HYm2TXPMvPpvXm9gNpdUy9KMnN0z/PGUvy30op+6qq+tke15kkKaUMJHlzkq/uuOqhJB+crvVQWudimb7u4iRvK6U8p6qqv+lHnZuEHFolOTRDDvXOybQ6Wm9ksmiVZNEMWTT/ftbD+VE3ObRK6+Q8k0Oz9e38SPLyJKN92td6JYdWSQ7NkEMXVqX1Jv+daf3Hwsm0/mLuVUluyPnzI2k9Nv+ylPLCqqr+Z78L7TM5tEpyaIYcYjVk0SrJohmyqHc2+vvVcmiV5NAMOTSPdXJ+ABuT5/hVWicZ7jm+wzr7bMxGJ4dWSQ7NkEO94z0PObQoOTRDDs2/n/VwftRNDq3SOjnP5NBsPp+3tsihVZJDM+TQhfl83sJk0SrJohmyiJWSQ6skh2bIod7xXrUcWpQcmiGH5rFOzo+lq7szm6lKkr/P+S56H0jyfUkOLbDuZUl+JXO77/11krLE/V2euV0P/ybJEzrWG07yz9N60Lev+1NL3M8PzlNnleR0Wm9odKVjYVrdUzu7It6Z5LnzrLsryS90rDs537o9uJ97fjzSeiI/N8ZjSd6Q5NlJtsyzbkny4rTCq7Omnh+P6Rp+umO/Z6fP/6GO9a5PckfHug8n2b/E/bRv997pc2Y5U7Mfx6POKXJIDsmhnuRQWr94XShjFpr+pmN/b+zHMalziiySRbKoZ6+J1sv5Ufckh+TQZsyhfp0f0/s6ssC+7p/nutt7fdvX4iSH5JAc6un58cokn0zrtdcLk+xaZN2xJP8irf8Aad//55KM9vqY1DnJITkkh3r+eqh9LO9VL3ycZJEskkW9OR7er176sZJDckgObfLzw2QybczJc/zmyHDP8fPW6zN6a2SKHJJDcqgnORTveSznvpBDckgO9ej10Ho5P+qe5JAc2ow51K/zY3pfPp934WMkh+SQHOrd+eHzeUs/VrJIFsmi3r4mah/Le9XzHyM5JIfkUG+Oh/eql36s5JAckkOb/PxY1m2quwBTlST/K61uezcvY5t/Ns8J/41L3PYNHdu9J8nIIut/3TwPrCuXsJ8fnA79Dyb51STfneTJaXUMfFYXH5i/3THWp5Psu8A2/7Jjm48lGejx/dzz4zEd3F9M8uok25a4zUVJPt6x/09kiS8EVnE8rs7cFwUvWmT9LZn7H42/vMR9tW/zrl7ervU6ySE5JId6m0MrqO2yJBMd+3pGL4/HWphkkSySRb3LovVyftQ9ySE5tElzqC/nx/S+jqT1lxb+R5LXTx+ni6eve1fHvm7v5e1eq5MckkNyqKfnx+AKtnlSkuMdNbyml8ej7kkOySE51PPXQ+1jvauXt2s9T7JIFsmi3mbRCmrbdO9XyyE5JIecHyaTaWNOnuM3R4Z7jp+zX5/RW0OTHJJDcqi3ObSC2rznsbRt5ND5/cih8/uQQ+v0/Kh7kkNyaJPmkM/nraFJDskhOeTzeWthkkWySBb5jF7dkxySQ3LI5/PqnuSQHJJDzo9l3aa6CzBVSXJwhdu9pePk+h9L2ObajifGM0muXcJ2b+zY168tYZtdCz0hdDGork6r42D7WE9f4rbv7NjuO3p8P/fjeOxdamB3bHfTPMfxH/X4ePxGx/5+fQnbPG76nD23zXiSq5ewXft+3tXL27VeJzkkh+RQb3NoBbX9647aPtXLY7FWJlkki2RRb7JoPZ0fdU9ySA5t0hzq+fFoG2/Bv6AbH7w6dxwOrnA7OSSHOseRQ92r79921PDeftfQ59t7cIXbySE51DmOHJp/vPax3tXL27WeJ1kki2RRb47HKmrbdO9XyyE5JIecHyaTaWNOnuM3R4Z7jp+zT5/RW0OTHJJDcqi3ObSC2rznsfTt5JAc6hxHDq3T86PuSQ7JoU2aQz6ft4YmOSSH5FBvjscq69tUn8+bvs0HV7idLJJFnePIovnHax/rXb28Xet1kkNySA715nisojbvVS99OzkkhzrHkUPr9PxYztQItauq6u4VbvqLHfNfsYRtXp5koG3+96uq+vQStvsPHfMvLaWMLLZBVVWHq6o6vYSxV+OFyazz+L1VVf3NErf9fzvmX9GdkubXj+NRVdVDVVWdWMF2/ztJ53Fbyvm0IqWULUm+oWNx5zk2R1VVn0ry1rZFzbTOaVZJDq2KHJq9Dzm0SqWUkrnnwhu6uY+1ShatiiyavQ9ZNNu6OT/qJodWZd2cZ3Jozj77cX6c29cX+rGf9UwOrYocmr0POdQ9f9wxf00tVfSJHFoVOTR7H3KIFZNFqyKLZu9DFq3SZn2/Wg6tihyavQ85NNu6OT+Ajclz/Kqsmwz3HH/eWv5szGYlh1ZFDs3ehxxaJe95LJsckkOd+5BDs62b86NucmhV1s15Jofm7NPn89YQObQqcmj2PuRQ92yqz+clsmiVZNHsfcgiVkQOrYocmr0PObRK3qteNjkkhzr3IYdmWzfnx3JojLa+fbBjfkspZewC27y4Y/7Xl7Kjqqo+keR9bYu2JXneUrbtsWd2zL9jGdv+ZZKzbfO3llL2r76kdavzfLq0h/t6fpKtbfN/+3/au/dgafK6vuOfHyD3y6oIiAhLUAmKGhAT8RI3BiyIJcgl3pVVvF8qmphKoaRCNGIuXquSUqIoipdIEBQFgRBdMBqvtQgoElFBUZY74i677C788secfc6cnjNzpmd6unu6X6+q80f3M9PT5zzf5z3n+Z2uPrXWP9nyuc2ZfXw3p8SOdEiHuqRDC5+Z5AFL2zdn8RvrWE+LtKhLU2yR+Tg8HTJnXeqzQ0yHDulQl3TorHc2tu8yyFmMnw7pUJd0iF1pkRZ1SYsWrFe3o0M61KUpdsh8AMfKe7yGd2mKP4/m8HRIh7qkQwvWPNrRIR3q0hQ7ZD4OT4fMWZemuPbK4emQDnVJh85yfd72tEiLuqRF7EKHdKhLOrRgrbodHdKhLk2xQ5OcDzdGO243n7PvtuseXEq5V5JPbDz/N1u83lWN7Ue3eO6h3Kex/Zptn1hrfV+S1y/tulXG8TkNpTlPa2epA49qbF/V4rm/kbPn+pBSyj33PiN2pUM61CUdWnhyY/uFtdZrOjz+FGmRFnVpii0yH4enQ+asS312iOnQIR3qkg6ddb/G9t8Mchbjp0M61CUdYldapEVd0qIF69Xt6JAOdWmKHTIfwLHyHq/hXZriz6M5PB3SoS7p0II1j3Z0SIe6NMUOmY/D0yFz1qUprr1yeDqkQ13SobNcn7c9LdKiLmkRu9AhHeqSDi1Yq25Hh3SoS1Ps0CTnw43RjttHNbZvTvL2DY9/cGP7VbXW61q83m81tj+uxXMP5UMa2+9u+fzm4z9+j3M5ds15evMBX6s5i/932yeezOyrG7vHMItzpUM61KXZd6iUcrckT2jsfmYXx544LdKiLk2xRebj8HTInHWpzw4xHTqkQ13SobO+vLH964OcxfjpkA51SYfYlRZpUZdm3yLr1TvRIR3q0hQ7ZD6AY+U9XsO7NMWfR3N4OqRDXZp9h6x57ESHdKhLU+yQ+Tg8HTJnXZri2iuHp0M61CUdOsv1edvTIi3qkhaxCx3SoS7NvkPWqneiQzrUpSl2aJLz4cZox+2Jje3fr7V+YMPjP7ax/fpzH7Xen11wvCHc2Ni+XcvnNx8/hs+pd6WUuyZ5ZGP37x7wJR/U2O5zFu9bSvmJUsoflVLeVUq5sZTylpPtny6lfE0ppRl81tMhHerEzDq0yRclucPS9puT/GpHx54yLdKiTky4Rebj8HTInHVigA4xHTqkQ53QobNKKd+Y5EuXdt2c5AcHOp2x0yEd6sTMOmStuntapEWdmFmLNrFe3Z4O6VAnJtwh8wEcK+/xGt6JCf88+jzWPbqlQzrUiZl1aBNrHu3pkA51YsIdMh+Hp0PmrBMTXnvl8HRIhzqhQ2e5Pq81LdKiTsysRdaqu6VDOtSJmXVoE2vV7emQDnViwh2a5Hy4MdqRKqXcOcmTG7uff8HTmncs/MuWL/vGxvaHllI+uOUxuvaOxvaHt3x+8/EP3ONcjtnXJrnj0vbf5kB31z/5T2LzP4ptZ7H5+I9u8dz7J7kyiwhfluSDktzjZPtLkjwjyV+WUn7g5N8Za+jQJTrUjTl1aJPmv6mfrLXe3NGxJ0mLLtGibky1RebjgHToEnPWjd46xHTo0CU61I1Zd6iUcqdSygNLKU8qpbw8yX9tPOQptdZXDXFuY6ZDl+hQN+bUIWvVHdKiS7SoG3Nq0SbWq1vQoUt0qBtT7ZD5AI6O9/hLNLwbU/159Hmse3REhy7RoW7MqUObWPNoQYcu0aFuTLVD5uOAdOgSc9aNqa69ckA6dIkOdWPWHXJ93u606BIt6sacWmStuiM6dIkOdWNOHdrEWnULOnSJDnVjqh2a5Hy4Mdrx+p4k91rafneSH7vgOZc1tt/a5gVrrdcmuaGx+25tjnEAr21sf8q2Tyyl3DfJvRu7h/58eldKuTzJv23s/qFaa/NukF1pzuF7a63XtTxGc3a7/nu7U5JvSfIHpZSP6/jYU6JDCzq0Jx1aKKV8fJKHNXY/c9/jzoAWLWjRnibeIvNxWDq0YM72NECHmA4dWtChPc2tQ6WUy0opdfkjybVJ/iTJs5L846WHX5vka2qt3zvAqR4DHVrQoT3NrUNbsla9PS1a0KI9adGC9eqd6NCCDu1p4h0yH8Ax8h6/oOF7mvjPo3dl3WM7OrSgQ3vSoQVrHjvRoQUd2tPEO2Q+DkuHFszZnia+9sph6dCCDu1pbh1yfV7ntGhBi/Y0txZtyVr1dnRoQYf2pEML1qp3okMLOrSniXdokvPhxmhHqJTyuCTf1Nj9HbXWd17w1Obdiq/f4eWbz7nLDsfo0ssb208opdzx3Eeu+vJz9g39+fSqlHLbJD+fs5/3G5L85wO+7FBzeHOSq5I8Ncljkjw0i9/a9JAkj03yvVn9ZuZjkryslHK/Hc5x0nToDB3aw8w6dJHmnapfXmt9fQfHnSwtOkOL9jCDFpmPA9GhM8zZHgbqEBOgQ2fo0B50aK23JPmOJPevtf7o0CczRjp0hg7tYWYdslbdMS06Q4v2MLMWXcR6dQs6dIYO7WEGHTIfwFHxHn+Ghu9hBj+PXmbdo0M6dIYO7WFmHbqINY8WdOgMHdrDDDpkPg5Eh84wZ3uYwdorB6JDZ+jQHnRoLdfnbUGLztCiPcysRdaqO6RDZ+jQHmbWoYtYq25Bh87QoT3MoEOTnA83RjsypZRPTPJTjd0vTfLDWzy9Ge7m3Sm30Qx385h9e2EWd/O8xWVJnnbRk0opH5nk2875o1uXUu7QzakdhR9L8g+Xtt+f5Ek7/DakNoaYw6cm+Yha6z+ptX53rfWXa61X11pfX2t9Za31BbXWf53kfkn+Y5K69Nx7JXleKaXscJ6TpEMrdGg/c+nQRiffSH9pY7e7e2+gRSu0aD9Tb5H5OAAdWmHO9jNEhzhyOrRCh/ajQ+e7Z5KvS/L1pZS7Dn0yY6NDK3RoP3PpkLXqjmnRCi3az1xatJH16nZ0aIUO7WfqHTIfwNHwHr9Cw/cz9Z9H38K6R4d0aIUO7WcuHdrImkc7OrRCh/Yz9Q6ZjwPQoRXmbD9TX3vlAHRohQ7tR4fO5/q8C2jRCi3az1xaZK26Qzq0Qof2M5cObWStuh0dWqFD+5l6hyY5H26MdkRKKffNYhCXY/nGJF9aa63nP2ujvp5zMLXWv0vyQ43d31ZK+RfrnlNKuU+SFye527rDdnR6o1ZK+a4kX9bY/ZRa6yt6PpWDz+HJf16bd+8+73E31FqfkuSbG3/00CRf1OY1p0qHVunQ7ubUoS08NsmHLm3/bZLndvwak6FFq7Rod3Nokfnong6tMme7G1GHOCI6tEqHdjfjDr0nyf2XPh6QxRrQ45P8QJK3nTzuI5N8Z5JXl1I+eYDzHCUdWqVDu5tTh6xVd0uLVmnR7ubUoi1Yr96SDq3Sod3NoUPmAzgW3uNXafjuRvQe7xq9I6JDq3Rod3Pq0BaseWxJh1bp0O7m0CHz0T0dWmXOdjeiDnFEdGiVDu1uxh1yfd6etGiVFu1uTi2yVt0dHVqlQ7ubU4e2YK16Szq0Sod2N4cOTXU+bjP0CbCdUso9kvyvJB+xtPuaJI+stb7t/GetuLaxvcud+ZrPaR5zCE9P8uic3pmxJPnBUsoTs7g76iuzuBPnvU8e9/U5ffN7U5L7LB3rhlrryp0+SymXb3sytdY3tDr7AZRSviWLu14v+/5a63/Z8vmXb/ta53w9Rj+Htdb/Vkr57CSPWdr9DUl+tsvXOTY6tJEOtaRDK57c2P7ZWmvzLtJEiy6gRS3NrEUHn4+50KGNdKilgTvEkdKhjXSopTl3qNb6gSRvOOePrk7y/FLKU5P8pyTfdLL/vkleVkr5tFrra/o5y3HSoY10qKU5d2gb1qrX06KNtKglLVphvXoLOrSRDrU0sw5ZqwZGzXv8Rt7jW5rZz6Nbs+5xPh3aSIda0qEV1jy2oEMb6VBLM+uQNY+O6NBGOtTSzNZe6YgObaRDLc25Q67P248WbaRFLc25RduwVn0+HdpIh1rSoRXWqregQxvpUEsz69Dk1qrdGO0IlFI+JMnLknzM0u63J3lErfVPWxxqkuGutd5YSnl8khcl+YSlP/r0k4913pHFNw4vWdr37jWP/YsWp1RaPLZ3pZSvTvL9jd0/XGv9Vy0Os8/X41jm8Hty9j+yn1JKuazWum5GJk2HNtOhdnTorFLKRyZ5ZGP3M3c93pRp0WZa1M7cWtTTfEyeDm2mQ+2MoEMcIR3aTIfa0aHNaq3vTfLNpZSbknzrye67JvmpUson7fgbho6eDm2mQ+3o0NasVTdo0WZa1I4WnWW9ejs6tJkOtTO3DlmrBsbMe/xm3uPbGcF7/LHMoXWPJTq0mQ61o0NnWfPYjg5tpkPtzK1D1jy6oUOb6VA7I+gQR0iHNtOhdnRoM9fnradFm2lRO1q0NWvVS3RoMx1qR4fOsla9HR3aTIfamVuHprhWfauhT4DNSil3S/LSJB+/tPtdWdzJ8o9aHu5vG9sf1vJc7pzVcI9ikGutf53kU5M8I8lNWzzl15M8LMl1jf3XdHxqo1JK+bIkP5KzMf2JJN/Y42k05/COpZQ7tTzGPRrbh5jD383i39otbp3kYw/wOqOnQ9vRoe3o0LmuzNnvyf6w1voHexxvkrRoO1q0nbm2yHzsR4e2Y862M5IOcWR0aDs6tB0dauU7kvzN0vZDkjxioHMZlA5tR4e2o0OtWKteokXb0aLtaNG5roz16o10aDs6tJ25dsh8AGPkPX47Gr6dkbzHj+3amHWse5zQoe3o0HZ06FxXxprHRjq0HR3azlw7ZD72o0PbMWfbGUmHODI6tB0d2o4OteL6vCVatB0t2o4WtWKt+oQObUeHtqND57oy1qo30qHt6NB25tqhqc2HG6ONWCnlLklenOSTlna/J8mjaq2v3OGQzbtf3q/l85uPf2et9V3nPnIAtdbraq1fl+SBWSyI/HqSNyW5PsnfJXltkp/M4i6q/7TW+oYkD2oc5vd7O+GelVK+MItIL/+7/5kkX9XnHfRrre/I2f8gJsl9Wx6mOYtt7uy6lVrrB5L8ZWN3q292pkCH2tGhzXRoVSmlJPmKxm53927Qona0aLO5t8h87EaH2jFnm42lQxwXHWpHhzbToXZqrdcn+cXG7kcNcS5D0qF2dGgzHWrHWvUpLWpHizbTolXWqy+mQ+3o0GZz75D5AMbEe3w7Gr7ZWN7jx3RtzCbWPRZ0qB0d2kyHVlnzuJgOtaNDm829Q+ZjNzrUjjnbbCwd4rjoUDs6tJkOteP6vFNa1I4WbaZF7VirXtChdnRoMx1aZa36YjrUjg5tNvcOTWk+bjP0CXC+k99G86Ikn7K0+9okj661/u6Oh31tY/ujWj7/7zW2/3jH8zioWutfJHn6ycdFHt7Y/p01xyzn7T8WpZQnJHl2FnepvsX/TPKkk/+wtdLB1+O1Wdxh8hYfldX53KQ5i22e28b1je3mHV0nTYd2p0OrdGitz0py/6Xt92XxTTUntGh3WrRKi04dYj6mSod2p0OrRtghjoAO7U6HVunQzl7X2G77b+ao6dDudGiVDu1s1mvViRbtQ4tWadFa1qs30KHd6dAqHTplrRoYmvf43XmPXzXC9/ixXBtzkVmve+jQ7nRolQ6tZc1jAx3anQ6t0qFT1jy2p0O706FVI+wQR0CHdqdDq3RoZ7O+Pi/Ron1o0Sot2pm1ah3aiQ6t0qG1rFVvoEO706FVOnRqCmvVt7r4IfStlHKHJL+S5NOXdr83yefUWn9rj0O/prH9CaWUO7Z4/qddcLyjcnJX1c9q7H75EOdySKWUxyT5uZy9EeIvJvniWuv7hzmrldlpBnKtk29qPuGC43Xl7o3ttx/odUZHh/qhQzqU5Csb28+rtb5zx2NNjhb1Q4u06ILXmcV8rKND/ZjLnI20Q4ycDvVDh3RoCzc1tm83yFkMQIf6oUM6tIXZrlUnWtQXLdKiWK9eS4f6oUM6tMlc5gPol/f4fsyl4SN9jx/9z6NPzHbdQ4f6oUM6FGsea+lQP3RIhy54nVnMxzo61I+5zNlIO8TI6VA/dEiHtjDb6/MSLeqLFmnRFqxV69BB6ZAOxVr1WjrUDx3SoU3GPB9ujDYypZTbJ3lBkiuWdt+Q5DG11lfsc+xa65uTvGpp121y9s3hIlc0tn91n/MZgc9KcvnS9strrX860LkcRCnln2Vx58oPWtr9wiRfUGu9eZizSpK8uLF9RYvnfkbOvgldXWt9y95n1FBKuXtW7+L6N12/zhjpUK90aDiDd6iUclmSxzd2P7PtcaZKi3qlRcMZvEVbmPx8rKNDvZr8nI24Q4yYDvVKh7jIfRrbh/i+a3R0qFc6xFpzXqtOtKhnWjRj1qvX06Fe6RCbTH4+gH55j+/V5Bs+4vf40f88es7rHjrUKx0azuAdsuaxng71SoeGM3iHtjD5+VhHh3o1+TkbcYcYMR3qlQ5xkVlen5doUc+0iLWsVetQT3RoxqxVr6dDvdIhNhntfLgx2oiUUm6b5HlJHrG0+31JPq/W+r87epnnN7a/Ystz+/tJ/tHSruuSvLSjcxrKv2lsP2OQsziQUsojk/xCktsu7X5pkifUWm8c5qwueUmS65e2H34yY9u4srHdnOmufGHONvItSV57oNcaDR3qnQ4NZwwd+pIkt1/afkOSX9vxWJOiRb3TouGMoUUXmfR8rKNDvZv0nI28Q4yUDvVOh7jIZze2R7G4f0g61DsdYpNZrlUnWjQALZo369Xn0KHe6RCbTHo+gH55j+/dpBs+8vf4Y/h59CzXPXSodzo0nDF0yJrHOXSoxYhGTgAADKBJREFUdzo0nDF06CKTno91dKh3k56zkXeIkdKh3ukQF5nd9XmJFg1Ai9jEWvUpHTocHZo3a9Xn0KHe6RCbjHY+3BhtJEopt0nynCSPXtp9U5In1lpf0uFL/UyS9y9tP76U8tFbPK85xM+ptd7Q3Wn1q5TypCSPXNr1yizu/DgJpZTPTPJLOfsN0q9l8U3A+4Y5q1O11vcmeW5jd3PGVpRSPibJ45Z23ZzkZzs8tVte555JntrY/cu11tr1a42JDvVLh4Y1kg59ZWP7x6femW1oUb+0aFgjadGm15n0fKyjQ/2a+pyNvUOMkw71S4e4SCnlc5I8rLH7l4Y4l77oUL90iE3muladaFHftIhYr16hQ/3SITaZ+nwA/fIe36+pN3zs7/FH8PPoWa576FC/dGhYI+mQNY8GHeqXDg1rJB3a9DqTno91dKhfU5+zsXeIcdKhfukQF5nj9XmJFvVNi9jEWrUO9UGHiLXqFTrULx1ik7HPhxujjUAp5dZZBPWxS7tvTvIFtdZf6fK1aq1/muQnl3bdNsmzSim3X/OUlFIem7O/8ebGJP++y/Pa18kb37aPfXySH13adXOSr6y13tz5iQ2glPLwJL+S5A5Lu1+R5HNrrdef/6xBPC2Lb05ucWUp5THrHnwyoz+Rs3fofGat9c82POeBpZTPbXNSpZR7ZfH1u+fS7huTfE+b4xwbHdqfDp3SoYuVUv5Bkocu7fpAkme1Pc7UaNH+tOiUFp37XPNxAR3anzk7dUQdYkR0aH86dEqHTpVSHlZKedzFj1x53icneXZj9ytqra/u5szGR4f2p0OndOiUtep2tGh/WnRKiy5mvXqVDu1Ph07p0CrzAQzFe/z+NPzUEb3HPy2u0RsNHdqfDp3SoYtZ81ilQ/vToVM6dO5zzccFdGh/5uzUEXWIEdGh/enQKR065fq8drRof1p0SotOWaveng7tT4dO6dDFrFWv0qH96dApHVo1tfnY+pPhoH48yec39n17kqtLKZe3PNY1W9xp8t9l8RtsPvhk+1OTvKyU8lW11j+55UGllNsl+Zok39d4/vfVWt+4zcmUUu6T8+fsXo3t22z4XK+ttb79gpd6dSnlhUl+Icnv1Fo/cM65PDjJU5J8ceOPvr3WevUFx+/Eob8epZSHJPnVJHde2v26JN+Y5B6llDane0Ot9Zo2T2ij1vrnpZQfSvJtS7ufW0r5l0n+e631xlt2llIelOTHspjVW7wjF38D8eFJXlBKeXWSn07y/JNvXlaUUu6S5ElZ3Nn7no0//g+11j/f4tM6ZjqkQzq00HWH1nlyY/sltda/2vFYU6JFWqRFC4dq0VHMx8B0SIdm16Gkv/kopdw5yd3X/HFzQfnuG17rTWNaXOuYDumQDp3V1XzcJ8nzSimvyeIHaL+Y5HW1nv9blkopH5vka5N8Q+O8bjjZN2U6pEM6dFZX82Gtuh0t0iItOqvr+WiyXr1Kh3RIh86a5XwAk+Q9fiYN9x5/yjV6o6NDOqRDC67RG44O6ZAOLbg+bzg6pEOz61Di+ryR0SEd0qGzXJ83DC3SIi06yzV6/dMhHdKhs1yf1z8d0iEdOmuW87G1WquPgT+S1A4/rtjyNa9I8r7Gcz+Q5PeS/HySFyd56znH/+Ukt27xub2hg8/pWVu8ztuXHv93SX4ri3+kP5PkpRvO47t6/rs+6Ncji99o1NUsXdXD1+PWSV50zmu/JYs3oOck+f2T2Vz+8/cl+Ywt57x57Hcn+T9ZLLA9O8nzT17jpjVfh2cM3YieZlOHdEiHDtChNa95uywulFg+3hOGbMBYPjqcHS3Soqd1OEtX9fD16KVFxzIfQ350ODc6NPI5O/TXI8fXob7m48qOviaXD92LA/5d6JAO6dBhvh6fd87j33MyHy/I4gKI5yR5WZJr1hz/vUkeMXQnevi70CEd0qHDfD2uOOfx1qrXf720SIu06IDz0XhN69Xnf110SId0yHz48OFjgh8dNtl7/MgbfuivR47vPd41eiP56HBudEiHntbhLF3Vw9fDNXoj+ehwbnRIh57W4Sxd1cPXw/V5I/nocG50aORzduivR46vQ33Nx5UdfU0uH7oXB/y70CEd0qHDfD1cn9fu70OLtEiLDvP1uOKcx1urPv9rpUM6pEMHnI/Ga1qrPv/rokM6pEPmY+uP8+4kxwzUWq8qpTwuybOSfNjJ7pLkYScf5/m5JF9da33/4c9wL3dO8vALHvOuJN9Qa/0fPZwPa9Ra319K+fwsfrPSFyz90T2SPGrN096a5Em11t/Y8WXvluTTtnjcdUm+tdb6ozu+DhfQIR0ag4E69LgkH7K0/bYsFvoZgBZp0RgM1CLzMRI6ZM5gaDqkQzN2l1w8H7f47SRfW2t91QHPZ7Z0SIdmzFr1iGiRFs2Y9eqR0CEdmjHzAUya93gNHwPX6M2bDunQGLhGb950SIfGwPV586ZD5gyGpkM6NGOuzxsRLdKiGbNWPRI6pEMzZq16JHRIh2bs6OfjVkOfAMOptb4oyYOT/EgWg7rObyd5Yq31i2ut1/Vycu39YJKrs7gr5yZ/leQ7kzxgrP8o56bWem2t9QuT/PMsZm2ddyb54SQPrrW+eMvDvzbJ05P8ZpLrt3zO/0vy7Vn8hhP/iT0wHdKhMThwh87z5Mb2s2utN+1xPPakRVo0Bj21yHyMlA6ZMxiaDunQDPxaFr8V9+eSvGnL57w3yXOTfG6ST3XR1WHpkA7NgLXqI6BFWjRT1qtHRId0aEbMBzAr3uM1fAxcozdvOqRDY+AavXnTIR0aA9fnzZsOmTMYmg7p0Ay4Pu8IaJEWzYC16pHTIR2aKWvVI6JDOjQjk5qPUmsd+hwYgVLKbbO46/H9ktwri7sb/3WSq2utfzHkubVRSrlrkockuX8Wd+q8fRb/gfnrJH9Ya/3jAU+PLZRS7p/koUnuneROSa5J8sYkv1lrvXGP494qyUcneUCSj0hyWU7n411J3pzk92qtb9vrE2BnOsRYHKpDHActYiwO2SLzMW46BAxNh5iDUso9kzwoizn/0CR3THJTkvckeUeS1yR53RH8Zp9J0iGmzlr1cdAiYGg6xByYD2COvMczFq7Rmy8dYixcozdfOsRYuD5vvnQIGJoOMQeuzxs/LWLqrFWPnw4BQ9Mh5mAq8+HGaAAAAAAAAAAAAAAAAAAAAAAAAMDgbjX0CQAAAAAAAAAAAAAAAAAAAAAAAAC4MRoAAAAAAAAAAAAAAAAAAAAAAAAwODdGAwAAAAAAAAAAAAAAAAAAAAAAAAbnxmgAAAAAAAAAAAAAAAAAAAAAAADA4NwYDQAAAAAAAAAAAAAAAAAAAAAAABicG6MBAAAAAAAAAAAAAAAAAAAAAAAAg3NjNAAAAAAAAAAAAAAAAAAAAAAAAGBwbowGAAAAAAAAAAAAAAAAAAAAAAAADM6N0QAAAAAAAAAAAAAAAAAAAAAAAIDBuTEaAAAAAAAAAAAAAAAAAAAAAAAAMDg3RgMAAAAAAAAAAAAAAAAAAAAAAAAG58ZoAAAAAAAAAAAAAAAAAAAAAAAAwODcGA0AAAAAAAAAAAAAAAAAAAAAAAAYnBujAQAAAAAAAAAAAAAAAAAAAAAAAINzYzQAAAAAAAAAAAAAAAAAAAAAAABgcG6MBgAAAAAAAAAAAAAAAAAAAAAAAAzOjdEAAAAAAAAAAAAAAAAAAAAAAACAwbkxGgAAAAAAAAAAAAAAAAAAAAAAADA4N0YDAAAAAAAAAAAAAAAAAAAAAAAABufGaAAAAAAAAAAAAAAAAAAAAAAAAMDg3BgNAAAAAAAAAAAAAAAAAAAAAAAAGJwbowEAAAAAAAAAAAAAAAAAAAAAAACDc2M0AAAAAAAAAAAAAAAAAAAAAAAAYHBujAYAAAAAAAAAAAAAAAAAAAAAAAAMzo3RAAAAAAAAAAAAAAAAAAAAAAAAgMG5MRoAAAAAAAAAAAAAAAAAAAAAAAAwODdGAwAAAAAAAAAAAAAAAAAAAAAAAAbnxmgAAAAAAAAAAAAAAAAAAAAAAADA4NwYDQAAAAAAAAAAAAAAAAAAAAAAABicG6MBAAAAAAAAAAAAAAAAAAAAAAAAg3NjNAAAAAAAAAAAAAAAAAAAAAAAAGBwbowGAAAAAAAAAAAAAAAAAAAAAAAADM6N0QAAAAAAAAAAAAAAAAAAAAAAAIDBuTEaAAAAAAAAAAAAAAAAAAAAAAAAMDg3RgMAAAAAAAAAAAAAAAAAAAAAAAAG58ZoAAAAAAAAAAAAAAAAAAAAAAAAwODcGA0AAAAAAAAAAAAAAAAAAAAAAAAY3P8H9Ry3/pQ2KlkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor, Config\n", + "\n", + "async def clean_magnitude(datapoints):\n", + " async for datapoint in datapoints:\n", + " if datapoint.data is None:\n", + " continue\n", + " yield datapoint.collected_at, datapoint.data[\"magnitude\"]\n", + "\n", + "TemperatureConfig = Config(\n", + " sensor_name=\"Temperature\",\n", + " clean=clean_magnitude,\n", + " title=\"Ambient temperature\",\n", + " ylabel=\"Degrees C\",\n", + ")\n", + " \n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 5), dpi=300)\n", + " configs = get_known_configs()\n", + " to_display = configs[\"Relative humidity\"], TemperatureConfig\n", + " for i, config in enumerate(to_display, start=1):\n", + " plot = figure.add_subplot(1, 2, i)\n", + " coros.append(plot_sensor(config, plot, {}))\n", + " await asyncio.gather(*coros)\n", + "\n", + "display(figure)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAE0YAAAUsCAYAAAC9bUPVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdd5h1Z1kv/u8dAqEEEnoRSIBIVUA6AiYRPDSlKr0EIgiCla6IAVEPR1DPQQRF6aKIQEDqT8HQu1IUBUKJEECQloSSEHL//lj7lXnX7Cl7z57Z8877+VzXXGQ9az1l773WzsXMN/dT3R0AAAAAAAAAAAAAAAAAAAAAAACAZTpk2QsAAAAAAAAAAAAAAAAAAAAAAAAAUBgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAYKSqjq6qHv2csOx17aSqOmX0+k9Z9pr2Iu/zga2qThp/VxwI87vvAAAAAAAAAAAObgdq7gUAAAAAODgojAYAAAAAAAAAAAAAAAAAAAAAAAAs3aHLXgAAAACwO1XV0Uk+M0OXs5OckeSbST6V5F+SvCfJG7r7nEWvDwAAAAAAAAAAAFaqqsqQeztqdOr7SY7q7tN3flUAAAAAAMzikGUvAAAAANgzDkty6STHJLltkscnOTnJ6VX1tKo6fJmL2+uq6gVV1St+PrvsNQF7S1V9dvQ984JlrwkAAAAAAAAAYOQ2WV0ULUnOl+SEnV0KLEZVHTfK7XRVHbfE9cgrwgJ5pgAAAGA1hdEAAACA7XapJI9N8q9VdfNlLwYAAAAAAAAAAIA968R1zj24qmrHVgIAAAAAwFwOXfYCAAAAgAPKt5Kcusa5Cye5RJJLrnH+qCRvrKpju/tD27E4AAAAAAAAAAAADk5VdYkkd1nnkqsmOS7JP+3IggAAAAAAmIvCaAAAAMAsPtDdx613QVVdMcnPJHlUkquNTl8syd9V1bW6+3vbs0QWYaPPGUi6+6QkJy15GTPzfAMAAAAAAAAAe9T9khw2auskteL4xCiMtnQHau4GAAAAANgZhyx7AQAAAMDe0t2f7+5nJ7lekldOueRqSX5hZ1cFAAAAAAAAAADAHvfg0fEnszrDdreqOmKH1gMAAAAAwBwURgMAAAC2RXd/K8l9k/z7lNP33+HlAAAAAAAAAAAAsEdV1Y0ybOa50ouSvHDUdqEk99mRRQEAAAAAMBeF0QAAAIBt093fTfL7U07dqKousdPrAQAAAAAAAAAAYE86cXTcSV6c5A1JvrzBtQAAAAAA7CKHLnsBAAAAwJ73xilthyS5RpJ3zztoVR2S5MeSHJ3k0kkukeSMJF9JcmqSf+nu8+Ydf5Gq6oeSXDPDWo/IsOvoGUm+luQ/k7x/UkSObVBVF0pykySXT3KZJIcn+WqGe+XD3f2pJS5vU6rq0kluluSqGdb/zQyBzfd292nLXNt2q6ojMrz2H87w/Hw3yelJ3j3La6+qKyS5cYbn8PAMz9/nk7y1u89Y8LLnUlWHJblFkisnuVyS7yf5ryQfTfKh7u4lLg8AAAAAAAAAYFea5IPuPWp+275sSVW9NMmvrjh3w6q6Xnd/eJvXdf4MuaVrJ7nkpPm/kvzzLHNX1cUy5F6ukeTIJN9K8qUk7+zuzy900avnvmSSmya5WpKLZcgtfSG7NHdVVVdMcr0MmcJLZyiQ95UkX0zynp3ICVXVDye5YZIfSnJYhqzaF5K8o7u/vt3z70VV9SNJjsmQ/7tkkm9n+Fw/myF/+b1tnt+zPP+8u+WZvF6SK2bIDp6T5Ivd/eJN9pcB3gZVdYEkN8rwPFwqw/flGRlyse+dYZxjMjyb++6xs5P8d4Z86Hu6+zsLXjoAAAA7RGE0AAAAYFt191eq6owMQYqVLjXPeFV1qySPSPJTGYqhreVrVfX6JL/f3R+bZ655VdWlktw1yW2SHJvksht0Oaeq3pPkT5K8YrMF3arqs0mOWuP0UVW1mSJKx3f3KVPGPiXD2vd5a3cft8Y6PprkR1Y0fSXJD20lbFRV907y0lHzI7r7TzfZ/5Ak901yvyQ/keSC61z7mSR/m+Tp3f3f8614e1TVcUl+I8mtMxQUnHbNx5L8XpKXzlI4q6pOSPL8UfNVuvuzc6xzPO+Tu/ukDfqclOS3V7Z1d604f+MkT0xyh6zxe8yqemuSx3f3e9aZ52eSPC7JjyepKZecU1WvSvLY7v7P9dY862uYYZyjk5yU4Xtj/F25z5eq6jlJntHdZ806x2i+U7KJ53uyrs+sM9QDq+qBG8237z2ZBPtOzxAu2+eU7j5+w0Wvo6r+b5JfHjVff7vDywAAAAAAAADArvGzGYrVrPTC0T//6uj8g5P8yjyTTTI9/zRq/p8c1mQDv99Mcv8kF11jjE8keep6hXmq6roZ8jN3ylAwZto1707ymO5+52yvYn1VdWx+kFs63xrX/HOSZyf5y1k3/FtU7mYy1mWS/FqSn0lynXUuPbeq3pvkWUleNuvGq+tlpCZ5tQcm+fXsn6Vb6fuT3M4T18s7rZjvpIzeo5F/qtrwLXthd5+w0UWbsZ15xTXmu26G5/a2Sa6wzqVnVdU/JnnaZt7X0RzH5QB/ljeRw9vWZ3mN8XbDM3mRJL+U5CEZNqSdZupndqBngDe6r2cxZY0bfqdslE2tquskeWySuye5yJQhXphk3cJoVXWVDN+3d8jan2+SfLeq3p7kj7r7DeuNCQAAwO4z9T+mBAAAAFiwaUV81ir+M1VVXX1S6OxtSe6Z9YuiZXL+fkk+WlV/UVVrFsZapMnuol9M8udJ7pGNAxFJcoEMxbv+Nsm/Tv7ofyAZBxguneSOWxzzhNHx2Un+ejMdq+p2ST6a5EVJ/lfWKYo2cZUMhbM+XVVzhR0XraoOq6rnZgin/FTW/z3etZO8JMkbJ2GeA1oNfifJezIEwdbb3OHYJO+qqkdPGeeIqnpFktckuUWmF0VLhufvnkk+VlW32dLi5zC55/4tQzByve/Fy2UonvZvVXXDHVjawk1293zJqPm4qrrWvGNOdnx+wKj53YqiAQAAAAAAAMBB5cTR8beT/N2+g+7+UJKPjK65X1VNLVC0FVV1tyQfS/KLWaOQ0sTVk7yoqv52vI5JfuZJSf45yc9ljUJKEzdP8vaq+o2trfx/5j5fVf1JklMyZK+mFlKauEGS5yZ526RIzY6qqgtU1VOSfDrJ47N+AaZkyCHdIsOGnR+eFKtaxDqumOQdSZ6XtYuiJcN7eesk766q313E3HtRVV2+qv4qyYeSPCjrF0VLhk0a75LhfT25qjbKlm52HZ7l2efcLc/kTTN8dr+f9YtmTet7MGaAd0xVPTHDs/2ATC+KtlH/i03u648neWQ2/nwvmCGD+/qqentVXXnWOQEAAFgehdEAAACAnXDklLYzNtu5qm6dYfev288x9yEZgm9vrarNBBS26sezfiGnjVwryXuWUaBpC16S5HujtgfNO9gkKDZ+/Sd399c30ffRSV6XoVjYrC6a5I8nhfS28hluyaSI3xuS/PyMXf9XhvDGegGmA8FzMuyOudnfXVaSP6iqh/5PQ9WRSd6c5G4zzHuRJK+pqhvP0GdLJgHHP05y4Rm6XTnD99kBWRwtw66YYw/bwnj3zup/xzx7C+MBAAAAAAAAAAeQqjomQ0GalU7u7jNHbS8cHV8iQzGlRa7lfhkKsh0xQ7efy1BQa98YlaFA0ZOzfiGj/aZO8rtV9cgZ5l09yDD3S5I8Ysaut8yQZ5mpANFWTIpf/X9JfitzFNfJUMDsnVX1M1tcx1UzbAB58xm7/kZVPXUrc+9FVXW9JO9Lcp+svRHmeu6cIX959S2uw7M8+5y75Zn8iQzF4OYtgHUwZoB3xKSg2e9kzve3qo5K8s4M9/X55xjilkneV1U3m2d+AAAAdt7S/gNPAAAA4OBQVVfL9KI/n95k/59J8oqs/iP2OUnekqFg2ueSfDPDzn9HJ/nJJLcaXX+TJCdX1U9097iI13b5foad/v4tyX8k+WqGgnCV5GJJfjjJzTLseLeyCNThSf6mqn6suz+3zvgfS/KNyT9fOcnFV5z73uT8Rs7axDXr6u4vV9XrM4SK9rlDVV2mu788x5APyOqiWM+bduFKVfW/kzxuyqmvJfmHJB9M8uUMO8IemWE3wtslucbo+hMzvK+PnmnVi/O8JMevOP54hkJp/5HhtRyR5MeS3D2rdyP8iSS/luTp27/MxauqX0ny0BVNpyX5+yT/muG1H5nkphlCZBcbdf/jqnpThu+Dv0mysnDYB5O8MclnkpyZ4X37ySR3yv732oWSPLeqbtTd5y7oZU1VVb+eZNrunmdP1vq2JF/IEBK7Sobna9+OshdJcnJW7Gy8Tc5J8uEVx9fO/t/FX0/yn7MM2N3/VlWnJDluRfMDquoJ3f3tOdb48NHxV5O8fI5xAAAAAAAAAIAD04OzuoDSuAhakvxVkv+T/QsUnZjkZQtax42S/N6KtXwjyeszFM36coZcyrWS3CNDxm2l+1TVyd398gx5khNXnDstyWsz5Ge+miE/c5PJOOP8zNOq6rXd/dk5X8OjktxrxfGZSV6d5P1J/msy9zUz5JauNOp7pSRvqarrd/c3so0mmya+c7KWsX9N8tYMmb1967hMhsJld8iweeY+hyd5eVXdors/OMdSLpoh1/VDk+NO8q4k/5ghU3NWkktnyAfeNckFR/2fUFV/393vXWP8L+UH2Z3Dk1xtdP5T2Tj/N1O2ZwPbmlesqhsl+acMr3Wl85K8PcN7+5nJGi6U5IpJjk1y6+z/XP9whg1Gb9jd39zEmsY8yzM+y7vombxckldm/2ftfRkKtp2W4X24fIYc3M9tYryDIgO8Qx6S/Qv1nZUh1/vODPfkIRme6eMzvO/7mRRFe29WZ2aT4TN+Z4as7deTXCDD5/zjGTbkPmzFtZdN8rqqukF3n7a1lwQAAMB2q+5e9hoAAACAXaiqjs4QIlnprd193IzjPDbJ00bNX09yqe4+b4O+V8kQKjhyRfO5Sf4oyR9091fW6Xv9JH+R/YsjJckfdvejNpj36Kx+7Q/q7hes12/S9xNJPppht723bCZYM/mD/e8nuffo1Ou6+6c36j8Z4wVJHrii6bTuPnozfdcY75QMoaF91v3sq+pOGYIzKz2qu/9wjrk/kSEwss/nkxy13v1SVXfNEGhZ6etJHp/kRd393TX6VYadX5+TIWyz0p27+zUzLn8mU97n7+YHoZwvJfml7p5a/KqqDk/yrAyF5Fb6RpIrdPd3Npj7hCTPHzVfZZ4wVVWNf8n45O4+aYM+JyX57VHz2RlCKN/OEM56bndPC7lcNkPBxFuMTv15hnDLMybHn07y0O5+8xpruFGS12X1Z3+f7v7r9da/1mvo7g13Kq2qayT5UFaHHd8wWe/n1+h31yTPzg/CPd/JELSbdf5TMsPzvaLfZ5MctaLphd19wkb9poxz96wu6nZid29YAHE0zg2TfGDU/PTufsysawIAAAAAAAAADjxVdb4MhZ+usKL5C0muNC1rVFWvy1CIZ5/zklx11uIoVXVchgJOK+3LvSTJM5M8aVpRoao6LEO25RGjUx/PkAN6d4YCMRvlZy6XIT/z46NTf97dv7CJ13BSVmd3VmaXnp/k19d4DYdk2LzxqVmdf3lBdz9onvk3k3uZ9H1VhszXSu+arHetImP7ijf9Voa1r5zrs0mu291nbjDvOCO18v16b5Jf7O5/XqPv0Rk+rxuMTr2pu2+33ryT/sdl9T13fHefslHf7bANecWLZ8iKjsd4fpKTunvNAm+TzXufleS2o1Ov7O67bzDvcfEsb+lZnoyzW57J7+cHRfI+kuRh3f3uNfpecFqudC9kgBf5fTFPZnCNbOrKz+Y5SZ7Y3V9do/9+n01VXSDJO5LceHTpa5M8trv/fZ21XC7JHyS53+jU+5PcfNozCQAAwO5xyMaXAAAAAMynqi6f5NFTTv31RkXRJv4q+xdF+3aS23b3Y9cripYk3f2hDEGRfxid+qWqGu9wt0g37u67d/erNrvbYHef1t33SXLS6NQdqmraDnq70esz7Nq20gmzDlJVt8j+RdGSIUixXlG0y2R1iOKTGYIxf75WUbQk6cGrMuzyOC5G9fuTwmk7aV+46NNJbrZWUbQk6e6zMrzHbxqdOjLDTo4Hon1F0W7T3c9ZK3TS3f+V5Kcz7MC50v2SPGXyz/+WIbgytSjaZJwPZPp7talA1xY8O6uDZH+b5KfXKoqWJJN79dj84HVfaK1rd7mTs/p5e/gc44z7dJI/m2tFAAAAAAAAAMCB6PbZvyhakrxknazRC0fHh2SOjNMa9hVS+pXu/uVpRYiSpLvP7u5HZnXm5xpJ/n6yprOS/OQG+ZkvZcjPjHN096qqeTMl+/Is/7u7H7zOazivu5+R5OcybHS60glV9RNzzr+hqnpoVhdg+tMkt1yvAFOSdPc3Jpuqnjg6dXSSX5xjOfver9cmOW6tomiTuT+b5KeyOmP3U1V15Tnm3muelf2Lon0/yf0m9+GaRdGSpLs/leG7YJwhvFtV3XSOtXiWB5t6lnfZM7mv8NY7k9xqraJok7nXypUerBng7bbvs3lUdz98raJoydTP5qSsLor2+O7+mfWKok3G+lJ33z/Jk0enbpzkZzdeNgAAAMukMBoAAACwLSa78L0xyaVHp76dYWe0jfr/VJKbj5of3N1v2ewauvucDIGN/17RfP4kv77ZMWa12SDEGp6SYReyfSrJg7e2op3R3edm2CFvpR+tqhvOONS0glTjwNLYryQ5YsXxt5Pcbr0CU2Pd/bkk9xo1XzvJnTY7xgJ9L8k9NrMTbXd3pt/P490vDyS/ul4gaZ9JWOvpo+YLJ7lIhh0v79Hd48Jp08Z5R4bvqpWOr6px4bKFqKofTXL8qPnUJA/YTMHI7t63o+gBaxLyGxcwu1FV3WizY1TVEVm9w+Y/dPepW10fAAAAAAAAAHDAGBfTSZIXrXP9q5OMCwQ9qKoW9d/YvbS7/98mr/2tKW2Xmfzvr2xUUChJuvvrSZ4xar5Yhg1F53VKdz9hMxd292uTPHXKqV/ewvxrqqpDk/zGqPmN3f2ISY5qU7r7+Un+YtT8a1V12LTrN/DZDAW81ty8c8W8X8vq4jyHZCiYdtCqqmskueeo+Te7+682O8bk8/+FJOMiSY+fc1me5cG6z/IufSa/meSe3X3GHH0P2gzwDnlFd//hLB2q6uJJfmnU/Jzuftos43T3SVm90fa83w8AAADsEIXRAAAAgIWoqgtW1Q9V1R2r6s+TfCTJdadc+pBNFqx63Oj47d39slnXNQkp/N9R811nHWcnTIIgLx4133IZa5nT86a0nbDZzlV14ST3GDW/bbKj41p9Ds/qnQGf0d2f3uy8+3T3O5O8edS8jHvlpd39wc1e3N0fSzLebXTWgnS7xSeyOuC0nles0f7iyfuyWX83Oj40yY/O0H8WD5vS9qjuPnuzA3T3mzLsKnog+/Mk54zaHj5D/wdmKIS30nO2tCIAAAAAAAAA4IBRVZdJcsdR8z9397+t1WeSzxhn0I5KcusFLOn7WV0gaE3d/f4k/znl1Mez8UaSK41zL0lygxn6j81a1OxpScZ5wDtX1eW3sIa13CvD57VPZ3XBnM16yqT/PpfN6o1cN+PJMxZS+psM98pKB2rWa1Eek/3/O9fPZPWGmRvq7u8l+b1R8+3n2CDTs/wDGz3Lu/GZ/MPuPn3ONWzJHsgAb6fzkjx6jn6PSHL4iuOzsjpfvllPGR1fv6qOnnMsAAAAdoDCaAAAAMAsjq2qnvaT5DsZQhGvTfKQrC5Y8+0k9+3ul240SVVdIslPjppnKZY09rrR8VFVddTUK5fvk6PjG1TV+ZeykhlNClG9b9R8nxl27bt7kouO2jYKBt0myZGjtr/c5HzTjO+VY7cw1ryeO0ef8ft+9UUsZAmeP+NOkZ/OsMPj2Kz3wL9MabvGjGNs1u1Hx1/M6vtuM/5sAWtZmu7+cpKXj5rvVVXj53ktvzA6Pj0HfrE4AAAAAAAAAGDzHphknKt64Sb6vWhK24lbX07+sbtPm7HPh6a0zZqf+VSSM0bN8+Ze3tPdH52lQ3d/N6sLAR2aIde1aD87Oj6lu0+dZ6Du/lyS8WudNSv2rSQb5iFH8349qzOC25VT2vWqqpLcbdT8gu4eF4/brNePjg9LctMZx/As/8BGz/JueyY70zf43UkHbAZ4m72luz87R7/xPfby7h4/J5v1riTfGLUtIyMMAADAJimMBgAAAGy3MzMUNbvmZoqiTdwqSY3a3rWFNXxmStuPbWG8Tauqw6vqDlX1+Kp6UVW9rqreXlX/XFUfGv8k+ZPREIdl2PnuQDEuZHaJJHfaZN8HjY7PyurCSWPjUMLpc4SSVhrfK0fPUKhpEb6T1UXONuNTo+PzVdXhU6/c3d42R5/xbpvfTvLBGcf47JS2hX/uk52KrzJqfvWcQb43ZQhXHsjG33cXTvKAjTpV1bFJrj1qfm53n7uohQEAAAAAAAAAu96DR8fnJvnrjTp197uyunDNXSabeW7FPLmXaTmnty9gnHlzLyfP2e+VU9puNudYU00KaN1q1LyVTGGyOis2a6bwPd19zhzzjrNeR8wxxl5x3SQXH7XN/bl299eyeqPNWT9Xz/L+pj7Lu/SZPLW7P7/FNeznIMwAb5d/mrVDVV08yY+Omrfy/XBeVj9jO5IlBwAAYD6HLnsBAAAAwJ73gSTPnOzmtlm3mNL2iqra9O55m3CpBY61SlXdMMljMhQFu9AWhzsyyULDGtvor5P8YfZ/zSdkgwJnVXVUkuNGzX/b3RsVfhrfKxefhEvmNa2Y2KWyepe47XJad39vjn7jMFcyBObO2uJ6dto8u0WeOTo+bY4CWeMxku0JHN5wStusRdySJN19blV9JMnNt7ak5enu91TVB7P/+/KwJP9vg64PHx2fm6EAJwAAAAAAAABwEKiqWyS55qj5Dd39lU0O8aIkv7Pi+LAk903yzC0saxG5l0WNM2/uZa4cS5KPJvlekvOvaJuWk9mKa2XYpHOlB1bVT29hzCuPjmfNFI4L7G3WOOt1MBdGm5YVfWZVnb2FMS88Op71c/Usb+5Z3o3P5D9vYe79HMQZ4O0yz2dz8ySHjNqeUFWP3MI6jhkdb2uWHAAAgK1RGA0AAACYxbcyPaxx/gy79l1+yrnjk7y/qk7o7g135Jy44pS2626y72ZdcsHjJUmq6vxJ/ihD4Z7xH+TndcAEn7r7m1X1qiT3WdF826q6fHd/cZ2uJySpUdvzNzHl+F65cJLrbaLfLC6Z+UJK8/janP2mFVM7/5S23e7rc/QZv/aZx+ju7w0bWO5nO96/y0xp+/gWxvuPHMCF0Sb+JPs/69eqquO6+5RpF1fVZZLcddT8mu4+fZvWBwAAAAAAAADsPidOaXvhDP1fnOQp2T+vdGK2VhhtEbmXRY0zb+5lrhxLd59dVZ9N8sMrmqflZLZiWqbwimu0z2vWTOGisl4HYs5rUaZ9fuOih1s16+fqWd7cs7wbn8kvb3XCgz0DvI3m+Wym3UtX3epCRrYlSw4AAMBiLOr/mAMAAAAHhw909/Wn/Fynu6+Q4Q/EJ2Qo1rPSBZK8uKp+ZpPz7MQfmre6g9sqk0DEy5M8Iov9vcuBFnwaFzQ7X5L7r3VxDRWpHjBq/mR3v2MTc413HNwOC79X1jEtIHXQ6O5FvP7d/B4eOaVtvAPsLLbSd7f4myRfHbU9bJ3rT8zw75SVnr3QFQEAAAAAAAAAu1ZVHZ7kHqPmryd57WbH6O7Tkpwyar5eVd1wC0tbSGZlQfmZeS0yxzItJ7MVuzFTuJtzSgeKPfu5HgTP8m787M7YymQywNtqns9mN95jAAAA7CCF0QAAAICF6e6vdfcLk1w/Q7Gblc6X5CVVdfQmhrr4gpe2Ux6X5M5T2k9P8qdJ7pfk5kmulCEscsHurpU/SY7fsdVunzcnOW3U9qB1rj82q3dxGxdXW6WqLpzksNmWBkt10Slt39rCeFvpuyt093eT/OWo+W5VddnxtVV1SJKHjpo/meE7BwAAAAAAAAA4ONwryUVGbS/r7rNnHOeFU9pOnG9Je8YicyzTcjJbcaBmClmfz3V77MSzvBs/u3O32F8GePvM89nsxnsMAACAHXToshcAAAAA7D3dfXZV3T/JZbP/H/kvlqEAzq03GOI7o+NvdPeu/gN3VV0myRNGzecmeUySP+nuzf5R/4Dffay7u6pemORJK5qvWVU36+73TOkyLpr2/SQv2sRU301yXvYv/ioagZ8AACAASURBVH9yd991pgXDzjlzSts4qDuLrfTdTf40yaPzg2f5/BmCxr83uu72SY4etf1Zd/e2rg4AAAAAAAAA2E2mFS97WFU9bAFj37uqHtXd4/zaweIiSc7YQt+VpuVktmLaZ3KX7n71gudhZ037XC/e3d/Y8ZXsLTvxLO+pZ1IGeFeado9dv7s/vOMrAQAAYCkO2fgSAAAAgNlNQgAPyOpwxU9W1T036P7fo+Mjq+rIhS1ue9wpyYVHbY/r7j+eIRCRJJdY4JqW6QVJxsWKThhfVFWHJ7n7qPn/6+7TN5qgu89LMg5AXWXzS2QRqur8y17DAWRaYO+ILYy3lb67RnefluS1o+aHVtX499cPHx1/N8N3DQAAAAAAAABwEKiqaye52TZOcWSSu23j+LvdInMsiy5sNc4UJrJie8G0z/XonV7EHrQTz/JeeyZlgKdbZj50r91jAAAAzEhhNAAAAGDbdPfnkzxpyqnf26CY0n9NabvuYla1bX5qdPz1JH8yxzhXXcBalq67P5PklFHzvarqgqO2e2T1DoPPn2Gq8b1y9ao6bIb+B7PvTWmbJ8Ryya0u5CDy5Slt19jCeNfcQt/dZvx9eVSS2+87qKr9jif+tru/ut0LAwAAAAAAAAB2jRP3yBy71dXn6VRVF8jqYlbTcjJbcSBmCtmYz3V77MSzvNc+u72UAV5UNjRZbqG3vXaPAQAAMCOF0QAAAIDt9uwknx61XTXrB8jeN6VtXBBnt7nS6Pi93X3OHOPcfBGL2SXGBc6OSHLXUdsJo+OvJXnNDHOM75ULJTluhv4HszOmtF1sjnGO2epCDiIfnNJ2w3kGqqpDs7dCPv+Y5OOjtoev+OeHZvXvs5+9rSsCAAAAAAAAAHaNyUac9x81n5Pkw1v8+dpozOOqajcUtlmGuXIsGTIs46I703IyW/GRJN8dtd1uwXOw8w7ErOiBYCee5b32TO6lDPBCsqFVdcUk482Qd9J7p7T5fgAAADiIKIwGAAAAbKtJMOApU079ZlUdtka3f5jSds9JIaDd6lKj43FgbkNVdakkx885/7mj4/PNOc4ivSKrAxYP2vcPVXW1JLcanf+r7j57hjmm3Sv3m6H/wewbU9rmCXUeu9WFHCy6+8tJPjNqvlNVzfN72tsmucjWVzWTbfue6e5O8qej5ttX1VGTYPO4mOaHuvs9i5ofAAAAAAAAANj17pTk0qO2V3X39bfyk+SJozErKzJOB5m7zNnvblPaFprr6O7vJnnHqPnyVXXrRc6zi41zO8lyM4KLyhG9K8m3Rm13rKqLzzkeg21/lvfgM7mXMsB7Ihva3aclOXXUfJOquvoy1gMAAMDOUxgNAAAA2AkvSfKJUdsVkzxk2sXdfXpW7zJ3lSQnLHxlizMO54xDEpvxiMy/u9qZo+PD5xxnYbr720leNmq+dVXt21nvhCndnj/jNG/K6l0H711V15hxnIPRx6e03WSWAarqfEkevJjlHDTeMDq+QpI7zjHO1O/Pbbbd3zMvSHLWiuNDkjw0yV2TXHZ07bMXPDcAAAAAAAAAsLuNN1VLhlzaVr0syTmjthPm3OjuQHfzqrrOLB0mm6Pef9R8bpJ/XNiqfuDVU9pO2oZ5dqNxbidZbkZwITmiyca7bxw1XzTJo+YZj/+xU8/yXnom91IG+PTsn8NLZsyGTjx0C2tYlPE9dkiSJy1jIQAAAOy8g/EXtAAAAMAO6+7vJ/mdKaeeUFVrhQB+d0rb03fxTl9fHB3/eFVdZLOdJyGUJ2xh/q+Pjo/cJbsmjgudHZLkAZPg4ANG5z7c3f8yy+Dd/d9J/nzUfL4kL62qC8200oNMd385yedHzfeYFDvbrEdkvp0ED2bPmdL29Kq6wGYHqKrbJLnz4pa0aePvmYV+9t19RpIXj5pPTPJLo7Yzkrx0kXMDAAAAAAAAALtXVf1Qkv81av5KVhdUmll3fy2rN7q7YpLbbnXsA9T/nfH6x2Z4v1Z6dXeP83SL8JdJvjRqu2VVPW4b5tptxrmdZLm5rUXmFadlRR9bVbecczwGO/Es76Vncs9kgLv7vCQfGjXfsaqO2OwYVXWnJD8xz/wL9oys3jz5vlV1z2UsBgAAgJ2lMBoAAACwU16a5D9GbVdI8rBpF3f3q5J8YNR8RJI3zLqT3T5VddGqekxV3W+e/ht4++j48CS/vZmOVXV0ktckOWwL8390StsdtjDeQnT3u7P6cz8hya2TXHnU/rw5p/n9rN6t7wZJXjVvMKSqjqqqZ1bVj8y5pgPFONR55SS/upmOVXXrJP9n4Sva47r7o0n+adR89STP38xOw1X1w1ldPGynjL9nfqSqrrTgOf5kdHzZJOOQ40u6e7yjJQAAAAAAAACwdz0ow2aJK72su89d0PgvmdJ24oLGPtDcuqqeupkLq+r2SX5ryqn/t9glDbr7O5leROv3quqR845bVberqj+df2U74nNJvjlqW2Y+cGF5xclmqq8YNZ8/Q/5vrsJMVXVYVT20qn5tnv57xLY/y3vsmdxrGeBxNvRCSTZ7P1w3qzdFXopJYb5nTTn1vKq6+zxjVtX5quqeVTXt3gUAAGAXURgNAAAA2BGTHciePOXU46vqwmt0u3eSr43arprkvVX1m5vZvayqDqmq46vqOUn+M0Mhp8vNsPTNekWS80Ztj6mq36mqQ9dZ372TvDs/2L3xjDnnf8+U+Z9RVXeuqvPPOeaijAMSx2T1boTnJPmreQbv7i8leWCSHp26bZIPVtX91vsM9qmqi0zCDq9McmqSRya54DxrOoD8xZS2p1XVL1RVTetQVRec7Oj4hgxBnvFufGzsF7P6fbtPktdMdjieqqrukuRt+cF32He2Z3lretfo+JAkL6+qGy1qgu7+WFYXjht7zqLmAwAAAAAAAAB2t0mG5UFTTk0rZjavv8/qolN3qqpLL3COA8G+PMtvVtVz18rnTTJ5v5rklRkKWK30gu5+2zau8VlJXj1qOyTJM6vqVVV1vc0MUlVXqarHVdVHMuSg5irAtVO6uzPkDFe6TVX9flVdZglLWnRe8ReSfGbUdqkkb66qP6iqTWU+q+qmVfWMJJ9N8mdJrjbHWvaCnXyW98ozudcywC9I8v1R2yOr6slrvZ5JwbATk7wjySUyZHLPmWPuRXtikveN2i6c5O+q6i+qalPPeVX9SFU9JcknkvxNkk3dmwAAACzPhv9BKAAAAMAC/W2GP1BfZ0XbZTMUCXr6+OLuPrWq7pHk9UkusOLURTLsXPaEqnpHkncm+WKSb2T4Y/eRSa6U5AaTnyMX/kpWr/UTVfWSJA8YnXpikhOq6u+SfCTJWRkCA9dIcqfsH7z5dpLHJXn2HPN/saremP13iLtskpOTnFNVn0vyrawuHvbz3f2BWeeb0YuT/F7237X1WqNr/r67vzrvBN39iqp6UpLfGZ26ymT+p1fVKUk+kOQrGd6Li2W4N45JcqMk183Wduw74HT3+6rq1UnuvKL5fBkKTz2iql6VoUjcOUkuneSGGe6xlWG6X41CVTPp7v+oqt9M8ozRqTsmObWq3pBhB8ovZtip8aoZPqMfXXHt6UlenuH93ymvzlCs8hIr2m6a5P1VdWaSL2RKobzuvv6M8zwryfFrnHtHd0/bHRMAAAAAAAAA2JuOzw8Kzuzzye5+76Im6O6zq+rlSX5+RfP5k9wvyR8tap4DwJMybDyaDO/FParq5CTvT/LlDFmraya5e5IrT+l/WpJf284FdndX1f0yFO4ZF7W5S5K7VNWHk5yS5JNJ9mXSjsxQaOu6GTJQ43vqQPC8JLcbtT0+w+a0X8yQ6zl3dP413f2kRS9k0XnF7v5qVd0pw+e6sojXoUkeneSXq+rdGTaV/HySr2fI+h2Z5PJJfixDBvBgK2a4lh17lvfKM7nXMsDd/YWqemZW5wuflOS+VfWKJP8+WfMlM2QT75j974enZdjg+qhZX88idfd3q+quGYrHXWl0+sQMn88Hkrw1Q1HEr2XIwR6ZIet6/QzfD2tuWgsAAMDupDAaAAAAsGO6+7yqenKGAmkrPbaqnt3d35rS581Vdaskf5fVf9C+SJLbTn52g19OcpMMgZGVrpiNixd9L8nPZQgZzOsxSY7N8L6sdIGsvfPh4VuYb1NWBDbuuM5lz1vAPE+tqi9kKKp0wdHpyya55+SH/T0syY2TXGHU/qPZvxDXNH/Q3X9WVQqjzai7/7CqLpXkCaNTF0xy18nPWr6VITT209u0vKkmAaNfS/LCKacvmiHstQgnJ/lcVn/nJ3OExgAAAAAAAACAA9qJU9pesg3zvCT7F0bbN/fBVBjt6RmKx9xjcnyxDEWCxoWCpvl8kp/s7m9s09r+R3efNckUPj9DYaex62V1gaa94BVJ3pzk1lPOXX7yM/ahbVzPQvOK3f2vVXXjJK9M8iNTxjx28sPGdvRZ3kPP5F7LAP9mkttk9fN0tSSP3WAtL5v0v/cG1+2ISaG3m2RY10+MTp8vwwavN93xhQEAALCtDln2AgAAAICDzr5d01a6dJJfWqtDd78vyQ0yhCa+t4W5O8Ouc2/fwhhrD979zQwhgvfM2PULSW7T3a/f4vwfS/JTSU7dyjjbZL3CZ19M8qZFTNLdz0ty8yRv2eJQ303yN0n+c8uL2uW6+0tJbpnZ7ptzkjy6uzcKx7CO7v6NDDtrzhKG+nyS46ft8rgTuvtFGULAZ27jHN9P8mdTTn0lQ8ATAAAAAAAAADgIVNWRSe425dRfbcN0b8vqrNB1quqgKbTS3Z3kvklm3STxnUmO7e5PL35V03X3md39s0kenuT0LQ73nxmyibtad5+X5GeTvHTZa0m2J6/Y3Z/MUNzoDzNsHrkVH0iypUzmgWoZz/JeeCb3Wga4u7+d5Lgk75ulW4bCeveZfOfsGpOs662TPDHJ17Y43L9n9SbfAAAA7DIKowEAAAA7ahK4OGnKqUdX1UXX6fff3f3gJMdk+KP7v2X4A/xGzkzyugzFh67S3cd393tnXvgmdffpGXYje2SSjcIhpyX5rSTX7O63LWj+d2fYre4OSf40yTsyhC7OSrLMkMLfJ/nvNc69aFIIaSG6+0PdfeskN0vyogyFpDbjixl2fn1gkst19727+8uLWtdu1t2fSXLdJL+R4X1YyzkZdtz7se5+xk6sba/r7j9Ocp0kL0xyxjqXfjnJU5Ncp7vfvxNrW0t3/2WSH0ryoCQvTvIvGdb3nQVOM63w2/O6++wFzgEAAAAAAAAA7G73TXLBUdu7u/tTi55okmubVnDtxEXPtZt197nd/fAMxYHekvUzZ/+S5CFJbrWTRdFW6u7nJLnqZB3/mM1tUHhehrX/QZLjkxx9oGShuvsb3X3fDBnBk5K8Nsmnknw9W9t0dt71LDyv2N3f7u5HJTk6w2v8QJLN5Au/m+Ge/Y0MGasbb7VQ1YFsWc/ygf5M7rUMcHd/NcktMhSsW+/fnd9P8oYkt+jux+y2omj7TO7r301yVJJHZXh/ztlE13OTvCvJU5LcpLuvPdkkFgAAgF2sht/ZAgAAABx4qurSSW6Y5NJJLpnk8Ay7BJ6ZoRjWfyQ5rZf4C5CqunqSm0zWeJHJ+j6f5CPd/fFlretgU1XHJLl2hvvkkkkukCEo8s0kn0nyHwdLEbTNqKrrJrlekksluXCG9+njGYKlZy1zbXtZVR2W5JZJrpzkchmCTP+V5CNJPrRbw0bboapemuTeK5o6yTHLCtECAAAAAAAAAByMqupSGTaovFqGfN4ZGTZe/JftKFC3VVV1gQyZwitmyD5dPENBnDMzbOz5iSSf6O5FbgDINquqI5LcOMllMuT/jsiwieOZGYpGfTzJpxe5QeuBoqpOSvLbK9u6u6Zct5Rn+UB/JvdaBnjyem6Y4Vm6aIbP4VNJ3tXdX1vm2uZVVRdOcqMkV8jw/XBkkrMzvLYvZ/h+OLW7N1NADQAAgF1EYTQAAAAAAHaNSdHLzyU5bEXzG7v79ktaEgAAAAAAAAAAwK6z2cJoAAAAAAeaQ5a9AAAAAAAAWOEh2b8oWpI8axkLAQAAAAAAAAAAAAAAAGBnKYwGAAAAAMCuUFUXSfIro+ZTk7x+CcsBAAAAAAAAAAAAAAAAYIcpjAYAAAAAwG7xlCSXGbX9cXeft4zFAAAAAAAAAAAAAAAAALCzFEYDAAAAAGCpquoSVfX0JL8+OnVakucuYUkAAAAAAAAAAAAAAAAALMGhy14AAAAAAAAHl6r6iyQ3mhxeKskVktSUSx/T3efs2MIAAAAAAAAAAAAAAAAAWCqF0QAAAAAA2GnHJLneBte8qLtfvhOLAQAAAAAAAAAAAAAAAGB3OGTZCwAAAAAAgJGXJPn5ZS8CAAAAAAAAAAAAAAAAgJ116LIXAAAAAADAQe87SU5P8u4kz+vuU5a7HAAAAAAAAAAAAAAAAACWobp72WsAAAAAAAAAAAAAAAAAAAAAAAAADnKHLHsBAAAAAAAAAAAAAAAAAAAAAAAAAAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdIcuewGwbFV1RJJjVzR9Lsk5S1oOAAAAAAAAAMBWXCDJlVYcv7W7v7msxQCAjB4AAAAAAAAAsEfI5+0QhdFgCFy9etmLAAAAAAAAAADYBndO8pplLwKAg5qMHgAAAAAAAACwF8nnbZNDlr0AAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgKU7dNkLgF3gcysPTj755BxzzDHLWgsAAAAAAAAAwNxOPfXU3OUud1nZ9Lm1ruX/Z+/Owyyr6nvh//bpmrrpEehmVBkFJCqivIGmQQRUgnkjMV4SL3mIxleNEoPxRdQYBuONQ5zyJnLjcFFITAxBBSUKeq8yo4IMsZNGGQSaubvpeajxrPeP7i5qOPucfapO1Tl16vN5nn7ovfZae62zq55m7aq1vhuAaWKNHgAAAAAAAAAw41mfN30Eo0FE/8iDww47LI4++uhmjQUAAAAAAAAAoJH6a1cBgClljR4AAAAAAAAA0I6sz5sipWYPAAAAAAAAAAAAAAAAAAAAAAAAAEAwGgAAAAAAAAAAAAAAAAAAAAAAANB0gtEAAAAAAAAAAAAAAAAAAAAAAACAphOMBgAAAAAAAAAAAAAAAAAAAAAAADSdYDQAAAAAAAAAAAAAAAAAAAAAAACg6QSjAQAAAAAAAAAAAAAAAAAAAAAAAE0nGA0AAAAAAAAAAAAAAAAAAAAAAABoOsFoAAAAAAAAAAAAAAAAAAAAAAAAQNMJRgMAAAAAAAAAAAAAAAAAAAAAAACaTjAaAAAAAAAAAAAAAAAAAAAAAAAA0HSC0QAAAAAAAAAAAAAAAAAAAAAAAICmE4wGAAAAAAAAAAAAAAAAAAAAAAAANJ1gNAAAAAAAAAAAAAAAAAAAAAAAAKDpBKMBAAAAAAAAAAAAAAAAAAAAAAAATdfR7AHAbJRSinK5HCmlZg8FYJwsy6JUKkWWZc0eCgAAAAAAAAAA1M0aPaBVWZ8HAAAAAAAAUJtgNJgGKaXo7e2NLVu2xJYtW6K/v7/ZQwKoqaurKxYsWBALFiyInp4eC7EAAAAAAAAAAGhJ1ugBM431eQAAAAAAAAD5BKPBFNu+fXs89dRTMTAw0OyhANSlv78/nnvuuXjuueeis7Mz9t9//5g3b16zhwUAAAAAAAAAAMOs0QNmIuvzAAAAAAAAAPKVmj0AaGfbt2+P1atXW3AFzHgDAwOxevXq2L59e7OHAgAAAAAAAAAAEWGNHtAerM8DAAAAAAAAGE0wGkyR3QuuUkrNHgpAQ6SULL4CAAAAAAAAAKAlWKMHtBPr8wAAAAAAAACe19HsAUA7SinFU089NW7BVWdnZyxcuDDmz58fnZ2dkWVZk0YIkC+lFAMDA7F169bYvHnzqDfq7v737dBDD/VvGAAAAAAAAAAATWGNHjBTWZ8HAAAAAAAAUJtgNJgCvb29oxYqREQsWLAgDjjgAAsVgBmhs7Mz5s2bF0uXLo0nn3wytmzZMnxuYGAg+vr6oqenp4kjBAAAAAAAAABgtrJGD5jJrM8DAAAAAAAAqK7U7AFAOxq5QCFi5wIGC66AmSjLsjjggAOis7NzVPnmzZubNCIAAAAAAAAAAGY7a/SAdmB9HgAAAAAAAEBlgtFgCoxddLVw4UILroAZK8uyWLhw4aiysf/OAQAAAAAAAADAdLFGD2gX1ucBAAAAAAAAjCcYDRospRT9/f2jyubPn9+k0QA0xth/x/r7+yOl1KTRAAAAAAAAAAAwW1mjB7Qb6/MAAAAAAAAARhOMBg1WLpfHlXV2djZhJACN09HRMa6s0r93AAAAAAAAAAAwlazRA9qN9XkAAAAAAAAAowlGgwar9Ia2LMuaMBKAximVxk8ZvJESAAAAAAAAAIDpZo0e0G6szwMAAAAAAAAYTTAaAAAAAAAAAAAAAAAAAAAAAAAA0HSC0QAAAAAAAAAAAAAAAAAAAAAAAICmE4wGAAAAAAAAAAAAAAAAAAAAAAAANJ1gNAAAAAAAAAAAAAAAAAAAAAAAAKDpBKMBAAAAAAAAAAAAAAAAAAAAAAAATScYDQAAAAAAAAAAAAAAAAAAAAAAAGi6jmYPgOmRZVlnRJwYES+MiP0iYmtEPBUR96aUHm1wXwdHxDERsX9EzI+IpyPisYi4I6U00Mi+AAAAAAAAAAAAAAAAAAAAAAAAaA+C0Zoky7JDIuK4iHjVrv8eGxELRlR5LKV0UAP6WRoRH42I34+IPXPq3BERn0spfWuSfb05It4fESfkVFmfZdlVEXFxSmndZPoCAAAAAAAAAAAAAAAAAAAAAACgvQhGm0ZZlp0SER+OnWFoFUPKGtzfb0XEFRGxrEbV5RGxPMuyf46Id6WUttXZz/yI+EpE/EGNqntGxLsj4k1Zlv1RSukH9fQDAAAAAAAAAAAAAAAAAAAAAABA+yo1ewCzzDER8bqYnlC0UyLi2hgdipYi4u6IuDoi/ndErBvT7JyI+EaWZYW/L7IsmxMRV8X4ULS1EfHDXX3ds6vv3faJiO9kWbaiaD/Qzg466KDIsmz4z0033dTsIQEAAAAAAAAAAMCMZ30eAAAAAAAAAMw8gtFaQ19EPNyoi2VZdmBEfDsiukYU3x4RR6eUXpVSOjul9LqIODAizo+IgRH1/u+I+B91dPfJiDhzxPFARLw3Ig5MKb1+V1+vjIjfiIifjKjXHRHXZlm2Xx19AQAAAAAAAAAAAAAAAAAAAAAA0KYEo02/gYi4LyL+V0S8KyJeGRELIuL/aWAfH42IJSOO74iI01NK94+slFLqSyn9XUScPab9+7Mse1GtTrIsOyR2BquN9N9SSl9IKfWP6WtVRJwWo8PR9oqIS2r1AwAAAAAAAAAAAAAAAAAAAAAAQPsTjDa9royIhSmlV6SU3pFS+nJK6Z6U0kCjOsiy7PCI+KMRRf0R8daUUm9em5TStbvGtlt3FAssuyQiOkccX5FS+k6VfnZExFt3jWm3t+8KWAMAAAAAAAAAAAAAAAAAAAAAAGAWE4w2jVJKG6oFlDXIf4+IOSOOv51SerBAu0+NOT47y7KevMpZls2NiDfXuMY4KaUHIuLaEUUdsXPMAAAAAAAAAAAAAAAAAAAAAAAAzGKC0drP7445/lqRRiml+yPiZyOK9oiI11Vp8vqImDfi+CcppV8WGuH4Mb2pYDsAAAAAAAAAAAAAAAAAAAAAAADalGC0NpJl2b4R8fIRRYMRcXsdl7hpzPFvVal7Ro221dwaO8e22yuyLNunjvYAAAAAAAAAAAAAAAAAAAAAAAC0mY5mD4CG+o0xx79IKW2ro/0dY46PrqOvnxTtJKW0LcuylRHxijF9PVv0GkD9Ukpxzz33xC9/+ctYs2ZN9PX1xdKlS+OAAw6IFStWxPz585s9xAl7/PHH46677oonnngiduzYEXvvvXe89KUvjVe96lVRKk0uA3TNmjVx6623xlNPPRU7duyI/fffPw455JA4/vjjJ33tSlatWhUrV66MtWvXxubNm2PPPfeM/fbbL1asWBF77bVXw/sDAAAAAAAAAABgcqzPmxjr8wAAAAAAAACoRDBae3nJmOOH6mz/cI3rjXRUA/oaGYz2koj4cZ3XAApYt25dfPzjH4+vf/3rsXbt2op1urq64tRTT41LL700fvM3f7PQdd/61rfGlVdeOXz8yCOPxEEHHVSo7U033RSvec1rho8vueSSuPTSS3PrZ1k2/PdXv/rVcdNNN0VExB133BGXXHJJ/PjHP45yuTyu3T777BMf+chH4rzzzqt7kdS9994bH/jAB+LGG2+seO0DDzww3vWud8WHPvSh6OjoiEsvvTQ++tGPDp+/8cYb45RTTinU13PPPRef/vSn4+tf/3o8+eSTFeuUSqVYvnx5XHLJJXH66afX9VkAAAAAAAAAAABoPOvzrM8DAAAAAAAAoPEEo7WXw8Ycr66z/WNjjvfKsmxJSmnDyMIsy/aMiD0n2dfY+ofX2R4o4Nprr41zzz03tmzZUrVef39/3HDDDXHDDTfEO9/5zrjsssuio6O1/xfx8Y9/PC6++OIYGhrKrfPss8/Gn/3Zn8WNN94Y//qv/xpdXV2Frv25z30uLrzwwqrXfuKJJ+Kiiy6K66+/Pr797W/XPf7d/vEf/zHe+973xubNm6vWfx0p0gAAIABJREFUK5fLcdttt8VrX/va+MM//MO4/PLLC38eAACgve0Y2h6P9P4q+st9dbXbu3Pf2L/7hVHKqm9UGUpD8Xjvw7FxcP1khtk2ukrdcXDPi2PunD0afu2tQ5vjsR0PxkAaGHeuu9QTB889InpKcxveb6MMlAfisd4HY0nnXrFX5z7NHg4AwIywdWhzPNP3eOzb/YKYP2dhs4fTktYPrI0n+h6Jchq/UX7BnEXxormHRUfW2fB+Nw1uiGf7n4wX9hw6qXl4b3lHPLrjgegt72jg6KbOPl0HxL5dB44KRqhk5/z/gdg6VP33kPPmzI8Xz/uNRg4RAABahvV51ucBQCOkgf6IR1ZFlEoRh7605s/mAAAAAABgNmjt36pTr8VjjtfU0ziltDXLst6I6BlRvCgiNoypOraf7SmlbfX0VWFsi+psD9Tw1a9+Nd7xjneMe5vioYceGi95yUti3rx5sXr16rjzzjtHLTD68pe/HKtXr47rrruuZRdffeYzn4mPfOQjw8dHHHFEHHHEEbHHHnvE008/HT/96U+jt7d3+Pw111wTF110UXzqU5+qee3PfvazccEFF4wrf8lLXhKHH354dHd3x+rVq+Ouu+6KoaGhuOOOO+Lss8+Ok08+ue7PcfHFF8fHPvaxUWVZlsURRxwRhx9+eCxYsCA2bNgQP//5z0e9TfTrX/96PP3003HDDTe07NcIAACYHjdv+H5cveZ/RTnGBwQUsX/XC+NPX3BpLO4Ym4G/09N9j8ffP3FpbBx8bhKjbD+lKMXZy94RJy/5rYZcL6UU1z/3b/G95/41UqQq/c6Jc/Z9T5yw6LSG9NtID2xfGV988hPRW94eEREvm/9/xdv3uyA6SzYNAQDk+f66q+KG9VfHYBqMLLJ487K3x2uW/Hazh9UyhtJgfO3pz8c9W26vWm+P0oJ4z4F/GQfPPaIh/ZZTOa5a8+W4deMNERExJzri3P3+LI5bWP/vgn626ab4+jNfiKEYbMjYpsuLeg6P8w68KDes71fbV8aXnvx4obC3g3oOjwtf9OlGDxEAAJrO+jzr8wCgEdIj90f64FkRTz+6s+DwYyI++++RLVnazGEBAAAAAEDT+W1te5k/5ngir5zeEaOD0RZMYT8jVeqnblmWLYuIen8DdGgj+m6UNDgYsfaJZg+j/S09MLI2XrBy3333xbvf/e5Ri66OOeaYuOyyy2L58uWj6q5duzYuuuii+NKXvjRcdsMNN8TFF18cH//4x6dtzEWtXLkybr311oiIOOuss+ITn/hEHHnkkaPqbNiwId7//vfHFVdcMVz22c9+Nt797nfHQQcdlHvtu+++Oz70oQ+NKjvllFPiC1/4Qhx99NGjyteuXRsXX3xxfPGLX4xbbrklVq1aVdfnuPLKK0ctuiqVSnHeeefFBRdcEC984QtH1U0pxXe+8504//zzY/Xq1RER8aMf/Sguuuii+MQnPlFXvwAAQPtY3ftQXLXmy5O6xlP9q+Ofnv67eO8LLh13LqUUX3ryE0LRKihHOf51zZfi4LlHxAt6Dpn09VZtvzf+/blvFOh3KP7pmb+Pg3peHPt1v2DS/TZKf7kv/uGJv46+9PwmqF9svTOuf+7q+J2l5zRxZAAArWvl1rtGzQFTpLh6zf+Kg3oOb1jA10z3w/XfrhmKFhGxrbwl/ueT/yM+eejXYk42+d///WTTj4ZD0SIihmIwrnj683FwzxGxd9c+ha+zpv+puPKZv530eJrhsd4H46pnvxxv3398WEFfuTe+OGb+DwAwk1ifN43aeI2e9XnW5wFAI6SUIv3Vuc+HokVEPHhfpL95d2Sf+GazhgUAAAAAAC2hPVcczF5jA8smshJ5R0QsqXLNRvZT7ZoT9Z6IuKRB12qOtU9EOttmh6mW/duvIvY7qNnDmDJvf/vbo7+/f/h4xYoV8YMf/CDmzZs3ru7SpUvji1/8Yhx22GHxgQ98YLj8U5/6VLzlLW+Jl770pdMy5qLWr18fEREXXnhh7hsmlyxZEl/72tdiw4YN8Z3vfCciIoaGhuLyyy8f9wbIkc4777wYHBwcPn7Tm94UV111VcW3Pi5dujT+4R/+IQ455JC48MILY926dYU/w2OPPRbvfve7h4+7u7vj2muvjTPOOKNi/SzL4qyzzorly5fHiSeeGA899FBERHz605+Od77znXHwwQcX7hsAAGgf/7n17oZc51fbV0ZveUf0lOaOKl8z8FSsGXiqIX20q19svbMhwWi/2HJnXfVXbr2rpYLRfrV9ZcVQhF9s/ZlgNACAHNc/d3XF8vu2/lQw2i71PPNsG9oSD+/4Zbx43m9Mut+V2+4aV5Yixcptd8Vrun67+HW2jr/OTPKfW38eQ2ko5mRzRpU/kDP/BwCYMazPmzbtvEbP+jzr8wCgIR76xc4/Y/38R5EGByLr6Jz+MQEAAAAAQIsoNXsATKnUZm2AAm688ca45557ho8XLlwYV111VcVFVyNdcMEF8du//fxmjnK5HJ///OenbJyTsWLFikJvYvzrv/7rUcc//vGPc+vedddd8bOf/Wz4eL/99ouvfvWrFRddjfSBD3wgXve619Ucy0if/vSnY8eO5/MhP//5z+cuuhpp2bJl8S//8i/Dx0NDQy37NQIAAKbepsENDblOOYZi6+DmceUbB55ryPXb2abB9Q25zsbB+u71pqHG9Nsom3LG36jvUQCAdrO696F4tPeBiuc2DrTWXK+ZtgxtrKt+w+bnOc9C9c5v653nt5q+1Bt95bHvO4vY2KD7DAAAM5X1ec+zPg8AJum26yqX926P2LF1escCAAAAAAAtRjBaexn7m4+5E7jG2DaVfpsyXf0AE3DllVeOOj7vvPNi//33L9T2k5/85Kjjb3zjG9HX19ewsTXKRz7ykSiVav8v7Oijj46DDjpo+Pi+++7LrfuNb3xj1PGf/umfxqJFiwqN56KLLipULyJi27Zt8dWvfnX4+JBDDol3vetdhdsfd9xxcdJJJw0ff/e73y3cFgAAaC+DaaBh1+pL4ze791bYAM9ojbpHfam3Kf02Sl+58vgrfV8BABBx88brc8+ZQz2v3jdt5c1L65U3P68UElZNq83bJ6LSZ6j3PgAAQLuxPu951ucBwOSkZ5+ocrLen5ACAAAAAEB7qf6aLWYawWgR/zMirq6zzaER8Z0G9Q9Nd9ttt406/sM//MPCbY8++ug49thjh99o2dvbG3fffXcsX768oWOcjLlz58app55auP5RRx0Vjz76aEREbN++PbZu3Rrz588fV++OO+4YdXz22WcX7mPFihWx//77x1NPPVWz7m233TbqbZRvfvObCy0iG+k1r3lN3HrrrRER8dhjj8Xq1avjhS98YV3XAAAAZr68YLQ50RFdpa5x5SkiesvbK7bprRAgUC2sa25pXrFBtomB1B+DaXBcecOCF+q8TqP6bZS88QymwRhMA9GRdU7ziAAAWte2oS3x88235p5vtblec9W38a9RgV15gWaNCkbLe2ZrlhSpymce//2YV7cUpegu9Ywrr1QGAAAzmfV5o1mfBwCTsLZKMNrQ0PSNAwAAAAAAWpBgtPayaczx0noaZ1k2P8YHlm0s0M+8LMv2SCltq6O7ZQX6qVtKaU1ErKmnTZZljegaWsKGDRvi4YcfHj5evHhxHHXUUXVdY/ny5cMLryIi7rrrrpZaeHXooYdGV1fxzSJLliwZdbxp06aKC6/+4z/+Y/jvixcvjsMOO6yucb3qVa8q9HbIsQvj9t9//+GFYUWN/fy//vWvLbwCAIBZqFJQV0TE8sWnx1v2+ZNx5SmleO8DvxflKI87V2mDf95m96Wd+8VHD/mHOkc7s3137T/HDevHZ/Hn3aN65QUsdGQdUxrI1ijV7kNfuTc65ghGAwDY7SebfhQDqT/3fKPCvdpBSvUGo01tcHG9188Lpj5lyZnxe8v+uO5xTZXe8o54/4NvqXiu0vdj3n04ao9j4rwDL27o2AAAoNVYnzee9XkAMAlrn8w/l8av7QAAAAAAgNlEMFp7eXDM8YvqbD+2/vqU0oaxlVJKz2VZtiEiRq5meGFE3D+JvsaOHZiAtWvXjjo+/PDD6w7/O/LII0cdr1lTV9bglBu7kKqWzs7Rm68HBgbG1dm2bVv09j6/iWMii5iKtnn88cdHHb/vfe+L973vfXX3N9L69esn1R4AAJiZBtP455uIiM6scghVlmXRXZobO8rjs+3r2ezeUxqbq9/+8j5zX2pM8EJesNjCOUti/eDaceWtFpZRLSCir9wbe8xZMI2jAQBoXeVUjls33lC1TquF4M4kjQguTik1MBit8ni6W+yZqivrjiyySDE+iK7SZ857Hmm1zwUAAFPB+rzxrM8DgEnY9Fz+ufLQ9I0DAAAAAABakGC09jI2mKy+16lFHDLmeFWNvka+ou6wCv3X01c9bdvb0gMj+7dfNXsU7W/pgc0ewZTYsGF0luGiRYvqvsbYNq22qKdUKjX8mhs3bhx1vGBB/Ru2Fy5cWKjec89V+QX2BG3ZsqXh1wQAAFpfXjDanCz/R37dpZ6cYLR6Nrv3FBxh+8j7zI0KKMsLWFjUsWdOMFprhWX0pfz70GpjBQBopvu33RtrB56pWsf86XmVgrqqacS9G0j9kaJc8Vy9wWt59eeW5tU9rqlUykrRlXVXDH6u9Bny7vNsfFYEAGYo6/OmTxuu0bM+b2KszwOAHNs2558bEowGAAAAAMDsJhitvfznmOOXZVk2L6W0vWD7E2tcb+y5kcFoJ0TEdUU6ybJsj4h4WR19zSpZR0fEfgc1exjMUCmN3iBS79soK2nENVpdd3f3qOP+/v66r1G0zUSuXcvYrzsAADA75AWjdWSduW26S3MrltcXjFb5Gu2snvtWr5RS7nUWdiypWF5vIMNUq3YfWm2sAADNdPPG62vWEYz2vLxgtFKUolwhvKxaYG9R1cKPKwWHVZM3F27FZ6ru0tzoG6rwXFjhM+fdh+6s9T4XAEAl1ucxGdbnTYz1eQCQo6/KzzRT5Rc4AAAAAADAbCEYrY2klJ7OsuwX8XzoWEdErIiIHxa8xCljjqutzL8hIt5ZpW01J8Xo7717U0rP1tEeyLHnnnuOOt60aVPd1xjbZsmSypuwJ2Ooxd5gNfYzjn2zZxFF39y59957jzq+44474oQTTqi7PwAAgME0WLG8WjBaT84G/Eob9vM38fcUGF17yfvMjQj9GkyDUY7Kz8kLOxZXLG+1sIxq46kWLAEAMJus6382/mvb3TXrNSLcq911l+bGjvK2ceWNmCc3cm7bW678/rKe0ry6rjMdekpzY/PQ+N+P1fOsmPe8CQAA7cT6vImxPg8AJqDcWv8/BwAAAACA6VZq9gBouGvGHL+tSKMsy46MiN8cUbQtqgeq/SAiRq54PmHXNYp465jjsWMGJmjp0qWjjh944IG6r/GrX/1q1PGyZcsq1uvoGJ2tOThYeUN+JRNZ2DSV5syZEwcccMDw8a9//evYvr3yZpU8K1euLFRvn332GXU8ka8RAABARMRgGqhYXi0YLS/gq9Lm/7xAgNm42T3vM/eVeyOlNKlrVwu+WDSn8maoVgsbqxYQ12ohbgAAzXLLxusjRe2542AazJ3rzzZ596uewOd6VbtGb51z27x5e08Lhk034llxNoZoAwAw+1ifNzHW5wHAeKmvxs8zy+XpGQgAAAAAALQowWjt558jYuSrYd6UZdnhBdp9cMzxv6WUcld2p5S2R8Q3a1xjnCzLXhwRvzuiaDAi/qXA+IAClixZEoceeujw8caNG+P++++v6xp33HHHqOPjjjuuYr2FCxeOOt64cWPhPv7rv/6rrjFNh+OPP3747+VyOW6++ebCbdevXx//8R//Uaju8uXLRx3/8IfVMigBAADyDabKG2A6so6K5RH1BQjkBQLMxs3ueZ85RTkGUv+krl0t5GxRx56V26TeKKfWWQRdLfysEeEUAAAzXX+5L36y6UeF6wuX3SUnhLhacPFkVbtGPQHFA+WB3Ge2ntK8usc11fKD0cZ/5rz7MBufFQEAmH2sz5s46/MAYIwtNYJMy0PVzwMAAAAAQJsTjNZmUkoPRsSVI4q6IuKKLMtyVyFnWfbGiHjriKL+iPhoge4ujYiRryt/a5Zlv1Oln56I+NquMe12eUrp4QJ9AQWtWLFi1PE///M/F257//33x9133z183NPTE6985Ssr1h37pspVq1YV7uf73/9+4brT5fTTTx91/JWvfKVw2yuvvDL6+4tthD/ttNNizpw5w8ff/e53Y82aNYX7AgAA2G0oNxitM7dNd86PiPpSpc3ulQMB8kII2lm1zzzZ4K9qwQsLOxbnnutPfZPqt5GqBUT05b97AQBg1rhny+2xrbylcH3BaDtVjkXLDxZrSDBalfnrQOqPciq2GbHaHLkVn6m6c8Pmiodot+LnAgCAqWB93sRYnwcAY/zq3urnh1rnZWkAAAAAANAMgtGmWZZlB2ZZdtDYPxGx75iqHZXq7fqzd41uLomIka+PWR4R/yfLsiPHjKU7y7L3RsTVY9p/NqX0WK3PklL6dUT8f2OKv5ll2Z9mWTYy/CyyLDsqIn60ayy7PRfFAtiAOpx77rmjjr/whS/EM888U6jthz/84VHHf/AHfxDd3d0V6x577LGjjq+77rpCffzgBz+IO++8s1Dd6XTOOefEggULho+vueaa+MEPflCz3ZNPPhl/9Vd/VbifJUuWxDnnnDN8vHXr1rjgggvqGywAAEBEDKaBiuUdWUdum+5STjBahQCBvI383dns2+yed98iqgceFFEtvGFRx5Ip67eRqoVHCPUAAIi4eeP1ddU3h9opReWNf/nPNZOfI9cKPi76tal2nbxgt2aq71mx8j2o9twEAADtxPq8ibE+DwBGS1+5pEYFwWgAAAAAAMxugtGm320R8UiFP98YU++AnHqPRMRnqnWQUnoiIt4UESNfj3ZiRKzKsuyuLMuuyrLshoh4PCL+LiI6R9T794i4qI7P86GIGLmSvzMi/j4iHs+y7Posy/4ty7KfR8R/xehQtP6I+N2U0tN19AUUcOqpp8YxxxwzfLxp06Z4y1veEjt2VN/I8fnPfz6+853vDB9nWRZ//ud/nlv/hBNOiHnznt+4cc0118TPf/7zqn08+OCD8Ud/9Ee1PkJTLFiwIM4///xRZWeffXbceOONuW0effTReO1rXxsbN26sq69LL7101IK2f/qnf4oPfvCDMTQ0VNd1Vq1aFbfccktdbQAAgPaRH4zWWbE8IqK7VDnUrFKAQF7Y1Wzc7J533yJqByfUkhcqkEUW8+csqrtdM1QbSysFuAEANMOjOx6Mx3ofrKvNZOeY7SLllPfkPtdMfo5ca/5aPBhte+65vPE3U9FgtJRSfoh2C34uAACYCtbnTYz1eQAwxvpnq58v1/f/LQAAAAAAaDeC0dpUSummiPjdiFg7ojiLiFdFxNkR8fqIWDqm2Tci4g9SSoV/g7Kr7tkRcdWYU8si4oyI+G8R8cpdfe+2JiLemFK6tWg/MJs888wz8eijj07oz26XX355dHV1DR/fdNNNcdJJJ8XPfvazcf2tW7cuzjvvvHj/+98/qvzCCy+Ml73sZbnjXLBgQfz+7//+8PHQ0FC84Q1viB/+8Ifj6vb398dXvvKVOP744+PZZ5+NJUuW1HNLps1FF10UL33pS4ePN2/eHKeddlqcffbZ8c1vfjN+8YtfxC9/+cv44Q9/GO973/vi6KOPjvvvvz96enrijW98Y+F+Dj744Pjyl788quxv/uZvYsWKFXHdddfF4OBgbttHH300Lrvssjj11FPj6KOPjh//+Mf1f1AAAKAtDOQGo3Xktim62T0iP4xhNm52787yP/Nkwxfy73NP1cCEVgnLGEqDuSF9EYLRAABu2fj9utuYQ+1WORqtpzSvYnlfmvx9qzXPzguQruc6rfhMlffsMfZzDKaBKEe5Yt1W/FwAAFCJ9XnNY30eAOyUhoYiNq+vXqlc+edwAAAAAAAwW+TvkmTGSyl9P8uy34iIj0bE70dE3kqHn0bEZ1JK35pgP1sj4g+yLPtmRPy/EXF8TtX1sTNA7ZKU0tqcOjDrveUtb5lw25R2bhA59thj4wtf+EL8yZ/8SZR3/VL07rvvjuOPPz4OO+ywOProo6Onpycef/zxuPPOO8ct9Hnta18bH/vYx2r297GPfSyuueaa4TcyrlmzJl7/+tfHYYcdFi972cuiu7s7nn322fjZz34W27Zti4iIfffdNz71qU+15Jspu7q64nvf+16ceuqp8dBDD0XEznt69dVXx9VXX12xTZZlcdlll8Xq1avHvdGzmnPPPTeeeeaZ+PCHPzz8NfrpT38av/M7vxPz5s2LV7ziFbHPPvvE3LlzY8uWLbFu3bpYtWpV3W+/BAAA2tdQqrxpoyPrzG1TdLN7RH7gV7WwrnbVWeqMOdERQzH+nk82tCKvfXdpbm6Q3c52kwtka5Ra42iVcQIANMPWwc3x8y23VTx35LyXxyM7flUxaMscaqdUZzDa4K7Q3mrPRLXUnt8Wm//3lrdXLO/IOqKzNPHxTZW8MOix35/V7k93lv/8AgAArcT6vOaxPg8Adnnu6Yih/KDOiIgoD03PWAAAAAAAoEUJRptmKaWDprm/NRHx7izLzo+IEyPiRRGxb0Rsi4gnI+LelNIjDerrmxHxzSzLDo6IYyNi/4jYIyKeiYjHIuL2lFJ/I/oCanvHO94RS5Ysibe97W2xdevW4fKHHnpoeFFRJX/8x38cX/ziF6Ozs/amjAMOOCC+9a1vxVlnnRVbtmyp2cfBBx8c3/ve9+LZZ5+t89NMnxe84AVx6623xnve85645pprqtbda6+94sorr4w3vOEN8cEPfnDUuQULFtTsa/dbP9/2trfFM888M1y+ffv2uP322wuNt1Xf7gkAAEy9wTRQsbxaCEB3TqjZ2M3tKaXcDe/VwrraWU9pbmwrbxlXXinIoh659znriTlZR3RknRW/1pXC7Jqh1jiEegAAs9kdm/5P7rz95MW/FU/1rY6+oQrBaJOcY7aNyrloVcOa+8q90TFn6oLRis7De3Ofp1ozaDrvno69H9U+/2wM0QYAYHazPm9irM8DgIh45rHadYYEowEAAAAAMLuVmj0ApkdKqT+ldGNK6YqU0idTSn+fUvp2o0LRxvT1SErpW7v6+OSuPm8UigbT781vfnM8/PDDcf7558fee++dW6+zszNe97rXxe233x6XX355oUVXu5166qlx5513xhvf+MbctzAuXbo0PvCBD8R9990XRx11VN2fY7rtu+++8e1vf3t4AdZLXvKSWLx4cfT09MQhhxwSp59+enzpS1+Khx9+ON7whjdERIx7U+SiRYsK9XXGGWfEI488Epdddlkcc8wxNd9k2dnZGcuXL49LL700HnjggTj//PMn9iEBAIAZrZyGohzliueqB6NVDjUbu9l9IPVHyrn+bN3snnfvJhtQlhd6sbu/ogEFzdKo4AgAgHZTTkNx66YbKp5b0rF3vHT+cYXn57NVyklGqxWMNhl9DQr+7S1vr1jeU5pX95imQ9Hnnb6Uf39ma4g2AACzm/V5E2N9HgCz3pona9dJlddsAAAAAADAbNHR7AEAzHaPPvrolF5/2bJl8bd/+7fxuc99Lu6+++745S9/GWvXro2+vr7Ye++948ADD4wVK1YUeoNiniOPPDKuvfbaWLduXdx8883xxBNPxPbt22OfffaJgw8+OE466aTo6Hj+fzmnnHJKpFR5M0sl9dQd64orrogrrrhiQm1XrFgRK1asKFR31apVw3/PsiyWLVtWuJ+enp54z3veE+95z3ti/fr18dOf/jSefvrpWL9+fQwMDMT8+fNj2bJl8eIXvziOPPLImDevNTfNAAAA02cwDeae68jyf+SXH7I1enN7tTCr2brZvXuKAsry2u/ur7vUE1uHNldo1xqBY7U+f17wGwBAu/uvbffEcwNrKp5bsfj1MSebM2Xhu+2iOcFoNea3Ba+fN19v1aDp/JC+McFoVT7/bH1WBACg9VmfV5v1edbnATDNerfVrlMemvpxAAAAAAAz1rotKbb0PX+8dH7E/J7qLwmCmUYwGsAsUSqV4rjjjovjjjtuyvrYe++94/d+7/em7Pqtatu2bXHPPfcMH7/4xS+e8EK2PffcM84888xGDQ0AAGhTg2kg91xH1pl7rjvL2eyeeqOcylHKSjuPqwajteZG/qk2VaEVefd6d3/dWbEwu2apNY7JBlMAAMxUN2+8vmL5nOiIExe9NiKKBxfPXpU35ld7Jpn0/DxVb1/0+jvK2yuWt24wWrEg6LzPX4pSdGZdDR8XAADMJNbnTR3r8wBoO/0Ffo9eLk/9OAAAAACAGeeex1Kc+9VyrHp6dPnX357Ff/9NwWi0F8FoADBJV155ZWzf/vwGlxNOOKGJowEAAGaDwTSYe65qMFqVTfj9qS96doVwVdvsnxcQ1u7yQysmF/yVd69395d3v/tSawSO1RrHZIMpAABmorX9T8eqbfdUPHfsguWxsGNxRFSZ6wmXjYi8WLSd9y2LLFKFGpMNleutce+Lfm3yxtG6wWh534s7IqUUWZbtOq78+btLPcN1AAAAGs36PADaTqFgtKGpHwcAAAAAMKNs3pHi1M+WY7NlpswSpWYPAABmsieeeCIuuuiiUWXnnntuk0YDAADMFoNpIPfcnCz/XQjVQs1Gbtyvttm/VTfyT7VqQQGTUS1YoFq/rRI4VuvzT/b+AADMRLdsvCH33MlLzhz+u2C0WipHo2WRTdm9a9T8Nj8AeV7dY5oOeSHa5SiPev7Mf36Znc+JAADA1LM+D4C21N9fu45gNAAAAABgjG/fm4SiMasIRgOAEb71rW/FX/zFX8TatWtr1r333nvj5JNPjvXr1w+XvfyA4QheAAAgAElEQVTlL4/XvOY1UzlEAACAqsFoHRMORusd8ffKm/jnREd0ZJ0FRth+8jb6T3UwWl4QXauEZdQaR6uMEwBguvSX++Inm35U8dyB3QfHIT1HDB93Z60912u2lHKC0bIsurOpCRCude+LXj8/GK01A8R6JvmsKBgNAAAoyvo8AIhI/QV+BlwuT/1AAAAAAIAZZeWTzR4BTK/8XZIAMAtt2bIlPvGJT8RnPvOZOOOMM+K0006Ll7/85bFs2bLo6OiI9evXx8qVK+Pf//3f47rrrhu1KaerqyuuvPLKJo4eAACYLQbTYO65zirBZdU24Y/cuN+XKi/CbdVN/NMhL1Ru0sELOfd6d0hGXsDAZPttlFrj6Cv3RkopsiybphEBADTXz7fcGtvLWyuee/XiM0fNi3LDd1NrzPVaWXdpbsTQhnHlefPromoFHxe9/kwLRssL6YvY+Vnmx8KIqB3sDAAAUIv1eQAQEYWC0YamfhwAAAAAwIzy6LrKL5yFdiUYDQAqGBgYiOuuuy6uu+66QvXnzp0b//iP/xgvf/nLp3hkAAAAEYNpIPdcR5VgtLzghYjRG9zzNvHP5s3ueQEGecEARdW611PVb6PUGkc5hmIwDURn1jVNIwIAaJ6UUty84fsVz80tzYvjFp48qixvfl0rnGu2KEe5YnkWWZV7N9lgtOrti16/t7y9Ynm1Z7JmqvasNzKoL/f5JZu9z4oAAMDEWJ8HwKxWKBit8s9HAQAAAIDZ65F1zR4BTK9SswcAAK1k8eLFMWfOnLranHjiiXHLLbfEm9/85ikaFQAAwGjVgtHmZPnvQpiTzckNqBq5wT1vs3+rbuKfDnkb/fOCAYrKu9e7A9FaPSyjSDBEq4S4AQBMtUd7H4jH+35d8dwJi06LrlL3qLKpCvdqf1nus8lk58m1g9GKXT+v3tzSvLrHNB3yApkjRt+TkSFpRdsDAACMZH0eAETBYLShqR8HAAAAADCj5AWjffR3snjjMdn0DgamQf4uSQCYhc4666x49tln44Ybbojbb789Vq5cGY899lisX78+ent7Y+7cubHnnnvGi170ojjppJPizDPPjBNPPLHZwwYAAGaZasFoHVln1bbdpZ4YGOofVz5ys3te2FdecMNskLfRf7KhFXmBCbvvdX7gQ2uEZRQKRks7Yn4snIbRAAA0180bv5977uTFvzWuTDBadSlSxfJSZFMSIFxO5ehLtYLRin1tduTO81szQKwj64xSlKIc5XHnioVoz95nRQAAoD7W5wFARAyMX7MxTnn8z+oAAAAAgNlrw7YUm3KWSJ5yRBZ7dAtGo/0IRgOAMfbaa68455xz4pxzzmn2UAAAACoaTIMVy0sxJ0pZqWrb7lJPbB3aPK68r8Bm97xwsNkgN6AsTTx4IaJ2sMBUBD40UpHPnxe0BwDQTrYMbox7ttxe8dxR846JZV37jyvPm1+bP+1WORgtsmrBaBMPletPfTXrFL1+3ny9VZ+psl33dEd5+7hzQrQBAIBGsz4PgFmvv8DPGQWjAQAAAAAjPLIu/9zBe0/fOGA6Vd8lCQAAAAC0nME0ULG8M+us2bY7ywn4GhWMZrP7WLnBaJMIXkgpVQlG29lfd1b5nrdKWEaRcUzmHgEAzBS3b/o/uQHGr15yZsXyqZhjtpOUl4sW2ZSEyhUJHy56/d4KAWMRrRuMFlHt+1GINgAAAAA0VKFgtKGpHwcAAAAAMGP8OicYrasjYv9F0zsWmC6C0QAAAABghskLXJiTddRsmxdu1peeX3ibH4w2eze75923yQQvDKaBKEflxcy773VewMDIr1czFQntEOwBALS7chqK2zb+oOK5PTuWxm/s8cqK53Ln5uZPERGRIicZLabm3hUL/a1dZ6A8kPvM1soBYkWC+moFOwMAAAAABfQVCUYrT/04AAAAAIAZ45F1lddUvmjPiFIpm+bRwPQQjAYAAAAAM8xgGqhY3pF11mybtxF/ZAhAXiBAXvjAbJB33wbTQAzlhB7UUi20oTvbea/zAx8mHsjWSEWCJyYTHgcAMBP857a7Y/3g2ornTlp8RpSyORXP7Z7zjTUUg7lz/tml8iKeLLLozhofIFwo9LfA9avN1XtK8+oa03QqEjaXH6I9e58VAQAAAKBu/X2165Qrv2QNAAAAAJidHllXufzgvad3HDCdBKMBAAAAwAyTF8TVkXXUbFtss3vlzf554WCzQbWN/kUCFCq2S9UCE3p2/TcvkK01wjIKhUdM8P4AAMwUN2/4fsXyjqwjli86PbfdVMwx20nlWLSdwWhFAp/rVWxuW/v61cbQys9URe5p3j3qbuHPBQAAAAAtZ0AwGgAAAABQn0fXVV5VedDe2TSPBKaPYDQAAAAAmGEGcgKxOrLOmm3zNqyP3OCet5G/O8sPbmh31QIMJhq+UC14YXdIRrWAgf5ygcXSU6xIMESROgAAM9Wz/U/G/dvvq3ju2AUrYkHHoty2UzHHbC950WjFAp/rVeSeFwko7i1vzz3XU5pX97imS97z3shAZ8+KAAAAANAA/QV+jlkuT/04AAAAAIAZ45F1lcsP3nt6xwHTSTAaAAAAAMwweRvxO7KOmm3zwhdGbnDPCxOoFtzQ7vKCFyImHr5QPRhtbs1+WyEso8hnn0w4BQBAq7t14w255169+MyqbauF4JpDRaScYLQssirBaBOfIxe957UCiqvN06t9zZst73lv5H3Ju7+z+VkRAAAAAOpWKBhtaOrHAQAAAADMCOVyikefq3xOMBrtTDAaAAAAAMwwQ2mwYnlH1lmzbZEAgb5UebN7K2/in2rVQysmFr6QF5iQRSk6s64C/TY/LCPve6XeOgAAM1FfuTd+sulHFc+9oPuQOKjn8KrtpyJ8d1bIstx58uSC0Yq1rRVQ3FveXrG8I+uIzlLtZ7Zmyft+3P15y6kc/alyKFy172UAAAAAYIz+6i9fiIiIcnnqxwEAAAAAzAhrt0b0Vd5KFgfvnU3vYGAaCUYDAAAAgBlmMA1ULC8WjJYXINBb8e9F2s4GXVl37rlawQh58u9zT2RZNvz3RvfbKINpIAZzQvpGEuoBALSruzbfEjtyQrBeveTM4Tldns6sK7KoXGcyAV/tIKWUey6LaoHPvVXbVlP0ntea3/bO0Oepavc0IqI/9UWKyve21T8bAAAAALSUQsFoQ1M/DgAAAABgRli/Lf/cfoumbxww3QSjAQAAAMAMkxuMVioSjJa32f35EIC8wK1qIV3trpSVojur/PknHoxW+z53Zd0tG5bRXy6wWDsEowEA7SmlFLds/H7Fc/NK8+NVC06qeY1SVsoN4G12CG6z5QVw7ZTlBnGVo5z7vFRLXyo2b601D88731OaV/eYplOtEO1q8/oewWgAAAAAUFx/gZ9FCkYDAAAAAHbZWPkdvhERsaS1lybCpAhGAwAAAIAZZqCcE4wWHTXb5oV77Q4BGEqDuUECs32ze62ggHrltRv5NWrlsIyi/Td7nAAAU+HXO34ZT/Q9WvHcCYtOi65S5TncWHlz7NkeLlstGK0UWfRUCW2eeHBxsXte6/q95corkFr9eSr/eWfHrv/m35/ZHKINAAAAAHUrFIxWnvpxAAAAAAAzwoacYLSOUsS8rukdC0wnwWgAAAAAMMMMxWDF8o5SZ822eZvxe212ryk/tGKCwQspJxhtzH1u1bCMov03e5wAAFPhlo3XVyzPIouTF59R+Dq5YVQ5c8XZIz8YLSKL7iw/ZGyi88+igWq1rp93ndYPRssJ0d71eas998z2Z0UAAAAAKCqlVDAYbWjqBwMAAAAAzAgbt1deU7lkj4gsy6Z5NDB9BKMBAAAAwAwzWM4JRss6arattdm9WhhAq2/kn2q5926CoRVFAxNaNSyjaCDcRIPjAABa1ebBjXHPljsqnnvJHq+IpV37Fb5Wrfn5bJWqBKNlkVUN4upLEwwuLhr8W2Me3luu/GrGVn+eqhUELRgNAAAAABpgoL9YvXJ5ascBAAAAAMwYGyovS4zFrb0sESZNMBoAAAAAzDCDaaBieUfWWbNt3mb3wTQQQ2mwahjAbN/snhdQVi1Mrpq8ez22n/ywjOYGjhUOjpjloR4AQPu5fdP/jqGoHFZ88uIz67pWq871mi3l56JFZFnVkLHeCc4/i87ra9XLO5/3PNEqurPK34u9w8Fole9rR9ZR6FkUAAAAAIiIgb5i9cpDUzsOAAAAAGDG2JgTjLZk3vSOA6abYDQAAAAAmGHygtHmZB0121bbjN9X7q0awNDqG/mnWl74wkSDv/Lu9dhwjLz73uzAsb5UrP+JBscBALSioTQUt268oeK5vTr3iaP3eEVd18uf6832OVR+MloWO0OhSznLHSZ674q2qzUPz5v/zi219gqkvJC+/tQX5VTOD3zLZvdzIgAAAADUpb/g7/nL5akdBwAAAAAwY2zIC0bbY3rHAdNNMBoAAAAAzDCDabBieUfWWbNt3mb3iJ0b+KuFWHVl3bUH18by7t3EgxcqL3geH4xWud9mB44V7b9ogBoAwEywcutdsXHwuYrnTl58RpSyOXVdL3+OObvnUKlqMFoWWZY1/N4VbVdr/p8bINbiQdN5QdApUgyk/tx5fbVnTAAAAABgDMFoAAAAAECdNuYsW1w8N5vegcA0E4wGAAAAADPMYBqoWN5ZKBgtfzN+X7k3P6wr64lSNrt/nJgXFNDo4IWxwQL5/TY3GK14cMTsDvUAANrLzRu/X7G8I+uMExadVvf1BKNNxM6FPHnPNhOfnxcM/q1x/d5y5Vcz5s3rW0W1Z8VqIdqtHvgGAAAAAC2lr2gw2tDUjgMAAAAAmDE2bqv8stnFe0zzQGCaze6djAAAAAAwA+UFo83JOmq2zQteiNgZBGCze768e5d3z2rJazc2MKFVwzLqCY5IqfIvYQAAZpJn+p6IX23/RcVzr1qwIubPWVj3NbuznHCvNLuD0VLkzx93v98wPxhtYvPzove81vXzzrd+MFq1Z8UqIdpV2gEAAAAAYwz0F6uXylM7DgAAAABgxthQ+X2tsbi1lyXCpAlGAwAAAIAZJi8YrSPrrNm2K+uObDhKYLS+cm9uGECrb+KfDtMVvDA2HCPv3k80kK1RigazpSjHQCq4uBsAoIXdsvH63HMnLz5zQtdsdPhuu6gWjLY7Gq3RAcJF29WqtyM3GG1e3WOaTtWe+frKO3I/t2dFAAAAAKhDf8Hfsw8NTfFAAAAAAICZYmNOMNqS1l6WCJMmGA0AAAAAZpjBNFixvEgwWikrRVfWXfFcb3lHbshXXujAbNKdNTa0Ii9YYOy9bnTgQ6PU0/9Ew+MAAFpFb3lH/HTzjRXPvajn8Dho7uETum5eqFSz53qtLMt2BaPlzM/70sTmnkXn9XkBx8Pnc4PRWjtArNozX59nRQAAAABojILBaFEWjAYAAAAA7LQhJxhtsWA02pxgNAAAAACYYQbTQMXyIsFoERHdeeELqbdKWFdrb+KfDo0OrSgaLNCd5fXb3LCxegLhJhoeBwDQKu7cfHP0liuvLHn14t+a8HXzQ3Bn9/wppZR7Ltv137z5+UTmnkNpMPc5q97r532ftHow2pysI/eZsq/cW+X5pbU/FwAAAAC0lMLBaOWpHQcAAAAAMGNszFm2uGReVvkEtAnBaAAAAAAwwwymwYrlHVlHofbVAgTyNvnnBTbMJo0OrSgaQpfbb5pYIFuj1BMIN9HwOACAVpBSils2XF/x3B5zFsQrF6yY8LXz55izff6UH4y2OxqtkfeuUXPbwTSQ+7zW6sFoEfn3tLe8o8rzi2dFAAAAACiscDDa0NSOAwAAAACYEcrlFJtyti0tnje9Y4HpJhgNgIZYvXp1/OVf/mWcdNJJsc8++0RXV1dkWTb854orrmj2EAEAANrGYBqoWN6RdRZqXy1AIC/kayZs4p9qYwPLdptIQFlKKfdej/365PWbF2I3XfpS8f4FewAAM9nDO1bFU/2PVTy3fNHp0VnqmvC1c+eYs3z+lKoEo2VTEIxWz9y6WjBytev0/P/s3XmcHGWB//Hv09Mz3TO5JmQSAkRICDcIGOW+AiIgouuBB14rIovXeqDrrusB7LreirqKJyJe/EBAUYFwbQj3lQDhNiSThDNkkkyume7p7np+f0wmme6pp7qqr+nj8369eJG6nnq6qqf7qern+Vas/nsgJYw7lNkZou3YBgAAAEBl0T8PAIAmMTQUbj3rVbceAAAAAAAAABrCppRkHV0qp9Z/t0SgLPHxrgAAtLrZs2dr1aodg2kWLlyo+fPnj1+FSvDLX/5S//qv/6p0Oj3eVQEAAACAlpCzWd/5cRPudp87QGDQGSLg2qaVuMLh0l5K1loZY0KXlbUZefLvyFwYjhG03/EUZf+lhMcBAADUi0X9N/rONzI6bsppZZXtamenvMHIbcxmEiYYzdVOLiVAOErbNqj8VC4oGK3+w6aDrj1cx6gRXhcAAABaG/3zAABAXRkKeS8yl6tuPQAAAAAAAAA0hA0D7mXdBKOhycXGuwIAgMZ2ww036Lzzzgvd6er222/Pe1LlhRdeWN0KAgAAAEATytqM7/y4aQ+1fWHw1oi0N+gc5M9gd/dxs7IastEGIwUFLyRMfjiGO8huOJBtvFQqPAIAAKCebcyu18Ob7/VdduCE16qnY+eyyk8a/zamp5yyjkDkVhAUjKZtwWju65roobyRQn8D1g1q9yZj9d8DyXVMUwHXiq5tAAAAAFQG/fMAAGgyYYPRPILRAAAAAAAAAEjrtriXddN9D00uPt4VAAA0ti9+8Yt5g7Df+9736pxzztGrXvUqtbfvGJDf09MzHtUDAAAAgKaUcQajhbvdFxS0lXYOdvffppUEHYOUNxjpGKVtUGBCuGA0K08ZO6QOkwi930pyvVfKXRcAAKCe3N1/izz5D0A7YerpZZcf1IZM20G1K1z4cdMJyEUzw7loAdc10due0dq2wwHFZqQio6Q896MZGyFALPBa0foP2ORaEQAAAKgu+ucBANBkciEfiEEwGgAAAAAAAABJq9b5z++ISztNqG1dgFojGA0AULJnnnlGS5cu3T59+umn6w9/+MM41ggAAAAAWkPO+neUjZtwoQlJx4D8lDeotOcY7G7qfxB/tbmOmyTncStl/cLAhOD9DqojNl7BaOFfc9TjAwAAUA9yNqs7N97ku2x6+0zt33Vo2fsIDEbzUprYNrnsfTQiG5CMZjQcSOYKGiul7ekK/fLjKaeszajddPjs2z9grU1xtcfqP+TOfUzd14pB1ysAAAAAykP/PAAAmlDYYLSw6wEAAAAAAABoaivX+fen3GMnKRYb+4BXoJnExrsCAIDG9dBDD+VNn3nmmeNUEwAAAABoLVmb8Z0fNhjNFb6Q9lJKOQbyBwU2tIrg0Ar/4+biOs5++wnab1A51RYlcGI86wkAAFCqR7c8oI3Z9b7Ljus+TTFT/s/triAqKXobs7m4g9E0EoxmXNc10Y9b1G1cbeFBRznJtsYID3NfKw46jxHXigAAAED10D8PAIAmFDoYzatuPQAAAAAAAAA0hJXr/OfP6altPYDxQDAaAKBka9asyZueNWvWONUEAAAAAFqHZ3Py5N8BNnQwmvEflJ+2KaWt/wD/ZEBgQ6uoZDCaK0jBKKZ201Gw36CwjPDhZJWWtuFf83jWEwAAoFSLNtzgO7/ddOioKa+vyD6C2tmt3IYKjkXbFozmCvFyXNMESUU81q62sOu6oFGup1zHdMDbqowdirQNAAAAgPLRPw8AgCYUOhgt5HoAAAAAAAAAmtrKPv8elXtMMzWuCVB7BKMBAEq2ZcuWvOn29nAD8AEAAAAApctad+fXuImHKsM1KD/lDToH8geFc7WKuGl3HuNUhYLRErGkjMn/ccIVZFfKfislazOB78VCrRzqAQAAGtOL6dVaNvi477LXTT5OE9omVWQ/7aZje9BXoVZuQ9nAaLRhruuatJeStcW3z98mWrva1Q5PeQO+85OxrkjljxfXMd2c3Rh5GwAAAADlo38eAABNKJcLuR7BaAAAAAAAAACklev858/uqW09gPEQbqQkAKDhWWu1ZMkSPf3003rllVeUTqc1ffp07bbbbjr22GM1ceLEyGV6nleFmgIAAAAAgmRtxrksbsINiEnEkr7z096gM3yBwe7DErFOZXObx8yPGlrhDqAbe27aY+1qU1w5je34nLbjE5ZRqdcLAABQr+7sX+BcdkL36RXbjzFGiVjSN2hrvEJw64M72GwkSM4V3mxlNWTTShj/6x4/0du3/uu7zlmjXE+5jtnG7Hr3Ng3y2gAAAIBqo38eAAAIJWzgmRcyQA0AAAAAAABA07LW6okX/ZfNnlbbugDjgWA0AGhyfX19+vrXv67f//73Wrt2re86HR0dOumkk3ThhRfqiCOOcJa1cuVKzZkzx7n8xBNP9J1/2WWX6eyzz/ZddtFFF+miiy5ylrlw4ULNnz/fuRwAAAAAWk3WujvJhg9G8x+4vjm7UdYRQOAKU2s1CZPUVo0NRosaWhE1gC4RS2rA2+JTzviEZUQOjrCtHOoBAAAaTcob1P2bFvoum5PcV7sn51Z0fwmTVEpj20tR21zNxB2LNhwmJwVfo6S9VKRrmEq151PegO/8hglGc9RzU26De5sIAXQAAABAM6J/HgAAiCRs4FnYADUAAAAAAAAATev/PejuTTl7mqlhTYDxERvvCgAAqucvf/mL9txzT1188cXOTleSNDQ0pAULFujII4/Ueeedp2yWH1IBAAAAoF5lbca5LG7CPQfBFRDgF7y1Y5vGGMhfba5Ag7SNFlrhCl5whQq4ztl4hWVEDkZr4VAPAADQeO7fuNDZXju++40V35+rrT1eIbh1wQZFow0LCj6rVNBZ1PKd7fwGuZ5yXe8EBXQ3ymsDAAAAqoH+eQAAICobNvCMYDQAAAAAAACg5f1kobsv5ZyeGlYEGCfhRkoCqB0vKw08P961aH5ds6RYc38E/vrXv9a5554rz/Py5s+dO1cHHHCAurq6tHr1aj3wwAPK5XY8eeoXv/iFVq9erb/97W+Kx5v7GAEAAABAIwoKRmsrMxit0ts0o0qFVriC1FzH2RVQEDXwoVIiv16C0QAAQIOw1uqO/ht9l01sm6J5k46p+D6dIbgRw3ebiZW7M4/R8FMOXW1kqfrtVdf6rvZ5Z6wrUvnjpbRrxUQVagIAAFBF9M+rnSbvo0f/PAAAUJKwAakEowEAAAAAAAAtr3/AvWzGpNrVAxgv/KIO1JuB56W/zhnvWjS/t/RKE2ePdy2q5pFHHtHHPvaxvE5Xhx56qH7yk5/o6KOPzlt37dq1+spXvqKf//zn2+ctWLBAX/3qV/X1r389b91Zs2apt7d3+/QPfvAD/fCHP9w+fcUVV+jII48cU5+enh7Nnz9fknTffffprLPO2r7s05/+tD7zmc84X8vMmTOLvFoAAAAAaC1Z6+782m7aQ5URFCBQyW2akSsoIGpAmStIwRW85gzLGKdgtKivd7wC3AAAAKJaNvi4Xhp6znfZMVNOVnssXJs7Cnf4LsFofkaC0YJCvCIHndmo7Xn/9V3tXtc5rjdRg9HaTYdipq1KtQEAAKgS+ufVThP30aN/HgAAKFnYwDMvV3wdAAAAAAAAAE3tyZf8509ISLGYqW1lgHFAMBoANKFzzjlHQ0ND26ePPfZY3XTTTerqGvs0+unTp+tnP/uZ9tprL/3bv/3b9vnf+ta3dNZZZ+nVr3719nnxeFyzZ8/ePt3d3Z1X1syZM/OWjzZx4kRJ0sqVK/Pmd3d3O7cBAAAAAIyVtRnnsnjIYLSog91L3aYZVSq0whWk4Aqgq7ewjOivt3VDPQAAQGNZtOFG3/lGMR3bfWpV9llvIbj1biQYLW7a1aa4cho7kDDqsYu+vn/7Nmo7v95EDXBrlNcFAAAAVBr98wAAQMnCBqOFXQ8AAAAAAABAU7pnufsBsz9/P6FoaA2x8a4AAKCyFi5cqCVLlmyfnjx5sq688krfTlejff7zn9cZZ5yxfdrzPF188cVVqycAAAAAoDSVCEaLOng9buKhy252rmOXqlCQgisUwzU/6n4rJW0JRgMAAM2nP7NOj265z3fZqye+TtPaZ1Rlv/XW1qsHVl7A0h0delzt82q3V9PW/9ykvAHf+Y0SIJaMGIhNgDYAAABaEf3zAABAWUIHo+WqWw8AAAAAAAAAde1rf3f3o3zVTgSjoTUQjAYATebyyy/Pm/7EJz6hXXfdNdS23/zmN/Omr7jiCqXT6YrVDQAAAABQvqBgtDYTD1VGwkQblB91/WbmGvgfNUjBFXLhKt8Z+DBOgWORgyNaONQDAAA0jrs23izPEch1fPcbq7bfemvr1QPrftChzKj+PNVun7u4yneVk4wFByTUi0TEALdGCXwDAAAAKon+eQAAoCwEowEAAAAAAAAIYcET7mVTG6NLIlA2gtEAoMncddddedPvf//7Q2974IEHat68edunU6mUFi9eXLG6AQAAAADKl7X+nWRjalPMhLvd5woPqNT6zcwdWlGZIAXXsXaF041X4Fjk12tT8qz7aTUAAADjLWszuqv/Zt9lM9p31X5dh1Rt35UK92ouAclo2pGM5jp2lQo6c3GV7w5Ga4wAsajBaFHXBwAAAJoB/fMAAEBZwgaehQ1QAwAAAAAAANA0rLW65Umrz/0pePxNN8FoaBEEowFAE9mwYYOWL1++fbq7u1v7779/pDKOPvrovOkHH3ywInUDAAAAAFRG1mZ857eb9tBlxE27YmoLvT6D3XdwHYuoQQpp6whGcwSg1VtYhivwIR7wPhyy6WpVBwAAoGyPbr5fm3IbfJcd331a6BDiUjhDcB1txlZgA4LRTF4wWnWDiyfEJkVa39VObpRrqoSJGKIdcX0AAACg0dE/DwAAlC1s4BnBaAAAAAAAAEBLyXlWH/y11WxCGWAAACAASURBVKk/8HTxLUEPl5WmEoyGFhEf7woAKNA1S3pL73jXovl1zRrvGlTF2rVr86b33ntvGWMca/vbb7/98qZfeeWVsusFAAAAAKicrPXv/Npmwt/qM8YoEUtq0Nsaav1kgwzirwVXQJkrAMHFFaTgKt91DsYrLMNV/ynxqVqX8b+XkPZSvJcAAEDdWtR/o+/8DpPQkVNOquq+6y0Etx4Ed+nZoRLHzlrrbM9Pjndr69DmUOVnbcYZZN3ZIO3gRCwRcf3GeF0AAAB56J9XO03YR4/+eQAAoGxerrLrAQAAAAAAAGgKNz8h/eH+cL0nuzqqXBmgThCMBtSbWFyaOHu8a4EGtWHDhrzpKVOmRC6jcJv169eXVScAAAAAQGW5BtrHTXukcpKxztDBaK6wgVbkDCiLHIzmv74rWKBSgWyV4gqamNwWFIw2KGlqFWsFAABQmhfSK/Xs4BO+yw6bfLy62iZWdf/11tarD+7OPUY7QgcqEYyWtVl58h9kODk+VS8NPedT/thzE3S+GiVALGba1GESGrLpUOtzrQgAABoS/fNQBvrnAQCAsuX8H4ZX8noAAAAAAAAAmsJfl4Z9pKwiP7wJaFSx8a4AAKByrM1v7FSiQUOjCAAAAADqS876d36Nm2jPQIgygL1RBvHXQsKUH7wwvL4rGM2/fNc5iBrIVinOYLR4d+RtAAAAxtsdGxY4l53QfXrV91+p8N1mYkMGo7mOXZRQuaDjPCXuH+zrV34q5y6nM9YVuj7jLdq1IsFoAAAAaC30zwMAAGUjGA0AAAAAAABAgWzO6soHwwWjvWNelSsD1BGC0QCgiey000550xs3boxcRuE2U6f6D/gAAAAAAIyPjM34zo+b9kjlRAk7Y7D7Ds7QChs+eMFa6wwJcwej+c9PjVPYmOv1TnYER0itHewBAADq12Buqx7YdLvvsrmd+2tWck7V6+Bq6xEs6zAqNCBhXKFy4Y9dUFt+cpt/+9av/KAwtkYKm3Zd85S7LgAAANAM6J8HAADKRjAaAAAAAAAAgFEeWmnV8TFP/QPh1v+3U4mKQuvg3Q4ATWT69Ol50//4xz8il/HMM8/kTc+YMaOsOgEAAAAAKivrDEaLRyonGSHsjGC0HVzHImuzznMzdt2MPHmO8v2DBdxhGeMTNubab1dsojOkLygoAgAAYLzct2mh0tY/ROv47tNqUgdXGzDtpWRtuCcANpug121G/dvZTnacU991A0LUpjiCf/3KT3nuXknJWFfo+oy3KNd/XCsCAACg1dA/DwAAlC1s4JmXq249AAAAAAAAAIy7nGf1tkv8xxcVeuuh0mMXxnT4HFN8ZaBJEIwGAE1k6tSpmjt37vbp/v5+PfXUU5HKuOeee/KmDzvssIrUbYQxNLQAAAAAoBxZzxWM5h9G5eIKX/CTjLBusws6bkGBCmHXcwXWuc5Bxg4pZ2vfIdr1GhKxZECIW/hwCgAAgFqw1uqO/gW+yya1TdGhE4+uST0Sxr/95CkXOny32VgFBaPt6ObgaidHCRAOCvCd7ApG89nGtc82xdUei3a9Np6iXCtGWRcAAABoBvTPAwAAZQsbjBZ2PQAAAAAAAAAN665l0gv9wess/nJM3i/adO3H23TgrvwWiNZCMBoANJljjz02b/oPf/hD6G2feuopLV68ePt0MpnUa1/72orVTZISiUTedDqdrmj5AAAAANDscvLv/Bo5GM1EGOzuCGpoRUED/4MCFUZLW/d6rvMStN+hcQgcCwpGc4ZTWILRAABAfXlmYKnWDD3vu+yYKafULMyqEuG7rWR0tx53KG/4YDTXMTaKaWLbZOc21uaHtw069plsa6zwMEK0AQAAgGD0zwMAAGUJHYxW+wekAQAAAAAAAKitKx50P0RWkiYmpH13rlFlgDpEMBoANJkPfvCDedM//vGP9fLLL4fa9otf/GLe9Hve854xHaXK1d3dnTf90ksvVbR8AAAAAGh2WZvxnR+PGNrgChDww2D3HYKORdjQiqAANdd5qcR+K8m1z2Ss0xmkFzY4DgAAoFYW9d/oO98opmO7T6lZPZIBbfOgUN1mZhXU2WdHNJo7GC18G7mU0F8rq4wdKijHEYzWYNdTUYKxo1xXAgAAAM2C/nkAAKAsYQPPCEYDAAAAAAAAmtbiVVZHfD2nX9wRHIx2zrFGXQkTuA7QzAhGA4Amc9JJJ+nQQw/dPr1x40adddZZGhwMHjhz8cUX67rrrts+bYzRZz/72YrXb88991RHR8f26YULFyqT8R/UDwAAAAAYK+M5gtEUj1ROlAHsiQYbyF9NQcfNFYQwdj13SIOr/KBwgvEIHHPtMxFLOt8v4xHgBgAA4LIh06elWx7wXXbwxMO1U/v0mtUluI3Zqm0od2cfEyIYLUob2bVuMtYZeC1UuJ27nK7QdakHka4VI4SoAQAAAM2C/nkAAKAsuWxl1wMAAAAAAADQUF7eaDX/u54eXFl83e++k1A0tLZooyUBAFX38ssva+XKlSVtO3v2bEnSpZdeqqOOOkpDQ8NPqr/99tt13HHH6Sc/+YmOOOKIvG36+vp0wQUX6JJLLsmb/4UvfEEHH3xwSfUI0tHRoWOOOUYLFy6UJK1evVpvectb9NGPflR77723urryB4fMnDlTySSDKgAAAABgRE7+nV/jsfZI5SQjhJ0RjLZDh0nIyMj6BDWEDa1wrWcUU7vp8F0WdA7StvZhGa7XkIh1OoMUWjfUAwAA1KO7Nt4kK8932Qndb6xpXQLbei3ahvJswFMQR/XzqUQoryvgeDj0t1gwcvf26ZQ34LtelGuvesC1IgAAAJod/fPonwcAwLgiGA0AAAAAAABoaX+432pruvh6u3ZLbTGC0dDaCEYDgDpz1llnlbyt3TZIZN68efrxj3+sj370o/K84UE9ixcv1pFHHqm99tpLBx54oJLJpJ577jk98MADymbzfzh9wxveoP/+7/8u/UUUcf7552/veCVJCxYs0IIFC3zXXbhwoebPn1+1ugAAAABAo8l6jmA0E+1WX9AA/3LWbXbGGCViSaV8whP85vlxhTQkY0kZ4/+jRSKWcJYXdr+VkrUZZ0BfwiQDwilqW08AAACXrM3o7v5bfJft3DFL+3ZVfmB6kHbTIaOYb1Bbrdt69cMdjGZGJaO52p5DNi3P5hQzbUX35Az9NcWC0fK3c52rRgtG41oRAAAAzY7+efnonwcAQI3lcuHW80KuBwAAAAAAAKChPPpcuPU+9wZC0YDYeFcAAFAd5557rq688kpNnDgxb/6zzz6r6667TldeeaXuueeeMZ2uPvzhD+v6669Xe3t71ep2xhln6Gtf+5ra2ooPRgEAAAAA5MvajO/8uIl2HRdlcH6jDeSvtnKDv1zrucqVpJhpU7vpKGu/leIKjpCGgxFc4QgEowEAgHrx8OZ7tSnX77vs+O7TnGG11TISvusnqO3VzGzYYDQTFFwW4pGKktLW3T4PuhYqDEJLeQPOchpJtGC0xnptAAAAQCXRPw8AAJQk5/8QspLXAwCgjj2/weqTf/QU+5fc9v/OudzT4y+4fwsEAAAAgGbX2xfumujdhxGMBhCMBgBN7Mwzz9Ty5cv16U9/Wj09Pc712tvbdcopp+juu+/WpZdeWtVOVyO+9KUvaenSpfqP//gPHX/88Zo5c6Y6Oxk8AQAAAADFuILR2kw8UjnRBruHX7cVuMIXCoMRXFzrFTvOrlCG+gpG6yTUAwAA1L07+m/0nZ8wSR05+cQa12bbvgmXLUlQcFnahmt/utqpiVhScdOuNvlfaxWW7yqnM9YVqh71IkrYGSHaAAAAaHX0zwMAAJERjAYAaBFrNlkd9Q1Pl9yeP+D/srutjv2Wp8eeJxwNAAAAQGvqXVd8nQWfjmnXboLRgGijJQEAFbdy5cqqlj9jxgz94Ac/0Pe//30tXrxYTz/9tNauXat0Oq2enh7NmjVLxx57rCZNmhS57AsvvFAXXnhhyXU74IAD9I1vfKPk7QEAAACgFWWtf+fXuIk2iIbB7qVzB5SVGbzgCFzbvjyW1ObcxpL3WylBAXCJWLLs4wMAAFBNz6d6tXzwKd9lh0+er862CTWu0TBXW7BV21BW7oEQRjs6+wSFC4cNlXMd45F2bSKW1IC3peh2g96AbzlRrr3qQZTrP0K0AQAA0Ajon0f/PAAA6grBaACAFvGbe6xe6Pdftikl/ej/rH75QQb5AwAAAGgtqYzVi45rpe+90+gthxjN6ZFiMa6XAIlgNABoGbFYTIcddpgOO+yw8a4KAAAAAKAMWZvxnd9exWA0Brvncx2PtA0ZvGAdwWhFzkm9BI4F7S8Z63SGegQFqgEAANTKov4bnMuOn3paDWuSz93GbM1gNAUEo6nCwWiudupI2clYpyMYbTBwekSjBU2HvVY0MuowiSrXBgAAAGgc9M8DAAChhA088zxZa2UMAyABAI3pxseCfu+T/ni/1S8/WKPKAAAAAECdWLPJvey0g4zmzuB+IDAawWgAAAAAAABAA3EFo8WjBqM5wqt8122wgfzV5joeYQPKXOsVC6Bz7bfWgWOuwAcjo3bT4T4+LRvqAQAA6sVAbose3HSH77K9Og/QbonZta3QKK7wrFYNlw2MRTOjg9Hc1yqpstvnndv+Hy74N+UN+K7XeMFo4a4VE7EkgzIBAAAAAACAqMIGo0lSLifFGfZVa9Za3fi4dM9yq71nSG+fZzQpyb1QAIjq6ZeDlw9mhj9zV6+X/vKI1bI1w/OnTpBev5/R/H357G11fCcDAIBSZHNWNz0h3bvCav9dpDPnGSXaaUOgfvT7dzOUJPVMrF09gEbBHXIAAAAAAACggbiC0dpMtFt9UQbnd5hEpLKbXbmhFa5gsWLnpNxAtkpx7a/DJBQzMefrcL1uAACAWrlv4/9pyKZ9lx3ffXqNa5OvXtp69cLa4CfIj2gzbWo3HcrYoTHLwgcXB7fPXUFhheW7rgcaLhgtZIh2lLBtAACanTGmTdJekg6QtKukKZLSkjZIWi7pIWvt1grvs13SMZJ2l7SLpC2SXpT0sLV2ZSX3BQAAAKCCcrkI62YJRqsxa63O+73Vr+7ccY/6B7da3fzZmKZPYhA1AIRlrdUrm4uv97dHpbN/42lDQTDA/1xv9eU3Gf3XP8WqU0HUPWutzv2d1a/v2vGd/MPbrG7+TEw9fCcDAACHbM7q/ZdaXfXQjjbEzxdZXf+pGAGrqBuF1z+jdTdWV0OgJrhDDgAAAAAAADSQrPV/enDctEcqxzW4f8x6JqmYoYPRaGGDEVxc6xU7J67ggbCBbJWStq76RwuOAAAAqCXPerqjf4HvssltU3XopCNqXKN87jZUq4bLuoPRYsq/PknEksrk/ILRwh07V3t65Jy4Q+vyt3MHo3WFqke9CBvk5jouAAC0CmPM7pLeLulkScdJmhywes4Yc4ukH1trry9zv9MlXSTp3ZJ2cqxzj6TvW2uvKWdfAAAAAKog59/nw5cXIUQNFbF4lfJC0STp0eelS263uuDNDKAGgLDWhghFk6Szfulp0P85sfqfG6zOOdZqj2l8/raiB3qVF4omSY88J/10kdVXzuA9AQAA/N38pPJC0STprmel399n9bH5tCFQH/odwWgTElJ7nPcpUIgRjQAAAAAAAEADyVr/nkBVC0ZjsPsYrmMSNqCsWPCCe7/1EThWPDiiPgLcAAAARntmYKleybzou+zY7lMit6crrV7aevXCHYs2lju4rMzgYhPcvi3czt1ObqxrqvDXiuHWAwCgGRlj/ihplaSLJb1JwaFoktQm6TRJfzfG/M0Ys3OJ+32jpMclfUyOULRtjpZ0tTHm98aYCaXsCwAAAECVRAlGi7IuKuKaJf53p698MMpdawDA8xvCrecKRZMka6UFj/P526r+/Ij/ub96Me8JAADgdvOT/m2Fz/2JNgTqx4YB//fj1MZ6/ipQM/HxrgAAAAAAAACA8LLWv+Nr3ES71Rd2cH6ywQbx14LrmKRDBn85gxeKHGvnfm1tA8dc9R+pnysgIWOH5NmcYqatanUDAABwWdR/g+/8mGI6dsopNa7NWITLFnJ3RjPKfyriSIBZodDtcxvcPk+Y4sFrWZtxhlh3Ntg1VdhrxUYLfAMAoML2ccx/QdIySWs03DdzT0mHKP8BtmdIusMYc4K19uWwOzTGzJf0F0kdo2ZbSUskrZDULek1knpGLX+fpMnGmLdaa72w+wIAAABQRV6EpjnBaDX3rQX+96afLrh625Kyum+FlMlJR82VuruM73aeZ/XkS9KTL1lZK+030+jVu0mxmNHmlNX9K6RpE6Utaekfa6w8KyXi0sCQFDNSsl06aT+jWVP9yweAUm1OWd27XPKsdNSe0hTH51ip+iv0E+eKvsqUgx2stXr2FenR56WcZ7XndKPXvEqKt9XXd823Hd/Jj72w4985z2rp89KKtdK8PaQ5PfX1GgAAQO396Db/NkQqI12z2CrrDS/frdvosNlSop32A2pvw4D/fILRAH8EowEAAAAAAAANxDXYPm7aI5XTZtrUbjqUsUOB67kCGlqZ65i4AsPGrOcKXnAEOhTfb62D0fz3N1K/oDC9tJdWZxu/2AAAgNpan1mrx7Y85LvskIlHqrt9Wo1rNJY7fDdcG7PZ2IBgNBUGo5UZKldq+3Z0+UH7arQAsbDh2IRoAwCw3cOSfi3pRmvt8sKFxpjdJH1V0r+Mmr2PpD8ZY4631hZ9PLkxZpaka5Ufina3pHOttU+NWi8h6TxJ35U0csP4zZK+Juk/o7woAAAAAFUSJbPYy1WvHojsukes/ulQo1uftHrHzzxt3nb7viMu/eZDRu85PJa3fv+A1Tt+6mnhM6PnWh09V/rYfKOP/t5qazrMnq0+f4rRN99uFIsxYBtA+a5favXuX3ga2NZtMBGXfndOTGe+tnKfMf2Ogf5RrSQYraLSGasPXWZ15UOjb0laHbCLdP2nYtpjWmN8z2xNW21JS2f8r6fFq3bM/8CRRpf+s6m7kDcAAFA73V3utug7fz76nozVrKnSDZ+K6aDdaDugtlzv0W6G2QC+YsVXAQAAAAAAAFAvctb/icBxE/0ZCGEG6DfaIP5acB2T8MELjmC0IiF0rv3WOiyjWP2D3jO1DnEDAACQpDv7F8jKf7DZCVPfWOPa+EsYR1vPEarb7ILyQUxBXzRnqFyIY2etdbZvR8p1BhSPKj+Vc7dzO2ON1WOp3XTIqHiHP0K0AQAtzkq6XtJh1tp51tof+4WiSZK19gVr7XmSPlGw6FhJ7w65v4skTR01fY+kk0eHom3bV9pa+yNJ7yrY/nxjzB4h9wUAAACgmqKEneX8+4egOp54MTi3+m2XeNqw1epdv9gRiiZJQ1npg7+2WrMpf/uL/mYLQtGG3bNc+sClYUPRhn33ZqsbHw+/PgC4bBrMD0WTpHRWev+lnvo2F83vD61/oDJl9fZVrk6QfrqoMBRt2JMvSZ/8Y4Tw1nG2cp30uatsXiiaJP3uPqufLeI9AwBAK5vVHX7d5zcMt4NDPMcKqKgNjmC0qY3VzRCoGYLRAAAAAAAAgAaStRnf+XHTHrmsMAPZGew+VsI4ghFCBpS5wsGKhdC5zkXYQLZKcdd/WzCa4/hIrRvsAQAAxk/Gy+jujbf6Ltul41Xau/OgGtfInzN8q8YhuPXCKiAYrSC0q5xjl7FDzn0ligWjjWoXB7XJGy1s2hjDtSIAAMW901p7hrX2obAbWGsvkXRNwewPFNvOGLO3pH8eNWtI0oesdd9os9b+RdLlo2YlJF0Qtq4AAAAAqsiLEDqS9e8fgur466PFB0J/4Rqrfp/Bq1lPunZJ/vZ/WlzZgdVXPshAbQDlu+ExmxeKNmIoK10X4nMwrP4KdWfr7atMORh2lU8o2ogbHx8OzqsHqUxwPZatka592H+dv1XwfQwAABrPblOLrzPa0uelf6ypTl0Alw1b/ed3dxV/mCnQighGAwAAAAAAABpIxhmMFo9cVlCA1Yhkgw3irwXXMXEFhoVdr1iwgHu/tQ3LcO1vR3CE+z0T9hgBAABUypLNd2tLbqPvsuO73yhj6qMzSZjwrdYS1GG9MBjNv/0ZJkA4ONBs+JyEaf8HnadkrPEe5RgmzI1rRQBAK7PWrixx058UTJ8YYpv3SmobNX2ttXZZiO2+VTD9LmNC3BAGAAAAUF22csFoGwesXuy38jwCQCrh+Q3F17nhMfexHj2QekvK6sX+ClRqlN/fz3kGUL5lr7iXPfJc5fbjFyJZinVbpc0pPv8qZVlA6IdnpRV1EkS3en3w8ruXW6UczaS7l1e+PgAAoHFMSkTfJqiNDFTDynX+1zg7T65xRYAGQTAaAAAAAAAA0ECyzmC09shlhRnIXiysqxU5gxFsSl6RTszWWmewWLHzUU7gQyWlrSMYzYwEo7l/Uax1XQEAAO7ov9F3fsIkdfjk+bWtTACC0fKFj0ULOnbFA4SDju9IuWHKT3n+ozvaFFd7LPq12ngLE6LNtSIAACV5uGC60xjTXWSbtxVMXxZmR9bapyTdP2rWBEmnhNkWAAAAQBXlcuHXzfj3D3niRavD/iennT7radYXPPWc7+lLf/YISCtTmBCfl/yfwyJJ+uFtVqnM8DlgUDWAenX9Uvd3xU8WWp3xo5z6Npf/fbKxgj9x9tZJWFej25yyWrc1eJ3v3FQfbYli5/x7N9dHPQEAQP3JRLjtMmJlH20L1JarvTunp7b1ABoFwWgAAAAAAABAA8nZrO/8UoLRwgxkDxOe1mqCjtuQTQdum7UZefIPTyt2PoICGayt3Q9yrvCIkfrFTJvaTYdj2+LhFAAAAJWyOrVcvalnfJcdMeVEdbZ11bhGbq4Q3Fq39eqFjRCN5gwuDhEqF9Q+HSk3XDCa/76SbY15PRXmWnEkGBkAAETid3PX/0aaJGPMTEmHFGx/d4T93V4w/cYI2wIAAACohiIPW8uTGdv/YGvaav53PC1eJY3cOu4fkL5xo9V3CAkpS/9A+cfvk1cMl3HWLyOc5wg2pzjHAEq3JWX1wMrgdW54XHr7T8v/DKtkMNqKtZUrq5WFCZi74gGre5aP/3dNbxnhJOTEAgDQ2oZKCEbrXVf5egAug0PWGbw/p6fwkbEAJILRAAAAAAAAgIbh2ZwzVKuUYLQwoWdhBsS3GldohVQ8fCEoeKHYsU46ggc85ZS1/k+KrgbXaxhdf3c4BcFoAACgdhb13+Bcdnx3fWVCuNqYnryatvXqh7vHuikIRgsTXObiCjQbXW5QaF2xcho1aJprRQAAqmavgumspKAhiQcVTC+11m6NsL97CqYPjLAtAAAAgGrwygtGu+4Rq3WOq4JL7yIJpBwbBsov44r7rbakrP6xpvyy/IQJtQEAlz8/HO574q5npadfKu87ZcPWyn0nlROShR3Cfodcdvf4H+9yvu9SGSmVGf/XAAAAxkemhGC0VbQ3UUOr17uXzempXT2ARkIwGgAAAAAAANAgsjbrXBY38cjlhRnInnCEcbWyoOMWFKxQbHmxYx2031oGjrlew+j6lRNOAQAAUAkDuS16aNOdvsv27jxIuyZ2r3GNgiVMfbT16kVQdzNjCoLRHMeuWGixJKWt/7FtU3x7+LQzGM2m5NnhQYzONnKDXk8FhUFHWQcAAIxxZsH0Q9baoFSEAwqmn424v+VFygMAAABQa16EEbqZoTGzlr7gXv3ZV6TBIQbzlqq/AsFogxnpzmXll+OyYm31ygbQ/IK+Q8auW973yQv9ZW2ep3dd5cpqZWED5h57fvzbEivLDALdWPxnYgAA0KSG3MNtnAghRy2tD3gM2m7dtasH0Eiij5YEAAAAAAAAMC6yNuNcNjJoP4pwg92Lh6e1mmTAcSsWWpG2AcFoRY514H7toCZqcuD2leJ6jaPr53pvFQuOAwAAqJR7N96mjB07aEySTph6eo1rU1yySPhurdp6dcP6d7g3MmPmBQWXFeMKT8tr2waE1g3ZtJKmUynPf8RcZ1tX0TrUo6BrjyjrAACAHYwxEyWdUzD7z0U226tgenXE3a4qmJ5mjJlqrd0QsRwAAAAAFWCtdd779JVJj5n17QXB269cJ+2/S9SaQZI2VCAYTZLe9L9B+dfleWaNlXzukxey1uqHt1n94g6rp18enjenR+rulF6/v9GFbzbqShgtesbqh7d5euwFybPSXtOlDx1jdNbhsaq9BgDjp3dt+O+g5Wul/gGrr/7V6o5/WG0e9bPbvjtLHzkuprfPG/48um+F1fdv9vTI81Ju20fg6vWVq/d9y8c/qKsR+J2vA3aRzjshpi0pq/OvCnccH1gpxf4lp50nS10dw/NGh4XsvpPUtu1rYk6P9L4jjM4+prLfGyvXlXfON2yVdm6xn9cBAMCwTIQ8+hErCeJFDQ34d2mVtKP9DSAfwWgAAAAAAABAg8ha9yNsqhWMxmD3sYKOW7Hgr6DgtGLHOig4rZaBY67XkAgRHuEKngAAAKgkz3q6o/9G32VT4jvpkImH17hGxQW1MYPCdZuVlauze4RgtCKhxUHrjG57BwcjDyoZ63S2x8Ncc9WjMAHZhGgDABDZNyTNHDXdL+lXRbYpfCb0K1F2aK3dYoxJSRr9xT1FUlnBaMaYGZKmR9xsbjn7BAAAAJpClFA0Scrkj5T87s3FA7dWrCUYrRTW2ooFo1XTF6+1+vfTiq/3+autLr4l//02Emrz8HNWD/RaXfiWmE79gZc3aLy3T7rlKauNg54+egLhaECzWdFXfJ0Ry9ZIJ37X06PPj13W2ycteMLT5Wcb7TvT6KTveUq5n/datodWSRsHrKZ0FQ+GbFWZrNUJ3xkOuhytt0+6/rHSAjvXbPKfPzr0rrdP+r+nrdZt9fT5Uyr3vdEb4b3q55olVl96E+8XAABa0VAJwWgbBmhvonZcwWhdHZIxvAcBPwSjAQAAAAAAAA0iLliMLgAAIABJREFUa909iOIm+q2+cIPdG3MgfzW1mTa1mw5l7NhfJYqFL7iWxxQrGm4XGJYRIvShUsoJj0jb2tUTAAC0rqcGHtHazMu+y46bcqraSmg7V1tQ27yWbb1659f1x3XswoQHuwPNkr7/9tt+iqSU5z9irlGDpglGAwCgsowxb5P0yYLZX7LWrvdbf5SJBdOlJOYOKj8YbVIJZRT6uKQLKlAOAAAA0Fq8iKNzRwWjZXNW37u5eLBab5+V/51UBEllpCHHswr//PGYDvAJmzvzZ2MDaIIcMku69uMxZUe9DaZ0SlvSUrJdmtolZb3hgbDv/rmnax/2L+epl6z238V9jjcNWv3s9uD3yh3LpLN+mR+KNtp3brI673jLgFygiVhrtWJt+PV/c0/x75zv3mx1yCxVLBStI+7+LL7uUasPHsVnksuNjyvSd1Klff9mq8+83ireVv452pKy6ttSXhnfuNHqS28quyoAAKABua5zPz7f6NOvN9r3K/6hsSvXSYd0VbFiwDZb0/7XWhMSNa4I0EB4fAMAAAAAAADQIIKC0UoJdwgzkL1RB/JXm+vYpYuELwSFihXrUNpuOmQct3TDhD5UQtZmlJN/D7SEKR4eUat6AgCA1rZoww2+82Nq0zHdb6hxbcIJauu1YjCalWuwxdg2s+uaJWszylnH6IltXO330aHEYULrXOeoUa+nwgRkN+prAwCg1owxh0j6bcHsmyX9NMTmhcFopTQMCxs8hWUCAAAAqBXPf/CtUya9/Z+9fdKaTcU3eTnEOhjrxX73sr1nSHvvbMb8d/Re0cJf5k6X5vTklzFjstGe04127Tbq7DCalDRqixkdOddd9v29wWFF966QBkOEFAW9n8K+3wA0jg0D0qYK/+T42AvSrU8VD1AL67QD3cseXFmx3TSle1dU7jyU4uVN0qp1lSurXMng59MCAIAm5graPWBXaU6PFHek6/T2Va9OwGgDQ/7zuzpqWw+gkdTfo7ABAAAAAAAA+MoGDOpvN9F7c4QZyB4mPK0VJWKd2pIb2wunWGiFKxgsTPCAMUaJWFIpbyDyfislKNhs9HvFHRzXeqEeAACgtvqG1uiJrYt9lx066UhNie9U4xqFUw9tvXriCkYzPsFoxYLLutrc2R9BwcU7/u1uq49sP+hz3iQpGWvMR4mODj12rsO1IgAARRljdpd0vfLDyFZJer+1tpTRirXaBgAAAEA12PxgtP+d+jH1ts/WYKxLA7FObTUTtCU2QT25ddopt0Gb7n2tzGpPbTFpzaZwTft+/1uVGOWuZVZ/W2p1/wqrF/qlNx9iNCWgy8bujp8Vzpxn9PNF4S+5ZveED1J7xzyjL1ztX/btz0gn7GN15YNWT78sjVxdela67hGrLWnfzSLr7ZNmTqlMWQDG34q11Sm3koGc//O2mP76qH+IKN9vwf766PjfAtz7y55uPT+mk/aLFhxaqBLnev1WadOg1eTO8uoCAAAaTybnP7+jTYq3Gb1qJ/8QtHf/wtOKr8e021TaDyiftVY3PCbd/KRV/4C03y7Su183HI6/1RGMNoFgNMCJYDQAAAAAAACgQWSt+5Gu8RKC0cINdi8e2NWKXMcuKDhMktJlBKNJw2F2/mEZwfutlKBQjtFBe67X04qhHgAAoLbu3LjAGap1QvfpNa5NNK5gtGJtzFZifPqeBQV0pbzBsoPR2kyb2k2HMnZsr6SRc+Nqj4cJo65HYULPEqYxXxsAALVijJkh6RZJu42a/bKkN1hrww5F3VIwXcoXcOE2hWWW4hJJf4q4zVxJ11Vg3wAAAEDjyuWPzv39lPdpcec89/rPSXouWtDJRm4nB/rZIk+f+KPV6KjqH9zqPsbTJ0kTk/6Dok/aT/r304y+tSDcOZrTE76ecwJC1H57r9Vv761+AM53b/Z0zcfaqr4fALWxom/8g7NcjJG+906jA3c1OmKOdH/v2HX6B+q3/uPt70utnnqp9O2nTZDWba1MXU7+vqdvvcPo306NlVzGhgqF4K1cJx08qzJlAQCAxjGU9Z/fvu3ydk6PfzBaJie96t89PfVfMe07k3A0lOcL11h97+b8a5jv3mS14DMxDTiC0boIRgOcSr/CBAAAAAAAAFBTlQ5GCzNIP8yA+FbkOnbFAsrCBC8Eca1Xq8CxoP0kQgWj0QsbAABUT8Yb0j0bb/VdtmvH7tqr84Aa1yiaUtuYzcha/6fBS2M7ngVd1xRrJ7tC5wrLLNYO9wu0K1a3ehbuWrExXxsAALVgjNlJ0q2S9hk1u0/SydbaZRGKqstgNGvtK9baJ6L8J2l5ufsFAAAAGl7Bfc9OW6Hkj1E2bCU4xmVwyOqL1+aHohUzZ5p7mTFG33h7TG96dciyAsLO/Hzm5PEdiP3nhyXP4/0ENIsVjpj+2QGfc+X48XuNfvXB4M+xyz5kdMW5Rqu+GdNnTh4e5nzaQf7bVCosq9lYa/WFq12/q4bz/Ldj6ohXqEKSvnitLSvIrr9C59ov8AQAADS/oZz//JH2zh7TgtuoYcPPAZfevrGhaNLwNc1//c3T1rT/dhMSVa4Y0MAIRgMAAAAAAAAaRFAwWpuJ3jslTBhXow7krzbXsXMFK4xIW0cwmgkbjOYKy6iHYLSk77/Dbg8AAFCuxZvv0tbcZt9lx089XcbU99McXW3CVmxDWfl3MjM+wWhBAV3Fjp0zuNgUBqMFh9aFDVhrFMVCz2JqU7yEa1AAAFqBMWaKpJsljR4av0HSG7YFhEWxsWB6esS6TNTYYLT+iHUAAAAAUClefnDJBMcDF8rR33rP2QjtvhXSxojHZ8/pxX9XeP3+4X57mNMTbd/VCiuK4pk1410DAJWywhESdeCu0q7dld3XxIT0sROMPnxs8NDlfz46pncfFtOsqTs+R6d2+a9LMJq/59ZLT79c+vbdXVKi3Wj+PsXXDcuz0i1Plr59/2BlwkhWriPUBACAVpRxBKO1tw23OYtdm//mHtoQKM8tT7rfQzc/KW12dGfs6qhShYAmQE9VAAAAAAAAoEFkbdZ3fkxtipnoz0AoNth9eJ1wgV2txhVw4Ao+277cEZgQ9ji7wjKKBbJViqv+RkYdZsdjatzBaPTCBgAA1XNH/42+85OxLh0++YQa1yY6ZxuqSBuzGUXpYja6HVqoWPvTGVxccC7coXUjwWj+5SRjjtEbda7Y9Ukilqz7oEEAAMaDMWaSpAWSXjtq9iZJp1lrHymhyGUF03tE3L5w/fXW2g0l1AMAAABAJXj5o3O7qhCMRnCMW29f9MHNs0OEmZ12oNH5Re5qz+mR9t052r5PO8hIV47vgOzePmn/Xca1Cg2nf8DqzmXSpKR05J5Ssr20e+nPrbe6b4W0987SwbtJsVj93pPfsHX4Na/ZPPx+7WiTjphjtO9M8VtClVhr9dgL0uJVVtltmZs7TzI6bm9p6oQdx3z1Oqu7l1sl240e7PX/PJkz3WhTyurFCkbpn3Zg6ee+2/HTWj/fb2N4ntWfHynve+Kfj6rO3+jXb/DUPzhcdiIuHT7baOoEadE/rB5eLa3dIu2xkzRzirRnj9Gu3dKS1VYDQ9Kld1bmu6/XEQYIAFFZa/X4C9LCZ6xe2igds5fRSftKXQnaOUA9GvIfbqOOtuH/v/Ego69eF9zeGByy6uzgbxzheZ7V0hekJaus/vPP7vdXJictW+O/fALBaIATwWgAAAAAAABAg8jajO/8dtNeUnnFgtHiJq54iWU3u1KDv9LOwITiIXWB+7W1CRxzBbAVBiOUGhwHAABQqlWpZ7UyVZgbMezIySeGbm+NJ1f7vDXDZf07ABmN7XQWMzElTNK3rVlqcHHh+6VYaF3KMYAxTBh1PSr299IIf08AANSaMWaCpBskHTlq9hZJb7TWPlBisU8VTO8Vcfs9C6afLLEeAAAAACrB8/Imu2zlU14IjnFbUUJAypwQwWj77WL0iRONfrLQ/752e5v07XfEIgdb7bOz0QePMvrtveMXjjYcJsdg8LDu+IfVWy/xtv8d7r+LdMOnYtpjWrRj+KPbPH32Kiu77dS/Y5702w/H6nJg/m1PWb3jp542jfk5xurj841++B6prY5D3RpROmP14cutrnig8LPBanJSuvbjMZ20n9HFt3j6/NUj7yP358iePdLmQaM7l1Xus+bLZ0R/wOuIqV1GfvUl+DPfQNrqrF96+tvS0svYs0f6zMnF/z6PmSvdvXzH9MzJUkdcWr3evc2jz0vn/W70eQx6f5X+3jv9IKlnkv935Y9us/rBu0suGgAkDX/vnvVLT3/Je/SNVVtMeuyCmPbbhXYOUG8yOf/57duC0ebtLh08S1r6vLuMVeuk/QgJR0ipjNX7f+Xp2ofDrf/4i/7zCdwE3AhGAwAAAAAAABpE1vo/wqbU8DLX4P7tyw2D3V3coRXFghf8lxc7FyNcAQSuwLJKc9bfJAOnR9SqngAAoPUs2nCDc9nx3W+sYU1K5wyXLdLGbEY2QjCaNNyeTud8gtGKBhe7g39HCzo3WZtxhlh3NmiAWNFrxZDXLwAAtApjTKekv0s6dtTsAUlvstbeU0bRjxdMH2yM6bI2dHrCMUXKAwAAAFBLXv7o3AmOBy6Ug2A0t5WlBKOFDLT60XuMTjnAaOEzNu8c7L6T9NbXGB36qtIGt172ocoFo33trUb9A1Lflvz5sZj067v899FbwjFrVTnP6gOXennn/6mXpM//ydOfPtoWupxla6w+c2X++bhmiXTCPlafPKm+Bklnslbvv9QvFG3YJbdbnXKA0VsOrW29mt3v7vMLRRu2KSW9/1eebjk/ps/9Kdxnx549RptTlQtFO/sYo4Nnlf5endrlPz+VGQ4cSLbX19/BePnpIltWKJok3ffFmHomFT+ef/hITItXS3c9azV3uvSu1xpNSEgTPukV3baSpnRK5x5n1LdF6uqQjp4rvet1Rt9c4H7/9vZZzenhPQOgdD9eaAtC0YblPOkTf/R02+fCt/MA1MaQIxitY1uqjjFGt342phmfc7dlVvQRjIbwfnmnDR2KJrkDhrs6KlMfoBkRjAYAAAAAAAA0CNdg+zZT2m0+1+D+EQx2d3MFoxUL/nItd5U3dj3/c1KrsIy0dQW7dRZMj289AQBAa9mS26TFm+/yXbZv18GamZhV4xqVhjZU6RKxpOTTsS1VcnBxuPZtyhsMvAYI286vN8WD0RrzdQEAUA3GmKSkv0qaP2p2StJbrLV3lFO2tfYlY8xSSQdvmxXXcPjazSGLmF8wfWM59QEAAABQJps/6LazCsFogxlpIG3VlSAEpFBvX/Tgnzk94dYzxujNh0hvPqSyx90Yo3m7S0tWl1fO2ccY/efpMefyXM7T5T4BbCtLOGat6sGV0nMbxs7/66NSOmOVCBnmdO3D/sf8miVWnzypjApWwd3LpTWbgte5erHVWw7l86iSrl4c/Hf58ibpc1eFD6zac7q0JV1urXY4fu/ytu92BKNJ0rot0m5Tyyu/WVyzpLzP55P3V14omg0obkJCettrjN72mvy/5ZP3l259qqxqRPL2eUbfPnPsd9mcHnflr1li9flT+AwCULqbn3B/xix8RurbbEOFTAKojZxnne2a9lE5htMmBpczfP+Av22Ec02Ra7SwCEYD3AhGAwAAAAAAABpEzmZ958dLDEZrNx0yMrLyvxnPYHe3ZImhFe7ghXAhdK4wu3SRQLZKCVt/Vz2zNqOczZYc5gcAAODn3o23KWOHfJed0H16jWtTuqDwrVZjHb3UjPEfuOUOlSs1uDhZMO1qh6cC91EsjLpeFbsWdF0PAQDQaowxHZKulXTyqNlpSW+11t5Wod38WTuC0STpbIUIRjPG7CfpiFGztobZDgAAAEAVeflBNRNs5YPRJGnVemn/XapSdEPr7Yu+zR7TKl+PqI6aa7RkdXmDbN97+PCAbtvfJ3VNkulI5C2fPWGrpLFpRKUcs1Z1kyM0I5OTVq+X9t55eJB+b5+UHfWgl50nS1Mn7Bhw/7Xr/ctZ9I8d/35hg9XmUd139pgmdXa4B+1vTVu9vHE46C8WKz64f90Wq7Wbd0xP6ZQ2+vwUcvezxd+Xz64lXK9Uo89zZ4e0+07DYYlPvFh825ufDL+fOT3ShISRHP0HozpqbnkBErtMcS9btZ5gtK1pq+fWS/etKK+cw+eEP0+ugIYPH2N061O1+xs/Yo7//CPnuN+/y9dWrz4AWsODq4KXP7NG6plUm7qgOGutVq+XBv27kKEFpP2H2kiSOkYNXTDG6A37S7c4Ql65FkYUdyyrTDnT+T4BnBh9BgAAAAAAADSIjM34zo+b9pLKi5mYOkxCaesfdtWog/hrwR2MEBy84FqeMOGCBYICGWrBWf+QwRHDZaTU1VbkUUsAAAAheTanO/oX+C7rjk/TqyceVuMalc4d7lWbtl49cYU3u7rol9pOLjf4N+0NajAXFIwW8Fj7OpYwwdeChGgDACAZY+KSrpL0xlGzM5LOtNbeVMFd/UHSlyWNPMf87caYva21xbpY/3vB9FXWOm4EAwAAAKgNL5c32eVVJxitt49gtEKDQ1Yvb4q2zev3k+Jt5QX8VMLH5xv97l6rTY4rugkJ6UNHG/1kof999cNnS/MnrZB3zvukfzwsdSRl3/xhmU9+R3pltexX36fZL+8n7fqrMduuYDB4KI8+Z3XR39zhQL190o2Pe7rgr3ZMwJgx0vx9pCvOjamrQ9qadu/n/562Ove33phB+h1x6X1HGP30fUYd8R3v2YG01Ud+a3X1YqusJ03tkr75DqNzj/N/CM3qdVbv/oWn+3uLvuTQ7lsxHFBhzPj/LTWKe5dbfeBSb8zf38zJw3/vL/RXbl87Tx4ORZuTkN5zmNH/e7B4yNWMSdIrm/2XvWOetM/O5Z3rnSZIk5LKC/8bsWKt1dFlBq81qq1pqw//xurPDw//PRdz2/kxvf2nnm+o4bQJ0j8flX8cg/5Ek46uqW99jdFeM6yefaV4fSrhHfP8Kzl3hrvyK/sIZwRQnslJqT/gsu2Ffit3TxbU0k1PWH3kcq+ibSU0l/a2/OnzT4nplqf8G1a0IRDGvcut3vXzEI3zkGbXQTg/UK8IRgMAAAAAAAAaRNYZjFb6bb5krFPpXLgwAOzgDkYoErzgGHsY9liPd1iGOxits2Da/XpS3iDBaAAAoGKe2Pqw1mXW+C47rvtUtZk232X1yBVGVSx8t7X4dyh1BXWlAo6dZ3Masv4jjArb+672bcobDDw/jRo2HTdxxdQmTznf5WGDnQEAaFbGmDYNB5b906jZWUnvttb+vZL7stYuM8ZcLunD22Z1SPqNMeb1rqAzY8w/SfrQqFlDki6qZL0AAAAAlMDLHyw5wdtaclG7dQ+HmDy/Yeyy3j4G5xdauS76Nj98j394VK3tv4vRnV+I6ds3WS1etSMQp81I8/YwOv8NRq/dw+j4va3e9ysvLzDnX08y+tpbrMzZb5Je3JZ2NZSSrrlE6p4ue9PvpeeXa3an/z3fjYPShq1WUyfwfnIZHLJ6/feDB0L/6DZPNzzuv8xaaeEz0pk/87THtODjfLJjP0NZ6bK7raZ2Sd99544yPnWlzQu62jAgnfc7qz17rF6/f/6+rLV60/96euLFwCqU5Pf3WX3gKN5DYazfavWGiz0NDI1dFjXcMYw9e3b8+7cfNjpwV+nGx63uWe7e5u5/j+l/brB6cKVVOjs8b/pE6dSDjL54Wvnn2RijOT3S0ufHLisMBWwln/ij1Z8Whwvo2GOadOJ+2747Flg9tO27o71NOmKO0edPMdp758LPAHd5rmDDZLvRvf8R0+f/ZHX5vTsK2GuGNDhU2RC/Gz4V07SJ7vfX195q9OW/jH0RK1v4PQOgMgqDlAq18ndTPents3rz/3qhwkPRujoK/p5PPdDomLnS3T5tX/62UUzQtVupit0TAFoZwWgAUOcGBga0ZMkSLVu2TH19fUqlUurs7NTOO++sffbZR695zWvU0dEx3tVsWPPnz9eiRYu2T9ugu7lluP3223XiiSdun77gggt04YUXVmVfAAAAAJpX1nMFozkeyxdCItYp5Xx6ysodLoDgYIQgrgCzsIEJpQQ+VJKr/oXHI+i9U6sQNwAA0Bru6L/Bd36b4jpmyik1rk15nCG4jnDdZmbl/3uNcQWjOYK6gtqeac8/FE0KH/yb9lJKef6PB25TvKxrtfFkjFEy1qkBb4vvcq4VAQDQryW9q2Def0p62BgzO2JZL7sCzka5QNLbJE3dNn20pFuNMR+x1j49spIxJiHpXyR9r2D771lrV0WsF9Ay6J9XXfTPAwBgFJs/SrvLlv47/zF7Gb200TqC0UoutmmVckxmT6t8PUr16llGvzsneIDsO19n9M7XjU1usI/cKTsSijZ6/qU78rPnZNyXjL190tQJESrbYv6+VFpfJOPQFYo22l3PSnc9W15b+fJ7rL5zppUxRqmM1f97wL+8y+8ZG4y2eJWqEoomSb+4w+oDR1Wn7Gbzp4dsRQfWF7Pn9B3vg3ib0ZfeZPSlN0ntH80p5wgWmTvD6Ncfqu6A/TnTCEYbbSBtddVD4T8f5u8zfH4O2s3ot0W+O0ZMKfGnv2kTjS472+iys/PnP/6C1cEXVS6d5pi9gpfvPcNIPr8vr1o/fB/CFe4GAMUMZYOXlxLAjMr7w/2WUDQU5Rd0eM5xRncvH9uG6OVvG0Vcvbjy1271dB8KqDcEowFAHcrlcrrqqqt02WWXaeHChcpm3VfQyWRSp556qj7ykY/ojDPOqGEtAQAAAAC1lpP/9WF5wWj+A/yLLWt1QQFlQZ1p0o4As7DBAqUEPlRS+GA093uHYDQAAFApa4de0pNbH/Zd9ppJR2lyvLvGNSqPq03Ymu2naMForqDhwGC0gPyRwnZ3UDvcFVKcjHU2dCf7RCwZEIzGtSIAoOV90Gfet7f9F9WJkm4PWsFa+7wx5u2SbpI0ks50jKQnjTGLJa2QNEXSPEnTCzb/u6SvlFAvoKnRPw8AAIyLXC5vssvx0IXRJielTT63Mt9/pNHVi6U7l429l7qyrzpBpI2sN+Ix2WuG1JVo3Pu7o9nbry26zq7ZF9XhpTUUS4xZ1tsnzdujGjVrDo+/WD9/b+u2Si9vlHbpllb2yTlI2y+ArZqv48WNVSu66TxepXA6l4N285//vXcafebKse+Js4+pzefi7B7/kKtW/X5b0Sel/J+n6+vVs6Lv41Ovj+nqJWMTZY6ZG70sSdqzR+rqcH8ORTF7mjQpGfzem93jPz+V2fG5CAClGMoFL1/Vot9N9ebJGreh0HgScelVO42dP2eaf7uzf0DqH7Dq7mqO+wKovEpfu02fJM2YVNkygWYSG+8KAADy/d//Z+++46Oq8v6Bf86dmcxMGqmEThIpgnRBpCiwKM2yigVRf7ZddW3oKutaHttaVldcF3tZH2Ctu4+AulgRBQUFDE1pQiAJEEJIL5NMvef3x0CSydxzc6e37/v14kXm1jN37tx77txzPvebbzB06FBceeWVWL16tWqjKwCwWq34+OOPccEFF2DcuHHYunVrmErqm/z8fDDGwBhDfn5+pItDCCGEEEIIITHJyZVbuOilQILRxIFconABIg5GkOGCkytfy3PONQeLiYgDH/x/krQvROERRuZZriTm3Vi2bRlhKishhBBC4t/39V+CCwK0pmTMCXNpAieqEyZi/UnYdFTQ3ky47bh426lt1871bmFoHW8VB6PpYvt6Su16kK4VCSGEkPDjnK8FcDGAqg6DGYCxAC4HMBPeoWjvA7iCc95F1x1CEgu1zyOEEEJIxHDPwJEUDcFoT1zk/aNon0xg5lB3UIiSj3f4Vbq4VlLt2/S/nxwfnZ959VFg+StdTieBI99RpjjuIIU9qPpBIWQskt7bzHHbezKGPuIdcHRSaY27DdNr62RM+KsLuX904fb3Qvc+DtUCTld0badotXp3+LaTyQBcPV75WDf/DIbkJM9hjImnD7YCQchVSU1YVh91fDmHmQ3A/HG+f04TTgFO6fzLItxBrP5INjLMPyM4+8sNGs7JBYI6EeA+5hFCiL/s6j8d0zEmTFZu4/jNIhe63+2uu+b+0YU+97pwyasu7K3g+PQXqmsSdReNYkhRCD8X1TsBYH1xCAtEYt6aPcE97lw/iUGS4uO3KEJCgYLRCCEkijz22GM455xzsG/fPo/hjDEMHToUM2bMwPz583HOOedg0KBBXvMXFRVhwoQJePPNN8NVZEIIIYQQQgghYeSQBcFo0Pu9TLVALq1hXYlILQhAFLDg4HbIUG54qHVbiwMfrJC5uFFjsIhCHzqXS2KSMDxOFK5GCCGEEOILu2zDjw1rFMf1Meaj0HxqmEsUOFFdzypbwXmiNeJTfr9MkIzmT6ic2rjOyxMGo8lWcR2ZxXZ4GF0rEkIIIdGHc/4ZgGEAXgNQpzLpRgCXcs6v5JxbwlI4QmIEtc8jhBBCSETJnr97mrl6MFou6nDbNIZnL2XISwd0EjB5ALB2oQSDngk78Lpk4MDxRPtNWV2pSrhXVorn3w+ex7BwRux3RuWtFvA/TNE8vSgYzddQuURisXGs2RvpUnj604ccr67t+vv/m+dk3Poux6YSoMYCtNgDW6/EgCRB8zWXDBxW+xWDAAAqGzn2Vfo+38Duvs8zrBfw9d0SemcqH+ty0xjWLpQwoo87EK0wB3j7BoZpp4YrGE15PYdrAYcz8c5vpTXa3vOwXsCaeyT0zPD9c9JJDN/cI2HaYEAvAT3Sgb/OZbjpbP8/85fmM/xuMkOq+PmqqrJSgD/PYnhgdtdlyE4FUgTr0br9CCFEiU1DMFritecJrxVbOS55VcbafUB1s7vuWmMBjtYDK7cBQx+R0UTN0olAqhH4f2cy/O91yvWJ3pmAQac874UvyWiy0vebeKtq4thToT5NqtEdRq3FvLEMT/w29n+HIiSU/O9LzY9AAAAgAElEQVQxSQghJKjuuusuLF682GNYWloa7r//flx11VXo16+f1zzFxcVYunQpFi1aBJvNBgCw2+246aabYLFYcNddd4Wl7IQQQgghhBBCwsPJle+w6iWNv5orUAv4UhuX6NSCAGy8FalI9x4ui++8ag0WUPtM7NwGU4jDF0TvQalcRskMm8t7erUACkIIIYQQrbY0rYdFblIcd3bGHDAWe41FRHU9DhkObkcS87PVeAyShQ1HRcFo4uAyEavKuCSvYDRR8JoVVlm586JZlyxcfixQD0aja0VCCCGJjXMescom5/w4gFsYY3cCmASgP4AeACwAygFs45yXRKp8hEQzap9HCCGEkIiTXR4vU2T1HON8uRyM5eCeGQx3n8thdQDmpPbLEXdwjPJvqS9+y/GPebH3O3moHBSEez1yAcND5zEcb3KH/+SmApIUJ9tt3Uqg8pDmyQscpYrD1ULlEt3yrbG7bdbt63oakaPPSl7DTgYfpS9QfqjjwSoIwxyJ29sb/duf1i6U8O8ijrv/I55/60MSepxoymY2AN2Suz7Ojc1n2P6wDq127nHuCQfRviJzd8heYW5YixNxooDKU3sA3y6UkG4C7E5tn6uavlkMa+7RwergMOoR8P12o4HhzWsYXr2Ko7rZPSzdBEgSwDlg1LvPubUWDrvTHYSWpGew2DiarED3NO3nZMYY8rOBXUe9x1HAJyEkEPYugtGsDqCyEejRLTzlSUSL1/j/0PD3b2SYMihOru+IX7JTAINevA/oJIZ+WcCBKuXx/1fEccNk2oeIJ7Vrt3d+x3DleAkumcPpAs5/Ue4yUP29G1lMtnUlJJwoGI0QQqLAsmXLvBpdTZ48Ge+//z769OkjnG/AgAF44okncM011+CSSy7Bzp0728bdc889GDVqFKZOnRqqYseFtWvXRroIhBBCCCGEEKKZSxSMxvz/mU+1szvTFtaViNQCyqyC4C+1UAatIXRqAQQ2uTXkYXaiUDOl/cgomQCX97RqARSEEEIIIVpwzrGu7jPFcWYpGePSzw5ziYJDNXxXtiJJSpxgNFFnPlETING2E9XNAXH93MCSoGOejwMV1bMd3I4WuVlQptgOD1Mrv0ljsDMhhBBCQodzbgfwbaTLQUisoPZ5kUPt8wghhJAOuGeH7p7OY6qTD3IeBDASgDvww5zkOX5gd/G8O8tjN7ApFKqVf8ZFvyx36Eo8BhnwPT/5NH2+vVRxOAXKiG1OwFjyKYOAHt3EHba7pwHHFZ5rVFLNIb7LQwDgJz/3p25mYGB3cVBmkh4Y0sMdUuWPQEPR7pzOsHiNd9nOHSKeRy1Er6Q68YLRRAGVZxYy5KW7P5/OdYRAmPzcV0T0OvXzbFaK5/pSjAwpftwWL8hRDkYrrfF9WYQQAgCyzOHUkMlVWkPBaKEiyzygOve4fKZadyUEAAbniYPRfioDbpgc3vKQ6Kd27Ta4h/uYo5MYdBIwqAfDmr3i3+iG9w48kJiQROAd0U8IISSs9u3bh9tvv91j2MSJE/H555+rNrrqaNCgQVizZg2GDGn/ZViWZVx99dWorqY7UYQQQgghhBASL5zcoThczwx+L1MtSCvWO/KHknpAmXLAgo2LQxmMTGswmnpYRqiJ1iEMRlNchng7EEIIIYRoUWrdj0O2A4rjJnSbrlpnimZqdcJw1PWiCRcGoyk3BBJd16htN3Hor/ey1PapBmedT2WKFWr7I10rEkIIIYSQWELt8wghhBASNWTPXvUFjjIMte0WTn655SPVxfXMEHec3HjQt6LFO4tNeXiaKX46n3KnE/yTtyBP7wb5LCOw4jWf5i9wlCoOL61xBxKQdodrOR5fJeOVtYm3XS4bq/6dEQVaHaTLpjbHGjie+kzGZa+5MPcVF+76t4wNxRwHBeFXagw6dyDW9CFAZrLyNBePYn6HogXDNROU1/37s8TdmlOMDN3TlMeV+LGdYp0o2CtfJUAuEfXPVt7XyhJwnyGEBIdd4cHQSkQBlqJpX10r45Z3ZSz4QMaOw3SMOolzjvc3y7hhqYzrl8hY9oOMow2ATfmZ8poU5sbP9R4JncvHifeT19dxNFmj+3u6fj/HXf+WccUbMp77SkZ9C8eROvc168lrjvtWyPjlSHS/j1iidk0ypp/n6ytU9i8AuLyLa2xCiJs+0gUghJBEt3DhQjQ3tz+CKCMjA8uXL0dqaqpPy+nevTs+/PBDjB49Gna7HQBQXl6Oxx9/3Otpl4QQQgghhBBCYpMoGE3H/P+ZT62DP3V2FzOwJDBI4PB+HJhVELCgFsqgNbxDLVxBtN5gEgejeZfLn3AKQgghhBAt1tV/Jhx3VsasMJYkuFRDcFVCduOTqAGRcmMg0bWLejBa4KG/ANDgrFUcHvPBaGrXiiw2wwcJIYQQQkhiovZ5hBBCCIkasnfP+v8cuRIz+32KckNvj+H3Vf8Nc5pXdbnIZy9l+NOH3r+nttjdne7zc6iDJQA0C4LRUo3hLUeocM7BH7oCWP9fv5chCkazOYGKBqB3pt+Ljiv7KzmmLpJR0RDYckb1BbYfDk6ZQsGoB84bDvz3Z8Bx4tB17QSGGyerH1MKcxk2lXgfk0qqQlHK2HOohmPKIhllHkFXHC99w+FP/mCSHmCMwWQAPvyDhLmvymjocEvx9P7A8/Miex4Y3Y/hlasYbn+v/T0unMFw6enq8xXkAMebvIcnYsheieA9F2SHtxzRThTMWCIIliOEkK7YNQZy3f0fjivOEC2D4/v9wOc7OT7fybGnwnP8q2s5Pl8g4ZyhdN1223scr61rrxAt+xHon+1/kNNTF9M2JdpcNZ7huiXifW3qszK+XSgh3Rx9+9Q7G2Vct6S9nv2fIuDhj90vWj26HbmvOT69Q8KUwdH3PmKNqH55y1QGxjy37+QBwJMXMzy40nsfmzsauPtc+jwI0YKC0QghJIL27t2LVas8b1g+/fTT6NGjh1/LGzp0KBYuXIinnnqqbdhbb72FRx99FJmZ8XUnqri4GD///DPKy8vR1NQExhiSk5ORl5eHgoICDB8+HMnJgkeeBJHNZsO6detQUlKC2tpadO/eHX369MFZZ50VkvVXVFRg06ZNOH78OGpqapCamoru3btj3LhxKCwsDPr6CCGEEEIIIdFFFIymZwa/l2lk4s76Jo1hXYmIMQaTZEKr3OI1ThSwIAoukyBp/gxVwzJCHDjGORe+B1/CI8IR4EYIIYSQ+NXkbMDWpvWK405NHom8pN6K42KBWl3PmmDhssJYNCYKRhPXPTnnivPZBPVSpUAztZAzcTBa6O9ThZLae6YQbUIIIYQQEiuofZ7/qH0etc8jhBASArL3g9dOte/DgeJTUWQag3JDbyRxB8Zat6Cn8xjAmPD3zZPOGcIg+kX1oY853v4ddbB0OHlbsFNnKXESjIafN2gPRTtzJtic6zyH1RxFwYtPCGcpqaZgtJOe/5p3GYp2zhDg6z3q03x+p4SeC72PCSe98zuGKYMYPtnBcdt7yt/xu89l+Ptq/8MiOhvQHXjqYgndzMD4AiDdzNDQwlFU5h7XP7vr40m+IKippDp45YxlL6/lnULR3NRC0V65iuHWd5UnsHQIfZx2KsPRZyVsKgGqm4FBecCwXoAkRf488IcpEuaPc+9Lw3oDeeldl6kgRzlkrzTBgtHqLNwj7K6jAgo/9ZCfrVwnKqsBZJlHxXeBEBJbtAajHWsEWu0c5iT3ceZwrTsE7fNfONbsFYc0A4BLBu5dLmPrUF0QShy7Dhz3DEU7SanepNXsYXTcJ9roJIb3fs9w5T+V69zbDgPvb+a4eUp07VMumePBld4By63K3Y3QYgce+6+MbwYn9vEmUM1WjiqFAGcAmDvaex9hjOH+2Qy/m8SxqQQ43sSRZgJO78dQmCtuC0kI8UTBaIQQEkGLFy8G5+21zpycHFx//fUBLfOuu+7Cs88+C4fDXXu1WCx48803ce+993pNe91112HZsmVtr0tKSpCfn69pPWvXrsW0adPaXj/yyCN49NFHVZd/UllZmWpl7dprr8XSpUu9httsNrzwwgt48803sX//ftXy6XQ6jBo1ChdddBHuvvtuYSOoqVOnYt26dW2vO34eahoaGvDwww9j6dKlaGxs9BqflpaGefPm4bHHHkOvXr00LVPE4XDgrbfewiuvvIJffvlFON3AgQOxcOFC3HDDDdDr6RRPCCGEEEJIPHJy5bushkCC0VTCF6izuzqjZBYEoym3RhIFlxkls+abGjqmh54ZFEPyQh045uROyFBuLWxSCNgT7VuhDnAjhBBCSHz7oeFrYb14SsacMJcmuAwsCRIkyPDuCCOqY8Yr0f0aBkEwGlOue8pwwcmditdMwtBfhWWpXRs1OOsUh6sFi8UC9WtFCtEmhBBCCCGxgdrnKaP2eZ6ofR4hhJCw4cohSHq4cKb1J8D6U6fpOWBrBUziMNCCHPHq9lRQEBEAWOzicSlJ4StHKPFv/k/ztOz/3Qc2YqLn/K0WZC6+B+muBjTqunnNU1LNMXkgddYFgC93df29Gtab4es94ukyk93BUFkpQK3Fe/zLVzJcOV4CAMwaBojCD88fEdxgtJF9gEtP9/ycuyUzTB+ifRmFucrDDyZYmJXIGpX9QuRclQDMMztlN5uTGKYO9qNgYeDrvpQvOL+V1yfWua28XjyuvyCIMFGJghkdLqCigQI+CSG+swvClZU8+xVHs5Xji50cO4/6tp4dRwC7kyNJn7j17TV7g39+V7tWJqSz/BxxnRsAvt7DcfOU8JVHi/2VwGHlJmtC6/YDNgeH0ZC4x5tAlahc24quhwGgezrDBSMBCNo+EkLU0V1ZQgiJoC+++MLj9TXXXIOkpMDuruXm5uKCCy7AihUrPNaj1PAqlhw+fBgzZ87Enj1dPDrnBJfLhS1btmDLli244oorMGDAgKCVZceOHZgzZw6OHhX/StHU1IR//vOfWLFiBT755BO/17VlyxZcfvnlOHjwYJfT7t+/HzfffDNeffVVrFq1Cr179/Z7vYQQQkisaXDWYZdlC47ZjoR0PQYpCYXmU3Fq8kjoGD0lIRSanY3YZdmCRlcDhqaMQm9jfqSLROJEk7MeOy1bUGE7HOmieNAxPfJNAzE0ZTQMUtfXg0phWACgDygYTdxZP9Y78oeaaNuJgr/EwWi+hQoYJROcLu99YUPDV9jfshOA++kxvZL64bTU05GqSxcui3OOX1t+xoHWPV0Glon2v5Nl8h6mvH0OtO7GiuNL215302dhaMpo9DT2VV1/pb0cu5q3oN5ZqzjeJJkxIPk0DDSfptrhK1z1Bl8lSca2eobEJL+WccRaij0t29Dk7OLxxB3omQEF5sEYmjIKOhbcWwZ1jmrstmyDjVsxLGUsuif1DOryy22l2G3ZDodsw4DkoRhoHkZPTiIkiLo6R+iZAYXmwRicPBIGyf+6CCG+kLkL39d/oTguS5+L4aljw1yi4GKMwSiZFMN3v6//AnstO1Tnl5iE3sb+GJYyFmZdSqiKGZDj9grssmxBnUO9B0yF3bdrN7Vrl5VVSxWvmYpbdytOr1S3TWJG4fIdXLlXXawHTVMwGiGEEEIIiQfUPk87ap9H7fMIIYSEgcuHnvUntVpUg9HSzeL7o2U1vq8uHlls4nEp4p9+Y8uK17RN1y0HGOJ9L4WZU8Ayu6PAUYYduhFe40toXwIAyDJX7QR90tAumkZcMNL9vb30dIY3vvPsfC+x9vGAO+hnaE9gd4XnMgZ0B6YMAsb2B4rKxOsy6IBZpwH//bnrcp83IvD2FgWCQIHqZqDJypFmSuw2Hb4GxBl07oCwOcOAz3Z6jz93aPxuz9xU5eH13rdR45ra+81NC185YoFaAE5JNQWjEUJ8Z1N+ZqOiRz/xP9iLc8ClnKGdMEqDfL2RnaJ+rUxIZ6f3A7qnAceblMcXlQF/X+3+oibpgLH5DGfkA5IUuf3Mn+8N58ChWmBgXvDLkyhEvwnoJKAv1TcJCRkKRiMkyri4C/VOehRGqGXocyIeZHHkyBGUlpZ6DJsxY0ZQlj1jxgyPhlcbN26Ew+GAwRCbndPsdjtmzZrl1egqKysLw4cPR15eHgwGA5qamlBRUYHdu3fDYlF4dE4Q7N69G9OnT0dNjedVQ15eHkaPHo2MjAxUVlZi48aNaG1tRW1tLc4//3w8++yzPq9r1apVmDdvHlpaPH/J7tmzJ0aOHImsrCxYLBbs3r3b4wmd27dvx/jx47Fx40b06dPHvzdKCCGExJCjtjK8cPgRNLpUHosVZGPSJuL6nncHPTwk0R23H8ULhx9BrbMKAPBRFcNVPW7DxG7nRLhkJNYdsx3BC0ceQb0zelvpDU4ejj/0frDLzuWiYKpAjkdqAQLU2V2daPtY5VbF4TbBcF8DE0ySGRaX9523n5s3ew3L0ufizr5/Qa5CIJXMZbxX+Qp+aPjap/UrUQxGY8rvq8J+2CvoYmWVDjf0uhtj0iYpzrO9aSPeOroILnTR0qAGmJZ5Pi7N/Z1iQFYk6g2+Gpc2Bdf0XODzb1cb6lfjvcpXwFWeWKVmWMpY3NjrXk0hjVqUtu7Dy0ceh0V276sfsWW4qdd9GBakwJofG9bgnWMvg+NEi5AaYErGHFze/UYKRyMkCDjneL/yNaxv+LLLaYemjMHNve4L2vGDEDU7LVvarhk7m5wxE1IchJgbJbNiMNqO5k2al9EjqQ8W9HkMGYboekz4zuYivHn0b8IgMS2Y4KmJatcua+s/9WkdStdIEpNgZCbYuHqYcEfmGA9GU7tWpBBtQgghhMQyap8XPpFuo0ft87Sj9nnUPo8QQkiYcD96u1stAHJVJ3nyYoYHV3rfJ66xUBARADTHeTAa5xrbCOj0YHf9HcwguKfXMx/5jaXYYfIORiulSygAwFENz6hLMwG9MpTDwU56cI77O3nfLIY1ezgOdLj19cgFDH0y27+zjDE8P0/C3FfltpA/swH4xzwJjDEsukzChS/JaBTcvnjiIoZLxjD8Ui6rdpw/Zwhw+emBHysKuwgmGpHA1ec6C/c51Cs/G9BJDE9cLKGoTPYIahjVF7h9Wvwe3zMEmaB1iRaMptzcECYDYDLE7+fvj4xkIN0ExeNhaQ3H5IG0vQghvrH7EIwWKNn/XLW4cCjIXTwK1S+hCfFi0DMsvoJh/pvKX8ayGmDh/3UcxzH/DIYl1wFJ+sjUMd7e6N+BY9ZiGfuekKCLYKhbLCupUd7ufTMBvY62KSGhQj24CYky9c5qPHTw5kgXI+49Xvg6sg2RjbTdsGGD17CxY4PTMfT000/3eN3a2ort27dj3LhxQVm+VosWLcKjjz4KAJg8eTLKy8sBAL1798b69euF86Wmej7aY8mSJdi9e3fb6/z8fLz88suYNWsWJEnymp9zji1btmDVqlV46623gvBO3BwOB6666iqPRlc9e/bE4sWLcckll3iUpbm5Gc899xyefPJJ1NfX+/xE0N27d+OKK67waHQ1a9YsPPbYYzjjjDO8pt+2bRvuvPNOfP/99wCA8vJyzJ8/H2vXroVOF/sdwQghhBA1K6uWhT3cZGvTDxibdjZGpZ0Z1vXGu1XV73t0cOfg+KDyNYxJm0QdbklAPql+J6pD0QDg15ZfsKnhW5ydOVt1OidXvsuqZ/53tFELEPA1sCvRiI5NNlm5taFouK8BdEamffpaZxVWVX+A63v90WtccevuoISiAcr7ii/vS4YL7x97DSNTz/TqKCdzF96rfLXrULQTvq1bhTPTf4O+pkKvcSur/hXVoWgA8FPTOpzRbQpOSxmjeR6r3Ir/HH/T71A0ANhpKcKWpg04s9s0v5fR0fKqJW2haID7+PXusZfx1Cn/G3BwmV224YPK19tD0U5YV/8ZxqdPQ755YEDLJ4QAJdZfNYWiAcBuy1ZsblyHSRnnhrhUhADf1X2uOFzP9JjULT72wWCEEx+zH8HqupW4rPvvg1Ci4OCc473KVwMKRQPUgtGCd+0i+gyMkgk2l/ZgtFi/nlK/VqQQbUIIIYTELmqfFz6RbqNH7fOofZ4aap9HCCEkImR/gtG6ToC5YpxyMBrg7rw7rLfvq40nFrVgtHh47s+urh+swv7wJHDmLLBThokn6lWAguoSxVEHK50A4mFjBUZLQFxBjjuwSGTuaGBgnvteR34Ow8b7JXy8neNIPTD9VIZJA7zvg5w7lGHbQxL+u4ND5sD5IxgG93BPd/Yghm0Pu8d1DFjLTgVmDGU4s9A93eYHJHy8g+OXcqBjlp5RD5xRwHDhyOB06O+TCegkwKVwuEv0YLSDfgQMngz1GNWXYetD7n2luAo4vZ97P0g3x2/H+8xk5YBBX8PlYl2dRfn8nhHbtyFDgjGG/Bzg5yPe49SCIQkhRCScwWhas47jVZkgaMhfBTnxW0cioTNvnIQai4zb39O2P76/meO84cCV48O/v8kyx/ub/fvelFQDX+0CZg8PcqESRInguq5AJSScEBI4CkYjhJAIOXLE85e2vLw8ZGdnB2XZw4Z537A6cuRI2Bte5eTkICfHXZvT69tPOXq9Hvn5+ZqX8/HHH3vMu3r1agwYMEA4PWMMY8eOxdixY/HQQw9B9ucmsoIXX3wR27dvb3vds2dPrF+/HoWF3h2tU1NT8cgjj2DYsGG4/PLLUVdXp3k9sixj3rx5Hk/VfPTRR/HII48I5xk9ejS++eYbzJs3r+1ppOvXr8e7776La665RvO6CSGEkFgjcxd+bfk5IuveY9lOwWhBtqdlu9cwJ3fiYOteDE0ZHYESkXixx+K9b0Wj3S3bNASjORSHBxKMZpYEj1eEOPiLuIkCyqyy8qMabVx5uC9BZwBg1qX4NL3S8RUA9lp2+LQcNUr7itq+pcQiN+GQ9QAKzIM8hpfbytDs0vDY3Q52W7Z5BaO56w3Be8+htMeyzadgtAOtewIOGTm53mAEo1nlVhxo3eM1vMFVh0p7OXoYA2vpqvZ+97Rso2A0QoLgl+Yin6bf37qTgtFIyB23H8Xulm2K48akTUKavluYSxQavtahRHY2F0VVMNox+5GgBFbrmHITh2Beu5gEn4FJSvYpZDdYn2WkmCTl6w4DSxJ+DoQQQgghhEQTap+Xr3k51D6P2ucRQggJE9nl+zwtzV1O0icDkBggK/SJLaVgNFhUbqWnGMNXjlDh6z5SHc9ueQrsynu6XlDPfBRsKVMcVVJhBwWjASXVXXc8L+wiGK17umen+exUhhsmd92RfkB3hj+eqzxdQQ7Dgunqy8hJY/idhvUESq9j6J+lHAJ2sIoDggfgJIJDtb7P0zHUo1cGwy1TE2f7ZQhuszXbAIeTwxCEIL9YUK/c3BCZvjUfTBgF2crBaP58/wghxBbEYLR0EzCyL/D9fuXxStdyieRIkJ93TQFFxF8XjGCag9EAYOU2jivHh7BAAj+XBzb/im0cs4cnRn062EqqlPePfApkJCSkvB/jRQghJCxqaz1/VcvMzAzask0mE4xGz7t0ndcXS8rK2m+wjRw5UrXRVWc6nQ4Gg/8BASfJsowXX3zRY9gbb7yh2Oiqo0suuQS33nqrT+tasWIFdu7c2fb68ssvV210dZJer8eyZcvQvXv3tmGLFi3yad2EEEJIrLHJNjh5GB/F0oFFbozIeuOVzF2wuJoUx1nlBHvEGwkqh2yHjVsjXQxNRN+BjkTHPH0AndJ7GwsUQwT6GU+BUfItsCvRiAITbIJgtFaX8nCzzrfAhAHmoT5Nb3E1gSs8TszXsDGRfqYBSJK8WwsPSPatnABgcXmfX5sVhnW9HO/vk022Rqze4KtmDccDj+mdwfks/dnWSpQ+x5Nag3BeV9t3g/UeCEl0tY6qrifqwCbbQlQSQtp9V/+FcNyUjDlhLEloneJjXU+kzlkNmQenY3owqNUPfFFoPlVxeJJkRH9TcMJRBySfJhiu/bORoBOWNVYUmgdDUmhSMjDZOwCCEEIIIYSQaETt87Sj9nnUPo8QQkiYiH6zZQyQBN27LOJ7o7ylGfzXrdBbG9FHUNUpq0nMHvaccxys4mhs5bAIbmMZdEBSPATrHClWHz/5Ak2LYSMnId9RqjjucIsZdmdi7ksdlWp4/sukAQymBHy2CLdZwX/dBr77JxRkKKcRlgT+/JyYVmfx/TuUyKEemSrN6RoEYWHxqF7QzCojwZ53yzkHP7QPfE8ReMlu8NpK8OKfwXf/5PEvT1Zu6+LP948Qktg4F19HaDWiD3DvLIa1CyVU/V3CP+aJIz0UmnjHrcZWjtJq7tGuvc6iMoMfJg+Ig+s8EhG9M4B8H56vc8C3ZraaNLRwbCnjsNjEB4aDAa73oCDci3StRCEEHHCHpBNCQicBf2ojhJDo0LkhVEZGRlCXn5GRgcrKyrbXNTXxcRfh+PHjEVnvd999h9LS0rbX48aNw/nnn69p3ocffhivv/46HA6HpulfeOGFtr8ZY3j66ac1lzM1NRU333wzHn/8cQDAL7/8gtLSUp+eAEoIIYTEElHwTDi0uiisK5hssji4yiFrq0cRoiSWgvW0HFecXPn7oGf+dzgxSAacl30Fllct6bA8Pc7Lme/3MhOFSafcwki031ll5Tu3ooA1kckZM/FT43eodWq7q8Uhw85tMDLPoDtrEM6jeqbHedlXKI7LNw3CiNQz8HPzZs3LUwrN8idIq1VhWwcjkCtcfD12BeOzBIK3jVpc4lYKouOYL1pV3q9VEEBICPFNncZzTDtqKEFCyy7b8GPDGsVxfY2FyDcNCnOJQmdKxmxsaVqPemdg93Wc3AmLqxFp+uDef/KX2vlbqxRdGs7J+q1w/HnZ8/DG0acDCsM9xTwEw1JOVxz3m8wL8XPzZk1BrDOy5iJZl+p3OaJBii4N52ZdjC9rl7cNMzITZmVdEsFSEUIIIYQQoh21z/MPtc9TR+3zCCGEBEQWBKPp9IA5FWiq8x7X7B2MxqzU87MAACAASURBVF0u8BcXAh+9DrhcgCSh/4itOATv38q1BDnFm1+OcFzymozi44DEAFlwGyvF+/lvMYdXHgLW/1c8wfTLwfppvIcy9hwU2O8Vjn5ljQN3zUzysYTxRdQB+qR+WcA1ExiqVJ6FF293VTnnwDvPgi99ArC700MKerwEZN7gNW1Jgne+r/fjVllhTuKGemSoNKerawFy0sJXlkiqEwWj+dbcMKbxXZvBH54PHD/S5bQZuY8BOX/yGi7ajoSQ+MM5R6sdaLS6/zW0Ao2tJ1638hP/t49rEgxvbAWcPj6LMM0EnDMEmD2MYdYwhj6ZnudxxsR1IdE1SzxxujhufY9j6QYOp+wOEVp+i4SB3d3b3Ren5IoDqc7IB2bR8/6InySJ4cHzGG78l7Yv5fbD7uMOY4HX2+1Ojpvf5nh7I4fMAb0E3DqN4bnLGHSS5/JLAwzB7+ralijjnAsDvxM51JqQcKBgNEIIiVPBqEhHi1NPPRW7d+8GABw+fBiLFi3CwoULw1qG9evXe7yeP197QEBubi5mzJiBTz/9tMtpLRYLNm7c2PZ63LhxKCgo0F5QANOmTWtreAUA33//PTW8IoQQErdsXPwL+ODk4QEFBZ1UZT+G446jXsODFUBC3NSCWIIRoEISl9q+NSh5OAxBOE74qt5Zi3JbqddwLUFILkEHfz0L7Ge+6Vm/Rfek3vi5eROMkgmnp52FAnP8hEuEilkQaCba70RhEKLliGQbuuOefn/Fjw1rUGYthgwXAMAm21DcuktxHqvcAqPkGYymFB7mXn4eeiT17rIceUm9VfcViUm4sde9+KFhDfa1/OKxjxe37FY8jyudX0XfDQNLQqouHXVO77tzviwHAAYnjwj4e+SP4/YKVDkqvIb7GsAq+izNUgoKzYO9htc6qlFhP6R5Ob5SO/Y6uPKTgX1hVdk+wXoPhCQ6pWMrADBI4PBu9cXjrgk/iTY/NX4nPMZPyZwTV/dEcpJ6YGG/p7Gx4RuUWvcrfuc6cnEX9rbsUBxX56yJmmA0UV1Mz/QYnDxCdV4GCX1NhTgjfQryVOqpw1LH4u6+T6GoaT0q7V03jO8oiRlxinkIJmXMQJKk3Buul7EfFvZ7Bpsav8Vh60HFzyZNl4FhqWMxOnWCT+uPVhfmXI2+pkLsat6KFF0azkifij6m/EgXixBCCCGEkKgQT9ei1D6P2ucRQggJE9mlPFySgLQM5WA0pWEfvgQsf6XDcmXkV27G9xne9+7LqhPrHo7TxTH7BRlH692v1QIGUuIg44s/cLl45KDRYA8t1bwsptMhf9okwLspAQDg7uU6XDyWo392/NSDfVWq8n1aMJ3hzzMZctMYmqwJ9L377mPwNx7yGJTvKFWc9GCCd76v9yOYqTA3+OWIFZkqzen8CZmLVaL9JjM5MY7FvNUCfs95gKXrB1cBQKarXnF4HTUnIyTqcc7RYncHkjW0BZmdDDjjXsM9As06BaC5fAw088f9sxnWF3MwAOMKGOYMY5g0AEjSi4/PksqhOxFqj09/wfHP79vf6cFqYPZiGbOH+3ZO654GFD0o4bFVHP/42r28dBMwqi9w1iCG+2Z5h0gR4ovfTZaQm8rx7iaO4uPufazFDvxaqTz9q+s4bp0a+D73l1Ucy35s/444ZeCFNRwFOcCd0zsHowW2rsN17t9P9Dr6rviiuhmw2JTHFSRwqDUh4UDBaIQQEiFZWVkerxsavJ/mFIj6es8f8zqvL5ZceeWVWLFiRdvrP/3pT/joo49w/fXXY86cOejZs2fIy1BUVOTxevz48T7NP378eE0NrzZu3Ojx5MrCwkKPJ2FqIXd6mtiBAwd8mp8QQgiJJTaVcLKbet0Hsy4l4HV8W7cK/3f8n17DtQQYEe3UQkwoGI0EQu27elOvPyNZlxrG0rhtbfoB/zz6N6/hakFCJ4m+D8EIghyeOhbDU8cGvJxEYpTMisNF4ZlWwbHO5GMwGgBkGnIwJ2eex7B6Zy0eOOD9xNWTZeqmsZwT0n/jtWx/6ZgeZ2XMxFkZMz2G/7X0bhy2HfSavtXlvY1EIVi5hp4YkjISa+o+8Z5H4fskCqYDgFt6PygMwAil1bUrsbJqmddwX+sZos+yv2kAbuvzsNfwTQ3fYtmxxV7DfQ1kE1H6HE8Kxnld7XhJ4bWEBE7mLtQ7ahXHZeqzUesUPG6RkBDhnGNd/WeK45KlVIxNOyvMJQq9LEOu5vqYzGXcue9yuOAdolznqEY/0ynBLp5fROfvTH2uYn3FX/nmQcgPYchz96SeuCDnypAtP9owxjAmbRLGpE2KdFEIIYQQQgjxGbXP047a55X6tC5qn0cIIcRvsqCHvqQDUgUPuWj2rsPwL9/zGtbfoZxmFWhn2Vjz7a9oC0XrSkr4mwgEFS/dA+zbJhzP7n4BTKfzaZkpAwYi72AlKvV5iuPf38xx3+zE7ewr+j79Yx7DgulS22tT+J/TGTH8K+/jUaG9RHHa0mr3fb94Cpn2RYMfzVkKc4JfjliRanQHyCgFXNYmUMhVnUU5Kqeb780NY9OGTzWHogFApiwIRqMm/4SEDOcczbYOIWYe/3OvkLOmjsPbgs/cf6uFGkeT5CTgyYulrifsRK0GJLpUjCcfbvH+gI81Aks2+PbBF+QA3ZIZ/n45w99VcqIJCcSFoxguHNX+rT1Sx9Hvz8pf1Hc2ctw6NfB1vrtJ+bvwzkaOO6d7Dgs0BN8lA0fqgPwEvt7wR4lK2HcBbUtCQoqC0QiJMhn6HDxe+HqkixH3MvSRr2F0bghVV6fwNCc/Wa1WWK1Wj2HZ2dlBW364zZ07F3PnzvVofLVhwwZs2LABADBgwABMnDgRkyZNwllnnYUhQ4YEvQyVlZ5xzgMHDvRp/kGDtHXCOXz4sMfrDz74AB988IFP6+qstla5EyMhhBASD9SCL4ySKSjrMAvCarQEGBHtrC7xZ0nBaCQQaiE/JkGoVaiJ1muVW7ts/OUIYTAa8Z34s1Te70TBXKJzTbDKAygHVYnCq8Lx3RCFwSmd20Xne7Mu2cflKH8uEnQwsMg8Clpcft/qGaJjneizFIXHqgWV+lQelfI7uXdoi6/Utg/V0QgJXKOrQTFgCXCHNVEwGgm3g9ZfccSm3IFiQrffRCTcNJpITEKGIQs1juNe4+qd0dPjTRR2G6nrMkIIIYQQkriofV74RLqNHrXP047a51H7PEIIIWHCBb3dmQSkKQej8aY6jw70XJaB/du9pqNgNLcPftLeOXho6LNfQ+vQPvE4QxLQf7Dvyxw4CgWrSoTBaH/9nOO+2b4vNh44XRyHBZcU+dmebb3UgtHiLhKsbK/XoD7OI4qTtjqAVjuQnKC39nwNRsvPdod+JCpJYshNAyoVMrEO1XLE4bdJ0RFB2GdO+J8HHBG8dI9P02e6lA/UFIxGiDdZPhFo1inMrOFEcFnn0LImK9DQyr0D0KwAj5FAs2A5tYd/86llwybCJvxZuYrosz6ZwVkOIb7o1fnp9B1UBOGZPBYbR5ng95stZd4B01p/6zklFzggaO5bUk3BaL4qEQTSmQ1AXnqYC0NIgqFgNEKijI7pkG1QvolA4kvv3r09Xh87dgw1NTVBaSC1a9euLtcXSxhj+Pe//41HHnkEf//7370alRUXF6O4uBj/+te/ALgbYl199dW44447gvYkzs4N49LTfaulduumcuXTQU1N8O8+NzU1BX2ZhBBCSLSwyVbF4QaWBIn59rRDkWAFlhB1akEsDm4PY0lIvBEF5BiZKWjHCV+ZJeVAIg4ZNm6FiYmDAURBgXpGP/NFgijQTBTkFeowCCMzgYGBK9wi9y1wTHkfDSazTvv5VXSOMElm4XlaOQhOefubpeSIPY1W9NmLQvRERPUS0fFGNNzB7XByR8Bhi2rn9WAEnqqFn1EdjZDA1TnEjzXLMuQCCoconmgt3EhYfVf3mXDcWRkJ2vumkwx9tmIwWl00BaMJ6jei+hwhhBBCCCGhQu3zEge1z9OO2ucFhtrnEUII0czlUh4uSUCqcjAamuvBW5rAX/gTsOlLoPqo4mT9HWWKw6ubgWYrR6op/gNkOOdYskH7PatrJ0ohLE0YlOwWjzvnCrBUbfUjD6OnoMDxPjbiTMXRTcrNNeNeUSnHFW/IcAmyDQs6dSY3xXAzLr51Lfj/Pg78uhVwnXiYVlYPYNJ5YLc+DWZsf2AxX7UEKPvVaxmZLkGSE4DalsQNRqtv8e2e+k1nx99xm3/+NviSJ4CKUuUJxkwFu+kvYKeNB+AOh1MKRisRN2mIO1uUT+/oH5xL8ei3Y71Pk2cIjj8NrYBL5tBJ8fe9IonHJXM0Wz1Dy7zCzE7839AKNLVyj2nbgs5siRdoFizXTvTvWKJ2CJLj/LNwuoL3BjMSODiWRI4kMYzooxzwV1YDHKrh6HciMHt/Jccf/y3jh4NAix3ITgFmDGV4fh5T3H+LSjkueElwsXnC1kPA6f3df3PO8Ut512VO0nO8da0Ol7wqo0ahWX9JNce0BAkbDpaDguuQghxErC8KIYkihn9qI4SQ2DZx4kSvYUVFRZg5c2bAyy4qKvJ4bTabMWrUqICXG0l6vR5PPvkkFixYgHfeeQcff/wxNm/eDJvN5jVtcXExHn30UTz//PN4/fXXMW/evAiU2D92e/BDP6hTIiGEkHgm7lQbnIAZQD30RuauiAUrxRu1gBMnd4axJCTeiAJyTIJQpnBQO0ZZXS2q412C70OgIUbEP+LwTEEwmii8Kkj7I2MMJsmseExVHiYOHAs1YaCZQjmFAW5SikrAmlIQXPQdD8T1DHGwmBLRedSkU/4sRcFogDtALk3vRwNpj2WENhhNLfxMFIBHCNGuzqn8iDgDS0Kqjh5rRsKr0VmPrU0/KI4bmjIG3ZN6hrlE0SlTr/z4RrWgw3ALdV2YEEIIIYQQQjqj9nm+ofZ5/qP2eYQQQjQTnTMknTgYrakB/N6LugwGyRcEowHA019wPHFR/HfQfPlb7efksf2B346K7W3C//mocBxb+JJfy2SShJTxZwN7/SxUHCo+zjF1kYwWlWpkfqfbNMYYbcbF924Bv+d8wNmpXUflIWDFq+BV5WBP/Z972s/fBn/mD4rLUQtGq7MAfTKDVuSY0iB4RuJ1ExmONXCs2we0OoC+mcCNZzP8eVZsH6M641++B/7U79Un2roWfMEM4K2NYPlDUJDDsKnE+9heGj23QEPq+/3i81r/7PjaP5Rwawuw/Tuf5smUxcefhlYgK/TPiyVEyCVzNHkEmZ0MKuNeYWaNrUBTx6CzDsObvX+qI2HSPxu4dSrD7dP8OwarZebE+8+LonqQPzKpmRGJkGXXSxj9uHKA2ci/yKh8TkKzDZj0jIzq5vZxFQ3Ash85dldwbLxf8gjQKj7OMe05GZYuju3jnpTR/KKEZCPDqp/Vp2VcxljrFjzQaz3OHrQQBTlQDkaLnuetxgxRQHPnsHRCSPBRMBohhERIv3790K9fPxw6dKht2FdffRWUhlerV6/2eD1+/HgkJSUFvNyOXKInVoVYXl4e7rnnHtxzzz2w2WzYunUrfvjhB3z//fdYs2YNmpvbrxgaGhowf/58GI1GXHTRRQGtNzPT8+5LY2MjcnNzNc/f0NCgabqcHM8a8FNPPYX7779f83oIIYSQRGOTlR9BaJRMisP9oRaWYpOtMOvoLmkwiEJvgOAEqJDEJQoLEoURhYPacaNVbkEGshXHydwFGco3UygYLTJEAWI2uRUylyExz6cLC8Orgrg/mqRkQbiY5zDOuWrgWKiJA8G0hboB7u3vW8Ca6HgQ+iA4EVH5ndwJh+yAQdL23Ra/N+XPUi2ApFW2IA0BBqOpBLs55MA7namFn6mFphFCtBEFKbmDl5RbaHHEeessEjE/NKyGC8rhwFMyZoe5NNErQ698DVHvjJ5eAcKQ2gjWxQghhBBCCCHxjdrn+Yfa5xFCCCEhJCu3+YAkAWmCYLRt64C6410uuo+jHBJ3QVZ4yOfL33I8EdipOia85EMw2sMXSF1PFMV4yR7xyPOuA0sy+r3szOxU1fE2B4fREP+BPCct2cBVQ9GyU4A0k+f20EmxuX34x//0DkXr6PtPwCsPgeX1A1/+inCyTLlOOK4ugZt01Ave+2m9gP+9Tgeni8PuBJKNsbn/dEVtn/Fgt4J/uhTstme8QgdPOliVGO0TFn0pqDfAHc4T99Z9pHlS9vI3QH01Mh/9k3CaOgsFoxH/OF3uQDPPMDOgsZW3B5ZZT4aZtQ/3CECzosvQGxJaaSYg3QSkm93/dzvxf5qZeQ83A+km1jbs5PhuZngEGvlKrYoY78FowawDZtKxnETIKSq3KxpagX/9yGFzwiMUraOfSoHNJcD4wvZhS3/gms8PK7dzXDWe4bmvxHXE0v0DkeuqgpHbgUMSePVVKMjJQ1FZ4oYNB1NptfLBOj8nPq/hCIkmFIxGCCERNGvWLLzxxhttr99++208/fTTMBj879BeVVWFTz75xGs9SvR6z9OA06ncuUhJXZ34ZkW4GI1GTJgwARMmTMA999wDu92OlStX4uGHH8a+ffsAuDt6L1iwABdeeCEkyf8bmHl5eR6v9+/f71PDq5Pl8XU9WucjhBBCEpVNEOhiDGKnWrXwpFa5hYLRgqTVpRKgwoP/1G6SOMSd7yMYjKaybrVAHycXX7PpGf3MFwmi/YiDw85tMLH285GTO4THs2AG9YnK1DkEzcatwhCbcIRT+BRoJgjBMknJwrJa5VZwzj0aIYQjmM5XagFlVtkCgyRo/N6JWnickmSV8DvRsnzRohKMpnYs00rtWGnnNri4Ezo6LhLitzpBkFKmIVsQi0ZIaLi4C9/Xf6k4LtvQHaeljAlziaJXpkG5V4Do+xwJrYLfcCJZFyOEEEIIIYTEP2qfFxhqn0cIIYQEmSwIPmUSWHqW8h18DaFoAJAEB1LlZjTqvB+CZXMCsswhxWhYkxZNVo59ldqnz4/1QJlftwhHsb4DA1r0BSOAZzeIx1c3A70zxePjzRaFDuQdDe6hPDwrBahVaDpx9ZlR/D1U2a/a7NsOnt0LKN4hnMTI7TDLLWhVuAeUyMFoRwVZzpknNpNex6D3zraMC9zlAvb8pH2GD/4B3PYMCgTBaCU1wSlXtDui8rNA3wQ4DvNft2qbUJKA/CFAYy2yXbXCyY42AKd0D1LhSExwOHlbKFmjR6gZdweWdQgta1IafuJ/tYBUElqMAWnG9lCy9gAzhrROAWdeYWYd5kk1IiquhdQy1eQ4D0YTBcT6I4Oev0giJNXE0DsDKK9XHv/05xyTBqgfa4rKOMYXtk/T1fWmx7ylwFXjgeNN4ml6OY9COvnrkiwDB35G/+xzFacVhXwRsRJBU8xCwXULISR4qGcQIYRE0J133ok333wT/ESkd1VVFZYsWYKbbrrJ72UuXrwYDkf7U1pSUlJw4403Kk6bnp7u8bq+XlAjV7Br1y6fyhVIGrpWSUlJmDdvHmbOnIlhw4ahvLwcAHD48GFs2bIF48aN83vZY8eOxccff9z2euPGjZg4caLm+Tdt2qRpugkTJoAx1rZPrF692qsjNyGEEELa2WSr4vBgBrqoddBVC+Ugvukc2NORUw48QIUkrlZBoFIwg6h8lcSMkCBBhvfTWtQCiZxc/EROPfO/Aw/xn9r5xupq8RhvdYmPc8EMgxAHhXnuW6KwMQBhCf0UfQeVyqUW+mUWBHxxyLBxq0c4XTQGJaqtu1VuRRo0BqMJAkZF28comcHAFMPx1MJKtVLbv9SOZZqX30UdzCq3IkWXFvB6CElUtY4qxeGZ+lyAotFIGP3S/JMw2OusbrMgsTjtGeCHTL1y65p6Z03U3GOwCoJTI3ltRgghhBBCCIl/1D4vuKh9HiGEEBIg7t1OBAAg6YC8vgEvfkLrJnyZOsNruNUBHGsEemm7/RyTynwMyYn2YDT+4+fg364AjpYAO753D5xyMdhNj4H1Gwx+5IB45mmXBLTuCYONMMmtsAranzS0JlYwmqjj80lXjFOuR141nuHFbzzbZPTsBowvCFbJQqCirMtJ+D8fBTtlGOASBD2ekOmqFwSjcSTiPecWG0eVIMCgX1YCbI/qcp9nkf/xR+SfdiuAQq9xVU1As5Uj1RRf287h5Hh5Lcemg+6AnG2HxdMaDfH13hVVlGqb7oxzwdKzgPQspMtNyHDVoV7nfaIqreY4a2ACbLc4trWMY8kPHNVNwKxhwDUTGL7ZC7z/E8eB4xzNNs9Qs9bAmykSP0kM7QFlpg5/mxnSToaZeYxn7SFnHYLNUpKiI9AsWNTeSrzHEwUzGC2TmhmRCLriDIbnvlL+xh6sBg52ETb23FccK7e5oGPAqH4MX/pwG+iDnzh+KXehWJCfn+5qaA9FO6miLOHDhoNlSxnHAeWm1SjIiZ9zFSHRioLRCCEkgoYOHYrZs2fjs88+axv25z//Gb/97W+9nkyoxe7du/Hss896DLv++uuRlZWlOH337p6POti9ezfGjh2raV0dy6yF0Whs+9tms/k0r68yMjIwd+5cvPjii23DSkpKAmp4NXnyZI/X77//Pu6++25N81ZVVeGrr77SNG1ubi5Gjx6NrVvdT7YoLy/H559/jjlz5vhWYEIIISRBiMK0jMwUtHWohd60qoR5Ed+0CjpIA8EJUCGJKxqDkBhjMEnJaJGbvcaphf04uTgkkILRIsOkUwu1akEG2lvSqn22ZpXl+EoUatY5JFAthC+YAaPCdQjes1K5ROd7sy5FPZxObtUUThfJMA61dfsSwCraRqLtIzEJRsmsuA61c7JWLSE+r3dVB2t1tVAwGiEBqHMqt3jINOTALiv/tqsUtEhIoL6r/1xxuJ4ZMLHbOWEuTXTL0Cv34HJyJ5pdjUjTdwtzibyJzt+RvDYjhBBCCCGExD9qnxca1D6PEEII8ZMsCkaTgB79A178GxW3ov/AYsVxB6soGO2knFREdZgOX/Eq+PN3eY9YtxJ83UpgSRGw7Cnh/KxXYMlbktmMNYfOwqT8dYrj6xOoyaRL5ihV2bduOpvhD1OU96Wn5zKUVHOs+tn9uncG8OkCCbooDffgTfVAs4Yg54O7wOcN6XKyTFcdjhp6eQ2vDbxJSkw6VCse1z/KgxqDgX/4iu8zLX8F+V98C/Tbojj67Y0ct0yNzu+TP2SZ48KXZU3hGMtvkUJfoGhQUdr1NIPHgP359fbX1/8P8tcewnalYDQK/4hp3+7lOO9FGdYTTQ//XQTc9W+ORivAqclS0EhMKbQM6HYi0KxjaJl7PPMKM0s3ASnG8DzEIdaobRHRpWK8qAtiMFpGMu1bJHIevYBhzR6O7SoBtmpKa9rrJKv3+HYCq2x0/xP5z5ErvYbxY2UoGMCgFL94tB6wOjhMiRC4G6Dv93NMeVZ8oBaFzxFCgoeC0QghJMKee+45rF27Fi0t7qu7+vp6zJ07F19++SVSU1M1L6eqqgqXXnop7HZ727CePXvi4YcfFs4zZswYj9f//e9/cc0113S5ri+//BKbN2/WXDbA3RjqpOrqajgcDhgMoeu4r9d7nuI6Nvzyx9lnn438/HyUlpYCAIqKirBq1Sqcf/75Xc77l7/8xeMpoV25/fbbccMNN7S9XrhwIc4++2yf9gdCCCEkUdhkq+JwYxADXQwsCTro4YJ3IJEvgSVEnVpAj4PbheMI6Yo4UCmyne9NklkxGK1zeFVHamFCekY/80VCV6FcHakHkQVvfxSVqfM5SzWoTVIOVwsms8ZyioYB7veqGizmagH07Z3RRIFfkQzjUA9g1VbP4JwLt5EoKA8AkqUUxflaXIG3QlUrezCC0axdhLdRHY2QwNQ5lB97nqXPRaVd9CRnamVIgqvSXo69LTsUx41Nm4xUfXqYSxTdMg3i1jV1zuqoCEazCq51whHKSwghhBBCCEls1D4vNKh9HiGEEOIH2aU8XJKAHv18W9bAkWC3/hVoagB/eD4AoJfzKLq56tGg805AK6nmmDwwfju7ltVqv1cVzQFx3OkAX/Kk+jRP/U48ct6dAZeBMYYzsAc67oRLoT1SfQLdjj9aDzgEX9sv7pQw4zTxd8qcxPDJ7TqU13FUNwPDewNSlIaiAdAWQOSDTLlOcXgwQzFiSZlKMFpf5Zzt+PLB837N1s+yHxJckKHzGnfvco5bpgZYrijywwFoCkUDgNN9rDLEIs65+Lg062qw6ZcBvQqBvgM9wpfYmKnov7oM200jvWYrPWYDQPemY9VTn7WHop3UkEBhrV3RSScCzdqCzE7+fSLQrENomTvIjHUKOHP/nZxEgWahJKnkWsZ7y7v6Vt/e4Wm9gF1HlcdFc5WaxL8UI8PWh3SY8bwLX++JdGk8jbL97D2wokw1tKusBhjcI3Rlihd//Uw9vZKC0QgJvQSJByeEkOh16qmnejw5EQB++OEHzJ49G0eOHNG0jP3792P69OnYs6e9Ji1JEt5++23k5uYK55swYQKSk9s7/65cuRJFRUVdruvaa6/VVK6OhgxpfyqM0+nEt99+q2m+lpYWvPjii2hqatK8rubmZqxYsUK4fn9IkoTbb7/dY9jNN9+MkpIS1flWrFiBV17x7ekm11xzDU499dS213v27MHFF1+Mujrlm0MiVVVVXtuBEEIIiTeiwCOjZAraOhhjMOmUb4SqBRgR36gFmAQjQIUkrmgMQgLEYUWi8gLq3wUdBaNFhJGZwATP8LJFKBhNFBSmNahNggQDSwpaeURE71np3C4qq0lKhkkl5LDzfKJ6g+g8Hw4S08HIlOstovCQzuzcBhnKN9zUguPEn0Hg9ZtWlXA1R4DndYfsgJN7B9Z6rJ+C0Qjxm0N2oNGl/DukWvASIcG2ru5z4bizM2aHsSSxIU3XDTrBM9HqndHx6GthXSzC12aEEEIIIYSQ+Eft89RR+zxqn0cIISSMZEFHSkkHZPcEkrQHjbKL/IdRgwAAIABJREFUbgIbOx0YP6N9GIACR5ni9AeVn4sTNyoatE87OC+Ke9KX7gHqq9Sn2a/8YBkAYL0KglIMZk5Blks5yam+Jd5jG9qp7Vfj8rUto3cmw8i+LLpD0YCgB6NlCe45H/PhuxpPKhqUvzd56YDJEOX7RoB4i/Zrzc4McCLPeVxxnNMFyHL8HI/W7tP2XpL0QO/MEBcmGjTWAoJ9h13wO7AzZ4H1G+Qd4NQzH/3tynWhsmP0kO5Y5ZI51uyNdClCQy8B2SnuQJVRfYGzBwLnjwCuPIPh5ikMf5rJ8MRFDC9cwbD0eoYVt0j4+m4Jmx+QsPdxCRWLJFhekmB/VUL18zoc/KsO2x/WYd2fdPjvHTq8+3sJr10t4W+XSvif8yQsmC7h2okSLh7NMH0Iw7h8hsE9GHpmMKQYGYWihZja1o2jU5qiykbfpp94inhrDcwLsDCEBMFLV0qIpkNmmqsR2S6FNoKVh9A/WzxfSZz/VhQMnHOs3Scen53iDhwlhIQW9ZgkhJAocMMNN2Dr1q14+eWX24atX78eQ4cOxQMPPICrrroKffv29ZqvuLgYS5cuxaJFi2Cz2TzGPfPMM5g+fbrqetPS0jBv3jwsWbIEAOByuXDeeefh7bffxowZMzymtdvtWLZsGe677z7U1tYiMzPTp4ZA06ZNw9KlS9teX3/99XjwwQcxfvx4ZGZmQuoQeZ6amoqcnJy29S5YsAD/8z//g0suuQQXX3wxpk6dirS0NMX1bN68GXfccQfKytp/yDzzzDMxaNAgzWUVWbBgAd5++23s2OG+mXj06FFMmjQJL7zwAubOnevxHiwWC5577jk88cQTkGXZp+2l0+nw4YcfYuLEiWhsdF/1f/311xgxYgQeeOABXH311cL3X1tbi9WrV+Ojjz7CypUrceaZZ2Lu3LkBvnNCCCEketm4qFNtcANOTFIyLC7vG6zBCA4hbmohc12FnxCiRtT5Xi0sKBxExylReQH1YDQDMwRcJuI7xhhMklkxhMk7lEv5OJfEjNAx76da+ku0b2ktj1lKCUvjBtF30MHtcHIH9Cf2aZnLXiFzHZdxMpyOKzwvrfN7FL/nCB8PdMmwOa1ew7XWM/wN3UsWBjQGIRgthIGnWrYL1dEI8V+DSoBSpl4cjBbnbbNImFnlVmxs/EZxXD/TAOSbA/+9P95ITEKGIQs1Du+OAXWO6GjBJKyLqQTdEkIIIYQQQkiwUPs8ap/XEbXPI4QQEjGyS3k4Y2A6HfiEOcC6lV0vR5KAiXPcsyanetynKbCXYLtppNcs8d7Ztd6HW8QXjgpdOfzBZRnYuhbYUwT+7YeBLWzSeUEpE0zJyHA1oErf3WtUg7hpU9yx2MTjukXuGXyhUaEeSOyrvg7lEOrS6sS8syw6RuWmhrccEVF+MKDZ8+2lqND39BpucwLHm4Ae3QJafNTQGhhzwQhAF+1Bi8FwTDncDADQK188LqcX+svliqO+OZQKm4PDGOdhhPGo3Lcc+7BI0rvrAummE/9O/m1mSDOdGOcxniG983AzYNSDwshiDK+uADavBlc7TonY0gHcrjiKx3kVydfr0ZF9gbH9gaJOm3lgdyBfJeSJkHAZlMcwZSBUA7P8NbovcLTBt0DBC5tXKYcvlu2FycDQs5ty8HdpDYd6bCOpbASsKl0fLhxF24+QcKBgNEIIiRIvvfQSMjMz8eSTT4KfuJJtamrC/fffjwceeABDhw5F3759kZmZiZqaGpSVleHXX3/1Wo7BYMDixYtxyy23aFrv448/jpUrV6K+vh4AcPz4ccycORMDBgzAiBEjYDQaUVlZiU2bNsFisQAAevTogWeeecanJ1NedtllePDBB9uesnn06FHcdtttitNee+21Ho20AKCxsRFLlizBkiVLwBjDgAEDUFhYiIyMDOj1etTU1GDnzp1eT/FMTk7GG2+8obmcagwGA959911MmTIFNTXuDoIVFRW47LLLkJeXh9NPPx3dunVDZWUlfvzxR7S2uu/6devWDc888wxuuukmzes67bTTsHz5clx66aVoaHBfcRw5cgS33nor7rjjDgwfPhz9+vVDeno6WlpaUF9fj3379ml+iikhhBASL0RBKUbJFNT1iAJTghEcQtzUAkwCDVAhia3VZVEcrhYWFA5mSRRIpFxeQD0kUE/BaBFjkpIVzwedj2uiAMhgh3KJ9m2t5THpwtNyU+07aHW1IlXv3qft3KYYenZyGWrhdF7vWXCuifTxwCQlowHeT1rWWs+wqoSLqu1fovfdIjhuasU5Fx57gcDP61q2C9XRCPFfrVP8BPpMQ464MV68t84iYfVT43fCa8QpGbPDXJrYkaHPVg5GUwk8DBcXd8LOlXsPRbouRgghhBBCCEkc1D6vHbXPo/Z5hBBCIkSWlYefCP9kNz0GvqcIOH5YdTHslqfAcnq1v779b+Av3QsAKHAohxsdrIrvezkNGm8R/3YkcOmY6Om0yp0O8L9cC3y7PCjLY3n9grIcmFLQTVboNQ2gPpGC0ezKw80GQIqzYCL+8n2BL6R3YVsIluhYFO8hjSKiYLSMOL9Nxh128BsnBrSMl47dhdMLNymOK6uJn2A0tSDGjp64SOp6ojjAv3xPeUSSEcjqIZyP6XTITxFXCn7znIxPF0jISI6vY3i8+2RH8OqxJkOnILMTf3c7EWjWMbTMPZ55hZmlm0ABewmK79wI/ueLgUbv9r5aMH1vYKByMJocx5drnHMs2eDbG8xMBp6fJ+HCl2TUnTispxiB1/+fRGGCJGoUdmdYuy/4X96XrpRwrBG48k0ZNnH3ofZy2A/i4aonlUc2N4BXlaMgp4diMFqiXp/54tNfxJ9xRjLw0Hl0TCIkHCgYjRBCosjjjz+OKVOm4NZbb8X+/fvbhnPOsWvXLuzatUt1/jFjxuD111/H2LFjNa+zd+/eWL58OS666CI0NTW1DS8uLkZxcbHX9AUFBfj0009RWVmpeR0AYDabsXLlSlx00UUoL1d++oJWnHPs37/fYxsp6d27N1asWIHhw4cHtL6OTjvtNHz99deYM2cOKioq2oZXVlbis88+85o+IyMDn3zyCVwuwRO+VJxzzjkoKirC/PnzUVRU1Dbc5XJh+/bt2L59e5fLyMzM9Hm9hBBCSCyxyVbF4UYpuKEuWkNmiP/UtqWDC1oYEaKBVRCgaNZFOhhNcFxxiVsPqoUJUTBa5JgE55zO+57oOGcK8r4oPmdpK0+wg9pE1L6DrbIFqUh3/60SsHVyGaJwus7DRAFikQ7jMAv3IW31DLUQMLX9SxTQaFUJaNTCwe1wQXwnNtBgNC3bRS0sjhCirs6h3NLBLKXA9P/Zu+8wN6qzbeD3kbRFu+tt7gXvrgGDDRgwpmNDDJjQQkgIJEA+SDAlkISQhIQ3gQQICeQl8AIJPdQQWgqE3rHpNiVgG2NsbK+Ne9tdb9FqJc35/pC36jyjGXVp7991+fJq5syZI2maZs7c4/FD8elwlGZaa8xtij3XDgDlniHYb8hhGW5R/qjxDTMObw5nvweT9LsMyNzxJxEREREREcD+eU6xfx775xERUZpoKRjNCwBQ43cD7p0HzH8ZetWSmGKqogqY+hWoifv0HzH9a8COYLQJXY3GWRT6za4tAfONql/fBzh2L4WN24ED6hWOnAR4cynQ6s2nUxeKdu5VKakHAOAvR9V2IRhtEF2Ob+s0L1flJRluSJrpptgH77g2bAwwaf/eYLSuVcZiq7YB4YiGz5tD62EGSIGChR6MhrlPAhGbNIed9wLKhgC1I4HmLcAnb8YUmRJcKE7euFXjwAmFsSxJ+7G+Vl7rQd3Qwni/drTWwD/+bB45cjyUxz4crq5WA+bbC/DuCuCOuRqXHVv4n2Mh+fGj7kJnHjpHodKvjAFoxT5+95Q4fdMlCYeiAYBHeEg0UNjPJH13hftpqv0Kh+6isOC3Hrz8mUYwBBw/RWFcDddhyh31Q+3H33GmwphqhWUbNbZ1AJ0h4IaX7Ff2IyYCB+8cXc4XXenBi4u1MdAMlgYevBaTuz7DrLZXUGM1i3Xqv/wSDeMfxDvLY+fdWODnilLh3Afl72zFHxi4S5QpDEYjIsoxRx11FBYvXozHH38c9957L+bOnYtwWD4RXFJSglmzZmH27Nk48cQTE0q8njlzJubPn4/LLrsMTz31VM8TMfsaPnw4zj77bFx++eWorKx03fEKAKZNm4bFixfjkUcewQsvvIBFixZh06ZNaG9vFzsmVVVVYe7cuXj22Wfx6quv4pNPPrH9PABgt912w1lnnYWLL74YZWWpv1Kwzz774LPPPsMVV1yB+++/v1+HtW4VFRU45ZRTcPXVV2OnnXbCnDlzEprXLrvsgvnz5+PZZ5/FzTffjDfffBPBoP2jQCZNmoSjjjoKp556Kg499NCE5ktERJQvpBtrSzylKZ2PHHoziHr5pJldqEtYO3jMBZEgIAT8ZDsISZq/1F7APkzIq3iaL1uchmdK27lUB0E43WdJ7cnUumE3n777d7sQje736veUoclUz4BwLDEoMWe3B86OM6TjEQWFEiUfE5V5zcFoHUkGo9ltxwAgZCUXjObkc3H62RFRrCYhQKm2aLjtdNqm4xaRG8sDn2GdcKPEwVVHothTYHeapFC1z9zbSgo8zCS78yfS8SsREREREVG6sH9ef+yfx/55RESUQZYQ5Nkn4ENVDQWO/ra7R9WMGBetw7JQH2o0FlnbDHSGNEqLCvOGTSl0aK9xCudOtw9QySb95lOpq2xMQ+rqKqtAdbM5GG3L1k4AhZ7mFNUuPM+10ILR8O4L8rjakcA2B79N6nbrtww2hFYai0UsYMN2YNwgyxduES6VVfsLc5vcTb/1tDxy6hHw3Pxiv0HWWfsBKxb1G6YATPJvwWeB2IdErdqailbmhnihk7XlGBShaACAjavlcaPr405eP6oUaJTH/+djjcuOdd0qypL2oLv+SN/aT+H0A3P32I/yl968Fvj8o6TqUDb96yLhCAo18uOFRe77FXaHx46tUTj7kEGy/6O8U1crj/v+YQrnzejeH0WXYa01bntdI2DTjb47FA0Adh6hcOEI8/KvP/8IesvvnDX0i09QP9U8auUW9vu10xmSP5/Jo8FQNKIMKsyjJCKiPOfz+XD66afj9NNPR3t7Oz788EN88cUX2Lx5M7q6ulBSUoKRI0di4sSJmDp1KkpKkr+ysvvuu+PJJ5/Eli1bMHfuXKxZswYdHR0YOXIkGhoaMH36dPh8vbuNI444wthBK57Kykqcf/75OP/88x2VV0phxowZmDFjBgAgEAjg008/xfLly7Fhwwa0t7dDKYXKykqMHz8eU6ZMQV1dneP2JNohqqqqCrfccguuv/56zJkzBytXrkRTUxOGDx+OcePGYfr06Sgv773BONHPC4h+BieccAJOOOEEdHZ2Yt68eVi1ahW2bt2K9vZ2lJeXo6amBrvssgsmTZqEoUPjRE0TEREVkKBlfqRTqm+q9XvMwSGBCEM3UsXuJmm7MCgiO1rrnA1C8nulMC05BEoKCfTAC4/ihfxskfY5A/cR0neb6iAyvxB2Fdue3A1G6xtqZbd/6N4/y+F0vZ95REcQ1MJxg7A+Zoq0PeqMyNuDvuSQO7/tDXpiIFuSxzcdEftgtGT36wMD74xlGIxGlLBtQoBSja+7k7HQ0YLBaJQibzQ/bxyuoDCjmr2T7dQUxd4MAADN4ezfERCwOa7Jdmg1ERERERENTuyf14v989g/j4iIMsiyzMOT7POhfEXQO+qeIIQRAUDjFmD30UnNKmdJgTLVaXw2h27ZGg3wiUSAMfXA6AZXIbp66wbg5UdS0xiPB5iSwsDW8bth9OoNxlGrNgZRyMFoWmus2AxENNAu5OVWFFAwmt6wCvrpe8Tx6nuXQ9/wo/gVTT4AanR9z1XjUWE5TG1be+EHo23arrFoHaA1UFYMbNhu/q1SVbirUtS6FeIote/hsQNH18UEowHAeGzEZ4i9FtqY/cugKdMUp6vTzN0y046csFZebjBp/7iT14wbib2XLMAnpVOM41dk/7li5MJKl99XHU/ZULrYbZscsgtG0+EQCjXyY1PsMy/iGlOd+nYQpdqMiQpKaZguS5ywV+y5AaUUDp8IvPCpXOcRuzk8p+Bmm7R5HeqF/aPb/exgYxfE7PaYQ3d2AEs/BiJhYJcpUEO4oSNyozCPkoiICkh5eXm/jkfpNmzYMHzzm9/MyLwS4ff7MW3aNEybNi3bTQEQfSLoMccck7H5lZaW4vDDDRcAiIiIBikpZKYkxcFopV5zfQzdSI2Q1SUGPnWPJ0pEUHeKIR3ZvvleDNNKICSwSBWlpE2UGGlZGhjeGbDMYVGpDvOU6uu0OqC17umEK4VfZSo00Ku8KFYl6NKxvUj77l+ldcIDD4pUMQA52KzvtEGb0EF/ir8Dt6T2Oz3OkMpJwa7dyoQQvWSPb+JNn2wwmt120k0ZIjJrCtsHo/H5ZpROLeEm/Lf1XeO4Pcr3w7DikRluUX6p9pl72zSFt/Y7DswGu+ODbP82IyIiIiIiYv+8/tg/j/3ziIgojbQQjObxJl/39y4H7rsGdaHVUNqCNoStXfh3C6/+zJPV88XpIgajpeEUtA6HoW/5KfDEnf1HNEwGbnoBqtb+eoYOdkJfey7w6uOpa9RJ50KNGJey6tR3LkH96zcbx63cloLlNUdtaNE46VYL7zfalysvzkhz0kpv3wb969OAj9+wL3jSucAHrwJzn7Qtpr55IbBqSc/r6kizWFZaXwtBV1jj3Ac1/vaes9DmdGyjcoXWGvjsA7nACd+LHTa63li0PtQIYI+Y4XfM1bjtjISal3Ps1ouKEuBnswbHg3O1ZUFffZY4Xn3jgviVjKnHFVv+gFPGPWocvbkVaA9qlJcU3vFQIXpnubsQ/Hrz8+SIkvfJW0lX4ZF+D0LO0C4Ebo/9fJ7CD9GlwlA3VGH2YQp3v9l/X3XYLsDX9jZPc9mxHsxdaiFg6Ep/+ETgyN2dzVu/+4Lzhgba0FC6HcCQmFFb24HWTo0hpTwuMrELjvvDyc6Pz/UTd0Df8nMgvOOLVwr69J9DnXc1lGdwHOcTJYvBaERERERERJSXtNYxoTPdUh0yIwWLSMFs5E688JJkA1Ro8OoUgp+AzIU/yfN3H0gkBQj6GIyWVU7DMzsj5n1GvPAqt6Rl24KFkO5CsSoxtq+bFNKVDqWeMnRFYoPR+oa2ie30lPV01pbes5OAtWhdqf0O3JLa7zTcSwq5i3c8JM23Qwjxcyre9Mnu150EtzG8lihxTaHNxuE1Rew5SOn3dvNLiMB8zHt49bEZbk3+6Q4wHCisQ2iLbMcQX1WGW9RL2jf7lA9FHv6eISIiIiIiIiIiokEiEjEPT8FNkOpr50Dfdw1KdBfGhdfiy6KdYsrMWQq88hlw9OSkZ5dzmoVufFX+NNzc+9TdsaFoALByMfT1F0Jd+y/byfXf/ugsFO3AWUBRCbBlHbDkw+iwvacDfYPtqoZCHXQMcPzZztvvgBo5Hg1qo3Hc6nY/whENn7fwbpye/UD8UDQAKC9Je1PSTt90SfxQtFN/HO2bc+XfgSfvhL75p2JRNXQUdFdvf95ihFBmtaPD0CenqYC7dPzpJeehaABQU8DBaHjxYXGUuuJ+qGGjY4ePrjc+Bnd821Kg9HhjXcs2auw6Mv+3R9J6MbYaePEnHkwek//v0ZHX/glsM+9/MHJ83PBRAMCoOny99Sncs+48nDPmLmORxq3AHmOSaCdlzAUPuQxGGzpI1hXKOP3XK80jyiuBXfdxVIfqkAOGdQEnozV3uFuPx9cCXg/XZcoPd5ypsH898OKnGp0h4NBdFH5ylIJHWIZnTFR48xce3Pu2xuJ1GhrAkFJg+q4KP54pT9eX1hp44W+u2lkfXg1T0DAANG4B9kpdznpBWbFF3n7tvZOz7ZT+dD70jRcPGKiBv18P7LIXcNRpyTSRaNBgMBoRERERERHlpbAOw4K5s1iJKk3pvKRgEaeBJWQvXniJFAZFFI9tEFIGw5+M85eCkGzC3KQwIa/iKb5schpqFRDCoqRgtURJy1Z3m4o9JT1/m2QyNNDvLcP2SFPM8H6BZsI64e+zDjvZT9vta/wpDlR1S/rOnIZ7SeX8XvvANzGg0WY75EQgEi8YLbn9upPjL7ttKRHZawqbH3HWG7hkvpivjd2TiZyL6AjeannJOG5Y0UhMKt83wy3KPzVFQ8VxzeGtWQ1Gk/bf2Q6oJSIiIiIiIiIiIsooLdzsrpIPRkPtKKC4BOgKor6r0RiMBgCPzNc4enJh3WQejmi0mp+viuo0dIHQr9iEmr3zHHRbC1SFzTn5Vx6NOw/12GdQYyYk0LrUqZ9QC7TFDo/Ag7XNQJ18WSIvbW3TeOFTZ2XzPRhNBzuBuU/ELafG7RL93+cDTrlIDkYbPnbH/+MArw+IRPuFVEdahGA0Dem6c757ZL676+bV2e2ylFb65UfkkXseZB4+qs44uL5pARCbowYA+M8nGj+fld/Lk2VpbBf2Y/edPYhC0QBou33k5P2dVTK6HgBwesujOHf07bBUbBDRyi0MRssHW1rd90WqL7DjE8oNeuOX8shpM+G55jFH9Xj/+zFwuzCPAu571+yyO28Dn99KeUQphdnTFWZPdz7N1DqFqXVJHN8t/a/rScZ9+Bi8nqsRMZyWWslgNNFKc3dqHLaL8zrsjm/1y49CMRiNyJEUnD0nIiIiIiIiyrygJTzmEUBJigNOpJAYp4ElZC9ewElId2WoJVRo7IOQshuM5heC2aTwLACICGFCPgajZZW0z+kcsJ8a+LqbFE6VKCkkLNqG+EFhdsFqqSYGBPZrp/lz6zutHCzWO61dUFYm37OJ03A9iRw0Yn88JAWnBaz26NOkEpTu/bqT4y+G1xIlJhDpENefmqJojyNVoB3UKfsWtM1Dc3ircdz06mPhScVNYQVuiLcaHpifLiuFHmaKfCxcwHd7EBEREREREREREQ0UMT8EFL7k+30oj6cnUGZqp3yT7OcbCu+G+zWxz2PrMbwiDTNc+I48zrKAVZ8bR+lQF3RHK7BupX39VcOAEeOTaGBqjB0p96XYZv+8tLy0aC1gOVw9yovz95qptizgy2VAVzB+4YkDHlx02sXGYupbP4z+7/MBo3qX3RrDwxIB9+EY+SJiaSzd6G6a6rL8XZbi2rJeHjfCHN6JMQ3Gwft2fChWtcp8iTmvbO8EpK5aNQXynKl4fdG01tDhELBysVhG7TbV2cxqRwLFpShCGOPCa41FVm4pvOOhQqG17lleFq1zN21lKTBheBoaRbTafHwPAGrnvRxXo2z6PlmRwtsuRSyNYEijyeWxX1KBUUQFTofDwBcLXE/ne/I27FRlPie1cmvhbX8SobVGeMC2eOVm82fTMEx4wLRlQXcF+/2zO761278QUX/sQU5ERERERER5KajlYLRST2lK5yUGrtiErJBzgYh9T6mwDmWoJVRopGAPDzwoVtl9dKe0XQnpLjEALSSsCz5VlLJ2kXtyKFfHgNfmbV288KpUtSfahj5BYcL6kcnQQCfBo1JYYN/PTQwW67N/kcK0fMqHIk9x3Lamk9NlSCKVixe6J31uFiwEtfAYUgfSvV+3C7nrxvBaosTYBSfV+uL1HGTnCErO3ObnjcOLVDEOqToyw63JTx7lQbWv1jiuKZTtYLTsh/ISERERERERERERZZ0UjOZN0QPxRtcDAM5pvl8ssjK7p4vTwi4Up25o6uaj13wB6weHxy930VegW5t7X7/wd1hn7g09cwj0McPk9JtuXz8vGjCVZTVjR4jj3IYb5IPlwg3PJmXZ7XaWEN20CdavvgX91eHQ35sWf4JJ04DJ+/cbpE74HlA8oG9uRRUw6/Te1zu2QwBQbTXDZK15cN5b1wyEhM28pLpAL5VprYGNq80jxzTI27gdAZ8DTez6QpxXSwFsj+y2qdV5/pwp/cVCWBfNhD6qGtb3D4Se/3L/8ZEIrNt/BT2jFPorFfbhocecLo/rQykFjIyG79V3NRrLFOLxUL6zLI0rn7JQf5kF7/kWPOdFMPMGy1Uds6crlBYxUInSYPkiedxxZzmuxmOT6JHMw4xzzcbtGt+4LYKaiy34L7KwbJPzaf1FwDmHcT0mGkivWgLrx7OgZ9VAX3e+WE59/wrziM4O1IdWGUcN9uOirrDGxY9aGHNpdJt10B8iePuL6DZZ+mwahvV/rVubYP32TOjjR0EfWdnvHz58XZ75muXQG79M0TshKmwMRiMiIiIiIqK81DfcZaCSFIfM+L1C4ApDN1LC7rsEgLAOF9TFHsocu5vvlcruRTO78Clp2yKFCTEYLbv8wj5n4PIXELZ18cKr3CqxCQftG+gphXtmMpxCCoXruw5I+4i+n1upsJ/uO61UTy6EcUifQ2fEfv/YTQoKixe6Z7fsxQs3s22PEGbXLdlgNCehZzxGI0qMFIymoFBdFA1bkg6heLROyVgf/BJLOxYax00bMh3l3iEZblH+qikaZhzeFM7uo9Ll32Z53pOfiIiIiIiIiIiIyI2IcK00xcFok7uW4PLNfzAW2bAdCHQV1pWdVdvM76e6DKj0p6Z/kO5og77wK8Ci9+IXjoShf3lydLo3n4L+/feBVUviTzdiJ6hzr5JvZM4w39g6DIlsN45r+mJFhluTfrMfdL5elOdZMJq2LOiffBV48ykg0GZfuHo4MOt0qBuejelfp+onQd30ArD3dKCyFtj/SKjb5kANHdVbaExDb1WRFuMsbnipsLZB3RIJFMj30CtRWzPQbt5+qF/9VZxMVVQBQ2qM486pM4ejNXXk//LUbBeMlv2ubQnTTZugfzgTWPA20NUJLPsY+hdfh/78o94yt10GPHxD3LrUr/4KNWyM85mPGg8AaBACQBq35P9yU2iufkbj6mc0vmxyP+3Ow4GbadqDAAAgAElEQVTLj1f44zcZpkTpoW/9pXlEiR9qRxCjE3b3LlhWYWyXLEvjqBstPPkx0Ba0L/vr4xVm7AqUFkX/HT4ReO1nHkwcyXWZqC/d2hw9H/HfuUCoSy5Ytzvw7UuAGnPIecP6d4zDB/tx0YUPa/z5NY2N24GIBcxvBI660cLSjRorhS6XfYPRtNbQl54EvPYPoM38G9iO/s5k6HA4scYTDSLZf4QEERERERERUQKCVqc4zi4UJhHSjbpdOoiIjsCrvCmd32ATL0BFw4KFCLw8jUEuJRoWlAl2wWidkQAqvJUxw8OWFIzGdSObpGCtzgH7qUyFQXiUB6UevzEIrG9YlBQcJYWBpoP42UX6BprF/9yk9anTwfvNie2B1xxQFrDaobWOG+Qo7Ufjhb7ZfdcBqwPmbobxdcQNRkvu4l28QNVoGQajESWiKbTZOLzSW90niJUdjyj13mh+Xhx3eM2xGWxJ/qvxmYPRmoXgw0wJCIGvuRBSS0RERERERERERJQpOiJcK01RMJoaXd/zMJvTtz+Ka4b/yliucSswaXRKZpkTVgk3qtbVpnAmbzwJNG1yXn7hO9DLF0H/525n5YeOhudf5tCfrBlVh2qrBa2GPkxNb70BnLBzFhqVHpu2u7sRvLw4TQ1JlwVvAys+jV9uyqHw3PqabRG118FQf3lFHj+6oWc7VBOR022+3KaxU21hXXtemUCgQD6HXtnasFoeN6rOftrR9UBr7LIzJrwewC4xw+1CxfKF3Xuoyn7XtsS9/GhsQF4kDP3MfVC7TYUOdQHPPeCsrkOPdzfvkdHlrE4KRsvuc8VoAMvSuPMN59vQE6cA//kh792gzNBrl8sjDzvRVV0ej0eeT4EEo731BfDpOmdlj9tT4XcnyZ8JEe3w+j+B7dvil9vvCCh/OXD6T6FvvSxmdH1gOWB4Pm0iAc+FYntA4+/vxW5/g2Hgple0eJw+YXif37LLFwKfzku8EaEu4P2XgYPZT5bIDo8YiIiIiIiIKC9JoRgKHhSp1PY88XvMgSXRdhTAVfUscxJwEtLCE1OJbEjrpxRClEl2AQBSyFEE5g6yvUEllA1SsFbf5U9rLQb1pWN5lMPaom2I6Ai6tPlRXJkMp5CCufquA3LAYZnx7776fgfi9sBmH58p0jJkwUJI2zzZaQdpPxpv2bJ771KQnBOdwnfWLZzkPj1eoCoQXW60LoyOIkSZ1CQEJ9UUmYOW+uI6R4nqtAKYt/1147j60okYXxrbuZ1k1b6hxuFNoez27JbDbgv1bg8iIiIiIiIiIiIig7AUjJaiYIfRDT1/1oVWQ2nLWKyxwG563dxmHj4u0aeBGeil/3U/0bKPgWWfOCtbt5v7+tNt3M5isFVzU2H1mfxsvbvydebLMblr2cfOyo2uT35eY3q3Q/VCIBEALFiT/KxyTSKBAgUbjGYX3DBsjP20I3cyDq4JmT/gQtgcSe9hSCng8+ZvgKD+x1/MI568K/r/+kagrSV+RTUjgCHuduqqbiIAoCHUaBw/mANActGG7cDG7fHLddt9dP6uF5SHli0QR6m63V1VZfeQZKtAgtH++6Xz91Gb/e7bRHlBL3X2e06N33Fe4aTzosdPA9gdFw3W/r+fb4yGoJk89Yn8mYzvG8Tv9LyPHYffMdFglprHihARERERERFlWNDqNA4v9ZTaXjRIhBRYAkRv7i33Gh6bQI4FIvEDTqIhKvn86DPKBinYx26dzhQpEAqQQ46kMCGfh8Fo2SSFOYR1CCErhCJPEUK6CxYiwvSpXx79njI0Izb8onudsAv19GcwnEIONAv0+Tv+eiy1udMKwNIWPMrjqJ5ssQ8oa0exp8R2+kS3dUWqGF74jKGLgYjQc9yBjjjBZSErftibHSeBqhYiCOkuFCv7z46I+msSOhLX+HqD0RSk31qDs2MEJW9+yxxx2354NZ+C55YUZNgsBB9minS8Yve7iIiIiIiIiIiIiKjgRKRgtBT1+xhT3/Nnie7CmPB6rC0aG1Ns5VYNiNd88k+L0AWitjyF73HJR64n0Xf/Fti20VFZNet01/WnmxpSg6qI+Qbfps0OgmzySHP8bgg9in3ACVPSu/7o91+Bfv4hYM0y5xP5ioFJ06C+81OoYaN762prgb7l587qSHEw2jdan8Q1w39lLPb0Ao3j0/w5ZlpjAs8pqsp+t6X0CAj9jvzlUPHCQCtrjYOru8wfsJv1N1c1d5j7W9TEuZSqtQaevgf6+ot6B06aFv2/shbYsBoYXQe0uF04FTBhT6iTZkN11+eCXt8I/djNwAY5HNE671Cgw2H/tFnfcX9fwMxvAbdehvquRuPolgDQ1K5Rk8pjhTz339Uat83RWLRWo7wEmL6rwqWzFMpK0v8ZuQ2qO+NAfm+UQetXyuOOPs1VVR6PPK5QQomWbHBeNu/CholSSFsW8J+7oN95HmjpsyP0FgGT9oP69iVQI8ZFh33u4HyErwg44hsAAOUvhz7gaODFv/crUi8Eo7UFga1twLBBeFuk3YMD1jXL44buuPVDd3ZAX3de0u3Qf70SOOUiqPJKd9N98Br0cw/GnDtQ5/wG6sBjkm4XUS5hMBoRERERERHlpaBw43RJWgJmbAJLIgGAmURJkW6Q7itshYAUPRyVBg8pCMlunc4Ur/KhSBUjpGMDggJCqFDIEoLRFDdC2WQXPhW0AijyFNlu59KxPMYLHMuVYDQ50Ky9z9/m/b3f2/u5Sd+BhkaXDqJU+RGISOFh2Q/jsA9gDaAqzvSJbuuUUvB7y9EWie2w7GTfLIkXeBrWQmf/FNXfU87qiBsqR0T9bROCk2qKhme4JTRYaK0xt/l547gKbyWmDjk0wy3Kf9U+c6/BpvBWaK1THiTvlBxSm/1jMSIiIiIiIiIiIqKMkYLRfCm6tWtAqFF9qNEcjJbdZ2mknBQoU5WiU9C6fTuw8B33E25aE7+M1wd8+xLg2O+6rz8DanadAKyLHd7iqYJe/D7U5P0z36g0aBKWoYEqSoB/XODBuJr0XW/Rr/0T+qrvApblfuKF70C/8R/grregakZABzuhf3ik48lVKoLRxk7o+XNKcJFY7K43NM6drrFfXeGE26zc4j7QxOspnPffT0Do2+OviD9thbmnVE3QHDTZ5KwbUU5rErppVccLRrvlZ8A/b+0/8LMP+r9etSSxRn32PvTLjwA3Pgu192GOJ9MbVkFfMCN+MOjAdkpmfgvq3Kscz7+bGjEOGkBDSA5nu+MNjf85tkDXQZfmrdA48kYLHX26M7+2ROOlTzXe+IUn7duqS//pbJ9XXgLcfobClHH83ihz9PpGcZwat4urupRNMppl5X8wmmVp3DnX2fsYXQWUFnFdpsFL3/BD4Kl7zCMXvQs95wngzjejx89LPrSvrLIW6rcPQg0d1TtsVF1MsfrQarGKW+do/PbEwbdOrtqWyG+46DGJjkSgLzk2sd/uBvqHRwJ3vAlVUuqs/Ov/hr7yDPP8tzelpE1EucQmX5aIiIiIiIgodwWtTuPwdASj2dXZKQQYkXN2AT3dwtocCEVkRw5Cyo1HLUqhUFK7pTAhn+KzD7LJLsyhe/tmt51Lx/Io1dndDmkZi06buXAKaV6BPmFocoiGv8/fNt9BxP47yIUwDrs22H1X3TqT2NbJ26HEj2/ihapFEIalE78IKIXlxZZLPNyNaLBqCgnBaL5hcafN/65ZlA3LAp9ifZe5w80hVUejyFOc4RblvxohGC2sQ2iLbM9wa3pJ++9c+W1GRERERERERERElBFSMJo3Rf0+htQA5ZU9Lxu6Go3FGhMI78llzcIl5JpUdQd45TFxlLroj8C0me7qUwrq1teg7nwL6vlN8FxwjW1IQjZVD680Dm/yVkPfdUWGW5M+ToOVmm/24Jg90nuzuH7g2uRurN6wCnjuwejfbz4FLF/ofNoUBKOpITXRbdEOZzb/XSx70yuFtS0qtNDJpATazMNL42+YVZ/lp6+qzk3mWYWAYCi/l6VE9mO6aVNsKFqqdXVCP3Kjq0n0f/4aPxTNqWP/HzxXPQRVkuA15Un7Y0x4HYoMDy8GgCuezO/lJpVueKl/KFq3d1cALy9O77zDEY33VsQv9+HlHmz7Pw/OPCg3j5mogK1vNA8/abbrquwO+bXO/23SG8ucl22I3x2RqGDpTWuAZ+6zL7R5LfDM/bbnI3DaxVAPfAT11BqoA47uN0qNjg1GGxXegBJtvg/zqqfzfxuUiMYEfsPVlEUfTo8PXgEWvScXPPrbULfP7fcPZ/9aLv/FAuCtpx23Qz+Y5LkDojzDXwFERERERESUl6Sbaks8ztLx3SjyFMGniozjAg7DOUgWL0AFAEIMRqMESKE4fk95hltiJoUhSe2OMBgtJ5V67cIzo/sIu3Arvzf1y6O4bEV2tMcuqM3m/aSaFMrVdx2Q2tp3Wr/XJlisOwxO2F/bTZspJZ5SKJg7zsYL97J0BEHhIqWTZUsMRksiVCzgIDRW2p7Fo7V2HHjmJFSOiHpprdEUNl/lry3q7Ykkba8YjUaJeKP5OeNwBQ+mVx+T4dYUhpoiuedgc3hrBlvSn/zbLPvHYkREREREREREREQZk+ZgNKUUMHbnntf1oVXGcoUW3tMsXBquTlH3B/3JW/LIvQ6BmvF1dxWOHA815VCoyftD+XOjD5Okdqi5fet9o6I3ahcIKZSor5m7Ax5PmkPRWpuBFYuSr2fB29H/P3nT3YRj6pOeNwBg+NiePxtCjWKxN5YWzjVmrTXWt7ibZv/6tDQlNwSEvkP+ivjTVlQZB9e2rxEncfvZ55qE9mPzXk5LW2LY7QNTUd6G+uoZyVVQUQUPNEaHNxhHe1Q0lIvsw4zeXJbez+gLc+ZhP3uOAfYdr1DkS+9+mMhoq3kbokbGhg7Fo2yOJS0r/7dHb7jYXkwYxvWZBrGF7zoKtNIL3ur5bWeijv4O1IQ9oLze2JEjx8cM8kBjTGi9sS6PAkLh/N8OubW51f003eHF+mP74161x4FQex7U/9+UQ2yn0QucHUvr9u3RIDWiQYTBaERERERERJSXgpY5BKTUk55AFyfhLZSYTgfBJWEGo1ECpGCfTAY/2SkVApmkdkvrgRTcSJlht9/p3kdI+woFhWJVkvo2Cct4d2CV1J4iVZzR5UlcByIdPU8/k9raN/xNCoLrO32nENZlN22meJQHJcJyFC+gTAqKBQC/g2MiKTzNSbiZJBCJP21IeBJnPF06CAvOnm7EYzQid9oiLeKxRo3PSTAakTvN4W34uHWecdxeFdMwtGhEhltUGIZ4q+CBobMTIIYfZoL0uz9d53CIiIiIiIiIiIiIclIkYh6eomA0AFAzTur5WwokGjTBaKnqDrBupTxu9/2AQ48HPC5uz+vzHeW68cPM1xzmlB8BbFjd07cj3zU56F5w8r6910n1p/OgH/wj9PN/g96+LXUNWbciNfW88xysM6cAT97lbrphY+OXcWLPA3v+PKn1abHYl01AV4HcfN8WBCJCd5YG4blGx+6Z+WvvOhyGfutpWHdeAeu2/4F++VHojgTSAOJJJhhtSI1x8PjWz8VJPt/opFG5S96PycuI/vzDNLVmgLYW6Aevg96xL9Sf/xfWNd+HdeYU6Pt+D71pDbTW0B/NgfXzE4GF76RmvtXDgb3sgyPiGlINANgjuNg4OmwBa5uTm0UhaA9qbLLZDKT7uNFJ/V/fl32VKIvahPTNqqGuq1LKZrteAMfVjS62FydP5XpNg5de8oGzgh+8Brz8qDx+173lcaPN4Y1TgguNwy0d/X022LQF3W97u4PR8MGrciGlgMNOiB2+93T7/cf8V2D95RfR4+wBgcN6wdvR4Q9eB33v71y3myjfMRiNiIiIiIiI8pIUBFKiStMyPyk4JV5gCcXn5DNkMBolQgrFkYIOM00OXDRv36T1wKtS10GW3POpIhSpYuO4wI7vUtrOlXj88KjUn6KNt2xJ7cn0uiHtWy1EENJdsLQlrg9921qsSuARTnV3v9eAUE+uhHEkGsBqtw8t9cR/srQ034CD0FKTiI4gqM3htX2FtfAk9DjcHHfxGI3IHbvApJoioad2Hxr53zmLMuut5hdhwXwD2IzqYzPcmsLhUV5U+2qN45pCWQxGk47phJBWIiIiIiIiIiIiooIUEa6TpjAYDd/4Qc+fdaFVxiJNHUBLR+Fc22kWnidmFyjjyvpG8/DDT4byeqFGjIP60fXRG1/j2W0q1JmXpqZdGTBhmPye/q/iXKBpUwZbkz7NcZ7/dtyewNmHRD8L/dD10BfMgL77N9B/mA193qHQ6xuTboMOdkLPPjjpenqskkOkJMprDsJzXc/51/T8vU9wAU7e/qRY9uTbnD0cL9dJwVYAcOvpHuw64JlQ03cFLjkqs4EguisIffmp0P9zCvDQ/wKP3Ah99VnQF82ETvG6rANt5hF+B9cGd4RZDVTZugbDhFy1Y2+20J5AqEGuaBb2ybYBn5YQtpoG+u7fQn9vf1i/OR169kHAi38HVn0Ofe/V0N/cGfqHR0JffAww76XUzNDrg/rl7VBF5j6ZjlVUAQBu2XCJWOTxD/J3uUmVxq324x99XyNipe9zWrnVvu5Dd8789pKoHykYTdhf2fF45GXZSuN6limNW5y9h7MOVjhxSpobQ5Sj9JfLgEdvSr6imadA2QW0j9jJeI7ipg0/EycptBB9J9qD7qepKQf0vBeBJXJQsbroj1Ajx8cOLy6B+sXtcuVrvgAeuzl6nP3DI2Hd/VsAgPXXK6O/2+69Gvru3wKP3+K+4UR5jndNEhERERERUV4K6swGnEj1diYYHEK94oW+AECIwWiUACkURwpjyjQ5cNHc204KRvOpopS1iRJT6vEjFOmKGd69fct0SJ+0bPW0R9h3ZXrdsHv/AasDxULgHACUenunVUqh1FOGDiu2U113CIf0nnMlKDHRAFa7ADO/g2MiKYxE2g7F43S6RANP3Rx3OTm+IKJe24TAJC98GOJ135GLyE5Eh/F2s7lT9PCi0di9zOZphhRXTdEwbAtvjhneHI7TozlN7IJTcyWkloiIiIiIiIiIiCgjMhCMpoZUA9c8Bn35aWjoahTLNW4F9s6Ny+VJCUc0WoVnd1Wn4BS0DrQD2zYax6mvn9v79yk/BA44GvjvG+bwBI8HmLAnsM90qJL8OTc+Ybg87tKRf8T3Vn6M2tqRmWtQmjQH5BCHOT/34JCdAZ9XQW9ZB333b/oXWLsC+qH/hbr0tuQa8YYcHobq4VDf/knMYL15LfCvJOebBqqyFnrETsCmLwEAD6w7B09Uft1Y9vlFwMdfauyzU36H3jTZdFGZOh744HIP5nwOLN2oMXW8wqG7AMW+DL/nN58C3n42dvgXC6D/dRvU7CtTN69Oof+Qk2C0CqF/QqgLE4Za2NJmDoB4eL7GudPzczmSlh/bYLRNa93PaPIBUDNOEkfru38DRITAtY5W4PV/mccteDv+vHfdB9jvCKhqYccS6oLu7ICq2w3Y7ytQI8bFrzOeHctSQ2gVyq02tHtik/V++S+NS49Jflb5zEkIyqufAbP2SM/8G23m/9JPPJi+K1BSlJ/rNuU/rTXQLgSjlVe6rs8uxEjr/A9GWyl0S6ofClxwuEJJEXBgg8KBDdF+30SDkb7/DympRx1/tv34omLo4WOBTWv6Dd8pvBaVkRZs91bFTLNyiwYwuNbNtgSC0arLAH3TT+UCp10MddrF4mg14yTggt9D3/Hr+DN78DrofWcAD1zruH3qgt8Du7D/LRUeBqMRERERERFRXgpa5mC0Ek9pWuYnB4cwdCNZTj7DRANUaHDL9SAkqR2dEfP2LazNHWSLGIyWdaUeP1ojsRe/u0O5Mh3SJy5bO9ohtseb2XXDLgij0+pARAmdwg3Tlnr8xmC0QKR9R31SoGpubA8SDWC1C/8q9cTvTOgXyiQajOY0uCzR/bqb4y4eoxG50xQ29zSsLhoKj+rtlMVOSZQKH7e+h5ZIk3HcjOpj+y1z5F61b6hxeFOWgtGk8zdA7hyLEREREREREREREWVEWLhO6vWmdj477QoAGBdeC58OIWzoV7JyC7D3TqmdbTa0yKeg7QNlnFrfKI8b09DvpRq/GzB+txTMNHc0DLMf/9gHGj/YLzNtSacmoYvEFScozJjY5/rouy8AlhVb8PV/A0kGo+l3n5dHNkyGOuPnscM3r4VOVTDarvukpp5udRN7gtHKdAAjwxux0WcO0XtmQQEEo9l0s6kui4agnbg3kM2gAf3Oc/LIt58FZl+Zupl1SMFoscFUMYbID26bUBnAfJj7Oj27QOPc6U4al3uahS5ONXb7sfWNruejDjrGvC3ZQT9xJ7Bxtet6Hc379rlQJfb9+1O9dqiKanTHDO0eXIoP/VON5Vo7NYaU5vc2KBnREBR7Ty/QmLVHej6jNeauIzjzQIWjJg/e74VyRKDNfOwHyEGeNjweeZnWVn4Ho2mtsVZYn286zYOv7cP1mUhrDbxjCCpOxOj6+GVG1cUEowHAxK5l+MA/LWa4k7DUQtOeQDBardUMrPlCHK8OcpC6u9chjuenb/ix47LY7yu2x/tE+YzBaERERERERJSXgpb5UY8lNiEryRADSxi6kTQnnyGD0SgRmQ6jcssvhFBJgUTSeuBjMFrWSctU9/Yt0yF9UnsCO0IppO2uP037UIkUygVEg8wiSngCpWFa+TvoDqczr1fSephpiQawSuN9yociT/xtQ5kUjOYw4GygDoeBaonu190cdzkNaSOiqKaQuVdDrS/O3Q47FMJTKylz5jabb+woUsU4uGpmhltTeGqE9VZaz9PN7ngmV36bEREREREREREREWVERHg4mC/F/T5G1QEAvLAwPvQlVhRPiCkSDcHI/5vTpTAZIEXBaOtWmId7PMCIAkiWi6O8RKGsGOjoMo//9/Ja/CCzTUqLZiFgb2AokX7mPnPB1iboYACqxH2/G93RBix8B3j5UbGMmnakecSwMcD4icDqpa7nGzOPMy9Nuo5+9jgIeP/VnpdHtr+Gh6u+YyxaCDfgS8tQWXE0FC0nrG+Ux61bCa116h6UFoh9uCUAwB//IY8YPlYcNXPoOjyKXY3jPljlpGG5SVp+pP2Y1hpYvtD9jPaLcy1+2kzg2fvd1xvP3ofFDUVLi4qqnj937VomBqM1bgH2GpepRuWeRgfPV2t0EJ6WqOYOc90jKp3XoVubgMXvA0GbxFyiRGzfJo/rs41xym4/m+e5aGgLAmEhQ26U+4+KqKDoriCw5EPgy6VAW0vyFY6qA8buHL/cznsCC96OGdwQajQGo63KzjNXs6pdONdh5/Cy5fJIXxEw+YD4ley2bzRgs605flmbELaBxHMHRAWAwWhERERERESUl7qDTgYq8aTn4qkU3iK1g5yxdMTRZ8hgNHIroiPo0uZHeORKEFK8MK2BpPXAq3iKL9vk8MzuUC4hpC9Ny2K8ME85NNBB57MUKvGUQkFBI/aKfiDSjohH6BSO2PcordedVgciOoyQNl+5ypUwjkQDWKXxTr9LaRmUguTiiRfk1i2U4H7daf1uyxIRsC282Ti8pmhgwJK5g5ZpW05ksi64Cl8EPjWOO6DycJR5HTwlnGxVFw01Dm8OZ6f3kt3xTKaDeYmIiIiIiIiIiIiySgpG86a234cqq4CuHg40b0Z9qNEcjFYgN7xKYTIAUJ2CU9D69X+bR4zcCSrVgXY5yueRx73aXJe5hqRRk3ApIyaUyC40an0jUD/J1Xz1G/+B/vWp8QuecLZxsFIKOPdq6CvPlLcvA1UNBWpGAI2f9Q7b8yDgsBOdTe+Q+uaF0Pf/vuf1pVtvFIPRVm3N/2vNTUKwT0oCGlNlfaM8rqMV2LQGGJmiwEcxGC3+tWBVXgldWWsMozmt/EOcJwSjrWsGrn3ewmVfVakLeMuQJqGbVrU/9n3ojjbonx7nfiaHnQDsdbBtEXXaT6DffhZoNvcfSUiJH+rsX6euPjeGVPf8efXmq/Bo1WnGYnOWauw1Lr+WmVRyEnqWzgBLt8GAA+kn7oC+6RLAEhKZiNIlgWA0eDxQ2oJWsQfYOs+T0dIeWE2Up/Ti96Ev+wbQtCk1FXo8UOdeBeWx+aG+g/p/l0E/cWfM8PquRmP5h+drPDQ72Qbml3bz7Waiw0a14Li7Z4nj1ewrocqGxK1HlfiBc66Avvln7hpgZ6ddgePPTl19RDkm/laPiIiIiIiIKAcFrU7jcClYJFlSvYkGh1CU9D0OFLIYjEbu2N18nytBSH7XwWjmDmw+NTg6WuayeCF30ncqLQNJt0cKCYsEoLW2aU9mgyk8yoMSm1A5KdjKAy+KVHG/YdJ3ELA6bAM40/UduCVvD+zDQ6XPyOl3Kc030VCxQMTZcVE4wf16vKC4RMsSEdAUMvdirPENDEYjSs7c5ufFcTOqj81gSwpXjU8ORtM68x0pOyPy8Uyu/DYjIiIiIiIiIiIiyogMBaMBAEbXAwAaulYZRzsJwcgHdjfgVybZBUJbFvDSw+aRoxuSqzyPxMsXam0SApDyiBRKVFM24M1bEbmS9Y2u5qmbtzgKRVNX3A9VO1Ief8TJUH951fF81a/+CvXnV6AuvBY45gyoH10PddOLUMUljutwNJ/qYcC4nXte7xX8FBdtu91YtjGNgTuZIm2LanLkUpjuCgJb1tmXueFHqZthp/kDUX6HD+3csQ8bqHzzF3j2R/Lt0L9+QuPNZc5mkSuCIY2A0I2qxvBx6QevBT6dJ9anHl0M9et7gGPOAA45Djj621CX3gr1u8fiBsaphklQd74JpDDITN0+F2razJTV50qf0KIJoUaUCP3VL360MI6JEuUk9KxxK9LW10DafjoJuNXLF0HfeDFD0Sg7yhMIRlPRR0mbWFnoz5NKUtAwkJrAaqJ8pCMR6MtPcxSKpv6+MH6F3/gB1M0vQc0yB07H1DlsDFAV28EBIjoAACAASURBVP+3PrRanOb9xvzeFrnVJgSjDS0HTpjS++/UaQo3fTOC5z6cijIt94VUZ/zc8bzVKT+E+tPTwEmzo8ftLoPWY+q7fS5UzfCk6iDKZWk4e065Sik1BMBhAMYBGAagFcA6AIu01ktTOJ8iAIcCGA9gNIC2HfP5r9a6MVXzISIiIiKiwU0K1JICVpIlh97YB5aQPafBK2HNYDRyxy4QJ1eCkOyCnEyk9YDBaNkn7iN2hEBI32n6wjzN7YkgjJDuQiAitcdh57MUKvX4jetrwGpHRAgD9HvLYjpq2QUNSu+3e/65wO32oFun+F062875he/cacBZzHQOA2MT3a9L79fcFgajEbnRFBaC0Yr6XygfvM/IpVQIRDowv2WOcdyE0t2xU+mEzDaoQEmBhiHdhfZIKyp8lRltj3R84FM+FHmKjeOIiIiIiIiIiIiIClKmg9E+ex/1oUbjaCchGPlACtOoLAW8niSvbC2eL49jMFqP5/6zEKedfXBmGpMGtqFEA7tebN0gV7RBvrnc6M2nnJXbbd+4RdSeB0HPPAV47Z/x6xvdEA0t+85P03/td+JUYM3ynpcz2+fg1tofxBRbvQ2IWDr5dTaLtgrdZXImCGSjg+Vz8fupm19ACEx0E4z2+Uexw9c3Yo8x9pM++r7GjIn5syxts+lqZVx+Xv2HPEFxSXQdH7sz1FfPTKg9akwD1Dm/gfXFAuCtpxOqo6eu2VdC7bp3UnUkpaK638uDAvMwt/xwY9GN2zVGVubPcpNKTo4JO7qATa3AyDR0NZCO5aqcBKO9ZrM+EKVTcQlUSan76ZQHHliw4I0Zpa38DiOyC6yuzo3bNogyb+E7wOa18cuN2wUY0wB4PGLYp7rg965Ct3pMmga890K/QdJ5IiB6LL1//eA4JgqFNUJC9vm/fuCJ+U2h334Jevt6ucIEjr/VgbOgDpwVrf/Fh6Gv+Z7rOgAAXzsHqsr8MF2iQsFgtEFAKXUogCsAHAnhO1dKfQLgDgB36gTju5VSwwFcBeA0ALVCmXcA3Ki1/lci8yAiIiIiIuoWFALJSj0JXGRwQAxccRHQQbHSHaBCg5d9EFJuXGGTtyvm7VtYCInyKZ7iy7ZSr7kXRnfglxSiKYVSJctvE/bVaQXE4EC/8D7Sye8pQzO2xgzvtAKwlPninmkdlgNMO+IEJWY+DM4k0eMMKfzL73X2vqRyQd2JiI7Aq2I7YNi2x2GgWqL7dTdhZwyvJXIuoiNoCTcZx8UGLJk7PWjhaZZEfc3b/jqC2hxyfnjNsRluTeGqLjIHowHREMRMB6NJ++Rc+V1GREREREREREREg48OdsaGthSXAFBAVyfgrwA624HSMqiSFF5Hz3QwGoD60Crj6MatgNY65qFk+aY5YL5GVRPnkrlubQbKK6E8HrnQ6qXiKDVpPyfNKwjxlpBla4IZaUe6NNt0Legb4qC7gsCmNXLhoLs+Cvpft8UvVFkLjHH2YCH11TOh4wWjDakBxmbuQUVq0rR+oTXSDfhhC1jXDOxkvBMxP6yO7foEID0hQibasoDt26Iv/OU9+66e4Us+jF9JWzN0JALldddXqF87WpuASARo324u4K9wVtGOfViM9Y0YWwOMrgLWt5iLLNuYX30XVm+Txw1cfnSwE9hg3q8DACZOtd+vuaAm7Q+dZDAaZpyUkrYkrKKq38s9g4vFYLRlGzO3vuaSpnaNFoe7r5Vb0hSMJsy/uqz3CESHQ0CbYaVf8WnqG0TkxK77JDadUlBCHzurQIPRyoqBYl9+/+YkSpjNOYV+Jk2D8hVBT9xXPm7fPcFzEKPrYgbt2/mJWDzfjqWd6gprBMPAkNLe7VF7l1y+osQwMM73qRL9jrolcZ5J7TZ4zlHR4JWaX7qUk5RSRUqpOwC8BeAY2Afh7Q3gdgBzlFI7JTCvYwEsAvADCKFoOxwC4J9KqYeUUrlx1yEREREREeWloGW+mbrEJgwmGaVe8w27bgI6KJYUADUQg9HILbsgpFy5AV/errTDlFsvrQc+VZTSdpF7pcK+p3sfIYVbSdMl3x55Ge+0OsR9V2kWQsKktgYi7WJ4pin4TfwOIvbBaOk6bnAr0eMM6b05XbbKbL5zu89N0uEw8DSU4H7dTZuchrQREdAS3gYNcxhlrU3AEpEbWmu80fy8cdwQbxX2qTgkwy0qXJXeKngMT5cFosFomZbs8QoRERERERERERFRyr34d+gTx/b/d8ww6GOGRv8+qgr6hDHQR1XDumgm9NrlqZlvJGIenoZgNLXj5lcpiKg9CGxuTflsM066Ab9aOAWtX3gI1rcmQh83Evpr42D95RfQwvei7cJnjjzVZUvzV7zsvGdWD81MQ9KkyaZrQc2Orhy6Kwh96dfsK5KCDw30oveA5QvjFzz5fKiiYmeV7n80ULd7/PqKTXd4p8kxp/d7WRdaLRa95638vgG/cau5/fXD0hsEoi0L1p1XQH9tXL/9mfWDw2H98mTo40dHh119VvzKImHg1ccTa8fT98I6ZVfo40ZBnzgWWLfSXNBhMJqSgtEWvgPPk3fgRzPlz/XVJcDf3jX3f8hFC9eal52yYmD4kAED1wuf6w7q1B+lqFUAjj0zGqaYqP2PgmqYnLr2JKKiut/LH26TAymldbjQrXDRfWDlltR/Rp0hjU6hG2F1GaA7WmH99kzoY0fEHrufOBZINryPKEHq5AsSnFDBo837qHzfCjV1CIHVuXHLBlHG6VVLoK+/MH5BX1HPNkV9SziW22UKsK853DUe03H1iMhmsfzKzHctTKvmDo1v3RFBzcUWqn5sYe+rInhneXR71WaT8V4+4Gez1hr6tv+RJ6gZARz97aTaqsbvBhz0VfcTDh0NzDwlqXkT5YM0PFaEcoFSygfgaUQD0foKAZgHYA2AckQD0cb3GT8DwMtKqUO11sLzCmLmdQSAJwH0PduqAXwEYAWAagD7Auh798wZACqVUl/XWjiSJyIiIiIiEljaQlBnNhjNFMICJBYaQr2k0JuBQtrmcQxEBlKYkE8VociTG0FifiEQyoKFkO5Csep/Rj2izR3ofIqn+LJNCvfqtKLhj9Ly6PemJ4hMWraibZKDwuymSxdpnp1WAJYQ0mMKcPMLwWKdViCvtwfxjjPEZcthyJ3ddx6ItKPcO7CHnT2nx0WJBp66CaTtXv+IKL5tIbmjQ42vfzCaEp8Jn+/dsyjdlnYsxIauNcZxh1QdnTP75ELgUV5U+2qxLRy7bjeHHF3+TamAsE/OlcBqIiIiIiIiIiIiIlsL3ob+0dHAY0ucBxRJhOAklYZgNOy4+bWhSw73+unjGg/NTm9oT7o1C5eFqw2noPW8F6F/f07vgJatwGM3Q/uKoC74fewE64XPbvf9oCqq3Dc2T8VbQuZjMrZva0Vlrbv+BblCWoaA3uVI/99PgI/m2FfkMBhNb1oD/ZP4Nzuri64DTvuJozoBQPl8wF9ehf7TRcDcJ/uPHDEO6psXAt/5qeP6UkHVjIAe09ATklVttaA60oRmb2zY0tXPaJy2v8ak0fm5TZICBBrS/RyyB64FHvrf/sMiYWDRewlVp393NrDnQVBjGpxP88Z/oP/3B84Klzq8Pmgzf/1/P8EvflOLV3Y/Ba8tMZc56z6N4UM0vrpn7i9P5/1NCNUbCqgByZT6uvPFetSv74X6yjdT1i41fCxw2+vQd14BLH4f6NrRZ7+tObZwRXX/4V87B+pHf0pZWxI2pH8w2q4hOei20EJAnDr7Pue3dafjM2qx2wf7AX3ld4F3zQ/gs1VaBviSPG4nGkgpYMIeUCedC5Vo+I3yQAl97KxIfve9c/O7jKjQ6UA79EVH2heqGgpM3AfqjEuh9joYAKBmfQdQCvqJO4HGz4CKSmDqTKiLroXyeBJrzGjzcfX9G8/H2SPvjBm+cks0BGzgcWi+OvVOC6981vt64VrgyBssfP47D55eIG93Bwaj4R9/tp2PumMuVGVtEi3dUc81j0aPv997AWga0Pcz0NZ73sFXBFQPB/Y6GOrCawfVOSoavHjXZOH6I2JD0W4BcKXWuqnvQKXULAC3A5iwY9BuAP6tlDpCa217NK2UGgfg3+gfivY2gHO11p/1KVcC4HwAfwLQfWfDiQCuAfArF++LiIiIiIgIXVqO5i9RpWmZpymEBWDoRrKcfn5hIRCKSJJLwU8Su+CigNWOYk//M+pSkJBPMUQi20qF8Mzgjm2ctDxK0yWrxCPvCwM2QWHZCKcoFQPNOmDB/FRm0+cmh9PlVhCcxK79dpJdtuzC+dyEkHXriDgLPE00GM1NIK3T8FUiAprC5t6LJao05nhFCkbL765ZlAlzm58zDlfwYHr1wEualKxq31BjMJq0vqeTfLySO8diRERERERERERERLY2r43elDj9a8nVIwUnpTEYbWRkI/xWBwKGc7KPf6Dx0OzUzzqTmoTLwtWGS+b66XvNhV98GPr8a2Jv/F3faC6/z3SnzSsIteXA1jiX3//9+Cc4+4LDMtOgFJOWIa8HqCiJ3tSOlx+JX5HDYDS8/CgQjNNn8vCTob59ibP6+lDVw6Cuecz1dGk1bSbw1D09L+tDq/GxIRgNAB54V+O6b+TfDfhdYY21hqwoAGgYlr73o7WGfvqe+AXdevFh4Hu/dt4OadtqUlbhrNyOfZjo6Xvwp0tPxdTfyaFO97xl4at7ep23LQs2tMg9LQaG6mmtgU/nmQsPHQ311TNS2LIoVT8J6tp/przejCkuBYqKgVDvg7m/1vo0nhpyYkzRwRiMprXGp+ucl0/HZ9Rs0xWwqmN9YqFoANQfn4CaekRijSJKJ6XgER4YbZ/kkPvc/C4jKnhvPgW02Ow4v/tLeM672jhKHf3txMMXTYTj6p0DnxuHd3QBm1uBEZWpa0K2rNyi+4WidQuGgYfmafzjA5tgtAH5qvqZ+8Sy6oLfQ42ZII53Q5X4oX78J+DHORAyTJRjEoyHpFymlJoEYOBjIX6mtb54YCgaAGitXwJwKIAVfQbPAHCag9ldBaDvGcl3ABzVNxRtxzyCWutbAJw6YPqfKqXqHMyHiIiIiIioh12Yll0YTDL8QsBISHclHO5BzkNX+BmTW4FI7t98bxdcZGp/iMFoOUsK2OrexknbOrtwvGR4lFcMCg1E2tEZMe9H/UJIWTrZfXbSemyaxrYe4bghl7YHUvs7rQAsLXfikz8jZ8uW3WfQkUCwWLr369L7NWF4LZFzTSFzJ4zaouEF8+Q3yq6m0BYsaJtvHDelYn/UFg3PcIsKX02R+fHzTeGtGW5J5kOCiYiIiIiIiIiIiNJi+aLk65CCk3xpCEYbOR5Q0UfeVFnbzc3R0UCffLamydz+2grDNa65T5or2bIOCBiuj29YZSyuRg2uW6B+c2L864ULVufvQ0+/FJahYRWIXitduzx+kBkAHXbWD0IvXxi3TDoCjrJF1U/q93pycLFYduGa/Nwerdoqh5kMDLdKqe3bosGdKeZkGe1nhYv9Y7zAs26j6oBSm35dyxdil+FAsc3uc8Ea583KlkU2X9/uowdse1tsrvNWp3NBy19KKWBASEV9V6OxbOOW/Nz+JCPQFb9MX6u2pv4zsgtGq974aWKVKgXU7Z7YtETpphSU8PhRK8+T0ZqFw+Wa9HSTJ8pp+osFtuNVw+QMtQTAaPP5i4Yu8/kOAGjMfPfCtLD7PbBwDdBp8xO+sk+3Rh3qAhoNCWvdMvl9Eg1iDEYrTL9E/+/2Fa31jXYTaK03APj+gMF/UEqJ0fhKqV0BnNVnUBeAs7XWnTbzeRLAA30GlQD4rV3biIiIiIiIBgraBF2k68baUpuAESlghuILRJyFrjAYjdySAnGk8KFs8HtttiuG8ABpPfCpNHSQJVekcKnuUCtpv5XOMIhSIeSsLdKCCMwdUrMRFCZ9Bp1Wh02IRmw75e+gA51iUGLuhHFIbdHQ6NJBcbpkg0a8cUL03Ao4DFOTgh7jcRN2FowTKkdEvZrC5mC0Gp/zzrNa6LRFBABvtbwIS3ji6eHVx2W4NYNDtW+ocXhzFoLRkg1yJSIiIiIiIiIiIsoFroNiTKTgJG/q+32o4hJg+FgAwMnb/2Mso3U00CefPDzPwnE3RzDlygi+d5+FF4TMjPoBp8l1JGJfcaCtf/lwCNgs3EXrNNinQBy/l0JFiX2Zm7ZMz0xj0mCl+VJpb6DV2hXOKpKCDwf65C378dXDgQNmOasrH8z8Vr+XZ7Y8LBaV1udcZxccMHBblCpaa+jbf5Weyt9/xXk7Ql3Ow9l23w9q7M6OiqriEuDI0+QC27ehPNKKU6bKwY3LNgHtwdzux/DsQrl9Zx084L2tbxTLqlnfSU2DCpA6qv9y1BBqNJabsxSIWLm9vKTaApe5itL+MhlSkJJHAeVvPJ5YpQccDTV0VOKNIkon5YFH6NOq83wb1CIEHVb744cs69ZmWLf8HNbsg2GduTesq8+CXvReiltIlBy9djms686HddZ+sM7YK/rvzL1hXfld6E/nRctoDf3UX4FHbCJdKqqAQ0/IUKsBDKkByitjBo+MbITfa/4Nu2Jzfm+Pui3bJL+Pxz7Q+HyjedzQcsDr6bPt2vSlnIQNAPsflWALicgNBqMVGKWUAnD8gMF/cjKt1nougPf7DGoAcITNJKcD6Buc9m+t9TIHs/rjgNenKiXcfUdERERERGRgF4xW4knPzwu/Vw4YcRoCQrGcBpyELAajkTvSeimFRWVDsSpB9Nm8sQKGsKOINl988KmilLaL3JNCqIJWAEErIIbFpDOITKpbCr8BshMcKAViBCIdxvUAAPyG9VgOWAugQ9oe5ElQol1AmRSMZlef07KJHN+kO/DUTZs0NIKW+AwPIupDDEYrig1Gi16GMsjzp1ZS+oR1CG83v2wcN7J4LHYrm5LhFg0ONUIwWlMoDb2V4xCDXG3OsxARERERERERERHlnDn/hg4mef1RCk5KQzAagJ4Ar+s2/VoscuXT+XON55ZXLZx5j8YLnwKL1gEPvKvRJXykDQMvc738qH3lnQOuRW/6ErCEB3ENsmC06jKFV37qwYQ4z1S67vn8fHCZHIwWvS6qL7cJZ+pLCj7sQ2/dAGwSAvcAoLQM6uYXo6FQBUINHQVU1va8ntX+Kg5vn2ssqzWwbGP+bJO6rdxibvPISsBfHD8MJBH6ziuAZ+9PS93oaIVe3+is7MbVzvoK7HUI1LX/ctUMdfENwOQD5ALrG3H7mQp1NuFzU39nQedoX4bF6zRuflVu255j+y87+i+/kCv79iWpalbh+e4v+72sD60Si85+IDeXlXTYuF3jkOvc7bdXb0t9eFxzh7m+6pIw1AsPuqtMKWD/I6GuuD/5hhGli1JQQn/yPM9FQ5O0PsfpyqxDXdAXfQX4x5+Bzz8CVi0BXn4U+idfhV74bhpaSuSe3vgl9AWHR4+/VywCVi+N/lu1BHj1cegfz4Je9B70PVdDX3+RbV3qphegyioy03Ds6O9rOIehANR3mCNhTv9rnm+QdvjFPxN7H09c2D9+Sd9/rVhW3fU2VFFxQvMhIncYjFZ4JgPoe7q5C8AcF9O/MOD1KTZlTx7w+j4nM9BafwZgXp9B5QAK6HEWRERERESUbp02IRclQjBKsuzCU5yGe1EspwEniQao0OAlrZfZCH6SeJTHJsypf3iApSOwYO6IwGC07JO+Rw2N5vA2cTpTwFeq+IU22YVhSO8jnezWAWk9Nk1jFwTWInwH6fz83bL77O2OM6TwODffpbRdlOq2k+79uttjLobXEjmzLbTZOLzGF+fuBiIHPm59D9sjzcZxM6qPlcP2KCmmYEMAaA5vzXjn/3z4bUZERERERERERESDzBEnQz3wEdSPrnc33YK3kptvloLRynUHRoU3GIs8Ml/nbGhMXxFL439fdN7O7lCrbvreq+0nCAy4Pr5eDk7ByPGO21EoDmhQ+OIPXly7x8dimRtf1ugK5/6yNJAUatUwDNCtTc4rktbvvp59QBylLrsLnpeboCbs4Xye+eK4/9fv5bWbrhCL/tHFep4rGreah8cENKaI7mgF/nVr0vWoG56R5/GPvzirZIO8rVR/fTe6r316LTy3vQ41bLS79vnLoW6bIxdYtxJDShU+uly+PXrZJuC9Fa5mmzG3zZGX9W9O7f9aRyLAgrfNhcdPhPLwFnGJ8nqBY87oeW0XjPbAuxrrm/NvG5SIB991/z5DEWCti92iE81C98TqkNznFoedEN22DPz37Hp4bnwOqsomLZEo2zweMRgtH36T2RHX53hdmd9+Fli5OHZ4MAD9xB1Jt4soFfQz9wHN5j62AICuTui//TEa8GdDXXYX1G5TbcukhRDubndctK09v7dJX2xKvP27jxow4IW/mQtWD4eaNC3h+RCRO2k6e05ZNG7A62Va66CL6RcOeH28qZBSahSAvfsMCgMQzrAYzQFwYJ/XxwJ4ysX0RINGR0cHPvroIyxbtgxbtmxBZ2cn/H4/Ro4ciYkTJ2LfffdFcXFqEmVXr16Nu+66C3PnzsXSpUvR1NSEUKj3RtX77rsPZ599tnHa+fPn47777sM777yDL7/8Ei0tLbD6PCVp5cqVqK+vBwAcccQRmDu39ykv+f7DnYiIiDIvKNxUW6SK4VXetMzTLhgtkeAQinL62TEYjdySwnDs1uVs8HvKjevBwGFhLXeeYzBa9tktV81hofdbnOmSJdXdZNMevyfOo7nSQAo067QCiAhhgKb3ZhcE1hQ2h8Hl0vbAPoBV3ldK49wEjUjfe2ckgWA0h9Mkul8PRNwFnTG8lsgZaTtpDlYyh1hpodMW0dzm54zDS1QpDqr8SoZbM3hUC8GGId2F9kgrKnyVGWuLdLySjVBeIiIiIiIiE/bPIyIiGnxUZS1QWQtdWQv8+VLnEy75CNj/qMRnnKVgNAAYE1qPDb6Bd3dGbWsHhlakpwmpsmorsM78HBajCQNPk7e12E/QOeBatBT2Uz0cqizHP6w0mv7/2Tvv8DiK849/5+5kFVvWqdiW5CbZFOMCprjSTDPYtFBCaIGYEpKQEAjwA0IzpgdIgACBQOi9mF4N2BhjwJhusI2LzlWSbVmy6p3ubuf3hyzpyrxzu6eruvfzPDz4ZmZn506zu7O773xmlAP4SZ23rblDQjSmPLFt6ilrifntlSUAVn5rviJf5DgIuXwJnTluivl9pRmirCLobfJIL22qWlGdfvcuLmKNyoriOC0Qtep7wN3DmOWBQ4ARY+n81T+Yq4eSSBYOjIn0QdjtkOWVwOYqxb5dHbvqK1DcF6gjQooWr5GYMjL1FutavIbu6yMGhLS3ViPrHDA4Ri3qxfQr6PpnZbsLNumHQcw1WOICjh+foHYlEZ2YT0dNIzAsht6xBiK0z+nRyGd2Hd87JaJMhiBgI+KiDSP9xkCB1FNitAihzPLHxXTmz5qxM8MkEl0/7WSxOkYyiCEje96WaBis3u+u7avxLrHJN+uAw0fHr0nxRjfW1mETwc/HtLL0YvUzNoZh4gOL0XofRSGfLTz6V5YfKoQokFKGvgUIffr1g5TSyqy00FEA340yTAB+vx8vvvgiHnvsMcyfPx8+Hz0BPicnB0ceeSTOO+88HHPMMVHv8+GHH8Zf/vIXeDxWXIqAz+fDn/70Jzz88MNR75thGIZhGMYqHsOtTM+O46Rau7Cjj8hGu8I9rROWMHrM/nZe2R7nljC9DUqGY0UWlAgoGUCokEgnEXIIfsSXbHLs0YnR4tkfqbrrvepoPAGBbFtO3NpDQR0DbUYL/PAr81TfTScWo75zKp0P+ohs2GCDoQh6oCSiXqOdlCZakb7lEv23lRBMUkgpSSllKF7DuhjNkH54pHoMSMHyWoaJTLvhQYu/SZlX5BgQlpZ64cJMKrPR7cKatuXKvAn9DyYFqUzPUYsNO6j3bUuoGK2NuDdLJUktwzAMwzAMwzCZB8fnMQzDMAwDAKKkDHLsFGDZ56bKS68nqncl0t0KfPSiWuwCxE2MFigjOrTlY3yTu7eynKsu9cVoP24yXzYnCyjtdqBANjUAusmsQJgYTVa71OXKhptvSC9k4vgSDHqhFrWOQcr8dXXpJUZrcktSpjSiRACrXOYro8SHgVASKQAYuqv5faUbAZJGACj2byeLfq35iVIVV5160n0F/boOACB9XmDBXMhlXwD9iyCmzoQYtW/E/cnXY3BvePAJHddAKv/bT2Dccn7Hv5d+BLQ1A0eeATHtRIjxB3a3pdql3r40hufKsgrl9VN+txDiN38FAJy4j8DDn6q/zeUvSxw1VmJMeWpFO3y3gc47aZ+QtmrOHeKg42PUol5MfmHXP/vJFhzV/AHeyZ+hLNpxPKdWX4klNTskXvpaYh0d0oqB+R2yU5WjqSHGoXjv/qg+bgs8W8htxLQTY9sIhkkkQkAQC1ik47oWtY0SLy2VWLaZvl8rjBQatHE1ndfG8b9MivD1/J7XUVIOjJnc83qiQEw7AfL5f4Wln9D4Gu4t+rNym3Xb03tMVEXIqyMxpBAQIuB7b3bRhfeZFt1OGIaJCluyG8DEnNCZ4tkWt1eVVzk9Q9M0o08la0zsg2Eyko8//hijR4/G6aefjnnz5mmDrgDA7Xbj9ddfx7HHHosJEybgm2++sbzPd955BxdccIHloCsAuPrqqznoimEYhmGYhEMJj+ItdKEm7bb5+aF7tJj97SjxC8NQtPnVUWupNvmekkGEynx0x4BDZMW0TYx1KLkXQEu5bLAjS/SJV5PIvl7vU7cn25YLm0j84+Jcm/oYcBttYYLATlTfTSc5o+R0qXQ+EEKQ7aEkojq5KCU7U5Yl/gZmJWedeKRbKXZTEc11nRLj6mB5LcNEhrouAHqxEsOYYWEDvRLiQU51oDETG/rbC2AjQgF04t54QF2PU0lSyzAMwzAMwzBMZsHxeQzDMAzDBCIuvx8YOMRc4cdu6hDZWEA2j2HnewAAIABJREFU74C86AjI2y6gC8VJjBYoI7p2261kMVeUE0YTxfYWiRMeMPcuGgAqikMmsn70YuSN2kLej1MSmljKftIQ+4AyPFN7Lpn/z3nm/06pgG6ydGWJRvqkIsJ9BQCgdr06/dd/Ce6zvY0QMRoA/LPmMmVRjw9YvSW9zCBUP6rUvG6X3nbIK0+EvOEs4JUHOq4vFxwA+f6z2n0Z918JzHu+B60FMHYyxFlXAgDE+XPocu8+2fHf1k1A8w7glQcg/3I45LN3dZd56nb1toq/edSUVarTF70FubLj/nzO8frjZ8LNBt7+IXX61Xcb6LYcNgqYUBGcFvSbh3IsfU5mOhD9CoI+/6tWff4BgEteSJ1+Emt+qZWYcLOBvz6v/45FfQEn8Sq/vjV2v889HxlYuEqd5/TvUGcceQbEiDExawPDJBxbx/LJKqRMr3H06i0Sk24xcNHzEv9dSJ8bnHn0NVp624HFdGwZPBz/yyQf45HZPa+kb3+Iax6FcMTp2U8kRk9UJh/Qtpjc5OpX03tMdMOb0bX/yXOC4y3ly/eRZcV510e1D4ZhooPFaL2P0Ej2Movbq8rvrkjbJeQz8XSWJPQtQbEQolBZkmEyiBtuuAGHH344fvnll6B0IQRGjx6N6dOn47TTTsPhhx+O3XbbLWz7pUuXYsqUKZYDoa666irIAK346aefjo8++gi//PILqqqquv47+eSTg7arra3F3Xff3fW5T58+uO666/DFF19gzZo1QdsOGWLyhTHDMAzDMIwJKDGGTkwTCyjJCEs3osfsb+eT1oIKGYYSKFqRBSUC6rwVemzojgGHSNJLEqaLbJEDQayKQwlncu15cQ1qzLGr+5ZXhq6rsLN8nK+hFNR+JSQ8krjeK47jLNEHNtiV5anvnGoyDur8RElEQwWKgViRvpFiNEIwSUGJ7FT4iL+JDt33JbdheS3DRIQSeAKA01EclkZd7yS9ljSTobT6m7Gk8RNl3sjcPTAkpyKxDcowbMKOAkeRMk933McDK7JbhmEYhmEYhmGYeMPxeQzDMAzDhCJGjIF46juIO9+A+MdrEM/8oN9AN3FbxbtPAsuX6ss44rQgXoCYpq9sxcj2NcpirrrUfs/z8KfW2hcqI5J3/SXyRu6QZ9k1LEZTIWw2TCvYgD08y5X5H68A/EZq96dA1m5VpztswJBCANUu85X59WI02dTQIZdSIKadYH4/6YhCknVUywdk8UtfTB8xSFu7RG2jOq+iWBMXtvgd4MuQ38AwIO+9FNLvV24iN60Bnv9XlC0FMOMsiPvnQ9w7D8K580R5wDGWq5GPzIZs3A65eS1dqCx250qhkazJR24AAAzqL3D9sfTv7fYCl79sBN2XJ5OLnqP7+GOzbEExhdLvB5bMUxcetS9EVvwWZu015AdPWR7prcLJja+Qxbc2pUY/iTW3vSuxqSFyOZsAnEQoaUOMQvEa2yT+PlcjUjKI6+Xf7o1NAxgmaQgIIsbOSJ/hDwDg9vck1m+PXK5QFxq06C39xu6WlLl2M5mJ3FYNPEFL5s0iXlgBse8hMWhRlPsXAjjqt+HpAE5qnKvcZksT0OpJz+OvJ6LtSQFOZikl8N7T6oJDRkLk5Ue9H4ZhrMOzJnsfK0I+DxZCDJFSbjS5/RRFWoEizRnyeYvJ+gEAUspmIYQbQE7Ifuqt1BOKEGIggAEWNxvZk30yTKy4+OKLcc899wSl5efn46qrrsIZZ5yBYcOGhW2zevVqPP7447jzzju7VpNsb2/H73//e7S0tODiiy+OuN+VK1fihx+6X+DOnDkTzzzzjKk2v/baa2hv757IetNNN+Hyyy83tS3DMAzDMExP8BDCo2yRo0yPFdSk3WhEHUwHZsVolNSGYSjaDLXQJ9Um35NCIktitDgFyDKmEUIgx5arvB7U+0LXMegg3n3Rav1UX4w30fwOuQqZmhACubY8tBhNFvadHBkcBfVbUNdK3fjDivSNFLJZHN+0EuddFdEIT3Vjhj4iG+3So9jGmtyNYTKR7T51tH8/ewH62LIVOb14pXImpnzROF95bgaAg50zE9yazKTQUaKU9FLj03hgSL8l2S3DMAzDMAzDMEw84fg8hmEYhmEoRF4+MOnIrs9yn2nANwuUZeX9V0AcdLzpuuXn70UuZI/T1K6S8g7pmq/j/WxlexXW9AmfPuNK3GPjqHhvmbVJrRUlAUIZj/oZdRhtIe+Wq13KYjpBT8ZQVoHxG7/H8uw9lNnLNgF7DU1wm6Kkapu6bw0rAhx2AWNzlfnKfBHiICjZHtDrhXsiOxeyqBTYXtOVNty7niy/mhDWpSK682eopDEQ+dnb6ozG7cDaZcCue4XnUXKsTnbfB1j5DZktTr0YYsSY4MRozmneduDrBUADPZVUxLJPl1fQeV/Ng/T5IBwO7D5IX82Kmo6/l+7vkigoOZXDBpSFzuKt+pmuiK9J5ugXPjV6D0/oFOxuPloucerE3hcb867J8dTwYpDCx/oYTZdYuApo01w2C/0K25JzAERev9g0gGGShc0GGyFGSzf/1zs/mmuwUxMaJL98X7+x398xxmYJKJMsln7U8zqOOxeiIHyB4kQjyiuUZ59hmvuyxWuAw0fHr03x4v2fojuhDnYC2VkBY8BN6sUFAADlI6LaB8Mw0cNitF6GlLJGCLESwO4Byb8FEFFJKoToC+BERZZKWRl6F6m2EuhpQ7AYLRZqzD8BuD4G9TBMQnniiSfCgq4OOOAAPPfcc9qVHHfZZRfcdNNNOOuss3DSSSdh2bJlXXmXXnopxo8fj2nTpmn3vXRp8ApUoatOxmPbBQsWmN4HwzAMwzCMCjchRou34ISqn2oPExmz0hWf1K+oyDChUMelFVlQIqDOK21+K2I0fsSXCmQTYrQGb7iMAoh/X7QqHEuWJIyScunIISRuOXZrYrRo9h1PyPMBca10++lrqJW/Jylo9FuTilkpH811PfS8GEhh1gDUtoevDdLGYzSGiUg9cZ0qdFgNxkiz6CwmrhjSwML6d5V5/e1OjM+fnOAWZSbOrGJAMd9LJUuLF7rnJSrZLcMwDMMwDMMwTLzg+DyGYRiGYSxhs9F5JkVJ0ucDVn0HfPVh5MJ2u8mGWUPY7ZCDhgKb1gIAKogJry5CDpUqrLUoSQqS3tTSk3yDcHe/75btHmDbZnW5st4tsDJFeSUOWzkfzxWcqsyu2pb6YjQpJVZvAW59V933RwzY+Y+dx44p/BHiIKpd6nRHFlBcZn4/6Up5RZAYLVuzUO66uo6/kRCpKyba2iSxeA3w/BJ1HxICGFqoqWCzpm+1NSuTZYTrj5h1NeSNs4AWhdFo4BBg+KjwbXL7Qu65P/DDZ9q6w9ry6RtAyw66wMTDLdWnZZ9pdJ7fD2zZAJRX4pBRAg6bhM+gi983X+LaowFnXvL6lt+QqNK8rrXbQtqm6Stiv8Ni1KpezoDBYUlHtHyIGwdcrSyeTnJGs7R4JCk7C+XwPQQpPGqIQSje5gaJf7ynOVABHNqyIDxx4hE93znDJBshIIgYO8NI7XuyQNraJao1w4BABjs1mdWuyBW4W0yJ0WRrM/DTF0BdTcSyTIZROhwYMwkiCsGe3LCqx7sXE6f3uI6YMPEI4NEbw5Knt3yIfxWrFwCqqpNIx4WU10YZGlkRGjKtuf8Sex8c3U4YhokanjXZO3kaQODV6f+EEE9KKTdF2O5GAOEKdHNiNJPLqATRBiDwMR8ru5mM5JdffsGf//znoLSpU6fi3XffRb9+5g6L3XbbDR999BGmTZuG5cuXAwAMw8CZZ56J7777DiUl9JIWtbW1QZ91gV6x3JZhGIZhGKYneAz1LUi2LUeZHisoiU2bYU0cwnTjNi1Gi7CiIsMEIKUkBTrJkj9RUPKq0GNDJxFyiKyYtomJjlxbHhoQvgxovU+9NKhVcZn19ljr67l2tRwr3kTzO1Dfzep3jvffwCqUoIy6VlLCtGyRA5swHzhPj2+sLfFoZTzkjeK6Tv0OdjiQby9ALcLFaG4eozFMRChBUlHWAGU6FeaQPqFZTCJY2foDtnjVE4b2d07n8WuCKHSo3w01EOPTeKATo6XaWIxhGIZhGIZhmN4Lx+cxDMMwDGMZoRGjmUDWb4G84gRg+dLIhYEOg068KKsIEKO5lEXe/rFjIr4tVMaSArT7JDY2WNumsjjge3y/yNxG7oD30Vs2AJJ4+1XKYjRRVoFTGm/EeeUPKfOf+sLAr/aOj+wvFvj8En9+TuK/C+k3nBUlAnJ7LbDDwozqSGI0StI3cAhEnOSIKUVZBbDsi6Ck22uvwhWDbg0r2toObNgODLO6lleCePoLA+c+IeH102UGO4HsLM05dcsGOs9HxNQ8fze9zf5HA1NmQlxwI+Q//xqcZ7dD/OFmsp+J82Z3XLMIIZuSec9ps0X5CPN1RUAUDYI89WLy+8vrTgf++xkG9bfh7zMF5rxFH9v/mtdx7L/wextmjkvONU/XvgfOCG+TXDCXruwItaCSCaGsIixpStuXZPHrXpf4/YESA/un3rgoWlwmQwTGDwXOniqweA0hRrMWThjGv+YZuPQlfYTR0U3v4LCW+WHp4szLe7ZzhkkJBGxSLQaU1P1HCmL2nNI3GyghHr9Lvx/4ZkHkStytQL7ONgvIn5Z0jGWsjN2ZzGLAYOCe9yGG7mp6E1m/BXjytp7td99DgKkze1ZHrBg9Edh1fIfAPwCljHQnFzwlcdoEiX456TUmilb+7wwNZdSJqY8/L6p9MAwTPT17Ws+kKvcBCPTtOgG8K4QI15vvRAjxNwBqpSegV3B3EM1VIn1G6gwTRy677DI0N3c/QHY6nXjllVdMB111MnDgQLz88svo06fbXLxp0ybceGO4xTeQwH0DQFaW+QlJPdmWYRiGYRimJ3ikemJtdpyFR6TAyB+DJZAyEK/RrpU9hZZlGLP4pBd+qPsWJR5KFpSMKlRIpJMDslgiNaCuEZQsipJRxQqroolkSQP7iGzYLD6mpr6b9e+cWjIO6m9ACcooUZhVyZ3Z81AkrIjRohGeUu3JsefScjceozFMRLZ71UvdUkKluE7MYXoNCxveVabbYMOBBUcmuDWZS6FDPVukwZtIMRo9nki1sRjDMAzDMAzDML0Xjs9jGIZhGMYyESRF0q+x4QCQD11rXooGAHW1kctES4AMpMK7jiw2b3n8mtAT1m+nHWUUlQGvueQ//mhqG9kW8L672kUXVMhVMo6ySuTJNkxtXazMfvVbwG+k7nSxl77WS9EAYEQJIP9FTbEjoGRWO5HVxPGXKbI9xbFzauNLZPFLXjQzlTHx1OyQmPW4XooGABUaqZv0+YAt4Yv/deENj5WVNfT5G+WVEDe9CGGzQZzwB4h/fwicenGHNOuMyyEe+ARCI9ASex8E8fBnEOdcR+/DCr+7Ojb1BGC78HY6c+U3wFfzAACzj7PhnYv0cWgtHuD0hw20ehJ/nlpfJ3GjRoz2632D4zGklMC859WFx06GyE2tWNiUpaAYyA1+BiQA/KH+v+Qm17yeutexaKiK4Arae2iHmG/+pTYU9RVw5qljg3oiRvtxo4woRbNLH17eeCqyQuO/jzkHonJ09DtnmFTBZoMgtAopPHwOI9I5pZPKYkBQsYafvGquErf+xCMNA3LOWSxFY/Rs3QR5w1mWNpH/vZ7OnDoT4uVVEH+4GTjitI5xd+B/R8+CuPIhiDvegMjqQ9eTQIQQEP9ZEJZuh4FfNb5ObvfPD9Po5LQT6hx19dECN/2Kjn8OXStAUmK0keMgIggbGYaJPY5kN4CJPVLKBiHEOQBeCUgeB2C5EOJBAO8C2AwgF8B4AOcCOCCg7EYAgcvKqdZXCV0GIJqZk6HbWFhagOQBAPSTUTUjAdBXbYaJIytWrMBbb70VlHbbbbehtLQ0qvpGjx6Nyy67DLfccktX2v/+9z/Mnj0bhYXqgZZhRP/CoCfbxoKff/4ZP/74I+rq6lBfX4+cnBwMGDAAe+yxB/bcc09kZ2dHVa/P58OSJUuwdu1abN26FR6PBwMGDEBFRQX2339/5OTkxPibMAzDMAxjFY/hVqZn2+J7nc61E2I0i+IQpgMrwpVoBCpM5qLrWzn25MifKCgRUuh5RXcM2AU/4ksFrIrF4i2CsCpei7eojUIIgRxbHloNc48GHcKBLJv6JaHV3zRZ35mCEje6/epzGikKs9gXaalYC6SUdGBCWHkr13XrwlNSBGfL04zRzMvaGCZTqfepBUmFWYQYjSCdVq1k4st271b80PyVMm+vfpPgzErRpd17IU7iOK73bbN0je8JuvFBqo3FGIZhGIZhGIbpnXB8Xs/g+DyGYRgmYxERFvfaupGUGUkpgfmvKPNI8p3WyltAlFV2Tb0frhGjvfCVxJFjUm+BHLOT7gPpFKMFyc4i4Q4UoxG/U9EgiOzUijtKCuUVAIDRnhVYnDdVWWTxGuDAXRPYJgu8/HXk95qVJQB++tJaxf4IC8RSYqsMke2JsoowDUiZrxpZsh1eER4H9JUrIc2yzGvfSfhN3KZVlmjOp1s2ADrBpkqy98lrZHHxu6shHN3xg2L8gRDjD4zcyMA6ho8CZl0N+f2nwNfzLW0bVle8+vQeE4Dl6vfQcv5ciEkdC3QdNVbglP0EXlxKH+uN7g4h6PHj49JSkrnf0m0qzAMKQmVUq76nKxu+R4xa1fsRQkCWVQBrlwWlj2hfS27z0lKJh85MzDv1RLB+u7rvDS0E1t0eLgR2Eq/yG1qjjw16ycT195ptt4ZL0QCIPdXjDYZJO4SADeqBRDrF3lVtM9fWSk34ofzoRXM7iyBGw6rvAUpexDCBrPwGsmEbhDNyXKyUElhAP9cRk6ZDDBoGnHEZ0mmkILJzIUvKgW2bg9IrvfQx9PJSieuOiXfLYouLWDN214HAGZMErnlNfQ6bWBny16x2qSsaOS7qtjEMEz08a7KXIqWcK4T4K4B/Aeh8K5MP4PKd/1HcC6AAwNkBaWkjRpNSbgGwxco2veUBBZOe3HPPPUE3rSUlJZg1a1aP6rz44otxxx13wOvteBje0tKChx9+GP/3f/8HAHC5XKisrCS3P+SQQ5Tpjz32GABo20cdT1VVVaioqOj6PG3aNHzyySddn63cuG/YsAH/+Mc/8NJLL6G2ll4dKzc3F4cccgjOPvtsnHTSSbBHWLkLAJYvX46bbroJb731FhobG8l6jzvuOMyZMwe77bab6XYzDMMwDBNb3EabMt2qCMQqlHDFiuCL6caKUM4nIwQOMUwAur5FiYeSBdWe0PMKdQzYYIctUkAukxAsS7kIkVOssNqeeIvadOTazYvRdO20KtdI5ndWQYkbqXEGLQqzdp7LtfdTpvvhg1e2o48wN7Gt1YKELJrrOi2Cy9OM0dRjRoZhOpBSot67VZlX6BigTBdkKEf6BGcx8eXThvchiSC+gwpnJrg1mU2hQx3I5ZXtaDGa0M/eP+5toMYrdjjgEFlx3z/DMAzDMAzDMAzH53XA8XkMwzAMYxFbhDiM6nWkGA31W4DWJmv722eatfJWCBDUjPX8TBZbuzU13/WYnXTfyahSoLDvzjFTtcv8hl5P1z8lJbCi/uaZRkWHjGdS2xI8UniOssiqWokDd03NuVq/0EPcLiYMl0CD+j0qSZRiNJEp/WrM5LAkGyQk8f65rhkJW+jHCmb6DwBU6HwL1S79xgoxmty4mi4/ZqKZJpljzKQei9Fi2p7QegkxGjauCfo4qRJ4cam+utVbJJBglcUqzYzXySMUiZvWKBI7EPH6nXsrZcPDxGiT22gB5o62jvNQSX68G5YYthNhfWUF4WnSMOD0N6BjinkwDT2YLrHaxIzvSW1L1BmjJ0S/Y4ZJKQQEEWOX5PUxLLHWpLx68kjNdbZ2g7lKIonRNqwyVw/DAEDjdsCEGA0NW4HmHXT+mEmxa1Oi6V8YJkabTF1/AazZKlPyvoyioVWS45XKEgG7TWDqyA6Zeygn7hPyHSnpYjn9/o9hmPjBsyZ7MVLKewHMALDSRPFmABcCuBjA4JC8GkX50Cu6eoYMgRCiH8LFaCoBG8P0at57772gz2eddRb69Alf7cQKAwYMwLHHHqvdTzoipcRNN92EXXbZBffdd5826AoA2tra8M477+A3v/kNNmzQ3yj7/X5ccsklGDt2LJ599lky6Kqz3hdeeAFjxozBPffcE9V3YRiGYRim53gMtzI92xbflaMp6YYVwRfTjRWhnE8qVsFjGAJd34q3QNEqVHvc/lAxmvoYyGKZQMpASa3I8nGWclltj1WpWCyx8lvojmHLMjiLv1G8occZarlXm58ShcXub99mQXZmZTzkjeK6Tovg8sjv4LbQfobJRFqNZrRLjzKvMMtEAAjDhOA1vPhsxzxlXlmfodgtd2yCW5TZFDqKybwGL7E0YoyhJKU59ty0CZhiGIZhGIZhGCa94fg883B8HsMwDMMEEGmBumqXMlm2NEKeGy7/0TLjLIgC+nlujwkQo+Ubzcgm4u6qTE5uTzRUuyaPAH43Nfw582XTA9KqiUmsKtrbA7ZzqcsE/JaZjMjOBfoV4NeNr5Bl5tEOvqTi2ibx02Z9mVP2E6g0NgLedn3BUCKJ0aop4d4wa/tJU0TlHsr0S+rUY/42L1BL3zYkjWe+NCdrrNCc1uUDV+k3VojRKLEeAIhhu5tqkxnE0b8D8gujr+CAYyCGj4pZewIRx59PZ37/adDHMycLpfApkMtflli2KbFSUJdG9nnx4eFjD7nsC7qyQ0+ORZMyB8U1fErblxgp6IvCQwtTUxobDZQgpDBk/VX5ygOQxw2B85nrleXrezBdIpLsNs9owWEtCjHjfofG7bzCMAnHZoNNqg1oFy2shM+fHucd3fWskwH5wNlTNHFBK78xtzM3HQMspYS85Vxz9TAMALOL/8pXHqAzR4wBdts7Ru1JPOLsv4elHdP8Dlm+zStQ86/ZkH5/PJsVM3TPtjrv0f52hA2hYYvH7AnsURaS+Mu3ynoEi9EYJik4kt0AJr5IKT8QQowBcDyAmQCmAhgEIB/AFgBVAF4D8IyUsgYAhBChd4oqR36oRtfqEhWh5bdLKest1sEwac3GjRvhcrmC0qZPnx6TuqdPn465c+d2ff7iiy/g9XqRlZWeE+Z9Ph9OPfVUvPJK+Muz0tJSjBs3DiUlJfB4PKitrcX333+P5uZmU3W3tbXhV7/6FT744IOg9KysLIwfPx5DhgxBdnY2ampqsGTJErS2tna16eKLL0Z9fT1mz57d4+/IMAzDMIw1PMTE2uw4C49o6QaL0aIhVPykwystBhoxGY2ub6WaGC3X3leZ7pFuGNIPm7ADAHxSHTznYDFaymC1b8W7L1qXhCVTjGb+t8i1qY8ZAMi1+B2SKYNTQbWHkj2SorAY/g5t/lYUOIpM1dPqNy8h8xnWxWi0CC6P7O+UjIVhmA7qvXQUQJHDmhgtPcKymHjzbfNiNPvVqyUe5JzBIqwE09/hhA02GAgPqqz3bcMQxD9IhxqvxFsSzDAMwzAMwzAMA3B8nhU4Po9hGIZhQrDpxWiyZh1UT7zlLecB2yJYlwIQ580GzrjcUtMsU14R9PGFTWfgV0PDr/kbG4B2n0QfR2o9y3cRr7MqSwQeOlNg10HAq99IlPQDzjnAhpP3DRSjuczvyBuwmBAlICq1Om2q9yKu/h/6XXUyDmhdhEV5B4Tlv7BU4qlzJRz21OlPhiGx1xy1iKKTa48RuGamgLzsArrQaX8DnvtneLpKZrUT2bwDaG5QZ2ZQvxLnzYZ8ZHZQ2iXb/407Si5Tlq/aBpRGkFslkpodElubzJWtLFH3ffnpG+QE+y5UUr5ql7KoOFctL4oWUV4JPDAf8olbgeVfAZvWBhcoKgUcivteZwkwaTrErGti2p6gtlXsAZx/A+TD6u8sv18EsVfH+WhAvsDiK224/g2JJz+noxkOudPAuttsyMtOzLmKEjUcvgdwxOjgNkgpgRfvVW8wYgxE3/4xbl3vRpRVhMW1CABfNxwPZ8FXym2ufV3iNxMkdhmYOteyaGkgQuicud3fTS58HfLuSzrS+6uvWVQ9Zogk4V29ejTsitgGcftr0e+UYVINISCIKLsWnx2z35S46Vepf85Zu5XO22UgMKlSYPaxAuVOYjw073nzO3Nr5hu99hAtM87OBQp4YdiMxPDTz2Vk5ChXWfUz8MStZL7472fpHQN5yEnA9WcEJWXLdvywZh/sOVItLLzqi0o8WnAzxLnXJaKFPYIab2TZgXJnx79P3Efg9Qtt+M8CA7WNwPQxAtcfEzIW/+A5eicszWeYpMBitAxASukHMHfnf1qEEEMBDAlI2iSl3KQoujzk8y4WmzUi5HOKrgeSeHx+iY2siIs7QwqR9Jcsn332WVjafvvtF5O6991336DPbW1t+O677zBhwgQMGTIEVVXdqx/dfffdQSsrPvfcc5g8OXylqpKSjhvBadOmdaWdeuqp+PLLL7s+B9YbyJAhQ5TpZrn00kvDgq5mzpyJ2bNnY8KECWHlDcPAF198geeffx6PP/64tu4LL7wwKOiqoKAAs2fPxrnnnov8/Pygsm1tbXjggQdwzTXXwO3uWC1rzpw5mDRpEmbMmBHlt2MYhmEYJho8xMqVyZLMUMISRo+V342SQjGMCqpvZYucLtFYqpCrOW+5jTbk2fsBAHxSHTxnF/x4L1WwKneIt5TLav3JlITpZGeh6K71VsYBWaJPyh0/VB+ihCLUuc5yXyQEjbp9qMtaEKMR5zQdOhEcKa+1IGFlmExku08dpWSDDQUO9SrQQjnNB2A1GgMAn9SrVw/MFjmY2H9aYhvDwCbsKHAUod4XHvFT76tLSBvI63eKCasZhmEYhmGYzILj8xJHsmP0OD7PPByfxzAMwzAhCL0YTSWokTvqgM/eorepHA3bkxFkOPHAOQDIyeuaUD6iXT2ekBIAWK/HAAAgAElEQVRYv71jInsqUbVN/Q6qohjIcghcNUPgKmKYIDe7zO8ocEJ9tVqMJsoyR2AVkbKOxVcmt36pFKMBwIfLgaPGJrJRehatBprUYacAgOo7bRjUv+P+xfh6vrpQvwIIZ4n6zahfE99Ys57Oy6R+NWy3sKQB/q3oazSjxdYvLK9qm8SUkakjHXhuifl34hXF6nT5zpORN/YHx9RIKcnzEobuarpNZhEVe0Bcb6KdyWD/YwBKjPbaf7vEaAAwvFjg8VkCIwcYuP4N9d+urgV460eJU/aLfz+TUsJFvKI970DF/n/5jq5s9KTYNCqTICSU/WpXYtTuwIoa9WZPfSFxw3Gpcx6KloYW9THgDAgblO880Z3uV4vR6ls6+rJVIUyLR2JLBLHkQL8ihmnsZIg+2Zb2xTCpjNCI0QDgsc8kbjze+jGWaKjr2ROzBH47JcK9NAD5+sPmd6YRo2nHVcfMgu3if5nfD9NrkNtrIY8fRmSaEKO9/wydWTkaIju9Y96EEJDDdwfWrQxK36N9BXJsPriN8LkVr+cfC3x4EJAGYjRXnfpvPLwYsNu6z63H7ClwzJ70vDL55qP0TsrjvxgtwzDhpNbMLyYVOCzk8wKi3LKQz3sKIfKklGZnmu0fob6MZWM9MOLv+lVImJ6z9hYbKpIsfN64cWPQ50GDBqG4mHj6bZGxY8PfIG3cuBETJkyAw+FARUVFV7rT6QwqV1paGpQfSr9+3S8ccnJygvJ020XLBx98gHvvDV7l4rbbbsMVV1xBbmOz2TB16lRMnToVc+bMCWtnJy+99BIee+yxrs/Dhw/HggULyO+Rm5uLSy+9FFOmTMFhhx0Gt9sNKSUuuugirFy5ErYIq4MxDMMwDBM73IZ6yaFsm/q6Hyuoibtuf1tUL/oyHSsCFQkDfumHPcWkVkxqQstzzMuXEkWORgjVZrRGFKM5UkzslMlYlVFZLW+VbIuyiXi3R79v823VtdPKd0imCI7CqtyLFo1Y+27ZIgc22GAoVly0cq22Jjy1LkZrI8Z/ObY85NitSeUYhumg3qteHq3AUUTKZGkxGpPpbHCvRZV7pTJvYsE05BLnaia+OB3FajEacfzHGur5TTLHngzDMAzDMAzD8XmJI9kxehyfZw6Oz2MYhmEYBZGuOdWu8LR1KwC/n95mRHIMUUIIyL4FXRPKK7yEXAdA1bYUFKMRk+4rzYwzq9USOCVeDwBAetqAump1GUKqkpHsnAi8p4eeCvbjJomjxqbOu8UXl9KT4LPswMCdzl7Z0khXkl8I2IlYLZ8mDqLGpU63O4Dicnq73obiGBIAKttdWJYTfo6sSszrLNP8uMlcuYLcDlG4krUmpk8GihoBYHst0E5Y/coqzDWqt6CTENRuUCaPHSygW+jtx03AKbFxqGup2QG4idNEZYniXFn1E1mXGDE6Rq3KIKi+4/dhbHErVtSo31//tKl3LBLYoH5tD2dg2GbA+clpqMVoPgNobQf6WnSVrYuwbtv05nnqjBFjrO2IYdKAEd4qrO0zQplXvQPY3gIUh/tiUwavT2IHcU4ZUmhy7E/db6lo9yiTpZTAWt21MoUMzUxi0c3pM3NZ1/SrZD3XiTmlw8PEaAJALjxwK9RDbSIXxsY1EGkwZ3Jbszp9iFOdTrKdsOYCQEkG3cMzTArBb4iZUM4N+fyIqpCUshrADwFJDgDqZT7UTAv5/K6FbRmmV7B9+/agz4WF1JNv6+Tk5CA7O/gpU+j+0oU5c+YEff7DH/6gDboKxel0KgOvpJRBdTscDrzxxhumgsc6A7o6Wb16NV577TXTbWIYhmEYpud4DPVLfqsSGKvkEFIlP3xRCT4yHWqCNIVXtkcuxDCg5TxW5EuJQicwaguQIfmkelVRh8iKeZuY6KDkmWT5OMtB7MKOPsJ8BEoyRWG5GkFgKDqJhpXvkIoyDkru5ZFuGDI8gL6NEKZZ/W5CCPJv0Oa3IEazUDaacZObkLTl2vLIv70VWRvDZCIqWRIAFGUNsFyXNBU1wvRmPml4h8w72DkzgS1hAinMUs8Ma/BFiDyOEZRkNRXHYgzDMAzDMAzD9D44Ps8cHJ/HMAzDMApEJDFauFxMfviCvsqZZ/WkRT3j8FO6/pkn2zDIV6ss9oJGHJUMmt0SW5vUeUqJTCifvW1+ZzvFaKhdT5fJNAGRBpHbFxACxze9SZa56e3U6k/LNHKbLDu6J3hXu8hyYsZvaTGaXx3bBQCoIYSEAwdDODJoUUziGKKEjXPeSp0+JKXE44vNteesKQIOe/g5Svp8wGYTwsZQyR7VfwCgLLOEjSJXE2NGnL9njgUG9ac3uzlB5ypK9AkAFQqHu3StoDc47BQ6j1GjuYbPqlhL5qWaoDFaGogQusKdr+2lzwds6V5gwOnfYbkuHZF+x1kNTyjTxYwkjp8ZJk6c0vSKNj8Vzzten8S1rxvY90Y/Jt5CLzpTaCIUXLY2AxvXWNi5WoyGuhpaHAsAh5xkfh9ML0P3rEA/7pOGAXxO607E0WdH2aYUgxgX/cq+WJnebstGjaNUf8ylCNQ4pUhxfpLtHhgPXgNj1gQYJ1TCOHUPGDefC7l5LVBDPBsaNAyCF/BhmKTARx7ThRDiAATLzVZKKRdoNnk15PMsk/sZBWBSQFILgA/MbMswvYnQQKjQlSF7Smh9dXWJmeQSS3744Qd89tlnXZ/z8/Nx++23x6Tu+fPnY9my7tUMzjjjDOy5556mt7/wwguDArreeOONmLSLYRiGYZjIeA0v/FAHkWQL9UrUsUInvWHxhnWsCFSA6CQqTGbiJo5HK/KlRKETAgR+D6r/sxgtdbAqd0iEDCJdRGE5dvNSOZ1Qzsp3oCRkyUQ3zlDJROlznfXvRv0elMykp2W9UVzT2wihao4tj/zbe2U7jx8YRkO9Vx1JVehQi5R0pE5IOpMMWv3N+KpxoTJv19wxKM8eluAWMZ0UOhRR9AAaCDFirHH71dfvZEp5GYZhGIZhGIbJHDg+LzIcn8cwDMMwBJEmOW7dCOntXuBRrvgaePUhsri48iGIiUfEqnWWEeffEPS5ot2lLPfoIolv16fOWx+dFKAywussuWEVIC18F+/O98oK6V0Xg/h9RyDijjfQV7biwJZPlflNbuDhT2lxQiKRUmLhKjpfBM6d14mrfnsl4CBitUJlVoH7p/pVaQW9r95IQTGgEFtVel3K4l4/cP/81OhD17wW+XyS1wc4/0CBO04mZAzvP21uZ76QBYSrXepyOXmA0/qiZ+mOuPF5dca2zUHX5k6yswTmX6q/rt/9Yfz72QVPqffRNxso6afIeOYOdUVFpRBFg2LXsAxB9O0P9C9S5h351Mk4cFf1djqhXTpRT0xxcHa+tt+6EfB3L9xa6G8g63rrB+tjxapt9Db/rLkMv26aG5YubngGYuxky/timFTnnMancdOW68j8VBSjnfWoxM1vS3y7Afh+I13OGSEUXEoJee5EazsPHRd11vX4TeQm4s43IfJj+y6ASSOERowW4RmB/OdFdOZ+h0JMODzKRqUWghCj3VpPH1c3l1wJtFmb/5cMKDFaQZ5CXH396R1j7tU/ANs2A5vWAu89DXn6OFICJ2Y/FcvmMgxjARajMQAAIUQegAdDkq+OsNkzAPwBn08UQhCPAYIIXUruRSll6mtCGSbNELoBfJrw0UcfBX0+/fTT0b+/ZqkOC8ybNy/o829+8xtL2+fl5WHixO4b8U8/Vb/QYxiGYRgm9nikelItAORohCKxwKzAiDGHVZmcT2pWVWSYANr86r4V73NENGTZski5WeAx4jMoMVoGrRqa4ljtX4mQQViRf+mEY/HGktBMU9bS903B80GORt6oumZS19FopG95xL6tXKutCE+jkZW5Ned23fFECVkYhgHqCTFSYRY9k0RoV9RjMpXPd3wEr1QHoh1cODPBrWECcRKiw3pvYiK4qWclyZTyMgzDMAzDMAzDxAqOz9PD8XkMwzBMWiMiTLWSEtiyofvj3NCpOAEccCzE0b+LTbuiRGTnAsVlXZ8pCREAPLAg9cVoNgEMLdRvK1+819rOvJ6O/9cQAqviMojs+C7amnZU7AEAOK75LbLIXR+kRn9a+Is+vyjwtUW1S12ovBLC4QDsRKyWXxPbWLtenV46XN+wXoYQAlBMwqdkjUBHH5JWJIdxoK1d4r75dBuePlfAdasN9Xfb8NBvbejjUN8ryqcJ0VUovpC+RIn1yip6xX2pZYbvrk43DGDzWmXWqDKB+0+nf6t/zpMwjPj1M69P4qfN6rzK4vDnC3LNMnVhADjC2r01EwB1zq1djzkz1efwhlagoTU1rmU9gZKEdInRql3B6QYtRvvH+1GI0YjwhANaF+Gi+gfCMw79NcShJ1veD8OkBULgyro7satHbe3ViQSTwbo6iRe/Ntemgkhh2Su+BjausdYAhfQUAPD6I+r03H5AEqXkTAoQpRhNtjQCrz9MVzvr2p60KrUoq1QmF9d8j3y7R5n3UOH5gDsdxGjqv3FhSKiiXP8LsIh4lqG7tx+yS5QtYximp/DMyV6KEMIhpbkZ40KIfgDeBDAmIPkVKeUruu2klKuEEE8AOGdnUh8AjwshDqNEZ0KI4wH8LiCpHcANqrIM09spKgpeaWDHjh0xrb+hIfghVOj+0oHFixcHfZ42bVrM6l60aFHQ56KiIrhcLkt1BAaBuVwuGIYBW6QVwhiGYRiG6TEeg5ZbZNviG3ykk25YlXwx1mVyPoN4scEwIVB9K5niJx05tjw0+8PvCQO/hx/qxzyUVI1JPCkpRouRcCzeWPktdL+zFdlZKso4dO1XndeosUc0fYv6PVotyM5aDWtiNCmlpQBN+tzeN6K8th9iM5GPYXob271blemFhEhJT2oFZTGJw5AGFja8p8wrcBRhr36TEtwiJhBKdFjv22b5WhwNtMg19SS1DMMwDMMwDMP0Pjg+LzIcn8cwDMMwBGauN9UuYPDIjn///CVdLlUmTZZVAHXVAIBd21eTxb5cmzrvfKrq1G0ZWgRkEeKh7o2XW9vZzgn3stqlzlfInDKeknLAkaXtT7/UdkxMduYlV970RZW+X19+ZHf75OYqdaHOPuAgYrX8fnoHhNhKlGWWGA1Ah5ho7U9BSbo+5KoDtjYBA5MY9rGiBmhSzpLsYO9hAsOKTfTx1mZzOwwRgMhqok9mmFivC933/uxtYPgoZdZugwSouIaN9UD1DmBwBOlmtFBSKAAYotrnz0vI8iJVxhXpSOkw4JdvlVmVnrUAdlPmueqA8akXamgaw5DYQUy9KOy8Ple7gtJzpFqKAgB+w3obtjSq0yvaCfHjkJHWd8Iw6cLOOJ1KrwursncNy9ZdM5LB2z9KnUsqiP6RQoF+0tw3U3jDF2GWujFV0cDMFMcy3UQpRgu9Rwlj8Ijo2pOKDBqqTBbedgzKakGTP1uZ39bYhrzSeDas5zQQYx5n6Fju56+sV57bFygotr4dwzAxgcVovZcLhBAnAXgSwNtSyrDZLTuFaCcBuBnA4IAsF4A/mdzP9QBOAND5GGYqgA+FEOdJKVcE7CsbwO8B3BWy/V1SSuIOlmF6N6GBUPX19TGr2+12w+0OfvJeXJx+A67q6uqgz2PGjCFKWmfDhg1BnydPntyj+gzDQENDQ1oGuDEMwzBMuuEx6AgDq1Iaq+jEa24/i9GsYlUm55XhLzYYRoWbECimoggJ6JAYqcRogceIj+j/DhuL0VIFq/0rJwGiPivXxUSI2iis/Ha6dubY+saknmSha7/bH3xeM6RBymJzLfwOXdsQ/dGsxNQnvfBK8wJTCQkDftgtvKIgxSq2XK34kuW1DKPGkH40+LYr87RiNCJwJNmrdDPJY0Xr99jqrVbmHVAwHXbBr6OTSaFD/W7IK9vRYjShnz2+s0jS7d6MYRiGYRiGYZjeBcfnRYbj8xiGYRiGwGaPXGazCwAgDQNYt5IsJg49OUaN6iFlFcCyzwEAJzfOxY0DrlYWW7YZuO51A6dNFNijLLkTyqu2qdMrzQy7ql3WdubdKQAhBFbIRIFVBITdDlk6DIdv+lhb7sdNwIHhzoeEsnqLPv/EfQL6+roV6kLllR3/txPvvnya2MYaol8NGqZvWG9EIbU6tHWBdpOfq5MrRnNpBCWjy4BRJuQA0uMGtteY2p/0exF09qX6T4YKG0VuX8hR+wIrvg7Lk//5e4fc9MgzIQoHBOUdtCuQZQe8hMPw0c8krj0mPte9b9fT8RSnTAjfp6xdT1d20PGxaFJGIg47BXLh68q88qZVyLLvpuwfVduA8Wp/SFrQ5AYMogt2SkJUUtAS31ZscwwIS9/UAPj8Eg67+eOloVXdgCK/Om5JHHKS6boZJu0QHRLuSq9Lmf3yUon/nJHA9kTgh43myvXPAew2/XmBFBDrtvG1I6xWamwEAPseYnkfTC9DK8bTxLg2N9B5ex0IUZziRjArFNDvWA7qW4XVbnW+a4sXo9Ue2bhT3yLxxOcS36wLH887+wJH7CFwwt5APbHGuzN0Sk21y3ojSoezeJFhkghHovdeBIBDdv4nhRBVAFYCqAeQB6AUwD4A+oRsVwVgupQywmPfDqSUG4UQJwJ4P6Cu/QH8LIT4GsBaAAU79xV6J/wWgGstfq9ez5BCYO0tvKJdvFGuqJBgBg8eHPS5pqYGdXV1MQmQ+umncDtx6P7Sgbq64DcIhYWx+8OF1h0LmpqaOPCKYRiGYRIANakWALLjLEazCTtybLnKNrB0wzq6v6UKSgzFMKG0Geon2qkoQgJoeVWgcNFrEGI0wWK0VMGq3CER/dFsm2ywI0uEPiZMHFZ+C913yrUwDkhFGUeWLQsO4YBP+sLyQs9rHsMNSbygjUYUm0fI1KjzaVi5KASxXuk1LcvRiddybX2135nHaAyjptG/AwbUEb9FWeGBjZ2I8FAjJsP5pP4dZboNdhzgnJ7g1jChOAkxGgA0eOsSIEZTX4dT9d6MYRiGYRiGyQw4Pi9xJDtGj+PzIsPxeQzDMAxDYIs8XpQ16yAAyKtPoQtNOxEYtW/s2tUTyiu6/jmmfTlO2/E8nis4VVn0prcl7v5Q4q2/2HDQbsl7N+Tapn4nXlESYcK9tx3YSszgrxwNVP0cnt4pRqMm2StkTgyAsgrkbFyDd9Yfi5nD3lQWOfgOAw332NA/Nzl9yTAk/reIngD/xCyBcmdH22S7B/h6vrKcKNspRnMQsVr+8FgPAJAtjUCjWvySicI9UVYRFu2SIz14b93ROGr428ptDr3LQOO9NvTLSU4fos5FAPDMeTZzk+N1oqtQvCHxMdUuZTGRgf2nEzHtREiFGA0A5P1XAq8+BNz3EcSA7vv0LIfAvEtsmHanodzu+jcknHkG/nJobJ8ZbW2SOO1hug/9drKi/zxxK1leFA2KRbMyk4NPILPsW9ZhWBGwZmt43rWvGThhbxPS3BSlQROqX9j52v7J28LyXth0Bg4b/kFYut8ANtQDlZo1F0OpJ8L3Cg21hEbssqf5yhkm3dg5bqhodymz61qAl7+WOHnf1IjR++9Cc4ulFkQIW5ZSAi/9my6w+z7Aym/C09s94WnVtGBN/Cn8fMZkGppjR7f4b0sjXeMV/+lBe1KQfPo90D9KXsWjdernWP/5xol/HxCvRtFsa5KYdqeBn9Vr9wIAHvpE4i+HCnLc4wwJVZSPzrHekAwVUzNMqsBitMxAABix8z8dbwA4T0qpuIWnkVIuEEKcAOBxdMvPBID9dv6n4jkA50spCc9+5uKwC1RYeDDApC9Tp04NS1u6dCmOPPLIHte9dOnSoM+5ubkYP358j+tNNrG06ba3qyfT9gSpuzFiGIZhGCZmeAy3Ml3AlhCpS44tTyn0oib7MjRtfnOylU5YjMaYhZLupaIICQBy7ZSQqPu8ohIlAYDDpFSIiT85dvMyqizRx7QQqieYFYXl2vOSuoJNjt38sZmrKWvlGE/V80GOLQ/N/vCXq6HnNd24gzqn6Per3qbV5LU6GvlYx3XdXB91++kIrRxbLuzCgT4iG+0yPAiCx2gMo6beS78KKnTwSwrGHHXeWixrWarMG58/GQUOnqicbAochbDBBgPhAf71vjoMQWVc90+NEVJ1LMYwDMMwDMNkBhyflzlwfJ51OD6PYRiGYXYiTEhRql2Q61cCi9QyKAAQl92X1HfxgYTKiO6ovYoUowFAsweY/YaBjy9Lngikaps6fQS9xk8HtevpCc9TZhBitJ1xadUu5WaCJ8CqKe94zzC95SOU+mpQ4yhVFnv6S4k/TUvOsbDgFzrvyhkCv50ScLwvfJ0u3NkH7ES8j4+IbazRCLEyUbhHHEuHt85HeU4rNrvV75Ce+0ri/AOT04eqCOfzAbsAew012SYrYrSAviQNg+5DZfF9z5fSHHIS8ODVdP7mKsi5D0JccGNQ8kG7CYwcoJZfAcC1r0mcu79EXnbs+tojGjHjlBGA3Ra8L1ntois79ZLYNCpDEXY75D7TgG8WhOXJahcqS9R94+dqoN0n0ceRGmM6qzRoQuecuYCsWq7M28f9Hbmda5s1MRrVBqdfIUabfrr5ihkmHdkp4a70usgiV75i4MS9bbDZknve2VRv/llsqHQoDJX0rJOz/w788q06z6d4xryZEKMNGgbRN74LRDJpgO4ZjO79QpNa1onS4RBDd+1Zm1KNPPo4cbZUo9y7GZuzysPy7l9WjnulTPhzrkcWSa0UrZN/f0z/fQvzutss12seEujIxPt3hkkheNm73ssiAC8BqI9QzgfgXQBHSCmPtypF60RK+Q6AsQAejLDPLwCcLKU8XUppbQY8w/Qyhg0bhmHDhgWlffBBuEk/GubNmxf0edKkSejTJ/6SkFhTUhL8lGz7dmKlnB7WnZOTA8MwIKXs0X8VFRUxax/DMAzDMDSU8CjblpOQB2w5hGQmGiFIpmNVVOJlMRpjEkq6l5uik++pdgUeI34Wo6U81PVBRaL6olnhRLLFFFZ+D93vnGXrY/qY0AnWkgn1W4SOM3TjDit9sZM8QqZm9lrdZlh/1EsJH622I3en1I3qx21+HqMxjIp6n3omSZbog772fHI76o5Lhq3rzWQCnza8T/7tD3bOTHBrGBU2YUd/h3qVR+o8EEvcxHU4mvEKwzAMwzAMwzCMVTg+LzIcn8cwDMMwBGYmoFe7gK8+ovPz8oH+KbSASIiMaJC/FnkR3vN+sgpwe5PzDkhKSYrRIoo4qInyAMSw3dQZXg+k3w/Ub1Hnlw5Tp2c4IkDMtKf7R7LcBz8l713i+5p97zc8REi0VHNM75TAwUHEpfiJGIiadep0ux0YMITeX29FIxkcY6wh85LZh9ZtU+9791IL8co6QV4ogQKQbZtp6V4GT8wX5ZXAqH31hb76UJk8bjC9SaMbWOKKvl0qdH23skTRh5Z+TJYXZZn7N48Z1Dmo2oXhxfQx/d2GuLQmIdRrQucKcgF8NU+Zl280o5iIKXDVWTsnU21wGjvCE7mfM72ejnONToy2dhstiU4kn/xi/lgviBQGtER9XQYAMXgE0CdbnekNF6OREtHBIyI0gskIohWjNSuuSQDg7H0rLQmHo+OZlYrGOgzz0vcuW5vi1CgNHy7v+b1gkLxRd9+vgcfiDJNcWIzWS5FSfielPAVAMYBRAE4EcBGAawBcDeBCAEcAKJJSzpRS0qNK8/vcIqX8I4BSAIcCmAXgqp37PQnACCnlFCnlKz3dF8P0Fo466qigz0899RS83p7JHrZu3Yo33nhDu590oaysLOjzzz8rVmeKkkGDBnX92+12Y/16Cy8aGIZhGIZJKh7DrUxP1KTaTvlGKJSwjaGxKpPzsRiNMQl1POakqAiJlPkEHCNU/3eIrLi0ibGOQ2QhS5ib9JQoEZlZ+VeypYFWfg/qOmy1rmTL4CiodoWKwcyIwqxA9YFWQjQZCiWk1OEzFCu5UfXrRHD2jjEg1d+tilgZJlPY7lWvk1PoKIkgnE7PFXCZ2OM12vHZDnWAbFmfYdgld3SCW8RQFDrUAVoNXmJ5+xhhSD88Uv0MJ9njT4ZhGIZhGIZhMgeOz9PD8XkMwzAMQyBMTLX66Ut6QjYATJmRkEU+TRMiAhEAjmrWS2OlBNbF91EySV0z0OxR5ylFMoFUu9TpRaVAP6c6z9sOuDXvvantMp3J3ePgGc3vkcWSKXao2kpPoj50VEhCtYuuaLfxHf+3U2I04j6DEqOVDO6YkJ5pjBxHZs1on0/mrVW/3k4Ia6OVNAagle6FEihCo/oPAJRXmK+zFyKOOlNfYOU3yuQZ4/TXkM9Wx1bCt5rwbQLATMXhIHV/80nTe96gDEdQYrSfl2Kmpm98vjZ9FwtsIELn+mUDWQ6hHc9WEGIUq9d1qg1Of0NYmpgyw1rlDJNu7LxH3Mv9AwoUx0Ana5I49umkzkJY8GCn/vqqvXeeeATgIOLvfYo4Y6oujYCXySC0z2Ho67lsJo7HfgU9a0+qkq9eaBU76jCx7Stys2Tc27tisM8hAV9Xez7SUVrR84YwDBM1LEbr5cgOVkopX5VS/ltKebOU8hYp5QNSyg+llDF3c0op26WU86WUj0spb9u537lSSnrZFYbJUP76178GvfDcunUrHnvssR7Vec899wQFb/Xt2xfnn39+j+pMFvvvv3/Q5wULFsSs7qlTpwZ9jtVqoAzDMAzDxB8PITzKtuUkZP+UgC0aIUimY1VUwmI0xixtxIq2qTr5nmqXm8VoaUe2SUlnoiR96SIJy7UgN40kQjUrSk2UUNUqVLtCr5mUKMwGm2lBX/B+eyYVo867OrwWrus6MVrnOdSMZJJhmG7qiVVdC7OiXeEufYNAmej4uukztPjVrxkPdqbYZK8MpzCrWJlOnQdiBSW2B1JXWs0wDMMwDMMwTO+D4/P0cHwewzAMwxDYTE61euEeMkuc/fcYNSZGDBgC2O1BSdduuwWDfHK0aE4AACAASURBVLXazWbea8BvJP490Mcr6X1Wqh97d0FOci2vABxEnI3XA7Rp3nvnWF+gLBMQI8d2/fusHc+Q5aq2AVIm530iJbXKzwGceSHvszYT097GTobo7DtUH/L7lMmk5Kh0uDq9lyPs9g75hYKza/5LbvftBsDjTXwfamuX+GmzOq8iwrmoE/nErcDHL5vfaaDMe7NLXaZfAQQlM8gUjj8fGDdVW0S+9O+wtNMmCBy4K73Nta9LPLfE6GnrAAD1LRKbaOcNTtxH8U69mhajicEjY9CqDIeS5myvwdEeWmB4yQsSLy6NTb9INPWt6nOns/OVfbWL3LbCq86zIs71eCXaiDBBlRgNoyear5xh0pGd95oO+PFg9Z/JYkfdY6DVk9x4vHoLobfDIo2Lqmm9hCguBbKIuGfVIifE+IiUXzIZhiZmUXdP2rJDnd5bJemU8G1HHa6uu53cbNqdBry+xJ2bDENiQ33P6rDbgMGBf8bn746uIj7HMExSYTEawzBMEhk9ejRmzAg22V9xxRWordW/YKT4+eefcccddwSlzZo1C0VFRVG3MZkcfvjhQZ+fffZZNDXFxud45JFHBn1+5JFHYlIvwzAMwzDxh5pYa1ZG01Nyicm7bkLYxqgxpN/yb8ZiNMYMUkqybyVb/kRBynz8kcVodpGBK4emMGYFX1ZEYD3BbJ9PtjQwx2Y+gDjSd8o1WVeyvzNFrl3d/sDzAQC4/eqIg1xb36hENHnEfltNCs9aCUGs7u9l5bpOCdqyRJ+u86AZySTDMN3Ue9UzAIocA7TbCSJwRLIYLeNY2PCOMj3HlouJBdMS2xhGi9OhFh42xFmMppOTpqqklmEYhmEYhmGY3gfH5+nh+DyGYRiGIRA9nGp13LkQlXvEpi0xQjgcwMChQWnjPD9hSdX+uLvmb+R2VduAd5fFu3XhnPpf9bunnCyglJi/20W1S51eVgH0yVbneT2AR/NuOTc1YwxSgjMuBwAUGI14f91MZZFmD1DXnMhGdUOJ0e49Nfi9p/R5gS0blGXFmZd3f7ATsVp+v1r+RkmOyjJTjAYA4jT1Oaegfi3e+r2H3O4/nyT+nfQ/59H7rCiJHJ8jV30P+chsazv1BcTTsFiPRDiyIO79AOLc68ky8t7LIOu3BqX1yxF4/2L9df7cJyR2EDIpK1w5l67jm2ttyMlS9CHqb376pT1uDwOt0MJx5XE4dHf6b3b2oxJN7vSLjWkghjeFJsRow73q/uiqM/87NGimCjiNEAnNzLN5ET4mA+ju479umotcTWzNI4uSe86hzh8qhkcSoxHXN/Hnf3T8w0GJ0YLHhlJK/f0ew+iuIzoxWhMhRusb6QFEmkJJlnfUodi/HUO96ntjjw945ZvEnZuqdwBef8/qGFoIOOwd/YIUl5shg+/hGSYVYDEawzBMkrnrrruQl9f9oqyhoQEnnngimputvfnZunUrTj75ZLS3t3ellZWV4brrrotZWxPNmDFjcPDBB3d9bmxsxFVXXRWTumfMmIGRI7tXy1iyZAkeffTRmNTNMAzDMEx88Uj1G7JskZOQ/VOCD5ZuWIMS3OnwGixGYyLjkW5SzJG6IqTI5xWfVK8qmiWIVUiZpGBWRGZFBNYTzAonki0NzLJlwWFS8heprenynSmo9oeOMyjRSI49OskIJZTzGG0wZOTVLqlxUL6dfiFMnddUhIrhOglsN/Xb6aQsDJPJbCeESIVZaoESwwSyzr0aLvcqZd6k/oew9CrFKCTEaPVeC8s4R4HuOYlZmS3DMAzDMAzDMEws4Pg8Go7PYxiGYRgCW8+mWomxU2LUkBijmCg+2LcZf65/EPtX0O9v5yZw0isAtPs0IqJiRBZmVLvU6WUVQBYhRvP7gVbN+DCHn2tTiPKKrn+Pbl9BlquK72sJJfUtkhQ6jBgQ0o+2bAAMIj6irLL733ZNrJZfcRxt2aguO2gYXU9vJ6DPhDLGrp6ADwDv/Jh4Oci7y/Tno0jIT16zvlNf9z2nrCV+DxZ/AOiQo+G3V9DCQgBY/HZYUk6WwKXT6WuJ26v/25tl8Rq6jl2oNesocQzL8GKDTmjh96PSRov0PT7g/Z/i0KY4U0esi+rMiyAYAlBJiNGqLKzBphMrFfobgj6L8kqiJMP0IkLuZY5reossmuj7sFAsidGK6Ouq9PuBSGOaPpQYrT34c3MD0Ebct/H4iAGiF6NR9235vVSM1o/4Xq0dC+eM9dCDnkSem5Zt7nkdQfdti96MrpK8fFomxzBMQmAxGsMwTJIZNWoU/v3vfwelLV68GDNmzMDGjcRgOoRVq1bhsMMOw/Lly7vSbDYbnnrqKQwYQD0tTQ9CA8fuv/9+3HXXXaa337FjB9zucOmGw+HAnDlzgtL++Mc/Yu7cuZbb+OGHH2Lt2rWWt2MYhmEYJjrchlqMlqiJ15RIhaUb1ojm9/JJFqMxkXET8hwgdUVIlLCtzeiOSKD6v4PFaCmF2WtRbpKvWaFQcr5EYkYW5xBZyLLp+7x5OV3yv7MKShISet2kRCPRCiBz7er9Skh4iLFXIK2GOoKqv8NJbuOV7WReKNT3DTzmqN9Od11gmEymwUuI0QiBUiTSb01cpicsrH+XzDvIOSOBLWHMUJilnpVR79vWEegcJ9o0YwiW5zEMwzAMwzAMk0g4Pk8Px+cxDMMwjALRw6lWYyfHph2xpnI0mbV/MW24+GlzYt8EbdhO5w01Mw91s0uZLMoqgCxiwj0ANNXTebksRiMJEBCU+mqQQ7wfWLs18W8U12rELSNCX4sS/QYAECgk0gmYfIr4riZ1hxbFpXQ9vZ2BQ0kB5ZAW9eJMALCpgcyKG7p9lvY3U8Ea6zsN7EdE/0HRIOv19lKE3a697sqN6r/B/iP1ks3VW3vULADAZk3/6ZcTvn/Z7gG2EfYHjVCQsUBxGaCRb03N0T97eGJx5AVGU411hJi0tL8AGrYCbYQ5DcDwdrUYbVODXmQbSL0mdM8ZIkZL2TE0w8SSkDHQ/m2fk0VjcS3qCQ2t5sfvEyo0mds2qcfJQPe9hIO4T/OFxBk3am4WM3l8zXQThRhNetzAyq/V1fVW4V6x/n5iamtqnJvmr+z5c4SKku4+ITdF+Z6pdHhkST/DMHGFxWgMwzApwDnnnIMLL7wwKG3RokUYPXo0brvtNmzYoDZir169Gtdccw3GjRuHH3/8MSjv9ttvx2GHHRa3NieKQw89FJdeemlQ2mWXXYbjjjsOX3+tvtkwDAOff/45/vrXv2Lo0KGoqalRljv99NNxzjnndH1ub2/HSSedhDPOOIOsGwD8fj++/fZb3HDDDRg9ejSOOOIIrF+/PopvxzAMwzBMNHiM8KBqAMi25SRk/5RwhBJ2MGp0v1dfW74yncVojBl00r1UkD+poARNgSJIFqOlB+alXIkJmDUrYEsFSZiZtpppp9njPHXPB+rfIfS6SZ3rov1b6oRqlPQsqD2EfCzP1g824jWEles69X0DhW45dvVvx/JahgnHa3jRGBpcuJPCLL0YjX65z2q0TKHZ34ilTZ8q83bPG4ey7KEJbhETCUp46JXtaDWIVVRjAHXfb4MdWUIz8YxhGIZhGIZhGCYOcHweDcfnMQzDMIwCQthjFjF01xg1JLaI0y4h884f9B2Z95ULuO51I66LbQTiIgQeAHDD8fq/jWxtBnYQNqyyCiArm964kRCjCQH0SUxsYloSMFFcAKj0upTFTntYJlyy9/ka9f6yHUBZQUhitUtdSeFAiLx+3Z8dmlgtvy88rWmHumw+vdBcb0c4sjrkaKq87xbikN3V2y2vRsLOQ0CH9IcSCh23F2CzmZgY/+EL1nfsDRCANBFmrXwzlsjMQZz2Nzrz6X9AusPfWx49DthrCL3Zda9LeLzR97cdrZIUQv1xGtF3ateTwo4gQSMTNUIIiDP/j8w/qfoJ7fYLaXdjyuLapu5TFc0rII/TxHeUVaDCqxajSakX2QbSQBwHdulDXxkSl7j3weYqZZi0JvgacNoOeqywuQH4Ym3yYvLe/8l82YH96XGRfPoOesPOewlKYO0NEaM1E2NrgMdHzE50Y3TieProxfC+1sm4qT1uUSoiymhRLAD8bsdTZN53G4BVtYk5Ny1Yod6P08J0ieGBa8q+82R0DWFJMcMkHc0yBQzDMEwiue+++1BYWIibb76562F9U1MTrrrqKvz973/H6NGjMXToUBQWFqKurg7r1q3DypUrw+rJysrCPffcgz/+8Y+J/gpx4/bbb8f69evx0ksvdaW9+eabePPNN1FeXo5x48ahuLgYHo8HNTU1+OGHH9DU1GSq7gcffBD19fV49dVXu9KeffZZPPvssxgwYAD22msvFBcXw2azobGxEZs3b8by5cuVq1wyDMMwDJMY3MSKgpRIJNZQwhFKCMKo0f1e/RwFaGkPH8+xGI0xg066lwryJxWUkKjN3wopJYQQ8ElF4BwAu+DHe6mE2T6WSwicYo3p9qTAsWFKemaiTDp9ZxXkOCNk/EOd66IXo9GyvjZ/KxDBwdhGyNNy7X2RJfrAI8Ofo1i5rpsZ/1HfgeW1DBNOg49eGp0SKHUitIEjTCbw+Y6P4ZXqQKCDnDMT3BrGDE5HMZlX7932/+ydeZwcRd3/P9UzszuzV3ZzX2R3E44gZzgEAyRyyX0piKIi8Mij4K2PeAuiiA94iwieqMAjigry45I73EICAQkhQHZyTpJNsvc5M12/Pza7mZ2pb3XP7szs7M7n/XrllZ2qPqpnqquru7/1LlQGzHLy0dIr3PdHnArOoEgIIYQQQggZExifJ8P4PEIIISQNJzDiVdUn/zeHBcktasY86LIw0J95nZ3f8Rp++oFT8Nk/mwedfvdejYYpwCVH5//5bnSHPMD2yPke+49F5bxZDUCfpY/RIYjRwnyubWXGvAF53K4+dmN/FK+X72tc9D0/dhG91kEoWJjv8zNCfW6cmim10rGoeSMp4jcAQMASq5UmRtNaA51CvSphMRqAAcnTFoNw546f4po/fB+Lv2/+7X7+qMZnji9M/fnWP+W26Ltnews09dv/kTOnzQGOPw/4808y85Ip8TRCu6RKvf6koY46DXrfw4HXXzDm6198GeqLPx+WFgoqPPElB7WfdcXtfv0ujR+cN7L6ZpN8fvkkYZumc2IQitFyhjrjEujrLzdK6Koe+xOw783iuh29QEevRnV4/PQLmoS62PD4L+SVysLAfkeg4ZF/ytvdDiyY7r3/1m5zW1qXbBkegXTQMVCjlBMTMi5Iq+d1bisejZ6I4xoeMi6++Psuum5wECkrbLvT2q3R4zPE99cXWqRob70C3PUrc2Z1HVTVLltxUBCjJdIKId2zKQVU1niUlJQEtnt3w7Vfaw197aXm5asmAfP3z1HBioz0+9z07MQW/HHTxbhwzu+N+Ude66L5R44/WfQIaevWeFHoHp99sMItz/iTszXsCp3UO7YA3f7ea2XAvjghYw5HThJCSBHxne98B0uXLsXll1+ON9/cPY2A1hqvvfYaXnvNrtk+5JBDcPPNN+Owww7Ld1ELSiAQwB133IH99tsP11xzDeLx3Te0mzdvxubNm0e87VAohL/97W+4/vrrceWVVw4LqGpubsbDDz/saxuVlfIAYkIIIYTklj7XHJxU7hRmVkZJwEbpRnZIApUAgqKsJk4xGvFBj3AuOnBQpiyzvo4hksgoiQQSOo6QKhMFQkHlYSsiBcWvpDNskVDlEr+SrELJRe1l8CM98y6n32MuL4JjNiFdA9PFIpJgdKTCt0hAXk+6ZvtZJuJUIKhCghjNLHzMZvupvzf7aIT4p8UmRgvZxWgShZyZm4wdrnbxZOv9xrza4BQcWPXOApeI+KEmWAcFBxqZQf0tiR2YC/sMkCNFFJsWSBJMCCGEEEIIISYYn2eG8XmEEEJIGqORMsxdkLty5INDjwWezXzWr2NNOPEEBUB+5/On5zQuOTqPZduFJJN5Z4OPlWNN5vRAAJi+B7AlKq/bvtOcHmY/xIYKlUFPmwts2wAAaIxHxWVjbcAjq4GTCzC2fL1FsDff9Eo0FjUvnI0YLV3c0NMFJJPmZatKXGw1qwF4eZkxq771NQDvMObd+pzGZ47PX7FSufNFuQ41yPMSDaEfuFXMU1/9FfSrz5ozU+7H0NlqXqa6zrsAJYY6/SJoQYyGh/4M/dkfQwWHn781EYUfvV/hC38x/9Z/ek7j+nP1iOSYTUJYRtAB5kg/X0wwP0yeAVXOd6w55bxPA3/5mTFr6ew2PLF5krjq3S9rfPjI8SFG641rbBaakfq4RcQ3qx6Y3YgK3YPpia3YFpyRsciAyNb7e2gRQvdq3bbhCVNneW6LkAmB4Zryzt4Xravc9yrwvkPzVSBpn/5jAWfWWMRoD94mr5jSz1ahMvOdaDxt8s6ONtNSQOUkyhXJAFmK0bBK6D8CwP7vggqMXJxf1HiI0QDgmO6nxLyWbuDpt4Fj9sphmdJ48i3AFZqicxZlI0bbVSceu3PEZVEUoxEy5vAqTwghRcYJJ5yAVatW4bbbbsPxxx+PYNDusCwvL8cZZ5yBu+++Gy+++OKEC7oaRCmFK6+8Em+88QYuvfRSTJ482bp8VVUVzj77bNx1112YN2+e57avuOIKNDU14Stf+Qrq6707qdXV1Tj11FPxi1/8ArFYDIcffnhWx0MIIYSQkdMnDKwtlOAkEjAHOkkDfokZ6fuKBCoQEkRPkhiKkFQkAU7YKd7ZW+1CooHjkQRCQcV5D4oJv5KHSMGuWf4kWdK1rZD4Kasf6ZkfMVi5CiOgivNFZVj4HtLbNrGt8/mbpxNUIYSUecY1X2K0pHmZikCl2E5lc13vTQr9hpTfOyIIByVhJiGlzM64OQK3wqkqClkmKV5Wda3A9vhWY94xtScV7fW11AmoACYFzdH1rQnLVOWjxHZvRgghhBBCCCFjCePzzDA+jxBCCElBjWKo1YIDcleOfCANfo1F0TgVqLbMTfp6LB8FymSdIJNpmOoj7icWNadP32NAiGORnOmd5ncgCPO5tieTpw/9eWDfq9ZFX48VZsKlVZb6esBcQ12KRc0Lp58ztvuHZFp8V0eLvGx1aYvR1F4Hinkztsl1aFtHPkpjZoclXKYq7KM9ir4u5zXuByVJ9lLrUQfFaL5ZINcpdLUD2zcZsw4ytQe7aO4AdnSOrDhN281t3bzJQMAx71NvEURVFDHkHGXpr1061S4osl1fio11lnAAm8gUU2ZB7TlwTtXH1xsXkUS26bQKwytqk2lyoypZRkfIxCLzGhDWfVhY3S6usapA/edU1srzrg4j6ABH2OZjtPWHUtvikDl+GfG+4Z+l/nU12xCyi2zFaJY6qhYtyUGBihQfYrTZiRimJprF/FWb89s2PbravP1ZkzzanTTqd0mtta098sLH90UIyS8cOUkIIUVIMBjEBRdcgAsuuABdXV1Yvnw53nrrLTQ3N6O/vx/l5eWYMWMG9t57bxxyyCEoLy8f8b6uuuoqXHXVVSNa9/HHHy/oegDQ2NiIX/3qV7jpppuwYsUKrF69Gtu3b0dnZycqKysxffp0LFy4EAceeCBCIbNQQ2LmzJm49tprce2116KpqQkrVqxAc3MzWlpa4DgOqqurMXv2bCxcuBB77bUXAhPV9kwIIYQUOX1urzG9UGI0SRTQ63ZD65HNDFaKSJKSiFOBIMVoZBT0JIW6NUJZUCGwiQF63W7UoFas/9L5QsYGv5KHsCBwyjV+5TbFIMHxJT3zJU/zPpZiOF4JSeyWft20XUdHvu9KxJP9GemS9Gx4eczLRJxKBJ0QYJgAOe5m7ivb7afWG7GPJkjVCCllWhLmyKXJIdPU6MNRPmZ7JROXJ1rvN6YHEMTiSScWuDQkG+qCU40StBZBlJgL8tFfIYQQQgghhJBcwfg8GcbnEUIIIQCcEYrRDj8BqsgHS6pZDTAOLX3xUZSHFD66WOGGR82DT7d1AN19GhXl+X1fFN1h3v/gYFYbetUL5ozB38UmE9q+2ZweGfvJ5ood9d7LoL/3MQDAue1/x5enX4PWgPm7/s69Gp8vwGslSUoEABcfZajDm5uMy2ac05LMCgASafFdnW3m5QCgqrTFaDjhfOBn/2POu+ZiLDrhXLy0KfN+YP1OINaqMas2v+1QS5dGmxBucrrFvzWM5x4Qs9TUWdAeYjSdTMp1iAKhTN5xODCrHoiZ5WL6qo8ANzwCFRx+H7t07wEpaIc5NB1NO4Cp1dkXp0mQRjXawjIoRisc7z4HuPZSY9aZrXdhSuXxohzx+/drXHN28Y8XeGy1xvE/csV8SXgGYKDvs/g0AEBjfxQvRDJl9VGfoQYtwvdYm0yTG1H4SEoF4V7z0sa1+OIrBxvzrvynxh0vJPH+wxW+caqCIwg2c0mrz/mI33eIwtRqQfgZ7weee1BcV51+8e4PohgtLc5YEqOVet+apGA7PzLvEXUsKi9+2kWjLEsRM2kKEKkCemQLcAAuLmm9BddN/ZIxf+XGfBVugMffMN/TH7dQYZLPoSABB5hbB2itgbt/M/LCFPmzPkJKAYrRCCGkyKmsrMSSJUuwZMkEtguPAMdxcNhhh+VtBs7GxkY0NmahDSaEEEJIweh1zdEG5Y5lusocEhFkNi5c9Os+lKvClGO8I0lWwhSjkVHSKwy+9yusGgtsYoBBmYAsRuPjvWLCr3ArUiAxV0AFEVJliGu7gEq6thUSP4IMP+exr2XGoSgxrvuR1AkEdp3zkmhkNG1dJFCB9vSAI8u+/CwTcSoRVOaAhWyu61L/L1WWFwmY63GP20V5LSFptMTNs7jVBr3FaBLaPISGTCC292/Bqq4VxrxF1e/CpCCDVIuZ2qB5tFirIErMBePx3owQQgghhBBSmjA+zwzj8wghhJQ0amRiNPWd/8txQfLAbPn6q994CT8892A0NWvc+6p5megO4B2z81S2lH2YaPAQo+lEAnj4DnPmrIHjVuVh6LJyoL8vc5lmQYxWzufanpz8YWCXGG2S247H152Ig+e/aFy0tRu45RkXFy0eoYDQJ02WVyB7zxgeP6B7uoCWbeaFZzcM/xy0yIF3Ca2GkMQNQMnLG1TddOgZ84CtZjHP79Z9FIuCtxrz5n/NRecNDgJ5lIJI7RAA3PBB77qrm1aJeeorNw/8IYmg3V2zD3ZZxHoUCGWglAJuehL6rHnmBV57Hvq6y6G+9uthyY6j8Nq3Hcz7slkg9bE/uFh5ZfbS7nWCnLFhqqXeClI3zKIYLdeoimrohYcCq5dn5FU8+Fs8/ZefY+GV8vrfu0/j66cVbyza82s1Tv6pLEWbFY8hrA19oUHKKwb6TJNnoD5urpeSyDadVkEyWesOb+MUhY+kVBDiWD+7YLUoRgOAVTHgqn9qtHQBPz4//+2PJIgFgLoKIOkC7z1E4YYPymUZFCcbOf79UAcu3v05KIjREsPj37UkjWXfiAxiixXXhmuXJKad3Qg1yYedfZyilIKe1QCs/Y91ue80f1sUo930hMYvLshPfP6OTo2XN5jz3r0PUB5SiISAHo+hCHPrgGBAwf3dd0ZXIIqKCRlz8vsUkRBCCCGEEEIIyTF9rnlaLr8ymtFi24806JdkIglObGK0uEsxGvFGlvMUb5Biua1dSQ4cT1InjPnS+ULGBr/1LCwInPKBP+FYYa6h9jJ4l9PPsUR8SM+KWcZh+y1S27fBtiGd0bR1kiDPjxitWxCeRgKVCAkCx4TQrpnodWWh6u6/zd/doLyWELKbFkGEVBfyI0YTZnikGG3Cs6z1AfF3XlJ7SoFLQ7JFOr+l9iAXyCLXse97EkIIIYQQQgghhBBCiBVnhGK0ypocFyQPzGoQs/TtP0QoqPC3y+Tjt8mCckF/QmNTqzmvYYrHYNvnHxSzVKrcShJSbd9kTo+M/WRzxY5SClhwwNDn/ftW4dvbvi0u/9OH8/9usUmQEn34CEM9kgbDA5nnTMAyiWUiLb5REqOVR6DKyuXtlApLzhKz5r/1gJjXlwAekr1jOUES64UCwBwf3g3955/ImY37DfzvCLKtQcGeTaxXXdpiPQk1eQaw9yJ5gfv/CN2a+ePOrVPYZ4Z5lVc3AYlk9m2WVIcabWEZQlukKGLID0eeLGbtteFR3PwRud9xw2MaSbd442RuekIjnpTzG+JR+wbCu2Ly9jkEjYIYzSYgTaVNCD2sS6Z1+NiukVJBEAgppX0Jz37zlEZXX/7bn7Zu8z7+e4lC848c7PiJg99d5KCiXIgl3LFFllYDUOd/dnhCSBCjxdMmBpf6R5QrkkFyJUZbcnZuylPM+JDvBuDiq9v/V8x/bm0uC7Sbp9+S845bOPAbT/IRgtgwBdCJOPD3m0ZemKpJUOynEDLmUIxGCCGEEEIIIWRc0ScItcpVuCD7twlHegRJCcmkRxCcRAIVCDlm0VNCU4xGvJEEhcUsQnKUI8oBBmUCcaH+U4xWXPitZ5ECyiD8CcfGPog3VwK3XAnWxgrbb5EqQ8tHWyd9Lz2C9GwQV7ui8DRiEZ5mc13vsWx/99+W747yWkKG0RI3RydODk7zXLd457sl+aTf7cOzbY8Y8+aUN2BBZN8Cl4hkS13QPINlSzx/I9h6k7IQnRBCCCGEEEIIIYQQQooZpSxDrcqF99Yf/EJ+CpNr5syX82JNAICyoMIegvgnuiO/g/DX7zSPVQaABo85fvQbK+TMPfbe/bc0oLV5szk9zOfavpi397CPe/e/KS76yiagL57fuiQJW4z1aHOTeWHHAWbMG54WtMRqJdMsNNuFOlUzWd5GCaHS6kwqlbobc8s7xPwXovmuP+bt108BAo6Pt+br18h5cxcM/C9J9gbFaDu2yNtgHZKZOc+ev/IpY7JNeLfB4qgzobVGk/AatsH82ha6v09uM3xIK0j22NogrF6BfWbI5/rWdmBjlvWikHi1kXv3W2wjABDe1d+trkO9fTKEzAAAIABJREFUIEaLtQG9Pq7l7b3mZard9uEJNcLJQchEQ7rX1Nra7gzS1QestnQRckWrOeQHkyKA4yjv/tCbL8t5SmXel0r32T1p8cvStbKafSOyi2zFaDFBTJsqV5+oWMT5qezTJ9/bvLguP/dl63eatzu3DmicOvAbT/Yx/KVhihqQ37WNYvLYaXNGvi4hJGdQjEYIIYQQQgghZNzgahd9uteY50eWkgvCATnQidIN/0gClXCOBCqkdJEEhcUsQgJkOcCgRFCq/0FlmYWUFBy/16JCyiB8ycQChRO1iWXwUU4/ArdcCdbGCttv0ZPSz+gR+hwRSz/Fi0jA/P1KMtNB+txeaLjmbTqVObmu9wpte+q5ZPtdKa8lZDg7E+aX/HUhj9EkpGRZ3vEUulzzwIOltadA2QKKSFEgnd+tiR3Q0gizUSKLXIu3L0YIIYQQQgghhBBCCCEABmRIEid8wJisjn9/ngqTW1RFtZy5Zf3Qn5KE7FO3azz9Vv6ERFHLWNV6r7HuwoBmAMCRJ+3+u0oQoyWEd9jhsZ9sbjygTjh/2OdTOh8Ul9UaiOZv7hYAshhtvmmuqFjUvPC0uVDpIjRJZgVk1CG9WdjuTEqOAABLz7aK5s6reEHMW7M1HwXajVR/Gv16e2JRMUsNSs1EMdouwV5KmzyMyhqoqkk+C1J6qPdcYF9gq/l7ff9h8jvvnz6S3XVve+eAuMbEoMjBb7kAsM3IF4tPFbP0hjU4ak+g2jJnu63PMpZorT2vse9v/6t9gcG+T9UkNMaj4mLrfFzLpXOhMj2ewEtqSMhEQYqxcl0ctxCYZrldG8TPuTda2gQxWq3fEOWtG+S8d564uz80iNS36WwdHtcUixoXU5SIkl3Y4xiH9+l0vB9o3mhetAT6X8qnGO30zvvEvCvu1HmRnrcIYf9zU2TG9T7uzeqnAPrvvxxdYSprRrc+ISQnUIxGCCGEEEIIIWTc0K+Ft2MAyh3L28ccUq7CUDA/LJUkJSQTSbISoRiNjBJ58H1xi9EkmdOgRDChE8Z86XwhY4NfyUMhRX02oecgxSAO9CP08iV587XM2B+vhO23GGwPkjqBuO43LjOaY5P27SVGs+VHAvJ1Pe7zuq619iWCk8RuAOW1hKTSk+wWz4m6oB8xmvleSCO/M3KTseWJ1vuN6RGnAofXLC1wachIqA2aI4H6dR+63c687FMSotuu2YQQQgghhBBCCCGEEFIUKHmolVp8CnDR13cnOA7U538Ctc+iAhQsN6iv/86c0bINum/g2W7DFHkw8THXufjri/l5NxTdYd7ujBqgotxjopZY1Jy+18FQkZRn09kKhSJ8ru2LY84E6vcZ+lilu3D3hveKi69tzl9RWru1OJC60VC3dSxqXtg0UNwi8kIyLb4rm+2WIKpuOtS3bxPzr0z8Ssy77XmNpJtPSaN52w2S1CoF3dcD7IgZ89RXbt79IRAwb2CwHm0RZI8zKA+ysuQsa7ZuM9tkPna0/Nv+7BGN791nnjTShCTWA4BGKSwjFpVXKgExx1igKmuA+oXmzAduhaNdPPIFuU/4zbv914lC0twBdJtDCwEAVzVfjfd0PWzdhgrvismrrsO8uCw3stX1QaSyVKbHHLKek1JBkDbpVc+jLKjwj8sdTPG4/Vgn3DPlklahLz3J51yI+gefEvPUFQZJkSSvjvcD/b0D29Sa/WsyOtInD922ITNtkJkNeS/OmOPzvKl12zA9YTZT9yWAM29wEU/ktl1qleSMKW2Qn3uz+jX3A3+9QcxXn77euzDh4h13QkgpQTEaIYQQQgghhJBxQ58wqBYAyn3KaEaLUkqUrlC64Z+epCA4cSoRGqVAhZQ2fuQ5xYgkM+pJdsHVSWiYgygoRisu/EqpCiXzBLylZyFVhoCyzGZbIPx8d/4kb94BycXcHgRUECFVZswbFJDZRKyjkdxJ3510zU4vl4kKp3LUwtO47oeLpDEvtd6UqXLKawnxQUtCjkqcHPIWo9ln1CMTkWjPGqzvfcuYd+Sk4wraryEjRxKjAUBLPD9TyUp9BL8yYUIIIYQQQgghhBBCCBkzHMtQq0AQzn99C+r/bYa64RGoe7dAvfeywpUtF+z3Tjlvl4inXn6sDAD41t3uwMD0HBMVHlk3eJQHgCgRUqd9dHhCdV12hSrnc20/KKWgrvzTsLTTOh/A1ITZgLZWEE/lgqylRLGoeeHZjZlpAUuMTSItDkLaLsUNQ6glZ0Fd8k1jXtWW1fjx+fL76YdW5atUQJPQFolSq1QkoRkAHLB4999SXdolRtPSdmZSjGbDM6YhZv5eHUfh8AZ5te/dp9He46/dkiSf4dCA6NOI9HtPngnF61DeUGf+l5z54iM4rEHhgDnm7KfeAhLJ4ptE0HYNfLXq0/jG9u8LEXYp7KpzqmoSwroPs+ObhX15H39Xnzm9UqfE80WqgEl+OnuETACk69Q/fwsAWLxAYdP1Dp7+snxPKt0z5ZI2H1IiCd1qaYiOOw9q+tzMdEmMBgAdrQP/t24HeoR4ZVO/nZQu0nmW/gxD6BcCKI0+9yz/582lLYJgH8BDrwNPrMlFgXYjyRnrKnf/tn7uzeqXGUSMg+x1ELC3j0kOwpTlE1IMjP2IN0IIIYQQQgghxCe9VjFaISUzlUbBhq18E4UX2pfh2bZHRKFCVaAGB1a9E8fVnYmAEma0gyyRCzsRaNcsgPIrUCGlja1uFTOSzKjX7UFCJ4x5AMVoxYYfcVfYicCxtI+5xks45kckVgj8CL38nMd+RKl+BXZjRcSpQDyZOVXiYD+j1yIqG5UYLSCI0SziM2BA4CgRtghP/V7X/YrgHOUg7ESEPhrFaIQM0hI3DzxQUFZxkid5GPhCioMnWu8X85bUnlLAkpDRMCk4GQqOUbjcmtiOuWjI+T6lZySj6a8QQgghhBBCCCGEEEJIQbBJVXZJ09SkKcBBRxeoQDlm+h5y3pb1QP1CzJ9m38QbW4ENO4F5OXZYrBPFaHaFh07EgeaN5syZ9cM/V03KrlCR4oirGBcYhAT79q3Gk8HMCrXW4ksYLZIUJhQA5pi8eJubjMsrk8DMJkZLpsV4xaL+t1vKNOxrTt+yDo1T5PfQD7+ucfL+uZ/YS2uNqFCHfInRYlFzulLD2yOpLg3Gz26PmfNnWNpwMsDJHwEe+JM5LxYVV5s/VeGFqLnOdfcDzzcBJ77De/dSG9QwRRa3aUnMMavenE5yw5z5YpZe/hjUEe/BntOBVzeZl3k9Bhxg8PuMJc83metwJAQs3PaUv42Ed73Trx24fjfEo9gcmp2xmE3CNkhXZhgkAKAiNZ5vVgMnaiSlQ5k85klrDaUUyoIK71oAXLRY4ZZnMs/p9YKAM1ckkho7hLDgSREf5+orT8t5Uj+42kOMNnUWsEPoGwGZ93yktFHKHM+aniaJaeumQ5XCc4DZDb4XbYxHrflPvKlxwjtydy1v7Ta3c5NShonMn6oA2NvDhs435Mw5C4Cgj7FYpVAXCBkHWKYxIYQQQgghhBBCios+t1fMK6T0SNqXTQwyEVjWcj9+H/sRVnevxNb+TcZ/b/e8jn80/wF/3nqTdVuSoCQSqBRFTxSjET9IAp1ikT9JSEKtHrfLWveDivMeFBN+rkWFlnJ5lalYpIF+vhc/53HICXkKA4tdjCaVb7CfYROF+ZHzSUiSEtv+bPkhVWb9Pfxe121Ss/T6K353FKMRMoQkOK4J1iHgo18hhS5QizYx6Uy0Y3mHOTB2YcVBmFEmTI1Mio6ACmBS0DTSB2hJ5GcqWVlaXdx9MUIIIYQQQgghhBBCCEHAMtmZM/6HYanyMDBlljlz63oAwMn7eQ9oXbczl6UaILrd/Nap3ktGtG3jbplQOumD76vNz8slVLi4Y46KCVVZk5E2XxhA/eOHtPh7j5YmqR5NAQLO8LqttZZFSQZxg3IcuR1IEaPpzjago8W8nEEgV9JIgoz+Prx72jZxtX8L8p/RsrUd6BFCWhqn+hjsH4ua06fOhior3/3ZEa41g/Woo9WcX+thriRQx5whZ66X5QinH2Tf7idudXHXSxrtPfa6J8mirGK9WNScTtFLflm0VM6LRQEApx0gn/ePrC6+aJnH3zCXadE8QEkCvnQG+z6HHw9AlqH4uY53C2K0ytTJWrMQsxAy7olUyXmtwy8gDcJ14+6VQDyRv/ZnYwuQFG6t9pjsYwOxqJiljjrNnGETo3Xu6hNJfSMAqPVjryUlgyjbHH7e6FjUvFiJ9L9URbXvZU/qegiOTor5b8Ry2ya1CmH/dSlhh8cv9N5OfXy9mKeOOs2fGC3MWEdCioHx/0SeEEIIIYQQQkjJ0Ov2iHnlBRWjmR9s2co33om7cdyz/Xbfyz/d9hC29gtTZEEWlISdCEKqzFwGitGID3qTct0qZiQhUa/bg4ROGPMAeAqgSGEpV2EoURkzgPRb5wsv8UQkUBwBvBEfQi+/57HXd1zo3yBbJLnZYD/DJvkazbFJ4rkeoV0dpFsQww5uT2qn4q6/67pt/+nHK7alHsdASCmxM26OwK0L+g0O4gytpcQzbQ+LIssltacUuDRktEjneasgTBwNrnbFZyTFfm9GCCGEEEIIIYQQQgghUJahVra88cTMecZkfet1A9mTFK460/5e6A/P5n4wflSYy6NhiseKWyyij7RBzapqUnaF4iDYrFCf/P6wz43xJnHZfb/l4s7lua9HX7rTvM1GUz1q3wl0d5g3JAm7pMHTyZT3arGoUDpQAJOO9D0DqF5+H+YKLsOn3gKeW5v7+iNJrQAPsdUu9J+uM2ekCxYCwsRlQ2I0s1hP2cQhZIDFpwIGUSMAoH0n9PbNxqxzD1E4/UB5s03bgff+0sVh17hY2yzXPUkW1SCI9bTWwCN/MW+sRMQcY4WqqJZlsY//Hdp1ccERcn/oC3/RuPU5wR40BiRdjcfXmPPePa8L6JcnqB/Grr6PmjITANDQb+5n3bkCcF17O9zVZ06vSI2BZD0nJYS64kY5c/mjwz7WWyRkZ9zgorM3P3I06Z4M8HFfBkDb7s32P9KcXhYGQuYxREN9Ikk6HKmC8iM3IiWEcO3WaeeMJAydVTrXJXXJN30tNyuxBdds+5aYf+cK4Jm3c9cmSWK02pTHM5Mq1LDP6Vw2/QU52vnIk4Bj3wcEhXYnFcryCSkKJsgTeUIIIYQQQgghpUCfa34hF1JlCCjLTJ05RpK32EQl451VXSvQ5QoBQALL258S83qF7yriVCCozAEf0oB8QlKRzsNikT9JSPKqHrfbWvel84WMDUopT1Gnl6gs13iJsopFTOHne/Er/fLaVqF/g2yRRYndw/5PZ6A/NPI2Qe7fmMVnXvmD2ws65oADv9d16XiBTDGurS0lhAzQIgiQ/IvRJIpvFlwyOlydxLLW+415dcGpOKDq8AKXiIyW2qA5OrFFECaOBun5DVD8fTFCCCGEEEIIIYQQQgiBYxlqZcsbT8wwi9EQWwfdM/AO+Fun24/1d0/pAZlLjuiLa2xuM+c1TPGYvEca0DxpKlRF1fC0qiylQpHijjkqOo5937CP8/tlMVpfAvj4n1z0xnNXj7a2y9sySoliUXljksBMElolUia/3CwcdzAETJ0j77MUqZkMVFQbs/T1l+Pqs+Tz/1O3515I1CRIrSrLgalVxqwhdHcn0CxMKJwugJPqkZsc+L9TaBCrBVMcGUIFQ1A3Pynm659fYUwvDyn8/TIHVeX27b+1Dfjm3RYxmiCUEcV6K+VYa1VCYo6xQl16lZy5/FGEQwpH7ykvctltGh15khNly8oNskjk3bUb/G+ofHdMnvr4d9EQlyVHj66WN5N0NfqEeaEr9O6CKosgk5AJx4IDxCx99UeHfa633AP9axXw+2fy0/ZIfaHJlUBNxMekqrGoOf20i6GUeX2llNzHGewTiX0jSmNJGkI9yxCjSRK/UhJ2Lj3H96Jf2vljHD1TOA8BXH6bm7NnRC1Cf6YuLezws8fLbdJHYY59RXkE6tq/QZVHgKCPcRd8JkRIUTBBnsgTQgghhBBCCCkFpIG15U64oOWQBvHaxB3jnRc6lmW9zvIO88v6uNuPhDa/6Yw4lQiq0QlUSOmS1En0a/P0YsUif5KQREg9yS4PMRpnOCo2vOqaX7lXrii28kj4OUfDgrgr221Firw98JJ79SRluehoqHDML+7iuh9xV26HRCHlru2FRnldl7YfdiJw0mZjl+RuE7mPRki2SGK0ySF/YjQlzKGmKUabcPynazl2JpqNecfUnlRQOTnJDXUhQYyWsEz1OkJsYlXpek0IIYQQQgghhBBCCCFFg7KJ0SbI83GbaGX5o0N/VnuE5a3ekqPyAFi/M3Oc8iAN5kfcQ2hpQLPpOLOVCpXzuXZWTJ0zIP/aRWNcFqMBAwOel63J3e7vfUV+bzl/miExFjUvXFYOTJ5pzpOEVsmUmMjmjeZlZuwBFZgg7UiOUEplSsNSaKg2xwMCwIr1wIaduX1X3STMKdQ4BaLMY4iU9jOD9GOURJuD9aijxZxP+Yc/ZjbIeW++LGYFAwqfOs5b+nLXSxqum1n3XFeLYjRJ8qmX3S3vqJTEHGOFpf0Z/G32nC7Xia4+4OHXc12okbFivbk9LAsCi9Vr/jeUKpWd1YCGeFRc9B8vy21wd7+8i8rUeD6K0UgJoZQC6heaM7WGTiaHPnrdA931Un7i9TYIXRCv8gwRixqTlSQdHqRqkjm9s3Xgf6lvJK1HSpdRitFKStg5U5DmC5wwPSbmvbJRFgRnS1uPOX1SmpzxwLlyH61x+wpzxrmfhBp8ZhH0HoulwhSjEVIMUIxGCCGEEEIIIWTc0Oean26VF1hwIgqMJqh0o9ftwaudL2S9Xqx/Azb3ZT4stslJwoEIQk6ZMS/uWt6QEgJ73YoIwp9iQRI+9bo9HmI0H7OUkILiJacKBwp7zfKSiUkSrkITUEGUKft0m34Fh5GA/XwPe+SPNZK4bbCNk9q60f6WYUs72WuRm/QkzXmDorXRCk+zOV4vqRwhBGiJm0VXdUF/YjQIYjQy8VjWYp4xL6iCOGrSiQUuDckF0nnemgcxWq/w/AYonv4nIYQQQgghhBBCCCGEiNjENzZp2jhCHXS0nLl5t8jq8nfb3w29tS1XJbIPoK33GoQfi5rTZxgG+VZnOXA+UtwxBsWGCgSAxO54gIN6X0VNss26ztrtuZM6vGV+HQoAWLKXoT5vFsRtM+uhJHFVQBg8nSpG6xbiLCb5fS9bYsxuFLMOKVtnbZbftvzmI6FJaIsa/fx0m94Ws9TBae2uRbCn+3qBfvNE0qiiGM0Pqtxi9tweg1751MA/gxBj6d7ecRE9cWBLe2Z6rA3oN88bLdehzWvlHb3jcM+ykFGy8FA5b9PAb7N0b/sm1jYXx2SCawWx48Fzgcg2Sz1LJVQG7HPI7s+zGnBYryAWgf3Yu2SvJSpT4xFLSUBDCABMEeS7ALB909Cf8ybb74Ny3QcapEXoxs6s8V5Xay3fm3md61Ifp2NAjKY7hXuKbMXXZOIj3jzsvmbp/j5g+2bzYjaR/ARDVVRntXyta+gAp/B2jp4RdQp9iJq0IRbH7gOEDbfn+80GJsdeMW5jmPjOhxgNEcY6ElIMTIwn8oQQQgghhBBCSgJRjKY8pqbMMdIg3t7kxJRurOx4HnFtlpKdNPl9OG/6x6AEQcKL7U9lpNnkJBGnUhQ9JbQQLUDILqzSvQILFLNFFi52Weu+JBwiY4eX6KHQkj4vUVvEQ5xWSGzfXUiV+a7vXue7JB4rFiRBWc+ufoZ0HfWS4Hlhqwu2a3ePIE0bLM9oxWjSvk11W6rvtusDIaWEq120CAKkupBpenT/FEeIJ8kV2/o3Y1X3S8a8RVVHoTrIYPvxSG3QHC3ZEt8+EJiYQ+zS6uLpfxJCCCGEEEIIIYQQQkjWSKKk8cbh8iQo+om7hv7++BKFMsucfWf9wsXydbl5xhzdYd7OjBogUuYhqTGIbQCYB99nO3A+zOfa2aI+dtXQ3xW6B1fs+KF1+X++nLv3FFFBCgMAR87PTNOxqHlhm7hBElqlCOF0r2CUYH0yklpn0qluieJbp8ttwEd+6+b0XVdUEPU1TPWWZen7b5UzDzl2+OegJEZLAh0t8nYo//DPh75kTu/phP7U8QP/ztsb7ieWQO/YMpR9wr7AUQu8N3/VPZl1ZeVGeXlRjBaLiuso/t55R1VUy23zrv7FuYcq7Ddb3saX7tSIJ8Y+cubXy8xlmD9NQd/3B38bef9nhktSZtWj2u1ERIgBePA1eVPdlvnQK3TK9ihGIyWG+u+r5cw3dsdrOY7CN0+T+x/rdwK98dy3Pa1CyE9dpY8JVVu3Az1CP9jrXK82x6PpzgExmtg/qspSfE1KAKGupt4zbF0//HMqM0tHjAYAOPO/fC9am2y15r/nJy7e3Dq6dime0IgnzXkVZWnlqVD4/AnDf29HAd84sQ9q5xYYSW2LnIB3gcKU5RNSDEyQJ/KEEEIIIYQQQkqBXkGMVmjhkbQ/mzRkPPNix5PG9JpALc6YegGOrTsdCyLvMC6zvOOpjKATuxitYtQCFVK69FjkhIWWUWWLKFx0e6x1n2K04sPrmlT4a5Y9oNIrv5DYxFzZfG/j6ZhNRALmYx0UjEiikdFKRios7WR3UghUgCxGG9yeJDyN+7yuS+JZ0+8o/ba26wMhpURnsl3sV9QF/c1MLoc3jX2AJ8kdT7Y+IOYtrTulgCUhuaQ2ZD7P+3WfeD0fKdLzGwcOQqrMmEcIIYQQQgghhBBCCCFFg02woybGMCwVDALHv9+c+crT0PEBk0XDVIXVV9uP+bSfuejPgQxEElo1mOf9GE4sakxWsxsyE7MdOB8p7pijouT0i4d9/MqOH+C2TReKiz/wGnImlFnbbN7OF9+joJThbWcsat6QTdwQFOK1kimTX/YKcQoUoxlR8/eTM2NRXHmG3A5tagX+79+5e1/dJLRFotRqF7qzDVj7H3PmKRdCpYs1pUH4yQTQYREOCNIQkok65+P+FnzteehrdgshAo7Cvz7v4OqzFE7cV17tN09qrNwwvO6d/nPXuGxNGKgznP5aayBmlnuqb97iWXSSG9TXfmvO2LIO2nVRWa7w5BX2/tD1/xrbuJmt7Ro7hNf+9dW9wKa18sqHvBtYchbUV38N9fHvDs+rnQaEK/D7zZeKqz+8ynzsXX3yLisHYyBrJkNV1sgLEjIBUfsdIebprw+/R7vkaAf/+z45Yu/rd+VDjGbe5iQ/YdySsBrwlk1VCX2cwX5RZ1t265HSxXTfBwx/1jOaujrBUOd/1veyTp93jOHZN45OXN1lEatWGsIOv3u2wi0XK7x3EXDhuxQe/JyD8575H3kjqff6kvQ8FYrRCCkKJsYTeUIIIYQQQgghJUGf7jWmlzvhgpYjEjA/2JIG/o5nOhJteL3rJWPeIdVHw1EDwRmHVR9tXKY5HsOGvuEvUyXBCTDwW0qip7i2POEkBLIsCADCgmioWJCERn1uD+KuXPcDgnCIjB1e0q1CS/q8hGKjlWnlEtt3l8335nVMxXTMJmyiREAWjI72uMqdCJSgPLK1r5J0bPA4JPmJX+FpNscryfUmYh+NkJHQkpCnR68ThEmk9Oh3+/BM2yPGvD3K56MxvE+BS0RyRV1QHjm2My63DyNB6juEnQrzoCNCCCGEEEIIIYQQQggZL6SLbcYxqn6hnPnvh4b+bJiqcNFi+dnutg7g4ddHX551O8zpjVPtz5V1vB9o3mTONA1oznbgPAfBZk/ddKCsfFjS+e134ivbrxNXeeyN3Ox63U5z+j4zhBU2NxmTlU2MFhCEVomUOIheYcA465PMgUcZk/UuadS5h8ir3v58bqQgrquxQahDXm0RnntQzFKNBruWNAg/mQA6bWK0Ons5yG6mzvYnOwCAFx+Bbtk29DFSpvCN0xw8+PkADpgjr3ZbSt2zSUIbpsL8nrRtB9DTaV7J1g6R3GISqQJAvB/YEQMA1FYofO8cuR24LUft0Ei5Z6Wl/u18WcxTn7oOzk8fhHPNX6BOvTCjniqlgFkNaIjLApnbBTmlVWwyOHkb6zkpVfY6WMzSPcP7kZctldse27k/UlqEcOE6P93YWNScXhYGpsy0rysJrAf7RVL/iNJYko4vMdp68zKTZ0CVF/e4o5wzw78IrqpfuFlK4fUY8JLw9frBKlYtz0xTSuHCdzm487IAbrnYwfH7KvneTClgxrzdn/3cK0SKe9wJIaXCxHkiTwghhBBCCCFkwiNJLQotRpMkMz2u9+wH442XOp6BC/MMZofXLBn6e1H1u6CExwzLO54a9lkSnISdCBwVsAhUEsZ0QgaR6lZIlYnCvWJBEi5qaHS5HcY8BwE4E2Qm4omEl4jMKz/XeMmyvERuhcRW1my+N69jKnS/IVuk72GwnyEJRkf7WzrKGVEfR8qr2NWuSe2vXzGaKFYxSNCk72Ai9tEIGQktgvgoqIKoDgiBRWlIQiONsQ3wJLnjhfZlYru5pPYUSq3GMZOCk8X79laLOHEkyOLUEgscI4QQQgghhBBCCCGETDwcQYg0Htn7IDlv/XBL1aJ5wnK7WL1l9O+KojvM26iX5/0YYNuG4QOcU5nZkJlW6e+92BDlxR1jUIwoxwECmbECi3plMcvrOahDWmtsF/xCc+sy33Fp1wW2CiO2Z8+XdxQU4tCSKfGNvcIEbuHiidMpOkwiQwDYMiDjWVQvv6dcvSU3RWjrARLmcFnM9fKRbZGlQUb5iW0QfrtgigyGgFITNYwCFQgACw7wt7DWwIY3jVmHzJPr3hspbdcOof0BgFrpZ4tF5ZUojCoctu86tvvcXmSpC29uBZLu2MXORIVmAwAW9ayQM/de5L3xWQ1Y2CcbTLe0mY+72yJGC+vegT+mzfbePyETkVkWEVEsOuxjVVhue6S+72hoFbqx4rUslVjUnD5SP1xEAAAgAElEQVSr3jvmTJK/drQO/z+dbMXXZOLjR4zWLgi+pszKfXmKHJXFM4/FyVfg+AgfHc0zIqtY1SBGS0drLf++WkOlStz9iNEqqr2XIYTkHY6cJCTHmDrnWnrJQggh4wTXzXy7wwFwhBBCxoI+t9eYXuiBtZJ0QxK3jWde7HjSmD41NAMN4b2GPlcHa7FPhTmAYHn7U8Pui6RB9oPfa1CZHy5quEjqpK9yk9JElOeMg8H3tjJ2JNqM6aEil72VKuGAhxjNIHPKJ16yLC9xWiGxnQfZfG+2YypXYTiquAPVvfoZkgQykoO6FXHMksbupCwWk/IGtzV6MZq5f2X6naXffiL20QgZCTsTzcb02uCULGSrUtDIyMpEigutNZa13m/MiziVw+TYZPwRUAFMCpqDCFsTlijpESDdm0lCaEIIIYQQQrKFMXqEkIkG4/MIIWQc4UygYVhHnCRm6Ru/OqyP/cHDFWotr6T/568a37/fHVW/XBJ6NHiJ0WJROc8gHFDBYHYDWykhGhmnXpiRdFqn+T0UADzz1uh32dkHJAWpVZ2p/m7fDMSFUdc2SY40eDqREgfRZ35XQjGaBUkQ8tjfAAAfOVLuH6/dDhx8dRJrm0f3bEASgQBCHUpBd7TImYe8OzPNJtpsFSY1qq7jfUKWqHM+7n/h6Gpj8qVL5O/8nleAj/7ORVu3ttafTx+X2X/Qz94P/d9HmVcoCwNTZlqLS3JIdZ3YN9D3/XHo7xP2lTeRcIGNlmYg37QKlx0AOLTtWTnzoKO9Nz6zHlVajh+U6n5Xnzm9wu2CMxhoVOVlnSRkYqLO/5yYpx/5S0baewWHYWs38OrG3L4bkdoT2/3gIHrlU+YMH7JPVSUIrNe8NPB/p1mMpqopRiPpSH233eeKlkR7pVqf3nOBr8Wm9mzEOT6cqh/+rcbPHhnZMyKp/wAAlWU+NtDaDPQKDdnJHxn+2Y8YrXqyj50SQvLNBHoiT0hx4BhedMXj/gb5EUJIsZJIJDLSTO0dIYQQkm/6BKlFeYGlR5J0o8/tgauFyJpxyM54M97qWWXMO6x6SUaAxaHV5pejOxPNiPauGfrsJTiRBCqAf4kKKU16ksLge0H0U0zYytiZbDem284VMnYUm4jM6xpZaFGbDdt3l833livB2lghHWtPshtaa4sEMgdiNEFWIu3Tlje4LUl4mtCZzxpMSCI40/FK30GPRexGSCnREjcHT9cFpxW4JKRYaep9Axv61hrz3jXpeJQ5PqbcI0VNbdA8eqwlIQyuGCHy9ZuDxwghhBBCSG5gjB4hZKLB+DxCCBlH+J5spvhRwRCw+FR5gT//eOjPqdUKT11hP/av/UPje/eNbFB+b1xjszAuuWGqhwQots6cXjcdSpJQVWUx2Lks7H9ZMoT66Ncy0sK6D8d3PmJc/q/LNeKJUUqtLFKYOlM4RCwqrzC7Qc4LCjFbyZQ+XY8Qp0AxmoiaKYjRAOiNb2FuncLvL5Lbg1c2Akde66Kzd+T1yFaHPGUggqwDBx0NZerb2wbhi2K0EhU1jAJ1+sVQX/gZUL+P57L6+suN6YsXKHzoCLnu/ek5jTNucNFiqT+nps07rV95Bvqr75NXmFVPCV4BUUrJ0p57fw/91isAgICj8PrVcn/oi38ZuzEEUvt19sGA2hI1Z575X+b2KQ2167v5wdYrjPktwiWvq8/cHlekxhNUCyIkQiY46sDFcuYfvw+9/o1hST96v3yuHnS1i57+3MnRpOtZXYX9uqT7+4BnBRGyDzEaqgVRYmcbdHcnIImssrm3I6WB1IdKlXR1tZmXKdH+tvrEd/0t2NGKP17i4ONLvfupn7tD48bHcyxG8xO+ujkqZqnLrhme4EuMVpp1gpBiY+I8kSekSFBKoaxsuHK0s7NzjEpDCCG5Ib0dKysr40N2QgghY0Kf22tML7QYTZJuaGixjOOR5R3CjC0ADqs5JiPt4Ooj4cA8i13qtiQ5SXhIjCZP4xDXwgyNhECW7o2Hwfe2MnYkzS9eJNkQGVu85FS5kFdlQ8gJWSV6hRa12YhYpGXZfG+27RTT8UpIx5pEAgkdl0VkuRCjCdvodmWxmJQ3KHyU6p/fa3qvKL3MLKsor9W9cHXS1/4ImchI4qO60FTf25Dn0svtzJNkbHiiRQhOA7Ck9uQCloTkizpJjBbfkdP9yPdmxd8XI4QQQggh4wPG6BFCJhqMzyOEkHHEBBNXqgOPEvP0P24a9vkdsxWuOcd+fbrxcQ2ts39vtH6nnNdgfrQ9hN4iiNEskqWsBrZSjDYyaqcaJWBLuuWYxPv+M7pd2qREtabQrFjUvHDVJChJzADIg6dTxWh95ncloqyPWM9Zfc/vAADnLLK3Qds7gb+tGPm7a1sdmuQVgijJOvbY25xuGYSv24R3d7Z6SUTUOR+Hc+srUI93Qz3eDRxzpris3rbRmH75u+1176m3gGVrzHWvLAiE08Kn9D9/AyQtsUx+BDIkt1i+c33Pb4f+3memQp3QlP/9pRyXKQtau831r2GqEgUhat/D/W18diMAYJoQd9RqvuShWwgPrEyJf7RebwmZ6Njuxe79w7DPc+qAoOVW9J8rcxO7l3Q1OoThUJ6S2GfuE7OULzGa5R5t2V2yhLaKgkWShh8xWqcgRqss0fo0ZZYsAE+lsxWRMoVffshB8mYHnzrO+xlRtnQJ/YegA5QFfbwziUXN6eEKoG768DRfYjT2VQgpBibWE3lCioTq6uphn9vb20f0cocQQooBrTXa29uHpaW3c4QQQkihkAbWljuFDT6yCVckWcl45IX2Zcb0OeUNmF0+LyO9MlCNfSsPNq6zouMZuHpgJizpdxyUmYQc+YFqQmfOlE3IID2SnMdyzhYLIVWGAMwP1jsFMVqAYrSiJOIh4hsLMZdtn8Ukp7CVJRvBoX07xXO8EuGAfKy9bjd6hL5GLo5N2kaPICeLu/1I6Lgxb/d13Sw8Tbjm9TL2LR2voW03pQ0i9T8IKSVa4oIYLehfjCap0ShGG/90JFrxUufTxrx3VCzC9LLZBS4RyQeSCFESJ46UfIpcCSGEEEIIGYQxeoSQiQLj8wghZJzhmCeNHLfU7yPnxdZBd7QMS9p3pn0QaqwN2CKML7YRtTymnjfZY+VY1JxuG3xflYUYrbz4J2QsRpRSRiHUvv2rxXVWrB/dPV2LPOebWWITi5oX9hI3SAPGEymxjT1CYShGk5knCMQA4O1XAQA1EYXZHqfvzctGXo9ahfDfmjAQcDwG4UuyDknyEbBcT1qFRjEbqSPJQAUCUIEAMM9y7XvrFWOyl6QTAB5/w1z3aiPIFF+v8TBo2cpI8oOtT7Tm5WEfp1bJi3b2js3zSUlOVhvsB9qENsWvgG/XcrWuuZ2T2k5JbFKpU66RFBqRUkaSpwIZ14mAo7D3DHnxFetzU6ROQYoGeEtite3aZuvnDTIjc3zS0LZff0HuX1NaRNLxJUajaC8V5TjA9LneC6YI5ZRSWDjTvvjrMaCnP7u+UVefOb2y3OcGYlFz+sz6zD657Z4MGLj3j1T63DEhJJ9QjEZIHkgPSIjH49i0aRMDrwgh4w6tNTZt2oR4fPhg5ZqamjEqESGEkFKnzzU/ac9GlpILbOKRiSLdiPVtwMa+JmPe4dVLxPUOrT7amN6a2IG1Pa8DkOVVgzKToEX25FeiQkoT6fwbDyIkpZQocOtItBvTg8rHrCyk4HjVt7Goj7Z9FpOcwlaWiOP/pVKuBGtjhe1Ye9xu9CbtgtHRUBEw77tXuHZL0rLUbUltlV/ZaTZiFdt3MFH6aISMBkl8NDk0rcAlIcXI020PiW3zkrpTClwaki9qg+aI/daEMOv8CJGu3+OhL0YIIYQQQsYPjNEjhEwEGJ9HCCHjEGeCDcM6/ER7/ubosI8n7y8IplL43v3Z98mjO8zrzKwBImUeMqLYOnP6rHp5Hb9yIaVkCRbxRJ14fkbaKZ0Pist/5/9p7OwahdRKCAuoLAeCSELf8VO4Xz4H7iePg/vJ46B/9x3zCl6imIAQ35hMedfWJ8RTUIwmomwD8Z//19D9/gffaW8Tnls78jK0dAtiKz8/W4dZrqAkEaNUjwBZYpSN1JGIqBM/IObpG78CnUxmpM/04ciQpDTp102dSABNq6zbspWR5Ad1guU7T+sPnXGQ3A5Fc/vq3TctwmWnLrFTXsmvGG3mQJ+qNmlu5/oSZumJJDapSI3jo9CIlDCmvvIQLz4K7brDki44Qm57rn9Q44o7XWxqGd37EUloCACV5jmSdxOLynle950AsPBQOe9Ns7gUAMWxxIDHMwQA6DSPzxH77qXATMszlEHS5PnnHqIQ8nCLZds36uozt2N+xWh6nSBjN/R7lFJ2OVp1XaZMjRAyJlieoBBCRko4HEYoFBoWqNDR0YG3334bNTU1qKqqQjAYhDPRXooRQiYErusikUigs7MT7e3tGUFXoVAI5eV+9cqEEEJIbukThBblTrig5bBJNyTp13jjxY4nxbxDa8zyMwA4qOqdCKqgcUD98o6nsWfFfqJEZfB7DSr5rUlcW962kJJHOv+KSfxkI+xE0JnMfMliSgMoRitWyj1kD5IAL5/YBBQRQYQ1FuRKaJYrwdpYYTvWHrfbUzA6GqTvp1sUo8n9nrBjF54mkYCrXTjK/oxU6jeYvidbHRooK+VPpHRJ6gTahGDHOkGUZEKJQSMcdD6eSeoknmw1D0KZHJyG/SstgWdkXFEXnGpMb43vgNY6Z4E8ksh1PEirCSGEEELI+IExeoSQ8Qrj8wghZJwzwQZEqvIw8MsnoC9baszXv7kK6vq7hz6HQwr3fsbBe290scUczoJfPKYxtcrFlWf474tLA2UbzI+1h7PFLEZTtkG9fgc7l4U5CHY0nPdpYMObwD2/G0qK6F4s7n4Gz1QsNq5y9P+6eO6rDmoi2X/votQqAuhvfgB46h5/G/ISxQiyPJ2I736b2itY2sLFH7cylqhPXQd9wxXGPH3zN6A+cQ2+fYbCD/9lfz/9i8dcfPLY7J8HtEpiIT+vuDrNwiBR1mEbgN8qiNEo/sgJasH+coTDujegr7kE6lt/GL6Oj2vB9k5zerpYT3/ePjGZ+tKNUDY5DMkLas8DoE/8APDQnzMzd26B7u2G2iW3/O7ZCj96yFyLvnefxu2XFr7vILVfk16615zhOIBNSJmCqq6FrqpFXb/Qzu3afyQt/L9bCPmvSI05rPJhHSRkgqIOPRb6oGOAleZxO/q6y6G+ctPQ5/95j8I37pL7QD/4l8YdL2g8+1UHs2tH1g5JQkPAh5QoFjWnH3osVJn3s07lONDHvx945C+ZmW+tlFdkO0LSkfptqRMriX33Eq5PM+Z5L9PXA93fN3ROT69RuPuTDs69yRWv+//7gMYtF/tvkyRBo6ecERgQHD94mzlTus8PBAGDGBkA778IKSIoRiMkDyilMHv2bKxfv37YDJTxeBw7duzAjh1jpH4nhJBRMti+8QUvIYSQsaLP7TWmZyNLyQUhVQYHAbjIfPjVK8jbxhNaa7zYvsyYtyCyL6aEpovrRgKVeEflIXil898ZeSs6nsa50/9L/I4GB0iHLLKnhI6LeYR41a1iRxISdSTbjOmSbIiMLRGPa9JY1EdpnwoKZap4BtZYxWhZSL/s2ylsn2Ek2Po17YlWuHCNebmQQErtUE/SHDnVk5TFaBWBKgB2iWNCx6110NWuKMY1ldX2HUiCFkJKhdbETmghtHdyaPTSQGrRxjf/6XwRLQlzcP2S2lPgKI9p/ci4oTZkHkHWp3vR43YNXb9HiyhEHwNJMCGEEEIImbgwRo8QMhFhfB4hhBQLljcfE1C8q/Y/EnrOfGDT2szM5x6Adl2olOM+cr7CxuscBD9hfncNDAzK/8KJGtVhf9e0dZIYbYp9fd3XC2zfbM60ya38DnYuK+yErRMNFQxBXfFLuK88Dax7Yyj9g+1/EcVoq7cAt/9b4xNLs+8PiVKrYA/wpE8pGgDlJUaThFbJlMlke4V4ijDflVg5SJ60F7f9APqCL6KiZjI+cLjCn1+Q2+rv3qvx38dohILZ1aNWIbQkXWxlpMMc4ycOpncs72DbJDFanY+CEF+c/GHggVvNeQ/9GfqjX4WqX5iTXaXWH/32f4CXzfHZAKD+usYu9iR5RV3yTWiTGA0AYuuAxn0BDIhi66eY+y9/fkHjto/lblIyv4hitJfvM2dM3wNKEH0amdWA2qat8v57gFlpzZ0oNtEphWW7Rkoc9bkfQV98uDnz3t9DX/w1qF2yorKgwq8vVLj0j3IfaEML8JunNL51+sjaIElsBAAVXlKiWNSYrI471/f+1ZEnQZvEaD1yrDLbEZKBLzGa0HevLGEx2kwfYjQA6GoDynaPKTx5f4XWnzoou8z8jOiPz2r8/iL/fSNJ0OgpZwSAFx8Ws8T7/EAQgLBTti+EFA0cPUlInqioqMC8efMyAq8IIWS8opTCvHnzUFHBl3GEEELGDkl6VK4KG4CklELEqUCX25GRZxOEAEBbYifW966FNkhNwk4EDeG9UeZ4P7FrTezEht61mFE2B9NCM0f8AtXVSWzsa0JrYudQWkt8O5rjW4zLH1Z9jOc2D6s+xihG60i24dGWe7Azvs243qDMxC5QSYh5qWit0RyPYUv/Rl/LD1ITqMUe4QUI+Bj43+/2Idq7JisZngMH88J7oiboPXNE3O1HtPdN9Lj2OpXOnPIGq7xupPS6PYj2rEG/tkwFNMZs7ze/dB8vg+8lGVJXMrOtAeznChk7vMRnYyEik86BsBOBo4onaNt2rnoJ51Kxyc9yIQ/LN44KoFyF0aczhbCrulaI6+VCuif9Bi2JZuO1fWNvk3F5BWeofxZScjREQsdRBvmc6HN7RZGTqc0MOWUIqqCxv/B698vGvpsfAiqI+vCeqArUjGh9QoqBlrgQOA2gLmgWJeWSpE5iQ+/baE/Ks8eamF1Wj6llM3JeHq01Yv3rsT1u7j9OD83GjLI5JTMA9YlWcyBsUIWweNIJBS4NySd1wSli3gvty1AniNOypS3lGUMq40VaTQghhBBCxg+M0SOETCQYn0cIIeOEInrHnlNm1pvFaACwJQrMnj8syXEUzjoIuHuleZWuPmDFOmDpPv52H91u7s/Xy4+1B9i6Xs6bJYtlVHWdv4l/yot/8rVxwT6HDhOjze8X6toulq0BPrE0+91saTen18XN7y1E5sy35weEmK14SlxdnxBTyDplZ3ajPf/1F4AjTsL5HmK0re3AG1uB/edkt/stgh+hzqOLruP9QLtgeJTEaAHLsN4287aUtC2SNWr2fPt1YOVTQJoY7ZPHKvziseyfP9VVpMQdWKRoiFQCM3wKKUh+mDFvQKZies4YaxoSowHA3FpZ7Lq1HZhZQK9Ke49GjzDveF2yxZwxLcsGcspM1L21Wsze0gbsO2t4miRYqkidaK2K7RopcbyEvK88A5y4+9qwYJqC1xSmy9aM/F2JJDQE7FIi3dcD7BTkiV7HmEq2clClgEhuJoEkEwgPMZp2XVlEXFW6YjQ1u9Hfc5IdW4G64ePVggGFI+cDzwm3+s0dwHSfIfiiWNVLzghAv/SknCnda9ruy0q4PhBSbFCMRkgeGQy82rx5M+Jx4ekCIYSMA0KhEGbPns2gK0IIIWNKQseRhFmKVZ6FLCVXhAMRo1xDkmQldRK3b70Rz7Y9Yt1uSJXh4llfwMHVR8rb2XIjnm3fvZ19Kg7Ax+d8TZQqSWzt34QbNn4bOwRRWToOHBxSbZ6pMZX9qw5DSJUhrjOfSP6j+RZxvUigEgAQVPLjCtM20+lJduGmTd/Dmz2veS5rYlKgDp+ceyXmhhvEZV7qeAa3xH7iqzwmjqk9GedP/29RSPRa53L8ZvP1RimOHw6qOgKXzPoiQo6Pp78+eK7tUdy25UbxHCx2xsvg+8FzIB2TSBEAgg7FaMWIV30bC8GKdH0otnPDVp6wYz4/TNjkZ8V2zBLhQAX6EpnXAElcA+RG+hYRvuft8a24adP3sthOxVBdH43wtNcVprKE3GaGnQp0JjOjne/bcYd1X344efJ5OGPqBSUjSiITi5ZEszE97ETE88mEglT/5ZCIjb1NuGHj1WiXgi092K/yEHxs9hUod3IjxG5L7MTPN3wbm/vXWZebV74An5p7JaqCE1uKuLV/E1Z3m0ctHVp99IQ//lJjUrAOCo7xHuOObb/K+/6zfW5BCCGEEEKIHxijRwiZCDA+jxBCxhEB78kWxyPqyJOglz9mzly/JkOMBgBnLVK4e6X8jmhVTGPpPv7erUYFsUij13wesaicN8MyqN7v4Naywk9+NxFRS86C/tftQ5+XdD+F2mQLWgN1xuXvfXVkMoeoMLZ9D22eJFZkkYeVLSK8X+1NmQA1Lkw+yjplRdVMhj7oGGClMKB9cxQAcPxCIBwCei2PAdaMQIzWJEga95js0ZZtXW8WKQHAdEF0ZRuA3ykY2igQyh3HnAH87moxW2+OZkRHnHXQyMRoe0xO2W4sKi949BmMSRpjVKgMevoeRvGq/vmXgHe8E6p2oHNy7EKFp98214em7YUVozXJcyViXnyDOePAo7Lah3rXyYg89wCmJpqxPTjNUAaNY9POmm7hUliZOmE4hY+kxFGVNdCHHgtI92Kx6LCPixcAU6uA7Z3yNh9dDby0XmPRvOyvKdJ5qxRQbjOSxKJyXjayM4vc2kioHMqZoPJyMgo8Ylx3xIC4MA5s+h55KdG44IiTBu5Rkh5jxmJNwJ4HZCQv3VvhubXmvtG/Vml8+Eh/bVKX1H/wcysdi8p5hx1nTrfdl1G8SEjRwKs9IXmmoqICCxYsQGNjI6ZMmYKystwMSieEkHxTVlaGKVOmoLGxEQsWLGDQFSGEkDFHEo4ByNkA+WyQ5COSwGNZ6/2eUjRgQPz1m83XoS1hnqVwWev9w6RoAPBG96v4+7ZbPLedzq83XedbigYACysPRnXQ+wVk2InggKrDsi7P4ABpRwXgwBxEmNDeA1r+3nzLiKVoANCWbMFNm66BFgJVdsab8dvNPxyxFA0Anmx9AM+0PWzM60524ubN145YigYAKzufx/07/jri9VPZ0rcRf9zys3ErRQNyIwsqBNlKAmyyITJ2hAPFJ3uQZGDFdm7YyhPJ4vwIqCBCyvwMrtiOWWIk5cyF9C1X30+qZMkmPPW6rvdYxGhSm5nP3/iBnX/Fys7n87Z9QvJJS9w8mqTOEKxoI9sgXFe7+OWma0YsRQOA17pW4J7tt3sv6JM/xH7qKUUDgPV9b+PWrTfkbL/FyrLW+8W8pbWnFLAkpBAEVBA1Pu7r88V4kdQSQgghhJDxB2P0CCHjEcbnEULIOEWYBHHcc/bHxSz9pbOguzMnEP3A4QpnHSRv8pO3a2zv8BbI9PRrxAQHUMMUj3dTW4R3PlNmQZVbYgqrzUKuDMoKH5c4ITnq9GEfI7oXv4x9Wly8oxe47XnzRJI2JKlV/VpznJ4JddWtUOUeMSphQYzWMxDjoJNJwBXKH6IYzQv1mR+IefqXXwMAVIUVfvURe/tw7k0uOnuzk1hJcqFRSRolwYczAtGm37aLeKL2PBD40JfkBW67PiPpuIXAx47JXjLTMCXlwx0/lcv0sSuz3jbJA7MazOkb34I+Yw509HUAwBUnyXXhN0+NTPA5UqS2K6hczElsNuapC7+c3U5OuxgA0BDPlMYBQJMhLKmrz/w9VKbGBFL4SAjUpzKvOYPoXw+/NpQFFW7+iGOXlAE49LsufvJw9v3pLmF4TGWZR9xgLGpOVwqYIUhiTUyZbZcUpRPiuyBiQKqrg+PDtpivZQCAmVnU1wmGqpsG9dkfyd/fILGoMflrp8rrXfg7jX+85K9/lBcx2vQ9oCqqzXm2Nke69yeEFJwsegeEkJGilEI4HEY4HMb06dOhtYbruuIge0IIGUuUUnAchzONEEIIKTr6XFkSla1MKBdIg3klgccrWUg0XLj4T+dyHFV7YkaeJON4pfN5XIDLfO+juT/mSwaQymHVx/he9tDqo7Gi45msth9xdj80DKkQ+nQyYxk/YrRcCEt2Jpqxsa8Je4QzZzt9vetluMgsW7a80vlvHF37noz017pWIKFHLyFb2fk8zpz2oVFv55XOf496G2PNeBl8n3oO+MEmGyJjh+2aNFZSLukcKLZzw/bdZVvWiFOBeDLzDX2xHbNEtuVUUDkRxaYKzUa1nZTy2ySOXtd1STgLjF29fqXz3zi4+si87oOQfLAz0WxMrwt5RXD7Q3rfsbFvLVoSlqlpfbKy8zmcO/2SUW+n1+3Bmu7/+F5+dddKJHUCgQna7+pze/Fc26PGvHnhPdEQ2bvAJSKFoC44RZSx55vxIqklhBBCCCHjE8boEULGC4zPI4SQcY4zMcVoKlwBvdfBwJsvmxe47w/AuZ8alhQOKdx5mYMpn3PRLoT2/fwxjW+fab/mrbc8sm7weJWlY0L8myQiGqRqkj1/EIrRcoIKBqEXnwo8c99Q2nkdf0d77HJ8fNaNxnUu+r3GexdpRMr895lEqVV/1N8GwhVQx5/nvVxEeN/R2zXwf1wYyQ0AQcobvFB7Hwx9xHuA5/+VmdnTCd3RAlVdhw8f6eCIRo19vilLP/70nMZl7/ZXhxJJLbZHjVNHJgfA5BlQYaG+ZCP9GKSaAqFc4nziu3DffBn490PGfL1+DdS83e/MHUfh5g8DFy1WOO6HLvp9hvkO1h/dtEpe6PzPQs3OjFcmY8DsRuDlZWK2/s23ob77Z1SFFRbOBFZvyVzm909r/OZCXbD7fkkMOq+8HQEY2sg582U5iIAqD0NX1qAhHsWLkUMz8qOGa3C3IFiK6F0xgYEAEKFwhBC15wHQJ34QeOj/jPl620ao6XOHPp+zSOH1qx386GGNGx6V3398+W8aHzpCY1q1/7aou9+8vQqvLmwsak6fNgeqzL8YWLQrXUIAACAASURBVAWD0NPn2qWzqVA6TEx4idG2CmK0SBVQMzk/ZRonqHM+DixaAqx4HPrHnzMuo2NRmL7h6rDCntOBt7aZt/3J21yccaCDYMDeJkn9h0o/zwZiUWOyuuhr8jo2YbV0708IKTgTM4qfkCJHKYVAYAQzOxBCCCGEEFLC2MRo5UUkRpMEHi1xw1RIFiR5wJruV43p7clWJHTcKh/xs32JkCrDQVVH+F5+v8pDEXYi6HV7fK8zt7xx6O+gCqFPZ/7mXgKVuBtHZ7Ld9z5ttCZ2YA9kBhq0J1tztH3zb9CayK6uZLv97LeTm/KMJal1q5jJtpzj5bhKjaAKYVbZHoj1b8jIOzCLdjSXSHVlbri46lBtcDKqApPQmRw+FXRIlWF62eystjW3vBGrul/KTC+yY5aYW96IaO+arJZ3cjAz+ZzyBigoaIxusGj6NV0iroW3l4P5rpxfpswBDXPLG7Ghb61HCUfORLguktKkJW7uG04O5kaMJu83N+dMS3wHtB590GhXsiMryXG/7kOf24uKQNWo9lusvND+hCj3Xlp7SoFLQwrFvPCeiPa+WfD9KijMLvcYiEYIIYQQQkgOYYweIYQQQgjJCzl4L1u07LGXKEbTT94DlSZGA4CAo3DRUQo/e8T8jvmelRrfPtO+26jlddI8rzHJsag5fVaDfb0qn3Kh8sLHJU5Y5mTG4R3X9Zi4eNIFnnwTeM9+/jbf2auxvdOc1xCP+tvIYcf5Wy4sSFx6BsVolliILMQQJc3Cw8xiNAB44RHguHMBAHvNULhoscItz5jboH+u1Ljs3f52ubFloN6ZaPSSNG6OmjNsbVFwJGK0uuzXIVbU0nOgBTEanrkXmDd8MjGlFBYvAH54nvr/7N13eBzF/T/w9+zd6Yok6+RuuUm2sXGhGJteDMGGQKhOIAmEGkIKCakkkMYvvZPeviGEkEYgQEJCTQi9JxTTYmywbGNkY2zJRbqTrszvD+ns0918ZndPp9NJfr+ehwdpZ3d2fNrbnbudeS8+8idv46t2HT8P3ya3Y9a+nuqiwacmNdtHzj1yG3QmAxUIYPYEczAaAKx6A5g9YTBaWOw1YVh7s7PJXDB1r9J2NGo0moWwUVM4W6cUbJIbp1IXZ2g8UR81ZyG0EIyGR+8ATn1fv0XNYxW+dhqswWipDHDn8xrnHOr9fdYp5PvWunRhdVurucDtc5nJxOneg9HYtyYTt2C0N14zl0+cxusSANU8F2ieC/3ys8BtvyleYdWz4razLcFoG7cDT7YCh8607186D0VdAhp1106gw/wAaeu5yBZYHWYwGlG1GMHfyBMREREREdFI0m0J2IoMQTBaVAhGS2TMk8r9BIT1rm+ux0bat0lnRhgFJFg2+nREA96/1Ktxwjh+9Ds8rz+v9gCMrdl9BzjomENUUll7MFoy2+l5n26kgAAMMCzGrX4/f0ebZDaBrJafhui9nvK0Z6jMie2DieEp7itWgf3qDkZD0NtTZiJODIvrjxzkFlGpjjIEiQQQxOENS4egNcCCukUYExrfb1lI1eDQhmOHpD0SRwVwZPz4ouWHNSxFjePv5vWR8bdCFTyPqDkyG9PCLnfTqsRhDcd6DjsFzMdcKRqCjdi/7tAB1RFUQRzesGzX7yFHvhOZ1vZHp0qBqEEVFG8+HxZfhqAavGfCDPfrIu25pGDkxpC/YLTCc6ubcr1nssigR1uerO6RW9CyyUDDIquV1hr3d9xhLKt16rGo/ogKt4gq5YiG4xBSbo9yLb+F9YdhVJBPsSciIiIiIiIiIqJhzhm54btq0dFyYdsasegtc+T7R8+sB1a/oaG1fL+l1RCkAQCTGoBIqH/deuc26P/8G/rRO6BXPgVseMVc6USXB3V4DRfiRPuyUQccXbRsemodZvTIDz7790r7sZPPFrDX4jUYzWNwg5KC0ZJ990ZTlvuawcrfoxmOrOej1/ufj96yt7zqSiGwyGSN5Tm0bsFoJYU0lnI9qWvwvw3ZHbBELBJDXgAcY7n2FZowqq++DZYHPe7PsaBVw3C96ifVA2xpAwAcNlM+DmznlHLbKTx7fkyPkExSSlARANTF0ZxaZywyXYfFgKXcWP96jh8g2mXRMWKRdD2qjygsdvnY86rPc1GXEGgYE7qwevMG6MfvBp550LxCqcFoXgW9j7OmPYl0fe79bKl3CImijePNy/dQasY8c8GKh6GT5nHBx+xt7yOv3OT++b6z27yOFNCo33y97zz0gFxpU7NcZnvIVlT47E9EFTd4s4OIiIiIiIiIyqg7a75rp+AMyYTeiBASlhCCuaTlklLCsRLZTtTD28CHLiEYTUEh7ER2/d4YHIdDGo7BsY0uj+40WDb6dIRUCI9suwdb0+abq/WBBsyvXYzTxp3Tb7kUBuMWZJCwBNCFVcQYotKdTRrDDpLC30AabKXgIGwI7snoDFK6+C6R9DeWjhUHjjEYKKuzxpAIDY3ubNJXoJ25PeZ2BhBESAiwqwZ1gVGYX7sIp407d6ib4lldcBQ+OfXruGXzdXgl8aLx7xpQQcyI7I0Tx75z2AS+7YmWNJ6IgArgkW334I2e1zEtMhPLRp+OWTGPj7Ets4gTxSemfh23bP4tXk38DxPDU/HW0W/H9MisIWmPzUlj3o2IE8V/tj+ItE7jgPrDcMKYM3zXs1/9wbio6TLc134b2tNvYk5sXywfd8GweZJTc3Q2PjzlSty95Sa0Jlchi4xxvUk103BE/Liyhtxd0PRxjNk8Hit2PoHtmXbP2yk4mB6ZheNGL8fM2Nxdy20hZWmXwNOUGIwm9/1mRvfGJZO/iLu23oS1ydXQKC0kNK3Txn6HHJxKVN3aU0IwWtBfMJpECg+T3jOFnzt21aM1urX5s18i22Xcxg+3oGWTkRqM9kriJWzobjWWHdpwrO9QUho+pkRacOmUL+GOLTdgbXI1MrAHlQ5UQ3A09qk9EKeMO3tQ90NERERERERERERUEY4z1C0YPMeeCXznEnNZ21ro7gRUuPgBpicsABwFZIVbKrM/n8WS2cBNH3Qwurb4nr0UaNU8ZvfPWmvg+u9D/+JzQNb9HrBym0zvNVyoZmD3pijPIcUPfHOg8aXNX8Y5k681bvLtOzWee03j+osd1Efs4z2kAJqATmNq6jVPTVRNLZ7WQ1QYj5fsG/dnC0arYTCaJ/sfJRbpW34J9Z7Ldv2+fKHCucI93dYtwAMvaxw123280BohpHFMLVyPv5KC0QIlTOv1GupInqkps+QRATf/Avj4D41F85oUzjlE4XeP2ccTKAWMivQGNuAf18jr+QmBocG1z6HAlFnAa6vlddpagfFTcNGRCpffbD4Gzr46i81XORUZrygFGdUmzBdHz9e7QvVxNL/eaix6vQNIpnS/UFsxYEn3jfWvYzAaUY6ata98Pbr++8AHvmYsuvJkB8t/nkXKPMQYP7pH48qTvbejUzqfFHRhdXcS+hvvA+65wV5hCdc3NWm699F6IY5vIwPp2pubB7ZTCEZjYGd/C4UAYa2BG34MnPuZoqLzD1O4+kGNlZvMm154rcZe4zUOnyX3j8TzUMHbXfd0Q3/zYuCf14t1Aej9Hm/8VLnc8rlMRQY2F4+IyofBaERERERERDQsJIXAq7BjDrsabFHH/AWXqZ0ZnTYGYwHAxJop2NhTPPAmaQgQcAsF68p4D1/rypqD0SaHm/HZ5u97rsfGUQ7eMvoUvGW0/1C1UoPRTK9bztdmXo1YoK5o+TfXfgrrksU3sKUQBykYYWZ0b3xi2teLlr/Y+TR+8tqXjG3VWhcdv9KxvnjUUTh/0seKlm/q2YAvrTEPSkxmuwYcjCa9pktHn4pTCwLtaODG1kzE+yZ/eqibQWVwRPx4HBE/fqibsUtjaCwubPrkUDfDlVIKy0afjmWjTx9wXQvrD8PC+sPK0KqhMTu2ALNjCyq+36AKYfn487F8/PllqS9guQ3hdl1Pa3NQi9RPyJlTuy/m1O7r3jiLx7fdi99uLB7cKAWnElWz7mwSndkdxrLG0DiftZk/e0l9ZKkvOT0yC5+e/p2i5R3prfjsKxcat0lkOhEPjvbYTjO3846J16fQDzcPdNxhXK6gcFT8rRVuDVXazNhcfDh25VA3g4iIiIiIiIiIiGj4USM3GE3VjgJ+ei/0JccYy/X/fRHqI8X3d0JBhZe/6mDW5+TAsvtfBj51o8Y15xffa1orBaONzVv32Yegf3aF/R+Qr6nZXu51wjOD0cpGBYPQRy8H7ru53/J3b78Bl4//GjaEJhu3u+N54It/0/j+O92C0cz39KakNiAoPIyuyDiPD6mM1JqXJ3LBaMJMbgAIMhjNC6UU9CnvBW79dXHhG+uhd7RD9YWExcIK91/mYMl3zOego7+bRddPnX5hPSavCuF6LV6eNdbWalysyhmM5jhArN7fNuSJuvgr0P/3BWOZfm011BTzw0d/c77C/S9rrNsq190QBRxHIfvtD8n7v+SbvtpLg0spBfz6cejjx8grtbUC+x2B0bUKcycBL7UVr7K1E7jlaWD5AYPV0t06u83XwNpO80PNMan0YLSW1Ati8dotwJyJ+e0yr1ebe4C416Baoj3F2ZcBfyj+vIVMBnrzBqhxxf3lt+2r8MBlDg79prkf1N4FbN6hMa7e23wrMdCwsAv75x+4h6LBpS8k8ROmVsNgNDJwDUbbZi5nYGd/M/cBRo0Gthd3dvWvvgic9UmoYP/PNGPqFB76jINxn5C/Hzr1p1ls+LaDsPD5TOw/FJ6HbviReygaAIybAhW0zDuwfS5jMBpR1Ri538gTERERERHRiNJtCUYbChEhGM0UpiUFbAFAY9A8asK0TTJjfg12b+M9GK0zYw5GqzUEhw2FUInBaLbXOuIUP7EUkEPu/AajSSERUv1ZZNGji7+1lf6OUj3Ssdhb18DDWxJCAEzUEQZ4ERER5VFKlRx4mhaCZYNq8J/5Eg2Yr3PluLYSVVp7ShjBDfnziMRvJLUU+iv1YaU+L+Dv846klGA0eH8G5bCxLd2Op3c8aiybV3sAxtZMNJYREREREREREREREe0RbA9NcUb4NKxZlgdQPXanWNQ8Bgi73Ma94T8amWzxa7t2i/n1np6XR6I9TLrvx20yfbQOCATc62EwWnlNm21cfN6231k3u/5J9/t1a4Rbos2pVtdtdxnb5G09KRgt2TeewBaMxvAGz9TUveTCB27t9+sClz/dP1903986IaSxZaz9LrnuTgAdm82FtjAQx8M5KF9dHGqkX4OGSpMlJOrffxGLHEfhK6faj4/GGKB3dACP32XZ/wy3FlKFqZjLWPq2tbt+PGCafAxc/4QcClJOUoBILG1+iKL13GRTF8f01DqxuPBa3CkFLOXG3zGAhqgfNdlyPSgIF8538AyFH79bPhfd/JT3sW9iIFFBF1b/68/eKhzsYDSGDpOJWzDajnZzOQM7+1GOAyw8Sl7hmfuNi8fUKVx6rHxO2toJ/PMluVqp/1B0HvL6PZHbecgajMY5c0TVgt+GEBERERER0bAgTagPq6EZfCSGaWWKJ+vbAs0aQ96D0dyCALqEsDPzuuabnTGnOoLRpACVlEuQQVII8QqrCBxlHkgihTIkfQafKCEmwm9wmd8gMnt4xMDDW+QwC3PQHBERUSEp8NTtui4FGEn1lZN0nevR3choj0+TJqoS7WlbMJrlCbdlIPdtzX3YGhWGA3O/3fRZy69SgtFGXiwa8Mi2fyKDtLFsSfyECreGiIiIiIiIiIiIiGgYkSbYjhDWIJBtQmoQesNhFrnMX+/qATYY5h9vEW4BNeXPSV73sr3yfEoB46e6rKKA+Hj3uhpGe98vuVJzDjAuX5x4yrrdpu3Ati77XbvWN83lLam1xuVF6uL2YMB8USkYre9gtgWjMbzBuzmLxCK9vv85obFWYYblmWArN7nf9d3SaV6nqSC3R2sNncy7D245N2KcJbHNb8hZrN7f+uTd3uZzEwBol+vP5EZ7vyAeBfD6q0DWEpA1e39rHTREjjhJLNJtrbt+tvV/Vm4qX3NsxAARLYwhLzUYLT4OEd2NSak2Y/GagmtxlxSMlmtXPYPRiPqZu1gs0utXWTddPF2+Hr1ofssaycFou+vXmQywxkPqLAA0NXvfec4kH8FoDB0mE7dgtJ3bzJsxsLOIOmiZXGjpJy92eRuv3Ch/PhPPQ3kfpbXWwOoV9p3kWPr6AFyC0eS5ekRUWQxGIyIiIiIiomGhO5s0Lh+qcCY5TKs4RMoWsNUYNI/GMG0jBVTluAWn5evKmkPUYoHqDkZzCzKQgsAiAfkLSTnkzlyXhnmAghK+QLcGl5mC9KR/g3Csh1SNGB7hN9zNRDquopbXlIiIKF+p13UpOE2qr5xswabdLn0yomojBaPVBxoQcvwNvJfCgLUQHyb3bc3vMaWU2M8sR+ivWyCjifRvG64yOoMHO8xPox4bmoB5tS4DQYiIiIiIiIiIiIiI9mQjPBgNAHDM283Lt22BXv2cuNlH3uL+2vzqoeL7Lh3CLaDG/Oypp+5zrXuXcZOhvEyQ9xAKokoNDiGzQ08AmlqKFp+w807M6llt3XT1ZnvVrUI2VXOq1VvbTn0fVNjjQ3qlydGJXDCaMJMbYHiDH/sdIZc9fFvRokuPlc9Bn/6LxrPr7fd93c5FOp1G9seXQZ88BXpZI7Lv2Q/6gb+JwQoAgPpGsUgpZZ+EX0gK5KMBU5NnyoV3/QH60TvE4rjLEPbGWkDf+BN5hSNOhproIwCGKkYt/6Bc+K/rd/149sHyuee5DcA1D1lC8cpEDBAxjf+ui0OVGEim+gKOpGvrw3mX8kxWIykM0dnVLgbQEPWjbCG9t/wSOm1+CCYAHFTcxd7lx//WuPDaLBI97mPgElKgYf4Qwyf/6VoPgN5+ztjJ3tbNN3YyEDDPjSkSHPyxxDQcSdfmXDBah7mYgZ3FjjtLLNLPPSqWLV+oMEX+KITL/qLxUpv5nCQHNOb90iE/LLqQOukC+woMRiMaFhiMRkRERERERMNCtzYHUIQdj4NRykyerF98E9E2gb8xZA5GM4VyuQWfdRlCtiSdGXMwWm2gOp4qFyoxQMVv8IKtTKpLC/eEpK/PbaFsfoL0ogHzwBZreIQQ7uaHFMhne02JiIjylRqMltbmgRyVCEazBpv6CKMlqgZbU+ZZAlJIs5XPyT7SZyFbyG7MMfd7u8rw3nM775iMtGC0FTufQEfaPDPkyPgJcBRvHxMRERERERERERER7cnUB74qlukLFkN3mx9w+s4DHfzhIoWDLZPyv3abxvMbdt970VqjXRjeFI/23pfSTz/g3uh8XgNmvISeMRitrFSoBupn9xUtDyGN+1uX4h3bbxK3PetXcrCM1hprhHnRLT2txe348p+A8z4LTN0LmLEA6n1fhrr4y27N300KqMqkoVM9QEpIlACAoL8HV+3JlOMAp11sLmx9CXpHe79Flx5rv8951HeyeHOHfO+3Q3hGXi74Sv/scuCGHwHb+g62tf+D/vw7gUdul3fqFvrjNfQDACIMRhtM6pJvimX6irdDr3zKWNbgEozWkNoK3PUHeb//7/ee2keVpw5cChy41FyY6oFuawUAjKtXuOZ8eSzNRddp3PL04I476ZSCjEzjvw0BpZ719YtahGC0Pz6hkcn2/lulcKX8dikGoxEVO+8KsUj/8vNimVIKn1gmn4uufUTjgmvdz0WdQnhaLhhN79wGfdmprvUAACZMhfLT1+mjgkFg/BRvK4cYOkwG0hjX3ESwHUKwMa9LRVQkBux/lLnwX3+Gzpo/p8fCCo9cbv98duS3s9iRLD7nSP2a2vDuv6u+Vv7eqp93fwJq+t72dRxLOxlOTVQ1OLKdiIiIiIiIhoXurHlAVdhxuas8SKLCZP2U7kGmIMRDCroKqRrUBUYZy0zbSAFVOX5COrqEYLSYU+e5jsFUaoCKGLxgCTeRQ+6EYDQhGEEJX7OEVUQs8xOkZ/03iOFuAwuPSOsUUtr8zTKD0YiIyKvSg9HM16BKBKPZrnOJjL1PRlRt2tPmWQCNoXFl3Iu5j1zW4OIyhP5K5xUrKRl5mHqgwzwwP6RqcGjDWyrcGiIiIiIiIiIiIiIiqjrjptgflmMJAXr3QQ4evSKARZZsst88svveS6IHSGXM6zX2Dc/TN/7Y1tpiXoPRmprd15k0gPAQMlJjJkJd8aui5RMyb+D6DedgZmy7cbtVbwDpjPm+XXsXsN08vBTTU2sNC+fAuehKOH98Hs5v/wt17md6Q7i8sgVUJTuBVLe5LBAoKRxiT6ZmL5QL77mxaNE3lsvnrh1J4E9Pyvd+24Whlo0x9Abe3f7b4kKtof90lXnDcBSqxiWsIxC0l+fjpPzBZQtMyGSgb7vWWBR3GUbb+MZLcuFBy6DCQ/NwcPJGvf2DcuGduwPvjptnf8jgrx6Qwz3LoVO47NSaxpAPJPS1b9vpqXXiKvf0HfJSqEm/dtU3lN4WohFKzVggF952LXTa/LBhANh/qr3um57S2GwJiQWALiloMZfte9/N9p3kG8j5ZqLHbd36WrRncgtG29luLq/jdclo/yPlsmfkIPspjQpfO13uI23t7D0v5ctmNZLC1ILa/Izxu6+X25RHveUd7ivZgs3DnDNHVC0YjEZERERERETDghQKFhmiYDTbfguDraQwgKgTE+vp0d1FAWuJjD3kqstPMFpWCEYLVHcwWsolQEUOXpD/XnKomL9gNIlSStx/4T601kgIgQ+2f4MUHpFwCdNzk7QEv9iC2oiIiPKVel2XgtOGOhhtoMGjRJXWnhKC0YJjfdelYB6oIGWHldI/jwXMA7r9fN6RpLU8OEzit/9fzdq612Nl13PGskX1R4jB3UREREREREREREREe5SjTjUvr4kAtSN/oqwK1QBTZonl+pUVrnXMmyRPfl2xfve9l3bLc3HiudtJGw3BVjYeJ+Cr5rn2FUI1QBOD0QaF5bWfpDeLZa8J89fXmG+HAgBaCoPRasID/7tGLOPmEp3yxOoQgxt8a5knFunVxeci27kHAJ59TS7rEIZKxmMKaGsFOs2hfdi+1by8Lm5tCwAg4GP8i+24o4FzuyasMl/7Rrnkmo3etkYutIWxUXWwHBf5/aGJo3pDFCW2c085SEFGtdrQ0XI71m0mTAMAzO9+UVzlmb5+nhTW1tuuXDBaY+ltIRqpbO/RHe3AG+vFYrd+UCYLvPC6ffdi0GJfN9bU/xIN5HwzfY639YI17uvQnkd6K2gN3Z0EeoQDvd5D/30PpCyfyeByTpjvcl56puCUtkMIPAeAur5+t9ZaDiPPFwgAk2e6r9dt+WIqWh3zK4mIwWhEREREREQ0THRnzd9whZ2heVpW1JGfvpYsCLaSg65i1noKA9YKfy9a3yU4LV9nprqD0UKOecBHOmsPUJFea9vrLIeKSa+3ORhBCono3b+wj4L2pnUKGZjDGmz/BjncbWDhEVKQBWAPjCEiIsoXEoLMpOCznJRw3ZfqK6eQExID2AYaPEpUae1pIRgt5D8YzS/p/WLvn5vLEmUIRpMCGR3LLdORFIz2QMcdYtmSxhMr2BIiIiIiIiIiIiIiouqlJkwD5i4uLjjuLChnz5iGpY4/Wy5c9azr9uccIo+juud/wFm/yuLe/2kxiAjoDRjRqR5P+8unJk33tuLhJwF1lqC7o06DilXHWLoRx/T+6nPBK98Sy5ZelcVzrxXfu5OC0cLZJCal2/ovXLIcaqABU1H5XieSlmA0Bjf4N+8guezFJ4sWHT8fGF8vb3LNQxrHfi+Db92ZRTqz+1hKpjSSwhCWxhh6g9H88hKsUOMjLC9iOe5owNSkZmC/I+QVnn8UOpMpWhwKql1hMSYt256X93n8WT5aSENB2cI07v8r9JregDDHUTjb0vdp2wZ0pwZv7IkUZBQzjLNRy95Z8n5UqAaI1uGkHbeL6zy/off/Ulhbb7v6OoC2fhjRnqplHjDFcu5paxWLFk4D5jfZq//g7/v3gQpJ791Yrhvr47OZOq7065z182g+P30p2oOIyWjAzg55MwZ2mh0mjyvV6162bnr8fGCs5WuVH92j8cE/ZNH6Zu95yRaevyuEdusmoNvDOP7D3gbl5TNZwjIumWF5RFVjz/hGnoiIiIiIiIa9pDChPuxEjcsHWzQgD44pDNSS2h5xoohY2p/M9N/OFlIFAF0egwIyOiPWVetUx2AuKYjELUBF+ndFAvLrLIeKmevK6qxxuVLy1yzRgHlQSuE+bOF3tmNOql8KivOq1PYQERHlK/W6ntbmsNCgEKBablIIqFufjKiaaK3RnjLPBBgdLF8wmhQeVhganWP7HBSTgtF8BEFLpPNOSMmTEEZKMFoym8Dj2+81ljVH9sL0yKwKt4iIiIiIiIiIiIiIqHqpr/8FmH9w7y+BALDkdKiPXTW0jaqksy+Tyx65Hbrb/JDTnKXzFJbOlcuvf1LjuB9k8fvH5Psw8RigP36CW0uLTfQWjKaitVBX3W5e/9AToD71E//7Jk+UUsCpFxnLzt32e3G7V98Ejvx2cTha6xbzcTQ9tQ5Owb0+9ckf+WytgS2gKtElB6MxuME35TjAKe81F656BnpH/2CDmqDCXR+zT5e9dyVwxc0a7/n17mOjwzIMJB4D9Pc+4rnNu9R5mEQf8nFM2AL5qCzU/5PPPwCgrzSHtISD8jbNO140F5x0IdScA7w2jYaQev9XxTL9oaN3haN9a7nCflPkev74xOCMPelJa6TNw9pRawpGm773gPanvvEX1OlOLEo8ZSz//eMamawWw9r6tcvLeZJoD6OUgvrBnWK5/u6Hrdve+mEH+0+V61+5CTj7avl8JL13a8OATnYBKx6WK8+J1UN99mqoeQe6rytQCw4Blr3bfcUQg4fJQAnBaNolGI2BnUYqEgNmLDAX/u1X0Fo+p4RDCnd/3P757Jf3axz6zSzWaYENLgAAIABJREFUb7WH58f7hhzrG3/s1mTgwKVQV/yf+3oA0LVDLmMwGlHVYDAaERERERERDQvdWfNgKtuE+sFk229hmFRCCCyLBmKICpP+TdvZQqoA70EBtvVigeEdjCa9RrbXOSIEfCUyXdYvaQvJz/qSjxevx0pvHXIQmVT/QINbbMfcUL33iIho+JGCzNyD0czlUj+h3KTwVLc+GVE16czuQI82j1hqDPkPRlO2p+kVLtFafL9IfXBADuAtx3svnRWC0RzbIKmREYz2xLb7xNDuo+LyU/2IiIiIiIiIiIiIiPZEauwkOL94AOpv66Bu2wjnq9dDhfecsTIqGIT6pGWy6YO3utbx3TPsU9YyWeBbd5rvw4SDQGTdc8CzD7nup8ikZs+rqrmLoW5YCfXnl6Cufqz3v9va4Hz7r1CcFD2o1KJjzcsBLO5+WtxuexL40b/7HzdrzM+JQnNqbf8F7/woVO0oP800swVUJTuBlJAoEWRwQynU4qVy4b+uL1q031SFWz7kPmX2hv9ovLyp91iyBqOFeoC2Vtf6iniZRO8nLI/BaINOjZ0E9Yfn5BXuvwV6wytFi3vMz30EAMzoWWPe13mX+20eDZUFh8hlO7dB3/RTAEC0RuGhz8jnnitvHZyxJ/YAsoKT2wnnDnyHM+YDAM7Y/hdxlVueBjqFjFAAiOq+sSvsaxEZqQnTgLmLzYWvrYbukd/4LWMVnvpCAAe3yPXf+F+NlRvN56Qu4b0bqwFw3y1ype/6WO9nqeuehrp9E9QJ58jreqTe+wX3lRiMRia2YLQdtmA0hmBJ1NGny4UugYn7T1W47kLbbDtg03bg6oc02i1TIuO5YcV/+K64jrr6Uai/b4Bz1W1Q9Y3Wfe5iCUbbk74HJKp2DEYjIiIiIiKiYaFbmMAddiIVbkmvgAqiRpkHJRSGUUmTzyNODJGA94C1ZMby+AMAXZZQrXydWfmLu2oPRku5BKhIQWC2EC8p9CSLDFK6+O6OFoMR5C9rpWA2r8dKbx2W8Aih/oGGR0ivZ0jVIKAsj7kjIiLKI17XhYCinLThOmyrr9zE4NEMg9Fo+GhPCbMAAIwOjvNdnxyMViyle5BFxlhWUt/WYxC0TSmBiz6ykquW1hoPdNxhLKsLjMKi+sMr3CIiIiIiIiIiIiIiouFBjZ5QniCl4WjKTLFIP/eI6+YtY+X5yG7iMZQWihYMAeOn+NpEKQXVNANqzsLe/0aN9r9f8s9yfM1Kvmzd9OHV/W/gbdxmvqE3PbWu3++qyZIQ4YMKhnqPNZNkJ5ASEiVqGNxQkskzxCL93KPG5bPGe6s6dyy1bZPXadxiPx5FXibih3wEo0UYjFYRE6YBgYBc/txjRYsOEk4tjtKYll5fXBAIAuP8XatoCE2abi//29W7fqwNK9QJb2spbGigbPXGdP8xbspHeKwoPg6IxDAzZQ79A4Dbn9Niu6LZLji5cfgMoCGSTZgml61b6br5UbPtH8Ruedrcf5ZCDWtrFPQK+fOZOvKU3s9SLfOgbNdRPyZMAxyXGBQ/fSnac9iC0XYKwWiBIBCRx7Tu8Zrkz2RY4f790Kzx7l8OPbJao0OYTlcXBoIB1RsMKf19J8+AmnMAVNznA6OzWX/rE9GQ4AxWIiIiIiIi8u26th9ic2pjRfe5sec14/KwJfBqsEWdGHoyxU9cSRSEZUjhVBEnhqAKIaRqjAFchaFUCZfgM69BAV2W9WoD9Z7qGGwhIZhACjLIKXztc2zBCxFLWSLbhRqn/w0TKRjNFhIh7b/oWBH+NgrKeqxL/4aBBqPJrycH2RARkXdBIUzT7bqe1uZHqkr9hHKLBqRgU3tYLVE1aU+bg9EcBDAqWL4BhqYesq0vauuDi33nAfZtATloWQq97jX8k9FWJ17E6z3rjGWHNSxFyOEkDCIiIiIiIiIiIiIiKrDvEXLZzT+H/tA3oMLyeKb6iMJx84C7XvC/68YYoNta/W94+Em9oVVU/WbuAzS1AK8XB6ucvuNvuL7hneKm/9sIrNuiMW1M73i9dmE45JjMlv4LyhEIkxOpNU+qT3QBqeIxpQCAIO/JlWTWvnLZ+lXGxfMmAXMmACs32at+9c3c/833hMfUArEtraXdMZ4w1X2dGu9hHirKMZuVoMIR6ENPAB76h7Fc33o1cPxZUHmBDCcsUPj3/4qPkpPHrkHY9FDICVPLFxpDg2/s5N4wzLQ8zk1rveuYmDYaeLGteJ2tncCK1zT2nVJiaqwgaRl+Fy0c41aG66BSCnpSM5auvUdc596VGsfPN5fV5s+F8BIgSbSHUktOh77vZnPhxrX2/hGA5QsVvnOX3IN54GWNy08oXi6FGsZqAKxfLe9w3sHW9pRCBUPQ46f2/nsl7F+TkXSt1cBOIRG5vrFf/44KHPpWsUj/+QfAWZ+09m8PbAYmx4ENQi4dAKzYALR3ms9bjbkhxRvXyk86nneQXDkRDXsuUalERERERERExV7rXoNXEi9V9D9TcBgAhFWkwv/63SIB84T9wkCzwt9zchP+vYZmuYVwuAWn5XRldhiXOwgM6euZL1hiMJr0WpcSvCDX5z8YTQ4u6yz43dz+sBOFo+SvcaR/Q1IINvNKfj2HLpCQiIiGn5AyDz5wu65LAUZSP6HcpOud1z4XUTVoT5mD0eLB0XBUOQfaFveRpb4kYO9PSqGE5XjvSecdWzBYdgQEo93fcbtxuYLCkfHjK9waIiIiIiIiIiIiIiIaDlRNGNj3cLFcf/R4aGlScZ8fvNNB8xj/+47HALS1yiuMnlC8bMosqA993f/OaEgox4G64lfGslN3/B3nd1xn3b75iiyeWtt7H69DGFbZmGnvv6CcwWhSSFVipxyMFvIegkW7KccBjj3TXPi//0Iniu8jK6Xw6/MdjHbJEvvabb3H0BrzbXW0jAX0H77rp7m72+DleKvxMV43Io9zpfJSH/62XPjcI9A/+Hi/RR86WuHEBf1XmzUe+PajJ5vrmDh9gC2kSlKBgHvQ4cqndv34mwvksd77fzmLR18p7xiUbvNzRwGgOJivqbk8O53UjPrsTpy57UZj8dotwPOvmzetzY0lqglDhatjzgJRVTp6uVik//wj180ParGX32kIr85ktRi2GHO6gWceMBcefBxU0Pzw5AFz60/5CJmlPYgUcKY1sENI5qprGLz2jABq1GigdpS5cNsW6M+dAW0JkQ04Ctde4KDecunfvAN4aaO5LN73UUjf9Qe5jbY+PBENewxGIyIiIiIiomFtKAOaxECzwrArIZwqF5YlhWYVBgm4BQGkdA9SWeExLXm6sjuNy2OBuqp5ykXpwWjmUU5RIcQOsIemmf52WgpGs7x20v4L21tqEJkU0icFrXklbS+FVRAREZmUel2XyisXjObt+k1UzdrT5hHcjaGxJdVnCwMuZHuvRB25PymVJTKDGIxmPa8M72C0bemteGbHY8ayBbWLMSZkmDhEREREREREREREREQEQJ3+AbnwhceBO+zhVXMmKjx7pYO/f9jf9LVGWzDaWZ+EunEV1A/vgvro96Au/S7Ud2+FuuYJqKYZvvZDQ0vtfyQw/+Ci5UFk8Ku2D+D2Wb+1bv/5v2YBAO3CELl4tiC4r5zBaFJIVbITSAljIULyw5rITh1/llwoTI4/bKbCyq84uPH9DmosWR0rN2q0CsFozWM08Lz5XqsrL8ebn2MiwjGblaImzwROvlBe4eafQ7/y/K5fozUKf73EwaOXO/jxuxVu+4iD/17yJmam1pi3n+SSVkPVx+X9rK/66K6fD5hmr+qKm7NlaNBuUogRAER0sv+CcoXy9dXz400fF1e5bYV5rE1M91206+LlaQvRCKWCQWC/I82FzzwAncnYt1fK2v8BgJc39X+fJizTkGLP3iPv65SL7DsaCJfzr2LwMJmUEoxWz+uSG3X+Z+XCh28DHjE/vDfn2LkKq77q4LMnymOQv3e3uf+QC0bDdd80bxgfB2UK0CeiEYPBaERERERERDSs1Qbqh2zfXsMypLCrXFiW11ArLyEcXS7haQDQmTEHo9UG6ly3rRQpmCBlCVDRWluCxeTws7ATEQMeTPVpLQSjWUIipP0X/o3FIDJLcERv+eAEo0nH3FAGEhIR0fATVOYRFmlteWQlhj4YzWsILlE125rabFzeGCwtGE1iCg+2BZmFHfnRb1IIb7dOIqPtg7rcyOcVecC5FIw8XDzUcTeyML9uSxpPrHBriIiIiIiIiIiIiIhoWGmyh7foR+9wraI+ovC2fRUOn+l9t/GYEoPRVMs8qJow1AFHQ73jw1BnfATq4OOhogwNGpb2XmRcrAAse+EnqJdvK+LuF4GetEaHMESuMdO++5fRE6HCZRzzJoVUJTqhU93mMgY3lG5is1ikH79LLBtTp/D2RQo/eKc8tvP25zReazffE25RGz03sUhTs/s6fo4JnuMqSs2Yb1/hsTv7/RoMKBw8Q+GSYxycsI9C3QpLgIyXY4Oqi1vQ4Zbd54qAozDDMiTngVXAjmT5xqEkLcPv+gWjhWqAsU1l2afqez3GZLZi/+SzxnWeWW/etjY3rr2uoSxtIRrRJlnCDNe84Lr5h462PwD19uf6n4s6bcFoz98nF5YzfLiAcqubwcNkYglG0zuFYDRel9y5hPvqR++0lgPA+FEKnz7e+8OZcxpjgN62RV5hio8vnArttb95ebR65lcSEYPRiIiIiIiIaBiLOjG0RGcP6f5NEpnCQDN7WJdUT+F2tmABP+t0CcFoMad6vriTAk+kIAMA6NHdyML8JC3pNQYARzli0JcpWEwORpC/oJWPlf5/r2RGCkaT2w/YQvoGFowmBb+4tYeIiCifdF23BZ4C8nVfClAtN68huETVrD1tfrT16NC40iqUBo0Y2EJ2HSXforT1NQfav5XOOzWWYLThLKPTeKjDPBFgXGgS9o7tV+EWERERERERERERERHRsLLXfkCDJd3jFfcJ+TnL5nu/zxQPdgM7t5kLB3HiPVWeOnCpXPbqC1g6V942q4EHVwHbhFv4DZm8Yyg+psQWCoSQKp3sAlJCqkSoMmMdRqRplnHCG9e5br50rnz+WbMF2CoMu52Q3uRat1EgAIyf6r5e2JL8V6jGx7o0cIuPtRbrtlb79q+vKbluqj62axUA4I310OndCWVL59n7POu2lqNVvZKW4Xc1Ou96NGEalFOmOIG84NzFif/62jSaG/dT31iethCNYGrRMXJhW6vr9mcssp+L/vSERk9697yYTiHbFwBqt7wqF7a4hIkOhNv5d+ykwds3DWPSsa8BKRiN1yV3+x0BBC2fadss/d88o6L+g9Fs4fkAgJkLfNeZo878iHn5R79Xcp1EVH4MRiMiIiIiIqJhKaiCOHfiRxFQwSFrQyQghF0VhEklLIEAgCU0K1sYsOYewiEFWeXrygrBaIEqCkZz/AejmULMcqRgE7dyP8ELtq9nvQarSP8G6VjLkY6htE4hlbWHztgkM9Kxy2A0IiLyLiQEDqW15RFzkAOMpKC1chPDa4UgU6Jq1J4yB6M1Bi0TWCz8DElwC4iWxBz5SdeFIdR+iYGLjhyMltXm8OXh4Nmdj2Nbpt1YdlT8rdaAOiIiIiIiIiIiIiIiIhWqgbr4y/IKWzdCP3anp7ref5SPYLSdr8mFDEYbWQ4+HgibH2oKAJ+t/wfCliGiy74v38trzO6e9K4+elVJzRNFhHueiU4gJaRKhMLlbcMeRAUCcjDG6hXQafsYyVnj5fNP65saHcLQ3PgdP/faxP7GT4GyhQbk+DkmQiPzYV/VSjXPBU66UF7hb7+ybm8NTpu7uJQm0VA6/CRgvyPt69zww10/fnKZwljLkPyHVkkP6PavWzj9hbPJ/mN8ytl/mjh914/NqVZfm9bqvnE/dQ3law/RSHXM28Ui/fBtrpsfMgN4xwFy+ZOtwNwvZrFyY+85qcsynDf28uPmgn0OgwoO4nyueQfay/nZkEykh/9qLQew87rkSsXHQp17ubxCW6vnuq44wV84WjwG4Il/iuXq/M/5qq+fJacD+xzWf9m8g4Cjl5deJxGV3dDNHiciIiIiIqJh66j4idiREZ6UUAGjAo3Yu3Y/jAmNH7I2AJawjIKwq6QQVpbbXgzNypv0r7X2FNLV5SEYrTNjDkarraJgtJAQeGIL+bKFlEh/q/xyU1yAKagsC/NgKmXJn496DNGT/sau7bcEpyWznQg5cev28ralhVkQERHlk4LMbIGnAJAWrvvBCgXjyiG4DEaj4SGrM+hIbzGWNYZKC0az0VpD5Q0qkd4rbn1bWyiwlyBoGzEYTQhwHO7ub7/duDykanBoA59CTURERERERERERERE7tQp7wWSndA/vsxYri87FfhnO5QUFNVnwiiFq89VuOg69zCQ+L+vMReEaoCxTa7b0/ChgkHgd89AnznHWL7wl2dixXWbMOcb9b7rjuePcV24pNQmmkWFhz0lOwEnYC5jsNWAqPOugH7yX+bCP/8QOPtT1u2/eprC5/9afP55ZTPQLgwDiWeF4IRFx0DtdwT0NV8xl09qsbZlFz/BaDUM1qs09emfQf/vP8DqFcZyvX4V1NS9zBu3tZqXn/HhfuMqaHhQNWHgqtuAG38M/Qtz8Ib++WeBE86FahyHvSYoPPUFB9M+Yx5v/sE/aLy/TJelZNq8PKKT/RdMmm5esRR5QUQtfoPRcuN+6kob1060J1HhKPTcA4GXniwuvO1a6M/8wnpNUUrhTxc7ePaLWax6w7zOmjeBC6/N4uHLA+gUsn2BvPdu4T4u/ILtnzBgSinoeQcBLz5hXqHJY5+L9iy2YLQd5ofM8rrkjbrg89BvbAD+YfjOZtN66EymN9TaxfuOVPjGHd6DYuNRQP/kSnNhwxioAXxPpKK1wHdvBf71Z+iX/gs1a5/ePl2seuZXEhGD0YiIiIiIiKgER8SPG+omVAUpHCp/sn4qm0Jam+865raXQ7N2j7bo0d1iIFe/bTLuQQFdQjBazKmeL+5KCVCxhZTYwhUAb+F0uwjfv9rGKkj1p3QPMjqNQF/AixT04BoeYSlPZBOoR2lf1IthFi6vJxERUT4pyEzqI+0uF4LRnMoMFo465qdSewmrJaoG29Md4meIxmCpwWhyp1dDQ+WVlxqyG3WESQQoQzCaGLgoP61bSx8Aqtzr3WuxKvGCsezAUUchVkXB2EREREREREREREREVOVOOBcQgtEAAE/8EzjqVNdqDmxWEAdf5YmntpoLJkyDcuSHV9IwNWFab2hYqsdYPGvlP3Bwy7vx+Bp/1TbmgtGa55Y/iCgi3NPs3AFEzGMNfIVgUbG8IJ5C+sFboVyC0VqEW+QvtcnbxDNCcELzXGDBIfKGlrb24yfsjMdPxSmlgLMvg/7SOeYV7r0JOPdyc9nGteY6m2aUqXVUaaomDJz9KejffxvYKYQmPvg34JSLAABTGhUOnwk8/Ip51R1JjfrIwK9NyZS5XxXR/ROOlNfARg9UfRy6Lg7s7MD0HvOxLonlxhLVNZStPUQj2vS9zcFoAND6EtAyz7p5wFG48mSF9/xa/gz26KvA+q0aXeauOAAgqhPmgkoEk+17uByMFh83+Pun4ccWjCZcwxWD0TxTb/8gtCkYLZMGNr8GTHQPY53SCAQcIOM+RRJAQeh5ob0XeavEQsXqgVMugurrxxFR9eG3wUREREREREQlkibsJ7OJvJ/l4IxcuJRcz+5tbaFf+bo8BAV0ZYVgtCqaGF9KMJr0Wis4CKuIdX9yOF3x6ykHI8g3qG3BZvl/22TGfNPIPTxCLk8OIDyi1DALIiKifNJ1PWW5rgPydT9kCTAqp4jQR/PaLyMaalvTm8WyxlBpwWjK0uctlDCFDMM99DegAmL/vctDELSNdN4JWQMXh2cw2v0dd4hlS+InVrAlREREREREREREREQ03Kn6ODB1L3mF9as81TN7AhD3MOyoUQojGjfZ035oeFGOA+y9WCzX61fh4Bn+w2NGZbf3/uBhYrZvceF+6xvrgZQwFoLBVgMztkkue9OSbtZn4VT/x1CjMAFfzTsI2Gt/IGB+UKCaKx/P/fgJRgtW5iGCVGCuHLSg1682L0+nes8FJpMG4XxElWV5fxceEy1j5fNO65vlaU5SuOSEC4LRPAc2ehXrnXPQkvIXjFar+8YS1TeWtz1EI5SyXIe8fgY7qMW9D7TqDaBTCEaL6gQcafzc+Kme2jAQ6i3vMBcccHT5w49phJCOCw3sFAK26hmM5pnt83Wbt35BMKCw2Ee3OJ7YKBfO2s97RUQ0bDEYjYiIiIiIiKhEEcf8ZL9E3mR9W3BGLlxKrKdfYJa3AI6Eh6CAzswO4/LaQL2nfVRCSJkHcdgCVKTXOuJEXW96SEFf+SF3ORrmx1I4lq9ZpPA7oP/fVvo3SMFtOdIxBMiBFF6I7WEwGhER+RB0hMDTrOURc5CD0YLKPLC03KLC9TWtU0hl7aFuRNWgPWUeRVmjwqh1BqPv338AlBiyG5D7rjnRgHt4dCmk80qN8PkDALJ6+AWjJTJdeGLbfcaylsgcTI3wKdREREREREREREREROSPetfHxTL9xD891REOKVxyjPvk9YbMNnMbzrvC035o+FFnXioXXvdNXDz6CdT6yJBqyHQgkBvn19Q8oLaZKClgpq0VSHWby0KVeQjcSKUcB1h0jLlw0zroNS9Zt997ksLBLf72GReC0bDkNKj4WOCt7ykuG9sEHHumtx34CcvzE6JGZaMmz5QL21rNy99YD2TN44wxyedBSFVHnfERufDem/r9+um3yn2eA7+exfbEwMejdKfNyyPZZP8FZQ5GU2d/CgAwPvMGoj7G8sT6Hvat6hrK2h6iEWvpO8Ui/aNPeapi1niFU11yg678WxZdPeZzUkyanzTnAKhgBcby7r0I2O+I/suUgjrTcj6mPZs0d0xrYIf5uwbUMRjNK1XXIAac6t9+3XM9H1vqPdgwvkUOglSnX+y5HiIavhiMRkRERERERFQiabJ+v0Azy82+XLiUFJqVv60tYC1fV3an+zrCzYmYJbyr0qTAE40sMjpjLJNeay8hXtI6iax70JwXtvCHRL+/s3l/UnBbjqMCCKuIa/1+iWEWDEYjIiIfpMDTtBZGZvWRAlGDqjKDhSOWvlG3ITyVqNq0p83BaI2hsSU/LdG2VeHQKFPIMOCtLyn1z7sG2D+XAxdtT9cefsFoT2y/D906aSxb0nhihVtDREREREREREREREQjgTrlvUC0zlz41H3QPUIYVIEvn6Jw1Zn2e1WNWXMYkZJCkWjYU0efDkyfI5bv/fWluO/cDag3D5Er0pgXaCWGmA1EkxButHkD0GV+cK2vECwyUh+9SizT5+4PnbI/oO/Lp/qbSms6F6nf/Acq3DseVH3qp1AXfhHYa//e0KFl74b6xQPeA39qPB7QABCy3dOmwaQu+Za5oK1VWL5Wrmzi9IE2h4aYOvSE3pAek03roNs37/p1wWS5v9OTBs75tRCg50NSeLZnpHDMyKQyH3unXASgdxxRc8pyzBeI5cYS1TOAhsgLNWo0MHUvc+GmddD/vN5TPddf7FjDGh9+Bbj5KXNZrTbPJ1Gf+omnfQ+UUgrqO7cCZ3wYaJkHHHgs1Ddugjr8pIrsn4YhWzDaznZzWT0DO32RPmP/917o//zbUxXvPNDBje93EPcwNa3hHz8yF0TroCZM87Q/IhreGIxGREREREREVCJpsn4ym4DWvZPnbaFUESfa7/+FEhlvAWv9t7EHBWit0ZU1D7yJBeo97aMSbIEnUphB/uuVz0vwgrROMlMc5qCFYARliYmwhbP1D9Izh0d4CncTgvq8HjuFtNbiaxoNMBiNiIi8kwJPpWu6W7k9wKh8otZg0/KEpxINpq0pIRgtOHYAtXoPVJM+C3np28r989JDfwH5vFLjyOcVqf9frbTWuL/jdmNZXaABC+sOq3CLiIiIiIiIiIiIiIhopFDnf1YufOxOb3UohY8tdTC1UV4nnjEEo8090FP9NHypMy+VC9MpLFxxLf77eW9TIePZbbt/mSSEmA2ENBFca+C11eYyBlsNnFuolMt5aOlcYMlsb7tydAb1hWNtIzFg5oJdv6pgEOqCz8G55nE4N6yE88VroSZM9bYDAMpPWF4Ng/WGzDThoHlzgzmMr63VvH58HFRMCBilYUWd/gG58N839vv1GDnzE/94Dti4bWBjUqRgtLDOC6yNxID4uAHtp5AKhoC+IBI/wWi1uTF3dQxGI/Js/yPFIv2P33iqIhxS+OZyB2csksf+3fAf8/koJs1FGYzwYYGK1sK59HtwrnsazlW3Qx3+tortm4YhKRitayeQyZjLeF3yx/L+17df57maty9S2HyV4xqA3mj6jggADn2r530R0fDGYDQiIiIiIiKiEkmT9TWy6O570pI0cT+sInBUAIA90MpLwFq+LpeQjh7djbROG8tigeq54W4LRktp81P9pAAwLyFe0jqm1z33NymkpC/QAQRUEDXKPDAlv91SsJ2XcDcpYMLrsVMopXuQhfmLfy/tISIiypGu67ZgNK212GcJWfoJ5WS73klhpkTVpD0tBKOFBhKMZtO/nyz1z730JWPCZyS3zztuhjpwsRJeTjyPjT2vGcsOb1iGkFOZcygREREREREREREREY1AM+bLZa++ULbdGCe9VnDiPQ2RFsvxBQCvPo9po4E6D/lQ8Uz77l/cwrRKYTse168yL/cTgkVGKlprf+1dzkNKKXzlVG/Tacdm3ix+bNjE6dZxor7V+LhPzeNn6EjHXDYLvLG+aLFuaxXqGYRzEQ0NS39Iv/p8v9/nT5bPGVoDL7w+sKZ4Ckab1Fzec1devQAwP+m9D7gruLSeATREXqkyfgabP9n//muluSijRvuvjKgizNc83bXDuBwAEBs1SG0ZoWznpTX+zksBR+HQGfZ1xma2GJer5nm+9kUb22FZAAAgAElEQVREwxeD0YiIiIiIiIhKJAVRAbsD0eQwgKhrPVlk0dN3Y1IKzCrktl5XZqdYVutUTzBayJEHfEghKVIAmJfgBWkd099PQ3o6l/2msbSP3N8sqzO7AvUKSeF5XuqXjkE3tsCXaN7xS0RE5EYKRktZgtGyyEAjK9QXLEu73Nj6EIkBhjMRVYIYjBYsPRhNWfq8hf3khBASbfsctXsdc/93oO896bxTYwlGk85F1eqB9tuNyxUcHBk/vsKtISIiIiIiIiIiIiKiEWXxsWKR/uN3y7abUdntRcvUae8rW/1UpRYcAkzdSy5/4G8IvfwfnHWwe7hLPLNt9y9NzQNvWwEVjgJjJvnbKDRyHtY0lNQJ54pl+rpvuG5/xF4K7zrQ/RianlpXvLDcAY01Ee/rMhht6FjCFfW75iH76y9Dp/PGIrz0H/PKDPgcOeYcIJfd+mvodSt3/XreoQq2TLJXNktj0r3pNg+pRySbNx59sI69vnrP2fZHONr8IO5CU1N9YYJ1DEYj8uzYM+Wyjs3QXfL8oELv8dCPLhTVhjGAsxcOTuAiUTlIx2bC8l6Juo9ppd3Uce+WC1evgO7plssN9pogn0/CThoT0xvNhcdb2kFEIwqD0YiIiIiIiIhKFA3YwjK6+v2/UCQv6MoeupELWJNDqvqvbw8K6LQFowWqJxjNFniSzprDDKQAMG/BC0JombFO801oW0gEIB8vXv7GXoLIxH+DEEjhxnYseQmbIyIiygkJwWhpSzCaLTRNClort4AKoEaZB5Z67ZsRDaX21Gbj8tGhcaVX6mNAkxgSbfkclSMGo3kMjJZI5x3beWVgQ1Arqz31Jp7d+bixbJ+6xQP72xMRERERERERERER0R5PBUPAwceZCxOd0Lf+uiz7CRgeXKMWLilL3VS9lFJQ3/uHdR196TJ8f+GzOOcQ+33LxmxH7w91DVD1jeVqYn8+g2YUg63K45zPyGU93dC3/NK1it+cr3DWQfZjqKWntXhhucOF/BwTNTx+hoqK1gKN4+UVrv0a9P87BwCguxPAk/8yr8dgtBFDKQWc8RGxXH/waOjX1wAAFk1XuP598jT+D/x+YKNSksIQu4jOCySxhPsNhOo7puf3vISbXnsXmlKvu26zK3SyrmFQ2kQ0EqnG8VCfu0Ze4eafe65rxjiFr53uL9Cs1jAGUH3+N77qIKooaYxr0jKvKmIer0pmasos6+cy/Ym3+aqvxfKs5+mhDjjSHL6mGb72Q0TDF4PRiIiIiIiIiEpkC4dK7gq7ksK6onk/W4LR+ib+uwWe5XS5BAV0ZeVgtFhVBaPJwQQp3WNcLgYveAgVk/6WpjqzpQajuexDCtHrbZ/7F+1SwITXY6e4XbagNgajERGRd9J1Pa1T0Np8XbWFplUqGA2Q+wilBo8SVUoq24Md+U9Bz9MYtIwiGIDCt7MYEu0luNglVLhU0rmlxpGfzi6dp6rRQ9vuRtYwUQgAlsRPrHBriIiIiIiIiIiIiIhoJFIHLhXL9J++Nzj3VhYdU/46qSqpSc1QP/23vEJ3AuG//hS/vdDBN5bL4/UaMn3BaIMUBgPAf8hRqHJjHUYyFQxCffR7YrmX81A4pPD7ixxccYJ8DLWkWov3PZTBaAzWG1pu55L7b4F+bTXw4K3iKmowz0dUcWq/I+TC7Vuhb//trl/PWKxw5mL5fLOhvfS+UzJtXh7OC0Yr+7krJ6/ek3fehrWrZ+G97fawpGmp9b0/1MUHp01EI9XSMwHHHAmir/umr6ouPtJvMFrBXBSlgMkMI6IqJgWjJSzzqiKcH+WXOuW9cuGzD0KvedFzXc1j5PPSdGw0F7zlDM/1E9Hwx2A0IiIiIiIiohLVqDAc4aN1YlcwmjlcKj8MQAq0yt/eFlKVr8slBKsrYw5GC6sIAiroaR+VEFJyMIEUZiAFlHgKXhBDyxLI6kzB0tKC0cRglVwwmiVgxUsQme3fUIqEJWQv7CFsjoiIKEcKMtPQyKLwOtsrrYVRWwBClgCjcpPCmaRAVqJq0Z7eIpYNJBjN3uPd3U/WWov9UG99W3MwsK2P6oX0WSJo+fwh9f+rTVqn8HDH3cay8aEmzIntW+EWERERERERERERERHRiGSbBP/aK8A2+T5VvsuFQKJ9kyuKF05s9lQnjRCTZ9rLX3gMALDvZPnuZVO6rfeHxvHlalURNXUvfxsw2Kp8psySy9rWAluEyfMF5jfJZbN6XjHs1+XY9Csc8b5ukMF6Q8p2zOW8+CT0848NrA4aPlyvVY/3+3WW5XL0ZGvpzejqNi+P5o/ZaWopfQc2k/qH/SkARyQeFlcfm96MWt035q6ewWhEfqhgCKgfbS5M90BnzQ/SNBldCzT6yIAqCkYb2wRVw34tVTExGM08lw4AEOb8KN/GTgZs54KCvpDNXpZ+0uye1eaCidM8109Ewx+D0YiIiIiIiIhKpJQSJ+wnXcKu8sMAwioCJQasdfb7v5tEptP6tLvOzA7j8ligzlP9lSIFqAByUIoYvGAJnvOyTmG94svr8vAcKQAid4wkLX9jL+FubsFrfsmhflE4il8pERGRd7brekoIKUpneyz1VS7MtdzXV6JKaU+/KZY1hgYSjObtiZHdOgkN84CrgQQXD+S9l9VZ8bNEjSUYTQ+TYLRndjyG7bkn3xc4qvEE9uGJiIiIiIiIiIiIiKg8Fh9rL29r9VTNafsr43zlM7f/pWiZKgjeoJFNjZkI7HeEvML6VdCZDI7ZWw51OGnn7b11LTltEFrY5+jl/tYPVe4hcCPewqOtxfqLZ0E//YBrNW/bRyFiGNJSk+3GyTtvKy44cKnHBnrk9ZioCUNJAQ9UEeoY9/e7/v7HgBVyKBT2P7KMLaIhN3MBYAvIfPWFfr+esUh+D//03qx17L9NR5d5u3h22+5fJjWXVLcrQ73Te9aKqzfmxrREa3tDnojIn9n7mZeneoAtbZ6rUUrhHZZzUqF+5xNg8M4pRGUjHN9JYexpJMa+dglUMAgccYpYrv97r+e6FkwG5kwwl7399V+b989gNKI9CkfAExEREREREQ1AJGB+MsTusCvzl6f5YQBKKUQccz257ZMZc0hVoQzSSGk5SKRLCN+qrbpgNDnwJC0EqEjhcQMJFQMMwWhCwIPj8jVLRAhf2xWiJwSRBVUIIcf9BrAcvOYtVK9ouwG8nkRERPnsgafm67oUmOZWX7lJ11epj0dULdpT5mC0WqceYcfHU6d9yA8Qk0J2AYifffJFA+YAaq+B0SYZIRQNAILO8A9Ge6DjDuPyGhXGIaOOqXBriIiIiIiIiIiIiIhopFKRGNS3bhHL9Q0/8lTPpLjCby9QCOQNuTopcRc+tvXHxStPZDDankZd9lNruf7MaYiEFP74Pgd1od33AZXO4qdtl2J2z+reBSeeN3htbJnrb4NQeHAasgdS4QjUd/8ur/DcI9CXLoO+0XA+ydMQU/jdhQ7CecNVa7LduKbtYozNbOm/8uyFUGH3e92+eD0meOwMvcPeBrzjEvs6OzuAVc+ayw44mkFQI4xSCuoL18orbN0E3bF77M5+U+XAlXv+B3z6ptLGprQLQ9ji+Q/WG6x+1NimooDH5pQcjKZzoTN18cFpD9EIpz5l6R/f/SdfdX3lVIWDmr2t25BhMBoNM1LIWWKneXnEPFaV3KkPf0su/Nefof/3X2/1KIXfvdfB+Pr+yz+3ZAeO7LjHvNEEBqMR7UkYjEZEREREREQ0AGIYVd+E/YQQmhEtCMmSQ61yoVneAwCk8DMA6MrsMC6PBeqNy4eKowJwEDCWScFvUviC9Np6XWcg4Qv99yGFO+RC9Mz78dJ+wBa85i1Uz+t2XttDRESUYwv4TGfNAWhSYBpQ2WA0KcBJ6uMRVYv29Gbj8sbQ2AHW7O3JeMmM/B6RQs/6rWP5fFTqU3Jt55UaZQtGq34buluxOvGiseygUUsQq7IgbCIiIiIiIiIiIiIiGt7UYScCoyeYC//1Z8/3c95ziIPXv+Pglg85eOZTnbi5dTkiurt4xUkMRtvTqOl7Q938qrzC43dDr3oWx89XaD3lbtyy/h24/rWzsX7VTLy/4+redeoaoELyfcCycAtKysdwq7JSBx8HjJtsXUf/6kroLvOY2Zy3L1JY/y0HN3/QwY1L/ovW1bPxru03Fu/v9PcPqL1GNR4fahYc5OOYXKlAAOrS70H98fmSQp3USRcMQqtoqKm5i6F+dLdYrv/wnX6/X3iEPObmqn9qrN3if4RKhxSMlu0LRquLQ9UPThCZcpyiUJKmdJu4vs6NOaprGJT2EI14k5qBiHlMnf7F53xVNX6UwoOfdvBey3kpZ9f5JIeh1VTtxGA0YV6Y8L4id2rcZOCMj4jl+pqveK5rcbPC6q85uOOjDn7/XoVXvu7gS69+XB6xzHMR0R6FwWhEREREREREAxARJuznQqWSQmhG4XZyPbnQLO/hVomMHOTVmTE/5SImhHYNpZAQeiIFGkj/bum19bpOMtP/tddCNIJy+ZpFClbJ/Y0TQniEFKhWvJ49pM8vr8cuERGRG1uQmXRdT+u0cTkAhCwBRuUm9tEypQWPElVKe+pN4/LG4MCC0bzFotnDA6V+cb6oEOSVQVoMSnZTcuBiiUFslXR/+x1i2VHxEyvYEiIiIiIiIiIiIiIi2mPstZ9ctuEVz9WMq1c4dX+FfdQaONIjazjhdc80tskenvJ4bxhNY/cbOHnn7XjHjlswMbNpd/kgBcHkU5Oava882CFte6I5C+3liU7guUdcqxlbr3DaQoXT267D+Iz5IWTw87f2qsZjWJ7X9WhQKaWgpu4Fde5n/G88GMcPVYeW+XLZy8/0+3WGZciO1sDdL5YQjCYMYYtntvX+MNjHXkH9QWQQFcYMXdDx294fony4H1EplFJA0wyxXHf7G9MaCiq860APwWi580muHbymUbVjMFpFqelz5MIn/wWdyXiuqy6icPx8hbMOdtAyVgFr/yevPHGaXEZEIw6D0YiIiIiIiIgGQArLyIVRyeFS/cMAogGpnq5+//eiyxKE1ZU1B6PVBuo9118pUjiBKSglqzPo1knj+lJgWL6QU4OgChrLCoPFNLLG9ZRLTIQUcJYLRJPC77wER9jql45BN3JQG7/4JyIif2yBQykxGM0WYGS+Zg8GuY9WWvAoUaVsTQvBaKGBBaPZ5AcIS31QBQdh5f7Ua1ufs9T3n3S+AYAaRx5ILvX/q0Ui04knt99vLJsZnYspkebKNoiIiIiIiIiIiIiIiPYIauESufD1Nf4rbGs1Lw+GgDGT/NdHw55SCjjoOLFc//X/oLt2ADs7zCvUNQ5Sy/I0tXhfl8FoZacsx0eOfu4x7xXazl0LDvFej1chj4FnPHaqi4fjrghDZEYsFbeMw3nqvn5hIG+dbx9nvnaL//23C0PEGzN918amZv+V+mGo//yO3xlXXb7jr70/JEsb105EAKbuJZdtXOu7ukPlnLVd4tn+wWg4aKnv/RBVlnC9TTIYbVAcaDknpFPAm6+XXrflvKZi1TcHkogGD4PRiIiIiIiIiAZADKPK9IZcSYFmhdu5hVr5CbfqypjDz2xlsUD1PX0p6JhDVFLZnqJlUqgYIAeaFJJC7grr1tIDuVwemCO1I7kr/M78Rbv39psD1JLZBLLaf5iDGOoX8BbURkRElBOyBKNJAWgpXXy9BwAHDhwVKEu7vPDaPyCqNu0pczDa6OC4AdYsd3q9BKNFnGjvBAYXMeHzEQB0ZUoLRrMHLsrnKf/P462sx7bfK4ZEL4mfWOHWEBERERERERERERHRHuPU94lF+pMnQafM93zFbe65wVwwYSpUoHL3iKm6qPOukAs3rYN+9wLop+4zl9fHB6VN/UxiMNqQOv4sYP7B9nV++3Xov1/jrb62VvPyyTOgwoMwbrLGazCax/WoItTMBcCpF3nfoCYCjJ4weA2iobf8g2KRvuwU6K7esfsHTFe44HB5zMzXb/c3QiWV1ujsNpc1ZPuC0SZO91WnX8pwHfz41h9iek//IJOPbP0pZves7v2lc/ugtoloJFMf+oZYpr94NnTW35yRWFjh82+zj+VryPQPIVbjJvvaB1HFSeNTE8I8u4g8VpXcqaYW4JT3iuX6y+dBi5PwZLprB7DNnBqrLvyi7/qIaHhjMBoRERERERHRAEghUbmQq1xAWtF2BSFWUqhVItMXjJbxHowmBWwBlmA0pwqD0YRwAlOggS2cRAo0KRQV1isOtzN/Keu4fM0itSP395JC9CKWUIh80YC8XncJ4S1eQ/2IiIjc2AKHpKAiabmtrsEg9Q/8hNYSDYX2tDkYrTE0ZkD1egk1A2x9SY+hv5Zw4FLff7ZgtBolT0LQVRyNprXGAx13GMtGBeLYv34QnlpOREREREREREREREQEQNU1ADP3kVe4+0+e69LZLPDvv5gLBznQg6qbmjEfOPNSeYWtG4HH7zaXVSQYrdn7ugy3KjsVq4f64V1Ql/+fdT393UugN2+wr5PNApvWmffz/q+V3EYrr8FoXtejilGf/AnUlz1e5yZN9zzWgoYndfKFcuGT/wJu+tmuX68+V2HWeHn1N3d4H6OyzTI0PJ7Z1ts2P9epUoyZWLRoRqoVj7YehR9u/AQ+seX7+Ov6t+OqTZftXqFz2+C2iWgEU00tgBTW+urzwNP3+67zE8vs16jc+QSwB7MRVQ2p3yUFB0YGIQB5D+Nc9jO5cMXDvf/51bZWLnvr2f7rI6JhjcFoRERERERERAMghUQlsl3QWoshZYUhVlI9yWwXsjqDbp303KZERg5G68yag9FqA8M7GM0WBuc5fMFj8Em2xGAEOVglAa21GPAQFULzvNYPyMEUNlJ7pBA/IiIiiS3MLCUGo6V91zUY5GBTBqNR9UpkOsW+XGNwbEXaIAU7e+1LhlVEDB7usvT9bWzBaEFLMJoUjFwNVnatwKYe8wD+w+PLKn7OJCIiIiIiIiIiIiKiPUzLPLFI33ez93pWr5DLJjZ7r4dGJLXv4aVtWDf4wWgqVgc0eLwHy2C0QaHCUai3nQecd4W8UjYLPHirvaI3XwdSPeaypuaS22fl9ZjgsVN1lFJQxywHxk12X3mwg6lo6LmEuOb3iZRSuPQtcgjR31d4H6PSYQtGy3b0/jDYx9+EacbF4zObcUn7L/DtNz6Hk3begX7/4kVvGdw2EY10sxeKRfrem3xXF7MNmwPQkM0LM+RnMxoO/AbShr3NNyMXe+0vFvn6fiinbY15eSAAjJvivz4iGtYYjEZEREREREQ0ALawq5TuQRbmp0oUBgJEA3LoRjJruXNpYAsK6MrsMC6PVWEwWkgFjcv/P3v3HSbJVd9t/3uqu2e6J+zMbNDuKq4kJFACBYQkkHclgoRkko2JIhkcCA8YY4IJNvYLGAfA5sEIv4Bfg7EJxg/2izESIIIQGGwRTJBF1kqAVkLSzmyY6d7t7jrPH7O92zNzftVVHad37s916dJOneqqM6m7uqf6rlDQoFK3v0ZW0CTteuUVUYfwH52dkl9At35WvLwO+EpgP415haN5K9ezP08rjJHE+rlL+/UEAKAhcpEi5YJjVqjIWl5YJWG0dh5bgX6Zrd1rjs0UNnW07aQjXu+PHCdbx5LLA9HmfpyzI9TGcXMr1TgpjGbftzR/XqvNjXOfDC6PFOnSqSv7PBsAAAAAAAAAALDWuHMusQfv/En6Df3cXted9ZAMM8JR6cwLpaiNt0Cu39z9uYScc3G69U45q7fzWOPc2cnfB/+zHydvYNdOe6xXYaGRYrr18lwQa9Vq8XMnSe6slPcRGFpuYioxFrv8mOihp9pn3/z4nvT73X/AHlvXeL/Ahi3pN9iOMx4sjWa74La76hk9mgywRiQ9B/vpDzNvbiSf/B6Y6XpTGG1rcggSWB2yhtGyPY7BkPS8+Jb/yr69XTvDy485Xi4ffq8hgKMXYTQAAAAAADqwPHDWUK7Pq5wQzFge2TC3Ey8kbsfad0js6+a2xqLVF0bLu/DlZ6qhMJrxeeVdXoWoxWVsDrHjdEu/nt4Ko7W4skhSUCzp58Wa14r1ErefPR5h/Rwl7QcAAIsVNLMCaNU4fBXefNTfkz3N44P6wqqOJWFt210NnyXp5DSdX9/h1tOdNLL8GLrBet4Tkvb4PC3r/kZafN5ghY6t4/9B2129R9/ef3Nw7IETD9FMIeWV6QEAAAAAAAAAANr1qKfaY3f8QP7276Xbzl077bGH/1qmKeHo4zYdJ12ZPaLijj25B7MJ7OcpL2290pNeLFdKdxEptOnCR0mnnWuPf/Qd8uWEvzXv2hlePr5OmpzpZGa2wmi69QijrVruSS+WRhK+jzPHSL/87P5NCAPjnv5ye3D/Hvl9c4c/PO9Ee9U/+aTXwVq681TmE8Jo4/7Q/d3kdKpttcsVx6SnpngcbPbgR/ZmMsAa4R73PHvwG1+Q/9Dbunpu67p475EPthBGwxBo8b6uFQrp3m+GZO4Jz7cHb71Z8fO3y9/909Tb87t2hge29ud5PoDVhTAaAAAAAAAdKOXCJ6tU4gUz1iWtjEuVIns7WaNWVihgISEgMJ6bzLSPfshnCKhYUbGkGFnadStxecnH1h+KrJBCQ1LgrBKXzZ+XtJ9DIRpR3oWvfNFOPGL55314PilDbQAANLMf12vG8nDAyNpOr1iPw7HqqvpwvA0YtNnafcHlU/n1yhnHi91x5DjZPJbMcHxuPUeyAr6tJN2vLEaOM54QM2Bfmvu0vOLg2I7pq/s8GwAAAAAAAAAAsBa5yRm5P/moOe6f82D5WvhvwkvWu+v28MBpD5IbX9fu9HAUca/6G7nnvynbjbZu68lclnPn/pLcOz+XvM6L/6Ivc1nLXC4n947PJK7j3/YSe3DXzvDyY09uedHctiUFtZrlevl3fnTCnXOJ3Ns/vRjxPOE06fhTF//bdoZ09bPl/ubGxbgjjnru0dfI/c7b7BWajnWcc3rxw+37lVf/S2dhtJyvaaRxXluvwo5N3PNen37lU86SGy32bjLAGuCOO1Xut95gjvtrXy194WNd219e9cV/lMalqQ1d2y7QM1mP3YkQd4U7+Qzpma+yV7jlP+Vf+fj04cZdO8PL+/Q8H8DqQhgNAAAAAIAOLA+cNZRbBM2WBwGKUSm8nXpyYC1kob4/03JJGjMCb4NkRb5CQQPra2R9f7Ksuzwq5mW9ENsijGaEHRr7sOJuWT6HtHG3NKyYWpb5AADQkI/CfziuxuG4mBVM63cYLelxr53HV6AfZqv3BpfP5Dd2vO2kGHDzcXI3jm2tCHU70V9JqrYILlqfm338PzjVuKov7/l0cGzLyPE6feycPs8IAAAAAAAAAACsWWdfbI/VqtLXk4NRkqRdRhjtzAvbmxOOOi6Xk7vm5dIjnpz+Rn18w7R74MPswYmp3oW1sIQbXyf3ur+zV/jcP8tXwn/L9tb9UC9/jnJ5KUrx9l5iDauaO/tiRX/8j4o++F1FH/qfxf8+8N+KXv1uuWNPGfT00E+/8nz793XXziUfnr7Z3swHvuJTRUPmjWt6jsULR86AGet9YNY5J/3yc9KtvGFrT+cCrBkXXZE47K/7QPf3uXUbx7QYDll/TgsjvZnHGuQufWzyCj+5RfrBN9NtzHh+5gijAWsSYTQAAAAAADpghaiq/qDm433BMSen0Wjp1Y6sN/1X4gUzKmBZMEIBiWG0aDLTPvqh4MIvMIfCaNbXyPr+ZFk3bfQkKRIhLX4+kfFSTDleUMUI6XUn7pbtZ8h7b37eWb6mAAA0WEGz0ON60vJ+h9GseK3UfpwJ6LXdtXuCy2cK/btio3Vsm+VYslvHtg2t7leGKYz23/v/Q/vqe4Jj26ev4iQ0AAAAAAAAAADQP9ObpPUJdY/b/qf1Nu4y3vC6+aQ2J4WjlTvl7HQr5nLSMSf0djLLPf43govd01/e33msdacmXETqYEW687bw2Fz47+zadFznczI456TCaOsVCaMBQ8HlctJm47Fn2bHOOcfZ53Xcu1+6J/wWhCXmD4TPZxn3h86rmZhanFMfuFNTPj6PFluvA6C14+8njST8Pu1M8Rwsqy08N8NRKs3xONI58fTWobnbbm25Ge/9iqjsYYTRgDWJMBoAAAAAAB1IilbNVu8NLh+NSorc0qfkViDgoD+g+XqKv242KdfDkY75OBxGixQlRj8GxQqfVANBg0oXwmhmeGHZ19MrDq7XKozmnFMpCgfwynU7gFfMdR53s34mLAd8xQxAZAm1AQDQ0K0wWqHPYbSkx7208VSg36znITP5TX2bgx0uTv+8wz52bi9K2Op+xWqJrcYw2o2z1wWXj7qiLlp3eZ9nAwAAAAAAAAAA1jLnnPSYXzfH/TtfJb/7bnvcezOMpq28+R7LXPFUaSTFG9ePOV4un+/9fJq4q5+z8o+OI6PSFU/r6zzWOne/c6TTzjXH/ef+OTywP3xhKq1b34VZJSCMBhxdjHCQf8crlhwPXXo/aTrhdOzPfq/1uSrzB8LLxxsX+5yYbrmNrnnkU9KtN7L63q8ADCM3NiE94sn2Crtul6/VurtTwmgYFlkvKtsq5IXU3MSUdPmvJa9kvf7TbO9uacF4HyX3RcCaRBgNAAAAAIAOlBKiVbO1cJAgFANIDKwZ27GU43AoYKEeDqON5SYWT1BbZbIEVMr1cHgh6fuznBUgWx496SSLYO1jX31OserBsSwhMiuMljXcUjG+nkn7AAAgScGFTziu+fDJF6EQqmQfH/TKaELEqd04E9Brc8bzh5nCxo63nRQDbg6IWcefpVw4dhZe14j+GtG1Vqww2pH7FauMtrrCaD+t/EQ/qXwvOPaQqcsyPQcCAAAAAAAAAADoBvfcP0wc9y/YIX+gEh7cc59UNv72yhtesYzbcpLc2z4pTc4kr7j15P5MqIk780K5N35EOu6UxQUnnyn3l9fLbT6h73NZ6/eQ2FsAACAASURBVNxbP2EPvv9P5H/83ZXL982GtzUx1aVZGUaKrdchjAYMjy3bzKHm46EocvrWH9pv77/mvV53700+X2X+YHj5kTBaj++/mriZY+T+4H2tV0xznwcgFfd775DOeLC9wnV/3939Ea3GsMj43jiXJ4zWTe6V10qPfqY57tOE0XbttMeO3ZZ1SgCOAoTRAAAAAADoQFIkarYaDhKUopUxgMQwmrEdy0LWMFo0kWn7/VKIjDBavDJoUDHiCKEIncX6HqwILxhhhMi1fpmlZMxnd/WehNt0Ix6RLdySFJuw4m4AACTJEjxNWt7vMFrkIvN4Imt4FOiH2MdmWHl9flPf5mEdf2Y7Pg8fB2c9tm1oFVy0om++ozRy931x7jpzbMf0VX2cCQAAAAAAAAAAwCKXy8n91hvsFe68TfqyESpKelMsYTQEuAddKveJO5NX2rqtL3NZzm1/vKIP3yp3w5yiv/+m3AMfOpB5rHVuZpN03g5z3H/8PSsX7t8TXrlVhK9TI6Ot18mFL0YIYPVJDActOx46Yb3T6Zvt1T/w1RZhtAPh5WONc8B7ff+13GW/2jpGM5riPg9AKm60KPdXnzLH/Qff2t0dJoQfgVUlYxgt1fE4UnOjJUWvfa/0q88Pr7BrZ+uN7DJeJxoZldZvaXdqAIYYYTQAAAAAADqQGEarhWNXoRhAUmzKChtYyvV5+UC8a76+L7j+WG51htGyBFSskFeWqJj1vVweXYsVG1to/QJ60ZhP0ve4O/EIO3QWYoXmFvdBGA0AkF3eha+oVfXhS1faYbT+n+yZ9hgBWA321/eq5mvBsZnCxi7swT7mbQ6IWeHApOdPy5nHtvX2wmit7leGIYy2UN+v/9p7Y3DsfqWzdOwobw4CAAAAAAAAAAADcuLpicP+1q+FBxLf8JpQC8Ga5qJIOuUse/yE0/o4m8D+R9Of84ceOeF+9titX1+5bN9seN2Jqe7Mx5IqjNbfiwgC6MDxCfc9kvytNy/5+LRj7HVvvi15V/Ph0+403rjg4Lr+htHcyKhUbHHe/kixP5MB1gg3NiHlcuHBhf2pt/PcS8Pnzb149zuPfLD5hCxTAwYoYxgtz7F2LzjrmGjXztY3nr07vPyYExZfCwCw5vCbDwAAAABAB3IupxEXPjFhtnpfcHkoLJUUm5qthqNZU7nwHyxjxTrgKyuWL8ThgMD4kIXRqoGggRUmyRYVC38Par6qahyOKDRL8/K5tQ/reyxJpVyWuFv4880abrFCapEi8+cdAIAkVtDMCjhZAaOCEVjrJevxO2t4FOiH3dVwnFmSZvKdh9ESL6Z3qB8W+1gHjDBalsjumHEc3O7vXqv7lWEIo31lz+fMoOSO6av6PBsAAAAAAAAAAIAmD3mUNL7OHr/hI+Hld+0ML998Im94RSL38CfZg5c/sX8TwaqU+PNx681LLj7sDx6QDoT/xq3JHoeFSinO3833/yKCANp0yaOlUsJ537d/f8mHT3qwfSLOR7/uddce+5yV+QPh5eP+0Hk1m0+059Erp5+XPE4YDei+E4xA9e675CvpzrN73APD90VP3fNPRz7oc2wRaFviSa4Bhf6fl74mbDEu8rtrp/xt/5N8231z4eVTGzqaEoDhxSvEAAAAAAB0yIxd1cKxq2Ju5fo5lzdDH9Z2ZgqbzDkt1Fde4WWhvi+47lg0aW5nkApGGC0UNCjXw3+0KUVZomJ2pKHSFJWzwgguxcss1j6s77GT06hL/0dg6/O1vj4WOzQ3Jpf1DwUAAMgOnlqhImu5tZ1esh6/s4ZHgX6wjivzrqCJXMIbUbroQFwxj5mTjrnTrls2gs+tmPcr0XBc8S/2sb44d11wbCo3o3MnL+7zjAAAAAAAAAAAAI5wpXG5N3zIXuHeO+Vv+KcVi/1dt4fXt95ECzQ85Xek7Y9fuiyXl3vNe+WOPXkwc8Lqcf5l0oMuNYf9215y5IP9xhvvJWliuntzCkkVRhuOv2kDkNzYpNz/80F7ha9cJ187cv7KNRc5jSa0D+//B7HuuC98Do4ZRjt0Xo3b2v9jKffKdyaPj6a/4DmAdNyr32OO+RdetiQGa3nsg6TXXH3kPSLOx3rrXa/QRZWbj6zU62MioFuyvt8pTxitJ7ZuM4f8s86Tv+U/7XHr+dnEVIeTAjCsCKMBAAAAANChYi4co6r6g8HlVkjNjFoZb/xfnxBGC91mPhBLk6QxY/6DliWgUonDV+srRun/gFoKBOsayk3bN8NoKV4/t/axp7Y7uLwYlTKFyKztZw23WCG1LF9PAACaZQmeSlI1Xj1hNOvYLWt4FOgHM6qc36DIdf5nQSf72LRxnJx07Jl0zL3cmPH8qBKXFft66u00tLpfccbXJ83JYf3wvYVv6Z7qruDYw6avUM5xlXAAAAAAAAAAADBY7sJHyr30L81x/+4/kI/jpQt3GWG0AcQ8MFxccUzujR+R+9Ati/9/y8fl/u3nclc9c9BTwyrgnJN75bvsFf713fK/+Nniv5PCaJM9joAUU/wNnTAaMFTcxY+We9nb7RW+ev3hf+Yip39/iX0+z76KdO2N4fNWyuG3KWi8cd5OQpCkZ44/Lfk+ayT9xcIBpHTKWfbYD78l3fq1lptwzumNT4i069lf1aduv1p3/+AE/c7sstDhOEEiDImsYbSR0d7MY61rEbv373+zPbjPCqMRaATWKsJoAAAAAAB0qJQxFlU04hpZo1Pr8wlhtPrKMNpCHA6jjecmM+23X7KE0ax4XJbwghU9kaRK0/btMELrF9CtfVixNSuWZ7F+trKG0ezQXPqvJwAAzfIufEUtKyRrBdPyUf/DP8Vc+Bgt6+Mr0A+z1XuCy2cSosrZJB3zNsJo4WNJKdvxZNKxfNI+LOb9yqGgmPWZWcfq/fbFueuCyyPldOn0lX2eDQAAAAAAAAAAgGHbGfbYrp3SnT9ZuuzeO4Orus2E0dCac07u+PvJ7XiC3EVXyvU6YoXhsvnE5DDCN25c/L/1xnup92G0sYnW6xBGA4bPKWebQ/7mzy5ddWPypv72pvB5K/sPhJePNc5537ItecM94KJI2nyCvcLY6nzPAjDMXHFMmjnGXuFrn0u9rWPq9+oRC1/Q+nh26UBpQi7PRTsxLDKG0fLh89vRGTcxJa1bb6/w9c+tDOc3WOFqnu8DaxZhNAAAAAAAOpQ1FmXFsUq5bBGsyfyUCkZkZCEQCluoh8NoY7kUJ1YMgBVGqwaCBt0IeSWF6cpN27fCCC7FC+hZf1a69bNVzhhu6UZoDgCAZlbQrBbXwsvNgFH/T/a0w6PZw0xAr83W7g0un8m3OIuyi6xjSSk5RrxyXfv5UdI+LNb9ypHnVOHj+dUQRruv+gt9Z3/46p3nTl6k6XzCCSQAAAAAAAAAAAD9dPYl0sioPb5r59KPrTe8Tvfv71sAjk5utChdcLk57q/9ffnvfV3aNxteIZeTSj0+vzbN9gmjAcPnjAvtsY+9S/FfvlTxG58r//G/1YnVOxI3dZ9xisyccWr4dLxn8R9TG1JMtAceerU9lnCfDKADl1xlDvnP/7O8T3n+mxWLJUaEYZIURg4pEEbrmYT7Jh08IO2+Kzxm3RdNcF8ErFWE0QAAAAAA6FDSG/ZDrABXlkjA4nbGNGbsu1zPEEaLVmcYrWCET5YHDWq+qqo/GFw3y9c0cjmNumJwbOnXs/0wWtbvcdYQmRlGqy+k/4OWuhOaAwCgmRU0s0JFrQNG/WOHR7OHmYBe213tbRgt6Zi3cbRpHUtGijL9Dic9z1oIPN9ppVVw0f7cBh9Gu2nuU/IKXx1v+3TCCaUAAAAAAAAAAAB95kaLci9/pznu//39Sxfw5nsAPeSe/yZ7cPYX8r/5UPk/vCY8PjEjlzWskFWx9TmZLhe+GCGA1cuNjErbzrBX+Ni7pE/9o/xfvFB68un6zW0/StzebfeuPHdlzrim53T90LHVgI6l3FN/Vzrx9JUD17xCLrQcQMfcs15lD/7o2/J//kL5er31hqxo9cRUexMDBoEw2qrhnv1qqWSfB+xf8+Tw+9yM14kcrxMBaxZhNAAAAAAAOlTMhUNnllIu/MKeFUwztxONmdtaWBbq8N5rPg6H0cZzqzOMlo/SBVQqdeMvu8oe8ioaIbLmuIPvJIyWMXSWef7G+nXVzBBEiBV6yRp2AwCgIW3wtKFqBoz6f7Kn9fhqxZ+AQZqthcNo6wvdCaOlUYnDl6QtReOZThpPOnYuG/tI0up+xZrboLNo1fig/mPPZ4JjW0dO1Gmls/o8IwAAAAAAAAAAgGTuqmdKo8a5cJ/9J/l48YIwPo6l+b3h9XjDK4AucPc/X3r4ryWvVA6fW6vJPkRASinO382Fz7kBsLq5Z7wy9brPvfE3Esdf/MGVF9ObM06dmY73SPmCNBK+WHivuWOOl/ubm+Re817pSS+WnvNauf/9GbnffsNA5gOsBe64U6Vn/b69wif+P+mr17fcjt+/JzwwwXMzDBHCaKuGO+E0uY98317h1pulb3955XIz0sh9EbBWEUYDAAAAAKBDpci+gkGIFUBrZzvWbcr1pWGrqj9ohkfGolUaRjMCKtV4WRgtIYqQNURmhb+aQ2HBK1LIDik0yxo6yxoi61Y8worNZZ0/AAAN1uO6dXxiLbe200vm8UE9HBIFBqXua9pbmw2OzeR7H0ZrBITL9fBxZ9agdM7lNeJGg2Pt/P61ul+xQsferzy5tJ++se/L2l8PvyFo+/Sje3+FcgAAAAAAAAAAgHb80uPssR9+a/H/83sk41ws3vAKoFvcOQ9t74aTM92dSIBLE0bL9/8iggC6YOtJqVc9+cCPE8e/e+fKZXPGNT2n6nuliemBnk/iJqflrnqmope8RdHz/lDuvO2c3wL0mHvABYnj/sZ/bb2ReSuM1odYLNAtWR9v8oTResnNbJJOOdscX37f5L2X9twXXpmAPrBmEUYDAAAAAKBDWeNVVlwqe8RrXGO5cBhtIV4aClioG1e0kzSWW51htELKgEpS8CtryMtavxIf+etxI/iwUusX0DOHzjLH8pLCaOnjEda6WX9GAQBoMIOnQxBGKxqPf83HB8BqMFe7zzxWnSls6so+rHjYosV9W+HidiK7JeP5Tpbob4N1v1JwjRNbjDBa5j11141z1wWXF6OSLpq6vM+zAQAAAAAAAAAASMc98GHmmL/hw/K33Srd/n17A7zhFUC3POjS9m7XjwhIKcXf0fP9P1cGQBfc70GpV91Qv09njIcvhihJd+yWvn671665xbNYqjWv+QPhdafiOSJGwFp01kVSLiGmetstrbexzwqj8dwMwyRjGK1AGK3nzk14PnbHsteF9s1KC/vC627Y0r05ARgqhNEAAAAAAOhQ1jf4W3GszBGvXMkMZ5XrS8NW87HxwqCk8dxkpv32ixU+6WUYzfreLP96hqR5+byYNXSWK2VaPym8liXeYq3bTswCAAAp/eN6q+VHAkb9Yz3+tRNmAnpptnqvOTaT39iVfaS5eqv1u5E1Epx0myzR34ZWwcXIPKIfXBrtjsqPtLPyg+DYResuVzHK9nwBAAAAAAAAAACgbx71VHvsw38l/6xz5V+ww16HN98D6BJ32oOkSx+T/YaTM92fzHKlFBc2JowGDCU3NiGNpTtH30l6zXFfSlznwjfFOu6Vsbb/eV0//IW93nR9D2E0YA1y6zdLj/8Ne4XvfV3xe/9I3iecC7d/Lryc+xQMkxTnuC5RGO3NPHCY+5Xn24P/+Wn5/3PtkY937bTX3bqtSzMCMGwIowEAAAAA0KFSLmPQzHhzf9ZQQCkaVykXDm0tLAsFLCSEvcaMbQxa2oBKxQgvjLhR5Vwu0z6t703zPrzi4DouxcsspS6GzkJGo5KcEXRIE3drsL6mhBcAAO0qZA6j1YLL8y7hinY9Yj0eV+Jy8kkiQJ/N1sJhtGI0lvk5Szsavw32sWQ7YbR0Ieg0qrEVRmvcr4SPo/0Aw2g3zl5njm2fvqqPMwEAAAAAAAAAAMjGTUxJZzy4/Q2M8+Z7AN3j3vBhud9+Y7Yb9SMCQhgNOKq51/5t6nWfVvqK3v/rrWMuX/qR9Jh3hM9ll6TpeI6IEbBGuZf+lXRJwjll73+zdP0/2OP794SXTxKtxhDJHEbr/wW71xq37Qzpma8yx/1f/a781z67+MGu28MrjYxKG7Z2f3IAhgJhNAAAAAAAOpQ5aGZECbKGAopRSWNR+KSI8rIw2nx9X3C9UVc0A2SDZgVUYsWq+/rhj8v1cHgh6/dFsr83lbh8+N9WFsEKki2dU7YIXdb1Ixdp1IiXlY1ARZZ1s84HAICGtMHThqo/mGk7vWQdo3nFOuArfZ4NYNtdDYfR1uc39mcCh0KB1rFkO5FdKwS9/PlOGtb9TeN+xTqaH1QYbX99r76276bg2Olj52jr6Al9nhEAAAAAAAAAAEBG7YbRxibl8v2/aBaAo5fLF+Se8Qq5v//v9DeanOndhBqKKc5zzXF/CAytjcemX3f/Xj3jYqdSitPjdt5nj03X9xCYBdYo55zcC96cuI7/9Aftwf1z4e0SW8QwyRpGI0LcF+4hj0oc95/60OI/7toZXmHziXIRaSRgreK3HwAAAACADmUPmoXXt6Jc9nZKGrNCAfWloYCFeL+xz9UbukoKnzRHDSpWeCHj11OyY2rN4YVOwghZYxDtxCOs21hfp+C6RmyunfkAACBlD6PV4uSAUT8lxVab46nAoM3WwmG0mUL3wmhpYsCVevj3op3Irn18nv7YtsG6vylEh674Z5wQ4/1gwmhf3fM5MxK5Yzrhyp4AAAAAAAAAAACrhDvt3PZuON2nC/8AWHuOPVkam0y1qpuY7vFkJI2va71OjlgDMLROOStdAFGS9s/JOadzO7hOnvOx1sV7pekN7W8EwHBrdaxz+/ftsf17wsv7cUwEdE3GMFphpDfTwFInn5kcfL79e5Ikv2d3eHzTcT2YFIBhQRgNAAAAAIAOJcUylosUacSNBseyBNZGXVGRy5lxgeUhtIV6OIw2nkt3gscgpA2jWVGELN+XBut70Bw98T4OruNc65dZIpfTqCumnk874TrrZyJtPCL2dR3wla7NBwAAyX5cr1phNF8Lbyfq/8meSbHV5TFaYJB2V+8JLp/Jb+rL/hsB4eaocLNiLntk1zy2beN3z7xfOXT/ZEff+h9Gi32sm+auD45N5zfogRMX9XlGAAAAAAAAAAAAbbj8idK69dlvt3Vb16cCAJLkRovS1c9Kt/JkHyIgkzOt18kTRgOGlSuOSVdek27ln/9YkvTbOzIGXZqsi/cqkpfbenLb2wAw3Foe69zzc8W/9xj5O29bObZ/LnwbwmgYJsYFck1RrjfzwBJuasPia0SWW29W/EfPlH76w/B4P56bAVi1CKMBAAAAANChLEGzYjQmZ7zQmiXk1QhUjRmhqoVloYB5I4w2Fk2k3me/FSL7yhvNEZWKEfzK8n1psL4HacILaV8+T4qrrFi3i59DpZ4ujNYcgVu57ewxCwAAJKlgBM1qgTBa7GPVFQ4YFRLCqb1STHj8S3rcBPptrnZvcPlMYWMX92If9TbCaNbvRTvh4pJx7Jw2+tus6g8Gl+fd4lXorDBa/7No0q3z39Q91buCY5dOXaGc42QcAAAAAAAAAACw+rnxdXLXfl46d7tUsM8FW4GYB4Aeci/6c2n741uv2I8ISJo3+BNGA4aae+lfSk/6X9LMMdJUwjk8P/yWfL2uZ10S6a+f3l4cbbq+Z/EfRGaBNc296M+lS66yV/ivz8i/4DL5hSPvMfJxLM3vDa8/MdXlGQI9lDWMlsv3Zh5Ywf3+u6XjT7VX+Ow/STf+S3hsIkVQGsBRizAaAAAAAAAdst6sH5IU1sgWWFvcTikKh9Eq8YJiHx/+eMEKo+VWbxitESgIqcVHIipWFCHpa22xomXNcQdvpBGskMJymQJ4bcQjrM8hbTwiab2i8fMGAEAreSNo1vyYfnhZIJbWaju9NOqKcsafU8px63gq0C+z1fuCy2fy3QujpTnitY/P24n+GiHoNn73rPuWxv2KHUaLg8t76ca564LLI+X0sOkr+jwbAAAAAAAAAACA9rmTHqDoHZ+R+/Tu9Lch5gGgh1w+L/fH/yhFLd5amyZa1qnJFG/wzxNrAIaZyxcUveStcv//HXIf/6ncy95ur/yNz0uSXnhZpA//VvY42nR8KIy25aR2pgrgKOHyebk3fDh5pd13SV/42JGP5/dK3riEaD+OiYBuIYy2arnRotxbP9HejScJNAJrGWE0AAAAAAA6ZL1ZP7huzl43aczap7VvL68DTTGvhTgcRhtf1WE0O3zSHDWo1MPhhSzflyO3saJiR8ILnYbRsgQh2gmjWbeppAyjJa1XaiM2BwCAlBBG87XAstUVRnPOmcHV5ngqMEgH4orm433BsfWF7oXR0rCOJ9sLoxnHtsZzgCTWfUvBjWTeVi/de/Bu3TL/9eDYeZOXaCrPle8AAAAAAAAAAMDwcfmCdPWz06180v17OxkAa57LF6Rii3NM00TLOlUck/ItzoVpNQ5gKDjn5KJIOuYEe6Uf/Pfhf15ySvYw2lR9bvEfmxP2AWBNcKNFaWtyJNF//xtHPtg/Z684QZAIwyTj4ycR4v465gRpNPv70lw/npsBWLUIowEAAAAA0KGCG1GU8im2FdVoNWatO5YQNltoinnN18ORhLFoOMNoVX/w8L/LVnghl/3FUivWUInL8oeugOOtK+GkvLJIlthZMde9eERz3C1JpW4HXtqJWQAAINmP63XVFPt4ybJQLK3Vdnqt0/Ao0Guz1XvNsZl898JoSTHgRkDYDhdnP5YcM+LRCymPbZtZ9y15t3hii3Ph53RWGLlXvjh3nbnPHdNX9XUuAAAAAAAAAAAA3eQe9ZTWK01MSRdf2fvJAMCZFyaP9yEC4pxrHWAjjAYcXR78cHPI/81r5d//Zvn9e3TCeqdL75dt09PxnsV/EA8BIEkPf3Ly+Mfepfj3HqP49c+Qf9Pz7PUmprs7L6CXUr6v67AcYbR+cvmCdPkTs9+QQCOwphFGAwAAAACgQ845laIWV447JCksNeqKqQNrpUPBrLGE/ZbrR2IBVjggKaw2aAU3Yo41Rw0qcTjklfZ7svQ24e+Pl9cBXzn8UUhSJGLJPjLEztqJR5hxt4TgWTMroJZ3eRUi+3sCAECSQkLQrOariR+n3U4vWY+vZSMABfTb7to95th0F8Nora6mF/t603HzUu1Ef4vGMX0lnreDxQHe+yVx5WaN4KL1mWXZT6cOxgf0lT2fDY4dO3KSTi2d2be5AAAAAAAAAAAAdN0FD5d7/pvs8akNcn/2L3Kj2S+ICQBZuZf/dfIK/QoLTbaIjRBrAI4qbrQknXqOOe7f+0fy/+sR8gv79YHnRTr72PTbnqrvkUZLciOjXZgpgGHnnvMaaccTklf6r89In/uo9K0v2euMEyTCECGMtuq5l7xFOm9HthsRaATWNMJoAAAAAAB0Qdo3+SeFrpxzieG0Jfs7tF5SZGsh3n/k3/V9wXXGc5Op9jcIeWe/wNwcTKkYIa9ilP0EuaSvfyM05zsMo6X9HhfciHIJXwOL9TNRjtOFW6zQXNp5AwAQku9SGC1pO71kPb5WUj6+Ar02W703uHxdblqFqF+/N948lpSkUhvH51YIuuZrZugspK6aOdYIMlvH89bxfy98fd+XNB+Hn7vtmLl68WrhAAAAAAAAAAAAQ8o5J3fNy+Wuv0fu7Z+Se8vH5d7yb4v/vfvLcv96h9wDHzboaQJYK7ZsSx6f6FMEpNWb/HODOVcGQO+4Rz4leYUff0f63Ed10ganb70+0nW/ky4FMB3vIRwC4DBXHFP0xo/IvehP299IaUIuTzgKQ4Qw2qrnJmfk3v4p6VdfkP5GrWLSAI5q3FMDAAAAANAFad/k3youVYxKS4Jm9v4Wt5NzeY26og74yop1FupHgmHz9fA2rdDAahC5nCJFihWvGGuOIJSN+EKpjc8tKTTXiDx0GkZLiuMtXa+97431M1Y2AnIr1wsHXtLOGwCAkOQw2tJgUVLsaFBhNPvxlTAaVofZWjiMNl3Y2NX9JJ0z4r0d2ZWkYpePz8vxgkaidFe4XX4/0yx/OBxnfXL9C6PdOHddcHkxGtOF67b3bR4AAAAAsnHOnSLpQkkPPvT/8yU1X5nmdu/9tja33emTkpO99zs73AYAAAAAdJUbXyedf9mgpwFgjXO5nPyWk6S7bl85ODkjl+/TOSqt3uRfGOnPPAD0z9ZtLVfx131A7jG/LuecHvGAdC8TT9X39C/qCGB4PPDS9m/LfQqGTsYwWpTrzTSQyDknXXC5/Mfele4GhF+BNS1dJhoAAAAAACRK+yb/YouAWimXdjtHAgHWbRohrNjXVTGiHeO5yeDy1aLgwid01Hz18L8r9fDn1uprHb5NUnhh8evZ6TuQ0gbP2pn/4vbDn0NSpGLpetbXkzAaAKB9hcQwWnXZxwkBowGF0ezHV8JoWB1mq+Ew2vp8d8NorU4aSYrxpo1JL72NfexcrqcL/0pSLa6aY3m3eB0pK3TcryzazvIPdUflR8Gxi9c9vO3nBwAAAAB6wzl3mXPuU865+yT9WNKHJb1c0g4tjaIBAAAAAABgtdrxhPDyi6/s3xwmZ5LHi5y7CRx1LnxE63W+/eXD/8zn0kVepuO51rFFAGvP6edJG49t77aE0TBskq7+u1wUyUXkdgbmgsvTP9fZfEJv5wJgVeOeGgAAAACALrBiGSvWaxE+S72d5jCaEQtohALK8YK88Xb+sdxEqv0NihU/aQRTvPcqG0GStJG5ZiNuVJHxckkjLOZ9HBx3Lt3LLMVcd35WzO0bP0NpwxF2GI0QAwCgfUlBs6o/uOTj5IDRYMJo1uMgYTSsFrO1cBhtptDtMFoSr0rdjvG2E9pNOia2ngeELL+fada4iXEGQwAAIABJREFUX3HGCTHWc6lu++LcJ82xHTNX9WUOAAAAADI5V9IVktYPeiIAAAAAAABoj3vay6RTz1m6cOs2ud94ff8m0SpiVGrvXFIAq5dbt14azXZe9t8/t3XoZbq+Rxpf1+60ABylXD4v9/J3SCPF7DeeILaIIZMljJbL924eaMmNr5N76V9JuVzyivlC+3FHAEcF7q0BAAAAAOiCtG/ybxWXSr2dprjWmBELWIgXQ1jz9f3mdsai1R5GC790UfOLwZSqP6hY9eA67YS8nHMqReOaj/etGGsVFnNK9wJ6O/G7LKx4xAFfUezrilzyi8blevdCcwAANCQFzRqP69bHS7czmD9r2OFRwmhYHXZX7wkun8l3N4yWdMzr5c1YYN7lVYhGMu9v1BXlFMlrZZy4HKcL/0rJ9ysF15iXEUYzwsjdtL+2V1/b96Xg2APGHqTNI8f1fA4AAAAAuuaApJ9JOrUH2/5PSU/NeJuf9WAeAAAAAAAARwW3YYt07Rekm2+Q//F35LadIV34CLnJmf5NotW+ipy7CRyN3PPfJP/2lyWu4w9U5EYXQ0ZXn+OkFhf3m473EDECEOQe9hjpA9+Uf8oZ2W44MdWbCQG9QhhtqLhffrZ05kPkr32V9NVPhVdav0Uuivo7MQCrCvfWAAAAAAB0QSmXNnaVfIJCO9Esa5uNUMBCQhhtPLfKw2jRiELds2p8UJJUNsILUuuvtaWYKwXDaJW4LGkx+BCS9uXzbkX0LKWE21XissZafM+tmEW78wEAQJLyUVIYrbbk46o/GN6GK8hl+YN1F1nHeo3jA2CQvPeard0bHFtf2NTXuVjH52mPgZdbDBePaSFe+ZymVbi42fL7mWaNcONg7l0W/ceeG8x42/bpq/o8GwAAAAAZVCXdIulrkm4+9P/vSHqYpM/3YH8V7/3OHmwXAAAAAABgzXJjE9KOJ8jteMJg9j85nZw6KhFGA45KW7e1XufuO6QTT5ckzYxJk0VpX8Vefao+J03cvzvzA3DUcceeIn/NK6R//Iv0NyK2iKFDGG3YuJPPkF78F/JWGO34XlyPDMAwIY0IAAAAAEAXpA2atYpLpQ0GNEe/xnLhkx4WDoUCQhEBSYoUtR0o6JdGpGC5RjTAinhJnYTFwl+TRmjOKw6Ou5Qvs6SP37UZdku4XVJIrtU67c4HAABJyjv7j8e1eGkMyAoYWccF/WAdMzWOD4BBmo/3mUHBmfzGvs3DqzeR3ZLxfCfL758VHZOO3D9Zx/NWGLlbYl/XTXuuD47N5DfqnIkLe7p/AAAAAG17v6R13vvzvPe/6b1/t/f+G94nPAEBAAAAAAAAlpucsceck0aK/ZsLgP45+2KpMJK4iv/E38nfd5ekxYsLjiWvrun6HiJGABK587Znu8HkVG8mAvRKlgtwR7nezQPZHHc/adNxwSF3wcP7PBkAqw1hNAAAAAAAuiB90Cx5vVIue2DNClY1QgEL9XAYrZQbl8vyou8AFIyISiOYUq7boS8roNCK9b2sxGVJ6jiLkPpnJeXPworbJWw/6evV0IuYBQAAOeXljKtwLQ8WWQGjQYbRrMfXxvEBMEiz1XvNsZnCpq7uy/o9XuRVNn4nOons2uHi1se2DVY4Tjpy32J9Zr0Oo90y/w3dV/1FcOzS6SuVc5x8AwAAAKxG3vtZ731l0PMAAAAAAADAkEsKo5UmVv15vgDa46Y2SE/+neSVPvQ2+SecpPj118gfqOjPnph8fzAdz8lNEkYDkODBj5Ae9Evp1ye2iGGT5dg5Z1/0G/3lcjm5X3/dyoGtJ0m//Oz+TwjAqsK9NQAAAAAAXdAqeHZ4vRaxq/TRrCNhgTEjALZQXwyjzdf3BcfHo8lU+xqkvAtf2qoRNrAiXk5OI260rX1a34NGaM5Ko0UuXX8+ffyuvTBa0u2sr1czK57WScwCAADnnPKuEIwTLV9mh9EG9ycNO5yaPswE9MpsLRxGi5TTulx3r9iYHEaTKoePmZfqJLJrHYc2nu+kYd2vSM3RxfDn1usw2o1z1wWX55TXw6Ye1dN9AwAAAAAAAAAAAAAGLCliVGjvPFgAw8H99hukU86Sf8Nzklf83D/Ln3CanvLs1+s5f2efxzJd3yNNdPdcIQBHF5fLSW/9hPR/3in/rS9JP/qO9Iuf2utzn4JhQxhtaLnHPlc65jj5Gz4q3Xen9IAHyz3xhXIbtgx6agAGjHtrAAAAAAC6oNil2FXawFpzWMAKBTRCXgvx/uC4FVRbTY5ECpZqhA3KRoykGJVSh8qWs74HjWCY952FEdIGxtL+LCxXiArKu0Iw/mB9vZpV4nJweScxCwAApMWwWSiMVvO1ZR+HA0YFI5jaD9bjciUuK/Z1RS7X5xkBR8xWw2G06fz6vv5senmV69axZHvHtpIdFs4SJlx+P9OQU/7w8wbzKtsdHv8n+cXBXfqf+W8Ex86ffKjW5bniJgAAAAAAAAAAAAAc1SZn7LHqgf7NA0DfOeekK54m/9Xrpc98OHnlGz6i0d/4o8RV1sV7pQnONQGQzI0Wpaf/ntzTf0+SFL/00dLXPx9emfsUDB3CaMPMXXSl3EVXDnoaAFaZ9t4hDAAAAAAAlkgbsWq1XtpgQHNcywyj1Q+F0epWGG0y1b4GKe/CLzQ3wgZWDKGT8IIVuWvsyyscRnApX0BPGxjrKB5hxlvmW97W/JqmjP8BAGBpFTxtqBphNOv2/ZD0OHggrvRxJsBKu2v3BJevL2zq/s5aXE3POpa04mZpjLUIQadRjVdGGaWlzzes4/neZdGkm+auM8e2z1zdwz0DAAAAAAAAAAAAAFaF6YS/7S/s6988AAyMO/281ivdeZv8wQN63IPCw2dVblFOsTSxrruTA3D023KSPUYYDcOmxTmuS+S4KDYADAPCaAAAAAAAdEHaMFqr2FWaYECkSAU3cvjjsdxEcL2FQ6GAeSOMNh6Fb7ea2AGVxbBBuQdhNOt7We5SGK3gRpRT6yuLlHLhAEQa1udfjsstb2t9TdP+jAMAYEkbRlv+8ZHbD+7KXEmPg9ZjJ9Avs9V7g8tn8hu7vq9WR7y9OD4vGmG0hXr6MJp5vxIduV+yw2hx6v1kcTA+oK/s+Vxw7PjRk3VK8f492S8AAACAoXaic+7vnHO3OOdmnXMHnXN3H/r4H5xzv+WcWz/oSQIAAAAAACCDDVsGPQMAg3bF01rHh7yXvnq9XnBZJOdWnsv+m3N/u/gPIkYAsjrmeHtscqp/8wC6IUMXTbnBnZcOAEiPe2sAAAAAALogzRv9c8qbQZAs2ylF43JNV7EYM0IBlXhBsa9rIQ6H0ayg2mrSHIBrVj0UNqjUux/xsr4HlUNRMSuMlvYVdOecSrkx7a/vbTGPUqrthVifv/X1aqj5qqqHonMr50MYDQDQmVaP6w12GC35OKqXkh4HK4TRMGCzNSOMVki4qnQPeO/N34dOjiXHjGBwlt89637Ful9qZh39d+pr+24yn6vtmL56yXM+AAAAADjk5EP/NTvm0H9nSrpG0tucc++R9Afe+/CTjg45546RlPVJ56m9mAsAAAAAAMCwc8717O/SAIaDW79ZuvYL8u94ufSNz0v1enA9/9on64pP3KmPPi3Wn/3tj/Wt0QfqAQe/r+fNvU8vmv2bxZUmiBgByMatm7GPRYgtYthkOe+SMBoADAXurQEAAAAA6IJSLkXQLDfW8s3taYJexdzSYFbJCAVIUjle0EJ9eMNoVgClETYoW+GFFN8Pi/U9KNfnF//hw3/2yRIuKEallmG0khG8S7V94/Mvx/OJt6vUywnzIYwGAOhM3oX/JLE8WGQGjKLWAaNeSQqWlmP78RPoh9mqEUbLb+jB3uxjXi9/OCa8XCfHktZtF+rJx7bNar4WXN58v+TMz637p6B773Xj7CeDY6VoXBeu2971fQIAAABYM8YlvVTS1c65X/Xe39KDfbxQ0ut7sF0AAAAAAAAAWJPcyWfIve3fJUnx40+Udt8dXvGGj+hXzr9MT9i5IzxOxAhAVusSzjMctc+dBVYlwmgAcNSJBj0BAAAAAACOBmkiVklBjSzbWR4GGEu4Tbk+r3kjjDYeDUEYLTICKvFiMKVihNE6CS8Ujds2Ig9WFsEOKazUzvc5C+u2VqjiyHj46ynZXxcAANJqFTxtqMbhMJp1+34ouBHljGvNVDLEmYBui31dc7X7gmMzhY1d31+rY96y8fuQ5rmQxQpBJx27Llf1B4PLm+9XnAv/2dQbYeRO7Kz8QD898JPg2CVTj9BINNr1fQIAAAAYajVJX5D0OkmPk3S+pNMknSfp8ZLeIukXy25zuqQbnHMn9W+aAAAAAAAAaMvTXhZe/msv6u88AKwO284wh/wPvyXtm7NvSxgNQFbnXxZeXhiRNp/Y16kAnSOMBgBHG8JoAAAAAAB0wWiKN/qnCUsVc9m3Y4UCJGkhntdCHA6jjeVWfxit4EaCyxsBlbIRQ+gsvBD+PpXjxciDVxwczxJGS/ez0P0wWuNzsFhfT8n+ugAAkFbaMNryj4/cfnB/gHbOmcdp5RbhUaCX9tRmFRvHp+vzm/o8GzvE20lk1zq2XWhxbNvMvl9pCqMZt/VmGrl9N8590hzbPv3oru8PAAAAwFB7naTjvPeXe+/f5L3/N+/9N733P/Le/7f3/uPe+1dIOknSn2rp9V22SPqYc1kujQ4AAAAAAIB+c1deE16+41f6PBMAq4G74mn24L+/T/5Fl4fHRkblRou9mRSAo5bbuFW6IHC/ctGVcmOr/z1HwBJZ/iyaJ4wGAMOAMBoAAAAAAF2QczmNuuQ/JFpv6M+6zoowWsJtyvV5LdSHN4xmBVSqh8IGVnihFNmxuFasaEPVH1Td1xKyCOlfQE8TGUvzs2CxPody3Q6fSclhtE5icwAASFIh6jSMFr59v1iPzZWEx0+g12Zr95pjM4WNXd9f0hGvlzd/HzqJ7FrH9gfismIfjsItZ92vLA0xhz+7bofR9tXm9I19Xw6OnTF2ro4ZObar+wMAAAAw3A7F0H6RYr2K9/7Vkl68bOh8SQnvomvLtZLOzvjf47s8BwAAAAAAgKOGO/VsuT98v1Q89Lf1sUm5l/1vuXN/abATAzAYVz1LKrVxLvz4VPfnAmBNcH/wPunsi48sOP8yude8Z2DzAdqWJYyWI4wGAMOAe2sAAAAAALqkmBvTgVrFHk8Rusq5vEbcqA76A+Y6y6MckcupGI0FIwTX7/5nVf3B4HbGouENozXCBuX6fHC8k4hXYmguXpCMMEKU4QX0Vj8LkSKNuNHU21vOCk+0CrdY4wU3opzjZSQAQGfM4Gk8HGE0MzxKGA0DtLsaDqONumKPjvftY966r5nPY9I8F7KUcuETPRshtjTB55qvBZfnm45xnfm5dTeM9uU9N5jz2TFzdVf3BQAAAGDt8d6/0zl3haTHNS1+oaQPdnEfv5DUMtbWzGV5EwIAAAAAAMAa5B71VOnyJ0o/+5F03KlyhZHWNwJwVHJRJP3RP8i/6ley3XCCMBqA9rgNW+TedaP8vXcufryRi3tiSBFGA4CjTjToCQAAAAAAcLRo9WZ/K1aVdTvFwHbGonAs4PsL3za3M56bTDWfQSq0CKNV4nJw3IonpJEURqvUF+S9FUZI/wJ60j6kxZ+BTt4kVDR+HlqFW8r18HjJ2B4AAFm0Cp4e+TgcDLKOC/rFOkZrFR4Femm2Fg6jTRc29v1N59axudT6+DdJ0rFo2jChFYtuvl+ywmjdzKLFvq4vzX0qOLY+v0lnj1/Qxb0BAAAAWMPevOzji51z0wOZCQAAAAAAAFJz+YLctjOIogGQjj81+20meBkYQGfcxmOJomHIZThvNsr1bhoAgK4hjAYAAAAAQJekiV2l2k6LgFpoP+2EwMZyE5lv02+tAirleD44XoxKbe8zFJ5rKMcL8kYaIUt2olsRPfP2xuffKhxhhV06+XoCANCQNoyWJmA0CNaxnhUWBfphthoOo83kN/Rkf1Y8TLKPzaVOw2gJx+d1e5/Nlt/PNCwJoxkhOe/jVPtI4zv7v6bdtXuCY780/WhFjhNtAAAAAHTFf0mabfo4J+nMAc0FAAAAAAAAAJDVCadL287IdpuJqd7MBQCAYZHlgsI5ztcEgGFAGA0AAAAAgC7pWhitje2M5yZTbbvByWksGv4wWiUuB8dLUfZQ3JHbthtGS/8yS6vvcSfhCEkqGp+/FT5rsMJp7YT3AABYLm0YLU3AaBCsY7lWj69AL80aka31hU292WHCOSNJkcC0z4VCkqLBrcK/DbW4FlxeiPp7v3Lj3CeDy/Mur4dOPbKvcwEAAABw9PKLhec7li3u0RNFAAAAAAAAAEC3OefkXnGtNDmT/kaT072bEAAAwyBTGC3fu3kAALqGMBoAAAAAAF3S6s3+aWNX7Wzn/mMPTLXthlNLZ/Y9AtCOghFAqfqqYh/rgBFGK0altveZc3kV3EhwrJIQRsuiVWisk3DE4vbDty/XF+S9PX8rNNfJ1xMAgAbrcb3ma8s+Xp1hNOvxlTAaBmm2em9w+Ux+Y59nkvy7UMy1fzyZdwXz+Lwcz6faRpr7FWdU37px/C9Jdx/8ub638K3g2PmTl2oyz1V7AQAAAHTV8hf8eaEfAAAAAAAAAIaIe+BD5f7x23Kv/4D0jFe2vsEE554AANY4wmgAcNQhjAYAAAAAQJdYsYyGtHGpVgG1UDTr0qlHaevIiam2P+qKeuzGp6dad9DyRryt5qs6EFfMSEGr8Fgr1vegXF+QjH1aIYWQVj8LnYbRrNvHqqvqD5q3s2IWnc4HAADJDpstf2xaHkprsMJq/WI9HpYJo2GAdtfCYbT1hU092V/SMa8VKSu4kY7DhqUofHxfrqcLo1nHwP0Mo900d705tmP66q7sAwAAAACaLC9mh59AAgAAAAAAAABWLTdzjNwjn6zot9/QOnw2ThgNALDGuQz5HMJoADAUuLcGAAAAAKBLWsWj0salWq0XCrBN5qf1shPfpK/v/ZJ2Vn6guo+Dt90yepzOm3iotowen2oug2YFFGpx1Yx4SekjdPbtx7S3PrdieSVekPdGGC3DlUVaxe+s8EM3tl+OFzQSjYbH6uGvaav5AgCQhvm47qtLPq4u+7jV7fvFOr6oxOU+zwRYVI0Pan99T3BsJr/8/e/dkRxGsyK7nR2bS4vh47312RXLF4wY23LL72calt6v9C6MdiCu6Ct7PhscO3H0VG0rntbxPgAAAACgwTm3UdIpyxbfOYi5AAAAAAAAAAC6ZOs26YffMofdpmP7NxcAAFajscn06xJGA4ChwL01AAAAAABd0jJ2FQiatbOeFU4bz01q+8xV2q6rUu1nGFgBlKqvmuEFqfOwWDE3JgXaCeV4wQwjJEUilms1v2Kus3hE0s9iJV7QlGbMseB8CKMBALogbRitFh8M3z4abBjNenwt19OFmYBum63dZ47NFHoTRktiRXa7cSxp/f4lxZKb1XwtuLzQdL9kh447D6PdvPeL5vOXHTNXZ4osAwAAAEAKT5XUfDn0uyXdOqC5AAAAAAAAAAC6oUUYTVu39WsmAACsSm5iKv0Zn4TRAGAoRK1XAQAAAAAAabQKo6UNArRar9V+jiaFhIBKUgShGPUmLFZJCKMpQxitVfis47Bbws9IUrzFijWkjfoBAJCkYITNlgeLrICRFVbrF+vxtRKX+zwTYNFs9R5zbCbf/zCadXzejecvY8bx8ULKMOHyAGND8/2KmUXrsIvmvdcX5z4ZHBuLJnTB5KWd7QAAAAAAmjjnNkt63bLF/+Z9p89uAAAAAAAAAAADteWk5PGtJ/dnHgAArFaTM+nXJYwGAEOBMBoAAAAAAF1SbBGPShsEaLXeWgqjWQGUmq+aEa+c8iq4kY72a32NywlhtChDGK1V+KzT7/FoVJQz5pMUb7FiFmmjfgAAJLEe16vLgkVWwMgKpvaLFQpNirUCvTRbuze4fDw3qZFotCf7tI4xJakchyNlrZ4npWFtI+3vX9UfDC5fGkYL/9nUDiOn85Py9/SzAzuDY5dMPaJn3ysAAAAAw805d3/n3GMz3maLpE9I2ty0+KCkN3dzbgAAAAAAAACA/nNbtyWv0GocAICj3cRU+nWjXO/mAQDoGjKWAAAAAAB0SbeCZq0iVGspUmUFVGLFWqjvC44VcyU5lz5SFtyG8TWu1BckK4yQYZ+9jt9FLlIxKgXjcVawYnEsHJZYSzE+AEDvmMHTeGmwyAqjWbfvF+v44KA/oLqvKef4kwv6ywqjrc9v6vNMFpXrVmS31PG2x4yw8ELdPrZtVvO14PI09yudhtFunPtkcLmT0/bpR3e0bQAAAACD5Zw7XuFzMLcs+zjvnNtmbGa/9z70BG+rpI87574j6R8k/Yv3/ofGPCYlPVvS67Q0iiZJb/Te/8TYNwAAAAAAAABgWJxxoT120gPkxib6NxcAAFajyZn0646Fz0sFAKwuvEsHAAAAAIAuKRlv1m9IGzQr5VpsJ9d5WGBYFBJCBfvqe4PLuxGOK+XC2yjHC/JWF03pw2ijUTFxvGjsP4tiNGaE0cLBCkmqGGNrKcYHAOgdM4y2LFhU9QeD6w06jJYUCq3EZY3nJvs4G0DaXb0nuHymsLGHe7WPee3Ibucnj1jHo0nR32ZWcLH5+YZ9PN9+GG1vbU7f3PeV4NiZ4+dp08jWtrcNAAAAYFX4kqSTUqx3nKTbjLH3S3pOwm3PkfRnkv7MObdH0ncl3Stpn6QJSSdIepDC54K+23v/hhTzAwAAAAAAAACsdmdeKJ19sfTdr64Yck9+8QAmBADAKjM5nX7diQzrAgAGhjAaAAAAAABdUoySg2Vpg2ZJ2ym4kYFHQfop6XPdV9sTXJ4ULUnLCi9U4gV5xcGxLGG0yOVUjEqqxOXgeDc+h1I0ptnA8ko9HKzw3qtSt+azdmJ8AIDeybvwnySWB4uWh9KO3H71htHK9QXCaOi72dp9weUz+d6F0ZxLCqOFI2WtnielMWbEo5Oiv82sMFo+RRjNdxBG+/KeT6uu8H3a9umr294uAAAAgDVrStLDUqw3L+l3vffv6fF8AAAAAAAAAAB94pyT3voJ+WtfLd18g7R3Vtr2ALnHPk/u6mcNenoAAAxehjCayxJRAwAMDGE0AAAAAAC6pGS8WV/KFjQrRfZ2uhHMGiZJX7P99XAYzYqaZWF9nRfDaGFZwmjS4jx7GkbLGI+o+oNmtKGY8LMNAEBaBTcSXN4cLPLemwGjwoDDaEnHGJWUcSagm2ar9wSX9zKMlsT6PUh6fpOWtY1yPRxjW64aHwwuz0dNYTQj+uZ9e2G0uq/rprlPBcc2FDbrrPHz2touAAAAgDXjVkl/ImmHpPMlpalO/0DS+yS9x3t/b++mBgAAAAAAAAAYBDc2Kffyvx70NAAAWJ0mMsTOsqwLABgYwmgAAAAAAHRJUiwjS+gqad1uRL+GSSGyAyj7jDBaN6Ji1td5MSrWXhhhuVI0pjndl2n/WRSj8HukrDCaFWmTpJKxLQAAsrCCp1V/JFgUqy5vPNamjcz2SjFnPx4SRsMgzNbC73GfKQwqjBY+nrSOS7Owo7/pwmg1Hw4AL71fMcJobR7/f2f/zZqrhY/3t08/WpHLtbVdAAAAAKuH935bD7d9t6TXSpJzLpJ0mqRTJR0naVpSUVJZ0qykXZJu9t6HC9oAAAAAAAAAAAAAcLQbm5QKI1I1fDHdJSZnej8fAEDHCKMBAAAAANAl3QqaFXMJ20kYOxolBVD21cJhtG5ExazvZaVeNsMIi+9LSi8xpNeF73MpCscjrHBLUlRirQX5AAC9kXfhP0k0B4uqvppw+8GG0fKuoIIbWRJya7DCo0CvlOvzZohsJj+YMJqlG89hrOPztL97NeO+pdB0v+KMMFq7YeQb5z5p7HNEl0w9oq1tAgAAAFibvPexpO8f+g8AAAAAAAAAAAAAsIxzTn7zidLPftR65cnp3k8IANCxbO/YBQAAAAAApoIbUaRccKwYlVJvJymwljR2NEoKoOyvh8No3YiKWfGGpHiYlVGwlHLhcJlkR82ysGJm5Xo4HmGFNRbns7Z+7gAAvWE9rtd8Vd4vhodq8eoNo0n2MZ0VHgV6ZXftHnNsfWFTz/Zrx8Ns3TiWtI6Pa76qatz6yn6hoKGU7n6lnSzaXQd+pu8vfDs4dsHkpZrIrWtjqwAAAAAAAAAAAAAAAAAAADAde3K69SYIowHAMMgPegIAAAAAABwtnHMq5cY0X9+3YixLrGvEjSpSpFjxijErdnW0KrgRc2xvbS64vBtfIyveEPqeHJEtEpEUyxvNENLLuv35eF/wZ3Suel/CfIodzwcAACtA5OUVq66c8qp5O4xWiAYfRitF49oXiLPuqc0GH1+BXrnrwM+Cy50iTeXX92y/7YTRunJ8nvB8anftnsOhsWJUUs6t/PNnzdeCt22+X4pc+HpS1fhg5t/vz899whzbPn1Vpm0BAAAAAAAAAAAAAAAAAAAgha3b0q03wQVuAWAYEEYDAAAAAKCLilE4jJYlBuCcUzEa00K8f8WYFew6WuUDUYOGA74SXN6Nr1EpGs98myhjJMKa56grKudymfe/Yvu58Ofwg4Xv6BU/embq7RSjkqIuzAcAgEJkB0+rvqqcSw6jJR0X9IsVHv3YPe/Tx+55X38nAwRM5We6cizZTaUuRH+Tjs//+LYXHf73qCvqzPHzdM2WF2ksNyFJqvu6vBE4toKNzW7ac71u2nN9xhmHnVQ8TdtKp3VlWwAAAAAAAAAAAAAAAAAAADjCHX8/+VYrRZE0fUw/pgMA6FD40ucAAAAAAKAtVuwqSxhNkkq57mxn2EUupyjjyxdWsKT328gaRgvHHYrG9z6rbkX01trPHACgd5LCZrV4MYhWTQyj2WG1funW4zTQKzP5jYOewgrFNqLDy6UNFx/wFX1z/1f0//78Tw/Oha74AAAgAElEQVQvSwouFprCaC7j8Xw7dkxf1fN9AAAAAAAAAAAAAAAAAAAArEnbH996nfN2yI1N9H4uAICOEUYDAAAAAKCLrIhU1kiVuZ01GOPIN8UK0ijluhBeaGMbWUMKVnytWyGybm2nW4E1AACSHtMb4aK0AaNB4XERq91MobdhtHbiYaVc5+Hi0agol+HPmj8sf1f3VX8hSar6g+Z6S++XehtGG89N6oLJS3u6DwAAAAAAAAAAAAAAAAAAgLXKHXuy3Ev/UnLGOaG5vNwr3tnfSQEA2pYf9AQAAAAAADiabCps0Y/Kt6xYvqGwOdN2Nha26OcHdgaWZ9vO0WBDYbN2Hbwj0/qdGnVFTeSmtL++J/Vt1hc2ZdrHppEtweXd+h5vKoS3n1U3vp4AAEjSiBs1xw74iqTkMFrWWGovrMVjMQyXLSPH93T7eVfQZG5K+1IeJxfciCZz0x3vN3KRNhY2657qrtS3ufvgz7WhcIxqvmau03y/siHj8XxWD516pArRSE/3AQAAAAAAAAAAAAAAAAAAsJa5J75QetgvS9/+D+muO+Tvvl0qTcid+0vShY+SGy0OeooAgJTSX1odAAAAAAC0dMH/Ze/O4+yu63vxvz5nlpyTCSQBEsImhB0RAUVQca1KXapWtO5XRa9LW5dbrVWrrVWrVm9rl9vFq7+6XrVqRVGLdUMEpSIugCAqsoY1SICQZLJM5vv7Y0IZJuecOTOZcyYz83w+HueR+X4+78/n8w7JfDmTmfM6ez5ip7H+0p8T9jhlavvssfM+g2VRHjB00rR7m6tO3ONhHdfu1b8iq+tH7vKZpZQ8eI9TO64/pH5Elg/sM6Uzjh16cBaVnf8xvdmf/XSsbhyZvfp3PdzhpD0fOQPdAEBSry1uOTe8fVOSZFvbYLTZf6+XB+1xakpavIMYzLKSWh6y56O6e0YpOWFJ58/Pj19ySgZrrUMRp2Kqz5M3j47dV0ZGOwtcPH7JQ7v2+V2vLc5jl/1OV/YGAAAAAAAAAAAA4F5l1cEppz0v5UVvSu2N/5zaq9+f8oinCkUDmGMEoy0gpZRGKeVhpZSXllLeUEp5aynlNaWU55RSjiilzMirPUopA6WUx5RSXlRKeVMp5Q9LKc8opRwyE/sDAADszu4/dGKeu/KVadSGkiRL+5bnVQe8NXsP7DulfU7a8xH53X1elHqtkWQs8Os1B/5F9uhfOuM97+6evPez88hlT7xPaEEzByw6JK896J2plZn5547TV5yRh+zx6NTS17busMYxedUBb53y/ov7luS1B73zv/9uLCr1PHWf5+eUPR8znXZ3Uit9ee1B78gBiw6Z1vpFpZ6n7fOCPGSP7oZrALBwLKrVW4YO/XeAUYtgtFpqqZX2/0/uhdWNo/KiVa/LUN8es90K3MeSvqV55QFvzr6DB3T9rGetfFlO2uOR6UvrsMKSWh645OQ8f9UfzNi5T9nnuXnE0tM6Dkm8J3Cx1X0lSQZq936NccTiY/PCVa/Okr49d63RCZb1751X7P+mLBvYe0b3BQAAAAAAAAAAAACA+aqzVw4wp5VSHpbkfyX53SSDbUpvLKX8a5K/r6pq3TTOWZHkHUmek2SvFjUXJPlAVVVfmOr+AAAAc8Wjlj8pj1h2Wu4cWZfl/ftkujnUp+19eh6319OzfuSOLOvfe9r7zHW10pfn7fuqPHPFGblt282pqp1rlvTvmWX9Tb8UnbaB2kDO2P+P8rzRV+U3W29tWrO0f/kuhdWtbhyZd67+YO4cuT179i9LX4chD51aObh/3nrI3+XOkXXZMLK+43W1Usu+g/vPeD8ALGy1UsuiWuO/Q9DGG54kGG2gtPun7d46Zelj8pA9H5Xbtt2cbaOtA5egVwZrg1kxsF/Pvl4YqA3kpfu/IZtHh1s+T957YEUafUMzem5f6cvzV/1BnrXyZff5uuD/u+n9Wbvtpp3q77nXbKu2ttxzYvjyw5Y+Lqfs+dgZ+/xeVFuUvQf2nbHwZgAAAAAAAAAAAAAAWAi8unUeK6X0J/m7JH+QpJNXwxyQ5M+TvLKU8pKqqv5zCmc9KcnHkqycpPThSR5eSvlUkldWVbWx0zMAAADmklrpy14DK3Z5n77Sl+UD+8xAR3PfYG1RDlh0SM/PrdcaObDevXNLKV3/M17Wv9eMB8cBwHQ0aoubBqNtniQYbWJ40WwbCxE9YLbbgFnV7efJrUz8umCP/qVNg9HuDVwcablXs3uLz28AAAAAAAAAAAAAAJhdgtHmqVJKSfKZJM9qMv2LJFckGU6yIslJSZaPm983yVmllKd3Eo5WSnlMki8lGRw3XCX5SZKrkyxLcmKS8a/yfkGSPUspv1tV1WiHvy0AAAAAAOawem1x0/F7Aoy2jbYKRvPtDKC5Rm2o6fhkgYvJ7he6CAAAAAAAAAAAAAAAJLXZboCu+Z/ZORTtvCTHVVV1TFVVp1dV9YKqqk5LsjLJS5PcNa52MMnHSylL2x1SSjkwyZm5byja95McW1XVSVVVPXvHGQcmeV2S8a8+eWqSv5zG7w0AAAAAgDmo0SIYbfP29gFG/TXhRUBz9Vqj6fjwJMFotdTSV/q61hcAAAAAAAAAAAAAADA9gtHmrz+dcH1eksdXVXXZxMKqqkaqqvpokscn2TJuamWSV01yzjuSLB93fcGOc66YcMaWqqr+IcmzJ6x/fSnl4EnOAAAAAABgHqj3NQ9GmyzAqL8MNh0HaNSGmo7fE7i4rdradL6/CFwEAAAAAAAAAAAAAIDdkWC0eaiUclySQyYMv7aqWryibIeqqn6U5MMThp/a5pwjkrx43NDWJC+pqmpzmzO+lOTj44YWJXl7u74AAAAAAJgfGrXmwWib/zsYbaTp/EDp71pPwNxW72s0HR+e5L4iGA0AAAAAAAAAAAAAAHZPgtHmp0MnXK+pquqSDteeNeH6iDa1z0/SN+76zKqqruzgjPdNuH52KaXeSXMAAAAAAMxd9Vr7AKNt1dam8wKMgFZaBy4OJ0lGWrxv0ID7CgAAAAAAAAAAAAAA7JYEo81PQxOub5jC2jUTrpe3qX3GhOuPdnJAVVVXJLlw3NBQktM6WQsAAAAAwNzVqE385+sxkwUYCUYDWqm3CEa7J3Cx5X2l5r4CAAAAAAAAAAAAAAC7I8Fo89MtE67rU1g7sXZds6JSyqokx48bGkny/Smcc+6E6ydNYS0AAAAAAHNQvdZoOj68fWOSZKQaaTovGA1opVUw2uYdwWjbRrc2nXdfAQAAAAAAAAAAAACA3ZNgtPnpoiRbxl0fU0pp/mqznT24yV7NPGDC9aVVVW3s8IwkuWDC9bFTWAsAAAAAwBzU6BtqOr55dDhJMlJtazovwAhopdEqGG37WDCawEUAAAAAAAAAAAAAAJhbBKPNQ1VV3Z3kE+OG6kleNtm6UkpfkldPGP54i/L7T7j+dccNjrlqkv0AAAAAAJhn6rXm7+ExPDr2vhvbqq1N5wcEGAEt1PuaB6NtqTZntNreMnDRfQUAAAAAAAAAAAAAAHZPgtHmrzcnuXbc9ftLKY9vVVxKGUjyoSQnjhs+J8kXWiw5fML19VPs77oJ13uXUpZPcQ8AAAAAAOaQRm2o6fjm0eEkaRlg1C/ACGihUWsejJaM3VvcVwAAAAAAAAAAAAAAYG7pn+0G6I6qqtaVUh6b5MyMhZ01kny9lPLvSf49yS+SDCfZJ8nDkrwyyVHjtvhhkmdVVVW1OGLZhOu1U+xvQyllc5L6uOGlSe6Yyj4AAAAAAMwd9Vqj6fiW0eGMVqMZGR1pOi/ACGil3iYYbXh0U7YJRgMAAAAAAAAAAAAAgDlFMNo8VlXVtaWUU5K8JMkrkjw4ybN3PFq5PckHkvzvqmrxSpExSyZcD0+jxeHcNxhtj2nscR+llJVJVkxx2WG7ei4AAAAAAJNr9A01Ha9SZcvo5oy0CjCqCTACmmu0CUbbPLqp9X1FMBoAAAAAAAAAAAAAAOyWBKPNf307HluSVElKm9o1Sf48yb9NEoqW7ByMtnkavQ0nWd5mz+n4gyRvn4F9AAAAAACYYfVao+Xc8OjGlgFGAwKMgBbqbYLRhre3DkZzXwEAAAAAAAAAAAAAgN1TbbYboHtKKacmuSLJvyQ5NZP/eR+U5KNJri+l/M8pHldNvcNprQEAAAAAYI5q1IZazm0eHc62amvTuX4BRkALA7WBlveIzaOb3FcAAAAAAAAAAAAAAGCOEYw2T5VSHpfkW0kOGTd8Y5I3JzkxybIkg0lWJXliko8nGdlRtyLJh0spHyqllBZHbJhw3ZhGmxPXTNwTAAAAAIB5pF5r/U/Jw6ObMlKNNJ0TYAS0U68tbjo+PLopI6PuKwAAAAAAAAAAAAAAMJf0z3YDzLxSyookn0lSHzf8lSQvrKpq/YTyW5N8PcnXSykfTPLVJHvvmHt5kquSvK/JMbtrMNo/J/n8FNccluSsGTgbAAAAAIA2Bspg+tKf7dk5qGjz6KaMVNuarusvvp0BtNaoNbJh+107jW8eHW5zXxGMBgAAAAAAAAAAAAAAuyOvJJqfXp9kxbjrXyR5dlVVm9stqqrqB6WU5yT51rjht5dSPlpV1doJ5RNfXbIiU1BKWZKdg9HunMoezezoc2Kvk/Wyq8cCAAAAANCBUkrqfY1s3H73TnPD21sHow2UwW63Bsxh9dripuPD2ze2vq/UBKMBAAAAAAAAAAAAAMDuqDbbDdAVvzfh+n2ThaLdo6qqbyc5f9xQI8lzm5ReOeH64M7ba1q/rqqqO6a4BwAAAAAAc0yjRYDR5tFN2dYiwKi/CDACWmsVjLZ5dDjbqq1N59xXAAAAAAAAAAAAAABg99Q/2w0ws0opQ0kOmzD87Slu860kjxx3fUqTmismXB8+xTMOnXD98ymuBwAAAABgDmoVYDQ8uikjgtGAaWj0tQ5cHKlGms65rwAAAAAL0tY7ko3X7zw+dL+kNphsW5809ut9XwAAAAAAAAAwjmC0+WdZk7FbprjHxPp9mtRcNuH6gaWUxVVVberwjFMn2Q8AAAAAgHmo0SIYbXPbYDTfzgBam17govsKAAAAsIBsvSu54PnJTV9LUrWvXXZ88sgvJHtMfJ9mAAAAAAAAAOiN2mw3wIy7s8nY0BT3WDLhesPEgqqqbk5y6bih/iSPmMIZj5lw/bUprAUAAAAAYI5qGWC0vXWA0UBtsJstAXPcdAIXB4r7CgAAALCA/PDlyU1nZ9JQtCS585Lk3CclVQe1AAAAAAAAANAFgtHmmaqqNiZZP2H4xClu8+AJ17e0qPvihOszOtm8lHJ0klPGDW1M8o3OWgMAAAAAYC5r9LUJMBptHmDUXwa62RIwx7UMXBzdlG0tgtHcVwAAAIAFY9v65IYvTW3N3Vcmt1/YnX4AAAAAAAAAYBKC0eancydcv6LThaWUVUmeNmH4/Bbln0qyfdz16aWUIzo45k0Trj9XVdXmDlsEAAAAAGAOE2AEzLRGi/vK5u2bMuK+AgAAACx0d1+ZtHhTirZu+PLM9wIAAAAAAAAAHRCMNj99dsL1c0opL5xsUSllUZJPJlkybnhDkq83q6+q6sokHx83NJjkY6WUepsznp7kJeOGtiZ5x2S9AQAAAAAwP7QKMBoe3ZjR+7wXx736S383WwLmuHpf68DF1sFo7isAAADAAnHNJ6e3bsNVM9sHAAAAAAAAAHRIMNr89G9JLhl3XZJ8opTy96WU/ZotKKU8NskPkjx+wtT7qqq6o81Zb08yfv7hSb5VSjl6wv6LSimvSfL5Cev/pqqq69rsDwAAAADAPFJvEYy2YeSulmv6y0C32gHmgUat0XR8c5tgtIHaYDdbAgAAANg9rPtJ8su/n97a6z83s70AAAAAAAAAQIe8Ffo8VFXVaCnlWUm+n2TljuGS5LVJXl1KuTTJ1UmGk+yV5MQkq5psdXaS901y1g2llNOTfD3JPa8gOTXJz0spP95xztIkD0qyYsLyryb5s6n97gAAAAAAmMsaLYLR7t7eOhhtoAgwAlqr14aajm8eHU6txftECVwEAAAAFoQrP7hr6++4OFl+wsz0AgAAAAAAAAAdEow2T1VV9etSyqOTfDLJSeOmaklO2PFouTzJh5P8r6qqtnVw1rmllGck+VjuDT8rO849qcWyzyR5eVVV2yfbHwAAAACA+aPe1zwYbcP2u1uuEWAEtNOoNZqOb6u2pqQ0nXNfAQAAABaEdRft2vrbLxKMBgAAAAAAAEDPCUabx6qq+kUp5WFJnp/kVUkemrR49ceY4SRnJvnHqqp+MMWzzi6lPCDJO5I8J8nyFqU/SPLXVVV9YSr7AwAAAAAwPzRqzYPRqoy2XNNffDsDaK1eG2o5V6VqOu6+AgAAAMxLN5yV3PDlZPjmseu7rmhde8L7k4v/pP1+P3xFcvl7kqX3T6oqGdmQ3Hb+2Nzx702OeGUy2OpHhgEAAAAAAABgevzE/zxXVdVIkk8k+UQpZWmSk5KsTrIsyaIkdye5I8llSX62o366Z61N8vullNclOTXJwUlWJdmY5MYkP62q6ppd+O0AAAAAADDH1VsEo7XTXwa60AkwXzT6GlNeM1AGu9AJAAAAwCy6/L3JJX/aWe2Bz0iO+eOk1JKfvjFpES6fJNl47dhjokveklz/ueTx5yUDS6bRMAAAAAAAAAA0JxhtAamq6q4k3+7BOVuTfKfb5wAAAAAAMPc0BKMBM6xRG5ryGvcVAAAAYF7Zdndy+bs7rz/pH5JSkmPekBz20uScJyTrfjz1c+/4aXL5XyYn/NXU1wIAAAAAAABAC7XZbgAAAAAAAFg46tMIRhuoDXahE2C+WFRrTHmNYDQAAABgXrn9wmRkY2e1tUVJY/97rweXJ4e/cvpn//x9yfAt018PAAAAAAAAABMIRgMAAAAAAHqm0Tf1YLT+0t+FToD5oq/0ZbAsmtIa9xUAAABgXth6V3L9F5ILX9H5mgN+JykTfoR8/yfvPDYVX9wvWfOlZNvd098DAAAAAAAAAHYQjAYAAAAAAPRMvdaY8pq+CDAC2mvUpha6OFAGu9QJAAAAQI+s/1XytROS7z0r2XhNZ2saByQPfOfO44sPSI5/z671c/4zkq8/JNl43a7tAwAAAAAAAMCC55VEAAAAAABAz/SV/gyWRdlabemovr8MpJTS5a6Aua7etzh3bb+j4/r+MtDFbgAAAAB64OI3JxuvbV+z9AHJ/k/a8fH9k/2fktRXNK+9/5uSlY9NLv6TZO13p9fT+l8ml749edjHprceAAAAAAAAACIYDQAAAAAA6LF6bXG2bu8sGG1AeBHQgUZt8ZTq+2vuLQAAAMAcNrotufErk9cd8NTkhPd0vu8+Jycnfyj56lHT7+2GLyVVlXjDCwAAAAAAAACmSTAaAAAAAADQU42+xVm//Y6OavsFowEdqE81GK34NikAAAAwTaPbk/VXJNvuSqrRGd68JKUv6R9K+hYlm9c2L9t8a1KNTL7dykdPvYUlhyWNA5LhG6e+Nhn77zJ8c7J4/+mtBwAAAAAAAGDB8xP/AAAAAABAT00lwEgwGtCJxhTuKyUlfb5NCgAAAEzH2vOSb00jbGw2rDg1WfX4qa+r9SUPeFty0e9P/+wvHZA8+P8kR716+nsAAAAAAAAAsGD5iX8AAAAAAKCnphJgJBgN6MRUAxdLKV3sBgAAAJiXtq1Pvv3Y2e5icqtOS1Y+Kjn69WMhZ9NxxKuSxv7JdZ9NNl6T1FclBzw16asna85MUiVb70xu/XbrPX78mmT5A8d6AQAAAAAAAIApEIwGAAAAAAD0VL3W6LhWMBrQiUbfVILRfIsUAAAAmIYbzkqq0dnuor29T05+6+szs9eBTxt7THTI8+79+MuHJxuuar3HtZ8SjAYAAAAAAADAlNVmuwEAAAAAAGBhadSGOq4dEIwGdKBem0owmvsKAAAAMA1X/stsdzC55SfuXuet/0Vv+gAAAAAAAABgXvF26AAAAAAAQE/V+xod1wowAjpRr3V+Xxkog13sBAAAAHZDo9uTn709ueYTSaklB56enPBXSZ+vkZvaeH1y0R8ma7+bjNw92910rvQnh7+it2ce8apkzReSVM3n156XfLq0Xr/02OSo1yWHv7wr7QEAAAAAAAAwN9VmuwEAAAAAAGBhadSGOq7trwlGAyY3pfuKwEUAAAAWmkvenFz+7mTTmmTjdckv/za56JWz3dXuafuW5JuPSG766twJRSt9yd4nJ4/9WrLXg3p79qrHJY/89+mvv+vy5IevSK7++Mz1BAAAAAAAAMCc1z/bDQAAAAAAAAtLvdbouFaAEdCJqd1XfIsUAACABaQaTa76yM7j1/y/5IT3J/UVve9pd3bjl8cC5KbqoNOTUz83vTNHtyafW9y+5og/TB78983nSknKLL5X9kGnJ0+5PPmPY6e/x6/+KTn0xTPXEwAAAAAAAABz2ix+FxwAAAAAAFiIGrWhjmsHBKMBHWj0dX5fEbgIAADAgrJ5bbJ13c7j1Uiy5gu972d3t+4n01u3+iVJrW96j/5GsuTw9vsvPab1+tkMRbvH0Oqktmj66++8OBndPnP9AAAAAAAAADCn7QbfCQcAAAAAABaSeq3Rca0AI6ATU7mvDNQGu9gJAAAA7GaqkdZza8/vXR+7s6pKrvpocv4zk5//1dTXDyxL9jtt13o45AWt52oDyf1+b9f277b+RnLQ6dNfP7otWX/FzPUDAAAAAAAAwJwmGA0AAAAAAOipRt9Qx7WC0YBONGpTua/0d7ETAAAA2M2MtglGu+7TybYNvetld/WTNyQXvjRZc+b01j/260nfol3r4di3JIe8cOfxgaXJo85K6it3bf9eOOkfk30fO/31Zx+XjGycuX4AAAAAAAAAmLP81D8AAAAAANBT9Vqj41oBRkAnpnZfEbgIAADAAlK1CUZLkjX/nhz6kp60slvavDb51f+ZvO6YP0n2f9K916WWDC5Plh479vGu6luUPPyTyYM+kGy+JamqpNqWLDs+qc2RfyNdtFfyuHOSTTckd/96bOw3FySXvLXzPa7//ML++wgAAAAAAABAEsFoAAAAAABAjzVqQx3XCjACOlGvLe641n0FAACABWXb3e3n1353YQdR3XbB5OFxSbLfbyf7Pqbr7aS+Yuwxly0+cOyRjIXHTSUYbaH/fQQAAAAAAAAgiWA0AAAAAACgx+q1Rse1A2Wwi50A88WiWj0lJVWqSWvdVwAAAFhQNq1pP7/h2p60sdsYHUlu/npyw1nJHT9J1v148jWL9k5WnNr93uajZcclQ6uTjdd0Vr+hwzoAAAAAAAAA5jXBaAAAAAAAQE81+oY6ru0vA13sBJgvaqWWRbVGNo9umrS2v/gWKQAAAAvIxusnmb+uN33sDkaGk+89K7np7M7X1BYlJ38o6VvUvb7ms1JLTvlQct4zkpENk9dvvLbrLQEAAAAAAACw+/NT/wAAAAAAQE8NlkUpKalSTVorwAjoVKO2uMNgNIGLAAAALCCb1kw+P7o9qfX1pp/ZdP1npxaKdvKHklWPT5as7l5PC8Gqxye/c0Vy8zeT4RuTxQcm29YnP37dzrWb1iSj25Kaf78BAAAAAAAAWMi8mggAAAAAAOipWqmlXmtkWIARMIPqtcUd1fWXwS53AgAAALuRTde3n69GkuGbkqGDetPPbLrxK53XHv/u5PCXd6+XhWbxgclhZ9x7fedlzeuq0bFwtCWH9qYvAAAAAAAAAHZLtdluAAAAAAAAWHg6DTAaqAkwAjrT6DgYzXtHAQAAsABsujG58ezkun+bvHbjtV1vZ9YN35ysObPz+n1/q3u9kAwd0npuwzU9awMAAAAAAACA3ZNgNAAAAAAAoOc6DUbrLwNd7gSYL+p9nQYuuq8AAACwANx6bvLdp3RWu/a7XW1lVo1uSy54YfLF/Ttfc8DTkr1P6V5PJANLkkUrms8JRgMAAAAAAABY8ASjAQAAAAAAPdfoOBitv8udAPNF5/cVwWgAAABwH5f+2Wx30D1X/E1y7ac6q73f7yUn/VPyyC8kpXS3L5Ilq5uPbxSMBgAAAAAAALDQeTURAAAAAADQc/U+AUbAzKrXGh3V9ZfBLncCAAAAc9Cmm5LF+892FzNvzZmd1z7ic93rg50NrU5u/+HO4xsEowEAAAAAAAAsdLXZbgAAAAAAAFh4GjXBaMDMqnd8X/HeUQAAALCTu3812x10x92/7KzumDd2tw92tmR18/E7f9bbPgAAdldVlYxsnO0uAAAAAABmhWA0AAAAAACg5+q1Rkd1A4LRgA51GrjovgIAAABNbLx2tjuYWWvPT84+Idm2fvLavsXJYS/rfk/c19Ahzcfvuiw565Dkl//Qy24AAHYf1WhyyduSL+6ffG5J8pUjk2s/PdtdAQAAAAD0lGA0AAAAAACg5xq1oY7q+gUYAR2q93UWjOa+AgAAwIJQ+pK+xn0fex7Tun7DtT1rres2XJuc++Tkzksmr131hOTx5yZ7HtXtrphoyerWcxuvS378uuSqj/auHwCA3cXP3plc/u5k8y1j13dfmVzwguSmr89uXwAAAAAAPdQ/2w0AAAAAAAALT73W6KhOgBHQqUat02C0wS53AgAAALuBQ5479pjo/Gcla76w8/jGa7veUs/8/L3JyIb2NU++LFl2bG/6obmhNsFo9/j1/00OO6P7vQAA7C6qKrnqQ83nrvpwsv9v97YfAAAAAIBZUpvtBgAAAAAAgIWn0TfUUZ1gNKBT9Y6D0bx3FAAAAAvY0CHNx+dLMNrm25JrPjF53eDy7vdCe0MHT15z56Vj4SAAAAvF5rXJ8M3N5275dm97AQAAAACYRX7qHwAAAAAA6Ll6rdFRnWA0oFONDoPRBtxXAAAAWMhaBaNtuKanbXTNlf+SbN88ed3gsu73Qnt9g0n/kmRkQ+ua7cPJ5luTxqre9QW74pZvJ7/+cLL+ipDAke0AACAASURBVPuOb7sr2XjdfceWHZ+c/MFkn4f2rj8Adn+3ntN6btudybYNycCS3vUDAAAAADBLarPdAAAAAAAAsPA0akMd1Q3UBBgBnal3GIwmcBEAAIAFbcnq5uPDNySj23rby0zbvjm58p86q+3r7I0b6LJHf2Xymiv+uvt9wEy44cvJd347uf6zyZ2X3vcxMRQtSe68JPnGw5K15/W+VwB2T5tuTC54fvuasx+QVKO96QcAAAAAYBYJRgMAAAAAAHquXuvshYcCjIBONfo6DEarDXa5EwAAANiNDR3SfLwaTdb9pKetzLhrP5VsXttZbSnd7YXOLH3A5DW/+Jvu9wEz4fL3JtX2qa8T/gfAPX76x5PXbLxOqCYAAAAAsCAIRgMAAAAAAHqu0TfUUZ1gNKBT9VpnwWgDpb/LnQAAAMBubMkhSVqEgl32zl52MrOqKvnFBzqrXfbA7vZC5xbtnQwsnbxuZFP3e4FdsX1rcvuF01t741dmthcA5qY7Lk6u+7fOam/7Xnd7AQAAAADYDfipfwAAAAAAoOfqtUZHdQOC0YAONToMRhO4CAAAwILWP5SseHhy2/d3nrvp7GTt95KVj+h9X7ti45rkh69M7vp5Z/X7P6m7/dC5UpKDnplc/ZH2dec+JVn5yGTVaXPv7yfz0y3fTm49J9l659j1yIYk1fT3++Grkr56sufRyfbhZMu6ZNVvJfs+dufakU1jwTmXvyfZeE0yuFey5zHJsuPGPt7vCcnKR02/FwB6b8M1yddOnFo9AAAAAMA8JxgNAAAAAADouUZtqKM6AUZApwbKYGrpy2i2t61zXwEAAGDBO+ZNyW1Paz536VuTx507Flg1F6z7SfKd3062/Kaz+hWnJsf+aXd7Ymoe+M5k3Y+SOy9tXbP23LHHZe9Kjn9PcuxbetUd7OziNyc/f9/M7vnr/7vz2OV/mdz/LckJ77l3bOudybcefd/Ply2/SW47f+xxz7rj3pEc9+cz2yMA3XHb95NvTjH4dcPV3ekFAAAAAGA3UpvtBgAAAAAAgIWnXmt0VCfACOhUKSWN2uJJ69xXAAAAWPAO+J1k74c2n1t7XnLLN3vbz6645G3tQ9EOembytGuSh38qefx5Y6FvA3v2rD06sPiA5LQfJL/1rc7qL/3zZPiW7vYErdx91cyHorXz8/cmG6659/qqj7QPEbzHZe9INt3Yvb4AmDkXv2nqazZeM3kNAAAAAMAcJxgNAAAAAADouYEymL70t62ppS+14lsZQOfqfZMHow0IRgMAAGChKyU54T2t5y/506SqetfPdI1uS275Rvuao1+fLDkkOeT5ycpHJrX2/ybJLOlvJKsel6x89OS11Uhy8yR/7tAtN/9n78+84cv3fnz95ztbU436PAGYC7bemdz2/amv27Rm7LkwAAAAAMA85rv7AAAAAABAz5VSUu9rZOP2u1vWCC8CpqpRa0xa0+/eAgAAAMm+j032fVxy67d3nlv34+SGLyYHnd77vjo1Mpxc95mk2t66Zu+HJise3rue2HWrnpCs/e7kddf9W3LI85Kaf+chyfYtye0XJrXBJCUZ3ZLsfXLSV98xvzVZd1Gycc2un3XLN6dWv+z45M5Ldu3Mn/5xUt937OPbf9D5unU/Sg47Y9fOBqC77rys/fxJ/5T86A93Hq9Gk43XJ3sc1p2+AAAAAAB2A4LRAAAAAACAWdGoLW4bjCa8CJiqem1o0hr3FgAAANjh+Hcn32gSjJYkl7wtOeDpSa2vtz114vYfJd99SrJ5bfu6kz/Ym36YOYe/PLn2k8n6X7avu/lrydnHJY/5WrJkdW96Y/d0x8XJuU9Ohm++73h9VfKYs8fC0c59UrLxut73tuTw5NFfTn5wRnLrOdPfpxpJLnje1Ndd+c/JsuOSI141/bMB6J7f/CD51iNbz9//LcmhL24ejJYkt35HMBoAAAAAMK/VZrsBAAAAAABgYarXFred768JLwKmpl5rTFojGA0AAAB22OeU5MCnN59bf0Vy3ad7208nqtHk+8+ZPBTtaVcly4/vTU/MnPrK5AkXJCf+TXLwJEFQ63+Z/FDg04JWVcn3n7tzKFqSbL5lbO6/XtybULSlxyYHPWvscfBzkxP/d3LaBcnQ/cYC/E7+v8nyB913TW0wOeiZycpHd6+vi35/8qBBAHpvdHvyvWe3rzn+3Un/UFLft/n8D18+830BAAAAAOxG+me7AQAAAAAAYGFqTBaMJrwImKLJ7yv9KaX0qBsAAFg4ytgT7TcmqY8b/kRVVdfu4r6rk/yPcUObqqr6613ZE5jgge9KbvhykmrnuUvfntzvOUnfYM/bamndT5INV7ev2fuUZMmhvemHmbdor+SY1499vM/Dkx+/pnXtLd9MtqwbW8PCc9dl7UO/7v5V73o5+o+Sw17WfK5vMDn8FWOPZrZvST5bbz43E677XHLcn3VvfwCm7vYLk01rWs/v96Tknu9nDa1ONt/avM7zIAAAAABgHhOMBgAAAAAAzIq6YDRghtX73FcAAGCWPD/JX+XeZKUzdzUULUmqqrqmlHJcktPvGSulXF1V1Zm7ujeww7LjkoOfl1z36Z3nNl6TXP2vyRG/3/u+mhndnqw9d/K6vU/peiv0yD4PnaSgSu7+dbLo5J60QxdVVbJ5bbJo72TbXcn2zZOvWfPF7vfVqb134e9g36LkIf+SXNSle+3dV3ZnXwCmb/0v2s/vM+757NKjk9t/0Lxuw1WTB6ONjiTVSNLXxRBOAAAAAIAuEIwGAAAAAADMisYkAUYDxbcxgKlpCFwEAICeK6XUkrzznsskv0ry4hk84iVJjk9y+I7rdycRjAYz6YHvSK7/bFJt33nusnclq1+c9Lf/mrurRkeSn74xufojybb17Wv7h5IjXtmbvui+vR6crHx0sva7rWu+cUpy+q1JfWXv+mJmXfWR5NI/S4Zvmu1OpmfVE8ZCJnfFoS9Nrv1Uctv3Zqan8a79ZPLwT8z8vgBM3ej25OI3Jb/4m9Y1g8uTQ8+49/qYNyZXf6x57c/+InnMf7Q4ayT58euSa/9fsn1Lsv8Tk4d+LBlcNs3mAQAAAAB6qzbbDQAAAAAAAAtTfdIAo8EedQLMF5PfVwSjAQBAFzw+yeok1Y7HW6qq2jRTm1dVtTHJm8cNHVlK+a2Z2h9IssfhyWEvaz43fHNy5T/3tp+JfvYXyS//bvJQtAN/N3n8ecnS+/ekLXqglLGwj6P+V/u67z6tN/0w8276WnLhy3obilYbSOr77vpj6bHJ0a9PHnXWrvfUNzi2z+Gvuu94s3MXrdh5/arT2u+//spd7xGAXXfZu9qHoiXJEy5Ihu5373W757Y3nZ3c/M3mcz/9k7Hn8dvWJ6NbkhvOSs5/5tR7BgAAAACYJf2z3QAAAAAAALAwNQQYATNssvvKgPsKAAB0wwvHffzjqqq+ONMHVFV1Zinlx0kevGPoBUnOmelzYEF7wJ8lV398LDRhosvfmxz+imRgz973VVXJVf86ed2Rr01O+vvu90Pv9Q8lD/7b5O4rk5v+o3nN7Rcmd16WLHtAb3tj13Xy+T3TDvq95NRP9f7cySzaKzn5X8Ye03Hj2cl3n9J87ppPJMe/a/q9ATAzrv5I+/mj/ihZevTO4/s/eSwErdWe+z3hvmNVlVz/bzvX3npOMnxL0ljVWb8AAAAAALOoNtsNAAAAAAAAC1N90mA07+8CTM3k9xXBaAAA0AVPHPdxN9NN7tm7JHlyF8+BhWnxgckRf9B8buu65IoP9Lafe2z5TbL5lsnrBGLNf8uOaz9/58960wcz69bv9P7M+Xq/WHZs67m7fH4AzLqtdySb1rSvaXUvb/c8qNlzoK13JMM3N6+//vPtewAAAAAA2E0IRgMAAAAAAGZFQ4ARMMMafe4rAADQS6WUg5PsM27oq108bvzeK0spB3XxLFiYjn1L0r+k+dxl70juuLh3vYxuTy5/b/LFVZPX9g8l93tW93tidq1+UVLa/Oj7Bc9PfvjKZPPa3vXE1Gy4NvmvlyRfPTo5a/XYY+u63vZQ+pNDnt/bM3tl6ODWczeclVSjvesFgJ3dck77+f4lyUHPbD53yP9ove6uy5Oq6ryPanvntQAAAAAAs0gwGgAAAAAAMCvqkwQYDQgwAqaoLnARAAB67fgdv1ZJrqqq6sZuHVRV1Q1Jfj1u6IRunQULVn1FcvQftZ7/2onJltt708sPX5Fc8qeTB/nscWTyW+ckg8t70xezZ+kxyaPOal/z6w8l33hYMrKxNz3RueFbx/5srvl4sv6XycZrxx69tPh+yWP/s32A2Fz3oL9tPfej1/auDwDua/jm5Httgnz3OCJ53DnJ4LLm88uOTe7/5tbrb/nmhIEpBKUBAAAAAOym+me7AQAAAAAAYGFqTBpgNNijToD5YvL7imA0AACYYSvGfXxTD867KcnhOz5e2YPzYOE5+g3Jr/4x2XpH8/lrP50c9Zru9jB8y1h4UjulP/ndNUljVXd7YfdywO8kR7567O9oKxuuTq7/QnLoi3rXF5O75hPJ5lumvu4Rn0+WHT95Xf/ipBoZ+7j0JyObdp5ffMDUz59r9jqp9dyV/5Q88B3Jor171w8AY65u89x2YM/kqb+afI8jX5P8/K+az132rmS/0+69rrZPrT8AAAAAgN2QYDQAAAAAAGBW1CcLMKr5NgYwNfVao+38gGA0AACYacvHfTyNtJMpG3/Gsh6cBwvP4NLk/m9KLn5z8/nf/Ff3g9Fuv2jyMIf9nyQUbaHa44jJa37zX4LRdje/+a/prVv5qKQuC7Vjexzefn7dT5L9ntCbXgC4V7v/D654RGd7tHvuu+W2+16PjnS2JwAAAADAbqw22w0AAAAAAAALU2OyYDQBRsAUNWpDbef7a+4rAAAwwwbHfdyLn0ccf8aiHpwHC9ORbYLPrvtMctPXZ/7M7VuSqz6SXPiK5LynTV5/v9+b+R6YGw46ffKaX38w+Ux/ctm7k613dL8n7mv85/MFLxp73Pa9qe+z8jFC0aaqsSpZ8cjW87/8h6SqetcPwEK36Ybk5/87ufHLrWs6fV5baklfizcIWv/LZP2v7r2uBKMBAAAAAHOfYDQAAAAAAGBW1CcJRhsQjAZMUb3VC0J2ELgIAAAzbtO4j1f04LzxZ2xqWQXsmv7FyVGvaz1/7hOTS/9i5s7bvjn5zhOTC1+WXPXhyesPPSM5+Lkzdz5zy+IDkwe+a/K6anty6duSrxyZDN/S/b4YM/Hz+dpPjj223Da1fYZWJyd/sDs9zncnf6j13E1fTX7yht71ArCQ3fXz5D8fklz8J61ragPJIS/ofM9HfL713FePSm6/aOxjwWgAAAAAwDwgGA0AAAAAAJgVjb72wWj9ZbBHnQDzRX8ZyECbe4dgNAAAmHHjk2YO7sF548+4tQfnwcJ1wO+0n7/83cnwDH0arjkzWXvu5HW1geQpVySn/OvYxyxcx76189otv0muFLDVM51+Pt/j2Lclp3xk7PGwTyYP/WjyuO8kT7k82fOorrU5ry09OjnwGa3nf/m3yYare9cPwEJ1+XuSzZOEsz7u3Kk9r93nYe3nL3nb2K+j7YLRqs7PAwAAAACYRYLRAAAAAACAWVGvNdrO95f+HnUCzCft7i0DgtEAAGCmXbXj15Lk4FLK4d06qJRyWJJDmpwNdMOSQ9vPVyPJrefMzFk3/Wdndcf+2VjgTykzcy5zVylJfWXn9Vd/tHu9cF83f31q9Ue8MjnsjLHH6hcmh74k2fcxSX/77x8wiaX3bz9/8zd60wfAQnZzB89xJ3vOPdHg8mRgaev5284f+7VqF4wGAAAAADA3CEYDAAAAAABmRV/pz2BZ1HK+X4ARMA2N2lDLOfcVAACYcZck2Zqk2nH9tC6e9bvjPt6W5OIungUMrU72OLJ9zZX/lIxs2rVztqxLrv1kZ7X7P2nXzmJ+OfgFndduur57fXCvajRZ84XO65c+IGkc0L1+FrL9nth+/uqPJSPDPWkFYEHZekdyw5eTm76WbLm9fe3yE5LGqqntX0r758TbN4/9OioYDQAAAACY+wSjAQAAAAAAs6ZeW9xybkCAETAN9Vqj5ZxgNAAAmFlVVW1N8t0kZcfjT0oprdOKp2nHnm/MWABbleS8HWcD3VJKcuJfJ7XWb2yQ276f/PteyfpfTe+Mm7+ZnHVIZ7WrX5zs9eDpncP8dPQfJUsO67z+yg92rxfGQhLPe0YysrGz+r56cuL7x+41zLwVpyYHP7f1/O0XJl87Idlwde96Apjvbvl28qWDkvOenpz75Pa1fYuTE943vXOOfVubySqpqqQSjAYAAAAAzH2C0QAAAAAAgFnT6GsdjCbACJgO9xUAAOi5z+z4tUqyIsn7u3DGXyVZmbHwtST5dBfOACY68KnJEy9qXzO6JfnRq6e+9+i25L9emIzc3bqmvio58rXJI89MHvpRAUrc19BByWk/SE76x2Tfx+be/0W0cNHvJ5tv60lrC9KVH0xu/HLr+f2elBx6xtjjge9KfvtHyf5P6l1/C00pycM/1T488O5fJT/+o971BDCfjW5LvvfszgJCj3tH8sQfJfudNr2zlh2bPLzdl8RVMioYDQAAAACY+/pnuwEAAAAAAGDhqtcEGAEzq919ZcB9BQAAuuHTSd6dZFXGUmleVUq5saqq98zE5qWUNyf5w4wFr5Ukt0YwGvTOsuOSB30g+cnrW9fc8s1k6x3J4PLO9117frJ5bfuax30nWXp053uy8NT3SY78w7HH1juTf5/k7+CNX0kOe2lvelto1nyh/fyDPuDzuddKLTnmDclFf9C65qb/SEY2Jf2t/00VgA6sPT/Zum7yuqHVyXF/vuvnDd2v9Vw1mlSC0QAAAACAuU8wGgAAAAAAMGsagtGAGSZwEQAAequqqq2llLck+VjuDS97VynlgUl+v6qqO6azbyllWZJ/TvKccftWSf60qqqtM9E70KF9Tp285pZvJUsfkCxZnfTV7x0f3ZZsWZc09h0LaRi+JRndOhZQ1U59ZbLHYbvWNwvL4LJkz2OS9Ve0rrn5G8mhZySjW5IN17TeZ+tdGftfTpLFByYDe8x4u/PGtg3JpjXJby5oXePzefbs8/D289X2sc+FZcf2ph+A+WrNmZ3VrZjkvtyxWuspwWgAAAAAwDwhGA0AAAAAAJg19Vqj5dxATYARMHVtAxfdVwAAoCuqqvpEKeUZSZ6ee0PMfi/J40spH0ny4aqqruxkr1LK4UlekeSMJHvl3kC0KslXqqr62Mz/DoC29n5IsvzE5I6ftq753rPHfq0tSg57WfLgv0su+8vkF3+TjGyc+plH/3Hi63im6v5vSn7wktbz13927DEVpS858OnJQz8mIG28bRuSH5yR3PDFsXCtdnw+z57lxyf7PTG5+T9b15z9gOTBf58c9dre9QWwUB31upnZp5TWc+c8LjnyNa3nq9GZ6QEAAAAAoMsEowEAAAAAALOmURtqOddfvFAKmLp6u2A09xUAAOim/5HknCQn5d5wtL2SvCHJG0opNyf5YZIrkty545EkS5MsS3JMkpOT7L9j/J5Xet+z14+TvLDrvwtgZ6UkT/h+8rnWX3P/t9EtyZX/PBaWNHzz9M576EeTQ18yvbUsbIe+eCy87Pxnztye1fZkzZlJrf7/s3ff4XFddf7H32ekkVXcbcklbrHTnR7SExISUigJoZelZhd2YYEsS1nI0kLgt7CFXcrCshD6AqEEUoFU0kmB9B7HvUlx72rn98fISI7vHc2MZkYa+/16nvvo6nzPPeer2BnZ8tzPhZP/r3zr1rr73gdLfzn4vPkXwyEfrXw/Svfi38BjX4BHL02f86eLoGUOzDi/am1J0l5nv7/LBQ6XRSa91HFH7kjT21WmHiRJkiRJkiSpsgxGkyRJkiRJkiRJw6axrim1ZoCRpFI01aXfpJ31dUWSJEmqmBjj5hDCmcD3gVeTCzSD/oCz6cCr+o40YcD5wOuvBN4RY9xctoYlFac+/ed4iUoNRZt/saFoGpqZr4Hj/hfufU951136S+j6FmRHl3fdWtS9BZb8vLC5h36qsr1ocHWj4PDPweo/QMft6fMW/sBgNEmqpNlvKN9aIU8w2mBid/n6kCRJkiRJkqQKGsJPQiVJkiRJkiRJkoamKdOSWjMYTVIpGjPpwWi+rkiSJEmVFWPcFGN8LfBhYBu5ULM44KBvLOngBXMDsB34WIzx1THGjdX6OiSl2Pcdld9j/OGV30N7vvFHlH/N3k7Y/Gz5161FmxZA747B5405AOoaK9+PCjPY6+uGx6rThyTtiXo7B58zbn759htKMFqvwWiSJEmSJEmSakP9cDcgSZIkSZIkSZL2Xo2ZptRa1gAjSSVoMhhNkiRJGnYxxv8MIfwQ+AfgfcCEgeWUy8KA83XAN4CvxBifr0yXkoo270JY+IPKrT+qFfY5v3Lra+8x6VgYfxisf6S86/72qN3HRk3afSzTAJOOg8O/AOPLGIIynLatggc+Bh23wZbFhV0z768r25OKM+9CePabEHuT6xufgmVXw4zzqtuXJO0Jutbnr8+4ABrbClpq2faFXP38T1iy/Vm62T3ELBsamFs3lfNGtTBlx5bie40Go0mSJEmSJEmqDQajSZIkSZIkSZKkYdOUaUmtGWAkqRT5Ahd9XZEkSZKqJ8a4BvhUCOFzwPHAacDJwD7ARGBnksxaYA2wArgTuBW4J8bYWfWmJeXX9mI4+Wdw55vKu27IwMTj4MTvQ3363+ulgoUAL/k93P1OWHV9ZffasSZ5fNmVsPoP8PKHoWVWZXuotJ7tcMPJsPm5wuaPmgz7vxcO/khl+1JxJh4Np/4GbssTQHnb+XD6dTD9ZdXrS5L2BJ3r8tdP/FFBy7R3ruQ/lnyCHXF73nl/7l7DsweewsefuJXxXfnn7sZgNEmSJEmSJEk1wmA0SZIkSZIkSZI0bAwwklRujZnm1FrW1xVJkiSp6mKMXcAdfYekWjf7jbmjexv07oCeHfC7Y2Db8tLWO/abMOetkB1d3j6lpmlwxu+h465cqFea5lnQ2wnbV5W/h64N8Nz34LDPlH/talp2ZWGhaOPmw5k354LRQqbyfal4M86D1z4Pv5qcPueprxiMJknF6lyfv17gn3XvWP/7QUPRdtqYbeTB8dM4vWNhQfP/otdgNEmSJEmSJEm1wX9xlCRJkiRJkiRJw6apriW1ZoCRpFI01aUHoxm4KEmSJElSmdQ3QcN4aJoCYw8sfZ3pLzcUTZU1bn7+kK6xB8L8iyu3/5p7K7d2tTx/T2HzWk+FxjZD0Ua6hom5I82a+6rXiyTtKfKFBB92ScHLLNr+dFHbLm0eV9R8AKLBaJIkSZIkSZJqQ/1wNyBJkiRJkiRJkvZejZmm1JoBRpJK0ZgxGE2SJEmSpKqa/UZYfXPx1006AVpmlb8faaCGcTDtZbDi2uT67Dfm6n/+EMSe8u/fcSfcdsHu443TYMb5MP1l5d+z3Bb9qLB5s99Y2T5UHiHkfq2e+WZyvXMtdG02tFKSCtW9DbatTK/PflPBS7V35lknaetSwkh7DUaTJEmSJEmSVBt8HJMkSZIkSZIkSRo24+onJI5nyNBYlx5uJElpRteNJZPyz6Cj68ZWuRtJkiRJkvYCc98Fcy8s7pq6Zjjxh5XpR3qh4/4Hxh+2+/i8d8O+74Dm6XDijyHTUP69uzbAsit3P579H/jDy+Hxfyv/nuW08Eew4/nB5x3+eWg7rfL9qDyO+AI05wmm3LK4er1IUq3bsii9dvBHYewBBS2zvXcbG3vWFbV1d6auqPkAxK7ir5EkSZIkSZKkYVA/3A1IkiRJkiRJkqS916TsFKY1zGRl59Jdxuc1HUxjpmmYupJUy0ZlGjmg+TCe3PrQLuNt2elMbpgyTF1JkiRJkrQHy2ThhMvgsE/D2gcgdvfXenZA73bIjoXYC91bYNwhMPFFkPFtzKqS5hlw7gOw/mHYvABCPUw8Blpm9s+Z8ybY5+Ww5j4Ysx+0zIbt7XBFAT9POuar0LMdHvxY8b09+jnY/72QHV38tZXW2wMPXZxe3+c82O89MOk4aGyrXl8auoYJcN4zcPmo5PqWxTB+fnV7kqRatf7h9Nrhlxa8TEfnytTa3MaDeG77k7uNd4XkBwXl1ds9+BxJkiRJkiRJGgF8R4EkSZIkSZIkSRpW75j2D3x92efY3LMBgAn1k3nr1PcPc1eSatmbpvwdX1v2GdZ0tQPQnBnNhdM/PMxdSZIkSZK0h2uZnTukkShTBxOPyh1psmNh6pn9nze2wfGXwT1/nX/tue8qPRitezOsuWfXfUeKTU/D1mXp9YM/Bm2nVK8flVddQy40MOnXeOvi6vcjSbUo9sLjX0yuNc+AupQAygTtnSsSx+tDPXObkoPRujMlBKNFg9EkSZIkSZIk1QaD0SRJkiRJkiRJ0rCa1TiPS/b9Bgu2PUEm1LFf0yE0ZAp/k7gkvVBbwzQ+OeerLNz2FJ1xBwc0H0Zjpmm425IkSZIkSVKtmf5yCHUQe5LrU14C2dG5Y9LxuZCzYq28fmQGo21emF7LjoNJx1WvF1VGy+zkYLTl18L+761+P5JUa5b+CtY9mFxrO72opdq7ViaOT85OTf238+5QQjBar8FokiRJkiRJkmpDCT8BlSRJkiRJkiRJKq+muhYOHf0iDmk5ylA0SWUxKtPIQS1HcPjo4wxFkyRJkiRJUmmapsLhn0+uNUyEI77Y//lR/54LDCvWE/8KT329tP4qafNz6bVjvwF1DdXrRZXRPDt5fMW18NCnqtuLJNWa3h54+NPp9YP+oajlOjpXJI63NUynPmQTa92ZuqL2ACAajCZJkiRJkiSpNtQPdwOSJEmSJEmSJEmSJEmSJEmSJI1I8z8ObafB6ptgxxrIZKFlDuxzHrTM7J/Xdgq87EFYfg1sfnb37ZH24AAAIABJREFUdVbdABseT97jzxfBzFdD8z4V+RJKsmVh8njDBJjzlur2ospoSQlGA3js87nfkxOPrl4/klRLll8NG59Mrs18DUw8pqjl2jtXJo63ZqeRTQtGC5mi9gAMRpMkSZIkSZJUM2oqGC2EcHPfaQTeHGNsL3GdKcBPd64VYzyzHP1JkiRJkiRJkiRJkiRJkiRJkvYwrSfmjsGMngMHvj+59uDF6cFosReWXQkHvK/kFstuc0ow2j7nV7cPVU6+YDSApVcYjCZJaVbdkFIIcNjnil6uvWtF4nhbw3R6Y09irauUYLReg9EkSZIkSZIk1YYSfgI6rE4HTuv72DiEdRr71th5SJIkSZIkSZIkSZIkSZIkSZJUGW2n5q8v/ims/TP0bK9OP4PZ/Fzy+Oi51e1DlTPY78nNC6rThyTVorTXyJmvhfHzi1pqa89mNvdsTKy1ZadRH7KJte5MCbcFRoPRJEmSJEmSJNWGWgtGAwjD3YAkSZIkSZIkSZIkSZIkSZIkSQWbejZMOj693nEH/O4Y+MV4eOyLEGP1enuhGGH9Q8m10ftWtxdVzrhDcgE+aRb/DLa3V68fSaolK3+fPD7puKKXau9cmVprbcgTjBbqit6L3q7ir5EkSZIkSZKkYVCLwWiSJEmSJEmSJEmSJEmSJEmSJNWOTB2cedPg83p3wEOfgGVXVr6nNM98M73WYjDaHuXkn8GYA9Lrd721er1IUq1YeUN6rYQA0Y6uFYnj2dDA+PpJZDMpwWiZEm4LjN3FXyNJkiRJkiRJw2BvDUarH3DuT3QlSZIkSZIkSZIkSZIkSZIkSZVV3wInfL+wuYt+XNFWSt67hMAXjWCZejj2v9Prq26Abauq148k1YIFl6XXRs8tern2zpWJ463ZqWRChvqQEowWSrgtsLez+GskSZIkSZIkaRjsrcFokwecbxm2LiRJkiRJkiRJkiRJkiRJkiRJe48JRxU2b8Pjle0jn23JAS0ANE2rXh+qjnGH5a9vfKo6fUhSrdj8XHptzAFFL5cajNYwHSA1GK0rU8JtgVtXFH+NJEmSJEmSJA2DvTUY7cV9HyPgT3QlSZIkSZIkSZIkSZIkSZIkSZU34XCYfOLg8zY+ATeeBluXVb6ngXq7Ycui5Nr4IyDsrbcg7MGapsDM16bXtyyuXi+SNNJ1boC19yXXQgayo4tesqMr+da2toZcGGlaMFpvyNCb2Edd+mZbFua+10uSJEmSJEnSCFfL/yoZi5kcQsiGEGaFEP4G+OcBpUfK25YkSZIkSZIkSZIkSZIkSZIkSSlOvxZmvR7qx+Sf134bXH8S9GyvTl8AT301vXbiD6vXh6or369tWlCeJO1tYoQbT02vn3ZdScu2d65MHG/LTgcgmxKMBtCdFIJ22rX5w9Ge/lpR/UmSJEmSJEnScBhxwWghhJ60Y+A0YFG+uQnXbgcWAt8Cxg5Y66oqfnmSJEmSJEmSJEmSJEmSJGkQIYRjQgivCyGcF0LYb7j7kSSprBomwCk/h9etg1ctyj9361JYVsW3vD/1X+m10XOr14eqq74ZZlyQXDMYTZJy1j0A6x9Jr489oOglN/dsZGvv5sRaW0MuGK0+XzBaJuHWwOnnwOvWp2/66KVF9ShJkiRJkiRJw2HEBaORCz1LOwqdN9gR+9Z4Evhl5b4USZIkSZIkSZIkSZIkSZL2XiGExhDC3AFH3SDzzw8hLALuBS4HfgM8FUK4I4RwSBValiSpejJ10DwLGibmn7fgsur0A9C1MXk81EN2dPX6UPW1zEke37K4qm1I0oi19v70Wl0zNM8sesn2zhWptbaGaUD+YLSukHJrYHY0NO2TXOtcDzvWFtyjJEmSJEmSJA2H+uFuIEVk9yC0cgrA/cAbY4xdFdxHkiRJkiRJkiRJkiRJkqS92YeBz/WdLwPmpE0MIbwB+AnJD1M9CbgnhHB6jPFPFehTkqThEQLMfjM889/pc1ZdDz8J0DABOtf1j9c1Q8/W3PmUM5IWh/GHwry/yX1Ms+L3sORyWPcgdG1InjPxRYN+KapxacFoa+6Bm86E+tHQdioc8H6oaxzaXjHCc9+FlddD41SYdyFMOGJoa0pSpW1emF6b9XrIFH+bXnvnysTxUaGRsXUTAMjmCUbrzqQEowG0ngRLfpFQiLDydzDnLcW0KkmSJEmSJElVNRKD0W4jF4yW5LS+j5Hc0yC3F7hmBHYA64EngFtijLcPpUlJkiRJkiRJkiRJkiRJkjSoC8iFnEXgshhj4vsDQwgTgG8Bmb65Ax+wuvOaFuCKEMKBMcZC3z8oSdLId+S/5A9G22lgKBr0h6IBrL45+ZrVN8GC78IZN8Lk43avP/ttuPc9g+994g8Gn6PaNnpO8nj3lv7fX8uvguVXwxk3Q6au9L3u/VtY8O3+zxd8B864HlpPLn1NSaq0x7+YXjvmP0tasqNrReJ4a8M0Qsj9lbg+XzBayPNafML3UoLRgLv+Cma9oaQwN0mSJEmSJEmqhhH308sY4+lptRBCL/1vcHpjjHFJVZqSJEmSJEmSJEmSJEmSJElFCSE0AUfS/76/a/JM/wAwjv5AtOXAFUA38Bpgdt+8GcAHgX+tQMuSJA2P7BiYdi6s/F1l1u/eBE98CU791a7jvd3wyGcHvz7TAGP2q0hrGkFa5hQ2r/02WHU9TH9ZaftsXrhrKBrkQv4e+xc4Pd8fFyVpGG14Ir128MegYUJJy7Z3rkwcb2uY9pfzfMFoXZlM+uL1LTD3nfDc95PrK34LM84roEtJkiRJkiRJqr48P/0cscLgUyRJkiRJkiRJkiRJkiRJ0jA7DKgj976/LTHGP+eZ+1b6Q9GeAg6NMV4UY/xw3zr39c0LwDsr1rEkScNl7jsru/7qW3Yf2/QMbFsx+LUtcyDU4q0HKkqhwWiQ/PupUMt+kzy+4lqIMbkmScOt/Q/ptdFzSl+2M/n7cGt2+l/O6zPpwWjdg31/nnJmem0or+WSJEmSJEmSVGH1w91AkS4ZcL5+2LqQJEmSJEmSJEmSJEmSJEmD2bfvYwQeT5sUQjgI2K9vXgQ+HWPcsLMeY9wcQvgA8Me+oQNDCDNjjEsr07YkScNg2tnk8j8rFAzVuQ4e+iSEAbcQbFlY2LUzXlWZnjSyNIyDttOg/dbB524u8PdOkhW/Ta/t6IDGttLXlqRKWfun9Nr0V5a0ZIyRjq6VibW2hml/Oc+GIQSjTX95em3Lc/mvlSRJkiRJkqRhVFPBaDHGSwafJUmSJEmSJEmSJEmSJEmSRoApA86T7/bOObXvYwA2Ab9+4YQY470hhGXAjL6hwwGD0SRJe46GCXDsN+G+v6vcHo99ofhrJhwJB324/L1oZDr6y3DLubmAsnyW/hJ6eyBTV979Ny8yGE3SyLP+MVhwWXq9ZWZJy27q2cD23m2Jtbbs9L+cZ6gjEIgJ4andg70Oj5oILfsmh6EuuxJ6uyFTU7cXSpIkSZIkSdpLDPJYCEmSJEmSJEmSJEmSJEmSpJI0DzjflGfeyX0fI3BTjLE7Zd6jA85nDaUxSZJGpP3/Fl7+CBzwwdLDoeZ/EkIZAk4O/TSc+is46w5omjL4fO0ZJh6d+z14wvdzv5dmXJA+d/VNpe3RszW9lhTcI0nD7cF/Sq/N/+eSl23vXJFaa2uY9pfzEAL1IZs4rysUcGvg4Zek11ZcN/j1kiRJkiRJkjQMDEaTJEmSJEmSJEmSJEmSJEmVEAacJ9/FnXPSgPPb88xbM+B8bEkdSZI00o0/FF70FTh/UWnXH3EptMweWg/7vj0XojLzNVDfMrS1VHuapsDcd+R+Lx34wfR5y35T2vqbF+WpGYwmaYTp2Q4rf5teb5lT8tIdXSsTxxszzYyuG7fLWH1K6Gl3poBbA1v2Ta+V+louSZIkSZIkSRVmMJokSZIkSZIkSZIkSZIkSaqETQPOpyRNCCFMBfYbMHRXnvUG3gkeUmdJkrQnqG+CSScUd83+78t9nHL60PZuG+L12nNMfFF6bcFlsP353cc3L4KNT0GMu9d6dsC2Felrrvxd8nWSNFy2LIbYm15vO63kpVd3Jr8etmWnEcKuf+WtD8lZ492hgFsDJx6dXlv6a+jtGXwNSZIkSZIkSaqymg5GCyG8JIRwaQjhmhDCvSGEp0IIzxV5LBjur0OSJEmSJEmSJEmSJEmSpD3Q8r6PATgsZc7LB5zvAP6cZ73xA863DKEvSZJqw2GfhkxyEMpuRrXCgR/MnR/4IWiYWNqe4w+DWa8v7VrtebJjIDs2udbbCVe0wj3vht4u2LEGbjgFrtoXrjkIrjsMtizd9ZoNjwF5gs/ab81dt3lRub4CSSpdjHDve9Lrs94IY/cvefmOtGC0hum7jWVDQ+Lc7kzd4BvVN0PTPsm1rvVw5UxYc//g60iSJEmSJElSFdUPPmXkCSGcA3yVXZ8SWerTH32ckCRJkiRJkiRJkiRJkiRJ5ffwgPOJIYRzYoy/f8Gcd/V9jMC9McauPOvNHXC+qhwNSpI0ok1/GZx5Kyz8AWx6JhcqtX11rjZ6Low5AOoaYfQ82P+9MGZerjZ+Ppx9Nzz7LVj3IMSewfeqa4LJJ8KBF0F2dOW+JtWe4y+DO/KE5S34Dow7BNpvh447+8c3PJa77pw/9o/d9VeD77fhMbjzzXDO3aX3LEnlsPJ30H5bev3knwxp+faulYnjScFo9SE5KLUrZArb7Nhvwm3nJ9e2rYRbXwEXLCs8kFWSJEmSJEmSKqzmgtFCCB8FvrjzU/qDzUoJOCs1TE2SJEmSJEmSJEmSJEmSJOURY1wQQniG3ENQA/CNEMJLY4wLAUIIHwZOHnDJlWlrhRBGs+vDVBdUoGVJkkae1hNzR7HGHgBH/0f5+9HeZ/S+g89Z8N1ceN8LrbkHti6D5hkQI2x8srA91/wRNi8sbG9JqpRFP02vtZ4KhYaSJYgx0tGZHIzWmp2221h9SL4FsDtTYA+j5+avb2+HVTfB9HMLW0+SJEmSJEmSKqymgtFCCOcAX+r7NPYdO8PNtgLrgXxPi5QkSZIkSZIkSZIkSZIkSdXzHXLv+4vAvsCTIYSHgDZgJv3vA9wO/DjPOqfT/37BbuCxCvUrSZKkgcYeBHXN0LM1fc6GR9Nrq2+F2W+Aro3F7bvxqfzBaDFCCOl1SRqqjU+k1yYeM6SlN3SvpTPuSKy1NUzfbaw+ZBPndhcazjZmHmTH5n8t3vikwWiSJEmSJEmSRozSH00xPL7Y93HnG6GWAe8H5sQYR8cYZ8QY9y32GLavRpIkSZIkSZIkSZIkSZKkPdtXgCf7ziOQBY4BZtEfdBaBL8cYO/Ks8+oBcx+KMeUOckmSJJVXfQvMu7D06+9+K/ysAX41ubjrHv9i8viin8K18+Hno+Hmc2DzotJ7k6Q0z3wL1t6fXp/3N0Navr1rRWqtrWHabmPZTEPi3IKD0eoaYb/3DNLUbYWtJUmSJEmSJElVUDPBaCGEecAR5N7UBHAPcGiM8RsxxiXD15kkSZIkSZIkSZIkSZIkSUoSY+wEziEXjrYzCC3Q/17AAFwBfCZtjRDCaOC1A665qSLNSpIkKdnR/wXzL84F61RL+62w4re7ji2/Fu56C2x4HHq2wqrr4YZToGd79fqStOdb+CO47+/S64dfCuPnD2mL9s6VieMtmTG01I3Zbbw+1CfO78rUFb7pkV+CQ1P/6g3Lfg09nYWvJ0mSJEmSJEkVVDPBaMCJfR93viHq7THGTcPYjyRJkiRJkiRJkiRJkiRJGkSMcSlwJPBe4LfA48AT5ALRXhdjfH2MsTfPEu8ExpJ7/2AArq1ow5IkSdpVpg6O+AK8YQtkGqq37zP/s+vnz35r9znblsPya6rTj6S9wzPfzF+f89Yhb9HeuSJxvLVhWuJ4fcgmjneHIm4NDBk4/LNw+OfT56y4rvD1JEmSJEmSJKmCaikYra3vYwQeiDE+M5zNSJIkSZIkSZIkSZIkSZKkwsQYu2KM34oxviLGeGjf8boY4xUFXH4ZMGHnEWO8o7LdSpIkKVHIwNiDqrffugd3/Xz51cnzFlxW+V4k7R1i3P21Z6D60dA8Y8jbdHStTBxvKzYYLVPCrYHjDkmv5fvaJUmSJEmSJKmKaikYLQw4f3bYupAkSZIkSZIkSZIkSZIkSVUTY9wWY9yw8xjufiRJkvZq+76tvOvNe3d6besSuONNsOxquP+i9Hmrri9vT5L2XlsWQs+29PrsN0GmfsjbtHeuSBxvy05PHE8NRgsl3Bo47dz02ubnil9PkiRJkiRJkiqgloLRlg84rxu2LiRJkiRJkiRJkiRJkiRJkiRJkvZGB/4DzH5z+dY7/FI44gvp9SWXw23nw9NfTZ8Te6FnR/l6krR36u2Bq+al1yefBEf/59C3ib10dK1KrLU2TEscz6YEo3VlSrjFrr4J2k5Prm1ZWPx6kiRJkiRJklQBtRSM9tiA85nD1oUkSZIkSZIkSZIkSZIkSZIkSdLeKFMPJ/1f+dZrGA8HXjT0dZZdOfQ1JO3dVt2Qv37WHZAdPeRt1nU/T3fsSqy1NUxPHK9PCUbrDiXeGjjr9cnjGx6D7q2lrSlJkiRJkiRJZVQzwWgxxkeAR4EAHBNCmDDMLUmSJEmSJEmSJEmSJEmSpBKFEGaEEF4cQrgghPC2EMLbh7snSZIkFSAEGH/E0Nepa4S6UVDfAtmxQ1ur/bah9yNp75bvdWT8EbnXvjLo6FyZWmvLTkscTw1Gy5R4a+DoucnjnevgmW+UtqYkSZIkSZIklVH9cDdQpP8AvgfUAR8GPjm87UiSJEmSJEmSJEmSJEmSpEKFEGYDHwLOB2YnTPlhwjWnAi/p+3RdjPFrletQkiRJBZlxAax/aGhrZMf1nzfPhA2Plb7WM/8Nm56GcYf2j9U1wKTjYPorc+eSlE/H7em1ma/Je+nWns08vPlelu9YTCTmnbtqx9LE8TF142iqa0mspQajhRKD0VpPyYVT9mzfvfbAR2HSCdB2SmlrS5IkSZIkSVIZ1FQwWozxByGEVwKvBT4WQrgzxvjb4e5LkiRJkiRJkiRJkiRJkiSlCyFkgEuBj5J7OGpImJZ29/jzwGd31kMI18UYF1SgTUmSJBXqoItg9c35g4QG0zC+//y4b8MNJw2tp1U35I4XmnImnHYV1DcPbX1Je67n/wgdd6TXD/xgamlNVztfXfoZOrpWDqmFtobpqbVspszBaNnRsN974an/TK7feCocfxnMu7C09SVJkiRJkiRpiEr86eewegdwFblQtytDCJ8LIYwf5BpJkiRJkiRJkiRJkiRJkjQMQghZ4HfAx0l+oGtaIFquGOMTwC30h6m9pawNSpIkqXgNE+CMG+GMm+Cof4d9zhvaepNeVJ6+kqy+CRb/tHLrS6p9D3w0vXbMV3YNcnyB69dcMeRQNIDW7LTUWn1IDkbrytSVvuH8j0N9S3r9zx+C7q2lry9JkiRJkiRJQ5D0BqMRK4Tw6b7Th4CTgMnAPwP/GEK4G3gcWAf0FrNujPFz5exTkiRJkiRJkiRJkiRJkiT9xWXAS8kFoEVyAWe3kws76wQ+X8AavwJe0nd+NnBp+duUJElSUeoaYOoZueOAv4fLm4q7vnlm/3kmm/t869Ly9rjT8mtg3l9XZm1Jta1zPXTckV4fs3/eyx/Zcl9Z2mhrKD4YrTtkSt+wsQ0OvAge+3/J9a6N0H47TD+n9D0kSZIkSZIkqUQ1FYwGfJZdnwy58w1SzcAZfUcpDEaTJEmSJEmSJEmSJEmSJKnMQghnAm+l//1+zwJviTHe31efTWHBaNcCX+9b49gQQmOMcXtlupYkSVLR6hqh9VTouH3X8cwoaBgH29t3v2bKmbt+3jK7csFo6x+Bpb/OndePhsnHQ3ZsZfaSVFs2L8xfn3xSaqmzdwfru9eUpY2Dmo9MraUGo2WGEIwGcPBH4On/hq4NyfUn/wNiD0w6Fhpbh7aXJEmSJEmSJBVhiD/9HBF2PkGyFKGcjUiSJEmSJEmSJEmSJEmSpF18pu9jABYDJ+0MRStGjHExsL7v0yxwUHnakyRJUtkc9lmoa9p1bP7F8KL/hlC/6/jYA2Huu3Ydq2RQ2eYFcPtrcsctZ8OvWmHRTyq3n6TaseqG9Nphn8uFO6Z4vmtVWVo4esxJzG7cL7WeGowWhnhrYMMEOOnH6fVVN8Ctr4Ar2uDRL0As9RY+SZIkSZIkSSpO/eBTRhzDzCRJkiRJkiRJkiRJkiRJGuFCCBOBk+h/+OlFMcbnh7Dk433rARwAPDiEtSRJklRuU8+As+/OBY51roN9XgEzXpWrNe0DSy6HrUth0vG5ULTG1sLXDvUQu3PnDRNz6z73vdJ77e2Eu94KradCy8zS15FU+x78p/TaYZ/Ke2l758rE8UCGQ1uOGXTrprpm9m86lBPHnUEI6bfMZdOC0TJDDEYD2OeVMGZ/2PRM/nkPfxJaT4IpLxn6npIkSZIkSZI0iFoLRvMnp5IkSZIkSZIkSZIkSZIk1YZTgJ13abfHGK8a4noDQ9XahriWJEmSKmHCEbnjhVpPzB15rz0aVlyXXHvTDggvCADasQaWD+WPmBGW/hIO+tAQ1pBU07YsSa9NPXvQyzu6ViWOT85O4b0z/rnUrnZTnxKM1hXqyrPB7DfBo5cOPm/x5QajSZIkSZIkSaqKmgpGizHeOtw9SJIkSZIkSZIkSZIkSZKkgkzr+xiB+8uw3qYB56PLsJ4kSZJGklmvhcc+v/v45BN3D0UDmPvOIQajAWvu7T/v2Q5dA/7ImamHhglDW1/SyLbxqfTahCMHvbyjc0XieGvDtMTxUqUFo3VnEl4bSzHpuMLmbXq6PPupcD3bc0f9GMjU5c4zoyAE6OnMfa9K+h4pSZIkSZIk1biaCkaTJO3B1j8CT3899480s14P01+R+4caSZIkSZIkSZIkSZIk1aqJA87XlWG9pgHnXWVYT5IkSSPJhCOh7XRo/8Ou4wdelDx/+itg9H6w+dn+sUwWpp4NK64tbM/FP4PlV0P3Fsg0QG/nrvWWOXD4pbDvWwv8IiTVlDX3pNf2/7tBL+/oWpk43pqdWmpHiepD8i2A3eUKxJp2Low9GDY+kX/e6lvg2e/Afn9Tnn2VbsH34J4Lk2vZsdC1EeqaciFpc98JR/1bLiRNkiRJkiRJ2kP4OABJ0vBbdSP89kh49n9h4Q/h1vPg0UuHuytJkiRJkiRJkiRJkiQNzcYB52PKsN6UAedry7CeJEmSRprTr4H9/x7G7A+tp8LJl8PsNybPrWuAs++EOW+Dln1h6lnwkt/DaVfDMV+BiS+C7PjcUdeUvAbkQtFg91A0gC2L4O63wcobhvylSRphYoSHP5Vcqx8No/cddImOzlWJ460N04bS2W6yoSFxvDtTRyzHBpl6eOltsO87oGV2/rn3vhuW/rocuyrN8mvSQ9EgF4oG0LMNutbDU/8FD11cnd4kSZIkSZKkKvExAJKk4RUj3P8BiL27jj/2BZh3ITTPGJ6+JEmSJEmSJEmSJEmSNFQdA873H8pCIYQ64KgBQyuHsp4kSZJGqPoWOPbrhc9vbIOTfrj7+IEfzB07LfkF3PGG0vta8B2Ydlbp10saedY/kl6bccGgl3f1drKu+/nEWmu2vMFo9SGbWusOGbIvvB+jFI2T4cTv587XPwLXHZ4+d8F3YOarh76nkj377eKvWXAZHPEvkKkrfz+SJEmSJEnSMMgMdwOSpL3c+odg45O7j/d2wtIrqt+PJEmSJEmSJEmSJEmSymXnXeYBODCEMJQn5L0MaO47j8Afh9KYJEmS9jLjDh3a9esfLk8fkkaO9Q+l18bNH/Ty57tWE4mJtbaGMgejZfIHo5Xd6HmQGZVezxcqp6FbflXx13SuhW3Lyt+LJEmSJEmSNEzqh7uBoQohZIETgVOBecBEYAxAjPHMYWxNklSIFb9Lry35xa5PapMkSZIkSZIkSZIkSVLNiDE+EUJYDuxDLhztw8CHil0nhJABLt65LPBQjHF92RqVJEnSnm/cwTDxWFh7X2nXb3wSenZAXZ6gIO2ZOjfAI5dAx23QvRm2LIae7blaYxs0TNh1fmYUTDoODrsEmqdXv18VZtmVcPfb0+tz3jLoEh1dKxPHAxkmZdtK7SxRfUi/BbA7k4Hesm4H9c0w6/Ww6MfJ9a1LYfm1sM8ryrzxHqbjTnjqq31BcuX+RUpw/UmwbUXuvHkmnPBdmPrSyu8rac+w5n548su5QOBxh0J2NCz4LrwwBHTGq2Deuwf/HrD4clj4Y+jZBjNfA/u/F0KoWPuSJEmSpD1PzQajhRBayL1B6v1A6wvL7Pa37b9c92bgC32frgWOjTEmP55DklR5+Z4U9PzdsGMNjJpUvX4kSZIkSZIkSZIkSZJUTv8HfIzc+/reH0K4LsZ4Q5Fr/D/ghAGff7tczUmSJGkv8uLfwJ1vhI47Srv+hpPh3PvL25NGtt4uuPHU9Pe8b2/PHS+0/mFYcS284gloGFfZHlW8hT+Gu9+WXq9vgZZZgy7T0ZkcjDYx20p9yJbaXXJLedbrDpmy7vUXx34zFya58ank+q2vzL2uznhVZfavde23wc1nQW9n9fbcGYoGufC6m8+C064xwE7S4NbcBzeelgsxA9jwWPrcZVfCsqvglMtzIZpJnvkfuO+9/Z+vvikXLnvUl8rXsyRJkiRpj1ehn3xWVgjhcOBPwCVAG7k3TBXqamASMAc4Cjir3P1Jkoqw8cn0WuyB5ddUrxdJkiRJkiRJkiRJkiSV278CG8k97LQOuDKE8J5CLgwhTA4hfB/4KP0PS10FfLcCfUqSJGlP1zwdzrodXvZAadev/ROse7i8PWlkW35N/geB57NtJTzzzfL2o/J4/Iv56/v9bUHLtHclB6O1ZqcW29GgsqEhtVaxYLTsaDhnkDDIxw24SfXkl6sbipbmiX8b7g4k1YKnvtLBKQYhAAAgAElEQVQfilaQCI+lfD+NMfm15+mvQ/fWktqTJEmSJO2dai4YLYRwCHArsD+5QLSdb3YKFBCQFmPcDPxiwNBry92jJKlAsTd/MBrAst9UpxdJkiRJkiRJkiRJkiSVXYxxLfBB+t/v1wh8M4TwTAjhX4DzB84PIRwXQnhbCOFHwALgbfS/P7AHeFeMcQTcWSxJkqSaNe4wqGsq7drn7ypvLxrZhvrrvfK35elD5dO5ATY8ln/OmP0KWqqjMyUYrWFasV0Nqj5kU2tdmbqy7/cX2dHQOCW9vuYe6O2q3P61rGOEfL9ovzV3744k5dNxZ/HXrPszdCeEqW1fBZuf2328Zyusvrn4fSRJkiRJe6364W6gGCGERuAaYBz9gWiPAF8BbgFGAU8UsNSVwIV952eWuU1JUqG2rcr9UDMf3zwgSZIkSZIkSZIkSZJU02KMPwwh7Ad8ktx7/wIwD/jYC6YG4O4XfB4HXPOJGOP1le9YkiRJe7RMHcx4NSz+SfHXPvu/sPZP0DwTZrwKJhxR/v7Ub+2fYNnVuXCmGRcUHFg1JKtuhJU3QOdaWP2Hoa3VfhusvB6mnV2W1lQGWxYOPmfGBQUt1dG1KnG8LVuJYLT0WwC7Q6bs++1i5mvhmW8k12JvLvxm7IGV7aHWdG2CHR3D3UW/2y6Afc6H2W+A7Njh7kbSSLJpASz5OWxZVNr191wI9aMh1MGEI2HWG3KvgWm2JX/vlCRJkiQpSU0Fo5F7auQc+kPRvgr8Y4y5xxaEEGYXuM4t9L9Rat8QQluMsb3MvUpSabYshQc+nHvSwpj94NDPwNQzhruryti2fPA529uhcz00jK98P5IkSZIkSZIkSZIkSaqIGOOnQwgLgG8ATfS/DzAMON/5OewaiLYDeE+M8UdValeSJEl7uqO+BBsegfWP7Doe6uHwS+GhTyRft+6B3AHw2OfhpJ/ArNdVtte91cIfwx/fkQteAnj0Ujj9d9B6YuX2fPjTuX3K6ZZz4Ogvw0EfKu+6Ks3mAoLRmgYPNuuOXaztSg6+am2oRDBaNr2XTIWD0Q77LLT/ATY8nly/9lB4w2aoG1XZPmpFjHDj6cPdxa6WX507nv4anHETNE4e7o4kjQQdd8EfXg5dG0pfY/HPdv38yf+EI780tL4kSZIkSepTa8FoH6D/DVC/iTH+QymLxBg3hxAWAfv2DR0MGIwmafh1b4UbToGtS3Kfb1sBN58JJ/4Q5rwVQsh/fa3ZWkAwGsCmZ2DSsZXtRZIkSZIkSZIkSZIkSRUVY/xBCOEW4GPAu8gFpEF/GNpAAegB/g/4bIxxUVWalCRJ0t6heQaccx88/0fY+ERuLDse2k6F5n2gcx088a/51+jtggc+AjNfA6HCwUR7m95uuP8D/aFoAF0b4cF/grNuq8yeW5fDY18o7dpDPgHPfgs61ybXH7oY5l4IDeNK70/lMVgw2uGfL2iZNV3tRHoTa63ZKgejVfr1p7EVzn0ALk8JPovdudAtQyJz1twL6/6cXAt18KKvkfxjkASd63Pfj5r3gUxD7vvO1qXQMAEaxsPWZRCyuV+j+98/+HrrH4YF/wvzLy74y5G0B3vo4qGFoiXZ9DQ8+rn0euwu736SJEmSpD1azQSjhRAOAfbp+zQCHx3ikgvoD0abC9w6xPUkaeiWXdUfijbQ3W+HBz8OJ/8s94/te4ptBQajrX/EYDRJkiRJkiRJkiRJkqQ9QIxxCfD+EMLHgFP6jpnAJKABeB5YDdwF3BRjXD9cvUqSJGkPVzcKppyWO15o7IGFrbFlMWx4AsbPL29ve7tVN0JXwl8FOm7PPYy8vrkCe96waxBbMQ68CDY9BUuvSK73bIf2W2HG+aX3p/LYMkgw2uh989f7tHeuTBwPBCZnpxTb1aAyIUMd9fSwe6BMV6au/5MpZ5R9bwDqGmDScbnQryQrrjMYbacVv02vNc+E/d9bmX0LCUaD3K+VwWiSurfm/mxSCeseSK+VO4hNkiRJkrRHq5lgNODIvo8ReDTG+NwQ1xv4LyQ+ckXSyLD4p+m1bSvgxhfDYZfkwtHaTqv9J4ttLTAYbfk1MO/CyvYiSZIkSZIkSZIkSZKkqokxbgWu7zskSZKkkWXqS4FA7haWQTz4T9B6ErS+GCYfD5lsf61rM6y+Ofeg6MY2CHWwfRW0zIFp58CoSRX6AmrcxqfSaz3byhuM1rMD1twDj1xS2vUTjoSmKTDjNenBaABLfwWd63Lno1qh9WRo8HamqtucJxgt1MGUMwtapqMrORhtQv1kspmGUjobVH2opyfuHozWPfC+kkM/XZG9AZh2bnow2srfQ4wQQuX2rxWrb06vTTu3cvvOeRss+tHg8zruhCW/hMknQfP0yvUjaWSKETY+AYvy3MNYSSt/Dwd9GHo74fk/wtalufFQBwQYfxiMP7T275mUJEmSJJVFLQWjtQ44f6YM6+0YcF6BR8VIUglW3TD4nEc+k/s4/eVw6q9zT96pVdtWFDZv9c3+I5kkSZIkSZIkSZIkSZIkSZKk6miZBQd/BJ74t8Hnrrg2dwA0z4Kz786FzTx/D1x/Qv5rT70CZr566P3uafK9bzwWEFZXqE0L4A8vg00l3qZU1whH/EvufPabYMG3of3W5LkLf5g7dsqOzd0PMPWM0vZW8WJv//+rSeb/cy7krgAdncnBaK0NU0vprCD1mSw7erbvNt6d6QuPmfX6XOBepez/Xnj0c8m1bSvg7nfA8d+p7XtchiL2wp//ETpuT59z8Icrt//8jxcWjAZwx+uBAMd8BQ78QOV6kjSy9GyHu98JSy4fvh5W3wJXtOV66dmWPGf6K+GUn0F9S3V7kyRJkiSNOLUUm9044HxH6qzCDXysyqYyrCdJQ5cdW/jcFdfBs9+qXC/V0F3gy2/XBtiW/A+HkiRJkiRJkiRJkiRJkiRJklR2R/0rvPgqOOD9MPst0FhA4NHWJfDgx3IBOXe9ZfD5d7weOjcMvdc9Tr7bnXrLt8197xs8FG3c/Nyv/8EfgZfeBmfdAQd/FA79NJxzL0w/NzcvUwdnFPCg9J26NsKdb4LertL7V3FWXJde2/ftcPglBS/V0bUqcbw1O63YrgpWH7KJ493TzoGTfpI7MvUV25+mqXD8Zen1RT8qPJhrT7T8WnjqK+n1Qz4BY/ar3P7jDoFXLYGDP1bgBRH+9EHY8GTlepI0sjz7ncJC0Y78Irz4ylxgaKbve092HLSeAs0zYMoZuT8bzXxdaX10rksPRQNYcQ089dXS1pYkSZIk7VEq+NPOsnt+wPnkMqw3d8D5mjKsJ0lDV9c4+JyBnvtebT+dpTvPDzFfaOOTuSenSZIkSZIkSZIkSZIkSZIkSVI1zDgvdwDc+Vew+CeDX7P0V3DgRbD5ucHnxh5Yfg3s+1dD63NPE0J6LfaUZ4/OdbCqgCCzee+Ggy7adaz15OS5mSwc+il49NLCetjRAe23wtSXFjZfQ7Pop+m1/d9X1FIdnckPfm9tqFwwWjYtGG3Om2H8WRXbdxcTjspfX/ILmPfX1ellpFnyi/z1ySdUvoeWmXDUl3JHz3a4vGnwa5b8Ag77VOV7kzT8lg7yOgUw6Xg45J9y5zPOhyM+nz439sLlzdC7ozz9DbTk5zD/E+VfV5IkSZJUU2opGG3nozQCMMhPUfMLIUwCDh4w9OxQ1pOksogRdjw/+LyB1j0A6x6CCUdUpqdKy/d0hxfa+CRMPaNyvUiSJEmSJEmSJEmSJKkqQghZ4ETgVGAeMBEYAxBjPHMYW5MkSZLSTT6hsGC0nu3w1FcLX/fJf4fWEyHUQfNMCJnSe+zalHtYdyY5QGmP0Ntd+rVdmyAzCuoaYNMCIA5+TbFhRpNPLG7+yt/DuEOhaWru8+3t0L0ZGibkDpXPloXptfGHFrxMT+xmTVd7Yq01W7lgtPqUYLSu2FmxPXcz9iDIjoOuDcn1jruq18tIs+np9FrIwMQXVa8XyH0vmHA0rPtz/nmrroe5b899/+nakAuNbJoB9OaCKOtbqtKutIsYYduKCgRuhb7XsPXQND33/8merGvjrvcqbszzOrVTMX/uCRmYfDy031Z8b4NZ92Du9YgAnWsHmZyBlllD+zO0JEmSJGlEqqVgtLuAXiADTAohnBFjvLnEtS4kF7AGsAW4vwz9SdLQ7FgD3VuKv+63R8Kbe/M/FWuk6tle+NyNT1auD0mSJEmSJEmSJEmSJFVcCKEF+BDwfqD1hWVSUglCCG8GvtD36Vrg2BhjAQkGkiRJUhnNeQs8/iXYtnzwuYt+XPi66x6Eq+blzkdNgsMugQP+vrjetq2Cu94C7bdCXRPMfRcc/V+QqStunREjz3vjYwnBaNtWw11/Be235ILRJh4NHXcOfl3rqTDpuOL2mnoWjD8C1j9U2Pwn/j13JJl4LJzyMxg9t7gelOz5u5PHs+OKCn9a09VBLz2JtbaG6gejdceuiu25exNNcOAH4dFLk+vdm+Cq/eCkn8DkIv/fqWVblsCae9Lrc94GzdOr189OB38U7npz/jkdd8CVc9Lr018JJ/3QoEZVz+Kfw4Mfzx9mWQ6ZLMx6Axz37dxr255k4J97Ym/h19WPgf3+tri9DvpI7nWkmH0K9cuJhc9tmADzL4aDPlyb91hKkiRJkhLVTAR2jHEdcN+AoUtDKP5vqCGEfYCPk3sDVQRuiLESf+uWpCLlezrMYB65pHx9VFPPtsLnPv21yvUhSZIkSZIkSZIkSZKkigohHA78CbgEaCNv0sFurgYmAXOAo4Czyt2fJEmSNKhRk+Dsu2HuOysXVLVjDdz/flj6m+Ku+8MrYHVf+EX3Fnj66/DIpyvTYzXku12ot4RgtNsugNU35f779GwbPBRt/BG5YI2X/K74cI1MPbz0D3DA+2HcodA8K3fUjy6+77X3wU1nQm9yCJeKsPTX6bWTLy9qqY6ulam1ydmpRa1VjBERjAa58MZ5706vb14AN58BO9ZWr6fhFCPccEp6ve00OP471etnoDlvglOvgGnnlr7GimvgzkHC1aRyWX1rLtCr0qFoAL1dsOj/cn/u2tPcdn7/n3sKNeuNcNbtMO7g4vaacR68+GqY/gpomd3/557mWVDXWNxaQ9G5Dh74KCz+afX2lCRJkiRVXM0Eo/X5yoDzE4D/KebiEMIU4CpgAv1vqvpyeVqTpCHa9Ezp1z56CXRtLF8v1VJMMBrAmvsr04ckSZIkSZIkSZIkSZIqJoRwCHArsD+59+7FnSUKCEiLMW4GfjFg6LXl7lGSJEkqSMtMOOF7cP6Cyu7z3HcLn7vhCVj3593HF/64fP1UXZ6/JsQig9E2PAlr/lj4/GnnwssfhKP/Heqbi9trp4bx8KKvwSsegQsW546DPlTaWlsWQfsfSrtW/Z75ZnqtyKDDjs7kYLTx9ZNoyIwqaq1iZFOD0UoICxyK/8/efYfHUd1tH/8eraolW5Z777gXsKm2AYNN7wkQAk+AUEMq6SEJLaQ8SQhvypMQkkACCaEaTHXoBowxNsXghnvvkqtsWdqVzvvHSPFqvbN1drQr3Z/r2ks7c86c81Pbnd2duccY5/8jltB+WP+4P/W0tMp34cAG9/bj7ncCE1tK34vglJlw8gupj7HlJTiw0buaRKKxFj78VvLP8+la9wiEkjy/LZvtWQJV85Lb5nM1MPlRqBiX2py9z4Ypz8MFaw/t91y4zhn3cgujfpTauKlYlcQ+tIiIiIiIiGS9nApGs9Y+CixoXDTAdcaYt40xJ8bazhhTaoz5UuO2R+IcVGWBl621cS7zIiLik33L09t+/XRv6vBTssFoy36bmTpEREREREREREREREREREREJCOMMcXA80B52OqFwLXAIGAECYSjAc+E3Z/qWYEiIiIiIqnqdXbmxt69KPG+buFDB9ZDfa039fguxkuEhmByQ215Kbn+Hcck19+PcZP5e5DoYoU6lfZPaqgdwejBaF0LeiQ1TrLyXYPRkvyf8EJBh/g/t7byd7t7oXtbQQco7edfLbF0HJ3e9ttne1OHiJuNM6IHvWZafQ1Ur/Z/3kxJ9rG3/VAIFGemlibdT83s+OH2tJHnHhERERERkTaiBS83kLKLgblA58blScAsY8xWYGV4R2PMvcBQ4ASgiENXmjTAJuALPtUsInK4vcthzUNwcDv0PN1ZjqbiKAjuif8m63vXwoDLIZC5Kwx5LtlgtE0vOB9k50X/QE9EREREREREREREREREREREss7XgQE4x+4B/B74lrW2AcAYk+gZ6G9w6Pi/gcaYbtba7R7XKiIiIiKSuMHXwuYXMzP2/jXw8iTAgglA9SqoCQtjKunpfK2JHtD0X3W7oaR7ZmrMJBMjGM2GoKEelvzCCVGp2Rx7rHg/o2bzBmDglYn3T0avc6GoK9TuSH7bD2+Gpb+EDiNgyI3Q/1Lv62vNrIW9S6O3FXWGQGFSw+2o2xp1fdfCnslWlhS3YLSgrcvovK4GXQsLb3NvX/FHJ6Bx5Peh6yT/6vLL/nXw8Y9g7cPufQZ8IXvOfyntBz1Og62vpLb9nM/Dojuh+ykw7hdQWB5/G5F4DmyGj2+B7W87+z4t5dWTmp+PVzoABlwBR3w59j5JNln7KCz7LVS9l9x2g6/JTD3huk9xAmJjBUl65eA2CNVAfknm5xIREREREZGMy7lgNGvtamPMucDTQE8OHejUEwi/tIYBbgi7T1jfjcC51tpKX4oWEYlU9T68Ps0JPANY9Vf3vr3Pg9G3QtU8eCXWh0EWXp0Cp70NeTny8J5sMFpwN2x/C3roor8iIiIiIiIiIiIiIiIiIiIiOeJrHApFm2GtvTmVQay11caYtcDAxlUjgDYXjGaMKcC5oGw/nOMmq4HNwEfW2rUtWJqIiIhI29P3MzDhD/DB1zIzfuUc97ZEw76CORqMRowQkoYQzP8SrPqb99Oe9Ax0HO39uOAEdEybBXO+ALs+TH77mi3Obdvr0FAHA//H8xJbrXWPured+HTSw+0IRv//61rQMsFooYZQRud1NeqHENoLS+9277PpOdjyMkx7E7oc519tmVZbBS8dDwejh+T91/jf+FNPoiY/Bu9eBVv+Aw3B5Lff+6lzq3wXzngf8gLe1yhtR3AfvHw8HNjQ0pVA3c7myzVbnL/zul0w+sctU1MyVv8D5n4xuW0KyuGIm2DEdzNSUjMmD05+znn82f4Wh94qBkoHQmnfxvUeWf4HGPk978YTERERERGRFpMjyTnNWWvnGWPGAw8AZzWtjvjabBOcT0UM8ApwlbU2zjuPIiIZtOiuQ6Fo8bQf6gSddZ0I562A545w71s1F9b8EwYn+WZmS6k/GH39pEfhncuit216TsFoIiIiIiIiIiIiIiIiIiIiIjnAGDMS6N24aIF0z7RbxaFgtEHAm2mOlzZjzCDgGODoxq/jgfZhXdZZawd4ME9X4E7gc0Anlz5zgHustdPTnU9EREREEjTsqzD0KxDaB6H90YNm8kvB5ENhubMc3AvWOseTh/bDCyMzV1/drsyNnVExgtEObnECQLx26mvQ41Tvxw1XPhLO+gDqdjvH/X/w9dTGWXq3gtGSsfhn7m0dRiQ1VIOtp7JuW9S2boUtFIxmUwi48kJeAI76NVQcBXOucO/XUAvL/691BaOtfTh+KNqoH0OgyJ96ElVYASc/C6EDsG8lzByX2ji7FsC216Dn6d7WJ23L+scTC0Wb+gaUDUpvrmf6p7bdst/CiO9BoDC9+TNtaQIhjAOvhLF3NS4YKOnlb7hhaX8nIDa479D+aaAdFHdx7jeEnAC1R+LUdME656sNwbNDiHo6+ZJfKhhNRERERESklcjJYDQAa+024BxjzATgG8BUnKsfRrMHeA34g7W2xQ+EEpE2zjbApmcT798+LAit/RDnCglvnufef92juRGM1hAEWx+9raQ39LvUeZM70p7Fma1LRERERERERERERERERERERLxyZONXCyyy1q5Oc7zdYffL0xwrZcaYKcAtOGFoUUPKPJ7vLOAfQLc4XScCE40xDwM3Wmv3Z7o2EREREQGMgYIOzi0RTf2agtKKu8PB6EFLaavbHb9PNjIxgtGq5jlhGF6rSDEgKBWFHdO7WPjujyFUA/kl3tXUmtVWubcVdU5qqJ3BSuqJ/vfXtSCzwWgFeVkWjNYkkXC5qnmZr8NPle/F7xN+LlC2yW8HFWOhqAvUVqY2RtU8BaNJeirnxu/T71LoPiX9ubqcAJXvJr9dbRVUr4by4enXkCnBatizKH6/iiOhtF/m64mnoL1zi5TXeKr74Oth1V+jb9vnwubfQ0E5BKPs69YfdEKIY+1PioiIiIiISE7I2WC0JtbaD4Ar4b9XXuwLdAYKgUpgG7DYWtvQYkWKiITbvz7xvkVdoNNRzdd1OxnyyyBUHX2bba87H2AXdky9Rj/U17i35Zc4Vw2KFoyWs1ctExEREREREREREREREREREWlzuobdX+HBeLVh99t5MF6qjgR8Ofu3MYRtBs4xkU0s8CGwGugIHAV0CWu/AuhgjLlQx06KiIiI5IB+l8Dy/8vM2It+Aqv/7gTfbHvdCWUb/1sY+IVDARTZyFr3tn1evLSI0OvspAOy0tZhBJSPhD1LUtt+9qVOuBFA2SAnPCby3AOB0AE4uDV6W+nApENTdgS3uLZ1KeyR1FjJyjfRg9GCti6j88ZVcSSUDYHqle599i2Hd6+CrpNh4FUQKHTvmwt2L4jdnlcEfc7zp5Z09LsEVtyb2rarH4TdC2HrK855Pv0ugZLeENoPHUfDoKsTDwyVtmfLy7Dqb7H75BXBmDu8ma/fJakFowGsfgCO+pU3dWTC/rUJdDLQ97OZrsQb/S5xD0brd2nz5YpxsP3Nw/vVH4Btb0CPU72vT0RERNq2fatg7cON7+XEeO/K5EOnCc7roqKMX2NLRKRVy+JPMZLXeDXJdK8oKSKSWdteT7zv8G9D5FV9CtrD+N/AvBujb2NDsHkmDPh86jX6IRQjGC2v2D3YLVevWiYiIiIiIiIiIiIiIiIiIiLS9hSH3a917ZW48rD7+zwYz2u1wEZgsBeDGWP6AE/RPBTtHeB6a+3SsH5FwI3A3UDTwUbnAT8FfuhFLSIiIiKSQWN/Ars/ge1veT925btAWBBIcC+8dw1sfBpOmgEmz/s5vWDr3du8DkYrHwlH/8HbMRNhDEz8N8w6C2rcw7ZcbX6++fKn98CJ06H3ud7U11qse8y9bdK/kx5uR13031WHQAXFeSVJj5cMt2C0kA1ldN64jIHJj8Ksc+DgNvd+ax5ybuseg1NmHn6uTK6o2xU70DBQDBMfhsIK/2pK1difOuFmO2Ynv231yuZheOufaN6+6n6YNis3fg7iryW/ggXfj90nrwgmPw7lI7yZ84iboHIurH88+W2X/hra9YNhX/WmFq8lEq57/ANQ2i/ztXihxzQY9WNY/NPm64d8yQlNC3fsX+H5odHHeX0qnPqawtFERETEOzs/gNdPc14TJmLdv2HVX2Dqm1DSPbO1iYi0Yq0qGE2ygzGmAJgE9AN6AtXAZuAja+3aFixNpOXtXQ7vXZtY3/KRMPxb0duG3OAkBf/n6OjtW1/N/mC0+hjBaPklUOASjBZUMJqIiIiIiIiIiIiIiIiIiIhIjqgMu9/Fg/EGhd2v8mC8dASBxcD7wPzGrwtxjp17w6M57gTCzyCeA0yz1h4M72StrQV+b4xZDzwd1vQtY8x91tp1HtUjIiIiIplQWAFT33DCaWYe6c+cm56DbbOyNywilWC0bifBEJeLjzeprXLCmAo6OMtlg6BiPAQKY2+XKRXj4PzVUPke1Gxy1hX3cM4l2LUA6nbCnCsSG6uhDhbcAr3OcYKqxDH/Jve2ivFJD7cjGD0YrWthj6THSpZ7MFow43PH1WkCnL/GCeybfWnsvtteg00vQN8L/anNayvudW8b9k0YcxsUupwPk22KOsHUWbBnkRP2VlgBJT1h33KorQTb4ITZVc1Lfuzdn8Dqh2D4NzwvW3JY3R5YeEfsPkO+BOPvhvxS7+YNFMOkR2HsXVC9Ckp6O/sTDWHXcVj8M/fQww++Dt1PgY6jvKvJC9bCyvti9ykfBYOu9qUcTxgD4+6CI26ELa+ADUKP06B0wOH7N+2HOL/b+oNRh+KTW7N3X1dERERyz6K7Eg9Fa7J3mbO/Nua2zNQkItIGKBitFTLG/AO4yqPh1llrByQ4b1ecA7E+B3Ry6TMHuMdaO92j+kRyy7wbEu979J9if8DaaYJzxYpoH6qsfsC5mlfv82DAFZAXSL5Wr9RshZV/ca72cmA99D4fxt/jfPDqJlDi/kFQ3W7njVt9WCsiIiIiIiIiIiIiIiIiIiKS7bY2fjXAUekMZIzpDIwIW7UynfHS9CDw58iAMgDj0TEtxpgjaH4cYB1wdbQ5m1hrZxhjHgzbrgi4HbjGk6JEREREJHNMnhOS1ft82PSsP3Oufyx7wyJiBaOF9kdf3/UkGHB5ZurJpEAxdD/58PUlZzpfV94H299KbKw9i+DgVifYSKCh3v1vqV2flALxdgS3Rl3ftSDzP/OCbA5GA8gvgb4XO2FGbv+nTba8lLvBaNvfdm8b+pXcCUVrkhdwnn8qxh1aF36/XT946/zUxl77sILRpLnKOVBfE7vPETd5G4rWxBjoMNS5AVSMbd6+eaZ7MBoWFt0Jkx/3vq50HIz+nNTMsBz9H2zXBwZ/MXYfY5yQW7ffW+UcCFZDQZn39YmIiEjbYq0T2pqKrS8rGE1EJA15LV2AZL047zQ5jDFnAYuAm3AJRWs0EXjSGPMvY0wG3qESyWLBfbAjxgcg4TofG/3DzUgVMY4X3fAkzL0K3vmcs8PdEqrXwsxxsPB2JxQNnA/qnxvifJDlJlDiXGkmGlsf/0MyEREREREREREREREREREREckGc4CGxvudjTHppC5cgxOwBrAfeD+dwoi/y6YAACAASURBVNJhrd0VK6DMI5cD4VdDfMpauyKB7X4ZsXypMabYu7JEREREJKN6ne3fXCv/Agvvci7UveNdaAj5N3c8sYLR3JQN9L6ObJDs38S6x5xAMIGajWBd/q5L+6c05I66LVHXdyvMfDBafrYHo4ETUtPzrPj91ufw3+m+GDntZYP8q8Mv3U+GQLvUtt05H6pXe1uP5K7qtbDwJ7H7tOsH5aN8Kecwvc6J3b7+CfjgZtjzqT/1xFOzBRb/b+w+JgC9z/WnnpYS7/e2f60vZYiIiEgr1BB0grGX/wmW3g31B1IbZ8c7sOp+2L3Y2/pERNqInApGM8aMNsa83nh7zRjTLYUxujdu2zTO0EzU2opMj9fBGDMFmAGE/z4s8AHwBPAKUBmx2RXAI8aYnPobFElLbRXYhvj9ADofl1i/DsPj99kwHSrfTWw8ry28Aw5uj9724Tfdt8svi32VnAMb0ypLRERERERERERERERERERERDLPWrsLmB+26i5jjHHr78YY0xv4Ac5xaRZ4xdpED8TJWRdFLP89kY2stUuB98JWlQKne1WUiIiIiGTYgCug64nx+5X0hE7HpD/fwttg/pfhlYnw5rkQrE5/TC8oGO2QwddDpwmJ9//wm/D2RRBK8YTd1mTzf9zbjv5T0sM12AZ2BLdGbeta0HLBaMFsCkYDGHMHFPeI3aduF7z9mdz7Ow3ug2qXYLSBVznBcK1NQQc4MjKDPQnPDoZPf+tdPZKbVtwLzw2GqrnuffIKYfw9kBdw75NJfS+CnmfE7rPsd/DCCPj4VrDWn7qi2TADnh0Ey38fu9/o2519xtZs2M1QNti9/bVTsyv8V0RERHJD3S5nP+LVk+D9r8CC76U33nvXwYuj4aPvt+x+pIhIDspv6QKSdCMwBefAppettS5pO+6stduMMUGcA30scD3wXS+LzALfAe5IYbujcYLMmljggVgbGGP6AE8BhWGr3wGubzzAqqlfEc7v726g6Z3484CfAj9MoVaR3BPal3jfzgl+SN0+wWzHNf+ErhMTn98L9bVOKFuy8ttDXj4UxAhGe/l4uHhX6/zQSERERERERERERERERERERKR1+R3w78b7xwN/xjmWLCHGmO7As0BF4yoL3ONlgdnGGNMDGBe2KoRzXF6iZgHhV2Y8C+dnKCIiIiLZrqAMTn0Z1k+HqnnQUAeBIigb5LTvXQ7lI6DvZ5zgoU3PQeVcqN0O5MGWmZBfCt2mAAbWPQrB3YnNveUlJ7hkZBacYpNKMFrpAM/LyApFnWDqLOfY/J3vHwr32DAdandE32bTc7DyrzD8G76VmZXmf8m9rWJs0sPtDlURcgkh61roRzBa9NMA3WpqMR1HwZkfwIanYNFPYvydPgur7odhX/O3vnR8crt729Cv+leH34Z9FTofDZtnwsHG0zlX/jnx7T/8JvQ5/9BzmbQtBzbC+1+FeNc4OPN96DjGn5qiCRTByc/B+idhzuWx+y7+KfS5wPm/8FvoAMy9CuoPxu43dRZ0P9mXklpUu15w5nx4slP09todsPEZ6PdZf+sSERGR3Lbk17Bjdvx+eQUw6Frnfqga1v4rdv+lv4Li7jDiW+nXKCLSRuRaMNoFYfcfTGOcB3GC0QzOVRWz4FMb71hrK4HKZLczxvwgYtUb1trVcTa7k0MHnAHMAaZZa5u9s2KtrQV+b4xZDzwd1vQtY8x91tp1ydYrknOCSQSjJXr1rsKK+H0AVj8Ax96b+Pxe2Pa6sxOfrMLGQLTCcvc+wT2w6yPoND612kRERERERERERERERERERETEF9baR40x38MJ+jLAdcaYkcAPrbVvu21njCkFvgDcDnTDCUQD56KqyYSE5aLREcufWGv3J7H9nIjlUWnWIyIiIiJ+ChTDwCucWzx9zndubspHwQdJhA5teDI3g9FMANr1zUwt2aCgDAZd5dya1GxyAtDcbJjetoPRgjHOZeh8bEpD7qjb4trWtaBHSmMmI98URF2fdcFo4ATVDPsqdD0B/hMjOGjD9NwKRtv2mntb2UD/6mgJXY53bk2SCUYDJyhvxHe8rUlyw4YZ8UPRRv2wZUPRmuQVwIDPQ6AE3r4odt8N01smGG3b6xDcG7tP7/PaRihak8IK6HYybH8zevuG6QpGExERkeRseDKxfqUDD+U31B+MH4wGsOB70PkY6HZi6vWJiLQheS1dQKKMMYOAPo2LDcDzaQz3HND0KclAY0y/dGprDYwxJcBlEavvj7PNEUDYpyrUAVdHhqKFs9bOoHmoXRHOgWsirV+iwWgFHaDD0MT65hXgHC8aTyJ9PLZxRmrbNQWjBYqhqIt7v50fpja+iIiIiIiIiIiIiIiIiIiIiPjtYqCKQ+Fmk4BZxphNwEPhHY0x9xpjXgN2AH8Eujc1AZtxwtJau5ERyyuT3H5VnPFEREREpK3oc15y/fetgF0Lmt/2b8hMbbE0hJLrb+shLz8ztWSrrpNjt+94G6yN3ac127/Ova1sUEpD7ghGD0YrC5RTEihNacxkFOQVRl0fasjCYLQm5aOgoKN7+/Y3c+vvtGaTe1thJ//qyAaDr0uu//on4cDGzNQi2W3f8vh9ukzKfB3J6HMBVIyP3Wfvp/7UEmlfAm8Tds2yn6cfYu0XJfIzExERkdzVUA+h/VBbBQc2Oc/9uxdB3e7kxqmvdbbbu9x5fywR4ftdgWLodEz8bWw9vPM52PHu4e/Bhd/qdkP1mkMhw9Y673XU1yb3fYmI5Lhcete/6QqIFlhmrY1x6Y7YrLXVxphlHDrYZwywPs36ct3FQHnY8i7gqTjbXA4EwpafstYm8iz/S5oHql1qjPlyrEA1kVYhlGAw2sCrwSSYW2mMs6NcXxO7X4PPO7m2ATY+m9q2hRWH7vc+H1Y/EL1fKJmL4IqIiIiIiIiIiIiIiIiIiIhIS7HWrjbGnAs8DfTEOQ7QNN7vEdbVADeE3Ses70bgXGttpS9Ft6whEcvJHt8YmQDQ2RhTYa3dlUZNIiIiIpKLSvvDwCthzUPx+wLU7YKZRx2+vsMIOHE6lI/wtj43tj65/qNvz0wd2WzgVbDs97GDmp7qDpOfgO4n+1dXtlgY429i9K0pDfnhvjlR13ct6BF1vdfyTUHU9SGbZJCgnwLFMOLb8EmMn/nTveDEJ7M/yKdut3OifTSDrnbO72lLhn4NVv0t8f5V78GMvlA+2nk+6TA0c7VJ9lj7KCz/Q+w+nSZAz9P9qSdRxsBxf4NXT3Y/H3DjDFj+Rxj6FX9rq14Tu72kl7OP0NYMuR4W/yx62875TjBjuz7+1iQiItKW2AaoP9h4qzl0v+EghGqcr5Fthy3XHNrGrS1aX9ewcAPdpzjvixR1jl3/kl/Bgu8n9z3nlzmvi8KNugVmX3wozMxNzRZ4ZWKC87SHI26CdY/AgQ3O6+yRP4DRt7W916Ei0iblUjBa/7D7kVczTMUqDgWj9fNgvFx3bcTywwkElV0Usfz3RCay1i41xrwHHNe4qhQ4HUgxRUkkRwQTCEbrfiqMuS25cRMJRgPYvRg6jkpu7FRVzYODW1PbNvxqQOPvjhGMlnI+poiIiIiIiIiIiIiIiIiIiIj4zFo7zxgzHngAOKtpdcTXZpvgBKIZ4BXgKmttigek5JyOEcvbk9m48eKxB4HisNXlOBdMTYsxphvQNcnNBqc7r4iIiIik4bgHoOMY+Oi7qY+xdym8cTqcvwbyfDgVKdlgtGFfz0wd2aykO5wxF+ZcAdvfit6ndgfMOhMu2ADFXfytryXteAc2THdvLx/p3uYi2FDHpwc+jtrWrbBX0uOlIt9E/98L2jpf5k/Z6B87oWKf/iZ6+8Gt8PppcNEmKKzwt7ZkfHCze9voJM8Dag0qxsJZH8O8G6FqbuLb7VkEb5wB562EvEDm6pOWt2sBzPl87D4jvw+jfuTPvkWyOh0F096Al44HtwDK978K7Y/wN9htf4xgtCNugpG3QIk/gZ1ZpbQ/HPsXmHdD9PbXp8G5n/pbk4iIiN9sA9TXphYwlkww2WFhZwehIRtfl1rY9gbMvhSmvubebeOziYeilY8Ekw8VR8Hwm6HiyObtfS+CKTOdEOk9S2DP4tTLbxLaB0t/dWi5/iAsvANKB8KgK9MfX0Qky2XhOwau2ofd3+PBeHvD7nfwYLycZYwZDJwUsfr+ONv0AMaFrQoB7yQx7SwOBaOBc6CbgtGkdXO7QkTpQDjur1DcDTqMTP6N/UBx/D7gXInCr2C0Hck8HEQwYd9/YYUTFrft9cP7hfanPoeIiIiIiIiIiIiIiIiIiIiI+M5auw04xxgzAfgGMBXo6dJ9D/Aa8Adr7Zs+lZgtyiKWE7hq4mFqaB6M1t6tY5K+DNzu0VgiIiIi4oe8AIz4jnN7ug/UbEptnAMbYfss6DHN0/KiSjYYLZvDlDKpXR84+QV4Isbufv1BWP84DP2yf3W1tDX/dG/rOjmlIRfv/9B9yAJ/AmjyTUHU9SEb9GX+tIy53T0YDZyT7Dc8BYOv9a+mZG1+Ifp6E4B2ff2tJVtUjIUz3m2+bsMMePui2NvtXws7ZkP3kzNWmmSBWI/FACf8Ewb+jz+1pKrTBDj1ZXjtVPc+ax7yNxit2iUYbexPYfSP/KsjG8XaR927DPYshfIR/tUjIiJtk7XQUOt9GNlhfaO0ZWU4WRbY9gYcrHQPjA8PHYulsBOck0DQWc/Tm+8fzvsSrLwvsTmSseYhBaOJSJuQS8Fo4Qf2eBFkFv6uf5KfmLQ61+BcVbPJh9baBXG2GR2x/Im1NpmUojkRyz6lNYm0oKBLMFpxN+gxNfVx8xIMRtu/NvU5krVvefT13afCCQ/BjN7u29YfbL5c4PIhbag6tdpEREREREREREREREREREREpEVZaz8ArgQwxgwC+gKdgUKgEtgGLLbWNrRYkS0rMhjtYNResdUA4ekQkWOKiIiISFs04tvw4bdS337PkuwLRut6IhgTv19rVVAGZYOgerV7nz0JnLjbmsT6fjuOS2nILXUbXNv6FA9MacxkFZjCqOsbaKDB1pMXfpH6bFPQHkoHwn6XQB9wHl+ylW2A4N7obSYf8nLpFM0Mq0jwf2zvEgWjtXbxnnsqjvSnjnSVj3ICEN32Tfx87LLW/fzAMn+ei7Jau75OWG7drujtexWMJiLSZvw3nCyBgLFQTVgoWYxgskT7NtS29Hcvh7FQszF6MFr1atjxTmLDJPpaJ9KE38LO92HnB6lt72bba96OJyKSpXLpXbfKsPv9PRivX9j9Kg/Gy0nGmABwVcTq+xPYdGTE8sokp14VZzyR1ifkEozmFvyVqECCwWgHUryyVyr2Lou+vnykEwQXS5cTmi8HSqP3CyWTxSgiIiIiIiIiIiIiIiIiIiIifjPGtAfCz8pbFXkBTmvtaiDGGfwCWJ+2EREREZHWrv/l8MmtqR+L/cE3YOV90O8yGP0jMHne1tckmWC0ITdkpoZcMuQGWPAD9/aV98Gah6CgHLqfCuPviX5CcGsQOgA7Zru3D/5iSsNWBre6to0qHZ/SmMnKNwWubSEbojCbg9HA+Tv9+Bb39k/vgYFXQcVY/2pKxO7F8O4XoKEuevuAK/ytJ9uVDYQep8HWV2L3m/9l2PISHHU3tB/iT23ivWA1fPB1WP33Q+vyG7P5Y+1rdDkBOo7ObG1eKe4GfS6CDU9Gb9/1EWx6EXqfnfla9i6DUHX0ttIBmZ8/2+Xlw+BrYend0dvf/ixMfhz6XeJvXSIikll7lsJH34OquU4wmQ05X0XC1UcJrFv3GLxzWeJjDLkxtbkDxTD5SXjpaKj1ONbm8YiMivB9RZMHgXYQKIGukxpfew32dn4RER9k6BOIjFjf+NUAY4wxnVMdqHHb8HdJfUwLyjpnAr3DlmuAfyewXeQ7juuj9nK3LmK5szGmImpPkdYi6BKMlu9TMNqWmenNk6iNz8H2N6O3tR8a/0o4kW8EF7hcrNbtjVwRERERERERERERERERERERyRafBz5qvM0Dilq2nJwReWBMSQpjRG7j1cE2fwJGJ3m7wKO5RURERCRdJd1h2pvQ6WhINURpzxJYeBt8+B1vawuXaDDa0f8HA/8nc3XkihHfgzF3uLfbeuf4+5pNsPaf8NrJ0JBE+FwumXWWe9vQr0KnCSkNWxXcHnX9uLLjCJg450h4JD/GPEHrEtqVTUZ+H0bfHrvPK5Oheq0v5STkwEZ4ZZITfOTmyF/6V0+umPwE9PvcoYAsNxufgZdPgIOV/tQl3nvzvOahaOA834SqiZnZf/JzGS3Lcyc8CGWD3NvfPAe2vpbZGhpC8MII9/ayge5tbcm4X8Run30prJ/uTy0iIpJ5BzbDyxNh8/NQW+nsgygUTaKJDLpe/2TioWilA+CYe6H/51Kfv2wAnDYHup4IXr6H0LTv/d998DC2wVlXuwM2znBee9Xu9G5uERGf+PPOqzfmArVAIU442leAn6Q41pc5FAoXAt5Ju7rcdU3E8nRr7e4EtusYsRz9HX4X1tpqY8xBIDzRqRzYlcw4kYwx3YCuSW6maFPxh1swWkGawWh5SRwvunc5dBia3nyx7F4Mb53v3t5hmPO141jY/UmUDgYqIq6WFCiNPlaqVykTEREREREREREREREREREREb90wTneD2C+tVZHWycma4PRrLXbSfJ4QWNM/E4iIiIi4p9OE+DM+dAQhLwCsBaCe2kWYLL017D457HHWfVXGHcX5Lsc752ORILRKsbD0K94P3cuMgbG3A7lo2H2xfH771kCW1+FXmdkvjY/7VkC299ybz8i9b+XquC2qOuHthuT8pjJyjcFrm0hG/StjpQZA2PvgNJ+8N610fuE9jkhS2Pv9LU0V6sfhOAe9/b8Uijq7F89uaKwHCY/6gQ5ffQdWPY79761lbDu3zDs6/7VJ97Y9TFsn5X8dme+n3v/N/ntYOoseKafe5/l/wc9pmauhq2vuLcFiqG4R+bmziV5+TDoGlj9gHuf5b+Hfp/1ryYREcmcNQ9CMJFYDGl5BgIlkF8CecXO/kug2FkXeT8vRlu0vuFjzjySqAG9DbXNl2O9Rol0wZq0vvP/6jAUTnvLCe9zC/Cb0ffwgDOv1O6AdY/ovTQRyTk5E4xmra01xrwNTGtc9R1jzNPW2oXJjGOMGQ18l0PPaO9Ya9tkuo4xpitwXsTq+xPcPPKSDTUplFBD82C0NNOhACf0Ls7lQ0RaSMglGC0/zT/9RK+GBfD8MPh8g/OBUias+7d7W14BdD7Wud/7/OjBaBdXHV5bgcsVYjK1Yy8iIiIiIiIiIiIiIiIiIiIiXmk6e9gCG1uykBwTedZ1UhcLNcaUcXgwms4MEREREZHm8hpDloxxQmzCdRwbf/tQNexdBp3Gx++brESOkS+NEU7SVnUYnnjfnfNbXzBa1Xz3trxCKBuQ0rD1NsTOYGXUts4F3VIaMxUFuR6M1qTDsNjtO9/3p45E7IzxNwXQ/ojMnZ/TGuTlQ+fj4veL9b8r2WvD9OS3MXlQNtj7WvxQ0ssJQwy5nIqc6ceuqhjjtx+qx6JwHYbGbq963wkG1s9MRCT3Vc1r6QpyjHEPGGu6Hy+0LGrfOGMGisHk+/PcGyiKHjpWHxaMZi3smJ3YeMO+6U1d4Zp+NtF0PwU2Pef9nE302ktEclDOBKM1uhsnGM3iBHPNNMZcbK2dm8jGxphjgSeBUpyrUNrGMduqK4Hwd8VXAW8muG1kUpFLLGlMNUBFjDFFWpegSzBaQZrBaA1J/vu9ejKc+CQUZ+ADuF0L3Nu6TTn0gfmoW5w3fLf8x1kOtIOJ/4TCisO3c7uCmILRRERERERERERERERERERERLLdlrD7hS1WRe5ZEbHcP8ntI/vvtNbuSqMeEREREWlrep0D+WXxj9l+eSIc8ycYdLUTduIVG4rfZ+AXvJuvtSgf6YTaRbuIeaRPboXh33Q/Xj+X1B+EFffCh99y79PnQvcTj+PYFazE0hC1rUtBj5TGTEV+nvvL6lAi/zPZovPx0K4fHFgfvX3zizD7MueE8MHXQV7A3/oAdi+CNQ/Cxmdi9+t/mT/15LLe58YOkwJY+y8o7e/8vlMMMBQfhQ44j7mL7kp+255nQmFH72vyQ14A+l0Kq/8evf3ARidwI1Dk/dxbX4OFt7m367GouX6XwoIfuLfXH4CNM6DvRf7VJCIimZFouFW2iRYcFjVkzCVwLK8Y8hMMMQvvm1fQ+oNB81yC0RrqnK/bZ8PyPyQ+Xv/PeVNXwvNdltlgtDUPOq/R+l2cuTlERDyWU8Fo1tqXjTGzgCk4oWa9gLeMMf8E7gPmW2tt+DbGGAMcDdwIfAEnCMw23t621r7o2zeQfb4YsfxA5M8vCalsl+pcIrkplKFgtGg76LHseBteOg6mzXI+OPBKcJ/zAZSbkd87dD+/HUx5EfYsgZpN0OloKOoUfbt8l8zEnR/o6gwiIiIiIiIiIiIiIiIiIiIi2W1R2P2BLVZF7lkasTwkye0HRSwvSaMWEREREWmLCsrgpBnw9mchuMe9X0MtvHctbH8TTnjQu/ltffw+fRRmcRhjYNJjMOts2L8mfv/XToVpb6YcGJYVGoLw+mnxT4g/OokTnyNUBre5tnUuyMAF613kG/fTAIMNQd/qSFteAE56Gv4zwb3P+sec29ZXYPIT/p43smMOvHFG/GDI/pfDsJv9qSmXFbSHE5+G2RdDcK97v8U/g1V/g2lvQYeh/tUnyak/6Dx3VL2X/LYVR8Kxf/G+Jj8ddTdseh5qd0Rv3/Qs9LvE2zlXPQDvXRe7z/AYwaBtUdlAOOGf8G6MEN23PwOTn4R+n/WvLhER8db+DVBbmfr2foWRHdZWqPPiM8ktULy+FtY/Ae98PrH3nEweHHUPdDnO2/ri6X8ZVL0Py/5f5uaYfQmM+hGM+2nm5hAR8VBOBaM1ugz4EOiJE6yVD1zdeNtvjFkG7Gps6wQMBZpSdUzjegNsAC71se6sYow5HhgVtqoe+EcSQ0S+u1uSQhmR28R5xzghfwKeSHKbwUCcS3iIeCDoEoyW73MwGsD+tfDWRXDWh+nNHV7DU93d2zsdAz2mNV9nDHQc5dxiiXUFqj2LoOOYxOsUEREREREREREREREREREREd9Ya5cbYz4BxgJjjTG9rbWbWrquHLAoYnmsMaadtfZAgttPijOeiIiIiEh8PabCZ7bBzvfhlcmx+655CEb+AMpHeDN3vJNUu5+iE4ndlA+H81bA7gVwYLNz8fOVf47et2oebJgBAy7zt0YvbXohfija8G9DceoBZm7BaB0CHSnK8y9ULt8UuLaFbJ1vdXii03g4/V14+YTY/TZMh50fQOej/akLnICueKFokx6D/m32tMTk9TzNeT5Z9FPn5+vm4DZY9js45o/+1SbJ2fhM4qFoJz176H7ZIGcfweRlpi6/FHWCC9bC4y7nus3/irfBaA0h+ORWnFOiXUz4HQSKvJuztRj4P9DnQngixnmbn9wKfT+jfUoRkVy16C73tnE/h25TogecBYohr0iP/62V235RQy0s+kVioWhTXoQuE6Gw3NvaEmHyYMI9MOoHTkBacC/kt8OJxwHqaxrD9QLNt1vzD9jwVOLzLP01DP8mFHX2qnIRkYzJuWA0a+12Y8yZwLPAAA69qjc4AWgTItb9d1MOhaKtBC6w1m73o+YsdW3E8kxr7eYkts/KYLTG32lSv1ejHVfxS8glGK2gBYLRAHZ9BFtfhx6nRm9vqAcbgrqdzhupRV0A6+z011Y5ffIKoKQXvHm+szPtZsxtqdUIUNDRvW3bLAWjiYiIiLSk4F4IlDpXcBQREREREREREREREYnuD8BfcY7d+wmHH7smEay1W8IC5cA51nMy8HKCQ0yJWJ7pUWkiIiIi0tYEiqDrJBhyI6y8L3bfra95F4zWEOdE1dKB3szTWuUFoNME5wbuwWgA217L7WC0ba/H79N+cFpTuAWjdS6IcXH5DCiIGYwW9LESj7Qfmli/ra/6F4xmLWx7I36/bidlvpbWJlAMA6+MHYwGzmOSZK+tCf5+xv0M+pyX2VpaSn47KO4BB7ce3hbaB/W13gWV7V0GNXFO+dU+kbuCMigfBXsWR2/fu9T5PZb09LcuERHxxu6F7m2Dr4Pirv7VItkjz2U/rHqNs28VT1Fn6HWWtzWlorgb9D478f771yUXjNZQ54TM97kg+dpERHyWkxHr1tpFOAFoj3Io7MyG3f7bleaBaA3AQ8Ax1tqlftacTYwxpcDnIlbfn+QweyKWk9o7NMaUcXgw2u4kaxDJLUGXYLT8FgpGA3h9Krx3vfOma7gNM+DRfHisGJ7uBc/0g8fbOVe0eKIDPDvQuc3oA4/kwdZXYs9T0iv1Grud6N4W7yo8IiIiIpIZ+1bBS8fBEx3hqW6w8CfOAUEiIiIiIiIiIiIiIiIRrLX3Ay/gHMN3tTHmey1cUq54OmL5i4lsZIwZDhwXtmo/iQeqiYiIiIhE1zuBcJMPvg7b3vTmOCIbJxgtkXrE0X0K5Je6t6/6m3MCbS6yDbDmoTidDPQ6J61pqlyD0bqlNW6y8ghgXE4FDNmQr7V4oqgTdJkYv9+in8CBOMFAXrAWNkyH+prY/TodAyU9Ml9Pa9T+COgwLHafvctg6T1QOVfHpWajyjmJ9etzUWbraGkdx0RfX38wscDORG1/M3Z7fqnzPC/u4u0zfvxjqF7rSykiIuKh4D6omuverlC0tiuvMPr6RXcmtn2fC72rxU+9U3jfY/XfYfHPYfVDULPF+5pERDySk8FoANbaXdbay4GRwP8DmmJdTcQN4GPgbmCYtfZqa21kqFdbcwkQnsS0DXg+yTFWRCz3T3L7yP47rbW7khxDJHdY61z1IZqCNIPRGtIIRgPng8wPv3loec+n8LbHb0CXJvsQEaaos3tbOqFwIiIiIpKahiC8NgWq5gEW6nbCupZEtwAAIABJREFUwtthxb0tXZmIiIiIiIiIiIiIiGSvz+MEfRngF8aYl4wxp7RwTdnuYSA8DeIzxpgjEtju+xHLj1trdZCNiIiIiKSn5xnQ/7I4naxzXNG7V6YfZhMrGK3vxamd8NlWFbSHCb+L3ef54bDxGX/q8Up9Lcz+HATjnCI29idQ2i+tqSpdgtG6FPgbjmWMId/kR20L2qCvtXhm/D1Q2Cl2n/oaeGEEbHsjc3U0hJzHrtmXxO5X0BEm/L/M1dHaGQMT/hA7rBHgo2/DyyfA/JucAETJDtvegD2L4/cb+X0oH5H5elrSMTGOmZ51NlSvTn+Ojc/C+19xbzd5zvN7uucltnbDboaO49zbVz/g7AdteMq/mkREJD3Va+H5GPsaY+/yrRTJQoGi1LfNL4VRP/KuFj+VDYQxdyS3zcZn4OMfwdyrnP+pbXFCeUVEWkj0d0NziLV2OfBtAGNMGdAdaErRqQS2WWv3t1B52eraiOWHrE360iBLI5aHJLn9oIjlJUluL5Jb6mvc34zPT/MNyMIKOLg9etu5y+CTH8P6J2KPseJeGHIjVIyDpb9Or55IHUbEDjdLRI/TYWuUC9c21KY3roiIiIgkb/tbcGDj4evX/RuGftn/ekREREREREREREREJKsZYx5ovLsX2IdzUc9pwDRjzD6cC59ub2xLlLXWRh4H16pYa1cYYx4ErmlcVQj8wxgz1S3ozBhzAXB12Ko6IMFLoIuIiIiIxJCXDxMfhoFXw6wzY/dd+y/oMQ0GXZX6fG7BaKUDYPJjThiIJG7wtXBgMyy8LXp7/UF473roeRYECv2tLVXrn4QNT7q3l4+E4x6ALselPVWVSzBa54JuaY+drHxTQNDWHbY+FGVdTuhyHJz9CWx+IXYIVnAvvHcDnLfcCdfy2qbnnceuWI65F3qdA6V9vZ+/Lel5Gpy9EFb/HRbFCa1YeR/0uwR6TPWnNnFnLcyN81Zcnwtg+Heg22R/ampJ7QdD52MbLzIdxce3wqSHUx+/IQjvXRe7z5kfQcXY1OdoK0q6w2mz4YkY52821MK8G5zH+HTCVERExB+f3Ao1m9zb+3/ev1ok++Sl8FxeMd5536T/ZVAUJ7g7m4253bmwwbbXAQPdp0JxF3h2cPxtg3tg/o1wztLMvOYWEUlDzgSjGWN6AMeGrZptrd0Z3sdaWw1UA6v8rC2XGGOGApHvLt2fwlCLIpbHGmPaWWsPJLj9pDjjibQuwRjHbaZ7ZYZxP4/+ZueAL0CHoTD5cXjxSNj9cexxZh6ZXh1uTvTgigmB4ujr63UxWxERERHfLb07+vod7/hbh4iIiIiIiIiIiIiI5IqrARu2bIGmI6o7cPjxbPGYxjFaNBjNGNOH6Mdg9ohYzjfGDHAZptpaWxljmtuBi4CKxuWJwKvGmOustZ+G1VIE3AD8JmL731hr18UYX0REREQkcSYPep0Bx/4V5l0fu++iu2DAFU6gWircgtF6n6tQtFT1Od89GA2gdgdUvgvdT/avpnRsnBG7/Zj7PAlFO9hQQ3X93qhtXQojX/5lXoEpoCbK+pAN+l6LZ9r1hiE3QFEXePuz7v2qV8KexdBxtPc1bHw6dnvHsXDEl7yft60qGwhj7oSlv45/XtCGpxWMlg32LIH9a9zbz/oIKjJ0Xlq26nOBezDaxhlOmFyqoRI75jjPy24GXqVQtGQUlEHv82HTs+59aqtgx2w93oiIZDtrY78WNHlQ2s+/eiT75CUZ9t7rXJjyXGZqaQldjndu4cbe5QQKxrN3Gez9FMpHZKY2EZEU5dKnAZ8Bnm68PQzUtmw5OeuaiOXZ1tplyQ5ird0CfBK2Kp/kDlCbErE8M9kaRHJKKIPBaL3OhvwoYwy44tD9oV9Jb45UDf8WlA9PfxzXYDQ9FYiIiIj4rm5n/D4iIiIiIiIiIiIiIiKx2bBbrpoNrIlyeySiX2+XfmsAlyvSOKy1G3GOnawLWz0JWGKMmW+MecwY8x9gA/B7oCCs3/NAAke5i4iIiIgkqdtJ8ftUr3ICb7a/7dx2LYCGUOJzWJe+JpD4GNJchxFQ1DV2nw3Tk/s9tZSG+tgnw+eXeRbQU1m3zbWtS0E3T+ZIRr4piLo+5PY/k0u6TIz/P775BecxZf9652911ydQ+R7U7Up93oOVsOah2H0SedyT5BgDXRP4ua75B+xeBLYh4yVJhIYQ7F4IwWrY+YF7v8IK6DDSv7qyRa+z3dvqD8Cm552LTtftTn7sne/Hbu+WIyGm2SSRn9nWVw49x4iISHaq3QGhavf2LhMhL/prJmkjAkXJ9W8Lr/WS2XesXpW5OkREUpRLwWgdca70aID51tr9LVxPzjHGBIArI1bfn8aQkZfD+GKCdQwHwi+7sh94OY06RLJf6IB7W6A0vbFLesKpL0P5qEPLx93vXI2ryaBrYNzP05snWd2meDdnnssLkYY4V4YREREREW80hGDRT+GlE9yvbgbO1VdEREREREREREREREQOZzy8tSnW2lnARcCOsNUGOBq4FDgDiEw3eAS4zFpb70eNIiIiItLGdBgK/S+P3+/jH8KrJzm3mUfBU91g80uJzbF3WfT1Jj/xOqW5QCGM/nHsPsv/ANO7wuaZ/tSUiu1vwdM93cPzAEZ8DwrKPJmuMrg16vo8AnTM7+LJHMlwC0YL2qDPlWRASQ844iux+yz4gfOY8kx/eLQAZo6Dl4+HJzvB3GugIYmfQ6gGZl8GT8UJDCzqAkO/lvi4krhRP3A/X6hJaD+8OAZm9IWq+f7UJbDxOZjeBV4cC0+0h7lXufcdfZvzHNPWVBwJ3ae6t791Prwy2Xl8mndTYsGjDUF473r46DvufcpHQb9Lkq+3rRt4JZQNit1nyS8PPcf851ioib4PICIiLWjhHbHbR/3IlzIki8V7fRGudAAMirGf21p0nQw9piXW983zYO/yzNYjIpKkXApG29n41QJbWrKQHHY20DNseR/wRBrjPQyEHzj1GWPMEQls9/2I5cettUo3ktatvsa9Lb8k/fG7HA/nLIKLd8GFm2DwNc3b8wIw6ha43PpzVYgep8G0N5JPVnYTKI6+vl4PHSIiIiK+mPtF+ORWqJobu1+s/V4REREREREREREREWmrBmbgFucsttbFWvsiMBr4M7ArRte5wMXW2st18VkRERERyagTHoIJv4de5ya+Td0ueOs8OLg9dj9rYZ/LSZgmkPh8crhhX4cTn4rdJ7gb3roAarb5U1Mygnth1tlQu8O9z5AvwZhbPZuyKhj977VTQRcCLfD36BaMFmoNwWgAE34Lx/41tW1X/x2W3p14/0V3wvrHYvfpMBxOf9cJhBTvdT8Fpr0Fg6+P37dmM8w6S+cR+eHAJnj7IgjuSaz/8JszW082OyWRwFcLK/8My34fv+un98Cqv8Xuc9psz8I/25TiLs7j+cjIU5td7JwP71yW2ZpERCQ5uxbAinvd26e9Db3O9K8eyU55CQT2lg2CEd919g2Ku2W+ppZmDJz8PBz5v9DzTOhyAhR0dO//1gXOe3MiIlkil4LRwsPQSlusitx2bcTyo+kc/GStXQE8GLaqEPiHMcYlwQiMMRcAV4etqgPuTLUGkZwRKyAi4EEwWpPCjs4Oaiz9fXhT7uRnvR3PLWCtvtbbeURERETkcPvXwdqHE+sb0vk1IiIiIiIiIiIiIiLSnLV2XSZuWfB9DbDWmjRvVycx33Zr7U1AD+BU4IvALcDXgc8Cg6y1J1hrp2fi+xURERERaSYvAMO+BlOeg/NWgEnw9KSGIKx/InafXQvc2xSMlr6+FzknAMeSyO+pJWx8Nv4xaqN+6OmUlcGtUdd3Kejh6TyJys9zCUZraCXBaMbAkOtg8HWpbZ/osY6J9j3pWWg/JLVaJDFdjoXj/gJnzIvft7YKtryc+ZraunWPga1PrO+AL2S2lmyXF4Dy0Yn1TeQxJ16fEd91zh2U1BR3cwJBRt6SWP/tb8HBGGGsIiLir1jPk+WjoNtk/2qR7OWWR9AkrwDOXQ5H/QpKWuZ1fYsIFDkBsafMhNPnQJ8L3Pvu/RR2fehfbSIiceRSMNpHQFO0pC6zkCRjTHfgnIjVceLjE3I7za9AORF41RgzPGL+ImPM14DIT0Z+kw0HqYlknFswWl5h4h8Ce2XgldBxbOL985PIoiwbBBdugIBrPmJq3MbTlV5EREREMqt6LXz0fQ69HI9DwWgiIiIiIiIiIiIiIiIZZa2ts9a+Ya39h7X2f621f7DWPmWtXdPStYmIiIhIG9V+CPS/PPH+e5aCbTweyUY5LmnvUvdty0cmV5tEVzE+fp+9jb+naL+jlrJnSez24m5Q0svTKauC26Ou71zQzdN5ElVgXILRbCsJRmvSKYG/0Wj2LIaG0KG/XbdbcB8c2Bh7rMIKKO2fWh2SvA7DIVASv1+s5wjxxpJfJN6301GZqyNXVCT4M9j7KdgG98elhnrYuyzOXCk+NkpzCT/HWKjZnNFSREQkTLTnx3B7YuwH6jlSmuTFCUbrOM4Jt23r4u0Pxfp/ExHxWX5LF5Aoa+16Y8xc4ARgmDFmqLV2eUvXlUOuovnve5G1NoFLKcRmrd1ojPkM8BJQ2Lh6ErDEGPMBsBooB8YDXSM2fx64Nd0aRHKCWzBaIm/aey2/HZwxH1bcCx/e7N6v36XQ6yzoMAJePj56n/KRcNRvYNvrUNzDuTJPQQfva3Z7IdJQ6/1cIiIiIuJ8gLDop7DoDudD+EQpGE1EREREREREREREREREREREpO0ZeydsfAZC++L3XfFHWH2/c5HsQAm06wtHfAmG3QzGQHWMzN+eZ3pXc1vW90Io6Q01m9z7rPiTcwPnvIFh34AhN/hTX6Rts2DBLVA1N3a/ITd5foJzZXBr1PWdC7p7Ok+i8l2C0YKtLRit/2Xw8Y+gblfy2z4a/WeUtMHXQ6Awfj/xRkF7GHgVrPxz7H4LfuAE2425U4EGXqs/CB/cDLWVifUvKE8uGLW1OuJGWPdw/OOt6w/AI2n8zZb0gj4XpL69HNL7PGf/88CG+H1nHgkTH4EBl2W+LhGRtmrFfTD/S4evD5RA10kw5iew9Few+QX3MVrqtapkn7w4r+GO+LI/dWS7/pfDJ7dBcE/09ne/AAvvhCHXw4jvOu/XiYi0kLyWLiBJv3a5L/F9MWL5fq8GttbOAi4CdoStNsDRwKXAGRweivYIcJm1tt6rOkSyWiiLgtHA+XBm+Dfgwk1QOuDw9pOegcmPwaCrIb/MfRxrodeZcNSvYMS3MhOKBhAojr6+/mBm5hMRbwX3wsq/wUffg43PJRewIyIiLaPyXVh4W/KP2aHqzNQjIiIiIiIiIiIiIiIiIiIiIiLZq2wQnPISdD4eTH78/k3HgdfXwL7l8OG3YNnvnXX710bfpv1QKO7iSbltXqAYTn8Hep6VWP89S2DejbDq75mtK5pdH8Mbp8cPRRvzExhzm6dTW2upCm6P2taloIencyXKLRgt1NqC0Qor4LQ50H2q+/kkmVLSG0b9GMb93N95BY7+PQz/tvM7iGXxz+DjH/hTU1vy7lWw8r7E+lYcBafNhpKWCYnMKl0nwUnPQqcJYDJ0unbn4+C0dyC/hc5DbG0CRc7fb6+zIb80fv85n4dNz2e+LhGRtmjV/dFD0cB5v2Drq/DKRNg4w32MAVdAt8mZqU9yT6DIva24GwyOjFxpo4q7OPuXsVSvhAXfh6WK9RGRlpVTwWjW2hnAAzihW+caY/5oTCKfmLRtxphJwPCwVXXAv7ycw1r7IjAa+DMQ63Icc4GLrbWXW2v3e1mDSFarz7JgtCbtesF5K+HU12DkLTDpMfhsFfQ5/1CfmG+a2oyXCCgYTSSXHdwOr0yGedc7L4DfOh/eu07haCIi2W7tv1PbLqSXeSIiIiIiIiIiIiIiIiIiIiIibVLXE+CMd+GyWrgsBBMfTm77FX90vlavid7e84z06pPmSvvDKS/CxEcS36bpd+SnVX+DhjihX8feB2Nu9TyQZm/9boK2Lmpbl4Juns6VqDYTjAZQPhymvgqX7nceU3qemfk52/WDizbCuLsgL5D5+aS5vAIYfzdcuAHG/SJ235V/hfpaf+pqC2q2wvrHE+tbUA5nfQgdR2e2plzS+xw48324LOjcAu28Gzu/PZz+LpQN8G5MgdJ+MOUFuGSv8xwT7xzPFff6U5eISFuz/E/pjzH0q+mPIa1HXqF727j/9a+OXNBxFAz7Rvx+y/8I1qc8CRGRKHIxVOxGYB/wDeBLwMnGmN8Az1prq1q0sixlrX0HJ0wu0/NsB24yxnwDmAT0B3oA+4FNwEfWWpdPqERaObdgtGy4UkNeAHqc6tyiifnGnk87snkuCc0N+hBDJOutuA92L2y+bvXfYcgN0OX4lqlJRETi2/xiatspGE1ERERERERERHZ9Aot/DrWV0OkoGHNHYldbFxERERERERGR1sHkOWewlI9Mbrt9KyBYDftdTjspG5h2aRJFMr+nXR9DQ72/gVE7P4jfp8PwjExdGdzm2taloEdG5oynoC0FozVpekzpMBy2/Cezc5WPyuz4khhj4oduBffA/rXQYZgvJbV6299MvG+HEZmrI9eZPOfWYRjs+sibMctHOP8TkhlNzzFu53422fmhL+WIiLQpDSHYlebjq8mD9kd4U4+0Du36urdl6L2DnPb/2bvv8Diqe//j76Nmyb33XrCNbYwNphubTiB0QighIZWUm/IjJIGEm5BcEkKSG0hCSGghhBog9GqqaTaYYoptjLstNxV3SZa02vP7Y6SrlTWzO7s7O7srfV7Ps49Wc86c+dqWV7M7cz7Hz99J7Xpo2AZd+mW+HhERF3kVjGaMeSnm291AD2B/4Lbm9nKgornNL2utPS6wIgVrbQPwcrbrEMkpXh+OJVpNIBfkQo2Fpe7bm/aGW4eIJO+jn7tvX/+QgtFERHKZ182FiSgYTURyQbQJbAQKPUK2RUREREREJHN2rYB5h7Zex9v6Imx9GU5627khVUREOiVjzBcDHM7i3B+4E9gCfGKtlqgWEREREclJvac7oVs7l/rf58Ee3m3dFIyWEb2nQa+psPPjxH1tBJ4/AgpiwrmKusOA2TDp/0FR1+DqqnzDWYy5akH8fl1HQv8jgztujGqPYLQuppRuhXF+VjOoyLhPBWzsyMFoLUZfCMtvyPAxLsrs+OLf4BOgS39nERYvT06CCd9yFm3vc2B4tXU0lQvgjfP999f/k8RGXxRcMJr+vnPD3i3w2rkw7qsw9DPZrkZE8pmNwqp/wKanYceHsGdVa9u4rzsLz3UdmrXyQpXMZwVehnxGYU3S1tBT4f3LwTa13d59HPQ/NDs15bIR58C734doQ/x+1e/A0JPCqUlEZB95FYwGzMW5samFxcnjbok8H9H88Hujk0mir4hI6jpqMFpY95UWeExmj9aHc3wRCd6q22HmH7JdhYiI7MtaWHNX6vs3KRhNRLIo2gjvXQ5r/ulMwB9yEhx2hy52ioiIiIiIhGnxT9ovbrTtXdj8nCYJiIh0bv8kc/fp1RhjFgF3Av+21upmEhERERGRXGEMzH4E5p8Guz9Nf7zuo9MfQ9ozBo5+BOZ/FnYtT9y/+u322zY/B5ueguNfhYIApqptfBJePcsJYoun22iY8zgUFKZ/TBdVDVtct/cvGYwxxrUt04pMiev2SGcIRus3Cw65Bd75bvBzSUwhTP6xE74muaGwC8x9Gl49E+o2efdb8TdY8y849gUt3J6KzfOc39O+GJjwbSeMTuKb+D3nd+qq20j9Y1EDE77p/J1LbtjwH+dx6O0w7ivZrkZE8tU734UVN7m3rboVNjwEpy6BsiHh1hW2SB08Mz39cQ77R/pjSMfScwIc9QAsuAQiu51t3cfBnCe0oKOb0gFw9ONOUHLjDu9+r5wM526Dkj7h1SYi0izfgtHcKNhMRHJfPgejFbhfOHOE9BJcWOq+vbY8nOOLSGps1LutpHd4dYiIiH+b58HCL6W+f+Oe4GoREfHDWmelrF2fwuIfw84lrW0bn4DXzoHjX8laeSIiIiIiIp1Kw04of8S9besrCkYTERFoXQA1SN1xFlydC1xrjPmytXZeBo4jIiIiIiKp6LkffPYTJxjttXPaXtdPVrcxwdUlbfUYD6cug90roG6zs+3VM+NPit1X1QLY9AwM9xuwE8fH1yQORTv6MRh2mhPsliHVjRWu2/sVD8zYMRMpMsWu2ztFMBrA+K/DmIth+wfOIh0FRYBxfl5sivNbCoqg9wFQ3CPQUiUA/WbBmRvgwZ4QibNwb6QGlv4Ojn44vNo6io+vgWhD4n7Hvwq9p2keiF8FxXDoLXDgb51zn5a5NW99DfasdN/n2Oeh5TXeFEDvqQqeyFUf/wrGXqJwFRFJXt1W71C0Fg3bYdXtMPWqcGrKlg0BnLeZIijN3nszyWEjzoZhp8P2xVDUHXpOzOhnB3lv6ElwTiXs+Aienendb809MPG/wqtLRKRZPgaj6beOiOSfSB4Ho8U72Y8XehQkr2A0gI/+x3mTrzclIrln5S3ebbogJiKSmz79S3r7N8W58UREJGhN9c6NQmvv9u5TMd8JTeu5X3h1iYiIiIiIdFYf/ty7bcPDMOO68GoREZFcFHtjh/XYvq99ZzS79bUxbUOAZ4wx37PW/jX5EkVEREREJCOMcSahjv0KvP/D1MYo7AolvYKtS9oyxrm/ouUeix7jYds7yY1RMT/9YLRIHVS/Fb+PKYQhJ2V8DkFV4xbX7f2LB2f0uPEUGfepgJFoJwlGA2d+Sf9Ds12FhMUUOKEG6+6L36/ilVDK6VCaGqDqjcT9xn0NBs7OfD0dUZe+bf/uDvglvHlR+36lg2Hw8eHVJempWec8uiu0V0SSVP22v34rb+74wWhBnLsd8Mv0x5COq6AI+h2c7SryR0ER9J0BQz4Dm59x71MxX8FoIpIVeRWMZq1VhLaI5KemPA5GiyvFFXWS1WWAd9tHP4chJ0D/w8KpRUT8qd8Gi77l3V6sm1NERHLGjiVQ/ijsrYBNT/nbp+9BsO3d9tvjrcgnIhK0VbfFD0VrsXmegtFEREREREQybfdKWHFjnA4hLbgkIiK56svNX3sAPwf64QSZRYGFwCJgPbALKAH6AtOA2UDLbHML/Bt4FigDegP7N/cZRduAtOuNMcustS9l9E8lIiIiIiLJGX566sFopQODrUUSG3FW8sFom5+BxcWwaxlsfRlK+sGwU2HYaU7gi0kwLSzaCCt85FwPPQUKuyRXWwqqGytct/crzt7PY3FBsev2RtuJgtGk8xl+RuJgtIbtUP4EDP2MM6lfWkXqnNfn3Sug22ho3AUbHoHqhWB9XL8ZfmbGS+w0hpwMBV0gWt92u/6O88+u5QpGE5HkRff661dbDouvhB4TnPc+ZdkLZs6Y3SvTH0O/P0WCN+JM72C0DQ/B4p9Crykw7BQo6RNubSLSaelTHhGRMKy61X17Uddw6wiaDSkYre8MKOrmHbSx5m4Fo4nkmvLH4rcXdQunDhERiW/Do/DGec4NZX7Nfbb55jMFo4lIlq2911+/mrUZLUNERERERERw3qPFmzxTsxaa6kOZrCgiIrnHWnunMWYC8DhOKBrArcA11toNXvsZYwqAM4A/AGOAzwHLrLW/2qffKcCfgHE4AWlFwP8CMwL+o4iIiIiISDp6jIfpv4YPfpb8vof9I/h6JL4J34ZNz0Lla/732bnUebRo3AWf3ug8Rl0Ah98FBYXu+0Zq4dUzYcvz8Y/RdSQceJ3/mlIUsY1sj1S5tvUvHpTx43spMiWu2yMKRpOObPhZMPI8WP9A/H6vng6jLoQj7kocxNhZNGyHl09xQtBSMfYSJ8xLgtGlLxx8Iyy6tPW6Wq+pMPWq7NYlyXvlM/C53VDcPduViEg+iUb89136W+dr6SA45jnoMz0zNWVDUz1UvJLeGFP/G3rtH0g5IhJj9Bfg7Uu925de63ztPg6OfV5BsSISCgWjiYhkWuMe77bCsvDqyIiQgtEKS2HAbNj8rHv7ir/CrHgr0ItI6FbcFL+9yecKByIikjk2Cu9+N4lQNAOzboKhJ8Gaf7p3UTCaiISp6k1//eo2ZrYOERERERERSbxgio3C7hXQe2o49YiISE4xxnQFHgUmAo3AxdbaBDNZwVobBR4xxswDngGOAn5hjFlvrf1nTL+njTGvAa8ABzZvPsAYc4K1NsGMehERERERCdWUn8LQU+HlE2Fvhf/9+h+RuZrEXUlvZ5Lr1ldg+3tgm1rbdnyUOKBoX+vucybYDjvFvX3tPYlD0Y56AAYfDyV9kjt2CrY1VmE95kv0Lx6c8eN7KTLFrtsVjCYdWmEJHHkf7PcdqHwTPrjSu++6e6H/oTDxe+HVl8tW/C21ULTRF8P4b8CAI8GY4OvqzMZ/DQbOhq0vQ9lQGHSswrXy1Zo7ndclERG/fM/dibF3Kyz+CRzjMbc6H8V7Lzn6YjjkZifcdcvzUNu8vlK0AXZ8CF1HwNivQF+tjSSSEUVd4dgX4KXj4/fbswo+vgYOuz2cukSkU1MwmohIpsVbIam4R3h1ZMLgBCe2QSrL3sVDEUnSugdg2zvx+yg4R0Qk+3Yth9pyf30PuAamXNm6gl6RxwX4SJxQYBGRINVX+++7c5l3W7TJuXAKzs1FhaXp1SUiIiIiItIZ1WxwJkYmsmuZgtFERDqvXwGTcVbgu85PKFosa22NMeZs4BOgL3CjMeYpa21lTJ/dxphzm/u03Bd5IqBgNBERERGRXNNnOhx6B8w/1V//siFQ2CWzNYm7wi7OQppDT2q7veK15IPRADY+5h2MtvGJ+PsOOApGfi75Y6aoqnGLZ1u/4oGh1bGvIuM+FTBiIyFXIhIyUwADj3Yeq26FPau9+y65FsZ9HYrKwqsvV5U/nvw+A46CI/4VfC3SqudE5yG5o88M2P64iqP7AAAgAElEQVR+cvuUP65gNBFJTqphxpvnQaSu45zbxHvvN/ky589ZVAZjvxReTSLSqsd4f/02PgYoGE1EMq8g2wWIiHR4W1/ybhtwdHh1pGPi9z22h7iCSkm/+O0168OpQ0QSW/KbxH0UjCYikn3Vb/nvO+WnraFoAEXd3Pvp9V1EwrLrU/99d3wAD/aGxVdAU4OzrakB3v4W/KcvPDzAeTzYE148zpnQLyIiIiIiIv6VP+bdVlAMw06HyT+GHhPCq0lERHKGMaYI+GLzt/XAdamMY62tAm5u/rYMuNClzxrgQcA0bzoylWOJiIiIiEgIBh7tfQ/SvgYdm9laJHl9D4KiFBaJX3mL83nirhWwcylseBQ2PAIbn4KdS+LvO+i41GpNUXVjhev2noV9KCnIXlBfsSl23R6xDSFXIpJFiX4v7N0Cr57uvMZsfh4ad4dTV7ZE6qDyTajbAnsrYdNzzmvrhkeSu1e4hX7vSmc0+cfu23tO8t5nyzznHGb3SrA2M3WJSMcSTTEYDQtr74FNz0Ld1kBLyoqqBd5tvaaEV4eIuOs6ErqPS9yvvho2POycD218CioXtM7XEREJkPsyESIiEgwbhWV/8G4ffHx4taRj4vedD8RrY8LHxl4CvUJc0b1L//jtzx0KZ28OpxYR8daw3QmeSKSpNvO1iIhIe9Em53U62ggLv5y4f0lfOPYFMKbtdgWjiUi21W1Mrn/jTlh6nXOh5aA/wns/gJV/b9sn2uiEmz93MJy5CSK7Ydu7zgXWssHB1S4iIiIiItLRbPQIRus5ET77Sbi1iIhILjoK6A9Y4G1rbToXE+YBVzY/PxP4k0uf53BC0wwwPI1jiYiIiIhIJhV3hylXwQdXxu9X0gcm/yicmsS/oq4w7efwfgr/Nq+emfw+3UbB+K8nv18aqhq3uG7vVzww1Dr2VeQRjNZoUw1ZEMlDky6D8kehvsq7z5YXnEeLQ26G8d/IfG1h2/AwvPkFaKoLZrxuo2H8pcGMJZJPhp8G/Q6D6oWt23pOhjlPwBPjvfeb/1nn68A5MPth6NI3s3WKSH6LRlLf9+2Y90MTvg0H/RkKCtOvKUzRRnj7Uqgtd2/ve7Cz+J6IZJcxcMD/wIIvODkZ8bx2TtvvS/rA7Edg0JzM1ScinU7eB6MZYw4ETgdmA+OAvkAPwFpr2/35jDG9gZ7N39ZbaztANK6I5Kyqhd5t474OhSXh1ZKO7mPgxAWw7j5nFYOBc2DUee0DMjIp0Ypge7c4b4i76p5WkazatdxfPwXniIiEr2YdvHJq4pU1W0y6DPb7DnQf276tqLv7Pnp9F5Gw1Fentt/y62HcV2H1nd599lbA/cXOe96WCzmTfggzfh/u+2AREREREZF80LADtr7i3jbyvFBLERGRnDUy5vmmNMeKXTFvlEefZTHP+6R5PBERERERyaQpV0CvybDmbtjwkLOIY8M2p633NBh6Coz9CvTcL7t1irvJl0OPiVD+CNQ2L3C3ZV7wxxl8Ahz+r9AXtatudJ9u1r84u4vrFRn3OSgRm0bIgki+6TUZTnoLVt4KS3/rb5+3L4X+hzu/XzqKus3w+nlgm4IZb+ovYMI3tYiodE5F3eDYebDyFqh+G/pMh3HfgNL+cNzL8OIx8fevmO8Exh52ezj1ikh+ShhmbHDWGUpgxU3Qd6ZzT3w+WfE3WH2Hd/uBPs/rRCTzRl8AZUNh3f2w+1PY+pK//Rq2w6tnwFmbnFB9EZEA5G0wmjFmGnA9EPuO0s/MxGOAh5qf1xhjBltra4OuT0QEa+GT673b+80Kr5YgdB0Kk3+YxQJ8vMRveib0laBEZB+bnvXXT8E5IiLhe+sb/kPRxn4ZZv6vd7tXaG1kT/J1iYikoiHFYDSAp6f66GSd9/UtPvlf6H8ojPxc6scVERERERHpaHYua55w4zHhbviZ4dYjIiK5akjM8wSr4iXUcve0AbxmaG6Ped4lzeOJiIiIiEimDT/DeUh+Gn6a82hxbwYWnDvsjqyE9FQ1eASjlQwMuZK2ioz7VMBIwpAFkQ6m+1g48FqY+H14fCw01SXeZ939HSsYbf1/ggtFm/wjOODqYMYSyVfFPdznTvaZ4W//9f+GQ26BgsJg6xKRjiPqcc7e92A4eZHz/LnDoXph4rHW3pd/wWjr7o/f3n1MOHWIiD+D5jgPgMfGQM1af/s17oTNz8KIszNWmoh0LgXZLiAVxphLgIU4IWf7fmqeKAr3MWB9837dgHOCrk9EBGvhra86K1d50QrpySkblLhPtCHzdYiIt/LH4eNf+usbqWkbNCEiIplVvw22PO+//+QfxW/3DEZT8KWIhKQ+jWC0VJU/Fv4xRUREREREctWKm+GpKbDzY/f2riP8TxIQEZGOblfM8/3THGtKzHOv1VpKY577mBErIiIiIiIigRlxbrDjlQ1xHllQ3Vjhur1/cfghbbGKTbHr9ojVXArppMoGw4Rv+eu75DfQuAua6jNbU9AitU7d0Sbna8tj2e+CO0bQr98iHUlJL+g+PnG/SA3s3Zz5ekQkf3ktOhcbftzvYH9j7fqk9ZwgGlBQaiZFI7DjI+/2LgOg68jw6hGR5PSblVz/6kXO+xgRkQDkXTCaMeYc4HagLHYzsAFYTPugtDastVHg3zGbTg+6RhERqhbA6ju82wuKnQ/FxL/Bxzt/b/EUdo3fLpKrmvbCh7+AF4+FhV+Gbe9mu6LkRWrh1WRW7LNO8reIiIRj51IS54jH6DU5fnuhgtFEJMsatoV/zLX3hH9MERERERGRXFS3Bd6/nLifNw07HUzc2zdERKTzKG/+aoCxxphD0xjr4uavNmbcfQ2O6VOZxrFEREREREQkWft9O+Dxvgsm/KlvdU011ER3u7b1Kx4YcjVtFXkGo0WwWrRaOqspP/UXWgTwYC94sAe8MAd2rchsXena9Aw8NRUe6ObUfX9Rc/3Nj9oNwRyn32HJBx2IdDYTv++v3+o7M1uHiOS3aKP79th50+O+DoWl7v1i1W1sPSf4Tz9nTmouhhBVLYR/l8H9xRDxWvMI2O87UFDk3S4i2TXhO2AK/fdf+lvnfcwTE6H88czVJSKdQl4FoxljhgAt7wxbPq29CRhnrR0NnO1zqMdahgTmBFagiEiLTc/Ebx/ymXDq6EhK+sCYL8bvkyg4TSQXWQsvnwQf/wq2vgyr/+lcZKt+J9uVJefJScnvU18dfB0iIuIumdWnxl+auE9xd/ftEfebwUREAqdzSRERERERkezZ8HD8G1YBhiezmIqIiHRw84FGnPv9DHCTMSbple+MMZ8HTqT1vsHnPbrOjHm+NtnjiIiIiIiISBoGHQNznkpvjMKu0Hs6zPwj7H9FMHUlqapxq2dbv+JBIVbSXlFBiWdbxEZCrEQkh3TpB8fOg9EX+esfbYSKV+GFo3IzQARg23sw/zTYuSSzxxn3VTj2OS12I5LIxP+CWTdBn5nOuYqXD6+CXZ+GV5eI5Bc/wWh9DoBjX4BBx0FxL38haY07nTmpCxLMvw5bzXqYdzg07Y3fb8K3YOrPw6lJRFIzaA7MeRIGHg1FPZzzocKuYBIEGu7+FF49I//my4tITsm36NSfAy3vGpuA8621/4lp97u0xSKcm62KgX7GmDHW2jXBlSkind6Sa+K3l/QOp46OZtbfYdXt3u01a0MrRSQwFfOdi2qxIjXw6Y1w+D+zUlLSdq9KbbWh+mroMS74ekREpL09SbzlHXpq4j7Fvdy3N+2Fpnoo7OL/eCIiqVAwmoiIiIiISPYs+U389uKeMFBr1ImIiMNau8sY8yRwFs79fQcCzxljLrTW+rrQbIz5GnAjreFqUeBuj+4nxTz/IOXCRUREREREJDXDToEL95neda/PwJ1Dbobx3wi+piRVN1a4bi+gkD5F/UKupq3iOJOOI7aRYrTYvHRS3cfAEXdDnwPh/R/522dvBZQ/BqMvyGxtqVj1D7BNwY139OMw/LTgxhPpjCZ8y3kAPDMDti9277f6n3BgguupItI5+QlGAxhwJBz3gvM8UgsPdPM3fvkjULcVyrIb5vx/1tzlo5OBmTcopFUkHww92XnEWvZHeP+Hiff95Ho48p7M1CUiHV5BtgvwyxhTCFyAc3OTBa7bJxTNN2ttBPgkZtOk9CsUEYmRKIW7WMFoKSlIkOf54X+D9ZuRKZIjPv2L+/Y1d4ZbR4umvVD1Nuz4KP7/JxuFbe87KxF9dHVqx6qvSm0/ERFJXjIBskNOTNwnXtBv407/xxIRSVXjjuwcd+OT2TmuiIiIiIhIrmjcA3Ub4/cZegoUloRTj4iI5IvLgdjl4I8Elhpj/maMOdYY03PfHYwx+xljLjXGLAJuBkpwQtEscLu19iOXfUYAc2ldYPW1YP8YIiIiIiIikpIBs/31G3RsZuvwqapxi+v2fsUDKDCFIVfTVpHxDj6LWI+gBZHOZMjJifvE8go2yrYdQeb9G+g3K8DxRISe+3u3Bfr/V0Q6FBtx3x4n/JiirtBtjM/xo7BzSfJ1ZcrS3ybu02O87i8RyWe94pwTxdr6kvIfRCRlCRJmcsphQMsNUA3A79IcrxyY1vx8RJpjiYi0VdTDCRfyEi9IQtJTvQj6H5LtKkT82/BwtitoVfkGvPmF1vCcwcfDUQ9ASZ+2/Wo3wssnpf9BWUN1evuLiIh/e9b663f6Kijskrjfvr8bYjVsh9KB/o4nIpKqSE3iPtN+BR/9PNjjfnoTDPtssGOKiIiIiIjkk/d/lLjP8DMzX4eIiOQVa+0aY8xXgLtwFnO1QDfgG80PjDG7gN04AWi9mr+CE4ZG8z4GeAu4zONQV9C6WOxe4PlA/yAiIiIiIiKSmjFfhMoE2dX9D3cmxeeAzfUbXLf3Kx4UciXtxQtGa7QNIVYikqN6TYE+B/oPPFv2O2jYBpN+CL0mZba2aBMsvwE2PQP1lW3buvSDvgdBUz1Uvw3VbwV33CEnQtng4MYTERhzMay7171t09Owazn0nBhuTSKS+6IeQcYF3uf4gPOa8/Gv/B3jpeNg1Pkw/lIYNDep8gJRtdC5337nRxDZk7j/6IszX5OIZM7g46BsCNRtjt9v7xZ4ehqYQigscz4DmvIzKO0fTp0dSd1mWPIbqHoLovXt26ddDSPOCr0skUzKp2C0lk+3LbDIWrsrzfFi92+34qSISFq83qC28Er2lsSmXwsfXOndvuo2BaNJ/tj1afx2GwVTEL9Pumo3wcbHYfsHsPLvbdu2vACLfwqH/K3t9gVf8h+K1qUf1HsEoHltFxGRYFW+AZufSdzv4Buh+1h/YxbHCfpt2OFvDBGRdERqE/eZ9t9Q9SZsfja44/p5PRUREREREelIok2w4T9QuwG6jmh/LWFfBcUw5ORwahMRkbxirb3fGBMFbsG5X69lSeiW4LNezY92u8b0ew4431rrtXLCXcADzc/3xOknIiIiIiIiYRr3FdizGpZe697e/3A46qFwa/IQtVEW7HrRta1/jgejRTRPRQSMgaMfgxfmtC4Yn8iq25xrIScuyGyQ0VtfgTX/8m7f+nLwxxw4Fw6/K/hxRTq7oSfDgCOd+/TdzDscTlwIPfcLty4RyW2pBqNNvQrqNsHqO8A2JT7Ouvth/UPOOdGwU5KvM1UVr8NLx7sH9bgZfylMiTNXXERyX0ExHDMPXjsHdieYLx87J736Ldj0FJz8LhT3yGyNHUl9tXOeWbPOu0/D9vDqEQlJPgWjDYh57r70RnKiMc/z6e9BRHJd4x5oTBAG0T03VjLKSyPOjh+MVrcpvFpE0rXxyfjt710OB/0xc8ff9j68fFL71YZirf4HzPhd65vLhh1Q4fOC27RfwX7fhtfOhopX27fXVyVfs4iIJOejX8JHVyfuZ4pgv+/4H7eom7NKg9tFFQWjiUgYIj7nM3bJwAoyDTugJE5ApIiIiIiISEfR1OBMHKpe6H+fsV+BErdMGxEREbDWPmCMeRP4A3A2rfftWZfuJubrGuDX1tp/JBg/iV9aIiIiIiIiEhpTAAf+Bqb9HGo2QFMdFBRB6SAnHKBscLYr/D+f1n7k2da/OPt1FscNRvMIWhDpbLqNhDPWOIvIN9VC4y5n7sZHv/Dep2E7fHoTHPynzNRUsw7WBBxQdvK7rc+LujffU2ehxwSINoCNQukAz91FJE0z/gjzDnVva9gOK/6e2TlhIpJ/vM7X45zjA07w0KG3wszrYfcKwMIHP4u/eLiNwLLrwg1G++QP/kPRpv3SeX8oIvmv91Q4bbnznqe+Gp47xF+I4+4VsP5BJ0xf/Flzd/xQNJEOKp8CwWJvfioMYLy+Mc81a1tEgpMo0Rag38GZr6OjSrRSglY5kkQad8HS66BqIfScDJN+AD2yFFZYtzF++/LrYfIPoesw/2PaKHz6V1jxV9i13Nm2/09g/yvbT0T64KfxQ9HAuSD2YE/n+bivwoCjnWMk0mM/ZzUCY6Ckn3uf+urE44iISOpW3e4vFA1g1AXJjW2MEwrk9lqulQVEJNNs1LlhzY9+h8Dau4M9/o4PYeDRwY4pIiIiIiKSi5bfkFwo2ohz4cDrMlePiIh0CNbacuB8Y8wQ4FzgCGA60B/oDdQD24F1wELgBWCetdYtPE1ERERERETySWEp9JyQ7SriWlm31LNtQEn2g9GKFIwm4l/Xoa3PI3vAO/fQUfl65mqpfBP3tQFSNPh46DszuPFEJHndx8Zvr3ojnDpEJH9EPeY+F/iM+yjuDn1nOM/7HhQ/GA2gagFEm6AgiFgOH5I5lxp2aubqEJHs6DbKeUy6DJb93t8+la8rGC0ZmXzPKpLD8ikYLTa1Y6hnL/+mxjxXKoeIBKcliMjLgNnQe1o4tXRUfQ+Gbe+4t0V1MU/iaKqHF+bC9ved77e+BOsfgBMXQI9x4dcT2ZO4z8YnYfw3nACaFvE+kHr7m7Dq1rbbll7nJGefusS5oSAacYIkNj+XXL2rbncefky7urXmLv3d+zToFExExJO1bV/7k7Xmbnjra/76miKYcGnyxyju4x6M1qjscRHJsKY6/31HXeCERDZsi9+vdDAccTe8dHziMV+YAxdE03udFhERERERyVWx1yBW3+F/v3OqoUvfxP1ERESaWWs3A39pfoiIiIiIiIjkhMqGzZ5tk7vNCLESdwpGE0lR/8OhdBDs3erdZ9cnsOg7bbdtexdq10P/I6F0YOt2UwC9D4ARZ0MXl4Xkd6+CdfdDUTcY9XnYszqYP0eLEWcHO56IJK+0PwycAxXz3dur34at82HQnHDrEpHc5TX3ucD7HN/TiLNhya8TH++N82DYGTDyHOe8JEhVC2HTs1D5GlS/BZEaf/t1Gw19sv/eSkQyZPRF/oPRVt8BZcNgyIkwcHZm68pVteWw4RFo2A5DTob+h4CNQvnjznvKipeh+3jocyBseCjb1YpkRT4Fo61v/mqAGcaYYmtT+8TWGLMfMCxm04fpFici8n92feLdNuHbMMPnyZx4i9Z7t+1cEl4dkn82Pd0aitaivhJW3gwzfhd+PX4+7Fn0TecBMPJzUP2OczFu8HFw6G2tF9dq1sMrp3j/H9izGv5dFkzdiRx+N4y+oPV7twt9APVV4dQjIpJPbBQ+/G/nd1NTAww7DQ66AUoHJDGGdUIx/Rg4F6ZfAwOOTL7Wkt7u2xsUjCYiGeb3oik4N56c/C4s/BJUvOrdb9Axzjn2ye/ABz9LHCJc9WZqr50iIiIiIiK5quI1eO8y2PEB9D4Q9vuv+Nc9Yw0/S6FoIiIiIiIiIiIi0iFUNroHo/UvHkRpQUj3YsdRaLynAjYqGE3EW0ExHHYnvH6u9wL3TbWw4ib3Nq8J6Euvg+NehG6jWretvR8WXAw24ny/5Br3hYhTNfwsGHNJcOOJSOoOvhGenubd/uJcmPZLmPbz0EoSkRzmdb4eJ/zYU9+Z/vpteNh5fPpnOGZecPd2LP8zvPv91PY97J9OyKyIdEx9psMB/+PMj/RjyTXOY/pvYMqVma0t12x7H14+sXWu/UdXO+eXFa/A+gdb++2tcOYwiXRS+XTWsACoAyxQBlwQv3tc34t5vtVauzydwkRE2qhZ6759xDkw669Q1DXUcjqkpjjBaHu3QuUCJ1REZF8rb3bf7jd9OmjJBDqA80amZo1zwW3jE/D8bCf8JhqBZw7MjWDAox6CMRe13eYZjBbgxT0RkY7io1/Ckt84r5GR3bDuXljwRef13q+G7bDzY399j3859WCf4p7u2xt3pTaeiIhfkdrk+ncfDcfPh5Pfg3Ffg8J9blIt6QP7X+E873sQHPMsHPtC/DFX/zO5GkRERERERHJRpBa2vATL/ggvHA3b3nFWDN62yAmY9qvXlMzVKCIiIiIiIiIiIhKiyoYtrttP6ntuyJW4KzAFFHmEo0UUjCYS39CT4LSVMCPA+SN7VsHSmPEa98B7P2gNRYP05k0MPgHmPAUnLXJCRE58C456EIqyH9QoIkDvqc7/z3g+/iXUbgynHhHJbVGP8/WCFILRAIp7+++77V1YdVtqx9lXww5Y/BP//addDeO/AYfcAmdXwKA5wdQhIrlr6lVw6lI45FaYeYPzGpDIhz+Huq2Zry2XfHhVaygaABbe+U7bUDQ/hp/p/D3PvAH6HRpoiSK5wHuZiBxjra03xrwIfLZ506+NMY9ba3ckM44x5kjgUpyANYCHAyxTRMT7g6rY1T8kPdE4wWgAzx8BPSc6H/73GBdOTZIfNj+X7Qra8lppyK/dnzrhOdvfc0Jwsq10EAw9uf32Lv3d+ysYTUSkLWth9T/ab9/8rDMptd8sf+O0+UAsgwq6uG/XzVUikmnJBgy36DsDDr3VubFt3X1Q/Y5zDjv2y9BzQtu+g4+DsqFQt8l9rFW3OWOJiIiIiIjkqzX3wIIvBDNW2ZBgxhERERERERERERHJopqm3dREd7u2DSjJnc9Bi0wxkdjQpWYRr6AFEWlVNggm/j/44Kfe4STJ2vR06/Mtz8PeACfzH3QD9Nrfed7v4ODGFZHg9J4av91Gnfls474STj0ikrui7c/hAfAIPk6oIMn9Nj0F+/84tWPF2voyNO3117eoB0z7RfrHFJH802uy8wDY9j6svCV+fxuBLfNgzMWZry0XRBvbvpdMx0E3KMdEOrS8CUZr9mucYDQLDAPmGWM+a62t8LOzMeYY4CGgADBABPhDhmoVkc6q4hX37WVDQy2jQ2tKEIwGsGu5s5L9Ca9nvh7pGGwUTEG4x0w10CHWh1elP0ZQDr0Nirq1317Sz71/fZUTAmRMZusSEckXTXuhtty9bcmv4ehH/Y0TVjBaYYn79qaGcI4vIp1XuufRJb1hwrdgQoJ+vad7B6MB7FzaetOZiIiIiIhIPtm9MrhQNIAeid5giYiIuDPGFAOHAOOAvkAPwFhrf5XVwkRERERERKRTqmzY7Nk2sDi3gtGgrt32iBY1FfGnoBAGHecsXByE2g2w9j7AwLLfBTMmQNeR0GNicOOJSGYUlsKA2VD5mnef9Q/BmC8mH2KUDbXlUP2287zvLOg2Irv1iHQkXufrBcWpjZfsXNidy2Dt/e5tvSZD72lgm2Dbu7Bnrfc4yZxDlfRJqkQR6aB6T4PSQYlDpJdcCz32g74zU39tzFU2CjuXOPOQrIWG6uDG7joyuLFEclAevItqZa19yxhzP3A+TjjawcAnxpjrgQeAdrOvjTGFwFzg68DncALRaN7/T9batZmvXEQ6jfInnDd+bsqGhVtLR9ZjAuzdkrhf5RvOG/DuozNdkXQE9dVQOiDcYwYRjBa0ISc5K5Eka+BcGPZZ97YuHsFo0XrnA3N9SC4i4ojs8W4rf8z/OH6D0frO8j+mmwKPYLSogtFEJMOaQjqPjiYI5X5qCpzf0PEuuIiIiIiISMe34ZHgxiodDIOOCW48ERHpFIwxRwGXAycCXVy6tAtGM8acDJzX/O02a+3lmatQREREREREOqPKRvdgtGJTQs+i3JnQ7wSjtdeoYDQR/6b9AqrehMZd6Y9lI/Dmhantu9934dO/tN9uCuHAa50QNxHJfQf8Cl45FZpq3ds3PwPPHgxzn4auQ8OtzS8bhcVXtg94nHQZzPh98gFMItJeNOBgtGTVV8KbF3i3lw115gP5nZPkx/4/CW4sEclfBUUw/Vp466s4MT8edi2DeYdBz0kw95mOkw/RsANePQsqXgl+7J6TwZjE/UTyWF4FozX7KjARmIHzqtcbuLr50Wb2tTFmGTAGaDkjNM37GOBN4IowChaRTiLaBG99xbs9Vz+0ykf7/xjmx1lFIVb12x3nxFfSU7MufnvdxiwEo8UJwMmGqb9wLvAt/xO89/+S23fYqd5t3cd4t216EiZ8K7ljiYh0VIkCM3evgh7jEo/j9yLExO/56+fFKxhNN1eJSKZFPG4cCVrT3sR9lv0vTNFHjCIiIiIiksPKH4O19wFRGHEu9D0IFv84mLFLB8GxL+THyuYiIpITjDHdgFtwFkaF1kVOY3ndCb0EuBgoaB7rLmvtB4EXKSIiIiIiIp1WZYP74u0DigdTkENhIEXG/TPZiO7dE/Gv/2Fw0tuw9l7YubR9+4aHMl/DxB/AzD/CwKNhy/NQv83Z3m0UjDgHBhye+RpEJBiD5jqvKU9P9e6z4wN49/sw+8HQykrKxqfah6IBfPJHGDAbRpwZfk0iHU3gwWgBB+HUbQp2PIBe+wc/pojkp3Ffhh7jnQU9l18fv++uT2DRN+GYZ8OpLdM++mVmQtEARn0+M+OK5JC8uzvVWltnjDkJuB84ltYboQzO6pEtwWcGJ0Dt/3aNaZsHnGetbQqrbhHpBCpfjx9CUaZgtMAMOhZ6TIDdKxL3fePzMOq8xP2kY6vbDE9Pj9+nthz6HBhOPS0SBeCEab/vwgFXO8/HXAxLroH6an/7lvSFUed7t5cNgd7TYMdH7du2L066VBGRDivR74Xyx2DyZaxdtZsAACAASURBVInHqa9M3KdsGAxP8+Kk18WXpgb37SIiQfFaUS9oQ050VgWN5+NfwegLodvIcGoSERERERFJxoqbnZvEWqwP8Cb74WfC7Ie14qSIiPhmjOkJvAZMpXWB01gt9/a5stZuMMY8DZzW3Pd8QMFoIiIiIiIiEpiKxs2u2weUDAm5kviKjfuipgpGE0lSz4lwwC/d2+4N4fpHt9HOdZaR5zoPEclvvafArL/Bom9599n4ODTVQ2GX8Orya/0D8dsUjCaSPhtx3+4RfNwhdOQ/m4gkb+Bs59F9DLz7vfh9N8+Dhu1Q0iec2jJp/b8zN7ZeZ6UTyMufcmttlTHmBODy5seAlqZ9vrZoCUrbAfwe+J1C0UQkUHVb4MW58ft0hBOvXFHUFY57Bd6/HNbdl7h/3VYoG5TxsiSHrf4nNO6M32f+aTDgKDjoT9B3ZihlEdkTznHi6TkRRl0IU37auq1LPzhhgfN/bOPj8fcf8hmY+QfoOjx+v36HugejNexIvmYRkY4q0e+F8kcTB6NFamHxFd7tZcOcVe5mXg/F3ZOvMVaB+81VRBWMJiIZ1rQ3nOOM/Dx8dHX8Pk11sPzPzjmxiIiIiIj4s/0DePtS2LUcek2G6b+GQcdku6qOx1pY8uvMjD39Wpj8I4WiiYhIsh4CptF6b18D8ADwMhAF/uljjEdwgtEATgCuDLZEERERERER6cwqGzyC0YpzKxityLgvaqpgNJEAjTof1t2f2WP0PzSz44tI+Pol+H8dbYDaDdBjfDj1xNNUD427oLR5ev7uT737bn8/nJpSsbcKoiHdVyySrojH4uAF7uf3HUJH/rOJSOoSnTMBYKFqIfSe1rqpdFBuva407oai7u730DXscOaKRuqgzv3zpkAU5GVklEhS8van3Fprgd8bY/4CXIBzo9NRwFCgIKbrduBN4DngLmttglQUEZEk2Si8dFzifoVdM19LZ9J1KBx5L4y+0Am0imfdvTDxB5qc0ZlVL/LXr/J1ePFYOOUj6DYiszVZ6/1hVhD2vwIOvDb1/XtOgDmPwaOjoHZ9+/ZDb4NxX/U/XnFP9+2Nu1OrT0SkI4rUxG+vfA32VkDpQPf2PavhlVO99x99ERxxd+r17UvBaCKSLU314Ryn1yQYe4kTtBzPhv/AjN/rPaeIiIiIiB+1G2He4U7IMEDVAuc6zykfQ/fRWS2tw9m9wrmpPmgzr4dJPwh+XBER6dCMMecCx9MairYA+Ly1try5fZTPoZ5tGRKYbozpbq3NgRXJREREREREpCOobNziun1giYLRRDqd/b7r3BcWjfl/1WsqTP8NvHamM5csHf2P8BkGICJ5pe8MGHQsbH3Ju8+8w+D0tekvcp6qxj3w1tecRduj9dBtNHQfC9Vve++z6xOYd6QzF6H7mNBKjWvzPFj0bdizKtuViKQv5ZCfOPeuT/4xLPtdiuMGSIE9IuKm3ywYMNuZKxnPK6e0/b6oG4y6AA6+EQq7ZK6+RCpeg7e/7iwM23UEzPgDjDrPadvxESz4UnjBskavs9LxFSTuktustXuttXdYay+01o4EioH+OAFpXay1/ay1p1lrb1QomohkRMV82Lk0cb/C0szX0hkNPh7KhsXv895l8MLRTrqudE7lj/jv27gzuf6paqqj9Z7vfQycA72npz72ft9LLxQt1oiz2m8rKIbhZyY3TlEP9+2RXcnXJCLSUUV8zNt5eJAzgThW01547XPw+DjnoqOXvgenV9++FIwmItkSDSkYDeDQ2+GwO2D0F7z71KyFHR+GVpKIiIiISF5be09rKFqLSA0suSY79XRkfj5rSkW/WZkZV0REOrqfxjz/GDihJRQtGdbaLUBF87cFwOQAahMRERERERGhrqmGPU3u084GFOdaMJr7pNdGBaOJBGfAEXDM8zD0VOg5CcZ9HY6fD8NPg6OfgMEnQulgKB3k/ogVu73nZCd07ZjntBCnSEc15wmY+P+82+urYeEloZXTzsIvw/p/t96LW7M2fpBbi6o34cVjINqU0fJ82bXcWVBeoWjSUXgEH6dl3FfgiPtg4Nw45ys+zkVMoff++57zuO6vwB4RcWEMHPOMMxe+ZxKX/CM1sOo2JzciW2o2wEvHO+cj4Cxc+sbnofJNaNwNzx/tPxStdFD7+Zl+X19b6HVWOoGc/yk3xkwHTgT2xwk8A6gClgHPW2vbvCpYay2wLdQiRSR51kLlG1C3EWrLnXCHuubHQX9x0vHzRfU7/vrpA+vMKCyFQ2+F18+LP8Gj8nVYfAUc8vfEY+5cCpuedSbmDDgKBh6tf798V9wTGpMI4PITdpiuSK1320F/di6e/aev80YtWVOuSL2udmP9zEmv3v6e870phFl/gy79khunuKf79sbd6dUnItKR+H3Nf+e/4OiYEM+P/wc2PJR4v+Gnp1aXF69VaaK6uUpEMqwpxGA0UwBjL3EeB/0JHh4I1uWmjg2PQJ80wo1FRERERDqL7Yvdt6+6HWbdDAWF4dbTkbm9d0lXl/7Q77DgxxURkQ7NGDMEODBm03ettXEumCf0CTCw+fkEYFEaY4mIiIiIiIgAUNm4xbNtQEluBaMVG/dFTSMKRhMJ1qA5zmNfw05xHiIiboq6wkF/hMrXYJvHvNPyR52AtGTnZqWrvhrKH0ncz0vNOtj6Igw5MbiaUrHmLrCR7NYgEqSCDMR9mCIYfb7z8PLkZNj1SfxxBh0Dxz4fv8+9BYD1rkNExE1RNzj4T87zl0+Gzc/533fNXTDzeih0/3wko9beA9GG9ttX3wEDZkPjDn/jdBsDZ6z21/eNi2Ddve5tmfgdIpJjcvan3BgzE7geOCpOt2uNMW8Al1lrfSYTiUjOePnE9ivCg5PUnk/BaIt/nO0KZOhn4LPL4JkDnQ/ovKy9B2bd5Exs97L6X/DWV9t+ODb+G04QVLz9JLeVDUsuGC2VMLJkReOEORR2cd6QDT8b1t6V/Nilg1Ovq91YA+DEN2DrfKgrh4FzoMf45Mcp7uG+XcFoIiKtNj/rr1/5o06wcNdhTjjQ8r/426/bmNRrc7PvigQt3D7cExEJUrxz6Uzq0tc5H3ZbGa/ildDLERERERHJS+vu827bvQJ6TQqvlo4uE9c6Jv1Q4XUiIpKKw5u/WmCDtfbVNMeLXTQ15FljIiIiIiIi0lFVNmx23V5kiuldlFtvP4s8FjVVMJqIiEgO6TXFOxjNNjlhRAOODLemncvSX2Br7b3ZD0bb8WF2jy8StO5jgx/TT1BOrymJg9F6Tcl8HSIivaYmF4wW2e0EtvackLmavCz7nfv2VbdBcS//4/Se6r9vvNdSo3v5pOPLybMJY8wZwL1AKWBimlriYmO3HQW8aoy50Fr7aEgliki6jHGCivasbN9WuzH8elL18a+zXYG06DrcCS97/TzvPpE9ULMeuo92b99bBQu/1H77yltg1IXuK73kOmud5OONj0NxTxhzsZPS3tkkuwpEZE9m6ogVNxit1Pk666/QUA2bnk5ubGMS90lGYSkMPSm9MYo8gtEiCkYTEfk/a/7lv++jw51gsmRCyIL+/aBgNBHJlqYsBaMBDPusezDarmXh1yIiIiIikm9q1sdv37tFwWhBCvpax8C5MOmyYMcUEZHOInZlrw8CGC/2l1z3AMYTERERERERobLRPRitf/EgCnJsgfUi4z4dMBJN8p55ERERyZyxl8CaO73bnz+q7fcTvg0H/I+ziG+Q6rfBh/8NFa/Czo/TH2/Nnc5j1AUw9SrotX/6Y/pV8Tp88kfY+ER4xxTJtNJBMPDo4Mf1eM/Qxtgvw4b/xBsExnzRx8Gsd5OfOkRExnzR+R0f7/VkXy8c7dxv2GL0RTDzeigdkF4tVW/Bst/D9sXugbIN2733Xfl3/8cZ+2X/feO9lup1VjqB3PpkFjDGTALuA8pwAtAsbQPRWmZy25hHKXCvMWZyuNWKSFq6DnPfXpcnwWir74QPr8p2FRJr2OmJ+8RLMH84zsluMknDueSDnzlhbxv+A6vvgJdOgPXxPqzooCI1SfbPcDCatfHDHAq6OF+Le8Dcp+DsCjhzAxz1UOKxR10YTI1BK/YIRmtUMJqICAC1m5LfJ5kAsuFnJj9+IgpGE5FsiRcy3KLHfpk5du8D3LfvrXBuHhEREREREXd1m+H52fH71FeFU0tnkey1kXj6zoLjX4ZCj8+DRERE4otdFnlXAOPFhqHtDWA8ERERERERESobtrhuH1A8JORKEisyxa7bG63u3RMREckZg+bCYXf477/iJicsLcjFg6ONzpgrbgomFC3Wuvtg3pGwe2Ww43qpfANeOg7KHwnneCJh6DMDjnsFCkuDH9sUJu4z7FQ4+K9Q4hLIWDYEjnoQ+s5Mr44CBfaIiA99DoDZDzuvPX7t3edznLX3wLzDIVKXeh3V78CLc51Mhj2roGZt+0c8fu7XK+kDB/0JRpzlv654r6V6nZVOIBd/yv+OE3QWG4bWCLwDbGj+fjhwEFBC23C0m4EMxOKKSEZ0He6+vTYPgtG2vgILL8l2FbKvwi5wxjp4bJR3n51LYOjJ7bdXvR1/7PrK9GrLhoYdzQnJMWwTLLkGRp6TnZqyJVKbXP8tL8CbX4RZN0Jxz+DqWHkrLL/BCb+Jt4JHYZe237ckVHdzX4msjSEnpV5fJnkFo0XroalBk6lERGrXZ3b8kecFP2aB+81VRBuDP5aISCw/N31M/01mjt1zknfbzqUw8CjvdhERERGRzmzVPxJ//rFzCXBuKOV0CkEtAlPSF45/JZixRESks4pdMrmXZy//hsY812oFIiIiIiIiEojKRvf7tAeU5E8wWsTq3j0REZGcMvYSWPcAbH7GX/9dy2DTUzDi7GCOX/6YM2amNO5w5srNuC5zx2jxyQ2JF3A/6iHoMz3ztYgEobg3lPbP3PjGZ4TIft+GCd+EmvVgI862gi7O/H9jwqtDRGTEmTD8DKjbCE0x66O9/nnY/p6/MfasckJUR1+YWg2f/qXtsYMy848w7DQntLLbKDAFye3v8TmQ06bXWen4cuqn3BgzFSfYzOIEoFngf4HfWGu379O3N3AlcHnM5iONMQdYaz8MqWQRSUfZMPftdTkejLZzGbx4TLarEC/dRkKvqd6rGGx5ESb/sP329Q/EH7dhR/q1hW3zPCd0al/bF0Pjbu+gqo6oyUfK8r7W3gU1a+CE14KpYc3d8PY3Wr9vjPMzVdDFfXu8EAaAnpNh1PnJ1xaGeAFzla/B4OPCq0VEJBfVbcrs+EFdHI1V4BFqmeiCo4hIutze58QacCQM/Uxmjl02FIp6QGR3+7bNzykYTURERETEy7Z3E/f56GqY+vNgbqwUaAwoGO2EN6CoazBjiYhIZxW7Et2UdAYyxnQBDozZVJ7OeCIiIiIiIiItKhs8gtGKB4dcSWLFxv3ePQWjiYiI5KAeE/wHowGsvjO4e/8rApoTF8/mZ8IJRqtakLjPwNlQOjDztYjkg4IkIkRMAXQfnZk6FNgjIskwxglmjNVriv9gNIBVt6cejObnfCMV/Y+EHuNT3z/ea7peZ6UTSDJKMOPOaf7aEor2PWvtj/YNRQOw1u6w1v4E+E5Mf4AMzPYWkYzo6hGMVrMu3DqSYaPw1P7ZrkISiffh39aXILJPSJa1UP5o/DHjhVjlKq9wOMh8+EouiTY6j1RUvg4rbg6mjlW3++/rFYyWKMzuM+9BoUdITbYVxal91W3h1SEikqtqMxgOPOx0KPT43ZIOBaOJSLbEC0ab8QeY+0zmJu0bA/0Pd29L9L5SRERERKQzK3/EX7+K+Zmto7OwFt77Qfrj9J4GvRIs2iIiIpJYy13KBhhtjEnnl8s5QMsFigiwMJ3CRERERERERADqo3vZ2dRu6hoAA0qGhFxNYkUek14jNhJyJSIiIpLQyHOT67/xcfj0Jmjclf6x480tDMqOj9pv2/gUvHsZLP091GxIb/ztH8DiK6AuwXyLgXMViiYSK1eCcpIJaBMRcTPyc8n13/oSvPlF5/Ha5+Cx0fDyKc4c/yaXuUjb3oMProI3LoLdKwIpuY1uo6HfwemNEe81Xa+z0gnkWjDarOavFlhorf1roh2stX8H3sC5cQrgkAzVJiJB6zrSfXvNWqjbEmopvr16VrYrED8mft9JKXcTrYctL7TdtnMJ7FkVf8wG9wudOc1a77ZtSaQj57t9g/CSteib0Lg7/ToqXvHXzxRBQaF3+9BT3bcf+FsoLE26rNCUxVktrUr3qouIJLxQl47Bx2VmXK9gtKa6zBxPRKRFk0cA49hLYPIPEwcKp2v4Ge7bd34Mu1dm9tgiIiIiIvnK7w3I5Y9lto7OYv0D6Y9RWAaz/p7+OCIi0ulZa9cAsR+cXZnKOMaYLsDPWoYFFllr07whQERERERERAQqG7znrwwszsVgtGLX7RGb4mLiIiIikjkDjoKpv0hun3e+A8/Phvrq9I4dRjAawJ7Vrc8XXwHzPwvLr4fFP4bnZsGOJamNu/FJeO5QWHpd/H7dxsAhurYtnZAx3m25EpRT4P7eRUTEt2GnwsQkFwhde5fz2PAQ1KyDzc/AW1+Dl0+Cpr2t/dY/6JxrLPk1rLs32LoBuvSDI+7xzrzwK95req4EYYpkUK4Fo02OeX5nEvv9K+a5lisWyRf9Znm3Vb4WXh1+LfqOk7gvua9LX/hcnCCrqgVtv694NfGY296FaFN6dYWtYZt325sXwqbnwqslmyK16Y/xZJqnF/FC6vZV2CV++9gvtd9mCmHUhcnVFLaibt5tNWth1R2hlSIikpNqN7lvT3fVIlMII89LbwwvXhco6jZBVCtPikgGRV1WaQEoSHAuHZThp3u3KcRBRERERMRd7wP89Vt3f3KfqYu7DY8k7jP2EmexIS+nr4YBRwRWkoiIdHotF4QN8AVjjMuFb2/GmALgVtreX5hw0VURERERERERPyob3e/fK6CQPsUDQq4mMa9gtEbrsdigiIiIZI8xcMDVcMqHye2340NY9Y/Uj7u3EvZWpL7/8fPhxLdg5g2J+77/E+drzQZY+rt96tgKS69N/vjWwuKfeN8z3GLuM3DqEug5MfljiHRkuRKUkyt1iEj+MgVw0PVw2gonZOzQf0Dv6amNVTG/9b46G4X3fwTWxxzIWX93jtvyiKelz9xngrv/Lt5raa4EYYpkUK4Fo/WOef5eEvu19DX7jCEiuazrMOg+zr1t09Ph1pLI8hthxU2J++33Xfftfj4AkmAVdYUR57q37btaQs06f2NuzLMJ7pufjd/+9jfaJht3VJEAFoiu2wTbP0h9/2T+nhOFOYw4F6Zd3fpGprgXzP4PdBuRcnmhmfrf3m2LvgWNcQINRUQ6uvpK9+29pqU+ZkkfmPMklA1OfYx4Ckq828ofzcwxRaRzqlkH7/0Q5p/h3DDRuNO9X1jBaF2HQ1+PsPf3Lw+nBhERERGRfGN9Lj6zdwvsTHG1aGlV8XLiPlN/ARO+7d7We3rmPlMSEZHO6k9ABWBx7vG73RjzG2NM10Q7GmP2B+YBFzXvb4GVwP2ZK1dEREREREQ6k8qGLa7b+xcPotAUhlxNYsXG/d69iJ/JvCIiIpIdvac59/cnI9HcwHjSve5e2BX6HwKT4iy21WL3p87X8sdwPsLfx9p7kj9+bTnsXBq/T+lgGHoyFJUlP75Ih2DiNOXI+xgFo4lIUHqMh9EXwrgvw9SrUh9nXfNtBrs+9ZcvUdwLJlzqHLfl4TVXvmxIa5+hJ0Nxz9TrjBXvtVSvs9IJ5NpPea+Y59WevdrbHvO8R0C1iEgYBs6BPavab19zF0z+MfSa3L4tbOsfhHc9As9iTfi281j9j7ZBTCV9YcTZmatPvJX0ct++b1BWnfsKT+2suz9//i2rFsKe1fH71K6HLS/CsFPDqSlbmmqDGWft3dAnxRRpr+AGN4UJwhyMgWm/gMmXw5410HNS/iQ6dx3p3Rath/LHYcxF4dUjIpJL6qvct/faH7a+mNxY034JYy9xPkwrcF8ZMhBxg9Eeh5EeIbUiIsnYvQrmHd4aILnxce++ic6lgzTiTNi2yL1t+Z9h4vfCq0VEREREJB/4DUYD57y/99TM1dIZJFr5e+ip0H2083zQsbD1pbbtEy7NSFkiItJ5WWtrjTFfAp7EWcy1APgJ8B1jzNPA+tj+xpjPA/sBJwKH48zsaJndsRe4wFrrMrtKREREREREJHmVjZtdtw8oGRJyJf4UeUx6jdjGkCsRERGRpAz5DKy713//rS/Bir85c8f6HZZcANiOj5OvL1Yy9+TuWQ0rb4EPf+bdZ9F/QY8JUNwD+s50FpDf+TFsexdsBGo3OfcVdB8NZcNg01OJjzv0FP81inQ2Jk5oWpjyZd6riOSXwcc7gWCpBMRvfBx2/n/27js8jure//h7dleSVVzl3ns3pts0B2x6MaYGCEloCSUhjSTkF3IhnRsCCUlubgoJkBB6B5tmbAOmmG7ce+/dkiVb0u7O749BV21mdnZ3Zov0eT2PHmvnnDnnK1lazc7O+cxSqFrnrX9hp5bb+l0Mi37RcvuAK5Kvxwu351I9z0obkGs/5aFGnydxZXSTviHHXiKSe3qdbgWJNWfGYN0jMN7moCCTYjXw9qXe+h75O+uEz+TX4bOfwL750OVoOPwuKO0XbJ1iL1xqv339ozDxfgi3sx57vXvChif9qSsTFtzhrd/m6W0gGO2gP+MsvRt2f2D9rnc5Krl9kwlGC7Xz1i9Smn8LwxKlW2+ZoWA0EWm7nILROo2FsqFwYJX3sUr6QqlLGKVf3ILR1j0Ex/87+BpEpPVb/oeGULREQhkMRus7DT5zuIBjwR0w/ObceUNZRERERCQXJBWMNh3G/Di4WtqCSHuIVtq3FXSEExu95zXpefjkO7DlZSgqh6E3wLAbM1OniIi0KaZpvmoYxk3A/9JwjV97oPmFOQbwSLPH9SFoUeBa0zQ/CbJWERERERERaVt21DoEoxXkajCa/Q1TFYwmIiKS48beZoWdHdrmfZ8Pb7L+7TASTn654QZYiexfnHR5TbitFWguegA+SHDzrZV/Tq+e5or7wOhb/R1TRPxnKPZDRAJQ2AmOuAs++V5q+88Y7b1v2GbNf+fDYOjXrWDYemVDYcS3U6snEYeA/IRtIq2EfspFJLv6ToOibvaLnHd/kPl6mvvo5sR9jAhMeq4hBb/rRJjyerB1iTcRh2A0gPe+Cic+Dod2OQeR2IlHcz891zRh9/ve+lauCLaWXBA75Nw2bSM8l0Rw4Y634JWjrQVD7YdDxzEQCife75DHIAdI7o4a+aagfbYrEBHJXU7HI0Xd4LCfwbtX0rDmJwG3YyA/JfNmp4hIqlb8yXvfTB5LdxgFpQPt7xJTtw8OboGSPpmrR0REREQk18WTuDvj7g/AjOviyHSE7BfFAdZ7I43vJF5QBhP+EXxNIiIigGma9xmGsRp4GOhB0zc/Gn/eOAzN/PzxLuCLpmnOyUStIiIiIiIi0nbsrHMIRivsmeFKvIk4nANWMJqIiEiO6zgazvwINjwJ22bBttcgXutt34pl8OktcNLT3vrvX+TcNvhqa13cop9D7KB9n0zerDhZR94LAy6F4twMsRUREZEMGPld6HIULPoF7HwbyidC2SCrbc0D/s0TsglGAzjmr9D7bNgxF8oGQ/9LoV1X/+ZtzO06SgWjSRugn3IRya5wEfQ5B9Y82LLN60mdoNTuhdX3uffpdxGM/Ql0PjwzNUly3EJBNj4FB7c2TeP14sAa6DA8vbqCdmg71O331nf7bIjHvIV75Su3E7QlfaHDCKhYntyYb19i/duuJ5z0DHQ7zrnv2ofgva94HzuXTxynK6JgNBERW7FD1l2S7BSVQ/dJ0K4HrP239WGErMXBTjIWjOaywFZExA/JBCdAZo+lDcM6J7DsHvv2yhUKRhMRERERacyMJdd36d0w+ofB1dOamSbUVdi3Hf+obmIiIiJZZ5rmbMMwhgI3At8E+jt0NT7/dxfwv8A9pmlWZqBEERERERERaUNq4zXsi+62betekJthGxHD/tq9uriC0URERHJeSR8Y+R3ro15dBTzZMfG+m16w1h6EHQI66pkm7HMIRjvmLzDsBuvz9Y/Bvs/s+zW+WbERATPJa3qD0u9CGPntbFchIiIiuaD7JJg8s+X23e/D/iX+zBEutt9uGND3fOsjm0KKjJLWTz/lIpJ9pQMdGlzCHjJh8wz39on/gsFJhB1J5rmFgphx2PMpLP9DcmMe2pH7wWgVS5Prv/IvMOKbwdSSC2KH7LfXnwSe8ADMPhVi1dbjSHuIeryW+tA2ePNcmLYJIjYvbvYtTC4UDZqeOG5tEi62MhK0i4i0UjX2F1UBUPT5nQJ6TrE+jvuX9XjzdHjzPPt9ImX+1ufEKXxURMQv+xYk1z/Tx9KH/dw5GG3WZCtEufc5EC7MbF357uB22DIdMKzQ76Lu0HUCtB+a7cpEREREJB3JBKMBzL/VuqC5rR8H1lXA1ldh32Lr8+4nQc9T3c+3x2ucL0ov7RdMnSIiIkkyTbMKuBu42zCM4cCJQD+gHCjECkPbDrwLfGKappmtWkVERERERKR121W33bGtW2FuBqMVOASjRU0Fo4mIiOSlgg7QcSzsdwgzq2dGYdd70GEk1FVa7xsXdIRISdN+B7dC3T77MTqOafjcCDnPFWp07evhv4FPb3GvLVO6HpftCkRERCTX9TjVx2C0HF/zb4SzXYFI4HIxGK3+IqaJhmEM9LhPz8YPDMM4iSSSNUzTfMtrXxEJgsMJlB1Z/tXc8YZzW6S9QtHygVswGsAn34HavcmNGT2Qej2ZUrkquf4bn2zlwWgOoS31wWjdjoPz18Gm56yTtr3OgFcnQPUGb+PX7oGtL1sLtJrb8GTy9YZy/EVSOhIFo61/BE54ODO1iIjkkppdzm31wWgtuL0Jmam/JS4vu93er5MFkAAAIABJREFUJBUR8WL/MnjlqOT2yfSxdKQEyo+F3R/Yt8+9ELocbd2BprBTZmvLVzvfhTlntHztHS62wkH7X5KdukREREQkfckGowGsexjG3eF/Lfmiaj3MmgIHVjdsW/576DgavjAdygY57Ofy/kZBB39rFBER8YFpmiuAFdmuQ0RERERERNqmnbVbbbeHCNGloFuGq/EmomA0ERGR1mf0rfDelxP3mzW55baBV8KEfzQEd2yf47y/52C0RtfkDrwclv0ODm5OXF+QinvDIK3pFRERkQSG3Qhr/wV1+9Mfy8jFSKZGcr0+ER/k6k+5ATyaxr5vJNHfJHe/DyJtQ8gliXTvZ9B5fOZqqWeasPqfzu2DPJxkkuxLFIxWuTL5MaOVqdWSSXUVyfXPdghh0GKH7LeHixs+b9cNhn6t4XH3SbDuP97nmHsRdD4c9s5PrcYmdbVLf4xcFUkQjAZQtRFK+wVfi4hILolWObelsljV8JwTnp6uE53bzDhUrIAOwzNTi7RuB9ZYr892f2gtpC8dCAMug16nZbsyCdKC/0p+n8YXa2RKl6Ocg9EA9nwET3WG4TfDqO9Daf/M1ZaP3r/WPpA8dhA+vBH6nA/hRnchPLAWlt5j3dmwxykw6Cr380x+MuOw6j7YPhuKe8GQa6HTuMzMLSIiIpKPUglG2zHX/zryyfwfNw1Fq7d/CSz6JUx0eC9zyW+cx/Rynl5ERERERERERESkDdlZZx+M1qWgm2MAWbYpGE1ERKQVGnQlxOvg/WuS33fdf6CoHI6613r83pX2/Yp7Q1GXRhvcgtEaXatZ3AtOexuW3Al7PoXaPVDY+fM1jGbLfVNZs5nIkOtg7O3Qrrv/Y4uIiEjr0nHk58cud8G6h9IbK1PrNFMVUlSStH65+lNuYgWcJbtPvRx/dhGRJuJR57aNz2QnGG3+re7tw7+RmTokPYmC0Zx0PgJqdkP1hpZtdXkQjBavyXYFucUxGM0lgGzEt5ILRgN/QtEA2xPCrYWXcJ/n+8NldXoxJiJti9PfKmh6p6XG2rncibKgU3r1eFWQYCHtzONhyhvQaWxGypFWqmIlvD4JDm1run3NAzDxfhh8VVbKkoDFDsGmZ5Pbp+No98DGoAy5Dlb9PXHIw4o/WQF/Z38G7YdmprZ8U70ZKpY5t9fshp1vQ8/P73a4fym8fETDa+B1D8P2N+D4NN+48mre1bD23w2PV98Pk1+HrsdmZn4RERGRfON0zNx3Gmx6zr5t+yyoOwAFZcHVlcu2vuzctvkF57Y19zu3pRLCLyIiIiIiIiIiItKK7azdZru9W0GvDFfinVMwWpw4MTNG2MjQTeVERETEX4OvSi0YDazrGY/8HVRvdO7T/AbEbkEfoWbHG2UD4di/JVfTIz4t9T/8NzD6h/6MJdKqKE5DRMRRp7Fw/L+tD4BoFTw/EGp2ZbUs3xlaiy+tn0ucc9aZSX6ksq+I5AIz7ty2f3Hm6qi3byEs/a1z+/g7rQXXkvtSDUbrf6lz0Ec+BKO5has4iVb7X0euiB203x4udt6n/BiYPCuYehIp6JideTMh7BDu09zOd4KtQ0Qk17iFeDq92dj5SPu7HZX0hw4j/KstkeMfcW6r2Q3L/5i5WqR1Wvm/LUPRADBhwe0QTxBGJcnZ+S7MOhWe6w+zT4OKFdmpo2J54qCxekYE+l8CU+ZkJ1y3y5FwzF+99Y1Vw4vD4NGI9YbKpz+07u4nlupNifscWAWf/cS6WGbG6JbB4Ov+Y7XNmuxjeLWN/UubhqIBRCvdzyeJiIiItHVOx/i9zoR+FzvvN/fCYOrJdbFDULvXub1ml/1r4kSvkxMF3YuIiIiIiIiIiIi0MTvrttpu71aYu8FoBQ7BaABRU9eiiIiI5C3DgG4npbZv7V44uA32L3Hu0+WoZhtcIgbcQtO8Gv7N9McA6HSYP+OIiIhI2xUphVGpBK3meAilgtGkDci1n/INKLBMpO0p6e3cdtD+TabAmCa8lOBEyeCrM1OL+CDF/M/h34RNz9m3RQ+kXk6mxGoS92muZhdE+vtfSy5wC5tx03MyXGHCoV3wTDf/63JS2Clzc2VD/0thwxPufdY9BD2+kJl6RERyQdzhb1XI5W9VKAxjb4ePmr1ZOO52f96E9Kqws3v76vtgwt8zU4u0Tm6BqdUb4cBq6DA8c/W0ZlUbYM4ZDa95qjfCK0fD1NXQLoPHwwC75iXuc+JT0P8i63V8Jp/37Ay9Dur2wac/8NbfjEHVeitEq3ojnPBosPXlC7fg/HofXO9trO1zYOaJcM5SKO2XXl121j1sv33jUxCrhXCh/3OKiGTagTVwcDsU94TSgdn/eysi+S8etd9uhGHMj61jKTvbZlqht50PD662XFSzO3GfaEXLczNV69z3aX5XbxERkQwyDCMEjAXGA/2BbkAx1vWCB4EdWNcPfgYsNk1T1xGKiIiIiIhI4ByD0QpyNxgtkiAYrYgE18mLiIhI7hpyHeycm9q+VeuhYpn72I0ZKa699GrwVdZNsr1cH+qkdAD0PNW3kkRERKQNG34TrH3QPUi2hVy4ftqlhlCuRUaJ+C+nfspN0xyY7RpEJAvcTkxkOoRq20z39q7HQXGPzNQi6YuncLejHlOgoAwK2tu3RyvTqykT4ikGo5W21mC0g/bbw8Xe9m/XFbqd4B7K4aceUzIzT7aM+kHiYLTV/4Txd2Y+gENEJFtSDfEc/g0o6QcbnrKC0vpdAn3O9r8+N5GSzM4nbY/TsVy9imUKRvPLol+2fA0erYR1/4GR381MDWbcChdb9jv3fic9C/2mWZ/nSkjLqO9Dp/Ew5/Tk9lv/GETaw7F/Df4Ck1zn9zmgaBWsuR/G3eHvuAAbn3Zue6IEjr0PhihYX0Ty1MFtMPMkOLCqYVvpQJg8E9oPzVpZItIKmDH77aEIdB7vvu/Kv1rHzG2Jl2C02v0tg9HcLnLveVp6NYmIiKTIMIxJwPXAWUBHj7vtNQxjBnCfaZpvB1aciIiIiIiItGl18Tr21O2ybetW2DPD1XiXKBhNRERE8tigL0PtblhyFxzalty+H98Mez52bm8/pOnjoK9b7XKUdc3vJ7c0vRapsUiZdf1ouARi1Y1qC1vr+Sb+S4EfIiIi4o9IKZzyKsy7Fna8AfHabFeUPkPHSdL66adcRLKvbDB0GAUVS1u2HdyS2VrW/se9/ch7M1OH+KPLUVgpuEncRLjbCda/EYdgtLo8CEaLpRCMtnkGdD4id0IF/JRq2ExjR/4e3jjbCpDzQ1E5nLcSPvo2rHuoYXv/S6D/xf7MkavKj4YxP4bFv3bv9/F34ISHM1OTiEi2pfO3qu9U6yNbwh6C0eJRvRkpqUt0krliGZDF34HWIh6D1ffZt7ldIOG3VfclDkU76o8NoWi5ptdpcN4qeDHJ0JjV90FhRzjit8HUlS+iVf6PufHpYILR3M4NmDF4/xrY+goM/BL0OgPCRf7XICISlHcua3khYtU6eHEY9DoTCrtApzFQ3Nt6jivulZUyRSQPOQWjGWHrYutj/wYfXG/fZ/eHwdWVq7y8H1G3v+W2qvXO/dtauJyIiGSdYRijgT8Dk+o3JbF7F+BK4ErDMOYAN5mmucLnEkVERERERKSN2xPdgUnctq17Qe8MV+OdgtFERERaMcOwbmg84jvWOoNIMTzi8fS62zW/A6+0myylEpNSv94hetD6Wsw4HNrZ0N6um3XNQDxqtYUKoGanFZimm7iLiIiI30r6wuRXrWOTugprW7gdPNUpu3WlSms2pQ0IOM5ZRMSjo/9ov71mV2ohT6mo3tQ0oKi5gVdC12MzU4v4o11X6HZicvsM/JL1b0EeB6PFHcJV3Cy8HT76hnUCsbVxDJsp9j5G+TFw9kKY+AAc85f0a5q2GQo7w3EPwpQ34Ih7YMpsOP4R6wRuazf+V1A+0b3PhseanugWEWnN/PhblS1e3mys3Rt8HdJ6xRO8HqxYlpk6WrtKl/WE6zIYVrv+Eff2/pfAiJszU0uq2g+BC1M4jl16t/XRlgURjLZvIWye7v+4Xmrd8AS8dT7MPAFq9vhfg4hIEGr2wI43ndu3vmL9vf7sNph3NUwfDdtd+ouINOYWjAYw9OvO+1YuBzOJm+C0Bl6C0Wr3tdx2cLN9307jrJtViYiIZIhhGJcCH2CFohk03NWu+Uc9u7b6/SYDHxuGcVGm6hcREREREZG2YUftVtvtBgblBT0yXI13EZfrzeviCkYTERFpFQzDChIDOPy/0x+v/fCW24bdaN+3uE/68zVX/7UYISju0fBhfB5zEIpAuND6utt1VyiaiBejfmC/vf2wzNYhIpKPIsUNxyORUud+RgaCZBNxq8FQMJq0fgpGE5HcUOxyN51D2zJTw4c3ubf3nZaZOsRfJzwGpQO89T3uIejw+Um+SJl9n3UPwRvnwvvXwTtXwCvHWHddeP0UWPFn6+4E2ZZqmODKv8D2N3wtJSfEDtpvD7dLbpzinjD4Khh2A/S7OPV6hnwNwkXW50YIenwBRn0PepzStpKZO9icUG/MjAcTYCAikoscg9GS/FuVDWEPbzh6Wcgr4iRe696+5gE4mKHXjK3ZwS3ObSX9MlfHjrfc2wdcnpk60tWuK1y8D/qen9x+n/4AZoyFJXdZd59pa6IHghl33lX+fz+TCSTf8zEs/rW/84uIBOWg/cIPR3X74IOvQdwh7EhEpLFEwWgAJz5l3ydaZd3gqC3xcj6l8XuoG5+Dedc4H3t2GO1PXSIiIh4YhnEJ8AhQQtNAtPqgM4CdwApgHlaA2kpgV6M+jfcDKAUeNQzjgsx8FSIiIiIiItIW7Ky1v2amc6QrBTl8s+sCw7m2qKlgNBERkVan/yXpjzHg0pbb+pxnfzP3IdekP5+IBG/AF+0DcZxCD0VExF4+r+3P59pFPFIwmojkBrdgtIPbM1PDno+c2wo7J7+gWXJDSW+YujZxv3OXwaArGx4XtHfuu2UGrP4nrH+04edmxxvw0Tdh7oVgms77ZkI8xWA0gM0v+ldHrggibGbYjTRcr50EIwKjvp/6vK1Jl6MS99n1bvB1iIjkAqdwlXwIRvNyJ6YtLwdfh7ReiYLRAF4aCxUrg6+lNavd49xWtz8zNWx9LXGfjmOCr8MvhR3hpGdh2iY45VU45TUo6Zt4v/2LYf6tMOsUiHn4+W9NolXBjFuzG7bP8m+8aLXz60wn6x6ywp9FRHJdKoskKlfC7vf9r0VEWh8vwWg9pzjvv3Ouv/Xkuv2LEvd55zLrZjmL74S5F1jh4U5KArijt4iIiA3DMEYAD2Bdl9g4EK0CuBc4B+hqmmZP0zRHmaZ5vGmaE03THGmaZg+gG3Ae8EegkqYBaRHgX4Zh6Db3IiIiIiIi4ouddfY3ZOxW2CvDlSQnomA0ERGRtqVsMEx0eT/Yiw4jWm4rKIMvvACRsoZtfc+HMbelN5eIZEZxTzjxSQgVNWwb+GUYfnP2ahIRkcyyC8gUaWUUjCYiuaGgg3NbLKCFsY3FY3DIJYDt7AVKTM1nhgHdv+DcXj6h5cm9ou6pzbX5Rdg2M7V9/eK0QHvk9xLvu/xef2vJBRuesN9ud0cLr3pOhpOehrKh9u2DvgonPQOdDwcjZC3s6nwkTH4dOgxPfd7WpN+FiftULA++DhGRXBBEiGemFJYn7rPgJ8HXIa2Xl2Comt2w7HfB19Ka1ex2bqurgLoDwdcwN8HxYXEvKBsSfB1+MgwrfKDX6dDrNDj8N9733f0+LLy94XE8CsvuhRdHwAtDYMHtwQWJZUuQX4+fIZ01u5Lf59AO2DvfvxpERIIST3GRxMwT4PFiePkIWPeYvzWJtEa1+2DetfBsX3h1Aqx9OLn9Nzxt7fd4CTzWDp7sBLNPg30egrSyyUswWmEnKB1k3+/dL8Ghnf7Xlau2vOKt3wfXw2c/TtyvWMFoIiKSMf8DlNAQiGYCPwP6mab5PdM0XzZNc6/TzqZp7jZNc4Zpmt8B+gG/+HyMemXAnwKrXkRERERERNqUnbVbbbd3K1AwmoiIiOSYwVfBxftg0nMw8V/J7TvsJue2nqfCRTvh1Ddh6hpr/HCRc38RyS39psHFu2HKbDh/Axz/b62FFxHxlZHtAtwZioyS1k9HNiKSG4yQFVIUO9iyLVod/Px1+8CM27dN+AeU9A2+BgnW6B/BrndbLu4zQnC0zTWzJWksEPnku3DO4tT3T1esxn57qAj6TIXNL7jvX7ka2vscOBCtgopl1gKnjmMg5Pxm7P8xTahaD6FCqNlhfV1GGDqMtO5I4cX2OWBG7dsiHsdw0u8C68P8/Brs+ucQI2QFINT3iUcBA0Jh22HaLC/PqxXLgq9DRCQXOAWjhfIgGM3L37eC9sHNH4/BgVVQOlBvwDZWtcH6vhd2znYl6Ys7HNs2t9XjgnGx5xaMBlYQlNdj8FRUrEgcijX85vw/pu5/CSy+E/Z7DKxY8hsY8W2ItId5V8HGpxvaFv3CCts69q+BlJoV0QAD+PwMJUslGA1g/1LocqR/dYiIBCHuIZTWSeyQ9Xz77uVWyHO/af7VJdKamCa8cTbses96fHAzvHelde574GWJ99/0Arx9cdNt8RrY9roVUnjeSmiX4o1fguZ0rt5odpzf5xxY8T/2fWedDGctyP/XBonEo1C11lvftR4veNd7nSIikgGGYZwATKEhFK0SuNA0zVmpjGeaZiVwh2EYc4FngNLPxz3NMIzjTdN815/KRUREREREpK3aWecQjFaY28FoYSOMQQiTlmtg6hSMJiIi0noVdoS+51ufb3oONj3rbb+ywe7t4XbQfVJ6tYlI9kRKoccp2Zt/wGWwXjdUFZFWquep2a4AOo5zbnMJzxdpLRT/JyK5I1Jivz3R4mg/uC1q7Xl68PNL8HqfCVPmwJBrG7YN+iqcNR/Kj2nZvziNYLT9S2D1A6nvny6n8IhwO2/BJOse8a8W04SFP4cnO8IrR8PLR8BTnWFNgoU6lavhpcPghUHwXB9rv9cmwqvHwFMd4bPbnMMM68UOwazJzu2dDkv+67FjGNZHKGx9GM3Sn0OR1r9IK1VH3uveXrMTavZkphYRkWxyCkYL50EwGlgBx26CCjrePB2e6QbTR8JTXWDpPcHMk0+q1sNLh8PzA+Cpcph7MURtwqfzhWl6D+eoWpffX2u2JQpGiwUcWL71Nff2DqNg5C3B1pAJoQI4430Y+1/e93m2NzzZvmkoWr1Vf4MDa/yrL9uCPP9Tudy/sRL9vjh570qIpRE4JCKSCc1vKpGquRdAXYCBlyL5bP+ihlC0xlb+b+J9Nz0Pb53v3F5XActtbgSTK8yY/Xaj2b3c+roEK+5fAltm+FdTrnIKkUtH+dH+jykiItLSTZ//a2CFo12faihaY6Zpvg5c32hcgBvTHVdERERERETatpgZZXfdDtu2bgU9M1xN8gocFr5GFYwmIiLSNvQ513vf3ucEV4eIyIjv2m8ff2dm6xARSUfj/In/Y8Cgr2S8lBZ6ToHCzi2395gC4cLM1yOSYQpGE5HcEXYIRgt6ATa4B6MVlQc/v2RGtxNgwj/gCtP6OO5B6OSQklvSN7253r8G3rkcFtwO866Gj26G3R9a4Q5BizkFoxVBxEMw2rYEoQRe1FXAhqfgteNg4R1NFzxFq2DeVdYiLjumCW9NsxaI2bbHYfGv4a0LIO6wkKp2L8wY41yfEYHeZ3n6UiRAzUPk7FT4GGAgIpKr8j0YbfSt7u3RKv+PgQ6stY4Xavdaj2PV8On3YdOL/s6TT0wT3jgX9n1Wv8EKUvo0j8Okkl0Ivnd+MHW0BbUJgp6CCqwyTdg2C+b/0L3fSc+0npP1kRI47OdwqU/f0zlnwr6F/oyVbTGH78nAK6HvBfZtw78Fx/2nZZhGczW7YadNAEkq3M4hJbLkN/7UICISFLdQ2lCSdxR7sj2seRCqN6VVkkirs/Yh++0751r/Rqth8wxY+TdYdZ8VAr7kLvjwm9br4EQW/9K6McmmF5zPN2SLYzBasxuLdJ8EBZ2cx/noZuv7s+uDxDdQyVdxn4PROo5NfAdwERGRNBmGUQSchxVcZgJPm6bp263hTdN8FHgaKxzNAKYahtFKThqKiIiIiIhINuyu20kc+/PM3Qt7Zbia5EUUjCYiItK2DbjMCsNIZNT3oePI4OsRkbar/BgY9o1m2ybAsBuyU4+ISCrG/heUDmq67YjfQrtu2amnsVAEjv1b02sti8rhyLuzV5NIBiVYMSYikkERh2C0aAaC0Xa+Y789XOxcl7Ruxb3TH2N9s2t8V/wPDPkaHPMXCIXt9/FD3GGxU6gICjok3n/n29bCqz4p3g2ichXMPh2q1rr3e2sanPQ09Luw6fa9nziHojW2+QV4ri+cs6hpgOG+hTBrCtTsdN63+0lQ6LKwSjLDaSFcY5XLodtxwdciIpJN+R6MNvBLsPCnLh1M62uMFPs358an7f+ObHoG+p7n3zz5pHKl/THUhqfg6D97CyTNNU6Bv05mHg/nr4PSAYGU06olCnoK4nV5tBrevhS2zHDvN/7XrfOCjEiJ9TqmJkEoXSKVK+Gl8TD+VzDm//lTW7Y4BfBFSmHAF2HTs023h4pg+Degw3DociRsfc16PTz/R/bjzDwejvkrDLs+vTrTCUZb+y8Y91/pzS8iEqS4wyKJcDGcvQC2vAwff8v7ePOuhkgZnPA49DnbnxpF8p3bscSBdfDW1PSDb+ddZf3baRxMegHKBqY3nl+czgc3f78kVABDvw5L77LvX70BPvz8wslBX4EJ/7Qu/GlNkg0KT2Skw515RURE/DURKPv8cxP4XQBz3ANc9PnnZcBxwJsBzCMiIiIiIiJtwM66rY5tXQt6ZrCS1CgYTUREpI2LlMDJL8HmF2H3+y1viFjQEXqcDD1OyUp5ItKGGAYc/Sfod4G1Vr/jKOh1FhSUJd5XRCRXlA6AMz+EzdOtm0L3PBW6Tsh2VQ36XwIdRsPWlyHS3sqAKOmb7apEMiKU7QJERP5P2CGALJaBYLT5t9pvL+oa/NySm8KFTcO2/LL6PuugM0hOARLhIjA8/ul/+1Ko2pjcvBufg3nXwovDEoei1Zt7EdRVNN225RXvcx7aBm+c23TbBze4h6KBtRhTsi/uYXFXxbLg6xARyTanUNN8CUZrPxSOe8i9j1PYTao+/YH99jUP+jtPPtnwpP32mp3O4Xu5rvkb9F7MOcv/OtqCA6vd22edDHPOhP1L0psnWg1LfguPGPBEaeJQNICRt6Q3Zy7rNsmngUxY8BPY5yFgOpc5BoUWQ++zYdxPG+5wU9gFjv2rFYoG1hvoI78No35oBfA4+fAGWPDT5J8XqzbCwp/Bu1fCsnuS27exA6v9/5soIuInp2C0UIF13D/iZjh/A3Q5xvuY0QPw5jkQPehPjSL5zu3mJR9/O/1QtMb2LYTFv/RvvHSYJphx+zbD5kYyY3/ibdy1/4ZNz6deV65yej5O1eCr/B1PRETEXv3drkxgqWma8/ye4PMxG5+k1B22REREREREJGW763bYbu8UKacwVJThapIXMexvGhL1++YbIiIikrvChdD/IjjiLjjq3qYfh/1MoWgikjmGAT2nwLjbrfAehaKJSD4qKofBX4Wxt+VWKFq9TmNg1Pdh2PUKRZM2RcFoIpI7IqX226MBB6O5ja9gtLatMIBgNIBVfw9m3Hpxh2C0UDuoq/Q2RqzaOXDEzsJfwNwLYM393vep92yfpo8XeFzwVG/3vIYwtdp9sOs99/5H/h7adUtuDglGaf/EfQ6sCb4OEZFscwpnCeVJMBrAoCvh7AXO7TGFwGRVvobwpBKMVrG0dS6KD1I8CpUJgtEAtr4KM8bA9jdTmyd2CGafBvN/6H2fk1+2LtporUbc7N9YZhzWJgipzHWJQr7H3QEXbIGzPoPz19qHOxgGdBjhPs+in8Gb53kPmziwFmYeDwt/Cusehqr13vZzUrEivf1FRILkdPwVanS3+dJ+cMY8OGeJ9bd60Fe9jf1aDl4gIJINBR2d2za/4P986x51DiTLJLca7ILRCtrDJR7fz9jyUmo15TI/F62dNd/7TXNERETSM6bR5+8EOM/bDnOKiIiIiIiIJKUqVmG7vVOkS4YrSU3EKLDdXpfKNVciIiIiIiIiIiIiOUhXwIpI7giX2G+PBRyMVrHcua1sSLBzS24L2d9FKW2bX4QPrvceUlYvdgg+/SE8XgyPGNbHm1Nhzyct+9kJF0E0iTk3PA4HtyfuV1cBi3/lfdzmogfg6e5QsdLbfHbeOMtaWFWzG+sG1C5GfDu1OcR/vc+BUIKgi9q9malFRCQTNj4Dr50Azw2A974KNXus7bGD9v3DeRSMBlDkEjy6b3Hm6mir7BaS1/vom94DgHJJqhfpfXCDv3W0dlXrklt0/8l3U5tn83TY9a73/qECKD8mtbnyRY9TYNLzVpBXouNiL5belRuhF6lyDPludBfmdt2h82FQ0MF5nPbDE8+17XV4rBBePwXm/whmngjTR8E7X4JDO5v2XfFnqN6UeEyvKpb5N5aIiN+cjhmb/50yQtBxFPQ+EyY+4G3sfQvTD5cUaQ3cjmOCEKuGR8PW+wkvjoDZp8Ou9zNbA4AZc25zej1bUAadDks89pr7oe5AanXlqriPwWidx/s3loiIiLvGF9gEecDReGxd1CMiIiIiIiIpq4rZn1suDbfPcCWpKXC41iRq5uF1YiIiIiIiIiIiIiI2FIwmIrkj4hCMFg04GO2tac5t424Pdm5pu1b9Hd48F0yXEK9oFRzcBrEaK0xkxhhY+tumwWebX4TZpzYNFIu5LCbvfU5ydXoJLtg1z3kBu1c1O2H6cNj8QupjfPztxMFvZy8Cw0h9DvFXQRmMTBCsUbsvM7WIiARt04sw92Lrb2v1Blj7b5h1ihVg0zyApV64OLM1pitS6tz25jnJh8JKctzuag3sAAAgAElEQVSC0TY8DvOuzVwtfnE6rgUoP9a57dA2qFjhfz2t1cEtyfXf+2ny31/ThJV/TW6fgV+CovLk9slHfafCucvgshr44qH0A9Le/ZI/dWWDUxhist+TDiO8993xBiz5Dex8xwosW/8IzDwB4o2CO5bdk9z8iRzc7O94IiJ+cnoudrjbvNVmwNTVEPGwQOSz26zznH4G/oiId5UrYNtMmD0l80GFbmHMhstNao7x+DrincuSqyfXJRNe7ab3uf6MIyIi4k2PRp8HebDReOyeAc4jIiIiIiIirVx1zP56tpJQfgSjRRzew4v6dY5ZREREREREREREJMsUjCYiuSPsEIwWCzAYLXrQCqawY4Sh07jg5hbZ8RbsW2jftvxP8Fx/eLYXPN4OXhoLB9bY963dC4t/3fDYKaQs3A56ne6+yKi5RCEJO9+BOWd4Hy+RD76e+r6r/gY1u5zbz5oPncakPr4EY/ydMOF+53YFo4lIa7Hyz0CzQNR9C2Db61C53H6fsoFBV+Uvp+P5eusfzUwdbZVbMBpY33+nEL5c5RTMAXDSs+77bnnZ31pas3gKd4nd+pr3vvuXwDPdYfus5OY4/K7k+rcG4SK4cJt7n67HQZejnNs3PBl8wHxQnMIQw0XJjVM+Ib06KlemF9qdSPRgcGOLiKTL6e7xiUIqywbDWZ/CkK+591v3sHWe8+lyWPdIajWK5LtUjr/rlQ5s+r5V1+NSGydaBQt/mnodqTBjzm1ur2e7efwat8yAPZ8kV1Mu8ytActgN/owjIiLiTeO7HAT5Jm/92AbQJcB5REREREREpJWrih2w3V4aLstwJamJOKwJiDq95yciIiIiIiIiIiKSZxSMJiK5I+IQpBDkgt6KZc5tfXQXdcmAj29u+BmPHrQCBuZeBB9/C2r3eB9nxR/BNKFmD8QcFllHyqCwExz9R+/jVm+0/q07YIVLrH0IDn6+UL92H8w+3ftY6ep1lvU1OInXwaYX7dtCRdB5fDB1SXoMA4ZcDcc7LIat25/ZekREghCtgq2v2rfNOQNih+zbOowKrqYghMJWEKuTNQ9mrJQ2yTDc280obHwqM7X4xS0YLVICF7mE4u5f5H89rVUqwQyf3gJbZzZ9/qraAGv+BUt/B5/9Fyy4HeZeAjPGuAcY2xl8DbTrlnxdrUFhZ5i6Fkr6N9powBH3wBUmnP4unPkRlE+039+MwfY5GSnVd06/84nCeJrrcYr7a0cvdr0H+xbBpz9Mbf+icuc2p9fsIiK5wOm4IGR/t/km2g+BCX+Hy+OJ+9ZVwLtfgvevs44dVv4N9i1OrlaRfJVqMFpRV5i6Bs5eYB0XXmHCqW9CuDi18dY86F/4lhepBqMB9DzV2xyL7/ReT64zffi/6X8J9Doz/XFERES8a5xuH2QwWuM3kF3elBARERERERFxVx23D0YryZtgNPv38OoUjCYiIiIiIiIiIiKthP3tIUREsiHsEIwWCzAYrXKFc9ugq4KbV/JD6SDYvyTYOXa8Ba8eCxMfsBYC7luQ+lgr/mwFkjhpP9T6d9iN0PU4WPJbWO8QRlVvyW9gwOXwzmUNQYKhQjjpWajZ6f33s9cZMPQGqFwO83/kbZ/GinvBKS9ZwQuvHOX8/7L5BfvtBe2Tn1Myq7CT/fa6fVboX6KwFxGRXHVgLcz2uIC3uQ4j/a0lE8LFzkFvu97zZ46oAmVsuYWI1TuwJvg6/OT2NYUKrXC0IdfB6n+0bHcLwZamUglmiNfCnNOhyzFw8nTY9jq891V/Fu8bIRj+zfTHyWdlA+Hs+bDxGSuQuvskKD+maZ9hN8Luefb7v3kuXB6zvpf5JF5jvz1UZL/dSbjI+v4s/W3qtSz9bXr7n/mp9dq1ZmfLNgWjiUgu8yOk0jCs4KaXDkvcd/U/G+8I438JY37sfS6RfJTqYqQBV7Q8RxoqsM7fr7k/tTF3vQfdT0pt32SlE4w28EvWa45ENj4FS++BUbckV1suSuW11ZG/h8Iu1g1vOh8Bvc/SeXUREcm0xidxglyB3fgPpYcUZxERERERERF7VbFK2+2l4fy47rzAsH8PL2p6uI5MREREREREREREJA/k2eo4EWnVIg7BaNEgg9FWOrf1nRrcvJIfMrUYf/9iKxwtnVA0gI9vhg9vsm+LtIfi3g2POx8Oh/3c27gvH940WCJeC+9eAfsXea9twj+g3zQYfSu06+l9v3r9L7P+DbeDsz5z7le1zn57QYfk55TMKnAIRovXKThARPLbrMmphVGVDoKC/LjzZBO1e93bTTP9OaL2d+ps87wExh2yCejJZU4hSdAQlNTlSPv2nW9DzR6oq4Sld8Pbl8IHN8C22bDxWZh3LbxzBaz8K8Rc5mkL0gkz2/MhfPZjmHe1P6FoAEf+Aboc4c9Y+aywMwy51gp1aB6KBjDoSvf9NzwZTF1BcvpdDCcZjAYw7o70aklVuAROfAJK+0H3L9j3SfS3UkQkm5wCU0NJZg10HAtlQ5Oc3ITPfgJ70zxHKpLrUgkm7nUGjP+FfdsRd6Vey+uT4OPvwJ5PUh/Dq7SC0b7s/f2aT78P+5J47yJXxVN4fTXyOzD4KzD2NuhztkLRRERERERERERERBJwCkYrCeXHdXsRI2K7PerXNTwiIiIiIiIiIiIiWaZgNBHJHZFS++3RquDm3Pm2/fa+08DQU2Sb12MylA7IdhX+6DCy5SIYp985L+r2w8ZnvPXtOBpK+jY8Hv+r5Ocr7tXweSgCo36Y3P6R/LhzV5tW6BCMBvBRhkIKRUT8tvZh59DORHqf5WspGdN+mHu7H2EwsUPu7aksHm4N4gm+LwCHdgRfh5/iDncvNUIQ+nzhfIeRzvs/XQ4zRsOnP7BColb9DWZPgbkXwpr7Yf2j8OGN8OZUiLXhO6WmEszQ2Op/Ov9fJevsRTBCx36eGCE4/hHn9tX3Z64Wvzj9HIXs73DsKlIKR/9PevUkq+fpcMEW6H+J9ThcbN9v7b8UyCgiucvxuTjJYDTDgDE/SqEA03qeFGnNkj3+nroaTn7Z+eYfReUw5rbU61n+B3htImx5OfUxvEgnGC0UhqP/BGd6DHB7aRyYce+15aJkF601vjGOiIiIiIiIiIiIiCRkmiZVMfsbdJaF8+O684hh/x5e1EzzWiARERERERERERGRHKHUHxHJHeES++2x6mDmi1bB9tn2bZ0OC2ZOyS/hQjj1LWtxc77rPqnltnY9oGxI6mMeWOOtX79Lmj7udXrywYPdTmz6uKRPcvsX5Mcb1G2aWzDamgf8CdIREcm0T7+X+r4DvuhfHZnU7ST39ppd6c8RO+je3laDFKIJvi8ANTuDr8NPTmFljUOSOh0GGPb9AKo3JZ5n22vOrw3bgnSD0fzSYzJ0GpPtKvJL7zOd23bMgdr9mavFD3GHsLBQUWrjZTpktOsEKOzY8DjiEIwGsG1W8PWIiKTC6bgglZDKwdfAkb+D4iTP4y37HTxiNHxMHwXrn0h+fpFclczx99DroWxwy5ueNDfwivRreuNsiLuEl6XLLcQ8UTBavc6HQ+lAb323z/HWL1clG/o+9vZg6hARERERERERERFppWrMQ8SxPy9ekufBaHUKRhMREREREREREZFWQsFoIpI7Ig7BaNGAgtH2LXZegNLn3GDmlPxT2h8mvwqXRRMHfeSy4d9ouc0wYMz/C3bekr4w6paW24Zc532MHpOh68Sm25JdUFnQIbn+knkFLsFoANvfzEwdIiJ+qd4Eh3akvn++HncM/6b7gubqjenPkSgY7f3r2mZwQvxQ4j75FjQadwhGa3xRX1F5y2PFVGx9Lf0x8lUuXAxphOGIu7NdRf4p7Ax9zrNvi9fB1lcyW0+6nH7nwykGo5UNhgGXp15PssLtmj12CUZb/odgaxERSZXTc3HIflGFK8OAkd+FCzbBJZUwOsXzkBXL4J0vwpoHU9tfJNckc/w94lve+nUcDX0vSK2ext6+2LktWg3Vm1Mf23QJXQtFvI1hGDDmNm99t8301i9XmS7BaCX9mz4uGwr9Xf7vREREMsv8/N+JhmFMCuIDmJDNL1BERERERERah6pYpWNbabgsg5WkzikYLWo6vOcnIiIiIiIiIiIikmc8XmUsIpIBYYdgtFhAwWg7HO4WHymFLkcFM6fkr1AYht0IO+dmu5LkDb4GygbZtw25Foq6wtqHYOPT/s7b+1yY+E8osLlr1jF/gY7jYMsMKOwC7bpB1QaoWtfQp7CTFYo26vvWgqfGinsnV0skP+7c1aZFiq2fhdo99u2NfzZERHKZacKiX8DCO1IfY+rqln/78kWXI+DMj+Hlw+3bZ59qLWI+7Bepf42JgtEAVv4ZBlya2vj5Kurh++IUDJ2rnBaCNw/mGPRl2PVeenMt/70VpjvudjDa2H0E4i4L7oPSYwpEq6xgu4KOMPpW6HxY5utoDSY9D486/Mxueh4GfDGz9aQjVmO/PVSY+pjH/RsqlsPeT1Ifw6tQEsFo29pwGKOI5Dan48V0nosBCspg/K+g4xhY/xgc3Aw1O61Aaa+W3g2Dr0qvDpFc4PV12eCrrMAzr058HJb9Hra9DiV9YOj1VoDWkv+G3R/C7nmJx9j0HBxY2/T9hHgUPvkerPqrVXuHkXDik9BprPfawD0YzS1gvbmh11nvaax7CDY+S0P2SjNLfgOH/3dSJeYUt5+T09+znhP3zbfezxx5i/XaSkREJHcYwKMBz2F+Po+IiIiIiIhISqpjBxzbSvIkGK3A4eZGUbebb4iIiIiIiIiIiIjkEQWjiUjuiDgEo0UDCkab/yP77e2Htb2F8OJNvwuhz3mw+cXs1VDcx1o4mIwRN7u39z3f+qjeBM/1S722xkbf6r7oyAjBiG9aH6ko7Z9c/8JOqc0jmTXkGmtBl53YoczWIiKSqvWPpReKdsTdUDbYv3qyofN4KOnrHHKw+FdQOtBazJwKL8Foez5Nbex8Fvfwt7J6A1SuhvZDgq/HD06BXaFmp7OGXAcf3pT+fIt+ZgUADP5q+mPlEzPDgXmX1bX8P5TUGYYV4r3yLy3btsyAWC2E0wyzcVO7D7bPgeqNYESg8xFQfqwVLp4MM+4ShliUen2hCBz/MMwYlfoYXoWbB6O1s+8nIpLLHIPR7BdVJMUwYNCXrI96Myd5vxHF/sWw6j7rPGa77unXI5ItXoLRyo+FI3+f3LihAhj9Q+ujsaP/aP27+E747MeJx3lhMFwWbTieW3YPrPhTQ3vFMnhpHFxWm9xzg1/BaAD9plkfAM/0hEPb7ftVroL2Q5MbO1c4HRsbESjpDUf9LrP1iIiIJCcToWUO6agiIiIiIiIi3lTFKm23GxiUhEozXE1qIoZDMFq+3TxTRERERERERERExIGSf0Qkd4QdgtFiAQSjLbnLua39cP/nk9YhXAQnPgVfeBFG/dChj8PPsV9OSPLGyl2Pg07jvfUt6QtT1yZfU3NTZruHovmhuLcVqOKVfq/zw9DrndtqdmWuDhGRdCzzsHB5wv1w6QH4wnToMcX6OzXup3D6PBh1S+AlZkRRV/f2DU+kPnbUQzBatNIKA2pLvHxfAKaPgEW/CrYWvzgtnDeahWqFCmDqan/mnHcV1OzxZ6x8kemLIRWK5r++0+y311XAno+Dm3fvfJgxBuZeCB9/Gz76Bsw8Ht6alnzIfdzlOTuUZrBbhxGZeU3YIhit2LmvHwFDIiJBcHo+dlhUkbZhNybX/4Ovw/SRsG12MPWIZILT8XdxHxj3MzjhMescu983+xj0VYi099Z37b8aPl/zoH2fN85Nbn4/g9EacwuQe3EYmHmameI1KFxERCR3mQF/iIiIiIiIiKTFKRitOFRKKJ3z1hnkFIxWl+mbJIqIiIiIiIiIiIgERFfOikjuiDgFox0CMw6GT1mOsRqYf6tze+cj/JlHWqdwIfQ51/rofRa8db612Byg7wVWcNnci2HLdP/nHn8ndDsxuX0m/BOMJG7GXNInufEbM0JwxkfQJQO/Q4ZhLf5ffq+3/h1GBluP+KP9UOc2BaOJSD7Y9jrs+dC9z+BrYMjV1ud9zrE+WqNEwWjbZqY+dsxjAFjtbijulfo8+SZ+yFs/MwYLb4deZ0D50cHWlC7TYSF482A0sEJzi7pBzc705517AZz6Zvrj5ItMBqP1PD1zc7Ul3U+GSClEq1q2VSyFbsf5P6dpwvtfh4NbWrZtmQ7P9oYzPoAOHgPJYjXObeGi1GqsZxgw6VmYfToc3JzeWG6SCUZzaxMRySanRRLphlQ6GfBF2DUPVvzR+z61e2H2FPhijXWuViTfOP2e9Z0K424Pbt6S3jDxfvjwBqjZ7d73/Wth0/PWa4WKZfZ9tr0G+xZDpzHe5g8qGC3Re3qPhqDfhRApg24nweCrIZQHC9ocXw8rYFdERHLaBhRaJiIiIiIiInmiKn7AdntpuCzDlaTOKRgtqmA0ERERERERERERaSUUjCYiuSPsEIwGVvhBpNSfebbPcW8f9BV/5pHWr8fJcOEO2PMRlPSF0gHW9iHX2gejTZ4F7YfBkjth5V8Sjz/xAeh0GBzaAeXHQFF5cvVN22wtdkpGqAAi7SFqfxcsRyX9Yeoqa/9MSSYYreOoYGsR/wz/lv1iWAWjiUiu2/U+zD4tcb/eZwZfSy4o6hbc2F6D0WraWDBazGMwGljB06v/kcfBaDaL2I0QDLsBFv0i/Xl3vAU73obuSYYS5yun73MQhl6XubnaknAhdBhtH875/rUw5Br/59y/2D0MtG4/vHosTH7d23NNvNa5LZRmMBpAx9Fw/nrr9fvye2H9Y+mP2VzzYDTXvgpGE5EcFXN4Pg7qnJ8RgqP/AKO+D/sWwLJ7Ep+/r/fmeTD51WDqEgmSUzBxJgKv+l8MPU+FihVQuwfeOMu57+YXEo/30li4PObtxkZBBaN19HBTlI3PWP+u/TdsmQEnPZPcDWWywel1WkiXd4iISO4yTXNgtmsQERERERER8ao6Zn+tfEm4fYYrSV2BgtFERERERERERESklfNwlbKISIa4BZ9Fq/2bZ/8S9/Zkg6SkbQsXQbcTGkLRAPpNgwn3Q9kQMCLQ/Qtw7groORlK+1mPvRh8FXQ50gpQSSYUrctRcObHqf8sF3VJfp/T3s5sKBpY3/d2PRL3K+nX9P9HcltRV/vtmQxG2zwdZp8O00fChzdBXUXm5haR/LXwZ4n7RMqgVxsJRisdGNzYyQSjtSVuoUJ2Vv3NCkjLZfEkF4KPvQNG3+rP3J98z59x8oFTMEO6Jj0H3U+2XieUDoJj/wb9LwlmLoEOLoEQ+xb7O9fuj+ClcYn71e2Hxb+ybzuwDuZeBC8dBnMvhj2fOI8TKkypzJbjhKHrBDj+YRhzm/V6MlIK/S5yfu7oMML6OfY0frNgNLfASgWjiUiuclok4ddzsZPSftDnHDjS400QALa9Bi+OgE3PB1eXSBCcjr8zdX69sBN0PdZ63+HY+9If79EwVKxM3K92j3NbOsFoAOd5mL/epufg0RDMPsM6rs1VTq+HDQWjiYiIiIiIiIiIiPihKnbAdntpqCzDlaQuomA0ERERERERERERaeV05ayI5I5IiXNbzMdgtNq9zm2j/59/80jbNuRq6yNe13JBk5eQro5jndsGfhnWPWTfdvp70HWi9zrtFHaGqvXe+5dPsBYvZlooAuN/De9f695v7E/AUBZs3mjnEIxWvTEz8295Bd6aBmbMelyxHPbOt8L/9HMkIm52vp24z2G/gIL8uaNkWsqPDm5st6CZxmrbWjCaw6JpN7s/shbE5yozyYXgoTAc/t8w/k6IVkKoqOG1ZEFH62/5snvhk+8mnnvPhxCtcg/wbi2CCEbrfQ70mQp9z7d/TST+6+gSjLbhCejkIcDTi8pV8Oox3vtveq7ltpo98MKghsf7FsLGp53HCBd5n88LIwTjf2n9XTZj1mvLmj2w5kE4tL2hX9lQOPNTiBRbX/fME5u2N1fQoenjeI1zXwWjiUiucgrbzdTf8s6HWccQm1/w1r9yhXUe5wsvQp9zg61NxC/ZDkZrbOh1sH8RLP9DeuNMHw7nb2h4n6Bmj/X1FLQH04TqDTBrsvP+TuHXXrUfagXRb33F+z7bXoMdc+CsBe7H0tni9Ho43e+ViIiIiIiIiIiIiABQ7RCMVhJWMJqIiIiIiIiIiIhIrlC6g4jkjrBLMFq0yr95Nj/v3Nb/Iv/mEQH7xUxdjobiXu77DXEJ+xr6NfvtA7+cfigaQGGX5Pp3cglxC9qQa9zbT3gMhn49M7WIP0oH2W8/uAW2vBr8/Kv+2hCKVm/Xe7D30+DnFpH85hbkWzoATnoGRnw7c/VkWxcPwWjzrk4tkCl20Fu/mjYWjJbKBW2vTYDqzf7X4pfmf5PrJVoIbhhWQFG4yAr9LezcEHDqFsjd3BNlsOZf3vvnKz+D0bpPgsN+aT3nGYa1TaFomdHbJQxm0c/9+39emELA2paXGz4/tBOeLk9u/1Bh8nN6YRgNzydFXeDsBTD0BitUY+QtcPq7VigaWGEbp70DJX3tx4qUQnmzwDincCFQMJqI5K6YUzCazyGVbk562gq67TDC+z4LfxpYOSK+c3rtlq3j5jE/aRnwmoo198PB7TBrinW891RneLobPN0Vnh/ovq8RTn/+k2ckv0+8Dhb/Ov25g+AUfu4UFC4iIiIiIiIiIiIiSamKV9puLw3nz41PnYLR6hSMJiIiIiIiIiIiIq2EgtFEJHe4LVCPugRNJKOuEvYtdG7vcpQ/84i4CUXgiHucFxSWT3QP/Op2Agy+qum2rsfB0X/0p75kg9E6jPRn3lRNfMB+e4dRMOCLma1F0uf28/TGmXBoV7Dzb3IIz1xyV7Dzikh+M03nAKeux8H566DfBQ0hQW1BSb/EfdY8CJ/emvzYXoPR6iqSHzufOS2aTmTuhf7W4acgFoK7BXLbmXcV7Pk49flySfVm2PgsbJ9jPW/VMx2+z50Ph4jHu+D2vQAuj8Opb8LY2yAcUJCVOOt8WEMAoJ0Pv5H+HPEobH4x+f3eONsKRAN45/Lk9w9nKIynXXc49i9wystw5N3QrlvT9vZD4PwN0P+SptuNEBz955Z19r3AeS63/ysRkWyK19hvz+Tf9lAExvwIzl0GV5jWMUYiez6G6k32bfuXWMdAez7xt06RVDkF1josXgpcu64wOoXX5s3tfBee6wvbZ1uPzRjU7ILaPYn39SMI1wjB5NetwNpkrHsIFtwBH94E6x+H2KH0awEw47D3M1h1H2yebr0/mdT+CkYTERERERERERERCVJVrPUGo0UVjCYiIiIiIiIiIiKthK6cFZHcES52botW+TPHK0c7t42/0585RLwYeDl0GmctEorXQlF3qFwJHUZA/4sh3M55XyMEE/4J/S+FXe9Bh9HQ97zkF/w4KeycXP9uk/yZN1V9p0H4ppYhKQOvyE49kp7S/tbPv9MCtG0zrd+fTDu4NfNzikj+cApFAzi8jQYrGoZ1TFG7173fhifgqN8lN7bXYLR4bXLj5junxfWJ7P4A9i2CTmP9rccPjgvBw6mPmcox85LfwIlPpD5nLlj9AHz0jYbfn24nwMmvQEGZ889OST+YMhuesglO7n02DLgCqjdAx9HQZ2rbCn/MVVPXwfP97du2vpr++PsWQN3+1Pbd8CT0OQe2z0p+X6dQ8WwwDDjhcRhwufV6vLCT9fvQ+fCWfTuPdx7HKXhIRCTbnJ6fsvlcbBhwzlKYMcq938xJcP6aptvm/+jzsPvPQ2EHXwUT7tdxi2SX0/F3KEvBaAAjvgMLf+pcW98LrGN/t9Doba+lNnf5RP9CY3tOgbM+g43PWPXGDsHqfyTeb9HPrX9X/sX697yV0H5o6nXEo/DulbDh8YZtpQPgCzOg0xhvYzi9Hg7p8g4RERERERERERERP1THDthuLwl7vIlgDihQMJqIiIiIiIiIiIi0crpyVkRyRyhihaPZBR3U7Ut//IrlULnCub2jx8UIIn7pNDb1AAojBL3Psj78VmQTfOCkuA+UuwQOZkJhJzjhMXjncohVW9v6ToOR381uXZIaIwTtekHVWvv2fQuALASjacGsiKVqI6z7D1RvhO4nQ/9L9PsB7oFUbXnB6shbYMFP3Psc3AybnoetM6GoHAZ+CToMd98n6jEYzW3BdmvktGjai/WP51kwWhq/V26B3E42PAnP9oUj77HCifPpeS8egwX/BUuaBYHvfAfe+zJMetY9mKGwM5y7DGafZj33A3Q6DI69D0p6B1u7JK+0H7TrCYe2tWyr3gC1+6GwY8u2eAzWPQx7P4XinjDsG1ZoXnP7l6ReW8VyK2wvFan83gbJMKDfBdaHa78QDP06rPp7y7aYgtFEJEfFHMKFw1kOqew4Eo79O3z0TecA5Kq1sHcBdD7Merx9jhVw29iaB62Psbdbz9ElfYKsWsReLgajRUrg6P+FD77Wsq1dDzjpaesYaOtrMOcMf+fud6G/47UfAqN/0PB48FUw92L7Y2QnLw6zXvsNviq192Devtg619FY1Xp4aSyMuQ1G/8j+eLuxeACvh0VERERERERERETk/1Q5BKOVhvInGC3i8N6CgtFERERERERERESktfDp9ssiIj4pKrffXrM7/bE3POXe3svnxRwi+aowiWC0cXdYi72zre9UuHAbTJ4F562Ek56BSGm2q5JU9b/Eua16U+bqaCKPAlBEglKxHF49Fj77Maz8C7zzRfjwhmxXlRs2v+jc1pYXrA7z+PPx1jRY+WdY9HN49RjYNc+9f/yQt3E3Pg1bXvXWtzVIJxitar1/dfjJaSF4WoGDZmq7HdwM71wG730ljbkzLB6D2VNahqLV2/ScFZDmdDFk/V1lO4yAqWvg9PfgrM/gzE8UipbLRn3fua1yZcttpglzL4B5X4Xl98L8H8GMMVBrE1BfsSz1ug5ugsrlye83/BfDx+AAACAASURBVFv5FUbYXPlE++1xBaOJSI5yen4KFWa2DjtDvwbTNkHnI5z7rHmg4fOVf3Put+jn8NI42POJf/WJeOV0/J3NYDSwQsDsjl2G3tBwPNbrdCgd5N+chZ2tkMIgdTsBpq6CKW8kt9+GJ+CNs2HhL5Lbb8FPW4aiNbb4V/BcX/vj7cYcA/Ta8HkmEREREREREREREZ+Ypkl1vNK2rSTcPsPVpC5iOAWjRTHNFK+REhEREREREREREckhOZBkIiLSSGGAwWhugRUnPAbhHFjcJZILCjt76zf+ThhybbC1JKOgPfScDO2H5vfCeXEPRmvXPXN1NKGfKRGW3g2HtjXdturvsH9pdurJFWbcPSAu2wubs6mo3DrOTkZdBSz8qXufeK338Rbcltz8+cxp0bQXNbv8q8NPZsx+ezqBg05ha16t+w/seCu9MTJl8wuw4033Pu9f5y2ALhSBrhP/P3v3GeZWfedt/JY0fdx7t3HFBoyNwfTeHXpCKMmmV9iQPEvabsqm955N2M1uCmwCaSS0UBIILfSOKabZuPfumfF4RtLz4uB101GXRtLcn+vS5dG//kbWaCTNOV/BwJkQjRWvRhXftI+F9215I5isux2evBKujcB10X3fL2lfAn8c+EZ/DK6rC75+/qvha5/xRPq6lv4JnvpEdt/D7g75bu5zKkmsMXV73GA0SRUqNBgt5PGs3JqGwtyfhfe/9IPgNVqiG5b8Lv1aOzbCc18Jvl51F9x1Etx2CDzxL9C5oXg1S3sLDbzq4fcPonVwwi0w5vwgDLFxMMz4Vzjwc3uOOybDz1a2GgbBSX+Dhv7FWS+dulYYfjwcdV3uc+d/Pnh82L4m89jt69I/Z96pa3PwfHvZTeFjwsLPe3MAvyRJkiRJkiQVyY5kJ90h78O2xvqUuZr8hQWjAaHfnyRJkiRJkiRVE4PRJFWWxpBgtB0FBqN1rof1j4T3j7+osPWlWtIwKPOY0x+DAz4NEZ9KqAQGHxre192+6+vta4JLPIeAnHTSfTqaYXsSLA458fX1X5e3jkqz5v7ghPowvf2E1eEn5j5n5R3pQ75yCQDb8ER2Jy/XgkIOZutcW7w6iinse4oW8HPVZ0J435TLsltjcY6Bfz1leZqT7HfasgC2vZa6r6eDGZSfaAz6H5i6b/Vd0LYYbj0IFnwvu/WSifCQwp0O/BwMOgTOfCa3WjPZ/18K+3mvBGFBQonO4L2qYr2WkaRiCXtcCgt67Anp3jcCuO882PpKdmst+3MQ+P33U2D13bDxKXjp+3D/+enfJ5IKEfaaNs3JS2XTOBiO+xNcuBUuWAuzvrZvMHK/afmvX98f3toGlybhLeth0JzC6s3VuAth4CG5z1t9N9x9JiQyPC9ee19ur83vOxeWhXyok8FokiRJkiRJklQybfGtoX2tsb5lrKQw9WmD0TweQZIkSZIkSVL1M81EUmUJC0brLDAY7aUfh/cd/vPC1pZqTWOGYLTmkcFJ71Ipjb84dXt3G2x8Fq6rhz8NDy6/a4SnPhGENhQibeCDT5vVyyWT0B1yMNDCq8tbS6VZcUv6/t4eLBRrzm/etoXhfYkcA8C2vJxfDdUml8C4vXWuK14dxRT2fx2JpW7PRv8DoXX8vu0DDoJD/wPGvjnzGq9clf/+5fLaz2Hhr7Ibu+be1O2VEMyg/Ayem7p94S/hxgnpH2ML2W/gTJj55eKtO+HS4q3VU8KChHZshOuHwJ+GwvwvGr4jqXIkOlO3hwU99pTzV4b3Lb8ZHn5P9ms9+sF929bcB8szvNaT8hX22q2S3j+INYR/UER9v/xC0CEIvq1ryb+uQkVjcMrdsP+VMOiw3OZufBKWhHxowE7ty3Kv6b5zUodShr0erqT7iSRJkiRJkiRVqbTBaNHqCUarSxuMVsCxZJIkSZIkSZJUIUx4kFRZGkoQjJZMwHNfDO8fOCv/taVa1Dwmff+cH0PEpxAqsYaBqds718Gdx0JyrxPDXvwOLPh+YXumC5QJOxFQ6i12bAzvCwtM6y02L0jfH60rTx2VKtaU37wtaW7XXA/aSrdWLck1MG53lRqMtvfv+50iBfxcRSLB89low662WAsc8r2g74hf7tkXpqtCH/val8HTn4ZH3lf4Wr398auajT67vPvtHowx5tzirDnt/8GgOcVZqydlChLq2gLzvxCEGUpSJQgNRsvi+VE5NY+AYceH969/uPA9lv1pz+vJJGx6Hhb/HtoWF76+eq94W+r2SgsgTCefMNx++8P0TxS/llzV94NDvgNnPAoXbYeBs7Ofu/RP6fs7VuRX06Pv37ct7PWwr9MkSZIkSZIkqWDt8W2hfc2x1jJWUph0wWhdBqNJkiRJkiRJqgGmmkiqLI2DUrfne6J+dwf85cD0Y3I56UHqDfpOhn7TU/cd9lMY9+by1qPeKdaSun3lbUF4QCqL/rewPRM7Cpsv1bKOleF9XVuCINreatsr6fvTHHzUK0Tz/P7XPx7ely7IMpXeEoxWyMFs3dsgvr14tRRLWNhboSeCjzkbznwKDv46zP42nPkkjDgl6KvvCxPelnmNrS8XVkMpLPpfuGkyvPDN4qzX2x+/qtmQw8u314hToG63g4L7Z3gPJpUZn4Lpn4T93hGEbJx0J8z5XvFq7EnZBoQu/m1p65CkbMVD3huJVWBg0+QPlnb9Rdfs+jrRHQTP3nogPHAR3DgBnvtqafdXbUrEoXND6r6mIeWtpRBDj4Zzl4T3R+qgdUJw6TMZDrsK5j0Ldc3lqjA7sUY4/ZEgIDsbS69P/9q5Pc9gtBW3BeGLuwt7PVxIULgkSZIkSZIkCYC2ROpgtOZoC7FIrMzV5K8uzXvG3WEfwCFJkiRJkiRJVcQjZyVVlqYRqdu3vZbfenedAFteDO8/7gaIRPJbW6pVkQgc83u4+3To2O1EnoO/DlM+3HN1qXepy+MT1zY9E5xAlu/jetpgNPOE1ct1ZDixc90jMPTI8tRSSRJdsDXD89RCA5x6q+U3wcFfTt1nMFpqYSdNZ6tzHbSMKU4txZKMp24vxong/WcEl1RmfQO2vATrHgyfv3kBDJpTeB3F0rkeHv0gJDqLt2a+wYbqeU0joK5PEHpYaqPP3fN6JALTPw4vfie7+fUDgteatfreTDTLIKHVd5W2DknKVthziWwfz8pp/MXw4KWlWz+ZCAKsGgcFAZYLf7Fn/7OfhRGnwpC5patBtWfHBiCZuq+xioLRAFrHwls2wf0XwOq/B21Nw+GIq2HU6T1bWy6i9TDxXTD85OB72ZAmqB3glunQOh76TIR4JyS7Ycnvgw/6iLfnV0PnWti+CppH7moLO2HNYDRJkiRJkiRJKlh7fGvK9pZY3zJXUpj6NB962F3Ih2xKkiRJkiRJUoUw4UFSZek7NXV7xwroSv0HqFCPXQbrHw3v7z8Dxpwb3i/1ZgMOhHMWwSn3BwGCF6yBAz7d01WpN6lryW/ejo3575kuGK1WgxqkbG1fnb5/+U3lqaPStC0OP1F1J09Yzc+mZ2HbwtR9uX6aZW8IRkvECT25Plud64pSSlGFnghe4k9mbRoGp9wLZ6Q5IX7tP0pbQ66W/gniHcVd02C06hWJQN8ppd+nZUwQIrG3cRdlv8bIU2v7uXasAoOEJCmd0GC0hvLWkY1IBM56qbR73DItCGbeOxRtp+U3lnZ/1Z50r7uqLRgNoKE/nHQnnPFE8Brq7FeqKxRtd61j4fRHgr+JpNP2Oqy5Fxb+EhZfG4SiQf6haDtt2evxLOy96lK/HpYkSZIkSZKkXqAtnvqD5lqjfcpcSWHqIuF/w+tOpvuwaEmSJEmSJEmqDp6hLamy9JsW3rf1FRg4C7a+ChueCC4bnwxCcFonwMyvwIADgrFbXoFXrkq/1/hLi1a2VJNiDTDsmJ6uQr1VLM9gtI7l0Dgov7npgtGo4bAGKRuZwnaW3Qizvl6eWirJ9rWZxxgsBCPPgJW35z5v+S0w7Yp92xM5fppl2yKIb4dYU+41VItsw+JOvgfuOiF1322zYcLb4eCvBSeEV4LQYLQyvJ0VrYNBc2C/d8Cia/btf/U/g5/vQ75bGT/nS/+UeUzfqXDiHXDTftmtabBjdRt6NGx8Kv/5kbrgZ7DPJGgeBRse3/P5wJAj4dCfQH2Kg4L7HwD1A6BrU+Z9xr45/xqrQdOw7Mc++XGY8SloGlq6eiQpnUQckonUfZUa9NhvKkx6L7z289Ks37kOVt4Bq+9O3f/81+Dgr5Zmb5VWMgHxziAMcOe/iR37tqXq26d/R+o5qebuSPP8qGFw+b7/YopEYNAhPV1FcUSiwd9EzloAt+xf/PWP+CU8/O7UfXedCPOehQEHBdfDPgCkoX/x65IkSZIkSZKkXqYtvjVle0us2oLRwo9Z6sr1w0clSZIkSZIkqQJ5hqOkytIyFqKNwQkie3vwUuhYCV1b9u3b+DSs/Cuc9SK0joMVt6bfJ1oPU/+5ODVLkoqvLs9gtPYVu04ey1W6oJ1INL81pVoRT/HcbHdbXgyCaftNKU89laJzXeYxBgvBtI/BqjuzD+/aadNzqdtzDUZLJqBtaW3fP7O9TYYfDw2DYMeG1P2v/xpW3wVveh4aBhavvnwlQu4z0TL+XI16U+pgNICXfwzdW4OT23tSvDO78MEznghCrObNh1uzeL5U11x4beo5Uy4P7rup3kMBmPQ+eO1/wudfuCV4b6ZhQO571zXD9Cvh2c+lHzdwNox9S+7rV5OmEdmPXfBdWPsAnPoPiMZKV5MkhUn1nvxO0QoNRoMg3DebYLTxl8JRvw5eH+xYD099EhZdnXney/9ReI07da4Pnmf3tveZEt2ZA8MK7cs1pKzSTgaqa/X5dyXpNw2O+SP8o8jPVaMNQYDx2gdS9986E057KHgO2bEi9ZjGIcWtSZIkSZIkSZJ6obZE6mC0PrF+Za6kMHVpjk3sTuZ4jJ0kSZIkSZIkVSDP0JZUWaIx6DsFNqcIQdjyUvq58XZ47itw+M9g3UPpx56zyE9Vl6RKFmvNb17H8vz3TOwI79v4VP7rSrUg3QnyOy2/Efp9vPS1VJJsgtGi4Z/K2GuMOh1OvA3+fmpu83ZsTN2eazAaBMEH1HAwWi4n9TcOCQ9GgyCMetGvYdpHCq+rUMl46vZyBg6OOhPq+kD3ttT9C38FRODw/+m5gItlN2QeM+K0IBQNoP8B0GcibFuYfk6/GYXXpp7Tf3849QF44Vuw4fFdjxPNo2H8xTD5A+mD0eqagQLCOQ74TBDosPi3sH0VdLdBfd8giKSuFYYdDwd9ofYDwCKR3MavfxiW/AEmXFyaeiQpnbTBaA3lqyNX2YYETbg0eFyOxKBpGEz5cHbBaCvvKKw+gA1PwoNvD0LF6wfAAf8G0z+e+++JTJLJ4PVSysCwTojvSNFWypCyN/qTieJ+n7XIsKvKM/L04q8ZrYdBc8OD0QD+emT6NbyvSJIkSZIkSVLB2uOpjwNqifUpcyWFiUQi1EXq6E5x7JjBaJIkSZIkSZJqgcFokipPv2mpg9GysfxGSP4nJLaHj5n9XWgZnd/6kqTyqGvJb17Hivz3TBeM1rESdmyChgH5r1+pti0Kgt8GHQqt43q6GlWqdD8fO73+m+DE7lqX6IY190J8Oyy+LvP4cgY4VbIRp0DDoPSBXHvr2pS6PZcQsJ22r819TjXJJixuzHnBv01DYevL6ccuurpCgtFC/q+jZfy5qu8L0z8B8/89fMzCX8LQo2HSe8tX1+7WPph5zMwv7fo6EgnuDwu+Fz4+2hj83Kq6DTgQjromvH/ax+ClH+zbPvE9he8dicDk9wWX3m78Jdk9Z9jp5R8ZjCapZ8TTvO6LNZavjlxlExI09s0wat6ebUMOh/3emV04WiG2r4Xb5+y63rUJnv4kLL0exl4QHiaWb0iZqlPLmJ6uQHur7wP7XwkLvlu8NSP1MOYceOn7+a9hMJokSZIkSZIkFawtJBittcqC0QDqIg0pg9G6/LuRJEmSJEmSpBrgGdqSKk+/afnP3b4GVt4By24MHzPhbfmvL0kqj0oLRgNYdhNMfEf+61eaZDI4EffF7+xqO+AzMPPLQZCFtLt4Z+YxG5+GFbfBqDNLX09P2bYQ7j0HNj+f/ZxorHT1VJtoQ27jd4QEo2UTAra3znW5z6km2YTF7Qw6yuYk6g1PFFZPsSRCvq9ImX+uZnwqCDXasiB8zCPvg9HnQlMPnKSeLuhu8ofgoM9D88g92zMFo+33T0EQgGrbuLekDkYbc275a6llk96TWzDauodKV4skpZNI87ovWsnBaIPT9x92FUz+QOr3Oo74ZfC86P7z89s7Ek3fv+VluCXk7x3rHwkuEgSvJVR5Zn87CDFLJoqzXrQehh4D/abDlhfzW8NgNEmSJEmSJEkqWHt8a8r2lmjfMldSuLpIfcr2VGFpkiRJkiRJklRtDEaTVHkGHlLY/HvmhfcNPQaahxe2viSp9GKt+c1rX57/npmC0Z76eG0Fo624dc9QNIDnvwrDjoeRp/ZMTapc6U6Q39098+CSRG2G68W3w02TerqK6hbLMUxhw+Op25MGo+0jLEBsp+mfhNFnBV83ZAiO2OnxK2Ds+TD8xPzr2vIyvH4trH84CFsbejQ0jwnWHHtB5seKsAP0ImV+OyvWCCfcBjftl37cPWfCGY+Vp6bdhQWjjTgN5l6Vum/IUdA4FDrXpuiMwMFfK1p5qmBDjoKZX4FnP7urbfrHYfTZPVdTLRp+cu5z1j8Ogw8tfi0qv/YVsOhq2PISkOzpaqT0ulKfAALk/ly+nKKpT/b4P5M/GP68MxKBsefBQV+A+V/IY+8M4c+Pvj/3NdX7jH0zTLuip6tQKpEInPl0EJLf9nrh60XrIVoHR14Nd58OOzbmvobBaJIkSZIkSZJUsLbEtpTtrbHq+xDBupDjqLrzOcZOkiRJkiRJkiqMwWiSKs+Yc6BlDLQvCx8Tieb3Ce2eXCJJ1aGuJb95HSvy3zOR4SCAlMEhVeyVkKCUhb8yGE37yhQcuLuFv4JJ7y5ZKT0i3gk3ju/pKqpfNI8whZd/ClMv27Mt0+N1KrUejJbuQLZTH4ChR+26nu3t9/KPg8vsbwdBSblacx/cfSbE23e1Lbsx+PeVn8Ck98PhP0u/RljgW7mD0QD6TIDzlsMNo8PHbHgcVv0dRpxUtrJIdIefoL/3z87uojE48PPwxEf27bu4K+hX7YtE4MDPwMR3wcanYMBMaB3X01XVnkgEmkdCx8rs59xxGBx1HUy4uHR1qfQ2L4A7j6395yHqHTIFgPW0gbOD32V7a92vtMHd6W6X7WuD58SqbpFY8Fo21pji34bUfdFGiDXs9nXI3FgzDD4M+k6tzYD5WjHgIHjT83D3abD2gX37j/oNvPBN2PRs5rV2BjkOPgzOXQJ3Hpf6sSudxizDziVJkiRJkiRJKSWTSdriqT8wqDXWt8zVFK4+kvpDhAxGkyRJkiRJklQLDEaTVHmi9XDSnfDQu2DDo0AE+s+AgYfAoDnBZeDBcPthsOXF3NYePLcUFUuSii3WE8FoOQQ/1YIVf0ndvvhaOPo35a1FlS/emf3YR96TWzBaojs4gXTV34Kwo+lXwqgzc6+xlF79GWxf09NVVL98whSe/iSMews0DdvVFhaWlU6tB5Kku01a9wr127Eht7Wf+gT0nQZjzt53z0XXwPNfhW0Lg7bm0dCxPLt1X/vv4LKzvvr+MPxkmPklqH/j01eT8dRzoz30dlbLqCBo7m9Hh495+F1w3pKylcSOjeGh4S0ZAq6mfBg618CCHwQBdsNPhMN/YShab9QyOriodPL53fXMp4PfgT31mKfcJROw4Huw9E/Ba9O2xT1dkVQ8+YQcl9OBn4X737xv+9A0z9uKId3ju48Bufu/oLE0oWLRhpCgsRz6sg44a/C5sQJ1LXDyPfDUx+G1X0D3VqgfAAd9HsZfAmPOh6euhIW/hPj28HV2Pzmtvk/w+vKpK8M/wGKfOvpCv/0L+lYkSZIkSZIkqbfrSu4IDQ1rqcJgtDqD0SRJkiRJkiTVMM+qklSZ+k2D0x8KTihMdAcnwuytcUhua467aN9QAElSZarLMxht+2pIJiESyX1ubwtGqwWdG6B7GzQM3HXirEojkUMwGkDbEmjNEMiz00PvgMXX7bq++i44/mYYfVZue5bS4t/2dAW1IZZHmEJ3Gyy7ESa/f1dbPgdtbV+d+5xqkkhzm0T3Ovht7JvDwzHD3HcOnHIvDDsu+D2b6IIXvwXPfm7PcdmGou1u98CITc/ChseDvSIRSIYETUR68O2soUfBcTcFt0kq7Uth84tQ1xpc4tuhcTDEmopXQ6I7eK0ca4DO9eHjGgenXycaC4LoDvxccJvm8/xJUnbGnBeEQeaibXHwuNh3chCCCEGYRl1LECbpz2zleeJj8PKPe7oKqfgiUYg193QV6Y05Pwh5XX33rrZoI0z9SHbzBx2a377xdkjEU4dnFRLeX3KR9MFgxQgiSxc4lnLPBn+3qbJF62DOD2D2d4Lw/OYRweMjQF0zHPZTmPNDePQDsPBXIWvs9fp893m3zYLNL6SvYeo/F/e1pSRJkiRJkiT1Qm3xraF9rdE+ZaykOMKC0boMRpMkSZIkSZJUAwxGk1TZItHwkJNcg9GO+t/C65EklUdda37zkvEg4Cyf8B2D0arHhifh4XfBpvl7tk/7KMz+buoTklWYXH8+lt0I07I4AX3ZTXuGou1079lw3I0wJiR4qJy2r4N1D/V0FbUhmsdjM8CyG/YMRksXAhamokMJiiAsQAz2DREbeWp+ezz7eTjke/DYh2H9o/mtkY2198PKO2DUGWmC0Xr4cX7M2dAyNghBS+UvM/Zt2+8dcOh/QH0Bnywb74Rn/i0I3Ul0waizYMIl4eMzBaPttPfJ+ZKKb9S83IPRAG6fA0SA5L59c34YBP4YIlMZNj1vKJpq15CjKj+IPBKBY6+HBT+ElbdD8yg46PMwcFZ280ecDPX9oGtL7nt3b4OG/vu2z/9C5rn1A6D/jPSBY4WEjYX1GYor5S9aBy2jQvrqg9eKoXNDXntF6+G0R+CpK+HVn6UeM+fHMPXy3GqVJEmSJEmSJO2jLb4ttK81VjvBaO3xrWzt3vzGmDqaY3kely1JkiRJkiRJPchgNEnVK5dgtFPu92RvSaomsZb853a35ReMFjcY7f8suwmGHp19oEohkskg4KxjBTQMgu4t0GdicNnb1tdg45Pwj7emXuulHwYnFc/8QklL7pXinbmNTxWMtmMTrP0HdG4I7lsDZ8F954avcd+5cNYC6Dct93o3Pg2r7wnuU8NPgNZx2c3r2gLrHoaOVcGJrk3D4aUfkTKMRLnL9/n4iluhfRm0jAmu5xOMtvEp2LERGgbmV0OlS3eb7H27t4yBGf8KL3w9tz3W3PtGQE8ZLPlDEIyWCAlGi1bA21mnPQw3jM5+/KJrINYEc/8r/z1f+CYs+N6u6ytuCS6pRBsLez4lqbhGzYMRp8Gqv+YxOeR5yBMfhebRMO7NBZWmIrn1wJ6uQCqNur4w6xs9XUV2GgYG7wfk855ArAlmfQse+1Duc1MFoy2/NXgNks7BX4UD/i33/SRVuDShg+neF6nvE7xe7H8gPHHFrva61uBvnINmF69ESZIkSZIkSerF2hNbQ/taaigY7Y4N13PHhuv/7/rwhjG8Zei7OaBPmY7/kiRJkiRJkqQiqIAzSSUpT9kGo9X1gSFHlrYWSVJxReshEoNkPPe53W3QOCj3ecksgnaSSYikObmtVtx3LhCBY34H4y4s3T7dbfDwe2HJ7/Zsj9QFJwfP/GJwPZmAZz6bXYjPomsMRiuFRI7BaGvuhfj24ORyCILS7jsv931v2R8uiUMkmt34RDc8cDEsvX7P9tnfgelXpp+77hG4/3zoWJl9feMvgUGHwlMZ1tYb0gTMxZqC+0yYG8YGJwhP/gAkQ8KyMrl+CBz7JxiTJpCvWqW7TSIp3vo5+Ksw7HhYfhO88tPS1ZWvhb8IfgesvT91f6rvqdxaRsH0T8CL385+zms/h4O/ll/waHcHvPit7Mc3Du4dz1mkahFrgBNuhdd/Aw+/s3jrvnKVwWiVYNP83MZPfFdJypCKrt/+MOZ86De1pyspjykfhAEHwd+Ozm1ed9u+ba/9T/o5pz0EQ47IbR9J1S/k5LQ9TPtI8DfNZX+GaBNMfj80jyh9bZIkSZIkSZLUS7TFt6Vsb4o2E6uEY5JyVJ/Ne8/A6h3LuGr51/jU+G8ztinFBxdLkiRJkiRJUgWqvndtJWmnpqHZjRv3VojGSluLJKm4IhGoa4WuLbnPTXVC6k6JOKy8A1b/HVpGw6T3Qn2/zPN2SnZndwJbTUjCQ++EEadAw8DiLr1tIbx+HTz72ZCtu+G5L0HX1iAQa8kfoH1Jdmu3LYJEVxCup+JJ7EjdPvxEWH33vu3J7iAAaOrlwc/xAxfnv/d1Meg3Pfh6yBHQOgHGnh+csL5T2xKY/8UgTCmVpz4Or18LA2ft1piAtQ9C/wNg5GlBuFEuoWhTr4BDf/jG+gajZaX/QbDmvn3bow1BMMBts9PPf/SDwWNSIosgy1SSCfjHRXDBamjon98alWbdo7DsBlhxS/iYVI+HkQiMOj24dKwMTriuNDeMDe+LVsjbWRPfnVswWjIOj/8zHH1d7nutviu75yo75RO+Jqm0ojGY+I4gkHL9I8VZc/Vdwe+3bENkVRobn8l+7Fu3Ba91JVWmoUfB1I/Ayz/Ofk68fd+2dM+vp/0/Q9Gk3irb9ysHHxpcJEmSJEmSJElF1xbfmrK9Nda3zJUUR10Ox8omiPPYlvsMRpMkSZIkSZJUNSrkTFJJykPz6OzGzfhkaeuQJJVGrCW/YLR4SGhIMgmPXw6v/teutgXfg9Mfg+YRQQhXJokdvStwK94By26Cie8s3pprH4S7T4fubqWuyAAAIABJREFU1J+6t4eXvp/fHot/D/u9Lb+5Si3embp90BxYc38QhLa3x/85CPFpnQDx7YXtv+XFPf99/mtwzO9hzDmw+l6464TMa2x8MrjsbevLeYRCRWDy+3KcI8a/NQiDIbln+7iLgtC6t7bB7zMEhSy5PjwY7bgbg/vcg5eGz090wqq/wrgLcyq9Ii38FTzy3iAQJ51IhpDobAOnCzH3v4PwtmU3Fme9TN9zufTbH/pOga2vZD9n8W9h4OzcX6cuuyG38Q0Go0kVa/wlxQtGA9j6GvSbUrz1lLv2pdmNO/luQ9GkatA0PLfxe4fXdqcISttdv2m5rS+pykTCu3rT+8qSJEmSJEmSVKHa46mPXW2J9ilzJcUxuH5YTuNX7VhWokokSZIkSZIkqfiiPV2AJOWteVTmMcf+2RONJKlaxZrzm3f7ofCPi2HT/D3bn/7knqFoAO3LYP6/B18vvjbz2mFhPLVs8wuFrxHfAa/8J/ztWPjb0dmFohXiUQOrii6xI3V7XR/oOyl83tOfggcuKkE9nfDUx2HjM9mFohXblMtgwEHl37faDTsOjvxfaBkTXI82BOEwc68Krte1BEFT6ax7iH2C1XZqGADjL4a+U9Ov0V4DB3d1roeH351FKFodRNKclA3QmNvBcTmb9tEgSPDQnwT1FEPHyuKsU6hIBMa+Jfd5878A29dkHrf2QbjnLPjjIHjt57ntMfiw3OuSVB7TroADP1e89W6fDX87Lvi90La4eOsqOzs2wzP/ln5M49AgJHT4CWUpSVKB6vvlNn7vYLStL6cf3396butLqh0Go0mSJEmSJElSj2tLpP4Q5dZY3zJXUhyz+xxFJN2HduwlLBhOkiRJkiRJkiqRwWiSqlfL6PC+ie+Ci7th7HllK0eSVGSxhvznLvkd3HE4bFsUXH/pR/Did1KPffVnsPDqfYPUUumNwWjZ3C57i2/f87Z65l/hsQ/D2n8Ur65M+3esLs9evUWiM3V7tDFzkFWpbH0FbptV/n37HwgHf7X8+9aK/d4G5y6B85bBhZvh6GuhrnVXf+v49PO3p/nZ3hkCNv3K9Gt0rMq+3koS3x4EoiW64foh2c2JZhFE1lTiYLTmN163tYyG/d5RnDX7H1CcdYphxieCwJtcxDtg8W+D/0sIAu6SCUgmIREPfoetuS8IE13xF9ixMfe6Jr4n9zmSyiMSgZlfCt63mvTewtfrboO198PCX8Hth+X3mKH8JLrhrpPSj7lwK5y/IggJlVQd6nM86WXvYLTNC9KP76nX0JLKI104ecRgNEmSJEmSJEnqaWHBYC2xPmWupDgmt8zgn0ZcQZ9Y/6zGtyUMRpMkSZIkSZJUPbI4Q1aSKlTzyPT90Vh56pAklUakwKeq8Q64aSIc8Fl49b/Sj334Xdmt2RuD0VbeDtvXQVMWITxd2+CR98KyGyEShXEXwoS3w4Lvlb7OvT33RTjsp+Xft1bFw4LRGmDkGcH/eW8w8nQ46jfQkN1BRAoRiYSHHGcKRos1h/dF3zjBePIHoK4PPPi21ONe/BYsvi54jBh9VuZ6e9qOjfDwe2DZDbnPzeak68YsQ9byNfK0XV/P/Rn0mwYrbg2uT/sobHgCns8xbHDIEcWrr1ANA+H0h+HZf4fXf539vCc+Ck/+CyTjwXOeZHfxapr0Xuhv4IZU8aIx6DuluGt2roVbZ8F5i4u7rlJb/XfY+GR4/+QPQn11Hjwv9Wp1uQajte95fdmfw8cOmpN7qK6k2hE1GE2SJEmSJEmSelpbfGvK9tZojn8jqiBH9D+Ruf2OZ13XarqTwXHOz217nBvWXbPP2PaQ71+SJEmSJEmSKlG0pwuQpLzFmiDWkrpv3MXlrUWSVHzFOlHs+a8EAQHFkNhRnHV6WiKX8JUkPPu57IY+/E5Y8ntIdAbBdIuugbtPyzyvFF65CtY92jN716Kw+36sMQi/G3x44Xu0jIUjfgWRCg23PeAzcOLt0Di4pyupbZmC0dI9nu/+e2PCpTD5Q+Fj25fCvWfDpudyq68nPHBpfqFokN39tS7kNVUxTHw3DDx41/VoDGZ8Ek65J7iMPR+mfiS3NSd/EAbMLGaVheszEY76X7g0ueflopBQyZ2S8Tf+LWIo2qA5cOhPireepNIaNS99f8tYeMtGOOX+7NdsXwKr7ymoLGVp6fXp+/sfWJ46JBVXfY4nvcTbdvt6e/C+SJhZ3wiCoiX1TgajSZIkSZIkSVKPa4tvS9neEqvuD72KRqIMaxjJqMZxjGocx+jG1MfhtcW3kUwmy1ydJEmSJEmSJOXHYDRJ1W3iu/dtq+sDw48vfy2SpOKqq8CDDBJdPV1BccS35zZ+0dXQ3Z5+TOcGWHZj/jWVwoLv9HQFtSMREu4TbYT6PnDy3TD94/mvP+ZcOPNpmPhOOPOZ/NdJZdjxQXjbzkusOfu5E94OU6+A4/8CB3+luHUptdYJ6fs3PRveF6nb83rjkMz7vfLTzGN6UttiWHl7/vNHnp55TF2RP+20zySYcjkc8wc4/OeZxzcPD0J/MmkaAcfdGIR+VUuYRKwBzniidOvP+SEc8n2Y+C6Y+B447Kdw6gNBaKWk6tD/QOh/QOq+Q74Hb3oBGgbAsGNgzo+yX/fV/y5OfQrXthhe/Vn6MS2jylOLpOLK9flx927BaMtvDh839gIYcUp+NUmqHnu/N7E7g9EkSZIkSZIkqce1xbembO8TK/IxVD2sJeT7SRBne6KjzNVIkiRJkiRJUn7SHJkrSVXgoC/Axidh3UPB9VhTcAJ+rKlHy5IkFUGxg1qKIVkrwWg5HtQQ74CXfwwzPhU+ZuPTkIwXVlcu6voEgT9Lrw8fs+QP0LkeGgeXr65aFQ8LRmsI/q1rhtnfhtb94PHLc1v7wH+HmV/YdX3AATDoMNjwWF6lAkEY2sl/h0iKLPDkNfDYZfDqf6Zf47yl0DImu/3m/jc8+v592ye+K7v52qU19SdVhlnUMYEb153Dpu4BnL2iD3MG7NaZVTDaVUGYVKVadWdh82d9I/OYwYcFP8uJHYXtBTDtY3DId1P/7KXTMABO/Qfcdz50rt2rb1DwGm/ESYXX1xMGHRKELL7+6+KvPf4SaBpa/HUllU8kAkf8Eu47FzpWBm2tE4LnMX3223PsmHPgiSuyW3fxtTD+Ihh9dvWESVabxy7LPKZ5dOnrkFR89Tm+H9W5YdfXG54KHzf+0vzqkVRdJrwNnv3svu0tY9KHpkmSJEmSJEmSyqI9sS1le0usAj/MuQCtab6f9sRWmmMtZaxGkiRJkiRJkvLj0beSqlvTEDjl3uCEo+0rYdhx0DCwp6uSJBVDfZqDDA67Ch77cPlq2akYoTGVINdgNICnPw19JsG4t6Tuf/FbhdWUq/EXwZgL0gejAVw/BM5fCc0jylNXrQq77+8MRttp6mVB+EY2QREAk967ZyjaTrmGKu1u4Gw45Z7w/kgE5l4V3IfuOjH1mAtWQ9Ow7PccNQ/qWqG7bc/2sRdmv4YCOQSjPbz5cObNv4VN3cHz/y//MMkv35XgHUe+cf/JJhgNYP6X4aDP5Vpp6W17HR55X/7zL1gdBI5lUt8XxpwHS36f/14AZ70E/abmP3/o0XD2S7D2AehYFbQ1DYOhx0DjoMJq62mzvw3Lb4KuLcVbc8plhqJJtWLwYXDWAlj3SPAcaOgxEGvcd1zLWIg1Z/9c/r5zYdL74fCfFbdewdbXYMWtmcc1jyp9LZKKL9dgtOe/Agd8OnhNuGVB+LjRZxVWl6Tq0GcCDJ4L6x/ds33cRQbWSpIkSZIkSVIFaItvTdneGqvAD3MuQLqgt7b4NgbXDy9jNZIkSZIkSZKUnwLONpekChGthyFzYcy5hqJJUi2pSxOMNvbNMPWK8tWyU6Kr/HuWwuYX8pv31CchEd+zrWsLPHY5rLyjsJrq+kLLuMzjog0w4W0w58cwel4QkpfJ058urDaF3/djDfu2TfkwHPIDqO+ffs39r4S5IUEd+Qaj7fcOOPmu7MYOPwFOuQ/6TNy5KQw+HM59PbdQNICWUXDiX6HvG6FQTcNh7n8F91Hlpmlk1kM/s+gr/xeKBpBMRvjIdUm6upNBw+BDs1to/udh28JcqiytjlXwyAfgpv0KWyeX+/HhPw9+t0brg8uY82D8xdnPH3lmYaFoOzUMDAIjJr8vuIw5p/pD0SAI55z5lSIuGIFZXy/iepJ6XH0/GHkqjDg5dSgaBM+PhhyZ27qv/Tf8rgUWXg3JZOF1KrD85uzGGc4sVae6PE56+euRcG0Elv05df+4i8If3yXVnuNvhuEnBc/fYi1BWO2sb/R0VZIkSZIkSZLU6+1IdNKVTP0hsS3RNMcsV6GWaGtoX3t8WxkrkSRJkiRJkqT81fV0AZIkSVJK6U5EjTbApPfCwl9Adxn/QF8rwWgv/SC/eW2LYONTu8KGkkm473xY/ff81qvvD2e/DJE6qO8LiW74fUv4+HnPBiFWdbsdsDHlQzD5A3D3mbDqr6nnLfl9EKBW15xfnYJkyH0/Up+6ff+PBgFpiR3Byd+JHdC5Pvi/i8Qg1pzhpPBI9rUNPAROvQ+I5v5/POxYOPtV6FgJsabCApiGHgVnvwTb10HjYIjk8D1ol2gsq2GdiQbu3nTiPu1bt8M9L8OpM4B+07Lfd/Hv4YAKCFHs2gq3HwodywtbZ9BhuY2v7wPH/hG62yGZCK5veAoW/zbz3EgMpvVAWGm1mfIheOYz0J36U2ez1mcSnPViEGAnqffZ/0pYc0/wWJ2teAc8/C7YvgZmfKJUlfUum5/LPKZpuI/VUrWqzyMYbdP89P3j3pxfLZKqU9OwILh/x+bg/SaDESVJkiRJkiSpIrQn2kL7WmN5/I2ogkUjMZqjrXSk+J7b4gUevyRJkiRJkiRJZRLt6QIkSZKklOrTfPpatB4GzoST7ixfPVAbwWidG2DV3/Kff8dhsOD7QSja8pvzC0VrnQBj3wynPxacKNg4KPg/zRRq1Tx6z1C0nSJRmPy+8HnxDlh9V+51apdEd+r2aJqs7VhD8HMcrQ/+31rHBYFhDQMynxCaLlRs7s9g2HHQ/0CY8Sk49R/B+vkG30Ui0DKqsFC03TUNMRStUFM+nHHI5u7+oX0LViV3XZnwT9ntueyG7MaV0o7N8Id+uYWiDT0mdfuYc/Oroa5l1+/fQbPhtIeh3/67+kecCvOeg2kfC34GR54Jx/8FRp2R3369SbQe9nt7bnNaxgS/J5uGw6A5QRDoqQ8YtCP1ZqPnwXE3w8jToXkUNI/Mfu7Tn4S2paWrrTd57eeZx4x6U+nrkFQa0XoYemxx1+ybQ2izpNrR0N9QNEmSJEmSJEmqIO1pAsFaYmmOWa5SfULC3gxGkyRJkiRJklQt0pzFLkmSJPWgkafD819L3RdrCv4dcjhM/wS8+O3y1JTYUZ59Smnjk5BMFLbGk/8C21fDhidzm3fg52Dml9KPiTaE3871/cLnjTwDIjFIxlP3L7sBRp+VXZ3aVzIkFLBk4TxpgsUmvB0mv79E+6oi7P8vsOymtAFhW7rDHw/67H7OcfOI7PZc/wi8/NMgUKxldJaFFtmDb8t9zsT3BMGAK+/Y1dZvOkz+YHFqGnI4nPXivu1zvl+c9XubmV+Bhb8KAjt3F6mDo6+DcW/pkbIkVZnR84LLTmv+AffMg+4sDly+ZX+4KPwTsCtadwdsehZIwuDDey6IduMzmcc0j4TpV5a+Fkmlc/BX4c7jirde3ynFW0uSJEmSJEmSJEl52ZYmEKy1BoPRWmJ9oWvVPu1tiW09UI0kSZIkSZIk5S7a0wVIkiRJKQ09BlrG7Ns+5jyI7PY0tpxhV4mQcKhqUqzv4YVvwqq/ZTd2ymVw/C2ZQ9EgCIcJE03TV98X9ntHeP+quzLvrdSSifAwvXT/XwVJE3SxMxhRtavvZDj90bT3r83x/qF9rbsHozUMyH7fxy+HG8bAM5+FZDL7ecXQvgxW/CX3efV9g8fXw38Bkz8Eh/wATnsQmoYUv0YVrnEQXLAKDvhs8FgWrQ8CXk9/2FA0Sfkbdgyc8RhM/3jmsfF22Jwi8LLSbXgSbjsY/noE/PVIuGMutIcHqJbU/C+m7+8zGc58GvrPKE89kkpj2LHQlGXIcib1A6CuuThrSZIkSZIkSZIkKW/t8dSBYI2RJuoipfqQ2J7TGk0d9taeJiBOkiRJkiRJkiqJwWiSJEmqTJEoHHVdcALpTn2nwqE/2XPc0GPhgH/bs23S+0pTU7IWgtG6y7fXzC/DpUk47Ccw+k3ZzUkXfpbJrG+F97W9Xv6go1qRjIf3lSoYLZLmpWokTWiaakfLKDjws6Hdm7vDg9FaGna7j9TnEIy20/NfhVV35j6vEJuey3NiJHjcnPRumHsV7P/R3MLgVH71/eDgL8NFHXDxDpj9LRg0p6erklTt+k2D2d+G4/8SPM6k8+zny1NTsSST8Mj7Yesru9o2PA6Pf6T8taz8Kyz7c/oxZ78MTcPKU4+k0hpyZHHWGX5icdaRJEmSJEmSJElSQdpCAsFaY33LXEl5tMRSB6O1hQTESZIkSZIkSVKlMRhNkiRJlWvYMXDuQjj+Zjj5bpg3PwjL2V0kAgd/Fc5+NQhSO/MZmPuz0tST2FGadcspXchVMY16U9pQo1CDDs1/z6YhcNpD4f0r78h/7d4skSYQMFqiT0nsM6k066q6RBtCuzalCUbbIwMxXcheOouvzW9evjpW5jfPEDRJ0u5Gz4OzX4EDPxc+Zukf4cXvlq+mQm14AjY+uW/7sj9D29Ly1TH/y3D36enHHP5zQ3ylWlKs59pTLyvOOpIkSZIkSZIkSSpIeyJ1IFhYgFi1Cwt8C7sdJEmSJEmSJKnSGIwmSZKkytYwEEafBcNPgFh4SA59J8GEi2HgzOBk9BmfLn4t6QKiqkWyuzz75Hv7T/946vb93pnd/KZh4X2Pvj/3epT+PhOtK82eU/85dfuoeaXZT5Up2hjatTlNMFp3YrcryUTouLSWXJ/fvHy1L8t9Tl0rDDmq+LVIkqpb0zCY+SUYODt8zFMfh62vlq+mQqx/JLxvxS3lqWHRb2D+5zOPq6/NTxGXeq36IgSjzf0vGH5y4etIkiRJkiRJkiSpYG3x1IFgrb0sGK0tvrXMlUiSJEmSJElSfgxGkyRJUm2a+K7ir1kLwWiJLILRhp9Y2B6Dj4ChR+c3d8Qp0P+APduijTD5A9nNbxwS3te+DLo8oCNn6e73kfrS7DlwFgw9dq+9ojDlw6XZT5Upll8wWnz3LLR+0/Lbu3treQNjsglb2dukD0Bdc/FrkSTVhqN/m77/5inlqaNQG54I79v4dOn3X3oDPPT27MbWGYwm1ZSGAoPRRp0VvJcRiRSnHkmSJEmSJEmSJBWkLb4lZXtLtDb/1tsSEvjWHhIQJ0mSJEmSJEmVxmA0SZIk1aZ8w3DSqYVgtGQ8fX/rBDjxbzDrm1DfL/f1hx0PJ/01/xN/o/Vwyr0w6X3B/+GoN8GJt8PQo7KbnymMYOsr+dXVm6UL04vWlWbPSAROuBWmfgT6z4ARp8FxN8Los0qznypTtCG0a3M8PBitO57cdWXosVCfZ6DBzVMgmcw8rlCbnkvfP3guTP8kzPpWEDw56FCY9Q045Dulr02SVL36Tc383Hj94+WppRDrHwvv61xXun3jnfDoB+H+87OfU1+bB8tLvVahwWiT3lucOiRJkiRJkiRJklQUYYFgrbHa/FtvazR1MFpb3A8YliRJkiRJklQdSnQWuyRJklSDEjt6uoLCJdOEXEXq4OCvQzQGMz4Jkz8AfxyY2/rH/qnwQIDGwXD4f+c3N1Mg29LroWsL9JkErWPz26O3SaYJBIzUl27f+j5w6I9Kt74qX7QxtKst3hrat3suGrEGmPV1eOzDe6476BBY91DmGl65CqZelkWxBVjyx/C+g74IB31+1/UZnyhtLZKk2jL1Mnjhm+H9K2+HwYeWr55sdayGtkXQOBS2vBA+rpTBaI9/BF7L8TVJXeqDyiVVqaYR+c8dfhKMmle8WiRJkiRJkiRJklSwtkRYMFpt/q23JSTwrS2+jWQySSTfD0CWJEmSJEmSpDIxGE2SJEnKViJNQFS1SMbD+069H4Ycset6ff/c12/IMUit3J7/WnABmPQ+OOw/gyA4hUukCdOL+pJSJRQLD0ZLJKOhfd17P8xN+RD02x+W3Qh1LTDuQhg4C1bcDk9/GjY9E17D45dD8ygYe16Oxedg1d/C+8aUcF9JUu2b+O70wWjPfi74HTnuLeWrKZ1kEl7+CTz5/9IHOu9UqmC0rm3w+v/mPi/ic2Oppow8Nfi53vvxqHkkTHg7dG2GV3+277xIHZxwaxDSLEmSJEmSJEmSpIrRHt+asj0sQKzahQW+xemmM7mdpkhzmSuSJEmSJEmSpNyEn0ksSZIkVbvpnyjuepueLe56PSEsYKDP5D1D0QAiEeg3Lbf1K+ET5LINEnrtf4LQhRe+CS/9CNoWl7auapUulMLwB5VSNDxIIF4/ILwvkaJx+Akw5/tw8FeDUDSAUWfAvKfhzKfT13H/+dCxOnO9+dq2MHV741AYOLN0+0qSal+/aTDnR+nH/ONCePwK2PxieWpKZ9HV8MRHsgtFg9IFo21ZAPHtuc2JNUOfiaWpR1LPaBgIR16z5+veIUfBm16E2d+Cuf8FR/8OorsFOg86FM5bljbkWZIkSZIkSZIkST2jLb4tZXtYgFi1a00T+NYecltIkiRJkiRJUiUxGE2SJEm1a+xbgCIGdS38BSy9oXjr9YRkPHV7NCTgavylpaulVMZfkv3Yl38MT38anvgo3DoL1j5QurqqVaIrvC9aX7461PtEw8ME4tHwg9G6UwWjpTPwYBh3UfoxK2/PcdEsJbpge0jo2pHXlGZPSVLvMu0jMPWK9GNe/jHcNhuW/rk8NaWy8Bp4+N25zelcD8lcf/FnYcuC3OeMPgfq/DRtqeZMuATOXQxH/xZOfQBOuQca+u/qH/9WOOc1OOo6OPluOPUf0Dy8x8qVJEmSJEmSJElSuLAwsJY0x6JVs9ZoeDBaW3xrGSuRJEmSJEmSpPwYjCZJkqTaNWQuHPUbaByyZ3tda/6BTo9fVpqT78sl0Z26PRISjHbAZ2DKZbsCigYcHLSlMuXywusrhvFvheEn5T6vaxM89Yni11PtkiH3GQi/30jFEAsPRktEW0P74vk8RB/xi/T9HSvyWDSNba/DvefAbxuAZOoxLaOLu6ckqfcanyEAFCDRCfdfAPHO0tezt64tQVBxrpJxuO88WP9Y4TWsexgefDv8/XR46J9yn3/4/xReg6TK1DIqeBwdelTq95JaRsOEi2H4CWlfw0iSJEmSJEmSJKnndCW66ExuT9nXJxYeIFbNmmPhx9iFhcRJkiRJkiRJUiUxGE2SJEm1bcIlcMFqOG8pXBIP/n3LZpj3PMSa9xzbPBrOfAaGHRe+XsdK2PRcaWsupbCQq0gsdXs0Bof9BC7cBOevhHlPwwH/GtxWu4s1w+T3F7fWQhzz+/zmrXsoCCzaXTUH4RVDoiu8L9+AQSkb0YbQrni0Obwvnx/ZuhY44bbw/u4iHgjWsRJungzLb04/bu/HWUmS8jXkyOCSjTuPL20tqSz/SxBSnNfcm4Oa1z6U//4rboM7j4PXfwOr/pr7/KlXQH1tfoK4JEmSJEmSJEmSJNWC9sTW0L6WGg1Gi0ViNEdbUva1pbk9JEmSJEmSJKlSGIwmSZKk2heJQsuYXf9GY9BvCpz2IIw8A1r3g/GXwCn3wMCZ+wam7e22g+Guk2Dra2Upv6iS8dTt0br082JN0Dwi+LquFU5/BMZfHNx2o94EJ90FAw8ubq2FaByc/9yb9oPf94X7L4RbZsBvG+C2ObDqruLVV00SIWF6kPl+IxUi2hjaFY80hfZ155tlOOoMIJK6r5g///O/GP5YvFOsCRoGFm9PSVLvFonAiXdkN3b9I9C1pbT17G3FrYXNj3fAS9/Pf/6C76UPA86kvjYPkpckSZIkSZIkSZKkWtEWD/9gzNZY7X4QVljoW7rbQ5IkSZIkSZIqhcFokiRJ6r0GzoITb4NzF8LR10LfyUF7mjCe/7P6brjzeOhuL22NxRYWchWJ5bZOy2g4+rrgtjvhFhh6ZOG1Fdu4i/Kf270Nlv4RtrwYBBhtfBLuPQc2LyhefdUimSYkIlJfvjrU+8TSBaOl6cs3GA2CwMdU1j8CnesLWPgNiW54/deZxzWNCEJsJEkqlvq+MOl92Y3d8GTx908mYdsiWPsAxLfv2bf15cLXX/KH/Otac19hezcNK2y+JEmSJEmSJEmSJKmk2uNbQ/taorUbjNYa8r21pbk9JEmSJEmSJKlSGIwmSZIk7a1xcHbjOpbDqrtKW0uxJeOp2yN15a2jHCa+s7jrxduDsLTeJixMDyBag/cbVY5oQ2hXMk0wWnchwWh1aQ5ye+mHBSz8hvlfgO62zOOGVGDYpCSp+tWl/iTofWwpchhwdxvcfwHcNBH+dgz8aQSsunNXf+e64uyTT4hp9zZI7Mg8bs6Pob5/6r6RZ+a+ryRJkiRJkiRJkiSpbNri21K2N0QaqU9znFq1a4mlPh6uPeT2kCRJkiRJkqRKYjCaJEmStLdsg9EAnv9a6eoohWRIyFUtBlyNPAMGzi7umpufL+561SDsPkMEIr6kVAlF60O74oQHo8ULCkZrDe977suw4Sl4/hvw5JXw0n9A2+Ls1+7aBs9/Nbux4y/Ofl1JkrJVn20w2kvF3feFb8GyG3Zd79oMfz8VVtwRXC9WMNqTV+Y+J9u9J74DjrwGYk17th/yfeg3Jfd9JUmSJEmSJEmSJEll055IHQQWFhxWK/rE+qVsb0tsLXMlkiRJkiRJkpS7Gkw/kCRJkgrUOCT7sTvWl66OUkjGU7dHYuWtoxwiETjqWvjL9OKtueQPcPR1xVsPNJzYAAAgAElEQVSvGiS6UrenCa2SSi0ebQnt6y4oGC3DgW63H7Ln9Wc/C8ffAsOOybz2rQdmV8OAg2DUmdmNlSQpF9kGo219pbj7vv6b1O33nAH7vRO6thRnn0VXw5G/ym1ONsFodX2hvh+MOQfOWQir74b4dhh2PPSdlFepkiRJkiRJkiRJkqTy2RZPHQTWJ5bl39GrVFjwW3s8dVCcJEmSJEmSJFUSg9EkSZKkveUSjFZt4VCJ7tTtkRp9adDQv7jrJeOQTAaha71FspfdZ1Q5+kwMHo/3DiyJtZBoGhE6LV5QMFprbuO7NsOdx8LZr0DfyeHjtrwEbYszr9c0Ao66rvp+t0iSqkN96k+C3sfGJ+Hh98LCXwTXYy1wzB9g9LzU47s74IVvwpp7ofuNg8nr+sLwE2DK5bDttfC9Fl2ddflZ6VwPjYOD5+yLfwuL3/i9OuUyGHFyivFZBKPtHijXPBImXFq8eiVJkiRJkiRJkiRJJdceEozWUuPBaK0hwWhtIbeHJEmSJEmSJFWSaE8XIEmSJFWchkHZj41UWXhNaMhVrLx1lEv9gOKv+exni79mJUt0pW43uEmlFonC5A/t2z7pPcST4cF83fEC9qxryW/ezVNg66vh/Uv/lH7+vOfg/JVw/goYcEB+NUiSlEm0MbtxHSt3haIBxNvh3jfBot/sOzaZhLtPh+e+CGvugQ1PBJc198D8L8BNE4tQeA5e+EZQ0/wvwIOXwvKbg9/Dfz8FXr9u3/Gd6zOvWV/bB8JLkiRJkiRJkiRJUq1ri29L2d4aTR0cVitaoqn/3h12e0iSJEmSJElSJTEYTZIkSdpbMpH92GhD6eoohWRIYlAkPGSoqtU1w6BDU/dNuTy/NRd8D7o78q+p2oSF6UVr9D6jyjLzSzDrWzBgZnA56Isw54fEE8nQKfHwrswSIff3bNw8Be46CbYt3Ldvxa3h88ZfEoShNY+ASCT//SVJyqSrwE98fv4r+7YtvwXW3h8+p7uInzLdPDLzmBe/A79rhOe+tG/fg5dCd/uebZ3rMq9ZZzCaJEmSJEmSJEmSJFWz9kTqv123xGo7GK015Ptrjxfxb/mSJEmSJEmSVCIGo0mSJEl7GzQ7+7GxKgtGCwv9qeWQq5lf3jfAbtY34bD/yG+9+HZYfXfhdVWL7WtTt0fqy1uHeqdIBGZ8AuY9E1wO+jxEoqTJRaM7JP8xK/ECQw9X3w1/OwbinXu279gYPmfMeYXtKUlStgbPLWz+lgV7BottXwPPfrawNXMx/JTsxiW6wvtum7Xn9bbFmderNxhNkiRJkiRJkiRJkqpZW3xbyvbWWG3/PTgs+K0tsY1kspBPIJUkSZIkSZKk0jMYTZIkSdpb637Qb3p2Y6stHCoZkhgUiZW3jnIadQac+gBMvQKmfBiO/wvM+GRha3auK05tlSyZhBe+BY9fnrq/lsP0VPHiifz6MooU4W2SjpWw9Ppd15NJaF8aPn7UvML3lCQpG4MOgcbBha2xMxht/pfghjGw6dnC68pWrAEmvbewNba+Ahue2HV9y0uZ54S9hpIkSZIkSZIkSZIkVYX2kGC0lmjq4LBa0Rrrl7K9O9lFV3JHmauRJEmSJEmSpNwYjCZJkiTtLRKBI36Z3dhotQWjdaduj9R4yNXgQ+HQH8JhP4XRu4UQHfBv+a1XX9ufEgjAmnvh6U+F91dbKKBqSrrws+5CgtHGnFvA5N08+DZ47HL4ywFw28HQtSX1uCmXQ31tH1wnSaog0To46lqINua/RrwDVv4V5v87JLqKV1s2og1w0BdgwEGFrXP7obD+seDrLQsyj+/aWth+kiRJkiRJkiRJkqQe1RZP/Xff1lhtHwvamib4Lew2kSRJkiRJkqRKYTCaJEmSlMqQw+GIqzOPq7ZAsWQ8dXskVt46KsW4C4FI7vMKCZOoFq//Jn1/tMru+6opiWR4X7rQtIz6TYf+MwpYYDev/BQ2vwCb5oePmfnF4uwlSVK2Rp4G5y2BI6+BaR/LfX68AxZ8r/h1ZSPaAC1j4LSH4YTbClvrjrkw/0vQ9nrmsWEBp5IkSZIkSZIkSZKkqtBrg9Fi6YLRtpWxEkmSJEmSJEnKncFokiRJUph+UzOPSXaVvo7ddW2DF78D954L/5+9O4+P667v/f/+zqbdliyNFie24zh7AtkJWYCQBZJSoATKvhVoadNLgUJb2lsaKC3w47LcUlpogQa4BUpICaUUAmHPBiQBErKROImdxYtGtixb6yzn+/tDsS3NnO+Zc2bVjF7Px0MP63y389FYOkejmfM+t10pzT4ebb7N+7ev1pCrgdOk874kJddGm+dl61PPSvLQZ4L7Wy0UEG0lKPwsX00wmjHShd9aPDbUW0da6his/34AACjWOSxtfo208SXR537zeGnnd2pfUxix5OK/iW5p/WXSmhOqW+/XV0kKSFs9KM+bwQEAAAAAAAAAAACgVeVtTgt23revOyA4rB0EfX0znn9YHAAAAAAAAACsFFzJDgAAALh0DJUfU/B/s0RdWE/68W9L4z8+3Lb9K9Jlt0m9R4dbw3MEo63mkKujXi5t/F3p7vdJd7833Jx2D0azIQIiDgZTAE1QCPgWDQpNC6Vnk3T5L6WZx6TUWim5RlrYI81sXwySiaWkRJ90z/ule/6u8v1UG+YCAEC14t3NriCaWGr5dtd6af/99d/vkS+s/z4AAAAAAAAAAAAAAHUxW5hx9vW0eTBa3CTUGevSvDdX0jdbIBgNAAAAAAAAwMq2itMPVjdjzAmSTpV0pKQuSfOSxiVtlXSntdb9l//yayclnS9po6QxSdOSdkj6pbV2W3WVAwAANNBKC0bbfs3yUDRJyu6VHvgn6YyPhFvDFvzbTby62lpdLC5teUN7BqM98S3prndLs9ultSdLT/uMtObY4Dlb/6X8uqs5TA9NFxR+VnUw2kE9Gw5/3jG4+LHUqe+TOkekO95S2fqjF1deGwAAtZBo8WC0nk2N2e9Rr27MfgAAAAAAAAAAAAAANTcTEADWE+trYCXN0R3r9Q1GmylMN6EaAAAAAAAAAAiPK9lXEWNMv6S3SnqDFkPLXArGmF9JutZa+8EI66clvVfSyyStc4y5RdJHrbX/GbpwAACAZkmuXbz4PigEq5HBaPd/2L999w/Cr2Hz/u0xnhqoZ6N0zB9KWz9VfmyrBKPtu0e68XckL7e4Pf4T6TtPk164TUqt9Z/z6LXSbX9Ufu3UQM3KBKLyrLuvZsFoYRz/v6TsHunX74k+95g317wcAAAiiTc5GC3WsRg8Orcj5Pjk8u1Nr5Aevrr2dS21/nnS0Hn13QcAAAAAAAAAAAAAIBJrrX62/4e6b+ZXmvGCA77mCjPOvu54b61LW3F64n3am8+UtM8WBaMtePP6yb5v6+G53yhnS98jG1dcmzqP0TP7L1dvYk3d6gWAYtZa/Xz/j3XvzC814/mHXQ4kBnV633k6qef0BlfXmqbyk7px3/XanX1CR3Uep2f2X6Zk8U0rQ8h5Od2479vaNv+ghlPr9Yz+y7Q2wTUGAAAAAIDaIf1glTDG/K6kT0oaDDE8LulMSUdKChWMZoy5XNLnJA2XGXqepPOMMV+U9GZrrfsVBgAAgGYzRlp3ljRxi3tMo4LRrJX23uHfN/mrCOsU/NtNPHpN7ejsf5bS50lb/1XK3OQe1yrBaL/+m8OhaAfl9kmPXStteePydi8n/fQN0rZ/D7f26MW1qRGoQFD4Wd5xmKubp1wl9T9VeuIb0twuaWabtP/+4DlnfULqGm1IeQAAOCWaGIx2/Nulza+SBk6XHv68tPv7UvfGxd/BMzf6zyl+893IhVLfcdKBB2pf36ZXSMPPkI5+oxTjuRIAAAAAAAAAAAAArCRf3v1J3TT13arWSJqUUrGOGlW0cvXE+3zbl4YL5bysPvbYX+vR+a2Ba/165jb9fP+P9Y6NH1BfwnFzXgCosa+Of0Y/2vc/ZcfdPHWDXj78Zj1z4PIGVNW69uX36sPb/+JQaOYdB27SndM/1Vs3vE/xCNeUFGxB//j4e7R17p5DbT+d+oHeufGD6k+GuYQZAAAAAIDyYs0uAPVnjLlK0jUqDUV7VNL3JH1Z0nWSfiopclCZMeZCSV/X8lA0K+kOSV+VdIOkiaJpr5L0ZWMM34MAAGBlW1/mhTGvQcFouf3B/dmpcOt4ef92Q2aypMUwvM2vkZ79HSmWdI9rhWC0/Kz02Nf8+372Jmn64cXPpx+WHvhn6T9S4UPRRi6Wjn9rbeoEKhAUjFbwbOMKOWjDi6SnXy09+9vSb98nnfVP7mPIUa+Sjr2ysfUBAOAn3qRgtCOeL535UWndmZKJSVt+Tzrv36XT3i+tPdk9zxSdW2NJ6ZzP1r6+0z4onf8l6dg/kuLR74QKAAAAAAAAAAAAAKif8ezOqkPRJHdgWLvpjvf6ts8Wpg99/svpW8uGoh00ntuhW6a+V5PaAKCcvbmMfrzv26HHf3PPl5W3ufIDV7Eb911/KBTtoK1z9+qemTsirXPPzB3LQtEkaW8+oxunrq+6RgAAAAAADiL9oM0ZY94h6T1FzV+W9AFr7a99xscknSvpxZKeG2L9IyV9TdLSK8RulvT71tr7lozrkPRmSR+WdPAKtudL+jtJfxXyywEAAGi8ztHg/kIDgtEKC9IPy/xqNrNdSj21/FrWEYwW46nBMoluaexy6Ylv+Pe3QjDaT14Y3P+NLdLRr5e2XyMVZsOve/GPpPR5wcFxQJ0FZZ8VmpCLVuK4K6Wx50iZW6TCjBRLLQZcrjtLSl+wGMIIAECzxTubs9/Nr3P3xQPuxu0XUjZ8gfSSfdLDV0u/eHv1tUlS1/rarAMAAAAAAAAAAAAAqLkHZu+qyTp98bU1WWel64n5B8BNFw4c+vz+mTsjrfmb2bv03MEXV1UXAITxwOzdsgq4m3KR6cJ+7VjYro2dx9Sxqtb2mxn/8+j9M3fpqb1PC7+O43x8/8xdev7QqyqqDQAAAACAYqQftDFjzKmSPrikKSfpldbaa11zrLWeFoPNbjbGhPn+eK+kgSXbt0i6xFq7LCHEWrsg6ePGmEclXbek60+NMf9ird0eYl8AAACNl+gO7l+YkHLTUtL/jmo18eg10p6fBY+Z2SYNhAlGK/i3m3jkstre06+W/nPQv68RgXjVmM9Iu0Lcke/hz0Vb9+xPSSPPqqgkoJYKAe9xyDsOcw3Xd8ziBwAAK5UxUv9TpH0l98+QTEyy4d9UqFhKGr5Q2hXirtwbXhS8TtS+1FrphLdJg+dIN5xXfv/ldI1VvwYAAAAAAAAAAAAAoC7Gsztrss5JPafXZJ2Vrjvu//7m2SXBaJlctMc0k9tVVU0AEFbU45MkjWd3EYwWwPWYRj4XZP3PBZwjAAAAAAC1FGt2AaiPJ0PN/k3Lw+/eHBSKVsxamy+zj2MlvW5JU1bS64tD0YrW/Lqkzy9p6pB0VdiaAAAAGi5eJhhNkr57jpSfk6ytTw33/9/yY2ZC5sx6jl/xQmXirjId66RhRwjYXe9ubC1RhQlFi6ojLW1+Te3XBSoQFIwW1AcAAIps+YPStrHLwz0PWuol+6Sn/E35cSf++WLomku8091nksFrD50jDZxWvoZyuo6ofg0AAAAAAAAAAAAAQF1UEpJT7MiOzbpo4Pk1qGbl63EEo80Upg997gq3cdmbyyhvc1XVBQBhZCoIw6zFeaJdzRVmdaAw5ds3ETHQzBWANl2Y0lxhNnJtAAAAAAD4If2gff2upDOWbH/fWnt1jffxSknxJdtfs9Y+GGLe/6flgWovNcZcGRSoBgAA0DSJEIEAU/dK13RLyTXS6HOks/9J6hyuXQ2Tvyg/Zs/PJL0leMzMo9Lu7/v3mbh/+2oXS7n75sdr+/9cS/M1vtPS+t+Wzv5EuJ8HoAG8gBzKPMFoAACEd/z/koyRtn5ayk5K639LOuMj0jU94dfo3igluqSBEHfT7hor07/e3Rf0u7m0GLh20fekO94u7bpB6j5SOuEd0sizpNuulCZuleZ3B6/RvVHqOy54DAAAAAAAAAAAAACgaVwhOcd2nayjuoJf740ppg2dW3RSz+nqjHXVo7wVpyfe59s+6y0Go817c9pfmPQdc0rPWbp75vaSditPe3LjGklx4zEA9TXuCDnb0nWipgv7tTv7REnfRMSwx9UkKPxsIrtbni0oFuK6Es8WtCdordwubYgfXVGNAAAAAAAsRTBa+3pz0fb767CPFxVthwpes9beZ4z5maRznmzqkfQcSd+oYW0AAAC1EY/wxofcfumxa6U9P5de+MjihfnV8kLeUW3bF6Wnf16KOV6IKixIN5zvnm94auArKHxh+1ek48uE0RUWpKl7pDUnNDZUbGGi+jVOeId0xoerXweog0JA+FlQHwAA8HHcHy9+VCvRLXWkpYWMe0y5YLQ1J7j78gfK19AxKJ33hdL2Z15X2vbIF6VbX72kwUhP+Rv3cyoAAAAAAAAAAAAAQFN51lPGEcRyQf9zdPaaZzW4opXPFYw2U1h8Dd4VNCdJL0q/TvfM3CGr0juZZrI7CUYDUFfWWmWyO3z7zl17sXYsPOobjJZxhKkh+LEpKK/J/B4NJsvfOH5ffq/yNh+wn13a0EkwGgAAAACgejVIasBKY4w5RtLSv+Zvk/TDGu9jVNKpS5rykm6OsMSPirYvr7YmAACAuqgkzGr2Uelrw1IhW/3+p7eFH5u50d33xDek2cfd/Vz871D6Zo5DDmwNnvrwF6Rr+6Xrz5SuHZDu+0htSwtSbTDaeV+STv8/takFqIOg8LM8wWgAADTPuT6hZEuVDUY73t1XmIteT5DNr5Ke81Pp6N+Tjv1j6eIfSFveWNt9AAAAAAAAAAAAAABqZiq/Vznr/97cdHJ9g6tpDd2xXt/2nM0q6y04g+biSmgktV79iUHfftc8AKiVGe+A5rxZ377h5JjSyVHfPo5Pbpls8GMTFJYZZVzYdQAAAAAAKIdgtPb07KLt71trAxIdKnJK0fZd1tqZCPNvKdo+ucp6AAAA6iNeQTCaJC3ske5+X/X7XxgPPzYTkFO757bguQceCr+f1SQofCEoNG/yTumnr5MK84vbXlb65Tulnd+tbX1LTd0r3f8P0l1XSVv/tfJ1nvK30lGvkIypXW1AjRUCnuEGhaYBAICQjr2ysnn9xX82LtK7Jbi/c1RK9vv3pS+orKYgQ+dIT/836exPSCMX1n59AAAAAAAAAAAAAEDNZHLuoJXhVJkbda1SPfE+Z99sYdoZXjOUGlHMxJV2PK6E3gCot6AQr3RqzHl8msrv1YI3X6+yWlrQeVSSJkKGypULnwu7DgAAAAAA5RCM1p6eVrR9qySZRZcYY642xtxrjJkyxswYY7YbY75njHmXMeaokPs4qWh7a8Qai5M3itcDAABYGYLCr8p57KvV7z93IPzYu/5a2v9gabu10n3/J3juWn4d85X3v8uUJCne5e57/Ov+7Y9dV109Lls/I33rqdIv3ibd/bdVLGSkza+uWVlAvXgB4We5QuPqAACgbR35O+HH9h1z+PPuI6WRi/zHpZ8hdR8RvJYx0jFvKm3v2SQNnBa+JgAAAAAAAAAAAABA23GF5PTE+9Qd721wNa0h6HGZ8Q44Q3LSybEn/x317S8XrgMA1RrP7vBt7zCdWhMfcB6fJIK5XMqFWo6HDL0sdw4Iuw4AAAAAAOUQjNaeziravu/JwLPvSbpB0uslnShpjaRuSRslXSzpA5IeMMb8kzGmXALIMUXbj0ascXvR9qAxZiDiGgAAAPUXryIYbXrbYihZFE/8j3Tr66WfvkHa8R0ptz/a/G8eJ930Uun7l0i//HPpwEPSxE/Lz1tzQrT9rBaFCoPRfv0e//atn6qqHF+zO6Sf/75ka5AGdcE1Uu/m6tcB6qwQcGidzzWuDgAA2tbYpdIZHw33fOjEdy7fPvcL0rqzl7etO1M6/z/C7fuUq6SNv3t4u+9Y6cLrJcPLGQAAAAAAAAAAAACwmo3n/ENyDoZ4oVRPUDBaYdoZXjOcOhiM5v/YukLqAKBWnMGNqVEZY7QumVbMcXk0xyh/mTKBcWED5coFrBGeCQAAAAColUSzC0BdFP/VuVvSbZKGQsxNSrpS0rnGmOdZa11/hegv2h6PUqC1dtoYMy+pc0nzWkmTUdYpZowZlpSOOG1LNfsEAABtLlFFMJq3IOVnpGTIu9A9+Cnptj86vP3w1VL6/Oj7ffSri//u/r70yOel9DODx/cdKw0/K/p+VoN8QDBaLNm4OoJ8/YjarPPSmeq+34EGKnjuvpls4+oAAKCtnfB26Zg/lKYfkvb/RrrpJaVjerdIIxcvb+s+Qrrs54tB0bOPSd0bpN6jwu832bsY2LuwR1qYkPqOk4yp5isBAAAAAAAAAAAAALQBVxALwWhuCZNUh+nUgp0v6ZstTLuDh558TNMp/8d2IrdbBVtQ3MRrVywALOEKNzt4fIqbhAaTw75hX+UCwFajrLegffk9gWPCPm7lAtT25fco6y0oFesIXR8AAAAAAH4IRmtPxaFlV+twKNqMpE9J+rakxyX1SDpV0hskXbBkzumS/tMY8yxrbc5nH8XpHnMV1Dmn5cFofRWsUexKSVfVYB0AAIBF8a7q5mf3hAtGs5706/eWtmdurm7/8+PSY9e6+9PPkM79XPjwttWmEBCM9puPSye8zWdO6ZtH6mbP7ZXNMwlJnpTok0aeLZ31CULR0FI86+7bGim2GwAABEp0Sf2nLH6c+wXp1tce7hu9RHr656V4yn9u71HRAtGKdQwufgAAAAAAAAAAAAAAIGncEYw27AjvwqKeeJ8W8qXvbZ3MT2gqv9d3zsFANFfonKeCJnMZDaVGa1coACzhDG5ccsxPJ8f8g9Ec54vVbCK3u/yY7C5Za2UCbmJprXWG1i21JzeusY4NkWoEAAAAAKAYwWhtxhjTIak4Sv3IJ/+9V9Jl1trHivp/IelqY8w7JH14Sfu5kv5C0t/57Ko4OaOS9Ic5SQMBawIAADSfiVU3f2FC6tlUftye26X5JtyZ6NKfNH6frSQfEIw284j00L9JW96wvP2W19S3pqV2/yDa+Ct2S53D9akFaKCCF9z/lds8vezsKo/fAABguc2vWfwAAAAAAAAAAAAAAKDBrLWhQnJQqjveq735TEn79vmtzjnp5GLg2VBqxDkmk9tFMBqAunGFmy0NbBxKjUo+b/ef8AlLW+3ChMUt2HntL+zT2sSAc8yBwpQWbPlLiTO5nQSjAQAAAACqxlXC7SfuaJ+SfyjaIdbaj0j6WFHz240xYQLLbMj6qp0DAADQWuYnwo1bGK9vHX5O/0jj99lqbJn0pYc+s3x7fkJ6/GvBcwrZ6mpa6p4PhB+bGpA60rXbN9BE5YLRPnsTTzcBAAAAAAAAAAAAAAAAoF1MFSaVs/7vv1wakoNSPXH/y8K2zT3g2x5TXOuSizfh7Yx1aU3cPyAnTMgOAFRipnBAM94B376lYZiu478rSHM1C/uYTGSDQ+XCHvszZdYBAAAAACAMgtHajLV2VpLfJeIfDQpFW+LdWgxRO2idpMt9xk0XbXeFqzBwTvGalfhnSadE/HhhDfYLAADa2ZrjK587+2i4cbYJIT7dRzR+n63m9A8F90/cunx7/33lw9S+/2xprgYvts48JuX2hR/fNSYZU/1+gRXAK3PI/N59jakDAAAAAAAAAAAAAAAAAFB/49kdzr7hFMFoQbpjfb7t4zn/x3QoOaK4iR/aTqdGfccRPASgXoJCtYaXhKG5jk97cxPK21zN62plYYPKyh3bM7lw60yEHAcAAAAAQBCC0drTjE/bF8JMtNbOSPpaUfOFPkNXZDCatXbcWntPlA9JD1W7XwAA0OY2vry0LbVOevGEdM5npfO+KCXX+M/9+R9Ik3eV34ctVFdjJboIRitrvV9GcICc/52plpm4Rbr+TClzS2U1HfTQZ6ONH76wuv0BK0ihTP4gAAAAAAAAAAAAAAAAAKB9ZLL+QS3dsV71xP2Dv7Ao6uNTHDSUTvoHz4UNxwGAqFzhXEmT0prEwKFt1/HJytOe3HhdamtVYcMsyx3bQ6/jOG8DAAAAABAFwWjtaV/R9m5r7bYI839atH2iz5ipou10hPVljOlVaTBacd0AAAArwyn/WzrqNZLM4nbXeumi70odg9KWN0hHvVJae7J7/s/eJD3yRenmV0q3/4m05/bSMc0IRus9uvH7bDU9m6R4Z/AYaw9/ng8RjCZJczul718o/eId0i//XLrpZdKDn5S8CN8Hd783/FhJ2vLGaOOBFYxgNAAAAAAAAAAAAAAAAABYPVxBLcMp/1AcHNYT7400Pp1cv3zb8RgTegOgXlzHl3RyTDFz+JLooeSIzMFrPEKusVrVKtBsIhsuFJPwTAAAAABALSSaXQDq4gFJG5ZsR/0rzo6i7UGfMQ8WbW+KuI/i8XuttZMR1wAAAGiMWFI67wvSmR9bDLRae5JkijKGEwF3U9t7m3Trqw9vP/Rp6Vn/LY1ecritMFfbmstZe4rUvb78OEgbXixt+6K73+Ylk1z8PBcyGE2SvJx0/0cPbz96jbT7h9L5X5GM/wu0h9x1Vfj9SNLGl0rrzog2B1jBPFt+zHfusXruyWV+lgAAAAAAAAAAAAAAAAAAK14mW3yp06J0kmC0crrjAe9x9pFOjS7fdjzGmdwuedZbFlIEALUw7gjxKg5qTMZS6k8MajI/UTKWYK7D8janvbnSx8jPRJnHLWzA2p7cuAq2oLiJhxoPAAAAAIAf/vLYnu4p2l6IOL94fKfPmPuKto+JuI+ji7bvjTgfAACg8ToGpf5TSkPRJCkZ4U0DhXnpB5dK1x0p3f6Wxe38TO3qDGPsOY3dXyuLdQT3e9nDn+cjBKP5efSr0tTd/n2PfV361mnSl4x099+617j8V9KZH5d6t0idw9Lxb5PO/ixCrxkAACAASURBVGR1dQErTMErP+bdXw8xCAAAAAAAAAAAAAAAAACw4rmCWIpDclCqJ94bafxwURDacFFQ2kF5m9O+/J6K6wIAl0zWccxPlh6PhnzaFtcgGO2gPblxWYV7X3W5xy1s4JyngiZzmVBjAQAAAABwIRitPd1VtN0fcX7xeL+/UhenNTzVGNMdYR/nl1kPAACgtUQJRjto7gnpgU9IP36BNPmraHOf/nlp4Izo+zxo7cmVz11tYqng/sKSXOHc/ur399BnS9t23iDd9GJp353Bc/tPlQZOlY5/i/SCrdIVu6UzPyZ1rKu+LmAFCROMdvt2yfNs/YsBAAAAAAAAAAAAAAAAANSNtdYZ1JJOEoxWTncsWjBacdicK3RICh+QAwBRuMIwh33CMP3agtZYjVxBc35mvAOaLUz79s0WpjVTCH8j+XH+DwAAAAAAVSIYrT19W9LSq7+PNsZ0Rph/StH248UDrLU7tTyALSHpggj7uLBo+9sR5gIAAKw8iQqC0Q7adYO09VPR5nQMSVveUPk+1xxf+dzVxuaC+72lwWjhX+hz2nVDadvWf5VsiCSoza+tfv9ACyiEzDub8H9dHgAAAAAAAAAAAAAAAADQIvYXJrVg5337XIE4OKwnHv49zjHFNJgcXtbWHe9Vb3yN7/goYTsAEMZsYVrTBf+bladT60vbHAGZHJ8Oixpi6Ro/EXGdCUeoKQAAAAAAYRGM1oastTsk3bqkKSnp4ghLXFa0faNj3HVF278XZnFjzAmSzlnSNCPpu+FKAwAAWKGSVQSjVaJjSDr69RVONtKaE2tZTXvLzwX3F5YEo+VrEIw2da9ki1KfHrs23Nzjrqx+/8AKZ60t+RFx2TlV31oAAAAAAAAAAAAAAAAAAPUVFG7jCsTBYVGC0QaTw4qbREm7M3goR/AQgNoKCt9KJ0dL2oZSpW2StCc3Ls8WalZXK4saEucaPx4x6IxzBAAAAACgWgSjta+ri7b/NMwkY8wzJD1tSZMn6VuO4V+UtPSvQ1cYY44NsZu/KNq+xlrHrVsAAABaRdL/Tmh10zkkJXqkZ30z+tz1z5M61tW+pnZVKBOM5i0JRsuVCUZbd6Z06U3l9/mzN0lexBdiL7lRindGmwO0IC9kKJok7dhXvzoAAAAAAAAAAAAAAAAAAPU37ghW6Yr1RAr9Wq164r2hx7oC0NKO4KGoYTsAUI4rfCtpUupPDJa0+4WlSVJBeU3mJ2paW6vKBITNRRkfNegs6n4BAAAAAChGMFr7ulrSfUu2LzLGBIajGWOGVRqodo219iG/8dbaByV9fklTStLnjDHONAZjzAslvX5JU1bSe4PqAgAAaAmJBr+xIvXki3qp/uhzz/nX2tbS7soFoxVCBqOtOUG64Bopfb7UVeYOhQ//m/TwZ6W7rpJ+ckX5Gs/4v9LwBeXHAW2g4IUfu3MqQooaAAAAAAAAAAAAAAAAAGDFcYVvpVNjMsY0uJrW0x2LEIyWcgSjOQLTJgi9AVBjmdwO3/ah5KhipvRyaNdxS5IyjpC11SZqiKVr/ETEx5PHHwAAAABQLYLR2pS1tiDprZKWXjL+EWPMPxhjBorHG2MukXSzpC1Lmicl/VWZXV315LiDzpP0PWPMCUXrdxhj3iLpq0XzP2Kt3V5mHwAAACtfo99YkVyz+G+8K9q87iPLh3JhuXLBaF728OfZPf5jNr5Uet69Uu/Ri9smWX6/P3+zdPffSo9fFzzu6DdIJ7y1/HpAm/AiZJ3tmKpfHQAAAAAAAAAAAAAAAACA+svk/ANahh1hXVguGUspZTpCjXUFDA0lR33bM9ldspYbmAKoHXcYpv9xqDPWpb74Wv+1CG9UwRa0Jzfu27cukfZtd4Veus7Ha+MllysfWsezEe6IDQAAAABAEYLR2pi19gYthqMt9SeSdhtjfmKM+bIx5uvGmG2SbpB0zJJxWUmvsNY+UmYfj0u64snxB50v6V5jzG3GmK8YY66X9Jikj0tamgDxTUnvruBLAwAAWHkWHIFY9XIwiC3eHW1euZAvlCobjLYg3f8P0rdOlSZu9R8zctHy8LxYqnb1DT+zdmsBLaAQ4fXxnQSjAQAAAAAAAAAAAAAAAEBLG3eG5BCMFlZ3vDfUuLQjbG7Y8Vgv2HntL+yruC4AKOYKM3Mdn4L6XCFrq8lkbkIF5X37Tuw5zbfd9bi5/m9O7Dndtz1ns9qfnwxRJQAAAAAA/ghGa3PW2k9IulLS7JLmpKRnSHq5pBdK2lQ0bbekZ1trvxNyHz+S9CJJmSXNRtJZkl4q6bmSiuPjvyzp5dbaQqgvBAAAYKVrVjhVImIw2nF/Up862tmGlwT33/MB6Rdvk/bd5R6z5oTl28f8fvV1HTT23NqtBbSAKMFou6a4EyUAAAAAAAAAAAAAAAAAtCprrTOgJSgkB8v1xPtCjXMFoAU91gQPAagl5zE/IAxzKDXqv5YjyGs1yeTcx+iTHIFmU4VJLXjzy9qy3oKm8nsjrSNJ4wH7BwAAAACgHILRVgFr7SclPVXSv0s6EDB0l6T3SDreWntLxH18S9Ipkj4lKSjG/aeSXmKtfaW1dibKPgAAAFa0wXOkRLg3DVQtuebw553D0eZuuKK2tawGm14W3L/jf8qvseb4ojVfXnk9S41dLnX5v5ALtCsvQtbZDm5ECQAAAAAAAAAAAAAAAAAta39hnxbsvG+fK8QLpcIEoxnFNJj0f19yT7xPXTH/mzkHhe4AQBRzhVntL/i/+Xc4IKDR1Udwo/sxWBMf0BEdm53zJopC5Yq3l9rYeYx6Yv7nmaB5AAAAAACUk2h2AWgMa+1Dkl5jjOmSdL6kIyWNSspKyki601p7V5X7GJf0R8aYtz65j01P7mNG0hOSfmmtfaSafQAAAKxY8Q7pnE9Lt7xKsoX67uv0jyzZb2f4eSf+mbT25NrX0+56NkqnfkC68y8rm5/slzpHfNb8e+nO/11dbWd/orr5QAsqeOHH7pyqXx0AAAAAAAAAAAAAAAAAgPoKCrVJB4TkYLmeWG/ZMeuSaSVM0rfPGKN0ckyPLjxU0pfJEnoDoDaCQrTSAWGY6ZT/jcYncrtkrZUxpuraWlXG8ZimU6MaTKYVU0yeSt+cncnu0hEdRx3aHnecj2OKaTCZ1lBqVDPzB3zWIZwOAAAAAFA5gtFWGWvtnKTv1XkfWUk/rOc+AAAAVqRNL5MGTpN+/ofS+I/qs494t7TxxeHHP+M/pQMPSukLpKHzpFX8ol5VTn5X5cFoI8/yf9xP/itp9NLF75fJX0Rfd/BpUu/RldUEtLCowWir/Q0NAAAAAAAAAAAAAAAAANCqMjn/QJXOWLd642saXE3r6o6XD0ZLJ/2DhQ71pxzBaI7/IwCIynU8SZiEBhKDznlDjqDMrF3Q/sKk1ibW1aS+VuR6TNPJUcVNQuuSaU3kdvvMWx6o5gqtW5dMK24SSidHtX3+wbLrAAAAAAAQRazZBQAAAABtZc3x0ql/V5+1k2ukC74qpQbCz9lwhXTSX0jp8wlFq1b3kZXNG7vc3Td4tnTpT6RYKvq6J1UY1Aa0OM+GH5srSNl8/WoBAAAAAAAAAACoJ2PMe4wxtoqPzzX7awAAAACAaoxn/QNdhpNj3DAzgp54X9kxw6n1gf1pR/BQxvF/BABRuY75Q8lRxUzcOS+dcgc7rvZjVCbrH0yWTi0e013H9omiec51npzv+j9Y7Y8/AAAAAKA6iWYXAAAAALSdlPtuRKHEu6ULvykNnC6l+qW5XdLsY9LaU6REV+n4jrS0kClt795QXR1YzstVNq9vS3B/okfq3SLtvy/8moPnSEc8v7J6gBZnIwSjSdJcTupI1qcWAAAAAAAAAAAAAAAAAED9ZHL+gSoHA10QTnest+wYVzjOoX5X6E1up6y1BNUBqJorRKvc8akn1qeuWI/mvJnSNXO7dIxOrkl9rcazniZywYFmQ6lRaba0v/j86zofDz15bnAGrOV2cY4AAAAAAFQs1uwCAAAAgLbTMVR+TP+p7r7fulMaefZiKJokdY1Kg2f7h6JJ0lPf599+4jvL14HwFiYqm9cVfAc9SdJld4RczEibXild8BUp5r7rFdDOvKjBaNn61AEAAAAAAAAAAAAAAAAAqK9KQ3KwXE+8r+wYV/DZoX7HYz7nzWqmcKCiugBgqUrDMI0xSicd4Y1Z/2Cw1WAqv1c56/9G6oOP6bDj2J4pClQr3j7o4Pwhx+PPOQIAAAAAUA2C0QAAAIBaSw2UH/Pcn0tjly1vi3cvtvcdE21/m14q9R27vK33aGnTy6Otg2CDT6tsXtcR5cckuqTNrw0eE+uQXlGQzv+i1LOpslqANhAxF01zubqUAQAAAAAAAAAA0AyvkLQ5wgd30wIAAADQsqy1zpCc4TIhOVguVDBambC5oGAi1/8TAEThDsMMDm6U3Meo1Xx8coWZSYcfU1eg2d5cRnm7+CbsvM1pby7jO+7gfM4RAAAAAIB6SDS7AAAAAKDtxOLS+t+SdnzLPSaekp75X9L9H5UyN0mdaem4t0jrzoi+v9SAdOkt0n0fkiZ/KQ2cLh3/NqlzuPKvAaVGLpImbo0+L7km3Lgjf0d65Avu/o5ByZjo+wfajOdFG08wGgAAAAAAAAAAaCO7rLXbml0EAAAAADTCdGFK896cb1+5EC8s1x3vDew3Ms5wnIPWxPvVYTq1YOdL+sazO7W56/iqagSwus17c5oqTPr2DafWl53vOi+4wtZWA9fX3hPrO3RecAWaWXnam8toOLVee3MZWfm/gfvg/KBzRCa3i3MEAAAAAKAiBKMBAAAA9XDaB93BaGtPWfw3npJOfldt9tc5JJ3+odqsBX8nvH3x/3Tyl+Hn9D81fJjZ2HMkGUnWvz81EH6/QBvzHD8iLnPZ+tQBAAAAAAAAAAAAAAAAAKif8YAwm2FHkAv89ZQJRhtIDCkZSwaOMcZoKDWqJxa2lfRN5HZVUx4AaCLrPo6ECcNMp/zDHTO5nbLWyqzCG5RnHMfmpY/VUHLEPT+7U8Op9YHhcgfnB50jVnM4HQAAAACgOrFmFwAAAAC0pf6nSC94yL9vwxWNrQW10TEoXfLjaHOOenX4sYkeaeB0d39ybbR9A20qYi6a5nJ1KQMAAAAAAAAAAAAAAAAAUEeZnH+QSmesS71x3lMZRU+sL7A/HTJoLp10Bw8BQDVcx5G4EhpIDpWd7zo+zXmzmvEOVFVbq3IFki0NmkvFOtSfGPSf/2SwmitgrT8xqFSs49D2kPMcQXgmAAAAAKAyBKMBAAAA9dJ7tHTxj5YHWm14sXTyXzatJFQpGfzGkGWO/j3puD+Otv6zvuHuCwpNA1YRz4s2fp5gNAAAAAAAVowf3G/1J//h6Z1f9fSzh6PGnwMAAAAAAAAAVhNXSE46OSZjTIOraW3d8d7A/uHk+lDruALUMllCbwBUx3UcGUqNKG7iZecHBTyu1mOU8zxa9Fi5A812Bq9TNM8ZnukIaAMAAAAAoJxEswsAAAAA2trIs6QrxqW9d0jdR0o9G5pdEaoV75YKs/59Y8+VnvJeqWtU6tkUfe3uI6Tj3iI98I/L201c2vza6OsBbSjqJdNz2bqUAQAAAAAAIvr0jZ7e/P8OP7P/xx9YfeUPYvqd07l4DQAAAAAAAABQatwRpBIUfgN/qViHkialnPV/Q1065R9mUzIu6QhGc4TmAEBY47kdvu2u406xNfEBpUyHsnahpG8it1Obu46rqr5WY611BpKVBJqlRrV17p6ScQcD5dyhdcXr+P9fTeRWZzAdAAAAAKB6sWYXAAAAALS9eEpKn0soWrs46V3+7R2D0gXXSEPnVBaKdtAZH5GOf9viepLU/xTpmV+Xhp5W+ZpAG/EiJqPN5aJGqQEAAAAAgForeFb/+7rlz9FzBend/+U1qSIAAAAAAAAAwErnDnQhGK0SPfE+Z1/Yx9QVejNd2K/ZwnRFdQGAFHDMDxncaIzRUNJ/rCvYq51NF6a0YOd9+4qP5cVBaQdlngw0yziCzYrPHa51DhSmNO/NBdYLAAAAAICfRLMLAAAAAICWcvTrpK2flOaWvPi65kTpstukRE/168eS0pkfk874qFSYkxLd1a8JtBEv4vXSc7n61LGSzWWtJmel4T4pETfNLgcAAAAAAN28VZrwuR7qnh3Sjn1W6/t5/goAABDSm40xfy3pREmDknKS9kjaLukmSddba29sYn0AAAAAUBPWWmVy/iE5w45wLgTrjvVqn/b49rkCz0rGOUJvJOmmfd/VQHKootpckialLV0nqi+xtqbrNoJnC3piYbt2ZR/37R9IDGpT53FKxpINrgxovgVvXo/M/UYHClOH2nY6flaihGGmU2Pakd1e0j7uOJ+0i4LNa/v8Vu3JjR9qm8jtdo4vPpa7HuM9uV26bf9PtMexVsk6AeeSG/ddr/7EoLO/EnGT0KbOLRpMjtR0XQCAv8nchLbNP6i8Lb1IJ2U6tLnreK1J9DehMgAA0M4IRgMAAACAKHo2SpfeLN3/MWnfr6XBs6WT3lWbULSljCEUDfBhI46fy9aljBXrYzd4+ttvWk3NSWNrpX95TUy//VQuLgcAAAAANNf2Pe5n9PvnpPW8LxIAACCslxdtd0jqlbRJ0jMl/ZUx5nZJf2mt/V6jiwMAAACAWpku7NecN+vbFyUkB4f1xHt9241MYODZUv2JQSVM0jcM4esTX6iqviAvSr9Ol657Ud3Wr7Xp/H596on36+H5+wPHrUukdeWR79b6jo0Nqgxovodm79OndrxfM4UDocYPp9aHXtt1LJvI7gq9RqvJZHfqnx5/n8ZzO0KN74x1qTe+PGwynfJ/3PI2r6t3ftS5VnEQ2kBiUHElVFC+ZOx1mc+Hqq8SF/Y/Ty8ZfoNiJl63fQDAauZZT/898SV9Z++1geOMjK5I/54uXveCBlUGAABWg1izCwAAAACAltO7WTrr49IlP5RO/5DUsa7ZFQGrhhcxGW2u9P1Xbeu/77R6x1cXQ9EkaeeU9LJ/8fRowMXnAAAAAAA0W4GnrQAAALV2lqTvGmP+3hhT87unGGOGjTEnR/mQtKXWdQAAAABob5ncTmdfcRALwumO9/m29ycGlYylQq0RM7HQIWq1dF3m83po9r6G77dS35j497KhaJK0N5/RF3Z9vAEVAStDwRb02Z0fDh2KJrnDznzHOs4PQeeUVvel3Z8MHYomLYaLFv/JcKjC43rx/03MxDWUGqlorWr8aN//6FfTP2v4fgFgtbh/9s6yoWiSZGX1n5l/0+PzjzSgKgAAsFoQjAYAAAAAAFqGjRqMlq1PHSvRtXeUPjhzOemff8wV5gAAAACA5gp6Zjq7ip67AwAAVOEJSZ+W9PuSLpB0kqQTJJ0v6S2SvlM03kj6K0nvr0MtV0q6O+LHf9WhDgAAAABtbE9ut297h+nUmnh/g6tpDz3xXt/2qEFzzQqmu2fmF03Zb1TWWt1x4KbQ4x+d36pMtn1Dm4ClHpq7V/vye0KPjymudcnh0ONdIWoHClOa9+ZCr9MqDuSn9JvZuyLNSadKH6PueK96HOGZLr3xNeqK95S0VxqyVq3b9/+kKfsFgNXg9v03Rhof5XdhAACAcghGAwAAAAAALcOLGoyWq08dK9Ft2/wfnA9dTzAaAAAAAKC5goLOZxYaVwcAAEAL+rmk50raYK39A2vtZ6y1N1tr77PW/sZae4u19hPW2ssknS3pwaL57zLGvLDhVQMAAABAleYKs77taxPrZIxpcDXtYWPHFt/2zZ3HR1rnqM7jalFOZNOFqabsN6r9hUnNef7fvy67s0/UqRpgZdm58Fik8Zs6j1HcxEOP9wv9OqgdAwjHszsiz3Edw2t1LtjcpHPEruzjTdkvAKwGUX9X5XdbAABQSwSjAQAAAACAlhE1GG02W586VqL7d7n7DswTjgYAAAAAaJ75gOBygtEAAADcrLXfstZ+19qgqNlDY2+X9HRJDxR1fdCYCFeQAgAAAMAKsGDnfds7Yp0NrqR9nN53rvoTg8vaumLduqD/0kjrnLv2IvXE+2pZWigFFRq+z0pUEr6UyQW8+Q9oI7sjBnldvO4FkcYPJIYUV8K3rx1/zqJ+TX3xtTpnzbN9+y4aeL5iIS83jymmiwae79t33tpL1BNr/Dkik92lgm2N8wQAtJqo55t2POcCAIDm8X+WDwAAAAAAsAKVv+xnucmZ+tSxEvV0uC8mn5yR+nhPIAAAAACgSaYDws9WU6g5AABAvVlr9xpjXiHpdknmyeYTJD1b0vdqtJt/lvTViHO2SPqvGu0fAAAAwCqw4BGMVmt9iX796Ya/1zf3/Ie2zz+osdQGPX/oVRpMjkRaZ21inf5s44f03xNf1Lb5B5TzAu6OUoE5b0Y5W/rigbVeTfdTL64gCKOY4iauvC19vDJZwiOwOoxnn/BtT5kOdca6JS3+QWusY6Oe2X+5Tut7eqT1YyauweSwxnOlAWyVhBaudJmc/9cUV2JZgGUyltTmzuP1gqFXqy+x1nfOCT2n6o+P/Bv9YPIbenxhm/zu02CM0REdR+migefrhJ5TfdfpTw7qnZs+uHiOmHtQeZuv4Ctz8+RpujBV0l5QXntz40qnxmq6PwBY7eYKM77HXUnqMJ2+gdaZ7E5Za2WM8ZkFAAAQDcFoAAAAAACgZXgRg9EmpiNOaGFdSXcw2oGAC9ABAAAAAKi3mYDws5ms1eHMDgAAAFTLWvsLY8x3JT13SfNlqlEwmrV2XNJ4lDlc/AIAAAAgqgVvzredYLTqDKVG9fqxt1W9znBqTG9c/84aVFTq/+38R926//sl7Z5aIxht3BG+tKHzaG3o2Kybp24o6XOFGwHtZnfOPxjteUMv16XrXlSTfaRTY77BaBOO0MJW5gp7O7XvHL1p/Z9FXu/EntN0Ys9p1ZalkdQRetP6P696HT8L3rze/uDLfft2Z58gGA0AaswV+itJrx37E316x4dK2rN2QfsLk1qbWFfP0gAAwCoRa3YBAAAAAAAAYfncgCzQxHR96liJUgHx9/v93ycIAAAAAEBDuIK8y/UBAACgYtcXbT+1KVUAAAAAQIUWPP8/HhOM1v5ixv9yR8+2RjBaxieQSZKGk2NKJ/0De1zhRkA7yXoL2pvL+PaNpI6o2X5cP2eu0MJW5gp7SydHG1xJ43TEOjWQGPLtG8/6H38BAJVz/Z6aMEkd23VK5HkAAABREYwGAAAAAABahkcwmlPcuPsOzDeuDgAAAAAAigWFn81mG1cHAADAKrKtaDvdjCIAAAAAoFILnv8bnjpMV4MrQaPFFPdt91RocCWVyWQdQUWpMaVT/mFFe3LjKtjW+PqASmVyO2Xl/ybgmgajOX7OXCFirSzoeNPOhlPrfdt3E4wGADWXyfkHnKWTo+pNrFF3rNe3f9wxDwAAICqC0QAAAAAAQMsgGM1tIe/u208wGgAAAACgiYKC0YL6AAAAULG5om2SAwAAAAC0lAVb/LRmUUess8GVoNFixv9yR896Da4kOmttQHjEmNJJ/7CigvKazE3UszSg6VyhVTHFNZQcqdl+0kn/YLTJ/ISyXvu8MDlbmNaMd8C3z3WsaReuIL3x3BMNrgQA2l+5EE5XGGcmSzAaAACoDYLRAAAAAABAy7ARg9Gm5qRsPuKkFhUUjHZgfnU8BgAAAACAlWlmwf28dCbbwEIAAABWj6Giba6uBgAAANBSFjz/O0ESjNb+jONyR08rPxjtQGFK855/qF86NaahlH9gkyRnoBrQLnZn/UOrhpIjiptEzfbjCmiRpD258Zrtp9kyOf+gGskdDtcuhlPrfdtd4XsAgMq5Q39Hl/0bdh4AAEBUBKMBAAAAAICW4VWQ77VnuvZ1rETBwWiNqwMAAAAAgGKzAeFnQX0AAACo2DlF21wVCAAAAKClEIy2esWNIxjNrvxgtEzWHQAxnBxVZ6xLa+ID/nMDQo6AduAKRhtJHVHT/Qwmh50Bi+0U0uI63iRNSmsS/seZduH6ntmX3+MMpwQAVMZ1vkknF4NIXYGkmSy/2wIAgNogGA0AAAAAALQMW0Ew2r5V8Bq3tTYwGG0/wWgAAAAAgCbKB1yrlCs0rg4AAIDVwBjTKemKouYfNaEUAAAAAKiYOxitq8GVoNFcgUaeWiAYzRG61BnrVm98rSQpnRr1nxsQqga0g/EGBaMlTFLrkkO+fe0U0uIKUxxKjirmCJhsFyPJ9c4+jqUAUDsL3rymCpO+fUNP/k57MCCtWCa3U7aSi38AAACKtPczXAAAAAAA0Fa8SoLRZmtfx0qTLwSHxh0gGA0AAAAA0ERBz1nzBKMBAADU2l9IWnpFaUHS/zSpFgAAAACoyILnfzfMjlhngytBo8VN3Lfdsyv/BQVXMFo6OSpjzKHPo8wF2oG1VrsbFIwmBYe0tAtXAJgrfLGdrEumlTAJ377d2R0NrgYA2teEI4RTkoafPNemU/7n3HlvTtOFqbrUBQAAVheC0QAAAAAAQMsICkZLOP7KsRqC0Rbywf37CUYDAAAAAKxQBa/ZFQAAAKxMxpjXGGNGIs75fUlXFTV/zlq7vXaVAQAAAED9LVj/NzylDMFo7S5m/N8I6Gnlv6Aw7gwqGvP9fKlM1h08AbS6A4UpzXn+b+YdSa2v+f6GHAGEE230c+YOYvQ/xrSTmIk7v85xRwAfACA61++nMcU1kExLkoYd51xJGg8IVgMAAAiLYDQAAAAAANAybEAw2kCPf/u+uYBJbaJcMNoMwWgAAAAAgCYKemaeX/nXMQEAADTLGyU9Yoz5vDHmecYYxyshkjHmLGPM1yT9qySzpOsJSX9d5zoBAAAAoOYWPP83PHXECEZrd8ZxuaNnV/4LChlXMNqSAB9XmM9EbldLfI1AJXYHhFWNpI6o+f6cAYSOMLFW5Ap5SwcE1LSTYcf3ze7sjgZXAgDty3XeHEqOKG7ikqTe+Fp1LmRZYgAAIABJREFUxrr85zt+NwYAAIgi0ewCAAAAAAAAwvIcV1IbI/V3SZkDpX37/G8y11bKBaOV6wcAAAAAoJ6Cgs7zhcbVAQAA0IK6JL32yQ/PGPOgpG2SpiQVJA1KOlXSiM/cvZIus9b6XyUJAAAAACtUwRaUtznfPoLR2t/BkIVinl3ZLyhYa53hEcNLQppcgU05m9X+/KT6k4N1qQ9oJlcwWlesR73xtTXfnyscbE9uXAWbV9y09mXVC968pgqTvn2uY0y7GUmt923fnXOH8AEAonGG/qYOn2eNMUonx/TYwsOl89sokBQAADRPaz+DBwAAAAAAq4rrQuqYkfq7/fv2zdWvnpWiXPDZfC7gCnQAAAAAAOos6Flp3pWCDgAAgGIxScc/+VHO9yW93lr7eH1LAgAAAIDay3rzzr5OgtHanlHMt92T1+BKopkpHNCc538X13RySTCaI7BJksZzOwlGQ1tyBaONpI6QMabm+1sa2LKUJ097c5mWDw/LZN33QVh6vGlnI6kjfNvHsztkra3L9xUArDauYLPic006NeofjOYIVgMAAIjC/y+FAAAAAAAAK5DrWmkjqb/Lv2+f/3uN2kq2bDBaY+oAAAAAAMCPK+hckvKFxtUBAADQYv5B0pckbQ85fkbSdZIusdZeQigaAAAAgFa1EBCM1hFzvEkMbSPWosFo47kdzr6lIUzd8V71xPt8xxEegXYVFIxWD0MBAYSZnDtUrFVMOL6GmOIaSA41uJrmGE6u922f92a1v7CvwdUAQHtyBXEWB4y6Qjnb4ZwLAACaL9HsAgAAAAAAAMJyBaPFYlJ/t5FUOmA1BKMtlAtGK9MPAAAAAEA9BQWjPbC7cXUAAAC0EmvtdVoMOpMxpl/SyZI2SBqR1K3FG+PukzQp6T5Jd1lriZ0FAAAA0PIWbEAwmulsYCVohriJ+7Z7K/wpryvUrMN0ak28f1lbOjmqmcKB0jUIj0CbGs/6BweOpPzDrarVEevU2sQ6TeX3lvRlsjulntPrst9GyeT8jzdDyRHnMbTdDAd874xnd2htYqCB1QBA+8l5WU3mJ3z70kUBpK5jMqG/AACgFghGAwAAAAAALcN1IXXMSGu7/fum5upXz0pRNhgt15g6AAAAAACI6je7pR37rNb3m2aXAgAAsGJZa/dJurnZdQAAAABAIyx47jd8dcQIRmt3xsR82z3rNbiSaFyhZunUmIxZ/hpIOjmmbfMPlq5BeATaUN7mNOH4+RhJHVG3/aaTo/7BaG0QQOg6VqRTo77t7ag3vkbdsV7NetMlfePZHTq2++QmVAUA7WMit1tW/hfvpFNjy7eT/uefWW9aM4UD6on31bw+AACwevj/pRAAAAAAAGAF8hzBaEZSn+M9bwfmHZPayEKZ4DOC0QAAAAAAzVTumfm1d7T/c3cAAAAAAAAAQDjz3ryzL0UwWtuLOS53tFrhwWiuoKLkWGlbqrRNkjI5gtHQfiayu+U5fn7rG4zm+DlrgwBCV7jbkCOYph0ZYzScWu/btzv7RIOrAYD24/q91CimweTwsjbX77ZSe5x3AQBAcxGMBgAAAAAAWobrMulYTFrjDEarWzkrRrYQ3E8wGgAAAACgmWyZ3LO3fYVgNAAAAAAAAADAogVHMFrSpBQ38QZXg0aLOf6PC7bMm+SabNwRHuEXFJF2hBdN5HbJlntRBWgxrpAqI+MML6uFdMr/56wdAgidQYwBwTTtyBWsN57b0eBKAKD9ZLL+IZzrkmklTHJZ25r4gFKmw3+dNjjvAgCA5iIYDQAAAAAAtAzPcdNHI6nPEYy2fxUEo7kel4MIRgMAAAAANBOX8AAAAAAAAAAAwnIFo3XEHG8QQ1uJOS53tCrzJrkmcwYV+YSgucKL5r05TRemaloX0GyuYLR1yWElY6m67XfIEbo2kdstz67s40mQnJfTZH7Ct88VutiuhlPrfdtd33MAgPBcgWZ+5xpjjPP323HH78gAAABhEYwGAAAAAABahue4kjpm3MFoB1ZBMFqhzBXmcwSjAQAAAACayJKMBgAAAAAAAAAIacGb821PmY4GV4JmiBn/yx29FRyMNlM4oFlv2rfPL7gnKLxoPLerZnUBK8HunH9I1UjqiLrudzjl/3OWtznty++p677raW9+XNZxW6q0IwyuXbm+hzLZXSrYQoOrAYD24gz9dQSguX6/dQWsAQCA/5+9O4+O5Czsvf+r6kVSt7bRqFujGW941djgGTtgsyRsISwhQGLWhPAmARJ4sydkuQnJzfoGSHJzk8ube8EkkJATDA4xEAw2YFZjY8DYI49taWzP2GN7tHRLo7VbvVbdP8Zjy9P1VFdL3a1evp9zOBxXtaofaaqrt3q+haAIowEAAAAAgLZhmkdt29JgF4fRnCrnfOUIowEAAAAAdhBhNAAAAAAAAABAUHnX+4SvHruvySPBTrAV8lzeypEbUzhC8o5H9IeG1GvYn/22BbSjVGHGc/mYRzSwnkZ9AoTpNg4QpgzHCEuWdkfGmjyanZWMeO9DjspaLM43eTQA0FlMQTNTAM0UTEsX2vc5FwAAtAbCaAAAAAAAoG2YAmCWpIFey3PdaheE0cpVJpi3exjtnsdd/fS1ji7+o7L2/3FZb/tnR48sMKseAAAAANoF7+AAAAAAAAAAAEHlHVMYzXDlTHQU2/Ke7ui6Va4euoNShnBE1OrRUGhXxXLLspSIGOIRhm0B7Wq+cMJz+VhkX0PvNxbqVzw04LluoY0jLQuGqNuu8KgidqTJo9lZSUOER5LmDUE+AEB1Zbekk8W05zrTa1he2wIAgEYhjAYAAAAAANqGaSK1bUkDhvPeCiWpUOrsKdimYNxpJUcqVauntaipWVc//AFHn7rT1UMp6ci89O/fdXXVXzlaXG/P3wkAAAAAAAAAAAAAAACAtwJhtK5mG6Y7OmrdMFq64B18SETHZVneF3xNRPd4Lm/nYBNwpkx5TevlVc91Y9HGhtGkzoy0mI833seUTha1ezQSTniuSxmCfACA6haLaeNr74QhSmlavl5eVba8XrexAQCA7kMYDQAAAAAAtA3H9Q5hWZY06HPe25r3uXIdI0jzLF9q/Dga4R+/7mo9X7l8YV36h68SRgMAAACAdmB4Ow8AAAAAAAAAQIU8YbSuZlshz+WO28JhNENkKRExh4o6MdgEnGneJ07VnDCa92PQFBdrB+bjjfcxpdMlo3s9l88XZpo8EgDoHH6vR0cjY57L/V73LhQJ/wIAgK0jjAYAAAAAANqGYzi3ybakAZ/z3lY7PYwW4JyvXLHx42iE24+aZ8/fcBcz6wEAAACgHfDuDQAAAAAAAAAQlDGMZvU1eSTYCbZhuqOjcpNHElzKEFlKRM2holFjsIlwBDqHKYzWY/VqKDzS8Ps3PQbTbRxoMR0jTMeUTmcK7PlF+QAA/kwB0eHwbkXtHuO6sBXxXJfi9S0AANgGwmgAAAAAAKBtmCZSVw2jbTRkOC3DcatPMW/HMJrjuDri8z3Y/bPSg/NMrwcAAACAVhfgbSsAAAAAAAAAAJKkvOt9sleP7XOCGDqGbRnCaG6Aq4fukHTREEaLmMNopmBTxllTprxWl3EBO22+MOO5PBndK8uyGn7/CWOAcFZuG36BWXbLWiymPNf5hRg7WTK613N5qui97wEAqtvKa1vbss3Pu4btAQAABEEYDQAAAAAQSHrN1d99xdF7P+PopsPt92UwOoNj2PUsSxr2uSDo/GpjxtMqygHO+WrHMNpjS9JGlXF/bpLjEQAAAAC0ujacVwAAAAAAAAAA2CF5J+e5nDBad7AN0x0dtWYYLVteN4bMkj6hoqRPWCJd8LmaKNBG5gsnPJePRfc15f5HDY/BvJvTenmlKWOop6Xigsoqea7zi9V0MtO+tFI6qZzT4VfVBoAGMb0W9XttK5kjnekCYTQAALB1hNEAAAAAAFUdX3R15V84+p3/cPW+m1y9+oOOfvv61jzJBJ3NNJHatqRI2FJywHv9zEpnz8A2BeM2qxYYa0XH0tVvc+sDnf1vCwAAAACdIMg7t2KJ93cAAAAAAAAAAMJo3c62Qp7LHbc1z1lNF80RM79Q0WB4lyJW1LBN4hHoDKkdDqMlI3uM61I+j91WteAz5tHoWBNH0jrGonuN61KFmSaOBAA6h+m1aLUIZ8LwvMtrWwAAsB2E0QAAAAAAVf3lF1ydWH76sn/4qqvJx5iwiuYyBcAs69T/7x32Xn9iqTHjaRXlAOd8FbwvEtfSsoXqt5luv3NTAAAAAAAe2jHoDQAAAAAAAACoP3MYra/JI8FOsA3THR21ZhjNFN6JWFENhUeMP2dbtjEe4Rc/AtqF45aNIZRmhdH6Q0PqNTx3pAvtF2lJGf6eg6Fdxt+z0+0KjypsRTzXzRvCfAAAM8cta6Ew77kuETUHRyVzOC1d4LUtAADYOsJoAAAAAICqbnuoskblutL7biKMhuYyhdHsJ8Jo+0xhtGXv5Z3C9HfZrFBu/DjqrRTgXLZjC1KhxLEIAAAAAFqZG+BtW5A4NgAAAAAAAACg85nDaL1NHgl2gm15T3d05cgN8oVDk5niSqORPcbf5bRE1BSPaL9gE3CmxWJKJdf7ir7NCqNZlqXRDgoQmo4N1UI1ncy2QkoaQjymcCUAwGyptKCyvJ+/TeGzJ9cbXtuulpeUcza2PTYAANCdCKMBAAAAAKqaNnz3e/2drXeSCTqb6bym02G0vcOW5/qZ5c7eV8sBAmIF7++nWloxQMyt7EhH040fCwAAAABg64K8K98oNnwYAAAAAAAAAIA2kDdMmu+xepo8EuwE22e6o6MAJ8o1WdoQV0oawhCbmYJNpm0C7WS+cMK4Lhnd27RxmCIu7RggNMXcEoZjSbcw7U9++yAAwFu6YH4dOlolxOkXTlvw2S4AAIAfwmgAAAAAAKBtOIaZ1NYTPbTxIe/1C+uNGU+r6NwwWrCg3fHFBg8EAAAAALAtptD5Zmu5xo8DAAAAAAAAAND68q73B8Y9dl+TR4KdYFkh4zrHbcEwmiGu5BeGePI2hnhaOwabgDPNF2Y8lw+Hd6vH7m3aOIyPs2L7Pc6Mx5sAIcZONhbd57k8ZdgHAQBmKcPz42Bol3qrvB/bFRlVSGHPde34vAsAAFoDYTQAAAAAwLas5YKFi4B6ME2ktp8Iow0ZvmtZzzdmPK3CFIzbrFBu/DjqrRhwzCeWOQ4BAAAAQCsjjAYAAAAAAAAACMJ1XeUd75O9mhnSwc4J+Ux3dNR6J8GZ4hFBQkVJQzxttbysnLOxrXEBO22+cMJzuSli1SiJyB7P5eniXFPHsV2u6xrHPGr4HbtFMrrXc/l84YTcIF9UAwCeZI5wVn+uCVkh7Y4kDdttr+ddAADQOgijAQAAAAB8VftCcHalSQMBZA6AWU+E0foN5751+uTqcoALYRZKjR9HvZUCnsc2s9zYcQAAAAAAtifI6earzO8BAAAAAAAAgK5XdAty5X0yFGG07mBbPmE0N8CJck20Uc5ovex9Eq0pxvS02/gEJhaIR6DNtUwYzfA4y5TXlC2vN3Us27FSXlLRLXiuSxgii93CtE/l3ZxWy0tNHg0AtLe0KfobMMJpigObtgsAAFANYTQAAAAAgK98lZjSLEEiNJGp02c/EUYb6PFe3+lhNFMwbrN8qf2uelYMGEY7wXEIAAAAAFpakAtxr2y03/tWAAAAAAAAAEB95R3ziV6E0bqD5TPd0RTN2ynpojlelozurfrzu8KjCils2DbxCLS3VKuE0XyiYX6P4VaTLpiPCUlDhKZb+B1vTYE+AIC3tCHOawqeVdzO8LybKsxseUwAAKC7EUYDAAAAAPja8L641JNmV5i0iuYxBcCeDKP1Wp7r1/MNGlCLKAc436tQJXLYioKG0WaXOQ4BAAAAQLtb7fCoOQAAAAAAAACgOt8wmtXXxJFgp4SskHFd2Q14QlmTmEJFYSui4fDuqj9vWyHtjiQN226fYBNwpo1yVivlJc91zQ6jDYVHFLYinuva6XG2YIi4xex+xUL9TR5Na+kPDSoeGvBcR4gHAIJzXMf4fOMXGn3a7aJ7PJe3U4wUAAC0FsJoAAAAAABfG0X/9fNrzRkHIJnDaNYTPbT+Hu/1uaJUKnduPCtQGK21zgkLJGgY7cRyY8cBAAAAANieIO/ICaMBAAAAAAAAAPLuhnFdj93bxJFgp1g+0x0dBThRrolSRe8w2mhkTLYVbNpmIuodmUgbtg20g1TRHKMai+5t4kgk27KViJgiLe3zOEsZQoymY0i3SUa896v5wokmjwQA2tdK6aSKbsFzXdDnm6QhoLZcWlTByW95bADQbR7NHdVD2fu0Ujop1+3c+ZBAEOGdHgAAAAAAoLVteH+u/aRV83lIQN2ZPsuznwijDfic+7aWk3bF6z+mVmAKxm1WKDV+HPVWCnge2wxhNAAAAABoaUHOzeEzJgAAAAAAAABA3jFfRYMwWnfwC4q99+g7Zcna0naHI7t1Rf/z9LrEzypk1Tal0nVdfX35Rt2+/BXNF54KPjnyvvJnwhCEqOW2t618RXesfL2mcW7WG+rTxX3P1JvGflFD4ZEtbwc47YHsYX1+4RN6NHdUjut/cqdriBhGrKh2hRONGJ6vRHRcs4XHKpbfuPAJfXHhU00fz1aYjzfe0bduMxbdq4dzRyqWf23p8/rG0he3vN14qF/741fojcl3KBbq384Qm+r+zN26afH6QI/XzWKhuCZiB/XGsXeoPzTYwBECrc1xHT2eP6apzKSms4c0VzihXrtPL9n1Gr1w+JVNGcPDGw/o8wv/roc3jqjkbn8iSDw0oEvjB/XG5DvVF/KeVOMXDA36fOMXUPvtB39my6/lTWzL1rm9F+o5gy/SC4ZeJtsK1XX7ALBTvnzyBt21dpskKWr1aDSyR4nouK4ceJ6eM/iiHR4d0FyE0QAAAAAAvnJVPkNfNZ+HBNSdKQB2+usRvzDaer5zw2jlAN9ZF7zPiWhpxYBjnl+TiiVXkXB9vygDAAAAANRHoDAanzEBAAAAAAAAQNczhdEs2YpY0SaPBjshJHPMwBQGCmKxOK9blj6rjLOmt+35tZp+9utLn9en0x8NfPukTxDiTImoOTJR1tYjGJnymu5e/44eyx/TnzzjH2uOwQGbPZo7qg8+9mfb2ielUyFAv/hho4waYi6u3G3/TjvN7xjSTZLRfZ7Lt/tvvFpe1ndXv675wgn97jkfkGW1/nnKR7NT+t+P/+WWnjPXyiv6/to3NVM4rj849+925PEK7JTFYkrTmUlNZQ/pSPYeZcprT1u/IumT8x+S6zp60a4fb+hY5vKP64OP/4lyTv2uMLhaXtIdq1/XfGFGv3PO+z2PZ+nCnOfPxkMDgeOQI5GEbNlyPCKp23ktb1J2pYc27tdDG/fr28tf0k+PvVvn9V1c9/sBgGZLF56KVRbcvGYKxzVTOK69Pefs4KiAncG7EgAAAACAr42C//rV+n3WDlRlmkdtP/EJR3+P+WeXsnUfTsswBeM2K7ThuRtBw2iueyqOBgAAAABoTQHetvIZEwAAAAAAAADAGEbrsXvbIkaC7bMaHGH53so3K0IXflzX1deXb6zpPhKR4GG0ZA233YqF4rwOr9/Z0PtA57t1+ea6BMTGDPGqRksYwmidoJbjTScbi+5t6PYfyT2g47kHG3of9XL7yi3bjg+dyD+ihzeO1GlEQGvaKGd0aO0OfXL+w/rTY7+sPz72S/r3+X/UXWu3+b5W/Gz641opnWzo2H6w9u26RtE2ezh3RMdzD3muSxdnPZfX8lwTtiIaiSS2NLbteix/TH/z6O/rurkPKVte35ExAEA9uK6rdNE7Vsnrf3QjwmgAAAAAAF8bRf/1a97nIQEN4VReOEaSZD9xzttAr/ln/+ZLQaZht6ey4e+yWTuG0UoBfq/TTiw1bhwAAAAAgO1xA7wlX93o3PftAAAAAAAAAIBg8oYAQI/lc8VMdJT+0KBCCjds+2WVdCL/SODbZ8prWiymarqPPT1nNeS2W/Vo7mjD7wOdrV770N6ec+qynVrt6Tl7R+63GfZEG38MaQd7e85t+H2YQkKt5vH8wy21HaBVlN2SHsrerxsXrtPfHP99/e5Db9O1M+/Xt5ZvUqo4E3g7eTen/1r49waOVJrJP9rQ7T9qOJ7NF7z/DrUGRvdEd+5515WrW1du1p8+/Cv6zspX5QY5YQkAWsx6eVU5J+u5rpOjz4BJ4z4lBAAAAAB0hI2C/3omraKZHMPudvpaoPEeybK8J1x/52jn7qumv8tm+TYMoxVruGDZzErjxgEAAAAA2J4g78hXie8DAAAAAAAAQNfLO94fFvfYfU0eCXZKj92rS2LP0v3Zuxt2H+nCnC6OPSvQbWsJZUjSrvCoLuy7NPDtd0fGdH7vhI7lpmu6n1qki7MN2zY6n+u6dduHnjP4orpsp1YX9l2q4fBuLZcWd+T+GyURGde5vRft9DBawlh0n87pvdAY+6mHdHGuYduup6yz3lLbAXaK67pKFWc0lTmk6eykHsgeVs4QYa7VHStf04uGf1zn9F5Ql+2dyVENkyi2wPS8njKE0cai+2ra/lWDL9K9mTtrHlc9rZdX9G9zH9TtK7foLWPv0r6e83Z0PABQiwWf152J6HgTRwK0BnunBwAAAAAAaG0bRf/1TFpFM5kmUttPfMJhWZZnFE2SIqGGDKkllJ3qtyk09vuxhqgljLaw3rnhOwAAAADoBqv1Of8UAAAAAAAAANDG8m7ec3mP3dvkkWAn/dz4b+ic3gsbtv1aYmfpQvAg1HB4t9697w9lW7WdrPgLe39L49FzavqZWtTyOwBnWi+vbjskE7Yi+vnx31Jyhybxh6yQ/t9979VwePeO3H8jjIQTete+/ybLsqrfuEu8ffw9Ncd7atEux9JMuT5Bs3ptB2imtdKK7ly9Vf8290H90bFf1J89/Cu6PvUR3bP+vbpF0STJlatPpz4q1zRxZZvKbqPDaJXBHcctG4NpyejemrZ/5cAL9PKRa2Rp55+jjm5M6X2P/LZuSP1LXfcBAGiklOF1Z4/Vq4HQUJNHA+y88E4PAAAAAADQ2jYK/h/WE0ZDMzmGANjmr0x+dEL6qsfFE5c7+HuMQGG0UuPHUW+1hdEaNw4AAAAAwPYEOReUz5gAAAAAAAAAAHnDZHXCaN1lIDys/3bu32qhMKeUIdAQxC0nP6vp7GTF8lriNqb7T0b26k1jv/jkfw+EhrSv59yao2iStDsypj867x80V3hcS6WFmn/+tAeyh/XlkzdULE8XZ+W6LgElbIkpkiJJ79z7e+q1+3x/Pmr16JzeCxS1e+o9tJqc3Xu+/vL8a3Uif1xr5ZUdHct2DYaGtbfnXNmWvdNDaSnJ6Lj++LwPaq7wuJZLi1vezt1rt+u2la9ULPd7LLSKsltWzsl6rvupxM9rX8+5Fcu/cvIzOpK9p2J5trxW9/EB9VZ0Cjq6MaWp7CFNZyb1WP5YXbcftsIKW1HPx9VDG/fp0Pp3dMXA8+t6n5LkyntyyBX9z9cLhn8s8HbuWrtNt6/cUrHc67XwyeKCSm7Rczu1Ridty9ZPJv4fvXzkGj2WO6ayGhN6c11H3175sibXv+t7O0eObln6rO5cu1VvSL5DV/Q/j9fFAFqa6XVnIjrO8QtdiTAaAAAAAMBXrkpMabWDY1NoPaZ51Pamz/V+82W2vjpd+WXQsvf3vB3BCTDBvB3DaCXCaAAAAADQEYKE0Vb4jAkAAAAAAAAAul7e8b6KBmG07jQa3aPR6J4t//yxjWnvMFpxLvA2TBG1fT3n6dL4FVse25ksy9J4z9ka7zl7y9vosXo9w2gbTlaZ8pr6w4PbGSK6VLrg/XjpsXrbLixiWyGd3Xv+Tg8DDWRbtvb2nKO9PedseRs5J+sZRlsozslxy1sKYDbLRjljXDcRu9xz/z+8/n3PMFqmzInZaD2O62gmf1xT2UlNZw7poY37VXQLdb2PfT3naSJ2QPvjB3Vh36Wazk7qQyf+yvO2N6T/Vc+MP1sRO1rXMTiudxgtEd1T0+vPbDnjHUYrzslxnacFNlPFGeN2EtHxwPe5WSzUr0vil2/pZ4O6rP+HdHj9+7o+9REtFlO+t10uLeqfZv5al8au0JvGfknJLf5eANBopvdgiQjHLXQnwmgAAAAAAF9574t+PGnV+zwkoCFMATB700XPhmPet8mXpFzRVW+kfU7CCKrs/d3X0xQac6GdhirWMOZFvn8HAAAAgJYVoIvGZ0wAAAAAAAAAAMJoqCvTpOF0YVau6wYKOqUK3pGIVgwp+EUr0sVZwmjYknTROw44Gt3TVlE0ICjTc0fJLWmptKjdkWSTRxRcxlkzrouHBmpannU4MRutYbm4qKnsIU1nJjWdndRaeaWu2x8Kj2h/7IAm4gc1ETugwfDw09Y/K/4cTcQOeMZ2F4vz+vrSjXr57mvqOiZH3pNDLNmey02ShsBwyS1qubSokUjiyWXzhROetx0O71av3VfT/Tbbs/qfo0til+tLJz+tr5z8jEpuyff292fv1l8+8ut6+cg1esXI6+setgOA7TK9B0tsIxwPtDPCaAAAAAAAX6YQ1WmrGwp8ggiwXY4hALZ57zOF0SRpKSOND5vXt6tqj1NJKvp/v9OSSjWF0YJMswcAAAAA7AQ3wFu2TF4qO65CNp8xAQAAAAAAAEC3MobRrNaejI/WlIzu9VxecPNaKS9pODzi+/Ou6xonJJu2vZMGQkPqsXqVdysfR6nCjJ7Rd8kOjArtbqE457k8EWFSPjrTqM++nS7MtnQYLVs2x8xiof6alvttC2iknLOhB7P3aiozqensIc0VHq/r9nusXl0Yu+zJGNp49GzfuVCWZen1yV/QXz3y23I9gmU3n/wPXT30Eg2Fd9VtjI7rPYkiZIVq2o7v8aw497QwmjkG3Hqveb1E7R69ZvStumrwxfpAI2cQAAAgAElEQVTU/LWeIbvNSm5RX1z8lL6/+k29KfmLuqz/h5o0UgCozhhGMwR8gU5HGA0AAAAA4KtacKnkSLmi1MdFMtAEpt1x85zpYZ9z4JY3OjOMVjYE4zbLt2EYrVhDGG2B798BAAAAoGUFTVmv5fyD5wAAAAAAAACAzpZ3NzyX99i9TR4JOkEiao5BpAozVcNo6+VVbThZ7223YBTKsiwlouN6PP9wxbq0IW4FVJMueO87frEVoJ31hWIaCA1prbxSsS5dnNOEDuzAqILJlNc8l4cUVo/l/VoqbnuH0TKE0dAkjlvW8dxRTWXu1nR2Usc2jshRDZMIqrBk69zeCzQRO6iJ+AGd33eJwlakpm3s6zlPPzz0ct26cnPFupyzoRsXPqG37vmVeg1ZjkeATZJs2TVtJxbqV39oUOvl1Yp16cKsLok968n/ni+c8NzGWGRfTfe508ai+/RrZ/2pfrB2m/4z9c9aKS/53j5dnNM/nvgLXdH/PL0++fanxeIAYCdky+vG13R+n3EAnYwwGgAAAADAV7UwmiStbBBGQ3OY9sfNF+nxm0C97H2OUtsL8jgtlIJOQ28dpQDBt9MIowEAAABA+1vdIIwGAAAAAAAAAN0s7+Q8lxNGw1b0hwYVs/uVdSpPLksXZnVx7Jm+P58qzhrXJaJ7tz2+RkhEDGG0gvl3AfyYonrJ6HiTRwI0TyIy7h1Ga/FjqSlmFg/1y9p8sv0msdCA5/KssybXdY0/B2xHujCrqeykpjOHdCR7WBtOpq7bH42MaSJ2UPvjB3RJ7HLFQt4BwFr8xOhP6/tr31LOI5p7+8oteuHwq3R27/nbvh9JclzvSRSWVVsYTTp1PPMMo53xOjdVmPH8+WSLvub1Y1mWnj34w7osfqW+sHidvrH0BWNs7rS717+j+zN368dH36yX7nqNQhYJFgA7Y8Enap6I8B4M3YlnZQAAAACAr3KAMNFqTtoz1PixdLp//66j67/vyrakt1xl6c3Pqf2Li07nGtpe9qbvXGNRKWx7R7U6NYwW5HFaqN+Fk5qmWA4ecyOMBgAAAACty/R+/kwrG40dBwAAAAAAAACgtRFGQ70louM6nnuwYvmZMQgvpgBOj9WrwdDwtsfWCAlDrCrI7wucaaOc1bpHHEqSRiN7mjwaoHkS0XEdy01XLG/1Y6lXCFSSbxQqblhXcksquHn1WLwGw/Zlyms6kj2s6cwhTWUntVicr+v2++y4JmKXayJ+UPtjBzQarf9z1EB4SD+++026If0vFetcufp06p/1m2f/ZV1igq4h4hVSqOZtJaJ79HDuSMXyza9zC05eJ0tpz58fa8Mw2ml9oZjekHyHnjv4Ul03/yHPv8NmeTenz6T/VXesfF1vGXuXLopd1qSRAsBTUgXvMFrEimooPNLk0QCtgTAaAAAAAMCXE2Di6iqTVrftAzc7+oMbnvpjf27S1cyyo9/6MeJom5n2x81hNMuyNBzzDmXNrbqSOu/KVUH6Ybli48dRb8UaYm4rG1Kx5CoS7rx/XwAAAABod0HDaKve890AAAAAAAAAAF3CFEaLEkbDFiUjhjCaIXr2tNsUZzyXJ6LjdYleNELCEKtKGyZXA34Wiub9xhThAzqB+Vja2mG0THnNc3k8NGD8Gb91mfIacVpsSckt6tjGtKYyk5rOTurR3FFj7GsrQgrrGX2XaH/8gCZiB3Vu7wWyrdqjYbV68a5X69blL3lGEh/cuE+T69/VwYHnbvt+yq73JArLqn1uUSJiiuY+9Ryf8jm2JaP7ar7PVnNW7zP0nnPepztWv6bPpP/VeKw8bbbwqP7nY+/V1YMv0TWJn9NAuDWDyAA6kynEOxoZk72F5wGgExBGAwAAAAD4ChRGY9LqtuSKrv765so/9PtucvUrL3EVJfT0JNP+eOY5Ruft9g6jHanvxYVahhPge8KVNgwY1hJGk6STWWlssDFjAQAAAABsXcAuGvF9AAAAAAAAAOhyecf7g+IeiygHtsYUb0oZJhs/7TaGSESyhYNQpt8346wpU17zDeAAZzJNyg8prF3h3U0eDdA8yehez+Xp4pwc12nZKEW27HHyvKSY3W/8Gb912fK6RiKJbY8Lnc91Xc0WHtN05pCmspN6KHuf8m59JxmNR8/WxBMhtItil6nX7qvr9oMIWxFdk/h5fXjmfZ7rb0h/TJfFf0gRO7Kt+zFF5GxtIYxmeG2YLszKdV1ZlqWUIQYcUli7I8ma77MV2Zat5w+9TJf3X6XPpf9Nt618perPfHf167pn/Xt63ejP6oeHX96U+B4AmEK8hKnRzQijAQAAAAB8BQkuMWl1e+5+VFrKVi5fWJfuPSFdeW7zx9SqXMNMavuMMNrEHkt3Hq+88ZHZoFOx20s5wK+17LGPtbpSjWG0hXXCaN3okQVXKxvSubul4RghSQAAAKAVmd7Pn2k150ridT0AAAAAAAAAdKuCm/dc3rMD4QN0hkSkegzCxDghOeIdzGkFScPvK0npwpzifYTREFy6MOe5fDQ6RhwEHc0Unii6Ba2WljQcac0wYMYQRouHfMJoPusyjvf2AElaKS1pOjOp6eyp/62UTtZ1+4OhYV0SO6D98QOaiB1omcfd5f1X6ZLYs3Qke7hi3UJxXt9YvlE/NvJT27oPxzWE0bYQZTS9Fi64ea2UlzQcHtF84YTnbUajexTqsOf7/tCg3rrnV/T8oZfpuvkP6fH8w76333Ay+mTqw7p99av66bF369zeC5s0UgDdyhSnTkT2NHkkQOsgjAYAAAAA8OUEmLjKpNXtOTJv/iM/MO/qynP5255m2h/PPDfpYsPnfdPe52i0vSABw+U2DBgWaw2jrTVmHGhNjuPqlz/h6p9udeW40nBM+sjbbL3+hzhmAgAAAK0maKZ8tb4XDAYAAAAAAAAAtJm84/1BcY/d2+SRoFMkDXGbzTEIL67rKmWYkGzaZisYCo8oYkVVdAsV69LFWZ3Xd9EOjArtyjQpf5RJ+ehwfuGJVHGmZQJNZ8o63idSx0LmKGbICqnXjinnVF6BO1vmxGw8peDk9eDGfZrOHNJUZlIzheN13X7EiurCvks1ET+o/bGD2tdzrm/AdqdYlqXXJ96h9x3/bbmqnMRx0+L1unrwJRoMD2/5Psoe25UkW1sIo0XNx7N0YVbD4RGlCjOe68eirRsD3q5n9F2i3z/3b/Wt5Zv0+YVPeB4DN3s095D++vjv6keGX6nXjr7VNyoJANuxYIhTm0KXQDcgjAYAAAAA8BUojNaGwaVW8lDKvO4Bn3XdyDXsj/aZYbQx79s9tqSqV3lsR0Eep8vZ9vvdaw6jcWGyrvKx211d+62ndv7lrPTGDztK/Q9bowPts58DAAAA3cD0fv5MK3zGBAAAAAAAAABdq+yWPWNOEmE0bF3CJ2J2OgbhZb28YgwktPKEZMuylIiMe8ZK0gXvyBVgkmZSPrpULNSveGhAGY8wWLowp4tjz9qBUVWXKXufSB2vEvCJh/o9n/NM20N3cFxHj+ePaSozqansIR3bmFLJLdVt+5YsndXzDO2PH9RE7IAu6NuviB2t2/Yb6aze8/SCoZfp2ytfrliXczZ048In9DN7fnnL23ddQxjNCtW8rbg9oD47rg0nU7EuXZzVRbpM84UTnj+bjHRuGE06FYZ8ya6f0JUDz9cNqX/R99e+5Xt7V66+tXyT7l67XT+V+HldPfjitpqbA6D15Z2cVspLnuv8PtsAOh1hNAAAAACAryDBJSatbs9Rn/jZEe9zCrqWaX88M4x29i5LUuWNs4VT++twrP5j20mO93dfT1MsSxsFKdbT+PHUS+1hNFcSXy51i7+/xfuAkHyPo/KHbb5oBAAAANoQ8X0AAAAAAAAA6F4FJ2dc10sYDVvkF4NIFWZ0Uewyz59LFc0nbyajrR2JSEQNYTSf3wnwki56x/QS0T1NHgnQfInIuHcYzfC4aAVZQ8gsZvuH0WJ2vxZVOaHBtD10rsViStNPhNCOZO/xfAxsx0g4oYn4AU3EDmoidrn6w4N13X4zvWb0Z3Tn2q3KOZUnuty2coteOPwqndX7jC1t25H3JApbds3bsixLiei4Hs09VLEuXZiV67rGMNpYdF/N99eOhsIj+oW9v63nZ16mT6Y+bPx7nLZWXtHH5/5Bt6/coreMvUt7e85p0kgBdDpTmFqSEhHeg6F7EUYDAAAAAPgKEkbLeF+kEQFlCuY/8vRsgH+ALmLaH8/sH+0dNm/jxHLnhdHKAXeT5Y32CqOVAgTfNlvyvkAnOtDxRVf3zZjXf+9h6erzmzceAAAAAP7cgO9bV81z3gAAAAAAAAAAHS7vE0brsfuaOBJ0EsuylIzu1fHcgxXr/EJh6YL3yUm9dp8GQkN1G18jmCZMpwutG/NB6yk4eS2XFj3XMSkf3SARGdcjuQcqlrfysTTrGMJoIf8wWjw04Lk849Q3ioXWs1HO6Ej2sKazk5rOTCpV9Dk5ewt67Zgujj1T+2MHNRE/oGRkb8dc+HogPKxX7X6TPpP+14p1rhx9Ov1R/cZZf76l39dxvSdR2FbtYTRJSkYMYbTirNbLq54BYUkaa/EYcL1dEr9c7z3v73XLyc/ppsXrVXT9J8o9tHGf/uqR39JLd71GPz76ZvXynhXANpkCvLZC2hVJNHk0QOsgjAYAAAAA8OUECBOt5xs/jk5W8r6giyTpyLzkOK5suzO+ANou00TqM/884z7nHZ1Yki7rsO9oygEDYstZ/2hcqyn6PDa8EEbrHvf6X4hJnznk6urzOW4CAAAArSJo9n218kK6AAAAAAAAAIAukXd9wmhWbxNHgk6TiOzxDqMZ4meSlDKEbxKR8ZYPeiSj457LU4ZJ1oCXxWLKuC5h2MeATpKIGiKTLXosdVxHmbJ3GM0UPjvNFE7LGraH9lV2S3p44wFNZyc1lTmk47kH5ajGK5n7sGXrvN6LNRE/oP2xgzqv7yKFrM5NWbx4+Cd06/LNWijOV6x7IHtY96x/TwcGrq55u6Z/E1tbC6OZnrfThTmlfF4PJ6P7tnR/7SxsRfTK3W/QcwZ/RP+R+mfds/4939s7KuuWpc/qzrVb9cbkO3Ww/7kt/14BQOsyBXhHI2MKWaEmjwZoHZ37ahIAAAAAUBflADNXM4TRtsUv/pQtSI8tSefubt54Wplj2B/P/O4gGraUHJBSHheqOrHsSuqsLxsc0x/mDCttNsGcMBpMsv4XYNIt97vSNc0ZCwAAAIDqTKHzM63lgibUAAAAAAAAAACdJu+YT27qsQmjYeuSUe8rqfrFbUzr2iEIlYh4j3G9vKKNckZ9oXiTR4R2ZHoMWLK1O5Js8miA5jMdS9OFObmu23Lhm7yzIdcQU4rZ3uGz0+K2dzgtU/Y4ER9txXVdpYozmsoc0nR2Ug9kDyvn85p7K5KRvdofP6iJ2AFdHHtmV73OiNgRXZP4BV07837P9TekP6ZL41cqYkdq2q7jGsJo1hbDaKbjWXFW80Xvq5X32TENhIa2dH+dYHdkTO/e94e6Z/17un7+IzpZSvvefrm0qI/MfECXxa/Um5K/2BbvGQC0HvPnEN7BXqBbEEYDAAAAAPhyAlwAhjDa9pSq/I0fWSCMdpppIrXt8d3yvmHvMNpR/+8k2lKQgKEkrZovqtqSTGG0kC2VPR43yxkm0HeLQpWdfqPYpIEAAAAACCTou7V2C3oDAAAAAAAAAOon55hPbooSRsM2JCLek4j94japwoznzyQj3pG1VuIXYkgX53RO6IImjgbtKl2Y81w+EhlV2Kot8AK0o6ThWJp3c1otL2sovKvJI/KXKa8b18VD/mG0mGG93zbRutZKKzqSvUdT2UOazkxqqbRQ1+3HQwOaiB3QROyA9scPaiSSqOv2282B/qt1Ud8z9eDGvRXr0sU5fXP5C3rZyE/WtE3HEDm0FNrSGE2vDXPOho5mpzzXJaP7Wi4AuRMu779KE7EDunnx0/rKyc+orJLv7e/L3KW/eOTX9YqR1+vlI9coYkebNFIAnWCh6P0ezBS4BLoFYTQAAAAAgC8nwMzVTJ4Y0XaUDPGn004su5L4UkEy749eYbSLxizd/VjlD0zPdt7+GiRgKEn5NotFmR4biX5pbrVy+TIT6LtGwf87xarHVQAAAADNZQqdn4kwGgAAAAAAAAB0r7whjBa2IgpZW4sAAJKUjHrHzE7FbZY0FB552nLXdZUuzhq21foTkofDuxW2Iiq5lScMpguzOqeXMBqqM03KHzWEBoFO4xuZLMy2XBgt63hcTfwJ8dCA78+awmlZhzBaOyg6BR3dmHoyhPZY/lhdtx+2wrqgb7/2x67QRPyAzup5hmzLrut9tDPLsvSG5Nv1/uPvketx2cAvLl6vqwdfooHwUOBtuq735JDQFv/uSZ/n7vsyd3kuHzO8fu5GUbtHr028VVcNvkifSn1YR7KHfW9fcov6wuIn9b3Vb+jNY+/SpfErmjRSAO3OFKf2e10KdAPCaAAAAAAAX8HCaI0fRycrVg2jNWcc7cC0P3pdjGbC8P3NtPfnhG2tHHCCea7UXpE902MjOegdRlvKNnY8aB35KmG0E8syXs0VAABgKx5KufrSfa6iYenVz7K0d5jXGUAjpM3nagMAAAAAAAAAOpwpjNZj9zZ5JOg0iUi1uM3Tw2jr5RXlHO+rufhtq1XYlq3RyJjmCo9XrDMF34AzpQve+0o7PAaAeojbA+qz49pwMhXr0sVZXahLd2BUZpmyd8TMkqVeO+b7s6ZwWqbMF/ityHEdzeSPayo7qenMIT20cb+KbqGu97Gv5zxNxA5of/ygLuy7VFG7p67b7zRn956v5w+9TLetfKViXc7J6saF6/TTe94deHtleU+isLS1MFp/aEi9dp/n69vV8pLnzyQjhNHOtKfnLP36WX+uH6x9W59OfdT4tzstXZzT///4n+mK/ufrDcm3a1dktEkjBdCOik5BS6UFz3XEqdHtCKMBAAAAAHwFCaOtE0bblpL3BV2eNEMY7UmuYX+0PZoE+w3nXjyYkkplV+FQ54QMnCr70Gn5ygtAtjRjGM1w4bKlynMP0KEKVcJo2cKpUN5IvDnjAQAAne3zk67efK2j3BOvp3fFXH3pN209+7zOeU8BNJrp/fyZZleIHAMAAAAAAABAtyq4hjCaRRgN2xMPmeM2qeKsLtRlT19mCEJJUjLaHlGoRGTcO4xW6MAry6Ih0kXvfSURZVI+uoNlWUpEx/Vo7qGKdX7PEzvFFEaL2f2yLf+YUszu91yeNWwTzbdcXNRU9pCmM5Oazk5qrbxS1+0PhUe0P3ZAE/GDmogd0GB4uK7b7wavGX2rfrD2bc/42LdXvqwX7nql9vWcF2hbrus9OaTaY9nEsiwlIuN6LH8s8M+MRfdt6b46nWVZevbgj+iy+JW6cfE6fWPpi3LlP5nn7vXbdX/mLr169C16ya6fUMgi7wKg0kJxXq68T7Jsl88hgEbhmRMAAAAA4CtIGC1T3wvMdB3CaMGZ9kev6dL7xy3J40PBYlk6mpYu6aBzM8oBJ5jnq8SkWo3psZEY8P63Xco2djxoHQVDNG+zB+al557f+LGgMb57zNUHv3bqq51XXib97HMt4hgAgB3hOK5+5RNPRdGkU687r/orR861oZ0bGNBmAr5tVb5E5BgAAAAAAAAAulXeMYTR7L4mjwSdxi9uk/aI26SKM57b6bVj6g8N1X18jZCIjkseFxpNF1sv5oPWU3bLWiymPNclIkzKR/dIRgzPHS14LM2W1zyXx0Le0bPN4obbFNy8ik5BETu6rbGhdjlnQw9m79VUZlLT2UOesdPt6LF6dVHsmZqIH9D+2EHtiZ7FObrbNBge1itH3qjPLny8Yp0rR59OfVS/ftafBfo7O4bQVkhbP1ctEd1TUxgtGd275fvqBn2huN6YfKeeO/hSfXL+w3o4d8T39nk3pxvS/6I7Vr6mt4y9WxfGLm3SSAG0C9PrS0u2RsLJJo8GaC2E0QAAAAAAvpwq0S5JWvc+HwkBFasEfmaWg04f7nymv4RtV35BdPGYZFveMbWp2Q4LowV4nEp6WsyhHZgeG6OG7+iXN06FK7z2B3SWfIB9+cicq+eez77Qjr50n6tX/cNTB7brvifdOyN94PX8ewIAmu+Oh6XHl7zXve8mR3/wqq1diRPoNm4NH23MLBNGAwAAAAAAAIBulHc2PJf32L1NHgk6kSluk/IKo3ksk6REZE/bREOShniVVwgOONNSMS1H3idwjkY66ORboIpE1Ht/b8VjacZZ91xuip5tFgsNGNdlnXUN2SNbHheCcdyyjueOajp7SFOZSR3bmDYeh7fCkq1zey/QROygJuIHdH7fJQpbkbptH6e8ZNdP6NaVL2mxOF+x7kj2Hh3OfF+X919VdTuO6z05xLK2fp5arWFTwmjBnN17vt5zzvv0nZWv6rPpjyvjeEcqT5spPKq/e+wP9dzBl+qnEj+ngXB7RJcBNF66MOe5fCQyqojNcza6G2E0AAAAAIAvr6jUmTKFxo+jk5WqfGe16HHVvm5lCvV5dbB6I5aeMSodTVeum5pz9ZNqjxOUggjyOJWkfKmx46g3Uxgtafj+3XWl1Zw0HGvcmNAaCgG+65/2/l4ALc51Xf3adZUH+w9+zdXvvtzV6EDnHLsBAO3hu8fML7bf+xlXv/cKVyHCvEBVtSTfZ5alZ+5r2FAAAAAAAAAAAC0q73hfoZUwGuohETWEwoqVcRuvZVJ7BSJMv+9KeUl5J8fjCr5ShseAZA5FAZ3IFBJKF+fkum5LxTKzZe8Yj1/07KnbmONpmfK6hsKE0RohXZjVVHZS05lDOpI9rA2nvpNGRiNjmogd1P74AV0Su9z33xn1EbGjuibxc/rIzF97rr8h9S+6NH5F1SidKYpnaxthNMNrQy/D4d28VqyBbdl6wfCP6UD/1frswsd1+8otVX/mjtWv6Z717+l1ibfpBUMvk22FmjBSAK1soeg9AarWsCXQiQijAQAAAAB8lQ0hqs3W840fRycrVfkbL3hfwKkrmQJgpu+V9497h9EePVm/MbWCII9TScoVGzuOenJd1xxGGzT/3FKWMFo3KASI/J1Yavw4UH93PSo9lKpcnitKtx2VXnew+WMCAHS3bJUQ+OET0sGzmzMWoJ25NZTRZlZcqYNi5ttxLH3qvfGFSRFhBAAAAAAAANDxCKOhkZKmuE1htiJuky6YwmjtMyHZb/J0ujCns3rPa95g0HYWCt6T8gdDuzgmo6uYjqU5J6v18qoGwkNNHpFZtuwd1Yrb1WNYMTvus10mMtRLprymI9nDms4c0lR2UovF+bpuv8+OayJ2uSbiB7U/dkCjhCx3xMH+5+nCvsv00MZ9FetSxRl9c+km/ejIa40/77quXMPlB21rG2G0GsI6Y20UA24l/eFB/eyeX9Xzhl6mT81/SI/nH/G9fdZZ13Xz/0ffWblFbxl7l87pvbA5AwXQkkyfQ4xGeD4HCKMBAAAAAHyZQlSbFUpSqewqHGKC5laY4k+nncxIZcdlAqxk+IpHMv1pxgYtz5862WHf0QZ5nEpSPkBMqlX4/U6Jfu9/V0lazjZmPGgthSrHTUlay9VQXkDL+Nwh87/b4ROuXneQ50IAQHNVC4EveF9wF8AZagqjLTduHO1iLefqp/63o69Nn/rvi5LSZ37Z1qV7eT0MAAAAAAAAoHMZw2hWX5NHgk6UMETN8m5Oq+VlDYV3SToVo0gVZry3EWmfSMSuyKhCCqusypMG08VZwmjwlS56T8pPENlBlzE9d0inHietFEbLON4nsMRC1cNoUbtHESuqolt59cCs02En3TdRyS3q2MYRTWcmNZU9pEdzR+Uq4NXQAwgprGf0XaL98QPaHzuoc3ovkG2F6rZ9bI1lWXpD8u36wPHf8QycfXHxk7p68MXqD3tfKd7x2Udsbf3f1+94dqZkdN+W7wfSBX0T+v1z/4e+ufxF3bjwCeWcDd/bP5J7UB84/nt64fAr9ZrRnwl03AbQeczvwdon0A40CmE0AAAAAICvoMGlTF4aijV2LJ2qVCXw47jS0uxJ7b73S9LaSenqV8g6+6LmDK7FOIbveUzTgncbvhNYzHRWMKkc8DvSdgqj+QUDTf+ukrREGK0r5IvVb7NWJWKC1vRfk+bj87F0EwcCAMAT0lXO72yn19hAu5hd2ekR7Lxf/YT7ZBRNkh5MSW+51tHkn9iyLOJoAAAAAAAAADpT3vWeMN5j9zZ5JOhESZ+oWbow82QYba28orzrHelrpwnJISuk3ZGkUsXKyFu64D3hGjgtXZzzXJ6IEEZDdxkIDanH6vV8XkgXZnV+38QOjMpbtux9gkvQwE48NKDl0mLF8kyZKwYG5bquZguPaTpzSFPZST2Uvc/4mmKrxqNnayJ+QBOxg7oodpl6bQLCreic3gv03KGX6jsrX61Yt+FkdePidXrL2Ls8f9ZxfcJolr3lMQ2FdhkDiGcaa6MYcKsKWSG9dNdrdOXAC3RD6mO6c+1W39u7cvTN5S/qrrXbdE3iF3TV4Is4PwjoImW3pMViynMd78EAwmgAAAAAgCqChtHWCaNtWSlA1GrhN9+skbknPgwP/Z70x/8q60ff2NiBtRHb8B3P7rj38sUOu3hV0MdpLkBMqlX4hdH6ItJAr7Tm8V3xUqZxY0LrKFQJSkrSqv/FldCCVjdc3fO4ef33H+msqCUAoD3MLfs//5yKLnMSElBNLa/kZqs87jqd67r6wuHKv8G9M9Idx6TnXbADgwIAAAAAAACAJsg73uEIwmioh3hoQH12TBtO5ZU308U5XajLJEmpQmVI7LRkpH3CaNKpkJtnGK1IGA3+0gVDGK2N4oBAPViWpWR0rx7LH6tYZwoI7pSMIYwWt4OF0WJ2v5ZVGUYzBddwykppSdOZSU1nT/1vpXSyrtsfDA3rktgB7Y8f0ETsgIYju+u6fXL/LZIAACAASURBVDTOa0ffqrtWb/OM4926/CW9cPiV2ttzbsU6R+aT5G1tPYxmWZYSkXHNFI5Xve1YdN+W7wdPNxwe0dv3vkfPz7xMn5z/sOdr883Wyiv617m/1+0rX9Fbxt6t8Z6zmzRSADtpsZiWI+/JpUnegwGE0QAAAAAA/oIGlzLVLxwCA78A1GkLKwVdfPo/ymW5f/PL0o+8Vla0p5FDazmm/dGUITCF0Y7M12U4LaMcIK4nSflSY8dRT36Pi0hI2hUzhNGyhCm6QTHAvuy1f6C1Pbbkv/6+GenInKtL9uz8Y/z7j7j62G2u0muuXn6ZpXf+sMWVuQCgQ2WrvNfttOgy0ChuDa2zmZXGjaMdFMvSSUP0++N3uHreBbzuBAAAAAAAANCZCKOhkSzLUiK6V4/mHqpYtzmGZoqG9dkx9YcGGza+RkgYQm6pAmE0mDmuowVD8Gk0sqfJowF2XiK6xzuM1mLH0mx5zXN5LDQQ6OfjIe+Amim41q0KTl4PbdyvqczdmspMBopM1SJiRXVR32WaiB/QROyg9vWcy7mpbWooPKJX7H69/mvh3yvWuXL06dRH9Wtn/WnFv6/jmieG2FZoW2NKRIOF0ZLRvdu6H1SaiB/Qe8/7B92y9FndvPgfKrr+JyU+uHGf/r9HflMvG3mdXrX7TbwnBjqcX7yc92AAYTQAAAAAQBVOwODSOgGaLSsF+BunQ8mnL8isSvd9V7rihY0ZVIsy7Y+m7/t291uSKmdf54rSStbVUKwzvigMGjAstFEYreQTRgs/EUZ71OOiWkuVF/REByoECEqu5Rs/DtTXiSphNEna/98dOddu74v97frmEVev+l+OcsVT//2fd7m661Hp/7y1M55TAABPV+11x6IhXgTg6Wrooul45UWou4pfRO5oqpa/JAAAAAAAAAC0F8JoaLRkZNwzjLZ5ErIpGpaIjLddmCQR9Z5A7TfpGlgtLRljHabYHtDJjJHJFjqWuq6rjOMdMDMFz85kCqhlHO/gWrdwXEeP549pKjOp6ewhHd2YUsmt3wn5liyd1fMM7Y8f1ETsgC7o26+IHa3b9rGzXrrrtfr28pd1spSuWDedndS9mR/oWf3PftpyVz5hNNnbGk8iQFwnpLB2R5JVb4faReyIXrX7jXrOwAt1feojujdzp+/tHZX15ZM36Pur39Ibk+/Ugf6r2+79CIBgFgreYeqh8Iiidk+TRwO0HsJoAAAAAABffpMxN8v4X7ACPvwCUKfNeH2pevg7XRdGM+2OtuE7npG4eVvvv9nV+67pjC8GggYMT0d82kHR53ERCZn/bQlTdId8sfqT0xrBzrYzsxLsRcddx11dee7OHb//+ktOxfH02m+5+u+vdjU+3BnPKwCAp1SLC/P6Ewgm6OdLkjS7Iq1uuBrs687XVn7x8wdTzRsHAAAAAAAAADSbMYxmEUZDfSSi3nGb9KZJyOnijOdtktG9DRlTIyUNMZ/l0qIKTp4J1vCULnpPypfMsT2gk5mfO1onjFZ0Cyq53ieJm4JnZzIF1LJl7+BaJ1sspjSdmdRU9pCOZO9RplzfONxIOKGJ+AFNxA5qIna5+sODdd0+WkfU7tFPJX5O/zz7t57r/zP1UV0aP6iQ9VTuw3F9wmjW9sJoScPxbLNEdI9sa2cvYN3pRqNj+uWz/kj3rH9P189/xDOct9lSaUHXzrxfz4w/W29KvlOjvB4DOo4pXk6YGjiFMBoAAAAAwJffZMzNMvnGjqOT+QWgTjsR9jipprev/oNpcab90TbMlR4fMm/rc4dcve+a7Y+pFZQDPk7zpRpmou+wamG03aYwWvd9/143ruvqyJw0HJPGBtXSVxQqBDhuruUkx3Flmw4QaDknloLd7hsP7GwY7aZ7K5e5rnTtra7+5DXsbwDQaaq97lgmjAYEUksYTZKOzEvPOa8hQ2l5fp/Fza00bxwAAAAAAAAA0Gx51xBGswmjoT5Mk4pThRm5rivLspQyhG5MYZxW5jfmheK89vac08TRoF2YJuXH7H7FAwaWgE5ieu7IOuvKlNda4nHhF+6K297BszPFDLerdxSsFW2UMzqSPazp7KSmM5NKGSKpW9Vrx3Rx7JnaHzuoifgBJSN7W/ocbdTXlQMv0DeWv6CjG1MV61LFGX1z+Sa9dNdrnlxWlvlkNUvbC6MlAoR+x6L7tnUfCO7y/qt0Sexy3bz4H7rl5OdUlv8VXO/N3Kkjj9yjV4y8Xj82co0idqRJIwXQaObPIQghAhJhNAAAAABAFUHDaOuE0bbEcdxAf+OZsMeXqpnV+g+oxZUNF8AxdY8uSJi3NT0nnVhytW9X+3+x6JgvDPQ0ee+LgbWkamG0kX5LUuWDZynTPvG3VvLAvKuf+6ij7z586r9f/Szp42+3tSvemo+Pgv/3fk/KFKQBzo1tGyeWg91u2nxR0h11f33PhQEAtIhqrzvWcrz+BIKo9ZFyZM7Vc85rzfcjjeYXkcsHfC8EAAAAAAAAAO0o75jCaN13AVE0RtIQCsu7Oa2VVzQQGlLaMCE5aQjjtLKRSEK2bDmqPMEwXZgljAZP6YL3yVmjTMpHl/KLTKYLs4r3tUIYzXxV6XgoWBjNFHjL+my7XZXdkh7ZeFBT2UOayhzS8dyDns+VW2XL1nm9F2sifkD7Ywd1Xt9FClnkHLqVZVl6Q/Id+sDx3/Fc/4WFT+qqwRepPzQoSXJd874YskLbGksiUv25PBkgnob66bF79brE23TV4Iv1qdS1eiB72Pf2RbegGxev0/dWv6k3j/2S9scPNmmkABopXfR+D2YK9ALdhlfSAAAAAABfphDVmTJ5V1JtE1bXc65umZIeW3L14ostPeus7pvwGvTveyJc+QWDu5yu8S/e/hxDRc4URrMsS594p6Wf+Sfvnzt+Utq3q16j2zlBA4a5NppAXfJ5bIRtaXfce91ipjHj6WSO4+od//JUFE2SvnBYes9/uProz7fmUSZoGG0tRxitnRxNBTuYPTDXmgGaQqk1xwUA2B6/YK8krREJBxoi3fkXnTYK+h4fAAAAAAAAADqJ67o+YTRO/kB9+E0qThVm5EZd5V3v/dAvjNOqwlZEI5GEForzFevSRe8AHGDaN9oxDgjUw1BolyJWVEW3ULEuXZzVeX0X78Coni7rmL9gjwUOo3nfLuO0fxjNdV2lijOayhzSdHZSD2QPK+ds1PU+kpG92h8/qInYAV0ce6b6QoYT3dGVzu29UM8dfInuWP16xboNJ6MvLHxSbx77JUnyjfTZsrc1juHwboWtiEpu0Xibsei+bd0Htma852z9xll/rjvXvqX/TH1Mq2X/q42nijP64ON/qisHXqA3JN6u4cju5gwUQN05blmLhjCaKe4OdBvCaAAAAAAAX0EnY67XOBl8ftXVK//e0eTjp5e4+p9vtvQbP7q9D+vbTbVJ9qfNep1QsLxY38G0AdP+aAqjSdKbn2MOoy10yETroI/TvPk7rJbj99iIhKTdhu/pF9v/+/em+84x6bajlcs//QNXH/pZV9Fw68XR8gHDaKsb0t7hxo4F9XOk8hxMTw8EvF0jmAKdUvD9EgDQXqoFWde950UAOINbY+wrU3lOedeo9W8FAAAAAAAAAJ2g6BbkGiIAhNFQL/2hQfXZMW042Yp1p2JQ5g/pk5HKi9u2g2Rkr3cYreA98RpYMOwbo5E9TR4J0Bosy1IiMq6ZwvGKda1yLM2UvU+e7rX7FLKCZQRioQHP5dlye55sv1Za0ZHsPZrKHtJ0ZlJLpYW6bj8eGtBE7IAmYge0P35QI5FEXbePzvPaxNt019rtKriVE69uXb5ZLxx+lcZ7zpbjmsNolrW9uVa2ZSsR2aPZwmPG27Tra95OYFmWnjP4Ij0z/mx9fuET+ubyTcb3yKfdtXab7lv/gX5i9Gf04l2vVsgKNWm0AOplqbSokut9ojLvwYBTCKMBAAAAAHz5BUA2y9QYRvvAze6mKNop77ne1Zuf7WrPUOtFeBql5P859ZOWbY+yz0p9v6BrB6bdMeTzHY9lWTprl/T4UuW6hXVXUvvvb4HDaG0U7akaRjNcSGsx05jxdLL/9VXvHWg9Ly2st2ZYrBAwKjm3Kk1wkZS2kMm7evRksNvOr0nFkqvIDkT7/I5NQfdLAEB7qXZ8X6vxvTDQrWptfdX6OVMnCfoeHwAAAAAAAAA6Sd4xX42GMBrq5XTc5tF85VUkU4VZ48/12XHFDcGYVpeIjkvZuyuWnwrBAU/nuq5x30hEmZSP7pWMeofRUi1yLM0awmgx23AVag9xw203nKzKbrnlYztFp6CjG1Oazk5qKnNIj+WP1XX7YSusC/ou1f7YQU3ED+isnmfI3makCt1lODyiV+x+vT6/8ImKdY4c/Wf6Y/rVs/67HJlPVgtp+4/DRHTcN4w2FiWMttP6QnG9aewX9byhH9V18x/SI7kHfG+fd3P6z/RHdcfq1/SW5Lt0QWx/k0YKoB5MYWpJShBGAyQRRgMAAAAAVBF0MuZ6jRNWP/zNyg07rvTZQ67e/aL2D1UF5RdY2WzN68vGpXR9B9MGTPujXWWXGe03hdG2P6ZWEPRxmis2dhz1VDWM1m/Ja2r9wvqpk3Msq3uOI9t1bMG8Ay22ahgtYORvZrkz4ofd4MFU8Nu67qno3dkjjRuPiV8cJ99Gx1gAQHDVXnesmefoANjENbztCNve0fhaP2fqJITRAAAAAAAAAHQj3zCa1dfEkaDTJaN7PcNop2JQ3h/SJ6N72/Z8NNNEasJo8JJx1rThZD3XMSkf3SwR9b5Cb9onqtlMWcf7hPhaop6xkDmitlHOqD88WPO4GslxHc3kj2sqO6npzCE9tHG/im6hrvexr+c8TcQOaH/8/7J33+FxVIfawN+ZLZJW3dJKstzBxqaFltAuaUAaKRdISOAmkOTmBpIQQgmhhl5DS0IJLRA+SgoQIISSEEIJYDCYYoyxZWNbLpIsrbq0K22b8/0hy15J58zOrLbM7r6/5+HBmjMze3anz5zzzr5YWLYHvHpJWudPxeeI2v/Gq/3PoS/WPaXsw+A7WDX8Nuo8jcrptTSE8Zkdz8v0clS4qqf9GZQec0p3wdlzr8XSgefxROB+5b5+XFu4FTduOR+HVB2Bo/0nodLNZUmUD1TX5hWuapS5yrNcGyJnYjAaERERERERmbLaGTNo8znSiCI85L7XBH70aXvzymeyzr8yQ64qGNCgJza86XHGw9RsUgajJXnG41c8q11rI4jHyQyL65Fqu3OimEn4kFsHGhTP6qNxoDcI1Fl/yVnR85i8PMqp4YFhi8Fobf2ZrQelz5oOe+kPbf05CkYzWffMQtOIiCh/Jdu/MxiNyBpVMFpFKdAv6VsRLOJgNNVvNS4WF3C78rPzFREREREREREREZFKWIwoy0r00izWhAqd3ysPg/gotApb9A3yafI4EEoV5tMbDeDBbbemPF8X3JhXthAfr/wkg2Icbjg+iLcHX0VbuBUGzBubhuLqBoOqdYmoGPg98vW/PbxpWvtSu2rd9fhYxYGYU7rLhOFBxbbrsxGmYRaiFjSGUIGdwWhCCHwQXI61oZXKMMVMGjVCWBdahaH4QFrnW+2egd19+2BJ+b5Y4tsHVW4Hvlma8ppXL8Ex/u/i3o4bpeV/6rwDc0t3VU6vIx3BaOrjeWMehwEXKl3TcVjN57FPxUF4ovt+vD7w76TTvD74b6wYXoaj/Sfi0OrPQU9DoF4hyvWxLJ08mhfzS3fDAVX/BbfmyXV1yKYuRdBuPt+HIEo3BqMRERERERGRKavBaAPqdklTBMPqmSYLuCo0ZuFPkwX1clQmvuVjoAciEobmLZ5GJaoAMD3J85f6Sg2ytzne+6rA3SeKvH+AY3U7DaX3RVgZFTULRnMBM01eYNMxwGA0O+ImbZ16gtmrhx1m4VSJ2hmMljdaOu2Nn6tla7ZvsrpeEhFRfjHb9wNj59hxQ8CV7KKEqMipLlsrSuTBaPl0/Zpuya7xg2Gg2peduhARERERERERERFlS9hQv42GwWiUTn5Ps3T4YLwfiMsbpDR45dPkA1X4hYDA0oHnpzXvVwaAV/v/idNmX4YyFx9eOFFftBu/3XIxuqLt05qPVytBlas2TbUiyj+qYMCwGJ32vtSuf/Q8iu83n4X9Kw/dMSwUH5KO69PVYWdTxnWpG15PDk18pOv3eKn/acvzdqoSrRSLfHthSfk+2N23L5q8s/O+TwE53wGVh+HFvqewcbRlSllvLIDe4YBy2nQEXJkFnTZ4Z017/pQZle5qnNh0Gg6tOhJ/6rwD7ZFNpuOHjGH8sfN2LB34N05o/NGUQE0CHu66Gy/3P5PraqTNy3gGywZfxI9n/RIeneFo+SQQ3SYdzmBqop2KrLs5ERERERER2WU1cKl32OKIADoH1WWuInuWlKyTfaJBvWrqwO7pNVbIN6r1MVkGgVlI1ivrUq+PU1jdToPhzNYjnVTbhlsHNE1Do2RzGNeR3heAFbwRk8CBbhv79myKWNx3Mhgtf6y1GYzW1p+bddMs/CzMYDQiooIjhLAUfJlP59lETlOp6Ms2POrMa5FsSPbNizk0joiIiIiIiIiIiAqXKhhNgwaP5s1ybaiQpdK5WBUulg/qPI3QkLmGua2j6/DG4AsZmz9Nz4t9T007FA0A6j1NDAuioub3NOW6CjvEEcNjXX+AIXY2pA1OCi4bV24SdjZZiVYKF9zSsmBC8FpHeEvehqJp0DG/dBG+OOM4nDHnSly/6AH8ZPYvcXjtVzGzZA73c5QVmqbhuIYfpDStDte0P9/svLYxj8OAi8Wuvt1x/vyb8HX//6JESx4g3jq6FtduOhsPd96NkXgwCzXMD+3hzQUVijZuTWgFVgy/ketqkE2BSId0uJPOP4lyjcFoREREREREZMowrI0XkL9oSMo0GK3IrlRjFn9fABjSJQ8nu+U3wApVqsFoC+rUZZc+aWMhOJTVYLR86jyt2jbc25/ned0a6hXP6zsGircDfSpGTcI+uuVtJXLOSkAJAASGuC7kix6bIXy9OXo2axbKx2A0IqLCE7MYxjok76dDRAmE4nSvokQ+PJhH16/pluxeXDH/NkRERERERERERFS4VMFoJXopQyoorRpSCDlrSCFMzSk8uge17vqMfsaq4DsZnT+lblXw7bTMx+9lp3wqbjXuOkcFtfbGAmgPb97xd8iQd+TwuSotz1PTNGWQWmLw2od5ts+v9zTisOov4IfN5+D6hffjnHnX42v+b2M3315wa55cV4+K1Pyy3XBg1WdsTaNBh1uThxfaUeupV4YgNngYjJYPXJoLR8z4Gi5ZcBsOqDws6fgCBl7qfxqXbTwVbw2+DKFqxFVECvn65YPg8lxXgWzqiwWkw+sZjEa0Q5F1NyciIiIiIiK7rAYu2QnP6TIJUSu2UBGrHe0BYEiXPJzs2pq+yuSBVIPRjtlPPcJLa4FL8jwczep2GjOAaCw/HmREFduGJ+FFRzOr5eN0DKS/PoVsxKRTfY9Dg9GsHit6+GKjvGH3+J+rABrVvgmwHthHRET5wywQMxGD0YiSU12JKoPRwhmriuMlu8Yv5t+GiIiIiIiIiIiICpcyGE0rzXJNqNBVuqsxp2QXy+NXuKoxp9T6+E60R/n+GZ1/IFJcL/jNF4YwEIhuS8u8Mr0OETmdrunYvXzfXFdjgq5o+45/JwaXJVIFnan4FOOHjJ3z74o6e59fppdjv4pDcELjj3H5gjtw+S534n+afoz9Kg9Vfj+iXPjv+u/AqykazUjMK10Ijz79gEaX5sKS8n2mDHdrbiz2fWza86fsqfHU4QfNZ+O02ZdaCrUbjPfjDx2/xm+3XoyO8JYs1NC5Cvn6JRBJz/k/ZUdcxDFihKRl1e7aLNeGyLkYjEZERERERESm4hbzogI2wnM6B9U9PIstxMYsYGWyQVkwWtv69FUmDyiD0ZLc4Zhfr+FrU5/f7HDFUwLvbs6PwDAZw0auW8gkBMtJVPsed8KybqqSj2MnqJGA0ai6zKnBaFYDqIrtmJLPzNZDmVwF0Jite239QDiav8cSIiKayuo5R76cYxPlkuplo6pgtOEiDv9KdkYZ5D6HiIiIiIiIiIiIClBYKILR9LIs14SKwdH+k+DRkgdLaNBxjP8kuDVPFmqVOZ+bcTRq3HUZm39PtAtxwTcKOk1/rAcxYbNRlsT80kX4RNWn0lAjovx2VN23UC5ry58jnZG2Hf8OKYLRfLq9ILByl/z7BeNDO/7ttDAZF9xYVLYnvlr/bZwz9zpcv/B+/HDWufhkzRdQ723KdfWIlGo99fjuzNOhW4j68GolONp/Yto++8t1x6NML58w7Et130KFW9E5gxxt9/J9ceH83+Kr9f9j6RpnbWglrm49E38LPKAMKC903WkKD3aiQv5uhWgkru7wpDovIypG7lxXgIiIiIiIiJxNFUQ1WV8IiMUF3C4t6bidg+qy1m6gPyRQ40s+n0IQsxFoNSx5mCq2rENx/FJjVAFguoUf4dKv6XhyhfoH/3+vC+w3Nz9/TavbKTAW2lDty1xd0kX1nbSERVRfqUHWZdypYV5ONWrSJq0n6LyQJyEEIhZDJXuGx8bXtPzctotJ2GbbyJwFoyVZ94693cBTp+lc54iICoTVIOuR6bclJyp4ymC0Uvl1XbCIg9GShZ8X829DREREREREREREhUvVIbtEL81yTagY7F6+L86ddz3eGVqKQETecbzGMwP7VByEXcqWZLl26ef3zsS5867HW4P/wdZwK4TqwU0SYTGC94ffnDLcQBy90QD83pnTrSqlUcAkFOHjlZ+EliSIxa27Mb90NxxU9Rl4dcXbjoiKyNzSXXHuvOuxfOhVbItsUT4DT7cNo6vRE+2aMjwxGC0xuCyR3UANVZBaYvCaat8yv3QR/J5mW583HdXuWizy7YVFvj1RyiBdylP7VR6KX8y7Du8PL0N3ZOp2DgBNJbOwb8UhmFkyJ22fO79sEc6bdwOWD72KYHwIe5Tvhz3K90vb/Cn7PLoHX6r7Jj5R+Sn8peturAq+bTp+HDH8s/eveGvwPziu4f+wT+VBWaqpMwSi8pDPbB/LpmM4PoDVofemDB+KD2DUGOGxMU8EDfk5HAD4XPYCbokKGYPRiIiIiIiIyJTVwCUhxsLR/Baen3Wp79sgZgDPfiBwwoH5HSjyziaBsx8xsHwTUOMDjt1fwzXHaCjzTvxedoLRBmUPJ7esm2ZN84tqfbQSjLZbg3n57S8J/OZb9uvkBHEb61Eokrl6pJOhaDGQuKzrFPd5u4edF+blVEIIjJisE90ODJmLG+pQhcnCsbF1vpztshxPFYzmcclDaYZGc7OdJwvIefYD4In3gGPYPoCIqCBYDWPNl3NsolxSnb2pztWDRbxdJTvTNbuGIyIiIiIiIiIiIspXYWNEOpzBaJQpzSXz0FwyL9fVyJpq9wwcOePoac0jbIzizHXHS8sC0W0MRnOYQEQe+FDhqsL/Nv88y7UhKgz13iZ8se4bWf3Mx7ruw/N9T0wZ3hVpBwDERBRhIQ+YtRuooRo/ZAzv+KzeaEA6zhfrjsPHKg609XlEBMwrXYh5pQuz/rl+70x8qe64rH8uZVa9twk/mfVLrBhehke6fo++WLfp+L2xAO5svwZ7l38CxzX8H+q9jVmqae6MHcvkv0s+Hcu6I524eOMpirJtmF26IMs1olQkhs9OZjfglqiQmce6ExERERERUdGzGowGAL1Ba+N1DZqX/+Z5kfIb6ZygZZvAx68y8NJaYDgMbO0Dbv63wMkPTP1OyQJWEvW4Zkwd2NGacj3z0XSC0XwlGubVqcujcSAYzs/1zs52mi+hDapdQOKyrlc8r+9xYJiXU8Xi5uuPE4PRVAFaKlwf8kM4Kh+uClwdkrfjybiIhfXv0idtpFUSEZGjWdnvAwwpIrJCdY1XqejPNjACxO1c7BaQZF87FCnO34WIiIiIiIiIiIgKW9iQNwRgMBqRc5Topah21UrLVCFclDuBqHyZ+D0MsCPKJ43eWdLhnZE2CCEQiqs7cJTbDEZTjR/cHtrRE+2CgLx9JPctRETOoGka9q08GBcvuBWfn/F16HAlnWZl8C1c0Xoanu15BFFD0ai/QPRGA8pjWb2nKcu1SV2tpx4uuKVlgei2LNeGUhWMD0mH63ChROP9MKJxDEYjIiIiIiIiU3b6oAbD1sZ75G3zmb7VCux1qYF1nfnV0dMwBM551MDuF8tvkj60TGB918TvFLMRjNbhltxk7Q9AxGymBOWx6QSjAcB/72s+4tubbFbIIQoxGM3KslYFozkxzMupRpI8t3JiqJjVgJJx25KEcZIzqALvVNu5k4PRVrYhrwNeiYhoJ6vnHQwpIkrdzGr58LgBBOTtfgqekSRnN1+u64mIiIiIiIiIiIjsYDAaUX7we+XBN6oQLsodVVidahkSkTOpgtFGjBCG4gPKQA0AKNcVb6ZV8OnyBpuh7cFoqv2KBg31nkZbn0VERJlVopfiaP+JuHD+b7CobK+k40dFBH/vfghXtZ6ONcEVWahhbpgFOufTscyluVDnaZCWMbQ6f4yHz05W7qqAplnsKElUBBiMRkRERERERKaSdcZMFEzSMVMIgT8uszbD1R3A4osMrO7Inw7m974mcMNz5vV94r1JwWg2ft8Ot6QxghBAX6f1meS5uOL30i3e4TjnCxp2N2nT8ZVbbCwQBymqYLSEZV1XLh+HwWjWjSYJRhscBSIxZ+2HIzYCJQHgxRZn1Z8mWrlV4J5XDbT1y8uVwWgWw1jTLWpx/XNiqCAREdln9bwjWdgsEQGqs/LZNepp2hXniIUu2RVMvlzXExEREREREREREdmhDEbTyrJcEyIy4/fIG2B2sfO946iWSYNiGRKRMzV6m5VlXZE2hIygstznUjTAVCh3yYPUxsPXAtFt0vJadz08utfWZxERUXbMLJmDR3HcowAAIABJREFUM+Zcge/NPBNVLpOGWtt1Rdtx89ZLcG/7jeiP9WahhtmlOpbVuOvg1UuyXJvpqfc2SYd3K74jOU/IkHc68SnOyYiKFYPRiIiIiIiIyJSdwKWgSUjJSETgm3ca+M499gJq9rzEwO9eyo+wqvtfT/7dXlwzcRyrASsA0C4LRgOA7uJpUKIMy7L4IoTmGg1vnK++HTIcBsLR/AtRKshgNFUIXsKyrq+QL/i+kPPCvJwqWTAaAPSq20zkRCRmb/xX13FdcKornjKwz+UGfni/ehn5Fdv54EimamXOakBO+0Bm60FERNlh9XotX86xiXJJKE75/JUa3IrLdFV4bqFLdo3PfQ4REREREREREREVorCQNwQo0UuzXBMiMuNXdL5XBQxQbgghEIjK2xarliEROVOFqxpluvxN0p2RdoS2h5ZN5tG8tgNeVEFq46EdAUXgIvcrRETOpmkaDqz6NC5ecCs+XXMUNAsRM8uHXsHlG0/FC31/R1zYfLO9g6lCw+o9+Xcs8yvqzGuz/BGKy4PRynV74bZEhY7BaERERERERGTKTuDSSfca+Pdq+QQPLxf46zup1eGnfxRTAsWcRgiBlW3Jx1s96f5izFYwmuKNTz0MRrMajAYAlaUavry3uvyjgL06ZYoQAg++YeDEewz84lEDH7artwFViJhMvnSgtrKsZ1arp1/vkOXodCMWgtG65ffacyZsMxgtIG/zQTn27maBy/6e/Nhep3imMyR/UXTGWQ1dbOvLcEWIiCgrrAayWjmnIiI5l66+tmvvd/a9oExRhciN4z6HiIiIiIiIiIiIClHYkDcE8DIYjchRGrzydqw90W0wCigwId8NxPsQFfLGon6P4iXNRORImqah0TtLWtYZaUNQEajhU4SpmSl3VUqHB+PDMIShDlzkfoWIKC/4XBX4VuPJOHfedZhXuijp+KPGCB7tuge/2vRzbBhZk4UaZl5XAYV8qsLcVOFv5DzK8zhFWC1RsWIwGhEREREREZmK2whc6h4GPv8bA/e+OnWiR9+eXmfWI24y8FarczvEdg4CA/KXVk7Q2gOMRnd+j5iN37fdrXho2FM8Ny1VAWB2gtEA4KzPqW+JrHZIztxpfxI46V6Bh5YJ3PicwMHXGHhjg3wbsBNgGIw4dztKZCUYbVe/etmvKZ7NYlpG8zAYzWpAybihcGbqQdPzh6XC0r7LL29ng5EoMDiS/f1Z1GL7zbYiDfEgIio0Vs878iV8mChXRJKkr1m18uEdAxmoTB5Idp7MfQ4REREREREREREVooghb+BRwmA0IkdRhd/ERAx9sZ4s14ZUAorABwDwexlgRJRvVKGUnZE2hOLytwf7FCFnZny6PIRDwEDYGEEgIm+czf0KEVF+mVu6EL+Yey1OaPyxct+faGu4FTdsPg8PbrsVw7HBLNQwc1ShYX5FyJiTqcLceqPdiAm+eTMfhAz5eZwqrJaoWDEYjYiIiIiIiEzZCVwCACGAi58UiMUnTvj0yunX5cy/2EgRS4PBEYFfPmFg1wviOPCquDTwbZzVECYhgLWdO/+2GrACAMOuSgxJbjqLbockeWWBlbAsKz67RD3BPSbLOVu29Ar87qWJX3Y4DBx6rSHtUG5nOx2Sv1zVcVTfSUtYdCUeDbv45eOt2cZQIitGLDzv6HFaMJrNF4vmyzpfbH7/irVtdLdGddmKrWmqjA1WA3LaizTEg4io0Fg9zx5hSBGRKbNcNA2AX9G+rt9CAH0hYjAaERERERERERERFaOwIb8pzGA0ImepNwkMMAvjouwKROXLwqdXsJM9UR5q9M6SDu+KtiNoyBv5lruSB93YmWYoPoDuaKe0TBWaSUREzqVrLnyy5gu4ZMGtOLjqcEvTLB14HpdtPBWv9f8Lhsh9vyu7DGEoj2X1eXgsUx1/BQz0RLuyXBtKRTAuP4/zucqzXBMiZ2MwGhEREREREZmyG4wGAO39wGqb7Rv+fHLyZKul68cCo7LltD8JXP2MwMZuYPkm4P/uF7jtRfnN243d1uu1pXfnvycHyCXT7pbcuOwpnsYkqvXRlcIdjqP3lQ//5ypgXWduQ7We+1D9+Tf+q7iD0SaH4C1WhCZtCKS3PoUqbCEYrXvYWSFzVuqcaLBIwxScLBgWGLW4HHdr1FDjk5e9szn766bVYL6N3AcRERUEq+fZDCkiMme2KWkaUOOT3xMaCGWmPk5nFiQHcJ9DREREREREREREhSks5I2aSjQGoxE5SZnLh0pXtbQsELX4hmHKOFVInd+bf4EPRKQORgtEtmEo1i8t86UUjKYOTtwa3ggD8gaUfq86NJOIiJyt0l2Dk2b+DGfNuRrN3rlJxw8aQ3io8zbcuPl8bBndkIUapk9/rAcxIe/E0JCHx7I6T4OyrDvCa7N8EFIEo5XrDLMmSsRgNCIiIiIiIjKVSjAaAKzetnPCkYj5TJqqgGP21fD5PZLPd955BroGMx+EsmKLwANvTP2c370k/+w2+TNFqYGRnfOI2XxJRpu7eerAbgajTQ7LsmLJTPVEiy8yYKS68qfB8x+qyy54TEBM6iVtp6qD+RKMptg2Ji/ruXXy5djR76wwL6eysu70BDNfDzusBlONGw5jyjZDudVu45hZ5gH2VzxjfXdzeupjR9Ti+teS44BNIiJKD6unECM2g1uJaCdNA6rK5GX9oeI8p0p2nTbCYDQiIiIiIiIiIiIqQGFDEYymK24iE1HO+D3ycC1VGBdlXyAqXxYNimVHRM7W6JX0HwBgII7No+ulZakEapTqPmiQt8veOLJWOV29J//CZIiIaKKFvj1w/vyb8HX/9y0FlG8cbcG1m87GI12/x0g8P95+2W0S5JyPxzKvXoIad520jKHV+SEYH5IOTyXglqiQMRiNiIiIiIiITKnCiZJZnfBM/YqnzXt03nKCDo9bw2+P19Fg4RncnpfsDK1atkHgj8sMvLkxvZ1lf/28fH6rO4BQeGqZnZCXgZGd/7YasDKuwy1plNBTPDcslcFoKdzh2D3Jfeu7XsldB+wKk+cIMQMYSmgHKISwHNgATJzWyVRfaXIw2qwa+Xh2wgqLmZVgtG75S0hyJhKzN74hgBCDAxzFzjGzxA3sN1fe0OadTdnfT1td/1q2MZCPiLKjPzR2PfTEuwI9w9zvpJvVX5QhRUTmzE6LNAA1PnlZ/4h8eKFLdhqZ7AUERERERERERERERPlIHYyWvEM2EWWX36sIRlOEcVH2BSLydsWqZUdEzub3zFQGlm0Nt0qHpxKooWs6fLp8uk2j66TDq90zeL5GRFQgXJobR8z4b1y84FbsX3lo0vEFDLzY9xQu33gqlg++4vi286pz5HJXZd4GUfkVgW5mIXDkHCFD3lmrPE/XR6JMYTAaERERERERmbISmiOztnPnv59aoZ7J8gt1fP2AsQd1i5s0rLtKx6IG83n3BIH9rzTw7d8bOORaA9+5R+Dgawz88H4jbTdSn1ulnk9PcOqw9n7rn5vYsTdmM3iuXRaM1r4BImYzKShPqYL6JodlWbH7TPOJHnojdzflh5OEl/UmrIN2V/mhPOlYbjUETxWM1j6Q3voUKivrT0+eB6MB+RMIWCzaB6zvuEo8wP5z5WWrtwGRWHb31RGLgaZ9ISAgf4EPEVHaLG8VmHfe2PXQsbcb2OdyIyehkYXM6vVwiCFFRKZMg9E0oKZMXtafHy8TTbtk+x4GPxMREREREREREVGhiYs4okJ+85NBG0TOo+p8H4gwGM0JhBDoirRLy1TLjoiczauXoNZdLy0zIG/UmGqghioYplURjOb3MHCRiKjQ1Hrq8X/N5+Cnsy+xtJ8fiPfh3o4bcfPWS9AZactCDVMTUISF5fM5cr1XXvcuXps5niEMBOPyzlo+V2WWa0PkbAxGIyIiIiIiIlOpBqNt6d054ahJiM3+8yaGU1WWavjgUh3HHWAeWvX+VuBPb06s3D2vCrhOGQtMu/NlA/FUKw8gbFLnbsl9p/Z+6/MeSAimiloMWBnXIbupPDwArFxqb0bTIAwD4sW/wrj2FBh3/BKiJ3tvklCGZaUQjLbHTMDrVpe/th45e2NJstCgvoTO4XZX86HR/AhtsBqC11wjX/iBISAczY/vmktW1p+BEWf9jmb7Z5VBBqM5SpuNY2aJG9h7lnw7jxvAtiyHIMZtBJq2dCYfh4hoOk68x5gQ/tneD5z+Z5vJy2TK6uUAQ1iJzCXblGp88uH9eRLsnW4MRiMiIiIiIiIiIqJiEzHUD1tKGYxG5Dh+rzwcIRDdBkPwmXWuDcUHEBby/apq2RGR8zV6Z9kaP9VADVWgWkxEpcP9ikAWIiLKf3uU74dfzv8tvlJ3AtyaJ+n4LaH3ceXG0/G3wIOIGOEs1NCe7qg8LKw+j4PRVKFu3YoQOHKOsDECAfn1c7meWsAtUaFiMBoRERERERGZSjVbLDH0ZEDRkXWvZvlwj1vDX07RceeJKaRdYSww7ccPCRx3h5FysJVZ8IksGG1zr/V5J/4eMZvBaO3e2dLhYunT9mY0DeK6H0Nc/D/A0/cBD10P8d39ITatycpnpzMYzVei4SefMZ/wyRX255sOydanaQWjOe/5gpTVZT2rRj2PbYPpq0+hsrL+DDosjCASl1fabXKnk2ElzmInTLTEbb6dd2Q5GM3OPnfNNmeFChJRYWnvF9IAxtfWA+u7uP9JF6v7/f5Q8nGIipnZrRlNA2rK5NfmxbptJbuVxWA0IiIiIiIiIiIiKjRhk2C0Er0sizUhIiv8shf8AoiKCAZjfVmuDU0WiMgDHwD1siMi52vwKjpeKKQaqGE3UI37FSKiwubRvTiq/lu4aP7N2LN8/6TjxxHDP3sfxeUbf4r3h9/MQg2tC0TkYWH5HB5crzgOd0c7GVrtcCFD0jl1u1QDbokKFYPRiIiIiIiIyJSqI/g1x2r4hsk9zfZ+7AglUwWjXX2s+WXpDz+p4xPzLVRS4Yn3ANcpBhZdGMc5jxoYjVrr1R6LCwyahOj0DE+cT19QoGvIer0SQ4ZiNu8zvlB5hLzg1b+nHAJnh3j+L2OBaIkGeiD+9OuMfzaQ3mA0ALj2WA0/OEw98TG/M3DDcwaMVBMCUxAKi+TBaMGd/zYL8ZNxWsiVitVl3WwSmNRmI3ypWFkKRnNYqJhqna/xqafJl/W+WHTY2DZLPWPLtlTxkqn2bAej2djntvBFS0SUQWbnOW9sZDBauli9xOrnuQaRKbNNSYP6XH5wFFm9HneKZF+ZwWhERERERERERERUaMLCJBhNK81iTYjIigaT4ICuqDqUi7IjoFgGpboPFa6qLNeGiNKl0TvL1vjlKQZq2A1UMzsmEBFR4fB7Z+Insy7Cyc3nocZdl3T83lgAd7RdjTvarkZPVPIW4CwTQiAQVQSjeZqyXJv08XvldY+JKAZiSTqmUU4F4+pgtHJXagG3RIWKwWhERERERERkShVAU18BPPwjF147V35pGY4BPcPAaFQgEpPPo8bCyxyfO2P6l67rA8ANzwn817UGVrULvL9V4MN2gVhc3tO0NygdvEP3pHtPLTbv0Q6Edn5uNG5v2l5RiYCrfmrB1vXA5hZ7M7NIDPVBrH0PYsWrEJedJB/p9X9k5LMnU4ZlpbiaeN0a7j5Jh9/k2e85jwpc8XT2OmKv60oewNCXsA7Z7SM+5LCQKxWrwWjVZYDPKx+3ncFoSeVjMJqqzl43UFEiL3uztfjCFJysrd/68vC4AE3T0FwtL2+3Ma90sPNpW/gskYgyqEwRGAkA63LfhqRgWD3X7g9lth5EhUzT1MFoQiS/R1OIkt0TGIlmpx5ERERERERERERE2RI21I1TvLqiMQgR5YzPVYFyXd7oMhBhMFquqYLR/J4maFqKbyEmopyzG4zmSzFQw+50fg+D0YiIioWmadi38mBcvOBWfG7GMdDhSjrN+8Nv4vKNp+EfPY8iJnLX6Gk4PohRQ97Qsz6fg9FM6q4KgiNnCCmC0TRoKNMVDSqJihSD0YiIiIiIiMhUsnCiuTPU07b1AwMj6vJqC8Fo1T4NHTek5/L13S3A3pca2PdyA3tdaqD+TAMPvD41+a1ryHw+gUn3nt7fai+UpT/hN4nZDEYDgJtnnCovWPac/ZmZEMFBGJd8B+KoJogfHATx0yPUI/dugxjKfAqVoQjqmxyWZddndjOfwWV/F/ioKzvhO2u2Jf+cvoT78XaD0ZwWcqWi+l6T2+VomobmGvm4dsKXipVqm0o0aLIfzwVVnV0asM9sedmzK7kuOInV0MLyEuxojDdTEYzWMZCmSllkZ587NMr1jogyx2x/9FFX9upR6JKFE43rC429UZCI5Mw2Dw1Ak8mL6duzfL7nBMnOOUOR7NSDiIiIiIiIiIiIKFvMgtFK9NIs1oSIrPJ75R3w2fk+9wIR+TLwexleRJTPGrzNtsYvTzEYrdxl8rZxiXwOkyEiotSU6mU4xv9dXDD/11hYtmfS8aMigie7H8RVrWeiJfh+Fmo4VbfJdUo+nycztDp/BePyzqtlejl0LXnoIFExYTAaERERERERmUoWRNVYpQ6lShaMVmMxwL6xSsO7F6X/EnZwFPjuHwT+9z4D5z1m4Du/N3DNswY+dpl5UtCmnol/P2MzcCeQcO8qpvio2nivcvrH6k+QDhcbVtmqh4oQAuK9VyC+6AdeeMT6hJvXpuXzzSQL6kvVtV9PPoMDrrSQIJUGk9cvmd7gzn9bCbZKlC+hDXZC8GYpgtGshi8VMyshT04L01PuB3Tgq/vIt+WVbfmx3mfK4IjAI8sFnnxPoDeY299BCGE53KLcu/PfzTXyZZvt7dzOPnfIYdsOERUWs2P4tsHiPealm9VAzLgBBMOZrQtRPjMNRtPM7y0V43Udg9GIiIiIiIiIiIio2IQNeSNDt+aBS3NnuTZEZIXfIw8PYOf73OuKypeBapkRUX6oddfDo3mTj7idT08tGM1nI1Ct0lWNMpfFDiFERFRwmkvm4sw5V+K7Taej0qV4C3qCzshW/HbrxfhD+00YiKn7zGWCKsC5RCtFlUvRISlP1CtCq83C4Cj3gsawdHiq4bZEhYzBaERERERERGRK1RnTtf2K0u3S0KS4f7m1T5iGPFWXWa/HPnM0rL48M5ex9y0VuO4fAn98U+DCx5P3fG/ZtnMcIQReapGPN69OPrytf2dATzQuH2ff0RXqz8dcbHM1Ti3YpKiIDSIagTjvWIjTjrQ/8aY10/78ZDIVjLagXsMFR5nPZGgUWNOR+ZCJNgudvvtCO/9tNaxh3Gg0P0Ib7CxrpwQm5SMrq89oFIjEnBOwEjcJzTt4F/m60BcCuuXPDQreu5sFFpxv4Ft3GTj6d2Phn+9syt3y7A2OrVNWVJTs/PdMxfPGjoHsfhc7+1ynhQoSUWFRHQ+BiSG6ND12jjL9JqHgRMUu2bbkdmlorJKXtfU751okW5JlOocixR38TERERERERERERIUnbMgfsJfopVmuCRFZ5fcqgtEUoVyUHUIIBCLt0rIGxTIjovygazoavM3WxoWOUj21wLJyG4FqDFwkIiJN03BQ9WdxyYLb8KmaL0FD8s5dbw39B5dt/Cle7HsKcaHoVJdmqgDnem8TNG2aHdJyzO+RB6OpwuDIGULxIenwMgajEU3BYDQiIiIiIiIyZSWcaLYirKStH7jwcXmPfU2bGHhixeImDf88Q0ddub3p0q2lc2cH1GBYHXzyg8PkN0dDEWBwe6f5mCLQwCNieGbzV5V1aPNIHmxuWmO7Y+yyDQKn/tHAOXd1YMV1N0AcXgksfcbWPMaJzdMPZkvGLBBpui76soZvH2Q+oz0uMfBRl73f+NV1Aqf/2cDP/mzglXXJp2230Om7fxrBaAAQyIOAKNXX0iV3s5oV+6CHlgl2Fk/CMAlVSTTooKAPs+PSEvkzHQDAmiJ9rvPde40JYYrt/cDP/mxxwWfA2k7r45YnnCc0K0JYOwamVx+77OxzhxiMRkQZZLY/Stzv0/RYPVcCJp6jE9FEZpdl4+3KVNd1xRh4beWc02rYMBEREREREREREVE+CAtFMJrGYDQip1J2vo90sM1eDgWNIYwY8ofXDDAiyn8Nsv4DEj5XRcohLz5XpeVxVSGZRERUfHyuChzfeArOmXc95pYuTDr+qBHCI12/x682nY2NI5nvi6YKCatXXNfkE79X/h26I0XagSZPBOPyjn12QmqJigWD0YiIiIiIiMiUlWC0WbXycdr6gfUBeVlVKaCnkGb1uT00tF6r46WzdTzxEx0fXKojcruOlZeO/X3jcZl/U0N/CAhsD+bvNgmYOniBui5t2zv2xhQvt3CLGI4MvqCcPuCqnzpwqA9oXa2u0CR3v2LgkGsN3P6SwA3LG3Dw2h/jqYovWZ5+ik1rUp/WIuX6mIY7HCUeDff/r4anTzOf2QFXGnh3s7WGOw8tM/CZGwzc8oLArS8IfPYGA/e/bp6u0Gah03dfcOfnpxKM1jVof5psU4VQyHYbsxQd6AHgnL+ykZUZq+uPKgAyF1R1dumAvxKoUbzkbn2g+NaFjn6BDyQvAF26HtjYnZvfo6XT+ucmbu8zFcFo2Q7KYDAaETmFWWBXXzB79Sh0do6WvfzdiZTMtqXxUz7VdV17loNwncBKX6ERBqMRERERERERERFRAQkbimA0vSzLNSEiq1RhOGExiqF4ET7gcYhApENZxgAjovzX6J1laTzfNAI1yl3Wp1WFZBIRUfGaV7oQ58z9FY5v/BHK9PKk428Nb8T1m8/FQ9tuw3A8cx2dVCFhhXAsU4W7BaIMrXaykCoYzUZILVGxYDAaERERERERmbISRNVcIw8Aa+8TUL1saGAk9TqVl2j41G4avravhj2aNbhdGvZsHvv7zM/pePKnOhY3pj5/K1o6x/5vFoy292x12XiQS1QVjIYYdAg0xDql5d0ev3zCV59Sf2iCtj6BUx6YuHDDeiku8V9iq/P/BDZC2VKlDupLTyCepmn40t4aPre7epyh0bFwtMCQ+S8Viwtc8JiYUGdDABc+LhCLy6cVQuCNDcnr2ZfwQr9UgtECJuutU1gJZRzXbBKMduNzAvVnxnHcHXGsap84065BgVP/aGDPS+I47Fdx/OOD4rvpb1h80JEPwWi6NrYNz1GEdRZjSMzmXnXZGxtys76vsfHioVhC6I/qXKN7GIjEsvddbAWjhTNXDyIixekkgLHjNhszpIedn7FjgL85kYrZtjR+OT/T5N5SsbFyzhmKZL4eRERERERERERERNkSNuSNCUv00izXhIis8nvUIVtm4VyUWV2K375EK0WVy6ShJRHlhUZvs6XxphOoYSdUjYGLREQko2sufKrmi7h0wW04uOqzlqZ5beBfuGzjqVg68DwMYfLm4BQFovLz5EI4lqnC3UaMEILGUJZrQ1aplo3PRkgtUbFgMBoRERERERGZMhT3ExODqGYpnpVv6ZsY4JTonC+mJ8hK5isf07D6CheMu1x44/zMXPq2bBvrpaoKRnPpgL8C8CueK27sGZs+pvh9PSIKAPDHuqXlgdmfkA4XLe8oajzRnHPlH7yi9GPocCtu7GoatAfeg3benRjRSrHKuztGtITGZ1vXQ7RvtPT5qbITljUdt307+XrT+HMDQ6Pq3sqrO8a2gcna+oFV7fJp/u9+ax2+exMCnlTbqJlkoW5OYGdZz1J0oB/XGwT++g7w2RsM9AyPzdgwBI75nYHbXxJY3QEsXQ8cdbOBl1uc/9ukk9WQp8FphFmmW7J1o9YnL1cdjwqZ2fLdYhKalkmt8sOaVHxCMJp6vE09qdfHLjv73EgMCEeLa59CRNmTbH80nSBq2slqiCwwdp5PRPaNX82p7i21D2StKo7BYDQiIiIiIiIiIiIqNmFD/sY+BqMROVeFqwqluryhlip0gDJPHfjQBC1NLyAmotxp8M6yNN50AjXKbUxrFpJJRERU6a7BSTNPx5lzrsJM79yk4wfjQ3hw2624afMF2DramrZ6jBojGIrLG6GpQsXySb1JuFt3xMZb7SmrQnF5h1Q752JExYLBaERERERERGTKSjiRqvPqqnZA1Y/8Wx/PzgP2AxdoePuXOr6x/8ThlaXAPrPNp/3c7uqyls6x/6sCpuorAF3XsKtfPv267dPH4vJyt4iNzScuT5DpbtxLPuHmFvnwBLe9aJ6i0OJdNHXgl78P7S9rEJu9BD9qOxZ1u3Vgn13fRu3iTpzTcBVicI2N99pTST9/OtRBfen9nIUNGlwW7ppU/8zA3a/IK7WqXd2T+QNJWSwu8Mhya8ELiQFPZh2my0vkwwN58NIPO8FoZoFJibqHgev+OTbjMx8WeH3D1HE+e6OB0SIKMrIcjCZvf5oT8ST7gRpFMFp/EQbEBMPqstYshokl6hiwvn0lhofOrwNUbfPGj8nZYHfvMOSgbYeICkuyY/jPHxEQNkK9SM7OT8hgNCI1s21p/ByvuVpe3iYJHC90VvY9DEYjIiIiIiIiIiKiQsJgNKL8o2maMkSAwWi5E1AEHzC8iKgwNHqbLY03nUANO6FqDSZBLEREROMW+fbEBfNvwjH+76FES36dv2F0Da7ddBYe7boXI/FQ0vGTCUTU1yd+b/4Ho1W7auHRvNKyQJTBaE4VVASj+fTKLNeEyPkYjEZERERERESmkgXQAMCsWvupVPVZDLDfb66Gh3/kgnHXzv8Gbnbh3YtdGLxZx56TnhGe/CkNxl0u/PNMF048WP7dtvaO/b9bfh9qx/db1CCffl3nWC/XqCoYDePBaPLkmu4SxYPNjR9CxGLyMgBDowKn/cm8h+1a724T/tbuXgr9vDugzZyPy58WuHt5OSL6WOJWTPPgprozUbr7EB6sOgHDr/zLdN7TZScsa7qszvKUBwSueMpAJDaxcusD6mk2SMrWB4BhkxCjRP0jgLH9xzALxWhU3A8NKNZbJ1F9L1kwkqoDvcz1/xTNJWnxAAAgAElEQVToHBS45QX1D3fOX4snREQVNjjZ4IhzfhPlfmD7nc4an3zr7Q9mqEIOZhaWsLYzN8u0Q/6yJanE8NAyr4Z5M+TjrdmWve9iNUxw3JDF/ToRkV3J9kd/eE3g8XezU5dCZme/38FgNCIls01pRzBajfw8vnNoLEi8mFjZ90wnGM0wBN7ZJPDQMgMbAsX12xIREREREREREZEzKYPRtLIs14SI7PArAnFU4VyUeapQOtWyIqL84nNVoNKVvNH0dAI1XJobpXryc7ByvdJWiBoRERU3l+bG52YcjYsW3IL9Kg5JOr4BAy/0PYnLW3+KtwdfndaLgrsV4WAuuFHrrk95vk5hFlqt+u6UeyFD3rFvOgG3RIWKwWhERERERERkykoQ1awa+/OtK0+tPulWUarhnV/quPd7Gq45VsNzZ+i44zs7L5ebFd+tfWDsh+kakpfvCEZrlJev6xr7vyp4ziPGws388W5p+ca4Xz4hADxwrbLoT7c+p55uuxbvop1/fOHb0JYcsOPPB99Q30z+3qx7UD36ON5aZSP1xibV+ujKwB2OT++WfJxxlzwp8KnrDPQM76zg+DKWWd469YustvGSRCGAwe3tAU2D0arkw7sV662TqAK7ZCF4JR4NPvkLTqSuedb8ociflomi6Xhv9VsOjGS0Grao1g3X9nWjxicv73dQuFu2BCPq77wmB8+4hBBotxEaE5u0rBcrXsjUksXvYjVMcJyTth0iKiyq64hE1z5rc6dFU9g5e2jrL75zDSKrrLRLU91bEsJeuG4hsLI3CaUYwBuJCZxwt8DHrzJw4j0CCy80eLwgIiIiIiIiIiKinAsLRTDa9pd3EpEz+T3ysK0uRTgXZZ4yGE2xrIgo/zR4FS9XTzDdQA2fnnx6v1fRoJOIiMjEDI8fP5x1Lk6dfbEyzCvRQKwX93TcgFu2XorOSFtKn6kKbq7zNEDXXCnN02nqFcflQITXZk4VisuD0Rg8SzQVg9GIiIiIiIjIlKrDfWIQld1gNJ8X8JVI0o1yxOPW8L1DdZz7RR1H7jGxXjMVL1Ua75S7vkveXbWpamw+8+vk0/cEx/4/OfRlnHt7MNrc6GZp+Stt5RjwzJCWiXuvgAhPTWIR6z/Ak+/E5B+Y4PYZp4z945AvQTvrtzuGD4QENvUknRw/vC+KuFla1zRYCepLl5MOsTfTN1sB/1nGjtCzwJD6N/jXaiAUnli+Zpu936wvNPb/VILRzOrmFHaX9cVfsb68bv63+ffvCQJL11ueXV6zuqkOytuf5oRy3dh+XKpRvKiuL5iZ+jhZ0CQsob0fGMxyWNzQKBCKWB9/8jnIwgb5dt7Wl73vYffwtiGQmXoQEVnZHy3fBLQzrGta7ARiFuO5BpFVZnui8TO8OfJbHADMg8cLkZV9z0g0tXn/4TWBR96euEQueFzgvS08XhAREREREREREVHuhA1VMFpplmtCRHY0eOVhW4FIO4SVN+dQWoXiwwjG5W/NZYARUeFo9M5KOs50AzXKXZVJx2HgIhERTcee5fvjl/Nvxpfrjodb8yQdf01oBa5qPR1/734IEcPeGyWV4cEFdI6sCpkLRLP4BnqyLGKEERXyjjXlevLzMKJiw2A0IiIiIiIiMqUM7kp4KUJFqYZqRRCNTH0ehdfP3PCydHhHv4AQAmsU9wgXb7+nWN3fKi0fGBq7gRWNyRt/uDEWYHZE8EVpeTSu4c09vquoNYDlL0wZZPz9XiwtO0g9zfi8NS9uPq0V2q8eh+ar3FHP+edbSwV4f6AWb2ywNKptyQKR0unr+2sprasHXm3g8XcF+kPqcUajwDuTMu9abN5v7t0evKAKLwSAhip5iFBA/mIJR7G7rE/5VHrT8Z54rzgaZlkN+xicmrWYM6p1fjw0r7ZcXt7voO+QLcEkIWTrsxza9UG7vfE/MX/i36og1vaBlKqTErvBaHZDL4mIrLK6P3p6JfdD02Hn1+szOf8nKnZm/V607efxNT4NfkWbnlMesJFSWACs7OOD4dT277e9KJ/uwTd4vCAiIiIiIiIiIqLcUQej2WiUSERZp+p8P2KEEDTkAV2UOWahBw2e5izWhIgyyUowmpVgMzNWgtX8inBMIiIiqzy6F1+uPx6/nH8z9vDtl3T8mIjh2Z5HcEXrz7ByeLnlz+lWnCfXK65n8pHqu3RHGIzmRKG4ulPfdANuiQoRg9GIiIiIiIjIlCqAxj3pilIVViKTL8FoIhpB0z9vlpYFIxr6hmJY2yWfdsn2e4pVL94vLR8VXowu/ZcyeM4jogCA/UffhT8m/5B3Fhyjrnzr6gl/io/eR+cTj6LfVaueJsH5LzVgePtLNIJhAd9PDQzYCBU66+GJX+y5VQKH3xBH89lxfOq6OB5allqnZlWIk57eTCwAgK9Ew39+oeOQXexP+/XbDbyeJBxucljOn9+y1wm5b3swmlmH6cYq+fCuPGhzpOo4r1rW1T4NVx6dvhXhN88LGHYTkPKQ1a84KG9/mhPK0LzxQAVFm9hiDCsJJQlGC2R5X/DsB/a2qTOOnHiy0aw412jrS7VG9tndLaztzEw9iIjMwnETPfN+4Z/PZJKd/X4xhrASpUPiVdwSRVuz9QEgMFQ8+zMr39TKPZql6wW+8OuxezGNP49j/yviyrDim/5VPL8vEREREREREREROU/YkN/0LNFLs1wTIrLDLBQnwA74WReIdEiHezQvqtzW2g4TkfNZCTos16fXWaPcSjCah8FoRESUHg3emTh19sX4YfM5qHHXJR2/J9qJ29uuxJ1t16AnqujUl0B1bVJIIZ+q7zIQ71OG0VPumAWJTzfglqgQMRiNiIiIiIiIlAxDKDuCF0MwGtavRHPvKmXxy7+6E5GYvGxxkwYhBKpXvaCcvv+C7yMak//ALjE2Yw3AHuHV0nEubPk4BMY6zA7pFRjVSnaUiU0tO//d0Qrx/U/g+NkPKOsyWTgGPPCGwIftAntfalgOXhj3VutYB1wRGsIL7w7ji7818NJaYNsg8OpHwIn3CNy3dGymXYMCW/usdcBNFoiUbktmanjtPBdGf6fj9CPS+yFrEu6tr+0UCCvWJZXxkCdVWBwANCmC0bIdhpSKVJb18Z9I7zI65nepBfjlE6thH0MOehaiqrNr+3FpRrl8PegahHKfW6iCYfPy7uHs/h4fbJV/3uxaoGpSW+ZDdwUOWzhx2Kwa+bLtCQLhaHa+i91gtE09xbXOEVH2WN0fvb3Z/rx7gwKrOwQ2BASEKq22SNj5+sFw8Z1rEFllti1pCad4uzWqr+n+vqJ4ti+z6/xxyYKf39si8OnrDfxr9di9mMAQ8N6W9NSPiIiIiIiIiIiIKN1UnXRLNAajETlZlasW3oR2q4kCUXlIF2VOV0T+hhy/pwm6xm7ERIWi0Tsr6Tg+C8FmptPryQM5GgooTIaIiHJP0zTsV3koLl5wK46sPRq6hRicFcPLcMXG0/Bcz2OIiah0nKgRRV+sW1rm9yje4pmHzL5Ld5Sh1U4TjA8ry3yu8izWhCg/8I4GERERERERKZmFYbkmB6PVWg8kqqvIUIpVum1qwexoG9yKG6RPrlM/NNytEUBPB6qD8oYGADCgVyG6Xh565hY7U7KWRNYq53Hzofdh4a6rUbu4C/MXrsXvak8ZK1i/EgAghMDGb38Oh8x/Ga/6DlPOR+anfxTY61IDrT22JtvhsF8ZCB81G0feXiYt/9GDAgdcEUfT2Qbmnmtg4QVxvLHBvKNztoPRxnndGm76poZbTtBQ4k7PPFu27fwyt7xgv4N3X2hsGrNQjMYq+Q8TigChsLM7laeyrOclfzmMLX9/HxgIOft3mi6roSqDI875HZKtG/MV60HMADamuD/LR63dAlc/Y77cutXPUzKirV8+/AeHaXjpFzq+/18aPrkIuOAoDf84XYfbNXGDbzYJYX3k7SwFo9nMS+zJ8m9MRMXD6v5oax8wPGptH9nWJ/CZ6+OoP9PAnpcYWHihgaazDfw1S/tYJ7IbiDkwkpl6EOU7s00pMRjtKx9TX/D944Pi2RdZ+ab9SfY3Vz1tP+SeiIiIiIiIiIiIKFfCQhGMpjMYjcjJNE2DXxGME4gwGC3bAorAA9UyIqL8VO9tTBoWM91gtHIL0/s93LcQEVH6leplOLbhe7hg/q+xa9nuScePiDCe6L4fV7eeibWhlVPKe2NdEIrWWPUFFIw2w+NXnh8EIgxGc5qQIhitRCuFW/NkuTZEzpemrrxERERERERUiGImHSjdrol/m4WVTFY3vWdtWSM2t8CDGBZG1mNNyZIp5X+r/Ip0urkzgPISDeKDFlQbg8r5D7iqEeveBpTvMaXMg53BaHuGP1TO4+d93wS8Y//udvvxs6ZfY0l4DQ5f+zLE0/8PhmHgC3Ofxnrvrsp5ZFL5IvmbNQAgEgPe3bLz7w3dwJE3Gdj8Kx0zyqd2hhZC3TU408FowFgjnlM/q+HUzwKnPGDg7lem1yl7TcK95TUd6nnNr4M0nK4vNPZ/82A0dVlgGJgnf1mjI6QSjObSNezVDHygziO07V+rgW8ckL75OY3lYDR5+9OcUHXuH183FjWOhSvIdhlrOrYHVxY4IQS+fEvyFIRsB6O1D8iHz6oB9p2j4Z7vmu/M59SOBbPK1oErnhL49kECmpbZA4LJoUiqJ5iZehAR2QnsOusRgf3nmk8gBHDqH6eOExgCjrvTwIqLdew9O08CrtPI7n6/fwSoT/7SXKKiY3Vb+vLe6rJ1XempSz6wso/vD6nLRqMCz35g7zOzcV+FiIiIiIiIiIiISCVsqILR5C/kJCLn8Hua0BZunTI8EGUwWrapwugYXkRUWNyaB3WeRtP9bLk+vcYrPpf59GW6D+VJxiEiIpqO5pJ5OGvO1Vg2+CIeC/w/DMcVHRG22xbZit9suQifqPw0jm34HqrdtQCALsU5sgYN9Z7C6Vji0tyY4fGjO9o5paxbEaBMuROMD0mHTzfclqhQmcdCExERERERUVFThc8AgHvSFeUsG8Fo9flyn2ZTCwBgcWSttLjfVSsdvrhiLAxNXPJtVBmD0IT8hxzQqxCFPMnfLXYGox07+ITlKgPA1fXnjn3+tSfjgj905SwUDQCEZu/WQygCPP6uvAewWcdgPct3OO48Ucc/Ttfx88+n3nN4Y/dYZ2VAHRYEALv65cN7t4ftpByMJr+P6hjKYLQky/r4A9Pbm/uFNdMLwHM6I3l2FgBgcCSz9bAjWWheqUfDgjr5OC2dhb08x134hMBqC20LsxmMFjcEtimD0axttxWlGo5UvPhpXRewfFOKlbNBtQapzm16g+bBnkREqTK7Vpvs968I/OQh8/9koWiJ7nu9OPdldgLoAPOgIqJiZrYpJZ4Jul3qsFyz6+ZCY+U6zWx/81br2P0VO1xsOUJEREREREREREQ5IoQwCUYrzXJtiMguv1ceuhWIsPN9tqlCklTLiIjyV6N3lml5mat8WvMvTxLK4ffMzPhLbImIiDRNw8HVh+PSBbfhkzVfhIbkx563hl7GZRtPxUt9T8MQcWUoWI27Dh7dm+4q51S9p0k6PMBgNMcJGfKOPMnOwYiKFZu3EhERERERkVLMLBjNNfFvq6EmQB4Fo20eC0bbI7za1mTzN70Isf4DYKAHOgQqDXkC1aCrGjHNLS3ziOiOfzfFp76xwcxL5Z9Bj2sG1nh3w/X1Zycd/9b/Sf3B5Ml1b+KhtpNSnl5mjeKeq1nHYD0Hz1Y/v6eG67+hw7jLlVJAmiGAj7rG/t2h6OB91TEaan3ysr7QzvmozChXd252fDCaYnkn+6XPOELDsfulrx7LNhR2CIjVbzeQB8Foiev6LopAwc7B9NfHaQZHBK591tqS7cliMFrnoHrZNdsIV730q+pb2u9vzfz2qto3+RUvPwzH7IdSEBFZYTewa7peWVvY50QqdrMtGYxGJGe2LU1uKz2nVn7VFxgCwtHi2BdZ+Zb9IfVYq9rt/06J91Xe2yJw0d8MnPtXA0vXF8dvTkRERERERERERLkTFREIyB/GMxiNyPn8HkUwmiKkizJjJB7CUFzeENWvCEggovzV6G1WlpXpPrg0l7LcCp+eJBiNgYtERJRFPlcFTmj8EX4x9zrMLdk16fijRggPd92NX236BVYNvy0dRxUils9Ux+duhlY7TjAu78jjcyk6pRAVOQajERERERERkVIsri5zT7qinFVrfb75EIwm4nFg60cAgMODL9qatqp3PcR9V+34u9qQJ/H06TWIah5pmRuxCX9/cy97qURLyw7GT5puTjremxfo+M5B9kO9/vA9Da3X6Lj9jNk4cOQt29Obae+XD4+b9MXNRTBaouu/oeN7h9qvxKsfCYxEhDJA4ZBdNNSUy+fbFxz7QcwC49y6ensLDDu7c7Mq7CPZsvaVaHjkRzpartDxyCk6/iv5cw8AwGcXy4e/u2Xnb12IrIaqDMpfzJsTqnU+cd2or5CvKL3BDFTIYfa7wmSnMEkqgQmpUu3bAXvBaAftomEPRZualiw8s1NtM36Tc5tsBtARUfEw7CZ2TdPyTUCPw88fM8HuN+53UJgskZOYBqNN+tvs/tK2Igg6Bqzt482CGFWB82bGX4Dw7EqBg68xcNXTAtf/U+BT1xl48A3r1xhEREREREREREREdoUNdaMUBqMROZ+q8/1wfBAhRWdvSr/uqPoBEQOMiApPo3eWsiwdgRrlSeahCsUkIiLKpPlli3DOvOvwrYaTUab7ko6/JbwBH4belZY1FOA5sioQmaHVzqO6Vi5PEk5LVKzcua4AEREREREROVfMpN+ja1Iw2mwbwWizanKcYmXFtlYgGgEAHBZaihJjFGGLDa0qjWHgpcd2/O2PdWOLZ87Uj3A3IqiXS+dRbkzs4VpXaS/b/Jg5jyYd5y8n6/j4/LFlcdM3NZz1sHnHW00DDt0F+P13dSxuGl+Gc9D8+S8AG2xVz1Rbn7weZgFguQ5GA4A7vqOhrgK46z8CQxZDpJ58T+Dze6grP7NaHWw2HrRjFmyla2NhPZ2SzuNdQ9bqmCvKYDQLC1vTNCxqBBY1An0hDa+tT96p/LTDdbzYIl/JPnODgRWXTO/taU5ltl0lGnRQyId63dj57xnyXWvBBrps6hE4/zGBP79l7/t92AFsCAjs4s/8TlQVjOZxAXWK5aXy8fkaPuyY+l1btmV++arWP7PQ194QMLcuM/WZLiEEHl4ucMsLAuEY8PX9NZxxpIZSj/V14sE3DNzzqsBwGDhqbw0XfVmD2+WAAzNRgbMabppOv/23wOX/XVzbt93feTgsMDXmiYjMaJM2meZq9bjt/cA8h55XpZOV7Ms+k2C0VM6Lx0/fznvMQCQhq98QwC8eFfifA4Wl63EiIiIiIiIiIiIqXBEjjLbwJsRENK3zHYz1KctKNAajETmdqvM9ALw3/EZGwnNmePyo8zSkPL0QAoHoNgzEeqXlDd6ZqHbPSHn+2TBqjKAtvAmGGHsD9kcjq6TjuTU3at1F8ICNqMg0eJuVZekI1Ch3mc/D71Xv+4mIiDJJ11z4dO1R2K/yUDwWuA9vDr6U0nzqTa5j8pXqO/VGA1gbWgkN5v0Sq90z4Pc0QZvcoI/SLmTIO/T5kpyDERUrBqMRERERERGRklkwmnvS/TB/xVi4STSefL5L8uH+4aaWHf/0IIaFkfVYVbqnpUmr4hNTqJpi8jexbXM3YVCvks/DmDiPuur0XcJrEAjf7poQWnL6ERqeWSnw/Oqp49/0TQ0nHKihogQoL5l6g7P01MvhPz2AgNuflvq1KcJzTAPA7OXGZYTXreH6b2j41bEC/1kHHH5j8sSpF1qAlW3qcrNgtG6rwWiKl3YF8jUYzeY99qP21gCYdwr/yWc0HDBPXb6yDXh9vcAhuxbeDX6rYR8jUSAaE/C4c/8bxBWbVuK6UafYbnqD6a9Prg2EBA6+xpAGIFqxfFN2gtHa+uUrW3ONtcDDRLs1yoe3dNqtlX2qbWZGhQZNE9IQi7Y+YN+p+ag5MRIR0LWx7SUaBx5+W+B/79tZ6bc3CawPADceB1SWIumDzd+/YuDkByZOvzEA3P+D3O8riAqd6niYSa+uK8yAUTNWwokSBcOZqQdRvjPblCafblSVAeUl8u2ptacwr8sms3Kd1m8SXr06hZd8unRg24CQ3qPoHASWrgcOW2R/vkRERERERERERFQYXu57Bn8N3IuYiCUfOY1KLL7IlIhyp8ZdB7fmkYYmPrjt1ox97oLSxThl1vmoctfYmq4n2ok72q5BW7jVdLwlvn3ww+ZzUebyTaOW6SeEwNM9f8Y/eh6BgeQNB+o9TdC1wnwpLFExa/TOUpalI1DD51I0Pt8uE6GXREREdlS5a/C9mWfg0Ooj8ZfOO9ER2WJrer+38I5lquBSAwZ+s+UiS/No8s7GT2ZdhHqvosMGpUUwPiwdXp7kHIyoWDmg2zARERERERE5lVlne/ek5+S6rmFmdfJ5+iuBuoo86MS6uWXCn4siH1metNKYeINqpiIYrcPdhEFdftOqKj4xtaquKn3BaIHT104IRQPGgk/+dqqOC47ScOB8YHEjcNRewN9O1XHGkToaqzRpKBoAaJW1+IJ3Rdrq19Y/FsA0WbIAMKfQdQ2fWazhvYt1HHcAsIexHjOj8l7JkRjwm+flG5q/Eqgq06YXjKYD/kr5j+P0YDRVCIXdZd1co2Fxknvyt5ygYXYtUGXSlvKiv+UgfSQLrAajAcCQQ4I+VHV2JdzprCuXj9NTgMFot70kUg5FA4AW+SEq7doH5MObLZw7TLakSb4jWB8AIpLjRzoZihXQ4wLm1MqnaenMfZCQEAJXPm2g/KcGyk41UPITAxWnGRNC0cbd86pAzekGDrrawLIN5nW/+d9Ty//4pkCHIgiPiNJHdTxsqAQu+oqGg3cZO6e3+58qfBIA1nVl5rs4mZ1zJQAYdsj5EpHTmIUMTj6z0zQNu9TLx12bhSBcJ7ASytgfGjvHmywYFtjca/8zXTowYBK2tqmX53dERERERERERETF6qPQh/hL111ZD0UDgBK9LOufSUT26JoOvyf7b0veONqSUvDaPe03JA1FA4A1oRX4S9edKdQss94dXopnev5iKRQNYHgRUaGqctWiVHGelI5ADZ+uaIS7XSGGyRARUX7azbcXzp9/E46uPwlercTydLm4hsm0+jR8p22Rrbi97co01IbMhBTBaD59+gG3RIUofb2qiYiIiIiIqODE4uoytyRqe1YNkna+XJIn9w7Fhg8n/L1bZK3laSuNiYlTTYpgtDZPM4ZcVYp5JKTclPowZ4YGYHqdUEuMUby7x+2YsefZ0vIyr4Yrj9Zw5dH2533ByQvx4B3Tqt4Oo1HglY+Aw5dMHJ4vwWjjPjZbw59PGIB4cG8Y0DB/4Tq0e5qnjPeyYtUa31bqK+TLvnt4rBN0st9FHazm7E7Nqu+VyrI+6VANFz4un+GyC3Ro2thM7zpJw/F3ycd7YQ3wxLsCZV7g8MWAx+3AlS4FdsI+BkeAGeZtHbLCyrpRp1jvnRqM1jMs8P5WYFW7wIJ6DXNnAL1BYF2XQFUZcOiuGmbXTl3neoMCv3zC2kI8Zj/g8XenDs9WMFpbn3x4s72XtgIAFivOJeIGsCEALMlgmxuz9W9Jk/w8aE2WfmMzN/5L4OK/2dvvL98EHHengQ8u1VFVNnX9i8YEPmifOp0hgIffFjj9iMLYTxI5lWp/VOYFLvuajsu+lvq8z3rYwG+en/oBbf3A8KhARWnxbN9WwokSBRmMRiRl9+pzt0ZgZdvU4evyJBhtaFTg5bVATRnwiflAicfeftPKdVo0DoQiQPmk9nyphsd1DwOPvq3+YKMws8KJiIiIiIiIiIjIgjcHX87J52rQ4NG8OflsIrLH752JjsiWrH/uquDbGI4NosItb4c7WVekHa2j6yzPf8XQMsSbYnBpzumCu2zgJVvjM7yIqDBpmoYGTzM2h9dPKfO5ph+o4dXNg2WqXCk0/CQiIsoQt+bB5+uOxcerPolHu+7Be8NvJJ0mHSFiTlOil6LaVYuBuKLjhkUdkS3oinSggdcSGROMD0mHpyPglqgQSbqxExEREREREY2JmXR6dCmC0ZL55CLnd6IXAz3As/+fvfsOc6Ja2AD+nsn2hS1soxepSlERuSoWELuIyrXfa0Gxo9jrp2LvXa5eK/aGXkVsiAURVLChUhaQKtv7bpYtyZzvj7DsbnLOZCab7Gbh/T0PD5uZM2dOksnJzGTOO6+0mnZg7RLby/sHo/XQBKOtiRusrSOlZR3xSTh8D9ur17rC+waGXaUORWurYaMH4u+hd+L2otvDUt8XKwMH43a2YDQAQLEvMcaAxHE1HztadGh335PSBZt5TF9QldXgZEMAWZrzosXq86hRQxdCYYRwNuus/QS6KH6jP+9AgX37N288p4wxkG1xHnnK0yaOftzEsFtNrMyL7mA5uxwFo9VFrh1O2ApGS1Z3CmVuwHTypNvBwlyJ4beZmPiIicvfkjjuKRN73mFiwsMmLnhV4rRnJQbdbGL2ktYf9m9yJTKvtJdOsOV+A0Ny1K9JbmH7vB75ler19Exz3oEPytL3+7kRDsuw2v6GdFc3ak1Bx25zLy02cd2c0Nrwdznw0hL1stUW4T+hBnIQkX1ezVdAOPaLp0/QV/K7IqhoZ+Z0t8HdEJl2EHV2ViGDQtHlDNbsu65pp33Xtli8TqLPdSYmP2Xi4AdNjL3HRF6Fs3bb7XsqagOn5bZh3/MWiyDdKDuMIiIiIiIiIiIionaU37C5Q9bbI67PjpsdElF06xs/sEPWKyFR2GD/R+y8emf9Wb2sQ41mwHpHKXAYQNc3oWPeGyKKvH4J6nEIPeP6hqX+/pr6ByUO5z4aERFFpW6xWbig1w24pNf/ITM2R1suO7YnEl1J7diy9tMnTPv/FZ7SsNRDarVmjeHAQ9YAACAASURBVHJ6OAJuiXZGDEajsBJCxAohxgshzhJCXC+EuFQIcaIQon9Ht42IiIiIaGclK0shX7kP5mNXwrxhCsz/3Aj52euQXm+b67YKRotRHFH2TA/+I9exI6P7hzBpmpBTdguYfmjtN0gy3bbq8A9G6+VRX3hR4UrX1pFiVjU/SEhC1wSBCw9p22t35iGJbVo+mB6X34Sbh6/G6ZVvtbmuVfmKYLQgAWBRqSRvx5+Tqz9ytOhuwheopws2A4Dv1gFnvah/YVwGtEFf0R6MZif8yq5e6QLPnimQ2uIjMHlP4KnTAyv75Zbgp8s2lADnv2JCWo3u7yScPIXKbZFrhxN2gmB0nxuvCZSof0PoEKYpMXW2iaIgn8cGD3DubAnjAi/2usOLM54zcejDwUPRkuKA16cJ9EoXGKa5qVFuAdplWy7VvO459m7Y2kp8rECfbup5hVWRfS5WfZPuNV6tzkcNm9X5EnfMMzH1JRMPzTdR7m5u5PwVEue93LbX5I6P1MvXWIQlVkdJf0G0MwvnvpK/fhlAYqx63qd/dv79HyecfkVa9Y1EuzLLYDTFtCGa69JyC9tn3zVUpilx8jNmq1DpP7YC17zrrM12n2KFYp8rUsc7DEYjIiIiIiIiIiLadRU3RPhHb41xaUd0yHqJyLn9Ug9FnFDcubQdFDfmOyjrvD+r9UbPxWZe6UFpY5Ht8qmudOzVZb8ItoiIOtJBaUfCgKvVtGSjK/bqun9Y6h+Xqt4XOyTt6LDUT0REFCkjuozB//V/AsdknIoYERMw/5D0YzqgVe3j4LSjwlKPlMHHqlBovNKDOlM92CKZwWhESoE9OXV6QoiZAG5rQxUvSynPcbjOLAC3AzgVgHJYohBiCYBHpJTvtaFtRERERETUgszbADltf6C6vHni4o8hAWDBW8CDc9t0Rx5d+AwAxLgCp/VKC17n4OyQmxNxUkrIW08HGgJHsyfIehxRswAfpBwftJ6ufsn9w+pzHbclpeVd5hJ8aU5Pnibw34WhjUQdUr8Gw3bX3/EiHERsHMTd7+CG79fgzZfaVpcqRMZqEK4RrdHvLYLRxtd+i67eKlS77KUApc+5F3LAUcjcR3/S/binrE82CyG2B0QFvnjF0XO9jpJVEF4oThtr4LDdJf7YCqQnA3v1UfeNPdMEjhwOfL7Cur7v1wO/bQH2Ds+N1TqMk8HtFbWRa4cTdoJgeqbql99aAWSHEMYVCT9uADY6vJnO738Dv/8d/I2bO93AfgOAzK6+F2ZodwFVX1BTD+RVAL30WZ1hUa7ZftJDvNlSVhdgk+K1i3TwnS6kwjCAoTnq17ioGih3S6Qnhz/F85tcieOeMuGub5721FcSP9xoILcAOOrxtnem5bW+fST/fcrqes0CAKrqmJxBFGm6fSVXGPaLXYbA+KHAp38Gzluybtf6fDsNAqptiEw7iDo7q4+S6rTVEM1+VXUdUFgFdLfY3+9Iv24BCqoCp7+1TOK18yQMm+mVdvueckV+f1WEAhoZjEZERERERERERLRrqjO3ocpbHrxgGHWP641xqUdgfNqx7bpeIgpdt9gsXNX3bswpehEb69bAIz3ttu6iBgfBaA7KNnF7o+cOtKWNxTAR/FqgeJGAgUl74LTsCxFndExgHRFFXu+EAbi8z0z8r/gVFNRvwYDEoZiSNRWpMeG5GHRc2uHwSg8WVnyKgoYt6BHXBxO7HY99Ug4MS/1ERESRFGfEY1Lm6Ribcgg+LX0Xf7p/QhdXKg5KO3KnPt8wossYnNvjGswvm4Ot9ZsgLa/c07Nz3EGhsQrfTjIYjEakwmA0ajMhxNEAZgMIFm9wAIADhBCvA7hQSqm4VJuIiIiIiJyQ/7mxdShaSz/OB76aA0w8OeT6PV79vBjFgPtgwWhxMUBGlJ6jkV4v5EPTgYUfaMtMjluGD2AnGK31hRADGjciVjagUcTZbk+K2WIkbbwvNSbGJfDBJQZO+I/zE4z/3PYRxIiLHC8XipH7D8GceImTngn9ROiaQqC2XiIpvnnQsNUgXFf4s2bCo7g5GC1eNmCi+2tb4XoAkN5QDPn0TUh+5WjkpPgGfzvRNN46S/OZq64D6holEmKj88XThl+1Iewjs6vAhGHBy43oJfD5iuA/AMz5WWLvvtH5+tnlZHB7fqUE0PHPV9dmV4uQgewUXzCMKuAzryJ6Au1yCyOTLnDbcQKTRrV+r4ZaZGOuLuh8wWiZmr4t0sFoVsF8w7rrl8stBPbbLfztufl/rUPRAGBzGTD+IRNrCsO3nvJaoFty62k1FqEbVeqbGBFRGNkJCm2Lw3YX+PTPwJV8nQtUbZNISWzffYJXvzcxe4lEXSMwaU+B648UtgOG2sLpN3UNgyGJHFMGo1n86rymMHqD0VT9ZpMyN5DZ1V49ujBefxWKfS4GoxEREREREREREVE4lTQo7m653e0DnkZGbPhv1GmIaL1DJhFZ6ZswCFf1vcd3g+IQB99beTH/YfxSvThgenGjg2A0TdmD047G95VfolEG3gmr1oyeO9BaPddHBr+JOOELQRMQbbqpNhF1HkOSRuL6fg8qb3waDgenH42D04+GKU3uoxERUaeUHdcTZ/eYEbHvymg0JuVAjEk5EKYMPqbvirWnwiMbA6YzGC1y3FbBaK4oHXRL1MF4JEJtIoQYD+ADtA5FkwB+BvAugC8AlPgt9i8AbwrBI2EiIiIioraQNZXA4nnWZea/0aZ1eCzOY7kUe/S9061PEvZMRfSeSHz3CWDei5ZFjv33QbaCBrr6XQgRAy8GN6xz1JxE2WJ0a0JzaszkvQROH6tuRGoisO5uAymu1gkp3T0FuPqgOojkFEdtaIspowW8/zXQeMyLKFjTB9Wru2FK1f8c1THy9tYboNUg3LaEZUWSLMlr9Xh4/Urby6aalcCm1RAFG3HkQOfZ4juC0SwGXpdGzzU7ASId9mHFKtyoJTvhadHOdPB7RV5F5NrhhK7NLfsBlyHQQxOWsLUiet63sgjcNiC7K3D5oYEflPRkgWxNfxCpgLYmpilRoQtGSw7tQ53ZRb1cJF7Tlqz6pp5pQBfNTVbXF4f3NfZ4JYqqJL5fr54fzlA0AMivDJxWbRG6UVQNSClR5paQdpM9iMgRVfgnEL59pRG99BVlX23CXd9+n+1nFpo4+yWJr3OB79cDN/9P4uLX22f9TvaVAMAdeJ08EcE66EvV22R2FQGhrE3WRHjftS3iLW5LV+zg+NtuCFlFbWDByggF1NrtD+sbJbaWcx+QiIiIiIiIiIhoZ6EL4XEhBt1is2EII+z/iKhzE0JEpG/Iju2pXF9xg4NgNE3Z7NgeSHapL6xye6uV0zuCrv1pMRlIMBJ3vFZRe502EUVMpD/33EcjIqLOblfcR7Z1rKWJGzKlt51bu+twW4Rv645LiXZ1PBrZNZwOYICDf9fYqVQI0RvA+wDiWkxeDGC4lHKMlPIUKeURAHoDmAGgZVzocQDuasNzIiIiIiKipV8AnsBU/laWfAJZG/qP8lbBaDGKI8qRvawH4vdKC7kpESU350LOusG6UEYPZB1xDPbsbV3MkF6keQPTg8Zs+9lRm1q9jPGJrebNPkfgjuMFurfIOZs0Clh1h4HdsgSW35WIc/qtx4HGnzjH+BxLDv0S6dNvcbT+cBBCwOg1AJneUiTKOkyutg7y87ehBNhQ0jyQ1jIYLVrPUfsFow1ryLW9aJrXl0IjT90dx300zfGqm0KiUhP1ZaxCbTpaRwajHTlcKMMf/f2yGfh2Tece7G13wD0AbI2SYDSvzW1D950TLc8DUIdNtUVOCrDsZkMbNqYL/Vutv8FzWFTX6be19CT19GAyNDfDKamOcMibpnohfN97fbup54frvc4tkNj/Xi/iLjbR/Zr2uxNTvuJzU1MfOK3Jynyg17UmMq800e8GE/N+79x9JVE00vVHdvZh7LAKim3wAF0vM3H6syZq6iL/+X5sQeA6Zi+RKK2J/LqdrsGqbyTalYXyaR2So54e7gDYcEqI1c8rqrJfj93jtHJF+HC1Jhht3ED761fRHYc1qWuUOPtFE92uMNHnehN9rzfxxo+8cygREREREREREVFnV9ygvqAgIzYbLuFq59YQ0a4sK079I3ZRY76tG7Y0mg0o95Ro6u6pHYBe642eu8/qwiqzYm3eCZaIiIiIiKgFXfipKXndV6TUasK3Y0QM4kR8O7eGqHNgMNquoUBKudHBP/VZvkC3A0hv8XgJgMOklKtaFpJS1kspnwBwit/yVwkh+oX+tIiIiIiIdg3SNCFXLIX84bNWIWfyO5shUwveCXndHouA/xjFdU3pyQIHD9Yv0zs9+tKrpJSQ/xoVtJx4ZiEAYPce1s+hm7cMLgSeAJxc87HtNu1ev6r1hITWqTGxMQL/d6yBvIdcMJ/1/Zs73YXuqb629csQePHmwfj2mT3x4jPHoP+/z+q4u1v0Hbrjz1Oq5uCA2iWOFv/g1xbBaBbnVaMxGE1KCSxb0GrasHonwWjNKTSH1yxAvOksxazpNUmxCEariuJgNN21Su3xXvdOF7jxaHsrGv+QCa+TdLEQbGuQ+OQPiW9yJRo84V2Xk6bnVURHsJGuL/DfNnqnq8tttHvmqx0UhDkYLe9BA3266bfdId3V89YURPa9VQU2NAk1GC1TE4z28+bQ6rMr2PbXPVU9P1gwmrte4ouVEq//aGJlnvr9qGuU2P1WEz9usNlYB2JdwD4WZ2rzKwPbVB0kDKlge/jH3+XACbP0z4uIQhPpENleaUDXBOsyb/8kcdFrkf1s19RJZQhSoxf436+R71ec7ua5GYxGpGQ1FkV3umJIjmbftTB69ykaPPp5xQ7GzNgYu+OrU3GNVJVmH22f/gKXTwz9S6I+yL0Zpr8p8eoPEtu2l9taAZz5osSitdH7fhEREREREREREVFwRY15yunZcT3buSVEtKvLiu2hnF5n1qLGG/wONSWNhZCa2/lkx/VAkqG+GKlGM2i9I+jCKrPi1K8NERERERGRFaGJGzIV4yIpPHTh20lG144b+0kU5RiMRiERQgwGcHaLSQ0AzpFSaodUSyk/APByi0nxAG6LTAuJiIiIiHYOsrwY8sqjIS86CPLa4yFPGQq55BPfzF8X2qvjwUual3HIG0IQ1Ql760/C7D8wpGZElHzh9qBlxJWPQXT3pYUMCXJjtUxvqXL64TULkOCySJpr4aiaz1tPSAgxNSYaZPcGEpMBAHFoxNebjsCzeRejf8NGpHvLcFXpo7il+G7t4gtWtQhGsxhLG23BaLK+DvL2s4CG1skII+pXIM1bbquONLM5RaeLdOP0Kmchh02vSXKcvkx1FAejmZqR4O31Xt9xvIG50+2dOrvk9cgN9F62UaL3dSYmPWni0IdNjLnLxIaS8K3PSdjH1orgZdqDLiTA5fd27ZYV/UEK64vD15YN9xpBfwgZpvkO+3ULYEYw4C8SwWgZmmC0wirgkS8i90NcsCCiHqnq98AqBG/5Fonht5k48jETZ74gMWKmiQtfNVvdzbaoSiLp0vA8r/12A2ZMFHjgJIFbJgncOklg5e0Glt2sv5v3ekWgYI2D8B9TAi8tiZ7PHtHOQHesFq59JcMQOGVM8Mre/VmiojZyn293g37e2qKIrXYHu+FETZz0jUS7EstgNM30wdnq6b9tQav9pGhidYxdVG2/zXZ3zfMU+5hV29RlUxOBR08RmHdZaJeI1FuEvjV6JOb8FNhoKYG3l0Xne0VERERERERERET2FDfkK6dnxQW5iI6IKMysAhmLG9V9lZ0yAga6xWQj2aW+GEk3aL0j6J6DLjSOiIiIiIjIiiHU15JJBqNFjNtUH2PqjkmJiMFoFLozALQcKfe+lHKtjeXu93t8ihAiIXzNIiIiIiLaucjHrgB++aZ5QmUp5PUnQn74HFCivhujsp7rT4Ssdp5o49Gcx4oxoA1fOX4v/eB5q3kdQa5dDrx8b/CCYw7d8efwHtbPIUMTjJb8z6k4bLg+cKTJuNrFmFl8V+uJ8Z03GE0IAfQduuOxCybOrXwZ6/7aA8VreuOBoptxW4k+GG1li+s4OlMwGj55GfgyMMgsFh4cVTPfVhWp3tYjnO8uuhX7bltmuwlNr4lhCHTVHHlXRXUwmnq60Y5nsyaNElh4rYGsrtblnlskUexgkLtdUkqc/IzZKlTqzzzg8jfD9yODkzyBMnfYVtsmum3D/2tpSI66XG5hdAQplLslvl9vXaZ3OvDd9QauPVJo+7mEWGD2VIF+GcE7wj0032HF1cDSjUEXD5lVMFpaiF9x3VP0z/eadyV+2RSZ9zhYMFr3VPX8/MrWC5a7JR6ab+L690zsfaeJzWWtyz+3SMJ1oYlr3jVR7pa4dW74ns+SG1x49FQD1xxh4PbJBmZONjAw2/cEJo1SLzN/ReD6nYZrPjy/4z93RDuT9thXuuuE4N8tjV5g/3tNXDvHxIKV4f+c11oEo1VVRT6FzOkug1V7iXZlVh8lXbbv7pp9181lwAr7p8TaVbVFt1Rcbb8eu11PfkVgyUpNMFpKgu8czTEjBf7zL+cnUeoa9fNKavTnF75cxX1AIiIiIiIiIiKizqy4sUA5nSE8RNTeurpSEa8ZgqgLcWxdRt2fdYvNRKwRi2SX+iJBt+ngR54IMqUXJQ2FynlZceyTiYiIiIjIOUMTN2RKBqNFii58O4nBaERaDEajUJ3o9/glOwtJKVcB+LHFpGQAR4SrUUREREREOxP5+2LgqznqeQ9Nd17flAGOl/F41dNdFkeT/TIEzt4/cIDlWfvbC21pL3L1z5Dnjg1ecM8DIVoEe40fav38M+MUo2CPPQfGjEewT7/gz/+bTYcjWfolyMR38jzpfsOCFvlwyxTl9E2lgLveN4jWMhgtys5wSEUoWpPRdb8GXT7JdCMOrUcd53iL8O3GiVi0cTxeypuGl47abFlHyxAlXTBadV30DlA2NefR2zsE76DBAmvuNPD8WdYrzrk6/Cf+V+YjICwJAD7+A9hSFp73zupz5a/CItyqPQULpmoyJEf9nlXUAuuKwtyoEIy9R7/NPHWGwPwrDKy+w8ABAwXu/6eBVXcYmH+F7//vbzDw8lSB9y82sP4eA2ftb68TPHAQEB+jnvfhb5HrD8o1oXpdE4AYV2gf6qFBbj495m4TjZ7wP6dg218PTTDa3+XNf68rktjrDhPXzZF48HPrNj7yhUTGlSae/TY8zyUnxXr+IUPU78cPG4ASvwDImsjnERGRBV1/FGK3qpSTIlA7K/h3TG6hL/zwiMdM3DkvvPtEbou+pnLhfMiS4Be4t4WTfSUA2MZgNCLHdMFoVudf5i6PzmPZKk0oGQAUORgzozse9penuAeCLqAsJbH577REdRkr9R79PKtQSDf7RSIiIiIiIiIiok6rwaxHhUd9k1CG8BBRexNCaPueokYbwWiaMk1Bj7pB6LpB6+2t3FMCL9Q/2GTFBrmQioiIiIiISEEbjAYGo0WK26u+kFAX1k1EDEajEAghugPYs8UkD4DFDqr4xu/x0W1tExERERHRzkg+eGl4K6yrhdy4ytEiHs15rBiX9XKPnCJwzgECQvgGuJ5zgMAjp0RHKJos+hvmnVMhzz8geOF/HAFx51utJmV0ETh4sH6RzH+MBcYd63sQGwecOgPiqicAAENzrFd3RuWbUL5KsfHB2xrFRL+hQcsMq8/Vzluz/SZ3lsFo0bF5NVv+nXbWUGNr0MWzPCXK6bHwYP9tS3Fm5Rs4s+xlXHm4/om3DItL0QajBW1Kh7EbftUeUpMEzj3QwMXjrVd+yesmpAzfAH3VIPcmdoIA/i6XmPqSieG3eXHAfV48PN+E1++FdRL2UVMPeLwdH0DgtRmaN7ynvo7nv2vf5+HxStz/mYne13lhXOD791exumyfdODiQwQO20MgKb75SQ3O8U0bsvUb7DvrOPzr1Yk4/o/7kRNvkb7gp0uCwERNVmVEg9Fq1XWnJ4Ve58Cs4GXmLg+9fh1t37S9z+3bTd1PbChp/vw8+LnElnJlsYg7d5x1P3bsSPV8KYHPV7Z+8tsalUUtRXMgJ1FnE6w/CpeEWIG1dxk4cJC98nfOkyisCt9n3TIYrSEG8tX7wrYuFafPpM4iOIhoV2Z1mKTbO+mWLDBuoHreJ39E5z5FjcUx9vIt9tts9zgtvzJwmi6cLbVFGFp6svMD6zqLfT+rYLQwHiITERERERERERFROytpLNDOawoSIiJqT9maYLTihuDBaEUNecrpTWFryYZ6ELpu0Hp7K26w6JMZVklERERERCEwhHqAqCkZjBYpuvDtJEMd1k1EDEaj0Izwe/y7lNLtYPklfo+Ht7E9REREREQ7HVlTCTgMMbPlh88dFdeFz8QEOZpMTxZ48RwDdbN8/148x0C3EAZdhpusKIGcui8w/42gZcXH+TAe+ggiPTB55fi99M8lK7srjPveh/i6BmJ+OYzpD0DE+YLNhvUIEkZS86l6hitIEl206xs8GK1/4ybEm+oRxKsLfKNoddsjEF3BaPLr9yzn737YfkHr6OlRX4TTyqK5yLI472m2eL26aoLRqjphMJrowPf6idOsV/7MQokb/yfDFo5mNbj8p43Wy1bWSoycaeLl7yVW5QM/rAeunSNx5TuhB6MB0bHN6Nrs8vtu6pYsMLa/uuxjCyRW5bffCP2LX5e48X1pGXbX5JhRAkKzoculX0BecRSw9AvgjyWQz90Gefd5geVME7LWd1GebPRtSLJ+G2ThFhy3m7oRqwuANYWReU0qNOEMbQlGi4sRGJxtXeaTP8P/fHQf76bvoSGaEFSPCWzcfiPtj2wEG0ZCelLwYLSh3YHdMtXzft7U+rFVOIbOt2ucL0NEanaDQsNhYLbAt9e5cNyo4GU9JvDlqvD1c1b7QxVGKvDVe5Bm5C7AcFp1gwcBQbREdkmPB7LefuhtZxLqp+K4PdWd2h/B88Y7hFUI7JK/gBqbIbF2X6+iaqDR01xaSolKzSaUktD8WqYlqstYqbcIfrQMRnO+KiIiIiIiIiIiIooSRZqgIQMGMmJt3M2MiCjMdKGMxRZBjsHKZG+vM8mlvhiz1lQPWm9vRY3qPjnFlYYEI4Qff4iIiIiIaJdnCPUAUQkGo0WKW3OMmaw5JiUiBqPtKi4UQiwQQmwVQtQJIaqFEBuFEAuFEHcLIQ5yWN8efo/XOVz+ryD1ERERERHR5sikRsiPZzsq7wkxGK1JbIxAbEwUJVbNfR6oKgtaTDw8DyKlm3b+lNECcTHqeYft7nu+IiYWIqZ1oRE9gd7p6uVS4704qma+eqZLs7LOYvd9ghZxwcSQhrXKeau3X49ilS8QVcFoj1+tn3nOzRhw0XRkBjlf2ctOMNr6FRhZ+5t2dssAqxRNMFp1FIRc6eje7458r12GwLfXWneAD3wmkTbDxDML2/5DgNWg+tU/roIsDkwDKK6W2O8eL9KvMJUD4p/6SuKnjc31Og37qKh1Vj4STM3Godo2poxWbzCNXmD6G2bYQux0TFPigldNvPCd/fWcOiawzXKbG+bd50FePSlwgW/eh/zwOV85KSFffwhycm/IIzNhHhQPeWhX3/+HpUGeNAiTHh6tXfeHv0Xm9SjX3FKhLcFoADDZIqgUAF5aHP7nE6xvGmRx7ffaQqBqm0RBVdibBQDoEg/00exnnDFW4NvrDAzMtn7NhBA4eIi6zDMLWz/5UILRPl/JaAyicLEbFBpOE4bZ2xH79wuyVVBPW7gtwnYKY3KAimJgrX6fuK10zyIpTr9MKP0j7dqk1wvziashj+sJeVQWzKsnQVaUdHSzwspqt9sq/Hp0X/XM6jrA442+/Yrqeuv5T35tr81OjtNa7lvWNerP5aW0GA+TFsJ+uFXfZhWMZhVyT0RERERERERERNFNFyKUEZsNl+jk17MRUaeUFacORitqyLO8DswjG1HWWGxZZ7Krq3K+2xsdwWjFmrBK3WtCREREREQUjKGJG/JKbzu3ZNdR661WTk/SHJMSEYPRdhWnAZgIoCeAeABdAPQDcDCAmwB8K4RYJoQ4zGZ9g/web3bYnk1+jzOEEJohe0REREREu6jNuaEtl9ULOPRk/fyNqyDLi2xXpxtkGsnB9pEkf1sUvNCUiyDGHm5ZpHe6wMzjAgfn/nM0cMgQ/XIxLoEH/ikCguWEAO4/tASppiYppZMHo4mcvsCgUUHLDW1QBwLOX+HbDq0GBkdLMJosyQNK1RegoGs6xLm3wOUyMGmUdYN7NrYIRuuSpi034fHxttrVVROMVqUIzooW0RiMBgAHDhbISLYuU10HXPK6xNSXTORVBB/4bpoSK/Ik3lxq4of1zUEiNRaD6nMbc2D+a1TABV0nP2Ni6Ubr9Y29pzkQzCpwUCUqgtF024biu+nCgwVyUtTlv84F3lwa2TCFl5ZIPL/I2TrGD229kcttbsjz/gF89pp2GfnQdMhtbuCTVyCfuRmoLNWW7eEpwNhtS5XzQnk9TFNi0VqJJX9JuOvVy5drtpv0IJ+lYK6YKLBbpnWZlkGA4aDb/poCPZLihTYEdU2RxFr7u2GOHDsSqHzCwKb7XTCfDfz32jQDw3va60AH56in1zUCm0tlq8dOrS2MvgATos5Kt28cyX2lY0bar3zATSb+u9DEyry2fe513y0AkBfTwxdc9tefbVqHFV2/nxyvX2abRUAQkYp8fibw7lNATSXgaQSWfgF5w5SOblZYWQajWSxnFeBVFYVB36pw6pbe/8Ven+ik58yraP7b6jVpGZieFcI1VA0e/TyrYDT2iURERERERERERJ2XPoSnZzu3hIjIJztWHQK2zXTDbaoHlwNAaWMRJNQ/smfFNgWjqe92W2fWwistfihpJ8WNmj45tns7t4SIiIiIiHYWQhM3ZGqOn6jtdOHbyYb6mJSIGIxGzcYAmC+EuFsIq/tyAwD8R2Q7Gs4nt3QxeQAAIABJREFUpawB4H9ZdqqTOoiIiIiIdnZyzW+hLZjSDWLmq8Do8foyc1+wXZ1Hcx4rxuWsWVFj2QLr+YP3hLjiMVtV3XC0gS+uNHDFYQIXjxd4Y5rAWxcYcAVJIjhtrIElNxi46RiBs/YXuOYIgUXXGTh/X33akOjkwWgAgIMmBy0ytF4djPbjBuCOeaZlgJMqEKkjyDvO0c/cdyKaDrlP2Mt6O+l9+ETgjKshZjwC8cEmYPd9leUSpEVyVgspier1VUfhQPImHRH2Yddf99jb4F7+XqL3dSae/kb/o4C7XmLK0yZGzjTxr+clDrjPxIEPmMivkJbvT4UrHRs8mZAn9Id0+0IV1xZKfLvW3nP4aXtsveNgtCgI0/M62DZSkwQePEm/0VzzrkRlbWSCmipqJc5/xVndWx9ovW3JX7+FPLE/sMXGG/vFm5DzXrS1nsnV85TTf9sCfPqH/TZvKpUYfZeJQx40ceD9Jva6w8QvmwKX1wXqpSW17QPdK13g11sNHGeRvfnfb8McjGZj+xuiCRZbWwisKwpvey48RODlqQIfXGog+Glde4Zk6+t56uuWwWjOn0vL4A4iahtNhnVE95WG5Aj00mf2tpJXAVz8usSImSamvWJa3p3birtIfdduAKgzElFppEKGGixug67ZSXH6ZbaFEBxJu7gv3w6ctuJHyL/XtX9bIsSqB7DahbEKRouG0GZ/ZW7r+T9v8h0nBOPkOC2vsvlvq2C21MTmv7slCwzKtr8OANhmse9nFYzmbkDI3wFERERERERERETUsYpb3tixBYbwEFFHyYpTB6MBQHFDgcU8daiYgEBmrO9CnyRDf2eZWs3A9fake35WrwkREREREZEVQ6jHRknJYLRI0R1fJmnCuomIwWg7u60AngNwPoADAewBYBiAcQAuA/C5X3kB4CYA9wSp179XDWVIrP8yIdyXOpAQIlsIMdzJPwADw7FuIiIiIqJwkVICi9WBJUFl9YQQAmLaTH39331kuzptMFonPJqU9cEToMSNzzkKFZm4u8AjpxiYdYaB08YGD0VrMqa/wF0nGJg91cADJxk4YKAAYi1G1u8EwWjCRjDanvW/a+fNnCux/G/9QNqEKHiJZN564NeF2vniikd3/H34HtZhCsMOGAHj4nsgTroUIj4B4uDjtWVf3XqOcvrY/s1/6waTF1VH7+BkXcuiIRgtJVFg3mX2O8JL35AYOdOLmAu9OORBLxava352T34lMXd56/LLNgK9rjNx/XvW789HXY4FygqA954GACz/23aT8NsWX91Ox6dHQ/iALiRAt2386x8ChwxRzyuoAm6dG5nPwVXv2K83MRZ49ZhNyHnvTpiPzoB8/SGYz8+EvPxwYHvwXTDywUuBP3+wVVYXjAYAxz5pwmszieGwR0z83mK7+6sYuPC1wPCbck34Q7pF0IVdXRMEXjhb/3lckRfmYDQb298gTbDY2kKJQntvpy21sww8/S8DZ+5vfx/Ejj376OfNXd4yGM153fmVwcsQkT0dFSJ78hjnK3jxO4lZX9vvj+WP82HOuh7115yIJ99WD7hpkhfTA9isDlgOB12/z2A0Chfp9QL5m9TzPnutnVsTOVbHHZbBaIn6edFwbOKv3EabttoIitX18Sp5Fc0vbpXFr/YpCa0fHx8ksN1fjcVptdoG/RvsNYF6j6NVERERERERERERUZRgCA8RRZsUVzriRYJyXlGD/rflokZ1MFpaTAZiDd+Pv8kWg9DdHRyMZkoTJY2aPjmWfTIREREREYXG0MQNmWAwWiSY0kStyWA0Iqc64VB2smEpgCMB9JFSXiClfF5KuVhKuUpKmSulXCKlfEpKeRSAfQGs9Vv+BiGEfsR1YDBa8HSBQP6XZYerp74EwJ8O/30YpnUTEREREYXH+hVA3oaQFhWjx/v+GLGfvtDqnyGLt9qqz7szBaPdebZ1gX0mAINGtU9jVGLj9fOMTviC+xs0Cujez7LIUTXzke4t085/eYl6oG1iLJAU3/FpWfLjl/Uzx0+BSM/e8TAxTuCS8eo2d08BjtjDb+Kkqdqqp1R/gMGJgSOrT923uf6eqeplt5brm9zRtOFDUfJxOGakwKcz7DdmRZ7vOS1aCxz0gIk75vk62LeXhR7atCjpQACA/NS37W2tsF/X6u3XSdnMv9qhQhNw1Z50bXZp3g4hBGadYWi/u2Z9LfHr5vA/ry9W2qvz3QsNrDv8A5z+2Ahg9t3A+89APnMz8PK9YW9Tk90bVmNQwzrt/CV/Ba/jmYUm/ioOnP7zJt/23lK5W11HOILRACCzq/47ILcAAUFtbWEnGG1IjrrMumKgVPNaNOkSD2y5P3jf8uNNBhJiI/Pdpwt2A4A1hcDqfN+LEEowWkkNUN/Y8f0I0c7A6fdhuFwxMbS+5/K3JIqqgn/+zadvgrzmONS//R/sX3QLlidYH6Ntie0NbM4NqU126L5CLIPRGiLTFtpJeSy+UGt2jURRq14lxSoYLZRbd0VQg0fCXR+8XEl18DJO9pbyWpwOqLL41b6L3xih6RME4h2EzFu93rVB+j07rwsRERERERERERFFl0azAeWeEuU8hvAQUUcRQiArrrtyXrEm/AwAihvU87JbBD0mu7pql3drBq63l0pPGRql+gcZhlUSEREREVGoDKEJRpMMRouEOrMWUnN1oNUxKdGuLkqGklI4SSk/kVLOlzZG/EkpfwKwH4A1frPuE0K47K7SaRtDXIaIiIiIaNewaG7oyx40GYDvx3/xxHx9ucUf26rO41VPj7F7tBAl5IJ3gIUf6AuMHg/xfy9BiA4M13JZjEa1mtdJCCGAg46zLJMkt+Guopna+b//rZ6eKSphXjwe5q1nQP66sA2tbKN5s/XzsnoFTLp9ssC0gwRiW3ye9u4DfH2NgbiY1tuiSMsETp6urDpeNuDdxuswtr/vcZd44PqjBK44rLmOXunqZm3Nr4H571EwrzsB8tvoyg03NefRjY7PwNvhyOECr08TyAwh7n3mXAnjAi+Wa7ZrO3Ljh/j++PsvVFfV4cq37Z9uyd0ebOQ0GK0mCga02wmm8rdHT4GrjlAXMCXw5FfhOVVVWStx/XsmRt/pxdbAvMJWztxPoPhBEyf+egdyHj4D8Gq+dCNAADihSv+Zn7vc+vWQUuLSN/Rl/tzael55rbpcerLlahz5aLr6VHd5LVBsI3zCLjvb34BM9baWVwGUWlwnuVsmMHe6gV7pAvOv0J+6f/4sgX37R7Yz/GOmfv1N28e2EILRAKCgKrTliKi1UL4Pw6FvhsDHl4X282L3a0xU1wU2XEqJF74zceg1f2HUD6djt0GrkTysAr8l7Bm0zr/iBgKbciG3h0t5vBK3fGjCuMAL4wIvsq/yYt7voX/P615ny2C0EPtH2kV5LTaYuihL/moDq0+h1akYlyHQNUE9r0Kzj9lRdPu8/optjJtxcpyW3yI/r0qzyXRN8L2WLfXLEPjfJQb6bD9fEOz7w+r1ZjAaERERERERERHRzqeksVA7UDObITxE1IF04YzFDQXaZYob1fNa1hUr4hAjYpXlar1hvPgoBFahb1mx6qA4IiIiIiKiYIQmbsgEg9Eiodarv3gw2QhhYBrRLoLBaAQpZRmA09H6mvRhACZoFvHvcS3u1a3lv0zH3jqBiIiIiCiKyFCD0Q6aDNF70I6HYu9DgAF7qNfx3UfWbajzjXb0aM5juUI4mpT122Ajvzns5E9fQt5+pr7A6PEwHv8cIrODL9iK04z0BYC+Q9qvHREktgf3WZlW8aJ2XqlbPT2zagPw5/fA1+9BXj0J8uevQ21iSOQ2N2TeBqBMf2GNGLZPwLTEOIFnzzRQ9YSBtXcZKH7EwM+3uDC0u3o0srj0AW39I1a8ge8vLkXNkwYKHzZw7xSjVdBfz1R1neWyC7Zt3gR8/ynkzadAfv6Gdh3traPCPpw6fazvNb9vSvs3bF3cQDQiBiYEjphZ5GjZv4p9/3fGYDRviKF5txwrdgz69/fV6rZ/P5mmxJGPmXjwc4nftujLPXqqQO0sAy+fayD9sfOAl+9p87pDcWXZk9p5P220fj02lgJWX+lr/DZHbTBakuVqHNm3v37eevVNrEOi7Zta7Bv1SlOXqfcA64rUFRw9Alh3jwvjh/o25MP2ELjs0MCN+snTBc49MPKn9Yf3FDhgoHpe0/ZRF2LwT16Q0EAisifU78NwOHqkQOMzBmqeNFD+mIFlN9vvlw57xERpTeu+8N5PJc5/ReKbqv5YGb8HNsf2tV3furjtndWcpwAAJz9j4u6Pm+svqQEmP2Xi5SUmtjU4/77Xfd9ZBqMFCQgiaqXRYoOpj7LkrzZoy+mgNM0v0RW10XUfrjLNOQt/U2cHv2jMyeuVX9lcuHKbesEUzSmno0YIbLzPwN8PGCh91Lovr7DI6QsWjBYNx5FERERERERERETkjC6ER8BAt5jsdm4NEVGzLE04Y3FjnnaZ4gZ1n9ayLiGEdiC622LwenvQhb4lu7oiycXB80REREREFBqXcCmnS8lgtEhwm/pjSx7bEekxGI0AAFLKXwDM95t8lKZ4NAej/QfACIf/jg/TuomIiIiI2kwWbgbW/BrSsmLGw4ETDzxOXfiXbyBrA+9gJj94FuaJAyCP6AbzooPhKS5ULh7j4GhSbv0L5iUTII/MgJyyG+Tbj9tfOAzkczMt54vJ09qnIUGIxGRg+D8CZ3RNB/Y9rP0bFAkjxwHZvS2LuGDi3zXvOKo2w9Mi8aaxAXLOrFBa55jM3whz+kTIo7MgTx1mXdjiPYyPFRiYLZDRxTrFQrhcELM0oW+mCfnYlUiKF0iMC6ynlyYMCgDyYpov7pGv3m/ZhvakCx8SURaMBvguirruKAP3/7N9G9co4rAhrj++TJ6AH2t6OVp26/ZgIqfBaO4oGNAeamhecrzA7cerCxVUoc3hndfMkVi6MXi5yyYIJMQKyL/+BBa83aZ1tkWOtwiXlan7y9x86x+yVutvQgoAWNniOkMppUUwWvg+M1ldgQT1TVuRXxm21cC0EUTUUxOMBgB/bFVP36Nn4Gvx4EkCj54qMLY/MG4g8Po0gYsPab9+ZsIw9brm/OL7XxeMdt6BAifvo29nON8Pol2Z7vswlBDrULgMgaR4gdQkgX36CSy+3sCRw4Mvt2wjkHWVid7XefHRcoknvzLxfx+E/h28Jm4wAEDOvge5BRIfLleXmzpbIm2GiWMe96Koyv76dCVdAoiPUc/bFmJwJO2iPBYbTN2uEYwWbO8mTROm+9Hy6ApG0+3z+nPXIyAg0p+T47SWobNVdeoyKRa/5gsh0DPN159bqajVHzMFC0ZzMzCSiIiIiIiIiIio09GF8HSLzUSsoflxnoioHWTFaoLRNP2WV3pQ2qi+6ah/Xcmurspytd7A663bky6sUvdaEBERERER2SE0cUMmvO3ckl2DW3NsKWAgwdBcKElEDEajVj7zezxKU85/6FqWk5UIIbogMBitQlXWKSllkZRyhZN/AP4Kx7qJiIiIiMKicAvQo7/jxcQNz0Lk9A2crgtGa2wAfmydjSy/fh/y4cuAkjzfiNUVP8Lzv+eUi9sNRpMN9ZCXHQ78sQTweoGSPMinroP87DV7FYRA1tVC/rYIctVPkH/+AKxcar3AhH9GrC1OiQvvBBJanMgSAuLieyBido6LyURMDMSMRwCXJkFgu+x6TWqMRqa3tPWE7z5y2jRHZN56yK/fgzxlKLD8O9+2beXsmyDSHR06643cH+g9SD3vqzmQeeuVs3qm6qssbHkX102rIStL9YXbUajhVx3p2iMN3D65fRuYGzcUixMPcLxcTT1QXSe1IU86HT2g3eOV+HGDep6dIJjdu6vfnwYPULkt9HblVUg8tiB4esHovoBhCEgpIZ+7NfQV9h4Y2nL7Hw0xZ92Oh8dWf6IsVlBtoKJW/3xWF1g/1y9WSni8vjI19YBXs52lh/G3GyEEemj6uvzK8IVm6Gpq2Td1T9GHOOpCwbolB06LixGYMdHADze5sOh6F04fa8Box05waI5+3n8XmtoAjH8MAN6+0MBAzVdfXkV0hZgQdVbRtq+0/0CBT2e48NkMeweLeRXA8bNMzHirbX3CjpDfulp8t8ZjWbbRC3y2AjjuKfs7QFZhvYlx6nnbGABETlgFo9W3YQc1ylh90oOFX2dqboT44XLgnZ9MNHiiY9+izG2/7E+brOeHHIym2WRSEuzXp9Po1fdvwYLRKnaejD8iIiIiIiIiIqJdBkN4iChaZcWp+yG3Wa0cZF7aWKwd1J8V173V4yRNMJrbrHHYyvAqbmCfTERERERE4WcITTCadDjQiGyp9aqPLZNcydr3gogYjEatbfR7rBu1vdbvcT+H6/EvXyalLHdYBxERERHRTkmMGgfx9mqI2T9DnHcbMGTv4AslJkMce7Z63rB9gAz1D9/y569aP/5kdkCZRxOmKpeNcQVvFgDg9++A4sCQK/nFWzYrcEb+tgjyjBGQlx0GecE4yIsPsSwvXlsOYUTPobHY+xCIZxdDnHsrcMbVEE99CXHcuR3drLASBx8P8d/vgH9dAxx8vLJMmleTGqMREIwWQeasGyBP3R3y1jNsL2NMuy1s6xdCAAdN1s6Xp+4OKQNHUCfHAwmafL1SV2brCZvXtKWJYRNtYR923TLJwFdXGxiz/ezHbpnW5dtqddwQ5MYPCWnZreW+HEwnaupDWlVY/F0uMeZuE9V16vl2to2cFP28wqrQ2gUAby+z90KOGyQgK0shLzsMWPyx8xXtOxHi2lkQs3+BmPGwo0XFebdB3Pc+RE4fiAvuBAAMbdB/3nPVN1EFAPy2xXpd5bXAou1nEMstAiLSFWFgbaELRpv7W/jCMqwCcprEuARy1NdJamWE+bUIh8HZ+g/Vxa9LbNR8/TZ93+jejzxnX/NEpKHdV+rgw5sjhgusuav9GlHqyvD94fVg5Tp7X+bLNgJ/brX33aDbVzIEkKjZv97WGB0hTdRJeCwSpZYtaL92RJjVcUewYLR9+ukLnPasxNBbTPy4vuM/d2Vu+2145Xvrsk6O00rdwLYG3wK6sOdU/1uWhahQfcPKoMFopTUd//4QERERERERERGRM0UNecrpukAiIqL2km0RBqYKENMFPQKBwWLJLvUde1SBa+1JG1bpF+xGRERERETkhKGJGzLBYLRI0B1bJhsOB58Q7WKiZ/Q3RQP/S6V1l0iv8ns8yOF6dvN7vNLh8kREREREOzUhBMTAERDn3ATjhR8grnzMuvyLS/XzDAPY7yj1zM/fgPnsrTCfug5y4QfAD5+3mv1TwmjkxfZULuqyeTQpX7hDPWPpF/YqcEDW1ULefZ4yiE1FXPU4RL9hYW9HW4kBe0BMvRnGxfdAjBrX0c2JCDF0bxgX3Q3j7neAA44JmJ9uVjiqr6cn8EI86VXf4a8tzKdvAt561NlCh54U9nYITaDcDh+9ELiMEMhUX7ODkqYwie3kkk9CbVpYmZrz6NEejAYA44cKLL3ZBfNZF9bd48KzZ0au0bnxQ5Ebpw9Ge/RU/brzKgGnw9PdNfWQ7z8Nc8puMC+ZAPn9p8owvkiY8ZaJ3//Wz7cTBJNt8XtBW4LRVuivn2tlcu8CyEk9geXfOV6HuPE5GI98AjF5GkR8AjDlEvvLXvU4xDk3NYeBnn4VMPEU9PLkIVlzR9PVD94P89x/wHzoUsiX7oJcuxwA4DUlPvkj+Hv+4XJfmfJafZn0JNtPwRZdENf8lYCpSxByyG7f1DvdWb290qKvcxvWHYi1G4bbQkKs77n01DynfGdf80Sk4Y3ifaVB2QIvnN0+DSlxZezYn6mvsP9lvmCVve8Fq0BMfTCa7WYQAR7rDUY2Bkmc2gkE6y0mjbIusakUOOclEw2ejg3fstrv9ffmUmm5f+p013V9ie//Kk2IdEqCvXpmTrZ+re/6WN2wbUE20xL1IQcRERERERERERFFseJG9d3UrAKJiIjaQ2pMN8SKOOU8VYCYKiwNANJiMhBnxLealqQJRqv1dtyPHVJKFDeo++SsWAajERERERFR6AyhCUaTDEaLhFrN2B3dsSgR+TAYjVrK9Htcoin3p9/jUUIIJ8MY/Uf2+9dHREREREQtTT4f2G24et7x0yB6W2cViz6a+XW1wKv3A28/Dvl/pwbM/qzLEdo6Y+weTdY5GBXaVt9/ChRsslf28NMgTrwosu0he7r3C5iU6q10VMUE98LAidvCeyGKfOsx4I2HHS8njj0nrO0AAAz/h+Vs+eClkOVFAdPtBqPhtQcgF38cauvCRjcQPBrCPpyadpCBzfcbePpfApdPFLjhaP2TeOoMgc9mGHj8NIFnp1TjmfxL8WDh9cjxFCrL/xm/B9bFDVTOu/d4EzMmGuiWrF7X5jKpDXnSqflxEeSjV/hCKP9YAnndCZAz/x3xcDR3vcTc5dZl7GwbSfECXeLV84racGPPvPLgz39k3R845Eb/+wXYI+ashTjmrNbTDANi9s/BF558XsB3noiJgbjtFbhmPIwhDeuUi60uBLD2N+DD5yFfvBPy/P0hP38DawqBUnfw1X63NngwWprutgwhyknRbwQ/2dxFCMZu3zS0u/3OKsYAxjm99UQ7SE0S6J8RvJy/pqAgXVBdfmXHhpYQ7Sx0/ZErSnaWTh0j0D0lfPWNrPtDOb3eSEDt9p+o8gvtH3/a/d7X7eIYAkjQBaPt/DlWFE4ej/X8XxXHu52Q1be/CNJtHWhjPym3EPiig2/FVWZjH7klq/1Tp4dXudvHwlRrgtG6Jtr7bjhptHW5d3+SymM/d711gxmMRkRERERERERE1Ll4ZCPKGouV87LiGIxGRB1LCIEsTUijKkBMFZYGqEPFkg31XTfd3jZcWNZGVd4K1Ev1j0Dsk4mIiIiIqC2EJm7IBIPRIsGtCd1OZjAakSUGo1FL/iOr81SFpJT5AH5vMSkGwIEO1jPe7/GnDpYlIiIiItrliJgYiDvfBHr0bz3j6LMgZjwavIKsXiGtt8iVrZ23d1+bg+0tRnLK78N7KCAfvtx2WXHS9LCum0In0vwzuoF6oUkt0hhTpwgGqg1+IYrM2wDzzqkwD4r3/TtvP5hn7wNzxpEwbzwJcsWPvnLffgg563pHbUKXNIhrnoIYe7iz5WwQQkC89JNlGTm5D6Tfa6ALRiuOCXwP5H9ugHSamBVmut7D6KRns3qnC1x4iIHHTjVwz4kG5l1moGda8/zEWOCuEwQuOljgiOEClx1q4LzdCzCt4iVcWfYk7iyaqaz3p8QxqDXUyWcHpPwNAOjXTd2mNYX6UBUdt8cVOPGrOcDiec4qcmhtEeANskm6bG4bOZqQlsKq0MOa8oLkOSaatXgh/0IYlpEQCnsd7AtFy+mrnC0GjoC47RUgu4+2CnHqDPV0IYATL8JQqU5kWBM3uPUErxfyrqnY8luurab/shk48wUTU55Wv3Fd4oHYmPCG9+zbXz/vle/DE8ZlNxhtSI79OscOANKSoiPIyN8PNzrvdJuCgnSftWgIxthQInH2iybG3efFFW+byKtgWBt1PrpdtSjJRUNSvMDHl7dtxy3e8OLqmqdRt6or3t76b225pqDf/LJG23U3BMmiaqLr94UAkjWHLbUMRiMnPEE2mE2r26cdEdaWHGXDEPjmmuD9Sbj290JlFQissqVMP8/pcVpuoW+Bylr1gikJ9urZo6fAR9P1r3VNve840l+wfi8a9v+IiIiIiIiIiIjIvtLGIkjNAFhdGBERUXvSBYIVNQYOhVSFpenqSNIMRnebHfdjR3GDOtgNYJ9MRERERERtYwjF+CAApvS2c0t2DbWa0O0kTUg3Efl00qGkFG5CiAQAU/wmf2OxyP/8Hk+1uZ5haB3A5gYw386yRERERES7MtF3KIx3ciE+K4aYsw7iyyoYNz0HERsXfOHM0H74bhD6us85wG4wmj7FRt4wBfLr95w2S13Xdx8BlSX2Cu9/NMQe+4ZlvRQGqRkBk4Y0rLG9+OWlT0K5NQYJRpN5GyCn7gvMf6N54ppfgfV/Ar98A3z3EeRFB0O++gDkzafYaou47mmI13+HeHsVxMf5EMefb/t5OCUGjQTGHWtZRk6fCOltPhmd2UX9uS11BQajYfMaYLO98KNIcRL2IRvqtfVYzetIx4wU2HK/gY33Gsi900DF4wZuOsaA0fIJlhXt+HOful8cryN9w1IAwLAe6vc+t0A6HnBfY6gv/pKfvuqsIocuejV4UJ/dIJhszW8GhVUOGuRng8VXkEt68ELehRhd91vwio76N8S3dRDvroH4OB/Gk19oQ9GaiMNOhXhrJcQNzwbO3O8oiL5D9cu6XBjSU/1jVm78EOX0/Fn3W7anpdd/lKjQBESkJ9muxrYpo/UbwX++kVi6oe1hGdqAHL/Qu2Hd7ScT9c+IkhQjhfRkgSdOc9a+pmC0DE0gZ6m7jY0KUXWdRF2jxJ9bJfa6w8SrP0h8vx544kuJiQ+bqNAEiQQjpYTptDMlCgOvzaDGjrR3X4E/Zjr7KfKJgiuxcsxLWH2ngcqnYvHAa5cg9u0VyHxziXaZ0pgM1Is4/CEH2F5PfpBQ0ya6MCcBIFlzyFwTnbufFK081oF+csvadmpIZFkFo9nptg4eIrC3PgsYALBwTcd+J5c73Mcpdevb6vRprNk+nqeqTj0/NdF+XceOErh9sv5d+XVzYOPcQYLRShmMRkRERERERERE1KnoQngEBDJjHdwljIgoQrI1wWiqELSihsCwNEAdKpbsUl9Yphu83h5KGtXBbglGErq4NHctJCIiIiIissHQxA3pAvOpbdxe9YV0Sa7kdm4JUefCYDRqcj2AXi0eewF8bFH+9e1lmkwRQgy2uZ6W3pFSai7RJiIiIiIifyI5BSKnD0RcvP2FMnuGtK4GEaucPiTHN8DdFl2y0fZ58u3HQ2hZM1lbA/P+iyHaf04KAAAgAElEQVRvPMneAidPh7jzzTatk8IsNTCUa4yDAKi7imeqZ7iDBKPNmRU0PA0A5LO32GvIvhMhjjsXou9QiJ67QRiRP+Ui7pljXWDtcsjnbt3xUBdQU6wKRtu+fEfSDQRvGfYhP54N85QhkIenwbz4EMiNq5rnff2eb95hqTDPPwBy9c8RbrFzQgj0zRAYnCMQGxPYr8qnb9rx9/D6lUg0NQlTGmm/zAMADNVck7q6wPmA+1pDk2b17YeQQUIdQlVQKbF0Y/BydoNgcjTXg4USjFZUJXHUY15Ua85uuaQHCzdOxCnV9oJAxakzIISA6N4PIqWb7XaI2DiIY8+GuPMtYJ8JwG4jgNOuhLjr7aDLDhutDpFZFzsQHgSGpuXHdLfdLiuDssNSTStdEwQOtjhDedvctv9Ap+2bHrwY5qReMP97C6TXizH97dfZK73NzYqoSycIPH+W/aSl+Bjf/xnJmkDOdg7G+GG9xKiZXqRebiLpUhOjbjcDPrO5hcCHvzkPUvl5k8SEh0zEXWyiz3VevL2MPwJT+3ESItuRhvcUWHJpJbp7Ai/WzvEU7vh3QO0SvFJyCS6dOhxDzz8PQ3IE4mIEhGFA9ByA9Myu2udW4srA94n/gFsT4KqSV2HvM2+1T9olQT3PzWA0ciLYPvTOEoxmMU/Y7Lcm7m5dsKgato4bIqXcIuhMxSos1ipITiW30LeALhgtxUEwGgDcMkl/TmNrReC0YP1eSQ1DZImIiIiIiIiIiDqTYk0IT1pMBmINGzdyJSKKMFWoGQAUN7YOdvRKL0obi5RlVeFqyS71b866wevtwf85NcmK7Q5h94c2IiIiIiIiBUOorxMzGYwWEbWm+thSF9JNRD4xHd0ACi8hxJkA5kspCx0scz6A2/wmz5ZSbtItI6VcK4R4GcC52yfFAZgthJioCzoTQhwP4JwWkxoA3G63nUREREREFKLs3iEt1iDUFzEdNNjBD+kyyImwFT86aFGLaqUEtqyBvGQCUFkafAGXC+LWVyAOtRmgRu0nNSNgUrxswEHuRViUfJDlov0bNiJJblPP3PoXMHxswGRZVgjk/gK8+2RIzVXqM9hW+FC4CcMA7nsP8oZ/6gu9/hDkyZdBZHRHluY86ZZYdR8h7zgb4vDTwtDS0OhCKMTKHyHjioDyIsiHpjfP+PMHyMuPAN5c4QuFu/WM5nmrf4a88mjgtd8hMsIT6hQOsrTAtz3WB55KkUu/AFYt2/E4Bl7sVbcc3yftb7v+9F/mQtZUYnDRHwACl9taLjFcfY0Y4mOAek/g9BqrwJEt64ABu9tun119r7f3o4rtYLRUAVU0w+YyZ4P1pZQ4/TkTX+fqy/yxfjSGNKyzV+EJF0AMGuWoDf7E+BMhxp/oaJmh+48Avgx87g1GPDbG9sOgxvWtpheEKRhtTP/IXJg3fqjAt2vV7+XnK4CKWom0pNDXrQ0iMhuByhLgtQcghcCAC+7AHj2AleprE1vplRZyc9qFEALnHihw0GCJcfebKAlyrWdG1XrI3wvQbT0A7Bcwv6YeqG+UiI+N3MWZ7nqJ5X8DK/IkLnzV3md72Ubg7APsr6OyVuL4WSbytoeDbK0ATn9OIrurxIRhAmVuiV82AUO7A3268UJUCj9daI4rym6JJNf9jrHPXIa/1/5gXfCUy2Fc9l/tbJchkJ6kDhIqc3XDNuEs9aeg0l45XQ8ihEBynLpEDYPRyInGBuv5W2zuS0Y5q6Avu+M1htnYDf3wN4n9duuY790yZznWKLMIRnMaYL1m+5UBVZpTJCmaIEcrh+0OLFgVOH1FHrBgpcTI3kBOiu+1rg2yGZc7fG2IiIiIiIiIiIioYxU3qH/oVoUIERF1hCxNf1TjrUKttwZJ2wPOyhtL4IXiIjiow9WSDfVFlttMN0zphSECbzIZacUN6rBK3WtARERERERklwFNMFqw8aAUklpN6HaSJqSbiHwYjLbzOQ/Af4UQ7wJ4B8A3UkrlZdVCiDEAbgLgP1pyK4D/s7Gu27Yvm7798QEAFgghpkkpV7dYTzyACwA87Lf8w1bha0REREREFB4iIQly4Ejgrz8cLdcoYpXTY538rm818rWpiNcL4bJfqWyoh7xnGvDlO/YWOO0KiAknQeyxr+11UDtKy1JOvrH0gaDBaCdVvaedJ+88B3BXQZx4YfO095+GfPJawNMYSkuVxCX3AsefD5HUMXdnEOMmQY7YD/jTImjih8+BY8/GIPVLjTVxg+GFAZfijh6yJB8is2MuoPFqzqOLBW9BvvuMemZ5EbB0AeS3HwTOq6kEFs8DJk8LXyPbQL7zBOR/bgS86guvVPat+9l2MFq8WYdEWQd5zzRkbu4CKJarrpPwmOrQgJREoLg6cLpbJOlXuml12IPRtpZLeGz+pmI3CGag5rOQq76GTOunTbAMRcvwlGBgw3p9gRbE7a8DEyxCDiNoaI46KA4AcuOHBASj5YcrGK1fZAIrTh4jcMc8/f7HmS+Y+Oiy0C9S1NVstPzx79NXIafNxN59BVbmB98X6pXWOUKzBucI/HqLgRcWS6zOB95aFvjcBjWsQ99LR0EC6Ba/B7DbT8q6St1AzwgFwi1YKXHWiyYKqpwt994vEk+dEbxck2cXyR2haC3N+trE2iKBS9+QO77LLh4v8PipAjGuzvFeU+egDZGNks1M1tZAXncCsHxR8ML7ToSY/kDQYhld1MFoJa7AsOVgVPWoaAMxBZCsCRoKFhBE1Io3yPFp4WbI+m0Q8c7C/6KN1R6R3W5raHf9fmuTucsl7p1it1XhVW6zX2lSahE2qzudlhwPuBXhi2VuoKRaolITjJaa6PzLoWea+vWevURi9hLf9JuPFbhjsoA7SL+3LXynYYiIiIiIiIiIiKgdFDWqg9FUIUJERB0h26I/Km4sQD/XoO1/6+9omBkXeA2U1WD0WtONLq4UB60MD/bJREREREQUKYZgMFp7cmuC0ZINBqMRWWEw2s4pEcBZ2/+ZQoi1ADYCqATgBZABYE8AOYplywAcJaUMOhRUSvm3EGIKgM8BxG2fPA7ASiHEzwDWA0gFMBqA/5DTeQBucfa0iIiIiIgoZAdOchyM1iDilNPjnBxJmt7gZTwNgMv+AF85+27boWjio60QaZm266YOkNVTOTnFa51mMq52Ma4te9SyjHzkcmCf8RB9h0Ku+x3y0StCbmaAjB4Q76+HMGwmMUWQuOddyMl9tPPl3+sgAAzTDCKvNxKwKbYvdmvcGLjwX38A7RSMVt8o8f6vEj9t8g0CX6m5JqmLaT3aXL71KLByqXreZ69DdHAwmly5DPLV+4Dv5jledp9tv9gum25uT+tZNBdpCXsDAxRtgYGK8m3wnUpqrUu8Ohit1ggSjBZms74JHirVxLA51n9ItvqzsKkM2NYgkRhnr6IPfrVu26SaT5WBg60LnQtx3X8gOjDFJileoG83YHNZ4LzcuCE4Fv/P3n2HR1Htfxx/n9n0QhKSUIKA0ouI2EWxYBd7vfZesKBe61WvXq+/a0WvDXvvHbH3ih0vYgEJiNIJSSC975zfH5uQsufszm42Db+v5+Fhd+a0bJmd2Z3zmXdbLVvrsyTLRWjbTWPSTJCxeYobDlVcOdP8/Lz1Mywr1gzKju4xtwYRtXxNFa2CylL6Z2R4arOjAsI6woAsxTUHBB67q6ZoDry+gD/9gddEpn89z6w8aUO4SU5DsbWd4orwf/faMs2seYHwsb3HKHYcGv45K6/RnPx45KFoACNN35aHcN0b5hfDq3Ph1Tbbh/s+1Ww1CE7buZskVokNXDcQYOfXgQAsvw6Es7b6F2aZG3EdHVw3wjZcDXOWml+D3WD3FAB981neQtEAdcvrnj4Lc9IgvyB4ebEvmyRdE9H41lUGngtfmB0I26e9UpBqPmSmstb7/osQnoK7V/wOQzfv+LF0Ea+7wmPzIM4hZHDygtWQX6AZ0bfzP3Nt4V9piVBhDDOzbyts+5yj+wUCmk0WFkCZZVPYK4pcvf4edmX/85Zmh81U2EBICYwUQgghhBBCCCGEEKJnKayzhPAkSAiPEKJ7yIjrTbxKoF4H/whRWLeawUnDNtw26eXLIskJ/gEl1We/QG6lv7zTg9G01hTWrTKu6yPbZCGEEEIIIUQ7OZgvOO/iYT6oiIjWmirXMEkLSAlxLCqEkGC0vwIHGNn4L5yPgJO11iu8Nq61/lQpdSjwOM3hZwrYpvGfyXPAGVpr+UQUQgghhBCik6iDz0A/cWNEdazBaObvvMxcD1cIaKiHRG8zNPXK3+Gpmz2VVVc8KKFoPYDKyEYPGQtLfm21PE3bw6/+ud0qrnxiP+JpCNu+fv95OPkq9CnbtnusLanjL+kWoWgAKqsPfFiK3tMya7nxSh0jQgS+5CcMNwejLV8E2+/d/kGGUVGj2f8ul9mLw5cdVhem0NoQX2ss+SWygcWYfuVe9J1/DyS/RWF0nffgsSz/+g23M/0l1nLr15ZiCkazBX1UOylowBQzoH/52rg8WlOfcXngs9gHo40MvtgnEHhafi+EzQd4a2fWj/axKTTT1t0Tsr665TXUjvt566yDjepnCUZL2yJwGYUWinzt/2zNToXB2e1uxuqK/Ry+WOTnHctb/qlvNFdNiTIYzbJr47QNwSspYkCWt2C03B76O9aY/jDvz+35lC2pU4nsXfEBqbpqw/refsOLqlFx6IxLFhVo9vqvu+F1ed0bmluPUFy8d+jP3lf+FwhS62gFZTrigI8zntQcsZUmIyWy157W2hi81Z5AraB1xjo6dPiXx35DjTN4LJqwY/WwrFW9MOU3Rr5ukL+nf/0WPn7ZU1n1+A+oOG8/V2anmpcX+7Jb7ft44WooqYLsMBdZs4UTOQpSE83rTAFIQlg1hD+uZcXiHh+MFuoQyOtmKzNFcdhWihfnhD5GmPWj5tJ9On9jaPtc6ZNu3i6sNZ/jBNi3Pf0zID0Jyg0BaHOXaesY0pPsfdkM8Bje+/hXLpVhtnsSjCaEEEIIIYQQQgghRM/h1w0U1681rsuNlxAeIUT34CiHnPh+rK5bFrSusH618XZLuQnmE8hSfPYfkKv8FRGOsv0q3XKq3Srjutx4y0lwQgghhBBCCOGRwnxuvtt2boRotzpdS4M2ny+aGuJYVAghwWgbozuBlcBOwGAP5SuB94EZWuuPoulQa/22Umpz4DrgaCDLUvQbYLrW+pVo+hFCCCGEEEJET+UOQE85Bd56zHOdOhVvXJ4QyZGk9vBFWH342ZG6aBX6qZvh1fs9datOvQb2O8FTWdEN7LhfUDDaiNpFZPhLKPW1nombngSXjs73FIoGwLzZ8O5TsRppwA77wiFnx7bNdlKJSehBI2BZfvBKfyCXPC1J0T8DVpcGF1kZH5wEpYGHfurNOwWB+udPdthjtHly+TdLNNPfc6msg303V0zdVZEQFyj7eb7mwc81v6zSaA3D+8C5uzvsPqq5rae+0Z5C0QBG1Rn+xpaKzFdIBCC7c04G0n4/vPs0+qYzmxdm9YH15hNHvRpRu8hz2Qx/8xOd6Rqe9EbrqjAmEdiCPgBqVSJJ2jDz/Zv30FXlqJT2pzw9/11koWgAXrMKh+SAzzEHFyxc4y0YLb9AM9983hwATw6dxfgFP5tX5g5A/eNB1LZ7ehtwJxjRT/H+/ODHO3+Lv0H5la1eu4Vx7Q9G230kKNWxYRWX7O3wzi/m/ZA35mmumuK9rfoGzRNfa16ao1lTZi7jtN3nKS2mf8ZQT+3bgn66K718EfrmqTDvC1KBKbxrLJdAPen+MsoNV8stCnOu6H/e1kFhfVe8qjl5oiY7zf7aef676IInAUqrvZd966fo+sm60GVITmTBX7ZgFCFsujq7V69agj57F09l1dWPoSIIewq8/4PfFMW+3iSY9k3CKKoIH4xmC3NSCtIs+0vhAoKEaMXDdyIUruz4cXSwKLOhgzxwvKK6TvPWz/bPyMtf0Vy6T2z6i4RtPAN7w5Ki4OWLCuxt2R4vR8HIvjBnafC6H0NkhNu2V6Fss6l5m9vWK/8L35YEowkhhBBCCCGEEEII0XOsqy/ExW9cZwsSEkKIrtAnob8xGG1t3Wrj7VZ14/OMyxNVEj7i8BvOT630h7jqTQcprFtjXZebIGGVQgghhBBCiPZxlPmkY+1lPqiISKhjylRf++dgCbExk2C0jYzWeiYwE0AplQmMBQYCfYEUwAFKgPXAAuAnrbX5V4vI+l0LTFVKXUBzKFs/AsFrK4G5Wus/2tuPEEIIIYQQInrq0hnoJT/DgjmeytfHIhjNS5JDQ+jZkbq0GH3WJFgbYoZnC+rlxai+Az2VFd2DGrJ50FTbBOo5c/3D3JpzSavlU3dTpNaVeJia2+jPBej3n4vFMAN23A/nltdi114sDRxuDkZzmw/7B2RagtHi8vDjUK2SSdOVAFzc52buWnMUNJ5b8/o8l0dPVhy7naKmPhBSp5TirZ80B97T/KX3e79q/rcUnjhV8cF8zQF3u9S3+Obh55Uw80eXN89z2G9cINzmTY8BM70bisnxF3sqa5SZG33dCOgH/wnP3tZ6YTtD0QDSdCUDkytZXh0+RSnLLdlwu2VIWlvrdFrEwWjVKtkcjAbo8/dCPfJN2PGFsq5Sc+zDkScnOJasJK01Sil0Qz0qLp74OMWQ5FIWVWYElV1YoGl6QJrqmcz60T6+ZTc75D35pXnlkLGox3/o8FCwSI2ynLv821oH9cJv6L17A+CiKPZlG8v+39pruLbPtfjxhexLKfjH/h2f2rPbSPu67/6ENaWafhnenoeLX9bc83Ho16TT9qpIpUUM7Bc+TMLnQEayp2F0C3r1n+hjIwgx8q8zBqMVVzS/10ye/Dr4cfO78NqPmtN2NterrtN8GiY7M5RIgtFenxd9uospGEWIWErqwl/+dHkJ+ujRnsqqadNR+xwbUfu2ELNiX29rEOx2mwa2+8Z6leH7DBVOZNtfqpBgNBGJhvqwRXTRqhCfmj1DqE/OSHaNM1IUs87zUVKlueldzS3vmlu++2OX8yd3blKkKXgZYFR/xWf5hlDHSigq1+SkBz8Atq/TlIKR/RRzlgYXWLDK/ignmb/iC2n7zSKvY1NVF/r4SgghhBBCCCGEEEII0X0U1ttDeHLiJRhNCNF95Mabg8EKW4ShFdabg9FsQY9KKVJ9aZT5S4LWVfrDXAWwA9jGn6AS6eXL6uTRCCGEEEIIITY2DuZz7Ny2cyNEu1WFOKZMccJc5VmIv7guvm686Eha6xKt9Zda6+e11ndqrW/UWv9Haz1Da/2s1npuLELR2vRZp7X+RGv9uNb6Jq313VrrVyUUTQghhBBCiK6nfD7Uza/BIWfCkM1hy11Q/30H9jZPRq9TCcblCaHzTlqzzSJvqT50MBrvPOktFG2nKain50koWk80aIRx8Q2F13BT2nNsORC23RRuOUJx46EKKuwhT0EcB+Z94b38VrvB+EnBywePhOMuQV3/vPe2OpvlSh20uFLHgExzkX/nXk3i6AoyRxUyeNginsw4jgeyzggqd+rjmqRzXDIvcPGd5eKc6W8VitbkqW80PyzV3PZ+61C0DUPScNVrzfXyC0L/aU22qpnrraBNtYf0i3bSBcuDQ9G8ik+AjOzmfwlJrVara59k5KbhQ9EAsvzrN9yOw0+a5eoilZYv0FPMHwEAVDshUpzy56I9BlnabH9DdD+i+Fq8BXTBctx/HoM7KRG9S1Lg/93TcCcl4j54DSPWmIPL8n8v4YP5GudM/4bXuHOmn49/a/15ZgtG234z2CQrxHZq2PhuGQYwsq95TIXlUNSQAjtNAWC9Lwu/Mifu7Fn5Me+5FzJ5FIwbEFg2MKs56MJRMHkUfHW5w4RBHf8YKKX44Wr7199eAxl/W62Z8Un4skHBaCXFbD0Y0kKEDAJkp4JjS/XrhvRD/4qofLZ/nXF5qDAiN0Sw7ofz7fU+XAB1wRfs9cxrMFp9g+aDEOMQoqvtNKzjtyn6py9xz5qEu0cG7rGbo+d8hF6/Fr1/X0/11RUPwBHnRdxvji0YLS6HSpViXDeqvyLZEghU5OGC3rZDWqXs2/hKCUYTkfCHD0ajyDzhoScJ9fVQNLvHmSmKE3ewV7QFpnUkWzDaGPOcHAB+s8wvtI3eUTDYnFPM74X2fqIJzVRKcfLE2HymaA217dhPE0IIIYQQQgghhBBCdJ6WgUItZcT1JtFJMq4TQoiukJtgCUZrDBNztZ8iS9ijLVQNIMVn/mG6yu2CYDTLNjk3oX+3PAdNCCGEEEII0bM4lnlorpZgtFirDHFMaTsOFUIEdOF144UQQgghhBBCdDaVlYu6+O7WC7feHV1fC5+80mpxvSUYLT6iYDQPX4Q1hJ4ErH8MH2qlHv4aNXIrr6MS3Y0lGE0BlxRO57Lbj2+1XFdGEIy2zmPiVlw86q3VqJR07213Nz7Lm9PfnEyWl6WwT7EOWBk/gFPzHmr3cK6Z5fJ+iOCYH5fDkkLNJlnwZ7G3NveveLd9g6oIvpJjzH0xK6pq6pJ7UAcHh9G1NarI5cMF4Sf5Z7W5amWmW0qFz/vrOzXB/lqpUWGSnr54HQ4/x3NfLX22UIec0B9KU7aUdl30dSfCz1+ZCz51MyP63MBb7B+06t25NTz5c/Bn1563u8y/zmFUf0VBmebrJeamD96ycRC2YLS0jHB/RpcYFeKizmc86TJz0kHoL9+iyGdJYQByGwrZZvET7P7QjG5z4t2EQYpR/cyBE2/+pDndkIPZ1hNfa085r07b90tpEQlxipsPV5z7rL0BW8hPd6TrauGD5yKq09tv3sCHCkYrCRFQlmQJNwKYOdf+OPscePN8h33GKt77VbPfncHv87Ia0FqHff2uKIFqDxk2QnSF3UfClHEd24deV4A+d3LzguWL0BcFf6baqOfnowYMjarvbEs+bLGvN1WOORgtJQGy02DF+uB1RRWawFGHXahwolRLkGyFBKOJSIQLiwcoXNnx4+hgoXanot1zHN0fBvWGZYYc1pUlUFKlyUzpvP1SW7ZrXoaiV5KmrCZ43dJ1mp0Nj4AtZE0pe+D52hBhj6H2oUIZGeI4IVIzPtFcvHf3OE4QQgghhBBCCCGEEELYNQUKtdUnRIiQEEJ0Bdt2qdxfSrW/imq3kgZtvnKLLVQNINVyjl2l5cKkHcm2Tc6Nj+GPOEIIIYQQQoi/LAfzPDS37UXjRbtVWY4pk5wUfCqSybpC/PVIMJoQQgghhBBC/MUppeBfT6PbBKPVYZ41mRDJkaTb/mA0luWHXr/VbhKK1sOplHT7JOk/F6CrylsFlulij2FnkdjtsJ4digZguVJHy4BC2wTqjvDOL+HLvPGTZt+xyjrpu6Vkt4ojy19t36BsYVUxomuq0HdeHFmlbfdAHX8ZaqvdPBUf2ddbs5ltgtEy/KWsiN/E87BSQmSfVavkkHX1z1+jogxGu+W96H9AqWrKlJjzkT0UrdHIukXG5Wvj7A/wjE81dx+j+GiBPSjrkHDBaOmd+CaMQF4mpCWag1xenwcNxx2ML+1yCv051jZy/UWgG+DzWbDrIR042sgcOF7x25rgJ+yD+VBdp0lOCB3O8OIcD6logNMmDFaXFKGAqbs5fP27y9PfmtvJ7knBaI/+O+I6OZZgtKI/VgHmbdIC8zmdACRaQj1WlWge/8r+XM25ymH8wMBznWHZhPndwHsgPcxFzos6/wLAoofyOY3/VIvbjf8cZV8XapljWZeaqNhlBBy3vQq7XWsvffCg6CrudhjqojtQvT3uzBhkp5mDW4t82VQ65tS01MRACKU5GC18n6EOaVMTzeOplGA0EYlw34kArFziKbyzOwsVNBvtn6WU4sDxihmfmBv/aAEcvnV0bUfDdlzrc2Bgb/h1VfC6lYZtU+i2FAMywweetxVtMFpeDHOd7/9Mc/HesWtPCCGEEEIIIYQQQgjRMdbWWUJ4QoQICSFEVwi1XSqsX021337VvlDBYrZgtCp/558wUlhnuBoksk0WQgghhBBCxIZjmYfman8nj2TjV2k5pkz19aAJJUJ0EQlGE0IIIYQQQgiBchz05CPh45c2LKtTCcayCZGE0GsPATf1ddZVurwElpvDa5qoY/8ewYBEd6X+/Sz6mmON6/R/L0Jd9XDzgu/ej23nQ8aizv5PbNvsCo7lzek2fyHdmcFoXlz0gmbw1PCz4BPcWu5ZcyH9G8wn+nhWWYp2XZRjCZFrB712BfrYzb1XcBzUuTejjpoWUT+j+nmbBJ/ltp5h39u/LqJ+UkMFozmhg9Goju4ksPIazUe/RVUVgN//KMW971Z49rawZYdbgtFCmb0o8LibAg0AhveBUf2bgtFKjGVUWgyTBWJIKcUWm8BXv5vXf1mQya6X3UfRf18xrk9xK0nR1QDoq4+GT6tQvu5x1ZoDt1Dc+l7we6a6Ht6fDwdvGZt+VNv35ao/Nty86XBlDUYbmtszAk50VQU8Mz3ietmWbU/x3B/RFenG98S5z9r3H5MtoR6HzLDXeWVqcygaBAKSbP4sgnFhMiSLOv8CwB1GqfDBXEFBXBEEeTnGdap10FcE4V/hlrWqp+x9GscZRUhZqMfHcXrGeztSes7HUdVT/3kRtcvB7e7f9v6tclIp9vU2rktJsNcrtp8Hv4Ftr8txAqGiJtX14Hc1vo30dSBizEswWsEy+HMBbDam48fTBdrzTrn5MHsw2pEPuLgPdt4+qWvZYPicwLG46ThilSVPOVTI2iZZkY8t2mC0AVmRh7DZ/F4Yk2aEEEIIIYQQQgghhBAdrLDeEowWLyE8QojuJTMumzgVT4MO/r2tsG41Va75B+E0XwbJPvOFtwBSHPMPzJX+zj9hRLbJQgghhBBCiI6ksASj4WE+qIiILWzbdgwqhGgmwWhCCCGEEEIIIQLaBJjUK/OsyYRIjiS1h8mT//sURgSnkujSYvQBeaHrjtwHVC0AACAASURBVNwKttkzggGJbmvH/ezr/vfJhpu6sgyW/Nr+/jJzUSdfCZsMhS13QSWGCXrqCWxhX27zF9J5GbGZ0BxLh91n/8L8v2suJtMtZVLVbDatX9b+zlw3EFjVyxycES09/3v0xVOgtjp0wUPPQg0aAcnpMG7HwO0IjbJfrLKVTH/rGfZ5DeaTpGxSzNmYAFSrpNCVi6MLsHv/V6hriKoqAP3euAWKb/dUdmRt5MFo81aA1pqFa8zvo202bRHpUGFJOEjrZumELRy7veKr381/26wfNbsdfRiFVbvCrOD1uQ1Fre7rG05H/fOxjhhmxHYcCtmp5vCbQ+91qbvPIc5nj+NY5yE0B0C1/fFv2cINN/MyFUdto3hxTvDje8x2PSQ053PDE++BLZSx2NcbPpsJU05utdx1NT+tsLdneoXW1GvmWeokxcPebTJkBveGeB/UGy5k9dsaD8FoFZF9lh6yZWD7kJkSLvhLeQrlsod/RR5SplQPef2JbkHX1qAvCrHPbrPN5JiEokFge26zIt785k358QNy+u+FaQtS5CHL1RZ0pAgdJFtVB+lhdpmEALwFowH8+HmPDkbz8vVQNFISFZvnwS+W8OL7P3M5e9fYB2ObhAozy8s0B4ytWm9+YKxtKRgQYTCaUoF9n2jkdc9cZyGEEEIIIYQQQgghRAdxtZ+iugLjutwECeERQnQvjnLIje/H6rrlQevW1q+m2m8+6adPmFCxVJ8lGM2N7mKh0aryV1DhLzOuk22yEEIIIYQQIhYcZQlG0xKMFmtVlmPKFMsxqBCimQSjCSGEEEIIIYQIcFrPkqxT5lSctsFoWmv46i30G49CYgpqjyObJ7674b8I0zMuR/3twsDtL99Ev/M0VJXD9x+Grjh6W9TVj6B8Uc7uFN2KSkpBJyRBXU3wyrUr0HW1qIREWL82Nv2deDnq8HNi0la34VjeCy3ehwN6+YGe8Z7Zq+IDzl9/X+wb/u4D2PPodjej/X54ZQb663dgzsdhy6vrnkFNPqLd/eZlQloiVNSGLpflL2l1v3+EwWiJcYEJ/KYJ+dVOmCDBZflorSMO3Hnjp/BpCQOzYPl687p9Kj7w3FdffwGD65ayNGGw5zoAa8thgSX3bWRjaJ3WGsotg0ztvskCZ++iOO9Z83PwxjzNf4+GIrIwBTrk+lsHo/H+s+jJh6N2OqADRmqmi1ah774UPn45sGDPo1HTbsOXlcuULRRPfm3+2xKmukwZB3uPVfRKgplzNWvLYevBiiv2VZSGyTts4rT98W/FYrTfv2E/5Z5jFBU1mrd/CazulQQ3HqbYa0z3DqbS5evRj/0fvHRPVPVtwWilvgz07DdRbYLRTAF2LVUatn2LCswhZwBbD4LUxNaPcXycYmhuIAStrYUFmkDckV24Mbb0zOmKY7brnDAWITrczPujqqaueTJmQ8gJ8dv/mjhzemzKnLfpvf/WQHCSULGHoENbmJNSgX0ym8paCUYT3ug1S72VW74ozCdU9xbq3dbenM7thyh+WWXu4ZxnNKfupEmI6/hHzxak6KjAcZzJKkuesm3b43MgNw0ykvG8n5oUF30YaqQhbEIIIYQQQgghhBBCiJ5tfUMRfsxXtMuN93glPyGE6ES5Cf2NwWiFdaupds0neIQLFUvxpRuXV/nLIx9gOxTV2y9OKttkIYQQQgghRCw4mM9z120vGi/ardJyTGkL5xZCNJNgNCGEEEIIIYQQAW1S/utUvLFYgq/NZMrXHkTfPm3DXf3xSzBtOurI88G1pFS0odevha/fRd94hrexjtkOdf/nUU/sFN3UUdPg6VvM6169D/52YSD0Jhb2PjY27XQnjiV4pWUwWloDPSUYbUTd4g5pV193IozfGZU7oH3t/OdU+OB5T2XVebfEJBQNAhPaR/WDOWHyEzLd1sFcAxpWRdaP1iTHmwPYalSYYLTqCiheDTl5EfX51e/m2f+nT1LMOEaxuhQG9oZZP8Jh97X+oWVi1VeMq/3Fc18KOGf9/Vze98aIxvjst5oFloy5UU3nm83/HirNV+sk3ZKI0A04juKxkxWnPB78PCwpgqJyTaHlwqfZ/uKgZfqKw+Gu91ETdo31UFv3U18HxavRR45oveLDF9DfvAcvLODALbKswWgAb/0Mb/3cev03SzQPfBY+MKeJ0/bHv/o6WPMnDBgKQE664s1pPoorNAVlgSA9n9O992N0VQX6lO2gYFlkFTNyAvuA5evJ9JvTPkp8mYH3ShsrSwyFW6iqC1620HzBcgBuPdL82TiqnzkYbUlh6P4BijxeAHhwNhw6oXs/x0JEQr/9RGQV0jJQry1DJcYuHax3auR1Ut1Kstf8BAR/Hnl5P4cKOkoNEYwWLsRWCGj8LmTWQ94KL1/UsYPpYLagL2h/MNq5uysemW3v4LN82GtM+/rwwhQqDYEwM1sw2hpLMJqtLccJ7LfvM1bx4hxv+6pJ5q/3PElPiu2+TDQB2kIIIYQQQgghhBBC/FXNLnmfd4tf6tQ+G7Q5FA3CBwkJIURXsAWE/VA+2zqRP1yoWKpjnpRe6fd4wkgI+VW/8PH611lZuxTd9iKMbdRrw0kyQJyKJzMuu91jEUIIIYQQQghHmc+1z6/6hat/9zjHs5PFqXiGJI9k3+yj6NNNv6/6ueJ7Pi95hzV1K9CNJ09W+M1zjFIcczi3EKKZBKMJIYQQQgghhAjwtQ5LqlMJxmLxLYrpyjL0/VcFldHP3AaHToUwP9xvUFKMfupmz0NVh02ViZQbIXXK1WhLMJqecTkcdDp89Xb7+7nkHlTGRnhiiGMJPGsRUNgroYE0fx0VlqsaRiojGQb1hhN2VIzoozjk3thdFWTLmnkxayvIu8/ACZdFVVUvW4g+ZzKUFnmuo46+IKq+bCYMUsxZGnoSfE5D66CqvAZLmpeFem46yVlnUUHwa6Xa8RBw8sf8iILRyms0i9ea1+0zRhEfpxjU+LY9ZALMPMfh9g9cVq6HfdT3XD/7cBy8h1gx+UgunvscN/ovo8SX5bnaxS/Z+9h6kEJrjT57krmAUjB0c+9j7AJ7jVFgeRz7XOySZgmAyW0wp0npaXvDY9+jhm0RoxG2aPvPBejp58Ev34DfcnJ2RQnMepi9j4wuVLMhgk1aUDAawNKFG4LRmmSnKbJ7ykV93nky8lA0QB0+FXY9FP3QtWQsNe9Pljq9YN0adEUpKi1jw/JVYYLRKmuDX5+/rbG/L3cYYt5fzMs0v9bXVYbfjoQKUtosB+oaYJcRiulHKJLiZX9V9Hx6+SL0pQfByiXeKw0Zi7rtzZiGogHE+RSZKVBS5b1OiltFzrLvIC66YDRbmJNSkGrexAFQKcFowov3n/Nedll+x42jE4QMRmtn21sOVEwZFwi7Nfnbgy7Fd8QuIFy/+Rj6iRuhohRGb4O6/D5U30H4QwQp9k4xryutNi+3teVrPA9tt5Hw4hxv421PMFqs1fshQc5QEUIIIYQQQgghhBDCkxq3inWW3+I7Wy9fJklOmIvoCSFEF8hNMJ+fZgsVC9QJPXE+xXJuZVU7g9Hyq37h7uX/wo89hNKL3Ph+1vACIYQQQgghhIiEwnxsUa/rus33UiZr61cxv/JHLht8C73jc7t6OK3MLf+Kh1fdivY4vynV11MmlwjRdeS0UyGEEEIIIYQQAU7rL7NswWitJjB+PguqyoMLFa+GFYtCz3xtqbQIViz2VnboONjzaG9lRY+iEhLRA4fD8kXG9fpvo0M3cOhZMPOB0GV2Owx1cPe8akW72U52cVuE9fgbGFy/gl99YyNq+tSSx3lw9TmoM6+H3AEwYAgMH49Kaj27+6O/O+xxe/vD0ZR22b/i3Xa3Y6Mf/CcMGQP9N4NNR6Mc+4lCuqEeFs6FkkIoKULfdKb3jtIyUfd/FoMRt3bgeMVDX4Tevmb717W6n1e/KqI+nJpKkmvWQ7whGE2FP9lVf/s+ats9Pff380r7ugmDgpcdNKqag+J+gvVr0Vce6bkffHGoa59C7X4YWmt+nrwpQ4cuoM6xJH55NLo/DO2j0M9Mtxfadk9UVp929dPR+mdAryQoqzGvr7CEvOT47UGB+pRt4e0CVHpmxOPRtdUw/3soWA6JyZDQ/DzpKw7z1sZ7T5N+wmVM3U1x36cRhOdFyDGFwS7Lh4n7d1if7aHr62DF74EQ283GBAXO6toa9It3Rd7wgCFw4GmonP6oG1+m9yINtwY/NtVOCrUqAf/vi5mXuhUj+kJuumJlSejnyPQazF9jLnvweHs7tnC6dZUhuweguMI8xtMnKR48QU48FRsP3dAAC/9nD/y06TMQ9fgPHRZk3Sc9wmA0XUV2wS8wIHhdsYfz1l3LMa2jIC1E7lul/Tx7ITbQL9zpvfCqP9CVZajUXh03oA5QVav5/k/48nf7Z3wsNhfPneHQa5r5WHR9Ffxzlstl+yjSk9rXmf7qbfTNZzcv+P5D9Pl7oZ+db/0KzOdARrI5lLWsBrTWQdtMv+WwuikYbZMse6BxW+0NRtthCHwTQTZmKDX1EowmhBBCCCGEEEIIIURPFC5ESAghukqf+Mi3T7lh6tgmpVe5FbjajTqU7OP1r7c7FA1kmyyEEEIIIYSIHZ+K3QVHO1uZfz0/lM9mr96HdvVQWvlg3WueQ9HAHs4thGgmp50KIYQQQgghhAhwWn+ZVa/MMycTWhTTX75pb69oFVSWeepaf/Oep3IA6qGvUL6e+8WbCGPH/azBaKxfG7Kq2vlAdIhgNHXpvTDl5HYMrpvz2YLR/M23/Q0cWPEWvyaZg9GG5MABNR/wx+pA8kyGv5Q9Kz/muLLngMZAsZb++zZqmz023J00HIbmwu+GC4OM7g/PnO6w1fXhg9P2q3iPvv7Qz3d76SsOD9wYtgXc9Cqq78DgMvO/R//jCFhnSd0JJSMb9fDXqH6D2znSYHuMgtREqLSEVAFk+4tb3c9rWB1RHw4uyW61cV2NCpEC0uS7DyLq7+cV5i/+05Ng0+zWy/Tns9D/dwpUe0gwarLrodBnE9TkI1Cb7wCAUor+Bx/G6bMf497eZ4dpILSDxgeCDPQ7T1rL9IRQRqUUo/rBd39GVi83RDAaAG8+Csf8PaI29eez0FcdFdlATJYuxL19GndP+y/3fdr+5mwcgrdtetlCOiYWqH30H/PR/zoBlvwSWDB+Elz3NCq7X2B9/o/o07b31JZ65Fv49Rv0gh9Qg0fCvsdvaAcgI0SO4oOZp3HFfeOobQzwnLaHIjNM7qJpu/fbGvP2Y2R/+6PfO9W8vNhTMJp5eY5crElsRPTqPwPb4EXzIq+83/EdFooGsO2mivwC7ycMpLqVxGnzyeWl1eZAopZsQUcKSIwLBKS5hjJLCjUTh3bHTwHRrRSGSAc2WTQPtowwrLALvTjH5aRHNbVh5nfEYpuRlqS47zjF1GfMb9r/vKW56yPNoyc5HL519P3ph64NXrj6T9yv3gbMgbiOgl6WfZx6P9Q2BIeX+U0bFsDXOPQBEWQOJ7czGO34HRTfLIlNwHBNvf2xEEIIIYQQQgghhBBCdF99EvK6eghCCGEU6fZJoegTJlgs1TIpXaOpcatIsQSnhbOkemFU9drqEy/bZCGEEEIIIURs2I5/eoqlNZb5h12kQdeztGZxRHUy43p30GiE2HhEF1EvhBBCCCGEEGLj0yJszI+DX5mztBMaF+v6OpjzsbU5/c7T3vt+5lZPxdTLi1DxCd7bFT2OOukf0VfeZg84zBBulJyKuvFl1EGnbdyherYrEeoWYT0N9VxcfAc7VX0ZVGxYVh3vXejw339uxcwVRzFzxVE8vvoMji97zhrsoy/aH/e+K9HFgeCwOJ/iob2WkhVX06rccfGf8dOf2zF+zgP8cOJi+idYUmUa3V5wacj16tIZOF/UwuY7hiznyeKf0LeeE7RYNzSgrz46ulA0QL22rENC0QCSExT7mrPtAOiVBPH7HdtqWd4++0TUh4NLsq4xrqt2PASjrf4TbUsSMVi2zrx88zxwnOZXoF5fiP7X8ZGFoo2biPN/z+NMm74hFK2JOv4yblp7FdtXfbthWZyu5+QSe8CZyUHlb6ILlsNSywlscfEwcUpEbXaVcZtEHhSRO2mXkOv1vf9A+/0hy7QqX7wmNqFoTWY+AMeO5tODf45dm22YgtFYlt9h/UVD19ag330afeKE5lA0gHlfoA8ZjDvjCvQz0z2HoqEUDB6FOvRsnCsfQh13SatQNCBk0NlF/W6j1m3+XL7rI82/3wy93WgbjKa1ZmGBuezIvvZ2sm3BaKE/ngAokmA08Regp58XXSjaFjuhIgzCjNQBW0RWPsWtJsMtNa5rcKG6LnR921bJcQJhTqmJ5vUnPhqbECEhWsmf29Uj8GxpseaYh8KHosXS0dsq4kKc/VBeA0c+4PLdH9G9P92Vf/DpqgxuyL6MF9MPp0o17+j4f7M/Nz4ncIxmU2rIo/Zb8sSb8tDzIghGaxu6FqlTJsYu5LGmPmZNCSGEEEIIIYQQQgghOtHW6Tt39RCEEMKod3wumyWN9Fx+dOqEsMFmqSHWV/jLPffVUrW/kgq/+XfrSG3dS7bJQgghhBBCiNgYkzqhq4fQLjWuec5TVymuX4s2zSux8BHH2NStOnBEQmwczLPchRBCCCGEEEL89TjNwRT1yj5rsikYjSW/QGWZvb33n43RwALUy4tRfQfGtE3R/aheveHvd6JvvyDyuo4DF94BB5wKC75Hr1mGGrU1jN4GlTugA0bbzdhC31qGEfkbyHJL+GDp/nydsj0/Jo7HVQ4j6hax6z/uoFefzYA+6BMuh6du9tbvs7ehn70NZnwCq/5gl5vO5Fey+Dh1N4p92WxV8z92qP4OBejbL2A88JOTyQEDZ/JtSnD4zur8QeT6i+z9JSbD7ocDoI79O/rKI72NM5TvPkCXFKEyc5qXzfsCCldG1Zx65FtUXMd+7XbQeMUr/zNP6C+rAefKh9CHnAmr/oBNhpI6amuyLvSzvspb+wpNkmuYoQ9UtwgAICER6mqDC9VUQVU5pPby1N9qy3lfm2S1mYT/2UyoD5Ng0oY63h60p3L6k3rOv/hixmQ+St2dYl82E2p+ZGD9Cp7IOB5tCxxsoV/DGrZ9+Cj0wyECFg46vcNfE7Fy8kTFI7MjC4vos8c+kHgBvHCntYw+cyd4YLanx0Ef0gGhgquXsvNN23PsxK94dv2WMW9emaJzulEwmi5ahb74AFjyq73Q8/+1BgAZ9RuMSgwdlJiZEkmD4ZW32dwUlAVCTkxG9bOHeGSnKkxxR+sqA2FrStnr2oLRbGFrQvQ0etUS+O4DT2XVtU9Bckpgf2PT0TBhtw7/vNtqkPn9a5OqK/G59nDOkmpIsYSbAbiW8xOathK2bRBAVa0mJTF2gUJi46JtL65QdRbOtYZWdzezftREkJMcE5kpiolD4fMwF4Hc4UaX2Zc7TBwa2aN50aMl3D34vQ33t67+H28vP4hs/zr8P3wGXGWs5yjICBEWW1YNfdscNoULRstNg3gf1HvIHm5vMFpyguKlsxyOfCDy12xbNZ0YlCeEEEIIIYQQQgghhIiNPbMOYVTK+K4ehhBCWB3X71zuXXE96xoKQ5brE5/H0X3OCNteipNuXVflLwf6RzpECuujuzhrWwfmHMegxKExaUsIIYQQQggh+iYM4Ni+U3mu4H50ZDMJuoVay5ynrrK2brXnsj7iODXv4rDh3UIICUYTQgghhBBCCNGkRfhLnUqwFov79CXc+56Gb96zlom5CbtKKNpfySFnQRTBaEAgyGT4eBg+vsdMGI8ZW4CTbjF52R+YhZxAPbtWzWbXqtnN1VOag9XUnkejvQajNXVz7u4bbvehkL+VvWQtm+WW8OnSvbi0703cl3UmfhXH+JqfeGD1OaFD0QA1/Q1Uelbgzs4HRjRGK61h7me482ZDwTLYdAz8uSDydlLSURf+FzUi9qFLbU3ZInwoiBqzLYzZdsP9AZl4DkbL9q8jRZsLVzot0n/6bAIrfjc3UrQqgmA089/SP7P5tq6qQN92vqf2WlIT9w9d4KhpODMuZ6/Kj1stHl63mPzEEWHbP6D8bZxwz8V5t4Rtp7vYaZjiwRMU057X1NR7q5ObDmrqjejli+Crt82F8ufCO0+iJ+6PnnEFfPBcYPkBp6LO/j9URjYA+pt3Y/BX2N3zzT7UTZnPy4uzY9qui2EbvH4t7jXHok64HDW8a08U1y/eHToULRpjtgtbJC0xEAbixuh30rVlrYPLVpbYyw7Nta/Ltvx+2OAGQo56WcJLtNbWYLSctL/cnofYCGmt0Vf/zXuFEVuiBoX/rIylTbMDwUC20KC2UtwqkrU9vWx1Kbw4x+Xj3zR9eymu3F+xWU7z+9m2+XI8vOWLKmBQiNA18Re3fm3kdfLnxn4cHWTpuq7pd+Y5DtkXhd9A7HxzoMxuI+De4xxG9Q/9pp67THP38i1aLfsheSvuzTqLfxbdiFtTDZb3u8+x71sAlBrOzQoXjOY4ioFZsCT04TPQ/mA0gBT714QR8Xp8IYQQQgghhBBCCCGEgDGpE0j12cN5OlqcimezpBHkJPTrsjEIIYQXeYmDuGaze/ijJp919ebf4HLj+zE4aTjxTvgfPZKcZBwcXIJ/sKl0LSeNhFFomRwfp+I4pu/UsPUTVCKbJY+kd3yIk2GEEEIIIYQQIgo7Z+7D+LQdWFz9KzXdLGisyYLKH5lT/kXQ8u423sJ687Ffui+DQ3JP3HA/xUljWMqYLv3uT4ieRILRhBBCCCGEEEIE+JpDkeqVfdZk/LM3QW2MgzXCUGf+u1P7E11LKYXedk/4/kPvlTbfoeMG1FM4PvNy1998uzEYzcjX/DWRGjIWvesh8NlrMRpcsHgauKPgEv5VeD1VTgp9GwrwGU4m2qDfYNQLv6Gc5vAhpRQ8+wv62M3bPR59zbHNd2a/GVFd9VI+VFXAoBGouBjMOvegd6qiby8oKAteN2WcuU5eJvyyylv7I2sXkuZWGtdVOSnNd/oMtAejFa+BwaM89bfKEm6UlxH4X9fXoc+c6KmtltRjc8KXcRy45B709PNaLT93/f1c0O/2sPUPrAjzehk0AhUfoySBTnL6JIeTJ2q2u8Hlx+Xhy+ekgfL54KZX0YcMhnUFxnL6udvhtvPA32K79Oaj6C9mwcuLUUkp6LefjG7QvfvCuInw2cyQxXq55Tz/xkDWv1XFH0Uax23g1Gfi+WlldN02SbH9qPbJK+hv3oM730ON3qZ9nURB19cFbnz0Ymwb9sWhDj8nbDHHUWQkew9lDKe6HsqqIaNxM2TbdsT7Aq9Lm96p9nWrS+3hJeU1gfA0k1D9CdFT6If/BYvmea+Qt1mHjcUmPk6xWQ4s9pgplepW0cs17DA12uM2P2U1TYFImhe+13zzD4cxeYFltmBH5SEYrSbErrcQ/Ppt5HWWLUTX1aISun/iXrHHOSGJMT5bIStV8chJitOe8JbK+mk+jLnW5bsrHcbmtV6XEAe+xhTEl34wt/d6+oH8s+hG/CuXwhBzHz4H0pPsYygzZDf6LcP3tcjiHd3fYzBaDB7jhBg9TxKMJoQQQgghhBBCCCGEd3mJg8lLHNzVwxBCiB4hwUlkZIrlpLkIKaVI8aVT4S8NWlflL4+qTdvk+Jz4fuyYsUdUbQohhBBCCCFErKTHZTAhPfL5Op3Fr/09IxjNEoqdlzhIjv2EaAcnfBEhhBBCCCGEEH8JLUKV6pQ9wCVB13XGaDZQ099ASejVX8+ICREVVwee1kED6UEcy9c8bosEl5ZhRG35Ws90Vlc/BkecG4OBhZbplpLXsDp0KNq+J6AenN0qFK2JGjgc9eCXHTjCMI48H9VvMGrI2E4LRWvyf4eYEzn2GmNenpfpIcGj0ci6RaRagtEqnBbpP0kp0Ku3uZG13pOmVgefRwZA/8ZgND56CZYu9NwegDrtWtQwjye87XRA0KJz198ftlp2QxF7VH4SutBmY7yNoZuJ8yku3NPbaya38UI1SinY7wR7weWLzNuh0mL0Xlnol2fAJ69EPtiDT0c9vwB1/XOo82/1VCVrSgpbnZTKlqdk8NXsPC5OmsWmWdEl2CS4tWxR+7O9QHUF+qW7o2o7WvqHT3BP3gY9OR09OR3Wrohd4xN2RU1/HTVuR0/F+/aKXdcAWRe6XDnTpbpOs7LEnBrSPyMQymYzINMeahQqbKkoRMiLBKOJrqJ/+hL33Mm4+/XBPW0H9Pzvo2unpgqev8N7hW0md/q+T5OtBnnfp0nRVSTpGuItx7HNoWgBFbUw/f3mbYu2hBOF2MRsUNW5h86ih9Ffvxt5JdeFlUtiP5gOUFzhLZhsR0uYWHucPDEQjpaZEr5sk+1ucEk9r/W/jGkuqef6yb3Iz03vmP+euUlbogF/vT3xy1GBgLU0S55dmeHcLL/l8NjXYtszsp+3bWFSDDbV8ZYc9khVy3ZRCCGEEEIIIYQQQgghhBA9QKrPfBJIpd/j1YHaKKxbY1yeG98/qvaEEEIIIYQQ4q8kyTFf9by2uwWj1cuxnxAdQYLRhBBCCCGEEEIEtAxGwz5rsjOD0dQDs1Hb791p/YnuQ+0cHFIU0q6HdMxAehLHMlPZbRFC5A8R+tMm2EIlpeBccDvq1ln20LVOoq58CJXVx75+9DZw3KWdOKJG2f1Rp1zV+f02OnmiYqehrZeN6gfHbmcLRvPWbi9/KTn+IlLdKuP6StUiYcAXBzl5xnJ63mxP/VXUaGvYUF6mQtdWo5+80VNbrRzkPTBR5fRHnXl90PL/LdmOdH+Ztd5Na68mSdeGbnvSwZ7H0d2M7h8+bCEhDjJa/M6kjvl71P3pOyOsqxTqqkdxLpmBSk5FKYU6ahqccHlEzSTVlHDz3GNYvGwCtx0RuuwRW/rxqdbBGNcV/ptkXRO64rzOC3DUS35FX7gv/B4irC0aY7dHfVqFc9f7C1GGMgAAIABJREFUqG28X7HI67YnEje9o7n2dc2SQvP6AWH6TE5QDMw0J47kF9iDXJats7cpwWiiK+jClejLDoGfvoSKUsifiz5rZ/SqKIKTfv8Z6sJsy5okp6JOuTryPmLkgC28l01xq1BApr/Ec52Pf2veDriWTUJTuOK+Y+3tVNXB2jLNzys06yq9hUSJv5BFP1pXqQtutx+DLc/voAG1X2295rs/NJ/na/4oCl8+KR6uOTD2x5pKKU7ZyWHdHT4u2dt7kGJbVXVQXQ/F5rzoDVbGDcANcdqFr3FVL/O5WZRWB28frMFoLboZ7fFcqaT46B+DJsPsh+MRqYkuh1gIIYQQQgghhBBCCCGEEKJTpTjmk0Cqog1Gq19tXJ6bIJPjhRBCCCGEECKcREswWk13C0ark2M/ITpCXFcPQAghhBBCCCFEN+FrDlVK0rX8rfQF6lQCdZn9qR+9A3VLFlJXbA/KiblhW8CorTunL9H9jNnOc1F1x7uo1F4dOJgewjZx3m0xozpUMJrP/DWR2mFfePR79Mz7YNbD7Rhg9JQKP5FbHX8p+plbO2E0wNBxMOkg1FHno9KzOqdPA5+j+ODvDk98pfn2DxiSCxfsoUhPMj9e4YKCmmxavxQFpLrmE7kqndQWg4iD0dvAkl+CC875yFN/+QX2dUNWfo6+5G9QFiKNyGT8zqjefSOqok64DEZOCIRzLQsETmxR+wvf/zGRB7NO47eEUejG1+Im9Ss5quwldq/6PHSjaZmw05TIxt6NjPTwEI7u1/o9qjKy4c1V6APMgXntctBpqJwB6EU/Qu8+qD2ORk3YJaiY2vd49HO3Q0N9ZO2v+J0L5p7HdUn3UGbIBkpwa7n3zfH8Y/I5PPJNApVOKoeVz2T/infDt71uDVprT9uz9tAL56JP3yH2DR94KurCO1A+SwhnCAMyFRD7QKDp79vbDBXGprWGx29g+PJtWZYWHPAWKhjttzXmddmpkJHSsc+tECb6melQGRzgqY8eDZ/XRLbNCRWKNnQc6vjL0N++D1m5qH2PRw0JkQjWwSYN97ZdSXKr8RHYF870l1IY5y3ZZ9k6KCrX5KQrtC0YrfH/KVso3v3VXOiKV1zmLIWaekhJgDv/pjhtZ7lmlWj8LFq20Lxyr2NQR5yLfvkeWGkIOVzWPYPRZi/SHP2gy+rS8GX3GAUTBimO2U4xYVDHfn7efLji11WadwyHK7HyW8IIxtfaA2mdxj8xIxlWGTIaTfudXoLRBvX2ti1MSQxbJKy8TMV2m8J3f7avnZoId8+FEEIIIYQQQgghhBBCCCG6Qqov3bi80i2Pqr3C+jXG5bnx/aJqTwghhBBCCCH+SpIswWgNuh6/bsCnuj42ya8bKK5fa1yXGy/BaEK0R9e/w4UQQgghhBBCdA9Oc9BFX/9anl51SuBOziScCz7EvetR+N/dnTYcdfn9KFvQk9joKcdBn3QlPHFD+MJb7dbh4+kRHEtYjetvvt0QeTAagBq6OeqSGXDJDHRDPXp38xURu5JKy0D3GwxrlnZcH1NvQB17cYe1H42keMVZuyrO2jV82TyP4URPrDoNgFRtDsKsaBOMpnbYF/3W48EFC5ahG+pRcfEh+7OFECXGaTa5/RgojzAULbs/atptkdVppLbbC/VMINRAz3wAffs0htUv4Za1V0XX3uX3o9IyoqrbHfRKVvRJh7UhzukzhVmojGz0UdPgxbtiOh516FTUsHGEi89Qg0bA1BvQ9/4jdCCkyZuP8v0+OWy+9ErqVUKrVY+vOp3e5cvoPesKIv7LGuqhtBgycyKtGZIuWg1fvxMINNp+744JRes/GOey+6Kv7jGUMZYGZYd4lXz5JvrRfzO0312Y4hvXLC8GzOFJC83nqTIyqxr9wiOQ3Q8mHYxKTIp4zEJESmsNr9xrL/D2kzDlJO8N1tdZV6lL70WN3Q6151ERjLDjDMyC5HioDhOwk9Ii1DvLXR9RH6c94TLrPB+uZdep6VD19J0V5z9nLjR7cfPtqjo48ynNpOGaEX0lSPEvr3AlVFcaV6nDpwZuDBxhDEbTy/LD7gt1tuo6zTEPeQtFe+4MxdHbdt53PUopXj/PYZ87XD7+rWP6WJg4knG1v1rXN4WZ9bLsHpQZLlppC0ZzWjz5XoOv02IQjAZw/wmBx7Gw8dggKwXev8hh/CZwyAyXtz2Ez9XUa+h2r2AhhBBCCCGEEEIIIYQQQojWrMFofvOFRkOpdWsobTCf/5abIJPjhRBCCCGEECIcWzAaQI1bbT2G60zr6gtx8RvX9ZFjPyHaRWaYCyGEEEIIIYQAQCnLIaJunI1ZFmEwTXtsviNq1Nad15/oltQBJ4cvtO0eKCWTaoHmdIa23BYzqkMFBIUIRmtJxcWjHvs+fLlbZ6GuewbSs+yF+g1G/f0u1FQPAXhe7Ht8bNoxOezsbheKFikvE+dT3YoNk/pTXXNYQ2WbYDQGDjc3pjWsKwjb5+JC8/JhSevxlReHrb9BYjLq+udRT/yAGrGl93o2ex4NifYfUMJRN76M2u3Q9o+ji/UJ8xvRVoPMy9UhZ3rerniy6WgYurnn4uqoaagn56KueDDiroa+dwvrF/blqZUnc2jZa9xacDlLFw3jqPJXIm6rlWJLqlaU9I9foE/eGn3LVPQdF6GPGRvT9puoR8Nv80PxGtoRS7sMt+8b6C/eACDHX2RcX7zaHp60yBLkOPKXF9H3XIa+7kT01F3QRasiGK0QUSpYFnK1vulMdHkEYWChgtHGbue9nU7gOIqRHi6c3TLkNa9+dUR9NIWaaUswWtNWJjFekZ1qLtOW1vDol+FDasVfwPJF9nWDRrT+P6hufuzH005v/KRZWeKtbE5a5x+/+xzFBxc5jOmgc4vyE4bjV5agcprDzGzBaKWmYDTLpsLX4rDf6z5WaoyC0bYcqJh/ncNLZzk8d4Yi//8cth6siPMp3jjf4cO/OzxwgmLeNQ4DLV8D1IQJtBRCCCGEEEIIIYQQQgghhOgOUn3mC8dW+kNcXdKiqN5+vlCfeJkcL4QQQgghhBDhJIYJRusO1oY4Tzkn3sNJz0IIKwlGE0IIIYQQQggR4LNM4nQb0+qLI5tI3i7JKZ3Xl+i++gwMXyYjp+PH0VM4tvdwi2C0UOEYtvoGatgWqCsfNq8cMAT18NeoHfZFTT4C9cZKezsnXoE69KyYBY6pEy6H/U+CprA823Ytmran3R6ztrrKyH7Nk/JttqyZt+F2mtdgtNw8e4OF4cOB1pm7YeCayMKY1J3voXY7FJWRHVE9a3vpmajpb4QvOOkgGDex+X5iMurSe1E7HxiTcXS1HPN5fhtsNdj8olIDh6OueQLSMto/iCGbo26eGXEQpho0AjXlJNj72Ii7TNK1HFP2Ii+tPJaL1t3NgAaPQVehXn8x3JfSWqPP3xNKIwgPDEFd+xT07tt6Ye9+qLs/RLXzORzUu/MDUPYaHWLlbz8AkNNgCUarsv9sYgt9GVK3pPnOonnol2eEG6IQ7bd2RfgyL9/rvT1bgG5aF6QbejCyb/htS4qv+W/Ka4hsG7y+CiprNa4lnKjlPlW6JezI5MP5EowmgPWWZOC0TFRjsLSyBaMty0fbEvu6yLu/eC+bHWbfsqMopZh9ucOBW8S+7d8SRuCGOO2iKcwsw3JuVllN8DK/G7ysZVsAvZIhJSH8+NJiFIwGkJ2mOHxrxdHbOmS3CLlTSjF5lOKMSQ7jNlEkxZvrSzCaEEIIIYQQQgghhBBCCCF6ghTH/KNWlb8i4rYK68zBaA4+suJzI25PCCGEEEIIIf5qkkIEo9V2k2C0wjrzecqZcdkkODE8iU+Iv6C4rh6AEEIIIYQQQohuwhaK5G8MRvMy8T5W1q3tvL5Et6UcBz1sC1j8k71QjAKQNgZKORinx+vAjGpdV4u+4jBzZcdBOZHl56v9ToDJRwSCftYXAgp6ZcEmw1qFFymfD+7/An32pNYNDB4F+x4fUZ9hx5SQiPrHg+jzb4UVi2HQCPRBA6G2fV90q8fmBP6OHi49STE2D362Z9UxqjZ/w+1Ur8Fo6VmQkAR1hhn9ReHDpEqqzMuz/CGC/NoauRWM2c57eY/UlpPgno/Q5+1hL3PAKaiJ+6OLVsP6tTB4FCph4/nhIlQwmlKwxYAQ6ycfAbscDH/+Fvw+jItHf/AcvHBnyP7VI9+iRmwZwYgNbZx8Jfr9Z9vVhqd+TrsWjrsEPTndXCAG+1La7wet0Xdc0O62WtntsMDztWwhVJZDajoMGhnxZ4PJyL7hy8TSweMhJTFEYFLj9jzHbw6VK9K90Fobg/hswWibNLTZsH72Gpz9H0/jFSJqxfarSjfRH7+EOuUqb+3V15mXx3tI3ekCIz1cPC110CBYmQEVpeR5DbhsIb8A8/41zTm84C2YqMn/lkU8DLExKjWHc5LZIvjbFoxWtg7+mA9DxsZ+XFGat9x7UFu40N2OlJmimHWej4IyzaoSiHOgqs2mz69h55stqWQW+Ykj8HsIRktPVpi2KmWGw1UvwWhKKQZkwqIwX6HFMhjNK2swmiWDUwghhBBCCCGEEEIIIYQQojtJ9ZnP/an0l0fcVmG9eXJ8dnwffKrnn5MohBBCCCGEEB0tVDBaTXcJRrMc++XGezjhWQgRkgSjCSGEEEIIIYQIsAVfuH50QwOs+sNed8hYGDcRZj0Um7HUmMN4xF+POuVq9FVH2ddn5FjX/eXYgruawg1/+DhE3ei+IlKJyZA3JPAvVLmx28H0N9CP/BtKCmHs9qizrkd1UNCGSsuAUVsDoA3BNp5tvgPqzH+jho2L0ci63ndXOiSfa5/oP7Ju4Ybb1mA0ldJ8x+eglELn5sHKJcGFC0OksDUqqTIHKWT6S8PWBWDf41HTbjOGGMWCGr8z/Ps59DXHBK/MyIatJwfK5fSHnP4dMoau1DvNHOAA0Ccd0pJCP+4qLh5s76ERW8KQzdE3nmGue94t7Q5FA1ADh8OMT9CXHAjVkV+51bNt90DFJ6BHbwML5gSt1t9/iDrglIia1LXV6KduhidubN/Y+g2GbfaANx8NXjdhV1Rc4+fApqPb14/BkNxAiIct4CPWjt42zLagoR6AbEswWrGThVu8Fl9O60S32npNkeXl07/tD5krFlvD1f6KtNaB/RG3xT+/5Xar+27jvwjrNN3WbsR19IZ+I+in5TrtWsYa5u9oNVZbG4b74fy5wPsT1cOC0UZ5OE8gN8OHevBL9N2XkrekLOI+fl2lcS3bLqfF29sWAGSiFFTWalJDBTiKjV/ZOvPylsFow7YIfE9jehF++Va3CkYrieC8ouzU8GU6Wt9eir697OtXT3e46JH1fPxzDaVOBgCb1i+lf8NqPk3dLaj88viBlPnsDTZtLzIs52aVVQfva1uD0dpsOjbLCR+MltqdgtHqO3ccQgghhBBCCCGEEEIIIYQQ0Ujxma/2U+VGft5RYZ1lcnzCxneemRBCCCGEEEJ0hHiVgMJBE3xiXbcJRqszX/Bajv2EaD8JRhNCCCGEEEIIEeBYQpVcPxQs3RAi0ZZ6bA5q2Di066K/eB3WFbR7KOqQs9rdhthITDoo9PpsuXLCBsoSbqhdtNboZ6bb60YZjBYJtf3eqO337vB+gvo97lL0I9dFXu/M61EnXNYBI+paifGKkycqHv/KHHQ1si5/w21bMFqF0+LEr6bXTo45GE3/OZ9wsR8lVeblGa49GE3dPBM1cf8wLceO2v0wuOJB9E1ntl5+3i2oxKROG0dXyDGf5wdApv3CO54opWD/E2HbPdAnToCKFs/5xP3hqGnt66BlX1tMRL0fHITl3n0pvHhXbDoZPCrw/ybDjMFofPwy+spHInrN6IeuhRfujH5MY7ZD3fcZqjEA183oDS0/DxKSUCf9I/r2PUiIUwzNhfz27yJ6ctQ2YbY6VYGTVHMswWiu8lGyeAnZbYLRVofIahzQsCp44fzv0CMmwKJ5UFFiCPyyBGBZA7Gay2pr+FbL+7ZwrxDLw42jVb8ext50X/QMDZZgtLgIUr860aj+9uDOJnmZCjVwOOqW1xj8m4bbI0to/GC+vYeWuYehtg9taR1o95AJEQ1FbGR0SZF5RUb2hpsqPQs9bieY90Vw/fy5YfexO1N5jbdyKQmQnNCdRt6ariyDxT/Rp66Gp1+dErR+SfymjBg231h3YcIIa7u+xkP1XpZdwDLD42cNRmtz2D+8r+L9+aG3hWldEMQowWhCCCGEEEIIIYQQQgghhOjJUn3pxuWV/gpc7eLYztU0KGx7sb1GufFy7qsQQgghhBBCeKGUIslJotoNnnxU212C0azHfhKMJkR7STCaEEIIIYQQQogAnyUYze+HFYvt9TYZCoByHPR+J7QO24hWF4Qnie5JKQWvLkEfNsRcYId9OndA3ZljOdlm+SL0sZuHfh9HcKJOjzNxfzAFox02FV69z15vzLYdN6YudtKO5mC0TFXJ5FOmoFIPQ990JqnaHIxW6yTRgI84/M3BaJm55s5mPfz/7N13eFvl3cbx+zmSLHkkTmI7w9khgwwCgbDCCJuwd6CMQmhLgQ7a0pc9CqVQKB28BUrZ0EIZYa9SRtn0BcreOwkhyxmOR7yk5/1DSWxZ50hHsuT5/VxXrljPOj8nWkc65z6yg0dKx50Zfzy3Y5ct0pqPayRnUnI90TWuS5qbX5OZsLnHb5c/Zr/jpZETZB+/TZKR2e94mc227/Q6OlvKYLSi3GzDVAyX7nhP9q4/SWuqZKZsLe1/out9JtfMj6+Q/fxd6c3nOrbQwMEyJaXxNUdO8I7qeeaeeBicD3b1cmn+1R0qy/z56Y2haJJkfniJNGEL2VefkPoPktn7GJlJ+U/n2XRo5wSjfXSxI8dJc79ZtlCSVOYRjCZJK75cpLLtEh/fi92fkiRJlS3JX2Tak3dOXQfQ3TR7BKOFCjq3Dp+m+DhOoHJA6887jM98G4+9Z7Wpx7HoTpbBaJL0xPtWB8/ovuFQ6ATVHq9BpeWJt7fYyTUYTc/dL7tskcyQkbmvLQu1jf7GlRXnt46OsPddK3v1GZ4XBZCk0c0LFY41qNFJTjj7MDzZc96G54v+HqHC1S7HZUU93ky2D0abNMR9XFvFXfA0HvE4CoVgNAAAAAAAAAAA0BMUOe4HTFnF1Bhbp8KA/y++VjQtdW2vKODkeAAAAADwK+wUugajNXSDYLSYjaqqyf1kCfb9gI7rxWe9AgAAAAAy4hWMZGNSlfsX8yobJhNpTUUxx54hTZ7ZsTJOvEBm7JQOrYHexVQMl/nl1VK7gBzzk9/JDB7RRVV1Q17BaGtXpQ5Fk6R1tbmvJ1MnnOveftipHVt3wubSsWcktm29ezwcaNKW7nNKBkib79ix7XZjsycZnbZ74uOpICj95fslKp57klQQliT1j9Z4rrEmsD5pZGMwWpnnWHvDhdLrTye3f/2R7OHjtaYl7DpvQCw5ZcQ8ubJLQtE2bn/6LDln/VXOWdf1iVA0SapwvwCqpNwFo0mSGTREzqmXyTnnBpmDT5IJds41PYwxMn94XNpx/+TOfgNl/vy0tNOB6Rcav1nrz2Oneg6zLz7suzZ779XxgNpsjJsm89BCmYLEx5cxRmb3I+Scd7Ocn17ZKaFokjRxSPYBQJ98PlWHrH0w7bhLDzGaNDT1duxLj2z8eXDLCs9xX36d/Pzz5Qr3hJLiWK36x9amrQ/oKvaTt2T9PJe0eASjBUK5LShHCoJGc2emfsxXtDlWvSBodPY+mT0XraqTXvnCva8j2Z0ffOsZn4m+orrKvb008T21GZ0cHryB/dWxuawoay1R6zvsKlXgbley7/9H9k8/TxmKJkkBxbRJ85eufYuDw73nrd9VL/UIRlvbkNwWjaVea4PJw9I/GZUk57jlXaFHGBvBaAAAAAAAAAAAoCcoCXgfMFUX9X+sZXOsSatb3L8brAhxcjwAAAAA+BVx3A/A6w7BaKtbqhRVi2vfYPb9gA7rnLPLAAAAAADdXyDg3h6LSmtXuvcNKE+4aUpKpWv+Lb32L+nrj6UhI6VvvpC96SLX6ebM66S9jpbefkFa/KU0fQeZTaZ15LdAL2UO+oE0Y7b05nPxsL4Zs2XGTO7qsroXx+Mx3EOYnQ+Sve1SySYGRZjZB3dsXWNkfvhr2V0Pkz74jzRivDRjl3jo0jXPyu4xIHnO3J/IBLtnCEiu/PFIR0dtbfXql1bFYWmPyUZjy9efVL8+6aM86hHYIGl5oELl0ZWtwWil5Z5jJck+fJPMNnu23n78dtnLfiBJWhModZ0zILom4bY59TKZom6aptCLVZYaSe4BLuFe8umyCQSkS+dL//239NnbUnOzVFEpbbOnTNlQqaEubaCZ2btNOMn2c7wHvv2CrLUyaRJ17OO3S3+7PJNfI27OsTI7HShtu5dM2CN9owtsOjT7uZs0f6W7Fh+re2sO07HDb0vqnz5Cuv1ER9NHpA8GsX+7YuPPRXadhjcv1uJQcpDJJwsbtG+7ts+Wu685oekLdSAfCcg7+/3tpKJ+stO2k9l8R2n6DtLkrWXC7ZJymj2C0UIe6TbdwC/2NLrnDe+QsTFliY/OSw42uut1q6/avcUpja5Rswmp3vF/Ve+2K08Y7P0c4eajJfL1WoBebJX7Hca0C0bTKO9gNL3/H9nl33R5WHhto/+xZd3wrbxtbpI9Zbbv8RUtKySXXOflwQrPOc76h3r/iPv76mqX47L8BqNtNy7+nrzR/ZgqSVJxFzyNR0Luv2tDijoBAAAAAAAAAAC6i6KA9xdbdbEalWuIr3WqmpfJehx3NbiAk+MBAAAAwC+vYLTGbhCMtrxpiWdfeUEHTqQAIIlgNAAAAADABl6hStGobPUq9772J+1KMqECaYf9438k2Y//K7kFo43YRNrvhPjJ4G3CcgAvZtREadTEri6j+3Kc9GO6MTNhc+m8W2Sv/LG0rlYqLJY55TKZGf5PUk+5/sQtpIlbJLaFC6W/viR76felBR/HA8HmHCcd8z852WZ3t+04o23HuQRymPh9qSJFMNqKYLnUpI3BaKb/II9DuNZ7/gE9cdGfdc+AI9VY0E/ff/B27SIpJqNqxz0YrTRWndiwyWaptoA8qUzODtyo3iNDpycyxkgzd4v/aW/bvWVOuVT2hgullubEvkBAOvqX0p5Hta4VLpRO/o3sdecmr1VbLa1cKpV7H9xoVy7dGByY0e9w9g0y+34343mdYdJQ74C9VO5fNFeSFFBMR629V0WxdZpXeb2qAwMUtM06f9wbOu+sHXyFC9k1VdKHryXW1fSJazDap6sKZNdUybQJAf50cZOk5NDM8U2fZ/hbAV2gvkZ67SnZ156K3w4VyG46U5o+S2b6DtJms5Kf3zboxsFo24w1uuooo9PuSn5+MUbaYmT7NqOnfu7ohFtiemn9Q3e/msd1w5JTdPKwq/VwvwN8bzvS5ulg3g5G5zzg/zludb20vEYa0t/3FPQiNhaTFn/h3lnW7v3B6Enxx6BXcOG3X0ldHIxW0+B/bOWA7hMGaKNR6aHrZf/4s4zmlUfdLxywPOAdjLYhzGxgkXt/9TqpJWoVDLT++3gGo7X7JywOG+22qfTE+56bV0nEuy9fIh45440eLzUAAAAAAAAAAADdScQpkpEjq+QvbeqiNb7XWdHsfnK8kaNBwcFZ1wcAAAAAfU3YIxitIZbBQYx5ssIjGK1/YKBnoBsA/whGAwAAAADEeQWjxaLSWvcTP9V/UNplzaZbyU7fQXr35cT2ky/1FWIBwCevx3APYvb6jrTb4dKiz6QR4+NBi/ne5pStpVv/Ky1fJIULZcq4GseGkL2IbVS/6FrVBJJTO6oC68OC1gejqbQ8aUxbfxl4kn6y+FRpcfz2XaOf1M3f/kBzav8la9xD/QZE2wWjjZns/3dAzqQKRqtr7Lw6upIxRjr6dOngk6Q1K6SySqlmlbTsG2nsFJkil6vE7neC5BaMJkkLP0kdjHbw6Mxr/MHF3TYUTZI2zfKpdXb9Cwm3D6x9VMs+HalPCiZqbPPXKqrcX8bs6G+xj99IrqvxUz1bnByG92VwdDxEbda+G9u+XlAtKfm5bnyTR7gNOkcgEH8P5ATir19Om9tt+wKp+gLxUNCE9va32/2cNM9JPc4JyLTtMyb92kk/O4m/Y5sx9q/nS++/6v/frblJeu8V6b1XZO+4Ml5PsUdKV7D7BqNJ0k92c9TYEtMZ8xODyQ6cLo0qS97fHFdh9Pz/OFqwUgo8cYuGX3+KJGla4wcZBaMVh1t/PmJKrc55oDijup/7xOrIrdkf7pOWL5IaPa5QOHpSwk0TKZI99BTp7qvcx69cmuPiMlebwfvBiUPyV0cmrLXxcOx/3el/0rAxMn97W+U31kjvJHcvT3HiirP+oV7ez6ueeGBiRZt+z2A0l12nAzY3euJ973DGkrBnV96EPY5CaSAYDQAAAAAAAAAA9ACOcVQUKHYNQauP1vpeZ0WT+/d5g0LlCjkeV5oBAAAAACTxChhrjHkcj9mJvEKxKwo4Pw3IBYLRAAAAAABxnsFoMWntKve+/gN9LW0uf0D26jOld16QggUyx/xS2vmgLAsF4MpxD5fqaUwwJI2d0snbDEqVYzt1m91am6CyimiVazDaikBFfOj6YLRH1k7SeWNf07LgYO1W95x+veJXGtf8tSSp0RToN+VnJa1xYuUNKcsY1byo9cbICVLF8Ex/E+RAv4h3aEt9UycW0g2Yon5S0frEinClVF7pPXZAuWxpmVTtEi779UfSlru4zrP/92Tmhe13gnTcGZnP60RlJUZlxdLKOv9ztlr3pkpja5Pag4pqatNH8RtV3/pfcMEnSU0jWr5xHboyUC4tfCkhGO3b5Q2SyzGpY5oX+K9Bit+H2od4tQ2+SheQlRDg5RHG5bpGu1AtjzkmaU6K7biu4XjU6nOOs36ej9Aw00ve++TEFQ/I7tuBL8+hRdvnAAAgAElEQVStlWqr3ftC3f9g7F/sYVRUIP3vM1ZG0l5TjS4/zPv1yxijMeWSPXae7IKXpCfv0MTGzzLaZnGbvLhxr/9NR1eX6s7S7/ie/50brE64JaqAEw86Crb/OyAFTOLPwUDiGNd5G/tMwjzH97zkGjZsN7kGk3pNz3lpamnzuztOLwyPc3k92mjUxKQmc8plsl7BaAs/zVFR2avJ4GKLk4Z07f+n/fRt2at+kRTcn1K/gdKWs2VO+4NMuFDlI8LSO8khZMtSBKNtCDMrd8nS3aCqNjEYLeaRc+b89VzZxpkyux62sW3/6Uan3uEdjDbUI/cynyIeLx0Nzd51AgAAAAAAAAAAdCfFTj/XYDS3Ni9Vze7BaBUh7wsqAgAAAACShT2C0Rq6RTAa+35APhGMBgAAAACI8woWiEWlaq9gtDJfS5uSUpmzrsuyMAC+eIUb+jFhi9zVgZ7PtAYWlEer9KXGJQ1ZESyP/+AE9NSHVgc/PUOKxJvuLp2rD8OT9dpXOyikFr0fnqqlwczCWgZGV2lwdPn6bTgy3/+VjOmFwRg9RDgoNbYkt5+0M/8nKY2aJL33SlKzff1pmUNPSW5vaZb95YGZbePQk+X83CMspZvZdKj08hfJ7UP6S0fMNLr62dagjJBt0vlVv0m/aAbBaHZRcnhMeYtLcJ2kqmCZ7MJP1Nhs9fYiacD7T2lJcLbr2GEtS6RDfig98Ne0NZgfXCzz3TN91wz4Vtgv/ZhsBQvSj+lijmN06i5Gp+6S2TxjjMx5NysmacrzH2Q0tyTc+hpon52vY6qLMgpGk9xfW3OnM8KH8r8NY7IJhcsk3E0KOmbjWKdDYXSptmtaf/5Acop3UzjWqC0a31X/2PoTJwYNlSlOTrAygYDsjNnSW88n9dmbL5aZd27O/92r660Wr5HGVUiRUOr3e7WN/ted3IXH+NiVS2W/t63/CUf9TM6PLk9q9go3q3eKPZdybExSQGXeQ1RVm3g7GnMfF6haJHvBH6Q/PCaz9R6SpBEDjWaMlN5alDz+yJmmSwIGvYPROrcOAAAAAAAAAACAbBUFSiSX7zbqY7XJjR5WNC1xbefkeAAAAADITKQ7B6N57fsVsO8H5ALBaAAAAACAOK9QpVhMWuseGmFKB+WxIAAZMR7hhn5s6R72gj6qTQBZRUuV65AVgYr4D4GArno6+az99yKb6R+lR+q71Xfok4KJGZcwqfFTGUna93iZOcfKzNg54zWQOz/f0+i3TySHn+w/nWC0lKZt5xqMpjeelW1pkQm2+3j+2flplzTn3iT70RvS2lUyOx8kzT4kR8Xm36FbGr38RfL96A9zjY7a2mjWOOmRJ79S/3ef0rHVd2j7da+lX7TqW1lr0wYn2sZ10kM3JrWXRz2C0QJluuXzkfrJz2LrAzx2lzw2MfyU02UO2EmavqPsb06UWlIkfkTcv5AFOsoEg/mLqAp6pNv0IuacGzVj4jXS0/7nFIfb3HjvFU0Kjcp5XZCslVqs1OIREpWjreRzcZdt7C6N2l2SFLTN+umqq3X58nNTf75S7n1wjP3ifZlNpuWkyljM6vInrc5/0CpmpWGl0h+PNJo703tfc6XP8z6mj+jiYLTDNslovFsomqSU4Waea73yqLT7QSosMCoOS3UuYXJJwWged8uAjUqS7M2XbAxGk6QTdzT6yT+SJ524Y9e8X/cKRltHMBoAAAAAAAAAAOghigPuV8ypi2YQjNbsdXJ8ZhcZBQAAAIC+zisYrbGLg9FiNqYVzUtd+wjFBnKjA2fMAgAAAAB6lYBXMFpUWrXcva+0PH/1AMiM12M4nYKIzPFn57YW9GxO60eGXqFBqwMD4j8EgnrmY/dlTqy8QQePuFeXlZ+RcQnTGj+UOfECOWdfTyhaN/CLPYy2HpPYduURRiMHEYyWitlhP/eOhnpp2YKkZvvCg6kXPPp0mTnHyvn5n+RceLvMrofJOD3nI/7v72S026aJbWfMiYeiGWN01DaO/r7j27pm6Wn+QtEkqalRqlmdftx917o2D/J4jqt3ivUDnbk+FC21ylnbyhgjs8dcOf+ulXmuXip0PzhWMwgiRR6NGO/dN2ELabs5Uklp5usOGpJ9TT2EcRwF5v5EN/f7i+85JeuD0ez6MMRRzYvUP1qdj/LQi7WYkP5Q9nPdWvpdKZIicWu4d6iXvf2ynNXzyLvSuQ/EQ9EkaUm1dNT1Vl9VeYfHPf1R+mC58hLpT0c6aYNMc822NMs+fY9i87aWoi3+Jg2okLnBJdh2vYp+mf8Ozt8u3fizV7BaVW3iv2PUIwwwoHgwmt5/VXbVso3tP9zZaO+piWNP2cVozyndKxjNz3srAAAAAAAAAACA7qA40M+1vT5a42t+1LZoZbP7sdecHA8AAAAAmQl7BKM1dHEw2pqWlWqx7gfGDS5g3w/IhWBXFwAAAAAA6CYcj1ClxnVS3Vr3vnI+oAG6DZNdOI55bIlMpCjHxaBHaxNYMCDqHji0OjBQkvRO/RA1psgYeLSfRzBUGsdW3yEVHpTVXOReeT+j537p6NmPpa+qrHaZZDRtOKFoaU2c4d238NOEkBPb2CA9nyIYbY8j5ZxyqXd/D9AvYvTETx09/ZH02XKrHcYbbTlKiSEpoYLMF/76I2n6DimH2Lv+5NruFf7oV8C2aPCgxJpNICC711HSQzcmDh49SRo/vUPbA1KafYh0x++S2wtLZP7yvEw4IhuNSl99IL3zkuy7L0vvvCytdL9C9QZmpwPyVHD3c/zu/XXafWtVE+ifdmzx+mA0LVsoSXJkNbv+RT3Sb/88Voje6qF+B2he4ULPfrPb4bK3/sa989n5spO3ljnqZx2u42+vuqdxbXJOTNG/JgebxWJWj77rHox20ObSgVsYFQSl3Tc1GlrayaFoa6pkf7Rr/D2XT+anV0p7HCkzcLDnmMos8iWdL97d+HN5ibRwVfKYqtrE257BaLZNx8uPSQecKEkKBowe/6mjf30oLVplNbXSaPtNuu79esTjKBSC0QAAAAAAAAAAQE9R5LgHo9VFa13b21vZvEIxuX/pU8HJ8QAAAACQkYhnMFp9J1eSaEXzUs++itDQTqwE6L0IRgMAAAAAxHkFo3mFoklS+fD81AIgc16P4VQOOJFQNCRrE7I3IFbtOmSNE08EOOrdPXO++cEty7TjulelyNE5XxvZKyww2m+6JBGI5pcpLJYdPFJavii5c9FnstvNkZ74m+w//y699XzqtQ45OU9Vdq5Q0GifzaR9vO5HobB7ewr2lcdlUgSj2Vcel1a7X4G3o8FoQ0uicpzk38Wccpns8sXSq0/EG0ZOkLnsvqRAGSCXzPcukP32S+nf9yW2X/mwTDgS/zkQiAf0jZ8uc9ipstZKS76S3nlZ9p2XpXdfkhZ9Fp8YLpSZd57Mtnt39q/SdbbfRz+86UZdWfaLtENLNjxd1bbuL9/+7YkaOMn9+WZk8yItCo3MRZXohRaHhkuFxZ79ZuwU2QlbSJ+97dpvrzlT2n6OzOhNE9pX1Vld+S+rW1+2WrpW2maMNLbc6JAt4wFVj70rVdXGg81GDjK6/y3vGgM/jOmEWUa7TJKO287IGKP/LpSWuO8u6JjtHB2+Vde87tmmRtkDMvu8yvzxCZmZu6UdN3xg5vU4islaK2OMykvcx/gNRnPanDxjX35UZn0wmhQPm917qtQd3q9HQu7tBKMBAAAAAAAAAICeojjg/sVOXbTG1/wVzd4XKSsPDcmqJgAAAADoq7yD0dZ1ciWJVjR969peEihVYcD7uFAA/hGMBgAAAACIc5z0Y9or56plQLeR6WO4sETm+LPzUwt6tjb3pYHR1a5DqgOlqjeF+qre/cqY2YrE1um9L7eK3wh6nE0P9CSjJrgGo9mFn0pX/UK679r0a0zYXNps+zwU1w0VZB6Mpvf/z7PL/usfsr8+wbN/YHS1jJGszXyzklQ5yD2U1BT3l7niQdmVS6XaNdKoSYSiIe9MqEDm4jtlVyyWFn8pDRoiDR0tk+JxZYyRKsdJleNk9jlOkmRXL5fWVEllQ2X6D+qs8rsFM7BCBw5eoCuj6ccWb/hnbWw9oKJfrFZ3fnOcjh7xt4Sxmze8q9e+mqXlwcH6LLSJonOOU2zOCYrGpJZYPACpJSpFrW3z8/q/24xJGB9L0ddufixhLes6NlfbbfEIc0Jq60xEiqQ+AMb86nbZY6Z79ttjN5deaNj4elNdb7X5RTEtXtM65rWvpde+trr7DdcV0tZ56ytWt74i/d9X0jVHGz38jvucgqDWB3R1Pmut7GmZBTqa616Qmbqtr7EDi6RwUGps8bm2jcVjyuprpOL+Ki8xcvu3Xuk7GK3NE9Trz8iuq5NJEarXVTyD0Xz+uwEAAAAAAAAAAHS1Iq9gtFita3t7K5rcg9EGBMtU4GRxfAwAAAAA9GFhj2C0xi4ORlvuse9XERrayZUAvRfBaAAAAACAuExDlSJFUklpfmoBkDnHPZzF1eY7yZx0kcyQUfmrBz1Xm/CeAdFq1yGrAwP1XNHOarYZ3O9SiMTWadt1r+mqZaerLLoqJ2sC3cLICdIbzya3P3SD7yXMn/7Zd0K1CiKZz1n0qWuzbWmRvTZ1AGhg1hxNCksfL818s5I0dFDqr1hM2VCpjC810blMxXCpYnj28wcOlgYOzmFFPcv2u22qkY8v0qLQyJTjigvW/9CUeEDFETX3ad23hbq87JdaESzXXrVP6/fLzlRAMQ1rWaphLUulB16WHjg5u3DyHiAmo6gCipqAWhRs93e8PaqAWkyw9W/jJI1tHeNsHBvd+HfrWhvnbehTQC3GfftuayVvI7nexLVb640l1evyuymwcXyjCavJ5SSHdaZQKnQ/sWKjkROlsVOkrz70HnPn76VjfilJuvQJmxCKlkvXv2B1xt5WD7/tHoy22ySpXyT3713sujrZmy6Snn9QkmT2O0H67lkybR5L9uZfS++/6m/BkRNkfnyF71A0KR4oWTlA+qrK3/jAhiCz6pVScX+Vefw3r6xN/LeMeuTUBWybYLSmBun1p6WdD/JXTCfyDEZr7tw6AAAAAAAAAAAAslUccL9gaH20xtf8Fc1eJ8dzQWoAAAAAyFTEIxitIdYga22XnW+xotn9RISKAvb9gFwhGA0AAAAAEJdJqJIkDRrSd0I6gJ7AZ7CC+d6FMieck+di0KOZ1vtSacw9GG2NU6q3I5tnvYmrlv5CP1p9nbT7XOmZe7JeB+juzKiJ8si18Df/krtl+g/KWT3dXiiLK+KuWiZbs1qm38DE9vdekVa6H2S6gfnu2drnQ6OPl2b3v1Q5gPfCQG/jHPh9XXHLPH1nxN9Tjive8HTVmBiMZiQdX/13HV+der4kKRbLrshuzpHkKCqPXKQ+7a7+R+jY4bclta9zIlJhUcq5xhjplEtlzzjYc4y97lxp/3l6a80g/e7JjrwDSS0ak659zuq9xe79B2yen9dH++sTpBcfbr1900VSc6PMDy6SjcWkD1+Tbv2Nr7XM+bfK7PWdrOoYnkkwmm0TjFY5VuUewWhVtYm3ox5PDxuD1tazLz8m0y2D0Yzk8i6YYDQAAHLPGDNW0haSKiWVSFoiaYGkV6y1vPoCAAAAAABkqdhx/2KnLlrr66T7FU1eJ8dzgT0AAAAAyFTYIxjNKqZm26QCk8V5CDmwosn9fIXBhGIDOdM7L0UOAAAAAMhcIMNgtOL++akDQHb8hhvO2Dm/daDnaxOyNyC6xnVIg1OodyObZbX8Vuve1Mmrr5e54DaZky7Oag2gxxg5sWPzt94jN3X0FNkEo0nSwk+TmuxLj6Ses+thMlO30TZjstukJFWWZj8XQPdkwhHNPe84PbVgTspxwcD6g9wbGzqhKvQWhTH3+8s6UyhFitPON9vvI3PxPzz7o3L0yz98qpm/yX/oXqrgtVwHo9lYTLHzjkoIRdvo4Ztkv3hfdt8hsqfM9rWe+emVWYeiSdL4wf5/P0fr/y+WLpSkjgej2cRgNL3yuGw06j64C0U8Ls9HMBoAALljjDncGPOKpC8l3S/pakm/lXSbpOckLTXGXGuMKe+6KgEAAAAAAHquokA/1/aYomq06b8nXtHsfnJ8BSfHAwAAAEDGIk7Es68hts6zL5+std77foRiAzlDMBoAAAAAIC7gcdail3BRfuoAkB3H58c8ozfNbx3oBVpP9B8Qq/Yc9Vrh1q7tR2zlHRQwrulL3b34aAX/9qbMnkdJFcOliMfrSV8LhELvNHpS9nNn7StT5JGe0VsVFGQ3b8EnkiTb0iz77/tkn7pLuud/vcdP2lLm51dJkoYPyD68ZZOKrKcC6MbMrH21a/0L2mrdm6794wPLWm80ds3BFOiZItb9/rLOKZQp9Peab3Y9VNouObjvrfDm2mX0U/rjkm06VGNHbTlKGjEwd8FotqVF9rwjpecfcB+wZoXsCVtJdWv9LTjvPJkjftKhmiYO8T92Q5CZvfR7kqTyEvd/m7bBaLGYd+hcQO1C0NaskD74j/+COkkk5N7e2BI/GAwAAGTPGFNijPmHpHslbZ9i6CBJp0h63xizd6cUBwAAAAAA0IsUewSjSVJdtCbl3JiNqqppmWtfRQHBaAAAAACQqYhT6NnXVcFo1dHVarZNrn0VocpOrgbovTI86x0AAAAA0GsFMwyiiHh/oASgC/gJRistkxlQnv9a0LO1uS8NjK7xHLYwNMq1fe+p0i0nOLr5mud1z5tGY5oWaEzzAk1r/EB71D2rgfPfkqkYLkkyoQLZWftKz85PXGTSljJDRnb8dwG62pBR0tDR0tIFGU81c3+ah4K6uVA4q2l24afSqmWyp8yWvv0q9eCdDpS54DaZ9aGMlQOy2qQkaf/puQt+AdC9mIe/0WHz/qD/Fm6Z1HfQ6vmyzSfLhAoIRkNGCj0OvmkxIbXIkUeWVBJz6b2yu7WeiPHr8rN1UcX5Oaiw4w7YPIehaNUrZX+8u/T1RzlZz/z5aZktdurwOpsONZL8hXs5isV/aKiXjcU8g9Gq10kNzVaRkNET73uvtyFoLcFbL0jTd/BVT2fxCkaT4uFoqfoBAIA3Y0xA0t2S9m3XtULSW5KqJW0iaYZar34xRNJDxpg9rLUvdVatAAAAAAAAPV1xwPvCRvXRWpWFBnv2r25ZqahaXPsqQkM7XBsAAAAA9DXhFMFojV0UjLaiaYln32BCsYGc8XHGLAAAAACgTwhlGoxWlJ86AGTH+PiYZ+zU/NeBnq/NfaksujLj6ZsOMyoKG/3otJ303Iz5unXpSfpV1SU6XM9p4B/u3hiKtnFzv7xG2rxNQMGYyTKX3JV1+UB3YoyRZu2T+cS9jpbZatfcF9TdFUSym7fgY9n//WX6UDRJ5hf/uzEUTZKGlWa3yW36LVX/QoLRgN7KDKzQL3aN6oQ1tye0H7b2fl387bnSW8/HG7yC0TbZTOaeT6Rp2+e5UvQkEdvo2Ve/vMr3OiZUIHPpvZKkqwb+KCehaA//2NGcqZLp4EvbQVu0LmCbGmXnX63YhccoduNFsssWxtvXVCl29RmK7RSO/7nuXNnP3lHs2rMVu/AY2Qevl21plr3hgtyFol33Qk5C0SRphns+tKuA2gSZrV2V8n3HFyuk+karE2+L+VtvPXvv1f4L6iSFKT5ibGjuvDoAAOiFfqvEULRmST+RNMJau7e1dq61ditJ0yS92mZcWNKDxhiOvAYAAAAAAPCp0CmSkfuXZ3XRmpRzU50cX8HJ8QAAAACQsUiKYLSGLgpGW970rWt7sdNPRSnCtgFkJtjVBQAAAAAAuolghsFoYYLRgG4lEEg7xGy7VycUgh6vTRpCoW3QoJaVWhUs8z190pD1ywQCMqf/Wfaki6UlC6Rx02SCyR9Hmn4DZK5+Oh6U0NggjZwQD5MCegkzaz/Z+6/LbM5pv89TNd1cQTi7ea8+LkWTg0KSBALSoCEJTYUFRoOKrFbVZ/a8c9KkhZKGpx0HoOcKnXqJbny4XJcvP0fvhadqcuMnGhJdHu/8/F1pmz2lJo+gq3ChzLAx0rX/lhZ9Gh/X2CCtq+20+tH9FFVFpPvd+xrHbp7RWmanA3XVxN/o9MDPfY1/6avZumbQKfpH6VFJfSVmnfbbrFj7Tw9oVZ3Vu9/E39Pf+ZrV/8y3vmvaZ5q0xcj466ltaZE961Dp9ac39tsnbpcuvVf2jEOkVUtbJ95xpewdV7aOe3a+9OoT0pvP+d62p0iRzBPLZYKhjq+13ugyo903lZ75OP1Yx7YJOVu5VONGlyngSFGX7LOPl0ifLZNWpDiPJmBdJlZXyT58k8yB30tfUCcZUybddZJRJGgUCSnhT0mWb/cAAOjrjDHjJJ3WrvkIa+1D7cdaaz80xuwu6RlJG9KayyRdKOnkvBYKAAAAAADQSzgmoEKnWPWx5O940wajNS91be8fGJDyZH4AAAAAgLugCSlogmqxLUl9XRWM5rXvV1EwtJMrAXo3gtEAAAAAAHGhDIPRIgSjAd2KcdKP2Wz79GMAJ/G+NLzlW9/BaOUlUllJYriQ6TdQ6jcw7VwzZJT/GoGeZMbszMaPmezrMdMrhVInZZjvXSh700XJHX5C0SSpf5mMk/x6ueVoo6c/8rfEBjtPIMAR6O1MqEB28tYqe+cl7VL/YkKf/cs50vb7yDZ6HEwRjh/MboyRRk3Kd6noIYqWW+l+l2ArSeum7pzRWmvXWV1Q8CPJx0vguo/6K6QWaZVcg9H2qP6X9NFIacrWGlRstMv6u+xpu8f/9hOONnem0V+PbfPa+M6LCaFokqTl38ieuqvU1JC+6FceTz/GB3Pi+TkNRdvgisMdbXWJ+/9lW4G2/0ErlyhUPkzjnEZ9FhuSNPaIv2a4Xhv2+guk/ee5vs/pCgOKjObO5L0SAAA5dqGktm9sbnULRdvAWrvOGHOCpPckbfgC8HvGmCustV/mr0wAAAAAAIDeozhQ4h6M5tLW1oqmJa7tFQXDclIXAAAAAPRFYadQLS5B1Y1dFYzmte8XYt8PyKXucWQsAAAAAKDrZXqiaJirlgHdSiCQfkxxaf7rQM/XLmSvssX9w3o3m3JhEyCJKQhLx53pf/zx58SDdPqiVO9HSwZIR/2sY+9BS91DHs/fP7OvSk5Yc7s22WRQ9nUA6DkC3teYsqfuKn3zuXtnOJKngtCTFaZ4mWsorcxorSfet6qNpg+4f2DREfFQNEnbNbyu49b8PaG/KFanM1b+XnrtqaS5wYDR6Xs5+u95qV8nT9nF6K6THJUWtb5/sXf9yX2wn1C0XBk+Tjr01LwsPWOU0TAfu9eO2oTKrVwq++sTNHH1f7PebsB6JOFVV0nfkm8CAEBvZYwplHR4u+bL082z1n4q6cE2TUFJR+ewNAAAAAAAgF6tKNDPtb3e5UT8tlY0e50cz8F1AAAAAJCtiON+HkFDVwWjee37EYoN5BTBaAAAAACAuFD6E2oTRIryUweA7BgfH/MUux+oAyRwEu9Lw1u+9T114tA+GuYEpOGcdLGvceaPj8vsMTfP1XRfxhhpuznufQ98JRMpkqZsk/0GSstdm3eaYLRz6EPXvln1r+ii5Rdpz9qndEDNo7p6yWm6fskpUnlmATYAeqhU4cO1a6Rn7nHvI0gcLgpTfOyyrtn/OtGY1XdusGnHTWn8UAfUPpbQdv2SU3XDtyfr4LUP6furb9YbX22vbRrekL3pIs91ZowyOnSG93auOdplX/Q//0xbX14d8ROZG/8jk8eQwsk+jl1qG2Rmn50v/d+/NLp5YdbbDMgjGE2SatZkvS4AAOj29pbU9ku5V621H/uce0u724fmpiQAAAAAAIDer9gpcW2vi9amnLeiiZPjAQAAACDXwsb92NzGLghGs9Z67/sRig3klPdlzgEAAAAAfUuGwWiGYDSge3FShDZsUEQwGvxIDDerbPYfjLYpn98DnsyNr8p+f3vv/isfkZm5eydW1D2Zn1wh++nb0qql8YZQgcw5N7W+9xw1QXrr+ewWH1Dm2XXv1Ee1+39iej8ybWPb0JalunbpTzWt8UNpZZvBxf1litwPfgXQy/h5j+2mgGA0JCsMefeta/K3xpsLrL57c8zX2H8uPCCpLaQWzau+XfOqb0/qs4s+kxk5wXWtm09wtGBVTP9d0NpWXiI99tPudR02c/6tMnt9p1O2NXGI0bMfpw6oSwgyWx8WN6zF/WAoP9oGrSWpq856XQAA0O21T5F/LoO5L0pqUetxojOMMUOstctyURgAAAAAAEBvVhRwPzakPkUwWszGtKJ5qWtfRYhgNAAAAADIVsRxPza3oQuC0Wqi1Wq0Da59gwu4ADuQSwSjAQAAAADigpkFoynMid5At+L4OCGdYDT40e6+VBGt8j110hCTfhDQR5lJWypldEY5X4BJkhk1Sbrtv/HwkPoaaatdZUZv2to/cmLqf8dUSr2D0crHjdSrd+2sh/odoA/DkzWmaYEOqH3M/TmwnANVgT4jkOVXqewvw0UkVTBac/r5Z90f0xX/9PcqeNO3J6kywwAue/Q06YUGGZP8nr5/odHLZzp68G2r9xdLIwdJB0w3Glrazd7/73Rgp21q4pD0YxybHGI3vMV/8HR7CUFr7dWuzXpdAADQ7U1rd/tVvxOttXXGmPckzWjTPFUSwWgAAAAAAABpFAfcj7esi9V4zlnbslrN1v2qSBUFHG8CAAAAANnqTsFoK5q8j88kFBvILYLRAAAAAABxoQyD0SJF+akDQHZMmmC0grBMpo9z9E3tgtHKMwhGm0quE5BaaZlUvdK9j+fojcyAcmnOse6d46Zmv+7YKd6dY6eq0DboqLX3pl9obPY1AOhhsg5Gi+S2DvQKxhhFQlKDSwjaOvdzIzZ69QvrOxTN2Jj2rHsmiwolu3NEdve5MlvOlvabJxMIbOwrCBrNnWk0d2ZWS+edOfUymcLiTttePBQ69f+JW5DZsNcqDQ0AACAASURBVAwD69qyShFEV1edOLbqW9m/nCv96854wwEnysw5Vmb6Dtlv/60XZJ+7T4rFZHY5VGarXbNeCwAAZGRyu9ufZzj/CyUGo02R9GyHKgIAAAAAAOgDPIPRot7BaMubU50cP7TDNQEAAABAXxX2CEZr7IJgtOXN7hdILXSKPPclAWSHYDQAAAAAQFwwwzCOMMFoQLfS5oR1V4V8sAq/Ek+2L2/xF4w2cYg0tjwf9QC9iJPiuZpgNH82myWFC6XGLL7A3OVQ777x06UBFdKaFWmXMQecmPm2AfRMqZ63UykgGA3uCr2C0Vza2rrtVX+haJK0f+3jquxA+JaeuUf2mXuk156WueSu7NfpbHOO69TNTRySfoxjY0ltwz0OiPIjZFPcUWpbg9Hst1/JHrlpYv8jN8s+dqt04d9kdjs8423bp+6SvWSeFIv/TvahG6Qz/yqz3/EZrwUAAPwzxgySNKhd88IMl2k/fkL2FQEAAAAAAPQdRYES1/blTd/q0ap/uPYtblzg2l4c6Oe5HgAAAAAgvYhHMFpDnoPRFjZ8rk/r30/YzufrPnQdWxEaJmNSXAAVQMYIRgMAAAAAxAVDmY2PEIwGdCvGSd1fxEE18MlJvC+VR1f6mrbXVMMH+EA6BKN1mIkUyc7aV/r3fZnN++39MuWV3v2BgOzsg6WHbki90OARMtvsmdG2AfRggSy/SiUYDR6KCqTV9cntdY1W7QOKN4jFrK5/IX0wWv+IdOiwr3XVe5d4DyoZIPPnp2XnzUxf7PMPKLZTWObE86XjzpIJpn482Leel73p19LK7IO/shYMSaVlnbrJMeXxf/O1Dd5jAoomtY1r/koFsUY1OeGMtje4ZZnGNn/t2W/XVG28B9m/nOM+KBaTvfAYaccDZAr8b99aK3vDhRtD0dY3yt74K2nf77IfCABAfg1od7veWluX4RrL290u7UA9AAAAAAAAfUax437MZU20Wo+vvDujtSpCw3JREgAAAAD0WeEuCEZ7tOofGe3/VRSw7wfkWpozZgEAAAAAfYUJBKRAirCO9sKc6A10K+kev0X9OqcO9Hwmu2C0ad55QwA2SBWwEyQYzS8z7/zMJ22/T/p1v3uWVNL+fOM2BlTI3Pxa5tsG0HNlso/chiHsEh5KPLKo6pq85xxwdcy7U1LQkZ76uaNVf3J089mbqN+dr8s8WyNz6mVJY81JF8uM30zaeg/fNdubfy17nUfQ1oYxX34g+/N9pXdelL75wvfaGakY7t1XNkzG6dxDHwKO0V5TUo+J2EbXtt3r/51y3hSXY6POrbpcjlIE5P39CkmSra+RXnw45fr2iAmyDS4JfV4WfSYt+Tq5vepb6dO3/K8DAACy0f7s22yO6G4/p8NfFhhjBhtjpmbyR9ImHd0uAAAAAABAZyoK5O6YS4LRAAAAAKBjIh7BaI15CkZb2vgNodhAN5DlZc4BAAAAAL1SsECK+vwwKOz+YRKALmLSnARe3L9z6kDPZ0zCzfJola9pk4eZ9IOAvi6Q4rm6wCMpBUnM2MnSbW/KHr+lvwl7HuUrLMUMHiHd8prsHVdKn78nFZVIq5ZJw8ZIg0fIHHuGTGlZx4oH0LOkCrRMJRjKbR3oNYo9Xu5rG9zbm1usnv/Ue72Dt5DOmONou3GJ78VNqED2qJ/LjJks+9itkozMAfNktt073n/lI7KzM/hc575rZb97lkz/Qa7d9oYLpWiL//UyVdRP6j9IWrHYvb+8aw4mOnym0fw3vcPKpjW879p+YM2jeqJkjue8Z0539MoX0r1/fUaNa6p19Nq7dUjNQ2nrsVXfSu+8nP7/YtUy2T0Hxu8jp1ya/n3S2lXefauXp60LAAB0SPtgNI93jim1/+Kv/ZrZOFXShTlYBwAAAAAAoNsqyWUwWsHQnK0FAAAAAH2RVzBaQ56C0T6oezPjOez7AblHMBoAAAAAoFWoQGr0+WFQQSS/tQDITLrQhqJcnOuEPqHdSfFh26RBLSu1Kpg6DGgKFzYB0nMC3n3Bgs6roxcw46ZKP7hY9oYLUg8cOlrmhHP9rzt0tMzpf+5gdQB6jWyD0UI8p8NdiUcwWl2Te/ui1VK9R9+2Y6X7T/V+b2GMkbbfR2b7fZL7HEe66knZsw+X6mvSlS21NMv+7kfS7IOlKVvLVI7b2GVr1kgvPZJ+DS9b7Sr999+px5QPSx0iO2hI9tvvgENnGE0fYfXuN+79+9c+7tl+iseac2caDelvdMgM6SDnN9LiV/wX9N6rsi+kD1Db6K4/yq6rkbaYLVWOlZmytfs46x3+1j5YGwAA5F2KF+aczgEAAAAAAOjzhofHKGwiarTZZNUnmlg0LQcVAQAAAEDfFXbcz2VtjHV8n81NTXRNxnMmFLLvB+Ramkv/AgAAAAD6lEwCOQhGA7qXYLpgtNxdvRC9nMuJ7bPW/SfllGmVUlkJJ8QDaaUMRgt1Xh29xXFnSMPHJbcPGipz8m9kzr1J5sZXZUZN7PzaAPQOTpZfpYZSBDihTyv2CkZrdG9fUu291qm7dOz9t9lyF5nb/itz2h+kfgPTT3juftmLvit7zHTZ+/8iSbKrl8vu27FQMrPzQdLgEakHlVemflwVl3aohmwFA0bXHO3IcfmvGNGvWfsft5PrvGEtS3Vk9T1J7UYx/f17bRaLtmRUj73gaOm5+zKao4dulL3oONkf7qjYeUfJxmKZzQcAAPlW2+62+yWwU2s/p/2aAAAAAAAAcFHghDWn7IgOr7Np0eacHA8AAAAAHRRx3L8ub4ity8v26qI+Ljrbxg6le6q8oGsu8gr0Zlle5hwAAAAA0CuFCEYDeqx0j9+i/p1TB3o+l2C0Q2oe0qP99vOccvAMQtEAX1IEo5lsw3f6MGOM9Kd/yl54rPTha/HGyTNlLrxdZvgmXVscgN4hkOVXqZnsW6NPKfa4a9RmEYx27HYdfw9uho6WDv+RtMXOsvNm+pvU0iz7x5/J/vFnHd6+JKliuMxv75c9cRvvMZtMk7760Lu/qCQ3tWRhh/FGd/7A6IRbrBqa423DSqV//DCsovE/kp0zV/bCY6S3nk+Y9/tlZ2pJcKheKN5ZkjS14QP9rfQaBQN/bR2UYTCaJKkjwWbPPyA9erN04PcT21PWwb4gAAB51l2D0a6VdG+GczaR9FAOtg0AAAAAANBp9i47TIMLhumd2v/T6uaVGc0tDBRpQuFUzR64b/wYFwAAAABA1sIewWiNeQpGq4+6f7U+IFimitCwjbdLAv01pXiGZpXukZc6gL6OYDQAAAAAQKtgyP/YgnD+6gCQuUCax28XniiOHsYkhzPtX/u4ArZFUeP+ceIhBKMB/mQbsANPZuho6boXpC/elwoKpMpxMpm8pwWAVFIEWqYUJBgN7koiRpJNaq/3DEZLHitJm1QopydPmPGbyW6+k/TOizlb07fySpkJm0tPV8v+dM/WsNMNAkGZOcfJ3vgr7zWK+uW1xHTmznR0wHSr17+WCoLSFiOlSCj+/2MGVkh/+qf0zWfSkgXS2CnSv+/T0KvP0DML5+jDgslqNiFNa/xAwVHtgl29Askcp2MBaCnYe/4s0z4YrdnjDiplF94GAAAy0T4qt8gYU2ytrctgjcHtbq/pYE2y1i6XtDyTOZz8CwAAAAAAeqoZ/WZpRr9ZXV0GAAAAAPRpEa9gNNugmI3JcTkXqiPqYu7BaNv230UHVRyX020B8JbbRzYAAAAAoGcLZXDydkEkf3UAyFy6EJguPlEcPYiT/JFhWXSVdq/7t+vw8YPjJ/4D8CGQZcAOUjLGyIzfTGbUJELRAORWtoGWmexbo08p8rhr1DW5B6AtbR+Dsd6w0hwV1Ia59B5pjyOl0vLcL55KRWV8++GIzFVPSof8UCoZIBkjTdhc5ooHZSZukTKg33SD/d3CAqOdJxptN85sDEXbwDhO/H3KtnvJDB4hVQyPt0ua2vSRtmh8V0FFpYWfJi7qFTq21W55+A3WW/Cx7JKvE9uaGrzHN6UITQMAAB1mrV0paXW75lEZLjO63e3Psq8IAAAAAAAAAAAAAIDO5xWMJkmNsRTHuGWpPlrj2l4U6PrjFYG+hGA0AAAAAECrIMFoQI+VJnzBFJV0UiHo8Yxxbb54xUUqiDUmDb38MEfGYw6AdhyC0QCgRyEYDTlW4vFRSq3HMTlLPILRhvbPTT1tmf6D5Fx4u5xHF8vc/XHuN+AmEJQGDmmtIVIk5xf/K/PYEpmn1si5+TWZbfaMdxZ4H9Sknra/Wz7Ms8u+9ULrDY9gNLPj/q6B1jnzyVuJt1OFnzW799loVHb1ctm6tTksDACAPuujdrfHZzh/XJr1AAAAAAAAAAAAAADo1sIpg9HW5Xx7ddFa1/biQA87XhHo4QhGAwAAAAC0yuTk7TDBaEC3Egyl7i/Ow5nz6J2M+0eGMxve1Ctfz9axa+7QzIY3dcRWRv/6maNDZhCKBvhGMBoA9CyBLJ+30703R59V7PGxS12Te/vSauvaPnRAft+Dm8qx0uCRuVls/HRp6rbufdvuJePyODOOI9P+c6eBFd7b6Gn7u+WVnl32L2e33vAIRlMoLHPn+zkuqo0F7YLxGlNcTbMpuc9+9Ibs97aVPXCk7P6Vil19hmw0muMiAQDoU9q/8G/vd6IxpljS9DTrAQAAAAAAAAAAAADQrUVSBKM15CEYrd4jGK3IIRgN6EwEowEAAAAAWoXC/scWEIwGdCuBNOELRf06pw70fI73R4ZbNL6rW5f8QP9ZdZDu/qGj3ScTigZkwhzxY/eOkRM6txAAgD+BYHbzMgkdR59S4vGxS22je/uSavf2YaW5qScVc+FtHV+kpFTmR7+Vuew+afSkxL5BQ2R+cLH/eiq8w8R63P5ueaVU4HFn+PID2Yb6+M9eYWKBoDR0TPbhjWnYBZ8kNriEn7X2NcrWrJF9dr7sf/4pW7Na9qQdpC/ei/e3NEt3XyV7zDTZ+VfnpV4AAPqAf7a7vUsGc3eS1HbH5i1r7bIOVwQAAAAAAAAAAAAAQCfqzGC05lizGq37cXPFgR52vCLQw2V5ND8AAAAAoFfye/K242R/gjiA/AimCUYr5IoU8Mn4uJZCpDj/dQC90Q77SeFCqTHxizez53e6qCAAQEpOlqFDmYSOo08p9gpGczl+piVq9c437uM7JRht+g6yu8+Vnrkns3l3vi+9/JgUjkiz9pUZMireccOr0rPzZb/+SGbkhHhf+TD/C5elGFvUs/Z3TUFYdtQk6fN3kzsb10kfvSHN2FmKtrgvEAjKBAKyZcOk5R53ko5Y9Gni7RTBaPbFh6XrL5Bq16Rec/GXsledLnO4R1AwAABI5UlJ6yRtOMp7e2PMptbaj33MPaHd7QdyWRgAAAAAAAAAAAAAAJ0h7EQ8+xpzHIxWH6v17CsO9KzjFYGejrPYAQAAAACt0gUrbVAQkTEmv7UAyIgJBGRTDSjiihTwyc/zeyHBaEA2TFE/6fIHZM85QqqviTfueph07P90bWEAAFcmEEz9HtuL39Bx9DmlHhcsXF2f3PbAW97rDO3fOZ/JmDP+IruuVnrlcX8TttkzHnp21M+S1yoslvY7XllXXpIiDc5PuHM3Y373sOwhY9w7Vy6J/50iGE2SNG5qfoLRqqsSbtqXH/Ue+/rTud8+AABIYK2tN8bMl3Rcm+YzJc1LNc8YM1HSIW2aWiTdmfsKAQAAAAAAAAAAAADIL8cEVGDCarKNSX0NuQ5Gi3oHoxUFOD8P6Ew97whhAAAAAED++D15u8A7YR9AN0UwGvxyfHxkSDAakDWz1a4yjyyWufY5mfmfy7n4ThkCdACgewpkeY2pIM/rcFde4h4LtrpeaokmxvDd/XrMc51hKTLCcskUlci5/AGZ29+Wuf5lmafXyNz3hcx5t7gMNjLzzstfMeWV3n3F/fO33Twx5cOkEePdO6tXxv9OE4xm9j8x/Ya+84vMi6up3vijveUS6Y1nM1/DjZ99TQAA4OVXkprb3D7BGHOg12BjTETSLZLa7pzcZK39Ij/lAQAAAAAAAAAAAACQXxHH/eq0uQ5Gq4vWePYVOZxPBXQmjjwFAAAAALQiGA3ovQqLuroC9BTGTzBaSf7rAHoxUxCW2Wx7mSEju7oUAEAq2Yb4EHgJD+Up3kavqku8ff9b3mM3HZqbevwyYyfLTJ4pEy6UGTxCZu+jZW58VZq2vRQulIaNkfnV32WmbZe/IsZNk8qGJbf3GyiN3zx/282n0jLXZrv8m/gPnsFoAUmSmX2wdOjJKTdhBpTH/+0yUbtGse9vr9hOYdmbf53ZXAAAkBfW2i8lXdWueb4x5sfGmIQdEGPMZEnPSJrVpnmlpIvyWyUAAAAAAAAAAAAAAPkT9ghGa8xxMFp9rNa1PWQKVOCEc7otAKkRjAYAAAAAaBX0G4zGBzhAjxN2//AXSGJM+jERgvYAAEAfEAhmNy8Yym0d6DVSBaNVtTmO5q2F1nPclGFSOOTjPXuemUlbyvnLc3KeXiPnnk9kdjs8v9sLBGSO/WVy+9GnywSzfKx2tf6D3Nvv/L3s1x9JtdXu/W2em8y881Nvo7BE5tj/8bef19Ynb2Y2HgAAdIazJD3R5nZI0p8lLTLGPGGMuccY84akD5QYitYk6RBr7ZLOKxUAAAAAAAAAAAAAgNyKeASjNeQ4GK0uWuPaXhzol9PtAEivhx4hDAAAAADIi5DfYLRIfusAkHsFBKPBJ+PjWgqFKRIdAAAAeotAILt5fvet0eeU+QxGO/v+mOe4W+f13WufmcN/LA0cIvvsvVJzk8xuR8jMOaary8peaZlnlz1uC+95bYPgSsvizznNTe5jC4tl9jxKKu4v+/ht0vMPZllsBwwaIg0cLDl9974LAEAuWGujxpi5km6UdGSbrsGS5nhMWy7peGvti/muDwAAAAAAAAAAAACAfAp7BKM12twGo9VHa13bixzOpQI6G8FoAAAAAIBWQYLRgF4rTDAafPJzsnoRH+YDAIA+IJDlV6kEo8FDJGRUEpZqG5P7NgSjNbVYvfql+3zHSJOG5q++nsDsfoTM7kd0dRm5UVud3bw2YdbGGNnyYdKSBe5j14dam1n7yszaV/aFh2TPnZvddrOx3zw5Z13XedsDAKCXs9bWSjrKGDNf0umStvMYukrS3ZIutNau6Kz6AAAAAAAAAAAAAADIl4hHMFpDLLfBaHUewWjFAc6lAjobwWgAAAAAgFahkL9xBKMBPQ/BaPDLmPRjBlTkvw4AAICulnUwWji3daBXKS9xD0ZbUWMlGb34mVTT4D53kwqpX8TH+3X0CGbiDNmXHsl8ohNIvF0+3DsYLVKUeDvb57UsmTOu7dTtAQDQV1hr50uab4wZK2lLSZWSiiUtlbRA0svW2qYuLBEAAAAAAAAAAAAAgJzqtGC0WI1re1GgX063AyA9gtEAAAAAAK2CBf7GhXyOA9BtmEAg/SBAkoyTfsiA8k4oBAAAoIu1Dx/yi31mpFBWIn29Mrl9zfrjch5913rOffJn6d+rowcZv1l285x294NBg73HFra7QuXkmfEwbOt9P8uJYWNkLr1Xpn2tAAAgp6y1X0n6qqvrAAAAAAAAAAAAAAAg38JOxLW9McfBaPXRWtf24kCJazuA/CEYDQAAAADQyu/J20F2JwGg1/Jz4vqAivzXAQAA0NUCWe77+g0dR580wP2ChVpTH//71S/cA6sO21IaU27yVBW6xHZzspvXPsy6vNJ7bGFx4tRBQ2S33Uv6z5PZbTtVWRfdITXUSyMnSBNnyITdD0IDAAAAAAAAAAAAAAAAACBTEcf9AMyGWENOt1MXrXFtL3IIRgM6G5fnBQAAAAC08huMFgjltw4AQNcxPsIWBpTnvw4AAICu5gSymxdknxneSr2C0dZJ1lp9uty9f88phKL1NiZUIHPJ3ZlP/H/27j3KsrOsE/DvO+dUneqq7nR3SOdCEuhcCQkYQJCrEklAgZEAIjoIGhGHhTdQRnGWo5AZlzoizBqdYXS8wQg6423AcURcusRRkFkjwvKGw02iokBUwO6qVHdSteePatJ1Oafq3HfVOc+z1l7p8+1vf/vtXbve6jrZ9attYdbl4iu6z51v7zzva96cPOUrknaXm7FfD7o+5Zc+lPKU56U842tSHv54oWgAAAAAAAAAAACMVLtLMNqZ9XtGep5uwWhLzSMjPQ+wtwF/zTkAAADTqLTmU/UyseXbSYCpVXr4XQrHLx5/HQAAdRvwe9/S8Lup6O7oYkk6vPvy2ZXk708nn1npfNyNlwlGm0blyc9O9bgvTd7zG30ctO1eeNjju889ujPUuixdkHLnm1Pdezb5hR9J9WPfvfc5r35YGm96b6r77k3OriZnzySHDgtAAwAAAAAAAAAAYCIWugSjrY44GG1l/XTH8aXm4ZGeB9ibp/IBAAA4b26+t3nNufHWAUB9egnyOLbzh+sBAKZOc4BgtMfcOvo6mCrHFjuPf2alygc/2f246y8ZTz3Ur/zAL/V5wLbv2W56bHLZg3fOu/qmlF2+dytz88lTnpe09n6frzzr6zf+25pLWTyScuwioWgAAAAAAAAAAABMzKSC0ZbXugWjHRnpeYC9CUYDAADgvB5+ELKveQAcQGXvKUcFowEAM6DR7PuQ8k0/NIZCmCbHOj+Xk8/ek3zwk1XHfUcPJSc8TzO1Smsu5a13JScf2tsB28KsS7OZ8s2vTebb5wfnF1K+9XV7n/uykykv/t7dJ13/yOTpL+qtNgAAAAAAAAAAABiDdpdgtDMjDEZbq+7L6vpKx32LgtFg4gb4NecAAABMrbn53uYJRgOYXo09fpfC0YtSNv/APQDAtGr2GYz2mFtTrnnYeGphahxb7Dz+mXuSD36y877rL0lK6SHAmAOrPODS5Cf/INWXnkjuu3ePyTu/ZytfdHvyk+9J/uDtyfp68uRnp1x5XW/nftF3Jp/3hFTveUfyjrckd398Y8fFV6a85NXJrc/3PSAAAAAAAAAAAAC1WugSjLY6wmC0lbXlrvuWGodHdh6gN4LRAAAAOK/VYzBa07eTAFOrww/Zb3HRZZOpAwCgbo3+gtHKi141pkKYJsc6P5eTz6wkH/pk1XHf9ZcIRZsFpX0o1YtelfzM9+0+sUuYdbnqxuSqGwc7981PSrn5SclL/+1AxwMAAAAAAAAAAMA4tbsEo91X3Zu16r40y/A/87qyfrrrvsWmYDSYtD1+yhEAAICZMtdjMFpLMBrA1Cp7hC6ceOBk6gAAqFs/oeAPuj65+QvHVwtT49hi539v330qeddHOh9z3SVjLIh9pRx9QA+TPOYBAAAAAAAAAADAbFnoEoyWJKvr94zkHMtrp7ruW2oeGck5gN55YhYAAIDzeg5GmxtvHQDUp7HHW4YPEIwGAMyIvYLRjl60MedRt6T8+7en7PXvKEjywGOdx+9bTz75T533PfzyPcKLmR5HL9p7jl4DAAAAAAAAAADAjJlMMNrpjuOt0sp8aY/kHEDv+vg15wAAAEy9Vo/BaHv9cDhQj6tuTP7yz3eOX3715GvhwCqlpNptwkWXTaoUAIB6ze/yAMMXPDXltb+a3Hs2pb0wuZo48B5ySX/z51vJrTeMpxb2oaMX7j2nCEYDAAAAAAAAAABgtrR3CUY7M6JgtJW1Ux3HFxtHUopfcguT5olZAAAAzpub621es8d5wESVF35n5/GXvGaidTAFGt3fNiyHL5hgIQAANXrQQ7rvO7SU0mgIRaNvhxdKrjje+/xbb0guOORhmplx9KK95+zy/RoAAAAAAAAAAABMo4VdgtFWRxSMtrx+uuP4UvPwSNYH+uOJWQAAAM5rzfc4TzAa7EtPfk7ymNu2jj3mtuQLn1VPPRxcu/0Wk/bi5OoAAKhROXZRcsW1nfc99DETroZpcsOlvc991s1C0WbKict3/34s2Xs/AAAAAAAAAAAATJn50k7pEpM0qmC0lbXOwWiLgtGgFoLRAAAAOG+ux2C0Zmu8dQADKe2FlB/45ZQ735K84JUpr3lzyg/+Skq7+2/EgI7KLm8bLghGAwBmR3nhd3Te8dinTbYQpspDLu092Orx1wjBmiXl+InkUbfsMck9AQAAAAAAAAAAwGwppaTdWOi478yIgtGW1051HF9qHhnJ+kB/BKMBAABwXru3sJvSmhtzIcCgSnsh5SnPS+Nl359y61ekzLfrLomDqCEYDQAgSfKlL0qe8bXnXzdbKS9/Xcq1n1dfTRx4N1za+9xrT4yvDvan8sof3X3Cbt+vAQAAAAAAAAAAwJRaaBzqOL46omC0lbXTHccXG4dHsj7Qn1bdBQAAALCPHL2wt3mC0QCmXOm+q935fyIAAEyj0mym/Kv/kuqff1vydx9Lbvj8lOMX110WB9wNl5Yk1Z7zrjyeLLZ3+bc5U6lced3ud0cRjAYAAAAAAAAAAMDsaY85GG15vXMw2lJTMBrUQTAaAAAA5x19QG/zms3x1gHA/rWwWHcFAAATV04+NDn50LrLYEo86kFJKUm1Rzba9ZdMph4OmIZgNAAAAAAAAAAAAGbPQpdgtDMjCkZbWTvVcXyxeWQk6wP98cQsAAAA5y0d7e2HK1tz468FgPrcd7b7vrZgNAAAGMbxpZJX3Fb2nHfdJXvPYQYVj3kAAAAAAAAAAAAwexYaCx3HV9dXR7L+8trpjuNLjcMjWR/ojydmAQAAuF9pNJIjx/eeKBgNYLqtr3fftyAYDQAAhvXDz9s79Oz6SyZQCAdPL7/UAAAAAAAAAAAAAKZMu3Go4/iZ9XtGsv5Kl2C0xeaRkawP9McTswAAAGx1wYV7z2kKRgOYWQud/ycCAADQu1JKvuSm3edcf8ne4WnMoOIxDwAAAAAAAAAAAGbPQpdgtNURBKOtV+tZWe8cjLbUPDz0+kD/PDELAADAVkcfsPecZmv8dQCwP7UX664AAACmwmVHuwefNUryuKsn6svn2QAAIABJREFUWAwHR8NjHgAAAAAAAAAAAMye9hiD0VbXV1Kl6rhPMBrUwxOzAAAAbLV4ZO85rbnx1wHA/rQgGA0AAEbhqou673vMyeTCpe7Bacyw4jEPAAAAAAAAAAAAZs9Cl2C0MyMIRlteO9V132Kjh5+5BUbOE7MAAABsNd/ee45gNIDZJRgNAABG4taHdg8+e84jhaLRRXFvAAAAAAAAAAAAMHu6BaOtjiQY7XTXfUvNw0OvD/RPMBoAAABbzfUQjNZsjb8OAPalIhwTAABG4nFXJZcf67zvWTcLv6KLhsc8AAAAAAAAAAAAmD3tLsFoZ0YQjLay3jkYrZFGFhqLQ68P9M8TswAAAGzVSzBaSzAaAAAAwDAajZIfet7OALQXP6nkhssEo9FF8ZgHAAAAAAAAAAAAs2ehSzDa6giC0ZbXTnUcX2weTime6YQ6+El2AAAAtuopGG1u/HUAAAAATLmvekzJ4nzJf/it9azelzz3USXf8sUeoGEXDcFoAAAAAAAAAAAAzJ5xBqOtrJ3uOL7YODz02sBgBKMBAACw1fz83nOavp0EAAAAGFYpJbc/Irn9Ec26S+GgKILRAAAAAAAAAAAAmD3tLsFoZ9bvSVVVKWXwX0y7vHaq4/hS88jAawLD8cQsAAAAW821957Tmht/HQAAAADAVg2PeQAAAAAAAAAAADB7FkrnYLT1rOfe6uxQa6+sn+44vtg8PNS6wOA8MQsAAMBWc/N7z2kKRgMAAACAiSse8wAAAAAAAAAAAGD2tBudg9GS5Mz6PUOtvbzWORhtSTAa1MYTswAAAGw11957TrM1/joA2H+WLqi7AgAAgNnW8JgHAAAAAAAAAAAAs2dhl2C01aGD0U51HF9sHBlqXWBwnpgFAABgi9JLMFprbvyFALD/XHC87goAAABmW/GYBwAAAAAAAAAAALNnnMFoK2unO44vNQ8PtS4wOE/MAgAAsNX8/N5zBKMBzKbH3FZ3BQAAALOt4TEPAAAAAAAAAAAAZk97l2C0M0MGoy2vdw5GWxSMBrXxxCwAAABbzbX3ntNqjb8OAOrzZS/uOFxe8MoJFwIAAMAWpdRdAQAAAAAAAAAAAEzcXGMuzXT+2dbVIYPRVtZOdRxfah4Zal1gcILRAAAA2KqXYLSmYDSAaVZe+B3Jicu3Dn75N6Zcfk09BQEAALCheMwDAAAAAAAAAACA2bTQONRxfHV9deA1q6rK8trpjvuWGocHXhcYjp9kBwAAYKv5HoLRWnPjrwOA2pQHXp38+O8lv/0LqT751ymPfHLyhc+quywAAAAagtEAAAAAAAAAAACYTe3GQpbXT+0YP7N+z8BrnqlWs561jvsWm0cGXhcYjmA0AAAAtpoTjAZAUk5cnnzVt6XUXQgAAAD3K8V3aQAAAAAAAAAAAMymhcahjuOrQwSjLa/tDFr7nKXm4YHXBYbjVwkDAACw1dz83nOacrYBAAAAAAAAAAAAAAAAAJiMdpdgtDNDBKOtrJ3uum9RMBrURjAaAAAAW/USjNaaG38dAAAAAAAAAAAAAAAAAACQ5FBjseP46hDBaMtrp7ruW2wsDbwuMBzBaAAAAGw11957TlMwGgAAAAAAAAAAAAAAAAAAk9FuHOo4Pkww2sr66Y7jhxpLaZTmwOsCwxGMBgAAwFbzvQSjtcZfBwAAAAAAAAAAAAAAAAAAJFnoEox2ZohgtOW1zsFoS83DA68JDE8wGgAAAFstXrD3nNbc+OsAAAAAAAAAAAAAAAAAAIAk7S7BaKtDBaOd6ji+2Dwy8JrA8ASjAQAAsNWDrk8OLXXfX0pKszm5egAAAAAAAAAAAAAAAAAAmGkLYwhGW1k73XF8qXF44DWB4QlGAwAAYIsy304e8UXdJ7TmJlcMAAAAAAAAAAAAAAAAAAAzr1sw2pkhgtGW1091HF9qHhl4TWB4gtEAAADY6YILu+9rtiZXBwAAAAAAAAAAAAAAAAAAM6/dWOg4vjpEMNrK2umO44LRoF6C0QAAANhprt19X2tucnUAAAAAAAAAAAAAAAAAADDzFhqHOo6fGSIYbblLMNpi8/DAawLDE4wGAADATvPz3fc1BaMBAAAAAAAAAAAAAAAAADA57S7BaKtDBKOtrJ3qOL7UEIwGdRKMBgAAwE6t3YLRWpOrAwAAAAAAAAAAAAAAAACAmbfQJRjtTLWa9Wp9oDWX1093HF9sHhloPWA0BKMBAACw01y7+77W3OTqAAAAAAAAAAAAAAAAAABg5nULRkuSs9WZgdZcWescjLbUPDzQesBoCEYDAABgp7n57vtarcnVAQAAAAAAAAAAAAAAAADAzGvvEoy2un5P3+udXT+Te6uzHfctNo/0vR4wOoLRAAAA2KHMtbvvbApGAwAAAAAAAAAAAAAAAABgchZ2CUY7M0Aw2sra6a77lhqH+14PGB3BaAAAAOw0P999X2tucnUAAAAAAAAAAAAAAAAAADDzdgtGWx0gGG15/VTXfUtNwWhQJ8FoAAAA7NQSjAYAAAAAAAAAAAAAAAAAwP7Qbix03TdQMNra6a77FgWjQa0EowEAALDTfLv7vmZrcnUAAAAAAAAAAAAAAAAAADDzGqWZ+dL551/PDBCMttIlGG2hcSjN4mdpoU6C0QAAANhpbpdgtNbc5OoAAAAAAAAAAAAAAAAAAIBshJZ1sjpAMNry2qmO44uNw32vBYyWYDQAAAB2mpvvvq8pGA0AAAAAAAAAAAAAAAAAgMlqjzAYbWX9dMfxpeaRvtcCRkswGgAAADvNtbvva7UmVwcAAAAAAAAAAAAAAAAAACRZ6BKMdmaAYLTltc7BaIvNw32vBYyWYDQAAAB2as1139cUjAYAAAAAAAAAAAAAAAAAwGS1uwSjrQ4QjLaydqrj+JJgNKidYDQAAAB2mm9337dbaBoAAAAAAAAAAAAAAAAAAIzBQpdgtDMDBKMtr53uOL7YONL3WsBoCUYDAABgp7ldgtHand80AgAAAAAAAAAAAAAAAACAcekWjLY6QDDayvqpjuNLzcN9rwWMlmA0AAAAdpqb775vUdI9AAAAAAAAAAAAAAAAAACT1W4sdBwfJBhtee10x/HFpp+jhboJRgMAAGCnuXb3fYuS7gEAAAAAAAAAAAAAAAAAmKyFxqGO42cGCEZb6RKMttT0c7RQN8FoAAAA7LRbMNohb+gAAAAAAAAAAAAAAAAAADBZ7S7BaKsDBKMtr53qOL7Y8HO0UDfBaAAAAOw0N9d1V1k8MsFCAAAAAAAAAAAAAAAAAAAgWegSjHamz2C0+6p7c6Za7bhvqennaKFugtEAAADYaW6++75DS5OrAwAAAAAAAAAAAAAAAAAA0j0YbbXPYLSVteWu+5aah/taCxg9wWgAAAD05/gldVcAAAAAAAAAAAAAAAAAAMCMaXcNRlvta53ltVNd9y02j/S1FjB6rboLAAAAYB86cUVy/OLk05/aOj7fTr7gtnpqAgAAAAAAAAAAAAAAAABgZi10CUZbXjuVH77ru3pe50zVPUhtsbHUd13AaAlGAwAAYIfSaKT6shcn//UHt+546gtSli6opygAAAAAAAAAAAAAAAAAAGZWu0swWpX1fHT1L4Zef67MZ77RHnodYDiC0QAAAOiovOQ1SXsx1W++JVlfT77o9pSX3Fl3WQAAAAAAAAAAAAAAAAAAzKCFLsFoo7LUPDLW9YHeCEYDAACgo1JK8jWvSvmaV9VdCgAAAADMjmfekfyvN+4cP7Q06UoAAAAAAAAAAABgXzncvGCs6x9pHh3r+kBvGnUXAAAAAAAAAADAhvLcl3Uef/H3TrgSAAAAAAAAAAAA2F8unDuRy+avHNv6Dzv8+WNbG+idYDQAAAAAAAAAgH2iXP+I5Ov+9dbBL3hq8pyX1lMQAAAAAAAAAAAA7CMvvPSbc6ixOPJ1r1p4SG49fvvI1wX616q7AAAAAAAAAAAAzmu8+HtSfdGzkz95d3LyocnDH5/Smqu7LAAAAAAAAAAAAKjdVYcekldf9YZ8YPn9+cf77h56vUYauXLh6lx36KbMNeZHUCEwLMFoAAAAAAAAAAD7TLn24cm1D6+7DAAAAAAAAAAAANh3Lmgdy2OP3lJ3GcCYNOouAAAAAAAAAAAAAAAAAAAAAAAAAEAwGgAAAAAAAAAAAAAAAAAAAAAAAFA7wWgAAAAAAAAAAAAAAAAAAAAAAABA7Vp1F8B0KaXMJXlikgcluSzJ6SR/m+R9VVV9rMbSAAAAAAAAAAAAAAAAAAAAAAAA2McEo82wUsp/S/KV24bvqqrq5ABrnUhy57n1Luwy591JXl9V1S/3uz4AAAAAAAAAAAAAAAAAAAAAAADTrVF3AdSjlPKs7AxFG3Stpyf50yQvS5dQtHOekOSXSilvLqUsjeLcAAAAAAAAAAAAAAAAAAAAAAAATIdW3QUweaWUY0n+84jWuiXJW5PMbxqukvxRko8mOZbkkUku2rT/q5NcUEp5dlVV66OoAwAAAAAAAAAAAAAAAAAAAAAAgIOtUXcB1OJ1SR547s+nBl2klHJFkl/J1lC0dyW5qaqqR1dV9fyqqp6W5IokL09y76Z5X5bk+wY9NwAAAAAAAAAAAAAAAAAAAAAAANNFMNqMKaXcluTF517el+R7h1juziTHN71+d5Lbqqr6wOZJVVWdqarqR5I8f9vx315KefAQ5wcAAAAAAAAAAAAAAAAAAAAAAGBKCEabIaWUpSQ/sWno9UneP+Ba1yX52k1DZ5PcUVXVardjqqp6a5I3bRpqJ3n1IOcHAAAAAAAAAAAAAAAAAAAAAABgughGmy0/kOTkuT9/NMlrhljrBUmam17/SlVVH+rhuH+37fXzSykLQ9QBAAAAAAAAAAAAAAAAAAAAAADAFBCMNiNKKU9I8k2bhl5aVdU9Qyz5nG2vf6aXg6qq+kCS/7NpaCnJ04aoAwAAAAAAAAAAAAAAAAAAAAAAgCkgGG0GlFLaSX465z/eb6qq6reGWO/SJDdvGrovybv6WOKd214/fdBaAAAAAAAAAAAAAAAAAAAAAAAAmA6C0WbDa5I85Nyf707yyiHXe9i2139cVdVyH8e/e9vrm4asBwAAAAAAAAAAAAAAAAAAAAAAgANOMNqUK6U8Ksm/3DT0iqqq/mHIZW/c9vrDfR7/kT3WAwAAAAAAAAAAAAAAAAAAAAAAYMYIRptipZRWkp9O0jo39BtVVf3cCJa+dtvrv+rz+Lu2vX5AKeX4EPUAAAAAAAAAAAAAAAAAAAAAAABwwLX2nsIB9l1Jbj735+UkLxvRuse2vf5UPwdXVXW6lLKaZGHT8NEknx62sFLKxUlO9HnYNcOeFwAAAAAAAAAAAAAAAAAAAAAAgOEIRptSpZQbk/zrTUPfU1XVx0a0/OFtr+8ZYI17sjUY7cjg5WzxjUlePaK1AAAAAAAAAAAAAAAAAAAAAAAAmJBG3QUweqWURpKfStI+N/TeJD8ywlNsD0ZbHWCN7WFq29cEAAAAAAAAAAAAAAAAAAAAAABghghGm04vT/K4c3++L8lLqqpaG+P5qgkdAwAAAAAAAAAAAAAAAAAAAAAAwJRq1V0Ao1VKuTrJ920aen1VVe8f8WlOb3t9aIA1th+zfc1BvSHJL/Z5zDVJ3jai8wMAAAAAAAAAAAAAAAAAAAAAADAAwWhTpJRSkvxEksVzQx9N8poxnGrfBqNVVfWpJJ/q55iNywYAAAAAAAAAAAAAAAAAAAAAAECdGnUXwEh9Q5KnbHr90qqq7hnDeT677fWJfg4upRzOzmC0zwxVEQAAAAAAAAAAAAAAAAAAAAAAAAdaq+4CGKk7N/3515N8uJRyco9jLt32utXhmL+tqursptcf2rb/wT3W123+P1ZV9ek+1wAAAAAAAAAAAAAAAAAAAAAAAGCKCEabLoc2/fkZSf5ygDUu73DcI5O8f9PrD2zbf22f57h62+s/7/N4AAAAAAAAAAAAAAAAAAAAAAAApkyj7gI4kP502+vPK6Us9nH8E/dYDwAAAAAAAAAAAAAAAAAAAAAAgBkjGI2+VVX1d0n+eNNQK8mT+ljilm2v3z5sTQAAAAAAAAAAAAAAAAAAAAAAABxsgtGmSFVVx6qqKv1sSb542zJ3dZj3/g6n+x/bXn9dLzWWUm5I8thNQ8tJfrPnvyQAAAAAAAAAAAAAAAAAAAAAAABTSTAag3pLkrVNr59bSrmuh+Nete31L1RVtTq6sgAAAAAAAAAAAAAAAAAAAAAAADiIBKMxkKqqPpTkTZuG5pO8sZSy0O2YUsrtSe7YNHQ2yZ1jKRAAAAAAAAAAAAAAAAAAAAAAAIADRTAaw3h1kk9vev2EJL9VSrlh86RSSruU8i1JfnHb8a+rququMdcIAAAAAAAAAAAAAAAAAAAAAADAAdCquwAOrqqq/qaU8twk70gyf274iUn+vJTy3iQfTXI0yaOSnNh2+K8l+Z5J1QoAAAAAAAAAAAAAAAAAAAAAAMD+JhiNoVRV9c5SynOSvDHnw89Kkkef2zr5+STfUFXV2vgrBAAAAAAAAAAAAAAAAAAAAAAA4CBo1F0AB19VVb+e5GFJfizJp3eZ+p4kz6uq6gVVVS1PpDgAAAAAAAAAAAAAAAAAAAAAAAAOhFbdBVCvqqremaSMYJ1PJXlZKeXlSZ6Y5MFJLk2ynOTjSd5XVdVfDnseAAAAAAAAAAAAAAAAAAAAAAAAppNgNEaqqqqzSX6n7joAAAAAAAAAAAAAAAAAAAAAAAA4WBp1FwAAAAAAAAAAAAAAAAAAAAAAAAAgGA0AAAAAAAAAAAAAAAAAAAAAAAConWA0AAAAAAAAAAAAAAAAAAAAAAAAoHaC0QAAAAAAAAAAAAAAAAAAAAAAAIDaCUYDAAAAAAAAAAAAAAAAAAAAAAAAaicYDQAAAAAAAAAAAAAAAAAAAAAAAKidYDQAAAAAAAAAAAAAAAAAAAAAAACgdoLRAAAAAAAAAAAAAAAAAAAAAAAAgNoJRgMAAAAAAAAAAAAAAAAAAAAAAABq16q7ANgH5je/+PCHP1xXHQAAAAAAAAAAQ+nw3MN8p3kAMEGe0QMAAAAAAAAADjzP501Oqaqq7hqgVqWUZyV5W911AAAAAAAAAACMwe1VVf1q3UUAMLs8owcAAAAAAAAATCnP541Jo+4CAAAAAAAAAAAAAAAAAAAAAAAAAASjAQAAAAAAAAAAAAAAAAAAAAAAALUrVVXVXQPUqpRyNMmTNw39dZKzQyx5TZK3bXp9e5KPDLEeQL/0IWA/0IuAuulDQN30IaBu+hCwH+hFQN1mtQ/NJ7ly0+vfrarqs3UVAwCe0QOmkD4E1E0fAuqmDwF104eA/UAvAuqmDwF1m9U+5Pm8CWnVXQDU7Vxz+dVRrVdK2T70kaqq/mxU6wPsRR8C9gO9CKibPgTUTR8C6qYPAfuBXgTUbcb70PvqLgAAPsczesC00YeAuulDQN30IaBu+hCwH+hFQN30IaBuM96HPJ83AY26CwAAAAAAAAAAAAAAAAAAAAAAAAAQjAYAAAAAAAAAAAAAAAAAAAAAAADUTjAaAAAAAAAAAAAAAAAAAAAAAAAAUDvBaAAAAAAAAAAAAAAAAAAAAAAAAEDtBKMBAAAAAAAAAAAAAAAAAAAAAAAAtROMBgAAAAAAAAAAAAAAAAAAAAAAANROMBoAAAAAAAAAAAAAAAAAAAAAAABQO8FoAAAAAAAAAAAAAAAAAAAAAAAAQO0EowEAAAAAAAAAAAAAAAAAAAAAAAC1E4wGAAAAAAAAAAAAAAAAAAAAAAAA1E4wGgAAAAAAAAAAAAAAAAAAAAAAAFC7Vt0FwBS6O8md214DTJI+BOwHehFQN30IqJs+BNRNHwL2A70IqJs+BADTydd4oG76EFA3fQiomz4E1E0fAvYDvQiomz4E1E0fYqxKVVV11wAAAAAAAAAAAAAAAAAAAAAAAADMuEbdBQAAAAAAAAAAAAAAAAAAAAAAAAAIRgMAAAAAAAAAAAAAAAAAAAAAAABqJxgNAAAAAAAAAAAAAAAAAAAAAAAAqJ1gNAAAAAAAAAAAAAAAAAAAAAAAAKB2gtEAAAAAAAAAAAAAAAAAAAAAAACA2glGAwAAAAAAAAAAAAAAAAAAAAAAAGonGA0AAAAAAAAAAAAAAAAAAAAAAAConWA0AAAAAAAAAAAAAAAAAAAAAAAAoHaC0QAAAAAAAAAAAAAAAAAAAAAAAIDaCUYDAAAAAAAAAAAAAAAAAAAAAAAAaicYDQAAAAAAAAAAAAAAAAAAAAAAAKidYDQAAAAAAAAAAAAAAAAAAAAAAACgdq26C2CnUkozybVJbkzywCRHk5xJ8ukkH0nyh1VVLY/4nHNJnpjkQUkuS3I6yd8meV9VVR8b5bkmpZRyU5JHJDmRpJ3kE0n+Jsm7qqparbO2SSqlHE9yU5LrklyYZCHJZ5LcneS9VVV9pMbydiilXJWNj9sDkxxO8ndJ7kry7qqq7q2ztlmiD42GPrRBH2JQetFo6EUb9KKu53F/7EIfGg332YaD1ofYH/Sh0dCHNuhDW5VSrszGtbgiyUVJDiU5m+SzSf4qG9fk7voq3B/0odHQhzboQwxKLxoNvWiDXsQg9KHR0Ic26EOduT+AOvgaPxp6+IaD9jXeszH7gz40GvrQBn2IQehDo6EPbdCHup7H/bELfWg03GcbDlofYn/Qh0ZDH9qgD23l+bze6UWjoRdt0IsYhD40GvrQBn2IQehDo6EPbdCHOjvQ90dVVbZ9sGWjYb4iya9l45v7apftviRvT/LMEZz3RJI3JPmHXc73riRfPuR5rk7ylUlem+SdSf5p2zk+NqLreCTJdyf5+C5/n39K8rNJrqnx4z2265FkLsmXJPmPSf50j3upOnet/k2SS2v+HHheknfvUuc/nLtXLxpg7b2uwV7byTqvzQQ/BvrQaK6jPqQPbV7z5Ah60Obtjjqv0YQ+DnrRaK6jXqQXHfj7o8aPgT40mut4IO4zfai2+2MpyZOSfFuStyT5YJL1bee6o67rUPemD+lD+tDYrsd1Sb4/ye9k439q7HU9qiR/lOSbkrTruiY1fRz0odFcR31IH+q0fi+9Z7ftZF3XpoaPhV40muuoF+lFm9c9OYI+tHm7o65rNKGPgz40muuoD+lDB/7+sNls07X5Gj9bPdzX+I51e0av5k0f0of0Ic/o1b3pQ/qQPuT5vLo3fUgfmuU+NMH7w/N5u18ffWg011Ef0oe2r+35vP6ul140muuoF+lFndbvpf/stp2s69pM+OOgD43mOupD+tDmdU+OoAdt3u6o6xpN6OOgD43mOupD+tCBvz/2/HvUXYCtSpKfG+IL2v9McsmA5316kk/2ca43J1nqY/1bkrxjjy8KI/vETPLYbKRw9vr3WU7ysgl+nMd+Pc5dg38c8F76dJIX1nD/H07y833U+YkkX9LnOQb9/PrcdnLS16WGj4M+pA/pQ2PoQxn9N7JfOenrM+GPhV6kF+lFY+hFB+n+qHvTh/ShWexDk7w/svHG8Z9k4w3pvc51x6SuwX7a9CF9SB8a3/2R5CVDfH79vySPndQ1qXPTh/QhfWi898cQn1+f205O6rrUuelFepFeNLbrcXIEfWjzNrXvV0cf0of0oZm/P2w223RuvsbPRg/3Nb5rzZ7R2webPqQP6UOe0at7iz6kD+lDns+redOH9KFZ7EOTvD/i+bxerpE+pA/pQ2O6P+L5vH6ulV6kF+lFY7w/hvj8+tx2clLXpa5NH9KH9KGxXY+TI+hBmzfvVetDvXwO6kP60IG8P/rZWmE/uL7L+MeTfCgbzbWVjdS/m5M0Ns35Z0n+dynlyVVVfaLXE5ZSbkny1iTzm4arbKSsfzTJsSSPTHLRpv1fneSCUsqzq6pa7+E0j0jytF5rGkYp5bZspIG2t+26K8kfZ+OT8IpsfPLOndu3mOQNpZRGVVX/aQJlTuJ6nEhyvMP42Wy8uf2JbCSmPiDJo8/993OOJfnZUsrFVVW9fsx1JklKKc0k/z3JM7btujvJ+87Vek027sVybt8lSd5WSrmtqqrfn0SdM0IfGpI+dD99aHxWspFoPc30oiHpRffTizqf5yDcH3XTh4Z0QO4zfWirid0fSV6Q5OiEznVQ6UND0ofupw/trcrGm/wfzsb/WFjJxm/MvSrJTTl/fyQbn5u/XUp5ZlVVvzvpQidMHxqSPnQ/fYhh6EVD0ovupxeNz7S/X60PDUkfup8+1MEBuT+A6eRr/JAOSA/3NX6bA/ZszLTTh4akD91PHxof73noQ7vSh+6nD3U+z0G4P+qmDw3pgNxn+tBWns/bX/ShIelD99OH9ub5vO70oiHpRffTixiUPjQkfeh++tD4eK9aH9qVPnQ/faiDA3J/9K7uZDZblSR/mPMpen+U5JuTXNNl7uVJfjw70/d+L0np8XxXZGfq4e8neei2ee0k35qNT/rNc7+/x/O8okOdVZLVbLyhMZLEwmykp25PRfxwkqd2mHs8yY9um7vWae4YPs5jvx7Z+EL+uTVOJfmpJLcmOdRhbknynGw0r+01jf16nKvhtdvOe/bc/T+/bd6NSd69be7fJ7msx/NsPu495+6ZfrbWJK5HnVv0IX1IHxpLH8rGN1579Zhu2+9vO98bJ3FN6tyiF+lFetHY/k10UO6Pujd9SB+axT40qfvj3Lk+0+Vcf9Nh3x3j/rvvx00f0of0obHeH1+f5C+y8W+vZyY5vsvcY0m+PRv/A2Tz+T+e5Oi4r0mdmz6kD+lDY//30Oa1vFfd/TrpRXqRXjSe6+H96t6vlT6kD+lDM35/2Gy26dx8jZ+NHu5rfMd6PaO3T7boQ/qQPjSWPhTvefTzsdCH9CF9aEz/Hjoo90fdmz6kD81iH5rU/XHuXJ7P2/sa6UP6kD40vvvD83m9Xyu9SC/Si8b7b6LNa3mvuvM10of0IX1oPNdaSfFZAAAgAElEQVTDe9W9Xyt9SB/Sh2b8/ujr71R3AbYqSf5vNtL2Ht3HMd/Y4Yb/qh6P/altx70rycIu85/d4RPrwT2c5xXnmv77kvxEkn+R5FHZSAy8ZYSfmD+/ba0PJbl4j2O+c9sxf5akOeaP89ivx7nG/cn8//buPFqatKDv+O8ZEBjWUZBBQBj2oLiAmAhqHA0YiEeQJS64MIL7cqLRHA9CTlATjYnrOfEoUQTEJRIEREEgiANuuJ1BQEcEdVCUQVZxhlnhyR99573d1ff27equ7qqu+nzO6T+q3q7l9vu837rvc+vUTb4jyW3W3OaOSf68cfzLs+Y3Alt8HvfO8jcFj13x/vOz/IPGn1rzWPPbXLrLr+tQXzqkQzq02w5tcG53S3Jj41ifvcvPYwgvLdIiLdpdiw5lfPT90iEdmmiH9jI+jo71gcx+08LLknzP0ed04dGfXdo41iW7/LqH+tIhHdKhnY6Pj9pgm09NclXjHL5rl59H3y8d0iEd2vn3Q/P7unSXX9chv7RIi7Roty3a4NwmN1+tQzqkQ8aHl5fXOF+u8dNouGv80nHdozeglw7pkA7ttkMbnJs5j/W20aHj4+jQ8TF06EDHR98vHdKhiXbI/XkDeumQDumQ+/OG8NIiLdIi9+j1/dIhHdIh9+f1/dIhHdIh46PV19T3CXjVJLlow+1e2BhcL1tjm/s1LozXJbnfGts9t3Gsn11jm48+7YLQYajundkTB+f39VlrbvuaxnZP2fHf8z4+j49dN9iN7T7lhM/x03f8eTyvcbznrLHN/Y/G7E3b3JDk3mtsN3+cS3f5dR3qS4d0SId226ENzu3pjXP7y11+FkN5aZEWadFuWnRI46Pvlw7p0EQ7tPPPY25/p/4G3bjx6qbP4aINt9MhHWruR4e6O7/vbZzD6/d9Dnv+ei/acDsd0qHmfnTo5P3N7+vSXX5dh/zSIi3Sot18Hluc2+Tmq3VIh3TI+PDy8hrnyzV+Gg13jV86pnv0BvTSIR3Sod12aINzM+ex/nY6pEPN/ejQgY6Pvl86pEMT7ZD78wb00iEd0qHdfB5bnt+k7s87+pov2nA7LdKi5n606OT9ze/r0l1+XYf60iEd0qHdfB5bnJu56vW30yEdau5Hhw50fLR5nRd6V2u9YsNNf6Kx/LlrbPOkJDebW35RrfWta2z3g43lLy6l3GrVBrXW99dar11j39v4gmRhHL++1vo7a277Q43lr+7mlE62j8+j1vruWuvVG2z3p0man9s642kjpZTzkzyxsbo5xpbUWv8yyUvmVt08szHNlnRoKzq0eAwd2lIppWR5LDy7y2MMlRZtRYsWj6FFiw5mfPRNh7ZyMONMh5aOuY/xcdOx3rmP4xwyHdqKDi0eQ4e68/LG8n17OYs90aGt6NDiMXSIjWnRVrRo8RhatKWpzlfr0FZ0aPEYOrToYMYHME6u8Vs5mIa7xh8b8r0xU6VDW9GhxWPo0JbMebSmQzrUPIYOLTqY8dE3HdrKwYwzHVo6pvvzBkSHtqJDi8fQoe5M6v68RIu2pEWLx9AiNqJDW9GhxWPo0JbMVbemQzrUPIYOLTqY8dGGB6Mdtssay+eXUi44Y5vHNZafs86Baq2XJ/mDuVW3SfL562y7Y/+6sfzKFtv+ZpLr55YfXkr5uO1P6WA1x9Ndd3isf5vk1nPLv19r/Ys1t22O2cd3c0psSId0qEs6NPM5Se4zt3xjZr+xjtNpkRZ1aYwtMj52T4eMsy7ts0OMhw7pUJd0aNH7Gsu36+Ushk+HdKhLOsSmtEiLuqRFM+ar29EhHerSGDtkfACHyjVew7s0xp9Hs3s6pENd0qEZcx7t6JAOdWmMHTI+dk+HjLMujXHuld3TIR3qkg4tcn/e+rRIi7qkRWxCh3SoSzo0Y666HR3SoS6NsUOjHB8ejHbYbjxh3S1Oe3Mp5S5JPqWx/e+2ON6ljeVHt9h2V+7eWH7zuhvWWq9L8ra5VedlGF9TX5rj6dSx1IFHNZYvbbHtb2fxXB9cSrlw6zNiUzqkQ13SoZmnNpZfVmu9ssP9j5EWaVGXxtgi42P3dMg469I+O8R46JAOdUmHFt2zsfwPvZzF8OmQDnVJh9iUFmlRl7Roxnx1OzqkQ10aY4eMD+BQucZreJfG+PNodk+HdKhLOjRjzqMdHdKhLo2xQ8bH7umQcdalMc69sns6pENd0qFF7s9bnxZpUZe0iE3okA51SYdmzFW3o0M61KUxdmiU48OD0Q7bfRvLNyZ5z4r3P6ix/MZa69Utjvd7jeVPbLHtrnxMY/kDLbdvvv+TtjiXQ9ccT+/c4bGaY/H3193waMy+qbF6CGNxqnRIh7o0+Q6VUu6Q5AmN1c/uYt8jp0Va1KUxtsj42D0dMs66tM8OMR46pENd0qFFX9VY/q1ezmL4dEiHuqRDbEqLtKhLk2+R+eqN6JAOdWmMHTI+gEPlGq/hXRrjz6PZPR3SoS5NvkPmPDaiQzrUpTF2yPjYPR0yzro0xrlXdk+HdKhLOrTI/Xnr0yIt6pIWsQkd0qEuTb5D5qo3okM61KUxdmiU48OD0Q7bExvLf1xr/ciK939CY/ltJ77rdH91xv76cH1j+ZYtt2++fwhf096VUm6f5JGN1X+4w0M+sLG8z7F4j1LKc0opf1ZKeX8p5fpSyruOln++lPJ1pZRm8DmdDulQJybWoVW+LMn5c8vvTPIbHe17zLRIizox4hYZH7unQ8ZZJ3roEOOhQzrUCR1aVEr55iRfMbfqxiQ/1tPpDJ0O6VAnJtYhc9Xd0yIt6sTEWrSK+er2dEiHOjHiDhkfwKFyjdfwToz459EnMe/RLR3SoU5MrEOrmPNoT4d0qBMj7pDxsXs6ZJx1YsRzr+yeDulQJ3RokfvzWtMiLerExFpkrrpbOqRDnZhYh1YxV92eDulQJ0bcoVGODw9GO1CllNsmeWpj9YvP2Kz5xMK/bXnYtzeW71hK+eiW++jaexvLH9dy++b7H7DFuRyyr09y67nlf8qOnq5/9J/E5n8U247F5vvv12LbeyW5JLMIX5Dko5Lc+Wj5y5M8K8nfllJ+9OjfGafQoXN0qBtT6tAqzX9Tz6u13tjRvkdJi87Rom6MtUXGxw7p0DnGWTf21iHGQ4fO0aFuTLpDpZTblFIeUEp5cinltUn+V+MtT6u1vrGPcxsyHTpHh7oxpQ6Zq+6QFp2jRd2YUotWMV/dgg6do0PdGGuHjA/g4LjGn6Ph3Rjrz6NPYt6jIzp0jg51Y0odWsWcRws6dI4OdWOsHTI+dkiHzjHOujHWuVd2SIfO0aFuTLpD7s/bnBado0XdmFKLzFV3RIfO0aFuTKlDq5irbkGHztGhboy1Q6McHx6Mdrh+IMld5pY/kORnztjmgsbyP7Y5YK31qiTXNlbfoc0+duDyxvJnrLthKeUeSe7aWN3317N3pZSLkvznxuofr7U2nwbZleY4/FCt9eqW+2iO3a7/3m6T5NuS/Ekp5RM73veY6NCMDm1Jh2ZKKZ+U5KGN1c/edr8ToEUzWrSlkbfI+NgtHZoxzrbUQ4cYDx2a0aEtTa1DpZQLSil1/pXkqiR/keS5Sf713NuvSvJ1tdYf6uFUD4EOzejQlqbWoTWZq16fFs1o0Za0aMZ89UZ0aEaHtjTyDhkfwCFyjZ/R8C2N/OfRmzLvsR4dmtGhLenQjDmPjejQjA5taeQdMj52S4dmjLMtjXzuld3SoRkd2tLUOuT+vM5p0YwWbWlqLVqTuer16NCMDm1Jh2bMVW9Eh2Z0aEsj79Aox4cHox2gUsrjknxLY/XTa63vO2PT5tOKr9ng8M1tbrfBPrr02sbyE0optz7xncu+6oR1fX89e1VKuUWSX87i131Fkv+xw8P2NQ5vTHJpkmckeUySh2T2W5senOSxSX4oy9/M3D/Jq0sp99zgHEdNhxbo0BYm1qGzNJ9U/dpa69s62O9oadECLdrCBFpkfOyIDi0wzrbQU4cYAR1aoENb0KFTvSvJ05Pcq9b6032fzBDp0AId2sLEOmSuumNatECLtjCxFp3FfHULOrRAh7YwgQ4ZH8BBcY1foOFbmMDPo+eZ9+iQDi3QoS1MrENnMefRgg4t0KEtTKBDxseO6NAC42wLE5h7ZUd0aIEObUGHTuX+vDVo0QIt2sLEWmSuukM6tECHtjCxDp3FXHULOrRAh7YwgQ6Ncnx4MNqBKaV8SpKfa6x+VZKfXGPzZribT6dcRzPczX3u28sye5rnTS5I8syzNiqlfHyS7zzhj25WSjm/m1M7CD+T5F/OLX84yZM3+G1IbfQxDp+R5G611s+ttf63Wuuv1Vovq7W+rdb6hlrrS2ut/ynJPZP89yR1btu7JHlRKaVscJ6jpENLdGg7U+nQSkffSH9FY7Wne6+gRUu0aDtjb5HxsQM6tMQ4204fHeLA6dASHdqODp3swiTfkOQbSym37/tkhkaHlujQdqbSIXPVHdOiJVq0nam0aCXz1e3o0BId2s7YO2R8AAfDNX6Jhm9n7D+Pvol5jw7p0BId2s5UOrSSOY92dGiJDm1n7B0yPnZAh5YYZ9sZ+9wrO6BDS3RoOzp0MvfnnUGLlmjRdqbSInPVHdKhJTq0nal0aCVz1e3o0BId2s7YOzTK8eHBaAeklHKPzAbifCzfnuQraq315K1W2tc2O1Nr/eckP95Y/Z2llP9w2jallLsneUWSO5y2245Ob9BKKd+X5Csbq59Wa33dnk9l5+Pw6D+vzad3n/S+a2utT0vyrY0/ekiSL2tzzLHSoWU6tLkpdWgNj01yx7nlf0rywo6PMRpatEyLNjeFFhkf3dOhZcbZ5gbUIQ6IDi3Toc1NuEMfTHKvudd9MpsDenySH03y7qP3fXyS703yplLKp/dwnoOkQ8t0aHNT6pC56m5p0TIt2tyUWrQG89Vr0qFlOrS5KXTI+AAOhWv8Mg3f3ICu8e7ROyA6tEyHNjelDq3BnMeadGiZDm1uCh0yPrqnQ8uMs80NqEMcEB1apkObm3CH3J+3JS1apkWbm1KLzFV3R4eW6dDmptShNZirXpMOLdOhzU2hQ2MdHzfv+wRYTynlzkn+X5K7za2+Mskja63vPnmrJVc1ljd5Ml9zm+Y++/D9SR6d4yczliQ/Vkp5YmZPR31DZk/ivOvR+74xxxe/dyS5+9y+rq21Lj3ps5Ry0bonU2u9otXZ96CU8m2ZPfV63o/UWv/nmttftO6xTvg8Bj8Oa60/UUr5/CSPmVv9TUl+scvjHBodWkmHWtKhJU9tLP9irbX5FGmiRWfQopYm1qKdj4+p0KGVdKilnjvEgdKhlXSopSl3qNb6kSRXnPBHlyV5cSnlGUl+MMm3HK2/R5JXl1I+s9b65v2c5TDp0Eo61NKUO7QOc9Wn06KVtKglLVpivnoNOrSSDrU0sQ6ZqwYGzTV+Jdf4lib28+jWzHucTIdW0qGWdGiJOY816NBKOtTSxDpkzqMjOrSSDrU0sblXOqJDK+lQS1PukPvztqNFK2lRS1Nu0TrMVZ9Mh1bSoZZ0aIm56jXo0Eo61NLEOjS6uWoPRjsApZSPSfLqJPefW/2eJI+otb61xa5GGe5a6/WllMcneXmST577o886ep3mvZl94/DKuXUfOOW9f9PilEqL9+5dKeVrk/xIY/VP1lq/o8Vutvk8DmUc/kAW/yP7GaWUC2qtp42RUdOh1XSoHR1aVEr5+CSPbKx+9qb7GzMtWk2L2plai/Y0PkZPh1bToXYG0CEOkA6tpkPt6NBqtdYPJfnWUsoNSb79aPXtk/xcKeXTNvwNQwdPh1bToXZ0aG3mqhu0aDUtakeLFpmvXo8OraZD7UytQ+aqgSFzjV/NNb6dAVzjD2UcmveYo0Or6VA7OrTInMd6dGg1HWpnah0y59ENHVpNh9oZQIc4QDq0mg61o0OruT/vdFq0mha1o0VrM1c9R4dW06F2dGiRuer16NBqOtTO1Do0xrnq8/o+AVYrpdwhyauSfNLc6vdn9iTLP2u5u39qLH9sy3O5bZbDPYiBXGv9+yQPT/KsJDessclvJXlokqsb66/s+NQGpZTylUl+KosxfU6Sb97jaTTH4a1LKbdpuY87N5Z3MQ7/MLN/aze5WZJP2MFxBk+H1qND69GhE12Sxe/J/rTW+idb7G+UtGg9WrSeqbbI+NiODq3HOFvPQDrEgdGh9ejQenSolacn+Ye55QcneURP59IrHVqPDq1Hh1oxVz1Hi9ajRevRohNdEvPVK+nQenRoPVPtkPEBDJFr/Ho0fD0DucYP7d6Y05j3OKJD69Gh9ejQiS6JOY+VdGg9OrSeqXbI+NiODq3HOFvPQDrEgdGh9ejQenSoFffnzdGi9WjRerSoFXPVR3RoPTq0Hh060SUxV72SDq1Hh9Yz1Q6NbXx4MNqAlVJul+QVST5tbvUHkzyq1vqGDXbZfPrlPVtu33z/+2qt7z/xnT2otV5da/2GJA/IbELkt5K8I8k1Sf45yeVJnpfZU1T/Ta31iiQPbOzmj/d2wntWSvnSzCI9/+/+F5J8zT6foF9rfW8W/4OYJPdouZvmWGzzZNe11Fo/kuRvG6tbfbMzBjrUjg6tpkPLSiklyVc3Vnu6d4MWtaNFq029RcbHZnSoHeNstaF0iMOiQ+3o0Go61E6t9ZokL2msflQf59InHWpHh1bToXbMVR/Tona0aDUtWma++mw61I4OrTb1DhkfwJC4xrej4asN5Ro/pHtjVjHvMaND7ejQajq0zJzH2XSoHR1abeodMj42o0PtGGerDaVDHBYdakeHVtOhdtyfd0yL2tGi1bSoHXPVMzrUjg6tpkPLzFWfTYfa0aHVpt6hMY2Pm/d9Apzs6LfRvDzJZ8ytvirJo2utf7jhbi9vLN+35fb3biz/+YbnsVO11r9J8v1Hr7M8rLH8B6fss5y0/lCUUp6Q5PmZPaX6Jv83yZOP/sPWSgefx+WZPWHyJvfN8vhcpTkW22zbxjWN5eYTXUdNhzanQ8t06FSfl+Rec8vXZfZNNUe0aHNatEyLju1ifIyVDm1Oh5YNsEMcAB3anA4t06GNvaWx3PbfzEHToc3p0DId2tik56oTLdqGFi3TolOZr15BhzanQ8t06Ji5aqBvrvGbc41fNsBr/FDujTnLpOc9dGhzOrRMh05lzmMFHdqcDi3ToWPmPNanQ5vToWUD7BAHQIc2p0PLdGhjk74/L9GibWjRMi3amLlqHdqIDi3ToVOZq15BhzanQ8t06NgY5qrPO/st7Fsp5fwkv57ks+ZWfyjJF9Raf2+LXb+5sfzJpZRbt9j+M8/Y30E5eqrq5zVWv7aPc9mlUspjkvxSFh+E+JIkT6q1frifs1oaO81Anurom5pPPmN/XblTY/k9OzrO4OjQfuiQDiV5SmP5RbXW9224r9HRov3QIi064ziTGB+n0aH9mMo4G2iHGDgd2g8d0qE13NBYvmUvZ9EDHdoPHdKhNUx2rjrRon3RIi2K+epT6dB+6JAOrTKV8QHsl2v8fkyl4QO9xg/+59FHJjvvoUP7oUM6FHMep9Kh/dAhHTrjOJMYH6fRof2YyjgbaIcYOB3aDx3SoTVM9v68RIv2RYu0aA3mqnVop3RIh2Ku+lQ6tB86pEOrDHl8eDDawJRSbpXkpUkunlt9bZLH1Fpft82+a63vTPLGuVU3z+LF4SwXN5Z/Y5vzGYDPS3LR3PJra61v7elcdqKU8u8ye3LlR82tflmSL6m13tjPWSVJXtFYvrjFtp+dxYvQZbXWd219Rg2llDtl+Smu/9D1cYZIh/ZKh/rTe4dKKRckeXxj9bPb7mestGivtKg/vbdoDaMfH6fRob0a/TgbcIcYMB3aKx3iLHdvLO/i+67B0aG90iFONeW56kSL9kyLJsx89el0aK90iFVGPz6A/XKN36vRN3zA1/jB/zx6yvMeOrRXOtSf3jtkzuN0OrRXOtSf3ju0htGPj9Po0F6NfpwNuEMMmA7tlQ5xlknen5do0Z5pEacyV61De6JDE2au+nQ6tFc6xCqDHR8ejDYgpZRbJHlRkkfMrb4uyRfVWn+zo8O8uLH81Wue279I8q/mVl2d5FUdnVNfvqux/KxezmJHSimPTPIrSW4xt/pVSZ5Qa72+n7M655VJrplbftjRGFvHJY3l5pjuypdmsZHvSnL5jo41GDq0dzrUnyF06MuT3Gpu+Yokr9lwX6OiRXunRf0ZQovOMurxcRod2rtRj7OBd4iB0qG90yHO8vmN5UFM7u+SDu2dDrHKJOeqEy3qgRZNm/nqE+jQ3ukQq4x6fAD75Rq/d6Nu+MCv8Yfw8+hJznvo0N7pUH+G0CFzHifQob3Tof4MoUNnGfX4OI0O7d2ox9nAO8RA6dDe6RBnmdz9eYkW9UCLWMVc9TEd2h0dmjZz1SfQob3TIVYZ7PjwYLSBKKXcPMkLkjx6bvUNSZ5Ya31lh4f6hSQfnlt+fCnlfmts1xzEL6i1Xtvdae1XKeXJSR45t+oNmT35cRRKKZ+T5Fez+A3SazL7JuC6fs7qWK31Q0le2FjdHGNLSin3T/K4uVU3JvnFDk/tpuNcmOQZjdW/VmutXR9rSHRov3SoXwPp0FMayz879s6sQ4v2S4v6NZAWrTrOqMfHaXRov8Y+zobeIYZJh/ZLhzhLKeULkjy0sfpX+ziXfdGh/dIhVpnqXHWiRfumRcR89RId2i8dYpWxjw9gv1zj92vsDR/6Nf4Afh49yXkPHdovHerXQDpkzqNBh/ZLh/o1kA6tOs6ox8dpdGi/xj7Oht4hhkmH9kuHOMsU789LtGjftIhVzFXr0D7oEDFXvUSH9kuHWGXo48OD0QaglHKzzIL62LnVNyb5klrrr3d5rFrrW5M8b27VLZI8t5Ryq1M2SSnlsVn8jTfXJ/meLs9rW0cXvnXf+/gkPz236sYkT6m13tj5ifWglPKwJL+e5Py51a9L8oW11mtO3qoXz8zsm5ObXFJKecxpbz4ao8/J4hM6n11r/asV2zyglPKFbU6qlHKXzD6/C+dWX5/kB9rs59Do0PZ06JgOna2U8qlJHjK36iNJntt2P2OjRdvTomNadOK2xscZdGh7xtmxA+oQA6JD29OhYzp0rJTy0FLK485+59J2n57k+Y3Vr6u1vqmbMxseHdqeDh3ToWPmqtvRou1p0TEtOpv56mU6tD0dOqZDy4wPoC+u8dvT8GMHdI1/ZtyjNxg6tD0dOqZDZzPnsUyHtqdDx3ToxG2NjzPo0PaMs2MH1CEGRIe2p0PHdOiY+/Pa0aLtadExLTpmrnp9OrQ9HTqmQ2czV71Mh7anQ8d0aNnYxsfaXww79bNJvrix7ruTXFZKuajlvq5c40mT/yWz32Dz0UfLD0/y6lLK19Ra/+KmN5VSbpnk65L8cGP7H661vn2dkyml3D0nj7O7NJZvvuJrvarW+p4zDvWmUsrLkvxKkj+otX7khHN5UJKnJXlS44++u9Z62Rn778SuP49SyoOT/EaS286tfkuSb05y51JKm9O9ttZ6ZZsN2qi1/nUp5ceTfOfc6heWUv5jkv9da73+ppWllAcm+ZnMxupN3puzv4H4uCQvLaW8KcnPJ3nx0TcvS0opt0vy5Mye7H1h44//a631r9f4sg6ZDumQDs103aHTPLWx/Mpa699tuK8x0SIt0qKZXbXoIMZHz3RIhybXoWR/46OUctskdzrlj5sTyndacax3DGlyrWM6pEM6tKir8XH3JC8qpbw5sx+gvSTJW2o9+bcslVI+IcnXJ/mmxnlde7RuzHRIh3RoUVfjw1x1O1qkRVq0qOvx0WS+epkO6ZAOLZrk+ABGyTV+Ig13jT/mHr3B0SEd0qEZ9+j1R4d0SIdm3J/XHx3Socl1KHF/3sDokA7p0CL35/VDi7RIixa5R2//dEiHdGiR+/P2T4d0SIcWTXJ8rK3W6tXzK0nt8HXxmse8OMl1jW0/kuSPkvxyklck+ccT9v9rSW7W4mu7ooOv6blrHOc9c+//5yS/l9k/0l9I8qoV5/F9e/673unnkdlvNOpqLF26h8/jZklefsKx35XZBegFSf74aGzO//l1ST57zXHe3PcHkvxOZhNsz0/y4qNj3HDK5/Csvhuxp7GpQzqkQzvo0CnHvGVmN0rM7+8JfTZgKK8Ox44WadEzOxxLl+7h89hLiw5lfPT56nDc6NDAx9muP48cXof2NT4u6egzuajvXuzw70KHdEiHdvN5fNEJ7//g0fh4aWY3QLwgyauTXHnK/j+U5BF9d2IPfxc6pEM6tJvP4+IT3m+u+vTPS4u0SIt2OD4axzRfffLnokM6pEPGh5eX1whfHTbZNX7gDd/155HDu8a7R28grw7HjQ7p0DM7HEuX7uHzcI/eQF4djhsd0qFndjiWLt3D5+H+vIG8Ohw3OjTwcbbrzyOH16F9jY9LOvpMLuq7Fzv8u9AhHdKh3Xwe7s9r9/ehRVqkRbv5PC4+4f3mqk/+rHRIh3Roh+OjcUxz1Sd/LjqkQzpkfKz9OulJckxArfXSUsrjkjw3yccerS5JHnr0OskvJfnaWuuHd3+GW7ltkoed8Z73J/mmWuv/2cP5cIpa64dLKV+c2W9W+pK5P7pzkkedstk/JnlyrfW3NzzsHZJ85hrvuzrJt9daf3rD43AGHdKhIeipQ49L8jFzy+/ObKKfHmiRFg1BTy0yPgZCh4wz6JsO6dCE3S5nj4+bvD7J19da37jD85ksHdKhCTNXPSBapEUTZr56IHRIhybM+ABGzTVew4fAPXrTpkM6NATu0Zs2HdKhIXB/3rTpkHEGfdMhHZow9+cNiBZp0YSZqx4IHdKhCTNXPRA6pEMTdvDj47y+T4D+1FpfnuRBSX4qs4F6mtcneWKt9Um11qv3cnLt/ViSyzJ7Kucqf5fke5PcZ6j/KKem1npVrfVLk/z7zMbaad6X5CeTPKjW+jbdgAcAAAUCSURBVIo1d395ku9P8rtJrllzm79M8t2Z/YYT/4ndMR3SoSHYcYdO8tTG8vNrrTdssT+2pEVaNAR7apHxMVA6ZJxB33RIhybgNZn9VtxfSvKONbf5UJIXJvnCJA9309Vu6ZAOTYC56gOgRVo0UearB0SHdGhCjA9gUlzjNXwI3KM3bTqkQ0PgHr1p0yEdGgL3502bDhln0Dcd0qEJcH/eAdAiLZoAc9UDp0M6NFHmqgdEh3RoQkY1Pkqtte9zYABKKbfI7KnH90xyl8yebvz3SS6rtf5Nn+fWRinl9kkenORemT2p81aZ/Qfm75P8aa31z3s8PdZQSrlXkockuWuS2yS5Msnbk/xurfX6LfZ7XpL7JblPkrsluSDH4+P9Sd6Z5I9qre/e6gtgYzrEUOyqQxwGLWIodtki42PYdAjomw4xBaWUC5M8MLNxfsckt05yQ5IPJnlvkjcnecsB/GafUdIhxs5c9WHQIqBvOsQUGB/AFLnGMxTu0ZsuHWIo3KM3XTrEULg/b7p0COibDjEF7s8bPi1i7MxVD58OAX3TIaZgLOPDg9EAAAAAAAAAAAAAAAAAAAAAAACA3p3X9wkAAAAAAAAAAAAAAAAAAAAAAAAAeDAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgdx6MBgAAAAAAAAAAAAAAAAAAAAAAAPTOg9EAAAAAAAAAAAAAAAAAAAAAAACA3nkwGgAAAAAAAAAAAAAAAAAAAAAAANA7D0YDAAAAAAAAAAAAAAAAAAAAAAAAeufBaAAAAAAAAAAAAAAAAAAAAAAAAEDvPBgNAAAAAAAAAAAAAAAAAAAAAAAA6J0HowEAAAAAAAAAAAAAAAAAAAAAAAC982A0AAAAAAAAAAAAAAAAAAAAAAAAoHcejAYAAAAAAAAAAAAAAAAAAAAAAAD0zoPRAAAAAAAAAAAAAAAAAAAAAAAAgN55MBoAAAAAAAAAAAAAAAAAAAAAAADQOw9GAwAAAAAAAAAAAAAAAAAAAAAAAHrnwWgAAAAAAAAAAAAAAAAAAAAAAABA7zwYDQAAAAAAAAAAAAAAAAAAAAAAAOidB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9M6D0QAAAAAAAAAAAAAAAAAAAAAAAIDeeTAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgdx6MBgAAAAAAAAAAAAAAAAAAAAAAAPTOg9EAAAAAAAAAAAAAAAAAAAAAAACA3nkwGgAAAAAAAAAAAAAAAAAAAAAAANA7D0YDAAAAAAAAAAAAAAAAAAAAAAAAeufBaAAAAAAAAAAAAAAAAAAAAAAAAEDvPBgNAAAAAAAAAAAAAAAAAAAAAAAA6N3/B89nvm568KCIAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor, Config\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 5), dpi=300)\n", + " configs = get_known_configs()\n", + " to_display = configs[\"Relative humidity\"], configs[\"Ambient temperature\"]\n", + " for i, config in enumerate(to_display, start=1):\n", + " plot = figure.add_subplot(1, 2, i)\n", + " coros.append(plot_sensor(config, plot, {}))\n", + " await asyncio.gather(*coros)\n", + "\n", + "display(figure)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAE0YAAAmZCAYAAAAwyqtnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdd5RkVbX48e8eZkiSGXIaJAoIKElRkiBREZAgQRyCOYvx93yK+MxZjKBkQRHBwEMMKPoQUBBEJKkIKEgecmZm//44NVJ9+1Z3pe7qnvl+1uoFd997ztlVdavWmu5d+0RmIkmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmDNGXQCUiSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJknoQEVn5OXrQOUmavPxMkSRJkiRJkiRJkiRJkqT5S0QcXa0dG8txgxIRM2pq5GbOL+tLkiRJkqT2TR10ApIkSZIkad4WEVOBDYDnAEs1fhYAHgEeBm4FbgZuzswnBpSmJEmSJEmSJEmSJEmSJEmSJEmSJEmSpAGzMZokSZIkSeq7iFgI2Bs4HHgxsEgbw56KiL8AlwG/AX6emfeMXZaSJEmSJEmSJEmSJEmSJGk0ETEDuKmDIU8ADwIPADcCVwKXAj/NzCf7nd9cEfES4IKaUz/LzF37tMb2wK9HuGSHzLywD+scCpw8wiVrZubNva4jSZIkSZIkTURTBp2AJEmSJEmat0TEnsDfgTOAl9JeUzSAacDzgNcB3wHujIgvj0mSktQnEXFzRGTTz0mDzkmSJEmSJEmSJEmSJEkasIWA5YC1gV2A9wM/BG6LiE9FxGJjtO4RLeIvjYjVx2jNqsMn2DySJEmSJEnSpGNjNEmSJEmS1BdRfA34EbBqH6acAoxXIZIkSZIkSZIkSZIkSZIkSRpb04H3An+JiBf2c+KIWArYp8XpKcDMfq43gldGxBK9TBARzwa27VM+kiRJkiRJ0qQzddAJSJIkSZKkecY3gNe1OPdP4FfANcDdwCPAYsDSwDrAZsAmlF0iJUmSJEmSJEmSJEmSJEnSxPYI8PcW5xYFlgGWbXF+DeD8iNguM//Up3wOBhYe4fxhEfHRzMw+rdfKosABwPE9zHE4EP1JR5IkSZIkSZp8bIwmSZIkSZJ6FhF7Ud8U7QrK7o6/Gq2YKCIWBXYF9m78PKvfeUrSRJeZFjRKkiRJkiRJkiRJkiRpMrg8M7cf6YKIWBV4OXAUsFbl9BLAWRHxnMx8qg/5HFE5ToY2F5sB7Aj8sg9rVd1H2Sh2rsPpsjFaREwBXlMJz6I0mtM8KjOPBo4ecBqSJEmSJEkTxpRBJyBJkiRJkia3iAjgCzWnzga2zswL2tlhMTMfzcyzM/PVwCrAO4G/9TdbSZIkSZIkSZIkSZIkSZI0HjLz1sz8OrAJpaawai3g9b2uExGbAs+rhL8APFmJHd7rWi18F5jddPyCiHhOl3PtAqzadHw/8NNuE5MkSZIkSZImIxujSZIkSZKkXm1N2Umx2W3AzMx8opsJM/OBzPxiZr6n1+QkSZIkSZIkSZIkSZIkSdLgZOYjwMHAdTWnX92HJY6sLgl8CTi3Et8nIpbuw3pV/wZ+Xol124StOu504PEu55IkSZIkSZImJRujSZIkSZKkXu1WEzspMx8a90wkSZIkSZIkSZIkSZIkSdKEk5mPA5+oObV5RCzT7bwRsTBwUCV8YWb+Ezi5El+I0qBtLJxQOX51REztZIKIWBbYc5R5JUmSJEmSpHleR79YkyRJkiRJqrFGTeyP455FCxGxPLA5sHzjZzZwF3AncGlmPjjA9IZo5Lo+sBawFPAs4CFgFnAb8IfMfHicclkK2KIplymNPH6ambeMUw6rA88HVgaWBh4GbgIuy8zbxymHRYAtgZUo989iwL3A3cBVmXnjOOSwJPACYB1gScrzcDdwRWZeP4brbgSsTXncywKPNta9mfIaPDVWazfWXwDYFNgAWAFYGHgE+HNmXtDm+GdT3lOrAEsACwD3NX6uB67OzDlj8gAmiIgI4LmU+2c5YBngAcrn4E2U+2jMn4NB3ceSJEmSJEmSJEmSJEmaUM6viU0B1gMu6XLOfSj1Zc1Oafz3PEqNynJN544AvtLlWiP5MXAPML1xvAKweyPerkOABZuO/5yZfywlQBPD/FiXFRGrUB7vDErt0yLAg5Sayn9S6ukeH1iCfRIRC1JqBtcHVqS8tlAe5yzK63rDOOUylVL7uyHlPTUHuJ1S83ZpZs4ejzzaNRFqTSVJkiRJmtfYGE2SJEmSJPVq+ZrYI+OeRZNGgcFbgAMojbVaVQU9HRGXACcBJ493oURELE7Z3XFnYHtg9VGGzI6IK4FvAqdk5pNdrHkS8Jqm0C2ZOaPp/G7Au4AdKMVKVYdRnq8x0Wji9BrgTZTGbHUyIn4HfCozz20aezNDG/WdnJkzu8hhCmVX0EOAbSkNuVpdexNwJvDZzLynw3VOYuTXYlPgg5R7ZFqLOW4BPgd8ox+NyiJiY+AdwC6UhnStPBwRv6S8Bpd2uMb2wK8r4R0y88LG+dWB91J2ca0WLAL8BqhtjBYR61AKHV8CvIjSXHAkD0TELyiv3+/bzH8GpbiqlddExGtGOA9AZtZ+LkVEVkIfycyj28mtMs+6lOdxd0qxVSv3RsTPKM/BlV2scxIT7D6WJEmSJEmSJEmSJEnSxJSZd0fEgzzTcGmu6XXXt+mIyvGjwFmN9Z6OiNOBtzed3zQintdNrcxIMvPJiPhOZa3D6awx2uGV4xN6TqwPxqMuq7HO1cBGTaG7gVV6qSmKiAOB0yvhN2fm10YYMx3YG9gJ2I7S5G4kT0bEpZSGez/opilcRBwNfLg51qrGrJ8a9V17UWpGtwIWGuX6u4FzKa/ttWOQzwrA+4GZlE1969wVEWcCx2Tm3f3OoV3jVWsqSZIkSdL8asqgE5AkSZIkSZNe3S53a9TExkVEHAD8Dfg0sBmtm6JBaRq/DfBt4KqI2HbsMywi4tPAXcBpwKGM3hQNSqOyzYHjgRsjYps+5rNYRJxF2SFzJ+qboo2pRsOp3wIn0ropGpTX9MXATyLiexGxaB9z2BW4mrJj6M6MUKjSsCbwPuAfEfH2Ua5tN4cpEfFR4HLglbRoJtWwBvBl4PcRUdeksN01V2oU5f2J0vxupKZoUHYz3Au4JCJ+GBHLdLt2JY8jgOuAN1PfFK3VuGUj4grgr8AnKa/daMV3UHbv3Be4NCJ+FBGtCqkmjYhYNCK+BlxDKfocqSkawLKUJnR/jIhTI6Lt532UPMb9PpYkSZIkSZIkSZIkSdKk8HBNrNoorS0RsSaloVOzszOzeY2Ta4ZWm6n1y7crx3u0Ww8TEZsDGzeFnqTUFw7MAOqyTqwcLwfs0W6+LcysHD8BnNHq4kYjvduB44D9Gb0pGsCClMZYZwJ/iYgNu8p0HEXE+hFxA3AlpSHbtozSFK1hOUqN4V8i4viIaGdMuzntDlxL2dx1pHtmecrmyddFxKv6tX4nJkKtqSRJkiRJ8zobo0mSJEmSpF7dURPbf9yzACLiv4HvAqt0MXxD4BcRcVB/s2ppS0YvhBjJqsAFEfHqXhOJiGcBF1CaFw1ERKxFaYr24g6H7g/8NCIW7EMO7wb+F9igi+GLA1+MiG9FxNQecphCKZT5IJ01p3se8NuIWKyLNTcB/kBpjtXNDpOvoBSwrdvF2OY83gN8C+im0d3ilOegF3sCf4iIVXucZ2AaO5X+CngjpfFjR8MpO1deFBHtNGocKY9xv48lSZIkSZIkSZIkSZI0adQ1PHqwy7kOZ3jN0ynNB5l5JaWBUbODI6KX+r1amXk18Mem0FSg3Rq/wyvHP87Me/uSWPfGuy7rNOCpSuywbhdurLlTJfzDzLxvhGFb03ntVbPnUOrpqutONCsCvdT8BXAkpd6rq8aGQyaLeDnwI6CTTVqXBU6PiNf1un4nJkKtqSRJkiRJ8wP/4SxJkiRJknp1MVAtKtgpIt6amceOVxKNpmjH1Jx6Gvg18EvgNsrvQ1YDdgdewNCiqAWB0yLi6cw8c2wzHiIphVdXA9cBd1MKvWZTiiCeDWxB2dlyWtO4acDxEXFNZl7Rw/rHURq1zfVv4Dzgz8BdlN0416AUKPVdRCxJaea0Ws3pfwA/pOw4eR9lt8HnUppxrdi4Zlvg8z3m8EnKbnxVs4BfUIrV7gIepRTmbQjsCqxXuf4I4H7g3V2m8jHg4Kbjf1EKaK4G7gEWoxROvZKyg2Cz9Si7cr6l3cUau4z+ujFvsznA/1He3zdRHtMilIZ82wE7MrTh1TrAeRGxWWY+0O76TXYG3t90/EQjrwspzRefbqy9VU2udR4GLqO8n/4GPAA8RHmPL00pSNqB8lw2Wwf4XkRsl5lPt5j7SeCqpuMNGPq+vA/4Zxs59lVELEJ5zjaqOX0PcA7PvKeX5Zn7aOXKtRtQmqNtmpmzukxnXO9jSZIkSZIkSZIkSZIkTQ6NDTTrNk78RxdzTQFmVsK3UTYJrToF+EzT8VLAPsDpna7bhhOAzZqODwc+N9KARpO2A2vmmWjGsi6LzLwrIs6j1AfOtXtELJ+Zd3WR76HAlEqsk+d1NnAFcA1wPXAvpbYzKHWV61DqUF9UWWcx4LsR8bzM/FcXeQ/CfTzz2t5IeZwPU+oGp1NqJncGqptubknZELWXDZXXBI7lme87J6V28Tzg1sbxasBulOe6ue43gG9ExL2Z+YMecmjLBKo1lSRJkiRpnmdjNEmSJEmS1KvzgMcoxQ/NvhwRLwU+nZkXjWUCEfEi4MM1py4CjsjMv9ac+5+IeCGlyGX95umA4yLi95l5S/+z/Y85wM8pBVc/z8y7RxsQEdOBD1EaBs0t7FgIOJnSLKwbqwIHNf7/MeADwNcys7rrIsAHx2KXTOALDC+WeYhS8HF8ZmZ1QES8DXgPcDTld1xvojSs6lhE7M3wQpX7KI26TsnMx1uMC2Av4BvA8k2njoqI32bmjztMZaWmPB4CjgJOyMzZNWv/P0ojwPdXTr0hIj6RmbeNtlhELA18n+GNxk4Ejs7MVs29Pt4oUPwqsEtTfC3K++mVo61d4708c0//AHhnq4KwEe7B+yk7hp4FXNziHq7OtTXwJWDzpvDWwDuAz9aNycx/A5s2zXEzpXHgXD/OzJmjrT0GvsDwpmizgU8BH627jyPincC7gI9SPkvmWo1SrLZPF3mM630sSZIkSZIkSZIkSZKkSaWutug+SjOmTu1CqX9rdlpmzqm59jTKZn3Nm0Eewdg0Rjud0ghtbp3TBhGxVWb+foQx+1CaKM11G6W+cCIYl7qsJicwtDHaVOAQuts8dWbl+FbKJrsjeRI4m/KYf9XORqERsQbwCYY2t1sW+DrwsnaTHYA7gJMom25e3uK98x+NmsndgC9SmsLNtV9E7JuZZ3WZx3t55v1yPTCzxfvl4xGxZSPn5uZ7AXw9In6Tmfd0mcOoJlCtqSRJkiRJ84Vqt3tJkiRJkqSONBp6faXF6ZcD/xcRt0bECRHx2ojYJCL61qy9UTDwbYYWLEFp2LZji6ZoAGTmJZTd466unFqS1o+pX/bOzF0y8zvtNEUDyMx7MvNtwGGVUxtFxM5d5jH3eXsE2DUzvzRS4VKrwo1uRcQLGP54Hm7kclxdU7RGHk9m5scoTd1mUwpbFqq7dpT1l6c0Amv2N2DjxvotH28W51CKt26tnP5E497sxIKUxzEL2CYzj69rJtVY+6nM/ABwfOXUAgx/Plv5KjCj6Xg2cEhmHj5CU7S5699IKXCqPnf7RMRWba7fbO59eCyw30i7ZLZ4Tf4NrJyZb83M37RTfNeY62JgG+D8yqm39fNzaqw1mkO+vhKeAxyWmf/V6j7OzNmZ+RlKYWX1Ods7Irppcjfe97EkSZIkSZIkSZIkSZImgYhYibJZZtUZozVkauGImtgpdRdm5h0MbzS2Q0Ss2cW6I8rM+ymNppqNVgtTfSwnt6q5GWeDqMs6D7izEpvZzrrNGjVV61TCJ7dxr22Rma/MzHPaaYoGkJm3ZOZBlI1em+0eEevXDJkI/gCslpkfyMw/tPMebNRMngdsBVxZOf2uHnKZ2xTtGuDFIzURzMw/UO6tayqnlqNsIjomJlitqSRJkiRJ8wUbo0mSJEmSpH74EHDJCOdXoRT2HAf8CXgoIn4fEV+OiH0jYoUe1t4DWK8S+yewf2Y+OdrgzJxF2V3wseq8EVGdt2/aLZhpMfZkyu6LzY7sLSPen5m/7XGObry5JvaeRmHUqDLz+5SdJbv1dkojvLkepTRlqxafjJTDv4BXVcIbAHt2mdNhmXlVm9e+H6gW1Owy2qDGvX1AJfxfmfmdNtel0bTu9QzfrfX97c5R8Qfgna2a4Y2Sy5OZWX0Ptzv2ceA1lNd+rtWAbpsNDsI7a2JfzMxT2xncKFb775pTR/WQ05jfx5IkSZIkSZIkSZIkSZocImItSpOs5SqnHgU+0cV80ykbtza7PDOvHWHYydVpGLvN+06oHL8qIhapuzAiZgA7VMLVBkwDMYi6rMx8GjitEn5uRGzWYQp1r+2oz2svtZ3AMcBlTccBHN7DfGMmMx9tPNfdjL0POLQSfmFEbNBDSk8C+2TmvW2sfy9lM9BqjfDBjc+GsTARa00lSZIkSZqn2RhNkiRJkiT1rFHAsjvwkzaHLAxsCbwV+D5we0RcGBGHR8TCIw8d5i01sXdn5iPtTpCZNzF8p7igvmnXRFHd2fLFPcx1I/DVHsZ3JSKWAvarhK+jNNDrxIeB+7tYfzHgTZXw5zLzH53OlZm/Ay6ohPfudB7gN5n54w7WnUXZIbPZphEx2u/93sPQ3w3eBHy23XWb1n8K+HglvFsX72MoDfEGsstpZt7F8N1Je3lPjZuIWAXYqxK+i9KwshOfp+xg2eyFEfH8LtIar/tYkiRJkiRJkiRJkiRJE1BELBwRq0TEHhFxHPBnYOOaS1/bSWOhJocCC1Zi1Zq6qh8B1aZXM8eoRuUC4Jam4yWBV7a49jBKveJcv83Mv49BTuOuh7qsamM5gJntrhsRiwL7V8K/zcwb252jG41NQaubWU6KOrROZeZfgCsq4V4e67GZ+dcO1v8rcGwlvBAd3CftmqC1ppIkSZIkzfP8YpkkSZIkSeqLzLwfeAWl4KjTopwAtgO+DdwQEQe3NShiwca4ZncA53S4PsA3gerudy/tYp7xUm1gtFJErN7lXCc2CnLG24sohSjVXOZ0MklmPgx8r4v1dwKWqsS+3cU8c/1v5bh6b7bj+C7G/KFyvBiwSquLIyIouyU2O6mHpmTVhlYLAVt1OMffMvO3Xa7fL9X31AsGkkXnXgIsUImd0klzSPhPk7u6+6+bz8Exv48lSZIkSZIkaaJrNAHYMSKOiIj3RcTbI2K/iNhk0LlJkiRJUp9sFxFZ9wM8BtwKnAu8Fli0MvZR4ODMPL3LtQ+vHD8FnDHSgMYGsGdWwqsBO3eZw0hrJXBSJVzNmUZTttdUwnVNwSazjuuyMvNahtcTHRQR1XrDVl4JLF6Jndjm2F5VH+/zI2LaOK093vpZc9dNzVndJry79ZBDKxOx1lSSJEmSpHne1EEnIEmSJEmS5h1zd7uLiDOAXYGDgD2AJTqYZnXgtIjYCXhDZj4xwrXPBxauxH6YmdUGZ6PKzDsi4iJg+6bwehGxbGbe2+l8nWoU7LwY2ATYCFiO8rwtxvCmRzB8t0soz90/u1j+112M6Ye6Iphqk612nQu8vsMx1WKS2zLzltor23NT5XhGRCzVaBrYrt90sW7dLpZLAv9qcf3GwNKV2MVdrAtAZs6KiAcaa871PDp7LBd2u34rEbEKsDXl8a5LyW8JYBGG7rA614qV424bDY63F9XEzupyrjOBT7cx/2jG4z6WJEmSJEmSNA+JiGcDWwCbN/77fIZ+gfmWzJwxgNQ6FhEbAR8CXs7wv2PNveZvlC9kfy4znxzH9CRJkiRp0B6ibIJ5TGZ2VRcSES8ANqyEz8vMe9oYfjKlUVuzw4Hzu8llFCdS/n04t1Zp+4hYMzOb68x2AtZoOn6I7mt/xsU41mWdCGzZdLwMsCfw/TbGHlY5frjNccNExGLAtpTHuwGwLOXxPguYUjNkscrxQsAKlEaBE1pErEWp69wYWIvyOJegPIa617b6WnZbc3d9Zt7Q6aDM/GtEXMPQz4MtImJKpxv0jmIi1ppKkiRJkjTPszGaJEmSJEnqu0ZjsnOBcyNiAWBTStOvzSlfZFmP+mZfzWZSCkf2H+Ga59fELu803yaXMbQxWlAaPP2yhzlHFBFrA+8H9mVoY6luVHeka0cCf+px3W49t3L8GHB9l3Nd2cWYasOnpSOil+eiWtAEMB1ot1jl8czspvjpgZrYSPdSXaOrYyNipCaEo6nu6Dq9w/FX9LD2EBGxL/AmSjFSXeFZu7p5Pw1C9XPwaeCqbibKzFsi4i5g+RHmH8143ceSJEmSJEmSJrmI2B74AOXvR8sMNpveRUQA/w0cTf2XhZutA3wcODAiDsrMv4xxepIkSZI0UVwOHNttU7SGI2pip7QzMDN/FxF/B9ZuCr8iIqa32VitbY1anF8BOzZCQamL/HDTZYdXhn0vMx/pZx79MoC6rDOAz1Mars01k1EanEXEGgytAwU4s9PnNSI2A95Daca2yCiXj2YpJmhjtIiYQnlPvZbSrL4X3dbc/bGHNa9gaGO0xSkN+7qtRa0z0WpNJUmSJEmaL9gYTZIkSZIkjanMnE0pWvhP4UJELApsBewA7Aes32L4fhHx1sw8tsX5uuZL1/WQ7rVtrtEXEfEh4P9RdtPrh26aCD2cmY/2af1OLVs5/lfjfulYZt4WEU8B0zoYtmrleFFgk27WH8GywN/bvHZWl2s8VRMb6XmoPm5o/R7sVvW1Hc1dvS4YESsDpwIv6XWuhsnSlKv6GXVTZj7ew3zXMbQxWqefgeN1H0uSJEmSJEma/DYFdh50En10PMO/nD+H8qX/m4EFgQ0oX86d67nABRHxwsz8x3gkKUmSJEl99Aj1tVHTgKWBlWrO7QBcFhEzM/OMTheMiGcBB1TCsygbubbrFOCYpuMFgUOAL3aaTxtO4JnGaAAzI+IjmTknIpYG9qq5fkIZVF1WZj4QEecABzWFd4mIlTLz9hGGzmR4w/IT200uIqYBXwDeSG8N4JpNyFq0iHgO8B3KBsL90O3jvKGHNesaoC3fIt6tiVZrKkmSJEnSfKFfv5iRJEmSJElqW2Y+mpm/zswPZeZzgF2Ba1pc/sFGI7U6S9fEetkx7b6a2DI9zNdSRHwV+Aj9a4oG3TURerCP63eq+vo90ON8nY4fk9e2opOdIusaQ42FTpuWdaPTHTJ7ug8jYhXgQvpXfAeTZ1OJ6vuo110jq5+DC43wGVxnvO5jSZIkSZIkSfOuJ4AbB51EJyLirQxvivZdYPXM3CozD8jMvTNzPWBL4Mqm65YHfhoRC49TupIkSZLUL5dn5qY1Pxtm5sqUOqWZDG9QtCBwakS8vIs19wcWr8S+m5lPdjDHKUBWYtV/0/XL2Qyt51mdZxqlHczQ+sHrM/OSMcqjKxOgLqva0GwB4NWtLo6IAA6thP+WmRe1s1ijKdr3gTfT3+/eTrgNIiNiI+A39K8pGnT/OHupHa0bu1QP89WZaLWmkiRJkiTNF2yMJkmSJEmSBi4zfwZsAfy05vTywJ4thlYLnKDsQtmturF1a/QkIg4B3lRzahbwbeBwYBtgBqXp0SKZGc0/wJp9SufpPs3TjWpTuE6K0+o80e6FjUZP/WxKN5nUNRQctF7vw5OAdWrifwI+AewNPB9YEVgCWLDmPfWRHnMYlOpnVC+fga3G9/1zUJIkSZIkSZIanqL8LvdbwOuBzSi/kzxykEl1IuCbghUAACAASURBVCKWBT5eCR+bmQdm5m3V6zPzMmBb4A9N4XWBd4xdlpIkSZI0/jJzVmaeDGxKaR7dbAHgtIiY0eG0dQ3MTukwr1soDaGabRQRW3aYSztrPQ6cUQkf1vjv4ZX4Cf1evw9OYrB1WRcAt1Rih9Vd2LAd8OxKrNpcbSTvA15RE78N+BpwCPBCYDVK862Fax7vDh2sNxCNBnBnAsvVnP4dcDTwMmATSg3v4sDUmsd6cp9SmrB1v/N5rakkSZIkSQPVSXd9SZIkSZKkMZOZj0XEq4AbgemV0zsyvDAK4KGa2LN6SKNubN0aXWsUlHy65tQngWMy87E2p5oXdoer7tTXazHKEh1c+zgwh6EbB/wwM/fuMYfJoO4eWzoz76+JT3gRsQewUyV8F3Boo+liuybre+ohhu5w2ctnYKvxff0clCRJkiRJkqSGk4FvNL4kPkREDCCdrr0VWKzp+DrgqJEGZObDEXEwcC0wrRH+QER8MzPvG5s0JUmSJGkwMvOJiHg1sAJDm0YtQdlIdMd25omI9YAX1Zy6tE//jjycoU2s++VE4I1Nx3tHxA7A85piTwOnjsHaXZsIdVmZmRFxMvChpvD6EfGCzLy0Zki1adps2mycFxHLAx+ohJ8G3gN8JTPb3fxzMtShvQ54TiV2I/CqzLy8g3n69Vgnct3v/FxrKkmSJEnSQE0Z/RJJkiRJkqTxkZkPUnYYrFqvxZC6L4YsVRNrV93YWT3MV2c7YKVK7NjM/EAHTdEAluljToNSff2W7XaiiFiQoV86GlFmzgGqjcDW7Hb9SeaemtiM8U6ijw6sHM8GXt5h8R1M3vdU9X3Uy2dg3fgnMvPRHueUJEmSJEmSpGEy8766pmiT0Msrx1/KzKdGG5SZfwd+2BRaAtinn4lJkiRJ0kTRaCp1KPBg5dRLIuKANqc5or9ZDXNgRCza70kz8zLg6qbQwsBplcvOy8w7+r12jyZKXdZJQFZiM6sXRcRiwCsr4Z9n5m1trrMnUH3935eZX+ygKRpMjjq06mv7ELBTh03RoH+Pdck+j+3bJrHzea2pJEmSJEkDZWM0SZIkSZI00dTtuDi9xbV318Squ9h1YoOaWF0TqV68tHI8B/hYF/M8uw+5DNq/KserRMTSXc71XKDTbT/vrByvGxELdbn+ZFJ93AAbj3sW/VN9T52fmd3s3DpZ31PVz8E1e7yPq5+D/f4MlCRJkiRJkqSBi4jFImKXiDgsIt4bEUdFxKsjYvOIaLu2NiIWBzathDv5gvj5leN9OxgrSZIkSZNKZt4KfKjm1McjYtpIYyNiKqWx2lhagrH7d9mJleOVK8cnjNG6vZgQdVmZeRNwYSX8qohYuBLbH3hWJVZ93kdSfbz3AV/pYPxcE7oOrdFA7oWV8CmZeXMX0/Xrsa7bw9i6jZfv6mG+OvNrrakkSZIkSQNlYzRJkiRJkjTRPFATa7Xb3hU1sc17WHuLynG2WKMXq1WO/5qZdY2qRlMtTJmM6oqkXtDlXN2Mq66/CLB9l+tPJnXP+27jnkUfRMSCwPKV8P91Mc8CwJZ9SWr8VT+jpjL8S3htiYjVGf58/rGbuSRJkiRJkiRpImo0Q/sVMIvSlOwE4FPAZ4FTgMuAOyPik21u5rIyQ2txH+nwi8RXV4539Iu1kiRJkuZxXwf+UYk9GzhilHEvA1aoxO4Arurxp2q0PLp1KvBki3N3Af87Rut2ZQLWZVUbnC0J7F2JzawczwJ+3MEa1drO32dmq9dsJBO9trP6uwzo7rVdnv41Rtusj2MfAv7aw3x15tdaU0mSJEmSBsrGaJIkSZIkaaKpFi/B8N3W5roCeLwS26tRTNORiFgB2KYSviEzZ3U61yimV447nr+xO+Ze/UlnoC6piR3U5VwHdzHmFzWxQ7pcfzK5GHikEtujzS94TTTV9xN08Z4CdgcW6zKHauPGjj9/enRxTazbnWv3a3N+SZIkSZIkSZpUImJ6RPyC0gxtB2DaCJdPB94H/C0ith1l6mUqx/d3mFr1+mnA+h3OIUmSJEmTRqPR1DE1p/5rlEbRdQ3LDsvMTXv5YXjDo20jYu1uH18rmXkPcG6L06dmZqvNYwdlItRlNfsB8GAldtjc/4mItRhe//mdzHyigzX6Uds5nfJ7h4msX6/tAb0m0uQ5EbFep4MiYl1gw0r4ssyc05+0/mN+rTWVJEmSJGmgbIwmSZIkSZImmpfUxG6suzAznwJ+XQmvSHdNw14HTK3Eft7FPKOpNqSqKzIZzUHASn3IZaAy8yrg+kp434hYs5N5IuLFdLfL4s8Y3ljvwG4KbCaTRnHh+ZXw4sBRA0inV9X3E3T3nnpXDzk8VDnuRyFfJy4AZldir46IZ3UySURMBV5bc2osPgclSZIkSZIkadw0vtD+e2CnyqmHgAuB7wFnAZcDzV+cXRb4RUTsMsL0T1aOR/oSf5266zfocA5JkiRJmmxOA/5aia1Kfe0KEbESsFslfCf1zYq6yaXq8D7MW+eEDuODNBHqsv4jMx+l/Pu92Y4RsVrj/2fWDDuxw2X6Udv5ZmDhLsaNp55f28bmvm/tTzr/cWQXY+o+M37aayI15staU0mSJEmSBs3GaJIkSZIkqScR8fJOG1mNMNdawP41p1rtlAjw1ZrYZyNi0Q7WXQN4fyWcLebu1e2V43UjYka7gyNiBeCz/UxowL5ROV4Y+EZELNDO4IhYrGaOtjR24TyuEl4AOD0iFulmzknkYzWx9zaazE0amfkA8GglvHMnc0TEkcD2PaRxX+X42T3M1bHM/DdwTiW8AvDhDqd6B1At1PpdZl7ZbW6SJEmSJEmSNGiNvxedw9Df3d4A7AssnZk7ZOarMnO/zNyC8kX845uuXRA4LSJWabHEvZXjpSOiky9A122E45dqJUmSJM3TMnM28NGaUx9o8W+qmZS6rmZnNObp1XeBpyux17Rbv9ah8yj/Dmz+WSEzrx2DtXoyQeqyqqqNzqYAh0bEFODQyrmruqh7qtZ2bt3J5pQRsSHwgQ7XHITq44QOX1tKbdo6fcil2Vsbze3b0ri22pztCeCkfiYF832tqSRJkiRJA2NjNEmSJEmS1Ks9gL9GxIkRsX63k0TEypQvplQbmt0N/HKEoecB11diMygFB1PbWHdp4Ec16/4kM6u7UvbD/9XEPtXOwIhYhtIkrpudCCeqE4BbK7GdgZMjYqGRBkbEUpTnY8Me1v8Ew3dAfD5wTuPe6FhErBERx0bERj3kNaYaRV8/qISnUR73tt3MGRELRcTrIuKdPSfYmYsqx9tHxO7tDIyIXYEv97j+1ZXjjZp2Ih0vX6iJHRURr2pncETsQn2zvM/1lJUkSZIkSZIkDd5ngObf1/8UeF5m/qDuC/SZeXtmvg44qik8nfov7EP5G8fDTccLAJt3kN8La2JLdjBekiRJkiar0xle97cy8Iaaaw+riZ3WjyQy827gZzV57NaP+StrZWbeUfm5q9/r9NGg67KGyMxLGH7PzAR2BFavxE/oYolqbeditLk5ZWNz3B8DI9Y8TgSNe65aG3twRGzSzviIOIyxaQC3EHB2O3WbjWvOZvjzfXqjidlYmC9rTSVJkiRJGiQbo0mSJEmSpH6YSikwuS4iLo2It0RE3Q73w0TEohHxBuBK4Lk1l7wnMx9vNT4zEzgCqH555RXAz0faQS4itqIU71QLOu5n+E5y/XI+8FAltn9EfGuk3QUjYmfgUp75Ms2DY5TfuMrMh4DX1Zw6GPhLRLw6IoZ8ASgiVoyIt1CKnLZrhG8C7uxi/TuA1wBZObUL8MeIOKTNBnvPiogDIuJs4O/AW4C63UsnktdTnrdm04ELIuIzEbFiO5NExFYR8TngZuCbwFp9zXJ0Z9bEvhcR+7YaEBELR8SHKE0R5+7Y2O176uLK8RTg+xHRyRffepKZFwNfr8nj1Ig4OiIWrBsXEQtExLuAHwLVa87JzHP6n60kSZIkSZIkjY/GpjxHNoVuBvbNzMdGG5uZn6dszjPXwXW/N8/Mp4HfVcKvbjO/AA6pObV4O+MlSZIkaTLLzDnAR2pOvT8i/rPJaURsB6xTueb6zPxjH9Opa7J2RB/nn6wGXZdV58TK8drAlyqxJ4HvdDH3D4A5ldh7IuKjI9UQRsSBwCXAsxuhyVDbWX1tpwHnR8T2rQZExFIR8SXg2zzzveR+Pda5NcLPBS6KiC1HyGMLShO7ar3x3cD7+pTPMPN5rakkSZIkSQMx6j+0JUmSJEmSOrRV4+fYiLgZ+D1wLXAPcC+lKGAJYA1gY8pufa0agp2ZmSePtmBmXhwRHwGOqZzaAbg2Ii4AfgXcBiwArAbsDmwNRHU64PWZ+c/R1u1GZt4XEV8APlQ5dQSwV0R8H7gCuA9YilIs8zKGFnHMBt7O8CKfSSkzfxoRHwP+q3JqbeAUYHZE3ElpWDcdWI6hr9uTwKEML1CrNstrtf4PGsVYH62cWhM4FfhsRFwIXE4pnnmEcg8v1chxc8q9POF3e2yWmfdGxJ6U5oDNzeemAu8G3hYRlwC/BW6l3JMLUR73SsDzKI99ufHMu8YplB0omxuyLUZpTnYF8BNKAdFTwPLAZpT31LJN11/buK6bwqgfAbOAZZpiWwGXRcRDwL95pnDrPzJz0y7WGslRwDZA8+6RUym7lr4xIs4B/kz5LF4a2ADYB1i1Zq5/MfTLgpIkSZIkSZI0Gb2BoZtCfCQzH+1g/Ocof0+iMc+uwEk1151G+RLsXIdFxNcz80+jzP9Whn+5H2yMJkmSJGn+cSbwQWDDptgKwJuAzzaO6xqUndrnPH5EafC0RFNsj4hYPjPv6vNak8mg67LqnAp8nFIHOtdzKtf8JDPv7XTizPxrRJxGqUVs9kFgZkScRam/ephSK7YesCdDn59HKY+1usnlRPMFSkOupZpiKwK/jojfAj+jNJif04hvDexGef3nuoBSk1t9vrrxaeBdjfk3AC6NiIuAn1Jq2aDU/e5KqZGrq/t9Y2be3YdcWppfa00lSZIkSRoUG6NJkiRJkqSxNKPx042T6WDXxcz8aEQEw3eRnEYphti1jWmeAg7LzLqdDvvpf4DtGj/NlqV8SWckSSn8urD/aQ1OZn4wIpJSRFS1ALBy46fqCeDgzLyoZre9tncjzMz/iYh/A19l+O57KwAHNH7mKZn5l8YOimcztKEWlC951d2nE0pmPhUR+1EavC1aOf38xs9IbgP2AGZ2uf7jEfFOymdW1eKUArgxl5mPRcRLgHOB6o6ZywOvb3Oq64BdM3NWP/OTJEmSJEmSpAF4adP/zwbO6nD8RcDTPFNruw31jdG+CxzNM1+Engb8JCJ2zcxr6iaOiAN45kv+VXM6zFOSJEmSJqXMnNPYELVar/feiPg6pW7sldVhwHf6nMdjEXE2Q+uHplEaPrX6t9s8b9B1WS1yuj0izm/M28oJPSzxNkrt1fqV+KrAO0YZ+xSwH6U52oSWmbMi4mDgxwxtMgewbeNnJH+hPNYv9Cmlm4CDKXWMC1Aan23T+BlNAm/IzB/0KZeRF5tPa00lSZIkSRqEKYNOQJIkSZIkTXqnUgqN7u/TfP8AXpGZMzNzdicDM/MY4EDg312sey3w0szsa9FUncx8CngFpYFRJ+4H9s/M4/qf1eBl5n8DOwN/a3PIn4AXNxW0LF05/0CH658AvBD4VSfjajxO+RLUP3ucZ1xk5t+ArYDPU3Yo7MXlwHk9J9WhzLwS2AW4vcOhlwIvyMybe1z/FOBI4KFe5ulVY8fLHYBvUL6s19Fw4HTgRZk5Ke5dSZIkSZIkSWolIhYGNmsK/QuYHhEz2v2hbNjS/PevtaiRmU9Tvrz7ZFN4VeCKiPhaROwSEetHxHMj4oCIOJfyd4RpjWtvrUzZr7+5SZIkSdJkcBbw50psOeCtwEEMb8h1UWbeMgZ5nFYTa3tj13nVoOuyWhip8dntwM+6nTgzHwB2ouTfiX8DO2XmuNfOdauR6350sAFtw7nANpl5X5/z+TGwF539XmQWZWPdca2pnV9rTSVJkiRJGm82RpMkSZIkST3JzN9l5iHA8sCOwDGUP/Y/3ME0d1Kaq+0BrNcocOg2n+8CawPvBa6gNPtp5WnKboZHAhtn5m+6XbdTjQKaPSlflKkWdlXdBXyG8tycNda5DVJm/gLYEHgZcCJwNXAPMJvS6Owq4DhKsdXzM/NygIhYnOFFcLO6WP9Pmbkj8ALgFIZ/GamV2ynFca8BVszMAzPzrk7XH5TMfDQzjwJmAEdTGpy105jwccr7/f8BG2bmFoMq7srMi4BNgE8zenHU5ZTX6kWZ2e5rPNr63wZWAQ6jNIy8kvLefawf83eQx6OZ+UZgI0oR4B2jDJkFnAFslpkH97tgTZIkSZIkSZIGZEWeaTwG5fffN3XxM71pjmVaLZaZvwcOofzefK4FgTcC5wPXUf4e9F3K38Pm+iFwUmU6G6NJkiRJmm9kZlLqlareDby+Jl7XwKwffg3cVomtHxFbj9F6k8ag67Jq/IRSU1jnlE435K3KzNuAbYG3UDb6HcktwH8D62fmb3tZdxAy8xxgY+CbjFznNge4kLLp8cszc0x+d5GZ5wIbAF9l5IZtdwNfoTzvZ4xFLqOZX2tNJUmSJEkaT1F+dyhJkiRJktRfERGUJkHrAKsDSwCLUxqVPQg8RPkD/9WZOVrjnl7yWAHYgtK4bTlKs6e7Kc2CLm00KBu4iFidsoPcCpTn6nHKLoLXAH9Of4kzooh4KfDzSnjHzOx1Rz4iYm1Ksc2yjZ8FKY3/HqB8Ker6ebEwJSKW5Jn3zrLAkpTip4co9+YNwD96LSQbCxGxALA5pcnedGAqJe+bgMvH8jNnoml8Fm9M+SxeHliK8hl8N888H3MGl6EkSZIkSZIkDRcR21O+lD7XLZk5o4Pxm1G+jN1PN2fmmqOsuznwNcrv10fyFPBx4GON649sOveOzPxSL4lKkiRJkjQW5se6rIhYF9iSUn/6LOARShOsP2fmDYPMrZ8iYiFgK2A9Sr3gFEojvBuByzKz441qe8xnGuX3Kxs28plDqTm+CbhkgtYtzpe1ppIkSZIkjRUbo0mSJEmSJGnSi4gvAm9vCs0Bls7MkXYNlCRJkiRJkiRJE1AfGqO9ELi4z2m1nUNjQ5c9gW2AlSmbVswCbgH+Fzg1M29qXHsR8KKm4S/OzN/1MW9JkiRJkiRJkiRJkqRJZeqgE5AkSZIkSZJ6ERHLAEdUwlfZFE2SJEmSJEmSpPnWPZXjn2fmLuO1eGb+AvjFaNdFxDRgs6bQ08AVY5WXJEmSJEmSJEmSJEnSZDBl0AlIkiRJkiRJ3YqIAE4GFqucOm4A6UiSJEmSJEmSpInhzsrxugPJYnQvAhZuOv59Zj42qGQkSZIkSZIkSZIkSZImAhujSZIkSZIkaeAi4tCI2KnDMUsAZwMvq5y6HzitX7lJkiRJkiRJkqTJJTMfBK5pCs2IiHUGlc8Ijqgcf2sgWUiSJEmSJEmSJEmSJE0gNkaTJEmSJEnSRLA18IuIuCEiPhkRO0TEMtWLImJaRGwREf8D3ATsVTPXWzLz4bFOWJIkSZIkSZIkTWg/qxy/diBZtBARawH7NoXuB743oHQkSZIkSZIkSZIkSZImjMjMQecgSZIkSZKk+VxEfAN4fc2peyhfBHoCWAqYDiw0wlTfzswj+5+hJEmSJEmSJEkaLxGxPfDrptAtmTmjwznWBq4DpjZCjwObZ+Y1/cixFxGxAHA+sFNT+N2Z+bkBpSRJkiRJkiRJkiRJkv4/e/cdZldd5w/8faaldxJCSEJIUSBIR5CiCLrYVkXFFdYCKIKr+0OxLbsqqCyru7rqrgW7riKyomJdsAUbKkgRUFqAkGAoIb3PJHN+f5wh0yczaTfl9Xqe88z99s+dmXufBE7el51GXa0LAAAAAIA+7JVkZpLZSfZN36FolyY5d0cUBQAAAAAA7NzKspyb5MsdugYn+XFRFAcNZJ+iKAYVRXHWZuY09DXeZW5jkq+lcyjajUk+PpC6AAAAAAAAAAB2V4LRAAAAANgZ/DbJvC1c+7MkzyrL8r1lWZbbriQAAAAAAGB7KopiclEU07peSSZ2mdrQ07y2a68+jrgwye0d2lOT/LEoin8timJKH3UNKYriOUVR/FeSBekcsNaT5xVF8ceiKP6ht33bAtZOa6vnjA5DS5O8tizLjZs5AwAAAAAAAABgj1D4t6IAAAAA7CyKojgkyYlJnp5kRqp/oDQ6yZAkG1L946DFSe5J8qskPyvL8i+1qRYAAAAAANgaRVHMS7LfVm7z1bIsz+rjjClJfpLkgB6GH0hyd5JlSRqSjEoyLcnMJPUdJ5ZlWfRxxouS/KBD18NJ/pJkSZLGJHsnOTzJsC5LFyd5YVmWf+htbwAAAAAAAACAPU1DrQsAAAAAgCeVZXl7ktuTfKrWtQAAAAAAALu+siwXFEVxdJLLk/x9l+HpbdfmLBvgsZPbrr78Nslry7J8YIB7AwAAAAAAAADs1upqXQAAAAAAAAAAAAAAbC9lWa4qy/LVSQ5N8vUkS/uxbGGSK5KcnmTiZub+OclXkzy6uVKS/KptzxOFogEAAAAAAAAAdFeUZVnrGgAAAAAAAAAAAABghyiKoi7JIUkOSjI2yegk65KsSDIvyV1lWS7Ywr2nJXlakilJRqX6EOMVSe5P8oeyLBdvXfUAAAAAAAAAALs3wWgAAAAAAAAAAAAAAAAAAAAAAABAzdXVugAAAAAAAAAAAAAAAAAAAAAAAAAAwWgAAAAAAAAAAAAAAAAAAAAAAABAzQlGAwAAAAAAAAAAAAAAAAAAAAAAAGpOMBoAAAAAAAAAAAAAAAAAAAAAAABQc4LRAAAAAAAAAAAAAAAAAAAAAAAAgJoTjAYAAAAAAAAAAAAAAAAAAAAAAADUnGA0AAAAAAAAAAAAAAAAAAAAAAAAoOYEowEAAAAAAAAAAAAAAAAAAAAAAAA1JxgNAAAAAAAAAAAAAAAAAAAAAAAAqLmGWhcAtVYUxagkz+rQtSBJc43KAQAAAAAAAADYGk1JpnRo/7Isy+W1KgYA3KMHAAAAAAAAAOwm3J+3gwhGg+qGq+/VuggAAAAAAAAAgO3gJUm+X+siANijuUcPAAAAAAAAANgduT9vO6mrdQEAAAAAAAAAAAAAAAAAAAAAAAAAgtEAAAAAAAAAAAAAAAAAAAAAAACAmmuodQGwE1jQsXHNNddk5syZtaoFAAAAAAAAAGCLzZ07Ny996Us7di3obS4A7CDu0QMAAAAAAAAAdnnuz9txBKNB0tyxMXPmzMyePbtWtQAAAAAAAAAAbEvNm58CANuVe/QAAAAAAAAAgN2R+/O2k7paFwAAAAAAAAAAAAAAAAAAAAAAAAAgGA0AAAAAAAAAAAAAAAAAAAAAAACoOcFoAAAAAAAAAAAAAAAAAAAAAAAAQM0JRgMAAAAAAAAAAAAAAAAAAAAAAABqTjAaAAAAAAAAAAAAAAAAAAAAAAAAUHOC0QAAAAAAAAAAAAAAAAAAAAAAAICaE4wGAAAAAAAAAAAAAAAAAAAAAAAA1JxgNAAAAAAAAAAAAAAAAAAAAAAAAKDmBKMBAAAAAAAAAAAAAAAAAAAAAAAANScYDQAAAAAAAAAAAAAAAAAAAAAAAKg5wWgAAAAAAAAAAAAAAAAAAAAAAABAzQlGAwAAAAAAAAAAAAAAAAAAAAAAAGpOMBoAAAAAAAAAAAAAAAAAAAAAAABQc4LRAAAAAAAAAAAAAAAAAAAAAAAAgJprqHUBAAAAAAAAAMDOoyzLtLa2pizLWpcCu42iKFJXV5eiKGpdCgAAAAAAAAAAAMBOTTAaAAAAAAAAAOzByrLMunXrsnLlyqxcuTLNzc21Lgl2W01NTRkxYkRGjBiRwYMHC0oDAAAAAAAAAAAA6EIwGgAAAAAAAADsodasWZOFCxempaWl1qXAHqG5uTmLFy/O4sWL09jYmEmTJmXo0KG1LgsAAAAAAAAAAABgp1FX6wIAAAAAAAAAgB1vzZo1mT9/vlA0qJGWlpbMnz8/a9asqXUpAAAAAAAAAAAAADsNwWgAAAAAAAAAsId5MhStLMtalwJ7tLIshaMBAAAAAAAAAAAAdNBQ6wIAAAAAAAAAgB2nLMssXLiwWyhaY2NjRo4cmeHDh6exsTFFUdSoQtj9lGWZlpaWrFq1KitWrEhLS0unsYULF2bGjBledwAAAAAAAAAAAMAeTzAaAAAAAAAAAOxB1q1b1ymUKUlGjBiRfffdVygTbEeNjY0ZOnRoxo8fn7/+9a9ZuXLlprGWlpasX78+gwcPrmGFAAAAAAAAAAAAALVXV+sCAAAAAAAAAIAdp2MYU1KFNQlFgx2nKIrsu+++aWxs7NS/YsWKGlUEAAAAAAAAAAAAsPMQjAYAAAAAAAAAe5CuwWgjR44UigY7WFEUGTlyZKe+rq9NAAAAAAAAAAAAgD2RYDQAAAAAAAAA2EOUZZnm5uZOfcOHD69RNbBn6/raa25uTlmWNaoGAAAAAAAAAAAAYOcgGA0AAAAAAAAA9hCtra3d+hobG2tQCdDQ0NCtr6fXKAAAAAAAAAAAAMCeRDAaAAAAAAAAAOwhyrLs1lcURQ0qAerqut+209NrFAAAAAAAAAAAAGBPIhgNAAAAAAAAAAAAAAAAAAAAAAAAqDnBaAAAAAAAAAAAAAAAAAAAAAAAAEDNCUYDAAAAAAAAAAAAAAAAAAAAAAAAak4wGgAAAAAAAAAAAAAAAAAAAAAAAFBzgtEAAAAAAAAAAAAAAAAAAAAAAACAmmuodQF0VhTFAUkOTTI5yZAk65I8nmRukj+VZbl6K/ZuTHJ8kqlJ9kmyKsnCJLeWZTlv6yrvdtb+SQ5LMinJ8CSPJHkoyQ1lWbZsy7MAAAAAAAAAAAAAAAAAAAAAAADY9QlG2wkURTE6yQVJzkkVWtabjUVRjXXTagAAIABJREFU3Jbk6rIsPzSA/ccneX+Sv0sytpc5NyT5z7Isv93vwnve5xVJLkzyjF6mLCmK4qok7yvL8omtOQsAAAAAAAAAAAAAAAAAAAAAAIDdR12tC9jTFUVxepK5SS5J36FoSVKf5Mgkbx3A/s9PcmeSN6WXULQ2xyW5uiiKrxdFMay/+3c4Z3hRFFcm+VZ6D0VLWw1vSnJnURSnDvQcAAAAAAAAAAAAAAAAAAAAAAAAdk+C0WqoKIqLk/xvknFdhuYn+VmSK5N8N8nvk6zegv1PSnJNkgkdusskN6cKMPtpkie6LPv7JFcWRdHv342iKOqTXJXkVV2GFiX5SdtZt7Sd/aS9k3yvKIoT+nsOAAAAAAAAAMBAzZ8/P+95z3ty4oknZu+9905TU1OKoth0feUrX6l1iQAAAAAAAAAAAAC0aah1AXuqoijenuSSLt1XJvm3sizv6GF+XZJnJHl5klP7sf/kJN9J0tSh+7dJzi3L8q4O8wYlOS/JR5I0tnX/bZJLk/xzP5/Oh5K8oEO7JcmFST5XlmVzh7MOSvKFtueRJIOSXFMUxdPKsnykn2cBAAAAAAAAADvAtGnT8tBDD21qz5kzJyeddFLtCtoCn//85/OP//iPWb9+fa1LAQAAAAAAAAAAAKAf6mpdwJ6oKIpDU4WJPaklyellWZ7ZUyhakpRl2VqW5W/LsrwwyaH9OOb9ScZ0aN+Q5DkdQ9Ha9l1fluV/JXlll/UXFkWxXz+ey/QkF3TpPr0sy092DEVrO+svSU5J8rsO3eOSXLy5cwAAAAAAAAAABuLHP/5xzjvvvH6Hol1//fUpimLTdckll2zfAgEAAAAAAAAAAADopqHWBexpiqJoSPKldP7en1eW5dX93aMsyw2bOWNWktd16GpOclZZluv62POaoii+2mHdoFSBZedsppyLkzR2aH+lLMvv9XHO2qIozkpyR5Kmtu7XF0Xx72VZPrCZswAAAAAAAAAA+uWiiy5KWZab2meeeWZe//rXZ8qUKWlsbL/VYa+99qpFeQAAAAAAAAAAAAD0QDDajnd6kiM6tH9eluWXt/EZZyap79D+TlmW9/Vj3YfTOVDtlUVR/ENvgWpFUQxJ8ooe9uhTWZb3FkVxTZJXtnU1tNV8aT9qBAAAAAAAAADo0z333JPbb799U/sFL3hBrrjiihpWBAAAAAAAAAAAAEB/1NW6gD3QeV3al22HM07r0u5X8FpZlncl+UOHrmFJ/qaPJacmGdqh/buyLO/uV4Xda3pZP9cBAOycWlYkC76T3PfZZNUDta4GAAAAAAD2aH/84x87tV/xiq6f+wYAsIdZdmdyxweSez+drF+SbFiblK21rgoAAAAAAAAAoJuGWhewJymKYmaSZ3XompdkzjY+Y2KSQzt0bUjy2wFscX2SYzq0n5/k+73MfV4Pa/vr16lqe/J38PCiKPYuy/KxAewBALBzWL0g+flJ7YFoRX1y/FXJ1JfXtCwAAAAAANhTPfZY59sPJk+eXKNKAABqbMV9ybWHJxtWt/f98c3tjye9MDnua0nTmB1fGwAAAAAAAABAD+pqXcAe5tld2j8vy7Lcxmcc3KV9e1mWq3uc2bMburRnD+Cs3/X3kLaa7hjAWQAAO69b39keipYk5cbkd69JNq6rXU0AAAAAALAHW7VqVad2Y2NjjSoBAKihJbck1x3dORStq4U/Sm56y46rCQAAAAAAAABgMxpqXcAe5uld2r9LkqIoiiSnJPn7JMck2TfVz+aJJPcl+VmSb5ZlOa8fZxzUpT13gDXev5n9OjpwG5x1eJezfjHAPQAAam/+Vd37Nq5NFnw3mXbGjq8HAAAAAAB2IWVZ5pZbbsndd9+dxx9/POvXr8/48eOz77775oQTTsjw4cMHvGdra+t2qBQAYBfSvDz59cuTluWbnzv/quTIjyeDx2//ugAAAAAAAAAANkMw2o51VJf2XUVRTEvyxSQn9zB/att1SpIPFEXx+STvLMtyTR9nzOzSnj/AGh/q0h5XFMWYsiyXduwsimJskrFbeVbX+bMGuB4AYOe26DeC0QAAAAAAoBdPPPFELrvssnz961/PokWLepzT1NSUk08+OZdcckmOOeaYXveaN29e9t9//17Hn/3sZ/fY/+Uvfzlnn312j2Pvf//78/73v7/XPefMmZOTTjqp13EAgJopy+SmNyWr5/Vz/sZk8R+SfV+0XcsCAAAAAAAAAOiPuloXsIfZp0t7aJKb0nMoWleNSf4hyW+Koui6T0eju7Qf7395SVmWq5Ks69I9qh/nrCnLcvVAzkr32no6BwBgF1bWugAAAAAAANgpXXPNNZk+fXo+9rGP9RqKliTNzc259tprc+yxx+a8887Lhg0bdmCVAAC7qAXfTh66cmBrfvm3ycb17e2NzckdH0x+eFDyf0cm9302KVu3bZ0AAAAAAAAAAD1oqHUBe5iuYWJfTrJX2+PVSS5P8n9JHk4yLMmhSc5JckKHNYcn+XZRFM8qy7KlhzOGd2mv3YI61yYZ3KE9Yjue01FP5wxIURQTkowf4LIZW3suAAAAAAAAANA/X/rSl3LuueemtbVzsMaMGTNy0EEHZejQoZk/f35uvPHGbNy4cdP45z73ucyfPz8/+MEP0tDglhcAgF5Nen4y49zk/s8PbN1Vg5PxJyQT/ya5432dx246P1l6azL5tGTQuGTMYUld25/JHvtl8vj1SdOYZOzRyYgZSfOyZOi+yaO/SFY/lOzzN8mIWUlRbJOnCAAAAAAAAADsvtwluoMURTEoyaAu3ZPbvv4lyfPKslzQZfyWJF8uiuLtST7Sof8ZSd6d5NIejuoaWLZuC8pdm2RMH3tuy3P62nNL/EOSi7fBPgAAAAAAAAB01bohWfNwravY/Q2d3B4ysZu57bbb8qY3valTKNphhx2WT33qUznuuOM6zV20aFHe+9735rOf/eymvmuvvTbve9/7ctlll3WaO3ny5Dz44IOb2h//+MfziU98YlP7yiuvzLHHHtutnr322isnnXRSkuT3v/99zjjjjE1jF1xwQd761rf2+lwmTpy4mWcLAFAjDcOSYz6X7HNqcuO5SfPS9rG6pqS1ufe1i35TXT2Z+9nq2lrjjk2W/SnZ2HYb6eSXVH2DxyeLb0we/VkydGoy6XnJ6EPbAteOSOoaq/mr5iWL/5AUdcm+L66e04bVSVFf9dUPStY+ksz/VjV/ysuqP2MPRMuqqr7B/fis3nWPV9+zsjXZ53lJ47a4HRYAAAAAAAAA9ly75120O6f6XvqXp+dQtE3KsvxoURT7Jnlbh+63FUXx8bIsV23m3HKAde7sawAAdh2lP+4AAAAAALuZNQ8n39+/1lXs/l78YDJ8Wq2r2C5e//rXp7m5PYjjhBNOyHXXXZehQ4d2mzt+/PhcfvnlmTlzZt75zndu6v/whz+cM844I0972tM29TU0NGTatGmb2qNHj+6018SJEzuNdzR8eBVcMW/evE79o0eP7nUNAMAuYerLk3FPT3736uSJ3yXPvSFZeV9yw5m1rWvx7zu3H/5edXW06oHk8eu3zXk3X5A0jkqmnJZsXFddQ6cm089Kxh5ezVl4bXLXR5Lld1RBZx01DKsC2B66snN/XWPS2tL9vNFPq0Lp6odWAW1No5Ipp1cBdWsXJkv+mBQNyYhZyV7HJOsXJy3LkwnPTJbcWs2bcEIybL9t8/wBAAAAAAAAYBcjGG0HKctyTVEUrUnqugz9Z1+haB28N8k5SUa1tccmeX6Sb3WZ1zUobchAa+1hTU/hazvqHAAAAAAAAABgNzBnzpzccsstm9ojR47MVVdd1WMoWkfveMc78stf/jI//OEPkyStra352Mc+li996UvbtV4AgN3CsCnJyb9IFt+YjDuqCu1qGJZsWF3rynasluXJA1/p3Hffp5Pjr6zC4v70z72v3bC6eyha0nMoWpIsu6O6OrrrIwMqN0kV5jb7X5Kppyet65MV9yarH0we+Umy4u5kw6pk3WPt8+sHJyOe0vYzHpEMm5pMeFYy9oikblBSFAOvAQAAAAAAAABqQDDajrU6yYguff/Tn4VlWa4uiuI7Sc7u0H1SBKN19el0/55szowk39vsLAAAAAAAAABgi331q1/t1H7zm9+cSZMm9Wvthz70oU3BaEly5ZVX5jOf+UwGDRq0TWsEANgt1dUn459RPa4flJwyJ7nu6bWtaWdQbkh+c3qtq+hdy/LktndVV39sXJcsu726enLEx5KnXiAgDQAAAAAAAICdXl2tC9jDLOvSfqwsy3kDWP/7Lu0De5izvEt7/AD2T1EUw9M9sKxr3T2dM7QoimEDOSvJhH6cMyBlWT5eluWfB3IluX9rzwUA6FlZ6wIAAAAAAGCn8Zvf/KZT+9WvfnW/186ePTtHHHHEpva6dety8803b7PaAAD2KOOOTl78QDK4622c7NZueVvyYL8+zxkAAAAAAAAAakow2o51b5f2IwNcv7BLe1wPc+7r0t5vgGd0nb+kLMulXSeVZbk4Sdf+qVt5VtfaAQAAAAAAAIDdwNKlS3P//e2fWzZ69OgceGBPnwfXu+OOO65T+6abbtomtQEA7JGG75+87LHk9OXJ0ZfXuhp2lJvfmmxYUz0uy+oCAAAAAAAAgJ1MQ60L2MP8OckpHdrrB7i+6/zBPcy5q0t75gDPmN6l/Zc+5t6VpONdxzN7OH8gZw1kLQAAAAAAAACwi1i0aFGn9qxZs1IUxYD2OOCAAzq1H3/88a2uCwBgj9c4Mpl1XnUlycZ1SYpk1f3V4+H7J0tuTn7x3L73GTolqRuUlC1Ja0sy7phk/PHJre/Y7k+BAWhZlvzvsJ7HBo1PGoYnG1YkE5+b1A9OBu+TNC9O1j6aHPL+ZNTsZPFNSV1TMubwpNyQ1A/asc8BAAAAAAAAgN2eYLQd6/Yu7dEDXN91/uIe5tzZpX1IURRDy7Jc088zjt/Mfl3HOgajPSPJD/pzSFEUw5IcMoCzAAB2QT5VFwAAAADYzQydnLz4wVpXsfsbOrnWFWxzS5cu7dQeNWrUgPfoumbJkiVbVRMAAD2ob/vM3lEHtfdNfE7v8yf+TXLydb2P9xaMVjcoedW65BsDC8vdZPShybI/9TzWMCyZ8Oxk4Q+3bO891fpF1ZUkD32z+/hfv9/72iGTkoPenaxZkCz9U/LoT5MJz6p+n8YckUw8uQrLWz2/ClprWZE8/L2kaKjGJr80qWts32/NwuSxOUlRJJOenzSN2bbPFQAAAAAAAICdmmC0Hev/UqVjPHkXx/SiKAaXZbmun+sP7tJ+uOuEsiwfKYri9rSHjjUkOSHJT/p5xkld2v/Xx9xrk7yxj7V9OTGdf/9uLcvysQGsBwAAAAAAAGBHq2tIhk+rdRXsgsqy84eJFMUWBmBs4z0AAOinyS+pgqy6mnVe3+umvDxZ8O3u/Yd9aPNn1g9ONvZwi21Rnzz318m3xyWtLd3HX/iXZNjUZOP6ZN43kiduSAaNS4btn9x0/ubP7csZrcnczyY3vann8ef8KhkxMxk8MVlwdfU9a16ejDks2e/vqnrvuKTvkLFd0dqFyc0XdO57/JfV10euS/7yb72vnXt5++P6ocnGXj4LeviMZNTsZMPKpGlsFa7W2pIsvbV6PPE51c95+jnJ+OOqgLzm5cn6J5KUybD9Ooev9aVsrepfeV8yYlYV8lbU9W8tAAAAAAAAAFtNMNoOVJblwqIofpfkuLauxiSnJPlRP7d4Xpf2r3uZ9920B6MlydnpRzBaURQHJDmmQ9fqzay7LsnaJEPa2s8oiuKAsizv3txZSc7q0v5uP9YAAAAAAAAAALugsWPHdmovX758wHt0XTNmzJitqgkAgAGYeX73YLShU5NJL+p73bRXdw9Gq2usQsKSZNILk4U93Ea735nJyKdUIWJdHXxx0jgimXxaMv9/O49NeFYVipYk9YOSGWdXV1KFZ93y1p7D1vpjn1OTokgmPb/n8bFHJxNObG9PPb26upr9L70Ho71kXjJ0SnJlfe91HPah5LZ/6nnsqE8l085IGkYk3+xnCNjOpLdQtCRZdX919ebRn1ZfH/pm73PqBiWt67estiSZ8Ya2B0Wy4q6keWkV1DdkUvKUtySD965C4oqG6uufLqqC2SY8Kxl5QDJ8ehW6NuVl1e/30tuSNQuTvY5NBnX4O9PG5iqIrc6t/gAAAAAAAMCeyf8t3fG+nPZgtCS5MP0IRiuK4sQkT+/Q1Zrkx71MvyLJe5I8eVfEy4qimFWW5X2bOebdXdr/W5Zlr3d/lGW5piiKq5O8psseZ/d1SFEUT0lyWoeuDUm+sZnaAAB2PWVZ6woAAAAAAGCnMH78+E7te++9d8B73HPPPZ3aEyZM2KqaAAAYgEnPS46/KvnLh5JVDyTjT0ye/pmkvqnvdVNemhz+H1XA2YbVVXDUcV9PhuxTjU89vedgtP1fk4x8anLXR5MNK9v7G0Yk019bPX765UnzsuTRts8AHndMcvyVvdfSODKZ9prk/s/3+2lvUtQlT31b9XjYfsm0v0/mXdF5fPZF/dtr7BHJ4InJukc79488oAqbK4pk5huTuZ/rvnbGG5ID35nc++lkzfzOY42jk+lnJw1tn3d85H8lN/+//tW0p9iaULQkuf8LPfcvuz155Nre1z3+y+p60p/6+buSJPVDqtC1Q/81WXxTsurBKmCtcXhSNCYjZiV1bbeMr16QrH4oGXNI9fsOAAAAAAAAsIsSjLbjfTlVGNqBbe2Ti6K4sCzL/+xtQVEUE9rWdfS/ZVn2+LFnZVneVxTFV5Oc09bVlOQrRVGc0lvQWVEUL0lyVoeu5iTv39yTSXJJklclefJj5c4qiuK7ZVn2+FF2RVEMbnsuHe+E+WJvzwUAAAAAAAAA2PWNGTMmM2bMyP33V7cHLFu2LHfddVcOPPDAzaxsd8MNN3RqH3300du0xqIotul+AAC7nf1eWV1lWYV39deB70ieekGy5q9VqFjHtfv9XTL/W53D0aa9Jpn43Crs6Tm/TG57V7L0T8mYQ6uQtWH7VfOaxiQnX5esezxpbUmG7rv5Wo7676R+cHLvf/c97/TlyW0XJY/9Ihk6JTngbcmkU9vHj/1KMvppycIfJ4P2SmacW4XH9UddQ3LYh5I/nJOUrW19TVXfk9+bqaf3HIy236uqELaD35vceG7nsdn/1B6KliSzzk9W3JXc95n+1cXOaePa5K7/qK6BGLJvsu+LqoC0Jbckj/2883jTmOq1NPm06jU0bGoVXDhsWjLmsKRpVPvc1o1JuaG61ixMhk5KGoZVY2WZpKx+LwEAAAAAAAC2EcFoO1hZlhuLorggybVJnvw/wB8timK/JJeUZbm04/yiKJ6T5DNJZnToXprknzdz1MVJTksypq19XJKfFUXxhrIs7+6w/6Akb0zy0S7rP1qW5UP9eD4PFEXxiSTv6NB9dVEUFyb5XFmWzR3OOjDJF9pqedLi9C+ADQAAAAAAAADYhZ1wwgmbgtGS5Iorrsill17ar7V33XVXbr755k3twYMH58gjj9ym9Q0aNKhTe/369dt0fwCA3caWBMrWNSbDp3Xvrx+cPPO7yaM/T5bdnow9Mtn75PYzxh6enPzTvvcePKH/ddQPSo76r2Taq5OfHNPznHFPr8Kkjv5U7/vUNSQHvbu6tsT01yUjZiYLvluFok19efXcn7T3KVX42Z0fbO+b/Z7qe5MkM9+QDJmYzPtGFVY15eVVyFynGhuToz+dHPiuZN7Xk9vfu2W1smta+9dk7md7H29eWl1Lb+t7n0F7Jeuf6HmscXTSsqzt8cgq0G/GG6vX5BM3tO1dJJNekIw/rgpgaxxVvX7qB3feqyyTjevaw/02Nle/wy3Lk3WPJSNmCV8DAAAAAACAPYhgtBooy/KnbeFoHT9u7v8leVNRFL9P8tckQ5IclmS/Lsubk5xRluWDmznj4aIoXpbkuiRNbd3HJ/lLURQ3J3kgyagkRyQZ32X5D5MM5O6Hf0oyO8nz29qNqZ7be4uiuCXJyiTT287qeDdMc5LTyrJ8ZABnAQDsQspaFwAAAAAAADuN1772tfnqV7+6qf3JT34yb3nLWzJx4sTNrr3ooos6tV/1qld1CzLbWqNHj+7UfuQRtzMAAOwQdY3JpOdV144y7qjex0Y8ZcfUMP746upJUSSHfCCZ+cZk6Z+S0Yckw6Z0nrPvi6prc4ZPSw5+TxVudc8ntrrsfusrUItdR18/wydD0ZKkZUVy/xerq6u7/r173/AZVahfw/Aq8GzVvGTDyr5raRyZjH9msvqBKmCttTlZcnPSNDYZPj1Z8sdq3pgjklnnJavnJ+sXJQ9fk6xfnJQbq/HpZ1evrVUPVO8/409MBu+dbFhVBRXWb9u/awIAAAAAAAADJxitRsqy/GRRFBuTfCTJ0LbuxiQn9rHssSQvK8vyhn6ecX1RFKcl+Uraw8+KJEe1XT25Msm5Zfnk//nt1zkbi6J4ZZIvJOn4cXMTkvR2l8rjSV5XluWv+3sOAAAAAAAAALDrOvnkk3PYYYfltttuS5IsX748Z5xxRn784x9nyJAhva772Mc+lu9973ub2kVR5G1ve9s2r2/69OlpampKc3NzkmTOnDlpaWlJY2PjNj8LAIAaK+qqsLFlt3cf2/+1O76e3gydXF3bwuTTeg5GK+qSsnXbnJEkIw9IXnRXe/vx3yR3XJI89vMq2OqkHycjD0zu+Xhy5wfb5zWMSA56V3L7QD7bmV3WqvsHvqZlRbLwh937m5ckS5a0t5fektx4Xu/7PPDl6toS445JhkxKRh1UfR00Llk5N3nom8mah5OppycjZlWvq5Vzk33/Nhl9cLL20WTYfknL8mTtI1XQYcPIpGlMUle/ZbUAAAAAAADAbkwwWg2VZfmZoih+kuSSJC9JMqKXqY8muTzJx8uyXD7AM35cFMXBSd6fKrRsTC9Tf5/kI2VZfnsg+3c4Z1WSVxVFcXWStyc5tpepS5JcleTisiwXbclZAAAAAAAAAMCO9+ijj2bevHlbtHbatGlJki9+8Yt5xjOesSl87Prrr8+JJ56YT33qUznmmGM6rXniiSdy8cUX59Of/nSn/ne961055JBDtqiOvjQ1NeX444/PnDlzkiTz58/Pi1/84px//vmZNWtWhg4d2mn+xIkTM3jw4G1eBwAAO8j0s5JbLuzcN2y/ZO+Ta1LOdjfhxGSfU5NHrmvvG7x3cvyVyc97ec4HvD25+6Pd+8cdmxRF8sTvuo8ddFGXc09ITvlZ93mHfKC6yrJqF0X1ddFvk0eu7T5//AnJc36VPPg/ybyvJxvXJlNflTzlzcmvXpr89fs9P4ckOfK/kmV3JPd/vvc50B+L/1B9ffi7PY93/R2be/nA9h8yKZnysmTFvVWQ4NqFSeOIZPW8ZPiMZOmtSf3QKoBw7JFVMNvkl1QBa/VDk41rkpZV1dqV9yStLcnYo5K6huq1tnFNFTBXNCSNo5LWddVcAAAAAAAA2MkIRquxsizvT/KaoiiGJDk+yeQkE5M0J1mU5E9lWfbwcXQDOuPxJG8qiuKCtjP2aztjdZK/Jrm1LMsHt+aMDmddneTqoij2T3JEkklJhqUKd3soyW/LsmzeFmcBAOz8yloXAAAAAAAA28wZZ5yxxWvLtrCDI444Ip/85Cdz/vnnp7W1NUly880359hjj83MmTMze/bsDB48OAsWLMiNN96YDRs2dNrnuc99bj74wQ9u+ZPYjAsvvHBTMFqSXHvttbn22h5CGZLMmTMnJ5100narBQCA7eypFyTrFiX3fjLZsDIZe3QVElZXX+vKto+iLnnm96ugpkW/SYbPTGadnwybmsw8v3uA09DJyaGXJvOvStY83Hls5huSDWu6B6PVD0kmv3iAdRWd25Nf0nMw2ow3VHOnv666utbam5N/lkw8JWndkDzwpaTc2H3O8d9Mbn1XsmZ+97HjrkimnVk9XvzHZN1j1XljDq36vlF0X7M5B7072dic3POxga9l97Z2YfWe1JMV97Q/XnV/svBH1eObL+jn5kV6vJ+tYUQy9fRk1dzk8V91Hpv5xmT/s5KxhydFfTL/6ur1OWTf6nU18ZTej2tZVe05aEIydFI/awQAAAAAAICKYLSdRFmWa5P08HFo2/SM5iRzNjtx25z1YJJtErYGAAAAAAAAAOw+zj333IwZMyZnn312Vq1atal/7ty5mTt3bq/rzjnnnFx++eVpbGzcbrW96EUvyqWXXpqLL744Gzf2EJgAAMDuo6hLDrssOeQDyYZVSdPoWle0/dU3JU/9f9XV0VH/XQWGPfDlpNyQjHxqcuJ3kvrBySnXJ79/XRWC1jQuOfAdyfRzqvkr7k7u+0ySMmkam5x49dZ/H6edmdz/hWTJze19445Jpr6y9zX7nJrc9+nu/XWNyZjD2h43JBOf2z10rX5otX7JLcld/959bNILO9RxVPcz9joueeKG7v1Hfzq56z+rYKiOZp6XHPah6nFvwWj1g5PTVyaP/iy57Z+qwLbmpclBFyV/+bee18Bm9fIhnxtWVqGBPZn7uerqScffxfHHJ0OnJGsWJCvuTdYv6jx3+PTqfWPNgqRxVJLWZMjkKghu5T3JsOnJhGcme5+UlK3JoLHJ+iVJ44ikaOgcoFiWXdqtVfBhfVPnM1tbqq912++/IQAAAAAAALD9CEYDAAAAAAAAAGCHesUrXpFnPvOZueyyy3LFFVfkiSee6HFeY2Njnv3sZ+fiiy/Occcdt0Nq+5d/+Zecdtpp+drXvpYbbrgh9957b5YvX561a9fukPMBANjB6hr2jFC0vtQ1JMd8Ljnio0nzsmTYlPaxETOS5/4m2bAmqR/SHkhUNCRHfyo59NJk9fxk1Oxqn63VODI55RfJA/+TLLstGX1YMvMNVVhYbyY9P9nned1Dz/Y/Kxk0rr19yAeTxTcSLAWJAAAgAElEQVQmzUva+w69tPr5z74oWXJT8ljbZ1DXD06O+1rSNKrvevd7VfdgtLrGZMorkvHPTH75t8nqts+a3ufU5NDLOtT3uuTBr3bf82mXVN/LSc+rro72eW7y85N7ruXwjyS3vqPnsVlvSo78RLL2keShq6pAqvWLkykvq4Lwhu2XLP1T8tM+/t41+SXJot9Wj1ubqzXL7uh9PnuOJ38verPqgeT29/Q9p7egwJ4Mn5Gsur9zX+PIZNyxyfI/J2v/2nnsmC9Vr6U1D1fz1j2WrH4omf+tZOV9SV1TMvm05ClvrkIzN6yuroe/mzz4P9X725RXVK/3jqFsSbJhbdKyPBkysf/1AwAAAAAAsFlFWfbyyT+whyiKYnaSO59s33nnnZk9e3YNKwIAdjnfKHrun35OcuwXd2wtAAAAAAB92LBhQ+67775OfbNmzUpDg89Vo3ZaW1tz88035+67786iRYuyfv367LXXXpk8eXJOOOGEjBgxotYlbhfb6/X45z//OQcffHDHroPLsvzzVm0KAFvBPXrADtHaktz98eSvP6gCjaaclhx0UVJX33neqnnJgquT5qVVmNqEEzvssbEKY1uzMNnrGcngvfp37o3nJw98qWrXD02O/0YVIpYkZWsV1NQ4Ohk6uXOo0qO/SH5xSuf9iobkxfcnw6b2fN7iPybXHd3z2HHfSG59exV+1tUL/5yMOmgzz2VD8s3G3sfP7OXfHfR279TmDNor2bg+2bCy7znrew7S3mTMEcnSW7asBtgSYw5PNq5LVtzVuf/Z1yUtK5ObL6jC0kYdnLQsTcY+vQppXPijZN2iKnxt9j8nk16YDNmncwDjivuqtaMPqeaVG9qDIdc+Ur1vNAxJxh7V+/sE7cqyCsQbMilJWYVRzv9W9XOYeW4y6/xaVwgAAAAAwC7G/Xk7jjubAQAAAAAAAACombq6uhx99NE5+uhe/nE/AADA5tQ1Jge9s7r6MnxacuA7etmjPhl7ZHUN5Nxjv5gcemmy6oEqpKthSPt4UZeMflrPayeenBzzheS2dyfrF1fBacd+pe+woxEz2sKSWruPjT8+mfGG5M4Pduk/YfOhaElS11CFMS27vfvYfmf0vm7cscni33fvP+YLVSDRHZf0vO4FdyZD9u49WG3YfslL5iXL/5L8qJdAzVNvTMa1/V2ybE1W3l+F3o07Klm/pAqiaxyVpKxC55b/ufo5NS9LBo1Nivrk/i8kC77T+/ODrpbe2nP/nFM7t598Xay4p/vcW99RXVvr4Pclrc3JyrnJ4huTEbOSfU6tgthGHZQ0jEiaRifNS6owsFUPJCmr94sNq5PV86v3xbFHJhvWJMvuqN7XRsxKHroqeeS6JK1V0OS4o5J1jydLbk4aRyZjj07qm7b+OWwP65ckd/9nMvezvYcr3vSm6nrZ48ng8Tu2PgAAAAAAYLMEowEAAAAAAAAAAAAAwJYask91DdSM1yfTz67ChgbvXQV59aVpTDLhpOSxX3TuH3t0Fah28MXJxvXJA1+sQo/2OTU55ov9r2fmG5M/vqVzX8OI3sPkkmS/v+sejFY3KJl8WhXC1FMwWsOI9iCip16Q3POJ7nMOaDtzxFOr0Lg1D3ceH7JPMuaw9nZRl4yc1d4evFf3PUcfXF0dTXp+++O7PpLc2ku43pll9fXnz0ke+3nPc05fmTQMTVbel9x4frLy3upnVjQkM85Jhs+sQqju/2Lbcy6SckP3fRpHJS3Lez4DOrrzA53ba+b3/vu5NXoLDzzxO8mkF1TvYSvursIVh+zdeU5Z9v3etn5xsmZBMvLApH7Q1tW5fkly98eq19eGlf1b85vTk+dcv3XnAgAAAAAA25xgNAAA2G7KWhcAAAAAAAAAAADszIq6ZMjE/s8/5ovJnL+pwreSZOjU5Bn/Uz2uq08O/3By2L8l5cakrnFgtcz6h2Tj2uSe/06aFyfjT0wO+3Ay5pDe1zzlzcnyO6uwr6QKPTvhqmTQ2KRpdDJsWrJ6Xuc1U19RPe+kCoeb+9lk47r28aaxybQz2p/TIf+a/P6stN+PVSSHXDrw57c5k17UczDafq9qfzz9rJ6Dp+qHJI3Dq8cjn5o8Z07v5xzx0eraXGBUa0vyxO+SuqYqBK5+cNK6MWldn5StyYKrk7/+KFn0m2SvY5OppyfL/5z8+bKe95vwzOr7tuDbPYfRwUD9+mUDXzP++Op9Yc2C5PFfdR5rGlO9py27PRl7ZBVutnFdMupp1XvC3icnrc3Joz+rvrZuSJ74bbL0tiqYbUs8/sukeVn1fgUAAAAAAOw0BKMBAAAAAAAAAAAAAMCuYPi05IV/SZb8sQrHGntkUj+o85yirj14bCCKIjnwHckBb6/2rqvf/Jq6xuSYL1ThZasfSsYc2l5PUZc885rk+hckaxdWfeNPTA7/SPv60U9Lnv3T5I73VaFeY45Mjvx4Mmhc+5zpr02G7ZfMvypJXTL15cnezx7489ucUQck089JHvhSe1/T2OSgf2pv73NqUjQk5YbOa6edOfDz+gpFS6rv7YRndumrT+qGVo+nn1VdHa1b1Hsw2gEXJhNOrK7D/yNZckuy9pFk4ilJ44hqTtmaLL6xOvuRnyR/+ufOexzx8apv45r+PEPobtFvq6snzUurK6ne4560+qFk4Q+3X02r5yVNh22//QEAAAAAgAETjAYAAAAA/H/27js8zurO2/g9Rb1LtmxLstwbtjHYmF4NobcACYGQTkJ62c2mbMiml01v+242bbPJBkgjpIcNSSiB0AnVNmCMe2+SrK6Z949jZTSaGVnFtlzuz3Wda+Y5v3POc55pBlvzlSRJkiRJkiRJkqRDRTQOY07cf+tHIhAZRChaX0XjQuuvagFctiqEcOVXQtmMzECw2lPh7D8PvP64M0Lb3074DtSeAZv+DMUNIXisbHqqXjg2BLs9+u5UX+l0mHvj/t/bYBSMgfLZ0LQsvT9WBLVnpo6jeTDmhMz5kWjqtVW9CCZeAZvvgqI6GH8OxAoh0QF/f3/28x/zOTjqX8L97jbYei889QnYfDdMegXM+ReoXhhqT9wIy76UfZ3iRigcB8ke2PFoZr32zHBN2+5PBWlJw7VrKVQZjCZJkiRJkiRJ0sHEYDRJkiRpv0mO9gYkSZIkSZIkSZIkSZIkaXRF4zDm+NHexeBEIjD11aHlMvtdUHsabPxTCAyrvxDyqw7cHgcSicC8f4P7Xknaz6/NeS/kVwx9vfJZofVVMjn3+OpjU/fjRSFMbfw5mePiRTDtDbmD0c5/CAprw/2eDtj4xxDWN/YUyCtPH5tMwu5V4X5+JbSth542+MNx2dcunQbHfQPuvCD3dZxyC9z7itz18jnQtDR3XYeW+66FydeM9i4kSZIkSZIkSVIfBqNJkiRJkiRJkiRJkiRJkiRJkiQNVvXC0A5Gk6+BgjGw8ofQ0woNl8PkV+679SecC9F8SHSm99ecALVnDn6d8jlQNgOan0vvH3tKKhQNIFYA9RfnXicSgdLJqeP8Smjfknv8/I9B3fnhPFvuzT5m0tW5g9GO/SLM+adw/6ZIjj3F4Zou2PEELP8q7HwyXNPs90DrWrj/tbn3p9HRthGKxo/2LiRJkiRJkiRJ0h7R0d6AJEmSJEmSJEmSJEmSJEmSJEmS9pEJL4GTfwCn/QymXBfCw/aV/Eo4+X9D+FevsafA6b+AaDz3vP4iETj+W5BXnuorHAeLvjbyPRaMgZJJWc4ZD48NwLQ3ZZ9bf2m4bbw6SzECjVemDuOl2deYfkO4rToaTvwunP8gnPkbGH82TH1N+mPX15iTYMkfs9cAzn0Aznswd724Ea5N5q4DnHPPwHWAhpfufczhpmXFaO9AkiRJkiRJkiT1YTCaJEmStL8k9/IDRpIkSZIkSZIkSZIkSZIkHWoaXwYv3QCn/hTOuRvOvguKJgx9nXFnwsXL4aQfwCm3wIVPQfXCke8vEoFZ78nsn/IqKKwN9ydeDnmVmWOmXR9u534QCmrSa7PelR641ju2v8mvHHh/M9+RvX/GW6B6EUTzMmvxEqicB6VTc69bc1y4PfoT2euTroHaU8N15FLcCKfclLs+5mSomJe7PljRgpGv0V9eJRz9SXjZLqhcMLS5Xc37fj+SJEmSJEmSJGnYhvDreCRJkiRlMPxMkiRJkiRJkiRJkiRJknSkKRwDjVeNfJ2i8SGwbF+b/a4QJrby+9C9G+ovg3k3pup55fCSu+H+18H2R0Ow2/yPQsMloV61AM57EFb+CNrWw/hzYOIV6eeY9U5Y8zNoXZvqa3gpjDlx4L3NuAFe+B507Ur1lU6HiVdBvAgaXwEv/jB9ztQ3QLw4tAnnwYbbM9edcH64nXQNPPkRSCbS69NeH27LZ+XeW+U8iBXmrk+8MgS3PfLO7PVrEiGYLtEDt+T4ylJxI8z/CDzwhuz1M38PpVNgy725x0w4D8aeCj0dkOyCuotCqFy8ONSP/gT89UpIdKXmNF4Nq3+cfb3uluz9kiRJkiRJkiRpVBiMJkmSJEmSJEmSJEmSJEmSJEmSpMPL9OtDy6VyPpz/MHS3QqwoBHr1VToV5n849/zSKXDu/fDC96HleRhzCkx9XeY6/ZXPgpfcA898DnY9A2NOgPkfD6FoACd8OwS3rfkpRPJg8rWw4NOp+Yu+Dve8FHY9neqrPSOMAyibBqfdBg+8Hjq2QqwYjv1cCHeDEMD2yHsg0ZG5t6l7wtMmXglrfp5ei8Rg0tWQ7IZH3gX0+8WyE69KXXs0FoLaNvwh8xxzPwBjT8v+2MSKYdwSiOXD7lXZxwAc8zmoOjp3veESeMm98OLN0NMGDZeG/eQKRlv5g1DPK8295sGkuw1aXoDdK8Prt3J+eL0mE+F5a98EdRdAfjU0LQ21kknQ0w6dO6FgDERzfKUs0QORaOq57OkIz0WiI5y3pxW6mqBtQzhvXnl4L8RLDtz1S5IkSZIkSZIOewajSZIkSftNcu9DJEmSJEmSJEmSJEmSJEnS6IkXD39ucT3M+9DQ51XOh5N/mL0WK4DF34Djvh6O+wetlc+A8x6Etb8MwWqV80PwV6wwNabhEqjfBLtfhOLG9BCswrGw5I9w37XQujbVv+hr0HhluD/vw7D5TujYlqrPeV+4XoBZ74TlX03V8qtg7r+m73PytZnBaNECmPgyKBwD1Ytg+yP95lwTQtEAao6HaD4kOtPH5FWEcLm9qVkcWl8VR4XHrL91v4afloX7jS+HCeeFELHVP4GmZTD+JSFobPw5sOF2WPrF8Dy1roGyWVA+M+yzqwnW3Jq+9rTroXgiNFwOFXMgmrf3vSeTsO5XsOonsOlP0NUM098UXqtPf3rv8wEee+/gxgFMegWsuiWzv+FyWP/77CF62VQvCo/dzLdD0QTo6QyvgaZl0Lk9hLmVzQghdOWzYcffQ2Dbzidg55N7HqdLobA2PP6RvBCyJ0mSJEmSJEk64hiMJkmSJI2I4WeSJEmSJEmSJEmSJEmSJGkf6x+I1le8OISIDTg/CqVTs9dqT4PLVodgtLxyyCsL43tVLQjhay/eDO2bQyBYwyWp+sIvw9hTYMMfQwDWlFdB2fT0c0y+Dpqfg2f+PYSGFdbCyTeHUDSA034B91wB2x8Oxw2Xw8KvpObnV8Kka2Dl/6SvO+0NIZRsOOKlex+z+ieh9fXi/4aWTduGECKXy4rvhNsnPxJuy+dA6TSY9jqoXgwlEzPnPPFhePpT6X3Lv5I5bl/JFooGsPa2oa2z/ZHQ9hbeNlD9wTemH0ficNrPQ6Bc9aLwOuqvuzWE7kVj4floehYiMSidAokuKBwH8aKhXYskSZIkSZIkaVQZjCZJkiRJkiRJkiRJkiRJkiRJkiQdSSKR7KFcvUqnwrwP5Z7b+LLQBlr/6I/DUR8MAWxl09LD10omwvkPhVq8BPKrMtc4/luhf/VPIZoPk6+F+R8b3PVlM5hgtP2taWlo638z2js5NCS74e7LDuw5y2ZC41XhtdfdBsu+AF1Nqfr8j8GU63IHD0qSJEmSJEmSRsxgNEmSJGl/SSZHeweSJEmSJEmSJEmSJEmSJEmjJ14E5TNy14sbctdi+bDoy7DwSyFobaQKx498DR3+mp+Fpz+du/7kR0IDGH8OFNVDrACqF0NPK6z/PWz4Q6hXL4LaM2HGm6FsOnTuhFgxJLugYxsUT9w3r21JkiRJkiRJOswYjCZJkiSNhOFnkiRJkiRJkiRJkiRJkiRJ+8++Co6a+FJYddO+WUsC2HhHn4NvZda3PxLasi/ufa3iBpj/Uag5HqKF0LQ0hPmVToa2DZBXDiWTQrha925Y+QPYfBdsvQ/KZkDJZJhwPhRNgPaN0NUM064P9zffBXmV4T0QzQs//2wgmyRJkiRJkqSDmMFokiRJkiRJkiRJkiQdISJZvuiU9BdASKMikUhk9GV7j0qSJEmSJGkfmXglTH09vPC90d6JlKl1LTxw/fDm7vh7aGtvS+9/7L2ZY/MqoacVEp3huOGyELRWcyJULYCieiABRXUhbA2gYytE4xArgqVfgA3/B+WzYdLLYexp4Xj3Kqg7H8qmQzIBkejwrqVXTyfE8ke2hiRJkiRJkqRDlsFokiRJ0n7jlwklSZIkSZIkHVyi0cwvInV1dZGXlzcKu5GObN3d3Rl92d6jkiRJkiRJ2kciETjhO1B7Oqz5eQii2vHYaO9q8IomQLwUYoUhlGr1T4c2v+ZEiBdDcQOs/MH+2aMOfl0704/X/jLcbrxjaOtsuQdWfDu975Es4wrHQfumcL98NjQ/D8l+fzcaK4Se9tznGnsKJHrCa3f82dBwORSNH9w+ezohmhfe/5IkSZIkSZIOGQajSZIkSSNi+JkkSZIkSZKkQ0ckEiE/P5/Ozs5/9LW0tFBcXDyKu5KOTC0tLWnH+fn5RPxyniRJkiRJ0v4VicDU14QG0NUEP63IPrZkCsy7ESKxEKLWtBy23Q+l00JQ0xMfzjFvElz2Yghy2ngHPPx2aHl++HuuPQPO/ktmsNOvZuRe96KlUD4LundDNB6Cp/o66X8gmYSWF0JIWncLTDgftvwVnvp49jVP/Rn89arM/uJGuHQF3DLAL+C4dAXsegb+/gHo3A6Vx0DZNCACz3499zwd+npD0QCalmUfM1AoGsCWe8PtNmDNz+Cht2SOqVwQAtC2P5xZK50aggW7W8NrvXt3eB32tENRHdRdBJEotG2AWAFMflUIdCuohq5dkOgK7+uC2rBeNBbe34lOiBelnyuZNIRNkiRJkiRJ2gcMRpMkSZIkSZIkSZIk6QhSVlbGtm3b/nHc1NTE2LFjDWSSDqBkMklTU1NaX1lZ2SjtRpIkSZIk6QiWV567NvcDMO31ueu5gtEaXx5uozGoOw8ufW7P+H+Dpz4xtP3N/xgc9f7sQUuz3x1C1/qb+XaomB3u55XmXjsSCeFkR38s1ZdfmT0YbdobYcJ5EC8JoVJ9TXlVCF/Lpf7SEExVOhXqL86sT3k13L44+9ySSbB7Ve61pV47H89da3khtGza1sOKb6f3rf7p4M8biUOye+/jiifCxKtgxyOw+e7sY07+EVTOh9Z1IYyxa1cIeysYA2NOgvbNUDY9BLVtvAOi+VB3YXif93TA2l/CM5+B5ufDZ9vY02Duv0LV0ennaV0H638LRGH8kvDe7JXoguYVUDYjfIb1Z/CbJEmSJEmSDhCD0SRJkqT9JjnaG5AkSZIkSZKkDP2D0bq6uli3bh319fWGo0kHQDKZZN26dXR1daX1l5cP8CVcSZIkSZIk7T+TroFVN6f3RaJQf8nA86a9MTNQCWDyddnHz/sIrP4JNC0feN1rB/nzp41Xh7C1zu2pvmg+TLt+cPOzqT4uhDet+Vmqr7AW5rw3hC+ddivccyV0t4Ra3UVw1PtS+1n948w1p71hL+dcCMWN0Lo6vX/CeXDWH+CmIf699bizYfF/wG9mD20eQOE4aN80tDmRGCR7hn4uHR4GE4oG0LoGln954DH3vXLk++nV3RLej73vyWyhhn01XAY7/p49iLDmRNh2f7hfMhmIwO6V4XjMSTDjLeFzLxKBRA+0PA9F9dC8HLbcC9GC8HlaMAZ2PQn5VelhbJIkSZIkSVIWBqNJkiRJI2L4mSRJkiRJkqRDS2FhIXl5eWmhTM3NzaxYsYLy8nJKS0uJx+NEo9FR3KV0eEkkEnR3d9PS0kJTU1NGKFpeXh4FBQWjtDtJkiRJkqQj3NwPwaa/QPvG9L6iCQPPm/1PsO5X6UFak6+DqqOzj4/G4Ow74aG3wtpfZB8z4y2D33fhGHjJvfDIu2D7Q1AxFxZ8CqoWDH6N/iIROOUWeOG/YfPdUDolBJuVNIb6hHPhik2w9X4oqoPymSFEDmDm22DNz9ODospnQd2FezlnFE78b7j7cuhuDn3FjbBwT4jUjLfCc/8vc16sEHraM/snvzLsbajGngLlR2UPu8uldBpcvAx6WqG7FTb8AWJFUHsmPPbP8OKPhr4PaX8YKBQNYO0vc9d6Q9EAdr+YXtv6t9D+9uqB13/ozQPX8yohryy02jOhcDy0rYeCaogWQtdOSHSFcLWJV0Ll3OzrJJPQsSWst/Nx6GqCinlQNG7g80uSJEmSJOmgYzCaJEmSJEmSJEmSJElHkEgkQl1dHatXryaZTP3yh66uLrZt28a2bdtGcXfSkaf3PRmJREZ7K5IkSZIkSUemyrlw/kOw+qchiGf8S0IA2N5UzIZz74eVPwhhQbVnwJRXDTynaDycfiss/wY88o7MeuPVQ9t7xWxYcvvQ5uxNNAbTrw8tm3gxjF+S2V97Gpz1e3jmc9DyAow9FY79AkQH8fW18Uvgkudg058hXhIey/yKUGu8Knsw2kk/DAFu63/XZw9nwqSrwx7HngJb7u03KQInfBceeH3mehOvguqF2YPRGi6D9X+AREd6f+NV4fqi5ZBXDlNfm6pVLgCGGIxWNAEmviy8nvIqYOzJUDIJnvn38Npsfi41duY7oGAsdO2CbQ9C8cTw+kp0wbNfz32OxpfD6p8MbV/S/ta1MzSAXc8MPPbJj8DY08JnzIbbYceje1+/oCa8Z8aeFoIwW56HLfdB57ZUaNyEC6B8NtSeGgIOi+pD4GQkCp3bQ9haNDay65QkSZIkSdKgRfr+kLN0JIpEInOBp3qPn3rqKebOzfFbIyRJkvpLdMEt+dlrk66FU/xNb5IkSZIkSZIOTq2trRnhaJIOrEgkQmNjI8XFxftszaeffpp58+b17ZqXTCaf3mcnkCRpiPwZPUmSJCmLrha4+9IQ0NNr6uvhhO+AAfrpkkl4/EPwzGdSfTPfDgu/AiRg7W2w/VGonB/CzWJ7fq5328Pw53NCcBhAtACO+xpMfxMs/SI89t7UenUXw6m3hDCkPy2BzXelavEyOOeuEKR033WQ6Az9tWfA6bdBfmX2fe9aCr89KrO/dFoI3nvuPzNrJ3wXpmUJbevV1RLOX1Cde0zHdvh5Tfba6b+EhkvT+5LJ8Bi1roP7roGdTwIRGHdWCFF76M25zyUdiWKFUDIFWtdC+UxIJqBlJZCEwnEhLDFWEgIaJ18HHZth8z2w4Q9hfsVcqLsQJl0DpZOBSFizY1uY37EFtv4NYsUhHDGvfBQvVpIkSZIk9efP5x04BqPpiOcPXUmSpBHp6YQfF2SvGYwmSZIkSZIk6SDX2trK+vXr6erqGu2tSEecvLw86urq9mkoGviDV5Kkg48/oydJkiTl0NMBG26HXU9DzfEwbomhaANpfh52PAaVR0PZzME9Vm0bYfXPgARMOD+EGP1jvRUhfKhsOlQvhmgs9He3wdLPw+a7oXQKzHwHVB0dau2bYctfoagBqheGAKSB3HFGWKevY78A48+G/zsJetpT/UX1cPEyyCvd+3Xtze+OgZ2Pp/fFS+ClGyCvbOC5XU0hkKn32v76Clj94+xjr+3zvcSu5nCOSDQcv3hLCFrL5pRboGpheMy3PgjJHmi4BNbcCve/LvucCx6HrffBQ2/JrJVOg5YVua+pqD48X1ULobsZln0p91jpYFQwFqJ5kFcBkT2fVXUXwJTXhPfP8q/A7lVhTP2lMOak8Bm5/OvQtBTat8C8G6H2tDA/vzoEsCWT0LQcttwD2x4IIW9l06HhpSG8zT+TJEmSJEnK4M/nHTgGo+mI5w9dSZKkETEYTZIkSZIkSdIhLplM0tHRQVNTE83NzXR2do72lqTDVn5+PmVlZZSXl1NQUEBkP3ypyB+8kiQdbPwZPUmSJElHrM5d8NBbYf3voKAapr8J5rwvhA1tuQ+e+mQILao5ARZ+AYob9s151/4S7rkKkt2pvgWfhrkfHPpa634Hd12U2T/+HFjyx9zzOrbBL+og0e/fHKoWwgWPZJ/T8iL8akpmfzQPrtoRgtcAEl3Q/ByUToVYYWrczidh+6NQOA5qz4B4Ufbz/KQ8BKRJGrqCMdCxNXstvxoKx4YxBWMgXgata2HznaFefwmUzwnhbD2tUD4rhIRGolAyCfJrINkFRXVQNiMVtNhXMhHmRPNDPde/syS6obslfEb0/ZyQJEmSJGmE/Pm8A2cvv5ZCkiRJ0vAZQixJkiRJkiTp4BeJRCgsLKSwsJDa2lqSySSJRAJ/0Zq070QiEaLR6H4JQpMkSZIkSZJ0kMqvCL9kOZnMDO8ZezKc9bv9c96Gy+Ccu+HFH0HPbqi/DCZePry1JpwbAshaXkjvn37DwPMKamD2e+CZf0/1ReIw/99yzymdHELitj2Q3l9/aSoUDUJQWsVRmfMr54e2N3M/AI9/KLN/zMmw9b69zx+MyvkhqC2Xy9dCcX24n0zAjsdg9yooHA9Vx8CLN8GDb8w+N5qfGTjXa/y5MOlqeOANuc+9t+ucfB3sXglb7s09RkeuXKFoAJ3bQ2N59vq6X4c2FEUTINkTgs5IQvfu9Nf/mJOgejGs/D50NYXwxYGUl8UAACAASURBVB2PZl9r/LlQvQialsGYE8J7r3I+7FoagtrKZkHlXOhqCe+B4onhMynZBbGiEMTWvhnW3gadO6H+4uyfRYkuIAJRv74tSZIkSdJI+H/WkiRJ0oj4xUBJkiRJkiRJh5dIJEIsFhvtbUiSJEmSJEmSdHgYjV+YMPak0EYqGg8haw/eAJvvhJJJMOdfoPGqvc9d8BkoPwrW/wbyymHKq6H29IHnnPpjuPMi2PV0OB57Ciz+5ogvI039ZdmD0SZdHQKNtj+UWcsadBaBeHEIaupv9j/Dyh/Cpj9l1qIFIQDtH8tEQ1hT9aJU35gTcu//kmfht/Ohuzm9P14Kp98KrWtzzz3uG1B3AfxqWvb69DfB8f8VAqNuzvFvRQs+BdOuhyc/Cmt/Be2bwuti7Cmw7SFoWpr7/NJQtW0YuL71b6H1yhWKBrDx/0IDWPuLke/t7+9P3a89M4TC7Xwi1Tf2NJh8DTRcEcLVIrEQ9DZciZ7weTHQnynJJJAM4yRJkiRJOsQZjCZJkiRJkiRJkiRJkiRJkiRJkiRJkjIV18OZvwmBO0MJeYtEYOqrQxuskklw4ZPQ/GwIECudPOTt7lXl3BDu1Tccre4imPYGyKuE+1+TPn7sKXD8t+FPS6B9Y6p/9nsgVgxPfzJ9fDQf6i8GktmD0eovguhefkFNxVwomQK7V6b315wYHqOZb4NnPptem/FmiJdAcWPYQ6Izc91xZ0PhAMFMZTPCbSQaxmbbf8PlUFgLi/9faNm0bwmBVuWzIZYPNw3wupnxNnjuP7LXJl0Lq27KPVc6WGy+M7Nvyz2hPfTW4a0ZKwaSkF8Nbesy66VToageelph+yOZ9VN/Ej4POrZCwVioOhq6miC/Jnw+xApHJ7hTkiRJkqRBMhhNkiRJ2m+So70BSZIkSZIkSZIkSZIkSZIkSRq5AxWgE4lA+az9e465/woTr4Qt90H5zBA4Fo2FELdkTwjqat8EE86DhV+CvHI470FYdUsIKBq3BOovge4W2Pq3VIBYNB9O/D4U1MDk62DXM7D086nzFjfCgs9m3VKaSBSO/ybccwV07w59BTWw6Kvh/oJPh7CkVbcACWi8Go56X6jFi0Iw25pb09esOgYqZof75bOhaVnmeRtemrp/1Pthy92Q6Er1TbwSKo7a+/4Lx4bWq/FlsPqnmeN6H6tcwWjHfn54wWjnPQg1i2H3anj8Rtj59/DY1yyG0mnQshKqFoSxOx4PYXPVC8NzXtwAd14ILS+krxnNS38spP2tpzXcZgtFg/Aa7f867euvLx/ceSrmhvdETyvES0MYZtsmaLwqhCBu+CNsfyjUzrkrfM6tuTV8VpbPgp522PU0FE+E6uMg0RHGjDk5fK42LYdtD0PJnnq8eGiPgyRJkiTpiBVJJg1r0JEtEonMBZ7qPX7qqaeYO3fuKO5IkiQdUnra4cdF2WuTXgGn3Hxg9yNJkiRJkiRJko5oTz/9NPPmzevbNS+ZTD49WvuRJMmf0ZMkSZIkHdYSPSF4a/fqEARUNC69vvPpEJ4WL4G6CyC/cvBr714FG24PIUMTzoei8YOb174Z7roEtj0YjkunwZm/TQXOPfef8NBb0+fUXQxn/jq9b/M98Nw3oX0jjH8JzHkvROOD33+v9bfDneen9xXUwKUvQrIbbh0fwpT6Kp0GlzwHf/8ALP1c5przPgIv/i+0rEjvLxwHl68JQWbD1dMRgp+6dsK4s0N4HsCtE8Jj0d+ir8Gsd4T7bRthwx+gcALUHBfWIgG3TRz+fqTDXXEDtK5NHY85GWKF0N0Ku18MQYYtL4SQxTEnQVEddGyFkikhhDGvPMzrboFoIZAI8yVJkiRpP/Dn8w6cYfwtlCRJkiRJkiRJkiRJkiRJkiRJkiRJ0hEuGoPqRaFlUzk3tOEomQTT3zT0eYW1cO790Pxs+EXgFfPCPnvNeAsQhee/BZ07oP4iOCZL+FjtaaGNVN15cPKP4KmPh3CjmhPghO9AXmmoz3wbLPtS+px5N0IkAlNeBcu/AonOVC1aAFNfEx7Xe68N4WoARGDBp0YWigYQK4DJ12S5jgvhhe+l90Wi0HBZ6rhoPEx9bebchpfC2l+MbF8A1yRgx2Ow8ofhsSyZDBMvh6pj4GfVueeddTtsfzQ8NvlV4Xnv3g0Vc6G4Hrqaw7XsegY23w1rfja8/dWeDrVnhtCqjq2w8wloWja8tXTk6BuKBrD1vvTjDXsCCZ/+9NDXnvVumP+RoYVSSpIkSZIOCgajSZIkSftLMjnaO5AkSZIkSZIkSZIkSZIkSZIkHWkiESiflbs+44bQDpTJ14aW6IZov6+1HvsFKJsOa24LYWlTXgMNl4Za5Tw487fw2L/Azqegcj4c9w0onRJaUUMI8Up0wcQrYNyZ++8a5n4QNt4Brav79N0IJY17nzvt9ZnBaPFSaHwZvPDfgzv/Ue8Pz2v1wtD6m/XuECLX38QrYMK5oe3N+LNh1jvgF/XQtj77mKpjQzhbNmf/JQSsZfPUp+CJG7PXZr4Tnv1a9tr0N0HtGSE8q2MbbH8INv0l+9h4CYxbEgLeWlZkH6Mjy/KvhPft2X8KoZGSJEmSpEOGwWiSJEnSSBh+JkmSJEmSJEmSJEmSJEmSJEnS3vUPRYMQ9jXjLaFlM/4cuOCx7KFqY08K7UAomw7nPwRrboXWdTB+CYw7a3Bz6y+Gxd+EJz8C7ZugYi6c9D8QLYBVN0NP+97XaLx64PrEl+YIRrtqcHvsa+6H4OG3ZfZXHQsz3wYPXJ9ZK5qQOxQNoO787MFoeZVQs3jgvfQPn+vpDIFyO58Ij+WkV0BBdebcnnaIxEOg2rYHoaAmhMr1tMGTn4C2tSFcb8K5UDoNWp6HOy/MvZdJr4BVt+Su6+C06ylY8d0QbihJkiRJOmQYjCZJkiRJkiRJkiRJkiRJkiRJkiRJkqSDV7ZQtQOtsBZmvHl4c2fcANPfBN3NkFee6l9yBzx+Ywhvqj4OFn4JXvgeLP3CngERWPhlqD524PXHngZz3ttnHjD5Oph45dD32nAZPPIOSCb69V8OdReFALT+tUnXDLxm1UIonwVNy9P7p1y3J2AuAvT7xfUFY6GoPnOtWH54PPcmVhhui8ZBwyXp/Yu+lDm+fEZ4jts3Z9ZO/hFMvjYE9K35WfbzXd0RHpvVPw3Pw45HIV4WnvOieujYAonOve9b+97GPxqMJkmSJEmHmIPgb4IkSZKkw1Vy70MkSZIkSZIkSZIkSZIkSZIkSdLhLxJJD0UDGHsKnPOX9L5jPw+z3gO7noaqY6FwzODWPvbzMOU1sP0RqDgqBK1FIkPfZ3E9HPf/4OG3pgLQxi2B2e8O+1/4FXjknanxVcfAnPftfX9n/AbuuhSaloa+iVfAMZ+FeAnUXwLrfpU+Z8abIRob+v5Hov5SWPGd9L5oAUw4P9yf+prswWhVC0NgG8Dka0IbSMe2EJ7WshJqjoNpb4T8ilT9pgGet4uXw29m5a6fcze0b4I1P4fVP4Nk98B7ORJ0bB3tHUiSJEmShshgNEmSJGlEDD+TJEmSJEmSJEmSJEmSJEmSJEn7UHFdaENVOS+0kZpxA0w4D7beByWToeZ4iO75SvKsd4SgtM13QnEjjF8Sws32pmw6XPQ0tLwAeRXpgW+n3BzC1tbeBvEymPpamPfhkV/HUM37N9jyV2haFo4jUTjua1BQHY7HvwQKa6F9c/q8qa8Z2nkKauCYz+SuT3sjrPh2Zv/cD0H5TJj5dnj2G5n1ya+C2tPC/car4NgvwK5noHAsVB4drmf3GvhlY/bzzv4naLgc7jg9997m3gid26CrGV7839zjDiadO0Z7B5IkSZKkITIYTZIkSZIkSZIkSZIkSZIkSZIkSZIkSVJK6eTQsqmcG9pQRSJQNi2zP14MJ3wHjv92GDNaSibCeQ/Cxj9C24YQAFcxJ1WPFcCSP8G9V4fAsVgRzHpnCCrbl6ZclyUYLQKTXxnuNrw0ezDapKvTj4vrQ+uraALEiqGnNXP+5FdC9UI46X/hb9dl1iecDws+kTrOFYxWvQhO/Rk8+RFY+YPsY16+G6L5IXAvmYTdL4bAvObngQSUTodYfhiz8c+w/KvQ/GwYByFcbsprQlBdsge2PwJrbs1+LoPRJEmSJOmQYzCaJEmStN8kR3sDkiRJkiRJkiRJkiRJkiRJkiRJh4bRDEXrlVcGE6/IXa+cBxc9DW0bIb86hHfta7Wnw/Hfgkf/GbqbIb8qBMf1hrSNOwuO+iA885nUnFnvDsFlexONQ+NVmYFlZTOg6thwv+GycM7+gWLT3pB+XLkAdj6eeY5Z7w6herP/OXswWtnMEIbXKxKB0inhfsHxmePrLwxtbzbdBX86M7O/ezfseBwqjoJo3t7XkSRJkiSNOoPRJEmSpBEx/EySJEmSJEmSJEmSJEmSJEmSJOmIUjR+/64//Y0w9XXQugZKJkEkmqpFInDMp8OY7Y9C5Xwonzn4tRd+GXa/CJvvDsfFE+G0W1PBdHmlcM5d8LdXw46/Q+E4mPfhEKjW18QrMoPRogVQf3G4Xzkfak6Ebfenj5nx1sHvdSjyq3LXfn9MuK27KDye2x6E4voQBldzIuRXQF55CLsrGAvRWGruqp/A8/8FXU3h2ub+KyQT0LYOihtD2NxgJLqBSPrayWTqcU90Q7IHYgVDumxJkiRJOhwZjCZJkiRJkiRJkiRJkiRJkiRJkiRJkiRJB5NoHEqn5K6XThm4nktBNZx9J7SsCGFflQvSw7oghJpd8Bh0NUO8NBXe1dec98L2h2Hdr8NxrBBOvhnyK8NxJAJn/Q4efDNs+AMUjIEZb4FZ7xz6ngdjoGC0Xut/m7q//WFY+8uhnWP7w/DkR9P78sqhYh5E88Nj0L0bonnhudn6AOx6au/rxsuguzm9b+Y7wmNVOi398U8m0oPyevsSXWEPXbugZSVUHJU7ZC1bSNvedLeF57qnFSZcAEXjBj9XkiRJkobIYDRJkiRpf0kmR3sHkiRJkiRJkiRJkiRJkiRJkiRJUrpIBMqm731cXlnuWrwYTv8lND8Lu1dBzQmQX5E+Jr8KTv1x9jCvfW0wwWj7Q1cTbL0vs3/TENboH4oG8OzXQxuJSDQ89gBFE6BqEbRvgqal0N0SQu9mvh3aN0PReGjbCKtugspjoP4iqL8ENt4BT308XGevaD7M/1hYs2kpxEpgzIlQOS/09T7fiZ5wG4nsCW/rhp62EBwXLx7ZtUmSJEk6rBmMJkmSJI2E4WeSJEmSJEmSJEmSJEmSJEmSJEk6EkUiUD4rtAHH7edQNIB4CeSVpwd4Hel6Q9EA2jZA22/S690t8MxnM+dtuz+0Jz6cfd1EJzz+wZHtrXwWVB8PhbXh9VF1LDRcDvGizLEHIlhPkiRJ0kHFYDRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0qErEoG6i2HVTaO9Ew1G0/LQ+iuZAoXjoLghhNz1tMHW+yDZA7FCqF4cbiecD+POgEQP5FeGllcBsYIDfy2SJEmS9jmD0SRJkqT9JjnaG5AkSZIkSZIkSZIkSZIkSZIkSZKODIu+DDseg6alo70TDdfulaFty1LraYct94T7G/+YfX6sEPIqIb9iz+2ewLT8ysH1x0tCyJ4kSZKkUWUwmiRJkjQihp9JkiRJkiRJkiRJkiRJkiRJkiRJo66wFi58ErbcDY/fCB1bofnZ0d6VDqSedujZCO0bhzc/EusTmDaEQLXe/rwKiMb27TVJkiRJRyCD0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJh75oDMadBefeG45bXoBfTcs+9pjPwriz4fbFudcrmQy7X9zXu9TBKtkDndtDG6542eCD1DL6KyBWuO+uR5IkSTpEGYwmSZIk7TfJ0d6AJEmSJEmSJEmSJEmSJEmSJEmSdOQqboT8KujckVmbdC2UTITF/wkPvSWzXjEXLnoKkkl44sOw7MvQ0wrVx8EJ34aqY8K4nk74cUH281ceDRc+njpe8T144A3Zx16xBbpbYPWP4e8fyKzXnAhta0NYW7wENtwOkSgkE6kxeeUhmKttXeb8vHLoasp+bu073c2hsXZ486MFITCtNzxtUIFqffrjpRCJ7NNLkiRJkg40g9EkSZKkETH8TJIkSZIkSZIkSZIkSZIkSZIkSTooReMw7XpY+vn0/rqLQygaQMNl8PDbIdmTPqbx6nAbicCCT8LcD0GyKwSP9Q2eiuWH0LJt92eef/Z70o/Hn5N9nyWToaAGCsfAUe8PbTB6Q9Ei0cxa5w7Ych+UToPyWdDyAvx6evZ1cu0foGohnP8wPPt1eORdg9uXhi/RAe2bQhuOSLRPoFqfwLS0oLUs/b1ha3nl4X0jSZIkjSL/i1SSJEmSJEmSJEmSJEmSJEmSJEmSJEmSdHha8GkgCS/8Twidqr8EFn8zVS+aEI4fuiEVNDb+HJj1zvR14kVAUfZzTHpFZrBYrBAaLk/vK2kMfWtvS++f9a70sLXByhaI1iu/CuovSh0X1eUeO+Mt0Lw8hKn1d/THwt5mvRPGvwS23hfC4RouD6FwK74LD1yfe+2r22DjHXDXJdnrp/4Edq+GFd+BpmW519HgJBPheezcAbuHuUa8NEtgWsXgg9Zihfv0kiRJknTkMRhNkiRJ2l+SydHegSRJkiRJkiRJkiRJkiRJkiRJknRki8bh2M/DMZ8LoVHRWOaY6ddD3fmw+a9QOhmqjwvzBmvm26DpGXj+W+E4rxJO+2kIiervlJvhsffDul+H+rTrQzDZ/hYvgqqFsOPR9P5oHtRdCJvvghe+l17Lq4RxZ6eOK+aE1lfdxbnPWTIphGTVngHxEujul9RVdyE0vizcL50C91yZfZ0574Oln8teW/hlGLcEunZC5649tzuha9ee2779fes7IdGVe+9Hsu6W0Fg7vPnR/MxAtVxBa/378ytC8N5wggIlSZJ02DAYTZIkSRoJw88kSZIkSZIkSZIkSZIkSZIkSZKkg18kApEsoWi9ihtg8iuGt3Y0Dsf/Fxz9KWhdDZXzQ+BYNrFCOO6roR1o8z4Ef305JHtSfTPfAYVjYMEnYfvDsPOJPfssghP/OwSqDaRoHCz4DDz+wcxa48vDbV4ZHPsFeOitwJ7vYxWMhQWfSo2tOTH7+tF8qJyX+/xVx0LV0QPvMZtkEnraBxmolqO/f9CbgkQntG8ObTgi0RCW1j8wLS9HkFq2+lCCDSVJknTQ8b/mJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEkaqcIxoR2sJl4BZ/0frPwf6GqC+oth6utDrWgCnPcAbP0btG+B2tNC32DM/UAIP3v47am++kth/kdTxzPeDNXHwYY/QH41NFwGxfWpenEdjD8HNt6Rvnbjy6DmhNznLps+uD32F4mE0Ld40eCvs79EV3gchxqo1tvftQuSieGd+3CWTEDnjtCGmz0XLxlkoFqO/lhheI1IkiRpVBiMJkmSJO03ydHegCRJkiRJkiRJkiRJkiRJkiRJkiSljF8SWjaxQhh31vDWnfk2mH4D7HgMCsdBSWPmmJrjQsvl5Jvh3lfApj+HUKr6y2Dxf0K8FMpmQPNz6eOrj0sPVzvQonlQUBPacCQT0N2SPUjtH+FpAwWt7YRE5769psNF9+7Q2tYNb340PwSmVR8HM24IQX4j1fIirL0NCmuh7qIQwiZJkqSsDEaTJEmSRsTwM0mSJEmSJEmSJEmSJEmSJEmSJEkiGoeaxcOfXzgGzr4DOraH0LG8slRt8Tfh7ktD2BVAfhUs+urI9jvaIlHIKw+NicNbo6d9gEC1QQStdbfs00s6bCQ6oWMLbPh9aH3N/yjEyyBeDPESiO25TTsuhtievlgRPP4hWPrvIQyv15iTofZ0mP5GaN8S+pI9UHVMmNereQV0N4f3xbpfQaI7vDd2PAYbbg9jSibBUe+HKa8Oe5AkSTrEGYwmSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIODgXVmX3jl8BFz8D634fQtAnnQXH9gd/bwSZWCEXjQxuORDd0NWUGpg0laK1v2NeR4MmP7pt1tt4X2jOfHflau1fBQ28NrXBcCN2LFYfnpuFyaLwKEh3Quh5e+C5s+gsU1UHZdFj8X1AxO6yz7WHY/jAUjof6SyAaG/neJEmShsFgNEmSJGm/SY72BiRJkiRJkiRJkiRJkiRJkiRJkiTp8FDSCDNuGO1dHF6i8RBEly2MbjCSSejePbxAtd77Pe379pqOdO2b0o+Xfzm0/trWh/bbOeE4mgeJrvQx5bMhVgSdO/Y8XztTtcJxMO4siJfBzieguxkmnA/z/g3yK1LjeoPzItFw27Q8tNKpUHFUqn+wOneE11zh+PD6lSRJhyX/lJckSZJGxPAzSZIkSZIkSZIkSZIkSZIkSZIkSdIRKBKBvNLQihuGt0ZPO3TuSoWnDRSo1hvO1be/u3nfXtORqn8oGkDTstzj2zfBqlvS+3Y9A8u+lH38hPOhYytsfzh7PZoPZTMh2QPF9SGQbfuj4Txl06GnbU8oWksqbA2g5gSoOhZiBSGkLb8ytLzKzPt5FYapSZJ0iPBPbEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJB14sUIoKoSiccObn+iB7qaBg9Q6d2UGqvUNYEv27NtrUqYNfxi4nuiEXU+F+01L02sDBbRteyC0wYqX9gtLyxKg1huiljGuAqJ5gz+XJEkaNoPRJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSdOiJxiC/KrThSCahpzUVmNayAu6+bN/uUQeP7pbQWDu8+fGS7GFqOQPWDFaTJGk4DEaTJEmSej33X7DyB+EvMRsuh7k3hr8UHUgyeWD2JkmSJEmSJEmSJEmSJEmSJEmSJEmS9q1IJIRdxUuguB4q58JVO2HZF2H1T6BpeeacvAoorIXu1vB9xO7dkOg88HvXgde9O7S2dcObnzNYrWIvoWp7xsTy9+31HG6SSWh+DlpXQ/FEKJ0G0Tj0dIZQukgk99zOXZBXPvAYSdIBYzCaJEmSBLDsy/DoP6WOd/wdWtfBCd8a/pqGpkmSJEmSJEmSJEmSJEmSJEmSJEmSdGjJr4CjPx5a7/cEe9og2QOxYojGMuckuveEpPUJS+vec/vns7Ofp+FyaH4edj01/L1G86DhClj94+GvoQNnpMFqseLcwWlHerBa63q4/7Ww8Y/Z63kVUD4b2jfB7hdzr1N7Znhv5leE7xlvuRealsHuldnHVx4NY06Cogmw/REoqAnvyfqLIBINYxLdsPRzsPluyK+GadfD+CV7al2h7X4RWteGevWiENCWTEDLCyHsrXs3tKwMz2XDZSGcUZIOYwajSZIkSQDP/kdm38rvw8IvQV7pAd+OJEmSJEmSJEmSJEmSJEmSJEmSJEkaZZFIuI0XDzwuGodoOeSVZ9YWfRUeeVe/daOw6GshdOm+a7KvedX2EGrV0wo/HwM97ZljprwaTvgOcAusuS18L7JtQwhrmvpaKJ0WQpfW/w5W3QLdLVA2E2pPD8eb74RoPpTPgaZnwlgdvHpaoa0V2tYPb36saHihar33D9Zgte5W+Mt5A4cMdu2CbQ/sfa3Nd4Y2WDufCK2vF74fbiNRiJdD1870+qqb975urDg839k8+CZYcgd0bINEB1TMC59RpdMh0QnNy6HpWahaAOWzBn8tq34Cj7wzhMcV1MDib0LjVSEgcstfQ3hbtAAq5kDZjPDZEYlCV3P4fMqvDJ8hLSuguDGEy/XqagGS4TWY7A6ffa1rofY0KJ06+D1KOmIYjCZJkiR1bAv/k91fogvW/gKmvGqAycn9ti1JkiRJkiRJkiRJkiRJkiRJkiRJknSIm/5m2Pq3EEQGEInD8d+CkokQOyccJ7vT55TPCkFUkQjES2DWu+GZz2auPfX1qfsTLw8tmxk3hNa/D0LoUW8AXDIBzSugoBq6mmDdr0P4Ud1FkFca9ppXFr6Xue7X0L0b8qth7S/D9zETnUN7bArGQMfWoc0ZSOXRIQCrc2e4VbqeNmhrC+F5wzGUYLW8isxarGDfXk+vNT8fOBRttCQTmaFog5UrFK3Xn88Z3Dolk2D+R8PzESuGwloonw3bH4I1t8LW+8Pz2j8MrmMb/PVlw9l5pnhJ+KwYyLglIbSxYysU1YXPkoIaGHsabL4rhNrFiqFwDBROgO2PhKC26uNgwaegdPK+2aukg4bBaJIkSVKiO3etu2UECxuaJkmSJEmSJEmSJEmSJEmSJEmSJEnSES2WDyffBPM/Ds3PQc1iKBwbaoVjYPob4bn/TJ9z1AdSYWUAR38SiMCyL0GiIwSUzf8ojDlp5Pvre55IFMpnhPsFNTDrndnnFNTA1Nemjidfk33cTZHs/TUnwHn3p47bNsKqm2H978K1LfoK/PGUEM6UMfd4OPdvsPPJEIiVVwGNLw9Bc30leqC7eU9I2s5wm+t+1j6D1TKMOFitcHCharn6cgWrbXtw+Nd0uNu9Cu5/3ejuYW+haACb/hzaUDU/C+t/A6f8GOrOH/p8SQctg9EkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZKk/SUSCYFjvaFjfR33DSidDut+BXnlIXBs4hXpY6IxOObTMPPt0LoaihtCO9iNW5I97Gjm29KPi8bD7PeE1mvam+CZz2TOnfGWEOBWtSC0XKKxVLDWcGQEq+0afKjaP4LVksM79+Gqpx16NkL7xuHNzwhWqwi32x7Yt/vUoaWrCe68INyPl0G8GNo3heNZ7w6fqQN9Vkg6KBmMJkmSJI1E0r+UkiRJkiRJkiRJkiRJkiRJkiRJkiRJwxSJwpx/Cm1viutCO1RMfX1mMFp+VWbwWzbT3wgrvgUd21J9pdOh8eX7do+5jDRYLZmAruYBgtP6BKjlqhmslm6kwWo6/HU3h9Zr+VdC+//s3XmUpGV9L/Dv09PD7AMM+zrs83+RdwAAIABJREFUIqIggqi4YBTFaFSMihqNGI9LjN6cmOS6JIbojcvNek2iSdRcJDcmUYlKFuOGmiCIYPS4gSKyqOwwIMwwCzM894/qoatrumvp7qrqmfp8zqnz9rP/CoZz6h3q/fb4quQZ30xWHTm82oCeCEYDAIB+/cWQ0DQAAAAAAAAAAAAAAAAAYFQd9pJk403Jle9OttyV7H588ri/T8ZXdF678vDkjEuTq/4w+dmVyZqTk4efm4wv73/d86GMJbvt3nitWNv7+vpAsnV9+1C1KQFrLX33/6yxB9AIS/vsKcnTL09WHTXsaoAuCEYDAIC2yrALAAAAAAAAAAAAAAAAAADY+ZSSHPfbyUN/sxHUtdueva1ffUxy6of6U9tCV8aSxasbrxWH9r6+1slgtV5D1bZfd/Zgtcd/LPnKC6cf2/dJyVO+1PgzmjTe69XvS37w5433fsDTk+PPTf7jhGTbxmn2/nhy6POT9dcl916TXPpLyebbpz9ryd7J5jumH1u8R3LUq5MDz0xu/lxy0380/r3VrcmipcmqY5LlhzTm/vD9vb1/ptpyV3LteckJ7xx2JUAXBKMBAEBbdY7jAAAAAAAAAAAAAAAAAAAjrIz1HorG3JSSLF7VeOWQ3td3Cla7/2edg9bqtnl/W10bX5Uc8Ixk5ZHJ+h/tOH7YSydD0ZLGn9GHvKHxanboC5Przp/at2h5csDTGj+vPLzxOvg5yY9mCPF7/MeSi35ux/7FuyfPXzdZx35PTk5898zv6VH/J7nu75Mfvq/x72fPE5NVRydb7002r2vUtHVDstseybd+J7n72zPvNZ2Hvz35zrkzj5/6t8mm25JvvaW3fZsd/7bku/9r9uvn6vZLhnc20BPBaAAA0DdC0wAAAAAAAAAAAAAAAAAA2MnMS7DahumD06YLUZvvYLVjfyNZvDI54V3JpS9O6gOTY/s9OTn8Zd3t84i3J3d8Nbn36ka7LEpOeV+yePXUeWvPnj4YbY8Tkn2emCw7KNl449Sxw395ajhbJ2OLkyNf0Xh1ctCzkjuvSO74WrJoSbJibbLx5uSyc6aff+J7kuPe1Pjn9N237zi+/JDkyF9pjM8UjLbi8OQJFySfedT04/s+MXnEO9oHox307OTGf5l+7HEfSfZ4RHL7xckVr5t5j3bWXze7dcDACUYDAID08JcGAAAAAAAAAAAAAAAAAADAzEppBJMtXpksP7j39bUm2+7rPVRt2YHJwc9JjpgID1v7wkbfdX+XpCb7PCE5/KVJGeuujhVrkzOvSG65KNl0WyNUbfUxO87b9/RGeNh9P5naf8QrkrFFyZP+JfnyM5NNtzT6939aIySsn/Y6pfHabut9ydd+ZWpI3Hb7/Vzjeshzpw9G2x4kV8aSVcdMBsU1O+mPkzUnNfa69Ys7jh/dKcysJA8/d/pgtDKeHPK8ZNHS5J7vd9injbmE7QEDJRgNAABSh7QWAAAAAAAAAAAAAAAAAACYopRkfEXjtfygue217+Mbr9lavDo55Kz2c8bGk6d8Kbnkxcm6KxprjvkfyUPe0Bhfc1Ly3J8kd30zWbJ3suKwxnscpPHlyQFnJjd9emr/8kOSNY9q/LzniclRr06u+cDk+O7HJce8frJ96AuS771z6h6LVzf2TpIjztkxGG3JXslBz54446Tkrm/sWN/Dz22cv+KwZMP1U8cOfk4jFC1JFu8+83t84qeSy16RbLlr+vGZ+oEFRzAaAAC0NZe/VBCaBgAAAAAAAAAAAAAAAAAAu7xVRyZnXp5suTsZX5WMLZo6Pjae7HXKcGrb7qQ/S3525WTw2PjK5DHnJWVscs4pf90IMbv9K8mqo5JDfjHZbY/J8Ye9Nbn7O8mN/9JoL949ecInGsFrSXLYS5ONtyRXvifZsq4RdvbY/5eML5sYf8n0wWiHvqBRx2n/lPznM5PNdzb6dz8+OelPJ+eNr5j5/S3ZJznmDcl33zH9+Lb7kus+kqz77+TWLyTbNifH/kYjGG7rfY33sPrYZPGqyTW1Jvd8v7H30r1nPhuYV4LRAAAAAAAAAAAAAAAAAAAAAABgrppDxBaa1cckP/+t5Nb/TLauT/b7uWTZflPnlJIc9MzGazrjy5MnXZisvy6578Zkr5OTRUunrj/ut5OH/mZy/73JbrtPXX/Ua5KbP5vc8vnJvoe/Pdn9uMbPe5+aPPv65PZLGgFlax6VLFoyOXfPE5JFy5JtG1vqWpns+chkyV4zB6MlyVdfOrV9xa9OP2/1Q5NlByS3fnFq/6l/myw7qBEut+nWRh1b1ycbfpysPCJZvDrZ/4zG+xhbPHMdc7HptmTpvv3ZGxYIwWgAADAXtQ67AgAAAAAAAAAAAAAAAAAAgM4Wr04O/oW577Py8MZrJmVsx1C0JFm8Mjn93xvBZ/f8INnncckeD99xzoFPn37f8RXJ4S9LrvnA1P4jXpGML0tWPyR59AeTy1/V2/tpdc9VjVerr72y89p2wWxJI1ht+cGN97L/U5IDn9UInLv3R42QtaX7JOOrki13Juuvb8xbdkAjEG3x7slXX5Yc9Kzk5L9ojMEuSDAaAAD0i9A0AAAAAAAAAAAAAAAAAACASWOLk/1Ob7xm4+T3NQLebvhoUsaTtWcnj/iDyfHDfmnuwWj9tPHGxitJbv1i8q3f6X2Pa89Lbrs4ecIFyZ4nzG99sACMDbsAAAAYPgFmAAAAAAAAAAAAAAAAAAAAC97YePLIP0qe++PkOdcmJ747GVs0OT6+LFlz8vDqG5T11ySfPTW5+v1J9bw8uxbBaAAAMCduEgEAAAAAAAAAAAAAAAAAABaMo14z7AoG44HNydd/Lbn2/w67EphXgtEAAKBvCdhC0wAAAAAAAAAAAAAAAAAAAAbqyF9JjnzlsKsYjD0fmRz20mFXAfNqfNgFAADA8AkwAwAAAAAAAAAAAAAAAAAA2CWUseTRH0wOeX5y+yXJirXJwc9O7r8nKYuSMp5svi3JWHLXN5P7703WX5Pc84PkjkuTrRuG/Q66M74yOe2jyaIlw64E5pVgNAAAmFMwmlA1AAAAAAAAAAAAAAAAAACABaWU5MAzG6/tlu47+fOKQxrXNY+cfv0dX0tu/WKy7IBkvycnFx42ixoWJXVb7+u69ei/SVYf3b/9YUgEowEAQO1XuJnQNAAAAAAAAAAAAAAAAAAAgJ3O3qc2XklSH5h53tL9kk237ti//JDkuT9Ott6XXPvh5L6fJnscn6x9UVLGkq0bkw3XJ5vvSNZfl6y/Ntnr5EYQ26IVyb8/dOYz15ycHPfm5NBfnMs7hAVLMBoAALQNMCsDqwIAAAAAAAAAAAAAAAAAAIAFpowle56U3PWNHccec37yX89JHtg8tX/t2Y3r+PLkmNftuG58WbL7RPjZvk+Y7tBM+xz8PqclZ3yll+phpzM27AIAAGD42gWjdVo6h7UAAAAAAAAAAAAAAAAAAAAsfEe9ese+PU9MDnha8tjzk7HFk/37nJYc9+a5nXfcm2ao47Vz2xd2AuPDLgAAAIauX+FmQtMAAAAAAAAAAAAAAAAAAAB2fke9Otm2Kbn6L5JNtyb7PzV59AeSUpK1Zyf7Pim5/eJk2YHJXo+eGpQ2q/Nelfzog8nmOyf7Vj8kOeSsue0LOwHBaAAA0JZwMwAAAAAAAAAAAAAAAAAAgJFWSnLsrzde9YGkjE0dX7Z/cugL5u+8lUckZ1yaXPVHyc++1whbO/5tyfiK+TsDFijBaAAAMKfwM8FpAAAAAAAAAAAAAAAAAAAAI6M1FK1fVh+TnPrBwZwFC8iA/gsDAICFrF24WenTvgAAAAAAAAAAAAAAAAAAAAA0E4wGAABVgBkAAAAAAAAAAAAAAAAAAADAsAlGAwCAzCUYTagaAAAAAAAAAAAAAAAAAAAAwHwQjAYAALVf4WZC0wAAAAAAAAAAAAAAAAAAAAC6JRgNAAAEmAEAAAAAAAAAAAAAAAAAAAAM3fiwCwAAgOFrE4xWSoelQtUAAAAAAAAAGKxSyniSk5I8LMk+SXZLsj7JjUmuTvK9WuvW4VUIAAAAAAAAAACzIxgNAAD6FW4mNA0AAAAAAABgp1FKOSLJKUlOnrielGRV05Qbaq2HDaG0B5VSjk7y20nOTrK6zdSNpZSvJPmrWusnB1IcAAAAAAAAAADMA8FoAADQjnAzAAAAAAAAgF1WKeX0JG9JIwxtzXCrmVkpZTzJ76VRazff/VyW5Iwk65IIRgMAAAAAAAAAYKchGA0AADKX8DPBaQAAAAAAAAA7sROTPG3YRbRTSlmW5IIkP98yVJN8L8mPk9ydZGWSI5IcG98PBQAAAAAAAABgJ+WLLwAA0LdwM6FpAAAAAAAAADupzUl+muTIYRZRSilJ/ilTQ9E2JfnDJB+otd44zZrlSc5I8qIkWwZRJwAAAAAAAAAAzBfBaAAAUNsEmJUyuDoAAAAAAAAAGIb7k3wvydeTXDFx/U6S05J8aYh1Jcnrkjy7qX1zkqfUWq+aaUGt9b4kFya5sJTie6IAAAAAAAAAAOxUfOEFAADSJhitr2sBAAAAAAAAGLLzk/x1rXVT60AZ8i/SKqUcmuQ9TV2bkjy1XShaq1rr1nkvDAAAAAAAAAAA+kgwGgAA9C3cTGgaAAAAAAAAwEJWa71r2DW08TtJVja131lrvXJYxQAAAAAAAAAAwCCMDbsAAAAYuirADAAAAAAAAICFo5SyKslLmro2JHnvkMoBAAAAAAAAAICBEYwGAACZQzCaUDUAAAAAAAAA5t/ZSVY2tf+51nrvsIoBAAAAAAAAAIBBEYwGAAAAAAAAAAAAsLA8uaX9+aFUAQAAAAAAAAAAAzY+7AIAAGD4ap+27dO+AAAAAAAAAOzqHt3S/mqSlFKWJTkryYuSPCzJgUk2J7kjyTfTCFD7x1rrvYMrFQAAAAAAAAAA5o9gNAAA6CXAbOPNyU8+mdz3k2T/M5KVh/evLgAAAAAAAABGTilljyRHNXVtSXJtKeVJSc5L0vo/qpcm2T3JkUmen+RdpZR31Fr/fBD1AgAAAAAAAADAfBKMBgAA6TIY7d4fJRedntz300b7yvckR5zTr6IAAAAAAAAAGE37t7RvSvK8JB9LMtbF+r2SvLeUckqSV9Rat85zfQAAAAAAAAAA0DeC0QAAoNtgtO+9czIUbbtrPzz3fQEAAAAAAABg0h4t7ZVJ/j6ToWg3JHlfkq8kuTPJmiSPT/JrSQ5rWvfSJLcm+a35KqyUsm+SfXpcduR8nQ8AAAAAAAAAwK5PMBoAANR2AWZl8sdrz+t7KQAAAAAAAACMvNZgtL2bfv54kpfXWje2zLmslPKXSf4uyQua+n+zlHJhrfXieartdUnOnae9AAAAAAAAAABgB2OdpwAAwK6uXTAaAAAAAAAAAAzUTN/tvCLJS6YJRUuS1Fo3JXnJxLxmvzuPtQEAAAAAAAAAQF8JRgMAgNqvYDSBawAAAAAAAAD0bP0M/b9Va93abuHE+Btbup9WStl3XioDAAAAAAAAAIA+Gx92AQAAMHztAsyEmwEAAAAAAAAwUNMFo91Qa/2vbhbXWr9SSrk2yRFN3U9K8vF5qO39s9jnyCQXzsPZAAAAAAAAAACMAMFoAAAAAAAAAAAAAAvH3dP0XdbjHl/L1GC0h86+nEm11tuS3NbLmlLKfBwNAAAAAAAAAMCIGBt2AQAAMHy1zdgcvqBd2+0LAAAAAAAAANO6Icnmlr6be9zjppb2XrMvBwAAAAAAAAAABkcwGgAACDADAAAAAAAAYIGotW5L8oOW7tagtE5a5y+dfUUAAAAAAAAAADA4gtEAACCC0QAAAAAAAABYUL7d0t6jx/Wt8++cQy0AAAAAAAAAADAwgtEAAKBvwWgC1wAAAAAAAACYlU+3tB/W4/rjW9o/nUMtAAAAAAAAAAAwMILRAACgCjADAAAAAAAAYEH5tySbm9qnlFLWdLOwlLJnkke3dF88X4UBAAAAAAAAAEA/CUYDAIC0C0YrA6sCAAAAAAAAAJKk1npvkguaupYkeX2Xy1+fZGlT+4Yk352n0gAAAAAAAAAAoK8EowEAQNtgtIW4LwAAAAAAAAA7k1JKbXmd3sWytyXZ0tR+aynlsR3OeWyS323pfnet1f/ABgAAAAAAAABgpzA+7AIYjFLK4iSnJTk0yQFJ1ie5Kck3a63Xz/NZhyc5McmBSVYmuTmN3zh5aa31/vk8CwCg/3w3HAAAAAAAAGBXVko5ONN/n3L/lvZ4KeWwGbZZX2u9Yz7rqrVeV0r5w0wGnS1J8rlSyv9M8qHm7+OVUsaTvDLJHyfZrWmby5OcN591AQAAAAAAAABAPwlGG6BSyu8nOXcOW5xfaz2nxzP3SfL2JGcnWTPDnEuT/Gmt9Z/nUFtKKc9P8sYkM/1GynWllI8m+b35/gIYAMCc+MXYAAAAAAAAAKPsK0nWdjHvoCTXzTB2fpJz5qugJr+X5CFJXjDRXpnk/UneVUq5LMm6NL4b+Jgke7SsvTHJL9Zat/ShLgAAAAAAAAAA6AvBaLuwUsozknw4yb4dpj4uyeNKKR9J8ppa64Yez1mZ5INJXtRh6pokv5rkeaWUl9daP9vLOQAA/dOnYDSBawAAAAAAAADMQa21llJelkYA2muahvZIcmabpZcnOavWelM/6wMAAAAAAAAAgPk2NuwC6I9SyulJPpWpoWg1yX8n+XiSzye5o2XZLyX5x1JK138uSimLknw0O4ai3Z7kcxNnfSNT00b2S3JhKeXx3Z4DANBfAswAAAAAAAAAWJhqrZtrra9N8tQ0vvu3rc307yY5J8njhKIBAAAAAAAAALAzGh92ASPuxUku62H++m4mlVIOTvKJJLs1dV+S5FW11qua5i1J4zdI/nGSxRPdv5DkD5K8tcua3pPk55va9yd5Y5IP1Fq3NJ11XJIPJXnsRNeSJJ8qpTy81npzl2cBAPRHbReMJjQNAAAAAAAAYFdWaz1sAGeUedjjoiQXlVL2SfKYJAck2TvJvUluTXJprfWncz0HAAAAAAAAAACGSTDacN1Sa72+D/u+PcmeTe1Lkzy11rqpeVKtdXOSPy+l/DjJJ5uG3lhK+Zta6w3tDimlHJHk11u6X1BrvbB1bq31ylLKU5JclMlwtL2SnJvktV28JwCAPmoTftY2NG0O+wIAAAAAAADALNRab0/yr8OuAwAAAAAAAAAA+mFs2AUwv0opRyd5eVPXliTntIaiNau1firJ+U1dS9IILOvk3CSLm9ofni4UremcjUnOmahpu1dOBKwBAAxRuwAz4WYAAAAAAAAAAAAAAAAAAAAAgyAYbdfzkiSLmtqfqLX+sIt1/7ul/cJSytKZJpdSliV5foc9dlBrvTrJp5q6xtOoGQBgeKrwMwAAAAAAAAAAAAAAAAAAAIBhE4y26zmrpX1eN4tqrVcl+VpT14okT2uz5OlJlje1v1pr/X5XFe5Y0/O6XAcAMARzCE0TuAYAAAAAAAAAAAAAAAAAAADQNcFou5BSyv5JTmjq2prkkh62+HJL+xlt5p7ZYW07F6dR23aPLKXs18N6AID5VR9oMybcDAAAAAAAAAAAAAAAAAAAAGAQBKPtWo5vaX+71rqhh/WXtrQf1sNZX+32kImavtPDWQAA/VMfSK54bbsJAysFAAAAAAAAAAAAAAAAAAAAYJQJRhuu15RSvlBKubGUsqmUcm8p5fpSyn+WUt5ZSnlCj/sd19K+psf1P+qwX7OHDvAsAID+ufFfkw3Xzzxe5xKMJlQNAAAAAAAAAAAAAAAAAAAAoFvjwy5gxL2opb0kycoka5M8MclbSylfT/KWWusXutjvqJb2j3us54aW9l6llD1rrXc1d5ZS1iRZM8ezWucf3eN6AID5cdWfDLsCAAAAAAAAAAAAAAAAAAAAAJKMDbsAOjo5yedKKe8spZQOc/doad/Wy0G11vVJNrV0797FOffVWjf0clZ2rG26cwAA+u/2iztMqAMpAwAAAAAAAAAAAAAAAAAAAGDUjQ+7gBF1Y5JPJ7k8yVVJ1iV5IMleSU5K8qwkT2+aX5K8NY0gu7e02XdlS3vjLGrbmGRpU3tVH89pNt05PSul7Jtknx6XHTkfZwMAu6q5BKMJVQMAAAAAAAAAAAAAAAAAAADolmC0wbo8jcCzz9daZ0rJuDTJX5ZSTk7yD0mObhp7cynlslrrhTOsbQ0s2zSLGjcm2bPNnvN5Trs9Z+t1Sc6dp70AAJIZP7YBAAAAAAAAAAAAAAAAAAAAMJ/Ghl3AKKm1frrW+rk2oWjNc7+e5DFJrm4Zek8pZVG3R/Za4wJfAwAwBD62AAAAAAAAAAAAAAAAAAAAAAyCYLQFrNa6LsmLMzWN49gkT55hyfqW9rJZHNu6pnXPQZ4DALBz65yHCwAAAAAAAAAAAAAAAAAAAMCE8WEXQHu11m+UUj6X5OlN3Wcm+cI00wWjJe9P8vEe1xyZ5MJ5Oh8A2OUINwMAAAAAAAAAAAAAAAAAAAAYBMFoO4fPZGow2iNmmPezlvY+vRxSSlmZHQPL7u7inOWllBW11g09HLdvF+f0rNZ6W5LbellTSpmPowGAXVUVjAYAAAAAAAAAAAAAAAAAAAAwCGPDLoCuXN/Sninw7Ict7bU9ntM6f12t9a7WSbXWO5O09h86x7NaawcAWCAmgtFmFZAmVA0AAAAAAAAAAAAAAAAAAACgW4LRdg4bW9rLZph3VUv7qB7POaKlfWWbufN9Vut+AAALRG25AgAAAAAAAAAAAAAAAAAAANAPgtF2Dnu3tO+YYd53W9qPKKUs7+Gc0zrs127ssd0eUkpZkeQRPZwFADB8VTAaAAAAAAAAAAAAAAAAAAAAQD8JRts5nNrSvmm6SbXWm5N8u6lrPMnjezjn9Jb2f7SZ+5kOa9t5Qhq1bffNWuutPawHABicBwPRZhOMJkwNAAAAAAAAAAAAAAAAAAAAoFuC0Ra4UsrSJM9r6f5ymyWfbGm/ostzjs3UALYNST7XZslnk2xsaj92Yo9unNPSbq0ZAGABEW4GAAAAAAAAAAAAAAAAAAAAMAiC0Ra+NyU5qKm9Lcm/t5n/kYk52z2vlHJ0l+c0+1itddNMk2ut9yW5oMMeOyilHJPkrKaurUn+oYv6AACGpLZcAQAAAAAAAAAAAAAAAAAAAOgHwWgDUkp5WSllvx7XvCrJuS3dH6613jDTmlrrD5Oc39S1W5IPl1KWtjnnOUnOaerakuTtXZT4+0nub2qfU0p5dptzliY5b6Km7f621vqjLs4CABiOWqdeZ7MWAACA2as1uefq5P57hl0JAAAAAAAAAAAAAAAA0GeC0QbnlUmuK6WcX0p5ZillxUwTSyknl1I+keQDSUrT0I1JfreLs85NcldT+3FJvlBKObblnCWllDck+XjL+j9pF762Xa312iTvbem+oJTy+lJKc/hZSikPTXLRRC3b3ZnuAtgAABYAIWcAAAADt+4byYVrk397SHLBmuTy1yYPbBt2VQAAAAAAAAAAAAAAAECfjA+7gBGzLMkvT7weKKX8MMn1SX6WZFuSvZKckGS/adauS3JmrfWWTofUWn9aSnleks8m2R5QdlqSK0sp/53k2iS7JzkpyT4ty/8tydt6eE9vTvKwJM+YaC9O8hdJ3lZK+UaSe5McMXFWc8jbliRn1Vpv7uEsAIAhqC1XAAAABmLrxuSLZyRb1jXadVtyzd8kKw9PjnvTcGsDAAAAAAAAAAAAAAAA+kIw2vCMJXnIxKuTi5KcU2v9abeb11q/XEo5K8mHMxl+VpKcPPGazj8meVWtdVsP52wrpbwwyYeSnN00tG+SM2dYdluSl9daL+72HACA4ZkIRKuzCUYTpgYAADBrt3x+MhSt2TUfEIwGAAAAAAAAAAAAAAAAu6ixYRcwQt6b5B+S3NDl/A1JPpnkqbXWp/YSirZdrfXTSY5P8tdJ7moz9bIkz6+1vqTWumEW56yvtb4oyQsm9prJuiR/leT4Wutnej0HAGAoHgxEE3IGAAAwUN//s+n711872DoAAAAAAAAAAAAAAACAgRkfdgGjotb6yTSCzlJK2SPJw5IckmS/JMvTCKm7O40As6uSfLvWum0ezr0tya+WUn49yWlJ1ibZP43gtRuTfLPWet1cz5k464IkF5RSDk9yUpIDk6xIcksagXCX1Fq3zMdZAACDIxgNAAAAAAAAAAAAAAAAAAAAYBAEow1BrfXuJJcM+MwtSb40oLOuSzIvYWsAAAtGnU0wmjA1AACA2XNPBQAAAAAAAAAAAAAAAKNmbNgFAADAgvZgIJoH8gEAAAAAAAAAAAAAAAAAAAD6STAaAAC0JRANAAAAAAAAAAAAAAAAAAAAYBAEowEAQFu15drLUqFqAAAAAAAAAAAAAAAAAAAAAN0SjAYAAO1sDzcTcgYAADBg7sMAAAAAAAAAAAAAAABg1AhGAwCArnggHwAAAAAAAAAAAAAAAAAAAKCfBKMBAEBbteU6m7UAAAAAAAAAAAAAAAAAAAAAdCIYDQAA2poIN6tCzgAAAAAAAAAAAAAAAAAAAAD6STAaAAC082AgmmA0AAAAAAAAAAAAAAAAAAAAgH4SjAYAAG1NBKLV2QSjCVMDAACYtVndhwEAAAAAAAAAAAAAAAA7M8FoAACMttLtR2IP5AMAAAAAAAAAAAAAAAAAAAD0k2A0AABGXKePxLXlCgAAwECUMuwKAAAAAAAAAAAAAAAAgAETjAYAwGgrHT4S1zr12ovZrAEAAKDBPRUAAAAAAAAAAAAAAACMHMFoAACMtk7BaPEgPgAAwIJz65eGXQEAAAAAAAAAAAAAAADQB4LRAAAYbWVRhwm15QoAAMDQfe9dw64AAAAAAAAAAAAAAAAA6APBaAAAjLhuPxLPJhhNmBoAAEBf3PKFYVcAAAAAAAAAAAAAAAAA9IFgNAAARlvp8JG41qlXAAAABsTZzKyOAAAgAElEQVR9GAAAAAAAAAAAAAAAAIwawWgAAIy2TsFoDz6I74F8AAAAAAAAAAAAAAAAAAAAgH4SjAYAwGgrizpMmEswmjA1AAAAAAAAAAAAAAAAAAAAgG4JRgMAYLSVDh+Ja516BQAAAAAAAAAAAAAAAAAAAKAvBKMBADDiuv1ILBgNAAAAAAAAAAAAAAAAAAAAoJ8EowEAMNpKp4/EteXagypMDQAAYPbcUwEAAAAAAAAAAAAAAMCoEYwGAMBo6xSMtj3cTMgZAAAAAAAAAAAAAAAAAAAAQF8JRgMAYMR1+kgsEA0AAAAAAAAAAAAAAAAAAABgEASjAQAw2kq3wWizCUgTqgYAAAAAAAAAAAAAAAAAAADQLcFoAACMtrKoy4lCzgAAAAAAAAAAAAAAAAAAAAD6STAaAACjrXT4SFzr1CsAAAAAAAAAAAAAAAAAAAAAfSEYDQCA0dYpGC215doLYWoAAAAAAAAAAAAAAAAAAAAA3RKMBgDAaCuLOkyYCDerQs4AAAAGyn0YAAAAAAAAAAAAAAAAjBzBaAAAjLgOH4kffBDfA/kAAAAAAAAAAAAAAAAAAAAA/SQYDQCA0VY6fSSeQzBaFaYGAAAAAAAAAAAAAAAAAAAA0C3BaAAAjLaOwWgThJwBAAAAAAAAAAAAAAAAAAAA9JVgNAAARltZ1GFCbbkCAAAAAAAAAAAAAAAAAAAA0A+C0QAAGHEdPhLXuQSiCVMDAACYPfdUAAAAAAAAAAAAAAAAMGoEowEAMNrGxjtMqC1XAAAAAAAAAAAAAAAAAAAAAPpBMBoAAKOtLOowYSIQrQpGAwAAAAAAAAAAAAAAAAAAAOgnwWgAAIy2jsFo2wlGAwAAAAAAAAAAAAAAAAAAAOgnwWgAAIy2Mt5+vG4PRBOMBgAAAAAAAAAAAAAAAAAAANBPgtEAABhtZVGHCROBaFUwGgAAwILiPg0AAAAAAAAAAAAAAAB2OYLRAAAYbd0Go8UD9wAAAAAAAAAAAAAAAAAAAAD9JBgNAIDRVjp8JK6C0QAAAIaiug8DAAAAAAAAAAAAAACAUSMYDQCAEdflg/YeyAcAAFhg3KcBAAAAAAAAAAAAAADArkYwGgAAtFVbrgAAAAAAAAAAAAAAAAAAAAD0g2A0AABoSzAaAAAAAAAAAAAAAAAAAAAAwCAIRgMAYLTVDoFnncYBAAAYDvdrAAAAAAAAAAAAAAAAsMsRjAYAAG1NPGjvgXsAAIABcx8GAAAAAAAAAAAAAAAAo0YwGgAAdMUD+QAAAAuL+zQAAAAAAAAAAAAAAADY1QhGAwBgxHV4kL7WqVcAAAAAAAAAAAAAAAAAAAAA+kIwGgAAtFVbrgAAAAAAAAAAAAAAAAAAAAD0g2A0AABGXKfAszkEo1VhagAAAP3jngsAAAAAAAAAAAAAAAB2NYLRAACgne3hZkLOAAAABsx9GAAAAAAAAAAAAAAAAIwawWgAANAVD+QDAAAAAAAAAAAAAAAAAAAA9JNgNAAARlvtFHhWW649bT6LNQAAAHSl4/0cAAAAAAAAAAAAAAAAsLMRjAYAAG1NPGjvgXsAAAAAAAAAAAAAAAAAAACAvhKMBgAA7QhEAwAAGI6O92Pu1wAAAAAAAAAAAAAAAGBXIxgNAIAR1+2D9rN54N5D+gAAAAAAAAAAAAAAAAAAAADdEowGAABdEXIGAAAwUKUMuwIAAAAAAAAAAAAAAABgwASjAQBAWxOBaFUwGgAAwEB1vA9znwYAAAAAAAAAAAAAAAC7GsFoAACMuA4P0j/4IP4sHrgXpgYAAAAAAAAAAAAAAAAAAADQNcFoAADQ1hyC0QAA+P/s3XuwpHld3/HPr89hZ4bdhAUEEQmsi4giQSVUqZALJpS38hIMojFFSWIMhff7pSICqdxMImXQqBWDQmlEAhJQg2i4WepiNLArGkCBheG27LrsCuzsmZk93b/8sWfc3p5+ntPdp5/znH769aqa2tPP9WvZ1XWeZn7vAeiOGDUAAAAAAAAAAAAAAAAMjjAaAAC0Olhob8E9AAAAAAAAAAAAAAAAAAAAQKeE0QAA2G4LB89WCaOJqQEAAKzOMxUAAAAAAAAAAAAAAABsG2E0AABo81fhNAvyAQAAThbPaQAAAAAAAAAAAAAAADA0wmgAANDqYKF9XWXBvUX6AAAAAAAAAAAAAAAAAAAAAIsSRgMAYMsdFi8TNwMAAAAAAAAAAAAAAAAAAAA4DsJoAADQpl4KowmkAQAAnCye0wAAAAAAAAAAAAAAAGBohNEAAKDNhb+4+791hQX3q5wDAADAAc9UAAAAAAAAAAAAAAAAsG2E0QAA2HKHLLS/9c3Jb3xWctsfHc84AAAALEaMGgAAAAAAAAAAAAAAAAZHGA0AAA7z8Xcmb3tO31MAAAAAAAAAAAAAAAAAAAAADJowGgAAdKb2PQAAAAAAAAAAAAAAAAAAAADAxhBGAwBgu1XxMgAAgM3keQ4AAAAAAAAAAAAAAACGRhgNAAAAAAAAAAAAAAAAAAAAAAAA6J0wGgAAdKb2PQAAAMCAeeYCAAAAAAAAAAAAAACAoRFGAwBgy1lIDwAAcCJVz2sAAAAAAAAAAAAAAACwbYTRAAAAAAAAAAAAAAAAAAAAAAAAgN4JowEAsOVqh5fu8NoAAADbzjMXAAAAAAAAAAAAAAAADI4wGgAAAAAA3ZmM+54AAAAAAAAAAAAAAAAAgA0hjAYAAAAAwPq9+78mv/4ZycuvSt74pcm5D/Q9EQAAAAAAAAAAAAAAAAAnnDAaAADbrdYuL97htQEA4AQ7+7LkD5+VfOJdyfh8ctNvJa9/cjK+2PdkbJTDnqk8cwEAAAAAAAAAAAAAAMDQCKMBAAAAALBe7/3Fy7fdcWNy65uPfxYAAAAAAAAAAAAAAAAANoYwGgAAdKb2PQAAAPTjw/9r/va3/cvjnYOB88wFAAAAAAAAAAAAAAAAQ7Pb9wAAANAvC+lZo3PvT25+Q/LxdyanH5J88hclVz8uKaXvyQAATobxhb4nAAAAAAAAAAAAAAAAAOAEE0YDAABYhw+8Mvndp+Wy2N6jvjV5wk+KowEAAAAAAAAAAAAAAAAAAMAhRn0PAAAAg1Xr4ccwDPt7yXXPyGVRtCR5139JPvK/j30kAAAYPM9cAAAAAAAAAAAAAAAAMDjCaAAAbDkL6VmDD/16Mr6zef/Nbzy+WQAAAAAAAAAAAAAAAAAAAGBDCaMBAAAc1U2/2b7/xhcfyxgAACdf6XsANoqQNQAAAAAAAAAAAAAAAGwbYTQAAOiMRfzb45DAx86Z4xkDAAC2imcuAAAAAAAAAAAAAAAAGBphNAAAtlu1kJ41uP369v1X/83jmQMAAIbE8xoAAAAAAAAAAAAAAABsHWE0AACAo9jfS26/of2YndPHMwsAAGwT4TQAAAAAAAAAAAAAAAAYHGE0AADojEX6W+HmNxx+zOSu7ucAAIChKaXvCQAAAAAAAAAAAAAAAIBjJowGAMCWEy/jiN7+Y4cfM7nQ/RwAADA01fMaAAAAAAAAAAAAAAAAbBthNAAAgKOY3HX4MR9+TVIn3c8CAABbRTgNAAAAAAAAAAAAAAAAhkYYDQAAulIt0t8Ko53FjvvAK7udAwBgE5TS9wQAAAAAAAAAAAAAAAAAnGDCaAAAbDfxMo5swbjHu36m2zEAAGDreJ4DAAAAAAAAAAAAAACAoRFGAwAAOIqy4GPVzW/odg4AAAAAAAAAAAAAAAAAAADYcMJoAADQmdr3AByHstP3BAAAMFCeqQAAAAAAAAAAAAAAAGDbCKMBALDlLLTnqDxWAQBAL6rnOQAAAAAAAAAAAAAAABgaK/gBAACOonisAgAAAAAAAAAAAAAAAAAAgHWwgh8AADpT+x6AY1H6HgAAAAAAAAAAAAAAAAAAAAAGYbfvAQAAoF/iZRzR5ELfEwAAnBx3fjC57a0tB4jKsozDntc8zwEAAAAAAAAAAAAAAMDQCKMBAEBXqkX6W2H/zr4nAADoX63JH/9w8vYf63sSAAAAAAAAAAAAAAAAADbYqO8BAACgV+JlHNX4XN8TAAD078OvEUWjA+WQ/Z7nAAAAAAAAAAAAAAAAYGiE0QAAAFZVa/Kxt/c9BQBA//78p/qegEESPgMAAAAAAAAAAAAAAIBtI4wGAACdsYh/8G5/a98TAACcDDe9dsEDS6djAAAAAAAAAAAAAAAAALDZhNEAANhy4mUcwUde3/cEAAAbxu/frFH1fgIAAAAAAAAAAAAAAIChEUYDAABY1cW/7HsCAAAAAAAAAAAAAAAAAAAAGAxhNAAA6EqtfU9A18Z7fU8AALBhSt8DsEkOfabyzAUAAAAAAAAAAAAAAABDI4wGAMCWs5CeIxjf2fcEAAAAAAAAAAAAAAAAAAAAMBjCaAAAAKva3+t7AgAAAAAAAAAAAAAAAAAAABgMYTQAAOhM7XsAujYWRgMAgP545gIAAAAAAAAAAAAAAIChEUYDAGC7VQvpOYLxnYsfe8UDupsDAGBTlNL3BAAAAAAAAAAAAAAAAACcYMJoAAAAqxrvLX5snXQ3BwDAphAmZineLwAAAAAAAAAAAAAAALBthNEAAKAzFvEP3v4yYbT97uYAAIBtJLQHAAAAAAAAAAAAAAAAgyOMBgDAlrOQniMY37n4sZO7upsDAGBTlNL3BGwU7xcAAAAAAAAAAAAAAADYNsJoAAAAqxrvLX5s3e9uDgAAGKTDQtZC1wAAAAAAAAAAAAAAADA0wmgAANCVapH+4C0VRht7TwAAAAAAAAAAAAAAAAAAAEALYTQAALacUBVHsH/ncsfXcTdzAAAAAAAAAAAAAAAAAAAAwAAIowEAAKxqvLfc8XW/mzkAADZG6XsABkXoGgAAAAAAAAAAAAAAAIZGGA0AADpjkf6g1bp8GG1yVzezAABsDL8jswzvFwAAAAAAAAAAAAAAANg2wmgAAGy3aqE9K5pcWP6cur/+OQAAAAAAAAAAAAAAAAAAAGAghNEAAKAzomuDNj6//DkTYTQAYNuVvgdgSISuAQAAAAAAAAAAAAAAYHCE0QAAAFYxvrD8OVUYDQAAAAAAAAAAAAAAAAAAAJoIowEAsOVq3wOwqSYrhNEmwmgAALA+nucAAAAAAAAAAAAAAABgaITRAACgK9Ui/UEbn1/+nCqMBgAAC/NMBQAAAAAAAAAAAAAAAFtnt+8BOB6llPskeVKShyf5lCR3JPlwkutrre9b870+LcnnJnlokquS3JTkbJLraq13rfNeAADQm8mFFc7x6zAAsOVK6XsCAAAAAAAAAAAAAAAAAE4wYbQTqJTyK0m+bmbz2VrrNStc60FJnn9wvQc0HHNdkhfUWn912evPXOdpSb4nyRc2HHJbKeVlSX601nrrUe4FALA+te8B2FRjYTQAAOiX5zkAAAAAAAAAAAAAAAAYmlHfA3BvpZSvyuVRtFWv9WVJ/jTJs9MQRTvwxCSvKKX8UinlyhXuc1Up5aVJXp7mKFoOZnh2kj8tpXzJsvcBANg8FukP2vj88udMVoipAQAAAAAAAAAAAAAAAAAAwJbY7XsA7lFKuTrJz6zpWk9O8qokV0xtrknemuTGJFcn+bwknzS1/58k+eullH9Ya50seJ+dJC9L8uUzu/4iyfVJPpbkkQf3Kgf7PjnJq0spT6m1/t4S/2cBAKxfFS9jRatEzlaJqQEAAPN5ngMAAAAAAAAAAAAAAIDBGfU9APfy40keevDzJ1a9SCnlYUlemXtH0X4/yWfXWp9Qa316rfWLkzwsyXcmuWvquK9M8q+XuN2/z72jaHcl+fYkD6u1fsnBvf5WkscmefPUcaeSvKqU8ilL3AsAAE6OcUMYbXSq5RxhNAAAAAAAAAAAAAAAAAAAAGgijHZClFKekuSfHbzcT/KjR7jc85Pcf+r1dUmeUmt9x/RBtdYLtdYXJnn6zPnfU0p5xGE3KaVcm7vDatO+ttb6U7XWizP3enuSf5B7x9EemOS5h90HAGBz1b4HoEuThjDazum7/8wz3utuHgAAAAAAAAAAAAAAAAAAANhwwmgnQCnlyiQ/N7XpBUluWPFaj0ryjVObLiZ5Zq31fNM5tdZXJXnJ1KZTWSxY9twk95l6/eJa66tb7rOX5JkHM13yTQeBNQCAnoiXsaJxw6/YO6eTUVMYrfHXcgAA4DKHPa95ngMAAAAAAAAAAAAAAIChEUY7Gf5dkmsOfr4xyfOOcK1vSLIz9fqVtdZ3LXDej828fnoppaHmkJRSziR52iHXuEyt9c+TvGpq027unhkAADbL5ML87aNTd8fR5hFGAwC2Xul7AAAAAAAAAAAAAAAAAABOMGG0npVSnpjkW6c2PavWuneESz515vUvLHJSrfUdSf7P1KYrk3xxyylfkuS+U6/fXGt950ITXj7T1yx4HgDAZqm17wno0rghjLZzKtk5M3/fRBgNAAAW55kKAAAAAAAAAAAAAAAAto0wWo9KKaeS/Hzu+f/DS2qtrzvC9R6S5HOmNu0n+f0lLvGmmddf1nLslx5ybpvfzd2zXfJ5pZRPXuJ8AIA1stCeFY0bImc7p+/+s8w5AADA8sSoAQAAAAAAAAAAAAAAYHCE0fr1vCSPPvj5L5J87xGv99iZ12+rtZ5b4vzrZl5/9hL3evOiNzmY6U+WuBcAAJw8kwvzt49OCaMBAMBalL4HAAAAAAAAAAAAAAAAAI6ZMFpPSimPT/J9U5u+q9b60SNe9jEzr9+95PnvOeR60z7rGO8FALChat8D0KUbf2H+9h1hNAAAWI/Dnqk8cwEAAAAAAAAAAAAAAMDQCKP1oJSym+Tnk+webHptrfWX13DpT595/f4lzz878/qBpZT7zx5USnlAkgcc8V6zxz9qyfMBANajWkjPij7+zvnb924WRgMAAAAAAAAAAAAAAAAAAIAV7B5+CB34oSSfc/DzuSTPXtN1r555fcsyJ9da7yilnE8yXXG4X5LbD7nPnbXWc8vca85s91vy/LlKKQ9O8qAlT3vkOu4NAHA50bXBOn9r8777XJWMGsJoE2E0AAAAAAAAAAAAAAAAAAAAaCKMdsxKKY9J8iNTm55Ta33fmi5/1czrvRWusZd7h9H+Wof3mTbvPqv4liTPXdO1AABgvvGdzftGVyQ7DWG0/VV+dQYAGJLS9wAMihg1AAAAAAAAAAAAAAAADM2o7wG2SSlllORFSU4dbHpLkheu8RazwbLzK1xjttQwe83jvA8AwDGwkJ4VjFt+BX7oVzSH0Sar/OoMAAAAAAAAAAAAAAAAAAAA20EY7Xh9Z5IvOPh5P8k/r7WOO7zfKpWPk3wOAFzurjuSOul7Cpiv+pVnsCYXmvdd+43Jzpn5+9qCagAAwL15pgIAAACOWSnl2lLK15VS/mMp5U2llI+XUurUn/f1PeOsUsp9SynvmZmzllJe3PdsAAAAAAAAAACwit2+B9gWpZRrk/zrqU0vqLXesObb3DHzuqHG0Gr2nNlrHud9VvHTSV6+5DmPTPLqNd0fgONyx43Jdc9IPvoHyalPSh793cljfjAppe/JgG0wbgmjXXF1snO64TxhNAAAWBvhNAAAAGANSilPTvLDSZ6Q5AH9TrOSf5Pk2r6HAAAAAAAAAACAdRFGOwallJLk55Lc92DTjUme18Gttj6MVmu9Jckty5xTBHQANs/4YvK6L0rufP/dr8/fkvzxDyenHph8+jf3OxsbyEJ6VjBpCaONTgmjAQAAAAAAwOb43CRf3PcQqyilfEGS7+h7DgAAAAAAAAAAWKdR3wNsiW9O8venXj+r1rrXwX0+NvP6QcucXEq5KpcHy/5ygfvct5Ry5TL3SvLgBe4DAPPd+uZ7omjTzr7s+GeBVqJrgzVuC6NdIYwGAADHwjMXAAAA0KkLSd7T9xBNSilXJHlR7vl7oJ/ocRwAAAAAAAAAAFib3b4H2BLPn/r5NUneXUq55pBzHjLzenfOOR+utV6cev2umf2PWHC+puNvq7XePntQrfWjpZTbk9x/avPDk7zjCPeanR0Amr3tR+Zvv/n1xzsHsL0mDWG00RVJKcmoIYw2EUYDAIDFCZ8BAAAAx+auJP8vyf9N8kcH//2TJE9K8sYe52rzo0kec/Dz2SQvT/J9/Y0DAAAAAAAAAADrIYx2PM5M/fzlSd67wjU+dc55n5fkhqnXs2GyT1/yHtfOvH57y7HvSPLEmXstE0abvdcy5wKw7eq47wkYkmqhPSsYN4XRTt39352GMNpYGA0A2HKl9D0BAAAAAMx6SZKfrbVe9j/mlRP6fVYp5XOS/ODUpmcn+fyexgEAAAAAAAAAgLUa9T0Aa/WnM68fV0q57xLnP+mQ67Xt+8JFb1JKuTLJ45a4FwDcm5AVG8N7dbAmDWG0ncPCaHvdzAMAAIN02MJjz1wAAADA0dVab58XRTupSim7SX4+9/zDuC+ttf5mjyMBAAAAAAAAAMBaCaMNSK31piRvm9q0m+RvL3GJJ8+8bvvLUq895Nw2fyf3/KWsJLm+1nrzEucDsPUsfAZ6Nm4Io40OC6NtzHoKAAA4ATz/AwAAAMzx/Ukef/DzbUm+q8dZAAAAAAAAAABg7YTRjkGt9epaa1nmT5IvmrnM2TnH3TDndv9z5vU/XWTGUspnJvn8qU3nkvx2yym/lWRv6vUXHlxjEc+ceT07MwC0q5O+J2BQLLRnBZOGMNrOpTDamfn7hdEAAGB9quc5AAAAYLuUUh6d5LlTm7631npLX/MAAAAAAAAAAEAXhNGG578nGU+9/ppSyqMWOO8HZ17/j1prY7Wh1npnklccco3LlFI+I8lTpzbtJ/nlBeYDgCkWPrMhLNIfrnFDGG10KYx2uuE8YTQAYNuVvgcAAAAAgI1UShkleVGSg/9RMm+otb64v4kAAAAAAAAAAKAbwmgDU2t9V5KXTG26IsmLSykNZYaklPLVSZ45telikucvcLvnJblr6vUzSylf1XKf00l+4WCmS15Ua33PAvcCgHvUSd8TANtu0hBG2xFGAwBoJx7Mgcl+cu6soDQAAADA4r4tyZMOft5L8qweZwEAAAAAAAAAgM4Iow3Tc5PcPvX6iUleV0r5zOmDSimnSinfnuTlM+f/eK317GE3qbXemOQ/z2x+RSnl20op0/GzlFI+K8nrD2a55KNZLMAGADMsmmaNLMJnFU1htNEhYbTJee85AAB4508kv/rA5NXXJK/6G8lHXj//uEN/d/a7NQAAALAdSinXJPm3U5ueX2t9dz/TAAAAAAAAAABAt3b7HoD1q7V+sJTyNUl+K8mlQNmTkry9lPKWJDcmuV+Sxyd50Mzpv5HkOUvc7oeSfHaSLzt4fZ8kP5nkOaWUtyb5RJJrD+5Vps67mOSptdablrgXANytTvqeABZkkf5gjRvCaJeCaKOGMFqdJHU/KffpZi4AgBOvHH4Iw/bBX0ve+t33vN77UPI7X5F8xZ8lVz68v7kAAAAATrafS3Llwc9/nOTH+xqklPLgXP73Dg/zyC5mAQAAAAAAAABgmITRBqrW+qZSylOTvDj3/CWkkuQJB3/meWmSb661jpe4z7iU8vQk/y3J103tenCSL2047ZYk31hr/d1F7wMA9yY2xTp5P7GC8fn520en7v7vTkMY7dK5I2E0AAC21Pt+6fJt4/PJB1+dPPrbj38egDbnziZ/9sLk9huSBzwhecwPJKce2PdUAADAlimlfFOSpxy8nOTuv+O33+NI35LkuT3eHwAAAAAAAACAgRv1PQDdqbW+Jsljk/xskttbDv2DJE+rtX5DrfXcCve5o9b69Um+9uBaTW5L8jNJHltrfe2y9wGAv1InfU8AbLvJhfnbdxYMowEAwLZ6/8vnb3/Ld6xwMaFroEN3fjh53d9L3vmC5OY3JO/4D8nr/m5y8WN9TwYAAGyRUspDk/ynqU0vrLX+UV/zAAAAAAAAAADAcdjtewDmq7W+KUlZw3VuSfLsUsp3JnlSkkckeUiSc0k+lOT6Wut7j3qfg3u9IskrSimfluTxSR6a5MokH0lyNsnv11ovruNeAGw7C5+Bno0bwmijRcJoe+ufBwAAAFivs7+cnDt7720fe3vyoV9LPu0Z/cwEAABso59OcvXBz2eT/EiPswAAAAAAAAAAwLEQRtsSB0GyNx7Tvd6bZC2xNQCYq076noBBEdpjBZOGMNrOpTDameZzx+fXPw8AwMY48r8FwVY55Hmtep4DOnT998/f/of/QhgNAAA4FqWUr0/y1VObnl1rPdfXPFN+OsnLlzznkUle3cEsAAAAAAAAAAAMkDAaALCBLHxmg9SaFPGHwRk3hNFGl8Jop1vOFUYDALaZ5zkANpznegAA4BiUUj4pyQunNr201vqbfc0zrdZ6S5Jbljmn+N/MAQAAAAAAAABYwqjvAQAAllYnfU8AbLtJQxhtRxgNAADWx4JZAAAAYGu9MMmDDn6+Lcl39TgLAAAAAAAAAAAcq92+BwAAWF7tewCGpHo/sYJxQxhtdOre/51nIowGAGwzoSuWcdjzmuc5AAAAYHhKKY9O8o+nNv1EkvuWUq455NSrZ15fNXPOpNb6/qPOBwAAAAAAAAAAXRNGAwA2T530PQEsoUb8YYAmDWG0nUthtN2k7CZ1//JjxsJoAAAAAAAAQKMzM6//1cGfZf2jgz+XfCyXx9MAAAAAAAAAAODEGfU9AADA8mrfAwDbrimMNjp1z887p+cfI4wGAABr4vsBAAAAAAAAAAAAAAAAGBphNABg89RJ3xMwKBbSs4JxQxhtRxgNAAAAAAAAAAAAAAAAAAAAViWMBgBsICErNkj1fh2kSUMYbbRIGG1v/fMAAPSuLHjYgsdBEs//wIl1y+/1PQEAADBgtdYbaq1l2T9Jnj9zqZfMHHN1H//3AAAAAAAAAADAsoTRAIDNUyd9TwBsu3FDGG06hrZzpuHc8+ufBwCgb4sGzy/lKC4AACAASURBVISDWSfvJ6AvH/6NvicAAAAAAAAAAAAAAIDBEkYDADaQhc+sk/cTK5g0hNFGp+75eTqSNk0YDQAYpAXDaACwKUZXNO97z4uObw4AAGAwSil15s+T+54JAAAAAAAAAABOot2+BwAAWFqd9D0BLEF4bZDGDWG0nakw2qghjDYRRgMAhmjBMFoRUANgQ4yuSCYX5++7cOvxzgIAAHSulPKwzP/7lA+Zeb1bSrmm4TJ31Fo9MAAAAAAAAAAAwBEJowEAG0hoCuhZU9xsNBVG22kIo42F0QCAASrFoxo98KYDOnTqQcn+HfP3Xf24450FAAA4Dr+X5BELHPepSd7bsO8lSZ65roEAAAAAAAAAAGBbjfoeAABgaXXS9wQMSbWQnhWML8zfviOMBgBsK1810wHPa0Cfrnx48777Peb45gAAAAAAAAAAAAAAgC1jtRoAsIEsjGaTeL8O0qQhjDYSRgMAtlQpfU/AVvK8BXTJZwwAAAAAAAAAAAAAAPRht+8BAACWVid9TwBsszpJJnfN37cjjAYAbKtFw2gCagBsiNoSRmvbBwAAbKRa6zXHcI9OvxyrtT4vyfO6vAcAAAAAAAAAAByHUd8DAAAsz8JD1sn7iSVNLjbvG02F0UZNYbS99c4DAHASFF81AzA0bf84g3+4AQAAAAAAAAAAAAAAumK1GgCweaqFh2yQKrw2OOMLzft2psJou2cazj+/3nkAAE6E0vcAbCPPW0CX2j5jfP4AAAAAAAAAAAAAAEBnhNEAgM1j4SHQp0lLGG00FUYbnW44XxgNABgiYTS64Pkf6FHrP87gH24AAAAAAAAAAAAAAICuCKMBABvIwkPWqeuF9hbyD854wTDaTkMYbSyMBgAMUBFGA2BoWr6D9A83AAAAAAAAAAAAAABAZ4TRAIDNU4XRgB5NWsJoO8JoAMC2EkajD8JEQIda42e+nwQAAAAAAAAAAAAAgK4IowEAG8jCZ6BH47Yw2un5P9/rfGE0AGCAiq+aARialvhZazQNAAAAAAAAAAAAAAA4CqvVAIDNU1sWJcKyOl/IaqHs4ExawmijU/f8LIwGAGyVsubjIDn0eUqYCOhS22eM7ycBAAAAAAAAAAAAAKAzwmgAwAay8Bno0bgljLazQBhtIowGAAxQETwDYGja4me+nwQAAAAAAAAAAAAAgK4IowEAm6e2LUqEZVnIypImLWG00RVTPzeE0cbCaADAEAmj0QXvK6BHteU7I99PAgAAAAAAAAAAAABAZ4TRAIANJGTFBmlbRMtmGjeE0Ub3ScrUI9bOmYbz99Y/EwBA7wSs6MJhz1Oet4AutcXPfP4AAAAAAAAAAAAAAEBXhNEAgM1T2xYlAnRscn7+9tGpe7/eOT3/uHHD+QAAm6z4qhmAgWn7DtL3kwAAAAAAAAAAAAAA0Bmr1QCADVT7HoBB8X5iSeML87fvCKMBANus9D0AW8nzHNClts8Ynz8AAAAAAAAAAAAAANAVYTQAYPPUSd8TwBIslB2cSUMYbbRgGG1y0ecYADA8RRgNgIFpe3b3XA8AAAAAAAAAAAAAAJ0RRgMAAFjG+IhhtLZrAABsrAW/ahZQA2BjtMXuhfABAAAAAAAAAAAAAKArwmgAAGy3aiErS5o0RM12lgijTc6vbx4AgJNA8IwuHPa85nkO6FKdrLYPAAAAAAAAAAAAAAA4EmE0AADolIX6gzNuCKONZsJoo5Yw2lgYDQAYGmE0AAamNX7m+x4AAAAAAAAAAAAAAOiKMBoAAMAyJg1htJ2ZMNqOMBoAsE2E0dgA++eS87f2PQWwMVriZ63RNAAAAAAAAAAAAAAA4CiE0QAA2HIti1xhnnFTGG0mhLZzpuUae+ubBwDgJCi+aqYPCz7PjS8m1z0jecX9k1c+KPntJyV7N3U7GrD5WuNnvk8CAAAAAAAAAAAAAICuWK0GAABdqhbKDs6kIYw2OnXv17OhtGnj8+ubBwAABmtNz1PXf2/yvl9KJnfd/frW65Lf+cr1XBsYsJbPoNZoGgAAAAAAAAAAAAAAcBTCaAAAAMsYC6MBAMDJsEA4rdbkvb94+fbb3pLc8d71jwQMR2v8TAgfAAAAAAAAAAAAAAC6IowGAMCWs5CVJU0awmg7M2G00RXN1xBGAwC2Vul7ADbKGt4vkwvJXR+bv+/srxz9+sCAtXxn1BpNAwAAAAAAAAAAAAAAjkIYDQAAOiW8NjhNYbTRTBitlGTn9PxjhdEAAGABXT9PCfUBLVrjZ77vAQAAAAAAAAAAAACArgijAQAALGPcEEbbOXX5tlFDGG0ijAYADI3AFD2oC4SJ2o4p3rdAi7YwWms0DQAAAAAAAAAAAAAAOAphNAAAttsiC+mPdoOOr8+xG+/N374zJ4I2b1uSjIXRAADgeLQ9kwmjAW3aPj983wMAAAAAAAAAAAAAAF0RRgMAAFjG/h3zt+9eefk2YTQAAOjQImEi8SJgRXWy2j4AAAAAAAAAAAAAAOBIhNEAAACWsX9u/vbdqy7ftnNm/rHCaAAAsIA1RM1q2zXK0a8PDFjb54foIgAAAAAAAAAAAAAAdEUYDQCALdfxQtbWRfhspMYw2pWXb9s5Pf/Y8d765gEAAFq0PJMVYTSgRZ2stg8AAAAAAAAAAAAAADgSYTQAAIBlrCWMdn598wAAbBQhKtZpkRB12zHej0CL1viZED4AAAAAAAAAAAAAAHRFGA0AAGAZTWG0HWE0AGCLFYEpTqjWsJH3LdCmJX5WhdEAAAAAAAAAAAAAAKArwmgAAGy5rheyWig7OPt3zN++OyeMNmoIo02E0QAA4Hi0PJMJ+gFtWsOKbfsAAAAAAAAAAAAAAICjEEYDAABYxv65+dt3r7p8205DGG0sjAYAAIeqh4SmD9t/6DHCaECbls+PRT5/AAAAAAAAAAAAAACAlQijAQAALGp8Man78/ftXnn5NmE0AABYXJ0kt9+Q7N203ms2EkYDWrR+frTtAwAAAAAAAAAAAAAAjmK37wEAAKBXtXZ9g46vz7Ean2veJ4wGAABH86qH3RNFe9hXJ5MLh5ywyPOWZzJgVS2fH51/nwQAAAAAAAAAAAAAANtLGA0AAGBR+8uG0c7MP1YYDQAALncpipYkH3z1eq5ZJ837SlnPPYBhavv8aNsHAAAAAAAAAAAAAAAcyajvAQAAoF+17wHYJEuH0U7PP3a8t555AAA2jRAVx67tmc/7EWjTFj/zfRIAAAAAAAAAAAAAAHRFGA0AALpULZQdlMnF5n2jU5dvawyjnV/PPAAAsNUWed4SRgNW1PadTm2LpgEAAAAAAAAAAAAAAEchjAYAALCoyX7zvtF95mxrCKNNhNEAgKERmOKEaosXFe9boE1b/EwIHwAAAAAAAAAAAAAAuiKMBgDAdqsWsrKE2hZG2718205DGG0sjAYAAMej7ZlPGA1o0fadUVt0EQAAAAAAAAAAAAAAOBJhNAAA6JTw2qBMWsJoRRgNAACO1SKh67ZjijAa0KDWtH+n4/seAAAAAAAAAAAAAADoijAaAADAoqowGgAAbJZJyz5hNKDJIeGz2vbZAgAAAAAAAAAAAAAAHIUwGgAAW+6Qha5HvnzH1+d4tYbR5jxeCaMBAECHFnje8kwGrOLQzw6fLQAAAAAAAAAAAAAA0BVhNABgWO64se8JgCGbNITRym5SyuXbd840XEcYDQDYVnN+Z4JOTVr2eT8CTdo+O5LUQ/YDAAAAAAAAAAAAAAArE0YDAIbl+h/oewJgyGpDGG20O3/7zun528fCaADA0AhMcULV2rxvXtwYIGn/7Lj7gGMZAwAAAAAAAAAAAAAAtpEwGgAwLB/41b4nYON0vZDVQtlBmTSE0cqyYbS9BRZZAwAA7Rb5nbrtGGE0oMmkfXc9ZD8AAAAAAAAAAAAAALAyYTQAYLMICQF9qkuG0UYNYbQ6ab4WAACwPq3xImE0oMGh30H6jhIAAAAAAAAAAAAAALoijAYAbJb9O/qeANhmTTGzUUMYbachjJYk4/NHnwcAALbZQvH0lmOKMBrQpC2qmEOiiwAAAAAAAAAAAAAAwFEIowEAm+XiX/Y9AUOz0EL6I92g4+tzrCYNYbQijAYAACdS6zOfMBrQ4NDwme97AAAAAAAAAAAAAACgK8JoAMBmuUsYDehRbQijjYTRAADgZGqLGwmjAU0OCZ8dGk4DAAAAAAAAAAAAAABWJYwGAGyWi8JoQI8mDWG0IowGALAYISrW6f+zd+9hsp11nei/v+4dsjck3OWqBoQoIIrgOMhFBVHQUUEYhfF2BJTjMKMw4hzHyyCCjOMI4x1UznhBOSpyFRkRPdwEQYEBQUJQIEBUIhEIhiR772R3vfNHV8+uVLqqV92ruj+f5+mnV631rvf97dR6Vq9VWe+3DgguSpI2pk05HoERDgw+63D+AQAAAAAAAAAAAAAApiIYDQDYLILRmLsFT2QdNwmfzdMmDUY7MbqvnmA0AABYvHHhRoLRgFEO+DznwOA0AAAAAAAAAAAAAABgWoLRAIDNcp1gNGCFRgWjbY0KRjs+uq8dwWgAwCFSAqZYU8KqgWkcGHzm3AIAAAAAAAAAAAAAAIsiGA0A2CzXCkYDVqg3IhitRgSjbZ07uq+dk7PXAwAAR1mn0LNxbQT6ASMcFIx2YHAaAAAAAAAAAAAAAAAwLcFoAMBmOfPpVVfAodNlIv06989StRHBaFujgtGOjQ5N2zk1n5oAADaK62OWbFx4UQlGA0Y56O+Vv2cAAAAAAAAAAAAAALAogtEAgM0ybkIzwKL1RgSjjQo/S5Lt4/uvF4wGAAAz6hJMNK6NYDRghIM+g/QZJQAAAAAAAAAAAAAALIxgNAAAgK6aYDQAgNl0CbKCeRKMBkzh1OUHNPD3DAAAAAAAAAAAAAAAFkUwGgCwWZpJh8zZwo8px+yh0hsRjLYlGA0AoBP3dCxb643eVoLRgBHe/5zx28edWwAAAAAAAAAAAAAAgJkIRgMANoxJ9MAKtRHBaDUmGG1rRDBaTzAaAHCYCJhiFTp8RjA2jM9xC4zwgecd0MBnlAAAAAAAAAAAAAAAsCiC0QAAOOJMZGUCo4LRtsYEox07sf/6HcFoAMBR5PqbZeuN2SYYDZhSG3duAQAAAAAAAAAAAAAAZiEYDQDYMCbRs2GaY/ZQ6Y0IRqsxwWhbx/dfLxgNAAAWzz0ZsCjOLwAAAAAAAAAAAAAAsBCC0QCAzdJlwqFJicCitCmC0bZHBaOdnL0eAICN436NOep0/z+mTdXcSgGOIn/TAAAAAAAAAAAAAABgEQSjAQBwxC16EqtJsodKb0Qw2tY0wWinZq8HAAAYr/XGbBSMBszAlzMAAAAAAAAAAAAAAMBCCEYDADZMlwmHJiUCC9JGBKOVYDQAgE6EyDBXM35GUILRgFmMC14EAAAAAAAAAAAAAACmJRgNAACgq1HBaFuC0QAAuhGMxrKNO+YEowEzEPYJAAAAAAAAAAAAAAALIRgNANgwHSYcmpTIJBZ+vDgeD5XeiGC0GhOMtjUiGK0nGA0AABau9cZsFIwGzGLc+QUAAAAAAAAAAAAAAJiWYDQAYLMIPQNWqY0IRtsaE4y2PSIYbUcwGgBwiFTXgCn3dMxTl+PJMQcsiM8pAQAAAAAAAAAAAABgIQSjAQCHkEmJwIL0RgSj1bhgtBP7rxeMBgAAi9d64zYurQzgMBp3fgEAAAAAAAAAAAAAAKYlGA0A2DAmLTNvCz6mmmP2UGnTBKMd33+9YDQA4Chyfcw8dTqeHHPAgvibBgAAAAAAAAAAAAAACzFm9v7mqqoLkzw8yZ2TnE5ycZKXtNauWGlhAMAcmPQMrNCoYLQtwWgAALCWxgYX+fwAmEVv1QUAAAAAAAAAAAAAAMChtPbBaFV1pyRfObDqBa21a0e0rSTPSvLkJFtDm3+mqp7UWvvNBZQJAKyTsZOeAWbQGxGMVtMEo52cvR4AgI3jfo0la4KLgAXxGSQAAAAAAAAAAAAAACzE2gejJfkPSb6vv/y/Wmu/PqbtTyZ5ysDrvRkJleS8JL9WVdVa+435lwkALIUJh8zdoo8px+yh0rtu//W1PXqfkcFop2avBwBg47g+Zp66HE9j2viMAZiJ4EUAAAAAAAAAAAAAAFiErVUX0MHXZTfYLElGBppV1ecm+X+yO8tpMBBtb9/WX/7FqrrjYkoFABZvxknPALPond5//fa5o/cZFYzWE4wGABwmdXATWAmfEQALIlwRAABmVlW3rqrzV10HAAAAAAAAAACwXtY6GK2qbp3kLgOr/mhM86fk+v+eVyb510kekeSl2Z2Z15KcSPKD860UAAA4EkYFo22NCUbbGhGMtiMYDQA4TDqGwwiRYdlab9zGpZUBHEJjzy8AAMAoVXVBVf1WVX0qyceSfKqq/r6qnllVJ1ZdHwAAAAAAAAAAsHprHYyW5PMHlv+ptfaR/RpV1XZ2Q9D2ZjH9SWvt4a21l7XW/rC19k1JXpDdcLRK8uiqqkUWDgAsSpdJyyY2M4GFBzM4Hg+VnRHBaNtjgtG2BaMBAMBi+IwAWCXnFwAASJKq+s6qurT/c1FVjfwfZ1X1hUneluTbktw0Z5/nu0OSH07ytv6XqQIAAAAAAAAAAEfYugejXdD/3ZJcPKbdv0hyq+w+JJUkz9ynzY/m7AyF2yS5+zwKBACWbOEhVgBj9EYEo22NCD9Lku0RX2wvGA0AOEw636u5p2PJWm/MNscjMINx5xcAADhaviXJZya5Y5LXt9b2/R9qVXUsyQuT3Dq7z/m1oZ9Kco8kL1lCzQAAAAAAAAAAwBpb92C0Ww0sf2JMuy8bWL6stfbnww1aa3+X64er3XPG2gCAdWViM7Aoo8LMtkd+8X2yPSI0TTAaAABHzbzv1zv15zMCYArHb9ehkfMLAABU1VaSBw6setmY5v9Xks/L2SC0JHlPkr8aWvfAqnrMnEsFAAAAAAAAAAA2yLoHo50YWL56TLv793+3JH8ypt3fDizfdtqiAIBVMuGQeVvwMSWo73DZ2fcL7pOtKYLReqcdHwDAEeT6hyUbe83teARG2D5xcJvWW3wdAACw/u6R5Mb95euSvGFM2+/q/64k/5zkfq21e7XWvjjJfZJ8LGdv1p+4gFoBAAAAAAAAAIANse7BaGcGlsfNQLj/wPKbxrS7amD5vKkqAgBWrMukZRObgQXpjQhG254iGC1Jdk7NVg8AwNpwH0YXqzhOBBcB0/AZJAAAdHSX/u+W5P2ttev2a1RVt0vypf12LckzW2tv3dveWnt3kidlNzStkjywqm6xyMIBAAAAAAAAAID1te7BaFcOLH/mfg2q6u5JbjOw6i1j+hsMV9uZoS4AYK2ZlAgsyM6oYLQx4WfjtvUEowEAR0xzv3akzf3979Df2DEdj8AIrUOoYpc2AABw+N1xYPlDY9p9ec6Gnp1J8uv7tHlZkn/uL1eSL5pHgQAAAAAAAAAAwOZZ92C0S/q/K8m9qmq/RIFHDCxf0Vq7eEx/txxY/vSsxQEAK2ASPXO36GPKMXuo9EYEo22dO3qfrTHBaDuC0QCAo8b18dG2ivdfcBEwjS7nK3/TAAAgyXkDy1eObJU8sP+7JXlLa+1Tww1aaztJ3jmw6q6zlwcAAAAAAAAAAGyidQ9G+6vsPgzVkhxP8vjBjVV1LMl391+2JG88oL+7DSz//ZxqBACWqsOEQ+FpwCK0NjrIbHtMMNq2YDQA4AhwH8ZKzPgZgeMWGKV1CFXs0gYAAA6/czq2u9/A8uvHtPvHgeWbTlwNAAAAAAAAAABwKKx1MFpr7fIkb+6/rCT/raq+o6puXFV3SvJ7ST5nYJcXj+qrqm6X5PYDq94/32oBAGA/JtofGu1MRr6fW4LRAAA6EUR1xK3i/XfMAdPocu5wfgEAgCRXDSzfYr8GVXWTJF80sOrPx/S3M7A85n/AAQAAAAAAAAAAh9laB6P1/Vx2Q9Fakpsk+c0kn07ywSSPzNlZB5dlTDBakq8ZWL4qyd/Mu1AAYAk6TaI3KZEJCGagq53To7eNDUY7MaZPwWgAABwhq7j/ar1xG5dWBrBpOpwfxp5fAADgyPj4wPLdR7T5qiTb/eWW5C/H9HfzgeVrZqgLAAAAAAAAAADYYGsfjNZae0mSl+ZsOFoN/GRg/Q+01sYkFeRRe10meWtrEjAAYDP5Ew6sSG/M7cb28em2CUYDAA6Nrvdq7umYI+HpwKJ0Cj1zfgEAgCTv6f+uJBdU1T33afNv+r9bkve01q4c098dB5Y/MYf6AAAAAAAAAACADbT2wWh935rk13I2DG1PJTmd5Ptbay8ctXNVfVaSr83ZGQqvXkSRAMC6MCmRSSz4eJHHe3jsjAtGO3f0tq0bjd7WE4wGAMBRsoL7o7H3ZO7XgFE6nB86hacBAMCh957sBpjtXUT/TFWds7exqh6Y5JsGtr9qVEdVdSzJPQZWfWi+pQIAAAAAAAAAAJvi2KoL6KK1dm2SJ1TVs5M8PMkF/U3vS/LS1tpHD+jia3P22ymT5A/nXyUAsBwmLQMrMi7EbGtMMFpVsn082dln//3WAQAcau7pjrZVvP+Ci4AJtV5y6vIuDRdeCgAArLvW2k5V/W6S783uRfJDkry7qv4wyW2yG4q2ld0vQG1JfntMd1+SZPAbhy5aSNEAAAAAAAAAAMDa24hgtD2ttb9J8qwp9ntekufNvyIAYC01kxKBBdg5PXrb9phgtCTZGhWMdnK2mgAA1kbH+zD3a0fb3N//Dv2NG9PxCOznb36hW7smeBEAAPqemeQ7kty0//rzknxuf3kvEK0leUlr7b1j+vnG/u+W5AOttSsWUCsAAAAAAAAAALABtlZdAADARDpNWjaxmXXieDw0emOC0bYOCEbbPr7/+v3C0gAAgDkSXARM6JLf6NZOMBoAACRJWmuXJ/nXSU7lbBDa/9ncX/fBJE8c1UdVbSV59MC+r19ErQAAAAAAAAAAwGYQjAYAbBghU8CK7IwJRhsVfHbQdsFoAMBh0SnEOnFPd9TN+/3v0N/YY9PxCOzjU+/u2FAwGgAA7GmtvTbJvZK8MMk12Q1DqySfSPJLSb60tfaJMV08PMkF/X2S5I8WVy0AAAAAAAAAALDujq26gINU1SX9xZbky1prH52ynzsmeeNeX621u8yjPgBgHZnYDCxAb0ww2ta54/cVjAYAAFnN/brPCIAF6Z1ZdQUAALBWWmsfSPItSVJVt+6v+3jH3T+U5JEDr1893+oAAAAAAAAAAIBNsvbBaEnu1P/dMlu9x4b6AgA2kj/jzFFbwvG0jDFYjt51IzZUsrU9ft/tE/uvF4wGABw5ro+PtFXcH7XeuI1LKwM4hJpgNAAAGGWCQLS99u9K8q4FlQMAAAAAAAAAAGyYrVUXAAAwkS6TqAVRAYvQdvZfXweEoiXJ9vH91/cEowEAh4X7MFag0/2/YxNYkJ5gNAAAAAAAAAAAAAAAWATBaAAAAF2MDEbrcFs1KhhtRzAaAHDECLI+4lbx/o8Z0/EIDJvkvNAEowEAAAAAAAAAAAAAwCIcW3UBS3TOwPJ1K6sCAJhRl8mJJjbT1TKOFcfjoTEyGG374H23BKMBAOxyfXy0reD9b73ljwlsrt7p7m0FowEAQGdVdfMk5yep1tqlq64HAAAAAAAAAABYb0cpGO22A8ufXlkVAMCMTKIHVmSWYLTtUcFoJ6evBwBgrbhXYxVmDU933AJDJgkw7wlGAwCAUarqG5M8PMmXJblTkq3+ppZ9nlmsqjsl+ez+y6tba/9r4UUCAAAAAAAAAABr6ygFoz2s/7sl+ftVFgIALFgzsRlYgNbbf/1MwWgTTLgGADgU3K8daau4Xx91HQ+wn0nu05tgNAAAGFZVD0vyC0nuureq4653SfKn2f3w6NqqukNr7YoFlAgAAAAAAAAAAGyAtQhGq6rPPrhVkuSOVV2flUqSnJvk9kkemuQHBtb/1SSdAABrpNMkahPt6Wgpk/Idj4dG29l/vWA0AADoaM73R13u6ca2cb8GDJnkPr0nGA0AAAZV1Y8l+bHshqFVrn/j3TImJK219pqqujjJ3ZPcKMljkvzK4qoFAAAAAAAAAADW2VoEoyX5cA6egVRJ3jTDGIMPVr10hn4AgJUyaRlYEcFoAACjdQ0dXko4MetrFe+/Yw6YwCT36U0wGgAA7KmqJyX58f7LvZvx00nemuTKJF/foZsXDvTxdRGMBgAAAAAAAAAAR9bWqgsYUvv8HLS9y09y9oGrtyR55cL+BQDAGjDpmTUi+OHwmCkY7cT+6wWjAQDAYrXemG3u14AhPcFoAAAwqaq6MMmzs/s/6lt2A9F+MMmtWmsPSvJ9Hbt6xV6XSb6sqoafHQQAAAAAAAAAAI6IdQtGW5S9h6RekuQbWjPbCQA2lz/jzJPjiQnMFIx2fP/1k0y4BgA4FFyDH2lz/2i+S3+OOWACkwSY9wSjAQBA3zOSHMvuM3qnkjyktfbs1trJCft5d3//JDk/yYXzKxEAAAAAAAAAANgkx1ZdQN/zx2z7zv7vluSlSa7q2Ofet09+KsnFSd7QWvvI1BUCAOuhyyRqGajAIswSjLY1IhhtkgnXAABrzX0YXaziOBk3puMWGDLJfXoTjAYAAFV1bpKH5+xN9n9urb1lmr5aa72qujjJvfur7pbkb2evEgAAAAAAAAAA2DRrEYzWWnvcqG1V9Z05++DUD7TWLl1OVQAAMA8m2h8aswSjbQtGAwDY5fr4SJt7kHmX8PTenMcEDrVJ7tN7gtEAACDJA5Kc6C9fneS5M/b30ZwNRrvDjH0BAAAAAAAAAAAbamvVBXRUqy4AAFgXXSZRm2hPV44VJrCQYLST09cDALBWOl5bzz0YCw4y7phzPAJDJglGu+i/JL0RnxUAAMDRcaf+75bkra210zP2d+XA8vkz9gUAAAAAAAAAAGyoY6suoIPHDSx/5askPgAAIABJREFUfGVVAABrwqRlYEVGBaNtzRKMNsGEawAA2HgruKdvveWPCWyuSe7Tr/pg8tYnJF/664urBwAA1t9nDCz/4xz62xqxDAAAAAAAAAAAHCFrH4zWWnv+qmsAADaN8DTWiePx0OiNCEYrwWgAAN25Pj7a5vz+ty79jWnTaX/gSOmdnqz9Jb+Z3PtZybm3Wkg5AACwAQYvos+dQ3+DF9dXzKE/AAAAAAAAAABgA619MFpV/djAy59rrV05ZT83S/LkvdettWfMWhsAsAJdJi2b2ExXjhUm0RYQjNYTjAYsWWtJ1aqrAA4j19asK8cmMIlJg9HSkkuen9z9KQspBwAANsA/DSx/5hz6u9eIvgEAAAAAAAAAgCNk7YPRkvx4kr2ZS7+ZZKpgtCQ3H+pLMBoAbCQTmoEVmSkY7cT+63cEowFLcuZk8o7vT/7hFck5N03u/NjkHv9JSBqwAu7pjrSVhJT1xmxzPAJDpjlPnf74/OsAAIDNcUn/dyX5oqq6SWvt6mk6qqr7JPmMgVXvmLU4AAAAAAAAAABgM22tuoCO5jlL14xfADj0TGxmjaxk4j8LMVMw2vH91wtGA5blzd+afOBXk5OXJVf+TfKuH07e+1OrrgqAI2fe90cd+nNPBkxkXJjiCF0+FwAAgMPrrdn9otOW5Jwkj5+hr6cMLH+ktfaRWQoDAAAAAAAAAAA216YEowEA9JnQzDw5npjEiMnRXSZAb40IRms7Se/M9CUBdHHq48nf/8EN17/rR5IzVy+/HuCQ6nhtLaTqiFvF+z9uTMcjMGSav1OC0QAAOMJaaztJ/md2v6y0kjy9qj5r0n6q6pFJvjW7N+stye/Os04AAAAAAAAAAGCzHFt1AUtUA8tTfN37fFXViSR3S3JBkjskOT+735p5ZZJPJHlPkotaa3NJSaiqc5I8IMlnJ7l9kquSfDTJO1trH57HGANj3TnJF2X333VeksuSfCTJm1tr181zLADYn4nNwAK0nf3Xd5kAvT0iGC1Jdk4lW+dNVxNAFx/53Yy8PnrTY5IHvXKp5QBHnfs15qnD8dRW/r8DgI0iGA0AAKbwE0kek93n826e5PVV9fDW2kVddq6qxyb55exekFeSk0l+fjGlAgAAAAAAAAAAm+AoBaPdbGD5mlUUUFWPS/KVSe6b5C5Jtg7Y5aqq+v0kv9ha+6spx/yMJE/P7sNntxzR5s1Jfqa19pJpxhjo55uSPCXJ/UY0+WRVvTDJj7XWPj7LWAAcYc0keuZpGceTY/bQ6I0KRjvosj4HB6OdIxgNWKCdU6O3ffR/JmeuSY7deHn1AHB0reSefsyYPmMAhk0TprglGA0AgKOttfa+qvrFJE/O7o34nZO8o6pekOT3k3xyeJ+q+qwkD03y3Un+Zc5+6WlL8rTW2uXLqB0AAAAAAAAAAFhPHWbwHxpf1P/dkqwqlOsnknx7kgvT7b/9eUken+TtVfWzVTVRkF1VfW2S9yR5YkaEovXdP8mLq+oFVXWTScboj3NeVf1ukhdldCha+jU8Mcl7quphk44DALs6TFo2sRlYhDYqGK3DBOixwWgnp6sHoKuDAhw/+fbl1AEccl3vw9yvHW0reP+nCTkCjrApzlNdPhcAAIDD7weS/Gl2A85aknOSPDbJHyX5iwxcbFfV1Uk+nOR5ORuKtrf9Za21Zy+raAAAAAAAAAAAYD1NFLS1qarqwiQ/NLDqvauqZcg1ST6Y5NIkV2Y3LO2WSb4gye0G2m0n+Q9J7lRV39TaqESGs6rqQUlenuRGA6tbknckuSTJzZPcO8mtB7Z/W5KbVtU3ttZttlhVbSd5YZJ/NbTpn5K8M8k/J7lLf6y9b/a8bZI/qKqvaq29qcs4AACwcgsLRjs1XT0AndX4zQd/zAAAczLnYLROwejj2gjqA4ZM84ULgtEAACCttV5VPSLJc7MbiLZ3cb33AXUbWHdicNeBdr+e5N8utlIAAAAAAAAAAGATrEUwWlW9tmPT36uqSVIDzk1y+yQXDK1/zQR9zNPVSV6R5FVJ3pzkPaMCyKrqS5M8M8lDBlZ/Y5KnJHnWuEGq6jOTvDTXD0X78yRPaK1dPNDu3CTfk+TZ2f2WziT5hv64P9Lx3/RTuX4o2nX9Gp/XWrt2YKx7JPkfSe7XX3VukpdX1Re01i7rOBYAzGHSMwyYZrLr5IMsYQyWYpZgtK0xwWg9wWjAgtXW+O2C0YBlWso1OAxwzAET6fS9QdcnGA0AAJIkrbVTSR5fVa9K8tQk9xzVtP+7+j8fTPJjrbXfXXyVAAAAAAAAAADAJliLYLQkD8rBiRGV5L5T9D34rZNJ8qkkL5iin3m4Z2vtui4NW2t/UVUPTfL8JN8+sOlHq+oXWmunx+z+9CS3GHj95iRf1X/4bHCM00l+oaouTfKygU1Pqapfba19ZFyNVfU5SZ48tPqbW2t/sM+/571V9ZDshtLthaPdKsnT4ps+AZiIYDRgRWYJRjt2YvS2HcFowIIdFIzWO7OcOoDDTfgUXcz9OOnS35iQI8ctMGya84JgNAAAuJ7W2ouSvKiqHpzkq5M8MMlnZfdZsRsl+XiSj2X3mbZXJ3lVa77BAwAAAAAAAAAAOOuAmbGHwuA3TH46ybe21j6+kkI6hqINtO8l+fdJrh5YfbMkDx61T1VdmOQ7B1Zdm+Sxw6FoQ+O8PLsBbHvOzW5g2UGeluScgde/uV8o2sA4J5M8tl/Tnu/qB6wBAMB6myUYbevc0dsEowELV+M3tzGBMQBzJ4jqaFvB+y/8DJiIYDQAAJiX1trrWms/0lr78tbanVtrN22tHW+tfWZr7Ytba9/XWnulUDQAAAAAAAAAAGDYOgWj1YifLm1G/Vyb5PIkr89uiNfdWmuvXvC/Y65aa1cmedPQ6ruO2eVbkwzOwHhpa+39HYb6b0OvH11Vx0c1rqoTSb7pgD5uoLX2t0lePrDqWHZrBoCOOkxONOmZzpZwrDgeD4+ZgtGOJXVs/22C0YBFqwM+/jHnDJiLjte9ro9ZunHHnOMRGCYYDQAAAAAAAAAAAAAAVm0tgtFaa1ujfvaa9H/uNK7tPj8nWmu3b619ZWvtJ1prl63wnzmLTw69Pn9M20cOvf6NLgO01i5O8pcDq26S5KFjdnlYkhsPvH5La+19Xcbap6ZHddwPAEyiB1ZnlmC0JNkekTssGA1YtAOD0c4spw4AmHsQWZfw9N6cxwQOtWnOGYLRAAAAAAAAAAAAAABgrtYiGK2DWnUBK3bB0OuP7teoqm6X5F4Dq84k+fMJxnn90OuvHdP2aw7Yd5w3Zre2PfeuqttOsD8AHEB4GuvE8XhoLCoYrScYDVi0g4LRRpzfABbC9fGRtpKw83FjOh6BYVOcFwSjAQBwxFXVa/s/r6mq28zQz20H+5pnjQAAAAAAAAAAwGY5tuoCOviznJ2FcOQSA6rqc5Pcd2BVS/KGEc3vOfT63a21qycY7s1Drz9/TNvhsd7SdZDW2tVV9ddJ7j001se69gHAUWbSMvPkeGICiwpGO3NyunoAuqoD8uYFowFz4dqaLlZwnLTe8scENtc0AY6C0QAA4EE5e9M/4n+IdXK831fiwyYAAAAAAAAAADjS1j4YrbX2oFXXsCpVdfskL0oyOKPixa21D4/Y5R5Drz8w4ZAfPKC/QXefw1iDwWj3SPLaCfsA4Ejq8vyzZ6SBBZg1GG1rxDyQ3pHLfwaWbmv85t6Z5ZQBkMT9GnPVKcBoTJtpApCAQ26KMEXBaAAAkCQVH/wAAAAAAAAAAABzsvbBaEdJVR1Lcovsho59fZLvSXLTgSaXJPneMV3cdej1pROW8JGh17eqqlu01q4YqvOWSW4541jD7S+ccH8AgA3h+f9Do42YHN11AvT2iGC0HcFowILVAcFoo4IfAWDuVnB/JPwMmMQ05wzBaAAAAAAAAAAAAAAAMFeC0Vaoqn4uyZM7Nn9dku9orV0+ps3Nh16Pa3sDrbWrqupUksHEhpsluWKo6fA417TWrp5krH1qu9mE+wNwVHWZnGjSM105VpjEqOCgzsFoJ/ZfLxgNWLgav7mdWU4ZwOHW9draNfjRNvf3v0t/IwKOO+8PHC2C0QAAYIUGn2X0wTUAAAAAAAAAABxhgtHW3yuSPKe19icd2p439PrkFOOdzPWD0c5f4DiD9htnYlV1mySfMeFud5nH2AAsS5fJiSY2AwswczDa8f3XC0YDFq22xm/vXbucOgBgFffrwviASbRxYYojHHS9DQAAdHXrgeVJv6QTAAAAAAAAAAA4RDY2GK2qbpXk7klukeRmSSaaddBa+61F1LUAX5tku6pOtdb+7IC2w4Fl0yQsnMzuf9NRfc5znHF9TuvfJXnanPoCAJidSfiHh2A0YGPV+M2965ZTBkASQdYs37hjzvEIDJvmvHDA9TYAANDVl/d/tyQfXWUhAAAAAAAAAADAam1UMFpV3Tq7wVffluSuM3a3DsFoz0jycwOvTyS5VZIvSvLIJF+Z5JwkX5fk66rqOUme3NqoRIYbmGb2xjrvAwDp9CdEEBWdOVaYgGA0YFPVAVnyvWuXUwdwyHW9tnYNfqTN/X69S3+OOWACU52nnGcAAGDARBfIVXVOktsneWiSHx3Y9NfzLAoAAAAAAAAAANgsGxOMVlWPSvLrSc7P9F+93vr7rsUMhdbaJ5N8cp9Nb0ryS1X1wCQvSHJBf/2/z2542neN6PKqodcnpihreJ/hPpc5DgDckNAzYFUWFYzWE4wGLJhgNADWxprd0/uMAbgBwWgAALCfquryRZ6V5MNV0z7ad71nAl8xbScAAAAAAAAAAMDm24hgtKr6tiS/lf0D0QZnGwxvH9429VNXq9Bae1NVPTjJ25Lcqr/68VX1itbaH+yzi2C05LlJXjThPndJst9/TwA2lsmIrBPH46ExMhjtgMChPVsjgtF2BKMBiyYYDViGjte9gqiOuBW8/445YBKtt+oKAABgXXV97m6W5/P2vvT0fUlePEM/AAAAAAAAAADAhlv7YLSqunOS52X3oae9h5/eneRlSU4m+al+05bkcUlumuQOSe6f5AHZnf3bklye5JlJPr3E8mfWWvtQVT0jyc8PrP7B7B/k9c9Drz9jkrGq6rzcMLDsUx3GuXFV3aS1dvUEw92mwzgTa61dnt33urMZvqUUgJUwoZl5cjwxgZHBaNvd9t8eFYx2crp6ALo6KMBRMBoAm6pT6Nm4Nu4JgWFTnBcEMAIAcHTsPbu3KJXk7Uke01q7boHjAAAAAAAAAAAAa27tg9GS/MfshnXtzSp4epJntNZaVV2Qs8Foaa09f3DHqrprkp9O8o3ZDQn7niQPba1dtozC5+j3cv1gtC+tqpu31obDxN4/9PqCCccZbv/J1toVw41aa5+oqiuS3GJg9WcnuXiGsYZrB4ARZp30DDClhQWjnZquHoCuDgoEF4wGLJX7tSNtJeFBjjlgEtOcM5xnAAA4Ev4soy9+v6L/uyV5a5Ku//OrJTmd3S/UvDjJ61prb5ylSAAAAAAAAAAA4HBY62C0qtpK8u05+1DVi1prT++6f2vtA0keVVVPT/LUJPdI8odVdb9N+lbJ1trlQ0FkW0nunOSdQ02Hg8nuOuFQnzP0+r1j2l6c5P5DY00SjDY81iT7AgBsEJNjD42Zg9FO7L9eMBqwcFvjN+8IRgPmYCWBV2yeeR8nHfobe2w6boEhrTfFPs4lAAAcfq21B43aVlW9nL3Jfkxr7dKlFAUAAAAAAAAAABxaB8yMXbkvTHJ+kuq/fsY0nbTWnpbk5f1+7p3kSXOpbrmGg9zO3afNe4Zef2FV3XiCMR5wQH/jtt2v6yBVdZPsvrddxwKAs7pMNDQZka4cK0xi5mC04/uvF4wGLFrV+O09wWjAMrkGZ9kcc8AknDMAAGBKB3wQDQAAAAAAAAAA0N26B6Pds/+7Jbm0tfbecY2rxs70/eGB5e+atbBlqqrjSW49tPpjw+1aa5cleffAqmNJHjjBUA8aev2qMW3/+IB9x/my7Na2552ttRv8ewBgeiYwAgsgGA3YWILRgDUinPiIW8X7P2ZMxyMwbKrzgnMJAABH3tP7P89I8qkV1wIAAAAAAAAAABwCxw5uslK3HFi+aJ/twzMNjic5uV9HrbW/qaqLk9w9yedV1ee31vbrcx09JNcPsbsmyT+MaPuyJF848PpxSf7koAGq6m5J7juw6uoD9nt1dv9bn+i/vl9V3a219r6Dxkry2KHXL+uwDwD0mWjIhjHR/vBovf3XzxqM1hOMBqxY77pVVwAcCq576WDu90cd+nNPBkxkxL3/WM4zAAAcba21p6+6BgAAAAAAAAAA4HDZOrjJSp0/sHzFPtuvHtN+P387sHz3qSpasqraSvLUodV/3Fq7dsQu/1+SnYHXj6qqCzsM9Z+GXv9+a21kQkNr7ZokLz6gjxuoqs9N8siBVWeS/E6H+gCgr8tEQ5MR6cqxwgTazv7rZw1G2xGMBizaAX/veqM+YgBYBNfgR9sq3v9xYzoegSHThCkKYAQA4IjrP98GAAAAAAAAAAAwN+v+UNJg8Nk5+2z/9NDrOx7Q31UDy7ebqqIpVdX3VdXtJ9znnCS/luS+Q5ueM2qf1tr7kzx/YNWNkvxmVY1IYUiq6hFJHjuw6tokXb7J88eTXDfw+rFV9fAx4xxP8hv9mvb8Wmvtgx3GAgDYUCbHHhqjgtG2OgajbQlGA1bkoKAGwWgAbCphRMDcOa8AAMAULq2qp1XVQc/uAQAAAAAAAAAAdLLuwWgfH1i+6fDG1tq1Q23ueUB/g8Fk581Q1zS+K8kHq+oFVfUNVXX+qIZVdaKqviXJO3P9wLIk+e3W2msPGOtpSa4YeH3/JP9/Vd1taJxzq+r7krxoaP//3lr7yAFjpLV2SZKfH1r94qr63qoaDD9LVd09yWv6tez5RLoFsAHAWV0mPZsYTWeOFSYwKhitOgajbY8KRjs5XT0AnR30987fQ2AOOt+HOeccbat4/8eN6XgEhkz1uaJzCQAAR94dkvxYkg9V1Uur6qGrLggAAAAAAAAAANhsx1ZdwAH+dmD5whFtLkryFf3lhyT57f0aVdVNkvzLgVVX7NduwU4k+bb+T6uqDyT5cJJPJbk2yflJLkhyjyTn7LP/K5M84aBBWmt/X1WPSvLqJHsBZQ9I8t6q+l9JLklysyT3SfIZ+4zx1An+TT+U5POTfG3/9TlJfjHJU6vqHUk+neRz+mPVwH7XJnlka+2yCcYCgJhoyMZpvVVXwLwsLBjt1HT1AHR2wPWTv1UALMsqgsyFpwMTmeba2HkGAAD6jiV5RJJHVNWHkvxqkt9orX18/G4AAAAAAAAAAADXt7XqAg7w3iQ72Q3UunNV3XifNm/s/64k31xVF4zo64eSnDfw+qK5VTmdym7Y21cn+ebshqU9PMm9csNQtJNJfjTJo1prp7t03lp7fZJHJvmnoTH/RZJHJ3lYbhiK9rtJ/k1roxIf9h1np9/fC4c23SbJ12T33/bFuX4o2uVJHtFae2MAYCFmnIx45prk/b+a/MXjk/f9XHL6k/Mpi6Ppop9cdQXMy86IS/Gtc7vtLxgNWJUDA2EEOQBLJKTqiJv3+9+lvzFtHI/AsGnOC84lAABwbXafDdu7OK7sfpHmTyX5u6p6QVU9cFXFAQAAAAAAAAAAm2etg9Faa1cleUf/ZSV5yD7N9gK5WpITSf6kqr58b2NV3ayqnpndYLG9h68+meQvF1L0aE9I8swkb0nSKdwsyfuSPDXJ57bWfrK1dt0kA7bW/ijJPZP8SpIrxjT9iyTf1Fr71tba1ZOM0R/nqtbav8luCNpfjGn6ySS/nOSerbU/nnQcAEiy+ImGO6eSNzw8edu/TS75jeQd35+85sHJ6U8sdlxWYxkTV//hFYsfg+XojQpGu1G3/bdPjO7XJGpgoQ44x7TecsoADrmu1zOue1g2xxwwCecMAACYwh2S/GCSD+Tsl2e2/vK5Sb4lyRuq6q+r6t9V1fmrKRMAAAAAAAAAANgUx1ZdQAevTvIl/eWHJ/nDwY2ttYuq6g+SPCK7D1RdmOR1VXV1kiuT3CbJdr/53jdT/tKkIWOzaq29Lcnbkjy1qs5JcvfsfjPmHZOcl+ScJFf1a/5wkne21saFmXUd9/IkT6yqJyd5QJILktwuydVJ/qE/zodmHac/1ouTvLiq7pzkPtl96O0mSf4xyUeS/Hlr7dp5jAXAUdZlcuIMExg/+sfJx15z/XWfenfyoRckd3vy9P0Cm6834lJ2+9xu+28fH9P36fHbAWZxUPiiYDQAlmYFgUNj/w4KQAKGTHVt7FwCAMDR1lr7ZJJnJ3l2VT0kyROz+5zfsZy9YK4kn5/kF5P8t6r6nSS/2lp7xz5dAgAAAAAAAAAAR9wmBKO9MMl/zu7DUd9SVf+xtfbPQ22enOS+SW6bs982eV7/Z8/e+rcn+clFFz1OP5Tt3f2fZY15bZLXLWmsDyWZS9gaACzdu354//Xv+A+C0eCo2zm9//qtOQSj7ZwSjAYs0EFBDYIcgHnoei5xzjnSDgrrnLzDObUB2DPNOcN5BgAA9rTWXpPkNVV12yRPSPLdST57b3N2n9+7SX/9d1fV25P8cpLfa62dWkHJAAAAAAAAAADAGtpadQEHaa1dlOSLk3xJkq9IsrNPm0uTPCTJe7L78NT/2ZTrf+vkq5I8tB9MBsAm2zmd/NUPJ6+6d/LahyWXvmTVFbE0HSYazjLR+sr3Tb8vG8jEVSbQGxWMdqNu+28dEIwGsCqtt+oKAGBxxn5G4J4QGDbFeWHuoY8AALD5Wmsfa609M8mdkzw8yR/l7AX34PN8X5Lk15J8tKp+tqrutvRiAQAAAAAAAACAtXNs1QV00Vp7Z4c2F1fVfZI8KskjklyY5OZJrkjyriQvbK29dqGFArA8f/6Y5O//4Ozrf/zT5AG/l1zw6NXVxHJ0mmhoMiKwADsjgtG2z+22/7ZgNGBVDro2EowGLJHwmCNuzu+/zwiAeVtEaPA1H01O/WNy83slW9vz7x8AANZYa60leWWSV1bVZyX5niSPS3L7vSbZDUi7eZInJXlSVf1ZkucmeVlr7czyqwYAAAAAAAAAAFZta9UFVNUrq+oHquo+VVWz9NVa22mtvai19u2ttfu21j6vtfalrbXvEYoGcIhcfen1Q9GSJC15/3NXUg4AR0Tv2v3Xb92o2/6C0YBVOSg0ZhHhD8DRI/CMTlZxnIwZ03EL3MAU54W/fHzSu+6G63dOJ2/818nL75j88RcnL79D8om3z14iAABsqNba37XW/nOSz07y6CSvGWpS/Z8vT/J7Sf6uqp5ZVRcst1IAAAAAAAAAAGDVVh6MluRfJfnpJG9L8omqenlVPamqvmDFdQGwrv72l/Zff/kbllsHK9JlcqKJzXRkEjxdtV4y6gvpt87t1sfYYLSTk9cE0NlBf+/8PQSWyTnnSHMPBqy7ac9TF/3XG67766clf/fSs69PXZ68/mv2D1EDAIAjpP/lpy9urX11ks9N8t+TfCK7Hxy1nA1Iu22SH07ygap6aVU9cFU1AwAAAAAAAAAAy7UOwWh7KsnNk3xDkp9N8ldV9U9V9aKq+ndVdbfVlgfA2jj98VVXwEqZRA2swM7p0du25xGMdmqyegAmcsD1U+stpwyAJO7pmK8Ox9PYkCPHIzBsyvPC+597w3Uf+u0brjv9ieSyP51uDAAAOJxumuRmSQb/R1ob+EmS7SSPSPKGqnpVVd1luSUCAAAAAAAAAADLtk7BaIMPM+196+OtkjwqyS8muaiqLquq36mqJ1TVXVdUJwArZ9IqBxg76RlgCr1rR2/bulG3PrbGBKj1BKMBC3TQtZFgNGAu3IfRxSqOE8cmMIFpr41PfeyG605+dP+2l/z6dGMAAMAhUVUnqurxVfWXSd6e5LuS3HiwSZIzSU72lwefKXxYkndV1dctsWQAAAAAAAAAAGDJ1iEY7T8leVWST+dsIFqyf1DabZM8JsmvJPmbqrq0qp5fVY+tqguWWzYAKyP06mjz/jNXjic66p0evW1c4NmgqmT7+P7bdgSjAYt00N87fw+BJXJPd7TN+/3v1N+YNo5H4AaWcF7oXbf4MQAAYA1V1T2q6heSfDTJ/5vkX+Tss4J7zwdeluTHk1yQ5A5JvjfJRTkbkNayG6L2+1V1l2XWDwAAAAAAAAAALM/Kg9Faa89qrX19klsmuW/OBqVdlYOD0j4zybcn+bUkl1TVJVX1P6rq26rqDkv8ZwAASzPjpGeAaeyMCUbb7hiMliRbgtGAVTjg2qj1llMGAKzifl34GTCRGc4ZXc83vWunHwMAADZMVd2o/yzfG5P8dZJ/n+RmOftMYPrLr0/y6CQXtNae0Vr7x9bala2157bWvjDJ1yW5eGC/40m+f1n/DgAAAAAAAAAAYLmOrbqAPa21XpK39X+eVVVb2f1WyAcleXCSByQ5b3CXgeW9B57ulORx/Z9U1QeSvC7Ja5O8vrV2+eL+BQAsjwmtACxZb0ww2taNuvezfTy5bp/1gtGARToooEEwGjAXXe/V3dOzbOOOOccjMGSWa+OdU8mxEx3GODP9GAAAsCGq6sIk35PkO7P7hanJ7jN+e1+OWtn94tTfTvKc1trF4/prrb2qql6X5E1J7tPf/6sXUz0AAAAAAAAAALBqaxOMNqwflPbW/s9PV9V2doPSHpzdsLQHJLnJ4C4Dy3tBaRcmuWuSJyRJVV2c3aC017XWXrrI+gFYoIOCHTjkurz/jhG6cqzQUe/a0du2zu3ez/bx/dcLRgNWSjAaAMsy73swnxEAczbLZ88713QLRuvtl5gOAACbr/983yOT/NvsPuOXnH2Orw28vijJLyf5rdbaVV37b62dqqr/muRF/VWfNXPRAAAAAAAAAADAWlrbYLRhrbWdJH/Z//mpqjqW5EuyG5L24CRX2fZoAAAgAElEQVT3T3LjwV0GlvcesLpH/+eJ2aB/OwDDTGg90rpMThSeB8zbzunR27bnEIzWE4wGLNIB10aunYBlcs452lbx/o8d0/EIDJvhvHDmmuTcWx3cTjAaAACHTFVdkOT/TvL4JLfZW53dC+zWX95J8vIkz2mtvWGG4d47sDzB/6QDAAAAAAAAAAA2ycaGg7XWziR5S//nv/aD0v5ldkPSHpTkftk/KK1yNigNgI1k0ioAS9YbE4y2daPu/YwKRjtzcrJ6ACZy0PVzbylVAIecwDPWlmMTmECb4dr4zNXd2vWunX4MAABYTx/M9Z/JG3xO77Ikz0vyvNbaZXMY65qhMQAAAAAAAAAAgENoY4PRhvWD0t7c//kvVXVOkvsm+eYkT4hviASAQ6LL882egaYj4Q10NW7S8tYEtxpbI4LReqcmqwdgEgf9vZsl/AFgYq7Bj7Z5v/8z9ueeELiBGc4LO9ecXR53fmlnph8DAADW01Z2L6Zbzgak/VmS5yR5Wf+5vnmr+KAJAAAAAAAAAAAOrUMTjLanqm6R5CuSPDjJg5J8fs5+GyUAh4FJqwAs287p/dfXdrK13b2fYydG9C8YDVgkwWjAMnS9V5/wnv66TydXvi+5+Rcm2777YvMt6DOdqz+SnHvr5NhNljcmcEjNcM44MxiMtjO6Xe+66ccAAID1VUmuSvLbSZ7b2v9m787DLMnq80B/J6sa6G5WsQq1gG6QtSC0IckbaECDtdmSNVibLVndNjOjsWfRWLN4bGvzjD22Rx7b8iNrNF4k2mgxFthIxrIshA1oYRGLhNqgBbpo9oaGpmmglsy8x39UZtetrBtxI27cLW6+7/PU05kRceOcIg4nTkTl78v6n1bRSK31rlwOYgMAAAAAAAAAAHbY6IPRSimPTPIVuRKE9ozMDkKb3qYSCgBGq8NtXHgesGyThmC0vQf1O8/eQ2ZvF4wGrNS8tZG1E7Cl7vgbyW//9aQeJGeuT778Hyc3f8eme8UQy35ev+/tycs/J/n47yZ71yW3/LnkS3/06vDi1jbdA4EThsxTh9PBaC3hw4LRAADYPW9P8qNJ/nmt9f5NdwYAAAAAAAAAABi/0QWjlVIenquD0L4wV4eelVyuZjoZhPbWJK8++vOadfQVgFVRtHqqCT1jqYwnOmoqWu4bjHamRzDaJ84l73v55cLqz/j65BGf168tgGPz1k9toQ0Ay9b1me69P5+89fuufH94PnntdyaP+sLkkc9YTd8Yn3f82JWvJ/vJO/5xcv1nJM/4/qmDPPcBfQxYGx9MB6MdtjRxafE2AABgC9Van77pPgAAAAAAAAAAALtl64PRSikPS/LsXAlC+6Ike9OHZHYQ2ltyJQjtV2qt966jvwCsgeAG5lL0DCxZU0FzOdPvPF2D0T782uRVX5Psf/zy97/1vcmzX5Lc9Cf7tQeQZP7ayPoaWIYlP4e945/MbuPci5Iv/n+W2xZrtIbn9Tt/vEcwmvcHwAlDfinDYcdgtHqweBsAAAAAAAAAAAAAAHAKbF0wWinlxlwdhPbFSabTBsqMj02SvDlXB6F9fLU9BQA2Q9EysAHrDkZ78/dcCUVLLhdNv+G7ks/4hqTMeiQCGGBI+ANAbx3nnPe/fPb2t/+QYLRRW8M955N3nWjSfQ7oY8CccfCJqdO0BKNN9hdvAwAAAAAAAAAAAAAAToGNB6OVUm5I8qxcCUJ7ZuYHoe0neWOuBKH9Wq31EzOOA2AnKWg93bpcf2OErowVOlp1MNpkKhjt4keTj7zu2mMu3J185PXJY/5QvzYB5t7vJmvpBQBsJqSspU2hacBJdcDa+GN3TH3Tch7BaAAAnFKllEcn+eYkfzDJ45OcT/LeJL+c5N/XWi9tsHsAAAAAAAAAAMAW2XgwWpKPZX4Q2qUkb8jVQWjn19A3AGCMFDbTxfm7k3e/dNO9YCyWFYy21xCMdjD1eHPxnubP3/9OwWhAf/PWRkPCHwCOdX4O87zGmnlHAPQyYM5478uSZ/5wUkoyaXiPkCQTWQ8AAIxfKeUxSb4gyWOTXExyZ5I7ar32hXMppST5K0n+apLrZ5zuf0hyVynlL9Zaf3F1vQYAAAAAAAAAAMZiG4LRzuZylcF0INqFJK/LlSC019VaL2ygbwBspZbitFovF56xuxQ0swznfjJ53a2CYOhuWcFoZxqC0SZTjzttBdJnHtyvPYAkc8Md3A+BdfJMd8pt4vq3tWk8AicNmBc+9Z7kvjuSRz6j+T1CktSDxdsAAIANK6V8UZIfSvKcJHsndn+olPIPkvzdWi8vio9C0W5P8u25+ucDjxffx9uekuTflFJuq7X+1Gp6DwAAAAAAAAAAjMU2BKNNq0l+OcnfSfKaWlUGADCDIupTrsv1N0Zocf7u5LXfGeOEXppCg8rJeo85zlw/e/vhdDDaxebP7z2oX3sASYf1s3siAOvingNsuaGhwR985fxgtMn+sDYAAGBDSinfluSfJzmTq0POjj0+yf+d5CtKKV9fa50k+e4k35HLLwWmw9COPz/9suBMkh8vpbyl1vq2FfwVAAAAAAAAAACAkehZxb9Sxz/k9Lwkr0hyXynll0sp31tKeXYp5boN9g2ArdJWRKvAFpjjzp+IuYLemgqay5l+59lryKaeTGVCH15q+bxgNGARc+57Q8MfAJJ0X2Nbi7Nu3iMBPQz9pRzn33f0Rcsauy00DQAAtlQp5cuSvCiXfxFrydVBZ5n6viT5miT/SynlYUl+MFcHon0gycuT/HSSX0xyb64OWbsuyQ+v6u8BAAAAAAAAAACMQ0NV/lq9Pcnn5NrfInl9kuce/UmSC6WU1yV5dZJXJXldrbUlMQCA3dVSnFbr7N9LzA7pUpyosJkWd/74pnvAGC0rGK00ZVNPFUy3jdEzD+7XHkASwWgAbI2hgUNjaRMYsYFzxnHwufAzAAB2z/+X5EyuDjm7N8k7jr5+apJH5Uo42l9Kcl+Shx9t+0iSF9Ra/830SUspe0lekOQfJHnI0We/spTy1FrrO1f8dwIAAAAAAAAAALbUxoPRaq1PL6U8JslzcjkE7TlJPvdo93S0zfVH+56T5AeSXCylvD5XgtJeW2u9uI4+A7BhrQWtil133soLmo9/uTU7a7K/6R4wRksLRms4/jiUqNbknf+0+fN7gtGABcxdP1n7AOtkzjndNnH95wTsA1xlaDDa0XsnwWgAAOyQUsofTPIluRJ69uEk35Xk52q9/HBdSilJviHJjyV5XJLHJ/meo1PsJ3lerfWtJ89da50k+SellLuTvCxXFuXfnORvr+rvNFallOtz+WcrPyfJY5M8NMknknw0yR1JfrvWerC5HgIAAAAAAAAAwHJsPBgtSWqt9yR5ydGflFIelyshaM/J5R/kSa4OSntIkq84+vN9SS6VUt6QyyFpr07y67XWCyvvPABbRkErGVbYXPYULu46PwfOIpYVjJa99vPf+5vtH+/dHkAyd418HM4IMIjncbrYsmA0gJOGro2P3ztNvF8EAGCn/Kmj/5ZcDjn7qlrrb00fcBSQ9nOllHNJfiOXfy7xD+Tyg/lPzgpFO/H5ny+l/Mdc/sWqNcmXLvev0F0p5ZYkX3bUhy/L5VC4h00dclet9Slr7M+XJPnGJF+Z5MuTXNdy+CdLKS9O8sPz/jcHAAAAAAAAAIBtthXBaCfVWj+U5F8e/Ukp5fG5EpL23Fz+oank6qC0Byd51tGf702yX0r5jVwOSntVLgelnV955wFYg5aC1iGBWIzEqq9xmX8I4zbZ33QPGKPGYLSGoLMmTccfF15fuHteR/q1B9CJYDRgjTy3s26tY854BE4aOC88EMhvjQ0AwE75kqP/1iT/8mQo2rRa61tLKf8iyZ+d2vzSju28NJd/NjBJnt67lwOUUp6T5K/kchjap62z7SallIck+U9JbunxsRuT/Pkkt5ZS/m6S76u1+gdyAAAAAAAAAABGZyuD0U6qtd6d5MVHf1JKeUKuhKQ9J8lnHR06nWTyoCR/5OjPX83loLQ3Jnl1klfVWl+xjr4DsG4KWndepyL6AeOg7BlGu04wGouoDQXN5Uy/8zQdfxy8dvbGOf0wQQGLmDN3NM1xAH10XqdYz5xqG1nPGnNAD0PnqeP3Tk0B6w8cd5DsjeKfaQEAILnyS0yT5OUdjv+FXB2M9taO7RwHrpUkj+74mWX5oiRfteY25zmb2aFoNcnvJnl3knuSPDTJ55849kySv5zks0op31rrAynOAAAAAAAAAAAwCqP8ifta6weT/IujPymlfHquhKQ9N8lTjw49GZT2h4/+/OWM9O8OQKKglfmGjJEy/xDGzc98s4imgubewWh7DTuOQonOXD+vI/3aA0g6hDuYWwBYl20LRnMPBE4aGBo8OXrvNC8Y7fBCsvfQYW0BAMD6PGLq69/tcPzJYz7SsZ17pr5+eMfPrNrFJO/NlZ9H3JTDJL+U5PYkr6y13nPygFLKM5P8vSRfMbX5+Ul+MMn3rqGPAAAAAAAAAACwNE1V+aNSa/1ArfWna63/ba31s5LclMu/dfLHk9x5fNjRf0skngCMW2uwg4LW3bfia9wYWsTOmOyvv825gTRsvaUFozUcX48Kr/fm5TcbS8Ai5swddWD4A0Av1jOn2iaejTyPAX0MnTNqx2C0ycVh7QAAwHpNp/re1+H4j09/U2u90LGd6eOu6/iZZdpP8ptJ/mmS70ryzCQPS/Jfb6Avxy4m+UdJnlJr/bpa64tnhaIlSa31TUm+MsnPnNj1v5VSnrzifgIAAAAAAAAAwFLNq7ofpVrr+0spb0vyuCSPT/LEJA/ebK8AWJ6W4jTFrqdAh2s8aBy05KfWmhT5qqO3iWC01MjmHbmlBaM1hC8en39eOJH7HLAQwWjAOlinMELW18A1Bs4Lx++d5q2xD7vmQgAAwFaY/ofOOSnAnY/ZNrcn+bFZIW5lcz8jcCHJ02qt7+36gVrrYSnlBUmeleQzjzY/KMm3JPmh5XcRAAAAAAAAAABWY2eC0UopX5jkOUmem+TZSR650Q4BsDqtRasKWhmo9YeahVvthHqw6R4wRo3BaA1BZ42agtEmV/+3uSM92wPI/NAXwWjAOgmiOuU2cf2NOaCHoWvj4/dOTe8RjglGAwCArVJrvXfTfTip1nqQpHMo2tTnzpdSfiLJ909tfm4EowEAAAAAAAAAMCKjDUYrpTwjV4LQviLJo6Z3T31dG7YDsJMUu+68TkX0Q8ZBS8hRPVwgBAmSvPOfJU/7bzbdC4ZoKowuZ/qdp+n444JpwWjASsybO8wtAKzLtgWjuQcCJw2cFyaC0QAAgK3wlhPfP3EjvQAAAAAAAAAAgAWNJhitlPL0XB2E9ujp3VNf11ypWihT+96b5D9O/QFgtFqK0zqFZjFuK77GpSVHdW5gETT43X8gGG3smgqaewejNYQrPjC/uI8BqzBnbrHGAZai6zrGeoc1864I6GXgnFH3j/47JxhtcnFYOwAAAO0OTnz/oI30AgAAAAAAAAAAFrS1wWillM/NlSC0/yLJY6Z3T33dFIT2gSSvylEQWq31nSvsLgBr1VacptiVZNg4aAgtSuYXNEKT+96WHF5Izjxk0z1hUUsLRms6/iiUaF44kVAHYCUEowGwJhtZz3qPBPQwdJ6aHGUPzHu+P/jUsHYAAADaPe3E9x/YSC8AAAAAAAAAAGBBWxOMVkr57FwdhPa46d1TXzcFoX04Vweh/e4KuwsAbMyKi5ZLad4nGI0hDi8KRhuzpQWjNYQvPnD+eeFEghuABcwLdxC6CKyVOYd1M+aAPgaGBtfjYLQ57xHf+r3J8141rC0AAFiv4wfsP1RKecqcY58w/U0p5dm5+uf/On2OQb7pxPdv2EgvAAAAAAAAAABgQRsPRiul/FQuB6JN/2BTlyC0jyZ5da4Eof2n1fYUgK3RGtyg2HXndQnuGBLu0RRalCR1YGEkp9vk4qZ7wBDLCkZLUzDa5Or/NnekZ3sAyfy5wxoHWIKuz2HCGE+5DVz/tjFnPAInDZ0XJh2D0T706mHtAADAZpQkP7PAZ17V4/iabiFqNCilfFmSP3pi87/eRF8AAAAAAAAAAGBRGw9GS/Knc/UPNDUFoX0syWtyJQjtrevsJADbREEr8wwZBy0/Yz2voBHaHApGG7WmwLK2MMVZ9hqC1I7nl3nBaO5zwELmzB3CXwFYm02sZ62hgT4Gzhl1/+i/1tgAAOykPqFl04vrPkFnHuQHKKVcl+T/P7H5V2qtb1hyO49L8tieH3vqMvsAAAAAAAAAAMBu24ZgtGPHPzh1/INQ9yf5lRwFoSV5S61SAABI2n8O1q1i9636GrcFoyloZIDD85vuAUM0BSOWhqCzRg1Bag/ML/PmGfc5YAHzXqdY4wBL0XWdYj3DunmPBPQwdG08OTg6T4dfsFBrUvrkQwAAwFZY5GHaA/j6/FCSL576fj/J/7SCdv5ikh9YwXkBAAAAAAAAACDJ9gSjlSSfTPJruRKE9sZaVeYCMENrsIOfpyUZNA5KQ2hR0q2gEZocXth0DxhiWcFoTccfP/rMzYJ2nwMWYW4BYEv43SfA1hs4T9U+wWiHSdmWf6oFAIBW744XyVuvlPLnk3z3ic0/WGv9zU30BwAAAAAAAAAAhtiGn7b/vlwOQntDrcfVAgCwIAW2p8Cqr3Fp2SezlQEEo43b0oLRGsIXHzj/nHnGfQ5YxLy5Qy49ALus7T5ofQ2cNHRemOwfnadDMNpkP9nbhn+qBQCAdrXWp2y6D7QrpXxNkh87sfnlSf7WBroDAAAAAAAAAACDbfyn7Wutf3PTfQBgbBStnmpdihOHFDA2hRYl3QoaoclEMNqorToY7TgQbW44kXsgsIh5c4e5BYB12cQ9x30O6GNgaPDx74DqEj5c95NcP6w9AADg1Cul/NEkL01y3dTmX03yrbWuLBX+R5P8bM/PPDXJz62gLwAAAAAAAAAA7KCNB6MBwHIpdmWo0rxLMBpDHApGG7Wmgua2MMWZxzcEqR3PL/MKp1dWuwDsto7BsqVlHQSwTOYc1ql1DW19DZww9Ll7chyM1uE94uGlq2MLAAAAeiqlPDPJv01yw9TmNyT547XWT62q3Vrrh5J8qM9niveBAAAAAAAAAAD00LOKHwC2QUtxmsCYU6DLNR4wDtpCjuYFFkEbwWjj1lTQ3BR01qhhjjmeX+bOM+5zwIpY5wBrZU1zem3i2htvQB8D54y6f/TfDsFox8cCAAAsoJTyBUl+Kckjpja/JclX11o/vpleAQAAAAAAAADAcghGA2B8WkMbFLvuvlVf45bfUtyloBGaCEYbt2UFozWFLx6f/+D+fucD6KJTeLBgNGAAIeV0tZGx0tamsQucNHBemBwcnabDe8SJYDQAAGAxpZTPS/LLST5tavMdSb6q1vqxzfQKAAAAAAAAAACWRzAaADtGQSsZVmhd2oLRBIYwgGC0cVtaMFrD8cfzy/kPzutIv/YAknSaO6xzgHUSpMY6GW9AH0PXxfU4GK3DeQSjAQAACyilfHaSVyZ57NTm30nyvFrrPZvpFQAAAAAAAAAALJdgNABGqKWgVbHr7ut0jYeMg5blUVMwEnQxEYw2aksLRmuaY+rl+e3C3XP64T4HLGLV6ycA6GoT9xvvkYA+Bs4Lx2FnXd4jCkYDAAB6KqU8Lcl/SPKEqc2/n+Qra61z/qERAAAAAAAAAADGQzAaAOPTWrSqoHX3rfgal9LS9GS1bbPbDgWjjVpjMFrPR6q2ILU6SS58cF5H+rUHkHQLfbHOAQbpu0axpmGdjDegh6GBifXg6L8dgtGqYDQAAKC7UsrNuRyK9sSpzXfmcijaBzbTKwAAAAAAAAAAWA3BaADADhpSwNiyPOpS0AhNBKONW1NgUFvQ2czj2x7BJsmFeb/IXagDsAjBaABsi21bz25bf4DNG7gunvQIRptcGtYWAABwapRSnpTLoWifObX5rlwORXvvZnoFAAAAAAAAAACrIxgNgBFqK1pV0Lr7VnyNS2lpWjAaAwhGG7em///3DUabF754/oNz+uE+Byyiy9whGA1YJ2saVmx63WwNDfQxdM6oB0fn6LC+nuwPawsAADgVSilPTPLKJE+Z2vy+XA5Fu2sjnQIAAAAAAAAAgBUTjAbACLUUpyl23X1drvGQcVDalkcCQ0Zvk3OEYLRxW1YwWtvxdZJcuHteR/q1B5Csfv0E0HcOMeecXhu59gL2gT6WMC/Uw26/YEEwGgAAnDqllHriz3PmHP+4XA5Fe9rU5g8keW6t9c4VdhUAAAAAAAAAADbq7KY7AAC9tRbRKmhlqNK8a9KhoJHtVg8217ZgtHFbWjBaS/jiR9+cnH/fvI70aw+gMwGwAKzDutazNVee762hgR7qEtbF9aDbe0TBaAAAsFVKKTdl9s9TPuHE92dLKU9pOM0naq33LKk/j0zyiiSfM7X5k0lekGS/pQ8z1VrftYx+AQAAAAAAAADAOghGA2CEBKOdbl2u8arGgfE1ehstODV+Rm1pwWgtx//yszv0wzgCFtFh7lhGAARwivVdo1jTsGK1TuWitYw362vgGkuYFyYHze8RrjpOMBoAAGyZX03y5A7HfUaScw37bk9y25L680VJvuDEthuT/MKC52v5LXEAAAAAAAAAALBd9jbdAQBYKgWtp8Amr7HxNXqC0VhUU2BQ6flI1ff4azsy8PPA6dQlGM38AsA6bOJ+4x4H9LCMdXHdT9IheLgKRgMAAAAAAAAAAAAAgFkEowEwQm3FaYpdSVY2DgSGjN/k0ubaNn7GrR7O3l7O9DvP4GA0gAV0ugd1CG4AWBprY1atNnzddhxAspR5YXLQ/B7hquM2+J4KAAAAAAAAAAAAAAC22NlNdwAAoJcuwR4rC6BSMD16k/1N94CxWlowWs/jr+3IwM8Dp1OX9ZNgNGAIaxQ6Wltg9FQ7QqqBPpaxLq5dg9G8pwIAgG1Sa33KGtooPY59VZLOxwMAAAAAAAAAwC7Z23QHAKC31oJWxa67b5PX2PgavbrJglPjZ9SWFYw29BFMqAOwEMFowJaxpmHVrhpj3iMBfSxhXpjsJ598d7fjAAAAAAAAAAAAAACAawhGA2CEWorTFFeTZGWFzcbX+B1e2nQPGKtlBaP1DlK7piMDPw+cSp3WMOYXANZhE/cb9zigjyXMGfUg+dhvzT9OMBoAAAAAAAAAAAAAAMwkGA2A8WkNdlDsuvNWHk5mfO20usmCU+Nn1Opk9vbS85Gq7/HXdmTg54HTqcPc0TTPAXTR+znNmubUWlvgeMd2BKADJy1jXTzZTz722x3aEowGAAAAAAAAAAAAAACzCEYDYIQEV51uXa7xqsaB8TV6kw0WnCq4H7d6OHt7OdPvPEOD0YwjYBGd5g7BaMA6WdOwalNjzBoa6GUJc8bh+WT/4/OP2+R7KgAAAAAAAAAAAAAA2GKC0QDYLYpdWaUqMGT0Jpc23QPGamnBaD2Pv7YjAz8P0MA6GoC12MT9RsA+0MMy1sWHF7od5z0VAAAAAAAAAAAAAADMJBgNgBFStHq6dbj+Kwv2MPZGb7K/wcaNn1FbWjDawEcwwUXAQrrMHQJggSF6rlGsaVi1q8aY8Qb0sYR1cedgtE2+pwIAAAAAAAAAAAAAgO0lGA2A8WktoFbsykBt40vx/vgJRmNRSwtG63n8tR0Z+HngdOoSLCsYDYB1WNd6dqod75GAPpbx/u/wYrfjBKMBAAAAAAAAAAAAAMBMgtEA2C2Cq3Zfp2s8ZBwomN5pk0ub7gFj1RiM1veRaugjmHkIWECX9ZNgNGCtrGlYJ+MN6GMJc8bkQsfjBKMBAAAAAAAAAAAAAMAsgtEAGCHBVafbioPRWoNDjK/R22TBqeDGcWsKDCpn+p2nd5AawDKsOlgWwBxCR2t7Lppqp61Nz2nANZYwLxx2DEa7eM/wtgAAAAAAAAAAAAAAYAepygdghARXsUoKpnda3WAwGuNWD2ZvL2f7nadvkNo1/TAPAYvoMHc0BUACrIQ1zem1pmt/1brZeAN6WMa6+PBit+Pe85Jk0vC+AQAAAAAAAAAAAAAATjHBaACMT1sojMCYU6BLsMeAcdBa/Gh8jd7k0gYbN35GrR7O3t436KwMfQQzjoAFdFkbCUYDhuj7DObZnbUSsA/00TAvPPHrup9i0jEY7cLdyQd+qft5AQAAAAAAAAAAAADglBCMBsAIKWg91VZeQC94b6dN9jfYuPEzavVg9vZytt95+gapXduRgZ8HTqcuc4dgNADWYV3rWetmYEFN7/9u+fPdz3F4ofux527vfiwAAAAAAAAAAAAAAJwSgtEAgB00pABa8N5O22gwGqNWD2dv3+sbjDbwEUxAI7Aq5hdgrcw5rNrUGGu9xxmLwAm1ITC4lOQzn9/tHJOL3dt778uSS/d2Px4AAAAAAAAAAAAAAE4BwWgAjJCC1tNtxddYwfRum1zaXNsCZ8ZtcjB7eznT80RDH8GMI2ARXeaOhgAIgE6sUehoI89FxifQR9OcUbqf4rBHMNrkUnLXi7sfDwAAAAAAAAAAAAAAp4BgNAB2i+ChU6DLNR4yDlo+a3yN32R/g40bP6NWm4LRzvY7T+8gtWs6MvDzwKnUZQ1TBaMB62RNw4pdde/znA/00RaM1jEc7fBCvybvfGG/4wEAAAAAAAAAAAAAYMcJRgNgfFqLVhW0MpTxtdM2GozGqNXD2dv3+gajDXwEE9wALEQwGgDbYl3r2al2rKGBPprWxeVMOgejTXoGo33k9cl9v9PvMwAAAAAAAAAAAAAAsMMEowEwQm2hDYpdd16XguYhRc+C93bb5NIGGzd+Rm1yMHt7OdPvPEOD0YwjYCFd5g7zCzBEzzlEUNUptolr7zkf6KExGG0vKR2D0Q4v9m/33O39PwMAAAAAAAAAAAAAADtKMBoAu0Vx9Smw6mCPluA944AeVzUAACAASURBVGv86v6me8BY1cPZ28vZfucRjAZswqqDZQF6M+ewarXha4B5WoLROp+iJRjtEU+fvf3ci5JJw7sHAAAAAAAAAAAAAAA4ZQSjATA+QhtYpdbxZeyN3mSDwWjmrvGqNakHs/eVM+vvC0Bvqw6WBYCO1rWenW7Hcz7QR236pQl7SUq3cxxeaN731BfM3n7+fcndr+x2fgAAAAAAAAAAAAAA2HGC0QAYIQWtp1uHazyo0Lrls42FkYzG5NIGGzc/jVbb//f3zq6vHwALE4wGrFjfZzBhr6yV8Qb0UA9nby99gtEuNu978p9O9h48e9+dt3c7PwAAAAAAAAAAAAAA7DjBaADsGMWuO2/lBfSC93baZH/TPWCMmoqik6SsOxjNPAQsoMv6SQAsAGuxrvVsx3aE9AEnNa2Ly15SOgajTVqC0R786OSmb5y9773/Krl0X7c2AAAAAAAAAAAAAABghwlGA2CEWopWFbSSZFChdesYMr5Gb6PBaMbPaNWD5n3lzPr6kcQ4AlbH/AKskzmHFbvq2d54AzqqNY1zRp/n/8MLzfvKmeSWW5s/9+6f7d4OAAAAAAAAAAAAAADsKMFoAIyP4KpTbtXXWPDeTptc2lzbxs941cPmfXtn19ePxDgCFtRh7jC/AIOYQ+hqA2PFeySgs5Y5oewlKd1OM7nYdJLL53nCH0uu//TZh5x7Ybc2AAAAAAAAAAAAAABghwlGA2CEFLSebl2u8ZBxYHzttMn+pnvAGNWD5n3lTP/zPfrLF++LeQhYyKrXTwB9mXNOrbUFcdaGrwFa1EnLzh7BaIcXZm8/foewdzZ5ynfMPubDv5bc/45u7QAAAAAAAAAAAAAAwI4SjAbACLUUtK6twJad1VoAaXyNXt1kMJrxM1qTtmC0s/3P9/S/tnhfjCNgEV3WyK1rIIB5rFHYNh2D0bxHAqa1rYnLXlKWFIyWJDff2vz5c/+8WzsAAAAAAAAAAAAAALCjBKMBAOPSKdhjQGFz22cVTI/f4aVN94AxqofN+xYJRnvi1w7oi3kIWESXucP8AqyRNc0ptoFrb7wBnc0JRut8mosN55gKRnvk05NP+9LZx915u+BiAAAAAAAAAAAAAABONcFoAIxPa0GrYtfdt+pgD+Nrp9X9DbZt/IxWPWjeN13U3NUiYWoPMI6ABXS6B5lfgHUy57BiV937POcDHbWGke0lKd3Oc9ghGC1Jbrlt9nGfenfyoVd3awsAAAAAAAAAAAAAAHaQYDQAdovgIQZrGUPG1/hNNhiMpuB+vOph8769BULOSsdC6pl9MY6ARXSYO8wvwBDmEDpb11jpGowGMKUtGK30CUa70HCOE8FoT/62ZO+62cfe+cJubQEAAAAAAAAAAAAAwA4SjAbACLUVtCp23X1drvGAcdBa0G98jd7k0qZ7wBhNDpr3nSxqXjnzELCILnNHSwgEwNJZ05xamwjR85wPdDYvGK3raS7O3r534h3Cgx+dfMY3zD72PS9N9j/RvU0AAAAAAAAAAAAAANghgtEAGJ/aFtqgoJWhFEzvtMn+Bhs3fkartgWjnV1fP05qC2wDmNYlhObgk6vvBwCsjecvYAFt753LXlJKt/McNgSjzXqHcPOts489+GTynpd0a49xuvCh5EO/mnzsjuUEhx58MrnnDcnBp4afCwAAAAAAAAAAAABgwwSjATAuh5eST7yzef8yCojYbl2u8aBx0PJZ42v8NhqMxmjVw+Z9e+sORqvJB1+Z/LtnJi9+SPILX5h86FfW3AdgJ73mG5MPvGLTvQBGq+ezkmerU2xN1/6qMeY5H+io9Rdy7CXpGIx2cP/s7eXMtdue+DXJQx43+/g7b+/WHuPzOz+c/NyTk19+dvILz0j+/Zcn97f8u0eX873kUckv/cHkJZ+W/P6PLa+vAAAAAAAAAAAAAAAbIBgNgHF56/fOOUBB6+5b8TVuLYA0vkZvcmlzbSu4H6/JQfO+WUXNq3Tf25JXf31y75svB7Z97K3Jf3he8vHfX28/gJHpeA96zZ9M9htCHABgrDyLAV21vRcse0npGIzWeI4Z7xD2rkue/O2zj//Qq5JPnBvWJtvnI7+RvPkvJYcXrmz76Bsvh1Uvcs+6+z8mb/6fr/xCiMnF5Df+QvLh1y6nvwAAAAAAAAAAAAAAGyAYDYBxufOFm+4BozCk6Lnts4qpR++4QHAjjJ/RqofN+8rZ9fUjSd7zkuTw/NXbJpeSd71ovf0ARqbjPejwfPLen19tVwCSWBufZuu69rXh67bjAOYEow3VFK5+y23NnznneX/nvP/fZeb95747kvsXCL5/5z+bvf3dP9v/XAAAAAAAAAAAAAAAW0IwGgDjcvHDcw5Q0Lrz6oqvcdv5V902q1c3GYzGaNWD5n1NRc2rcvEjs7ff8X+ttx/AuPRZw5x74cq6Aeyyvs9Knq1Yta7BaABT2oLRs5ekDDt/0zuER31B8qgvmr3v3O3eSe6aC3c37zv//v7ne9dPzd7+u3+//7kAAAAAAAAAAAAAALaEYDQAdosisVOgyzUeMg7aPjsZcF62wuTSBhs3P43WpCUYbe/sYue87pGLfQ5gIT3uQesOfATgdNnEe5vWNj2nAVNqy7u/ssJgtCS5+dbZ2z9xZ/LhXx3WLttlcrF5X1s4PwAAAAAAAAAAAADAKSIYDYAdo6CVDCy0bvms4L3xm+xvrm3jZ7zqYfO+smAw2md/92KfA1hIn3uQV0XAAvquda2NT7E1XfurxpjxBnQ0LxitrDAY7Sl/pvkdw7nbh7XLdjm80LyvLZwfAAAAAAAAAAAAAOAUUe0KwI5R7Lr7VnyNWwv0ja/R22QwGuNVW4pS24qa23ze/5484XlT59lLnv7Xksd/ZfLgxyx2TuMbaNIngGjReQ0AtkrHYDQhfcBV2oLRlrBO3msJV3/I45Inft3sfXf9y+TgU8PbZzscXmze590OAAAAAAAAAAAAAECSpOUn8AFghBS07r5O13jIOBCMttMmlzbYuPEzWvVw9vayl5Sy2DnP3pA85xeTe9+cfOJc8thnJTc88cr+X/zS5KNv6nfO8x9MbvzMxfoD7Lge96A9wWjAOlgbn1qbeG/jXRHQVW0LRttLsuA7gAfOMWetfcttyft+/trtB/cn7/nXyc3fPqx9tsPhheZ9beH8AAAAAAAAAAAAAACnyN6mOwAAsFXaCiAVU4/fZH/TPWCMJg1FqfMKmufZO5M8+suSJ3/L1aFol0/e/3yX7h3WH4Bk+NwGnFKeldg2XceksQtMaXsvmDUEoz3xjycPfvTsfedeOKxttsdEMBoAAAAAAAAAAAAAwDyC0QDYMQpad1+XazxkHLR91vgavY0Goxk/o9VUlFrOrrDRRYqt2wq4gdOtzz3IqyJgHayNT681Xfurgs2NN6CjtmC0speUFQejnXlQ8uQ/M3vfB1+ZfPI9w9pnOxxebN7XFM4PAAAAAAAAAAAAAHDKqHYFYMcodt19m7zGxtfoTS5tru1q/IxWPZy9faXBaAtoK+AGTrc+96B5YQ0Ay2BtzFoJQAe6mhOMNlSXtfYttzbsqMm7XjS8D2ze4YXmfU3h/AAAAAAAAAAAAAAAp4xgNADGo0vhtOJqksXHwbzPGV/jV/c33QPGqKkodZXhQaX0/0xTgBtAn9CXZQQ+AKePZyU6W9dYmWrH+AS6ag0c30uywLP6tC7vER71JckjPn/2vjtvN6ftgsnFln2C0QAAAAAAAAAAAAAAEsFoAIxKl6IvhWE7b6XFf/PObXyNWq3JZJPBaMbPaDUVpe6dXWGjiwSjtRVwA6dbn2C0FYY+AjzA2vjUWlugT234+uRhxiIwpe25uuxl8P2ry1q7lOSWW2fvu//3knteN6wPbN7hheZ9TeH8AAAAAAAAAAAAAACnjGA0AMajU7Gqgtbdt8JxMHeMGV+jtvHCQuNntOrh7O0rDQ8SjAYsUZ/Ql+JVEQA74OD8la8nlzbXD2Bk5gSjDX3uLh0D1p/y7c3vHM7dPqwPbN7agtEWeLcEAAAAAAAAAAAAALAlVLsCMCIdCs/6hD7ANeaMH+Nr3Cb7m+4BY9VUlNq1oHkRZZHiVcFoQJM+wWirDH0EdlffZyXPVqfXmq79m//S5f/e8/o5BxqLwJS24LOlBKN1XGtf/+nJp3/17H13/Yurwx8Zn8nFln1LfH+596DlnQsAAAAAAAAAAAAAYM0EowEwHkKpSNKtaLnhmFqT+9+ZHHyyYf+84kZjcNSawq3W1r7xM1r1cPb2lYYHLRCMNrRAG9hdfe5BxasiAHbAB19x+f73npdsuifAmLQ+V+9lcCB5n/cIN986e/v+fcn7fn5YP9iswwvN+yY931+2PevtXdfvXAAAAAAAAAAAAAAAW+TspjsAAN0NCMRid3QJ9ph1zEfflLzm+cmn3p3sPSh52n+XPOJzkzt/Irn0seQzvj55xg8Mb5vt5fqxqE0Eo5VFgtEa+gnQZ4280tBHgCPW5qfYOq99Td7+d+cfA/CAluCzsjf8/tVnrX3TNyTXPTLZ/9i1++68PXnytw7rC5szudi8r+73PFfL8YLRAAAAAAAAAAAAAIARE4wGwHjUlsK0B45R0MoMB59KXvm8K4WEk0vJ7/3Dq4/5nf83uf/355zI+Bq3TV+/TbfPwpruPysND1okGK3DfRJgrr1NdwAYpb5rXWtj1sA7IqCvtufqsjc8kHyvx3uEMw9JnvxtyTt+7Np9H/z3yafen9zwxGH9Yf1qTQ4vNO//zf/j8v7P//5uofltIWt7D+rfPwAAAAAAAAAAAACALaHaFYAR6VLQquh19y0wDj7wi1dC0dq87+eX0Dbba9PXb9Pts7CmwueyysepBYLRIhgNaNLjHrTS0EcATr21hpUJ2Ad6ag0+2xseSN53rX3LbbO310nyrp8a1hc2Y3Jp/jG//YPJ2/5Ot/MdtgWjXdftHAAAAAAAAAAAAAAAW0gwGgAjIhiNZKFrfMffXFLTQodGrW/B+5nrV9MPxqfp//urDA8qCwSjmaOAJn3ugSsNfQR2Vt+1tjCqU2yN1976GOirbd4oexk8h1338H7HP/rLk4d/9ux9517ofjpGk5Ygs2nvetHw8xXBaAAAAAAAAAAAAADAeKl2BWA8uhS0KgYjyTVFil0Lzvqel5Hpef2ef3fyrJckX/X65BGft4TmjZ/Rqoezt680PEgwGrBMfYLRVhj6CABrJWAf6Kk1GO3M8Ofu6x7V7/hSkptvm73vvrclH33TsP6wfocXuh1339u6Hdf23vvMg7qdAwAAAAAAAAAAAABgCwlGA2BEFLSSxcKlDpcUjCbYatz6Xr/rHpY86U8lj/nyZO/Bq+kT49BU+Lxt4UFNAW4AgtGArePZ6vRa47UXHAz01haMtte+v4sHPbL/Z27+jjSGp9/5wiG9YRMml7of2+U+1vbeu1zXvS0AAAAAAAAAAAAAgC0jGA2A8RBKRVcnx8pkScFoivdHbsj1ayhAXVv7bFRT4FhZ5ePUAmNO8APQpM86WjAasBBrXbaRgH2gp9bn6jL8ufu6h/X/zA03JU/4Y7P33fUzy/uFEGyfLgH4be+99wSjAQAAAAAAAAAAAADjJRgNgBHpUnimoHX3LXCNDy9srm22yIDrV5YQjCbcccQa7j+rDA9aaMwJRgOa9AlG86oIWAdr41Nrnc9FgoOBvhrnjXL5OX3ovHL2xsU+d8uts7df+mjyvpcv3h/Wr899cHLQ4Zj95n2C0QAAAAAAAAAAAACAEVPtCsB4dCkaEjx0CnS5xieOmVxaUtPG16j1Kl49GUq1hGA0xqseNuxY5ePUAmNO8APQqE8w2gpDHwFgnbqsjz3nA1dpCkY/fv4fOGecfehin7vpG5PrHj5737nbF+8P260ODEbzYwAAAAAAAAAAAAAAwIj5iWgAxqNT4IuCVnJtYfPk4rJOvKTzsBkDrl9ZxrLZ+BmtpvvPSsODBKMBG7KUex5w+vRc6wqjOsXWee2NM6Cnxuf/vfb9XZ29ccHP3ZA86Vtm73v/LyTn7168T6xZj3tTl2C0tmP2znZvCwAAAAAAAAAAAABgy6h2BWBEuhQNKXrdeYsU0B9eWFbjSzoPG9Fn7JSToVQLhFRd24ElnIONqIezt68yPOiaMdhBUz8BBBABW8e8dHqt8doL2Af6apw3lhSMdsNNi3/2lttmb6+HyV0/vfh52V6TDsFok/2Wnct4nwkAAAAAAAAAAAAAsBmC0QAYkQ7FqkIfToENBuQZXyPX5/qtIhiN0WoqfC5nVtjoIsFoAwu0gR3W4x5oLgFgV9QOgTIA0xqf/4//OXXgWvlRX7z4Zx/zR5KHPm32vjtvX/y8rFmfZ7OhwWie7QAAAAAAAAAAAACA8RKMBsB4CGlg4wSjjduA61eWEIwmWG+86uHs7WWVj1OLjDn3SaBJn3uQ+xWwgN5rXXPNqbXO56LD8/OP8ZwGXGVOMNqQOeNz/9dh7xFKSW7+ztn7PvZbyb2/ufi52U6TgcFo/j0FAAAAAAAAAAAAABgxwWgAjEiXwjMFrSSrGwfG16j1Kl49GUq1hGA0xqupkLScWV2bi4TxKXgFmvS5B5pLgG0grIplOPjUpnsAjE3jWvg4GK0hOL2LW16w+GcfOEdDMFqS3Hn78POzXWqHYLS2Y6ynAAAAAAAAAAAAAIARE4wGwHh0KuRR7LPTNl3Mten2GWjA9VskpOqke9+UvO7PJa94VvKbfzXZv3/4OVmPpsLnssrHKcFowDL1uQda7wBrMPfZyly0u9Z4bQ/PdzjIWAOmNAajHz//D3ju3ju7+GeP3fjk5PHPnb3vXT+VTPaHt8Fq9Xm/POkQjNZ6zb0nAgAAAAAAAAAAAADGSzAaACPSoZBHcBXJCseB8TVuPa7fNUFoS1g2X/hQcucLkw//WvK2v5W86usUrI5GU2H0mfV2Y56mADeAPvdAIYvAQjwrsYUOPrXpHgCjMycYbcg7x7KEYLQkufm22dsvfjh5/79bThtsh9rhvWHbu0XPdgAAAAAAAAAAAADAiAlGA2A8OhWeKcbebRu+voL3xm1Q8erJoLQl+PCvJve8bvnnZfkaA8dW+Ti1yJhT8Ao06HUPtN4B1mHOXOPZa4et8doenu9wkLEGTGl6/j8ORhvy3L23pGC0z3x+cvbG2fvufOFy2mCFetx3JgcdTtd2jHscAAAAAAAAAAAAADBegtEAGBHBaKde5+L4VY0D42vc+ly/k6FUKwhGS5Lf/sHVnJflqg2Fz+XM6tpcJIyvqZ8Afe6B5hJgIX2fleYd79lrZ60z9O7wwvraAnZD41p4b87+DsqSgtGue2jypG+eve/9L08u3LOcdti81tCzI5P9ls97tgMAAAAAAAAAAAAAxkswGgDj0aWQZ50FtmyxFY0DxWQjt4XBaPf/3mrOy3LVw9nbyyofpwSjARtiPQ1sBXMRy+A9EtDTvGD0QcFoSwxXv/nW2dsn+8ldP7O8dliBHvedSYdgtNoSjGY9BQAAAAAAAAAAAACMmGA0AEZEIQ+bHgObbp9BhhS8lxUFoy2zKJbVmVcYvRKLjDnBaECTPvdAcwmwBvPW5sKqdtgar21TwDFAk8bn/+N/Th2wVt47u/hnT3rcVyQ3PmX2vnO3L68dNqt2CEabtASjCdAHAAAAAAAAAAAAAEZsiT+FTx+llDNJnpbk85I8MckjklxMcm+SdyZ5Y631k0tu87okfzTJk5J8epJPJHl/krfUWt+15LZuTvJFufx3e2iSDyS5K8mv19r668sBmnUq5FE8vds6Xt+VFdEbX+PW4/pdE4S2omA0OcXj0BSoUFZ4/RYJ45sIfgAa9FkbCSMCFmHuYBt5jwT0NicYbVDo/hL/SbbsJTd/Z3LH/3ntvo++KfnYHckjP3957bE8vZ7NugSjtRwjGA0AAAAAAAAAAAAAGDHBaGtUSnlSkucneV6SZyd5eMvhh6WUVyT5kVrrvx3Y7mOT/PUk35rk0xqO+fUkf6/W+tKBbX1Tku9J8ocbDvloKeXFSb6/1nrPkLaA06hD0ZBibFbJ+Bq3QcWrKwrAKmdWc16Wq6mQdKXXb5EwPgWvQJM+90BzCbAO8+Ylz147a53P1QJhgL4a5429Ofs7WGYwWtIcjJYk525PvviHltse69cWenas9XdRWU8BAAAAAAAAAAAAAOO1ooQHTiql/HSSu5L8/SR/PO2haElyJsnXJHl5KeXflFIev2C7X5vkjiR/IQ2haEf+SJKXlFJ+spRy4wLtPLSU8jNJfjbNoWg56sNfSHJHKeWr+7YDnHKdimcV++y0zgXUqxoHxte49bl+J0OpFgmp6tKM5fgo1MPZ21d5/coCY07wA9CkTwiNIFhgK5iLWIKmdfzVB628G8CINAajHz//D3ju3ltyMNrDnpo89tmz9537yW6hWmxAn2ezDtdw0hKM5j0RAAAAAAAAAAAAADBikhjW5w80bH9fklcleXGSlyZ5S66trPgTSV5TSnlCnwZLKc9J8rIkj5vaXJO8KZcDzF6R5J4TH/v2JD9TSveUh1LKmaP+f9uJXR9O8ktHbb05V/+0/+OT/Fwp5Vld2wHoVnimoHW3bbqYy/gatyHXTzDa6dZUGH1mhW0KRgOWqc890FwCLKLvWnvO8UIad9gar631MdDbnGC0ReeVcjbZu26xz7a55bbZ2y98MPnALy2/PdarS7hd6zHugwAAAAAAAAAAAADAeEli2Iy3JPkfkzyt1npTrfW5tdZvq7V+U631S5I8Kck/PvGZP5DkZ0spnRISSik3JflXSR40tfnXkjy91vqltdZvqbV+VZKbknx3kulfKf71Sf5Gj7/P307ydVPf7x/9/W6qtX71UVvPTPL5SV47ddyDk7yslPLpPdoCTrMuhdGKp3db5+LDFY0D42vcel2/E0uubkuw/lYarMXS1MOGHat8nFpkzCl4BRocXuh+rPUOsA5z5xpz0e5a57XtsD523wOmNb57HBiMdvaGxT43z5O+KTlz/ex9525fTZusT+0QjFb3W/a5xwEAAAAAAAAAAAAA4yUYbX1qkn+b5MtqrV9Sa/2RWus7Zx5Y6/tqrd+V5L8/setZSb61Y3t/Pcmjpr7/9STPq7W+/URbF2ut/zDJt5z4/PeUUp48r5FSyi25HKw27ZuP/n6XTrT1tiT/Za4OR3t0kh+Y1w7AZV0KeRT77LRFiw+X14ENt88wPa7fNUFoqwpGsxwfhaa5Z2/Lgu0aA9yAU2/SIxhNyCIAu2Lj7xCA0WmaNx54f7NoMNqNi31unusennzm82fve+/Lkkv3rqZdFtcnrKxLMNqkLRjNfRAAAAAAAAAAAAAAGC9JDOvzzbXWP1FrfWPXD9RafzTJS09s/rPzPldK+awkt05tupTktlprYyV0rfVlSaZ/ffyD0y2w7AeSXDf1/QtrrT/X0s75JLcd9enYC44C1gDaKeSha/FhnwKzXgSjjduQ67eiYDTL8XFoDBxb4fW7JpyvA/dJoMnB+e7HrmwdBey2vnPHvOPNRTtrnfeZTsHBxhowbU4w2qLP3WdWFIyWJLfcNnv75FJy14tX1y6r1xZ61ukY74kAAAAAAAAAAAAAgPGSxLAmtdZ3LfjRf3Ti++d2+MyfSXJm6vt/VWv9/Q6f+zsnvv+WUspDmg4upVyf5JvmnOMatdbfS/KyqU1nc7nPAHN0KVZV0LrTOhcfTo2DZRZdCwoZt17X70Qo1SIhVZ2aOTP/GDavae5Z6fUTjAYs0WGPYDTF88A28OzFMnRaHxtrwJTG5//jf05dcM44e8Nin+vicc9Nbrhp9r47X7i6dllQjzE0OehwupZjrKcAAAAAAAAAAAAAgBETjLb93nLi++tLKY+c85n/6sT3P9GloVrr25O8fmrTjUm+quUjX51kuprjtbXW3+nS1ow+Pb/j54BTrUMhj2Kf3bZQ6M8yx4TxNW5Drt+Kls3FcnwU6uHs7Su9foLRgCU6vND9WOtpYC3mzTXmot21zmtrfQz01PhcvTdn/xxnb1zsc13snUlu/s7Z+z7y+uS+rv9sx9ZpCz07Ntlv27m0rgAAAAAAAAAAAAAArJskhu0366feH9R0cCnlCUm+8MTnf61He6868f3Xthz7NXM+2+ZXcvXf7YtLKY/v8XngNOpUeKZ4eqc1hRNde+DUl8ssADO+xq3P9TsRSlUWCKnq1MyZ1ZyX5WqaR1Z5/RYacwpegQaH53scbC4BFrD0UEXPXixBl3cIAkGBaY3P/wOD0c7cMP+YIZqC0ZLk3O2rbZueetx3hgajuccBAAAAAAAAAAAAACMmGG37Pe3E9wdJ7mk5/vNPfP/WWusne7T36ye+f3qPtl7btZGjPv12j7YA0q1oSLHPTluk+HCZwWiKycZt0PVbVTCa5fgoNAUqrPT6LTDmOodHAqfK5KBbQf0x6x1gHcw1p9gar/1Sg9KBU2Hu8/+C88rZGxf7XFcP/+zkMX949r5zL0om3heM0qTDc1zrs577IAAAAAAAAAAAAAAwXpIYtt83nfj+jbW2VnR93onv39GzvXfOOd+0z11jW8Bpd/87kt/7kfnHKa7ecR2Lua4aB8ssADO+xq3H9Sul/ftlEYw2Eg3zSDmzwjYXCUZT8ArMcHih3/HmEmAhS35W8my/u9Z5bTvd04w1YFrTvHH0/mbRtfLZGxb7XB833zp7+/n3JXe/cvXt002f+2CXgOvJfsvnPdsBAAAAAPxn9u49WpezrhP8r/Y+J3cSAiSQgEnOISAqOgrYNiiIDghoNzdpURBPutsZp132co3jmqvdtmt6pp1erbO6HXW6l445It6gBWy8gEIj0ly0EW0VlcA5uXAJCSSE5Jycy95vzR9nn/Ced7/PW5e3qt6n3vfzWSuL7Kq3qh5StZ9L7f37bgAAAAAAYLwkMWSsKIorIuIfzmx+c8VhN898fWfDy94xpDgpEQAAIABJREFU8/Vji6K4ek7bHhMRj1nyWrOff0rD44FNcdebI37ryyM+/vOrbgmr1qaYq8sCMMX5I9fk/s2GUvUVjNZnsBadSfYjPS6n2oTxKXgF5tl9uOEB5jvAEKr6Gn0RHSh3V90CYGxS6+rz72/avhs8cHm745q48dURWxfP33fsaP/Xp3uTJYPRzKcAAAAAAAAAAAAAgBETjJa3fxERT5j6+vMR8XMVxzx65ut7mlywLMuHIuLUzOaralznZFmWJ5pcK/a3bd51gE032Yn4wD+oKPCZpthnrdUO/Zl6DjoNChI6NGpLBdv1FIxmOj4OqUCFrT6D7do8c/ooYI7d2SV+FfNpYACVc3N90foa8N7Weh/gWQOmJIPRzr+/abnu3h4gGO2iR0c86eXz933iNyLOPNB/G6ihwbhT1ghGKxf83ESAPgAAAAAAAAAAAAAwYgdW3QDmK4riFRHxAzOb/7eyLO+rOPSKma8fbnH5hyPikqmvH9XjdabNu04jRVFcGxHXNDzsycteF+jR3b8XcfbzDQ5Q0LreWhRzpQKN2lgqWIvVa3L/ZkKpip4CzIo+g7XoTLKQtM9guxbBaApegXl2Gy7X9SVAK9ZK5MiYBjRVEYzWdq584LJ2xzV1+JaIO39t//bdUxF3vjHi5u8dph10o04w2mTBZ6ztAAAAAAAAAAAAAIARE4yWoaIo/quI+MWZze+IiJ+tcfhsYNmpFk14OCKuXnDOLq+z6JxtfH9E/GgH5wFy8bk/avZ5wVXrrXYx1/Rz0GUBmOdr3Ja5fy1Cqmqdts9gLTqTCljsM9iuaBOM1mEQJLA+jv1CwwPMd4AhVPQ11vZrbMB7W+cdgmcNmJbsN4qK/RUOXN7uuKae8MKIS6+LePjT+/cdPyoYbWwWhZ498pmzC3Ya4wAAAAAAAAAAAACA8ZLEkJmiKG6IiN+KC0PC7oiI7y7LVlVa63YMQAVdy1qrW3w4PWS2LVicf+IOz8XgmkylZkOp2oRU1bqO6fgopPqR3O5fp/0dsBaOvyHiIz/e7Bh9CZAFay86IDgYaKpy/d9yrnzJ49sd19TWdsRNr5u/7973Rjz4sWHawQIN5jhljWC0ckEwmrUdAAAAAAAAAAAAADBimVXyb7aiKK6NiN+LiCdObb47Il5YluW9NU/z0MzXl7Zoyuwxs+cc8jrApmucCal4eq21KebqsgCsVUYp+Vjm/vUVjLbdz3npVipQodf71+KZU/AKzLrtZ1ocZL4DtND12t3aa30NeW9rBaN51oBpqT5hb43edt39uGe3O66Nw0fS+47/4nDtYHl/+X9Uf2ayIDzNeyIAAAAAAAAAAAAAYMQOrLoBnFMUxWMi4vcj4qlTmz8bES8oy/K2Bqfa9GC0n4mINzY85skR8dYOrg3kQPH0mqtbzDX1HHRaAOb5GrVG/cNsKFVPwWhyikci0Y/kFoxWu48ENsZn39f8GMXzQBasvdbXkMFoxjSgodS7o2Lv/U2bfuXAFRFXfXn7NjV11ZdHPOZZEff95/37jh2N+Mp/9sX/PwyvyfvJydmIe98fcc2CYL3JmUUXq38tAAAAAAAAAAAAAIDMCEbLQFEUV0XEOyLiK6c23x8RLyzL8i8bnu6Bma+vadiWK2J/YNnna1znsqIoLi/L8kSDy11b4zqNlGV5T0Tc0+SYougr6ATohuIdppS7LQ4SjMZ5De7f7Pygr/nCVp/BWnQm1ff0WUjc5pkT/AB0wnwHGIBQc4ZQa37sWQSmpfqN82v0Fn3GwauGDyI7fMv8YLSTd0bc8wcRj/+mYdtDe7e/fnEw2u7D6X3eEwEAAAAAAAAAAAAAI+ZPgq9YURSPiojfjYhnTm3+QkS8uCzLP21xyttmvr6x4fGzn7+vLMv7Zz9UluXn4lx427QblrzWbNsBWlDQutbqFnNNF9l3WQCmeH/klrl/fU2bTcdHIdWPFH0G2wlGA1ZEXwK00nSuXfV5a6/1NeS9NaYBDaXe/S0TmL91sP2xbd34nenrHrt10KYwq+E4eNvPLt6/KBjNfAoAAAAAAAAAAAAAGDFJDCtUFMXlEfHbEfG3pzY/FBEvKcvyj1qe9q9mvr654fGHZ77+yIDXmj0fQAuKfdZam6COTsM9PF+j1ijYbqbgdZkC2IWXMR0fhXJ3/vY+71+bZy7VToBGzHeADAilpgt15seeNeACqfeIe+v/Z/1U81NuXdS6Na1d/NiIJ750/r67/n3E2YeGbQ/9WRSMJvQaAAAAAAAAAAAAABgxSQwrUhTFpRHxtoj4hqnNJyPi28qyfN8Sp/6Lma+/qiiKyxoc//UV51u079l1L7IXCvdVDa4FUI+C1jVXt5hr+jkQjMZ5y9y/voLRtvs5L91KFZL2ev/aPHMKXoEOKJ4H2mi8Fq/6vLXX2hryvY0xDWgq1UedDy9//H8dcdHVzc65imC0iIhDR+Zv3zkRcdebhm0LUzoeBxcFo3lPBAAAAAAAAAAAAACMmGC0FSiK4pKI+M2IeP7U5lMR8dKyLN+zzLnLsvx0RPyXqU0H4sLwtSrPn/n6dxZ89ncrjl3kuXGubed9uCzLzzQ4HtgUjYtYFU+vtTZFzV0WQgveG7km9282lEow2kYrdxM7+lxOtXjmBD8AXTDfAbKgL6IDtebHnjVgWqpP2Fv/X/yYiG9+Z8RVT69/ylUFo13/4ohLrp2/79jRYdtCf3YWBKNZ2wEAAAAAAAAAAAAAIyYYbWBFUVwUEb8RES+Y2nw6Il5eluU7O7rMm2e+/vs12/a0iPi6qU0nIuIdCw55e0RM/8b9s/fOUcctM1/PthngnMnpZp9X7LPeaof+TD0HnQYFeb5GbZn+oRCMttFS/Uif96/NMycYDeiEvgQYgLX7Bhvw3icDjgESkuv/qTX6Y74m4tv+POJV90U87y3V59w62E3bmto6GHHja+fvu+fdEQ8dH7Q57OlyDlSWEbsLgtGs7QAAAAAAAAAAAACAEROMNqCiKA5ExK9HxEumNp+NiFeVZfn2Di/1hoiYrvp6ZVEUT6lx3P808/Wvl2V5KvXhsixPRsSbKs6xT1EUT42IV0xt2omIX67RPmAT7TYMRhNctd7qhv6UgtGYp8H92xdK1VMwWm/npVOpQIWiz+WUYDRgRYQVAa103Hfoi9bYkMFodebHnjVgWqpPmLNGv+jqeoHpWxct1aKlHL4lve/46wdrBj2ZnImF45j3RAAAAAAAAAAAAADAiAlGG0hRFNtxLrDsZVObdyLi1WVZvq3La5VleVtEHJ3adFFE3FoUxSUL2veyiLhlatOZiPixGpf7Z3Eu3O28W4qieOmC61wSEb+w16bzfr4sy4/XuBawiSbJfEY2Uptirg4LwBTnj1yT+zdT8NprABb5S/QjdQqgh5QKcANoRPE8MISqubm1F10wpgFNJcaf5HuhGqHmqwxGu/qrIq7+6vn7jh/1rnMlOvxvvvvwcNcCAAAAAAAAAAAAABiYhIfh/H8R8R0z2/7XiPhwURQ3NfwnGXA25Ucj4v6pr58TEb9fFMXTpj9UFMXFRVH844h448zxP1GW5R1VFynL8lhE/OuZzW8qiuIHiqK4oNqjKIovi4h37rXlvM9FvQA2YFPtnm54gGKftVbWLWqeeg5qH9PwvIzPUsWeNQpdW/FMjUIqcKzXwLw2z5zgB6ADwhGAQQhG21hDjjN1goONe8C05HvE1Bq9TjDawbat6cahW+Zvf+hYxL3vHbQpdKwqGK3T9+IAAAAAAAAAAAAAAMM6sOoGbJDvmbPtX+7909Q3RcS7F32gLMtPFEXxyoh4e0ScDyj7+oj4SFEUH4qIYxFxVUQ8IyKumTn8bRHxTxq053+OiK+IiJfsfX0wIn4qIv5JURR/EhEPRsThvWtNV4mciYhXlGX56QbXAjbN7qlmn1fQut7aFHMJRuMRTe7fTGFr0VMwmgLFcUjdp2K7v2u2eeY8T0An9CVAGx2vlazt6YL5MdBUcvxJrNHrBKZvXVT9mT7d9JqID/9wRLmzf9/xoxHXPnf4NtGNqmC0iHPPdF/vNQEAAAAAAAAAAAAAelTjN/YZq7Is3x0Rr4iIe6c2FxHxrIj4joh4UewPRfuViPjOsix3G1xnd+98vzaz69qIeHFE/L2IeGZcWDlyT0S8rCzLP6x7HWBDTU43PEDx9HqrW9Q8/Rx0WAitqHrcdk4ucXBfBYT6rFFITY3rFEC3JhgNWFLbUCFhRMAQ9DUbbMB7X2t+7FkEpiX6hOT6v8bafdXBaJdcE3H9t87fd8evL/m+jOY6HHd2agSjGecAAAAAAAAAAAAAgJESjLbmyrL87Yh4ekT8vxFx/4KPfiAiXlWW5WvKsjzR4joPlWX5nXEuBO0DCz56X0T8bEQ8vSzL3216HWAD7Z5qeIBCn7VWP7dz6pgug9E8X6P2x99X/7PFbGFrT8FogqzGIXWfiu0eL9rmmfM8AdPazlv0JUAOrL3ogjENaCi5/k+s0VPbp606GC0i4vAt87fvPBhx15sHbQoNFQfS+3ZrBKN59wgAAAAAAAAAAAAAjNSC36amS2VZ9pSmUeva90TEPyqK4gcj4usj4saIeEJEnIiIT0bEh8uyPN7Rtd4UEW8qiuJQRDwjIq6PiMsj4u6IuCMi/lNZlme6uBawIZoGowmuWm91C7mmn4NOi788X6M1ORtx8hPtj69T6NqK4sRRSIYy9pgz3eaZaxMeCayXT/9exG0/HfHwpyOue1G7c5hPA2007juqPq8vWltDjjMf+3fVnzHuARdI9QmpYLQa7wW2DrZuTWeu/7aIix8bcfpz+/cdvzXi0GsHb9LGajrubC0ZjGZOBQAAAAAAAAAAAACMlGC0DbIXSPYfB7rW8YjoJGwN2HCT06tuATlpFXImGI2IePBjDQ+YLXjtKRhNEf44pALHFhWnLq1NMJqgPdhon3xbxHte9sW+4HN/1PJE+hIgA+bJayy3e5tbe4DVSvQJyQC0Gmv3rYtat6Yz2xdF3PiaiI/+1P59d78z4sRdEZd/yfDtolqxZDCad0UAAAAAAAAAAAAAwEjV+FPmALBCkzMND1DQutZqF3JNfa7L4i/F+SPWNGRq5vPJAthlKU4chXJn/vZFxalLE4wGNPRXP9FNP2C+AwxCX0MuPIvAlOR8OrVGH0kwWkTE4SOJHWXE7a8ftCmbreG4U2yn9wlGAwAAAAAAAAAAAADWmGA0APJW7jY9oJdmkIuahVzTgR6dFn95vkaraBEydeEJOmnGPsJnxmGSCEbb6jEYrc0zq9gVNldZRtzz7o5Opi8B2uh6XmuevL4yu7fm0MAFUn1UYo1eJ0g/l2C0q58RcdXT5+87dtQ7qlwtevdU64/KuK8AAAAAAAAAAAAAwDgJRgMgb6kwmhQFXOutdsGyYDRmNQyZ2hdK1VMwmvCZcSgTY1HRYzBaq2fO8wQb6/S93Z3LfBpoo+m6q7Kv0RcxFM8aMCU1PiUD0Gqs3bcOtm5Op4oi4vCR+fse/GjEZz8wbHs2VsNxZ9G7pzo/OxEACgAAAAAAAAAAAACMlGA0APJW7jY9oJdmkIk2wWhdBgUJChmxJYPN9gWldURx4jikCk1zC0ZrPGYCa+PEnd2dy9gEtNK076hYW1l7ra/c7q1xD7hAqk9IrNGTgWlTti5q3ZrO3fTaiGJ7/r7jR4dtC8tLBflfwDgHAAAAAAAAAAAAAIyTYDQA8laruOeCA3ppBrmoWcg1XdjcaZGz52u0GgebzX6+r2A0z9QopMairT6D0VrwPMHmOtlhMJr5DtBG5+FS+iIGIhgNmJZaVyffK9V4X5RTMNql10Vc96L5++741YjdU8O2ZxM1fXeTCrKLSAf5L3M9AAAAAAAAAAAAAIBMCEYDIG/lbsPPK2hda7Xv71TBl2A0ImL5YLOegtHqhv2xWqlgtKLHYLTGYX4R+ijYYCfu6u5c5tNAG437DvOWzZXbvc+tPcBqpcazxI9T66zdtzMKRouIOHzL/O1nH4j4xFsHbQo1HLwyva/WH5WxvgMAAAAAAAAAAAAAxkkwGgB5m9Qp7pnSNEiNcalbbF9OFzZ3WPxVKpgercYhUzOfL3qaNnum8ldO0n3PVo/BaK3C+DxPsLF2T3Z4Mn0J0EbHoRvmyWsss3srEBSYlhp/ku+VarwvKrZbN6cXT/y7EQcfPX/fsaPDtoVqi37eUScYzTgHAAAAAAAAAAAAAIyUYDQA8lanuOeCzwtGW2t17+90wVenxV+ZFXDTQMOQqX0Fr21CqupQnJi9Rf1OkVkwmgAR2GAdfv8rnAfaaNp3VM5bzGsYimcNmJbqExI/Tq0TxH/q3tat6cX2JRE3fdf8fXe/PeLkp4Ztz8ZpOO4s+sMxdf6ojHdFAAAAAAAAAAAAAMBICUYDIG9Ng84Eo6232sX2UwVfgtHoRE/3XvhM/hYVmfYZjFanuHoffRRsrE6L3fUlQAudz2v1RWsrt4AWazJgWqpPSK7Ra6zdT97Zujm9OXRk/vZyEnH7G4ZtC4st+sMxtf6ojHEOAAAAAAAAAAAAABgnwWgA5K1Wcc/05wWjrbcVB6PlVsBNfUXTae9MYWtvfYtnKnuLxqGtHoPR6hRXA5zX6XxH4TzQQuO+o2IebO3FYIx7wLTU+JNYo9d533TtN7ZuTW8e+7cirvzS+fuO32oc7lPT/7aL3kkuCvNvez0AAAAAAAAAAAAAgEwIRgMgb5OGYUSC0dZb3WL7Cz7XZZGzQrLxWjJkqq++RfhM/hYFoxU9BqMVbZ5ZfRRsri6///UlQBsN57VCOjZYZvfeswhMS/UJyQC0Gmv3676ldXN6UxQRh26Zv++Bj0Tc96FBm8MCi95L1fqjMt49AgAAAAAAAAAAAADjJBgNgLzVKu6Z/rxgtLVWO0Rqqoixy+ApIVYj1rTYfaawtbe+RRF+9iYLxqGtHoPR2oT5CXWADdbh97/5DtBG532HeQ0DMe4BF0j1CYk1elWo+VP+UcQVh5dqUW8OfXck/38du3XIlmyYhnOcRe+lFu175HLGOQAAAAAAAAAAAABgnASjAZC3psFoE8Fo661mIVfZUzCa4vzxWjYwqq9gNMWJ+Vs0DhWZBaPpo2Bzme8Aq9a4H6rqa/RF6yu3e5tbe4CVSr0/SgagVfyY9Vn/z1LN6dVlT4p4wgvn77vjVyJ2Tw/bHuZb9E6y1s9OjHMAAAAAAAAAAAAAwDgJRgMgb43DiIQMrbXaxfaTxL8ve32FZOPV8N7NFrwKRttckwVFpls9BqMli64X0UfB5urw+9/YBLTScd9h7bW+cru3xj3gAqk+KvHj1EVr9xteHVFk/mPYw0fmbz9zX8Qn3zZsWzZGw3FwUfhZnWA04xwAAAAAAAAAAAAAMFKZ/0Y+ABtvUSDNPB/9qYj3vCLiP/9gxAN/3U+bWJ26hVzThdadFn9lVsBNjwYKRvNM5a88m95X9BiM1kZuIRPAcDr9/teXAC00XndV9TX6IoYiMAaYkhrPkgFoC4LRiu2lm9O7J7084uCV8/cdPzpsW5hv0c9H6vzsRDAaAAAAAAAAAAAAADBSgtEAyFc5icbF0OUk4hNvifjov4l4x9dF3PfhXprGqtQt5BKMxqwl713TkMa6FCfmb9G97zUYbUFxdZI+CjZXh+OJsQloQ99BbZnNWYULAxdI9QmJNXqx4MesYwhGO3BZxA3fMX/fp3474uHPDNueTdB03Fn0xxrKOu8rjXMAAAAAAAAAAAAAwDgJRgMgX4uKfuo4+4WIv/6JbtpCHuoW21/wuS6DQhSSjVbjezdT8Lpsf5QiQCJ/i4pMtzILRtNHwebq9PtfXwK00HReW9lv6YsYijUZMC0x/iQD0Bas3Xt9Z9Chw7fM317uRtzxy4M2hTnKnfS8qc4fcvDuEQAAAAAAAAAAAAAYKcFoAOSriyCi29+w/DnIR+1CrqlisU6LvxTnj9eS925RONZyJ+7pvHRmUZFp0WORc7LoehHPE2yuDr//Fc4DrTTtOyr6LYGvayyze2vcA6Yl+4REANqitXuxvXRzBvG450RccfP8fceODtsW5ks9l3XeVxrnAAAAAAAAAAAAAICREowGQL4WhdE0sXu6m/OwerXD8gSjMaNpsEIxU/DaVxGh4sT8LSoy3RKMBmSiy/Hk7Be6OxewOTqf1wpOYyieJWBaqk9IBKMlt8d4gtGKIuLwkfn7Pv9nEff/6bDtWXstxp3UO/Faf8jBOAcAAAAAAAAAAAAAjJNgNADyVauwp4YTd3ZzHlavbrH99Oe6LNAXYrW56oTyPf2ftjlxi2MY1KKQzqLHYLQ2SzUBIbDBOvz+P31vxKRuGC3AnsZrpWX7LfOe0cptzmqdD0xL9VHJ8PJFwWh9vjPo2KHXpfcdOzpcO5gv9XOSOn9YxjgHAAAAAAAAAAAAAIyUYDQA8lUniKiOE7d3cx4yULeQa7qIUTAaEc2DE2YKWxcFNT7z30R8659HfNWPNW6VZ2oEFt37Pouck0XXi2QWMgEMp+vx5L4PdXs+YAN0Pa81r1lfud3b3NoDrFZqPEsEoC1auxfbS7dmMJffGPH4b56/7/Y3REzODtuetdZi3Hnwo4lT1fnDMsY5AAAAAAAAAAAAAGCcBKMBkK9JncKeGk7c0c15WL26oR/lVMFXl0EhXYX1sQINiwCL2WC0Bff+5u+LePTTmzcpIroPkKBzi4pMt3ILRgM2V8fF7vcLRgMaarruKiv6rWX3Q13CqoFpqfFl9j3RF3ekz9XnO4M+HDoyf/vpeyM+9TvDtoULve+187fX+fmJcQ4AAAAAAAAAAAAAGCnV9gDkq6sQqp0T3ZyH1asdjDaZ/+9LX18w2mgtG5ywqNBwmUJXgQ75S977ot/wslbn9jzBxup6PHnw492eD1h/nYduVPVr5j3jldm9ExgDTEv2CYk1ejIwLSKK7aWbM6gveWXEgcvn7zt266BNWWtt1m4PfCTi9H1zzlXnD8sY5wAAAAAAAAAAAACAcRKMBkC+ahX21LD7cDfnIQN1C7mmC8wEoxHRvPh+prB10b1fKhxLcWL2UmPRMoF4tbR4rgTtwQbreDy5+HHdng/YAE37oWWDz8x76IpnCZiW6BNSAWiL3gmNLRjt4BURN/y9+fs+9baIU58dtj1c6NQ9+7fV+fmJd0UAAAAAAAAAAAAAwEgJRgMgX4LRmFW2CEarfUyX12ft9BWKpzgxf5PEWFT0HIzWKnDP8wQbq+vxZHK62/MB689aibpyWwN5doELpILRUmv0RGBaRP/vDfpw6Mj87ZOzEXf8yrBtWVsLxsHHfl163+7J/dsmZ2tczzgHAAAAAAAAAAAAAIyTYDQA8jXpKIhIMNr6qFuwPP25ToPRegrHYgBNi+9nClt7u/eKE7OXCukUjAZkpePv/13BaEBDjcOuKj5fdb7cwrVoILd7l1t7gJVKvkdMBaAtCEbbGmEw2rXPi7j8pvn7jh8dtCkb6XlvTe+b9zOOVJj/NAGgAAAAAAAAAAAAAMBICUYDIF+pMJqmBKOtj9qFXNOFzYLRiOWDE/q694oT85cai3ovcG6xVBMQApur6Xjy7F+KuPpr0vsngtGAphr2Q5XzlmX3Q03WZMAFUuNLIgBtUah5sb10awZXbEUc+p75++77UMTn/2LY9qylBXOYix+XfqZ2Ts45VZ2fn5gzAQAAAAAAAAAAAADjJBgNgHx1FUQkGG2N1CxYni6y77LIWTDaiDUsAixmCl67CmrcR3Fi9iaJe1/0HIy2qLg6yfMEm6vh9/81Xx/xkj+JuO5F8/fvCkYDGuo6XGrp4DTyldm9E4wGTEuNP8k1eiIwLWKcwWgR6WC0iIjjR4drxyYqiojty+bv220ZjGacAwAAAAAAAAAAAABGSjAaAPnqKohoRzDa2qgdTDZV8CUYjYhoXnw/G4zW071XnJi/1Fi0JRgNyEnLANCLHjN//0QwGtBQ43mt4DNy4VkDpqXGs0QA2myw/gX7RhqM9qgnR1zz3Pn7jv9SOkCebmxfOn/7vJ9x1LkX3j0CAAAAAAAAAAAAACMlGA2AfHUVRLQrGG1t1C3kKqcKmwWj0YXegtEU4WcvVWRa9ByM1map5nmCzdV4vrMX4LB98fzdu4LRgKYGDt0w7xmv3O6dwBhgWqqPSgagLVi7jzUYLSLi8C3zt5+6O+LT7xi0KWunahw8cNn87bsn55yrTkhdZuMuAAAAAAAAAAAAAEBNgtEAyFcqjKYpwWjro3bB8nTBV5dFzgqmR6tx8f1MwWtX/dE+nqnspYpM+w5GK9os1RS7wuZqOc5tJYLRJoLRgIYah0tV9VvL7oe6PEvAtFSfkFijJwPTYoBA9R7d8KqI7Uvn7zt+dNi2bJQi/d993s846ryvFAAKAAAAAAAAAAAAAIyUYDQA8pUKo2lKMNoaqVnINV3w1WXx12S3u3MxsCWL3cue7r3ixPylxqItwWhARpoGgBaC0YCOdT2vrezXzHvGK7N7Z00GTEv1CckAtEXBaNtLN2dlDl4Z8SXfPn/fJ94Sceb+YduzVirGwe3L5m/fOTnnVHV+fpLZuAsAAAAAAAAAAAAAUJNgNADy1VUQkWC09VG7YHmq4KvLIue+wrEYQMvAmEcO7+veK07M3iRRZFpkGIzWNBgJWCNN5zt749x2IhhtVzAa0FTDfkjw2ebKbs4qGA2YluqjUgFoC/q0vgPV+3b4yPztkzMRd/zasG3ZFEURcSARjLbbMhhNACgAAAAAAAAAAAAAMFKC0QDIVyqMpqndU92ch9WrW8j1ibdEPPBXe18IRiOWL76/+qu7accsxYn5SxWZFts9X9hSDWig8Ti3F+ywlQhGmwhGAxpqPK9dMhgtu3AtRsuzBFwg0SekwssXvSvs/b1Bz679pojLnjR/37FbB23KeqkYd7Yvnb993h9/qfPzE+8eAQAAAAAAAAAAAICRUm0PQL66CqHj4sQhAAAgAElEQVSaVzTEODUp5Prtr4y4/Ze7Lf4SjLZBigu//LL/cf7HnvL9S15HEX72Ut/3fRc4p4quF/I8weZqON8p9sa57Uvm7xcsDDQ1eOiGec945XbvcmsPsFLJ8ayYv3lRMNXYg9G2tiMOfc/8fZ/7YMQDfz1sezbFgcvmb985uX9bKsz/wg8t1RwAAAAAAAAAAAAAgFURjAZAvmoV9tQgGG2NNCi2L3cj/ui/nV801pZgtBFrWgQ4U/D6mGdGXP93Ltx28WOXD0YbPECCxlL3qFVwWQOC0YAmypbj3PbF83fvnl6qOcAGajyvrei3GvdrsATPG/CIVH+QCEbbvjR9qkuesHRrVi4VjBYRcfzocO1YJ1VjTuqZmvczjkXBfI9cz7tHAAAAAAAAAAAAAGCcBKMBkK86hT11CEZbH02DyXZORHzyrau7PhlZstB9azviuW+KeMZPRjzxpRFP+6GIF7w34tFfsWSzFCdmL/V9X2z3fOEWSzWBDrDBWgajbSWC0SaC0YCmup7XVvVr5j3jleG9sy4Dzkutq1Ph5Zc+PuLKp+3ffvCqiOu+pbt2rcqVXxrxuGfP33f89RET70q7cz68+rL5ux/82P5ttdZtxjgAAAAAAAAAAAAAYJwEowGQr65CqHYEo62N3VPNj/n8n3fYAIVko9U0MKoo9m/bvjjiaf99xDe+NeIZPxFx1ZzC1+YN6+Ac9GpVwWipouuFPE+wsZoGupwf57YTwWi7gtGAhpr2Q5Xz84r9AmHplLU+sCc1ns17T3Te0/9pPBJq9ci2H4nYOtBZs1bq0JH52x/+ZMRn3jlsW9ZCxRxm+9L52+95d8QHv/fCMLo678rNmQAAAAAAAAAAAACAkRKMBkC+yp2OTqTAdW3srjjkbtJRWB8rkGkRYNMACYaXLIrueSnV5vyKXWGDNf3+3wtu2EoEo00EowENdT2vXTY4jXzlOGfNsU3AiqT6gwVr9Ju+K+Kb3h5x+B9E3PiaiG94Y8SX/XAvrVuJG1+dXjccOzpsW9bZ+fC9rYvSn/n4z0d87N9+8etawWjePQIAAAAAAAAAAAAA47Qmf64cgLVUdhRCpfhnfeycXO31u3omGYFioOsowM9e6vu+2O75wm2C1zxPsLEaB7pUBKPtnDh3zmKo8RAYv6br7qp+yzp+feU4Z/W8AXuS4egV8+LrXnjun3V00aMjnvTyiDt/bf++T7w54swDERddNXy71tVWxY/uj90a8dTvP/fvkxrBaMY4AAAAAAAAAAAAAGCk2lTbA8AwJjvdnEcw2vrYfXi11xeMNl6NA2MGon/KX7IouudgtEIwGtBEw/HkfLDDRVfP33/mvogHb1uuScBmaTqvrZqfV57PvIcO5bpeBFYg1R9seGDw4Vvmb999OOLONw7alPGrGHO2Di7ef98fn/vfyU69+ZcxDgAAAAAAAAAAAAAYKcFoAOSr7CgYrWlQBPkSjEZrTYsAByp4FYyWv9T3favgsgbanF+xK2yuxt//e+PcY58VyTHv3j9cpkXApul8XlsVnGbeM1453jvrMuC8RB/V9zuA3D3hhRGXXjd/3/Gjw7Zlbe2ty4oD9T6+e6rmeY1xAAAAAAAAAAAAAMA4bfhv8gOQta5CqAQPrQ/BaLTWsPi+GCgYLctQAC6QDEbb7ve6rYquPU+wuVqOcxc/NuLRT5//mdP3LdckYMM0XXdXBZ9Vnc+8hw55bwScl+wPhnpPlKmt7YibXjd/373vjXjwY8O2Z8yqwl27DkYTJgsAAAAAAAAAAAAAjJRgNADyVe50eC4FQGth5+SKG6BYerRy7QMU4I9A6h71vZQSjAY00Hg8mQp22L4scU6BsEADXc9rzZPXV5ZrsxzbBKxGqj/Y8GC0iIjDR9L7jv/icO1YW3vP2NbBeh+f1AxG8z4bAAAAAAAAAAAAABgpwWgA5KvLMAZF1eth9+HVXr+cZFrETfeGKnj1PGUvNRYV2/1et8359U+wwZp+/0+Nc1sHEqfsMKQYWH+N19wV/VbV+cx76JJ3RsB5qfGl8OPUuOrLIx7ztfP3HTuqL62tYg6TWp/N2j1d83LuCwAAAAAAAAAAAAAwTn6TH4B8TboMY1AAtBZWHYwWoZhstDINTvA85S91j3oPRrNUA5poOM4VU8FoRaLwvtO5OLD2Op/XVvVrmc7vqSHHe5djm4DVSI1nQwXoZ+7wkfnbT94Zcc8fDNuWdXN+jVYcrPf53VM1T2yMAwAAAAAAAAAAAADGSbU9APkqdzs8l/ChtZBFMFqHzyUDaloEOFTBq74pe6nv+b6Dy1qdX7ErbKzGc93pYLRE0GMpGA1oomE/VFbMWyr7NfOe8crw3nlnBJyXGp8KwWgREXHjd0ZsJYK7jt06aFNGq2oOtJUIrp41qRmMZowDAAAAAAAAAAAAAEZKMBoA+eoyjEEB0HrYObnqFghGG6uqosNVybVdfFEyGC0RJNQZwWhAE0sEgBaJwntzHqCJztfc1vAMyDsj4BGpebUfp0ZExMWPjXjiS+fvu+vfR5x9aNj2rJW9NVpqfTZrVzAaAAAAAAAAAAAAALDe/CY/APmadBiMpqh6/MpJxOT0qlshJGS0GgbGFEX1Zzqhb8peqoC072C0osVSTdAebK6m3//T49xWKhity7k4sPYah25U9FtV5zPvGa8s712ObQJWIvkOYKj3RCNw6Mj87TsnIu5607BtGaWKMWfrYL3T7NZ9T26MAwAAAAAAAAAAAADGSTAaAPnqMoBKmNX47Z5adQvO8SzRpSxDAbhA6nu+TXBZE63O73mCjdU4kGgq2KFIBKN1GlIMrL+Bg9HMe+hS43EUWF+p8UUw2iOuf3HEJdfO33fs6LBtWSt7z1hqfTar7rtyYxwAAAAAAAAAAAAAMFKC0QDIV9lhGIMCoPHbObnqFuzxLI1T0+CEgQpeBe3lLxmMtt3vdQWjAY0sMc6l+rMu5+LA+ut8zV3Vr5n3jFeO9y7HNgGrkegP+g5HH5OtgxE3vnb+vnveHfHQ7UO2Zv1sHaz3uYlgNAAAAAAAAAAAAABgvflNfgDy1WVgkAKg8dt9eNUtOGciyGqUykyD0RTg5y81fvReFN3i/I2fc2BtNJ3rFlPj3NaB+Z/ZOdG+PcDmadoPVc1bqs5n3kOXvDMCzkv2B0O9JxqJw7ek9x3/xcGaMU4Vc5jU+mzWbs1gNO8eAQAAAAAAAAAAAICREowGQL4mO92dS5Hr+JUdPg/L6DKwjwFlXASof8pb6nu+2O73uq2C1zJ+zoHuTc5G3POeiOOvjzh5Z8ODp4IdikTh/bFfiHjoeOvmARum6zltZTCaddl4ZThntSYDzksFbxaC0S5w9VdFXP3V8/cdPyrAtI3zz1hqfTatLCN2T9c7rzEOAAAAAAAAAAAAABgpwWgA5KvTICwFQOOXSUGdAvyRavj8tC14ffI/bH6MZypvqQJSwWjAKp39QsTvf+O5f97/PREP/GXDE0wHoy3ozz7YYlwDNlTTNXfVvEUw2trKMiwnxzYBq5Eaf/w4dZ9Dt8zf/tCxiHvfO2hTRqVqHNw6WOMcOxGTU3UvWPNzAAAAAAAAAAAAAAB58Zv8AOSry0LnVLAN45HLPbzvQ6tuATk7dKT5MUId8pa6P62Cy5pocf4sQyaAXvzF/x7x2fe3P346AHTrQPpzn/mPETsn218H2Bxdr9cqz5fJ+pD1kMv7BmD1UuvqtgH66+ym10QUibXE8aPDtmUt7D1jqf+m0yZnI3ZrBqMZ4wAAAAAAAAAAAACAkRKMBkA+dk5EPHTsiwVok53uzq0AaPxyCfx5z0vPFZ8xLo2fn5YFr9c+N+Lm/67ZMfqnvCWD0bb7vW6r4LVM+kmgf3/1r5Y8wdQ4V1V4f/bBJa8FbIam85Cqz1fsnwgXHq8c56w5tglYjVR/4Mep+1xyTcQTv23+vjt+XcByUsWYs3Wwxil26gejCZMFAAAAAAAAAAAAAEbKb/IDsHrlJOKPfyDiTVdH/OaTI/7DzRH3/1k6jKYVBUDjl1Gh8mc/sOoW0NiAz8/1L272+U77OrqXGj96XkoJRgN61SAYbXKm36YA66Fp2G9VcHHV+cyh6ZKwauC8VH9QtAzQX3eHjszfvvNgxF1vHrYto7f3jFWtzyLO/UGZusFoufyxEQAAAAAAAAAAAACAhgSjAbB6f/WvIm776YjJ2XNfP3Qs4l0viNg90d01FLmOX0738GP/dtUtoLGGRYBLFbw2PFaoQ95S96fY7ve6rYLRAGqaHueq+rPybL9tAdZD1+u1yvNltD6koQwDWnJ63wCsWKqPEow21/XfFnHxY+fvO37roE0Zj4pxcKtOMNrZiMnpmtczxgEAAAAAAAAAAAAA46TaHoDVO/76/dtOfzbi0+/o7hqKXNdARsXTWxevugU0VTZ9foYMRtM/ZS11f/oORmuzVGv8nAOba2qsqiq83z3Tb1OANdF0Tls1b6k4n3BhOmUeDZyX6A+El8+3fVHEja+Zv+/ud0acuGvY9ozZ+fDq4mD1Z8udiN1T9c7rvSMAAAAAAAAAAAAAMFJ+kx+A1XvgL+Zvf/hTHV5EAdDo5VTEtS0YjQ4Jdchb6v70XRTd6vwCHYCaiqlgtKIiGK08229bgPXQ9XqtKvDVHHq8cgzzzel9A7Bayf5gmQD9NXf4SGJHGXH7nD+IsumqxsGq4OqIiMnZ+sFo3hUBAAAAAAAAAAAAACMlGA2AzaDIdQ1kVMS1JRhtfJo+P0sUvBYNjxXqkLdkMNp2v9dtE4yWY8gEkL+q/mxyZph2AOPWeM1dNW+pOJ81/ojlOGf1PAHnpfoowWhJVz8j4qqnz9937Kh3FbXtPWNVwdUREeVO/WA0cyYAAAAAAAAAAAAAYKQEowGwGQQPjV9ORVzbgtFGJ+cizJyebfZL3Z++g9FaLdUyfs6BjMyEOmxVFN5PzvbXFGCNdDynrZojW+PTpZzXi8CwUv1Bm/DyTVEUEYePzN/34EcjPvfBYdszdlsHqz8z2YmYnK53Pu8dAQAAAAAAAAAAAICR8pv8AGwGBUBrIKNC5S3BaOPT8PkpiurPpA9u9nGhDnlL3Z++i6JbnT+jfhLI1+wYVwhGAzrQdM1dFUQlGG19ZRlC5p0RcF6qP1jmPdEGuOm16QD5Y7cO2pT8VYyDVeuziIjybMTuqW6uBwAAAAAAAAAAAACQKcFoAGwGwWhrIKMirm3BaOMz5PMjGG2tJIPREgW/XWkTjJZlyASQn6bBaGf6awqwPhqvuZcNRrPGp0Pm0cB5qf5gqQD9DXDpdRHXvWj+vjt+tUGI1ybbe8a2DlZ/dLJT/7+pORMAAAAAAAAAAAAAMFKC0QDYEAqARi+nIq4twWjrb8iC14yebfZL9T1tgssaaXN+gQ5AHTNj3FZF0OPkbH9NAdZH5+u1quA04cLjleOc1ZoMOC8VjObHqZUO3zJ/+9kHIj7x1kGbkreKcXCrIrg64twarXbYXI7jLgAAAAAAAAAAAABAtRq/XQ0AayCnUC1ayqiIa+vgqltAU2XT52eJYLSi4bEToQ5ZS4VuFBVBQstqVXSdUT8J5Gt2nCoqXg1NzvTXFmCNNF1zVwWfVZxPMBpd8s4IOC/ZHwwZoD9ST/y7EQcfHXH28/v3HTsaceOrh2/TmJxfp1WtzyIiyp2Iyel65zXGAQCstaIonhERT4mIJ+5t+mREfLQsyw+vrlUAAAAAAAAAANANwWgAbAYFQOOX0z1UhD9CGQdGeZ4yl+h7cgxGaxwACGym2VCHipCHydneWgKskc7Xa1XBaBmtD2koxzlrjm0CViPVHwhGq7R9ScRN3xVx28/u33f32yNOfirisuuHb1duqt7d1PmDHOVOxO6pmtczZwIAaKMoisMR8bUR8ay9/31GRDxq6iN3lGV50wqaFkVRHIyI/yEivjcinpz4zMci4uci4ifLsvSSHwAAAAAAAACAUWpRbQ8AY6QAaPRyCvwRZDVCDZ+fYpmC16bH6p+yNkl8v7cJLmui1fkz6ieBjM2OUxXjkGA0oI6moRtV67uq81mTjVdOa/vzhMYA56X6qL7fAayLQ0fmby8nEbe/Ydi2jM7eOq2o8TfNJmfqB6N5VwQAUFtRFM8viuLtRVF8LiI+HhG/GhE/HBHfGBeGoq1MURRPiYgPRMS/iEQo2p6bI+LHI+L9RVHcPETbAAAAAAAAAACga36TH4DNoMh1DWR0DxXhj8+gxfcNg9E8T3lL3Z9iu+cLC0Zjxs7JiLvfGfHAR/IMFGE4y97/2fDPqnny5Mxy1wM2Q7nT8fkEozEgcyvgEanxZ5kA/Q3y2L8VceXT5u87fqv+NiIq393Ued/0X360fjCan4sAADTx1RHxLRHxmFU3ZJ6iKJ4QEb8XEc+Y2fWxiHhrRPxmnAt0m/bMiHhHURTX9t9CAAAAAAAAAADolmA0ADaDAqDxy6lwThH+Bhiw4NXzlLnU+NHzUqqwVGPK3e+K+I1rI971gojf+opz/7tzYtWtYlWWntc2DEYrzy55PWAj1A3neETV+q5ivzX+iGW0tn+E5wnYk3r/OBsuzHxFEXHoyPx9D3wk4r4PDdueUdl7xrYvqf7oZ98XcerTNc9rjAMA6MDp2B84NqiiKLYi4i0RcePU5k9HxIvKsnxKWZYvL8vyZWVZ3hwRL4mIu6c+dygi3lwUFjYAAAAAAAAAAIyLansANoOi6TWQUfH0RJDV+Az4/DT9nXL9U95SwXXFdr/XbROMllOAJN3ZPRXxnpddGIT2mXdF/NmPrK5NrNbSgZoNg9EmZ5a8HrARug5GqwxttCajQ9ZkwCNWFI6+Tg69Lv1O49itgzYlTxVzoK0DEdf/nerT1J17eVcEANDU2Yj404j4uYj4voh4ZkQ8KiK+d5WNiojXRsTXTX19X0Q8pyzLd8x+sCzL342I50TE/VObnxMRr+61hQAAAAAAAAAA0DG/yQ/AhlDkOno5FSorwh+hpkWAy/zB7KbBaJ6nrKX6nr6D0Vot1RS7rqVP/oeInYf2b7/tp4dvC3lYdtyYDfCsOt/k7HLXAzZD42C0KoLR1leOc9Yc2wSsRCpEqmkI/ia77IkRj3/B/H13/ErE7ulh2zMW08/Y1/50xBVP7ua8Ob1TBwDI39GIuLIsy68py/K/Kcvy35Vl+SdlWa70JXlRFNsR8WMzm3+oLMvbU8eUZXk8In5oZvM/L4o2f5kJAAAAAAAAAABWwy+7ALAZFACtgYwKlRXhj0+qsDVlyIJXz1PeUven77qBVufPqJ+kO7e/Yf52YVWba+lxY3aMq5gnT84seT1gI0waBqNVzc+r1vDm0HTJOyPgEanxyY9TGzl8ZP72M/dFfPJtw7ZljC6/IeJb/7yjk3lXBABQV1mW95dl2XX6fxe+ISIOTX39yYj4pRrHvX7vs+c9OSKe02G7AAAAAAAAAACgV36TH4DNoGh6/HIqVPY8jdCARYBNQ9VyerbZLxmMtt3vddsEozUNAGQcJsYcZi07bsyMU1XjkBA+oI7djmtGK+c15tCjleWcNcc2ASuRmhsPGaC/Dp708oiDV87fd/zosG3JTXIcnHnGDlwa8ew6WRdV1zNnAgBYA6+Y+foXy7L6Fxb2PjM7qXxlZ60CAAAAAAAAAICeCUYDYLWGKohVALQGMipUFoy2AQYsePU85S1ZFJ1hMFpO/STd0Ucwa9lnYjbUQTAa0IXGwWhLBp8JDh2xDOes3hkBj6gZWsViBy6LuOE75u/71G9HPPyZYdszVode28FJjHEAAGvgxTNfv7vBsbOffclSLQEAAAAAAAAAgAEJRgNgtQYrPlUANHo5FSoLqRmhIYvvGxbLep7ylro/rYLLmhCMxp5yZ9UtIDdLhwHNBqNVnO/kXUteD9gIjYPRKlSt/8yh6VJO7xuAFUusq3t/B7CGDt8yf3u5G3HHLw/alLw0fHfzpJcveTnvigAAxqwoiosj4uaZzR9ocIr3zXz9lKIoLlquVQAAAAAAAAAAMAy/yQ/Aig1UfKrIdQ1kVMSlCH98GhcBNgw3W+ZY/VPeksFo2/1et03RtWLX9WTMYdbSz8TsOFUxDn3855a8HrARmgajVc1bKufI5tDjleOcNcc2ASuRHH+WeU+0oR73nIgrZvMb9hw7OmxbxqBIPGPblyx5YnMmAICR+9KImP6h5D1lWX6h7sF7n/3s1KbtiHhqR20DAAAAAAAAAIBeCUYDYLWGCgQSPDR+Od1DITUjlHGhu+cpb6m+p01wWROtzp/xc0575c6qW0Bulh03Zgvuty+tPubMA8tdE1h/k4bBaNUnXLzbHJou5fS+AVixxLo6FVpFWlFEHD4yf9/n/yzi/j8dtj3ZaPjuZuviJS9njAMAGLnZtOE7W5xj9pintGwLAAAAAAAAAAAMSjAaAKslGI3aMgr8UYQ/Qg2fn2UKXpse63nKW+r+FNvzt3fGUo09+gj2WXZeOzNOHf771YecumfJawJrrSwjdpsGo1XMz8uq/cbH0aq6tyuRY5uAlUj2UdborRx6XXrfsaPDtWMUEu8Tty9Z8rzGOACAkXv0zNdtXtbPHnNVy7YAAAAAAAAAAMCgDqy6AQBsuqECywSjjV5OxdOK8DfAEsFoTY8V3Ji5xP3pOxit7fnLcrlgP/IzWTDmuN+badl5yOwzc8WhiGufF3HPe9LHTJoGHgEbZXKmxUFV67uKObI5NF3yPAGPSIxP1l3tXH5jxOO/OeIz79q/7/Y3RHzNv4zYOjh8u1ap6TvuZYPRjHEAAGN3xczXD7c4x+wxj2rZlgsURXFtRFzT8LAnd3FtAAAAAAAAAAA2g2A0AFZrqMIcBUBrIKN7KBhtfHIK1pvlecpb8v5s9XvdoufzMx6L+ohy0n9IH/lZetyYE+rwvN+MeNOj04fsCkYDFuijj6haw5tDj1iGazPvjICIindHgtFaO3RkfjDa6XsjPvU7EU966fBtylLiGdu6eLnTGuMAAMZuNhitzYu42WC02XO29f0R8aMdnQsAAAAAAAAAAPZRbQ/AaglGo66cgq0U4Y9Q0+dnmYLXhsd6nvKWuj9bPYdRtQ5Gy6ivpBsLg9H0Hxtp0kMw2kVXRbzyM+lDBKMBi7TpI6rWd4LR1liO89Uc2wQMb0FfILy8vRu+PeJAInfh2K2DNiUPDcec7UuGvR4AALlrM8EzKQQAAAAAAAAAYJT8Jj8AKzZUYJlgtPHL6B4qwh+fnIL19sno2Wa/ZChH30upluF8WT/rtCIYjX2WHDeKRP9yybULLnl6uWsC62334e7PWRmMZg5NhzxPQERFX7BMgP6GO3B5xA2vmr/vU2+LOPXZYduTq9Q6bdlgNGMcAMDYPTTz9aUtzjF7zOw5AQAAAAAAAAAgSwdW3QAANtzuqWGuowBo/HIK+xFEM0INn59UMWIfx3qe8pa6P8V2v9ctijhXeN2078uor6QbgtGYtfR9XzBObV8WsXty//ah5uzAOLXqI6rmLBX7jYHjldPa/hE5tgkY3qK+QDDaUg4diTh26/7tk7MRd/xKxJf+48GbNBrLBqMZ4wAAxi7nYLSfiYg3NjzmyRHx1o6uDwAAAAAAAADAmhOMBsDqTM5GvOeVw1xLMNoayOgeKsJnoYbFshPPU9ZS40ffwWgREcVWi/5GwevaKXcW7NN/bKReg9EuEYwGNDfpoY+oWsMbA+mSd0ZAxOLgxmJruHaso2ufF3H5TREnbt+/7/jRzQpGSz5niXXa1sVLXs8YBwAwcg/MfH1Ni3NcO/P151u25QJlWd4TEfc0OaZY5o+TAQAAAAAAAACwcfwmPwCrc88fRHzuA8NcS9H0+C0qThya52mEmj4/Q/5StgLFrKW+34coim5zjZz6SrqxcMzRf2ykZechiwqPti+Zv10wGrBIqz6ias5SFYxmDByvHOernicgYnFfoHh/KcVWxKHvmb/vvg9FfP4vhm3PmKTWaHWZMwEAjN1tM1/f2OIcs8fMnhMAAAAAAAAAALIkGA2A1fnI/zXctRQArYGMiqcFo41P47CoZQpeGx7recpbavwYIhit1XIto76SbizqIyb6j4209Lx2wTi1dfH87ZPTS14TWGuTnebHVM3Pq/o6c2i65HkCIhaPPcX2cO1YV6lgtIiI40eHa8fKNXxvs2wwmvdEAABj9zcRMf3i4tqiKB5V9+CiKK6MiMdNbdoNwWgAAAAAAAAAAIyEYDQAVufu3x/wYoLRRi+ncDtF0yOUcRGg5ylzqWC0AYqitw60OCjjZ512FoXN6D8209L3fUEwWqrofvfUktcE1lrZIhit+qQVu42B45XhfFXYLBBREYzmx6lLe9STI6557vx9x3+pXdDqWkms05YNRsvpnToAAI2VZXk6Ij4+s/nZDU7xnJmvb9s7JwAAAAAAAAAAZM9v8gOwGRQArYEVFE+nih4VTY9Qw+enWBAa0/Wx+qe8pUI3hiiKLloEo5UZBk2wnEXBL0JhNtOy933ROCUYDWijVTBaVfBZxRzZHHq8cpyvmlMBEbHwD2sIRuvG4Vvmbz91d8Sn3zFoU1an4Ti4dfGS1zNnAgBYA7878/XzGxw7+9nfWaolAAAAAAAAAAAwIL/JD8DqtAl8aUvR9Pit4h6mCs8UTbNQ02A0z1PWkn3PAEuprTbjZIZBEyxHMBqzlr7vgtGAjk3aBKNVqAxGMwbSIc8TELG4LxCM1o0bXhWxfen8fcePDtuW3KQCrFNrtLpyDCQFAKCpN898/bqiKLarDtr7zHdXnAsAAAAAAAAAALLlN/kBWJ2tg+2PveJwwwMEo43fCoq4BKOtj8ZFgA3DzZbhecrXoudmiKLoVgGiCl7XjmA0ZvUZjJaa+0xOL3lNYK2ViWC07csirn5G6qCKkwpGW18Zzlc9T0DE4lDO6swB6jh4ZcSXfPv8fZ94S8SZ+4dtzyo0fUe5bDCan4sAAKyDP4yI4/Q6OiYAACAASURBVFNfPyn2B57N890R8cSprz8eEf+pw3YBAAAAAAAAAECvBKMBsDqtAl8i4ut/NeJb3t/smEWFbYzDKu7htmC09TFk8X3DUDX9U74WFkVnGozWOASQ7AlGY9ay40axYJxKFd3vnlrumsB6mySC0bYOLO5zFqnq64yBdMnzBERUjD1+nNqZw0fmb5+cibjj14ZtS1YSc6ZUeHVd3jsCAGSnKIpy5p/nL/p8WZa7EfGjM5t/siiKmxZc46aI+L9nNv9IWZogAgAAAAAAAAAwHn6TH4DV2TrY7rjLbwzBQ5toBWE/qcIzRdMj1PD5aRvg0OZYz1PGVlwUvdUyQJT1UibCZiL0H5tq6fsuGA3oWGqsWhTyWhnmWrXfGn+8MgzyNacCIlYfjr4prv2miMu+ZP6+Y7cO2pTVaDgOptZofV0PAGDDFUXxpKIobpr9JyKeMPPRA/M+t/fP43po2hsi4oNTXz8mIt5XFMW3zPn/8KKIeH9EXD21+X0RsclJxAAAAAAAAAAAjJBKewBWp20wWrEdjYPRFE2PX2XhfA+2BaOtjcbPzxLBaE15nvK1sCh6u//rLwoTSVLwunYW9RGCXzeTYDQgN5NEMNrWgUj3ORVzlqoxzhyaLnmegIjFfYFgtO5sbUccel3EX/6f+/d97oMRD/x1xFVPG75dK5eYMy0bjOa9AQBAU++NiBtrfO6JEXE8se9oRNzSVYMiIsqynBRF8YqI+EBE3LC3+bqIeHtRFLdFxF/GuUnlV0TEzTOH3x4RryzLVfzCBQAAAAAAAAAAtOc3+QFYnVaBL3EujKZoGFr0hb9pdy0ysoIiri3BaLTRsH9SoJivhcFoAyyltgSjERXBaMajjbTsfV80j07NfQSjAYuUiWC0tmv+iOo58sQYOFo51uCaUwERsfDd4xDh6Jvk0JH0vuNHh2vHSjQcB5cORstw3AUAoJWyLD8dES+MiA/P7HpKRLw8Il4W+0PR/iQiXliW5Wf6byEAAAAAAAAAAHRLMBoAq9Mq8CX2CtEaBg/9zb9udy3ysYoirm3BaOuj6fPTsI9ZhucpYysORmsTJqLgdf0sCobRf2ympQM1F/RfBy6bv333xJLXBNbawmC01Ly6Ys5S2dcJFx6vDOer5lRAxOrD0TfJlU+NeNyz5+87/vrNDEBNBVinwqtrM2cCAFgnZVl+NCK+LiL+l4g4tuCjH9/7zN8uy/JjQ7QNAAAAAAAAAAC61jKRBgA6UBxsedx2ulBokcnZiK2W1yQDKyjiShWeKZoeoSGL7xv2T56nfK26KLpNMFqOQRMsRzAas5a974vm0QeumL/97IPLXRNYb5NEMNrWgXZr93MnXbzbGEiXPE9AREUop2C0zh06EvHZ9+/f/vAnIz7zrojrXjh8m3K0fclyxy8drA0AsFnKsrxpgGss9Re6yrI8GxE/HhE/XhTFMyPiqRFx/d7uT0XER8uy/NByrQQAAAAAAAAAgNUTjAbA6rQNKSu2o3HwUIRgtLErVxD2s3XR/O2Kpsen6fPTOsChzbEKFLO16qLoLcFoRCy8p8ajzbT0fV8UjPao+dsFowGLlIlgtEUhr1Xz88r9xsDRWsXavornCYhY3BcMEY6+aW58dcSHfjBicnr/vmO3rm8wWtNxcNlgNO+JAADW2l4AmhA0AAAAAAAAAADWkt/kB2B1WgW+xF4hWovQIoWuI7eC8Kjti+dv9yyNUMZFgBPPU74W9DtDFEUvChNJyTFoguUsCugzHv3/7N15nB11ne//d50+3emEbE0WCGFJmsVABJFlDCEoRFCEi6AyUURJ1JlRYO7AOIA63gDKHRnc8OfAT9QLphkUETEgLsAV2VFAFgmGRbISMHtCtt5yTt0/Omm6T9e3Tu3beT0fjzyg9m84RdW3vqc+79OYwn7ubgGezYZgtJ0EowFwUTUEo5XKCvTs3rdT98WuAbaAT/SpAEju9xarKbl2NIqWsdK+ZzkvW7VQ6nkz2fakztBnssrhxqDoMwEAAAAAAAAAAAAAAAAAAADIKYLRAADpsZoDbtfkHuhgQhFQvqUR9lMiGK1xBQ1wCLAt51N2uRZFJ/AoFShAlGC04nH5TLl+NKbQn3uAYLRegtEAuDBdl1xDXg33N7sqbX1VqnQHOyZyIIP9Vc4nAJJSD0dvRO3znOdXOqWVtyfalOT4vA9alnmM2tPh+E4EAAAAAAAAAAAAAAAAAAAAQD7xJj8AID2lEMFoQUKLKHTNuRSKp5sIRisOv+dPiGA038GNFChmlmvxaAKPUq5hIgZphEgiPRQ4N6bQn7vLfapsCEbbSTAaABf2Tuf5Vlm++tWr7pZ+MVG6+2Dp9V/WOSbPZLlUrUgbnki7FUNxPgGQ0h8DaER7nyINn+S8bFlHsm1JnUufqak1xH4ZJwIAAAAAAAAAAAAAAAAAAACQT7zJDwBITylA4IsUIhiN8JBcS+PzKxGMVhhZDovifMout+uOldFgNApei6XevY/rR2MK+7m7BXg2m4LRtoU7JoBiMwWjuT7z1/RZtrwiPfJhqXuDx2PyfJ9Lf/la2i1wRp8KgOR+LUhiDKARlZqkKZ90XrbuUWnrq8m2JxEBxm3CBKPRZwIAAAAAAAAAAAAAAAAAAACQU7zJDwBIj9UccLsm90AHEwpdcy6FsJ8mgtGKw+f5E+Qa89bG/lbnfMqwlIPRAgWIEoxWKFVD0MxuXD8aU+jP3eU+VTYEo1V7pe6NIY8LoLBM9yurbO5X1wYXr7jNHLDmuD33wFxatTDtFjjjfAIgpR+O3qja55qXLbs5uXakzW0s0vTjHZ4QjAYAAAAAAAAAAAAAAAAAAAAgn3iTHwCQnkCBL+oLRvMbPCSJIqCccytOjEup1Xk+RdM5lOGwqDTObXjj+tkk8ChlBbhP1oaMIN/s3jrLuR81pDiD0ZoNwWiSdMd46fVfhzw2gEIyBZqVyrue3522qelnLbo8mmMi2zY9m3YLnNGnAiDJPRzdcD9DeGMOk/Y81nnZ0o7ijZsFGbdpMoxRx3U8AAAAAAAAAAAAAAAAAAAAAMgAgtEAAOkJEvgiSVZJgYLRKHTNuRSKuJpHOs+vdCfbDqQgSPhiwG25NmWXW/GtlcCjVNAAURRHtU7oC9ePxhQ2GMAKGIwmW3rsY1LX+nDHB1A8pvuVVTY/94cNNqv2hNseGIg+FQAp/TGARtY+13n+jpXS2oeSbUtqXJ7TQgWjFSxYDgAAAAAAAAAAAAAAAAAAAEDD4E1+AECKAgZdWU3ugQ7Gw1HommtpFHGVTcFoncm2A+HZCQbr+b0+cW3KsJSLogMFiKYQIon4VHvdl3P9aEyhP3eX+1TZLRhN0s5tDRRMAMAzU8iZVTYHvYYORqtzjwT8qNKnAqA6/Wy+To3VAR+TSi3Oy5YuSLQp8QswblMKEYzGOBEAAAAAAAAAAAAAAAAAAACAnOJNfgBAeoKGOlhNcg10MB4vhWAtRCiFIi5jMFpXsu1ABPyePwGuMUFxbcout8+GYDQkoV5oDMFojSnWYLQ96m/etSbk8QEUjul+VSqb+zNVgtGQIfSpAEjpjwE0smHjpMlnOC977Q6pd1uy7UmFy3Na07AQ+2WcCAAAAAAAAAAAAAAAAAAAAEA+8SY/ACA9QcOAAgejUeiaa3YKRVzNo5znV7vTaQ+C8/t5WWGC0Xxuy7Upu1zvUwk8SpUCBKNxbSqWeqEvXD8aU9jP3e0e19Raf/tqT7jjAygeU8iZ5RKMVi/8s+4xCUZDhOhTAZDqBKM1JdeORtU+z3n+zu194WiNzMtzmgk/yAAAAAAAAAAAAAAAAAAAAAAgpwhGAwCkJ2jhqdUULLSIIqCcS+HzK480L6t0JdcORCDDYVEU4WeXa1F0Ao9SpiARVxk+1+FfvdAY+jaNKfR9w6UfbZWkUov75tXukMcHUDim+1WpbA56NYWpeT4mwWiIEM9kACS5jj0mMQbQ6Ca9X2qd6Lxs6YJEmxKvAOM2YYLRGCcCAAAAAAAAAAAAAAAAAAAAkFO8yQ8ASE+YYDS3QIeoj4dssFMo4iqPMi+rEoxWbAGuMUG35dqUYSkXRZuCRFxR8Foo1TqhL1w/GlPoQLw696mm4e7LKwSjAahhCjmzyuag13rhn3WPSTAaIkSfCoBU51rA16mxKzVLB5zrvGztg9K25Um2JnluPwRTChGMlsaYOgAAAAAAAAAAAAAAAAAAAABEgDf5AQDpSTwYLWyIBNKVwufXPNK8rEIwWr4kWAToVsjohGtTdrl+Ngk8SpmCRNxQ8Fos9UJjCPFoTGE/93r3qXrBaNWecMcHUDym+5VVNge9EoyGLKFPBUByHwNIIhwdUvs887JlNyfWjFgFGbdpGhbmgCG2BQAAAAAAAAAAAAAAAAAAAID08CY/ACA9QcOArJL/4CGJQte8SyPsp+wWjNaZXDsQnu/zJ8A1JiiuTdmVdlF0kGA0Cl6LpV7oC9ePxhT6c68XjNbqvrzaHfL4AArHFHJWKpv7M1WC0ZAh9KkASC5jAFawsWj413aE1Hak87JlHQUPg3c5x+o9o7kq8n8zAAAAAAAAAAAAAAAAAAAAAEVGMBoAID1BC0+tkoKFFgUMYkNGpPD5lUeZl1W6kmsHIpBkEaDP6xNF+BmWcjBaiWC0hkcwGpzEHow23H15hWA0ADVMIWdW2dyfMYWpeWUTjIYI0acCIMk4BpDE8z/eMnWe8/xtS6V1jybalHgEGLcphQhGK3SYHAAAAAAAAAAAAAAAAAAAAIAi421+AEB6ghSeWk27/hkgGI1C13xLo4ireaR5WaUzuXYgAj7PnyDXmLc29re6TWhjZrl9NkkURlsBgtEoeC2WeqEx9G0aU9j7Rr17XL1gtGpPuOMDKB7T/apUNvdnTGFqXtULDwX8oE8FQJKqhmsBwWjJmvJxc/9hWUeybUmUy3NaoOD83Rh3BAAAAAAAAAAAAAAAAAAAAJBPvM0PAEhPkFCH3cFoQZiK25ATKYT9lEeZl1W6kmsHUhAmGM0nivCzy/U+lcCjVKDCV4LRCqVe6AvXj8YU+nOvF4zW6r682h3y+AAKxxRyZrkEo9UL/6x7TILRcifLAb70qQBIMgdI8VVqolonSJNPd1624mfSzh3JtidyAe6HYe6hWb7/AgAAAAAAAAAAAAAAAAAAAIAL3uYHAKQnSOFpmGA0Y3EbciFIkF5YTcNlDA8hGC1fkiwCtHyGqlGEn2Eu1x0rgUcpU5CIKwpeC6VeaAzXj8YUezDacPflFYLRANQw3a+ssjnolWC0xpPGM71X9KkASObrVKjxaAQyda7z/J1bpdcWJtuWpPgdT/SMcSIAAAAAAAAAAAAAAAAAAAAA+UQwGgAgPUkHo1HomnMpFHGVmqSmVudllc5k24KQ/J4/cRUjOslwQECjcwtvyGwwGgqlXuhLlgNGEJ+wfdp6Bfemvs9u1Z5wxwdQPFVDyFmpbO7PmLbxyiYYLX8y3G9hvAiA5BKMxlepidvndGnYOOdlyxYk2pTIBfrxhjDj4gSjAQAAAAAAAAAAAAAAAAAAAMgn3uYHAKQoQFFsmEI0wkPyLa3Pr2m48/xKV7LtQEhJFgH6DFWjCD+7XK87CTxKlQIEowUqsEVm1QuN4frRoML2ieoFoxn6PrtVukMeH0Dh2Ib7lVU292cGbhPkWa9eeCiyJ8tjMvSpAEjmawHBaMlrapEO+LjzstX3S9tfS7Y9iXB7Tgsx1sM4EQAAAAAAAAAAAAAAAAAAAICc4m1+AEB6qgEKT62m4Mej0DXnUiriamp1nv+HuRTj54nfIkDLZ7jZ4I39rR7kWohkuIU3JFEYbQUIRkvrWol42HXuM/RtGlPYz73ePa5eMFqVYDQANUzBaKWyuT8zMPyz2uP/mDyL5Q/BaAAyz3Sd4qvUVLTPMyywpeX/nWRL0hcq3IxxIgAAAAAAAAAAAAAAAAAAAAD5xNv8AID0BCk8DRWMluEiXNSX1udnCkar7JCe+bdk24KC4tqUXSkHo5UCBKOFKpZF5lQNQTO7EeLRmEIHatYLRjP0ffqPHyDACECxme5Xlksw2sAwtUpXgGMSjJY/GX7uoU8FQDKPPZZCjEcjuLZ3SmPe7rxsaUeOxz8SbjffiQAAAAAAAAAAAAAAAAAAAADIKYLRAAApClCUEyoYjULXfEu4aGxke98/S8PM66z4KcVlueH3/KkTGuO6qc9tuTZll+tnk8CjlClIxFVeC4PhqF7oC9ePxvPaL6SXrw25k3rBaMPdl1e6Qx4fQOHYLsFopqDXsMFoNsFouZPlZ2f6VAAkl+sUX6WmwrKk9rnOy7a+Im14Itn2xM11PDHMWA/jRAAAAAAAAAAAAAAAAAAAAADyibf5AQDpCVJ4GioYLcNFuKjPTriIa7+z+/7pds51r5O61ibTHoTk8/zxG242iM8uNkX42eV237ASeJQadUiAjSh4LZTNz7kv5/rRWDY+Kz06J/x+6t3jynWC0aoEowGoUTUEo5XK5qDXathgtCrP+HmT5c+LPhUAyXwtSOL5H86mnGsem126INGmRCfAuE3rxBCHY5wIAAAAAAAAAAAAAAAAAAAAQD4ZKtNQNJZlNUs6XtL+kiZJ2ibpDUnP2ra9POJjTZV0pKR9JI2U9DdJKyQ9btt2b5THApBziQejUeiab0kVUVvS/nOkI67aNVnnnMtycTfekmQRoN+CWc6h7HINRgsTnufR3rP9b0PBa7EsvsZ9OX2bxrLqzog+8zrXr2ET3JdXeyJoA4BCsQ3BaFZZsgz9KTtkMJokVXulpmHBtkUKMvzcQ58KgGQeAyAYLT3DJ0mT3i+98Zuhy1b8VDr6O1JTa/LtioXLc1r7POn5+QH3yzgRAAAAGptt26pWq7L5DhVAwizLUqlUkpXEuyUAAAAAAAAAAAAAUFAEo6XEsqx2ScdKOmbXP4+SNGrAKits254SwXEmSPqKpI9K2tOwzuOSvm3b9h0hj3W2pM9LOs6wykbLsm6TdLlt2+vDHAtAQQQJA7JC3LoodM23OF9UnTBLOvG3Uufr0rDx0rBxby2rG8bHC7T54PdzCvFiot8AR65NGZZyUXRTq9Q8Rup908dGXJMKo+rh2sD1o7G88NWIdlTnHrf3Ke7LK90RtQNAYZiC0Upl83N/dcA2VYLRGkKWA6HpUwGQZB4DCPFDHQivfZ5zMFrvm9Kqu6QDPpp4k0IJMsY9Yt8wBwyxLQAAAJA/tm2rq6tLW7du1datW9XTw4+9AEhXS0uLRo0apVGjRqm1tZWgNAAAAAAAAAAAAADwgZ85T5BlWSdalnWvZVkbJC2R9FNJl0h6jwaHokV1vA9IekHS+TKEou0yU9LPLcu6xbKsPQIcZ6RlWbdKul3mUDTtasP5kl6wLOv9fo8DoICCFJ6WwmR6ZrgIFx5E/PkNn9RXWHfM9X2haM0jpdFvGxyKJtUPQKKAGrUIRisOU3hDkkXRY6b73ICC18KoegifynLACLKrXohQ2xHSO79lXu7l3ATQWKqGYDSrbA43HximFjRw0e4Nth3SkeV+i5dAWgDFZ7xO8VVqqiafITWPdV62tCPZtsSqTlH0u24Ktts4f2wEAAAAyJgdO3ZoyZIlWr58uTZs2EAoGoBM6Onp0YYNG7R8+XItWbJEO3bsSLtJAAAAAAAAAAAAAJAbvM2frCMlvU/uIWWRsCzrREl3Spo4YLYt6Wn1BZj9X0nrazY7V9KtllUvAWbQcZok3SbpYzWL1km6b9exntHghIa9JN1lWdYsr8cBUFBBwoBMRdVxHQ/ZEXUR1yH/U5rxI+mQC/pC0UzqBSBVKcbPB7/nT4hfaPUdjJbhgIBGl4Wi6Kbh/tan4LU4bEPIzKB16NsggKbW+usc+nlzOFqVQiIANUz3rFLZHG4+KBitK9hxeRbLlyw/99CnAiCZrwXevzJDHJpapSnnOC9bfa+0441k2xNawHGb5qC/r5Xh+y8AAAAQoR07dmjlypXq7WXMEEB29fb2auXKlYSjAQAAAAAAAAAAAIBHvM2fDd2SlkS1M8uy9pX0C0ktA2Y/Jmm6bdvH2LY9x7bt90naV9JFkga+EXSGpP/t43D/Kem0AdO9kv6npH1t237/rmMdLentkv4wYL1hku60LGuSj2MBKJpAwWg+A4cGHY8ioHyL+vPzGHxFMFr+dW+QNj6b3PH8FsxShJ9dpvtGkkXRXgKMBiEYrTCqBKMhJiWP15WRU5znV7ojawqAgjDds6yyOdy8SjBa48nwmEzn62m3AEAWZGEMAM6mznWeb1el5T9Oti1xseqMVZeag+2XAH0AAAA0gN2haDb9XwA5YNs24WgAAAAAAAAAAAAA4JGhMg0x6pX0F0l/kvTUrn8uknS8pAciOsZXJLUNmH5c0sm2bQ+qMrRtu1vSdy3LWilp4YBFn7cs6/u2ba9wO4hlWe3qC1Yb6O9t276rdl3bthdblvVeSfdLOm7X7HGSrpD0OQ9/JwBFFCSoLEwhGuEh+Rb1S6z1is3616tzztkU42dWtSI99VlpyU3yHRbl9fxw3NZngCPXpgzLQFG078JXXvgvDJtgNMTEa+BiaZjz/CrBaABqmO5ZVlmyDP2pgdtUCUZrCFkOq+98o+/5sRQijB9AAZjGALg2pG7c30mjp0lbXhq6bNkC6dBLwo3lJSnoGLcVMBiNcSIAAAAUnG3beuONN4aEojU3N2v06NEaOXKkmpubZeXlmQFAYdi2rd7eXm3btk1btmxRb2/voGVvvPGGDjzwQK5PAAAAAAAAAAAAAOCCYLRkdUi6oTagTFJkX25blnWwpIE/nd4jaZ7TMXezbftOy7I6Bmw3TH2BZZ+uc7grJA18E3+BUyjagON0WpY1T31BcC27Zn/Gsqyv27a9tM6xABRRkDCPUMFoGS7ChQdRF3F5DUarU/xIMX52vfQtacmNATdOMhiNa1NmGT+bBIPR0LiqBKMhJp6D0Vqc51d7omsLgGIwBaOVyub+1MD7XIVgtIaQ9eeeTc9K445JuxUA0mS6TiUZjg5nliVNnSv9+UtDl725WNr4dAGu4XXGIn0H5+9GMBoAAACKraura1DYkCSNGjVKkydPJmwIQOqam5s1YsQITZgwQa+//rq2bt3av6y3t1fd3d1qbfX43S0AAAAAAAAAAAAANCDe5k+Qbdub3ALKIvJxSQPTOH5h2/ZfPWx3Tc30HMuyjN+4W5Y1XNLZdfYxhG3br0i6c8CssvraDKARBQrzCPHiIuEh+ZZWETXBaPn11++lc1y/BbNcm7Irj0XRNgWvhWF7uL9w/UAQXoPRmoY5z7crUpVzD8AApjBPq9z3x4kdQTCaKZANGZXxYLQtL6fdAgBpMz5fZXgMoJFM/aR5PGbpgkSbkoqgwWiMEwEAAKDgBoYMSX0hRISiAcgay7I0efJkNTcPfr7fsmVLSi0CAAAAAAAAAAAAgHzgbf7i+VDN9I+8bGTb9ouSnhgwaw9J73PZ5P2SRgyY/oNt2y95auHQNn3Y43YAiiZI0FWYMJq0grUQkaiLuDy+CFvvnCMYLbu2Lw+xcYgXpeuF6dUi2CjDchiMFvm1EqkxhcwMxPUDQXgNRisZgtEkqdodTVsAFIMpoKzULJU8BKMFvabwjJ8vmf+8st4+ALHLYzh6IxkxWdrrZOdlK26VKnl5RjGN29QZiwwajMY4EQAAAAquNhht9OjRhKIByCTLsjR69OhB82qvYQAAAAAAAAAAAACAwXibv0Asy9pb0jsGzNop6TEfu3iwZvoDLuueWmdbN4+or227vdOyrL18bA+gKAKFeYR4gZHwkHyLuoja68uw9UKubILRUMNvMBoF+NmVy6JoCl4LwxQyM2gdrh8IoGm4t/VKLeZl1Z5o2gKgGExhnla570+9bSpdwY7LM36+ZL3fwvkEwDgG4HecB7Fpn+c8v2ej9MavE21K4kbsF2y7rN9/AQAAgBBs21ZPz+DvK0aOHJlSawCgvtprVE9Pj2ybdzwAAAAAAAAAAAAAwCTLFf3w7+0108/btr3dx/aP10xP93GsP3g9yK42LfJxLABFZNsKFN4SJoyGIteci/pFsIiC0aoEoxVSmF+R9nud4tqUXcbi0Qw/RvHSbHGYQmYG4vqBIJpaPa43zLys0h1NWwAUgynMs1Tu+1Nvm6DBaAQM50vWg1my3j4ACchjOHqD2fcsqXm087KlCxJtSnABx2322D/Z4wEAAAA5UK0OfY5rbm5OoSUA4E25PPQ7E6drGQAAAAAAAAAAAACgD2/zF8thNdOv+tx+SZ39DXRogscCUESBC05DhBVRNJ1vkRcpez2X6nSXCEZDrXpherWqBBtllum6k+miaApeC8MUMjNoHa4fCKDkMRit1GJeViUYDcAApnuWVe7746QaQTAaQVY5k/HPi/MJQB7D0RtNebi0/xznZW/8Rupck2x7ouTlRxr2/VCAHTNOBAAAgOKyHX4wygrzA2gAELNSaeg4k9O1DAAAAAAAAAAAAADQh7f5i+WgmumVPrdfUTM9zrKsttqVLMvaU9KeIY9Vu/7BPrcHkHeBgzxCvMRIeEjORfwimNcXYkt1Qq4IRiuoENcav8FoWQ8IaGgEoyFFXu4v9G0QRJPXYLRh5mXVnmjaAiD/ejaZg81KLsFolR3StuW7/j1oMBr3wVzJevAY5xMA03Ug02MADah9nvN8uyKt+EmiTQkkTLHz2MOTPR4AAAAAAAAAAAAAAAAAAAAApIi3+YtlbM30Wj8b27a9TVJtJeIYD8fZYdv2dj/H0tC2OR0HQJEFLTgN8+uuWS/ChbvIi7g8nkv1Qq5sgtGKKUwwms8uNgX42WW8b2T4MYqC1+Kwd3pYh+sHAvAajNbkEoxW6Y6mLQDybftK6bdHm5db5b5wNJNfvU1647chgtF4xs+VzH9eWW8fgNhtes55vu8AfMRq/ExpZO3vRO2ytCPZYh4TLwAAIABJREFUtkTKw1hkc5CvUhknAgAAAAAAAAAAAAAAAAAAAJBPLpVpyKGRNdOdAfbRKWlglfSoGI8zkNNxfLMsa6KkCT43OzCKYwPwK2DBqd/AoYEID8m5tIqU65xzVYLREBLXpuwyhTeEuRfFjoLXwqgSjIaYeA1GK7WYl1UJRgMg6c9flrYvMy+3ynIN+aj2SE98Rpp8ZrDjcx/MmYwHj1U5n4CGt+JWw4IQ4fmInmVJ7XOl5+cPXbb5z30Bd21HJt8uz0KM27QQjAYAAAAAAAAAAAAAAAAAAACgcWS5oh/+1QaWdQXYR21gWe0+kzxOEBdIesHnn7siOjYAP3ZuD7hhiEK01xYG3xbps6Mu4vJ4LllN7ssJRkNYpvAtZEAGgtH8FvNGfq1EamyC0RATz8Fow8zLqj3RtAVAvi2/xX15qdz3x03n36RNzwQ7Pv3ofMn855X19gGIVfdG87ItLyXXDngz9ZPmZUs7kmtHpDyMVTcHCEbL/P0XAAAAAAAAAAAAAAAAAAAAAJwRjFZsQVIRsrwNgCJZ/0Sw7cKE0ax9UNr0XPDtkbKIi7gsgtHgwk7wcyXYKLuMxaMJPkYd+A8+N6CbXRgEoyEuJa/BaC3mZZXuaNoCoNissjz1mzr/FvAABH3kStaDWbLePgDx6lpjXta7Obl2wJs9DpD2mu28bPmPMz5eG2Lcpnl0gMMxTgQAAAAAAAAAAAAAAAAAAAAgnwhGK5ZtNdPDA+yjdpvafSZ5HABFtu7RgBt6DLMyee3OcNsjPZEXcXkNRqvTXUoyQAvJSTLwhWCj7DKFI4QJ6fRrxGTp4AsGzys1u2xAwWtheCnkJsADQTR5DUZrMgfEVglGA+BBqVw/aFqSegIGztCPzpmM91s4n4DG5uV+hWyZOtd5fvc66Y3fJtuWKHj5EY/mMQF2zDgRAAAAAAAAAAAAAAAAAAAAgHwiGK1YCEaT/n9Jb/f558yIjg3Aj54NwbYLG0bzwlfCbY8UGYqoJ8ySWtoC7M9rMFqdwkgvwTXInyQDXwg2yrAMBKNJ0jHXSTM6pCnnSodeKp3yeLLHRzqqO+uvQ4AHgvAajCZJpWHO86s90bQFQLFZ5b6QxXp2bg22f/rR+ZL1zyvr7QMQL4J/82f/j0jlkc7Lli5ItCmJaRlrXjZ6mmEBwWgAAAAAAAAAAAAAAAAAAAAA8qmcdgMQqTdrpif42diyrJEaGli22cNxRliWtYdt29t9HG6ih+P4Ztv2Wklr/WxjefkVdgDRCxzkwf+zDcs2FHGNbJeO+S/p+SukTc9Kex4j2Tul1+9235/X6z/BaI2pkmQwGsFGmWUKR0g6GM2ypPbz+v5IUqXLvK7pWon8sQlGQ0yG7+N93aZhUmXH0PlJ3icB5JdVlhTj8xL3wXzJevAY5xPQ2Nyes5FN5T2k/c92DkF741dS9wZp2LjEm1WXcdzGw1j1yIOk1r2krjWD5zeNkA78B+nZS3wcDwAAAAAAAAAAAAAAAAAAAACyLeGKfsTsrzXTB/jcvnb9jbZtb6pdybbtDZJq5+8f8li1bQdQdFWC0eCXoYjLKkltR0rvuUs6a6X07l9IYw+P7rAEozWmKsFokEt4Q9qPUW73QgpeC4NgNMSh7Uhpj/28r19qcZ6f5H0SQH6VyvWfp8LIetAWBsv855X19gGIFcFo+TR1nvP8aq+0/NZEm5KIUpN02BeHzj/2eqllT8NG3N8AAAAAQJKmTJkiy7L6/zz44INpNwkAAAAAAAAAAAAAANSRdkU/ovVizfRBPrdvr5lenOCxavcHoOiCBnlYBKM1LGMRtdM54aWL4/Fcsursi2C0YqokGYxGgWJmmT6beteF2BGM1hCqBKMhAntMeevfRx4onXCHv+1Lw5znV3sCNwlAA7EIRsNAGf+8OJ+AxkYwWj5NPGHwM89AyxYk2RIfQo7bTLtYmvVzaconpP0+LL37l1L7PPP3JjbjRAAAAAAAAAAAAAAAAAAAAADyqZx2AxCpF2qmj7Asa4Rt2zs8bn98nf3VLps5YPo4SXd7OYhlWXtIOsLHsQAUUtCC07TDaJAeQxGXU0CRl9AiryF79Qr5d7zmbT/Il2qSwWgEG2VXRoPR3K5fFLwWh5fgTa4fqOe059/qq4ye5v/61WQIRksyQBRAfpXK8fabuA/mS9aDxzifgMZGMFo+WSVp6lzpha8MXbbxaWnzC9LYtyffrkB8/CDM/h/p++Npe8aJAAAAAAAAAAAAAAAAAAAAAOQT6TIFYtv23yQ9P2BWWdIsH7s4sWb6ty7r3lNnWzcnaHAo37O2ba/xsT2AIghacJp2GA3SYyyidij68nSeRBSMtuSHUvcGb/tCfiQZ+EIBfnYZrztp34vcrl8UvBaGvdPDOlw/UI8ljTms70+QfnSpxXl+kgGiAPLLKtd/ngol40FbGCzzwWgZbx+AeFU6024Bgmo/z7xsWUdy7fAsrnEbgtEAAAAAAAAAAAAAAAAAAAAAFEvaFf2I3sKa6U952ciyrGmS3jVg1nZJ97lscq+kgZUix+3ahxfzaqZr2wygEQQO8vAYZoUCMhRxOYZ8RBmM5mFfK3/ubV/Ij0QDXyjAzyxTOELqIZ0EozUEgtEQBStk37k0zHl+tSfcfgHkn+2hzxF3MBr3wZzJ+HMP5xPQ2CpdabcAQY1slyac4Lxs2S1S1cOzdRaEfXYzbe+lzwYAAAAAAAAAAAAAAAAAAAAAGZR2RT+i92NJA6u4PmxZ1sEetvtCzfTPbNs2VoLYtr1DUm0KTO0+hrAs6xBJHxowa6ekn3hoH4CiCVpwGrZACPllCihyCgjyElrk9VzyUsj/l//tbV/Ij0qCwWh2lSLFzMpoMJrb9YtzqTi8FG+vffitf7dt6a83SL87UbpvpvTydzkfoNDDPk2GYLQk75MAssn4fDZAKe5gtIwHbWGwrH9eWW8fgHhVXYLRxr3LvAzZ0D7PeX7Xaulvbr8BlYLYntNNY0WMCwAAAAAAAAAAAAAAAAAAAADIJ4LRCsa27b9K6hgwq0XSAsuyWk3bWJZ1pqR5A2b1SPqKh8NdKal3wPQ8y7I+6HKcVkk/2tWm3W60bXuJh2MBKJrABafcuhqXqYgrYDCaV14K+Xesiu54yIZqwoEvFOFnk/FzSfte5BbsSMFrYdgegtEkacsrff/8y39IT50vrX1IWv8H6emLpOfnx9c+5EPYUOFSs/P8aq/zfAANxEP/1SrHGyhLHzpfMv95Zb19AGJVcQlGO+ifkmsHgtn/bKlpuPOyZR3O8zMn5LObqc+V+fsvAAAAAAAAAAAAAAAAAAAAADgrp92ARmNZ1r5y/u++d8102bKsKYbdbLNte73LYa6Q9CFJbbumZ0r6nWVZ/2Db9ksD2jJM0j9J+lbN9t+ybXuFy/4lSbZtL7Us6/+TdMmA2T+3LOvzkn5g23bPgGMdKun/7GrLbhvkLYANQBHZlWDbhQ13QH6Ziricir48Fd97PJfiLORHdiUdjKaqJA8hfEiWn+tOklzvhQSjFYbX4KkVP5Wm/7v08neHLnvlOunwK6USj/6NK+T1yjKcO0H78gCKw0vIRqnsLWg6cBu4FuVK1oNZOJ+AxuYWjDblE8m1A8E0j5b2+4i0/Jahy1bdKfVsklrahi5LRVzjNqaxIsaJAAAAACBJtm3rmWee0UsvvaS1a9equ7tbEyZM0OTJkzVr1iyNHDky7SYG9tprr+mpp57SqlWr1NnZqfHjx+vwww/XMccco1Ip3HeSa9eu1SOPPKI33nhDnZ2d2meffdTe3q4ZM2aE3reTxYsXa9GiRVq3bp22bNmiPffcU5MmTdKsWbM0bty4yI8HAAAAAAAAAAAAAAiG6ujkPSrpAA/rTZa0zLCsQ9I804a2ba+yLOvDku6V1LJr9vGSFluW9bSkpZLGSDpK0oSazX8lab6H9u32RUnTJX1g13SzpP+SNN+yrGckbZXUvutYA9/K75H0Idu2/+bjWACKJHDBKcFoDcve6Ty/1Ow008MOvQajEVbVkCoJB6PZFfV1o5AtGQ1Gc2NT8FoYpvterUVXSJNOlbrXDV3W+6a06Tlp3DHRtg35ETZU2NQP8np+AiguLyFXVtzBaBkP2kKNjH9enE9AYzMFo417l9TU4rwM2dI+1zkYrdojrbhNOvhzybfJl7DfexCMBgAAAABpWr9+vb72ta/plltu0bp1Dt/bSmppadHs2bN15ZVX6l3vepen/c6bN08dHR3908uWLdOUKVM8bfvggw/qpJNO6p++4oordOWVVxrXtwZ8r/ie97xHDz74oCTp8ccf1xVXXKHf//73qlaHjqPutdde+vKXv6wLL7zQd4jZs88+q0svvVQPPPCA47733Xdfffazn9UXv/hFlctlXXnllfrKV976LeYHHnhAJ554oqdjbdiwQd/4xjd0yy236PXXX3dcp1QqaebMmbriiit08skn+/q7AAAAAAAAAAAAAACil+GKfoRh2/aDkj4kaeBbFpakYyTNkfR+DQ1Fu1XSx2zbe1rRrnXnSLqtZtFESadK+ntJR2vwG/lrJZ1p2/YjXo8DoICCBqOFDXdAflUNARyWQ86rl9Air+cSwWj5FDYcqppGMBoyp2r4XLIQjGZsAwWvhWG67znpWm1exvWlwYUNRjPk6ROMBsDL/cVqirnfRJBVrmQ9eIw+E9DYTMFozaOSbQeCm3iSNGI/52VLFyTalFSYxroJ0AcAAACA2N15551qb2/XtddeawxFk6Senh7dc889mjFjhj772c9q587sf9/2ta99Te9+97v1u9/9zjG4TJLWrFmjf/mXf9HZZ5+tnp4ez/v+9re/rWOPPVb333+/cd+rVq3S/Pnz9Z73vEdr1qwJ9HeQpJtvvlnt7e265pprjKFoklStVvXoo4/qlFNO0Sc/+Ulffx8AAAAAAAAAAAAAQPQyUNGPuNi2/RtJb5d0g6RNLqv+UdLZtm1/3Lbt7QGOs8227Y+pLwTtjy6rbpT0PUlvt237Hr/HAVAwgQtiuXU1LFMAh1Nwmafie69BIR72VRrmcV9ITsiiv0rSwWgZDwloWKbPJQv3IlPBK+dSYfgJnurZbF7WNDx8W5BfYQOJTAGxpuBIAA2kTp/DauoL6IgzaJogq3zJej816+0DEC9TMBrPU/lRapKmftJ52YYnpC0vJ9seI8OYZegfhDFtTzAaAAAAAMTppptu0kc+8hFt3bp10PwDDzxQZ5xxhj760Y/quOOOU1PT4LHyH/zgBzrjjDMyHY72zW9+U1/+8pdVqfSNxb/tbW/TBz/4QZ1zzjk68cQT1draOmj9hQsXav78+Z72/a1vfUv/9m//1r/v3Q477DCdeeaZmjNnjmbMmNH/3+3xxx/XnDlzhqzvxeWXX665c+dqy5Yt/fMsy9K0adN0xhln6OMf/7g+8IEPaMKEwb8zfcstt+i0007L9GcEAAAAAAAAAAAAAEVXTrsBjca27SkJH2+tpPMty7pI0vGSDpC0t6Ttkl6X9Kxt28siOtbPJf3csqypko6StI+kPSStlrRC0mO2bfMTagD6BC1gDhvuIEmvXC8dcmH4/SBZpnOm5NSdiTAYzUshf3mEt30hOXbYor+EiwYJdcgmUzhCFPeisKyS4byh4LUwqn6C0VxysDc8KbUdEb49SFfg+1rI4nrHfpb8BfcBKKZ6IVLWrutHrMFoBFnlS8Y/L57JgMZWNQWjtTrPRzZNnSv95WvOy5Z2SEcalhWBMViNcSIAAAAAiMtzzz2n888/X9XqW2OfRx55pK6//nrNnDlz0Lrr1q3T/Pnz9f3vf79/3j333KPLL79cX/ta9p5XFy1apEceeUSSdNZZZ+nqq6/WtGnTBq2zadMmff7zn9eCBQv6533rW9/S+eefrylTphj3/fTTT+uLX/zioHknnniirrvuOk2fPn3Q/HXr1unyyy/XDTfcoIcffliLFy/29ffo6OjQVVdd1T9dKpV04YUX6pJLLtH+++8/aF3btnXXXXfpoosu0sqVKyVJ999/v+bPn6+rr77a13EBAAAAAAAAAAAAANEgGK1B7AokeyChYy2TFEnYGoACC1xwGjLcQZL+9M9S60Rp/78Pvy8kxxQQYzl0Z6IMLSp5KOQvNUd3PEQk40X3tSjCz6YsB6OZ7ocEhBSH3et93d7N5mVP/qO04qfSCbdLLW3h24V0BP1/21gc73V7Qz+I+xaAusFou64fcfabuBblS9b7qVlvH4B4VQzBaKVhybYD4Yw+RBp/nLT+D0OXLbtZOuIqb2O9cQr9Yw4mhj4X9zcAAADAkb1zp7RuVdrNaAwT9pVVLuZryp/5zGfU0/PW7wTPmjVL9957r0aMGPrjihMmTNANN9yggw46SJdeemn//GuuuUbnnHOODj/88ETa7NXGjRslSZdddpmuueYax3Xa2tr0ox/9SJs2bdJdd90lSapUKrrxxhsHhZHVuvDCC7Vz51vvgH34wx/WbbfdprLDeTJhwgR973vfU3t7uy677DKtX7/e899hxYoVOv/88/unhw0bpjvvvFOnnnqq4/qWZemss87SzJkzdfzxx+vVV1+VJH3jG9/QP/3TP2nq1Kmejw0AAAAAAAAAAAAAiEYx3zgAAGRf0ALmsOEOuy2/lWC0vLH9BKN5KHDzfC55KOQfdbDHfSExeSv6y1t7G4bpc8lAMJoxZCSuAlskzhQI6qTHJRhNktbcL/3qMOl9f5BGTgnVLKQkUN85gn6zUz9LMvfLADSOev3XMdP7/unl2SyuNiBbMv95Zb19AGJVNQRTNxGMljvt85yD0Tpfl9b8Xpp0SuJN8iZsqLUpQJ9xIgAAAMDRulWy57wt7VY0BOtnL0uTpqTdjMg98MADeuaZZ/qnR48erdtuu80xFG2gSy65RA899JB+9atfSZKq1aquvfZa3XTTTbG2N4hZs2bp6quvrrvef/zHf/QHo0nS73//e2Mw2lNPPaUnnniif3rSpEm66aabHEPRBrr00kv1u9/9Tvfdd5/H1vcFmnV2dvZPX3vttcZQtIEmTpyon/zkJ/q7v/s7SX1hb9dee62++93vej42AAAAAAAAAAAAACAaGajoBwA0pMAFsRHdulYtjGY/SI4pIKbkUGhvDAwatJK343oKWSNrNnPCFt0fnfQLjRQpZpIpiCjOgA/PTAWvBDoUhp/gqd46wWiS1LVaev5/BW8P0hUkiCyKQOGSKRgtYMgxgAKp0+c48NN9/4y130S/J18y/nlxbwMam58fZEC27T9HKhkC7ZYuSLQpzuIaAzQ9/zHmCAAAAABx6OjoGDR94YUXap999vG07X/+538Omr711lvV3d0dWdui8uUvf1mlUv33r6ZPn64pU6b0Tz/33HPGdW+99dZB0//8z/+sMWPGeGrP/PnzPa0nSdu3bx8UNtfe3q7Pfvaznrc/9thjdcIJJ/RP//KXv/S8LQAAAAAAAAAAAAAgOgSjAQDSEbTg9JALo20H8sMYUORQoJh0MBoF1BkUsuhv8unRNMMrwqyyyfS5ZCEYzXido+C1MEyBoE4qHl+UX/7jYG1B+gL1NSIIRjNd7/ycnwCKya3/evAF0sGf2zUR4/BzleewXMn6M0/W2wcgXqb+LcFo+dMyVtrvQ87LVi2Uet5Mtj2ehX1+IxgNAAAAAJL06KOPDpr+xCc+4Xnb6dOn66ijjuqf7urq0tNPPx1Z26IwfPhwzZ492/P6hx56aP+/79ixQ9u2bXNc7/HHHx80PWfOHM/HmDVrlufwuUcffVSdnZ3902effbankLeBTjrppP5/X7FihVauXOlrewAAAAAAAAAAAABAeASjAQDSESTcYfg+0vjjom8L8sH2U6DooYtjeQ1G87AvwkGyJ2xR+8j2aNrhGUWKmWQMZMzCY5ThGkagQ3GY7nuO6/K5F16QvnMU1ypTEISf8xNAMbldl9520Vv/HmugLPe/XMlCf+Wk+6Qpn3ReRuA50NhM/dsSwWi5NHWu8/xKp7Ty9mTbMkRMY4CmsW6bMUcAAAAAiNqmTZu0ZMmS/umxY8cOCgbzYubMmYOmn3rqqUjaFpUDDzxQLS0tntdva2sbNP3mm87B5H/+85/7/33s2LE66KCDfLXrmGOO8bRebXDdPvvso+XLl/v6U/v3X7p0qa+2AgAAAAAAAAAAAADC441+AEA6ghSczr6fYrRG5qdA0VMQiNdgNA+F/BRQZ1CIovsx06NrhldZCAnAUMZgtDgDPjwyXucoeC2Maq/3df2EVFUrUikD5zD8CdTX8NjXcd2F4Vyh7wPArf86sJ8SZ6As16J8SfuZZ2S7NOkUacWtzsvTbh+AdJl+9MAUFIxs2/sUafgkqfNvQ5ct65AO+ofk21SP1x/xMGKcCAAAAACSsm7dukHTBx98sCyfz3XTpk0bNL127drQ7YpSbdBZPc3NzYOme3uHfte9fft2dXV19U/vv//+vtvldZvXXntt0PTFF1+siy++2PfxBtq4cWOo7QEAAAAAAAAAAAAA/sVYmQYAgAu/BafNY6Qx0+qvh+LyU6CYeDCaj0AaJMMOUfQXZ3iDCUX42WT6XLIQjGa6hnEuFYefe4uvYLRu/21B+tIKRjOFEpv6ZQAaiFsw2oC+kmUpkuuRE/o9OZP257XrOc8Y+pl2+wCkys8PMiD7Sk3SlE86L1v3qLT11WTbM1CYMUs3pgJ87m8AAAAAELlNmzYNmh4zZozvfdRuk7XQrVIp+vdmNm/ePGh61KhRvvcxevRoT+tt2LDB977r2bp1a+T7BAAAAAAAAAAAAAC4441+AEA6fIc7xFRIjfwwnTOORc0RvqDnJSSLYLQMClP0l0Z2cExFkQjHeN3JQL60sQ2cS4XhJ3jKz7qVTqk8wn97kK4gwWhRXKucAmilgEFtAArFLWSj9vpjNcXzzETQR76k/XntDowx3R+5twGNzXSfMvWHkX3tc6UXv+68bNnN0hFfTbY9dYX9/sO0PeNEAAAAgKMJ+8r62ctpt6IxTNg37RZEzq4JvbZMYdU+RLGPrBs2bNig6Z6eHt/78LpNkH3XU/u5AwAAAAAAAAAAAADixxv9AIB0+C04bYAXwFCHqUCx5NCd8RIE4vWccgxeq0EBdfaEKbpPI/Qq7ZAAOPMVyJg0wzWMc6k4/ATI+Fm30uW/LUhfoL5GBP1n0/WOUFgArn2OpILReA7LldT7qbuD0Ux9+bTbByBVprBpgtHya8xh0p7HShufGrpsaYd0+JXZCL6PDMFoAAAAgB9WuSxNmpJ2M5BTe+6556DpN9980/c+ardpa2sL1SYnlUq2xtBr/46bNm3yvY+NGzd6Wm/8+PGDph9//HEdd9xxvo8HAAAAAAAAAAAAAEhXkd74BgDkie8CZoLRGp6fAkVPRW1ezykPxWOmtiE9eQtGo0gxm7IcjGY8TzmXCsNPgIyf+1Cl039bkL4gfY0o7mdOAbQSfR8A7v3t2utPbP1rgqzyJeXPqz8c3XA+ErQHNDY/P8iA/Gif6zx/x0pp7UPJtqWfYdwm7A/DmLa3GScCAAAAgKhNmDBh0PQrr7ziex8vv/zyoOmJEyc6rlcuDx6b2LnT+3d0QYLH4tTU1KTJkyf3Ty9dulQ7duzwtY9FixZ5Wm+vvfYaNB3kMwIAAAAAAAAAAAAApI9gNABAOvyGFoUtDEL+mQoUnYLRPHVxPJ5T1d7661BAnUFhiv5S6CKHCXJDfEyfSyrhebVMBa+cS4XhJ3jKT4hapct/W5C+QH2NCPrPpiBI+j4A3K4DQ4LRYgqVrXItypXU+6m77oumvnzq7QOQKj8/yID8OOBjUqnFednSBYk2JX6m5z+C0QAAAAAgam1tbTrwwAP7pzdv3qwXX3zR1z4ef/zxQdPHHnus43qjR48eNL1582bPx/jLX/7iq01JmDFjRv+/V6tVPfSQ9+DyjRs36s9//rOndWfOnDlo+r777vN8HAAAAAAAAAAAAABAdmShoh8A0Ih8hykQjNbwTOeMU5G9l9Air2F7noLRfATSIBlhitrTCL2iCD+b/Fx3kmYMdKDgtTC83H92617vfd1Kp/+2IH1BgsiiCBY2BUHQ9wEgt/5rQsForm1A5qT+zLM7GM0U+pl2+wCkytS/LRGMlmvDxkmTz3Be9todUu+2ZNsjxTduYxzPZJwIAAAAAOIwa9asQdM//vGPPW/74osv6umnn+6fbm1t1dFHH+247sSJEwdNL1682PNxfvOb33heNyknn3zyoOkf/vCHnrft6OhQT0+Pp3Xf+973qqnprbHgX/7yl1q7dq3nYwEAAAAAAAAAAAAAsoFgNABAOghGg19+ChQ9BVt5DUbz8FJdlXCQzMlbMBpFitmU5WA04zWMQIfC8BM89aaPX/uudPlvC9IXJBgtiiEfYzBakPYAKBS3/nZtXymu/jVBVjmT8ue1OzDUGDDMvQ1oaKbnL1N/GPnRPs95/s7tfeFomRH2+w/D9vSXAAAAACAW55133qDp6667TqtXr/a07Ze+9KVB0x/72Mc0bNgwx3WPOuqoQdN33323p2Pce++9evLJJz2tm6Rzzz1Xo0aN6p9euHCh7r333rrbvf766/rqV7/q+ThtbW0699xz+6e3bdumSy65xF9jAQAAAAAAAAAAAACpIxgNAJAOvwWnFsFoDc8UPuZUoBhl4b2XYDQKqDMoZ8FoFClmk+lzyUIwmjHQgZC9wvATjOZHpTOe/SJeQfoaUfSfTde7uM5PAPnhGoxW00+Jq+/Ec1i+pP7Ms+u8NN7b0m4fgFT5GXdEvkx6v9Q60XnZ0gWJNqVPTOM2xuc/xokAAAAAIA6zZ8/WkUce2T/95ptv6pxzzlFnp/t3sddee63uuuuu/mnLsvSv//qvxvWPO+44jRgxon964cKF+tOf/uR6jL/+9a+aO3duvb9CKkaNGqWLLrpo0Lw5c+bogQceMG6zfPlgP5p6AAAgAElEQVRynXLKKdq8ebOvY1155ZWDAuf++7//W1/4whdUqfj7bmHx4sV6+OGHfW0DAAAAAAAAAAAAAIgGwWgAgJT4LTiNIRiNotd8MQVwlJwKFD10cbyGhVR7669DOEj2hAqHSqOLTJFiJpnCNtIIzxvCdA3j3lYYpsL8sAhGy6dA/dYI+s+O/SzFd34CyJEsBKPR78mVtD+v3WMAxoBhgvaAhuZr3BG5UmqWpnzCednaB6Vty5NsjYuwz2+G7QnQBwAAAABHq1ev1vLlywP92e3GG29US0tL//SDDz6oE044QU888cSQ461fv14XXnihPv/5zw+af9lll+mII44wtnPUqFH66Ec/2j9dqVR0+umn67777huybk9Pj374wx9qxowZWrNmjdra2vz8J0nM/Pnzdfjhh/dPb9myRe9973s1Z84c/fznP9fzzz+vl156Sffdd58uvvhiTZ8+XS+++KJaW1t15plnej7O1KlT9YMf/GDQvK9//euaNWuW7r77bu3caf6+c/ny5br++us1e/ZsTZ8+Xb///e/9/0UBAAAAAAAAAAAAAKHxRj8AIB2+C05jCEar7pSaWuqvh2wwBXBYDt0ZT6FFXoPReuqvQwF1BoUouk8j9CrtkAA4MwajxRTu4Ycx0IGC18KIK3Sz0hXPfhGzAPeJKO5npusdfR8Abv3XIcFoMfWvuRblS+rPPLvHAAznY++bibUEQAb5GXdE/kydK730bedly26WDr88wcbENW5jGutmnAgAAAAAnJxzzjmBt7V3fSd/1FFH6brrrtPnPvc5Vat9459PP/20ZsyYoYMOOkjTp09Xa2urXnvtNT355JNDgrhOOeUUXXXVVXWPd9VVV2nhwoXavHmzJGnt2rV6//vfr4MOOkhHHHGEhg0bpjVr1uiJJ57Q9u3bJUl77723rrnmGs2dOzfw3zMuLS0t+vWvf63Zs2fr1VdfldT33/T222/X7bff7riNZVm6/vrrtXLlSt11112D5rs577zztHr1an3pS1/q/4z++Mc/6oMf/KBGjBihd77zndprr700fPhwbd26VevXr9fixYv7/1sDAAAAAAAAAAAAANLFG/0AgHRUfRYw13mRKRB7pySC0XKj2u083ymwI+lgNFPxJNITpug+jWC0MEFuiJHhc8lCMJrxGsa5VBjV3nj2W+mMZ7+IV6D7WgT9Z1MQRFzBfQDyw/W6VBuMFlffiX5PvqT9ee26L5rOxw1P9J3XqTwPAkidqX9b4mvUQmg7Qmo7Utr03NBlyzqkt8+P5/sHP8IeP+32AwAAAECD+sd//Ee1tbXpU5/6lLZt29Y//9VXX+0P/XLy6U9/WjfccIOam5vrHmPy5Mm64447dNZZZ2nr1q11jzF16lT9+te/1po1a3z+bZKz33776ZFHHtEFF1yghQsXuq47btw4dXR06PTTT9cXvvCFQctGjRpV91iXXXaZjjjiCH3qU5/S6tWr++fv2LFDjz32mKf2trW1eVoPAAAAAAAAAAAAABAtqnwAAOmwfQajRRHsMKQNBDrkxpuLzcucChS9FN57LRbzEkzDuZRBdohtU+gi22Hai9gY71UZeIwyBTZwLhVHXPeWSlc8+0W8ggSjRVEYbwqC8N2XB1A4bteB2n5KXMFoYcKQkby0P6/d90W34LP1TyTTFgDZY3r+MgUFI3+mznOev22ptO7R5NoR27iNy/2NsSIAAAAAiNXZZ5+tJUuW6KKLLtL48eON6zU3N+t973ufHnvsMd14442eQtF2mz17tp588kmdeeaZsgzfAU6YMEGXXnqpnnvuOR166KG+/x5J23vvvfWLX/yiPyDtsMMO09ixY9Xa2qr29nadfPLJ+v73v68lS5bo9NNPlyRt3rx50D7GjBnj6Vinnnqqli1bpuuvv15HHnmk8b/hbs3NzZo5c6auvPJKvfLKK7rooouC/SUBAAAAAAAAAAAAAKHwRj8AICV+C2JjCEarEmaVG0s7zMscCxS9hBZ5PKf2/aD0yn+5r0M4SPaEKbp3K5SPDaEOmVQ1/L8dV7iHL6ZrGOdSYcTVT6l0xrNfxCxIIXsE9zPT9W7zIun5K6XJ/0Mad0z44wDIH7f+9pD+dEz9a57D8iX1YLSmwf908tK3pQm3J9MeANliev4iGK04pnxcevYS5xC8ZR3SxBOSb9MgIb//cCvotqsZGcsCAAAAgPQsX7481v1PnDhR3/nOd/Ttb39bTz/9tF566SWtW7dO3d3dGj9+vPbdd1/NmjVLo0aNCnyMadOm6c4779T69ev10EMPadWqVdqxY4f22msvTZ06VSeccILK5bfGMk488UTZPsKy/axba8GCBVqwYEGgbWfNmqVZs2Z5Wnfx4rd+WNOyLE2cONHzcVpbW3XBBRfoggsu0MaNG/XHP/5Rf/vb37Rx40b19vZq5MiRmjhxog455BBNmzZNI0aM8P13AQAAAAAAAAAAAABEizf6AQDp8FvAXOeXGoO1gWC03Hjx6+ZlTgWKUQZbTXyP1NIm9Wwyr8O5lD1pB6Mde4P01Oe8rx/iBVPEyXAelTJQTGo6TzmXiiOue0ulK579Il5B7mtR9J/dgiBe+Ir0wleld90oHfip8McCkDNuwWhN7tNRSTtoCz6l/Hk1tfb90+15b+vLybQFQPaYnr9KfI1aGK0TpMmnS6vuGrpsxc+ko78rlfNc8Oz2/MdYEQAAAAAkpVQq6dhjj9Wxxx4b2zHGjx+vj3zkI7HtP6u2b9+uZ555pn/6kEMOCRw0t+eee+q0006LqmkAAAAAAAAAAAAAgJhEmBoCAIAPfoPRXAt7AqoSZlUITkX2noKtPJ5TpWbp3XdJ5ZHmdewqYURZEyokIYIu8n4fkvaYMnhe82iXDQh1yCTjvSoLj1GmaxjnUmHE1U+pdMazX8Qr0H0timC0emFGtvTMxVKlJ/yxAOSL63Wppq8UV6is73EFpCrtILuSh2C0OMaeAOSD6fnLLSgY+TN1rvP8nVul1xYm1AjTGHLYexDBaAAAAACAYuvo6NCOHTv6p4877rgUWwMAAAAAAAAAAAAASEIWKvoBAI3IbwGzp6Arv23ojX6fSF7JoUDRy/li+Sg2m3iC9OHV0vR/N69DUX7GhCj4i+J60zpROvkh6aDPSXseLR34j9LJD5vXTzskAM5M/1/XDQpKgOk8JaSxOOLqp1S64tkvYhbgPhHF/cypn1Wrd4u0+v+GPxaAfHHrvw65/sQ0BE0fOl/S/ryadgWjuQbHEIwGNCzbEIzmpT+M/NjndGnYOOdlyxYk2pTIuY11M1YEAAAAAMi5VatWaf78+YPmnXfeeSm1BgAAAAAAAAAAAACQFILRAADp8F0QG0NxatVQ8IZ8sZwKFL10cXyeU+U9pH3+h3k5wWjZEqboPqogxj32l/7ue9Kpf5Le9QNp1MHmdSlQzCbTeZSJYDTTNYyAkMKIq59S6Yxnv4hXoPtaBP1nx36Wg82Lwh8LQM64BaPVXH9i6zvR78mVrASjVbrTbQeAbDIFo3ntDyMfmlqkAz7uvGz1/dL21xJoRFxjgG7Pf4w7AgAAAACy5Y477tC///u/a926dXXXffbZZ/Xud79bGzdu7J/3jne8QyeddFKcTQQAAAAAAAAAAAAAZABv9AMAkpdWsEMtU8Eb8qXk0J3xFGwV4JxyK+i3d0oa5n+fiEkGgtGG7thlGaEOmWQKPIztHPHD0AZC9oojrn5KpSue/SJeqQWjeQwzcuqPASg2Y4CsQx8lrmA0wqlzJivBaITEAnBgCqamn1s87fOkV/7LYYEtLb9Fmv6lpFvUxxiA73V7t7EqxooAAAAAANmydetWXX311frmN7+pU089Ve9973v1jne8QxMnTlS5XNbGjRu1aNEi/epXv9Ldd98te8B7EC0tLero6Eix9QAAAAAAAAAAAACApPBGPwAgeUGKl8MWBjkxFbwhX6yAwWhBzim3YkjOp2wJFCCzW0yhV27nJWFW2WQMRosp3MMP0zUs1LmPTIktGI0wkHwK8P92FCGOXoMgnPpjAIrN+FzvFIwWU/+afk++pP15eQlGi2PsCUD22bb5+Yt+bvG0vVMa83bpzReGLlu6QDrsi/HeD2IbA3Rpc9r3YAAAAAAADHp7e3X33Xfr7rvv9rT+8OHDdfPNN+sd73hHzC0DAAAAAAAAAAAAAGRBTFVpAAC4CBKM5lbYE1RcgSNIlmNAUVzBVi7FkIHOa8QnRJFhXMENrvulQDGTshyMZrzOEbJXGHEFbla64tkv4hWoeD6C/rPX6x2BEUDjMQVsOF034uo7EfKRL2l/XiUPwWhxjD0ByD636xP93OKxLKl9nvOyra9IG55ItDlvCXsPctuesSIAAAAAQLaMHTtWTU3+vjs4/vjj9fDDD+vss8+OqVUAAAAAAAAAAAAAgKzhjX4AQPICFcMSjAaDkkN3xlOwVYBzyq2gn/MpW8IU3ccVjOZ2zqUdEgBnfgI/kmYZzifOpeKo9sazX9cwEGRXgP+3o7ifeQ2CMF2TABSXsZ/kcO2JLRiNcOp8Sbmf2rQrGG3nDpeVuJ8BDcltTM9p3BH5N+Vc6bkvOPclli6Qxs+I8eAxhZS5PZMFCtoGAAAAACA+Z511ltasWaN77rlHjz32mBYtWqQVK1Zo48aN6urq0vDhw7XnnnvqgAMO0AknnKDTTjtNxx9/fNrNBgAAAAAAAAAAAAAkjDf6AQDJC1K8HEfYQpUgq0JwCuyIKxjNrRiSovxsCRUOFVMwmut5SYFiJpn+v44tPM8PUxs4lwojrsDNSlc8+0W80goW9hpmVOkOfywAOeMnGC2mvhOBsPmS9ue1Oxit4hKMZscUTAsg29yevbwGBSNfhu8tTTpVeuPXQ5et+Kl09Hfeum8kJuzzm9v2jBUBAAAAALJn3LhxOvfcc3Xuueem3RQAAAAAAAAAAAAAQEZloaIfANBoAgVIxRCMFlfgCJIVNBgtSNieWzgIQXsZE6LgL7bQK5dzLu2QADgzBqN5DAqKk+kaxrlUHLEFo3XGs1/EK8j/21EEC3sNguC8AhqP8brkFIwWU9+JcOp8Sbuf2h+M5nLP2rk9mbYAyBa3MT23H0lAvrXPdZ7f+6a06q4YDxxTSJnr8x/BaAAAAAAAAAAAAAAAAAAAAADyh2A0AEDyghQvRxHsUIsgq4JwKq720sUJEozmUgxp9/rfH+ITpug+rmA0ChTzx3QeZSEYzXid41wqBLsaX3hIpSue/SJegYLRIrifeQ2CIBgNaDzGfhLBaDDJSDBa03DzOgSjAY3JLZTaa1Aw8mfyGVLzWOdlSzuSbYsUwfcfLs9/aYeTAgAAAAAAAAAAAAAAAAAAAEAABKMBAJIXqBAnhmA0t6I35IdTUbOnIJAA51R5hHlZ7xb/+0N8QgWjxRh6ZTo3KVDMJlPYRlzheX6YCmY5l4ohzqAXAqxyKqX+s9d7IucV0Hj89JPi6jv1bIxnv4hH2v3U0q5gtGn/al6nSuA50JDcfjyDYLTiamqVppzjvGz1vdKON5JtT1j8IAMAAAAAAAAAAAAAAAAAAACAgslART8AoOEECvuIIRjNregN2dI82rysZezQeV4K712LxUzHGifjudi11v/+EKMwwWhxdpEJs8oVY+BHjOF5npnOU4pdCyHOUI5KV3z7RnzSChZ26mc5IRgNaECG65JjMFpMfaeu1fHsF/FI+5mnaVcw2rgZ5nXSbiOAdLj9eEaJYLRCmzrXeb5dlZb/OJ5j2qZxm7DPby7bG48J/D/27jxejqrO//+7+y5JLiEJkIUlkIWwRnYYFtkRdBgEv1+ZEXAUZpRBdBzUUb8wuMCMgqM/BxzRr8go4AiI4yiRr05QJICIgIQlskbMiiRkD1lu7tb1++Nyk7vUOV3bqTrV/Xo+Hnk86KquqqN1uuqc6vt5NwAAAAAAAAAAAAAAAAAAAOAvgtEAAPlLEoyWJMSqbjscho4gW6bi5AM+Hr7cVeF9tUUaNTF8HcFofklV8OdwiGwMXaNA0U+mwA8PgtFM90XCHBqDrTA/LQKsSirBfSKLoM/xs6O9j8A9oPmYxhxh4yRXY6fOFW72CzeKHqcOBKO1tEtH/bvhTczLgKZkm39VCEZraLv9mTTuwPB1i28rWaCY7fuTMv3vAAAAAAAAAAAAAAAAAAAAAIB+BKMBAPKXJBjNWtiTUM1h6AiyVTOE2O3+NsMGUYY4CfvU6MnhywlG80yKovssgmTMOw9fXHRIAMLVDPcrp30kKkL2GlYQSEvudLd/gtHKKdF9IoPxc7VNat+1/vvoV+Xy2n3SEx+S5n9MWv1o/fe/Okd67APS/I9La55w3z6Ug/G6FDZGcTR26l4v9XW52Tcc8CQYTZJ2mh7+HuZlQHOyPSOuEozW0CoVacbF4es2viCtm+/goKbnNinnb7YflilVwBsAAAAAAAAAAAAAAAAAAAAA9POhoh8A0GyKCnYYLiAYrTRM56raFr48SmiRrVjMxhSM1kUwmlfSFLS7DL0y7psCRS+ZgjwrLfm2I7QNhOw1rGf/Sfrd5e7237fN3b7hTpLPdtKxznB7vL3+ewhGK4+F35QefIf0ys3Sy1+T7j9FWn6P+f0v/Kv08LukRd+VXr5R+sWx0qv35tde+Mt0XQob77ocO21b6W7fyFbR49TBwWjGeyRjaaAp2Z4RVwhGa3gz3md+Xrf49nzbkopt/sdzRwAAAAAAAAAAAAAAAAAAAADlQzAaACB/pqAZm6yCHQar9WS/T2QvCMx9Jk0wWtKwvVGTwpdvIxjNL2kK/lwOkQ37LjokAAamwA8fgtEI2WtIXWulF7/s9hi1bqmWYCyGgiW5T2R0P6u2139PL8FopVDrlRZ8ZuiyoFf6/efC39+3Tfr9tSOXP3yutPHF7NuHkokRjFZ1GYy22t2+ka2i5zzVUYNfhL+n6DYCKIbtGbEP83+41bGXNOVt4euW3Cn1dWV8QEfPbWzPw7m/AQAAAAAAAAAAAAAAAAAAACghgtEAAPlLEoyWNMTKhmC0crAWJ7YalrsMRpsYvrx7fbL9wY00BX+R+k/SfRv6HQWKfjLdr7wojKYvNaTF38/nHNa2uT8GspWkX2QVLNwyqv576FPlsOrh8DHrht9LnStHLv/TvVKfIfTu0Yv6A4zRvIzXpZCxtGnelgXm9SVSdDDaoKBP05yPsTTQnGqW4KuW0fm1A8WZeUn48u510ms/y6cNqedvtu0ZtwMAAAAAAAAAAAAAAAAAAAAoH4LRAAD5S1RoGlLY85bPpmsHAQ7lEPSa11XbTCvq7zdpsVnVEA5Ss7QT+fM1GM3YNylQ9JIxyNODaZSxn9KXSm3jc/kch3tW+WQ1fk5icJCMSa8hPAt+6fyTeV3PGyOXbVlmfv/6Z6TVv0nfJpSXMUA252C0osO2EF3RoWPVQf2QsTSAwfosz4gJRmsOU98ltY0LX7fotmyP5SxcmGA0AAAAAAAAAAAAAAAAAAAAAI3Fg4p+AEDzSVAMGxZiNe0iqW18+Punv6/+Pm1Fb/BHrce8zhSMVmlx0xZpaDH1YLYAN+QvVdG9wyGyKZCv6JAAhDOdF5fXmMjoS0iBe1b5JPlsZxX0GSUYrY9gtFKwhVOFhVzVu9+9/LV07UG5GcdJIdce0xwqk3aYgmzhnaLHqZUIwWhFtxFAMUzPiCtVx+Ge8EbrGGmf94Sve+3nUufrOTQiZbC17UdAnIWxAQAAAAAAAAAAAAAAAAAAAIA7BKMBAPKXqNA0pLBn/IHS6fdLU9+1Y1nrTtLsz0jHfbf+LglGKwdbeIupODFSEEjCYjNTGBshM55JUfCXVZBMKNO+KVD0kiloo+pBMJqxn9KXyi1lIXRUNe5Z5ZPks51RfyIYrXHYgs5Cg9HqBIFsfiVde1ByMQJkXYbKEIxWIgWHjg0J6DONpQlGA5qS6RlxdbQ9bAqNZebF4cuDPmnpnRkeyNVzG1tf5VkRAAAAAAAAAAAAAAAAAAAAgPLhp84BAPnLKhhNknY7Wjr5J8naQTBaOdR6zOtMIWW20Icdb0rUHGNRPyEzfkl0nXmTy2A0077TtBfuGIM2fMiXNlzD6EuIgjDP8kny2c7qflYdVf89BKOVg22MXOsaucw01h4QELDQ1EzXpbBrT9VlMBpjn9Io+lwNnsubgo6KbiOAYpieEbeMzrcdKNbEE6Sxs8LDfxfdLh34cccNSBvCRzAaAAAAAAAAAAAAAAAAAAAAgMbiQ0U/AKDpJAl2SFsYFNaMkOJ/+McWjGYKKYsSjJa0T5mOSciMZ3wNRjP1OwrwvWQKRosUvuiYsZ9S7FpqLsY7YbhnlVCGwcJxtbTXfw+Bw+Vgu3+FncN6YVY+3A9RHGOAVMgYxTSHyqQdpiBbeKfo0LEh/dAy5yP0EWg+BKNB6p+Pz7w4fN2GZ6X1z2R0IEf3GdvzzKLvwQAAAAAAAAAAAAAAAAAAAACQAMFoAID8JSpcdhAUQoBDOdjCW6pt4csjhTQk7FOmgIgaITNeSVXw53KIbNg3xfd+MvUjL4JgDNcwil0RBfes8kn02c5o/FyNEozWmc2x4JYtfDFsblQvzMplmCz8ZxwnEYwGg6LHqYPn8oTHABisRjAa3jTjfeZ1i253e+y0QenW7XnuCAAAAAAAAAAAAAAAAAAAAKB8qGAEAOSvyGCHwQhGK4daj3mdMRgtyhAnYZ8yFfXbAtxQgBQFfy5DPkxFihTf+8kUtOFDEIyxDRS7IgLbvRV+SnKfyOpaFTUYjZBP/9lCEZMEo7mYo6E84oyTTOHSmbSDcXR5FHyuKhGD0RhPA83H9IyYYLTms9M0acrp4euW3OH5XNoyNmeuBgAAAAAAAAAAAAAAAAAAAKCEPKjoBwA0nUTBDgSjNS1bwZkprKHS4qYtkrmon2A0v6QJSHAaekWYVakYAz8cXmMiI2QPKXDPKqECx8/VUdHeV+vK5nhwxzauDpsb1Q2z4p7T3EznP2S8WzdkLwXTeA3+KXqcOuSaZpnzFd1OAPkzPSOuEozWlGZcHL68a7X02v+k378xpCzt/M22Pc8dAQAAAAAAAAAAAAAAAAAAAJQPwWgAgPwlKjIlGK1p2cJbqm3hy6OEFiUNCzEV9dcImfFKqmJ2h0NkU+gaxfd+Mp0XH4LRjAF+FLuWm4PxThiC0cqnyPFztT3a+/o6szke3AliBqPVC4u1Ba2h8cUZJ9UN2UvTDoLRSqPoOc/gubz1eQBzM6DpmJ4RtxCM1pT2ebfUOjZ83eLb821LHNZ7G8+KAAAAAAAAAAAAAAAAAAAAAJSPw6o0AABMPAlGqxGMVgq2wIU0wWhJ+5SpqN8WNIECpCj4qxcCkoqp31F87yVT0IYPwWimvlR04ATiqfVJ6+ZL65+Wxh0g9W7O6bgEo5VPgvtaVvezyMFojK29Z/vsh82N6t1TCFlsbsZxUsi1xxQunUk7GPuUh0fBaLYwbPoU0HwIRsNgrTtJ+5wvLbpt5Lo/3St1rZVG7ZbiAK5CyizPugOC0RrS8nukZXdLLR3StPdIe5xVdIsAAAAAAAAAAAAAAAAAAACATBGMBgDIX5Ii04qDYDTCG8rBFoxmKrCPFASSsE+ZjknIjF/SFLO7DEYz7ZsCRf8EgYzFqk7D8yKiL5Vf7xbp1+dLK+bmf2zCjMon0X0to/FzS9RgtM5sjgd3bEG+YXMjU/DVAMa/zW3TK+HLQ4PRHIbK1uun8EfRgWODQ85t4/mi2wkgf6YfzyAYrXnNuCQ8GK3WIy25Szrg7x0cNOX8jXtbc3npa9JTH9vxetGt0nHflWZeUliTAAAAAAAAAAAAAAAAAAAAgKx5UNEPAGg6RQY7DNbXlf0+kT1beEu1LXx5lML7pGF7pmA0Qmb8kqrgz+UQ2dTvKFD0jq0PuQz3iIy+VHoLbyomFE0izKiMihw/VyMGo/USjOY9W+BwWLBd3WA0y/7Q+Fb/Onx5+64jlxGMBqn4UJZKxGA0UzgygMZl+vEMgtGa1+STpJ2mh69bfFu6fTsLtLfN/7i3NZRan/TctcMWBtLv/7n48RYAAAAAAAAAAAAAAAAAAACQIYLRAAAFSFCckTTEytoMQ9Eb/FLrNq8zFdhbi5zfNO7AZO2pGoLRCJnxTIoisCj9J+t9OyuKRGK2kA0fgtHoS+W39AfFHZswz/JJUtyc2f0s4jg8LFgLfrEGo4XMjer1O64lzatns/TGS+HrJp80chnBaJCKD+qoRgxGK7qdAPJnCkarjsq3HfBHpSrNuDh83br50obnHBwz7fcfBKM1jY2/l7rXj1y+ZbG08cX82wMAAAAgV8uWLdNnPvMZnXTSSZoyZYra29tVqVS2/7vtttuKbiIAAAAAAAAAAAAAAJkhGA0AkL9ERaYOgtFMRW/wS19X+PKW0ckLxqZdKLVPSLZtxRCMFlaMhOKkCYcqIhgtTZAb3LAGo/kwjTJd/+hLpbH+meKOTZhRCRU4fo46dicYzX+xg9HqBE5xLWlem18xr5v6rpHLXI6dCLEqkYLP1ZC5vO0eSZ8Cmo7pGXHL6HzbAb/MfL953eLbU+zYUUiZ7Tk5IfqNpWezed3mRfm1AwAAACiZ6dOnDwkQe/DBB4tuUmy33HKL9t9/f33xi1/UI488olWrVqmnx/LdDwAAAAAAAAAAAAAAJedDRT8AoNkkKVx2UUhNMFo51AznqToq+T6Puy35ttW28OV9W6Wudcn3i4ylKGZ3GnplKFIk0MFDlnNSacmvGcY2GPopxa7lYCtizcO2VcUeH/ElGj9nFSwc8brC2Np/QcbBaLagNTS2TX8IX15tl3Y+YORyp8Fodfop/FH0nGdwMJqtTxbdTgD5IxgNYcbOlCafHL5u8felWtYhwWnnb7bteVbUUFo7zOs6X5O2/kl68grplydKT35U2rIsv7YBAAAAcObnP/+5LrvsMnV1GX5ccpgHH3XGYEIAACAASURBVHxwSBDcNddc47aBAAAAAAAAAAAAAAA4QDAaACB/iYpMswp2GITwhnLoM/xRX5rixJb25NsOLqYe7g/fTL5fZCtVMbuD6832XZuG3xQoescWsuFDMJqxnxLkUApblro/xr4flFp3Cl/36HvdHx/ZSnRfy+qRT9RgtM6MjgdnbEFmocFodfpd5mEQKI1NfwxfPnamVA0ZJ7kcOxGMVh5FB44NmYsRjAZgENMz4irBaE1vxsXhy7etlFb8IuFOXT0DJBitadjGvxt+L91/irTw36XVv5EW3iTdf7LUuTK/9gEAAABw4qqrrlIw6EfSLrroIv3qV7/SwoULtXjx4u3/zj///AJbCQAAAAAAAAAAAABAtghGAwDkL1HhcoLinWP+r309wWjlYDpPaYLR0qhagtEWfDa/dsAuTTG709ArQ5Eixff+sQajeTCNMrUhoNi1FPIIRmsZI9W6zeu7N7pvAzKU4LNdySjoM+p1hWA0/9mC0WphwWh15m0BwWhNq3dz+PIxexo2cDl2YhxdHkUHow26L1rH84yngaYTNg6Sinv2CH/s85dSS0f4usW3Z3ustPM3272N546NxRZQ/YdvSJuHhRhvWSot+6HbNgEAAABw6uWXX9aCBQu2vz777LN1xx136PTTT9d+++2n6dOnb/83duzYAlsKAAAAAAAAAAAAAEC2PKjoBwA0nwSFOOufib/NXu+U2saZ1weWYAD4w1ScWB2VbzsGVCzBaPBHogDGN7kMvTLum+J779iKRp2G50VlKpil2LUUet5Itt2U06K/t2WMPQRp7ePJ2oBiJCpkzygYbcKh0d7X15XN8eCOLcgsLIy43njKdo1BYzP1pWpb+HLb2Gm3P0vZlhTjfuTLp1AWwmMADObbjzLAH207S3v/7/B1r94jda/Ptz1Wtvkfzx0bSpKA6vlXZN8OAAAAALl58sknh7w+//zzC2oJAAAAAAAAAAAAAAD5IhgNAJC/JEWmvVvib9Oxl3T6/eb1tQQFJMifKWSjqOLEKsFopZAqGM1h6JWpAJ/ie//Y+pAPwWjGvkSxayn0dSbbbqqhIDtMS50AUYI+SybBfSKrczxuP2ncQfXfVyMYzXu2ILMkwWhJCvLRGExzadN1xxZCdfRN0pE3SlNOl8bOTNAWgtFKw6s5jyU8xqt2AsgFwWiwmXlx+PJat7T07vj7Mz63SRlsXbHd23hW1FAIBgYAAACazuuvvz7k9dSpUwtqCQAAAAAAAAAAAAAA+SIYDQCQv0RFpgkLg3Y7Rjr5HkM7KOQvBVNxYrVO4IsrBMmUg6/BaKZrGcX3/rH2IR+mUab7In2pFGqGe5vNmb+Rdt43+vsrbfb1BH2WS5L7RJbn+IQ7pPZd7e8xjdngD2swWkhgY71+F/QRstCsTHNp03XHFoxWaZEOvEI641fSyT9N0BjGPuXh0bmy9Umf2gkgHwSjwWbyaVLH3uHrFt2Wa1PsbN+fMGZvKHyvBQAAADSdzZs3D3nd1lbne2AAAAAAAAAAAAAAABoEldAAgAIkKDKtJAxGk8xBVjUKSErBt+JEgtHKIU3QmLVIPiXjvilQ9I4tGM1peF5Epr5EQE05xA2QOuEOadIJ0opfRN+mWucP4rmflUuS+1qW53jXI6RzF0mrHpQeflf4e2pd2R0PbliD0UKuS1GCZoM+rifNyDSXNvUF29hp8JgmyTg8TSAy8uVTGLStr/nUTgD58O3ZI/xSbZFmvE96/rqR69Y+Lr3xsjTugBg7dPTcxvr9Cc+KGgrfawEAAABeC4JATz31lF566SWtWrVKXV1dmjRpkvbaay+deOKJGjt2bOx91mo8swQAAAAAAAAAAAAANCcqFwEA+UtSZJqm2NlUnB1QQFIKppCNoooTqwyfSiHVNcNl6JWhSJHie//YzknVg2A0U19KEj6K/MUNRhsYy8QJjKl3v3IZAonsJblPZD1maR8vTT1Pmni8tOa3I9f3EYzmvcBBMFqth/FxMzLNpY3BaLZ7zqAxDcFojc2rOQ/BaAAGqRnmZ1WC0fCmGReHB6NJ0qLbpcMN62JJ8cMwkuz3NoLRGgrfawEAAABeWrNmja677jp9//vf1+rVq0Pf097ertNPP13XXHONjj32WOO+lixZohkzZhjXn3baaaHLb731Vv3N3/xN6Lprr71W1157rXGf8+bN06mnnmpcDwAAAAAAAAAAAABAEaiEBgDkL1EwWorCVFOhPgUk5WAKj6mOyrcdA0zF/vCLr8FoprAHiu/9Y+tDTsPzIjL2JYpdS6GvM977B8YycfpevftVjXFQuSS4T7gas5jGYHED/5C/WsxgtCj9jjlVczKdd2NInuUR9JAxTZJgNMbRpeHTubKG8DGeBpqOaRxb1I8ywD/j9u8PiA6z+HtSLc5zSEf3mYotWM2jezDSIxgYAAAA8M4999yjmTNn6oYbbjCGoklSd3e35s6dq+OOO06XXXaZenv5jgUAAAAAAAAAAAAAABuSPQAA+cu7GNYUChHU+v9ZC2JRuFpX+PKiihONxf5vCoI6hWjIRaoCMZfXBNO+Kb73jrUPeXDfMF1nfAqcgFncAKntY5kYfa9eKBZhRuWSJPSw3pglKdMYzDRmgz9swWi1kOtSlIAHriXNyRSuabr3WIM9B93bkszNCYYoEZ/GqZY5O+NpoPn0efbsEX6aeYm05rcjl3f+SXr9AWmPM9PtP/XzZNu9jeeODYWgewAAgGzUeqWtrxbdiubQMdXdd1Ye+O53v6tLL71UtdrQ54r77ruvDj74YHV0dGjZsmV64okn1Ne343n2t7/9bS1btkz33nuvWlsb9/8fAAAAAAAAAAAAAADS4Bt1AEABci4ytf2BXdBHMJrvTOExRRUnRgmaqbTl0xaYpQlIsAY3pESYVXnYzonLPhIZIXulljQYLU7fq9a5FxFmVDIJ7hP1xixJtYwKX24KlIA/bMFoYdelKOMp2z7RuEz3ENPc2zbnHjw+Jhitsfk057H1NZ/aCSAfYQGxEsFoGGqfv5Ke/IfwQOhFt0UPRnMWUmYLVuNZUUPheQ4AAEA2tr4q/XRG0a1oDuculsZOL7oVTjzzzDO6/PLLh4SiHX744frGN76hE044Ych7V69erc9+9rO6+eabty+bO3euPve5z+m6664b8t6pU6dq8eLF21/feOON+trXvrb99V133aXjjjtuRHsmTpyoU089VZL02GOP6cILL9y+7oorrtDHPvYx4/+W3Xffvc7/WgAAAAAAAAAAAAAA8kcwGgAgf3kXmdpCIWq99YNDUCxjMJohlMO1eiEjfdvoU15IcZ1xGnpFmFVp2EI2fAhGI2Sv3Po6471/IGgmTmBMvV9er1FIWypJPtuuxiNVwxgsLCAAfrEV0IeOuSP0O64lzcl03k1zJevYadC9LVEwGmOf0vDpXFn7mkftBOBerc8c9EowGgZrnyDt/b+kpT8Yue7Vn0jdG6X28SkOYAs2i7K5ZXtnYWwoBMHAAAAAgDc+8IEPqLu7e/vrE088Uffdd586OjpGvHfSpEn61re+pVmzZulTn/rU9uX/+q//qgsvvFCHHHLI9mWtra2aPn369tcTJkwYsq/dd999yPrBxo4dK0lasmTJkOUTJkwwbgMAAAAAAAAAAAAAgK8SVJsBAJBS3sWwtmAQWzgA/GAK2agWVJxYL2TEFOSGfNVSFIglCWSIvG/CrErDGozmwzSKkL1Si3uvqBfKmWQbxkDlkuQ+kaTfRGEKRmMM5D9T6IcUfv6iFNxzLWlOpvNuDEaLOnZKEoxGMER5+DTnsfQ15mYok84V0jP/JN13vDT3z6SXv04AUly2cN+inj3CXzMuDl/e1ykt+6+IO3H1GbUFq3FdaCiEUwMAAABemDdvnp566qntr8eNG6e77747NBRtsE9+8pM655xztr+u1Wq64YYbnLUTAAAAAAAAAAAAAIAy86GiHwDQbPIuXLaFQlDI7z9TyEaLIZTDNVvQnkQoiC/SXGcqLdm1YwTT8Jvie+/YAhGc9pGICNkrt7j3ioFQzjjb1QvFopC2ZDwKRmsxBETYQiXgB2swWufIZVHGU7Z9onGZ5tHGuZLtEfSg61uS8FmC0crDp3Gqta8RHoMS2LxYeuJyac4M6YXrpbWPSet+J83/B+n5LxbdunKxzbFM4140r93PlMbsGb5u8e0pd24LNouyOfe2psF3WgAAAIAXbr996DzwIx/5iPbc0zBnHOZLX/rSkNd33XWXurr4ng0AAAAAAAAAAAAAgOEIRgMAFCDnYlhbKASF/P4zBqMVVJxYL2SEYDQ/+BqMZipSDChQ9I6tD/kQjGacytGXSiHuvWLg3hMWXGQyEKZmQiFtuSQJk6kX5pqUKZy2j4IN7wW2YLRtI8cjUcZTXEuakylc0zRXqlrGTkHaYDSPwrZg59W5soTPeNVOYJiNL0iPvl+6dz/plW+FB9Mu/DrPGOIgGA1xVFuk6X8dvm71I9KmV/JtzxDc25pG0ufe9AMAAAAgU4888siQ13/914b5YojZs2fryCOP3P5627Ztmj9/fmZtAwAAAAAAAAAAAACgURCMBgDIX94FGLZQCFNBN/wRVuQpSVVDKIdr9YLRagSj+SHFdcZpMJqhSJHCNP9Yg9E8mEbRl8otTsCZtGMsEysYrd79ijFQqST5bNcbsyRlGoMRDus/ayh0MHJ9lH7HtaQ5mQLxjPcey9hpyJgrSTBaikBk5MyjcaptPM94Gj5aN1/69buln71FWvKf9mvftlXStpX5ta3sbM/xCEZDmJkXm9ct/l6EHRiCC03PeSKzbU9YYkNJGk5NmDkAAACQmfXr1+uPf/zj9tcTJkzQQQcdFGsfJ5xwwpDXv/vd7zJpGwAAAAAAAAAAAAAAjcRRlSwAABZ5F5naQiGSFpEgP6YAh2p7vu3Yftw6wydCQfyQJiDBaeiVad8UKHrHdq9yGZ4XGX2p1OKGaA6MZcbF+IP6eqFYjIFKJsFnu96YJSlTQIQpzBb+sAajqf/a1DJojB1lPBXU2ScakykQz3TvsY2dBo+5kozDCUYrD58Cx6x9zaN2Aqselp6/TlpxX7ztfPq8+c72HI9gNIQZf7C06zHSupCC9UW3S4dcU0ygvi1YLeBZUUNJGk5d2yZpTKZNAQAAKLWOqdK5i4tuRXPomFp0CzK3evXqIa/3228/VWIGXh944IFDXq9atSp1uwAAAAAAAAAAAAAAaDQEowEACpBzcZ4tFIJQEP+ZCt2LCiaqFzRDMJofUgWjOexbpj+GpWjZP7Y+5EMwGn2p3OLeKwbGMuMPlnaaJm1ZGmGbNvt6xkDlkuSzXanTB5KqjgpfTjCa/+oFo/Vtk9rG7XgdZTyVtCgf5Wa6hxiD0SzhIIP7WaJgNMY+peHTubL2SY/aieYUBNKKuf2BaKsfSbgP+nFkq35tXkcwGkxmXhwejLZ1mbTqIWnKaeZtnYWU2QrwCUZrKL2bEm7XKbXvkm1bAAAAyqzaKo2dXnQrUFLr168f8nr8+PGx9zF8m3Xr1qVqEwAAAAAAAAAAAAAAjaiAn6wGADS9vIvzbEFWFPL7z7tgtDrHJRjNDzVPg9GMw2+Klr3jezCasS9R7FoKfZ3x3j8wlqlUpONuj7eNCWOgckkyfraFA6fRYghG6yMYzXtBhGC0Ie+P0O8IWWxOpvNuuu5EDaFKFIyWYtyPfHkV1EQwGjxU65OW/Uiae5T04NnJQ9H6d5ZZsxreyzea11UJRoPBtAukanv4ukUR5+wj2ILN0m7Ps6KG8uzVybar8b0FAAAAkJVgWOh1xfSjZjFksQ8AAAAAAAAAAAAAABoNwWgAgPz5FIxGIb//TMEtrsI+6qm22dcTjOaHNAEJSQIZ0u47oEDRP5Z7lcs+EpXpD6MJciiHuPeKwfeeKaf0F2HX3abOfZIxUMkk+GzXC8dLqmoKRmMM5L1a3GC0COOpevtEYzLN0UzXnV0ON+9r530HvSAYrbF5NE61FhkyN0POaj39QUo/f4v0yF9K659Ov0/mhdH1bDKvq/cMEM1r1G7SXu8MX7f8R1LPZsvGju4zUYNoUW7b1iTfljk7AAAAkJldd911yOuNGzfG3sfwbXbZZZdUbQIAAAAAAAAAAAAAoBF5UNEPAGg6SQpxJr01+fFswSCmgm74w1ToXmnJtx0DWkZJE08wr69RYOSHFAV/TvuWqQCfAkXv2EI2fAhGM07lCHIohbhBQsODZsbuG/6+4dsc9sXs2oBiJRk/uwqRbRkdvrzW5eZ4yE69uU+SYDRCFpuT6bybrjsdU6Vdjx65fNKJ/cEiAxKNsRhHl0aRoSxHfGXYAsJj4IHeTmnhN6V795Meu0R646Xo2044VDriq+b19OPo2nY2r7OGKKLpzbwkfHnvFmn5fyfYYcr+VqmYn2nWutPtG/74073JtyUYDQAAAMjMpEmThrxeuHBh7H28/PLLQ15Pnjw5VZsAAAAAAAAAAAAAAGhEPlT0AwCaToLivFkfSn644WEig1HI7z/TObKdV9cOu868jgIjP0QJ8jBxGYxmCnsICLPyjm+hjMOZCrQpgC+HuOOP4UEzpmCqIdu0Sfu8J7s2oFhJPtuuxkoto8KX9xGM5r2gTiBikmA0gqabk+m82647J9wpdey94/VO06Xj/3PY9gkeVacZ9yNfRY5TZ/7N0Ne2vsZ4Gq71bJJe+LL00xnSkx+RtiyNvu1ux0mn3Cv9+TPStL+yvJFnDJGZnuPN+rt824Hy2ePt0mhD0fqi2ywbOvx8towJX97X6e6YyFeac8ncDQAAAMjMLrvson333fFDVhs2bNCLL74Yax+PPvrokNfHHHNMJm0bUCHwHQAAAAAAAAAAAADQAAhGAwDkz1RkOuFQadoFI5dP/2tp2oXJjzc8TGQwikH852M40ZRTzOsIRvNDqmA0l0Nk0x+fUnzvnZrp2uPJFMrYDgrgSyHu+GN40EyUYLRKq7TzvuaQGsZAJZPgPmEbA6dRNQSj1RgDea9WLxhtWJF9lHAgQhabU5Lw6nH7Se98RXrbw9KZj0jvXCiNnT7sTQSjNbYC5zyjdhv62jqmZ24GR7rWSgs+L82ZJj3zf6Rtr0ffdve3SWc8IJ31qLTXOW8GZRPwlwnTc7zJp+baDJRQta3/e4swqx6UNi+Jt78sCtZNwWi9BKM1jDT9hLkbAAAAkKkTTzxxyOs77rgj8rYvvvii5s+fv/316NGjddRRR2XWNkkaNWro93ldXfzAEQAAAAAAAAAAAACgfDyp6gcANBVTcV61XTrhDumsx6UDruj/946npONvl6opQrBsxdkUg/jPFNziKuwjqvGzw5cTjOaHVMFoDkP3TAX4FC17yHBOigxlHMJQCElfKoe4448RwWiGYufBBu6Tuxr+iJ4xULkk+WzbxsBptHaEL6fY3n91g9GGjWOjjKfq7RONyXQPqTdHa2mXJp8kTXprf5jIcEkCaAlGKw+vxqkESiFHnSukpz7ZH4j23D9L3eujbzv1POmsx6TTfylNOW1oII7tmkk/js70HC9KGDUw42LzusXfC18eOAy0N83Vhgcgo8RS/GkHz4EAAACATL3//e8f8vqmm27SypUrI2171VVXDXl9wQUXjAgyS2vChAlDXq9YsSLT/QMAAAAAAAAAAAAAkAeC0QAA+TMVLleq/f8m/pl01I39/3Y9Illx9JD9EoxWasb+UnA4kalAkmA0P5QtGE0OiyKRjK/XngH0pXIzhX6aDA+aiVKkPzD+MYXUxG0DCpbgsx0WOpQFUzBf31Y3x0N26oWY1RIEozGfak6me0jaQMZEwWiE/5SGT+eqYggZlsR4GpnZvFh64nJpzgzppa9KvVuibVepStMuks5eIJ18jzTxWPP7jDz6vPlu+PhnAMFoiGKXQ6Vdjghft/j2mCFotntTRMzVGp91DFMHz4EAAACATJ1++uk6/PDDt7/euHGjLrzwQnV22sOpb7jhBs2ZM2f760qloo9//OOZt2/mzJlqb2/f/nrevHnq6eHHbgAAAAAAAAAAAAAA5ZKyWg0AUlj3tNS9tv+/BxeI7DRdGrdfIU1CXkzFeY7yOm2FghSD+M/XcCKC0fyWqujeZXawoXjNp5AA9DOGwfiSLU1fKrW4QULDg2ZMxc6DDYRiVQzhWIQZlUuSz3bagCKTlo7w5UFff/CWq0A2pBfUKXgZPo6N0u+YTzUn0z3EFMYZWZJgtBSByMiZT+NUS6gI42mktfEF6fkvSUvvjHeNqrZJMy6RDv60tPOsKBuYV9GPowkC83M8gtEQ1YyLpfVPj1y+eZG0+hFp8kn5tcUYjGYvykeT4DkQAAAAMMTKlSu1ZMmSRNtOnz5dkvSd73xHxx9/vLq7uyVJDz74oE466SR94xvf0LHHDg27X7NmjT7/+c/rm9/85pDln/70p3XooYcmaodNe3u73vrWt2revHmSpGXLluncc8/Vhz70Ie23337q6Bj6fd/uu++u0aN5HgIAAAAAAAAAAAAA8AvBaACK88yV0spfjFx+8JXS4dfn3x7kx1ScV3UUdFWp9AdDhBV+UAziP9M5chX2EVXV8AeBNYLRvJAmIMHVtUgyBzUODgiFH0z3qqJDGQcYQz/pS6UQd/wxPGgqSpH+wH3SFFLDGKhcfApGazUEo0lS71apfbyb4yK9WtxgtAjjqXr7RGMyBeKlve7YQs1NCEYrD5+CmioV9YejhYydfWonymXdfOn566TlP1GseVnLGGnWZdJB/yh1TI2+XYWAv9Rq3eZ1pud+wHDTL5Ke/mT4HHvx7SHBaKbrg+UzHZUpGK2XYLSGkSaYmlBrAAAAYIgLL7ww8bbBm3/fceSRR+qmm27Shz70IdVq/c9j5s+fr+OOO06zZs3S7NmzNXr0aC1fvlxPPPGEenuHjsvPPPNM/cu//Evy/xF1fOITn9gejCZJc+fO1dy5c0PfO2/ePJ166qnO2gIAAAAAAAAAAAAAQBIJqs0AAEjJWJzn8LY0PFBkAMUg/jMVuhcdTmQKpRkeKIFipAlIcNq3TEWOFC17x9SHXAbnxWLoSxTAl0Pc8cfwoJkoRfoDgWimkBrGQOWS5LNtCsVLy1RsL0l9W90cE9lwEYxGyGJzchVebQv5MbaFsU9p+HaujEF8nrUT/lv1sDTvHdLco6XlP1bkULS28dLsq6XzlkpH3RAvFE2qEyZJP47E9gwvShg1IEmjJ0l7/UX4uqU/7A+PzotprtZHMFrDSPPdA3M3AAAAwIlLL71Ud999t8aOHTtk+SuvvKI5c+bo7rvv1qOPPjoiFO1v//Zv9bOf/UxtbYa/Z8vAOeecoy984QtqafHlbxwAAAAAAAAAAAAAAIiHYDQAQP5MxbDWgr6UTAXaFIP4zxTc4irsIyqC0fyWJhjN5RDZdJ3zLSQA/oYyDjDeMyMW4aM4QU2xz9Pw891qCabavk2dYDTGQCWT4D6RNqDIpLXDvC7Pon/EE+XaM2IcG6HfcS1pTqbzXsQcLdW4H7nybc7D3AxpBIH02v9IvzxJuv8UacV90bcdNUk67Lr+QLTDvtAfqpSI5dkF/TgagtGQlRkXhy/v3SQt/8mwhQ6f2xCM1vhqKb57qBeUDQAAACCx888/X3/84x91xRVXaOLEicb3tbW16ayzztJvfvMbfec733Eaijbg6quv1oIFC3TllVfq5JNP1u67764xYyJ81wwAAAAAAAAAAAAAgAcKThQBgDAEejS+AoLRTAXaFPL7z9dwIoLR/JamCNhl3yLMqjyMfciXbOlK+GIK4P1nCvw0qbRKlWHnuxqhSL/65h/Sm8ZAcduBYiX5bLsKKGqxBKNRcO+vKEXww4vsaxECpyiub06me4irQEYbgtFKxLdxqmk8zdwMFrU+6dWfSM9fJ61/Ot62HVOlgz4l7ftBe9BsVLbnqMwLo7EFDBGMhjj2/Atp1G5S19qR6xbfLs14b/19DJ/3J2G6tjBPaxxpvnvguzAAAAA0uSVLljjd/+TJk3XjjTfq3/7t3zR//ny99NJLWr16tbq6ujRx4kRNnTpVJ554onbeeefY+77mmmt0zTXXJG7bwQcfrOuvvz7x9gAAAAAAAAAAAAAAFIVgNADFyaLQA+VURNiMqUCbUBD/mQp2iii6H4xgNL+lCUhwGrpHmFVp+BrKOICQvfKKW4gaFm4VpUh/4D5pul9SEFsuSe4TrsZKtiCP3q1ujon0ogSY9Q4LTIgynmI+1ZxM9xBXgYw2jKPLw7dzZRxPe9ZO+KHWIy25U3rhS9IbL8XbduwsafaV0vT3SS3t2bWJYLT0bM/wCEZDHC3t0rSLpIVfH7lu5f3SluXSTnv3v3YZwNkyJnw5wWjlEgTSxuekLUulSW+V2nfZsS7Ndw/M3QAAAIBcVKtVHXPMMTrmmGOKbgoAAAAAAAAAAAAAAKVHMBoAPwWB9OL/Jy3+Xn8AyT7nSwdfJVU9CSNBOqbiPFtBX1qmAm1CQfznazhR1VAgWSMYzQupgtFchjQSZlUavl57tiNkr7Tijj3Cwq1Mxc6DDYx9TGOgKCFJ8EiC+0S1LftmSPb+10cwmreCCJ/54ePYKOMp5lPNqXdL+PIiwqvTjPuRL+/GqYa5mXftRKF6O6VFt0ovfrk/oCaOCYdKs/9J2vt8R8+0bc8ueMYQCcFoyNLMS8KD0RRIS74vzb6qzg4y+CEh01yNAOvy6O2UHj5PWvnL/tfVNum426SeTdLax6RFtyXfN3M3AAAAAAAAAAAAAAAAAAAAlAzBaAD8EwTSgs9Jz39hx7INz0obfi+99QdSJYMCERSsgGA0U4F2jWIQrwWBudDdFPSSl1ZDoZmtqBL5SRWM5jL4ijCr0igixDMOQvbKK+7YIyzcKkqR/sDYxzQGoiC2XJLcJ1wFFFWqUnWUVOsauY6Ce39FCUMcMY6N0O8IWWw+G18wrytijkYw4LiqPwAAIABJREFUWol4NucxjaeZm0HqD6D5w7ekl74qbXs93ra7HSe95Wppz79w+xzbNjelH0fT12leZ/pBBMBklyOk8W+RNj43ct2i26SDr3zzmuDwuY0pGM3W1+GX57+4IxRN6p9vPfrebPbNcyAAAAAAAAAAAAAAAAAAAACUjCdV/QCakykcpk965f+OXL7sh9JL/+a2SciHsTivgGA0ikH8ZivkdBpeFYGpQJJgND/4GoxmKlxeMVfavNjdcRGfqQ8Vfe3ZjpC90oo79ggbw5iKnQcbCFQzhdQQDlsyCT7bLgOKWjvCl1Nw768kwWhRxlPMp5rPq/eY17kKZLRZMVda8Hlp5QP9wdrwl2/jVGOolGftRL661vZfU+ZMk575dLxQtClnSGc8IJ31qLTXOe5/3MMa2k0/jsT2DK9lVH7tQGOoVKSZl4Sv27RQWvt4vR2kb4PxhzyYp5XGwpvc7ZvnQAAAAAAAAAAAAAAAAAAAACgZgtEA+Gfbyv4itDBPf1Lq2Zxve5A9UzGstaAvJVMwBIX8frOFMRQdTtRCMJrX0hTdu7wWmYbfW5ZKP50p/ea90YJL4J7vwWimfupb4ARGiluIGjaGMd2DBhvoq4TDNoYkn22XAUWmcL6+re6OiXSSBKP1bIqwX64lTWfZf5nXFRGMJknP/bP0wBnS7y5nLOQz784NQcMYpHOF9NQn+wPRnvtnqXt99G2nnied9Zh0xv3SlNPcB6JtZ3l2QT+OpmtN+PJqu+NnQ2hY099rfm606LY3/8NhkKtxnkYwWmn0bHS375e+KnU73D8AAAAAAACA1Hr7Av36D4F+8Tw/CgYAAAAAAAAAgEQwGgAf1QsVeuPFfNoBd4xhMw5vS6YCbQr5/WYLbSmq6H4AwWh+s4Xq1eMy+KpegfTSO6WF33B3fMRQQIhnHMb7GsF63osbSBZ2riMFo1XN20vS0rvitQPFSvLZNgUDZ6GlI3x5L8Fo3oobjBYE0ron629DyGLz2bDAvK5W8FzolZulNb8ttg2w8CyoyTiup8igqWxeLD1xuTRnRn9gTO+WaNtVqtK0i6SzF0gn3yNNPNZtO01tMCEYLZqnPx2+PMp8CwgzZndpj3eEr1v6A/tz4yxCFY3Pq7vS7xvlt+kP0o8mSIu/X3RLAAAAAAAAAAyyaVug/54f6JJba9rjkzWd8pWarvox3/UAAAAAAAAAACARjAagUIZCj3qhQlEL1OAvU3Gey7AZUzAEhfx+s4VbuQyvisJUaFZ0GAD6+RqMFmX4/fLXHB4fkdVMIZ4FX3sGtIwKX16j2NV7WQSjVdujb28LxyLEqjySfLZdhsi2GoLR+uhT3opy7Rk8jt20MNp+CeRsPrsebV43aqK747buFO19K+931wYkFwT+BTWZnkH51k64sfFF6dH3S/fuJ73yrehjrWqbtO+l0jkvS2+9Q5pwiNt22lhDlOjHkfRuCl9OMBrSmHlx+PKejdKrc9weu8qzIkTw2/dJmxcV3QoAAAAAAAAAku55OtCkT9T0lzfX9L3fBlr7ZonE08ul5ev4QScAAAAAAAAAAAhGA+CfekUa9YLTUAKmYDSHYTOmYAgK+f1mC3CwBb1I0uFfDl9+0KeSt2cwU5Ek1yg/pApGczhEbokQZrRlibvjIzpTH/ImGM10DaLY1Xtxxx7VtpHLKpXo16q2ceZ1656M1xYUJ8lnO6zvZMVYcN/t7phIJ8q1Z/A4dv0z0fZL0HTzGTvLvG787PT7n3pe+PIDroi2fffG9G1A9lzfHw65NsFGBKM1pXXzpV+/W/rZbGnJf0Z/dtAyRjrgY9K5i6Rjvy3tbLkW5soQjkY/jsY0p9q2Kt92oLHs9U6pfZfwdYtu7w8LDWULO4yI59WIatmPim4BAAAAAAAAAElH7CN1G/7s4h/u4vseAAAAAAAAAAAIRgPgn3pF/xRxlJ+xOM/hbckUjEYhv99qlgLVeuFEU88dGdpRaZH2fnf6dklSlUIzr6UKRnMYfGXqN/CPMRjNkymUMZSIYDTv1WKOPVrGhC+f8X7zNnu8Y8d/736m+X29W+K1BcVJ8tkeNTn7dgwwBdTG7d/ITxAlGK1z0H9HHNNyzpuPbZydRSDjwVdKrWOHLtv/o1LHPtG2rzEf81KW8+Th/aw6Ktk83zSuJ1CqMa16WJr3Dmnu0dLyH0syBRMN0zZemn21dN5S6agbpI6pTpsZG/04HdO1afZn8m0HGkvLaGnaBeHrVt4ndb7m7tg8K0JUCz5XdAsAAAAAAAAASJq2W0WHGb5+mvOsVP27Ph16TZ8+cHtNP1sQqFaL+B0XAAAAAAAAAAANwpOqfgBNqVIJX16vWJLQofIzFee5DJshvKGcbEX3prC7AeMOkE65V9p5v/7XO02T3voDaeKx2bSthWA0r6UpAnYZjNZqCDiCh0z3Kof9Iw5TsSvXIP/FDWU13W+O+Ko08YTwdQdfueO/J51k3jf9pTzqhUeHGT0x+3YMIHS4fGpRgtG2hf+3TZTANTQW0+d8vw9ns/+Jx0ln/kY66JPS9PdKx39POuprUoth7DMc9zY/ZXVe2neVTvzRjnn+uAOlU/+fNP7gBDszPJc0zQNQPkEgvfY/0i9Pku4/RVpxX/RtR02SDruuPxDtsC9Ioye5a2caBKOlY7o2TXprvu1A45lxSfjyoCa9/qvwdabvy+IwjZcYH2E4X374AQAAAAAAAIDeeZj9+fBzr0m3/ibQO2+q6Yq7AwUB4WgAAAAAAAAAgOZRJ1EEAApQ79fr+XX7BlBAMBrhDeVkOz9Rwon2OFN650Kpe4PUNj6bArMBBKP5zRaqV4/La1ELwWilYepDvgSjmYpdGSf5L6tgtFG7Smc+Ir3+gPTs1dK6J6V9PyjNulTa9agd76u2SKMnS9tWjdwH96zyqHXHe/++H3TTjgHVtvDlhA77K3YwWmfE/XLOm47pPlYvuDqOXQ6VdvnK0GWmUNjhkgRJwr1aRmOOSlWaem7/v55NUtvO6fYVhkKC8gtq0vIfS89fJ61/Ot62HVOlgz7VP5Zq7XDTvkyZnl/Qj+sKauYxtmkOBkS12zH94Z1vvDRyncvgQuPzasZHGC7D70kAAAAAAAAApHLuYRV94WfRvtv5xrxAHzm1ogP3cNwoAAAAAAAAAAA8QTAaAP/UC/QgwKH8jMU/DsOIqoZbHoX8frOFW8UJJ2qfkL4tw5kKzWrb+gupswxhQ3ypgtEcBl9RXFse3gejUexaWnHHHrbrRqUi7X5G/z/rPgyhjFGDj1C8uKGHO89y044BhA6XT+xgtIjzbs5586kVNEYyhcIOl1UAF7KV1bO8wWFmaULRhu9rCIeBNXCr1iMtuVN64UvhYUQ2Y2dJs6+Upr9Paml30z4XjAF/9OO6bHNnnt0grUpFmnGx9OxV+R7XFCRLiD6G47sLAAAAAAAAwBtHTZMOmCK9/Hq09z+0MNCBe/CMDwAAAAAAAADQHBwm0ABAQvWKJQlGKz9TcZ6xKDUDhDeUk+38mMLu8mIqkgxq9CsfeBuMZggngn+KuFfFYSt2DaL9giQKEvcekcV1wxikx7i6NOKGHlYdhzmYxmGMgfzlKhgtyn7RWEyfc9fzM9PYZzjubX7K7LxkORYnUKph9HZKC78p3buf9Ngl8ULRJhwinXCXdM5L0r4fKFcomkTAXxq2IE2C0ZCFGe+L+QwpgyI24w95dHN/wzAUTQIAAAAAAAC+qFQq+p8roj9PXrvFYWMAAAAAAAAAAPCMJ1X9AJqT4Q/v6xVL2oqWUBIEoyGimiXcymV4VRS2IkmK8YuXptjPh2A0W99HPkzhekVfewa0WMJBCKnxWy1uMFoGRfmmkCzuV+VRixmM1uo4iNM0tub6468gwrkZPNeOOu9mPtV8jGMkx8FotrHPYNzb/JTVeclyLG56BkVwTHn0bJJe+Ir00xnSkx+RtiyNvu1ux0mn3Cv9+bPS9AukqifzvNjox4nZrkuuQ4bRHDr2kqa8Ld9j2oJka935tQP+8+WHHwAAAAAAAABIkqZPrOj1r1Y1fbf6712/1X17AAAAAAAAAADwheOKNQBIoK9O0T9FruVnKs5zWYxRNYU3UMjvNVvQguvC+3psRZJ926S2nfNrC0YyBTZE4vBaFDXgqNYlVTvctQP1+R6MZi123Sa1tOfXFsQTN0Qoi2A00z4IHC6PenOk4VyHOTC2Lp8o52bwXDvqvJtz3nxM9zHXYyTb2Gcwnhn5KbNgtCznaoYfbDCF+cMfXWull78uLfx3qXt9vG2nnCG95Wpp8qlSxdQHSoSAv+Rs16Us5mCAJM28RFr5i4hvzuCaZAuS7euib2OQBrgHAgAAAAAAAA1m0s4VLbq+RUvWBHpllfSub9a0NeQ3LzYQjAYAAAAAAAAAaCIEowHwT88G+3qKXMvPWJznMIzIFKIVN5wE+bKFWxUdTmQrJOM6Vbw0wWguQxpbxkR7X982qZVgtEIVca+Kw3oN6pLa8msKYoobIhT1upFkH72d6feNfNRiBqO5LnhnbF0+QU/99wwJRot4fYiyXzQW033MFJiYFYLRys3HYDQCpcqnc4X04lelV74l9W6Jt+3U86SDr5ImHuumbUUxfibox3URjIY8TH2X1DZO6nkjn+PVfV49Pp92oAQIRgMAAAAAAAB8NX1iRdMnSn99XEXffjgYsX7D1pHLAAAAAAAAAABoVASjAShQwj+8p8i1/EyBRS7DiExF2nHDSZAvW7iG68L7eghG81uqYDSHhWFxgtFQLOO9quBQxgG2cJC4AUrIV9zgqGoGRfmme1aNa00p1Pri39cIRsNwtQgBZrXu/v5WbYk+FmE+1XyMYyTH87OW9mjv497mp8zOSw7BaKKQwDubF0svfFladGu8uU6lKu1zgTT7SmnCIe7aVyjD8wsC/uojGA15aB0j7fMe6Y+31H9vFs8jeVaEqFx+FwcAAAAAAAAgExMMv6u7fmu+7QAAAAAAAAAAoEgEowEoHwo4ys9UnOeyGIPwhnKyhYAUHU5kK5KkGL94aYLRXIpaXEsfKp7vwWgtlmLXPsZKXos79siiKN+0D0IYy6HWHX8b12EOhA6XT5RgNKl/vl3tiH59YD7VfEzn3PUYyRb0MRj3Nj9ldV6yfG5k2heBUv7Y+KL0/PXS0jvjzfGrbdKMS6SDPy3tPMtZ87xAP06OYDTkZebF0YLRsmB9VsQYCYO4/GEQAAAAAAAAAJnYxRCMtoFgNAAAAAAAAABAEyEYDUD5UMDRAEzBaA4LqQlGK6eaLRit4GGMrUiS61TxfC0CbhkT7X30oeIVEeIZhy0chBBZv8UNjiIYDUk+067DHBhbl0/UYLS+bVJrjGC0qPtF4zDdx0yBiVmxBX0Mxr3NT5kFo2X53IhAKW+tmy89f520/CeSgujbtYyRZl0mHfSPUsdUZ83zCsFoydkC6aOGcQJRTDxBGjtL2vxKnTdmEFRVtf2QB8+KvBfEuOel5snzTQAAAAAAAABGpmC09QSjAQAAAAAAAACaCMFoAIqT9BfJKXItP2NxnsNijGpb+PI+CoK8ZgvXcBmkF4WtSJLrVPECS6hekaIG1dCHimfqQ0VfewYQzlhecYOjogYqJtlHX2f6fcO9JONV12EOpgAk+pS/ghjBaFL0c0kYXvMxjpEcP2aOel3rfM1tO5BMZsFoGT43Mj2XJFCqOKse7g9EW3FfvO3axkv7/710wBXS6Elu2uYt02ciz3CdklrzePjy6qjk31sAYSoVaebF0oLPuj+WLUiW70H8l+fzbK5zAAAAAAAAgPd26ago7DuftZulIAhU4TkfAAAAAAAAAKAJ8HPAAMqHsI/yMxWZZlngOpwpvGHpXVLN0wAl2IuBig4nqraai/+5ThXP22C0iAFH9KHieR+MRrFradXiBqNFDFRMsg+uNeVQSxKM1p59OwYzjYGW/1iqRQzgQr6inpfaQDBaxOtD3Gsays8Uhud6jBQn8HHjS+7agWR8DEYzfjVCMFqugkB67X+kX54k3X9KvFC0UZOkw66TzlsqHfaFJgxFk/kzQcCf3bY10rNXha+zzbWBpGa8X1K9ArUMCtgI0S+3XK/dFEwCAAAAAAAAvpsyLnz5G9ukVZvybQsAAAAAAAAAAEUhGA1A+fR1Ft0CpFZAMJopvEGS1j7h7rhIx1R0L/kRTkTQjL8IRkNaxhBPD649kj30aNvr+bUD8W14Nt77swhGqxr2sfy/pV7G1t574+X427gORqu2mdetesjtsZFM1GC0vpjBaFuWjly29TVp4TekJ/9Beu6L0hrmWw3FNEczhZFnJU5Qzas/cdcOJFPLan6T4XMj0zOo136e3TFgFtSkZT+S5h4lPXi2tPqR6Nt2TJWO+pp03hJp9lVS+3hnzfSe8VkqwWhWtgC+njfyaweax077SFNOc3+cSquMgVdJAreRsxyv3bVu6ZVbpF+eLP3XBOmZq7j+AQAAAAAAAJ45aA/zuhdey68dAAAAAAAAAAAUiWA0AOWzZXHRLUBam03nsKBgtJe+6u64SGfFL8KXV6pSxVDklSdTWE1mRd9IzNdgtDGWv1YZjBDQ4pn6kMsQzzgqVXMw0a//l/TGwnzbg2jWPim9+JV420QNVLTuwxKu9tA5Us3TayakjS9K886Kv12cAKEkbGPr5693e2wkEzcYLep4dusy6f7TpO4N/a9X/1b6f/tLT/69tPDr0oLPSL88Xvrjd+O3GX4y3TNch8dWY1zXTPNIFCer4Ocs+5lpXL/iPstzK6RW65EW3S79bLb0yF9K65+Ovu3YWdKx/yG984/SAf8gtXa4a2dpGPqxKegb/Tb9oegWoBnNuNj9MSoV81yQH2HwX57Ps7vXS0/8nbT611LPRumFL0n/NV56g+sjAAAAAAAA4ItJO1c0aefwdc+/FuTbGAAAAAAAAAAACuJJVT+A5pQw1OiNl/v/aB/lVOuRNiwIX+cybKZqCW947efujot0Xrk5fLktjCNPpqAZCs2K52swWtTCbYLRimcMRnMc+hGHLSBk/hX5tQPR/e7y+NvYQs0i78MSrvb6A9Lax9MfA268+OVk28UJEEq0f8tY7PUH3B4byQS90d43MI6NM55d9aD0+Af7//uJv5N6tww7dk166uNSX3f0fcJfpr7keo5mCoQNs+Y37tqBZDILRsvwuZGtz756T3bHQb/eTmnhN6V795Meu0R646Xo2044RDrhLumcl6R9PyC1tDtrZumYPhMEo9n5+swIjW2fd0utY83rs/oRkKrphzy6stk/3PHh2v3kR4puAQAAAAAAAIBB9p8cvnzlG/m2AwAAAAAAAACAohCMBqCc1v6u6BYgqQ3Pmde1jXN3XFvBqy8hWxipfdfw5TVPQhVMhWYEoxUvavjHcLuflW07wuz/9/XfU+tx3w7YGYPRPLpnmK6RkrT6kfzagWh6t0jr5sffbswe6Y9db4z1/PXpjwE3Ft2WbLs2S8F9Fny6FiKaqGOL7cFoMUNa//RTaetr0kbDfK/njWTXQPinqDFSnLCQKae7aweSyWp+k1cw2lOfyO44za5nk/TCV6SfzugPW9myNPq2ux0nnXKv9OfPStMvkKoehVT7wviZ8CBcx2e2Z0aTT86vHWgurTtJ+5zv/jgthpDsPoLRvOdDMNrKX0q9W4tuBQAAAAAAAIA37WR45NvrweNEAAAAAAAAAADyQDAagHJa83jRLUBS3evM6/b8c3fHrVoKXm3rUCxT8XSLIZAsb6Z2EIxWPFNgg02lKu3/4ezbMpwtzGpA0mA3ZMd0Dny6Z0w5zbyud7MUBPm1BfX1bJYU85yMntwfCJHWpBPs69c/lf4YKEZrSADaLkdK7bu4PS7BaOUTNZRo4P4Xdzxb65E2LLC/p29LvH3CT6YxUiWHwKKx+0Z7X8sYt+1AfJnNbzL8OsOncX0j6lorLbhGmjNNeubT0rbXo2875QzpjAeksx6V9jonXjBi0zF8JnwI1/GZ7ZnRnn+RXzvQfGZcYlmZ0bWuagpG43m195I8z3ahZ2PRLQAAAAAAAADwpjbD1/C9njxOBAAAAAAAAADANYLRABQnTVHbWoLRSstWkL/bMe6OawtvyKOAG8nUDAVbR30933aYEIzmr1rEwvsDPyFNOETa4x3SST+Wpp7ntl1StGC/qO2HO6Zz4FMY0BFftq+nGN4vpnvagNadhr4ePVk65WdSNYNxyq5H13kDYROltOc50qFfGLqs2iYdco37YxMmUz5BxGC0WsJgNKl+8BHjm8ZgOo95XBfe8rlo7+vrctsOxJfV57+S4dcZPo3rG0nnCunpT/UHoj13rdS9Pvq2e50rnfWYdMb9/SHQBKLVZ/r/iLmgne2adOAn8msHms/kk6Sdpoevq7ZncwzTc8ca4yPv+XLtZt4GAAAAAAAAeKPV8PVoD8FoAAAAAAAAAIAmQfUPgHJa+7gUBBTIlZGpWH54GEjWrMFo3A69ZQpkGDUx33aYEIzmr3rBHAOO/KrbdoSpjqr/nqjthzumc+BTGNDoydLbHpLuPyV8fdArifBPb/R2mte9a7nUvqu09AfSpoXSTtOkff5KGrVbNseuVKQJh0kbns1mf/DDPu+WZl4i7TxLevUeqXWsNO090sTj3B+b8XP52AKqBwtSBKPVC6NifNMYAsNfWOdxXWgdE+19BH/4J6vPf5bB9j6N6xvB5sXSC1+WFt0a7zNYqUr7XCDNvrI/tBzxGMMCPQnX8ZXpmjT1XVwb4FalKu37QWnBZ0auy+pHY1oMzx0JjvWfaZwtSQdfKb3wpXj7O+DjUuefpGU/jLcdY2kAAEaoVCozJB0uaU9JYyWtkLRU0qNBEPUXKZy0a1dJR0uaIWmC+n8FZ6OkVyX9LgiClUW1DQAAAEA2Wg1fj/byVRAAAAAAAAAAoEnwF/4AyqlrjbRlsTR2ZtEtQVymX5t3XURtK2qj4M1fpkCGlogF8a4Zg9Es4TdwL/D8rz5MBYqDERxSPNM58C0MqKXDvC7olRShvyEfNUvIUOtOUmuHtO/fuju+9d4ZuDsu3Km+OQ7Z6y/6/+V6bM+uhagvTjBarTfZWKR3S502ML5pCMYxUg5hrFXD/Gs4whz8k1kwmikEKsm+CBDOxMYXpeevl5beaQ90Ga7aJs24RDr40/0hr0jI8Jnw/blI0YoM+QQO+sf+oKoNC3Ysm3yytM97stm/abxkeyYBT1iu3XucFT8Ybe93SWNnxQ9G47sNAAC2q1Qq50v6hKTjDW9ZV6lU7pb0uSAI1uTUpoqk90j6iKQT67z3aUnfkvTdIODLZwAAAKCMWqsVhf1dV2+Mr+UAAAAAAAAAACgz/sofQIEq6TZf8zjBaGVk+nvLapvb49oK2yh681NQk2rd4etMgWR5MxWamQLdkA/fQzei9F/f/zc0g6KCPOOyBTrQj/xiuzdEDXpJw5d7J7JT5Dn17VqI+qIGo9V6k49lezfb11N71xhM44s8AhOjXveYj/knq3FppsFo3MtSWTdfev46aflPFCtkt2WMNOuy/mCgjqnOmtc0TJ+JgOBjqyJDPoGW0dLbH5de+Q9p8yvShEOkaRdJLe0Z7d8QkN9HcKz3bKGWSZ4bVUcle27AWBoAAFUqlbGSbpF0QZ237irpckn/u1KpXBwEwX2O27W7pDslnRZxkyMk3Szp7yqVygVBELzirHFAA9i6daueeuop/eEPf9CaNWu0bds2jRkzRlOmTNH++++vI444Qu3t2czdli1bpm9/+9t66KGHtHDhQq1fv149PTu+x7n11lt1ySWXhG77xBNP6NZbb9Wjjz6q5cuXa+PGjarVdswnFi9erOnTp0uSTj31VD300EPb1wU8MwIAoHTaDF9d9PIbOQAAAAAAAACAJkH1DwC/veVz0rL/kt54ceS6tU9I0y/Mv01Ix1SQ77og1VbYRtGbn2zFWr6Eu5jaUaN4qFCB5z+HVzUUKA5GcEjxjEGenk2hbO2hH/mlr9O8Lo/7WtX2h/opA4tRjJYxxR2bMJnyCSIGowUOg9EI7GwMprF2HvPqyMFoBH94J7NxaYbBaL6N68ti1a+l578orYhZ6902Ttr/o9IBV0ijJ7lpWzMyhgVSDWNlupdxXUBeWkZLB/y9m32bnjsSduU/2zPt1gTz/5bRBKMBAJBApVJpkXS3pLOHrVot6WlJGyXtq/7QsYEvV6ZImlOpVN4WBMEjjto1SdI8SQcOW9XzZruWqn8yOFXSUZIGDwSOkjSvUqmcGATBUhftA8qqr69PP/zhD3Xrrbdq3rx56u01P8ccPXq03v72t+uDH/ygzjnnnMTHvOWWW/TRj35UXV3xnmP39vbqwx/+sG655ZbExwYAAOXTagpG8/xPZAEAAAAAAAAAyAp/5Q/Abx17SROPNQejoXwKC5qxFARS9OanogNkojC1g+KhYvkeBtUSIRiN4JDimc6Bb2FAtvbQj/xiujdUR0mVHILJ8jgG8lXkeIjxc/lEvSfUepOH/PZssq/3fYyGaEznMY8xUtTrXo1gNO9kNS7NMoDPt3G9z4JAWjFXev46aXXM+u5Rk6QDPy7t92Gpfbyb9jU1QzBaQDCalXG+z49noAEYf8iD8ZH3bNfuKD+0EbZNku1s38sAANAcvqShoWg9kj4h6dtBEHQPLKxUKgdL+g9Jx7+5aJSkeyqVyiFBEKxw0K4bNTIU7VuSPh8EwarBCyuVygRJ/0fSp7Vj4jhV0s2S3uGgbUApPfDAA7r88su1cOHCSO/ftm2b5syZozlz5ujoo4/WzTffrCOPPDLWMX/+85/rsssuUxAEsdt79dVXE4oGAEATajF8FdTLV0EAAAAAAAAAgCZB9Q8Av43ZS9r1GGnRbSPXbV2We3OQgaKCZmxFuBTD+skWLkYwGmx8D92oRui/vv9vaAaFBXnGZLuH0Y/8Yro3eHFPi//H98hBvUCLIvsOoRHerce7AAAgAElEQVTlU+uJ9r6gN/lYtrdOMFrUNsBfQSAFhp+ezmOMFPW610fwh3eyGpdWDH/5n2hfno3rfRTUpOU/7g9EW/90vG07pkoHfUra94NSa4eb9sH8mSAYza7IkE/ANdMPMjA+8p9pnC0lm/+3jJKqLVK1Ld5cjO82AABNrFKpzJR0xbDFfxkEwZzh7w2C4IVKpXKGpF9pRzjabpI+L+lDGbdruqSLhi2+PgiCfwp7fxAEGyRdValU/iTp64NWvb1SqRwbBMHjWbYPKKNrr71W11577YiAskqlooMOOkhTp07VbrvtptWrV2vZsmUjwtOefPJJHX/88brpppt06aWXRj7uVVddNeSYF110kT7wgQ9o7733Vltb2/blEydOHLLd66+/rhtvvHH76/b2dl155ZU6++yzNWnSJFWrO54RTZ06NXJ7AACA/9oMf57Ta3mcCAAAAAAAAABAI+Gv/AEUqFL/LWP2lHoMxdW17vDl8FtRhWe2ohKK3vxUIxgNCdU8/6sPU4HiYLYwR+TDeL/yLAzIFkJCMJpf+jrDl7eMybcdKI9694Ii+w5hG+UTxAlGM1yv6undXH/fKDfbZz+PMVKUgGHJPpdEMYxj62q8e0qmwWiejet9UuuRltwpvfAl6Y2X4m07dpY0+0pp+vv0/7N35mGyVPXBfk9Vr9OzL3fnLqz3sgUVRcBEEIOiohE3EpKoMaJGE4ggBpMP8YoGUZOg0cQVEp+AfqhB9CPKoiiCiBiQ5V7gwl2469zZZ7qn16rz/XG6Z+mZ6mWmp7t67u99nn6661TVqV8tfc6p5byFHVqa+IRpPP8T0lYrSSMln4Kw1Hi1l6R95H9KtYmsBdSphXsXdrRKMdoCzwcFQRAEYXnwcSA4Y/jm+aRoBbTWSaXUu4AngEKF/R6l1A1a6501jOvCouF+4BMVzPcl4L3AqUV5iRhNOKK5/PLLufHGG2eltbW1cfXVV3PJJZewfv36OfM899xz3HzzzXzuc58jnTbi6Uwmw6WXXkoikeDyyy8vu9xnnnmGxx9/fGr4da97Hf/1X/9VUcy33347mcz0c5LXXXcdH/nIRyqaVxAEQRCE5ibgcUsz68hLMAVBEARBEARBEARBEARBEIQjgxr2JBIEQVgComvM28zno5oH+QX/4LXfvPZzrSglRpNOb/6klFys0g7xS42I0fyJ36UblYj9/L4ORwJeQiK/yTRLxSOCPX/hVTf4QvZZgbBYqD/l6oJGHjul2taCP6n0/NnNLbwtmxUx2rKn1D6sRxup0nLPSS9tHEL1eLVLqz63r+HtDLkWNJdcEp79MvzwOHjoXdVJ0TpPgbNuhTc8Dce8R6RodcPjPyES29J4nu+LMFFYBni9kEHaR01AKQnxAtpAVv5YqPbagdzbEARBEI5QlFJR4K1FyZ8pN5/W+lng9hlJAeBPahgawNFFw3dprcs28LTWGvhhUfJxNYtKEJqQ//iP/5gjRXvFK17Btm3buPrqq+eVogEce+yxXHfddTz++OOcfPLJs8ZdccUV3HfffWWX/cgjj8wafutbi4uc2s973333obWe+giCIAiC0HwEPC4N5uRWkCAIgiAIgiAIgiAIgiAIgnCEIGI0QRD8iwpApE/EaMsNr47US90htdEduIXqKdUBxxcSGbw7cbvSeaih+F3WYnl0UJyJiEMaT6Pqq2opFY8cR/7C12I0wZeIGE2oJZWeP+tFiNFyZcRoIuxsfkr99/0kRnNF/OE7vOq0auuyhUhBPPPyWbu+kWQnYNtn4Y5N8MgHIbGn8nl7zoA/uAMu+B1svBgsEUvVFa//hIjRSuNVJkm5ICwHvK47iuzK/5Rsay+gfi1I8qoV0cqxIgiCIBy5vAZomTH8K611pcbwm4qGL6pNSFPEiob3VTHv3qLhrkXGIghNy7PPPsuHPvShWWlnnXUW//M//8O6desqyuP444/n3nvvZcuWLVNpruvyp3/6pwwODpact7+/f9Zwpctc7LyCIAiCIDQ3XmK0/SOQc0R8KgiCIAiCIAiCIAiCIAiCICx/RIwmCELjUKr0+Ohq07lLxGjLC6/O8Evd8axUpxK/SW4EQ0kxWrR+cZTCqxO3dB5qLH6XQdkViNFEHNJ4GlVfVUupeOQ48hdOcv70utVpZdregv8o9x8WMZpQDZWeP7uLEaNNlB7v9zaaUJ5S+7AeMqRKyz0nDVoeAvcVXnVa1WK0Gh5nci0I0kPw+LXwgw3w2FWQ6i87yxQrz4Pzfgrn/wrWXVj+Oq+wRHhtdxGjlcSrLVvLMkYQGoVX3SriWP9TUmq5gEc6CpK8attbXtevBEEQBGH589qi4fuqmPd+YObFjxcppVYuOqJpDhUNV1PBF087vMhYBKFpufLKK4nHp1/w0tnZyfe+9z1aW1urymfFihV897vfJRQKTaXt37+fT37ykyXnm7lsgGDQ43nIGs8rCIIgCEJzE/S4dfHoXgh9wOWln3L45Q65Ny4IgiAIgiAIgiAIgiAIgiAsX6T3jyAI/iW6xnx7idG0iNGaEq+O1EstmikllvCb5EYweAoZlHe5UG9EjOZP/C5rsSp4Vl3EIY2nUfVVtZQSOshx5C+86oa6ya3kIbimo5zIqpGiWL/XtcJcKj1/1rmFd4TPxkuPP3QPbP7bheUt+INGn1dXXGdqcywrn5w3Ct7t0qrFaDV8z4vf2vX1JHkQnv4n2PFvkEtUN+/aN8JJH4PeM5YmNqE6vP4TJeU6gmd9JsJEYTng9UIGR8RovqfUefZC2kCFMq3aawdyb0MQBEE4cjm5aPhXlc6otU4opZ4AXjQj+SSgCgN5Se4vGn5xFfO+pGj4N4uMRRCakqeffpof/ehHs9Kuv/56Vq1ataD8TjzxRK688ko+/elPT6V94xvf4Nprr6Wrq2veeVx34ddrFjNvLdi2bRtPPPEEQ0NDjIyMEIlE6OvrY8uWLZx66qmEwxW8HHAecrkcDz/8MDt37mRgYIB0Ok1fXx8bN27k7LPPJhJp4EuiBEEQBMEnBMq80+W3e+C1N7o8ea3Fxl55kZEgCIIgCIIgCIIgCIIgCIKw/JCn/AVB8C8FMZpXR1btmk8tO0UKS4+X4GGpRVclO5WUuXMsNIZSAhnlkxv4IkbzJ6WEDX7Aq4PiTPy+DkcCXvIGv3WULiV0EDGav2i4GK0Eyf2NjkCYj3L/4UYeO+XEaHu+A+vf7p82m1BetFfgmRvhhMsXtoyR/y09/sCd8Pg1cOrWheUvNJ6S59V1aCNVs4zhR6H3ZUsXi1AdnmK0KkUdIkZbHPFdsO0G2HkTuFUIcpQF698BJ10NnacsXXxC9XiK0USKXBKv+uxILBeE5Yflcd3RlevVvqeU1HIx97CqvXawUFG2IAiCIDQ/W4qGn6ty/ueZLUY7EfjpoiKa5l7gGeCE/PDvK6VO1Vo/XmompdRa4C0zkrLArTWKSRCaihtvvBE943pJb28v7373uxeV5+WXX85nP/tZsllz/yWRSPC1r32Nq666CoDdu3ezadMmz/nPPffcedNvuukmgJLxKY/7b7t27WLjxo1Tw+eccw4///nPp4Z1FdeM9u7dyw033MBtt91Gf7+35zEajXLuuefyzne+k7e85S3Ydvnzl+3bt3Pdddfxox/9iPHxcc983/jGN7J161aOP/74iuMWBEEQhOVGJdX3ZAaO/pjL3/6hIhqE1vxlYqWgJWSGlYJkBnIudERhPAnpHGQcCNmwrgtetVnR1ybP+QiCIAiCIAiCIAiCIAiCIAj+Qp7yFwShgZS5eday1nyXEma52coEM4J/aJRopmQHbpHr+RKvzlp+EMgUEDGaP/G7DKqSY9jv63Ak4CWn81tH6VLxDP4auotfBC80DK+OpdUKQRZMmbb3vjtg3RvrE4pQGeXqgkaWR+XEaA9cDKOPw+99qj7xCOWpVLqaPACPXbV0cTz5STjmLyG2fumWISwdpcqlegjHq5Et3nUGvOFpaD+h/LTC0uNVBlV9fl9LMVqZY9bN+U+KvFDGtsNT/wh7bilfh8/ECsKmd8GJV0HbsUsWnrAIPK9plpDrCN71mbw8Q1gOeF6vrkKIKTSIUmK0RbSBqm1vPfcVOPUTC1+eIAiCIDQhSqluoLso+YUqsyme/riFRzQbrbWrlPoLjGgtjLlA8l2l1Pla693zzaOUWgncDrTMSL5Oa32gVnEJQjPx4x//eNbwn//5nxMKhRaVZ19fHxdeeCHf//73Zy2nIEZrVrTWfOpTn+KTn/wkmUym7PTJZJI777yTO++8c46YrRjHcbjyyiv5whe+gOuWvn6VTCb5zne+w/e+9z0+97nPcdlll1W7KoIgCIKwLHhiX+Vi03++e3Evzulq0Xz/AxavPEHkaIIgCIIgCIIgCIIgCIIgCIJ/WCY9ewRBWJZE15hvEaMtLxolmuk+3XtcNZ1ChfrhJRfzkxjN8ojFS+om1Ae//6etCuotEaM1nkaJPKulVDyPfAiO/6v6xSKUxu/12mNXiRjNb5QTWVUjCKo1ldS12z4DW66CUMfSxyOUR2cbHcE0z30Nfu+TjY5CWAhuiePIb20kgOe/Di/6bKOjEMC7bV1tO6iW0qJyx6yTAqu1dstrBMO/hac+DXv/G6iiI4QdhWPfB1uugJZ1SxaeUAs8RDlaxGgl8RSj+bAuE4Rq8ZKvJ/fXNw6hetxSL/dZRBuo2vZWqt/UI/JCIUEQBOHIorNoeFJrnagyj8NFwzW9MK61flAp9QbgFqAPI157XCn1DeDHwB7Myf864DzgUqBnRhZfAeSi7AxyjmbfSKOjODJY1wUBu3H3tPbt28fu3btnpZ1//vk1yfv888+fJUZ76KGHyGazBIMlnnX0Mblcjosvvpjvfe97c8atWrWKU045hd7eXtLpNP39/fzud78jHo9XlHcymeSP/uiPuOuuu2alB4NBTjvtNNatW0c4HObQoUM8/PDDTE5OTsV0+eWXMzIywrXXXrvodRQEQRCEZuMlGxU/+N3ihGeVMjIJ7/2Wy/atFrbl3X5zXI2lQDXyuSVBEARBKCKZ0RwYhawDjgbXBVfDxh7oaFlYnZXKalwXoiH/13ta65Ixam22zwvDkMrC6g5zzeaFYbN+azogaIOVbwMk0prJDIRsaI/OXv9EWjM6Cd0xiAQhnYPBOPSPQyxk8g7aZj9obZaXc8HJ7xPHhUPj0BqGgGUuauYcyDhm2tFJaI/AizeArSCVg4NjMDgBqzshmYGJlIn70BhYCk5ZB2s7a7efMjlNOmfi2jNstsO6LhP/gVHzrTWsaDfrEQvPXW4mpwnaJqZsTjOegrH8O9Yd16x3LAQB22yH9ggEA2pqf2Uds/yADaGAv48/QRAEQRAEQRCEpUae8hcEwb9UJEYr/2ZCwWc0quPZUW+GX3mMKyedEBqDk5w/3UtG1gi8OhV5yW+E+lDpf3r925c2Di8qEXpKudR4GiXyrJaSHSM1ZMZESuQXvKSZ9arX1r4BDv7Ye/z4M5AahEhvfeIRyuNnSWbn75WfRjsw8iisPGfJwxEqwE/nzofuEjFas+KkvcdVIv+tBa3HQvy5yqYd/PXSxiJUjlfbutp2UC3FaOXyclIQbFIx2uH74alPwcGfVDdfsB2O/2s44TKI9C1NbEJt8ZLWiBitNF6S31qWMYLQKFqPmT99ch8kXoDY+vrGI1RBibJbWXD8h+DZf60+24UI+Seeh/bjqp9PEARBEJqX4gsAHg8qlKR4nrYFxuKJ1voepdQW4HLgEmBT/vflJWZ7GrhGa31breNRSq3ASNqqwaPBWn/2jcDRH5Pz53qw89MWGxt4+/GBBx6Yk3b66SVerlkFL3nJS2YNJ5NJHnvsMV760peybt06du3aNTXuX/7lX7jxxhunhm+99VZe/vKXz8mzt9dsrHPOOWcq7eKLL+bXv56+3j0z35msW7e4lxxcccUVc6Ror3vd67j22mt56UtfOmd613V56KGH+Pa3v83NN99cMu8PfvCDs6RoHR0dXHvttbznPe+hrW12kZlMJvnyl7/MP/zDP5BKmXvsW7du5YwzzuCCCy5Y4NoJgiAIQnNy+gZFVS9AWiTPHYbg+11OXQfpLDzTP/90loKWkHmno86H19sKtmWEJlkHwgEjRUnljChlfTd0RI0IJJGGgbiRffS2mumzDrRFjFwknjbzn3G04oa3KHpbIZmFyYwRr7RFYF2XQmtNKmukboNxM6+rzXiATM7E0BMzsVmWmSfnGEFLJGhiGU7AUMKsz6p2IyZ5YRj2j0IsbGLOOia9JWTkLLZl4pxIaXpbFas7oLPF5DeaNNuoIHtxXCNUCQfNekWCZl0Oj5v8bMtIT9rCZvp42myzeAo6WmDzKuiOiRBFEARhPh58XnPtHS73bC893dnHwNouRdYxgk/bUqSymkNjpg5J5Ux5nXNMORwKGPlWgaBtPq42ZXpvq6nXNKYu1Jh6J5GeFn31T8AJK0391NkCazsVsXxdNZaE/nEj7g9Ypi4IBUz9YCsYT00LxUYn4fiVZtzopKmTlJqWjOXc6fq4JWTyiwTNZzxlYspW8C7kcnS1QCJj1rOAlY/DL7SG4eKXKSxl4g3aRriWyeU/+d+WAssyAr2sY7ZjPK3Z0W/q/3iJxyTnY0UbrGw3++zgmMkzvcBHwCNBk89M1nVBX6tp44QD5ng9pk8xmX8seGOv2e/94zA6qUlmpsV0WQcOT5h13DVotsExfWacq818sbykLuuYbRgNwVAcJtJwxiZF0DbjtqyGaNAc2zp//A1MmPbQZAZWdShWtBmZ3lDcLCsaNNMVhIXpnDl+V3eYZR6egAOjmo29inDA/Bdslf+e+ck3hQ5PmGMeoNA6Umr6XeOWMulK5X/P+FbMTVvacWr+6a355ys5Tk2vW/E01Y6bE2uNxvldICk0H66rp87hCseX1hrHNeWCHHOCIAiCcGThs179giAIMyiI0VQpMVrWe5zgT7z2mbXEVVKgBWIbILFn7jg/SyeOZLzkYgvpyLNUiBjNn3h1cC3m+A8tbRxeVCKNkHKp8TRK5FktXh3hC2RHRYzmF3Ie/WgC0fosf8MfwyNlyr1cHBAxmm8oJclcVZs32S+Y1a+BQGv+mClBLlGfeITy+Kl9qn30JIxQHW6JJ34qkf/WgrUXwjP/XNm0XrJtof54ta2rPb+v6fWAMg9FeElt/YrWRoL71Kdh4JfVzRvug81/C8f9lZw7NBue54PSsbsknrJGn53vC8JC6D3Te9zAAyJG8zOlrmkrGzZ/GPb9ACb3Tqf3ngmD87wRaP07pn/bC7ju5Mi5vCAIgnDEUSxGW8hFgeILUUtlWy+cuFTSNe9B4FrgniWK5a+Ajy9R3oJQM/bt2zdreOXKlfT09NQk75NPPnne5b30pS8lEAiwcePGqfTOzs5Z061atWrW+GJaW6eLkUhk9nXRUvMtlLvuuosvfOELs9Kuv/56PvrRj3rOY1kWZ511FmeddRZbt26dE2eB2267jZtuumlqeMOGDdx3332e6xGNRrniiis488wzOe+880ilUmit+Zu/+RueeeYZLKvMMxKCIAiCsIz4g+PgpDXw1IH6LvfxfaXHu3quMKScQGTX4Pzpe0emfw8VXZp8pl/zn7/yfsZkppitEgpSj9qztM/BBCz44h8r3vdKaQcJgiDMZNeg5g1fdBmdLD/tA8/D7PK6dNldLLUqSDzBSKvGK7yC+PShmUMLry9m5+NNQZRVaXzVMDLPdvaTFA1Me+Tr99c/qMMT5lMLiqVoYF7ysG9kdtr9Oxa+ns8drmbaapazmG3vs4OpJizHdSpNpUK1+URySzFuqWR44ykjuJzMmLZ6d8xIDR13WlpZ7vtgXsxZ4HNvU6RzJt/WMHRGjQRxJGHmsZSph8ZT5rwmnRc+FtY9aBvJYSEOMBLPgQl45pAmkTGi54EJk09vK8TCakoUaSsjHUykNas6FBt7jUB62wFN1oFNvYpjVxjZZkfULKd/3IgSbWVEiCMJzYFRI/rMOuZcLZeXRIcC05LRcMDUKenctIQ6k8t/O2YZxWVqa14inZhx3rm2E/raTB7pnCk/07np34X5WsPTEu6p3xEjK52THoa2iJo7XwRiISPbFgRBEAShMchT/sKSoJTaBJwGrME87HUQ2AM8qLUWk5WQp8yJQMta822FvKeRw6n58OoMa5UQ4NWK4z4Aj/3d3PRKJUpCfWl2MZrW06+dEOpLpVKxvrOXNg4vrIDpzFaq7CklwxHqg2d91WSnUFo6xPsGL7mGVad6LdwNL/sKPPw+72n8JE4SStdnp36yfnHMhx2Cl34ZfvXnpaeTY8o/LHZfdL8Ejnkv/Ob9NQjmyLvZv2woKUarU3128t/D8MNG7FEOKYP8gy/FaGVoluNHu7D3+0aINvJodfO2rIMtH4Fj/tK8UEBoQjw6P8h5YGm8rsf4TYQuCAsh0gvtm2H86bnjBh6AjX9c/5iEyihZdlvQugnOfwj2fBviO2HlOXDURXDf640ctYAdmf1CkIW0n7zk/oIgCIJw5LCQC5hLftFTKfVe4J+BWIWznAXcBTyplHq/1rqCC2qCsPwYHh6eNdzV1VWzvCORCOFwmHR6+tp58fKaha1bt84afv/7319SilZMsfitgNZ6Vt6BQIA77rijIrlbQbh21VVXAfDcc89x++23c9FFF1UclyAIgiA0Oy1hxY8vs/g/P9D89GnNUV3w8QstbnlYc/OD8uxFte/lWxop2tKTc+ED/6U58xjNqetq/1y662osS5HJaYK2ESB0RMlLEipbntaanANPHYTdgxBPa9ojivaoETQMxY2wYEW7ESfYFrRHze9kFlZ3QHvUxLB3GLpiRhSxe9Dst64YrGo3wpt4Gjb1QEvIyCJSWSOkGIibY2I8CcOTMJHS9LUqzjoGOlpKr0cyoxlOmFiDtslDKSO7CNpGuBAOgFIKrTWuBrdIcFHJb8eFJ/eb70jQbOdUFjpbzIWFTF5w0RYxy48EjRRjNAk5x+QxGIeJFKxsNxKOVNaIIyIBM5+jzT4M2bCuy+xHjRlO5mURXS1mnJJ+DsIi0Fo3/Bj6xA91RVI0QRAEoT5obdoigLzXs0quvK0R53dey5wvvbHnn/OJuPePmk8pUtnZArppSq2P97jYHIlaQaymaJ1HstYagbYZ44rniwSlTS4IgiAIlSJP+Qs1RSn1VuDDgNcryYeVUt8BrtFae7z3RRDyRNeY71LCLFfEaE2Hl+ynHh3PvJYhAiJ/0sxiNLQpn+wSYkdh6ahEdrj6AlANfHuaHYFcwnt8pXI3YeloZH1VS5xKXhgv1AU/1GvHXgodJ8Hdr5h/vJe8TWgMpeqCji31i8OLTX8Gu74Fh+72nqZZpDJHAovZF+0nwKt/YaQ5yoaH31u7uITmolS7wgrXJ4ZwD7zqXhj6DUzsgI4TYejX8NvL5k4rZZB/8GpbN1SMVuZBDb8fP24Wdt8C266fX35TitZj4aS/g41/Jtctmh2v6xoiRiuNVztb2fWNQxCWir6z568bBsWD4WtKld2F8r5lDWz58Oxxf3A7bPsM9N8LLRvguPdD31nT4xci5JfrQ4IgCMKRR3GXiOgC8iieZ95uFgtFKfX3wHVFyY8AXwbuBw5guhmtAl4OXAqcm5/uZODnSqn3aK3/o5ZxCUIzUCwq8xJ4LZTOzk76+/unhoeGhmqafz14/PHHeeCB6XPGtrY2PvOZz9Qk75/97Gc8+eSTU8OXXHIJp556asXzf/CDH+Saa64hlTLnKXfccYeI0QRBEIQlQY+bNoNq725wJHNZ26X45rtmd5Q+bwu89mS44zF4+pCRNAVtI3GKhcyd0KE4jCWNPEopI1JK5yAUgHjKyLaE5uK0rS6v3mL2YzIDARtWtpljZCgOP3tGY1tGhLWhx8gD9o1MS7k25A/vnGs+WcdIuA6Ne0vmWkLTcq9MzhxLazrMuPGUyXsy4xWxH+R9JoZoEE5YBaOTRkKQSMOBMbN+YERilaBU9UI+P/OqzXBMnyKZAatwKyJkyolo0IjU2iJw+gZFNGj2dThgypuJNChgOKEJ2EZOt2sQoiEjfEvnzPQHx4xELhQwx4vjGmFKOAB9rWYPzRTNacxvR5v95LjmmG6LTM+rMMtQysQ5ljTLS+W7liWzZj+lsuZz3EozfTIzXfYl85KMglCut9UI8MBMl8yafFe0wYvXK1683iwjnjYiukKpfGjcbI+sY7adbUE6L6Cb/miSGfOfcbWJbWW7Wa+gbfJ3XHhivxH6jadMmT0yaY5ZxzXyvn2jZrktITO+IMzb0GO2Qzhotlkya7ahxixLY7ZDW8TkN5Y08a7pNLEOxk15ErLNfrItk98je6aPlZPzXfsKZUf/OGQcs91sZdKtvOiwI3+VrLCNCq4PpUy8kxmzXdoiZntEAmY+pfJCRmX+ky0hIwuxlNnug3EjA9zYY2SKL1qv+M9fLaM/pCAIgiAIvieRNp/+8eIxCxOt2da0TG2OUC2iiM2Sr80Wsc2WrzElXwsFRLQmCIIgLE+arFe/4FeUUq3A14CLy0zaDXwAuEgp9U6t9U+WPDihObGjEMzfNREx2vLCs+NZPcRoHp3bKpEoCfXHUyCzkOeQl4hSnbLdlHQwbhSVyA4b/b+3woCI0XyN1z6wmuwUykk2OgKhgNe+qHe91vVi73F+F4AcaZQ61/GLpLH3zNJiNOlM7R8W8/8+6m1GigZw7F9CYjc89alFBCMPJDUtpY4jq47nPnYYVrzCfADGn5l/OimD/INX27qhYrQy+LVd5KTg+W/C9hsgsaf89DPpPAVO/BisfxtYIoBaFngK36UnS0m8rhs12/m+IHjRezY8/4256aOPQ3YCgm31j0koj+f1ajXdY2Q+7DCcco35zDt+Ae0nv7aDBEEQBGHp8LUYTSn1KuCTRcnXAlu1ntMde3f+822l1KXAv3wJIP4AACAASURBVGP6odrAN5RSz2mta2XM/TJwW5XzHAP8oEbLFwRfoEq115uEe++9d9bwn/zJn9De3l6TvO++e/Z9xHe84x1Vzd/S0sLLXvYyfvGLXwBw//331yQuQRAEQQDQrguP/QL931+B+74Pb/pL1JVfanRYFaGU4u2nK95++sLzePQFzUuuk3tKzcY92+dLnfsczv7RuVM9eaD65RVLz7SeP2+/k8zCY3vnpqeq7Iq0nKRoAD99Gn76dCUrtcxWvGqWev0Xl//OwYXNd3Cs8mm9yo8D85QHlYoGx8o83h6f5/2dw4np/P/fE0f6cSkIgiAIQrPjuKZNNH+7aGGytVCgWKI2W6jWOo9QzXyreeeLhcG2mv8+iCAIgtD8yFP+wqJRStnAd4DXFY0aAB4FxjAPNr2Iaen/SuAHSqlXa61/Wa9YBZ9R6sGg6Nrp8SJGW1547bN6dDzzEkiIgMifeHVir2dH6HJYJWJxUhCszYOCQpVU8p9utBjNDpceX4ncTVhavPaBX2RElSIdGf2Dp/CzzvVaqfJHRHr+olRd4BdpQ7njV8ogf6D14gRRgaI+fX4SFQv1xZ3niTMwUrRGdv7yKoukDPIPnhKiKttB1U6/GPx2/GQnYMe/w9Ofh1R/dfP2nAEn/T2sfUNj/6vCEuCxP7V0YimJ1zWhZjvfFwQv+s6eP127MPgQrP7D+sYjVIhH2e0pwayQBYnR5PqQIAiCcMRR3A20RSkV01pX2I0TgBVFw7XsJv4pZp8A/ofW+hPlZtJaf1UpdRTwD/kkG7gRWIQ6YVb+h4HD1cyzHARSQvPR3d09a3hsrIqe3xUwOjr77168vGbgwQcfnDV8zjnn1CzvX/5y9qPB3d3d7N69u6o8Zkradu/ejeu6WNYiz5UEQRCEIxo9dAj+51voH30T9u+cHvGDr+NOJlAf+xoqUKLvQpOjXReGDnJabzuffFOMa+7Qy072JAiCIAiCIAiCIAhHIpkcDOe8ZLULk61FgzOEafMI1WLzithmiNZmzNMahpaQ3DMUBEEQqkee8hdqwfXMlqJlgQ8DX9VaT70jRCl1IvB14Mx8Uhi4XSl1itb6YL2CFZqEljXTv0uJ0bSI0ZoOL2FRPTqeeQkkRIzmT/wikClFqVj81on6SKIS6Vmj//flOvQ3Oj7Bu43RbB2lpSOjf/BLvaYsI7BxM3PHSd3lL0rVBX4pi0SM1hzo3OIEKcXtFj+1x4X64niI0Rp9TIgYzf94ta2rPXbqeawtRihZS9JD8MwX4dkvQGakunlXngcn/z2sOEeEaMsVL1mO9F4pjef1abu+cQjCUtF2HIT7ID0wd9zAAyJG8yuul7RxkWXTQsTW0o4WBEEQjjC01kNKqRGga0byemB7FdlsKBresejAAKXUWuDlRcllpWgzuB64Aig0Cl6ilDpVa/14LeJrZtZ1wc5Pi1ipHqzrKj/NUlIsKhsZqfIaWwlSqRSp1Oz2c09PT83yrxcHD85+dPekk06qWd579+6dNfzylxcXadXhui6jo6NNKaATBEEQfMTPvof+yj/MP+7uW9F334p+218DGoYPm/su0RiMDpjfXStQr/wj1JkX1CwkrTU8+yg89WuYjKOHD6G6VqJTCVQoAoGgiSHaCvFRaGmHzl7IpGBi1KS1dprrjLF2sAPgupBKwNgQemwIDuyEvTvgwC5ITQJwdWsHb1PreaTvVWRPOpvoOa9nMmcxGIeABeMpeHyvJhI0HZ1ftB5cDavaFbZlNodSpuP1QFwTtCESAEfDRApCNhyegMkMhAMQtCEWNt/7RkyH6FgY2iOQysFIvuP2//lBc9zrspTZHoIgCIJ/+MA5imsvVAzG4Z/u1uwd1gQs6IopgrYRcWjAcU0ZHrBgfTes7YSDYzAQN9OcsBLWdiqCARhPQjwNg3FNOgepLNiWeZOBUqY+UMrkFQtDOgs/f9bUk7YFqazm0Dj0tZphS4FtKQI2rGiHFW0m/3QWAjb0tprYfvQ7TTQEK9sVHVH4zW5NNAhvOk2xvluRdUz9e2jM5NvXZmIIWGbYcaE9qmiLmLo3HIDVHeb3YNzUz1lnOibHhXQOBiY0QVsRDZnfh8ZNjB1RRSxk1jEcgIwDyYzZXp0t0BOD4UmIp0z8hW0TC0/HpLUZt6INklkTQ9A2bYGgDaGAme7J/TAwYeZtCUE0ZPIfnYSca6bV2sR/y8Oae7ZrhuJm31oKOqMmn3DA5BkKmHZJKKBwXIinNcmM2baRINi2mW9jDxzTB7GworfVLKM7ZrZLIm2W3R4x+6uw3caTsHdEM5wwca3uMHkentBkcmYZfW2m3dOef/QtYJvjJ5k1271/HJ46oIkEzfZZ3aEIBczynzus2T9qYvjWrzRDCThuBXS1wIYehaWgf1xj5dd3XZci50LOKRwDcFQ3xEJmOVnHHAdtEbMPhxNmfTqiZhtNpOCxvZqHd8GhcRO3paCn1eSRccyx7GpIZOD4FdAZUwzHNWNJk3/OnW7/hQMm/6EErGjVtEYUEymz3FQODoyabfmqE6b/m1MfPXu4sP27Wqb1PVoX/c4fY5oZv4u/fTJOM//0giAIfiOZNZ/DE/ON9Sq4vAs0pYolarOFarE58rXCeOU5XyggsjVBEITljk960grNilLqaOCyouS3aa1/UDyt1nqbUuo84F6m5Wg9wMeB9y9poELzEZ0hRlMlxGiuiNGaDtej41kpAV6t8OpA4tXhRGgsXp1vygml6omI0fyJVzkzk0aLx+xw6fGVrIOwtHjWV012CiViNP/gtS8W0kF1sdhREaM1A6WEDX65aF/u+JUyyB8s9r8dKNrPixUTiayleXE9xGhWmbbtUuNVFkm95h+82tZVi9HqeKw1+vhJHoSn/wl2/Bvk5n11mzdr3wgnfQx6z1ia2AT/4CVGYxFC1COB5XK+LwheKAV9Z8G+ObdqYfCB+scjVIhH2e1Z1lfIQs7f5FxeEARBODLZDpw1Y/hYqhOjHT1PfrXgtKLhnVrrXZXOrLVOKKUeAs6dkXwGcMSL0QK2YmNvo6MQ6sHatWtnDR86dIihoaGaCMyeeuqpsstrBoaGhmYNd3XVzmZXnHctmJiYEDGaIAiCsDjO/2P4t6sh43H/G+C2L5bMQv+/m+FDN6DeUdyNpnp0Love+k742fdmpxd9LwnxMY7lCY6deAJ23giJt6I++hWIxirqUKxzORgfgmTcXJseGTDStY5e82x+Mg72CCQmIBSGjh4jcItEIZeDbGZK3kZyHCYGIZ3i6hMP82x2Jb9yNnOo92RWbd7EsSstOqNGsnFo3Ag0osFpWUosZKQdGiNp0Ri5x/5RIynJ5IxcI5R/7OrgmBGiHLtCsaLNSGgcDU8fhH2jmjUdipcfbZY3OmmEL4NxiATNtCHbSE3AiD0mMzCWNJ2yO6Jm+em88KUrZjx1BZnOSF7qclSXkYU42kw3lJfx/N9HNFt/JM/WCIIgVEuQLFfv/Dg9n9hGz/gIXwmGIBiCYBjiYzA5bn5n0+YZxnDUDA/sh5Y2kx6JmZfQFuyfw/0mcztg2g7hKERbIBQ14zt6INICI4chFMkvL8R7O3pNHsk4tLShNm6BjZtNXZnLwuggenwYUhr6C5YkDUz//nAgb0kayhnLVcCGkSH4wbCpZ7U2FQz572jMxHlgF/SugeFD0N5jrF9ODlYcZUSpuSxrXdesZ3s3tHWCZUMyYerrcBQS4zB0CBJjZl27VsDgAdj3nNker/wjs6zU5PQ2CrewEqC1HeLjRirrZDEKMMz2KnxCUTrau8w2beuEWIcRwSbjkE1zSiBk5k+Mm/bCxAhkUnTlsmZd27uNINbJcW0wzLWtHWYdQxGzXq5jpnNn/nbAcaAlBl0roWcVjMyIDUweKLOP4qP5/DTseMxsg2NOgfFh80mMm22glBHTKpV/ebll8rAsE3sgaI6LwjEUyBvPHCcfm8Nm1+GVuZzJN5UwMtxkHCyb82NtsO5YOOp4Pn/GOujsM/vIyZlPLgt9SdPeau+GFWvNcTYxYtZbKZjIx5PLoUcHYdew2eeZtFmP8WHoWwtdfSafkX7zUtEV7SZ+yzax2gEIKBgahtFBM3wwf8yOHDbrm0mb/R4Mm+PDts12SSXM+EiL+b+5rjlWUklIJ2Gvmt6GSpll9qwyyz3rdai+tWZ9Xcd8a40eGYDBg9CzEtW7xvwfC8dboRWti75n/Z4nrdrpZj0PXSKPUtPNM712NS7K/M0BjcJ1NRplhGpuPq0gVMuna62mZGxT06DQ+XnzJQauzuetFVrr6em0NmkwvXw9+/f08hQaPZ1XPs0sd/Z00zI4NXvczHjzy52afuZ3fvkzpyuOc/Z8am6ezIhz5jrM2H5m+ul8CmlMza/QloUVsAkph925XhI5m82hfgKWNsJES2FbCluBbSssy8gwrfzHthVXbPN+rrM7mKLLThEOaCzbJulYrAoniagsGRXG0ZBzNBuicaIB1+wzRzOSDTGci5JIQzAArrKxlSZsa1ZEUnQF0uQIEM1N0J4bIaMDZCbTuOkUTjCKG4zgpNOMpgOM2e1MEiHkpFin+2kJwZ7QBgZ1B0kVoT/XSjpnDqZowEEDm9rSqEAAhSadcWmxsqyMpNnUMk5YZwjbmmwmSzYYI6kihFSOaEDjBCL0xjSR9lYCTopQNm72w1A/dmqC5+Jt7E628mJnG2sy+4mPJ9keO4XDsY1sWhWkw0oRJkPYSRAeOUCEDOEghMMBtLJIBDuJuyHiToi4EyTuhJjIBc1v1/xOuCEmcoXxQSacEGktzxEuJVobEedEyohpi8aWmtNzTACHVjtDm5Wm1crQapvvoHIYcyKMu1GUbdETyrCqzWFdKM6G4DDtgTSJlhXE3TCZeJJuZ4icCmJForwwbrM5OkRrSLNvRHMwtJZwOEDOVeS0heO4ONrCsYM4KoDjanKOecFLKylaoxYHnQ72JyK0B7O84eVtvPsPgthWZX3BdGLc1IeFdkogBKOHzW87aOroQN7JkBg3v13H1LV2ABWOorWeur6jXdfU+WODpv4NRaC9y7SpEuOm3s5lYfVG094Y6YfJuKmb9z4Lh/aYunzL6Wb8yqNQsfbK1kVrM28wBJSX2OlczrQhtEZZFtpxYOgg9O81bYpA0GyDjm5YdxzKlpciC8KRgNTOwmL5ODDTZnTzfFK0AlrrpFLqXcATQCif/B6l1A1a651LF6bgT0o0XmaK0UoJs0SM1nx4Ch7qUCV5LaPRgiRhfrw6IS9WxFBLRIzmT3QFssNGCxHLySOkXGosunDJfx7qUV/VEimL/IOf6jU7Atk5V5DlePEbXsIGP5VD5Y5fOab8wWL3Q7F0yk/tcaG+OB4PhtdTVjXv8j2OSZ0zZamIbhqP1/lNteWJFSo/Ta1olBAkvgu2fxae/6a3jHA+lAXr3wEnXQ2dpyxdfILP8JDlaBGjlcTrupHXSzUEoRnpPXt+MdrEc/WPRagMz7K7EWI0OZcXBEEQjkieZLYY7Uzgh5XMqJSKAafOk18t6CwaPrSAPIrnER2YcERx1llnzUl75JFHeM1rXrPovB955JFZw9FolNNOK/YZNh+VSFAqJZOZ52Vdi0TLC3gEQRCERaLau9GvfDPc/e1F5aP/9Sr0w3cbCVgwBLE2I3XIZKCzx8gbCvKVvBRDx8dMR07LguHDRsTy9G9rtGY14KffRf/0uwDojl5YvQGOOj4vwQgaQcnooOlEOzpohBtLxPH5zxSBoOmgC/Cqt5mOvsm4EYeEIzA+Mi0dKUhCLJvjV61Hnfgy6F1txtkB07n2qDWolrap7LXW4ORYsTFnOgUnEzBuE0nG6c5mIBOm+7knzDqv2QSbTjQxpJN0h1voDmZZlxyGXbvMfu9eaeJKTcJY2khCsvlPtNUITYbywp10EhLjbOzqgw2bOS0EsG7Jtm29CFguOXeR17gFQRCq4NP9/8Ca7aXlpo2i7mey++a7L/zQwvPb8/Ts4Z/fvvC8asHggdnDowOVzzs2CAf3VL/M+Bjs3VH9fAthbIZofuQw7HseHvpJ/Y+jpSA1aT5Qfr8NHTTfzz1edt2XxbYpotCKkqeZlh/f2XgfD0dfNid9XXYfu7cfP88cQr3JEiBhxZiwWonnPxNWK4n8t0mLMWG1Ebdi86YnrNjUfBNWG46f+gAtQ3LYjDpRRh2Pl60XSABLdymjJHfshEtvcQnoLO06TpsbJ6aTREgzqaIcsvr4/czDdOpxAtkkvzf5v1wy9m263NEFLW9K7znzekqN0a2dRs6rLMhljCw2l4WDu6cnCoWnX06Qv2aj27rMdZ7C9ZvCd0H+O3MZeZkaWe/7TXrDZtQ7r0b94cVzxjmuZjIDbREjGR1PGel9MgPtUSPSH09BT8y8WGs+UlmNAkKBuffQhhMarY0MvyVkhPm2ZfLP5FenJWTSXA2hQF5UpzUTKYjlu+EcHoeV7UawKQjC/EhNKiwYpVQUeGtR8mfKzae1flYpdTvw9nxSAPgT4LraRig0NdEZb08UMdrywmuf1aOjstcyREDkT/wkkPFCxGj+pJL/dKP/9+WOY6nfGouXjAiaT6zRKKGDMBc/1Wtey5S6y1941VV+KocsEaM1BbUWo5Xb72VZjo8gHCF4SZrKSX+XmnLnZVZr/WIR5serfV21GK3ENcKqKVMW1bsOG9sOT/0j7LmlMtl3ASsIm94FJ14FbccuWXiCT1EiRlsQjXxxhyDUi9ZN86dnFvaglFAHlkraKGI0QRAEQaiUHwOXzhg+p4p5f5/Zz2A+qrXur0VQQHEDLraAPIovjsUXGIsgNCXr169n/fr1vPDCC1Npd911V03EaHffffes4TPOOINQqI4vd6gRvb2zfYnDw8OsXbvWY+rq8z5wwHRWjkQiTE5O1lS8JgiCIAgLRb3h3ehFitEAePhuz1FN/2TEWF6A5hdx28xOvD+9rapZvfaFDkXMfTUnB65/7q/1Rs+AjT/zHP++ka+RUC08FTmJntwgMT1JRoUYsHtZn92LjUPYTbMh+wIbs3uYtFoYsrtpcycI6BwBHAI6R1BnyakAe4LrWZnrp88ZZFK18HzoaE7IPEubGyeoM1jaRaOIW61kVRBH2bhYdDmj2OQYszrYFdqIRvGa+N2cnH6KoM4SIEeOAJNWCxkVosMZI6NCOMomo0IcCqxkd3AD98ZehYNNtzPMutx+2t1x1mQPENYZVuUOkVVBFJq41UpEp+h0xngudDRJFSWkM9g4pFSEVbl+VuX6sXFod8e5s/W13B89mwm7nZgbpzfq0umMMKDbcRzNsG4j6k5yWvpxOp1RYm4CR9mEdIZ2ZwJXWUTdJAcDqxgK9BJz41jaxd5wHFasFdvNYY0exhrYi51NYeFiawcL10xH0W/tYuNCIMjqwBjJRIaArXEjbWQDLdihEKHDO7FwGbU7Cegcw3YXw3Y3q3L9tLiTWLiEdIZgKMBgoBflOqBderKDOChSVhS7s4eIypHRNvvUCrI5TXtmiEzWJUmY29rfwuPhU0hYLbS4SVr0JBE3RX9gJQOBPlblDqG05s62C6o6bm2dw8UipDP0usPEnDgtOkmbM06rTuBiYWtnarsM2j2kVRiFxtIuFi6qoxsrGMTKplHZFNFcHEtBVgVIOTbKdQi6GSatKINWj1keWWztgOswYncR1mna3DgOFk9GTkZply5nhHZ3gg53nDZ3HJSF0i5t7gRB5TJutzOouhm0u7G0S1QnCeosI3YXhwKrFvQ/DpAjrHKELdd8qxwdKkHAzZLOap5Ux3jOe3J6G63uBG0kCekMVsAiSYS4asFysvRkB4joFONWO+lgjKy26Qyk6F6/mhUtDrHMKFZmEmXbWJaFApI6iKvBSifIpjKEQhYDVg/doTRHtyXJpTJsy61lx2Q7q9Uo4YBmV6qDDivJCmucdePPEHGTBNZuIKA0oWyCqJVh8vAQWlkETjubiZWbyWVztGRGUW4OtEbnP7ianAOj4xnCbopw2CblBnCwSLs20SC0tEdp7Wgh58BkBsbTCjfn8Mg+m10TUU7uGOfn/T10hh1yLsQzFrGJAwR1lqMzu/irkX/n/MQ9C9pfgiAIglBP7t3zWto2D89Jv2Ts1gZEI8xHkByd7hid7lhN8tNAWoXnCNXM8PTvmSK2uNVKXMWYsNuIq7nytbjVivZ6flTwNTkVZFh1MWx1zRn3w8gfmh9RoP1PuXzVPwGwJb2duNVKtzNCxE2ywhlgwO5ld2gjSms6XHO+vTN09FReR2X3YmsHR9nsDR4FwOnJRwjpDA42WilyBBmz23GwcZTN2ux+1mf3EtUpwjptzke0Q1aFmLRaGLPacZRNSoUZsbuJWzGyKkirmyCjgoR0FgLwwvHrUFozHOgB4NzEz3CwmbRiuFhopViffYHe3BDrsy9g4xDSGRSaiE4zZHezJ7iBcasNWzvsD67hsL2CDdk9HJXbTw6bnAqYDwFyTgDnmza5Bw7htPeRcyHnwKFxeL4Kf27QhlXt5n0GrgtjSSNNK54mGgSlIOdCoop3oAP0tkLAgsG4mb+Y1jC89iQjVTs0Zs6NbMtI2QrLSmRMHK5rfp+yFo5ZoTg0qtk1BPtH4NDnLWyRrAnLDHnKX1gMrwFaZgz/Smv9tNfERdzEtBgN4CJEjCbMJLpm+reyzGe+Dl1axDFNRyM7nnl1IKmmw6lQP7xkPn4So5USALjSeahhVCRGa/D/3i4jj2i0uO1Ip9T2b7aO0tKR0T941mtl3kixFHjVpVJ3+QsviYyfyqFy7TIpg/zBosVoRfs5sNhyq+kf/z1y8ZR8+lyMFhQxWsPxlH1WeX6vailGK0O96rDh38JTn4a9/01V5aMdhWPfB1uugJbmf1u4sEA8H2zxT8cNX+IpH/JRO1sQFkuwY/703Li51yYPxvkPL6nlYvfVQsTW8qIFQRAE4cjkJ0AS85g5wJlKqc0VPgf3rqLh/65hXAeKhk9QSrVorSeryOPFRcOHFhmTIDQdr33ta/nqV786Nfytb32L66+/nmBw4dcbBwYGuOOOO+YspxlZvXr1rOFt27Zxyimn1CTvlStXTonRUqkUL7zwAhs2bKhJ3oIgCIKwKF70Sjj1bHj8gUZHIjSSjD+fa1qV83Zt/37ifr506LI6RrM4guTocMenhkM6O3VbvM8Z5JT0U1wYv7PqfFcky/dsfn38x7w+/uOq8y7m2OzO2Qnb71tchvnHJ1oLv+NzT/F7nSEAOt0xjs7unptHGlanJ2YlBYGIk4SB4anhE3huzqynDDxVcahpFWJ3cAO2dtiY3YONYwR1booAOeJWKy3upBG+LVMG7R6eDJ9IjgCtbpyITk9JByJuiqhO0erGieokCRUzYkKdxqrg+Y9nQsdxd+w8RuwuVucOcW7iPo7J7lp4sDsWPmvFeB0+v6vDsgVBEARhmRDVKe7ffQ5vXncbg4E+AN48fjsfG/xMgyMTlgoFRHSaiJOeausvFhdFUkVnCdUK34ki+dqE1UqiaJppMdt0WtJqKb9goSFsD28BmBKcFXOQ1XPS5pv2kejpJZezN3gUD/HyBURYmp/Fzp2T9mjktKrz2RE+rvQEB5h7d70Ksg7sHSk/TXYR3dIHy7zCLJ6G7/5vdXn2j8M922efg+4fgfU9VQYnCD5HnvIXFkPxkxz3VTHv/ZjLuIVj8EVKqZU1fGOm0AzkEt7jWtbMHlZB0POoU10RozUdXoIHqw6dW706t3nFJDQWz073fhKjBcxxNV8nbxGBNA63grPLRovHynVIk3KpsZQ6PqwmO4WSjoz+wU/1mlcZJHWXv/CUyPioHCp3/Ipszx8sdj8UCxwX0rFeWB64Hq+0afQxUWr5Ug75A686rdp2UD2uHRVY6nbR4fvhqU/BwZ9UN1+wHY7/azjhMoj0LU1sQhPhIcvxkusIBs92tsdLNQShGfESo2kXcnFTnwj+wlPauMiyaSFia7k+JAiCIByBaK0nlVLfBf5sRvJHgXeXmk8pdTzw5hlJOeCWGob2ODACFF4ZHsnH+JVKZlZKvQFYW5T8y5pFJwhNwmWXXcbXvvY1tDadAgYGBrjpppu49NJLF5znjTfeSDY7/dxiLBbjve9976JjbQRnn302t91229Twfffdxzve8Y6a5H3WWWfx6KOPTg3fddddTbudBEEQhOWFUgq23oJ+x2ZIy/N1gr/YlN3Nxsxudoc2zhl3YqYSf7cg1IawznBCZrZtq82Nz/t7udLrDHHO5P0VTduqS/SPm4cTMjvmbF9BEARBEI4Mzkw+zL4dR/O7yKmszB1mXW5/o0MSmgwLTUxPEnMmWekcrkmeDtaULC1eJFcrlqiZ9NnytbjVSkLFmLDbiOe/sypUk9gEQaiOXYMiRhOWHz7qTSs0IScXDf+q0hm11gml1BPAi2YknwSIGO1IIllCvRotei7PCs7fAVfEaM2HV8czL2lZLfGSSDRakCTMj1cH9kZ3ui/GjpjOZMVI56HGUcl/utHiMTtceryUS42l1PFRj/qqlkhZ5A+09pbJNEKMViw5KiAiPX/hVRb5qRwqd/zm5JjyBYutC4rLjMWWW7r8GzEFn+J41WVl2rZLTaljUtpCjUe73pKmqsVodbxBvhTHjtZGhPbUp2Cgyj7I4T7Y/Ldw3F9ByEN2Ixx5KBGjLYhmaGcLwmIJdXqPy4yJGM2XeJTdXmV9pZS8n6KAec7PpA0tCIIgHLlcC1wMFMzs71JK/bfW+o75JlZKRYCbgJkXLL6htX6+1EKUUsUV8Lla6/vmm1Zr7eSFbTMtQtcrpR7QWj9ZZjnrgX8vSn5Aa32w1HyCsBw58cQTueCCC7jzzjun0j760Y/ypje9iZUrV1ad37Zt2/jsZz87K+3d73433d3di461Ebz61a+eNXzLLbdwww030NbWtui8X/Oa1/ClL31pavjrX/+6iNEEQRAE36B6VqHuGUVvfwR9963QxJW0ZAAAIABJREFUv3f2S3lzOdj/PHT2wbZfg1PBC3trybGnglIwOQGTccikjMQtGIZIC8RHIZuZnj7SAqlJM0+0FSIxsCywA9DaAUefhDrqOFh3LDg5OLwf/bVr6rtOQkUo4IuHLufC9bfPGXfJWC1d3IIgCIIgCIIgNIoADi9JPVp+QkGoEzYuHe44He54zfLMECwSqpnfiXnka4X0cvI1d7EvmRSEI4Cdg5pXnqAaHYYg1BR5yl9YDFuKhp+rcv7nmS1GOxH46aIiEpqLkmK01bOHreD804kYrfnw2mde0rJa4nXSo+t8s1qoDK/ONwEPmUujEDGa/6jkP93o/70lYjRfU2r7N1tHaRFd+YNSdYKXpGwp8ZKQSN3lL7RHu9lP5VA5oY2X6FaoL74To0k7p2nxknyWa9suNSJG8zelzr2qFqN5XB9cCmp57GgX9n4fnvo0jFT5IEvLOtjyETjmLyHQUruYhOWBpyxHxGgl8SqX5IEZYTkRLCHRzI4BR9UtFKFCvKSWixajlRDLhrogMzw3Xa4nCoIgCEcoWuudSqkbgStnJH9XKfVh4Kta6ynjgFJqC/B14KwZ0w4Bn1iC0LYCfwoULtR2Ag8qpT4GfFNrPTlzYqVUCPhj4HNAb1FeVy9BfILQFHz+85/nvvvuY3LS/GVGR0e56KKL+MlPfkJra2vF+QwMDPDWt76VTGZaQrJ69WquuaZ5pSInnXQSr3zlK/n5z38OwPj4OFdffTX/+q//uui8L7jgAo455hief944Ix9++GG++c1v8hd/8ReLzlsQBEEQaoXacjpqy+klp9Gui77yQvjNPfWJaeutqHMvKjuddhywLJQyHR11OgmhyNRwWVZvQP/TZUayttRYFrge10EjLRCOQs8qCEXg6d8ufTw+54LEXXx/79u5dPWXGAz00ZMb5LOHr+as5K8bHZogCIK/CUfhlDONSLRvjRGFatfUQeEoKhID24aWNpicQMfHjBg1lwXXQXWtABQ6k0K1dhi5qOtCIGjEo5mUkZamk6A1enQAsmlAmTpMKUjGYegQvPAM7HlmdnwdvRDOPy/V2QfdK8z9QKVMXYkyvwsflIk/k4JwC7R2QlcfKhSenk8p9NgQjI9AcgLiY0aMatkmFq1h7w7zu2cV7N9ptsEr3ggbN8PEKKCNcDWVNL9bWs16B8NmGU7OtINiHSaPzj4IhSGdgvgIdOfF845jpm3tgFgHqrXdbDet8y/U1fntNmiEruPDkMjLV4JhiLbA2LDZJx29qHXHmG3f0Wu2T/9ek38wZPZ1IGjSM2mTlsua9bZts31m/rZtGB00y06MTb/gd+rbNdsuFDHxR1vNsgYOwOB+GD4MG7fAinVm3Q/vN3nG2lGF9dfabDftguugJ0Zh6CC0dUIgZGS33SshYPaPsuzpGC3LxJlMQCQK7T3mWOnfi37+CXj2MXNcoc3+LXyUBYf3zj7OAkFYedS82x5lQXu32cfjI5BKmG2/Yq2JLxwxx1qkxaz/6ICJKdpqtkswbGJuaTX/o0zKbM+OXlRvvi/w2JCZPhCA7lVmmaGQOT7Ghsx+yqSm91t7t5m+EKPron/4Ddj+iDkWIjHIZcz/rqXNbMNQJL/dbBNfenK2NJgZ7eFC23hmG1lVOp2aPd1842a1vRc4XalllptuqfKteF2K56tDbEu9zvNNp5Q51iZGTPkVjppjMhw1//FC+ec607+nhnNFn/w0EyOmbA4ETfp8Lx4PhU0ZOD5slgfm/5mvh4jGTJk8ctjE1bsGYm1wcI/5nxWItZv/YvcK6Flt/p+TcfOfPLQHNmw2/8fEuPmvbzzRlAfBEBzeBz+fK22uiEJ9FgxPxz9zXCUvWw9FTJk2eNBsrwLRVujoMdsvGDLbpVBv9e81ZYvt0e+m1Dmz17iS59kLmGdB42ocd6XXDhaxnBDQrRRzXyszmf8MVpWf1pBSYSZ0lDgR4joy/ZsW4npmWpSEjpDNaXpSB7BzaYacGM+oDfxv5EVopYi5k7TqSRIqyoTVyqjdNWeZvbkBbFzGrHZiboIXZZ8kqDPY2iHgmm9bO9jKxVIwrDoYsToJkOP54DEcDK6eZ00EYWnZ5fHXEoRmxke9aYVmQinVDXPaIi9UmU3x9MctPCKhKUn1e48r7ujn1fFx580w9FDNQhLqwMSO+dPrIXjwWkZuEh79yNIvX6iOxJ75061FihhqjVdH7p03w/Bv6hqKkGf0ifLTNFrIUU4AMLlfyqVGkp1HdligHiLPWnLgTshNNDoKwfEQycDiBUMLwWuZB34snV/9xOiT86f7qRwqd/yOPCb1mR/waldXSvF+Xmy5Je2c5uXwL+ZPt30sRtt2A0RX1i8WYS5uiXOvRorRyj1QceBOyNXgrWfaNXmNP13dfK3Hwkl/Bxv/DOwSQhPhCMdDljP4a6lrS+F1zuMnAbEgLJZQCTHaU/8ILWvqF4tQGWPb509frLSx1EOMwbb5xWgD9y9tPfJ715sH1AVBEATBn/wdcBJwQX44CHwR+D9Kqf8FJoCjgRczu/dBBniz1vpgrQPSWu9TSl0C3AYUKtG2fFw3KKV+CxzAWLJXAacD81me/l5rfX+t4xOEZmHz5s188Ytf5D3vec9U2oMPPsgFF1zArbfeyrp168rmsWPHDt7ylrewfft0+92yLL71rW/R19e3JHHXi2uuuYbzzjtvavhLX/oSmzZt4oorrqho/rGxMcLhMJHI7Gu+gUCArVu3cskll0ylfeADH6Czs5OLLiove5nJPffcw9FHH83RRx9d1XyCIAiCUAuUZcENP4D/+U/0U3kxVTRm5AsFscP4MCQmTOfxsSHTsT0xAQP7zL3JQNBMGwgamUNHD+z43ewF2QHUp/4v6uzXVxaXPfs6mwpX94JO9YcXw9mvh0MvwM4nTcdxrc26ZFLoHb+D/c+bDvMdPSburhWozl7TOb8z/4m1mw7/yjK/hw9DZw+0dZltFGlBKYXO5YyELZMyHdaDIQiGUeG59431ru3w65+gD+9Dda9E73wKxgaNPCASM1KWaMzElkkZmYgdADtovlMJsx92PGYkJ37GDpjO/snZz62+Mf4jLtzxIw4E1rA6dxCL/D3uQNBIQQJB87ED5tgaHSgSgsygs89IS5Q1LWSolIJoINZhvgNBc413T5X3wAvMFCCEwmafFdJdxwgdCkRaoKXd7OOO7rxQKGr2aVsn9K01x2syAYMHpiUrrmOO533PLSwuQRCakze/D+vDX6hqlgVoR6qaThfqVdeFjh7TplgCFqA1aSiNjLeey67VsirJR7uukQ7lMhBtQwWa+xkY9eq3NzoEQagLOjUJgRAqEEAPHjRt0oJsMZkw51Iz6g6t9fS5lVJzzglnTsfAftN271pRuTy7VKwD++HALiN6jMbybfU206ZPjJtzkYK4UlkmXVlG5lnII5c1UriZYsvEGIwOmnPJjh6zDUIRc46TGIfWzqkyTWcz8Nzj0N4Fa46uyXoJzUcs/1ko2nWnxKAq2DcrfTKjsSwLSwHZDKGQBfQaAWe0BXT0/7N35+GWpXV96L/vqTo1dA1d1d3V88xMM2iDE6IQwAkjoBghqKHVaKIxN0aMEUwuiT5ouKKJCRi5EUGJKFeUSeMQEFAwDtgo0LTQDT0ATTc9VHfX0F3je/9Yp6rO2Wfa++xh7eHzeZ71VK111vDutd/zXfu8e+3fTtl05r2UenyhAOL8ljNF648eaQqj7rs0eehADt7xqfz+Xx3KnQc356qdhzM/dyIHj2/OgWOb88DR+Vy//+z87f492VxO5nidyyce3N3Ho4PGLV88kVXvMYcJNdl/4dCmPR3zh2uth3rcxxc75te4S5+ZV1b54OMdv9dMTL5RFHhY7cNt9Xhy42uGf3wGo40CMmtZrVDbF/6gmRhPa304fxTWKx5x9D65NK4m7YPS9/5lMzG+2ij4udq19L6/VtRzEqz2t1Eb1vuA9sHPuJ5Ng03b157v1bH79YtpMzfGhdFuffPo2kHvei6MNsICYff+RTtfxrDnicnjX5Fc/o8UDGF9q93Y88DHm4nejFMBYujXpm3NdfPkCh+Auu0to28PfRjiDUqrvRa7/2PdffnIRj35Z3KmpgsAjJda64lSynck+ZUkL1r0o/OTfOMqm30xyUuHWXSs1vr2Usrzk7whyeJvAdie5OnrbH4oyU/UWl87rPbBpPje7/3eXH/99Xnd6153etkHP/jBPP7xj88rXvGKfOd3fmcuu+yyZdvdfPPNedOb3pTXvOY1OXJk6RdivfrVr15SUGxSPetZz8rLXvay/PzP//zpZT/2Yz+WD3zgA3nlK1+ZpzzlKcu2OXnyZP7yL/8yv/Vbv5U3vvGN+ehHP5orr7xy2XoveclL8t73vje/+qu/miQ5evRoXvjCF+YlL3lJfvRHf3TFfSfJiRMn8tGPfjTvete78ta3vjU33nhj3ve+9ymMBkBryubNybd8b8q3fG9P29Xjx5JaU+ab9zpPfZD91P+bok4Hk/MuaaWARTlrV3L1Nc3U+bON7vTsc8/8f/OZ+5zK5s1NIbVu2nXV45KrHne6Df183L0eeehMMbDjx5MH701u+2TzgfyzdpwppnZq2jzfFLirtfmg/4H9TaGR7TubfTx8uPlQ9LGjpwvdZOv2pkDA7r3N/++7qzn4qUIBW7Y1xeCOH03uuDXZtr05zu5zUrZub/rC/Xcn93yhOfZFVyWHHkw5fjSX1toUBNi6vTnW9p0rFgA4XSRhoTjaqT63bL0TJ5p+d3iheMHe85vHfargwuGDTRu2bG8+3L1GEZ96YH9y+6eaPrzj7KYfbVk4d8eONudr83xy9OGUnWefbmdqTU4cX9bGWmuy/4vJ4QNNu87a1Vexg3rnbcnffaj5QrNjR5u2bdnWPCdbtyVbz0r2XZycd3FzDo481JznA/ubIg0njjUFGT7656m3f6p53stc817+pk1NoYcdu5PHf1my94Jm/VP97NS2Bx9oigRu2doUbjvyUHLk4abQxalibAf3JwcfTPbuS65+QtPegw8kB+5vttt9TvP8nDje9LmjDzdtmJtbaM/Cv4cPNNvVk822u/Y0heW2NEUIc86Fzf4euLcpZpE0+9u2PTlxMjl2pCleePJEctGVzT5Lac7JFz/X7P/Y0eYxPHy4KSZw+EBy1eObgoWb55u+cOhA8/NzL0h27mnO81xJjh1r9n3q92v/F1N/6780bT52pDne7nOaYiD7Lk45+9zUAwvFFE+cSDlrZ1Pk79wLlz7RRx9uzul5FzaP98F7m/mzFurGL/Sl3PXZpr0H7m+Kdmw768zzvlB4JOdf2pzbv/rjpiDj9e9vHtupfnj8WNM/6snmsaQkF13RFO3bu+9Mcb3tO5tz9eB9zbG2bGv2v21H87v38OFm+YkTzeM/+9zkysel7N2X+tmbkh27Uy5e+Nvn5ImmnQ/c0/zs7z6YPPFpTbvf89Yz56GU5rGee1Ezv3nzmd/HUzbPNwUFHz7cFCF56FBTdHLX3iZnjh5p+vauvc05S5rnfv8Xz+z//Eub/dz8sabgw1rmFvpQmTtz/k5lZq1N/6snm3Y8tMaXmq9UuHDnnqaPHTuanH9ZU1T0Rf9q7fa0oJSy9LoIQ1Lm5hayvZ9SMcColW1nnfn/eRct/eFZy78D59Rr4/X+diylNNfsASr7LmleR6zk1OuG9fZxqrjzKVu3NdM5K3wB9vyWZX8/lvktyeOe2m2TYUVlbm7FPlvm5rJj8a1U84s+H7F55WJlze/i0t/HsmVr8/dUkuzam12P2ZsXP6b79h07XvORzyYf+FTNHfcnO7Ym+3Yl9xxMDjyc3H0g2b092b0tufq8ZNt8ctt9yYdvrfnTTyXPflxy1Xklj74geeCh5Of/uOboieTYieTyc5LnPblk17ZmP3c92Gz/mAuTHVuS2+9L7j2UHD+RHDmeHD1ec/xksnVzsm2+ZPf2ZMvCLV/n7EjuPpjcek/NFeeWXLC72W7/4eTSvclr/6Tms/uTay5OHrkvOXdXySV7kpM1+fz+5PP7ax4+3vwpeuJkcuhIUpM8dDQ5d2eyb2dyyd6SLz5Yc+u9TbvO2ZE87sKSreVoNv/v38jmeryZcjybTv//xOnlZ9XD2VKPZf+mPXn0kZtSUnOyzOXiY3ekpGb/pnOS1Jx18nAOze3MgbmdOVq2ZC4nU1JTUnOo7EgtJVcdvSXb6sM5Urbm0NyOnMimbMqJfHHT+dleH8rFx+/I9pMP5ViZT03JWScPZ0uO5XDZnrs3n58Tmcu2+nAOzu3MiWzKyTKXvSf2p6Tm187+7nx4+1Oy7/g9ueD4XTmrHs6ukwdz9on7s60eycNla847cW/u3HxhDs3tyI6Th/K5zZfkZJnLkbI1O04eyomyKXtOPJCrjt2Sq47emid93/+d5BHddzyYAO7yZ6M6X1U/tIF9dG7T3avfNZRSzk/S69fvSfZJMDdGH/5nOEZR4MEHSqfDuBVGG7f20J16ot3jt1EIicHwQWkGrY3rSL9FjWiXHGLUlhVG8zqGDm33ibK5uYGunmy3HfSu17+Lpnl88NyvSK75yeSSf7h6sSvoVHyb10CtV/QXJs2WPcnDnd9RxcQZZjYZHwKAFdVaDyZ5cSnlbUleluQrV1n1viRvTfLKWuvdI2jX75dSHp/knyX5vqx/v9tdSd6c5LW11tuG3T6YFK997Wuzd+/evOpVr2qKLiQ5cOBAXv7yl+cVr3hFHv/4x+eyyy7L3r17c++99+a2227LJz/5yWX7mZ+fzy/+4i/mB3/wB0f9EIbm1a9+dW6//fb89m//9ull7373u/Pud787F198cZ74xCfm3HPPzZEjR3LnnXfmox/9aA4cONDVvn/5l385+/fvz9vf/vbTy97ylrfkLW95S/bt25cnP/nJOffcczM3N5cHH3wwd9xxR2688cY8/PDDA3+cADBqZfPS9zgXF3k6XSxFwZShKls7xkL37kuueGz3O7hgefHcdS0UAVtm0/bkqsctW1xOFRzae/6ZhYuLAKxWgKBzH1m9INrp9TZtas7B3lU+dtVlUYMkKbv2Jtd8xUqNaQocnLJl66IflebnK3wxWimlKYqwUmGEDSgXXpFceEX3G5wqTLH7nKXLL3lEX8X5psKAnpMlrnxcypc+Y81VBnreL3tU9+te8+WtPedrHXfZz17566n339MUSTvngnV//zfq1N/PnYUKa63JPXckn/l481mt8y5JzruoKey2RlHFFY9x+EBy9+ebInC79i4UVCtNsbuF/5dSmmOePNlkGQAATJn5zSVfflXy5VcN5i+Sf/MNA9nNWB231q2pv/WjTZHsKfDNB/9w4PssR74tyucwbXyalo3qLIy2katHZ2G05SWMe/dDSV45gP0wCnuvTfZfv3z5Sh+o3XzW8mVMl1F8kFohoumwecy+wWLc2kN39q33xdlDpt9MLtcSBm3zIP4M6vWYMmiitV2AaLH5PW23gFHozAwZQqe2x2xKSTbtSI539wEsxsj87jS3bdb11mxsXeP7MDbvSI4fWr58tevmrh5ueB2mC56dXPOK5IJ/oCAavZvbuv46dG+cXmfDIGzZqzDaNNjUZ9ZvO3/1n+24Itn/t/3tHwCmWK31bUneVkq5Ksm1SS5OsiPJnUluS/KhWuvRDex3wwMAtdb7kvxskp8tpVya5ClJLkqyJ80gywNJ7k7ykVrrzRs9Dky7n/7pn84znvGM/NAP/VBuuumm08trrbnhhhtyww03rLn9tddem9e//vV56lOfOuymjtSmTZvy1re+Nddcc01e9apX5dixY6d/dscdd+SOO+7Y8L7n5+fzO7/zO/m5n/u5vPKVr1xS8Ozuu+/Oe97znq72sWOH96gAAAAWK4uLKA7rGKvcz1JKaQo3dlG8cd1jnLWrq6KVpZREUTQAAJhZpZTUCy9Pbv9U200ZX5+9af11YML4OnkGpctPr/W9DdPkEd+38vIv/3+XLzvvq4fbFtq3bwTP8TnX+sDgNDjvaW23YKm2C2yxMY97WbvH128m085HJNuH8K1n/XqCusATa/djkm3DvylhGRk02cbpb6MdlzX9mOm154nJlo5vsd12frLr0e20h/E0DteV87+m7RbQq63nJXuekJz7Zd2tv/PqZPcaN0A+9bW9Lb/iRcnc/Mo/G4VLnpd8/V8kz35PcuGzFEVjY8ZtjGySbdrWfJELTJN9X9t2CxiEfrN+z5OT7St8GGXHlcnVq7xPCwAsUWu9pdb6O7XW/1Zr/U+11jfVWt+3kaJoA27X52qt76y1/vJCu3621vpLtdbfVhQN1vec5zwnn/jEJ/Ibv/Ebefazn53Nm9f+jumtW7fmW77lW/LOd74zH/7wh6euKNoppZS88pWvzCc/+cl8//d/f84555w119+5c2de8IIX5B3veEcuv/zydff94z/+47nlllvyEz/xE7niiivWbc+uXbvy3Oc+N6973evyhS98IV/2ZV2OJwMAAAAAADCdvvYFbbdgrFVF45hCpVa1qehdKeVJSf5u0aJ7a609faK/lPIvk/zXRYt+t9b6wj7b9R+S9FUZ4uMf/3iuueaafnZBt47en7znmcn9i7rSOU9NnvP+ZHPHt/s9cGPy3mf6dvtpdfmLkq9+S1JGUK/zhv+U/N3Lh38chuMx/zp5yi+03YqlDt6SvOdrk8Ofa7sldOuyb0+e/tbRZM5qTjycvP+bk7v+pL020JsylzztLU0BhXFz+PPJH3xJcuSetltCL8qm5Kt/M7n8H43+2MceTN77nOS+vx79senPtguT53wg2T1GRaluf1vyoRcl9WTbLaEX83uSbfuSA2t8E0jZnHzN25JLn7/8Z7f9f8mHXhw178k5T0me9d7lBfRG7e4/T973Dcnxg+22g+59+euTR/5AcscfJn/6/OTkGp8lLnPJV/3P5Mp/vPo6K72+Wa9/fuynko+NsMhwmWvGwK55eVN4Evp17EDyJ1+X3PuXbbdk8j35Z5NrfqLtVsBgeV9t8m09N3n2+/p/3fCZX0v+4nty+u+3Mpd81ZuTy16YvP+5ox+jfvHRdgvUzpAbbrghT3jCExYvekKt9Ya22gMApZRrknz81Hy/9+gdP348N920dIz7UY961LoFrmAlhw4dyt/8zd/k5ptvzt13352jR49m69atueCCC/LoRz861157bbZunb0v4zx58mSuv/76/P3f/33uueeeHDx4MDt27Mj555+fxz72sXnSk56U+fmNv76/5ZZbcv311+fuu+/O/v37Mzc3l127duXiiy/OYx/72DzqUY/Kpk2bBviI2iW3AAAAAAAA+lMPH0z99y9O/up/977x1u3Jlm3J9p3JvV9IThxvls/NNV90fuoz58ePDa7Bo7JzT3L5o1Oe9tyUl6qjMQruzxsdhdHYkFLK1Uk+vWjR4VrrjtXWX2UfP57k1YsW/Xqt9aV9tuv8JPt63OwRSd55akZhtBE7cm9zQ/7+65O9X5I86oeSzWetvO7BzyS3vDm598NJfOh+KszvSS58VnLVS5O5Ed7g87l3JZ9/d/LQHaM7Jv3Zui+56BubgkSltN2a5Q59NvnMm5oPYNcTbbeGxcqmZNsFSWpy4mhy/tcmV790PD54dfyh5NNvSL74geSO30vmtiX7ntZ2q1jJzkcml397cv7XtN2S1R2+I/nUf00+sfDy+oJnJ5tm78bsibHzkU1BtPOf3l4bjj3YZNDdH0pOPNReO+hO2dQUkb7qu5OdV7XdmuXu/lBy61uST/+P5jX+ub6tfXzNNX97n+pLn/m15It/2hQs37rvzLVj16OTy78j2fdVq+/qix9MbvvN5KZfaubPeWqy7fyFw8wnB25OHlg0nrvrUc3EdNi0Ldn39OTq70m27Gm7NY37P5bc+hvJ/R+Pon1j7KzLk8u+Lbno684su/evk9vemjx4Y5MjFz832XpeU3yzbO7+tfjRB5LPvDG578NNUbSrr0u27F17m8++vbmGfe4dyY7Lk92P7evhrWhuPtnzJclV35XseuTg989sO/pAMyZ19595Xb8R2y9OLnlecum3tN0SGI6Dn0k+8+vJfX8T76tNkrnknGuTK78r2T2gv6Huel9y++80769c9u3JBc9olp8ao777T5PjhwZzrPV87TtH+57gDHPjFQDjRmE0YNbJLQAAAAAAgP7VkyeT2z6ZfObjydnnJBdcnuy7JNm8JTn6cLJpc/Pv8aPJ/NZkx+7k5MmklJS5pvjZqTpLZYWaBfXwweSu25Pd5yR7z2/uu/vczcntn0wuuKIppPbgfcmhB5PU5OCDTTu27UgOH2imTfPJpk1NWzbPn2nTg/uTXXuSPfuSkyeST/xV6ic/khx6IJnf0rR385Zkfr6Z37I95aydTXtrTdl2VnL2ucm+i5vjbTsrOf+yZM95Kz4Whsf9eaOjMBobUko5N8k9HYt31lq7vmO6lPKaJC9btOi/1lr/1SDa14tB33QFAAAAAAAAANAWN14BMG4URgNmndwCAAAAAACA6eD+vNGZa7sBTKZa671J9ncsvrzH3VzRMX/TimsBAAAAAAAAAAAAAAAAAAAAAAAw9RRGox83dsw/ssftr15nfwAAAAAAAAAAAAAAAAAAAAAAAMwIhdHox8c75r+q2w1LKTuSPGmd/QEAAAAAAAAAAAAAAAAAAAAAADAjFEajH3/YMf/MHrb9miSbF81/pNZ6V98tAgAAAAAAAAAAAAAAAAAAAAAAYCIpjEY//ijJQ4vmv6qU8tgut72uY/7tA2kRAAAAAAAAAAAAAAAAAAAAAAAAE0lhNDas1no4yds6Fv/b9bYrpTw6ybcuWnQ8yVsG2DQAAAAAAAAAAAAAAAAAAAAAAAAmjMJo9Os/JDm2aP66UsrzVlu5lLItyRuTbFm0+A211k8Pp3kAAAAAAAAAAAAAAAAAAAAAAABMAoWi+bsXAAAgAElEQVTR6Eut9TNJfrFj8dtKKT9cSllc/CyllMcleW+Spy1afG+S/zjcVgIAAAAAAAAAAAAAAAAAAAAAADDuNrfdAKbCTyS5Jsk3LczPJ/lvSf59KeX6JAeSXJ3k2iRl0XZHk3xrrfULI2wrAAAAAAAAAAAAAAAAAAAAAAAAY0hhNPpWaz1RSvmOJL+S5EWLfnR+km9cZbMvJnlprfXPht0+AAAAAAAAAAAAAAAAAAAAAAAAxt9c2w1gOtRaD9ZaX5zkHyX5izVWvS/Jf0/yhFrrH46kcQAAAAAAAAAAAAAAAAAAAAAAAIy9zW03gOlSa31bkreVUq5Kcm2Si5PsSHJnktuSfKjWerTFJgIAAAAAAAAAAAAAAAAAAAAAADCGFEZjKGqttyS5pe12AAAAAAAAAAAAAAAAAAAAAAAAMBnm2m4AAAAAAAAAAAAAAHSjlLJsWa21hZYAdGeljFopywAAAAAAAABoKIwGAAAAAAAAAAAAwESYm1t+6+uJEydaaAlAd1bKqJWyDAAAAAAAAICGd1QBAAAAAAAAAAAAmAillGzatGnJsoceeqil1gCs7/Dhw0vmN23alFJKS60BAAAAAAAAGH8KowEAAAAAAAAAAAAwMXbs2LFk/sCBAy21BGB9Bw8eXDK/c+fOlloCAAAAAAAAMBkURgMAAAAAAAAAAABgYuzatWvJ/OHDh3P06NGWWgOwuqNHj+bw4cNLlimMBgAAAAAAALA2hdEAAAAAAAAAAAAAmBg7duxYMl9rzWc/+9kcP368pRYBLHf8+PF89rOfTa11yfLODAMAAAAAAABgqc1tNwAAAAAAAAAAAAAAurVp06bs2rUrBw4cOL3s6NGj+fSnP53du3dn9+7dmZ+fz9yc7w8GRuvkyZM5duxYHnzwwTz44IM5efLkkp/v2rUrmzZtaql1AAAAAAAAAJNBYTQAAAAAAAAAAAAAJspFF12Uo0eP5siRI6eXnTx5Mvfff3/uv//+FlsGsLKtW7fmoosuarsZAAAAAAAAAGPPV+EBAAAAAAAAAAAAMFE2bdqUyy67LJs3+45gYPzNz8/nsssuy6ZNm9puCgAAAAAAAMDYUxgNAAAAAAAAAAAAgIkzPz+fyy+/PDt27Gi7KQCr2rFjRy677LLMz8+33RQAAAAAAACAieBr8gAAAAAAAAAAAACYSFu3bs3ll1+eY8eO5YEHHsgDDzyQY8eOpdbadtOAGVVKyfz8fM4+++ycffbZCqIBAAAAAAAA9EhhNAAAAAAAAAAAAAAm2vz8fM4777ycd955qbWm1pqTJ0+23SxgxszNzaWUklJK200BAAAAAAAAmFgKowEAAAAAAAAAAAAwNU4VJZqbm2u7KQAAAAAAAAAA9MgdHwAAAAAAAAAAAAAAAAAAAAAAAEDrFEYDAAAAAAAAAAAAAAAAAAAAAAAAWqcwGgAAAAAAAAAAAAAAAAAAAAAAANA6hdEAAAAAAAAAAAAAAAAAAAAAAACA1imMBgAAAAAAAAAAAAAAAAAAAAAAALROYTQAAAAAAAAAAAAAAAAAAAAAAACgdQqjAQAAAAAAAAAAAAAAAAAAAAAAAK1TGA0AAAAAAAAAAAAAAAAAAAAAAABoncJoAAAAAAAAAAAAAAAAAAAAAAAAQOsURgMAAAAAAAAAAAAAAAAAAAAAAABapzAaAAAAAAAAAAAAAAAAAAAAAAAA0DqF0QAAAAAAAAAAAAAAAAAAAAAAAIDWKYwGAAAAAAAAAAAAAAAAAAAAAAAAtE5hNAAAAAAAAAAAAAAAAAAAAAAAAKB1m9tuAIyBLYtnbr755rbaAQAAAAAAAADQlxXue9iy0noAMELu0QMAAAAAAAAAJp7780an1FrbbgO0qpTyvCTvbLsdAAAAAAAAAABD8Pxa67vabgQAs8s9egAAAAAAAADAlHJ/3pDMtd0AAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgNaVWmvbbYBWlVLOTvKMRYs+m+ToBnb1iCTvXDT//CSf7qNpAL2SQ8A4kEXAOJBFQNvkEDAOZBHQNjkEjINZzaItSS5bNP+BWusDbTUGAAZ4j94ps3qNB8aHHALaJoeAtskhoG1yCBgHsghomxwC2jarOeT+vBHZ3HYDoG0L4fKufvdTSulc9Ola6w397hegW3IIGAeyCBgHsghomxwCxoEsAtomh4BxMONZ9JG2GwAApwzqHr1TZvwaD4wBOQS0TQ4BbZNDQNvkEDAOZBHQNjkEtG3Gc8j9eSMw13YDAAAAAAAAAAAAAAAAAAAAAAAAABRGAwAAAAAAAAAAAAAAAAAAAAAAAFqnMBoAAAAAAAAAAAAAAAAAAAAAAADQOoXRAAAAAAAAAAAAAAAAAAAAAAAAgNYpjAYAAAAAAAAAAAAAAAAAAAAAAAC0TmE0AAAAAAAAAAAAAAAAAAAAAAAAoHUKowEAAAAAAAAAAAAAAAAAAAAAAACtUxgNAAAAAAAAAAAAAAAAAAAAAAAAaJ3CaAAAAAAAAAAAAAAAAAAAAAAAAEDrFEYDAAAAAAAAAAAAAAAAAAAAAAAAWqcwGgAAAAAAAAAAAAAAAAAAAAAAANC6zW03AKbI3Un+Y8c8wCjJIWAcyCJgHMgioG1yCBgHsghomxwCxoEsAoDp5BoPtE0OAW2TQ0Db5BDQNjkEjANZBLRNDgFtk0MMVam1tt0GAAAAAAAAAAAAAAAAAAAAAAAAYMbNtd0AAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgNYpjAYAAAAAAAAAAAAAAAAAAAAAAAC0TmE0AAAAAAAAAAAAAAAAAAAAAAAAoHUKowEAAAAAAAAAAAAAAAAAAAAAAACtUxgNAAAAAAAAAAAAAAAAAAAAAAAAaJ3CaAAAAAAAAAAAAAAAAAAAAAAAAEDrFEYDAAAAAAAAAAAAAAAAAAAAAAAAWqcwGgAAAAAAAAAAAAAAAAAAAAAAANA6hdEAAAAAAAAAAAAAAAAAAAAAAACA1imMBgAAAAAAAAAAAAAAAAAAAAAAALROYTQAAAAAAAAAAAAAAAAAAAAAAACgdZvbbgBnlFI2JXlkkscnuTjJ2UmOJNmf5NNJPlxrPTTgY84n+eoklye5KMnBJHck+Uit9dZBHmtUSinXJPmSJPuSbE1yZ5LPJflQrfXhNts2SqWUvUmuSfKoJOck2Zbk/iR3J/mbWuunW2zeMqWUq9I8bxcn2ZnkC0luS/LntdZjbbZtlsihwZBDDTnERsmiwZBFDVm06nH0j3XIosHQ1xqTlkWMBzk0GHKoIYeWKqVcluZcXJrkvCTbkxxN8kCS29Ock7vba+H4kEWDIYsasoiNkEODIYcacoiNkkWDIYsasmhl+gfQBtf4wZDhjUm7xrtHZjzIocGQQw05xEbIocGQQw05tOpx9I81yKHB0M8ak5ZDjAc5NBhyqCGHlnKPXvdk0WDIooYsYiPk0GDIoYYcYiPk0GDIoYYcWtlE949aq6nFKU1Q/kiS30vzR31dYzqe5A+SfPMAjrsvyS8luXeN430oyQv7PM7VSV6U5OeSvD/Jgx3HuHVA53FXkp9M8vk1Hs+DSd6c5BEtPt9DOx9J5pN8Q5LXJvn4On2pLpyrn0pyYcu/A9+e5M/XaOe9C331vA3se71zsN50ZZvnZoTPgRwazHmUQ3Jo8T6vHEAGLZ6ua/Mcjeh5kEWDOY+ySBZNfP9o+XmQRYM5jxPR12RRa/1jR5KnJ/nXSX4jyaeSnOw41nVtnYe2Jzkkh+TQ0M7Ho5L8TJL3pXlDY73zUZNcn+RfJNna1jlp8bmQRYM5j7JIFq20/27yZ63pyrbOzYifBzk0mPMoh+TQ4v1eOYAMWjxd19Y5GuFzIYsGcx5lkSya+P5hMpmma3KNn60Md41fsd3u1Wt5kkNySA65V6/tSQ7JITnkPr22Jzkkh2Y5h0bYP9yjt/b5kUODOY9ySA517ts9er2dL1k0mPMoi2TRSvvvJn/Wmq5s69yM+HmQQ4M5j3JIDi3e75UDyKDF03VtnaMRPQ9yaDDnUQ7JoYnvH+s+jrYbMMtTkrf0cSF7d5ILNnjcb0pyVw/H+p9JdvSw/2cm+aN1LgYD+4VM8hVpqm92+3gOJfnBET7PQz8fC+fgvg32pf1JvquF/r8zyW/20M47k3xDj8fY6O/XqenKUZ+XFp4HOSSH5NAQciiD/wP2RaM+PyN+LmSRLJJFQ8iiSeof4zDJIlk0i1k0yv6RZtD4Y2kGo9c71nWjOgfjNMkhOSSHhtc/kvzTPn6/PpnkK0Z1TtqeZJEskkXD7R99/H6dmq4c1Xlpa5JDckgODe18XDmADFo8GbOWRd0cTxbJoontHyaTaTon1/jZyHDX+FXb7F69MZjkkBySQ+7Va3uKHJJDcsh9ei1PckgOzWIOjbJ/xD163ZwjOSSH5NCQ+kfco9fLuZJFskgWDbF/9PH7dWq6clTnpa1JDskhOTS083HlADJo8WSsWg518zsoh+TQRPaPXqbNoU2PXmX555PclCZUN6ep9vfkJHOL1vmHSf60lPKMWuud3R6wlPLMJO9IsmXR4pqmuvpnkuxJ8qVJzlv08+9MsruU8oJa68kuDvMlSb6+2zb1o5TynDRVQLd2/Oi2JB9N88t3aZpf2vmFn52V5JdKKXO11teNoJmjOB/7kuxdYfnRNIPad6aplHpukqcu/HvKniRvLqWcX2v9hSG3M0lSStmU5K1Jntvxo7uTfGShrY9I0xfLws8uSPLOUspzaq0fHEU7Z4Qc6pMcOk0ODc/hNJWsp5ks6pMsOk0WrXycSegf40AW9WlC+posWmpk/SPJS5KcPaJjTSo51Cc5dJocWl9NM8B/c5o3FQ6n+bbcq5JckzP9I2l+N99bSvnmWusHRt3QFsiiPsmi02QRGyWH+iSHTpNDw2PMWhatSxadJotWMCH9A5hOrvF9mpAMd43vMGH3yEw7OdQnOXSaHBqeaR/3kEN9kkOnyaGVjzMJ/aNtcqhPE9LP5NBS7tEbL3KoT3LoNDm0PvforU4W9UkWnSaL2Cg51Cc5dJocGh5j1XJoTXLoNDm0ggnpH91ruzLbLE9JPpwz1fOuT/LDSR6xyrqXJHl9llfd+7MkpcvjXZrl1Q4/mORxHettTfJ/pfllX7zuz3R5nB9ZoZ01ycNpBjIGUqkwTdXUzmqINyf5uhXW3Zvkv3Wse2KldYfwPA/9fKS5gJ/ax4Ekb0jy7CTbV1i3JPnWNKHV2aahn4+FNvxcx3GPLvT/LR3rPT7Jn3ese0+Si7o8zuLt/mKhz/QybR7F+WhzihySQ3JoKDmU5g+u9TJmtemDHcd70yjOSZtTZJEskkVDe000Kf1jHCZZJItmMYtG1T8WjnX/Ksf63Ao/u27Yj30cJzkkh+TQUPvH9yX5+zSvv745yd411t2T5EfTvPmx+PifT3L2sM9J25MskkWyaOiviRbvy5j1yudIDskhOTSc82HMurfzJYtkkSya8f5hMpmmc3KNn40Md41fsb3u1RuTKXJIDsmhoeRQjHv08lzIITkkh4b0emhS+kfbkxySQ7OYQ6PqHwvHco/e+udIDskhOTS8/uEeve7PlSySRbJouK+JFu/LWPXK50gOySE5NJzzYay6+3Mlh+SQHJrx/tHTY2q7AbM8JfnrNFX2ntrDNj+0Qkd/cZfbvqFjuw8l2bbG+i9Y4Rfqii6O8yMLYf+RJP8jyQ8kuTZNpcBnDvAX8jc79nVTkvPX2ebHO7a5IcmmIT/PQz8fC4F9V5KXJdnR5TbnJvlEx/FvTJcvAPo4H1dn+YuB56+x/vYsf4Pxl7s81uJt3j/MxzWpkxySQ3JouDm0gbZdkuR4x7G+ZpjnYxwmWSSLZNHwsmhS+sc4TLJIFs1oFo2kfywc6/4037Lw+0n+48J5umDhZ+/vONZ1w3zc4zrJITkkh4baP+Y3sM2XJDnY0YZ/O8zzMQ6TLJJFsmjor4kW7+v9w3xckzrJITkkh4abQxtomzHr7reRRWeOI4vOHEMWTWj/MJlM0zm5xs9GhrvGLzuue/XGaJJDckgODTeHNtC2mRv3kENySA4NL4cmpX+0PckhOTSjOeQevTGa5JAckkPu0RuHSRbJIlnkHr22Jzkkh+SQe/TanuSQHJJD+kdPj6ntBszylOTKDW73to5O9ftdbPOojgvikSSP6mK7N3Uc61e72GbvaheCAQbU1WkqDS7e19O73PZPOrb73iE/z6M4H/u6DeqO7Z68wnn8siGfj1/rON4bu9jm0Qt99tQ2x5Jc3cV2i4/z/mE+rkmd5JAckkPDzaENtO0nO9r2qWGei3GZZJEskkXDyaJJ6h/jMMkiWTSjWTT087Fof6t+e27cdHXqPFy5we3kkBzq3I8cGlz7fqqjDX8x6ja08Jiv3OB2skgWde5HFq28v8X7ev8wH9ekTnJIDsmh4ZyPPtpmzLq37WSRLOrcjyya0P5hMpmmc3KNn40Md41fdkz36o3RJIfkkBwabg5toG0zN+4hh+SQHBpODk1S/2h7kkNyaEZzyD16YzTJITkkh4ZzPvpsn3v0ut9OFsmizv3IopX3t3hf7x/m45rUSQ7JITk0nPPRR9uMVXe/nRySQ537kUMT2j96meZCa2qtt25w09d1zP+DLrZ5SZJNi+Z/t9Z6Uxfbvbpj/jtKKdvW2qDWur/W+nAX++7HNydL+u9f1Fo/2OW2r+mY/57BNGllozgftda7a62HNrDd3yXpPG/d9KcNKaVsT/LtHYs7+9gytdZPJXnHokWb0/Rp+iSH+iKHlh5DDvWplFKyvC+8YZDHGFeyqC+yaOkxZNFSE9M/xoEs6svE9DVZtOyYo+gfp471hVEcZ5LJob7IoaXHkEOD87865h/ZSitGSBb1RRYtPYYsYkPkUF/k0NJjyKE+GbPeEFkkizqPIYuWmpj+AUwn1/i+TEyGu8afMc73yMwqOdQXObT0GHKoT7M67iGH+iKHlh5DDi01Mf2jbXKoLxPTz+TQsmO6R2+MyKG+yKGlx5BDg+Meve7JIlnUeQxZxIbIob7IoaXHkEN9MlbdMzkkhzqPIYeWmpj+0QuF0SbTRzrmt5dS9qyzzbd2zL+xmwPVWm9M8peLFu1I8vXdbDtkX9sx/0c9bPveJEcXzT+tlHJR/02aWJ396eIhHusbkpy1aP7/1Fr/vsttO/vstw2mSWyQHJJDgySHGs9I8ohF88fTfFMdq5NFsmiQpjGL9I/RkEX62iCNMouYHnJIDg2SHFrqvo75Xa20YjLIIlk0SLKIjZBDcmiQ5FDDmHXvZJEsGqRpzCL9A5hUrvEyfJCm8X1phk8OyaFBkkMN4x69kUNyaJCmMYf0j+GTQ/rZIE3j2CvDJ4fk0CDJoaXco9c9WSSLBkkWsRFySA4NkhxqGKvujRySQ4M0jTk0lf1DYbTJdHyFZVtWW7mUcmGSJ3ds/6Eejvf+jvlv6mHbYbm0Y/7j3W5Yaz2S5OZFi+YyHo+pLZ39adW+NADf2DH//h62/bMsbeuXllIu6LtFbJQckkODJIca39cx//u11jsHuP9pJItk0SBNYxbpH6Mhi/S1QRplFjE95JAcGiQ5tNQVHfN3tNKKySCLZNEgySI2Qg7JoUGSQw1j1r2TRbJokKYxi/QPYFK5xsvwQZrG96UZPjkkhwZJDjWMe/RGDsmhQZrGHNI/hk8O6WeDNI1jrwyfHJJDgySHlnKPXvdkkSwaJFnERsghOTRIcqhhrLo3ckgODdI05tBU9g+F0SbTIzvmjye5Z431n9Ax/9Fa66EejvfnHfPX9LDtsJzTMX9/j9t3rv/EPtoy6Tr70xeGeKzOvvh/ut1woc9+rGPxOPTFWSWH5NAgzXwOlVLOTvLCjsVvGMS+p5wskkWDNI1ZpH+MhizS1wZplFnE9JBDcmiQ5NBS/6Rj/n2ttGIyyCJZNEiyiI2QQ3JokGY+h4xZb5gskkWDNI1ZpH8Ak8o1XoYP0jS+L83wySE5NEgzn0PGPTZEDsmhQZrGHNI/hk8O6WeDNI1jrwyfHJJDgySHlnKPXvdkkSwaJFnERsghOTRIM59Dxqo3RA7JoUGaxhyayv6hMNpk+vaO+Q/XWk+usf7jO+ZvXnGt1X16nf214WjH/NYet+9cfxwe08iVUnYn+bqOxX81xEM+rmN+lH3x8lLKG0spN5RS9pdSjpZS7lqY/5+llB8opXQGPauTQ3JoIGYsh9byj5NsXzT/hSR/MKB9TzNZJIsGYoqzSP8YDVmkrw1EC1nE9JBDcmgg5NBSpZR/keS7Fi06nuS/tNScSSCLZNFAzFgWGbMeLDkkhwZixnJoLcasN0YWyaKBmOIs0j+ASeUaL8MHYorfl16JcY/BkkNyaCBmLIfWYtyjd3JIDg3EFOeQ/jF8ckg/G4gpHntl+OSQHBoIObSUe/R6Jotk0UDMWBYZqx4sOSSHBmLGcmgtxqp7J4fk0EBMcQ5NZf9QGG3ClFJ2Jvm+jsVvX2ezzkqFt/d42Ns65s8tpeztcR+Ddm/H/EU9bt+5/mP6aMsk+2dJzlo0/0CGVFV/4Y/Dzj8Qe+2Lnes/qodtr0pyXZrw3ZNkPsn5C/PfmeT1SW4vpfznhd8zViGHTpNDgzFLObSWzt+pX6u1Hh/QvqeSLDpNFg3GtGaR/jFksug0fW0wRpZFTA85dJocGoyZzqFSyo5SymNKKS8tpXwgyWs7Vnl5rfWjbbRt3Mmi02TRYMxSFhmzHhA5dJocGoxZyqG1GLPukSw6TRYNxrRmkf4BTBzX+NNk+GBM6/vSKzHuMSBy6DQ5NBizlENrMe7RAzl0mhwajGnNIf1jiOTQafrZYEzr2CtDJIdOk0ODMdM55B69jZNFp8miwZilLDJWPSBy6DQ5NBizlENrMVbdAzl0mhwajGnNoansHwqjTZ6fTXLhovn7k/zKOtvs6Zj/Yi8HrLUeTPJwx+Kze9nHENzYMf+V3W5YSrk8ycUdi9t+PCNXSrkyyb/vWPyLtdbOKpCD0tkPD9daD/W4j86+O+jnbUeSH0nyN6WUawa872kihxpyqE9yqFFKeWKSp3YsfkO/+50Bsqghi/o05VmkfwyfLGroa31qIYuYHnKoIYf6NGs5VErZU0qpi6ckB5P8fZI3JfnaRasfTPIDtdbXtNDUSSGLGrKoT7OWRV0yZt0dOdSQQ32SQw1j1hsmixqyqE9TnkX6BzCJXOMbMrxPU/6+9EYZ9+iOHGrIoT7JoYZxjw2RQw051KcpzyH9Y7jkUEM/69OUj70yXHKoIYf6NGs55B69gZNFDVnUp1nLoi4Zq+6OHGrIoT7JoYax6g2RQw051Kcpz6Gp7B8Ko02QUsq3JvnhjsU/WWu9b51NO6sUP7SBw3dus2sD+xikD3TMv7CUctaKay73T1ZY1vbjGalSypYkb83Sx31rkv9niIdtqx8eT/L+JP8uyfOSXJvm25q+NMnzk7wmy1/EPDrJe0opV2ygjVNNDi0hh/owYzm0ns4K1R+otd48gP1OLVm0hCzqwwxkkf4xRLJoCX2tDy1lEVNADi0hh/ogh1Z1V5KfTHJVrfV/tN2YcSWLlpBFfZixLDJmPUByaAk51IcZy6H1GLPukSxaQhb1YQaySP8AJopr/BIyvA8z8L70YsY9BkgOLSGH+jBjObQe4x49kENLyKE+zEAO6R9DIoeW0M/6MANjrwyJHFpCDvVBDq3KPXpdkEVLyKI+zFgWGaseIDm0hBzqw4zl0HqMVfdADi0hh/owAzk0lf1DYbQJUUp5cpJf71j8x0n+exebdwZ2Z1XKbnQGduc+R+3301TxPGVPkv+w3kallMuS/NgKP9pUStk+mKZNhF9J8uWL5k8keekGvgWpF230w3+X5JJa6z+otb6q1vruWutHaq0311r/ttb6rlrrv0lyRZL/lKQu2vbCJL9bSikbaOdUkkPLyKH+zEoOrWnhBfR3dSxW1XsNsmgZWdSfac8i/WNIZNEy+lp/2sgiJpwcWkYO9UcOreyCJP88yQ+WUna33ZhxJIuWkUX9mZUsMmY9QHJoGTnUn1nJoTUZs+6dLFpGFvVn2rNI/wAmhmv8MjK8P9P+vvQpxj0GSA4tI4f6Mys5tCbjHr2RQ8vIof5Mew7pH0Mgh5bRz/oz7WOvDIEcWkYO9UcOrcw9euuQRcvIov7MShYZqx4gObSMHOrPrOTQmoxV90YOLSOH+jPtOTSV/UNhtAlQSrk8TQdcHJK3JfmuWmtdeas1jWqboam1Hkjyix2Lf6yU8q9W26aUcmmSP0xy9mq7HVDzxlop5aeTfHfH4pfXWv90xE0Zej9c+KO1s2r3Sus9XGt9eZJ/2fGja5P8416OOa3k0HJyaONmKYe68Pwk5y6afyDJ2wZ8jKkhi5aTRRs3C1mkfwyHLFpOX9u4McoiJogcWk4ObdwM59CDSa5aND0izTjQtyX5z0nuXljvsiQ/leRjpZQva6GdY0sWLSeLNm6WssiY9eDIoeXk0MbNUg51wZh1D2TRcrJo42Yhi/QPYFK4xi8nwzdujK7x7tWbIHJoOTm0cbOUQ10w7tElObScHNq4Wcgh/WPw5NBy+tnGjVEOMUHk0HJyaONmOIfco9cnWbScLNq4WcoiY9WDI4eWk0MbN0s51AVj1V2SQ8vJoY2bhRya1v6xue0GsLZSyvlJ/neSSxYtvjPJ19Va7155q2UOdsxvpCJf5zad+2zDzyT5ppypyFiS/JdSyrenqYr6t2kqcF68sN4P5sxF73NJLl20r4drrcsqfJZSruy2MbXWW3tqfQtKKT+Sptr1Yr9Qa/25Lre/sttjrXA+xr4f1lpfV0r5+iTPW7T4h5K8ZZDHmTRyaE1yqEdyaJnv65h/S621s3o0kUXrkEU9mrEsGnr/mCWyaE2yqEctZ1QVJ7cAACAASURBVBETSg6tSQ71aJZzqNZ6MsmtK/zoI0neXkr5d0leneSHF5ZfnuQ9pZSvrrV+fDStHF+yaE2yqEeznEXdMGa9Mjm0JjnUIzm0jDHrLsmiNcmiHs1YFhmzBsaaa/yaXON7NGPvS/fMuMfK5NCa5FCP5NAyxj26IIfWJId6NGM5ZMxjQOTQmuRQj2Zs7JUBkUNrkkM9muUcco9ef2TRmmRRj2Y5i7phrHplcmhNcqhHcmgZY9VdkENrkkM9mrEcmrqxaoXRxlgp5Zwk70ny6EWL70nynFrrTT3saioDu9Z6tJTybUn+V5InLfrR0xem1dyb5gXDHy1adv8q697SQ5NKD+uOXCnl+5P8Qsfi/15rfVkPu+nnfExKP/zZLP0D9itLKXtqrav1kakmh9Ymh3ojh5YqpVyW5Os6Fr9ho/ubZrJobbKoN7OWRSPqHzNBFq1NFvVmDLKICSSH1iaHeiOH1lZrPZzkX5ZSjiX51wuLdyf59VLKUzb47UJTQRatTRb1RhZ1zZj1InJobXKoN3JoKWPW3ZNFa5NFvZm1LDJmDYwz1/i1ucb3Zgyu8ZPSD417LCKH1iaHeiOHljLu0R05tDY51JtZyyFjHoMhh9Ymh3ozBjnEBJJDa5NDvZFDa3OP3upk0dpkUW9kUdeMVS8ih9Ymh3ojh5YyVt0dObQ2OdSbWcuhaRyrnmu7AayslHJ2kj9O8sRFi/enqWB5Q4+7e6Bjfl+PbdmZ5YE9Fh241vr5JE9L8vokx7rY5H1JnprkUMfyOwfctLFSSvnuJL+cpSH6xiT/YoTN6OyHZ5VSdvS4j/M75ofRD/8qze/aKZuSPH4Ixxl7cqg7cqg7cmhF12Xpa7G/q7X+TR/7m0qyqDuyqDuzmkX6R/9kUXf0te6MSRYxYeRQd+RQd+RQT34yyR2L5r80yXNaakvrZFF3ZFF3ZFFPjFkvkEPdkUPdkUMrui7GrNcli7oji7ozq1mkfwDjyDW+OzK8O2NyjR+3e2RWY9xjgRzqjhzqjhxa0XUx7rEmOdQdOdSdWc0h/aM/cqg7+ll3xiSHmDByqDtyqDtyqCfu0VtEFnVHFnVHFvXEWPUCOdQdOdQdObSi62Ksek1yqDtyqDuzmkPT1j8URhtDpZRdSf4wyVMWLX4wyTfWWv92A7vsrHp5RY/bd65/X611/4prtqDWeqjW+s+TPCbNQMj7knwuyUNJDiS5Mcmvpame+uxa661JHtexmw+PrMEjVkp5cZpwXvz7/htJ/ukoK+fXWu/N0j8Mk+TyHnfT2Rd7qejalVrrySS3dyzu6UXONJBDvZFDa5NDy5VSSpLv6VisqncHWdQbWbS2Wc8i/WPjZFFv9LW1jUsWMVnkUG/k0NrkUG9qrQ8leUfH4m9soy1tk0W9kUVrk0W9MWbdkEO9kUNrk0PLGbPujizqjSxa26xnkf4BjBPX+N7I8LWNyzV+nO6RWYtxj4Yc6o0cWpscWs64x/rkUG/k0NpmPYf0j42RQ73Rz9Y2LjnEZJFDvZFDa5NDvXGP3hmyqDeyaG2yqDfGqhtyqDdyaG1yaDlj1euTQ72RQ2ub9Ryapv6xue0GsNTCt9D8ryRfuWjxwSTfVGv9qw3u9saO+Uf2uP3VHfOf2GA7hqrWekuSn1mY1vNVHfN/uco+y0rLJ0Up5YVJ3pymOvUpv53kpQt/qPVkAOfjxjSVJU95ZJb3z7V09sVetu3FQx3znZVcp5oc2jg5tJwcWtWzkly1aP5ImhfTLJBFGyeLlpNFZwyjf0wzWbRxsmi5McwiJoAc2jg5tJwc2rBPdsz3+jsz8WTRxsmi5WTRhhmzlkMbIoeWk0OrMma9Dlm0cbJoOVl0hjFroG2u8RvnGr/cGF7jx+UemfUY95BDGyKHlpNDqzLusQY5tHFyaDk5dIYxj+7JoY2TQ8uNYQ4xAeTQxsmh5eTQhrlHTxZtmCxaThZtmLFqObQhcmg5ObQqY9VrkEMbJ4eWk0NnTMNY9dz6qzAqpZTtSX4vydMXLT6c5JtrrX/ex64/3jH/pFLKWT1s/9Xr7G+iLFRTfVbH4g+00ZZhKqU8L8lvZmkBxHckeUmt9UQ7rVrWdzqDcVULL2aetM7+BuW8jvl7hnScsSOHRkMOyaEk39sx/7u11vs2uK+pI4tGQxbJonWOMxP9Yy2yaDRmpa+NaRYx5uTQaMghOdSFYx3zW1tpRUtk0WjIIlnUBWPWcmio5JAcijHrNcmi0ZBFsmgts9I/gNFyjR+NWcnwMb3Gj/370guMe8ihoZJDcijGPVYlh0ZDDsmhdY4zE/1jNXJoNGaln41pDjHm5NBoyCE51AX36MmioZNFsqgLxqrl0FDJITkUY9WrkkOjIYfk0FrGuX8ojDYmSinbkrwryTMXLX44yfNqrX/az75rrV9I8tFFizZn6UVhPc/smP+DftozBp6V5MpF8x+otd7UUluGopTy3DQVK+cXLf79JC+qtR5vp1VJkj/smH9mD9t+TZZefD5Sa72r7xZ1KKWcl+XVW+8Y9HHGkRwaKTnUntZzqJSyJ8m3dSx+Q6/7mVayaKRkUXtaz6IuTH3/WIssGqmp72tjnEWMMTk0UnKI9VzaMT+M115jSRaNlCxiVcas5dCIyKEZZsx6bbJopGQRa5n6/gGMlmv8SE19ho/xNX7s35c27iGHRkQOtaf1HDLusTo5NFJyqD2t51AXpr5/rEYOjdTU97MxziHGmBwaKTnEetyjJ4tGQRaxKmPVcmhE5NAMM1a9Ojk0UnKItYxt/1AYbQyUUrYk+d0kz1m0+EiSF9Ra3zugw7y9Y/57umzbY5N8xaJFh5L88YDa1JZ/2zH/+lZaMSSllK9L8jtJtixa/MdJXlhrPdpOq077oyQPLZr/qoU+1o3rOuY7+/SgvDhLs/GuJDcO6VhjQw6NnBxqzzjk0Hcm2bZo/tYkf7LBfU0VWTRysuj/Z+/Ow2S7ynrxf98QCEMgYQqjJMyDyhiUgJiDgAIKGFBAZAjkyiDOIALXIaAXLj9F8YqCoJAwKoMEZFTEwxAIMo+KTIkQmQmEEDKv3x+7jqfO7urumrqquvvzeZ5+yF6119qrqtZ+O+x+867lWYVYtJkdvT42IhYt3I5eaysei1hR4tDCiUNs5id7xyvxYH+riUULJxaxEc+s9xOHto44tLt5Zr0OsWjhxCI2sqPXB7BYfscv3I6O4Sv+O347/F3ac4/9xKGtIw4tzyrEIc89RhCHFk4cWp5ViEOb2dHrYz3i0MLt6HW24nGIFSUOLZw4xGbk6O0nFm0dsYiNeFa9nzi0dcSh3c2z6hHEoYUTh9jIyq4PhdGWrKoOTvLKJPccar4wyc+11t46x0u9LMnFQ8f3q6obj9Gvv3hf2Vo7b37TWqyqeniSuw81fSRdxccdoaqOTfK6HPgvRm9P98v//OXMar/W2rlJXt1r7q+xNarqJkmOG2q6KMnL5zi1fde5RpLf7TX/Y2utzftaq0QcWixxaLlWJA49snf8wp0eZ8YhFi2WWLRcKxKLNrrOjl4fGxGLFmunr7VVj0WsJnFoscQhNlNVP53k6F7z65Yxl0USixZLLGIjnlmLQ4sgDhHPrEcSixZLLGIjO319AIvld/xi7fQYvuq/47fB36U999hPHNoi4tByrUgc8tyjRxxaLHFouVYkDm10nR29PtYjDi3WTl9nqx6HWE3i0GKJQ2xGjp5YtAhiERvxrFocWgRxiHhWvYY4tFjiEBtZ9fWhMNoSVdWl0gXS+w41X5Tkga21N8zzWq21zyQ5eajpMklOqqrLrtMlVXXfHLjTzQVJnjrPec1q8Atv3HPvl+QFQ00XJXlka+2iuU9sCarqmCRvSHK5oeZ3Jrl3a+37o3stxYnp/qVkn+Or6j7rnTxYoy/KgZU5/7a19rkN+ty0qu49yaSq6prpPr9rDDVfkOQZk4yz3YhDsxOH9hOHNldVt05y26GmS5KcNOk4O41YNDuxaD+xaGRf62MMYtHsrLX9tlEsYoWIQ7MTh/YTh/arqqOr6rjNz1zT7/ZJXtJrfmdr7ePzmdlqEotmJxbtJxbt55n1+MSh2YlD+4lDm/PMejSxaHZi0X5i0VrWB7AsfsfPTgzfbxv9jj8xcvVWhjg0O3FoP3Foc557rCUOzU4c2k8cGtnX+tiEODQ762y/bRSHWCHi0OzEof3Eof3k6E1GLJqdWLSfWLSfZ9XjE4dmJw7tJw5tzrPqtcSh2YlD+4lDa+209TH2m2FLvDDJA3ptT0ny4ao6asKxvjJGhck/SLdzzZUHx3dM8raq+l+ttf/Yd1JVHZLkUUme1ev/rNbaGeNMpqqum9Hr65q944M3eK/ntNa+scmlPl5Vb0zymiTva61dMmIuP5TkyUke3HvpKa21D28y/lxs9edRVbdJ8uYkhw41fzrJ45IcUVWTTPe81tpXJukwidba56vqz5M8Yaj51VX1W0me31q7YF9jVd08yd+kW6v7fDOb/4vDtZK8vqo+nuSlSV47+JeWNarqikkenq6i9zV6L/9Ra+3zY7yt7UwcEofEoc6849B6Tugdv7W19sUpx9pJxCKxSCzqbFUs2hbrYwWIRWLRrotFyeLWR1UdmuRq67zcf5h8tQ2u9aVVerA2Z+KQOCQOHWhe6+O6Sf6hqj6R7o9npyT5dGujd1iqqlskeXSSX+7N67xB204nFolFYtGB5rU+PLMenzgkDolDB5r3+ujzzHo0sUgsEosOtCvXB7Aj+R2/S2K43/H7ydVbOeKQOCQOdeTqLY84JA6JQx15essjDolDuy4OJXL0Vow4JA6JQweSo7ccYpFYJBYdSI7e4olD4pA4dCA5eosnDolD4tCBduX6GFtrzc+SfpK0Of7sGfOae5Kc3+t7SZL3J/n7JG9J8rUR4/9jkktN8N5On8N7OmmM63xj6PzvJnlPupvzZUn+aYN5/OGCv+st/TzS7WQ0r7W0dwGfx6WSvGnEtb+a7hfPK5N8YLA2h18/P8mdx1zn/bG/neTd6R6svSTJawfXuHCdz+Gvlx0jFrQ2xSFxSBzagji0zjUPSZcgMTze/ZcZA1blZ45rRywSi06c41rau4DPYyGxaLusj2X/zHHtiEUrvta2+vPI9otFi1ofx8/pMzlq2fFiC78LcUgcEoe25vP42RHnnz1YH69Pl/zwyiRvS/KVdcY/N8ndlh0nFrQ+xSKxSCzams9jz4jzPbMe/VmJQ+KQOLSF66N3Tc+s1/9sxCKxSCyyPvz48bMDf+YYk/2OX/EYvtWfR7bf73i5eivyM8d1Iw6JQyfOcS3tXcDnIVdvRX7muG7EIXHoxDmupb0L+Dzk6a3IzxzXjTi04utsqz+PbL84tKj1cfycPpOjlh0vtvC7EIfEIXFoaz4POXqTfR9ikVgkFm3N57FnxPmeVY/+rMQhcUgc2sL10bumZ9WjPxdxSBwSh6yPsX9GVZJjB2ut7a2q45KclOTqg+ZKcvTgZ5RXJPml1trFWz/DmRya5JhNzjkryS+31v5uAfNhHa21i6vqAel2VHrg0EtHJLnHOt2+luThrbV3TXnZw5LcaYzzvpfkN1trL5jyOmxCHBKHVsGS4tBxSa4ydPz1dA/4WQKxSCxaBUuKRdbHChGLrDVYNnFIHNrFrpjN18c+pyV5dGvtY1s4n11NLBKLdjHPrFeEOCQO7WKeWa8QsUgs2sWsD2BH8zteDF8FcvV2N3FIHFoFcvV2N3FIHFoF8vR2N3HIOoNlE4fEoV1Mjt4KEYvEol3Ms+oVIQ6JQ7uYZ9UrQhwSh3axbb8+Dlr2BFi81tqbkvxQkuelW6DrOS3Jz7XWHtxa+95CJje5Zyf5cLpqnBv5YpKnJbnhqt6Mu01r7ZzW2oOS/Hy6tbaebyV5bpIfaq29Zczh/z3J05OcmuT7Y/b5zyRPSbezif/zusXEIXFoFWxxHBrlhN7xS1prF84wHjMSi8SiVbCgWGR9rDCxyFqDZROHxKFd4O3pdsR9RZIvjdnn3CSvTnLvJHeUcLX1xCKxaBfwzHrFiUPi0C7lmfWKEYvEol3E+gB2Fb/jxfBVIFdvdxOHxKFVIFdvdxOHxKFVIE9vdxOHrDNYNnFIHNoF5OhtA2KRWLQLeFa94sQhcWiX8qx6hYhD4tAusqPWR7XWlj0HlqiqLpOu2vGRSa6ZrqrxmUk+3Fr7wjLnNomqulKS2yS5froKnZdN939czkzy0dbap5Y4PcZQVddPctsk105yhSRfSXJGklNbaxfMMO5BSW6c5IZJrpPk8OxfH2cl+XKS97fWvj7TG2Bq4hCrYqviENuDWMSq2MpYZH2sPrEIWDZxiN2gqq6R5Obp1vlVk1w+yYVJzk7yzSSfSPLpbbCrz44lFrHTeWa9+sQhYBWIRewG1gewG/kdz6qQq7d7iUOsCrl6u5c4xKqQp7d7iUPAsolD7AZy9FafWMRO51n16hOHgGUTh9gNdsr6UBgNAAAAAAAAAAAAAAAAAAAAAAAAWLqDlj0BAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAHqq6qiqar2f45c9r0Wqqr2997932XPaiXzO21tVndiPFdvh+tYdAAAAAAAAAMDutl3zXgAAAACA3UFhNAAAAAAAAAAAAAAAAAAAAAAAAGDpDl72BAAAAIDVVFVHJfnCBF3OT3J2ku8k+VySDyc5LcmbW2sXzHt+AAAAAAAAAAAAMKyqKl3e25G9ly5OcmRr7czFzwoAAAAAgEkctOwJAAAAADvGIUmunuRGSX4qyZOSnJLkzKp6ZlUduszJ7XRVdVJVtaGf05c9J2BnqarTe3HmpGXPCQAAAAAAAACg525ZWxQtSS6V5PjFTgXmo6r29PJ2WlXtWeJ85CvCHLmnAAAAYC2F0QAAAICtdrUkT0zyiao6ZtmTAQAAAAAAAAAAYMc6YYPXHllVtbCZAAAAAAAwlYOXPQEAAABgW/leks+u89rlk1wlyVXXef3IJG+pqmNbax/ZiskBAAAAAAAAAACwO1XVVZL87Aan3CDJniT/upAJAQAAAAAwFYXRAAAAgEl8oLW2Z6MTquq6Se6d5PFJbth7+UpJXl1VN2+tXbg1U2QeNvuegaS1dmKSE5c8jYm5vwEAAAAAAACAHeohSQ7ptbUkNXR8QhRGW7rtmncDAAAAACzGQcueAAAAALCztNa+1Fp7bpJbJfmHEafcMMmjFzsrAAAAAAAAAAAAdrhH9o4/k7U5bPerqsMWNB8AAAAAAKagMBoAAACwJVpr30vyi0n+fcTLD13wdAAAAAAAAAAAANihqurodJt5DntxkpN7bZdL8uCFTAoAAAAAgKkojAYAAABsmdbaeUmeMeKlo6vqKoueDwAAAAAAAAAAADvSCb3jluQlSd6c5GubnAsAAAAAwAo5eNkTAAAAAHa8t4xoOyjJTZO8d9pBq+qgJLdJclSSqye5SpKzk3w9yWeTfLi1dsm0489TVV0nyc3SzfWwdLuOnp3kW0n+K8n7B0Xk2AJVdbkkP5LkWkmOSHJokm+mWysfba19bonTG0tVXT3JHZLcIN38v5MuYfN9rbUzljm3rVZVh6V77zdOd/+cl+TMJO+d5L1X1bWT3D7dfXhouvvvS0ne0Vo7e87TnkpVHZLkTkmul+SaSS5O8tUkH0/ykdZaW+L0AAAAAAAAAABW0iA/6Bd6ze/cl1tSVS9P8htDr92uqm7VWvvoFs/r0unylm6R5KqD5q8m+dAk166qK6XLe7lpksOTfC/JV5Kc2lr70lwnvfbaV03yo0lumORK6fKW/jsrmndVVddNcqt0OYVXT1cg7+tJvpzktEXkCVXVjZPcLsl1khySLlftv5O8u7V21lZffyeqqh9KcqN0+X9XTXJuuu/19HT5lxdu8fXdy9Nfd1XuyVsluW663MELkny5tfaSMfvLAd4CVXWZJEenux+uli5enp0uL/Z9E4xzo3T35r41dn6Sb6TLDz2ttfb9OU8dAACABVEYDQAAANhSrbWvV9XZ6RIphl1tmvGq6s5JHpfk7umKoa3nW1X1piTPaK19apprTauqrpbkuCR3S3Jskmts0uWCqjotyXOSvGbcgm5VdXqSI9d5+ciqGqeI0l1aa3tHjL033dz3eUdrbc868/h4kh8aavp6kuvMkmxUVb+Q5OW95se11v5qzP4HJfnFJA9J8uNJLrvBuV9I8sokf9Ja+8Z0M94aVbUnyVOS3DVdQcFR53wqydOTvHySwllVdXySF/War99aO32Kefav+9TW2omb9DkxyR8Mt7XWauj12yf53ST3yjrPMavqHUme1Fo7bYPr3DvJ7yS5Y5IaccoFVfXaJE9srf3XRnOe9D1MMM5RSU5MFzf6sXKfr1TV85I8q7V2zqTX6F1vb8a4vwfz+sIGQz28qh6+2fX2fSaDxL4z0yWX7bO3tXaXTSe9gar68yS/1mu+9VYnLwMAAAAAAAAAK+Pn0hWrGXZy759/o/f6I5P8+jQXG+T0/Guv+X/ysAYb+P3vJA9NcsV1xvjPJH+0UWGeqrpluvyZ+6QrecPL+wAAIABJREFUGDPqnPcm+e3W2qmTvYuNVdWx2Z+3dKl1zvlQkucm+dtJN/ybV97NYKwjkvxmknsn+cENTr2oqt6X5C+T/P2kG69ulCM1yFd7eJLfyoG5dMMuHuTt/O5G+U5D1zsxvc+o51+rNv3ITm6tHb/ZSePYynzFda53y3T37U8lufYGp55TVW9L8sxxPtfeNfZkm9/LY+Thbem9vM54q3BPXiHJryb5pXQb0o4y8jvb7jnAm63rSYyY46YxZbPc1Kr6wSRPTHL/JFcYMcTJSTYsjFZV108Xb++V9b/fJDmvqt6V5M9aa2/eaEwAAABWz8j/mBIAAABgzkYV8Vmv+M9IVXWTQaGzdyZ5YDYuipbB6w9J8vGq+puqWrcw1jwNdhf9cpLnJ3lANk+ISJLLpCve9coknxj80X876ScwXD3JT8845vG94/OTvGKcjlV1jyQfT/LiJD+ZDYqiDVw/XeGsz1fVVMmO81ZVh1TVC9Ilp9w9Gz/Hu0WSlyZ5yyCZZ1urzh8mOS1dIthGmzscm+Q9VfWEEeMcVlWvSfL6JHfK6KJoSXf/PTDJp6rqbjNNfgqDNffJdImRG8XFa6YrnvbJqrrdAqY2d4PdPV/aa95TVTefdszBjs8P6zW/V1E0AAAAAAAAANhVTugdn5vk1fsOWmsfSfKx3jkPqaqRBYpmUVX3S/KpJL+cdQopDdwkyYur6pX9eQzyZ34/yYeS/HzWKaQ0cEySd1XVU2ab+f9c+1JV9Zwke9PlXo0spDRw2yQvSPLOQZGahaqqy1TV05J8PsmTsnEBpqTLQ7pTug07PzooVjWPeVw3ybuTvDDrF0VLus/yrkneW1X/Zx7X3omq6lpV9bIkH0nyiGxcFC3pNmn82XSf6ylVtVlu6bjzcC9Pfs1VuSd/NN1394xsXDRrVN/dmAO8MFX1u+nu7YdldFG0zfpfabCuP53kV7L593vZdDm4b6qqd1XV9Sa9JgAAAMujMBoAAACwCIePaDt73M5Vddd0u3/dc4prH5Qu8e0dVTVOgsKs7piNCzlt5uZJTltGgaYZvDTJhb22R0w72CBRrP/+T2mtnTVG3yckeWO6YmGTumKSZw8K6c3yHc5kUMTvzUn+14RdfzJd8sZGCUzbwfPS7Y457rPLSvLHVfWo/2moOjzJvyS53wTXvUKS11fV7SfoM5NBguOzk1x+gm7XSxfPtmVxtHS7YvY9ZobxfiFrf8c8d4bxAAAAAAAAAIBtpKpulK4gzbBTWmvf7bWd3Du+SrpiSvOcy0PSFWQ7bIJuP5+uoNa+MSpdgaKnZuNCRgdcOsn/qapfmeC6awfprv3SJI+bsOuPpctnmagA0SwGxa/+KcnvZYriOukKmJ1aVfeecR43SLcB5DETdn1KVf3RLNfeiarqVkn+LcmDs/5GmBu5b7r8y5vMOA/38uTXXJV78sfTFYObtgDWbswBXohBQbM/zJSfb1UdmeTUdOv60lMM8WNJ/q2q7jDN9QEAAFi8pf0HngAAAMDuUFU3zOiiP58fs/+9k7wma/+IfUGSt6crmPbFJN9Jt/PfUUl+Ismde+f/SJJTqurHW2v9Il5b5eJ0O/19Msl/JPlmuoJwleRKSW6c5A7pdrwbLgJ1aJK/q6rbtNa+uMH4n0ry7cE/Xy/JlYdeu3Dw+mbOGeOcDbXWvlZVb0qXVLTPvarqiNba16YY8mFZWxTrhaNOHFZV/zfJ74x46VtJ/jnJB5N8Ld2OsIen243wHklu2jv/hHSf6xMmmvX8vDDJXYaOP52uUNp/pHsvhyW5TZL7Z+1uhD+e5DeT/MnWT3P+qurXkzxqqOmMJP+Y5BPp3vvhSX40XRLZlXrdn11Vb00XD/4uyXDhsA8meUuSLyT5brrP7SeS3CcHrrXLJXlBVR3dWrtoTm9rpKr6rSSjdvc8fzDXdyb573RJYtdPd3/t21H2CklOydDOxlvkgiQfHTq+RQ6MxWcl+a9JBmytfbKq9ibZM9T8sKp6cmvt3Cnm+Nje8TeTvGqKcQAAAAAAAACA7emRWVtAqV8ELUleluT/y4EFik5I8vdzmsfRSZ4+NJdvJ3lTuqJZX0uXl3LzJA9Il+M27MFVdUpr7VXp8klOGHrtjCRvSJc/8810+TM/Mhinnz/zzKp6Q2vt9Cnfw+OTPGjo+LtJXpfk/Um+Orj2zdLlLf1Ar+8PJHl7Vd26tfbtbKHBpomnDubS94kk70iXs7dvHkekK1x2r3SbZ+5zaJJXVdWdWmsfnGIqV0yX13WdwXFL8p4kb0uXU3NOkqunyw88Lslle/2fXFX/2Fp73zrjfyX7c3cOTXLD3uufy+b5fxPl9mxiS/MVq+roJP+a7r0OuyTJu9J9tl8YzOFySa6b5Ngkd82B9/WN020wervW2nfGmFOfe3nCe3mF7slrJvmHHHiv/Vu6gm1npPscrpUuD+7nxxhvV+QAL8gv5cBCfeeky+s9Nd2aPCjdPX2XdJ/7AQZF0d6XtTmzSfcdn5ou1/asJJdJ9z3fMd2G3IcMnXuNJG+sqtu21s6Y7S0BAACw1aq1tuw5AAAAACuoqo5Kl0Qy7B2ttT0TjvPEJM/sNZ+V5GqttUs26Xv9dEkFhw81X5Tkz5L8cWvt6xv0vXWSv8mBxZGS5E9ba4/f5LpHZe17f0Rr7aSN+g36/meSj6fbbe/t4yTWDP5g/4wkv9B76Y2ttZ/ZrP9gjJOSPHyo6YzW2lHj9F1nvL3pkob22fC7r6r7pEucGfb41tqfTnHt/0yXMLLPl5IcudF6qarj0iW0DDsryZOSvLi1dt46/Srdzq/PS5dsM+y+rbXXTzj9iYz4nM/L/qScryT51dbayOJXVXVokr9MV0hu2LeTXLu19v1Nrn18khf1mq8/TTJVVfUfMj61tXbiJn1OTPIHvebz0yWhnJsuOesFrbVRSS7XSFcw8U69l56fLrnlWYPjzyd5VGvtX9aZw9FJ3pi13/2DW2uv2Gj+672H1tqmO5VW1U2TfCRrkx3fPJjvl9bpd1yS52Z/cs/30yXaTXr9vZng/h7qd3qSI4eaTm6tHb9ZvxHj3D9ri7qd0FrbtABib5zbJflAr/lPWmu/PemcAAAAAAAAAIDtp6oula7w07WHmv87yQ+MyjWqqjemK8SzzyVJbjBpcZSq2pOugNOwfXkvSfIXSX5/VFGhqjokXW7L43ovfTpdHtB70xWI2Sx/5prp8mfu2Hvp+a21R4/xHk7M2tyd4dylFyX5rXXew0HpNm/8o6zNfzmptfaIaa4/Tt7LoO9r0+V8DXvPYL7rFRnbV7zp99LNffhapye5ZWvtu5tct58jNfx5vS/JL7fWPrRO36PSfV+37b301tbaPTa67qD/nqxdc3dpre3drO9W2IJ8xSunyxXtj/GiJCe21tYt8DbYvPcvk/xU76V/aK3df5Pr7ol7eaZ7eTDOqtyTF2d/kbyPJXlMa+296/S97Ki80p2QAzzPeDFNzuA6uanD383zkvxua+2b6/Q/4LupqsskeXeS2/dOfUOSJ7bW/n2DuVwzyR8neUjvpfcnOWbUPQkAAMDqOGjzUwAAAACmU1XXSvKEES+9YrOiaAMvy4FF0c5N8lOttSduVBQtSVprH0mXKPLPvZd+tar6O9zN0+1ba/dvrb123N0GW2tntNYenOTE3kv3qqpRO+itojel27Vt2PGTDlJVd8qBRdGSLpFio6JoR2RtEsVn0iXGPH+9omhJ0jqvTbfLY78Y1TMGhdMWaV9y0eeT3GG9omhJ0lo7J91n/NbeS4en28lxO9pXFO1urbXnrZd00lr7apKfSbcD57CHJHna4J8/mS5xZWRRtME4H8joz2qshK4ZPDdrE8lemeRn1iuKliSDtXps9r/vy6137oo7JWvvt8dOMU6/T0vy11PNCAAAAAAAAADYju6ZA4uiJclLN8g1Orl3fFCmyHFax75CSr/eWvu1UUWIkqS1dn5r7VeyNufnpkn+cTCnc5L8xCb5M19Jlz/Tz6N7UFVNm1OyL5/l/7bWHrnBe7iktfasJD+fbqPTYcdX1Y9Pef1NVdWjsrYA018l+bGNCjAlSWvt24NNVU/ovXRUkl+eYjr7Pq83JNmzXlG0wbVPT3L3rM2xu3tVXW+Ka+80f5kDi6JdnOQhg3W4blG0JGmtfS5dLOjnEN6vqn50irm4lztj3csrdk/uK7x1apI7r1cUbXDt9fJKd2sO8Fbb9908vrX22PWKoiUjv5sTs7Yo2pNaa/feqCjaYKyvtNYemuSpvZdun+TnNp82AAAAy6QwGgAAALAlBrvwvSXJ1XsvnZtuZ7TN+t89yTG95ke21t4+7hxaaxekS9j4xlDzpZP81rhjTGrcRIh1PC3dLmT7VJJHzjajxWitXZRuh7xhP1xVt5twqFEFqfoJS32/nuSwoeNzk9xjowJTfa21LyZ5UK/5FknuM+4Yc3RhkgeMsxNta61l9Hru7365nfzGRglJ+wyStf6k13z5JFdIt+PlA1pr/cJpo8Z5d7pYNewuVdUvXDYXVfXDSe7Sa/5skoeNUzCytbZvR9Fta5Dk1y9gdnRVHT3uGFV1WNbusPnPrbXPzjo/AAAAAAAAAGDb6BfTSZIXb3D+65L0CwQ9oqrm9d/Yvby19v/GPPf3RrQdMfjfX9+soFCStNbOSvKsXvOV0m0oOq29rbUnj3Nia+0NSf5oxEu/NsP111VVByd5Sq/5La21xw3yqMbSWntRkr/pNf9mVR0y6vxNnJ6ugNe6m3cOXfdbWVuc56B0BdN2raq6aZIH9pr/d2vtZeOOMfj+H52kXyTpSVNOy73c2fBeXtF78jtJHthaO3uKvrs2B3hBXtNa+9NJOlTVlZP8aq/5ea21Z04yTmvtxKzdaHva+AAAAMCCKIwGAAAAzEVVXbaqrlNVP11Vz0/ysSS3HHHqL41ZsOp3esfvaq39/aTzGiQp/Hmv+bhJx1mEQSLIS3rNP7aMuUzphSPajh+3c1VdPskDes3vHOzouF6fQ7N2Z8BntdY+P+5192mtnZrkX3rNy1grL2+tfXDck1trn0rS32100oJ0q+I/szbBaSOvWaf9JYPPZVyv7h0fnOSHJ+g/iceMaHt8a+38cQdorb013a6i29nzk1zQa3vsBP0fnq4Q3rDnzTQjAAAAAAAAAGDbqKojkvx0r/lDrbVPrtdnkJ/Rz0E7Msld5zCli7O2QNC6WmvvT/JfI176dDbfSHJYP+8lSW47Qf++SYuaPTNJPx/wvlV1rRnmsJ4Hpfu+9mlZWzBnXE8b9N/nGlm7kes4njphIaW/S7dWhm3XXK95+e0c+N+5fiFrN8zcVGvtwiRP7zXfc4oNMt3L+212L6/iPfmnrbUzp5zDTHZADvBWuiTJE6bo97gkhw4dn5O1+eXjelrv+NZVddSUYwEAALAACqMBAAAAkzi2qtqonyTfT5cU8YYkv5S1BWvOTfKLrbWXb3aRqrpKkp/oNU9SLKnvjb3jI6vqyJFnLt9nese3rapLL2UmExoUovq3XvODJ9i17/5Jrthr2ywx6G5JDu+1/e2Y1xulv1aOnWGsab1gij79z/0m85jIErxowp0iP59uh8e+SdfAh0e03XTCMcZ1z97xl7N23Y3jr+cwl6VprX0tyat6zQ+qqv79vJ5H947PzPYvFgcAAAAAAAAAjO/hSfp5VSeP0e/FI9pOmH06eVtr7YwJ+3xkRNuk+TOfS3J2r3navJfTWmsfn6RDa+28rC0EdHC6vK55+7ne8d7W2menGai19sUk/fc6aa7Y95Jsmg/Zu+5ZWZsjuFV5SiuvqirJ/XrNJ7XW+sXjxvWm3vEhSX50wjHcy/ttdi+v2j3ZMnqD30XatjnAW+ztrbXTp+jXX2Ovaq3175NxvSfJt3tty8gRBgAAYEwKowEAAABb7bvpiprdbJyiaAN3TlK9tvfMMIcvjGi7zQzjja2qDq2qe1XVk6rqxVX1xqp6V1V9qKo+0v9J8pzeEIek2/luu+gXMrtKkvuM2fcRveNzsrZwUl8/KeHMKZKShvXXylETFGqah+9nbZGzcXyud3ypqjp05Jmr7Z1T9Onvtnlukg9OOMbpI9rm/r0Pdiq+fq/5dVMm8r01XXLldtaPd5dP8rDNOlXVsUlu0Wt+QWvtonlNDAAAAAAAAABYeY/sHV+U5BWbdWqtvSdrC9f87GAzz1lMk/cyKs/pXXMYZ9q8l1Om7PcPI9ruMOVYIw0KaN251zxLTmGyNlds0pzC01prF0xx3X6u12FTjLFT3DLJlXttU3+vrbVvZe1Gm5N+r+7lA428l1f0nvxsa+1LM87hALswB3ir/OukHarqykl+uNc8S3y4JGvvsYXkkgMAADCdg5c9AQAAAGDH+0CSvxjs5jauO41oe01Vjb173hiuNsex1qiq2yX57XRFwS4343CHJ5lrssYWekWSP82B7/n4bFLgrKqOTLKn1/zK1tpmhZ/6a+XKg+SSaY0qJna1rN0lbquc0Vq7cIp+/WSupEuYO2fG+SzaNLtFfrd3fMYUBbL6YyRbk3B4uxFtkxZxS5K01i6qqo8lOWa2KS1Pa+20qvpgDvxcHpPk/23S9bG944vSFeAEAAAAAAAAAHaBqrpTkpv1mt/cWvv6mEO8OMkfDh0fkuQXk/zFDNOaR97LvMaZNu9lqjyWJB9PcmGSSw+1jcqTmcXN023SOezhVfUzM4x5vd7xpDmF/QJ74+rneu3mwmijckX/oqrOn2HMy/eOJ/1e3cvj3cureE9+aIZrH2AX5wBvlWm+m2OSHNRre3JV/coM87hR73hLc8kBAACYjcJoAAAAwCS+l9HJGpdOt2vftUa8dpck76+q41trm+7IOXDdEW23HLPvuK465/GSJFV16SR/lq5wT/8P8tPaNolPrbXvVNVrkzx4qPmnquparbUvb9D1+CTVa3vRGJfsr5XLJ7nVGP0mcdVMl6Q0jW9N2W9UMbVLj2hbdWdN0af/3iceo7V2YbeB5QG24vM7YkTbp2cY7z+yjQujDTwnB97rN6+qPa21vaNOrqojkhzXa359a+3MLZofAAAAAAAAALB6ThjRdvIE/V+S5Gk5MF/phMxWGG0eeS/zGmfavJep8lhaa+dX1elJbjzUPCpPZhajcgqvu077tCbNKZxXrtd2zPOal1HfX7/o4awm/V7dy+Pdy6t4T35t1gvu9hzgLTTNdzNqLd1g1on0bEkuOQAAAPMxr/9jDgAAAOwOH2it3XrEzw+21q6d7g/Ex6cr1jPsMkleUlX3HvM6i/hD86w7uK0xSIh4VZLHZb7PXbZb4lO/oNmlkjx0vZOrq0j1sF7zZ1pr7x7jWv0dB7fC3NfKBkYlSO0arbV5vP9V/gwPH9HW3wF2ErP0XRV/l+SbvbbHbHD+Cel+pwx77lxnBAAAAAAAAACsrKo6NMkDes1nJXnDuGO01s5IsrfXfKuqut0MU5tLzsqc8memNc88llF5MrNYxZzCVc5T2i527Pe6C+7lVfzuzp7lYnKAt9Q0380qrjEAAAAWSGE0AAAAYG5aa99qrZ2c5Nbpit0Mu1SSl1bVUWMMdeU5T21RfifJfUe0n5nkr5I8JMkxSX4gXbLIZVtrNfyT5C4Lm+3W+ZckZ/TaHrHB+cdm7S5u/eJqa1TV5ZMcMtnUYKmuOKLtezOMN0vfldBaOy/J3/aa71dV1+ifW1UHJXlUr/kz6WIOAAAAAAAAALA7PCjJFXptf99aO3/CcU4e0XbCdFPaMeaZxzIqT2YW2zWnkI35XrfGIu7lVfzuLpqxvxzgrTPNd7OKawwAAIAFOnjZEwAAAAB2ntba+VX10CTXyIF/5L9SugI4d91kiO/3jr/dWlvpP3BX1RFJntxrvijJbyd5Tmtt3D/qb/vdx1prrapOTvL7Q803q6o7tNZOG9GlXzTt4iQvHuNS5yW5JAcW/z+ltXbcRBOGxfnuiLZ+ou4kZum7Sv4qyROy/16+dLpE46f3zrtnkqN6bX/dWmtbOjsAAAAAAAAAYJWMKl72mKp6zBzG/oWqenxrrZ+/tltcIcnZM/QdNipPZhajvpOfba29bs7XYbFGfa9Xbq19e+Ez2VkWcS/vqHtSDvBKGrXGbt1a++jCZwIAAMBSHLT5KQAAAACTGyQBPCxrkyt+oqoeuEn3b/SOD6+qw+c2ua1xnySX77X9Tmvt2RMkRCTJVeY4p2U6KUm/WNHx/ZOq6tAk9+81/1Nr7czNLtBauyRJPwHq+uNPkXmoqksvew7byKiEvcNmGG+WviujtXZGkjf0mh9VVf3n14/tHZ+XLtYAAAAAAAAAALtAVd0iyR228BKHJ7nfFo6/6uaZxzLvwlb9nMJErthOMOp7PWrRk9iBFnEv77R7Ug7waMvMD91pawwAAIAJKYwGAAAAbJnW2peS/P6Il56+STGlr45ou+V8ZrVl7t47PivJc6YY5wZzmMvStda+kGRvr/lBVXXZXtsDsnaHwRdNcKn+WrlJVR0yQf/d7MIRbdMksVx11onsIl8b0XbTGca72Qx9V00/Xh6Z5J77DqrqgOOBV7bWvrnVEwMAAAAAAAAAVsYJO+Qaq+om03SqqstkbTGrUXkys9iOOYVszve6NRZxL++0724n5QDPKzc0WW6ht522xgAAAJiQwmgAAADAVntuks/32m6QjRPI/m1EW78gzqr5gd7x+1prF0wxzjHzmMyK6Bc4OyzJcb2243vH30ry+gmu0V8rl0uyZ4L+u9nZI9quNMU4N5p1IrvIB0e03W6agarq4OysJJ+3Jfl0r+2xQ//8qKx9nv3cLZ0RAAAAAAAAALAyBhtxPrTXfEGSj874863emHuqahUK2yzDVHks6XJY+kV3RuXJzOJj/z97dx4maVnei//79KwsAwwwIEsUWdxQYxRUEEVwTfQkaAyuiRijHIInag4aDWFRE40/RJKjxiWK4kE9xBhAcwx4RIgiKuBKxAVcGDZlhGGYYXqmZ6af3x/VM3RXV3VXddd09XR/Ptc1F7zPuzx3VXf1VE3f7/dJsqFp7Lk9noOZtyP2iu4IZuK1PNdek3OpB7gnvaGllAOTNC+GPJO+1WLMzwcAAIB5RDAaAAAAsF2NNAa8vcWu00spS9qc9v9ajL14JAhottq7abu5YW5SpZS9kxw3xfk3N20vmOJ1eulzGd9g8aqt/1NKOSTJU5v2f6rWurGLOVp9r7yii/Pns3tbjE2lqfPY6RYyX9Ra70ryi6bh3y+lTOXfaZ+TZJfpV9WV7fZzptZak/xT0/DvllIeMtLY3Bym+b1a6zd7NT8AAAAAAAAAMOv9fpIVTWMX11ofN50/Sf6m6Zolo3qc5pkTpnjeC1uM9bSvo9a6IcnVTcP7lVKe0ct5ZrHmvp2kvz2CveojuibJ/U1jzyulLJ/i9WjY7q/lOfianEs9wHOiN7TWekuSm5uGn1hKeVg/6gEAAGDmCUYDAAAAZsKFSX7aNHZgkte0OrjWenvGrzL30CQn9byy3mluzmlukujEqZn66mprm7Z3neJ1eqbWuj7JRU3DzyilbF1Z76QWp328y2kuz/hVB19aSnl4l9eZj37SYuyJ3VyglLIgyZ/2ppx54z+atvdP8rwpXKflz8/tbHv/nPlEknWjtgeSvDbJC5Ls23TsB3s8NwAAAAAAAAAwuzUvqpY0+tKm66IkQ01jJ01xobsd3VGllMO7OWFkcdQ/bhrenOTLPavqAZe2GDt7O8wzGzX37ST97RHsSR/RyMK7lzUNL0vyP6dyPbaZqdfyXHpNzqUe4Nsztg8v6bI3dMRrp1FDrzR/jw0kObMfhQAAADDz5uM/0AIAAAAzrNa6Jck7Wux6aymlXRPA37UYe88sXunrzqbto0spu3R68kgTylunMf/qpu09Zsmqic1BZwNJ/mSkcfBPmvZ9v9b63W4uXmv9TZKPNA0vSPLpUspOXVU6z9Ra70pyW9PwiSNhZ506NVNbSXA++1CLsfeUUhZ3eoFSyjOT/EHvSupY88+Znn7ta633JfnfTcOvTvI/msbuS/LpXs4NAAAAAAAAAMxepZQDkjy7aXhVxgcqda3Wek/GL3R3YJLnTPfaO6h/7PL4N6fxfI12aa21uZ+uFz6W5FdNY8eUUv5qO8w12zT37ST97dvqZb9iq17RN5dSjpni9WiYidfyXHpNzpke4FrrcJLvNQ0/r5Sye6fXKKX8fpKnTWX+Hjs34xdPfnkp5cX9KAYAAICZJRgNAAAAmCmfTvLjprH9k/z3VgfXWi9Ocn3T8O5J/qPbley2KqUsK6W8qZTyiqmcP4mvNW3vmuSsTk4spRyU5PNJlkxj/htajP3eNK7XE7XWb2T81/2kJM9I8uCm8fOnOM27Mn61vscnuXiqjSGllIeUUt5XSnn0FGvaUTQ3dT44yRs6ObGU8owk/1/PK5rjaq03JLmyafhhST7eyUrDpZTDMj48bKY0/5x5dCnlt3o8x/ubtvdN0tzkeGGttXlFSwAAAAAAAABg7npVGosljnZRrXVzj65/YYuxV/fo2juaZ5RS/raTA0spv5vkjBa7/ldvS2qotQ6mdYjWO0spr5vqdUspzy2l/NPUK5sRtyZZ0zTWz/7AnvUrjiym+rmm4UVp9P9NKZiplLKklPLaUsobp3L+HLHdX8tz7DU513qAm3tDd0rS6ffDYzN+UeS+GAnm+0CLXeeXUv5wKtcspSwopby4lNLqexcAAIBZRDAaAAAAMCNGViB7W4tdbyml7NzmtJcmuadp7OAk3yqlnN7J6mWllIFSynGllA8lWZlGkNODuii9U59LMtw09qZSyjtKKQsnqO+lSb6RB1ZvvG+K83+zxfznllL+oJSyaIrX7JXmBolDM341wqEkn5rKxWutv0ryyiS1addzkny7lPKKib4GW5VSdhlpdvi3JDcneV2SpVOpaQfy0RZj7y6lnFxKKa1OKKVaAjpkAAAgAElEQVQsHVnR8T/SaORpXo2Pyf15xj9vL0vy+ZEVjlsqpZyQ5Kt54GfY4PYpr61rmrYHkny2lHJEryaotd6Y8cFxzT7Uq/kAAAAAAAAAgNltpIflVS12tQozm6ovZHzo1O+XUlb0cI4dwdZ+ltNLKf/crj9vpCfvDUn+LY0Aq9E+UWv96nas8QNJLm0aG0jyvlLKxaWU3+7kIqWUh5ZS/qqU8oM0+qCmFMA1U2qtNY0+w9GeWUp5Vyllnz6U1Ot+xZOT/KJpbO8kV5RSzimldNTzWUp5Uinl3CS/TPLhJIdMoZa5YCZfy3PlNTnXeoA/kWRL09jrSilva/d4RgLDXp3k6iR7ptGTOzSFuXvtb5Jc2zS2c5J/LaV8tJTS0eu8lPLoUsrbk/w0yf9J0tH3JgAAAP0z6Q2hAAAAAD30L2n8gvrwUWP7phES9J7mg2utN5dSTkzyxSSLR+3aJY2Vy95aSrk6ydeT3Jnk3jR+2b1Hkt9K8viRP3v0/JGMr/WnpZQLk/xJ066/SXJSKeVfk/wgybo0GgYenuT3M7bxZn2Sv0rywSnMf2cp5bKMXSFu3ySXJBkqpdya5P6MDw/7s1rr9d3O16X/neSdGbtq6yObjvlCrfXuqU5Qa/1cKeXMJO9o2vXQkfnfU0q5Ksn1SVal8Vzslsb3xqFJjkjy2Exvxb4dTq312lLKpUn+YNTwgjSCp04tpVycRkjcUJIVSZ6QxvfY6Ga6N0RQVVdqrT8upZye5NymXc9LcnMp5T/SWIHyzjRWajw4ja/RY0Yde3uSz6bx/M+US9MIq9xz1NiTklxXSlmb5I60CMqrtT6uy3k+kOS4NvuurrW2Wh0TAAAAAAAAAJibjssDgTNb3VRr/VavJqi1biylfDbJn40aXpTkFUnO69U8O4Az01h4NGk8FyeWUi5Jcl2Su9LotXpEkj9M8uAW59+S5I3bs8Baay2lvCKN4J7mUJsTkpxQSvl+kquS3JRka0/aHmkEbT02jR6o5u+pHcH5SZ7bNPaWNBanvTONvp7NTfs/X2s9s9eF9LpfsdZ6dynl99P4uo4O8VqY5LQkf1FK+UYai0relmR1Gr1+eyTZL8nvpNEDON/CDNuZsdfyXHlNzrUe4FrrHaWU92V8f+GZSV5eSvlckh+N1LxXGr2Jz8vY74d3p7HA9UO6fTy9VGvdUEp5QRrhcb/VtPvVaXx9rk/yn2mEIt6TRh/sHmn0uj4ujZ8PbRetBQAAYHYSjAYAAADMmFrrcCnlbWkEpI325lLKB2ut97c454pSylOT/GvG/0J7lyTPGfkzG/xFkiem0TAy2oGZPLxoU5I/SqPJYKrelOTYNJ6X0Ran/cqHu05jvo6Math43gSHnd+Def62lHJHGqFKS5t275vkxSN/GOu/Jzkyyf5N44/J2CCuVs6ptX64lCIYrUu11veWUvZO8tamXUuTvGDkTzv3p9E09vztVF5LIw1Gb0xyQYvdy9Jo9uqFS5LcmvE/85MpNI0BAAAAAAAAADu0V7cYu3A7zHNhxgajbZ17PgWjvSeN8JgTR7Z3SyMkqDkoqJXbkhxfa713O9W2Ta113UhP4cfTCHZq9tsZH9A0F3wuyRVJntFi334jf5p9bzvW09N+xVrrf5VSjkzyb0ke3eKax478YXIz+lqeQ6/JudYDfHqSZ2b86+mQJG+epJaLRs5/6STHzYiRoLcnplHX05p2L0hjgdcnzXhhAAAAbFcD/S4AAAAAmHe2rpo22ook/6PdCbXWa5M8Po2miU3TmLumserc16ZxjfYXr3VNGk0E3+zy1DuSPLPW+sVpzn9jkmcluXk619lOJgo+uzPJ5b2YpNZ6fpKjknxlmpfakOT/JFk57aJmuVrrr5Ick+6+b4aSnFZrnaw5hgnUWv86jZU1u2mGui3Jca1WeZwJtdZPptEEvHY7zrElyYdb7FqVRoMnAAAAAAAAADAPlFL2SPLCFrs+tR2m+2rG9wodXkqZN0Ertdaa5OVJul0k8etJjq21/rz3VbVWa11ba31RklOS3D7Ny61MozdxVqu1Did5UZJP97uWZPv0K9Zab0oj3Oi9aSweOR3XJ5lWT+aOqh+v5bnwmpxrPcC11vVJnp7k2m5OSyNY72UjP3NmjZFe12ck+Zsk90zzcj/K+EW+AQAAmGUEowEAAAAzaqTh4uwWu04rpSyb4Lzf1Fr/NMmhafzS/Ydp/AJ+MmuT/N80woceWms9rtb6ra4L71Ct9fY0ViN7XZLJmkNuSXJGkkfUWr/ao/m/kcZqdb+X5J+SXJ1G08W6JP1sUvhCkt+02ffJkSCknqi1fq/W+owkT07yyTSCpDpxZxorv74yyYNqrS+ttd7Vq7pms1rrL5I8Nslfp/E8tDOUxop7v1NrPXcmapvraq3/kOTwJBckuW+CQ+9K8rdJDq+1XjcTtbVTa/1YkgOSvCrJ/07y3TTqG+zhNK2C386vtW7s4RwAAAAAAAAAwOz28iRLm8a+UWv9Wa8nGulraxW49upezzWb1Vo311pPSSMc6CuZuOfsu0lek+SpMxmKNlqt9UNJDh6p48vpbIHC4TRqPyfJcUkO2lF6oWqt99ZaX55Gj+DZSf49yc+SrM70Fp2daj0971esta6vtf7PJAel8RivT9JJf+GGNL5n/zqNHqsjpxtUtSPr12t5R39NzrUe4Frr3UmekkZg3UR/d25J8h9JnlJrfdNsC0XbauT7+u+SPCTJ/0zj+Rnq4NTNSa5J8vYkT6y1PmpkkVgAAABmsdL4N1sAAACAHU8pZUWSJyRZkWSvJLumsUrg2jTCsH6c5Jbax38AKaU8LMkTR2rcZaS+25L8oNb6k37VNd+UUg5N8qg0vk/2SrI4jUaRNUl+keTH8yUErROllMcm+e0keyfZOY3n6SdpNJau62dtc1kpZUmSY5I8OMmD0mhk+nWSHyT53mxtNtoeSimfTvLSUUM1yaH9aqIFAAAAAAAAAJiPSil7p7FA5SFp9Ofdl8bCi9/dHgF101VKWZxGT+GBafQ+LU8jEGdtGgt7/jTJT2utvVwAkO2slLJ7kiOT7JNG/9/uaSziuDaN0KifJPl5Lxdo3VGUUs5OctbosVpraXFcX17LO/prcq71AI88niek8VpalsbX4WdJrqm13tPP2qaqlLJzkiOS7J/Gz4c9kmxM47HdlcbPh5trrZ0EqAEAADCLCEYDAAAAAGDWGAm9vDXJklHDl9Vaf7dPJQEAAAAAAAAAAMw6nQajAQAAAOxoBvpdAAAAAAAAjPKajA1FS5IP9KMQAAAAAAAAAAAAAAAAAGaWYDQAAAAAAGaFUsouSV7fNHxzki/2oRwAAAAAAAAAAAAAAAAAZphgNAAAAAAAZou3J9mnaewfaq3D/SgGAAAAAAAAAAAAAAAAgJklGA0AAAAAgL4qpexZSnlPkr9s2nVLkn/uQ0kAAAAAAAAAAAAAAAAA9MHCfhcAAAAAAMD8Ukr5aJIjRjb3TrJ/ktLi0DfVWodmrDAAAAAAAAAAAAAAAAAA+kowGgAAAAAAM+3QJL89yTGfrLV+diaKAQAAAAAAAAAAAAAAAGB2GOh3AQAAAAAA0OTCJH/W7yIAAAAAAAAAAAAAAAAAmFkL+10AAAAAAADz3mCS25N8I8n5tdar+lsOAAAAAAAAAAAAAAAAAP1Qaq39rgEAAAAAAAAAAAAAAAAAAAAAAACY5wb6XQAAAAAAAAAAAAAAAAAAAAAAAACAYDQAAAAAAAAAAAAAAAAAAAAAAACg7wSjAQAAAAAAAAAAAAAAAAAAAAAAAH0nGA0AAAAAAAAAAAAAAAAAAAAAAADoO8FoAAAAAAAAAAAAAAAAAAAAAAAAQN8JRgMAAAAAAAAAAAAAAAAAAAAAAAD6TjAaAAAAAAAAAAAAAAAAAAAAAAAA0HeC0QAAAAAAAAAAAAAAAAAAAAAAAIC+E4wGAAAAAAAAAAAAAAAAAAAAAAAA9J1gNAAAAAAAAAAAAAAAAAAAAAAAAKDvBKMBAAAAAAAAAAAAAAAAAAAAAAAAfScYDQAAAAAAAAAAAAAAAAAAAAAAAOi7hf0uAPqtlLJ7kmNHDd2aZKhP5QAAAAAAAAAATMfiJL81avs/a61r+lUMAOjRAwAAAAAAAADmCP15M0QwGjQari7tdxEAAAAAAAAAANvBHyT5fL+LAGBe06MHAAAAAAAAAMxF+vO2k4F+FwAAAAAAAAAAAAAAAAAAAAAAAAAgGA0AAAAAAAAAAAAAAAAAAAAAAADou4X9LgBmgVtHb1xyySU59NBD+1ULAAAAAAAAAMCU3XzzzTnhhBNGD93a7lgAmCF69AAAAAAAAACAHZ7+vJkjGA2SodEbhx56aA4//PB+1QIAAAAAAAAA0EtDkx8CANuVHj0AAAAAAAAAYC7Sn7edDPS7AAAAAAAAAAAAAAAAAAAAAAAAAADBaAAAAAAAAAAAAAAAAAAAAAAAAEDfCUYDAAAAAAAAAAAAAAAAAAAAAAAA+k4wGgAAAAAAAAAAAAAAAAAAAAAAANB3gtEAAAAAAAAAAAAAAAAAAAAAAACAvhOMBgAAAAAAAAAAAAAAAAAAAAAAAPSdYDQAAAAAAAAAAAAAAAAAAAAAAACg7wSjAQAAAAAAAAAAAAAAAAAAAAAAAH0nGA0AAAAAAAAAAAAAAAAAAAAAAADoO8FoAAAAAAAAAAAAAAAAAAAAAAAAQN8JRgMAAAAAAAAAAAAAAAAAAAAAAAD6TjAaAAAAAAAAAAAAAAAAAAAAAAAA0HeC0QAAAAAAAAAAAAAAAAAAAAAAAIC+E4wGAAAAAAAAAAAAAAAAAAAAAAAA9N3CfhcA81GtNcPDw6m19rsUgHFKKRkYGEgppd+lAAAAAAAAAABA1/ToAbOV/jwAAAAAAACAyQlGgxlQa82GDRuydu3arF27NkNDQ/0uCWBSixcvzrJly7Js2bIsXbpUIxYAAAAAAAAAALOSHj1gR6M/DwAAAAAAAKA9wWiwna1fvz533HFHNm3a1O9SALoyNDSUu+++O3fffXcWLVqU/fffPzvvvHO/ywIAAAAAAAAAgG306AE7Iv15AAAAAAAAAO0N9LsAmMvWr1+flStXargCdnibNm3KypUrs379+n6XAgAAAAAAAAAASfToAXOD/jwAAAAAAACAsQSjwXayteGq1trvUgB6otaq+QoAAAAAAAAAgFlBjx4wl+jPAwAAAAAAAHjAwn4XAHNRrTV33HHHuIarRYsWZbfddsuuu+6aRYsWpZTSpwoB2qu1ZtOmTVm3bl3uu+++MSvqbv35dsghh/gZBgAAAAAAAABAX+jRA3ZU+vMAAAAAAAAAJicYDbaDDRs2jGlUSJJly5blgAMO0KgA7BAWLVqUnXfeOStWrMjtt9+etWvXbtu3adOmbNy4MUuXLu1jhQAAAAAAAAAAzFd69IAdmf48AAAAAAAAgIkN9LsAmItGNygkjQYGDVfAjqiUkgMOOCCLFi0aM37ffff1qSIAAAAAAAAAAOY7PXrAXKA/DwAAAAAAAKA1wWiwHTQ3Xe22224aroAdViklu+2225ix5p9zAAAAAAAAAAAwU/ToAXOF/jwAAAAAAACA8QSjQY/VWjM0NDRmbNddd+1TNQC90fxzbGhoKLXWPlUDAAAAAAAAAMB8pUcPmGv05wEAAAAAAACMJRgNemx4eHjc2KJFi/pQCUDvLFy4cNxYq593AAAAAAAAAACwPenRA+Ya/XkAAAAAAAAAYwlGgx5rtUJbKaUPlQD0zsDA+LcMVqQEAAAAAAAAAGCm6dED5hr9eQAAAAAAAABjCUYDAAAAAAAAAAAAAAAAAAAAAAAA+m5hvwtgZpRSFiV5SpIHJ9kvybokdyT5bq31lz2e66FJHpdk/yS7JrkzyS1Jrqm1burlXAAAAAAAAAAAAAAAAAAAAAAAAMwNgtH6pJRycJIjkxwx8t/HJ1k26pBbaq0H9WCeFUneluTFSfZsc8w1Sd5ba/3cNOd6UZK/THJUm0PuKaVclOTMWutvpjMXAAAAAAAAAAAAAAAAAAAAAAAAc4tgtBlUSnl6kremEYbWMqSsx/P9bpJPJNlnkkOPTnJ0KeVTSU6utd7f5Ty7JvnnJC+Z5NA9k5yS5IWllFfWWi/vZh4AAAAAAAAAAAAAAAAAAAAAAADmLsFoM+txSZ49ExONhLBdkmTxqOGa5DtJfp5kjyS/k2TvUftfnmS3UsoJtdbhDudZkOSiJL/XtGtVku8mWZPkkJG5ysi+fZNcWkp5Zq316i4eFgAAAAAAAAAAAAAAAAAAAAAAAHPUQL8LIEmyMcnPenWxUsqBSf4tY0PRvp7k8FrrEbXWE2utz05yYJLXJ9k06rj/luRvu5ju7zM2FG1Tkv+R5MBa63NG5npCkkcn+cao45YkuaSUsl8XcwEAAAAAAAAAAAAAAAAAAAAAADBHCUabeZuSfC/JR5OcnOQJSZYl+bMezvG2JMtHbV+T5Jm11h+NPqjWurHW+r+SnNh0/l+WUh4y2SSllIPTCFYb7Y9qre+vtQ41zXVjkmdkbDjaXknOmmweAAAAAAAAAAAAAAAAAAAAAAAA5j7BaDPrgiS71Vp/p9b6mlrrR2qt36m1burVBKWUw5K8ctTQUJKTaq0b2p1Ta71kpLatlqSzwLKzkiwatf2JWuulE8wzmOSkkZq2evVIwBoAAAAAAAAAAAAAAAAAAAAAAADzmGC0GVRrXT1RQFmPvCzJglHb/1ZrvamD897dtH1iKWVpu4NLKTsledEk1xin1vrTJJeMGlqYRs0AAAAAAAAAAAAAAAAAAAAAAADMY4LR5p4XNG1/vJOTaq0/SvKtUUO7JHn2BKc8J8nOo7a/UWv9cUcVjq/phR2eB3PSQQcdlFLKtj9XXXVVv0sCAAAAAAAAAACAHZ7+PAAAAAAAAADY8QhGm0NKKQ9K8tujhjYn+XoXl7iqaft3Jzj2uZOcO5GvpVHbVr9TStm3i/MBAAAAAAAAAAAAAAAAAAAAAACYYwSjzS2Pbtr+Qa31/i7Ov6Zp+/Au5vpGp5OM1HRDF3MBAAAAAAAAAAAAAAAAAAAAAAAwxwlGm1se1bR9c5fn/2yS6432yBmcCwAAAAAAAAAAAAAAAAAAAAAAgDluYb8LoKcObdpe2eX5tzRt71VKWV5rXT16sJSyZ5I9pzlX8/GHdXk+AAAAACM2100ZrsNdnbOoLE4ppaNjh+twNtdNUyltzhkoA1lYFm23628a3pSa8V/LBWVBFpTZ/8+5w3U4A8V6HAAA3ai1dvzefL4aGt7YcnxhWZiBsmC7zdur97db6uZsqVt6UNH2181nxS11S7bUzRMeU1KyaGBxL0oDAAAAgDmr1prUmjLg9+0AAAAAAJAIRptr9mjavqubk2ut60opG5IsHTW8e5LVTYc2z7O+1np/N3O1qG33Ls8HAAAAmPdWbvhZPnvXR/OLwZ9mON3dZL/bguU5Yren5gUrXpkFbYIENg5vyEW//nB+sO66rB9e14uSd3gDWZCH7vSw/NE+f5YHLz2kZ9f9yfobcsmqT2blhp+1DkbLwjx0p4flxfu+NgcsOahn8/bKms2r8+lf/VN+uv6G7L5wzxy3/Pk5dvnv9bssAIBZ7cf3fz///pvP5NaNP88BSx6SF+97ch6ytHktrPnt6/f+v1yx+tL8aui2lvuXDuyUR+78uLzsQX+eXRYs69m83117Tb5497/krqE7ctDSh+VlDzol+y4+oOvr3Lnx1vyfX38oPx/8SbZk4gCx2WKPhXvlybsdn+fv/dK2oXCj3/9vrBsmvN5BSw/Lmx9yzvYoFQAAAAB2eHXD+tR/eGNy9b8nCxakPvcVKa99R8qC7bcgBAAAAAAA7AgEo80tuzZtD07hGoMZG4zWqnu8V/OM1pMu9VLKPklWdHla7+5gBQAAAJgh92xalX+89YwMDq+f0vn3bVmdr6z+fLbUzXnxvq9teczH7nhP/uv+66dT5pwznC352eCP8g+3npEzD3pf9li017SvecfGW/KB296ezXVT22O2ZHNuHrwx/7DyjJz50Pdl2cLmtQv6Z7gO5x9vPWNbWMVdm+7IRXd9JEsGlubJux/f5+oAAGanOzauzIdvf9e2UKlfbrgp5608PWc89H9lr0X79rm62eH6+67Op379gQmP2TA8mO+u+0buvm1V/urB56SUMu15f7L+hnz0jvdsCyy+afC/8t6Vf52zHvqB7Lyg+Vfl7a3bcl/ee+tf5/4ta6dd00y6d/Pdueyez6aU5L/t/fJx+5vf/wMAAAAAU1ffcVLy1UsfGPj0ualJyinv7FNFAAAAAAAwOwhGm1uau7AnXpq5tcEkyye4Zi/nmeiaU/XnSc7q0bVgTqm15jvf+U5+/OMf56677srGjRuzYsWKHHDAATnmmGOy6669ehnOvFtvvTXXXXddbrvttgwODmbvvffOYx7zmBxxxBEZGGi9kn2n7rrrrnzta1/LHXfckcHBwey///45+OCD8+QnP3na127lxhtvzA033JBVq1blvvvuy5577pn99tsvxxxzTPbaa/o32wMAAHPHD9ZdO+VQtNGuve+q/OE+r8rCsmjM+H2b780P7//2tK8/V20YXp/vrvtGjlv+/Glf6/r7rp4wFG20+4fX5gfrrstT9njWtOftlV9u+GnLUIRr1lwhGA0AoI3P/+bCbaFoWw3Vjfn2fV/Ps/d6YZ+qml2uve+qjo9dueHm3DF0Sw5YctC05/3Wmq9sC0Xbau2WNfmv+7+dJ+52bMfXuWHddTtcKNpo31jzlTx/r5eNC5v7xeBPhKIBAEAL+vOmRn8eAPNZ/c0dydVfGL/jsgtT//vf9WQhCAAAAAAA2FEJRpvb6hw7B5iC3/zmN3nnO9+ZCy+8MKtWrWp5zOLFi3P88cfn7LPPzpOe9KSOrnvSSSflggsu2Lb9i1/8IgcddFBH51511VU57rjjtm2fddZZOfvss9seP/qXuscee2yuuuqqJMk111yTs846K1/5ylcyPDw87rx99903p59+ek499dSum6S++93v5k1velOuvPLKltc+8MADc/LJJ+ctb3lLFi5cmLPPPjtve9vbtu2/8sor8/SnP72jue6+++6cc845ufDCC3P77be3PGZgYCBHH310zjrrrDzzmc/s6rEAAABz051Dt/bkOoPD67Nm8+rstWifMeO/Grot1T/hTOhXG3sTBnDn0Mouj+/N175X7tzYup5fzbI6AQBmizs33pofrLu25b47unxvOJf9usvwrTs33taTYLQ728zb7n1v+3p27PfD926+OxuG12enBbuMGZ9tn0cAAKDf9OfpzwOAKfvyRUmLvwdzz6+TdWuSZXvMfE0AAAAAADBL9H4pLfppXdP2TlO4RvM5zdecyXmAabrkkkty8MEH57zzzmvbdJUkQ0NDueyyy/LkJz85J598cjZv3jyDVU7NO9/5zjztaU/Ll7/85ZaNUUny61//On/xF3+RF73oRRkaGur42u9973tz5JFH5oorrmh77dtuuy1nnHFGjj322Pz617+e0mNIkk9+8pM5+OCD8+53v7tt01WSDA8P5+qrr86znvWs/PEf/3FXjwcAAJibNtdNPbvWxuHBjsYYa0OPnqNurzPbvjbt6u/V8wMAMNdcsfrStvtm23u9fhruMqi5V89du/ex3V5/w/D6XpTTV62eC9+jAADwAP15+vMAYDrqrTdNsLP135EAAAAAADBfLOx3AfSUYLTkn5J8tstzDknS/u4D2EGdf/75ec1rXjOuceiQQw7Jox71qOy8885ZuXJlrr322mzZsmXb/o985CNZuXJlvvCFL2Thwtn518R73vOenH766du2H/7wh+fhD394dtlll9x555355je/mQ0bNmzbf/HFF+eMM87Iu9/97kmvfe655+a0004bN/6oRz0qhx12WJYsWZKVK1fmuuuuy5YtW3LNNdfkxBNPzNOe9rSuH8eZZ56Zd7zjHWPGSil5+MMfnsMOOyzLli3L6tWrc/31149pnLvwwgtz55135rLLLpu1XyMAAGD72zzcu5tmBlvc2D4XbuLf3nr1HHUbLDA4y7427erfXDdlc92UhWXRDFcEADB73bv5nlx731Vt9wuXHa27YLRevT9vd51urz8XvpatHsNs+zwCAAD9oj9Pfx4ATNuvVrbfN+r9AwAAAAAAzEd+Wzu3rGnaXtHNyaWUXTM+sOzeDubZuZSyS631/i6m26eDebpWa70ryV3dnFNK6cXUPVM3b05W3dbvMua+FQemzOGGle9973s55ZRTxjRdPe5xj8sHPvCBHH300WOOXbVqVc4444x8+MMf3jZ22WWX5cwzz8w73/nOGau5UzfccEO+9rWvJUlOOOGEvOtd78ojHvGIMcesXr06f/mXf5lPfOIT28bOPffcnHLKKTnooIPaXvvb3/523vKWt4wZe/rTn573v//9Ofzww8eMr1q1KmeeeWY+9KEP5atf/WpuvPHGrh7HBRdcMKbpamBgIKeeempOO+20PPjBDx5zbK01l156aV7/+tdn5crGL8CvuOKKnHHGGXnXu97V1bwAAMDcsbm2Xqn+d3Y9Ks/a8wUt971n5VsznPHNs61u8G8VlpYkyxfundfs/+YuKt3xXb3mS7lmzZfHjfcqeKHdc72oLM6mFl/n2RawMFEwwobhwey6QDAaAMBWV63+92yu7UOOZ9t7vX6qtdtgtN48d+2Cf7u9/uBw61+fH7ns2By3/Hld17W9bKqbct6tp7fc1+oxt3t+Dl76iLxonz8dN754YOn0CgQA6DH9eTNoDvfo6c/TnwcAPfHrW9vvGxaMBgAAAADA/DY3Ow7mr5uath/S5fnNx99Ta13dfFCt9e5Syuoky0cNPzjJj6YxV3Pt89eq21JPfHi/q5jzyr/8JNnvoH6Xsd28+tWvztDQAzdOH1vQ57oAACAASURBVHPMMbn88suz8847jzt2xYoV+dCHPpRDDz00b3rTm7aNv/vd785LX/rSPOYxj5mRmjt1zz33JEne/OY3t11hcvny5fn4xz+e1atX59JLL02SbNmyJR/72MfGrQA52qmnnprNmx+4GemFL3xhLrrooparPq5YsSIf/OAHc/DBB+fNb35zfvOb33T8GG655Zaccsop27aXLFmSSy65JM997nNbHl9KyQknnJCjjz46T3nKU3LzzTcnSc4555y89rWvzUMf+tCO5wYAAOaOTXVTy/Hli1bkoJ0e1nLfTgM75/7htePGW93YvmFL67CrXRfs1vb6c9VNgz9sOb69gxf2WLhnVm36VcfH98tE9WzYMphdF+w2g9UAAMxeg1vW52v3XjbhMYLRpq4XwcXDdbjt16DrYLQ2n6n2Xbz/rPpMVWtNSUnN+CC6Vs9pu+dh+aK9Z9XjAgBoS3/ejJnLPXr68/TnAUBPrLm7/T7BaAAAAAAAzHMD/S6AnmoOJju0y/MPbtqeaHm1Xs/VTagaMIErr7wy3/nOd7Zt77bbbrnoootaNl2Ndtppp+X5z3/+tu3h4eGcd955263O6TjmmGM6Wonx7/7u78Zsf+UrX2l77HXXXZdvfetb27b322+/nH/++S2brkZ705velGc/+9mT1jLaOeeck8HBB24aOe+889o2XY22zz775NOf/vS27S1btszarxEAALD9bW4TjLawLGp7ztIFO7Ucb3XD/sba+mb3pQMTf76ci9o95l6FVrQLcNh94V4tx9sFLPTLRM+DYA8AgAd8fc2XMjhJeFcvwr3milZBXRPpxXvPjcMbenb9dl/rpQtm12eqUkqWDLT+rNjq+7Ht42pzDQAAmGv05z1Afx4ATNPa1e33DQ/PXB0AAAAAADALCUabW/6rafuxpZRuuqqfMsn1Jtp3VKeTlFJ2SfLYLuYCunDBBReM2T711FOz//77d3Tu3//934/Z/sxnPpONGzf2rLZeOf300zMwMPlfYYcffngOOuigbdvf+9732h77mc98Zsz26173uuy+++4d1XPGGWd0dFyS3H///Tn//PO3bR988ME5+eSTOz7/yCOPzFOf+tRt25///Oc7PhcAAJhb2gWjLZogGG1JaX2j+sYWN/gPbml90/9Os+wm/pnQ7gb/XoRWDNfhtuELeyzcc7vN20sTB6PNrloBAPplc92Ur6z+wqTHtXpvPl+1C0ZrFwbdm2C03r23HRy+v+X4TrMwbLr9Z57xz0e750gwGgAA84X+vAfozwOAadqyuf2+4S0zVwcAAAAAAMxCgtHmkFrrnUl+MGpoYZJjurjE05u2/2OCYy+b5NyJPDWN2rb6bq31112cD0zg6quvHrP9ile8ouNzDz/88Dz+8Y/ftr1hw4Z8+9vf7lltvbDTTjvl+OOP7/j4Rz7ykdv+f/369Vm3bl3L46655pox2yeeeGLHcxxzzDEdN7ddffXVY1ajfNGLXtRRE9loxx133Lb/v+WWW7Jy5cquzgcAAOaGdsFo7UICkvahZq1udm9303+7cLW5rJuQgG4N1Y1tAx/2WLhXy/F2QWr9MlFAhGAPAICG6++7OvduvnvS4zYMD2a4Ds9ARbNfu/fJ7YLFevH+fHCC97bdXr/d8TsN7NLVdWZCN89pu8e1dBYGvgEAwPagP28s/XkAMDV1yyTBZ4LRAAAAAACY5xZOfgg7mIuTPHbU9quSfGmyk0opj0jypFFD909y3uVJBpNsvSv0qFLKI2qtP+6gxpOati/u4BygA6tXr87Pfvazbdt77LHHmMajThx99NH5zne+s237uuuuy9FHH92zGqfrkEMOyeLFizs+fvny5WO216xZk1133XXccd///ve3/f8ee+yRQw89tKu6jjjiiI5Wh2xujNt///3zy1/+squ5mh//z3/+8zz4wQ/u6hoAAMCOb9MUgtGWtAn4anXzf7uwq6UL5mMwWusb/DfVoWyumyZ8ziczUbjCHgv3bDk+OLw+tdaUUqY8by9N9BgGBaMBAKTWmi/f0/mvRIfqxiydh4HE49TWwWhLB3bO2i1rxo1PFNjbqYmCfbsJRhuuw22v1S54uZ/afVbsLhht9j0uAADoNf154+nPA4ApWnfvxPsnC04DAAAAAIA5TjDa3POpJH+TZMHI9gtLKYfVWm+a5Ly/atr+l1rrhnYH11rXl1L+NckfN13jVRNNUkp5WJIXjBranOTTk9QGdGjVqlVjtg877LCub5J+xCMeMWb7rrvumnZdvdTcSDWZRYvG3py+adP44ID7778/GzY88CNvKk1MnZ5z6623jtl+wxvekDe84Q1dzzfaPffcM63zAQCAHdPmNsFoiyYI6Wp3o3qrG/bb3ey+U5uQsLlsohv8NwwPZtcFUw9Gmyh4YY9Fe7UcH86WbKpDWVyWTHneXproMUy0DwBgvrjx/u/kjqGVHR+/YXhQyFSS1rFoyU4LdklafBzqxXvPicLPNg4PdhxQvHF4MLXNI9hpwS5Trm97aff91ipsrm2I9jz8rAgAwPyjP288/XkAMEW3/GTi/cOC0QAAAAAAmN8Eo80xtdabSikXJPnTkaHFST5RSnlGu6CzUsofJDlp1NBQkrd1MN3ZSV6SZGtXw0mllItrrS2XZCulLE3y8ZGatvpYrfVnrY6ft1YcmPIvk/ySi+lbcWC/K9guVq9ePWZ799137/oazefMtqaegYGBnl/z3nvHrri1bNmyrq+x2267dXTc3Xff3fW1J7N27dqeXxMAAJj9Ng0PtRxfONA+pKtdqFmrm//bBQLMx4CGicLgNg4PZtcFnX0mbGVwS+tQgSTZfWHrYLSt8y4emB3BaIMThEe0C00AAJhPvnTPxV0dv2HL+mThntupmh1Jm2CxNu/PJ3pf2qmJgtFqajbWDVlaJv9MNDjB++DZGDbdPhitxWfFLa2foyXz8LMiALCD0p83c+Zgj57+vKnRnwcA49UP/83EBwwPz0whAAAAAAAwSwlGm2GllAPT+nl/UNP2wlLKQW0us67W+psJpjkryQuSbF227egkXy6l/Fmt9cejalmS5LVJzm06/9xa6y0TXD9JUmv9eSnlH5OcNmr4X0spf5nkI7XWbXfnllIemeSjI7VsdXc6C2CbV8rChcl+B/W7DHZQtY69QaTb1Shb6cU1ZrslS8beSD401DpcYCKdnjOVa0+m+esOAADMD5vr5pbji0r7YLR2N6q3umm/XaDVfLzZfekEwQWDWwYfWDZgCjZOELywx8LlbfcNDg9mWfaY+sQ9NNFjmChYAgBgPvjl4E25afC/ujrHe6iG2iYYrd37816E8k52jQ3Dgx2FRQ8O39923+wMRmvznDaFoNVa235/7jQPPysCADsm/XlMh/68qdGfBwAt3PLjifcPb5mZOgAAAAAAYJYSjDbzrk7ykA6OOyDJL9rsuyDJSe1OrLXeVkp5YZLLkyweGX5KkhtLKd9O8vMkuyd5fJIVTaf/e5IzOqhvq7ckOTzJ745sL0ryviRnlFK+k2RtkoNH5hrdvTGU5AW11ju7mAuYxJ577jlme82aNV1fo/mc5cvb34Q9VVu2zK5f1DY/xuaVPTvR6cqde++995jta665JkcddVTX8wEAAGyum1qOL5wgGK3dDfytgq3a3+w++27i394mCoObbvhCq1C6JFlSlmangV2227y9sqVuzqba/iaj2VInAEC/fHn1xV2f4z1UQ7tgtHafSSYK7O1Uu/fn3c7RHCg22tIJ3uf3S6dhc5vrpmxJ65DuiQKlAQBgrtCfNzX68wBgrLplS7JukvcRw8MzUwwAAAAAAMxSA/0ugO2j1npVkhckWTVquCQ5IsmJSZ6T8aFon0nyklprxx0RI8eemOSipl37JHlukj9K8oSMDUW7K8kf1Fq/1uk8QGdWrBj7sv7pT3/a9TV+8pOfjNneZ599Wh63cOHYbM3Nm1vfBNHKVBqbtqcFCxbkgAMO2Lb985//POvXd3fT0Q033NDRcfvuu++Y7al8jQAAAJK0DaOaKBitXYBAq+CFdmEM8/Fm90UDi7KwtF5jYrqhFe2CFZYO7DRJINv0Qx96YbI6ZkudAAD9sGroznx37Tdb7jt0p8OzpCxtuc97qIZ2wWjtPpNsrpuzabh1gHSnJgs+G9zS2fv/weH7W44vLIuyaKD9Z7Z+aRei3fy9ONH35kSfXwAAYK7Qnzc1+vMAoMldtyZbJvm7fXh2BZ0CAAAAAMBME4w2h9Vav5jk0Uk+lGSiLodvJnlRrfVltdbWHdoTz7Ou1vqSNELQWnf2N9yT5INJHl1rvazbeYDJLV++PIcccsi27XvvvTc/+tGPurrGNddcM2b7yCOPbHncbrvtNmb73nvv7XiOH/7wh13VNBOe/OQnb/v/4eHh/Od//mfH595zzz35/ve/39GxRx999JjtL33pSx3PAwAAsFWtNZtr6ybZRWVx2/Pa3ajefHP7cB3OxuENLY9td8P8XNcufGFDm+epU+2CBZYu2DkLyoIsLkvanDe9QLZemawOoR4AwHx2xerPp2a45b5n7XlCx2FU81brXLTstKB9WPNkwWaTmey57/T6gztY0HT778X1E26PttOC+flZEQCA+UV/3tTpzwOAUe74xeTHbBGMBgAAAADA/CYYbYbVWg+qtZZp/jmpi/nuqrWekuRBSY5P8qokb03yF0n+MMnBtdajaq2f68Fj+9da61FJDk7yopE53joy5/FJ9qu1/nmtddV05wLaO+aYY8Zsf+pTn+r43B/96Ef59re/vW176dKlecITntDy2OaVKm+88caO5/niF7/Y8bEz5ZnPfOaY7X/+53/u+NwLLrggQ0NDHR37jGc8IwsWLNi2/fnPfz533XVXx3MBAAAkyXC2tA1YWFgWtj2vfbjX2Jv7h+rG1DYpBPM3GK2zoIButQte2BpiN9vDMiarY7bUCQAw09ZuXpNvrLmi5b79Fv9WDt/lCVnaJuBruuFec0W7zyQ7TRAutr3en2/VLvCs0+Mmqr2f2n3uaA7Mnuj5aRfEDQAAc43+vKnRnwcAo6y6Y/JjhgWjAQAAAAAwvwlGmydqrUO11itrrZ+otf59rfV9tdZ/q7V2sNRM13P9otb6uZE5/n5kzitrrZ11JQDT8id/8idjtt///vfnV7/6VUfnvvWtbx2z/ZKXvCRLlixpeezjH//4Mdtf+MIXOprj8ssvz7XXXtvRsTPp5S9/eZYtW7Zt++KLL87ll18+6Xm333573v72t3c8z/Lly/Pyl7982/a6dety2mmndVcsAAAw722qm9ruW1gWt923dGBpy/Hm8IANW9rf7N8uXG2um+lgtJ22BaN1FmbXLxuaghLG75/e8wMAsKP6z3u/mE1tfj36zD1PyEAZaBsk1Wn41lzXPhhtl7bnTPd98mTvXzsNrWv3mWrWBqO1Cekb91lxgsc/X0O0AQCYf/TnTY3+PAAYZaiDf2cUjAYAAAAAtLBhU83f/t/hPPu8LTnqXQ/8ufyHrXsuYUcmGA1gjjn++OPzuMc9btv2mjVr8tKXvjSDgxP/AvW8887LpZdeum27lJI3vvGNbY8/6qijsvPOD9wkcfHFF+f666+fcI6bbropr3zlKyd7CH2xbNmyvP71rx8zduKJJ+bKK69se87/z96dh0lSFXi//53IzKrM3rt6VRqGpUGWEZARQWiYpllGQQFHXhWdYUa9jo6+iuMdF1zxOtdtZoSZC47ggOAyyAVZbNEWkIaWRkAaEBQa6JamAemNql4rMysz47x/FFVdWRUnMqJyz/x+nofHjjgnIk5GllXnZJ7ziw0bNuj000/X9u3bY13r4osvLpvQ9oMf/ECf/vSnVSrF+wL7iSee0KpVq2IdAwAAAKAzFP2wYLSUs8wVslW0RRXGnDMsiMG1YL7T1SugzBW80DsajOYIZAsJr2ukSsERrRLgBgAA0EhDfl73bP95YNnMZJ9eP/1kSXvDcMeLGr7V6VzBaGEBXPUKLo5aPiLr7wncn2nR8ZTrno4fG7rub8r0hI5FAQAAgE7C/LzJYX4eAABj5AlGAwAAAAAAABCf71u96VJfX7zV6s4npQee3fvfy7sJRkPnIRgNAFrMpk2btGHDhkn9N+Kqq65ST0/P6Pbdd9+tk046SQ888MCE623btk0f+chH9IlPfKJs/6c+9SkdeeSRznZOnz5d73znO0e3S6WSzjrrLN1+++0T6g4NDem73/2ujj/+eG3evFmzZ8+Oc0sa5gtf+IJe+9rXjm7v3LlTp556qt7xjnfoxhtv1GOPPaa1a9fq9ttv18c//nEdccQRevLJJ5VOp3XOOedEvs4BBxygK6+8smzfN7/5TS1ZskTLly9XsVh0HrthwwZdfvnlWrZsmY444gjddddd8V8oAAAAgLZXtO5gtJQXPxhNKg9fCAtiCAsh6GTuYLTqghdc93rker2uYLQWCcuoFNrRKu0EAABopN/s+JX2lHYFli2b/dbRPnur9/WaL3iSTtKknCFc1QcXhx8fFiId5Txpb2rsNjWCa5xXsEMq2b0LMF2vy/WzDAAAALQi5uc1D/PzAAB4xVC+cp2YgZ4AAAAAAAAAOt9da6VVzzS7FUDjJJvdAABAufPPP3/Sx1o7vEDkmGOO0WWXXaYPfehD8n1fkrRmzRodf/zxWrx4sY444gil02k9//zzevDBBydM9Dn99NP1la98peL1vvKVr+jmm28efSLjli1b9Fd/9VdavHixjjzySPX29mrz5s164IEHtGfPHknSwoUL9Y1vfKMln0zZ09Oj2267TcuWLdO6deskDd/TG264QTfccEPgMcYYXX755dq4ceOEJ3qGueCCC7Rp0yZddNFFo+/R/fffr7PPPltTpkzR6173Oi1YsECZTEa7du3Stm3b9MQTT8R++iUAAACAzhQWjOYKCJDCQ81y/qCmacYr/w5e7G5k1GvSEVvZWVz3rtrghawzMGH4epmEK5CtNcIysqXwYIhqg+MAAADaTcmWdOfArYFlaS+jJTPPGLPd2n29Zhv53ms8Y4zSXka7SxPHRVUHo1Xo31YKBh6R9fcE7s+0aIBYpRDtKYlpktz3t1VfFwAAABCE+XnNw/w8AACG2XyEzxmtX/+GAAAAAAAAAGgr9zwTPK8S6FQEowFAh/rABz6g2bNn673vfa927949un/dunWjk4qCvO9979N3vvMdpVLuhfQj9tlnH/3kJz/Rueeeq127dlW8xgEHHKDbbrtNmzdvjvlqGmfffffVr3/9a334wx/WzTffHFp3zpw5uvbaa3XWWWfp05/+dFnZ9OnTK15r5Kmf733ve7Vp06bR/YODg1q9enWk9rbq0z0BAAAA1FdhssFoibBgtL0Tb7OOMKteL1NxoUmncgejVRf85QpWGAkmqNd1a6VSMETU4AgAAIBO8eiu3+jlQvD3IEtm/pUyiamj2/UK3+10RiPBaDsnlFXbT65076O+N64A4bQ3NXB/s4WHaI8NRnOPFQEAAIBuw/y8yWF+HgAAkqIEo/ml+rcDAAAAAAAAQFtZ17pfAwJ14TW7AQCA+jnvvPO0fv16XXjhhZo7d66zXiqV0hlnnKHVq1frqquuijTpasSyZcv04IMP6pxzznEujp83b54++clP6tFHH9Vhhx0W+3U02sKFC3XTTTeNTsA6/PDDNWvWLKXTaR144IE67bTTdMUVV2j9+vU666yzJGnCkyJnzpwZ6VpvetOb9Oyzz+ryyy/X0UcfXTFgIJVK6YQTTtDFF1+sp59+WhdeeOHkXiQAAACAtlYMCUZLhQWjhS52Hwz8d9TjO91IUNl4uVJ1oRXue52W5A4YaJVgtErBEEVbVMF3/7wCAAB0Emut7ugPXtSdUFLLZr+1bJ+zj9kifb1ms3I92dDULVSuZsFojvcwkwh+z5vN9bMojR8rhgc7AwAAAN2G+XmTw/w8AEDXG8pVrlMiGA0AAAAAAABAuXVbXfMqgc6UbHYDAKDbbdiwoa7nnz9/vi699FJ961vf0po1a7R27Vpt3bpV+Xxec+fO1aJFi7RkyZJIT1B0OfTQQ3XLLbdo27Ztuueee/TCCy9ocHBQCxYs0AEHHKCTTjpJyeTePzlLly6VtdE7XXHqjnfNNdfommuumdSxS5Ys0ZIlSyLVfeKJJ0b/bYzR/PnzI18nnU7rwx/+sD784Q+rv79f999/v1566SX19/erUCho2rRpmj9/vg455BAdeuihmjKFxSUAAABAtyvYIWdZMiQYLWlSSppUYLDa2AXursXumS5e7O4KXnAFHkTlutcjgWiue15t4EOtRGlH3s8q5UVf5AUAANCunh58XBvz6wPLjp1xsmal5pTtGwnDHS/fIn29ZnMFoxmFhcpVd+8q3fuooXU5f0/g/lYdU4WHaI8dKxKiDQAAgPbD/LzKmJ/H/DwAQIPlI3yO6ROMBgAAAAAAAGAva63WbQkue80C6ah9wx8QBLQjgtEAoEt4nqdjjz1Wxx57bN2uMXfuXL397W+v2/lb1Z49e/Twww+Pbh9yyCGTnsjW19enM888s1ZNAwAAANChgoLNRoQFo0nDAQK7Szsm7I8SjNbbxYvd04ngRTDVhlZUCqFzBQy0UzBazh/UNM1oQGsAAACa646BW5xlp/WdO2Gfq3+dbZG+XrO5g9GM895V00/2bUl5mwutE/X8rvcw402N3a5GSJkeefLky59QFmWsSDAaAAAAwPy8emJ+HgCg4wzlK9fxJ35WBwAAAAAAAKB7bdst7XBMYfzuBZ6OeDXBaOg8XrMbAABAu7v22ms1ODg4uv3GN76xia0BAAAA0A2Kthi4P6GkPBP+kV/aSwfuz/mDgf8uP7Z7F7vXK6CsUgidO/Ah+D1qtCjtaJUQNwAAgHp6IbdBT+x5OLDsz6e+Xq/u3W/C/pEw3PGqDd/tHMHBaDLGee+q6SdHC/2N9t7kSsHtyDgCl5vNGKN0hHuaK7mC0VrzdQEAAADoDMzPAwB0nHyEzxlLpfq3AwAAAAAAAEDbWLfFXXbwgsa1A2gkgtEAAKjCCy+8oC984Qtl+y644IImtQYAAABAtyj4Q4H7kyZZ8Vj3Yve9E29di91d4QPdwHXfslUEL1hrnaEXI/faHfjQGmEZ0cIjWiPEDQAAoJ7uHLjFWXZ639sC97tDcFujr9ds1pWLJqNeZ+Dz5O9drYLRrLXK+nsCy1o5QCxKGDQh2gAAAAAajfl5AICONJSrXMcnGA0AAAAAAADAXs9sCZ5UOa1Xmj+9wY0BGoRgNAAAxvjJT36iz372s9q6dWvFuo888ohOPvlk9ff3j+476qijdMopp9SziQAAAACgoi0E7k95PRWPjRSM5ljs38qL+OstLCTAuhIbKsjbnKyCjx0JyYjyfjVTrcIjAAAA2ll/Yase2vnrwLL90wdrcebwwDJXCG6+ij5mJ3H1lY1MXfrJtQr9HbJ5+fIDy1o5bNo55intfc3usSLBaAAAAACiYX4eAACS8hE+x7TBnzECAAAAAAAA6E7rtgTvXzxfMsY0tjFAgySb3QAAAFrJrl279LWvfU3/9m//pje96U069dRTddRRR2n+/PlKJpPq7+/X448/rp/97Gdavnx52cKknp4eXXvttU1sPQAAAIBuUXAEoyVNquKx7oCvwcB/j9XbxYvdXQEGVr4Kdkg9pjf2OfMhwQvp0WC04Hs+EpbR7C8vwl7DCILRAABAp1s5sFy+SoFlp/e9zdlnc/WvrazyNqe06d7+txQejBYWKjdZkfq2pcrBaNmQ8LRWDpuuKkQ70bqvCwAAAEBrYX4eAACShvKV65SCP3MGAAAAAAAA0J3WO547dPB8QtHQuQhGAwAgQKFQ0PLly7V8+fJI9TOZjL7//e/rqKOOqnPLAAAAAEAqOoLRUlUFo41d7B68kD+T6N5ghrAAg6w/qB4vfjBaWGBYpWC0VgnLcP2slNchGA0AAHSuwdJu3bv99sCyealX6ahpxzmPdfX1pOE+VFh5dwgORpPcoXLZCMFlLmGBZiPyNiff+vKM5z5PaY+zLJOYOqm2NUKUsaIrPI6fVQAAAABxMT8PANDV8hG+Q/cJRgMAAAAAAACw1zObg+dUHjS/wQ0BGsg9WxcAgC40a9YsJRKJWMeceOKJWrVqlc4777w6tQoAAAAAyrmC0ZKRgtGCA77GBly5gqzCwsE6Xa+XdpZFCQcLPi5KMJr7nrdC4FiUNkz2/gAAALSDVdtXKG9zgWWn9p0jz7i/cwgLk3IFUHUT6whGMzLOe5e3k79vUfvXeT/4/Y5ynkwLj6nSjiDssf15V3hcN48VAQAAAMTD/DwAAEQwGgAAAAAAAIBYrLV6Zktw2eJ5jW0L0EjJZjcAAIBWcu6552rz5s1asWKFVq9erccff1zPPfec+vv7lcvllMlk1NfXpz/7sz/TSSedpDPPPFMnnnhis5sNAAAAoMsUqgpGcy12z435N8Fo44UFGEw2oCxXcgeGjQSxhYVl5EqDUrJvUteulWjBaIR6AACAzlTwh3T3wG2BZdMSM3X8jFNCjw/rX2dD+ordzhh3MFquNPm+Z9QwuryfVSYR8t75ewL3e/LUY3on1bZGcIdoD98Xa23IWNE9bgEAAACAsZifBwCApKHwhy9IkkoEowEAAAAAAAAYNjAo7XBMcTx4gWlsY4AGIhgNAIBx5syZo/e85z16z3ve0+ymAAAAAECgYj2C0cYEL+T84BCG9CthXd2oN+S1hwWchXGFCvSatDyTkCSlQwIXmh04VrIlFexQxXrNbicAAEC9PLjzHu0sDQSWLZ11pnq88BCssD5m1JCuTmWtDSk1zn5y1h+UtVbGxJ/ok3WMg4LqzdIcZ7l7PDVlUu1qFHeI9vDPYsEOycqPdSwAAAAABGF+HgCg6+UjBKP5BKMBAAAAAAAAGLZ1l7tsv77GtQNoNK/ZzqQG5QAAIABJREFUDQAAAAAAAAAQT9ERRhUpGM0RIDB28b4ryCrtuUO6Op1nEuo1wcEVkw3+ct/nvaECPaZXRsHhCa7AhUaJGtbR7aEeAACgM/nW150DtwSW9ZhenTz7zRXP4RnP2ceMGtLVqazcwWhGRmkTHMTlq+QMkq6kVv3brCM4ORMSetwKXOO9kXFL2M9kN48VAQAAAAAAgNiGCEYDAAAAAAAAEF3/HnfZnKmNawfQaASjAQAAAAAAAG2m4Acv9E95PRWPHRu6NdbIYveSLargCF7r9sXu7ns3udAK13G9Y67jGU+9Xm0D2WolalhHt4d6AACAzvT47t9q89CLgWUnzDxN0xIzIp3H1cfs9nDZ8GA0KZ0Ivm/S5PvnrkCzieevEIzmB89AyrT4eKq3wngn7GfS9XMMAAAAAAAAIMBQhM9/fb/+7QAAAAAAAADQFlzBaD1JaWpvY9sCNBLBaAAAAAAAAECbKdrgYLSkSVY81hVuNrK4P2yRf7cvdk8nwu9dXHk/+CnQ469T6T1rlqhhHc1uJwAAQD3c0X9z4H5Pnk7tOzvyedxhVN3eh3IHo0kmdGxS6/553PO7ytNeaz+WMVMhpC8scK7bx4oAAAAAAABAVNZaaShfuaJfqn9jAAAAAAAAALSF/j3Bcyr7pkjGmAa3BmgcgtEAAAAAAACANuMKRkuZnorHuhas5/xBWWtZ7B7CFVCWDblnYVzHjb/PYe9ZM2UjBk5EDVADAABoF+sHn9Qfc2sDy46ZfqLmpBZEPletw3c7hQ0JRjMyzr65NPl7F7V/Xale1g9+NGOrj6fc451s2f8GH9varw0AAAAAAABoGUPRHtBAMBoAAAAAAACAEf2OaYt9rf28VqBqBKMBAAAAAAAAbcYVjJY0qYrHuhas+/JVsEPKlsIWu7vDB7qB695NNvjLdVy7BKNFfd3ZUnPbCQAAUGt3DNzsLDut79xY53L39bo8GM2diyZjTGgQ12TvXdTA40r1XP3fjNfaM5B6K4w7XP3/HtMrzyTq1i4AAAAAAACgo+Qjfn5ZIhgNAAAAAAAAwLD+4Oe1EoyGjkcwGgAAAAAAANBmCs5gtGTFY8PCzXJ+NjRsi2C02oZWuO71xGC04Pue8yM+SbpOor7uvO3uUA8AANBZNuVf0OO7fxtYduiUo7Rf+qBY52vVENzmcyejGRklTFIp0xNYPtl7FzX4t1I9V3BaJtHa46mM42exaAsq2oIz8K3bx4kAAAAAAABALEMRv+f3/fq2AwAAAAAAAEDbeHl38H6C0dDpCEYDAAAAAAAA2kzREYzmCgYYyxW8IA0HCLhCBJImqZSXitbADuVa8O8KPqjEFSzWOyEYrTXDMqJeP1ciGA0AAHSOXw3cKusI7Tqt79zY53P19aKGdHUq1z0eZiTVI7g42nGV6uX84EczZlo8QGz8OGSsnJ91/kyGjTEBAAAAAAAAjJOP+PmlX6pvOwAAAAAAAAC0jQHH8p2+qaaxDQEajGA0AAAAAAAAoM0UHMFoSVM5uCw8GC2rnB/8dOKwRfLdotYBZa5AhfGBCa0bjBY9OMLasGALAACA9rCjOKAHdq4MLFvUu78Om3J07HO6w3cJRnMZmcbTqsFo2VJwPz3jtfajGcOC2/J+1vm6CUYDAAAAAAAAYhjKR6tHMBoAAAAAAACAV/TvCZ5T2dfa0xKBqhGMBgAAAAAAALSZoiMYLeVVG4w26AzbcgU2dBPXPah18ML4ELpaX7dWco7Ah/FKKjp/ZgEAANrJ3QM/U9EWA8tO63ubjIn/5D1X/zxPMFpI6fB9rn3/PFr/tlI9Z4BYorXHVGFjvmwpq6xrrNjirwsAAAAAAABoKflon19a369zQwAAAAAAAAC0i/49wfsJRkOnIxgNAAAAAAAAaDNFPzhkKmkqB6N5JqEe0xtYlvOzzkX+mZBAtW6RqXHwgivsYnw4RssGo8W4frPbCgAAUK2cn9Wq7b8ILOtLztNfTD9xUucdH4o79noI5r0SQOe+d9ECziYeF+2eV6qX9YNnILX6mMp1P6Xhexp1/AIAAAAAAAAgxFAuWj2/VN92AAAAAAAAAGgbBKOhWxGMBgAAAAAAALSZgh0K3B8lGE0KD9pyLfJ3HdNNer104P5caXLBC1lHYMPEYDRH4MMkr1sr8YLRmttWAACAaq3efoez/7as72wlTHJS53X29bq8/2StDSkdDkar5b0r2aJznDXx/JWC0Vz9/NaegZTyUko6fo7zISHaBKMBAAAAAAAAMeQjfs9eIhgNAAAAAAAAwDCC0dCtCEYDAAAAAAAA2kzRFgP3Rw9GcwdtuRb597LYPTRQbjLyEUPo3IEPk7turbjaH6TZbQUAAKhGyRZ118BPA8umeNN0wszTJn3uVu3rNZuV7ywzFYPR4t+7WKG/IQHFBb+goi0ElmXaIGzaNe7L+lllGSsCAAAAAAAA1RvKRavnE4wGAAAAAAAAQCr5VtsdUxznTDWNbQzQYASjAQAAAAAAAG2maIcC96eqDUbzs8r5wYv822ERf71lEq5gNHcwgou1Vjk/eMLz+Pcn7bxuc8MyYoVHdHmwBwAAaG8P7bxXA8VtgWUnz3qzs38dRa3Dd7uJ896V6hyMFlI35zseyyj3eKKVuO5p3s86g5EZKwIAAAAAAAAx5AlGAwAAAAAAABDd9kHJ2uCyvqmNbQvQaASjAQAAAAAAAG2mYAuB+5OmJ9LxYUFbrpCvasIeOoXrHgzZvHwbb1LykM3Lyo90HXeQXfxAtlqKc32CPQAAQLuy1uqO/psDy5ImpaWzz6rq/K6+Xt7PyrpmsnQBK/drNxp+wmHYvYurVn3bbEhZxmv9GUiZkLEHY0UAAAAAAACgBvIRP78kGA0AAAAAAACApH7381oJRkPHIxgNAAAAAAAAaDNFZzBaKtLxYUFbuVLwJNy0Fxym1k3CFvzHDf4Kqz/+XtcykK2W4rzmZoe4AQAATNYTg4/oT0PPBZYdP+MUzUjOqur8rn62lVXe5qo6dzsLDUYz4cFo2Un0PXN+9HsdFryW890zkNohQKzXOVbMOvv/rmMAAAAAAAAABCjko9UrEYwGAAAAAAAAQHpxu7tsDsFo6HAEowEAAAAAAABtxhWMlqo6GM292L0dFvHXW1g4XPxgNHdYQ6+Xrtt1aynOtcPCIwAAAFrZnf03B+43Mjq175yqzx/Wz+7qPpQ7F01GrwSjJYL7yZO5b3GCfPM25wwozpbc52mHMZVr7JHzB539/wwh2gAAAAAAAEB0pWJt6wEAAAAAAADoaOu2BE+onDNVmpY2DW4N0FgEowEAAAAAAABtxhWMlvSiBqOFLXYPXsjfDov46y08oCx6kIIUHtYwPlgg7N43MxgtTuBEtptDPQAAQNvamFunpwYfDyw7ctpxWtCzT9XXaNW+XrPZsGS0kWC0kMDnuHIhgWZB8n4ucH82ZDzlmUTsdjVaeIh28GvrZawIAAAAAAAARBc5GC344QwAAAAAAAAAusv6rcH7D5rX2HYAzUAwGgAAAAAAANBGfOuraIMnyiZN1GC0sMXuwSEC6YQ7FKxb1DK0IiworNdLj7tuWCBb88IyXKEPQeKEqAEAALSKO/pvcZad0fe2mlyDYLRgYcFoZjQYzRX4PIlgtNj9+eC+cNbfE7g/rE/fSlw/j1l/jzMMbnywMwAAAAAAAIAQxeAH4U0QNUANAAAAAAAAQEf7oyMYbfF809iGAE1AMBoAAAAAAADQRkqOUDRJStUgGM21wL9dFvLXU8r0yHN8pBo3SMEVFNZr0vJMomxfeFhG9HCyWirZkgp2KHL9ZrUTAABgsrYNbdLDu+4LLDsoc5gOyLymJtcZH4o7FsFo4dzjmkFZW/n48mPi9ueDQ8Jc58l4U2Odv1lc476dxe3O9yRsvAIAAAAAAABgnFIpYj2C0QAAAAAAAABI67YEz907cF6DGwI0AcFoAAAAAAAAQBsJC6NKRg5GC17snvMHnYFdLHaXjDGh9y6ObCm4fm/Afa5lIFutuH5OXFyBewAAAK3qVwM/lZUfWHZ639tqdh3PJNRrgsPRco4+Y3dwB5t5Zrhv7Bqj+PJjhfhK8fu3rv5/trQncH+mTYKmXfd0e/Fl5zFBYxgAAAAAAAAADlEDzwhGAwAAAAAAALqetVaPPB9cdhDBaOgCBKMBAGpi48aN+vznP6+TTjpJCxYsUE9Pj4wxo/9dc801zW4iAAAAAHSEonVPfk2ZnkjncC1231XcId8R/kAw2jDXfXAFnbnECaALD2RrTjBa3OvGDZoAAABopt3Fnbpvx52BZQt6FunPp76+ptdzBUs1q6/XCtyxaHuFjVHi3ru4Qb6u+q796US7BKMFt3N7sd95TLuEvgEAAADtjvl5AAB0CILRAAAAAAAAAET0nXvcsykXzzcNbAnQHMlmNwAAut3++++v5557bnR75cqVWrp0afMaNAnf/e539dGPflT5fL7ZTQEAAACAjle0BWdZ0kT7uM+12H2Pvyv2Md2mVgFlrvqucIe0l9GgvzvgPPECHGol9ustdW+oBwAAaD/3bP+5CnYosOz0vnPlmdo+fyztZbSzNDBhf7P6ei3BuifzGA1P5gkbo+T8Qc3QrMiXi3uvXcG/rvO0S3iYazwSNg51BfsBAAAArYL5eQAAoJXYovuztjIEowEAAAAAAABd7/u/cc+lPGheAxsCNEltZ2wDALrOz3/+c33wgx+MPOnq7rvvLntS5cUXX1zfBgIAAABAh3EFNEhS0qQincO12L3Wx3Qi131wBSO4uILFXKECruvmSs0KRot33bhBagAAAM0y5Od1z/afB5bNTMzWsdP/subXdPcxczW/Vrvw5YeUjgSjuccocfufce+16/xZf0/g/nYPRgvT66Xr0BIAAAAAI5ifBwBAh4kaeEYwGgAAAAAAAND1BkKW7iyY0bh2AM2SbHYDAADt7aKLLpK1e5Nm3/3ud+v973+/9t13X6VSexfkz507txnNAwAAAICOU7TupwenTE+kcxCMNnnpRHCgQbZGQWEZx/nTjiCFZgWOxb1u3CA1AACAZvnNjl9pd2lnYNkps9+qlBctjDiOWvUxu4V55X9docJS/P5nrfrzWUdwsas/32pcP4vO+l5GnuF5fAAAAEA9MT8PAIAOQzAaAAAAAAAAgAhyBaunNweX7TtbMsYEFwIdhGA0AMCkPfXUU3rsscdGt88880z96Ec/amKLAAAAAKDzFXx3MFoyYkjDZBblE4w2zHUf4gYvuOr3muDzuwIK2icYrTntBAAAiMO3Jf1q4NbAsrSX0ZJZZ9Tluq4+Zr6L+1BW1llmXolGS5iEekyvhmx+Qp24/c+499rVn3cHIE+Ndf5mSTvGIy5h4XQAAAAAqsf8PAAAOlDRPeejDMFoAAAAAAAAQFf7+i/c8ygvfw8PNEV34CcdADBpDz30UNn2eeed16SWAAAAAED3KFr3JNmUiRqMFnOxu0nLM4lYx3SqjCNUrlbBC+mEIxjNSzuuGy+QrVbiB0d0b6gHAABoH4/uvl/bCsGP1ztx5hmakphWl+u6wnG7uw8VEow25imH7uDi2gSduesHnz/r7wnc3y5B067xiLP+JEK3AQAAAETH/DwAADpQ1MCzUqm+7QAAAAAAAADQ0q5Y5Z5HuWBGAxsCNFGy2Q0AALSvzZvLFwctWrSoSS0BAAAAgO7hCkYzMvIULbwsnYi3eL1dFvE3Qq2CF7KO4AXX+V2BA80Ky4gfNJGVtbYsxAIAAKCVWGt1R/8tgWWeElo2+611u7YrjKpZIbitwLrn80gaG4w2RTtL2yfUmEx/NVb9kisYLfg9y3hTY52/WeKO/RgrAgAAAPXF/DwAADpQ5GC0iPUAAAAAAAAAdJS1L1mtesZq8053nT6eaYouQTAaAGDSdu/eXbadSqWa1BIAAAAA6B4FRzBa0qQih071mF4ZGVmFpg2M6mWx+yjXvYgbWpH3c4H7XQForReMFvx6jTxZ+RP2+yqpYIfUY3rr3TQAAIBJeSb7ez2Xeyaw7NgZJ2t2am7drl2r8N1OEtSnHGHGBKP1eunAOrlSvP65616nTI8Kdihyfdd1M47+fKtxjTvc9RkrAgAAAPXE/DwAADpQqRSxHsFoAAAAAAAAQDex1uozN1n96y8rr/Xqa49ntQJVIxgNALqEtVYPP/yw1q5dqy1btiifz2vevHnaZ599tGTJEk2bNi32OX3fvSgFAAAAAFAfxZBgtKg846nXS0cOWkgn2mMRfyO4Ag3ihla46ruCBdxhGfECH2rF1f4ZiZnaURoILMv7WfV4BKMBAIDWdEf/zc6y0/rOqeu1Wy0EtxVEi3B237u8jds/D+5Xz0rO0dbCS5Hql2xJeRscgJxpkzFV3KCzuEFqAAAAQCdjfh4AAIikGDznYwKC0QAAAAAAAICucu86RQpFk6SZPNMUXYJgNADocNu2bdNXv/pV/fCHP9TWrVsD6/T09GjZsmW6+OKLddxxxznPtWHDBh1wwAHO8lNOOSVw//e+9z29973vDSz78pe/rC9/+cvOc65cuVJLly51lgMAAABAtynaocD9qRjBaNLwAvaoQQuZmIvjO5k7tCJeQJmrfvxgtOaEZeRKwdedmZrjDEbL+llN16x6NgsAAGBSXsxv0B/2PBxYdsTUv9A+vfvX9fquvl6+i4PRwqLRjMzov12BY1lHfzVIwS+oaIMXGc5K9kUORgt7vzJeezyeMWGSSpkeFRzjzvHiBqkBAAAAnYj5eQAAIJaogWcEowEAAAAAAABd5YY1UR8pK3meqVwJ6ABesxsAAKifW265RQceeKAuueQS56QrSRoaGtKKFSt0/PHH64Mf/KCKRb5IBQAAAIBW5Vqwn4wZjNYbYwG7KwysGzkDymIEL0juQDN3MFptAtlqxdX+Wck+5zHdHewBAABa2Z39tzrLTu87t+7Xd/UBs03q67UCGxaMZvZOc+g1rgDh6PcurJ86KznHcf6Jx2T9Pc7zZNpoTBUn7IxgNAAAAHQ75ucBAIDYCEYDAAAAAAAAMM6a56wuuytaMNqb/7zOjQFaSLLZDQAA1MfVV1+tD3zgA/J9v2z/QQcdpMMPP1xTpkzRxo0b9eCDD6pUKo2WX3nlldq4caOWL1+uZJI/EwAAAADQagr+UOD+uMFomRgL2OOEqHU6ZzCan5W1VsZUfuqKtdYZLOa612HXbQZX0IQrOELq7mAPAADQugYK2/TbnasCy/4sfbAOztR/Bomrr0ewbLCxPe50ovp7F9annpWKEYxWcvd32ylsOu1ltKu0I3JdAAAAoFsxPw8AAExKsRCtHsFoAAAAAAAAQFf4r7t9feR/ooWiSdLHT/MqVwI6BN+oA63GL0qDLzS7FZ1vyiLJ69xfgY8++qj+8R//sWzS1dFHH63LL79cJ5xwQlndrVu36gtf+IKuuOKK0X0rVqzQF7/4RX31q18tq7to0SI9++yzo9uXXnqp/uM//mN0+7rrrtPxxx8/oT1z587V0qVLJUn333+/zj///NGyCy+8UB//+Medr2XhwoUVXi0AAAAAdJeiDZ4km/J6Yp0nzsL8TBst4q83130rqaiiLShlKr8PBTskKz+wzHWvWy8YLfi6U7xpSpkeFezEAD+CPQAAQCu6a2C5fJUCy07vOzdS8G21XH3MnJ+LHL7baXwb3F8etvd+uPrJcUJ5XaG/kjv4N6hvG3bNTKJ9xlRxxortFPgGAAAwivl5jdPBc/SYnwcAACYtauAZwWgAAAAAAABAx9sxaPWxH0cLRdt/jnT133ta+prum1OK7tWZMw6Adjb4gvTTA5rdis539rPStP2b3Yq6ef/736+hob0LkJcsWaJf/vKXmjJl4uKEefPm6Tvf+Y4WL16sT37yk6P7v/GNb+j888/Xa1/72tF9yWRS+++//+j2rFmzys61cOHCsvKxpk2bJknasGFD2f5Zs2Y5jwEAAAAATFS0wZNfkyYV6zy9jgCBIK6wgW6UTrjvRc4fjBRQFxaY4HpfXIEDRVtQwS8o5cV7/6vlCjlLexmlvYwKpYnBaGGBEwAAAM0wWNqte7f/MrBsbmqBjp42cbF5Pbj621a+hmxevSbdkHa0C1MWjBbcT877ucjnC+unzkz2Be4P6tNn/T2BdVOmRwnTPlMz4oz/GCsCAIC2xPy8xungOXrMzwMAAJNGMBoAAAAAAACAV6x8SiqFPUdW0u8v9nT4qwlDQ3fymt0AAEBtrVy5Ug8//PDo9owZM3T99dcHTroa65//+Z/1lre8ZXTb931dcskldWsnAAAAAGByCnZi4JQkJWMutM/EWuwePqbsJmH3IusICxvPFSo2fH5XMJr7/Qo7X73kQoPRgu9RLkY4BQAAQCPcu/125W1wH+XU2efIM4mGtCMstNjV7+p0Vu4nII6d3uPqJ8cJ5XXd46RJalpiemBZwQ6pZEtl+7Kl4GtmvKmR29IKCNEGAAAAwjE/DwAAVCVyMFqpch0AAAAAAAAAbSk7ZPXvt/v66/8KT0VbNFt6zcIGNQpoQQSjAUCHufbaa8u2P/KRj+jVr351pGO//vWvl21fd911yufzNWsbAAAAAKB6RVsI3J8yPbHOEyfsjMXue9UioCwspMEdjOZ+v5oRluG6Zq+XqUk4BQAAQL0V/ILuGlgeWDYtMUNvnHlqw9oS1sfs3j5UWDDa3mkO7r5n9D6yO/R3Smg/fHz/3/VeZRLtFTSdiTVWbK/XBgAAANQC8/MAAEBVihGD0aLWAwAAAAAAANBWhopWp37L1ydvdM+THPH/nmuU8EzFekCnIhgNADrMvffeW7b9N3/zN5GPPeKII3TMMceMbudyOa1Zs6ZmbQMAAAAAVK/gCEZLmlSs8/TGCDsjGG2vsHuRjRhaERbS4Hpf0onWCssIC30gGA0AALSD3+66RztLA4FlS2edpR6vt2FtqUX4bqexIcFoGjPHpxZ9T3cwmjv0N+g413ig3cLDGCsCAAAA4ZifBwAAqlKKGHgWtR4AAAAAAACAtnLLo1b3/zFa3b99I7FQ6G78PwAAOsjAwIDWr18/uj1r1iwddthhsc5xwgknlG3/9re/rUnbAAAAAAC1UXQEo6ViBqNlYizOb7eF/PWUMEmlTE9gWdTwBVfwQo/pVcIkAsvCAxkaGzjm25KGbD6wrNfLOIMUwgLhAAAAGsm3vu7ovyWwLGV6dPKsNze0PeHhu93Zh7KhuWh7k9FcY5Wcn5MNO0lZXVegWSZ0LDT+OGd4cJuNp+KEnaUT7fXaAAAAgGoxPw8AAFSNYDQAAAAAAACgq/3qyWj1PvNmU7kS0OEIRgOADrJ169ay7YMPPljGxOvwHHrooWXbW7ZsqbpdAAAAAIDacQWjJWMGo7HYffJcwQZRg79c9cLek6RJOd/jRgeOhV0v42Xc96fUnaEeAACg9fx+z0PaPPRCYNkJM0/TtOSMhrbHMwn1mN7Asny3BqPJd5ZFCUaz8p1hvuO5++dTYoXWZUudEYyWiTH+izOuBAAAADoB8/MAAEDVCEYDAHSRP261eu/3fHn/UBr9711X+npoQ7QHHAEAAABAJ1q3JdqY6OyjCEYDks1uAIBxpiySzn622a3ofFMWNbsFdTEwMFC2PXPmzNjnGH9Mf39/VW0CAAAAANRWwa9NMFpvnGA0FruXSXtTtLO0fcL+6oPRwgMI0t4U7S7tmPR1ayXser1exvmz1eh2AgAAuNzRf3PgfiNPp84+p8GtGZb2pmioNDHIyxW2hWFhY5Wcn1Wvl654Dlc/tdfLKGV65MmTHxDUNj60LuvvCW5jmwVNM1YEAAAdj/l5jdOBc/SYnwcAAKpWDJ7zMUEpYj0AAFrUn7ZbvfHrvrbuKt///z9k9bPHrH79KU+v249F/gAAAAC6z7oIz036h5ONjjug/m0BWh3BaECr8ZLStP2b3Qq0KWvL02HjPo0ySC3OAQAAAAConaJ1BKN58YLRMjEW57PYvZwrXCEXMbTCVa9SaEPaSzuC0RoblpH3c86ytDfF+fPS6HYCAAAE+WN2rdZnnwwsO2b6CZrbs6DBLRqW9jLaWRqYsH98+Fa3sHI/EdFo73dX4cFog5qp2RWv5eqnZrwpMsYo7U3RoL+74nGugLWMN7ViG1pJpkJg81iVwp0BAABaEvPzUAXm5wEAgKqVirWtBwBAi7p6tZ0QijZicEj6/+6yuvrvGRMDAAAA6C65gtUL293lbzlS+vhpnk55Dd8jAhLBaADQUfr6+sq2d+yYuFi6kvHHzJ5decEIAAAAAKBxCnYocH/KxAtG640RdsZi93Ku++EKQhgvb4PrVbrP1V63VsICztJeJiQYrTtDPQAAQGu5o/8WZ9npfec2sCXl6EONFxKMZrzRf4cHo0W7d656I8HFaS/jCEYrPy7r7wk8T7sFTUcdKxp56jG9dW4NAADtwRiTkLRY0uGSXi1ppqS8pAFJ6yU9ZK0N7ixM/popSSdK2k/SqyTtlvQnSY9YazfU8loA9mJ+HgAAqFrkYLSSrLUsfmwi7j8AVGfF793f90nSD++3uvrv9277/nB9Y1j8j3L8TQYAAEAn2bRDso7h0hNf9nToq+j7AmMRjAYAHWTevHll208//XTsczz11FNl2/Pnz6+qTQAAAACA2iraQuD+pOmJdZ5MjMX5GYLRymQSroAyd2DYWNmSKxgt/D1pnWC04OuNBCOknfenW0M9AABAq9g89KIe2/1AYNlrprxW+6UXN7hFe7nCqLq1DxW+TGKvkfCyINUGo430v52hdaXy/n+2FDweyHhTI7WjVUQNckt7aRYgAAC6mjFmP0l/Lek0SSdJmhFSvWSMuUPSZdba26q87jxJX5b0Tkl9jjr3SfqWtfYn1VwLwETMzwMAAFUrBs/5CFQqSUmWfTXas9usPvIjX6vXSwfPl774Fk9nH81noQAQ15MvhZcXfalYsvoizKhjAAAgAElEQVT6CqtrVlv9cdvw/hlp6dTDpG+/x9OCGfz+7Wbrt1j97+t83ffK3+SLz/b0liP5mQAAAOEefd7q0zf6euBZ6dCF0r/+L08nHUwfAq2jP+SRavPDZh0AXcqrXAUA0C5mz56tgw46aHR7+/btevLJJ2Od47777ivbPvbYY2vSthEskAAAAACA6hRt8NODkybeZFhXyNZ4Rp5SMUPXOp0zGCFiMFreGbxQKRituuvWiut6I8EIrna6XjcAAECj/Kr/VllH5NbpfX/d4NaUc/f1urMPZa3vLDPa+12TZxLqNcHhaOODy1xc/dSRgOiooXWufrIrWLlVRQ3GjjqmBACgExlj/kfSc5IukXSWwkPRJCkh6U2SfmaMWW6MWTDJ675Z0u8l/aMcoWivOEHSjcaYHxpj2iulFWhxzM8DAABVK5Vi1A2eH4L62ZO3OvHrvlb8QdqVkx7eKL3tv3zd/VTUx3kAAKThwLOBCF/VfehHVl+8dW8omiTtzEk3PyKd8m++fJ/fv91qd87qxG/4+uWYv8nnXu7r18/wMwEAANz+tN3qjEt83fHkcL/ywQ3Sqf/u6/EX6EOgdbiC0YyRZkZ7pinQVQhGA4AOs2TJkrLtH/3oR5GPffLJJ7VmzZrR7XQ6rb/4i7+oWdskqbe3t2w7n8/X9PwAAAAA0OmKdihwf9KkYp3Htbh/vLSXYRHNOFGDEVxc9SoFC7RKWIbreiP3xfU6sg0OcAMAABhrR3FA9+9cGVi2T+/+OmzK0Q1uUTlXH6rRIbitImwq2thgNKn6fnLWEaA20r91BYWNP3/WD56xFDVorFXEGSsCANDFDnHsf1HS3ZKul/QTSY9IGp/4+hZJq4wxC+Nc0BizVNItkuaP2W0lrZF0g6Q7JG0bd9h7JF1njGGeKFBDzM8DAABViRN2RjBaw930sNWmneX7rJWuuIcF1AAQx3MvR6t39b3u369rN0m/WlujBqHt3Piw1ZZd5ft8K32Hv8kAACDET39ntW13+b6iL12xij4EWkf/YPDP46yMlPBYuwWMx4QXAOgwF1xwQdn2ZZddpk2bNkU69qKLLirbfte73jVholS1Zs2aVbb90ksv1fT8AAAAANDpirYQuD9lemKdJ+ri/HZbxN8IUYMRXFzhFr1eOvS4VgnLcL3OkfviCkjI+1lZy5eKAACgOe4euM3Zlz5t9rlNDwMO60N1p+j9RndwcbR+sqveyHsSJRjZt35IP3lqpHa0iqiBZ5WCnQEA6CKPSPqopMXW2kXW2lOste+y1p5nrT1G0n6Srhx3zCGSbjARO6HGmEWSbpI09kPg1ZKOsNa+3lr7DmvtGZIWSbpQ0tiO71sl/cukXhmAQMzPAwAAVSEYraX9tyOg5/qHJu7fusvqT9srf5adL1g9tclq7UtWuUJ5/a27rIaKVtsHrZ7dZvV8/3DdzTutNmyzemm7le8zzwJAfWzeOfx7pi7n3lW5ThRrnuN3YD0US1bPbB7+27Qn35r3+KpfB7frugfL92eHrNZtsSrx9xIAAMgdvPvtu4f7DGtfGv5vhyOYCmiEl3cH7+9rr2mGQMMkm90AAEBtLVu2TEcffbQeffRRSdKOHTt0/vnn6+c//7kyGfdChksuuUS33nrr6LYxRv/0T/9U8/YdeOCB6unp0dDQkCRp5cqVKhQKSqVSNb8WAAAAAHSigiPMIWnifdSXMj3y5MmXH1ov6qL4buK6J9GDFxyBCYnwYAHndUuNDctwtX8kMMLVTl++CnZIPaa2i7wAAAAqyflZrdr+i8Cy2cm5ev2MJQ1u0UTpRHAfKtvgENxWYUOC0cy457+lE1PKoz9ekfdzka7lqjfSr3W9N2P7/0M272xzuwWIRR0DVgp2BgCgw1lJt0m62Fr7UGhFa1+U9EFjzO8kXT6maImkd0r6cYTrfVnS7DHb90k6zVpb1pGx1uYl/acxZqOkm8cUfcIYc4W19rkI1wJQAfPzAABAVWz4HI0yBKM13K+fcZetfcnq0FcZrdti9c4rfD3y/PD+g+dLP/q/PL1+//Ls65Jv9c83WF2xyir3ymfYvUnp704w+shSo7+92tdjL0Rr1w/eb/Se47zKFQEggif+ZHX+d309/uLw9qELpf/5gKej963dg6QG9tTmPOu21uY8GGat1TdWWH3tF1a7XvlkMelJbz/G6L//zmhqb3MfJjbW6vXusmLJquRL//gjqx89YFUoSbOmSJ870+j/PoO/lwAAdLNHn3eXHfL5vZ/JGCOdfpj0w/d7mju9dfpA6A79jvHSHILRgEAEowFAi9m0aZM2bNgwqWP3339/SdJVV12lN77xjaOTm+6++26ddNJJuvzyy3XccceVHbNt2zZ96Utf0re//e2y/Z/61Kd05JFHTqodYXp6enTiiSdq5cqVkqSNGzfq7LPP1oc+9CEdfPDBmjKlfHHIwoULlU6zsAIAAAAARhQdwWgpryfWeYwx6vUyyvrhs5B6CUabwBVskHUEho1XKVjMfV1XIENjg9HyjuuNBkeEBD/k/Kx6PILRAABAY923/Q5nv3fZ7LOViBkyXA+uvl7UcK9OE/ZMTjNuLlrGce+ihMpZa5310q8EF0fph2dL7nFVpQDkVhM1GC3TZoFvAADU2P+y1m6Ic4C19tvGmGWS3j5m99+qQjCaMeZgSX83ZteQpL8fH4o27lq3GGOuHXNcr6QvSXpfnDYDnYr5eczPAwCgqUqlGHUJRmukFwbCPpmWDv+Sr9y3PZ1xia8NL+/d/8wW6bRv+Xr+m56mp/d+gP3NX1r9x6/Kz5kvSleusrpyVfi1xvvbq6wOmmd1/IEs1gZQnaGi1Wnf8rVp5959azcN/x7b+HVPU2oUjNW/J97vOZd1m2tzHgz7nwetPntz+T0t+tL1D1lleqSr/749/s48PyD956+srrlv72vZPih98karfft8veP1hKMBANCt9uuT/ritcj1rpdufkN79375u/6dE/RsGjNHvmNbYRzAaEKj5M7wBAGXOP//8SR9r7fAHesccc4wuu+wyfehDH5LvDycYr1mzRscff7wWL16sI444Qul0Ws8//7wefPBBFYvlX5qefvrp+spXvjL5F1HBJz7xidGJV5K0YsUKrVixIrDuypUrtXTp0rq1BQAAAADaTcEPDkZLmlTsc2W8KRWD0VjsPpE7tCJaQJmrXqV7nXYEKuQiBD7UkjM4YjQYzR2kkPMHNUOz6tIuAACAICVb1F0DywPLMt4UnTjr9Aa3KJgrXLbRfb1WYa3vLDMqn5DvChiO0j8v2oJ8BS9ETJvw4N+yYLSQ9yksOLgVeSahXpNW3p21Iqn9XhcAALUUNxRtjMtVHox2SoRj3i1p7Gz8m6y1z0Q47hsqD1R7hzHmw2GBakC3YH5eOebnAQDQYH6MYLRi8PwQ1MdND1cO37l4uS0LRRuxMzd8/N+dsPfz6++trm2YzzX3EYwGoHq//IPKQtFG9O+Rbv2d1flvqM3vmYEafcW5bmttzoNh14T8bfrxb60uf7dVpqf5f2sKxfC/oU9vlr7/m+A61z1g9Y7X16NVAACgHUQNRhtx55PS8/1W+/Y1vw+E7vHy7uD9fVP5OQSCEH0NAB3qAx/4gK6//npNmzatbP+6det066236vrrr9d99903YdLV+973Pt12221KpeIvqI/qLW95i/7lX/5FiQQpygAAAAAQV9EGT3xNTSIYzRUgMFY6UblOt6k2tMIVmlDp/XAFjuUiBrLViitgIlowWmPbCgAAsGbXavUXg2fMnzzrzaF9l0Zqlb5e6wib7F4+Aaia/nlYnZGxUJTzhwWjtWPYdJSxYpQ6AABggkfGbWeMMZWeIvC2cdvfi3Iha+2Tkh4Ys2uqpDOiHAsgGubnAQCASQl5KMQEJXcw2p681d1PWS3/ndW6LXY0wBWTFyV85+u/cN/n372w99+Deat1W2rQqDGuXMV7DKB6j7/o/l1y1b22YiBVVP3hz2qN7E/bh//moTYef9FdlitI61skiG5jf3j5zY9YZ/jefX+sfXsAAED7mDOtcp3x/vCn2rcDCLNhW/AYZ970BjcEaBMEowFABzvvvPO0fv16XXjhhZo7d66zXiqV0hlnnKHVq1frqquuquukqxGf+9zn9Nhjj+kzn/mMTj75ZC1cuFCZDAsoAAAAAKASVzBachLBaFFCIFwhAN0sLLTCrzCJ2VpbMVjMfV1XIENjwzJc1xtpX1hAQtTwOAAAgFqw1urO/psDy5ImqaWz39LgFrkRjFYueixadfcuG1JnpH/rOv/Yfn2uFLy6I6GkUqanYjtaTZSxYoYQbQAAJqMYsM/ZWTDGLJR01LjjV8e43t3jtt8c41gAETA/DwAAxFYqRa+bzwfuvvkRq/mf8LXs332dc7mvQz7v683/4WtnluCYavTvru74S++0emFg+D24/9kaNAgA6uBff+n+W3HXWunAz/p69Pnq/564Qqsmo1XCutrdzqzVll3hdd5xhS/fb35/olJYaVhY6O5cjRsDAADaSjHGxy4j1m1pfv8H3eUZR5j+4vmNbQfQLpLNbgAAdLsNGzbU9fzz58/XpZdeqm9961tas2aN1q5dq61btyqfz2vu3LlatGiRlixZounT48fIXnzxxbr44osn3bbDDz9cX/va1yZ9PAAAAAB0o0INg9EyEULPoiyI7zZhYXF5P6dMwl1esEPyFRyeVjkYzRX4MChrrYwZHxFRH66AiZFAtIRJqMf0ashOnKTdrcEeAACgOZ4cfFQv5DcElh034xTNTM5ubINCuMJlc362oX29VmFDotHMuOe/VRMg7AotHj5vpux/xxsbquYKWMskprTlexdlHNhrGCsCADAJi8dtFyVtC6n/5+O2H7PWBieyBrtv3PYRMY4FOgbz85ifBwBAS6nwsLUyhYnfuW/ZafWuK30Vxi30vf0J6Us/tbrkne33eWSr6N9T/ULoD/3A188+ltDZl8V4n2MY2GM1eyrvMYDJ2bTDakeFr89e3D4cjrX2//HkeZP/fbO9hsFoz2yWjlxUu/N1q3WO8IWx1m6Sfvo76dzX1b89YaoJJ/GtuvL7dQAAMGxoEsFoBPGikXbnrF7aEVy2eD59WCAIwWgA0CU8z9Oxxx6rY489ttlNAQAAAABMUsmWZB2hWqlJBKO5whfGCgsB61ZhwWd5PxtaHhbOMNlgNF++CnZIPaY39PhayZWCZ66NDdpLexkNlQhGAwAAzXVH/82B+42MTus7t8GtCefq69kG9/VaR0gw2rhJ7GkvHVgv51decZENqVMpGG1sqFrOD84nadeg6XTImCZOHQAAMMF547YfsjY0FeHwcdvrYl5vfYXzAagh5ucBAIBI/BgrdAOC0X7ysJ0QijbiugetLnnnJNsF9ceJoXZY8Yfh8LrBoerPFeSZLdIbDqjPuQF0vhvXRAubWrdFeui56n7fbNtdfdjkaHu2WkkEBFRr+D5Wdt2DVue+rrn3O0qIm0u+KGWHpCnd9vU6AACQJA0V4x+zPmI/CaiFDS+7yw6e37h2AO2EYDQAAAAAAACgTRSse+ZkchLBaOlElGC09lzIX09hgXJZf1CzNMdZHh6MFh4sEFae87Pq8RoUjOZ4Db1jAinS3hTtLG2feKwjVA0AAKDWNubW66nBxwLLXjvtWC3o2afBLQoX1tfL+oMN6+u1ijjTzVz3Lkoob95RJ2V6lDDJ0PMX7JBKtqiESToD1jLe1IptaEVRxoEZxooAAMRijJkm6f3jdgcn+e61eNz2xpiXfW7c9hxjzGxr7UDM8wAAAACoFT8sG3mcoYnBaL8ZH388xpZdUv8eq76phMdMxss1CEbzrfTf99ZvQfUzW6zecEC093fLTqtfrbV6erPUk5RSCWlWRlr6GqPF84fPkS9YrXpGevxFK99Ki+cZnfIaaeYUfoaATvTES3HqDv++efIlq1VPW+0a8yfpNQuMlr5Gmp4e/l0xVLRavU569Hmr0iu/An/x+9q1+5kqQrK6zfj36/BXGf3lIVLJly69M9rfpxvWWC34sa/9+vbuGxyS1r4kLZwpvXrW3v0HzDFadqg0u8Z9j2rDSfoHCUYDAKBbDcXIox9RTSgrENeOkCmNY/vaAPYiGA0AAAAAAABoE0VbcJYlTU/s82UqBHFJlcO6ulFYSECl8IWcIzCh0nkrX3dQM9SYb0Jc4RFjf1bGhqSNFSWcAgAAoBbu7L/FWXZ63183sCXRhPX1hvtfsxvXmBZgbfDiQBPwNHjXvYvS93T1z8ees1L/f2piurKOAOB2HU9FCUYLC4wGAACBviZp4Zjt7ZL+u8Ix4z/wizUt31q72xiTkzT2w7qZkghGAwAAAJrAWivZGEEfQ7myzd89b/XDB8KPX7dFesMBk2kd+msQjCZJn7+lfsFoX/mZ1XuOq1zvnqeszv22H7jY1jNWl7/b6O3HGL31Ml8PPDu21Gq/PukXF3o67FWEowGdZt2W6L+fnt4sfWOFr4tuCjrG6uD5w78r5kyV3vZtX3c/Xbt2jnf1vVbf/VsrY/i9FObrv/D12ZvHv19WPUmpWBoO74zqsruiVrZ61Uzp5x/zdNS+tXt/qg0neXqztKi7vl4HAACvGCrGP+aP26SSb5Xw6G+i/nZPfA6CJCnhSb2kPwGB+L8GAAAAAAAA0CaK1v1NTcpLxT5flIXsURbEd5tek5aRkdXECUBhwWfD5e5whkrvR6VgtEZxvYby8IjgAAiC0QAAQCNsG9qsh3etDiw7KHOYDsoc2uAWVdYqfb3WFxSMNvm+Z87PBe6PHow2OByM5gevmMsk2jUYjRBtAABqyRjzNkn/e9zuz1lr+yscOm3c9mQ+XMuqPBht+iTOUcYYM1/SvJiHHVTtdQEAAIC2VyrFq18oXyn5sR8HP1BirGe2WL3hABbyxlXyrbaHjLimj3s2XK4gFWK+nZI0e4pUfOVt3BX88XSopzdLu3JW09Pu99j3rT7wg+BQNGk4GOdjP7Z64FmNC0UbtrFf+ucbfN32sUT8BgJoac/ECJv6+eNWj70Qfq6LbrJ67SLVNRRtxG/+KJ3Ap0tOT2+2AaFowyYTDhLHSzukj17na9WnavN3o+Rb/XFbdee46CZfD3yWv2MAAHSjsL5PKhE8lh8qSi8OSPvNqV+7gBF7HMFo03pFGDTgQDAaAAAAAAAA0CaK/pCzLGnif9QXbbE7wWjjGWOU9jLKBgRUVA5GCy5PmR4lTPhknPBAhsYEjvm2pLydfHgEwWgAAKAR7hr4qXwFLxA7bfa5DW5NNGEhud3YhwoKIZaCYtHcfc+8n5W14U+Pd/XPx46VwsZN2VJWSrnfo4w31XlsK4syDmSsCABANMaYoyR9f9zu2yX9V4TDxwejTWLZvLKSZoecczI+LOlLNTgPAAAA0F1s5WCzMoW9c0Q277T69TOVD3m2yiCRbrVtt2SDP5bWQ5/zdMyfTfyc+R3fKenGh6NfY9mh0p2fiBbS8pmbfH1zRXCD7nhC+utj3Mc+/qK0rkL4UaEkXXOf4wVLWvEHaXfOalpIABuA9pIrWG2sFNE/Rlgo2ohbf2e1dtPk2zTeoQvlPN9tj1mdcBC/k1xuetj9O70R7l0nbdlpNX9G9e/Rph3Vh7k98VLVzQAAAG1qyBFi/p/vMrrgjUazLgz+bGbdVoLR0Bi788F996m9DW4I0EYIRgMAAAAAAADaRMEWnGVJ0xP7fNEWu1cOT+tGvc5gtPDQirwzMKHyffZMQr0mHRhM1qiwjLzvXnuZTlQOj6gUHAcAAFCt3aWdum/HnYFlC3r20WunHdvgFkWTMAn1mF4N2YmPBCQYbS8jb8I+17jGyipvc0qbsNA5VzBa5dBfaW//PuvvCSyP0s9vRYwVAQCoDWPMfpJuU3kY2XOS/sZa15L7UI06BgAAAEA9+OWrc6+c9X5tTO2rPd5U7fGmareZqt3eNL2quEnT/Z3a/ZvXSi/4SnjSrogfE/cHf1SJMX67wepnj1k9/JzVSzukN/250bzp7vr7zA7ef9IhRjfGCKI5aF70sJi/PNg4g9FWPmX1hgOkG9dYPfnS3kGftdKK31u9uD3yZZysldZvlY7at/pzAWgN67e6AyAna6g4HMZYK5843egffhDcyJd21O46neinv2v+R4CHfdHX8o96VQfYvVyDvkx2SMoXrHpThOkBANBtXAGrPUlpRsZo/nRpy66J5Rdc7evhz3s1CXoFJOnOJ6zueNJqYFA6bKH09mOM9ptjtGfi9FBJ0jSC0QAngtEAAAAAAACANlEMCUZLmVTs87HYffIy3hRt18sT9lcKrcg5gsV6I7wXI/XypYnnyJYaEzgW9vqihEe4guEAAABqZdXALwLDxSTptNnnyjMTg7VaRdr7P+zdd3gcxcEG8Hf2Tro7FduSLbnJVZKNjQGbGGyDHQwGU0MnkFBCSyGBQBKSEJJQEkIgdEJIIQQICUn4ANObMbbpBoMpxk2Se5UsyVa705Wd749zke5m9qquvr/n4cE3szc72tvbm72bfdcFb4DBaFaEYu6Z1TmLx3Rbnvfotm3P8bldFMAGOwIInzm3N1hNNx7P1vOpaPrtivIchoiIKF8JISoBzAcwvEfxdgDHSSmbomymI+RxPB/Aoc8JbZOIiIiIiFLFNHs9/FvZ5fjUeYh++fUA1scWdNLKYDRL/3jHxHcelzB7bNZPNuq3cakTqNSEpl0wTeC+NyTW7oxu3bWDo+/n3AP1dX9aKPGnhX0fgHPX6xL/vIwXhBPlirod6e6BtckjgItm6IPRWjrTH/yVqV5dLvHB2nT3AmjtAmbebuLecwV+OCf+3+STEfJqSmB9MzB+SOJtERERUXbxBtTlhXtSdWoq1cFoW3cBQ641seYWAzWVPBemxPxynonfv9L7HOb3r0i8do2BDk0wWnFhCjpGlKUyd9Y3ERERERERERER9WIVjGaPKxgt8sXu0YSn5SPdttsbjKCjq492O6c7cCzqYDSbup/uCNuHiIiIKBFesxuLdr2srOtnK8Ph/Y5KcY9iox9j5l8wmpSmpiZ84pnVWDrSONkTUNe7erwWQgjtOva+NrpxvsuWrcFokc9Pog13JiIiykdCiHIAbwAY16N4J4BjpZR1MTSVqcFoDwKYFON/pyVhvURERERE2c3sfXVusZn83GIGx+i5vRI/fap3KFokNRXB74hVyooF3v9F9Jfl1VREf2G1zRC45Mj0Xoj9ryUSZiwbi4gyWl2j+v1coQl/TNTwAcBXRlkvc/ho4Ku1wPUnCSz+qYFCu8CvTlYf+5IRlpWLpJT46VO631Wj8+JVyb3E/Nr/k9jdFf/nR7Je6/rG5LRDRERE2cUbft9LAEChLfj/6gjn5re/yvNgSsyGZonbFPvRzg7gpudNdGqC0UqcfdwxoixmT3cHiIiIiIiIiIiIKDq+pAejRb6OThdwle90284diBSMpg5eiDoYzVYEKHaDVIVlWK2nZzCCPsDNk/Q+EREREe31QdtCdAR2K+tml52MAiOzb6vnMNSzWzwRxpi5SEI9yUyogtEswsfiHZ+Hhn45bS50muG3C937fLepnqHviiKMOhNFCtE2YEOByOz3ExERUboIIfoDeB3AQT2KWwEcJ6X8MsbmQge3FTH2pQThwWi7YuxDGCllI4CYLi3UBQkQEREREeWVsGC05H/328zgGK0P1gKtMW7y2sHW5zIVpQJ3nC3w06ciXzhdUxnbug8aHtvyfWH1DmDC0HT3goiSYc0OdflXRgKfbgK2tyVvXa4CYOPtBoQQML4T0C73wfW2sLKBJeplGYymtrEF+HJr/M/v5wROOkjguAnA/JXJ6ZPfBN5cDZwxJb7nNycp5LW+SUJ10y0iIiLKbd26YDR7cFxQHeHc/MmlEg9dlOROUV55dbmE1AxpX/0SGKv5xb+YU/GItBiMRkRERERERERElCX8mmA0AzYYIvY790UVjBZlYFe+iTf4y6OZ2BwavBDret19MGFapVsTHCEg4BD7gzx0QQq6v5+IiIgoUaYMYEHLs8o6h3DiqwNOSHGPYqcdY8rUhOBmklimuxcKh7Yu0vhTVx/6WjiE+rXZH4yma6fYcv2ZKtJ5oMsoYrgJERGRghCiFMCrAL7So7gNwAlSyk/jaLIu5PGoGJ8funyLlLI1jn4QEREREVEymGavhyVmR9JXweAYvWBASmyqo4inPv7AyMFoI8piDxibO1Egtm/Lk6+OwWgxkVLivx9JPP8pUOIELpohMKs29u/SPT6J+xdIvN8gUTNY4AezBUYPyszv5KWUePwDiZc+Bxrbg/troQ04bIzANXMEBpVmZr+z3aYWiQcWSnyyQcK/56OlslTg5IOBC6cLCCHg9krc/6bEO3USzgLg6U/UbdUMFujyyqQGox1/YPwh+eWae/cw+DNcQ6PE1/9qRl7QwoUz+uY9etafTRw1Lvhvhx34yigBRwEw7xOJzzbvX276WGBUucDODolCO9DlBRavSU4fEgmMIyLqqaFR4qF3JP7wanCsU1MJPPANA3MP5DiHKBN5dcFoezJ5j58ocNPz+nPtdg/Q2S1R7OB7nKK3fqfEnxZJLNso8eYq/XK+ALBym3r/K9FPgSTKewxGIyIiIiIiIiIiyhK6YLQCURBXey5NeNX+dgthj7PtXBdv8JdHEywW6bXYv15dIFtqwjJ0gQ8Ow9VrQpuun7q/n4iIiChRn3UsQZNvu7Ju5oC5KLJpbi+eQXRjTHcgH8dQ6glABsIDoQ1hwGm4lGPNSONP7fjcVmT5eP/zuyClhEfzGumel+kiBaM5DKdlPRERUT4SQhQDeBnA9B7FHQBOlFJ+GGezK0Me18T4/LEhj1fE2Q8iIiIiIkoGM9DrYbGZ/JQXBqPp1e2I/Tm1gyMvM2m4wGUzBR5+R/29ts0AbjtLwGbEdlH1xGEC3zxc4IkP0xeOFgyT48Xg0bpBxuAAACAASURBVLrheYnfvbT/9XrsPYn/fdfAGVOi34YBU+KEe028tS8qXeLx9yXe/bmB6srMey1+9rTEXa+H76PzV0o8uVTi/esMDCzJvH5ns43NEkfcbmLrrtAaif/7GPhiC3DbmcDce0y82xC5vXGVgNsr8FZd8o41vz4l9hu87hXcX8L70tIZDOLjjXuCVm2TmPUHM6HAuBFlwI+Pi7w9Dx8NfLh+/+OBxcHPtsZ26+f1DDh7fYV6//pgLfDB2vj3vTkHACMHCjzybngbf39b4i/nSxgxfv4SEfW0ZofEUXeY2NEjQLS+ETjhPhP/uFjg4iPi/8wjor7hDajLC/ek6hw+Bpg4FFixTd9GfSNwyIjk941yU0OjxJG3mxHHx3st26QuZxgfkR6D0YiIiIiIiIiIiLKEz/Qqy+1GfOFljogXu1vX5zOnTb1tdMFhe+kCE6Ld1vEGsiWLLoAtNDhBH4yWmn4SERFRfpFS4vWWeco6AzYcXfa1FPcoPukOwc0kUhOMpuNIcjBa6PhcN173mG74pBcBqG83qhu/Z7pI/c7Wv4uIiKivCCFcAF4EMLNHcReAk6WU7yXQ9PKQxwcLIYqklNF+yXZkhPaIiIiIiCiVTLPXw+Koh/bRY3CMXkNT7MErNRXRbce/XSgwd6LAwtUSu3t87TyiHDhzisDhY+J7PR6/LHnBaD87QaDLCzR39C43BPDvJep11DUmZdV5obUzPCDMbwI3v2DijCm2qNt5YyV6hKIFNbYDf1woce+5mfW+bmyTuH+Bfv+sbwQee19GFbxE0XtwsVSEou13/wKJA4chqlA0AKgdLOD2JS8U7duzBKaMjP81Ly9Wl/sCQEc3UMp79wAA7l0gEwpFA4Al1xsY0j/ya/XUFQbeqZN4ux6orgDOnyZQ4gBKrzIjPjeZShzAxUcKNHcAzgLgiGrgwukC97+p338XrgbmTEhhJ4ko5/x5kewVitbTTc9LXDhdxhyATER9R0oJr3oK175gNCEE3rvOwICr9WMZBqNRLP64UEYdigYATZplix3J6Q9RLmIwGhERERERERERUZbwS5+yvEAUxtVepIvZXQxG09IHlFkHL0QbLKZfry6QLTVhGbrgt9B+6YMjPJyETURERElX5/4SGzx1yrqp/WahvKAixT2KT7pDcDOJlOoJ7LpxpNMowm60hJVHCpXTbVtXyGthFfxrFY4c2k62iHR+Eu35CxERUT4QQjgBPA9gdo9iD4BTpZRvJdK2lHKbEOJzAAfvKbIjGL72epRNzA55/Eoi/SEiIiIiogSZgV4Pi80OzYLx85vBCywr+yW96axXtyP259QOjm45IQTOmQqcMzW5cyGEEJhVC7yt/gkkaneeI/Dj4wxtfanTxF8Wh38v39CYvLCkXLdwNeBRTOv6fDPQ0ilRXhzdvvHkUvU2f+gtiXvPTaSHyfdOfTCsysqi1RI/Pi41/ckXC1dZvy99AeB3L0X/3q2tBLp9AojxpkU6cycmdhwcqAlGA4AtrcABQxNqPmc89HZir9dphyCqUDQgGEh23uEGzju8d/nPTxC4/dXUfU5cfKTA/eeFf5bVVgK6/XfRGok5EzhPkYji93ad/ji3sQVoaALGRXnOQER9z29xflLYI6+6n0ugshTaMKu6RgmAYwiKzqLVyRkTlzAEmkiLwWhERERERERERERZwqcJRrOL+L7mKzAKYBd2+KX61jiRgtPymVUwghVdcFr0wWjq1yRS4EOyRBvspguAkDDhld1wCP5yQ0RERMnzRsuz2rpjy05PYU8S4zDUY6RI4bu5SGovvlBPOtOFOluFlgH6bRsa9Ksb33pMt+U5QNYGo9ms+x2pnoiIKF8IIQoBPAPg2B7F3QBOl1IuSNJq5mF/MBoAXIIogtGEEAcAmNajqDOa5xERERERUR8yzV4Pi/vophgNTQxGC2WaEg1NsT9vcL/0Xwh9+mRhGcgQjVMneGE+eDPw4XxgwCCIM6+A+OppkN5uyH/8BjUflgH2H4U9r64xodXmjTa3xNl/MbX19Y3BG8Lc9oqJTzYGAwz3GjYAOG2ywC9OFDAE8Mi76tfa7QOa2iWunyfx1hqJju79deMHA5fNEjh/Wnhg0N/fNvHP9yU2tgBfGQXccIqBQ0ao92uvX+I3L0q89LncFxCwbff++opSwN5jFT3rdF78PPIy1NvOdolfzJN4u06i3RMscxUAR9YITB0NfLQ+chvRHu8KbMDIcqCyFCh1Yt/64lVUCBw3MbE2RpQDQgCqeyjVN+VvMJqUEn97S+JfH0isaVRvn56OqAbea9DXn3hQ9J9vxZp79p4xJbXBaCceqO7znAP0z2ng5xgRJag+wnFkLYPRMsbmVonrn5F4r0HCrb7cgvKA1RjJUdD78WmThTZstj6O7w8o/+w9d/t8c3LaG1WenHaIchGD0YiIiIiIiIiIiLKEXxOMViA0s0+i4DBc8AfUt7uJNqwrH8UbUKYLTYg2WCDeQLZk0Qe7FVk+Dm1DF/pBREREFKut3RuxvHOpsm5i8aGoco5ObYcS4NKMCfMxGE1HN0U/NMhsL6vxuZQy6uBiXfse0w13oFO7DpfN4rb2GaxQOCAgtAF1PFckIiIChBB2AE8COLFHsQ/A2VLK15K4qn8D+BWAvfcxP1MIUSulrIvwvJ+HPH5SSpng5a1ERERERJQQM9DrYYnZkVBzJQ70Ckfaq65RYkZ1+gO9Msm23Yj54vi7zsmMbXj5LIEXP5dYuFpdf0Q1cOsZBmbfqQ7m+u1pAmPvOxf44NV9ZfLjhcBvnoB89V/Aey+juuQkYER4MNrGFqDbJ+EoyIxtkYlMU+LYu/WhaADw1McSf1qoDmjYthv4eEMwuCzSRdCDf6Jez7bdwKI1Em6victn7U8uu+t1Ez99av/3/BtbgPkrTHz0SwPjh4S/phf83cRTn+jX36SeXhbRh+skDh/DfSgaXr/ErD+YWL0jvG7tTonHP0ju+qorALtNoMQGPPANgcsek72C+1TOmALMWxZebjOAP35DoJ8rsdfaWSAwoiy4v4aqb5TQ/1qY2/7wmsQvnok+hOz5Kw2c+1cTC1aF1504CbhgWvTbscCuXvaw0cAP5wjcv6Dvw9GqK4C5B6rrSpwCVWXA5tbwuuA+Q0QUv8p+QJvFLytrd+bvZ1Mm2d0lMeP3JrbsSndPKJMV2no//tXJ+mC0Bo4hKAKrc7d4ja3g5wmRDoPRiIiIiIiIiIiIsoQuGM0uCpTl0XAaRejUBKPpLv4nfRCAO2IwWnTBC8leb7Lo+h+6r1gFn3nMLvRHWVL7RURERPnrjZZntXXHlZ2ewp4kzip8K9/oArkEDGW5LpjXatv5pBcS6qs7QsfdVgHFunUIGHCI7AwENoQBh+FM+PyFiIgoVwkhbAgGlp3Wo9gP4Fwp5YvJXJeUsk4I8RiAS/cUFQJ4VAgxRxd0JoQ4DcDFPYq8AG5OZr+IiIiIiCgOIcFoxQncAG1WLdDhAZZtCq+rb4y72ZxVF8c2uWB6ZlyQWuoUeOVqAwtWAh9vlPDv2Y1sBjBlpMCxE4JBQo13GXjqE4knlkg0tgNHHyDw7ZkCU8yVkLe9GtauvP17QGcbAKDWW69ct5TA2p3AhKF99udlvUVrgKUbrJe58/XIF9X/XXNBfizueE3i8lnBfwdMibvnh7fZ0Q38ZbHEPef23r/XNknLULRE/PZFEy9cZYu8IOH5z5DUC+sjqa3c/+8LZxiYNlZi/gqJq/6j3x+f/K6BhauAjzZIdO+ZyjioBDh2gsABQ5Nz3Kyt1AWjJaX5rOMPSNyjeD/rnDEFKC8WePmHBhasApZuCH52FNiAaWMEjhqnDzuLhRAC954rcO5UiT8vktjRJvGV0QKFtmAg4qtfJryKfRZda8Bm6Pt886nBYL9QDU3J6wMR5SdfwLo+Xz+bMs1/PpIMRaOICkNSdUaUC/zuDIFfzgsfQ8TzHQLllxf64NytuiK57RHlEgajERERERERERERZQlfnwSj6S9od2nCBcgqeMF64nLiwWjq9XanORjNFdJ/q30nVX0lIiKi3LfL14yP2t5S1o10VGNc0UEp7lFidGPC/Bw/6YLR1BPe9cFl+m3nthi7h467rV4bt9mp7ZMQmXHhXDycRpHF+QvPFYmIKO/9A8DXQ8quB7BMCDE6xra26wLOergRwBnAvrsNHAHgDSHE5VLKVXsXEkI4AHwHwF0hz79LShnhMm0iIiIiIupzZu8bNZSYHXE3ddlMgZc+B5ZtCv8ulRfnh6tvjC10qrw4GPSTKQrtAiceBJx4kP4750GlAt87SuB7R/Uul/98Qf2EPaFoADDGtx6GDMAU4eFV9Y0MRrPyfkPigWbJUtcINHdIDCwRaGgCtu1WL7dw9f4+SynR2Q0sWNV3fwePSdF7f21q96fxQ3ofU8YNFhg3WKCx3cRvXwzvy5lTAJshcOxE4NiJffcbWHWlUO6TsR7Lc8W6nUCj+r63ShP2BNQV2AVOmAScMCnya3X5LAPzV4bfUKqyNPL6ZlQLzKjuvY7mDomKH6tvUBWrUicwbID1MtUVAqrfl1u7gJZOifLi7P3NlojSq1s9bX+ftU35+dmULp3dEnLPJrfbggHRALBkbRo7RVlDdY5/6Ej1GGLrruD+VuzgGILUkn3uVmgHRpYntUminMJgNCIiIiIiIiIioizhT3EwGi921wsNAtvLL33wS5/yNZFSJhwsoA98iP9O0rHQrccR0i+H4dS24c7LYA8iIiLqC2+2voAA/Mq648rPyLpQKt2Y0CrAK1dppw5pXtJ4xslWdaHt6V8bt/b1yfag6dAxfk/RBjsTERHlsIsUZX/Y81+sjgawyGoBKeVmIcSZAF4DULin+EgAK4QQHwNYC6A/gEMBhN5L+kUAv46jX0RERERElGxmoNfDYhn5u98fzhG4f0Hvb0xdBcCphwis2q7+JvW/H0k88e34u5mL6mIMZjr3MJF1vzGoyIblkA/dEHE5h/RipG8T1heODqura5TQfjlPeO7TzArDuPF5ifU7Tby8XL/M55uBgClx/TyJf74vsaNNv2wyrN0J+AMSdhv3o0gefz+1+9M3Dle/JucdJpTBaF87JDWvYW2lujxfQ/Zi/bvPnRr763TSQcHxhTtkeuq3jojvNR9YInDsBOCNlXE9vZevT438mVyj2WcAoKEpGHhKRBSPbvWUpH3y9bMplaSUuP9NiXvfkNjQvL9cCGByFXDveQYeS/EYirLPYaOBitLw8URN6K+qPcxbJnHBdJ7DkNoTS5J73DlzikChnfsbkY6R7g4QERERERERERFRdHymV1lekFAwmv5ifaeNF7vrWIUE6MLPfNILEwFlnVV7PekDH9wwZXLusmilWxvs1rtfhrDBIdThaJ5A/gV7EBERUfK5A514Z/dryrqBBYMxuXRGinuUON1Yr9t0Q8r8msQnNWNbobn4ymqcrKMb26ras3pt3JrxbbYHTevCoAEGoxEREaWDlHIRgDMANPUoFgCmAvg6gOMRHor2HwDnSSnVX0oSEREREVFqmb2/5y02OywXH4RduOU0gZMm7S9zFQD/utzAgCJheQHvZ5vy6zvlSBoao98eR1YDvzk1+y9GlW0tkFceE/XyNd56ZTnDHvR2dUks3ZDuXvT24CJpGYq215hfmLjjtb4PRQMAXwDY2NL368l2G5oldlp/LCTVH84WmDJSfaybMFTgvvMEjB7V354lcGGKgiFqKtXrWd8MeP359/lW3xT933z31wUOqor9dSp2CMz7voGiwv1lx00Abjgl/tf8LxcYGDc47qcDAKaPBW49I3IfhvYPjpFU6mMYAxARhYoUjLZ2J2CaPM70pYffkfjR/3qHogGAlMCyTcBRd/T93HnKbiPLgScuV0fqjBoI2DVpOxf9Q6K5g+9vCrepRWJ7Es+lK0qBO8/J/u+hiPqSPd0dICIiIiIiIiIiouj4pfoXVruRSDAaL3aPh8si5MATcKPE1i+s3Cp4wSp0oCercAWv7IZT9O1r5tYGo4X3y2G40B3whJVbhVMQERERRevtXa9pxxXHlp0Gm7CluEeJ042/TZjwSS8KhSPFPUof/bQyXTCaepxsNfbUjW2D7UUXjOYxu+A2O5V1Llt2B6NZhmhneegbERFRtpJSviyEmATgZgDnAijTLPoBgDullE+nrHNERERERBSZ2TuzuFjz3eJe1eZGlDgH4vkrDazaDmxqBaaNAQYUBb8nDQbHqL9N/dMiib9dyIsq96pvUpf/+hSBM6YIrNgqIUQwDOig4YDNyIFtt+BJoGN31IvX+NbiDUU5A2X0/vtR9m6bza3xP/dfl4W/P/q5BA4eDoz+hTqYoq4RGGsR5kjAo+/Ftz9tut3AX96S+N1L+uf//kyBEXu+RSoqFJg2Bhg6wPo4d9UxBs75isQnG4GJQ4HRg1J3XKypVJebMhiOlmjYVraxCqh86CKBdg8waqDAEdXA4H7xv05zDxTYfqeB99cCVWXAAUMAIeJvb2yFwOc3GvhkI7B2T7ibwy7g8QdDGb9aKzCoBPh4A9Dtl6gqExg/BFi2EWjplJgwVODgqug+k4UQqK4Alm8Nr2PAJxElIlIwmscHbN0dPG5S3/jL4vjH3N+aIXDcxCR2hrLO6EECh40CCuzq8YTdJjBmUPB8ReU/H0pceUwOfD9ASfXY+/rj0s9OELj5awKfbgLcPuDXz5p4t8G6vc23G9p9lIiCGIxGRERERERERESUJfzSpyy3i74KRuPF7jpW28ZjdmnK9cELjiiD0azCFTyBrj4Ps9OFu6nW6zRcaAuEz6TUbR8iIiKiaPlMHxbuelFZV2wrxYz+c1Lco+SwGst5TDcKjfwJRtNdzGdog9H0wWU6urFtoXDACAnW07Xvl350BNS3gHQZxdp1ZwOrcxSGaBMRUb6TUqZtZrKUshHAFUKIqwEcCWAUgCEAOgFsAbBMSrkuXf0jIiIiIiILsndg0CjfJsvFJ/lWA5gCwxCYOAyYOKx3/YSh+ueu2pa9gU19oaldXT52EDB5hMDkEblxAaqUEti2DvD7IF96LKbn1njrleUMlFHz+CQeeTf/3mdzJwLfnGZo64f2B7Yp8vjqdkgcf2BuvM+SodsnsWo7EDCBkeXAoFKBZRvj258GlgBH1Qr8TvPbWrED+PGxIq4L7Yf0FzjpoLi6tc9tZwpc90x43y6dqe9PdQUgBCAVf1J9Y/4FozVoAiovmylw2Uz9+zEeJc7kBsgU2gWmjwWmj+35evd+7UcP6l12wqTwZaJRU6kORlurCUclIookYEoE1JmvvTQ0xhaMFjAltu8G7LbEAi1zkZQS65sB0wyG6voDwOeb42/vt6cLVJVxG5O1ScP1wWgfb0htX+K1s11ie1sw2NZuC+7zHp/E6j3nHDWVwTBrSg6rc7cLpgk4CgSmjQ0+PmyMwLsN+uWnWgT3EdF+DEYjIiIiIiIiIiLKEn7pVZYnFoymD9rixe56ViEB8QSjuaIMobNar9vswgAMjKqdeHkC6r9NF4ym0m16ktonIiIiyj9L29/Cbn+Lsu6oASdlbYCYdfiuG/0wIIW9SS+puXhDNwleH4ymH4O7tWPb8NfB6rXZ5W9Wlkc7xs9ULgajERERZTQppRfAwnT3g4iIiIiIYhAI9Ho43L8V07s+wAdF05WLX9D+PwDnaZurKNVfOPlOffCiciF4cSUAdHSry3PpwmC5bDHkD+fG/fxq71pl+caWYIiToyB3tlUiTFPi189J3DVfwutPd29S74Lp1vtBbaUmGI0BewCCx+VbX5b43csSnh73Rz1uAvD5ltjbcxUAzgKB2eMlqsqAzeH3r8Q3Do8vFC1ZTpss8KtnJfwhwTLnfEXfJ2eBQNUAYJPi76lvlIgnNCub6d4/NZWp7UemG1shoLr5Vr0mWI6IKJJu9b3MwyyukzhqvP6zSUqJNTuABask3lwpsXA10LpnusqZU4DHLjVQ7MivzzaVzzZJnPNXc18w84gy4HdniLAxRCwYikbRuHC6gXnL1DvaY+9LzB5v4ltHJDeMNlmaOyS+8ZCJN1YGH5c6gTvPEdjYAtz5mkT3nnNWQwTPCx66SMDJc/uE1e3Q1x0YclODi2YI3PuGfjx64Qy+HkTRyMyjMBEREREREREREYXxS/WMuoKEgtGsLnbP7gv5+1KBUQC7UN93Qhe+YBXKYBV41pPV69Vt0X6y6P4GVf+dNvX+49YExxERERFFw5Qm3mh5VllXIApx1ICTUtyj5LEa6+nCd3OXekKQbiqQ7txFF+wL6LepOvRXf27U6tsZU5+yhdU5CoPRiIiIiIiIiIiI4mAGwoqe2vwNTOta0qus2OzAn7ddiVm734zY5L8v119A+eh7DAIBgkEEumC0kuy8z0oYuWsn5NXHJ9RGrbdeWW5KYJ36a/C89Mh7Er9/JfFQtB8cndkXPw8fANxyusDgfsHHDjtwwykC50+z7nfNYHU9g4mCnlwaDNbzhAStzF8J7GiLvT3fno8Vu03glasN1PYIyhICOGMKcPc56d3Xxg8ReOp7BgaVBB+XOoH7zxM4/sAI+5Im9CvfQvb8Aak9BtdUZPZxJNV0+0xDU2r7QUS5wxt++qZ00/Ph45zNrRKPvWfiW/8wMfLnJibcYOLKJySeWbY/FA0AnlkGXP0/jpO6fRJz790figYEA1Iv+kf82+axS/g5SdE5bTJQVaavv+RRiQ/XZeb79NJH94eiAUC7B/ju4xK/e2l/KBoQPK//9xKJXz6bmX9HNjFNqR1f3nqGCLtBweQRAo9fJlCouOzoR8cJfH82j1VE0VBfuUdEREREREREREQZxye9ynJ7QsFo+ov1ebG7NadRhI5A+Kw0fTCaOnihQBTCJmxRrdMhnBAQkIqgCKvgtWQwpYlu6VHWuRT7kW7/SUWAGxEREeWuLzs/xjbvJmXdjP5zUGrvn+IeJY9VEFVfj/UyjSk1E7GEejKQduwpPTClCUOE3zOu21SPbdXBaPrXptXfrCx3aYKCs4X1uWJ2/21ERERERERERERpYZphRUMCO/DuhqOxzT4EW+zDUCi9mNC9CgUIXsEq/X4Iu/7Sr+ljBXQ3mnjkXYlLjkxKz7NalxfQfeVc6kxtX/rMwqf1f2QIcekNwIwTehe6OzDm6lNgyABMxfyVukbggKHJ6Gj2e/z9yNv5m4cLPPGh9XJ3nSPwp4XqZb4yCnj8UgNjK4C364Dj7gk/dgDAvecKXJPEII1iB7DwJwb6u4IBQ0IIXHdCMJRpeBngLIh8wXatJpioPs/CrHT+GcX+E+rVqw2ccJ96H6go3f/vA4cJrPqtgQ3NwM4OoLoCKCvOjIvsT50ssP1gA+t2AqMGBoPcIqmpFFi4Onx7rW3KrzCHTa2AX/3ya4PA8lV1hXpMtL0N6PBIlDgz4/1ARNmjO4Yg3A/WSmxuBRaskli4SmLNjuifO+8Tib9dIGEY+Xuceu1LoKk9uW3OrM3f7UmxEULgz+cb+NoDmkEXguP4w8dk1j61s13ipS9ie84/35O482wZFt5F0du6G3D71HVzJqi36/nTDJw7VWLVdqDAFvyeavxgoMjB14EoWgxGIyIiIiIioqznNbux1r1Ke2F0shSIQox1HYChhSP4RWAf8ZlerPOsRpt/N8YXTUKpfUC6u0Q5wmd6sda9Clu9G9PdlV5swo4xznEY7hitvFA/lF+qv0UvEIVx98HqAn9e7G7Nabg0wWjqADRdmEUsAXRCCDgMl3IdH7e/s++zUEBgmGMkxjgPQIFhHZy3w7sFDe6V2mCIvfxS/yu/KsRD93et99RhYeuL+x73t5djXNEklNj6Wa6/M9CONV3LsUsTPOE0XKhxTURFofVsXK/ZjQb3Smz3brZcLtUKhSM4znCMiLuNNv8urOlajvbArqifYxcF+45DyR7feEw3Gtwr4TW7Mb7oIBTZSpLa/t6/1ye7Ue2aiMoIrz0Rxc7qM8IuCjDWNR7DCkfx/IhSan7LPGW5gIE5ZaemuDfJZRM2FIhCZSDy0ra3saV7veXzDRgY5hiFMa5xCYUn96WuQAfWdC1Hq19za/M9NnjqleUCmmA0ixCyBa3Pwy7Cp0as6VLPDlO1ZRVa1xHYrW4ny8+nVOHHe2X730ZERERERERERJQWZkBbNdS/HUP928Mr3B1AqX7+1Mhy/eo2t8bSudzV0a2vK3Gkrh99ST7z5+gXPvECiCGjej/fNOEoMDDStwnrC0eHPaW+UQKa7+fzzVt1kZeZNNy6fvIIoNAuMGMs8P7a8PpbTjdwwNDg9p42RsJZAHhCpowV2ICvTxX49XMS7dbTfaJ2+UyBqaN7v86GIVAdQ/hSbaU6mGjdTsAfkFEFYuWyL7bE/pwZ1cDwAcAWxVSgWSGBH0IIjB4EjB4UZwf7UKz70qiB6vJkh6ZkOqu/V7eN8pVVUFxDE3BI/FPyiChPdWuCb1SOuE0fqBRJa1cwhM0V/6UAWe/LbckNPi2wWZ8rE4U6ZETwXp26vPEHF0nMrAm+zwvtAoeNBkaUp/fcZvUOwIzxrdPcCexoA4Zk731n067OIviypkJfZ7eJiN8VEJEeg9GIiIiIiIgoq7X4mnD/phvR6NuasnUeXXYKzqq4NKoQI4pem38XHth8EzbvudDbLuz4zrDrMKlkalr7Rdlvl78Ff9x0E7ZlWChaT4eVfhUXDf0hbIqL9XvyaYLREgk9sA5Giz6wKx/pwgDcmgC0ZASj7V1eFYz27u75YWVVjjG4qupGZdCklBIvN/8PLzX/N6b16/oUShcesd6zBus9a8Ke/73hv8S4oknK59R3rcCDW27Rhs71dGbFxTi2/HRlXTrGDbGaW34mTht0YcwhQ190fISHtv5BG6AYyRH9j8U3B18BQ3H353g0erfi/k03osXfBCAYrHFV1U0Y7RqXlPaXdyzFQ1v/0Cs45vRBF2HuDjrRNAAAIABJREFUwDOT0j4RAa80P4kXdj4Rcbnp/Y7BBUN+kLTjB5GVde7VqHevUNZNKZ0eMSA1GzgNF3yB8GC0d3a/FnUb1a4JuGL4L5MeSpqo9e41eGDzb9BldiS9basx9bymRxNuq8AogF3YLcOCQ1kFi2UDh+HU1vFckYiIiIiIiIiIKA4yjovlIwSj2QyBiUOBFdvC6za2AF6/RKE9v4OIOixCo3IlGA3rV0a33PTjw0LRAEAYBuTwsaj2NiiD0eoaE+xfjmjpjHzVud0Axg9Rh4Pt9d2vBt+T3z1K4P21vZerrgCOnbD/cYlT4PxpAg+/03u58w4TGNJf4OIjBP74pn5dE4cC1xwr8J3HrftuN4DLZiZ+rKjVBBP5TWB9s3VwUa7r6pYxB1YO6QeUOgW+e5TADc+Fv4bfmpG7x/eBxeryls7U9iPdWjVT5WwG0J8/1/Uyoix4LPMrhlsMRiOieHRHPz0kYbowpnyxtim57Y0dFDxXJopWVZnAyQcBL36uX+abf9/7Rg3+/0fHCdxxloCRpn1t3rL4DhwXP2LilasN3gw5TvVN6u0+sBgoK+Y2JeorvIKbiIiIiIiIstpTjQ+nPNxkYeuLWNn1aUrXmQ+e2/n4vlA0APBLPx7eeid8ZnwBL0R7Pdv0WEaHogHAR+1v4cO2xRGX82veDwVGAsFoNv3F+tl+IX9f04UB6MK79MFosW3nWF6Xzd3r8PzOfyvrNnjqkxKKBqj3o1j66THdeGTrXTAVE8GllHh02z1RhaIBwDNNj2J792Zl3dON/8joUDQAeL3lGdS5l8f0HJ/pwyPb7o47FA0A3tv9Bj7t+CDu54f6746/7gtFAwC32YVHtt0NmYQZHH4Z/Ht7hqIBwLM7/4ktPcYSRBS/zZ51UYWiAcAHbW9iafs7fdwjoqD5LfO0dceWnZHCnvSdWMeGKg3ulZjf8mwSepM8wTHdvQmHohmaKQ7JDOrStRXzuN2muWIjS1j9vboQZCIiIiIiIiIiIrIQCMT+HHfk71Sf+Lb6e1NTAhuaY19lruno1teV6u8PkTVkvcWV23sVlQLHnQdxs3r+CACgqga1vgZlVd32OPbdHNQQRWDDmEFAaYTAve/sCUa7aIaB+88TGD0QcNiBuROBhdcaYSEOf/qmwBWzBcqLgbIi4PJZAn+9MLjMnWcL/HCOwKCQe+U4C4CTJgFv/NjAZTMF7jlXYNRAdX8OGg68/EMDk4YnfhF3dYW+rm5Hws1ntWj2n1C1g4P/v/5EgV+fIjCkX/DxAUOAxy8TOPGg3L3wvlwTKtAS3fSxnKELZCwrAsMsQthtAmMGqevqG/M8cYiI4pLKYDQzzw9T63YmdwPsHUMRxeKJy42w8yor98yXeCGK0/G+IKXE3fPje9+8vgJ4uy7JHcojuvNaHneI+pY93R0gIiIiIiIiipcpTazoXJaWdS/vWIoDiw9Ny7pz1ZcdH4eVdUsP1npWYXzRQWnoEeWK5Yp9KxMt71iKGf3nWC6jCz2yiwSC0Xixe9x0204fjKYuj3U7xxrIsLxjqbq8U10eD1V4RKzhFLsDrdjcvQ4jndW9yrd6N/QK2IrG8s6lGOKo6lVmShNfdn4SUzvpsrzjY4yL4bOvwb1CG7wX63oPLT0y4Xa6TQ/WdH0RVt7k246dvu2oKByaUPtr3avg1ryflnd8jOGO0Qm1T0SIOShxdefnOLzfUX3UG6KgRu9WfNaxRFlX65qE0a7aFPeobyQr4OvTjvdxWsUFSWkrGZp825MSUGsIXTBa8kKddW05DRc6Am0xtJPd51MuTYi2XRQkFM5NRERERERERESUt8w4wqU62yMuUlupr2to4sWZ7R59XUmEAKtsIN940nqBc6+GuOL3EDab9XJVNaj+Uh2M1rDZA4DfC0cTrFNbCbgK9fXfPUr0CjO68hgDVx4D+AMSdps65KjQLvCnbwr88bzg+o0ewWkFdoF7zxW45+uy177uKgjW7XX1HIGr5wDtHome97MrsAGuwuSFKxU5BKrKgM2t4XV1jRInIn+DnOIJRqupDG4vwxC4+VSBm74m0eUFih25vx3LNfcf2tUFBEwZFiCYq1o61eW67ZPvqiuAusbw8nUMiiWiOKQyGC3Pc9Gwfmdy29s7hiKKRYlT4P3rDNT+Kvwm7zr//VDitMmp399WbEvs+f/5SOKr4/g+iUdDk/qIXVPB7UnUlxiMRkRERERERFnLK7vhlRa3dOxD7YFdaVlvrjJlAG2abdoZw0XHRKF8pg9dZuS752YC3XugJ18fBKNVOUajQBTCJ729yocWjtBeCE9BLk1ggjugDmzSleva0RntqsU6z+qol28L7IaUMuwukW3+5HyWDS0cqQx9GOMcH3Nb7Yo+xdNP1XO6TU/axg2xiuZ4kMjy2nb8ipmpcegI7IYJ9Q/DHYF2VCCxYDSrfYJjNKLk2OnbHtPyXaZmNi5REr3R8hykZirg3PIzUtybvjPaNQ6butcm3E6zbwdMaWqDxFItWeOMkc4aZbnDcGJo4Uhs825MeB1jnOM05eOx06e57WMIAYHRmnayxShnDQRE2Psu2/8uIiIiIiIiIiKitJEWF9cKgV5pRXt1qH//lJ4uYOkCYO0KOEeOw/D+p2DL7vDvg4MXbObfxZmrt0u8uUpicD8Bv6n+bcFuAIW5cFXdh69bVosTLogcigZAHDgNNS88pqxb31mEbp+EoyD/9qWe6hVhO6GmjRVwWkzj0m1BXShaT4ZFEJQQAv2iuF9LqTP5r6H0eYFPFgFrPgUCftTaL8ZmhCcyqsKK8klzZ+yRJ6HBl0IIFOdAoGM0rIK/WjuBQaWp60s6MRgtSDYsB5YtgqxfDjRuAgYMAiqrIJy9N0TVzuMBTA57/s72fI8cIiIr3b5gwGx7dzBUee9/yzYlfuyYOBQ4ZoLAnAME+jmBOXerzwnN6HOYslqHR2L+SmBHm8RXawUmDguOTdcmORht+tjktkf5Y/QgYEg/YHuUl7B9viW5Y4w2t8T8FcDqHRKThgkcOyEYPh1qVYLBaGu2c2wUrzrN1MGaPL8pAVFfy4WvcImIclpXVxc++eQT1NXVYefOnfB4PHC5XBg8eDDGjRuHKVOmoLDQ4pYyZGn27NlYvHjxvsdS9YNyEixatAhHH330vsc33ngjbrrppj5ZFxERUT7xaAJmUqErwAv/k8ljurV1PtOrrSOKxJNFIR3uKI4rfk0wWkECwWgOw4mjBpyEN1qf7VV+XA6FS/QVpyY4zm1qgtE0+6PLFttMpZn9j8eS3YuiDv2TMNEtPXCK3jMgdf2JlW5fqSk6EGOc42MKcVMF68TTT9VzkvX3pkI0x4NEltdJVpCk1TgpNIQxrvYtXkuO0YiSo9kX66x0TpSgvtXm34UP2t5U1g0rHImJxYemuEd9Z1b/E7C07S3tmDJafulHe2AX+tvLk9SzxCRjLFYgCjF7wMna+rnlZ+Cx7fcltI7BhVU4uORwZd3sspPxWceSqMJ2Z/Sfg372AQn1Jd3628sxrd/Rvd57BgwcW35aGntFRERERJR8nJ/Xtzg/j4iIqIdAQF1uLwCKSoG2lvC6tvCbTsjm7ZA/PRWo+2xf2djat7DFPjVs2YamuHubtR5+x8T3/iURMAGr37BKnAi7wVy2ke++1Gs/CDP1GIiag6Nr7MiTUeO9QVt96t2dePVnxVm/zRIR6f1UVgRccqRAm34qZM79qiq7OiCvPxv4eOG+spohg7Cw7LKwZesbc+2vj01rHD/91Vbm7/ttoMV0upYuBqOV59H9buV/74H803XqupDH5RUGMCg8GE23HYkoO3n9cl94WUdImFl7t+z1uKMb6PAA7Z7w8LO9z/VpTtPiMWogcMwBAsccABwzXmDogP2f5Z9aBK1pspxzytZdEsfdY2LlnkAnmyHxp28KzB4f+3inrEg/tqqpBE6fnL9jKEqMzRD40XECP386ujflym3A7i6J/kWJ73Prd0ocf6/ZI1BaYsoI4OWrDQzu17v9YAh+/KIJ/aZwpim13wvUVKS2L0T5hsFoREQZKBAI4Mknn8QjjzyChQsXwu/3a5d1Op04/vjjcfnll+OUU05JYS+JiIiI0s8qTGtwYRVsCL8LZqw6Am1oC4TfeTPRC5SpN+sAFXUQFFE0rMJzknWciFWX2Yld/mZleSS6QCF7AsFoAHBGxbdQUTgUn3UsgUM4cHi/2TikdFpCbeYDl6GegaUL5NOFQRRp2tEZ6hiBH4+8FYtaX8R6Tx1MGfxV3i/9aPRtVa870Amn4QorUymx9UM/W+QQh8GFwzGt/9Ha4AibsOGqETfh9eZnsKbrC3h6fHY2+rbCL8O/71D1SfcZYYMdTsOFTrM9vB3Ftrb6rBlSWAUjDceD9sButAd2h5XHGhyiO34UiEJUFAwJK+80O7DbHz6pPlmhYp2B8NdkL13AYyysguCyKQCPKJPpgtEEDEiE36JS5twUfso0i3e9pP0MObb8jJy6CKfKORo/GnErFu96CRs8dTCl9W1hJSS2eTcp61p8TRkUjKb+HsWADUMKh1s+VwgDIxxjMXPAXIx1HaBdblr/o+GyFWPJ7kXY4d0cU/8KDQeqXRMwt/wsbXDxGNd4XDPiFry16xVs6l4LqXhtSu0DMKl4Ko4uy43f7C4Y8gMMd4zGl50fo8TWD0f0PxYHFB+S7m4RERERESWM8/OIiIgoLXTf9xoG0K9MHYzWHl4mn7grLAyrumMF3h6gCEbLsyCi1k6Jq/6zNxTNWqmj7/vTl6TfD3n79/QLlA+BuO2ZqNsT9gKM/erhEJtNSBE+f2J+gwtL1gHTx8bT29xgFex11qHALacbqCoTWBfIo/fdS4/0CkUDgBpvvXLRuh2p6FDmao1jOkvt4OT3I1uUWwWj5dHUIF3oS3lx7vw+bkU2bob88/VRLz8woBhLAWjOo32GKBP5Az3CykKDzDyyd7hZSJBZePAZ4NV/lZsy35oh8E69hJTA1NHBILQ5BwiMrdCHL1sdufNh9HjzC3JfKBoABEzg6v9KHDQ8tr9++ABgyfUGrviXiRc+319eXQHMqhW4/SyBQnt+fE5S37h2rkCpE/jXB/tDsHa06Ze/+UWJu7+e+D530wuyRyha0LJNwB2vSdx5TmgwWmLr2tQKuL0SrkK+V2KxdTfg1lwGUTuY25KoLzEYjYgow7z55pu44oorsGbNmqiW93g8eO655/Dcc89h6tSp+Otf/4pDDz20j3sZu9GjR2PDhg0AgFGjRmH9+vXp7RARERHlBI9FONnPR90RFgATj8WtL+N/jX8LK7cK5KDYWYWY6IKgiKJh9V5N1nEiVp+2f4C/bb0trDya44oqSAoA7KIwoT4JITBrwPGYNeD4hNrJNy5DfetFd0D9+aQLndIFL1gZ5hiJbw75fq+yNv8uXNdwsbpPZifKMKh3fzTH3qPLvoYTB54Tc59UnIYLp1acH1Z++4afYoOnLqxc1SddiMZQxwhMKJ6M+S3zwp+jeA2sPmuuH31PwgGD8VjQ8hyebnokrDzWgDLd8aPWdSCuHHFjWPlHbYvxyLZ7wtdrdsS0Xh2roMekBKNZtJ+scDeifOYzfcrwRACoLByKHd4tKe4R5TuP6cbi1leUdQPsAzG138wU96jvVTlH4/whP4hqWSklflR3HryyO6yu2deEMa7xye5eXHTjlYrCIfjVmPuTtp6DSw7XBvcmw2hXLUa7avus/UxjCBvmlJ+KOeWnprsrRERERERJw/l5RERElDaBgLrcsAGl5QAawuvaWsPL3n4urGisd62y6UQvls02r6+Q8ET5k3Sps2/70udWLQVa1Tc7AgBx5/MQjtjmRTknHYqR6zZhQ+EoZf28ZRLTx+bvxb71ms395/MFvnvU/jA5l8X0k1zbevLtF8LKar2KYxmADS2AaUoYRq5thejoAq6s1FQkvx/ZotgBFNgAn+Kj0yqYItc0tqnDYgbEPt0wO737EmBGkXa6hzYYLTlT4ojyRsCUIeFlPQPKZFi4WUdImFlofXcGBJklUz8n8Mglsd+I2WoIFMOhLmu9ujz8M63bDyzdEFs7NZXAsAECz11pS1LPiHoTQuB7Rwl876j9ZU3tEoN/on6jvrUm8WhDKSXmLVO38+wyiTtDLutoaEp8net2AhOHJdxMXtF9JwDk97kbUSowGI2IKIPcfPPNuPnmmyFl70GpEAITJkxAVVUVBg4ciKamJmzcuDFsctbSpUsxY8YMPPDAA/j2t7+dyq4TERERpYXHdCvLBQQcIjkzl4o0YTVWgR8Uu74OUKH8pdu3BIykHSdipTuudEsPAtIPm9B/Zad7P9gtnkN9RxuMptnvdOVFRnJmKun6A8QWFJas/liJZdvpQjRcRjFcmr4q29H8vYXCkZZQNEAfimcV/BXL8rr2i4wSZXlXoANSSu0d66LVFdDPJvOZiQeeWoWfxbrtiChcq78JUnMfyoEFgxmMRin3/u4F2vDOY8q+lrbP8UwhhEB5QQW2ezeH1bX4LGbjpJju3MxqDEtERERERJRsnJ9HREREaSU1V7sbNqB/ufopbS0QAOSS1yGXvA40bga2hV85Xu1TB6Ot2JZfQUQ3PR/9xcFH1mT5Ntlcr68bUAGMnhB7m1OOQs3T9dpgtDtek7j9rNibzXZd3RIPLpZobFfX11T23pecFj9dJX75et+S7buA15+AXL0MCOxJMSkfDHHESRBTvtp72W3rgWWLw9oY5t+qbDtgArvdQFm+BDqF2BVjMNq0MUCRI8uPUyHk9g3AG09CvvQI0NEGFDqAsZMAXzdQVQNRfRBw/PkQRSUQQqCqLBjYECoYBJFb20Zn2SZ1edWA1PYjXeSm6ELt99IGo3E6GeW4gCnR0TO8rFcwmQwJNgvW9woyC6l389INS9PHxvc8wyJLzcz0QWKCpJTYpMj8jsfwAfkxBqDMMkg97R4A8MlG9Jp77w9I/HuJxHsNgNsbPP85/kCBkw5S77td3RJ3zg8ej1XW7gQ8Pglnwf7nf7Q+un4fNwF4c3XwXCxUfSOD0WJV16iZV10MlBXz2ETUl3jFJBFRhrjmmmtw33339SorLS3FL37xC5x//vkYOXJk2HPq6+vx6KOP4s4770R3dzcAwOv14jvf+Q46OztxzTXXpKTvREREROniNtUzBRyGK+FAj710gSseszMpwSEUpAu9AZIToEL5S7dvFRnFaXv/6o4rQDC8qsTeT1vvl+r3Q0Geh0Gkiz7USv35pA340rQTqwKjEHZRoAzQUwVR9HV/rOgCAlV90od+FWmDNFTBWfqAtfSFccQS7GZFFxSma7/Ipv6F1oSJbumBU8R21+jw/lgEoyUh8NRq+zAYjShxzRZBSgPtlcry0IuJiZIlIANY0PKcss5lFOHI/nNT3KPMNLCgUhmM1uzPnGA0q7BbIiIiIiKiVOD8PCIiIko7UxeMZgCl6mA0tLVCPnIL5D9+a9n0WO86bd38lcDxB0bbyez1foPE6h3RL3/VMdk970/e/j1tnbj4eoiCwpjbFGMPRJVzdSLdyjkdHolj7zbx4Xr9MjUhP6G6snQal2xthLzqOGDDqvC6/94DXH03xNk/CD6u+wzyB0cr2xkYaNauo7kzf4PRWrui/029wAb86mSL9JQsJOu/gLzmBGB3SNJZ457fOD9eGAwOfOEfwP2vQ5T0R02FOhitPnN+Au1TO9okdrSp68ZWZPdnWDSklMD/PRDTc8o1xx+PLxg6kmthg5S9TFOi09szvKxnOJlUhJthT/CZ7BVutvffXbzUImUcduC6E+P7jLY6AuX6zLtk7qP5Opak9BJC4PuzBR5cpH63Xv0/ifvPE/AHJE59wMSrX/au/+ObEj8/QeD3Z/Y+frR7JI6LcL4JADN+b+KTXxsQQmBDsz5EraeRzg48dFE/HHOXibWKMXUw5Itjo1jozkNqB6e2H0T5iMFoREQZ4LHHHgubdDVz5kz85z//QVVVlfZ5NTU1uOWWW3DRRRfhrLPOwvLly/fV/eQnP8HkyZMxe/bsvup2Tli0aFG6u0BEREQJ6DbdynKnkViYR08uTXCIX/rhk14UCkfS1pXPrEJMkhGgQvnLKlApXXSBUEAwvKoE6mA0KSX80q+ssxuxT2akxOkCtdyBLmV4piqcLNhO8n6ldRlFaA/sDu+TYt2p6I+Obh2qPulCv4qMYn3AWix/bwqC4HSKtAGsbpgyAEPYompHd6zTbR9dMBoQDDVLdCyl29aAPuAxFlaBqrr9hYiipwtG62cbgELNmEPm/PQsSpdP2t9Fi79JWTdrwAlpHddnknJNaGGLT73t0kF/bsYZi0RERERE1Pc4Py99OD+PiIioh0BAXW7YgH5l6roNqyDn/ydi0zXeBm3d9/9touHW6H57zmY3Pq8JnlO4/iSBScOz9wJgubsZ8Gvm1NkLIM76ftxt26bOBj7V15umhGFk77aL1b+XSMuL1AvtQFVZeFlWeu7vylC0veRDNwInfQuiqATy0d8BbvVvPwMDLdo2mjvCg+TyRatmOsuNXxMYUAQsWCmxqwsYP0Tg4iMEjqzJrfeZfOzW8FA0lbpPgVcfB86+EtWVAvNXhs9FqG/Mj/kJN7+g/zvHDkphR9Ll83djfkp5oFVb19IFFHHKP8VJSonO7p7hZT3DyaQi3Cwk5CykvqM73X8RRWIzgFInUOrY838ncMgIgUuPFDh8THyf0VZDaF2Gdq5oSeK03nJOM6I0+cWJ+mC0B96UOGNyMPQyNBRtrztek/j+bIkR5fsPBv/50Pp8c6/PNgPv1gMza4HrntaPEad1LYFLujHDvQSXe5/CiJJ3UVNZqAxGq8+caYVZQ3ceUpMHocVE6ZatX7UREeWMNWvW4Morr+xVdsQRR+CVV15BSYn+ItWexo0bhwULFmD27NlYuXIlAMA0TVxwwQX49NNPMWhQPnzjSURERPnIbXYpy3VBNfGwasttdqLQ4K+kyWAVYpKMABXKX7p9KxXBTzpW67YKCfRbhATaRZbeajTL6V7LAMLDM00ZgEfzuaULx4q3T8pgtJD3gs/0avepZPZHR7ftPIHwbWQVoqFrRzVG0IVppfV4YBHm4jHdlgFmPcUacmf1GncFOlBeUBHVeq3a0ElG4KlV8JrH7IIpTRgit+6cS5RKzb4dyvKBBYPBO8RRKkkpMb9lnrLOLuyYXXZKinuUuXSf3ZkVjNb33+EQERERERGpcH4eERERZQypudpdGEC/cnXdyo+iarrM3IWyQAtabeHttHRCeXO3XOL1S7ypz3MKc8rBWb4tPlmsr/v6DxNq+uRJwD8sgtGaOoDB6ns+5qRXl1sHMI0ZCNhCUi6s3muHjUpKt/qEXPK69QJd7cCXH0B+5RjAYtlSsx126YNfMZ+tOY/vdbejXV1eUQp8f7aBq+ektj+pJKUEFj0T/fILn4E4+0rUakL06tX3ess5X2zWH3/G5MHXEPKD16JeVvxvFbBrJwZ9/3TtMtt2hwdZUu6SUsLt3RtcFvqf3B9u1qO+w7M/yCy0vqMbkPmRyZi1DLE/wGxvoFnJvmAzEfy3sl70Lt/zn8NuPaaLh1Vzub57JTMYbSCD0ShNhvYHXAWAWzMN/vp5Jg4dpX+jmxKYv0Li0pn7l3nty+jf/a8sl5hZK1BnERL8xsYT4ZKe/QUrPkJ15UxgRfhzGvIkbDiZ6tRTq1EzOLX9IMpHDEYjIkqza6+9Fh0d+y8WHTBgAJ5++umoJ13tVVlZiaeeegpTpkyB1xsMjtiyZQt++9vfht3tkoiIiChXeEy3stxhuJK2DuvgkE70t2smpVFMrMKgkhGgQvlLt28V2dL3q5jTKIKAgFT8jKkLbgKsg9EKGIyWFlahVm6zq1d4pu4zK9hO8vbHIlsxoNhVQt8LVsFSyexPrOtQ9UsbjGYUw6UJDvNLH3ymFwVGYY92NMF0aTweWIWydQU6ow5G04a+af42q3a7TH2oWbSs2vCZiQeeWo0bJCS6TXdK9mOiXNXsU88iHliQp7fuprRZ1fUZNnevU9Yd3m82BvB8fB99MFpjxlzslokhtURERERElB84P4+IiIgyhhlQl9tsEJVVCV8MP1ATjLbbDTR3AINKE1xBBlvfHLzIOFo1id0rrM/JBf8HufBpYOtaoO6zYOHkr0JcfRdEzcHABn0KnJh+QkLrPnqS9Y1iWzvzKxitPsI9aE7ShOydPhl4NiRgrtAOnDM1/b/ZaG1piLiIvPdHEHe/BHTr50EJAOWBFjTaw68Ob+6QyMebcXn9Epta1HUjyvJge7TGmGT2+bswb/02qif9GMC4sOr1zUC3T8JRkFvbzu2VuPN1ifcbJNw+4F2Lt2RZcW797UpRHJMAACPHAUNHA5VVGBhohtN0w6O4jqChUeKw0Xmw3XLYu/USD78j0dQucfyBAt+fLfDC58B/P5RoaOoRdrYnyCyWsSGlnhCh4WU9/xP7ysPrhTL8zFWY/CCzZDMsupfr+2syg9HKOc2I0sQwBE6cBDyzTF2/ZB2wZJ31m/nyf0r87a0AbAZwyAiBeZq2VH7/isQbKwP4ZKN+mV6haACwdS1qKmYql82XsOFkebdeYvlWdV2mf8dElAsYjEZElEarVq3Ciy++2Kvstttuw5AhQ+Jqb+LEibj22mtx66237it7+OGHcdNNN6GsLLdua1BfX4/PP/8cW7ZsQXt7O4QQKCoqwuDBgzFmzBgcdNBBKCrSX6CeLN3d3Vi8eDHWrVuHlpYWVFZWoqqqCrNmzeqT9W/btg1LlixBY2MjmpubUVJSgsrKShx22GEYO3Zs0tdHRESU6bo1ITPOJAajWYVqWIVyUGy6LMKgfDLxABXKX7rwp3RefG8IA07DpQxpsgqrsgpGszMYLS2s9iN3oBP97fvPxa0+M6xCOGPlNNTnoqH7m1UIXzL7E+s6VNvJKkTDpfl7geD7qX+vYLTMOx4hVep3AAAgAElEQVQka5yhDYHU/G02YYdDONEd+gMorD+To9UV0AejWR3LomW1/wLB157BaETx0wWjlRdUwpTqC3ZUga9EiZrfMk9bN6fstBT2JPPpggu7pQedZjtKbOm/Qkk7FuNnNhERERER9SHOz4sf5+dxfh4REfUB01SXGzZgeOKfMw9uuwpzR72irKtrzO1gtLURwqt66ucEBsaWkZtS8om7IP98fXjFp29BXnIY8NB7kA/frG9g8qyE1t9/gAu/bboBv65Qr6NVfU+6nGSaEg0W+1ZNJXDNHHXCxU2nGnin3sTOHtMnbj9LoNSZmYEdsrMtuvCqjWsgz66NuNhAXTBank653diiDzypzoOL6OW/7oj9Sa/8EzWLPwZGfaSs/tvbElcdk5nvp3gETInj7zXxTn3kZX95cu783ZY2RxGMVuiE+P5twTAkewGMybMwtm0dVjgmhi1qdTynzPfqconT/mTCt2fa0ktfSPzwv5yrlGoloQFmex6XOEV43b56dV1RFgSZJZtlMJrmVDFXJPMcojwfwkEpY93wNQPPLEvsDfvh+uD/318b++fYR+v1dbfv+EVYmdyyFjXTBKCY37uxJTfDhvvCGysk5t6rf91rB3MbEvU1BqMREaXRfffdByn3DygHDRqESy65JKE2r7nmGtxxxx3w+YIXmXZ2duKhhx7Cz372s7BlL774Yjz22GP7Hq9btw6jR4+Oaj2LFi3C0Ucfve/xjTfeiJtuusmy/b02bNhg+cXFt771LTz66KNh5d3d3bj//vvx0EMPoa6uzrJ/NpsNkydPxumnn44f//jH2klQs2fPxuLFi/c97vl6WNm9ezduuOEGPProo2hrawurLy0txbnnnoubb74Zw4YNi6pNHZ/Ph4cffhgPPvggvvjiC+1ytbW1uPbaa3HppZfCbudHPBER5QdVqBAAy5CUWBUKBwzYYCI8AEC3fopdl2kRoGImHqBC+UsbqJTmi+9dRrHyGGIV9uNjMFrGsQ616v36WoVNOW3J+9wq0vQpdN+yCt1KxftDtw7Ve0D3eVtkK7YMcQsLp7MIWEsXq3VbBSX2JKXU7l9Wr6XLVoxuvyIYzeIzOVpWwWjJCDyNtG3cgU6Ah0WiuOmC0QYVVKLRu03zLE42pOTa5FmLVV2fKesOLjkcQx0jUtyjzFauCUYDgBZfU4YEo2nGdGkcixERERERUe7j/Dw1zs/rjfPziIgoZUz1DWhgGMCwMbG3d8zZwJtP7Xt4dNdi7aJ1jRIzqnP3Qs2Gpuh/qxo1MHNDGGS3B/Lfd1ovc/OF+sqzf5Dw3yYMA9d1/pnBaAC27AI8mulalxwp8IezBAaWqLf3wVUCS39p4JllEk3twImTBGbWZuZ+BwDYsjapzZUHWpTl+RqMZhXINGZQ6vqRNv/3x7ieNsZdBwETEkZY3S/nSVx1TKIdyxyL1yCqUDQAuOzIDD6WJImUEthiEYxWVglx5hXAUadDjNkfgiYu/RXG/kETjLbVC8DZB72lVPj9K/tD0Sh6xY4e4WW9wskESkLDzRz760LDzUqcQHEhYFgle1FEVsP0XJ9519IZ219oNwC/JoPIHj4sIEqZg6sENtxmYNR1mZdmeMHu/2fvzOOjKPL+/6memUzukxAh4UrCLcopcnqAgoiKJ4L7eK27rLrq7uO6ruu5uu4jK+oPb2VXdF3XY5FLWA9QkUMRYQHlEJJwGK4k5M7kmpmu3x9DQiZT1dMz03Pm+369eJHpqq6q7umjpvtb73rXc+HRAyiUhBWqHDhUCQz0bx6hLsVTn2h/34VdQHZNEOGG3soSBEGEkU8++cTt84033oi4uLiAyszOzsZll12GpUuXutUjCryKJkpLSzFt2jTs3btXV36n04lt27Zh27ZtuP7661FYWGhYW3bu3IkZM2bg2LFj0jz19fX429/+hqVLl2LlypV+17Vt2zZcd911OHDA+4umoqIizJs3D6+88gpWrVqF3Nxcv+slCIIgiGih2dkkXG5VEgyrgzGGRFMSGpyewdZaAiPCN7RlUIELVIiui0z+FO7B94mmZFQ5PCOetGQ/Dg0xmoXEaGHByuLBoIDD82VH52NPU0Rm4PEoK8tD1CZpjwIT4pjVsPbIkLVT1C7ZvktQknyT08nKCaMo0cRMsLJ4tHBPQZnefkYrbxEKXAHta12ikowaVHos15Ka6UVLrqYledSDXW3VvB666qc+GkH4S6vagjpntTAtU1OMRhDGsrZquTRtasasELYkOkg1pcPMzHBwh0dalb0CveMLwtAqdyJVWk0QBEEQBEEQRGxD8Xn6ofg8is8jCIIgQoAqGUipmIBuuUBcPNDq+e5YBPv9K2CX3Qp+/2vg07JcywAMb96JHfFne+QvEs+LEzMcq9Gfd0iPCBY6HNwN1ImFUu0ckYtiWO+BhjSDJSSju6MM5eYcj7TqRg7X0Rb7HK+Vpy24hiEjSXs/9M5i+M3UKNlXWgIiP+jm9IxHAYCj4lfRMc+xGrEMpEcakBAXJceIn/B6Hy7QnbDyVpzhKMNxcw+PtBYH4FQ5TDEi6dlYrE8YE28BemUGuTGRQE0F0FgvTGIvrwMbNk68Xm4B8luXCJMOHG8BidGiE7uDY4O2vz9mSIzrLDBrE5e5RGYeafFAivW0yKxjepIVMXONjBW0vg41xs1oR33sDvx8EsNrX4l3ygDPnygEEVJ6ZTLseETBiCdU6JwHJuikOmvR3Sl48HO0BPndXGJGUVuLy0mM5g2nqt0P6ZYMr88GCIIIHBKjEQRBhIkjR47g0KFDbssuvvhiQ8q++OKL3QKvNm/eDLvdDoslOgfKt7a2Yvr06R5BV5mZmRg2bBhycnJgsVhQX1+P48ePY8+ePbDZgjMAds+ePZgyZQoqK91f1OTk5GDEiBFIT09HWVkZNm/ejKamJlRVVWHmzJl4+umnfa5r1apVmD17Nhob3Qdy9+jRA2effTYyMzNhs9mwZ88etxk6d+zYgbFjx2Lz5s3Iy8vzb0MJgiAIIkpoVsXTD8Yr4tmo/SVBSRSK0Ui6YRxawqBABSpE16ZRNvg+zGI0qbzKT0mgmcRoYYExhnglQXgN63yPkh2LVhYPEzMZ1ia9x5bsWEs0JYVkZmSZsMvB7bCrrbAoroFpTu5EsyoWoSYoiYhjVigwCcVgnnI6cb8h3KLEBFMSWhwCMZrOfobWdUPrWpdoShYulx2rvqBVRqDCU9n36JaH5LUE4TfVjpPStCxLd+k9IkLiO4gYodJejm31G4Vp/eIHoiBhcIhbFPkoTEGGuRsq7Cc80qrskTHaTXYPTzD4GQ5BEARBEARBEEQbFJ+nH4rPo/g8giAIIkSo4gmvwBiYyQQ+8TLgi397L8dkBiZc6lo1MdntPU3/1iKhGK24zI/2RhHV3l8jt3PlyOC1wx/4wT3grz0E7N0KVAX4RU2caUyjEpOQ4awRi9G60Ov4eomnkDEgzbi5eyMCvm+7oeX1aT0sXF5c3jXfLFdJzpvslNC2IyysXxHQ6oNb9grFaHanS7TXOyug4iOGkzrnsZw1nHUN0VFpsTwtT2NSsG49UaCWCpPWH0nGV/s4zhvYBfZfjHFI7NqMCOItHeVlHeVkLpGZu9ysLZ0J5GZAcjyJzCIdzjnw7rPga98Hjov7OpqYcoGe30nKDrBxEc6XP/q2gcPzgHPzgc2d5rIYdAbQtxudJ0T4OSuP4cKBwOc/Gl/22H7AkWrfhIJX1a8Q68v3/RdWC0PvTOCw4H5aXNF1xOf+cqTa9dtDxlUjaf8RRCggMRpBRBhO7kSNxsAjwhjSzd0MHXTsD5s2bfJYNnr0aEPKHjVqlNvnpqYm7NixA2PGjDGkfL0sWLAAjz32GABg4sSJOHr0KAAgNzcXGzeKBzUBQHKy+8DcxYsXY8+ePe2f+/bti5deegnTp0+Hoige63POsW3bNqxatQp///vfDdgSF3a7HTfccINb0FWPHj2wcOFCXH311W5taWhowDPPPIMnn3wSNTU1Ps8IumfPHlx//fVuQVfTp0/Hn/70J5xzzjke+bdv34577rkHGzZsAAAcPXoUc+bMwbp162AyhfdYJwiCIIhgIhWlmIyNOvFHYET4hpZAxRGgQIXo2sjEQgmm8IqQEiX1a4mQHNwhTWuTSBGhJ0FJFH5vna9roToWE0xisURnEYVM7hkqaaDWdjeqNqSdOqZlEtS2MhhjSDAlwub0nCHS4zuQ3GviJfssVCQoSaiB59tGvf0MLVGr1n6WXYcaVZ2RdhJUrmpfy9TAhKd6hHF6pXIEQXhy0i4fbJFp7g4mC4KI9egsIqR8Ub0SKlRh2kWZV4ZE4hqNZFqyhWK0Skf4xWh2tVUqRw23tJogCIIgCILoelB8XugId4wexedRfJ4WFJ9HEARBhAWZGO3UvYTNexx8/3+BIyXyMhQF7J5nwTJPC6vY/a+Cz/8VAKCwVbxuUYzLiPTKuuacw3Dl8Mh5z8DLSsFvPw+weU7a6g8sO9eQcpCQjPRW8SjsKh8kdNFOQ4t4eVIcoMSQuIRzDrzju2jYg/7DgaIdrj/t4mtRcfhfW4UFmRgtM8bnD+LHD4E/9cuAynjl+F0YWLhbmFZSETtitFod11bGgD/Pip1rjxb8kbnihMQUID1buh5TFOSniscWAMAFz6j45g8KxuZ3jf0YK9z5L3H8iD9YzR3lZZ3FZKyT3KztH3MTm3VMN5voWOpK8EWPAm/P93t9ZpbHx6gx/HOtppFjfZH3fB3JTGJ4/nqGy15UUXbqp1JaAvDGzZ7PqgkiXAw4g+FzH6V/enj5BgVldcC1r6mwSX6TdmRIyx48WvGENJ2vX4HC7JliMVoX/X3mC799X94P6ZMFPHwp9QUIIhSQGI0gIowax0k8fGBeuJsR8zyR/xqyLJ6z14SSI0eOuH3OyclBVpYxT2TPPPNMYX2hDrzq1q0bunXrBgAwm0/fcsxmM/r27au7nBUrTs8QYjabsWbNGhQWFkrzM8YwevRojB49Gg8//DBU1ZgHYC+88AJ27NjR/rlHjx7YuHEj8vPzPfImJyfj0UcfxZlnnonrrrsO1dXVuutRVRWzZ892m1Xzsccew6OPPipdZ8SIEfjiiy8we/bs9tlIN27ciHfeeQc33nij7roJgiAIItqQyVLiFWOjBWRSEZJuGIfWvrQHKFAhujYysVBimAffywb/a0kC7apcEmhm9JgvXCSaklDlqPBY3llEFqpjUXpsqfokYaGSBmptd5PThjRzxqm/5VFfbWUkKklCMVrne4vsXhPu64FcUKavn6ElUNPatkQlWbi80RmYGK1ZbQSH/EWvTIqiF63rZHse6qMRhN9U2sWRDmnmTFgUC2Szw2md9wThCw3OOmyqWSNM627pibOSPQcmEy4yLd2Fy6vsnn3VUNO5b9wRmdiXIAiCIAiCIIIFxeeFjnDH6FF8Xl/d5VB8HsXnEQRBECFCds9krsHdrGc+8Pdvgf+uAw7v88yXkg6MOA+sV3/35eNntP/Zv7VYWEVRuUt+FKuTj1Q3it9V3TiOYdpQoKwOOKcfw7n9IktoxVe/aZwU7S4DxFZtJCQjs1ncv6puUAF0DSFBQ4v4uEq2hrghweaHbwIvo89AYODIdjFaoeRadKIOqG/mSImPnPMwFFRLXpVlxvj8QXz1W9oZJlwKmC1A1hlAzUngiyUeWQrsB5FssqPBafFIO3CS4wLZ5G5RRpXNe8xFxbMKMpNiY3u14C1NQOVxcWJugde+TEGOAojdngCAl9dxEqNFEZxzrN3r2zpLfqVI5WcWM333hH/wlmZg2asBlaFoxNfFshhtxQ7fNy4zCRjdl+GHRxV8tR9ocXBcPIShWwqdw0TkUCB3tQIA/vlzhn7dGHYd46iyAXVNwP99rH0+XDkCGNHbdZz/+LiCz3/kOF4ryNhkA958EoNbf8QFtq+QxOWxefzt+Sg47zKhxK0kxiX6gcI5x/Id8vRdjylIstJ1iSBCAY2YJAiCCBNVVVVunzMyMgwrOz4+HlarFS0tp3XAneuLJg4fPtz+99lnn60ZdNUZk8lkyIyMqqrihRdecFv2+uuvC4OuOnL11VfjjjvuwIsvvqi7rqVLl2LXrl3tn6+77jrNoKs2zGYz3nrrLWzcuBHl5a4BjAsWLKDAK4IgCCKmaVbFszpZlQRD65FJRbRkLYRvaIrRAhSoEF0bmRwnVPInGTIRkta54OBiSSADg4ke84WNeMk9ornTdxmqYzFBIgftLM8KtyRMa7s7ijO0zom2MmQyuI7bzDmXCrXCfT2Qtl+n3Et2bJmZBRYlTrpeokkiRgtQKuZNXGaXXMv0ome/aMniCILQpkoiRssyi4VLBGE0G2o+QSsXT3U4NXMWFNY1Btr4g+w8jQwxmkafLsySWoIgCIIgCIIgYheKz9MPxedRfB5BEAQRIlSneLly+l7KElOAiZe5/ukl4/TzYZmMqL4ZKK8HclL1FxtNyKRDA3KAOecE590C5xyorwYSkgHFBOZjn4hzDnzzsXEN6jPQuLJSM5BVUSlMKj1mA5BmXF0RiMPJwbnrvBGRHB/a9gQT7nSCf/0feYZh44EfvvZeUO+BYHkF7bqP/NaD0qxldS5BTSzDOUdlA8ABxFuAasmrsvRYl1zt2SJPO/8qKE+867ZILT8K7PIU9Q22nsB3jb08lpeE/zWoYVR5CXUq7I4uIUUDIJbDttGzn9fV++alwFrVjBZFfKH59iAJQKKJYxqSOxG3TGC4amQXOVeI0HKkGGgQ2Yn0w7TEaC0tAGKzg7S91Pd1sk6FN3dLYbh6FCCbzJUgwsnAHAZIzusHL2WYO9b1LGJcwenj961vnJr3tvEd8uZmMNw4TjKR8Xffglc9p6+hVeUolIT/FsdQfzoYlNfL087Og89SNG6rA1QnWIpx7ysJoqtAkeMEQRBhonMgVHp6uqHldy6vslL8YiraaAsoCjXr16/HoUOH2j+PGTMGM2fO1LXuI488AovFc3YSGc8//3z734wxPPXUU7rXTU5Oxrx5p2e1/eGHH9zaTRAEQRCxRotEjJZgsBhNJkzRKywhtHFyp1RyB8hlUAThDbtql4r1QiV/kuGPCEl2LpiZJWZn9I0G5CIy96hb2XdrtAhC7z1LKgkL0bkRx6xQJI+nO7ZVS9IVf2rf69lmO2+FCnGQecReD3TKvfyV3MnSG50NuuqV0ahqr+8IUHjqTbwGUB+NIALhpL1MuDzLkgNAHmLENQK3CEIvrWoL1lWvFqalmtIxNvX80DYoysi0iKehjAgxmsb9WyZrJQiCIAiCIAiCCBSKz/MPis/ThuLzCIIgiIBQVfHyACWjjDGgu0sY07+1RJrv/62N3fc5MjFahjikI2D4ikXgl/Zw/bswBfz8RKjzbwdvFU/+4rYu5+Bv/xX8it7Aj9uMaVBGd2DkBcaUBYBNvBz97IeEaSXlkuM4Bmi2c9z2DxVZv1WR+VsVd7wjPmdSrCFuWBDgDjvU//db8Jk9gXeeluZjf1wEWL3H47JpNwB5pwXL2c6T0ryVgYWlRDSccyz4TEXufSq636si514VaXereH+r+FjKDNI1KmL4bq00iU2d7bkwr0CYt8D5k3D5km2xc1/zJkabe07XiQ/lbz4pTWPT5npd39qrL66sXyFNP3jSJcAkooMfjvqWv0AcNkEQgVO0M+AiFC7vR6tq7F6XZIJYLfK7Gd8OgjCaqYOBboKwN7MC3CwRml0/Rt6nUxhw7Sidfb493+nLBwDlpShIF8fuHzwJ2B2xe/0JlCJxODUA4PLh+vvnfNuXUH92Fvj0bPAZZ0C9bgD42vcNaCFBdB1IjEYQBBGjxNKg+EGDBrX/XVpaigULFoS8DRs3bnT7PGfOHN3rZmdn4+KLL9aV12azYfPmze2fx4wZg379vM9o0ZELLnB/qblhwwaf1icIgiCIaKJJFUc0xUskNf4ik95oyVoI/TRLvsc2ZGIrgvBGs8Y5KhMphQpZ/VrCH7tUjGY2pE2EfySYJGK0Ttc2mQwi0eBjUSbZsvNWN7meVKYVonODMabrPJDtNyuLh4m5gsP13Kf1CNbChWyfy/o5Hvlkkjsv36VMQhKwGM3L+rJrmV70SM/0yNMIghBTZRcPfM2ytE0ZFzvPnYnI49u6dah3imdXPT/jUliUuBC3KLqQidFsar2mjDwUyPo1DAqsLDZnvCUIgiAIgiAIIvah+Dxjofg8giAIokugiifzAgt8aBd7/F8AgG7Ok0hz1gjzzP+EY/tPsTngVSaUCYYYja9bBr7g10B9tXvCqjfAF/7WewHLXwN//WGg2iAhbVoW2J/fB7MY+B5lxo0olEj2imsTwHlsHkd3vMPxxkaO+mbApuG4S46BVxv8lT8CH74MNIivFwCAzDPA8gpd15cEL/FEky53E6OlqPUwS+JDvAmgopk3NnH8fgnHiTp9+TPDG8IYVPi2L+WJvQe4jplOsFyxGC3f9qNweXE5cKI2Nq5HVRphYleNAH53cew8g9CCb/sS2LBSnmHiZd4LySvAs2W/R7zkHbndCZRWC5OICGTG874JWQu7e89DEP7An7w14DIUyI/nWO1fA0CVzbdt654CpCZ0jfseEd1YLQwf3q64PXewmoHXb2Qo6C4+hh+ZyTB9qOfyODPw1q0MvbP0Hfv8b4/51NZCiE2jThU4XCVMIgAUV8ivXw/O0Pld/bQf/N6ZwOF9pxcePwz+pxu1fzMRBOEGjZokCIIIE5mZmW6fa2vFg338pabG/QVF5/qiiblz52Lp0qXtn++77z4sX74ct9xyC2bMmIEePXoEvQ1bt251+zx27Fif1h87dixWr17tNd/mzZtht59+AZSfn+/zjJJqp9nESkrkM38RBEEQRDTj5A6pMMuqeJ+hzhdkkhmZiITwDW/7MVCBCtF10ZIKyc7rUJEou65oCH8cknPBwkgQEU6k94hO36VMzGX0sahVXpOzESnmtFN/h6Y9WiQqSbA56z2Wd9x3snOio/RLJgBrdp6+Bmjda0Ilg5Mh2+d65V7+HltSMVqA4tdG1YsYTQ1MeKqn/6VHnkYQhJhKr2I0MRyxG5xFhAaVO/F5lXjWZiuLx+T0S0LcouhD6zytspejp7VPCFvjjrRPpyTGlEiAIAiCIAiCIIjIguLz9EPxeYd8qovi8wiCIAi/USUD4RVT4GUPGA4oCpiqon9rCbYmjBJme2MTxwu9Y+u5rKpy1EhChDKSjN9W/tHf5Ymf/gv8rgVg8XIjG1/xN691sJ8/CgweBQweA9ScBPZuBSxxgNninjEtCxg0GsxqrKmLMYbCfqmA4PW+zWnBiVqgR7qhVYad+maOd7foe+eZbA1yY4IMd9iB/7zlNR+b4xL9sfEzgJVHwC/KEGc0mcAUBTw3//S6ADKdVSg353hkr2rkiNUJuRat9+29eUyL0T58WZrG/vwBmCKQguZJxGhVOwDJq9Bl2zluPz+6jyfOuVQY+NJchl+dx7rMO1X+0RvyxPEz9O2H3AJ0d1bgeFEfZAwUx8AUlwP9uvnZSCJk1DX5HotUkN01zhUitHAvQmP25Ae6ylEOHgM2idM6P2+MJXyV4vYnwSERRUzqz3D0aQXfHQKaWoExfbWfQ6QmMKy+W0FxObD7GMABpFiBsflASrxO0dahvT63M//7fwO4T5hWVEZiURlFZeLlo/oAcWad39fHbwNOhzjtozfARl0gTCMIwh0SoxEEQYSJzoFQ1dXGTTfQ3NyM5uZmt2VZWVmGlR9qrrrqKlx11VVuwVebNm3Cpk2uJwGFhYUYP348JkyYgEmTJmHw4MGGt6GszL0H279/f5/WHzBggK58paWlbp/fe+89vPfeez7V1ZmqKlI2EwRBELFJs2QmJ8A1sNZIZMKVQMUhhAtv+zFQgQrRddGSCoVbjOaPcFEmRjMzi3A5ERr0fpdNTnEUrtFSLq3ymlQbUuASo0llWiGUhOnZd7JzoqNcUCYa7LiNWveasF8PTOJ+i165l5595Et6o7MBnHO/A+oandpiNNm1THf5OvaLXqkcQRDutKjNqHeKBwi3CZdYjAaoE+FnZ8MWlNuPCdMmpF8kFXoSp0k3Z4FBARfMMFtprwirGE12bw5l35MgCIIgCIIgiK4Hxefph+LzKD6PIAiCCBGSgZAwBS5GY5Y48JzewPFDGNaySypG21kae5PdHKsFVMlmZRv8eoE7ncCWNfIMLU3A4X3AwBHu69nqgIN7gNZmoOQH7UqsCcCc34JZT00Om5oJ9NbX1zGSvj0SgMPitPL62BOjfX8EaJGcop1JtkbnO1OuqsBP+1yivQYd4uj8oe1/svhE8EtvAVYv9sz3s/tP5+meB5QfAQBkOquFYrRK7bCSqEVVOXYe8W2djMToPJZ0cUJyAQGAnv3Ey3PFYrShth3Son484UujIpP6ZsAp8eGM6hP9UjTusAM/7Qdy80/f2zrnOXkMOPET8LmGXCj/TH0Vdu8FmMxIcTbgDMcJnDCf4ZGluJzjoiHRvV9jlbI6DlsLkJEIvPWNb/1Wi4mESkSQOLBbnjb7HrDJV+gqRkn9XkOMFlu/01SVY1+ZS4q2TyIWkjE0l67PRHQRb2GY5MPrDMYY+ucA/T1/KmnCHQ7g4G7wVYLfZF5I+OCvyD3rf3G0zvP5U0lF7IqrfaG0iqOsDhiWC1gtrv1RLPFi9u/uub8450BpkUtu35Glr8gr3b/d3+YSRJeDxGgEEWGkm7vhifzXwt2MmCfdHH6tf25urtvnEydOoLKy0pAAqd27PX9sd64vmmCM4f3338ejjz6KZ5991iOorLi4GMXFxfjHP/4BwBWI9bOf/Qx33XWXYTNxdg6MS01N9Wn9tLQ0XfkqKyt9KlcP9fX1hpdJEARBEJGAlhgtXhG/OPUXmTikmaQbhqAlggIAOycxGuEfMqkQgwKrYuxMqb4iEwC08GY4uQMm5vnYzmzxXYIAACAASURBVE5itIhELrVq7PRZIoMwWMqlJQft2CZZe7zJtIxEj3hUj8BNj2BNds82wQwLi/Pa1mAibb9eMZqfkjuZYEaFE628BVbm33XSm5QsUDGat34DoH/fEQThTpW9QprWLkaTxj/EVnAWEVo451hTtUyYpkDBhRmXh7hF0YmJmZFuzkS146RHWpVde/baYNO5b9yG0WJ7giAIgiAIgtADxeeFjnDH6FF8nn4oPi8wKD6PIAiC0I1MjGY2KO4jrwA4fgg31ryNxek3CbPIBnVGMyUa25SfbVw9fPMn4A9e5z3fbecC/9gO1m8IuNMJ/uJ9roGwqsR605mps6XimFDSrXd3qRit0hZ7A6c3Fut/35lkDWJDggT/cRv4g7OB8lLvmQGXWGjkBW6L2Iz/Ae8sRlMUsGlzT3/OK2wXo2U4xXLq//6ku9lRxdEa/XK9NjJjdA4hzjlw7KA40WwBs0pikvLEYrTRzdukdVXHQIhQlcY2RPsxwr9YAv7UPKCpwdXfue0xYO697bI3XlcF/vAc4L/rvJbFpt+gq05mNoP36AMcKUFBa4lYjCYPjyHCRF0Tx9xFKv6zy/8yrh7JkJoQW/0TIjLgmz+VprEZ4t9dIhST/PjkMSRG23qI46pXVBzxc56Sm8bReUwQneEbPwJ/8ufeBdeX3Qp89Ibn8iYbCuwHcBSeBreu3i86Uctx9Ssqvjng+hxvAZ67jmHeeQqKysXX5oJOIlZ+YDf4H68Bjh7wrfLSIvAdG8CGT/Kj5QTRtSAxGkFEGCZmQpbFR80rEZWMHz/eY9nWrVsxbdq0gMveunWr2+eEhAQMHz484HLDidlsxpNPPom7774b//znP7FixQps2bIFLS0tHnmLi4vx2GOP4bnnnsNrr72G2bNnh6HF/tHaarz0g/PYeTBCEARBEB1plgyqBYB4gwfW6hG3EP7jbT86uB2c86if9YwIPXIRVSIUpoS4Ne5oyaeanI1INnsO9pDJhEiMFl5kModwidGsSgIYGLhAUNNRKCWTS3mTaRmJ7DxwE5pJJRodxGiSNjfpFKyF+/6SKOtn6BSwyvJ5O7YSFfnU2I3OBr8Fko2q9tS+gQpP9UjPSIxGEP5RaRdPz8jAkGHp1v5JBD2BJAKhpGkPDjXvF6aNSpmETIuBo5ZinExLtlCMVhluMZqf/RWCIAiCIAiCCAYUn9d1oPg836D4PP+h+DyCIAhCNzIxmsmgoV15hcB3n2NS09e4vvZ9vJfmeY8+UQc0NHMkx8dOHFZJhfhenJEIpCcas5288gT4A9cADn0TgfH7ZwHv/QiseB1Y8pL+ii68BuyeZ/1spbGY8/KR6qxFnclTQFu1fTswaFQYWhU8Hliqv0+XEt75OH2Gt7aA/+5yoNbzHZKQgmFgj78DZna/NrGzJgAPLAJ/8fdAfTWQmQP2+1fAenUYXJ9X0C44ynJWCYv/xzcci2+OvXjQIj9ex0W79EpKbSVgqxMmsb8ul67GUjLAUzOBOvdjhwGY1eMnLD/e22OdKlv0/x6LVTEaLy0Cf7SDzMxhB3/1QbD8ocC4S1x5FvxalxQNNz8I1meQ/sp79AOOlKCw9QA2JU7wSC4ui/7jJtb47Qc8ICnarOHAqz+LrfsKERlwzoH3npOms/yhusvS6vuoMSJGa7FzzHhexUntMGIAwPVjGD7dzVF9Kkw8M8klIxpXQOcyQXSEl5W6JO3eZOsJyWC3/wV83TLX77VOFJ74GuvTPMVoJRL5V1fh5sWnpWgA0GwHbn+HY1gel/7G699BjMadTvDfzwLK/DOA87umAp9WgiXKx3UQBAGEdwQoQRBEF6Z3797o3dv9oexnn31mSNlr1qxx+zx27FjExcUZUnYbTqfT0PL0kpOTg3vvvRfr169HbW0tvv76ayxYsABXXHEFkpPdO361tbWYM2cOli+XPzjXS0ZGhtvnujrxQ3oZtbVeTMyn6NbNfabUv/zlL+CcB/TvzTff9KmtBEEQBBEtNDubpGnxirEzJsoG6tp5K+yqvmAnQk6jU/vNBweHEz5OpUcQ0JAFhVD8JEOrDTKBk0NyvTErJEYLJ/GSe0Sz013oFarjUWGK9D7YURbVWdzW3h6D5aJa6BKa6ZBoyO7THbdRJuPQkhSGCln7m9VGqNz7jNEyCZhMuHY6XUOM5kVupoW3+7pdInnUix7pmV6pHEEQ7sjESenmLBKxEkHls6pl0rSLMmeFsCXRT6a5u3B5lSO8UztKJcGm0PU9CYIgCIIgCILoelB8nn9QfB7F5xEEQRDBg8ukWgaJ0VhuQfvfT1Q8Js1XEt5HxoZzsFK8vMDIeVe++LduKRoA4Phh4PtN4J/+S/cq7NNKKH96Bywh/HEMAIDcfGQ6PQdTA0DV1u9C3JjgckAi15ORbA1SQ4LFd2v0SdHSs8GWH4by5law3gOFWdiMG8FWHQNbegBs+WGwCZe6p+cVtv+dKRGjAcCe4/qaHk0U+yEUyIjVV2XHD8nT8s/UXrfDvawjw1mJcHmVfI7tqEEmRmMMSDM2HD6k8DXviZefujfyxgZgw0pdZbHrf+Nb5T37AQAKW4uFycUx1heKduwOjve/038NvWoEcGKBgtL5Cn54TEHNQgVL7zAhNYFkSkQQ2L9DnjbtBnmaAEWRKz14jIjRPt0NXVI0APjNVIaKZxXse8L1r/wZBf8zjrQnBOHB5x94l6IBwMybwVIywG56QJhc2FIkXF4c3vlWw0pZHcdne8Rpz36mwuY5bxAAoH/3Dn2O7zf5LUVrZ9OqwNYniC6AQdOKEARBEP4wffp0vP766+2f3377bTz11FOwWPwfZFZRUYGVK90fDE6fPl2Y19xpBheHQ79sorpa/JIrlFitVowbNw7jxo3Dvffei9bWVixbtgyPPPII9u/fD8BlZb/77rtx+eWXaz488EZOjvtMsUVFRcjO1v+2tK09vtajdz2CIAiC6Io0S4QuJpgNH7QvE5a42mGDRUk3tL6uhh7BiV21w2wiGQPhG1JZUASIkLTaIGu3QyITspCoJKzI5FNNqg2cu2Y3VbkqvW8F43hMUJKE4rM2WZRdbYWdt0rXDRUyCZu7wM27REP6HXSQY8mEgxEhSpTscw6OFrXZqzBEum1evkstcVogYjFvUjWZ5FF3+Tra1qw2QeUqFEZBEgThCzIxWpbltGiJQRxEyHlsBGcRoed4Syl22bYK0wYnDkdefL8Qtyi66Xi+dqTKHplitEj4bUYQBEEQBEEQRGxD8XmBQfF5BEEQBGEwTklfwCAxGvJOy2R62Y/AwlthZ57y1uJy4OxexlQZCcgG3udliJf7Az8oGSmrtc7LfwD2it+BeDDpcrBE+eRmYaH3AGQ69+AQ+nokVVaLY06ilQM+vkYZ0jM47WiDt7YAP24FSsVCHyGWOGDwaLBe/T3L2/ypvjImXgaWdYbXbExRgOxccWIHMdrQFvl5s+sox9CesSWw8UcokBmrr8rqJb9nFQXIzBGntZHTC9jrKV/MbBWfqDKpWDRR1SiOt0hPAEyK9nnCG2qB79YCh/a69q351H0/LRPIHwoc+hGo9vEix5hr3cKzwcy+91E458DhH4HFfxZn+PwD8DFTwYt36pOO5hWAJaX61AY2YAQ4gMJWsVBv3wnAqXKv+7cr4VQ5dpYCPxzlSLIyjC8AeqaHZv8crgIafehajOjN0D3V1bZcA/t7BCFE43cAGzDcp6IYk59TaoyI0XYf178d3VMARWHo76VrQBCxCq+vBr7/GqjpILE2W4DBo4BeA9qvGfzgXl3lsf6nrklX/gr48GUPWbGsX7S/vOv2i37UEHYv3S5P65N1+m++7YuA28G/+QTsout9X8/e6nruVNpJejd8otvkCQQRC5AYjSAIIozcc889WLRoUfugsYqKCixevBi//OUv/S5z4cKFsNtPPxhMSkrCL37xC2He1FT3B4M1NTW669m9e7dP7dL64W4UcXFxmD17NqZNm4YzzzwTR48eBQCUlpZi27ZtGDNmjN9ljx49GitWrGj/vHnzZowfP173+t9++62ufOPGjQNjrP2YWLNmTftAeoIgCIIg3GlWm4TL400Jht87NcUhqg0pIDFaIOgRozl4K4BYnR6PCBYyeU4kiJCsSgIYGDg8XwA2SdotE1kZLYMkfEMm91KhooU3I54loEVtEn7XQHCOxwRTEuDwDGhqu96KpGltaN3zjEYm7up47sra2nHdeMl30MKb4eQOmJhZKqaTfX+hRGufN6k2r2I02TXD27FlZhbEMStaued0Ro1OnVO2CfAmLpNdy/Sip9/AoeqSyhEE4Y5MjJYpES25ExvBWUToWVu1XJp2UeaVIWxJbJBpEQ8YD7cYLZJ/mxEEQRAEQRAEEdtQfJ6xUHweQRAEQQSITP5hNijuo4OQyAwn+rUewn7rAI9sReUckEyGE41US14hZyYbs42cc+CjN3xfUa8UDQCb5X//NFiw+ERksjphWlVtC3iTDSwhNp7zy6REIs5IBS4dFrzzh5eVgv/+CuCAb78H2te/5k6wXz8NZjK5Pv/zaWD5617WcsHyDBg43UHMdl3dEtyf83/CbHMWccwYxpESHzvXopIK39+Zp8QHoSGRQKMk7igxxftvr7RM4eKs1jLh8pgQo8nuY14usXz7evC7LzK+QW0Mnwz85QOwFP3mKe6wg//1DuDjf2jne0r/fY/Nmqc7bzsXXgM8fQcK7AeEySoHtv8EjO7re9GxSF0TxzWvqljb7l3hUBjwwhyG288P/sSkH+3Uf/1MjANuHBc79w4i8uFHxSIhAMBFc3wqS9GQDqkxMinpg8v0bUecGeglvuUTRJeAf7cW/KHrgcZ6cYYrbgN+sxAwmYBP3vZeYEZ34DxXrCWLs4KfMxVY8Te3LAWt4n4R58DWQ8DYfF+2IDbw5zccAGSd6qfzZa8Bb4l/8/rEmnfBC84Eu+F3ulfh5UfA77sCOLDLI4098hZAYjQixgj+rxKCIAhCypAhQ3DJJZe4Lbv//vtRViZ+YOuNPXv24Omnn3ZbdssttyAzU/wrsXt39wFte/bon8noP//5j09ts1qt7X+3tHgOuDWS9PR0XHXVVW7LDh48GFCZEydOdPv87rvv6l63oqICn332ma682dnZGDFiRPvno0eP4uOPP9ZdF0EQBEF0JaRitCAITmTiFgBocsrlMoQ+vAlUAMDOdcwKRhCdkMlztM7pUKEwRXq9apS02yE5DyyC2X2J0KF132k+dY+QfadAcI5HWZltkjEtsVQozw+ZCKNj+2TSr44ysUQd92mpjCMCrgdacjY990jZ96m1X9rzmMQzTjeq/ovRbE7JS9pT2Lm9fcCZP8iOCY98OgRqBEG4U2kXP5fuZjk9LSOTDJKJjdAsItTUOKqwpe4rYVovaz4GJp4V4hZFPzIxWp2zGnY1MDlpIMglteHvixEEQRAEQRAEEdtQfF5woPg8giAIgvATp0O83GQ2pvwe/YAOwhmZDKQ4vHNpGE61TfymKtOoMMIdGwwqqBOMAQXDwB5/F+ycIIptAiBz2FDh8mpTJvgbj4e4NcFDr1jposHAV/cpSE8Mohjtpfv9lqIBAJa8BGx29W/5vu3grz2kf90OckW/yS0AFNdw1V6Oo+hhPy7N+vznsfWWuciPn5kxK2iWCR4SU7yvmyL+fZ3RdEK4vMoGqGp0H0v+iNG4wwH++E3BaVAbO9aDv/1X39ZZ+75XKZovsDv+D7jubt/XS04DLHFSAQgA3PA3NZCmxRRPf8Y7SNFcqBy4818cB08G//y699/66phQ4LoP98qM0WsnEZnIxGh9BoJliGN0ZCgaRg8e5fcyADhSrX8b8rsBJg1RHEHEMry1BfxPN8n7zIBLarZhhffnEdYEYPSFYC9/CZZ4ekwA6+lpOdPqF81Z1DX7RSV+PB9LsgJWCwM/dhD8Wd/7qTL4qw+CF+3Un//lB4RSNIKIVUiMRhAEEWaeeeYZJCaefutWU1ODq666Cg0Nvg1AraiowDXXXIPW1tMDW3r06IFHHnlEus7IkSPdPn/00Ue66vr000+xZcsWn9qXnp7e/vfJkyfdZs0MBmaz+wvijoFf/jB58mT07du3/fPWrVuxatUqXes+/vjjPm3vr3/9a7fPv/vd73w+HgiCIAiiKyAbVBuvJBhel1WJB5P8hCbpRuDo2Yd2Hr4B3ET0IhUqRcjg+0SZFErSbgcXB8iamUEBsoRfyOReQAcRmYbIKRjHo0y01dYOLdmW1vYYjWzbO+4vmVSuo0RD+zuwuf3v0YYQbq+MeC2xm5d7JOdcLn3TsW2y70CPkE2GlggQADhUqHAGrfz2fAFsA0F0VSod5cLlWZbuwuUEEShfVn8EJ8R93Isyr4zdgQBBROt8rXKEb6RbJEtqCYIgCIIgCIKIfSg+LzhQfB5BEARB+IFDcr8yWwwpnsVZgZze7Z/7txYL85WUR/+g+45USeY11RLK+AL/4t/SNPb0CrDbHvOtQGsC2Bf1YF80QHlzK9gFV3lfJ0xkdhNLjMpN2cCWtSFuTfDQI0YbkAN8+lsT+ucEUYpmbwU2rAy8nC8+dP2/bqlvK+YWBFw3s8QBPfq2f766fpk07wdbY+tadLDSt/y56d7zRC1Nkt9XCeIJHDvC0sRitMzGI8LlKgeqo3x+a3/EaNi9GTh5LCjtcePLD33Kzr9YYljV7PevgM35X//jBoaMRZpah2xJLMzBkwhocs9Y4t8a1+Ml24K7j07Uei+/ewpgf1XBhvtNGNWH4kiIEHP8kHj5xMt9LoqZ5EoPVY1+KdGy7fqvF4UUjkh0ZXasB2pPes3GP/+39vOIBSvBPquC8tzHYJ0l14LfdsnchjMcYtnw4aqu2S/6qcr3dbLa+uje+sk3PQD2ZYP7v0ff1lyF6+x7c4cdWL9cV16CiBVIjEYQBBFmBg0ahBdeeMFt2ddff41LLrkER46IH9x2pqioCFOmTMHevaf1/Iqi4O2330Z2ttw8Pm7cOLegr2XLlmHr1q1e67rpJt9nlRg8eHD73w6HA19++aWu9RobG/HCCy+gvl7DftyJhoYGLF3q/hKnY/3+oCiKR0DUvHnzvM50uXTpUrz88ss+1XXjjTdi0KBB7Z/37t2LK6+8EtXV1T6VU1FR4bEfCIIgCCKWaFabhMuDIUZTmCItl8RogaNHXGJXgxu4T8QmUqFSBIiQALkEQNZumSDQzIwJkCX8Q0ts1naP0BI5JZiMmqK4Y5kS4VibqE3SHgUKrCze8PbIkLWz4/6SSeU6yt/0fAfycsJ/PbAoFlhYnDDNWz+jlbdIJWN6pHuJJnHAYaPq/wCwRqf3de3cv/u6XbXrlqVSH40gfKNZbYLNKX4Gm9lBtMQgCzDsekERRGA0ORuxoeZTYVqWpTtGpIwPcYtigwxzN2lalT18YjSZ3D4YfWGCIAiCIAiCIIjOUHyeNhSfR/F5BEEQRAhxiicLgcnACfGGjWv/s6D1gDBLsdgPErXIhDIZRj2C/mm/PG3gKLd9rovhk8AscWDmyJ8IsWe2OIZkVcqlQLm+vnQ0UKkjvGDK4NPvSfm+7eDvPgu+5j3w+hrjGnK0RC5Q9IXP/gV13iTgn3/1bb3c/MDrBtwEjeOaNkuz/XAUUNXYeM/cbOewtfi2zgUDQy/34U4n+OZPoL7xBNRFj4J/uRS8KQjxNY2S2KFEsWzRjRSxGK1nvVj2CQB7j+tpVOQiF6PJjxH+zcdBak0nThwGX/IieFmpq97iH6AuuBPqL8aD/+sZ8JOunc+//xrqQ9cDRrVLUYBzLgqsjNQMAEC2UywecahAhf5HITGL3cFRohFK8KPYn2IY+3SUP7k/YFJIiEaEiVqx+ZRl9/S5KK3DOBa6RL5cL87Np3Oa6MLs/lZfvq+WActfl6cPHgOmSFRBkt923SXCWM6Bsjp9zYol6pp8v/i2yYv5ljWa+djwSWBmi9s/nDkW0JL+vj0f6qsPgf/zafDd7pMn8T3fuZb/6xngX88Cdn3jKQgiViAxGkEQRARw66234s4773RbtnHjRgwZMgRPPfUUSktLhesVFxfjoYcewrBhw/DDDz+4pc2fPx9TpkzRrDclJQWzZ89u/+x0OnHppZfis88+88jb2tqKRYsW4dxzz0VZWRkyMjL0bh4A4IILLnD7fMstt+Dll1/Gtm3bcODAARw6dKj938mTpx86tra24u6770ZeXh5uvfVWfPTRR5pBWFu2bMGUKVNw+PDh9mXnnnsuBgwY4FN7Rdx99904++yz2z8fO3YMEyZMwJIlSzys7DabDY8//jiuv/56qKrq0/4ymUxYsmQJUlNT25etXbsWZ511Fl555RXN7a+qqsL777+POXPmoFevXnj++ed92EKCIAiCiC5kg2rjleAMqk2UyVt0SL0IbfSISxw6JSgE0RGZCEmPLCgUyIRMsnY7JCIhmVCJCA0WFgcFJmFa23cp+06tLB4mZnygq+wYbxe1ySRhpiT/Z1j0A1k77bwVdtUOznm7zK0zHaVqViVBKupp21Z5OZEh45DtC2/9DNmxBeiTvknFaDrkZiJUrkr7aB2xq/7d15t9kJ2RGI0gfKPSXiZN62bxPkUjJzEa4SMbaz+T3jMuzLgcJibuXxHaxClWpJrE08uHU4wmlVZHyG8zgiAIgiAIgiBiH4rPo/i8jlB8HkEQBBE2HBIxmtm4CfHYNadFowWtJcI8R2uAxpbYebdTLXlFrSWU8YkjchkPy8gGhk8GhpyjryyTGWz2Pca0KwQUarwmfNkyG7zeN7FspFLtJbwg2Qrceb7reOLvPQd+27ngLz8A/vhN4PMmgpf9FHAbuL0V/Fadx5Ee9mzxnqcTLMGY9zbs1ofb/76i/iPNvHMWxca1SOsY+uMMz2tRvAX41fmhFYJwhx38kTng910BLP4z8I+nXJ/vmgpeIxZH+V1Xo+Q3VaI4TsmNNLEYrUfNj0iyileZ/LQa1fe1apu47ZqCzyb/J730Fb7wXvCbR0P9863gt4wGVvwN+HEb+Ct/BL+yL9T/nQF+5wUueYdRXDwXLKdXYGWkuJ4TPFzxF2mW97dG73FjFIcqAacqT1+8iQdVYllcoV12nBm4ZyppEIgwUifp76aK71daSAVGALjWiRgllJTru1Z0TwFuGU9iNKJrwo+WgL/xhCFlMa3rUM9+wsWPVjwpXSXWJPp6qG/2fZ2sJIBv/Rz47zp5pkGjgJEXeCxmZ/QBLpqjXcE7T4O/9hD4ryaBL/4zAIAvftL17OG1h1x98EWP+N5wgohyIn96CYIgiC7Ciy++iIyMDDz55JPg3PUjsL6+Hg888AD++Mc/YsiQIejVqxcyMjJQWVmJw4cPY9++fR7lWCwWLFy4ELfffruuep944gksW7YMNTWumWrKy8sxbdo0FBYW4qyzzoLVakVZWRm+/fZb2Gyup/VnnHEG5s+f79PMlNdeey0efPDB9lk2jx075hFs1sZNN92EN998021ZXV0dFi9ejMWLF4MxhsLCQuTn5yM9PR1msxmVlZXYtWuXxyyeiYmJeP11DSuyD1gsFrzzzjs477zzUFnpsr0fP34c1157LXJycjBq1CikpaWhrKwM33zzDZqamgAAaWlpmD9/Pn75y1/qrmvo0KH48MMPcc0116C2thYAcOTIEdxxxx246667MGzYMPTu3RupqalobGxETU0N9u/fr3sWU4IgCIKIBZrVJuHyeCUhKPVJBUYk3QgYLalLG3aJEIogtJCdnwkS0WGokQkXZe22q+LzwMyMC5AlfIcxhgRTImxOz4CuNhlXqI9FmeyrXdQmaU+opYFa29+s2mBRrOAQv+zv2FaFKYhXEoTys3YZXITLOBJMSah1egZQeOtnyLarrUxv+Ctkk9GsNuqSI9n9FJ5qba9HXpLXEoRPVNrFUQ0KFKSbu4W4NUSs4+B2fFktHgSRpKRgfNrUELcotsi0ZKPOWeOxvEoy42OwUblTKsGLFGk1QRAEQRAEQRBdA4rPOw3F51F8HkEQBBEmnCEQow0ZAz7nf4F3n0WhRIwGAAdOAmfmGlZt2HCqHDVSMVrg5fPmRqBcfP9nTy11/a8owHMfg7/xOLDtS8BWK8isAPlngl1zJ9goz8GxkUr/HAZIYgDuPuM5zC35AZnDfRP6RiJVEikRAFw/huH+6QxDejLwk8fBX33IPUNpEfjb88F+91JgjfhqOWDXiKXo0cdz2fHDnssiAHb2xPajJp63YH/xEAwo3CPM++9tHA8e4TgrL7rlGJUaISp3ns8wug/Dog0q9pcBI3sz3D2FYXxBiLd5w0fA+hWey/f9F/zDl8F+buDgeqkYLcX7uhLBA2tpwoBsFduPiKUy737H8fOJ0XkcVflzH6s84V9lomsJALS0AFUaZTbUAJ++I0777nP99Z/RB8L5T9uuZ2ndwK67C7jhPv1lykh13Z+uqV8KmX7invc47row8KqiGT0SlC/3AVMGh77+q0YAv5mqYEJhdJ7bRPTDOQcaJGK0FPGkhVooivxYDqJ/MGRonc99swCrGRibz/DoZQw90um8Jrom/E25sNUX2P8t0U5PTAHP6A5Uu5+YlzfIxdXFFRwT+3etc7Ohxfd1MpMA/txv5BnMFrCFn0plmOyBReC7NwNHD3iti7/xBHDWBNfzJr306APEaxmWCSI6ITEaQRBEBPHEE0/gvPPOwx133IGioqL25Zxz7N69G7t379Zcf+TIkXjttdcwevRo3XXm5ubiww8/xKxZs9xmOiwuLkZxsefsRv369cPq1atRVlamuw4ASEhIwLJlyzBr1iwcPXrUp3U7wzlHUVGR2z4SkZubi6VLl2LYsGEB1deRoUOHYu3atZgxYwaOHz/evrysrAz/+c9/PPKnp6dj5cqVcDqdPtc1depUbN26FXPmzMHWrVvblzudTuzYsQM7duzwWoavM4cSBEEQRDQhkp8AZw13OQAAIABJREFUYRCjOSVvpAnd6JGc+CtQIbo2ES9C8lFI5JAIAi0KidHCTYLiTYwmvlcE61j0JvOUCSlDfW5o1deo2mDRkGJ2ln4lKEkSMdqp7yBCtlmGvJ+hfY/UStcjGkk0iWdibVT9m1W00alvPdn1zBt6ZKrteUleSxA+IROjpZuzYGKm9s+Mda3AByI4bK3bgBpHpTBtcsYlsCrxIW5RbJFpycahZs/3J7LzPNjIxPaAXOhLEARBEARBEAQRLCg+Tx8Un0fxeQRBEESQcEjek5pM4uV+wi6eC/7us+hj/wkm7oCTeQ4dKy6PDTGaTIoGABlGPILWGqjae0D7nywxGezXfzWgwsiif3ft9A+32PGL4aFpSzCpkoQXPDyT4U+XdxjM/O2nYsHhhlVAgGI0vmmVPPHsSVBeXOu5TtlP4Nf0D6jedvqfbUw5bYy6wCUKBJBvP4RsRzkqzOIDasWO6BejyY4hwDVwftYIhlkjjL3W+wrfKJcgYMNKwFAxmiR+KEEcp+RGiliMBgD905ux/Yj44v7RTo6fT9TTuMhDdvxoitGOyOWnUm55CMqtD0uT1asLpDLQQGGfVYElhDZOj6VkgMPlYRvevBM74sXXufpmjpT46L4GBUJxhXcb0/IdHFMGB2cf/VQlXj7nHIZ3bhMLRQgiZDQ1ALJnjim+PxNUJJIcAOCqeBLpaIFzLj2fl96uYNaIrnudJYg2OOeAVp/cF3rp+B2Ym+8hRmMARjX9F9sSRnpk1yNLjTX8EaNloRb4ab80nc1fBqYhhGZmM/DAIvBfT9FVH18gngBJyMjzoSz8VH9+gogiSIxGEAQRYUydOhV79uzBBx98gDfeeANfffUVHA7J7FAArFYrLr74Ytx222247LLL/BqYduGFF2LLli34wx/+gJUrV7bPiNmR7Oxs3HzzzXjooYeQmprqc+AVAIwePRp79uzBu+++i08++QS7du1CeXk5bDabNDApLS0NX331FVavXo3PP/8cO3fu1NwfADBw4EDcdNNNuOeee5CYaPygmuHDh2Pv3r14+OGH8eabb7oFrLWRnJyMa665Bo8//jh69eqFdevW+VVXYWEhtmzZgtWrV2PhwoXYsGEDWlq0e9uDBw/G1KlTcd1112HChAl+1UsQBEEQ0UCLZGBtvBKcQbWJJm3JDOE/eiQn/gpUiK6N7NiSnc+hxtfrikwQaGYkRgs33qRWcilXcO5Z3qR7UmlgiM8NLSlZk7MRTkX++7/zuommJFQ5KgTlnPoOJNscKdcD2b731s+QfZdmZoFFifNab6IiEaPpFJx5tkffev4KT/XIVNvwRaJGEIRcmJRl6RycLn7+LHqmTBAiOOdYU7VcmGZhcTg/fUaIWxR7ZEoGlVTZPftKoUCrPxMpklqCIAiCIAiCILoWFJ/nDsXnUXweQRAEEUJEQiUAMBsc95GbDwCwwIG+9sMoiSvwyFJU3qYKiW6qNcRomkIZvRzxFNkCcMnsevQ1oILIJjWBITEOaJS84n+vqBt+EdomBYVKnVIivvLv4oxVJ8Ab6zUHP4vgqgp89i/wF+4D6iQmCQBs1PnihO69gLxC+XHqA2zuvQGX4caZ49rFaABwoW0d3k+7Tpi1JDyvsAxFJrZKsgJWS4Rca49qiLRKfgDn3LiJ0po8f8MBABJ1iNG6y62dF2aU4gMMFKat3AnYWjiSrBGyv33AVzEaLy0CSn7wuR424jztDCMvAD552+dyvTJ0bMilaADcpEWDWn6UitFKKoDhvULVqMhDjwSlpDx4MUFVNnHZPdL0rc9bW4DVi8F3fQu00GT3hMG0NMvT/BCjMUV+j1KjPPSurglwSNxuuTSvBNHF4ZtWg3/zMXBoL9BQG3iB3fOAPB1itMKzgF2bPRYXtJYIxWi7jkb5hcgP6jUu8zImH/5Anmi2AEPO8V7IwJFAUipgq/Oe1wchMht5vu68BBFtkBitC8EYSwEwEUAegG4A6gEcA7CLcy5XU/pejwXABAC9AfQA0HCqnu2c80NG1UMQsYzZbMbcuXMxd+5c2Gw2bNu2DcXFxaioqEBrayusVitycnIwYMAAjBw5ElarNeA6Bw0ahOXLl+PkyZP46quvcOTIETQ2NiInJwf9+vXDpEmTYDafvm2cf/75fg12S01Nxbx58zBv3jxd+RljmDx5MiZPngwAaGpqwu7du1FSUoITJ07AZrOBMYbU1FT07t0bZ511Fvr06aO7Pf4GRKWlpeH555/H008/jXXr1uHgwYOorq5GdnY28vLyMGnSJCQlnX5w6+/+Alz7YObMmZg5cyaam5vx7bff4vDhw6isrITNZkNSUhIyMjJQWFiIwYMHIysry696CIIgCCLaaJaI0cIlmSH8w8mdaOHenybaVf8EKkTXxcHtaOXiQQuRMvheKtOSiAMcXBwgS2K08ONNahVqEZm8Pa7AD6k0MMTnhlWJB4MCDs+34U2qTVOK2fl+Hy+7T6s22FW7VMQVrH6Dr8j2vTcRmFT4pvO7lB0rvgjI3NbT2S+yq/4JT32Rnfm7DQTRVZGL0XLcPsvCszi6XlAE4R+7bdtwvPUnYdq5aRcixZwe4hbFHp5CQxdhE6M55cHHkfLbjCAIgiAIgiCIrgfF552G4vMoPo8gCIIIIU7Je1KTsUO7WEISeLeewMljKGwtEYrR9EgwogGZTAYwRozG/0+i/erRF8xooV2EYlbkaV/W9g5dQ4KI7DjK6nwMcYntAQCOHgD6i6U7MvifbwXWvOs942U/Fy5mjAG3PQb+xE2ARITsQXI6kJENlBadXjZoFDB5lr71dcKuvh38rb+0f76v8lm5GC2Iwp1QIRP7ZEZGWJILbwPqv1sLnHORMXU1ysRo3uWBLCkVPKM7UO15o5qTsBm/kojRAOD8BSrW/U6JKjka51zjGuS5HXzfdvDbzvW9onOnAcMnaWZhc34L/vVqTVGjz8RZwW592LjyfCE1s/3Pxyv+hPfSZguzPbFKxYe3m0LVqohDzzW4OIihBr6KATvCHXbwe2cCO9Yb2yiC0IMfYjQoChhXwZlnB1uNcjNalZawOpL6QwQRYvjiJ8HfeNy4AhkD+/mjYCbvfRf2P/eDL3/dY3mB/YAw/8qdQLOdIz5SxM4hoEF7jhwPzkn4CTM3/kGazm5+ECzZu92VxScCN/8R/CV5WT7Tsx9w2a3GlUcQEQaJ0boAjLEJAB4GMAWS75wxthPAqwBe435GBjDGsgH8CcBsAJmSPF8DeJZz/qE/dRBEVyQpKckt8CjYdOvWDVdffXVI6vKHhIQEjB49GqNHjw53UwC4ZgSdNm1ayOqLj4/Heed5maWDIAiCILoIsoG1ViUhKPUlmMRP5GVCEkIfegUndg05DkGIiIbB91IhkeS8kEmiSIwWfmRyrXCJyGTtaVYboXJVeu8KlqhNhsIUJCiJaFQbPNKaVBscTHzMW1gcLEqc27JEmQzOaUOzxr061NssQypK9HKflKXr3a5ERTwTa5PT8zvRg80pCWzshEMiqvNG2zmlKy/JawnCJ6qkYjSxYIkg/GVN1TLhcgaGKRlXhLg1sUmmJVu4vMZRCSd3wsRCG9StJSuVPWshCIIgCIIgCIIIJRSf5w7F51F8HkEQBBFEHOIJ8WAKQtxHbkG7GO1TQXJJRXQPvG9DJtMwKUBKfGBl8/pqwFYnTswrDKzwKIJ5GRO9f8dBDBjeLzSNCQJaUqLMzlIiu0asw5ESn8RofN92XVI09qd3wLr1kKdPuRbIOgP8rqm66mVPvAvkDwVWLQYv2QU2YDhw9R1gcYHLoN3qyegO3mcQcPhHAMDwlu9xd+ULeD7rLo+8wRTuhAqZDMQIQaMR8IZaoPakdp6F/wv2zg/GVNgojjtiOsRoAFzXWIEYLalsH9b8VsFFz4klhdsOA+9/x3HrxOiROTS1Ai2S7oHo+OFvP6VZHltSBGxZC771C6C+GkhMARsxGbjiFy6Zota6+UOB1zaAr1oMvLNA7yZol/nSl2CDRhlSls+knJ6ULd9+CMnOejSYPI/BZdsBp8phUqLnuDESPdfgQycBu4PDYjZ+H8nuwRl6Qgm+/g9J0YjwkeLPxI8MClQ44SlG83fCh0gh2MJqgohGeG2l175bG2xJEfg1/bUzXf5zsAuvBRt1gb4yu+eBZ+YAVWVuy/u3FkvXWfpfjrlju0afiHMuFaOlJwLn9D39OTEOGJ9Ti18+PxqJvElaJrvpAd31s+t/C/TqD75+JVBx1CWqDgD26nqwDIr3JmIXEqPFMIwxC4AXAOiZ9u1sAK8AmMMY+xnnvNTHui4B8CYAb1fM8QDGM8beATCPc06j0wiCIAiCIAiC8ItmiRgjPlhiNJmwhMRoAaE1QLoj/gpUiK6L1rkpEyiFGpkUS9Z22XlgITFa2JGK0U4J+mTXumBJuWT3LA6OFrVZ3p4wSAMTTElCMVqj0waLRIwm2t/y+3SjtowjwkWJ3voZgX6XiSaxGK1RbQDn3GtAnN72dMbBJRF9XvCl36W3LQRBuDhpLxMu9xSjdY2gByI4HGraj6Km3cK04cnj0D1OPqiD0I9MjKZCRY3jJLIsOSFtj0xWamXxMDEKVyAIgiAIgiAIgiAIgiAIogvhlEwMaQrCs9K8AmDnBhS0lgiTi8Vz5kQd1Y1igUBGInx+3+3B95vkaSRGa2ftutKoFqPZWgC7U5zWUeLAOQeOH5IXdPKoT/XyDSv1ZRw61msWNnwS8KsnwV990Ht5eQVgmTnAjX8I/pvfM89tF6MBwCW2T4VitLI6oKGZIzk+et9FH6sRL48YEcjRA97z1FYZV1+jZGLFRHGckge5BcAPX3suP1KM4b20V/1sD3DrRH3VRALHa+VpncVQnHPgu8/lKySnA917gV12K9hlt/rVHpZXCParJ6GWHwHWvOdXGe1lPfbP8EnRACA10+3jpKZN+Dh5ujDr/jJgcBcMV3A4OQ5qOxNd+VTgcBVQGATXRnUAYkm+ZY2xjSEIvSSng5n9iN1XFDCIf7+oztgUozEGpAVneBdBRD47N2rLtdvofzaQnQfEJwLN4hsj+81zYFff4XsbzpoArFvqtkj2nAgA1uwB5nr/CRoTNNsBp9i3jNV3KRhX4P77lK/+CFww5qWdWb/0uQ1swkywCTNd5a9fAf7gdT6XAQC49i6SohExD0UaxyiMMTOAjwB0nibNDuBbAEcAJMElROvdIX0ygDWMsQmc80qddZ0PYDmAuA6LOYD/AjgAIB3ACADdOqTfACCVMTaLcy65bRAEQRAEQRAEQchpUZuFyxNMeqYI8h2ZwKhRMsCX0IdewYmdSwIDCUKC1rkZMSIkmchJ0na7RCRkJjFa2In3IrmTXeuCdSxq3QubVJv0GAuHNDBRSYLoIWSTaoOTiY95kURMKqfT2F7XepFxPZCKEp2SyJ/2dMl3GaAYzcEdsPNWxDHfZgRudGq88OuA3U/hqS/9LpLXEoR+Gp0N0nOms0CJScLjuSRoiyA6sqZquTTtosxZIWxJbJNplge5VNorQi9Gk4ntg/T8hiAIgiAIgiAIgiAIgiAIwhv8y6Xgb/759IKak0CVYBKZoWOB0VPA/ud+MGt84BU7JfYlfwbVe4HlFoADKLCLZTg/VQHNdo54S/SKiAD5AHyZTIMf2A3+/kKgaAfQMx9s+g1gEy8TZ9YQCbEJl/rY0ujF2xGy80h0vyes1AgtcDuOPnwZsNXJMzv0xzfympPAW3/xnrHwLKB7nr5CJ1wKeBOj5Z8J5PTWzmMgbPwM8NVvtn8uaJWfUxuLgelnhqBRQaKkXHwe9MkK/jWWf/sp+EeLgdL9rgXJ6cCoC8B6DwD//N/AsQPAAfHkVW7UngQvLQLr1d/3NhTtBP/geaD4e0B1AqVF4oyJKbrKY70KxREIG1chs3Qbzs0fgc2Sw+mDrRwPXcpxZm503N+KNESlvTM7LaipkEvnAGD8jMCloKdg42eAByhGw5gphrTFb1LS3T5e3LBGKkYrqeiaYrTSarkctDPF5caL0VSVS8VoGYnMJQNcsQh8/Qqg8rhnJj3XNoIIBudM9W89xqBwVdjB5jy6+9RVNrmwWlGi455MEEbCm2zgj8zRl3n8DDBFAR93CfDlh+I848R9GK/kFngsGtO0TZq9WPK7JlrhnOPldRwrd3DUNAHn5jM8dClDdgpDQ4t8vWTB8Am+6g3NugJ+TjTyfMCaALQ0+bwqGz8jsLoJIgogMVrsMh+eUrTnATzGOa/uuJAxdjGAVwDkn1o0EMBSxtj53EtvmjGWB2Ap3KVomwD8gnO+t0M+K4B5ABYAaHtrcxmAPwP4ow/bRRAEQRAEQRAEAc65dGCtVQnOlCIiCQtA0o1A0ZLVdMSu+idQIbousnOTQYFVMSBY1QBk15UW3gwnd8DE3B/dOSQiIRKjhR+ZiKz51L0q1CIyLSlWk2pDY4hFbVrIzoNGpw0ORSJGE7RTqxzZ9kbD9cBbP0Mq3dN5bGkdK43OBsQpPorRtGZC6oC/wlNf+l16+xgEQQBV9gppWpZFb1RjbAVEEMZT3nocOxq+Eab1TxiKvgkDQtyi2CXBlIhEJVl4X9Y634OF7P6tV+RKEARBEARBEARBEARBEARhOPXV+kQKu78Fdn8L/v0mYOGngctGJOIkZgrC0K68QgBAYWuJNMtLX3Lce3F0D1L3RYzGD+4Bv+P803Krop3gXy0DHnwDbPoNnvmPyvcdRl7ge2OjFG+H/aK6iXjJ7oTZYgpNgwxGdgwBQOapcCD+wfPgL9ynXZBDHOPSGd7YAH77ZO8ZE5LA7pyv+7rD+g4Gn30P8P5CeXl3/dUwaZIuxrsPDO9tL4WZ2+EQxLrNeF5F+TMKuqVE5zWpWPIKzmiJUGf4F0vAH/sZ0Hn45/eb/HqDz+eeCXxcDpacpn+d/TvAf30h0KQjTkenGE0kcGiv79cXYv793+C8A4OkeSbOV/H1HxQM6Rn5x9P1r6vC5bnpQKLVvf38H0/JC4qLB7vpAeMaNnkWMPZi/H/27jvOjeL8H/hnVtJVt7tz99nYvjPG9GIIzaETOtiUHzgkAUIgJkCAQPgmQAiBFGoghJJAgNA7JmAwmGLAuFKMbTC2z/3cfcXldEXSPr8/dLZ10jyjXZ3q6Xm/XveytTu7O5JGuyvtzGcx6/2EFldX3wPVIzrZLc2itn9x49O4tv+92qLhEJDsby/Jdsck53uKVLxGW1tid187lJcC9OhNwPP690yIjOk9EOrimxNbVllQzBHatnO7753bwGohujKybdA1J/Hh+JGG7w01bgIAQF18C2j+DGDz2o5lfnIj1MDhmoXjU5VVMXudAgQwpnUGPis8LKY8970mV133MuGBD3e9AnNWEN6ZT/jqFgtzVvDLdYsaXkIzJwMLZvILHDUWOPiETtVVdesJTPgL6IHr+BMknWPPDYeqCdHFSTBaF6SUGgXgmqjJvyGi+3Tlieh9pdQRCAea7Tgy/hDA/wMQL9r9NgBlEY+nAzieiFqittEK4B9KqVUA3oiYdZ1S6l9EtDLOdoQQQgghhBBipwC1wYb+R8IiSx9O01lcWIyEbnQOF1YTLZhggIrIX1x4YrFVAktZaa6NnjG8KuRHN2+PDtOCtv5z4LMKtNNF+nDvpb/9GJHuILIiY9tqYo9dGQlGY47bzXYTQqTvNKp7vbn3oMVu2hlQp9t2tuwPuNch3nHS38n30hTO57e3oxcqHK1nV30cBqMlGHjq5rzL6TmGEALYHNignW7Bg17ejh1FVR52BBXJ8WHDmyCmc9/x5WPTXJuur9zXB/5WXTCa4ZbjKcIdv1P1+40QQgghhBBCCCGEEEIk3defAPNnAPse3rn1hJjgJG8KbohXGQ6VGda2AhaFYKvY0Ko/vkX4zYnJ33Q6Nei7A6BM8xM0vfrPXaFokdNfuE8bjIY1y/QrP/0SKCs7+hqkg5Org5Nf/xKn/b9DUl6XVDAFo5WVAhQMgJ67J/6KmODDGB+9AtQaQvfaqSdmQ7UHHDplXXkX6NCTQM/cCSz/LrzP6T0Q6uQLgSNOgxo8wtX6Okt5vaBjzw0/ZwBehDA0sBI1Bfrn9d8ZuRnWaNuEZZkKRnvmTneD5p2Y8gIw9pfO6/DKP52FogFASTdn5Sr5YDS0teKIaX/G05c8i58+oX/uW1uABz8mPPLj7G5P21oIW1v087Rt59WH2HWpV5dAlSWvwamCQuBvbwCf/Q/03Wygrb2izU3A7ClA3Tpg6CjgwKMAKKB+QzgsYo8DoS68EWqvLDgmlPYMp3u2f0a6UROO8H+Oz0uOiClak/7L6Fnhyc9dBKOlICjFeAxW24DXHk5sxf13Aw4/JbFlheAoBTV8r/A5VUX/hNdhQR+ImeO5aHwwmnQNEvlozgfAd7PNZc69Emr3A4AxZ0CVhscMqWGjgMdnhM+/ViwEuvWEOugYqAOOSrwuTODwTevvwEm7TYqZvmFr+By1e1F2n0c7Ubed8MgnsTvXpZuAF+cQnp3J73i7R91Xnp4zBLUO3wvqT88n5XcidfYVwJ6HALPeBzVoTlBXLwmf31ZWA0UlUPscBhx+al79RiXylwSjdU03Aojcg33AhaLtQETrlVKXAJgaMfkvSqlXiEibNqCUGgHgZxGT2gBcFB2KFrWdiUqp/0YsVwjgVgCXmOonhBBCCCGEEJFa7WZ2XrFVnJJtFjPBIa3UghCF4NF0HhPxOQ04CVBiASoif7HBT57sucLG7VeAcKBPN0QFozEhUV7NXTRFenGhDjsCubj2aAql6gyf5YNPFWj3nc22H81MYFSq6mPCB4/6EbL0bb5I8znmPk/+UBMfHpaB58vh6tIcagIRsXfs7ex7WWLxHQ6dhpx1XCa1gaduws4kvFYI57igpHJfb1gOv+fkeN8skWLbgo2YueUj7bwBBUOwV+mBaa5R11fu64Pa1uUx0+uD6b+tYzadewohhBBCCCGEEEIIIUTC5k/vfDAaF5zkSUG/s0HDAQAFCKB/cAPW+gbGFGkLAsEQwevJ3QGvaxr00ytKNc9p6hv6wssWgFr8UEVRfRHW6MOr3IZV5bobT1b47avmq4HTFvhx2v9LU4WSbHWD/rmVlQAeS4FW1YQDf+KgUMBRiBzNmx63jPr94wm3MzX6WKjRxya0bErsNrLDwxFtNWww2rQluRnWWNsAtDK5l1V9Urd/Jf82oGZe8tc7bzqUi2A0zJvmvGwvh8FdldUdAq1itzkdJ16vYOqpMG1J9vdimLuan1fVt2PbIU2w507D9kxqKNoOyusFjhkHdcy4pK87HZRlgcr7h0Pc2u3VupAJRsv+9pJsrQF3z3lpCl4jLuAWAMrWfAO08uNFTNS9b0ENGRm/oBDppiw2GI1yPBmtnvk8l0vXIJGHaL75O5+69n6ocRP08yr6A2ddlrzbFzOBw9UBPqx76SZg/8HJqkDmzF4e/t1LZ9oSoM4wTKJHxLBUCoWABTPYsuqC3yQ1mEyNGg2MGi23sBYiisT/dTEqPELu1KjJDm5NARDRJwDmREwaBuBowyLjAURegXmdiJY42NSdUY/PU0oVOamjEEIIIYQQQgBAsyEYjQun6awSJrgF4Af5ivicBpwEEgxQEfmLa1tcCFMmuN2vcAGBXiX3Psg0NtTKboJNNppt/RXfVLZHbt1bg41sW8rE54MLxGi2m/gQDU09i5njv2k93DKZwO0PbNho5e9D0el9nc8qgE8VuFq3id92FqaWaOCpm7CzZtsPm/SdSIQQHdUF9cFoFb7YjrNcUCNJNJowmNr4DrvvP6H8LFhKLlknW7lX3/G9jglCTKVc+G4mhBBCCCGEEEIIIYQQ8dDcTzu/khAzItOb/BviqZLuQHk/AMDerd9qywRCwKr6pG86ZWybcMckG6NuCaH7VSEcfXcIr3ypv0Y1tHfHx2TbwFbDk23ueK2bgkFg3Up92TwLRjvnwPjDce/aMAahHA1zqGEunQzb0YaWL3S2Ii74MNrU1+OXOfwUZ+vKAeqosR0ej9s6kS375jeprk1q1BjuS1TdJzXbpGAAdNN5qVn5By+5qgc2rHJWuLw/MGI/R0VVaQ/g4OP5AnXr0Mfnx5gRfJFv1wIbt2b3fumxT/n6nXdQ1L63toZf0f5jklSjLujwkzs8rGrTh4C8/x3gb83u9pJsH37vrvySFHQ1qGe6AioF9Hjd0ZD4WMP3BgbvnnilhEglpaCY0M8cPZXeqYH5PJfrAquj0LoVsH93NuxT+sM+rifsCUeBPnZwzixEGtG3s2BffSLsEytgH9s9/HdcT9iXjwF9Ev6OQ8Eg7EdvAv77V35FHg8w5ow01RpAxQCgsDhm8uBALXwqpF3k27U5vkNq9/Vq/nk8M5Pw3Tp2Ngq8EfuujavN3/ejzjeFEKkhvcy7nj0BRP6E3wZgqovlJ0c9PsdQdmzU4yedbICIFgKYFTGpFEAO3tNBCCGEEEIIkSktTMAMABRZsT/aJYNpwK6bkA7RkdPXLtEAFZG/uLaVTYPvC61iKOZeHrr6B5mAQC7USKQPF7DVYjejxfaDmDt8pTQYzaOvUz0TfgPwIWWpxL0GzXYT/NznWFNPbj0tdjOaQvqwrmzaHyR6nsHu61y8l1wom5953UycLpNo4KmbMFqCjVabD5UTQuzCBSWVa4LRWNydmkXea7Vb8GnDu9p5vbwVGN1DOmmnQoVPP8qiPmAYmZEiLaH0hwQLIYQQQgghhBBCCCFE0s18D+Tf1rl1cAMpPSm6Id6gKgDAo+t+xRa57JncudnUzW8S/vAmYdEGoKkV+HQJX7Y6+jLXaw+ZVx4VjIaNq/ggu4HD49a1KxnaW+Gf4xWY+yftdP0ruXm9kAtGG9E3/ITpDxc4W5GDYDRauzy2rUVRN/0HqmeFs23mAFW1d4fH47e+aCz/1crca0c1G/V17tMd6FkSPwwkEXTnBOCLj1KybgCg5d85K7hqUcrpAAAgAElEQVR+JRDSByp0UNId6rZnoSznQ5nVr+81F1izFA+NN69v95vtrA1tnLmM8Owsvm7Hj+r4mP74E7asuuz2ZFWry1G/uK3D4xFMMBoAjH04d86JOmvFZsJpD7p7vss3A8FQcj9P9U369fXyBWDNih7m7kCvPlA3Psre9FGIjLMsWEx/crJzex/EfZ7L4nQNIv920ISjgWlvA9sagLYWYMFM0K3jQZ9PSn5FhUgArfwedPWJwNefhL/PBdrCf20twHezQbecD5rxLujeq4DnzMGe6pr7ofoMSlPNET7/HhT7G4YHNoa36IN3f/Kf7Dx/duvmiYk9jxcv63geQfddzZZV1/0Dqkd5QtsRQrgjwWhdT2XU4yVE1Opi+flRj0/VFVJK9QcQGdMfBPC5i+1MjXoscZhCCCGEEEIIx0zBaIUpCkYzhcU0G+ojzJwGnATtxAJURP7i2lYmgp84lrJQxARq+aPqH6IQbOZiqFcl/87Bwh0u1IFAaAzWsculsj1ydaozhGFkIpyCC/Dyh5rY46suiI57LcPvwWbtvGzaH5iCzEznGey+zsV7WeLppp2eUDCa7WyZYIKBp9H7xnjcBKkJkc+4YLTevn6aqdJ5ULgzfcsHaLL1A8WOKTtdzmVThAs2bAhugk3p7UzJHb/dBLkKIYQQQgghhBBCCCFEUu19KNSv7wPGnOFuuS8/7tx2uaAtb4p+K6+sBgAMCdaigrlu/tH3AOXADXDagoRHP3Fezx2hVjvQS/8wL+CP+i27lg9O0Q0q7uquONrC0j9bOKnfWrbM49MI/tbsb0vRlmzQ17m6H0B1652vyEkw2ltP8DMPOQHq1Rqoky50vs1ccf61O/9bSG2YvvyHbNF7p+ReG+LC9ar19zHqNGrcDEx5odPrUXdN5LfxyoPOVrKG31eqq++B+vV9ULe/CPXyIqj93d0wSw0ZCfXOBr5A7VLsPUhhxV/54dFbW4APF7rabNqYjmnnHAhY1q7jGAXagFp9cAUqq6G69Ux29boMVdYXOPbcnY+rDMFoUxYCS5mgw67mic/dP89ACFjdkNx6NDDdIsuZ89Yd1K/vi/3788tQz8+H2vPg5FZSiGRSig1Gy9IcT8fqma665fG6Bk19HahbFzudCPT2k52ulxDJQG89EQ5BYwsQ6Om/Ae89a17RxTdDnXVZcivnRHtofrSqtmXsImsbc3un9M3qxOt//KiI83AiYOZ7bFk19vKEtyOEcCdFtxURGRQdK9nocvno8oOVUj2JaEvU9L2jHs8jIjejzKZHPd7LxbJCCCGEEEKIPNdiN2unF6hCeJQnJdssMgSuNYckdCNRfoevXSDBABWRv7i2lYngJ5MST6k2uCd6vxIkvvOcT8IkMq7Yow+4A+IFkfHLdRa37nom/AbITDgFF+DVbDchRPpO4brPsemzzQX+ZNP+wNQWuPMMIuL3dS7eSzYYLYFQMadhaoEEA0/dnnP5Q00o96Wop6kQXQQRsfvJcm9ssBIXi0bI7Y4QIjVCFMJHDf/TziuySnBkzxPTXKP8UcEc/4IUxLZQI3p603enQu74ncpzYSGEEEIIIYQQQgghhDBRw/cChu8FHHceaNpbgNNgsGXfug9Ta0dEwIbV+pkpCkZTlVU7r+AMC6xEnbe3tty6LcDAXimpQtIs3QQ0urh3aXXEZS4iArbyN7UDAPijbvKyhhkgXN4fqjh7+hqk09DeCrcf24jJLwzUzm9qBRZtAA4YkuaKdQIRYYkp1GrJXOcrcxCMhsVfs7PU9f+E6jfY+fZySOS+CABGti1myy5mguqy2bJN+jpX9XF20zFq2AgUd4MqcnjtrOYbPmjTqYHDgD1G8/NnTA6HcREBWzYDBUWA1wdV2qNjOW5f2Xsg1LlXda6OAFT3XqDBI4DVS2JntoeyDalQ6N8DWL9Vv45pNYQT98q+G8DNWcG39ZEDouq7lg+tyMewTtcq+u/87/DAchTYrWizCrVFv1oFVOnvQdZlhGzCHZMS29eu3wIM059OJoQLUipr5fu4qstuhzrnV8mrhBDppCwo6I/hdo4mo9k2Ye0WYJP+nplxg9Ho+y/4mUvnJ14xIZJpoaGd7rBgZtwi6tCTklCZBAwdBXwW24dzj7bv8Q5O1i4yd3X2/05kYjrXNlEKKC+NOBevNwQ1j9gvoW0IIRLDR6KLXBU9Ulz/LZ2nK7+ng2lM7DwrOl5dtw0hhBBCCCGE0OKC0YpSOKjWUh42HC2R4BARpguE0gkYQqGE0OHaVkkGgp9MuGCm6P2KKRjNK8FoGWcK2DIFkRWlMJiLC8aqZ4LaLFgoVEUpqw+He+2aQ02uPscJBaMZAu3SzacK4FX6+5hw5xlt1AobIe08LnBOh90POQw528GmEJptZz3REwk8DVIAbdTqahmn5xlC5DO/vR0tzGe3wqcLRsu+DsMie329bTp7HB7T60dZdSzuanTBhjtw70mqcOcHmQjlFUIIIYQQQgghhBBCiEiqrA9wyAmOy9OcDxPaDn3wEmjsMKCtRV/Ao79W3GmDqnb+99ytr7LFlvL3e8saN0+0HZftWQz0jrw/2MZaoDnOtePmjtfHaU30kKd2lVX66XnigAMGYvdWPtTq61W5FeiwcRuwnemGMKKfAmqZdqATdBBUZQg3UgOGOt9WrhnU8XPT02YSrAB8ubI9zDCH1DD70HjhSjTnA9jnjQSdMRh0cl/Yvz0LtK3BvMyqRaBrT0mwphFOuCB8DORsXgs6tjvouB6gccNBpw0EndQH9pXHgSJCPmnGu/rlByVxX8msix69CdT+uRv/A74fwx2TCD9+3EZTa/a0K9smLFzHz7/g4Kjns8gQqnjShUmqVdeleuy6aVgxtWDstjfZslMXZ087STYiwh//Z6P3teZzqkG9gALm1JQLMkvE2kbCzRP1r7cpGA3HnZu8SgiRbkrBIv1nMMdOf0BEuGOSjd7X2Rhyo41FTHZQebyuYW/8i5/X4iIZW4gUobXLgXmfd35FlVXAKEMwcQqpE87XTh+/5SV2mZnLcmynFGXSvMTqf0B0VnnNN2xZdfS4hLYhhEiMBKN1PdG3MRngcnld+ZGaadVRj1e53M7KqMcVSqkyl+sQQgghhBBC5KmWkP5Hbi64LFnY8BYJ3UiY82A09wEqIr9xbcsUnpQJTgOJTOGAEoyWecWGYM76oL73m08VwGel7r3j6tQQ1N8FudhTCqXSH3bDBWK0UguamGAu3efGFKyyJVjveD2ZopRyfZ7RHOKPoW6eW4mnm3a633YXjOY0FA0whz2y62fO/4zLyDmaEHGZApJ6+/qlsSaiqyEiTKl/QzvPAy+OKTs9zTXKL6We7ihQ+vtncUG5qcKG3WbRuZgQQgghhBBCCCGEECJ/qRsfBXY/wFnhbz4LD4p1gebPAN32U6DOkIDiTVHfgYgQr2vqH2SLLd2U3QNeP1xIeIPPhIlR3Rcd+j/QHx2ExkQHp61hAqySGfaTg6xeFXi14TJ2/qVPZ3dbiraECXAAgBF9Aaqtcb6ykLkfBAWDwLrooXRh6ld3Ot9OLhocPQQReLn2Arb4Qx/nTjsiItQwl9yrDcFotGYp6IYzgXUrwhOCAWDGu6Cb9aEFAEBtraCrTky4rjsdczbUT34LAFA3PeFu2W+mgX5zKogIFGgDZr6nL5fMEElN+9mBnvozAOCPp5v7vL0wm/DLZ7OnXf3lXb4uVx6rsOfAjs+Hbr+IX9lx5yWnUl1Zj45Dlh/Y8Bu26CNTCbadPW0lmR6eSvjT24Qt+nvT79SrhA8yqm9KzmtDRDjtQT6grSzUqJ2uLrsdauCwpNRBiIxQFhT0n6Nc2/f8+1PCH94kNMbp1lteyh+j455rN7vrwyxEslEoBPrF4Z1fUf/doP78SkbGaQCAGrandvr+rfPYZe6YlFv7pEitAcKbfJ6Z0fO/6Bi9RNefwRcef31iGxFCJESC0bqe76MeD1JKVbpY/jDNtJ6aab2iHru6tTgRbQcQfbsb3XaEEEIIIYQQIkaLrb8ql7FgNEMwiTCLDn/iBGwJRhPu+JnPJRfClCklTH2iwwOCNt95LpXhWsIZn1UAr9LfJo8Lnkh1EAR3zCLoO5RkKpjCFCpnI8QsE1tXj/KiUBVpyxPTkSDbwjjcnmf4DaFfbvZ1JRYTjOby/MbpMR1ILPDUTfDaDm6fgxD5iAtG88CLHl7d/Wz0nTO4fa3IX4v887C6VT9o6JAeR6GXt1w7TySHUgrlPv1d3tMZjEZEbLip6TxQCCGEEEIIIYQQQggh0kX1GQT1+Ayo5+ZBPTMX6qNtQEl3tjy9+4yr9dPbT8Yv5NH3N+i0iBAvD2wc1PyVthgX6pMtnvjc3XWoEX0jQtGIgAUz4y8UPeh+zVJtMTVouKu6dEV79rdxwvYp7PwNW3PnuuGSjfq69iwGencD4CoYLWiev3E1X2b0sc63k4v6VAIFHW/oc4R/Blv8P9Nypw2t3wL4mS4w1X0MQSCTn9O3h6+mgurW6xeaORmoZ+Y5oK66G+qN5bD+9DxUYXtf6wN+6H5FKxeF96szJ/PbGpi8faUyBVK+/SSICN2KFP453hw08cqXhK3N2dG2np7B1+P2M6JC0bj2AAAHHZOxgI2c0qNj34TeoTpcUf8oW3y6/hQg5z3hcN9aUgCUM10P691339P6ehUwdzU/v9xu0M+44LrkVECITFEKFtOHO9eC0Zx+R+P2JwBAk581L9ziB9l8iKIQKff1J8BW/c3ZHRs8AurFhVDD90pOnRI1boJ28kWNT7OLfLc2t/ZLO0yan9hyxb5wQPoOtE0f1AoA2OMgKG+KfssTQmjJJ66LIaL1SqlFAEZGTP4JgL/GW1YpVQpgnGaW7qpO9Gi5OFnhWs0AIkcr8lePHFJK9QWg7+XPy+9btgghhBBCCJGD2GA0T2oH1fIBRkm60peHTKEukYJkvqOiENGig8V2yNUgJFOIkFdJMFo2KLZKsS20JWY6FzyR6pA+t+vn2mKqccdWE+65FXtK0RqMvheD+/VkSomnFNAc7rhjpSmY1c2+jnsP3ASdAc6P6QAQMIQ9crj9OgD09JZjSzD24rNpGSFEWF1Afxv0cl8fWCr2/kqGrttJq5PoGqbUv8HOO778rDTWJH9V+PpifVttzPS6YPpGuAWoDSHoB/lk27mYEEIIIYQQQgghhBAifymlgCG7huDQqNHAlx/rCz/1Z+Dnf3C0XtqwGnjnv/ELpigYTXXrCerVB2gM91sYHliGL4sPjCm3LH3300jIN6vdXYeqihjIirp1zhaKCEYj2wbWLteXMwX05IvKauz9zbeY0u0E7ewFa4B+PdJcpwRs8RMbwFXdN7xfICYgTysYpx/EWv0NhQAAA4c5304OUpYFGjAMWPn9zml9Q/z1qg1b01GrzmkLEuauBibN5/dP1X3ZWcD3X/Dz1q0AKvrHTl8aZ4T/2MuBN/6ln2dZwAkXQJVFDbnsMygcGuUy8IFeegBoMFxzrNrb1fqMqvfl59WtA7bUAb16Y99BCqZ+C21B4IXZhJ8fCXg9mQsTIyLUMplPANCzJKpuy7/jCw/bMzmV6up6xQ413qd1AVv8m1rCkSO6VuBcyCYsWOus7P6DFRau03+W6pPQFa+5jfDIJ+Zzu+o2TTDpiP0kgETkPsuCxRyriHKn751tE+ascFa2jyk1It65DQC0+IES/c2fI5FtAysWOv/+J/JH/92AyurEwmRr5nV68+rE8VAeT6fX0+l6VO+r3fvsbTgnmr+GsOfA3Dsnmleb2P50x+8AO0V8f40xePeEtiGESJx8E+iangVwe8Tj3yqlniaiNXGWux1AT810J8Fozkcc7tIMoMywzkRcAeDWJKxHCCGEEEIIkcVamCCyIqs4pdvlQmP8hmASYWYKdYlkCoUSQodrW5kKf+KwgURRYT6mcECfKkhqnURiuGC0uoC+E1iq26LbEMDiFIeLsttN4HXgnluxVYJG1KV026nkNChxBy6IzKt88FnO9wslHv3Psn7bZTCaiyC1YALHde51UFAo8/bWB6PJOZoQcXHHqQqfqZd2rNzpmiXSobZlORb652rn7V06GgMKB6e5Rvmp3Kv/HNczn/tUMAWnZtu5mBBCCCGEEEIIIYQQQuxkdW7QKvm3gW69EJg52dkCqRwkW1m1KxitTR/29eIcwvO/SF0VOsO2CUtdBreNiPx5/Ls5zhZqjvg9u24d0Kq/cSsGDXdXma5oUBUu/uRp/L3iGu3s178mHDcqewdPExFue4tw+yQClz8xoq8CNTcBtUkMRlvDBKOV9YUqMSVGdBGDqzsMLFcARjd/iS+KD4opun4r0Ogn9IoOiMoSkxcQLnjMxhZmNwEAPYuBctOlsHUr+XkBfZ8aeukBfpmCIqiLbwYt+xb4Zlrs/CNPjw1FQ3to3Sk/A178u6GyGp/wN8kCAPzgRHfrM9nncKC0B9CkT8yj+66G+tPzOLwKGNkPWKS/NxwAYMJzhD++RZh4hYUfDM9M+3pqOqGF2V2cqMk5I8O5hDr14iTVqovTHLvP3foaJgz4p7b4VS8QfnoYoXtRdu6DErG6HgiEnJUdf4jC3z9ITTDa87NsXPgfcw+jIrsZ47ZOjJmuTr2ocxsXIisoKOYE1LZzp/edKeAzkscCdivXzyMiYNrb8VfS0hQ3GI1Wfg/6v3Huzt1FfqneF7j7f1C9BzhehPzbQA/d2LnterzAiRd0bh3JcszZwF0TYiZfsOVlXN/vLu0iFzxGGHsAocCbW+dEbn9D2mFgr6gJtZqg1nZq7OWJbUQIkbDYW72LruCfACJHYfYC8K5SahC3gFLqOgD6X6UB28E2Eznrzp0zdSGEEEIIIURWyVgwGhMa02wY6Ct4QQqgjVodlQ0YQqGEiBaiIFpJn+FezASRZYrTICRTMJpX+ZJaJ5GYIuYYsTWkvwLMheIli9u2nqlgiiKrBAruLphxr7Xb55B1+wOX5xncdLeheCUWE4zmMlSsyUUwWiLHdS5YpcgqQSkT7ibnaELE5zoYLZE754m8M6U+tpPqDieWj01jTfJbuS92cAMA1AcS7P2TAFNIabadiwkhhBBCCCGEEEIIIcROlnmoFdnmITb0r1uch6IBwFaHI8sTMahq53+r2phgJgDTlmTn8J7aBqA16G6Z6r67rmfRTec5Wob823Y94AKsgHDQXJ5TldXYs+17dv4jUymrgx3e+gb409t8KBoAVPcF6MHr3a04TjAace0qX8L2BsV+dv679hK2+HUvZ2cbqm8ijHvEHIoGhNuQYq6tk20D61bwCwdjg9GofgMbDAYA6v7JUGV9oW5/ETj4+F2Bm14fcNRZUL9/nF/2sj8BZ/4CKExS/+sxZ0B5k9efUVkW1FNf8AU+fg009zNYlsJ711g4Is5uesNW4IyHbLQF09/GNmwl/Py//Hb/87OO5x9EBBgC8VT1PkmrW5fWd3D4sxChl70F+7XMYxe55c3s3AclqsbBvdPKSoCnL1E4aqRCeal+/9XQia54NRspbigaALyz6gwMCdbGzhgXG+YiRM6xLFhMXIPp3DTbLHF4P8ahFYCPC1Sa9Z6zlTSb+yUTEegP4yUUTZjVzAPd9lNXi9Bjt5oL/PiGcHgvZ8BQqHvegho4zNV2U0V16wl1f+zvVP1CG1EWir0x+Q4PfJhDO6d2NRv1dTYGVwPwRv0USKZgtH0Oc1stIUQnSTBaF0REjQCifx3cB8BCpdRdSqljlFIjlVL7K6UuUkp9BuBeYOcIxOhvjo2azUSfTSby61f0Ms5HzgkhhBBCCCHyWout71VQZOkDRZKFDTCS0I2ENIf0AXc6QdLfBU8IHVPbchsYlGpcGED0fsUUIuRV3qTWSSSm2OUxKNVBZK7rk6FgCktZroJNLVgoVEXaeW6fQ9btD1yeZ3BBI65fB6a833b3c62b8oEEjuvc8y3xlLKvHRemJoTYxW0wGhdmSbnUO0ukVF1gI77c9pl23tCi3VFVrLnNtUgJUzBauj6zpt9Lsu1cTAghhBBCCCGEEEIIIXZScYZa1a1jZxERMOVFd9vzFbor74KKDEYL8IPFn56Zndd6ahK410d1+8/j1BonuShS5ID7Nczr1L0MqnuZ+wp1Ne3hcD9tfIYtMmt5uirj3vOz47f1EX0BzHrf3YrjBKNhLfOiDMyPYDRVWR0zbXjbcnhIn3z44cLs3Ce98TWhxcG9AKv7GG44tmkN0Ka/6SsAIKDpU/Pxa2xxdcPDOwfmq7I+sO6bBPXOBqiXvod6dyOsO16CMoQ2KF8BrOv/CfXuRqBvJV8vh9ShJ3V6HTHr7L8bMGI/dj5NeQEAMKRC4bMbPTh2D/P6Nm0DPliYzBo688oXfLsuLQQG9oqauMJQyZMuTE6l8oDyeABNKMl5W19hl3luJnWpfjBLN/HPpeF+C6vutLD57xYuPDR8DlzGXMqvb0r8NXnBwfH395v/hh82fx4zXf32ETZsUoicohQU9J8FO4f2OUuY0KFo1cx9WQGA3uW/S3TQHGe80dIFwLJvna1L5Ld500DbdHEpseL9rqOuvAvWL++AmrQe6uVF4fPuyL+JK2G9vAhq9LHJqn1SqIOOAXr2jpn+ky3Ps8s4OX5nGy4Q9m/jFFoe5n/v229w1LnGaiYY7dhzEqyZEKIzJBitiyKi1wH8GugQH9wdwA0APgLwPYCvATwJ4MiIMv8A8GHU6nIpGO1hAHu7/DszCdsVQgghhBBCpFGmgtHY4BAmqEOYuQmUC9gOepMI0c4UhJOp8CcOFwYQ/RyCTDCaBQ8s5Ul6vYR7boMdUt0W3QavZTKYwk1diz2lbCcX9+F0qT1vcIsN92LOM7h9nfv3vpt2epACaLNbHa/HH3L+8y63TzOu3/B82ZBJOUcTwoiIUM8Go/Vzu7bOV0h0CR83vAWbubvpCeVjpbNqGnEBh63UgiZ7W1rq0GzrOyha8MCnCtJSByGEEEIIIYQQQgghhHDNE6cfxppl/LxVi4BtDe62t/8Yd+XdqNwVjLZPCz9gfPH67LzWU+Nw0P0Ou1UAfbq3PzC9T9EiQoqIWy7itcxrw8I3wRnd8hVb5Lt12dmeAGeBWwcNJmBjrbsVh/QBXzutZdrVoPwIRsMeB8VM8iEILxOMtnk7YNvZ146+43MxO6gyBIFg9WLzwpqQPVr5PV9e89qqku5QA4dBFTnvG6V8BcDR4xyXZ40a3fl16Gie504rF3V4eOwe8a9Jv/dt+tuXqf2M3g2x19JX8O+7GnlgkmqVJwbFHsMPauaPY3VN4f1QV8E9l4OHAj1LFCrLFJRSoFAI9O1slK+coy1f34mueAsd7D9Hc++JtHfRVSgLFtOnqimQO3EfS5jQoWijhxqOx6uXOFtJc5ydcc03ztYjhG0DDQ4bb8NGYEsdP7/9vFR5PFADhobPuyP/KvonocIp0is2GO3A5q/Z4vNrCXaLIdQ5yzQ0EeqY85XqvgoFXoUDBuvnjzsgap+1apG+oCb0WwiRerlzpiRcI6J/ADgZALPn7WA7gF8BuAbAoKh56zXlt0Q91t9ynKGU6obYYDRnUasGRLSRiL518weAv+2NEEIIIYQQIiu1MANri6yilG6XCxppcRHwJXZxEygXIM1d8IRgmEL3Mhn+pMPtV6LDfLgQIZ/yJb1OIjFFHnchW6lui8Uu6+M2TCuZuOBRbVlDPd2GzWVdUCIX7sWc93ChX27bVolHH4wGmIMmY8q6CEYLJBCMxj3fYquUfc5uQliFyEdNoW1oJX2nBS5QiZN9XdJFJvhD2/F54xTtvL6+gdiv2yFprlF+Kzd8jusDm9JSB/Z8xRB2K4QQQgghhBBCCCGEEBmn4gy1WqMfgkKLvgJduJ+7bR1+ClTvAe6WcSNiwGa5zQe21aTnZ2PXuEH3hw4HTtk7dvpVx6pdvz/X1jjfUGvETcOY9xcD8yTAKg5VEk6eu2DLS2yZP72VnVcPX/2SHyS9w/GjgFH1s9yvXBNmtQMRsUF9Kl/aFRNq8/PGp7TTmwPAuuiRi1ng71Octe1q5jIdtfhB155iXjig6Stbyw99VLvv76hOTqjTLwEKOtEPe78joUa4PA46pM78BT/zm2mgiM/gzw5T6B7naTz4EeHfn+rDaVJlqSHs88pjYs896PVH+JWdeEEyqpQ/NOGmx/qnordhOPPYh+3w/rsLqNd3P0RFRJc7am4C/e5s0C/HoOyTZ1ytxwknYbcnb58cO3GPg5K6nxMio5SCRfpjz5WfDMequtzY59RsiF/PkgLgkiP0/YKoxQ8scRho1sKfvNOWOtCff+5sPUIAcNLLlWwbdMOZfIG+lcC+RySxTumlLrg2Ztq4bRPZ8iFSmP/Ln4LqdFEz2Wep4betHd/Rrjw2dt90RBVwwJBdj6nFD9TM065HSTCaEBkhwWhdHBG9D2AvAGcD+A+AhQDqAQQArAEwDcD1AEYQ0cMU/ra+R9RqvtCsOjqOdzeXVYsuX09ELm+LI4QQQgghhMhXzXazdnqR5S4Exi0uNMZNwJfYxU1YCRcKJYQON/heQaHQis5pzywumKmNWju0e+4z4LUkGC1buA0WS3UQmev6ZDAkrMhFXU3HereBYKk+b3DLaVDizunMcdTte2kMRnMRdubquG67Dzzl1l/iKZVzNCEStDmwgZ3HBaMpSJCR4H3a+C4btndc+ZmwlCfNNcpvPTy94FVe7by6gMM7YHYSF7JanGXnYUIIIYQQQgghhBBCCNGBZR5qRZqAGiIC3flLd9s54+dQtz3nbhm3ooJA3lw9TltsbSPQ1Jp9A/G5EJnd+ym8fLmFXx2jUFkG7DMIuP//KVx7fMS1LDfBaIHIYDR9gJUuVCVfqb+9hjK7EaObdcPNgNUNQENTdrWn7S2E8/5lDkG6dIzC6xMs0G0/4Qtd+Fv9dEMwGho3A/5t+nmD8iMYTSkFdcktMdNv2/QndhkuGLlJDh0AACAASURBVDFT5q523qar+zDX1d/6T/yFdcFoXGDjxTc7rpMTaugoqAfeA/b/IVDEXM/zeGP/yvsDp/wM6s43klqfDnUbeSAw/jd8gfdf2PnfQWUK035r4YRR5nX+6nnC2sb07au4ENLRuwFnH9SxzVBbKzD3U/0Cg4ZD9ShPcu26NjUo9hhugTC/7kfsMtOXAp8sTmWt0qeB6UJXXhrR7v73ODDj3fD0UL22fH2CXfGIKO4+ffmSEfAhGDNd3a8JSxMiVykFZQhmumlidp0/c0yf59JC4JiRwCc3WBjWmwlGe+4e5xtrNgSjxVuP7pxF/vLgz9A/0Ung6ZwPgMVfs7PVk3Ny+2agp/wsZlIJNWP28sPZRX4ZvAb0yO9TWauk4YJYi3zAwJ7h/198hIV//0Rhv0pgQE/gosMVJl1tdXhf6dm7+Y1IMJoQGeHNdAVE6hFRCMDr7X9GSqnBACojJq0hojWaogujHrvdi0f/cvudy+WFEEIIIYQQeaw1Q8FoJUzQiJsgELGLm9ctQG0gotz+EVmkDTf4vsgqgRXvrr5pZgpyag750d0b/gU+wIQIeZUEo2ULt+EOqQ4icxuM5jZULJm446vbsm6ec5FVDE+WhbO4Pc/gQr+S+d67CUZzUzaQQOCp6fnKOZoQiakP6nsp+VQBenjKtPP4YLTc6JglUidgt2FqwyTtvO6envhBj6PTWyEBS1ko8/bGpkDsHRvrA4bbIyZRS0h/y+hUhwQLIYQQQgghhBBCCCFEp8TrW6ILqFm7DFjyDb/M7gfA+s/MztUrAap7GahHObA1HHAxqvV7tuzSTcC+lezsjOAG3Vf1AUoKFR68QOHBC/RliAsS0mkPRiMiNoBIF6qStwaPAACctP19fFE8Wltk0nzChYdmT1+/KdGj4KI03G+hZ4kKhxzWrdMXKu8H1b2X/sqoKRhtLRO2B+RNMBoAYPf9YyaV2Y2oCNahzlsRM69mI+HokdnThl790vk18ao++un0cdyhnUCwYz9BCgaADau0RdWI/RzXySm196FQD05J+nqTQZ16Eej5e7Xz6NOJUKf8dOfjfSoV3rvWg7sm2/i/1/XvXcgGJs4lXHF06ttZW5Cwsk4/7+ZTNecdXCgaAPzgxORUKp8w4aZ9Ns7H/vvamLtGf+736pfZtR9KVD0TVloWcdmepu7aP5XZDdryDX7AtgmW5e41qW8CtuiHfuw0OKgZwn7AUVClPVxtS4hsppSCl2IDAHd47SvCUxcTPC4/Y+lERFjBHM9evEzhvNEOxmnMet/5Bv2GfslTX+PnnX8trF/9zfl2RJdB9RtAZw5hZsY/n6ephqDf3Q/I+XBapRSoel+gZl6H6Qe0zEUPTwu2hopilllaMBx47zng5ifSVc2ELWf2T1V90OH85dIxFi4dY1jRFx/y8yQYTYiMyK6RoCIbHBf1eCpTbkHU432VUm5Gfx4RZ31CCCGEEEIIwWqx9QNri6zilG6XG7jbYjfDJvPdBEUsLuCEEzRcCBIiUjPTttyEL6VLiacbOy8y0Idr/z4JRssaroPRUhwGUWgVQbn4+TfVQW3Gbbt4LUxl3TyHVIepJqKIeW7NdlO487Vmuo7bfV2BVciGLLoJFvPbboLR9GGPJqbny7WLZiaMRQgRVhfQjyQp9/VxHUhMEoyW92ZtnYqtoUbtvKPLTkWBVZjmGgkg/HnW4YIRk40Lrc7kuacQQgghhBBCCCGEEELE5Ylzk61aTXDWoq/Ny+x7eOL16ayIgbtDAqvhZW5kNXd1dl3vsW3CUuY+HyP6OljBsu+cb6ytJfzv1npg+xZ9mXwKsIpnYDhg5kj/52yRj/gMvox4fhbfv9PnAXqWtF8f3bwWCIX0Bcv7AV6mr5YpGG0NE4xWXAqUOWnMXQQTLlgV0IcRZlsbenues31kVR+gf09m5nez468gENWnZv1Kvk3m26D8gYb98Hp9eNwR1ea+D1O+Tc+xb0UdYDObqtbtBlYvYdel9sngOUWuMoSbHtGPOe4DWLIhu86NElXPdAEsj7xsH9HmykP6YDSi+AFnOlzQ7Q4XNj6nn5HJ82chUmR061fsvJYAsLo+jZVx4auVhL+8Y+O+KYQW5rS3ssxhf8OFc5xvuD3AOhq1tgDrVrKLKdl/5C9Tv1cnh/XP3uTndZV2pTkvUgBKqUVbfLO3D5pVEYj7TpJF6pihDIN66afTwi9A//0r7Aeug/3oTaDP324Ppl7Nb6RX785XVAjhmgSjiWg/j3r8uK4QEa0DEBkH6gVwpIvtHB31+F0XywohhBBCCCHymE02Wmz9VbWUB6MxA3cJxIa1CZ6bsBUACCYQoiLyEzv4PsVBVIkw1SkyPDDIdErlwoxE+rkNd0h1UJ+lLFfHxZIMfj5cBaMZXjc368nk8+VwdQpSUBsklsx9XYmlD2n0h5yHnbkJPOX2aSbceUORVcK2Cz8TKieECNsc2KCdXuHNo873IilssvFB/UTtvAJViB/2OjnNNRI7lPv0n+f6ADOSLMm447fbUGEhhBBCCCGEEEIIIYRIKxVnqNWapR2uQ1LDJtCtP+bLd+sFNfbyJFXOPXXpH3f+34sQhrct15a76EnC5m3Zc3117Rawg+6r+5oH3ZN/G7BghvONtbUPuNeF3u1gCFXJN8rrBfb/IY71T2XLPDWd8MWK7GlPr/EZFLAim5OhDahf3MYHo4UMN33lgtEGDnd9w6qcNmCYNqhgRFuNtviLcwizlmVHG3pnPmFerbOyvztZad9XWvatuZ3sEIzqI7TGsF8aOMxZpboI5fUCexykn7l2ubaP0OFVwNG78+t88xvg85rUt7N/f6rfhlLAcM29ruj+a/mVjTkzSbXKI/13Y4NvJ9Q/zC5Wk57L6ikXLxiNtjUAW+p2TQ/xyUzfrnW//ZqN/GesxG7C1Q0Pxc7o1Qfq9Oih7kLkvgmNjxnn16TnPoeu/PtTG4f8xcbNEwk3vMp/nsscdAWyH73Z3caZYDRjeFVRCXDYKe62I7oQ0/cr8zkfffxah+NhzJrH/jLBOmWZSv1vG7fY/2EXebP76UCLu/F/mcCd81R003w/e/Uh0OVHgh7/I/DqQ8Bz94D+72zQ/40LB6brnHB+fn2HFyKLSDCa2EkpdSQ6hpstIqKphkXeiHp8scPt7AHgBxGTmgC872RZIYQQQgghhGgj5sdthIMxUskUNNIswWiuuQlbAYBAAiEqIj81M+E82RiMVmgVQTE/0UWGCOhCkQAJRssmbttXOtqjm/A1t8FuyeSqnobXLVeeL8dUJ12oCLuvS+C5ca8dF76m0xTa5rhswHYfdso93xKrlA2VI9hoZe5gJYQA6gP6nlQVvn7sMorpOJId3dFFpszbPhsbA/rOIIf3PAGlnu5prpHYgQs6rGM+/8mWzPMVIYQQQgghhBBCCCGESBsrzlAr/zagcVdSBr3+iLG4emQq1JCRyahZYo49p8PDqgAT0gTgUSa4JROW6O/xAwCojnefnzfNgQMxAu3XsLkAouJSoJy/hpaP1DV/hwXCNXUPsGVuesNOY414yzaZ27Un8iNfqw/pAgB1+CmGYDS+byOtZT5zg4Yb69XVqMIioE9lzPSqNn6f9H+vZ74NERGueclcjz0HAGfuB7w2wcIlR+qPIXTvVc422BbVR5oL6+szCKowtTeTzkbq6nv1M5q3Aw2x10CVUph0tQWfPhMLAHDja6ltZ0SE+6bo90ODy4AiX8d+GNRgSOM66qzwZ0m4orw+YMBQ7bw93v0z/jpW3xdmZR3QFsyec6NEscFoO4ZdRAV4loca2HX94U33nxdT0NPUlSfgwJa5MdPVvz6F6jfY9baEyHaHt87BtOVHsfNr4py3ptv2FsL1rxBsB9WKF4xGm9cCz93trgLR50U71nXHJewi6tWacJiqyE+m0CrDjbYpFALdNYFf7ZV3QQ0xpO3mEMWEvl+0VhNU2u6SAf8On29nuYYm/XscvX+ibQ2gR36vbxOz+MgbdcktnameEKITJBhNAACUUiUAHo2afFOcxZ4DEIp4PE4pNcLB5m6MevwykYxOE0IIIYQQQjjTEuIDyIo9qQ1G40I3AH6wr+C5CVsB+GAoIaLpAoSA1O8jEmEpC8VMqGPk8wgywYA+VZCSegn3uPeR4ybEK1FuwtcyGRzoZtumY3GuPF+O6bn5NecZ3L7OtB5+292Y7Tq/iOnmuJ5I2Cm3/mJPqTFcxW0QqxD5hAtGqvAZRpKwHUeyq1OWSB8iwpT66HsphVmwcFz56WmukYhU7tPcXhxAfSA9t7Zmv5tl4bmYEEIIIYQQQgghhBBC7GQZ0lN2iAyqmf4OX+7Ui6GGjup0lTpDKQVU7bPzcXUbE7ID4O1vsueaDxcK0Lsb0KvEMNgZAM350N3GAu0D7tcwAU0Dh4dfR7FLe6jXAS3fsEU++B5obst8m3pnvrkOE47e9d4SF4w26uDwvx4mGC0Y5DdgaFd5pzJ2EL5pn/TJYmBrc2bb0OIN5lCfaTdaWHCbB2/8yoOxBxj2E5tqnW0w2LFPDXGBjUygQZdnChSc8a52cnGBwvOX8sOopy8F6pkQhWRY08jPq9Jdzv2CP4apkQd1vkL5yvCZOb3/au10m4AVdamqUHoQEeqZoRflpe37rKgAxh72VviYPvtLErgH26p6/fSxWydqQ9Fw1mVQ+XiMFPlBKRzaMgeH+6drZyfyGUulTxYD2/XZZDHiBaOZwoZYgdh9EQUDADEhjQOGQvWscL8d0XUkGIyGpfOB7Vv4+YedlHidso3mOxkAFGxZj+GF+nDUkPIguD37++Pz5zxRE76cCrS5jLbxeID+uyVSLSFEEkgwWhellHIcZ6uU6gZgEoC9Iia/RkSvmZYjoiUA/hsxqQDAU0opNnZeKXUmgIsiJrUBuM1pXYUQQgghhBCi2eaD0Qqt1N79zBSq5DbkS7gPk+OCoYSIlsywoHTgAn0ig5C4ECGv85+ARIq5Dd5LRxiEm7C2Eo8+GCsd3ITEmQKw3DzfbAzjMD23lqjzHyLShqXFWw+He//9trOLmDaFYupoLI8QQhSKXzACd95QbJWaw2vlHE0ILSJig9HKTcFohvWJ/LS0eSGWtyzSzjuo+5Go8PVLc41EJC4YzW9vR4vdnPLtNzPh9tn63UwIIYQQQgghhBBCCCEAAMrBUKv2oCOybWDx1/yqDjk+WbXqnIiBr8c38YErs1cA17xk48uVmb/2s2SDfnq1k0tZa5kgKk77gFg+gEjCOaKpohKgbyWO9n/KliECvlyZxkoxFqw1zz/nwIjB80uYoLfK6vC/Xi4YzdC3kQlGU/nYrjRBN6Y2BABfr0pVZZwxhaJ1KwQOHBJ/HRQMABudBaNRdAAIF6yXr8FoZX2BvpXaWfS3y2E/fhtI81r/cHfzau+bkrrj3uc1/LoPGaYJ76jlwwKRLecVOUjtewQ7b5h/MZujYtoH5AJ/G9DGZHfuDAlZvbjDdAUgwNy0edN2IGS7+7xwwYODgvoDtDpY2rnowtq/a45ggmEf/yzz38MiTZzrrD7FPqDQFye8eqW+f5lRUBPSuG4FYPPBaCLPJRqM1mA44PcbAlSOSLxO2aZiADur0qdP9A0pL1Zv1IempsOGrYTb3rJx5j9DOOWBjn8/ftzGk5/bsG1CPTNkICYYbfUS95XoNwSK+z1ACJFyEozWdV2ulPpIKXWRUkrb410p1U0p9TMA3wM4OmLWCgBXONzOrQAi4z8PB/CBUmqPqG0VKqWuAvBK1PL3ElEW/MwthBBCCCGEyBWmgbtFKQ5G8ygvClShdp7bkC/hPqgkYGfuh1SRW5IZFpQOXChA5GeECwb0MZ0PRPoVuQx3cBPilSinbV7BQiF/r4OUK3IVaMaXdfMZdxPGli4FqhAW9Hcejw5gbaNW2NAHiyUSNMK9Htz+NKZcAuFjbgJPQxRCK+nvzFTiKTV+/uQcTQi9baEtCDB3d+1tCEZTMHdgEvnng4aJ7Lzjy89KY02EToXh81zPhCMmE/e9P1u/mwkhhBBCCCGEEEIIIQQAwIo/1GpHgBZdfzpfSCngSMP8dNoR6gTgpO3vw2u4XvuPDwlH3mnj/W8zOyh/6Sb99kf0jTPgPhgA1rscptTWGv5XAojcGVSFQcG1uLruQbbID++22UCUdAjZhH9/ym//3IMUDhkW/j+1NgNzPtCWU4MTC0aj5iagfr1+mYHD2Hp1Vaoy9rM0MLgO19X9nV3mmHttbPFnrg3VMPsiAPjb2QpFcUJAAAAbVgEhhzcQjA4AYQIbda9lPlBKAceeyxf4719Al48BrVvRYXKf7go3ncq/V395h/DXd5mQlU5Y10i44DG+DV13Qmyd6Ik/seXVyAOTUq+8dNZl7Kyi9UswuEw/76oXkt8u0okLCAF2hYTQE7fHzLtv/fXaZdqCwJoG7SzXdSgLMSs6/BR3GxAil7SHNlUxwWjbWoCnZ2TPfuc/05ydg5XF6QZERMAL9/EFivU3d6Yd39Mi1dawq1FX3WOuiOj6jMFohs/WNn0gGACoy2+HcvA7Uc7oUc7Ouq8v3xf0runMyVKKrWskHP43G7e9RXhrHjD5245/L8wm/Py/hEufdh6MRv++xX1F8jHYXIgs0oX2wiKKAnAMgCcBbFBKLVVKvaOUek4p9YZSagaAOgBPARgUsdxyACcQkaOe8ERUC2AcgMhf3Y4A8J1Sao5S6iWl1GQAqwH8A0DkL8BvA0jgyCGEEEIIIYTIZ61MMJqCSkuoCzd4123Il3AetrJDwEWAishv7OD7BMKC0oHbr0R+RgK2vv17LbnrSLZwE0blUwXwWakPtXPa5kus0nCnsQxx89qZnlOy1pMpSikUe/TBb9HhXqawr0SeW4ml71TgD213tLzbYzoANpBJx3SeVWyVwmf52KDIRELbhMgHdYZAJFOQksSiiUjrWldj3vbZ2nl7lOyHwUXSGSTTenkroJguAab9QLI0237t9HSEBAshhBBCCCGEEEIIIUTCLP0NrTpYsxS07Fs2RAkA1CuLoQr0N+FMNxUR7OWBje+X7mMs3xoE/vhWZgfk1zA/Y1fxl7LC1q3gA4jOv1Y/PdB+/VoCiNxpf13u3XijsdhT0zMXavXet/y8kf2A53+hdvWZ+ehVvnBlYsFoWLucX2c+DqxmQgbv3HiTcbFnZmauDS3dxM+74miHQ3NN7SBaYFd/GgqF+GXzsf20Uyf/xFxg81rQaw/HTL79TPP79Zd3CNtaktvW/mUIZty9XziwLRKtWsyv7NyrklWtvKR6lAPV+2rn0ZqlqGbOL5ZvBprbMhsW2xl1cYLRaPFc7byfbXmWXa7GsF/UYUNKQvWxE48aC8Uda4XoCtrDlaqZYDQAuHkiIWRnfr+zss55HcridQNaMJOfd8zZwP5j9PMCLoPRqs3fc0U+MAWjGdr0Nj71U51wfifqk4W69WJn7R/gv0D/+7v+4ZDDNHtsGmH55vjlnppOWLdFP6+8dFe7oGWGHwlMJDBfiIySYLT8oAAMB3AygPEAzgJwKIDokWL/A/ADIuLPCjWIaCqAsQAiv9IqAKMBnAfgRwD6RC32AoDzicjh7Q6EEEIIIYQQIowbVFtkFacl1IULXeHqJXhuw+TcBKiI/MYFBrkJTUonLsQo8jMSZIIBvcqbkjoJ97hAK23ZNLVFp9txU/dU4MIB3Zb1WQXwKmedYtxsM524/VR0uJcp7CuR51biYYLRbKfBaM7KRQoygY86piC4kvbny56jJRDaJkQ+qAts0E4vUIXo5ulpWFL/nYuQ+c5YIv0+bHiTnXdC+dg01kRwPMqLXl79XR7rAy57KyeAOw5nY0itEEIIIYQQQgghhBBC7GQ56INWuxT48iN+fmkPoO/g5NWps6KCvXYLrEJJnL5bM5cBTa2ZuQZk28QGo1VHj06KxoSbAYAauod+RlsLKBgEGpiNDhwWZ6P5SbWHhSkAP9r+Plvu4+8zdy3xQ8O2/zzWgifi805fTeVXtDMYjemrFWL6QHDt0eMB+g3ht9dVMSGDCsCPCr5hF/sog21o6Ub9ti8d46K/8pplzssGI/rJbqrtEJTWQR4PzFfD9wJG7G8u9OXH2sljD+AXaWoF5qxIvF46prZ7yFBNGzLsh9Tg6iTUKM+NPEg/fXUNqvrwn+m5q1NUnzTgQsmA9iAj5ny2p70VvYP6PgVLN7nbJ/PBaJoQmmF7ulq3ELknvK8Z0cbHONQ28CHR6fTpYuef9fJ43YC+4L87q8NPBbhAcU0wGtUy59cHHh2nEiIvmMYUJhKMNurgztUnCymvF+jG9BFu2IjD/DPYZdczwWOp9NHCzn8X7LCPMv2WZ6DyOJhaiGwgwWhd1zQArwDgI0rDggDeBXACEZ1JRAn1gCeidwDsDeDRONucCeAcIhpPRDIiTQgH/H4/pk2bhieffBJ33303br/9dtxzzz145plnMGvWLLS1JS8cYtWqVbj55psxZswY9OvXDwUFBVBK7fx76qmn2GVnz56NCRMmYL/99kN5eTk8Hk+HZVesWLGz7NFHH91hnhBCCCGEGy1MAFmhVZyW7bMBRhK64Zrb14wLhhIiGhcYlGtBSJGfET4YLTr3XmSKR3nhc/h+pKstOg08y3QwhZvQwnhliy2nzzmzYXAcp+cZxqCwBN5PNpDN4bHaaYBaJDeBp6Yw1R2vGfe5MoXICZHP6gL63lMVvr4J/mYrwWj5ZkuwHrO3TtXOqywchj1K9ktvhQSr3KcfIcbtB5IlREG0Uot2XrZ+NxNCCCGEEELkJ+mfJ4QQQogYysFQq4VzQN9M4+cfeXp2HYejAnQUgNO3TYq72Effp6g+cazbAjQzXcVG9IvzutYyIQN9K4HuZfp5gVagxXBtubv+JiR578jTdv73jG1vs8WWZDDYoWYDfx3z+FFRE7i2A+wKYfIyN+wLMg12LROI1W8IFLeurmz43uys05vfY+e9yWempdy7C/TTq+KFNLajxs2ge69yvsHIIDQu+AMA8nxgvjrzUnOBmnmg5tj9+un7mY8h5/3LRksgef0fphl2K7q6kClE77CTk1Cj/MaGy82cjNP34d/3Cx6z0ZrEdpFOXChZjyLA61EgQ6BsVZu+PboJbCIi1DP3ni/TBKOpiHMLIbokK/xdc9/W+egb1N/YFABe/iLz+5w6F11vh5Sbj6+mfQ1+cCLgZfrf636b587ZmQBekWcs0+85/OeKuGC07r06V59sxf020rgJY/z8b12T5qd/37Rsc+fXsVvETzq0eG5iK8njYGohsgFzmwKR64hoLoDzVPhKyu4A9gRQCaAHwkfuRgCLAcwiom1J2uZGABOUUr8GcASA3QD0B9AEYA2Ar4loeTK2JURXFwqF8PLLL+PJJ5/Exx9/jGAwyJYtKirCj370I1x66aU47bTEf/x57LHHcNVVV6G1NTZF2yQYDOKKK67AY489lvC2hRBCCCHcaLGbtdPTFXAioRvJ4/Y1C9jJG3QgujYuMCjT4U8cJ/sVLhjNp/Kwg1wWK7ZKEQjF31clElyVCKfbKclwMIWbYIx4YW/FVim2heLfjijTz5nDvRbRwWDcMdSrfPBZ7gMTSzzdtNOdBp75Q/pyCgrEXEgOuAg85QLaFBSK2s8BJbxWCHe4QKRyX1/jcgpZNIBHZNTHDZMQJP21ixPKz8quwV55rtzbF0uxMGZ6PXN352RpZoLtgewNqRVCCCGEEELkD+mfJ4QQQggj40DaCJ9MZGepi36fpMokSe+BQGEx0Lqr792tm+/AjJJDsco3hF3szIdsrL3bQv+e6f3d/6aJ/GDb6jhhRMQFCVVWAz5uwH0r0Gy4Pl6cnX0MMk0NGbmzR8CFW57Hrwb8Q1tu2SYgGCJ4Pem/frSYyZsYWgH0KI6qD9d2Dj0Jyts+BNPDDMVkgtHYkKM8DbVSlgU67jzgw5dj5l1Y+zCu3O232uWIgEXrCSP7p7cNza817Yvi14Vam0ETjnK30UBEW+KC9cr6QpX2cLferua0S8LH4TkfsEXokoOB57/tcO36/IMVXp5DmPytfpn6JuCsh2xMvsbT6SpOXcS3n9JC4Mz9NTMMwTGq/26drlPeMwRa/OjNSwE8rp23qh44+xEbb1/d+XaRbvVN+nZYvuPUxhDAWBVYhln4Qcz0ZZuch6L424A25me38lB9zDQ18kDH6xYiJ7Ufkzyw8e91V+Cswa9pi936P8KZ+xP2rcxc/ysuWFFnWO84Bbjjm8cLVdYH5CvUzw9q+uQz61KVTPilyDOGzwwZjl/bGvXTuQCxXNejHFi3InZ642bcWHcv7up9g3axy54hHD+KMLR3evZNLQHCGuatcarIBwzoGf4/hULA5GcTW5EEowmRUQ5/rRe5isIWEdEbRPQgEf2ZiP5CRA8T0QfJCkWL2mYbEX1MRE8R0d/at/u6hKIJ4cxHH32EPffcE+PHj8eUKVOMna4AoKWlBW+++SZOP/10HHzwwfjqq69cb/Odd97B5Zdf7rrTFQDcdNNN0ulKCCGEEGnFBaMVpSsYjdmOhG64E7ADCJC7oDM3ASoif4UohFZq0c7L1iAkLrwqcr/CtX+vBKNlFacBX+kKgnB6bMx0aKCbY3i8ujr9nGf6OXP4/UHHYJHooLR4y8fdLheMxgSeOS3XzcN3wgy6OA/gnm+hVQyr/W7t3HvPLStEvqsL6EcAVMQJRuNwIYiia2oO+fFZ47vaeeXePjiw+xFprpEw4T7X9YEUB6MZfifJ1u9mQgghhBBCiPwg/fOEEEIIEZfVydCLH1+fdYOylWXFBDHt3laD2cuPwJNrLzUu++T09F4HIiI8PUO/zYpSoKw0zgDc2hr99EHDAW7AfaAV8BuGV5Xor6kLQF36RwBAKfkxc/mR2jJBOxwqk27BEGHZZv28u87pOKSStm8BGvXXTtT51+x64GH6ahGFB1lH44LRBuZnMBoAqHOv1E7vi0A0PwAAIABJREFU5t+Iz37ZwC535+T0X5O+YxK/zSonl9Y/mcjvkzgRASBs0GOeButFUh4P1D1vQf32Eb5Q7VJg/vQOk4p8Cv+70kIvQ3e1978Dvl7V+fZ26/9sdt7Xt1go8GqOZ8w+Q13yh07XRwCo5AMtPB88j9P30Pc9BoB3FgDzDGGJ2YoLNtoZjMYdpwBUtenn1ejvxehq+wBQbkft88dNcL5iIXKV2nUOetr2dzEksIot+s+PM7vPcROMNjxOeDUXwqiuvT/8nwJDgHUECgaA9Sv1ZSW0SAA7wwe1TMFoW+r007v36lx9slUPJvCtYSN62luxd8sCdtHHPkvfvmnZJvPb5sTw3oBltbeLLz5MfEUDh3WuIkKITpFgNCGEyCK33XYbjj/+eCxevLjDdKUU9txzT5x44om44IILcPzxx2P33XePWf6LL77AYYcd5roj1O9+9ztQxNnh+PHj8eGHH2Lx4sVYvnz5zr9zzjmnw3IbNmzA/fffv/NxQUEB/vCHP2DmzJlYunRph2UrKytd1UkIIYQQgtNi+7XTC62itGyfC73xS+iGKy0JvF5uAlRE/jIF4GRrEBK3X4l8Llz7l2C07OI08MxpgFpnOQ4Jy3AwhUd5UGQVxy2noOKGqDkPg0tPOJ1bTvYHAB80kuh7yQWqBagNATt+MKnf1gej9fTyd8oKkHmwYYf1M883st7cPl7O0YTQqwvoeylW+PoltL7c6/opOuPzLe+jmfluflz5mfAob5prJEzKffreh/XMfiBZuDYCZO93MyGEEEIIIUTXJ/3zhBBCCOGI1bmhVmqvHySpIknWf7eYSb1DdfjJludx6gj+uurMpem9EmQagF/JX4LeZQ0z6H5QFVDA9DEkArY18usskt+1WREBBKNav2eLLUntZQmtlXVAQJNVBgAjokOtmHYDoGOQjtfQVyuk6QdRt15bVA0Yyq+nqzMER+4VXMLO+359+q9KL95gCEaLFwACgBbMcL/RQEQ/wc3r9GUGyKB8oD3087SLgR7lfKH5se+B16Nw/YnmkM3pSTj21fI5fxhaETuNiIC1TEiVIdBLuDBwuPE8bw+r1rj4G1/nXu8Yrh1WlALU1gps4EOZ2GC0TejwO5eJMRgt1LFyareRjtYpRE6LCm06ZftktuiMNH8Pi9bAd/uJMaIvf1w1BRDv/C5hCrDuUKmNgC6MOHJdIr8lEIxGRMD3X+qX6dk7CZXKQj00J6MAEAyPGdi3dT67aDr3TVMXd35b1RHf/WnBzMRW0nsgVFF2jj0RIl9Ir3QhhMgS11xzDR544IEO07p3747f/e53+PGPf4whQ4bELFNTU4OnnnoK99xzz867Sba1teGyyy5DU1MTrrnmmphloi1atAjz5s3b+fiUU07Bc88956jOEydORFvbrh/d77jjDtxwww2OlhVCCCGESFRLqFk7PV0BJ1xwSCJBX/nMFFLiUwUIaEKgAhQ/mEUILiwIcB4SlW5OwnyCTPv3KeYOSSIjHAejpSkIwul2uGNbOhVZJWix9cf4HQqtYljK3AE9V8LgOFwbij5ucsfRRNtWiYe/u7Xf3o6elrl3ORdc1t3TCwoKpIlMCtrOA0+50MvI95ENlTMcF4TIVzbZqA/qOxtV+My3tVamjiMiLwQpgI8a3tLOK7G64bCex6W5RiIeLhhta6gRAbsNPis13ylMx2AnobhCCCGEEEIIkWzSP08IIYQQjsW5Lh3XISckpx5Jpo45GzT9He28c/svxaQl+2rnvTUPeHG2jfMP6eTr4lCNIUDrR3ubr1VRMACsW6mfOXgEUMAMuAeArfX8PAlG40WE9ZSSHwMC67DONyCm2MkP2Nhwr4U+3dN3vXHBWn5edfRl0VomGK2gEOgTEUJsCkYLBmLb2DYmkabMfF22S+tRDnTrBWyPDSPsuepLAIdoF5vJ5EWlChHhG0NGUvciB235w1fcbzgY0Z9ma52+TJmDVLY8oZQCHXM28KY+wJwevQkY/5uYvg7nHKRw80Q+aOGqFwhXHE0J95FoCxJWMm9f96JwOFuMuvVAC5NCM3B4QvUQHamSbqBDTwKY86Gz6SPcDT688blZhFtPT1XtUmPpJn07H+rZBDprfzYkBkqhKqA/Nja1Ahu3Af16xN++KRitVyjqOPDDM+OvUIhcF/Vd85ytr+HRssu0Rb9dC6xtJAzslZn+enNXOw8kOtR0mPrwZX5epctgtK2G1FE5PxJAQsFo+G4OsFn/5VGNPCAJlcpCcYK6z9n6/9k77/g4irv/f2bvTrrTqctykWRjS7JxwUCwTTEYDDY9ENoTCCEklOQHcRqBhzwQQhzTTBJInAAPIYUaAw8x3RQXsAEXjLGNbVzlLldZvZyku9v5/aHiK/Od25PuTifp+369/LJ2Z3Z37m52dnb3O+95A3OzvqNMW7INqG6UyHHHv236cGP3xWjF+QHlXLWwazth8SLD9DiJeSrNMAzDaHn++efDgq7OOussbNq0Cffcc48y6AoASktL8eCDD2L9+vU44YQTgtLuvPNOLFmyJOKxV69eHbQcOutkPLZdsmQJpJSd/xiGYRiGYaKBkqY4EyRGIwVGLN2ICt33lWlXy1dUsjSGCYWS5wCJk1FFCyVyChQJ+KRiRlEAdsHzHiQTLpu1a1GiJH1W5V/JcG5YkbNZydObZHAqqPKHikUo0UhXP1eaoRGj+Rsibt9kqvOk2dJhF+qg4Giu6x5THfQX+H1Rn113XWCY/kqdv4aUrkYUo4EKZuDnvP2F1XWfocanjuA+J+diFl4lIbrzmpIkxgJK5Oo00mAIW9yOyzAMwzAMwzAMo4Lj8xiGYRiGiQqjG88wx50GkZqkz8qnX0cmXZeyHG6NM+z6f0jMX5+YfgUl8ACA+y+NMPD20B7Ar46xQWEJPeAeoMVoKU4IO8fnkIQMEC5tLSOznv8nM6H90yufMpXrC7MBd2pIXSonyl1QDGEEDL/UidH8inewVL3K1E9Q15cRQgQJ9QKRc+7E0zfQ5/lb6xJXf575hD7WS7dElgDIw3v1wsVCwiDiDRSjqeUfIisv4vH7E+KW+/UZnn8kbNWoQQJ/vlb/Oz6+sOv1bXclYBKb/+c2Ykj3AY39j6ovTNSInz9Gpk14XS/ALzvSJr3rTVDC2ZKlT9DyTiGASdNR2krXSZ3INhBKjJblr4Ed/uDDDiiwtlOG6c2ESJvOafoU5zfQop6Rvzbhpy4ocaTZK7H5oLW8354oYDPU11R5cDfkH3+i3tCRckxATAmsW0PFaJq+VUb/7V8zgej6d+pzSd42RZ3dMIBvnNP9IiUhgrgf6+DShvdQ0krIwwFMfzz+9/YtXomPtqrTzj3e+n5K2p2Jsqke2LSqa4XhvjjD9DgsRmMYhulhtm3bhp/8JPjmbvLkyXj//fdRVFREbBXMqFGjsHjxYowZM6ZznWmauOGGG3D06FHttocPHw5atnrM7m7LMAzDMAzTVZoJMYbTlpiAMlJgxNKNqKC+LwED6Tb1FFI+Uy1vYJhAKOmegEiYQDFaKBFSq2zplJZ4TbVAiBIOMT2DVSlXokRklsuTIFFbd8tgKY/Fz+xMVjEa8RlDxSLUdbSrv2WaTSNGs9DHoeRpaYZOjGb9uk6K4AI+L8trGcY6lV46OjGSGI2CB9j2D6SUWFT1hjLNLhw4J/vSBJeIsUKOfQCZVuWNnxiNen7jStL7MoZhGIZhGIZh+i4cn8cwDMMwTNQYXR9qJf7rpzEsSGwRdjtwylRlmv3Adiy9S/+5n16qlkzFmh3Eo+txBUBaqMwqlP30wF0UFtMD7gGghujXuej36QwgMrKBrGPvIkZ66d9gfTnwGe1NiylH6uj3lyMVr0RlOVHuotLgZZ0YzRccByFbPECLeiJgZObS++kPFNID8c/P3kWmPbYgMe0QAPzlI7oOXTA2shgN771IJolfPU3LKgPrUZ16wioWfwQjcgZCzJhNpss3/gZphtedn00zcPtU+rd8aknX4yB00qgpI4mE/YSEyp0JsAwvZoiCYuCS76vTAJyQR7Tb7by3IQ6FihNen8Ruohkp9RCmEQAYNAwYMRYD/EeR4a9TZtGJbAOpalLny/WHSNmmXmVpfwzT6wm51xQAXt5/I5nd4wUWbY5zmRQs+Np63msm0NdS+T7dH0JBMYStTUouKIG1N2T8BCV0dKVDOFJ0xWT6C0LTT1f0B+VOTWUfPREiPSsGhUpCNPdjAGCDiXf2XUmmr90HrNsX60IFs2wH0NiiTrvuVAv3Y+2U5Lfn/Xhel8siInxfDMPEHxajMQzD9DB33XUXGhqODR7Nzs7GvHnzkJ4e3Qu0gQMH4j//+Q9SUo7dwO3fvx8PPPCAdrvAYwOAw2F9UH13tmUYhmEYhukqpBjNSIwYjRKpePzqcjFqKElJmuGGQ6hfSrRK4qkmwwRAyYKchguGSM5HYTqRU0fb4iMEQg6DX+IlE8kmIrMqnUhLAkmYle/OUh4L361DpMBhJOczDOq3CBWDUdfRrkr3HCIFdqGe4ZqSngXlIdreNBt9XfdJtfAxmv0Hfl6W1zKMdaq8h5XrU4UTbiMjwaVhehObGtfgQOteZdrpmech056d4BIxVkgxUpFpU/82OlFid4l1f4VhGIZhGIZhGKarcHwewzAMwzBR0534kuFjIufpSYqIwZzlZRg1CHDY6E2/3BOfIoVCidFUMqsw9hHWrfxCCGca4KTjKGSV+h0a0vi5dkTyCzr/HNuySZt1zd7ETLj0VTmdNqZAMYi6nKg7oeeMTR1bASBMjIa6KjpvPxejiRFjybShh1aTaftr4lEaNUfULiAAQJ6F20m5bQ2dePIUWt4RKACpI+Qf/bz+KCk9kU6rOgQcPaBM0knudh0Fqhq71maVHVFvNzQHcDrUx5SU3LOwBEIn+WCiRow8iUz78RDNuQvgywRdx2LBzqOAn/BJlrRqZLKDhkEMHwMBoNSrFvbp5H+BVBGhe2FitAyON2H6C+HtebZZiwInLWX890qJOk9i256NB6wf77QRmsStmjY18N6Z6hf5QuKMqf41942YDnR9JtXkv7o6OuHc7pcnWQkVgCsY0bobLmL8JgB8uSe+7dIHG9X7z3IBF58QjRit7X+5bW3XC1NY3PVtGYaJCck5GpRhGKafsGXLFrz77rtB62bPno3Bgwd3aX9jx47FXXfdFbTun//8J6qriYfhaJu5sqt0Z9tYsGnTJrz66qt46qmn8NBDD+Gxxx7DCy+8gC+++AItLV2XZvh8PixfvhwvvfQS/vSnP2H27Nn45z//icWLF6O5uTmGn4BhGIZhmK7QbKof+jstyl+6i066IVUPShkllKTEZUuDQ6gD+ikxFMME0hsH31PtCnDsXPES9d9OnC9Mz+CyJZeIzGp5EiVq06E7DzqwInqz8t0mc3tA/Rah103qOmrle1QhhCC/F0tiNCJPmi2dlNBR7ZqKUDFcB4FlpsrP8lqGCecoIULKcwyMGEwrFMFZTP9hQdUbyvUCAtNzv5Xg0jDRkOvIV66v8hKjy2KA7r6fYRiGYRiGYRgmUXB8Xvfg+DyGYRim32LT2MF0lIwHisfFtiwxRlCDX1ctRLpT4Mpv0O+CDtUBjS3xj4/bQchkivMjv6eSi19TJxS2y610A+YP71Ovd0Un1O2PiGnf7vz723XzYNfEA9zxqoTXF/96tJ2oRwBw4+mKukQIiURhiBjNronVChOj0fcJ/V7ecP61ZJLxwI0Y7PYp03YdBT7fGf/6U90oUUnIfCYcB2uSqs/eJZNEUSkt2TP9AADp9wMNhAkuq5/XHxUnnwO46LgpeXUJZHV4rMRFES7b6zWSRR1lxGvYUp3kc79aQMUihjhw3jVk0jU7/6rd9KH5Ek0J6A91Bykl/rTQxJj76edKxa276B24M4BzrmzPp66XOy2GGlBitBx/iNyov18Xmf6DodZ63HDcbnKTlz6XyP2Ficv+6kdNU2Lan2qLYbdTRwFDcwnhZ+UhYPl75Lbigu8cW6DEaK0hz6BJMVqOrphMf0LbTw8/fyTV/wIgvnlTDAqUpOQN1orjAcABH75dN49Mf3d9fNujD79W73/6GCDf4mMaQwDH5QHS0wi8/nTXC0NNMsAwTMLQTFPAMAzDxJs5c+YEyTMGDBiAm27qXmf5F7/4Bf7whz/A6217qdLY2Ii///3vuPvuuwEAu3fvxogRtIb73HPVFuNnn30WALTlox7u79q1C8OHD+9cnjp1KpYuXdq5HI1AZN++ffj973+P1157DYcPE7MyAXC5XDj33HPx/e9/H1dffTVsFl5Qb968GQ8++CDeffdd1NWpp3dxuVy4/PLLMWvWLIwaNcpyuRmGYRiGiR09LUajpBsmTLTIZjiFKyHl6O3oBCcOQ/1iwytblesZJpBYy4ISgU7S1CF6o8SAlEiQ6RmsXosSJSKzCwccIiVi+5koUZsOK7IyK99brPL0FNRv4ZWt8JreTslYEyUa6cZvmWZLR72/Nmx9k9kNMZqRDrsgruum9eu6lbZdJ5WTUvLMqQwTQBUpRhtkYWsikEkRNML0LXZ7tmO7Z6My7aT00zAwpSDBJWKiIdeRj93N28PWV/ksTuPcBUgxWhL0PRmGYRiGYRiG6T9wfF4bHJ/HMAzDMFEi1IPVI2720KvJ/14yVPIUgFw2H09efwk+3yWxp1KdZ0cFcGJRnMoWcAwVWpkMANnUAGxcoU5sF8KJVBdkihNoVchYj7AYrct855fA3+4DABT4DuI/5dfhiqH0AOqH3pOYeXl8z5UyzSuQ04qDjy0b6wCFMAlAZ93pJCoxGiFuAICM/i1vEAXF2jfM8/ZcjTMHvKVMO2O2ifq/GnCnxq8OUVIrAJh7a+RrhFy9mEwTtz/c9gd1D+Vvl8LVVwPUvVwGC4RCEXY78NQSyJsmkXnkb2+A+MuCoHWpDoGV9xg4/RG1QOrSv5hofDJ6YSol+SwZqKm3lJijgMVosUbkDoLMGahs+3O/fBsfPtGKC58kJD0Afv6qxN9vTN4+35vrgDtfo1vZAu8BuKXGeuR0Q2RkQwIoaVWLQ8s0AtJAKDFarj9YHir6+XWR6UcQ94v3j96I328dQ25mSmD+BuCmZ028MaOLIu8osCJGm3gc8OItdL9I3vtf9MalJwJTLj+27EhV5/MGi9EkJR7mNoTpRHN9VvWtCUE2AIgC+j1Pb0cIAVlYAuzYoM33+OH/xvPZ31Omvf0V4PVJOOyx7xPtr5bYsF+dduE4gVSHgMsBeCLM0T4sF0ixC5iP/rx7BeL+OMP0OF17Ws8wDMPEhA8++CBo+cYbb0RKCv3gzAr5+fm47LLLtMfpjUgp8eCDD6K0tBRPPPGENugKADweD9577z1ce+212LePeEnZjt/vxx133IETTjgBc+fOJYOuOvb76quvYty4cZgzZ06XPgvDMAzDMN2j2VQ/ZXcazoQcXydXomRfTDiU0CXN5oadED15zQhPLRkGvXPwfarhhCAe03V8HkqMRp0vTM9gtZ4lUkRm5VjOJDg/rMgLrXwWK79BMojgKHS/RXNA+0YKRrshfUsz1MHcVvo3lDwtzZZOChypdk25f41QVfV3IB3yWoZhjlFJitEijCbRwGK0vs+i6jfItPNzr0pgSZiukGtXn99VXovTOHcBqg+RzNJqhmEYhmEYhmH6HhyfZx2Oz2MYhmGYAIwuDLVyZ0JopGNJQ6jkKQD51t+Rly6w/UH681PSsljR0CxxiOgqlORHGGz7iVqiBACiKOC3ySSEQoeJPo0zMRO29maEzQYcf0rn8jcb3sfMillk/ueWx//dIiVs+cFkRT0qpwfDoyjkvNaK0XzBy7WEYdCVDuHo3n1Jn+A7vySTTjr6CYTmHfTbX8W3DlH1x+UASvIjby/f+gedOOG8tv9tdnV6hxitjqg/AJDFYjQVovREYAwtRsPapZAHd4etPnWEwNgh6k08XsDTGn19o+SMpbr6c0AtRhOh7RATE8TVPybTph99F898j+53vLxKotmbvHEyzy1Ti/46oGRnnXRIYc/6Jkq8u5RZdALJQKob1d9TrhkiN6L6ZwzT1yAk3C6bD09cH1ku9M564Gh9/NufGuLc/X/nCOx91MDOhw2s+rUNhTnEJKt7twGbVpH7F/f8PVgqnmJNjEb2r7kNYTrQPc9RitEIMe13/zs25UlmLPQxs8w6/KbiITJ9waZYFugYn5XR7dyF49rajhwLIYgl+YBsbgI+eq3rhcnMhcjI7vr2DMPEBOIJCsMwDBNvysvLsXv37qB1F1xwQUz2fcEFF+D111/vXF65ciW8Xi8cjt45YN7n8+G6667DvHnhswYNHjwY48ePx4ABA9DS0oLDhw/jq6++QkODekBuKB6PB1dccQUWLAie9cPhcODkk09GUVERUlNTcejQIaxatQpNTU2dZfrFL36B6upqzJw5s9ufkWEYhmEY6zSbHuV6p5GYACSdcMVjNiIHAxJSjt4OKXQx3HAIddCPT7bGs0hMH4GU5yTx4HtDGHAZaUqxUIcYzctitF6BVclDIkV9TpsbtX5ihqx2kkFOYeU7sXIeuyz0B6zk6Sl0v0WT2YgMtL1YoySQ3ZG+UcempGcd+KWf7J+1idHU13VvFNd18vMGlDmSvNZpuCwfj2H6OpVe9aBWK2K05J3vloknFa0HsbZ+pTKt1DUWI1yjElwiJlqo85sSJcYCDyG2T2ZpNcMwDMMwDMMwfQuOz7MOx+cxDMMwTDDCsNE6ntxBQFX4uxZx3R1xLVPM0MnbDu8FANhtAiX5agnam2slvnUSYBjxeWu08yidFklGJHdupBNLTzz2d2YOcPRAeJ6K/eptXepJxpgQSk8Ctq7pXJzgWUNm3VsF1DZJZKXF7+3jdsLzO3KQYuV+QhCTkgoMHBq8TidG84fEdx3arc6XY8Gs1Q8QpSeSba1TtmCM6yg2edTf1Yb9wHfiVzRSalWSb7H9o+oUAAwd2fZ/JDHaob30PrK5DpEMGwVs/oJOX/cpMGR42OrifGDTQfUmWw8DJw9Vp6nw+SV2Edez0oGEQKa+hpa9FBZbPzhjncC+QQhyxwZMuOgagGilmlqBXUeBMYRQr6fZqOjmBHJSywZ9Bld7fGVGLilRq2psk57luPVtYh0xn2mmvzZ4BV8bmf6CIM4Z08TJQwWodqczm2y7Lg3IiH3RAqki5lPOSQOKCBlaELs0tqQU57H+UAdOIpaosT54+aBa1shtCNMJdY4BhBhNfZ3rF2Jai3L/k5vXk2mf75K49MTY39cfrFWvLx0IDM1tO97ADOBAjX4/JQMFsHcb0NqNCdYHFnV9W4ZhYgaL0RgmyfD5Jcr1Y1WZGFCU0/bCridZtmxZ2LqJEyfGZN8TJkwIWvZ4PFi3bh0mTZqEoqIi7Np17Abwz3/+c9DMii+//DJOP/30sH0OGNAm+Jg6dWrnuuuuuw6ff/5553LgfgMpKupex+/OO+8MC7q65JJLMHPmTEyaFD6bh2maWLlyJV555RU899xz2n3PmDEjKOgqKysLM2fOxC233IKMjOAnBB6PB0899RTuu+8+NDe3dYRnzZqF0047DRdffHEXPx3DMAzDMNHglz5SopE4MRp9HErIxIRDC07SYUA9SwclhmKYQOIhC0oELptbKR/qaFd8RP13sBgtqbB6LXLZEifmslL3k0FOYUmMZuH7tSJ5S2ZRolbA2t4eSCnjIoFMM9TB3E1+/eA2Snbatk83KXCM5rpOte2B5xzLaxnGGqb0o8qrjsDNc6hGAYTCarT+yOLqtyGhnlH4/NwrE1wapivkOtQBgDW+KvilDzYR+7ABsr+SBH1PhmEYhmEYpn/D8XmJo6dj9Dg+zzocn8cwDMMwIRjq2CUAwGU3Ay/MDh5Q60gBLvpu/MsVA0SqEzI9G2hQjB49sAtSSgghUDpQLUZ7caXEJ9slPrvbQKGVAfFRojomANgNYFhuhI0P7KTTJpx37O+MSDsKgcVolhCX3QQ5/9nO5fMbF0NIE1Koz6ftR4CJw+NTFr8pScleab6i3paXqTMPGQER2h5QMisA8AXHQUhqvxYHoPd5zv4WkJVHyqBuTv0Id3muVabNfl/i4Ti+pqTEaEqxXghSSqCcEKM5UiDS2tsUqi511KMDhPgjdzCEM3knhexpxFW3Q374bzqDQm4KAD89z8C769XvxE95wMTa3xg4aai1697eKsCn3hVKqfnqdNewAhajxYXTNPL8Fx/FyT/8HcYXtokYVSzYJDFmSPLF0LT6JPYQjj0AMKQfP6h5Qb+TDkFRZg5KWxeT2XZUABMjvP5vaFGvTw+NByws1e+IYfoKlGC1qQ5nFANjh9Cizg52VEicWRrf9qdaPRcicix2QeRHr9GJ538HwhXSeGTmqPPWV0Oa5rE++X719VJw/5ppRwih0QsGp8j6GqCuSp21H4hpRWFJBBVjGxc3fECmPThfYtQgEzecrnmO1gUoOeOQrGN/l+QD6/bp91MiDkHeclr3CuPO7N72DMPEBBajMUySUV4NFN9LPP1iYsbOhw0M7+GxkOXl5UHLgwYNQl5eXkz2fcIJJyiPN2nSJNjtdgwfPrxzfXZ2dlC+wYMHB6WHkp5+7MWe0+kMStNt11UWLFiAv/zlL0HrZs+ejV/96lfkNoZhYPLkyZg8eTJmzZoVVs4OXnvtNTz77LGXb8cddxyWLFlCfg6Xy4U777wTZ5xxBqZNm4bm5mZIKfGzn/0MW7duhaF7Cc4wDMMwTExoNj1kmtNwJaQMDiMFduFQSoooaQcTThPxXbkMN/zSr0yjpHgME0g8ZEGJIM1wQxWL4DEbIaUkxWiUcIjpGayIu9ryJa4+RiqTgIFUQ33fnEisnKPW5Gm9QwRHkWo4IWAo5TMd185W2QIT6mtldySQaTZCjBahf6OSOgbu02GkKNO8prXrul/6yT5g4OdleS3DWKOR2A7JAAAgAElEQVTWVw0/fMq0PAcVgXsMQcyoJy2FSDC9kXpfLVbUqgNdB6cUYZx7gjKNSS4oMZqEiRpfpUUxYnQ0m+ooyURKghmGYRiGYRhGBcfnJY6ejtHj+DxrcHwewzAMwyggRE4AIEZPAB5+DfKJu9sGZQ8fA3HXExCDj0tgAbuHmD0P8ifTwhOam9qEMXmDUZwvEDpouIM9lcCMuSbenGGLednKjqiPOXyABekuJSK65PsQ9oDhc9Sge4q05I0xSCbEuNMgr/gR8OYzAAA7/Ni64wSMKt2kzL/tsMTE4fEROuytArzqsAql2EpSdWeoQtJi18Rq+UPew1L7LWJxA4A2udcTiyG/d7Iy/ee1T+MuqMVoALCzQra3VbGHaotKrByv+gjgUcfSiD++c2yBEqO11yNJidH6gaShO4ixk7TRC/LIPuV0cOeP1f+23/6biS0PGGTMRCCUWA9oEzgoIUQvSEkF8gsjHpOJHmF3QJ5/HbDwFXWGg7uw8I4RGHyX+jniHa9K/FzRneppdlcCpuYkeL382zi5Zb12H6JdCisy81DgOwCn6UGzYpxG2ZHI1/JGUowW0E4KARSM0O6HYfoOROzdcw/DuOYnWHCHgR88a2LpNro/u5OQSceS7ojRpN8PfPQfMl3c8efwlZmEvFpKoLEWyMiBbGkGDu9V5ytiuSJjARlygdSJafuDbM/ifWkKvLigYSEWpJ+vTL/xXxJnFEuUDIzdvRklRssLeDxTOpB+btVB8YePatPFA69A/uY6fWFCRY4Mw/QI/IaYYRimh6iqCjYJ5+RE+YJNg9PpRGpqqvZ4vYVZs2YFLd92223aoKtQsrOzlYFXUsqgfdvtdrz99tuWgsc6Aro6KCsrw5tvvmm5TAzDMAzDdB1qUC2QODEaQEtHPJry9RV2ebbi5UNP46nyB5X/Xjg4B+vqV0bcj4cQlKTZ3HAY6uAhn6kWQzFMIOTg+yQWIQG0FKrJ3wifVMtLAMBOCIeYnsFKPbMLOxwicb9bJOGYy0iDoQnqThRWhF5pVuRpFvJY2U9PYQiDFHx1tG/UNRToXltHfS9Nflp8Fik9zUiHgxA4UsLHUHT9v8Df22GkkOcWy2sZ5hiVXvXsx4A1MRpJaNAI02dYWvMeKak+P/fKpOhHMJHJtdPnd6U3PhGTOiE6wzAMwzAMwzBMIuD4PGtwfB7DMAzDKNDJOA0bxFmXwXhlM8SiGhgvroM46azElS0WHDeaTmsXs5RS4pZ23lkP1Hli/35oB/HImhTJtCOlJAc1i1OmBq+gBt1TuNSTjDHhiO/eFbRc7N2N8c0blHm3a8RB3SVqKVF5mTqzajC8TSNG84XEQRBiNMHihk7E8DEQ//2UOm1/GZ6/iR5c/8oX8XtHXUa0RaVWXqlTQjwAGDHu2N+kGK3dgnJwtzqd5UGRGTiUTtP8PheMpTfbfgT4co+1w5dVqOvmkCzAnUrUaapcQ0ZAsCQ8bohJ0+nExf/BwEyB6WPoLPuqki9WZu1eukwNmI5vNrwfeSeu9vjFzBwYkChpVfexqLYy6JikGC0gniC/CCK15yf3ZZiEYCPk0rVt06sXZAssuMOGmjkGpoxUZ423GE1KiUoi5DYnzYL4aMNyOu2KH6nP9wzNs/u69ufuh/fQMYosHmYCoUS2ofWH6n+lpAIDCmJbpmQkCvnb+Y2LtOlvrottn4iUM7qP/bZW7s2KDyyjEyeeB+RamEyWnwkxTFLAd8UMwzA9RGggVOjMkN0ldH+VlZUx3X8iWL9+PZYtO9bxzMjIwKOP6g29Vvn444+xcePGzuXvfve7OPHEEy1vP2PGjKCArrfffjsm5WIYhmEYRo/H7yHTnIREJB5Q0hWdqKQvsK5+Jf649x58WvsBNjauVv5bWfcxnjkwG/OPEjNotaMbIE1JTajB+AwTSBNxHib74HuqfB6zET5N3XcIIkCK6RFctsjXIpfhtjRzZKyIVPetiMQSgZVyWDmPU4UTRoTH3onsM3QFnSgRoK+hum2tkGaoX9xFFKMR5TFgwGm4un1d1/WvQoV6VB2hrg0M0x+p9KpHAbiMNKTZIr/Ap65gyRfqycSCVrMFS2veU6Zl2XMxMePsBJeI6SouWxp5ra+KkxhNJ0RnGIZhGIZhGIZJBByfFxmOz2MYhmEYAq0Y7ViaSE3cRJ4xJSsPSMtQpx3YBQA4dYQ+rkFKYBs9H0+X2UnIZIrzI8RZVB0GPMR74dBB8rpB9yp4EKx1FDKi0lb1YPPfvSPjJpTZfkS938GZQIZTUZf2RyEwo2QWQJAYTbY0A0f2qfNFMQC9XzCUEMXVVmLSwHpys2Vl8ak/tU0SFcRhSwdaiPmiRHvuTCB7wLFlUozWPolqLXGPmV8YuQz9HHHVbXTi7i1k0qQI175bXzDxzlcS9c36ukfJGXXyBknIPVFYrD0W003GTiKT5J62unLyULpefPh18kXLfPi1en1JPuAs32xtJx19n5Ent23rJcRoFiSnlBjNLQP6bSw0YvoTjlQySTYdi9V1pQicXqxuf176XMLnj1/7U1EPNBLn7uAsCzvYQ19rxegJ6oSsPHp/ddVt/9donr8PGmahYEy/waoYbT/R/yoo7h9i2ijuKyZ5VmvT1+7tbmGCqWxQt3G5AWGHp0XouwPAqNbtdOKYSYBDPcYhCH4mxDBJQT9olRmGYfoniRxkHS8WL14ctHz99dcjMzMzJvteuHBh0PK1114b1fZpaWk49dRTO5c//fTTmJSLYRiGYRg9LWaSiNEo6YZGVNLb8Us//u/I3yFhWsr/fuVr2sHV1ABpl+GGXahnVfRKr3I9wwTiIc7DZB98Hyr36cDjb4RPU/fthHCI6RmsXIsSLemLJGuj6l6isfK9WJF+CSEi7itZPjOFi6hHHe1bNKKwaKCESJH6N41+dTSoy9YmAezudT0aERwpr+3DfTSGiRZKjJbnsDK1NUCr0Zi+yIraxWQ7f272N+Ew1G08k5zkOvKV66uIdqE7SCnhMdVTNya7pJZhGIZhGIZhGMYqHJ+nh+PzGIZhmF6N0InRNFKkXoIQAigYoUyTL/0eADC5BBgZ4fXR8ytiPxh/BxFuVqp+xH0MakAzABQES2VEZm5UZRKu5I4xSCaEYQDfOCdo3UjNQOTjf2PizbWxr0f//Zp6nyMHha+TjXVtYj0VClGLEAKwE+/IAsRoOLArfOB9B5QIrL+iEcUdv/1dMu39jcAXuxPXDgGR20UAkC88ok4oLAm+j+yiGE1kRdeG9UsuuoFOO7IPslr9I99ypkCGU5kEAFhfDnzrSROTHjKx6yhd93YQcsYSQvIppQTmP6feGYsU44o4bjSd+OG/IU0Tt51DP//50YsScz+3FlefCKSUpKxtWkkLUF9tbUfO9r5PuziuhJCcvrBCwjT17XBDs3q9OzCejwWATD9CXPn/6MQvFgUtFg8g8qHtetTYEh85Wrf7QuXqNgMAcO7V6vVpGbSAuK59ApT6KnV6ihPCybFITACkGC34mi0JQXZ/uS4JwwDGnho5I4AzPSsw0fMlmT53lcTKnbFrk6qIsP9AMdoJhfp3dAWOergk0RFxpUN88wcWxWj8TIhhkgEWozEMw/QQubnBD6Nra2tjuv+amhrt8XoDy5cvD1qeOnVqzPb92WefBS3n5uZi9+7dUf0LDALbvXs3TDN5HmYyDMMwTF+lmRhUaxf2hA7I1gmM+iqbGtegxmd9lnMTfnxet4RMbzIblOvTbG44CNGTT7ZaPj7Tf6HkN4mWUUULJfNpMhu18iBKOMT0DDZhQ6rQREch8ZK+SHXfimwsEVgRelk9jyPJ4JLlM1OQAtb2fgYlCrMLBxxG12WJ9HHV1+xI6W6jbYbx7l7XKakKEC5WIftoLEZjmE4oMVquRTGaIMVoyTcLLtM9/NKPRdVvKdOchgtTsi9McImY7kKJ0Sp9sRejtchmUqye7JJahmEYhmEYhmH6DhyfFxmOz2MYhmEYAkMnRusjw7Cogb57tkB6GiGEwKp79Z/1yY9lm8wlRrT6JPYQ4WmUTKYTakCzOxPIDjEKZOZEVzAnP9eOBnH3U0HLIwmZCgA0e4FbXzDR7I1dPTpcJ+EhQq2U9Ugn1aOERFbEaPvL1HkMAxiiFhP2WwYUAKkuZZJ86Gb8+Vr6/J/x79jfI2wnpFapdqAwW7+tbGqg61RRiBAvkhiNEhhl5ukLwUDkDYZ44BUyXT5xt3L98AECn94d+Tq/7TDwmzfpdquMknxSYRlffUYkAKKfiDl6EvHTP9CJaz5Gcb5Aeiqd5baXJOqbkyNmZsN+4CDx+OvCAeXWd+Rqi8kTQgDX/UJ7Lf94K70bv0lfk9MDxhEIFgAy/YnLf0gmyd99L2hZdw/0/kbg2WXxaXvKiL5QhhPIz7CwA+re7JSpEGnqHQghgAzi+XpHn6iO6hv1vufyTLyhxGghdZvqt/ej65L45V+s5QPw4d5LtXluf8mM2TMiUowWMkTkl+fT7eQruU+SaeLJjyAKigGbhbFYLvXE8wzDJBbiCQrDMAwTb0IDoaqrLVr3LdDc3Izm5mCTbV5e73v4ffDgwaDlcePGxWzf+/btC1o+/fTTu7U/0zRRU1PTKwPcGIZhGKY34TE9yvWphjooIl44CeFKX5ZuLK9dFDlTCCtrP8JFudeEzZbuNVvhI0RPLsMNByF60smhGAZokzc0E+1EsouQdMJF6nwB2sSQTHLhsrnR4iNml0HiJX0uI4IkLEnEFJFkZoB1iUZEGVyE76SnoeR5Hf0Mqr/RXclImk394q5VtsAnvaSIkRK1dXwOSl7rNa1d1ynxrNNwwSaCZ4gjJZN9WF7LMNFCCZAGOBTTo0eBZDFan2Nd/QpUeg8r087KujDp+9dMOLl2daR9lVcz1WsX0Ynjue4wDMMwDMMwDJMoOD4vMhyfxzAMwzAEho1OE31EjKYTM61eDEy5HFlpAplOoI4OgcCmg8C4gtgUaU8lYBKvnEoizPEjqQHNBcVhsWtRD5znQbDRMXh4m/CpXe40snW7NntVI/DJNuCCGHVF311Pv7ccqXolWk4IzBwpwMCh6jRKjNYhtAKAQ3vVeQYNhXB0fdK7vogwDMjCYmDn18r0E/JbAKi/s9V7gL2VEsPyIsgTo6CMmFOoJB8wjAjHWb2YTisKESzYiGtNRz2qq1KnRyt37K+crpnoa8tqMunEIoG7LxL4/Qf6GIg31kqYpgyrE6YpsTNKMZr85E36QCxGiz/FJ5BJcumbEBOn4epTBJ5foa4TDS3Awk3AVafEq4DW+XyXuox2AzjPvt76jgL6PuL4U1Dy9r/IrPPWSEwbo24bmzTzproDJ0sdOtJ62RimlyNsNshho4C928ITva2Qfj9Eex+hWD3/YSevr5H4yXmxL+NuUlaN8HsrFYQYTXzjHP12mTlAjeIi2tEn4r4RYxWqnoaJ0Yi62p/6X1F81iyzDr8dvxW/23C8Mv2rcmDX0chtlxWqiTnVc0LCDieXCDy+UN3/GVWxUr2T6++EGHlS29+OyGI0wc+EGCYp4JGTDJNkFOUAOx/uIy/LkpiiJLjXKSwsDFo+dOgQKisrYxIg9fXX4S8EQo/XG6isDL6LzsmJ3Q8Xuu9YUF9fz4FXDMMwDBNnWgjhkTPBghNKPNJXpRt1vhpsaKADASgqvAex07MFJWljgtZTAhWgTaLiMNRBLF5T84aUYQA0m8QTcHRfGBRvKDmAx9SL0RyCA+WSDZeRhhrQ95yJFkFQkq3O9CQ5N2zCjhSRilbZQuaxIk9ryxdBjEYIwJIFSuzWIRihRCPdrVtpBv29NPkbkWlXT3vb5G9Qru/Yn51op3RtWyCUCE71PZGSyT4sr2WYaKn0qqO4cx0RRpN0EruAciZ5kVJiYdUbyjQb7Dg355sJLhETC/Ic6qijuIjRNNfeZBHzMgzDMAzDMP0Xjs9LHD0do8fxeZHh+DyGYRiGIdAN9tZJ03oR4uSzIF/5kzoxYHDwj84W+OMCWg7z9FKJv34nNu+PdmgeVxcPiLAxMaBZOcg3I8o+T1pyxxgkG8JuD5pU6RvNXyHDX4d6Wya5zfYjEheMi0092qae9wcAcPZIxTHKibpTMKJTShGGjRg87QuIg2iqV+fJ6d6EVX2WolJSjDbBsRuGGEWKE1fvAYbF0FNNtUWU1CoIleSkHXHimcErbMSwXr8PssUDtKjjpZHZ+6TcPYFwptHTu+3dBnP2bYAQEIOGAmddBlE6vjP57JGRxWgeL7CnChgRcn3aXwO0+NTblOYT7dw+QtAIAGMmacvBxIDRE+i0dnnmlJHA8yvobJ9ul7jqlJ6Pp9lOXANPGQZkHt5ibcpDuwM4PsDyVliCic1ryOzry+m9NmjkuulmQMxhYQmdkWH6IvmFdJ/h8F6goE1ifVweMDQH2EfM97GCcEN3l6PqkGBLz/ulaQKUtDpUEhsKJbCua/sCZD3xRWTw82ImBIN6B3jsmiWbm4CjB9TZ+tF1SaRnRTUlcq6s0aa/sEJi5uXd6xNJKVFP9CGyXMH7nno8kGoP73+PHgzkfbxAuQ8R+PtS0vNA0jjWkWGSARajMUySYbcJDI/00obpE0yePDls3erVq3HhhZpZKSyyenWwtMLlcuHkk0/u9n57GktGcYu0tsZeqiFDjdEMwzAMw8QcSnrkMlwJLYdOYNQX+bxuCUz4lWlnZE1DmuHGx9XvwoQZlr6y7qMwMRoldAHaBkjbhfrholWBCtN/iVS3khmqfE1mI7yauk+dL0zPEamuJVpE5oxwvESL2nS4bG60+tRitBSRCpuw9jg72X6DaKFkdp72fhAlGO1uO6eT6DX5G2gxmkmI0doFdA6indK1bcHHtv55I0nlGKa/45d+VBMCpDy7NTEa9YSWn4z2LbZ5NmJvi3oQyKTMKchx8Ius3gglQKz2VcCUJgwROzGEThzvSrDcnmEYhmEYhmFC4fi8/gPH50UPx+cxDMMwjAXIAba9jNMuIpPkk/8Dcd0dAIDbpwo8vlCSQqInP5bIzzBx/ze7/72UHVEfpDAbcKVE6KdQg+9VA5qpAfcUruSOMUhGxM2/hfz7/QAAt2zCnVV/xsz8+8n8P31ZYsa5sTk2VY8AYLKiOkhKqldUSh+EGjwdIEaTHuJdCdcnJeLWmZCfvKVMy6zYhnsuOR4PzVf/ttc8beLQHw0MzIzN/QxVh0oGRt6//Nt9dOKk6cHLdlqMhroqej+ZPWwh703ccDfw0u/VafOfBdAe6/DCI8DMlyDO/hYA4MJxwGkjgM936Xc/+jcm6v9qIMV+rG788zO6DSpRz2NFyz0BiCwW4cUbkZ4F6UwDmhVjFNp/m2sntYlitxxS72POYonbzpE4fnDPydGklKTMdtQgAfmvB6zt6JoZEO4AmWlRCbLMOrjMJngU7/qX7wDqmyUynOGfvVHzaChIjNYugWKY/oL44SzIL6co0+Sbz0D8+BEAgM0Q+PWlAre9pD63W3zAloMSo4fEtu2pJrqxuW4Lx6k8SMtdI8mmCIG1rKtqi1mk+kfcN2LCIOpq4PuFA5qOnkqw3pf51q3AW/+wlDXbp7lPATDrXYlBmSZun9r1Z0StPsAXPjQRAJCeGryc6xb42TSBP3x47LcVAvj1hH0QHxMHCJQ0UrLqQFwZkfMwDBN3+sgTeYZhmN7HsGHDMGzYsKB1CxaoDbTRsnDhwqDl0047DSkpKTHZdyIZMCA4CrGqSt9p7uq+nU4nTNOElLJb/4YPHx6z8jEMwzAMo8ZDiNFSEy1Go6QbRPl6M1JKLK9dpEzLdwzBDYN+gqsH3oxxbvWMWV/Wf4ZWM1hyoxPIuWxuOIS67+qVsQ+eZ/oWlCwI0At/kgFShORvhM+k5UEOg8VoyYbLphc9JFpEFkkClkySMF1ZovneIn2mZJLBqaD7GW1tHCX56u5v2SEyU0HJzwCNuKz9e6au6z6L13Wq36BqN6nfVnd9YJj+RI2vUikzBoA8R3dnJudBqX2JhVVvkGnTc69IYEmYWJLnUEfa+6QPdX79bI7RQj0fsQsHHEbve1/FMAzDMAzDMEzvhOPzIsPxeQzDMAzTBQxbT5cgJgi7HbjoBjJdHj0AABgxQGDbg/qhZw+8K3Gwpvvvinao5/ehRTKBEFIZUaQSo0U5cN5Fv0tnCK78UdDifUdn44X9N2k3OVwXm/eN2w+r199zsVCLgMvL1BvoxA0WxGjwEHEWLEZTIkaMpRMP7MSsy/Uijv9dGrv31duPqNePjDDXmNy7lU781q0QoWJNahC+3wfU6sRoUcod+zHi2z+zltHbCvnE3ZBmWzyFzRBY/EsD939T4NzjNZv5gbfWBa+b9a66LuZnAFlp4fVY+nzAwd3KbcQDr1gpPRMDxMwX1QmH90G2tsCdKvDZr/T9odnv92zczJq9dFqJg+hkdXDSFODMSyHu/l+IH88OShIZOUBmLubu/z65+fPL1Z+9QT1HLgAgvSOeb0ABBF8bmX6GGHcqnfjy40GTQ/zobAN//C+6H/SzVwh7UDeoalSf0zlW5kEsp2WfUN2bBUL1cTqEaHXV0W3H9F+oCWACxWiUmNZmAwYfF/syJTHihrst5/V6miPm+Z/XJRpbut4v0vYfUsPXzb5K4O83Clx+EnD9qQLv/czAdz6g+y1B9/pWxGhp/EyIYZIBFqMxDMP0IBddFDzT0osvvgivlx7wboWKigq8/fbb2uP0FoYMGRK0vGnTppjte9CgYwP9mpubsXev5gkgwzAMwzBJQ7Opnj3EqZiBKJ5Q4hFKVNKb2dW8FYdby5VpZ2RN6wwWOj3rPGWeZtODdQ0rg9ZRchIDBlKFEw6hDhzyyu71lZm+j+4cdCZYoBgtlAipVbagWRIzJwGwwcLDeCahUL+l1fRYk2yiNh2678YVxbU+4mdOcL8hWqjydQjIKFFYd3/LVOGEAXUQf5NfJ0ZTp6UZbS8C7ULdTlm9rlPiNVX/rz/10RimK1R6iQhu0MKkUJSDBQBIFqP1Gcqbd2NT4xpl2gnuiShI7V+BP32JXDs9WqNK0z50BVJsmkRSXoZhGIZhGIZh+gccn6eH4/MYhmEYhkBq3nuEim16MaJ4HJ246thEmsX5AjPOpQfj+01gwabuvyvaWaHeR8lAvRBJ1lcfGywfSmFx+LpoB847+dl2tIiMHCA9O2jd9XWvYtaRmeQ2izbH5n3jXqIqjCsgNiDkDaKolD6InYjXChSjNROT7LJoj2bSdOVqWb4DQgj8YDLdFry3ITb1p8UrcbhOnVaSr2+LsPojMkmUjA9fSYrR/EBdJX0cln9YJ3uA9XPu4G4gQG6Xliow83IDi++04XTFpaSD9zceq3v1zXQ9LMomEo7sC247gjbStENMbKG+a9MEDu4CAOS6BeZcp2mHNvZs3IzuOlpcuZpME3c9AeOJRTBmvw5x2c3quKDCEpS2EiJRAJ9sI8RoGneKuyOmQNVXY5j+wIln0mmVh4IWf3qugI24Dd11NIZlaqeK6MbmWrktomRTmblt9wg6KIF1pxiN6OhH2i/T/7AiRjuiHiOHQcMgKBF2X2XgUMBhbeKf4307I+apbwaW0d2GiEQrRhNC4JazDLw5w4aXbjVw4ThB/74pqUB+4bFlK781C1wZJinoO0/kGYZheiE///nPgx4YVVRU4Nlnn+3WPufMmRMUvOV2u/HDH/6wW/vsKc48M/gGf8mSJTHb9+TJk4OWYzUbKMMwDMMw8aWFEKMlWnBCCVco4VdvZnntIuV6AQOnZ57buTw+fSLctgxl3pW1wQEflJwkzZYOIQTshvqhqk96g2bAYZhQqHPQaaTBEMk9Y69OCFXvq1GutwsHKSdheo5Iss6EX7OSTNSmQyf2iqacurwGbEgRirdiSQT1PXQIRihRWHd/SyEE0mzqYEBdH8djEmK09n1R13Wv2WqpXKRYRfE9RfruGKa/U+lVT4+eZqRHIVfkvkdfZ1H1m2Ta9NwrElgSJta4bRlkP6jKG2GG6Cih7vsTLbZnGIZhGIZhGIbh+Dw9HJ/HMAzDMF3ASO74k6g47UIySX7wUtDyReP074huek6SUgyrlBGPqksize+zXzMwt7AkfJ0rnRYSqXAm92SMSYti8PAFjepYRADYfLD7h/T6JOoICcuQrPA6LJvqgapDitwAihR1pwNq8LQ/QG7kISag40HVNJQcZ9MXAIALNS7HL3YDD8030eztXjtUTYhAAGBIln5bWaMxk5x6fvg6XTtUTTSIaRn9T9TQDYQQ6u+egpC5XKi5Bj63XOIfn5qQUuIoPe8kxhcp2qBDeyDv/S96IxZGJY4hI2iJylfLOv+8YCxdFyrqgdqmnotxr6in06Y1f0InElLKIIpKcHzrNjK5kgjNo8QmDtmKFLRfM/MGRz4+w/RFxkyk0zatClp02Om2Z0cF0NgS27anijinrYjR5O7N6gTVfVkIIoOQvx5tv1Gor1Zvx9JYJhQrYrQ6dX1C7iD1+j6MMAzLz0gmtn6FHAvhfxfNMfH5zq61TVoxmjPy9rLFQ4vR7Cltn7cDK5+b5YsMkxSwGI1hGKYHGTt2LC6++OKgdb/61a9w+LB6gFokNm3ahD/84Q9B62666Sbk5vbOm7vp04Mfrs2dOxf19ZondVFw4YXBL3L/8Y9/xGS/DMMwDMPEF4+pjjpwGokNPqLEIx5/Y58SdzWbHnxZ95kybZz7FGQ78jqX7cKBSRlnK/NubVofNMiakqt0fK8OQQdu+GT3ZnBn+jakPCeJxE8UKsFPB3WEGE13rjA9ByXP7ED3W8eDSKKbRJdHh+5cjaacus+cZnMnvVBQ188AohOFRQv1GzT56ci9RiLN3S5Go9oqq9d06vOqvifqu+uL8lqG6QqV3iPK9XmOgZb3Qbagfec2qF9T5a3A6rpPlWnDnSMx0qUZbcAkPUII8nyn2oeuEs/+CsMwDMMwDMMwTDRwfHkdzi0AACAASURBVJ4ejs9jGIZhmC5g9J1hWKJY89x/7VLIZfM7Fy86AbgowmuCaY+beH1N114amabEzliL0VJSgQEFYauFEEA0g+dTWYzWFcQv/hS2bkLzGjL/w+/Jbsde6qRWeap54nRSvaJSOo0aPO33HfvbQ8QpOPldCYWghBnb10HWV+OKkwXpOACA37wlccGfTPjNrtcjSu4DWJCB1FWRScrPphWjEe/usnrnvWdPIn5wL5A1wFJeOesHyvW3naOPNfvRixIz5kpSJAMA/3NR8D7kgZ2Q/28KsGODeoO8IRAsUkwYIiUVGDRMmSb/8GPIdinP8YMFvnkivZ8nl/Rc8Iyu/g0+tI5MEwUjIu+8sAQGJCZ5vojq2I2E2CQ9cCJWlo0w/RTx3f8m0+Svvw1ZWxm07n+/S1+LTphpwuxG/yeUrorRpJTAq3PUiTrpcAeZRHuwfR2k30/3tajtmH4Mdb4cO09kPVGf+ul1Sdz5V0v5HA1H8ejV1sZhnPNHEws3Rd82NRCycwBIV88JG8yB3WRS2Oe0IkZj+SLDJAV954k8wzBML+Wxxx5DWtqxQdM1NTW46qqr0NCgmSpCQUVFBa655hq0trZ2rhsyZAjuv//+mJU10YwbNw7nnHNO53JdXR3uueeemOz74osvRknJsRvqVatW4V//+ldM9s0wDMMwTPxoNj3K9amJFqPZVFEygB8+eGWrMq03srZ+OVqk+qniGVnTwtadnnWeMq+ExOd1SzqXO8QuoXSIbBwihSxTX/p+mdgTqW4lM5TMBwDq/OoZaewsRktKdL+llfRYkyqcEJrHwIkujw7duRpNOXWCtWT6vBSUMKRFNsMvfREFo907trqPoxOjUWlpRocYTX1dt3pNbyLadtX3RH13fU1eyzBdpSoGYjQKyWa0PsHH1e/AhF+ZNj33yqSXizKRyXWoR48FysxjAXX97g19MYZhGIZhGIZh+h4cn0fD8XkMwzAM0wVEHxuGdeP/kEny+Yc7/7YZAm/NMFCQTe/KbwKz3jW7VIwDtUCLT51WOjDC+4n9O9TrC4ohKJFdNIPnWYzWNSZfErZKALiz8nFykxUaT5kVdFIYpcihvEyd2ZECDBxK78xGxGz5AiaIo8RoLnVcBgOgsJhOm/8cUh0CZQ/p2+DPyoAPv+56EaKuQ4HUqWP8cNEN6vWaQfiyhnh3l8GD8qNFlJ4I8fdlED96ADj/O8D519GZm+ohG2rDVg/KFHjlR/pr0TOfSHy1j46bGDUoeFm+/jRQpZG2WxHIMLFF1wa988/OP9/4Md0O3fdmz8XOVDeqj/3jqYIUgYqf/kG5Pixfu9zxR9X/VKZTbWdDi7pMbjPAZMqyEaafInLygSHD6QzvPR+0+J1T6evQnkpgybbYlMs0adFnrjvCfdlXn9FplAA3EF178MVCuq/F7QgTChXjGBhHXl+jztNPxWg492pr+eqqcOsUA5/ebeCn5+nbhFYf8OD86J8RNRBiVSEAl5XhU/uJ+3wg/HPaLewwK8/CQRmGiTd97Ik8wzBM72P06NH461+DLbPLly/HxRdfjPLyckv72L59O6ZNm4bNmzd3rjMMAy+++CLy8yNNkZTchAaOPfnkk3jssccsb19bW4vm5nCZh91ux6xZs4LW3X777Xj99dejLuOiRYuwc2c338IxDMMwDGOJZr96Sj+XkaZcHy90whUPISvpjSyvXaRcn27Lwvj0iWHrh6YWoyDlOOU2K2s/6hSSUN9Rx/eqF6N5yTSGiacsKN6kGrS8qs6nfvGiO1eYniPSNYmSa8YLIUSvEYXpvrtoyunU7iexfYauoPusHrMprhJISoxGXbv90kdKVDskZZTE0eo1nTq26nuivjsTJllOhulPHI2JGE0dzMBitN5Pk78Bn9UsUKblOwbj5PTTElwiJh7k2tXne5WPmHW+izSbxPMbW/L3xRiGYRiGYRiG6XtwfJ4ejs9jGIZhGBWa9x6GLXHFSABi6Eg6cfNqyAC5k8Mu8OAV+oGv68uBKkLMoaNM85i6JEJ3S5YTYjSdVCYauRCL0bqEsDuUkpnjW7aT2yzZ2r13jpU6qZXqFQVVdwpGQNg05zo1eNoXYPdrVhdGuJInTifpKKLbI/nVMgDA8DzAnarfzWuru16PKBFIWgrgdESQgdRXqddTsg7dIHxKmBWN1JHpRAwZDvG9u2Hc/xyM+58HrvgRnXnLauXqScP1v78pgXe+Ute9XDdgGCHbr1mq3Z8lgQwTW4pKySS59pPOv22GwEgizEYIoNnbM/EzVepX9Mh1+oAj+9SJms8cnK+tPuYSkzxTx6bEJunmsckKBLdrTH/m+FPIpMB2BwDcqQKFGkl1d/vRHTS2tl3TVGRHui0KKXMgwkp7k0PHMMovPwYaWGTFWIQSo5kBkq56QrSXoTnR+jAi1QUMKIicsV1QeGapwJzrDDx0pb6PvKwMaPVF1z5R/Qd3iqJPrYISoA8ZDuEIGX8V6RmfYQDp/bNOMEyywWI0hmGYJODmm2/GjBkzgtZ99tlnGDt2LGbPno19+9QPoMrKynDfffdh/Pjx2LBhQ1Dao48+imnTpsWtzInivPPOw5133hm07q677sLll1+OL7/8UrmNaZpYsWIFfv7zn2Po0KE4dOiQMt/111+Pm2++uXO5tbUVV199Nb773e+S+wYAv9+PtWvX4ne/+x3Gjh2L888/H3v37u3Cp2MYhmEYJlqaTY9yvdNIbPCRTjzSRMhKehuHW/djh2ezMu20zHOUkhMhBM7IOk+5TYX3IHZ6tgCgv6MOmYnDoAM+fLKVTGMYShaUFgNZULwxhEEKm+r96hd5lGyI6Vkiyal0krJ44dQIKJLp/NAJwaKRfuk+UyzkYfFGV36PvzGiYLRbxyb2QV27df2eNKNNsuYw1BJHq9d0UgSnKGuk745h+jtVpBhtkHK9CkGI0Zjezyc1H5ASyWm5V8AQfWugV38l16EePVblJWad7yK9WVrNMAzDMAzDMEzfhOPzaDg+j2EYhmGixOhjw7BOv0ifvj9YHHXJCQKOCK8MbnrWhJ8aTU+wo4KWyWSnRXg/dYAQqBaES7k6iUbCkeK0npcJ5qzLwlZd0vABmf2+NyV2EnXBCpTUKtUOOL31MB//GcwbToT5reNgfus4yGd+o94gkpCIFKMFTBDnaVDnYTEazfDRdNpn70D6fBBC4IqT9W3C8ytk5yS+0UKJHXOt/Gx1armCoMRoNju9r2ri3V1mnoWCMJEQUy4n0+SvrgySgnYw1MJl41PCwRBaf2RTPbB9nXZf4my6jEx80NWLUMHG+EJ1NimBXUdjWKgooK6Bub7KtoKp0ElkA2m/Lub41QLIxhagRSGEayTFaAGFjUZWyzB9DG27s+J9yJbgOK5vafpAD86XuPp//Vhf3j1BWoNm/uGMCLdFcj8hHQaA0y+MfPDxk+m0LWvoNKqvxfRfKDFaIPUs2gujYETkPCEy6Ej3ZqYEdldGV4yGFnU7FqkN6kBuXKlOUPR7hGHon/Nl5LTlYRimx9E8QWEYhmESyRNPPIGcnBw89NBDnQ/h6+vrcc899+Dee+/F2LFjMXToUOTk5KCyshJ79uzB1q1bw/bjcDgwZ84c3H777Yn+CHHj0Ucfxd69e/Haa691rnvnnXfwzjvvoKCgAOPHj0deXh5aWlpw6NAhrF+/HvX19Zb2/fTTT6O6uhpvvPFG57q5c+di7ty5yM/Px0knnYS8vDwYhoG6ujocOHAAmzdvVs5yyTAMwzBM/Gk21VMK6YQv8YCSFwEgZSW9jeW1i8i0yVnnk2mTMs/BGxXPw4QZlray7iOUpI1Bk6kO+umQmdiFWqACAF7TS6YxTG8ffO+yuZXnR52PEqPxo71kRHeNAHpGzJVmuEG9U0qm80MntYpG+qX7TD0hposWXfmbzEZaMBqDupVmSyeOq752U+sD9+UgJI4+6YMpTRhC/8KQFMEpPq/uu/OYjcjBAO2xGKYv45c+VPvUV4M8Bz3bonV6ZsZbJjZ4zVYsqZ6vTEu3ZeH0zHMTXCImXujEaFJKCCuBYRaIRmzKMAzDMAzDMAyTKDg+j4bj8xiGYRgmFM2z0j42IFJkDwB+8SfIP9+hTJcP3wrxr1WdywMzBR7/tsBPX6bfDb2zHrj93xLPfM/6M+cdhAOoVP1YO5hy9QB8oZN9WB08n+KM2bPz/oj4zi8h1ywBtn/VuW6w/zDs0gsfEUtwxmwTG35rYGBm9N87JbXKcwO44yJgCy3nDaKLYjTp8x5rPTzqWFc4+V0JhRAC8vJbgLf/qUyXD98Kcf9z+N3lAv/+XP9++tdvSjx8ZVfqkHq9NTGaWhhEihhtGstktXrSs6ikjgzNRI3kvLUF8u4rgL8sCGr/7bbI9YmsPwHhhFJKyFtO0+/oguuB0yKIS5nYM2k6MKAAOHogPK1iP2RzE4Sz7cecc52B19eGx8kDwIx/m/jorsRPPEfVv5xPX1InGAYweLi1nWcPANyZyPWpBZAAUN0EDM4KXtdAiNHSAuMBuV1j+jNTrwIe+AGZLO+9BuKxdzuX771E4KkldB/ojbXAos0mvvi1gVGDunYP06iZ7zg9NcLGlBjNnQmRFVnuKlKdkMeNBvZsCU/csprekNsRJgyi/geKQom+u8jIjkN5egkFI4D1y/R5PI2QrS0QKW0NwpghAvddKvDgfLpt+ulcEx/eYb1vRAkaI7ZBAGRrC7D0TXUidZ9vdwCtRKfFQtvFMExi6FtP5BmGYXo5DzzwABYsWICRI0cGrZdS4uuvv8YHH3yAl19+GQsWLFAGXZ1yyilYvnx5nwq6AgCbzYZXX30VM2fOhMMR/BLpwIED+PDDDzF37lzMmzcPy5Ytsxx0BbQFqs2bNw+PPvoonM5gZXBFRQUWLVqEV199FS+//DLmz5+PtWvXhgVdORwOuN38gophGIZhEkGz6VGudxquhJYjRaTCgPrBHDX4tzfhlz58XvuxMm2E83gMSR1Kbptpz8ZY9ynKtC/rl6HVbIk4QJoSqACAV2retjD9nt4++J4SNtX5CTGaQUsEmZ4jkhitJ8RcTqJMAgZSjeSZ2Vh3rkYj/dIJ1npCTBctun5Nra8KJvzKtFjUrTSDEKP5CTGapt9zTIxGt1U+qReemtIk+3+q+qI7/3RlZZj+QLX3KKRCXgzERozGWrTezaq6pajzqwNYp2ZfghTDQlQJ0yugzvcW2YxGv/V3K5HwEGL73tAXYxiGYRiGYRimb8PxeWo4Po9hGIZhQtG8+ehjYjQAEFf/mE7c/hWkNzhea8a5BjbM1H8Pzy+XqKi3/gZpB+EAKhmoH9AvPY1A5UF1YkExvWGGxcHzqYmNS+xriLzBEE+GxyH++dBd5DYV9cDzK7r29rGSkhLZGq1L0QCIoaX6DHZiMktfQAyEh5hozqWOy2DaEJffSicufBmyYj+K8wWuVoeodvLUxxJNLdHXI7IOWZm7mRSjEYPpbZpJUSkxGg/MjwnCMICLbqAzrPskqjYjEkFivQ0rSKEnAIhZcyHu+xcE1c4wcUMYBsRfF9IZAn63whyBQZnqbEu2AX4zsVE0UkpajFZGCE4GDe2UmkRCCAEUliDPT7RzULeflBgtPUiMZlFWyzB9EJGSCvHPz+kMqxZC7t7cuViQLfDna/X3R/XNwDOfdL0Nos5bAEiPFG5OCat/PNvy8cUNd6sTmgnpMMDtCBMO9dwmUIxWrx6fY/lZQR9EFIywljHkvmfWtwx88Wv6GdHCzYAZRd+onuo/WOm2LHuXTBKUGE13X0bdyzEMk3D4DplhGCbJmD59OjZt2oT/+7//w7/+9S8sXboUPp+PzJ+amooLLrgAt956Ky677LI+OyOREAK//e1vceONN+KRRx7BvHnzUFVFP1BLT0/H9OnT8YMf/ADDhg2LuO+7774bN954I+bMmYOXX34Ze/bs0W6TkZGBKVOm4NJLL8W1116LvDzu4DIMwzBMvJFSasRoVqIOYocQAmk2Nxr8dWFp1OBfADjcuh+f1XyIvc07lVICp5GGkWknYGr2pXAYtBwscD+DUgpxeta5KHaN7tJnWVO/DOvqV6LGV9m5rtVsIUVMZ2RpZkrrzHMeNjaGz8rSbDbhj3t/haPew8rtOgZId0eg0sEOzxZ8XvsxDrXus5S/g0x7Nsa7J+HUzKnavnWr2YKlNe9je9NGNGt+81AMYcOw1BJMyb4Q+SlDyHx+6cPSmvextXE9PGY0IheBotThOCNrGoY6NcF9UdJserCk+l2UeTaj1Uze2dn3t+xWrtdJkpIJShJACQp0EkGm54gke9C1cfGCOgdcRhoMkTxB27rvLpJwLjhvbPbTUxjCBqeRpry+vH7kOXK7WEggqbqyt3kHHt97b9h6SjZmwECqaIuCsGvaKp/0IgX0m8pmswmSGHSgKqvDSIFDpChFqq8cfrpT1hYtNmHHcOconJNzCbLtHETB9E4qvUTgNIDcKMRogppNT4OUEp/XLcHGxi9Q5yMCSoijDUkdijMyp2G4a2Tk7FHwdeMafFn3KXlvMjClABMzpmC0+6SYHjcZMaWJRdXqWfJSRCrOzrk4wSVi4onufH+i/Hcxk+AdaFG/Y+kJSTDDMAzDMAzDMEwoHJ+nhuPzGIZhGMYihnoyzV7PpOnAF4vUaQd2AscFx6aNKxD4rwkCr32pfp/r9QNr9wIXjLN2+B0V6v0U50fY8MAuOq2IGPQKQGTmWpv4h8Vo3Ua43JCX3gTMf7Zz3fGt4RLiQFbu7JrMoVw9DxAG+CvVCRRDR+nTHcT7lNaAuLoWIqbQyXVKS1Fpm8jAVE/6hS1fAvmFuPlMA/PWEHkA1DUDmw8BE46L7vDlxC3QgAjhJtLTSIvRsog4E60YrUK5WvRjUUOsEceN1l8HNq0CxkwMWnXH+QJ/Whh9+5SXHvAcYZNGgJOeDUy9qs8+d+gVDB7edm76Fc+JysuA0vGdi8cPAg6HDyNoy1oNHJfAxxhHG4AW4tFWHnUNHEhPkq4kvwC5278mk8urgXEFwesaSTFagDyUhUZMf2foSMBmA/zqCZOx6Qtg+JjOxYnDBSJNYbqsrBtiNM0wEbcm/F021AI16v6L7r4sjMIox78IweJhJhyqL9UuRpM+L1Ctjhvt19elSPfBHVTsBwYEj4WbcJzAmSXAMsL/e6AWKLJ4K0O1QxHljADk15q+9nHHq9fr7ssysiMflGGYhMBiNIZhmCTEbrfj+uuvx/XXX4/GxkZ8+eWXKCsrQ0VFBVpbW5GamopBgwZh1KhROOWUU5Ca2vWBKjNnzsTMmTO7tO2SJUsSuh0AjBgxAs888wyefvpprFmzBlu2bMHRo0fR0NAAt9uNgQMHYvTo0TjxxBPDZq+MxODBg/HII4/gkUcewa5du7BmzRpUVFSguroahmEgIyMDBQUFGD16NEaOHAmbrY++2GYYhmGYJMUrW2FC/cDfaSQ+WMRlqMVoTYTE6mDLPjy+715ScNTBxsbV2Ny4Fj8puh+GCO9vhO5nu2cjVtYtxm2Fv8ZY9zei+gwfVL6Gt4/+23L+FJGKCRlnRcx3gnsS3EYGGs3wz1pOiKuAYwOkdQIVlegklK8bvsTT+x+BH/QABh1r6pfjYOs+XJF/ozLdL3342/5HsLlpXZf2v61pA1bVLcEvhz2MgSkFYelSSvz9wO+xvmFVl/Zf5vkaK2oX42dDf4cRLuLhbRR4zVb8dd9M7GrWB6QlM7GQBSWCaMupO1eYniPS79gTgUuUDCySxC3R6EQZ0ZRV1y/oLe1BmuFWitGOeA+Q28Ti96TEYS2yGWWeTVHsJ6OzrutkgJGu6zo5qJP4LV2GG15/+H4PtO7VHisSW5vWY3X9p7hr2CPIYjka0wup9KnFaOm2zKjup+jrGB1Q9UbF86R4KxJlnq+xsvYjzCj6DUaljY+8gQVW1C7Gi4f+GuG4m7Ci9iPcNOQOTMycEpPjJisbGr7A4db9yrTJWdORbiOmOWZ6JZm2bNiFHT4Zfr+8t4WemTxWJFpszzAMwzAMwzAMQ8HxeTQcn8cwDMMwETCSZ/KxWCKmXwtJiNHkK3MgfvW/YeuvnUSL0QBg1rsmLhgX+XoupcQOYgx9aSQx2n7i2bbNBgzSyFszLY7IZYlVTBDTvw0ZIEab0rQMQ7wHcdChnlj0jbVAdaNEjju6GJsdR9T1cUTtBus7cbmBkyO8H6TkC81tMQ5SSqCVsMFQUjUGACDcmZBnXAwsm69MlxtXQky5HOeNBvLcQKVmztk5iyReuCW6OlRGSBpH5EfYz/6ddFrBCPV63QB8T4N6fRYLo2PGuVcBf7uPTJarFkJc/eOgdddO7JoYbcSAgP2u+IDOOO0alqL1MMJuhxwyvE2CFoL8zXXALb8Fvn8PhBC4eoLAJ9vV9WHj/sSK0crouRJR3LpbuV6cdVlUxxDTr0Xqsvko9O7HfkehogwSF44Lrr+kGE0GNN4sfGT6OcLlhjzzm8AnbynT5dqlEJccG9Ny2ghgWC6wl57PAp/vAi79ix//uNHAkOzoriuNREiv3QBSdEYSXV+oMI5itBQnXzsZBRFiXA/toUXMVN+9PzD54rb7YY/mJgtoew4TIhAGgCu+IbBsh7pvdMYjJjbNMpDhjHy+NlD9Byu30tQzIgCYcJ56ve6+LC3DwkEZhkkELEZjGIZJctxuN84++2ycffbZPV2UpMIwDEycOBETJ4Z3oGPBiBEjMGJEP76JYRiGYZgkpNn0kGk9IkazuQFv+HqPX/0QcGnNexGlaB1safoKOz1bUZo2NixtSc38sP34pA8fVs6LSozWarbgw8p5lvMDwCkZk+GyRR7E7DAcmJg5BUtr3otq/x1CFyEE7MIBnwz/gr1mZDHaB1X/6bIUrYPFVW/jwtyrlZKZnZ6tXZaidVDnr8GnNR/i6oE3haWVt+zqshStgxbZjEVVb+GHhXd3az8AsLlpXa+WogFAWpLJnyh0UigVLEZLTigJWU9CCbOirXPxRif2iqashrDBaaQpxWLJJoOjcNncgI+I/CaIxe+ZZsRm5rTAsjgMjfDUVHSmAmgi+lWhxwjEZXOjzk9MA91NKr2H/z979x0eR3WvD/w9s7vSFnW5W66SKwYXwDRjeu+QS8cJkIQQkpAAISGFhNSbC5cEAiGBkHDzIwkhkIQWeu8ldDC4AcY2YGzZliWtpN2d8/tDWlnaPd8zs6vVqvj9PA8P0pyZM8fSaObMzpn34Pktj+Hg2uP7pX6i/rQxYZ7hriY0qiD1a20e0NCaasYjm+7qU90J3YEHG/9VkGA0rTXu2XCLv3Xh4t6Ntw77YDQptE7Bwf7VRxe5NdTfHOWgOjgCnyY+HpD9D5V7MyIiIiIi2r5wfJ4Zx+cREREJnGEa3HnwqcDPv2Auu/sP0Icvgdpxj16Lj5kHnH+AwlUPm58TPbMSuPt1jSN3sr/4urEZ2CIMDaz3DCMSXnodMwkqaBlXU+FzMqwSBqMVxM779fo2iBT+uvZ07Dv5YXGTY6518cTFuf29LReCYerXP++7DnX5nfZjB5CD0dIvkCctYyFKwr7bsr1S3/gVtBCMhr/8L/SXforSkMLfznFw4JVCoAGAm5/XOG8/jd2m+g/LWG5+rI4Gr8fqYkhjEBglhDTaXsCXMECoYNT4euCbv4G+/MvmFZ75N3R7G1Tptr/ZXScDPz9e4ZJ/5BaOlj5+dFsr8PJjcps+f1lO9VI/qWswBqMBgL7xMqhQCXDaRfjSYoXzbzEfC0dd48K9vnh9xuVCMGhZIIFRKeHi+JnzctvJ/v8FXLYE9R0rjcFopmtwc7u5XTGXwWhEPanzr4QWgtFw383Q3/odVLCz3xBwFG75ooOjr3GxQchRBYB73wQOuNLFmz904Dj++0LNbeblsVKPicGF8yZKSoGR2ecMUfUof8FM3fWzb00G0rGaHuO67j1527GTC96coUJFy4Ef3gz9g9OAtux3MLqtMd/7fG1/hW/eZr72r90MnHqDi7u+6t0/koPRfJzLPhTORTvvB1UiJKsFLPf/0r0/ERXd8JyqhIiIiIiIiIYdU7hJWngAQmikMI5W1/yEYWV8aU71S+tLgVnL42+KYQQma9s/QLsWnlwI9qw80Pe6e1QKsylYlAcqu78OCYFPCUNYWk+udrEq3vcQrxSSeL9tubHsvQLUDwAr428bl68Qlheq/lytaC1MPQOpLFAx0E3wpTxYldP6hQowosIqdSJwYH5oMzk8rcit6dTz/NrTYPvbkNoJ5N5WqS7bPgaTXNtZqsIIOSV932+O5yFJRY96gkpuV0LbA0+twbgB8wD0/v4dF+o6TVRsGxPmgY4jChSMJnm/bTlcpPpcT6H6tk2pTWjMIXjyo44PreeioW5l61Lx3nPn8r0womR0kVtExVAbGrjf61DpixERERERERERERGJ1PB8DUsFg8Au8ngvfeeNWcsCjsIvT3Kwz3S53uufkEOL0lZaHt3Uj7Rvq6UwovH19g39hnCUMhitEJRSneF7PSyKP4uHPzhY3OapFcDb6/yPh0y5Gqs2mMsaOoTjJGvFnaDmLvJeLyJMBNPaNeFtQniTG+gMhyArNXoicPTZ8gpvPgcA2H+mQtPVDmxZH79/yv8xtKlFY6OQwdHgFdIohYGMndwdZJIln2A0v6GO5Is6+mzg5K/LKzzVexI4pRS+daiDdZc72H2q//00jOo6fh43T1oGAOrLP4eqGuG/Uuo/ExqsxfqOGwAAoaDCnpbuxqaW3AL0+kLqSzWUbIDx7DVrF+8Q0AzKcYCaMWhIrDK3wRDOJgWbdAejhaO9wgeJtldqVB1w2kXyCi880Ovb3acqvP9zBzd+1t4/eedj4PFlubWlpUMIWvTqwkr3ZeOmdp4/fFJKAeNyuMiG2Lcmg3yD0WrHQoWL/27iYKL2PBzqXx9AXXGXeO+q3zOP5Q0FFXazzIVzzxvAwquqIQAAIABJREFUBxu9+0ctUv/B489dp1LAOnM/RR39eXlD6X4NACLb9/FANJgMz0/kiYiIiIiIaNixBmM4xR+AFBGC0eIpc4Bba8oyJYupHtc8wmJLslHcJpcX9ptTTTm1Z1zJJNRHZvtef0JpPSblEABUqsKoj8zq/j4khKh4B6i0QsN7QJ0f0u8gVYBgBwBoTZnrjwvLc65faH+upJ/DUBFSJZgWnTPQzfBldmx+TuvPjO3UTy2hvnCUgzllOxvLdizbtcit6TQ7tsC4fAdh+UCJBsowOZw9YnpUaBxGhMbkVJfp78mBg5mxuXm3r5hyPR/sUFaY3+XkcANiTnmf6+l5zElhpwCQ9Ag8la77DhwEhXpz/dnlaqhfF2n7JQWj1QRzC0ZT5iGTolzvgyRtbhwpnexzPR2u5SUEgasL0/8fjB7c9E+x7MCaY4vYEiqmuWW7Dch+ywIVmBD2eBGNiIiIiIiIiIiIaLDL4aXuIWfKDnLZ8lfFokPnyM+P7n4d2Nxqf/F15afm8mgJMCZjvg2dTEKvegv63Zeh168B1ppfesV4j5fp/YYLMRitYNTU7ONrfttrCFnGAz6x3H+ozJpNQIfwOLG+QzhOMjX4HFMSFSazjHeNJ+iwPJNkeIMvato8ubDH+agsrPCtQ+Vz0Cur/R9DtpDGaR7zDuk1QhhIneXZWD7BaJUMRis0NW+xWKaFa9+YSoVvHuK/PzC5tqu+Za/IK9Xv6Ls+6l/K1h8CgI/eh966GQAwY4x8/nn7owI2ysNGYWjOxNRac0GdPfxNVFGNeiFsdIVhWJIUbFKWnoSeYY9E3ZStH7ri9axF0VKFJXsolHtkC77yYW4hjWKgodCF1W2t0Mtfg14m3C/a+kKSXLZh6DCZeAWjbTKPpcWYif3TniFGxSqgdjsY+MxXzCv851Fo1/zO3pzx9vHFr37ovf/mNiGgUTjfpc9DWP0ukBA+X7CF5wcCcllEuPcnoqIbxp/IExERERER0XDS5poDx4CBCUaLBoRgNCEsI25pv4kUmmXdxvUfOtCSQzBaLFCO08ec1zkDi09KKZw6+lxUBKo813UQwGljvoISZ9uDCSnsxCtApZBhJdLvQOv+DV4rVKBZUieQcO1Bcn4M5QAYBw5OHX3ugJwj8tEQmY19qg73te78sj2wa4U8KIcG1vEjP4eaYO9pi+sjs7Bv1RED0p4JpVNxSM0JvZbNjM7FXlXyzLsD5eTR56AsUNH9fdiJ4LQcr0EAcFjtiRhfOrn7ewWFkzLqHswWVR2CGVF/A95qQ6Nx7IglBdlvQAVxxtivitdhPxoiO/Q6l0lhp4D3dV0qt9W5T9XhaIh4DFDrg0IFmBIVmxSMVhvKLRgNQjCahnkwQq73QTb53CNlSnicd0zcAgUvDzYft6/BG80vGstmRHfCRAZYDVu7V+6P2dH+DRLNFFQhnDHmqwgoy0AiIiIiIiIiIiIioqHAGb6fc6pDTpMLV74hvvh6yq725/k1X3dx0u9ctLabnyetEMKI6kei11gBfd/N0EeMgf7sAujP7wF9Qj3w0iPGbZXtpVcAqKi2l6eVeiQNkH8HnpS1qMLdimO33ilu8uU/a5x1k4uOpHeggymQJa0+4S8YTU3wFxSjpJej413jNzva5I1D8ngH6mG/E8Qi/cBfe31/+u7yOejl1cAba/wFgixfb14vHALGVRqLtlkrBaNZjql8gtHKGSJUcAsPkstuu1YsOmwOUGseRp5lRBmgt24Cbr1aXmnBfv4qo/637/He66zrvK6cvUg+/3ztr8UbayIFkFXEhYtj3sFoNWgQgtFWbQBSbu/zqBiwlB6XXu6zP0a0PVh0pFik77zRuDzgKJy2m/1e7KancwtGEwMNM/LHdCoF9+oLoQ8dCX3WQuBxYXJOr/syk3EeIdc9MRiNjKS/i86/B93UaC6urO2f5gxRau4ic8GWDcCDtxiLluxhPycd9xsXb661n5ek/oPxPHTNxdCHjYI+ayH0Est4SFt4fkB+Z0KFfXb4iajf5fEJChEREREREVHxtblx4/ISVQpnAF6sjThCMJrhZX1Xp8Rgt7JAJZpTW7LrMYRRpXTK2qbWVLPvYIOW1Fbj8opAFRZXHdb9fXVoBObEdkZ50DvgLNOE8FR8b/LVeLPlJTQmzCPYyoKVmBWdi5ElY3stDznmAUBeQV/xlBy8cEjNCcYglSe33I8tyewPt3MNBKsJjsSelQdmLV+f+AgvND1mrF9rnRX2IwWujC+djPlle2Qtb0414bHN9xi3aXVbUCn8LP2SAigaIrMxM+pzlswBUBaowMzYXIwqGTfQTfHNUQ5OHPUFLKzYFyvibyPhZn+qH1BBTI3MxNTITIYKDGKjSsbhO5N/iXdaX8f6jrWYGG7AtMgO4rmtvymlcMzIMzC/fA+sjL+DsSUT0BCd3afwq/4yMVyP70++Gu+0voakTmJWbD6qgrkP6qsIVuGiif+NZa1vYFNiA6ZHd8SY0rp+aHH/CDsRnFd3KVa0vo3325bBFUI5x5ZOwIzoTogGCjcj0U5lC/GDKddgactraEpu8r2dUg4mhRswLTIHIWfbsWU7zhKWmZ8B+bofdOQ6I4Eovlr3QyyPv4kP2lbkHWi6pv09vNr8XNbyQgWYEhVTwk0Y+7sAMCLkMbW1T2IwmtCXrArWYlFldkBn3G3Fw5vuMG7T6jajHF4jzu2SHucdo9zGhw0ZD2+6Q/y9HVRzXJFbQ8VU6oRxbt13say181rpenzW0FeVwRrMjM3NI4iRiIiIiIiIiIiIaIBoy8MBxyleO4pMzZgPfcKXgdt/Y17hT/8NfO47WYsn1ipcdbLC+bfIP7e//0djZDlwzanZL8musgSjpel3/gP907Ot7e/F9tIrAFT4HIdQOjQmYxwK1OgJ0KURoL33ONDrPvoq/l7xGXG7m57RGFcF/ORY+wvWK4RQq1HJT1DhmsdKZhk72d96EeHl6HQwWkJ4kxtgeINPqrIWevxUYK0h1O6t56Fbm6GinWNlZo1VOP8AhaseNh8Du/zURfOvHYSCXseQeXn9SMBxPCZ0FILRrCGNeQWjMUSo0FSoBHrRUcBTd2UXtsehP/kQavSErKJwSOH+rzvY5af2cUllpUBJUMG94ivySgedDBXka96DhSqvAn7xT+hvWcZNrFkJzFiAPevlc8MrHwL3valx6JzcJoTNR7MQPlvW8rFxuWeArKSiGvUd5rDRRAr4sBGYPKJnu8zVlKXH3/ntjxFtB1Q4Cj13EfDaU9mFn6yG3vQpVPXIrKIrPqOwsbnzfsvkzXXA5laNqqi/c5HfQCLcdg3w92s868vnfKPGT/U/XC/EvjUZSJOxp8Pem4Sx8bwu9TZ/n85g70T2mFv9kzM7+7AZn5HtPU3hd2conPP/5L/iQ69y8f7PHQQD5t+T7/PQP38L/O0q6z8BAFA1EqrMMu7Ydl8m3fsTUdHxjpmIiIiIiIiGBCkYLexEi9ySTpGA+QMuU1iG1HYAGF86Ee+2vpG13BQg4BXUJYWdmTSnmozLR5eMx+EjsmdnzFdZsAK7V+6f83YhIUQloRPW7WxhJUeOOAUBlf1RyLL4m8agCCkQzIV5IENtaJTxZ7cy/o4xGC2pk0joDpSo3p/QSv+G+sgsY/2bk41iMFo81YLKYN8Gw8SFUL/ZsQU4tFYelEb5UUphSmQ6pkSmD3RTqI+igTIsKN9zoJvRy8RwAyaG85ztr4jKg1XYtWKfPtdT6oSxY9muBWjRwAiqEGbG5mJmrPghlLWh0VhUlR1YlA+lFIIqhKThGu51XZfKTUGnvcqdEGbH5mN2zDL7k4dXtz5nDEaTQp6IBrNNyQ1iAFZNjkFFuQ7XlPq2o0vGGfu28ZQlGK0Af38J137eMdFC/38o25LchOebHjWW1ZVOxqzovCK3iIotoIKYFZuHWTH+romIiIiIiIiIiIhy4gzvSezUWd+HFoLR9MO3QhmC0QDg3H0ULrhVI2V5rHLzcxpXnawRyAgYWvWp+TlW/aht6+n7bvZoeYbxHmMjYpWdL0vbQvAABqMV2vHnAn+9steiKncLLtrwv7hixIXiZn96VuMnx9qrXiEF7AkBLkYjx/tbLyJMXhfvep7ZYZmsqSTsvz3bOXXEmdDXf99c+OSdwCGndn/77cPkYLRECnhoKXDYjvb9SSGN0zweqev2NmD9GnNhXQGD0coqGZ7VT9Q+x0GbgtEA4KG/AaddZCxaMEnh+jMUvmgJfqiJAbp1K/CEeRwEAKhFR+XUXup/as/D7aE8PcIQT9xF4daXzGv/6dliBaOZl8cSm80FdXmOIS2vQX3iMbF4xfrewWgtYjBaV5BoBcMeiXpSB5wIbQpGA4BHb+vsS2eIlir87RyFmXe6+PHd5nPR7S9rnL2ob8FosYxAIt/3Z7a+kMQr5Lonhg6TiRSMlr7/bzJPMswQ4t5UJNYZ2PjSI+YVXnsKmL84a/EX9nbw4vsufv+k+Zy0bnPn/dmhc8zV+g1G0/f/WWp6b17nIWswWuEmrieivhm+U5UQERERERHRsNKWMoczhZ2BGXwUdczBaKbwMtsL/FIQgSlAwCuIozX9oNAHKUQtFij3XUd/CgqBJwltGTQE+WdUqsLGUDQAiOTwu7Qzf4AuHSuA+ffcmjL/HqV22uv3f0xIpJ+pbb9EREQ9BaXAU9d+XTeFqQFygGohRYUQ3HbdhpRO9fv+iQppY+ITsaw252C03AZsSn1JqW8bdiJwhMeXhejbet1PmPiegXIIeWzT3UjqpLHswJrjoKTBQURERERERERERERE27th/hm6qqiRC1e/KxYFAwpz6+x1N7UBazZlL/9UmAt0Ys+mrHrLXnmmcZOtxcpxgGofz8n4YnRBqenmCVsWtL1q3W7NJmBLq/2p3cr15vKGjpXG5VnCUWDGAn/rRoUxlq1dzzMTwpvcABBieINvwvECAPq9t3t9P6ocGFclV/Xou95PfT/dal5nYm2PkMZkAvqtF6AfvR163SporYGmjXKloyfJZU6Or/XGKnNbn/ybIU+8qJ+917rp5Fp7v6AmBmD1MiBpmcStYSdrHTRAdj1QLNJrtl1b5k2Qq/jHK7rzPNHPmtvMy8ukcfD5BBUBQM0olLvNGJ00j0NakRF2KwWbRHXXOyFl7GcR9TLdcj1a/rp10/1myNej3z2u0Z7wdy4SAw1Le/aHksAKe3u6jc/jfDMuh2A09q3JROpnp6/JzebgUOvnIdsptfuhcuH7b4tFCyfb6318mXxO8hOMprUG3vmPfSdp0zwmqA9a3kmI8J05osGCwWhEREREREQ0JLS5cePygQpGiwhhGaYX/20BW7VBIRjNEI7lFdTVIgRqmdc1jygrC1T4rqM/SYEnUkBKmvQzkn5fgCXkTghx0DBPbeoIAx9t+87leJECWkKqBAGYQ9+8wvT8MIW3AfZ/FxERUU/5XtelACMpQLWQpNAmIJ/wVKKBtTGx3ri8IlCFEqcwg4O0EB+Wa/9cKSWWSQHCuUh4nHdMpH/bUNXmxvHEZvPg7ergCOxcvleRW0RERERERERERERENIQM82A0AMDCg8zLXRf6jhvEzb60j/fP5oTrXLhu72cvjeb5UlHb9chIJ5PAK4971t1tVB1UqY8xhT5e0lf5BoeQ2d5HAzWjsxYf3Xw3xiQ/tm76qJzLBwBYYX4kivrEKn9tO+Q0KL8vPUvrxZs7X9C2BaOVMLzBt10OkMv+fHmvb5VSOGexfA664gGNXz9iHveZ5nku+vgD6DN3hf7S3tCXngp90izoy78MNAoHHwBUyuEKSikgYB73aRQt878u5URNmS0XvvYU3KsugE6ZJ1Gs9jht1EY19AVHyCvM3wdq4nQfraRiU8d+US6890/dgWdL9pDPPR1J4L9+6yLe0b/jTsQAEdMEhOXVUJW1ee1HdYUV1Quho1c+uO3fmUxptAlDdLrbVcFgNKJeZu8ql939B+hPPhSLF0+TN33pA2D691y8udb7XCQFo8V6BhL9/oee9QDoDBsaZUmPlIya4L+PxL41GUnX5q6/gaZGczGvS9mO+JxYpG/9tVh24i4K1VG52l/cp3HjU+b7MzHwNdzjmzUr5MozqCPPsq9gO98wGI1o0GAwGhEREREREQ0Jcdc86iAcsHxa1o+ksIxWtzlrdidbeEZNyByMZtqm1SPkKpeggOZUk3F5LCDMZlhkISHwRApISRNDvCzhJmLwglCXPHmX+QN0KXhN2ocYHiHUYw2P6GNwi9ZaDFez/buIiIh6yve6LgWnSUFrhSQFkgKFCR4lKiYpGE26F7ESX/bJLRjN1peMOuYB3YUIRkt6nHdMhlsw2tObHxTvrw+oPhoBlcPgeyIiIiIiIiIiIiIiGnbUN68Vy/QVX4Fu/MRYdvYihStPVJhkydp4eTVw31s96tMajcLj15pY13Opf9/k0eIMPgLPfK/nty7yRZVGoK59JGt5WLfj8fcPwOKWJ8Rtj79ODrVyXY2Vn5rLpnVkvzCtLv0/4KizgLIqoGokcMKXoc6/0vsfkBYRAqpSSaCjHegQ3uQGgBDDG/xSgQBwxJliuV69rNf33z3cHs54/i0ab62Tn/3K56Ku/V15PvD+0t6Fd/0B+p+/lXda7hGukFMw2uAY2ztcqS/9VC687VrgyTuNRTUew2irW9YAWzfJ+/3Z3/00jwaAWnwMMMsSUvTGswCAcVUKvz5FPv/84xXg2scGKhjNcGLrS+jrhAYAwDQhGG3FemBLa+e/VQpX6tkuVSGHRxJtj5RSwGnfFMv1VReIZY6j8JX95XPRh5uAz/3RHhILAC3t5vNVOhhNr12ZFVArGjcFKpj7ODQVDAJjJ/lbmX1rMpHGuKZfBGsS+mZeffftkCqrBGbtYi5cswK6dauxqCKi8OTF9hijL/4/jfc2ZJ9zxH5N6bbfq778PGvd3Y79ItT0efZ1bBMghPnOHNFgwWA0IiIiIiIiGhLa3bhxedjxMbtjP5Be5E/qZFbIhxRoVqrCKBOCyOJuS04BawDQkjJ/qJjLuoMlGC3omANPEq4wfVQXMcTLEm4i/S6lujTMD4WUEIwWUiUIwPxQJ24Id5COl0L+G/xK6A6kkDSWSWFsREREmYJCkFlCCD7rLnfNAUYhxxy0Vki2UFUpUIhosNqYML+cUptHMJrU55VIfVvb31g0IASj9TH0F/A+7xjJychDTkon8cgm84DtqFOGPasOKnKLiIiIiIiIiIiIiIgGoVilXKa2g9ewRtYBIcsz2cf/ZVyslMLXD3Tw3s8DmFsnb37LC9uevWxtA1LC+/ndYUQP5xgaM26qr9VUV7iHVZ2PdSgnqq4B6gd/ylpen3gPj6w+FNPCjeK2UlDDR1uAuPAYsL5jVfbCWbvAufg6qLvXQd35IZyv/xLKdsxnkoLRACDe3BmOZhIIQjnbwTmkgNT8xXLho7f3+tZxFH55kv159q0vyc9+NwrzdNXEAN3SBDx/v3mFe24yL4+Wex9XuQSjRThes19JgQ9d9MO3GpdXe8ztXfPpUrlw0VGdYRM0aKkvXiaW9TwmTlnoce55caCC0Qwntr70bboCY+uFYDQAuOv1rmA0y7yF3e2qYAANUSY1Zze58Jl7oOPy+Lm9G+znopdXA8s+sZ+P5ECiri8e/Yd1+176EjLt854OJQxGIwNLMJrWGtgq3HPyumSk9j5GLnxOuEcCMHucwv/+l3xe0hr4e8b9WSKp0W5+fQ2xnrdWK9+Q29SDOvYc75USljRX3oMRDRr8NI2IiIiIiIiGhDYhgCLseDxV7ie2UKjMADMp0CwSiCEivPSfS8Bad7npAaZACkYrC1T4rqM/hZR5QEhSW56UwvKztgQvSL9LqS7pcZAUEqGU8r0PV7visZ7Pv6Gv4RG27W3tISIi6kkKMksKwWdpUoCRFLRWSLbw3b4GjxIV28bEeuPy2tDogu1Dyg6z3QtJpNDfVkOocK6kwEUbLd4BDD0vNT2FTckNxrK9qw4dsOBxIiIiIiIiIiIiIqJBZd/jzGE1E6dvFwEmKhAAZsoBMXr1u5517D9Lfvn15uc1bn3JxeZWjUbLo9d0MBpefsxzfz2pOp8v4O9gCR0AgKqRwLgpOe2bfJq9q1g0q+MdseyqhzXaEtnP7laYH4cCMASjVY8CxkwG0HmsK+mleZuoZdxcvFl+sboknPu+tnc7LBSL9AfZx8oeU+2/zx/frXHNIy6WftT7OHJdjU3CHHm1MQWsWQG4QoqjpKLGe51cwjxsgXzUd9Pm2kNBn7rLuLgiLGdvAMCYphVimZotH980SEybJ5f94zroriDMmpjCNMvchC+vRtZk6YUkB6Nld7T6dNyNGAcA2C3+grjKu5/Y2wQAsfQ4+XIf50mi7c3MneWyVApYawj97bJwiv2aBAD/esV+LmoR/nZjXV0WvXqZfQc9KK/7Ldu2c3b3tyL712Qi/R1oDbRu7fxbMuF1ycxyTwaPc8LuHvdn3/6HxoNvayRTnecm6Z4MAKq6Xh3VHe1Akxyo3q2syl8gbKv53crOOob/Z4BEQwWD0YiIiIiIiGhIiLtx4/KBenE7KgSaAdkBZlJ4RsSJiS/9A/4D1tJafAYFaK3RLASjxQLlvurobyEh8EQKSEmTwuOsoWJS8IIYjGYe4KIsM8LK4Q6999HuxsXgBdsxFxECAr2OGS+24JeoJcyCiIiop3yv61IgqhSgWkiOCogBvH0NHiUqtkYxGM0yKjNHUh82nkfor9TvzSUIWpLMI3BxuASjaa3xYOM/jWVBFcK+1UcUuUVERERERERERERERIOTipYDR3w2e/kJXx6A1gwMdfLX5cLbrvUM9zhnsf3l15Ov19j1py5efF9epzYG6FuvttZjNH6qv/Xm7wPMWCAWqxO/BhXs/0m7tkdqnPw7+s7Ki8Wy7/1L48ArXWxq6X38LV9vPh5rkxtQ7W7uve+TzocKGoIPc2ELqIq3AAlhsqZcQrAIAKBsL7I/eAt0RqjBrpOBxdPsdX7tFo2dLnPx+ye3jQNtagNc4bRWEwP0PTf5a3BP5dXe6+QS5sFgtH6lyquBI8+UV0gmoO/5v6zFjqNQaRnGPm3Tf+TCw87IoYU0EFRlrbVcf+Mw6K2d15mLDpH7Pq4G3lhb0KZtq9vVcpCRaZzNwafkvS/lOMDCg7Bf6+PiOj+9p/Nk2twm11OWbleFj/Mk0XZGjRgHHHSyWK7/fZNYNqlW4cSdvUOIbnhSDnsVgxZLuwIe7/2Ttf5uFTXA4Uv8rWtyePb9uFGI/WsyEZPR7IFavC6ZzVssFukbL7NuuvtUYC+P7PpDfuXi+OtcxDt8hue/8IC9wrTPnAdV6uN+q8USjOYn7JqIioLBaERERERERDQktAkv1EuBFf0tl0AzKTwjGoghYgmXygpYE34G29b3FxTQrtuQQtJYNliC0YJC4ElCCEhJk4LAbCFeUpkUCiYN7LM9RhL34fNYAfILj7AFm/lhC1aztYeIiKinfK/rUnCaFLRWaFJ/r6/Bo0TF1OG2Y0tqk7Esn2A0ZRs0YiD1R639c0cIRutj3xaQzzu2wMXhEoy2tPVVrOv4wFi2W8W+qAxyYA8RERERERERERERUZq64NdQX7gMmLkzsGBfqEtugDr+3IFuVtGoxccAc3aXV3j7Bev200crXH2y/aX8lZ8CX/2rNEElUNH2KfSvv+nZ1izjPd66Te/DcaCuuh847hxg0gygZkznf3P2gLrgauD0PPZNvqkLzKF3u7S9bN3umZXAtY/1fn634lPzuvWJVdkLT73QV/usrMFozUCHkCjB4Ia8qAuukgszXopXSuGerzmo9hhWnHI7A9LSIXu2F/Croxr45+/8NnebSh8v0ecSlhdlMFp/U+f/Elh0lFiu//uL0C1NWcvjluFPDfFl5n395G9QI8bm3EYqPvXTW+XC158G7rgBAPCFvR384gS573PO/5ODiPqi1XL8lWWOcZuxAKqPAR/q67+EA43zGq8T13npfY0WS7ti6XYxbITISH3nRrnw79dYQ6r/dJbCd4+w34ede7POChpOE4MWSwG8+qS1XtSMAcZMAvY7Aeq6x6FGjrevb6FGT4C6NDuQNEuo/ydZpiFICX8DWgNN5rG0AHhdEijHAY6QA4T1R+/L2yqFe893EPBINLr7deCWFzUaLa9MpoPR9I8swYnl1cAOu0Gd/79QZ33fvtO01uz+fbeyKn91EFG/YzAaERERERERDQntbty4POxYptrqRyFVggDMMwdmvvwvhWdEnFhOAWteIVetppmdDJqT8gd3ZYEKX3X0t5BjDjxJCgEpaVJYgi3ESyrr0O3G/cnBCPJDJGkfme21hdvZjhWpzO8xIZGOuQCC1vAIIiKinqQgM6/ruhRgJAWtFZoUYNvX4FGiYtqU3CCWFTYYLVtSJ9ChzaOlbAHXUmia3yBoGylwscSxDTgfHsFoDzb+w7hcQeHAmmOL3BoiIiIiIiIiIiIiosFNBQJQS74N54Zn4Fx1P9ThSwa6SUWnTvq6WKafvNNz+xMWeD9XWr/VvLw6CjjP3+e5vdH4qb5XVbEKOBdcDefm1+Hc8UHnf9c9BnXcOVDSy9RUGJNniUWHNdt/93e82vv53QfCI9H6jt7BaOqcnxTm91oaARzhlcx4M9DRZi5jcEN+LMeKfiL7XBQrVbjrq96vzLYlgAfe7jyWPrG8C1/dZJ58ylO5j4mpSsL+67MF8lFBqEAA6pLr7Su9+HDWolmWfLOGjpXmgoUH5dAyGlATp1uL9RN3dH990cEKEWG+z/fk4Tt90iyEGAE9AsjSFuzb9x2OmQQEAljQ9oq4yl9f1GgWLoUlbjtC6cndyxk2QmSigkFg90PkFdYK1xYAoaDCj49x8MXFcp/X1cD9b5nHw0nnlLJS+z2g+p9/dd5L/X0ZnB/9Bcrj3OnLnod7r5NLyCxtP6R7PtcFtjZU/IhmAAAgAElEQVTK28Qq+69NQ5yaPlcufPpu67ZlYYW7fdyf/esVLQZWlwSBaAmgUymg3fxuKcZOgvPvj+H89gmoz3zF/72/FGyOrlA4IhoUzG9wExEREREREVn8ft3/4JOOdUXd5ycda43LI5YX6vuTUgqRQAzNqS1ZZa1ZgWbmaQsiTgwhVYKgCiKpk1nlmaEbmfVmakkJI8Uy13Pl9WKBcl919DcpdCvhWqaQgiWETghXAOyhafFUK8qDmR9wmx8E2UIixGCVzGPF8juOBORjXapfCorzSzrmIoEYB/8REZFvIUe4rgvBZ2lJ1xxgJAWoFprUR4i7limpiAaZjYn1YllNcGTB9mPqIUv3QYBH6K9wTxLvY+gvACSF806JJXDRNsvmULG6bQXebX3DWLZT2W4YXZL/DJ1ERERERERERERERDRM7bSnXPbnK6BPvxiqTH5xeEwlMGM08O4nue+6JgboD5fnvuH0+VCxwTExKHmYsQAIR4G27GeK+7Y8jnvLDhU3/c8HwLsfa8wY0zl+bWOL+XneuGTGGNe6hvzb24NSCjpSBrQY0rRam4GE8GI1gxvyM2OBXLbS/Ax0Xh1QGQG2CO/Mpy3rOj+t/NR8DMVKgaoNeZyLAGBUnfc6OQSjKQajFYWqqIGu31E8tvSffg4sPqZXSMK+MxRe/TD7GNqpfCOq3c3ZldSOhYrIYyZokBk7pTMsRRo7svTF7i+VUoiVAnHDkLf1W4GX3tfYZXJhx16b9pUW073HgKu6+j7vT4VKoEdPxOJPnxTXue9Njd2nmP+dZT3H/lTU9Lk9RMOV2nFP6OfuNxeuXenZr91vBnD9E3L5n57VOHlh9nI5GE2J10YAwA67WduTDxWrgK4eBWySxz/mFDJL2w/xPScNNG0yF5VVQQUC/dakIW/+PmKRvu47wNFfgLLc7+42BQiHOsOpJc+uAk7Y2dzfqol23Yev/7Az4M5kBMfAEg1njCkkIiIiIiKinK3vWIe17e8X9b+kNn8CVupEivyv30Z6mT8z0EwKu4p2hUtJoRvZAWv2kKvWlL+gAClATcGxhoQVU1CZA08SwnGQJgWV2IMXLMFoht+dziMYTdp/ZnCZFGRWqsIIKDnfvr+CW6RjzvbzJCIiyiRe14Xgs+5yIcBIClAtNKmP0NfgUaJi2pAwv2lSGagWQwvzk91HtvVFbcHFfvvO+ZDOO7bzitT/H0oebPyXWHZQzbFFbAkREREREREREREREQ0Vqma0tVyftx/0lo3y9krhB0cpOHnkf9RE0fnCfy4CQagzv5v7zmhAqGgZ1BnfNpZ9dsvNmNqxyrr9rEtdPL2i8zleo/AYsTbV2HtBAQJhukkhVfEWoEMKRmNwQz5UtByoHmUuXPoitCGgLlqq8J3DvU8+P7iz8xhaLuRtNIwEcP33/Da1FzXex/GWyzERZTBasaizvi8XLn8N+qdn95pg7dx9FEZnZHIGHODSpeeZ6yjkuYj6nSoNA6MmWNfRbz7X/fUvTpDPPQt/5uKRdwo7BiVumZc07GZcj/ycl/wYX48piQ/g6JSxeOlHwNsfmf+dZemwtkBQvpYSEXD058UifeOPPTc/dp69H3TfW9nLXFejVTinRNEGvPyYWJ/qr6BDr2DjEIOHyUQ4/rUGmhrNZeVV/decYUBNmS0XdrRDX3gktHQfDKAqqnDhwfbz0oZm4LU15rLari6D/sd1chu//HNr/UQ0tDEYjajAlCFJVkuJ8EREQ4RrSFE2ne+IiIgGQngAg9Gkl/kzA82kF/jDTrSznj4GrKV16HbPgBEAaE4ZZioEEAuUwVGD46MCKZggKQSkpElBXpFAVNzGFgZn+t2JwWiW/pF0rGT+TqXfsS04AvAf0perzGPZb3uIiIh6yve6LgWiBi1hoYWU7qtl8uqTEQ0mjQnzCO7akP1FFokUBmzqI9v+VuzBxeaBj62uvyBoGylwscSRB0kN9WC0DR0f4+WtzxjL6iOzMDUys8gtIiIiIiIi6juO0SOi4Ybj84iIaLBS379JLlz1FnD3H63bn7zQwYPfcHDmXrld12piANasMBfuegDUH18Ejj8XmLcYmLs3cNRZUFfdD7XoqJz2QwNLLfmWcfmI1EY8/f6+OLv6Bev2l97R2YeSgtFqUpt6LyhUIAwARITnna1bgYQwFoLBDXlT3/qtXHjPTcbF3zzEwW1fcnDqQvv55401GiulYLQRLrD8NZ+tzOAn/Kokh2OCAUJFoxYfA0ybK6/wwF+Ad1/u/nbaaIWnLnbwzUMU9p8JnL1I4aEzN+DYrXeatx83tcAtpn433v4707/6RvfXp+9mP+d871/Z9/990WZ5bSCi470XFCqUr6ue91bMEFf55yvmz2pj6bFEFTX83IPIQlWNACZONxcufRE6aX9nqDTk/ff1xpref6dSKBoAlL16n1imfvQXz33lzaP/rti/JhNHeCdOa2DrZnNZf4X7DSPqnJ/Iha8+ATwp9H27/OhohZvPVphuGbr8ywfN/YeaWNdz4Ft+Jbdvzu7W/RPR0DY43nYmGkYcQ4cpkfAOJiAiGsySyWTWMtP5joiIaCCUBwduZoaIz7AMKRAg2hUuFRUD1nq/+C8FrNm2MWlJbTUujwXKPbctlpAKGZdLASkA4GoXcbfVWGYLPyt1wlDCRySm3530Yo0UEmHbf2bwmBRkZguOAPyH9OVKDGoTjn0iIiKTfK7rgBycFhSC1gpNDB5lMBoNIRvFYDRhRm0vOQxKlPq2CgqlloBrKRitzY0jJcw261dSOO9IAY7A0A9Ge3jTndAwD6w9qOa4IreGiIiIiIioMDhGj4iGG47PIyKiQauuwVqsn3/As4r9Zirc+FkHi+xV9VJtCUZTB58G1bATnG/8Cs6vH4RzzUNwLr4Oau4i/zugweMz5xkXj0xtwG/XnoPysLzpY8uAtoS2BKM1bvumdiyUFGaWDymkKt4MnWg3lzG4IX+WUCL9n0fFsuMXKNz8eQfXnSY/577vLY3VjeZnwvXOR/7bmMnj/AkAKLEc4JkKefySJ3X4Z+0rZFz/6kcp/OIEBw9dEMANSxws3mAJkClUOBUVj0cwGho/6f4yFFSoHymv+twqYEtr4cahxC0fiYZ127ZvSkqBkXUF2afqCioan1yHndpeN67z+hrzttuC0aoL0haiYW32bnLZyjc8N//eEfZxfve91ftc1GIJRosufUou9NPnyZOa4FF3LiGztP2QxrhqDd3UaC4r53XJkxTW2EU/d7+1XCmFU3dz8OJ3c3/uURMFsElIswaAvoSizd/HvLx2bP51ElHB8YkpUYEppVBS0vsFmuZm72ACIqLBLPM8VlJSwpkZiIhoUIg55ZgcnjZg+xcDzVK9r51yuFSs1/+z6/EXsGbbt4kUjFYWqPDctliCjjmYIOHKT1za3TbxhX9bMJqjHN8hd4AcjGALRpPCHTLDIqQgMyn4rLt+Kbgl1SIGufkRT+UeNEdERJRJCjKTAorSEq4UYGQOWis0MXjUR1gt0WCxMfGJcXlNvsFoOZD6tmEnAkfJjyhtocBS2JpfCSFwMeQMz0FSzckmPLPlIWPZ6JI6zIntUuQWERERERERFQbH6BHRcMPxeURENGhNnwfUjJHLX3kc2hDwaXLYjv6vbTWBOBAXngsxUGZYUbsfKpd98C4O38E8HhAAtAYOv8pFU5u5vDq1ads3Iwr8UrMQjKbjLUCHEIxWUpxJ4IaliTPksuftL+ADwKFz5PPPivUQw/XGrHvJs26jYAgYNcF7vVyC0UrlyceoH+x2sLVYewTS6LUr5cI9DsunRTSAlNfv7NO10M1bur/16vOs2lCIVnVqE4bfKe2ipOcYmbFToAoVwN6jL7ZH/PmcNi1LTwBfXlOYthANY2r3Q+TCde95bn/MPPu56Fu3a/ztxW197WahTw0AZa8/LBdOnePZlrxZ7hUAAKN99LdoOyQd+xrYuslcVMHrkqf5i+33L+tW+aqmPJz7c4/qmALWWPrXs3bNuc40dfTZ5uXn/izvOomo8BiMRtQPysvLe33f1NTUpxfRiYgGktYaTU1NvZZlnueIiIgGQokqxVnjLkRABQasDVI4VGaYlhQulQ5Wk0I3surxEYwmhZ711JxqMi6PBQbPNV4KPLEFqNh+PlKIXVouwSd5BaP5PVY8QvTE+oXgtRSSYviDH1J7vH6eREREPYUc83U94RWMJgYYFWewsN/rN9FgtjFhniVtRGh0XvXZhiRkPgeRQszy7dsCQKvbt5fcpcDFEiHAEQBcLb9sMdg9sfle8Vx6YPUx1oA6IiIiIiKiwY5j9IhouOD4PCIiGsxUMAT1lV9Y19HfP9lXXV/cO4dgtOVPyIV1Db7roSFg1wOB0RPF4u8+eypqLY8XH1sml9WmGru/Vhddk0/rZBGhUfFmoENIlQgNz8maikE5DnCQcK5JpaA/eMe6/aRaWzCaxkZhGEjNf+7028Texk2BCvgY25xLMFoJj59iUhOmASedL6/w6O3QScu4J0swmpo2tw8towGxx+Ge4Tx6yfzuzyYvPEhhcq287qV3FG4cSlw4DMO6rfcYn0IGy/boizV0rMhp07L0uLuK6sK1h2i4WnyMWKR/9FnPzXeepHDmXvZ7sFNu0Ljigc5zUovllZOyVvPkrFh0lL8+T57U9Hn2FXhvSCbShCNaA02N5jJelzyp8mqoL1wmr2ALLsvwixNyC0eriQH6ivPEcrXk2znV18vexwALD+q9bOf9gH2Ozb9OIiq44EA3gGg4Ki8vx8aNG7u/TyQSWLt2LcaPH88Z3IhoSNFaY+3atUgken9SWlFRMUAtIiKiweLAmuPEcK1iqAhUY0Z0DsqDVQPWBkB+Yb9nmJarXcRdczBaOhDAT+hGSqfQ5sY92+QnKEAKTxtcwWjmQRy2kC9TiFmaZ/iCE8NGw3JT8IkYjGa535OD15qhte7eVvo3eAa7Wf59ralmlDj5DYrJN8yCiIiop5AQOJRw7eGdUiBqUAhQLTQxvNbS5yAaTDrcdmxNbTGW1YZG5Vmr/2cc+YbsRh1LMFqqj8FoUuCicP8xlHW47Xhs8z3GsopANRZW7FvcBhERERERERUYx+gR0XDA8XlERDQUqINOBpwA9A9PN6/w1F3QH7wDNWmmtZ7aMoV/nOvg+Ou8w0Bq3nzAXFBWBVRakkZoyFGOA9z4HPSR44zls1feiVf/9w1M+P2OOdddk9q0bT8zd867jUZRYaxlvBlwhHCIXEKwKIs6+RvQD95iLNN/+DHUZX+2bv/LkxS+8bfssZ+vfAhsNg/xRU1KCE7Y5zioeXtDX3WBuXy8zwCiXI4JBusVnfOV/4H7wbvAc/eZV3j6HjkwQQqG6EtoAw0YFQwCP78deOAv0D//gnmlT9cCrz8NzF2ESbUKL3zHwagLzX2ee94AXFfDcfr+GWabJRitF7/nJT/GTukMndEaDR2rcto0lh5LVM4AGiIvKlQCvesBwIsPZxcmE9AtTVAx+2eIv1+i8N6n2hom/It7Nb66n0Zzu7xOTBgHqE6/2Lr/gliwL/DyY+ayQp7baPiwBqNtMpdV1PRfe4YRdfLXoZu3AP/3s+zCxo+hW5uhovL437TP7anwrdv9T3ZVE04C771tLqxrgKoa4buuTKo0DPzsNuDpu6GXvgTVsBOw3wlQDKYmGlQYjEbUD8LhMEKhUK+BClu3bsXKlStRUVGBsrIyBINBOI4zgK0kIjJzXRfJZBLNzc1oamrKGnQVCoVQWspOPRHR9m5hxT4D3YRBQQqH6hmE1u62QcP8YDPiRDv/L4ZmbXuA0CaEq2WSQs96kkLtYs5gCkYzB54khIAUQA5eAIBIIGrdn5/fQVp6Rq9s8gNqKfzOhYt23YawigCQ/w1eQWRS+wGg1W1BFfIbENgqtccjzIKIiKgnKchMCj5LkwOMzEFrhZbuq2Wy9TmIBpONifViWU2ewWjK0ufV0L3K8+3bhp0IHDhwDfdRUv/UL+m8U+LI5xUpGHmwe3bLw+K93/7VRyHkFCdkkoiIiIiIqL9wjB4RDVUcn0dEREPSPscCgSCQSprLX3sK8AhGA4AFE/3trmegVS9jJjIIeRhSlbXQlbXAFtPUpsC4lY/g0B12xH1v5VZvd6jV7IV9bKFBTBhr2fgJUCm8lM1gq76pswRfrLakfXSZPkoBhme/UigaYAlGmzzLflxNmObZHgBALv1+BusNCHXCudBCMJp+7SkoQzCa1hpYaw5GU3UNBW0fFY8KBoHDl0D/4cfAJ6vNK732FDB3EQBgRLnCgbOAh5aaV127GZhQgAyWeId5TEvE7R2Mpmzn0BypklLo2rHAhnWo7xBCAAVl6XE/FQxGI/Jl0kxzMBoAvPtyZ2iYhVIKFx7s4LFlcjj1xhbg7Y+A5jZzeQAplGohNa2A5xaJOmwJtCkYbcQ4XwFMtB2yBaNtNffvVVlVPzZoeFGHL4E2BaMBwLpVQMNOnnWMKAOqovZ7sZ6q4x/JhdPm+qvEQpWGgf0/A7X/Z/pcFxH1DwajEfUDpRTGjRuH1atX93phPpFIYOPGjb1mqiQiGkrS5zc+UCYiIuokhV3Fe4Rp2cO6Orf3E7AWNwR0mZiCvDJJ4WllgcEz63RICCZICgEpgPyzLlGlYiBLmvw7MNVpfojsQH6xxhb+EE+1IOx0BqNJv7+oRxCZdCym68+X9DO17Y+IiCiTFGQmBZ+lJbV5UL0UoFpo0vW7zY3D1S4cxZdqaXDbmPjEuFxBoSaU/wxpst79ZKlv6xWyq5RCJBAz3rf4CYK2kQMX5QHnUtD1YObqFB7edIexrFSFsajq4CK3iIiIiIiIqPA4Ro+IhiOOzyMiosFKBUPQex0BPGF+/qDffgnq6M971jOxVmGXScBLH9jXq5aC0eYv9twHDVGLjwHu+oOxSP/mEhx30Sm47y3/kz+F3TiiOt75zfjCBzaoMZPMowg/XAFEhNC0Egaj9YWKlstTWq14HbqpEapCThnaexoQLQFa7UNVeqlxzecite9xwJQdgFETgPUfZpfvc5y/HeQSdsZgtIEx3zKRuBB+hs0bgBbzJGb9cT6iIlt8DPD3XxuL9CuPQy35dvf3h81ReGip+cx1+o0uHrnQQcDp2/1/m5BZG9YZCUeFPvYmTgc2rMPUxHtQ2oX2OY4u5jYDAFR5AVLhiLYDavGx0LddayzTt10L5RGMBgD7z/QOILrxKY0DZpnPR7FUsziVqqqs9dx/n+1xaGc/uiMjnM0QTkrUSTpiNdAkfNZguY+gDKMmAMEQkMyepFjfdzPUV/7HswqlFI6br/DHp/1NWlzTnH3P1V2X33svIhrS+NYOUT+JRqOYOJGz0RDR8KGUwsSJExGNRge6KURERIOG9EJ/a48wKVtQWTpcyk/AWqslYK33vr2DAqQwgVhAGJAzAKQgs6ROwtXmYIJ8gxcAf7+DNC0PrxHZ2tAzfEwKIrMFqwGdQXLSz8zvsWNsWx9+pkRERGlBZZ6jJaGzH4r2LhcCjIQA1UKTgkk1NNpcn9NUEQ2gjYn1xuWVwRrP4GCJ7YlHZi85374tAEQd82yOralmz21tpPNOieW8onPv/g+4V5ufwwYhGG9R1SGIBjhbJhERERERDQ8co0dEwwnH5xER0WCnzv2ZXHjPH6FTKV/1XHuag5Eew9RqUo3mNpx1qa990NCjzvyetfy06/fA0bPbrev0VNMzXK+uH4KIpICZdauAdmE8Qag4Yx2GM/Xt34ll+ox50K486VVZWOH8A3L7/KDGFNJ44ElQDTtBBQJQ3/4tEMl49nri14Ad9/C3g9KI/8YwWG9AqNIIMHNnc6EUjCYtB/rnfERFpc64WC586RHo+LaxMufuK59znlwOnPeXvg9IiQthjxE33ntBgY89dfFvAABh3Y4JyTW+t4vprmtkRXVB20M0bM3bWy578k7olx72rCJSonDDGQ5KzcN4AQC/eUzj0XfN56QyYQygOv9Kz30XgqqshbrgaiAQ2LZw2jyoM75VlP3TECQ9M3RdoMn8WQOvS/6pYBAYO9lc+LeroJe/5quey45W2GGcv31W/+0nciFDEom2CwxGI+pH6YFXoVB+LxgREQ0WoVCIg66IiIgMbGFa6ZnppTAAAAing9GEl9J7BlpJAVWZWnwEBTSnzDORDaZgtJCSBwElhTAD6Wct/Z568hNylyYFoynLxyy2NvQMdJN+z36CC8TjsQ/BaFKomp8wCyIiojQpyCwpBJ91l7vma36+gU65sl3v+nJ9JSoWKRitNuR/JvVs/geKx1PmAf++gtF83CPlI+mazzslSh5EriEPnh+MtNZ4sPFfxjIHAexXfWSRW0RERERERNS/OEaPiIYDjs8jIqKhQNU1ACd/XV7h5Ud91bPrZIW3fmh/na3GNYQRTZoBVVbpax809KiR46G+8COxPNz0EW4b+Vv85jR/zyt7huspKcSsL+oazMsTHcDaVeayEIOt+mwvy7POxk+Alx+zbv7twxTGVPjfXbUhGE199w/bvt71QKi/vAn1/ZugvvErqBufh/PVy30HuKuSsP/GMBhtwKhTLzIXrHvPHAq6RghGi5QB1X0Zr0GDgaoeBfWV/5FXePT27i/DIYWFk+VVb3pGY1NL38LR2oR5ScO6R5hoIAiMmtin/WRS4+uBWOcJtb7DEgaYocztes+hoqag7SEarpRSwMGniuX69t/4queEnRXe/bH9HuyaR6RgNOH9pCKGEakjPgf15zegvn091BV3Ql33GFTtmKLtn4YYqS/e3gZ0tJnLeF3KjeUeW99xva8q6qoVnrvEwV+/4H3vZPyMCAD2PBwqyOfDRNsDBqMR9bNoNIr6+npMmTIFtbW1KCnhDB9ENDSUlJSgtrYWU6ZMQX19PQddERERGUhhWikkkegK+pBCM0KqBCEnZK2nZ8Ca3wCAVo9gtA63vbttmcoCOYz46GchS+CJ1H4pVMxX8IIl5C5T+neSyTaWJeSUiGFvPY+RvgSR2Y6jfCTcDjGELuKwb0hERP5J1/WEEHzWXS5c820BqoUkXVsBOfCJaDCRg9FG99Mee/eTxeBiy99W9zpC/9frfsdLQujfSgGOQ9Hy+Jv4oG25sWzXisWoCY0scouIiIiIiIj6H8foEdFQxPF5REQ0FKnZC+XCpf/xXc+IcoWJlveOawxhRGIQFQ0fM+Zbi52lL2DJ7gpBH29D9gxGQ10/BKNNsByP771lXp5LCBaZVdYClSPk8qUvWTcvDyv87Hif4XrJjQhkTqJVVw8VDPZapEaMhTr4FKjjz4WaPs9X3d1yCTtjsN7Akc4hiQ7gw2VZi/VaISSqrt53aB4Ncpa/db30xV7f7zBe/p13JIHX1/StKXExGC2+7Zuxk7POXQUxZQcAwKz2d31vUuFu7fqiuvDtIRqm1KSZcuHb9r5PTxNrFS46OPfrUEwLY2Vrx+ZcV1+o8fVQR3wWardDoEojRd03DTFCf0s3b5a3Kavqp8YMU5Mt56UcPhuKlSqctKuDPT1u2UckN5gLJs7wvS8iGtr64W6GiDIppRAOhxEOhzFq1ChoreG6rvgyPRHRQFJKwXEcfuBORETkgy2sqtVtQYlTKoZS9XzRX3rpP4UkOnQ7SlVYDBXI2q9HUEBLaqtYFguU+9pHMdiCCaQwA+lnZAs18VrHVKeGEIzmkT8fcWJIpLIDXlq7jhFXp9Dmmh8cScdIZv0mfkP1MsWFtgD+wiyIiIjSgkKQmRR8BgApnYKbOcC0iy1AtZC8+npEg93GpBSMlv8MxAryZ4aZ/eTWvgQXB8qMy1ulGSh9yidwUer/D1YPNv5TLDuw5pgitoSIiIiIiKi4OEaPiIYKjs8jIqIhbfdDxSJ9w6XAqRf6Dt6wddWrUtkvLKtDTvdVLw1hO+8H1IwGGj8xlz/+T0QW/gHHzPscbn/ZXlWvcL3xhQ9GU9FyaKmtrnmsQ04hWGSklII+6CTgtmuN5fr67wOnfAMqKI8rWbK7wu8e13j+Pfu+pibez15Y6IDGXMLyGKw3cMZPFYv0GfOgdz0A6rt/gKod07nwkb8L9fRDSCMNjB33ksv+dT30woOg9j4aAHDyrgp/fFru9Dz3nsY+M/L/fEAMRnPbtn3THwGh6XrffBYnNv0dv6n5kq9NJne83/lFuSUhl4h6O/C/gBsuNZc1fgzduhUq6u89oFMWKlzxQG7PTGKm8Xqj6qAcH2nFRANBCcdmq/wuHSJ8PyoX6sCToG/5lblw2SvQ69dAjarzXd9OdQrPrDSfm0IqhfHJdeZ2HHyK730Q0dDGYDSiAaCUQiAQGOhmEBERERFRH9nCoeKpFlQFa8TQjHCPbW3BAPFUC0qdsBiwlqnFIyigOdUklpUNomC0oCXwJOmawwykn3XE8Z5ZO7dQMSkYzWMfgRiaDLOZpsMdbEFkfsLdxPAIj7A8iS2Mz0+YBRERUZoUZJYUwk4Be2iaFLRWaAEVQKkKo123ZZX57ZsRDaTGROGD0aTZ9ICul1d6FMvBxd7986gj9W379rcnnXdKHPklhKEUjLa2/X281WJ+C2SH2AKML51c3AYRERERERENII7RIyIiIiIqPBWJQU/dAVj1lrFc33Ap1Lk/6/N+gkhlL9zn2D7XS4ObCoaAn/wN+sv7iuvoy7+Mqy+twwcbD8RLH8h11bhd4/TKKoHK2sI2NG18vRziZqBCDEYrBHX2D6CFYDQA0Nd9B+qrl4vljqNwx3kODr3Kxasfyvtp6FiRvbDQwVYMRhsSrEGIAPDiw9AXHgn88UWgqRFYvcy8HoPRhg0VDELv/19iCJ7+7onA9U9DzdwZB84CLjta4Qd3mseeXPIPjW/JubOe2oThd5Ge49366dhT4+uhAewVfxb//cl3cMmon0BLYTRdpia6UikrqvulTUTDkRo3FfrM7wF//ImxXF91IdQl1/uqa/5Ehc/tqXDTM/7Hww03m6sAACAASURBVMUM77ioH/3V9/ZERSeNcY1bxp5GzONVyUzNWAC97/HAY/8wlusv7An8833fAYoNliHNU0saERAmWlfT5vqqn4iGPsaxEhEREREREeXJFg6VDqOSQjOiPba1hV6lg7mk0K/s/VpmsQDQYimPDqJgtJAl8CQhhBlIP2t/oWLmdUx1umIwmv1jlqhwvKT3YQtYkbb1Vb/PYyeTLXTCz8+UiIgoTbquJ3QHtDANeNKVQ9NCjhygWmjSNS/f6ytRsbS5cTEUuTY0Ou96c5mjVgr+9ROyK/XP8w39TUsIIcu2+w/pPDUYPdR4h1h2UM1xRWwJERERERERERERERENV+qos+XCe26Cds0vrGYamctQtYUH+X6hloY2teMeUL9+yLrO6Id+i+cucXDuvvLTy+pUY+cX4+uhLJM/9UldQ27rh4ozCdxwp8oqob7xK3mFf/8fdDJprWNUhcJ/vufg9N3kY6O+Y1X2vusGMhiNwXoDyitYauUbwNKXgIdvFVcp+PFDA0oddJJcqDX0PTd1rqcUvn+kg4Nny6u/tS7/cSlxYe7RcI9gtH479rrqVQAuavwVPlk2AXu3PCmurrSLSYnVnd+UMxiNKBdqySVyoRDSKPnlibn1jcvcjPF6jgNMn5dTHURFJd3/tVretWMwWs7U166QCxs/AV5/2ndd00bJ56WpWGsuOPhU3/UT0dDHT4WJiIiIiIiI8lTilCKozMEc6SAzKTSjZ8iGLfTKT2hWTy0eQQHNQjBaxIkhoAK+9lEMIeHnCnSGqJhIP2s/oWJSOEOHbkcyK4hNeADt8YzIK1jFFn7nJ4hM+jf4PXakdmVy4KBUcfZBIiLyL+jIg3uT2jwYVbreA/YAo0KTrq9+Q2uJBkpjYr1YVhu0TK/WJ9v6ya5OoU0IRvMV+hswDzSJZw60ypEUsmw/rwyNYLRNiQ14sekJY9nEcAOmReYUuUVERERERERERERERDQsTd1BLtuyEfhUeGk1w8WHmgdbHdT8YPbC8VN91UnDRP2OQCAoly97FY6jcPKu8oC9hnSo1chxBW7cNqo+x+dvDLYqnPod5bLmLcB/HvacAEsphf/aRT6Gdmp/I3vh1AI/c/UbjOY49r8J6n+2a1/aK49DL3/dUgef2Q8rXsfEit7nkP1myuebV1bnPy5la5t5eaznmB2vYL98ZdRb427CuZuuF1cfl/wIYd3e+U1ZVf+0iWiYUsEgUC2M+etog+5o911XZVRhQg7ZhOWZ4/XGTIJi4C8NZlIwWlwYe+o4vFfLR+1Ye9DpCku/OMOc8XLZjnHDfRkAjJviu34iGvoYjEZERERERETUB9JL/fHuYDTvMICQU+IZsOY3fCPutsDV8qybLakm4/KyQIWv+oslaAkmkMIMWoUAMCnQxO868VTv36E0YEZ5JKNJx0p3iJ4lwCziRK11A3J4Wr7BLeLPMxDrv1k0iYhoWLIFniaFADTpeg9A7Df1h6gUbJpn8ChRsWwUgtEUHFSHavOu19bn1T0CxNrcuLien9DfqGMORpP6qH6kdAouUsayEkce2KKHSDDaI5vuEv99B9ccxz48EREREREREREREREVxty9gYoaufyNZ3xVc/gchcpI9vJTmm7NWqbGMRhte6LKq4B9jpVX2LAO+pl/Y696YJohHyLituLorXd31nX05/uplQAOPCm39f2GYJG3HfcERsihd/qio6FP3wl69bvWag7ZARhjGDpbm9yAI5rvzS6Yu3euLbXzG8AQKuXz3gGmDlviuY7+7XeBu/8grzBrlwK2iAaaGjcVmLdYXuHNZ3uNNz91ofw3vOQPGs+vym9sSmOLebua1MZt3/RXMFpddr1TE++Jq4d1V4pbWRVUYPBM5k40ZCw+xrzcdYFVb+ZU1ef28t+vqE419l5Q15DTvoiKTzi+W4VgtEgZ+9p5UI4DHHq6WK6vugC6zfw+ZaYpIxT2mW7YhwLOeO9K8/4ZjEa0XWEwGhEREREREVEfSC/1p8MypNCMzCAuz4A1nwEAGhptQhgbALSkthqXxwLlvuovlqCSZ7dLuuYAlbgQACYFmvhdJ7NeKRjBKxhNCl9L/26lALOwE4WjvB8Ai8dQnuER4s/TR9AcERFRT6E8Ak+lwDSv+gpNvH5b+ltEg8GGxCfG5dXBWgQsfW1v/gaA2ALM/IT+Sv3z1swZKHOQtAQulljOK0MhGK011YyntzxgLBsRGo15ZbsXuUVERERERERERERERDRcqUAA6ndPiuX6Mu/wGAAoCys8cqGDGaM7v68Ia/x4w2U4Y8ufs1cez2C07Y26+Dpg8iyxXH/rOKiWzbj3fAc7127pXj6l4z3ct/pIjE51TSS1+6H918baMcCoOv8bhHyGYJEn5ThQ1z5sX2n1MuhLPiNOhAsAJUGFhy5wMKdHxtqs9qV4YPURCOv23isffXbhg3z8huUxVG/AqR0WQn3/JqAyz4noTv46AzeGIfUjQ5+lp0dv7/5yQo1CueVP+fCrXcQ7ch+f0igMz6lJber8wnGAsZNzrtcPVV6d9TdR37FKXF+nxxxVVPdLe4iGO/XVy8Uy/d0Tc6rre4crnLuvv+tSdWpz7wWGUESiQUXqc8WFsadhvh+VL/Wln1rL9Y2X+a7rb190sP/Mbb++0RXA7fPuw6wOIeyawWhE2xUGoxERERERERH1gRSWkQ65ksKuIoFoxvceAWtCPSZS+BkANA+RYDSllBh6khCCUuIpc0CJ9Dvyu05mqEO+wWhSuEN3+F0fg8jEYyiHY6fXdkKYRdhHkAUREVFPIRUSy6TruhSYBgAhp5jBaObrXr7Bo0TF0phYb1xeGzJMmZ4Dv8N0bX1Qqd/aU9QpMy5vc+NI6ZTPVvQmnW8AoMSRX0KwDZQfLJ7a/ADa3Lix7IDqY3wFLRMREREREREREREREfml6hqAOfLELHrzBl/1zJ+osPTHAXx0hYNPL3ofl3z6C/PzqPF8+X57o2IVUH980b7SY//E1JEKL+zzb3y0bCLeXz4Ny1fugL3iz3WW14zp9yAideSZ/lcuYTBaIalxU4G5e9tXWr0MePdl6yqzxym8/sMA1l3u4MO5V+KNVTtjbvsb2fvb7ZC+NNeMwWhDijr4FKg71wAH5BY+AwBq5/36oUU00FT1KKhb3hbL9b1/6vX9OYvla9KmVuDeN3Nvg2cw2uiJUKF+HGuX0UerdjcLKwK7xV/o/KKcwWhE+VClEWDMJHPh+jXQKf9j6kJBhWtPdfD/zvbuK3efT9Lt4L0ZDXbSPWCrEIwWYTBavlRJqT0c7f6/+B5/O6pC4aELAthwpYOVP3Ow7nIHR7/2C3kDBqMRbVcYjEZERERERETUB1JoVXegmRCakRnE5RmwlkP4RktK+MAWcmhaWaDCd/3FEhRCVExBKVprSwid9wfVpU4YSviYJDPUQQ5Gs3/MIv6OvY4VH+231p9vMJoU1OazPURERGlBS5BZUghAS7hygFFQBfvcJr+k63C+11eiYtnYT8FoNj37ydZgNB/Bv9GAORgNyD+YMOlaAheVJRhN6P8PFgk3gUc23WUsKwtUYI/KA4rcIiIiIiIiIiIiIiIi2i5MmiWXrX43p6pGVygEP1olr8AXXrdLKhgCps0Ty/Xffw3d2gw0NWJkagPqkmt7r1BZ088tRG6hff0ZTLO9mrnAe52XHvFV1ZhKhbFrX5BXmDbXZ6NyUOo3GI3HzmChHAdqvxNy35AhMsPX6Ily2XP39woq2lnIM0p75+Pcx6c0mucUR02qsfOLun4+9gzH9oHNDxlXPbnp1s4v3PwmRCQiACPGymUb1splgj3rvYPRqt3ewWiYPj/n/RAVlRiMZn6XjsFofTTDck7YtB5oasypuuqYwpQRqjPk/NN18oq1lvMhEQ07DEYjIiIiIiIi6gMpLCMdBCAFAmRuJ7343x2wlkP4RqtrC0ZrMi6PBcp9118sIWUezJHU2UEp7boNGq5xfSm8ridHOYg4UWNZVjCaNGOFx3MhKVCsO/xO+L35CY6w1R9PtfieZcPUrnzbQ0RElBYSwk6BzkAfEykwTUEhgCIGo0khuAxGo0FODkYb3cea5U5vzwAxKdi5VIURUAHPvdjCeG33OzYJw31EmnTv0WlwB6P9f/buPE6Sur7/+Ptb3T1Hz7E7M8suyy7I5cEGEBGQQwE5lUMFb7zQmBhj1BhjPBOPBHMfaqJREzXRmOQXFcRbUBHxVjyIGg88OVxgZ6+Znt3t7vr+/pjt3Z6e76e6qs85Xs/Hgwc79a2u+k7PTHVNT/Wrv77789rV8M6cNeesvUQDEe88DwAAAAAAAAAAOs894QXmmH/BefJl+28zwdvc8F/hgamNckPh67qw8rnHP98e/Nn35a86Xv7Wm8Lj4z0Io20+Nv26Bf5u12nu0mc3Dc75t79G/qPvTrfBO2+397XxyAwzS2kgbRgt5XrojTMvSY5hNcrlpEObFLGwbLl8IfHr619xxXzEU9JjT3LatNbe1jUfy3Z9SjX22tEsjNbtKF8gvPb87e9ctOzofT/VxTM3zH8ws6O7cwJWMPeUl5hj/o+fmvk1I0etczpxc/I6E43XpT344Zn2AfRe1jCa/Sa+SOHkR0qja8xh//pntPR6Nr93TrrnV+HBLafJRWSSgNWEn3gAAAAAANpgxTJKB4Jm4b84Nsa6rHhX7UX/mcJoVTsUMBOHn8wdXYphtCgcUSkHQilJn7MVr0u73uKoQ/hJ2ajJ0yxmWGX/9q14RFIUYsF6xvZjxdrr96TaRmhejdLenwAA1CQFh0LBU8kOGOVdYf5doHokKTwKLGV2GG19W9tN+/OXNhBtKUb2xSZJ5/5JQr9H1CTFw+IlHEaLfawbpq8LjhXcgM5Ze0mPZwQAAAAAAAAAAFYLd+wJyStYobMAH8fSp/4jPBgIbmD1cJdeLa0/3F5h293SFz8WHhub6MqcFsjy/UncquPcUcfJ/f0npC2nJa7n/+YF8vfembxOHEt3hMNo7uX/3PIcEw2kjOUR1VtSXGFA7p8+K518brobbDhCrknAD8ube9377MGvfEr64FslSUMFp1tebl9rPleW7tud/hoVK4omSZP7Q0auy2E0t35xUemxMx/Rv935HJ2w5zaNV3fq8t0f1U2/uFB5VedX2E0YDWiVO+dx9uAPviF96/OZt/mR30t+DcxkfRjtSS/q6fW7QEusYFa1El4+zOuj2uGiSO5937VX+PpnpNu+lH3Dd/3c3uer/yX79gAsa4TRAAAAAABogxnLiGflvTdjV41BgKRoVtVXtSeeSz2n2arxThYJYyO58dTb75W8EVEpx4tDKXuMAJ1kB8PSrtcYdWg1jGBFIObikmIf2/GIlPNPiky0Eo+w5pP2/gQAoCbv8uaYFSqylidF1rrBPEfLEK0Fem2uOnsgsNxoss0wWpY5hKQ9tx2MhuWMP2OWWvz5s0KMUrNjy9INo/3v7De0dd8dwbEz11yg0fzS+z0PAAAAAAAAAACsIOc90Rzyn/tg+u38+Dv22GFHZ5gQViL3e3/Z2g3HJzs7kQA3Ppk+wEYYrSvcgx+u6O1fkJ72MnulalX6fPgNpw647y5pn/EGtMee2PoEk6T9niCMtuS4DYcretOnpMkNzVfucpgKS8AR908crj8nut+U05ueYkeFrv9O+mtUtieE0Sbi/SGjbgdmN4XP056267/0rZ89TNt+tFHX3vEkHVa5++DgqRd0d07ASnf8GeaQ/+wHMm9uQ5PLyybqwmjuNx6WeftAz2WN9w3x+qh2ualDpWPseH4rxybd+ZPw8iiSNh6VfXsAljXCaAAAAAAAtMF6YX8pntU+v1dx7d2NGjTGpayoVSmeTYx+hW9jR7Bmq7uCy0dyY5n20QsFVwgurwRCKVaATpKG2gyLLd52+I/OVrihxgqKecXaG+8xPwcrvpd2+1Jr8RYz6kcYDQCQUeRyyikcRysboaJQCFWyzw+6xYzgVrOdnwG9tK18jzm2rpDiotwESZeMeH/wPHnO+B0m7blt5CLz/LaV6K8kleNwcFGSCpF9bFm6WTTphulrg8udIp0/8ZgezwYAAAAAAAAAAKw27gT7Rfn6yifTb+hXP7L3cfzpGWaEFWnLadlf3C5J6zZ2fi4hST8HNc5JR23p/lxWMXfimYnj/pufS97AnbfbY0b4p21pw2gDhNGWrBOSv++kJo+VWBHc2IR0vwfZK9zx4wXX1Jx5jP2YdovRAAnZbbQcJWlN7fUCh2xKv8FWPOiUxGNZ6DN1Fz6le/MBVoOk348+/E75PdmubR3IJ59nT9aF0bp2TgR0VMbfHQeHuzON1SbpnPeDb5X/6feybe8O4/ezDUfIFXr7JusA+o8wGgAAAAAAbbBiWnPVGc0lxrqKCz62XvQ/V51N3E7IrBEKqPiy9sRzwbHRJRlGCz9ZGQqoWOGvghtIjBzUs4Jfjdv2VhityfPn1vdKbR/W55A2RJYUgMv6PVSbU3A+KWMWAADUsx6PQ8HTpOX5qLd/zGw8Z6spxbMLLlgDlhIrjBYppzX5dt8VPTGNduBf7Z7bSnZEreUwmhFidHLKKW+Gjr2PW9pft/107v90+9wPgmMPGTtD6wYO7fGMAAAAAAAAAADAqnPxVYnD/v1/m247d/7UHrvgSRkmhJXIbThcuij5ey14u83HdmE2gf08+cXNV7ry+XLF0e5PZjU77SLp2BPt8Vs+Iv/dL9njvzJqRGum5qNH3ZA2wpALvxkh+s896UVSUphhzTrp0qt7Nh/0j3vaH9qDc7PS9NYDH558hL3qe77k9Z1fpbsmbWavPTZae5P18XavE0rmhkekNI+D9U67sDuTAVYJ99jnJo77F14gv3Nbx/a3Jt558IPDCKNhGcga1Say1RHuyucnjvvnnCr/ifem3p63wtWbj8kyLQArBGE0AAAAAADaUIzCF6uU4lmVjBiAtPhF/mZgrcl2gvuu7g4ut4JpkjSyBMNoeRcOqJQDoZSSEf7KFF5IiNPVsyIoVkjh4PbtC5tKCQE8a16NClHBjMll/R6S7JhalvsUAICavBU8jcOhIiuMVjDOD7rFehz2irXXJ7ztJtBH2yrhMNpEYZ1yLtfWtl3Kd9PrxPn5cM76XavVMJoRXHQFOZf2M1s6bpi+zhy7cPKKHs4EAAAAAAAAAACsVm5sQu6vP2yO+7e9Sn57+G9XC9azwmjHnSpXXHrXtaH33CveIfdbb8h2o029ecG0O/lcubfcmLzOi1JGAtEyl883/Tr4f/wje8x84X0XA3uFwZTrEWtYqtyJZ8r9wyelc6+cjzQcdtT8f/d7oPSop8u9/Wa59Zv7PU30gHv0M+Re+hZ7hbpzHeecXnqRfZXKq69N9wZ+M8ala4PxHhVUmf+gy2E0SXK/9fr0Kx9zglzaKCSAILf5WLkX/IW9wv99U7r27R3bX1R7s9Q1U3Jjazu2XaBrCKP1hTtqi9xz/theoVqVf9MfyM+lfG2b9ftZj37PB7C0EEYDAAAAAKANjYGzmrmE0JW0OAhgBQJKcfJ2rNuEzFZ3mbcZyY1n2kcvFKL0AZU543O2gnNZ1m28P72sMFqz7RfNsaQAXpbPIW3cLY25uBTeR4b5AABQk3fhd6+1QkVlHw6mWRHQbkl6HC4lRGeBftpW3hpcvq6wvqv7rT9Pts/P7XPiRta5rRVda6bS5LhihY5jpbvgtJe27rtT3535anDsgcUTdL+hLl6cDwAAAAAAAAAAUO/EhyePf/XTzbdxlxFGO+GM7PPBiuTyeblnvly65Fnpb3R47/5m5k56hHTUlvDgwy+Ti3gJZy+40TVy1/w/e4UffF1+26/DY7/+RXj5YUe3PzGDy+WkfIo3CEyzDvrGnXiWoj/9T0X/+X1F//1/8/+977uKXv2vcoQbVpfH/pZkBV0bznW2bLQ388nvSXvL4WvV683sDS8frb3hYC5nz6eDnHPSlc9Pt/Ihh3V3MsBqcealicP+lo90fp9dPCcCOipzGC1lrBjNnXtl8vjsLunbN6fb1h3hMBrn18DqxLNqAAAAAAC0wQqaxYq1o7ItOJZ3+UVRj6TAWinOFt2Yre4OLp8xlkvSSLT03lmz4MIXc1QCARUrvGDFFLKs2xgVs8NoyU+z5F1BAy78pHmpOmPGy6zvseC6KeNuzVR8Wft8+C/mWeYDAECNFTSzQkVWMC1vnB90S9K5hHX+AfTbtvI9weWTXQ6j1bMiu1nOJYu50eDyrL8f1VjHldrvHVmvh+mnz0x/2Py95ILJK3o8GwAAAAAAAAAAsJq54qi05TRz3L/tVfKVSvJG7gyH0dwmXnyPhdxDH5luxeKYtPaQ7k6mgbvoqvDy857Y03mseieelTz+vfAbUGnXdHh5tyM+A0PN1yGMBiwLzjnJOHfx//yaBedDj3ygfZFK7KUfGA3HejN7w9eNjNauaRubnJ9TD6R+fB4c7u5EgNVi0zHShiPs8R/eKu+bBxYz2UyMCCvUAGG0jjn8AdIhm5LXuTMcPKvny/ukrb8MD3IsAlYlwmgAAAAAALTBCppJdpBgOBpZ9IfG5MCaccGFoVQNhwJmq7uCywfdkArR0rtwwgqolAMBlZIVFUv4+qRdtzF6YgUI2tnHTHWX9vo9wbGk77FF60bheIQVXbPMVcMhC4kwGgCgNVbw1AoVWcG0QhQ+P+iWoaQwWsLjJdBP08bvIVP59sNoTukumLTOPztxbmv9vtNMOQ4fV/IHjivhz62d8/9u2FXZoa/s+lxw7LCB+2lL8SE9nhEAAAAAAAAAAFjt3HNeYw9Ob5V/1RPk4zg47PfOSffdFb4tYTQ0Oudx0nGnNF9v87E9i8EccOnVi1+kfdyp0tmP6+08Vjm3dp30jJeb4/7VT5LfFigO7doe3t74ZKemFpYqjNbba2UAtOEw49xl293yr37igVDRkeucrj7Tfpw6+U9jlYzwWc1M+P2vNVp7w8E1XT5+1TvzknRhmQHCaEAnuFxO7rmvTV7pti91dqfW8Q1YarL+HlggjNYpLp+X+83XJn4NvBHGX+Dun0vGc0jafGxLcwOwvBFGAwAAAACgDUmRqG0VO4zWqJXAmmXWDKPtDi4fzY9n2n6v5DMEVBrjZTXFDBEv62tZaty28e45kWv+NIs1n2nje2X+NuEgRIgVXlv0OTRh3Z9StpgFAAA1eSNoZoWKynE4mGYF1rqlEBXMWGvS4yXQL9573WeF0QoburvvuoCYdf6ZJbI7kjPCaC3+7FWMEGPtuGJF37w3LrDok5u2f8z8XC6cfFzvX+ABAAAAAAAAAABWPfewi6VTL7BX+PInpO98ITx218/s2/HiezRwg8Nyb/q03HNfl7xiH14s7SYOkXvbzfMvBD/viXK/++dyb/603GCK8BU6KvrtNySvcP2/Ll62y3gD47GJ9ieUJFUYbem98TEAQ1LU9Usfl75984EP//VZydd3fODW1sJoI37/dTVjvQujuXxB7r9/2HzFQcJoQKe4Rz1d7rX/bo77t7yss/trDAADS1XG6ycdYbSOcpc+S+7vP2GvcMftzTdyp7GOc9LGo1qbGIBljTAaAAAAAABtGI6K5ti0ESQIxauSAl5Zw2ilePeBd5SqN2OE0UaisUzb7xUrQlLxiwMqc9X2wwtW8Ktx27GsMELzJ9Ct+SR9ja3YWYj1fWTdP5ZSwvpZ7lMAAGqsoJkV9ykHHu8lKW+cH3STGU/N+PgK9MJcPKs9cSk4NlVY34E9JLyTW10YzTr/zBLZLVphNCME3Yx1XKn93mGG0VraW3fsief0+R0fD45N5NfplPFH9HhGAAAAAAAAAAAA89wFT04c91+7MTxgveA1l5MOvV+bs8JK5IZH5J71SmnDEfZKfQo3uLXr5K5+laLXv0/uqX8gN2RfX4ouO/9J5pD/euB4ZIXR1kx1aEKGgRQhBsJowLLhNiU//tSfDznndPb97XVv/H7yvmb2hJePxvuvqxnvctixgVu3URpdk7wSsVCgs85/kh0c3H5v6s2cYvzadc7s5w9+cBgxIiwTWd9YdqD316WvdO6hj5R73p+FB+/6afMNbP1VePkhmwmPA6sUYTQAAAAAANpQiAbMgJcVuwrF1IYSw2hbg8tHc+PB5RVfCb7of7a6K7j+SG6JhtGi8MUc5XhxQKUUG2G0DOEFK3qyz+81oy310jx9bs0nKYyWFM1Lu33r/rHMGes7OQ1GPJEMAMjOOl+yQkXWY68VWOsm6/HVerwE+inpvLITYbTEa0b2F8S895oz4mxDCWHpRsWo02G08HElv/+4YoXRllIa7Us7bjCPPedNXK6cy/d4RgAAAAAAAAAAAPuddqGUS/hbxfv+Krz8TuNFsesPlyvwAmUkOOsSc8ideWkPJ4KlyJ2V8D1w25fkKwf/fuwrZakUfuPhroeFhsN/F1+AMBqwfJx+sRQlvGz/+19b8OGlJ9oX4rzvq1633WFfszKzN7x8tHZdyaEJAdFuaRaTtAJOAFrinJMGjNd2bP2l/O4dqbbzO+eEj0UvmX7zwQ8mOvGmrEAPuIz5nEKKUDGy23R0ePkvfxQOVdfbtT28fGpDe3MCsGwRRgMAAAAAoE1WUGu6HH6XlWIgrlGICpkDa1MF+0m92eriizRCyyQ7sNZv+QwBFSu8kCkqlrDuXPXg9r3i4DouxdMsVtzB+hrPh8jS/xHY+hyyhlus9YeioqKsfygAAEAHw0ONrFCRFUyzzpe6yTqfIIyGpeg+I6qcU15r8pNtb9+Ohx201+8xz5mznJ+Hfm+Sskd/ayrWcSWaP644o/rml0gYreor+uz2jwTHhqOizlp7UY9nBAAAAAAAAAAAcJBbt1Huua9LXMf/198vXnaXEUazXkQL7Oeueqm0+djFA5c9R9pyau8nhKXlnCsS3/nLv/IJBz/YbbzwXpLG2v87e6Jiijc2JowGLBtu/Wa5q19jr3Dr9MQnewAAIABJREFUTfJ7Dl6T/tyHJ1+H8+A3xPreXeHrVuww2vwbDrpNxyRPtgvcy/85eQXCaEDHJf3c+adukY/D1/HVe8qpThcct3DZ43d9SBfP3HBwwXiXz4mATkl8998AwmjdkXAe4v/gUvkvftQe3z0dHhjrcrQawJLFK1kBAAAAAGjTsPGC/X0+/BdHK16VNbqxLjGMNrNo2YwRRhvJpbiwog8GjPBJJRBQmauG7yPraxNihRekhV8DK4uQ5vlzax87K+EnbrOGyKztW/ePpT4El2b7AAA0YwXNrABaOQ4H0/JR7y/2tM4nrMdLoJ+mjeDuZOGQrgduawGxUuB3kZpM5+dGVHhPXFLsq9kmJ/u4UjgQbjTCaH5phNG+ufuLmq6E49tnr320hjIElQEAAAAAAAAAALrBPf1l81Eqg3//38lXGv5mcydhNLTGbThC7u1fkHvFO6QnvlB6xsvl/uZ6uT96q/mmSFg93MCg3L9/y17hK5+U//kP5v+9c5u93niXX3xfDP9dfIFC799EEEDr3LNfLV1unw/ppg8d+OfEiNNHfi/5ep63fDZ83cqsGUbbf814H8JoevAjEocdYTSg8x6W8GaaO7dJ3/xs000UB52u/71IH7joe/rje6/Rtb96gt5/5zNVUOXgSqNrOzBZoAey/i44QBitK5o8p+P/42/twV1GuJpAI7BqEUYDAAAAAKBNVtDMYoXRskQCJGkqIYxWihdH0GaNMNpobjzTfnsl78Lhk3IojGbE44ajYur9WV8XSSrVhcW8D79rjkvxNIu1D2/k1rKGyKztl2I7ThFe37o/CaMBAFpTMIJmFSNUZAXTrMBaN2WN1wL9tM0Io00V1ndoD0kXjcyf0yb9bGT53amYsy8At85Xk1jHlfz+44qzwmhmGrl3vPe6cfra4Fje5XXuxKU9nhEAAAAAAAAAAECYe/TT7cHt90i/+snCZffdHd7OxqM6OCusVG58Uu7SZyl60d8o+u03yD3sYqJoOGjTMVI+4Q34bvvy/P+tF95L3X/xfTHFGxvnev8mggDa4y692hzzt31pwccnHZ68rXfcHL5uZedcePlI7Zrxw3ofmXVRJB15nL3C2nW9mwywSrihorR+sznuv/slc6zeUMHpiqmf6LX3XaPLZz6unOpeMzO6Ri6Xa3eqQI9k/H2wQBitG9zIuDRpv+ZR3//q4nB+za7p8PJuR6sBLFmE0QAAAAAAaFPmeJWxftbo1FhuXENR+J2T6kNeNVYYbSSX4sKKPihE4fBJOV4YNPDeBz9fKVtsbjAaMuNm9XGHdrIIWeN3Wb8nrO9F6/6xzFn3J2E0AECLrKBZJRA8TVpeMMKp3TRkhFazPr4CvXBfeWtweafCaFY8TDp4nmydS0rSUKYwWrpwcVrNjitLOYz2g9K3dcfenwfHHjb+SK3J8054AAAAAAAAAABgidjyMGlNQvTi599f+PFuI0i09pDOzQnAquQKA9JZl5nj/q+er/jFF0vf/Fx4hYGh+dhINxXtNww7ICnuBmBpetAp9tj1/6r4EYMH/tv4lmc33VwcL752Zbtx6cxEdcf8P/oVITv3Snvs1At6Nw9gNTnnCnvsPdfI/+jb6bZj/W42tjb7nIB+yRrKLvT+DbtXjXMTjk3VqvTVT4XHzGMR18kCqxVhNAAAAAAA2pQ5XmWs30pgrRiFL4oIRdBmqruC6y7ZMJoRPin7hWG0fX6vYlWD61r3dUjkIg0b4ZOFYbQ4uE6U4mmWLPORpGIuxUUvC7YfXn9PXFLsw/MOqf98F86HMBoAoDX5lI/rzZZb2+km6/HPerwE+mm6fE9weafCaGnMxaXg8oIbUCFK/zNsndtKUqk6k3le1nGlFm60o2/9D6PdMH2tOXb+xGN7OBMAAAAAAAAAAIBkLp+Xe917zXH/J1ctXLBzW3jFNbzgFUD73Av+InmFW2+Sf9cbwmPjPTgOFZtfv+uINQDLjsvlpIdfnm7lG/5Tf1Z9W+Iqb785EEYLX56jyer+mEifQkbuSS+SHnJOw0In90dvk1u/uS9zAlY698xXJI773ztP/te/aL4hYkRYCbKG0QYGuzMPyF39aumoLea4f8Xj5bffu3jAeJ7IjU90amoAlhnCaAAAAAAAtGm4haBZcHnGaNZwNGKGs0rxwlBA7KtmvGM0N55pv72Sd+GLORqDBnNVO0qS+T41vjalhH10Yvvm+h2av5fX3ngu9XaszzfrfAAAqCmYj+vlTMut7XST9fhXIoyGJcZ7r219DKP5/QGxTp1LDkbDcsafMht/30mjHIePK/n9sTZnXBDj+xxG++We2/XD0neDYyeOnqZDB7loFAAAAAAAAAAALC3ulPOkBzzEHPfbfj3//71z0l7jmqZeBIkArHhu45HSVS9t7ca9eOF9ijCa8r1/E0EA7XOXPiv1ulf+PDmM9g83Lr52Zdq4dG0i3i4Nj8r16djhxtbK/d3H5N56k9wfvFnuNe+W+8BP5C5/Tl/mA6wGbu06uZe+xV5hblb+4//edDveCqMRI8JykjWMlidC3C1uYr3cv3wleaVPv3/xsl3WsYjniYDVijAaAAAAAABtKrYQNAsuzxjNKkYjGjHCaLPVhaGAUnXWfEH/SC7FhRV9UHDhP8hWGkIpSVGSVu7TkPqonPfh+9G55k+zZP1e6dT3lpQt3mJF9IZzxUzzAQCgphBZj+v7wsvj8PK8sZ1uss4nkuKsQD/MVndrr98THJsqbOjIPpySLhqZP0+2zyWzndtGLjLPh0vVFsJoxvHmYHDRCKMZ5/+9cuP0debYhZNX9nAmAAAAAAAAAAAAGZz0CHvs5uvkZ3ZK995przPGC14BdIZ70ENbu2EPjkNuOMXf0XP5rs8DQBcc8cDUqx657xcaiirm+I/vke7a4VXaO38NSxx7bS+F152obpfG+hsxcvmC3AlnyF3xPLmLr5Jbz5v+AV13/wcnj//g6823sWs6vLzPxxQgk6xhtIHB7swDkiQ3MCidcp457n9468KP9+6Rtm8Nr7xmqpNTA7CMEEYDAAAAAKBNSTGqEOvF/ZkjWLkRFaNw1KxU3b3g45nqLnM7SzaMFoXfeaPcEEpJipK0cp+GlOr2YQXm0jx9XswYg+hU2E3KFm8xYxYZ708AAGryznpcL4eX+/DygrGdbrLDqcbVZUCfbKvcY45NFdZ3ZB8uxUUj1rlk1nNzyT5/biWM1hhYrqkFma3PrJ9ZtPv2bdWtu78YHDt66EE6ZvhBPZ4RAAAAAAAAAABAOu6ip5pj/u9eLP/o9fJP/Q17A+O8+B5Ah5z+KGlkPPvt1vQg0FhMcf1uoffXygBonzviAanXHVBZT1j3o8R1Nv9RrNEXxnr826q6c4cUGxe0TFR3SGNrs0wVwEpw3KnSpqPt8a98Sv4D/5i8jd07wsv53QzLSsYwWoEwWre5C+3nh3TDf8nf+N8HP777Z5L1ZsZJxzgAKxphNAAAAAAA2tSp2FUxN5ptv9GIRozblOKFoYDZhlBavdFcCxd89EB+f6CgUWMopWSEF/KuYMbVLFb4qz7uYIfRmj/N0qmInrn9XNEcs+6nECui1krMAgAA6WB4qFHZ78u03NpON1nnbnPVWXnrj69AH2wrh8NoeVfQWK77FzzWfhrmquFo4HBkn6tahlP+vpOGfVyZ/53BOp/3ijPvq1M+u/16xcb+L5y8osezAQAAAAAAAAAASM898OT2NjDGi+8BdIYbHpH7iw9Ja6ay3XBsiYTR8r2/VgZAZ7jnvi71un+34TodmuKS/mu/JT3mH+1rWSaq2zmPAlYhF0Vy1/xP4jr+TS+Vv+lae4Vd0+HloxxTsIxEGfM5hNG67+KnScP2a9H8658pf9uX5z+48/bwSlEkHXpk5+cGYFkgjAYAAAAAQJuyxq6sIEDm7eRGzJjabLUhjBaHw2gFN6CBaGk+kVsLFDSKVVXVVw98PGcEv1qJeFm3qQ+F2WG05u8sYoVVOrV+zuU16IaCY6Vq+niEFVHLOh8AAGqsx/VKQ/C02fK8sZ1uss7dqqqYoSWgH7aVtwaXTxXWK3I9+JPg/lCgdX7eyrmkdX5eMkK+SRoDyzW1ILN9Nt+fAOJMdZe+tPPG4NiGgU06YfTUHs8IAAAAAAAAAAAgo8uf09rthkfkBpbmNW0Alid30iPkrvul3Mv/Of2NxnsQASmmeEPlfO+vlQHQIQ85J/Wqk3N36Vd/le76nu/ckbCd6nZprPtvoAhg6XHHHC/3r19NXMd/7N324O7t4e324pwI6BTX/HVdCwxwrt1tLpeTe+MHEtfxH//3+X/c+dPwChsO53kiYBUjjAYAAAAAQJs6FbsqZtzOUFRUMQpfFNEYwZqp7gquN5JL8W5zfVJw9rvc1cdS5owoQivhBes29aEwM4yW4gn0rPG7VuJu1udgBSqC61r3aQvzAQBAOhgeamSFxawwWtL5QbckPf5ZMVGgH7aV7wkun8qv79g+kmLAtfNkK1rWyrmkFYIuxemjvzWVOHy8KUTzF7Y4Ix7XnyyadPP2T2if3xscu2Dicb2J3QEAAAAAAAAAALTB3f/Brd1w7SGdnQgASHL5vHTBk6WB8JvPLlp/fLLLM5I0sqb5OvneXysDoEOOOV4qpAyu7N6hXOR08hHt7XJNvFNau669jQBYvo54QPK5zlc+Jb93Ljy2e0d4+RhhNCwnGcNoRIh746gtydG6j75LvrxPfjp8HbQOPbIr0wKwPHDFPAAAAAAAbbLiZCGRIg268B8asoQChqJh5VzODJvNVncnflwzuoTDaHlnP8FcH1Gxgl8thReM29SHwryPjVs3fwI953Lm1z+klbhbms8hSdVXtdfvCW+7hfkAACAlhdHCAbRybITRot7/ATrp8S/t4yvQC1YYbbLQuTBamnNe6/y8lXPJtCHoNKzjTbPgon3+3z374r26acfHg2PjubU6bTz9OwoDAAAAAAAAAAD0zXlPlIaK2W+3+ZjOzwUAJLmh4nwcLY3xHkRA1kw1X4cwGrBsuZFx6dzHp1v589dKkp59VsagS5211e3KKZbbxLkUsFq5oaJ04VMS1/EXrJX/zP8sHtg1Hb5BL2KxQKckxbdCONfuCTd1qHTGoxPX8Y85XLrpg+HBNL83AVixCKMBAAAAANCmLC/wH86NyBlPtGYJedXWLeaMUEBDjGCmuiu43khuPPU+e60Q2U8wV+piKSUjSDIcZb+ozgqRWXGHelHKdxbJEjuzImetbL/xe8KS9Lm2EpsDAECyg2aVQAAt9lVVVQmubwXWuinp8S/NOQLQK9vKW4PL1xU29GT/Xl6SNBeXguNDLZyfp/19J436uHK9WpDZGefzPvOe2veVXZ/TTHVncOzcicv6EokEAAAAAAAAAADIyq2ZknvTp6X7PSjbDYl5AOgi9wdvkk46u/mK4z148f1Yivhagb8PA8uZe9k/zQcZBwaT4yvey8/u0u+e6/Tay1uLo01Ud8z/Y/OxLd0ewMrgXvIP0vFnJK7jX/8M+V//4uDHlbJU2h1eeWxtJ6cHdFfWMFou3515YBH3x+9JDpzN7JDu/Gl4rBfRagBLFmE0AAAAAADalCUWlRS6yhRY27+dESMUsCcuqeoPBkVmq+E/UozkxlLvs9cKzr6Yoz5qYAVJsgTIDtzG+PqUqjMH/u0VG7dO9wR6lthZJz+HtOGWOSM0l7RtAACaKRhBs1CoqOLDUbT57fT+Ys+CG1Dehf/wnfS4CfSS917byvcExyYL6zu2nzRnvNbPRSvRX+s29efnaVX84hCjdPD4ZIfRrPP/7oh9VZ+Zvi44NuiGdPbaR/V0PgAAAAAAAAAAAO1wW05V9L7vyH3kzvS3IeYBoIvc4LDcmz7VPJrQixffj082X4dYA7CsueERRa/9d7lP3Cv3yXvnQ2mWL35Mzjm99vJIH31h9pf/T1a3z/+DyCywqrnBYbm33JC8kvfSZ/7n4Me7d9jrpjlfAZYKwmhLlhtdI/eeb7R24zGOQ8BqRhgNAAAAAIA2DeeKqdcdiux1MwXW9gezilE4jCZJpbogwfIMo9nvilWuixpYwa+WwgtGiKxUtw9v3NalfAK9aMTsQloJkVmfQ9pwS1JALUu8DwCAelbQrOzL8t43LFscSzu4nYR3zewS55yGrDhTyvAo0G0z1Z3mz85UR8No9jmv33+mbP1ctBL9tc6dWwmjlePw/VOI5o9Pac/nu+07M1/VveVfB8fOWntRpt8nAAAAAAAAAAAAlgq3dp101UvTrfygh3Z3MgBWPRdF0sia5JV6EAFxA4PScJO/ped7f60MgM5zA4Nyg8PSMSea6/h3/In8T78nSTrzGGkwY6tlbS2MtmFzq9MEsEK4fKHp71X+PdfI/+S78jf+P+nz19orjvUgFgt0DGG0JW1qo7TusMw3c72IVgNYsgijAQAAAADQprwraMANplo3KSyVJbBWC2YlvSi+FB+MBcxUdwXXGc2Np95nr+WNgIokVeqiDyUj+NVKeMEKkZX9PpXj+Rib93FwnaRIRJp9hLQSPbC2nzbcMlctmWND0XDm+QAAIM2fL4V4xYpVXbCsPoDaqBYw6jUruJo2PAp0233le8yxdR0MozXjvTd/LloLFxthtBaihNax5eDxKXw+7800cud573XDdPgis0g5nTdxec/mAgAAACA959zRzrknO+f+2jl3k3Nul3PO1/338za27dv878iOfaIAAAAA0CZ32bObr3T/k6QTz+r+ZADgyt9JHu9VBGR8Knm80J9rZQB0yZZT7bGtv5R/1smK3/xSrRnyeuYZ2eIuk/F2ybnm4UcAq4J7/AuSV9hTkn/2qfKvf4b8377QXo8wGpaTrG+QS4S4p5xzck9ocmwK6UG0GsDSRRgNAAAAAIAOSBvhSopiZQms1fY3khsz15mt7g7+u17S7futENlPMNciZZI0F4dDXlkCZGlus2d/fKHdLELa75VIkQbdUObtW/E9KyC3aD0jMjEUFRW5XOb5AAAgJQfNGmNFlXifsaYdWOs26/G7lTgT0A3bjDBawQ1oNNfJix2TLhrxKvt9qqoSHG0lXGzF1PbEJcW+GhwLqfrqoghjTe24EllhNN+7MNpP5r6vn+/5cXDslPGHa7JwSM/mAgAAACCZc+5c59ynnHPbJN0u6b8k/aGkcyQt3T++AAAAAEAfucPvL/eOL0qHbFo4UBiQJg+VLn6a3Js+KZf1hcwA0AL3tJclr9CrF9+PN4mNEGsAVhTnnPTY30pe6X/+Ubr1Jv3TVU6veHT686KJ6g5pbEIuIh0AQHKPeprcK9/Z3kbyBWk4+3V/QN9kfT4hl+/OPGC76qVyL/jLbLchjAasahypAQAAAADogGI0op2abrpesxjAcG5E+yp7U+1PkgbcoPIur4pfHB8oVWcO/NsKo43mxpvuq19yysvJyQdSZGV/MJgyZwS/rIhCEisqJs2HT8a0Vl5xcDxK2Z9PO6/h3EhLF/lZcbe5lOEWa71W7k8AAGoKCUGzcrxPQ9HwwY8bQmkLt9Ofd8EdjorB5WkfX4FumzbCaFOF9R194UjSprxP/ploJVxczI2aY6V4NvXvM5VUxxUjjNZ2Gjm9G6avNccumLiiZ/MAAAAAkMpJki7q9yQAAAAAYLlxx50i96Gf9nsaACBXHE3+a/BQ+FqRjmv2Iv8cYTRgpXEPPLnp1Sj+pg8pf8p5euMVTq96tNf4i8LXr9ebqG6XxtZ2ZpIAVgR3yTOl9ZvkX3JJaxsYmyBcjeWFMNqS55yTnvL70pop+Tc+N92NxprEpAGsaGSfAQAAAADogLQv8m8WlypG9gv/F+xvf8DLOWfeZnZ/GM17b4bRRnJjqfbXD8455Y2ISn0wpWTEF5pF6IK3Sfj61AJs7WYR0s6r1RCZGUYzAnJp12vl/gQAoCafEDSrD56GPq6XFFjrJiueOlct9XgmQNh95a3B5VOFDR3eU/JFI6WEc85WzieTfj9K2lej5DDa/HHFmZ9bb8Jod+39pf539hvBsS3Fh2jz0JE9mQcAAACAtu2VdHuXtv1VSUdl/O+OLs0FAAAAAABg+TvHeIOqk87uXQSkWRhtmGs3gRXnhDOar/Phdx745+hQuuPRRHV782MKgNXngSdLA0Ot3XacGBGWGZchn+OcXC7XvbkgWZrzoZp1G7s3DwBLHmE0AAAAAAA6IO2L/JsF1KzoxqL16rZTzIVjAaV4Pow2F88qVvhdokaipRtGk6SCEVGp7A+meO/NkFcrYbHBaEjOeLqkFmDzPnxfupRPoKedV9rY3qLtm98P6cIRZmiuxfkAACAlB80qvrLg43JCwCgpsNZNZng05eMr0G3T5XuCy6cK63s4C5/4M9HK+XnS70el/SHoNJKOK4Vo/rhiXdQe9yiMduP0debYhZPGxfgAAAAA+q0s6duS/kXS8yQ9VNKYpJRvbZ3ZHu/9zzP+V2m+WQAAAAAAgNXJPfnFi0MhuZzcU36/d5MgjAasOu7I4zLf5iUXNo+jTcQ7pNG1LcwIwErmxiakK5/f2o3HCKNhmckSN87luzcPNOU2Hytd8OTmK+Zy0sYjuz4fAEsXYTQAAAAAADogdeyqSfgsbXyqfjsjuXDcbLa6W5I0s///IaO58VT76xcrolILG5T9PlUVfk1P2lhdvchFGo6KwTErwFbjlO4J9NQRvRbmL9nfi3vikmJfbXp76/O07hcAANKwYqfSweDpgY/jfcaaUt7154/QZhityfkB0CvbKr0JoyWd83rZ0eKc8onHActQVDT3WQtBp5F8XKn9zmF8br77YbQd5W36+q6bg2NHDB6jBxRP6PocAAAAAGT2b5LGvfcP8d7/lvf+Hd77W71PKDMDAAAAAABgSXEnnCH3lhuli58mHXuidP6T5P7mo3JnXdq7STQNo4XfLBfA8uZe8BdN1/F79xz49ysf1fw69cnq9ubHFACrkvvdP5d76Vuy35AwGpYbwmjLinv1u+R+55rklSYPlcvbb9AOYOXjaA0AAAAAQAcUc+kuPGgWPksdRqtbrxiF912qzocCZhPCaFZUbanIRwNSoOVV3h82mIvtGEna+3LR7XIjwchCbV9ecfB2acNo1tdr8Xqtz9+yJ55r+r1aMu7TVkNtAABIUj6y/yBZbni9cNmHA0Z5V5DL8gfrDrIeB63HTaCXYh9rW9kKo23o2Ty8pLm4FBwbzhVb+vmdDxeHz89LGcKEjceZerVgW2Scz3t1P4z22e0fMYPPF0xe0bdjHwAAAACb9357v+cAAAAAAACA9rktp8ptObV/+x+fTP6rdHFpX+cLoEX3e1Dzde7+mXTkcZKkqVFpzbC0c85efW11uzSWYrsAVh3nnPS435b/9S+l//jr9DckjIZlJ8O1lsS2+s7l89LT/lB6xGPkn2a8gfCRnNsAq13U7wkAAAAAALASpI1wFZvEpZqNH1ivbn8jRuiqFg+Yre4KjkfKaSgaTrW/fim48BPNlf1hg6QYQtr7ctHtjK9lbV9WGCFtGC1tYKzVEFlSUC1NPGLOWKfVUBsAANLB8FBILXh64GMjYGSdF/SC9TiYFGkFemV3dceB8+NGU4X1Hd1Xs3NeM7LbxrmkdV4fiqVZrOCiVH9s6U8Yba46q1t2fio4NlXYoIeMndHV/QMAAAAAAAAAAAAA+mh80h7L5aWCfc0NgGXshDOlweTr+P0zTlL8j38k/7PvyzmnNU0u+5+sbidiBCCRO+2CbDcY55iCZSbLm9Dm8t2bB7LZfKy08X7BIXfahT2eDIClhjAaAAAAAAAdkDp21SQIkDYYUL+/ohFGm63OhwJmqruD46O58fl3flnCrIhKLWyQFCNpNb5gfS1r+zLDaCnvy7SBsU7PX0oXj5iLS5m3CwBAMzmXU2T8SaIx6FQxAkZJcbVuM88PquHHTaCXtpXvMcem8p0NoyXzZmS3nXPJYmSEoKtZwmjhcJwk5fcfW6yz+W6H0b6w41PaE4ffzvf8icco53Jd3T8AAAAAAAAAAAAAoI/WJITRhkeW/HW+AFrjRtfIXf3q5iv+95vkf+ds+e99TW9+SnISYKK6XY6IEYAkJ50tnXlJ6tVdUsAVWIoIoy1LLorknneNlGu4XvaoLdIlz+rPpAAsGRytAQAAAADogE7FrtIGA+r31ywUMGuE0UZyY6n21U95Vwgur4UNrPBCTvmW4ynW16hUC6N5I4xmphTSbb+RFbxrZigqmmPW/bVgHSM2l/Z7HAAAS8ENaK/fs2h5uSGEZgWMrPOCXrAev5MirUCvbCtvDS4fdEMdP+dPOuf18l05l7TOi7OE0SpxOLgoSXk3/+dS58IXj3YzjFaOy/rcjo8Gx0ZyYzpjzfld2zcAAAAAAAAAAAAAYAkYSwiORLyRFrCSuae/TDr2BPmXPTZ5xdJu+ff+hS574wcTV5usbpfGCKMBsLkokq75H+mT75X/zi3SHbdL//tl+wZja3s3OaATsoTR8v27Lh2LufOfKG04XP6mD0n33S33oJOlS58tx3EIWPUIowEAAAAA0AFpg2bDOTtaJWUIrNXtz4od1IJoM9VdwfHRZRBGK0ThuFllf0ClZIQXhnOtv0ue9TWoRcWsMELaMFqxhfhdFjmX01A0rD3x3KIx6/6qZ8XT0n6PAwBgyUcF7a2GwmgLQ2hlI2BknRf0wrARHi37fSrH+/o6N2Bb+Z7g8qnC+s6/c3ST7c1VS8HlaePAIdb5c5YwYWOAsabgBg7cR+ZnZoSRO+Ebu2/Wzsp0cOyctZdoMBrq2r4BAAAALEtHOOfeLek0SYdJGpG0XdJ9kr4l6WZJH/Deh3/RAAAAAAAAwNKzJiGMNhu+/hfAyuFOf5T8Fc+Trn178oq33iTnpAdskH4UeA/F4bikET9LGA1AUy6fly57ttxlz5Ykxa96ovSF68MrJwVcgSUpwzWzOVI7S407/nS540/v9zQALDGcPEZOAAAgAElEQVThtz4HAAAAAACZpI1YNVsvbXxqqC7OUcyNBtepRbBqgbRGVlBtKSm48DtwlOP5gIoV8Wo1KibZX4NaeMEKo6V9An0oGm5rHqlua8XdUsQjzNicEYQBACCtggvHwxpDaBVfMW7fv3fmSgqbzsXhEBTQK1YYbbKwvsczsc83mwWikxSj8O8tpepM6m00Bhhr8guOK+Hz+W5l0WIf68bp64JjBTegc9Ze0qU9AwAAAFjGjpJ0taQtktZKKkhav//jp0l6u6RfOuf+3jkX/uMRAAAAAAAAlpYNR9hj1fA1NABWFnfWZc1XmpuVbr9NV54cvr7l4pkb5q98IYwGIKuNR9pjY2t7Ng2gI7K8mXAu1715AAA6howlAAAAAAAdkCZi5eQ02CSKlSboNRQNK+cOPgFrBc5K1d3y3i/zMJoRUPHzARUz4tVGVMz6GpSqyWE0lzKMFrmchqKi9jSJqFhxszSKuVFtr9y3aLkVkquJfdWcVzvzAQBAkvIu/CeJSkOwqPY4v/j24fOCXkh6HJyLZzUuLv5A/1hhtHWFDR3fV9IZr/c+IbLb3rltSClOH0arGMeV+t83rPN5rzj1frL43uw3dfe+XwXHzlhzvsbya7qyXwAAAAAr3oik35d0iXPuSu/99zq9A+fcekmHZLzZMZ2eBwAAAAAAwErghopde8MuAMvEqRdIF10lffr9iav5Z5+qF39wWp/8dl7fvvvgtXibynfqz+597fwH45PdnCmAFchNHWqfi3BMwXKToYumHKkdAFgOOFoDAAAAANABaV7oPxQVFbkocZ1iiqDXUFRceBtj37Fi7YnnNFPdFRwfzY033Ve/WWG0WkBlzgwvFIPL07Ciagf25Y0wWoZ3FilGI03DaGkieRbr+9EKVdTsiefs+bQRmwMAQGoePK1pDKUdvH2h43NKKym6WmoSHgW6zQqjTRXWd2Fv9jmvlzdDvO2cSzYLF6dRto4r0cHjih1G644bpq8LLneKdP7EY7q0VwAAAADLVEXSLZJulPRdSXdI2i1pVNIRkh4h6ZmS6n8RfICkG51zp3vvf9Hh+fyupNd2eJsAAAAAAAAAsCq5KJJe8y7p0U+XbvuK/LveYK67/usf0M1PP12fePGf6NtDD9YD9/5IF8/eoEOq+99Qe4w3+ASQ0diEPTYcflNTYMmKkl+zt0C+f9elAwDSI4wGAAAAAEAHpIlYpYkBpAmsNe6rmBsz1y3FuzVb3R0cG0m43VKRj8JPNO+L5wMqvQwv1PbljTSCFVII7iM3ounKvYnrJAVY0mw/xLq/apLiEmm+NwEASJI3wmaNwaLGUFqNFVbrhUE3pEiRYsWLxqxQK9ALsY81XQ6fV052IYzW7JzXDhe3c24bvriqFM+k3kY5Dh9X8nXHFWdErL1f/HPfrp/N/VA/mftecOwhY6frkIGNHd8nAAAAgGXrNZLe6b0PV7Glb0u63jn3x5qPlb1cB6vWh0r6kHPuFO+Nd30BAAAAAABA/110lfTp9y9efvlzej8XAH3hnJNOOV865Xz5L39C+sHXg+v5b39BI5uO1uN3X6fH7w68KV9S4AgAQh5ydni5c9L6zb2dC9C29K/rUo7UDgAsBxmSlwAAAAAAwJImYpUmBpBqOw3rjBihAEmarc5oNg6H0UZz40331W9WAKWyP5hS6kJ4wfoa1PbViTBaqgBewte11e03i0ckhV3aCbUBACA1f1yvKcfl4HpWMLUXnHPmY2Gz8CjQTTsr06qqEhxbV9jQ49nYPw/DUbHlbZphtGr6MFrFh48rhbpgY4bLYdp2w/S15tgFE1f0cCYAAAAAljrv/TUJUbT69fZ4718p6YUNQydLempXJgcAAAAAAICOcI/5zfDy0x/V45kAWArceY+3Bz/5XvkXXhAeKwxIQ61fowNgdXKbj5UeePLigRPPkhtb2/sJAe1whNEAYKUhjAYAAAAAQAfkXE6DbihxnTQxgFTxtIZ1hqOiGeXaVdmu2equ4NhIbqzpvvqtPlRQr7w/bGCHF1qPeBWN25b9PpXjspFFyxhGSxEZs+aRavtWGK1JuCUxjNbGfAAAkKSCETZrDKE1htIO3N4Iq/WKdS6X9PgJdNu2sv3a+KnC+o7vL+mM18vb4eI2IrvWefFcXFLsq6m2UU51XAl/dlYYuVX37LtL35n5anDs/sPH68jh+3d0fwAAAABWF+/9P0m6vmHx73Z4N2+VdHzG/x7b4TkAAAAAAACsHCeeJT3rlQuXPeEF0iMe05/5AOivxz2vtduNTchlCcIAwH7uFW+X1m8+uGDDEXKvfEf/JgS0KsvjYL5/b9gNAEiPjCUAAAAAAB0ynBvR3sqexPFmaoG1vd7eTrFhO5HLaTgaUSmeWbTuW+/8M3M7yyGMljcCKLWwwVxcCo433kdZJH2d9sSz8oqDY1n+kNwsepZTvq34i/X5Nwu3WOG0QTeknMu1PB8AAKTmj+sHPy4H17OCqb3SangU6CYrjDYUFbsUtrXPeSu+bAbI2on+FnOj5thcXEr1e411XMnXHVes0LF1/t+qG6c/bMbWLpq8oqP7AgAAALBq/bmk+lfNnu6cW+u939GJjXvv75Fkl7oDeDEeAAAAAACAzTkn99zXyV/yTOknt0nHniB32NH9nhaAPnFDRelvrpf/w4xxxLGJ7kwIwIrnjj1Reu93pP/7huS9dOJZcoX+vpkx0JIsf5PMkdoBgOWAozUAAAAAAB1SjEa0Q9sSx9NoGlgLbKeYC4fRkozmxjOt3w9WAKWyP2xghb7aiUAk3bYUz8poGCgpErFoH03CbcO5kbZeJGR9DnNNwi3m/dlGaA4AgJpmj+s1VljJCqv1SqvhUaCbtpW3BpevK6zv+YvOrWix1N75ZDGyw2iz1Zl0YbQ4fFwpRAePK3YYrXN2VXboK7s+Gxw7bOAIbRk5uYN7AwAAALCKfU3Sdkm1V8HlJG2R9KW+zQgAAAAAAABNucOOlgiiAZCko34j+20IowFogyuOSief2+9pAG0ijAYAK03U7wkAAAAAALBSpIldpdEsoBaKchRTxAAapQkI9Ft9qKBeLWxghb7aCi/k7PDCXHVWseLgmBVSCGkWbksb0TNvb3z+pSbhFvP+bHM+AABIUsEImzWG0Ro/PnD7KBxW6xUzPJoQgwK6bVvlnuDyycL6ruwv6Zy3VLVDze2cT1rnts32Wc88rtQFG+2QXOfSaJ/f8TFzLhdMXtHzmB0AAACAlcl7H0v6ZcPiQ/oxFwAAAAAAAABAdm795uyBonHCaACAVS7LNZiE0QBgWSCMBgAAAABAhzR7sX/aGEDTwFpgO+sKG1Jtu6YYjS6L2FXehQMo5f0xASv01c7nNuiG5IynTOb3Fw4jZAmjJcXXpPbCblJCuMUIn9VY92dSjAIAgLTyRtis7Pct/DjeF1zPCqv1ivX43OzxFeim6XI4jDbVpTBa0ilvt8JoQ1HRPNcuxenCaI3HmZr644q1D+87E0bbE8/p89s/ERxbm5/SKeMP78h+AAAAAGC/uYaPh/syCwAAAAAAAABAS9wfv1s67tT0NxgjjAYAWOUIowHAikMYDQAAAACADmkWj0odRmshsPbQsbNSbbvm5LEzFbml/7SAFUCp+H0qx/tU2R9Ia1RsI7zgnDNvP1edle9EGK3p17iYelvB7Rvfi3v9HlV91bzdXBdCcwAA1FiP6+V44eN52Xh8t4KpvWI9HlphUaAX7jPDaNnCyWklnfNaPwtOkQajoZb3GbnI/vlLGSZMd1wxwmjG+X9WX975GTPkdt7E5X0/xgEAAABYcdY1fHxfX2YBAAAAAAAAAGiJW3eYonfcIveBH8u9+YbmNxgnjAYAWOWyhNHyhNEAYDlY+q+ABgAAAABgmWgWj2oWTku7Xmj8pNEz9Nh1zzCDIzVOTg8ePV1PWP+bqebSbwUjDlD25cQIyXDK+9q+fThMNhfPynsjjJbhCfTm3yujqbeVdftzCfGIuWop8/YAAEjLflzft+DjSsPHB2+ffJ7TbUnhVKAfqr6q7eXw69qn8ut7PBv7Z2E4KrYdZbZ+R7JCY43SHFes6FsnwmhVX9Vnpj8cHBuKijprzUVt7wMAAAAAapxz6yQd3bD4rn7MBQAAAAAAAADQHrfhCLmHnC1tPiZ5vbWH9GhGAAAsUQPD6dfNEUYDgOWAozUAAAAAAB3SLGiWNi5VjJKjWKHtOOd08dTjdd7EY3T3vl+o6uPgbdcPbNRIbizVPJaCQhQOoJT9vsQIiRUuScv6WpWqs2YYwQopBLffLH7X5vyTvhdL8axGNR4cmzNic2mjfgAAJMkbYbOKLy/4uNzw8cHbh8NqvWI9fluPn0C37axMK1Y1ODZV6E4YLemc1/pZaDdaLNV+R9q6aHmpmi6MVo7Dx5VCdPC4YoWOOxFGu3X3FzVduTc4dvbaR5lhZgAAAABo0VO08E1zt0r6QZ/mAgAAAAAAAADohE3HSHfcnjwOAMAq5sYn0l/xmevvdekAgHQIowEAAAAA0CFNg2YpgwBNo1kJ44WooCOGjk21n+XACqBU4nJihKTd+IJ1H8/FdhhNGcJozcJn7c4/KcKXdL+VjNhc2qgfAABJCsbjetnvW/hxvC+4nnX7XjHDqYTR0Cf3lReHwmq6FUZLYkXKhqP2o1/FXPh3rdRhNB8+rtQHG+2z+fbCaN573TB9rbH/vM6duKyt7QMAAABAPefcBkmvaVj8Ee99+9VnAAAAAAAAAED/NAufbV45ryEAAKAl45Pp182R2gGA5SBqvgoAAAAAAEijadAsZVyqaTRrFUWqCnWhgnplv8+MkETKacANtrXfpPCJFUaLMoTRmn2vtPs1HoqKcsZ85oz4mWRH04Zz7ccsAAAoRNbjennBx5WGj5vdvlescOqeaqnHMwHmTZfvCS4vRqNth3Yt1jmmZEcCO/H7S1K4OA3zuFIXXHTGn03jNtsBPyx9V3fs/Vlw7NTxc7Q2n+FCHAAAAACrhnPugc65yzPe5lBJH5W0oW7xPkl/3sm5AQAAAAAAAAB6zx3eJHy26ejeTAQAgKWKMBoArDgcrQEAAAAA6JBmL/hPGwRoGs3qUuRgKaoPFdSLFWumsis4VsyNyLn0kbIQ6z6ej4oZYYQM+2wWv0sb0bNELtJQNKy5eHGoxQpWSAlhtFUU4wMAdE/eeFyvxPsWfFz2+4LrWbfvFevxcK/fo6qvKOf4kwt6a5sRRpsqrO/xTOZZAV4rapZFMRoNLi9VZ1LdvjHAWGOFmBdqL4z26ekPmWMXTDyurW0DAAAA6C/n3GaFr8E8tOHjvHPuSGMzM977+wLLN0q63jl3m6T3SbrWe/9jYx5jkp4l6TVaGEWTpD/z3v/U2DcAAAAAAAAAYLk47lR77IgHyI2u6d1cAABYirKE0Yq8TgoAlgNepQMAAAAAQIc0i1kN54qpttOpwNpKkE8IFeyu7ggu78T9Y30t5+JZxT4cRnBKH0YbjIbl5OSNyEIn4nfF3GgwjGYFKySp1MWYBQAAVoCoMVjUXsCoe4Yj+1xurlrSaH68h7MBpG3lrcHl3Q2j2ee8pTgcKevI+XnOCKMZ+2xUjo3gYnQwuGidz7eTRfvVnp/q/0rfCY6dMHKqNg4e3sbWAQAAACwBt0i6X4r1Nkn6mTH2b5KuTrjtCZL+UtJfOud2SvpfSfdJ2i1pVNLhkh6s8LWg7/De/2mK+QEAAAAAAAAAlrotp0nHny7971cWDbknv7gPEwIAYInJEkYbn+rePAAAHUMYDQAAAACADmkWsxpKiGnUSwqsDboh5Vwu07yWs0JdqKDRrooRRutAxMuKN8yHw9oPo0Uu0nA0YoYcrPBDFubnEIfjZ7GPtScQUkvaFgAAWeRd+HG97BcGiypmGM0+L+iFpHOMUjyrURFGQ29tK98TXN7NMJpzCWE0I7KbNhCdpBgZYbSE6G89+7hyMLjoXBRcxytOtY+QG6evM8cunLyi5e0CAAAAWLXWSDorxXqzkl7ivX9nl+cDAAAAAAAAAOgR55z0tx+Vf+srpK/dKO3eLt3vQXKX/6bcpc/q9/QAAOi/8YnUq7oM6wIA+ocwGgAAAAAAHZIUNBuKhlMHzZKiG52Ifi0n9aGCRruq24PLh1MG6JJY9/NcPCvfgTBabR9mGK0DITI77hbe5954j/m5EUYDAHSCFTarDxZ5782AUT6yzwt6Ienxec4IjwLdZIXRJrsYRkti/Rx04lyyaJyfW+fTjRoDjDX1xyXrbN778DlyM9vK9+ibu28Jjh019EAdM3xcS9sFAAAAsGr8QNIbJZ0j6WRJwylu8yNJ75H0Tu/9fd2bGgAAAAAAAACgH1xxTO4P/6nf0wAAYGkam+zOugCAviGMBgAAAABAhyQGzTLEAJKiG50IZi0neSOgIkm7KjuCyztxH1nbmKt2LoxWjEa0zRjrZjzCClYkBV2sbQEAkEXBCJuV44PBIiuKJtlhtV4ZjIbl5ILnAnNVwmjoraqvaHslfDa5rrChx7OZZ8XHOnJ+nhsNLreiv43KVnCxLsTsFAXXsc7/m/ns9usVKw6OXTh5xfy7+AIAAABY1rz3R3Zx21slvVqSnHORpPtLOkbSJklrJQ1JmpO0XdLdkr7uvb+3W/MBAAAAAAAAAAAAgKXMDQ7Jr5mSdlqv1qozPtH9CQEA2kYYDQAAAACADhmKiuZYltBVYmBtlQWqCi4cUJGkXZXtweWduI+sbZQS4mFZwwbd/jpb33NWuKWUEHTpRKgNAAAreFofLLLCSlLyeUEvRC7SUFQMxkSTAqNAN2wvb5M3oltThfVd22/WGLDUmXPbYhQOo83FJcW+qsjlEm9fMY4t6YKL2cNos9Xd+uKOG4Jj6wuH6cTRUzNvEwAAAMDq5b2PJf1w/38AAAAAAAAAAAAAgJBNx6QLo62Z6v5cAABtI4wGAAAAAECH5FxOQ9Gw9sRzi8aGc3Y0rVGnAmsrQSGyAyg7q0YYrQP3UdHYRlKsRRkjEUnztPafRdEIUOyq7tCuyo5Fy7eVt5rbyvL9CwCAxQqbxaqq6qvKudyCSFojK6zWS8NGGG26fF/w8RXoljv2/swcm1xqYbQunttK0r3lXx/Yx3A0okK0+FhRjsPHlvrfN6zPbW+8J/PP9+d3fFz7/N7g2AWTj20acgMAAAAAAAAAAAAAAAAAAEBGm46Rvv+15uuNre3+XAAAbSOMBgAAAABABw1HI+EwWoYYQFJgLSkIsBIVEgIos9XdweWduI+GW9hG1kiEFT/Lu0JiEC4t63vuh6Xv6hW3X516OwU3sCRCNACA5S/pcb3iy8q5nCoJEVIrrNZLxdyIpiv3Llr+wXvfpQ/e+64+zAhYaDQ3rqFouN/TWKCVc+tGxWjUHHv9z15w4N8FN6DjRk7SMw99kYq5+dvEvqqqKsHb1p/nOhc+n79l56d1y85PtzLtRcZya/Sw8Ud2ZFsAAAAAAAAAAAAAAAAAAAA4yB1+rHyaFdes6/ZUAAAdEPV7AgAAAAAArCS1F98vXp4tBmC98D9LYG0liJSTy/j0RSfuo1a2kTWMZgUirGBaVtb3YubtrLLvOQBA9+QTwmbl/UG0clw21ylE/Q91rrZzMSw/k4X1/Z7CIp04n0x7blv2+/Tdma/pn+9844FlFR+OokkLg4tZz+dbce7EZR2JIAMAAAAAAAAAAAAAAAAAAKDBaRc1X+fYE+XWTHV/LgCAthFGAwAAAACgg6xYRtaIhhnNyhhYW+6ccyq4bBGUTgRLWomKZQ0pWIGI4Q4FzToVbrG+FwEAyCopbFbZH0SrBdKCt08Iq/UKj4tY6qby3Q2jtRIP68R56VBUzLTvn8x9X/ft2yqp2XGl/rjU3TDaoBvS2Wsf1dV9AAAAAAAAAAAAAAAAAAAArFpbTpUufEriKu53runRZAAA7cr3ewLoHefcsKSTJB0naULSkKRdku6RdKukn3jvfQf2U5B0lqQjJG2UNCPpLknf8t7/vN3tAwAAAMBSdsjAofrJ3PcWLy8cmm07hUN1596fL1q+LuN2VoJ1hQ26a98vU69/yED799GgG9JYbo12V3emvs1UIVuE4pCBjeHlHfoaW9vPajV+zwEAumPQDZlje/0eSVLFl8118hljqd3QqcdpoFs2Dh7e1e3nXUHjuQntqm5PtX7BDWg8v7bt/UYu0rrCobq3fHfq29xTvkvrBjaonHBcKUQHg4tZz+ezOmvthRrJjXV1HwAAAAAAAAAAAAAAAAAAAKuVc056zbulsy6T/9bnpS9+TLrvrvnB858k94yXyx1zfH8nCQBILer3BNB9zrkznHP/LWmHpP/P3n2HR37V9+J/n5G0u9JWr73r3gsG22DjRjU2mGJCL+b+CDUECJAfJJcQSiB0AgnhXgiQBLihtwAGYxIw1TYxNhAb27Exwb33trvaova9f2h9V9bOjEZazai9Xs8zz+p7zuec89mir0bSzlu/SPJ/knw4yfuSfCzJ15L8PskNpZR3l1JWT/GcNaWUTya5NcnPknw+yQeTfDzJaUmuKaWcW0p57o7+ngAAAGarY5Y/drux7tKTI5c/cnL7rDhhu7HFZUmOWHbslHubqx6+/NEt1+7cs2v2W3LIDp9ZSskxK7b/u2xk/yUPyqqenSd1xuFLj86SWt9248dO4tzmPR0yLeEOx9b5twgAU9HbtbTh3Mbh/iTJYDXQsGY2BKMdvfwxKSkz3QbUVUstx604sa1nlFJy1CQ+tzly2SOyqLZ4Ws6e7PPS++8rQyOt3VeOXPaItr1/99b68oSdntmWvQEAAAAAAAAAAAAYVWq1lCc8P7W/+Hhq374mtZ9vGX2864tC0QDmGMFo81gppbuU8vEk5yY5NcmiCZbsmeSvk/y2lPKUSZ51SpJLk7wmSbNgtUcl+WYp5UullMavggMAAJijHrz0yLxw19dmadfyJMnq7jV53Z7vyOqeNZPa5+HLH5Xnrnl5emujnzqt6dktr9/73VnWtWLae57tnrLz83PiqqdlUWkeqLDP4gPzhr3ek1qZni93PHvNS/OIFY9vGsJSUsshfUfkT/Z826T37+1amj/b+z1Z27PH6HWtL8/a5SU5dsXjptzzWLVSyxv2ek/2WXzglNZv60cwGgDTY1FZnFqDb0tsGrk/GG2w7nx36Z62j/E7Yr/eQ/Ly3d+YFV2rZroVeICVXTvlT/Z8W9Yu2r3tZz137ctz/IqTmj5PrqUrRy17VF6422un7dyn7nxqHrfqqekpE327a9RE95UkD9jroL6H5CW7vSErunbasUbHWd29Jq/a863ZqWeXad0XAAAAAAAAAAAAAADmq1JV1Uz3QBuUUkqSf03yvDrTv0tyeZJNSdYkOSbJ+Fd5DCR5ZlVVP2jhrBOTnJkHBq9VSS5McnWSVUmOSjL+FR9nJHlWVVUjE53RTqWUwzIa6pYkufTSS3PYYYfNYEcAAMB8MFKNZP3wfVnRtSqjn6JNdZ/hbBhenxXdwjeGqsHcOXBbqmz/tYxlXSuyvHtlW84dGNmSuwZvrzu3snun9HUt2+Ez1g3dm2Vdy1MrXTu8Vz3rh+7LhuF1LdfXSi1renZrWz8ALFxvuvLF6R9ev934H+3+FzlmxWNy0frz86mbP7jd/JJaXz5y8Fc60WJLqqrKXYO3NQ1cgk5ZVFuU1d1rd+jzjqlo9jx5p55dsqTW25ZzB0cGc9fgts8LPnPz3+WWgeu3q3vWLi/Jk3Z+Tq7ffFU+eN0b6+719wd9Ob1dD/w5PtP5/r2otjiru9d0/O8GAC677LIcfvgDfsLt4VVVXTZT/QCA/6MHAAAAAAAAAMwH/n9e53TPdAO0zR9n+1C0c5K8rqqqS8cOllK6k7w4yf9Kcv+ryBcl+Xwp5ZCqqu5rdEgpZa8kp+WBoWjnJnllVVWXj6lbnOTVST6cpGfr8NOTvC/J2yb3WwMAAJj9aqWWld3jM6insk+XULStuktPdlu8V8fPXVRbnN0X793WM9r9d7y8e2XbguMAYDL6akvrBqNtGulPMhqEWk936ak7PlNKKdll0W4z3QbMqE48T66np/bAzwtWdK+qG4y2cet9pVnAWXdZtN2Y928AAAAAAAAAAAAAAJhZtZlugLYZHzZ2TpKTx4eiJUlVVUNVVX02yclJtoyZWpvkTyY4591Jxr7S/xdbz7l8bFFVVVuqqvpYklPHrf+fpZR9JzgDAAAAAIB5oLe2tO74puH7A4wG6s73zLJgNGD26Gt0X7k/cHGk/n0lSbqLnyEFAAAAAAAAAAAAAACzjWC0eaiUckSS/cYNv76qqsFm66qq+s8knx43/PQm5xyc5KVjhgaSvKyqqs1NzvhOks+PGVqc5J3N+gIAAAAAYH7o7aofYLRx5P5gtPpfxu4pi9rWEzC3NbqvTBy4uCillLb1BQAAAAAAAAAAAAAATI1gtPnpgHHXN1RVdXGLa08fd31wk9oXJukac31aVVVXtHDGh8Zdn1pKWdJKcwAAAAAAzF19teYBRkMj9QOMuktP23oC5rbeWl/d8U0TBC66rwAAAAAAAAAAAAAAwOwkGG1+Gv/KshsnsfaGcdc7Nal99rjrz7ZyQFVVlyf55ZihpUme1MpaAAAAAADmrt6uBsFoWwOMhqqhuvM9tUVt6wmY23obBC5uvD9wsaofuNhT3FcAAAAAAAAAAAAAAGA2Eow2P9067nrJJNaOr727XlEpZbckDxszNJTk3Emcc9a461MmsRYAAAAAgDmoYYDR1mC0wYYBRj1t6wmY2yYKXBysBuvO99TcVwAAAAAAAAAAAAAAYDYSjDY//TrJljHXDy6l9La49ug6e9Vz+LjrS6qq6m/xjCT5xbjrwyaxFgAAAACAOaivUYDRcPMAo27BaEADfQ0CF//ffWWkfuBid1nUtp4AAAAAAAAAAAAAAICpE4w2D1VVtT7JF8YMLUnyionWlVK6kohUJLMAACAASURBVPzpuOHPNyh/yLjrK1tucNRVE+wHAAAAAMA809sgwGjjyGiA0VBVP8CoR4AR0EBvg8DFbfeV+oGLPQIXAQAAAAAAAAAAAABgVhKMNn+9Jcm1Y67/tpRycqPiUkpPkk8lOWrM8E+TfKvBkoPGXV8/yf6uG3e9cyllp0nuAQAAAADAHNIoGG3T8GiA0eBIgwCjmgAjoL6+BveVwWoggyODGRS4CAAAAAAAAAAAAAAAc0r3TDdAe1RVdXcp5aQkp2U07Kw3yZmllG8m+WaS3yXZlGSXJI9M8uokDxqzxa+SPK+qqqrBEavGXd8+yf42lFI2J1kyZnhlknsmsw8AAAAAAHNHX1eDYLSRrcFoDQKMugUYAQ30NrivJMnmkf4MVvUDF7uLwEUAAAAAAAAAAAAAAJiNBKPNY1VVXVtKOT7Jy5K8KsnRSU7d+mjkriQfSfJ3VdXglSKjlo273jSFFjflgcFoy6ewxwOUUtYmWTPJZQfu6LkAAAAAAEyst1Y/wGiwGsjgyECGGnxZukeAEdBAo/tKkmwa2ZjBkfqBiz01gYsAAAAAAAAAAAAAADAbCUab/7q2PrYkqZKUJrU3JPnrJF+bIBQt2T4YbfMUetuUZKcme07Fa5O8cxr2AQAAAABgmvV1TRBgVDUIMCoCjID6+roaf3tp43C/wEUAAAAAAAAAAAAAAJhjajPdAO1TSnl0ksuT/GOSR2fiv++9k3w2yfWllD+e5HHV5Duc0hoAAAAAAOao3lqzYLT+DDYIMOoWYAQ0sLgsSWnwLbDR+4rARQAAAAAAAAAAAAAAmEsEo81TpZQnJPlxkv3GDN+U5C1JjkqyKsmiJLsleUqSzycZ2lq3JsmnSymfKqWUBkdsGHfdO4U2x68ZvycAAAAAAPNIb1fjYLSNw/0ZHGkQYFQTYATUV0pJb62v7pzARQAAAAAAAAAAAAAAmHu6Z7oBpl8pZU2SryZZMmb4jCQvqqpq3bjy25KcmeTMUso/Jflekp23zr0yyVVJPlTnmNkajPbJJN+Y5JoDk5w+DWcDAAAAANDE4rIktdQykpHt5jaN9GeoQYBRjwAjoInerqXZOLL9t5k2DvdnqGoQuFgELgIAAAAAAAAAAAAAwGwkGG1++p9J1oy5/l2SU6uq2txsUVVV55dSXpDkx2OG31lK+WxVVbePK79v3PWaTEIpZVm2D0a7dzJ71LO1z/G9TtTLjh4LAAAAAEALSinp7Vqa/uH1281tGu7PoAAjYAr6aktzV53xTSP9GRxpELhYE7gIAAAAAAAAAAAAAACzUW2mG6Atnj/u+kMThaLdr6qqnyT5+Zih3iT/o07pFeOu9229vbr1d1dVdc8k9wAAAAAAYI7pqy2tO75ppD+DVf0Ao+4iwAhorLer/n1lY5PARfcVAAAAAAAAAAAAAACYnbpnugGmVyllaZIDxw3/ZJLb/DjJY8dcH1+n5vJx1wdN8owDxl3/dpLrAQAAAACYg3obBKNtHO7PkAAjYAoa3Vc2jfRnSOAiAAAAwKi7L0yu/2bSf+32c9VQMjKYLN032f2UZI8nd7w9AAAAAAAAALifYLT5Z1WdsVsnucf4+l3q1Fw67vqhpZS+qqo2tnjGoyfYDwAAAACAeai3q3GA0eBI/QCjntqidrYEzHF9jYLRhvsz2CAYrae4rwAAAAALyA3fTs59wWj42UT++6PJQ9+XHP5X7e8LAAAAAAAAAOqozXQDTLt764zVfzVIY8vGXW8YX1BV1S1JLhkz1J3kMZM448Rx19+fxFoAAAAAAOaoRgFGG0f6M1gN1J3rKT3tbAmY4xoHLm7M4Ij7CgAAALDAVVVy0ZtbC0W736XvSbbc1b6eAAAAAAAAAKAJwWjzTFVV/UnWjRs+apLbHD3u+tYGdd8ed/3yVjYvpRya5PgxQ/1JfthaawAAAAAAzGVLuvrqjm8a7s9QVf+Fed1lUTtbAua4RoGLm0aa3Fdq7isAAADAAtF/TbL+ismtGRlIbvlRe/oBAAAAAAAAgAkIRpufzhp3/apWF5ZSdkvyjHHDP29Q/uUkw2Oun1NKObiFY9487vpfq6ra3GKLAAAAAADMYY0CjDY2CTDqKT3tbAmY43q7GtxXhvszWA3UnXNfAQAAABaMW86c2rqb/216+wAAAAAAAACAFglGm5++Pu76BaWUF020qJSyOMkXkywbM7whSd3/EVFV1RVJPj9maFGSz5VSljQ545lJXjZmaCDJuyfqDQAAAACA+aG3QTDahqH7UqWqO9dTFrWzJWCO66311R3fNNKfwYaBi+4rAAAAwAKw/qrk16+d2tprvzS9vQAAAAAAAABAiwSjzU9fS3LxmOuS5AullI+WUnavt6CUclKS85OcPG7qQ1VV3dPkrHcmGTv/qCQ/LqUcOm7/xaWU/z/JN8at//uqqq5rsj8AAAAAAPNIb1f9YLR1w/c2XNNT62lXO8A80ChwcdNwf4aqgbpz3cV9BQAAAFgArvjkjq1fd8X09AEAAAAAAAAAk9A90w0w/aqqGimlPC/JuUnWbh0uSV6f5E9LKZckuTrJpiSrkxyVZLc6W/17kg9NcNaNpZTnJDkzyaKtw49O8ttSygVbz1mZ5OFJ1oxb/r0k75jc7w4AAAAAgLmsr0GA0bqhxsFo3WVRwzmARoGLW6rNKVX9nxPVU3NfAQAAABaA28/ZsfV3/DxZcfD09AIAAAAAAAAALRKMNk9VVXVlKeVxSb6Y5JgxU7UkR259NFye5NNJ/qyqqsEWzjqrlPLsJJ/LtvCzsvXcYxos+2qSV1ZVNTzR/gAAAAAAzB+NAoxG0vjLxT2lp13tAPNAo8DFJKkyUnfcfQUAAACYd4YHkkventx4erLpliRVMrShcf0hf5r8/uPN9/zlK0YfSdK9PBlav21u9dHJ8f+S7PTQHW4dAAAAAAAAAMaq/yPSmReqqvpdkkcmeWmS8zIaeNbMpiRfTvKoqqpeXVXVpkmc9e9JDk/yT0nuaVJ6fpLnVVX1wqqq+lvdHwAAAACA+aFZgFEjPWVRGzoB5otGgYvNuK8AAAAA8875L0su/7tk/e9HA8yahaKtfEjy8I8kB/5x6/uPDUVLkrsvSH74iGT9VVNqFwAAAAAAAAAa6Z7pBmivqqqGknwhyRdKKSuTHJNk/ySrkixOsj6jQWaXJvmvrfVTPev2JK8ppbwhyaOT7JtktyT9SW5K8puqqq7Zgd8OAAAAAABz3FQCjLprPW3oBJgvphK42F3cVwAAAIB5ZOPNyfVfb73+8T9Jaj3JcZ9KDnpV8rMnJwPNfi5yA8Obkgv/PHncdye/FgAAAAAAAAAaEIy2gFRVdV+Sn3TgnIEkP2v3OQAAAAAAzD29Uwgw6imL2tAJMF8srvWmpKRK1fIa9xUAAABg3hgZTm7+t6Qaaa2+Z1WyZNfRt0tJdj42OeYTyS9eOLXzbzojuebLyX7/X1JqU9sDAAAAAAAAAMbw3WcAAAAAAKBj+rqWTXpNd+lpQyfAfFErtSyp9U1qTU/NfQUAAACY40aGkgvfmHxrl+RXr2p93X4vHA1EG2vPpyXdk/+hFv/PeS9Kvrk6ufgdrQe0AQAAAAAAAEADgtEAAAAAAICOWVyWpEzi2xO1dKWrdLWxI2A+6Oua3At3u8uiNnUCAAAA0CH/9e7kdx9JBu9tfc2uT0ge9v7tx3uWJ489LelZMfV+Bu9LLntfcvnfT30PAAAAAAAAAIhgNAAAAAAAoINKKemrtR5g1FN62tgNMF/01vomVe/eAgAAAMxpVZVc9emJ6/r2Sk44ffTxtN8nj/9RsmhV/drdn5Q857bkqA/vWG+t9AUAAAAAAAAATXTPdAMAAAAAAMDC0tvVl/6R9S3V9tQWtbkbYD7onUTgYpL0FPcWAAAAYIpGhpP7LksG70tSTfPmJSm1pHtZUlucbLm9ftmmW5PNt0283WF/lez1jNaP71qSHPjHycVvTUYGW1831vorki13JYt3ntp6AAAAAAAAABY8wWgAAAAAAEBHTSbAqLv0tLETYL7o7ZpcMJp7CwAAADAlt52V/OSkme6iNV19yT6nTn7dopXJ3s9Nrvva1M/+1i7J0R9NHvT6qe8BAAAAAAAAwIJVm+kGAAAAAACAhaVvEgFGPcKLgBb0TTJwsZTSxm4AAACAeWlwXfLTJ8x0F61ZdkDy+B8ni1dPbf1xn0r2enZSuraNrXhwsvKwJC1+XeWCNyS3nzO18wEAAAAAAABY0LpnugEAAAAAAGBh6Z1UgNGiNnYCzBe9AhcBAACAdrvhO0k1MtNdNNe9LHna75K+PXdsn57lyQmnJYMbko03JkvWbgtZG7g3qfUk3UuTr/cmw5sb73PNF5O1J+xYLwAAAAAAAAAsOILRAAAAAACAjhJgBEy3yQQu9ghcBAAAYCEaHkhuPysptWT1scmilTPd0ey28abkjv9IBtdvG/vVK2eun1bt94c7Hoo2Vs+yZOWhDxxbtGrb23v8QXLDtxqvv+ozyc7Hj77dvTTp3SPZdHMy1J+Ukqw8LFl99GjQGgAAAAAAAABsJRgNAAAAAADoqL7JBBjVBBgBE5vMfaVb4CIAAAALzYZrkh8/Ltl4w+h1757JCd9Odj52Zvuara78VPLr1ybV8Ex3MjmlOznoVZ098+DXJjeclqRqXDNRoNwuj0pOOD1Zssu0tgYAAAAAAADA3FWb6QYAAAAAAICFpVeAETDNersELgIAAEBD579sWyhakmy6KfnVq5KqSZjVQtV/ffLr18ytULTSlex8XHLSD5LVD+/s2bs9Pnnst3Zsjzt/kVz2vunpBwAAAAAAAIB5oXumGwAAAAAAABaWSQUYFQFGwMQmE7jYI3ARAACAhWSoP7nj3O3H77koufs/k52P7XxPs9kNpyXVyOTXHfa25KHvndqZ1UjytQm+XvHgNyVHfrDxfJnBn5W997OTZ16bnL7f1Pe4/l+To//3dHUEAAAAAAAAwBw3g98FBwAAAAAAFqI+AUbANOubROBit8BFAAAAFpKBe5NquP7cjd/pbC+z2b2XJpd/OLnwz6e2fp/nj4aTTeVR6052Pan5/mse03yPmda39+hjqjbdkgzcN339AAAAAAAAADCnzYLvhAMAAAAAAAtJrwAjYJr1ClwEAACA+hqFoiXJZR9IRoY618tsdfXnk+8fmfzmTVNbv/tTkp2O3LEeHvympHTVn1v10GSPp+7Y/u1WaslD3rxje/zw+GSkyb9XAAAAAAAAABYMwWgAAAAAAEBHTSrAqCbACJjY5ILRBC4CAACwgIwMNp+/5czO9DFbDW1MLnh98wC5+y07cPQx1kPenJzwnR3vY49TkhO//8AAtBUPTg55fXLyOUmte8fPaLdDXpc88kvJ7k+u/2c1kXX/ndz6w/b0BgAAAAAAAMCcMge+Sw4AAAAAAMwnAoyA6dbX1fp9pVvgIgAAAAvJ8Mbm8zd9N9nzDzrTy2x0+9nJ4LqJ6x53RrLn09rby+5PHH3MZfv/4ejjfnf8IvnRo1tff+N3R0PiAAAAAAAAAFjQBKMBAAAAAAAdNakAoyLACJjYklpvy7UCFwEAAFhQ+q9rPr/+qs70MVsM3Jtc+enkik8m/de2tqa2ONnlUW1ta97a6ahk0U7JwD2t1a+/or39AAAAAAAAADAn1Ga6AQAAAAAAYGHprbUejCbACGhFrXRlSa2vpdoegYsAAAAsJBuunWD+6o60MSsM3JP86DHJRX/ZeihakjzkLcni1W1ra17r7k2OeFfr9RuubFsrAAAAAAAAAMwd3TPdAAAAAAAAsLAsri1JSS1VRias7akJMAJa01dbms0jGyes6xa4CAAAwEIyUQDYxuuTkcFkIXwd7uovJPdd1nr9AS9L9nx6svdz2tbSgvCg1yfLD05uOC3ZeFPSt1ey5fbkxtO3r+2/PhneknQt7nyfAAAAAAAAAMwagtEAAAAAAICOqpVaemt92TiyYcJaAUZAq3q7liZDd0xYJ3ARAACABaX/mubz1fBoGNXyAzvTz0y65czWa4/82+Qhb2pfLwvNHqeMPu533+/qB6OlSjZck6w8tGOtAQAAAAAAADD71Ga6AQAAAAAAYOHp7VraUl1PEWAEtKa31up9ReAiAAAAC8CNZyTfe0hyw2kT1264qv39zKQ7zkt+8aLklu+3vmbPp7WvH5Jl+yelwX9jX39FZ3sBAAAAAAAAYNYRjAYAAAAAAHRcnwAjYJr1tRi42C1wEQAAgIVgcF2y7vLWas9/eXt7mUl3nJv89PHJtV9ufc2hb0xWPrh9PZF0LU769qk/t+HKzvYCAAAAAAAAwKzTPdMNAAAAAAAAC0+vACNgmi2p9bVUJ3ARAAAAxtl0czK0KenunelOpt9/fywZ3txa7eHvSHY9afRB+y0/KOm/dvvx9YLRAAAAAAAAABa62kw3AAAAAAAALDy9tdaC0XpqgtGA1vS1el8RuAgAAADbW/fbme6gPe76ZWt1+zw/eeh7hKJ10rKD6o8LRgMAAAAAAABY8ASjAQAAAAAAHddqgFG3ACOgRb1dLd5Xaova3AkAAADMQfMtjOru3yQ/Pinpv661+r2f195+2N7yBsFot/4w+f5RyTVf7Gw/AACzRVUll/998r2HJF9bkpz5iOSmf5vprgAAAAAAOkowGgAAAAAA0HGtBhj1FAFGQGtaDVzsEbgIAAAA29tw1Ux3MH023pj89OTk9rNaqz/g5cnez2lrS9TRKBgtSe65KDnvJcl1X+9cPwAAs8Xlf5f85i+SdZcnI1uSu36ZnPOM5LazZ7ozAAAAAICO6Z7pBgAAAAAAgIVHgBEw3QQuAgAAwBg7H5sc84kHji3ddzRk4fY6gQrrr+xMX51w6XuTgbub1xz4imTn45Kdj09WPTQppTO9sc2yJsFo9/v9PyT7vqD9vQAAzBZVNfocaLvxkeSKTya7Pq7zPQEAAAAAzADBaAAAAAAAQMe1GmDULcAIaFFvi4GL3QIXAQAAWAhWHDL6GO/WH9cPRttwVft76oT+65OrPztx3RHvTvr2bH8/NLb8wIlr7r5gNASk1NrfD0yXkcFk4w3bjy/ZNRnekqRKUpKelUmtq9PdATDbbb4t2Xhj/bnbftrZXgAAAAAAZpBgNAAAAAAAoONaDTDqqQkwAlrT1/J9ReAiAABMt1JKSfKmJEvGDH+hqqprd3Df/ZO8eMzQxqqqPrwje8KCt/yg+uPr50kw2m8/NBpKNJFFq9vfC811LUlqPc3/voY3J/3XJcv271xfMFUjQ8mFb0yu+kwyvLG1NYf/dXLEu5JS2toaAHPIZR9oPLflztHg2NVHd64fAAAAAIAZIhgNAAAAAADouL6uFgOMigAjoDW9Ld9XBC4CAEAbvDDJB5NUW69P29FQtCSpquqaUsoRSZ5z/1gp5eqqqk7b0b1hwVp2YP3xTTclQxuT7r7O9jOdNt40GkjUiu7e9vZCa0789+SnT2xe84sXJU86tzP9wI649H3J7z82yTXvSZbsmhzy2vb0BMDccssPk9//Q/OaHxyTnLoh6W7t+2IAAAAAAHNVbaYbAAAAAAAAFp7eWmv/UbtbgBHQor4W7ysCFwEAYHqVUmpJ3nP/ZZIrkrx0Go94WZKrtu5dkrx/GveGhWf5QY3nrvli5/poh9/+bTIyMNNdMBk7Hz9xzZ2/SKpq4jqYaVf/y9TWXfV/prcPAOam4YHkP/+0tdobvt3eXgAAAAAAZoHumW4AAAAAAABYeFoNRhNgBLSqt0vgIgAAzJCTk+yf5P7UmrdWVbVxujavqqq/lPKWJN/cOnRIKeXxVVX9dLrOgAVl6b5J99JkqH/7uUvenuz7gmTRqs73tSOqKrnz/OT3H2utfu3j2tsPretZniw7INlwdfO6a76YrDg0WX1UUvO1HWaB4YHknguTgXtHrwfuSTbeMLW97rkwuenfkq4lyepjkuGNSf8NyU5HJl0Nvkey5e7krl8n1dBoIGRtcVJqyaKdktUP934CMNdUVXLB65P1V7RWf+8l7e0HAAAAAGAWEIwGAAAAAAB0XF+LAUY9NcFoQGuW1PpaqhO4CAAA0+5FY96+oKqqb0/3AVVVnVZKuSDJ0VuH/jCJYDSYilpPss/zk6s/t/3cljuT/3pPcvRHOt7WlA3cm/zH85Nbf9z6mv1f0r5+mLwD/zi5+G3Na85/6eivi3dJTvhOsubR7e8LGrnlh8l/nJoM3jd9e579tO3HelYlj/1GstvJ28aqkeTitye//ZvGey1anZzw7WTtCdPXHwDts/mO5IePSjZc2fqaVgPUAAAAAADmsNpMNwAAAAAAACw8vbUWg9FKT5s7AeaLrtKVxWXJhHU9NfcVAACYZk8Z8/b/aeM59+9dkjy1jefA/HfEu5OuBp9D//4fknX/3dl+dsRFb5k4FG3VEUnKaKjWw/4mOeDlHWmNFj34L0cfPSsmrt1yZ3L2M5Lhze3vC+oZuC8551nTG4rWyOC9ydnPTAbXbRu74bTmoWhJMnD36PvJ0Mb29gfA9Ljg9ZMLRUuS9ZOsBwAAAACYgwSjAQAAAAAAHbe4tiRlgm9TlNRSS1eHOgLmg96uiUMXu8uiDnQCAAALQyll3yS7jBn6XhuPG7v32lLK3m08C+a3pfskD35T/blqKLnwjZ3tZ6qqkeS6rzavefj/Tp56SfL8dclzbksOe0tSSmf6ozW1ruSoDyXPvTtZfvDE9QN3J7ec2f6+oJ6bvpsMb+rcecMbkxvP2HZ97VdaWzd4X3Lz99vTEwDTZ2jTaOjlZG24cvS5MAAAAADAPNY90w0AAAAAAAALT63UsqTWm00j/Q1rekpPihcpApPQV1uae3NX05qe0tOhbgAAYEF42NZfqyRXVVV1U7sOqqrqxlLKlUkO2jp0ZJIb2nUezHsPeXNy1b8km+q82978b8nNZyZ7PLnzfbVq8+3JNV9KBtc1rlmyNjnolaNv9yzrTF9MXa0r2fXxyforJq797YeStScmi1a2vS3mgM13JreflVTDo9elNvrvY8ma0estdye3n51snIanDRf/1Y7vMVnnvSgZ2Po1zxu/3fq6G7+T7PPc9vQEwPS48xfJyEDj+X1ekFz/9e3HhzcnG29KlsoLBwAAAADmL8FoAAAAAADAjOjrWjpBMNqiDnYDzAe9XUsnrHFvAQCAabVmzNs3d+C8m7MtGG1tB86D+at7aXLkB5PzXlx//sI/T3a7OKnNwoDxW3+cnPOcZGh987ojP5R093WmJ6bHQa9Orv5s84CQJLnzvOTfDktO+n6y6ojO9MbsdNvZyTnPTAbve+B4z8rkhO8kXb3J2U9LttzZ+d5Kd/K47yXn/WGypfkPc5jQBW+Y/Jprv5QsPyg54p07djYA7XHzD5KzTmk8v/ro5JiP1Q9GS5IbTksOncLHBwAAAACAOaI20w0AAAAAAAALU2+teYBR92x80SUwq010X0mS7uLeAgAA02inMW/f2oHzxp6xqgPnwfy23wuTnY+vP7fu8uSKf+xsP60YGUrOf/nEoWjHfybZ/6Wd6Ynps/qo5PE/StaemHQva1676abk16/rSFvMUtVIcv7Ltg9FS0bHzn9Z8stXdC4UrbZ49NG9NFl7QnLSmckeT06edH6yx9OarGvj1yv/613JPRe3b38ApmZkcPTjVDNP+GmyZG2yeJf68xf+2bS3BQAAAAAwm3TPdAMAAAAAAMDCNFGAUY/wImCS+romCFwsPSmldKgbAABYEBaNebsTP6h17BmLO3AezG+llhz90eSHj6g//1/vSvb7w2Txzh1tq6m7fpVsvLF5zc6PSA58RWf6YfqtPSE5+Wejb//+k8l/Ngk/u+Pnyabbkt5dO9Mbs8vdFyb91zae77+uY63k+M80vu8sPyg58YzGawc3JN/cKamG2tPb9d9MdnpYe/YGYGruODfZfFvj+d1PSXpWjL69/ODGIZ+eBwEAAAAA85hgNAAAAAAAYEZMFGDUUxY1nQcYT+AiAAB03MYxb6/pwHljz9jYsApo3S7HJ/u9KLn2S9vPDdyTXPLO5NiPd76v8fpvSG78TnLxWyeuXfvY9vdDZ7Tyd3ndV5ND/6z9vdA+g+uTG05L7vp1cs+FSe/uyZLdJ153xSfa31urdnn01Nf2LEuO/UTyq1dPXz9jrbu8PfsCMDUbb0wueH3zmrHPgXY6MrnzvPp19/wm6X1K4336r0tu/G4y1J/s+QfJqiMm3y8AAAAAwAwRjAYAAAAAAMyIiQKMugUYAZMkcBEAADru1jFv79uB88aecVsHzoOF4cgPjoYSDdfJG7zyn5KDX5OsOqzzfd3v7guSnz052XLXxLWLd04O/pP290RnrDoi2euZyY2nN6658M+T7r7koFd1ri+mz+Y7k589MbnnopnuZOr2fl6y8tAd2+OAP0pu+E5yy/enp6exbvhWMjyQdPnaKMCMu+ei5KdPSrbc0bimd4/Rjwv3e/Cbkiv+sX7tWackz70rWbx6+7m7fj161uC9o9eXvD151JeTfV8w9f4BAAAAADqoNtMNAAAAAAAAC9NEAUaC0YDJWiJwEQAAOu2qrb+WJPuWUg5q10GllAOT7FfnbGBH9e2ZPOQt9eeq4dHgqarqbE9jXfxXrYWiHfSq5InnJcsOaH9PdM5jvpE87P3Nay78i2SovzP9ML2u+MeZCUVbdcSOP9aemDzsb5JHf3XH+6l1J4/9ZnLEuyfuc+Xh268/4OVJafLSkJu+u+M9ArDjLn5781C0JHnyL5PeXbddL9s/6VnVuP7Kf64//pu/2BaKlow+r//1a5OR4db7BQAAAACYQd0z3QAAAAAAALAw9U4QYNRTW9ShToD5os99BQAAOu3iJANJ7k8hfkaSj7TprGeNeXswyQykqMA89uC/SK76TLLx+u3nbv1RctMZyV7P6Hxfw1tGz5/IYW9PHvbe9vdD59V6ksPeLnWOnAAAIABJREFUltx7WXLdV+rXDK1Pbv95ssdTOtsbO+7m73X+zINenRz3T50/dyLdfckRfz36mIoD/ij58WPrz930vWSf5029NwB23MhgcsuZzWsOf2fSt9f243s8Jbnua/XX3PS95LC3PnBsaFNy+znb1w7cndz2k2T3J7XWMwAAAADADGryY4EAAAAAAADap7drggCj0tN0HmC8ie4r3e4rAAAwraqqGkhydpKy9fGXpZTmT8ynYOueb0pSbX2cs/VsYLp09yZH/W3j+XOemWy5q3P9JMn130h+9JikGpm4VrjD/DfR3/FZpyS//bvRIBBmp4F7k0vfl5z19OSnTxp93PWrzvex+5M7f2YnrD668dw1n+9cHwDUd89FSTXUvKbR851mH7vu/MX2Y8NNng/d99vmPQAAAAAAzBKC0QAAAAAAgBnRV5sowGhRhzoB5ouJ7isCFwEAoC2+uvXXKsmaJE2Slabsg0nWZjR8LUm+0oYzgH1OTdY8pvH8t3ZJhvo708sl70r+49Tk7v+cuHavZzXvm/lhn1OTnY9vXnPRXyY/fUIyMtiZnmjd4LrRoMNL3pHc/L3k1h+NPjpt7YnJnk/r/Lmd0N2brDy88fxlH+xcLwA80MB9yZnHNa/Z+znJLo+sP7fPqc3X3nPx1PoCAAAAAJjFume6AQAAAAAAYGHqFWAETLPeLoGLAAAwA76S5P1JdstocNmflFJuqqrqA9OxeSnlLUlel9HgtZLktghGg/YoJTn6o8kPjsnou1wd1309OfCP2tvHwD3J5R+auO6AlyVrTkj2f8lo78xv3b3JE36W/Gtf87o7z0tuOmM0XITZ49qvJPddNvl1i1Ynu57UvGZw3fYha7s9MelZse26qy9Z86jkgJcntXn8vYeHfyT52ZPqz13y9uSQ1yU9yzvbEwDJtV9qPv+Izyb7vbjxc9ruvuSplyT//tD68xe9OTnpB9uuq6Gp9QkAAAAAMIsIRgMAAAAAAGbERAFGPQKMgEkSuAgAAJ1XVdVAKeWtST6XbeFl7y2lPDTJa6qqumcq+5ZSViX5ZJIXjNm3SvK2qqoGpqN3oI7VDx8NDrr6X+rP3/az9gej3XFeMry5ec1uJ48GSLCwdPcmR34wuegtzetu/algtNnm1p9Mbd0pFyVL957eXuaz5Qc3nquGk7v/c+KgOQCmX7OPg7ueNBr4O5EVh2bbp8Xj9F//wOsRwWgAAAAAwNxXm+kGAAAAAACAhalvggCj7poAI2ByJrqv9NQELgIAQDtUVfWFJKdn26u0S5LnJ7milPK3pZQmKR0PVEo5qJTyt0muyGgoWrn/mCRnVFX1uensHajjYe9vPHftl5KL/yoZ3jK9Z/Zfl5z30uR7hyZn/8HE9Xs9a3rPZ+7Y8xkT11zxieQrJTnjQcndF7a/Jx5o7Pvz6fuNPm745uT32enhQtEma+m+yaqHNp4/51nJ0MbO9QOw0N3yw+Sspyc3frtxTavPa2s9qRuKliTrLk+u+9dt11WzYLQGewAAAAAAzDLdM90AAAAAAACwMPV2TRBgVAQYAZPT29XXdL67CFwEAIA2enGSnyY5JtvC0VYneWOSN5ZSbknyqySXJ7l36yNJViZZleTBSY5LssfW8bGBaCXJBUle1PbfBZD07pbsc2py/b/Wn7/sA8k9lyQnnjE9522+MznzEcnmW1ur3/Xxyf4vnZ6zmXtWPjg54I+Sq/9l4tr1v09+cHTy1EuSVUe0vzcm//7cSM+q5OiPTk9PC0kpydEfS35yYv35wXXJz56SnHz2aC0A7XPzD5Kzn5ZUw83rDnh563s+8ovJeS+uP3fuC5KRgWT/FyUjg63vCQAAAAAwSwlGAwAAAAAAZkRfbaJgNAFGwOR0le4sLkuypdpcd17gIgAAtE9VVRtKKU9I8rkkz85ooFmyLeBsjyTP3PpoZGxCx9j1pyd5aVVVG6atYaC5g1/TOBgtSW7+XnLvZcmqw3b8rGu+0HqI0gnfTXZ/ctLlc/wF7fjPtBaMdr/ffzw57p/b1w/bTOb9OUnWnpjs8sikGkr6r0+WrElWPTTZ45Skb6+2tTmv7fq40T/X28+qP3/Hz5M7z0/WPLKTXQEsPJd/eOJQtJN/nvQsb33PvZ7RfP6/PzYajFYNtb4nAAAAAMAsJRgNAAAAAACYEYtrvSkpqf7f65wfSIARMBW9XUuzZahRMJrARQAAaKeqqtYneW4p5c+TvDdJX7LdJ/5lu4Vbl4+rLUk2JXlnVVUfnu5egQmseNDENXeeNz3BaHee21rdUR9O9nr6jp/H3FdKsvro5O4LWqu/8lOC0Trlzl9Mrv4x30iW7NKeXhay3Z/YOBgtGb1/C0YDaI9q66e1E35MLJN/Lt2zIundPdl0S/35ey4c/XVEMBoAAAAAMPfVZroBAAAAAABgYaqVWpbU+hrOdwswAqagt+l9ReAiAAB0QlVV/yvJvknen+TejIac3f+oGjzG1ty7de2+QtFghvTunqx5bPOaX70yuegtycjw1M4YuC859w+TG05robgk+zxvaucwP+1z6uTqN97Ynj7Y5vpvJDd8q/X6XZ8gFK1d9n5+8/nfvDG55K+TaqQz/QAsBAP3Jb94UfKtnZOv1pLhTc3rd39ysminyZ+zzwsaz1Vbn5dXg01q6v/QMgAAAACA2UYwGgAAAAAAMGP6upY2nOupCTACJq+31uy+InARAAA6paqqu6qqekeS3ZKckOQdSX6Q5NIkNyfZsvVxy9axM5P8dZLHJdm9qqp3VFV150z0Dmx13KeSpfs1r/nth5KL3jy1/c95ZnLdVyauK13Jcf+cLN13aucwPx3yp8mez2i9/rsHJSND7etnobvlh8l/TCKsbtmBybH/2L5+FroVBydH/0Pzmkvfm1zyzs70A7AQnPOM5NovJwP3TFy7/JDkmI9P7ZzD39F8vqo85wEAAAAA5oXumW4AAAAAAABYuJoGGBUBRsDk9TYLXCwCFwEAoNOqqhpM8h9bH8BcsvLQ5A9+m5x1SnL72Y3rrvp08rD3J12LW9/73sua75kkB/1JstvJyZpHJb27t743C0N3X3LCt5P7LkvuvTTpvy65+K2N60e2JLecmez5B53rcSG54p+azx/06mSXR4y+veyAZOfjkq4l7e9rIXvQnyYbrkz++6ONa678p+SIdyW1ro61BTAvrft9cvs5rdWefE6y87FT/zi4eHXyhJ8lPzmp/nw1kowMTm1vAAAAAIBZRDAaAAAAAAAwY5oFo3ULMAKmoK/pfUXgIgAAAExKd29yyOuah5gNrktu/E6y8rBk2YGja+43PJBsuTPp22M0pGHjjcnIQHLNF5qfW7qSIz+QLNppen4fzE+llqw6YvQxMpxc9oFkaH3j+uu+nuxxSjK8Odlwdf2anpWj/6ZTjV737Z0sWjntrc8bg+uS/uuTG7/duKZ0JUf+jffnmbDrE5oHo225M+m/Jll+UOd6ApiPrvtaa3VrHpusfeyOn1dr9n30kaQa2vEzAAAAAABmmGA0AAAAAABgxvR1NQ4w6hFgBExBb9P7isBFAAAAmLQ9njZxzbn/Y/TXWk9ywMuTo/8hufTdye/+VzK8afJn7vl0IUpMTq0r2e+FyZX/3Ljm2i+OPiaj1EbfBx71xaRnxY71OJ8Mrk/Oe0ly03dHQw+b2fNp3p9nyu5PShavSbbc0bjmjIOTo/4+OfTPk1I61xvAfLL5ttbq9n/x9JxXao3nfvy45EFvaLK4mp4eAAAAAADarMlXQgEAAAAAANqrt9YkwKjpT7oGqK/pfUXgIgAAAExed2/ypPNaqx0ZTK78VHL63sllH5haKNraxyXHfXry6+CoDye7PWl696xGRsO/fvXq6d13rvv1a5IbvzNxKNriNclxn+lMT2yva3Fy0veTvr2b1/3mjaP/zgFon+7lyYGvmKbNmrwc8M7ztoUW11MNTVMPAAAAAADtJRgNAAAAAACYMb1dfQ3nugUYAVPQ1yVwEQAAAKbdLo+YXP3m26d2zv4vSU4+K1myy9TWs7D1LEsef2by0PdO/943fCsZXDf9+85FQ/3J9d9orfaZ13l/nmmrjx79e1i8c/O6qz/XkXYAFqwTvp2UaXoZ347sMzI4PT0AAAAAALRZ90w3AAAAAAAALFy9tcYBRoLRgKlwXwEAAIA22f8lyTVfaO8Zezy1vfuzMOz2xOSSd0zvniODyUVvS9Y8KhkZSEp30t3gB3/UFiWrj016d53eHmbawH3JXb9Mbv/56J/BRJYfknT3tr8vJlZKss//SK74ROOaG09Pqmq0FoDJmfDjYklWHt7ydvcN3Z3rN1+VoWpou7me0pMDqi1p/OPHJjCy/Z4AAAAAALORYDQAAAAAAGDG9DUJMOopizrYCTBf9HW5rwAAAEBbHPjK9gajLVmb7PmM9u3PwrHzccmqhyX3Xjy9+17xiebBUuMd/s7kiHfOj6Cpq7+Q/OqPRwPiWnXQq9rXD5N34CuSK/8xqUYaFFTJ2c9IHvP1xqF/ANQ3cHfz+b2f01Jg6kg1ktPv/GJ+dPe3m9aVJM9ee2BOvv2qSTS5VTWJj+UAAAAAADOoNtMNAAAAAAAAC1dv0wCjng52AswXS2qNX7TnvgIAAAA7YO1jksd8Y/r3LV3JLo9KTv550t07/fuz8JSSnHRmsvspM9vHpe9ObvvJzPYwHTZcm5z/stZD0ZasTY54V3Lo/2xjU0za6qOSE85oXnPz95LL/64z/QDMJ/+XvfuOk7uq9z/+OrM7m2TT66YHAqGEFjqEIh0RRRQVudeuV8Verlgv9nrVawWx+1NRwQIoKCJdOtISWgokIWUT0nu2nd8f3113Q+Y7OzM7M7ubvJ6PxzzmO+dzvud8Astk2f1+37Ojm2C0439R0DJztzzYbSgaQAT+OOVgFgweVdC6Oykm5FSSJEmSJEmSepHBaJIkSZIkSZIkqdcMyuQJRsvUVbETSbuL+jzvK7W+r0iSJEmS1DNTXwX/EeHC7fDqDfDK56GuhECGDideBa/eCGfdBcP2K1+f0qAGOPUGOOfR/PMGNsC4F1Wuj0VXVm7tallyNUkESzfGHA8XrIZXNMIhn04C6tS3THoJvGZL/jmLf1edXiRpd7Lj+fRa/VSoTf/dVVf3b7y9qG3njBhf1HwA2lqKP0eSJEmSJEmSekFtbzdQjBDCLe2HEbgoxriqxHUagN90rBVjPL0c/UmSJEmSJEmSpOLU1+QJMArZKnYiaXcxKM/7Stb3FUmSJEmSyqNmQPLIAhPPhUW/LH6NzACY8GKorS97e9K/DT8QBoyBHatz1yeeA5POg1XFBZEU7JmfwdAcoX+DxsP4M6B+cmX2LadC/9lMfAkMGF3ZXtRztfUw4hBYPyd3ffMCaGuFTE11+5Kk/iq2weZn0uuHfKbgpVbsWFLU1huzA4qaD0BsLv4cSZIkSZIkSeoF/SoYDTiFzo+bGtiDdQa2rwUFfXyVJEmSJEmSJEmqhEGZ9ACjulBXxU4k7S7q87yvZH1fkSRJkiSp/PZ7Nyz5HbQ1FXfejIshO7QyPUkdMlnY730w59IctTqY8S4YOQuGzoBN8yvTw6Mfzz1eUw8nXg2TXlKZfcvh+Xtg+fXdz8uOgOlvrnw/Ko8DPgT3pvz7amuGbUth8LTq9iRJ/dW25dC6Lb0+7TUFLdMaW1nVtKKorZtDCSGWbS3FnyNJkiRJkiRJvSDT2w2UIPR2A5IkSZIkSZIkqTzG101hYKZ+l/FRtWMZUjO8FzqS1N8NqRnOmGzDLuMDwkDG103phY4kSZIkSdrNjTkWTrsJJpwNA8ZC3cjkkckTUH7oF+CIb1SvR+3ZDv4UHPF/MOqo5GtzwNjk6/W0f8Doo5PwtDPvgr3fAEOmw/gz4ejLYPL5le2rdSvc/7YkiKovihEeuDj/nEETkn9OZ90D9ZOq05d6bvqb4Kjvp9c3P1O1ViSp31s/N732krlQm/6BPl2tbm6kldyhZTXU5hxvyZRwW2Dso993SJIkSZIkSdIL5P7JqCRJkiRJkiRJUhVkM1lOH3ke16/57U7jZ416JSH4WSmSihdC4KxRr+TKlZfvNH7aqJeRzWR7qStJkiRJknZz405OHlJfFAIc8IHkkWbgWDj+FzuPzbgYHv8SPPrJ/OtfsBpatsK1U4vvbdsKWH0fjDux+HMrbcuzsP7R9PqpN8KEs6rXj8prv3fBnEthx5pda5ufgYZTq9+TJPU3McLjX8hdGzAaRhxU8FIrdjyXczwQOGnE2dy2/vpdas2hpuD1/60td/iaJEmSJEmSJPU1e2owWtc/tz/RlSRJkiRJkiSpF71k9IWMzI7hkU33kgkZjhn2Io4YekJvtyWpHztxxNkMrhnKAxvvoCk2cfiQ45k9/IzebkuSJEmSJEn9zeTz8wejDZ8JdaOgbiQMmZ4EShXrqW/A2BOSALe+ZOO8PMUAo4+uWiuqkCH75A5Ge/xLsPebIFNC4I4k7UmWXAXP35W7Nvq4opZqbFqae5nsOOprhuSsNWcyRe0BQFtz8edIkiRJkiRJUi/YU4PRxnQ53tJrXUiSJEmSJEmSJEIIzB5+hqFFksrq8KGzOXzo7N5uQ5IkSZIkSf3Z8Jkw9TVJ8MkLhQwcfGl7oFlIju99U/F7LL0GHnwPHP39nnZbXpsWpNdmfiwJg1P/NmQ6rLl/1/HNz8Bdr4ETr06+ziVJu2rZBg9fkl7f791FLbeyaVnO8fF1U6gN2dwtlBJgGVuKP0eSJEmSJEmSesGeGox2cvtzBJb3ZiOSJEmSJEmSJEmSJEmSJEmSpD5q9pUw5nhovAka/wEDG2DcKbD362HCmZ3zpr8RBo6DRb/OHSq25r70PeZflgSoDJ9Z9vZLtml+eu2wL1avD1XOkOnptef+CCtvhfGnV68fSepPnvsjbF2SuzbhbJjw4qKWa2xamnN8fN1ksqEuZ62llPDKtubiz5EkSZIkSZKkXtCfg9FiMZNDCFlgAnAW8MkupTnlbEqSJEmSJEmSJEmSJEmSJEmStJvI1MABH0ge3Zl4TvLI5bFLYe7n089d/te+FYy2OUe4G8A+b4UQqtuLKiNfMBrA8hsMRpOkNCtvyT0eauDwbxT1d2WMkZVpwWgDJtOSEmbWnCkhGC22FH+OJEmSJEmSJPWCEn4CWlkhhNa0R9dpwKJ8c3Ocux14FrgCGNZlreuq+MeTJEmSJEmSJEmSJEmSJEndCCEcGUJ4VQjhZSGEfXu7H0mSemxCSmBah4f/G/5xCjz0YdiyuCot5bXixtzjQ2dUtw9VzvgzSW7NSPHUN6vWiiT1O6vuyD2+1+tgxEFFLbW+ZQ3b27blrDXUTSabqctZaw41Re0DQErImiRJkiRJkiT1NX0uGI3kN2tpj0LndfeI7Ws8Bfy+cn8USZIkSZIkSZIkSZIkSZL2XCGEgSGE6V0eee/cDiGcF0JYBNwP/A64Bng6hPDPEMLMKrQsSVJljDkOpr02/5xVtydhVDceB5sXVaWtnDY8BbE1d22IeaW7jcFT4cCP5J/z1Leq04sk9SfbGmHzgty10UcXvVxj09LU2oS6ydSGbM5aS6aE2wJjS/HnSJIkSZIkSVIv6IvBaNAZXFYpAXgQeGmM0Y+6kCRJkiRJkiRJkiRJkiSpMj4MzG9/3Aq0pU0MIbwG+CMwhV0/EHU2cF8I4chKNyxJUkWEALN/DaOP7X7u9kaYf3nle0rz2P+k14bOqF4fqrzDvwp7vyG9/vgXoHVH9fqRpP5g3nfTayX8PZkWjDasZgT1NUPIhrqc9eb8ueO5tXkbnSRJkiRJkqT+oba3G8jhDtKD0V7U/hxJPg1ye4FrRmAHsB54Erg1xnhnT5qUJEmSJEmSJEmSJEmSJEndOp8k2CwCP4kx5rw+MIQwEriC5ANfY/sjtJc7zhkM/DGEsH+MsdDrByVJ6jtCBg7+FNz+su7nrrqt4u2k2vR0em3oPtXrQ9Wx//vh2f+Xu7ZjDWx4HEYdUd2eJKkvW31vem3ofkUvlxaM1lA3GYBsyOasN2cyRe9F09riz5EkSZIkSZKkXtDngtFijKek1UIIbXRe4HRhjHFJVZqSJEmSJEmSJEmSJEmSJElFCSEMAmbRed3fX/JMfy8wnM5AtGXAH4EW4JXAtPZ5k4H3AV+rQMuSJFVew6mQHQbNG/PPW3M/3PlqOPoyGDi2Or0BxDZYPye9Xju4er2oOkbOgvopsPW53PXNCw1Gk6QOLVth5S3p9cHT0mspGnfkDkYbPyAJRqvN1OVuJVOzU6J4QdbPgRghFHWWJEmSJEmSJFVdCR8N0ev8yaskSZIkSZIkSZIkSZIkSX3fIUANyXV/W2KMD+WZ+zo6Q9GeBg6OMb4/xvjh9nUeaJ8XgDdVrGNJkiqtdjAc/QPIZLuf+9zv4aYTobWp8n11eOZn6bVjf1q9PlQ9IQPH/ji9vmlh9XqRpL7u1rPTawd9oqTAsZVNKcFode3BaCH9e4aWkOPWwEkvy79hvr/rJUmSJEmSJKmP6G/BaJ9tf3wOWN/LvUiSJEmSJEmSJEmSJEmSpHR7tz9H4Im0SSGEA4B9u8y9NMa4oaMeY9wMvLfLKfuHEKaUuVdJkqpnr4vg3CeTgLR935l/7qZ5sPwv1ekL4PEvpdemnF+9PlRdE86CEYfmrm02GE2SAFj3GDz/z/T63m8oesmtrZvZ2Jr7FrmOYLRsnmC05kyOWwNP+hOceHX6po98rKgeJUmSJEmSJKk31PZ2A8WIMX62t3uQJEmSJEmSJEmSJEmSJEkFaehyvCLPvJPanwOwCfjTCyfEGO8PISwFJrcPHQo8V44mJUnqFUP3SR4xwuIroXlj+tz5P4DJr0jm1AyAUANtzdDWBLVDoGULSbboCwXIDoMQuu8ntkHzBtj8TO56pg7qRhbyJ1N/Ne5FsP6xXcc3Pg1N6yEzAGoHlXfPtmYItYV9jUpSb1tzb3otUweD906vp2hsWppa6wxGq0ud0xxqgJYX9FIDU18FA8fB9lW7nrRjNWx/HgaOLbpfSZIkSZIkSaqWfhWMJkmSJEmSJEmSJEmSJEmS+o36Lseb8sw7of05AjfHGFtS5s2lMxhtag97kySpbwgBpl4IC3+UPqfxJvhNprT16yfD/h+EAz6YO3yqdQf86/2w+HfQvD59nRGHlLa/+o8h++Qef/5O+P3IJJBv1NFw7I9gxME922vbCrj3LbDyVhgwGvZ/Hxx4iQFpkvq2lben16ZcADXpAWZp0oLRBmYGMaJ2NADZkE09vyWT5/uDcS+CJVfnKER48utw+FeLaVWSJEmSJEmSqqrE345KkiRJkiRJkiRJkiRJkiTl1TXZIv1Obpjd5fjOPPPWdDkeVlJHkiT1RYd9qXJrb10KD38Ynvlp7voDF8OCK/KHogEc/8vy96a+ZWhKMFqH2Apr7oWbToSmbr5e8q4T4ZYzYMXfoG0HbFsOj3wM5l9e+pqSVGltrbD4yvT6Ed8oadnGHbmD0RrqJhPawyJrM+mBa82hJn3xY65Irz35NdixtqAeJUmSJEmSJKk3GIwmSZIkSZIkSZIkSZIkSZIqYVOX44ZcE0II44F9uwzdnWe92q6n9qAvSZL6loFjYPpbKrvH/B/sOta8ERblCXnpUFMPww4of0/qW4Z0E4zWoXkDLLmq9H2e/ydseGLX8QV5AnwkqbetvDm9dtAnYNCEkpZtbEoLRpv07+NsSM8Zb87kuTWwbiTMeHd6ffFvuu1PkiRJkiRJknpLbfdT+q4QwqnAacDhwDhgOPk/VTKXGGMs8Dd4kiRJkiRJkiRJkiRJkiSpQMvanwNwSMqcl3Q53gE8lGe9EV2Ot/SgL0mS+p5pF8IzP63c+msfhOfvgVDTObbmPmjb0f25Iw6BYCbpbm/IdKgZBK3bup+79uHS91ny+9zj6x+D1iaoqSt9bUmqlHV53vdGHFryso1Nz+UcH183+d/H2ZD+vtiSqUmtATDpXJj//dy1dY90258kSZIkSZIk9ZZ+GYwWQjgb+A47f0pkqb9pjT3vSJIkSZIkSZIkSZIkSZIkvcBjXY5HhRDOjjHe+II5b25/jsD9McbmPOtN73LcWI4GJUnqMxpOg/rJsHVp5fa4aXZp501/U1nbUB9VMwCmvRae+Vn3cxf8AI65vLR9NjyeXtuyCIbtV9q6klQpLVvgkY+l1ye9rKRlm9uaWNO8KmetazBabUi//a85ZPJvMv7M9NrCH8OxP8p/viRJkiRJkiT1km5++tn3hBA+AtxAEorWNQwtlvCQJEmSJEmSJEmSJEmSJEkVEGNcCMwnuV4vAJeFEPbuqIcQPgyc0OWUa9PWCiEMYecPU11Y3m4lSeplmVo49UaoHdLbnXTKDICZH4V9397bnahajvwOTHkldBe0A7DhiRI3aUsvbVpQ4pqSVEEPX5JeG3M81NaXtOzKpuXElNvbJgyY8u/jTKihhtzhaM2ZmvybZGphxsXp9XWPdNunJEmSJEmSJPWG9I+M6INCCGcDX21/2RFu1hGOthVYD+T7tEhJkiRJkiRJkiRJkiRJklQ9Pya57i8CewNPhRAeBcYBU+i8DnA78Ks865xC5/WCLcDjFepXkqTeM3wmvGYTbF0KW5fD348tfo1zHoa/Ht6zPoZMh5P+BMP2g5qBPVtL/Ut2CJz0B2jaAFuehaV/hjmX5p777C9h1peL32Pr0vTaZoPRJPUxba2wKM//qk59TclLNzblfj+soZYx2YadxrKZLK1tLbvMbSkkyHLSeTD/8ty1Z34BR87qfg1JkiRJkiRJqrICfvrZp3yl/bnjQqilwHuAvWKMQ2KMk2OMexf76LU/jSRJkiRJkiRJkiRJkiRJu7dvA0+1H0cgCxwJTKUz6CwC34wxPp9nnVd0mftojHFHBXqVJKlvqJ8Mo4+G+inFnTf55TByFkx4cc/2n/5mGHmooWh7srr+2Xo0AAAgAElEQVThydfS9Delz3niK7D+cYhtnWNtzfD8PbDydmjN8e1aWwtsyhN+tvDH0LKt5LYlqey2PgfNG9PrI0sPI21sei7n+Ni68dSE2p3GakNdzrnNmQJuDRx5WHrt6W8lYZiSJEmSJEmS1Mf0m2C0EMI+wGEkFzUB3AccHGO8LMa4pPc6kyRJkiRJkiRJkiRJkiRJucQYm4CzScLROoLQAp3XAgbgj8Cn09YIIQwBLuhyzs0VaVaSpL4kBJjxruLO2fedyfOMi0vft2YQ7P3G0s/X7mVwN+F8NxwMd5wPLVtgyxK4/mC4aTbcfApcNz0JTutq7b/o/JYuh/Vz4M8zYN1jPe1cknqurRVue0l6vX4qjDup5OUbm5bmHB9fN3mXsWzI5pzbEmq632jQhPz1a6bA8hu7X0eSJEmSJEmSqqjfBKMBx7c/d1wQ9YYY46Ze7EeSJEmSJEmSJEmSJEmSJHUjxvgcMAu4GPgr8ATwJEkg2qtijK+OMbblWeJNwDCS6wcDcH1FG5Ykqa+Y+VE49PNQv2tAyr+FGhh2IMy+Eia+OBmbfB4c9wsYtn/he4UaGH0MnH5b92FY2rMc+5P89WV/hqe/A/e/HTbN6xzfthzuvmjnuf98Tff7bVsG97wBYp4ANUmqhmXXwsYn0+tn3w+h9FvzVjYtyzk+vm7Xv4ezoS7n3OZMgfvP/k16rWVT8n7dsq2wtSRJkiRJkiSpCmp7u4EijGt/jsDDMcb5vdmMJEmSJEmSJEmSJEmSJEkqTIyxGbii/VGsnwC/7LLWhnL1JUlSnxYCHPwpOOiT0LYDagbCv7NEQ1KPbblDWaa/IXm0bu9yTr69aqEmd+iK9nAjZ3U/Z+GPYfMzu46vnwObn4UheydBZ1uXFLbn+keTkLViwv0kqdwW/za9NvYkGNRQ8tJtsTU9GG3AroGotSGbc25zpqawDUcemr/etA4ab0rCVSVJkiRJkiSpD+hPwWihy/GCXutCkiRJkiRJkiRJkiRJkiRVTYxxG7Ctt/uQJKnXhJCEosGuIWi5QtG66jhPKtWwAyE7HJrzZNPmCkXr8MhHYfjBUDOouH3XPZI7GK1lG6y4EbY8mwQTjT6quHUlqRDNm2DJ1en1Mcf3aPk1zatoic05a+Prdg1Gy2Zyh5e2dPd9QIch+8KA0bBjTfqcjU8BBqNJkiRJkiRJ6hsK/Olnn9D1YzAK/DgLSZIkSZIkSZIkSZIkSZIkSZIklaR2EOz33tLPX3I1zPk0PHJJcefd9dpdA3y2r4Z/vAjufAU89CG48Wh47DOl9yZJuWxdCjcem3/Ovm/v0RaNTUtTaw11k3YZy4ZszrnNmQJvsaupg/0/mH/OIx8tbC1JkiRJkiRJqoL+FIz2eJfjKb3WhSRJkiRJkiRJkiRJkiRJkiRJ0p7i0M/Bkd+B4TOru+/T39359bzvwNoHdh6b+1nYOK96PUna/T3+Zdj4ZHr92J/C0H16tEVaMNqo2rEMyAzcZbw2LRgtFHFr4EGfgKMvzz9n87OFrydJkiRJkiRJFdRvgtFijHOAuUAAjgwhjOzlliRJkiRJkiRJkiRJkiRJUolCCJNDCCeHEM4PIbw+hPCG3u5JkiRJOYQA+78Xzn0cBoyu3r5L//SC19ekzLu28r1I2nOkvdd0mHJ+j7dIC0YbXzc553g21OUcb8nUFL5pCDDjnUnQZRrfTyVJkiRJkiT1Ef0mGK3dN9qfa4AP92YjkiRJkiRJkiRJkiRJkiSpOCGEaSGEb4UQngEWA7cCfwB+Dvws5ZyTQgiXtj/eW71uJUmStItxp1Zvr/WPwWOfhvWPw4Ifw/o5uec9/oXq9SRp99a8EbYtT6+POAzqRvZ4m8YdKcFoA3IHo9WGbM7x5kwJtwY25Hkf3zS/+PUkSZIkSZIkqQL6VTBajPEXJBdABeCSEMI5vdySJEmSJEmSJEmSJEmSJEnqRgghE0L4IjAfeC+wF8m1gF0faVYDnwE+DXwrhLBPRZuVJElSupkfLe96p9+Svz73c3DDwXD/f6XPad4Iba3l7UvSnidG+OsR+ecc8pkybBNpbEoJRqvLHYyWzaQEo4Wa4hsYcXB6bdOC4teTJEmSJEmSpAroV8Fo7d4IXAfUAteGED4XQhjRyz1JkiRJkiRJkiRJkiRJkqQcQghZ4G/Ax0iu/XuhmO/8GOOTwK10hqf9R1kblCRJUuFGHwUvmVPG9Y6Bly/p+TqNf+/5GpL2bM/fBZsXptfPuB2mnN/jbTa2rmdb25actYa0YLRQl3O8JVPirYGzvpp7fP2j0Lq9tDUlSZIkSZIkqYxyXWDUZ4UQLm0/fBSYDYwBPgl8KIRwD/AEsA5oK2bdGOPnytmnJEmSJEmSJEmSJEmSJEn6t58AZ5AEoEWSgLM7ScLOmoAvFLDGH4BT24/PAj5f/jYlSZJUkBEHw7D9YePTPVsnk4Waeqivh+wwaN5Y+lrL/wYTz+lZP5L2bCtuTK8NOwDGnVyWbRqblqbWxqcEo9WGbM7x5lBTWhPD9s89vn0lPP0dmHlJaetKkiRJkiRJUpn0q2A04DPs/MmQHRdI1QOntT9KYTCaJEmSJEmSJEmSJEmSJEllFkI4HXgdndf7LQD+I8b4YHt9GoUFo10PfK99jaNDCANjjNsr07UkSZK6NfHcngej1Y2EEJLj7IieBaPN+07yGDmL5FtGIFMHo4+GAy+BwVN61quk3d/T306vTTw376mLts3njvU3sGzH4m632dK6Kef44JqhDK0dnrOWDXU5x5szmW73y2nsSRBqIbbsWnvko9CyBQ75NIQS15ckSZIkSZKkHupvwWi5xO6npAo9PF+SJEmSJEmSJEmSJEmSJKX7dPtzABYDs2OMq4tdJMa4OISwHhgBZIEDgEfK1qUkSZKKc8AHYdlfYNO80teoG9l5fMwP4bYX97yvdS/4FnHNffDcH+HsB6B+Ys/Xl7R7euYX0JI7sAxI3vNSLNz2FN957lKaY1OPWhhfNzm1ls1kc46XHIw2YBTs81ZYcEXu+tzPwY7n4ejLSltfkiRJkiRJknqoP35sQyjjQ5IkSZIkSZIkSZIkSZIkVUAIYRQwm+QDTCPw/lJC0bp4osvxfj3pTZIkST1UPxnOuicJNJv+FqgZVMIiXW5pGX9G2VrbxbblsPAnlVtfUv8WI8z9fHp91tegflJq+aa1f+xxKBrkD0arDXU5x1tCTekbHvo5yA5Lry/4IWxbUfr6kiRJkiRJktQDtb3dQJFO7e0GJEmSJEmSJEmSJEmSJElSQU6kM+1iVYzxuh6u1zVUbVwP15IkSVJPDRgF+/5X8jjmCrhqMLQVEQ40bP/O40wNDJ0Bm+aXv0+A5++szLqS+r9ty2HzwvT66GNSSzFG5m+dW5Y2xtdNSa1lQzbneHMmk3O8IAPHwUGfgkcuyV2PrbD6HpjyytL3kCRJkiRJkqQS9atgtBjj7b3dgyRJkiRJkiRJkiRJkiRJKsiE9ucIPFiG9TZ1OR5ShvUkSZJULplamPxyWHL1zuMDxsKQfWDNvbueM+mlO7+un1q5YLTGm+Cq9m8ha4fAuBfBEf8H9RMrs5+k/mPj0+m1TBbGzk4tb2rdwLa2rT1uIZBh1tDjUuvZUJdzvCXU9Gzj/d8HC65ID4a78wKoGwWjj4XDvwojDunZfpIkSZIkSZJUoB58LIQkSZIkSZIkSZIkSZIkSVKqUV2O15VhvUFdjpvLsJ4kSZLKadZXYOiMztc19XDcT+GYK2DQpJ3nTnkV7PW6nccy2cr217IleWxfCUuugptmQ+v2yu4pqe+7/aXptZOuyfve1Ni0tMfbBwIXjH0To7PjUufUhtw9NGd6eGtgzQA45fr8c5rWwoq/wk0nwpYlPdtPkiRJkiRJkgpU29sNSJIkSZIkSZIkSZIkSZKk3dLGLsdDy7BeQ5fjtWVYT5IkSeU0ZDq8+CFYdQc0rYOGU6F+YlI7dy6svA22Pgejj4VRR0KmZufzB4xJX3vmR2Hzs9C8CcadBOPPgBuP6Vm/WxbDc9fAXq/t2TqS+q/mjdC6LXetfgpMekne01c2Lcs5PjBTz7mjL+x2+4GZevatn0lD3aS887KZupzjLaEm53hRhu0P098Mz/ws/7zmjcmcQz7d8z0lSZIkSZIkqRsGo0mSJEmSJEmSJEmSJEmSpEp4vsvxjJ4sFEKoAQ7vMrSiJ+tJkiSpQrJDcgcJ1Y2AKefnP3faa2HRr3Ydr58Cs76y6/iR34Z/vb+0Pjssvx6mXQghQMtWaFrfWcvUwoCxSU3S7mn93PTauBd1e/rKpqU5xyfWTeX0US8vtatdZEM253hzJlOeDUYf030wGsCa+8uznwoTI7RuTf5+qhsBmSy0bIGa+uTvptbtEGqTv68kSZIkSZKk3Yw/9ZIk9Q3P3w3zvpd82tLUVycXNoQy/ZJOkiRJkiRJkiRJkiRJvWFO+3MA9g8hTI4x5r5rvHvnAPXtxxG4t6fNSZIkqY8ZfwYMGA071uw8Pu2i3POnvhoe+hDE1tL3XPQrWPxbiC1JuExs2bk+aBIc9gWY/qbS95DUdz1/Z3pt79d3e/rKpmU5xxsGTCq1o5xqQ13O8bIFo025AP71Pmhrzj9v+Q0w7zLY713l2VfpFvwQ7n9H7lqmDtqakufMAJj+Rjjim0lwmiRJkiRJkrSb6PeJMyGEbAjh5BDCJ0MIPw0hXBNCuDmEcHNv9yZJKtCyv8BNJ8Di38DSa+Du/4RHP9HbXUmSJEmSJEmSJEmSJKkHYoxPAh13iQfgw6WsE0LIAB0Xk0Tg0Rjj+p53KEmSpD6lZgCcdE0SjtZh4kvh4P/JPX/QBDjhd1AzqHNs37fD+c/BqKMK37cjDO2FoWgA25bBvW+G5TcWvp6k/iFGeORj6fXxZ3a7RGNKMNr4usmldpVTNuQOvGoJNcRybDBwLJx4NdTUdz/3wXfDkj+UY1elWXpteigaJKFoHc8tm2De9+CRj1enN0mSJEmSJKlKanu7gVKFEAYDHwTeA4x9YRly/1w3hHAR8MX2l2uBo2OMZfkZsCSpBLENHnzvruNP/m9yYcKQ6dXvSZIkSZIkSZIkSZIkSeXya+ASkuv63hNCuCHGeFORa3wJOK7L6x+VqzlJkiT1MeNOhPOXw7qHYWADDJ4GIaTPn3oBTDwnmT9kehKWBnD2/bDxKdi8MHm9+Hew6Fel97XwxzDx7NLPl9T3rHskvTbtovzvPUBT2w7WNq/KWWuom9STznaRDXU5x2MItIZAbTlujZv8crhgNax9AFbdCY99Kn3uwh8n77+qjAUl/Nhj4U9g1lchU1P+fiRJkiRJkqRe0C+D0UIIhwJXATNILpaClCC0HP4M/AAYCkwDzgT+Xu4eJUkFev4u2LJo1/HYBot+Awd/suotSZIkSZIkSZIkSZIkqWy+BryT5Jq9GuDaEMIHYow/7O7EEMIY4OvA60muEQxAI/DTyrUrSZKkXldTB2OOLXx+bT2MPWHnsRBg+IHJA5LQtJ4Eo617uPRz1f+1NcO6R6Flc/I6ZCBGct7KlBkAIw+F2sFVbVElWPHX9NqIQ7s9fVXTCmLK7WxlD0bLZFNrzaGG2thSno1qB8G4k2HUUfD4F6B1e+55jcXmne/BdqyBDY8n98gUavn1xe/TvB6e/QUM2QdCDQzbDwaOK34dSXu2pvWwfi4MOwAGjoEtz3Xe91c/BbY+B0NnwKDxha23dWnyd8mQfboNHJUkSZIk6YX6XTBaCGEmcDswjOQip46LnQoKSIsxbg4hXA28pX3oAgxGk6Tes+LG9NqiXxuMJkmSJEmSJEmSJEmS1I/FGNeGEN4H/Jzk+r6BwOUhhI8AvweWd50fQjgG2B84CzgPGELn9YGtwJtjjE3V6V6SJEm7jeEzYfSxsOa+0s7fvDD5QOgXBrBp97f0Orj7ddCyqfBzMnVw5LdgxsWV60ula94Id10Ey29In7P367pdZlXzspzjNdQyJttQanc51Ya61FpLJgNFZG4VtmE9TL0wCdrKJbbCbefCiVcnc7WrtmZ44GJY+JPq7XnfW3d+PfXVcNwvksA7ScqnrRUe+iDM+x7d3KKdmPxyOP5XkB2Su960Hu54Bay6LXk9/GA45XoYPLVcHUuSJEmS9gCZ3m6gGCGEgcBfgOFdhucAbwWmAwfSeQFUPtd2OT69bA1Kkoq3fk56beOTyadMSJIkSZIkSZIkSZIkqd+KMf4/4Avs/GGo+wCXAN/qMjUA95CEqP0HMLRjifbnj8cY/SBUSZIklebka2DcKaWff9OJ0Lq9bO2oH9i6HO58ZXGhaABtTfDAu2DNg5XpSz3z8Efyh6INHAf1k7tdpnHH0pzjY+vGUxNqS+0up2zIptaaQ01Z9/q3o78Po45Mry+/AeZ8pjJ77w6e+lZ1Q9FyWXI1PP7F3u1BUv+w8Icw77sUFIoGsPRaePQT6fX739kZigawYS7c+aqedChJkiRJ2gP1q2A04H3AXnT+3/V3gCNijD+LMS4CCv0N0610Xly1dwhhXJn7lCQVakM3wWeLf1OdPiRJkiRJkiRJkiRJklQxMcZLgTfTeZ1fx3WAHWFpHY9A5wekdrxuAt4YY/x61RqWJEnS7mfQeDjjVjjvmdLXWHFj+fpR37f4txBbSz9//uXl60Xl0dYKi67MP2ffdxS01MqmZTnHG+q6D1UrVm2+YLRMhW4PrB0MZ96df86iX1Vm791BX/ln01f6kNS3PVvCe8WiX0PMEaTWugOWXbfr+NoHYMvi4veRJEmSJO2x+lsw2nvpvBjqmhjjB2KMbcUuEmPcDCzqMnRgGXqTJBWrZQts7ubCgqU5fhAqSZIkSZIkSZIkSZKkfifG+AuS6/UuIwlI6whAC+wciNYx1gb8P+DAGOMvq9iqJEmSdmdD9obBe5d27r8+AAt+CMv/Cs2bytuXdtW8CZZdD6vugNam6uy5bSUs+X3y7/nhD/dsrWd+CjvWlKcvlce2pdCyOf+cUUcVtFRj09Kc4w11k4rtqlvZUJdaa87UlH2/f6upg5Gz0uvbVkDTusrt31+1tcL6x3q7i8SWxfD0d2Hdo1D8bZiSdnet22HlbbC6myDMXJrWwtwvJN8zLfwJrP1X8j6zbRm0bst9TuMtPWpXkiRJkrRnqe3tBgoVQpgJdPxkOAIf6eGSC4GO32RNB27v4XqSVB7Nm+CJr8Lzd8HQfeHA/4Zh+/d2V5VRyKc8bHwq+SV2Tfov8iRJkiRJkiRJkiRJktQ/xBiXAO8JIVwCnNj+mAKMBuqA1cBK4G7g5hjj+t7qVZIkSbux/d5TWujVlkVw/zuS40ET4JQb8ocGqXRrHoBbzoLm9v8lGLofnH4L1Jc/dOrflvwe7n4dtO0o35p/GAOn/A0mnl2+NVW6TfO7nzPxnG6nxBhZ1bQ8Z218BYLRajPZ1FpLyJR9v53s9x64723p9TsvgNNuhhDS5+xpHrmktzvY2b/elzxPey0c93OoGdCr7UjqI7YsgdvOgQ1PlL7GnEt3fj3pZTDzY+nzY0vpe0mSJEmS9jj9JhgN6PhNUQTmxhif6eF6XS+WGt7DtSSpPNqa4ebTYO2DyetVt8HCH8NJf4LJ50Glf2FVbVuWdD8ntsDmBTB8ZuX7kSRJkiRJkiRJkiRJUlXEGLcCf29/SJIkSdV1wAeT54U/hI1PJ8fZ4dBwGhz9fbhmCsTW/GtsWwH3vhXO+Vdle90TxQh3vqozFA1g0zx44GJ40XWV2bN5I9zzxvKGonW453Vw/jI/LLwv2LQgf33vN0CeELIO61vWsCNuz1lrqJtcSmd5ZUP6105zpqbs++1kn7dCWxM88K7c9ZW3wqrboeGUyvbRX2xaAE99s7e7yG3xb6HhdNg3T9CdpD3Hw//ds1C0XJb9GWJbngmxvPtJkiRJknZr/SkYbWyX4wI+nqNbXX9TUV+G9SSp51bc2BmK1tWdr4CB4+GE30LDi6rfV6Vsfa6weeseNRhNkiRJkiRJkiRJkiRJkiRJUnmEAAd+KHnkcuS34cH3dL/Ouodg8zMwZHp5+9vTrXsItub4EO5lf4bWpsoEjC27AVq3lnbuec/CvW+EVXfkru9YnQRHTTiz9P5UHt0Fo407uaBlVjYtS6011E0spqOC1IQaMmRoY9ewmeaQ6XxRqfeiGRfD/Mth/Zzc9SVXG4zW4bk/pNcGNsArG8u/Z4zwm0z38wCW/M5gNEnJ91NLr6nM2suvT681b6zMnpIkSZKk3VJ/CkYb2OW4HB+/MrzL8aYyrCdJPbfsz+m17Y1w8ykw9dUw9mTY581QO7hqrVXElhy/rM5l6Z9gr4sq24skSZIkSZIkSZIkSZIkSZIkAYw9ofC51+0Lww+EvV4H098EgyZ01jY8CfO+B6tugxGHJtd/r74Xhh8MB3wQxhxb7s53D6v+mV5r2Qw1o8q315YlyXX8hQTh5VI/GQZPhUnnpQejAdzxcpjxruR44FiY8GIYeVhpe6p0G5/MXx8zu6BlGpuW5hwfVjOC+pohxXZVkGyoY0fcvst4S6am88UR/1eRvQEYc0J6MNr8y+Dwr0PtoMrt3x+0NcMTX0uvF/j1VbQQYMLZsOLG7uc2/gMe+zSMOwkaTk/OlbTnaNkCy/4CS65K3rOq7YmvwfS3QNNaWHY9bH0uGd+8AGqHwIRzYPLLIDus+r1JkiRJkvqc/hSMtrrL8ZgyrNf1IzDWlGE9Seq5Z37e/ZwlVyeP+d+Hs+/r3z/o25b7l4G7WHFj8gk2/sJFkiRJkiRJkiRJkiRJkiRJUqWNnJUEV634WwGTI2x4Ah79RPI45+Hk/MVXwV0Xdk7b8ESX48dhye/gsC/BQR8ve/v9XsjkKcby7bPqn3D7S6F5Q+lrzPxY0u++74CnvwVbU66Rb90GT32j8/Wjn4CjfwD7/lfpe6s4rdth+Q3p9cnnJyGHBVjZtCzneEPdpFI6K0htJsuO1l2D0Zoz7f+9jDgMxp9esf3Z7z2w4Afp9ZtPg1P/CnUjKtdDX9ayDe58RRL2k+aAD1Vu/wP/u7BgNIC5n0ue9/kvOOYK79WR9hQ71sCtZ8Paf/ViD8/DH0an1xf9GoYfBKfdtHPYsCRJkiRpj5TvNwV9TWP7cwAO78lCIYTRQNefVC/oyXqSVDbZ4YXP3fhU/k+S6Q+aCvwFcvNG2Lqksr1IkiRJkiRJkiRJkiSpKkII2RDCySGET4YQfhpCuCaEcHMI4ebe7k2SJEn6t5OvgYM+BaOPhaEzCj/vkU9AaxM8+O7u5z76CdiaO2Bpz5YnpCe2lm+bhz5YWCja0Bkw7mQ44ptwxLdg3Ckw4RyYfSXs1/7vOTsEzn6g8L1jW/v+m0pqXSVYfFV6bdiBcGKe+gukB6NNLrargmVDXc7xlqEzYP8PwOk3Q+3giu3PiIPg0M+n19fcCwt+VLn9+7olV+UPJpv2Whh3YuX2H38GnH4rDNmn8HMW/ghW31u5niT1LfMuKywUbcorYa//hNHHpM8ZOgNqh5avt642PA5PfbMya0uSJEmS+pXa3m6gCHcDbSRhbqNDCKfFGG8pca230Plbki3Ag2XoT5J6rmZAcfOf+Aoc+rluPhGrD2vdVvjc9XNh8LTK9SJJkiRJkiRJkiRJkqSKCiEMBj4IvAcY+8IyEFPOuwj4YvvLtcDRMcaccyVJkqSyqRkAh30+eQDc80Z49v91f17jjfD8HbBjdWH7LP8r7Pu20vvcHYU8wWhtLeXZY9sKWFvA7URHfa8z/KzDAe/PPXfQeDjkszDn04X10LIFVt4Kk88rbL56Ztl16bXZv4RMtuClGpuW5hwfXzep2K4Klg25+2s++BMw4qyK7buTyefDY/+TXl92Hcz8SHV66WvyfX0B7PX6yvfQcAqctyA5bm2CqwYlIYz5LPszjD2+4q1J6gO6e58CGHsCnPSHwtaLEa4emnw/U25Lr4PD/7f860qSJEmS+pV+E4wWY1wXQngAOLZ96PMhhFuLvbgphDAJ+BidF1DdFGN3P+GTpCpoa4XtK4s7J7bCIx+Dw79WmZ4qrXVr4XM3zIVJ51auF0mSJEmSJEmSJEmSJFVMCOFQ4CpgBp0fbFro9X9/Bn4ADAWmAWcCfy93j5IkSVJe488oLBgttsEtZxa+7v3/lQRVhBoYeUQSkjZoQvH9Lb0Olv0F6kbCXv8BIw8rfo0+I08wWmwubcllf0n+GWWHwV4XwbzLCjuv4fTi9hl/RuHBaAB3vBymXghjjk2+BlbfCy2bYcBoGH82TLswf1CcCrf67vTa8EMKXmZ72zbWt6zJWWuoYDBabajLOd4cmyq25y6GHQCDJsK25bnrz/8T5v8A9nkbZPrNbYs9FyM898f0es3A6oeP1dTBuBcl4Yv5PPFl2PgkbJoHgyYnoaBN65L3o2EHwtQLkvc1qVp2rE2+33r+LmjbUd61l/05eR66H0x4MUx77e4bDLj0z8mfd3tj8jrGwgJhG4r47z2E5PukQgLXirVpHlzZ/v1P7WBoOC1PHxkYMQv2eSsMnlL+XiRJkiRJvaa//YTx28CV7cfHkVzo9I5CTw4hNADXASPbhyLwzXI2KEkl27II2kr4Je2T/wv7vh2G7lv2liqupYhgtOV/g5kfrVwvkiRJkiRJkiRJkiRJqogQwkzgdmAYScJBbH8uKCAtxrg5hHA18Jb2oQswGE2SJEnVNuUCePq7sPaB8q/dEdSx9BpY+CM4804YPK3w8+d8HuZc2vl63vfglOuh4ZSytlk1+YLA2lqKX+/xL8Ojn+h8/dQ3Cjtv+pth+AHF7TXmeJh8fvLvslBLfpc8XuiZn8Pqu+Co7xbXg3a1dRlsW5G7NvbEJESqQKuaUkLBgIa6ycV2VrBsyOYcbyk1LLAUmVo49PNw31vT5zxwcRJCeMr1e06o3yPd3Osy8xNJaGW1HfxpWH0ftHZz707H+9WGJ3YeX1BVi9cAACAASURBVHU7LPgBHPU92O/dlelR6qppHdxyOqx7pLL7bJqXPOZfBif8Bqa+qrL7VdvjX4JHP1n8eYP3Tu5RLMZBn4RVt0HzxuL3K1TLls7vldMsvRYWXAFn3AHDZlSuF0mSJElSVWV6u4FixBh/C3T8VCMAbwsh3BlCOCnfeSGEwSGEd7afO4vkIqoI/D3GeFcle5akgr3wFwjF+POM5JPF+pvWbYXPXXVb8qkfkiRJkiRJkiRJkiRJ6jdCCAOBvwDDuwzPAd4KTAcOpDMgLZ9ruxyfXrYGJUmSpELV1sMZt8LhX09C0ipl63NJAFuhmjfC41/Yeax1K8z9XHn7qqp8wWhFhkA1bYC5X+h+Xld7vQ6O+zkc+5PizoMkCOrE38MxV8C0i2DiucmjVPO+D5sXlX6+EnM/n147/H+LWmpl09Kc49lQx6jsmKLWKkY2kzu8rbmtqWJ75rTPW7r/b2PFX2HlrdXpp7dtWwFP5vkamvlxOOR/qtdPVw0vgrPugQM/0rN1HrsUWreXpycpn4cvqXwoWlexJQkQi3k/s6F/KeX7ntHHJqGXZ98L9ROLO3fMMXDWvTDzYzDxpZ3f90w8F8afUdxaPbW9EZ76ZnX3lCRJkiRVVG1vN1CCVwH3AqPbX58A3BZCaAQWdJ0YQrgc2A84HhjAzp80uQx4fZV6lqTubXyyZ+c3/gMmnFWeXqqlpZtPnXmhJ78Os75UmV4kSZIkSZIkSZIkSZJUCe8D9iK5dg/gO8CHYkw+BTCEMK3AdW6l8/q/vUMI42KMq8rca58XQsiSXDc5FZgAbAaWAw/HGBf1YmuSJEl7htrBcOCHk+MbZsH6RyuzT+M/Cp+79FrIFYy08tbkw7dDpnx9VU2eYLTYUtxSq25PguIKNe0imP3L4vZ4oUwN7Pv25NHhqf+Dhz5UwmIRVt4CQ97Ss572dOseTq8NnVHUUo1Ny3KOj6ubSCbUFLVWMWpDNud4cywyLLAc9n4jPHBx7veeDo3/gPGnVa+n3tJdANyB/12dPtKMPBRGfg0mvwJuml3aGk1rYc0DMO6k8vYmdbXuUVhYQiBpT22al4TSDp5a/b0rYfXd0Lqt8Pm1Q5IAxVDI51akGH4gzPpyen3Bj+D+t6fXy6mY76ElSZIkSX1evwtGizE+E0J4KfAnkot6Oi50mgCM7zI1AG/vckyXuUuBl8YYV1elaUnKZfMiWPRr2L4yCTTb8ETP1rv7P+EVyyGT+5ddfVIxv2AGWHwlHPbFnv2wVZIkSZIkSZIkSZIkSdX0XjpD0a6JMX6glEVijJtDCIuAvduHDgR6PRgthDAdOBo4qv35CGBolymLY4x7lWGfscBngQuBUSlz7ga+GWP8Q0/3kyRJUgEmvbRywWjrH4Xbzk2C2Fq2wOaFsPHpzvqw/ZPnrmO5NG+AupGV6bGS8l0v3tYMMcK878LSa2Db8vxrdffP6IUmnVfc/EJNfGmJwWjAfW+FJ78Gww5MwtYmnlPe3vYEa+5Prw0YXdRSK5uW5hxvqJtY1DrFyoa6nOMtMU84WaVkamDiubD0T+lznvgybFmchEmOOqJ6vVXLtkaY+zmYf3n6nLEnwICc/wtffaOPgoHjYXtjaef/42QYfQw0nAoH/0/y95PUU9tXw9zPwvN35Q+wrLRrp3V+bwUweC/Y63Ww9+t6raWiLbse5n0fVvy1uPMmvbTy9+lNOg9q3l9cYFupNi+AthbI9Ltb5yVJkiRJOfTL/7uLMd4fQjgC+CnQ8dP8+ILnnU4hCUQLwE3AG2OMJf4UT5LKYN0jcMsZsGNN8nred9PnHvDh5JMTnvoWbJibPm/H6mTN025JfsnUH7QUGYy2ZTGsuQ/GHFeZfiRJkiRJkiRJkiRJklQ2IYSZwKT2lxH4SA+XXEhnMNp04PYerleSEMIpwMdJwtAqfodzCOEc4OfAuG6mzgZmhxB+Dbwjxril0r1JkiTt0fZ/Hyz+DWx+pjLrL78hvVZo2NeOtf0zGI08AR2xBf71AZj3nfJvO/FcmPKK8q8LMGwGzPx4EhZVio1PJ4+l18KJV8HUV5W3v93ZsuvTa4d9sejlVjblDuNrqJtc9FrFyIZszvHm2FzRfVMd+vnk/o584YSLr4Rl18IZd8Kow6vXW6U1bYC/H5fc45LPrP+tTj+FyGThqO/C3f8JbSWG6a25P3msugPO/CeETHl71J6lZSvcNBs2ze/tThJdv7fa+DSsuBG2r4IDSww1rabFv4O7LiL3rdV51E+BQz5TiY52NqgBZn0N/vU+iu6xFAt/AjPeUfl9JEmSJEkV1y+D0QBijCuBc0MIRwLvB04HJqRM3wDcDHw3xtgrF0JJ0k7mfLYzFK07w2fCPm+Bfd4K8y6DB9+dPnfVHbDolzD9TWVps+LSPulhv/emh8Ut+b3BaJIkSZIkSZIkSZIkSf3DrPbnCMyNMfY0MWJ9l+PhPVyrJ2YBZ1Vjo/YQtmuAui7DEXgIeAYYARwOjOlS/09gWAjh/BhjWzX6lCRJ2iMNHAfnPAJLroanvw2ZATD2xJ3ntDXBqluhbhTM/CjUDoGn/g82zYMxs6GtObn+u1Ka1gL7VG79iskTjLatERb8oPxb7vM2OPpyyFTwVqtZX4KJL4aVtyahHVufK2GRCE98xWC0Yjz2qfTa3m8saqm22MqqlGC08XWTco6XS22oyzneHEsMueqpEQfBix+Cu16T3MuSpmVLcn/IcT+tXm+VtujX3YeiTXstjD2+Ov0UauqrknuUlt8A6x6FRb8qbZ3V98Cq26Hh1P/P3n2Gx1Hdbx//HvXiIhfJlnsvuGFMs2kGbHpvCSShJUAgCSGElCeBEJL8CQmBhJCeECCd3nuzwVSDDTZuYBvj3qtkWVpJ53kxEpLlndnZ3dnZXen+XNde0sxpPxftrmZn7gm2PulYVj7gLxRt8IVQ0COJhSws+U1iQxf9EkZ+wwkWzGQLfo6vwLGR33K+GuM8F/Q9DYrKU1pay9pfd64HXPdcyzWVeSXO++GKI2DJb2H1I7D1vRjzNP0ZGqph6V+i95l/o4LRRERERERE2omsDUZrZq19D7gQwBgzBOgP9MA5CWgzsAFYoJN7RCRjNDbAumf99+8yuuX7EVdBwx6Y+233/p/8IzuC0Rojzt26ohlwrnMgc/Mb+7Ztn5faukREREREREREREREREREREQkKK2vrPNxpWNMta2+LwlgvqDVAqsJKHnCGNMPeJi9Q9FeBy6z1i5q1a8QuAL4FdB8peapwM+AHwRRi4iIiIi4yO/cdBPsS/2P6TW15XtrYe1TTQFmKVCbonlTzXgEo215ywmcC9r4n6U2FK1ZxZHOo98Z8Mz+sftHs/U9qK+BvOJga2uvatZF329yoLhPXFNtjWx2DSLrVdAv3sriku8SzFPfGEnpup6Ke8HEX8FzB3v32/R6OPWEZdOs2H16T0t9HYnoup/zsBbWPAmR7bHHRLPpdQWjSXL8/BxVHAWH3uP9vsDXWq/D1tnxj9uzAaqWQ5eRya2fSpEq2P5B7H4Tb4XR16W+Hi89DnQe0Yz9ofN46xJYfk/0Pn1OgUm3t2yvfDD6e+jITuc5Ltn/NyIiIiIiIpJ2WR+M1lrT3SSTvaOkJMkYkw8cBgwAKoEqYC0w11q7Io2liWSG6k+ccDM/Csuh+6S99w29FObdAA27o4/ZMMP54K64MqkyU67epX5w7vjQ99TowWip+tBfRERERERERERERERERERERIJW1Or7Wtde/nVt9f2uAOZLRgRYALwLzG76Oh/n3LlXAlrjJqBbq+03gGnW2r1OPrLW1gK/NcasBB5p1XStMebP1tpPA6pHRERERIJmjHNT6aV/Ts38M0501rCNLfu6TYQjHoROQ1KzZhCsdW/bsci9LVG9pzkBT2EqGw+dh8OuBDOk7y9xgr0ASofA4C/B2Otb9okjstMJtommuE/coSkb6la7tlUUxBeyFq98UxB1v1tQW2i6T4LSQVC9wr3Pro/gvhIoPxwm3QFdR4dVXWp8+l/v9pwC6HtaOLUkyhgYcA4s+1ti4+fd4DzaKujmBK9NuAUqDk+uRmmf6qvhvWti/98zOXDAbcGEWw04J7FgNICXp8EpS5xr3TKR3/cR/c9KbR1B6X+uezDagHP33u4yKvq1hw01MOdaOOB2haOJiIhIsJb+BT76HexYCHgcuzJ5zu/K43+SuaHZIiJZQke72yFjzD3GGBvQY0Uc65YbY/4ArMc5sete4Bbgdzh3rfzEGPO6MebsVPy5RbLGjJP99x19HeS2+fCqoAz2/7nHIOvc8SDTNdS4t+WWQGH36G3ZetcyERERERERERERERERERERkY5nc6vvewYwX+vkhi0BzJeoe4Eu1tqJ1trLrLV/sdbOsdZGglrAGDMcuKjVrjrg4rahaK1Zax9tqq1ZIXBjUDWJiIiISIqMu2nfm2kHxu4digawbS48dzBEqlK0ZgBsg3vbzoCD0UoHw6TfBjunH8bAofdCYY/E57CNzqNqKcy/MXpIUUc35zr3tsPui3u6DXVrou4vy+tBUU5x3PPFI8/kRd0fCe5X0cSYHJh8rxOI5aWhBta/AM9PgT2bvftmsu0LvNtNHhz8VygqD6eeZIz/qROWGaS6bbDpdSdMasfCYOeW9uG1c/2Fok3+Z3Dvj4ZfBX1OSmzs7tXw6pn7vp/KFG+cH7vPpN9mdiBua31OgBHf2Hf/wPNh4Of33nfo3e7zLPkNLPplsLWJiIhIx7bs7/DOFbB9vnPcqvmYTLRHYx1sfhNeORE2v5PuykVEslr0I6IiLTySi1oYY04E7gEqYnSdAkwxxvwbuMJaW51ceSJZZvGvnTvd+NHjEBh1bfS2kVc7B3dfcLl7ytI/QfkU6Dpu32C1dKhZBzsWQMMe6DwSugyHht3u/fNKoMAlGK1OwWgiIiIiIiIiIiIiIiIiIiIiWWJ901cDJHWlrTGmBzC61a6lycyXDGvtthCWuQDIbbX9sLX2Yx/jfsHegWrnGWOu8gpUExEREZE0K+4F09+ALW/Di0eGs2btFlh5Pwy9NJz14mXr3dt2Lo6+v+JIJzTDfVKoWgG5hVDcx9lVOhjKD4P8TolWmpzyyXDqUtj4GtQ0BW4V9YbOw53z7+u2wuwr/c/38R9h3I8hJz8l5WalZX91b+txSNzTrXcJRutd0C/uueKVZ6JfG1Jv61K+dkwVR8Jpy2DNU/Dml7z7RrbDin/BqGvCqS1oH93p3jb8KhjzAyjpG149ySjuDce9CVvecULMCsogvwxqVjvPl7Ye1j4D2z+If+7GWlj6F5j0m8DLliy2aymse8a7z5CLYf9fQFGsy1TjkN8JjnzcCYetWgb5XZ1r3RprW/p4vd6ufx5W/BsGx3h+C1tjBHYu8e7T42AYGSVoLFOZHJh0Bwz/Kqx62Pkz9j8LysY7obKtdRkBeZ2g3iXsd8mdMPq7+44TERERSYTX74JubD0s/TP0PDj4ekREOggFo0ksD8XqYIyZCjwKtD7CboE5wHKgDOekttZ3/PwC0MUYc4a1mRqXLxIwa2Hx7f765hY5d8zJ8XiaLj/M+cBkwc37tu1YCM8eCHmlMOU/0O+0xGpOVmPEOTC87K699/c4GCbe6j4ut9j9bkGRHdDYADm50dtFREREREREREREREREREREJFO8ATQCOUAPY8wx1tqXE5zrUpyANYBq4N0A6stkZ7bZvtvPIGvtImPM20DzFf6lwHHA4wHWJiIiIiJByy2AiiNg8EXwyb3hrLnoVqg4CkwulA5wgigyhW2If0zliU6IRrYpKIN+p+67v2yM83XtM7DG59v5um1QtRy6jAyuvmwW2eXeVtI/oWsSNtStjrq/V0Hqg7DyTfTAu0hjJOVr+1LQDQZ/Ed7/fkvQn5sts8OpKRV2fOjeNu7GYMOcwpBb6Lz+VBwRvb3PSYmHdi65Q8Fosre1z8buM+7Hqfk5ysmFHgc6j2h2LPQOu3jzQug5BToPDb62RG2dG7vPfv8v9XUEzRjoup/ziKXbBNj0evS2mjWwZ4MTAikiIiKSiMYG2L0SGvbAtvcTm2PlfTD+p1BcqcBWEZEEZNCnFrEZY8YaY15uerxkjIn7CIcxplfT2OZ5RqSi1jS7DhicwOPcNvNY4O9eCxlj+gEPs3co2uvAGGvtgdba86y1xwH9gG8CrY+2nwr8LIE/n0h2qlkHu6N/CLaP3tP9fRjZbX/v9vpqeO0sZ+10+Oj3+4aigXM3mRePch+XVwoF3d3b68K46a6IiIiIiIiIiIiIiIiIiIiIJMNauw1ofbXzT42J/4xvY0xf4Ps457RZ4IX2fENOY0xvYEKrXfU45+X5NaPN9onJ1iQiIiIiIRn0hfDW2rkYnhgGjw+GB3vAotudm4FngkSC0ToPC76OTDD4i/H1f3IULPldamrJNts9Aqz6Rgmj82FDXfTAr1CC0XIKou6P2LqUrx2XQRfE7vPpf+CjP6S+lqBZ6x7AA9kXiuZHzylQOijx8U+Ogi3tPdteYtr2Pjw1Ft77hne/8iOgdGA4NbXl5z3YE8PgscGw4ZXU1+OlagU8PwWeP8S7X0F36HNCKCWlTax/twX/F04dIiIi0r5YC/N/Ag91h8eHwFM+Alvd1FfDo33hsYH+goJFRGQvWRWMBlwBTAWOAuqstRvjncBauwEnnKt5nssCrC8jWGs3W2tXxPsAprWZ6hVr7fIYy90EdGu1/QYwzVq7qE1Ntdba3wLntRl/rTEmTUerREIW2em/b/lh/vp1HRu7j22AlQ/5Xzso1sKS38Y/LqcAckug0CMY7c04P9wVERERERERERERERERERERkXS5o9X3hwJ/imewMaYX8DjOeWrNoWq3B1Naxmp7UtA8a211HOPfaLM9Jsl6RERERCQsvafB/r8Ek+vdb8B5MOXfzg2pgxDZDnO/DSsfCGa+ZDXWxz+mvQaj9T8HxlwPJo5LwN77Bqx+LHU1ZYtXPcLPDrgt7ul2N1Sxs2F71LbeBf3ini9eeSY/6v56G0n52nEZ92Pof3bsfu9+DVY/kfJyArX8bve2yf8Mr44w5eTCUY8nHla1cwm8dDTU7Qi2Lske9dXw0jGwY4F3v7IJMOVf4dQUTc9D4CAfgY3VK+CV42H36pSXFJVthBknwOY3vfsVVcDUpyC3KJy60mXoZTDi6+7tH/0Otsx2bxcRERGJZtlfYf6N8WVDxLJ7Fcw8WeFoIiJxyrZgtNNbfX9vEvM0jzXAmUnM024YY4qBz7fZfVeMMcOBi1rtqgMuttbucRtjrX2Uvf/tCoEb46tWJEvF8+a3p89gNL93XVn0C/9rB2XLbKj+JP5xBd3BGOerm3XPOXe3EBEREREREREREREREREREZGMZq39H/B+06YBvmKMec0Yc4TXOGNMqTHmq01j9wds0+N5a+3rqaw5A7S97fjSOMcvizGfiIiIiGQqY2C/78A522Haq3DMizDtNTivCs7aCMe+Ameuh8Pvg0EXwNlb4IT34JytcOL7cOzLcMxLzrhjXoQeh8a3/vK/p+bPFS/bEP+YTkODryMTGAMTfgpnb4VjZ7T828ayLEP+LdOlMQK1W6K3dd0voaCYDXVrXdt6FfSNe7545ZuCqPszLhgtrwSOeBDOXAtjb/DumynPOX4t/Yt7W4XnYY7sVjYOTlsOJ83z/xzUWn1V5gRvSvhWPQp127z7VJ4AJ86F0gHh1ORm+JVwXjV0P8i7X2MEVvw7nJra2vSGEzjopaA7nLEWesb5PjAb5eTBgXdC6WD3Pl6hliIiIiLRxHNMpfl3pMPvj93XNsKs82D7h4nXJiLSweSluwC/jDFDgObbZzQCTyYx3RNAA5ALDDbGDLDWrkyyxGx3DtC11fY24OEYYy7A+Tts9rC19mMfa/2CvQPVzjPGXOUVqCbSLtTHEYzWfZK/fn4/jNuzwf/aQfn0f4mNK2wKRMvr5Pz5GlyeGjbOhE6DEltDRERERERERERERERERERERMJ0DvAW0KNp+zBghjFmPW1Cv4wxfwRGAJNxbrxpcALRDLAG+FJINafTsDbb8Z7f+Gmb7R7GmG7W2hhXoYqIiIhIxsjvtG/ITl4pFE3de19uIXQ/wPm+oFuUebrAcwf7X3fdc7D2mb33FfSA7hMhJ9//PMmy9fGPye8cfB2ZpKAr9DqqZXvkNbDkN+791zwO9budkKqOqLrtr0WtlCQWvLOhbnXU/YWmiLK8HlHbgpRvov8MRjItGK1ZcSWM+AYsuNk97HD1o1BfA3nF4daWqN2r3NuK+7m3tQcmxwlIa9bnZFj7lP/xC2+BsvHhv55I+m16LXaf/mc7QaCZIK8Ejn4WnhjmHei2YQbs973QyvrM9nmx+wz+EuTkxu7XnvQ6GpZ/Er1t2/vR94uIiEh2amyAxlonf6D5a0MtNDZ9bd5f0h+6jPL/PnP3GtixACK7YMvb/sZUngC9j23ZLukHu6MfO/hM/S6YeQpMutMJeXVT1Mv5s5SNd44TNuxx3teUDobiXv7qExFpB7ImGA0Y2/TVAkustVWJTmStrTLGLKHlLojjiP/Eofbmy222/+0jqOzMNtu+otOttYuMMW8DhzTtKgWOAx73M14ka9Xt8Nev3xn+P9QxBnIKnTfoXhojYG14B4ltI6z0kWwcTfMH8sZA7+mw5ono/SI+/z5FREREREREREREREREREREJK2stcuNMacAjwCVtASdVQK9W3U1wOWtvqdV39XAKdbazaEUnV5lbbY3xjO46RzJPUDruy52xblhqoiIiIh0JN0PdC6g9BOi0WzGSfvuKyyHIx+F8inB1ebFLUTJTd9TU1NHJhtyCXz0W+fcfTcPlsGUf8OAc8OrKxNYC29d6t4+4usJTfvq9mei7q8o6IMJ4VqN/JyCqPsjti7layesqNy5RmbVQ+59HuwGh/0P+p8RXl2JqN0CNWujt3Ud2/FCiIZ+Jb5gtKpl8PwhUFQBRz4GPQ9NXW2SGax1AjyX/tm7X36XzHudKuwOE2+Ft7/i3mfds/DBD2H8z8INddu11Lvd5DjvETqaoV+G5X+P3rb5Tdi+AMrGhFuTiIhIe9McSNY6jKxhz76BZG0Dy9z2N+5xDzXzCj2LJ0y/y0g4+jkoHejex1qY8y1Yckf8fydDv7Lv9vwfxx5X/Sm8epr/dSpPhE2vQn21sz3scjjw997BaiIi7UQ2PdO1frVZFsB8y2gJRkvsVh/thDFmKHBkm913xRjTG5jQalc98Hocy86gJRgN4EQUjCbtXWRn7D5FvZ0DovHILY4djAawbW7L3cBSbdMbULMmsbEF3Vu+H/8zj2C0XYnNLyIiIiIiIiIiIiIiIiIiIiKhs9a+Y4w5APg7zvli4ISetf661xCcQDQDvABcZK1dn/JCM0OnNts1CcxRw97BaJ0TL6eFMaYCKI9z2NAg1hYRERGRBBgDU5+BmafCtjmJz1O7yblg84w1kFsYXH1uGuO4yBXg4L+mpo5M1m28Ey400yMUrjECr58PPadASd/waku39S/Aptfc2/ueHPeUexprWLHn46htvQv6xT1fIvJMftT99Y2RUNZP2KF3w46FsHNR9PbGWph1LpyxGop7hVtbPN65wr3t8AfCqyNT9D8DDvoDzL4qvnF7NsKrZ8AZqyAn+v9paSc2vwFzrvXuUzYeJt8LBV3DqSkeQ7/sBE+89033Pgtuhu6ToP9Z4dVV5RGMVjoQJt0J3Sa492mvyqc4QSTL/ha9fcYJcPrKcEPsREREguIaSNY2QCyeQDKPsUEEkmWKnUtg1nlw/NvufT75R/yhaEUVMOYGGHD23vvHXA/1VbD0L/5yJfxa1yaofelfoGwCjIjz9zERkSyUTcForU/K2RHAfK1fSboEMF82u5SWu2sCzLHWvh9jzNg22/OstdVxrPlGm23FrUv75/UGduyPnDfB/c+J/4OcvGKIbI/db/VjIQajzUp8bOsP5bqNhy6jo38AVl+V+BoiIiIiIiIiIiIiIiIiIiIiEjpr7QbgZGPMJOCbwLFApUv3HcBLwJ3W2pkhlZgp2gaj7Ulgjhqgm8eciboKuDGguUREREQkDCV94MT3nHCPp8dD1fLE5qnd4gRO9T0l2PqisQ3x9S+qSE0dma7vKXBeFdzv8XbfNsDK+2HUt8KrK91W/Me9rfyIhKacXzXbta1XQTihc/mmIOr+iK0LZf2E5Xd2LkJ/wOPyPVsPqx6EEV8Lr654bXw1+n6TB52HhVtLphh+JQz7KtTvcl5jGuudUMI3vuA9bs8GWP8y9Dk+nDolPbyei8EJ8Br59XBqSdTIq53wtpeOdu+z4j/hBqPtcglGG/lNmPSb8OrIRGN+6B6Mtns1bHsfuk8MtyYREcluvgPJ2gSIxRNItk97OwkkyyRb3oGa9VDce982a2HRrf7nOn0lmFworoweuJqTCxNvhQm3QM1a55jMa2cnd7MCN5/+R8FoItIhZFMwWus7HgYRZNY6aC3OT0zaD2NMLnBRm913+Ri6X5ttj6j5qJbFmE+k/Ym4ZDr2nALjb0p83txif/2qP018jXjtWBh9f+Xxzt1+HunjPrbtLxZdRkYPRovsSrw+EREREREREREREREREREREUkba+17wIUAxpghQH+gB1AAbAY2AAustY1pKzKz2JDGiIiIiEh7llcKo74N7yYRPDT7SudG2L2mQkG3mN0TFk8wWu9p0S9G7SjySqHrfu7n8APMuRbIgYKuUHEkdBoSWnlpsf5F97buByY2Zd0q17ZBxSMSmjNe+SY/6v5GGmmwDeSa3FDqSEh+Z+gyCnYudu/zyb9g+FWZ9/NsLWx9F2o3RW/PLYKcbLpEM2DGQH4X5wFgjgQMMQ9LzLkGSu6HsnGprlBSbfdqWPmA8zrUaWjLdW4f/8F7XOX01NcWhLLxkFMAjS4hlKsect4b5UR/jg6UDq4q4AAAIABJREFUbYx+jR041yd2dCX9oaiXE74Yzcd/hAPvhNzCcOsSEZHUsha2fwCb324JEdsnyCyOULPW7Y2RdP/pJCg16/bNL2iohYW3wI4F/uaoPAFK+/vrm5Pb0nf6q/DCEbBtrv96/dj0Oiy+Y9/9jbVNNTS958krdt4rlo0Ndn0RkZBk01G3za2+HxjAfANafb8lgPmy1QlA61uT1AAx4vgBaHsri5Vxrts2oamHMaabtXZbnPOIZI/Izuj785PMevQbjOZ24DNokSpY8c/obWXjnQOMXrq2+VAjr3P0fvUKRhMRERERERERERERERERERHJZMaYzsDgVruWWWurW/ex1i4HlodaWOararPt8wQhzzFt5xQRERGRjmjQ+TD/RqjdHLtvNLtXw2tnQVEFHPUU9EgsZComW++/74irU1NDNhlxNcz+qnefOdc4X00OHPg7GH5l6utKh1WPQM0a9/ZhlyU07aa69a5to0omJDRnvPJMgWtbxNaRaxL51TFEI6+G2Ve5t295C965DA76U+YEjTU2wLtfh6V/cu8z4hvh1ZMNSvrBgHOcoCwvOxfD0+OdwM6Jt2ZeIJ74s/IBmHVe/OMqT4AuI4OvJxUKu8PgC2HZ39z7vDwdjnzMCSBNpQ9+6N7Wue3lvh1QTq7znDzv+ujty/4K296HqU9BUXm4tYmISGrYRuf9+sd/THclkuka9uy9vWejE1a26yOfE5jEf/fLK4WjnoDnDvE+XpGI5mM9foz+Duz/C/3uJSJZJyfdBcShOXjLAOOMMT0Snahp7PhWuwJ+Bckql7bZfshau93HuLI22xvjWdRaWwW0eQdB0kd+jDEVxpgx8TyAocmuK+JLyoLRivz12/IO1Nckt1Ys9dXwzET39q77OR+kehlw9t7b+W7BaDpXU0RERERERERERERERERERCTDnQ/MbXq8AxSmt5yskcnBaH8Axsb5OD2gtUVEREQkWQXd4Li3oO+pUNS7ZX9usXNeevMjlj0bYwdxJcM2+Ot3+APQ79TU1ZEthl8BB//ZX1/bCO9+A3avTW1N6VC/2wnuc7P/L6Hr6ISm3lgX/e/r8K7HkxPrGomA5Ofku7bVN0ZCqSEpw690Qs+8LLsL1j4VTj1+rHvOOxQNYKxLAE9HNvmfMPIaKB0cu+/i22DTrNTXJMGLVMGbF8U/rnQQHPFQ4OWk1EF/hN7HubdvnAlLfpvaGnavgYW3uLd30iWyAIz5gXf71tmw4OZwahERkdRb97xC0cSfxtq9tz/8mf9QtJ6TnfevfU9KfP2SvnDCbBhwHhSW730MrvmRk+KP0RfdCpvfTO0aIiIpkCG3T/DlLaAWKMAJR/sa8JME57qKllC4euD1pKvLQsaYcqDtJ0B3+Rzeqc12ImlLNUDrT8xc0o/ichVwYwDziAQvsiP6/vwkMwGN+4db+5h1jnNXg1RZ+QBULXVvL2vKpKw8EdY9s2/7wM9D6cC99+W1fbppEtmVWI0iIiIiIiIiIiIiIiIiIiIiEpaeOOf7Acy21m5NZzFZpO2JRuXxDDbGdGLfYDQ/N0yNyVq7kThvpGp053ERERGRzNJ5KBz1uHefxXfAnGu8+2x9D6pWQKdBQVXWorE+dp9eR8OAc4JfO1sNu9wJRXl5Wuy+tgHWPOYEVbUnG172bh/0hYSmtdayMbIuatvg4hEJzZmIfFPg2haxdaHVkZThV0BhD5h1rnuflQ9CvwzJ1171oHd7UW/IKwmnlmySWwiTfu08Ft0Oc7/t3X/VQ1BxRDi1SXDWvwgNCVxSevRz2fdzk5MHh98HD3Zz77PqQRh3Q+pqWP2Ye1thORQkeX1ie2GME8y45DfufVY96Dw/iYhI9ov1fl3CZ/Kc3weag75ah37tta8Qcor27btPu58+rfY/3AtslGNKDW2C0Vb5DOrtdgAc90byfy8AxZXOe0ovT42DHR8Gs140Kx+E8impm19EJAWyJhjNWltrjHkNaD5Cf50x5hFr7fx45jHGjAW+A9imXa9ba6sDLDWbXAi0TlRaBsz0ObZtUtGeBNavAVofDXJJPxJpJyI7o+/P75LcvI1x/PitfRrm3wSjv5Oag8jrX3RvK+kP3fZ3vh9+Jax7lpanYqCoAqb8e99x+S6ZifVB3cRWRERERERERERERERERERERFKkOeDLAqvTWUiW+bjN9sCovdy17b/VWrstiXpEREREpKPxG1Az6zyY+AsnpCxItiF2n24HBLtme9B9EuQW+wuqWfBzGHo55OSmvq5Us42w+nGYdbZ7n05DnYuQE1DVsIM9jbujtpXnJzZnIvJMvmtbxEZCqyNpPSeDyXH+3aJZ8S8o6ec8r/Se7oTchK1mHax6BJbf7d2v/PBw6slmfl5PltwBZeOg/9lQUJb6miQ5jQ2w+lGYlUA4aXEldBoSfE1hKChz/p9ud7mcefs853nN5AS/9o5F8O7X3Nv1XLS38sO9g9F2r3b+HcvGhVeTiIikxpZ3011B5ogWSLZPkFg8gWQe4WZec6T7GENuUfT8geYshl1LYcV/oWatv/mGXhpcbX70np7aYLQlv4aBn4eeB6duDRGRgGVNMFqTX+EEo1mcEK1njDHnWGvf8jPYGHMw8CBQinMXSts0Z0d1SZvtv1trbdSesSUyLtG1RLJTqoLR4r27xvwfOx/6Hf0sFMV1M9kYddTCiijBZs0GX9RycLffqXD4/bD411CzBiqOggN+Hf3gb55LMNrmN5OvWURERERERERERERERERERERSaV2r7wvSVkX2WdRme1ic49teYbowiVpEREREpCPqfgD0Ocm5MbeXrbPhpWNgzA9hws+CW9/Wx+4z8pvBrddeFJTByKth4S9i9929ygkSO/xByMm2y8tasY3w+vmw8n7vfmOvTzhga2PdOte2ioI+Cc2ZiHzj/mt1va0LrY6klfSFIV+GZX9177PwFucx8hqY9OvwagPYsRBenuaEo3nJLYbR3w6npmzW/UCoPAHWPevd7+2vwKJfwTEvQUl4P1cSp8YGJxBt9aOJjd/vB9n9mjPmh/D6593bN82CiiODXXPNkzDrXO8+o68Lds1s1/dUKJsA2z9w7/P0eDh2BvQ6KrSyREQkYLVbvZ/rw+IrkMwjZMxP2Nhec2RoIFmmyC2MHozWUAsbXoGZp0Vvj6Z0MAz6QrD1xTLiKljxD6jdkro1nj8UDvo9DL8ydWuIiAQoq44iWGufN8bMAKbihGr1AV41xvwT+DMwu22wlzHGAAcCVwBfAvKbxlrgNWttjE9p2idjzKHAmFa7GoB74pii7St+cQJltB3j812Epz8AD8Q5ZijwWABri3hzDUbrmty89XEGowFsmwOvHA8nzklu7c9qqIaHe3v32e97e28POMd5xJLfyb1t11LoHO95nyIiIiIiIiIiIiIiIiIiIiISkta3tB6ctiqyT9tbgY83xpRYa3f7HH9YjPlERERERGI74hFYdCusfxE2zvDuu+BmGPoV6DQomLVtg3d7UW8o7R/MWu3NhJ9Dp6Gw6mGoWQvb57n3Xf2YE1bU95Tw6gvahpdjh6KV9IchFye8xMbI2qj7i3KK6Zyb5PUgccjPcQ9Gi9hIaHUE4uA/Qd1WWPWQd78lv4Fhl0HX/cKpC2D+T2KHopX0c54jexwYTk3ZzBg48jFY9EuYd4N3352LYckdMNFHuKOkx7pn/YeilY1v+b7TEBh0AQyIEfCV6QZ+zgnkfOOC6O1vXgynLw9uPdsI730LGva49+l/NpRPCW7N9iC3AKa/6jyfL77Nvd/c78AJ74RXl4iIBGvhLd7tFVO9Q8ZyiuIMJHMJN1MgWWbJKYy+v7HWee33E4rWZTT0ng5jf+gE0Iep8zCY/iYs/hUs/UvL/rLxex/f6ToWTE7Lttexn31YmPtdGPRFyO+cdMkiIqmWVcFoTT4PzAEqccLN8oCLmx7VxpglwLamtu7ACKA5Vcc07TfAKuC8EOvONF9us/2MtTb6kfroMjIYzVq7EdgYzxiT4B1fROIW2RF9f36X5OZt9Di46WXbXFh0u3OnrGi/eO1eDVtmQ+0mKCyHvFIwuc4b5dqtTp+cfOi2v5MO7PXLwJT/egecefEKjlv/ooLRRERERNKlvsa542txX+g8NN3ViIiIiIiIiIiIiIhIBrLWfmSMmQeMxwn36mutXZPuujKdtXZdq783cM6TPBx43ucUU9tsPxNQaSIiIiLSkeQWOBeBjv0hvHUpLL/bo7N1wlKGfzWYtWMFo/U+Nph12iNjnCCpYZc52ysfhFkeQTRrnszuYLQ1T8XuM+rapJbYVLc+6v7y/MpQr0nKN/mubZHGutDqCITJgQPvjB2MBs6/cVjBaNbC2idj95v+OpQOSH097UVuAYy9HvqdDk+P9+679kkFo2WyNT5+PgBGXwcTb01tLeky6Hx49+tOuGNbe9ZDQ53zfz4IOz+CqqXefQZ+Ppi12pv8LnDAr5wQWLe/w62zYc9GKKoItzYREQnGptfd285YAyV9wqtFMkduUfT91Z/C1vf8zXHyAufYSrp0GQ4H/9l5+LXoNph7nf/+9VWw8VXoe3L89YmIhCzrgtGstRuNMScAjwODcILOwAk76wRMarPvs6G0hKItBU5vCtHqcIwxpcDn2uy+K85p2iY8lcdZQyf2DUbbHmcNItklsjP6/mSD0eprEh8799vw6X+du6+0/iVv/k9h/o+Sq6u1ZMLLenrctaJuW+LzioiIiEji1r8Ir57ZEo7b9zQ4/D73A8giIiIiIiIiIiIiItKR3Qn8FefcvZ+w7009JbpHaAlGA7gEH8FoxphRwCGtdlX7GSciIiIi4qn3cTGC0YDZV0J9NQz9MhSUJbdeY713e+Xxyc3fkVQcBTkF4BactfTP0OsYGHheuHUFYc9mWPKb2P0qj0tqmY2RtVH3VxSEe6F9DrkYDPazy+Za1NtIqLUEoqg3lI2D7fO9+73/Xeg6OvUBfnXb4YMfOM9jXrqMgpL+qa2lveoy2rkZb41HZv6OhTDjVCifDCOuhvxO4dUnsS39k79+/c9JbR3pVjYeNs7Yd39DDXz8Bxh1TTDrLLjZuz2nACqmBrNWe1V5PHzsES733CEw4WYnYC6dASgiIhKfrXNg8xvu7cWV4dUimSWnMPr+eTf4Gz/g3Ox8T1B5HMyNc8zMU6D3NCjp57x/V0iaiGSonHQXkAhr7Yc4AWj/oyXszLZ6fNaVvQPRGoF/AAdZaxeFWXOGORfo3Gp7A+Azrv8zH7fZHhjn+Lb9t1prlXAk7Ze17sFoBV2Tm7txT3Ljt74Lzx3Usr3+pWBD0QA6DU58rFcqd0OSf3YRERERiV99Ncw8vSUUDWDN4/Dh/6WvJhERERERERERERERyVjW2ruAp3DO4bvYGPPdNJeULf4NNLTaPssYM9zHuO+12b7fWquTbEREREQkOf3PhPLDY/ebex28ciJEqmL39WIb3Nt6Tm7/gStBKiqHMT/w7vP65+ADnxcJZ4o9m+H5ybH7Df0KdN0vqaU21a2Lur88P9yL7Y0x5Jn8qG0R6xJ8l8mMgQk/d4J9Ypl5Kiz2EYKXqLod8PwU+PiP3v1y8p2as/FC+UyQkwf73wImxiWta5+ED34ILx4J9TXh1Cax+f0ZHHAe9Dg4tbWk2wG3ubfN+ZZzbV6y5v0IVvzTu8+YH0BRz+TXas9GfcsJZHRTvQLeuMAJxhQRkeyw4RV4dpJ7+8hr9H69I8t1CUbzK9bxk0xVNg6GXBr/uPUvwvJ7nJC0JXcGXpaISBCyMhgNwFq7zVp7AbAf8Gug+fYQps0D4APgV8BIa+3F1todYdebYdrecfMf1toYt9PZR9tguWFxjh/SZnthnONFskt9FUS5Kw8AeV2Sm7vrOPe2aTOh1EduYc1aWPQr2L0W3vtmcvW01W1/KOyR3Bxud/Rq0AccIiIiIqFb+ww07N53/5rHw69FRERERERERERERESyxfnAIzjn9P3cGPOcMeboNNeU0ay1HwP3ttpVANxjjClyG2OMOR24uNWuOuCmlBQoIiIiIh1LbiEc8wIcFCM0CGDLW7DgZ8mt53WJyzEvQV5xcvN3NONuhOFXevdZdCvUbg2nniAsvxuqlrq353WCKf+Fg/+S1DLWWjbWrY3aVlEQbjAaQL6JHiIWsZGQKwlI35PhuLdgv+/H7vvhT1IXkrXiX7Cz7aVybYz+Lkx/A/qfkZoaOorBX4Rps2DIxbH7bpsLKx9IeUniQ8MemBcjQDOvMxx6Lxz23/YfRtL9AOg61r39w58mN3/tVlj4S+8+Rz3pvL6Lt85D4fh3YvdbfDvs2ZT6ekREJHkfxjjeMOqacOqQzJTj+jGqt2GXw2nLnEyEbHXI32DKf5yA+KGXwWH3wfRZ/sd/eBM01KauPhGRBOWlu4BkWWs/Ar4NYIzpBPQCmhN4NgMbrLXVaSov4xhjRgBtb9NzVwJTfdhme7wxpsRaG+Xq+KgOizGfSPsS2enelp9kMNqY78Os8/bdP/xrUHEknL4CXpwKG2d6zzP3O84jaEc8lPwcuS4fXDfoZrYiIiIioVvicse37fPCrUNERERERERERERERLKCMebvTd/uBHYBnYFpwDRjzC6cG59ubGrzy1pr294gNFTGmH5EPwezd5vtPGPMIJdpqqy1mz2WuRE4E+jWtD0FeNEY8xVr7eJWtRQClwO3tRl/m7X2U4/5RURERET8yy2C4V91gk/e/KJ33yV3OOezl/ZPbC3bEH3/iG8oFC1RI6+Bjz2C7RprYfObTlBVNtjwknf7sS9Dj4OSXmZnw3ZqbfTrFsoL+iQ9f7zyTX7U/ZHGupArCVD3ic6j4kiYcZJ7v7ptsP0D6Hlo8DVseNm7vcfBMPEXwa/bUZVPdv4dVz0Kke3efTe8DEMuDKcucbftfaivcm8/ZTF0GRlePZlg2GXw3jejt216DRrqIDd6mGVMm990Xpdd174ie16vM0FJHxjwOVh5n3ufxjrY/Ab0Oz28ukREJH6NEe9r5XMKoSTB4xDSPuQWxte//9lwxIOpqSVsxsCg851HaxN/BXOviz2+dgtsnw89DkxNfSIiCcqaYDRjTG/g4Fa7Zllr97oVibW2CqgCloVZW5a5tM32LGvtkngnsdauM8bMA8Y37crDCVx73ucUU9tsPxNvDSJZJeJx3maywWiVx0OnoVDV6qkvtxiGtjr3c/R3YgejpcKkO6DTkOTnyXVJaFYwmoiIiEh4ts+Hdc/BptfTXYmIiIiIiIiIiIiIiGSXiwHbatsCpun7Lux7o89YTNMcaQ1GA2YBA3306wt84tJ2L87fT1TW2tXGmLOA54DmKykPAxYaY94DlgNdgQOA8jbDnwRu8FGfiIiIiEh8Ko+HnHzngmQ3DXvgmf0hr5Oznd/ZCT2a8H9Q0M193GfjXcJATNZcBpV5Og+HLqNh5yL3PjNPgWFfdf6dCruHV1s8Irtg3g3OuWxuSvpBtwMCWW5T3TrXtor8ykDWiEdeTgFEyQ2stx4/j9mi4ijI7wqRHe59np8MJQOc63B2fNiyv6gCJv8LKqfHt+bqx53AwHXPevfrd0Z880psxkC/0+CTf3j3++ReJ5Sr8jgYd5PCMcOyZzPMu94J6Kr+1PvnsstI6DwivNoyRb8z3YPRbCPcVwilg6BsHIz6FvQ62t+86190Xo8919ZzUtz6ne4djAbw6hnOa0zpABhwrhPIa4z3GBERCdfG19yD1MF5f2lywqtHMk9OnMFoHSEUte+p/oLRAN66CE78AHJ0/E1EMkc2vbKfBTzS9Pg34BF5LtEYY3KBtrdIuCuJKR9ps32JzzpGAYe02lWN/0A1kezUsNu9La80ubnzu8C0mTD4Qicgrc8pcMxLzh1zmvU9GabG+KAmaAf8GkZeHcxcuS4fXDTUBDO/iIiIiHhbdjc8MxHmfse7X2N9OPWIiIiIiIiIiIiIiEi2s60e4sFaOwM4E9jUarcBDgTOA45n31C0/wKft9br6hARERERkQQV9YSJt9OSd+yibivsXuk8dixwwodeONw7UK3Zumei78/JjbtcaWIMHPg7yOvs3W/pn/z/O4XNNsJLx8KSO7z7HfTHwP6vbIpED0YrzimhU26XQNaIR77Jj7q/XQSj5ZU4/0djBSDuXrl3KBrAno3wynGw1iMwr62VDzkhOLFC0XpOhuFf9T+v+DfuRuc6qFi2fwCLbnXCoqwOJaVcQy28cBgs/TNsn+cdigZw4O87ZnhUaX+Y8HPvPtUrYM0T8PJxsOGV2HOuex5eOcG7z6AvQe84QyAF+p/lL/hk90rYNMsJvfvgB6mvS0RE/KvdAi8f695eWA7jfxpePZKZcov89+1zihOG2t51GQFjf+Sv746F8Ha6700mIrK3bApGK8P51MQAs6211WmuJxudBLS+Hcku4IEk5vs3e99n5CxjzHAf477XZvt+a+2eJOoQyXz1XsFoJcnPX9IXJt8Lpy2FqU9A+eR9+/Q5Hi6wMOzy5NeL5YDfwKhrgpvP7ReRBj11iIiIiKRcZBfMucb7rirN6qtSX4+IiIiIiIiIiIiIiGQjE+Cjw7HWPg2MBf4EbPPo+hZwjrX2Ap1jKSIiIiIpNfLrcOJcmHgbFHTzP27HQljzlHef3Wvd22IFJom33sfAyR/G7rdzkRPkkmk2zICts737HPkY9D0lsCU31kX//1he0AeThiCgfFMQdX/E1oVcSYoM/iKcND/x8Ytv89930a3EzGsf8wM49uX4nufEv05D4ITZMOU/0OOQ2P03vAxb30t9XR3d6sdg10f++nabCL09AkrauzHf99fP1sOi22P3W3y79/nanYY61w8qKDZ+uYVw+EMwNUYYZmsf/d4JChQRkczwyb+8209ZBF1GhlOLZK7cwth9Rl8HU5+GIx+JL0gtm42/CY57G/b/hfN7rpcV/4Lda8KpS0TEh2z6RGBr01cLRL/dhsTSNp7zf8mc/GSt/dgYcy9wadOuAuAeY8yxbkFnxpjTgYtb7aoDbkq0BpGs0eASjGbyICf6HXtSZvjXYOlfUjf/2Bth1DeDnTNHwWgiIiIiaVH9KSy+AyI7/fWvr4KCstTWJCIiIiIiIiIiIiIi2WZwugtIBWvtoJDX2whcaYz5JnAYMBDoDVQDa4C51tpPwqxJRERERDq4bhOcx8hvwJP7QdVSf+M2zoB+p4HJAWuhbbiUV/BVYc+Ey5UmpQPggNthzrXe/TbMgD4nAwZyo4dxhW7jq97tJhd6Tw92ybrol7BV5FcGuo5feSb69ScRGwm5khTqOgrGXA8Lfhb/2PUvNF1nEiO0rrEOtrwdYzIDo7/TcS6UT5eCbjDofKg4Ah7tH7v/5jegx4Gpr6sjW363/74dORStWe9psP7F2P02ztw7ZMvkNYWgNQc0Wue118vwq/Z93yT+5eRCn+Nh0h3wno9rH+t3wa6PoWxs6msTERHn+EBjhM9eG00u5LSKQtn8uvvYXsdCYY+UlidZIidGMFpxH5h4azi1ZJqeBzsPcN6HLvxF9H62ETa+BoM+H15tIiIesikYrfWR5NK0VZGljDG9gJPb7P5bAFPfCJwJNN/6YgrwojHmK9baxa3WLwQuB9reeuM2a+2nAdQhktnqXYLR8krCrQOg23g48lF49YzYfTsNhaFfhg880n97TnE+WCjoBhN+DsMuD67WZnnF0fc31AS/loiIiIg4Hygs+D+Yf6NzQNOvyK7U1SQiIiIiIiIiIiIiIllJ54cFy1pbB7yS7jpERERERD6Tkw8TfwmvneWv/5I7YMlvcS52NlA6EIZdAft9zwn72PWx+9jK44KoWPqfDXO+TUsYSxQf3ek8ADoNg5FXw4ivpyeQZd0L8P73YNtc7359T3O/9iBBmyJro+4vL0hPMFp+TvSQunpbF3IlKTbwvMSC0QDuC+j/QOXxulFsmEr6tVyf5OW9b8Lu1TDh5r2DMiR59bth9pWw7ln/YwZ8LnX1ZIsB5/kLRqvfBfclE7RoYMA5SYyXz/Q/G+Z8y9858k+Pg8n/gMFfSn1dIiIdkbXO8YE51+zblpMPPQ6F8T+BhbfAuufc5xmo9yTSJFawtd6/OgZ8zj0YDeCN853jMEO/AmOvVziviKRVTroLiMNcWo64j0hnIVnqIvYOwvvQWvtOspNaa1cDZwGtj6AfBiw0xsw2xtxnjHkWWAX8Fmh9a5IngRuSrUEkKzS4BKPlpiEYDaDf6XCBhaOfj97e/yw4ayOcthT6nuo+T5fRMH0WfK4GztkKw69IzZvbHJdfRBr3BL+WiASv+lOY+x2YeTosvNU9LFJERDLH5jdg3g3xhaIB1Felph4REREREREREREREREREREREclc/c90brLtm235Wr0CPvh/sPg2Z9eupe7DysYlWKDspXQAHPJXMLn++lcthfeuhmV3pbauaLbOgRknxg5F6zoGJv0m0KWttWyqWx+1rSI/TcFoJj/q/khjJORKUqxsHEy8DUjTxdedR8CBv0vP2h3ZIX9zwjJjWXSrc32CBOvNL8En//Dff8LN0H1S6urJFoMvgkEhhGYd8lfn9VuSV9IXDrkLjM9wxTcvhNWPpbYmEZGOaulfooeiATRGYNNr8NLR3qFoAIMvDL42yU45hd7tY68Pp45M130i7O8RjAaweyXM/xEsuDmcmkREXGRNMJq1diXwFs4RzZHGGIWjxeeSNtuBfRphrZ0BnAlsarXbAAcC5wHHA+Vthv0X+Ly1tiGoOkQymlsIUF6agtGaVU6HkxdC5QnOdnElHP4AHP4gFDX92HrWaJ0gtFgJyslym79BwWgiGW/XMnjuEFj0K1jzOLz/XZh5inNgSkREMteK/yQ2TsFoIiIiIiIiIiICzuejkZ3O3X1FRERERERERKRjGPN9OHM9HH4/HHoP9J4e3/iP/+h8dQtGG/61pMqTNoZ+Gc5YAwPO9T/+PHKwAAAgAElEQVTm4z+krh43S/8KsS49GvQlOGFO4IExOxu2UWujX7NQUdAn0LX8yjMFUfdHbF3IlYRg9LVwxirnGpdD7wlv3WmvwUnzoPPQ8NYUR9fRcPIiOPYV6DLau++yu3RNUZB2r4VVD/vvf/pKGPP/nGvKOrrcAph8r/N/d/K/4JC/B7/Gmeud120JzpCL4cw1cMTDzmtMTvTg0c98lIb3QCIiHUEQv2NOnwW5McKwpOPw+r9w8J+hsHt4tWS6/b4L/c6I3e/jP+r8LxFJq6wJRmtyq8v34sEYcxgwqtWuOuBfQa5hrX0aGAv8Cdjm0fUt4Bxr7QXW2uogaxDJaA0uwWi5xeHWEU3X0XD0M3CBhTPXwoBz9j4wnRsjGC0Mbn9PDTXhrC8iifv4D7Bnw977NrwCG2empx4REfFnwyuJjYvsCrYOERERERERERHJPgt/CY/0hQe6whMjYNOb6a5IRERERERERETCUtzLCdoachFM/GV8Y6uWQ8062DQrenvnYcnXJ3sr7gVjrvfff9tc2DoHts9veVQtT90FsvXV8Mm9sfsNu8wJpgnYxrp1rm3lBZWBr+dHvoke3FJv2+lNq0v6Ote4DLkIRl6T+vUqT4SKwxWskE55xdBrauzXkPpdsPpxhaMFZd0z/vv2nAyl/VNXSzYyBrqOgsFfgKGXQLeJwc3d4xDn9VqCV1QB/c90XmMaY7yOrn8e6naEU5eIdAw1653fp3Z+BFUroPpTaIwRCN3eNNTC9nnJzWFyoMuo2P2k4yjxCEwvGx9eHdmi8vjYfWrWQO2m1NciIuIiq4LRrLWPAn8HDHCKMeb3xpi8NJeV8ay1r1trTatHobV2cwrW2WitvRLoDRwDXAL8P+Bq4GxgiLV2srX2oaDXFsl49W7BaF6hYxnCK7zNNoZUQ1H0/foAQyTzLb49+v4V/w63DhER8a+hFnYuSmxsfVWwtYiIxKt6FSy5Exb8HLZ9kO5qREREREREOp5VD8P734PIdme7ainMOEmB+iIiIiIiIiIiHVHZBCgbF9+YR/pAY230NgWjpUbZOOffyq9nJ8HT41sejw+FR/snfjPOaBpq4a1L4IGy2DdTLx0M5YcFt3YrG+vWRt1fnFNKaU7nlKwZS76JHgAXsXUhV5IGg78YwhoXpn4N8af3cU5okZfXP+c8T8z5dscLEglKQx28fRm8/RX/YwZ/KXX1tBdBPpfo7ztzPFgGM0+HyM50VyIi2azqE3jmAHik0vl96smR8PhgeGwQ/C8Plv413RWG56PfJT9Hn5OhsEfy80j70fcUyIkSKN55uBM4K3sbcC7k+AgG//Cnqa9FRMRFVgWjNbkCuAMnHO2rwPvGmEuMMXrXkiGstXXW2lestfdYa2+x1t5prX3YWvtJumsTSZsGl2C0vCwIRsuEGhWMJtL+rHky3RWIiEg0tVucD1cSpQtcRSSdNr8Dz+wP710NH/wAnj0Qlv8j3VWJiIiIiIh0LPN/su++yHZY8Z/waxERERERERERkfQyBo58NP5wNDedFIyWEsbAkQ9DWRLnjdWsgVdOgJoNwdQ073pYfg/Yeu9+nUfA1KfApObyuE2RdVH3VxT0wRiTkjVjyYt2gTcQaYyEXEkadJ8Eh94NuSm4xiUnH8beCAM/F/zckpjcApj6LJQO8u7XWOvczH3JHaGU1e58eBMs+5u/viYXRn4Lhl6e2pragxFfdx4mN/E5mv++h301uLokeWseh3f0byIiCbKN8PI02DbXvc87l8OGmeHVlC5Vy2HudcnPc8hdyc8h7UvnoXDEw1DQvWVfl1Fw1BPO8Q/ZW2EP57hKYbl3v49+B1s9nrtERFIoL90FxMMY83KrzV1AZ2A/4G9N7auBjU1tfllr7bGBFSkiEo3bXYpS8YFM0Fw+OAPA2nBqyC2Ovr9mLexYCF33C6cOEYlP9Sr3toJu4dUhIiL+LbkTdn2U+Pj6quBqERHxY+0zMO9G2Dp73zZbD3O+5dzFJs/l90oREREREREJztpnYfsH0du2vAPDrwi3HhERyRjGmAsDnM7inB+4A1gPLLY2rBNYREREREQkbp2GwIkfQPUKePNC2DQrwYkMdBocZGXSWqchcNIHULUCaprCwF6YEt8cjXXw6X9h1DXJ1WKtE4oWy7RXofzwlF7YvLFubdT9FfmVKVszlnxTEHV/xNaFXEmaDLkYBn0Btn8IDXtazglqqHWCJhKRkwddx0BeFlzf09F0nwinLYfHBsDu1d59P7kXRl8bTl3tiZ/nW4Dj3nJ+TvI7pbScdiMnDw68Eybc7Fz31vz89O5VsO396GOmvQqm6XJvk6O/70y26iGIVOnfR0Tit+19JxAslk/ugV5HpbyctPrkn8nP0eNQKIoR5iQdU99T4OxNsGMB5JVC6WCFonnpfSyctR52LIKnx7r3++Re53c0EZGQZVUwGjAV58SmZhYwTQ+A/k0Pvyc6mTj6iogkrn539P1Z/8FJSE+hXn9PT42BM9dDca9wahERfxob4AmPO/MpGE1EJHPU18Cm15wP0T+8Kcm5FIwmIiHa+CrMPMX7pMa6rc5J1ZXTw6tLRERERESkI6rfDW9/2b193bPh1SIiIpnoHlJ3kkm1MWY2cC9wn7W2NkXriIiIiIhIokxTqNnwKxMPRsvJh9zCYOuSfXUa5DwA+p4Ka56Ib/z8m6CkPzTWQt02yCmA4sqmC9Z7+ptj2/tQu9m7T1FFykPRADZF1kfdX16QzmC06De+r7eRkCtJo5x8XYzdkRgD/c+FJb/27rd9HuzZ7P+5pqOpXgm7PoZuE6H6Uyesq2at84hl7A3Q85DU19ge5Xfe++/ugNvhpWP27ddtf6g4Iry6JDmNdc7Pk16LRCRe1Sv89Vt+D/Q5BToPh7KxzrU+7c32D5OfY9hlyc8h7ZfJgbJx6a4ie5gcKBsDQy6B5XdH77PkDqg40gnw7TxCYXMiEppsC0aLRsFmIpL51j4dfX9ulgejJXpHnXh13c+7fdnfYOwPw6lFRPxZ/7xzsN+NgtFERDLD9vnw8nTYs8H/mKJezokR0S5mjewKrjYRkViW3Onv99J1zykYTUREREREJNU+/a/3xTORnc7vcO3xhF0REYlHKs6O7oRzw9WpwM+NMZdYa59PwToiIiIiIpKsfmdCYTnUbop/7MDzg69HvA27PP5gtMh2mHVO9LaJv4JR17pfOGsb4f3vw6JbY68z9PKUX4BrrWVT3bqobRUFfVK6tpd8UxB1f8R6nLctku2GXgIf/RZsg3e/h8th/1/Cft8Jp65s0BiB2VfCsrsSn2PwRcHV09FVHOWESOz6aO/9w65ITz2SuJknw+mrICc33ZWISDZpjCPMuPn3qu4HwVFPQHGv1NSUDtbCqgeTmyO/Cww4N5h6RKTF0Mvcg9EAXjvb+Vp5PBx+v/OzKCKSYtl4xqkJ8CEiknqN9e5J3nlZHowWltKBUDbBvX3e9eHVIiL+LLnDuz2sYEUREfH2xhfiC0XrNBRO/MC5g1k09VXB1CUi4offD0TrtqW2DhEREREREYFP/+fdXl8F1Z+GU4uIiGSq1ufr2VYPL9ZH3+b9BqgEnjHGfC2JOkVEREREJFXyimH6a1B+WPxjJ/0m+HrEW99T4NC7oXRQMPPNvQ62zHZvX/1Y7FC0wh4w+rsw7sfB1ORhR/1W6mxt1Lby/MqUr+8mz+RH3R+xcYQsiGSbsnFw1FPQZXTsvu9/F1YmGbTRniy/J7lQtGkzofPQwMrp8EwOHPsy9J4OOQVQXOmE+SkYLfvUrEs+1EdEOp54gtGabZ0Nc64NvpZ0Wv+Cd/v+t8CgL0Fep+jtxZUw/Q3365pEJHHlk2HIpbH7rXsOPvy/1NcjIgLkpbuAeFhrszHITUQ6uk2z3NtyszwYrauPDxWCUjYWtn8Q3noikrjVjzm/2HpRcI6ISPpVrYDt8/33n/BzGHaZc3KZ2wcMen4XkbBEdvrvu+FlqK+GvNJ92+q2tVyYX9AdSgcEU5+IiIiIiEhHsmej87tXLNvnQ6fBqa9HREQy0SVNXzsDPwJ64ASZNQJvAbOBlcBOoADoDowDjgB6N421wH3As0AxUAbs19RnIHsHpP3aGLPIWuvjBUpERERERELVZSRMnwXL/v7/2bvv6Diqu43j36tqybZcZbl3sHHDdIxppvceWmgJCakvCQkpJCSkUtITEkJIAQKh946BgKk2BmwD7r1b7pKtutLO+8dIUZuZnS0zuys9n3P2aHfunTs/GbE7O+W5MOdqf+sU9IWC3sHWJc5GX2U/6neD1diyfPPL9qSc8Vr7IPQ/1KUtxuQL3UfCWSvtUJkQbI1scm0bUJDGYLQc52C0hmh9yJWIhGzwyTB4EUT2wOP9wetvft53YMiZkFsYXn2Zau2D8a9TMg5O/RhyC1Jfj0DxEDhuJjTWQ04+GBN7HQleYT+o2xHfOmsfhBEXBVOPiHROie6zr38covfYnxudwer73dtOfNcOZgKINkCkoqUtrzuQo30UkaDt9x1Y9a/Y/dY+CAfcFnw9ItLlZVUwmohIVlr7sHtbv4PDqyMZo66E1fd2XD7h++HVUFjq3V651D74LiLp98lPY/dpqAq+DhER8bb5Jf99z98BhX1bXue5zKwS2ZNcTSIiflUs8d+3ag080gNGXAqH3AEFvaC+At69DDY917Zvz33hqMftcG4RERERERHxZ/3jYEW9+3QfBY214dQjIiIZx7Kse40x+wDPYIeiAfwd+IVlWevd1jPG5ABnA78BRgGfARZblvWzdv1OA/4IjMEOSMsDfgsckOJfRUREREREUmXwaWBy24ZtuennEqQl4WkfTDfwRDB5YDXEN87SP0D1eiidDrlF9iT0jbXQZyqse8R73cGnhRaKBrC1frPj8u45Peme63L9XAjyjXMIQMSKhFyJSJrk97TfDzY85d6nag08ORjKjrPDjkZ/zv4s6awBVLs+hu3vQPEI+3fc/Sns/BCIQvnr8Y9XdrwCR8Kgf+PMMuUXMPcrHZd77e9seBoW3mJfdzrweAX5ikhs0QT32aN19ntUz32hzwEw4Jjs/RxprIM197m3t76GPyfP3pcTkXD1HOMvNLZ6PSy4sSm0ECjoY38HK9k3+BpFpEtRMJqISJCiEVhxp3v74NPDqyUZ+3zZPtHYWNOyrN+h0H9aeDV0G+Dd/uJUuKjGu4+IBK9uB+yaF7tfw97gaxERkY4ql9oXg9RssS8y8+PoZ9qGogHk93Duq/d3EQlL9br411n7ANRth+Nehrlf7RiKBrBnGbwwGS6shs0vwo73oddEGHZeywkbERERERERactroqiT3rO/V+Wn70ZBERFJP2NMMfAUMA6IAJdblhXjjnewLCsKPGmMmQm8CBwJ3GSMWWdZ1j2t+r1gjHkLeAOY2rR4ijHmRMuyXknpLyMiIiIiIqlRNBBGfhZW/9u7n8mBcd8Ipybxr1spjL4SVv4z/nXXP24/2i/zklsE+ziElQRoW8Q5GK20YFCodbSXb/IdlzcoGE26knHXwsZnvcM163fC+sfs5yv+Bvt8DQ6+vfOFo33yc/jkx6kbLw3vtyIZYei58OnPoWZTy7L8XnD00/Dase7rLfiB/bP7SJjxEpSMC7JKEcl2iQajQdvvXmUz4OinIL8k+ZrCVLcTZp3h3p5brGtLRDJBTj7s+w1/3zMW/rLta5MLh/wVxn4xmNpEpEsKb6oMEZGuaOub7m3DLoCCXuHVkoz+h8Nxr8LwC6HvQTD+W3DcK3bidlhi3YDeWAt7VoZTi4i4q1jor5+Cc0REwrfpZXjxQJj/fX+haH0OgGNfhKFndmzLUzCaiKRZ3bbE1tsy075hf/2j3v0eKYa3zodFt8F7V8BrJ0B9RWLbFBERERER6cyqN7mfE534Q/s8oy5cFRER+BmwH2ABt/kJRWvNsqwq4DxgJ2CAPxtjStv12QNcADQ0bQfgpCTrFhERERGRIB32D/sYUm6Rc3vZcXYYxeBTwq1L/DnkTpj0Y+g1CQr6BndTfkEfOP4N6D0pmPFdbK13DkYbkOZgtDxT4Lg8omA06UrKZtjXtw48wf86y//ifY9XNqpcmtpQtMGnp+X9ViQjFJXBCW/CiIuhx2g7KO2EWVB2DEx/KPb6VWvsa/RFRLykap+9/HVYfmdqxgrT0j/C9vfc2495OrxaRMTbpBvhwD9A34PjO95jNcIHX4e6HcHVJiJdToiJNiIiXUzlcvivx0H2IQ4BE5ms9Aj7kS6WFbvPlpnQUzOTiKRNZC/M8vneFlFwjohIqCwL5n0bGqv99R97DRz6N/f2PJebWSN74q9NRCQRtdsTX/edi+NfZ8dse5bqcf+X+HZFREREREQ6k9pt8MlPYPkd7n1GXBRaOSIikrmMMXnAFU0v64DbEhnHsqztxpi/ATcARcClwB/b9VltjHm0qc0Cpidat4iIiIiIhCAnH/b/hf2Q7JOTB1N+aj+aPWBSv53TF9thJSHbVr/JcfmA/MEhV9JWvsl3XN5g1YdciUiaDTrRftRsgWf38Tex7/on7JCjzmLDU6kba+ptMOG7qRtPJBv1HAPTH+y4fPDp/tbf+Cw01kOuc4ipiAhRl2C0vgfDKXPt568cBdvejj3W+iey77N7w5Pe7T33DacOEYnNGBj/DfsB8Mw+sHeFv3Wj9bDpBRh1eXD1iUiXkpPuAkREOqX6Cnj1SO8+wy8Ip5bOwteMIwGcSBUJS9VaWPcobJ8DVjTd1STmvSsgUumvb2O1+8E8ERFJvaq1ULHQf/8JN3i35/dwXu7nwhIRkVSo2xb+Npf/NfxtioiIiIiIZCLLgtlXeYeilewHvfyc3xMRkS7gSKA/dlDZ+5ZlVSUx1sxWz89x6fNy008DDE1iWyIiIiIiIhKvMVendryScdBtQGrH9CFqRdkW2eLYVlowMORq2srPcQ5biei6bOmqigbCfj5DQZb9CWZ/Dj641g4Tsaxga0tWQxWs+DvMuQZeORoezIPnJ9q/w+zPwfzvp25bQ89O3VginU1+D+h7UOx+ViPsWRp8PSKSvaIuYcat9/EH+Axx3TGnZZ9gwY2wY27y9QUhGoFV98ATg2D3J+79eoyGYp3WE8lYZcfG1/+9K2DOF2HZX+zvNSIiSchLdwHJMsZMBc4CjgLGAH2BnoBlWVaH388Y0xsoaXpZZ1lWeVi1ikgXsv4JqN3q3l48DPKKw6unMyg9Cgr6QP0u9z553cOrRySVVtwFc78GVoP9uux4OObp7PqbXv7X2Kn97dXtsE9EiohI8CrjPMnaY6R3e55LMFpkT3zbERFJVDqC0SoXh79NERERERGRTLT1TXtmTy8jLrJnDxUREYHhrZ5vSnKsza2ej3Dp0/pAXp8ktyciIiIiIiLxGPdNWPnPFA1mYNKP03KccXfDDiKWc2hBaf7gkKtpK8/kOy5vpIGo1UiOyQ25IpEMsN/1UP6qff4illX32D+X3Q6jPweH/yvQ0hJWXwH/PQF2ftB2ecUi+5FKIy6xgyhFxN2kH8Fb59vhZ15emAIXVkNeUTh1iUh2cQszzmm1jz/2Glj1L6jZ7Ny3teb9GoBFt8Lhd8Ooy5MqMaUa6+GN06D8tdh9J/0YTE7wNYlIYsZ9E9Y9BpHd/tdZ+Q/75/K/wknvQn6Jd38RERdZu4dgjJlsjHkV+BC4CTgOGIkdemaaHk5mAKubHsuNMUomEpHUW/uQd3v/w8OpozPJLYCpt3r3aawLpxaRVKre2DYUDeyDPYt/k76a4tVQBXO/Gv966QizEBHpqqrX+u+7/y9j93E7GNlQCVbU/7ZERBJVq31JERERERGRtFn+l9h9hl8UfB0iIpItBrV6nuzsYM3X+hnAbRau1jPuFSa5PREREREREYlH70lw+iIYdEriY/Q7HEZeDjNegpGXpq62OGyrdw8hGFAwyLUtDPmmwLWtofX16CJdSV4RHPMc7H9zfOutuht2fhhMTclafW/HULSUMJDXdIiu32Fw0B9h2n0BbEekkxl6Nhz3Goy+yt5X8bLukVBKEpEs5CcYrftwOGk2jLsOSo+C4mH+xrYaYd533LeRDhuf8ReKNu3fMPrK4OsRkcT1nggnvQf7fh1Kp9v7Q7H2iZpVLISlfwq2PhHp1PLSXUAijDFXAX8BumFf5GS1arZwD0UDeBpYhz1jZHfgfEBHb0QktbbM9G4v6BtOHZ3N2Gvg/S+5t7//RRj7hfDqEUmFdY+2DUVrtvE5mHxT+PVYUaheDzndoKjMu2/1RjuJf92jiW1LYRYiIuHZs9J/36Hnxe7jtj9rRSFSCQW9/W9PRCQR9TvSs91dH0OfKenZtoiIiIiISCaINsY+L9B7f+g1Ppx6REQkG1S2ej4hybEmtnq+16VPt1bPa5LcnoiIiIiIiMSr134w48W2y54cCjUbY697/OtQdmwgZcVjW8Q5GK1HbgnFuT1CrqatfJPv2hax6ilQRrh0Vfk9YeIN0GcqvHGa//U2vQh9DwqurkRtejF2n3icOs/+txGRxJUdYz8AXjseyv/r3G/TCwr4ERFnlktoWft9/O7D4aDfNa0ThUd6QKOPU1615bBzHvQ/NLk6U2X9E7H75PWAkZcFX4uIJK/XeDj49rbLVt4Ncz4fe911j8GkG4OpS0Q6vawLRjPGnA/8k7aBaAY77Gwn4HmExrKsqDHmYeC7TYvOQsFoIpJq+SV2IISbgj7h1dLV7FkJPcekuwoR/z66znl5ILP7xLD7E3jvStg1z3498rNw6F2QV9y2X91OePsCKH89ue3VKRhNRCQ0e30Go429xt9Nq4UeQb/1OxWMJiLBi+xJz3aX/A6m3ZOebYuIiIiIiGSCpb+P3WfERcHXISIi2WRD008DjDbGHGZZ1pwEx7q86afVatz2Brbqo5PSIiIiIiIimWDYebDsdu8+hf2g/+Hh1BPDprr1jstL8weFXElH+TkFrm0Rt6AFka6k9CjILYbGan/9P/4R1O2AcddCj1HB1mZZsOIu2Pxix0nmC/pC6TRoqIbts6H8tdRtt3gY9JqcuvFEBAad4h6Mtu4R2Hsb9BgZakkikgWiLvvrOe7hx5gc+z1nw5P+tjHzMBjzBfvR/7D4a0zWrgWw4m/2farb3o7df/CpYEzwdYlIMAadaL9PWVHvfrsXwMwjAAO5RdB/Gux3PRT0CqXMTqVuByz+DeyYA411Hdsn3gBDzgi/LpEAZVUwmjFmEHBv08vmULQ7gN9alrXaGDMSWOVjqKexg9EMcEyKyxQR8f4iCmCy6u03s4y7zvuGi9X3wpSfhVePSDKq1nq3W1bwB3b2rIB1j8LuT2HtA23b1vwHigbBAb9uu3zO55MPRQOo3Zr8GCIi4s2yYNPzsP7x2H37HACH3Olv3AKPYLS6ndBjtL9xREQS1bA3dp8LdsKz+0Ld9tRtd/W9CkYTEREREZGupbEWVt0L1evsYz7zvhN7HQWjiYhIW7OACPa1iga4wxhzlGVZPu9OtRljLgJOouW6wVdcuh7Y6vma+EoVERERERGRQIz/Fqy62/t6j6m3QW638GpyYVkWb+x+zrGttCD9wWh5xv1elYZofYiViGSo/B5wwK/gg6/7X2fpH+x7KU56L9jrX+d+FVZ4XKe7yfm9Jykmz74fJCc39WOLdGVjrob533Vvn3l403tKwIGLIpJd3PbXPcKPAZj8Y9j2lv9r4lf+A1bfB8c+DwOPj6/GZGyfA/89Hhqq/PUvLIVJPwq2JhEJVvFQmHADLPxl7L7b32t5Xv4abHgKTp4DecXB1dfZ1O+GmdNgz3L3PrpvXzqhnHQXEKcfA8XYF0hFgQsty/q6ZVmrm9ot1zXbmot9sRVAP2OMvl2KSOo01Nhpq166jwinls5o2Hne7Ts/CqcOyX6W392GAG14xrt9zhcSH7v59/P6Pbe9Cy8dBAt+0DEUrdmyP0Nkb8uMBJE9sOkF/3Uc8lfof4RzW50m5xYRCdxH34ZZZ/rre+I7/gM580uwv5o7qN/lbwwRkWT4CUYr6AMDT0z9tiN7Uj+miIiIiIhIJmqosc8jzP0yLLzZ33mLsuMUmi8iIm1YllUJPId9YsECpgIvG2OG+R3DGPMF7AlVrVbj3O/S/eRWzxckUrOIiIiIiIikWI+RcNZKmPwzyCm0J+YsPRK6j7RD00581w4YyQDLaj51bRuQn/5gtHzjHpoQsSKubSJdyr5fgxPegoEnAAb6HR57ndqtsPTPwdVUtR5W3pXaMUddYT/KZgDGfk8ddQWMuNT+OfFGOHm2JrQRCUJhXzjW496q2nJY/tfw6hGR7BB12V/PcQ8/BqDPVDjlA5j6Kxh1pf05H3NbdbDwlvhrTMbiX8cRitbP/p16Tw62JhEJ3v6/gGNfhHHX+Xt/albxKax7NLi6OqM1//EORRPppPLSXYBfxphc4BJaws9usyzr8UTGsiyrwRizBGjeWxoPrPZYRUTEv8rFsfv0nhJ8HZ1V6XTvdreDAyLNKhbD3K/Ajveh5772l64hZ6Snlqo13u2r/mWn3vcY6X/M+t3277f2oZZlpUfCIXd0PFC04AcQqfQer7EWHu1pPy8aAiM/6+//s+KhcPZaMDmw+WXnPrUKRhMRCYwVhfeuhDVu9wS1M+wCyCvyP77JsQOH6nd2bHNaJiKSSlbU/0nTkvGp3/7ml2D4Z1I/roiIiIiISKZZdAtULPLfv/tIOPgvgZUjIiJZ7XrgVKCw6fV0YJEx5n7gUeCDpgC1/zHG7AvMAL4AHEjLjC0W8E/Lsj5pv5GmsLVjabnG8K3U/hoiIiIiIiKSsG4DYPKP7EcGW17tEYxWMCTESpzlG/fQhIhVH2IlIhluwJFw3Cstr7f8F/57vPc6W2cFV8+2t+zr3lKlbAZMuzd144lI/Poc6N0e5HuKiGSnRIPRALqPgAnfaXldNAgW3ea9zra3INoIObn+a92C23wAACAASURBVEzG1jf89z3meeg+PLBSRCRkg0+xHwD5vWHZn/ytt3UWjL4yuLo6m/I30l2BSFpkTTAacDhQ0vS8HvhVkuNtoCUYzffskyIiMe12PxEG2MFE/Q4Jp5bOyBjoexDs/NC53WoItx7JLvW74JUjWwJbdi+AN8+2ZwMqPSL8eiJ7YveZeRiMvhqGnWe/f2x/F2o2w4BjoLjdyfU9K+HZsR3H2PY2vDAFRlwMg04Gcux/g3gPstdshMU+d8Em3miH5gAUljr3qVMwmoiIo8he2DEH6rbD4NMhv0f8Y3x8k/9QNICxX4x/GwV9FYwmIunRUO2/78hL7ZO+jT7WGXEJrH0wdr+3L4SL6/2dhBYREREREckWlgW7P4Zd86HvgdBrIqy62//6Rz5in4PIL4ndV0REuhzLslYbYz4P3AfkYAeXdQeuaXpgjKkE9gAFQK+mn9A2EM0Ac4BvuWzq+03jA9QCr7j0ExEREREREXG0pX6Da9uE7lNDrMRZnilwbYtYmmRexFXpkfZ9DV73MOz6CB7vz/8OR0Xr205EX9i/5bnJgd5TYPy3YPCpbcdpqIHlf4HV90FeD9jnK/Y5mFQaem5qxxOR+BWVQf8j7Pu8nOx4H+Z+DabeCvk9w61NRDJTMsFo7Q09L3YwWrQeHsqz70ua9CPof1j823HTWAsLfgibXoDKJfGtWzwU+h6culpEJLOMusx/MNqqu2HbOzDoJHufKa97sLVlotX3wYq77PsxB58OU34OteUw/3uw9qGWfvm9IbI7fXWKpFE2BaM1p3xYwNz2M0QmoPX6ujJXRFKnYqF729Bz4bC/2+FekrjGWve28v+GV4dkn3WPdgxrsaKw8h/pCUZr2Bu7T+1WWHSL/WgtJx+m3Q8jLrRfL/8bzP2y91hrH2r7RSgoB/ymbcBONwWjiYj4tnc1zDqzZZ8yvxcc9QQMPM7/GNFG+7PNj5LxsP8t9gHEeBX2BaePsrod8Y8lIhKPhir/fXuOhWNfgLlfgcrF7v1GXWHPoDn6KvjoOqhY5D3uxudh2Dn+6xAREREREclk0Ub48P9g+V9blpUeBdXuNwC2MehkGP6ZYGoTEZFOw7Ksh4wxUeAu7Ov1rKam5otoejU9Oqzaqt/LwMWWZbkdJLwPeKTp+V6PfiIiIiIiIiKOyus3Oi7vndeP4twEJjlNsTzjfitgQ7Q+xEpEskxuARz6N3j3Uu97kryuga3b3vb1llfte5iOfbHtdbjzvwvL/tzy2i00KVEDT4LRn0vtmCKSmIP/BC95hPssv8OemOrEt3U/qYiAW5Bxjnv4sat+h/jvu+l5KH8NTpoDfabEvy0nb11gj5uIQ++CnNzU1CEimaffITDhe7HDG5vtWWY/dn8Cx7/etfaZVv4T5nyh5XXFItg1z76vtGZz274KRZMuLJuC0VonaqxPwXjRVs+z6d9BRDJd1Wrn5SM/C0fcH24tnZXXSQiAJ4fC5JtgzBe61g6wxLbkD87LV90Nh/8r3FoAInsSXzcagXcugrJj7RNssULRwjJjJgw6se2ywgHOfWu3Bl+PiEi2mX9D26DdSAXMvhJOXwz5Pi+qqtsGtVv89T3DIyQolnyXjPF4AotERBLhJ2C4tbJj4PSFsO1tWHUPrHuk7RjdBsLEH9jPB51k9y2fBa8d6z7mwpsVjCYiIiIiItmtbid8fGPbMLTWtr3lf6z+01NTk4iIdHqWZT1ijHkX+A1wHi3X7VkO3U2rn6uBX1qW5Xli37Ks2amqVURERERERLqeqBVla/0mx7ZzSq8IuRpnxhjyTQERq2MImtMyEWll2Ln29bhrH4QFP0jNmFYUlv6xJRht72o7CClVymbA2C9BQV87LKBkPAw4GnLyU7cNEUlc34Pg5LnwskdA0fZ3YftsKJ0WXl0ikpmiLsFoJoHPdWOgoA/U7/LXv7HW3kc59M74t9VexZL4QtHGfRP2roT+R9j32XcflnwNIpLZpt4Kw86Hbe/Y9xlueiF2YPTWWbDzQ+jnETrb2Sz+TcdlW16Nf5zBp0P/pn3NvgcmV5NIBsqmQLDWFz+lIga2b6vnikcUkdSpWue8vPuIcOvozKJ13u01G+H9a+xZ7Kf8NJyaJDtUJhH+EoR4Ax2cPFGW/Bip0nuyfeKtvW6lHZeBHdwjIiItrChsfLbj8uoNdojPmM/7Gyes4MmcQufljTH21UREkpXIfrQxMOAo+3HQH2HD07B7ART2t0+wFg9p27/sGCgZB5VLncfbOdd+v8t1eS8UERERERHJZA018OoxUPFpasYrHpqacUREpEuwLGsDcLExZhBwAXAEsD/QH+gN1AG7gLXAbOBVYKZlWU7haSIiIiIiIiIps6thm2u42MCCIY7L0yHP5LsEo7kELYhIix4jYcL3YfGv/QeJxLL55ZaxVt1tXw+cKtPua7m2rf0E9iKSGfocALlF0Fjj3mf7e9kVjBZpuk7X78TuIuJP1CXIONHAUxNnTMjml9z3f/J729fbg70vE6nwHscvkwsH/d5/fxHpPPodYj8ARl4Cz4yJvc7ml+xgL5MTbG3pYllN768W1FdA5ZLUjDvtXijsl5qxRDJQNgWjtU7OGJyC8Sa1er4jBeOJiMDeNbBjjnNb8fBQS+nUGmv99Vvye9jvOzoIJ/401EBeUcjb3BPu9oI2/WHIcdi9LHQLRttp//+c2y3YukREskXDXmisdm77+Ef+g9HqQgpGcwsDcjtZIyKSKskGDOf3gFGfBT7r3a94mHswGtghAifPTq4WERERERGRdNj0QupC0QBKj0jdWCIi0mVYlrUZuL3pISIiIiIiIpJ2W+o3urYNyKBgtHxTQA1VHZY3uIS6iUg7xsCIS2D5HakZz2qEx/qmZqzWBhzdccJPEck8Obkw/DOw+t/ufeZ9G2o2wdRbne+7yhSbXoKPvgWVi+3XJePhgN/CkNPSW5dIZxF1CTJOOBjNxNe/aq37Pku3MhhztX2/59qHILI7sZraG3BMasYRkezWYzT0PRh2fuDd7+MfweLfwshL4cDfQ25BOPUFzbJg0a2w7Hao2Zz68RWKJp1cNkUlrmv6aYADjDEJ7uWBMWZfoPVRoY+TKUxE5H/eucS9rXhYeHV0dhNu8NevYU/snWTpOmIF6lWvD6eO1pINdAjCkY/AyMviX2/fr0Ov/Zzbiga5rGTZB81FRMQW8QjMrNkE9T5PLNT6DEab8nN//dzkuBxcVDCaiAQtEtJ+dKzvEDvmwPqnwqlFREREREQkUTs/ggU/hPk3wPY59kWsb1+QuvGHnQ8l41I3noiIiIiIiIiIiEialNdtcFzeO68f3XJCnoDbQ75LcELEcglaEJGOpvzcDh5Lp4K+cOyLkNejY1vPfeCwf4Zfk4gk5oDfQL/DvPss+S18fGM49SRi1wKYdUZLKBpA5RJ480z7nLOIJC/VwWjEGYzmpbYcFt4MK+5MXSgawPhvpW4sEclu0+6D7iNj94vstkOsP/xG4CWFZtmfYcEPgglFG3VF6scUyTDZFIz2HlADWEAR4JE+FNO1rZ6XW5a1NJnCREQAqFwOO2a7t3cfHl4tnd3Qs/33nf354OqQ7FFfAS/HOMC8Z0U4tbTmFYCTDmeusGcp2efL8a/r9f9lyTgo6OPctvXN+LclItJZxQrM3OAzfMdvMNrQc/31c+MajFaX3LgiIrE0dpzxNhAl42P3mfslO1RARERERETiZ1n2Q4Kz4WmYebh98eqiW+3nj6dwhsj9b4HpD6ZuPBEREREREREREZE0Kq/f5Li8rGBIyJV4yzPOwQkNbkELItJRYV84/nU47VN7cvn2jzDs920YfAqcuxmOe7Vl2yfNgdMXQs+x4dQhIsnrVgonvRs7mGLlPyDaGE5N8Vr5L7AcarOisFJBjSIp4RZk7HZvTmeQX5LuCkQkU/QaD2cug5Pegz4HxO6/+t/QUBN8XWFY8bfgxu6h743S+eWluwC/LMuqM8a8BpzRtOiXxphnLMuKK3bWGDMd+BJ2wBrAEyksU0S6quqN8Ny+3n26DQinlq6g5xg45A6Y+9XYfatWQ/1uKOgdfF2SudY9Crs/9u4z63R7do6D/gT9Dw2nrlgBOGEpGgLHPGv/vwXQ/wiY8H37Jik/9rseyo53b8/Jh0GnwFqHm6Nqy+OvV0Sks4oVmLn2YRh9VYwx9sJH18Xe1tTboPdE36U5yil0Xh6tT25cEZFYwjq5MfKz9kUoXmq3wtI/wZSfhFKSiIiIiEinsOMDeP+LULkUek2E/X8Jg05Kd1Wd0/zvuc84nIzuI+DIx6DfwakfW0RERERERERERCRNttRvcFyeacFo+S7BaBG3oAURcWZy7Gtpna6nLZsB5a8Hu/1ek+yf+T1goMf9GCKSHUwOjLjEDvFwU7cDajZC9+Hh1eWmepN9T1eviZBbANvfde+7/jE4+M9gTHj1+RGNQMUiaKxNdyUi/tTvcl6e47x/3ymYrIkyEZEw5ORD/8Nh8k/hzbO8+zZWw5r/QO/JLct6jLYDaTNBtAH2rIAeoyC33T2WVhQql9j3ijbWQsXC4OrozJ8hIk2ybW/il9jBaBYwBJhpjDnDsqytflY2xswAHgNyAAM0AL8JqFYR6SqsKPzXxwHovJ7B19KV7PMVGHIWvH8NbHrBu+/cr8KhdypdvCvbMtNfvx1z7P+fT18Y/EFmywo+GG3fr0NuEfQ50P5yU/46FA+G3GJ7Fo+8YigeBqVHQUGvlvWMgam32OE7z413H//Qu2DA0VAyLnYt3cqcl0cq4vqVREQ6tVifC5tfgsrlULJPx7ZoA2x8Dt461339HmNhys+g/2H2gcBkuc1Ko2A0EQlaNKQLGEqPgpLx9gkJL2vuh8k3Zd4FHyIiIiIimahqHbxyJETr7Nc7P4A3z4XTFmjW+1SrWmuHz6XawBPgqMd13k1ERFLCGJMPHAqMAfoCPQFjWdbP0lqYiIiIiIiIdEnl9Rsdl2daMFqecb52L2Lp2j2RlBl1VcdgtLzuMP7b8GkKDl0VlsKgk5MfR0Qyy8DjoWiIHX7m5ukRcO4WKHK5zypoNeXw9vmw7R37dW6Rfc9ZpNJ9ndqt8MwoOOoJ6HtgOHXGsvo++57RoO/NEwmDS/BxUgafDpueT/248VJgj4g4GXSyfc95bbl3v/e/6LDuqTD9wbb3xIdt3WMw52p7/ymnEKbeCuO+Yd9TtOW/8O4l9v5TGHKyLTJKJH5Z9VduWdYcY8xDwMXY4WgHA0uMMb8HHgE6HME1xuQCxwJfBD6DHYhG0/p/tCxrTfCVi4gvjXX2QZ9ugyCvKN3V+Ff+X383FeR2C76WrqZ4CBzxgH1A0Ctcae2DsPEZOHW+bqrpqtY/4b9vw167//hvBlcPQGONHawYhMJ+cObKjl/shp8f3zgl42DM1bDyn+0aDJyzDoqH+h8r3+VLpoLRRERaRPbE7vPcvnDqPOgztWVZ7XZ4ZTrsWea97tgvwMhLkquxNbdgtMa61G1DRMRJWDO75eTC8W/AB1+DDU+D1eDcb+9K2Pkh9Ds4nLpERERERLLZmv+0hKI1a6yGT34GR3jMnC3xq9sezLgTvqdQNBERSZox5kjgeuAkoNChS4e7S40xpwAXNr3caVnW9cFVKCIiIiIiIl1NTWMVlY27HNsGFsRxzXQI8l2CExqsSMiViHRioy6HqtWw6Fb7erXi4TD9Ieh3qH3z+/I7Ep9IuOe+cOSjkOt0WExEslpOPhw3E966ACoXu/d77zI47pXw6mqz7StaQtHAvr+tsSb2elVr4fVT4Jz16X//2jXf/j1EOosgwsP2vxm6ldohglZj6sf3S4E9IuIkt8DeF3r7M/FP/Ln5Rfjg63DEfcHUFkvlcnj7Quy4IuxrIT+6DnpNgL4Hw6zTw7vnCcDofVY6v2z8K78aGAccgP1u0Rv4SdOjzdEkY8xiYBTQvEdomtYxwLvA98MoWEQcRBtg/vfsWeGr19k/a7fYbSe+DaXT01tfPDbP9NfPmNh9JH4FveDA38Ocz3v3a6iC+d+Hox7z7heNwKLbYMMz9kG90iNh8k/SNwuDpEZuN/tvwC+vg8+p0lDt3nbqAigZD4/3S2zmitM+TV3a9YQb7Pe56vUtyyb+ML5QNHC/ScprRhERka6mwUcwGsCca+DkOS37lx99M3YoGsCwOAMyY3E7oZnohR4iIn6FGcBYVGZ/j7QsO1TgyUHOJ4fXPaxgNBERERERP3Z/7Lx8zX1w2D/si54kNaIBXNha2A8GHJP6cUVEpMswxnQH7sKeGBVaJjltzXJZfSFwOZDTNNZ9lmUtSHmRIiIiIiIi0iWV1290bSsrGBJiJbHlG+dj6RFL1+6JpIwxMPkm+36K2i1QPKzlut2Dfg9Tb4HKZbgfygK6j4SaTW2vqy3oA92HB1m5iKRbrwlwxiJ4cjDUbHbus+VVu61oULi11WyGLT7vhXVStw02vwxDz0pdTYlYnaYgFJGgBBGMltcdDr8bDrrdngTcyYtTY4/TbQDM8HjfyO8Fz4xyb3cJdRYRofdkOGMJVK2HmYe57zc5WfcoHHoX5BUFV5+bNffj+D1w1b2wd3V8oWinzrd/mjzIKbAnmG2taAg0VsG878K6R5zHCOIzRCTDZF0wmmVZNcaYk4GHgONoedcw2LNHNgefGewAtf+t2qptJnChZaUz4lakizO5sOLvzuEPVeuyJxitsR4W/zrdVciYz0HvSfDyod79Njxt30DvNSvBu5e13Tms+NQ+2Hjqh+7BTpnOikLFQsjrCT1Gprua9CgeBpVL/PePJBBGFq+ox5eb3CL75q/hF8Cqe+Ifu1sKg/x6joGT58L6x6FmI5TNgIEnxD+OW1BbpCK5+kREOpOPb/LXb+dcWPUvGHiiPSvCmv/4W6/n2MRrc5LjcqOygtFEJGhe+9JBMcaeNWvgCfZFHe2Vzwq/JhERERGRbLT2Ife2ysXQZ//wauns/Ibwx2O/7+hiKhERSZgxpgR4C5hEywSnrTVf2+fIsqz1xpgXgDOb+l4MKBhNREREREREUmKLSzBagSmkd16/kKvxludynDYSjYRciUgXkFvgHGSW2w36TIm9fqomvBeR7DPkTFhxl3v7ir9D3wPte9jyiqDf4fZkvkGo2QzbZ8PG55If682zYdq/of806DGmJTQyDFYUKhbBkt+Ft02RMJTsl/oxc5oiRPJ7uF+LM+JSWPuA9zijrkruWp6crIsyEZGwdR8Goz8HC2/2v060Dj75CfSaCLXl9mSfg09NTeisZdnXMe6aD05xRJ/+zHm9tQ/Apjj2tYZd4PP9tb+dOeDG6H1WOr+s/Cu3LGu7MeZE4PqmR2lzU7ufzZqD0nYDvwZ+pVA0kTQzxj4wXLGwY1v1+vDrSUT1Jngqs2b+6dL6HQIzXobXT3bvYzXAnmV2irCTZX9xTszduwI2PAOjLktNrWGqWAKzToe9q+zXZTPgqCegoHd66wpbvAEtDSEEo3mlPud2s38e/Geor4CNT9sHb/0oHpr6g8pFZbDvV5Mbwy1YsF7BaCIiAEQj9j6HX3O+EFwtfrkFozXWhVuHiHQ96XyfGXquczBaxUJ7n93khF+TiIiIiEi2+OSn3u01WxSMlkqpPtcx9BwY/+3UjikiIl3NY8BkWq7tqwceAV4HosA9PsZ4EjsYDeBE4IbUligiIiIiIiJdVblLMFpZwRByMux6kHzjfO1eg6VJTUVERDLGmC/Cyn86B2oAfOIwqfohf4V9vpzaOpb/FT74P/c6EvHeFfbPsV+Gg28PJ/iooQreuQQ2Phv8tkTC1GMslB6R4Moe95D6CcrZ50uw9kE6xnI0ySmAMZ9PqLKWMTT5noj4MPpzsPi3duCZX4t/1XHZgX+A8d9IvI6GGns/Z/1jia0fqfTfN559Pq99LQVQSheQWUdm42DZfg2MAK4GHgI20jJzZOswtOeBa4FRlmXdolA0kQxR7DBjBkDVunDrSERDlULRMtHAE+wDAV52f+q8vH43fPB19/V2vJ94XeliWfDWuS2haADlr8NH16WvpnSJ9+afjc+kZhaM9vausm/8ev9LsPrf7v2ag9HyusPRT8D52+HcLXCMj5oGn5GaWlMt32Wmo8hu+29VRKSra/15HYRxAXz+5xY6L483kFREJF5eIcPNxl4TzLb7HOC8vLEaqtYGs00RERERkc5gw9P2LI1e6raGUkqXEdmTurFGXApHP6kLqUREJGHGmAuAE2i5s+I9YB/Lsq60LOseYJbPoV5qHhLY3xjTI6WFioiIiIiISJdVXr/BcXlZQebdN5JvnMMFIlYk5EpERETEVb+D/d0H1trcr8CelamrYc8KmPu11IaitbbiTlj/eDBjt7f0TwpFk84lr7t9H+gJs4IJD/Mz5oCj4ajHoffktstNDvQ9CI57FUrGJVeHn4A2EZGeY+H416DvwWByEx/no29CxeLE11/xt8RD0fzqNRGOfAQGHu9/HZfjQDHbRDqJrN+bsCyrFri76YExxgB9gAJgh2XpqK5Ixuo+zHl5dYYHo9VXwBNl6a5CnJgcOP0TeLjIvc+2t2DkJR2Xr33Qe+z6XcnVlg67F0Dlko7L1z0Kh/69a9280lAV/zqzzoQpP4dJN6amht2fwGszoG5H7L7NwWjNCvrYP/0cSBp9VdylhSK/xL2teh10HxFeLSIimSjocGCn/Z9k5TjPOqlgNBEJnJ9gtNGfC2bbvSa4t5W/AT1GBbNdEREREZFs5+cC5fe/DKMuD76WrqIhRcFoQ8+GI+5PzVgiItKV/aDV80+BEy3Lqo53EMuythhjtgIDsCeF3Q+Ym5oSRUREREREpCsrr9/ouDwTg9HyjPO1exFL1+6JiIhklMGnwIiLYe1D/tdZ9yhM/H5qtr/2IVrmKwnI2odgxEXBbqN5O7GcPNcOGxHJBjn5wd7f6zeQbNi59qOxDqxo07q5kOtyv1C8ggh9E5HOqXQ6nDIXGuvbhrq+cQpsfdP/OOsegck3JVbD2ocTWy+W6Q/BkLPsHIzcwvjX9/q86EpZEdJlZfxfuTFmf+AkYALQv2nxdmAx8IplWfNa97csywJ2hlqkiCSmeLjz8qq14dYRr9eOg2hduqsQN7ndYPDpsOl55/b1T8JBt0NOu8TgWAfH6rPwo2XTS87LG6qgdgsUDw23nnSxookFowF8/CMYeAL0Pzz5Ohbd5i8UDToGozXrMdp7vUk/hv6HxVdXWPJ7ubctvR0O/E14tYiIZKLq9cGO3++Q1I/pGoymfWURCVis95n9b07NPryT/B7Qcx/Ys7xj27qHYUxAgWwiIiIiItluh4+8ksZqqFwOJfsEX09XsOaB5MfILYZp94MxyY8lIiJdljFmEDC11aL/SyQUrZUl2MFoAPugYDQRERERERFJUqPVyLbIZse2soLMu+Y+3yVcoMGKhFyJiIiIxNTv8PiC0RbcAL0nw6CTkg8U2jUvdp9kbXrBYbsfQ/nrUDTIDofLL0l8/OpN9jZ2f+zdr7Af9J6SujAnkWwXb1BOIkE9fvgNaBMRadb+s3zAjPiC0T75CUQbml5EoWo9FA+BgcdD2XF2OFlrVeth80t2vsmO2clU7szkwoCjIa8oiTE89gn1PitdQMb+lRtjDgR+Dxzp0e0WY8w7wLcsy/ognMpEJGW6uwSjVSyCyB7I7xluPX58cC3s+ijdVUgs477hHoxWuwW2vwsDjmpZVr0Btr7lPWZdFgajNex1b9v5YdcJRmtI5npqYOY0uKgu+QOja/7jr5/Jcf8iYnKg32GwY07HtqFnw5SfJl5f0Ar7ubdteErBaCIiVeuCG3vSj4IZN8flxEdjbTDbExFp5vY+k9cTzlhsn7QI0pCzYMlvOy7f8irUboNupcFuX0REREQkG8W6SLnZ2odgckDHMrqSrW/DtreTH2f0VXZAtIiISHKmNf20gPWWZcVx1bKj1hdweJyIFhEREREREfFnR2QrDVaDY1tZweCQq4kt3zhf1x6J1odciYiIiMQ06jJYfBvUOIewOpp1Bgw8AY5+CvK6J77tXfMTX9evaD3Ubodu/e3XS/8MH16LfUoAKBkHM2a630vsZdt79r9FvY/7Osd9U6Fo0vV4TXLnFaITpmQDHkVExlwNy273tz/QbOEvOi5bdCuMuBim3dcSHln+Brx5NkQqU1Kqo1FX2mGxyfAKu9T7rHQBObG7hM8YczbwFnYommn1+F+XVo8jgTeNMeeEXaeIJKnPVOflVgNsnRVuLX7M+5694ySZb9CJ9o6pmy2vtn29eSb/O9jmZsdssKJJlxaqyB73tjfP6fjv0Fl5BcT59aLL+1UQcgq9D0oNPct5+fhvB1NPqnQb4N62dyWs9vh/VkSkK6heH9zYQ84MZtwclxOH1esh2hjMNkVEwD0YbeQlwYeigX0yxInVCOsfD377IiIiIiLZqHS6v35r7g+2jq5ijc9j7rkeM1FOuAEO+lNq6hERka5uYKvnC1IwXuuLAJTgKSIiIiIiIkkrr9/g2lZWEMK1KHHKcwk5iFiRkCsRERGRmAr7wUmzYdDJ8a235VVYdW/i262vgL2rEl9/v+thwDH++i74gf2zdhvM+xZt7tOsXAoLb06shg+/ETsEpdckOOQOmPjDxLYh0ll5heiEyWRIHSKSvboPg5Pes+/j6TEGiocmPtbah2DTC/Zzy4IPvuYvFM3k2tttfngpGmT36XsITPkFHHpX4vU28wo/0/usdAEZF4xmjBkPPAgUYQefWbR8C2odkGa1enQDHjDG7BdutSKSlF6ToFuZc9vqDLvp4aPrYfGvYvcbdp7z8sk/S209Etuoy2Dwac5t7WdY2LPc35gbnk6uprCt/Id3++zPuwcKdCapCEarXAy7krg+u7HOf9/cbt7tY78MfQ5su2zUFVB6ZPx1hW3wGe5t718DkRT8txIRyVa1W5yXJ/v+PuZq6Htwqo8CRwAAIABJREFUcmO48ZpRaeMzwWxTRLqmHXNh1lnw3ASY80WocbkYNacwnHr6HmSfUHEy9yvh1CAiIiIikm3cAtbb27MMKhYHW0tXULEwdp9TF8AJbzq39RgNU2+GnNzU1iUiIl1Vr1bPUzHVcuswtC5w0YOIiIiIiIgErbx+o+PyvnmlFIR1PUoc8o3zMfcGqz7kSkRERMSX7sPh2Bchr3t86214KvFt7v448XUBhl8IJ7wBl1oxu7Jjjv1z80sQdQhqTeSezJrNsHOud5/CfnD6J7DPV8AY774iXY3JkOs9vMJ8RET8KtkXpj8IZ62Ac9bD4UmExzbvX+1dCRWLYvfPLYaLI/Z2mx/7Xuvc1+TBuZvsPqe8D5N+mJrr77zCzzIlCFMkQBkXjAbciR101hx6ZoAG4D3gEeDRpucR2oakdQP+FnaxIpIEY2DgCc5t6x6GnR+GW4+bpbfDkt/G7jfoFBh/PS1vTU1MnntgmgSraJDz8sjutq+r1/sbb80DydUTpo3PQ2O1d5/q9bDppXDqSaeGqtSM88HXoHZrYuvW7/LfN1YwWmFfOPEtmPZvmHgjHPMcHH5PdhzAHXq2e1tjLWx6PrxaREQyjdtnTO8p8Y/V7zCYeisc8zwc+vfgPiO8Lvja/HIw2xSRrmfXfHjlKNj4rB1YvPIfsO0d576x9qVTxRgYcZF7+7zvhFOHiIiIiEg2sRr99133aHB1dBVu35ua9TkQ+kyxg59LxndsH3FJMHWJiEhX1fqEeS/XXv4NbvV8ZwrGExERERERkS7OLRitrGBIyJX4k2+cwwUilkMQiYiIiGQGY6DsuPjW2fIKzJwOC26E3Z/Et+6u+fH1by+ecNjdH8PbF8J7Vzi3126BBww8tx+881lY/FuoXAaLf2e/fvM8u/0BA2+eY//OL0yOvd0BM/zXKNLVmAyJEPEK8xERSdSgkxNfd9XdsPRPsO1tf/0L+3e8N3P4Z5z7jv5c4nV58QqZ1PusdAEZsldjM8ZMAo6mJRAN4LfAQMuypluWdbFlWRdZljUdGAj8ut0Q040xCdw1LiJpM/h097a1j4RXh5uqtfChS2pre0fcD6XTYNp9UFhqLysaBEc9Dr0nBlejuMvr4bx83aNtU3zX/MffeOsfS76msCz+lb9+G58Nto5M0BAjIM6vbe/AE2Ww5A/xr1u/O3afZjk+whzyimHU5bD/z2HI6dkRigZQEOMa90RmABER6SzcgtH67A89Rsc31thrYML3YMhpwX5G5DjPOgnACuWWi0iKLPkDROv89Q0rGA1gxMXubavuhmgcoQ8iIiIiIl1BPMFoycx6LbbcIu/2o5v+jY2BGS9B30Ps1zmFMPZLMPkngZYnIiJdzrZWz5O6gMYYUwhMbbVoQzLjiYiIiIiIiABsqXf+ellWMDTkSvzJc7l2LxKtD7kSERERicuEGyCve3zrbH8XFv4SXj4Mtrzqf71kg9HivSbXzwRolUtg7QMw73p4bhzM+7b9esOTLX02PG3/znU7vMfKL7HvmRDp0rLgntKc3HRXICKdUVEZjP924ut/+A2Y7TPELM/hOrzS6TD4tLbLCvvD+OsSr8mLV/iZV2iaSCeRUcFowPlNPw12ONq1lmV9x7KsXe07Wpa127Ks7wFfa9Uf4LxQKhWR1Bh2HuT3dm7b+WG4tTh547TYfQCOfhoK+9nPR30WztsC52yAczbC0LOCq0+8uQWjAbxzKVhW/H9nqQrZClK0EXa8769v+WvB1pIJGmvc2077OP7xProOHsiBdy+DVffaf0deGqrgk5v8jx9mmEPY8kpidMiCg3EiIkGwLKhzCUbrVgaTfhzfePk9k6/JD69gNBGRVFl9r/++8cxOl6xek6DHGOe2uh1QtSa8WkREREREskG0wX/fXfMgsie4WroCr+M2n6mA7sNaXncfAae8D+dtgwt2waF3Qo5mkhQRkZT6qOmnAUYaY8YnMdb5QPMHXQMwO5nCRERERERERADK6zc5Lh9YMCTkSvzJN843vTZYkZArERERkbiUToMT34Vx34DiOANYG2tgwQ/99/cKRis7DsZ+2Xv93BCvyY3XuOvsf8d+B6e7EhEREUmXA34N0+5ruSc/r6e9j1N2XGq34zRBqTH2xKQH/RGGXQD7fQdOmg299kvttltvz7VN1/lJ55dpwWhN0xBjAbMty/pLrBUsy7oTeIeWJI1DA6pNRIKQWwhDz3Zus+K4QSIIFYvsh5dh58PJ73cMPzM5UDzEe0dDgucVjLZ7AVR8CsvuiG/MPcuTqykMe1dBY62/vlVroWJJsPWkW6NLmF1uEfSeDAOOTmBQC9b8B2ZfBe9f496toQZeOwHWPeJ/6M4cjFbQK90ViIhkpoa97p/dhQNg9JVw7Esw4mJ/43ntA6WSZhQQkaDFG4QQ5r60MTD2S+7tq+8DKxpePZ1NQ7UdnNFYp39HERERkc7Caoyv/1PD4wtT68yiDfY+coPHRDCtWVGIVDq3TX/YnjnbSbf+zjNcioiIJMmyrNXAilaLbkhkHGNMIdB815cFzLUsqyrJ8kRERERERKSL29tYyd7GCse2sowNRnOeHEPBaCIiIlmgzxQ46A9wznq41LIfF9XQcou8hx3vQ/3u2P2iEfu+SSeH3wPHvwaH/hX6THUfo/Vkxf0Oi73NsIy4BA76HfSemO5KREREJJ2MgVGX2ftRl1pwYaW9j3P8a1A6PXXbcQpGA/u+ynHXwlGPwgG/gp5jUrfNeGgCVOkCMi0YrXUE4r1xrPfvVs+TmVFSRNKhxyjn5TvmhltHe+se926fMROOegz6HeLdT9InVijI5ldg1b/iG7N+V+L1hMXtwKWbpX8Mpo5M0ehyo1Dzl5FD/wElrXYfeu4b3/gr/wGVS53bNjwNO+KcoLozB6O53WzVbO+qcOoQEck0tVvd27oNsH8OPhmmP9hy8vOYZ93XCSsYLRv2i0QkezXWwZsuQepuwt6XHn+de9unP4VHS2DJ78Gywqsp2zVUwdsXw2O94aF8eLgbPJgLr5/i/XkpIiIiIpkv3gmRIrvtY+xdmRWF+d+3940f6Q6PFMMDBj7+iXeAcMNe7KwYB91HBFGpiIiIH3c3/TTAZcaYK+NZ2RiTA/ydttcXxpx0VURERERERCSW8vpNrm1lhUNDrMS/POM8qWnEqg+5EhEREUmJ3G4w8AR/fR/rY583bn48MQg2vdi2T8ViiLrsF7QJQ/OIGMhtFYy279f91RaGIWekuwIRERHJdINTuL+Q6ff85zgfIxLpTDItGK13q+cfxbFec1/TbgwRyQYm13l5YzXU7Qy3ltZW/9u9re9BMOjE8GqRxOTHCAWZ9+34x4xUJlZLmKrXx9d/xZ3B1JEpGmIEo5XsA6d8BKd8CCfMgjMWQ984Aw9fmAJL/wTvXg7vfxnePBdePBDevST+ejP9S1Iy8nt5t++YDdE4b44TEekM6na4txX2d2nwmBHKhJT033Mf7/aGqnDqkM6voRo2PAsf3wQLboQVf4fqjemuSoK26DYofz2+dWLtb6ZaTh4MPs29vaEKPvoWvHwIrHnQnoFPvL13Fax7uOO/1eaX4Q2Hk1ON9bD6P7D0z7D7k1BKbGPXfFjyB1j7cHYcLxARERFJJ6sx/nU2v5z6OrLJotvsR3uf/hQW/8Z9vTX/cW8L+3uTiIhIiz8CW7HTOw3wT2PMzcaY4lgrGmMmADOBzzatbwErgIeCK1dERERERES6iq31ztchdcspoldun5Cr8SffNRhN16aIiIhkrf1/mdh6tVvgjdPs61SbzTrTuW9OPpS0mn/EeEQM5LS6v23Y+TAwA+6lHXgCDDsv3VWIiIhIpht7DfQ5IEWDZUIkUwbcRyqSRpn2V976KlyPO8M72NXqec8U1SIiYXELRgNY+xDs+9Xwamm2+j7Yu8K9few14dUiicuLEYzmJbfYDudrLxtudG50CQLrqtz+PZqD0QDyiqDvgS2vh38Gds71v41oPXz4jcTqa8/lRHWnkF8Su8/Lh9hBdcbji5qISGfj9dnttj/jlebvtX+dSiXjvdtfORJmzIRupeHUI51T/W54/RTYMaft8oI+cPQzMODI9NQlwbKisOz2+NcrOzblpcTe5vGw6QXvPjs/hHcvhU9/Die9CwWa18FRZA9sfNq9fedc2L0Qek+0X9duh5nTWh2/MXDAr2G/BELQE7HkD3bwHZb9umQczHgFug8LZ/siIiIi2cZtUoz8EvdzLyv/Dof8FXJCOtaRaVbf69H2b5jwXee2T3/uvl6BgtFERCQ9LMuqNsZcCTyHfeVwDvA94GvGmBeAda37G2MuAvYFTgKmYV/p23wSuRa4xLIsK6TyRUREREREpBPbUr/BcfmAgiGYDL2eOS+nwHF5gxXBsqyMrVtEREQ89DsEzlwOz8aYvNzNwl/CyEvs8+/V65z79JoIua32I7yC0XILW57nFcExz8KGp2HXPCgaZE+Otmc5OB2qr99hT45ctz2x38XJEQ/A8Au876MQERERASjsCye8CesftycZ3b3Avj8tWh//WJl+jEXBaNIFZNpfeetvUfFMGd26byZELopIPBrr3NsqPg2vjmbVG+C9K7z7jLw8nFokOYkGo426wg5eqFzasS0rgtFqE1invu2Bzc7EKeAOIM9j4umx17R82QlbXvfwtxkWP/9P7poPuz+BPlOCr0dEJFO4BaPl5Lvf+Nv/cLs92m6Gx9wi6D0ptfW5MQZGXwWr7nFu3zUflvwOpt4STj3SOS39Y8dQNID6XfDhtXDKh5l/kDmb7JoPn/4CKpfYM8Id+Lv0hDztXR3/xRD73wLFQ4Opx8s+X7G/O+z6KHbfysXwWB8o7AdFQ2HERTDhe94XlnQle5Z3/Fxrr+JTO4hu8a8c/kYsmHe9/Rh6Lky9DUoSvEAolpotMP+7/C8UDexjCAt/CYfeGcw2RURERLKd5XL6f/z18MmP3df78Fo45C/B1JTJoo3O56maVSy0LzBv/53YsqBms/t6+QpGExGR9LEs62VjzFeBO2i5xq8ncGG7rgZ4oN3r5gMxDcDVlmX5OCAnIiIiIiIiElt5/UbH5QMLhoRciX/5HhNxN1gR8k0nvS9ARESks+s5FnqMbTVhbBwqFtrXV+/62L1P7/3bLfC4frX9ta25hTDiQvvh11sX2IEkyTr8Hjv0TUTa0X0UIiKu8nvA6CvtR7NZZ8HGZ9NXUxAUGitdgO66E5H0K+jj3rbb40BMECwLnopx0/cZy+yUe8l8LjMhxTT+25BX4tzWWYPRUjkDQ6ZxC5vJ9fj/uKAXnPIBTPs3FJYGU5cbr8C2bGcM9PQRTLDh6eBrERHJJIl8VuWXwOAzOi4fek64nyXDzvduX/9EOHVI57XlNfe2XfPcZzST+NVshteOty9AqFgI6x+Dlw60L5II24Yn/fWbcAPsfzOc/D5M/H6wNbnJK4LjZkKfA/yvU7fDDmFe8AOYdWZwtWUbP7PvvHOxHUgW6zvshidh5mFQU56a2jqM/7RziNuKvwW3TRGRMEUbYevbsPTPsPVNe1IFEZFkWQ3Oy4sGwbEvuq+3/A6oWBxMTZmsfkfsPg17Oy6rcb6B73+8jjeJiIiEwLKsvwMnA1tpG3hG0/Pmh2m33ADbgZMty3ownGpFRERERESkK9hSt8FxeVlBGibo88kr+Cxi6dyeiIhIVht+QeLr7lnpfT/uiIvbvg56cuphSfwuzXIKYPDpyY8jIiIiMvVWMHlxrpThIZQ58f4+ItlHwWgikn4DjnRva6gOrw6Aco+b7gF6jIaeY8KpRZLn56ZqJ32mQH5P57ZOG4y2NfV1ZIqGBMJmwP4yMOpyOK/cnm0jLP2PCG9b6bD/LbH7fPJjqFobfC0iIpkikWA0gGn3wtBz7WT/nAIY/hk47B+pr89LXg/v9j3LwqlDOq9YoVy7Pw2njq7gk59C/c62y+q2w+r7w6uhsQ7euRTmfce7X7/D4cK9MPVm/p+9+46Tor7/OP6a3WvcHRz96BwdpEgTsCGCotiNBdQYjTFqNFFjfkl+xlRTTaIx0V+a0TRjb9gbYEeqovQicCDSOeDuuLY7vz/Gy7WZ2dnd2Xb3fj4e94Cb73e+3w/H3d7M7Hzfw8hbocsxyanPSW4XmDGv5Q0jXux40XrqjF3IVltTV+HveDUH4JP7/R2z3rrfObc93QNW/cIK3xcRyUSHN8Jj+fD6ibDsG/D6SfBoHhz4MNWViUimM0P2240gdJ/qvu/6//O/nnRX5eF9G7tzZrfz5C6TE39ju4iIiAemac4HBgPfAbZh3Unc/INGf98H3A4MMk1zQdILFhERERERkVYrZNaxt9b+AWjFOb2TXI13WUa2Y1utqXtQREREMtqI/4l9bdmiq2HZjc7tPU9r+rmR4IiBfhdAyWWx728E4Zg/QV5X/2oSERGRtqvoKDj+4cQfA/nO5Z6/qIPeRDKPvstFJPU6jXNuq9yWvDoAPvyee/uYn2XgwU4b5va95eSoW60/szvYt7fWYLTlt8DUuc6BcJks1rCZeoYBY34KCy8DM+xfXacvhXnTm35PFY2MLUwhk/T9gvWkjh0vuPdbcgNMez45NYmIpFqsv6uy28PUpz4PkglAlsffbX7KKojcJ1ynpw9I7MLV7u0HV0FvPQUsbuE62PgX+7Z9i4BvJKeO9f8HWx9279P3Qjjx8eTUE42cTtYbJAOugDdmRbfvp8/BCyPhzNVt+/Wy9rD/Y664DUZGuNYTi5qDkedd+XMYdDUMu1Eh+yKSWd6dY/PACRNeanSttftUyO9vXcfqfUZSyxORDBaus98eyIKsfBh8rfN5yd73EldXuvIajFbQr+m28k+c+x/9i/hqEhER8ZFpmhXAb4HfGoYxFDgB6At0AXKAvcAu4D1guWkqhV5ERERERET8t6dmJ2HsH+zRI42D0bKNHMe2OjPGh8uLiIhIesjtAjPmW++TV5RCMM+6n8eLshXObSWX2TxIK8HrZAPZcOy/YeiNcHAldBhhraM7tLqhT4cR0HEM7F8KNWXWPQRVuyGnI3Q/CQoHJLZGERERaVv6XQjdtsPOeVC9x9qWVwzvOYW5pvmDSAPO4fkirUU6rrSrv4lpimEYJR736dH4E8MwTiSKVxjTNN/y2ldEEsAIwLSX4Y3TW7ZV77VCnoJ5ia9j15uwf4lze5fJUHJJ4usQ/7Qrhi6TYN9i7/uUXGr96RiMdtC6qJjX3fq+rN5nLYCvPQw5RfHX7IdwDMFouxZYIV2nvGktQGpNQpX226P5d5bMgXY9YetDUHcEtvw7vprO3WotVjpvG6y7Bw58CJ3HW4vmczvHN3a6Mww48Ql4NEJ4z44XoHwLFJYkoyoRkdRyCjX1egzsJZwsUbzMXb3POi4TiUWLUI5myj5OTh2t3aE1zm1bH4bjHkxOHaWPubfn94MTHk1OLbHqdbp1XvX6SdHtd3gDLJgJx/3HOvdoi+rKEzPuxz+F0T/wd0yn88zmfdb/AT75O5y2CIpG+FuDiEgiVO2G/csi99v9+dtqW/4NE+6BYV9PbF0i0jqY9gvLMILWn5P+7ByMdmgNhEMQCCamtnTkNRitsboKOLTWvm92B+gxPf66REREEsA0zfXA+lTXISIiIiIiIm3PzprtttsNAnTLTt/7N7JdFr3WhmuTWImIiIgkRDAXik9u+LxiK3z43fjG7DC85bZhN8Get1tubz80vrkaMwzoOsn6qNfrtJb98s/xb06RtmLUbbDk+pbbO45Jfi0iIpmkXU8Y8MWGz8N1zsFoLYJl04yRjpFRIv5K1+9yA3g4jn3fiKK/Sfp+HUTaDrfgm8pPof2gxNfw8Y/d20d9P/E1iP+OfxhemWyF7EUy4R7oOMr6u1Mw2pYHrQ87XabAhN83vVCXCk7hKpHsXwrbn2kIh2stQkfstwcjBHM1V3yS9QFAGLb8J7Z6htxghaKB9X026rbYxslkwTzrSSORvobbnoIRtySnJhGRVPLrd1UqeAlGq9qlYDSJXajavX3Lg9DlGBj6dSt0W2Jz5DPntrwk/fyGqmHfIvc+E+/NjP/n7lPh/B3w9oXWE/u82rUAnu4FBf1h8gNtL7Sg7nBixv34hzD4Gv9+F5mm8+9uO3WH4aPvw4lP+jO/iEgiVe2Jfp+PboOBV0J2oe/liEgrY9bZb298Y87xj8K7s1v2CVXB4fVtK2y2amfkPtuehuJpcGQXLLwcdr7m3LfXWb6VJiIiIiIiIiIiItJa7K7ZYbu9S3Y3sgM5Sa7Gu2zDubZaM8KDKEVERCTz9J8dfzBa/zktt/U6HbIKWz7YtsQhGERE0kufL8Cym1s+jH7QV1JTj4hIpgqkedyQWzhbutcu4oN0XUloYgWcRfNhNvqIdl8RSbX8Ps5tVbuSU8P+Zc5thYOg1xnJqUP8VTgQzveweOTMNTDs6w2fZxdFP9e+9+GdC6GmLPp9/eQUjJbVPvK+nz7nby3poHqf/fZ4wmaG3gguT9pyFMyHo+K8EN1a9L0gcp/9SxJfh4hIOqjL5GA0D8cXK25NfB3SeoUjBKMBLLvJClSV2LmFoFTvs4KgEu3D/43cp9PRia/DL+16wqnvwKwP4Zg/w3EPQW43b/tWbIX5M6BiW9PtVXth3T2w5i6rT2tTWx65T6w+nevfWLUHIdqnK3/6AtQmKPhNRMRPzW+Q8qL2ELwwEj74Dmy63/pcRCI78CGsvgM2PwjV+6Pbt/aQtd8H34UPvg0rvg/bn03OcXs8zJD9diPY8PfeLuFdXs4ZWpNdCyL3Wf8HOLwRnu7hHooGDQ9sEREREREREREREZH/2lmz3XZ7cY7L+pY0kGU438deZ0Z5T4OIiIikv4L+1n2o8Wg/uOW2rAKY9iJkd2zY1n8OjNT9/yIZoV0xTH3GCjisN+irMOSG1NUkIiLJZSgYTVq/dP4uj+fOba/7KhRNJF0E88EIgBlu2VZXkfj5645AncsC1dOXWPVJZgoEod9FUPq4fXvfC6FoeNNt+b1jm6tym7UAcMS3YtvfD07BaEOugzW/cd936yMw5R8QzPW9rJSo3ucc9paVH/u4XSfB9Nfh49th17ymbUYQRvwP9DkfPv4RHFhhpTF3GgdjfwUFfWOftzXpMSNyn7KVia9DRCQdhDI4GC2nU+Q+O19PfB3SeoU8BKMBrL8X+l2Y2Fpas2qXYLRwjdWe1z1x89cdgXV3u/fpNA7yM+xY2jCsMLf6QLd2vWDeNO/7z+0Hl4Ss6xF7F8OCUxvCZlZ8D054FPqc63vZKeN2XSZen70Cg6/xZ6yq3dHvE66GPe9Br9P8qUFEJFFiCUYDqCxtuO648udw6tuxX18VaQvW3QvLvtHweeEgmP4aFA6IvG/lpzD/VDi0pmVbn/PhxCfdnw6YSk7BaI2fWJiVD52PsX9oxqfPWq8xo25LTH3pxDRh9xve+j43xFu/gv4xlyMiIiIiIiIiIiLSWu2q+dR2e4+c9H6vyy0YrdaM8T0/ERERSW8ll0Cfc2DvIqgrh3fnOK9DaG7Et53bup8IF+yG/R9Afh/I7+VPvSKSHL1mwQX74MBy6x6kPI8P8vaTkQVmXfLnFRFJhmBeqisA3DJO0vR+UREfpVswWinxBaKJSKYyDAgW2C+CTUYwmtsi8BlveAt8kPQ25ufWhb/K0qbb8/vAxHta9s/vF/tcH/wP9DilYfF7sjkFowXzoO8FsO1J9/13vAh9z/evnt1vwYrbrJCrQBC6TIZxv4Gio5z3CVXBh7c2DUfIKrAukhSNhDE/sb7GkTw/zLktr9j7v8FO96kwI0LQy8kvxzdHa5bdwfq/PLjKuc/hdRCuhYDzm/ciIq1CJgejeVls3fjpM36q2ArLvwX7FkHRKBj1feh2fGLmyhShauu469NnIbsIBn3FCsfNZGGPwWj7FlkLx9M1ACDdVe91b685mNhgtJ2vRu4z+ieZ///bfar1c7npfu/7vHsplG+C/Uubbg9Xw+JrrfOirAJ/60yV2vLEje1n6HIswWhgBQYpGE1E0l2swWiNVWyGZ/rAJeHM/90tkgjV+2H5TU23lW+CVb+Ayfe571u+BZ51CU/b/jRsfRRK5sRdZkKEHW6ANIJNP+93kX0wGsBH37faOwz1t7Z0E65tCEX2S+Egf8cTERGJgWEYAWAUcDTQD+gGtMO6X/AIsBvr/sEVwCrTNHUfoYiIiIiIiCSMaZqOwWjFaR6MFjACZBlZ1NmED9SatSmoSERERJIiqwB6TLf+PvBK2PAnb/t1HO3eHsiGrpPiKk1EUiiYA12npG7+SX+FRVe13F5yefJrERGJVZfJ1tq05oZ9M/m1NNd/NnzwrZbb83q0nvVEIi7SKhjNNM2SVNcgIimUlcJgNLdFrZEu/Ehm6DAEZn0An70Mu9+2gkY6jbUOBoO5LfsXxBGMBvDSWJj8NyuQomo3ZOVDj5nJeWqCWzBadlHk/Usfjz8YLVwL+5bC9mdgza+btu140fo4cw0UDbff/91LrUVcjdW/Fux9D+afChPugaE32C+wDNfB8m9C9T7nGr0Eq0liDb4Wlt3o3B6uhcMb3EP0RERaA6dgtKwMCEYDGHgVfPKAc3tdAoJuasrg1ePgyA7r88rtVhjrzPdSF06bDhZebh3L1du/1Pp9OuwbqaspHuEQmCFvfUNVVghH4cDE1tRauYWFQ2J+jusdXAsf3+7eZ/A10OfsxNWQLIZhnSeWXAalT8KG/4u8T+mjzm1Vu2DRNTD+TmjXw786UyWR32eH11u/K/L7xD9WpJ8XJ7vmwdbHoP/F8dcgIpIofgSj1XvlGDj6l9YNV9nt/RtXJNPteBHMcMvtm/5mBaOFQ3DwYziy03poT/lm67yorhyWeAi+XnoD5HW19u00Dgy3JwUmmdP5ndHsloX+F8OH33EeZ+Xt0H+O9R6PH8d36cjvRWtGlsLkRUQkpQzDmApjNpKcAAAgAElEQVRcC8wCPNy0AMABwzBeAO4zTfOdhBUnIiIiIiIibVZ56CCVYft7FYpz0v/6c5aRYx+M5ud7fiIiIpK+BlzpLRgtuwj6xLlOUETETa9ZkNW+ZT6A7pkWkUzSf07LYLT8Pulx311+b+h6nJWv0Fi/i/UQa2kT0uhOaBFp85wSSUNJCEY78IH9diMLcjomfn5JjtzOUHIpTPoTTLgLBn7JPhQNID/OYDSARVfDOxdZC5He/zI80xs++jEk+qHGYYdgtIDHYLStD8Oe9yL3c1K5A149Fl47rmUoWmMvjIBdC1puL/+kZSianWXfgFentAxPrCiFF46C9fc675vXAzpPjDyHJJaXoJODqxJfh4hIqjkFowUzJBit91nu7eEaCPl8s9X2ZxpC0eqFKmHzv/2dJ5NU7YbSJ1pu3/DH5Nfil3B1dP2fHQRVMQYWtXWRvm6JCCwP18Lia63zggPL3ftOzODvYzvFJ8PEe/wZa+tDMLcENt3vz3ipZBeWDzDoKzDaITzv2H/B+Tuhx6ktAzWae6YvbPNwrhmJW7h+JGvvjH9+EZFEclsk0SvCcX9z+5fBgpnw3FDYszC+ukRak89edm6r3gfzT4GXxsEbs6zr3+9dAgu/6C0UDaBmv/VgkZcnWn/Gc+ziN5vFWQAYwaafF/SH7lOdx9nyH3jzbOv47sP/Tfx7LqkQdvhaxWrAF60H+IiIiCSZYRhHGYaxAFgAzAE6AobHj87AF4E3DcN43TCMocn/F4iIiIiIiEhrtrPmU8e2Hjm9k1hJbLKNbNvtdX4/fENERETSU9dJcNzDkNfduU+HETBjAWQXJq8uEWl72vWA6a9Ch2HW53nd4Zg/Rl5rJCKSTobdBCO/B9kdrM87T7COowIR1qkky9S5n6+bCVprTgdeBeN/m+qqRJIiTX4KRURwDkartX8Kj68WX2O/Pa8bGMqQbJNyiuxTyuO18ifQ/UToMcPfcRsLOQSjBfOcg+Cae+NMOGs1tOvprb9pWkEknz4H22wCOZzMmw4XHW56gfWzV7zvv28xLDgNTm30gOhFX4HDG9z3m/RnpSCnA6eFcI2VrYJ+FyW+FhGRVHL83Z0pwWjnQLcTYc/bzn1CFRDM8W/OZTfbb197Z9u9qFf6BGCzGPzQWghVez8OTCfRBqMBvH6SdRwr0Snf5N7++onWRf1Jf4XO42Ofp+agFZ686hfe9zlrPQSCkftlGsOwnhyz5934xwpXw5KvQfeToP3g+MdLlbpK++3BAhjyNfjkfqjY2rC9+zQoucy6bjP9VSvAzwjC4x2s4D07b38BjvoujPqB83UoO4c2wMY/W+ea8fyf7Vucua/JItI2OAWjZbWHac9ZQT2lj8F7X8T22NNO1U7rAQqzq/T6JwKQ7fIwnmU3w+43/Jtr13xY+XOY+Hv/xoyVaTo/KKN5MBrAuN/CK5Mij7v6Dus4uNes+OpLN07Hs7E6+pf+jiciIuKBYRgXAw8A7bCCzsD+RMJL23RgmWEYV5qm+aSvhYqIiIiIiEibtbtmh+32doECCoMeHkaeYtmG/f14tabPDzEVERGR9FUyB/rPhsrSlg8yz+4A7YpTU5eItD1dp8BZa6FqL+R20dpdEck8hgFH/xxG/8TKlsjplOqKmsrraq2bqT0EgVzdky1titJ+RCR9OC1IratI7LxOQRQAuS6J+dL65XVLzLjr74l9X9O0fiZqDkL1fvvFMW7BaHUegwZry2DZTd7r+vB/4f0rogtFq/d4ewg3WhC15Pro9t/zLmyfa/299jDsWuDev8tk6HNudHNIYnh5jT20NvF1iIgkU6gajuxqtu2Ifd9MCUYLBGH6azD06859/A47rj3o73itQc1+5zavx4DpJhRDMNqhNbD1Mf9rac3CdXBoXeR++5fByxNgz3uxzVNXaQXXRROKNukv0GFIbPNlgkFX+zdWuBY2PeDfeKngFIYYzLPexDnjIxj9Y+vJNsf8GU5+uWmYfVaB1bf9UPd5Vt8B80+Fyu3WOTY0nGebdgGT6+G142HtXVYYuNvrrReH18e3v4hIIjkFo9WHHAeyoORSOOUtGHwd9DrD+9gvjIq/PpHWwO1mmS0P+j/f+j9YN8KYJtQccH9PLJHMsHOb3RMVuxwDM97wNnb9+wOtiZeHing1+QHrybwiIiJJZBjGRcBDQD5WuJn5+YdBQ9jZHmA98D6wGNgA7G3Up/F+AAXAw4ZhnJ+cf4WIiIiIiIi0dodD9vegdc0uxsiARfxZRrbt9lrT54dviIiISHozDCjob91v2/hDoWgikgp5XRWKJiKZLZCVfqFojWV3UCiatDkKRhOR9JFVaL89lOBgtL3vO7cVliR2bklvAfunKMVt+1x4cSwc2hDdfuVbYN40eKwQnugIT3aBp3vD5maLpdyC0WoPeZ+v9HE48lnkfjUHYN3vvI9r55Es2PESVGyLbf+3zrP+bVW7wQy5953+amxziP96nwVG0L1Pzb7k1CIikmimCR/eCk90hqd7wPPD4cAKq80xGC0vefXFK5gLI29zbt/+TPJqaavcfqe+PLFlIF8mcArmiGTZTfbhRmKvfLNzIJWdRVfH9vXd/gyUrfDe3whC77OjnyeT9L8Uhn7Dv/FW/9I6P8tUjueyn79pk90BRv8IptwPQ651fjOnaGTkufYuhGf6wuMd4NnB1rn1Ex3huSEtrxOt/z+o3uP93xFJ2Ur/xhIR8VvzJ8fWa36dtPsJMOlPMO0FmO1wPtNc+UYrbFKkrcspSv6cjxfBwwHrmsTcEth4X/JrcLtu73Q+W3xS5NBbgI1/aX2vL3YPxYnVwCv8G0tERMQDwzCGAX/Hui+xcSDaIeBu4Eygq2maPUzTHGGa5nGmaU4xTXO4aZrFQDfgbOAPwGGaBqRlAf80DKMVP01BREREREREkqUiZH9ffftgCq7lxyDbYa1DnYLRREREREREREREpJVQMJqIpI+sAvvtdQkORpt3snPbUf+b2Lml7SpbAQtOhbDDYqBwHWx9FFb+HN77EnzwbXh2AOx+q2m/6j3w/pfhwIcN29yC0fpeEF2de95zbzdNWPULfxbpvHEGvHlW7Pu/Mwdq7Z/c9V8zF1qL6SU95HaGAV9y71O9Pzm1iIgk2oY/wupfQajS+vzQOph/qvV7+8gO+32cjo/TlVPQMcCyG6Hy0+TV0hYZWc5tFVvgnYuSVopvQi5hXYUDnduqdsKB5f7X01pVeQhDbuzQmui/vmUr4b3Lotun74XQrmd0+2SaYA5M/AOcWwqnLbb+jNebGRwm5/QzH4jyaTZFR3nvW1cO5ZsaziXLN1nnprXlDX3W/yG6+SOp3O7veCIifnIKpnV7gEQwD2Z5DD99fhh88B3rgQxmOPr6RFqFFD8RtWoXLL4W9ryb3HnNOuc2t/PZifd4G/+di6z3VVoLt69XNPpfAoZuCRERkaS7F8inIRDNBH4C9DVN8xbTNF8yTdMx3d80zX2mab5gmubNQF/gp5+PUa8Q8HiQICIiIiIiIuKsPHTYdntBMDPuNc82sm231/n58A0RERERERERERGRFNJdsCKSPlIRjFbjeK+lpeuUxM0tUrEV9rzTcnu4Fl47Ad6dAx99H7b8G9b81nkcsw5W/erzv5sNgSvNBfKgeJr7QsbmKre5ty//pntt0Sr7KPZ9d71uhX44mT5PP9PpaNJ9MOanzu2RXqdFRDLF5n+33Fa9xwoEOLTOfp/CwYmtyW9Z+e7tm/+VnDraKiPo3r7nbSj/JDm1+CXsEow2/TX3fXe87G8trZlTAIqbnfO99934V3hxdHTj53SGCb+Pbp9MVtAXuhxj/XnuFve+gWwIurze7nkPjuzytbykcfqZD+ZFN063E+Oro+YAbH04vjHcOJ2zi4ikg1iC0QA6jYGZi6DXGZHnWPMbeOdiePMchaNJ2xTL8Xe9YF7T0Nj8fjEO9PkDT5LJdHhIDLifz/ac6W38so9g5+vR1ZTO/Fq0NvDL/owjIiLikWEYxwMzaAhFOwycZprmT0zTLHfd2YZpmodN0/wRcDpQQUNA2qmGYRznU9kiIiIiIiLSRpWHDtluL8xqn+RKYpNl2L+HV2vG8V6EiIiIiIiIiIiISBpRMJqIpI9UBKOVrXRuK/li4uYVqTdvmhUUALDp7/DSeHgkB/Ytim6c0ketxdsVm50XVuV0guwOMPlvYHg8BFh7pxW2tv6P8OIYeLo3LL7O+rksWwXrkhhWUHIZtOvp3B6utQ+dASs4oMf0xNQl8QkEYdT34YTH7Ntr9ie3HhERv5kmrLvX+Xf7wi85Lw7uGGWQUKoZAedjeoANf/RnHtOM3KdN8vB12fpI4svwk1swWk4XuLDMub3sY//raa1iWXD/4Xesc5fN/7E+rymDhVfAUz3hIaPpx+Jrox9/wOXQrjj6/VqDgv5w3nboNK5hm5EFkx+AS02YUwOzK6CHU0CEaQVsZyKnn/nG4R9edJ8Kud3iq2Xlz+DFsdb3cCzcfoeHjsQ2pohIMsQajAbQdRJMe8H6feXFjhfg4aB1LfTxTlZQWvkWz6WKZKxYA68KSmD2EZhTZf2cXWrCuZsht0ts4+14MbkPpTDrnNsCWe779v2CtznemAUVER72kincvl5eDbwKepwS/zgiIiLRuf7zPw2si9bXmqY5L95BTdN8Hbi20bgAX4t3XBEREREREWnbKpyC0YIdklxJbLIM++vrtaZPD98QERERERERERERSTEFo4lI+gimIBjt4GrntmE3Jm5eyQx9zk3OPIuvhddPgkVXwYEPYh/nic7w7CDn9qKjrD8HXA5nrYMhN0Qes3I7vHEGLL3BCpc4sgM2/gXevgA+e8l7bQOvhBlvwJS/e9+nsY5j4LgH4dyt0P8S5347X7ffnlMU27ySPDmd7bfXHoSwQ2CQiEgmWPs7WPaN6PcLZEOHof7Xk0qV2/0Zp+6wP+O0NqGqyH0qdyS+Dj+FXILRgrnWMd6Ib9u3b3u8IUTv0AYrwGvHS1B7CKr2wva5sPXRzPuaJIJTAEokBz6AhV+E0sdh/kzY/C+o2hl/PVntYfi34h8nk+X3hlPfhpOeg2P+DOdugUFfbtpn5K3O+2/6W2YGyzi9jgWjDEYLZMGoH8ZXS2UplK2Ibd+sQjjlLWjv8Hu8rjL2ukREEi2eYLTGzo/iGCtcC7Vl8Olz1kMk9DoprV2sx99Drmu5zQjA4DjyQN48F3bO93Y+GS+3a7xG0H3fQdd4n+fZEvdzyUwRS4DesQ/CSc/DhN9bx6OT/wZGjEG/IiIiMTAMIxc4Gyu4zASeNE3Tt6d1mKb5MPAkVjiaAZxjGEaUJysiIiIiIiIiDcodgtEKMiQYLdvhtLjOjPG9CBEREREREREREZE0o2A0EUkfWU7BaOWJm/PAcue2Lsckbl7JDAOuSN5cu99K7Pj5fZuGg7UfDEc5hEg099nLNttegV1veJ9/wj1QfJIVkNbnPO/71et9jvVnIBuOf8ha8GXH6fUiW8FoaS+nk3PbtieTV4eIiJ8Ob4IPYgz36TzR+r2XcSIsuPVjcXKk4OT6MKy2JnQkch8/QquSKezy/VIfztFpvH27GYZ3Z8PSm+D5oVaA1xtnwONF8FQ3eOs8eHcOPNMb1t7tf+2ZJJYF9429dznsX+JPLQAnzYWCvv6Nl6myCqD3WTDkWisorbniaZDfx3n/Nb9OWGkJ4/Q7IpgX/VhDr4+vllh1ngAzF0JOR+vvdtbfk9yaRESi4VcwWrue0PO06Oev2Aqf/CP6/UQySbTH37ldYdQPnEOhR/8o9lr2vA3zZ8DLExIfrGvWObcZWe779joNpvzT4zxhePVY73WlK7evl5MBl0HvM60HP3U/UaFoIiKSClOAQhreKLgrAXPc2ejvhUAr+MUvIiIiIiIiqVIesn9AZ2GmBKM53F9YG++9QCIiIiIiIiIiIiJpQsFoIpI+HIPRIgQfxCocgu3P2LcNujoxc0pmKRoBA7+c6ir80Wlsy215xbEtMK+34wVv/fqcC9mFDZ8Puzn6udoPbvr56Nuj21/BaOkvp7Nz27uz4w/sEBFJhXcujn3ffrP9qyOZOk90b6/aFf8ckQLAdr8R/xyZyFMwmg9f/2RyCkkKZDcE5XYc7bx/6eOw/g+R51n+TTiwIvr6Wot4j7PcAuyikdsN5tRC8cn+jNcWnPiUc1vpExCOIUwhlZy+lwK50Y9lBODkV+OrJ1pHfRdOXwodR1mfZ+U7993vEtQvIpJKfgWjAYz9NWS1j36/pTfAS+PgIcP6ePcS2OdjCKtIqjn9nNkpGglf2A1jbnd+WEggC058Or6aDq6GZwfEN0YkZsi5zQhG3n/gl+Bij+8XHvgADm3w1jddRXueNjzGYH4RERF/1YeUmcAa0zTf93uCz8dcbTOniIiIiIiISFTqzFqqwpW2bYXBGN7jSoEsw/49vFozivciRERERERERERERNKYgtFEJH1kFdpvT1Qw2qG1ULXbvq14RmLmlMwz+W9w7IPQ++xUVxKfAV9quS2YBz1nJX7u4bc0/bzbCVBQ4n3/QC70OafptoJ+0dWQnRlP7mrTcjq5t+9+Ozl1iIj4pWoPHIgj9GTAF/2rJZn6nOfeXr45/jnq7G9I+69502HXgvjnyTSRvi7gfP6TrhyDORqFJBWNgHY945+r9In4x8hU6RJAO/xmK9RBvOs80TnsunpP5r0WOoUhBmMIRgPofhLkdom9nmgFmwX+B12C0bbPTWwtIiKx8jMYrdMYOGMFHHUr9P1CdPse+LDh71sfgVePhR0vRV+DSDqK5vh7+C1gGJH79TzNn4eDrLjNua2uAiq2gmnGNrZbMJrX84CsfOtBLF6UPuatX7qKNuQ42tdZERGRxBjZ6O/vJnCedxzmFBEREREREfGsInTYsa0wmBn3nWcb2bbb68w0uRdIREREREREREREJE4KRhOR9JFVYL89UcFoO1+1325kQe+zEjOnZB4jAAMug5OehfF3pbqa2Dktipl8H3RN4EOUx90J3ac23RYIwtSnIb9v5P2zi+Ck51qGZnnZt/k4kt4ihdcd3pCcOkRE4mWa8NEP4anusY8x6kfJDXLx09Cvw6CvOrfPmwYffi/2hdTgLQBszZ2xj5+pQkci9wk7hA6lK6fAgECjm/qMAPSbHf9cq34GK34Q3/dmpkqHmyFLLocR3051FZnHMGDmQuf20keTV4sfwlX22wMxBqMFc+CkF2OvJ1pZ7ZrN386+H8DK2xNbi4hIrPwMRgMoHABjfwEnPglnb4COY2IbxwzBx3rtlFbC6efMzoArvPXLagfTXoDcrg3b+l8CY35qnTN5teoXVvhZY+FaWHIDPF4Ec0vguaFwYIX3MeuZLkFfRtD7OJP+Bl2mRO738Y+9j5mO3M7Txt9tvZcJ1uvzxHuh23HJqUtERMTdoEZ/X5TAeRqPPcixl4iIiIiIiIiL8tAhx7aCjAlGs38Pr9aM4r0IERERERERERERkTTm8fHLIiJJ4BSMFkpQMNryW+y3tx8C2YWJmVMyW7/ZsOa3cGRHqiuJzoz5zoufcrvAzPfg8EbYOQ+WXOfPnIEcOG8b5DmEwnQaC+dshoMfQ05nyO9j1VCxpaFPdhF0GmctZm+uoH909eR0jK6/JJ9hwMCr4JMH7Ntry5Jbj4hIrLb8B1b+NPb9i2fAmB/7Vk7SBYIw+a+w+Z/Oi71X/9IKSBjsEqDmJuQhGG3PO7GNncm8BKNVbIVPX4Res6zfvenOaeG80exy1lHfhXV3xz/fqp9BbmcY/s34x8ok0QQz+OGUt63j/9yuULHZCsiN9vheGnQaC/0ugtLHW7Ztewom/tH+nMovB9dA6RNwZLv1s9lpLPSfHTn4uDkz7ByGGMyLvb6uk+D0pfDyxNjH8Kp5EFpWfuLnFBHxm5dg2li1HwynL4dDaxqury44zfv++96HZbdYD7HoPCH+ekRSxWsw8ZmrrHNsr7odD+d/BmUfQbte0K6HtX3YjbB/OSy7yWqLZG4JzKlp+Llfcyds+GNDe/lGeGkszK6O7jgzHHJua36O5yavK5y2EA5tAMLw/HD7fmYdlK2EjqO8j51Owi7nw8NvgsFXQ9kq6DjS+f1VERGR5Ctu9Petjr3i13jsHgmcR0RERERERFqx8tBhx7bCYPskVhK7LMP+PbzadHhIooiIiIiIiIiIiIgPonhEtIhIgjnduF+XgGC0Rdc4txUd5f980jrk94JT3oJBV0PBgNTUMHVudP3bD4FuJ3roNxiGXAvHPxpbXY0N/TpcuN85FK1eIGgtmi/oZwW3dRgKPWc2fHSd7LywqqAE8qK4x7n9EO99JXUGu7w2V+1JXh0iIvFYe2fkPn3OhROegD7nN2zLKoSR34NpzyeutmTqMMK93S7AxysvAWC1ByHUxp58WechMA7gzTNh4eWJrcUvTgvBmwdztOsB01/zZ87lt0D5Zn/GyhROASiJ0v0EKCyxAsk7jlYomh/6X2q/veYA7F+WuHk/fRFeGgcf/xA2/tUKzFh8Dbx6XPTH724BfYHc+OrsNC6688dYNQ9wC7oEowUSGFYnIhIPp9djv163AkErpKj++t/4KMNt1/0OXpkMn/zTn3pEUsHtXLXTeOg/xwoRjOW9qkAWdB7fEIoGVmBt8TQ4/hHvAWTr7gHTtD423W/f57kor7k7BV8DGFEEwNXrMAQ6DIPJDvUBvDgaQtUN/5ZM4hhU+fn/YVaBFQKsUDQREUkvXRr9PZFPvaof2wA6J3AeERERERERacUqQodst7cL5BOM5oEeKZTt8B5ebbIfkigiIiIiIiIiIiKSIApGE5H04XTzfqjK/Uny0ao5CJvuc27vPNG/uaT1aT8IJt8H534CU/5hBXrV6zQeLtgLvc5MzNwDr4x+7Ml/a1go40Xf8yP3cTN1Lky8J/GLcQwD+l3kvX/H0YmrRfzTdbJzW9Xu5NUhIhKrJTfAgQ/d+wz6Ckx9BvpdAFOfgktN6+Piw3D0z1uGqmSqSAGpO+MIsfIaAFa9N/Y5MpGXwLh6W/4Dn76QuFr84vT0UrubD4unQ25Xf+Z9dmDmLZqPRzKD0XrMTN5cbUmv062ATTvxvN66CYdg6Q0Qrm7ZdnAVPNUd1v/R+3ghm3HqBeMMRjMCcNyDEGwX3ziRNB/fbb5E1yIiEqtEB6M1N/R66Hl6dPuYIXj/SqjcnpCSRBLO6TxnyNdg1jI4/mHoPM7/eYtGwNg7vIWQffAteDhgfZRvtO9TWWqF43plurzPF0swWr2ux7m3P5pn/TseK4QFp8Nhh39PunEKkjOy7beLiIikh8YXcRIZjHaw0d9byZsqIiIiIiIikmzldfbBaIXBDkmuJHbZDteM65zeixARERERERERERHJMApGE5H04RakFKrwb55d893bB17h31zSug28As7eAJMfgJNfhZnvQm4XGHyNff+jfwHTXoQep3obf/zv4LiHYcLvYeZCa55AFAuEzlwN3ad67w8QyIbsouj2qXfeNuhzTmz7xqL/HO99i0Ylrg7x17Cb7bdXJzEYLVwHexdB6eNwZFfy5hWRzLbuXtjgIQCm99mJryUdRApGi0fIazDansTVkI7CVdH1/+SBxNThp7DDQnC74F8jAEOu92/uNb/xb6x0l8xgNKdzJYlPMA86jrFv+/hH/obN11t7J1Rsce+z9AbY+Dfn9rKVsO0ZKFtlheI7CcQZjAbQYwacsxmm/DNxgfgtws7CUfQVEUkTIYdgtGCCgtEC2TDtBZj+Ooy7Ewr6e9/3mb6wa0Fyj2VE/JDsAMLGRtwCZ66CY/8F4++Of7zF11o/h144BX1BdA93aa5ouLd+oUr47BV4bgisvdu6/pvOgdhOr23xfK1EREQSr/FFnEQeqDc+sFBqqIiIiIiIiMSkPGQfjFaQUcFo9u8t1JoO70WIiIiIiIiIiIiIZBgFo4lI+nALRqvzMRjt8Hrntna9oV1P/+aS1q9wIAz6MvQ81VqMDlY42JR/QPsh1uK+4ulWgNrIW6HXLBh6g7exh98MJXNg2I3QdQoYhrf9ukyCWR9A0YiY/knkdo1+n/N3Qn6f2OaLVdcp1tc4kqJRya9NYucUpFOVpICy2sMwbzq8OgXeuRie6Q1bH0vO3CKS2byETOV1h56nJb6WdNDB48LkWNR5DEarSmKoZjpwCrFwsu0p6/deOnNaOG84LAQf9UMY+T1/5t54nz/jZIJEhYnMWGCdCwVyoHAQTLoP+l2QmLkEikY6t+143r95zDC8fRF8+F1v/Tf8yWYME5b/D7w4Gt4+H14cBQu/6DxG/bl2vNoVw8AvwWmLYdQPoF0vyGoP/S6Csb+y36frsVA8w9v4zcPO3MLesvK9jSkikmypCGwyAlaA5YhbrOMHI4q3LudNh9dOhOp9iatPxG+OgVdJyvToMAwGXA7Db4JjH4x/vHnTYckNkcN4S59wbjOieCCMnfO2Rdd/+Tcbrv86BXKnmtP5cLK+T0RERERERERERERaufKQ/X1ThRkUjJZl2F8zrjX1YCERERERERERERFpHfRIYRFJH1mFzm1+BqNVlDq3DbvJv3mkbRt4hfURroNAs1+3XoJC+pzv3Db+Llh+i33bWeuhg4ewMDe5XaB8k/f+PU6xFpgnmxGAiffCgggBM2Pv8B4qJ6mX18N++4EPoaYMcjomdv6VP4M9bzd8bobgvUut7/PczomdW0Qy28FV7u1GACb+0b9wl3TX9djIfXa8DL1Oj37skMdgtOo90Y+dyWK5oe2NWXDK2+l7rOS0QL358fV/twfh6J/DmJ9Z3ydGNoQ/DybKKrR+DtfdC8u+EXnu8o0wbwYc+8/WH7LrFIASj2E3QfE068PunEj812msc9uSr0Gfc/2ZZ+N9sM0l1KK5A8uh5iDkFFmfmya8fyVs/lfTfjtfdx4jmBt1ma4MA8bcDqN/YgW9Be6uLKkAACAASURBVIJQdwS2PgoHPmjo1+1EK6AnELTCNufPhLIVzuPm9236uVswWvMQNRGRdBGutt+eyGC0xgoHwLCbYe1d3vfZtwg+/jFMvCdhZYn4KhUBhE4GXGY9kOKDb8U3zoY/Wg+F6XUmbLoftj1pHcP1+QIcWg3bnnZ/aJFT+LVX+X2s4NuVP41uv21PwKbpMORr8c2fCE4BevF+rUREREREREREREQEgIrQIdvthcH2Sa4kdtkO7y3UmQm4F0hEREREREREREQkBaJ47LqISIJlFTi3+RWMZprWAg0nA77kzzwi9ewCADoMgy6T3Pcb+GXntj7nghFsuX3ivfGHogHkdImuv9sC/ETrORN6ugSqzPoQep+RvHokfkUjnNtePNp5QZhf1vy65TYzBKWPJ3ZeEcl8bq9PA6+CWSug3wXJqyfVIh3rALxxRmyvr6Ej3vpV741+7EwWy+/IPe86B+6mA9MhGM3haacN7YZ1fhnMgewO1ofx+SUwt/PO5nbNh+eHQ80B7/uks3AtlG+BqmY/G34+JXbI9XDi0zD+dw3bFIqWHP0udm478hmURhFm5mbDn6Lf5/nhDa9RH/2wZShaJAGfg9HqGYYVegaQ1Q5mvg8T7oHht8DkB2DGvIb2vO5wypsw5Ab7sdoPgaKjmm5zC1VsK0GpIpJ5nEIdk/m6Nf5OmPosDL7GeoBDQf/I+2y637n2ugrrGKjWfnGLSNI5Bl5FOM9JlGHfaHkcE4stD8OyG2HxV+Gzl2H7XHj/Clh9h3soGvgT9jXmdsjtGv1+S66HPe/BviVQuT3+OhoLVcO+pVD5afT7Op0PB1L0fSIiIiIiIiIiIiLSypQ7BKMVBDskuZLYZTu8t1Cb6HutRURERERERERERJJEKxNFJH0kIxht+Ted24pGQbtif+YRieS4h+Cdi+HA8qbbjQCM+Sn0Pst538KBcMLjsPAKqDtsLYQZ+QMrhMAP0S4e6jTen3ljNfI2a6FVc73Phk5HJ78eiY/bIrzKUtjzDhSfnLx66m15EIZcm/x5RSQzhEOAad826gfW4ty2JtvLkzNNWP0b6HdRdGPXVXrr5zVArbWI9Ya2dXfDyFut0J9047gQPI7LWdmF0fWvq4CVP4fxv419znSw601YdDWUb7RClgdfBxN+b4U+OX3v9DrDCnba+Ff79mA76+cspxOMvwsGXpmw8sWDvK5WoNfau+zbV/0c+l0Y3xwVpVC2Ivr9qnbCjpegeJpzfW6SFcYTzIFhX3duzymCY+6FrpNh8XUQ+vz3UfuhMO0FK2itsT7nwqKv2I9lhvypWUTEb+Fq++2JCql00uds62PSX6zPX58Gu9907h86Aku/AZPva7p987+t9wSq90FWoXXddfjNCStbxJNwjf32YE5y66gXyLYeujJvenzjbH0oxvlz/fu3z1oB7862riFH47XjG/7e+RiY/irkdIyvltV3wMc/abg2UTwDjn/I+7m3Y4Cebu8QEZG0V/9myRTDMEoSNEePBI0rIiIiIiIibYhTMFphBgWjZRn219drTYf3IkREREREREREREQyjO6cFZH0Eci1bui3W/xeezD+8Y/sgnW/d24fdlP8c4h41X4QnLYYqnaBWQt5PeHQGmg/2D0ksF7f863wtINrrLG87ONVbhfvfQM5VmBCKnU73grK2rWgYVsgB0Z8O3U1SeyyO1jfg9X77Nv3LU1NMJoRSP6cIunoyGew9RGo3A7dT7JCKJuHgLRFpksgVc/Tk1dHuhl8HWz8s3uf/Uvgs9fgs1es1//+c6BwgPs+XoPRDnzkrV9rEc+TPrfPhcFf9a8WvyRiIXgwhuPmtXfCztdhzE+g9zmZ9bpnhq3z4OW3NNoWgg3/ZwUgTPid89c5kGOFkQRyYP29TduO+SP0mw3Ve6FdD+sYTlJv7B2w8S/24fJlH0GoGoI2wTZmGEqfsIK783parwdZ+S377V8We2173rECaUIeX8MbC7aLfd5EGHA59L0Qyj62AjPaD7F/XXA7tw45BA+JiKSa0+tTsoPRmjv5VXjhKCjf5Nxn09+sYOqCftbnZSutgMr6Y526ciskbfk34ehfwMCr9KAUSQ3H85zs5NbRWPHJ1vF96aP27Se/Yp2HvXWe9bAWPw38sn9j5feCU96Cii1WqC/Aoqug/BPvY+xfAk90gkFfta5R9IghMG7J161zrsZ2zYOniq3Xn2E32R9vN+YYFJ7C7xMRERHvDODhBM9hfj6PiIiIiIiISEwqQvbXuzMpGC3b4b2FOrf7GUVEREREREREREQyiBIeRCR9GIbzotGqPfGPH+lp9b3Pjn8OkWgEgtZCnYL+EMyBTkdHF3AWyIZOY/wNRQPI7eq9b8llkFPk7/zRMgw46QUYeRt0Pc5awDXjDeh+Ymrrktj1dAnbK0tVyI3uqxfh8CZ4ZZIVrrP2LnjrXFimYFkAdrzk3NaWF6wOuspbvwUzreCpFd+DlydYIZhuvIbqbH0Ids731rc1iOeGtr0L/avDT2GnheBxBKPFGmpWtsIKAVichgFyTswwLDi9aShaY+vutn7ewg5Pia1//ZrwBzjmT1A8wwqGO/5RGPI1yO0MHYYqFC2dBLKgxyn2bWYYDq9vui0csn7O3rkY3p0Nq++A5TfDc0Oh5gCYJoSqPv+ogQMrYq+t/BM4uCr6/bpMie9nPlGy2kHXSdbPgNvryqS/2m8PVSWmLhGReDm9PgXzkltHi/lz4PQlkR9usrHR6+7au5wDqFZ8D14c3fbClCU9OB5/5yS3jubG/9b+vYZ+F0PPmVZA2EVl/s87+Bp/xzMMK3C9+CTr46x1MPbX0O2E6MbZdB/MnwGrfx3dfqt+2TIUrbEV34One0PtIfdxEhEULiIikjz1oWWJ/BARERERERGJS3nI/jptQbB9kiuJXbZh/95CnVmLaZpJrkZERERERERERETEfwpGE5H0ktvNfnu1D8Fo610WIvQ5D9oVxz+HSGvgFFDYXMcxMO43ia3Fq6x2cPTPYOa7cMIj0O3YVFck8eg/27ktr3vy6hCRptb8Giq3N922/h44tC419aQLM+welNSWg9G6HAMlX4xun5oD8PGP3Ps4LSK3s+LW6ObPZE6Lpr2o2uVfHX4yHYLR4lkIboZi3xdg0/2w+634xkiWT5+Dna+591n0FefvnfpgBsOAIdfBjNfhpLnQ/2J/6xR/TX7Aua3s82CyIzvhrS/AI1nwSDZse7JpvyOfwhOd4eEAPNru849cWPkT57GH3uhe17YnYVmEPnaOfzj6fdJJMN9+e1jBaCKSpsLV9tuDucmtw05OJ5hwt/WABCerfg51lVbw55YID0qp3gMrb7f+vul+mDsAHu9oheGWf+Jf3SLNOR5/p/j6QX4fmPpM0yDEDsNh7C8bPjcCcNx//Jtz7K+g8zj/xrMTyIKjvg2nvg0Tfh/9/h9+1zo2Prg2ct/qfZGvaQDUlsHjRbDuD1YYsR3HoPA2fJ1JREQyjZngDxEREREREZGY1YSrqTHt3xcrDGbOAwKzHB66YmISwuE6s4iIiIiIiIiIiEgG0SOFRSS95HWDgzbb4w1GqyiF8k3O7Sc8Ed/4Iq1JbtfIfUb/GEZ+HwLBhJcjbVCvWc5tdZXWn+WfwOYHobIU+nwBesyIf5Gu29PRDOUJi7DjJfvtWx6GMT9OailpZdcCa+GrE6ONL1gdfxdseTC6fT57FUI1ELS/cSuqYLR9i6Fqd9sI1owrGG23f3X4KRHBaPn9nNuyi6DW7oS0mc3/gu5TY68hGcwwrPhe5H5lH0FWoX2bFtxnptzO0H4oHF7fsm3Vz6BmPyy9wd85R/yPFZpdNByWXO/fuAOvgsIS/8ZLhcbBIo0d+cw6n8nvA91OsAI7RETSQcgpGM3h9SwVep7m3v5ERzh9uXPIW2PbnoTXToA97zZs2z7Xuu502lLncxKReDid0zosXkqqHqfAedut8/KcztD9BMgqaNqn1xnxzTHgS9BhGPS9EDoMjW+saA38Mqy+A47siG6/mgPwxulw5mrIcgi+Bdj9ZnTn5stuAiMIQ22Oz02HceI5HxYREUm8UhRaJiIiIiIiIhmgPHTIsS2TgtGyXe5NrA3XkhXUvT8iIiIiIiIiIiKS2XTnrIikF6dApuq98Y279i7ntrG/VriTSGO5Xdzb84ph1A8UFCWJYwSgx6mw87WWbXXlsOHPsORrDds23Q8FJXDaoviCb8yQW1GxjyvSGphhqNxm37bxz207GG37M+7tbT1YKNgu+n3MOji8ATqOtG+PNgDs4Kq2EYzmFCLmRboGo4Ud/k3x/Fx1HA35fVu+phWNhJnvwwsjreBVN5vuh8l/i72GRAtVw8LL4eBqb/33vme/va0HO2aybsfbB6MdXOV/KBpAt8+DAod8Dfa+b4UH+mHQ1f6Mk0puQUILL7f+7HocnPwyZLdPTk0iIm7CVfbbA3GG0fspEIRZK+Clo+3bw7Xw4mjv4zUORatX9jGUPgoDLo+tRhE3Tue06XL9ILcLlFzi3J7T0Qp23fNO9GMfdSuM/UXstcUruz1MnwdLr7d+9qMJXq/YCp/83T7E7L99IpxL2ln6dStsrnBA0+2JOB8WERFJMNM0S1Jdg4iIiIiIiIgXFaHDjm2ZFIyW5XJvT51ZA7g87ENEREREREREREQkAyjRRETSS243++1Ve2Ifc/9yWPd75/Zes2IfW6Q1Khzo3j7+dwpFk8RrP8R+++ENTUPR6lVsgZU/i2/OcLVzm77npa1zC6mtdX56YptwcI17e1tfsBpLMBpYQQROog1GK1sVWw2ZJtqvS2PVu8E0/avFL05hb0YcOf+G8fnxbKMxArlWYHZ2IZy1GoIebgqsijO8OxFC1fDRD+HRPCh9PP7x2vrrVybre2Fy5+txSsPfR97mz5iDr4Nux/ozViq5BaPV2/serPpl4msREfEi5HBtJJ2C0QA6jbFC9RNp62NNPz+0Ht7/CrwyBZbemL7hwpL+ag/ab8/KoMVJY26Pfp+CEhjl07FiPIqGw4z5cHElXLgfCgd533fro+7tTg8ViGTxtS23OQbo6bl3IiIiIiIiIiIiIvEqD9nf82hgkB8sSHI1sct2CUarNeO4l0xEREREREREREQkTejOWRFJL07BaEc+jW28/cvg5YnufYpGxja2SGtV0B+6TIZ9i1q2TboPSi5Jfk3S9mQV2m+3+76st/0ZmPiH2OcM17g0GrGPK9IaVG53bgsdscLRsjPnSYm+OqRgNFeBYGz77XwVSubYt0UbAHZwZWw1ZJp4gtFCVVBXDtnt/avHD4laCN7vAihcDNvnWmP1ORc6jrbasgpg8LWw7nfuYxxcBXknxVeHn0wT3jgDds33b8y2/vqVyZIZKNbvYshqFILZYWj0Y4z4jvUaVLndukbT7TjodaZ/NaaSl2A0sH7v8YuEliIi4olTaLzX17NkGv5N2Pla4sbf8bx1jGUYUP4JvHZ8Q2j4vkXW3KctarvnwhKbULVzMFpu9+TWEo/ik+HsjfDcYOc+2R0AA4ygFZ479Pr0ei0JBCGnE5y5Cj55AJZcH3mfPW/Dzteh4xio/LTh/zJUBbld4cCK2GrZ/aZ1/tv4HMwxKFznaSIiIiIiIiIiIiLxcgpGyw8WEjBivN8tBbKNHMe2WtPtnmgRERERERERERGRzKBgNBFJLwX97bcfWgtmGIyA97F2vQnzprn3OeMja2GTiDR14lPw1nmwf4n1eXYHOOZPUHJpauuStiMrhieuVW6DUA0End/odxVSMJqII7dgNLDChQZcnpxa0knNATiyw72PodPumGx7yjr2COa2bIv2aZZtIRjNNJ0XTXtVtTv9gtEcF4L78HPVeZz1YWfM7dbPdumjzvsfWA7FaRSMtnehv6FooGC0TJbTCfKKoWpX4ufqP7vltgl/gGU3etu/YACMu8PfmtKJ1/CP/csSW4eIiFehKvvtdsflqdZrlhWsX1eeuDnW/AaO+g5s+ntDKFq9Q2th+3Mw4LLEzS+tT/Ue57a8DApGA2g/CGZXwZKvwSf/AEwoGgVT/g5dIjywKJ0Ec2HI16DfbFj8Vet6hJv5p/pfQ7gGDm+EohGNtiUoKFxEREREREREREREHIPRCoOZ9UCcLJd7e2rjecimiIiIiIiIiIiISJrQnbMikl6KjrLfXlcBFaVQWALhEJRvhLKPrKev15RB4QBr4UJWvtW/tjxyKFqf86DjaD+rF2k98nvB6YutIJzqfVA0UgtuJLliCUYDK8SksCS2fcPVzm3RBHOKtEbV+9zbtz7WNoPRKkoj91GwEBQOto7fo1F7ED57Bfqc07ItHOXTLMtWWsFhrTkQ2WsoWn4f56DDt8+HITfAwCvTJ/gi7PDvSvRxaXYhnPAIVN0Lc/vaB4Qsv8U6n+xxSmJr8Wrn6/6PGYgxbFbSQ9HIxAejdT8J+pzfcnuvM7wHo/X9gr81pZtgFOc12+dC77N17iEiqWOazsfagTQ5PmzuvO3wRMfEjf/hd6H3ObDqZ/bta+9UMFprUx86Ha6BULX1Z/1H88/D1daDFhp//t++DtuqdjrPnWnBaGCdO055AMb+CkJHoF0fCARTXVVscjvDiU/Ckc/gzXMbHhrjpy6TYd8i+7b3r4TprzcEltdV2PdL19djERERERERERERkQxSETpsuz3TgtGyDed7e+rMKO+xExEREREREREREUlDSjgRkfTiFIwGsPgaqDkAB1faL0zf+Bc4fbm1iH37M5HnGnxN7HWKtBX5fawPkWSLNRitclscwWhuNwG04jAdES/cggMBdr5iHafldEpOPemianfkPgpGg56nwYYog9EAdr3hEIwW5dMsaw9aC5vze0VfQ6bw+jWZ9SE82dW+rexjWHIdbH0ITn4NgmkQiuUU+GYk6XJWXlcY8V1Y+RP79vmnwvi7YfhNyanHiWnCxz+K3G/MT2HkbfDSOChbEbm/odevjNZ/NuyaH/v+xTOsMIauU6D4ZNj8T9i/DCq2Qo9TodsJMOJb9qGThQOh80TYv9R9DiMIg66KvcZMEM25yVvnwcAvW+EiIiKp4HZdJJiXvDqikVMEU/4O73/ZW//60GYjy3u4cOmjzm0HPvA2Rr1wXdt++IRpWucuruFijcLE7MLFPAWWRRli1rx/KhjBzL6mkomhbk7a9YRT34Kne1nXuvw09Ouw0CEYbd9ieHYQnLnaes11CjnO6+ZvTSIiIiIiIiIiIiJtUHnokO32gmD7JFcSnyyXe3tqzSjvsRMRERERERERERFJQ2347nsRSUvZ7SG/H1SWtmzb+Zr7voc3wOo74OifRl7kPewm6DUr9jpFRCSxsgpj269yW+xzui18LI8h0EekNbELpW0sXAvb58LAK5NSTtrwEoymYCE4+mewb1HkgJzmqj6z3x5tMBpA1U4FowHkdoGC/lawkZPdb8H2p61QpVQLO4RVJDNwsP9s52A0gOU3W+F7o35gHxCVDLsWRO7TrqcVimYYMPNdeLI7hCrd98nv7U99khoDvgQ750HpYy3b8nrA1Lnw6mTn/We83vRzu6BKJ4YBk/4Kb54FR3Y49AnCuN+6B+S3BtEGCX3ydxhwuRVGJyKSbG7nfcHc5NURrY6jvfU7+pcw8n8bPt/0d1jkIaDz4x/HVFYTh9bDoqth70LI72sdOw7yGObmVYvQsUjhYrEEjvkQYib2cruBEUh1FVIvmAcz34fnh/k7biAH+s+BrY/Yt1fvgaciBJ/ltqIQOhEREREREREREZEUcQpGKwx2SHIl8QkaQQIECRNq0VZr6n0ZERERERERERERyXwKRhOR9FN0lH0wmhdb/g1jbod9S5z79DwdJtwd2/giIpIcWQWx7RdPMFqo2rnt8Aaoq4i9rnRlhmHfUjjwAXSeYH2kKtRF0lvY5eej3tq720YwWl0lbH8W6g7But9H7p/MAKd0ldPRWlD8SJSXIGoO2G+PKRjNQ4hdJvPyNSkosf7M7e4ejAaw46X0CEYzHYLRjCRezioaAb3OgB0vOvf5+EfW13fgl5JWVhOfvRy5z4hvN/yOzyqwQq6cFuPX6zkz/tokdYJ5cPzDcNT/wv5lDT9P7XpB96nWa3PP0+CzV1ruWzw9/vk7j4Oz1sDud6xwyk5jrRDBQ+ut78Fux0HhwPjnyQROX2cnn/xTwWgikhpu532BKIMekyk3QohQfZ8h1zXdVnIJfHQbHHEIZPZLxbam4UoVm61AtnV3W+9VxBIu5rRNMle7HqmuQJrrMBTyuvt7PSGQDb3Pjnwu5ibPw2ueiIiIiIiIiIiIiLiqaCXBaADZRjbVZstgtDozhnvsRERERERERERERNKMgtFEJP0UjfS2sNtOxVb49DnY/aZzn3G/jm1sERFJnlgDyCriCEaLtIB0+3NQMif28dNNOASLr4ZP/tGwbfA1cMyfwAikrCxJU27BgfXKVsDWx6D/xYmvJ1XKVsGCmXBkh/d9jGDi6skkgSDkFUPVLu/7VO+33x7LTVutPRjNy9dk1A+tP/O6R+67+Z9w7D/iKskXToFvgSRfzjrmT/DiaKi1vykSgPevgB6nQH6v5NVV7+Bq9/YJ98DQG5pu6z/HfTF+j1OhoH/8tUlqGQEroKzzOPv2wdfYB3aVXOrP/NkdoPcZTbe1xcCvfrOjC0ZLl9dgEWl73M77grnJqyNakYLROo6G4x+1QkEbC+bBzIWw5Hr3EFxXEcLl9y2FV46xbyv7yPoQAeihUOK0dNZaeKKzf+MFcqzzxpxOzmHwkeR6OKcXEREREREREREREVflocO22wsyMRgtkEN1qKrF9lo9VEdERERERERERERaAQWjiUj66eSwYNert851bgvmWwuhREQkvWUVxrZfZTzBaBGCn1bc2rqC0bY/0zQUDWDjX6HXWdDn7JSUJGnM5sYZW+/Ohn4Xts5wvcOb4MVR0e9nRFgo35YE86Lrv3+JFc7QPITBKSzLTTSBbJko0tekeDr0n239PS9CcES9x4tg+Ldg5K0QyI6tri0PW79bdr/RsK3jaOh+Mhz9Uys0yY1ZZ7/dSPLlrIJ+cNzD8OaZ7v2e6Q2XmsmpqTGnYLTcLnDBXvu2nqdDdhHUHrRvn/QXf2qT9NbrLOh1RtMwmO4nWUFe4p+SS2HRVdHts/7/2bvP8LjuOm/j95lRsyT33uM4sR2nOE53qtNJIz2B0GGBZemwLGF3gST0Tlg6+wCBZcMSCJAQ0nvvxenNiXuvkmWVmfO8ODGWpTmj6Wr357rmss6//iRLU6RzvvMj2PNffB4xEKy8GZ7/Lmx5AeiFxwgpH9meUyb6cDBa1ZDs/ac8Ef8atWE6LLwOnroEnr40/717Cox75MPZ+yWAYbNh9sd7uwplUjMSjroa7rkg/vVpPhLVUD0UDvwB3P+OwtbIJexckiRJkiRJkpRVUyrzmyM2JodWuJLiVQWZz+tqL+TNRyVJkiRJkiSpjzEYTVLfM/UceGwstK4t/doLrij9mpKk0qtqKGxeUcFoPbw7WvNrha/dF73wvcztL//MYDR111NwYGdPfBbmfyu/9VPbofl1CJIwdI/85lZCy2q4tg/W1d8UEqbw6CfgkJ/s2lbIu1m2rsl/Tn+SLcRi/2/CrI/sDIxI5fjz3L4FFn0RVt4IJ92beUwYwuZnIExD24Zo7ZoR0c/ys9+ApX/sPmfTouj24g9g4d+BN0IqaobDiHm7Bluk+0gwGsDkU+HYm+D2k7KPe/5ymFPBUIN0e/xzlEN/GT8vWQt7fQae+s/ufeeuh9pRJSlPfVyyBo7+Kyz9E2x8PPoZnHJWzwEzyk+yNgrqT23Lfc4jH4GWlTDvy+WrS+URpqPHxm0rosfQuNddUn+Tb8hxpY05HNbd1729cffcgrsLDaLM9hqnZSWsf6iwddVPBNHjfKIm+l5I1ES3ZJfjRE2ncZ2Pa2HUQdHfxHz+3XdNPRtOeRz+HvOmS/t8Hp7+Um5rJWqif2e8HYbPhRsOzL8eg9EkSZIkSZIkqShhGNIcG4zWw5s89kHVQU3G9o6wgHPsJEmSJEmSJKmPMRhNUt9TNQSO+Rvc9zZoejlqqx0dXaA7Yr/oNnI/uOdCaHolv7XHHF76eiVJpdcbwWipQXYSwNqYkJsV11W2DvUPqe25j33u27D/N3K7+Bxg/cNw70U7n/dNPgOO+D1U1edfZ7k8/+3ermBgSBYQjPbyT2H2R6MLhnfIFgIWp2V1/nP6kzAmQAxgt7ftGnKU68/mDuvug5uPguNu2fX/sHkJ3H0ubHgkv/U6u+PUXY9rR8OC38Gkk6PjuM8r0Uu/zpp4IhxzHdx5WvyYpy+LgugSycrU1LoeCDP3NeyWfe7cz8K2ZfDq/4t+rkbOh8P/x1CGwSZRBdMvjG4qn+F7w4aH85vzwg+in9Pq/veO1IPWlhfgzjNg60u9XYlUeoU8l6+kuRfDXW/u3j7+2BwXKDAYLVtoc9Nrha2pNwQ7w8N2CRTLNXSs0/GO8cma7iFmOc2PW7NCz/nV+0bsAxdsg4feD69fGQWhBskobHrfS2DOp+HBf8ocDt5Zonrnx6MOgPM25TZvh5qRMGyvgj8NSZIkSZIkSRK0htvpiDknqX8Go1VnbG8PCzjHTpIkSZIkSZL6GIPRJPVNYw6BM16Atk3RBdp14yDocnFSw/T8gtH2+CDUTyptnZKk8qhqLGxe67o3LkzLM/QFIN1a2J6qvDANr/4aVt8Br/8vhCmYeg7se2l0oaJKL9+fj3UPwNgcAmnTHXDjIbu2Lb8W/tAAFzT3jXC0MIQlV/V2FQNDoq6wea9dCfO+tPO4kGC07SsL27u/yPY1SXQ5+W3KWfDa7/Jbf+098Px3osCJ138Pa+6Cl3+Wf509aV0P970VTn8R6sZkCUbLfEJfRUw+FY6/DW49LnN/2wb4fRWM2Bc2LYraZn0EZrwTRh9c/P5b+BFGAgAAIABJREFUXooCA1Mt0WNf3fj4sXVjs6+VqIJDfgL7fzU6rh7R/XW3pNIYe3j+wWgdW2HRpdC+aWcI4rK/Rn2zPgb7XQo1I0peqgoUhvC3Ob1dhVQeyfro1pdNPh0mvxmWX7OzrXpYdH+Z0/zTYNEX89831RI9F8/0/HTDo/mvVzFxoWM5BIwlMwSOFRM6FhdiZuiY+pqqIVGQ9ME/joIPh+6x8/dWNcPhqKugdQPc/y5Y8bfMayRqdj3eMa9tI9xwyM43DYgz9+LoZ02SJEmSJEmSVLCmji2xfQ39MBitquvvnt/QYTCaJEmSJEmSpAHAYDRJfVeQgNpR8f1143Jfq2G36GIFSVL/UNVQ+NxUS2Hz022F7znQdDQX939QiHRHFNDSk1Qb3P8OWPKHXduXXh3dTrgbxh1ZnhoHs1SewWiv/1/mYLSOFkjWRWF2iSq4bm78Gn/fD057JrpIupJSrVE4b6IKakbB6tuh+fXK1jBQFfp/ufL6XYPRCjlpa8vzhe3dX+QTjDbxpChsIN/Awxd/GIU7LL06//ry0bYxCm6b8/HosSGToJd/nTX+WJh0evzF7rAzFA2ir91LP4Ejr4KpZxe+79r74JZjdgbGvfSTKIAtTu2Y3NatGVl4TZJyM+0CeOHy/Oc9/53M7S/+AF78Lzh7JQzJEpCoyrn3Lb1dgVQ+E0/K7fV6bwoCOOJKeOWXsPJGqJ8Me30Ghs7Mbf7I+VA/FbYtzX/vts1RqG9n25bDox/tee6oA2HIpBxDx/INGDN0TCqL6mEwcr/MfbWjYNT8LMFoMSHfNSPh9Gfhue/Ak5/LPOaI38P0C/OvV5IkSZIkSZK0i6ZUfDBaY3JoBSspjeog8++e79p0A882PwZAMqhmRt0sjh5xCkOrhleyPEmSJEmSJEkqSh+/kkGSsqjNIxjt+NujoDVJUv+QrC98bnuTwWjF+kMjjD0SDvt17hcRF+qVX8GT/w7bV+1sGzYHDrw8uvh6h1W3wEMfgqaXs6/39GVw3E3lqXUwS23Pb/zSq+DA70cXpwM0vQYPvBvW3LlzTLIu+7pNr8Btx8OJ9+S398v/DQ+9f9e2XALztq+Dh/8Zll+TPWRKlbfhUbh+Piz4TRQCVcj/z7ZlcPPR0RqNu5W8xF6XTzBa9bDoguq78wzoallZ/lC0HR77BOz5QdjyXOb+3g5GAzjyD/CHPJ6vhCl49GMw+YzCgkXCMLqPCruExXUOYOusekT8RfeSKm/MAtj3Ulh0CRCWaNEQnvkqHFRA4JpKq21T9+BmaaAYtlf/ecORqnqY/ZHolq8gET2/u2lB/nNTzUCXYLQXftDzvGOuhcmn57+fpD4uiO9K1GTpq4a9L4bRB8N9F8H2NVH7yPmw8HrDcCVJkiRJkiSpRJpjgtESJBiSqPAbCpdAdZD5d8/r21ezvn31P46fbX6MR7bezaenfo3GqmGVKk+SJEmSJEmSitIHriSVpALV5RiMNvqwgRl+IEkDWSIJySGQasl/bkcTkOVCsY1PwIbHoG48TDplZ3BmLnulU1Ftg8Hae+DWY+HNr5Q+WKV1A6y4Dp77Dmx6snv/lufh9pPh6L9C8+uw9l5Y8n+5rb3q5ig8JshyEaLyl27N3F47GlrXd29vWQmrb4MJx0O6A249DpoX7zoml7C1tffCdXvDuGMhWQvVw6FhGkw8GYZM3DmufQu88kt47JOZ17nlKNjzw92fPza/Bg27wZjD4IXLYcXfe66ps8N+DcPnwo2H5DdvsKrLct889ZzsoVsbn4CbDoezlhQeZLn2brjlmDfu1wbIr0OaX4cVN2T/3s30rqBTz4LzNsCau+GuM8tXXzFuOwm2r87c1xf+/6qGwJFXwT3n5z5n2zJ48Ucw5+P577fxifgQtExqx/Q8RlLlBAHs+wWY8Xa4poTBw0uvMhitL1hzV+5jp50PE08pXy1SKQ2bA6MPGjxhq2MOg/O3wh+HQ5jOfV57U/e25dfGj0/UwLnroHpo/jVK6t8yvT7vasLxcMbL0e/EkkNg3FG+8ZMkSZIkSZIklVBTTDBaY3IYQT8877Qql989v2F123Ie3noXx470zXskSZIkSZIk9Q994EpSSSpQ/eTcxs18X3nrkCSVR1VDEcFoMZ79FjzxWSCMjkcdCCfcHYWbtG/tee10GySG5F9Tf7VtKay4Hqa8uXRrbnoGbj8JWlb0PLbQsJ4dgVwqnVRMMNrU8+Dln2Xuu+0EOOyKKMCsayhaPjY/G906qxkJx1wLY4+AjU/C9fv3vM5LPyq8hkwOuwJ2f2dp1xzoxh8LS//UvX34PlHA1BMXw3Pfip/f0RSFp6XbM/c3zoy+17KFGGxbAqtvh4kn5ld7X7T8b3DPhZDaln1cXIhYzcjo/n3GO2Hxb0pfX7HW3h3f11cuCp90Wv5Bro99Igotm/G2/PZ6/ff5ja8bm994SZXRuDvs/h549VelWa9lJbSsgiETSrOeCtP0Sm7jhu8NR/6hvLVIKk51I+zzBVh0Se5zuv4eKt0BW56LH7/flwxFkwa0LBfNJWtyW6J6KEx6U2nKkSRJkiRJkiTtoimV+VzhhuSwCldSGvXJxrzGv7TtaYPRJEmSJEmSJPUbfeRKUkkqQP3UnsdMOBFmvrf8tUiSSq+qobB51+8Pd5wB6x7c2RaG8NQX4Yl/4x+haAAbHt15sesrv+h57XRbYTX1ZxseKX6NjhZ47ttw/QHw931yC0Urxn1vL+/6g1F6e+b2uvFQPyV+3gPvioLwSq1tIzzyEdj8fG6haKU2cn/Y7a2V37e/m/EuGHf0rm1VDXDg96Kgq/nfhPpp2dfY9AyEqcx9h/43vKUdqkdkXyNbSEF/0boB7jyj51C0INFziFhdmcN09vhnuCiEUx4v3Zotq0u3VjGqhsCUs/Of98hHoG1Tz+NW3QK3Hgf/G8Bz38xvj6Gz8q9LUmXs84XSBjxeMyN6nn33+dFzI1VW6wZ47FM9jxsxD05+uPz1SCpedZ4XvXQNRtv6UvbxI/bNb31JA0dQ3dsVSJIkSZIkSdKg15TakrG9Mdk/39hmTv1+eY2PC4aTJEmSJEmSpL6oqrcLkKSC9RSMduRVMPWc0l5sKkmqnERt4XNX/C26Hf0XmHJmFMr19GWZxz73TRi6B2x5oed10+2F19Rfrc/z4v0wDRsfh0QNDJsLiSQ8+vHcgudKZfsqaF0PtaMrt+dAl2rN3J6sg+F7w7Zlla0HYOMTcN1eld83WQcLfgMJL2bNW3UjLLwBVvwd1j8AQybB5DOi++Adhs6EbUvi11h9a3xfojp67j/j7fDiD+PHLb8Wpp4H9ZPy/xx6S7oj+p5vehWCAO65ILd5uVx0PaTMwWgNb7xuG7k/jDkc1t1X/Jqdv2d629x/gyV/gLAj9zntm+Dxf4M5n4Rhc2DzM9CxDaqHwpbnIbU9eizLJWgnzm4XFT5XUnk17gZnr4bFv4bHP1P8eqnt0fPvjY/D0j/COWugbmzx66pn6Xa45ZjsY+Z8GkbsF4Xq+vxR6h+qh+c3vmsw2uans48fvk9+60saOBI1vV2BJEmSJEmSJA16zbHBaHm+eU4fceDQo3iy6UGebHqw58HEf/6SJEmSJEmS1BcZjCap/8oWjDbz/TDtvMrVIkkqvUQJnqredRZMOAnW3pV93EMfyG29dFvxNfU3K2+Ara9EYUU9aXoVbn8TbH0pOh6xH0w5q7KhaDvccRqcdH8UIKTipbZnbk/UwvjjYeWNla2nNx13C4zYt7er6L+qhsC0c6NbJo0zYfXt8fPrxsX37bjAeP63oH0LLP5N5nGrboG/ToN9Pg/7fKHv309segbuPAOaF+c/N5cAltosX9NSGNcpMOaIK+GBd0f/x4lqmPHu6Ov/8s/zW3PUQaWssDgj50VhiQ99EDryeEfVV35RvsfHIZNh4knlWVtSadSNgb3+NQrWevLfS7v21ePgLR1RQLHKa+VN2QOQRh8KB3y7cvVIKo3qPC96ae8SjPbM1+LHDp0F9VPyr0lS/5HtdwyGpEqSJEmSJElSr2uKCQZr6KfBaNWJav5p0r/x0ranWbz9BTrC6A2gV7Qu5cmmB7qNj/v8JUmSJEmSJKkvMhhNUv9VNQSGTISWld37DEWTpP5vR8BNsVbdVJp1YOAEo6Xb8xv/+Kfh6L/0PO7et+0MRQPY9FR06w3rH4SlV8eHLyk/6dbM7clamP5WePmnUTBeUQLY91JY9IUi1ymTCSfCcSW8P1Fmjbtn79/yQnzfjguMk3Ww4AoggMVXZB4bpmDRJTD2KJhwXCGVVkYYwv1vLywUDbIHye1Q3VjY2rmYeDKMOXznccM0OP426GiBsD0KnWhanF8w2uQ3w6gDS19rMXZ7K0w9F1LN0fH2tdA4A1pWwF93q2wt9VPhtCwhPZL6lslv7jkY7aT7YfsauOvM3Ndd+keYfmFxtalniy7N3j/jHZWpQ1JpVQ/Pb/yO54AArRtg4+PxY/e7rO8HM0sqn1L9vluSJEmSJEmSVLCmVOY3Pmzsp8FoAMkgyZyGecxpmPePtmeaH8sYjNac2koYhgT+zUqSJEmSJElSP5Do7QIkqSjTLujeVj0Mxh1T+VokSaVVNbS3K+huoASjpVryG7/sGmhZnX3MtmWwvvtJFL3qhct7u4KBIxUXjFYHtaPgpAdhWhHhGyPnw5tfhn0/D8fdUvg6mSSHROFXO275GHtUFFhy8I/h2Bvixw2ZWFyN2qmnYLRtS7s1pcIEzal6CKp37WjYref9Xvnv3GvrDZufho1PFD5/4ik9j6kdW/j6mSTrYNLpMP/bcPQ1mYMfqoZEr9sgChA7c0luax/wPTji95BIlq7eUknWQM3I6DZsVhTU1zAdTn6ofHvu/w2Y/QkYfyyMPx72+jc45fGdX1tJfd/wuTBiXua+2R+HM1+HMYfBlDdHAbK58nlw+S3/G2x4OPuY+qmVqUVSaeUbjNbetPPjpX+KHzduoaGV0mBQMzK+L1Ed3ydJkiRJkiRJqojm1JaM7Y3JPnjOchHigt7SpGlJN2fskyRJkiRJkqS+xmA0Sf3bvpdEFxTtUNUIR/8FkrW9VZEkqVT6YqjHQAlG69iW54QQ/jwB2jbGD1mRJTSqHOrGwR4fyD5m7d3w6CchDCtT00CW3p65PfHGc666MXDk7+HQX+a/9ryvwSmP7QzEmnA8jDq4sDp3mHI2vDUNF4Vw4TY48a6dt7emYfYne17j7JXR+GP+Cnt+CIIsL58P+H7m9lkfK6z+waxxZs5DO9JJPvLi5Yy6Zx2j7lnH6b+cyvqmTj/vdeN6XuT1K2HLiwUUWgFhGu4+r/D5QRXs/7Wex406IP/whzhzPwcXNMPCa2GvT0dhYblomBoFLA6Z1L2vbjyccHf08zznE1GoWn8y+mCY9ZHSr5uoju6bDvweHH8bHH8LzP8G1I4u/V6SyicIYMGvoX7azrZhs+GspXDg96GhU/ue/5z7uuvuh+v2hfU9BHepMOl2eOiDPY8zGE3qn/L9fdRrv9v58aan4sft8x+F1SOpf5n+ViBDQPjwuZCoqng5kiRJkiRJkqRdNcUEozXEBIn1V9mC3ppSWytYiSRJkiRJkiQVzmA0Sf1bzQg4/lY49Sk49iY4ZxWMP7a3q5IklUK2C1EX/HbXYMxKSbdXfs9yaM98YkeP4i7+3/gUPPT+wuspxJ4f6TkYDeCF78Nr/1v+ega6uFDArmG0M98DC6/Pfd39vw57X9y9PVsIWU+mvwWOvjoKGskkCODA78Kpi2L6E1Gw05AJue858WRomLFrW3II7P7O3NdQZEdAXg4ufvVr/HjFh9maGkZ7WMPfn2/g7B+ndw4YMjG3hW5/E6T6UPBlGMLa++Dv+8HWIkLbzt8M1Tm8k2myLrf7056cuQT2/2rhP79jDoHTX4DjboHDfxfdjr0JzngJxh1ZfH29af+v5/W9nZP9vpTb/6+kvm/k/nD6c3DiPXDifXDqM1A/pfu4unFQOyb3dTc/DTceAs98FZqXlq5ewapboWVFz+MMRpP6p5o8Q4M3Pgav/x88cTG8+MP4ceOPK64uSf1D3ViYdn739j0+VPlaJEmSJEmSJEm7SIdpmmNCwRqrBlYwWragt+aYcDhJkiRJkiRJ6msMRpPU/wUJGLEvTDwRqhp6uxpJUqlkC0abdEp0q7S4cKj+5oXvFzZv6Z+gZeWubU9/Ga6fV1w9DTNg7BEw51M9jx2xHxzwXdjnP2HUgXD8HVFIRDZPXxoFDalwcaFRQXX3tklvguNuhbFZgoyG7x0FHM79bMy6BbxUrR0DB3wPFvwmt/Ej9omCnKaeB3UTou/DPT8E52+Bqvr89q4ZDifcGYWyNUyHiafAsTdG36PKT83InIalw4D/XfPWbu33vAzLNr7x855r8EDzYlj+11wrLK8whPvfCTcfAZufKW6tfL6P9/86zPsqjJgX/Xzu9yXY78u5z9/zX6ChBOEv1Y0w4XjY7aLoNvHEgRH+VdUAh/6ydOtNfwvM+XTp1pPU+6rqo+fDYxdAIhk/bspZ+a/95H/A3/eB1XcWXp92tfrWHAYFUDu67KVIKoNsv4+Kc+9b4NlvxPfve0lxAeCS+pcFv4W9PgPDZsPoQ+GQn8Hsj/R2VZIkSZIkSZI06G1PbyNNOmNfY5Ygsf6oNqijKtP5nUCTwWiSJEmSJEmS+omq3i5AkiRJyijbhaiJ2ijAaNlfYN39latpIASjtW2EV39d2NwwDX+eBMdcB5NPhY1PwVOfL7yWiSdHa+0IfwhDeP678ePPXgFDJu7aNv4YOGc1PHVJFICWydaXYOMTMGp+4bUOdmFH5vZE5hNnmHBcdCtYkOOwquji0pnvLWybhqlw1FWFzc201hFXlmatwSwIYOxRsPburMM2dYxgVdvEjH1/XxTygaODKLAuV6//Hqadn0+lpZdOwQ3zYdOi4tea/pb8xgcJ2Ptz0W2Hto2w5CrY9GT2ucNmx4ccaqfxx0RhiRseLW6d2R+HAwsMOJXU/+3zn7D6Dmh6Ob957Vvg1oVw4XZI1pajssFlWQ6BqqMOjJ7XSOp/kvVRePb2VaVbc9zRpVtLUt+XrIH534xukiRJkiRJkqQ+I1sgWGNyALx5YydBENCYHMamjvXd+gxGkyRJkiRJktRfGIwmSZKkvmn4PvF9ydookOm4W+HqsdDRXJmaBkIw2sanINVS3Bp3ngYHXg5b8wxkANjr36L/u1EHwpQzozCeHYIAgiSEqcxza0bGrzv9wvhgNIhCjwxGK1y6PXN7XDBasTp/X3R19ipYcV308zjmcBi5X3lqUO+Z+d4eg9G2dMSHZ+6SQTL7E/BCDiFSS6+Gxb+F8cdD/aQcCy2xh/85/1C0fS+DZ77c/fFp5vuLr6dmJJx0Hyy7Bl74HlQNhTmfhEmnwIbHYPWtUD8VJp0KNSOK328w2PcSuPOM+P5Jp0dhR1VDYcxhUNUIw/eKHhfbNkaPnYZqSINbw3R408Ow/FrY9DQQwsu/gPZNuc2/8WA49amyllg2HS2w6Y3aRx/Se6Fjza9Hwcs9mfm+8tciqTyCAHa7KHtwe76y/Y5LkiRJkiRJkiRJFZEtEKwhmeXNnPupxuTQmGC0rb1QjSRJkiRJkiTlz2A0SZIk9U1Tz4lCYrqGeI0+ZGcYU9UQOOTncN/bKlPTQAhGKzYUbYdHP57f+NGHwYIrYNis7OMS1ZCKCUZL1sXPG75XFBiz4dHM/Sv+BvO/kVut2lUYQtiRua9cwWhkCbqoGxsFZ2ngmvEuaFkFT34udsimjvggrsbaTgc1o3Lf9/53Rv/u/R+w35cqG7jSuh5e+e/85w2fA8feCA+8F5oXQ+0Y2P+bMOG40tRVVQ+7vSW6dTb6oOim/Ew+PQoW7foYOvU8OPTn2QNAJWmHmhEw4x07j+d9JbpfeeknPc/dtCgK9mqYXr76ymHD43DvhTsDyUYdCEdf0zthpk9+vucx874Ge3yg/LVIKp/9v17aYLS6saVbS5IkSZIkSZIkSQWJC0arCqqpDbKcn9pPxYW9NWcJiJMkSZIkSZKkviTR2wVIkiRJGVU3wt7/vmtbohr2+eKubVPOhFFdwlkady9PTen28qxbSXEBV+XQMANOfwHO2wAn399zKBpAUETQ1kE/iu/b/GwU8KX8ZfueKeb/K5sgy0vVbH0aGIIA9r4Y9okPHtnYER8g1VjbKdCskKCpZ74Cq2/Nf14xNj5R4MQEjF8IZ74K566Dc9bAzPeUsjKV2uyPwYXbo9uZS+CCZjjqKkPRJBUuUQ0H/xgubIWp5/Y8/q6zIEyXv65SCdPw4Pt2hqJBFIb8yL9Uvo4Xfgiv/Tb7uPM2Rs9jfM4q9W+Japj85tKsNeGE0qwjSZIkSZIkSZKkojSntmZsb0wOI6jkm2hWSGNMMFpcQJwkSZIkSZIk9TVenSNJkqS+a5//hKP+BLu/B2Z9BE64CyafuuuYqgY47hbY/5sw9bwoSOfkh8tTT7qtPOtWUrqCwWinPxeFoeUT9jL6kML3G3MoHPbr+P7FVxS+9mCWLRAwUVWePYfuUZ511b8kh8R2beoYntsahX6PLu4h9KTUmpcUNq/z/Wvt6ChUTn1fsja6NUyFqvrerkbSQJGsgSOvggX/A7Vj4sdtfAIe/Xjl6irW+kdg4+Pd25f9FZperVwd914Ej340+5j9vw41IypTj6TyK1Vw7e7vK806kiRJkiRJkiRJKkpcIFhjcmiFK6kMg9EkSZIkSZIk9XcGo0mSJKlvm3oOHPZLOOi/YMxhmcfUDIe5n4GjroL9LoPaUTD3s6WvZSAEo4UVCkY74c4o9CVfe306c/tu78ht/rij4/se/lD+9aiHYLTq8uy554czt086NXO7BqZE/H3Ixo74kIKOdKeDMFXY3ot/U9i8Qq25I/85VQ0wZkHJS5Ek9WNBADPeBueuhWRd/LgXfwhLrqpcXcVYd19839K/lH//VCvcdiIs+b+exzbuXv56JFVOzaji15j1MZh2XvHrSJIkSZIkSZIkqWhxgWANMQFi/V1DTOBbc2prhSuRJEmSJEmSpMIYjCZJkqSBaca7S7/mQAhGS+cQjDbxlOL2GH0ojD2qsLkTToDhc3dtS9TAnh/MbX7t2Pi+1HbYvrawugazbMFoQZmC0UbuD2OP7LJXAvY03G5QyRLosqljRGxfR+cstNGHFL7/4v8pfG4+0h2FBbHN/ABUDSl9PZKkgeG0Z7L333MBpPrB65t198f3bX66vHs3LYarJ8CqW3IbXz28vPVIqqzaIoPRJp0GB10OiarS1CNJkiRJkiRJkqSixAWjNQ7QYLS4zyvu6yBJkiRJkiRJfY3BaJIkSRqYhs8p/ZoDIRgt7CEYbcR+sPBvsP/XoaaAi4AnnADH3QRBUFh9iWo44S6Y+T4YOgsmnQrH3gBjj8htflVD9v7NzxZW12AWZglGS5QpGC0IYOH1MOsjMGwvmHAiHPUXmHx6efZT35Ssje3a2DEyti+VDncejDoQhkwqbP/73wHbVhQ2Nx8rb8jeP+pA2Otfo/vl0YdGx/O+Bgd8u/y1SZL6r8bdo8eMbFZeX5lairHuvvi+7WvKt+/q2+HaPaB9U+5zqgfmyfLSoFUT/5ojJ3t9ujR1SJIkSZIkSZIkqSSaU1szthuMJkmSJEmSJEl9k29TLkmSJOUqNcCD0apHwEH/BUEC5n4WZn0U/tBD0FhXR/8VquqLq7F2NBz634XN7SmQ7daF0b/jj4W9/z0KclN26SzfM+UKRgOoboy+HzV4JeKD0ban62L7OtKdDoIEHPILuOdcSG2P2urGwfS3wguX91zDXybDOaujOeXy+h/i+w76Icz68M7juZ8tXx2SpIFn+kWw4dH4/rvOgrNXwpAJlaupJ02vwiMfhy3PQVUjbFsWP7ZcwWhhCI9+HMJ0z2M7Sxb5OkhS3zJsduFzZ/4TjDumdLVIkiRJkiRJkiSpaE0dmQPBGpJDK1xJZcQFo21LNZEOUySCZIUrkiRJkiRJkqT8GIwmSZKkgWvIJGhZUbr1Us2lW6u3ZAu5Om0R1E/ZeVxIwFmxoWilMHwubH42+5jVt8Pae2Dh34EAkkNg1EGQrKlIif1K2B7fV85gNCkZH36WCuNPyurommEy+VQ47TlYeWN0HzXhJBgyHvb4Z3j1V/DcN7PXccOBcMYr5bt/WP9gfN+088uzpyRpcJj5Pnj6MmjfHD/mzxPhmL/B+IVQlWcocqk1vQrXzMx9fGuZgtGaX4NNi/KfVzO85KVI6kXjjoH6abBtya7te3wQRh8CYQoe+kD3eVPOgkN+3nNwuyRJkiRJkiRJkiqqKZU5GC0uQKy/iwt8CwnZlmqmsWpgft6SJEmSJEmSBo5EbxcgSZIklc2+l5R2vScuhk1Pl3bNSgtjgtGGzd41FG2HyW8ubz3lMOm03Mal2+G2E+G2E+DmI+CGA6DptbKW1i+lswSjBQajqYwStbFdqZqxsX0dqQyNjbvBnh+EGe+IQtEAhs+B+d+AC1uy17FtGay5o8dyCxKG3YMWdpjzaagbV559JUmDQ81wOO6WnsfdeTr8bS/Y8Hj5a4qz9t78QtEAtq+JHktLrZDXfI17RAFKkgaORDWccAeMPQKCBNSOhXlfg4N/AjPfC3u8H858DcYeFfVXj4B9Pg9H/clQNEmSJEmSJEmSpD6oObU1Y/tADUbL9nnFhcRJkiRJkiRJUl9iMJokSZIGrmkXwMj5pV3z3gtLu16lpWOC0YKqzO17fw6qMr9rXDdTziqsplKb9eHC5m1+Bh77RGlrGQiyBaMlDEZTGSWzBKMlGmP7OtL57lMHx92afczGJ/JctActK+H+d8GVCUhtzzxm2gWl3VOSNDiNPgiO+L+ex21bGgUFh/k+kJZAqhXue0cB81rggffApkXF17DxCXjoQ3DXOXD/2/OfP+/LBiFJA1G/5G7VAAAgAElEQVTjDDjxHjh/C5yzGva+eNef9YbpcOJdUf9562G/y6KQNEmSJEmSJEmSJPUpqTDFtnRTxr6BGozWkIw/99dgNEmSJEmSJEn9gWfnS5IkaeCqGQ7H3wbzvwNTz4Fhs2HKmbDvpXDYrzPPGTEv+5qbn4U195S81IoJ44LRkpnbxxwGJz8Acz8Hu78nClU44yUgw0X/084vWZlFaZgOJ9xd2Nxlf4V1D+4MKkp3wPa1EIalq6+/yRqMFhOoJ5VCsi62K5VoiO3rSBWw14TjYOq58f3tmd8ttCDb18K1e8Li32Qf1zC1dHtKkga3yadB9fDcxt755vLWksnKG6F5cWFzF18BNx0B6x8pfP9Vt8JNC+Dln8KyP0N7nieAj5gH0/t5gLak7KoasocfVjUYiCZJkiRJkiRJktSHbUs1EZL5PNBsAWL9WU2iltog8zl4BqNJkiRJkiRJ6g+8il2SJEkDW80I2OtTwKd2bQ9D2PoiPPPV6DhRCwdeDnt+EG47GVbdFL/mLUdB4x5wxJUw+qCylV4WscFoWV4aDJ8L+39117bDfgUPfQDSbdHxnE/B9LeUpsZSGHtE4XNvOiz6t2G3KBSsZTnUjonC9CafVorq+pdswWhBdeXq0OCTqI3tSsWcsAWQKjTHcMFvYemfMve9fiXM+1KBC3ex6IvQ0Zx9TKIa6saXZj9Jkqoa4Kir4bbjex674rooELS6gid+L/tLcfM7tsLz34Uj/rew+c99e2cwciEmnVr4XEmSJEmSJEmSJElS2WULAmtMDqtgJZXVkBxKa0f3v4c3p0r4RqGSJEmSJEmSVCa+fbkkSZIGpyCAeV+Bs1fBCXfDuWujUDSAZHzgzj80vQy3nQBtm8tbZ6mFqcztiTwzk3d/F5y7Dk68B85ZAwd8B4I+9PIiCGDqucWt0fxaFIoG0LoO7jwDNj1TdGn9TpglGC1hMJrKKJktGG1IbF9HzN1cj6qGxAc8Nr0CTa8VuHAnqTZ46Sc9j6ub0LfuUyVJ/d+E42C3t+c2dsMjpd9/+1p46afw1Bdh9Z279m1+tvj1X7+ysHlhCKtvL27vurHFzZckSZIkSZIkSZIklVVzlmC0hmQF3ziswuJC37IFxUmSJEmSJElSX+FVtpIkSRrchoyHcUdCdacTG2rH5Da3fTOsuqk8dZVLuiNze5BnMBpEX7OxR/TdIIBcgx9yFsKSq0q8Zj+QNhhNvSQRH1KZDuJD0zrSRexZleUktxe+X8TCb7j5iNzGjTum+L0kSeqqblxu40odBrz1ZbjhIHj4Q/D0ZXDrQlh06c7+7WtKs8/Gp/Kf07EV0q09j5v3FahqzNw38ZT895UkSZIkSZIkSZIkVUxTamvG9tqgjppE/Llo/Z3BaJIkSZIkSZL6M4PRJEmSpK7yCfp6+svlq6McwphgtEQBwWh93ZQzYeis0q65ucQhEf1B3PdMkIhuUrkEydiuVBAfmtaRKmLP6mzBaJfDvRfBnyfBldVw7azoMSDMMYlt3QOw4ZHcxk5/a27jJEnKR3XmE5672fx0afd95iuwbcmubYsugRsPi0LYWksUjPbwh/Kfk1MoWwCzPgaH/KJ7MPC+l8HwOfnvK0mSJEmSJEmSJEmqmLggsIZklvPFBoCGmGC0ZoPRJEmSJEmSJPUDAzD9QJIkSSpS7bjcx6a2l6+OckjHhVwNwJcGQQALr4Nr9yzdmsv+Urq1+ot0e+b2oDpzu1QqVQ2xXamq4bF9HTnmlGXeszF7/+tX7vx460vw1Odh4+Nw1J+yz0t3wE0Lcqth7BEw8eTcxkqSlI/q+MfPXTS9CusfgbX3QstyGHskTDo1e5hy81JYdx90NEXHVUNh3NFQNx6WX5t5zvoH4e/75Pc5ZLPuPkinIPFGuGpHM6y5K3qtM/7YzPXnEoxWPRyqG2G3t8Dog2H1rdHrwHELYeR+patfkiRJkiRJkiRJklQWccFojTHBYQNFY1Xm4Lem1NYKVyJJkiRJkiRJ+RuA6QeSJElSkeryCEZL1JSvjnIIB1EwGkD1iNKuF3bAhkdh1IGlXbcviwtGSxiMpjKrnwRDZ8HWF3dtHzKRdM3Y2GmpYoLRqgt4B9ClV8ODH4CDfxT/c5FrqOK4Y2DBb3cGukiSVErVOZ7Qverm6LbDc9+CIAlnvgb1U7qPf+mn8OjHMjxvDGDfS6F1faEV52/dfTDuKFh7H9xzHrSsjNqHzYaFN0DjbruOzyUYraZToNzQmdFNkiRJkiRJkiRJktRvNA/WYLSYzy8uKE6SJEmSJEmS+pJEbxcgSZIk9TlVjbmPHSjBaIkBGoxWMxJi3vGuYHefC2FY2jX7MoPR1Jvmf3PX4MYgAfO+ljX8rKOYYLSgwO/rV34Bv6+BRV+CVGv3/rX3ZZ9/URjdTrgDGqYWVoMkST1JZ3iMylWYioJAu9ryUkwoGkAIi75Q+J6FuOVouPetcPMRO0PRALa8ANfM6D6+NYdgtFwD5SRJkiRJkiRJkiRJfVJTamvG9oYBHowW9/nFBcVJkiRJkiRJUl9iMJokSZLUVe2Y3Mf2t2C0dEwwWjBAg9ESSZhyZua+428rbM3m12Hri4XX1N+kWjK3D9TvGfUtU86Ek+6DOZ+Gvf4Vjr8Tdn8XqSzZhB2pIvaL+37P1aIvwG0ndg9PXH5N/JwDf1DcnpIk5WrIpOLmr7x+1wC0jm3wzFfig3RLbeIpuY17/ffxfQ99aNfjbct7Xq96eG77SpIkSZIkSZIkSZL6pKaYILDGUr/xbh/TGBOMFvf1kCRJkiRJkqS+xGA0SZIkqavRB0GuJzsk+1kwWhgTjJYYwCFXB/0Qxi3ceTx0Fpz2DIw/tvA119xVdFn9wiu/gvvfkbkvUV3ZWjR4jT4YDvg2zP8WjDsSgFQ6fnhHlr4eFRuMBrD2blh9a5d1t8WPL+a+SJKkfIw5AoIi/yTQ0RT9+9JP4K/TYPEVxdeVqyETYPShxa3x8k+joOMdNj/b8xyf90qSJEmSJEmSJElSv9YcF4wWExw2UDQmM58L3ZLeRirufGJJkiRJkiRJ6iMMRpMkSZK6StbB7I/mNjbRz4LR0jEnMgQDOBitZjiccDuc8TKc/jyc9iwMnxv17f7uAtccUbLy+qx1D8GD743vNyBCvahswWgTTihicie3nQh3nwu/r4E/joaWlZnHJethxD6l2VOSpJ7UjYHd31PcGh3bYM098PCHoXV9aerKVaIW5l4MBMWt89fdYNUt0cebn+55fLvvlC1JkiRJkiRJkiRJ/VlTTDBawwAPRmuICUYDaEptrWAlkiRJkiRJkpQ/g9EkSZKkTPb7Mkw8uedxQT8Lh4p7h7eBHIy2w9CZMGw2JJI726ZdWNhayYbS1NSXvfqr7P397XtfA0rWYLRUEQuPWQA1o4pYoJOlV0O6Hdo2xI85/dnS7CVJUq4O/hns/3UYfVhhrwE6tsGzXwPCkpfWo0QNTD0LFv4dJp9R3Fq3nQiPfRq2vtTz2LbNxe0lSZIkSZIkSZIkSepVcSFgjQM8GC3b59ccExYnSZIkSZIkSX3FIEg/UCZBEMwB5gFTgCHAdmAN8DLwZBiGzUWsXQ0cAUwDJgJNwArg8TAMXyuuckmSpAoJAtjni7DyxuzjwvbK1LPD5mfhyf+ENXdC/VSY/y2YeGLu8+OC0RKD9KXBhBNhj3+Gl3+a37x0W3nq6Ut6+pokDEZT78kWjJatr0eJKjj8d3D32ZDaXsRCOagZCfXTyruHJEldJZIw97PRbc09cMtR+c3/26zy1JWLZE3076Q3RbdrZ8PWFwtf7/nv5jau3WA0SZIkSZIkSZIkSeqvOsJ2tqe3ZexrTA6tcDWV1ZDl82syGE2SJEmSJElSHzdI0w8GpyAIRgAfB95LFFoWJxUEwRPAH8Mw/Hoe648FLgUuBEbFjLkP+G4Yhn/KuXBJkqTeUjeu5zGplvLXsUN7E9x5BjS9Gh23bYDbT4YT74Gxh+e2RjomGC0YpC8NEkk4+Mewxz/BY/8Ka+7IbV66taxlldzGJ6FpMQzfC4bN7nl8mEOylMFo6kWpML6vo5hgNIiCVt78Kqy6BWpGwcj5sP6B6Gdo2zIYdQCk2+GF78OmRYXvM3yfKIRTkqTeUtXQ2xXkJ1Gz63H91OKC0XI1453l30OSJEmSJEmSJEmSVBbNqa2xfY3JYRWspPKqgmrqEvUZg+GasnxdJEmSJEmSJKkvGKTpB4NPEATnAz8BRucwPAkcCEwBcgpGC4LgFODXQE/pIYcDhwdB8Dvgg2EYNueyviRJUq/IKRhte/nr2OHln+4MRfuHEF78Ue7BaGFMMFpiEL80CAIYdSAc/jv4yxQgS+LSDum2spdVEmEI974VlvzfGw0BzPsq7H1x/JxUK9xwUM9rG4ymXpTKEn6WrS9nQybCjHfsPK4/p/uY3d8Niy6Fpy8rbI9JpxQ2T5KkUunvwWjD5sDqW8u/77Tzy7+HJEmSJEmSJEmSJCkvYRiypn1F1uAzgHXtq2P7GgZ4MBpAY3JoTDDalm5tqbCDFa1LaA+7nyObDKqYVDON6q5/u5ekCujpPn9E1WhGVY+tcFX9W1u6lfXtaxhXM4lkkCx4nVSYYk3bCkZXj6MmUVvCCiVJkiRJMhhtUAiC4IvAJRm6lgAvAmuBOmAisC+Q1xVxQRAsBP4CdP7tdgg8BrwKjADmA2M69b8NGBYEwVlhGJbisnVJkqTSq2qE6mHQ3v2P//+QaqlcPU/+R+b2DY/kvkY6Jhgt8KUB9ZNg7mfh2RyygVOt5a+nFF75RadQNIAQnvwcTD4DRuzdffza++HmHEP26qeUpESpENnCzzpSFSoiSMB+l0LNCHjsU/nP3+MDpa9JkqR89HYwWtVQGDoTNj6R2/iuJ87NeAe89KPS19XZ9Itg9MHl3UOSJEmSJEmSJEmSlJcl21/h58u/zoaOtUWt05gcWqKK+q7G5LCM4XDNXYLRHtlyN79b9SNaw/g3jK4KqjlrzDs4duQZBEFQ8lolKZNl21/j5yu+ljXoEmC3ull8YPLFjKgaVaHK+qcwDLlxw5+4bt3vSdHBkEQ975zwceYNPTTvtZ5qeogrVl5OS7qZJFWcNuZCTh51no8RkiRJkqSSSfR2ASqvIAg+TfdQtCuB/cIwnB6G4YlhGF4UhuE5YRguAIYBRwLfA9bnsP4U4Gp2DUW7F9g7DMODwjC8IAzDk4ApwMeB9k7jzgC+XOCnJkmSVH5BAOMWZh/TUaFgtHQHpLu/AxsAW1+EdI5JQKHBaFnN+yoccy1MPSf7uHQ/CUZ7/vuZ21+4fNfvmebX4alLcg9FA5h8ZlGlScXIGoxW6ejtOZ+E426F2Z+MwlMmntLznIXXQ+3o8tcmSVI2vRmMtu9l8KaH4U2PwVFXw6yPwv7fzP442vVdp0cfAuOPLX1tiRrY88Nw+JWw4DdRGKokSZIkSZIkSZIkqU9oT7fzo2WXFR2KNiRRT3IQnDvbkByWsb2pUzDaytal/HLld7KGogF0hO38ce0veX7bkyWtUZLipMIUP17+pR5D0QBe2/4iV6z8XgWq6t+eanqIa9b9Dymi60pa0tv4+YpvsL59TV7rbGhfy8+Wf52WdDMAKTq4Zt3veLLpwZLXLEmSJEkavAb+b3AHsSAI5gFf79TUDlwUhuEf4+aEYZgmCja7Nwhy+g3/pcDITsf3ASeE4a6/DQ/DsBX4QRAES4A/d+r6VBAEPwvD8PUc9pIkSaq8cUfB8mvi+1MVCEYLQ3jum9nHtCyHhmk5rBUToJbwpQEQheFNPh0mnQp/ngTbY/6ImuoHwWiLfwtbnsvc98ovYOUNcNgv4YnPwYZHcl83UQ1zPg27v7skZUqFyBqMlgorV8gOE46Lbjusvh0eeB80L951XKIG5n8HJr2psvVJkpRJbwWjzfoo7Pv5ncdTz45uEAX2xukajBYEcNiv4PaTYcsLpatv/rdh9kdLt54kSZIkSZIkSZIkqWSe2/Y4W1Obi16nMSYwbKCJ+zybOrb+4+MHt9yR15oPbrmdvRr2L6YsScrJC9ueYlPH+jzGL2JD+1pGVY8tY1X924Nbbu/WFpLm4S138qbR5+e8zsNb7iKk+wndD265nf2HHlZUjZIkSZIk7WD6wQD1RqjZL9n1//iD2ULRugrDsKOHPfYE3tWpqQ14d9dQtC5r/iUIgis6zasFvgi8N9e6JEmSKqq2hz+KbV8F6RQkkuWrYe298OR/ZB/T9EpuwWjpmKd4g+Bd7/ISJGDuZ+GxT2XuT7dVtp58pVrh/ndmH7NtKdx2Yn7rjj0Cjr2x90I0pDdkyz7LFppWMeOPhdOfj8JdqhuhfQu0bYIR+/jzI0nqOxLVvbPvnv8S35eszdJX072tYXr0mLv1FXjpJ/D8d4qvr35q8WtIkiRJkiRJkiRJkspieetrJVlnYm0O59wOAI3JoRnbm1Nb/vFxvl/TFa1Z3vRMkkpoeQH3NytblxiMlkXc13RF65I813ktZh0fIyRJkiRJpZPo7QJUNucDB3Q6vjUMw1+VeI+LgM4JIFeHYfhSDvO+0eX4giAI6kpXliRJUgnlEmBz2wnQ3hQFpJXDq/+v5zFbX8ltrbjs24TBaN3M+WR839NfqlwdhVh1a3nWPfgnhjqpT8gWftbRF4LRIApvGbYnDJkIw2bDmEP9+ZEk9T3TLuzeVjsGqvN8Z+wZ74JDc3jdMvEUGD4nvj+Z5dfEiSyhaUNnwt7/XprA5waD0SRJkiRJkiRJkiSpr1rVurwk6xw+/ISSrNPXNSQz//2/qVMw2uq2ZXmtubptBemwr5yoJ2kgW9OW/33+6gLmDBbt6XbWt6/O2Jfv1y1u/Lr2NbSn2/OuTZIkSZKkTAxGG7g+2OX4q2XY4+wuxzkFr4Vh+BzwYKemBuCkUhUlSZJUUrmE2Ky5A64aGt3ufDNsK/Ef0179dc9j1t7d85imV2HVzZn7ShEgMBCNPz5ze2obtG2ubC35aMoxKC8f+14CI/Yt/bpSAfpFMJokSf3BAd+NAjx3qGqABf8D7Vvi53RVPw0W/Bomndrz2PHHZO+vGR3fl6jJPrd2FBz2awg6/dljzOEw93O7tmWTrIehs3IbK0mSJEmSJEmSJEmquHxDvLqaVDONd0/8JPs1HlKiivq2xh6C0drTbaxvX5vXmu1hGxs71hVdmyT1ZFUB9/mr21aUoZKBYV37KtJkPtF6TdsKwjDMaZ0wDFkT83UOSbOufVXBNUqSJEmS1JnpBwNQEAR7AJ2vMHsNuL3Ee0wA5nVq6gDuzWOJO4BDOx2fAlxTfGWSJEkllksw2g6pFlh+bXS7oCm/uXHSHbmNW/wbOPT/QSLmKX5qO9x8ZPx8g9EyS9bG9y37K+z+zvj+MITNT8P6R2DkfjByfu6BDMXavqY068z9LAzfJ6p9xN6lWVMqgazBaKnK1SFJUr9XPwlOeQLW3gNtG2Hs0TBkfGFrDZmQw5gp2fuHz43vS23ref0Zb4Pxx8Lq26F+chSMlqyB3d8Nm5+BMA3pVlh9G6y7HzY/22X+O6F6aM/7SJIkSZIkSZIkSZIqLgxDVrdlfvPit43/MIcMW5h1fhBAVVBdhsr6rrhgtObUVgDWtq8kjAnJ+cy0b/CtJZ/N2Le6bTmjq8eVpkhJihF3n3/BuPezsm0pd2+6oVtfIWFqg0Xc1xOgNdzOpo71jKwe0+M6mzs20Bpuz7rPxNqpBdUoSZIkSVJnph8MTMd2Ob41zDWuPXf7dDl+KgzD5jzm39fl2JQFSZLUNxUabvaHRjhnNdQV+Uf/psW5j11zJ0w4PnPf0j9Dy8r4uYlkfnUJNjwaH4wWhvD4Z+D57+xs2+0dcNgv48PrSqk1v3fv62b6W+HgH0PNiNLUI5VY1mC0LH2SJCmDZB1MOKE0ax35B7jngvj++p6C0bL8mjjVmlsN9ZOigLTOhs2KbjvsdhF0tMAzX4FXfgHJeph2Acz7cm57SJIkSZIkSZIkSZIqblPH+tgglkm106hODK7Qs1w0JjO/OVhruJ32dBurYkJyEiSZVjeT4VWj2NyxoVv/6rblzG2YX9JaJamzpo4tNKW2ZOybVDuNkMyXy67JEv412PUUGre6bXlOwWjZAtZy6ZckSZIkKVeJ3i5AZXFIl+P7AYLICUEQ/CoIgmeDINgcBEFzEASvB0FwSxAEFwdBsFuOe8ztcvxynjW+0sN6kiRJfUOywGA0gEWXFr//9tW5j33+e/F9K67PPrdlVe77DCYd2+L7qurj+9bcsWsoGsBrv4UlfyhJWd2k2mDRZXDjArh2Nrz8s8LX2vdSOOJ/DUVTn5bKEv2dLTRNkiTlaM9/KWzemAXZ+4fumb2/fgrUji5s7XxVDYmC0M5ZDWcuhvnfAE+SlyRJkiRJkiRJkqQ+K1vQyviayRWspP9oSA6L7WtObWV1TEjO2JqJJIMqJsR8XXsK15GkYmW/z58Se7+/ObWRllSWawAGsZ5C43INNDMYTZIkSZJUKQajDUwHdTl+7o3As1uAm4F3A3sBw4B6YBpwPPA14MUgCH4UBEGWlAcA9uhyvCTPGl/vcjw6CIKRea4hSZJUftnCr3qy/NrC5jUthqbXoo/bN+c+b8V18OoV0LIS1twNbW/M7dgWhXJl07h7QaUOeB3N8X3JLN8br/wyc/urvy6qnFj3XgiLvgjrH4CtLxa+TpCA3d9VurqkMskWftbWUbk6JEkasKaek/vYsUfs/Lh+Ckw4KfO4cQuhflL2tYIAdn9f9/bG3WHkvNxrkiRJkiRJkiRJkiQNOHFhXMOSI6hPNla4mv6hMUswWlNqC6taM4fX7AhEGxcTPNRTuI4kFSvuPn9Iop5hyRFZAzHXtK8oV1n92uq27F+Xnvr/Ma7dYDRJkiRJUmVU9XYBKouJXY7rgYeBMTnMrQb+BVgQBMFpYRiujBk3osvxmnwKDMOwKQiC7UBdp+bhwMZ81pEkSSq7qobC57asgDAdhU3lNH4V3Hk6bHg0Oh59KOz2tvz2fODdOz8OEjD7kzByfs/zchkzGKWyBKNlC8177X8yt6+6ubh6Mnn2m7DsL6VZ66iroWF6adaSyihbMNq2tsrVIUnSgDXheDjoh/Dkv0P7luxjZ3141+MFV8A958Hae3e2jVkAR1yZ2977fjEKe94R7jx8bzjqz7m/rpIkSZIkSZIkSZIkDUhxQSvZwnEGu/pkIwEBIWG3vqbUFlbHBA+Nr5kCwIQ3/u1qlaE3ksos/j5/CkEQMLJqDNVBDe1h9xOHV7ctZ3rdHuUusV8JwzA2bG6HXEMvewpQW5NjwJokSZIkST0xGG1g6hpa9it2hqI1Az8FrgeWAQ3APOC9wJGd5swH/hQEwTFhGLZn2KPrW6m0FFBnC7sGow0tYI1dBEEwDhib57SZxe4rSZIGsGKC0cIUtG2E2tG5jb/vbTtD0QDWPxjdCt4/Dc9/B5JDso8btxDGHl74PgNZR5ZgtKZXK1dHnPYt8MRni1+nbjyctQwSvkRU/5AtGO1p/5YuSVJpzPowzPwnaH49el1z02Hdx4xbGIWedTZkApx4D2xbAduWQf0UqJ+U+75V9XD4b+DgH0LremicUdSnIUmSJEmSJEmSJEkaGOICXcbHhHcJkkGS+kQjzemt3fqiYLTMITgT3gibiwud29yxge3pFuoSPZyjLEkFirvP33H/lAgSjK+ZxLLW17qNiQt9HMyaUptpSWe5NgL+P3v3HSbJVd/7/3Oq0+Sd3Z2ZnrC7ykI5gIRAIAzYGOk6EJzANjYY44BzIjj8CNe+Nk6P8c/GXCcMBmNjDAZsIRDJgBICIUArIVZC0oaZ7pndyalTnfvHaKXZmTrdVTOd+/16nn12+5xT53ynt7u6e7rqU8oWwgajlR+34i9pubiovvhA6PoAAAAAAAjCWe9txhiTkpTa0nz6N/z3S7rRWntsS/89kt5ljPkNSX+6qf2Zkl4v6fcDltoajLa+g3LXJO0tM+dOvFbSm6owDwAAwAZv61uriNanwwWj5U5J2c/sbi2XUpkM28t+T7roNyQvUZu1W125YLQj75DOf42096ot7e+sbU2bHftwtPE9B6WuUalrWFqbkhL9Uvr50iWvJxQNLaVcMJok3T9pdcm4qU8xAAC0s1hKGrhw498vvFu666ek+W9s3L7sTRvvI40XvG3PeLRAtK0SAxt/AAAAAAAAAAAAAACQO4hl1BHehQ29sf7AYLTjuUeVs8Gng50Om3MFo0kb/x9ndZ1fnSIBYAvXPn9zGOZIcsIRjBYu4KuTZELcJ7OFGeX9nJJlzqEp+HnNFqYrzpXNnyAYDQAAAACwa5z53n5ijvYFBYeiPcFa+2fGmAlJv7ap+deMMX9hrV2usK6NWOdOtwEAAKgvs8tgnfVpac/FlcedvHN36+zE8LOkK95a/3VbSXG1fP833io950NP3i7lpXvfUH4ba3f/uDrtkXeHH2vi0vc9JMWS1VkbaKBShU+Tf/wJq396FcFoAABU1f5rpP/19UZXAQAAAAAAAAAAAADoQOv+muaLpwL70qkDge3Y0Bcb0HRhclv7w2v3O7dJJzcuhLY3PqSESapg89vGZHLHCUYDUBMFv6CThWxg3+bARld4Yza/fZ/X6cKExVlZzRSmNJE62zlmujApG+K04Ez+uM7rCXEeDQAAAAAAZXiNLgDVZa1dleQHdP15uVC0TX5PGyFqp+2TdFPAuK1Bad3hKiy7TaXwNQAAgNaz8li4cTboLVyNnfvq+q/Zas55Rfn+zK1n3p67VyosBI897QsvkXLBB+dEkp+Tsp8NP77nIKFoaBulCrvM99xBDjcAAAAAAAAAAAAAAAAAtItygS6jjmAcbOiLDwS2P7Z+JLB9ILZXPbE+SZJnvCdC0raaLlQO2QGAnZgpTMkGniIbLhhtOj8pvxHnZzSxMMFoG+PKh8qFDZ0Lux4AAMqodT0AACAASURBVAAAAOUQjNaeVgLa3hNmQ2vtiqQPbWl+bsDQZg1Ge4ekyyL+eVEV1gUAAO3s3FcGtz/lV6SeQ1L/he5t7/xJaf5wiEUa8MVb78H6r9lqzvnJ8v3FLW9h83OV5zz+EenmK6Xs53ZcliTpob+PNn7vFbtbD2gilYLRAAAAAAAAAAAAAAAAAADtI5M7HtieMEntjQ/XuZrW0hvrD2wv2mJg+9agoRFH8FAmR+gNgNrI5oP3+Z48DSdHn7jtCsYs2LzmiidrUlurCh+MVn5c2HmmC+EC1AAAAAAAKCfe6AJQE/OSNv/WOmutfTTC9ndKetWm2xcHjFnYcjvStwjGmD5tD0abjzJHEGvttKTpiLXsdlkAANDuLv0dKfNpafXYk21X/qF06Rukp/3Fxu1PXCed+lLw9nf8uHTgxdKJ/5ZSQ9L5r5EOvuTMMbZUm9rL6Tu3/mu2mqHroo0vbH2b7LB2Qvr086Xh66XEXmltUko/V7r8LVKir/L21kr3vi5abRe8Ntp4oIkRjAYAAAAAAAAAAAAAAAAAncMVxJJOTsgzXp2raS19sYFI47cGo40mDwSOCxuOAwBRufYvQ4lRxU3iiduu4MbTc+xPjFS9tlZV72A0XiMAAAAAANVAMFp7+pakg5tuT0Xcfmsc+/6AMUe23D4r4hpbx89aa+cizgEAAFAf/edLL7xbOvERafW4NPoCaeSGM8ck9ri3n7t3489pUx+XznuNdOFrpT2XS15MKq7WpnaXvnOl3nPqu2YrMp501sulx97vHuMXJe/xj1aFxQiTW2nmtidvzt0jnbxDesEXN9YNsj4tLT0s3fXqCOtIGnqmlP7OaNsATSxMMNq/3OXrR6/jgDcAAAAAAAAAAAAAAAAAaHXZ/PHAdldoF54UNRhtdEvQUDo5HjhuujAp35bkmdiOawOAIBlHqNZo6sx9fpfXrT3xfVoozm4bm82f0CW9V9ekvlZT8As6WciGGlsp0Gw6ZODZTD6jki0qZjiFHQAAAACwc5wh3J4Ob7mdi7j91vFdAWMe2HL7/IhrnLvl9v0RtwcAAKiv7rR0/s9IV7x1eyiaVD4YLcjDfyd9/GrpYxdI84el4kp16gxr4kWSMfVds1XFusv3l9af/HdhYXdrnbxj489Wfkm662ekD6WlW6+XFre+Hd/khv+QzvvpJ2+nnyc98583AviANlGylcf87/8KMQgAAAAAAAAAAAAAAAAA0PRcITnpLSFe2C5qMFp6S/BQ2hE+V7QFzRZO7rguAHBxhXMF7fNdrwOVAr46yclCRlYhrkqtjfvN2uBjsK21oe9XX6XQYWwAAAAAALgQjNaevr7l9mDE7beOPxUw5r4tt68wxvREWONZFeYDAABoLYloBw08YeUR6ebLpLt/Ltp2z3iXdPAHdramJO29aufbdhovWb7f35QrXFjc/XoP/8P2tiPv2AjTq2TftdLBl0rX/Z30w6vSSzLSd35G6j9v93UBTcQP8d38g1mpUCQcDQAAAAAAAAAAAAAAAABaWcmWNFOYDOxzhXbhSb2x/kjjR7eEDI0kx51js/njO6oJAFw2wreC9y2jAfv8dIJgtEqi3Bfr/qoWS/OBfUulBa35qzVZFwAAAACAIASjtaePS9p89ve5xpiuCNtftuX2tt8kWWundGYAW1zSsyOs8dwttz8eYVsAAIDmk9hT3/W6J6SJ79v59oNb3/LByV8v31/a1F9Y2P16p+7a3nbsg+G2vWBTwF68W+pO774eoAmVQuadZaqQVQgAAAAAAAAAAAAAAAAAaJxThWkVbTGwb2uIF7bri4W/+HPCJLU3PnxGW5fXrcH4/sDxhN4AqLaF0pzW/bXAvnTAPj+dIhitkkzEEEvXfRf1Ps3mg0NNAQAAAAAIi2C0NmStnZR0x6amhKTvjDDFjVtuf8Ex7sNbbr8qzOTGmIskXbepaUXSJ8OVBgAA0KQS4Q8aqIquEensH5e6x6JvG++XBi6ufk3tqljhqkZ+7sl/F6qQwrRwv5T59Jlt058Pt+25r9z9+kCTs9bKhgxGOz5X21oAAAAAAAAAAAAAAAAAALWVdQS6GBmNJMfrXE3riRKMlk6OyzPbTzcMCiOSpAzBQwCqLJtzh3gFBqM59k/zxVPOgLVOMx1xX+0aHzUYLeq6AAAAAABsRTBa+3rXltu/HmYjY8wNkp6+qcmXdLNj+PsklTbdfqkx5oIQy7x+y+0PWGvXw9QHAADQtJJ76rtealjyYtL174u+7QU/L8W7q19Tu6oUjFba9Fa2sFB+7NmvkF58rPKan7tJmv+GNHmL9M23Vx4vSS8+IQUcjAK0m5IffizBaAAAAAAAAAAAAAAAAADQ2lzhW/sSw0p6qTpX03qiBaMdCGwfdbRHDckBgEoyjjDM/tge9cb6t7WnE8HBaJI0nZ+sWl2tLBvxfnDt26Pu83mNAAAAAADsFmfNt693SXpg0+3nG2PKhqMZY0a0PVDtA9bah4PGW2uPSHr3pqakpH8yxnSVWeNFkl65qSkv6S3l6gIAAGgJsZ76rpcaenzd3ujbXvWH1a2l3ZUqBaPlnvx3ft497uLfkp7xD1LPAam7whUK/YJ08xUbAWn3/GrlGm+6V+rhqofoDNGC0WztCgEAAAAAAAAAAAAAAAAA1FzWEZLjCvHCmbq8HnkhTyFMJ4MDhkaSwceoEnoDoNpc+xXX/mlfYkhxk4g0Vyex1jrD5tz3W3CQmuv+jCke2O4KNgUAAAAAICyC0dqUtbYk6VckbT5l/M+MMW83xuzdOt4Y812SbpN03qbmOUm/XWGpNz0+7rTrJX3KGHPRlvlTxphfkvTvW7b/M2vtYxXWAAAAaH6FhfquF0tu/B2PGMiWGpIMHwMiKVYKRluXvv0e6VPfIWU/Ezzm6j+Rrv5jyXv8y0MvWb36rvpjae+V1ZsPaHKRgtHKZBUCAAAAAAAAAAAAAAAAAJqfK4hl1BGSgzN5xlNvrD/U2FFH2JyrfbE0p7XSyo5rA4CtXCFermA0z8Q0kiC80WW5tKA1P3g/fVFP8DkIrvvN1X5Bz6XOtVdLyyGqBAAAAAAgGIkIbcxae6s2wtE2+2VJWWPM540x7zfG/Kcx5lFJt0o6f9O4vKSXW2sfqbDGcUkvfXz8ac+SdL8x5m5jzL8ZY26RdEzSX0raHCP/X5J+bwc/GgAAQPMZeEpj1o33Rht/4MW1qaOdDV1Xvv/Bt0t3/qQ0/Xn3mIGLz7w98b27r+u0se+u3lxACyjZ8GNPzFUeAwAAAAAAAAAAAAAAAABoXu6QnOCwLmzXFxsINc4VPORqlwgeAlBd7jBM9z7ftY9i/yRlytwHV/RdG9h+qpBV0RbOaCvagk4Vso55nu5cg/8DAAAAAMBuEIzW5qy1fyXptZJWNzUnJN0g6WWSXiTprC2bZSU9z1r7iZBrfE7SSyTNbGo2kq6R9MOSXihpeMtm75f0MmttKdQPAgAA0OxGvkMy8fqs5aWe/HdqKNq2Z/9YdWvpBOe9unz/0X+rPMfgZWfePvendl7PZnsukQavqM5cQIso+eHHHp+LkKIGAAAAAAAAAAAAAAAAAGgqy8VFrZSWAvvKhXXhTL27DEYbjO9X0qQC+wi9AVAt6/6a5oonA/vK7fMJRnNz3Qc9Xp/O674ksM+Xr5l85oy2mXxGvoIP4r6w5zKlTFek9QEAAAAACINgtA5grf0bSVdIeq+k4G8DNmQkvVnSU6y1t0dc42ZJl0l6p6S5MkPvlPSD1toftdauRFkDAACgqSUHpYt/oz5rXf0nT/470R9+u9HvkoZvqH497W7PZdLBH9z59vF+qefQmW17r5IOvGR3dUnSte+UjNn9PEALiRaMVrs6AAAAAAAAAAAAAAAAAAC1lckfd/aNJg/UsZLW1herfLzxvviwkl5w+JlnPI0kxwP7MoTeAKiS6fyks6/cPj/t2D9N5yfl2wgHHrchVzBZOjmhocSojOMU863bueYx8jScGHe+RhCMBgAAAADYjXijC0B9WGsflvQKY0y3pGdJOiBpVFJe0oykr1lrv77LNaYl/bwx5lceX+Osx9dYkXRC0lettY/sZg0AAICmduUfSnsul+56teTnarNGrEs662Xhx1/8W9LSkY1AtAtfK3mx2tTVzoyRnvUv0r9+cGfbp5+7PbzMGOnZH5CO/I30lV/e2bzd49IIQXfoPFGC0U7MS9ZaGQIEAQAAAAAAAABACzLGvFnSm3Yxxbutta+sTjUAAAAAUH+uQJVur1f9sT11rqZ19cUGKo5JJyfK9o8mD+h4bvtpYdOE3gCoEtc+P24S2pcYdm7n2n/lbU7zxVNlt2135YLREl5CQ4kRzRQy2/q3htS5Quv2J4aV8BJKJyd0LPft0OsDAAAAABAGwWgdxlq7JulTNV4jL+mztVwDAACgKRkjnfNjUt+50q3XV3/+WLf0jHdJXRG+mLv6j6tfRyfyElLPQWn1WPRtD7zIMWdcesovSee/Rvrgfqm0Gm3ep/9d9FqANuDb8GNLvrRekLqTtasHAAAAAAAAAAAAAAAAAFAbmfzxwPbR5AEumBlBb6hgtANl+0eS44HtGUJvAFSJK0RrJDEuz7gvEF8u2HE6P0kwWoDT99lIciIwGG3rdu55Dpwx3/Z5ggPVAAAAAAAIw2t0AQAAAEDb6RrZ3faxHuk5H5Ve9Kj0o1b63gel598qvfiYdNaPbB8/9sLgeQ68ZHd14EyFhZ1t139B+f5YlzQcMUhv9AXS+E07qwdocVGC0SRprVCbOgAAAAAAAAAAAAAAAAAAtVUp0AXh9IUIRhutcJ+OOoLTZgqT8m1pR3UBwGbOMMxU+f1Td6xXA7G9kebsBAW/oJOFbGDf6ddRd6BZ2GC08vPMFKZ4jQAAAAAA7Fi80QUAAAAAbSdMMNr5Pyc99M7gvu//ttSdfvL2wIUbf1wu+Hlp6hPb2w/9YOU6EF6sRyosRt+u52DlMc/7hPR+91WsntB7lnTwB6RL3ihxpUN0KBsxGG01L+3rrU0tAAAAAAAAAAAAdfZySXdGGL9cq0IAAAAAoB6yrpAcR0gXgvXG+iuOSafK36eu0JuiLepUYVrDybEd1QYAp7nDtyrv89PJcS2uzYWesxOcLGRk5Qf2VQxGK5woezvsPEVb0GxhRkPJ0VA1AwAAAACwmdfoAgAAAIC2E++Tuit8uX/tX0tX/dGZbXuvll584sxQtDDG/5d06IfObJv4/o0ALVTP0HU72647xFUJjSdd+jvlxyT2SC96VHrqn0ldQzurBWgD/g6C0QAAAAAAAAAAANpExlr7aIQ/JxtdMAAAAADsVMHP62RhOrDPFcCCYH0hgtFGK9ynI8lxZ1+mg4OHAFSHb0uazk8G9oXZ5zsDvjp4/+T62T15Gn48qCzt2LevlJa0XNy4qPxyaVErpaXAcae3L/ca0cn/BwAAAACA3SEYDQAAAKg2Y6SzX1FhjCdd8nrpe+6Xrv5T6fr3Sy/4otTj/kLIyUtIz/pX6bkfl678Pxt/3/BBKZbaWf0Iduhl0bfpHpNiyXBjz6owf2o4+vpAG4oajLZGMBoAAAAAAAAAAAAAAAAAtJyZwpSs/MC+0dSBOlfT2vpiA2X7u7weDcT2lh2T8rq0Nx58Yd9pQm8A7NJs4aQKNvig30rBjZI7GM0VttYJMvnjge1DiVHFTUJS+dC504Fm2TL34entU16XBuP7y84DAAAAAEBU8UYXAAAAALSlK/9Amv+aNPWJ7X2bA7D2XLzxZ7eMJ43fuPEHtXH2y6T1jHTPr4XfZvS7w48dvEyKdUulteD+5J7wcwFtLGow2irBaAAAAAAAAAAAAAAAAADQcjKOIBVPMQ0l0nWuprVVCkYbTU7IGFNxnnRyQnPFk9vaXeE7ABBWtsx+ZGQXwWizxRnl/HWlvK4d19aqXKGVI8nxJ/49ENurLq9b6/72cxiyhRM6Txc7/2+6vO4zQjXTyQnNF09tG+d6PQcAAAAAoBKv0QUAAAAAbcmLS8+7RTr7x89sTwxKF/9mY2rC7l30q+HHJvdKF/16tPmf+W53X/8F0eYC2pQlGA0AAAAAgJb1kXutXvkuXz/zz74+882IH/IBAAAAAAAAAB3FFcQynBxTzMTrXE1r660QjJZOHgg1jyt4KJufjFwTAGzmCs8ajO9Xl9ddcXvX/kmSpjt0H+W6TzffV8YYZ/Bc9vHts86AtTNDNd2vEQSjAQAAAAB2ht8CAwAAALX0zHdL6edLmU9JPQekc18p7bm40VWhlsZukgYvlS78Ran3rGjbHvqhjcfJasDBPAdfWp36gBbnE4wGAAAAAEBL+otP+fr1Dzz5wf4fv2j1z682evnTuZ4bAAAAAAAAAGC7TC44SGW0TPgNgnV53YoprpKKgf3lAoU2G3UEqLlC7AAgLNd+xLXf2Wp/YkRxE1fRbt/PZfOTOth17q7qazXWWmcg2db7NJ2Y0NH1h7aNqxSMlk6c+drhei2ZJhgNAAAAALBDHGEMAAAA1JLxpPNeJT3rfdLVbyMUrR1c8gZ33/c+KD3vZunqP4keinbaC74oDV55ZtvFvyUd/MGdzQe0majBaGuFiBsAAAAAAICqKxSt/vd/nfkZ3bfSWz/G53YAAAAAAAAAQDBXSE46ZEgOnmSMUV+s39kfNnjIFXqzVFrQaml5R7UBgCRlXOFbIYMbPRPTcGIssK8Tg7mWSwta81cC+9LJ8TNuj6aC7+NsfvKMvyvN4/q/WijNaa20WrZeAAAAAACCxBtdAAAAAAC0lHNfKR15h1RYPLP9B05JqX27n7/3LOnGL0vz35DWTkj7rpW607ufF2gTvh9t/Gq+NnU0q3zR6iP3Sg/NWH3HhUbPPHfjoDYAAAAAABrpCw9JcwHHuj+YlU7MWU3s5bMrAABASD9rjPldSRdL2i+pIOmUpMckfVHSLdbaLzSwPgAAAACoCmutso4gm9GQITk4U29sQAulucC+sMFD5ca988Qfqsvr3lFtLgmT1Pk9l+iZe76z6nPX2vH1R3XX4medj+PB+H5d3f9MXdx7VZ0rAxrvq0t36L7lL2uptPBE29H1hwLHhg1ulDb2UVP5Y9vaXc/DdnFk9bC+svRFzRZmnmhzhaJJ2wNGXfv2mfyk3nH89zXjDEabKHt7s3ee+AOlqrwfj5mYDnWdpxsGb1RfbKCqcwMAzrRWWtHn52/RY+tHVLTFbf1JL6lzui7ScwZvVMJLNqBCAADQrghGAwAAAIAoBp4ifefnpMO/vxFetu8a6ao/qk4o2mleXNp3taSrqzcn0CZsxPGdFIy2sGr10r/x9dkHT7dYveYGo//7Ck4uBwAAAAA01ok59yf65VwdCwEAAGh9L9tyOyWpT9JZkp4j6beNMV+W9EZr7adqUYAxZkTScMTNzqtFLQAAAADa13zxlHJ2PbBva6ALwumLD0gBx9N58jScHA01x2B8v1KmK/D/5qG1w7stMdBXl2/XVxa/qF86+GalvK6arFFt31q9T399/K0q2PIHMH5x4RN62cjP6jl7b6pTZUDjfezkv+jjpz4QenzY4MZyYzP546HnaDVfWvwfvXvq7bIKd+XpHq9vW4jYSCL4fvPl676VLzvn2vp6vDc+pIRJBu77jtToNeJry3fpzoXP6DcPvU398T01WQMAOt1aaUV/evSNmsofLTvunqXb9dWl2/Vrh35fMUOECQAAqA6v0QUAAAAAQMvZd7V0w39I3/ct6Vn/IvUeanRFQMfwIyajdVIw2nvvsptC0Tb83ResbrkvapwcAAAAAADVVe6TaX77hWQBAACwO9dI+qQx5g+MMbW4esprJd0X8c9HalAHAAAAgDaWzZ9w9qWT43WspH30xfoD24cSo4qbRKg5jDEaacD9/+31b+oby3fXfd2d+u+T/1oxFO20/zr1fhX8Qo0rAprDUnFBt85+KNI2oxHCMF3BaNP5SVnbfsfS+rakj868N3QomrRxH239leFIckxG0X6NaGQ0khw7o80zXkNeI2YKGX1x4ZN1XxcAOsWdi5+tGIp22rfXv6mvLd9V44oAAEAnIRgNAAAAAAC0DD/8d/eSpLUOCkb75OHggzZ+64MR7zQAAAAAAKqs3HkGy7n61QEAANDCTkj6O0mvkfRsSZdIukjSsyT9kqRPbBlvJP22pP9TxxoBAAAAoGrmiicD2/tje9QT66tzNe1hILY3sN0VJOQSJaSomh5ee6Ah60ZV8PN6aO3+0OOXS4s6kXukhhUBzePI2mEVbfirJqVMl/bE94Ue79qf5ey6FoqzoedpFTOFjGaLM5G2CQoXTXop7UsMR5pnb3xISS8VMH+015Rq+ebKvQ1ZFwA6wTdXvlbT8QAAAOUQjAYAAAAAAFqGH/GCbSsdFIx2833B7YcnpVLUOw4AAAAAgCoqlsnsJhgNAACgrC9JeqGkg9ban7HW/r219jZr7QPW2gettbdba//KWnujpGslHdmy/RuMMS+qe9UAAAAAsEtr/mpge19sT50raR8X914V2H5V/zMizXN539OrUU5kRVtoyLpRzRSmZBXtYqbZ/IkaVQM0l0zuWKTxV/RdJ2NM6PHlQrna8Xm2k5/pir7rAtsv7422b3fNc0WDXiOm8scbsi4AdIKorzft+JoLAAAah2A0AAAAAADQMqLGey2s1aSMplQqcyzVzFL96gAAAAAAYKuVMuFnBKMBAAC4WWtvttZ+0lpb8SsSa+2XJT1D0re2dP2RMSZWxbLeIemyiH8IZwMAAAAQSc4PPvCry+uucyXt45Lep+qa/hvOaLuo50o9rf/Zkea5qv86Xd57bTVLC8W30cLGGiWzgyCIbH6yBpUAzWcyfzT02H3xYX3P0I9Emr8n1qd+R4Bmpg2Ds6IGz1zV9wxd3he8//7ufS9ROnkg1Dzp5AG9YN+LA/uu7rtel/Y+LVJd1bBcWtBScaHu6wJAuyvagk4WMpG2IRgNAABUU7zRBQAAAAAAAITlRzy2aWYxapRa69rbI80FXyhVC2vSKBdLBQAAAAA0SLnws5WclRT+Su8AAABws9bOGmNeLunLevJN1kWSnifpU1VaY1rSdJRtjOH9HgAAAIBo1h3BaCmvq86VtI+YiemVY7+qZ+x5vh5bP6Kx5CFd3netYhGztOMmoZ+deIPuW/mKHl07ooLNV7XO+1e+qqmA8KSSSlVdp1ZcQRB9sT0aiO0JDIbKtmFgExBkKncssP387kt0VtcFkiQjo7HUQV3ee6364gOR10gnJ7S0tj0gqx0DCF37m+HEmK7oe/oTtxMmqXO6L9SlvU+TZ7zAbQYT+/W6Q2/T15fv1onco7IBl7I2MppIna0r+q5Vd6w3cJ6El9DPTfy27lv+sh5dP6KiLezgJ3Mr2aI+N//fgX1T+WPqj3OwNABU08l8Vr6CT+K5tPdpOrzylW3ti6V5rZaW1RPrq3V5AACgAxCMBgAAAAAAWoYfMedseqk2dTSjVJnf8iyu168OAAAAAAC2WirzubRcaBoAAACis9beY4z5pKQXbmq+UVUKRgMAAACAenAFo3V53XWupL14JqZLeq/WJb1X73qeK/qefkbwTrWsZ1YDg9F82yrBaMEhZ+d2P0UHUudo8lRQMFpwuBHQTkq2qGlHONlzBm/SNQM3VGWddHJCD63dv619ug2fZ659x6W9T9MPjLwq8nzdsV5dt+e5u6xqI4jzyv7rdGX/dbueaytrre5e/LxW/O0HiGdyx3Rhz2VVXxMAOlnG8d7WyNMPjfy0Dj+yPRhN2ggkPaf7wlqWBgAAOkRwvDcAAAAAAEATihqMll2sTR3NKF7mwp0Lq/WrAwAAAACArcqFnxGMBgAAUBO3bLl9RUOqAAAAAIAdyhGM1rE8BR8I58uvcyU7k3EEFaWTE0onJwL7pgtTLRP8BuzUdH5KJRUD+8ZSB6u2zojjeZYtdE4w2qjjPmgHxhiNpg4E9k3lj9W5GgBof65Q0/2JYQ0nRpUyXYH9rrBgAACAqAhGAwAAAAAALcNGDEab3n5BsLaVDz5eRJK0EHycIAAAAAAAdbFSLhhtvX51AAAAdJBHt9webkQRAAAAALBT645gtBTBaG3PM8GnO7ZCcJi1VtlccAjEaPKARpPBYT5FW9BsYaaWpQENN5U/GtjuydNIonpBXq5QsNnCjPJ++1yxaaW0pOVS8NWjXSGM7WIsGRykRzAaAFRfxhFwlk4ekDFGI8lxx3btF0gKAAAag2A0AAAAAADQMvyIwWgLa1KuEHGjFpUrG4zWGfcBAAAAAKA5La27P5eu5OtYCAAAQOfYmiBAcgAAAACAluIKRusiGK3tOYPR5Ne5kugWirPK2eArwqSTE87gCEnKEh6BNjeZCw5GG06OK+ElqraOKxTMymo6P1W1dRqt3D6j7YPRUocC2zM5gtEAoNpcrzenX2tcwb+8twUAANVCMBoAAAAAAGgZUYPRJGlmufp1NKP1grtvIfg4QQAAAAAA6mKlzMXXl9vnwuwAAADNZGjL7ZMNqQIAAAAAdsgdjNZT50pQb55ige2+bf5gtEz+uLMvnZxQyuvSYHy/Y1vCI9DephyhVWOOQJWd2p9IK6Z4YN90oX2eZ67AmZTp0p74vjpXU19jyYOB7YuleS2XFutcDQC0L2ut8/Vm9PFgNFcYZ7bM+2IAAIAoCEYDAAAAAAAtYyfBaHMr1a+j2VhrlSu6+wlGAwAAAAA0UrnP88VS/eoAAADoINdtuT3ZkCoAAAAAYIdyzmC07jpXgnrzTPDpjr5t/i8UXMER/bE96o31S5JGHSFQrm2BdjGVPxrYPpY6VNV1YiamoeRoYF87Pc+y+eBf940kx2WMqXM19TWaCg5Gk6SMI4APABDdcmlRq/5yYF/68fe0rmC0mXxGpRZ4/w4AAJofwWgAAAAAAKBl+Du46ONsBwSj5cuEokkEowEAAAAAGssSjAYAAFA3xpgumyZUuwAAIABJREFUSS/d0vy5BpQCAAAAADu27ghGSxGM1vY8xQLbS2r+LxRcoUvpTWForvCIbP54TWoCmkHRFjSdnwrsG0tWNxhNktLJ8cD29gpGC95nuMIX28me2F51e72BfVPsSwGgasq9Pz39njbteN0pqahThWxN6gIAAJ2FYDQAAAAAANAyypxHrd5UcPvcak1KaSrrhfL9i+v1qQMAAAAAgCDlPs8XdxCCDgAAgLJeL2nzWdYlSf/doFoAAAAAYEdyjmC0LoLR2l7MBAej+bb5v1DIOIOKnvyY7g5Gm6xJTUAzmM5PyXeEG46nDlZ9PVc4WDs9z9xBjMH7mHZijNFYMvhxM5U7VudqAKB9uV43u71e9cf2SJJGkmMyMoHjXO+NAQAAoiAYDQAAAAAAtAzfcSa1MdK+nuC+2ZVyp1+3h1yxfP9avj51AAAAAAAQxJb5aF4MPgcCAACg4xljXmGMSUfc5jWS3rSl+Z+stY9VrzIAAAAAqC1rrXJ+8JUgCUZrf57jdEdXqFIzcQcVHdj07+DQosXSnNZKKzWpC2i0qdzRwHZPMY0kx6u+njuA8LhsuS8uW0TJljSTzwT2jXRAMJokjTkC9abywY81AEB0rmCzdHJCxmyEoSW9lPYlhgPHud4bAwAAREEwGgAAAAAAaBm+46KPRtK+3uC+2dWaldM01gvl+9fyrX8gBwAAAACgdZX7VFoo8ZkVAADA4dWSHjHGvNsY8z3GGMc3IZIx5hpjzIck/a02vjY57YSk361xnQAAAABQVTm7Luv4zXKKYLS25xlHMJp1HDzYJNb9Nc0VTwb2jW4KKnIFNkmER6B9TeWPBbaPJMcUN4mqr+cKB1v317RYmqv6evV2qjCtkoKvqJyuQdBcMxpLBgejZXLBjzUAQHSu96ajW15nN4cAh9keAAAginijCwAAAAAAAAjLd5wr7Rlpb09w31wHXERxPfj4hiesVQhOAwAAAACglspdeL3Y3OcxAQAANFq3pJ94/I9vjDki6VFJC5JKkvZLulJSOmDbWUk3Wmsz9SkVAAAAAKoj5685+7oIRmt7nmKB7b6a+wuF6fyks29zGNpgfL+SJqW8zW0bl82f0NndF9akPqCRpnJHA9vHkodqsl65cLBs/oT2xPfVZN16KRc0Uy58sZ2MpoKD0RZKc1otLasn1lfnigCg/bheb7YGkI4mJ3T/yj2htwcAAIgi+BIKAAAAAAAATch1HrXnSft6g/tmV2tWTtPIVQg+IxgNAAAAANBI5YLRbn+4fnUAAAC0OE/SUyS9UNIPS3q5pO9WcCjapyVdaa29r37lAQAAAEB1rJcJRkt5XXWsBI3gmeDTHX1bqnMl0WTzxwPb4yahfYnhJ257xtOII7QpQ3gE2tRk/lhg+5gj3Gq3+mID6o31B/Zly4QYtgrX/mZffFhJL1XnahpjLOl+7Ezlgh9vAIDwCn5BpwrZwL7R5IEzbm8NSjuNYDQAAFANBKMBAAAAAICW4Tsu+ugZabDXBPbNrdSwoCaxXizfv5avTx0AAAAAAER1cll6eLpMchoAAEDnerukf5H0WMjxK5I+LOm7rLXfZa0NPkMSAAAAAJpcrkwwWpfXXcdK0AieiQW2l5o8GM0VajaSGN/2M6Ud4RHThEegDRX8gmYcYWTjqUM1W3draMtprlCxVuIKmnGFLrajwfh+dXk9gX1TjiA+AEB4JwsZ+Qo+eWfre9lRx3vb5dKilouLVa8NAAB0lnijCwAAAAAAAAjLd5wnbSQNOo55W1xr/5Or1wu76wcAAAAAoJYqfTL/wFes3nhTcOA5AABAp7LWflgbQWcyxgxKulTSQUlpST3auDDuvKQ5SQ9I+rq1TX6WOAAAAACEsFYmGC1FMFrbiyk4GM06ghmahStsaTS1PSjCFYzmCjsCWtl04YQzWGU0ebBm644kx/Xw2gPb2tvheZZ1BM259i3tyBijseRBPbL+4La+DMFoALBrrtdLT56GEqNntKUdYaSn5+mLD1S1NgAA0FkIRgMAAAAAAC3DFYzmedKA45i3Bfdxcm2jUOE0pzWC0QAAAAAADWQrJKP9zoet3nhTfWoBAABoRdbaeUm3NboOAAAAAKiHnCMYLWGSipng0Cy0D2O8wPZSk2eBu4OKtgdFuMKLpgtT8m1JHo9ztJGpXHBooKeYRpJjNVs3nWjfAMJpx8/QScFokjSaOhAYjDaZO9qAagCgvWQcob/7E2klvMQZbQOxQXV5PVr3V7eNzxZO6DxdXJMaAQBAZwj+TSEAAAAAAEATcp1I7RlpjyMYbXG9dvU0i1KFi2ESjAYAAAAAaKQKuWgAAAAAAAAAADxh3RGM1u311LkSNEJMwaFgvpo3GM23JU07gtFGA4KKRgPC0iSpaAuaLcxUtTag0abywSFV6eS44iYR2FcNrpCwU4UZFfzWPah2tbSsxdJ8YJ9r39KuxpOHAttdYT4AgPCihHAaYwLf80pSxhGQCgAAEBbBaAAAAAAAoGX4OwhGWwg+Tq6tVAxGy9enDgAAAAAAgriCzgEAAAAAAAAA2MoVjJbyHAeIoa14Jvh0R99WOEiugWYLJ1WwwQfppQOCikaS4865CPRBu5nKBQejjaUO1nTd0VRwSJiVr5nCVE3XrqWsI4RRKr9vaUejjsfQfPGU1korda4GANpLJkIwmiSNONqzjnkAAADCije6AAAAAAAAgLBcwWjGSHu6jaTtAwhGk9Za9+J2kqSFVav33Gn11aMb/9fXnCX91LOMUgnT6NIAAAAAACEQjAYAAAAAAAAACCvnCEbrIhitI3hyBKOpeYPRsmXCzIKCilJelwbj+zVfPBUw16Quq2p1QGNN5Y8Fto8lD9V03aFEWp5i8lXa1pfNH9d4qrbr14orYCZpUhqM769zNY01lnSH603lj+nc7ovqWA0AtA9rrfP1ZjQg9HejnWA0AABQGwSjAQAAAACAluEKRvOMNNAV3Le0Lvm+lee1b4hWpWC09cLGF1TGtN59MLNk9dw/9fXApgv0ves26d23W33+dZ6S8db7mQAAAACg05CLBgAAAAAAAAAIa90RjJYiGK0jeCYW2O7b7eFGzSLjCHzYGx9yBvqNJg84gtEIj0D7KPgFzeSnAvvGahxMFjNxDSXSmi5Mbutr5eeZq/aR5Lg8Exws2a72xoeUMl3K2fVtfVM5gtEAYKeWSgta81cC+9IBob8b7cGBaScLGRVtQXGTqFp9AACgs3TWJ10AAAAAANDSbJlgtD1ljntb2v6dd1txBcZttl6ofR218I7P2TNC0U770qPS336eU+sBAAAAoBW4Ps8DAAAAAAAAALBVzhGM5gqYQnuJuYLRVOHqoQ2UzR8PbE8nJ5zbuPpccwGtKJs/4XzujiUP1nx99/Nse1haq5h2BKOV29+0K2OMxlLBj6NM/lidqwGA9lEuQNQVgOZ6HfLlayafqUpdAACgMxGMBgAAAAAAWobvOJO6UjDaQvCxcm2jFOKYr7UWDUa75T732fP/fCdn1gMAAABAK+DTGwAAAAAAAAAgrHWC0TqacZzuWLKlOlcSXmYHQUXtGNgEbDWVPxrYHlNcI8mxmq/vfp65A1+anav2TgxGk6Sx5KHA9qkcwWgAsFOuoN4er099sYHAvuHEmPN9fCu/7gIAgMYjGA0AAAAAALQM33EmdccHozkC4zZbb8FgNGutDpc5zuvuR6WHpzm9HgAAAACaXYiPrQAAAAAAAAAASHIHo6W8rjpXgkaImVhgu9/EwWjTjrCH0eQB5zauEKPF0pzWSitVqQtoNFc4VTo5rpiJ13z9csFotgW/wPRtSdOFqcC+Tg1GG00dDGyfyhOMBgA7VS6E0xgT2JfwEhpKpCPNBwAAEAbBaAAAAACAUP7nQauX/HVJN7ytpDd+yNfyeut9IYzW5wpGM0Ya7HFvl1msTT3NouRXHrOWr30d1XZ0VlrOlR/z719hXwQAAAAAza4FzysAAAAAAAAAADRIzhGM1uWVuXIm2obnON3RV4iD5BpgtbSsxdJ8YF+5oKJyfYRHoF1M5Y8Gto+lDtVlfdfzbM1f0VJpoS41VNNsYUZFG3yV5E4NRhtzBFDOFU9qrbRa52oAoD1kygSjleMOJD2+65oAAEDnIhgNAAAAAFDR579l9cK3+/rI16TbHpbedovV9/2V35JXy0Jrcz3kPCMl40bpgeD+Y7Pt/VgNFYwWfCxEU3t4pvKYz3+rvf9vAQAAAKAdhPnkVijy+Q4AAAAAAAAAIK07gtFSBKN1BM/EAtt925zBaOVCzEYdgT2SNBjfr6RJRZ4TaCVTuWOB7WPJg3VZv90CCMvVPJIcr2MlzaNcyF6GIB4A2JFpx+tNufe2UrlgtMld1wQAADoXwWgAAAAAgIr+8tO+8sUz2/7nW9LN32hMPehcfplgNEk6uDe4/+hsbeppFmGC0XLFymOazWq+8pjDfE8GAAAAAE0vTLb+SojPgAAAAAAAAACA9pdzBKN1EYzWETzH6Y6+SnWuJBxX8E7KdGlPfJ9zO894ziCjTAsGNgFbFfy8ZgqZwL6xVH2C0fpiA+rx+gL72ikYbTC+v2NfI/fGh5QyXYF9mXxwMB8AwK3gF3SyMB3YVymE0xWclskflw1z4BAAAEAAgtEAAAAAABV91fG94K9/oDmvwIf25QxGe/w3HAcdxxEdm6tNPc3Cdb9s1orBaIUQx7Idm5MWVvmiDAAAAACaWZhPbSu5mpcBAAAAAAAAAGgBawSjdTTPxALbrax823zHrLqCitKpAzLGlN3WFR4x3YKBTcBW2fwJWQU/Z8eSh+pSgzFG6eREYF9rBqMFX0nY9TN2As94SqeC96VTOYLRACCqmcKU8/Xb9d71tLQjOG3NX9FyaWHXtQEAgM5EMBoAAAAAoKJHTga3Hwm+EAhQM77juKbThw8d3Bd8INHx2fYOziqFON4rV6h9HdVWKIX7f/tm8EUFAQAAAABNIsyFX1fyta8DAAAAAAAAAND8co5gtBTBaB3BK3O6oyukoZEy+eOB7aMhgopGHOERmRYMbAK2msofDWyPm7iGk2N1q6OdgtFc+5tODkaTpPHkwcB212MQAOCWdbzWePI0lEyX3TZdJjiN97cAAGCnCEYDAAAAAOxKMWRwEVANrkeb93geWnoguH8++Fi5thEmGC1fqn0d1VYIWfPR2drWAQAAAACovcU2/+wOAAAAAAAAAAhn3RGM1uX11LkSNELMxJx9Jdt8B8G5wpXKBUM8OSY4zGimMCW/CX9WIIrJ3LHA9pHERNnnebW1UzDatHN/09nBaKOuYDTHYxAA4OZ6fRxKjCpuEmW37YsNqNfrd8wbHLgGAABQCcFoAAAAAIBdyS42ugJ0Et+RjOY9/huOPY6Lgrb7ydVh8glzhdrXUW1hg9GOzRHQCAAAAADNzIb42Da/Wvs6AAAAAAAAAADNrWSLKtrgA526PMfBYWgrXpnAJF8hriBaRyVb1Ew+E9gXJqho1BGeVrQFzRZmdlUb0GhT+aOB7eOpQ3Wtw/VcPFXIOl9vmtFaaVULpbnAvk4PRhtLBQejzRZnnGGrAIBgmV2EcBpjNJIcD+xrxUBSAADQHAhGAwAAAACUVSiWP3P1ePB3rEBN+I7jmjyz8fdAV3D/4npt6mkWpRDHe+WKta+j2vIhaz46W9s6AAAAAAC7EybOeoFj0gEAAAAAAACg45ULMCEYrTN4ZU539G3IK23WyclCVr6CaxoNER7hCo6QpEz++I7rAprBVO5YYLsrxKpWXEEuvnxnsGEzmi5MOvvSZfYlnWAs6Q7by+TYlwJAFNO7CEaT3MG/rsA1AACASghGAwAAAACUtZov339ivj51AJLkO86kfjwXTf1dJrC/3YPRXPfLZrkKIYfNqBDyOLbjs633swEAAABAJ7EhPrbNr/HZDgAAAAAAAAA6XblgtBTBaB3BM+WC0UJcQbSOXIE7Rp6GE2MVt095XdobHwrsy+bdIUhAs8v7OZ0sBIeOlQuxqoWhxKgzcDHbQiEtrloTJqm98eE6V9Nc9iWGlTDJwL5MPjigDwCwnbXWGWAWNhjNNS5L6C8AANiheKMLAAAAAAA0t7VC+f7JeasnY6mA2nKdIu09fszCQFdw/0pOKvlWMa89H6ulEMd75Yu1r6PawgajHZurbR0AAAAAgN0JE3k2v1rzMgAAAAAAAAAATS5XJhiti2C0juAp5uw7nntEvcX+Hc07GN+v/vienZYlSVorrZ4R9nRk7XDguKHEiBJecEjPVunkhOaKJ7e1P7L+oI6tf3tnhUrq9nq0P5GWMe15zCQao2SLyuZPqGTLH9w5U8jIOr4hHEsdrEVpTgkvof2JtGYKU9v6Hlo7rP2JkbrWs1MPrz4Q2D6SHC8bKNkJPONpNHlAx3Lb95lH1g5rInX2jufujfVrX6I1g+fCPl8364n1tcxzAqiXki1poTirpJdSX2ygrmv7tqRsflJFW+GkrhDC7M8WS/Na94MP3hlNHgi1jisY7VRhRo+tP+QMK90pI0/p5IQSXqKq8wJAo3116Q5l8sc1mpxQOjmh4cRY6N8zAO2GYDQAAAAAQFmr+fL98+7jkICq8x0BYKfzzgbKHPu2tC4N9lS/pmYQJhgt187BaLO1rQMAAAAAsDs2RDLaAr9jAgAAAAAAAICOt04wWscrF/Dzl8fftKu5L+i+VK8e/y0NxAcjbZf3c3pf5h368tIXZFX5YL10yOCIjbET+ubq17a137N0m+5Zui1SnVvtjQ/pp8Z/U+d1X7SreQBrrT479zF99OT7lLe5Hc8TN3ENJUarWFk46eREYDDaZ+Y+ps/Mfazu9VRTOjne6BKawljqUGAw2h0Ln9YdC5/e1dzp5AG9Zvx1Gk8d2tU89WKt1a2zH9bHT31AObseefuRxLh+evx1OtB1dvWLA1pA0Rb02PrDOrJ6nx5au1/fXntA6/6aPHl6+sBz9WOjr1XM1D6e446FT+s/pt+lVX+5anOOJg/oNeOvd4aUZvPHndu6As+2rZEKfh9s5ettj/1mqDmiSpikru6/Xt839KOEOwJoG19Z+oLuWbr9idtGnvYnhnX9nhfoxv0/2MDKgPrr7ChwAAAAAEBFFYPRgi8IAtSE7ziR+olgtC73tottfIJ1pwejZZekfDHEWfYAAAAAgIYIE4xG+D4AAAAAAAAAwBWMZuQpYZJ1rgaNEFOsZnMfWTusd039eeTtPnryvbp76X9ChaJJ4YMjoo6Naq54Un917M1aK3GgL3bnvpWv6IMz/7irUDRpI2AqZmr3HHev277hYbXch7SSsWRwyE81ZPPH9VfH36KSDXlQc4N9dfl2/efJ9+woFE2SpguTevvx31PBL1S5MqA5Ffy8vrV6n24++W96+7H/T79x5Mf0Z0ffoI+efK/uX7nnic8nvnzdufgZfSD79zWv6aHVw/rnzP9f1VA0ScpU2J9l85OB7b2xfvXFB0KtMZRIy6vh+/kgBZvXlxY/p7c88gv6z5n3aK20Utf1AaAWMrkTZ9y28nWykFXBVjjRF2hDtY+kBQAAAAC0tErBaAuctIo6cgWjmdPBaGUuCnrvMenQ/urX1AzaNRgtH7Jma6UT89I5Q7WtBwAAAACwM2GirBc4JwcAAAAAAAAAOl7OEYzW5XXJnD5IDG3Nq3Fo0oOrX9dsYUb7EsOhxvvW1x0Ln4m0xmjyQOixtQ41ytl1fXX5dl2/57tqug7a250RnwMutQyvKqedw8NGEu37s0UxlqrtY2u+eErfXP2aLu19ak3XqYa7F7+w6zlWSkv65urXdHnfNVWoCGguOX9dj6w9qCNrh3Vk9bAeXf+WijZ8EOAXFm7RtQPP0fk9l9SsxnuX76rZ3HPFk3pw9eu6pPfqbX3Z/PHAbaK8t42ZuIaTo8rmT1QeXGVFW9AnZz+k2xc+pZv2/7CeM3ijYoYoFQCtx7e+ZgpTgX3t/NkGcOHVHAAAAABQ1lqlYLTVMKe2AtVhHQ8373QwWpd72z+6xdf3X1X/K83VQynE07AVg9EKES6udvQUwWgAAAAA0Kxcn+c3W1jjd0wAAAAAAAAA0OnWHcFoKa/MFTPRVgbig+ryup2PhWo4kXssdDDaXPGk1vyVSPMf7Do39NgDqbPlyZOvEFdH3aETuUdrNjc6Q7UeQ2d1XVCVeaI61HVeQ9ath3b+2aI4mDpXRkY21CW7dubE+qMtEYw2kw8O0Yg8jyOMA2g16/6aHl57QEdWD+vI6n16bP0h+YpwkkKA92f/Rm88+88VN4kqVXmm2cJ0TeY97UTuscBgtKncscDxI8nxSPMfSp3XkGC005ZLi/r36b/X/8zdrBcP/4Su7LuOkG0ALWWuOKOCDT6hl2A0dCKC0QAAAAAAZa1WCkar3bEnwDZ+hWC0rjLfLbXzY9UPcUxUvs2D0U7MW0l8YQUAAAAAzSjM4efzqzUvAwAAAAAAAADQ5FxhWF0Eo3WMuEnoaf3P1m0Lt9ZsjWz+uC7XNaHGZvLHI819dtcFOpgKH4zWHx/UVf3P1D1Lt0VaJ4psrnHBFGh9JVvUyUJ21/OkTJeuG3ju7gvagYOp83RW1wV6bP1IQ9avlfO7L9VY6mCjy2gKexNDurzvWn19+Us1W6ORIT9RrPhL1ZmnVJ15gHpbLS3robX7N4LQ1g7r2Pq3ZascQDuVP6ZbZ/9TN+3/oarOe1otA3OljffCQabywcFo48lDkeZ/9uALdffS5yPXVW3ThUn97eQf6bzui/XS4VfpnO4LG10SAISSKfO+k2A0dCKC0QAAAAAAZVUKRptv47ApNJ9KwWjlruRS6bHcykohzjDPtXkw2sxy7eoAAAAAAOyODfG5tZ0DzQEAAAAAAAAA4RCMBkl6Wfpn5ZmY7lm6rSbBLFHCbbK5cMFoCZPUxb1X6cfTv1j2OMYgPzH6y0qalO5dvlPrfvWvJJMttEaYD5rTTD4jXxEO5tzCyNPBrnP1o+mfV198oIqVRajBGL124nf1vuxf64GVe1WwrX1AcdKkdGnvU/Vjo7/Q6FKayivHfk3/mv2/+vryXc73E7sRNSizEay1WiktVmWu5SrNA9TacnFRR9YO68jqYT20dp9O5B6TDXX5vt35+KkP6Gn9z9JIcrzqc/u21sFo298brpVWNF88FTh+NGII5wU9l+qnx1+nj868V9OFyR3VWE0Prz2gPzn6Oj2t/9l60dArNJRMN7okACjL9TuLPfF9/H4MHYlgNAAAAABAWWuF8l8KcNIq6skVjLb5OKI3f7/Rmz+6feDsSo2KagKlEN99tX0wGhcmAwAAAICmFSYYjfB9AAAAAAAAAEDOGYzWU+dK0EgxE9fL0z+nHxn5mV0FhX1k5r36wsIt29qjhNtkHCckX9B9qX524o1P3E55XYqZnZ2qmfRS+omxX9aP21/YVZjPAyv36h+m/nRb+2xhRnk/p6SX2vHc6Fyuk/KNjP7wvHcpXuFxHzeJpnjs9cf36OcmflslW1TOX290Obuym/1NO+vyuvXKsV9VyZac7yfCuHPxs/rg9D9sa8/mT8haGzn8sp5ydl1FG3zA+C8deLPO6jp/W/u/T/+D7lr87Lb2agWsAdW2UJx7PARtIwxtKn+0JuukTJfO675YObuuh9ce2NZftAW9P/s3+uUDb636fsG3wSdRPHfwe/W9Qy8LPc8dC5/Rf8z847b2oNf2cu+Px5LRgtEk6an91+up/ddr3V9z/jzVcM/Sbfqvk+/XYmm+4tivLH1RX1u+U98x+D26af8PqSfWV7O6AGA3srngz2CjyYk6VwI0Bz79AgAAAADKWq1wUaz56l+cDnBynUjtbfou6YbzjRRwlZ+ldalQtErEm/cL6Z0KFYxWqH0d1ZaP8B3YNMFoAAAAANC0wlyLl98xAQAAAAAAAABcoVApr7vOlaAZeMbbVWDBROqswHZX0FMQV0jEeOqsqocpeCa2qzkPdp0b2G5lNZ2f1IGuc3Y8NzqX6/myLzGigfhgnavZvZiJE4TS5mK73JceSAXvK1f9ZS2XFtUf37PjuWutXJjZ/kQ68H7ZE98XOH65xIHZaA6zhRk9tHa/jqzepyOrhzVdmKzJOt1ej87rvkQX9FyqC7ov1cGu8xQzMS0V5/WWR35Rq/7ytm0eXP2GvrT4OV2353lVrcVX8MkhKS8Vaf/meu+3XFrUcmlRfbGBJ9qm8seC1zRd2hsfCr3mVl01/hz37MEX6pqB5+jW2Q/rU7P/qYItfwJc0Rb16bmP6I6FT+um/T+s5wzepISXqGmNABBVthD8GWyEYDR0KILRAAAAAABlVQpcWtj5BZWAyPwQwWj7et3bz69Jw/3VrakZhAlGK9TuQjs1U4xQ88ximNPsAQAAAACN8P/Yu/M4R+oC///vqtzp+0y6p+eCaY7pAeELKKCCoCwKioAiC4uI51fddVdd15/ren69VndlxQtW3eVQEUFALkGRGx0YUI6ZnhnoYRimj+mk73Tuoz6/P4aZ6Zl8PpVKd5KuJO/n4+HjIakcn0lXKpWkPq9Shc4XiiQBwxDQ9doLmhMRERERERERERGRNaowWrkn1FNtCnj6pJdHcxFEsxE0OpulyxcKKcJoQbf8vpdThysAB5zIIZu3bDw9yjAaLYpqUn6Ak/KpRplt30PpEVuH0cxiZo0O+QH0DYrLYwyj0TIQQmAqE8ZQYm8EbSgxiKlMqCyP1aA3YZ1/Pfp9A+j3b8AKz2romiPvek3OVlzQ9T78MvQj6f3cOnEtBhpOsLRfaVVOyCdRyMZnJmjyXh1Kj6HRtyCMltotvV6PZyU0zd7H8Xh1H97ReSne2HI27pq6EU/MPQhR4BSOcSOKWyf+F4/M3oPzuy7H8Y2n2v7fSUT1I5SSfw/Bz2BUrxhGIyIiIiIiIlOqENU+qSyQzAh4XfwSmMpvqWG06Vj9htFS+cc62V4xMbcwf38nIiIiIiKyLStxy7uEAAAgAElEQVQpayGA+STQ4i/7cIiIiIiIiIiIiIjIplIMo1EJmccgRgsGLGK5eczn5qTL7Dgh2aE50O3uwZ70cN6ycFoetyIqJJwek14ecPdWeCREldHkaIFPb0DCiOUtC6XHsM4/sAyjsiaai0gv16HDq8t/iFcF01T3RVRKQgiEM2N7I2jxQQwltmA2O1WWx2pytKDfP4B+3wb0+wcQdK+ErumWbntqy1vwZORh7EgM5i2L5iK4beI6XN7zjyUbq4B8cogDxYXRmh1t8Op+JI143rJQegSH+47a/997lDHglUU95nJqdXXgvcFP4IzWd+D2ieuwLf5swdtMZkL42dh/YK33SFzYdQUO9x9dgZESEaklcnHM5Waky+wYaCeqBIbRiIiIiIiIyJSV4NJcAvC6yj+WepBI750q7HMzNCejCqNpRYTRalGhgCEApDJWpqHbC8NoRERERERE9WU2wTAaERERERERERERUT1LKsJoHobRaBHMYhDj6ZGC4YNxk5hY0GPPSETAvUIaRhtXxC6ICgkpXgcBl/3igESloGkagu4+vJx8IW+Z3bel0aw8ZtbgaFIGoBod8khoLBeBEAKaxjkNVDpCCOxJD2MovgVDiUHsiG9FRBF/WapWZwf6fQN7Y2j+Deh29S56fdY0DZcEPopv7voUcsg/W/0TkQdxcssZOMJ/zFKHDQDICfkkCs1iyO3A9TUE3CvwSnIob9l4auSQ/87ffwSAHs+qoh7TDvq8a/CJlV/B1tgzuC18HcbSrxS8zcvJF/Dd4X/F8Y2n4J1dl6Pb3VOBkRIR5Qtn5GFqgHFqql8MoxEREREREZEpK8Gl2TgQMD9xHhUQSQh88HoDdz63N/J1/nEafnq5hiYvf0xcSCjWR33B0+R3Ay6HPKo1k398U02wEjBM5f8GZ3vprPWYG8NoRERERERE9qX6PH+oOfl8NyIiIiIiIiIiIiKqEylFGM2reys8EqoF++I2u5Iv5i1TxZ4Ovo48gOPVfWhxtC15fOUQcMtjVVb+vUSHiuXmEc3JQ0uqdY2oFgTcvdIwmt23pTFDfjC1Kn5mtiwrskiJJLwa47S0eIYwMJrahaHEIIbig3gpsVX5vrJUHa7uV0NoG7DOtx6drmBJw349npU4u+Nd+N3Ur6XLbxy/Gv+25ntw6e4lP5YB+eQQBxxF35cqjLYwvJM0EpjOTkhv3+PuK/ox7WJ9w/E4as2xeCLyEO6a+CXmLET4noluxHPRTTit9W04p+M9aHRyohwRVdah4cp9XJobbc6uCo+GyB4YRiMiIiIiIiJTVsNotDQfut7ArX898N83Py3g0IFffohhtIVU6+PCMJqmaehoAMYlv5m9MiUA1N5zmrPwOo2nyz+OUpPF7VTmk0AyI+B11d7fl4iIiIiIqNpZDaPxOyYiIiIiIiIiIiKi+pZUhNE8OqMctDhB9wppGG1cET076DqKCckBd19JQxulFFDEK0LpURjCgK7pFR4RVTOzCBTDaFTL1NvSwu8dyymmCE41OJqUtzFbFstF4OU+GBUhJ3IYTu7EUGIQO+KD2JHYioQRK8tjdbt60e8fwDrfevT7N6DdVf5YzNnt78LTkccOiortE86M4ffTt+LtnZcs+XEMIZ9EsZj9uKDi/Xrhfu54alh5+x7PyqIf0050zYFTW96CE5regAem78D907cjJZKmtzGQw8Ozd+PJyIN4a8dFeFPruSUJ3hERWRHOyD+Ddbt7+Xme6hbDaERERERERGQqJz/ZyEHm5McikUXhiMBtz+RffsvTAj+4RKC9wZ4H0CwHZRjtkO/21nXLw2hb8n+DqglWXqczVTi5vJgwGgBMzAMr28szFiIiIiIiIlo8i100fsdEREREREREREREVOdUYTRGOWixlhK3UcXTgor7tANV/CItUpjNTlUkGkK1QxVG82hetDh5sCbVLlX4bzITRsbIwKW7Kjwia6LZeenlDY5m5W0aTZZFc/PocAWWPC6qXVmRwSvJl7AjPoihxCB2JrYp9+eXqse9Eut8A3tjaP4BtC7D+5BLd+OS4Mdw1fAXpcv/MH0rTmx6I4Kepe0rGpBPDtFRfBBHvT0bR1Zk4NRc2JOWh9E8mhdtztrYd/ToXpzTeTFe3/o3uGfyV/jT3B8hFM/zPgkjjtsnrscjM7/DO7suwwlNb2SUiIjKbjwl/wwWcPdWeCRE9sEwGhEREREREZlShagWmk0IAIx3LdamXfLnOWsAz+wG3nx0xYdkW4bit4dD176BFRoe35H/pA6OWp2KXV0YRtsrzDBa3Xlou8DX7zEwMQ8cv0rDdy/S0NnE9yMiIiIiIrsRFj+Oz8b5HRMRERERERERERFRPUsxjEYlZh63ScOlu5W3VUWhVPdpB2ZjC6VHGUajooTS8rMRd7t7oWn8TY9qlyqAKWBgIrMHvZ5VFR6RNTFDclZxAI2OJuVtvLofOnRpiCmak98f1a+Mkcau5BCG4lswlBjEy4kXkBapkj+OBg29ntXo3xdC861Hk7O15I+zGEf6j8HJzWfiiciDecuyIosbQ1fjkyu/tqSAliEUYTTNUfR9qSLBBgxMpkMIevqwJyUPowU8fTUXAmtxtuHS4Mfxpra347cTN2BL7OmCt5nOTuDaPf+FB2buwoVdV+AI/4YKjJSI6pX6ewj7BtqJyo1hNCIiIiIiIjJlJYw2V56TutSNF0PqJ3n7uMCbj+bBA/uonin9kKfoGMWxPdvHSzoc21AF4xaajpV/HKVWdBiNv7/XlWeHBc7+noHsq+v/ljGB258RmP6eDqeD200iIiIiIjuxmimf5XdMRERERERERERERHVLCIGkkZQu8zCMRotUOG6zWro8Y6QxmQkVdZ924HM0oNnRhkhuJm9ZKD2KoxuOW4ZRUbWqxjggUSl0ugPKWFgoPWLbMFo0Ny+9vMHRrLyNrulocDRhPjeXf39ZHphd79JGCjsT2zGUGMRQfBC7ki8iKzIlfxwNOlZ61qLfP4B+/wYc7jsaDSZBv+V2YdcV2Bx7CjHJa25HYhBPRB7EqS1vWfT9G5BPotBRfKSsy9UDDTqEZHs2nh7ZG0ZLy8NoPe6VRT9etej1rMLH+76A7bHncNvEdRhJvVzwNruTO/C94S/g2MbX4vzOyxH02PczARFVJ0PkMJHZI13Gz2BUzxhGIyIiIiIiIlNWgkuz8fKPo5ZtlX9nBQDYIj/ZWt1Shfr0Q37j6e/WIJt2HZ4HUhkBj6u2oklWAobzSSCTFXA5q+ffns4Wd/3QvABQPf8+Wpp/ve1AFG2faAo49/sGfv+p4s+IRURERERE5SMsltEY3yciIiIiIiIiIiKqXxmRlk7YBwAvw2i0SF3uIHQ4pIGJ8fSoMow2kdmjXB/tHEYD9k6YjiTkYTSiYoQZRqM65dRc6HQFEc7kH8g/buNtqSpk1lggMKUKo8UMeWiNalfSSOClxDYMxQcxFN+C3cmXkEORB/RboMOB1d51e0NovgEc5jsKPkdDyR+nXBqdzXhX1wdww/hV0uW3ha/DMQ0nosnZuqj7N4R8H1TXij8+3qW70OnqxkRmPG/Zvn3D8ToMo+1zVMNr8Dn/d/FU5BHcMfkLzGanCt7m+egmbIk+jTe0no1zOy5e9N+ZiOhQ05lJZERauizIz2BUxxhGIyIiIiIiIlM5CxNXI/KTNJJFk/PqJ3lw1OLM4TqhCvXph7SwVrap72NkBji8u3RjsoOchYAhAMwmgC77njwpT0Z+siOlqWh5xkH2Mx0T+P2gfNn924ChkEB/gJE8IiIiIiK7sBpGY3yfiIiIiIiIiIiIqH4lDPWXxAyj0WI5NCe63EFpFCyUHlHeblyxTIcDXe5gycZXDgH3CgwltuRdrvo3EckYIoeJjPzMzwGbxwGJSiHo6ZOG0ewcmYzlVGG0ZtPbqZar7o9qRzwXxY7EVgzFB7EjsRXDyZdgKMKwS+HUnFjjPQL9/gGsezWE5tG9JX+cSnpd85vwZORBvBDfnLcsbkRx68S1uKLnU4u6b1nQFwAciwijAXvft+VhtBEkjQSmMmHp7Xo8tR9GAwBd0/G6ljNwfNOpeHDmLvxh+lYkDfMzOxow8OjsvdgUeRh/034hzmw7D27dU6ERE1GtCmXU+5ndDKNRHWMYjYiIiIiIiEypQlQLRRlGWxKz+NOWMUAIAU1j4AcADMVE6kOfnZXt6vvYPV2/YbSZeG2H0aZj5RkH2c9fXzFffuMmgS+/g9tNIiIiIiK7sJp9nzU/rpCIiIiIiIiIiIiIaljKZPK5V/dXcCRUawLuFdKQzXhKPel4PCWPiHW5e+DQ7D0lM6iYMG3nmA/Zz1QmjKzISpcF3L0VHg1R5XW75Ou5XbelQgjEjHnpsoYCYTTV8mhWfn9UvaLZCIYSg6+G0AYxmtoFYfmIDutcmhuH+Y7EOt8A+v0DWOM9ouaiUZqm4ZLAx/D1Xf+ErMjkLd8UeQSvaz4DRzccV/R954R8EoUGvej7Ava+b2+RzLMIpcdMt2k97voIo+3j1j14a8e78fqWt+B3Uzfjsdn7CoYCk0YCd07+Eo/O3ofzOi/Da5tPh64t7u9ERBRSfA/R4mznCQOortn7WzgiIiIiIiJadqoQ1ULzqfKPo5aZxZ9m48DYLLCirXLjsTPV+qgf8ttBg0dDe4M8lLV7WiA/pVbdclZeqKi+cFixYbSpKvv30eIViiU8vav0P9ITEREREdHiCYu76JE49+WJiIiIiIiIiIiI6lXSNIzGCaC0eEF3H57HprzLQ2n5pOO9y+SRCFV0zE4Cnj7p5bPZKSSNBF9PZIlZKKWbYTSqA0HFtjSUHrHlSc9TIqmMGTY6zM+qrVoezUWWPC5aXnPZGeyID+6Poe1J7y7L43g0Lw7zHYV+/wD6fRuw2rcOTs1Vlseyk253L97WcRHumrxRuvym0DX4tzVXFR2FE0Ie43IsMrgVcMu3Z+PpEexJydcJl+ZGu6t7UY9X7Zqcrbg48BG8qe1c3D5xPZ6P5n+OONRsdgo3jF+FB2fuxIVdV+CohtdUYKREVGtC6THp5dXwPQRROTGMRkRERERERKZy5ie4AABEk+UfRy0rFH96aYJhtH1UE6l1yW/Lq9rlIbAXQ6Udkx3kLM4bnysQk7Ib1WtD0+TrwgzDaHUjlTVf6QflvwcQEREREdEysZo7KxRBJiIiIiIiIiIiIqLaZRZG8zDkREsQVMQgQulRZdxmXBFNU4Ul7CTgUk+aDqdHscq7roKjoWqlCqO1OTvh0b0VHg1R5am290kjgUhuBi3O9gqPyFw0q46YNTiaTW+rWh4z5pc0Jqq8mczkqxG0LRiKDyKcKc8B1V7dj3W+9a+G0Aaw0nsYHFp9JivOar8AT0Uele47TmTGce/ULXhn12VF3WcO8klcGhyLGqMqqJMwYngxvkVxmz7oiwyx1YqAewU+uuLzGIoP4raJ6/BKcqjgbUZSL+P7I1/GQMMJuKDrfej1rKrASImoVoQy8s9g3QyjUZ2rz71MIiIiIiIissywMHM1mrQ6vZVkCoXRdk8LAPY6q9RyUa2PsjDakQENzw7n32DLaO2tr1YChgCQzJR3HKWWVrw2gs3Anrn8y6ditfe3JblUgXVZtk0gIiIiIqLlowqdH2omXt5xEBEREREREREREZF9pRRhNJfmhkNbXASACFDHbVIiiZnsJNpdXQddbghDGYVSRdbspN3VCZfmRkak85aNM4xGFqleAwFOyqc6EXD3KpeNp0dtF0Yzi5g1OppMb6tabhZbo+UnhMBUJoyhxN4I2lBiEFOZ8pxBvkFvwjr/evT7BtDv34AVntXQuX8OAHBqLlwa+DiuHP68dPn907fjpOY3otez2vJ9CiGfHOJYZKjM7L17c/Qp6eU9npWLeqxa1O8fwL+s+jb+Mv847pj4OaazEwVvMxj7C7bGnsGpLW/G2zsvsd17BhHZUyglD7RXw/cQROXEMBoRERERERGZshJGm0+Vfxy1rFAYbXimMuOoBqr1UXLCRmxYAfz66fzLN8uP1ahqVl6nAJDMVFdkT/XaUIXRpmPlHQ/ZRyprvnxkFjAMAZ2FNCIiIiqBTFbg334rcMezAi4HcPkpGv7lbE165ngikrMaRhuXfNYjIiIiIiIiIiIiovqQVITRPLqvwiOhWmMWtwmlR/PCaLPZKaSF/MDYYBVEoXTNgW53L0ZTu/KWqWJXRIdiGI3qXaOjGY2OZkRz+XGwUGoER/qPWYZRqcnGCQA6dPj0BtPbNjqapZfHFPdJy0MIgXBmbG8ELT6IHYlBzGQny/JYTY4W9PsH0O/bgHX+9ehxr4K+yChXPVjnX4/Xt5yFP83dn7fMQA43jl+NT6/6puXnMAf5JAodi4vRNTpa4NcbETeiectUUcWgm2G0hXRNx0nNp+G4xpPx8OzvcN/UzUgY5md/FDDwp7n78XTkMZzVfgHe3P5OeHRvhUZMRNUmkYtjLiefQMrPYFTvGEYjIiIiIiIiUzn5yUYOEk2Wfxy1LFsgjLZ7ujLjqAaqAJisfXTMCg1A/g12TQHzSYEmb+1EDKy8TgEgmSnvOEpNGUZrATCcf/lU/m91VKMKhdHSWWBkBljVUZnxUOkJIfD4jr0BjWP7gFZ/7WyziYio+nzk5wLXbzzw2eJztwnMJYBvXMD3JyKrLHbRsGcOyOYEnA6+voiIiIiIiIiIiIjqTUoRRvNy8jgtkd/RiGZHGyKSScbj6REc3XBc3mUqAXdfycdXDgH3CkUYTf1vI1oolB6TXt5tEhokqjUB9wpEE/lxsHEbRiajWXnErMHRVPDEfw2KMFo0Nw8hBE8cuEyEENiTHsZQfAuGEoPYEd8q3ZcphVZnB/p9A1jnH0C/bwAB9wr+3Yt0Qdf78Hx0E+Zz+WcE3Jncjj/N3Y83tp5t6b4MoQijLTJOp2kaAu4VeDn5guXb9HpWLeqxap1Ld+Os9vNxSsuZuHfqZjw6cx9yMJ/YkBJJ3D31Kzw2ex/e3nkpTmk5E7q2uMgdEdUus4g5w2hU7xhGIyIiIiIiIlOqENVC8/IT45FFqvjTPsNTVqcP1z6hDKPl//B2rMnxR1tGgVMOL9GgbKDewmiBZnn0btr8pDtUQwqF0QBgcIxhtGo1MS/w1u8ZeObVAGJvK3Djh3ScdgQPsiAiosqbigrcuCl/3/Nb9wq892SBo3r4/kRkherz/KEMsTeOtrK9vOMhIiIiIiIiIiIiIvtJKsNovgqPhGpRwL0CkUR+TEQ2+VgVRmtxtsPn8Jd8bOWgmjg9nrJfzIfsJ5GLK+M7nJRP9STo7sNLiW15l4dtGEaL5eRhtEZF9Ozg6zRJL88hi5RIwqtxX6wSDGFgNLULOxJbMRTfgh2JrYgq/q5L1e7sQr9/A/pfDaF1uoIMoS2R39GId3d/ENfuuVK6/LcT1+PYxpPQ4ix8QIwB+eSQpcS0ig2jBd0rF/1Y9aDR0YyLuj+E01vPxR0TP8cz0T8XvM1cbga/DP0ID83chQu734/1DcdXYKREVC1UYTSX5kabs7PCoyGyF4bRiIiIiIiIyJSVMFo0Wf5x1LJCYbTx8vyeVZVU66Mu+R1udQfQ5AXmJevn5lGBUw6vnR/vLIfRLMSk7EQdRpNfHksBqYyAx1U7f1uSsxRG2yPwtmO4LlSjT/xK7I+iAcDYLPDB6w1s/5oOh2yDT0REVEa/HxTK/dJzvm9g57d49kaiUhueYRiNiIiIiIiIiIiIqB6pwmgehtGoBILuPgwltuRdHpJE0MZT8jBasIqCUKqxTmT2wBC5JYU1qPapJuUDDKNRfVFGJhUBzeUUM+allzdYCKOZXSeajcDr5r5YOeREDsPJndiRGMRQfBA7EluRMGJleawuV8/+CNo6/wA6XN1leZx6d2LTG/HE3IPYFn82b1nCiOM34f/FB3s/U/B+DCE/WM2Bxe+/Bd19lq/r0tzo5DpiSbe7Bx9e8Vm8lNiO28LXWorPjaV344cjX8VR/tfgwq4r0OddW4GREpHdhTPyz2Dd7l7oml7h0RDZC8NoREREREREZMpKcGk+Vf5x1LJCYbSw/HfKuqQKo8lOUKRpGjb0Aht35i/bPl7acS03y2G0THnHUWppRfwq2KK+zXQM6Gktz3jIPlIW1uUXQ+UfB5Xe2KzALX/J39i/NAE8PgScfuQyDIqIiOra7mn1sl1TQDgi0N3McCdRIRa6+/uNzAgAfF0BwExs7zPX1sDng4iIiIiIiIiIiGpfShFG8zKMRiUQ8KjiNvmTj2WxNAAIuleWdEzlFFDELzIijenMJDrdgQqPiKqJKozm0txoc3ZWeDREy0cVRpvOTiBtpODWPRUekVo0qwqjNRW8baPJdaK5CDrB94xSyIoMdidfwlB8EEOJQexMbFOGgZcq6O5Dv28D+v17Q2itTp6drhI0TcMlgY/ia7v+ERmRzlv+l/nHcXL0DAw0nqC8DyEEDMgnh2hLCOMUEzYNuFcwolukw31H4TOr/h3PRDfitxPXYzJTeCLD9vhz+NYrn8bJzWfiHZ2XotXVUYGREpFdjafkn8EYpiZiGI2IiIiIiIgKUIWoFoqlAMMQ0HVO0lwMK2E0IQQ0Wf2rzqjWR9Wqt65bw8ad+TeaqLHYXM7iDPNqCqMZhlD+vYMmJy+bYhitLqQU0byFZmPFpBfILm75i4BQ/OmeHRE4/Ui+FxIRUWXF8o9RO8jzI8Bb1ldmLETVTLWPJzMyU75xVItURuAD1wvc8rRA1gBOOQy46SM6VrZzf5iIiIiIiIiIiIhqlyoM4WEYjUogqAiFzWWnkcjF4XP491+mikJV04TkbnevclkoPcIwGpkKZ+SvgW53L/QlRFmIqo0qMgkA4fQY+rxrKzgac9FcRHq5WfRsH5/eAB26NMYUU9wvFZYx0tiVHMJQfAuGEoN4OfEC0iJVlsda4VmDft/eCFq/bz2anDyYfrl0uoM4t+Nv8dvJG6TLfxW6Bl/0/wAe3StdLhRRNABwoDJhtJ4qigHbiaZp+D9Np+LYxpPw6My9uHfqFsQM84lLAgIbIw/g6fnH8Jb2d+Ks9gsZBieqU7XwPQRRuTCMRkRERERERKashNGAvZPFm+TfzVMBWfVvFwCAdBaY2z2Klqd+CxGZgXbK26AdfWJlBmczqonUqjBap+K33In52gomGQXWoX2qKYxmFgwMNGsA5H/D6Vh5xkP2YiWMNleek6hRmd38lHr7vH28ggMhIiJ61WTUfHmh0DUR7VVMGG14unzjqBafvkXgV5sOPGkbdwIXXWPgic/zjLxERERERERERERUu1JGUno5J4ZTKZhNJg6lR7HG1w8AiOeiiORmpddTxdXsyKv70OrswGx2Km9ZKD2KAZywDKOiaqGelK8O7hHVog5XN5yaE1mRf9DqeHrUVmE0VXyn0WFyNupXaZqGBkcT5nNzecuiuRo7G3kZpY0Udia2YygxiKH4IHYlX0RWlP7gfQ06VnrWot8/gHW+Aazzr0eDhQAeVc6b28/DpsgjGEu/krdsOjuBeyZvwoXdV0hvKwsU7qNpiz9mpMsdhA4HDBQ+2C3oYRhtKZyaC2e2n4eTW87EfVO/wcOzd0vfRxbKiDTunboFj8/+Aed2XoLXt5wFxxL+3kRUXQyRQzgzJl0WZBiNiGE0IiIiIiIiMpezGFyaTzKMtlhWJtKH/vE9aJ7+CwBAXPt14DM/hPbOD5d5ZPajDKMpTn7T1Si/fKLGfqPNWZxgXithtAbP3v/FJCfNYhitPqQthNEi8mNlycaiSYEnXlYv//OO2opaEhFRdRidMX//mYoJAIpSMxHtV8yeXKHXXa0TQuC2v+Y/B5t2Ac8NC7xmJbc5REREREREREREVJsSRlx6OcNoVAptzk64NQ/SIv+gs1B6ZH8YbTw9oryPagqjAXvHKwujjSuiV0T7hNLySflmgUGiWuTQHOhy9WBPejhvWcjk/WI5RLMR6eVWg1mNjmZpGC2Wk98vAUkjgZcS2zAUH8SO+CBeSe5ADhYOcC6SDgdWe9dhnX89+n0DONx3NHyOhpI/DpWOQ3Pi0uDH8N3d/wohOWLmwZk7cVLzaVjpPSxvmSHUE7gcUEyasTimTldAGd5ZqMfNMFop+B2NuLD7CpzW+jbcOfkLPD3/WMHbzOfmcFPoGjw8czcu6HofNjScCE3jcUJEtW46M6mMqfIzGBHDaERERERERFSAYXEualQSKCJrrITRwgkX+hf8t/jR/wec/XfQvP6yjcuOVOujrviuv0vxW+4z+b9PVzWrAcNk6X9rLZu0yevC5QA6GuRhNIYp6oOVMNpcovzjoNJ6ZVodwASAzaPAoy8KnHbE8r/G//sRA1c/IhCOAGcPaLjqbzU0+5Z/XEREVHrzBWKrtRZdJioXs/28Qw3PlG8c1SCTA0KKY8uvfkTgmsu430lERERERERERES1KWXID/bw6vV1jByVh67pCLhXYDi1M2/ZwhiaKozm1X1ocbaXbXzlEHCvwPb4c3mX2y3mQ/ZiCANhRRit28VJ+VR/Au4VijCavSKTqoBZo6PZ0u0bFNeL5nhgzD7xXBQ7EluxI74VQ4lBDCdfggGLB/EXwak5sdrbj37fBvT7B7DWdyRDwVXoMN9ReEPr2Xhs9r68ZQYM/Cp0NT6z6t+ha46DluWEehLFodctVtDTZy2M5mEYrZQ63QF8oPefcWbiHbht4jrsSGwteJvx9AiuHv0GjvAfgwu7rsAq7+EVGCkRLZdQRr1f2c0wGhHDaERERERERGTOsPhbTaHJ4qRmJYwWcgYOviARA7Y8AZx4ZnkGZVNW18d9uho1QHKWHQB4KSxweHdtTCa2GkZLyU8gYUtmrwu3A2hvAHZP5y+bipZvTGQfKQthtAjfl6rO7vwT1OZ5038ayFyjw6EqYlbA/z5u4GO/PPDecv1GgZcmBB797NIOOCAiInsqFGSd4P4nkSVFdHAyMRcAACAASURBVNHw0kTZhlEVzCJyL4wX80wSERERERERERERVZekIozmYQiCSkQdRjswCXk8JY+GBdx90LTqOt4woJhAbbeYD9nLTHYSGZGWLlOtU0S1LODuk15up22pEEIZMFMFzw7V6JCfjTyqCK7Vg2g2gh2JrRhKbMFQfBCjqV0QRR39YI1Lc2Ot70j0+wbQ7x/AGu8RcOuekj8OVd75ne/F8/NPYi6Xf4bAXckhPDp7H97Udu5BlwuT2J4OfUnjsfI+7tSc6HQFl/Q4JLfGdwQ+tfIbeC76JH47cYOlSN2L8c3491f+Ga9tPh3ndV6GdldXBUZKRJUWUnwP0ersYByVCAyjERERERERUQGGxd9uogzQLFrWQtRq2Cn5UXXrpvoLoynWR13xG0+X/DdaAMBX7xK44YPVdaCSitXXabJGwmguB9DZKF/GMEV9SGULr/Rz8mNlycaGZ6xtzP64DTh7oMyDMfE/j+eP8/EdwNYxgfW9tfG+QkREB6QLhKwneGJcIkvMYl+HmowC4YhAd3N97luZfcZ/Ybxy4yAiIiIiIiIiIiKqtJQijMZJoFQqQWXcZmTB/5eHbqoxCKX690Zys4jnovA7FAfhUV0ziz1V4+uAaKmCJpFJQxjQtaWFikohJZLIQX7mv0aLYbQGRRgtpgiu1aK57Ax2xAcxlBjEUHwQe9K7y/I4Hs2Lw3xHod8/gH7fBqzyroNLd5XlsWh5+RwNuCjwYfxs7DvS5XdO/gLHNZ6MVlfH/styQn2wmq4t7QTOVt7HA+4+OJb4OKSmaRqOazoZxzSeiMdn/4B7pm6yFKDcFHkEf53/M85sOw9nt18In6OhAqMlokoJpeWhxIC7t8IjIbInhtGIiIiIiIjIlGEh2gUA86nyjqOWmQWg9tntWpl/obv+zgSkmhzsUMyVXtMhvxwA7tkskM0JOFU3riLWw2ilP0tVuRQKo3U1aYDkrFtTDKMtSs4QuPWvAj/fKNDi0/C+UzWctd6+r42UhchfLIWaeY3Xi+H8E6JJPbFT4OyB5fu7bsw/cTAA4EcPC/zoUq5vRES1ptB+x2y8evaxiZZTMWE0ABgcA7qtHZ9dc8w+40/yMy8RERERERERERHVsKQyjOat8EioVqliEBPpceREFg7NifEFkbSFVGEcOzOLX4TSY1jrO6KCo6FqoQqjNTva4HP4KzwaouWn2pamRQqz2Sm0u7oqPKJ80aw6qqMKnh1KFVCzEuypVjOZyVcjaFswFB9EOCOPkiyVV/djnW89+v0DWOcbwCrvYXBozDvUi+MbT8GGhhOxJfZ03rKkkcDN4Z/iIys+t/8yA+oJXDqWFmIMKKK5C/W4JfOWqOQcmhOnt52D1zafjt9P34aHZu5CRqRNb5MVGfxh+lb8ee5+nNNxMd7Yeja3JUQ1QvU9hJXtNlE94LsdERERERERmbIaXJpPCgDFx0BiKYFQBFjbuffsF/UmZwhLk4NHXPlfZonZqUU849VNtT7qit94elo1NHuBSDJ/2Uwc2D4ObKi+45XyWA0YJi3EpOyiUBitQ3Gyyol5hikW41v3Cnzpjn3PncCvnhK4/v0aLjt5+c9kJ5OSn9guz3wSaOMJkarGK5PWrre1PMeeLFlojtsfIqJalC4Qso7I5+cQ0SGK3VN6MSRwxlH19q3HXmbfxWUtfv4nIiIiIiIiIiIiqkaqMJpH91V4JFSrVJOKc8hiMhNCu7Mbk5mQ9DrBKoxEtDo74NG8SIn8AyhD6RGG0UgqnJYfnBVw91Z4JET2YBaZHE+P2COMZhIva1xiGC1WI2E0IQSmMmEMJfZG0IYSg5hSvOcvVYPehHX+9VjnG0C/fwB9njXQNUdZHovsT9M0XBz4CF58eTPSIpW3/NnoE3g+ugnHNr4WAGAI9cFqS12PrLyXBxnhqSifowHnd70Xp7W+FXdO/hKbIg8XvE00F8HN4Z/i4Zl7cH7X5XhN4+vqci4eUS0JK+LUZvuhRPWEYTQiIiIiIiIylbM44TKa/x19gfsV+OdbBH78kEDWAFZ3AL/5qI4TVtfXF7Jm8aeFhiVhNMxOlHYwVSCnmB2sm6w2T39BxxFfkK/Ie+ZqI4yWszjDvJrCaGmT8JXLAXQpw2jlGU8tG50R+NrdB69EQgDfuU/g714nbPlDmdUw2lyCYbRqMjhmbWO2xeL1ykGY1EytrpdERFRdzPZLAXmEmYjyWYnCL1TPr61inysiIiIiIiIiIiKiWpATOWREWrrMyzAalUi3uwcaNAjJKV1C6VHkRA4C8mMNq3FCsqZp6Hb3Yji1M29ZSDHxmki1blTja4CoFHyOBrQ42jCXm8lbFkqPYn3D8cswqoOp4mU6dPh0awfRNijCaNFcdR6YLYRAODOGofggdiQGMRQfxEzW4tl7i9TkaNkfQev3D6DHvQq6Zs8TU9Py6HB14+2dl+C2ieuky28K/TeO8B8Dr+6DAfUEI8cS16tGRzMaHc2mMcUez6olPQYtTrurC1f0fBJntr0Dt01chxfjmwveJpwZw0/G/h2H+47Gu7rejzWMHhNVpUQuLt3PBPgZjGgfhtGIiIiIiIjIlKJDlWe+yAmrP3hQ4PsPHLjzV6aAs/7LwOh3dPjc9ovwlIvVMFrIEci/cCZc2sFUAdX66DD5jWddt4b2BmA6lr8sPC8AVP/6ZlgMGCarKNpj9tpwO4EuxQnMJqLlGU8t++ljQvp8bxkDZuJAuw3DYlYDVBNRYE1necdCpZEzBLaNW7vuzom9B60sR7Qva7JtYhiNiKg2Fdq+13O8iagYxba+iv2eqZZY/S6OiIiIiIiIiIiIqJakjIRyGcNoVCpu3YN2VzemMqG8ZeOpEWSF/MdBHQ50u3vKPbyyCLr7pGG0cYbRSGE8PSK9nJPyqZ4FPH2Yi8vDaHagipc1OpotH2fZ4JAfmB3NRZbteM1iCCGwJz2MHfFBDL0aQosoIiNL1eJsR79vAP3+Dej3DSDgXmH754eW3xlt78BTkUel+2Wz2SncPXkj3t39QRhCPTFEw9KDewH3CkQTJmE098olPwYt3irv4finvv+HLbG/4PaJ65T7ZQu9lNiG7+z+LE5seiPO67wMnW7J3DMisi2z/Ul+BiPai2E0IiIiIiIiMmUIa7Mxo6ni7vdXm/LvdzYO/GEr8M7jiruvamYWWFkoIvuxsR7DaIrfefQCvyUGmhVhNPVvOlXF6qTphPykqrZkFkZzOYDORg2yqfUT1XlismV17xb1CjQxX91htOFp4KQ1ZR0KlcjOCSCZsXbdVHbvutktP0FhWaUZRiMiqjvpQmE09RwdIlrA4tdL+xX7PVMtYRiNiIiIiIiIiIiI6lHSJIzmYRiNSijoXiENo4XSo8hB/uNglzsIh1ad0zBVE6lDFiILVH9SRhKz2Snpsm5Oyqc6FnCtwIvYnHe5XbalsZz8gHhV7Eym0SE/INNADkkjAZ/Dv6ixlYshDIylXnk1grYFOxJbEVU8D0vV7uzaG0HzD6DfN4BOV5AhNCqaQ3Pg0uDH8Z1XPguB/EkxD83cg9c2n2762cehOZY8jqC7Dy8ltsnvH050uYNLfgxaGk3TcEzjiVjfcDz+PPdH3D15I+ZzcwVv9/T8Y3g2uhGnt56Lt3VcBL+jsQKjJaKlUoXRXJobbc7OCo+GyJ6q8xs5IiIiIiIiqpic+oQjB5lPFne/T+2SX/6TRw2887ilf2FfLcziTwtF9GYIAAf9hBa2x1mmKimnmBxcMIzWBGzbk3/5lrGlj8kOrL5O4zUURgsogkjRFBBJCDT7+INzKUzMA0fa8PfNQoGSfYZn8racZFODRW6Ph2eWKYxmsu6lLIbdiIiouhQKX0aK/CxMVK9UYbRmr/x1VOz3TLVEFYXfJ2cIOAp9EUJERERERERERERUZVKG+othL8NoVEJBdx8GY3/Nu3xL7Gm4E17pbVRxsWqgGns4vQc/Hf32ou/XoTmx2rsOp7a8BT6HDc+8SfvNZaexce4BjKR2QQjzH6LMtsXV/DogWqqAR77+70oMLWlbWqxWVweObzwF6/wDB10ezcnPKt2giJ3JNJpE1GK5yEFhNEMYeHr+MbwQfx7JXNzyY5RKSqTwcuIFJAzJWdNLoMvVsz+Cts4/gA5Xd1keh+rPau86nN56Dh6evTtvmYCBn459B12uHuXtdehLHoNZ6DTg7q3aGHAtcmgOvLH1bJzUfBrun74df5z+LTLCfEJQVmTxwMwd2Dj3AM7peA9Oa3sbnJqrQiOuLoYw8FTkUbyY2Lws72Wl5NTcWOPrx+tbzoJb9yz3cKhIqjBawN0LXVv6dp+oFnDvhIiIiIiIiEwZiomrh5pTn7AxTyKtvtPp8vw+ZVtWw2g5zYmY1oBGseAJmh6HyKShudzlGZwNqSYHF5oP3N2sAchf7679k8BP3yugV/mEYquv01gNhdH62tTLR2eBZh4PWRJh+bESy65QoGSf3dPlHQeVzpYxixuyVw1PAyesLtNgTJite1bXSyIiqi7pAp/Z5pOAYVT/ZwqiclPt7TUpwmixVFmHY2uF9ozj6b3PGxEREREREREREVEtSRrqAxA9DKNRCQXcfdLL53NzQG5OuizoXlnOIZWV6t9rIIdnohuXdN9Pzz+GP8/9EZ9e9U00mAR1aPlMpkO4cvjzmM1OLel+HHAyDER1LajYlqZEcsnb0mI9PPM7XBb8e5zS8ub9l8UUYTSz2Fn+ddURtWgugk4cOMvyz8d/gCcjD1m+b7sLuvvQ79uAdf716PcNoNXVsdxDohp2Xtff4dnoRul781QmjKlMWHlbXXMs+fGDJmG0oKd693lrmVf34R2dl+KNLWfjrqkb8cTcgxAFji6KG1H8ZuJ/8fDsPTi/63Ic33gqNI3HNy50w/hV2BR5ZLmHUTJPzT+CpyKP4pMrv8Y4WpVRhdHMQpZE9YaJQCIiIiIiIjJlNbg0EbEeNNkjP3YEAOCos0+qVsNoABA59AdHIYAJ+RdgtUq1PhZab7pMftd9YPvix2MXlsNoVTSxPK0IDDl0QNM09LaobzsyU54x1aqESTAvPF9crKpSrAaoRhhGqxrb9hR3/eGZ5Vk3VdsmgGE0IqJaJIQw3fbvE62i/Wwiu1EFvuaT9vwsUgmFPuNHJSE5IiIiIiIiIiIiomqXUoTRNGjwaDxbBJWOWQyilLexi253DzSUL4KwJz2MP889ULb7p6V5YOaOJUfRAKDLHYSjBDEWomoVcPcu9xD2EzBwx8QvkBWZ/ZdFcxHpdYuJVnp1P3TIX+cL7384ubPqo2i97tU4vfUcfKj3s/j24dfhS2t/iEuCH8VJzacxikZl59V9eE/3hxd1W9VrtBgBk/3aniqOAdeDVlcH3hv8BP519ZU42n+cpdtMZkL42dh/4D93fw4vJWpg4lSJDCd31lQUbZ9dyRfx1/k/LfcwqEiqMJrZ9pqo3jiXewBERERERERkbznD2vXC8hMNSTGMdkAxYbQ5vRm9OKQcEx4BeteWdlA2ppocrBc4bufwLvWys79nYOZ7Olr81XsGlFoMo6leG+5Xf8/zuDR0N8m3PSMzAijjwVy1JpFRL5soYtteSSmTMS8UKiLaSctrKlrc32oqWqaBFJA2ed9mGI2IqPZY/bwWSQLNvvKOhajaCcXuXrNiLls9BweNAt/F1fNzQ0RERERERERERLUrYcSll3t0HzSNxwFR6QTcfRW5jV24dQ/aXV2YyoTL9hjbYs/grPbzy3b/tHjbYs+W5H44KZ/qXZuzCy7NjYwwORNxBUVyMxhLvYJV3nUA1GG0xkNPym5C0zQ0OpoQyc3mLYvlDhxMXKrtSqVo0NHnWYN+/wb0+wawzr++qGAcUTkc13QyXtP4OjwXfdLybXTocGquJT92hysAp+ZEVuQf9NzjYRitGvR51+ITK7+CrbFncFv4OoylXyl4m5eTL+C7uz+H4xtPwTu7Lke3u6cCI7WvrbFnlnsIZbM19gxObjlzuYdBRZjOyj+r8zMY0QF1Nt2ciIiIiIiIimU1uFSqMFrCHr8XVkzWYngO2BtGy7NnV6mGUhVUob5CYbQLjze/wluvMpCzurLbkNWAYdYA0tnq+HeqIhSuBSc66muTX2c0/zd5MmEWRitm215JVgNUE8sUz6LiJS3G7vaZk58ouuzSJuseAxVERLXHbLu/UGSZ3peIqonqk2iTIow2nyzbUGyv0NcT3O8kIiIiIiIiIiKiWpQy5D+4eHWenYZKq8nZgjXeIyxfv8XZjlXew8o4ovI7puGkst5/KD1a1vunxcmKDCYz4yW5r2May7sOEdmdrunY0HDicg/jIHtSw/v/f6wEYTQAaFBcP7ogjGb3bb4OHWu8R+Cs9gvw8RVfwH+u+zn+dc2VeHf3B/Captcxika28Z7uD8OjKQ6akVjrOxIufelhNIfmwPqG/5N3uUtz40j/sUu+f6qc9Q3H4/NrrsRlwX9Ai0MxseYQz0Q34msvfwK3hH+mjGrWA7u/ly1FLf/balFWZJBUfB/W6myv8GiI7IthNCIiIiIiIjJlWAwuhYr4TnTPnHqG59gcIER1hJtKQRV/kplztORdJl7ZXsLR2J9qcrBe4BuOVR0a3neKOo725MvATU9V73pXTNMtViUTqFX/JseCv3VQ8Xu9XWNedhU3CVJO2vS5tBpGm2QYrWoUG0aLLFMow2zdm5gH7ny2et9LiIgoX9ri57VYnQW+iRZD9VVPs2I+Wz3HvxhGIyIiIiIiIiIionqkmgjqYRiNyuDCrvfBq/sLXs8BJ97d9QE4NGcFRlU+b2k/H12unrLd/0x2Eimjjs96Y1MT6XEYKOLszQpH+I/BiU1vLMGIiKrbuZ1/azk8Uwl70gvDaPKDfVWhM5VGRTRsYTxnPD1S1H2Wm1Nz4nDf0Xhr+0X4h74v4z/7f4nPrv4OLuh6HzY0ngifo2G5h0gk1ebqxAd6PwOnVjh25tP9eFfX+0v22O/ovBTNjtb9/61Bw/ldlzMcWIV0zYFTW96Crxx2Nd7ecYml2F4OWTw0cze+vPOjuH/6dmSM+jv4sZbjYeH0WF3Nyax2qn04oPjALVEtq+5v5YiIiIiIiKjscha/D4umgHhKwO9Rx6f2GZ9TLxubBTaPAsf2WRygTaUyAv/zJ4GndwGtfuDC4zW8oT//uSkmjDavS35o2LVt8YOsQspYVuHVDv92robrN6pX6F8/JfB3r1vkwJZZUWG0NNBWBb/xKiN4C/7W3c0agPwr2jXmZVcJk9+ywvP2+1HEMITlbedUdO/1dd3CRoKWVdJi7G6fSGJ51s10gXFe/r8GNn9Fx8p2rnNERLUgZTHcGWekiKgg1fFWTV7557r5Op47U+jYtGgdPzdERERERERERERUu1RhNC/DaFQG6/wD+PzqK/FcdBMmM+PS67Q423FM44lY4VlT2cGVQburC59d/R08O/8ERlO7ICS/zViRNlLYGHlAuiycHsNK72FLGSaVmCr4oEHHaa1vLXh7p+bEam8/jms62VK0hajW9XpW4XNrvovn5p88KEpWbi/Gt2BPenfe5XtSe8cghEBUGUYrLnKkun7s1TCaEEK5bTnK/xoE3CuKerylaHa24TDfUVjrPQJu3VOxxyUqpWMaT8TnV/8XNseewnRmQnqdgHsFjmk8ER2uQMked4VnDT635ko8N/8EYrl5HN1wHNb6jizZ/VPleXQvzum8GK9v/RvcM/kr/GnujxAFArkJI47bJ67HIzO/wzu73osTmt4AXdMrNOLlFU6PSS+v9HvZUsRy83h6/rG8y1MiibncDFqd7cswKirWwvjsoRirJDqAYTQiIiIiIiIyZRRxsrDwPLDGwu9Ke0zCaABw4yaBY/uqNyiSzgqc9A0DWxZ8V3rVAwJX/52Gj5x28BfFxYTRZheclWW/V7YvcpTVSRnLsvD9+2GdgM8FJBRxg7ufr96AUq6I12msSqINhmIm+MK/dZfie147xrzsyjAEUiahp7ANI3PpIrabhgCmY0AnfxOwvaRi29ziA+Ykxz5H5MdDl12h9S+SBH78sMC3Lqy+9xIiIspndb8jVn8nTSQqmupTWpPiRKWROo5/FYqfx7nNISIiIiIiIiIiohqUUobRFF8kEy1RpzuIN7eft9zDqJgGRxNe33rWku7DEDk8Nf8osiL/QJ/x9AjDaDajihd1ugK4OPCRCo+GqDa0ONtxWtvbKvqY903dgjsnf5l3+b5YWtJIIAf5gcCNjuaiHkt1/dir4bVoLoK4EZVe520d70G/f6CoxyMiIOjpQ9DTV/HHbXW24/S2cyr+uFReLc42XBr8ON7U9nbcPnE9BmN/KXib6ewErt1zJR6YuRMXdl2BI/wbKjDS5RPNRhAz5JNk3tpxUdX8+1VhNGDv5wCG0apDTBG3BRhGI1qoPrKdREREREREtGiFJmMuNG9x0uqD283v9Dv3CVz2MwPTseqLG92w0YD34wdH0QBACOBffiMwFz/435QtIvAz5uzJvzA8CqEISNUiVQDMSstM1zW8dq35dXZOFj8mOyjmdVotYTQrf+tuxfe8EzaMedmVKka1jx2fy1SBMR9qQn4MBtmMal1Uvc6XK5SRNgkJ7vPt++rnfZmIqNZZ2e4DjBQRWaH66qKjQX55LAXMJ+tzv6rQZ/xYuj6fFyIiIiIiIiIiIqptSUUYzaP7KjwSIlLRNQe6XZLjWKGOcNHyCaVHpJcH3CsqPBIiWooe9yrp5VOZMNJGyjSo0VhkUKNBEUaL5iIA1NsVAAhy20JEZBu9nlX4+74v4h/7voo+T4FJVK/andyB7w1/AdeMfrOm9+3N/m3VtJ/c4GhSBk1r+e9Xa6KK/Tiv7odTc1V4NET2xTAaERERERERmVLFiWSiBYJLQgjc87zA7unC93XjJoHOTxkYClXPZM+7nhO44lr1eOeTwG+fPXh5pogw2ohLciaYdBKIWHhCa4RqcrCVMBoA/MMZ5l+FvPuaIlZ4GzFK+Dq1Cyt/6y7F7/VhG8a87CpRIDI2GQWMYsp7FZCyGCjZ5/Ed9ho/HWzbHoGfbzSU+waqMNqc/HjosrMayKnXiAcRUa2xut8RZ6SIqCDVq2SVyckph+vn646DFAyjVcnneiIiIiIiIiIiIqJipBRhNC/DaES2EnBLjmMFJ9/b0bjib1JNwQciAno88jCagMB4emR/tEymocgwmiqwsi/aEUqPSZf79AY0OlqKeiwiIiq/oxpeg8+t/i4uD/4TWp0dlm7zfHQTvvbyJ3BT6L8xn50t8wgrL5SR7yN7dT+aHa0VHs3SdLt6pZeHFe/XZD+q/bhi9+GIah3DaERERERERGSqmB6OWXApmRG45KcC7/hhceGpI79o4CePVkes6uqHC4/z7ucXH0YbdioORpionwNKVAEwh8VvON51gobr3q+uqD0/AmRz1Rc1KOZ1Wi0TqFV/64VhtO4m+d9yYh7I2SzmZVfxtPlyQwDTscqMxap0EdtNALh/kOuCXX3zdwYGvmzgfSZR0W75cTaIJMs0qAKsBnLqNeJBRFRrrAYxq2Ufm2g5CcUu34o2DZriY7qVsH4tUj1X+8QKfI4jIiIiIiIiIiIiqkZJRRjNwzAaka0EPfLjWEPpkQqPhMwIIZSxuqAibkdE9tTp6oZLc0uX7UntRkwR1NChw6c3FPVYqgjHvscYV2zrg+4+aKof/omIaFnpmo6TW87AV9b+GOd1XmYpPm7AwKOz9+LLL38M9039Bmmjdg6QVO0jB9wrqu69TBU8ZrS6eqj241SxWqJ6xTAaERERERERmSqmLXT29wz89DEDQjKD8+anBW5+enFxmo/+QuDaP9k7jiaEwKZdha/3/CG/BxYTRhtxKQ5GCNfPASWq9VEv4vvny0/R8eaj1Mt3hIsbU7mkMgJfusPAKd/K4fwf5XD/VvXrJ1fEy6NaJlBb+Vv3KE4uZgjgpYnSj6kWJTKFrxOeL/84ipGyMOaFRmrvREU14ZndAl+6o/B+QXezfAM/Jz8euuzSFuOZwzNlHggREVWE1SBmodgsEam5HUBQcRzP8Ex9Ro4LfRfHbQ4RERERERERERHVIlUYzcqkbSKqnG6XavL9GAxh7+N868l8bg4JQ35GVFVAgYjsSdccytftnvQIoiZBjWIDL42KMFo0N28aXAy4e4t6HCIiqjy37sFbO96Nr669Gqe3ngPdQmYmaSRw5+Qv8JWXP44n5h6qif39WnovU+0fhBlGqxqxnHyylmqfjKheMYxGREREREREpooJLgHA//25wDd+lz+D85ZFRtH2+eD1Ar/bXPkJsUIIbBkV2DMrpMG3fcbngGn5MQQH2TEBJNIH7qeYMNqwsw/SEUzUz5eWqvWxmDAaAHzgDeobbLbJ0/me/zbw9XsEnnwZuPO5veHBu5+Xr4PFBAyjqeqYWK76NzkWfJt1RED9tx8cK/2YalHCwoR624XRLAZK9oksU0CLzP3kMWFp29Wt+E0nlgLm4pXfnqUtrn/D09WxrSUiInNWt/vVEh8mWi5m36doGrCyTb5stE5js4X2k2O1cxJWIiIiIiIiIiIiov1SRlJ6OcNoRPYS9MhP8JsRacxkJys8GlIZT6tPuMwwGlH16XGvlF6+J7VbGdRocCjOUGaiUXEbAzkkjbhJTEZx8nciIrKdJmcrLg58BF9c+wMc2/haS7eZzU7hhvGr8O1XPoPtsefKPMLyCqXlE42qcR+5WxFzm8yEkRWZCo+GFkMVuG1gGI3oIAyjERERERERkaligkv7XHm/OCj+BQD3bF76WD59s2E6mbbUNo8IHPf/DBz7VQMrPmvgwh8bygiL1QiTEMC2PQf+O1tEeC7qaMKc3pJ/n3UURlOtj8WG0f72JPUNLv7J8p/FZNsegbuez7/8vB8amJWsg8W8TqslEmXlb+1zazi8S369zaOMElmRsPB7x0SVh9HmqmSdrydCCFz/Z2uvIQYzYAAAIABJREFU0aOD6mVP7SrNeIphOYxWpxEPIqJaY3U/O84wGpEps69yNAABxfHY0/GyDMf2GEYjIiIiIiIiIiKiepQ05Ad4eBhGI7IVs2CAKphDlaf6WzToTcrwERHZV49HHkYbTw8jqgyjFR/UMLvNbHYak5mQdFk1xmSIiOpdwL0CH13xeXxq5TewyrvO0m2GUzvx/ZEv40cjX8NYaneZR1h6OZHDZHpcuqzbJY+M2Znq/VfAwITi30n2otqP42c2ooMxjEZERERERESmFhNGm40Dmxf8pm4lZnbL/y38EfXFEHDVA5WJHaWzApf9j3HQv+OO54DP/1b++DsnrY9rZEEsJZMr7t8z4pJ8cRmun4NJVOujo8hvODRNw0UnqONoP354eeNovx9Urxf/dFP+slwRw43IT65qO8ow2iF/6wHF7w8vT5R2PLUqZSGMFp63V2Su2DBatazz9WQuASQtnoToyKCGzkb5sk27Kr9uWl3/huTH/xARUZWx+nmYkSIic2YvJU0D2hrkn89nYuUZj90V+hqNMUYiIiIiIiIiIiKqRSlFGM3LMBqRrXh1H1qc7dJlDKPZh+pvEXCvgKYVeSZiIlp2Qbc8jDaZCWEmOyld1riIMJpZhGNX8kUIyA9YZxiNiKh69fsH8NlV38H7ez6NdmeXpdsMxv6Cb+z6JG4c/zHmstVzNvGpTBg5yCcDVON7WacrCE2RC+Jns+oQUwZuGUYjWohhNCIiIiIiIjJVTHBpoc2jB2ZxPjtsft113cAFxwMXn1j4x/ZP3yxw21/LH0K5b8vBcbd9btokpKG33dPW73smfuD2mVxx4xp29uVfGC7wBNcQ1fqoL+I4jQ0m31v/w40COyeWLwb15E71sp8/IZA9JKhXTMBwTn4Moe0YFv/Wazrlf/zhGXvFvOzKyrozIf+ufdlYibktNJ8EcoupfFLZDBfxnulzAa9bK1+26eXK/13TFt+3t4xynSOiyslk5Z9RaOmsPq2MFBGZM3staRrQ5pcvm4nV57at0McXbnOIiIiIiIiIiIioFiWMuPRyr674EpmIlk1QEQ0YT49UeCSkElL8LQKe6gs+EBHQ61klvVxA4KXEVukys8iZilf3Q4dDuuylxDbp5Tp0dLmDRT8WERHZh67pOKn5NHx57Y9wQdcV8Fn4HC5g4PG5P+ArOz+G303+GinD/mezN4uFdbt7KziS0nDpLnS6uqXLwumxCo+GFiOai0gvX8x+HFEtYxiNiIiIiIiITC22JbMwKva5W83ratdeoUPXNfzXxRpeI+l+Herd1xi4YaOBezcLrP9SDu6P5rDhyzn8YbB0E2a/do98zDNxeVhqpIiTXMwuuH2xYbQRl+QJCtVPGE21PuqL+IbjmBXmNbVv37d8E7B9bvPlMwuOAyw2glE1YTTV3/qQP9vKNvn1igkv1TMr2/iw3cJo8pP0mIra/3e2ujJcxHum1wW8dq18e/3ky8VvA5cqbXH9eyG0N1RERFRO8ZTA+6810PZJA+2fNPDxXxpIZrjtKSWrn4fjqfKOg6jamYbRALQ1yJfNyOfA1bxC255Yitt6IiIiIiIiIiIiqi1CCKQM+UFNXt1X4dEQUSHdijBa2CQ0QJU1rvhbBFwMoxFVo05XAE7NJV02mQlJL29wNBX9OJqmKUMcqjBapyuoHBsREVUXl+7GWe3n46uHXYMz2t6ujGUulBJJ3D31K3xl58fw57k/whBFTpKrINXnlXZnF9y6p8KjKQ1V0C2U4WezahBThNEWsx9HVMsYRiMiIiIiIiJTiw2jDYUO3DBkEtWZuFLH69ftDZ4EWzQ8/QUd/3K2ebAKAK64VuDcHxjYPg5kDWDrHuCtVxn45K8NXPWAgWd2L22S6M4J9TJZJGh42vrjzcQO/P9skd/5DsvCaCM7IEK7i7ujJRJjOyHu/BnEY3dCZBdRKVok1froKLzK5Dm2QITvjmeXb6JxOGL+2FPRA/+/2NdopMbCaKva5X/84ZnKB5OqkZX1Z+H6ZgeLCaNVSxCwXhTznul1Aa9ThNFCEWC2wrEMq2G0TA4YCpd3LEREH7xe4PqNAvH03ve6ax4R+OSvuf9TSlb3taOMFBEtmqYBbYqTjE7H5JfXOsP8/AKIMcZIRERERERERERENSYj0jAg/3LUwzAake0E3fKDL1UxLqqsjJHGdEZ+4FLQY+Hs1URkO7rmQFARpVRRBc4KUYU4QqrgYpHjIiIi+2t0NOOi7g/hS2t/iOMbT7V0m7ncDH4x/kN8c9ensTX2TJlHuDiq9zJVXKwaqN6Hw+mxCo+EipUVGSQVJwloZBiN6CAMoxEREREREZGpXIHJmCrD0wf+v9lE1o7Gg2MnDl3Dt9+l46aPLKJ0BeD7Dwh86tcCJ3zdwNfvWeTgAZhNaw9Lgvy7p/MvU5ld8L1Vpsgw2ohT8ePhQ7cVd0dLIH7zQ4hLN0D8x99DfP4iiI+/CWLGpCRXQspY1iK+4VjbCRy3Ur08PA9s37M8gYNC69PUgtdUsa/RuUR1RBushtFWtsuvl8zYL+hlR1ZiH3ZbZxYTRoskSz8OWrzhGevX9bqAo3vUy0eKuK9SKCZGuWXMXq8dIqotsZTAbc/kb2du2Cgwn+T2p1SsdnZnKhzqJKo2Zi8lTQPaG+TL6vW1VWjTE0tXZBhEREREREREREREFZNSTAQFAK/ureBIiMgK1eT7uew0Erk6/YHHRsKZMQjFL04MGBFVrx73qqKu37DIMFqxIQ5uV4iIale3uwcfXvFZ/POqf8da75GWbjOWfgU/HPkqfjD8FYwkd5V3gEWqxchnt2Lsqn8r2UcsN69cttjALVGtYhiNiIiIiIiITKkCIBt6905eVVkYdlJNZP3i29V38J4TdUz919I+tn7pDgH9Izmc+PUcvnGPgWzO2qx2IQSiJhGd8CHfPSXSAi9PWh/X7ILno9gw2p9azpBeLh66tbg7WiTx7GMQV/0zkFsw8G1PQdzyg4o8vioCdmgsywpN0/Af7zZfx9Z/2cBPHjUgrBYRSiCbE3hRfrK+/RYGv4qJ9ADAnPo4QluxGsFb2aa+j2LiS/XKsBDWm7XZsWqqbXmLyQmCq2W9rxfFxMw8TiDYrN7O2zqMxt8TiaiMXgzJP0skM8BD2ys/nlpldbtvFgMnIvPIoAagzS/f2ZuOoaKfx+2i0LYnzjAaERERERERERER1ZikaRjN5IAQIloWZuGA8P/P3n2Hx1EcbAB/Z+9O3VaxrWbZBtPcgNCrqYbQQseU0D8CoQQcSIAAARNqaAFCDxCSEAjNGNMCxpQYDBhjDO69SJYlWb2f7m7n++Ms6yTN7O1e00l6f8/jx7rd2d2529253b2dd33lCawJqehCEAy4MNxTkODaEFGsFKZaPA1cwWnAWdd0zoI4ClNLIloOERH1Hzulj8PvRt+Py4pvtH08ubx1Ee7b+Fv8a8tfUe+riXMN7ansUJ+r9OdgNF3dmwONlsFb1PeaA43acZkRHscRDVQMRiMiIiIiIiJLutCc66YIzLvJwNHj1OMb24GGVgmfX6LFqy5z1G7WaVa5mQKf/y76U9eFm4A/viORc52J/8w38eb3Ep8sk6huUvc0rW8F/BZhQVU9pltR4Swopa6lq7DTYLS1ogR1Rk7vEcvmQ1ZsdDYzG6RpQq5fDjnvA8jP3oL8zRR1wU/+E/Nlq2jDsiIIRgOAo8cLrL3Xehv79csS932YuI7Ya6qADr91mZqQbchOsFWo/hIQpXtfPdd1wVDA41KXDQ1oJDU7bVd9km0zujpnpgIpbvW4HzYNvjCFZFZaa399pLoBj1ugMFs9vqw+sevWyff92q3xqwcRke74BwCWbuH3XqzY/SR1YeBEFGS1LwkB5GWqx/lNoDHJzkcSIdx5vu46GxEREREREREREVF/ZRWMlspgNKKkk+seDo9IUY6r8JYluDbUky4YbURKEVxCc4MdESW9ohRnwWiZDgPOIp2uwNN/w2SIiMg+IQT2HnIw/rjDEzhzxKXIMLLCTiMh8XXjHNyx/kq8W/2K5bl/vLUFWtEYUD+RvV8Ho3mKteOqNEFwlByaLYLrGIxG1B2D0YiIiIiIiMiSVRDVAWMFXrhIf2q5qdY6UCcnI/zyD9tV4O8XR5h61UNrB3De8xJTnzVx7KMmin5v4sGPevc2DRemVNkjlH+hw8Cd0E7zToPRAOCxvGvUI758z/nMLMi6Kshrj4G88GeQN50Geft5+sJbNkK2xv9pErrOwa4ornDsOFxoA/463TZTYlFpYgImlti49lzT0vV3wGG1+kunct376hmMZhgCIxVZgYCz8KXByk7IU7KF6QUsQvPGFarHzVzEbSGZlKp/U+wl3RPcxwFgVK5mXgkOQHQSjFbfyu2OiOLHqj1aznsZYsZuCHFtCyAl230iHavdQwAotLivuqw+5tVJeuGOOVs6ElMPIiIiIiIiIiIiokTxWnSOTmMwGlHSMYSBghR1B3xdKBclToVXvQ4K+3HgAxEBRanOgtGyIgzUcBrEUZDKtoWIaDDxGB4clXcy/jT2GRydewrcNoJ3fbIDH9a8junrrsTc+o8QkBF0pIuS1XlKfw5Gy3bnIVWkKcfx3Cy5tWiC0dKMDLiFJ8G1IUpuDEYjIiIiIiIiS1YBNABQnNM7qKhTaV33ELCecm0EowHARQcbePuq2J/CBkzgprck8qYF4L4iAOPyAHa5NYC97rLu/b5ua/fXMxY66wAfGqzm1ywq02zWTv/q8AuhWqJc/aOjeujI+mqYL/wJ8uRRwI9f2p9w/bKYLN+KVVBfNKafHH77mvyAmZCwg3Vbwy+jJmTzsBvW0Km6uX+ENujel2pdj8pTl7UbvjSY6dr4UPUW7Xhf0LUDLgM45WfqxuCHTf1ju4+Xz1dK/PplE9NeM/Hl6r79HKSUKLO5bw4J+Y2uRBOMZndeseKkze0vQZRE1D9ZheaUNwze77xYsxuI6QsEg7iJSM0yGE0AI3OC/6skOgg3GYRrelq8CakGERERERERERERUcK0a4LR3MLNzqBESaogpUQ5nJ3v+15lR5lyeH8OfCAiYLin0NFxUZbL4gllMZou0zUk4uUQEVH/luHKwhn5l+D2HZ7EvkMm25qmMVCPVyufxj0brsPi5gUJ7d+hO0/xiBTkuIclrB6xJoRAPkOr+6XmQKNyuNOQWqLBgMFoREREREREZMkqgAYA3C6B4hx1mU21El+t0V+ozM20X49Tfibw5q/jcxpb39r1PtdutS4LAEvLu96TlBL/W60uN9oirKnzAq5P86CL/doWaJe/VpRgs1txg8L6pdpprPj8wbpIvw9y/TLIi/cFXrrH+YzWLolo+U6EC+qL1CE7C5yxt3WZFi/w3YbI5t/hl+jw27tobyfMq6al62+7YQ2dvP7+EdbjJARvVK56A0h0YFJ/ZGf78fqBdl/yBKxYtQNHj1NvC3WtwJaGOFYqib00z8RRD5t47n8Sj8+ROOIhE//+1mGiYgxVNgLtPntls1K7/h6p2c831yV223TS5jb0g7aWiPovq3DTGn3GMjnk5FumtiV8GaLBKty+5HELFGrulS5N8PFeMggXxtvaMbiDn4mIiIiIiIiIiGjgaTfblcNTjfQE14SI7NKFbOlCuSgxpJTaAAQGoxH1by7hsr0fG3AhzbD5BPseshyEcRRqQjKJiGjwGJ5SgEuLb8CNox/AzukTbE1T0VGGpzffjcfKbsem9rVxrmFQlU93jFwMQ/TvyB39uRmD0ZJZiyYYjaGzRL3171aaiIiIiIiI4s5OOJEuAGxTLXDHLPUMXEb3wBM7Tt9b4K0rDcfTxdryLYC57YNpbAsGZqlcfaQ6xKXd1xVWoAtGS5E+vF16prYOZW7FEx3WL4P020ybAbC1SeLCF0ykXx1A5hVtmHbe39B60UFAzRbb8wglIwxmc8JJWJZT/7zUwIm7W5c58D4Tt79jImAzGafFK3HBCyZyrgv+O/95E83t1tOW1oafd21zVxmnwWgAUNnkfJpE065rxdWsUZo26NX50tbnOZjZ3X6SKeDJKrBzovphNwCAJYPwdx3TlLhlRvcPzJTAbTOl7XYs1pY5+IrJDPm+H5WrLmMnTDKWnHxsjer7tomIYsKqPaphQFfMhAsnClXXGr96EPV3VhleYtv5vPZ4rzb29Ul2do452zriXw8iIiIiIiIiIiKiRPGa6htT0hiMRpS0dJ3vq3xbYErNjbEUdw3+Wnil+qYlBhgR9X9FKaNslctyDYEQkd1c7ySMg4GLRETUaYf0XfHbUffg8uKbke+x6NQRYlXrYty/8Qa8tOVR1Pq2xrV+upCw/AHwXZafov68qzrKE1wTcqIloO7Y5ySklmiwYDAaERERERERWQpoOoJ3D0ZT/3BWWqvv/JrmQUQ/uJ22l8Daew28c7WBf1wi8OVNBpr+amDujcHXt58Ug4SsMNp8wPrq4N9WAVOH7qyvy6ZtHXt1wWge6cNJzR9op69yF/Qe2N4KfP+pvkIhpJQ47AETL38rYUqBNpmCv+ZcgdtGTLc1vdK6vgtGc8UgGS09RWDWNQZmXGl9ueTu9yUuetFeMs4V/5L497cS7b5gIN4r8yWueNl62vnrw883NOxCt49aqVQ/WCKpOAnB0wWjAcCYm0089bmJz1dKSEWDtGSzxJOfmXh1vgmff/CFqJlWCQUhkikYzep7aViWQKHmnowNNYNv/a7dClQo9veNNcDCTYmvDwAsLY9sPZRYBKOp9u14cRKMlkz7DRENPFbHgNXNiavHQOfkG6Y/HGMT9RWrfanzFE93XsdgNLUWBqMRERERERERERHRANKuCUZLFQxGI0pWupAtv/TFPdSA9Co6yrTjGGBE1P8VpdoLRst0EG7We1r7YRxsV4iIKJQQAj8bciD+uOPjmJr/K9thm/MbP8f09Vdh5tZ/oS0QnycDV2pCwgbCdxlDq/un5oD6puNojuOIBioGoxEREREREZElO0FUus6rm2ol6jWhINHEWI0YIvCLPQUuOMjAwTsJZKYKHLJz8PX0kw3Mu9nAkbsBET7oyJZlW4L/V1l0ft99JOBxqceFC0Zzww8BYJSvVDm+Ml39w6ac96G+QiGue01iZWXv4S/kXIJ2kWprHr2sXAjpi2/PXDtBfdEQQuDUvQSuOcp6hq/Ml7jpLetEstoWidcX9N6BXl8gUdOs3rHmrpbKEKOeakLCLpyE9HTqD6EN+ran97BRudbr65pXJI562MS5f+sejvbgRyb2/JOJ37wq8cvnJfa400Rty+AKzzJtBuvVt8a3Hk6EC80bqQnQqo3Pb2RJrcbiPf+wqW+29aUOHjzkD9k+SzT7eYs3sdunkza3sT2xoW1ENLhYtUftPgzKwNd4sBsiCwCltfzMiXSsdqXOaze6473SusG3b9lpelq88a8HERERERERERERUaJ4NcFo6a6MBNeEiOzKTynWjrMK56L4quzYrBw+xJWNDFdWgmtDRLFWlDLaVrksB+Fmvae1H8YxEMJkiIgo9lzCjSNyT8SdOz6NY/POgFt4wk7jlz58XPsW7lh/Jb6o+wAB6Y9ZfUxpomoQBqMFQ6urE1wbsqs50KQcHs1xHNFAxWA0IiIiIiIishQugAYARmlCaFZU6Dtq/vXc+KWWHThWYM4NLgSedWHzAwZKNPWLxtLy4AdTpb4OhcxUICtNaD+blZXB6f2aUCKP9AEACvxVyvGVYw9VT7h2iXp46LIrJJ74VL1im11DsDJlV/WEE/aH+KQBr1+7EEeN/i9G7rIeR4z5GB9k/jw4vqURmD877PKjod0eY3yF466Tw2+fD34ksdMtASwqVVfq+43q9Rswge82qOd50Yv2UqpCw44iC0ZL/o7lusAuVQieLpyxp9cXSLw6P/jeP18pcdNbsluH85WVwG632UwKGyDsbj/JFIymC0jsDM3L09wTOxiD0Tosfg9c30e/cTkJjfGHhIeOGaYvt6Iiigo5ZDdMEAgGWjQzsIKI4kT3fdhp5qLE1GOgc9Lul9bFrx5E/Z1lMNq2/3XndaW1Ma9O0rNzntYa31x6IiIiIiIiIiIiooRqM9U3pqQa6QmuCRHZlWqkIdc9XDmuUhM6QPGnC0YrSClJcE2IKB6KUtUPVu8pM4pAjUwHwWiFbFuIiMhCuisTp464ANN3fAr7Dz3C1jTNgUa8VvUc7lp/LRY1fROTh5TX+avhk+qbrfI9+sDn/sIqtLrKx3OzZNWiCUZzcixGNFgwGI2IiIiIiIgs6TrchwZRjc5Th0ht1YSGAcBBO8UvGC1UUY7Aij8ZeOZ8gUsPFThnP4Frjxa47USBaVMEdi1QT3fe/gL3nCZQnKMev6oy+H9Vk/oia8G23xPHF6mnX74l+L8voB7fGYyWrwlGq8rRhJetWGB54TdgSoy/3bp3/7LU8b2Gidv/AfHkp3hlUQrOmz0O/8s8DJXuAnyZcShOHv02po78N+alHwD/J29azjtadoL6YiE7w94M11cDe99l4r9LZK/PfWWFfj10BuOFqmiQ2FBjr361Ldi+PKtQjALN9dCKRnvL6UtO1rUugFDl+bkSbR0SRz2s/uBqWoB/zBs84Wh2g9Ea1A/m7RPhto28TPX+W5tE4W6JYhXKtUrRDiXC5nr7ZUPDJUfmAEPS1OWWlCfuvQQcLqoxifYdIhpYwgV2nf2ciR81Ab5kn5NPcNMgDG8isstqXxLbDt9115ZK6xCTG9z6EzvnaS1RBqNVNEh8tkKiqX1wfbZERERERERERESUnLym+sf1NENzowARJYWClJHK4ZUdZQmuCXWq0Hz2hZp1RUT9y3BPIdzCHbZcVhSBGmlGOlwIvwwX3Bjm0XTEICIiCpHnGYGLi6bh5jEPYdeM3W1NU+Urx3Pl9+MvpbdiQ9uqqJavCw8G9Oc0/UmakY5st/qppFbvnfpWc0DdsS+a4ziigYrBaERERERERGRJ1xnTFdJfdfQw5/PNj/xBRI5lpApcfpiB5y808MqvDDx6toE/nWLgkakGVtzlwl/OFsjJCJYdVwh8eoOBly8z8IfjDZy1j7pj7ua64AdTqQmYyt92HWpckXr6ZdtCXPxhgtEKAupgtFJDk7jmbQM+flU9DsA7f/9cO67T0tQJ3V6L2XUQx5wD4fbgL7PVG8SMoafhsB0+w4jSR7BiU/xSYLTbYxyucOw0wn7ZEx43cfITJppDOhQvsXiwxsKNvYctcXC92esHWrd1grbqMF2crR6u226TiZNgtLxM+/P9fBXw3Fzrjt93zOoddDdQ2Q1Gq29Lns9DFwbY2Q7karaHupbkeQ+J0mIRjOakzYmlzXX2y4Z+RwohMFHzMKOlCXyQUbggop6SKVSQiAYWO0GNt7w9eMJe48XusRIAlNYOvmMNIrusTq86g9F0gdftPqC6OfZ1Sma2gtEsjvUt521KTHvNRPHvTRz9iIlh00y8NIjCwYmIiIiIiIiIiCg5tWuC0VKN9ATXhIic0IUIVLDzfZ/RBR8MhMAHIgJcwoWClJKw5TKjCNQQQiDTFb6jx4iUQriEK+LlEBHR4DM6bWdcV/InXDnyNhTa+D4DgDVty/DAphvxYvnDqO6ojGi5VR3qzgZDXblId2VENM9kow+t5rlZsmrRBKPZOQ4jGmwYjEZERERERESWdAE0RsgZ5Wj1gwW0PC4gO4nuWbruaAMVDxloeNzA4ukGjtitK3mpRNMxt6w++P8adW4ZCrZdh9pN8yCk8m3T+7TBaH4AQLFPfQF2zuZctAr1hyjvvgTS7+s9fNMq/GdOjXqBIe4ffuP2v8Xf5kGkBS/01rZILNxkPW2jMRSXPtMct1Ap7faozp+LylVHOJvp+4uBodea+Hxl8L2X1+s/g1k/SnT4u49fUu7sM6vZ1jHcqsN0kSYYraox+UMbnASjCSFwzVH219ctM6zf/6ZahN3WBwq7YR/JFO4UbtvQBeXVtsSnPsms2atfwWu2Am0diW0L2jokahysB3+PNn9CsXo/31CduPfhJCAHANZXx6ceRER2ghpnLwsew1PknJzWVDXFrx5E/Z3VrtR5hGd1bWlVZPe09Vt22p5Ig9FemS/x+JyuBfhN4NKXJFZs4fcFERERERERERER9R1dMFoag9GIkpouzKCKne/7hNdsR51ffbMSg9GIBo6ilFFhy2RFGahhZ3o7AW1EREQ9CSGwe9a+uHWHx3BuwZUY4tJ0euphQdNc/GnD1ZhR9RJaA86esqkPD9Y8tb0fKvAwGK0/8Uuf9lpYtMdxRAMRg9GIiIiIiIjIUs9Qkk6ekAf85GYAman25zliSPBiZjJJcQsMSRNw9UhdGrlqtrJ8WW2ww+iSzeqOo7sVBeczvG61cnxdQ7AHq18TjOZGMBjt0LavlONbfQLf7nKOemIA+P7TXoPMt5/DZ2mT9dOEuOfQNyD++QPEuH0ABMNshv/WRvoCgG+q8/Dt+t7DA6bExhoJnz/yzrZOwrKiNXVfAXcEV06OetjEy9+YqLMI/2lo6x28tdjh9ebOcCGrUIyiHPUHU6l+sERS0a5rzTq56nD7G0Fb79zAXv7z3eDoFG4nVAUA6lvjWw8ndNuGa9u2wWC0Ls0WYQlSJj5g4qcyZ+UnFHV/vcMwdbnS2sjqEwmnwWhLHYZeEhHZFbDRvPhN4J1FbIei4aTdtzr+JxrsrIK+Oi8PFWYDQ9PUZc5+zuaJywBhp+1psRlybJoSm2ok1ldLtHolXv5GPd07P/L7goiIiIiIiIiIiPqOl8FoRP2SLmyrMVDvOKyAolfVoX4QM6APsSOi/qcoNXwwWqZraFTLsDM9AxeJiCgaLuHC5Jyf486xz+D4YVPhESlhp/FLPz6pm4k71l2JT2tnwS9tdAyCVTDawPkuy9eEvFmdI1DfaQnon8ScFeVxHNFAxGA0IiIiIiIisqQN7go5oxRCYFSu/Xnm95PweultR/HmMR5cAAAgAElEQVScJ5XjmrwCNZsqsKJCPe2kbdcUsz//p3J8G1LR/vpT8GkSDTzbLtAe2fIFcgPqxJd3R1+mr/yaxd1eyg//hbXvvI8a93D9NCHurj8R9fnjAQCrKiUyr3HWCfng+7vKm6bE3e+byLnOxI5/MJE7zcS1/zEjCkjThTjFIxhtZK7A3y8RSHE7n/bCFyW+Wmtdpmeo3t+/cvZ51Gy7b8gqFKNI8/CUfhGM5nBdjysSOGPv2C3/4Y8lapoHfsdwu2EfDer7T/tEIMy2wWC0LlbBaEDi24JZDsMWbji2++Vr3bFGaV2kNXLOeTBafOpBRGQ33PTtHwb+8Uw8OWn3a5MoSJYo2VgGo3X+LwQmae41K68HyusHT3tmp+0JF14tpcTjc0wM+62JHf5gYqdbTGRfZ+LjZeryf5gxeD5fIiIiIiIiIiIiSj7tmmC0VMFgNKJkZhUkUMkO+AlX0aF+aqVbeJDnGZHg2hBRvBSmhA9Gy3JF11nDTiBH4QAKkyEior6TZqTjF8PPw507Po2Dhh4NgfCdw1rMJry59UXctf43WNg0D9Lq5jTow8EGUjBagSYYrc5fDa/ZnuDaUDjNAX1Hnswoj+OIBiIGoxEREREREZGWaUptZ0x3jzPK0Xn259tfgtGwehFKGpZrR3905e/g9avHTRopIE0TuSs+005f99R96OhQJ8+5twWjuRHAnu0/Kcs8vnkv+OHCpxmH4/HcqzBjyCkIbDvVl+uWbi8nv/8MSx96CON2XqKtS0++AHD0Iyauf93EuD86C0Xr9PS71ZBvP4u//OUr3P6ORMu2gJ7WDuCJTyXuel9i4UaJB/5r4u73TcxdHb4Trm57dMXpCscvDzCw5UEDH00z8LPwvyM7siTk2rqd995TTUtwGqtQjOIc9fCKRoS9+N/XdOvaKgTvgTNjuyFMeSSybb8/sR2MlkRBH+HagWGZ6o2kohFo9yX3dh9rS9QPN9quqimxn8fizerlDU1DrxDK8UXAkbt1HzYqT71uq5uBxrbEvBenwWgbagbXNkdEiWMVjhvquw3O5rt8i8Qjs03c9JaJ298x8f5PEqbTxm8AcXLI3OIFOiIIfyYa7ETIId6EYv0J3xvfD579y074Zbjg5/d+Aqa9JruFXOtCpomIiIiIiIiIiIj6mq6TbprBYDSiZJbjHoZUkaYcV6kJ6aL4qexQ3yyW7ymCIVwJrg0RxUtx6uiwZewEm1mxE8hRkFIS1TKIiIhC5XiG4YKi3+APYx7BuIw9bU2z1VeB58sfwEObbsa6thXKMh2mF7X+rcpx+QMqGE3/XnTBcNR3mgNN2nEMRiPqzR2+CBEREREREQ1WfosOk+4ev5EHw0rsdVLNHxL+CQ5JYd1SjPKVIc1sQ7viJqvXhp6lnMwQwLhCAFvWI7etQjv7OlcOfPM/BbKO6TXOsy0YDQAmeZfh88wjlPPYY9IqrAoUbX+9X9t3+GLDFKQs3vbUi+YGvHL7i7hgp4XaeugsKgUWlUbe8fjqd3Ox88YZ+P2Yy5Tj735f4p4PZEjYgMRvjxF4+Cx1uJWU+qA+q7CsaOVmChwzAThiVwPT35W478PYdMZeGhIQ9MKXkQSjBf+3yqkoylbvl+0+oKkdGJrE9w7qOmxbresxeUC6B2jz6cs48WMZUFortWFMA4HtYLQEhU7ZEW7b2CVfP93KCmDPGIccJqvXF5h4dX6Ypx/pf0+Ji9Ja9fDf/Vzg4J0EHvzIxJoqYPIuAvefLpDq6b7vleTq533X+xIPnhn/fdVOSEWo6ub41IOIyG57VNkIVDdJDLdxDvaf+SYu+ruEr1t2s8QpewKvX2HA4x64x0Q6TjPh6lqBgujuLSUakKx2pdBgtNN+JvD8XHXp2Uslrjs6tvVKVnbannDBaA9+xBQ0IiIiIiIiIiIi6j/azTbl8FQGoxElNSEE8lOKUepd12tchSaki+JHF4zG8CKigWW4pxBu4YZfap7ujugDNewEqxWkFEe1DCIiIpWStB1x7ag7sazlB8yo+jvKOzaFnWZ9+0o8tOlm7JV1ME4ZcQHyU7r62FmFglmFifU3wzz5cMGNAHofH1R2lGNU2tg+qBXptGiC0dKMDLiFJ8G1IUp+DEYjIiIiIiIiLX9AP87dI7tqdJ79+Y7oJx3F5fqlcMHE+I6V+CHtZ73GvzvkJOV0O48A0jwC8uv/IjdQr51/nSsHPs0FK0/Ixci923/QziM0FA0AvkvfDw8MvwG3bbkf8rA0lHuKcMHOa7XTx9vPx3xgOV726Oz7l9kSFx8ksXtJ79CFnmVDxTMYrZPHLXDPaQL3nAb8/k0TD38cXVDUkpDr6+u26uc1oQhYtqX38JptYTu6kCgAKM7Rj6tsTO5gtEhC8AxDYK/RwLwYbvJv/yBx7dEDNwTEbthHvfr+0z6hq7Nr2/fSzvlAihvoUNzzsaRcYs9RA3d9diqvlzjnufArN+HBaHXq4aPzgKPGCRw1zvrJpGPygMxUoMXbe9yzX0jcfpLEkLT4rl/dd5HHhR5BQkFbE/wZE9HgEXBwKJp/g4mh6od0b9faoQ/GfudHYOYi4Kx97S9zoLA6B1Gpa2EwGpGK1b4UevT284n6cmvVD+4ckOw0PbWt+nEVDRJfOTwvTsR1FSIiIiIiIiIiIiIdryYYLY3BaERJrzClRBmMpgvpovip7ChTDh9IgQ9EBLiEC/mekSjv2KgtYyfYzEpWmGC1oa4cZLiyoloGERGRlQmZe2HcDnvg64ZP8V71K2gIaDoihPiheR5+ap6Pw3KPw/HDpiLLNVR7XuKCG8M8+bGudp8xhAsjUgpRoTgnqOK5WdJpDjQqh4c7BiMarIzwRYiIiIiIiGiw0nWMB4IBIKGcBKPl95frNOuXAQAmeJc5mmxC22LI1mbIx65HpmyBS/NEpnojB36hzix3h0xzRuPbjpb/Qs4lMCHgFSkYbSMULd0TXcBXrL23WF0fqwAnV4KvcDx4poGvbjJw72kCY4ZFNo/KRmBrU/BN6cKCAGjnX9MS/N/qcynKtl5+MtMGo4VZ15dNjm1v7liGrCUj06KdD1Vv0ek+0XRhgJ0d+d0ugXGF6jKrK+NTp2RTcqO9FVuVwHag1StR26IeNyrX3n6b6hGYuq+6bLMX+GJVpLWzT9c26UJwaluAgN0EQiIiB+x+h3dqbLf+Z3XuBwAzFw3OtsxpE24VVEQ0mFntSiLk8M4wBF79lfp4r7QOkE7TCvspO218XYv+s/hmnfNgx9DrKgFT4rsNEl+tkfD5B8dnTkRERERERERERH3HlCa8sl05jsFoRMlPF7qlC+mi+DClicqOcuU4BqMRDTzFqaO14wy4kGZkRDX/zDDBavlsV4iIKAEM4cIhOcdg+tincdKwc5EqwjwhGEAAfnxW9x7uWPdrzK6dic1edZDoiJRCuIT1Q937G/25mfo8gfpOiyYYLdwxGNFgxWA0IiIiIiIi0rLqHO/uFYxmP4yovwWj7de2wNFkJaXzgJnPAgAEgFzNkynqXTnwwaMc55G+7X9nylaMzlaHq6mUekZhYdpeuHP4rWHL5mQAM6+O7GJuRgrw/B5zMXfDERFNr7OxRj1cF4YEhA/LioeDdhK4+XgD6+9z4Y0rIqvAgg2AaUps1gSjvXKZwLBM9b5V2xz83yqsYUgqkJWqHtdvg9HCNDUXHSRw3+kCudH9pr/d6wskzAEcamT3rTWoH8zbJ+xsGztoAgW3Nse+PsnmznftJ+WU1SVu27YKgBzlIFz17lP0jcDS8vi/H932pzu2MSVQpwmEIyKKRiDB4UCvzpfwBwbuMZGO08NAtvlEak6aLN31pdYOoG6QhA/aaXt0ocMAsHiz8/bave2yxuY6id2nmzjgXhOTHzCx060mVlYMvvafiIiIiIiIiIiIEsdrqkPRACCVwWhESU/X+X5rRwUCMpDg2gxedf5q+GSHclxhakmCa0NE8VaYot+vs1xDIER0D5nOcll39ihkMBoRESVQqpGGE4afjeljn8Kh2cdC2IjIaTNb8fbWl/Df2jeU4wdieLA2GM23OcE1oXBaAk3K4eGOwYgGK3dfV4CIiIiIiIiSl9/ingR3j+uITkJNCoZG92NbIsi6rUBtJQDg5Kb3MK3wEdvTDvXXQT79p+2vhwVqUe0e0atcpTsfbZqbt1Klt9vro3b246Xv7Z/GH7jjl2HLjMoFFt1uIMdhgNTJewJP/dJAUTaAwCGoeWO1sxmEUVqr7nBr1TE4XFhWvJ2xj8DH0wwc+6j9QCIAeOsHib1GC20I4a4FAt+uV7/x6ubgcMvPxQAKhgLNW3uPq2iUCEb3JSd9+JV1nYUQuOk4gd8fK1HeADz3P4m73w/fifuWEwTu/UBd7sa3JB46K3k/q2jYDfuoT6IAAl1Ioivke2n4EAGg95urVv9+0O81tUs8+JHE7GUS3663P90Xq4D6VomcjPhv36W1+nElufbnU5QjcOwE4ONlvcctTcBvdrp9psDi4TzVzcDwJP6NasEGiSc/k/D6gTP3EThtLzi6MerL1RL//EaixQucsDtw3v4i6huriCg809lhZ0y8Ol/igoMG1/7tNH+uoS25j7GJ+orVvtRzj7G6vlRaC+RlxqRKSc200fhYBaMtjeAhn50PQLjsnyZWVHQNL6sDzn7OxKLbB9YTUomIiIiIiIiIiMg5KSVqfFXwhzzwMxaaAg3acemuGD0ZkYjipkATzhOAH6taFyPXPTzmy8zxDENalMGJrYFmNPrrlePyPCOQYmieSJskTBlAta8K5rbwufXtK7VlB2LoA9FgV5Q6Wjsu02VxM6NN4eaha/uJiIjiKdudh/MKr8IRuSfh7a3/wNKW7yOe10A8Rta9p6qOzajwloWdfqg7BxmurFhXixSaA43K4bE4jiMaiBiMRkRERERERFq6sCagq8NkJyehJuOLIqtPQm3oSlwZ7S/DKF8pSj2jbE2a3eNmrWJ/OVam7tarXJl7JBqMbOU8cnrMY0R2bDugnrOfwBPnCeRmBrsgb37AwMgb9Sv8uIlAdrrA0eOBSw8RMDqTyNwe5D35DvB47Oq2SROek8zBaAAwZYLAglsNvPiVxFOf20tQmLFQ4iKLcImSXCBfc12zalvAky4kCgBcIhjWs1YRjFapvo6aNHRhH3bXtWEIlOQCP5+IsMFoY4YF9wldMNojsyV+NVlit8Ik2NBizG4wWpMXME3Zte/3IX1oXtffIzS/x3QGCg4kXp/EwfebEYUf+ALAvLXBMKt4K61Tf/YjhgBpHmfb1Z6jBD5e1nt+S8vjv351bVO+JowPAMobgHFJcuzT4g3W0RDB47yv1gAnPN71pv7zncQtJwj8dkowdCRcwNl7P0mc/pS5/Zjx1fnBII57T+v7toJooAv0wVdaMBgt8cvtS3aPlTo1tcenHkT9ndWu1PNwoyg7GHqsOtfdUAPsae/STL9mJ5TRKhhtyWbnXxJuA2hul/hoae9xP5UB67ZKjB3BYzwiIiIiIiIiIqLBakHjl3i96m9otggxi4fUKIOPiCj+8lOKICAgFb8I/bVselyWacDA7ln74cLC6xwHKDb5G/D3LY9gZetPyjoDgFu4sVfWITi/8Gp4jJRYVDmmvqj7ALOqX0abGf5pp9nuvKhD5Igo+RSl6H84z3JF/xTXrLDBaMVRL4OIiChSxamjcXXJH7Gi5UfM2PoSyrwOniy/zUAMRsv3qL+f2802/GnDNWGnFzCwc/p4/F/x7zHUnRPr6lGI5kCTcngsjuOIBiKjrytAREREREREycsf0I9z9zijTPMIFNgIps9MBcbkRVevhFjXvSfoOO8K25MONbtfoCrxbVaWK3cXo0Hzw2G22SMYLcdje/nhPLLPUrzyKwN5mV0dWotyBN69xkBOj3tEJu8CVDxk4IPrXHj1cgOXTTZ6BSOJifvjcP/8mNVvYw0QUCQQWIUSuJLkCsfeYwSeOM+A7xkDlxwSvsNwfSvw6CfqlJ3MVGB4FpCvua7ZGWxmGRhnQLtfJn0wmi78yuG6PmgskB3mvp6PpxnYrQAYkqYv84cZFgl0/ZjdsA8pgcYkCfrQhQGGtgPDNcFoW9W/H/Rrz82VEYWidYokNCESpXXq4aMcBKt2mqS5p2Z5hfr7I5Z0s89IBYZlqsct39L3gXxSStwxy8SQ3wT/ZV5jIvtas1soWqd7P5AYcb2Jfe42MW+tdd3ved/sFaT7l9kSdS19/56JBjqrcNw8TXsUrZWV8ZlvMrMTThSqyRufehD1d1b7Us9gNJchtNeNkuG4KhHsHNLqgtG8PhlRe+0ygM31+vFfrxscnz0RERERERERERH1tql9LV7c8lDCQ9EAMMyHqB9IMVKR5xmR0GWaMPFj87f4d+WTjqd9YctDWNH6ozYUDQD80o/vmr7Am1UvRlPNuFjcvACvVT1nKxQNAAoHYOADEQEjUorggls5LlyomR1Zbut5FKaURL0MIiKiaI3L3BM3j3kYFxZehxz3MEfT6kLE+rNow94kTKxuW4qnN98ToxqRTosmGC0zBsdxRAOR+syHKEJCCA+AQwCMBlAEoBlAOYAfpJQb+rBqREREREQUAZ+DYDQAGJ0XPmxpQhF6BWslI/nTV91ej/euwOysY2xNm93jJrBi/xZluU2eUWgwssPPIzUdxbkCsLgRw67ncT8u+dUflONO3ENg4/0Gvt8INLQBY4cDE4qDnZKtCCEw7UiJL+ZGXT0AQLMXmLsaOGK37sOtwh+SbZNyGQIvXCRw6xGNWPLrCzHKV4YjxsxGk+Ii5ds/qOcxcdu+EgxG673uq5qCQTeWwWgCKBiq3naqGpO7U7PufbkcrmvDELhsssDDH6tn+MhUgV0KgjM9Zz+Bv81Vl5u5CLjrPRPpKcAv9xcoykmyjS5CpoO8t4Y29ApP7Ava0LyQVTJCEyi4tTn29YmFn8okPl0hMWOhxME7C4wdDnj9wNqtwNA04MjdBI4c13ub+7FU4rr/2NuX9ywBfizrPXyZ+isq5kpr1cMjCUabWKxu19p9wLqtwC4Fzudply54zRDAxGLgf6t7j1sSRXBdrFzxssTzmvZNZ1EpMPVZE4vvMJCb2Xv78wckvlU8YMvrB95aKHHZ5IHRThIlK9334eg8YMn04DF9fVtk8z7tKfUBwoYaoNUrkZE6ePZvp3mbzUkSJEuUbKx2JVWLMqEYWFfde/jyBB27RuunMokPFkvkZAC/2ENgZK6zdtNO29PmA9o6JNJTus97ZaX19ROd6mbgznf1C3Zy7khEREREREREREQDy9cNc/ps2Skitc+WTUT2FaSUoMZXlfDlLmr6Bq2BZmS4NE/R7KG6oxKrWhfbnv+CprmYWvAruIQr0irG3NcNnzgqX8DwIqIBySVcKEgpRnnHpl7jMl2aG2gdSBUWT5oGEh6ISUREpGMIAwdmH4m9hxyMT+vexce1b6HdDH/zbLQhYskoyz0UmcYQtJjq0C27NravRo2vCsM8+TGqGfXUHFB3vo1FwC3RQMRgtAFICDEdwB1RzOIfUsqLHS5zBIA7AZwNQPkMbyHEPACPSCnfiqJuRERERESUQH6LTo8exe/8o/OA7zZYz/PQXZK/E70sXwd8+ma3YYe2zcPj+I2t6Yf0uIhY4t+sLLc8dRykUCTMAcg2Qy5ypWXi2AnRB6NdUP8yLnnhaghDvUwAGJImegWS2XHKBQfj7Q+vwBmZf4UZg5tA/rtU4ojdum8r4QLAktGOgVLs0PwhAODUpln4V875tqedODL4pgo01zV9gWBQVbjAON30ldFd6447qQu/0m++WpccLPDYJ7JXm5adDkyb0jXDZ87XB6MBwB2zguP+OFPiw+uMXttof+Qk7KO+FRjj7EE6caENzQvZNkZkqdvM6mbANGVSBXT+Y56Jy/4pt+/LX67pXe+735e4+XiBe0/repP//NrExX+3twK/+L2BWT9K/FjWu/ySzYkJSdxcp15OSZ7zdTG+CBBC3U4s2xLfYDSrYL6JIwX+t7p3gWXlfRtEefMM03EoWqfyeuDFryRuOLb3emqyCP/5fhNwWURLJCK7dMeALgPIShM4PIJj+k4r7zKw2x97L0BKYMFG4LBdI593f+M0GK3JG596EPV3uvM7IHhc19P4IoH3flIcV21J7oBvAHj5m+Bxemf7cccsiQ+vNbD3GPvHvXbbnrpWID2l+7Bojj3/851FMFryf/REREREREREREQUJ2VexROzEiDfUwxDc28dESWXUak7YlnLwoQv10QAW7yl2CljvK3yTtuzNrMFzYFGZLsjePJjnDh9D6NSx8apJkTU10an7awMRotFIKIQAiNTd8Bm74Ze43ZI2wVGEgVGEhERAUCKkYrjhp2JQ7Kn4P2a1/Bl/Ucwob7RNtc9HFnugRlAVZK2I1a2/hT1fBiMFl8tmmC0WATcEg1EvEJMURNCHA9gCYAroQlF2+ZgAG8KIV4WQmQmpHJERERERIOAnPMGzEv2gzk5Nfjv6KEwbz4dcv3yqOdtFYzmVvyeVZIbvpPnGXsnTxiNiqwshTy7900SP2+ejQyzxdY8ss2Gbq9H+3r/6AgADa4c7TxyAvVdL9IzMXyIwLETbC1e63c/NyCG6JcZrZP/9iA6fAdjasMbUc9rsSK8xwwTAJaUKrvW/VmNznLCdy37DNI0kW9xXXPaaxKHP6j/YFyGPhitokE9PFlYhQ85NaFY4O5TRbcO9xOLgQ33db80JoTA4unhL5d5/cD//cOEP9D/e4ZbBev11BD+wTkJoatz6Lah2+4DJlCVRKGAXp/E796QttbD/R9KGJcHtv+zG4p2z2kCk3cRmFSsHr98CxBIQMrB1mb18OIIvpbSUwTGaK5CbmmI73uxDEbTfMZLNgPSKg0kClJK/GW2id2nB5B1TQD73xPAB4vl9nEX/93EA/+NbtnT31VP32gRjNaYJO0F0UBmJyg0UmNHABkp6nEzF/X/4x8nnDbfVqGRRIOZZTCaYtiEInXZ5VuCQcfJqsMvcc0rslsbvbUJuHWmgxMv2G97ahWXqXTH3dFK4o+diIiIiIiIiIiI4qyyo7xPlrv/0MP7ZLlE5NxB2UfDQN+E5FR0lNkuW9mhfsixFV2H9b7gMztQ49tqu3y6kYG9hxwSxxoRUV+anHNcr2EpIhV7DTkoJvM/cOhRyuGHZB8bk/kTERHFwxB3Ds4puAK37fA49sjaX1nm0JyfJ7hWiXNojL6npXR2vxvZ55c+tJvqzhZZDEYjUmIwGkVFCHEEgJkAQiM/JYDvAbwBYDaA6h6T/RLAq0Lw0S1ERERERNGSX70POf18YE1Imn+HF/jqfcjrT4BsqtdPbIM/oB/nVhzRj7aKSt5G17k1GcjWJsgzd1aOy5StOKnpA1vzye5xI8RE7zLHdck2Q+aRlgEAeO83kZ9GTWpfgkn77RTx9HaIzKEQz3+DW84dHvW8vlzTe5hVJ9xYBEDERVXXTTdTWj5FbqDW9qTDvn4N8m93WAaj/fNr657JQggUDFUniVU2xi+oJxZ0QXgiwhC8G48z8OPtBp7+pcBrlxv44Y8GsjN6z2xiscDhu4af3/pq4LOVkdUlmTjp3F4dpw72TumDYLrW5yiL76NN9nfDuPtqLVBjL3PTsYfPElhwq4E/HB9sICcWq3eeNl9we463Gs32MyzCxyfowu/iHXynDUYzgEmaz7iuNX5hlA9+JHHDGxJLy4HWDmDBRuCkv5qYu1riz/+VYb8n7GjxqsPzrMLPGlqT9/uFaKCwExQaKZchMEXzQO0ZC/tm//YHJL5aIzFnuURTe+Lq4DQIqMUbn3oQ9XdWu5LqHG+C5riqtSO5jud7+t8qdXjsR0sBn99+g2K37VEFo9W32l6MI05CtYmIiIiIiIiIiGjgaA40ojmQ2KcvZrqG4Ni8M3DcsLMSulwiilx+SjGuKbkd+R7NUwXjyEnYWSTBaM1JFIy21bcFEuF/tBEQGJU6Fr8ddS/SXRkJqBkR9YUd03fFr4pvQp57BACgOGUMrim5A3meETGZ/1G5v8CJw85BlisbAJDlysZpIy7CwdlTYjJ/IiKieCpMLcGvR96CaaPuxm4Ze8AFNzKMLBybdwZ+nnd6X1cvbvYZeijOzr8c2a7cqOYTgEWHUopKS0Df4SXLpekkQzTIufu6ApQQ5wL4xkF5W91chRAlAGYASAkZ/BWAX0kpl4eUSwVwBYCHAHi2Df4FgLsB3OKgXkREREREFEJKCfnMrfoC1eWQb/wV4tI/RrwMv8Xv527Fw91G5wlYdXfNSgWy0yOuTlzJ0tWQ502yLHNW9o94HeFvuBpqdr8RYrSvFFmBJjQ7SO7PNkNuKEsPpsa4XQJzrjdw9CPOe6Ne4J0J7HaT4+mcEm439jh1CmaMkTj96ch7zTa1A29+L3HmPl2doa064cYiACIeZGXp9r9T4MNxzR/j1exzbE2ba9YDb7+N9Itvxc75Hqypcrbszs+kUHNdtM0HNHuBIWnO5pso2vChKNb1pJECk0aGn8HkXQS+WBW+J/or30ocMyFJNz6bnIR9lNVJAH3/fu0EwQzPAtI8QLuvd7nSWmD/HeNTN6fWbY1PsMsjUwWmTemeGDneIph0aTmwc75+fCyoQhsAYFhmZNuULjRya7yD0Sy2v4kW93YuKQeKcmJbFyklHpuj3oYOfzC2yRVVjb3rrwr96FQXp0AOIuqiDwqNzfxP2F1g1o+9F7KpFnhpnomLD05cMvGWeokpfzGxfEvw9YghwKyrDRwwNv7HJU6/qRMZ2kbUn1hlcquC0cYV6ssv2wLsEH0ee1x8u17/RquagJE27zeLJhitwSK8NhpOgyKJiIiIiIiIiIhoYKjsKNeOu2XMoxjizo75Moe4smGIZH1KJhHpjMvcE9PHPoXWQDN8UnHTVpTerHoB3zd92Wt4RUeZorSaLhhtcs5x+K7xC7SbvX9oaQzq7jUAACAASURBVLbotJ5ouvobcOGusc/CEMEbu1NEKgPRiAaJvYYchL2GHIQO04sUIzWm8xZC4MTh5+CEYWejOdCILNdQiEifbk1ERNRHds2YhF0zJqHD9MIjUgbFd9nhuSfgsJzj0RxogBnmLtg/rrscfsX5m5R8ima8WIVvZzrod0o0mPBK8eBQIaXc4OBftc353gkg9PbteQCmhIaiAYCU0iulfBzA1B7TXy+EGBP52yIiIiIiGuTWLwM2LLcu88lrkFa9T8PwWwT8uxVnlDuG6Zg6Kg9JeRFRShk2FA0Ajr92KrJs/GaYY3Z/SqYBiQkdYdZVD6myo+tFWub2P48cJ3DLCerP8GejgLpHDew6pHve9R7tP+E3U0dCpCYuAevUvQTM51wInP4qtq4sRvOKXFxa/5KjeUx91oTX17X9WnXCNZL1CkdV95tu9mhfbHvS3EAt0NIIOSUbp1S96njRnSFRuvAgAKixFY3eN+IRjGbXniX2FvKPr2W3bbQ/ctK5vbQufvVwwk4QjBACozShA5tqk2edVcbhgaJ7lAC/Prz3NpyZKjBW8z29ZHN8PxOfX2pDtIZlRTbPEUPV+2ncg9Es2qZhWULb5m6sic1nHDAlHptj4uxnTRz7FxNbEvRg7s31vYc1WQSjfbcB+N0bJo57NIAb3zRR3ZQ8+x3RQGEnKDQau1uEyV76ksRB9wUw84fE7NtX/bsrFA0ItvW/fN6M6lzXLl0gpo5V20g0mFntrarWZkiawOg8dfllW5L3uCI9RT/OybG//WC03gXr+zAY7YPFEhe8YOLwBwP4/ZsmSpPo3IuIiIiIiIiIiIgiU6kJHEoz0jEydQyy3bkx/8dQNKL+LcOVFZe2oSRV/SRMXVhYT1JKbYjaqNSxyHKpn0Br1Wk90So073VESiFyPcO3f1YMRSMafGIdihZKCIEh7uyk7ANCRERkV4qROqi+y4Lf3zlhz7NccCmnD8CiQylFxSp8m8FoRGq8WkwREULsAuCikEEdAC6WUmq7fEgpZwL4R8igVAB3xKeGREREREQDi/S2QVaXd+v4LT97K/yEpauBVT9EvFyfxXUsj+La1+4jgbzM3sM76UJq+pr87fHhC514CTIm7YX91fdWbJdmtiHL7J02dXTLZ7brU+Cv7DHT7jcp3H2qgbeuNHDu/l0XZe87XeDrmw1kZwj8cN9QPDS5FFfkfY0H89/BvKsbkXbGZbaXH1M7jEeuWY806cX/1f3d8eQfLe362zIYLVmvT29e1+3lRO8y25PmBbpSqM5a/6TjRXeGRGWn68vogoqSgTbsIwFXs07Y3botCzXhjsQ8CaW5XaKmOfadyp0Eo5XVxnzxEbEbBDNKE6SwoSa29YlGmSJsKhq/miww7yYDaR51ozixWD3dsi3q4bFS26ofZ3df60kXQFbREN/whXChjWOGqceX2QgW3NoksaxcwufXv4dTnjDx29ck3vheYs6K8POMFVX9G9v19fSbwCOzJT5eBjz0scSB95loaGUwBlEs2QkKjYbuO6PTt+uB05828eRn8T0W8geCbUlP66qB+evjumgAzo6VAKDZG596EPV3VjmGuvvNJhSphy8rj74+8aJ6iECnCgd9ZuzmPlYrws51x1zn7CeQ5rFfh56srhECwEvzTJz0VxP//lZi7mrg4Y8lJj9goqyOx4BERERERERERET9mS5wqCClZFB1KCaivleQMlI5vNpXCZ/pCzt9U6ABbWaLclxhykhkaoLRWpIoGE3fJqs/GyIiIiIiIiu6cHpTJqaf1GDUoglGSzMy4BZR3OBHNIAxGI0idR7QLQJ0hpRytY3p/tzj9VQhRFrsqkVERERENLBIbzvMx38HOSUH8rQdIX99GOSaxcGRc2fZm8dlB3VN45Df4jqWqsO9xy1wxt76G57GFSXfzVDy6w+B78OHlonrHwMATCy2fg/5ga1QlTi78Q3bdTqw7dvuA9J7p8actpfAvy8zYD7ngvmcCzcdZyB1WxBOeorA9RfsgKfvPxQ33H06Mg443PayY26H8dt7OR/Q/h0eqrzR0eRvLezqQKsLQwJiFwARK1JKyJcfBJZ83W343u2LbM8jNyQYbZ/2hdipY62jOnSG9Ay1CEZraHM0y4QyNT3BExGCl54iMONKexvV+mrg5W/id9G/okHi8AcDGHqtiaLfmTj/eROt3th1LDcdVH1TbXJ0aNeFBPRsB3Ycrt5YVmxJjvcBAKU1savLKXsCz15gICNVv5NMHKket6g0vp9JrfqeQgDAsAiD0UZkqYf/bzXwweL4vZ9wwWgjc9TjN1uE4FU0SBzzSAAFN5iYNN1E7jQTT33efef0+iQOuDeAD5ZEUGkbDtgRePFi/baj2v8bHXyHrKsGXvo6efY9ooHAblBopIamC+xZEr7cXe9JdFgEOkarsR1o09zD/l4c2/tOTpfQlMTBw0TJStdsjddcf/mpLHmPKazCESsb7dfbbiij6hizXhNKPGYYMOtqwzI83Uq7RX8iKSXu/aB3pTfVAv/6JnnXFxEREREREREREYXHEB4iShaFKeofsCVMbPWFfypkRUeZdlxBSgmyXOqnNDYzGI2IiIiIiAYoo1tcTBcJBqPFi+4cU3dOSkQMRqPIndbj9d/tTCSlXA4gtId/JoBjY1UpIiIiIqKBRj57K/DGX7sGLJsPecm+kJ/NADYstz+fS/aF9Drvoe0PqIe7DGif+Hju/vqe+KfsmVzBaHLzWsgbTw1bTjw+GyIlFQAwKcz9A/n+rcrhk7zLMKkg/FPpAODXdc91H5AWYWpMEhBpGcDIsdtfT6t9AhWrRuHTDcfgzbJz8O36Q7Bl1Wjt9N9v7OpAa9UxOBFhWY58/jbks7f1GlwYqMSBrd/YmkVeSDCaAHB31R2OqmBsu+qT4hZI0zw0IrmD0dTDE7WuD9tVwPuUgUnF4cte+KJESwzDykKd+YyJudui6P0m8Mp8iZtmxDAYzcGsKpLkHi9dEEzPr6XxRepyy8LfB5cQ7T5pK+RqpxHhy4wrBN60Eean256XbwFWVcYvsKCmWT8uL8KvuAL1Q1oBACf91cSG6vi8H23btO3jH5mrbqQ213WfsLFN4olPTdwxy8Qed5qYs6JrXGsHcM0rEsblAdz+jomGVol7PpD4bkMM3gCAL35v4MubDLQ8YeCnO4L/5t1s4OKDDRw0Vj3N7GWKYDSHh5Zvfc9QDKJY0rVHsQwMvum48AdeVU3AUQ+buG2miS9Xx34/b7EIGapr6Ij58npyEiILWIciEQ1munBjoPdxfKcJmuP5hZuAsrrkPK6wOsd2cj5l9zxN9Tno6pCdDkyZIFD1sIELDnR+Ym0VjFbTDKypUo9778fkXFdERERERERERERkT4VXHSRUyBAeIkqw4SkFMDRdYSstQs+6yqhDxTKNIchyDUWmS30zUrO/yX4l40hKyWA0IiIiIiKKKSHU51gByWC0eGnRBKPpzkmJiMFoFAEhRCGAPUMG+QF85WAWn/d4fXy0dSIiIiIiGojk0m+BN55Qj7v9XCDgdza/cyc4roNfcx3LbXE2OXkXdRjNuELgsF0dVyFu5OofIc+x8ZkMKwJ2P2j7y8N2se48OiKgDkYT/1mGY/dICbu4zzZMwTEtn3YfmJYRvp7JbMeJ3V4OD9TgsLavcGrTLOzT/gNGBKpxf+UtyklXVQJeX7ATbX8KRpPv6/PDj235JOz0KaYXGbK127CzmmbgrdKzcXTzHIzp2Igx2dZBe6GfSXa6ukxDW/J2UNaFUCRyXXvcAt/fZuCuU8IvtPj3sb/wv6lGYt7a3sOf+UJia1Ns1p2TYLS61vBlEiFcMFWnCUWagKr65AhSOOwB623mwLHAI1MFlkw3sOpuA788QOCAHYHcjGBY2g7DgkFnvzlK4OubDbhs7ByH7qwv8/qCOAajtaiHp3uA9JTIdupdCqynG3uLCX8g9u8pXNtUkqseX9qVdYn11RI/+5OJa/8jcdd7EtUWwXF3vy+RO83E3e/H7r1M3kXg4J0E0lMEJo0M/usMvD1Es43MXh4McwvV5DAY7cs1EVWXiDR0QaGxPFY6Z38Dz5wffobz1gL3fiBx2IMmHvhvbI+JrILG6j/9CLJOk8QTI05b37b4Z7UR9UtW+5IuGG2yxfWXN5M0cNUqOLbSSTCazaa0rK73sHpNMFrOtktLHrfAMc4vEaLN4hJEk0VbXaqoIxEREREREREREfUPfulDta9COY4hPESUaG7hwXBPoXJchSYwLJRVqJgQAlmaTui6TuuJ1hioQ7upvoGvIKUkwbUhIiIiIqKBwKWJG5IIJLgmg0dLQB2+neUakuCaEPUfDEajSEzq8fonKaWme6PSvB6vJypLERERERENcvKha2I7w62bITetdDSJNhjNpZ/GZQi8eJGBYZldw4ZlAi9ebC+0Jd7kyh9gXnUk5KX7hy+clgHx+ych3J7tg3YrFNjD4h6C/D0mdg8yKxgN8doKiJE7Yfcw94Od0jQLk9t6njIBSEkLX9dkNrbnaWRvxzd/pBzuN4PhaED/CUaTUgLffqwdv7s//H44PFAD1Vs6pfldfFT6C6xdOx5rxz+Ia4/Wv3FXyFUffTBa2Kr0GW34VYLXtcctcOuJBsznXEh168s1tQMnPBaAzx+7Dvpr1DmLCJjAWwvDL2fhRonDHwwg/aoACm8I4Kp/m2jxdp/OSTBafSsQcDJBnOiCYFw9tg2rNveR2Yl9H03tElf8y4RxeWD7vwUb1WVzMwDvUwbm3ezCtCkGUj0CO+cL/Ov/DMy72UD1US9h5bo9sGbZWCxKvRKPHlOF7Ax7O8boYQIHjlWPe/27+H0mtS3qeQ/LinyeExQhrD29+1Pk89fR7QKdbe7oPPX4NVVd+88DH0lsqIl93ey48gjrbeW0vdTjO/zAh0u6v/kWiwAMneb2vm9DiAaKcO1RrFx+mIGXLhHwWJwDhrp9lkRVY+z2dctgNK8L8qV7Y7YsFaeHPq0MRiNSkhE0C7sWCO0x/ds/JOcxRaPFOfaHi+3X2W7J0trew+o1gdY5IdcF8jKdn1i3WwSjWR0XRrLuiYiIiIiIiIiIKDlUd1TChPomDYbwEFFfKExVtz2VHWVhp9WV6Qx61HVCbzbVndYTzSr8rSClOIE1ISIiIiKigUII9U3HARnbhyRTl2ZN+HamJqybiBiMNlhcIYT4RAixWQjRLoRoEkJsEEJ8IYS4Rwgx2eH8ej5Deo3D6deGmR8RERER0aAnm+qBNXFI85j3gaPifk3AvzvM2eQBYwXW3GPgn5cK/PPS4N8Hju375CpZuQnyysOAxYrwsR7E1X+GePkniENO7DXu7P307yV/l9EQry6D+MPfIKa/DPHvxRDFOwIAJo20/gxObPpQPcJlkcbUD4ix4fOwd+1YDY9Upwgs3hzsRasLQwJiHwARlZnPWY6euM+YsLMY5SsNv5zXH0e+RaiQL2T/HarJ1uuXwWh9uK63PmK98P8uBUbdZOLbdTIYkBclq07136xo146rbpJ49gsT+95jYu5qwOsHqpqAZ76QOPXJ7juS07CPZNhm7G4bI3MFJmnu+XpsjsRXaxLTQz9gSoz9g4m/zbW3vJP3FPC4e39fyPZWyDsvhHzwKqBsDVBbAXzwD8grD4M0u9ar9Pshl3wD+dlbkKWrIefOgvzfO5CfzYB852+YmvaNcrlLyoFl5fH5TGo0j1TIy1QPtyMzVWDscOsy7/4Y+/cTLrRxXKH6u97rB9ZXB/9+20awYTy4DODig62PRQ7YESjOUY/7dn33120W4Rg6nyx3Pg0RqemOjeMRInvhQQaW3mnvIKzDD7zvIPwnHKuwnVpXLjDndUi/P2bL68l0eG+H158cQbLU/0i/D/KH/0F+9R5koyLtqp+z2iusmq0z91GPXWTjlLkvNLbp3+nqKtgOjrTbjFQ2AR0h4dxSSn0wWkiYciTH4ZEGo7FJJCIiIiIiIiIi6r8qNCFCAgZGeGw8zYyIKMY6Q8x6sgoNC1emKxhN3Qm9RdNpPdEqNfXPcg3V1p2IiIiIiMiKS6ifmiw1QfkUveaAOnxbF9ZNRAxGGyzOAXA0gGIAqQCyAIwBcBiAWwD8TwjxnRBiis357dzj9SaH9dnY4/UwIUSuw3kQEREREQ1s65fFZbbyyZsdlfdrrmN51Ne9usnOEDj/QAPnH2ggO6PvQ9EAQM54BvCpw7dCiesfhzhnGkTBKOX4c/cT2nC4KeMFxPAiiBMuhDj6LIjUrkSqPUYCRdnq6TI9AZzaNEs90t2/g9EwYb+wRTzwY5x3pXLc4m33c1h1po1HAESk5PPT9SMPPQm73HQHhoXphDzab6OXd0sj9lj+in50SMfk7HR1mWQIudIJFz7UF7LSgmGPVqqagIPuN3Hqk2a3DuqRaGrXT7/06xWQC+b0Gv7ZCon8G0xc+W/1tHNWAI9+0tW4Ow37qNUEXCWSqdk4XIpVc87+6vUlJXDpSyZavfHtpd/QKjHielMbDKZyrqLOct1SyOOGA3Ne7z3Blo2Qt50dLNdUD3nDiZBXHg55+3mQ502CvOUsyFunQt5+LuRD1+CMd86H0DzB57UFcQpGa1YPD9cWhnPSntb740vzJPyB2L6ncG3TbgWA0FRrWTlQ2yJR1QcPkt1xODDjSgP77WD9mRmGwLET1GUe/aT7m48kGO3DJUzGIIoVXXsUr8DgnfMFHplq70Ds//4hUWkz/CecZouwnS3uIqChBlg2PybLUtG9i8xU/TRt4U85ibqRNRWQF+8Lee0xkDefATl1N8hFc/u6WjFllRutO3YCgMm7qEc2tQO+KM+34iHcOfZDH9sMRrN5niYlUF7f9bqtQ38tL/S6QMyD0SzaPauQeyIiIiIiIiIiIkpuuhCe4Z4CeAxPgmtDRAQUppQoh1d6yywfZNphelHrq1LPMzU4z0xNuFizP1mC0dRhlbqwOCIiIiIionAMTdxQQAYSXJPBo1kTvq07JyUiBqNRl30BfCyEuEcIq9vPAQA5PV6rrwxqSCmbAbT3GKyJBiAiIiIiGqQ2RBiMlj8KmHyyZRG5cqHt2fk0YSK6ULCkt9RGh/mTLoU47QrLIjsMF7j1xN6nTiftARy5m346j1vg/tOFMtjpz0dVI8+sU04nXP07GE0UjgHG7xu23ESverv/838lmtulZcfgZAlGk0vnA4216pE5IyDufROu9DScvrd1hUt86ptYejp61pW2yjEYLXbOP9BAbkb4cu/+BKRdZeLGN000tll3fl9UKnHpSyb2uyeAs54JYM7yYPkmiyCQZe5d4P/tSZDLF2wfZpoSF74Yvtf59a9LtPuCy7AKHFSpa3VWPh50OVeG4rvpqiMECjW/D6yuAm6dGd8whV88YaLe4Wd2zISuv6XfD/nui5AX7Q0ELH5cmjsLcvNayNceBRZ+bjn/kf5yHNI2Tznurvek5U2CPUkp8dFSidOeDODMpwN45VtTOb0uUC/aYLTrpwiUhHncwsxF0S2jJ12wQ2fblJEqsMMwdZnlFRLLt8S2Pp2O3A3wP2PAfM6FwLPB/xseN+B/xoD3KQNr73XhF2GC5DpNKNaP+2Jl1/ptjyD4Z+3W5AswIeqvwrVH8XDKz+zPvOh3JozLAzjp8QA2VEe+7zdbBMVu9hTDhADW/hTx/MPRHStlpuinaWUwGjkkH7se2Liia0BLI+Qd50NaHf/1M5bBaBbTWQV4JcO5SU/h6vTG9/aOt52cp5WFXEqqtzjHzwk5j9WdI1mxDEazOHdlm0hERERERERERNR/MYSHiJKNrv3xynY0+DX3bQKo6tgCqXksVuc8szSd0L2yHT6z73/wqOwoVw5nm0xERET/z959x0dR538cf31n0xNKAiQBBAuidAtYaPZ21rOe3tl7OT3b/WznefaznOU8G+odp6fn2bGDDWxYALHQpLcACSQhvezO9/fHgiTZ73d2ZrMp6Of5ePAgmW+Zb7bMzszO9z1CCJEoR4WMy13kbphtpTpSaVxuOyYVQkgw2s/dauAJ4DxgHDAEGASMBS4FJreor4DrgTvi9JvT4vdEplG3bNMlgT5iKKXylVJDg/wDBiRj3UIIIYQQQiSTnvFhYg2790Td+jzsvp+97zee8t1d2DIHN8V83qvz+/YT7/JBI1H/94ivrm46yuHNSx0u3Fdx5hjFU2coXr7QISXkHRZw2miHj//P4cqDFSeNUvz+AMWHVzlcNLplfnQToa3/DpvqgBPj1hlWP8datvttLrUek3BNgUjtTbsu+sLx9gr7HcvmLPKT9/B+nWx74H5w/MWoi+5ATSmFUQcY66XrBnaq/9FY1qdJrHnXTPP6yi1hRZ2BLQgv1Ame61V3+x/EvVM03f/g8vlizfTFmmXrNZEms9xnLNOMu8tl4ueamcvh5Vlw8P0u//rM5XvzjXcBqHWy+Dxzb/T5Y6OBfMCXS2F1ub9xfbgpdyFoMJot4Ko9WV8bhpd59yzF46fZn6+/f6j5ZGHbBDVNmaP5dFGwNsXXrYFF36Eb6tHl69G3nYW+218Aon72Xvj3nb7qnlTxsrXs2Ef8f4n13FeaXz3oMulbeOUbOPUpzc1vmILRzI9xbnbr0nv691B8d5PD0bvY6zz/VXK/lPMT2ji40Fxn/hpYWJzc19sZoxWPnaqYfLmDs2kQmz9rumQoHEeRmhLscR5caK8/4ZMt469tDP63rDJnwAohEmDbHrXlvtL2PRW79w/W5u0fYIfrXYrKAwRvui56+Xz0snmsnjLFWi+sUikO5aOXJhgs7oNtvyM73d7G67hFiJa01vCRYd+sdC18M7Xdx9NWvLYAXrfs8gql7ozBaBuqvMuXb4A1G+P3E2Qva2XZltpeoczdmwSmd81U7NYvwEqAmgb7qKrr7WVV9dEQbyGEEEIIIYQQQgghxNZHQniEEJ2N1/ZnrSXMEaC40XwhXogUeqYWAN6T0G0T19uTPaxym3YeiRBCCCGEEOLnwrHEDbn653NT186mOlJhXJ4dSkrcjhA/SykdPQDRJr4CDgXe0/ZbTn8O/EMpNQp4DhjYpOxapdQXWutJlrYtg9E8Zu9b1QK5Hn0m6mLgpiT1JYQQQgghRIfQNZXw+duJNe6/EyoUgqv/gf7tMHOdqa+hL38QlRL/kDBsmQSe0gmCiYLSX7/vXcFxULe/8FOYiB+HD1ccPjx4qMuYAYoxA5q308Vp9gahrTWJrokDToCHr/GsMrbmc2vZomJ4aaZ9Im0Xj2CCdjP1Fc9idfFff/p5n52gb3d7iNXow3fH2W7klgUHnWwNTPzH2j9wyLbvxCwf0eQaoHzLNTuryjrv5GQ/4UMdJTNN8eX1Dnvd4T9wadxdzet+cZ3Dntsr/jZFU2O4oeQ5/47/3Lza9deMr/0c/ew9qDteZME6/8/nD6s1hw9XCQSjaaLZ+h0nYnttWD6bjtpFcfpoxdPTYxtqDWdPdJn9Z4fs9OT+Xbe86f/1UZAT4ZnKK8k7/YlAIQjNvPFP31WPq3iNywvuxTXc4ef1b6G4QpPf1fvxWFOuOe2p2NHe957mioM03bK2tLcFRPRIwhnB7lmK5851yLnU/HjPXdP6dTRl3TY1ef0N6q14+4fYinPXaAb3Tt7rLPzYljC0ZNpze3vZ699qauo1WemK2gRuhruqLBoAE2R/SwhhFrF8zLT1vtJJoxSzVgT/tNrm/1xf2y393efoW86AdSt4MPcS/lh4j2f9lanbULik7YLRbH9ptsfhm2nfTgirSNhapL+cghp1YDsOpu1Yv7HGOxgtL9te1tmC0bTWrI8TjAawdmPzIHMTWyijSdPg2XKP25l1bxEyd8peim9W+t+eb/TouzrOdq+mAXIyfK9KCCGEEEIIIYQQQgjRCWitrSFDhRLCI4ToINmhLnQJdaMyEnsnmnUNqxmUbb674tp68/asZ1ohIRW9ljrHYxJ6VaSC7qk9EhhxcjS49ZQ2lhjLCtL6tPNohBBCCCGEED8XyhaMRnJvTi+iwrqROtd8IZ7XMakQv3Rb4VR2EY/W+m2t9RSPULSmdWcAewM/tij6q1KGmZGWboKOMcE2QgghhBBC/DJ89hbUe8w29KDGHx39v99ASLPMONy4HmZ95Ks/azDaVpbTpdetQF95hHel4y9B5XfgRVupHsleoa0/11zlbwO7jPOsM672c3arm20tf/1b86FkXnojoQnXo1/6B3q9+U6l7UF/8IK98LBTUZlbZnSHHMWdx5lnfx8wCEZt22Lhob+1dr1/zTSOyPyu2bKQA1cevOW0T/88c9uVqypw77oI/czd6FWL7OPvAJ05GA1gj+0Uq+5O/NTa3ne6/OZxl//NSPwUycyM3aI/fPI6ruvy+DT/fc3Z9FYJGoxW3gnCB2whASGP18b9Jylr+MDiEnj4o+ScqtJa8/pszTUvu3y+OH79I4bD18fPYunXeRww/4mkjMGPwsg69qn5xFr+8qz4j8f4u81PRFU9zFjefFmp5XXTwyPoIoisdMUIy0f4wmKob0zeqUjb66/ptmlwb3OdJSXEDcsYVAi1D8fftqy5t21C0QB6dVHWv6G6Ht76PvpzbWPwvmsaOl+IiRBbK9tneKiNv/n7/f7Kum8Zz8kTXGxfXX27UnPjU6u58NYfuDlyGgf2f4er4oSiASxO2wG+/aRZvx/M05z0WIS0CyPc8KrLkpLEPwdsj7NXwI8Eo4lAwh4fqLXV7TeONub1LvTao8lKg1TLOajSTvbwVNbZz6M1VVwZv06Q47SVTYLRNlr2s1JDkJHafNlF+yq2CzB/x+vxrq73bluZyG3WhBBCCCGEEEIIIYQQHaoyspFa13xisCCtr3G5EEK0hwJLOKMtzBGioWkmhU22Z1lxgtE6UnHDGrTlGzcJqxRCCCGEEEIkKmSJk9FagtHaQnXEfvFgTqhrO45EiK2LBKMJtNalwCk0vyZ9ELC/8qRE5AAAIABJREFUpUnL6XuZCay2ZRsf988WQgghhBDil8EzXMlLtx4w5vCfflVv2L/k1x++5D2GTZPKwxFzeUoCR5M+spvbhF6xAH3CQM866rJ7Ub+/u51GZBHySJvL+nmk/qsDT/QuB54outBa/uM68/L8isXw3/vQD16FPn8ceuXCVowyOO266Po6+HiStY4aNDJm2al7O7x8kcNhQ2GnAthre7juV4o3L3VQqvnUcJWSinrsY3PfwH9/PIabDo+w705w1AiYfLnDQUO29NEv1zzVfHVdFpE3J6In3Ig+dzT6++k+/uL20dmD0QD6dFcsvsPhtL0TG9SLM1u3XZyTPuSnkzkX3buML5cGaFsUbWkLebKpijPhvT1EbK8Nj8+m3GzF46faK7zQioC6ps59WvPrR1zumezd36794D/nKF7LvZ/dbhtHGgkkTLXSeeX/tJa9N9d7/GXVmuWl9vIfipq332A585eXpGA0gOfONT+/Edf++ZEIP9um7XqYtwkbqmGlx+N2yf6KT69xSE9VlD9of70uvM2hoGvbbgy/udG+/imbXh+1CQb/rCqLX0cIEV/ER1BjW8hKV3xxncNJo4Kv6KVZcNnzmnCLD/PXvtHsfmuE278s5Incc7i11w1My97XV5/z0gZFf/j6fQBuedPl4PtdXpoVDSi68x3Njje4fLZIJ3RMamuSnWZvI8FoIpBGjxfMzykYzePtpzw2J0op6z5jWU3nug/XBp9P193vxj8ICxKMtrpsS+XyWnPD7lnEnGfITldMv87h/H0Uu2wD+3ifOvMORouz3esMx5FCCCGEEEIIIYQQQohgvAKGJBhNCNGRCi3bIFv4Gdi3aU1D1kIqRJaTY6xX5TF5vT2ss4w/RAo9UgvaeTRCCCGEEEKInwulLHMwtGVCqWgVr9DtbAlGE8JKgtEEAFrrWcCUFosPs1TvzMFojwDDAv47JknrFkIIIYQQotV0ZRl82XLX3B910R2ojKwtv2d1gYN+Y6788SS0YfKt/uBF3DN2Rx/aA/eaYwmXmdM7Uj0yvGL6XF+Ee+1x6MN6Rft+5xn/jZNAP3q9d4XTr0WdeCnKK1GnPXTJhZ59Ypc7Dow/uv3H0xb2O847AA7Ytf47MnVtoG57hUu2/FKyGv3svYmMLjC9YS3udSegD+uFPqibd+XBexgXH7ub4u0/hJh/a4jp14W4/ViHjFTzrHA1dC/YzRwQkVW1jhvX3sxHV4eY9PsQBwxq3ke/PPOwIiqFtSmF0V+qK9AT/uz9d7Qja/hQJzubtX1Pxb/Pdlh2Z/sPrDyUy5qU3nybPpwnFm0bqO2KTZv3IBPuASrrgtVvC7Ywt1CcfJYjRijOHGOutLC4lYMCHv7I5V+fxX9Al97pMOvGEKdsX4T6582tX3GCTqqwh6R+v8o7rOH71fZAns3lTdlCFHpkJy+9Z2C+PQxoZRKDuPwEo9m2uQCzV5o7+P0BiodOccjb9Jh0zVS8f6VD7pZdO/rnwbxbHAbkt31CZFqK4tzx5vU89emmYLQE8/wkGE2I5LBtj0LtsEtS2E3x/PkO7oQQ7oQQlQ85cQN1Nnv4I03aRS673RJh2gLNizM0xz3qokls2zY/fWcA9F0XUVyh+cvr5gdm/N0ueZe7nPqky8YAYUq2xzktxR4YLsFoIpCwxwumvqb9xtHGPIPR4rRtuj/U1IfzEx5Om1jv89vuqT9CbYP3dihIjmPT4N1yy0umu+Xb/IKuisdOdfjmzyGm/tH7fE2Zx8uxOk7wWWc4jhRCCCGEEEIIIYQQQgRTbAkYyna6kCMTNYUQHahpmFlTtmA0rTXFDUXGspYha7btW7XH5PX2YPvbeqUVElIBLugWQgghhBBCiCZCmI8nXOLf/FME5xW6nR0yB3ULISQYTTT3bovfR1jqbWzxe68gK1FK5RAbjFYepA8brXWx1npOkH/A4mSsWwghhBBCiKT4cgqEE0iZ2GU8HH5GzGK1//Hm+pVlMOODZov09HfQfzkVlsyB2mr4/G0aXplgbG6bAN6SDjeiLz0YPnsLaiphyRz0HeeiP3rFXwcJ0OXr0R+9jP7sLfT0d+DTNz3rq+MvbrOxBKGUgl+dFlsw5ghUbqDDrk5L5ebD0efGrXde6ZOB+s2PlDRf8NbEQO2D0nO/Rj//APrX28Knb0BtnNnPOwyFwaOSsm517xv2wmfvRa9baSzq7xHSsyqlycU9sz9G13Ts3Q03s4Uu2YKPOlr/HoqKv7f/qbYf0ofwdo4t295ufVV0Mn7QYLSqOBPe21plnea9eeYyP6F5Z401v4Aq66C6PuCD0URJpebS/8Zvv10P2LaHQofD6NvPAUNIaVtTN06M/g+8vNIcoLpkvaLG4/H4ocj7b333B4276cVV26CtAVo9kvjdTWqKotCSUbm6PPHntiU/wWjbdLe3X7DOvLyX4bE4YJBi0e0Oz52rePECh/m3Ouxc2H4bwZH97WX3THatARePnar4/Fr7G3JlafKeDyF+yTrTvlJ2uuKDqxzeu8IhO91fm29Xwf5/c/nNhNZdPLE0dfvoD+UlTP7Bu6+NtfDcV5pjH/G/Tq/tflaauUyC0UQgXvuDtZZ02a2Q16e/irPd6pFtXv6vzzSPTg0WdtiWNgS4DdiXS73LgxynNQ2d3WjJme+WyG3OWqhpgLpG88DiBaPZxiWEEEIIIYQQQgghhOi81lpCeArS+kavcxNCiA7SMsxss7Lweurc2C8lysMbqNfmi1xahqxlh7oY61V10mC0AstjIYQQQgghhBB+OMp8zb+rI+08kl+GakswWoaTRYpKbefRCLH1kGA00dSyFr/bZt4vbPH7tgHX07J+qda6zFhTCCGEEEKIX5oDT0I9+QWcciUUeKRRtKAeeNd8wdFeh0KW+Yt6/UXzbGT9evMwKg3ckH65sW2K3xuMfT8dVi2KXffk//jsIBj92Vvokwej//xb9LXHof/v15711SV3ofIK2mQsiVDn/gVOvxbyt4FuPeCIM1E3Pd3Rw0oqdcldcOKl0b/PIs8NdoiYHy6JXykJtNa4t56FvmAc+uFrfLdTD05J2gWBKi0djjjTWq5P2BEdiT0BnZsFqZb3bUlKz+YLllpSp9qZn/ChziYnQ7HyLofDh7XfOuekD2Fu+uCE2q4qAx0wQ8AWhNQeFqzV7HqLPcjEz2ujtyU4C2BNy1sBBPC/r/09kPvspNDr16DPHAmzpia2sp13Rz0yNRq6GEQohHpyOuqQU6DvDgAMrZ9jrKpRzFtr7+rrOEEOReXw6aaP/w0eeR55lpCLRNkCyf79eTsEozU5056VrqwBHja9zLtr5GYrTt7T4fiRiozU9t0ADuljX981L2uWbTCXZabC3jso9t7BXL4qKbfIEELYtkehDvrmL+QoDhysKLnP4ZrD2m979dO+bEMd8xf7+zCf+iPMX+Pvs8G2r+QVjFbb0DlCmsRWIuwRjPbVe+03jjbmddwR73B5+Db2Cpc8p9nhepcP5nX8+25Dtf8x3P+ed0BjkGC0dZVQvymwrNwSQNY9y39/XlZbTtdUxwmELKnq+OdHCCGEEEIIIYQQQggRzLqGVcblBekSwiOE6Fgtw8yaKm4oillmCxWL9tWn2e85oa7Gep03GM3+WAghhBBCCCFEPI4lbsildTc9Fma2Y8scS0i3ECJKgtFEUy0vlbbdO7rlDOkdA66n5ZS4uQHbCyGEEEII8bOllELtvBvOxXeiXlgQDT7Jzfduc99bqJQUc1l6Bow90tzwlcdwL94f99zRuA9eCZ++2az488y9aXDSjU1TfB5N6om3mws+e8tfBwHoqo3ouy6Eap8XIBx2Kupkc/BbR1GOg3PezaiXFqFeX4Vz7eOojCTNXu0kVHomzmX3ot5YjXq/HHbfL6ZObiRYYkrfcOxFH6ZwsNbQ4Ub0abvClOeCNRx3FKp7z/j1AlAHneRZrh+IfV0rpci3nCctCTXPRddP3pTw2JLJtZxH78zBaAB9cxVvXhbCnRAi/JhD9T8cTh/ddoOekz6UOelDrOUnjrSve2VZsAn3AFXF63EvOQB3fHr03wNXoEvXBeskQVe+4LJ0vb3cTxBMofnaNaB1wWizzdcDxzg+8j762O1g+fzgKznqbNSHlThPTkcNH4167BP/bX91Os7UGtTOuwOgnvoS+u/E9o3LyHRrjE2+v+Sc6HN8TH/cyw5Bv/wI2nVpDGsmfRv/hfPCjGidUo9gtKDhYfH0zTUv/3wxhCPJCWPwu23a1p7/adSnW+fbuA3tk9g2NzMt2sgWVGcL1BBCBBPppPtKGamKO49zeOiU9hlIcagXm7fwG0v8f5h/uMDf54JtX0kpyLQEo9XECQgSoplG7xeMrjPvq21tvN5x8bYWx+zqXaOsBs6a6FJd37HhW+ur/Nd94zvv/dMgx2law8Li6M/llpdLd9u3/i3EC7a8/lXzwGrqvfst7ti5QkIIIYQQQgghhBBCiASstYXwpEowmhCiY+Wl9iRVmb+sNYU6rrUEPXYNdScrlNNsmS0YrTpSGXCUyaO19ghG62NcLoQQQgghhBB+OMoSjKYlGK0tVFuC0bItx6JCiCgJRhNNtZypbZtq+kOL30copYLM1B8bpz8hhBBCCCEE0ZAsNXw06sWFsO0gc6VdxqP2OMi7nx2H2wu//xwWzIKXHo4pmpJ9sLVZmjmHLVZFqc+KSTDtVSgr9le393ao659s2/G0glIK5fy8D9mVUqj0TNg+NtCpe8BgtP2rp8UurPF3IYquLEevWIBeNg9dvArdUI9e8SN6ffM7B+qrjkwoyEgdfnrgNnHttp93+WsT0AtmxSy2BaOtS2kRvjjjQ/Sz9yY2tiSyTQTv6LCPIBxHkZmm+NeZikmXOAzpHV2+U4G9ze/2Ulx/uGKXbWDvfo2cUPEy/RtXWOvPytiVH9MGGsuOGeHy/PnKGj61dL22hqrYVM78Cr77bMuClx9BX3E4uiHOTPhW2lijeSfOGSQ/r42cDEWOOfOTNRsTD1JYVRq/7c71Czjk38cm1L+67X+oPz6CSt1yUZ/KzEY98G78xiPGoq6b0Ly/7K6oJ6YT2u/XDK5fYGw2J31w9IfSdfDNNPQDV6DvPJ/5a+2BC009MlVT36hZ4bErkJf0YDT7i2D6kuSsw++2aXBv/xurFAfGBr31RDvIy1YM9M7nNcpMjf5vez5WlXVsaMlmFbWaxcWahnDnGI8QQdm2R6FOsrN06l6Krhltv556J4MqJ3qx+uoi/xejL9/gr5722O5nWYLRqiUYTQQRDnuXz/ywfcbRgVSczdaBllNiTa0qgze/69jP9A0BgtEAvvDYPw0aYD2nKNpgo2U/vVuWv8+Gk0Z515v0rcY1DK4qTihdccfNFRJCCCGEEEIIIYQQQiSgwa2ntNF8HV5h+jbtPBohhGjOUSHyLYFgplBHe6hYbNBjdsh8kWWVZfJ6e9gYLqVe1xnLCtNkmyyEEEIIIYRInEPIuNxFgtHagu3YMsdyLCqEiPp5z7IWQe3V4vciUyWt9RrguyaLUoBxAdazX4vf3wnQVgghhBBCiF8clZ6B+ssz0DWvecHeh6LumRS/g4L+Ca23NJRnLdtjO5+T7V37iTD3+hPR9bVBh2Wk62rQf73Ad311+wuoeDNvRbtQubGJK67ljhM2e9Z9HbuwxvtCFO266Kf/ij68AP27EejTdkUfPwB9YFf074ajj90e97az0TVVuGfvCbOmBhoTKamo82+FcUcFa+eDCoVQj3/qWUefOxr96RvNluVbbiBRHOoV237i7Ul7fybKGj60FZ7NUkpx1C6KH24O4U4IMf/WEP85R9Elo2kd+MOBiolnKW77tcM3fw7x2alLeH71aSxZNIh/Fp1n7Pu7jBHUOZnGsqsHL0IpxYDYpxiAOUXBJ9xXOYYkqyU/wKQJscuT6P158euEfL42enczL1+z0f94WlpZ5l2e6dbwz6LzSSVO8EVLOwxFPTMbte+vjZ9bauT+qCsfhC651i7UDU+Z22bloG5+lqFqqbHdnPShsQvffYblD9/ne/iZl7gc/Q/zvkDXDEgJJfezeOwAe9m+97g0JiEAy28w2pAAN2QdMwB65HTO/ZKpfwy+0c3cFBRke6+VdIJgjLvfdel3jcvAP7n0vMLllVkSjia2PrZw006Si0a3LMUbl7Z+x+2simeomp/L/EXDrHVKQtH7/iwv9f/H1zX6q2fb7iuFNWy1ynxNuhBm4ThJesuCB3R3RraQQYB479yUkGLy5fG3J09+0sHBaNXB6q8ut4/X6/Eymbsm+v/GWnPDbuZDxhi79Vc8c479GWkIw4zlscur4+RkSzCaEEIIIYQQQgghhBBbl5LGNWjM5xtNQUJCCNHebNuidQ2rYpatNSyL9hEbKpYTMl9k2ZHBaLbxg2yThRBCCCGEEK3jWObvuTrSziP5ZaiOmC+ky7YciwoholI6egCic1BKZQDHtVg81aPJq8CIJr+fBUzxsZ5BNA9gq/bTTgghhBBCiF86teMIeLMIipZAfR30KER16+GvcX5idwSrdyyzvIGzx/qccK497hDwyevoh69BXfn3gCNrsYoF36DP3dt/g4NPRg3cpVXrFEmUG5vYNKLue9/Nby++0TyJuqoCCjwaTn8b/cRN3p1PfhY9+VnfY1GX3QuDRkFKajTMKN3nzOMEqCF7oI85FyY9aa2jrzsBXliA6r0dAPldFBguWixJMaRm1dXA0rkwaGSSRhycn/AhXVYM7z2PXr0Ytct42O841KbkNF1dAW9NRK9ciBq6Nxx4Iio1rR1G7s9v93I4fnfN3DVQH4ZBhdA9q8WrefGW98Lomi8CryPvh8lw4GCG9lV8tSz2AZ2zWpOXHSw9pcox34lEv/gP1ImXBh6jXyc+Hv+OM36DYHp3g4WGGxsXlQcc1CYfzdfMW2MvT3PreW716exlCnFs6cCTUNc8Bit+hOwu0HdA3CBPdeyFcOjvYPJz6Psua1548MmoPtvb2zoOQ7bNgHWxZXPTBxvbFP2wEHrH/Uvi6tUGN7U5ehfzdm6zf3ykueLg1iUGWQNyPnoRvWQJ7H88qv9ODOvjPZamdujVSVKMDAq6RgMbz/yX/3SOzNTo/7bnuKQqCQMLIBzR/Hu65qWZmslzYsur6uGEx1wW3e4Efi5cV/PabPh4oaZvd7hwX0WXjM77fIqfF9v2yG9QaHsYP1Ax/1aHQTf6v3Pc3euuZfThI3EO+g07F0JuysmwZBgFWQVwu7lNcagXWW4t34YG+V7PylJ/2zWvfVJrMFqcgCAhmmn0DkbTy+bFDQ7bGgQN+mrp4CGK8QPhk4X2Op8ugopaTdfMjnnENgTcx1nvUT9ogPXcomiDcku+efcs/339bi+HjbUuv3/OPIi5azR7bt/8MY633SuplBBaIYQQQgghhBBCCCG2JusaVhuXh0ihZ6rXBVlCCNE+Cg2hZgBr62O3X7ZtWqEhVCw7ZL7YpSOD0Wzj7xLqRlYop51HI4QQQgghhPg5UViC0fB/3a/wr8oSjJZjORYVQkR1oukRooNdAzQ9oxcB3vKo/+ymOpsdp5Qa6HM9Tb2gta7zN0QhhBBCCCF+2ZRSqL4DUDsM9R+KBgkHozWQaly+53YwqLfPSaZunBNhk58LNqgW9OTnAoWiqQtvR13/VKvWKZKse2wo1/D6H3w3v2rDA+aC6o3WNrqhHv3q477X4ctJl6FOvBQ1fDRq8Kg2DUXbTF31j7h19Ek7o8NhwB5QU5RiTjjSD1+b8NiSwRpCgUbX16LXrURfuA/6oT/CK4+hb/od+s7z0Fqjy0rQF4yLlr02AX372eg///anx6KzSE9V7FrYwF6FVXSjCl1TueXf6sXom0//qe6OjYvpFTakeXnIm/4/tNYMzS41ls9bG3zCfaVjuZhqzTJ0hXk9rXX1i/6+VPEbBNO7m/kzLJFgtAfedznwPvv4tmtYxsyle3NU1dvxO0vLQF10ByozG7XzbqhtdowbiraZyuqCOvYC1IOT4aDfwMj9o33d8M+4bYeOH25cviK1PxWGILxVKcm50+iIxHZPPGWmKY7f3V7+0Ica3cpUDuu26asp6Cf/gj5vDHrWVMbuCCk+X5P981o1pDZ3+miHSZf4/yohc1MGZU/L5qKkklY/D365rubg+13Oe9ocitbU/2YEH9Np/9Sc8JjL3z/QXPOyZrdbXNZVbOknEnQjK0QAtkMtv0Gh7WWnAsXc039gbM1nzZb3aSxieN33P/37dcUk3tZXctXloxl7wcmMHqDIy1ao9AzU4FF07b8NaZbbPZWk9GJ61t5oy53rTFaW+atn21w5StElw1xWKd96iSDiBKOxbF77jKONeX0i+tzl5aDB3hXrwzBpdsd99m6oCrbuEvM1TkACwWibgprLa8zl3QOeorh4P/v2dEVp7D5OvGC04o6bKySEEEIIIYQQQgghhEjA2vpVxuU90woJKcsXNkII0Y4KDKFmAMWNRbh6y3THOreW8vAGcx/psRcv5YS6GutWRyrb7VqXlmzBaLbHQAghhBBCCCH8CqmQcbmrJRitLdhCt7Mtx6JCiCgJRvuZUUqdppQKdAsWpdR5wE0tFk/UWi+3tdFaLwT+3WRRGjBRKWWZBgJKqWOAM5ssagBuDjJWIYQQQgghRAJ69oHM7MDNGlSacfku/QLMtI93IqwmsYsF9FsTcY/dHn3bWf4a9OqLeupL1O+uRqXIxVmdSm5+zCIHzVUb7ovbdEzN56Q0y+zeQl9yAHpx84A1vWAW7vlj0Qd3hy+nJDZekwNPQl1yV/L680kphXrOR4jct58AsE2uuXhB+s7mgtkfoxvizG5uQ7awD/XQVeiDuqNP2BGKljYvfPc/8ONseG0CLF/QvOzTN2D2tLYZbAL0nK9wz9kbfXB39KE9Y/+dPKRZfQWMrv0y0DpyV38LH7zAgOkTjOUlGyPW0B5b0EeVLRgNYLH/UEO/GsKa+97z9znhNwimnyWEav7aYJ9HxRWa61/1bvP5sn0Z3LDAsw4ASqGu/DuqoF+gMcR0s/t+ODc9jfPAu6jfXoUKmb+oamr4yG2tZXPTBsUsK0rt06oxbjZ6QNsk9xw8xN7vsg3w9PRWBqNZtk2hzRdV1lSiJ95BXrZi35389dnZg9EAjtpFUfaAw5gB3vUy3Fp2+F0P3PHp9Lx6H2OdxghsrG2DQW6yslTzm8ddnPMjpFzoMu1Hf+1mLQ/22nj7e81/v2reZsn6aADfd6s0Y/4aIfNilyF/jvDqNxKQJpLPFprjNyi0rWmt0c/fjzs+nZ2u25Npyw8mPC/rp38rFu3IN0v3+unfy2fXc9gTD6L2P87Yn1KKXrbAxVAv1ocChIfjP6TH9jgrBTnp5s+c6o7bhRZbo3CcYLTl89HxQue3Al6nfvwGow3tE7/iCwkEnSbL+qpg9Us86gd9yheuix47WYPRsoL1B3DMLublf3ldk3mxy263RPhgXvTxjrfdq5TtohBCCCGEEEIIIYQQWxVbCE+hhPAIIToJWyhYWDdS2ljy0+/Flu0ZQEFqbB+2YLRG3UCD7pgvPNY2mMMqJRhNCCGEEEII0VqOJW7ItczVE61THTHfTdV2LCqEiJLZ4D8/5wCPK6VeBF4Apmqtq00VlVKjgOuBY1sUrQb+5GNdN21qu3lq9RjgfaXUuVrr+U3Wkw6cD/ytRfu/eYWvCSGEEEIIIZJDhULoPQ+Gaa8FalfvpBuXp6cG6MTPTM5wI6SaQ9hM9NRX0X+9wF/lgbuizv4T7LoPKqeb73WIdpQXG4wGcETlO/ytx5WeTX9f+qhnuT5zJLxZhOrWA11Wgj53dMLDNDr9WtTYI2HwKJTfmdxJpvoNhD/ch37Q47H67jMYuf+mSeSxk8TXphSyPtSDnhHDnRF//AaG7Z28AXtwXc30JTBjuUZr+KHIXM8WhreZfvcZeMX82tAzp6JGHdjaobaKXrMM3vsf+ok/B247pmY6r3c5ylfdbpFyUoigbz6dvMy9YbtrYurUuyGqasKYThF2y4TKuth+Kz2D0b6H3cxBSIn6zxf+gw38BsEMseR6zVsTfR06PhPWXpqlqWu0l+9R+zX5kRJ7hU3U2X+GX52KKrQHlLWl/nmQkw5Vhmv35mQMZe+6r5stK0rpnZT1jmmjYLST91Bc/Ky2BtmcNVFzwkhNtiXMJp6IpV+HJvs830xD19UwsCCDD+bHfw33z+uYz5CgumUppl7t8MlCWLBOc/MbmnUtgoV+U/ESOZtOR+dHiq19lVTGD+ioqdd8sgiKyjUHDFJs2yP+4xRxNSdPcJm+JG7VGLNXBqv/78/Nz+3T0zUPfah/2obOXwvHP+oy7Y8O4wduHc+1iIZ6RdxoKFbExf6zjh7yRLRHnYT60XHbzi0yvwY7aLc01osPoR++1ldVdceLqPFHx62X3wVWl8cuL0npSZqOEy7VQnFl9HmOtx9vC3NyFORYgmQr6yQMUQTQGOe1W1sNxSuhg/YVk8XrXeF3szXMx9yOKXOhrFqTm93+G8Ogwa8bPILRbI/Xdj2iYb8thV34cZ19DN0ygz8e2+SZzyFsXt+3q+CIh1y+ut4xHks0JYGRQgghhBBCCCGEEEJsXWzBaAVp27TzSIQQwiw/zX5jx7UNq+iZVrjpZ/P2LFWlkZfaM2Z5Top9MnpVpIJ0x/IlcRsqbjBfSFko22QhhBBCCCFEKzkqZFzu6q3/Zq6dUXXEfFfnnFCXdh6JEFsXCUb7ecoETt/0z1VKLQSWARuBCNAD2AUoMLQtBQ7TWq+NtxKt9Sql1HHAZGBzisFYYK5SaiawBOgG7A70atH8TeDGYH+WEEIIIYQQIlHqV6ehAwajNShzWFma+ZyXmZ8TYY31voPR9Ia16BtP9r169dQXHRZYJXwq3A5yukNV84SDHHPG90+eKjqfkypfjt//5GfRJ16KPjrJF4GMPxrnvJsxewduAAAgAElEQVST22eijr8YKkrhX7cZi3V9LQoYZr8WiDnpg9m35tPYguXz2yUYrSGsOfVJl5dmxa/brzFOcs3UV+2hjP+9Dy64NfgAk0R/9DL6trOhwZA45sPIOh8P0CY9IqU//ZwXKbPWKy3agOkUUY45G5NaJxONObxAz/0KxSW+xxjPbW+5/HmS/2ARn3lmDOltnuBf0wDLS2H72GvejP73tffYzij/T9w+1N/fQyU5TC4opRRD+8CXS2PL5qQNjllWHDIHWga1e/+kdBOja6Zi3i0OO99o3wd55gvNhfsmtn9g27w0C0YDKCumX56/P7J394SG0iFSQor9B8H+gxTnjHW586wHeSrlWDLcOo6oeps7i7ec8u0VXm/tp6QKBprOTm+ydqPmVw+6fLvpprchR/P02YpT9vROQHznBxIKRYNo0IhfVXWaF2eatwGrLJvcfe9xqXnYISPV32tPxwvGarNArs11dMJtE1l/bFsf60/W42FoawvD2hr4DQptS3rFj+iH/uiv8pjDfYWiAfSyfO9fEupJN9d8sYBNfTgaCtolznXrtqBNpez7S/ECgoRoJuyRtLvZsnlbfzCax3bV72mbgfkwvC98b56/AkBjBF79RnP2uPY/FxS27Cf27gZrNsYuL66wPyi2bc/OhdF9DdO6Zq/U1FpeTvECaU365cav0xCGZ7/UEowmhBBCCCGEEEIIIcTPiNbaGoxWmObjDhZCCNEOMpxMclN6Uma4NmVdw2qGMWrTz6uM7fPT+hgDALI9JqNXRyrpkZqc66b8qnfrKA2bb8yZL9tkIYQQQgghRCs5mC86dom080h+/sK6kTrXfOdTr2NRIYQEo/0SOMDOm/7F8wFwptbafNbPQGs9VSl1LDCRLeFnChi16Z/Jf4HztNbyiSiEEEIIIUR7GXNE4Cb1tmC0IEeStvSQphob4lbRa5ejn7oV3n3G33oLt0U9/omEom0FVCiEHn80vPN0s+U7NCwlpMNEVOwLrujUz8m/IX7gEIBe+B3qIx8BagGpS+9Jep+JUkqhzr4R1xKMRiR6+F3YLToZurwmtsqK1NjwnggOf/8qj3cWRNv/fn+HX+9mfk+9P1fzt/dcqurgsGGKKw5SZKVH606eo3l0qsucouhk+IEF0b6OGLGlr/99rX2FogEMr/vBu0KpR9Z7r/a5GEg3NsCkCegHr9qy0BAAGNSw+rm+6+Y1CUbLjdjXu77SvJ22BX1EVAqNpJKGYcb9e8+j/+9RVEYCs+5beHGGDhSKBv6DYAb3tpfNKfIXjLaqTPPJQnv5uC4rOWfev+wVDjwJddPTneZzakgfxZdLYx/vObudCZOvabZsXUrrL/AbMwDf4VCJGFigmHiW4sx/mV9DL83UXLiv//5qGzSPf6x5cYZmrSV3x2kZBlu+nn65/oLReuX4H0tnoBd9h775dELL5vEn4E9ca6yXravJcGupczJjykoqvddxy5v6p1A0iIZVnTVRc+QITZcM+2snXmChl3Lz94xGb36X2HqyLnEp7OovzEuIRPkNCm0resUC9O9G+Ks8YDjq9hd9992riznctCSlFymNYd/9bFZckXgwmqPsbSsTy8AVv1R+gtHWrmj7cbQxz2A0n30opbjreIcTH3c9g7bOfVpz9rhAw0sK2+d33+7mYLQfi+192U6npadEj6nnrYkt+2qZvb942zqTQYXmbW5L90yOX6c6/qk/IYQQQgghhBBCCCFEJ1Ee3kC9Nn/ZUSAhPEKITqQgra8xGG1tkzA0W9CjbXuW5WSjcNAtb5AIVEWC3awrGYobiqxlElYphBBCCCGEaC1TYDSA23JuhGi16oh9AkVOqGs7jkSIrU8nuG+8SLIHgeeA5T7rVwOvAgdprQ8KEoq2mdb6bWAY8BhQ5lH1C+AErfVvtdbVQdcjhBBCCCGESJxSCvWm/QtykwZLMFp6kGA0r5mvm8UJRtNlxejzx/kPRTvkt6h/fY3KK/BXX3Q4NWJMzLLu7kYOrXovZvkxu0BBxHwHPKNpr6Bff7I1w4uh3ixC9d4uqX0mxZjDzcs3nZBWSrFdD3OVd7IP5bUuRzM1azylTi4AlxY+wB/XHMGH8+HD+XDcoy5nT3SZNFszeY5mZammrFpzw6suhzzgMnkOfLYYbpykOWti9L3/5neaIx9yef1bWFwCS9bD5Dlw1D9cXvtmy/bhpZn+AmZyIpX0D6/0ruQVyNij0Nd6Wks/el3zUDRodSgaQK/IevJT4qQJbZIX2XKKJte1n67ZEMk2LrcFowHUGkKONtMXtD6BoLhC85sJwb9IaRkEo8ON6CVz0PNmoL+fjp7xAbqilC4Ziv4Z5sdxblH0tbihSvPZIs20BZoNVbGvzxdm2F+zVx+ieK//I6RiDmhRtzzXqULRAIb1MS+fU94F9a8ZP/2ugeKUXsa6J230H2xz+UFtf1r6hN3tj+/UBdHXmV9/+J/myhc005fY6zgtL4gsK6ZfbvznWCnosRUFo+mVC9Fn7QHL5sWtq4hut0xKKr0f/8emxZY3hGHKHHub2gbdumA0Q3Cojdc2IJ61FVBcCRuqo+usqIPqeqhrjP6NEoomWivVfI1C0unqCvTiH9AbN2xZtmGt/1C07K6op75Epfg/wOxluSFaSagX1U7wjWmxj90q2yGto+z7S1UegU1CxPATFl8c+OvbTsfrkzPIbvFhwxTf3+Rwx7Hejf42pf0/UG2f4cP6msdaVA5l1eZHxiuUcYgl6Hn2CvujnJlqLbI6dGjwNjbV9aD9nCMUQgghhBBCCCGEEEJ0OFuIEEgwmhCicylM28a4vOl2bG29eZtma+uoENkh83fP1R0QjGbbJqeoFHqktv7mlkIIIYQQQohfNscSN+QSaeeR/Px5hW1nSzCaEJ6CTGcXWwGt9atEg85QSnUHhgL9gAIgi2gYXjnRALN5wHda61Z/Mmmti4GLlFJ/AMYC2wKFRIPXVgPfaK2XtnY9QgghhBBCiMSpbj3goffRd18EKxdCahocfga88ww0xN7l0RaMlhbkSNIroGizxjizxt+cCGXF8fvJzEb94T7UEWf6GZnoTLY3z7adWHQuJw+bzIeNwwA4aDBMON2BqQECptIy4JtpyRgl7DgC9Zdnou+lzsixpGC4Ww77++XCbEOu2AvdTuSFbif+9PslpY/yz+5nxNSb+Llm4ufxJzO/OFNz2SLN/e+51snh17/qcsyuDkop5q6J2yUAu9XNplVRUg1tn1KhVy+GF//RNp0fcALDcrL4cGH8qj0iW0JK0nUDWW41NU5sCFql5QR6Toa97xoni26u5aT8kjnooqWoPtvHH6SB1prCqxMLMWgajKbnfIm+7SxYtTh2HSPGMqTsalbkHBpTNue71dwf6stVLzZ/nd91vOLqQ9RPYWa28KVhfeDuExzc20vNgzz4FNT+x/v8i9rP0D4KU1zF2gpY0nUY24/cH2Z+RJmTS6Nl/+CK0r+zY9dqHsw4k2rLWy0tBW44XHHcbkkcvEVWuuKpMxTn/Dv273I1vPKN5sJ9429Rvl2pefKT+Nu92GC0EkbuHn+cPXMg1DLVrxPTj98YqH6v8HpWpvaLWV5SZW/j2pJAiH6+HD/S/Hi98wOEW5GBUuYzGK0hrHnXI6BNiI62V2IfwYHoN/6JfuS6aPBrSiqccxPseTD6nL38dXDACaj/exQVCpbiZg1GS+lFQXidsey0vRUvzNDUG/JKWxOMphR0sewvVcYeXgthF44fjMa6OOHQWwGvTKygecHb9VRc+yvFQYM1e95h/vB/6EPNVYcE67e1bMe+I8zzagCYUwTjBsYutz1cjoKBBeZ99x/Nm0EgsWC09FTFuB3h00XB27bk6mg4mtdxphBCCCGEEEIIIYQQonOwhfB0DXUnyxIWJIQQHcEW1rh203bM1RGKG803lC5Is9xFkuiEdNOE9aqIvxuaJpNtm9wrtQ+Oaqe7pgkhhBBCCCF+thxlCUbTcqfvZPM6prQFdAshoiQY7WdMa10OfNbO62wAPmrPdQohhBBCCCH8U7uOh6e/gfISyMhG5XRDX/UQ+ozdYencZnUbVLqxj/QgR5J+ToQ1ek8C1t99GrcLddm9cOyFqJQEZnqKjrf9YOPiPLeMKfPHU/zKRtJSIC87OltaV5b573vjhvh1AJRC/ec76NkHMrNh7XKorojO3nYj0L0n5Pf7KRSpU7IFS0SaBKPlmSdQt/Rw3kWtHs74u73f//PXwverYWC+Zsl6f30eXfVm6wZVFeC1kyD93/sTazjuSNSZNxgKFGRmQbeeqG49GPK8y4cL4z+HeZGymN9NwWg22Wn210qNyvRu/PEkOPly3+tq6tkv4/9tNqFN38nouhr0zafDmmXmit99xuD8I3jXEIz2zKI+PLModgzXvKzZewfF+IGwpETztaXr3+yxaRtRaQlG69Ld82/oKMM8bup8zMMu3x9wInrmR6xLsd9ptCC8jlvmX8zV75xJo3bIy4Z1FbChCgb0gtIayM2C7PT2246eOUZx5zuaRYZ81Zdmai7cN34fT37q7zXptHy/lJeQk6H485GKW96099FrK/oOS1dXwLRXA7XpFSkxLi+usD8mpdX2/rLMuXxANHDTy+3HKs4YrXhvruasibHrL6+JhjPG+6xfWQp1jZ5VhOgww/vCUSPadjur534dDdveLNyIfvxP8PiffLVXD7yLGrl/QuvOtwWjhXpSbdnPycmItltp2A0sqdQQJ3bXK5wox3zITFXbZ/GKn5M450QAKF7V9uNoY157VIlutUZuC327w2pDdvqK0uh7vFeX9tv3tGW79s9TdM3QVBhCE5es14wbGDtGW8iao6B/nrnMK+wx02MfysuRIxSfGo6PEnHDa5oHT+7E51SEEEIIIYQQQgghhBAArG0wn5O2BRAJIURHKUwz352mKrKRqkgFdZEawtp8gUeBpS1ATqgLpvvRmMLS2potGM0r2E0IIYQQQggh/HIwz0NzW940XrRateWYMsPJIkXJfFghvEgwmhBCCCGEEEL8wqiU1Gj40+bflYInpqMP6tasXoPlpEpakJuMNQlksgrHSZZYMse7fPAo1ImX+h+T6HRUVhf7JOmGegrWfoPaefefFulVi5I/iEN+i+q/05bfe2+X/HW0Ncfy5nS3vA9tE6g7ygszNCeOVGgf86yz3SpO2fhC61ZY0bbBaHrZPJj0RLBG2+6MOvUaOPS3voL3hvm8pikv0jyYKzdSxqpU+wVdLWVn2MtqnCzPtvqHLxION/j7B4lPui+rAR2JwPv/s4eibTK0fl7g/id8rBk/UPH+PPsYtwSjGdIZALp2sjfhJr27QfesaDBUS3PXQMXo4+nS7UbWNdqD0fI3BWB1ffACnBueBKBP9+g/gCxLeExbUkpx0ijFHW/HPmdTF0TDufK7er9aX5/tMxitRRis3rAGBfzlaIcvlkSYMtfczhby0xnpM0cFbtMrbA5GK/l6JvxmT2PZizPtj3mG5Tu/l2dqfjRdlbrJO39wOHRo9Lke3BtM8Syujm5H8uJkSJZUeZcL4Zejov9CTvRf3J8VOJv+b1knOx322UnxhwMU3bLaLnRGN9SjLxiXWOM+26PueAk1YFjC6++VYw5uLQn1pNIxJ01mp0F+V3MwmleI0Gaux7UdXTLM46k0hB8JYRX2EYy2+Ht0uHGrDoP3OuZLNH9cKcVv9lDc956587++q/nbie0XxGULMws5sH1P+NYwl3ClJU/Z3peiv8/A86YyE3zp9Evi4ct/v9I8eHLy+hNCCCGEEEIIIYQQQrQNewiPBKMJITqXgnT7tXDrGoqojdgv8Mj3CBbLCXU1Lu9cwWj+rwMUQgghhBBCCBtHOcblrvYxH1QEUhUxX7ScE9qKJpQI0UEkGE0IIYQQQgghBCo9A33gSfDBltChBpVmrJseZDKl9nGHgFrzxQdaa3jub1BsvgvlZurSewMMSHRW6p5J6D8eYyzT91+Oeuzj6M9awydvJHflO+2GuvD25PbZESwnpJu+D5M5qTkZ7nhbs3xD/HqZbg2Pr7mEwohH6o0f1RXocBiVktxTYrq+Dv34DfDiP/w3SklFXX4/6pjzAq1rWF9/k+BbBqP1ipjDiWxyPEKsalWmd+PqjYHWtdmSEs2M5Qk1BWDRlE/Qtx7iq+7g+vmB+588J/q4f2++3oxd+8GO+ZuCFyrMCQeqS/fA620PSin23A5reNcbi7vyu+smUHzvq8bybpFyMnR99Jd3n0GfcgVqh6FtM9iAThxpDkZzNZz3tMuk3wdJfLVTLe+KtGzLa+y/5zkUXu3SaPh+cES/9gvraA29fD6sDf4G7RlZb1xeUlSKXjLH+Dq57PngwWhXvWjf55xyucNBQ7Y8zr27Wasyfy2MGWAvByhu/+tc24xjCNgKGsiVeFsVU9/x2U9yxhK7/mQElPlt6yh8BaJ2NvqqIxNqp+5/GzXqwFavv5flu/96J4N1KQXGspzaEvK79DSW+QpGs2ySHMe+v1QfhsawJjVl63uORQdo9BGMVlkG30yDPQ5q+/G0Ec9gtFb0e8ex9mC0+9/T3HC4Ji+7fd6LEdv2QkWPxY3BaJbsbq+QtX65wcdm24eKp19u8BA2m/USLiuEEEIIIYQQQgghxFZhbYP5Wj0J4RFCdDbdQrlkOJnUubUxZesaVlEbMdwhEshN6UmGY7/+zRaMVt3OwWiudiWsUgghhBBCCNGmrMFoLedGiFazHVNmW45BhRBbSDCaEEIIIYQQQogop3kwSL0yz/JOM+SH6OoKmPoqZGTBbvug8jZNSvea+bq57b2/R/3r6+jPGzfAV+9BQz16/gx4bYJ343FHwrC9465DbAVGeUzwXvjtlp9L10F5sIAno+2HoH5zOfTdAYbuhUo1BwFuVUKWcJ8mM6r7dU/OhOZkevZL+5gmFF1Ed7ec0bVf0ju8NjkrLFkFvbdLSld6xY8w80P0fX/wVV9dcBt07wmZOTBsL1RB/8DrHNrbX70eLYLR+jVa0rwssj3eEjUeF4YBULQ00Lo2e2FG616fB859xHfdIQ3zAve/vgoawpo5q83jHLVdk8CFynJzJ107WTphE5cd6DBlrvkLrBdmaE79/ZEUl+0Dr8eWF4SLm/2uz9gdJm9AZeW0xVCNtNbR9+OHL0E4jDrkFBi5PyO2gYH5sLA4ts0b38GfJ7n0z4P9d1ZkpsF7czXrKqLP5/47Q4nPAAen5Zd/S7ekzOVmKy49IDa0Iz0FzhzT+UNz9OxP0H+7NKG2vSzBaBtCPdFT/ou68LZmy+sbtTUIBKAhHLusuEKzwpxFSH4X2G/n5su2yYUuGVBZF1t/TpFmzADv56S4Mti26qL9FEP7RLerzYPIVIcEcm1uq7bSYC7RcfTcr2H2x8EbHn1OUkLRIPqetlmaup1xedbkp+i139VA7L5yiY9gNNs73lHRbYlNVT3kyrewwg8/wWgA82Zu3cFoHmWt+ThKS1GM3gGmLzGX732ny4+3JScINx6vMLNtLAFjq0rNj4xXX/0DHlKkOJASSuxB7mzh6kIIIYQQQgghhBBCiLZV59ZSHjbf4bBQQniEEJ2MUoqCtG1YXrcwpmxt/SrqXHMwWrxQMduk9KqIjy+Yk6g8vIGGzTeqbEG2yUIIIYQQQohkcLAEo2kJRku2KkswWk7I4+JoIQQgwWhCCCGEEEIIITZrEarUoMypOGktjiT1vBnoKw+Hqo3RBXkFcNv/UMNHgxuJv95F36HDjbBsPvqqI6HUZ/jR8Rejzr5RAh1+JlRKCjp/Gyg23HW0oQ4992vUkD3go5eSs74LbkWNPTIpfXUajmWyd5P3Yf+ujUBq+4ynlU6oeJmzN/476f3qs/aA11eh0szhj777efc/6LsuhHCjr/rqn1+hBu7SqnUCdMtS9MuFlWXe9XIjzSts02i+o69NaggyUqHO8OfVqCzvxmuWoetqUBlx6rXw9vf2uISR28LyDTB+IGyshQ/nx9YZU/uF73V1cavYp/pjPs7eJ9AYv1wK36w0lw3rE/1flxVDuSGFC6BL90Dra0+HD1dskwurDK+t9+ZGQ+HWNeZgCnTIj8T+vfrQHvDKElSvtr8QT7su+voT4LO3tix752nY7zjUX/7DiaMUd7xtfn3d9tbm5S3LNYcNNb8HTJyWX/6tL0JXlqG65AJw57GK7HT4zxeatRthr+3hL0c77Nqv8+7HaK3Rd5wL7/4n4T7yIuaNVVmoO3zxLrQIRjO9/pqqNlzvOafIXv/w4SomCESpaFDZF4YAFa++NisOcJ3r9Gsd9tqh8z7HQgShn7s3eKNdxqOueDBpY+jl8d1/peXi9JyNq+hVOh8YGlNW4iPo0LVc26HwEYyWHbd78Qunw43oJ27yV3fZPLbmTxSv3PzWntY5chfF9CXmFSwqhsXFmgH5bf/oeYWZ2QLGbMd1Xn11y1LsVAA/rvM3rsxW5MD36ZZ4WyGEEEIIIYQQQgghROv8UDWDGZWftOs669xaa1lB2jbtOBIhhPCnIK2vMRhtVuVnRDBfvxwvGM02Kb0qbJ7EHsTGcClfVXxMUf1ydMubMAZYX7y/QQghhBBCCCH8cJR5HtrKusVMXHN/O4/GnxSVyvYZOzOq63jSHY8LeTvQ+oa1zKj8hLUNq9k8T2Vp7QJjXVs4txBiCwlGE0IIIYQQQggR1SJUqd4SjJaesmUyqY5E0LefvSUUDaB0HfqhP6ImfGqfRd5S0RL0Q1f7D0U76TKcS+/xV1dsNdSf/om+7BBjmb5gHHxch37wquSsbO9fJaefzsRHMFrv7DAhrYiozn9KaEj9vLbpuLoCPnsT9j8+oea6ohR998Uw7VXfbdS/Z6F2iA3jSNTwvvGD0XpESpv93i8cLBhNvf0vskInU0fsFwW1TqZ3Y61h2TwYNNL3+sIRzawV5rK/Hqf4v8O23IlmcbHm4PtdljW5SfHtxTfSO+zzM2STO4tvZOz20wK1Of9pl42W64CH941+PuqrjoKIJRg0v1+g9bW35893GHdX7Gd3fRiG3uSSZwl4KQibg+D0cTvApBWovIJkDjPa98YN6Ak3wuxPYMWP5kpTX4Fpr3LiyOOtwWhe3p3jv65julhx6VwYMRaA1BTFzUcrbj468DA6zhfvJhaKtu+xUFcNX04hr8W2aLPSUC4snodubEClbtnnjLdtq6yLfR5/KLI/t3870RyCsnOB4gtDgMrajYbKLZT4DEY7e5ySUDTxs6Ary9EPXgnTXgvW8Mizca55NKlj6ZIRDepuCPtvk+NW0Wvl15iC0fwEHdq2MI4DOR45u5V1voYnfuk+ecN/3WVtdHzUCbT20/LCfRQ3vGrfH7j6RZdXL7EcLydAf/Mx+tl7oufChuyJOu9mVGa2PcxM2QPGNlSbl3sFowGcMNIe/NtSZiuy0VNTkrsvE3E1IUf2j4QQQgghhBBCCCGE8GNtwyq+qgh2TUNbSVGp5KX27OhhCCFEjEJLQFhpuMSjjXfQY45lUnp1pHXBaMUNa3hg5Z8oD2+IX9lD11AumSG5S5cQQgghhBCi9Rwc4/KNkbJOc17K5PON7zN94wf8vt9NZMSb39TOVtQt4u8r/0KNW+Wrvi2cWwixReefBSuEEEIIIYQQon20CFVqsASjpTU9kvxmGiw3JNbP+xq9bgX2aeQtVFXArKn+6gLquAt91xVbD7Xbvp6vGH3jKd4djD0CPnsr/npeX4kKJW9SdKfhmE9INw0oTKGRvuESVqT2D9z9/62/h+IRR9I9SzG1vB977JRBWnoK/fPguN0UPXLg4PtdZi5P9A9o7tCq95LTkYG+7SxIS4fC7WD7ISjbYwfoxgb4cTaUl0DVxmjbIM64PqmhaACHDFW8/YP39rUgvK7Z79s0BgtGc9YuJzN3A6TGXjxWq3x8cfDVe4GC0eatgZoGc9kBg5pPnB+Qr/j6qjpeen8tRRsdDnn5dEbXfuV7Xex/POqQU9h70fc88vKlXNz7Id9NF6wzL++aAaMHgH7/f7BwtrlSr76wwzD/4+wAo7aFFAfChiCGxSXRfyb5HhcT6jNGwkuLUOnB78aj62th7tewbgWkZ0Lapj5SUtFXH+Wvj+f+xognjqdrBlS0YUhNvGC0zkY31MPqxdHPiB2GolTz95mur0M/fmNCfatfnQZ7HgyfvUX3mRvBsKu4MdSdSMSlfsliZjuDGFgABV0VK0u9t21V9bHL5hSZ6+65HeRmm4M38i03ViqpjL/vagtG2zEfTt5D0RiB8QMVv+rcb3ch4tLhMCz+Dn3u6MBt1c3PJhxC69mvUuR3gVVxQhSbynZryF/+BRSeGVNW7OO6ddc1bxcU0aA2G9P2SoiW9Cev+6+8bC66oR6V5pHI1wnV1Gu+XgafGwJJkyU3WzHlcodDHjCniU36Fh78wOWsMYquma0L5dLzZqCvOGxLEPKcL9Fzv4JHp2HZXBByIDdLYTpHVl5jbhMvGG2E93ydZjLNp/c6RG0D5HTOm3QKIYQQQgghhBBCCCE85Kf2wVE/w2uthBBbvYI4IWfmNuYwtc2yLcFoVZFKtNYx19j49V7pK60ORQMoSOvT6j6EEEIIIYQQAtiqz/csqZvPrMrPGNPtoI4eSjNvrn/edyga2I9BhRBbSDCaEEIIIYQQQoioUPNgIFswWnqTI0n9xj/t/a1ZDlUbfa1af/62r3oA6q8vo/oO8F1fbGX2PRamvWousy3fRI09Eu0VjJbTHXXHi6jc/FYMsBOzBqNFtvwcDjO+5lOe7fZbazcKF93krh871y/g30XnMKpuFnxw05aKn4C6/x3UqAN+WvTuHxz6XeNS12juOyfdX0jEgIbF7Fn3dfyKiWqoR1+7KaxjwHC46xVUQWxYnJ7zFfr6E6DUkoYVz++uRp31p1YM1OzEkYorXtBoj2yBXpH1zX7vFzQYDZcs1zxLv8bJittef/oG6vRrfdiUhNIAACAASURBVK9v5grzH5MaguEtrkXTH08i97azOK+22nf/QPQ9MvZI1DWPobK7wrijOG/WoTxd+gVfZO0drK8Wfr2bIiNV4b7wd2sddfzFnT6UMS1FsXOhPWjKJj9SbC8sL4F3noZfnx+oT/3xJPQNJwUbiMmCWej7LmPmDQ8wMLGcL18cHZteoZfMoXXRG21DL52L/supsGROdMGIsXDrf1F5BdHyH2ejz9nLX2f7HgtzvoT1RdAlF3X2n1Bjj4iW7ff/7N13eBtVugbw9xs1y73EJY6dnpBeSAiEFEgIEFoKJIHQy3KpCT0ssMCyF7gsnSV0WOrSwtJZem8LJNRU0km105zYjps05/6huGqONJLl/v6eJ0+kc86c+WxLo5E08850dOqpgJutkz0eSTsXV93TCxX7AjznTBRkhrngUbFFuN2STdbbj5Hd9b993Xq22/gOslATnjZ1mOBvU/VBm0RtidqyLrANXvlL5Asfejxk4oyY11RtYG6kwWglcFT5LPt2aQKJ6tIFHRkCxIcIG1q9TWFUj9b4KkCtyocv2B9bVQms+hUYcEDT1RNjLy80ceaTSvv+sFqU547UM2mAoH/nQOCylcteUrjhDYUnzjAwY0T0K1Tz59WGolVb8h3MHz8HMM5yGYcBpGreQu2tBCp9Cm5n/Zp8mo1P9Ud3XdOtg9asxDXyiJB5kwW3vxebYLuyKgajERERERERERERtUXhQoSIiFpKThMEoyVqTkr3w4dyswxeR/hj56wsKf0xquUa4jaZiIiIiIhixSNt+2CuFaW/tqpgNFP5sXzvzxEtk+RIaaJqiNoPnqVDREREREREAUZtWIsJgU9clsPc+4YpXxXww0fa6dSTN9tf99O32homd70NGXOs/XmpzZEzrol+4YkzgO79rfsmnwZ5axNk+Pjo52/tDE3gUt1gNH8VLt1xP5L9waGFTkPhtQsN7LrgZ/y8ZiR+XjMSa1f2weI1wwOhaBbUZUfBPPdgqBU/AQAyEgU3DFpuObbg9zwUdToLjwz9JuyPckfBNSHDhOScGyFvbgCS08POFdbq36DuvDioWfl8UNefFHUomvx7NYzzb2mSIKzOqYJD+uj7E9wK8ZkZ9dryMyL7GNCAiXhVZtm31/CGn2D9iojWt3qbdfugXMDjqn00qF3boG46DYgkFK1bP8g7WyD/KYBx64JAKNo+xp9uxMNbL7Z8TkRixuYnoJZ8ByxbaD3AMIApf2rUOprL4C6RB0Vkdw79ZYy6aw7U3mLb86mt62MTilbt9UfRY0Y8/rfvotjN2YABi/CvdcuabH3RUNu3wHz4L1CnD68NRQOAX7+GmtoV5rxpMG85x34oGgC55lHIq2sgr62FvLkRMqP+9jQtxLGgc3PuQYVZu428/5NAYEkoDcM1lVJYoglAGRTiONDMROv2bTYepoWaMVlhQt2I2hJ1x4XRhaJ5EyB/ujH8uEaYOiyy16kEVYo0v3WSWoUPKKsMvd3R9RoGYBiCRI91/ymPxyZEiKiepd+3dAW2/bFDYfZj4UPRAEBikYwG4N25od/zFJcDsx4x8cqi6J6flZv/wEMbBuL03Cfw105/wSZnbk2f/2f9+1xD9MFoALDb4m2X3zpXFs6aYDQ7FQd4Q4Q42nHe+NiFPJZVxmwqIiIiIiIiIiIiakaDE0e2dAlERJay3V2Q4cq2PT7P0x2pzoyQYxId+gNASv17bK+rrnKzDEW+HVEt29AgbpOJiIiIiChGescPaOkSGmWvaeOq6M1oR1UhfMr6Ys46/eKHNlE1RO0Hg9GIiIiIiIgooE6oUqXoz5p0OwFVVho4Ub7Y+gRzAMCPn8WwOEBufgky6vCYzkmtj/QZGgg4i2bZhGTIA58AZ1wLZHQONB54BOQvT0KufQzidMaw0lbI0HzM468TjOarwvCKX/DF+sNw0c6HMHbvVzh47zc4q+hpfHRGAaYOEyQPPwCDhuVhUMVS5Ps2hQwoAwAsXwT1p4OgPn8d5oPXYN7z++OFjafi+D2v4dDSz3DZjnux9fd8ZPh3Ah+9hHNenIS3/5iqnW7BxtmYUvK2fn0OB3D06ZC0rNgFb/z3/UDgllJQfj+UUsDPnwPbNkU1nVz3BCQr8qtRRuLEA/R/mdJKgfzze+CUK4FDjwdOuxopT3yM5Agu5iJQ8Jp7reeXhNo7Ls3rxd5iqFL7B4Jt0ryc9Mps0PDpK0BlheVYHZk1B5KcXi8QraZvyMEYNG4wvlo3AeftegzH73kNtxf8GYUr7F9ZM82/E5Peuwzq/BDBiwcfA0lKjajuljJ7VBTBaGddBHgTQo5RM/oE9h8AKNMMhA/6fFBm/dQHZZpQM/tGXIMd17wxDgkob5K5LYPRfvwssD1pBdT65VBnjgD+dYd+0LfvAu89Z3/S7K6B114RSKdcy9fZ9NAPi4jtafDnK9gDFFlvqjAwV/9Y7pRo3be9BGH/ZoWaTVsmg9GonVB/rAB++Nje4NmXA0edDgwdB0w9F/LEd5Bu/Zq0vkP6RvY6lWiWIl0TjAYAO0sDz/tKn/Vz39SEE1VX0TCwsa69Fa3jNYBaJ1X3fZrdZdpQMNprPys0925Q1wzB8Pzw42Y9YuLlhSaqfAqmaa9IpRSm/aMKc3LuxfMps3Fz5rUY3f0LrHN1BQD4fvxSu6zDAFJDZEtHEozm2Pe2Pzu5NiQtHK/1dQ9s69FJcPes2ISjldkIyiMiIiIiIiIiIqLWpbd3IPZPGtPSZRARWTLEwAmZZ8Ep4Y8NdYsH0zLPCHvRnkRH8DFm1UqiDEYrrIzuOMSGBiWMxKCEETGZi4iIiIiIqHtcXxyUPLGly4hauWlx8F0L2hrhe79JadPQyW0/7Juoo2rnZwQTERERERGRbY7at4ihgtFc914E9dtT9cOWmtqQMZBDpjXf+qhFyfVPQX3ySnTLJqcHwrJiFZjVltQJN6zHrPNc9QeuPDGoYinuK7ii3jDpubL29vm3QH33QUSrV385seb2zOJXMbP4Ve3YyaUfYteKLByf9xI+TZgAAEj37cATW87HcSXvhFyPXPVQbejYlHOBuy+JqE4dde+lwOL/AoUbgbzewMZV0U106jzI5FNjUlMoJ+wvuOBf1ifxOw1AUjIg599Sr71ruh+LN9ubv5NvBxLMUsu+UiO+9k5ON2DDSstxKNwE9NAfKFbXxl3WP0uXtNoD0dQvX0Hdc6mt+eo57pyQ3TLvIQz4KB0PbK3/WOpXsRzLPeHDXaYXvwk3Qp/hL9c/Gb7OVuKYwcClkwT3fmQ/ySIn3QV5axPUqUOBreutBxXvAl55ACqvN9QNs+v33fYqZMwxgdvvPhtl5fYsXTkI04Z9hZ9Kc2I6r2iSP9T4OOCCW4HZl4c9sLIpqefvBnbH5sqzNQYeGHZIUlwgwEMX7hGprbsDwSTVv8s/durH7hfiO0JdiJnPDISTpMZb95umwnbNhaWyklru70sUK6q4COqUIbbHy7FnQbo2TZilTu/MwL6Oz+Z2JdEsgdfUh2J+vFzh8S8VvloVCHO8dbrg3HFSs53RvRoaNp7y20qAbh57dVIHtGNL5Mss+S72dTSRddvtjYv17tErFxjodW34DcRJjypUP8P/foLgyiMk5L7aJ8uB93Z2r9e22ZWL+9Ln4J6Cq+DfvRPQ7D84DCAlRDCaVchruGA0hyHo3glYVaift5pX/xGfbX2zBfoton3lDEYjIiIiIiIiIiKyLdfTDaNTDmux9TvFhR5xfTEiaRxcRiOvwEBE1ISGJR2Eea478WvJd9jhs/7yJNOVg6GJB6GzJ/xVduKMeBhwwETwMdLRBqPpTo53ihMHJB8Sdnm3eNDT2w/7J42BIZrjRImIiIiIiCJkiIFTcy7G0MQD8XvZb60uaKza1oqNWFu+Iqi9zK+5wnoL0YVie414DEsaXXM/3khEv4ShGBA/vLlKI2rTGIxGREREREREAXVClSpEf/a2e9m3zRuKBgSF+1D7Jk4X1OijgG/ftb/Q4Sc1XUFthS4YTdU5o9oX4ixkR+1BjNJ7CNT4qcAXb8SouGBJZgk++OMYLIwbgd1GMkaW/4hUc3fIZeTNDZC0rNr7Dgfw/GKokwc1vqC6YXwRhqLJdf8EPHHAfsMhuT0bX4sNnZIEo7oD368L7jtuqPUy+emwHYw2oGIpEpUuGC2x9k5WXuD3ZRUKtW0j0KO/rfVt3GXdnpcW+F9t3wJ12VG25qpLnlwYNoxKvAnA1Q9D/f38eu0X7noEc3PuCbuOmXvCBDl27QuJ16QwtUKGIbh7lmDORIWhN5koqQi/THYyIB4v8PKKQBCYhnr0euv2Px8P/OmvwOzLoZ64KbrCAVuhhl18m/H1wv2wsM+JWOvqjp15w3HZhsgfWw3pni8AoB66NrDtOuq0Rq/HLmWagdfRlb9A/fIlsPCT2K7A4YDMuCjsMBFBWjy0YWKRqvABt/5H4aIJQGq8YIMmGC3OpQ8/A0L3/bFTH4xWVKYPY8pqO09zameUUsCvXwOrfg1sB0cdHnUQY92g27DcHqBLr6jW0xgup6BPNrDMZqZUgrkXKSH2Mc98snYfZmcpcP5zCllJgmn7jjUwNTlAdn7Feyvt1UgdVIRB1ACAzWuh9ha3iX1Lu6/9iTEOD+zRSfDgKYILNSHSVq7+t8KjXyicNKr+EzvVC0zsF9jfmPag9Q7AW4nHBILRNq8DelvP7zACYbEi1m+brILRdPsb1cFoADAo12YwWgzOV3TH6PyaMgajERERERERERER2TYgYTgGJPDkSCIiO/LiuiMvrntM5hIRJDqSsMdfFNRX4i+Oas4CzcnxWa4uOC1nTlRzEhERERERxYIhBoYmHYihSeEvmt5Svi760DIYrdxsXcFoWys3WrZ3j+vL935EjWCEH0JEREREREQdgqP2LMdKcWuHeUwbCSkxJHe8ARk8OvxAaldkUGR/cxk3tYkqaUMcmjOV6wYZhgo1dNTPz5e/PAnMvDgGhekJgAPKF2HS3k9Dh6IdfUZQKFrNHPl9II9/23RFhiHn3AiZfApkwgnNFopWbd5k64/2pgy1TurIS7MfkjKgcjmSNAdyFdcNRouLB9KyrSdZv9zWupRS2BAmGA1vPwlURZYuIhfdBuk92N7gQ6YFAl7quHDXI2EX61a5HhNKPw89aMhYezW0Mj06CZ44w97Hx9nJgf9FBHLezVGtTz3+V6jDkoFt1gcChjT1XMj7OyDPL4bMuSPscDeqcPDK53DK0psx54MTULw8HZfvuBc9vNFd1TXRX4zB5YtDjlHvPB3V3NFQPh/UvKlQfz4+EDQX61C0YeMhd75le/8sNzW2q7/+DYWuV5v4YZ3Chl3WoSd5aQgZDJWfBrg0L5vLtuiDVLaGeKliMBq1BKUU1E2nQ118GNS9l0FdeRzUjadAhQrD1c21fQvw42f2Fzj4mEBIbQsY3cv+Pk2iWQKPqkS8qQ+wbGj+p7WJRKYmnMiwUUJp8751pjZGhQoCN0Lsg62zt4/d0gr32AsmG6cJE2uM88YLHjtdkJNsf5nV24Bb3lH1/l31isKIm01tKBoArHN3R4W4Yfr1P6/DCIQPp3it+4ssLrLp16zSWeehMbCLvW1hXAyC0bz6jwkjUsbASCIiIiIiIiIiIiIiagMSHNZfNJX6ozu2qEBzcnyOp0tU8xEREREREXUkXof1Vc/LWlkwmi4UO9vN935EjcFgNCIiIiIiIgowak9qrwgRjOZWzXcWo7y0HHLQ5GZbH7UiE0+IbPzYY5umjrZENB/zmHXC0EKFZDjrny0t3gQYc+8KhI4lpsSgwOgZ1zxqGYpWTfbbH3L1w81Y0T79RgAnX9H8691n+nDglAPrnwx/5EBg5gjrE+Tz0+3Nm+IvQrJZjCSzxLK/2KiT/uN0Abk9LMepr962tb7NRfrgkPy4Eph3XBgId4qEyw1MOdf2cElKg1wdHIS2dmUf9Khca7lMvFmKB7fOgRMhAgcByCFtN7hxkI3vX1K8QIKnzmNu5sVAVn7TFVWXNwFyz7swrpwPiU8MBLPNmguZe2dk06hy3F54LVb+mIM3p68JOfaGlLeQ5qndlooy8diWC+CCL/RK1i2LqKZoqYpyqKn5wHcfxH7yw2dDviiHcf+HkJGH2V4sPy38mEiVVACzHzVx+cvWISTh1ulY9TP6YINl37It+uVWFFi3iwBZEYSvEMXMxy8H/tX16b+hHv9r5HNtDr39qycrD3LODZGvI0Z0+zoNiTLhVYHEoTSLq3nrfLI8EDoHALqoo+pgtNMO0tfy1SqF6Q/4MfQmP2Y/amKTJsyROqjVv2m75NZXAgHEVtYubaKCGqe0QuHSl0z0u96P7n/240Mbuz5ZScCdM2N/uIKI4JyxBjbf6cADJ9sPUozW7+4+8Is+KLJ6e5GqC0bbG7xt0AWjOeoGo3W2V1+8u/G/g+H5sQlYK4s8t5OIiIiIiIiIiIiIiKjZJTqsr45XEnUw2mbLdp4cT0REREREFF6cYX08ZblZVnO8b2uwlcFoRE3C2dIFEBERERERUStRJxgt1b8bNxXehEpxoyKnN6oOnYXKRV+iYt0qJJvFzVPP4bMhmrAdav8kr7c2hCBo7CurIC59mF+HYWhOxK4bjOYPEdzjsP6YSPbbH3hxGfDhi1A/fQ588UYjimxCk08F/n5+069n2Hhgv+GQfiOACTMgDv0J8E1NRPDM2cC54wT/XaPQK1MwbTjgMDTBaDbDiaYVvwUASNAEo5UYCbV3HE5g5ERg8bfBA5cthFIKIqFPxF8aIoRov/tnAcs+DVtzkMNnQ+ITI1pEjpgNDDgA6tWHgFceAJRCvm8TFq4djVeTpmGZZz8oBH6WLr7NOK74HfSqsg5Nq9F/JHDA4ZHX30r0zgTcTqAyxKZjRLf698XjBV5aBjUhst+/HXLjM4DhgPr9Z0h6FjD2OOt9haNOB164B9hm/cVSKEffOgizjt+Kl5cFp1wNK/8F1y47GRc6UvFS8kzsFS+mF7+B3lU2woR2b4eqKId44iKuKRTlqwqErlWUAf0PgDpvLLBnZ0zXAQDyt+eBQ48P+3y2kpcu0EcLRW/Ndn1ffrq+TvXHCqhLjkD/1AexNDk4xG/lH3sBWD9+l2y2/jl6Zih4ln4NlZEDdOkV1e+JKBrq9cesO/51J9SkkyC9B9ufrFKTUgoAh82CzL4cWPgxkJIBjDkWkpYZWbExdJDNt4kJZimqn43p/p3Y5LJ/YMH8TxXmTBSYms1X9dP85AMFz/7XelDd8MbfNil8ukJh1S0GEuO4jejoVFkpsNl6P1Iuug0y5hio7v2B5YuCl123FK3tEaSUwoyHTby/JPzYFC9w2eGC3BRgylBBVnLT/jQXHGoAMHHR80138NNST39k+wq1/dVhZqnxAHYE9+8uC27za8qtG4zWLcPePlZiDHY/4z2C6cMFL3wfvL6DewHfrLY3T1nzXWuBiIiIiIiIiIiIiIgoaokO66vjlfojP37aVCYKtcFoeRHPR0RERERE1NF4NcFoCiYqVQU8EttzNKJR6i9GiX+3ZV8O3/sRNQqD0YiIiIiIiAgAIA5HzemU6eYuXLfj74E7XcbCOPEkmBteBr59vPnqufTuZlsXtU5y51tQVx4Xflx2cKhJh6QL6DLN2tu+Kv3yTpe2S1IygBkXQWZcFJjy1KHA+uXRVNlkxOmCOuAw4IePm24dj/8Xst/wJps/GiKC8X2B8X3DBwrk2wwnenDrHABAkiYYrdioc0VMhxNywCSop24JHlhWApQUAUmhE9mWbrGuqbO3HGk/RhiK5nQBE06AXHpPZMvtI3m9IXPvAubeBfXT51Bzj0CKuQdn7X4muvlufKZFw/May+UU5KcBq7fpx4zqEfzYE6cLmPcQ1O0XxK4Ytwc48AhIUhpk4oyQQyUxBbj5Jag7LwZW/hzxqp54rTuSsu/CE2ln1bT1rFyD5zedBif86OTfgYt2PRzxvNixGcjtGflyGmrTaqgbTwVW/BizOa3Ihf8HmXBC1MvbDWWMpcEhso/Ue/8CSvega8Iflv3b1m0B0Meyb6n1caoYuPEDqIunB+4cPhu46gGIN8F6MFGMqJLdwC9f6vvPGgl8ttf+65BPn1Yjl98HSU4HWsl+UEp84PVpw67Q4xJVac3tbF8BfoP9oLjb3lWYMxHQXUiuOof2yIH2Q50Ki4EnvwkErlEHt26Zvm/clMD/mmC0kMu2kG/XwFYoGgA8e46BY4c073PggkMNxLtNnPVU04SjLfYMxPi9X2n7Hft+3FSvdX+RRTCazx/cVncuAMhPt1dfUoyO+XrsNIHPD7zxi4JSwDGDgafPNpAUJ/jnVyZuekthwy6gZyd9gG1ZlQJaXbQfERERERERERERERFRfQmaYLQS/56I59rl24YqZf19fLbb/sW9iIiIiIiIOqo4TTAaAJSZe+ExWj4YraByk7Yv28NgNKLGMMIPISIiIiIiog7B0Jww7993NuY2TRJEUxh1eODEe+rYho4NP2b81Kavo63QPYfrBqPtDXHFQof9/Hx57BsgM8RBOaOPgnxRDvlwF+SWl/XjTrkS8vp6yAs2z6IPV9eZ1wEezdnmjZ37+cWtLhQtUr0zw48ZXP4bPPsOxErUBKOVGnXCfhxOIKerfsKCDWHXubnIur3vnsgCreSaxyDvbYdxw9MxCSSS4YcAh0yLbuFOuZAPdkK69Gp0HS0tKyl0/4EWwWgAgKNOA/bbP3aFnHQZJEzIXl0y4ADI499C3t8B9BkW0aq8qhyPbL0IxcvTUfB7HnYv74QVqwehb+WqSKuuL8b7Uuq0YbELRcvtYd0++ijgpMsaNXXXFtilmz48RODGL4HgkiyfdeLftj2mZTsArN1uHajSv+TX2jsfvgC8/kj4Iokaa6ONbdIbj9qfr7LCuj0huVW+NxuYG35MglkbjJbv0x9wYGV7CVDlUzA1OUpSZzOTF0EA5NeNfCmhdqJwo3W72wN0DrwmS/f+1mPWtr5gtFcW2Q8cy0xswkJCOONgA29e3DSHRizxDIAf+hBKx77VpuiC0fYGt/k1uyOOOj9C55T693WSPOHH2BHvEbx0noFd9xrYcY+BVy90ICkusDE8e6yB1bcaKL7fwKpbHejZyXqOshBZ7URERERERERERERERK1FojYYLcTxlxpbQ50cz2A0IiIiIiKisLwhgtHK/RYH4LUAXTCaR+KQ4miBK80TtSMMRiMiIiIiIqIAbTCaL/D/1j+ar5Zdhc23Lmq1JC4eMMJ8dJFmI+mpgxDd78oMhBsqXxXUlcdpFhaIQ38id9BwbwLkuV+B2ZfXNu63P3DIdMjVD0NuexUiAomLh4yfCkw/L3gSjxcy5RxIRg4kr7ftdYesa8gYyEOfAydcCBxwGDBrbkzmxZnXQfL7xGauFtQ1Q5AQ5qT4gRVLa24naYLRio06SVkOF5DRGdA9fmwEo+3SfA+RVaYJjLDiTQQmnADxxPZKL/LXfwF5ocPN5KoHIbe9Chx1OnDQkcAZ10Ke+Skm4WytQfhgNOt2cbog8z+GnHtTIFxr/0Nr/0UiNRNy47OQP/01suUQ2C5KfCLk5MvDD7bgVeXI8O9EgtqLEDFbtY45C3Lh/+n7G7EvpSrKoSrKoLZvgdq8FuaD1wBV1leTjYY8uRAy905g3JTA32jcFMgld0FufQUitn56rX45jVs+Ugd0B3pmhlhnSSCNMctvHYxW6Nc/6Dfssm7vXrW+3n31wQshayQKRSkF5fdDVVUGnvdlpVCle6CKd0Ht3gG1qxBq+xZg9eLwc331tv0V67Yprhgl6sTYwC7hty2JnbNrbudVRbBfAaDKD6wshDYYzaiz+gS3/XlfXmg/QIrasSLr1yBk5NS+r+sxwHpMwR9Qm9c0TV1R+na1/cd1lvU5JM3i2CGCH64zMLpn/fZD+wIT+wX+Degc+bxLPf3hD3HYRXV4WWq89XZrt1UwmuZX6qzztsthiK1gxsQYXwzT6xYkxgX/LE6HIMEj+8ZYL1vOYDQiIiIiIiIiIiIiImoDEh3Wx46U+vdEPJfu5PgUZzrijKa5CCwREREREVF7EucIEYxmto5gtK2V1scpZ3vyGn0+BlFH52zpAoiIiIiIiKiVCBGqpPx+YOPK5qtlb+RXVaP2SS65G+qeS/UDUrOar5jWThtuGAhGw6JP9cs6Iv+ISOITAwFAoUKAqsdecg9UaTHwwfOBhoRkyKX3QnJ7hl4wCtJnKOTSe2rum288BlSURT/hlHMgZ/0lBpW1Dl9cZWDEzaa2f0DFsprbiZpgtBKjTuCX0wFxOKA6dQEKLEKfCm0Eo5Van/Wf7tckEDXk9kBufrFJgsjE6QSe/SUQKmj1HHK6gEOmQVIyIGOOifn6W4NOSQLA+m+UkQDkpOi/pJG4eOD0P2tDxVRxEdT1J+m3T937w3j258gKtnLYLGDJd8ArDzR+rhDksBmQAyZBvf88sPq3oH71/nOQI0+OaE5VvAvq3strt59NoecgSHwiMHMOZOacmE/fvzMgAqhmygI68YBwXxwG+jN91qE024x0+HduhyO9U732Kp/Clt3WMwYFLq36FUqpNvslplIqsP+gzEDAqtVtvz9wv+5t06zzf/Vtf/jbNfOb9tcVtN7adSvb6zVD/4wxq9HU/J40t2P5ZPnhI/tjtcFoEaR+NaOBueHHZGQmQi65C2r+1ciPMBgNAH7eoLR/jrrBaPER/or2VijEe9rm9oFiZJcmGK3u+9s+Q/XLf/YacPIVsa2pEbZF8BFOZmLT1WHHiG6Cr/8cOhT834sUzv5nJYqr7L1PXu3qiRJD/4NVB6OlaI7NKioL3tD4NW/ZHA02HT0ygPU7QteX1AL5lnEu6/ay2OX6EhERERERERERERERNZkEh/XVfkqiCUarsA5Gy3F3iXguIiIiIiKijsgtHggEyuK8lrJWEoymC8Xmez+igfUG1wAAIABJREFUxmMwGhEREREREQXogpFMP7BlLVBZYdktVz0I9B8JdO8PNbUrUGwzyCYEmfKnRs9B7cSxZwMhgtEkI6cZi2nldMFoyoRavxzqqin6ZZ2as5ZjRBwOyPVPQp1+NbB7B9CtHyQlo0nXWWP25cBTt0S+XL8RkL8+C+nSK/Y1taDhXQXHDwde/cm6f6CNYLRio84VMatfO7LyLIPR1IL5wJRzIQ59+MDOnWUAgq9+meov0i6DscdCpp4LeLxAv5FNEopWTZwuyL3vwbx+NvDZq/U7T7u6+R7LLSTL+gKoAICMRgZbSFIqcPd/gPeeg/q/c+t3pmZC/vl941ZQvR6RQNDmzIuBpT8ApXuAynKgx0Coh64Fftc8ISLVd3jg/279LIPR8MPHUCW7IYkptqdU913R6FA0ueddwB0H9BsBdeMpwFdv1e+fFfswtLoSPIIeGcCa7U26mhrnjw8TNlQS2LZk+q0L8okLRSt+R8bo+sFom3fr86ryfcGBS+rJm4EeA4E/VkCVFEUfzBUUvKXChJJZ3TbtBXJV326uFDtqXaqs3+819X5itAbl6oM7q3VNF8iMi4EJM9Dtk3XAh5Gt461fAFOzirq5h1sjPPb97d8UZo1kMFpHpnYVWnekZdbclMwuUP1GAMsXBS//0cuQVhSMVqzZfDTkdQEJLRDSZYcyTeDrt6FW/Ijpe0tw6OJn8YN3BPYYgZNeulX9gQSzFEN6/Ri8rBhY6umvnbs6SDE1+C0PAGC3RY63z2891tHgmgb9cwWf/R56W5gU1/zbG68uGK2qeesgIiIiIiIiIiIiIiKKRqLTOhit1F8MU5kwRHMhagsFVdYnx2fx5HgiIiIiIiJbDDEQZ3gtQ9DKW3kwWrY7r5krIWp/GIxGREREREREAbrQGr8fWL9Cv9zhJ9UE0qjJpwAL5je+llFHNH4OahfE7QEe/Rrqf8ZYDzjoyOYtqDUzNAfbLPkO6syRrSLkRLr1a/51jj4KyioY7ZgzgXee0i933s3tLhSt2v+MN/DqT2ZQe5IqwcSDsyF9b4eaP08bjFZhxKEKTrjgqw1GS8+2XtmGlVCXTgbufAviiQvqVt+9j50rsgHP4KC+dP9Oyyll3kPAMWdCdI/5JiI3PA0MHg31n2cC9489E5h2XrPW0BKyrI/zAwCkxyCPTgwDOPp0oHP3QJBU0TZgwIGQc66HuNyNX0HddeX2BHJ71m+c/zHU0dmAr5EpDRmda0LypHs/fVTPe88CMy62NaXavBZ4/1+NKkv+vRqSVefLtJv+BfXYDcC37wEpGZDjzoFMPqVR67BjUJfmCUb74FID8R59+IeqqgQKAyFmWT5NKA2ArSvXI2P0wfXa/rDeJAEA8quCg9Hw5M1hIpuIWhlfpXW7u3WmGA3JA5LigOJy/Zi8tMD/kpGDcdOygQ+D939CeetXhQGdrfuMOpuaLbsjmhbvLQZmjYxsGWpnirZZt6dl1b9/4JGWwWhY+TPUt+9CRh8V+9qisMci2MtKZlIgsLa1UaYJde0M4Ot3atrSABxR+nG9cX4YiDPLUG4EJ5z9FjdIO391mFlqvHV/kcVxWX7NTkTDYDTdNqquxBbYjDMYjYiIiIiIiIiIiIiI2rJEh/UBUyZMlJt7Ee+wfzXJggqLY0oA5PDkeCIiIiIiItvijHhNMJrNAxibkF/5sK1yq2VfNkOxiRqtec8eJCIiIiIiotbL0ASjmX5gZ4F1X2aXmlA0AJCz/gL0HNi4Ok6+AuilP6GUOh7pPxJy8e3B7efeBOncvfkLaq1ChUSFC/wpb/krZMi5f7PumH154ybuPxI44cL6bUPGQObcAfQeYr1MaiYwbHzj1tuKHTFQcM7Y+oEETgO476wkpFz/QE3IWaqpT/nY7uwUuOHYd8Z7WqZ+hT9/Abz7TL0mVVYK8+65UFdOwU4j1XKxdP+uoDZ5bxvkuLObPRQNAMTlhsyaC+OphTCeWgiZcTHEqTnjvx3JTtL3pWnCHaIhw8fD+McHMJ75CcafH4ZkNs8XQOJNgHy4CxgxIbjTmwi5+x1g4szwE+03vPZ232HaYerTV23VpYqLoE5sRJhkXm/Ia2vrh6IhEDhqXPR3GM/9AuOBT5olFA0ABuRGH4KyfNUgHFnyQdhx1x0jmDQgzHpeuKfmZra/EKKsQ5JWrC4ObttqnVCS4i9CirknbH1ELcW88VSoBfdDLfkOqrJCP1DX54xtSGWsuJ2CqUNDP+dz6+xixLkE8yZHti3aWwksXG/d15hsp182MDaxw9ulCUZLrb9PLSE+G1F3XATVCsKvK6oUKnz2xmaF2K9sSWr+VfVC0XQcMNGncpVl3yanft81qmA0TY6js8HboMFdwm+MkoLzqZucV/PSUabJ4CQiIiIiIiIiIiIiImpNEh36L7ZK/PaPESnz78Vui2PgAJ4cT0REREREFIk4w/oAvDJ/aTNXEmxb5VaY8Fv25fC9H1GjOVu6ACIiIiIiImolQgWjFW237kvLqndXktKAR78BvnwDat3yQBhH0Xaox26wXFz+/EggbOT7D4FNq4GhY4EBoyCNOcuc2iU58RJg/0OBRZ8Apgnsfyik34iWLqt10T2H24pDpwNP3QxU1TlT2uGATJzRqGlFBLjkbmDiDGDxf4G83sDooyAuN/DYN1ATgq/eKKdfDXG274/NHj1NMHuU4NvVCgke4PABgoHVwUUSONs+21eoXb7AkYXOvq2AY9/vqcHrQUPqrjko3+8g/OIcgErlwMF3Toax7HsAwC6bwWhyyd2QBOurcVLTyU8XANahG0Y7ebkWpwu46x3gm3egVv4C+KognToDBx8NyekGeOKhPlkQeo4p59TeOfBI/cCl30P5qkKG6imloK45IdIfI+CIkyEHTALGT4XE2786bVMbmBvdcglmCXpXrcHrG2bgxZRZOCv38aAx+2UDT55l4KCeoR+QSimofz9Qcz9OVaBX1RqscvcOGrtkTQmmK1Vvn3TpFut5+1WssPnTELWQTxbUbsNcbqjeQ4EBB0AGjAIGjgJyewYe67ogXben+WqN0NVHCZ77Th8M1T2j/nbh/6YL3vxZYXmDi7J1rtqCCnFjpzPD9rrrvgaeOFLw0kL7AVVLtwA+v4LT0U5eSClyhRssmyW1U/2GHgP0c2zbBKxbDvToH8PCIldcbn9sZisLRlO7dwAfvgAsmG97mWxfAX7D4KD2Lc4c7TLVT/VUr/V+9c4IgtEcDYLRDuwBpHiB3SEuetkiwWgu65+1LExmOxERERERERERERERUWuQ4NAfo1bi34Ms2DsQpqByk7aPwWhERERERET2eTXBaOVmiIPnmonuvZ/AQKarczNXQ9T+tO8zPImIiIiIiMg+hz4YTRVts+5reNIuAPHEAZNORPUp3mrreuCfNwH+Bsn3Q8dBjjkzcPuQaVGVTB2L9BkK9Bna0mW0XrrncBshXfsCt78OdddcYOMqoEtPyIW3xSQAT0SAIWMC/+q2O13Av36DunsusOhTIC4eOPES4ISLGr3O1k5EMLEfMLGfRSCHETjbvpN/OwzlhynBj60CZxZQAWBfgJykZWqiswKWuPvjpNsMLPMIABP9Kh7G664Z6Fq1ASWaK2ymmg2ulskwxBaRn6bvK6lovjqamjgcwLgpkHFTgvuGHAzc+AzUP64EdjUIDEzLgpx9PWTMsbXjnS7gb89D3XBy8Ip8VYFtXHd9iIl6+Drgl68i/xnu+Q9k5GERL9ccBuXqA/ZCeX/9MQAAF3w4bffz6F25Cud2fhjLPf2Q49uKm7t9ibNvPMneZGuWADsL6jUNqFhmHYxWmQus/g3oPaSmbdmq3QCCD3ztX8lgNGpDqiqBZT8Ay36A+veDgbaUTlD9RwKlmqtaO93NV1+EBuYK/n2BgRMeCk4QSvAAB/eq3yYi+OxKA5e+pPDiDwoO5cM5RU/h9oJrMDfnbjyTeprtdSfU+bVM7A+8tNB+3RU+YPFmYFi+/WWo/VBlpcDmtdaduT3q38/vC2R0BnZo0jkLN7R4MNqeCILRundqPWGA6ss3oW4+G9hbHNFymX7rCwdsdWZrl6kOM8vQZNaWVgB7KxTiPbW/H5/NYDSPSzB1mOCZb/X7WS0SjKZ56SivtG4nIiIiIiIiIiIiIiJqTTwSB6e44FPBV30p8Wu+W7egOzneJW6kOYOPvyYiIiIiIiJrcQ7rYLQy0+LKpM1M996vkysLLqP1HodN1FYwGI2IiIiIiIgCDE2okt8PFFmf+InUzLDTSk43qOMvABbMr210uSGX3xdFkUSkpXsOtyEy8jDIC0ug9hZD4q3DsmK+zq59gXveDWzrRALhSB2dBM62d8BEpn87CixO8q9uE0fg48U/XN1wZ/Zd2OLMwaTST3DG7mfhUbVnvc/JuQfLPLWhDcs9/dCv92IMLF+iLaOTb0ftHcMAeg5s1I9F0clN1feVtqNgtHBk0omQSSdCVVYALncg4Gz3DiAjJxC+2NCYYwOBlQ2DYQFg7VJtMJrasxN4/q7I62vFoWgAsF9O5MvEmWUYUf5TvbbRZd9j8Zr9scdIQpJZDMmYDMBmMNrKX4Ka+lcsx5tJxwW1b3LlBsbXCUZb/8ceWAWj7VfBYLSoGEZg36Xm/3C3Q4x3OAKvXfVuG9btjn3LWt42bNcjoWqzrMeqBqm9XW9+Oz+nUX+uz16FeuDP0f0tdm8H/vuevt/Vur+Qnz5c8OU8A+Nur58i9OfJgmRv8PY5K1nw/LmCp89SwI9fw3HFXADA4IrFEa03sU7Q0EzHlzgPYyNafv//NXF4/8Cfst4/ARyGBLcHjQn8c4bptxxTr1+Cx0jwnKHnsBhj0W8IrF8zO5r1ywGlCbFqsL8rDgdw/i1Qt5xtPb5wY4yLi1xxBMFog3Kbrg47VMluqBfuBp65LfKFDz0exv++gKxnSgGL/NpQwWjGvod9Voi3uNtKgG6e2vt+TTCa8f6zUD3GQXJ71rTNGBE6GC0jQb/ephLnsm4vr4o8KJeIiIiIiIiIiIiIiKi5iQgSHckoqnv82j6lfvsX3tGdHJ/tzoUhhmUfERERERERBYszvJbt5a0gGG1rpfWxnFnuLs1cCVH7xGA0IiIiIiIiCtCFKplm4GR5K6n2rlgmc+4EBh4E9fMXgDsOMuMiSOfu0dVJRNba0YEyzRWKVrM+EcDJj8lqGLWPpWxfgXUwmiMrcMPhwrItCqPfm4g96UcAAF5Nno4PEiZhwabZEABrXd3wRcJ4y1UtibMOO3MoH3pXra5tGD+t2R8XFOB06ANMhnfteOEm4t6XWOFyA506hxyn8noD64NDs9SPn0EmnBDcrhTUMfo5tev6x4eQ4dbPsdYiziXYLxtYUWB/mZP2LIALPsu+ZHPfQaYRBMKotcFBjLm+LZZjtzkyodb8B1AKa7cDqVsXY4OvK2DxUtut6g/bNQAADpnWBoK57NyWCNdVf70MR4otNf0CINpgtHBaeTAaAIzpLVhyk4GHPg8E7hwxQHDskNCPMZdTgFEToe59D+rSyRhYsTSidSbVCTBK/uJ53Lf1VVySc3dEc3y4TNfTnMFBzRtSFCo4zSGA09G4foexb4xFwJxhOSbcHHZD6cReaJ0BGL9ug+EZDI+qQO/K1XBiX4iqxwt07hH0O5PJp2iD0dTtF0CO04SmNYJSCjtKgPQEwDBCP5f2RBKM1qXltv2qohzqf8YAG1baX+jAI4CEZMj+hwLHBn7PWZleWD1vCkMEozn27T+EDEYrBrpl1N7XBaM5Fn0MdfolwD+/D4R8Azi8P5DiBXaXBY8f3AVIiW/+37suGK2sqnnrICIiIiIiIiIiIiIiilaiI8kyGK3Ev8f2HLpgNJ4cT0REREREFBmvEW/ZXtYKgtF07/1y+N6PKCZ4xicREREREREF6ILR/D6gyDoYTVJsBqOJAIfNhBw2M9rqiCgch+Y5bMehx8euDmr76oTVZPkKLYcUOKuD0Ry4432FPZX1P2Z8PXkq3is6AkeVfoBfPUMiLqFv5Up4VGXgTr8RkEvuingOip3jhwOv/hTcfupBDDYKqc8wy2A0fPEG1OX/CA6GWvhxZPNn5UOue7zVh6JVG9NHsKIgOEhk1kjBvCMFUx8wsalo39i9X+O2wuvCT2ozGE35qoDng7cjmb5t1tM6M/HmCi/Ov9JEYTEADLAMRQOALvmpkAs+gpozKWwdcs6NkDOvtVUzUUTcnvBjotUGgtEAoH9nwT9Oivx1SUZMAO58EyPnnRHRcklxddb1zlMY6xkc8bo7Ir+pD3yKvdYaMHc40PNwAECqfxeu3f53XL7zH0B2PkT3nm78VOCLN6zXXLABkp0fYb3WlFJ4/CuFy19WKK0A+ncG7j3RwOED9M+tIpvHFCV6gGGxKTMqkYaiyVOLIL0GBbWHCjfTMZZ8C4w4GKnxgcA8n8VzoLC4/n3d88SpfEBFGdTD10FuXQAA8LgE04cLnvom+HF40qiW2V/3MhiNiIiIiIiIiIiIiIjauARHsmV7ZMFo1se15LjzoqqJiIiIiIioo4rTBKOVmxZXFG1GSils1bz3y+Z7P6KY0JzKQ0RERERERB2O7gRc0w/s2Grdl2ovGI2ImoEu3NAGmfY/MSyE2rw6YU3ZfutgtG3OzMANhxMv/mAdBHFc19cxoOfPuKjzfRGXMLBiKZDXC/LMT5BHvoJ0yo14DoqdORMNOBt8kjyyG3Bwr5app62QcVOsO3YWWAZ6qQ9eCD1hfh/IR7shLy6FPPxl4P/9D218oc1k7kRBXIOQjF6ZwPzZgv27CdbcauDbSZ9i8eph+Gz94ejkD77qbpCSIqi9JeHHvfWEZXOm3zoYrciRhuPL/xIUUmIl/+q/QYaNC/xt5n8MuTzENm/YuPATEkVBRICktKaZPCGlaeZtReTAI5Hx7iocVfKe7WUS92XRKTOQXtSvcgUcytcU5VE7VuRIw7zs2/BK0nQgPkTiVojgM/WPK2JWz4dLgfOeDYSiAcCyLcCR95rYsFMf/PbpCnuhcBdNkPqBgs1AlZVCvfYwzCn5wJrFtpeTc/9mGYoGAFlJkf8MxoLAvoGIIMv6/BkUFtf/PVqFpwGAA/7AjS/fhCreVdP+1+MECQ0yMrtnAHMmtFAwmiZTs6yyeesgIiIiIiIiIiIiIiKKVmIjg9FM5Udh1RbLvmw3j4UjIiIiIiKKhFcXjOa3eXXXJlLi340ys9SyL8fdpZmrIWqfGIxGREREREREAQ6ndXtlBbDD+st5ZPEDGqJWI8pgNLnt35ARE2JcDLVpRu1Hhhn+nZZDdhmB8JVFe3NQXqWf6ndPX2x15kRcwgl7XoMcdw6kxwCIwY8wW9oh+wnev9TAsUOAgbmBYIsPLzPgMFomaKHNOGCSvm/dsnp3VUU58N5zIaeTf3wA8cRBuvSCDBwFcWkSJ1qpIXmCL64ycNwQoH9n4Kwxgq+uNtBpX8CIyykY1Xkv+lX+jogeWTaCTtRzd1q2Z/msg9HsEmWiS9eMwG1PHGToWMj084ExxwQPTukEDDywUesjCumwmdoueW0t5MmFkKseBI45E+gxoF4QaigydGyMCmzdJD4Rrx+7yvb4pLh9Nwr+AAB4VCUOKvuuCSqjjuCl5JmAN1HbL2OO1S/8xRswH78pJnU8+bV1yFm3P5vwm8F9pqnwyiJ9MNqBPYCxvYH7Zwtund7MoWjbN0OdPAjq7kuAXdZhz0GS0yFX3A+cNk87pEtq5LU4vn6z5naWJv+usMH5M35tMFqdji/fqrnZNUPw9dUGpg0D9u8KnDFa8OmVBhKbOYyumtdl3V4W4r0jERERERERERERERFRa6ILRiv127jKHoCdVdvgU9ZfjmS786Kui4iIiIiIqCOKM7yW7WVmywajba3cpO3jez+i2NCc9U5EREREREQdji5UqaRIv0xWftPUQkSRiyY8atKJoU+yp45Jah9Laf5dlkN2OgLBaDN/mdwkJUwrfhOIZ2BfazKhn2BCv+gCGDsqSUqF6pQLbN8c3Ll2KdTg0VDz5wFv/TP8XHe9DenU9q8WO7K74I2LQzyO3HH6Pg31+euQQQdZ9/l8UE/cBBRusOzP8jcuGC0nvhIuZ3Dyh5x3C9TKX2vX63JD5j3Y5sLsqG2RU+dB/fd9YOv6+u2X3BXYfnTKBXoPhkw5BwCgSvcAyxcBS76HWvY9sPQHYGdB/UkPmgwcdXpz/QgtznnYdFz46sN4MP38sGNrgtGKa98vP7zlYgzu9VMTVUft2Tp3dyBeH4yG4YeEnuDpW6EGHQg5qP6++derFK551cRXdTL/8tKAw/oJfCbwyXKFHfsuVNglFVi7Xb8K1/kmemcBE/YT3DFDkOwV/HctsNH67QKePFNwxsEtE3CsNq6Cmj0womXk/Fsgp1wZdlx+euT1GDChlIKIIFPzZy5scP6MNhhN+Wtuq08WQI6u3UYPyRO8emHr2F/3anZ5yiqbtw4iIiIiIiIiIiIiIqJoJTisr3hT4ttj2d5QQYiT47Pcbf8YICIiIiIioubkdSRYtpe3cDBaQeVGy/Z4I1EbuE1EkWEwGhEREREREQVEE6qUxeR6olZDF26o4/ZAzrimaWqhts0IH4y2y5GGHY50bCy3/nKhMdau7AMXfIBF2BBRm9Ojv2Uwmlq3DDihd+gA2mp5vYCRhzVBca1QFMFoWPyttks9+b/Ac7dr+9P9O2EIYKrIVwsA+Z2sv2KRHv2BJ78Hfvg48Dc+YBIkt0d0KyGySbLzgad/BH74COqNRyHDDgHGHgvpaR0OJAnJwIgJwIgJEABKqUCo2tIfgN3bgS69gFGHQ0Sa9wdpQZLdFbM6LcWDmkCiuhI9+26U1x5Q0b9yBe7dejkuzbm73tg+FSvx3bqxeDfxSKx094YfDphjpsCnBH7Lf0bNbcsxqO33mwI/IlzexhgTLRNo1VHtFS/g1QejiWEAz/wMdfow7Rh11VTgoyKIJ3BVxFWFCoffY6K8wUXoN+4Cnv42+IUvVChatVWFgXlXFih8cqUDLy+0fgF1O4Gpw5pm26F8VcCiT4GkNKDXoJqft6a/rDTyULSLb4eceImtsZ0SgTgXgn6v2rmVCQGA0j1AYgqykgVA8O9tm+1gNF/tnYWfQO3eAUnJsFdMM/Jq3sqV+6zbiYiIKHoi0gPAMAC5ABIBbAGwHsA3Simbey1ERERERERERNSQNhjNby8YbasmGC3VmYE4w2vZR0RERERERNZ076NaOhhN994v292lQx2DTdSUGIxGREREREREAY4IQ5XikyCJKU1TCxFFLpJgtG79IOffDOnev8nKoTZMaoMw0jXBaDsdafgoYSL8KnahGQMqlmL+lkuQ79NfLZOozenePxCO1dA7T9meQu59LxCI0hFEE4y2dimUUkFfHKrSPcCL94Zc1HHIVAxyA79aX6gprC6aYDQAkOR04LCZ0U1MFCWJTwQOmQY5ZFrky4oAnbsH/nVgY44YjJ5vrsEad8+Q45KqN1cV9Q+ouGjXw6gQD+7JuAS7jWSMLvsvntp8LpLNYpy455XagW/cEuPKY0sBMGHADwd84oRfHPDDEfw/jLD9ftk3R4N+s+a+Ydnvt91fO8aMYZ1166tus65D32+Kvfdoe414IF4fjAYEQjdVn6HAyl/0f7eTBkBeWwsAOPXx4FC0WPnsd+CHdQqvLLIORjtyAJAaH/sDetTKX6Cung5s2/d+oecg4PbXINlda8dM7apZ2oLbA7liPuTo020vIiLISwuExNnhgD9wY1chkJiCTOvzZ1BYXP936dMFo1XPBwB+H/DFG8BxZ9srphnpgtHKKpu3DiIiovZMRGYAuBzAaM2QnSLyEoAblFI2YnCJiIiIiIiIiKiuREeyZXupv9iyvaGCECfHExERERERUWTijHjL9nKzDKYyYUjLnG+he++X485r5kqI2i8GoxEREREREVFAJKFKAJCR0zR1EFF0bIYbykV/B2bN7TghOxS5Oo+NNE0w2i5HGn72DIl6FQ9smYsTil9DwqRpKP7oTcSpciSb9g4aI2pLpPsAWEeG2Fz+7nfqhX20e54ogtFK9wCFG4Hs/PrtX70NVJaHXFTOvA7Tlgp+3RjdXykvjVdxImpvjOPOxj2PzcTxeS/DL/qvUePd+26U1w9GEwBX7LwPl+ycDwf8aKtbCQEQiAYz4VZVaNSLWQdWN2DOLw68knw8zsp9PGhcmcQB8ZrErDpkzh1Qc4/QD9i+GSs+X4SpHw3D7wWNKNyGA2/VJHcBmDmyCULR1i+HOntU/cY1i6HuuRS49RXgg+ehbjnH9nxy6wLIuClR1dItPYJgNLUvyKxoO5DfB1m6YLQ99e/7dcFoyl/vvvpkAaQVBqPFuQRWG46yJgrrIyIi6khEJBHAYwBOCjM0HcAFAI4XkTOUUu83eXFERERERERERO2ILhhtr1kCU/lhhLlIUkGl9VX6eHI8ERERERFR5LyaYDQFhUpVgTjxNnNFAbr3fgzFJoodngFLREREREREAZEGo9k4aZeImpHdq1vsfyhD0Sg0qQ0ySNcEo/nEhe+8oyz7wplS/Bb+p+hxZN72T8Sf/xdk+bdZh6KlZEQ1P1Gr0r1/9MumZgLDD41ZKW2C2xPdcmuX1NxUe3ZCFRdBfbIg9DKnzoP0Hoz9u0Yf3pKfHvWiRNRKicuNY++/Gd+sOyTkOMPYt+2oKLPsd7bhUDSKneqAOTeq4FXlSPUXWY7ba8QD3sTw8w0/BPLQ55Z9CsA33gPR/19NH4oWiscJTBka20e/WvET1KlDrTt/+Ajq9gsiC0X7v1eiDkUDgH6d7f98DgSCzNTrjwKAPhitztshpRRMTRhh9Xw1fvwMatc22/U0F6/bur2ssnnrICIiam9ExAHgJQSHom0D8AGABQB+RP2E0mwAb4jI2GYpkoiIiIiIiIiondAFoyko7PWXhl2+oHKzZXuWO7cKlCbWAAAgAElEQVRRdREREREREXVEcZpgNAAo9+/V9jWlKrMSO6qsr7LKYDSi2OFZsERERERERBTg0py1qBOX0DR1EFF07ISdORxAt35NXwu1bXVC9tJM62A0APgy3vpcumuOEhza13qZY4vfwbPbzofxzhbIQZOBjM5A5+7BAz1e4IBJkVRN1Dr1GhTY9kZj4gkQpzO29bR27rjolluzBMpXBfOOC6GmdYM6Ohv45j/68cedDTnnBgCNCzc7sAdjj4jaI+k9GCMOyMeU4rcs+w/1/1B7RxOMRmQl3rQ++GavkQB49Aft1CWDDoJcdm+9ti+8Y5DXZy3Gd/+00TU21uSBQLI3Nq+Pyu+H+Y8roP50kH5QZQXwzlO255RbF0DGHteougZFcK6KQ+0LMvvgeQBAZpL176awOBCIBgBrt+vncypf/QbTBL5+235BzcTrsm73mYDPr0l9IyIiIjtuA3B0nftVAOYAyFNKHamUmqWUGgFgEIBv64zzAHhdRDo3X6lERERERERERG1bgkN/8egS/56Qy5b5S7FHc0HSHHdeo+oiIiIiIiLqiOIc+mMsyzTHZja1wqrNULA+Hi7Hw/d+RLHCYDQiIiIiIiIKcEYYjOa1d9IuETUTO8E7XXpBPFGGzlDHUSdkL8O/UztMifVHiwf1FHxypQPLT/0Zr285CW9sOB7/+eM4rFvZB6/v/h8kvr8JkhxIIhIRyImXBE8y9VxIHF9nqO2ThGRg2Pjolj3j2hhX0wZEGYym1i4FnrsDePMJoKoy5Fi55WUY8x6COAOJHflpUa0SADC2d/TLElHrJv/7Ii7e+SBcqv42xVB+zNl8J9SaJYGG8hAHUww8sAkrpLYoXukfL2W7Q588UZccfwGQFHgB+yx+HCZ2/xAFzuxG1xcLM0fWBn8ppaC+fhvmw9dBvfM0VMnuQHtFOdTbT8Kc3gPmCb2g3n0Walch1GuPBMZ+/2EgJOzfDwAL5semsKx8yAc7IeOmNHqqQV3sB78ZMGtuq7JSZCdbj6vyA5uKANNUOPUJ03oQAAf8QW3qgxds19NcvCE+Yiyrar46iIiI2hMR6Qmg4QepM5VS85Wq/8ZFKbUUwGGoH46WAeDGpq2SiIiIiIiIiKj9SHRovthB+GC0gspN2r5sd5eoayIiIiIiIuqovIb+/KLyFgpGK6jcbNluwIFOrtZxTCdRe+Bs6QKIiIiIiIiolXB7Ihsfl9A0dRBRdAwbwWhDxzZ9HdT21Qk8S/fvRJxZhnLDa3vxQfuO3eo7fgT6pF4GteB+YPNaYPgMyNnXQxqE+MkJFwIJKVAfPA9UlgfCCmbNjcmPQtQayIQToBZ9Gtky970PSe+AX4ZFGYyGRZ9CffGGvbGjj6p3NyMRiHMqlPvsh5wAwN/2+xEiB0S0DBG1HeJw4LBH7sN/zpuCB9IuwG9xgzCgYhnO3fUEji59H/j5MKDnQH0wWr8RkAc+Bd57FurFe4F1ywLtWfmAg9et6qjiK/VpUeUJmYjkUxZ5dQ1eOv5PODnv2UbX5YAfu+934Y1fFF7+QWHxZmC/bOA/iyObJzMJmDI08HqqlIL6+/nAO08F7gPAK/OBWxdA3XAysHxRzXLq1j/Vm0f9605g5sXAx6804qeq48zrIKdcGbPg5VHdgc4pwJbd4cc6VJ0gs22b0Cerj3bsks3Amm3Af9eEms8iNO2nz6G+fgcy5pjwBTWTeDeQ4AG8LiDOFfjf6w7879fnvhEREVFoNwJw1bn/lFJK+2GIUqpMRM4E8BuA6h3Rc0TkdqVUiD0OIiIiIiIiIiICALfhgVs8qFQVQX3hgtG2aoLR3OJBqjMjJvURERERERF1JG7xQGBAIfgAtLIWC0bbaNme6e4MhzDKiShW+GwiIiIiIiKiABeD0YjaNCN8wIKMm9IMhVCbV+exJAC6Vm3A756+thaNdwPd0mvvy5CDIUMODrucTD4FMvmUSCslahvGTwXunguYNlMgUjKAoeOatqbWKlww2tjjgK/eCm7fpr/Sbj1JaRBX/VAaEcGQPMH36+xNUe2Q3v7wg4ioTZPu/TEhvwQTVswO6lP3XAoMGg1VUWa9sCc+EAZ7zJmQY85s0jqp7UgoUMD11vsDewcegkhOgSgTL+Z2ewiw8XL09h9TMbn0Q7yYPBOndnk6qH9Y2S/wbk7A7FEDMHtUbfuqQoVJd5v4Y6e9mh49zUBi3L6g0WULa0LRaif8FeriSUDhhvCTLZhvb6XhTD8Pxjk3xGaufVxOwXXHCC5+XoUd66j7B9q+GalJqcg1BJvN9KCxR90Xfl/RofmDq4euAQ4+GiKRBb02lYG5guL7bYS3ExERkS0i4gUwo0Hz38Mtp5T6XUReBzBrX5MTwMkAbo5thURERERERERE7VOiIxk7fduC2kv9xSGXK9AEo2W5c2EIL6RFREREREQUKRFBnOFFmVka1FfeQsFoWyus3/tlu3ObuRKi9o2fpBAREREREVGAyxV+TF3e+Kapg4iiY9g46bgTP1wlGxocfJVfZSO4YJ+BuYBhtI6T8YlaC0nLAgaPsb/AUacHwnQ6ogahZQ3JFffbCgLVSu1k2XzKQZFtt4aU/4oxg5Ojr4OI2o4E/XP9/9m78zg587pO4J9fVd9HJgmZZDKTORjmDoxz4XA43AgoDKcjwq4ggopcHii4glyKuoKK4LGisCgil4DHgqICLgvIrhwLyLVyDMcMMzBXkk53ju5n/8gwSbqfqq6qrj7S/X6/Xnml6/f7Pd/fdyaVTlX183ye6lkPSq79Qv3kyOgyNcSJbKzNP3P7d+3uqtbffbrKd2YnFl33rJt/Pw+d+sckyWP3vDOXznyydk0+uDB49JztJZ9/WSM/cNfF+/nqrzfyyEuO/ntaveuP6xd2EorWR+UJP78sdZ9+35KBDl6SNI+9O+WN30j1kh/N7j0f63nfZtUiCe/aLyTfurbnugDAmveQJMf+UO4jVVV9vsNjXz/v8WP60xIAAADA+jfenKwd3ze7p+1xNxz8Ru34KUO7ltwTAADARjXaqL+WdXp2dYLRvPeDlSEYDQAAgCMGh7tbPzK+PH0AvekkGK1NsAPcYV7o0BmH6z+sr7P7VKFoUKe84m86W/j4n0n5qV9b3mbWsFJKcul96+fe8PGUbTuTi67sfYMt22uHn3n/1t+7mtXhXLn/o2lUsxmZm84P7n133vO1q1N2+IElbAjtgir3703e97b6uRFB4izULhht+lDnr6OnDlR5/B9XHa39rRuef8fXgzmcN3/jiXn0nndlaO5ATjv0zfzh9c/ME/f8ZarX/krt8SODJX/7rPanFNz6qkbOuNO8/t/zZx31t5zKq/4h5ZQzl6d2Kbn3OYuvOzbIrPr7NyYfe3/ucugrPe87kMOtJ2+7qee6AMCa99B5jz/QxbEfTI57EXFpKWXHkjsCAAAA2AAmmvXnWy4ejHZd7fj2ITe2BQAA6NVIi2C0mbnpFe4kqaoqNxz8Zu3cjqHTVrgbWN8EowEAAHDEYJsrdGuUUcFosKYIRqNvjg812HWom2C0fvcC60MZGUt55d+1X/PSN6XxjN9MaRfCswGUp70kmfc6szzjN1PO3n3kwV129158y8n1e5aSr1z8O9lx+Ibjxkfn9uefrn1oPnTt/bPnC9tyyxd25K+/8bjsGJlJ8W8qbAydvMauMywYjYXaBqMdXPz42/ZXee7b5jL5rLmO9vvsly7OQGaPG7vLoa/kbd98Qqa+sCXX/se5edqtr7vj1X/1gXfW1iml5FuvaGTXluPHBxrJe57TyKbRtROOXH75T9P44IE0Pngg5bL7LeteF3UQCt089v//x96fpLv3VwvqVbOtJ/fe0nNdAGDNu+u8xx/p9MCqqqaSfHre8BI+XAEAAADYOFoFo021CUabq2bz7UP1wWinDLkJHwAAQK9Gm62C0favcCfJbYdvzoFqpnbOez/or4HVbgAAAIA1YnC4u/UjLvSGNaXRQf69EBc6Me+5tOPwjR0furuDcADYqMr3PjhVuwVnXrBSraxp5W73TF774VT//LZkel/Kld+fcsUDj87feXf7/4/tbN7WcuqMC07PJ97+vXnt5qfkC8Pn5cxDX8sTb/vLXHDwi0mSkerA0cXb/bASNoxmjz9KHR7pbx+sC8MDSSlJVfMP2f5FgtEOHa5yn9+ay6frbzC4wGuv+6mcd/A/Ws7XvWqvXvj45BV/m2w/PTnz/JRj3hds31TyyV9p5I//Z5V/vy7ZtSV5wveW3G3XGnv9f99Hr9hWF+1cfE2jWhhid/pSgtHSLhjt1gVD1W03Jd+5Ptm/N9l5Zsq2pSdZVzffkMzNpWzr4H8AANAvF8573PqFXr0vJbn0mMcXJXnfkjoCAAAA2ADGWwSj7Zvd2/KYmw7dmMPV4dq5HUOn9aUvAACAjWikUX8t6/QqBKN962Dr8wC994P+EowGAADAEV0Ho40vTx9AbxrN9vMjYykDgyvTCye2ecFo22c7D0a79Ix+NwPrzEnbktu+Uz83OLSyvaxh5cwLUp7ywvrJ8y/rve7ue7SePO/SbJ/9dn75pt9cvFC7OsD60mswmiBxapRSMjpYH4K2WDDan/1r1XEo2tDcgTxq799032CS6rmPOPLF1lOSl7wx5ZKr7pjbOl7y/IetsSC0Y5TnviZldOU+q7poZ0kWiWutCzLbdbj3YLS5tAlE33vLHV9Wc3OpXvMLydtec9yS6ooHpPzKG1K2bO9672rvLale8Pjk4x848vjie6f82ltT2gTPAgBLV0rZmmTrvOGvdVlm/vpze+8IAAAAYOOYaE7Wjt92+ObcdKj+nLovTX+uZb3tQ0u/iQ0AAMBGNdoiGG1mBYLRpmb3ZmZu+o7HX5n5Yu26yeZJGWtOLHs/sJEIRgMAAOCIbsM4VvBiU6ADiwWjjZ+0Mn1w4ivHX2x/8uFvd3TYve6S7Ni0doMSYE1oF7Az1GVI7UZ14d2PhLXc/K3uj73q6tZzp5+bnHlBcu3nFy1THvvT3e8NnJh6DUYbGu1vH6wbY0P1IWhTB6okrV9Lv+Bd7QO4jvVTt742W+Zu7aG7Y9z8rVTPelCqxzw95eE/lnLu9yx6SDWzP3n3G1Ld1MO/0f3w4Mev6Ha7O7hupVktDEY781C3OSZHnTzbImA3SfbddvTrv/7jBaFoSZJ/e1+qZzwg5U2f6Xrv6uVPvSMULUnyqQ+leumTUn77f3RdCwDoyuZ5j/dXVTXVZY35V+n6YQEAAABAByaam2rHv37gy3nhl3+iq1pbB07OcGOkH20BAABsSCON+nNzlzMY7eszX84brn9Vrjt4bUfrdwztWrZeYKNqc0thAAAANpSBwe7WjwhGgzWlscjHPOP1dy+EBeY9l3bM1t/dcr4HXyQUDRbVbBNiOSgYrROl2Uwe/uTuj3vzZ1MmWl/3W0pJecRTFi/0mJ9KOeduXe8PnKB6DkbzPZ16Ey2eGvsOtD7mzz4ylxv2LF77fuclv/uA6/LKCz+anHl+/aJzLk55782LF/uud/xhqqfdK9W/vKvtsmr/3lRPvjzV7/xM8me/0Xn9bgy1uVBk4qSUsZV9z7t9U8m529uvaaY+GO3UQ9d1vd/FM5/KttmbWs5Xf/nbR36fm0v1F69sXejr/y/V22tC09qopqeSj7534cTH359q7xJD+ACAxcy/lfR07ar25h+z5BdOpZTtpZTd3fxKcpel7gsAAACwkiYG6oPRerF9qIO77gAAANDSSGOsdnx6dnmC0aZnp/K7X39Bx6FoSXLK0GnL0gtsZILRAAAASHIkDCKDQ50fMFKfsg+skkabsJ0kGW8dBgPHKcd/ZLj98Lc7OuziXYLRYFHtAnYEo3WsPPEXklPv3PkBZ16QcloH194+5unJPR/Wev7+j015zu90vi9w4usxGK34nk4Lky2yvfbO1I9XVZWfe2vVtuZdT02+/puNvO+5zTz78aen+bI3pfHGT6W89sPJ1h1HF95pZ8rz/zhldDzlRX/eedOzh1P9zs+kOnSw5ZLqdS9Lvvnlzmt2qzmQ7Dyz9fz21bnL4mMua/8eaOfh6xeMlSSP2/uOtse9/NElp24++njL7M3579c9tX0zt92UamZ/8pl/TW74Wtul1at+PnOPvzDVezp8Hnzp00ndn//sbPLv/9pZDQCgV/OD0Vq8cmxrfjDa/Jq9+Okkn+ny11/3YV8AAACAFTPe7F8w2ilDq/PzLAAAgPVitFkfjDYz18v9xRb3qX3/J9Nz3YWu7RCMBn3X423OAQAAWJcGh+svdKwzLBgN1pTmIsFoE/07SYd1rnF8MNpJc7dlaO5ADjbaB3zczef3sLhGm3uVdBNQu8GVsYnkTf+e6n71P9xcsP6xT+9s3eBQ8pvvTP7v/zoSALLt1GTztuQ71yfbd6Xc7Z5LaRs4EfUYjOZ7Oq20Ckbbd6B+/PrbkpunWtf7u2c18oALkpHBhQFd5YLLk7/8bPLRfzgSfnzl96eMjh+Ze9A1qT7wjuRf3tlZ4zddn+o1v5Bc/H3JRXdP2XnWHVPVgenkLa/qrE6vtp2ajIy3nl+lYLSfvE/J7/5TlQOH6+cfNPW+2vEf2vP2/N7WZ7as+4sPKfmJ+5R88Lm/nIPXfikP2fePmajaPBG+6/9+MNWH/kcnrSff/HKqlz81ueHryennJrvOSTn/0vq1VZtwviIgGwBWWPvU3P4dAwAAALDhbR/c2bdapw2f1bdaAAAAG9FIo1UwWnfhZZ268dA3uz5m13AXN38HOiIYDQAAgKMGh5Ps7WztkGA0WFMGBtvPjwlGo1NlwaNLZz6Zj45d2fKI7ZPJ2duWuS1YDxptQiwH24cPcrzSbCbvviHVD+yoXzA8mtzplJTHPD151E92XreU5JKrjvwC6DUYbcj3dOpNtHhq7J2pH//GLa1rPesBJT9wt/ahVGVsIrn/Y+vnXvj6VNt3Je/9y+S277StkyR5xx+lescfHQn+e/YrUx71E6lu/U6qRywtIbn8+ItS/elL2i9aLPhs052W1EOvztpW8uKrS37pHQuzRgZzOD984N21x91j+n/nggOfz+eHL1gw99mXNNJolGwdTx5R/a9k70c77qd67tXJ6ETn/wHJcf/vqwc8LuXFbzzyeui4RbJUAGAV7Zv3uJcfzs0/Zn5NAAAAAGpsGdyW88fuli/s//SS6ow0xnLZ5L371BUAAMDGNNKo/3H59DIFo+073OE1trc7eXBnzh2767L0AhtZY7UbAAAAYA0ZHOp87bBgNFhTFvv7O3HSyvTBia+xMFzhcXvf0faQx15e0qg5Dpin2ToYrbSZo16Z3JzyW3+dHBveMTSc8rI3p7z35jTe8vmUH37OwnAPgE71+r1Z2CUtTI7Uj+89UD/+zVtb1/q1Ry3t37cyPJrGs1+R8rffSHnl33V+4KGDqV75rMxdNbzkULQkyZkXpDzzv7Zfc/q57QMHxyeX3kePfv7BJddcsfDP4kWPGsxZ/+MTKa/+pwVhZSXJH17/zAzPHZ+I99qhV+WCncfUmj3cfUPTS8g5ed/bk7/5k4Xj1Vybg7zOAoBltlaD0f4gyV27/PXIPuwLAAAAsKKeeuovZvf45Wmkt58d7xw6Iz97+q9mtDnW584AAAA2ltHGeO34zHIFo83u6WhdScmdR87Ps09/cRpFhBP0W4+3OQcAAGBd6iYYrd0FqcDKG1jk7+/4ppXpgxNfzQfx1+z5q/zi9l9P1eJD+h+5u4vhoSNNH8n3W7nHQ5M3fSbVe/48ZXA4uc8jU87evdptAetFr9+3u3lvzYYyOVKSVAvGp2YWrk2Sb96ycG2SnLIpmRjpz2vwUkqqKx6YnHVh8tXP9aVmV3acnnL/xyTnXZrq2Q+uXVIe/PhUb/291jXGVy8IfKBZ8hdPTR5zWfI/v5gMDSQ/cNeSB110+5/PJVclr/to8k9vTfWta1POuiDVvtty1Rt+PZ/90vfkdZufnENlINfs+atcsmMmyc8dLX740Ir/91Rve01y9VOPD5Y92OIJmvQW3gYAdOO2eY/HSinjVVVNdVFj+7zHbeJ3O1NV1Y1JbuzmGMH1AAAAwIlovDmZZ+x6YQ7MzWTv4fkf1bQ30hjNxIDzNgEAAPphpFF/H7GZuenMVXN9DyVrFYx2n80Py4O2POqOx2PN8Yw1J2rXAkvnKiwAAACO6ubi7eFebkoPLJvF/v4KRqNTjYU/DDjt8HW5//4P5H3jD1gwd9adknvdZSUag3VAMNqyKLvOSXnaS1a7DWA96jkYTZA49cZbPDX2ztQHoH2jRWTFuTv61NDtSqORvPRNqV7yo8mXPt3f4ovZvutID5feJ3nHl1O9+D8nn/rQkbmhkZSn/1rKFQ9I9a4/blmirPL73Waj5JorSq65on6+7DonefJ/yR1RIO97e6okZx7+el7ynZcdXfi1pJqbO/LnkbQOHbv8/snH3t+n7ue59vNHfp114dGxA9Ot1x88sDx9AABJkqqqbiql3JJkyzHDZyTpJtH2zHmP/9+SGwMAAADYYIYbIxkeGlntNgAAADaskcZYy7kDc9MZbY73db+p2b214ycPnpJtQ30+iRNoqb+RhwAAAJzYurl4WzAarC2LBKOt9oXinEBqgtGS5OU3/koGq4MLxv/r4xppNErNEcACjeZqdwBAN3oORusidJwNZbLFtRL7WmRLXXdL/fhpm/v/+rvc+aKUP/1oyruuTXnth/tev9bwaLL16AlC5eTTUl7zzylv/4+UP/lIyntuTHncM49MjrQ+qemECwLfcXrrub/6/aNfHz5Uu6RcdXXL92198YVPHP/4wEzrtTWhaVVVpfrwuzP36l9I9fpfTXXLjX1uEAA2nPkhaOd0efzZi9QDAAAAAAAAgDVttNn6HMLpuf19329qdk/t+Hhzsu97Aa0JRgMAAOCoIcFocMIaWCR8YeKklemDE1+p/8jwipmP50NfvV9++La35pIDn8qjL03e85xGHne5UDTo2FZ3BgI4ofQajNbNe2s2lFbBaHtb5E5989aqdvzUzX1qaJ7SbKbc6ZSUCy5Pzr2kP0W/56rk7g+sn7vq6pR5AV+llJQdp6ecf1nKsX+Xtu1svceJFoy2fVfLqeptrzn6YPZw/aKhkZS3fL7PTR3Tw5c/c/zAwTbBaDVz1e8/L9XzHp289fdSve5lqa4+PdUXP5lq32197hQANox5/zjnnp0eWEoZT3LxIvUAAAAAAAAAYE0babQORpuZW3iDz6Woqir7ZvfWzo03T7DzFeEE1+PZ/AAAAKxLiwUrHWuoxdW8wOoYXOTv75gPXulQo/W9FC6b+WT+4ronJ1t3pPH0r61cT7BOlP/0C6k+8p6FE/d46Mo3A8DiBnr8UWo3763ZUCZaZObtO1A//v4v1I+ftkzBaMcqL/2LVD+ye2lFTr1zynNemew6J9UvPTb52PuPzt35opSnv7zzfrbvSn1MXE68YLStpySbT05u/fbCueu/mur6r6bsPCuZna0/fmAw2XFGMjKWzPT/TpeZH4x2oPVJY9UNX0v18qcl//zWI38Om7Ym1y4Mbat+/Mqk0Uj5l/6egAYAG8TfJ/mJYx7fr4tjr8rx54h+oqqqG/rRFAAAAAAAAACslNG2wWj9PY9uZm46s6m/semEYDRYUYLRAAAAOGqxYKXvGhhMaTaXtxegO81FPuaZ8MErnSqLLxmbWP42YD3afY/krAuTr37uuOHyA09apYYAaKc0B1oHMbUz1CL9ig1vskXG/K01WVGfva71s++0LX1qqI2y65zk51+d6pXP6vygrTtS3vL55GPvOxKov/vKlLHJI3O//e7kMx858jro9HOTi65MGe4idH/rKa3nRsc7r7MGlGYz1b1+IHn3G+oXfOnTyc6zksOH6uebAymlpNpxenJti/S8pbj+q8c9rL755dZr3/DrR78+OJPccmPrtXNzS2oLADawf0gynWT09sf3LKVcUFXVwjTShZ487/E7+9kYAAAAAAAAAKyEwTKURpqZy8Ibjk73ORhtanZPy7mJ5mRf9wLaa6x2AwAAAKwhnQajDY8uvgZYUaUsEmY1ftLKNMKJr9HBR4ajPsiHXpRmM+X33pvc/7HJSXdKzr0k5Zdfl3L/x6x2awDUWSx8uJVBwWjU2zZR/77t23uTqjo+CO3V728djLZrSwdhxv3wyKel/Pyrk9POTrZsPxLW1c5D/1PKyFjKvR+ecvcHHQ1FS1IajZSL751y9VNTLr1vd6FoSbKpTRrcYu+H16DyvD9qPXnLt4/8Plt/x8kMDB75/R4PXXyjU87srrEk2XPLHV9W7/+r5M2/032NOifgnxMArAVVVe1P8vZ5w89b7LhSynlJHn3M0OEkb+pjawAAAAAAAACwIkopGW2M1c7NzPY3GG1f22C0TX3dC2ivx7P5AQAAWJc6vXhbMBqceEYnVrsDThSlg2C0Mc8n6FXZsj3lpW9KVVWLh1oCsLoEo9Fn21vkCx+aTW6bTjYfc87On3+kdTDaOSf3ubEWSinJo34i5VE/sWBu7qVPSv7xzUcHzjgv5Un/ZfmaOf+yI4Fghw8dP95oJHe52/Ltu0xKo5HqvEuTL35i4eR3rjvy+/z/1u+6/XtTuebZqd7yqvb7POLHU73ld5M9N3fe3C03Zu45D0mu+0ryrWs7P24xXvsCwFK8OMnjk9yekJonl1LeWVXV39QtLqWMJHl9kmPviPSnVVV9aVm7BAAAAAAAAIBlMtIczdTc3gXjM3PTfd1nanbhHknSSDMjLcLZgOXRwVWOAAAAbBhDnQajjSxvH0D/jfrglQ41OvjIUNAeLJlQNIATQLPZ23GDg4uvYUNqFYyWJDcecx7N566vsv9gmzqbVv91RHnhf095+duSH3tBynNfk/L6f0tZxgDlMr4puffDF05c8cCUTVuXbd9ltXlb7XD1upel+rf3JfturT/u9u9NZcLK1l8AACAASURBVPuulNf/W/s9xieT+z+m+94+/oH+hqIBAEtSVdWXk8xPRH17KeWZpZRjw89SSrkwyT8nudcxwzclecnydgkAAAAAAAAAy2e0RSjZ9NxUX/fZN7undnyiOek6EFhhPd7mHAAAgHVpYGjxNUkyNLq8fQD9NywYjQ6VDoLRxtokOgAArBfNHn+UOthh6DgbzsntgtH2JOftOPL1L759ruW6d/702rj3WSkluerqlKuuXrk9n/dHqQ7sT/71H44MXHa/lBf92Yrt33cn1QejJUn1sw9rfdzAMeGLd77oyPeq2cP1a0cnUp71ilR7bkn+57uS2dkemwUA1oDnJ9md5LsvFAaTvDrJC0spH0+yN8nZSS5LcuyZ2AeTPLqqqutXsFcAAAAAAAAA6KuRFsFoM3PTfd1n3+ze2vHx5qa+7gMsTjAaAAAAR3V68fbQyPL2AfTfsEBDOtQQjAYAkKT3YLQhwWjUGx8uGR9Opg4snLvx9vNopg9W+cAX648vJbnvecvX31pXJjen/NbfpNp7a3L4YMqW7avd0tIcnOntuEbzji9Ls5lq26nJDV+rXzs2mTI8mvLSN6Xac3PygXek+q1n9LZvj8qffnRF9wOA9aqqqtlSyjVJ/iTJDx8ztT3JQ1scdmOSJ1VV9cHl7g8AAAAAAAAAllPrYLT9fd1n3+ye2vGJpmupYKWtjdtJAwAAsDYMDXW2TsASnHj8vaVTpSy+ZusJHkAAANCJXoPROg0dZ0Pa3uK8mBv3VkmSf/j3+uC0JLnglGTzWAev19e5Mrn5xA9FS1LOu7S3A48JRkuSbN/Veu3o+NH9Nm1NTjmztz17VN6/L+W8S+74BQAsTVVV+6qqenySH0ryr22W3pzkD5Pctaqqv1+R5gAAAAAAAABgGY22CEabnu1vMNpUy2C0TX3dB1hcj2fzAwAAsC4NdBiMNuQibzjRlGZz8UWQJGXxeymshxACAIBF9RyM1uF7azakbRPJV76zcPzmqSO///Unq5bHvuPp7nu2rpzfY1BYY97zYNvO1mvH5iXxXXB50mwms7O97d2praekvPytKQODy7sPAGxQVVW9PcnbSyl3TnJZklOTjCf5VpJrk3yoqqqDq9giAAAAAAAAAPTVSItgtJm5fgej7a0dH2+2uDMusGwEowEAAHBUp4FnvV4cDsDaN/8i+zpbdyx/HwAAq63nYDRh4rS2dbx+/LvBaP/nq/XBaE/43pLzTynL1BWr4vIH9nbc/DDrHWe0XjsvGK1s2prq/o9L/uktve3drq2f/vVkbi45e3dyt3ulTJzU9z0AgONVVfWVJF9Z7T4AAAAAAAAAYLmNNEdrx6f7HIy2b3ZP7fh4c1Nf9wEW50p2AAAAjhoY6nDd4PL2AcDqmX+RfZ0t25e/DwCA1dZrMJr3zLSxZawkWRh+dsv+5NDhKl+8of64h1+8vH2x8srAQPK6/53qKd/b3YHzwqzLaWfXPKNuN7LwRLDyS69NtWV78i/vSm78euf7jk4k0/sWjt/7B1P+y5+kbNraeS0AAAAAAAAAAADowkhjrHZ8pu/BaHtrxycEo8GK6+AqRwAAADaKMjTc2cLBDgPUADjxNDr4yHCrYDQAYAPoJRht+66UUvrfC+vG5vrzcnLLVJX/+HZyeK5+fvepnlfrUTn3e1Ke+uIuD5r3nu3eP5jUfd8ZGkm2nbrw8KHhNJ79ijT+6j9SXvTnne35kCem8d6b0vjggYW/fuMdQtEAAAAAAAAAAABYVqMtgtGm56b7us/U7J7a8YnmZF/3ARYnGA0AAICjOg08Gxhc3j4AWD3zL7Kvs3XH8vcBALDaeglGe8AP9b8P1pWt4/Xjt+xPPnd9/VyjJOd5Cb5ulSf9UvK4Z3R+wLww63Lyack9H7Zw3fc9ImV4tH2t+zwyOe3sxXt8+I913h8AAAAAAAAAAAD02UiLYLSZuf1926Oqquyb3Vs7N9Hc1Ld9gM4IRgMAAOCoToPRmoLRANatxiIfGQ6PJhObV6YXAIDV1Gx2fUj5yZctQyOsJ1vqz8vJzVPJZ6+vaufO2Z4MD5Zl7IrVVp71ipRn/EaHixe+Zyu/9Nrkyu9PSjnyveuqq1Oe90eLlxoaTnn525NzLm695vn/LeWSqzrrDQAAAAAAAAAAAJbBSKP+RqEzs/0LRpuZ25+5zNbOjQtGgxXXw23OAQAAWLcGhztbNyAYDWDdKosELmzflbLYGgCA9aDZ3Y9Sy0v/MsX7ZRaxdbx+/Jb9yeeur5+7aOfy9cPaUBqN5PE/m+rW7yR/8Yr2i2tCG8vmbSmv+NtU+/cls4dSJrd0vvfZu1Ne/39Sfef6ZP/eZOKkpKqSudnkTjuP9AYAAAAAAAAAAACraLRZfwLmgWomc9VsGqX7GyLPt292T8u5iebkkusD3RGMBgAAwFEDQx2u83YSYN0qi1z0vuP0lekDAGC1dROMNrkluedDl68X1o0tYyVJtWD8xr3Jv3xx4XiSXLhTMPFGUe50Ss2zY/6i1u/ZythE73tv25lECh8AAAAAAAAAAABrz2hjtOXczNx0xpq9nz/3Xftm97acG29uWnJ9oDtu7QsAAMBRQ8OdrRsYXN4+AFg9jUU+MtwuGA0A2CA6DUYb35TyK/89ZWRsefthXThtS/34wcPJdbfWz128a/n6YY3Zsn3xNYu9ZwMAAAAAAAAAAIB1ZqTR+jzdmbnpvuyxb3ZP7XgzAxlpE8wGLI8ubnMOAADAujfYaTDa0PL2AfRm95XJv3904fg5F698L5ywSimp2i04+bSVagUAYHUNtzmB4eJ7p/zsq5JbbkguuCJlcvPK9cUJ7cJTuls/NJA8ZHdZnmZYezafvPiaIhgNAAAAAAAAAACAjWW0TTDa9NxUkg7Ov1vEVItgtInmZEpxLiesNGfMAgAAcNTgYGfrBjpcB6yocs2z68d/9JdWuBNOeI3WHxuWiU0r2AgAwCo668LWc+ddknLO3VLu/iChaHRlYqTkzts6X//Q3cnmMSfTbBidBKO1eb8GAAAAAAAAAAAA69FIm2C0mdnpvuyxr0Uw2njTtVSwGpwxCwAAwFGDw52tE4wGa9N9Hpnc91HHj9330cn3PXx1+uHEVdp8bDgyvnJ9AACsojK5Obn8/vVzZ5y/wt2wntz11M7X/tAVQtE2lFPPSoYW+Xyu3fs1AAAAAAAAAAAAWIcGymCaGaidm5nb35c9pmb31o6PNyf7Uh/oTv3feAAAADYmwWhwQisDg8mL35h87P3JFz6RnH9JcvkDUwZ8BESXGo1ktsWcYDQAYAMp/+kXUn3s/ccPjk4k93rY6jTEurD7tJK//VTV0dp7ni0YbSMpY5Op7vvo5B/f3HpRw3MCAAAAAAAAAACAjaWUktHmWPbN7lkwN92nYLS62kky0dzUl/pAd9xKGAAAgKMmN3e0rAhGgzWrDAymXPn9KT/6vJQrHyIUjd6UNhfajwpGAwA2jnLFA1Oe+5pk4qQjA2ecl/Lyt6XsOGN1G+OEtvvUztaNDiZn3ml5e2HtKc/9/UUWOM0DAAAAAAAAAACAjWekMVo7PtO3YLS9teOC0WB1uDIWAACAozZv62ydYDSAda5NMNrI2Mq1AQCwBpRHPi15xI8n+25NJrektAuRhQ5cfFpJUi267vxTkmbD822jKWMT7Z8dDcFoAAAAAAAAAAAAbDwjjfprmqbnpvtSf2p2T+34xMBkX+oD3XHGLAAAAEedJBgNgCSzh1vPjY6vXB8AAGtEaTRSNm0VikZf3PW05OJdi6+7aKfnGzUEowEAAAAAAAAAALABjbYIRpuZm+pL/X0tgtHGm5v6Uh/ojjNmAQAAuEMZHEomTlp8oWA0gPWtXTDaiGA0AABYilJK/vwpi/+o/sKdK9AMJ57iNA8AAAAAAAAAAAA2npEWwWjTs9N9qT81u7d2fLwx2Zf6QHecMQsAAMDxNm9bfI1gNICNa6T+hwgAAEDn7rar5PvOab/mwp1lZZrhxNJornYHAAAAAAAAAAAAsOJaBaPNzO1fcu25aq5lMNrEwKYl1we6JxgNAACA453UQTBaUzAawIY1Or7aHQAAwLpwzvb2wWf3PHuFGuHE0nCaBwAAAAAAAAAAABvPaHP5gtFm5vZnLnO1cxNNwWiwGpwxCwAAwPEmNy++ZkAwGsCGNSIYDQAA+uHsk1vPXXnnZOfm9sFpbFDFaR4AAAAAAAAAAABsPCON+mC06T4Eo+2b3dNybqI5ueT6QPecMQsAAMDxBoc7WDO0/H0AsDaNCkYDAIB+eOju1sFn11whFI0WGk7zAAAAAAAAAAAAYOMZaYzWjs/MTS+5drtgtPHmpiXXB7rnjFkAAACONzSy+JqBweXvA4A1qfg3AAAA+uLyM5OLdi4cHxpIHne5YDRaKE7zAAAAAAAAAAAAYOMZbYzVjs/M7V9y7anZvbXjA2Uww6WDa26BvnPGLAAAAMcbHF58TXNg+fsAAAAAWMdKKfmDJzbSmJeB9oIfLDl9q2A0Wmg4zQMAAAAAAAAAAICNZ6RFMNr07NKD0fbN7qkdH29OphTndMJqcCU7AAAAxxvuIBhtYHD5+wAAAABY5+5zXsmnX9zIH3ygysyh5LGXlTz0rk6goQ3BaAAAAAAAAAAAAGxAo836YLSZuX4Eo+2tHZ9oblpybaA3gtEAAAA43qBgNAAAAICVcuHOklf/iDA0OlQEowEAAAAAAAAAALDxjDRGa8cPVgcyW82mWZo9156a3VM7PtGc7LkmsDTOmAUAAOB4QyOLrxkcWv4+AAAAAIDjNZzmAQAAAAAAAAAAwMYz2hhvOTczt39Jtfe1CEYbb25aUl2gd86YBQAA4HiDw4uvaQ4ufx8ArD3D9XdWAQAAYIUUp3kAAAAAAAAAAACw8Yw0Wl/XtNRgtKnZvbXjE4LRYNU4YxYAAIDjlKGRxRcNCEYD2JBO2rbaHQAAAGxsDad5AAAAAAAAAAAAsPGMNMZazk3PTi+p9r7ZPbXj483JJdUFeueMWQAAAI43NLT4GsFoABvT3R+42h0AAABsbMVpHgAAAAAAAAAAAGw87YLRZuamllR73+ze2vGJ5qYl1QV654xZAAAAjjc0sviagYHl7wOA1fODP1Y7XJ743BVuBAAAgOM0mqvdAQAAAAAAAAAAAKy4wcZgBspg7dz03PSSak/N7qkdn2hOLqku0DvBaAAAABxvcHjxNQP1Hx4BsD6UJ/xcsnXH8YOPeErK6eeuTkMAAAAc0XCaBwAAAAAAAAAAABvTSGOsdnxmbn/PNeeq2UzN7qudG29u6rkusDQDq90AAAAAa8zQyOJrBoaWvw8AVk0547zkv30wee+bU934tZRL7pM88JrVbgsAAIBSVrsDAAAAAAAAAAAAWBWjjbHsm71twfjM3HTPNffPTaXKXO3chGA0WDWC0QAAADje0PDiawYGl78PAFZVOeXM5EefF5fcAwAArB1FMBoAAAAAAAAAAAAb1EhjtHZ8enaq55pTs3tbzo03J3uuCyxNY7UbAAAAYI0RjAYAAAAAAAAAAAAAAAAAwBoy0hirHZ+Zm+655r42wWgTzU091wWWRjAaAAAAxxsUjAYAAAAAAAAAAAAAAAAAwNox2mwVjLa/55pTs3tqxwfLUIZKB9fbAstCMBoAAADHGxpZfI1gNAAAAAAAAAAAAAAAAAAAVshIoz4YbXoJwWj7WgSjjTcnU0rpuS6wNILRAAAAON5I/QdDxxkYWv4+AAAAAAAAAAAAAAAAAAAgyWiLYLSZpQSjHa4PRptobuq5JrB0gtEAAAA43hnnJc2B1vOlpDSbK9cPAAAAAAAAAAAAAAAAAAAb2sgyBKNNze2tHReMBqtLMBoAAADHKWOTye4rWy8YGFy5ZgAAAAAAAAAAAAAAAAAA2PBGWwSjTc/2Hoy2b3ZP7fh4c7LnmsDSCUYDAABgoZ1ntZ4TjAYAAAAAAAAAAAAAAAAAwAoaaYzWjs/MTfdcc2p2b+34RHNTzzWBpROMBgAAwEJDw63nmoLRAAAAAAAAAAAAAAAAAABYOaPNsdrxmbn9Pdfcd3hP7fh4c7LnmsDSCUYDAABgocE2wWgDgtEAAAAAAAAAAAAAAAAAAFg5I436YLTppQSjzdYHo000N/VcE1g6wWgAAAAsNNQmGG1waOX6AAAAAAAAAAAAAAAAAABgw2sVjHaoOpjD1aGeak7N7a0dF4wGq0swGgAAAAsNjbSeGxhYuT4AAAAAAAAAAAAAAAAAANjwRhqjLedm5qa7rjdXzWb/7L7aufHmZNf1gP4RjAYAAMACZXC49WRzcOUaAQAAAAAAAAAAAAAAAABgwxttjLecm5ntPhht/+xUqlS1cxPNTV3XA/pHMBoAAAALDQ61nhsQjAYAAAAAAAAAAAAAAAAAwMoZaY62nJuem+q63r7ZPS3nxpuTXdcD+kcwGgAAAAsNj7SeE4wGAAAAAAAAAAAAAAAAAMAKGm2MtZybmZvuul67YLSJ5qau6wH9IxgNAACAhQaH28wNrVwfAAAAAAAAAAAAAAAAAABseM0ykMFSf43rzNz+ruu1CkYbKsMZarS5zhZYdoLRAAAAWKhdMFpzcOX6AAAAAAAAAAAAAAAAAACAJKONsdrx6R6C0aZm99aOjzcnu64F9JdgNAAAABYaahOMNiAYDQAAAAAAAAAAAAAAAACAlTXSIhhtZrZ/wWgTzU1d1wL6SzAaAAAACw2NtJ4bGFi5PgAAAAAAAAAAAAAAAAAAIMlIs0Uw2tx017X2ze6pHR9vTnZdC+gvwWgAAAAsNDjUem5gcOX6AAAAAAAAAAAAAAAAAACAJKON0drx6bmprmu1CkabaG7quhbQX4LRAAAAWGhwuPXcQJvQNAAAAAAAAAAAAAAAAAAAWAYjjbHa8Zm56a5rCUaDtUswGgAAAAsNjbSeG5tcuT4AAAAAAAAAAAAAAAAAACDJaItgtOm5/V3XmprdWzsuGA1Wn2A0AAAAFhoabj03LhgNAAAAAAAAAAAAAAAAAICVNdIiGG2mj8Fo403X0cJqE4wGAADAQoNtgtHGfKADAAAAAAAAAAAAAAAAAMDKahWMNj3bfTDavtk9tePjzU1d1wL6SzAaAAAACw0OtZwqgtEAAAAAAAAAAAAAAAAAAFhho836YLSZue6C0War2eyf21c7N9F0HS2sNsFoAAAALDQ03HpOMBoAAAAAAAAAAAAAAAAAACtspNEqGG26qzr7Z/e2nJtobuqqFtB/A6vdAAAAAGtQaZOjfadTVq4PAAAAAAAAAAAAAAAAAABIMtIYrR3fP7cvew7f2nGdGw9e13JOMBqsPsFoAAAALHTyacmW7cktNx4/PjSc3P1Bq9MTAAAAAAAAAAAAAAAAAAAb1mhjrHZ8anZvnv+lJ/dlj/HmZF/qAL1rrHYDAAAArD2l0Uiu/vGFEw/+kZSJk1a+IQAAAAAAAAAAAAAAAAAANrSRFsFo/TJcRjLYGFrWPYDFDax2AwAAAKxN5cdflAyPpfqHNyZzc8l9Hpny1JesdlsAAAAAAAAAAAAAAAAAAGxAyx2MNt6cXNb6QGcEowEAAFCrlJL8519M+c+/uNqtAAAAAMCGUZ7/31L9xk8unHjwj6x8MwAAAAAAAAAAALCGbB3clkaamcvsstTfPnTqstQFutNY7QYAAAAAAAAAALjdlQ9JRicWDJf7P2YVmgEAAAAAAAAAAIC1Y6w5kd3jly1b/btvus+y1QY6JxgNAAAAAAAAAGCNKNt2przib5PTzj4ycNKdUn7md1Kuunp1GwMAAAAAAAAAAIA14Mk7fyZ3Hb8ijT5GJ400RvOIbU/IPTY9oG81gd4NrHYDAAAAAAAAAAAcVS6+V8qbP5fq5huSzSenNNz3DgAAAAAAAAAAAJJktDmen971gkzP7s+th29acr1GaWTb4ClplmYfugP6QTAaAAAAAAAAAMAaVLbuWO0WAAAAAAAAAAAAYE0abY5ltDm22m0Ay0AwGn1VShlMcu8kZyTZmWRfkuuSfKKqqq+uYmsAAAAAAAAAAAAAAAAAAAAAAACsYYLRNrBSypuT/PC84Wurqjqrh1onJ3nJ7fW2tljz4SS/XVXVX3VbHwAAAAAAAAAAAAAAAAAAAAAAgPWtsdoNsDpKKVdnYShar7UeluQzSZ6eFqFot7tXkreXUt5YShnvx94AAAAAAAAAAAAAAAAAAAAAAACsDwOr3QArr5SyOckf9qnW/ZK8K8nQMcNVko8n+XKSzUkuTbLtmPknJtlUSnlUVVVz/egDAAAAAAAAAAAAAAAAAAAAAACAE1tjtRtgVbwyyam3f7231yKllF1J3pHjQ9E+lGR3VVVXVFV1TVVV359kV5LnJDl0zLpHJPnVXvcGAAAAAAAAAAAAAAAAAAAAAABgfRGMtsGUUh6U5Cm3Pzyc5FeWUO4lSbYc8/jDSR5UVdXnjl1UVdWBqqp+L8k1847/uVLKmUvYHwAAAAAAAAAAAAAAAAAAAAAAgHVCMNoGUkoZT/LaY4Z+O8kne6x1bpInHTN0MMmTq6qaaXVMVVXvSvKGY4aGk7yol/0BAAAAAAAAAAAAAAAAAAAAAABYXwSjbSy/nuSs27/+cpIXL6HWE5I0j3n8jqqq/l8Hx/3mvMfXlFJGltAHAAAAAAAAAAAAAAAAAAAAAAAA64BgtA2ilHKvJM84Zugnq6qaXkLJR897/PpODqqq6nNJPnrM0HiS719CHwAAAAAAAAAAAAAAAAAAAAAAAKwDgtE2gFLKcJLX5eif9xuqqvqnJdQ7Jcn3HDN0OMmHuijxgXmPH9ZrLwAAAAAAAAAAAAAAAAAAAAAAAKwPgtE2hhcnOf/2r7+d5OeXWO+u8x5/qqqqqS6O//C8x7uX2A8AAAAAAAAAAAAAAAAAAAAAAAAnOMFo61wp5bIkzz1m6GeqqrppiWUvmvf4P7o8/kuL1AMAAAAAAAAAAAAAAAAAAAAAAGCDEYy2jpVSBpK8LsnA7UN/X1XVm/pQ+px5j7/W5fHXznt8p1LKliX0AwAAAAAAAAAAAAAAAAAAAAAAwAlOMNr69vwk33P711NJnt6nupvnPb6xm4OrqtqXZGbe8ElL6ggAAAAAAAAAAAAAAAAAAAAAAIAT2sBqN8DyKKVclOQFxwy9sKqqr/ap/MS8x9M91JhOMnLM48ne2zmqlLI9ycldHnaXfuwNAAAAAAAAAAAAAAAAAAAAAABA7wSjrUOllEaSP00yfPvQx5L8Xh+3mB+MNtNDjekkW9rU7NVPJ3lRn2oBAAAAAAAAAAAAAAAAAAAAAACwQhqr3QDL4jlJ7nH714eTPLWqqtll3K9aoWMAAAAAAAAAAAAAAAAAAAAAAABYpwSjrTOllLOT/OoxQ79dVdUn+7zNvnmPR3uoMf+Y+TUBAAAAAAAAAAAAAAAAAAAAAADYQAZWuwH6p5RSkrw2ydjtQ19O8uJl2GotB6P9QZK3dXnMXZL8dZ/2BwAAAAAAAAAAAAAAAAAAAAAAoAeC0daXpyV5wDGPf7Kqqull2Oe2eY9P7ubgUspEFgaj3bqkjm5XVdWNSW7ssp9+bA0AAAAAAAAAAAAA/P/27jxaurSg7/3vaZqGZupGhmbmZVQGBwheFTC2BlTkCjJcMWhCKw5xSjDxxqWYFTC5eHMdouvGKFeRJohcCWGSOSgNAkHFNAKCSCOgDI0NNGA3NE3Dkz/qvO+ps6tOndpVu2rvqv35rLUX7HprD2ef53zr9PPutV8AAAAAAAAAWIMHo+2Xp079/5cnuayUcuqEbW7TWD97zjYfrrVeO7X+nsaf33nJ8zvu/Z+otV7Zch8AAAAAAAAAAAAAAAAAAAAAAADsEQ9G2y/nTv3/b0vyvhX2cfs5290vyVun1t/V+PO7tzzGXRvr72y5PQAAAAAAAAAAAAAAAAAAAAAAAHvmrL5PgJ30jsb6V5RSbtRi+wedsD8AAAAAAAAAAAAAAAAAAAAAAABGxoPRaK3W+pEkb5t66ewkD26xiwsb669Y95wAAAAAAAAAAAAAAAAAAAAAAADYbR6MtkdqrefXWkubJck3NnbzgTnve+ucw72wsf69y5xjKeXLknzN1EtXJ3n10l8kAAAAAAAAAAAAAAAAAAAAAAAAe8mD0VjVc5J8YWr90aWUeyyx3U811p9Xa72mu9MCAAAAAAAAAAAAAAAAAAAAAABgF3kwGiuptb4nybOmXjonycWllBset00p5ZFJLpp66dokT93ICQIAAAAAAAAAAAAAAAAAAAAAALBTPBiNdfzbJFdOrT8wyWtKKV82/aZSyg1KKT+e5L82tv+lWusHNnyOAAAAAAAAAAAAAAAAAAAAAAAA7ICz+z4Bdlet9YOllEcneVWScw5eflCSd5ZS/izJXyc5L8n9k9yqsflLk/ybbZ0rAAAAAAAAAAAAAAAAAAAAAAAAw+bBaKyl1npJKeVRSS7O4cPPSpIHHCzzPDfJD9Rav7D5MwQAAAAAAAAAAAAAAAAAAAAAAGAXnNX3CbD7aq0vT3LfJL+R5MoFb31zksfWWh9fa716KycHAAAAAAAAAAAAAAAAAAAAAADATji77xOgX7XWS5KUDvbzd0l+uJTyL5I8KMmdk9wmydVJPpTk0lrr+9Y9DgAAAAAAAAAAAAAAAAAAAAAAAPvJg9HoVK312iSv7fs8AAAAAAAAAAAAAAAAAAAAAAAA2C1n9X0CAAAAAAAAAAAAAAAAAAAAAAAAAB6MBgAAAAAAAAAAAAAAAAAAAAAAAPTOg9EAAAAAAAAAAAAAAAAAAAAAAACA3nkwGgAAAAAAAAAAAAAAAAAAAAAAANA7D0YDAAAAAAAAAAAAAAAAAAAAAAAAeufBaAAAAAAAAAAAAAAAAAAAAAAAAEDvPBgNAAAAAAAAAAAAAAAAAAAAAAAA6N3ZfZ8ADMA50yuXXXZZX+cBAAAAAAAAALCWOfc9mwCVcQAAIABJREFUnDPvfQCwRe7RAwAAAAAAAAB2nvvztqfUWvs+B+hVKeURSV7c93kAAAAAAAAAAGzAI2utL+n7JAAYL/foAQAAAAAAAAB7yv15G3JW3ycAAAAAAAAAAAAAAAAAAAAAAAAA4MFoAAAAAAAAAAAAAAAAAAAAAAAAQO9KrbXvc4BelVLOS/INUy/9bZJr19jl3ZK8eGr9kUneu8b+ANrSIWAItAjomw4BfdMhoG86BAyBFgF9G2uHzklyx6n119VaP9XXyQCAe/SAPaRDQN90COibDgF90yFgCLQI6JsOAX0ba4fcn7clZ/d9AtC3g7i8pKv9lVKaL7231voXXe0f4CQ6BAyBFgF90yGgbzoE9E2HgCHQIqBvI+/QpX2fAACc5h49YN/oENA3HQL6pkNA33QIGAItAvqmQ0DfRt4h9+dtwVl9nwAAAAAAAAAAAAAAAAAAAAAAAACAB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9M6D0QAAAAAAAAAAAAAAAAAAAAAAAIDeeTAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgd2f3fQKwh65I8tTGOsA26RAwBFoE9E2HgL7pENA3HQKGQIuAvukQAOwnn/FA33QI6JsOAX3TIaBvOgQMgRYBfdMhoG86xEaVWmvf5wAAAAAAAAAAAAAAAAAAAAAAAACM3Fl9nwAAAAAAAAAAAAAAAAAAAAAAAACAB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9M6D0QAAAAAAAAAAAAAAAAAAAAAAAIDeeTAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgdx6MBgAAAAAAAAAAAAAAAAAAAAAAAPTu7L5PgFmllOsluXuSeye5XZLzknwuyZVJ3pvkLbXWqzs+5vWTPCjJnZLcNslVST6c5NJa6/u7PNa2lFLuk+SrktwqyQ2SXJ7kg0neWGu9ps9z26ZSys2T3CfJPZJ8SZIbJvlkkiuS/Fmt9b09nt6MUspdMvm+3S7JTZJ8JMkHkryp1vr5Ps9tTHSoGzo0oUOsSou6oUUTWnTscYyPBXSoG8bZxK51iGHQoW7o0IQOHVVKuWMm1+IOSW6Z5Nwk1yb5VJK/yeSaXNHfGQ6DDnVDhyZ0iFVpUTe0aEKLWIUOdUOHJnRoPuMD6IPP+G5o+MSufca7N2YYdKgbOjShQ6xCh7qhQxM6dOxxjI8FdKgbxtnErnWIYdChbujQhA4d5f685WlRN7RoQotYhQ51Q4cmdIhV6FA3dGhCh+bb6fFRa7UMYMkkmE9K8tJM/uO+LliuS/KKJA/v4Li3SvKfk3x8wfHemOQxax7nrkkel+QXklyS5NONY7y/o+t40yRPTvKhBV/Pp5M8O8ndevx+b+x6JLl+km9J8p+SvOOEsVQPrtXPJblNzz8Dj03ypgXn+fGDsXrLFfZ90jU4aTnV57XZ4vdAh7q5jjqkQ9P7PNVBg6aXi/q8Rlv6PmhRN9dRi7Ro58dHj98DHermOu7EONOh3sbHjZM8OMlPJHlOkr9K8sXGsS7q6zr0veiQDunQxq7HPZI8LclrM/lLjZOuR03yP5P8aJIb9HVNevo+6FA311GHdGje/pdpz6LlVF/XpofvhRZ1cx21SIum93uqgw5NLxf1dY229H3QoW6uow7p0M6PD4vFsl+Lz/hxNdxn/Nzzdo9ez4sO6ZAOuUev70WHdEiH3J/X96JDOjTmDm1xfLg/b/H10aFurqMO6VBz3+7Pa3e9tKib66hFWjRv/8v0Z9Fyqq9rs+Xvgw51cx11SIem93uqgwZNLxf1dY229H3QoW6uow7p0M6PjxO/jr5PwFKT5HfX+ED7/SQXrHjchyX5aItj/U6SG7fY/4VJXnXCh0JnP5hJviaTp3Au+/VcneSHt/h93vj1OLgGn1hxLF2Z5Ht6GP83SfLcFud5eZJvaXmMVX++Ti+ntn1devg+6JAO6dAGOpTu/0P2cdu+Plv+XmiRFmnRBlq0S+Oj70WHdGiMHdrm+Mhk4vjtmUxIn3Ssi7Z1DYa06JAO6dDmxkeS71/j5+vdSb5mW9ekz0WHdEiHNjs+1vj5Or2c2tZ16XPRIi3Soo1dj1MddGh62dv56uiQDunQ6MeHxWLZz8Vn/Dga7jP+2HN2j94AFh3SIR1yj17fS3RIh3TI/Xk9LzqkQ2Ps0DbHR9yft8w10iEd0qENjY+4P6/NtdIiLdKiDY6PNX6+Ti+ntnVd+lp0SId0aGPX41QHDZpezFXr0DI/gzqkQzs5PtosZ4chuOcxr38oyXsyievZmTz17yuTnDX1nv89yetLKd9Qa7182QOWUi5M8qIk50y9XDN5yvpfJzk/yf2S3HLqz787yc1KKd9Ra/3iEof5qiTfvOw5raOU8pBMngZ6g8YffSDJ2zL5IbxDJj+81z/4sxsl+c+llLNqrb+2hdPcxvW4VZKbz3n92kwmty/P5Impt0jygIP/Pe38JM8updy61vrLGz7PJEkp5XpJfi/JtzX+6Ioklx6c690yGYvl4M8uSPLiUspDaq1v2MZ5joQOrUmHztChzflMJk+03mdatCYtOkOL5h9nF8ZH33RoTTsyznToqK2NjySPT3Lelo61q3RoTTp0hg6drGYyyX9ZJn+x8JlM/sXcuyS5Tw7HRzL52fyDUsrDa62v2/aJbpkOrUmHztAh1qFFa9KiM7Roc/Z9vlqH1qRDZ+jQHDsyPoD95DN+TTvScJ/xDTt2b8y+06E16dAZOrQ55jx0aCEdOkOH5h9nF8ZH33RoTTsyznToKPfnDYsOrUmHztChk7k/73hatCYtOkOLWJUOrUmHztChzTFXrUML6dAZOjTHjoyP5fX9ZDZLTZK35PApev8zyY8ludsx7719kqdn9ul7f5SkLHm8O2T2qYdvSHKvxvtukOSfZ/JDP/3epy15nCfNOc+a5JpMJjQ6eWJhJk9PbT4V8bIkD53z3psn+X8b7/3CvPdu4Pu88euRyQf56X38fZJnJPlHSc6d896S5FGZxKt5Thu/Hgfn8AuN4157MP7Pabzv3kne1Hjvx5LcdsnjTG/35oMx02Y5exvXo88lOqRDOrSRDmXyH14nNea45Q2N4128jWvS5xIt0iIt2tjvRLsyPvpedEiHxtihbY2Pg2N98phjfXDOn1206a99iIsO6ZAObXR8PDHJX2byu9fDk9x8wXvPT/IvM/kLkOnjfyjJeZu+Jn0uOqRDOrTx34em92Wu+vjrpEVapEWbuR7mq5e/VjqkQzo08vFhsVj2c/EZP46G+4yfe77u0RvIEh3SIR3aSIdizqPN90KHdEiHNvT70K6Mj74XHdKhMXZoW+Pj4Fjuzzv5GumQDunQ5saH+/OWv1ZapEVatNnfiab3Za56/jXSIR3Soc1cD3PVy18rHdIhHRr5+Gj1NfV9ApaaJH+aydP2HtBimx+ZM+C/a8ltn9HY7o1Jbrjg/d8x5wfrzksc50kH0b80yW8m+cEk98/kiYEXdviD+dzGvt6T5NYnbPOvG9v8RZLrbfj7vPHrcRDujyb5V0luvOQ2t0jyzsbx35UlfxFY43rcNbO/FDxywfvPzexfNP7Gksea3uaSTX5du7rokA7p0GY7tMK53T7JdY1jff0mr8cQFi3SIi3aXIt2ZXz0veiQDo20Q1sZHwfH+mQm/9LCy5I89eA6XXDwZ5c0jnXRJr/uoS46pEM6tNHxcf0VtvmqJFc1zuGnNnk9+l50SId0aOO/D03v65JNfl27vGiRFmnRZlu0wrmNbr5ah3RIh4wPi8Wyn4vP+HE03Gf8zHHdozegRYd0SIc226EVzs2cx3Lb6NDhcXTo8Bg6tKPjo+9Fh3RopB1yf96AFh3SIR1yf94QFi3SIi1yj17fiw7pkA65P6/vRYd0SIeMj1ZfU98nYKlJcmrF7Z7fGFwvW2KbezQ+GD+X5B5LbHdx41i/vcQ2Nz/uA6HDUN01kycOTu/rwUtu+4eN7b5vw9/nbVyPWy0b7MZ2XznnOn71hq/HsxrHe+YS29zzYMye3ubzSe66xHbTx7lkk1/Xri46pEM6tNkOrXBuT26c219t8loMZdEiLdKizbRol8ZH34sO6dBIO7Tx6zG1v2P/Bd248er0dTi14nY6pEPN/ehQd+f3c41zePO2z2HLX++pFbfTIR1q7keH5u9vel+XbPLr2uVFi7RIizZzPdY4t9HNV+uQDumQ8WGxWPZz8Rk/job7jJ85pnv0BrTokA7p0GY7tMK5mfNYfjsd0qHmfnRoR8dH34sO6dBIO+T+vAEtOqRDOrSZ67Hm+Y3q/ryDr/nUittpkRY196NF8/c3va9LNvl17eqiQzqkQ5u5Hmucm7nq5bfTIR1q7keHdnR8tFnOCr2rtb5/xU1/rbH+jUts8/gk15taf0Gt9T1LbPcfGuvfWUq54aINaq1X1lqvWWLf63h4cmQcv7nW+oYlt/3Fxvr3dnNK823jetRar6i1Xr3Cdn+epHndlhlPKymlnJvksY2Xm2NsRq31r5K8aOqlszMZ06xJh9aiQ0ePoUNrKqWUzI6FZ3R5jKHSorVo0dFjaNFROzM++qZDa9mZcaZDM8fcxvg4fayPbOM4u0yH1qJDR4+hQ915eWP97r2cxZbo0Fp06OgxdIiVadFatOjoMbRoTWOdr9ahtejQ0WPo0FE7Mz6A/eQzfi0703Cf8YeGfG/MWOnQWnTo6DF0aE3mPFrTIR1qHkOHjtqZ8dE3HVrLzowzHZo5pvvzBkSH1qJDR4+hQ90Z1f15iRatSYuOHkOLWIkOrUWHjh5Dh9Zkrro1HdKh5jF06KidGR9teDDabru0sX5uKeX8E7Z5VGP9mcscqNb6riR/PPXSjZN88zLbbtg/bKy/qsW2f5Dk2qn1B5ZSbrv+Ke2s5ni63QaP9S1JbjS1/j9qrX+55LbNMfvobk6JFemQDnVJhya+Icndptavy+RfrON4WqRFXdrHFhkfm6dDxlmXttkh9ocO6VCXdOioTzTWb9rLWQyfDulQl3SIVWmRFnVJiybMV7ejQzrUpX3skPEB7Cqf8RrepX38+2g2T4d0qEs6NGHOox0d0qEu7WOHjI/N0yHjrEv7OPfK5umQDnVJh45yf97ytEiLuqRFrEKHdKhLOjRhrrodHdKhLu1jh/ZyfHgw2m67bs5r5xz35lLKbZJ8ZWP7N7Y43iWN9Ye12HZT7tBYf8eyG9ZaP5fksqmXzsowvqa+NMfTsWOpA9/aWL+kxbZ/lKPner9SygVrnxGr0iEd6pIOTTyxsf6yWuvlHe5/H2mRFnVpH1tkfGyeDhlnXdpmh9gfOqRDXdKho+7cWP9wL2cxfDqkQ13SIValRVrUJS2aMF/djg7pUJf2sUPGB7CrfMZreJf28e+j2Twd0qEu6dCEOY92dEiHurSPHTI+Nk+HjLMu7ePcK5unQzrUJR06yv15y9MiLeqSFrEKHdKhLunQhLnqdnRIh7q0jx3ay/HhwWi77e6N9euSfGzB++/bWH9brfXqFsd7U2P9Pi223ZQvaax/suX2zfd/+Rrnsuua4+kjGzxWcyz+j2U3PBizb2+8PISxOFY6pENdGn2HSinnJXlM4+VndLHvPadFWtSlfWyR8bF5OmScdWmbHWJ/6JAOdUmHjvqnjfXX9nIWw6dDOtQlHWJVWqRFXRp9i8xXr0SHdKhL+9gh4wPYVT7jNbxL+/j30WyeDulQl0bfIXMeK9EhHerSPnbI+Ng8HTLOurSPc69sng7pUJd06Cj35y1Pi7SoS1rEKnRIh7o0+g6Zq16JDulQl/axQ3s5PjwYbbc9trH+llrrFxe8/96N9cvmvut47z1hf324trF+g5bbN98/hK9p60opN0vy0MbLf7LBQ96rsb7NsXinUsozSyl/UUq5spRybSnlowfrv1NK+cFSSjP4HE+HdKgTI+vQIv84yblT6x9J8oqO9r3PtEiLOrHHLTI+Nk+HjLNO9NAh9ocO6VAndOioUsqPJvmeqZeuS/IrPZ3O0OmQDnViZB0yV909LdKiToysRYuYr25Ph3SoE3vcIeMD2FU+4zW8E3v899HzmPfolg7pUCdG1qFFzHm0p0M61Ik97pDxsXk6ZJx1Yo/nXtk8HdKhTujQUe7Pa02LtKgTI2uRuepu6ZAOdWJkHVrEXHV7OqRDndjjDu3l+PBgtB1VSrlJkic2Xn7hCZs1n1j4Ny0P+4HG+i1KKTdvuY+ufbyxftuW2zff/6VrnMsu+6EkN5pa/1Q29HT9g/9IbP6HYtux2Hz/PVpse5ckF2US4fOTXD/JrQ/WvzvJ05P8TSnlPx78nHEMHTpDh7oxpg4t0vyZelat9bqO9r2XtOgMLerGvrbI+NggHTrDOOvG1jrE/tChM3SoG6PuUCnlxqWULy2lPKGU8rok/6nxlp+utb6tj3MbMh06Q4e6MaYOmavukBadoUXdGFOLFjFf3YIOnaFD3djXDhkfwM7xGX+GhndjX/8+eh7zHh3RoTN0qBtj6tAi5jxa0KEzdKgb+9oh42ODdOgM46wb+zr3ygbp0Bk61I1Rd8j9eavTojO0qBtjapG56o7o0Bk61I0xdWgRc9Ut6NAZOtSNfe3QXo4PD0bbXT+f5DZT659M8lsnbHN+Y/3v2hyw1npVkmsaL5/XZh8b8K7G+tcuu2Ep5U5Jbtd4ue+vZ+tKKaeS/JvGy79aa20+DbIrzXH4mVrr1S330Ry7XX/fbpzkSUn+rJRyn473vU90aEKH1qRDE6WUL0/ygMbLz1h3vyOgRRNatKY9b5HxsVk6NGGcramHDrE/dGhCh9Y0tg6VUs4vpdTpJclVSf4yycVJ/uHU269K8oO11l/s4VR3gQ5N6NCaxtahJZmrXp4WTWjRmrRownz1SnRoQofWtOcdMj6AXeQzfkLD17Tnfx+9KvMey9GhCR1akw5NmPNYiQ5N6NCa9rxDxsdm6dCEcbamPZ97ZbN0aEKH1jS2Drk/r3NaNKFFaxpbi5Zkrno5OjShQ2vSoQlz1SvRoQkdWtOed2gvx4cHo+2gUsqjkvxY4+Un11o/ccKmzacVf3aFwze3uekK++jS6xrrjyml3GjuO2f90zmv9f31bFUp5Zwkv5ejX/f7k/w/GzxsX+PwuiSXJPnZJI9Icv9M/tWm+yV5ZJJfzOwvM/dM8ppSyp1XOMe9pkNH6NAaRtahkzSfVP26WutlHex3b2nREVq0hhG0yPjYEB06wjhbQ08dYg/o0BE6tAYdOtZHkzw5yV1qrb/Z98kMkQ4doUNrGFmHzFV3TIuO0KI1jKxFJzFf3YIOHaFDaxhBh4wPYKf4jD9Cw9cwgr+Pnmbeo0M6dIQOrWFkHTqJOY8WdOgIHVrDCDpkfGyIDh1hnK1hBHOvbIgOHaFDa9ChY7k/bwladIQWrWFkLTJX3SEdOkKH1jCyDp3EXHULOnSEDq1hBB3ay/HhwWg7ppTylUn+S+PlVyf59SU2b4a7+XTKZTTD3dzntr0sk6d5nnZ+kqectFEp5Y5JfnLOH12vlHJuN6e2E34ryf82tf6FJE9Y4V9DaqOPcfizSW5fa/3GWuv/VWv9/VrrpbXWy2qtb621vqTW+n8muXOS/ztJndr2NkleUEopK5znXtKhGTq0nrF0aKGDX6S/p/Gyp3svoEUztGg9+94i42MDdGiGcbaePjrEjtOhGTq0Hh2a74Ik/yzJD5dSbtb3yQyNDs3QofWMpUPmqjumRTO0aD1jadFC5qvb0aEZOrSefe+Q8QHsDJ/xMzR8Pfv+99GnmffokA7N0KH1jKVDC5nzaEeHZujQeva9Q8bHBujQDONsPfs+98oG6NAMHVqPDs3n/rwTaNEMLVrPWFpkrrpDOjRDh9Yzlg4tZK66HR2aoUPr2fcO7eX48GC0HVJKuVMmA3E6lh9I8j211jp/q4W2tc3G1Fr/PsmvNl7+yVLKvzhum1LKHZK8Msl5x+22o9MbtFLKv0vyTxov/3St9fVbPpWNj8OD/3htPr173vuuqbX+dJIfb/zR/ZP84zbH3Fc6NEuHVjemDi3hkUluMbX+qSTP7/gYe0OLZmnR6sbQIuOjezo0yzhb3YA6xA7RoVk6tLoRd+jTSe4ytdwtkzmgRyf5j0muOHjfHZP8XJK3l1K+uofzHCQdmqVDqxtTh8xVd0uLZmnR6sbUoiWYr16SDs3SodWNoUPGB7ArfMbP0vDVDegz3j16O0SHZunQ6sbUoSWY81iSDs3SodWNoUPGR/d0aJZxtroBdYgdokOzdGh1I+6Q+/PWpEWztGh1Y2qRueru6NAsHVrdmDq0BHPVS9KhWTq0ujF0aF/Hx9l9nwDLKaXcOsl/T3L7qZcvT/LQWusV87eacVVjfZUn8zW3ae6zD09L8rAcPpmxJPmVUspjM3k66lszeRLn7Q7e98M5/PD7YJI7TO3rmlrrzJM+Symnlj2ZWuv7W519D0opT8rkqdfTfrnW+gtLbn9q2WPNuR6DH4e11l8rpXxzkkdMvfwjSX63y+PsGh1aSIda0qEZT2ys/26ttfkUaaJFJ9CilkbWoo2Pj7HQoYV0qKWeO8SO0qGFdKilMXeo1vrFJO+f80eXJnlhKeVnk/yHJD928PqdkrymlPKgWus7tnOWw6RDC+lQS2Pu0DLMVR9PixbSopa0aIb56iXo0EI61NLIOmSuGhg0n/EL+YxvaWR/H92aeY/5dGghHWpJh2aY81iCDi2kQy2NrEPmPDqiQwvpUEsjm3ulIzq0kA61NOYOuT9vPVq0kBa1NOYWLcNc9Xw6tJAOtaRDM8xVL0GHFtKhlkbWob2bq/ZgtB1QSvmSJK9Jcs+plz+W5CG11ve02NVehrvWem0p5dFJXp7kK6b+6MEHy3E+nskvDq+aeu2Tx7z3fS1OqbR479aVUn4gyS83Xv71Wuu/arGbda7HrozDn8/R/5D92lLK+bXW48bIXtOhxXSoHR06qpRyxyQPbbz8jFX3t8+0aDEtamdsLdrS+Nh7OrSYDrUzgA6xg3RoMR1qR4cWq7V+JsmPl1I+n+QnDl6+WZL/Ukr5Byv+C0M7T4cW06F2dGhp5qobtGgxLWpHi44yX70cHVpMh9oZW4fMVQND5jN+MZ/x7QzgM35XxqF5jyk6tJgOtaNDR5nzWI4OLaZD7YytQ+Y8uqFDi+lQOwPoEDtIhxbToXZ0aDH35x1PixbTona0aGnmqqfo0GI61I4OHWWuejk6tJgOtTO2Du3jXPVZfZ8Ai5VSzkvy6iRfPvXylZk8yfIvWu7uU431W7U8l5tkNtyDGMi11g8leWCSpyf5/BKbvDbJA5Jc3Xj98o5PbVBKKf8kyW/kaEyfmeRHt3gazXF4o1LKjVvu49aN9U2Mwz/J5GfttOslufcGjjN4OrQcHVqODs11UY7+TvbntdY/W2N/e0mLlqNFyxlri4yP9ejQcoyz5QykQ+wYHVqODi1Hh1p5cpIPT63fL8lDejqXXunQcnRoOTrUirnqKVq0HC1ajhbNdVHMVy+kQ8vRoeWMtUPGBzBEPuOXo+HLGchn/NDujTmOeY8DOrQcHVqODs11Ucx5LKRDy9Gh5Yy1Q8bHenRoOcbZcgbSIXaMDi1Hh5ajQ624P2+KFi1Hi5ajRa2Yqz6gQ8vRoeXo0FwXxVz1Qjq0HB1azlg7tG/jw4PRBqyUctMkr0zyD6Ze/nSSb621vnWFXTaffnnnlts33/+JWuuVc9/Zg1rr1bXWf5bkSzOZEHltkg8m+WySv0/yriTPyuQpqv+o1vr+JPdq7OYtWzvhLSulfFcmkZ7+uX9Oku/f5hP0a60fz9H/QEySO7XcTXMstnmy61JqrV9M8jeNl1v9srMPdKgdHVpMh2aVUkqS72287OneDVrUjhYtNvYWGR+r0aF2jLPFhtIhdosOtaNDi+lQO7XWzyZ5UePlb+3jXPqkQ+3o0GI61I656kNa1I4WLaZFs8xXn0yH2tGhxcbeIeMDGBKf8e1o+GJD+Ywf0r0xi5j3mNChdnRoMR2aZc7jZDrUjg4tNvYOGR+r0aF2jLPFhtIhdosOtaNDi+lQO+7PO6RF7WjRYlrUjrnqCR1qR4cW06FZ5qpPpkPt6NBiY+/QPo2Ps/s+AeY7+NdoXp7ka6devirJw2qtf7Libt/VWL97y+3v2lh/54rnsVG11vcledrBcpKva6z/8TH7LPNe3xWllMckeXYmT6k+7b8mecLBf7C10sH1eFcmT5g87e6ZHZ+LNMdim23b+GxjvflE172mQ6vToVk6dKxvSnKXqfXPZfJLNQe0aHVaNEuLDm1ifOwrHVqdDs0aYIfYATq0Oh2apUMre3djve3PzE7TodXp0CwdWtmo56oTLVqHFs3SomOZr15Ah1anQ7N06JC5aqBvPuNX5zN+1gA/44dyb8xJRj3voUOr06FZOnQscx4L6NDqdGiWDh0y57E8HVqdDs0aYIfYATq0Oh2apUMrG/X9eYkWrUOLZmnRysxV69BKdGiWDh3LXPUCOrQ6HZqlQ4f2Ya76rJPfwraVUs5N8tIkD556+TNJHl6Dc7dAAAAPuklEQVRrfdMau35HY/0rSik3arH9g07Y3045eKrqNzVefl0f57JJpZRHJHlujj4I8UVJHl9r/UI/ZzUzdpqBPNbBLzVfccL+unLLxvrHNnScwdGh7dAhHUryfY31F9RaP7HivvaOFm2HFmnRCccZxfg4jg5tx1jG2UA7xMDp0HbokA4t4fON9Rv0chY90KHt0CEdWsJo56oTLdoWLdKimK8+lg5thw7p0CJjGR/AdvmM346xNHygn/GD//voA6Od99Ch7dAhHYo5j2Pp0HbokA6dcJxRjI/j6NB2jGWcDbRDDJwObYcO6dASRnt/XqJF26JFWrQEc9U6tFE6pEMxV30sHdoOHdKhRYY8PjwYbWBKKTdM8pIkF069fE2SR9RaX7/OvmutH0nytqmXzs7RD4eTXNhYf8U65zMA35Tk1NT662qt7+npXDailPJtmTy58vpTL78syeNqrdf1c1ZJklc21i9sse3X5+iH0KW11o+ufUYNpZRbZvYprh/u+jhDpENbpUP96b1DpZTzkzy68fIz2u5nX2nRVmlRf3pv0RL2fnwcR4e2au/H2YA7xIDp0FbpECe5Q2N9E793DY4ObZUOcawxz1UnWrRlWjRi5quPp0NbpUMssvfjA9gun/FbtfcNH/Bn/OD/PnrM8x46tFU61J/eO2TO43g6tFU61J/eO7SEvR8fx9Ghrdr7cTbgDjFgOrRVOsRJRnl/XqJFW6ZFHMtctQ5tiQ6NmLnq4+nQVukQiwx2fHgw2oCUUs5J8oIkD5l6+XNJvqPW+gcdHeaFjfXvXfLcvizJ10y9dHWSV3d0Tn35qcb603s5iw0ppTw0yX9Lcs7Uy69O8pha67X9nNUZr0ry2an1rzsYY8u4qLHeHNNd+a4cbeRHk7xrQ8caDB3aOh3qzxA69N1Jbji1/v4kf7jivvaKFm2dFvVnCC06yV6Pj+Po0Nbt9TgbeIcYKB3aOh3iJN/cWB/E5P4m6dDW6RCLjHKuOtGiHmjRuJmvnkOHtk6HWGSvxwewXT7jt26vGz7wz/hd+PvoUc576NDW6VB/htAhcx5z6NDW6VB/htChk+z1+DiODm3dXo+zgXeIgdKhrdMhTjK6+/MSLeqBFrGIuepDOrQ5OjRu5qrn0KGt0yEWGez48GC0gSilnJ3keUkeNvXy55M8ttb6qg4P9ZwkX5haf3Qp5R5LbNccxM+rtV7T3WltVynlCUkeOvXSWzN58uNeKKV8Q5IX5+gvSH+YyS8Bn+vnrA7VWj+T5PmNl5tjbEYp5Z5JHjX10nVJfrfDUzt9nAuS/Gzj5d+vtdaujzUkOrRdOtSvgXTo+xrrv73vnVmGFm2XFvVrIC1adJy9Hh/H0aHt2vdxNvQOMUw6tF06xElKKQ9P8oDGyy/u41y2RYe2S4dYZKxz1YkWbZsWEfPVM3Rou3SIRfZ9fADb5TN+u/a94UP/jN+Bv48e5byHDm2XDvVrIB0y59GgQ9ulQ/0aSIcWHWevx8dxdGi79n2cDb1DDJMObZcOcZIx3p+XaNG2aRGLmKvWoW3QIWKueoYObZcOscjQx4cHow1AKeV6mQT1kVMvX5fkcbXWl3Z5rFrre5I8a+qlc5JcXEq54TGbpJTyyBz9F2+uTfLULs9rXQcffMu+99FJfnPqpeuSfF+t9brOT6wHpZSvS/LSJOdOvfz6JN9ea/3s/K168ZRMfjk57aJSyiOOe/PBGH1mjj6h8xm11vcu2OZLSynf3uakSim3yeT6XTD18rVJfr7NfnaNDq1Phw7p0MlKKV+V5P5TL30xycVt97NvtGh9WnRIi+Zua3ycQIfWZ5wd2qEOMSA6tD4dOqRDh0opDyilPOrkd85s99VJnt14+fW11rd3c2bDo0Pr06FDOnTIXHU7WrQ+LTqkRSczXz1Lh9anQ4d0aJbxAfTFZ/z6NPzQDn3GPyXu0RsMHVqfDh3SoZOZ85ilQ+vToUM6NHdb4+MEOrQ+4+zQDnWIAdGh9enQIR065P68drRofVp0SIsOmateng6tT4cO6dDJzFXP0qH16dAhHZq1b+Nj6S+GjfrtJN/ZeO1nklxaSjnVcl+XL/GkyX+byb9gc/OD9QcmeU0p5ftrrX95+k2llBsk+cEkv9TY/pdqrR9Y5mRKKXfI/HF2m8b62Qu+1qtqrR874VBvL6W8LMl/S/LHtdYvzjmX+yb56SSPb/zRz9RaLz1h/53Y9PUopdwvySuS3GTq5Xcn+dEkty6ltDnda2qtl7fZoI1a61+XUn41yU9Ovfz8Usq/TPL/1VqvPf1iKeVeSX4rk7F62sdz8i8Qt03yklLK25P8TpIXHvzyMqOUctMkT8jkyd4XNP7439da/3qJL2uX6ZAO6dBE1x06zhMb66+qtf7tivvaJ1qkRVo0sakW7cT46JkO6dDoOpRsb3yUUm6S5JbH/HFzQvmWC471wSFNrnVMh3RIh47qanzcIckLSinvyOQv0F6U5N21zv9Xlkop907yQ0l+pHFe1xy8ts90SId06Kiuxoe56na0SIu06Kiux0eT+epZOqRDOnTUKMcHsJd8xo+k4T7jD7lHb3B0SId0aMI9ev3RIR3SoQn35/VHh3RodB1K3J83MDqkQzp0lPvz+qFFWqRFR7lHb/t0SId06Cj3522fDumQDh01yvGxtFqrpeclSe1wuXDJY16Y5HONbb+Y5E+T/F6SVyb5uzn7//0k12vxtb2/g6/p4iWO87Gp9/99kjdl8kP6nCSvXnAe/27L3+uNXo9M/kWjrsbSJVu4HtdL8vI5x/5oJh9Az0vyloOxOf3nn0vy9UuO8+a+P5nkDZlMsD07yQsPjvH5Y67D0/tuxJbGpg7pkA5toEPHHPMGmdwoMb2/x/TZgKEsHY4dLdKip3Q4li7ZwvXYSot2ZXz0uXQ4bnRo4ONs09cju9ehbY2Pizq6Jqf67sUGvxc6pEM6tJnr8R1z3v/pg/HxkkxugHhektckufyY/X8myUP67sQWvhc6pEM6tJnrceGc95urPv56aZEWadEGx0fjmOar518XHdIhHTI+LBbLHi4dNtln/MAbvunrkd37jHeP3kCWDseNDunQUzocS5ds4Xq4R28gS4fjRod06CkdjqVLtnA93J83kKXDcaNDAx9nm74e2b0ObWt8XNTRNTnVdy82+L3QIR3Soc1cD/fntft+aJEWadFmrseFc95vrnr+tdIhHdKhDY6PxjHNVc+/LjqkQzpkfCy9zHuSHCNQa72klPKoJBcnudXByyXJAw6WeZ6b5AdqrV/Y/Bmu5SZJvu6E91yZ5Edqrf//Fs6HY9Rav1BK+c5M/mWlx0390a2TfOsxm/1dkifUWv9oxcOel+RBS7zv6iQ/UWv9zRWPwwl0SIeGoKcOPSrJl0ytX5HJRD890CItGoKeWmR8DIQOGWfQNx3SoRG7aU4eH6e9OckP1VrftsHzGS0d0qERM1c9IFqkRSNmvnogdEiHRsz4APaaz3gNHwL36I2bDunQELhHb9x0SIeGwP1546ZDxhn0TYd0aMTcnzcgWqRFI2aueiB0SIdGzFz1QOiQDo3Yzo+Ps/o+AfpTa315kvsm+Y1MBupx3pzksbXWx9dar97KybX3K0kuzeSpnIv8bZKfS3K3of5Qjk2t9apa63cl+T8yGWvH+USSX09y31rrK5fc/buSPC3JG5N8dslt/irJz2TyL5z4j9gN0yEdGoINd2ieJzbWn11r/fwa+2NNWqRFQ7ClFhkfA6VDxhn0TYd0aAT+MJN/Ffe5ST645DafSfL8JN+e5IFuutosHdKhETBXvQO0SItGynz1gOiQDo2I8QGMis94DR8C9+iNmw7p0BC4R2/cdEiHhsD9eeOmQ8YZ9E2HdGgE3J+3A7RIi0bAXPXA6ZAOjZS56gHRIR0akb0aH6XW2vc5MACllHMyeerxnZPcJpOnG38oyaW11vf1eW5tlFJuluR+Se6SyZM6b5jJf8B8KMmf11rf2ePpsYRSyl2S3D/J7ZLcOMnlST6Q5I211mvX2O9ZSe6R5G5Jbp/k/ByOjyuTfCTJn9Zar1jrC2BlOsRQbKpD7AYtYig22SLjY9h0COibDjEGpZQLktwrk3F+iyQ3SvL5JJ9O8vEk70jy7h34l332kg6x78xV7wYtAvqmQ4yB8QGMkc94hsI9euOlQwyFe/TGS4cYCvfnjZcOAX3TIcbA/XnDp0XsO3PVw6dDQN90iDHYl/HhwWgAAAAAAAAAAAAAAAAAAAAAAABA787q+wQAAAAAAAAAAAAAAAAAAAAAAAAAPBgNAAAAAAAAAAAAAAAAAAAAAAAA6J0HowEAAAAAAAAAAAAAAAAAAAAAAAC982A0AAAAAAAAAAAAAAAAAAAAAAAAoHcejAYAAAAAAAAAAAAAAAAAAAAAAAD0zoPRAAAAAAAAAAAAAAAAAAAAAAAAgN55MBoAAAAAAAAAAAAAAAAAAAAAAADQOw9GAwAAAAAAAAAAAAAAAAAAAAAAAHrnwWgAAAAAAAAAAAAAAAAAAAAAAABA7zwYDQAAAAAAAAAAAAAAAAAAAAAAAOidB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9M6D0QAAAAAAAAAAAAAAAAAAAAAAAIDeeTAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgdx6MBgAAAAAAAAAAAAAAAAAAAAAAAPTOg9EAAAAAAAAAAAAAAAAAAAAAAACA3nkwGgAAAAAAAAAAAAAAAAAAAAAAANA7D0YDAAAAAAAAAAAAAAAAAAAAAAAAeufBaAAAAAAAAAAAAAAAAAAAAAAAAEDvPBgNAAAAAAAAAAAAAAAAAAAAAAAA6J0HowEAAAAAAAAAAAAAAAAAAAAAAAC982A0AAAAAAAAAAAAAAAAAAAAAAAAoHcejAYAAAAAAAAAAAAAAAAAAAAAAAD0zoPRAAAAAAAAAAAAAAAAAAAAAAAAgN55MBoAAAAAAAAAAAAAAAAAAAAAAADQOw9GAwAAAAAAAAAAAAAAAAAAAAAAAHrnwWgAAAAAAAAAAAAAAAAAAAAAAABA7zwYDQAAAAAAAAAAAAAAAAAAAAAAAOidB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9O5/AXpnFOxFOo7tAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "from uuid import UUID\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor\n", + "\n", + "\n", + "location_names = {\n", + " UUID('53998a51-60de-48ae-b71a-5c37cd1455f2'): \"Loft\",\n", + " UUID('1bc63cda-e223-48bc-93c2-c1f651779d69'): \"Living Room\",\n", + " UUID('ea0683de-6772-4678-bfe7-6014f54ffc8e'): \"Office\",\n", + " UUID('5aaa901a-7564-41fb-8eba-50cdd6fe9f80'): \"Outside\",\n", + "}\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 10), dpi=300)\n", + " configs = get_known_configs().values()\n", + " for i, config in enumerate(configs, start=1):\n", + " plot = figure.add_subplot(2, 2, i)\n", + " coros.append(plot_sensor(config, plot, location_names))\n", + " await asyncio.gather(*coros)\n", + "\n", + "display(figure)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9f576f5bb8e34cb8ab1d3c09f770d027", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(DatePicker(value=None, description='Start date'), DatePicker(value=None, description='En…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "from uuid import UUID\n", + "import functools\n", + "from concurrent.futures import ThreadPoolExecutor\n", + "\n", + "import ipywidgets as widgets\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor\n", + "\n", + "\n", + "def wrap_coroutine(f):\n", + " @functools.wraps(f)\n", + " def run_in_thread(*args, **kwargs):\n", + " loop = asyncio.new_event_loop()\n", + " wrapped = f(*args, **kwargs)\n", + " with ThreadPoolExecutor(max_workers=1) as pool:\n", + " task = pool.submit(loop.run_until_complete, wrapped)\n", + " return task.result()\n", + " return run_in_thread\n", + "\n", + "@wrap_coroutine\n", + "async def plot(*args, **kwargs):\n", + " location_names = {\n", + " UUID('53998a51-60de-48ae-b71a-5c37cd1455f2'): \"Loft\",\n", + " UUID('1bc63cda-e223-48bc-93c2-c1f651779d69'): \"Living Room\",\n", + " UUID('ea0683de-6772-4678-bfe7-6014f54ffc8e'): \"Office\",\n", + " UUID('5aaa901a-7564-41fb-8eba-50cdd6fe9f80'): \"Outside\",\n", + " }\n", + "\n", + " with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 10), dpi=300)\n", + " configs = get_known_configs().values()\n", + " for i, config in enumerate(configs, start=1):\n", + " plot = figure.add_subplot(2, 2, i)\n", + " coros.append(plot_sensor(config, plot, location_names, *args, **kwargs))\n", + " await asyncio.gather(*coros)\n", + " return figure\n", + "\n", + "\n", + "start = widgets.DatePicker(\n", + " description='Start date',\n", + ")\n", + "end = widgets.DatePicker(\n", + " description='End date',\n", + ")\n", + "out = widgets.interactive(plot, collected_after=start, collected_before=end)\n", + "display(out)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "60091fa7d9ea415985ec53937e422b4a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(DatePicker(value=None, description='Start date'), DatePicker(value=None, description='En…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from uuid import UUID\n", + "import ipywidgets as widgets\n", + "from apd.aggregation.analysis import interactable_plot_multiple_charts, configs\n", + "\n", + "location_names = {\n", + " UUID('53998a51-60de-48ae-b71a-5c37cd1455f2'): \"Loft\",\n", + " UUID('1bc63cda-e223-48bc-93c2-c1f651779d69'): \"Living Room\",\n", + " UUID('ea0683de-6772-4678-bfe7-6014f54ffc8e'): \"Office\",\n", + " UUID('5aaa901a-7564-41fb-8eba-50cdd6fe9f80'): \"Outside\",\n", + "}\n", + "\n", + "start = widgets.DatePicker(\n", + " description='Start date',\n", + ")\n", + "end = widgets.DatePicker(\n", + " description='End date',\n", + ")\n", + "\n", + "plot = interactable_plot_multiple_charts(location_names=location_names)\n", + "out = widgets.interactive(plot, collected_after=start, collected_before=end)\n", + "display(out)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "08a4d937037b45bda2298879df7f80b6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(DatePicker(value=None, description='Start date'), DatePicker(value=None, description='En…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import datetime\n", + "import uuid\n", + "import ipywidgets as widgets\n", + "from apd.aggregation.analysis import Config, configs, interactable_plot_multiple_charts, draw_map, get_map_cleaner_for\n", + "from apd.aggregation.database import DataPoint\n", + "from apd.aggregation.utils import merc_x, merc_y\n", + "\n", + "start = widgets.DatePicker(description='Start date')\n", + "end = widgets.DatePicker(description='End date')\n", + "\n", + "def get_literal_data():\n", + " # Get manually entered temperature data, as our particular deployment\n", + " # does not contain data of this shape\n", + " raw_data = {(53.8667, -1.3333): -1, (53.35, -2.2833): 1, (52.45, -1.7333): 3, (51.5, -0.1333): 6, (51.55, -2.5667): 5, (54.9667, -1.6167): -1, (55.9667, -3.2167): -1, (54.7667, -1.5833): 0, (53.7667, -0.3): 1, (53.7667, -3.0167): 0, (51.4833, -3.1833): 4, (53.2667, -3.5167): 2, (52.0833, -2.8): 2, (52.0167, -0.6): 2, (52.6667, 1.2667): 5, (50.4333, -4.9833): 9, (50.35, -4.1167): 10, (50.5167, -2.45): 9, (50.8333, -1.1667): 9, (56.45, -5.4333): 4, (57.5333, -4.05): -2, (54.5167, -3.6167): 3, (53.0833, 0.2667): 4, (51.35, 1.3333): 7, (50.8833, 0.3167): 8, (58.45, -3.1): 3, (50.1, -5.6667): 9, (58.2167, -6.3333): 4, (55.6833, -6.25): 7}\n", + " now = datetime.datetime.now()\n", + " async def points():\n", + " for (coord, temp) in raw_data.items():\n", + " deployment_id = uuid.uuid4()\n", + " yield DataPoint(sensor_name=\"Location\", deployment_id=deployment_id, collected_at=now, data=coord)\n", + " yield DataPoint(sensor_name=\"Temperature\", deployment_id=deployment_id, collected_at=now, data=temp)\n", + " async def deployments(*args, **kwargs):\n", + " yield None, points()\n", + " return deployments\n", + "\n", + "def draw_map_with_gb(plot, x, y, colour):\n", + " # Draw the map and add an explicit coastline\n", + " gb_boundary = [(-2.6653539699999556, 51.617254950000074), (-2.6937556629999335, 51.59617747600004), (-2.71312415299991, 51.58661530200004), (-2.760487433999913, 51.579779364000046), (-2.7980850899999155, 51.56350332200009), (-2.816395636999914, 51.555568752000056), (-2.8587133449999556, 51.546128648000035), (-2.943348761999914, 51.54254791900007), (-2.9562882149999155, 51.54572174700007), (-2.9641007149999155, 51.552801825000074), (-2.969471808999913, 51.559881903000075), (-2.9746801419999542, 51.56297435100004), (-2.984038865999935, 51.55853913000004), (-3.0102432929999168, 51.53803131700005), (-3.0156957669999542, 51.53164297100005), (-3.0737198559999115, 51.50836823100008), (-3.0764867829999503, 51.50775788000004), (-3.088937954999949, 51.505072333000044), (-3.105620897999927, 51.49721914300005), (-3.1317032539999445, 51.48041413000004), (-3.1350805329999503, 51.47630442900004), (-3.1409399079999503, 51.46478913000004), (-3.1453751289999445, 51.45994700700004), (-3.1524145169999542, 51.45718008000006), (-3.1666560539999296, 51.45600006700005), (-3.1723933579999084, 51.45327383000006), (-3.1727188789999445, 51.453111070000034), (-3.160064256999931, 51.43183014500005), (-3.167144334999932, 51.41046784100007), (-3.1848038399999155, 51.39760976800005), (-3.204009568999936, 51.401597398000035), (-3.218861456999946, 51.402777411000045), (-3.289418097999942, 51.38422272300005), (-3.539173956999946, 51.398504950000074), (-3.557443813999953, 51.40509674700007), (-3.5753067699999406, 51.420436916000085), (-3.6047257149999155, 51.44570547100005), (-3.6631973949999406, 51.476223049000055), (-3.6769913399999155, 51.47703685100004), (-3.695423956999946, 51.47150299700007), (-3.717925584999932, 51.478583075000074), (-3.7376195949999556, 51.49087148600006), (-3.748036261999914, 51.50092194200005), (-3.7494197259999282, 51.50535716400009), (-3.747670050999943, 51.507025458000044), (-3.7445369129999335, 51.50763580900008), (-3.741851365999935, 51.50836823100008), (-3.7493383449999556, 51.52806224200003), (-3.7519018219999225, 51.53306712400007), (-3.758941209999932, 51.54677969000005), (-3.770130988999938, 51.56329987200007), (-3.782215949999909, 51.57664622600004), (-3.7902725899999155, 51.58197663000004), (-3.8077286449999406, 51.589178778000075), (-3.8169652989999463, 51.59650299700007), (-3.8326716789999296, 51.61554596600007), (-3.8416235019999476, 51.621527411000045), (-3.8548884759999282, 51.62384674700007), (-3.8867895169999542, 51.62140534100007), (-3.9623917309999115, 51.61562734600005), (-3.9766332669999542, 51.61188385600008), (-3.989979620999918, 51.60651276200008), (-3.998768683999913, 51.60028717700004), (-3.999908006999931, 51.59088776200008), (-3.9922582669999542, 51.58112213700008), (-3.9818009109999366, 51.571600653000075), (-3.974598761999914, 51.56297435100004), (-4.016184048999946, 51.56297435100004), (-4.016102667999917, 51.56037018400008), (-4.0208227199999556, 51.555853583000044), (-4.026519334999932, 51.554022528000075), (-4.029204881999931, 51.55927155200004), (-4.031971808999913, 51.56313711100006), (-4.0385636059999115, 51.56622955900008), (-4.046457485999952, 51.568426825000074), (-4.0531306629999335, 51.569240627000056), (-4.056304490999935, 51.56704336100006), (-4.065581834999932, 51.55756256700005), (-4.070220506999931, 51.555568752000056), (-4.0768123039999296, 51.55695221600007), (-4.087269660999937, 51.56191640800006), (-4.112131313999953, 51.565619208000044), (-4.121652798999946, 51.56598541900007), (-4.132191535999937, 51.56297435100004), (-4.142730272999927, 51.55695221600007), (-4.156809048999946, 51.54629140800006), (-4.1664119129999335, 51.54254791900007), (-4.176503058999913, 51.544256903000075), (-4.18773352799991, 51.54877350500004), (-4.1967667309999115, 51.54938385600008), (-4.200550910999937, 51.538763739000046), (-4.213368292999917, 51.539129950000074), (-4.272450324999909, 51.554754950000074), (-4.2899063789999445, 51.555568752000056), (-4.293324347999942, 51.55914948100008), (-4.29515540299991, 51.56195709800005), (-4.297352667999917, 51.569240627000056), (-4.278309699999909, 51.578192450000074), (-4.280832485999952, 51.58881256700005), (-4.2897029289999296, 51.601548570000034), (-4.2899063789999445, 51.61701080900008), (-4.255767381999931, 51.62384674700007), (-4.252023891999954, 51.62710195500006), (-4.241281704999949, 51.63934967700004), (-4.234730597999942, 51.644964911000045), (-4.228505011999914, 51.63743724200003), (-4.234730597999942, 51.63743724200003), (-4.234730597999942, 51.631293036000045), (-4.2278539699999556, 51.628119208000044), (-4.22101803299995, 51.62384674700007), (-4.1900935539999296, 51.63027578300006), (-4.139027472999942, 51.63231028900009), (-4.0912979809999115, 51.639878648000035), (-4.070220506999931, 51.66229889500005), (-4.0698136059999115, 51.66893138200004), (-4.070383266999954, 51.67430247600004), (-4.07054602799991, 51.67597077000005), (-4.0754288399999155, 51.677801825000074), (-4.087269660999937, 51.668850002000056), (-4.095448370999918, 51.66510651200008), (-4.106841600999928, 51.66425202000005), (-4.146351691999939, 51.66705963700008), (-4.200550910999937, 51.68585846600007), (-4.214955206999946, 51.679673570000034), (-4.293690558999913, 51.67226797100005), (-4.3152970039999445, 51.67747630400004), (-4.342355923999946, 51.69086334800005), (-4.3664444649999155, 51.70848216400009), (-4.379261847999942, 51.72687409100007), (-4.338042772999927, 51.72333405200004), (-4.319976365999935, 51.72483958500004), (-4.310454881999931, 51.733710028000075), (-4.328724738999938, 51.73297760600008), (-4.3471573559999115, 51.73578522300005), (-4.3625382149999155, 51.74286530200004), (-4.371815558999913, 51.754787502000056), (-4.368763800999943, 51.75698476800005), (-4.362904425999943, 51.76386139500005), (-4.358021613999938, 51.773138739000046), (-4.358225063999953, 51.782131252000056), (-4.365101691999939, 51.789048570000034), (-4.3714900379999335, 51.78595612200007), (-4.379261847999942, 51.77529531500005), (-4.384917772999927, 51.77187734600005), (-4.3929744129999335, 51.763739325000074), (-4.399159308999913, 51.76162344000005), (-4.409331834999932, 51.76316966400009), (-4.417876756999931, 51.76788971600007), (-4.426503058999913, 51.77529531500005), (-4.445790167999917, 51.77326080900008), (-4.449330206999946, 51.76630280200004), (-4.441395636999914, 51.75678131700005), (-4.426503058999913, 51.747300523000035), (-4.460764126999948, 51.73578522300005), (-4.4988907539999445, 51.73484935100004), (-4.574208136999914, 51.74115631700005), (-4.603423631999931, 51.73924388200004), (-4.639230923999946, 51.73318105700008), (-4.6453751289999445, 51.732123114000046), (-4.678212042999917, 51.71743398600006), (-4.680287238999938, 51.692694403000075), (-4.689442511999914, 51.69159577000005), (-4.69163977799991, 51.689886786000045), (-4.69163977799991, 51.685980536000045), (-4.693959113999938, 51.67841217700004), (-4.712310350999928, 51.650091864000046), (-4.721424933999913, 51.652044989000046), (-4.734934048999946, 51.65924713700008), (-4.741851365999935, 51.65607330900008), (-4.759185350999928, 51.644964911000045), (-4.8482966789999296, 51.64630768400008), (-4.86351477799991, 51.64411041900007), (-4.878977016999954, 51.63743724200003), (-4.887806769999941, 51.62995026200008), (-4.8957413399999155, 51.621079820000034), (-4.904774542999917, 51.61383698100008), (-4.923695441999939, 51.608628648000035), (-4.931996222999942, 51.59902578300006), (-4.941029425999943, 51.59650299700007), (-4.946034308999913, 51.59760163000004), (-4.956450975999928, 51.602769273000035), (-5.021595831999946, 51.61603424700007), (-5.0457657539999445, 51.62689850500004), (-5.0366104809999115, 51.63743724200003), (-5.0511775379999335, 51.65692780200004), (-5.100493943999936, 51.66469961100006), (-5.119740363999938, 51.67841217700004), (-5.113433397999927, 51.68528880400004), (-5.0366104809999115, 51.67841217700004), (-5.038726365999935, 51.68183014500005), (-5.04133053299995, 51.68939850500004), (-5.043446417999917, 51.692694403000075), (-5.028675910999937, 51.69293854400007), (-5.002552863999938, 51.68740469000005), (-4.988189256999931, 51.68585846600007), (-4.974598761999914, 51.687933661000045), (-4.941029425999943, 51.70014069200005), (-4.892648891999954, 51.706366278000075), (-4.868275519999941, 51.716782945000034), (-4.8580623039999296, 51.71832916900007), (-4.844838019999941, 51.71381256700005), (-4.844838019999941, 51.720038153000075), (-4.873402472999942, 51.73773834800005), (-4.879017706999946, 51.76203034100007), (-4.8625382149999155, 51.78237539300005), (-4.824330206999946, 51.788275458000044), (-4.824330206999946, 51.79572174700007), (-4.836008266999954, 51.790716864000046), (-4.864979620999918, 51.783270575000074), (-4.921294725999928, 51.78001536700003), (-4.933583136999914, 51.77529531500005), (-4.9172257149999155, 51.77533600500004), (-4.905181443999936, 51.771185614000046), (-4.900542772999927, 51.76211172100005), (-4.906239386999914, 51.747300523000035), (-4.8920792309999115, 51.73940664300005), (-4.895659959999932, 51.728176174000055), (-4.9105525379999335, 51.71820709800005), (-4.988189256999931, 51.70685455900008), (-5.009917772999927, 51.706366278000075), (-5.149240688999953, 51.718085028000075), (-5.166900193999936, 51.71381256700005), (-5.156971808999913, 51.69757721600007), (-5.1686091789999296, 51.68891022300005), (-5.1828507149999155, 51.68927643400008), (-5.180653449999909, 51.70014069200005), (-5.180653449999909, 51.706366278000075), (-5.230132615999935, 51.73004791900007), (-5.2495011059999115, 51.733710028000075), (-5.228138800999943, 51.73395416900007), (-5.213937954999949, 51.73574453300006), (-5.202870245999918, 51.74079010600008), (-5.191151495999918, 51.75104401200008), (-5.176828579999949, 51.75967031500005), (-5.1432185539999296, 51.76386139500005), (-5.125965949999909, 51.76850006700005), (-5.110259568999936, 51.778509833000044), (-5.107085740999935, 51.78807200700004), (-5.112294074999909, 51.81317780200004), (-5.113392706999946, 51.82880280200004), (-5.11750240799995, 51.84369538000004), (-5.125884568999936, 51.85602448100008), (-5.139637824999909, 51.86399974200003), (-5.146473761999914, 51.85716380400004), (-5.16437740799995, 51.86676666900007), (-5.2037654289999296, 51.87018463700008), (-5.221587693999936, 51.87767161700003), (-5.2358292309999115, 51.87103913000004), (-5.2914119129999335, 51.86399974200003), (-5.3109431629999335, 51.86399974200003), (-5.304269985999952, 51.867621161000045), (-5.297352667999917, 51.87018463700008), (-5.297352667999917, 51.87767161700003), (-5.300689256999931, 51.882025458000044), (-5.302561001999948, 51.88523997600004), (-5.300160285999937, 51.888332424000055), (-5.2905167309999115, 51.89199453300006), (-5.2905167309999115, 51.898138739000046), (-5.2983292309999115, 51.91095612200007), (-5.288929816999939, 51.91693756700005), (-5.252837693999936, 51.91864655200004), (-5.234201626999948, 51.923041083000044), (-5.204172329999949, 51.942287502000056), (-5.191151495999918, 51.946600653000075), (-5.16038977799991, 51.94944896000004), (-5.1195369129999335, 51.95892975500004), (-5.088042772999927, 51.97601959800005), (-5.085031704999949, 52.00185781500005), (-5.070790167999917, 52.00185781500005), (-5.070790167999917, 52.00804271000004), (-5.082753058999913, 52.01447174700007), (-5.081206834999932, 52.021185614000046), (-5.070220506999931, 52.02635325700004), (-5.053700324999909, 52.028509833000044), (-5.0266007149999155, 52.027411200000074), (-5.015044725999928, 52.02533600500004), (-4.961740688999953, 52.007513739000046), (-4.942534959999932, 52.007473049000055), (-4.913685675999943, 52.014837958000044), (-4.920521613999938, 52.028509833000044), (-4.9016007149999155, 52.02643463700008), (-4.863189256999931, 52.01699453300006), (-4.841420050999943, 52.014837958000044), (-4.83226477799991, 52.01898834800005), (-4.833851691999939, 52.02875397300005), (-4.8382869129999335, 52.04010651200008), (-4.838002081999946, 52.04901764500005), (-4.83039303299995, 52.05292389500005), (-4.796986456999946, 52.05646393400008), (-4.77757727799991, 52.064886786000045), (-4.7631729809999115, 52.075873114000046), (-4.7386775379999335, 52.100816148000035), (-4.720285610999952, 52.113348700000074), (-4.7065323559999115, 52.11347077000005), (-4.673451300999943, 52.09739817900004), (-4.675689256999931, 52.126939195000034), (-4.637521938999953, 52.13849518400008), (-4.513824022999927, 52.13568756700005), (-4.50226803299995, 52.138373114000046), (-4.495757615999935, 52.14350006700005), (-4.490956183999913, 52.150376695000034), (-4.484283006999931, 52.156317450000074), (-4.454701300999943, 52.16205475500004), (-4.4348038399999155, 52.170355536000045), (-4.415394660999937, 52.18154531500005), (-4.385568813999953, 52.20343659100007), (-4.371245897999927, 52.20929596600007), (-4.3547257149999155, 52.212103583000044), (-4.334339972999942, 52.21283600500004), (-4.315825975999928, 52.21629466400003), (-4.197132941999939, 52.279282945000034), (-4.1390681629999335, 52.33022695500006), (-4.10960852799991, 52.365301825000074), (-4.096262173999946, 52.387884833000044), (-4.0873917309999115, 52.430121161000045), (-4.0789688789999445, 52.45302969000005), (-4.067941860999952, 52.47361888200004), (-4.056548631999931, 52.48786041900007), (-4.0618383449999556, 52.49705638200004), (-4.064035610999952, 52.50918203300006), (-4.062570766999954, 52.52098216400003), (-4.056548631999931, 52.52944570500006), (-4.048491990999935, 52.530462958000044), (-4.0266007149999155, 52.52338288000004), (-4.016184048999946, 52.52195872600004), (-3.998768683999913, 52.52594635600008), (-3.9473363919999542, 52.549261786000045), (-3.9473363919999542, 52.556708075000074), (-3.9744766919999392, 52.55654531500005), (-4.025868292999917, 52.545355536000045), (-4.0531306629999335, 52.54242584800005), (-4.068470831999946, 52.550116278000075), (-4.1141251289999445, 52.58860911700003), (-4.125477667999917, 52.60390859600005), (-4.122222459999932, 52.62872955900008), (-4.105946417999917, 52.653509833000044), (-4.0848282539999445, 52.67267487200007), (-4.067128058999913, 52.68024323100008), (-4.063547329999949, 52.68309153900003), (-4.05882727799991, 52.696600653000075), (-4.056548631999931, 52.70066966400003), (-4.052723761999914, 52.70221588700008), (-4.041981574999909, 52.70465729400007), (-4.001088019999941, 52.72410716400003), (-3.988270636999914, 52.73427969000005), (-4.014719204999949, 52.73232656500005), (-4.031971808999913, 52.723944403000075), (-4.048817511999914, 52.721584377000056), (-4.125152147999927, 52.77830638200004), (-4.144357876999948, 52.802801825000074), (-4.149037238999938, 52.81207916900007), (-4.146229620999918, 52.82021719000005), (-4.128895636999914, 52.82363515800006), (-4.117339647999927, 52.83075592700004), (-4.1197810539999296, 52.84625885600008), (-4.127756313999953, 52.86172109600005), (-4.132191535999937, 52.86831289300005), (-4.131988084999932, 52.882473049000055), (-4.129872199999909, 52.88922760600008), (-4.123605923999946, 52.89325592700004), (-4.064035610999952, 52.919175523000035), (-4.071400519999941, 52.921087958000044), (-4.074574347999942, 52.92279694200005), (-4.0776261059999115, 52.926662502000056), (-4.0891007149999155, 52.918850002000056), (-4.100493943999936, 52.914129950000074), (-4.1105850899999155, 52.915676174000055), (-4.118560350999928, 52.926662502000056), (-4.144398566999939, 52.91478099200003), (-4.171620245999918, 52.91347890800006), (-4.228505011999914, 52.919175523000035), (-4.300689256999931, 52.905585028000075), (-4.317290818999936, 52.89935944200005), (-4.337310350999928, 52.89203522300005), (-4.406605597999942, 52.89252350500004), (-4.4272354809999115, 52.885972398000035), (-4.446197068999936, 52.87592194200005), (-4.4816788399999155, 52.850897528000075), (-4.477935350999928, 52.84833405200004), (-4.475493943999936, 52.84414297100005), (-4.491363084999932, 52.83820221600007), (-4.500965949999909, 52.82680898600006), (-4.501332160999937, 52.81391022300005), (-4.4891251289999445, 52.803168036000045), (-4.501942511999914, 52.794989325000074), (-4.509185350999928, 52.791449286000045), (-4.5164688789999445, 52.789496161000045), (-4.5285538399999155, 52.79047272300005), (-4.5424698559999115, 52.80068594000005), (-4.5639542309999115, 52.80524323100008), (-4.583078579999949, 52.81464264500005), (-4.594634568999936, 52.81679922100005), (-4.606516079999949, 52.81509023600006), (-4.61351477799991, 52.81110260600008), (-4.619211391999954, 52.80654531500005), (-4.626332160999937, 52.803168036000045), (-4.648589647999927, 52.79962799700007), (-4.704497850999928, 52.803168036000045), (-4.719309048999946, 52.79751211100006), (-4.733225063999953, 52.78750234600005), (-4.747425910999937, 52.78343333500004), (-4.762847459999932, 52.789496161000045), (-4.752512173999946, 52.79877350500004), (-4.7514542309999115, 52.80320872600004), (-4.755441860999952, 52.80931224200003), (-4.7492569649999155, 52.81427643400008), (-4.734934048999946, 52.83047109600005), (-4.596058722999942, 52.92841217700004), (-4.580962693999936, 52.93349844000005), (-4.562082485999952, 52.93451569200005), (-4.543527798999946, 52.937933661000045), (-4.523996548999946, 52.944240627000056), (-4.443430141999954, 52.98216380400004), (-4.423695441999939, 53.00263092700004), (-4.358225063999953, 53.02846914300005), (-4.349964972999942, 53.04148997600004), (-4.345692511999914, 53.059475002000056), (-4.343861456999946, 53.10106028900003), (-4.340891079999949, 53.11273834800005), (-4.334339972999942, 53.11676666900007), (-4.3276261059999115, 53.11469147300005), (-4.324696417999917, 53.10789622600004), (-4.320668097999942, 53.10150788000004), (-4.312245245999918, 53.109442450000074), (-4.304758266999954, 53.12099844000005), (-4.303618943999936, 53.12531159100007), (-4.263539191999939, 53.15452708500004), (-4.2523494129999335, 53.159409898000035), (-4.234527147999927, 53.16400788000004), (-4.221302863999938, 53.175034898000035), (-4.200550910999937, 53.20099518400008), (-4.17796790299991, 53.21759674700007), (-4.151519334999932, 53.22809479400007), (-4.122222459999932, 53.23346588700008), (-4.0906876289999445, 53.23517487200007), (-4.08234615799995, 53.23354726800005), (-4.074330206999946, 53.23065827000005), (-4.066883917999917, 53.22907135600008), (-4.054107225999928, 53.234361070000034), (-4.032297329999949, 53.24070872600004), (-4.008900519999941, 53.24445221600007), (-3.974598761999914, 53.261786200000074), (-3.8653051419999542, 53.289129950000074), (-3.8312882149999155, 53.289129950000074), (-3.841420050999943, 53.30744049700007), (-3.870757615999935, 53.32562897300005), (-3.8784073559999115, 53.337591864000046), (-3.859974738999938, 53.33633047100005), (-3.840565558999913, 53.33283112200007), (-3.822987433999913, 53.32656484600005), (-3.8101293609999516, 53.31708405200004), (-3.7905167309999115, 53.323431708000044), (-3.7688695949999556, 53.31915924700007), (-3.748199022999927, 53.307806708000044), (-3.7319229809999115, 53.29287344000005), (-3.7162979809999115, 53.28693268400008), (-3.6022029289999296, 53.28888580900008), (-3.5623266269999476, 53.29441966400003), (-3.372059699999909, 53.350897528000075), (-3.33031165299991, 53.35179271000004), (-3.2923884759999282, 53.34052155200004), (-3.2713110019999476, 53.33055247600004), (-3.262074347999942, 53.32050202000005), (-3.250803188999953, 53.312567450000074), (-3.122222459999932, 53.26227448100008), (-3.107533331999946, 53.25189850500004), (-3.0951228509999282, 53.23932526200008), (-3.0877579419999392, 53.23468659100007), (-3.0845434239999463, 53.23859284100007), (-3.0845434239999463, 53.25857168200008), (-3.0845434239999463, 53.275458075000074), (-3.09593665299991, 53.28713613500008), (-3.1111954419999392, 53.302801825000074), (-3.1354060539999296, 53.33380768400008), (-3.171538865999935, 53.36225006700005), (-3.185210740999935, 53.37726471600007), (-3.186350063999953, 53.39276764500005), (-3.175526495999918, 53.40273672100005), (-3.157297329999949, 53.40875885600008), (-3.1146541009999282, 53.41266510600008), (-3.0942276679999168, 53.41738515800006), (-3.058257615999935, 53.434759833000044), (-3.0355525379999335, 53.43374258000006), (-3.0121964179999168, 53.41669342700004), (-2.9529516269999476, 53.323919989000046), (-2.9351293609999516, 53.309475002000056), (-2.9105525379999335, 53.29633209800005), (-2.8814998039999296, 53.288397528000075), (-2.850575324999909, 53.289129950000074), (-2.849598761999914, 53.29120514500005), (-2.848378058999913, 53.29555898600006), (-2.8449600899999155, 53.300116278000075), (-2.837554490999935, 53.302801825000074), (-2.8286026679999168, 53.302435614000046), (-2.813384568999936, 53.297756252000056), (-2.8061417309999115, 53.296576239000046), (-2.789784308999913, 53.29743073100008), (-2.775502081999946, 53.29987213700008), (-2.7481176419999542, 53.30963776200008), (-2.753651495999918, 53.32245514500005), (-2.750884568999936, 53.33161041900007), (-2.743153449999909, 53.33852773600006), (-2.734486456999946, 53.34442780200004), (-2.7261449859999516, 53.34198639500005), (-2.7174373039999296, 53.34271881700005), (-2.708607550999943, 53.346136786000045), (-2.6997777989999463, 53.35179271000004), (-2.7141007149999155, 53.35236237200007), (-2.764393683999913, 53.34516022300005), (-2.775380011999914, 53.341009833000044), (-2.782378709999932, 53.32636139500005), (-2.799794074999909, 53.32103099200003), (-2.810332811999956, 53.32172272300005), (-2.843658006999931, 53.323919989000046), (-2.886463995999918, 53.33356354400007), (-2.924956834999932, 53.35000234600005), (-2.956939256999931, 53.37055084800005), (-2.980824347999942, 53.39276764500005), (-3.096587693999936, 53.54433828300006), (-3.101918097999942, 53.55805084800005), (-3.0994766919999392, 53.57200755400004), (-3.087635870999918, 53.58771393400008), (-3.021839972999942, 53.65281810100004), (-2.968658006999931, 53.69403717700004), (-2.9603572259999282, 53.69757721600007), (-2.9517309239999463, 53.70807526200008), (-2.9114477199999556, 53.725043036000045), (-2.899037238999938, 53.73541901200008), (-2.9848526679999168, 53.73607005400004), (-3.021473761999914, 53.745794989000046), (-3.049183722999942, 53.769517320000034), (-3.056385870999918, 53.80304596600007), (-3.044911261999914, 53.87848541900007), (-3.056630011999914, 53.90615469000005), (-3.040679490999935, 53.923529364000046), (-3.017567511999914, 53.93195221600007), (-2.925689256999931, 53.95270416900007), (-2.909250454999949, 53.95384349200003), (-2.896107550999943, 53.94773997600004), (-2.8885391919999392, 53.94603099200003), (-2.885365363999938, 53.950506903000075), (-2.881988084999932, 53.95652903900003), (-2.874175584999932, 53.96165599200003), (-2.865142381999931, 53.96548086100006), (-2.8579809239999463, 53.96759674700007), (-2.869252081999946, 53.97882721600007), (-2.8344620429999168, 53.99982330900008), (-2.830067511999914, 54.01601797100005), (-2.8475235669999392, 54.00836823100008), (-2.864857550999943, 54.00429922100005), (-2.895497199999909, 54.00234609600005), (-2.900298631999931, 54.00495026200008), (-2.9160863919999542, 54.026556708000044), (-2.91820227799991, 54.03432851800005), (-2.911284959999932, 54.03998444200005), (-2.9007869129999335, 54.044907945000034), (-2.8920792309999115, 54.050116278000075), (-2.872670050999943, 54.071600653000075), (-2.8588761059999115, 54.08100006700005), (-2.826771613999938, 54.08881256700005), (-2.815174933999913, 54.09878164300005), (-2.795969204999949, 54.12518952000005), (-2.8128149079999503, 54.139878648000035), (-2.8364151679999168, 54.16758860900006), (-2.8509415359999366, 54.18463776200008), (-2.854237433999913, 54.19407786700003), (-2.8328751289999445, 54.19904205900008), (-2.810292120999918, 54.21190013200004), (-2.7952367829999503, 54.22947825700004), (-2.795969204999949, 54.24872467700004), (-2.8028051419999542, 54.24872467700004), (-2.806630011999914, 54.233710028000075), (-2.8208715489999463, 54.22174713700008), (-2.850575324999909, 54.20774974200003), (-2.886382615999935, 54.19627513200004), (-2.904652472999942, 54.18764883000006), (-2.9126684239999463, 54.176988023000035), (-2.9203995429999168, 54.16205475500004), (-2.939198370999918, 54.15509674700007), (-2.9842016269999476, 54.15314362200007), (-2.997710740999935, 54.15957265800006), (-3.011341925999943, 54.17413971600007), (-3.017323370999918, 54.19009023600006), (-3.008168097999942, 54.20034414300005), (-3.015370245999918, 54.21190013200004), (-3.024484829999949, 54.221584377000056), (-3.035755988999938, 54.22597890800006), (-3.049183722999942, 54.22207265800006), (-3.044667120999918, 54.208319403000075), (-3.047840949999909, 54.19432200700004), (-3.053537563999953, 54.181301174000055), (-3.056630011999914, 54.17023346600007), (-3.0610245429999168, 54.16193268400008), (-3.090728318999936, 54.13947174700007), (-3.10765540299991, 54.11855703300006), (-3.117909308999913, 54.10883209800005), (-3.145253058999913, 54.100043036000045), (-3.147450324999909, 54.08869049700007), (-3.1443985669999392, 54.07514069200005), (-3.1453751289999445, 54.063788153000075), (-3.1805313789999445, 54.09284088700008), (-3.1897680329999503, 54.09788646000004), (-3.2057185539999296, 54.098537502000056), (-3.219553188999953, 54.100775458000044), (-3.2311091789999296, 54.105129299000055), (-3.240956183999913, 54.11212799700007), (-3.2381078769999476, 54.12759023600006), (-3.232533331999946, 54.14468008000006), (-3.233143683999913, 54.15916575700004), (-3.248402472999942, 54.16681549700007), (-3.248402472999942, 54.17365143400008), (-3.215199347999942, 54.17983633000006), (-3.206776495999918, 54.20892975500004), (-3.2090551419999542, 54.24274323100008), (-3.207386847999942, 54.263006903000075), (-3.2231339179999168, 54.25763580900008), (-3.231353318999936, 54.24721914300005), (-3.240956183999913, 54.22207265800006), (-3.232167120999918, 54.20254140800006), (-3.247141079999949, 54.19794342700004), (-3.270130988999938, 54.19912344000005), (-3.2860001289999445, 54.19721100500004), (-3.306792772999927, 54.19188060100004), (-3.3285212879999335, 54.204738674000055), (-3.3644913399999155, 54.24249909100007), (-3.394195115999935, 54.26439036700003), (-3.407378709999932, 54.27773672100005), (-3.412912563999953, 54.29376862200007), (-3.41038977799991, 54.30145905200004), (-3.405995245999918, 54.30963776200008), (-3.4041235019999476, 54.31854889500005), (-3.4114477199999556, 54.33274974200003), (-3.4134415359999366, 54.342962958000044), (-3.4163305329999503, 54.344916083000044), (-3.440174933999913, 54.35175202000005), (-3.474273240999935, 54.39350006700005), (-3.497710740999935, 54.40582916900007), (-3.5918676419999542, 54.48309967700004), (-3.608143683999913, 54.488267320000034), (-3.613189256999931, 54.49164459800005), (-3.6236873039999296, 54.50608958500004), (-3.6341853509999282, 54.512884833000044), (-3.6268204419999392, 54.520412502000056), (-3.616200324999909, 54.52757396000004), (-3.61156165299991, 54.52993398600006), (-3.5903214179999168, 54.56464264500005), (-3.5638321609999366, 54.64276764500005), (-3.5301407539999445, 54.68805573100008), (-3.5160212879999335, 54.712876695000034), (-3.5091853509999282, 54.72166575700004), (-3.500721808999913, 54.72597890800006), (-3.478871222999942, 54.730902411000045), (-3.4681290359999366, 54.73529694200005), (-3.455433722999942, 54.745021877000056), (-3.439564581999946, 54.76146067900004), (-3.4309789699999556, 54.780462958000044), (-3.440174933999913, 54.79743073100008), (-3.4075414699999556, 54.85602448100008), (-3.3879288399999155, 54.88336823100008), (-3.3644913399999155, 54.89980703300006), (-3.3449600899999155, 54.90253327000005), (-3.3333634109999366, 54.89728424700007), (-3.3227432929999168, 54.889878648000035), (-3.3064672519999476, 54.88617584800005), (-3.295725063999953, 54.88690827000005), (-3.254628058999913, 54.89980703300006), (-3.267323370999918, 54.905503648000035), (-3.317290818999936, 54.92031484600005), (-3.2914932929999168, 54.93667226800005), (-3.276519334999932, 54.943426825000074), (-3.213612433999913, 54.954413153000075), (-3.2010391919999392, 54.95221588700008), (-3.1936742829999503, 54.94863515800006), (-3.1879776679999168, 54.94448476800005), (-3.1801651679999168, 54.94082265800006), (-3.14281165299991, 54.93353913000004), (-3.122792120999918, 54.93268463700008), (-3.0395401679999168, 54.94717031500005), (-3.021839972999942, 54.954413153000075), (-3.090728318999936, 54.954413153000075), (-3.090728318999936, 54.96124909100007), (-3.0715225899999155, 54.96312083500004), (-3.0562231109999516, 54.968817450000074), (-3.040923631999931, 54.97247955900008), (-3.021839972999942, 54.968085028000075), (-3.021839972999942, 54.97553131700005), (-3.0462947259999282, 54.982123114000046), (-3.0502913779999403, 54.981510325000045), (-3.1354060539999296, 54.968085028000075), (-3.453846808999913, 54.981756903000075), (-3.470692511999914, 54.984442450000074), (-3.486236131999931, 54.989488023000035), (-3.501047329999949, 54.99249909100007), (-3.515288865999935, 54.98920319200005), (-3.5123591789999296, 54.98712799700007), (-3.511463995999918, 54.98688385600008), (-3.510894334999932, 54.985988674000055), (-3.5091853509999282, 54.981756903000075), (-3.5260310539999296, 54.97711823100008), (-3.5418595039999445, 54.98065827000005), (-3.57054602799991, 54.995428778000075), (-3.583607550999943, 54.968085028000075), (-3.5756729809999115, 54.95734284100007), (-3.5706274079999503, 54.937567450000074), (-3.5687556629999335, 54.916001695000034), (-3.57054602799991, 54.89980703300006), (-3.581695115999935, 54.88361237200007), (-3.598378058999913, 54.87799713700008), (-3.691761847999942, 54.88320547100005), (-3.7176407539999445, 54.880845445000034), (-3.739247199999909, 54.859808661000045), (-3.8101293609999516, 54.86627838700008), (-3.8078507149999155, 54.86107005400004), (-3.806792772999927, 54.86090729400007), (-3.803334113999938, 54.85887278900003), (-3.8123673169999392, 54.855169989000046), (-3.8198136059999115, 54.855902411000045), (-3.826079881999931, 54.85993073100008), (-3.8312882149999155, 54.86627838700008), (-3.819976365999935, 54.878566799000055), (-3.815052863999938, 54.87714264500005), (-3.8101293609999516, 54.87250397300005), (-3.8116348949999406, 54.88003164300005), (-3.813221808999913, 54.88312409100007), (-3.8169652989999463, 54.88617584800005), (-3.828846808999913, 54.874986070000034), (-3.8443090489999463, 54.86627838700008), (-3.839751756999931, 54.855902411000045), (-3.8374731109999516, 54.851996161000045), (-3.844105597999942, 54.85097890800006), (-3.8578995429999168, 54.84454987200007), (-3.823841925999943, 54.82469310100004), (-3.833607550999943, 54.82005442900004), (-3.885731574999909, 54.80646393400008), (-3.9641820949999556, 54.771918036000045), (-4.011708136999914, 54.76821523600006), (-4.042876756999931, 54.76947663000004), (-4.042876756999931, 54.77692291900007), (-4.046783006999931, 54.77802155200004), (-4.050200975999928, 54.778550523000035), (-4.053334113999938, 54.77997467700004), (-4.055775519999941, 54.782538153000075), (-4.05296790299991, 54.78546784100007), (-4.050160285999937, 54.78900788000004), (-4.049712693999936, 54.78998444200005), (-4.051747199999909, 54.800034898000035), (-4.0477188789999445, 54.81305573100008), (-4.049956834999932, 54.82322825700004), (-4.063588019999941, 54.82684967700004), (-4.064035610999952, 54.83152903900003), (-4.078602667999917, 54.82412344000005), (-4.09007727799991, 54.809759833000044), (-4.093495245999918, 54.792669989000046), (-4.083851691999939, 54.77692291900007), (-4.122954881999931, 54.77301666900007), (-4.173939581999946, 54.792303778000075), (-4.209136522999927, 54.826239325000074), (-4.200550910999937, 54.86627838700008), (-4.215402798999946, 54.861029364000046), (-4.2397354809999115, 54.843003648000035), (-4.255767381999931, 54.838324286000045), (-4.2707413399999155, 54.83942291900007), (-4.345285610999952, 54.86017487200007), (-4.3569229809999115, 54.86554596600007), (-4.3656306629999335, 54.87250397300005), (-4.375152147999927, 54.88690827000005), (-4.379872199999909, 54.89789459800005), (-4.386789516999954, 54.90477122600004), (-4.402902798999946, 54.90729401200008), (-4.409006313999953, 54.90302155200004), (-4.416818813999953, 54.89280833500004), (-4.423573370999918, 54.88035716400003), (-4.426503058999913, 54.86945221600007), (-4.4172257149999155, 54.84593333500004), (-4.4094132149999155, 54.831244208000044), (-4.402902798999946, 54.82469310100004), (-4.386708136999914, 54.82416413000004), (-4.372425910999937, 54.82184479400007), (-4.35960852799991, 54.81663646000004), (-4.347645636999914, 54.80731842700004), (-4.344471808999913, 54.79450104400007), (-4.353179490999935, 54.78310781500005), (-4.358143683999913, 54.77098216400003), (-4.343861456999946, 54.75641510600008), (-4.356516079999949, 54.741888739000046), (-4.353260870999918, 54.72089264500005), (-4.348133917999917, 54.70197174700007), (-4.3547257149999155, 54.693793036000045), (-4.360340949999909, 54.69159577000005), (-4.365305141999954, 54.68695709800005), (-4.371896938999953, 54.68227773600006), (-4.382394985999952, 54.68008047100005), (-4.405262824999909, 54.682074286000045), (-4.426503058999913, 54.687567450000074), (-4.4518123039999296, 54.69879791900007), (-4.46117102799991, 54.701239325000074), (-4.4967341789999296, 54.70062897300005), (-4.505604620999918, 54.70465729400007), (-4.563628709999932, 54.75641510600008), (-4.596669074999909, 54.77529531500005), (-4.714466925999943, 54.81785716400003), (-4.759592251999948, 54.82534414300005), (-4.781076626999948, 54.83307526200008), (-4.799631313999953, 54.86127350500004), (-4.821034308999913, 54.86664459800005), (-4.859120245999918, 54.86627838700008), (-4.88304602799991, 54.86009349200003), (-4.905873175999943, 54.84979889500005), (-4.925770636999914, 54.83738841400003), (-4.941029425999943, 54.82469310100004), (-4.9496150379999335, 54.81582265800006), (-4.953684048999946, 54.81000397300005), (-4.954823370999918, 54.804754950000074), (-4.954701300999943, 54.79743073100008), (-4.952870245999918, 54.78896719000005), (-4.9479060539999296, 54.777329820000034), (-4.940256313999953, 54.76703522300005), (-4.930165167999917, 54.76264069200005), (-4.923247850999928, 54.75185781500005), (-4.911936001999948, 54.728216864000046), (-4.8959854809999115, 54.70453522300005), (-4.867258266999954, 54.69013092700004), (-4.866932745999918, 54.68146393400008), (-4.872141079999949, 54.663316148000035), (-4.872425910999937, 54.65403880400004), (-4.872059699999909, 54.64923737200007), (-4.859120245999918, 54.63296133000006), (-4.880604620999918, 54.63621653900003), (-4.923491990999935, 54.649725653000075), (-4.944081183999913, 54.652777411000045), (-4.953684048999946, 54.65973541900007), (-4.959868943999936, 54.67552317900004), (-4.958973761999914, 54.69196198100008), (-4.947255011999914, 54.701239325000074), (-4.954823370999918, 54.707464911000045), (-4.958892381999931, 54.714056708000044), (-4.959055141999954, 54.72093333500004), (-4.954701300999943, 54.728501695000034), (-4.973378058999913, 54.729722398000035), (-4.981556769999941, 54.731634833000044), (-4.988189256999931, 54.73529694200005), (-4.992665167999917, 54.74433014500005), (-4.997059699999909, 54.75836823100008), (-5.003285285999937, 54.77130768400008), (-5.0130102199999556, 54.77692291900007), (-5.033192511999914, 54.782416083000044), (-5.1282445949999556, 54.848944403000075), (-5.157134568999936, 54.87909577000005), (-5.175526495999918, 54.91461823100008), (-5.180653449999909, 54.954413153000075), (-5.177601691999939, 54.99054596600007), (-5.170806443999936, 55.008693752000056), (-5.156727667999917, 55.01654694200005), (-5.1356095039999445, 55.01585521000004), (-5.124582485999952, 55.016791083000044), (-5.119740363999938, 55.01992422100005), (-5.115142381999931, 55.03156159100007), (-5.105213995999918, 55.02619049700007), (-5.095529751999948, 55.01508209800005), (-5.091867641999954, 55.00971100500004), (-5.076893683999913, 54.99555084800005), (-5.069488084999932, 54.986029364000046), (-5.064564581999946, 54.97553131700005), (-5.0637914699999556, 54.96458567900004), (-5.065256313999953, 54.940334377000056), (-5.06086178299995, 54.93113841400003), (-5.0475154289999296, 54.92031484600005), (-5.030995245999918, 54.911322333000044), (-5.013091600999928, 54.90961334800005), (-4.9955948559999115, 54.92031484600005), (-4.992298956999946, 54.924261786000045), (-4.988189256999931, 54.927720445000034), (-4.988189256999931, 54.93455638200004), (-5.0240779289999296, 54.97638580900008), (-5.029774542999917, 54.98550039300005), (-5.032500779999907, 54.99371979400007), (-5.033029751999948, 54.99526601800005), (-5.047027147999927, 55.01508209800005), (-5.0502823559999115, 55.02680084800005), (-5.0496720039999445, 55.04897695500006), (-5.047596808999913, 55.05573151200008), (-5.043446417999917, 55.06427643400008), (-5.0257869129999335, 55.08869049700007), (-5.018950975999928, 55.10224030200004), (-5.016184048999946, 55.12262604400007), (-5.007801886999914, 55.14118073100008), (-4.988270636999914, 55.15265534100007), (-4.947255011999914, 55.16791413000004), (-4.882394985999952, 55.21857330900008), (-4.877552863999938, 55.22089264500005), (-4.867258266999954, 55.22247955900008), (-4.865305141999954, 55.22565338700008), (-4.865589972999942, 55.236314195000034), (-4.864816860999952, 55.24135976800005), (-4.841949022999927, 55.275091864000046), (-4.838002081999946, 55.28400299700007), (-4.8372289699999556, 55.293850002000056), (-4.839751756999931, 55.31557851800005), (-4.838002081999946, 55.32501862200007), (-4.832508917999917, 55.33112213700008), (-4.7992244129999335, 55.354722398000035), (-4.781076626999948, 55.36351146000004), (-4.773101365999935, 55.36937083500004), (-4.767160610999952, 55.37905508000006), (-4.758778449999909, 55.40228913000004), (-4.7492569649999155, 55.413763739000046), (-4.71703040299991, 55.43048737200007), (-4.650502081999946, 55.448472398000035), (-4.626332160999937, 55.468410549000055), (-4.617787238999938, 55.49559153900003), (-4.626779751999948, 55.51972077000005), (-4.6507869129999335, 55.53705475500004), (-4.687163865999935, 55.544134833000044), (-4.66624915299991, 55.562201239000046), (-4.666493292999917, 55.56329987200007), (-4.6711319649999155, 55.584418036000045), (-4.692738410999937, 55.60521067900004), (-4.7219945949999556, 55.619208075000074), (-4.776519334999932, 55.632879950000074), (-4.808745897999927, 55.63361237200007), (-4.818104620999918, 55.63719310100004), (-4.810617641999954, 55.646551825000074), (-4.810617641999954, 55.653998114000046), (-4.868560350999928, 55.67560455900008), (-4.900990363999938, 55.69232819200005), (-4.920521613999938, 55.70856354400007), (-4.876332160999937, 55.735256252000056), (-4.861073370999918, 55.756740627000056), (-4.865305141999954, 55.79047272300005), (-4.8717341789999296, 55.802435614000046), (-4.8777970039999445, 55.81102122600004), (-4.882720506999931, 55.82135651200008), (-4.888661261999914, 55.864528713000084), (-4.888824022999927, 55.865301825000074), (-4.892648891999954, 55.89288971600007), (-4.886463995999918, 55.91966380400004), (-4.872141079999949, 55.937201239000046), (-4.849354620999918, 55.94822825700004), (-4.818104620999918, 55.95563385600008), (-4.799387173999946, 55.957912502000056), (-4.7857966789999296, 55.95697663000004), (-4.722320115999935, 55.94009023600006), (-4.705433722999942, 55.93846263200004), (-4.693959113999938, 55.94135163000004), (-4.6725154289999296, 55.93378327000005), (-4.505970831999946, 55.91909414300005), (-4.4816788399999155, 55.92829010600008), (-4.590606248999961, 55.941514390000066), (-4.630034959999932, 55.94627513200004), (-4.673451300999943, 55.96185944200005), (-4.724517381999931, 55.99835846600007), (-4.765044725999928, 56.007066148000035), (-4.78343665299991, 56.017645575000074), (-4.7992244129999335, 56.030951239000046), (-4.810617641999954, 56.04376862200007), (-4.8237198559999115, 56.07367584800005), (-4.824330206999946, 56.07851797100005), (-4.8391820949999556, 56.08063385600008), (-4.844309048999946, 56.07298411700003), (-4.843739386999914, 56.06297435100004), (-4.837554490999935, 56.05060455900008), (-4.790150519999941, 56.010199286000045), (-4.778920050999943, 55.99209219000005), (-4.785308397999927, 55.984035549000055), (-4.803618943999936, 55.982082424000055), (-4.828033006999931, 55.98232656500005), (-4.851551886999914, 55.98802317900004), (-4.862294074999909, 56.00214264500005), (-4.865386522999927, 56.02020905200004), (-4.866851365999935, 56.05833567900004), (-4.865386522999927, 56.06671784100007), (-4.826324022999927, 56.124212958000044), (-4.755441860999952, 56.188381252000056), (-4.750884568999936, 56.20270416900007), (-4.755523240999935, 56.20652903900003), (-4.7662654289999296, 56.20209381700005), (-4.7799373039999296, 56.191473700000074), (-4.837269660999937, 56.12441640800006), (-4.851673956999946, 56.112616278000075), (-4.873117641999954, 56.11200592700004), (-4.880604620999918, 56.11985911700003), (-4.878977016999954, 56.15053945500006), (-4.883168097999942, 56.16400788000004), (-4.893544074999909, 56.174261786000045), (-4.9070938789999445, 56.177069403000075), (-4.920521613999938, 56.16791413000004), (-4.909087693999936, 56.14996979400007), (-4.895253058999913, 56.11473216400003), (-4.8862198559999115, 56.08038971600007), (-4.889149542999917, 56.06484609600005), (-4.901926235999952, 56.06191640800006), (-4.904367641999954, 56.054348049000055), (-4.900054490999935, 56.03412506700005), (-4.900054490999935, 56.01459381700005), (-4.898019985999952, 56.001166083000044), (-4.892648891999954, 55.98973216400003), (-4.906402147999927, 55.98574453300006), (-4.921457485999952, 55.98867422100005), (-4.937489386999914, 55.993841864000046), (-4.954701300999943, 55.99656810100004), (-4.954701300999943, 55.98973216400003), (-4.942005988999938, 55.986314195000034), (-4.928863084999932, 55.98114655200004), (-4.918446417999917, 55.97333405200004), (-4.913685675999943, 55.96185944200005), (-4.917388475999928, 55.94745514500005), (-4.9272354809999115, 55.93768952000005), (-4.9387100899999155, 55.92963288000004), (-4.947255011999914, 55.92084381700005), (-4.952137824999909, 55.90912506700005), (-4.954986131999931, 55.89935944200005), (-4.95921790299991, 55.89012278900003), (-4.96898352799991, 55.87986888200004), (-4.983143683999913, 55.87103913000004), (-4.994740363999938, 55.86981842700004), (-5.026356574999909, 55.87372467700004), (-5.0424698559999115, 55.884751695000034), (-5.056752081999946, 55.91030508000006), (-5.0668025379999335, 55.938788153000075), (-5.070790167999917, 55.958685614000046), (-5.1108292309999115, 55.98895905200004), (-5.116037563999953, 56.00169505400004), (-5.123605923999946, 56.00991445500006), (-5.139637824999909, 56.00275299700007), (-5.123768683999913, 55.986314195000034), (-5.085682745999918, 55.93187083500004), (-5.078236456999946, 55.91095612200007), (-5.086537238999938, 55.901271877000056), (-5.105620897999927, 55.90497467700004), (-5.171538865999935, 55.935532945000034), (-5.180653449999909, 55.948431708000044), (-5.180653449999909, 55.96930573100008), (-5.190825975999928, 55.96173737200007), (-5.1996150379999335, 55.948553778000075), (-5.2057185539999296, 55.93451569200005), (-5.207915818999936, 55.92462799700007), (-5.212635870999918, 55.91714101800005), (-5.242054816999939, 55.89288971600007), (-5.218129035999937, 55.86469147300005), (-5.208159959999932, 55.849269924000055), (-5.201079881999931, 55.83148834800005), (-5.2193904289999296, 55.83144765800006), (-5.2631729809999115, 55.845770575000074), (-5.296701626999948, 55.85268789300005), (-5.307118292999917, 55.86041901200008), (-5.313384568999936, 55.88544342700004), (-5.319325324999909, 55.889105536000045), (-5.327219204999949, 55.89154694200005), (-5.3348282539999445, 55.89667389500005), (-5.3382869129999335, 55.90375397300005), (-5.3391007149999155, 55.91303131700005), (-5.3382869129999335, 55.93138255400004), (-5.336089647999927, 55.93919505400004), (-5.326161261999914, 55.95026276200008), (-5.323963995999918, 55.958685614000046), (-5.325754360999952, 55.967230536000045), (-5.3382869129999335, 55.99656810100004), (-5.313628709999932, 56.01235586100006), (-5.204497850999928, 56.11945221600007), (-5.146473761999914, 56.13312409100007), (-5.104603644999941, 56.15151601800005), (-5.0949600899999155, 56.15737539300005), (-5.0594376289999445, 56.203111070000034), (-5.043446417999917, 56.21629466400003), (-5.013295050999943, 56.22760651200008), (-4.974964972999942, 56.23700592700004), (-4.9400935539999296, 56.25141022300005), (-4.920521613999938, 56.277777411000045), (-4.938099738999938, 56.27098216400003), (-4.975087042999917, 56.24799225500004), (-4.991932745999918, 56.24298737200007), (-5.0327042309999115, 56.24115631700005), (-5.049549933999913, 56.23704661700003), (-5.064564581999946, 56.22931549700007), (-5.0754288399999155, 56.21698639500005), (-5.099436001999948, 56.18195221600007), (-5.1088761059999115, 56.174709377000056), (-5.228138800999943, 56.12921784100007), (-5.3109431629999335, 56.05805084800005), (-5.319935675999943, 56.05491771000004), (-5.338042772999927, 56.05410390800006), (-5.345692511999914, 56.051214911000045), (-5.345285610999952, 56.046128648000035), (-5.350209113999938, 56.03192780200004), (-5.356353318999936, 56.01976146000004), (-5.359364386999914, 56.020738023000035), (-5.3686417309999115, 56.009426174000055), (-5.390288865999935, 56.00568268400008), (-5.415028449999909, 56.00690338700008), (-5.43382727799991, 56.010199286000045), (-5.434559699999909, 56.014960028000075), (-5.434722459999932, 56.02362702000005), (-5.437123175999943, 56.03001536700003), (-5.444406704999949, 56.02757396000004), (-5.4479060539999296, 56.02228424700007), (-5.448231574999909, 56.016058661000045), (-5.447621222999942, 56.009426174000055), (-5.454986131999931, 55.95563385600008), (-5.45140540299991, 55.95343659100007), (-5.436431443999936, 55.94896067900004), (-5.430775519999941, 55.94818756700005), (-5.420806443999936, 55.92829010600008), (-5.416737433999913, 55.91681549700007), (-5.416005011999914, 55.907416083000044), (-5.4125056629999335, 55.899603583000044), (-5.400380011999914, 55.89288971600007), (-5.400380011999914, 55.886704820000034), (-5.407215949999909, 55.886704820000034), (-5.407215949999909, 55.87986888200004), (-5.402943488999938, 55.87872955900008), (-5.39289303299995, 55.87372467700004), (-5.3976944649999155, 55.87156810100004), (-5.402495897999927, 55.868353583000044), (-5.407215949999909, 55.86627838700008), (-5.35179602799991, 55.83242422100005), (-5.326771613999938, 55.808579820000034), (-5.317779100999928, 55.78302643400008), (-5.324574347999942, 55.769232489000046), (-5.3385310539999296, 55.76264069200005), (-5.372425910999937, 55.75641510600008), (-5.3875626289999445, 55.75031159100007), (-5.433461066999939, 55.72101471600007), (-5.4445694649999155, 55.71161530200004), (-5.4539688789999445, 55.70058828300006), (-5.46117102799991, 55.68813711100006), (-5.463612433999913, 55.67983633000006), (-5.466175910999937, 55.662176825000074), (-5.468617316999939, 55.653998114000046), (-5.490101691999939, 55.644598700000074), (-5.488270636999914, 55.640326239000046), (-5.484283006999931, 55.63572825700004), (-5.482289191999939, 55.632879950000074), (-5.4838761059999115, 55.61005280200004), (-5.474761522999927, 55.603949286000045), (-5.462635870999918, 55.60203685100004), (-5.454986131999931, 55.59194570500006), (-5.461089647999927, 55.57880280200004), (-5.476918097999942, 55.57489655200004), (-5.488758917999917, 55.56907786700003), (-5.482289191999939, 55.55027903900003), (-5.503529425999943, 55.52651601800005), (-5.509632941999939, 55.516791083000044), (-5.5106095039999445, 55.51146067900004), (-5.509632941999939, 55.49258047100005), (-5.5109757149999155, 55.484442450000074), (-5.514271613999938, 55.48387278900003), (-5.5187882149999155, 55.48517487200007), (-5.523264126999948, 55.48265208500004), (-5.545521613999938, 55.44916413000004), (-5.561512824999909, 55.435532945000034), (-5.5846248039999296, 55.427435614000046), (-5.5846248039999296, 55.421210028000075), (-5.572132941999939, 55.422308661000045), (-5.562082485999952, 55.41986725500004), (-5.553089972999942, 55.41453685100004), (-5.543690558999913, 55.40692780200004), (-5.527455206999946, 55.38434479400007), (-5.5266820949999556, 55.38027578300006), (-5.5149633449999556, 55.37368398600006), (-5.525054490999935, 55.358628648000035), (-5.557972785999937, 55.33185455900008), (-5.574370897999927, 55.32200755400004), (-5.594105597999942, 55.31313711100006), (-5.616281704999949, 55.30658600500004), (-5.6399633449999556, 55.303900458000044), (-5.649525519999941, 55.30516185100004), (-5.669097459999932, 55.31085846600007), (-5.6808975899999155, 55.31134674700007), (-5.691395636999914, 55.308579820000034), (-5.714019334999932, 55.29913971600007), (-5.725575324999909, 55.29706452000005), (-5.7545466789999296, 55.29734935100004), (-5.772287563999953, 55.30125560100004), (-5.782866990999935, 55.31354401200008), (-5.794667120999918, 55.35639069200005), (-5.796701626999948, 55.37909577000005), (-5.7914119129999335, 55.39862702000005), (-5.763417120999918, 55.41205475500004), (-5.725412563999953, 55.437567450000074), (-5.715646938999953, 55.44790273600006), (-5.7152400379999335, 55.46889883000006), (-5.720122850999928, 55.491522528000075), (-5.7219132149999155, 55.51386139500005), (-5.707753058999913, 55.54336172100005), (-5.712066209999932, 55.55072663000004), (-5.718861456999946, 55.55731842700004), (-5.721831834999932, 55.56460195500006), (-5.718129035999937, 55.57575104400007), (-5.694488084999932, 55.605536200000074), (-5.6733292309999115, 55.640611070000034), (-5.6694229809999115, 55.66071198100008), (-5.6808975899999155, 55.67446523600006), (-5.626535610999952, 55.70062897300005), (-5.61945553299995, 55.71198151200008), (-5.613189256999931, 55.725775458000044), (-5.5982966789999296, 55.74298737200007), (-5.581206834999932, 55.75763580900008), (-5.5678604809999115, 55.76386139500005), (-5.539173956999946, 55.77094147300005), (-5.504628058999913, 55.78937409100007), (-5.4735001289999445, 55.815659898000035), (-5.454986131999931, 55.845770575000074), (-5.551747199999909, 55.783636786000045), (-5.587473110999952, 55.76715729400007), (-5.599436001999948, 55.76422760600008), (-5.6126195949999556, 55.76386139500005), (-5.60578365799995, 55.77684153900003), (-5.6332087879999335, 55.78278229400007), (-5.64671790299991, 55.78750234600005), (-5.66038977799991, 55.79734935100004), (-5.667958136999914, 55.81102122600004), (-5.669016079999949, 55.83783600500004), (-5.67406165299991, 55.845770575000074), (-5.631988084999932, 55.88178131700005), (-5.625599738999938, 55.889837958000044), (-5.61937415299991, 55.90314362200007), (-5.6043595039999445, 55.91364166900007), (-5.586293097999942, 55.92332591400003), (-5.571034308999913, 55.93451569200005), (-5.593495245999918, 55.92796458500004), (-5.6275935539999296, 55.90534088700008), (-5.6537979809999115, 55.89760976800005), (-5.671701626999948, 55.88690827000005), (-5.6808975899999155, 55.886704820000034), (-5.687977667999917, 55.89337799700007), (-5.694162563999953, 55.90497467700004), (-5.696400519999941, 55.91596100500004), (-5.586822068999936, 56.01203034100007), (-5.57843990799995, 56.02448151200008), (-5.5826716789999296, 56.028957424000055), (-5.576649542999917, 56.032538153000075), (-5.571034308999913, 56.037543036000045), (-5.583892381999931, 56.040716864000046), (-5.596424933999913, 56.036810614000046), (-5.609852667999917, 56.03001536700003), (-5.625599738999938, 56.02448151200008), (-5.6317032539999445, 56.005926825000074), (-5.674875454999949, 55.977728583000044), (-5.67406165299991, 55.95563385600008), (-5.690785285999937, 55.93764883000006), (-5.694488084999932, 55.93451569200005), (-5.704497850999928, 55.936753648000035), (-5.707508917999917, 55.942572333000044), (-5.705881313999953, 55.949652411000045), (-5.701975063999953, 55.95563385600008), (-5.696441209999932, 55.98216380400004), (-5.659901495999918, 56.02326080900008), (-5.5846248039999296, 56.08466217700004), (-5.5815323559999115, 56.08828359600005), (-5.580067511999914, 56.09292226800005), (-5.5774633449999556, 56.096991278000075), (-5.571034308999913, 56.09902578300006), (-5.564605272999927, 56.098089911000045), (-5.556548631999931, 56.09589264500005), (-5.550689256999931, 56.09349192900004), (-5.550526495999918, 56.09218984600005), (-5.547840949999909, 56.09003327000005), (-5.5394587879999335, 56.08685944200005), (-5.531605597999942, 56.08633047100005), (-5.530100063999953, 56.09218984600005), (-5.534738735999952, 56.098537502000056), (-5.5414119129999335, 56.10248444200005), (-5.5475154289999296, 56.10488515800006), (-5.550526495999918, 56.10643138200004), (-5.55695553299995, 56.12221914300005), (-5.558705206999946, 56.13080475500004), (-5.554676886999914, 56.13739655200004), (-5.522531704999949, 56.16575755400004), (-5.515736456999946, 56.174709377000056), (-5.509632941999939, 56.188381252000056), (-5.5399063789999445, 56.18341705900008), (-5.562489386999914, 56.16791413000004), (-5.5826716789999296, 56.15058014500005), (-5.60578365799995, 56.139960028000075), (-5.599354620999918, 56.160589911000045), (-5.586415167999917, 56.18113841400003), (-5.569406704999949, 56.20026276200008), (-5.550526495999918, 56.21629466400003), (-5.5594376289999445, 56.22955963700008), (-5.547230597999942, 56.24017975500004), (-5.52562415299991, 56.247259833000044), (-5.50617428299995, 56.24982330900008), (-5.494740363999938, 56.253119208000044), (-5.4928279289999296, 56.26040273600006), (-5.4992569649999155, 56.267645575000074), (-5.512684699999909, 56.27094147300005), (-5.554269985999952, 56.26349518400008), (-5.5631404289999296, 56.26032135600008), (-5.572621222999942, 56.25385163000004), (-5.58234615799995, 56.24876536700003), (-5.592152472999942, 56.24982330900008), (-5.5980525379999335, 56.25861237200007), (-5.595570441999939, 56.26992422100005), (-5.5846248039999296, 56.29075755400004), (-5.57258053299995, 56.32807038000004), (-5.56273352799991, 56.341050523000035), (-5.543690558999913, 56.352850653000075), (-5.525217251999948, 56.34662506700005), (-5.498199022999927, 56.34833405200004), (-5.4481095039999445, 56.35968659100007), (-5.4481095039999445, 56.36591217700004), (-5.4721573559999115, 56.364935614000046), (-5.515370245999918, 56.35683828300006), (-5.5375056629999335, 56.35968659100007), (-5.517323370999918, 56.39276764500005), (-5.509632941999939, 56.40062083500004), (-5.498931443999936, 56.404730536000045), (-5.486073370999918, 56.40810781500005), (-5.4780167309999115, 56.41290924700007), (-5.482289191999939, 56.421128648000035), (-5.457020636999914, 56.44086334800005), (-5.423573370999918, 56.45001862200007), (-5.322865363999938, 56.45498281500005), (-5.242054816999939, 56.44220612200007), (-5.208729620999918, 56.44684479400007), (-5.18187415299991, 56.45966217700004), (-5.118519660999937, 56.50775788000004), (-5.085682745999918, 56.54877350500004), (-5.064564581999946, 56.56513092700004), (-5.086537238999938, 56.55849844000005), (-5.099598761999914, 56.54364655200004), (-5.1105850899999155, 56.52586497600004), (-5.125965949999909, 56.51048411700003), (-5.166900193999936, 56.49005768400008), (-5.190174933999913, 56.46865469000005), (-5.201079881999931, 56.462103583000044), (-5.243763800999943, 56.45921458500004), (-5.350168423999946, 56.47296784100007), (-5.378081834999932, 56.458970445000034), (-5.394276495999918, 56.46548086100006), (-5.4105525379999335, 56.50364817900004), (-5.42414303299995, 56.500067450000074), (-5.4359431629999335, 56.49115631700005), (-5.454986131999931, 56.46954987200007), (-5.468617316999939, 56.47573476800005), (-5.433338995999918, 56.52362702000005), (-5.427642381999931, 56.53782786700003), (-5.4037979809999115, 56.524603583000044), (-5.379261847999942, 56.519191799000055), (-5.3566788399999155, 56.51968008000006), (-5.3382869129999335, 56.52415599200003), (-5.2905167309999115, 56.54466380400004), (-5.265044725999928, 56.551214911000045), (-5.252552863999938, 56.556341864000046), (-5.242054816999939, 56.56513092700004), (-5.27562415299991, 56.553615627000056), (-5.286773240999935, 56.552069403000075), (-5.306792772999927, 56.552801825000074), (-5.3109431629999335, 56.552069403000075), (-5.327707485999952, 56.54466380400004), (-5.338693813999953, 56.542303778000075), (-5.360340949999909, 56.53221263200004), (-5.372425910999937, 56.53034088700008), (-5.384348110999952, 56.53343333500004), (-5.400502081999946, 56.54364655200004), (-5.413929816999939, 56.54466380400004), (-5.410878058999913, 56.552069403000075), (-5.407297329999949, 56.55532461100006), (-5.402699347999942, 56.55744049700007), (-5.396636522999927, 56.561712958000044), (-5.392689581999946, 56.566473700000074), (-5.3893123039999296, 56.57489655200004), (-5.386626756999931, 56.57880280200004), (-5.360707160999937, 56.60626862200007), (-5.351918097999942, 56.612941799000055), (-5.31086178299995, 56.63361237200007), (-5.304514126999948, 56.64016347900008), (-5.298451300999943, 56.64642975500004), (-5.317779100999928, 56.65387604400007), (-5.317779100999928, 56.661322333000044), (-5.309071417999917, 56.66425202000005), (-5.286773240999935, 56.674994208000044), (-5.261463995999918, 56.67332591400003), (-5.248199022999927, 56.67405833500004), (-5.218902147999927, 56.688666083000044), (-5.196441209999932, 56.688666083000044), (-5.153309699999909, 56.68121979400007), (-5.132639126999948, 56.68451569200005), (-5.093373175999943, 56.69904205900008), (-5.012806769999941, 56.70929596600007), (-4.9955948559999115, 56.71596914300005), (-5.1605525379999335, 56.69586823100008), (-5.238270636999914, 56.71662018400008), (-5.23851477799991, 56.72256094000005), (-5.228423631999931, 56.73647695500006), (-5.222075975999928, 56.741522528000075), (-5.154652472999942, 56.78229401200008), (-5.136382615999935, 56.79877350500004), (-5.119740363999938, 56.818426825000074), (-5.179066535999937, 56.78925202000005), (-5.187489386999914, 56.78115469000005), (-5.191761847999942, 56.774644273000035), (-5.202259894999941, 56.76911041900007), (-5.214670376999948, 56.76520416900007), (-5.224964972999942, 56.763739325000074), (-5.233469204999949, 56.76068756700005), (-5.237049933999913, 56.75336334800005), (-5.2389216789999296, 56.74445221600007), (-5.242054816999939, 56.73647695500006), (-5.255238410999937, 56.721584377000056), (-5.268462693999936, 56.71308014500005), (-5.283355272999927, 56.70937734600005), (-5.30101477799991, 56.70856354400007), (-5.3098038399999155, 56.70648834800005), (-5.319162563999953, 56.69749583500004), (-5.34015865799995, 56.693060614000046), (-5.348378058999913, 56.687201239000046), (-5.359364386999914, 56.674994208000044), (-5.388050910999937, 56.65521881700005), (-5.403879360999952, 56.64923737200007), (-5.4242244129999335, 56.64704010600008), (-5.434396938999953, 56.64288971600007), (-5.4487198559999115, 56.62457916900007), (-5.458119269999941, 56.620347398000035), (-5.470773891999954, 56.618394273000035), (-5.482574022999927, 56.613267320000034), (-5.493316209999932, 56.60639069200005), (-5.53343665299991, 56.57290273600006), (-5.599598761999914, 56.52903880400004), (-5.667388475999928, 56.498480536000045), (-5.67406165299991, 56.49689362200007), (-5.683013475999928, 56.50063711100006), (-5.694691535999937, 56.51386139500005), (-5.70539303299995, 56.51666901200008), (-5.721791144999941, 56.51850006700005), (-5.740834113999938, 56.52326080900008), (-5.7582087879999335, 56.52997467700004), (-5.770253058999913, 56.53782786700003), (-5.7551977199999556, 56.554022528000075), (-5.751047329999949, 56.56199778900003), (-5.749134894999941, 56.571966864000046), (-5.756662563999953, 56.571966864000046), (-5.793853318999936, 56.54328034100007), (-5.8543595039999445, 56.550482489000046), (-6.0034073559999115, 56.61871979400007), (-6.009836391999954, 56.62653229400007), (-6.008168097999942, 56.642279364000046), (-5.998036261999914, 56.64988841400003), (-5.983509894999941, 56.65281810100004), (-5.933583136999914, 56.654730536000045), (-5.899037238999938, 56.650824286000045), (-5.866851365999935, 56.64154694200005), (-5.8391820949999556, 56.62653229400007), (-5.831695115999935, 56.633978583000044), (-5.855620897999927, 56.64472077000005), (-5.865589972999942, 56.65143463700008), (-5.865834113999938, 56.661322333000044), (-5.75999915299991, 56.70075104400007), (-5.735503709999932, 56.702337958000044), (-5.672596808999913, 56.68414948100008), (-5.647368943999936, 56.68121979400007), (-5.5941462879999335, 56.68333567900004), (-5.564808722999942, 56.68764883000006), (-5.543690558999913, 56.69546133000006), (-5.636545376999948, 56.688666083000044), (-5.658558722999942, 56.690741278000075), (-5.708851691999939, 56.70856354400007), (-5.749989386999914, 56.714544989000046), (-5.859038865999935, 56.68121979400007), (-5.89679928299995, 56.675116278000075), (-5.907378709999932, 56.674994208000044), (-5.9203181629999335, 56.67796458500004), (-5.942738410999937, 56.686753648000035), (-5.955555792999917, 56.688666083000044), (-6.0248917309999115, 56.68569570500006), (-6.098622199999909, 56.696966864000046), (-6.123850063999953, 56.69562409100007), (-6.143544074999909, 56.684881903000075), (-6.161732550999943, 56.67820872600004), (-6.186594204999949, 56.68109772300005), (-6.2096248039999296, 56.68846263200004), (-6.222767706999946, 56.69546133000006), (-6.228179490999935, 56.70107656500005), (-6.232533331999946, 56.70652903900003), (-6.235340949999909, 56.71238841400003), (-6.236398891999954, 56.71906159100007), (-6.234486456999946, 56.728583075000074), (-6.229562954999949, 56.72907135600008), (-6.222767706999946, 56.72719961100006), (-6.215321417999917, 56.72964101800005), (-6.193470831999946, 56.74852122600004), (-6.1805313789999445, 56.75462474200003), (-6.026966925999943, 56.763739325000074), (-6.0148819649999155, 56.76703522300005), (-5.979888475999928, 56.78156159100007), (-5.965199347999942, 56.784857489000046), (-5.948231574999909, 56.782538153000075), (-5.937977667999917, 56.77692291900007), (-5.928537563999953, 56.769964911000045), (-5.913644985999952, 56.763739325000074), (-5.860910610999952, 56.75079987200007), (-5.8522029289999296, 56.746975002000056), (-5.853342251999948, 56.757879950000074), (-5.858143683999913, 56.768459377000056), (-5.8683975899999155, 56.77586497600004), (-5.886341925999943, 56.777411200000074), (-5.886341925999943, 56.784857489000046), (-5.874012824999909, 56.78571198100008), (-5.861805792999917, 56.78510163000004), (-5.850087042999917, 56.782456773000035), (-5.8391820949999556, 56.777411200000074), (-5.8246150379999335, 56.78758372600004), (-5.8020727199999556, 56.79181549700007), (-5.7766007149999155, 56.787990627000056), (-5.756662563999953, 56.784857489000046), (-5.831695115999935, 56.80536530200004), (-5.8508194649999155, 56.818019924000055), (-5.851185675999943, 56.82892487200007), (-5.837473110999952, 56.83661530200004), (-5.7338761059999115, 56.84479401200008), (-5.692738410999937, 56.85492584800005), (-5.66038977799991, 56.87299225500004), (-5.673573370999918, 56.87653229400007), (-5.692005988999938, 56.87531159100007), (-5.7084854809999115, 56.87055084800005), (-5.724354620999918, 56.85382721600007), (-5.744496222999942, 56.85415273600006), (-5.783924933999913, 56.85993073100008), (-5.775380011999914, 56.86994049700007), (-5.735503709999932, 56.89411041900007), (-5.7805883449999556, 56.89874909100007), (-5.874867316999939, 56.887152411000045), (-5.9211319649999155, 56.89411041900007), (-5.8875626289999445, 56.89911530200004), (-5.8522029289999296, 56.90033600500004), (-5.8522029289999296, 56.90770091400003), (-5.859852667999917, 56.91054922100005), (-5.8801163399999155, 56.92202383000006), (-5.8625382149999155, 56.93374258000006), (-5.851429816999939, 56.95425039300005), (-5.842518683999913, 56.977443752000056), (-5.831695115999935, 56.99713776200008), (-5.814116990999935, 57.00950755400004), (-5.786040818999936, 57.02057526200008), (-5.755238410999937, 57.026556708000044), (-5.729318813999953, 57.02383047100005), (-5.719878709999932, 57.017564195000034), (-5.699940558999913, 56.998114325000074), (-5.688303188999953, 56.98969147300005), (-5.67406165299991, 56.983587958000044), (-5.658558722999942, 56.97947825700004), (-5.625599738999938, 56.976629950000074), (-5.571278449999909, 56.98383209800005), (-5.523264126999948, 56.99713776200008), (-5.523264126999948, 57.003973700000074), (-5.540435350999928, 57.001166083000044), (-5.556507941999939, 56.996079820000034), (-5.571278449999909, 56.99331289300005), (-5.5846248039999296, 56.99713776200008), (-5.607085740999935, 56.98851146000004), (-5.628814256999931, 56.991888739000046), (-5.6498917309999115, 56.999660549000055), (-5.6703181629999335, 57.003973700000074), (-5.685536261999914, 57.00958893400008), (-5.681711391999954, 57.02240631700005), (-5.680043097999942, 57.03620026200008), (-5.701975063999953, 57.044907945000034), (-5.710926886999914, 57.044175523000035), (-5.731353318999936, 57.03900788000004), (-5.742339647999927, 57.03807200700004), (-5.752552863999938, 57.04059479400007), (-5.769602016999954, 57.04975006700005), (-5.780181443999936, 57.05174388200004), (-5.791127081999946, 57.05927155200004), (-5.776193813999953, 57.075832424000055), (-5.734486456999946, 57.10541413000004), (-5.722645636999914, 57.116441148000035), (-5.715646938999953, 57.12006256700005), (-5.703277147999927, 57.120754299000055), (-5.673695441999939, 57.11904531500005), (-5.663482225999928, 57.12372467700004), (-5.645863410999937, 57.12946198100008), (-5.620838995999918, 57.12409088700008), (-5.57843990799995, 57.10639069200005), (-5.558257615999935, 57.10040924700007), (-5.4598282539999445, 57.09979889500005), (-5.454986131999931, 57.10297272300005), (-5.447417772999927, 57.11017487200007), (-5.430775519999941, 57.11074453300006), (-5.41429602799991, 57.10822174700007), (-5.407215949999909, 57.10639069200005), (-5.400380011999914, 57.10639069200005), (-5.400380011999914, 57.11383698100008), (-5.420033331999946, 57.12067291900007), (-5.503895636999914, 57.11269765800006), (-5.527414516999954, 57.107489325000074), (-5.540638800999943, 57.10639069200005), (-5.5477188789999445, 57.11009349200003), (-5.573312954999949, 57.12787506700005), (-5.5846248039999296, 57.133693752000056), (-5.668446417999917, 57.147650458000044), (-5.6808975899999155, 57.157904364000046), (-5.673817511999914, 57.174994208000044), (-5.638824022999927, 57.202378648000035), (-5.625599738999938, 57.21625397300005), (-5.644154425999943, 57.23322174700007), (-5.620106574999909, 57.25214264500005), (-5.578236456999946, 57.26675039300005), (-5.543690558999913, 57.27090078300006), (-5.511586066999939, 57.25763580900008), (-5.480091925999943, 57.23700592700004), (-5.446278449999909, 57.22304922100005), (-5.407215949999909, 57.22992584800005), (-5.407215949999909, 57.23672109600005), (-5.448841925999943, 57.24209219000005), (-5.458119269999941, 57.24664948100008), (-5.47288977799991, 57.26121653900003), (-5.482899542999917, 57.268011786000045), (-5.49250240799995, 57.27090078300006), (-5.501942511999914, 57.27765534100007), (-5.4889216789999296, 57.29242584800005), (-5.464833136999914, 57.306626695000034), (-5.4406632149999155, 57.311835028000075), (-5.4406632149999155, 57.31928131700005), (-5.464995897999927, 57.32493724200003), (-5.4817602199999556, 57.31671784100007), (-5.494292772999927, 57.30442942900004), (-5.50617428299995, 57.298163153000075), (-5.523426886999914, 57.29515208500004), (-5.558461066999939, 57.28143952000005), (-5.57843990799995, 57.27765534100007), (-5.599436001999948, 57.27924225500004), (-5.637440558999913, 57.28900788000004), (-5.656971808999913, 57.29132721600007), (-5.7000626289999445, 57.28359609600005), (-5.720570441999939, 57.284491278000075), (-5.729318813999953, 57.298163153000075), (-5.7252498039999296, 57.30158112200007), (-5.701975063999953, 57.33234284100007), (-5.6937556629999335, 57.337103583000044), (-5.671986456999946, 57.34442780200004), (-5.663482225999928, 57.349676825000074), (-5.654367641999954, 57.353949286000045), (-5.647206183999913, 57.34992096600007), (-5.6414688789999445, 57.34320709800005), (-5.636545376999948, 57.33978913000004), (-5.613189256999931, 57.34198639500005), (-5.5012914699999556, 57.37099844000005), (-5.456654425999943, 57.39354075700004), (-5.4481095039999445, 57.42169830900008), (-5.46507727799991, 57.423895575000074), (-5.492054816999939, 57.40875885600008), (-5.5375056629999335, 57.373928127000056), (-5.563465949999909, 57.36310455900008), (-5.586659308999913, 57.36505768400008), (-5.610910610999952, 57.37140534100007), (-5.6399633449999556, 57.373928127000056), (-5.615589972999942, 57.382473049000055), (-5.607085740999935, 57.389105536000045), (-5.609201626999948, 57.397772528000075), (-5.617746548999946, 57.41010163000004), (-5.619618292999917, 57.41669342700004), (-5.624012824999909, 57.41640859600005), (-5.6399633449999556, 57.40802643400008), (-5.707183397999927, 57.35976797100005), (-5.732411261999914, 57.352769273000035), (-5.784575975999928, 57.34857819200005), (-5.807769334999932, 57.35492584800005), (-5.8248591789999296, 57.39435455900008), (-5.822255011999914, 57.39350006700005), (-5.817372199999909, 57.39520905200004), (-5.812855597999942, 57.398098049000055), (-5.8111873039999296, 57.40119049700007), (-5.813872850999928, 57.40452708500004), (-5.8231095039999445, 57.41233958500004), (-5.8248591789999296, 57.41547272300005), (-5.825266079999949, 57.428900458000044), (-5.821888800999943, 57.435532945000034), (-5.8111873039999296, 57.44220612200007), (-5.8215225899999155, 57.44546133000006), (-5.852528449999909, 57.450384833000044), (-5.859038865999935, 57.45270416900007), (-5.861195441999939, 57.46344635600008), (-5.870513475999928, 57.48078034100007), (-5.872670050999943, 57.49371979400007), (-5.869699673999946, 57.500881252000056), (-5.856068488999938, 57.51780833500004), (-5.8522029289999296, 57.52411530200004), (-5.8510636059999115, 57.538397528000075), (-5.851470506999931, 57.55109284100007), (-5.847075975999928, 57.55890534100007), (-5.831695115999935, 57.55882396000004), (-5.833851691999939, 57.563381252000056), (-5.837025519999941, 57.57477448100008), (-5.8391820949999556, 57.579291083000044), (-5.821400519999941, 57.583197333000044), (-5.803618943999936, 57.581366278000075), (-5.7863663399999155, 57.57518138200004), (-5.732574022999927, 57.54523346600007), (-5.715646938999953, 57.538397528000075), (-5.707020636999914, 57.542303778000075), (-5.68976803299995, 57.52789948100008), (-5.6808975899999155, 57.52411530200004), (-5.650868292999917, 57.51264069200005), (-5.6399633449999556, 57.511053778000075), (-5.645334438999953, 57.51666901200008), (-5.648304816999939, 57.52187734600005), (-5.650542772999927, 57.52680084800005), (-5.6535538399999155, 57.53156159100007), (-5.5815323559999115, 57.538397528000075), (-5.5402725899999155, 57.534491278000075), (-5.5168350899999155, 57.534857489000046), (-5.512684699999909, 57.54148997600004), (-5.543120897999927, 57.55536530200004), (-5.588368292999917, 57.56102122600004), (-5.632720506999931, 57.55768463700008), (-5.66038977799991, 57.544582424000055), (-5.694488084999932, 57.56631094000005), (-5.689198370999918, 57.56940338700008), (-5.6808975899999155, 57.579291083000044), (-5.714222785999937, 57.58270905200004), (-5.7316788399999155, 57.59829336100006), (-5.744252081999946, 57.61798737200007), (-5.762806769999941, 57.633978583000044), (-5.778146938999953, 57.63743724200003), (-5.7936091789999296, 57.63857656500005), (-5.8058975899999155, 57.642645575000074), (-5.8111873039999296, 57.65509674700007), (-5.805409308999913, 57.667181708000044), (-5.785023566999939, 57.67951080900008), (-5.790760870999918, 57.68854401200008), (-5.790760870999918, 57.69599030200004), (-5.753570115999935, 57.707464911000045), (-5.734486456999946, 57.70795319200005), (-5.704986131999931, 57.69013092700004), (-5.692494269999941, 57.691066799000055), (-5.68195553299995, 57.69871653900003), (-5.67406165299991, 57.70966217700004), (-5.685170050999943, 57.71141185100004), (-5.692290818999936, 57.716498114000046), (-5.698841925999943, 57.723089911000045), (-5.708851691999939, 57.72955963700008), (-5.720529751999948, 57.73338450700004), (-5.803822394999941, 57.743841864000046), (-5.80695553299995, 57.75462474200003), (-5.8020727199999556, 57.780585028000075), (-5.803822394999941, 57.792222398000035), (-5.801258917999917, 57.800441799000055), (-5.809925910999937, 57.82062409100007), (-5.8111873039999296, 57.833197333000044), (-5.807362433999913, 57.84393952000005), (-5.799956834999932, 57.85370514500005), (-5.789540167999917, 57.86200592700004), (-5.776519334999932, 57.86790599200003), (-5.751128709999932, 57.87335846600007), (-5.724761522999927, 57.87352122600004), (-5.698638475999928, 57.86908600500004), (-5.67406165299991, 57.86050039300005), (-5.677886522999927, 57.846909898000035), (-5.674794074999909, 57.82709381700005), (-5.667958136999914, 57.80695221600007), (-5.66038977799991, 57.792222398000035), (-5.650542772999927, 57.78180573100008), (-5.6373591789999296, 57.77423737200007), (-5.622141079999949, 57.77020905200004), (-5.60578365799995, 57.77049388200004), (-5.613270636999914, 57.77521393400008), (-5.617909308999913, 57.78021881700005), (-5.625599738999938, 57.792222398000035), (-5.613026495999918, 57.792629299000055), (-5.603260870999918, 57.791083075000074), (-5.5846248039999296, 57.784816799000055), (-5.591175910999937, 57.80442942900004), (-5.587025519999941, 57.81858958500004), (-5.5852758449999556, 57.83144765800006), (-5.598988410999937, 57.846869208000044), (-5.6375626289999445, 57.86635976800005), (-5.650380011999914, 57.87775299700007), (-5.6399633449999556, 57.88784414300005), (-5.6476944649999155, 57.88898346600007), (-5.6507869129999335, 57.89081452000005), (-5.6535538399999155, 57.89468008000006), (-5.643950975999928, 57.90420156500005), (-5.620757615999935, 57.92088450700004), (-5.6126195949999556, 57.92877838700008), (-5.598215298999946, 57.91901276200008), (-5.587310350999928, 57.91510651200008), (-5.550526495999918, 57.91510651200008), (-5.556263800999943, 57.88776276200008), (-5.527902798999946, 57.86758047100005), (-5.487049933999913, 57.85586172100005), (-5.454986131999931, 57.85370514500005), (-5.46117102799991, 57.86050039300005), (-5.449045376999948, 57.869126695000034), (-5.437123175999943, 57.897650458000044), (-5.427642381999931, 57.908270575000074), (-5.4149063789999445, 57.90814850500004), (-5.369496222999942, 57.89752838700008), (-5.355620897999927, 57.89126211100006), (-5.327504035999937, 57.87327708500004), (-5.293853318999936, 57.86204661700003), (-5.221587693999936, 57.846869208000044), (-5.236317511999914, 57.86078522300005), (-5.2475479809999115, 57.86701080900008), (-5.276763475999928, 57.87417226800005), (-5.320668097999942, 57.898504950000074), (-5.384917772999927, 57.914129950000074), (-5.39289303299995, 57.91819896000004), (-5.394398566999939, 57.923895575000074), (-5.396839972999942, 57.926214911000045), (-5.3973282539999445, 57.928900458000044), (-5.39289303299995, 57.935614325000074), (-5.386545376999948, 57.936428127000056), (-5.378977016999954, 57.93183014500005), (-5.3717341789999296, 57.93105703300006), (-5.366200324999909, 57.943060614000046), (-5.3471573559999115, 57.936712958000044), (-5.319162563999953, 57.91474030200004), (-5.297352667999917, 57.908270575000074), (-5.2860001289999445, 57.90875885600008), (-5.266957160999937, 57.91400788000004), (-5.2562556629999335, 57.91510651200008), (-5.2436417309999115, 57.91290924700007), (-5.22101803299995, 57.90403880400004), (-5.211293097999942, 57.90208567900004), (-5.198801235999952, 57.897772528000075), (-5.162261522999927, 57.87848541900007), (-5.1199845039999445, 57.86798737200007), (-5.0911352199999556, 57.84031810100004), (-5.070790167999917, 57.833197333000044), (-5.07648678299995, 57.83852773600006), (-5.083404100999928, 57.84756094000005), (-5.0893448559999115, 57.85724518400008), (-5.091867641999954, 57.86420319200005), (-5.0971573559999115, 57.87091705900008), (-5.197255011999914, 57.91787344000005), (-5.221587693999936, 57.92133209800005), (-5.221587693999936, 57.92877838700008), (-5.201893683999913, 57.92865631700005), (-5.193959113999938, 57.935980536000045), (-5.19554602799991, 57.94765859600005), (-5.204497850999928, 57.960150458000044), (-5.216704881999931, 57.96588776200008), (-5.2488907539999445, 57.96938711100006), (-5.2631729809999115, 57.976548570000034), (-5.292632615999935, 57.98061758000006), (-5.333892381999931, 58.00853099200003), (-5.359364386999914, 58.011379299000055), (-5.357167120999918, 58.01406484600005), (-5.3566788399999155, 58.014878648000035), (-5.351918097999942, 58.01752350500004), (-5.366932745999918, 58.02887604400007), (-5.386586066999939, 58.032538153000075), (-5.427642381999931, 58.03119538000004), (-5.424305792999917, 58.03554922100005), (-5.422352667999917, 58.03896719000005), (-5.419585740999935, 58.04205963700008), (-5.413929816999939, 58.04547760600008), (-5.413929816999939, 58.05231354400007), (-5.447010870999918, 58.08437734600005), (-5.428089972999942, 58.09796784100007), (-5.390044725999928, 58.09218984600005), (-5.366200324999909, 58.06598541900007), (-5.344309048999946, 58.075506903000075), (-5.322865363999938, 58.07172272300005), (-5.300770636999914, 58.07013580900008), (-5.276763475999928, 58.08641185100004), (-5.283070441999939, 58.08641185100004), (-5.278065558999913, 58.09625885600008), (-5.2787979809999115, 58.10537344000005), (-5.283558722999942, 58.11347077000005), (-5.2905167309999115, 58.12055084800005), (-5.276763475999928, 58.12055084800005), (-5.276763475999928, 58.127386786000045), (-5.297352667999917, 58.134833075000074), (-5.284087693999936, 58.14008209800005), (-5.255523240999935, 58.143784898000035), (-5.242054816999939, 58.14789459800005), (-5.242054816999939, 58.15534088700008), (-5.275054490999935, 58.15452708500004), (-5.290842251999948, 58.156317450000074), (-5.304798956999946, 58.162095445000034), (-5.297352667999917, 58.168402411000045), (-5.304798956999946, 58.17332591400003), (-5.313059048999946, 58.17731354400007), (-5.321888800999943, 58.18024323100008), (-5.331450975999928, 58.18203359600005), (-5.3293350899999155, 58.186712958000044), (-5.326161261999914, 58.198431708000044), (-5.323963995999918, 58.203111070000034), (-5.336822068999936, 58.203192450000074), (-5.346791144999941, 58.20685455900008), (-5.39289303299995, 58.24469635600008), (-5.3920792309999115, 58.261379299000055), (-5.375884568999936, 58.26422760600008), (-5.352894660999937, 58.25893789300005), (-5.31078040299991, 58.243394273000035), (-5.293853318999936, 58.24091217700004), (-5.276966925999943, 58.243394273000035), (-5.237294074999909, 58.25763580900008), (-5.2160538399999155, 58.261419989000046), (-5.194325324999909, 58.25999583500004), (-5.173207160999937, 58.25092194200005), (-5.165638800999943, 58.258246161000045), (-5.152251756999931, 58.264837958000044), (-5.138335740999935, 58.269598700000074), (-5.129383917999917, 58.27138906500005), (-5.11156165299991, 58.26825592700004), (-5.0812882149999155, 58.25409577000005), (-5.0676977199999556, 58.25092194200005), (-5.017730272999927, 58.253241278000075), (-5.002430792999917, 58.25092194200005), (-4.933583136999914, 58.22304922100005), (-4.943430141999954, 58.233587958000044), (-4.954823370999918, 58.23981354400007), (-4.982004360999952, 58.25092194200005), (-4.968861456999946, 58.25678131700005), (-4.940337693999936, 58.259466864000046), (-4.926747199999909, 58.26459381700005), (-4.990223761999914, 58.27142975500004), (-5.009917772999927, 58.27138906500005), (-5.018055792999917, 58.26862213700008), (-5.029367641999954, 58.25971100500004), (-5.040028449999909, 58.25775788000004), (-5.0501195949999556, 58.25991445500006), (-5.0707087879999335, 58.269232489000046), (-5.081654425999943, 58.27138906500005), (-5.096424933999913, 58.27676015800006), (-5.125965949999909, 58.30019765800006), (-5.1362198559999115, 58.305568752000056), (-5.137440558999913, 58.30927155200004), (-5.156361456999946, 58.32461172100005), (-5.160145636999914, 58.326605536000045), (-5.167795376999948, 58.33926015800006), (-5.171009894999941, 58.34666575700004), (-5.173207160999937, 58.353949286000045), (-5.153309699999909, 58.353949286000045), (-5.1634008449999556, 58.364569403000075), (-5.162912563999953, 58.37449778900003), (-5.155913865999935, 58.384466864000046), (-5.146473761999914, 58.394964911000045), (-5.145497199999909, 58.400051174000055), (-5.14671790299991, 58.40664297100005), (-5.146839972999942, 58.41242096600007), (-5.143055792999917, 58.41478099200003), (-5.135487433999913, 58.413763739000046), (-5.122222459999932, 58.40957265800006), (-5.116037563999953, 58.40859609600005), (-5.057972785999937, 58.38727448100008), (-5.016184048999946, 58.38812897300005), (-5.043934699999909, 58.400091864000046), (-5.0533748039999296, 58.40664297100005), (-5.0502823559999115, 58.41478099200003), (-5.0570369129999335, 58.42218659100007), (-5.066151495999918, 58.41714101800005), (-5.076161261999914, 58.414496161000045), (-5.086822068999936, 58.41388580900008), (-5.0980525379999335, 58.41478099200003), (-5.0980525379999335, 58.42218659100007), (-5.08812415299991, 58.421942450000074), (-5.085031704999949, 58.42218659100007), (-5.085031704999949, 58.429022528000075), (-5.091786261999914, 58.429754950000074), (-5.09601803299995, 58.43146393400008), (-5.105539516999954, 58.43650950700004), (-5.0501195949999556, 58.45380280200004), (-5.025542772999927, 58.447699286000045), (-4.9955948559999115, 58.43650950700004), (-5.105539516999954, 58.48737213700008), (-5.105620897999927, 58.505560614000046), (-5.103667772999927, 58.51422760600008), (-5.095855272999927, 58.518866278000075), (-5.042795376999948, 58.53546784100007), (-5.0279841789999296, 58.54409414300005), (-5.016184048999946, 58.55939362200007), (-5.0229386059999115, 58.55939362200007), (-5.015207485999952, 58.580064195000034), (-5.011586066999939, 58.60057200700004), (-5.004953579999949, 58.61774323100008), (-4.988189256999931, 58.62832265800006), (-4.859486456999946, 58.61322663000004), (-4.835926886999914, 58.60504791900007), (-4.818104620999918, 58.59292226800005), (-4.817941860999952, 58.587591864000046), (-4.81281490799995, 58.571966864000046), (-4.806752081999946, 58.55841705900008), (-4.803822394999941, 58.55939362200007), (-4.804595506999931, 58.54832591400003), (-4.807240363999938, 58.53961823100008), (-4.811634894999941, 58.53204987200007), (-4.818104620999918, 58.524644273000035), (-4.799794074999909, 58.532456773000035), (-4.791818813999953, 58.54165273600006), (-4.7899063789999445, 58.55174388200004), (-4.790150519999941, 58.562486070000034), (-4.785755988999938, 58.577053127000056), (-4.777088995999918, 58.583319403000075), (-4.771595831999946, 58.59039948100008), (-4.776519334999932, 58.60716380400004), (-4.758859829999949, 58.59910716400003), (-4.7280167309999115, 58.577460028000075), (-4.7113337879999335, 58.57306549700007), (-4.683257615999935, 58.56150950700004), (-4.670399542999917, 58.55939362200007), (-4.660023566999939, 58.555853583000044), (-4.659291144999941, 58.54755280200004), (-4.663238084999932, 58.538397528000075), (-4.6673070949999556, 58.53204987200007), (-4.6790258449999556, 58.52391185100004), (-4.714466925999943, 58.50560130400004), (-4.732411261999914, 58.480454820000034), (-4.751535610999952, 58.46161530200004), (-4.7609757149999155, 58.44798411700003), (-4.74242102799991, 58.44953034100007), (-4.682972785999937, 58.48456452000005), (-4.673451300999943, 58.48737213700008), (-4.6668595039999445, 58.50291575700004), (-4.650502081999946, 58.50995514500005), (-4.630441860999952, 58.514960028000075), (-4.612131313999953, 58.524644273000035), (-4.6010636059999115, 58.54193756700005), (-4.595122850999928, 58.56000397300005), (-4.584950324999909, 58.57416413000004), (-4.560536261999914, 58.57990143400008), (-4.517486131999931, 58.575506903000075), (-4.475493943999936, 58.565619208000044), (-4.426503058999913, 58.54637278900003), (-4.426503058999913, 58.53888580900008), (-4.427886522999927, 58.53530508000006), (-4.428700324999909, 58.53473541900007), (-4.426503058999913, 58.524644273000035), (-4.449940558999913, 58.510199286000045), (-4.464751756999931, 58.49201080900008), (-4.477650519999941, 58.47134023600006), (-4.4953507149999155, 58.44953034100007), (-4.478098110999952, 58.453558661000045), (-4.46117102799991, 58.46246979400007), (-4.43390865799995, 58.483628648000035), (-4.432728644999941, 58.487616278000075), (-4.4339900379999335, 58.49237702000005), (-4.4342341789999296, 58.49628327000005), (-4.430165167999917, 58.49799225500004), (-4.425933397999927, 58.49909088700008), (-4.385365363999938, 58.52240631700005), (-4.382394985999952, 58.524644273000035), (-4.343861456999946, 58.53888580900008), (-4.317005988999938, 58.54572174700007), (-4.306996222999942, 58.54637278900003), (-4.287180141999954, 58.54291413000004), (-4.2573136059999115, 58.52798086100006), (-4.234730597999942, 58.524644273000035), (-4.248931443999936, 58.53204987200007), (-4.238189256999931, 58.536444403000075), (-4.232248501999948, 58.54242584800005), (-4.227691209999932, 58.548163153000075), (-4.22101803299995, 58.551947333000044), (-4.209706183999913, 58.55292389500005), (-4.190785285999937, 58.54783763200004), (-4.1769913399999155, 58.54637278900003), (-4.16820227799991, 58.54938385600008), (-4.1605525379999335, 58.562567450000074), (-4.149322068999936, 58.565619208000044), (-4.111195441999939, 58.565619208000044), (-4.0902400379999335, 58.56207916900007), (-4.081450975999928, 58.561835028000075), (-4.070220506999931, 58.565619208000044), (-4.061512824999909, 58.57282135600008), (-4.048817511999914, 58.58958567900004), (-4.039784308999913, 58.59292226800005), (-4.030629035999937, 58.59406159100007), (-4.029042120999918, 58.59516022300005), (-4.027821417999917, 58.59271881700005), (-4.0092667309999115, 58.57330963700008), (-4.003773566999939, 58.57062409100007), (-3.981434699999909, 58.57306549700007), (-3.8957413399999155, 58.565619208000044), (-3.8101293609999516, 58.57306549700007), (-3.7669571609999366, 58.58372630400004), (-3.6983536449999406, 58.61115143400008), (-3.659901495999918, 58.62083567900004), (-3.597564256999931, 58.62714264500005), (-3.565500454999949, 58.626613674000055), (-3.542591925999943, 58.62083567900004), (-3.552479620999918, 58.61546458500004), (-3.556263800999943, 58.61399974200003), (-3.532053188999953, 58.60211823100008), (-3.504017706999946, 58.60333893400008), (-3.447010870999918, 58.61399974200003), (-3.3914688789999445, 58.60065338700008), (-3.364084438999953, 58.600816148000035), (-3.3508194649999155, 58.62083567900004), (-3.3677465489999463, 58.624701239000046), (-3.3860570949999556, 58.631740627000056), (-3.402251756999931, 58.64203522300005), (-3.412912563999953, 58.655585028000075), (-3.3900447259999282, 58.67177969000005), (-3.3748673169999392, 58.677069403000075), (-3.3582657539999445, 58.675482489000046), (-3.3543595039999445, 58.67015208500004), (-3.35179602799991, 58.66083405200004), (-3.34788977799991, 58.652044989000046), (-3.340565558999913, 58.648138739000046), (-3.3098852199999556, 58.648138739000046), (-3.244252081999946, 58.65900299700007), (-3.204090949999909, 58.66111888200004), (-3.1519262359999516, 58.64126211100006), (-3.118763800999943, 58.64109935100004), (-3.052886522999927, 58.648138739000046), (-3.0191137359999516, 58.640326239000046), (-3.025380011999914, 58.62213776200008), (-3.0444229809999115, 58.601629950000074), (-3.049183722999942, 58.58673737200007), (-3.060454881999931, 58.57843659100007), (-3.0754288399999155, 58.56037018400008), (-3.0845434239999463, 58.551947333000044), (-3.1107478509999282, 58.53864166900007), (-3.1180313789999445, 58.53204987200007), (-3.129261847999942, 58.51264069200005), (-3.1293025379999335, 58.49640534100007), (-3.1187231109999516, 58.484442450000074), (-3.0975235669999392, 58.47748444200005), (-3.0850723949999406, 58.47825755400004), (-3.073963995999918, 58.481675523000035), (-3.064442511999914, 58.48297760600008), (-3.056630011999914, 58.47748444200005), (-3.053334113999938, 58.46576569200005), (-3.0577286449999406, 58.45685455900008), (-3.066761847999942, 58.451157945000034), (-3.077056443999936, 58.44953034100007), (-3.0863337879999335, 58.41421133000006), (-3.129790818999936, 58.36928945500006), (-3.182769334999932, 58.32843659100007), (-3.2205297519999476, 58.305568752000056), (-3.2622777989999463, 58.292629299000055), (-3.34984290299991, 58.27610911700003), (-3.38499915299991, 58.26459381700005), (-3.438099738999938, 58.236029364000046), (-3.447010870999918, 58.22675202000005), (-3.454741990999935, 58.210150458000044), (-3.473459438999953, 58.193426825000074), (-3.515288865999935, 58.168402411000045), (-3.7350154289999296, 58.07217031500005), (-3.809193488999938, 58.05190664300005), (-3.8275040359999366, 58.04205963700008), (-3.8362524079999503, 58.03143952000005), (-3.8460994129999335, 58.01117584800005), (-3.851714647999927, 58.003892320000034), (-3.8605850899999155, 57.998928127000056), (-3.8856095039999445, 57.991400458000044), (-3.9173070949999556, 57.98745351800005), (-3.981434699999909, 57.96356842700004), (-3.990956183999913, 57.96039459800005), (-3.997670050999943, 57.954413153000075), (-4.001372850999928, 57.94611237200007), (-4.001942511999914, 57.935614325000074), (-4.018299933999913, 57.940619208000044), (-4.023060675999943, 57.943060614000046), (-4.016184048999946, 57.949286200000074), (-4.0301407539999445, 57.953192450000074), (-4.055775519999941, 57.95498281500005), (-4.0843806629999335, 57.964178778000075), (-4.0891007149999155, 57.960150458000044), (-4.0863337879999335, 57.95189036700003), (-4.0776261059999115, 57.943060614000046), (-4.062652147999927, 57.93695709800005), (-4.03148352799991, 57.93618398600006), (-4.016184048999946, 57.93219635600008), (-4.009429490999935, 57.92767975500004), (-3.988270636999914, 57.908270575000074), (-4.008941209999932, 57.88959381700005), (-4.013824022999927, 57.879339911000045), (-4.009348110999952, 57.86790599200003), (-4.025135870999918, 57.868068752000056), (-4.054839647999927, 57.874335028000075), (-4.070220506999931, 57.87417226800005), (-4.0793350899999155, 57.87026601800005), (-4.0969132149999155, 57.85736725500004), (-4.1049698559999115, 57.85370514500005), (-4.132923956999946, 57.85415273600006), (-4.190419074999909, 57.87006256700005), (-4.218169725999928, 57.87417226800005), (-4.298898891999954, 57.86277903900003), (-4.3209529289999296, 57.87103913000004), (-4.353179490999935, 57.89520905200004), (-4.3723038399999155, 57.90448639500005), (-4.392404751999948, 57.908270575000074), (-4.339588995999918, 57.86570872600004), (-4.307728644999941, 57.85146719000005), (-4.269398566999939, 57.846869208000044), (-4.229074673999946, 57.85724518400008), (-4.2082413399999155, 57.85919830900008), (-4.190581834999932, 57.85028717700004), (-4.173451300999943, 57.83901601800005), (-4.1497289699999556, 57.82982005400004), (-4.1334529289999296, 57.830145575000074), (-4.1390681629999335, 57.846869208000044), (-4.0750626289999445, 57.82318756700005), (-4.0399063789999445, 57.81818268400008), (-3.9835098949999406, 57.84235260600008), (-3.9514867829999503, 57.838324286000045), (-3.933705206999946, 57.82566966400003), (-3.9473363919999542, 57.81268952000005), (-3.914784308999913, 57.80768463700008), (-3.877674933999913, 57.81671784100007), (-3.8418676419999542, 57.83490631700005), (-3.813547329999949, 57.857123114000046), (-3.798451300999943, 57.866522528000075), (-3.786040818999936, 57.86542389500005), (-3.779449022999927, 57.85565827000005), (-3.782215949999909, 57.83942291900007), (-3.790028449999909, 57.83071523600006), (-3.92601477799991, 57.734808661000045), (-3.948841925999943, 57.72492096600007), (-3.975209113999938, 57.70327383000006), (-3.988270636999914, 57.69599030200004), (-4.00804602799991, 57.693793036000045), (-4.02367102799991, 57.69782135600008), (-4.0286352199999556, 57.70770905200004), (-4.016184048999946, 57.72333405200004), (-4.042958136999914, 57.73729075700004), (-4.077951626999948, 57.73029205900008), (-4.155344204999949, 57.692572333000044), (-4.168568488999938, 57.689439195000034), (-4.1939998039999296, 57.68854401200008), (-4.2592667309999115, 57.67869700700004), (-4.277821417999917, 57.68060944200005), (-4.294789191999939, 57.68016185100004), (-4.302154100999928, 57.66860586100006), (-4.30882727799991, 57.65485260600008), (-4.324045376999948, 57.64826080900008), (-4.33820553299995, 57.64508698100008), (-4.4031876289999445, 57.60952383000006), (-4.412180141999954, 57.60297272300005), (-4.4203181629999335, 57.592962958000044), (-4.428456183999913, 57.57754140800006), (-4.423451300999943, 57.57680898600006), (-4.409901495999918, 57.582464911000045), (-4.379872199999909, 57.58934153900003), (-4.365101691999939, 57.59723541900007), (-4.3510636059999115, 57.60736725500004), (-4.340809699999909, 57.617173570000034), (-4.328724738999938, 57.626288153000075), (-4.283111131999931, 57.64142487200007), (-4.2445369129999335, 57.66303131700005), (-4.201893683999913, 57.674994208000044), (-4.1937556629999335, 57.67552317900004), (-4.182240363999938, 57.67279694200005), (-4.169016079999949, 57.663763739000046), (-4.118723110999952, 57.65770091400003), (-4.096791144999941, 57.65810781500005), (-4.0807185539999296, 57.66498444200005), (-4.068104620999918, 57.672308661000045), (-4.0246475899999155, 57.687201239000046), (-4.009348110999952, 57.68854401200008), (-4.004505988999938, 57.67597077000005), (-4.025257941999939, 57.65521881700005), (-4.0541886059999115, 57.63572825700004), (-4.083404100999928, 57.62335846600007), (-4.118560350999928, 57.592962958000044), (-4.11546790299991, 57.58783600500004), (-4.112294074999909, 57.58413320500006), (-4.1088761059999115, 57.58144765800006), (-4.1049698559999115, 57.579291083000044), (-4.151356574999909, 57.57684967700004), (-4.170643683999913, 57.570746161000045), (-4.187489386999914, 57.55882396000004), (-4.178089972999942, 57.54954661700003), (-4.184925910999937, 57.548163153000075), (-4.207997199999909, 57.552069403000075), (-4.262603318999936, 57.552069403000075), (-4.262603318999936, 57.544582424000055), (-4.233957485999952, 57.54511139500005), (-4.220285610999952, 57.543402411000045), (-4.207997199999909, 57.538397528000075), (-4.226307745999918, 57.51544830900008), (-4.237456834999932, 57.50531647300005), (-4.248931443999936, 57.49746328300006), (-4.212798631999931, 57.492173570000034), (-4.1948136059999115, 57.49160390800006), (-4.173898891999954, 57.49746328300006), (-4.157622850999928, 57.50849030200004), (-4.150054490999935, 57.51504140800006), (-4.149322068999936, 57.51788971600007), (-4.126779751999948, 57.518866278000075), (-4.116200324999909, 57.52179596600007), (-4.097523566999939, 57.53668854400007), (-4.082997199999909, 57.54441966400003), (-4.067290818999936, 57.54995351800005), (-4.0531306629999335, 57.552069403000075), (-4.034982876999948, 57.55687083500004), (-4.046457485999952, 57.56785716400003), (-4.083851691999939, 57.58612702000005), (-4.056019660999937, 57.585150458000044), (-3.9643448559999115, 57.592962958000044), (-3.8682755199999406, 57.587876695000034), (-3.8374731109999516, 57.592962958000044), (-3.6848038399999155, 57.65444570500006), (-3.625152147999927, 57.66193268400008), (-3.632557745999918, 57.65094635600008), (-3.637684699999909, 57.64622630400004), (-3.6456192699999406, 57.64142487200007), (-3.632476365999935, 57.635646877000056), (-3.6196182929999168, 57.63621653900003), (-3.606068488999938, 57.63947174700007), (-3.590972459999932, 57.64142487200007), (-3.61156165299991, 57.66811758000006), (-3.5747777989999463, 57.66111888200004), (-3.55492102799991, 57.659857489000046), (-3.535755988999938, 57.66193268400008), (-3.521473761999914, 57.66779205900008), (-3.5054418609999516, 57.67865631700005), (-3.4959610669999392, 57.69135163000004), (-3.501698370999918, 57.702826239000046), (-3.491851365999935, 57.71312083500004), (-3.4828181629999335, 57.71401601800005), (-3.4730525379999335, 57.711004950000074), (-3.460682745999918, 57.70966217700004), (-3.447865363999938, 57.71246979400007), (-3.4212540359999366, 57.72138092700004), (-3.409169074999909, 57.72333405200004), (-3.2847387359999516, 57.72044505400004), (-3.2100723949999406, 57.69399648600006), (-3.0786840489999463, 57.66941966400003), (-3.034901495999918, 57.66860586100006), (-2.994496222999942, 57.67552317900004), (-2.932687954999949, 57.69961172100005), (-2.9160863919999542, 57.702826239000046), (-2.75804602799991, 57.702826239000046), (-2.7512100899999155, 57.70062897300005), (-2.741118943999936, 57.69086334800005), (-2.731068488999938, 57.68854401200008), (-2.719878709999932, 57.690619208000044), (-2.711537238999938, 57.69399648600006), (-2.7035212879999335, 57.69472890800006), (-2.6929418609999516, 57.68854401200008), (-2.658924933999913, 57.69745514500005), (-2.573394334999932, 57.68146393400008), (-2.541981574999909, 57.68235911700003), (-2.526112433999913, 57.66860586100006), (-2.5181371739999463, 57.67011139500005), (-2.5110570949999556, 57.677801825000074), (-2.497954881999931, 57.68235911700003), (-2.4800512359999516, 57.68121979400007), (-2.4328507149999155, 57.66811758000006), (-2.425526495999918, 57.67572663000004), (-2.4177953769999476, 57.674261786000045), (-2.4087621739999463, 57.669623114000046), (-2.398060675999943, 57.66811758000006), (-2.3865860669999392, 57.671576239000046), (-2.369496222999942, 57.680568752000056), (-2.360503709999932, 57.68235911700003), (-2.3410538399999155, 57.675848700000074), (-2.3289688789999445, 57.67405833500004), (-2.3235977859999366, 57.678941148000035), (-2.32054602799991, 57.68455638200004), (-2.313384568999936, 57.68992747600004), (-2.3040665359999366, 57.69399648600006), (-2.295643683999913, 57.69599030200004), (-2.274322068999936, 57.69383372600004), (-2.230132615999935, 57.67914459800005), (-2.209950324999909, 57.67552317900004), (-2.1840714179999168, 57.67845286700003), (-2.1243383449999556, 57.702826239000046), (-2.108143683999913, 57.70498281500005), (-1.9976700509999432, 57.702826239000046), (-1.9969376289999445, 57.69904205900008), (-1.990834113999938, 57.69037506700005), (-1.982167120999918, 57.68109772300005), (-1.9735001289999445, 57.67552317900004), (-1.961293097999942, 57.674709377000056), (-1.9447322259999282, 57.68256256700005), (-1.9324845039999445, 57.68235911700003), (-1.9256892569999309, 57.678168036000045), (-1.914214647999927, 57.66474030200004), (-1.8294571609999366, 57.61347077000005), (-1.820464647999927, 57.59634023600006), (-1.817005988999938, 57.578192450000074), (-1.8113907539999445, 57.56049225500004), (-1.7960098949999406, 57.544582424000055), (-1.7960098949999406, 57.538397528000075), (-1.8000382149999155, 57.52586497600004), (-1.7895401679999168, 57.514837958000044), (-1.7611384759999282, 57.49746328300006), (-1.7753800119999141, 57.496527411000045), (-1.7821345689999362, 57.48899974200003), (-1.7812393869999141, 57.48041413000004), (-1.7717179029999102, 57.476263739000046), (-1.7593481109999516, 57.47357819200005), (-1.7659399079999503, 57.46743398600006), (-1.7891739569999459, 57.45644765800006), (-1.8301488919999542, 57.42617422100005), (-1.8474828769999476, 57.40814850500004), (-1.849964972999942, 57.39435455900008), (-1.9544978509999282, 57.341131903000075), (-1.9802953769999476, 57.31928131700005), (-2.044667120999918, 57.22650788000004), (-2.068511522999927, 57.17462799700007), (-2.074126756999931, 57.15420156500005), (-2.0714005199999406, 57.13556549700007), (-2.052357550999943, 57.12742747600004), (-2.0493057929999168, 57.118841864000046), (-2.065256313999953, 57.10053131700005), (-2.0658259759999282, 57.09983958500004), (-2.156158006999931, 57.020697333000044), (-2.1869197259999282, 56.98468659100007), (-2.200103318999936, 56.94871653900003), (-2.1971329419999392, 56.94025299700007), (-2.1912328769999476, 56.93414948100008), (-2.186268683999913, 56.92674388200004), (-2.1863907539999445, 56.91453685100004), (-2.191314256999931, 56.90892161700003), (-2.209706183999913, 56.895819403000075), (-2.213693813999953, 56.890692450000074), (-2.219878709999932, 56.87262604400007), (-2.23460852799991, 56.861395575000074), (-2.2689509759999282, 56.84634023600006), (-2.295806443999936, 56.82526276200008), (-2.3198136059999115, 56.80158112200007), (-2.336089647999927, 56.79083893400008), (-2.3918350899999155, 56.771185614000046), (-2.4086807929999168, 56.762925523000035), (-2.4264216789999296, 56.751288153000075), (-2.4359431629999335, 56.74038320500006), (-2.4407445949999556, 56.73484935100004), (-2.4516495429999168, 56.69098541900007), (-2.4637345039999445, 56.67877838700008), (-2.4774063789999445, 56.66868724200003), (-2.487456834999932, 56.65387604400007), (-2.4875382149999155, 56.64606354400007), (-2.481271938999953, 56.63239166900007), (-2.480620897999927, 56.62653229400007), (-2.4861954419999392, 56.619574286000045), (-2.504058397999927, 56.60883209800005), (-2.514556443999936, 56.591498114000046), (-2.530018683999913, 56.58075592700004), (-2.623768683999913, 56.543402411000045), (-2.6409399079999503, 56.522365627000056), (-2.6613663399999155, 56.51422760600008), (-2.6997777989999463, 56.50364817900004), (-2.708729620999918, 56.49599844000005), (-2.7276505199999406, 56.46954987200007), (-2.737294074999909, 56.46702708500004), (-2.74437415299991, 56.46954987200007), (-2.752308722999942, 56.47361888200004), (-2.764800584999932, 56.47573476800005), (-2.819325324999909, 56.47129954600007), (-3.055653449999909, 56.45213450700004), (-3.0606176419999542, 56.45172760600008), (-3.099273240999935, 56.44188060100004), (-3.1339005199999406, 56.426947333000044), (-3.238189256999931, 56.36774323100008), (-3.280181443999936, 56.35789622600004), (-3.3234757149999155, 56.36591217700004), (-3.311512824999909, 56.35651276200008), (-3.294016079999949, 56.352769273000035), (-3.2515356109999516, 56.352850653000075), (-3.230620897999927, 56.35602448100008), (-3.188384568999936, 56.37018463700008), (-3.149566209999932, 56.37555573100008), (-2.950266079999949, 56.43187083500004), (-2.9399307929999168, 56.43854401200008), (-2.930653449999909, 56.44806549700007), (-2.909087693999936, 56.45571523600006), (-2.88499915299991, 56.45799388200004), (-2.867909308999913, 56.45184967700004), (-2.8500870429999168, 56.44204336100006), (-2.8147680329999503, 56.44041575700004), (-2.8028051419999542, 56.42796458500004), (-2.800892706999946, 56.40892161700003), (-2.808257615999935, 56.391058661000045), (-2.8216039699999556, 56.376166083000044), (-2.837554490999935, 56.36591217700004), (-2.8129776679999168, 56.36591217700004), (-2.809193488999938, 56.36286041900007), (-2.8047582669999542, 56.34910716400003), (-2.8028051419999542, 56.345404364000046), (-2.7914932929999168, 56.34247467700004), (-2.7826228509999282, 56.34162018400008), (-2.7752579419999392, 56.33942291900007), (-2.768625454999949, 56.33234284100007), (-2.6771541009999282, 56.32843659100007), (-2.655262824999909, 56.32217031500005), (-2.621205206999946, 56.30442942900004), (-2.613189256999931, 56.30190664300005), (-2.5768123039999296, 56.28392161700003), (-2.5768123039999296, 56.277777411000045), (-2.6301163399999155, 56.24852122600004), (-2.648345506999931, 56.22870514500005), (-2.672027147999927, 56.22239817900004), (-2.7202042309999115, 56.21629466400003), (-2.7835994129999335, 56.19196198100008), (-2.8061417309999115, 56.188381252000056), (-2.8307185539999296, 56.190741278000075), (-2.8920792309999115, 56.20888906500005), (-2.940052863999938, 56.209418036000045), (-2.9643448559999115, 56.20563385600008), (-2.9746801419999542, 56.19830963700008), (-2.982411261999914, 56.189113674000055), (-3.0355525379999335, 56.16791413000004), (-3.0910538399999155, 56.13226959800005), (-3.107533331999946, 56.12689850500004), (-3.127552863999938, 56.12287018400008), (-3.138295050999943, 56.112209377000056), (-3.152251756999931, 56.07851797100005), (-3.1635636059999115, 56.06386953300006), (-3.1783748039999296, 56.05809153900003), (-3.2484431629999335, 56.055975653000075), (-3.268381313999953, 56.05093008000006), (-3.3030492829999503, 56.037543036000045), (-3.342681443999936, 56.02716705900008), (-3.381825324999909, 56.02338288000004), (-3.420969204999949, 56.02488841400003), (-3.5825902989999463, 56.05174388200004), (-3.671498175999943, 56.050848700000074), (-3.710031704999949, 56.05809153900003), (-3.7454320949999556, 56.07221100500004), (-3.7464900379999335, 56.072780666000085), (-3.782215949999909, 56.09218984600005), (-3.8031306629999335, 56.107123114000046), (-3.817005988999938, 56.11225006700005), (-3.8374731109999516, 56.112616278000075), (-3.8374731109999516, 56.10643138200004), (-3.777699347999942, 56.08283112200007), (-3.769154425999943, 56.07514069200005), (-3.7608536449999406, 56.07245514500005), (-3.7264298169999392, 56.03803131700005), (-3.721424933999913, 56.03070709800005), (-3.712635870999918, 56.028998114000046), (-3.693470831999946, 56.03115469000005), (-3.6866348949999406, 56.03070709800005), (-3.6795548169999392, 56.025458075000074), (-3.674794074999909, 56.01870351800005), (-3.6682836579999503, 56.01276276200008), (-3.656239386999914, 56.010199286000045), (-3.599720831999946, 56.017238674000055), (-3.5773819649999155, 56.01703522300005), (-3.405425584999932, 55.98973216400003), (-3.3582657539999445, 55.98973216400003), (-3.340891079999949, 55.99445221600007), (-3.331044074999909, 55.99408600500004), (-3.320423956999946, 55.986029364000046), (-3.303456183999913, 55.97760651200008), (-3.121815558999913, 55.96930573100008), (-3.1147354809999115, 55.966131903000075), (-3.096831834999932, 55.95197174700007), (-3.090728318999936, 55.94818756700005), (-3.078236456999946, 55.94684479400007), (-3.0156957669999542, 55.950506903000075), (-2.9399307929999168, 55.96930573100008), (-2.9166560539999296, 55.98061758000006), (-2.900054490999935, 55.996161200000074), (-2.8828832669999542, 56.00849030200004), (-2.8579809239999463, 56.010199286000045), (-2.863636847999942, 56.02228424700007), (-2.8663223949999406, 56.02676015800006), (-2.8709610669999392, 56.03070709800005), (-2.8527725899999155, 56.03978099200003), (-2.823150193999936, 56.059759833000044), (-2.8028051419999542, 56.06484609600005), (-2.635121222999942, 56.05805084800005), (-2.615956183999913, 56.053168036000045), (-2.587554490999935, 56.030951239000046), (-2.569406704999949, 56.02448151200008), (-2.57835852799991, 56.00800202000005), (-2.583648240999935, 56.00275299700007), (-2.5695694649999155, 55.99994538000004), (-2.5440567699999406, 56.00267161700003), (-2.528960740999935, 55.99656810100004), (-2.5248103509999282, 56.00055573100008), (-2.514556443999936, 56.00576406500005), (-2.507923956999946, 56.010199286000045), (-2.4932755199999406, 56.00153229400007), (-2.4525040359999366, 55.985256252000056), (-2.4143774079999503, 55.97833893400008), (-2.3509415359999366, 55.94818756700005), (-2.307769334999932, 55.93500397300005), (-2.146839972999942, 55.917303778000075), (-2.1380102199999556, 55.91461823100008), (-2.132557745999918, 55.90643952000005), (-2.13109290299991, 55.89720286700003), (-2.1287735669999392, 55.88979726800005), (-2.1209610669999392, 55.886704820000034), (-2.0994766919999392, 55.88178131700005), (-2.080189581999946, 55.86937083500004), (-2.0228572259999282, 55.80548737200007), (-2.009673631999931, 55.79083893400008), (-1.8778376939999362, 55.69489166900007), (-1.8631892569999309, 55.67161692900004), (-1.8530981109999516, 55.65932851800005), (-1.8315323559999115, 55.65070221600007), (-1.8260798819999309, 55.64362213700008), (-1.8216853509999282, 55.636419989000046), (-1.8164770169999542, 55.632879950000074), (-1.8071182929999168, 55.63450755400004), (-1.8007706369999141, 55.63922760600008), (-1.7962947259999282, 55.644232489000046), (-1.7925919259999432, 55.646551825000074), (-1.781402147999927, 55.64565664300005), (-1.768625454999949, 55.641913153000075), (-1.7564998039999296, 55.63361237200007), (-1.7476700509999432, 55.619208075000074), (-1.7679744129999335, 55.619208075000074), (-1.7679744129999335, 55.612982489000046), (-1.7559708319999459, 55.60887278900003), (-1.720855272999927, 55.614569403000075), (-1.6991267569999309, 55.612982489000046), (-1.6308487619999141, 55.58510976800005), (-1.6308487619999141, 55.57827383000006), (-1.6363419259999432, 55.57168203300006), (-1.6346736319999309, 55.56439850500004), (-1.6276749339999128, 55.55711497600004), (-1.6171768869999141, 55.55027903900003), (-1.6308487619999141, 55.544134833000044), (-1.6308487619999141, 55.53729889500005), (-1.6222224599999322, 55.534084377000056), (-1.6029353509999282, 55.52362702000005), (-1.6029353509999282, 55.516791083000044), (-1.6113175119999141, 55.50804271000004), (-1.6063533189999362, 55.503241278000075), (-1.5963435539999296, 55.49990469000005), (-1.5893448559999115, 55.49567291900007), (-1.5849503249999088, 55.483710028000075), (-1.5813695949999556, 55.41665273600006), (-1.5831192699999406, 55.40692780200004), (-1.5882869129999335, 55.39057038000004), (-1.5891007149999155, 55.385199286000045), (-1.5893448559999115, 55.37653229400007), (-1.5833227199999556, 55.354722398000035), (-1.5585831369999141, 55.32892487200007), (-1.5558162099999322, 55.31134674700007), (-1.5570369129999335, 55.306626695000034), (-1.5589900379999335, 55.302069403000075), (-1.5619197259999282, 55.29779694200005), (-1.5657445949999556, 55.29364655200004), (-1.570057745999918, 55.28620026200008), (-1.5682266919999392, 55.27960846600007), (-1.5642797519999476, 55.27326080900008), (-1.5620824859999516, 55.26666901200008), (-1.5564672519999476, 55.25503164300005), (-1.5439346999999088, 55.24388255400004), (-1.5209854809999115, 55.229396877000056), (-1.5291641919999392, 55.21625397300005), (-1.5240779289999296, 55.21010976800005), (-1.514271613999938, 55.204779364000046), (-1.507964647999927, 55.194647528000075), (-1.510812954999949, 55.184759833000044), (-1.5175675119999141, 55.176214911000045), (-1.5221248039999296, 55.16746653900003), (-1.517933722999942, 55.157131252000056), (-1.5007218089999128, 55.141791083000044), (-1.4959610669999392, 55.13458893400008), (-1.492543097999942, 55.112982489000046), (-1.4837540359999366, 55.09170156500005), (-1.4800919259999432, 55.08539459800005), (-1.4762263659999348, 55.083644924000055), (-1.4632869129999335, 55.08030833500004), (-1.459584113999938, 55.07859935100004), (-1.458078579999949, 55.07575104400007), (-1.4547013009999432, 55.067572333000044), (-1.438303188999953, 55.042303778000075), (-1.4291886059999115, 55.033270575000074), (-1.4240616529999102, 55.02435944200005), (-1.4195043609999516, 55.011704820000034), (-1.412912563999953, 55.00031159100007), (-1.4015193349999322, 54.995428778000075), (-1.398182745999918, 54.992621161000045), (-1.3702286449999406, 54.97553131700005), (-1.3626602859999366, 54.96478913000004), (-1.3617244129999335, 54.958685614000046), (-1.3635147779999102, 54.95425039300005), (-1.3640030589999128, 54.94818756700005), (-1.3628637359999516, 54.92593008000006), (-1.3603409499999088, 54.91705963700008), (-1.3531388009999432, 54.91351959800005), (-1.355824347999942, 54.904282945000034), (-1.2967830069999309, 54.77993398600006), (-1.2754613919999542, 54.74843984600005), (-1.2404679029999102, 54.72166575700004), (-1.2250870429999168, 54.71503327000005), (-1.172230597999942, 54.701239325000074), (-1.172230597999942, 54.693793036000045), (-1.1926163399999155, 54.693793036000045), (-1.192453579999949, 54.68927643400008), (-1.1907852859999366, 54.68618398600006), (-1.1851700509999432, 54.68008047100005), (-1.1827286449999406, 54.67206452000005), (-1.1788223949999406, 54.66474030200004), (-1.172922329999949, 54.65835195500006), (-1.1647029289999296, 54.652777411000045), (-1.172922329999949, 54.644191799000055), (-1.1824845039999445, 54.63922760600008), (-1.2062882149999155, 54.63296133000006), (-1.203724738999938, 54.62571849200003), (-1.1988419259999432, 54.62156810100004), (-1.1918025379999335, 54.61977773600006), (-1.1821182929999168, 54.61928945500006), (-1.1793513659999348, 54.62091705900008), (-1.1784561839999128, 54.624212958000044), (-1.1769913399999155, 54.62677643400008), (-1.172230597999942, 54.62612539300005), (-1.1695857409999348, 54.62360260600008), (-1.1654353509999282, 54.61871979400007), (-1.1629532539999445, 54.61395905200004), (-1.1647029289999296, 54.61180247600004), (-1.1526586579999503, 54.61318594000005), (-1.1467179029999102, 54.618475653000075), (-1.1380509109999366, 54.646551825000074), (-1.1205948559999115, 54.63300202000005), (-1.1036270819999459, 54.624660549000055), (-1.0842179029999102, 54.620428778000075), (-1.042062954999949, 54.61709219000005), (-0.9934789699999556, 54.59813060100004), (-0.7879125639999529, 54.56077708500004), (-0.5629776679999168, 54.47736237200007), (-0.5346573559999115, 54.461004950000074), (-0.5228572259999282, 54.44708893400008), (-0.5217992829999503, 54.43805573100008), (-0.5235896479999269, 54.43024323100008), (-0.5204158189999362, 54.42007070500006), (-0.5099991529999102, 54.41156647300005), (-0.47679602799991017, 54.39720286700003), (-0.46275794199993925, 54.38898346600007), (-0.4477432929999168, 54.37319570500006), (-0.43057206899993616, 54.349310614000046), (-0.4184464179999168, 54.32404205900008), (-0.41803951699995423, 54.303941148000035), (-0.4145401679999168, 54.297308661000045), (-0.4090063139999529, 54.29075755400004), (-0.4011938139999529, 54.28563060100004), (-0.39073645699994586, 54.28351471600007), (-0.3948868479999419, 54.273138739000046), (-0.39757239499994057, 54.269191799000055), (-0.3892716139999379, 54.26406484600005), (-0.3704727859999366, 54.247707424000055), (-0.3627823559999115, 54.24249909100007), (-0.3220108709999181, 54.23607005400004), (-0.31191972599992823, 54.231634833000044), (-0.30011959499995555, 54.224676825000074), (-0.2770889959999181, 54.21775950700004), (-0.26960201699995423, 54.20766836100006), (-0.26256262899994454, 54.18109772300005), (-0.2603653639999379, 54.176988023000035), (-0.2338761059999115, 54.16046784100007), (-0.11143958199994586, 54.13157786700003), (-0.07551021999995555, 54.11212799700007), (-0.16392981699993925, 54.08340078300006), (-0.1946915359999366, 54.06232330900008), (-0.2194718089999128, 54.022772528000075), (-0.1974177729999269, 53.99481842700004), (-0.1686905589999128, 53.929348049000055), (-0.1511124339999128, 53.899318752000056), (-0.045155402999910166, 53.801214911000045), (0.13347415500004445, 53.642645575000074), (0.1492619150000678, 53.60960521000004), (0.13689212300005238, 53.57713450700004), (0.13119550900006516, 53.573431708000044), (0.1096297540000819, 53.56289297100005), (0.1313582690000885, 53.59369538000004), (0.1359969410000872, 53.610663153000075), (0.12020918100006384, 53.61810944200005), (0.09945722700007309, 53.622300523000035), (0.056162957000083225, 53.64126211100006), (0.034515821000070446, 53.64606354400007), (0.014821811000047092, 53.64325592700004), (-0.023915167999916775, 53.62885163000004), (-0.04503333199994586, 53.62555573100008), (-0.06940670499994894, 53.626939195000034), (-0.09227454299991678, 53.63104889500005), (-0.11261959499995555, 53.63751862200007), (-0.1300349599999322, 53.64606354400007), (-0.2253311839999128, 53.719916083000044), (-0.2603653639999379, 53.73541901200008), (-0.2956436839999128, 53.738796291000085), (-0.3051651679999168, 53.73969147300005), (-0.4311417309999115, 53.71430084800005), (-0.4496964179999168, 53.71430084800005), (-0.5104874339999128, 53.71430084800005), (-0.5444229809999115, 53.70945872600004), (-0.5515030589999128, 53.71116771000004), (-0.5762426419999542, 53.72565338700008), (-0.5791723299999489, 53.72797272300005), (-0.6370336579999503, 53.73200104400007), (-0.6583552729999269, 53.72797272300005), (-0.7264705069999309, 53.70062897300005), (-0.7173559239999463, 53.69867584800005), (-0.7085668609999516, 53.695746161000045), (-0.7001846999999088, 53.691839911000045), (-0.6924535799999489, 53.68699778900003), (-0.6774796209999181, 53.702826239000046), (-0.6498103509999282, 53.710598049000055), (-0.6195369129999335, 53.71185944200005), (-0.5961807929999168, 53.70807526200008), (-0.5554906889999529, 53.69049713700008), (-0.5447485019999476, 53.683579820000034), (-0.5299373039999296, 53.67767975500004), (-0.5140274729999419, 53.681301174000055), (-0.48631751199991413, 53.69448476800005), (-0.3072403639999379, 53.71426015800006), (-0.27936764199995423, 53.707098700000074), (-0.2603653639999379, 53.68699778900003), (-0.1886287099999322, 53.620428778000075), (-0.1440323559999115, 53.606634833000044), (-0.11318925699993088, 53.58462148600006), (-0.09593665299991017, 53.57713450700004), (-0.06094316299993352, 53.57396067900004), (-0.0466202459999181, 53.570379950000074), (9.199300006912381e-05, 53.53534577000005), (0.0959578790000819, 53.488348700000074), (0.11508222700007309, 53.48322174700007), (0.1340438160000872, 53.48061758000006), (0.15186608200008322, 53.475816148000035), (0.1678166020000731, 53.464504299000055), (0.17090905000009116, 53.457017320000034), (0.1731063160000872, 53.44676341400003), (0.17579186300008587, 53.43768952000005), (0.1814884770000731, 53.43374258000006), (0.1906030610000471, 53.43187083500004), (0.21949303500008455, 53.41950104400007), (0.21192467500009116, 53.41266510600008), (0.2293400400000678, 53.40477122600004), (0.24488366000008455, 53.39093659100007), (0.2561141290000819, 53.375067450000074), (0.26042728000004445, 53.36147695500006), (0.34213300900006516, 53.22630442900004), (0.35621178500008455, 53.18854401200008), (0.3566186860000471, 53.145738023000035), (0.3357853520000731, 53.093451239000046), (0.32984459700008983, 53.08649323100008), (0.31869550900006516, 53.083685614000046), (0.29883873800008587, 53.08120351800005), (0.2824813160000872, 53.07485586100006), (0.19304446700004974, 53.02008698100008), (0.17448978000004445, 53.01544830900008), (0.16081790500004445, 53.008978583000044), (0.08212324300006912, 52.938666083000044), (0.061167839000063395, 52.924994208000044), (0.03760826900008851, 52.919175523000035), (0.022146030000044448, 52.91258372600004), (0.008555535000084546, 52.89862702000005), (0.010264519000088512, 52.88646067900004), (0.04066002700005811, 52.88507721600007), (0.09253991000008455, 52.89252350500004), (0.10564212300005238, 52.88934967700004), (0.13347415500004445, 52.87518952000005), (0.14714603000004445, 52.87201569200005), (0.17090905000009116, 52.86212799700007), (0.22242272200008983, 52.813666083000044), (0.24675540500004445, 52.79572174700007), (0.2644962900000678, 52.80369700700004), (0.2856551440000885, 52.805568752000056), (0.32553144600007045, 52.803168036000045), (0.34180748800008587, 52.79743073100008), (0.36988366000008455, 52.77301666900007), (0.38453209700008983, 52.76837799700007), (0.38453209700008983, 52.77521393400008), (0.37924238400006516, 52.79083893400008), (0.39942467500009116, 52.80951569200005), (0.42554772200008983, 52.827378648000035), (0.4386499360000471, 52.840725002000056), (0.44402103000004445, 52.86505768400008), (0.45671634200004974, 52.89199453300006), (0.47234134200004974, 52.916449286000045), (0.48568769600007045, 52.93349844000005), (0.5202742850000845, 52.95526764500005), (0.5695906910000872, 52.96930573100008), (0.6233830090000652, 52.97565338700008), (0.6718856130000859, 52.97443268400008), (0.6643986340000652, 52.98187897300005), (0.6847436860000471, 52.986395575000074), (0.7067977220000898, 52.98322174700007), (0.7291772800000444, 52.97748444200005), (0.7504988940000885, 52.97443268400008), (0.8357039720000898, 52.97443268400008), (0.8754988940000885, 52.96816640800006), (0.9210718110000471, 52.95465729400007), (0.9684350920000497, 52.94749583500004), (1.013926629000082, 52.960150458000044), (1.0034285820000832, 52.96474844000005), (0.9915470710000704, 52.96747467700004), (0.9790145190000885, 52.968410549000055), (0.9660750660000872, 52.96759674700007), (0.9660750660000872, 52.97443268400008), (1.2746688160000872, 52.92918528900003), (1.3960067070000832, 52.89142487200007), (1.6442163420000497, 52.775824286000045), (1.6733504570000832, 52.75568268400008), (1.6970320970000898, 52.73102448100008), (1.7158309250000912, 52.68374258000006), (1.7341414720000898, 52.65460846600007), (1.747243686000047, 52.62518952000005), (1.7407332690000885, 52.60390859600005), (1.7468367850000845, 52.58852773600006), (1.7487085300000444, 52.568793036000045), (1.7475692070000832, 52.53278229400007), (1.7711694670000497, 52.48590729400007), (1.7671004570000832, 52.47695547100005), (1.7544051440000885, 52.46735260600008), (1.7292586600000845, 52.41559479400007), (1.7301538420000497, 52.405910549000055), (1.7278751960000704, 52.39630768400008), (1.6836043630000859, 52.32453034100007), (1.6518660820000832, 52.289129950000074), (1.6411238940000885, 52.28180573100008), (1.6305444670000497, 52.27045319200005), (1.6282658210000704, 52.24481842700004), (1.6308699880000859, 52.19977448100008), (1.6254988940000885, 52.18036530200004), (1.6074324880000859, 52.14594147300005), (1.6035262380000859, 52.127834377000056), (1.5892033210000704, 52.100816148000035), (1.5875757170000497, 52.08698151200008), (1.582286004000082, 52.08148834800005), (1.5036727220000898, 52.060980536000045), (1.4868270190000885, 52.04901764500005), (1.4720158210000704, 52.05621979400007), (1.4668074880000859, 52.04800039300005), (1.4638778000000912, 52.035142320000034), (1.4558211600000845, 52.028509833000044), (1.4489852220000898, 52.02496979400007), (1.4248153000000912, 52.00185781500005), (1.3548283210000704, 51.95404694200005), (1.3435164720000898, 51.94285716400009), (1.332286004000082, 51.94009023600006), (1.2644149100000845, 51.99437083500004), (1.2348738940000885, 52.00031159100007), (1.1852319670000497, 52.025091864000046), (1.1578882170000497, 52.028509833000044), (1.1578882170000497, 52.02167389500005), (1.1935327480000524, 52.00079987200007), (1.2143660820000832, 51.991441148000035), (1.2602645190000885, 51.984808661000045), (1.2707625660000872, 51.98151276200008), (1.2751570970000898, 51.976996161000045), (1.2744246750000912, 51.96088288000004), (1.2710067070000832, 51.95644765800006), (1.2507430350000845, 51.95962148600006), (1.2389429050000444, 51.958644924000055), (1.2176212900000678, 51.954331773000035), (1.2057397800000444, 51.95343659100007), (1.193207227000073, 51.955511786000045), (1.1652938160000872, 51.96702708500004), (1.1430770190000885, 51.966050523000035), (1.0944930350000845, 51.955959377000056), (1.0691024100000845, 51.95343659100007), (1.0954695970000898, 51.945746161000045), (1.2620548840000652, 51.939154364000046), (1.2819930350000845, 51.946600653000075), (1.278493686000047, 51.92792389500005), (1.1995548840000652, 51.87767161700003), (1.2122501960000704, 51.87164948100008), (1.2278751960000704, 51.86737702000005), (1.2644149100000845, 51.86399974200003), (1.2747501960000704, 51.870306708000044), (1.2822371750000912, 51.880560614000046), (1.2866317070000832, 51.88165924700007), (1.288259311000047, 51.860581773000035), (1.2763778000000912, 51.84479401200008), (1.2192488940000885, 51.811835028000075), (1.167816602000073, 51.790228583000044), (1.1354272800000444, 51.78172435100004), (1.0654403000000912, 51.77529531500005), (1.0466414720000898, 51.777044989000046), (1.0372827480000524, 51.78217194200005), (1.021332227000073, 51.80255768400008), (0.9887801440000885, 51.83026764500005), (0.9798283210000704, 51.84357330900008), (0.9770613940000885, 51.82461172100005), (0.9620874360000471, 51.813788153000075), (0.9251408210000704, 51.80255768400008), (0.8942977220000898, 51.78461334800005), (0.8869735040000819, 51.782131252000056), (0.8864038420000497, 51.776678778000075), (0.8834741550000444, 51.76471588700008), (0.8789168630000859, 51.75275299700007), (0.8737085300000444, 51.747300523000035), (0.8619897800000444, 51.74555084800005), (0.8459578790000819, 51.736761786000045), (0.8357039720000898, 51.733710028000075), (0.8234969410000872, 51.73383209800005), (0.8014429050000444, 51.73969147300005), (0.7917586600000845, 51.74115631700005), (0.7671004570000832, 51.739447333000044), (0.7208764980000524, 51.728176174000055), (0.6985783210000704, 51.720038153000075), (0.7142033210000704, 51.715277411000045), (0.7324324880000859, 51.713771877000056), (0.7492781910000872, 51.70848216400009), (0.7607528000000912, 51.692694403000075), (0.7890731130000859, 51.710150458000044), (0.8530379570000832, 51.71889883000006), (0.8835555350000845, 51.72687409100007), (0.9123641290000819, 51.741522528000075), (0.9300236340000652, 51.74359772300005), (0.9455672540000819, 51.733710028000075), (0.9474389980000524, 51.72524648600006), (0.9445906910000872, 51.71548086100006), (0.9404403000000912, 51.70799388200004), (0.9381616550000444, 51.706366278000075), (0.9401961600000845, 51.698431708000044), (0.9440210300000444, 51.69057851800005), (0.9518335300000444, 51.67841217700004), (0.9417423840000652, 51.673041083000044), (0.9379988940000885, 51.664496161000045), (0.9381616550000444, 51.64126211100006), (0.9347436860000471, 51.63589101800005), (0.9267684250000912, 51.630926825000074), (0.9114689460000704, 51.62384674700007), (0.9384871750000912, 51.624986070000034), (0.9480900400000678, 51.621527411000045), (0.9518335300000444, 51.61701080900008), (0.9244897800000444, 51.588324286000045), (0.8733016290000819, 51.559475002000056), (0.8282983730000524, 51.541856187000064), (0.8162541020000731, 51.537176825000074), (0.7712508470000898, 51.52826569200005), (0.6920679050000444, 51.536322333000044), (0.6643986340000652, 51.53506094000005), (0.6637475920000497, 51.53554922100005), (0.6505639980000524, 51.53579336100006), (0.6466577480000524, 51.53534577000005), (0.6440535820000832, 51.53506094000005), (0.6427514980000524, 51.53351471600007), (0.6233830090000652, 51.52204010600008), (0.6086531910000872, 51.51898834800005), (0.5952254570000832, 51.51862213700008), (0.5822860040000819, 51.51654694200005), (0.5688582690000885, 51.50836823100008), (0.5527449880000859, 51.51797109600005), (0.5472111340000652, 51.51772695500006), (0.5254012380000859, 51.516913153000075), (0.45606530000009116, 51.505560614000046), (0.45085696700004974, 51.49827708500004), (0.44800866000008455, 51.48822663000004), (0.4416610040000819, 51.47703685100004), (0.42847741000008455, 51.46710846600007), (0.41407311300008587, 51.46190013200004), (0.39918053500008455, 51.45840078300006), (0.38453209700008983, 51.453111070000034), (0.4484155610000471, 51.45994700700004), (0.45679772200008983, 51.46312083500004), (0.4614363940000885, 51.47016022300005), (0.46485436300008587, 51.47724030200004), (0.4695744150000678, 51.48041413000004), (0.5348413420000497, 51.49168528900009), (0.6948348320000832, 51.47703685100004), (0.7094832690000885, 51.47052643400008), (0.7219344410000872, 51.456284898000035), (0.7231551440000885, 51.44672272300005), (0.7131453790000819, 51.44122955900008), (0.6923934250000912, 51.439520575000074), (0.6565047540000819, 51.444525458000044), (0.6409611340000652, 51.44415924700007), (0.6093856130000859, 51.425116278000075), (0.5727645190000885, 51.419582424000055), (0.5545353520000731, 51.412176825000074), (0.5622664720000898, 51.40656159100007), (0.5691024100000845, 51.399603583000044), (0.5765080090000652, 51.39362213700008), (0.5859481130000859, 51.391058661000045), (0.6718856130000859, 51.391058661000045), (0.7129012380000859, 51.38422272300005), (0.7049259770000731, 51.39598216400009), (0.7003686860000471, 51.409816799000055), (0.7053328790000819, 51.41950104400007), (0.7264103520000731, 51.41901276200008), (0.7283634770000731, 51.406236070000034), (0.7392684250000912, 51.387925523000035), (0.7534285820000832, 51.371527411000045), (0.7644149100000845, 51.36440664300005), (0.9772241550000444, 51.34918854400007), (1.1009220710000704, 51.37323639500005), (1.4238387380000859, 51.39207591400009), (1.4482528000000912, 51.382879950000074), (1.4391382170000497, 51.35008372600004), (1.4355574880000859, 51.343736070000034), (1.430837436000047, 51.33779531500005), (1.4251408210000704, 51.33295319200005), (1.4186304050000444, 51.32965729400007), (1.3829858730000524, 51.329779364000046), (1.3776147800000444, 51.326239325000074), (1.3806258470000898, 51.304754950000074), (1.387868686000047, 51.28790924700007), (1.4043074880000859, 51.261379299000055), (1.4130965500000912, 51.22174713700008), (1.4047957690000885, 51.18353913000004), (1.3844507170000497, 51.151678778000075), (1.3571883470000898, 51.13100820500006), (1.2903751960000704, 51.116522528000075), (1.2629500660000872, 51.10325755400004), (1.2516382170000497, 51.10252513200004), (1.2299910820000832, 51.10370514500005), (1.2181095710000704, 51.10097890800006), (1.2082625660000872, 51.09467194200005), (1.1997176440000885, 51.087591864000046), (1.1920679050000444, 51.08258698100008), (1.1722111340000652, 51.077378648000035), (1.1067000660000872, 51.07636139500005), (1.0871688160000872, 51.07298411700003), (1.0669051440000885, 51.06439850500004), (1.027598504000082, 51.04165273600006), (0.9764103520000731, 50.99445221600007), (0.9664819670000497, 50.98273346600007), (0.9690861340000652, 50.95685455900008), (0.9798283210000704, 50.91815827000005), (0.9451603520000731, 50.909369208000044), (0.8698022800000444, 50.925116278000075), (0.8022567070000832, 50.93919505400004), (0.7624617850000845, 50.930894273000035), (0.6643986340000652, 50.870306708000044), (0.6241968110000471, 50.858710028000075), (0.4074813160000872, 50.829331773000035), (0.3702905610000471, 50.818793036000045), (0.36524498800008587, 50.81899648600006), (0.35425866000008455, 50.80963776200008), (0.34441165500004445, 50.79905833500004), (0.3422957690000885, 50.79515208500004), (0.3081160820000832, 50.780951239000046), (0.2710067070000832, 50.747381903000075), (0.23389733200008322, 50.74701569200005), (0.2141219410000872, 50.748928127000056), (0.16830488400006516, 50.759833075000074), (0.1573999360000471, 50.761053778000075), (0.12208092500009116, 50.76080963700008), (0.11304772200008983, 50.76414622600004), (0.09555097700007309, 50.775051174000055), (0.07703698000005943, 50.778998114000046), (0.034515821000070446, 50.780951239000046), (0.01754804800009424, 50.784857489000046), (-0.17316646999995555, 50.829006252000056), (-0.20612545499994894, 50.83104075700004), (-0.20889238199993088, 50.83010488500008), (-0.2331436839999128, 50.821926174000055), (-0.2696833979999269, 50.831284898000035), (-0.39757239499994057, 50.802069403000075), (-0.5689591139999379, 50.802069403000075), (-0.7327367829999503, 50.767279364000046), (-0.7415665359999366, 50.769232489000046), (-0.7498673169999392, 50.773871161000045), (-0.7582087879999335, 50.77708567900004), (-0.7675675119999141, 50.774725653000075), (-0.7731013659999348, 50.76601797100005), (-0.7662654289999296, 50.74713776200008), (-0.7709854809999115, 50.73688385600008), (-0.7899470689999362, 50.73004791900007), (-0.8128149079999503, 50.73476797100005), (-0.9041235019999476, 50.77187734600005), (-0.9114884109999366, 50.77781810100004), (-0.9058731759999432, 50.78803131700005), (-0.8924861319999309, 50.794623114000046), (-0.8636368479999419, 50.802069403000075), (-0.8636368479999419, 50.808254299000055), (-0.8736059239999463, 50.812933661000045), (-0.8931371739999463, 50.82534414300005), (-0.9046931629999335, 50.829331773000035), (-0.9095352859999366, 50.82599518400008), (-0.9217016269999476, 50.821600653000075), (-0.9289444649999155, 50.82282135600008), (-0.9190160799999489, 50.83616771000004), (-0.9297989569999459, 50.83999258000006), (-0.9391983709999181, 50.84324778900009), (-0.9707738919999542, 50.846991278000075), (-0.9948624339999128, 50.84707265800006), (-1.0018611319999309, 50.84711334800005), (-1.0207413399999155, 50.84365469000005), (-1.033558722999942, 50.82591380400004), (-1.0426326159999348, 50.80190664300005), (-1.0562231109999516, 50.78302643400008), (-1.0827530589999128, 50.780951239000046), (-1.1030167309999115, 50.79547760600008), (-1.0936173169999392, 50.812933661000045), (-1.0753067699999406, 50.83002350500004), (-1.069162563999953, 50.84365469000005), (-1.0873103509999282, 50.84979889500005), (-1.0881241529999102, 50.84975820500006), (-1.1498103509999282, 50.84666575700004), (-1.1647029289999296, 50.84365469000005), (-1.129709438999953, 50.825100002000056), (-1.1237686839999128, 50.818793036000045), (-1.1212052069999459, 50.79938385600008), (-1.1249080069999309, 50.788723049000055), (-1.1380509109999366, 50.780951239000046), (-1.1511124339999128, 50.78139883000006), (-1.1693416009999282, 50.78587474200003), (-1.1856176419999542, 50.79242584800005), (-1.1926163399999155, 50.79865143400008), (-1.1992895169999542, 50.807928778000075), (-1.231516079999949, 50.81891510600008), (-1.2551977199999556, 50.83193594000005), (-1.288156704999949, 50.839178778000075), (-1.3014216789999296, 50.84365469000005), (-1.3185929029999102, 50.85691966400009), (-1.338937954999949, 50.872707424000055), (-1.4492895169999542, 50.91205475500004), (-1.4664200509999432, 50.91815827000005), (-1.4664200509999432, 50.91193268400008), (-1.4564509759999282, 50.90875885600008), (-1.4379776679999168, 50.90131256700005), (-1.4256078769999476, 50.900091864000046), (-1.4011124339999128, 50.88117096600007), (-1.323068813999953, 50.82575104400007), (-1.3142797519999476, 50.812160549000055), (-1.3172908189999362, 50.80023834800005), (-1.3398331369999141, 50.79515208500004), (-1.4039607409999348, 50.79157135600008), (-1.4186905589999128, 50.788397528000075), (-1.4113663399999155, 50.78489817900004), (-1.4049373039999296, 50.780951239000046), (-1.4049373039999296, 50.774725653000075), (-1.4505102199999556, 50.76935455900008), (-1.4762263659999348, 50.76341380400004), (-1.4875382149999155, 50.75771719000005), (-1.491932745999918, 50.75726959800005), (-1.5247289699999556, 50.761053778000075), (-1.5571996739999463, 50.72329336100006), (-1.559396938999953, 50.71922435100004), (-1.5611873039999296, 50.71898021000004), (-1.5807185539999296, 50.722642320000034), (-1.6021215489999463, 50.731756903000075), (-1.6706436839999128, 50.74005768400008), (-1.672922329999949, 50.74005768400008), (-1.6930232409999348, 50.739935614000046), (-1.7150772779999102, 50.73578522300005), (-1.7535294259999432, 50.72284577000005), (-1.7717179029999102, 50.72011953300006), (-1.7974340489999463, 50.723171291000085), (-1.8350723949999406, 50.72768789300005), (-1.8574112619999141, 50.72695547100005), (-1.8773494129999335, 50.72284577000005), (-1.8963516919999392, 50.71629466400009), (-1.8968806629999335, 50.716050523000035), (-1.9138891269999476, 50.70742422100005), (-1.9291072259999282, 50.69586823100008), (-1.9400121739999463, 50.69082265800006), (-1.9443253249999088, 50.69765859600005), (-1.946115688999953, 50.707912502000056), (-1.9492895169999542, 50.713324286000045), (-1.9877009759999282, 50.72011953300006), (-2.01390540299991, 50.71893952000005), (-2.0219620429999168, 50.72011953300006), (-2.0254613919999542, 50.723863023000035), (-2.026193813999953, 50.72508372600004), (-2.0338435539999296, 50.73712799700007), (-2.038970506999931, 50.739935614000046), (-2.0480850899999155, 50.734808661000045), (-2.0826716789999296, 50.69896067900004), (-2.0695694649999155, 50.700100002000056), (-2.0577286449999406, 50.702826239000046), (-2.046620245999918, 50.70726146000004), (-2.0356339179999168, 50.713324286000045), (-2.0141495429999168, 50.688788153000075), (-2.0025121739999463, 50.681301174000055), (-1.984120245999918, 50.67853424700007), (-1.9674373039999296, 50.67865631700005), (-1.9527888659999348, 50.67658112200007), (-1.9458715489999463, 50.668850002000056), (-1.9529516269999476, 50.65184153900009), (-1.9382218089999128, 50.645819403000075), (-1.9324845039999445, 50.64443594000005), (-1.9672745429999168, 50.61709219000005), (-1.965199347999942, 50.60219961100006), (-1.9837133449999556, 50.59662506700005), (-2.065174933999913, 50.59552643400008), (-2.082183397999927, 50.59784577000005), (-2.1573380199999406, 50.62051015800006), (-2.3426407539999445, 50.63377513200004), (-2.377064581999946, 50.64752838700008), (-2.398345506999931, 50.64557526200008), (-2.435902472999942, 50.63751862200007), (-2.447621222999942, 50.62787506700005), (-2.4600723949999406, 50.60651276200008), (-2.465646938999953, 50.585150458000044), (-2.4564509759999282, 50.575506903000075), (-2.4312231109999516, 50.57025788000004), (-2.428700324999909, 50.55756256700005), (-2.4392797519999476, 50.54181549700007), (-2.45335852799991, 50.52765534100007), (-2.4595434239999463, 50.52765534100007), (-2.4603572259999282, 50.56549713700008), (-2.4835098949999406, 50.59039948100008), (-2.6929418609999516, 50.69281647300005), (-2.8648168609999516, 50.73379140800006), (-2.887318488999938, 50.734361070000034), (-2.94554602799991, 50.725816148000035), (-2.9627579419999392, 50.72329336100006), (-2.998199022999927, 50.708238023000035), (-3.021839972999942, 50.70648834800005), (-3.059722459999932, 50.713324286000045), (-3.071359829999949, 50.711004950000074), (-3.0941462879999335, 50.69896067900004), (-3.099232550999943, 50.69708893400008), (-3.115834113999938, 50.68797435100004), (-3.1254776679999168, 50.68528880400004), (-3.135894334999932, 50.68593984600005), (-3.1551407539999445, 50.69135163000004), (-3.1664932929999168, 50.69281647300005), (-3.1856176419999542, 50.690741278000075), (-3.2191462879999335, 50.68081289300005), (-3.2598363919999542, 50.67454661700003), (-3.271392381999931, 50.664496161000045), (-3.280425584999932, 50.65119049700007), (-3.2955623039999296, 50.63751862200007), (-3.368153449999909, 50.61709219000005), (-3.390736456999946, 50.61782461100006), (-3.4075414699999556, 50.62128327000005), (-3.420969204999949, 50.62946198100008), (-3.433338995999918, 50.64443594000005), (-3.446359829999949, 50.66828034100007), (-3.4504288399999155, 50.672308661000045), (-3.453277147999927, 50.67328522300005), (-3.455433722999942, 50.675441799000055), (-3.458607550999943, 50.67755768400008), (-3.4644262359999516, 50.67853424700007), (-3.467762824999909, 50.67641836100006), (-3.468902147999927, 50.67169830900008), (-3.467844204999949, 50.66697825700004), (-3.45531165299991, 50.657904364000046), (-3.4420466789999296, 50.62352122600004), (-3.433338995999918, 50.610256252000056), (-3.451161261999914, 50.59943268400008), (-3.4672745429999168, 50.585598049000055), (-3.4817602199999556, 50.56854889500005), (-3.494862433999913, 50.548163153000075), (-3.505970831999946, 50.520819403000075), (-3.505034959999932, 50.501206773000035), (-3.487456834999932, 50.459418036000045), (-3.509755011999914, 50.45848216400009), (-3.532134568999936, 50.454779364000046), (-3.549427863999938, 50.446519273000035), (-3.556263800999943, 50.43211497600004), (-3.5493057929999168, 50.41559479400007), (-3.531971808999913, 50.410223700000074), (-3.487456834999932, 50.41156647300005), (-3.487456834999932, 50.40477122600004), (-3.4974666009999282, 50.38735586100006), (-3.49828040299991, 50.383693752000056), (-3.5073136059999115, 50.382798570000034), (-3.5149633449999556, 50.37995026200008), (-3.520130988999938, 50.37482330900008), (-3.5269262359999516, 50.34979889500005), (-3.5388891269999476, 50.34442780200004), (-3.5545141269999476, 50.347642320000034), (-3.57054602799991, 50.35639069200005), (-3.577788865999935, 50.334051825000074), (-3.5991104809999115, 50.325832424000055), (-3.6215714179999168, 50.321926174000055), (-3.631988084999932, 50.31232330900008), (-3.6373591789999296, 50.29539622600004), (-3.6475723949999406, 50.27456289300005), (-3.653309699999909, 50.25104401200008), (-3.6456192699999406, 50.22601959800005), (-3.6606339179999168, 50.22101471600007), (-3.700917120999918, 50.21352773600006), (-3.7180069649999155, 50.21238841400009), (-3.740386522999927, 50.21588776200008), (-3.758615688999953, 50.22174713700008), (-3.774240688999953, 50.22296784100007), (-3.788970506999931, 50.21238841400009), (-3.826324022999927, 50.23419830900008), (-3.8841853509999282, 50.280462958000044), (-3.949940558999913, 50.31899648600006), (-3.9610082669999542, 50.322251695000034), (-3.9702042309999115, 50.320746161000045), (-3.995757615999935, 50.311428127000056), (-4.005604620999918, 50.30923086100006), (-4.011341925999943, 50.30695221600007), (-4.024769660999937, 50.29718659100007), (-4.032948370999918, 50.294907945000034), (-4.044056769999941, 50.29645416900007), (-4.054351365999935, 50.30036041900007), (-4.070220506999931, 50.30923086100006), (-4.067941860999952, 50.31281159100007), (-4.064035610999952, 50.322251695000034), (-4.086008266999954, 50.326239325000074), (-4.1082657539999445, 50.33661530200004), (-4.118723110999952, 50.35187409100007), (-4.1049698559999115, 50.37067291900007), (-4.141753709999932, 50.36904531500005), (-4.1527400379999335, 50.37067291900007), (-4.1655167309999115, 50.37636953300006), (-4.171457485999952, 50.382798570000034), (-4.175770636999914, 50.39085521000004), (-4.18382727799991, 50.40106842700004), (-4.191477016999954, 50.417629299000055), (-4.18390865799995, 50.431708075000074), (-4.1703181629999335, 50.44513580900008), (-4.159535285999937, 50.459418036000045), (-4.179432745999918, 50.45307038000004), (-4.189564581999946, 50.45368073100008), (-4.200550910999937, 50.459418036000045), (-4.203684048999946, 50.45140208500004), (-4.204741990999935, 50.44867584800005), (-4.2123917309999115, 50.441473700000074), (-4.222523566999939, 50.43797435100004), (-4.234730597999942, 50.43829987200007), (-4.234730597999942, 50.43211497600004), (-4.2202042309999115, 50.425848700000074), (-4.2161352199999556, 50.415716864000046), (-4.219715949999909, 50.40509674700007), (-4.228505011999914, 50.397365627000056), (-4.2414444649999155, 50.39468008000006), (-4.2899063789999445, 50.397365627000056), (-4.273019985999952, 50.38190338700008), (-4.216175910999937, 50.38776276200008), (-4.1937556629999335, 50.37689850500004), (-4.228505011999914, 50.37067291900007), (-4.228505011999914, 50.36383698100008), (-4.220122850999928, 50.365301825000074), (-4.200550910999937, 50.36383698100008), (-4.207997199999909, 50.35639069200005), (-4.180043097999942, 50.35639069200005), (-4.180043097999942, 50.35016510600008), (-4.191314256999931, 50.34756094000005), (-4.197987433999913, 50.342230536000045), (-4.199126756999931, 50.33539459800005), (-4.1937556629999335, 50.32843659100007), (-4.1937556629999335, 50.322251695000034), (-4.214995897999927, 50.323146877000056), (-4.225697394999941, 50.33539459800005), (-4.235096808999913, 50.34955475500004), (-4.2523494129999335, 50.35639069200005), (-4.337717251999948, 50.37067291900007), (-4.383697068999936, 50.36749909100007), (-4.456206834999932, 50.33820221600007), (-4.4953507149999155, 50.32843659100007), (-4.659820115999935, 50.322251695000034), (-4.659575975999928, 50.32062409100007), (-4.662709113999938, 50.31777578300006), (-4.667795376999948, 50.315334377000056), (-4.673451300999943, 50.31541575700004), (-4.687163865999935, 50.34271881700005), (-4.694325324999909, 50.343451239000046), (-4.700184699999909, 50.34088776200008), (-4.705555792999917, 50.337551174000055), (-4.7113337879999335, 50.33588288000004), (-4.731556769999941, 50.33466217700004), (-4.752105272999927, 50.33030833500004), (-4.763295050999943, 50.32208893400008), (-4.755441860999952, 50.30923086100006), (-4.755441860999952, 50.30174388200004), (-4.7623591789999296, 50.298041083000044), (-4.771636522999927, 50.29157135600008), (-4.779855923999946, 50.28432851800005), (-4.783355272999927, 50.27789948100008), (-4.7818904289999296, 50.27179596600007), (-4.776519334999932, 50.26508209800005), (-4.776519334999932, 50.26080963700008), (-4.788441535999937, 50.24209219000005), (-4.790150519999941, 50.23655833500004), (-4.800160285999937, 50.22955963700008), (-4.849720831999946, 50.23456452000005), (-4.868723110999952, 50.22943756700005), (-4.887318488999938, 50.21499258000006), (-4.904774542999917, 50.20844147300005), (-4.947255011999914, 50.19936758000006), (-4.960682745999918, 50.19049713700008), (-5.002430792999917, 50.14411041900007), (-5.014556443999936, 50.15656159100007), (-5.0203751289999445, 50.19196198100008), (-5.033192511999914, 50.19936758000006), (-5.05296790299991, 50.19578685100004), (-5.053618943999936, 50.18691640800006), (-5.051869269999941, 50.17552317900004), (-5.064564581999946, 50.16461823100008), (-5.064564581999946, 50.15839264500005), (-5.058501756999931, 50.155462958000044), (-5.043446417999917, 50.14411041900007), (-5.051869269999941, 50.144598700000074), (-5.058461066999939, 50.14272695500006), (-5.070790167999917, 50.13727448100008), (-5.08031165299991, 50.13271719000005), (-5.081613735999952, 50.12539297100005), (-5.080962693999936, 50.117173570000034), (-5.085031704999949, 50.10993073100008), (-5.093902147999927, 50.105536200000074), (-5.125965949999909, 50.09634023600006), (-5.114654100999928, 50.09662506700005), (-5.106068488999938, 50.09511953300006), (-5.091867641999954, 50.089504299000055), (-5.086903449999909, 50.089056708000044), (-5.075347459999932, 50.09048086100006), (-5.070790167999917, 50.089504299000055), (-5.068470831999946, 50.085150458000044), (-5.064930792999917, 50.07184479400007), (-5.06086178299995, 50.06903717700004), (-5.056507941999939, 50.060614325000074), (-5.069488084999932, 50.042181708000044), (-5.0980525379999335, 50.01439036700003), (-5.107289191999939, 50.013006903000075), (-5.127430792999917, 50.01544830900008), (-5.139637824999909, 50.01439036700003), (-5.146473761999914, 50.01056549700007), (-5.176136847999942, 49.987941799000055), (-5.18773352799991, 49.964504299000055), (-5.191151495999918, 49.95913320500006), (-5.200103318999936, 49.961371161000045), (-5.210357225999928, 49.96674225500004), (-5.240386522999927, 49.988348700000074), (-5.245228644999941, 49.99310944200005), (-5.2495011059999115, 50.000067450000074), (-5.253041144999941, 50.01264069200005), (-5.25226803299995, 50.020697333000044), (-5.252674933999913, 50.027777411000045), (-5.259755011999914, 50.03766510600008), (-5.2884008449999556, 50.067694403000075), (-5.304351365999935, 50.08026764500005), (-5.323963995999918, 50.089504299000055), (-5.384185350999928, 50.10797760600008), (-5.424712693999936, 50.11273834800005), (-5.458119269999941, 50.125881252000056), (-5.47484290299991, 50.13043854400007), (-5.495676235999952, 50.12962474200003), (-5.521839972999942, 50.12372467700004), (-5.540923631999931, 50.11347077000005), (-5.540638800999943, 50.09975820500006), (-5.5346573559999115, 50.08234284100007), (-5.5455623039999296, 50.06891510600008), (-5.563465949999909, 50.05963776200008), (-5.57843990799995, 50.054754950000074), (-5.61945553299995, 50.046210028000075), (-5.667388475999928, 50.04287344000005), (-5.705148891999954, 50.05231354400007), (-5.715646938999953, 50.08270905200004), (-5.705962693999936, 50.08348216400009), (-5.698801235999952, 50.08539459800005), (-5.694488084999932, 50.089504299000055), (-5.694406704999949, 50.095770575000074), (-5.697092251999948, 50.10053131700005), (-5.700306769999941, 50.103216864000046), (-5.701975063999953, 50.103176174000055), (-5.707386847999942, 50.12201569200005), (-5.70921790299991, 50.13263580900008), (-5.70539303299995, 50.13727448100008), (-5.7035212879999335, 50.140611070000034), (-5.684641079999949, 50.16152578300006), (-5.676747199999909, 50.16502513200004), (-5.647368943999936, 50.17206452000005), (-5.583607550999943, 50.19586823100008), (-5.549427863999938, 50.20351797100005), (-5.5109757149999155, 50.21946849200003), (-5.4891251289999445, 50.21979401200008), (-5.458119269999941, 50.20075104400007), (-5.437977667999917, 50.19432200700004), (-5.417388475999928, 50.202460028000075), (-5.402943488999938, 50.21735260600008), (-5.395863410999937, 50.22724030200004), (-5.39289303299995, 50.23655833500004), (-5.3875626289999445, 50.240301825000074), (-5.351918097999942, 50.240301825000074), (-5.3148494129999335, 50.253607489000046), (-5.200306769999941, 50.33075592700004), (-5.1635636059999115, 50.34723541900007), (-5.1498917309999115, 50.35016510600008), (-5.146473761999914, 50.35529205900008), (-5.145659959999932, 50.366888739000046), (-5.147043423999946, 50.37938060100004), (-5.153675910999937, 50.39948151200008), (-5.142404751999948, 50.40448639500005), (-5.12726803299995, 50.40521881700005), (-5.119740363999938, 50.40477122600004), (-5.0502823559999115, 50.42869700700004), (-5.0481664699999556, 50.43439362200007), (-5.038726365999935, 50.44790273600006), (-5.029774542999917, 50.486761786000045), (-5.0286352199999556, 50.507025458000044), (-5.025257941999939, 50.52423737200007), (-5.015614386999914, 50.53803131700005), (-4.9955948559999115, 50.548163153000075), (-4.975168423999946, 50.548163153000075), (-4.967844204999949, 50.55158112200007), (-4.954823370999918, 50.56122467700004), (-4.947255011999914, 50.56244538000004), (-4.941477016999954, 50.55695221600007), (-4.937123175999943, 50.54531484600005), (-4.9344376289999445, 50.53164297100005), (-4.933583136999914, 50.52024974200003), (-4.926869269999941, 50.52289459800005), (-4.924305792999917, 50.52448151200008), (-4.920521613999938, 50.52765534100007), (-4.902414516999954, 50.52057526200008), (-4.860951300999943, 50.519191799000055), (-4.844838019999941, 50.51406484600005), (-4.855824347999942, 50.527411200000074), (-4.87328040299991, 50.534084377000056), (-4.906239386999914, 50.54197825700004), (-4.921864386999914, 50.55487702000005), (-4.92023678299995, 50.564154364000046), (-4.915191209999932, 50.57249583500004), (-4.920521613999938, 50.58295319200005), (-4.920521613999938, 50.589178778000075), (-4.895659959999932, 50.585923570000034), (-4.821197068999936, 50.589178778000075), (-4.7924698559999115, 50.59520091400009), (-4.7766007149999155, 50.60984935100004), (-4.765044725999928, 50.62799713700008), (-4.7492569649999155, 50.64443594000005), (-4.755441860999952, 50.659369208000044), (-4.751942511999914, 50.67007070500006), (-4.741932745999918, 50.67487213700008), (-4.728138800999943, 50.672308661000045), (-4.657297329999949, 50.71112702000005), (-4.645578579999949, 50.723537502000056), (-4.637806769999941, 50.74115631700005), (-4.619007941999939, 50.754787502000056), (-4.577259894999941, 50.774725653000075), (-4.5501195949999556, 50.80955638200004), (-4.55492102799991, 50.897772528000075), (-4.543771938999953, 50.93919505400004), (-4.536854620999918, 50.94757721600007), (-4.5226944649999155, 50.972723700000074), (-4.5266820949999556, 50.98037344000005), (-4.530425584999932, 50.99469635600008), (-4.531320766999954, 51.008693752000056), (-4.526437954999949, 51.014960028000075), (-4.437326626999948, 51.014960028000075), (-4.4264216789999296, 51.01268138200004), (-4.4057511059999115, 51.00287506700005), (-4.3957413399999155, 51.00067780200004), (-4.337717251999948, 50.99664948100008), (-4.317290818999936, 51.00067780200004), (-4.302316860999952, 51.007513739000046), (-4.234730597999942, 51.05532461100006), (-4.2291560539999296, 51.06110260600008), (-4.224680141999954, 51.06708405200004), (-4.218495245999918, 51.07245514500005), (-4.207997199999909, 51.07636139500005), (-4.214263475999928, 51.086004950000074), (-4.226307745999918, 51.11322663000004), (-4.228505011999914, 51.120428778000075), (-4.2319229809999115, 51.12669505400004), (-4.249012824999909, 51.14288971600007), (-4.255767381999931, 51.15151601800005), (-4.222320115999935, 51.149725653000075), (-4.214833136999914, 51.15151601800005), (-4.208363410999937, 51.16229889500005), (-4.2098282539999445, 51.17283763200004), (-4.217274542999917, 51.18138255400004), (-4.228505011999914, 51.18622467700004), (-4.228505011999914, 51.19245026200008), (-4.152333136999914, 51.21161530200004), (-3.969471808999913, 51.22239817900004), (-3.931996222999942, 51.231350002000056), (-3.9131973949999406, 51.23338450700004), (-3.840891079999949, 51.23338450700004), (-3.818959113999938, 51.23607005400004), (-3.787098761999914, 51.24677155200004), (-3.769154425999943, 51.247707424000055), (-3.6397598949999406, 51.22638580900008), (-3.559315558999913, 51.22809479400007), (-3.434193488999938, 51.20978424700007), (-3.4043676419999542, 51.19204336100006), (-3.38499915299991, 51.18622467700004), (-3.2707413399999155, 51.18939850500004), (-3.198882615999935, 51.203558661000045), (-3.1627498039999296, 51.206732489000046), (-3.096750454999949, 51.20453522300005), (-3.057525193999936, 51.20815664300005), (-3.029286261999914, 51.220404364000046), (-3.021839972999942, 51.21356842700004), (-3.0355525379999335, 51.199286200000074), (-3.021839972999942, 51.19245026200008), (-3.004790818999936, 51.21312083500004), (-3.0013321609999366, 51.220404364000046), (-2.9995824859999516, 51.23322174700007), (-3.0015356109999516, 51.23969147300005), (-3.0049942699999406, 51.24506256700005), (-3.008168097999942, 51.25454336100006), (-3.0076391269999476, 51.29197825700004), (-3.0106095039999445, 51.310980536000045), (-3.021839972999942, 51.32282135600008), (-3.0024307929999168, 51.31907786700003), (-2.992176886999914, 51.321926174000055), (-2.992095506999931, 51.32204824400009), (-2.988392706999946, 51.33112213700008), (-2.9877823559999115, 51.34666575700004), (-2.9798884759999282, 51.35586172100005), (-2.965972459999932, 51.364935614000046), (-2.959584113999938, 51.374253648000035), (-2.9746801419999542, 51.38422272300005), (-2.9529516269999476, 51.398504950000074), (-2.9210098949999406, 51.39443594000005), (-2.8841853509999282, 51.41697825700004), (-2.816395636999914, 51.47361888200004), (-2.798573370999918, 51.48261139500005), (-2.780873175999943, 51.48908112200007), (-2.7612198559999115, 51.49286530200004), (-2.7376195949999556, 51.49408600500004), (-2.716420050999943, 51.49957916900007), (-2.6961563789999445, 51.51264069200005), (-2.6078181629999335, 51.60736725500004), (-2.599598761999914, 51.611395575000074), (-2.5892227859999366, 51.61424388200004), (-2.580433722999942, 51.61863841400009), (-2.5768123039999296, 51.62750885600008), (-2.57445227799991, 51.63572825700004), (-2.568959113999938, 51.644964911000045), (-2.562245245999918, 51.65338776200008), (-2.556385870999918, 51.65924713700008), (-2.499175584999932, 51.69676341400009), (-2.464995897999927, 51.725897528000075), (-2.4477432929999168, 51.73187897300005), (-2.404896613999938, 51.74115631700005), (-2.3885391919999392, 51.750433661000045), (-2.380767381999931, 51.76190827000005), (-2.3833715489999463, 51.77326080900008), (-2.398060675999943, 51.782131252000056), (-2.4024145169999542, 51.76357656500005), (-2.4203995429999168, 51.753119208000044), (-2.4434301419999542, 51.74843984600005), (-2.4632869129999335, 51.747300523000035), (-2.482085740999935, 51.74286530200004), (-2.495838995999918, 51.73200104400007), (-2.507964647999927, 51.71857330900008), (-2.5221248039999296, 51.706366278000075), (-2.581695115999935, 51.681708075000074), (-2.5911352199999556, 51.67536041900007), (-2.600209113999938, 51.66559479400007), (-2.6653539699999556, 51.617254950000074)]\n", + " draw_map(plot, x, y, colour)\n", + " plot.plot(\n", + " [merc_x(coord[0]) for coord in gb_boundary],\n", + " [merc_y(coord[1]) for coord in gb_boundary],\n", + " \"k-\",\n", + " )\n", + "\n", + "country = Config(\n", + " get_data=get_literal_data(),\n", + " clean=get_map_cleaner_for(\"Temperature\"),\n", + " title=\"Country wide temperature\",\n", + " ylabel=\"\",\n", + " draw=draw_map_with_gb,\n", + ")\n", + "\n", + "out = widgets.interactive(interactable_plot_multiple_charts(configs=configs + (country, )), collected_after=start, collected_before=end)\n", + "display(out)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "apd.aggregation", + "language": "python", + "name": "apd.aggregation" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Ch09/apd.aggregation-chapter09/LICENCE b/Ch09/apd.aggregation-chapter09/LICENCE new file mode 100644 index 0000000..86685d4 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09/LICENCE @@ -0,0 +1,31 @@ +Copyright (c) 2019, Matthew Wilkes + + +All rights reserved. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + +* Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + +* Redistributions in binary form must reproduce the above copyright notice, this + list of conditions and the following disclaimer in the documentation and/or + other materials provided with the distribution. + +* Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived from this + software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND +ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. +IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, +INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, +BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY +OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE +OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED +OF THE POSSIBILITY OF SUCH DAMAGE. + + diff --git a/Ch09/apd.aggregation-chapter09/Mapping.ipynb b/Ch09/apd.aggregation-chapter09/Mapping.ipynb new file mode 100644 index 0000000..916e704 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09/Mapping.ipynb @@ -0,0 +1,254 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "datapoints = {\n", + " (53.8667, -1.3333): -1,\n", + " (53.35, -2.2833): 1,\n", + " (52.45, -1.7333): 3,\n", + " (51.5, -0.1333): 6,\n", + " (51.55, -2.5667): 5,\n", + " (54.9667, -1.6167): -1,\n", + " (55.9667, -3.2167): -1,\n", + " (54.7667, -1.5833): 0,\n", + " (53.7667, -0.3): 1,\n", + " (53.7667, -3.0167): 0,\n", + " (51.4833, -3.1833): 4,\n", + " (53.2667, -3.5167): 2,\n", + " (52.0833, -2.8): 2,\n", + " (52.0167, -0.6): 2,\n", + " (52.6667, 1.2667): 5,\n", + " (50.4333, -4.9833): 9,\n", + " (50.35, -4.1167): 10,\n", + " (50.5167, -2.45): 9,\n", + " (50.8333, -1.1667): 9,\n", + " (56.45, -5.4333): 4,\n", + " (57.5333, -4.05): -2,\n", + " (54.5167, -3.6167): 3,\n", + " (53.0833, 0.2667): 4,\n", + " (51.35, 1.3333): 7,\n", + " (50.8833, 0.3167): 8,\n", + " (58.45, -3.1): 3,\n", + " (50.1, -5.6667): 9,\n", + " (58.2167, -6.3333): 4,\n", + " (55.6833, -6.25): 7,\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAARS0lEQVR4nO3df4hc13nG8eexYodFuJWDVkq0tiqH2oIksiV3LEJFfshuJNukjiIItPQP0RRUmyTQgJVYFTRtjbGwUtxSSqlKTEOJGlKq3YS6tqTGENM/nGQVyZVCrcQ1SuJdN5JSRFOy9Q/57R9zx9pdzXpmdufee87M9wNmd+7OaF9rtM+ee+4573VECACQn6vqLgAAsDgEOABkigAHgEwR4ACQKQIcADL1tiq/2cqVK2PdunVVfksAyN7x48cvRMTo/OOVBvi6des0OTlZ5bcEgOzZ/lG740yhAECmCHAAyBQBDgCZIsABIFMEOABkqtJVKMBiTJyY0oEjZzR9cUZrVoxoz/b12rFprO6ygNoR4EjaxIkp7T18SjOvXZIkTV2c0d7DpySJEMfQYwoFSTtw5Myb4d0y89olHThypqaKgHQQ4Eja9MWZno4Dw4QAR9LWrBjp6TgwTAhwJG3P9vUauXrZnGMjVy/Tnu3ra6oISEfyFzFZgTDcWu81/waAKyUd4KxAgNR8r3m/gSslPYXCCgQAWFjSAc4KBABYWNIBzgoEAFhYVwFu+6ztU7ZP2p4sjm20/WzrmO3N/S6OFQgAsLBeLmJujYgLsx4/KulPIuJJ2/cUjz/cz+JYgQAAC1vKKpSQ9EvF578saXrp5VyJFQgA0F63AR6SjtoOSX8TEQcl/YGkI7a/qOZUzK+3e6Ht3ZJ2S9LatWuXXjEAQFL3FzG3RMRtku6W9CnbH5R0v6TPRsQNkj4r6UvtXhgRByOiERGN0dErbqoMAFikrgI8IqaLj+ckjUvaLGmXpMPFU/6xOAYAqEjHALe93Pa1rc8lbZN0Ws057w8VT7tD0g/LKhIAcKVu5sBXSxq33Xr+oYh4yvb/SvoL22+T9H8q5rkBANXoGOAR8aKkW9sc/zdJv1ZGUQCAzpLeiQkAWBgBDgCZSrqdLKpF73UgLwQ4JNF7HcgRUyiQRO91IEcEOCTRex3IEQEOSfReB3JEgEMSvdeBHHERE5LovQ7kiADHm+i9DuSFKRQAyBQBDgCZIsABIFMEOABkigAHgEwR4ACQKQIcADJFgANApghwAMgUAQ4AmSLAASBTBDgAZIoAB4BMEeAAkCkCHAAyRYADQKYIcADIFAEOAJnilmo9mjgxxX0jASSBAO/BxIkp7T18SjOvXZIkTV2c0d7DpySJEAdQOaZQenDgyJk3w7tl5rVLOnDkTE0VARhmBHgPpi/O9HQcAMpEgPdgzYqRno4DQJkI8B7s2b5eI1cvm3Ns5Opl2rN9fU0VARhmXMTsQetCJatQAKSAAO/Rjk1jBDaAJDCFAgCZIsABIFNdBbjts7ZP2T5pe3LW8c/YPmP7+7YfLa9MAMB8vcyBb42IC60HtrdK+pikWyLiFdur+l4dhg6tCoDuLeUi5v2S9kfEK5IUEef6UxKGFa0KgN50Owceko7aPm57d3HsZkkfsP1t29+yfXu7F9rebXvS9uT58+f7UTMGFK0KgN50OwLfEhHTxTTJMdvPF6+9TtL7Jd0u6Wu23x0RMfuFEXFQ0kFJajQaIWABtCoAetPVCDwipouP5ySNS9os6SVJh6PpO5LekLSyrEIx+GhVAPSmY4DbXm772tbnkrZJOi1pQtIdxfGbJV0j6cJCfw7QCa0KgN50M4WyWtK47dbzD0XEU7avkfS47dOSXpW0a/70CdALWhUAvXGVmdtoNGJycrLzExfAEjMAw8j28YhozD+eTS8UlpgBwFzZbKVniRkAzJVNgLPEDADmyibAWWIGAHNlE+AsMQOAubK5iMkSMwCYK5sAl7gbDgDMls0UCgBgLgIcADJFgANApghwAMgUAQ4AmSLAASBTBDgAZIoAB4BMEeAAkKmsdmICg4wblqBXBDiQAG5YgsVgCgVIADcswWIQ4EACuGEJFoMABxKw0I1JrrI1cWKq4mqQCwIcSEC7G5ZI0qUI7T18ihBHWwQ4kIAdm8b0yM4NWmZf8TXmwrEQAhxIxI5NY3ojou3XmAtHOwQ4kBBu3o1eEOBAQrh5N3rBRh70FbsJl4abd6MXBDj6ht2E/cHNu9EtplDQN+wmBKpFgKNv2E0IVIsAR9+wggKoFgGOvmEFBVAtLmKib1hBAVSLAEdfsYICqA5TKACQKQIcADJFgANApghwAMhUVwFu+6ztU7ZP2p6c97UHbIftleWUCABop5dVKFsj4sLsA7ZvkPQRST/ua1UAgI6WOoXymKTPSWrfhR4AUJpuAzwkHbV93PZuSbJ9r6SpiHiutOoAAAvqdgplS0RM214l6Zjt5yXtk7St0wuLwN8tSWvXrl10oQDmovc6uhqBR8R08fGcpHFJH5J0o6TnbJ+VdL2k79l+Z5vXHoyIRkQ0RkdH+1Y4MMxavdenLs4odLn3OnevHy4dR+C2l0u6KiJ+Xny+TdKfRsSqWc85K6kx/yIn0G+MOpveqvd6Sn8fvF/l6mYKZbWkcdut5x+KiKdKrQpogzv+XJZD73Xer/J1nEKJiBcj4tbiv/dGxMNtnrOO0TfKxh1/Lsuh9zrvV/nYiYls5DDqrEoOvdd5v8pHgCMbOYw6q7Jj05ge2blBYytGZEljK0b0yM4NSU1N8H6Vj37gyMae7evnzKlK6Y06q5R673Xer/IR4MgGd/zJC+9X+RxR3S74RqMRk5OTnZ8IAHiT7eMR0Zh/nDlwAMgUAQ4AmWIOHOiA3YRIFQEOvAV2EyJlBDhKlfvoNZeeIxhOBDhKMwijV3YTImVcxERpBqEXBrsJkTICHKUZhNFrDj1HMLyYQkFp1qwY0VSbsM5p9MpuwjTlfm2lXwhwlGZQemGk3nNk2AzCtZV+YQoFpcmhYx7yMwjXVvqFEThKxegV/TYI11b6hRE4gKywMugyAhxAVlgZdBlTKACywsqgywhwANnh2koTUygAkCkCHAAyxRQKAPRZVTtFCXAA6KMqd4oyhQIAfVTlTlECHAD6qMqdogQ4APRRlTtFCXCgJhMnprRl/9O68cEntGX/05o4MVV3SeiDKneKchETqAEtUQdXlTtFCXCgBtwsebBVtVOUKRSgBrRERT8Q4EANaImKfiDAgRrQEhX9wBw4UANaoqIfCHCgJrRExVIxhQIAmWIEjoFSVRc4IAUEOAYGm2MwbLoKcNtnJf1c0iVJr0dEw/YBSb8p6VVJ/ynpdyPiYlmFAp2wOaZ8nOGkpZc58K0RsTEiGsXjY5LeFxG3SPqBpL19rw7oAZtjytU6w5m6OKPQ5TMcerjUZ9EXMSPiaES8Xjx8VtL1/SkJWBw2x5Sryj7X6E63AR6Sjto+bnt3m69/UtKT7V5oe7ftSduT58+fX2ydQEdsjikXZzjp6TbAt0TEbZLulvQp2x9sfcH2PkmvS/pKuxdGxMGIaEREY3R0dMkFAwvZsWlMj+zcoLEVI7KksRUjemTnBuZo+4QznPR0dREzIqaLj+dsj0vaLOkZ27skfVTSnRER5ZUJdIfNMeXZs339nFU+Emc4des4Are93Pa1rc8lbZN02vZdkj4v6d6I+EW5ZQKoG2c46elmBL5a0rjt1vMPRcRTtl+Q9HZJx4qvPRsR95VWKYDacYaTlo4BHhEvSrq1zfFfLaUiAEBX6IUCAJkiwAEgU/RCwVBiSzgGAQGO5JQdrjS9qh+/QPuDKRQkpYp+G2wJrxc9VfqHAEdSqghXtoTXi1+g/cMUCpJSRbiuWTGiqTZ/HlvCqzFsv0DLnC5iBI6kVNFvg6ZX9RqmniplTxcR4EhKFeHKlvB6DdMv0LKni5hCQVJaIVr2CgW2hNenqvc4BWVPFxHgSA7hOviG5T0u+3oLUygAUJKyp4sYgQNAScqeLiLAAaBEZU4XMYUCAJkiwAEgUwQ4AGSKOXAA2Rr2roYEOIAs0RaYAAcGzrCMSt9qm/og/v+2Q4ADA2SYRqXD1tWwHS5iAgNkmHptD1NXw4UQ4MAAGaZR6TB1NVwIAQ4MkGEaldIWmDlwYKDs2b5+zhy4NNij0mHpargQAhwYIMPUaxsEOCBpsJbeDfuodJgQ4Bh6w7T0DoOFAK/JII34cseGEOSKAK8BI760DNPSOwwWlhHWIKXNFhMnprRl/9O68cEntGX/05o4MVV5DXUbpqV3GCwEeA1SGfG1zgSmLs4odPlMYNhCnA0hyBUBXoNURnwpnQnUiQ0hyBVz4DVIZbNFKmcCKWDpHXLECLwGqYz4UjkTALA4jMBrksKIL5UzAQCLQ4DPMmxrs9l2DeSNAC8M69rsFM4EACxOV3Pgts/aPmX7pO3J4tg7bB+z/cPi43XlllouVmQAyE0vFzG3RsTGiGgUjx+U9M2IuEnSN4vH2WJFBoDcLGUVysckfbn4/MuSdiy9nPqwIgNAbroN8JB01PZx27uLY6sj4mVJKj6uavdC27ttT9qePH/+/NIrLgm78QDkptuLmFsiYtr2KknHbD/f7TeIiIOSDkpSo9GIRdRYCVZkAMhNVwEeEdPFx3O2xyVtlvRT2++KiJdtv0vSuRLrrAQrMgDkpOMUiu3ltq9tfS5pm6TTkr4haVfxtF2Svl5WkQCAK3UzAl8tadx26/mHIuIp29+V9DXbvyfpx5I+UV6ZAID5OgZ4RLwo6dY2x38m6c4yigIAdEYzKwDIFAEOAJlyRHUr+2yfl/Sjyr6htFLShQq/X6+ob2lSri/l2iTqW4o6avuViBidf7DSAK+a7clZW/+TQ31Lk3J9KdcmUd9SpFQbUygAkCkCHAAyNegBfrDuAjqgvqVJub6Ua5OobymSqW2g58ABYJAN+ggcAAYWAQ4AmRqKALf9GdtnbH/f9qN11zOb7T+2PVXcru6k7Xvqrqkd2w/YDtsr666lxfZDtv+9+Hs7antN3TXNZvuA7eeLGsdtr6i7ptlsf6L4mXjDdhLL4mzfVfysvmA7qbt82X7c9jnbp+uupWXgA9z2VjXvHnRLRLxX0hdrLqmdx4rb1W2MiH+pu5j5bN8g6SNqNi1LyYGIuCUiNkr6Z0l/VHdB8xyT9L6IuEXSDyTtrbme+U5L2inpmboLkSTbyyT9laS7Jb1H0m/bfk+9Vc3xd5LuqruI2QY+wCXdL2l/RLwiNXua11xPjh6T9Dk178yUjIj4n1kPlyu9+o5GxOvFw2clXV9nPfNFxH9EREp37d4s6YWIeDEiXpX0VTUHX0mIiGck/Xfddcw2DAF+s6QP2P627W/Zvr3ugtr4dHGa/bjt6+ouZjbb90qaiojn6q6lHdsP2/6JpN9ReiPw2T4p6cm6i0jcmKSfzHr8UnEMC+j2lmpJs/2vkt7Z5kv71Px/vE7S+yXdrmYP83dHhesnO9T315IeUnP0+JCkP1Pzh70yHer7QzVv4lGLt6otIr4eEfsk7bO9V9KnJX0hpfqK5+yT9Lqkr1RZW/G9O9aXELc5ltRZVWoGIsAj4jcW+prt+yUdLgL7O7bfULMZTWV3WH6r+maz/bdqzuVWaqH6bG+QdKOk54obelwv6Xu2N0fEf9VZWxuHJD2higO8U322d0n6qKQ7qxw0tPTw95eClyTdMOvx9ZKma6olC8MwhTIh6Q5Jsn2zpGuUUJez4n6iLR9X88JSEiLiVESsioh1EbFOzR+w26oK705s3zTr4b2Sur7ZdhVs3yXp85LujYhf1F1PBr4r6SbbN9q+RtJvqXnrRixg4HdiFv8QHpe0UdKrkh6IiKfrreoy23+vZm0h6ayk34+Il2stagG2z0pqREQSvwBt/5Ok9ZLeULNN8X0RMVVvVZfZfkHS2yX9rDj0bETcV2NJc9j+uKS/lDQq6aKkkxGxveaa7pH055KWSXo8Ih6us57ZbP+DpA+reQb/U0lfiIgv1VrToAc4AAyqYZhCAYCBRIADQKYIcADIFAEOAJkiwAEgUwQ4AGSKAAeATP0/KVaoHKMq6aEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "fig, ax = plt.subplots()\n", + "lats = [ll[0] for ll in datapoints.keys()]\n", + "lons = [ll[1] for ll in datapoints.keys()]\n", + "ax.plot(lons, lats, \"o\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJcAAAD4CAYAAADhPXT2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAL9UlEQVR4nO3db6ieZR0H8O/XqXEQa8bOTKfrWOmCUqc9jmikLbOplC4hqFejgpVokNBK8Y0FoTgjehWdSPBFEQZzRWHTNIpeWJ41bTOc2pi2cyTPgoHSUme/Xjz3Wc8Oz3PO/dz3/buvP/f3A2PnPOc8ey7Gl+v/dV80M4h4OCV0ASRfCpe4UbjEjcIlbhQucXNqmx+2atUqm5qaavMjxdmePXuOmNnksJ+1Gq6pqSnMzMy0+ZHijOSLo36mZlHcKFziRuESNwqXuFG4xE2ro8XU7do7ix27D2Du6DGcu3IC2zevw5bL1oQuVrQUrpJ27Z3FHTv34dibbwEAZo8ewx079wGAAjaCmsWSduw+cCJYC469+RZ27D4QqETxU7hKmjt6bKzXReEq7dyVE2O9LgpXads3r8PEaStOem3itBXYvnldoBLFL1iHPrWR10LZUipzaEHClerIa8tla6IuX2yCNIsaeXVDkHBp5NUNQcKlkVc3lAoXyUMk95F8iuRM8dp6kk8svEZyQ9kP1cirG8bp0G8ysyMD398L4Ftm9jDJ64vvP1bmH9LIqxvqjBYNwNuLr98BYG6cN2vklb+y4TIAj5A0AD80s2kAXwOwm+R96DevHxn2RpLbAGwDgLVr19YvsSSjbId+o5ldDuA6ALeQvBLAzQBuM7PzAdwG4MfD3mhm02bWM7Pe5OTQQyKSqVLhMrO54u9XADwEYAOArQB2Fr/y8+I1kROWDRfJM0ieufA1gE8C2I9+H+uq4tc+DuB5r0JKmsr0uc4G8BDJhd//qZn9huRrAL5P8lQA/0HRrxJZsGy4zOwggEuHvP5HAB/yKJTkQVtuxI3CJW46e0Ajtf1kKepkuFLdT5aaTjaL2k/Wjk6GS/vJ2tHJcGk/WTs6GS7tJ2tHJzv02k/Wjk6GC9B+sjZ0slmUdihc4kbhEjcKl7hRuMSNwiVuFC5xo3CJG4VL3Chc4kbhEjcKl7hRuMSNwiVuFC5xo3CJG4VL3Chc4iapbc46JZ2WZMKlU9LpSaZZ1Cnp9CQTLp2STk8y4dIp6fQkEy6dkk5PMh16nZJOTzLhAnRKOjXJNIuSHoVL3FS+Eq94/askD5B8huS9fsWUFFW+Eo/kJgA3ArjEzF4nubrx0kVES0/jq9OhvxnAPWb2OnDiXqAsaempmrJ9roUr8fYUV9wBwEUAPkryTyR/T/KKYW8kua24SXZmfn6+iTK3TktP1ZStuTaa2VzR9D1K8tnivWcB+DCAKwA8SPI9ZmaDbyzuZpwGgF6vZ0iQlp6qqXMl3mEAO63vzwD+C2CVV0FD0tJTNXWuxNuF/lV4IHkRgNMBHBn176RMS0/V1LkS73QA95PcD+ANAFsXN4m50NJTNWwzD71ez2ZmTkyTaXifAZJ7zKw37GfB1hY1vM9fsOUfDe/zFyxcGt7nL1i4NLzPX7BwaXifv2Adeg3v8xd0J6p2luZNmwXFjcIlbhQucaNwiRuFS9woXOJG4RI3Cpe4UbjETVLPishRzhsmFa6Act8wqWYxoNw3TCpcAeW+YVLhCij3DZMKV0Cb3j851uupUbgC+t2zw5+dMer11ChcAanPJW7U5xI3uR9S0STqIm3OmOd+SEXhGhBixjznQypqFgfkPmPeNoVrQO6jt7YpXANyH721TeEakPvorW3q0A/IffTWNoVrkZxHb21TsyhuFC5xo3CJG4VL3NS6Eq/42ddJGsksb8+Q6ipfiQcAJM8HcA2AlxotlWShbrP4PQDfQP9WM5GTVL4Sj+QNAGbN7Gm30knS6lyJdyf6l0wtqQjjNgBYu3Zt5YJ2RU4nsKteiXcVgAsAPE3yEIDzAPyF5LuGvHfazHpm1puczONUi5eF/WSzR4/B8P/9ZLv2zoYuWiXL1lzFNXinmNmrA1fifdvMVg/8ziEAvcUd/hx51ixL7Sdb7jNirPEqX4nnWqpIee9UrbqfLNZnTizbLJrZQTO7tPjzATP7zpDfmepCreW9U7XqfrJYd9Bqhn4M3jtVq+4ni3UHrcI1Bu+dqlsuW4O7b7oYa1ZOgADWrJzA3TddvGzTFusOWu3nGsP2zetO6tsAze9UrbKfrI1yVaFwjSHWnaqxlivoHdeSvqXuuFafS9woXOJGfS5HMc6at0nhchLrrHmbFK4R6tY6ddYJc6FwDdFErRPrrHmb1KEfoom1ulhnzdukcA3RRK2j506oWRzq3JUTmB0SpHFqndhmzUOMXBWuIZpaq4vluROhRq5qFoeoujshVqH2e6nmGiGWWqcJoUauqrk6INTIVeHqgFAjVzWLHRBq5KpwdUSIPqSaRXGjcIkbNYuypDoz+wqXjFR3Zl/NooxUd2Zf4ZKR6s7sK1wyUt2ZfYUrkF17Z7Hxnsdxwe2/xsZ7Ho/yGVx1Z/bVoQ8glcMbdWf2Fa4AUjq8UWdmX81iAF05vKFwBdCVwxsKVwBdObyhPlcAsR3e8KJwBZLTNupR1CyKG9VcNXT9KTbLUbgqSmUiNKRS4SpuyHgVwFsAjptZj+QOAJ8G8AaAvwP4gpkd9SpobEJPhKZQa47T59pkZusHnn/5KIAPmtklAJ4DcEfjpYtYyInQVO4IqtyhN7NHzOx48e0T6F8u1RkhJ0JjvTFjscr3LS7yRQAPD3sjyW0kZ0jOzM/PVy1ndEJOhKayfFQ2XBvN7HIA1wG4heSVCz8geSeA4wB+MuyNuV6JF/J5EqksH5Xq0A/et0jyIQAbAPyB5FYAnwJwtbX5QPtIhJoIjfXGjMWWrblInkHyzIWv0b9vcT/JawF8E8ANZvZv32LKoFSewlP5vkWSLwB4G/rXEgPAE2b2FbeSyklSWD5aNlxmdhDApUNef59LiSQbWlsUNwqXuNHaYoNSWJJpk8JV0nLBiWkhO5aQq1ksocxaXixLMjGtOypcJZQJTixLMrGEHFCzWEqZ4DRxMUITPEJetZlVzVVCmbW8WE70NL3uWKeZVbhKKBOcWJZkmg55nWZWzWIJZY+CxbAk0/SxtTrNrMJVUgzBKavJstbpS6pZlCXVaWZVc8mS6jSzCpcsq2ozq2ZR3Chc4kbhEjfqc3VI27slFK6OCLElSOGKVNO1TIhnWyhcEfKoZUJsCVKHPkIee7JCnNJWuCLkUcuE2BKkcEXIo5YJsSVIfa4IeT0Lou2dHQpXhHJ5lLjC1bCmphBS2j82isLVoJjOLsYgi3DFcgg09EN4Y5N8uGKqLWI5uxiL5Kciqkw4et3SmsrjJNuSfLjGrS08j7vHcnYxFsmHa9zawvO4eyxnF2ORfJ9r3AlH735RDlMITUm+5hq3tlC/qD3J11zAeLVFKo/ZzkH04Wp6DiuXpZUURB0urzks9YvaUarPRfIQyX0knyI5U7z2TpKPkny++PuspgsX04PMZHx1rsS7HcBjZnYhgMeK7xulGe+01Rkt3gjggeLrBwBsqV+ck2lkl7Y6V+KdbWYvA0Dx9+phb6xzJZ5mvNNWtkO/0czmSK5G/66fZ8t+gJlNA5gGgF6vN9bNZhrZpa3OlXj/JHmOmb1M8hwAr3gUUCO7dFW+Eg/ALwFsLX5tK4BfeBVS0lTnSrwnATxI8ksAXgLwWb9iSorqXIn3LwBXexRK8pD8wrXES+ESN2zz3nOS8wBedPyIVQCOOP77KfL+P3m3mU0O+0Gr4fJGcmZgeUoQ9v9EzaK4UbjETW7hmg5dgAgF+z/Jqs8lccmt5pKIKFziJrtwkbyL5GyxJfspkteHLlMoJK8leYDkCyQb3ym87Ofn1ucieReA18zsvtBlCYnkCgDPAbgGwGEATwL4vJn9ra0yZFdzyQkbALxgZgfN7A0AP0N/a3prcg3XrST/SvJ+j1NJiVgD4B8D3x8uXmtNkuEi+VuS+4f8uRHADwC8F8B6AC8D+G7QwobDIa+12geK+lDsKGb2iTK/R/JHAH7lXJxYHQZw/sD35wGYa7MASdZcSyn28y/4DPpbsrvoSQAXkryA5OkAPof+1vTWJFlzLeNekuvRbwIOAfhy2OKEYWbHSd4KYDeAFQDuN7Nn2ixDdlMREo/smkWJh8IlbhQucaNwiRuFS9woXOJG4RI3/wOfdKaAPZfJtAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "fig, ax = plt.subplots()\n", + "lats = [ll[0] for ll in datapoints.keys()]\n", + "lons = [ll[1] for ll in datapoints.keys()]\n", + "# Don't draw lines\n", + "ax.plot(lons, lats, \"o\")\n", + "# This is a map of the UK. Here, 1 degree latitude is \n", + "# 1.7x as far as 1 degree longitude\n", + "ax.set_aspect(1.7)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Set up mercator transform from https://wiki.openstreetmap.org/wiki/Mercator#Python\n", + "# Thanks to Paulo Silva and the OSM contributors\n", + "import math\n", + "\n", + "def merc_x(lon):\n", + " r_major=6378137.000\n", + " return r_major*math.radians(lon)\n", + "\n", + "def merc_y(lat):\n", + " if lat>89.5:lat=89.5\n", + " if lat<-89.5:lat=-89.5\n", + " r_major=6378137.000\n", + " r_minor=6356752.3142\n", + " temp=r_minor/r_major\n", + " eccent=math.sqrt(1-temp**2)\n", + " phi=math.radians(lat)\n", + " sinphi=math.sin(phi)\n", + " con=eccent*sinphi\n", + " com=eccent/2\n", + " con=((1.0-con)/(1.0+con))**com\n", + " ts=math.tan((math.pi/2-phi)/2)/con\n", + " y=0-r_major*math.log(ts)\n", + " return y\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJkAAAEDCAYAAAAm1qYrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAARk0lEQVR4nO2de7BdVX3HP98mgqE8biTgwA1pghNCHTU8LoJaLQ9LgE4bcGhLtUVSbEpB+pgxo4zT6gwzVSd1xjIUMsBYSlVQMI1IlWgLiFMJmAgkPLx4IWO4CZbwCLYh05Lw6x973XBycu6957HW2Wvv8/vM3Mk5a6997u+efGft9fh915KZ4Tgp+ZWyA3Dqj4vMSY6LzEmOi8xJjovMSY6LzElOqSKT9GVJz0t6rM36vy/pCUmPS/pa6vicOKjMeTJJHwD+B7jFzN4xTd2FwDeAM83sZUlHmtnz/YjT6Y1SWzIzux94qbFM0tsk3S1pg6QfSjo+XPpT4B/N7OVwrwusIuTYJ7sBuNLMTgY+AVwXyo8DjpP0n5LWSTqntAidjphZdgCNSDoYeC9wu6SJ4gPDvzOBhcDpwFzgh5LeYWY7+h2n0xlZiYyiZd1hZie0uDYOrDOz14DNkkYpRPfjfgbodE5Wj0sz+yWFgH4PQAWLw+U1wBmhfA7F4/OZUgJ1OqLsKYxbgQeARZLGJV0KfAS4VNKjwOPA0lB9LfCipCeAe4EVZvZiGXE7nVHqFIYzGGT1uHTqSWkd/zlz5tj8+fPL+vVOAjZs2PCCmR3RXF6ayObPn8/69evL+vVOAiT9vFW5Py6d5LjInOS4yJzkuMic5LjInOTktnZZGdY8vJWVa0fZtmMXRw/NYsWSRZx/4nDZYWWJi6wL1jy8latWb2LXa3sA2LpjF1et3gTgQmuBPy67YOXa0b0Cm2DXa3tYuXa0pIjypi2RSfrrkFf/mKRbJb256bokXSNpTNJGSSelCTcPtu3Y1VH5oDOtyCQNA38BjIQ8/BnARU3VzqXI7VoILAeujxxnVhw9NKuj8kGn3cflTGCWpJnAQcC2putLKcwgZmbrgCFJR0WMMytWLFnErDfN2Kds1ptmsGLJopIiyptpO/5mtlXS3wNbgF3A98zse03VhoFnG96Ph7LnGitJWk7R0jFv3ry95VUbqU3EVqWYy2RakUmaTdFSLQB2UOTf/5GZfaWxWotb90tUM7MbKIwijIyMGFR3pHb+icNZx5cT7TwuPwhsNrPtIb9+NYXZo5Fx4JiG93PZ/5HaEh+p1Z92RLYFOE3SQSosRGcBTzbVuRO4OIwyTwNeMbPnmj+oFT5Sqz/TiszMHgTuAH4CbAr33CDpMkmXhWrfoTB1jAE3Ape3G4CP1OpPWzP+ZvYZ4DNNxasarhtwRTcBrFiyaJ8+GfhIrW6UvqzkI7X6U7rIwEdqdcfXLp3kuMic5LjInOS4yJzkuMic5LjInOS4yJzkuMic5LjInOS4yJzkZLGsVDZVy8ytGgMvsqpm5laJgX9cemZuegZeZJ6Zm552fJeLJD3S8PNLSX/VVOcwSd+W9GgwAS9LF3JcPDM3Pe2kX4+a2QnhAIeTgVeBf22qdgXwhJktpjgx5IuSDogdbArcQ5meTjv+ZwFPm1nz3qAGHBKMJgdTHMq1O0J8yfHM3PR0KrKLgFtblF9L4VjaBhwC/IGZvd5caTJzb9l4Zm5a2u74h8ff7wK3t7i8BHgEOBo4AbhW0qHNlczsBjMbMbORI47Ybydup6Z0Mro8F/iJmf1Xi2vLgNVhL4wxYDNwfIt6zgDSicj+kNaPSigMwGcBSHorsAg/XMsJtNUnk3QQ8FvAnzWUXQZgZquAq4GbJW2i2Bfjk2b2QvxwnSrSrrn3VeDwprJGc+824Oy4oTl1YeBn/J30uMic5LjInOS4yJzkuMic5LjInOS4yJzkuMic5LjInOS4yJzkuMic5LjInOS4yJzkuMic5FTWQe5bC1SHSorMtxaoFlHMvaHe6eH645J+kCbcAt9aoFq0c97lKIUDCUkzgK00mXslDQHXAeeY2RZJRyaIdS++tUC16LTjP5m598MUbqUtAGb2fIzgJsO3FqgWnYpsMnPvccBsSfdJ2iDp4lY3S1ouab2k9du3b+801r341gLVou2Of4O596pJPudkipZuFvCApHVm9lRjpVYn93aDby1QLToZXU5l7h0HXjCzncBOSfcDi4GnWtSNgm8tUB1imXu/Bbxf0szg0TyV/U/3dQaUKOZeM3tS0t3ARuB14CYzeyxBvE4FiWLuDe9XAivjhebUBV+7dJJTyWWlMvE1085xkXWAr5l2hz8uO8DXTLvDRdYBvmbaHS6yDvA10+5wkXWAr5l2h3f8O8DXTLsjK5FVYXrA10w7JxuR+fRAfcmmT+bTA/UlG5H59EB9yUZkPj1QX7IRmU8P1JdsOv4+PVBfshEZ+PRAXYlm7g11T5G0R9KF8UN1qkoUc2/DtS8AayPH6FScWOZegCuBbwJJjb1O9Yhi7pU0DFwArNrvjn3rRTH3OtUi1sm9X6I4fnBPi2t78ZN7B5NY5t4R4LbinHvmAOdJ2m1mayLE6FScTkQ2qbnXzBZMvJZ0M3CXC8yZoK3HZYO5d3VD2WUTBl/HmYpo5t6G8kt6D8upE9msXTr1JatlpUGnCpnB3eAiy4Q6Zwb74zIT6pwZ7CLLhDpnBrvIMqHOmcEuskw44/jWy2yTlVcJF1km3PvT1gkDk5VXCRdZJnifzEmO98mc5NTZreWTsVPQzxn4Oru1XGSTUMYMfF3dWv64nIQ6z8D3GxfZJNR5tNdvovguJX1E0sbw8yNJi9OF3B/qPNrrN9OKzMxGzewEMzuB4iS4V9nfd7kZ+E0zexdwNeEkuCpT59Fev+m049/Sd2lmP2p4uw6Y22tgZVPn0V6/6VRkkx2q2silwHe7Cycv6jra6zexDlWdqHMGhch+Y5Lry4HlAPPmzesoUKe6dDK6nMp3iaR3ATcBS83sxVZ13Nw7mEQ5VFXSPAq73B83HwntOFEOVQX+lsIyd11wke82s5Ho0TqVJIrv0sw+BnwsbmhOXfAZfyc5LjInOS4yJzme6pMpdXKTu8gypG5uchdZD6RqbabKZWvn83NrBV1kXZKyteklly3HVtA7/l2SMnO2l1y2HDN6XWRdkjJztpdcthwzel1kXZIyc/b8E4f53IfeyfDQLAQMD83icx96Z1uPuxwzer1P1iUrlizap+8DcTNnu81lSx1XN7jIuiTXzNkc45KZlfKLR0ZGbP369aX8bicNkja0yr7xPpmTHBeZkxzvk/WB3Gbg+00sc68kXSNpLBh8T0oXcrWYmIHfumMXxhsz8Gse3lp2aH0j1qGq5wILw8+pwPXh38rTayvU6zpkHYhi7gWWArdYMVRdJ2lI0lFm9lyUKEsixjpgjjPw/SbKoarAMPBsw/vxULYPVTtUNcY6YI4z8P0m1qGqalG23wRc1XyXMVoh31Mj3qGq48AxDe/nAtt6CSwHjh6axdYWguqkFcpxBr7fo90oh6oCdwIfl3QbRYf/lar3xyDeOmBOe2qUkW8W61DV7wDPAGPAjcDlkeMshV6yIXKljHyzWOZeA66IG1oe5NQKxaCM0a4vKw0YZYx2XWQDRhmjXV+7HDDKGO26yAaQfvcz/XHpJMdbMqctepnAdZE509LrBK4/Lp1p6XUC10XmTEuvE7guMmdaep3AdZFlwJqHt/K+z9/Dgk/9G+/7/D3ZpWb3OoHrHf+SyXEXnmZ6ncB1kZVMVTwAvUzg+uOyZAbBA+AiK5lB8AC4yEpmEDwA7WbGDkm6Q9JPJT0p6T1N1w+T9G1Jj0p6XNKyNOHWjzpm3zbTbsf/H4C7zezC4Fo6qOn6FcATZvY7ko4ARiV91cz+L2awdaVu2bfNTCsySYcCHwAuAQjCaRaPAYeoOL3rYOAlYHfUSDNn0Pe7mIp2HpfHAtuBf5L0sKSbJP1qU51rgV+nsMFtAv7SzF5v/qCqmXvbxfe7mJp2RDYTOAm43sxOBHYCn2qqswR4BDiaYt+Ma0MLuA9VM/e2S9k7Tue+YtCOyMaBcTN7MLy/g0J0jSwDVlvBGLAZOD5emHlT5lxXFVrRaUVmZr8AnpU0MaY+C3iiqdqWUI6ktwKLKHyYA0GZc11lt6Lt0O482ZXAVyVtpHgc/l2Tufdq4L2SNgH/AXzSzF6IH26elDnXVYUVg3bNvY8AzRvONpp7twFnR4yrUpS530WM/TpS4wvkkShrrivHffubcZFVnBx3DWrGRVYDcl8x8AVyJzkuMic5/rhMgK9j7ouLLDI55eznInYXWRdM9Z+XS85+TmL3PlmHTLdWmMsMfE7LTS6yDpnuPy+XnP1cxA4uso6Z7j8vl5z9FGLvNqXIRdYh0/3n5ZKzH1vsvaQUece/Q9pZK8xhBj72clMvAxoXWYdUYa1wgphi76WP5yLrghxaqn7TS0qR98mctuiljxfF3BvqnB5O9n1c0g/aDd6pBr0MaKKYeyUNAdcB55jZFklHdvg3OBWg225CLHPvhyncSltCnec7jsSpLbHMvccBsyXdJ2mDpItbfVBdzb3O1MQy984ETgZ+m8Lo+zeSjmv+oLqae6tGv83A7fTJWpl7m0U2DrxgZjuBnZLuBxYDT0WLdICJmbKT5aGqbZp7vwW8X9LMcADrqcCTUSMdUGI7xMvIzohi7jWzJ4G7gY3AQ8BNZvZYioAHjdiiKCM7I4q5N9RZCayMFJcTiC2KMszAPuOfObFTdspIRXKRZU5sUZSRiuQL5JmTIuuj3wv8LrKExJp6qHrWh4ssETm5hcqmdiLLxWuYizUuB2olspxaj5zcQmVTq9FlNxOXqdbxcrHG5UCtRNZp65FyU99crHE5UCuRddp6pFzHy8UalwO16pN1urVl6n5T1aceYlGrlqzT1sP7Tf2hUi1ZO9MTnbQeVdjUtw5URmQppieqZNStMpURWarJTe83pacyfTKf3Kwu0cy9od4pkvZIujBumN5JrzLttmQT5t7jKQwi++XvS5oBfAFYGy+8N/DJzeoSy9wLhQ/gm8ApEePbi3fSq0s7Hf9Gc+9iYAPFybw7JypIGgYuAM5kCpFJWg4sB5g3b17HwXonvZrEMvd+ieL4wT3NNzfi5t7BJJa5dwS4rTjnnjnAeZJ2m9maaJE6lWVakZnZLyQ9K2mRmY3SwtxrZgsmXku6GbjLBeZM0O5k7IS59wCKY5+XNRh7V015pzPwRDP3NtS9pMeYnJohMyvnF0vbgZ+X8suLfuPAnJHeQOq/+9fMbL8RXWkiKxNJ682suWWuPWX93ZVZu3Sqi4vMSc6giuyGsgMoiVL+7oHskzn9ZVBbMqePuMic5FRWZJI+K2lrOAXlEUnnNVy7StKYpFFJSxrKT5a0KVy7RmGxVdKBkr4eyh+UNL/hno9K+ln4+WhD+YJQ92fh3gP685d3jqRzwncxJql53Tk9ZlbJH+CzwCdalL8deBQ4EFgAPA3MCNceAt4DCPgucG4ovxxYFV5fBHw9vH4LxTLaW4DZ4fXscO0bwEXh9Srgz8v+Tib5nmaE7+BY4IDw3by9nzFUtiWbgqXAbWb2v2a2GRgD3i3pKOBQM3vAim//FuD8hnv+Oby+AzgrtHJLgO+b2Utm9jLwfeCccO3MUJdw78Rn5ca7gTEze8aKhNPbKP7evlF1kX1c0kZJX5Y0O5QNA8821BkPZcPhdXP5PveY2W7gFeDwKT7rcGBHqNv8Wbkx2d/QN7IWmaR/l/RYi5+lwPXA2yi2fH8O+OLEbS0+yqYo7+aeqT4rN0qPNWvfpZl9sJ16km4E7gpvx4FjGi7PBbaF8rktyhvvGZc0EzgMeCmUn950z30Ui8xDkmaG1qzxs3Jjsu+jb2Tdkk1F6GNNcAEwcTjFncBFYcS4AFgIPGRmzwH/Lem00Ke6mOIklYl7JkaOFwL3hH7bWuBsSbPD4/hsYG24dm+oS7h34rNy48fAwjAaPoBiYHNnXyMoe/TTw6jpX4BNFKeg3Akc1XDt0xQjqlHCCDKUj1CI8WngWt5Y8XgzcDvFIOEh4NiGe/4klI8ByxrKjw11x8K9B5b9nUzxXZ1Hcc7V08Cn+/37fVnJSU5lH5dOdXCROclxkTnJcZE5yXGROclxkTnJcZE5yfl/ynbAcPHJPm4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "\n", + "x = tuple(map(merc_x, lons))\n", + "y = tuple(map(merc_y, lats))\n", + "ax.plot(x, y, 'o')\n", + "ax.set_aspect(1.0)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJkAAAEDCAYAAAAm1qYrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAdbElEQVR4nO2de3Qc9XXHP1e7MtixAwa7kZEs/MAvqsY2CGzcJCWhhUDbUMqjhBAeDXWTBkh72iRNe8jpKee0p6Q5BUIDx3XTNqENwYYk9AVpSlLSYgM2tmPFxrGNgywhGRMeMciAtLr9Y2bNaDS7OzP7m53f7M7nnD1azfPu7Hfv/T3vT1SVnJwkaUvbgJzmJxdZTuLkIstJnFxkOYmTiywncXKR5SROqiITka+IyAsi0hfy+CtEZJeI/EhE/iVp+3LMIGm2k4nI+4DXgK+qak+NYxcB9wMfUNWXReTnVPWFRtiZUx+pejJVfQx4ybtNRBaKyMMislVEfiAiS91dvwP8raq+7J6bCywj2FgmWwfcpKpnAn8EfNndvhhYLCL/JyKbReSDqVmYE4li2gZ4EZHpwBpgg4iUNx/n/i0Ci4BzgS7gByLSo6qvNNrOnGhYJTIcz/qKqq4I2DcAbFbVUeCAiOzBEd1TjTQwJzpWhUtV/RmOgC4HEIfl7u5vAe93t8/CCZ/PpmJoTiTSbsL4OrAJWCIiAyLyMeAjwMdEZAfwI+Bi9/BHgJ+KyC7ge8CnVfWnadidE41UmzByWgOrwmVOc5JawX/WrFk6b968tG4fmZ0vHDr2fva0d/Cu6dORKse3Ilu3bn1RVWf7t4cSmYj8AXADoMBO4HpVfcOzX4A7gIuAEeA6VX262jXnzZvHli1bwn+CBrDgzi9W3NfpeX9OWyfr115Ke7GNYlshecMygog8F7S9pshEpBO4GThdVY+KyP3AlcA/eg67EKc5YRGwCrjb/Wsd1YQUxLSBySWKHQxxw7oHWHFGJ5sHDvLAFVeZMq8pCRsui8BUERkFpgHP+/ZfjNP/qMBmETlRROao6pBBW0MRVUR+gkQVxI7+IXb0DzHSNV7X/VqBmiJT1UER+WugHzgKfEdVv+M7rBM46Pl/wN02QWQishZYC9Dd3R3b6HqF5CWsqKqx4M4v8uzNf2jAmuYkTLicieOp5gOv4HT5XK2q93oPCzh1UtuIqq7D6Zukt7e3atuJSSGVMSGooGvm3qw6YcLlLwMHVPUwgIg8iNO/6BXZADDX838Xk0PqJI6OjnL1NzewbTiZqJqEqCqRe7PKhPkW+oHVIjLNrUWeB+z2HfMQcI3bDbQaeDVMeay90Mbqrrm1DgvNtIG2Ca8cOwhTJntCRDYCTwNjwDZgnYh83N1/D/AfOM0X+3CaMK6veV1gtDTO5oGDtQ4NxCYR5SGzOql1K3UtXaqr/vzzoUNlWqKaPvi2eF7rrGxDWWStHDJFZKuq9vq3p9bif3jk9aoCs0FUUci9WWXsiTkeGiWw6YPjk171kkStOOvYNmgxUUyIKCc6VnoyEyThpWpR9sC5N5uIlZ5spGs8cshshIimD45XLfznBGOlyMKQh77skP8sDZOHzMlY68nihMx6mXHg6LH3R+ZPbei9m5nUPJm0px/uZhw4OuHl3xeX3JtNxFpPZpp6ROMlL/xHJ7NPq9YXXc1LNZLcm6UssuIpI1X3Z7mbxqYO/LRp2ieRF9ztIdMiS7psVG+YzSsADqmLrFbItJG8ITgaqYusFkmWy4r7B+mZOYWrfrWHZT2dtU+og1b2Zk3dhHFk/tSqIW9p73z+cuPv095e4MNj43zm5nvZ3Tdo1IZ8nFkGPFkt6imXvXvNYtrbCxSKBYrFNpavPDX0uXFCZqt6s5rfkIgsEZHtntfPROT3fcecICL/KiI73MzUNcf4e0mrKWPbcy8zOlpizH3t2DZ5ln01T5iXzcIRZiLJHmAFgIgUgEHgm77DPgnsUtVfF5HZwB4R+WdVfcu0wSbZ3TfI5y67nXevWcwPH/8xu1+Obm6YHoBWD5lRY815wH5V9f/kFZjhTpmbjpPResyAfXVTq73smS0HuP/OR3hmy4GG2NOKITOqyK4Evh6w/S5gGc6E3p3Ap1R10k9XRNaKyBYR2VL62euRja1EPeWysYX11yrDhM1W7gEI/clFZArwIWBDwO4LgO3AKTih9S4Reaf/IFVdp6q9qtpbeOc7JuzLehdTlPJZq3mzKD+vC4GnVfVQwL7rgQfVYR9wAFgacFwq1AqZZW9W3B/cfBG25T+vCAQTRWQfJjhUgpPK4DwAEXkXsIQGZ6a2ZfhNNaG1asgM9alFZBrwK8CDnm0fL6cqAG4F1ojITuC/gc+q6otRjcliF1MQYTxaK4XMUC3+qjoCnOzbdo/n/fPA+WZNm0ySQ7LHFnZWDJdxqNS00YrNGS3jv20c+tMq3qypRFZvuayaN4sz7CevCDhYJ7IkmzJs8WbekN8K3sw6kaWNicZZL7k3a0GR2eLNWgkrRVZPU4Yt7WW1aKWQmY1vxEdaTQBxx/y3esjMpMjqxZaQ2SrerClFZmPIbGVvZt+34ZL0qAxbvJmXZvVm1oqsXmz0ZkG0Qqd583/CKsTxZvVM+G3VkNnUIsuiN2vGkGn1t5D10bJBtKI3s1pkjSCvACRPaiLrmTmnIffJYshsNqz/ZI0ImVG9Wb3Zflpt5GyqIlvWETQnxTxJeLM0szdmDSNpCtzjznX3/0hE/icJY1d2zOETvWezsmNiqM1aXyYEe7NmDZk1P5Wq7lHVFaq6AjgTZz3LCWkKRORE4MvAh1T154HLTRu6smMO915yOX+w+he595LLJwmtXuJWAJL0aM0SMk2lKbgKZ95lP4CqvhD2gmFCZvGUEVZ3zaW9UKDY1hZrxd8kKwAmhdaM3sxUmoLFwEwR+b6IbBWRa4JO9qYpOHz4cKQbbx44yGipxNh4KXDF3zQqAF6SmgPQDN4sdBI8T5qCz1W4zpk4nm4qsElENqvqj70Hqeo6YB1Ab29vpCWDtw0PcfU3N7C6ay6bBw6GXvHXy2udbS3ZGJo2ptIUDAAPq+rr7qTex4DlJgz0sm14iLu3PBlLYGGxwZv5Q2bWvZmpNAXfBt4rIkV3tvkqYHfYC4ctl9UiTMi0PWN2M2IkTYGq7gYeBn4IPAmsV9U+8+ZmAxNCa6YKQKhPoqojqnqyqr7q2XaPL1XBF1T1dFXtUdXbkzC2UZjoz4witGavAFjzc2mmkFkmD50O1ojMNkyNzqgnt1mzVABykTWAVvdoucgahCmhZdGbWSUy28plQSFzWU8nV350TaxlcmoJrVk7zZt62RvTLOvp5LY7r6a9WGB0rBRrmZwZB45aORo3SbL/M2kgy1eeSnuxQKHYFnmZnHrIegWgpUUWNWTu2PYco2MlxsZKjI2NBy6TE4ZWW0pHVCP1Uxujt7dXO29fHbhv9/C7ap4/9vy0mseEKc+E+VK9oljW08nylaeyY9tzda8oVylsBok/qJz57M1/WNf9TSMiW1W11789L5OFwLuk4e6+QWPLFVYqnwUlNc5yQuOmDpc2tf4nQVbKZqk+4Uu7zmfJjPmTtptqyjBJUjXCKO1nWW3OSNXqj5z6q9zac1Og0EyRVW/WTBWAVJ9uQQoUpEDPCYtind8s3qweshAyUxXZ2HiJkpboe3XvpH0m52Ta7s0qhcxm6QFI1eJ/6f93bun7EnuOxF/QNPdm9nuzVEX2wMB3qgrMVm+WhNCaeaRG9nxvAGmsLtcojxY2ZNrszawXWaPyZZSJUjazMXTaiLFcGO6xZ4lISUQuM29qdUwNAYqKSaE1awXASC4MABEpAH8FPGLaSJu9mU3YGjJN5cIAuAl4AAidB8M0zezNsoyRXBgi0glcAtwz6YyJx03IhfHt99wV8faNI6o3S7p8luUKQOgn6cmFsSFg9+04646Xql1DVdepaq+q9s6ePTu0kWGG/pRJy5tBXhGohKlcGL3AfSLyE+Ay4Msi8hsG7EuVOGWzJCcGZ9WbGcmFoarzVXWeqs4DNgK/p6rfMmBfLNL0ZpB7ND9GcmEkSZRQmQRxa5r1Cq2ZKgDGcmF4tl+nqhtNGRi3+SJtbwbJeLQshsxsNgg1mHrazfLQ2eQis8Gbgfmkx2EHNNrizZpaZCaptxcgaY9mczeTvZYZwqQ3a1R3kzcVQr0VABu8WT4lLiL1JDf2Tq2rRFAqhCdff2nScVmaNtf0niwsUb6cJCsCaaVCSJJMiKyeURhhZprHISmhBaVCyHrIzMOlh5Gu8UgF6HpDJ0yuQe7uG+QzN98bKhVCVkJmJjyZzZiodXpflciyN2tqTxYnVEb1ZqY59VcWcNufXE6xWGBstHYOtCx4s9Q9mc1jysJismnjjNPnUiwWKBbaKLabLfin5c1SF5mNxPECpoT29K6DTqG/5BT8Nw0PH9uX1U7zzITLZR2HIo3ISKpWWQ2/0OJUCvr2DfGZm5yC/6bhYfr2DUGN9jXbQ2buySqQ5mrAu/sGue9rjzsCc6lUG41KGiEzF1kFVnbM4Yb3n8Xy7ngrBMfxYn4BmV46Jy2aUmT1hsryUtQ3XrCG9WsvjS20KIQRVNRO9kq15EZ7s6YUWb1MXIq6wFkLuyKdH9WrVBOYf1+Y/k/byEUWwMSlqEs8tX8g9LmNCFuVPFqUmeaN9GY1a5cisgT4hmfTAuDz3uUGReQjwGfdf18DPqGqO0wa2kjKS1G/d0Y3T+0fYEd/uJWCTZTDKh2T5RG2NUWmqnuAFXAsFcEgk9MUHAB+SVVfFpELcdYZX2XY1sjNGPWwbXiIPVvCd8wnJbBmwEiaAlV9XFVfdv/dDEQqxHxg1jMRzbCLRgjM5JKGZRoVMo2kKfDxMeA/g3b40xTYTJL9l63iwcqYSlNQPub9OCL7bND+amkKTHqzRibFM1mTNHWubd4sSrdStTQFiMi7gfXAhar6UxPG2Y7NDaA2YSRNgYh048wu/6iq/tiEYWliak0mPybCZBKhNmlvZipNweeBk3ESrWwXkS3GLXVpdEK8ILJQk4wSMpMuXhhJU6CqN6jqzHJGxqCVwqrxqaXfjWZ1imRBYLaRt/j7MF2rTEJg9VQAKrF4461xzalJ04osjbTrfmz0YEE/oqTH3lklsrQbZW2e6u8nCQEn5c2y81Qzhi1eLGwFIElvlossAUwLzJsbI8n7JEUmRZZEM4apUJmEwG6782qu+51zue3OqycJLQxpVwAyKTJbScKz1MqNEfeejQyZucjqpOe0OVzzobM5+x0nJXL9oNwYUek5Ldp8BdPezLopcR+Y9QyPvrjUyLWKp4yE+nXGDZU9p83hrvJs74tX15ztHYdauTFqDWb02jhaKnHDugeODcJs1LS53JPVgX+299LzTguV1yIq5SlyUQXmtzHMfIXyj9KkN7POk2WJ8mxvUMbGxnl618EJ+/0iMFVmiyJgr42jpfFI8xVMkVmRmRyKHTfJSt++IW78iw2ccfpcnt51cMJk3CCCxBFVeFE9ZNnGntXB8xWCQubY89OM9phkVmS20LdvqKa4qhHF28UNwZuPHmLz96I3+yzeeCs/vuyWWPf0kpfJLKNSeS6uwGxYuzN9CxLGho7yOIRNjleNsAKr1mZmogJgjci8Y8rS7ihvBmzwYGXssSQDZGVMfxyBJenNcpG5NKJRstw70HNaMglcXutss8qDlTGVpkCAO4CLgBHgOlV92rCtk2jkjHKY6CGierUJvQNjJW78iw111Uqr2WYbNS1T1T3lsfvAmTgi8qcpuBBY5L7WAnebNjQtlncH9/uVvUbYL3dC70CxjTNOn2vMRlMCSypkRm0nC0xTAFwMfFVVFdgsIieKyBxVNfdTTYHl3XNYv/ZS2guT+/28lL/kat6tVu9AXOIKzF88SHJUsKk0BZ2A96kNuNsmECVNgQ0zys9a2OXkKQvZ71eNcsv7uo2PGwmV9ZS/gsqfI13jNXs+4nqz0J7Mk6bgc0G7A7bppA2q63Ay/tDb2ztpv208tX+A0VIJIFSeslorlNTbO+C9T1xqVXCC9tfbzWQqTcEA4C1kdAHPx7bKEnb0D3HDugc4a2FXpDxlSZKkwMIQp6spisgqpikAHgJuFJH7cPKSvdqo8ljSHeU7+oeaXlwrO+awumsumwcOsm04+LPW481CicyTpuB3Pds+Ds5McuA/cJov9uHUPq+PZU0TEGZRr6j5/pMW2L2XXH6scnP1NzdUFFpcTKUpUFX9pKouVNVfUNXEcmFknSDBVCvEJx0eJyZhbmN1V+2mlagVAHtb8AzTyI7yuMLwi60R5a+JSZjH2TxQuWkl7kQTq0XWbB3lYUVTb/NElAJ+OQnz32x+PFKojOLN8kGLDaIR3T5xa4/bhodCiytOBcBqT5YGpjrKG92XmMZaUGG9mVUii5unzPSMctNfWJKCixoe41A8ZeTYKw5WicwmbFnGrxqNstFb4I8jtFxkCZLk+C5bfgRhQqb1Ikuzo9yWL9KPrXZVwnqR5bxNI8pflajWRnbFo18BYMaMGe8I2p+LrAa2eA1b7PCz4qRO/ul9HwVg0aJFi4OOaRqR2ZB6PSlsEViQN1s1ex7tbYXyv0FDvppHZEmS1pecZngMyxOHf8LoeKn8b+AYwVxklmK7uMpsf2mQax/7GgB79+4NXI2m5bqVwuYs8xM3KUsUlnfP4ayFXfzgSH/dw20q2VqPeCvVzre/5KS0OnLkyOuB58W+YwMxmRjPVo5NWikW+N3Sqqqd1Wmkgm/U8OuWJ0lvtuKMTtqLzrguFN47ozvSysFJUu8wqbxMZgEjXeO+cV21J63EJeqPxMQ4vKbyZI2eUW6CchmpPK6rPNZ+T3/6XszUQM+wY/xPxFkwtQenmvrbqrrJs/8E4F6g273mX6vqPxix0DJMhkx/Idw7rmtaykHG5EjisJ/kDuBhVV0KLAd2+/Z/EtilqsuBc4EvuvM0I9PoZQnrGcJSD3HmP5qi1o/E9POoKTIReSfwPuDvAVT1LVV9xXeYAjPcxCvTgZeAMZOGmu4or0dc9QrA5jawJH5wYTzZAuAw8A8isk1E1ouIvyP0LmAZzoTencCnVHXSk4ySpqDRNMqbRRFYUmJstMjDiKwInAHcraorgdeBP/YdcwGwHTgFWAHc5XrACajqOlXtVdXe2bNn12e5hVTKAFTGBg9WzYakfmhhRDYADKjqE+7/G3FE5+V64EF3/uU+4ACQSutpPR3lUR6y/8sqN6beeP4a1q+9dILQ6umDNCnMNAQG4fKTDQMH3WR44KSP2uU7rN/djoi8C1gCPGvQTuuplAGo0d6rkjdNS2AQvp3sJuCf3Rrjs8D1vjQFtwL/KCI7cYZ7fFZVX0zC4KSJ27cZlAHIlMDCNptUyqeWtMCWdRzi4v+9sfI9wlxEVbcDvb7N93j2Pw+cH8fALOP98v0ZgDaNm13IKwxeb1r+v5od9QosbNEkU91KjZpRHvfh7+gfYv33nkpEYGG8YtmbjpXGGS2V+MGR/orHNkpg0GTdSjaQZg3S602rDReqR2BxKla5yOqkHDIbIa4w99g0PsimveZDZD219kyFy7CYGO9fT3OGrcQR2LKOQ3U/z6YUmY1kcY0nU5Nz8nBZhbjNGf5rmLyeCTtqYXrmV+ZElqWh2DZ4rzTFVaalwmWc8kXsZLwVzmuE8OKMMkly3qqVnuxTS7/LHc/8srHr+R9g0iNoi6eMsOKkTlbNnscTh39ybDaPd78tNGJStJUiM0FZSKZqmmHKUmXxlKfut7cVGB0vce1jX5sktDTwCv/NKYmvr3aMphUZJPcrDcp77/VO5an7xbY2QFk1e17qIisLf0qhjbHx93BL38vsOXKgIfduapFVI2rILHuzoLz3O9v2Tzj27an7yuj4OE8c/olZ42PwawtmMaXQRkEKqEDPCYtykdmKN+89KGuWdbBzz0SRlafuVyqTNQK/F+97dS9j4yVUoKQl+l7d2zBbMikyU80YcbzZU2/sZXR8NbW81PaXBhsurmrFgz1HDnBL35foOWERfa/uNe7FlsyYT2dnZ0fQvkyKLE3q8VKmy4hRKzZ7jhxIJEQumTGfW3tu4tGOr09afhJykcVqzojipZJsIrAlJ1vPCYsovp2jbBItL7IksUUESXPNvA8BzhpbQftbqsW/EqbFYGLkQlb49nvuOvb+0KFDgWuc5iIzTKuICyYKDGBwcHA46DgjuTDcY84FbgfagRdV9ZciWx0B0x3lJrqa0hRYpaHpSQwm8IurFmHLZOVcGJe5M5Ym9LG4Ivwy8EFV7ReRn4tkhaWkIRq/WKqJJMychyjXq3X+oy8ujSwwCCEyTy6M68DJhQG85TvsKpzJvf3uMS9EtsQC0vJE1cRievJMNdHVulccgUE4T+bNhbEc2IqT68KbH3Qx0C4i3wdmAHeo6lf9FxKRtcBagO7u7lgGh6X8wGwee2bDep5hbKg301IYkZVzYdykqk+IyB04uTBu8R1zJs4s8qnAJhHZrKoTsiGr6jpgHUBvb29gdbde/A/NtkGONggrCiZSeYURWVAuDH/ClQGcwv7rwOsi8hhOHrPAlNthiDOmzOYv0GbbADqOX0bXtBUMjGxn+I3dRvPE1RSZqg6LyEERWaKqewjOhfFtnEw+RWAKsAr4G2NWhqBWuSYtb2ZaXH4xmLrmb3Z/gYK0U9JR2tuON3LdMkZyYajqbhF5GPghMA6sV9U+o5YGUBaPjV4iCZv8Yniw/9NGhNY1bQUFaadNCrRJ5e6huBjJheEe8wXgC4bsCk3YLzOMN7NRrF68YgCla9qKukTWqNSpLdl3abuYKjEwsp2SjgJKSccYGNke6fxG5+Mt01Iiy6q4ygy/sZsH+z8dqkyWlqCCaCmRNQPDb+yeJC6bBBVELrKMYbuggshFZjFZFFQQucgSJkq7VrOIyk/Liuyi6f72ZPMcP+VMOmfdBjJlUrtWswoqiKYRWSWP0QgxVWLqcecg0o64jZy/Ne9LqdmSJk0hso7jl3F5922ItKN6FYMvXsEbb21NxZZFXYEjkFuaphDZeTPnuB6jCChTjzsnlMiOn3ImU487h6NvboolylxQ4ci8yC6avoujb05F3ZZw1TGOvrmp5nlOeel+1/uN1vR+uaDik1mRectab7y1lcEXr4jkld4uL032frmgzCIVpsolTm9vr27ZsqXmcUFjykwU5suerK1tat3XynEQka2q6h9IkT1PVo/Acg+VDpkRWVRx5YKyB+tF1nvSh+nmW7zhnx/lIxeVvVgvsjWzr53U9pULKlukVvAXkcPAc5X2d3Z2dnR0dHSCk8jj0KFDz1eaBh+SWUAml0dMiCSex6mqOmlJ5tRE1mhEZEtQzadVaeTzyBOu5CROLrKcxGklka1L2wDLaNjzaJkyWU56tJIny0mJXGQ5iZMpkYnIn4nIoIhsd18XefZ9TkT2icgeEbnAs/1MEdnp7rtTRMTdfpyIfMPd/oSIzPOcc62I7HVf13q2z3eP3eueO6Uxn9wsIvJB9zntExF/8hzzqGpmXsCfAX8UsP10YAdwHDAf2A8U3H1PAucAAvwncKG7/feAe9z3VwLfcN+fhJPv4yRgpvt+prvvfuBK9/09wCfSfiYxnmHBfT4LcJLj7ABOT/KemfJkVbgYuE9V31TVA8A+4GwRmQO8U1U3qfOEvwr8huecf3LfbwTOc73cBcB/qepLqvoy8F/AB919H3CPxT23fK0scTawT1WfVSdr5n04zyIxsiiyG0XkhyLyFRGZ6W7rBA56jhlwt3W67/3bJ5yjqmPAq8DJVa51MvCKe6z/Wlmi0udLDOtEJiLfFZG+gNfFwN3AQmAFMAR8sXxawKW0yvY451S7VpZo+OewbhSGqoZKrygifwf8m/vvADDXs7sLeN7d3hWw3XvOgJu87wTgJXf7ub5zvo/TmXyiiBRdb+a9Vpao9KwSwzpPVg23jFXmEqCcaO8h4Eq3xjgfWAQ8qapDwBERWe2Wqa7ByQpZPqdcc7wMeNQttz0CnC8iM91wfD7wiLvve+6xuOeWr5UlngIWuTXlKTiVnocSvWPatZ2INaOvATtxMjo+BMzx7PtTnFrTHtwapLu9F0eM+4G7eLuX43hgA04l4Ulggeec33a37wOu92xf4B67zz33uLSfSczneBFOPt/9wJ8mfb+8WykncTIVLnOySS6ynMTJRZaTOLnIchInF1lO4uQiy0mcXGQ5ifP/zauNAradx70AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "\n", + "x = tuple(map(merc_x, lons))\n", + "y = tuple(map(merc_y, lats))\n", + "\n", + "ax.tricontourf(x, y, tuple(datapoints.values()))\n", + "ax.plot(x, y, 'wo', ms=3)\n", + "ax.set_aspect(1.0)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJwAAAEDCAYAAADA/21vAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOydd3iUVdrGf2dakknvvQEBQm8CAgqKoljAtjbs3V3b2ll33V391rK6a3cVC/aCioiC2EUEgdBBCCGk997LtPP98SaTSTKZzCSTkITc1zVXZk57zyR3ntOe5z5CSskwhtFfUB3rDgzj+MIw4YbRrxgm3DD6FcOEG0a/Yphww+hXDBNuGP2KAUs4IcSbQogSIcQBJ8tfLIQ4KIT4XQjxQV/3bxg9gxio+3BCiJOBOuAdKeWEbsomAauAU6WUlUKIMCllSX/0cxiuYcBaOCnlL0CFbZoQYqQQYoMQYqcQYpMQYmxL1o3AS1LKypa6w2QboBiwhOsCK4DbpZTTgXuBl1vSRwOjhRCbhRBbhRBnHrMeDsMhNMe6A85CCOEDzAE+EUK0Jnu0/NQAScACIAbYJISYIKWs6u9+DsMxBg3hUKxxlZRyip28PGCrlNIIZAohDqMQMKU/OziM7jFohlQpZQ0Kmf4AIBRMbsleA5zSkh6CMsRmHJOODsMhBizhhBAfAr8BY4QQeUKI64FlwPVCiL3A78DSluLfAOVCiIPAT8B9UsryY9HvYTjGgN0WGcbQxIC1cMMYmhiQi4aQkBCZkJBwrLsxjB5i586dZVLKUHt5A5JwCQkJ7Nix41h3Yxg9hBAiu6u84SF1GP2KYcINo18xTLhh9CuGCTeMfsUw4YbRrxgm3DD6FcOEG0a/YphwTsJgMPDaa6+Rn59PU1MTw0eCPcOA3PjtLQwGA7t27WLixIl4e3v3uJ3GxkYyMjIICAhgxYoVPPLIIwCoVCrGjRtHXFwc06ZN49FHH3VX14c+pJQD7jV9+nTZG9x9990SkGq1WqpUKnnbbbdJg8EgLRaLNJvNduukpKTI/fv3SymltFgs8rXXXpN+fn4S6PS6++67ZVJSkgSkVquVJpOpV/0dagB2yC7+tsecXPZevSXc9OnTJSBvvvlmK0kWL14sExISpJ+fn7z//vtldXW1TEtLk88++6xcsmSJtdzJJ58sR48eLQF56qmnyrvvvltGRkbKmTNnSi8vL/nBBx9IKaUsLCyUnp6e8uqrr+5VX4cijivCvf322xKQy5Ytk7m5uZ2s04QJE+xarZCQEHniiSfKOXPmyHPPPVeuWLHCoeW65557pEqlkmlpaT3u61DFcUU4Pz8/GRoaKouKimR1dbVcsGCBlVTBwcHyySeftH6Oj4+XycnJMjc31+XnxMbGSkCmpqb2uK9DFccV4VrJtGTJEimllBs3brSm5eXlSbVaLQG5YcOGHj9DSilvuukmCcgHH3ywV+0MRTginFOrVCHEn4EbWv5w+4FrpZRNNvkCeA44C2gArpFS7mrJO7MlTw28LqV8wrnljOv4/vvvre/Xrl0LQEhICAsXLuTxxx8nOjqa5cuX4+XlxRlnnNFteyOe/4/d9FtnzOT0RYtYsWIF8+bNc0/njxN062IuhIgGfgXGSSkbhRCrgPVSyrdsypwF3I5CuFnAc1LKWUIINZAGnI4SWZUCXCalPOjomTNmzJA98YebOXMmKSlKoNZ1113HG2+80W2drkhlD/o8ZdtyUkw42ateJuPoUX4/fJggPz+X+zqUIYTYKaWcYS/P2X04DeAlhDACeqCgQ/5SFEkGCWwVQgQIISKBBCBdSpnR0pGPWso6JFxP0Uq2DRs2MG3aNGu6K6SyRSvBOuKHT9+nZPNmLrnzAW7c8BWfXXx5j9o/HtEt4aSU+UKIp4EcoBH4Vkr5bYdi0UCuzee8ljR76bPsPUcIcRNwE0BcXJyz/cdsNmMwGBj/2sv4L1pI9bc/sOy1V9BFR6OLiULl4dF9I3RNLlvU5xyhYs8Wag7vxW/sFPZrw2gsKnS6r8NwgnBCiEAUq5QIVKFEvl8hpXzPtpidqtJBeudEKVegSDkwY8aMTmW6slIl73xA/c5d6GKiMeTlA1D+2RqlUzotCU89breeMwSzRcWeLRR+9ylqL2+CTziFsDmLUKaukhHP/4eMO+5xqb3jFc4MqacBmVLKUgAhxGoUyQVbwuUBsTafY1CGXV0X6Q4hgUajkSs+/4Td3VgQoVaIY8jLRz9pIkIlqN+zT2nHYLSWc5VgtjDWVFL4/Wp8EscSe961qDTadu02xFh63PbxBmcIlwPMFkLoUYbUhUDHGf1a4LaWOdosoFpKWSiEKAWShBCJQD5wKdDthEcAWrWK2TGx3RIu8JyzqNuudCfo3LPQhoWiz1PRVFIAAjx7QTQAc1MjeeveR6gEkQsvaEc2WwxbOefQ7V9DSrkN+BTYhbIlogJWCCFuEULc0lJsPYq0QjrwGvDHlrom4DaUyPhDwCop5e/dPhMwmi1szcvtrigafz+EWg1A1ftrrJbMMywKz9Cobus7QnNlKRnvP0djQTbRZy1DFxjSq/aGMUAj72PGjpWzHnm4S+vWSqrGolxyPnsdU0MtAKFzzyBsTvf7a86gLusweWveQahUJJ10FX5hI6mL7vr/s3VYHbZy7tkW6VeUNtR3Ipu9OVhzebGVbAAB40/o8TN98hXCSIuFrB2rKUnfipd/BGPmX4eHT1CP2x1GewxIwtlDQ4ylE+n00YnW98EnnILO33litBLMFlJKio9soSR9K+Gj5xE7ZTFqjUe7Ol1ZueHFg3MYNISzB11AMImX3U7euvcoT/kJc0MdkYv+gErT+WvZI1gr6isLKMvYQXVRGo3VRXj6hRE/7VyESu1yn4YXD44xKAlXdSCFhoIsQmaeSs6aNzE31ivpv6fgkziGaD97moVtMJsMGJtq8fQJBqC6IJWiw78AEDV+IVHjT+0R2YbRPQZVTEO1vozynb+Q//WHVO79jcwPX7SSrRV5X71Hc11FFy0oKD78K3vXPk7m9k8pz95DYEybSHpwwlSkxYKxqd5BC/bROuT39CjteMCgsXDm+gYKnnoWS0ODNc1UV2237J61jzHr8qe7bCsofjK5e9dTkr6VkvSt7fKaakpJ+/kNMFqYctHf3NP5YVgxaCycoaAAS0MDGh9/a5p/8lSiF1/G6Fv/jn/kGMKSTgRA4+njsC1Pn2DGzL/ebt6RTW/TXF9Js6Ea38zGTvmO5oIwbOW6w6CxcCovLwB8RyRTuU+xSqFzz8QjUJEhi7niZnzyLSTMuABpMXfbXqwhgdgTH0VKSV1DETV1+ZjMTRzJ/gaAaeOu7aNvcnxjQBJOaO1YkRap/Mp9W1HpPPAdOR5dQOedfyEEQt3+a9mzVLbla+sLScvegNncDEBS/JkE+Y+wlmmqK6f06HaaastRa3Xop07BJ3GsNd9YV4PF2IxQa9D6BnT5LKPRyKFDhwgJCSEqqnenIIMVA5Jw9qCLirS+txiaiTnnCqfr1iZ6dSKd0dTIkexvKCjZ2S49PHgCcZFzlOdYTFTkHSBv79c0Vhej0wdgMRkoPbodfexI/EZPxlBRQsXuzdg6wai9vFEH+aP/3wrOmzqddevWERsbi9lsJjU1FYAJEybwySefMHbsWI4nDBrCNWfnWN/HLLnKbpm6aFW3cywAKS3sT/uYiuqjnfKSR54HQF5xCqkZa63p4UlzSDjhAixmE9mFm6jav52iH1YDgsDJJ6KPScRQUUJ97lFUHp7UZaZCvoUPU9MAKCsrw9PTk1deeYWvvvqKr776inPOOYeUlBQCAwNd+VUMagxYwmmiGjAV6Ns+BypDlcrHG31kfK/a3nv4QyvZkkecx6EMxX/O3zeOorJ9VFQfpaS8zccgYuzJxE09R3m+WkNizCnUzjwVY1U5Kp0HGm/fTs+oC2tGGo2Yq6vJffwpbG7P4eabb2bLli0sWLCAu+66i7fffrtX32cwYcASriOKX3kdAEtdPWmvPop3XBKBU+bgP2ZyNzXbQ0pJWeVhAEbGnmYlG0B1bQ7VtTkIVIyMO42EqJMQQkVtolendoQQDr1HfEo8aIjRovbWtyNbK+bMmcMll1zSLvDneMCg2RaR5vYrz/qcI+StfRtTQ51T9VtJI4RgytgrmTftHjLzN7Yrc88995Censn1Vz5LYvR8hHDPr6erLZIZM2ZQUFDAwYN9EuIxIDEoCCdNJowlpfgtOBnfObMB0MeMIPqsy1F7tRerceRC1IqQwCQ8PQIICRxtTXvzjTd5+umniY+PZfaJ47ttw5m5YndexieddBIADzzwQLdtDRUM6CHVOo9TqxEaDXXbdxD3r38QdN65CLUaj6PNGCpK8AgO71H7o+PPxM87mqlTZ3LZZcswGc2YzBb27u5S9d2tyMlRFkL+/v7dlBw6GJAOmJ4jo2Xck4ozcevCofClV2lKO0LUvXdR+ML/0IaGYMjLR6XzJPnOx9rVd2R9utqTmxCoY9Kc0ezOruTQgfxO+fbmcdC9RbV1WbL1IjEYDCQmJuLv78+uXbvw9PR02M5gwqBzwLQH76mTaUo7QsHTzwJYI7TUXnpH1ZxG6o5MUndkKh9GRjtdz5GPHNj3k2tsbOSiiy6ioKCAl156aUiRrTsM+DmcJko5rNePG4vaToS7Ru/TaUHhzDyuI0wukKwjnJnPQdviYfny5Xz99de8+uqrnHfeeT1+7mDEgCdcKzQBAUTdc0en9MbCHKfOTvsajkhnu3ioq6vj9ddf58orr+Smm27qj64NKAwawgGo/f0JPGdxp/SG/Eyn2+hqLga9s3LgnKVbvXo19fX13Hjjjb161mBFt4QTQowRQuyxedUIIe7qUOY+m/wDQgizECKoJS9LCLG/Ja9XN7YJIfCdNRMAr3HJaMPDAOzuxfVkWHUERw4AtuiOdLf+92liY2OZO3euO7o16OCMtshhYApAixpSPvB5hzJPAU+1lDkX+LOU0tbt9hQpZVmPO2lzzFW7bTsAXmOS8F9wPV45IFTuI5dpZDSao/m9ntN1JHzr4qE5K4e5ixfbPX04HuDqKnUhcFRK6Wij6jLgw553qWtYmpupXLcBgIrP11LxuXK4HrPkKvzHOI5jsIU975H+gqW5mc9Tth2TZw8EuGoaLsUBmVrkIM4EPrNJlsC3QoidLQpJXdW9SQixQwixw1xjP56g9IOPQUo8k0a1Szc3Ntgtfyxhb2g1FJcgm5vRhtq9u/a4gNMWTgihA5YAyx0UOxfY3GE4nSulLBBChAHfCSFSpZS/dKxoq57kOTK60260tFhoaBGpMdfWkvCfJ5BmM0KnwzvffoSVI3clR1aut4sHe5BSUvXealSeHgSefeZxG07oioVbDOySUhY7KNPJAkopC1p+lqDM/Wa62kmAxsy2YchYVEzWPQ+S968nAfotANnVYdiW7PXZR6jPSSfw7MVojmPFTFcI53BuJoTwB+YDX9ikeQshfFvfA4uAAz3paO3GPWiCAglZdok1zWvsmEEz+a7PTgOVirDYE491V44pnBWV1qPo9N5sk3YLgJTylZak81HUMW0nYOHA5y2k0AAfSCk3uNrJup2HadirOExKg5GE/z4JQji1Ou3psOpumJsawCKtenZwfEbpO0U4KWUDENwh7ZUOn98C3uqQlgG45iFpBw0706zvyz9ZTfknq4l77BHU3u45R+1L+ORbqApsoPboQfTRCS0+dsevBsmgOGkIvf5sPJNirJ9VXp6oPNtr9zbEWDDV11L8yzqnnTLB8cmDOyClJO/LdzE3NRA690yg/VHX8Ra/OmC9Rcy1DRjyS2k6WkDNDzsx5JZY8+Iee6TTcGppbubwy38HwG/0JDT6tmBoZ4NrnIFvZqPTJLWYjWTvWkt9zhEiF/0Bn/gkt/RhMGNAEs5c10jmTU8hTZ0P5QPOPN3u3C3noX8AoPH2Q+sfhNnQhFp3bN1+cvd8TcmR34gYczKBk2a3y7N1Wzqe5nIDk3CVtQrZ1Gq8Z4xBFxlM/c7DGHJLqNrwHVUbvkNotYQuuxT9xPGUffo50qgISJvqazj8oqIJMv6+/1rbPBaLh4rcfQTGTiR++hLqBslquq8xIAmn8vHCXFmLSqehfttB7J07SKMRQ2Eh9fsOUL9rd6f8mCVX931HHaChsgBDQxURY08GunfUPF4wIAmnCfQl9vGbUPvqyb7jeUzlbSpJSZ88QtMhIyqdjtL3P6Zhf9u2XszfluNd4dVu/uYs3G3lKvOVSKyAqK4j64/HYXXA/stpg/1R6bQEXThf2XPz0OJ70iRK31yPxt+fmi1b25HNc9RIzLW11HpVULF7M/ZiNdxlYbojZm1pFsVpm9EHROLp0xa76q6Fy2DGgLRwntq2Cz38T5+ByteL4uc/o3aTcpaqDval8svv0cXGYMjNA6Ap/Sg1v2y2Dq+BU+a4/Fx3WLma4nQO/bgCD30AI0+8zCXXqePByg1IwnWE7+zxeMSGU/zKGppScyh/7zs8EuLx9/OlpIVwan9/mo5mAOAZHtPlkZe7tkhat0ektGBoqKKptoyyjJ2UZe1Epw9g/Bl3ovX07rad402MekCGCQaMDZNh/3e73bzm7CIa9qYz94zL2XjbXVRVVXUqE//04/gUd32pW0/CCDuiojqD9JzvqKnLa5fu4RPM+EV3OCRbx6G9I+EGu5VzFCY4YOdwyRH2nVI84iMIXDKPKdHedskW89ADqLT2rydqhaO5nDObuqUVh9h1cGUnsgGMO/1PTlk2W/TmHrDBhkExpNrDS3c+BEBsbCyp6elcuebTdpeJ2LvXobeoqslmT+p7mMzWy7BJiD6ZhKiT2PL7ixgaqtF5Hb+uR85gUP5rWRqbKdunHOgLX1+nbh10BV1ZOaFSW8kWEz6Tk6bfx6i401GrPfAUylZMyqqHyNj2icPQxe7mkEP5fHVAW7jkiGIOFXXWDWk6ogxlmuAgxDXL2FNc1KlMzebfqMutIWxe57BC6Nniwd8nhtNOfLRTuhCC6eOvI79kBxWUUHp0G0IIEmde5HTbx8viYVBaOEO+EgBmKq+gMTWtXZ6xtIzMO++lfNVnlP72HYDdPbnu4OwBvZQSk6kJlUpDVNh0AqWy72YxGR3WO16t3IC2cF3BZ/Y4St9cB4B+wrh2eYXPv2R9H7T0HEp/+46y7T8x+ua/ovZs7z/X2y0Ss9nAgfTPKK04iE7ri5QWjKZ6fL2jSJz1B5fbOx6s3KAkXNW636zvzfX1aPz8sDQ3U/ruB5hrlNsFA89ZTMUXX7VVcvPhudHUyO5D71BTl0dEyGSaDNUIBIkxpxDoF0+duve/2qG4ETzgCWdvHqcJadFTU6nQ+PkhpSTnb48gmxXZ+9CrloHNMOo/fgZqD+eGSGNjLUc2v0dA1Fiixp1id19OSgs7DrxOQ1MZk8ZcRljQuE5lnPGbOx4P9Ac84exB5aVs6qq9PVFH1lP6+i9WskX/5X504WHtVM9DZixwvnEBtSVHqS05Sk3REaJ9JuDtGYKfTzRCqKirL6KwdA/1jSWMTjjbSrbi8gOUVhzCQ+eHl0cgEaGT8c103aN4qA+rA/akYf7rF1s/21o4Y2kVWX9U/Nz8z5hJ7S97sTQqZAtZdglqPz+8RifR8PshSl5fCYBXRCyJy+7s8lyz4zyusaaUfV892blfvvFU1eYAkvCwaJYuXk5GWiV5RdtJzfwSjdoLi8WIRZoQQsXMibfg6x3ZLemG2slDr04anBSzWSCEqLYp87BN3plCiMNCiHQhxIO9/TKF//nI+r7hQIaVbCpvPU1p6RT/7zXKV6+xkg2Uq8rz13/g9GrVyy+UMQtu6JReVZsNSJYtu4Lly+/nT3fPJzJWQ2rmlwCcOOU2Tpn1MEH+I5HSwrZ9L5Oa8SX6dPuX0HWFoXzy4JKFsxGzmWWrLyKEWADcK6U8x075NJQQwzwgBbhMSulQtrujhYM2K3fkD1Yu43fqNGp+3AWA5+gkmtKOWPM0oSGYSjvr53gEhxN15qXoo9rueuhqpSotFqTFjPZICeVVR6ipy8ciSqmoLMZobNv2UKm0TB5zOcEBigRFs6GOorK9VNZkUlaZhrdXCBGhk9GOGolvaCKqDgsKe/O4wWzl3Cm56oyYjS1mAukt4YIIIT4ClgJu0Yn3HB1rJZwt2QAr2fSTJqLy0FGXolxx1FxeTOW+re0I19X2iFCpECoV5uRoYjOV682TJ0TzxLOXc/jwIVaufIud2wpQmxPx0LVdDuKh8yE+ai7xUXMprzrCkexvOJrzPeR8j3/kWMYsuK6dJP/xtHhwlXCOxGxOFELsBQpQrN3vQDSQa1MmD5hlr3KL0M1NAF7hXXvs+p40mdpNe9FFh+I5ovMFaT6zTqBuW4r1s37ieHxnziB+wTJMjfUYayrxCI5w9B0d4tCBfB686wMmT42Hpsno1SHg4PLo4IAkggOSMBobSMveQGHhbooPbyZi7EkOn9Nx8TBUtkic/reyEbP5xE72LiBeSjkZeAFovd7F3uaX3TFcSrlCSjlDSjlDF9B5kt3qPeIxQrnkLfiyheTc/79O5fxOnkfUfX8m9Brl8jdzba01T+PljVd4DCpN7xbnhw7k89G7W+yqnXcFrVbPuJHnE+g3gsL932M2NbfLP168gd0iZiOlrJFS1rW8Xw9ohRAhKBYt1qZoDIoF7DE84pW5XOHTyuLBZ+5EhEaN18QRRN7xR3RRkXjEROM9ZTLqgAAMecrjuttq6G5Ic0fAtBCCkXELMRjryd3zda/bG4xwi5iNECJCtLjYCiFmtrRbjrJISBJCJLZYyEuBtfbasIWn2oMLYxYxxjexU55+4kjre6/keJpSc5BS4nfyZDxHjrBufVhq65BGA9JkcuEr9j0CfOOIjZhNcdqvlGfvcVi242p1KJyvOkU4GzGb1TZpt7QK2gAXAQda5nDPA5dKBSbgNuAb4BCwqmVu5xDRXmEsiz+bRyfc3o50yRHFNGcVofLxwmt8Ip5JMZiqaon9vxvxWzDVKrEPULdjJ5b6BusthDAwrBxAUvwZ+PvGkbFtFcamtiH/eBhWnSKclLJBShkspay2SXulVdBGSvmilHK8lHKylHK2lHKLTbn1UsrRUsqRUsp/OfM8gUAt1KiFmgn+7eUR6rb+jqWukZCrz6QuJRWPxEg8R3UWEPSZPRNddBQ1GzdR+PIKLE1NncocK6hUGsaNWIrFZGDX6n9SfGRLl3uEQ83KDci1uERispgxSzMHqttvdzQdzUcT7IdHfDjGkipUHu3dyVutnFqvJ+JPN6MND6PpcBoFz76IxWgcMFbOWx/GyNiFAGSlrCbtl5WYTc1D3soNSMLlN5bwQc46/nbgBQ7Xtt3BYGo00rA3Hd95kxTvD7MZU3lNl+2ovb2J+cv9BF14HsbCIhp/P+SW/rmLdIkxCxiz4HoCYyZQlX+Q8qzOCgL2MJit3IAkXJO5mc/yvm1HNgBpsoAEdaAPhrxSAHznd1Yvt53LAWiDFWm7qh9+Ano/lwP3kS4gKtnqO1eaYf8ai6F01DWovolQK9t6Yfoaan5QTg58507stp5+fDL6iRMwlVd0W9YVuIN0vpmNaD28CYqbRGONsuM0lIfVAUm4UT5xdtOrUhWNOGNdM1XrfkPl5YE2Ishu2VYrZzEaKX59JQ37D+A1tu1CXndYOXCfpdPpAxwG3gyVxcOAJJw9mA1mUv66AX20H1HzR6L20CiSXt04H9Tv3E3D/t8JOON0Qi692GHZnqK3pPPNbERaLCi+DgqGqpUbNISTJjPG2mbizkrGNzGIwPHhijeH0cFNgh5FVKxdhzYykoDFi1Dp2q9o3WXl3AGVWoPFbMDYbP9SFHsYjFZu0BBOo9eh9fMg9bVtfHXqK5Ttyif4klM7bYvYonbr71jq6wm98rI+l9fvrZXzC09CWszUlXXtiDMUFg+D6htM/PPJhM9NIOH8CUTc9QcCz3PscWHILUHl5YEuonNsayvcaeV6Qzp9sQEAi8lgTXNmWB1sVm5QxTTEnDaamNOUib+9AGlbGMurqdtyAP2UJITagf+Qm9FTya8A3zg0Ht4UHPyR4HjnL6obbBhUFs5ZmKrrKXpmFdJiIfiyhd2Wd/dcrieWTq3WERg9nqba8nbpHa3cYB9WB3fvu0DpyvU0pecTfstSdJHBnTaC+wM9IZ2+SYfF1Iyxsbb7wjYYTMPqkCOctFhoOpSNzwnJyhGYk+iLFaurpAsNVPSAK3L3OSw3mK3c4O25HZgqa8l7+E1MFTV4Tx/dLu9YWDlwjXR+PjF4e4V28h4ZSouHQbVo6A4Fj79Hc6Yi2yXNrm+c2tOUK9/1K+UpP+EVlYBXWDTeBm80Ht5odHqqCg7h6RdGaOJ0h+06s5BInhDN5KnxyA8y+OnXd6guTCUgKtnl7zDQMaQIZyxri/+sWvcb/gvbE0ET1YCpwLUL4Yp//gJpNmOsqaQm1b43R0jCtG73+RyRLnlCNP9+/gq0GjXnXjiZ0eO+I3vXlw4JZy9CfzAE2gypIVWoVVYZCENuCRaDfcms6p83UbbqM7tOjw0xFppKCzE3N9JUVoRHUDieYdGMu+dpPMNjOpX38g93elO5q+F18tR4tBo1ao2KoKAAZk2Zh6G+0uVhdTBg0Fo4eyI3HvHhGPJK8T9zJtrQAEpeWUtzViEhV52B95Qkq3Wr+Fy5Q9jS1IypooLAcxYr8RBC0JSZReFbL7Zr12/MFKpTd9NUrAgh+owYR8y5V+BbpOoU1NwT7N2djdFkVhxPTRaMzV5YzEYaa4rR+3cd0jgYdUiGlIULOHcupvIazFX1NOzLoHbLfoxFFRQ8/j7lH/1gtXiaoEAA6nfuojkzi8r1G8hZ/jCGwiJK32uLEwqafhLRZ11O5OkXUn1wJ1q/QJJufIi4869DrfOkIU7nch9rE72sr1YcOpDPy89+w+4dWbz87DcYG8IAqMpv7zA6FBYPg9bC2YP35FEEXTifis82AuAzezzBl55K+Uc/UvHZRmo2HiD8xusIOm8JJW++jdfY0TTn5NJ8VHH0zH/iaQA0IcEknn8LuoC2O4nrc9PxHzutXRr0TtSwlXQTRkXyxz+fgVatZq57u7oAACAASURBVOKUOLIyStmTGkFV/kGixp3So7YHKgashfti3ovdF7KDoItPwWviCEAJuNGGBRJ5zyVE3HYL0mCg+LWV6KKVYGqPhHii7r7TqqKpjQgn8OzFxDz0QDtile/ahDSZ8AiNtPvM3nqVTBsXi6ZlDqfRqJg8NZ7QoLHUlmVRmec4yM3entxAtnLuUk9aJoTY1/LaIoSYbJOXJYTY31LXvg+1GyFUKsJuPNf6uWr9VgC8kkYRsuxSTGVl5D36BABqHx+0oSGE33gdic89Tczy+whYtBChapsbmeprKf75S/TRiQQ5uE6pN6TbdTAXk8mMyWzGZLawd3c2cZFzQErSflnZLn51sC8euv0tSSkPSymnSCmnANOBBuDzDsUygflSyknAo8CKDvmntLRhV1HH3dCGByJa3Jbqd7dFfenHjiHi9lvxnjIJj4R49OM7K1d2ROW+rUiziagzLkal6f7CkdaXKziQXsj9t7/H2ys2cttjn7C9vgKtxovxoy4EIH3zezTVlXfTSnsMVCvnFvUk2zhUYCuKpEOfoytZfaFSEXnvpZSs+BKPhIh2e29eo0biNWpkpzr20BBjoS7rMF6RcXgEO/ZO6Q18Mxs5RD6HDuRb53W1iV6Yi9pclfaufZzg+KkExU3G3zSaxvi2264H02rVnepJrbgesBXOkMC3QggJvCql7Gj9gPbqSXFx9mMaXIH3lCQSX74bAFMP1UwmBQWzobyQuBnzXKrnyrDXcTPYVhvYb9Y8koUaU0wAtcVHKc3YQXn2blRqLYHT5hI290xUWtdXyscS7lJPai1zCgrhHrBJniulnIYihvMnIcTJ9uraqieFhoY6260+w9SISE6va6K5sZEX/nY/k+PsLxj6EkKlxm/2PIJiJhA/fSnTLvwHY0+9maDYSZSn/Ez6yqeoy1LuqRgsiwe3qCcBCCEmAa8DS6WU1gmHlLKg5WcJytxvZs+76zpcPcpqxeyYWEJb4ll3bN/OCSOdmyX0xrp1l65SqfGPSGLknMtIXngrQqUi+5NXKN36vdPPPNZwl3pSHIrQzZVSyjSbdG8hhG/re2ARcMBeGwMNW/NyOWfpUi699FIefvhvrF23vts67iCbs/ALH8nIa+7FZ0Qypb99i8VosFtuoFk5d6knPQwEAy932P4IB35tUVXaDqyTUm5wW++dQE/dknYXFXLlmk+ZcvF1+IZHs3HFfzHWdS0r0Z9ka4VKoyVo6jykyUzul+8MCj85d6kn3SClDGzdPmnd/pBSZrQoKk1uUVdySj2pFaeGpLpS3O3YXVTIu78dIHTx5VhMBgq+XWW3XF+QzZlyPvkWfEckE3bSYuqOHqSp1P6NigPJyg38f4lu0NVFvu5Aq8XwCA7Hd9QE6rPTkFJiMRmRFoVkx8KydYT/2KkA1KYfGPBWbmD3bgDBJ3400mSics8WDj3zAGUpP2GsrbJuyJZn7yFrx5puWnENzlo5rb8id1GW8jP1eRlu7YO7MeAJd6yH1VYETJqFLjCUwu8/A6AuM5XcD19l79rHKUnfSvrm9yhO+7XL+n1l3UDRDo6/+FaEWk32x/+jOb/zxuNAGVYHPOGOFToOTSq1hsjT2y7c1WsCaKxWhvPM7Z8CoNP7222rN2Rztq5PfBIjr7obKS1UvL2K+r37rcM+HLuYjo4YJpwL8IlPInKRouVWlqnIhWk9ffGPHINa64W9WwL60rJZ+9Uyj9T6BhB15iUYqsooefNtyj9Z3a7c6E8732bd3zguCOfO/27vuFHW9/6RY5l2wd8Jjp+C2diIPqD9aYS7yOZKO/6jJ6PRK7fiqLzanDx7ugHubgxowt051rkddHevVB2t9DwCQ5l63t8IiBpL3JSzsFjMZKYo87pIG2fJ/rBstmi1cjVp+zBUlhJ73rUELTm7U7ljbeUGNOEGKnR6f8YsuAF9YBRCCKRZuQuipji9z57pLIFFyy07Kp1Hn/WlNxgUhBsoK9WOqCo4xP71/7V+Dh1xAuAe65Y8IZpLr5xD8oTOVwI4gu/I8Qi1hrqjhzpZ6oEwrA4KwvUnXNk4zUr5HGNTLdETFzF+0e14eAe6jWz/fv4KrrlxAf9+/gor6bpr2yffgkqrQx87kpoj+7CY7IdJHsthdZhwvYBQa/ANTSRm4iJ8QuLdNm+zjVNtjXFwBSEzFmCsqaT0t+865R1rK3fcEM5dK9V2R1mmJsaNTmTCqEi3LhJa41RNJjMmkxLj0ApHz5kwKpIbTjmBufMXEDBhJmXbfkTstO99eqys3JAKE+wtXBlOJ4yKpDgsmIaqfOYmGGCED9kZdW7px6ED+dx/x3tMnhrP3t3Z1msybWNZpZQ0VBag1ujw9AtlbHww50zzoaLoCP+55FwMDXWseSSV/K8/JHLyndbFxLGGS1eQ9xdmzJghd+xQPJyeSz0NgB/LxnZbrztVzO6GE2cI12rhrloyE3X1IW65+WYAFi29gmrvNuVKd2+L2JLNYjaxY9VfkNK+40B4eDh3vfQ2L7+/itzP3yR07hn4XHx6uzKtFj/tor+5tZ/g+Ary42ZIdTd2Hcxl1qzZAERERBA+dn67fNsI+46R9q6iY12zobFLsgEUFxfz8v89jHfsSNSeXpRu/gZDgX3Xpf7GoLFw0L2V608LJ6Uk+9fXqasq4twb/kVmcc9uK+zOEnZFVFNzAwgwNtbSVFtGQHQyE5OiyTy4jh8//aBTeZW3nvjHHmmXpolqGLZwxxKuhNpV5u6nOPcwYeMW9ZhsYF9rxDa9K2g89Gh0erz8wwmMGY8QKrY2FlMYPRHvuLYrP0NmnQqApd7+oqm/Fw/DhOshGmuUa5j8I0Z3U9J59Gb4bQ2+Vuk8iL/4ZkJOPB2hVlN9SNG0C52zyG397A2OK8K58xA/OGEqCEHxkd/c1mZP0THSXwgV4fMWE3v+dZibGlF7eqHx6ew61TrF6E8rN6QI15fu5h0hhAApKTz4I2aT/Yip/oAjWQnfxGRGXPVntP7BFH77CXLL0X7smX24S8xGCCGeF0KktwjaTLPJO1MIcbgl78G++BL9jeIjW9jzxWPWz60OmF1hwqhIrloykwmj3BdM7ayGiUdgKHEX3ABA1sf/Q5pMbutDT+AuMZvFQFLL6ybgfwBCuR7vpZb8ccBlQojuFWS6QH8c4tfnHKFky7cYqtvuVpUWC9WHdpP5wQsc2PIaJUV7AUg66WoAyrN2UZK+lW0f3Meu1f/E0NCmNTxhVCQv/uUP3HTRXF78yx/cQjpXxXK0Pn7ELLkKAPOvae3y+ntYdYuYDbAUeEcqeyxbhRABQohIIAFIl1JmAAghPmope9DZB9459vt2WyN9CSklOWtXYmlsonTzBoJnnoIQAkP2YWqK8vENjaChvBhzkzIXLC7Zi3/yVIWMLVbO2FSLStOm99Gq/aZRqwDJtHGxHEjv+Z5YT2TBGmIs+JonoPLwpPbIfgIX9Ph/vtdwtfddidlEA7k2n/Na0rpKHzCQUmIoLqE2ZScF//4vlkZli0Oo1ZRv/4mKHRtJjAjlw48+ojAnizPveQRdkCKJWnN4D0FT5rVTVkpeeCsaXdsqs532m8nCroO59AQ9kQFriLFYt3qa4lXoJ42n5uiBTsNqf1o5py2cjZjNcnvZdtKkg3R77btVPakrdJTOL1/1GbVbFNFCta8vIcsuISRkMiqtBxZDMzedMY/bz5iLRq3CZLZw2txZZNTfTd6696k9sh+Nty8jr70fLBZ8izp/3QPphdz22CdMGxfLroO5PbJuPbVqHeE9ZTJ1KTtpPHwE/fhjcweEK0OqIzGbPCDW5nMMUADoukjvhBYZrxWgnDS40K8eozZlJ7VbtuJz4iy8J07AM2kUKp0WdcuJg9rDkx0Z+RjNyiXARrOZlKN5qLQ6Ypdeg6m+Bm3rdoNaDdjfOD6QXtjjYdRdZAPwGjsaodXSmNY14UZ/+mifnD60whXCdSlmA6wFbmuZo80CqqWUhUKIUiBJCJEI5KMMyZf3psPdoSuRwo4o/3wtNT//gkdCPMEXnodKa1/dcm9OITes+IwTRsaQcjSPvTkKcYQQbWRrQXcC063kcTZa351kA5gSEUm+SkWYXk/He7RNBfp+CSV0inA2YjY326TdAorGCLAeOAtIR1nFXtuSZxJC3AZ8A6iBN6WUjlWS+wk1P/8CQPiN13ZJtlbszSm0Es0d6I547iYaKOKKfLoGY3Mz/7zyaj5TWdhd1P8H+u4Ss5FSyj9JKUdKKSdKKXfYlFsvpRzdkueSmI09uGNrpDUy3W/+Sah9fHrdni26Iou9dHsLgb4gm7mhkf3/fY41n3/OPffcwwUXnM/smNhO5fpj8TAwvPL6Ec2ZhRQ+9yYqb298T5xlt4y9S976Er1RQO+ObNJiofSd92hKS+etd95h2bLLMZotbDqSRs2vW6j44it0UZF4xMeh9vFGHQL1u9LYM+pcJk6ciNrNt2kfN4SzNBspe/cban7ajcrLi8g7/ojQaqnffwBjUQlIif/ppzp9b5Yr6O09DvbgjGeLlJKq736g8dBhgi86n7Ueakq2bmFT2mE2PPAXjCWlADRnZWMoLEIaDNDirjZ16lQCAgKYN28eF110EcuWLUPjBq/h44Jw0myh6LlPqU85hPfMZFQeWkreeg9DXr71FwzgPWMq2qCgXj/PdvFwrMgGULdjF1XrvwHAIy6W3UWF7C4qpPqnjRhLSgm/6fp2q1VTVRX1u/ag8jWgDvBhSXMwP/74I9dccw2PPfYYK1euZM6cru+qcAZD6vC+FbaH+FJKSt74ivqUQ4ReexYqTx21m/Yh1Gr8F55C2LVXAqCfPLEd2Ww3TQcSXOmT2scbtb8/Ki9PCp59kaYs5YCo4WAq2sjIdmTTRDXgOU6H/6kLCFw6D7/5U/h5USxHjhxhzZo1mEwm5s+fz7PPPmv3FkZnMeQtXOPvmdR8p6xhKlZvxFxdj1dyPBG33K7kH1YuDtH2gXK6u62bq/8A+uSxxD3yN8z19eT/+xkKn3nBmue/aKHdOh23RoQQLF26lPnz53Pttdfy5z//mV9//ZU333wTPz8/l7/DoLRwrqxULY2K65A2OgRdVAjCU4f/4tnWfG1YKAhBY9oRGg+ntZO4Atf/yK1wJ9l6a23V3t6EXbUMj5GJ1rSARa6dTwcEBLB69Wqeeuop1qxZwznnnIPF4nqfBnxMA2D38N6V+AZLswGVR/sLNGyPt6p/3mS9QzXmoQcUEtrgWMqYuntYN1VWYSwpxWtMUqc8exu/U4KiWXXqde3S3njjDW644QY2bNjAGWec0anOcR/T0JFsnWBR9t31kyZ0Ihu4/4/uLPriuZrAALtks4cpQdG8ffKVndIvvvhihBBs3brV5ecfF4Szh9b/ZmmxUPXdj3iOTiLs2quOca8UDJQFy6zQBLSqzvtwvr6+jB8/nm3btrnc5qAgnLM6cT2HxFxVRc0vm2nKyOzjZznGsSRaxzDKbaVZGC0dT10VTJ8+nT179tjNc4RBQbiewNn4BqFSEXDG6RhLSqn4/Auqvv3Bbrn+IMJAsGq22FORz9W/vGs3z9/fn7o616Uthvy2iDPQxbT4hKpUhFx8Yb8+e3JcJCeMjGFTbU6PDtO7WtD0hLz2Fg17KvLtlg0NDaW2tpbCwkIiI513mx+0hDs1JNUpvRFnYMhTfqmx//grGv+u95bcfcY6OS6S12++EK1azc3mWVzx+SftSNefq2NXXZNycnLQ6/Uu78UN2SHVFRgKClH5eDskW19gyrRotGo1GpUKrUrNSb5x6PNU1ld/oTuydfQesVgsrFu3jrPOOgtvb2+XnnXcE87c0Ej9nn14jXYugt5d86yGGAtb83Ixms2YLGaMFsWb2F1wlrA9cbrctWsXBQUFLFmyxOW6g3ZIdQfUkfWU/PsLpMGA/8IF/fbcVtLuLirkis8/YXZMLFvzcjmc03+B3NBzJYKnnnoKT09PzjrrLNef2aMnDhI4cje3NDZT8tpX1O/YS8CZi/CeGQg09LkkaUcL2erBAUCMe+dt+jxVlxa5p2QrKSlh1apVLF++nOCWC4xdwZAmXFeo35VG0bOfYGlsJvjShQReMNel+j1dPPT3toe7yQZQVVUFwPjx43tUf1ATztmVqpSS+h2HMRSU0rgvg4Z9R/FIiCDkmsXoxye2K9sxjNBZtG5v2Aba2MJZsrlrJdwXZAMoLFS+W0BAQI/qD2rCOQOL0UTGNY8jDS0S8kLgv3gWIZefjsqzmzNWB7AlxuS4SF6/SdneMJrN3LDis3akG2gbur3BunXrUKvVzJs3r0f1hyThjLXNaLx1NBTWUPCvdUiDEeGpI+7JW9AE+6PycByl5SpOGBmjbG+oVdbPe3MKe0w0Z61cV1bVXdbN1sumurqa2bNnk5qayoIFC/D3t39zYndwNkwwAHgdmIASOX+dlPI3m/z7gGU2bSYDoVLKCiFEFlALmAFTV24r7sKuR78j79v2gi2BS+cRcoXzgnyuDqspR/M6BUv3tVXryqq6i2yNh7LJe/gNhFZDwgt38cQTT5CamsqVV17Jk08+2eN+O2vhngM2SCkvapF8aPfXkFI+BTwFIIQ4F/izlLLCpsgpUsqyHvfSCUgpKd6STeEvyo3IAclhVB8pI/CC+QRdOL+b2j1DqyXqGCz9m8X+cVBP2u4K9qxqV891lWzG0ipKXl0LgDSayLzlaZ4Arr76at566y2X2urUl+4KCCH8gJOBawCklAbAkQKfowj9PkF1ehl7//0TVYdK0PjomPnEWUTMbVsMHCpyfRLuqpVrDZbur/laR6u6qTbHbrmeLBKCivaTlV/aLm3hwoW8+uqrrne0A5z5S4wASoGVQojdQojXhRB2zzNaIvTPBD6zSZbAt0KInS2CNXYhhLhJCLFDCLGjtLS0q2J2kfX5fqoOKZq7QeMjCJvVd2I4juBusjlqr9WqPrNtM1es+cTuwX9PyDYmuICIkxJZ+PGV+I5o22dbt24dHh69v6HQGcJpgGnA/6SUU4F6oCsly3OBzR2G07lSymkoYjh/EkKcbK+ilHKFlHKGlHJGqJ2Alq584k4NScU7tm2JXrIth9KUNkksU5P9C86cgTN/sFZnyb6ybLbtd3z9Zsnnfzu2u4VsyRHFjA7MZ/Mda1h/+go8g/WETm9TVnMH2cA5wuUBeVLKVvfOT1EIaA+d9OOklAUtP0tQlDNn9qyrXWPUpVNZsulPzHxCuZC2NrOCgp/SWXvSS6w/fQXG4jb+m6rryfvnStKXPUpzVpG7u9IOhoJCCp5/CUNh3z6nI1whW3JEsdV3cOcj31F5QOnrdxe9Q8an+/AM8WbB25e6r2/dFZBSFgkhcoUQY6SUh1FUMDspWAoh/IH5wBU2ad6ASkpZ2/J+EfBIx7ruwO8vbeboR4oHanNlI1lr2zRzVHpPCv+7isbfMzHX1FvTi15cTfzTf3TYbk83gmu3p1D2/scANGXvRhe52OU2egJnydZKsubKBjbfvoa67EprXtSpozDVG/AfE8qoy6ai9XHfZb/OrlJvB95vWaFmANd2UE8COB/4VkpZb1MvHPi8RT5BA3wgpdzglp53gErX5nvfSjwABFSs/oW63w7gPWMsKi8PDLnFNGcVYcguIv//3kYXF4Ha25PApfMQmt5radRs2Ur5x4oEq35qEoFL5mEu6XWz3cJVsgHU5VS1IxtA2Ox44ha7x9ewI5winJRyD9Bx/+yVDmXeAt7qkJYBTO5595xH8o2zkWZJ+vu72qWrdRqqvtqCytuLyHsvRahVjA0v4si7O0l9bRsNe4/SsFeRk/cYFY2pogZMFvxOnYpoEXJxxcpVfPU11d8pbuqBF5xMyGWnudyGK3B1+OyI4MlRzH/zYqrTyxFCsPtf36PS9p3X2pA6aRh3y4nEnjmGjdevwmJQtgwiTkpE6+uB5cSTEGpVyy9dED4ngdTX2kcdFfzfO9b3xpJKQpa1v4HPHsz1DQidFqSk+vufrGQLiYtmwR+vYm9lm+Bnfwj+2UN38R3+SaH4J4Wy5S4lNtfc1HfS+kOCcLaH+L4JQZy26kryvk3DO9qfyJNHAEpgtO0vvrnS/qVqwZctxFBQTuWaTfjNn4IuRlkx21qoqRGRzI6J5dvffuPHRx9TjoA8PbE0tBHq5w3fMSJpFFf/8m6XcQF9hSlB0cwKTWBbaRbNul12yzSW1lFztJyyXflIiwVTnYHyPfn4jggi+jTn4lZ7giFBuI7wDPZm1GVT26V1/C8PnRHDpHvnk/7+bsye3niNS0AbFoj/GSdgqqyjduMeil74jOiHr0Ht7WmtNzUikvfO/wPvv/MOm//2DyyNTXiNT0QaTRgKJJa6Rh76618Zn5yMyWJmVmhCvxKuNXhZp1ZhsszjbwcqOVzbPvTxwIu/kvHx3nZpKp2auLOTGXfrHDSe7j1rtsWQJJwzEEKQsHQCCUsndHLS1Ib4o5+aRMPuI+Tc+xLRf70aXXQImqgGZkfF8stPP3HjDTcwZ+4cFv7zTt7L3Enug6+ClCRdcBr3PvhAi9u4hW2lWf3yfVr/oc6JmYxOrUIt1EgBE/yT2hGu8JeMTmQDmPnE2YSd0FkV0904bglnC3uewVH3X07dtoOUvrGO/Effwmt8Imp/H1Z67SPva0Vz7elnnuHer98h++mVyGYjMY9eDyOiuGnbKuuQ1pfWzd7c7ED1EUwWM1KAWZo5UH2kXb53tD8BY8OIXpjE7y9ttqZnf3HASjgpJfW5VTQU1dJc0YBvnSf3fH4P8+bN4/zzz+9VnweFmE0rHN1I09uQwa5c0Rt+z6T8w+8xVdRirqpDGk14R4Uxae4som9eymeLb0EaTUQ9uAzv6WPsttHTS+fs9cmZtsb4JjLBP4kD1Uc6DaetMDUa2XTTJ9RmtW2J6CP98ArzobGklobC2k51AgMDqaio6JTeEY7EbIYtXAu6in/Qj09E/383Asp/vmwyIDx1lAlB5rpvkUYT/mfOsku23t5u2NP6h2szuyRaKzReWk55V7nBoD6/muwvD9JYUktjcR2+I4JJumI6PglBLB2/CP3vJm77021MmTKlR/1p99xetzCEYDGaaD6aj6mqDkNuCZ4jo9HFhKLy8kDtq0cIgfDqvOvuO29iu8/9eY2mO+Ad7c+4W060m1fqW8fCkRMAuPXWW3v9rCFDuJ5E4pubTRx5dyfFW7JoKq+nuaoJLPanGNrIYPxPm442MhhDTjFNGYXUbz8EgDS1Cb4MNrI5whfzXgSgaYxy/1hqau+vLBgyhOsJDr26lYxP9qLSqYk9YwweQXpqw0ejCfJFGx5Ec0YBxtIqzHUN1O9Mo+zdb611tdEh1vceccpQ3N9kc6fcRUe0kg0gKysLgCA3CG4PKsK5+yrLpnLl2PfkFX/Ab2Sb71frXE4/aaQ1LXDJPJozFDcgbVgAal9lE1gaTQitpt/I1lFu1p78bE9IaEveVrKlpqbywgsv8O677+Lt7d3rFSoMMsK5G6EzYin4MZ2mioZ2hOuSPJGtB/u1La/eoa8uHO7YbkcCdvXcVqKtXbuWu+++m6NHlTPmSy65hHvvvZeoqKhe9+24IFzrL/ir36M59OpWVGoVAePCOPLeLjxDvfEb0fuhoif9GUjPa3Vw3b59O+effz6TJk3iL3/5C7feeisxMTFu68uQJ5ztLzs0LYXvv1MiunI3pKL19WDO8+fhGeyaAlBv+zHQcOfY72lubkan03HfffcRGRnJzz//3ONQQEcYUoSznYfY+wNX5DeBSrD4q+tpLK3DK8zHrc6FXfXJFfz6YR71lUZOvyUBlcq91zBFeCYTo59CXsMeipoOcefY75FS8tBDD/Hkk08SFxdHZmYmCxcu7BOywRAjXCu6+iPnp9YSnuiF1tcDre/AIlorPn3kMABfv5DBI7/MIy54PBRH0OCVTUnTEfzDPXp0H1iEZzIXxD2FWmgxSyOGRjObNm3izTff5K233mLp0qU0NzeTk5PDpEmTetR3ZzDkCOfoDy0QqNR9L4nXm+HziR3zeXDGRgAePvlX4NfOZVLm4+mjwWKWFKTVYWwyYzFLjmyr5OAv5Qhg9IlBTF4URnSyD0IIYvRTUAst69d9zd///nf27t2L2WxGrVbzwAMP8Pjjj/fJxXYdMeQI1xWa6kyUZjWg06s77V8NlPlVSWYD37+e1W251/64Fw8vNdn7a6ivbItKEwLCR3gjkXz/WhbfvZpFbGwsc+bMIeGyEF7O/R933HEHo0ePZvny5cyaNYtZs2ZhL0qur3BcEE5Kycq79lOS1cA1zyjHNL0lmZSS9JQqSjLqOfBjGSqNYPKiMCYuDMXLt+tf69qn0/nxjWxOuS6OploTCEjfVoneX0tFQRO1ZUqM+UlXxHDNfYv5/V0fnnvmeR78ywOU+23jlft+4GiKIpk1/Zxwkk8OwSdIy/mxTzJu3DjrirKsrIwvvviCb775hrVr1/Lxx0pAz7x58/jqq6/6bI7WHQaVtwg49hixB2OzmZV37ufgxnKW3DuKU6+Pd7k/1SXNbHwnl0W3JlCe28j65zLI3F1FQ7Xiih0a74XJIKksbEKjU7H49hGcen1cpyHKZLBw7+Sf2qV5+mqIHuuDxSwpTKvjgofGcMLSCGvdjhP9zN1VZK+K5YorruDCC51TXK+vr2fr1q3k5uZy/vnn9znZjmtvkd9/KuPgxnJmLInglOt6FpGfuauKH9/I5sc3svH01SAEjJkTRNwEP0ZMDyBukh9CQPa+Gn58I5sv/5NO5p4qAiM82fFlEZFJ3kSM8iEw0pOz7xrJumeVDdUL/zqak5Y5dnosajrEJQlttwAyFkVMwwV4e3uzcKH92wP7G+5ST1oAfAG0+sSsllI+0pJ3JooYjhp4XUr5hNt67wDb1xTy89s5VBU24Req4+J/jO3xpDg0oS3aKiDcg6v/O4HIJJ9O5RIm+3PtH3pWHgAAB5VJREFUcxP55d1cPn+8zfHR0qRj77cl7eZbAJNOD+vURt/funNs4Rb1pBZsklKeY5sghFADLwGno0Twpwgh1kopOwVSuxPfvJzJ1y9kWD/f+cEMdF7dx5ue5dPWrfV146zvf3hdsWx3fTiD8BF6h8QVQjD/qjhGJiTx9M3rAUjbl8PqnPs4kreHlC+KqKs0kjjVn4dP3tSTrzeo0RfqSbaYCaS3xKcihPgIWIqdyH13YvtnbVHH/uEeJE5tP2exJVZjozKH9fISXZZ5fGcpJ8/Tcd3kbKf74H3+Laz9Tzq33HILaqFRhsUEoGfCkUMGzlg4W/WkycBO4M4OEfYAJwoh9gIFwL1Syt+BaCDXpkweMMveQ1qUlW4CiIvrufqRJT+C8oI6/vnPf3DZZRdRWn0HoT72+Z2TZeK0k0rx8RXsOhhht8zmTc0UF1nIPOp8rGZSjBKLevjww65/gSEOd6kn7QLipZSTgReANS3p9sYeu8vi7tSTnMHWTwu4+7T38fHx4YILLmTUqNGMTuo8WTY0S77b0MRpJymyYHW1EkzX4amb3qlsWqoy78rKtE+4pJiCTq9hdA1nLJw99aR2hJNS1ti8Xy+EeFkIEdJS13YZFoNiAXuMrnzijM1mNn2gGNP9+3cSH5+IlCbKKjbxyku1HEkzsfRCL3JzzLz1Wj15ue2vZbzxmk28+OIzmNXL0fvuB8BikWz/TZk9XHSJfphMboBb1JOEEBFAsZRSCiFmoljOcqAKSBJCJAL5KHJel7v7S5iNFtbf+xsFqc3c9xdf1Pp7KK85kcbm33j15V957j/KNYvrv1RcpceO0/DsywH8fsDIay8rM4ONG39h4sTpREb58cpKHcnjtKz9+G5++O5+AJ5+8oj9hw/DJTi18SuEmIKyLWJVTwIuAUU9SQhxG3ArYAIagbullFta6p4FPIuyLfKmlPJf3T3P0cYvKJu/UkrKchopyWhgxxsH2b3TyCOP+3HpFW2uRjtTDFx2QTkBgYKnngvA319FaJiKqGi1daVZXDCWCaM/5JZb7kQIwcaNGzGbzbz99tvcc889aLVadu/e3S/njEMFjjZ+ldC3AfaaPn26dITb35km4yf7SZT5oATkI0/4y7TcSPnb7jC5+BxPGRunliqVknftjd4yLTfS+nKEffv2tWv37LPPdlh+GJ0B7JBd/G0H3UnD8uXLeeGJXYSE6Bg1WkNdrYU33wti1GhFD+PD9xr4+itl6LzoEi/++9RhoqOjUamc8xKZOHEiBw4cYNWqVcTFxbnFj38YNuiKicfy5cjC6XQ6GRISIq+66goJSJUKOWOmTn7wWbCsqamxWqZp06ZJs9nc23/WYfQAOLBwg+q+VCklBoOBsrIyPvjgI8aOHctf//owxYXhXH9FA/v27bOW/fbbb522asPoR3TFxGP5cmThHnjgARkcHCznz58vd+/eLaWUMjc3V2q1WqnX6yUgExISZHNzc2/+SYfRC+DAwh1zctl7dbdosIezzz5bAnLmzJkyJSXF5frDcB8cEW7IjDkrV67krrvu4uOPP2bGjD69zmsYvcCgW6V2hdDQUJ555plj3Y1hdIMhY+GGMTgwTLhh/H875/NSVRDF8c8XJVtVaptoURptXAVF1C4K1NxY0MJVUruifyDc+A+0iSApCKpNVqsIQoxqF1mL/LExn7QxXBRWtAqC0+KeV7fHUyx17n15PjAw78ycYWbel7kz3DsnKSG4ICkhuCApIbggKSG4ICkhuCApIbggKaW8eS/pI7D6K1J/z07g0wa2XyaKGOseM6t7MaWUgttoJL2x5b5I/c8o21jjkRokJQQXJGWzCu5G0R1ISKnGuin3cEFxbNYVLiiIEFyQlIYVnKRhSR8kvfXUlyu7LKkiaVZST85+UNK0l12V326W1CJp1O2vJO3N+QxKmvM0mLN3eN05992SZuSrR1Kvz0FFUm08mGJY7tvzsidgmCxKU629C5gEWoAOYB5o8rIJ4ChZkJ0nwEm3XwRGPD8AjHq+jSzSQBvQ6vlWL7sPDHh+BLhQ9JzUzEOTj72TLGLCJNBVdL8adoVbgX7gnpl9N7P3QAU4LGkXsM3MXlr2j9wBTuV8bnv+IXDCV78eYNzMlszsMzAO9HrZca+L+1bbKgu/YvNZFtOvGpuvUBpdcJckTUm6JanVbfVi0u32tFDH/oePmf0AvgLtK7TVDnzxurVtlYXl+l4opRacpKeSZuqkfuA6sA84ACwCV6pudZqyFez/4rPquHcFUso+lvrWlpmtKka+pJvAY/+5XEy6Bc/X2vM+C5Kage3AktuP1fi8IHsZvkNSs69ya457twGse2y+9aDUK9xK+J6symlgxvOPgAE/eXYA+4EJM1sEvkk64nuws2SR16s+1RPoGeCZ7/PGgG5Jrf7I7gbGvOy518V9q22Vhdd4bD4/QQ+QjbNYij61rOEUdheYBqbIJnJXrmyI7IQ2i59E3X6ITJjzwDV+v2nZCjwgO2BMAJ05n/NurwDncvZOr1tx35ai56TOHPUB73y8Q0X3x8zi1VaQloZ9pAaNSQguSEoILkhKCC5ISgguSEoILkhKCC5Iyk/jxQq/5JK0ZgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "gb_boundary = [(-2.6653539699999556, 51.617254950000074), (-2.6937556629999335, 51.59617747600004), (-2.71312415299991, 51.58661530200004), (-2.760487433999913, 51.579779364000046), (-2.7980850899999155, 51.56350332200009), (-2.816395636999914, 51.555568752000056), (-2.8587133449999556, 51.546128648000035), (-2.943348761999914, 51.54254791900007), (-2.9562882149999155, 51.54572174700007), (-2.9641007149999155, 51.552801825000074), (-2.969471808999913, 51.559881903000075), (-2.9746801419999542, 51.56297435100004), (-2.984038865999935, 51.55853913000004), (-3.0102432929999168, 51.53803131700005), (-3.0156957669999542, 51.53164297100005), (-3.0737198559999115, 51.50836823100008), (-3.0764867829999503, 51.50775788000004), (-3.088937954999949, 51.505072333000044), (-3.105620897999927, 51.49721914300005), (-3.1317032539999445, 51.48041413000004), (-3.1350805329999503, 51.47630442900004), (-3.1409399079999503, 51.46478913000004), (-3.1453751289999445, 51.45994700700004), (-3.1524145169999542, 51.45718008000006), (-3.1666560539999296, 51.45600006700005), (-3.1723933579999084, 51.45327383000006), (-3.1727188789999445, 51.453111070000034), (-3.160064256999931, 51.43183014500005), (-3.167144334999932, 51.41046784100007), (-3.1848038399999155, 51.39760976800005), (-3.204009568999936, 51.401597398000035), (-3.218861456999946, 51.402777411000045), (-3.289418097999942, 51.38422272300005), (-3.539173956999946, 51.398504950000074), (-3.557443813999953, 51.40509674700007), (-3.5753067699999406, 51.420436916000085), (-3.6047257149999155, 51.44570547100005), (-3.6631973949999406, 51.476223049000055), (-3.6769913399999155, 51.47703685100004), (-3.695423956999946, 51.47150299700007), (-3.717925584999932, 51.478583075000074), (-3.7376195949999556, 51.49087148600006), (-3.748036261999914, 51.50092194200005), (-3.7494197259999282, 51.50535716400009), (-3.747670050999943, 51.507025458000044), (-3.7445369129999335, 51.50763580900008), (-3.741851365999935, 51.50836823100008), (-3.7493383449999556, 51.52806224200003), (-3.7519018219999225, 51.53306712400007), (-3.758941209999932, 51.54677969000005), (-3.770130988999938, 51.56329987200007), (-3.782215949999909, 51.57664622600004), (-3.7902725899999155, 51.58197663000004), (-3.8077286449999406, 51.589178778000075), (-3.8169652989999463, 51.59650299700007), (-3.8326716789999296, 51.61554596600007), (-3.8416235019999476, 51.621527411000045), (-3.8548884759999282, 51.62384674700007), (-3.8867895169999542, 51.62140534100007), (-3.9623917309999115, 51.61562734600005), (-3.9766332669999542, 51.61188385600008), (-3.989979620999918, 51.60651276200008), (-3.998768683999913, 51.60028717700004), (-3.999908006999931, 51.59088776200008), (-3.9922582669999542, 51.58112213700008), (-3.9818009109999366, 51.571600653000075), (-3.974598761999914, 51.56297435100004), (-4.016184048999946, 51.56297435100004), (-4.016102667999917, 51.56037018400008), (-4.0208227199999556, 51.555853583000044), (-4.026519334999932, 51.554022528000075), (-4.029204881999931, 51.55927155200004), (-4.031971808999913, 51.56313711100006), (-4.0385636059999115, 51.56622955900008), (-4.046457485999952, 51.568426825000074), (-4.0531306629999335, 51.569240627000056), (-4.056304490999935, 51.56704336100006), (-4.065581834999932, 51.55756256700005), (-4.070220506999931, 51.555568752000056), (-4.0768123039999296, 51.55695221600007), (-4.087269660999937, 51.56191640800006), (-4.112131313999953, 51.565619208000044), (-4.121652798999946, 51.56598541900007), (-4.132191535999937, 51.56297435100004), (-4.142730272999927, 51.55695221600007), (-4.156809048999946, 51.54629140800006), (-4.1664119129999335, 51.54254791900007), (-4.176503058999913, 51.544256903000075), (-4.18773352799991, 51.54877350500004), (-4.1967667309999115, 51.54938385600008), (-4.200550910999937, 51.538763739000046), (-4.213368292999917, 51.539129950000074), (-4.272450324999909, 51.554754950000074), (-4.2899063789999445, 51.555568752000056), (-4.293324347999942, 51.55914948100008), (-4.29515540299991, 51.56195709800005), (-4.297352667999917, 51.569240627000056), (-4.278309699999909, 51.578192450000074), (-4.280832485999952, 51.58881256700005), (-4.2897029289999296, 51.601548570000034), (-4.2899063789999445, 51.61701080900008), (-4.255767381999931, 51.62384674700007), (-4.252023891999954, 51.62710195500006), (-4.241281704999949, 51.63934967700004), (-4.234730597999942, 51.644964911000045), (-4.228505011999914, 51.63743724200003), (-4.234730597999942, 51.63743724200003), (-4.234730597999942, 51.631293036000045), (-4.2278539699999556, 51.628119208000044), (-4.22101803299995, 51.62384674700007), (-4.1900935539999296, 51.63027578300006), (-4.139027472999942, 51.63231028900009), (-4.0912979809999115, 51.639878648000035), (-4.070220506999931, 51.66229889500005), (-4.0698136059999115, 51.66893138200004), (-4.070383266999954, 51.67430247600004), (-4.07054602799991, 51.67597077000005), (-4.0754288399999155, 51.677801825000074), (-4.087269660999937, 51.668850002000056), (-4.095448370999918, 51.66510651200008), (-4.106841600999928, 51.66425202000005), (-4.146351691999939, 51.66705963700008), (-4.200550910999937, 51.68585846600007), (-4.214955206999946, 51.679673570000034), (-4.293690558999913, 51.67226797100005), (-4.3152970039999445, 51.67747630400004), (-4.342355923999946, 51.69086334800005), (-4.3664444649999155, 51.70848216400009), (-4.379261847999942, 51.72687409100007), (-4.338042772999927, 51.72333405200004), (-4.319976365999935, 51.72483958500004), (-4.310454881999931, 51.733710028000075), (-4.328724738999938, 51.73297760600008), (-4.3471573559999115, 51.73578522300005), (-4.3625382149999155, 51.74286530200004), (-4.371815558999913, 51.754787502000056), (-4.368763800999943, 51.75698476800005), (-4.362904425999943, 51.76386139500005), (-4.358021613999938, 51.773138739000046), (-4.358225063999953, 51.782131252000056), (-4.365101691999939, 51.789048570000034), (-4.3714900379999335, 51.78595612200007), (-4.379261847999942, 51.77529531500005), (-4.384917772999927, 51.77187734600005), (-4.3929744129999335, 51.763739325000074), (-4.399159308999913, 51.76162344000005), (-4.409331834999932, 51.76316966400009), (-4.417876756999931, 51.76788971600007), (-4.426503058999913, 51.77529531500005), (-4.445790167999917, 51.77326080900008), (-4.449330206999946, 51.76630280200004), (-4.441395636999914, 51.75678131700005), (-4.426503058999913, 51.747300523000035), (-4.460764126999948, 51.73578522300005), (-4.4988907539999445, 51.73484935100004), (-4.574208136999914, 51.74115631700005), (-4.603423631999931, 51.73924388200004), (-4.639230923999946, 51.73318105700008), (-4.6453751289999445, 51.732123114000046), (-4.678212042999917, 51.71743398600006), (-4.680287238999938, 51.692694403000075), (-4.689442511999914, 51.69159577000005), (-4.69163977799991, 51.689886786000045), (-4.69163977799991, 51.685980536000045), (-4.693959113999938, 51.67841217700004), (-4.712310350999928, 51.650091864000046), (-4.721424933999913, 51.652044989000046), (-4.734934048999946, 51.65924713700008), (-4.741851365999935, 51.65607330900008), (-4.759185350999928, 51.644964911000045), (-4.8482966789999296, 51.64630768400008), (-4.86351477799991, 51.64411041900007), (-4.878977016999954, 51.63743724200003), (-4.887806769999941, 51.62995026200008), (-4.8957413399999155, 51.621079820000034), (-4.904774542999917, 51.61383698100008), (-4.923695441999939, 51.608628648000035), (-4.931996222999942, 51.59902578300006), (-4.941029425999943, 51.59650299700007), (-4.946034308999913, 51.59760163000004), (-4.956450975999928, 51.602769273000035), (-5.021595831999946, 51.61603424700007), (-5.0457657539999445, 51.62689850500004), (-5.0366104809999115, 51.63743724200003), (-5.0511775379999335, 51.65692780200004), (-5.100493943999936, 51.66469961100006), (-5.119740363999938, 51.67841217700004), (-5.113433397999927, 51.68528880400004), (-5.0366104809999115, 51.67841217700004), (-5.038726365999935, 51.68183014500005), (-5.04133053299995, 51.68939850500004), (-5.043446417999917, 51.692694403000075), (-5.028675910999937, 51.69293854400007), (-5.002552863999938, 51.68740469000005), (-4.988189256999931, 51.68585846600007), (-4.974598761999914, 51.687933661000045), (-4.941029425999943, 51.70014069200005), (-4.892648891999954, 51.706366278000075), (-4.868275519999941, 51.716782945000034), (-4.8580623039999296, 51.71832916900007), (-4.844838019999941, 51.71381256700005), (-4.844838019999941, 51.720038153000075), (-4.873402472999942, 51.73773834800005), (-4.879017706999946, 51.76203034100007), (-4.8625382149999155, 51.78237539300005), (-4.824330206999946, 51.788275458000044), (-4.824330206999946, 51.79572174700007), (-4.836008266999954, 51.790716864000046), (-4.864979620999918, 51.783270575000074), (-4.921294725999928, 51.78001536700003), (-4.933583136999914, 51.77529531500005), (-4.9172257149999155, 51.77533600500004), (-4.905181443999936, 51.771185614000046), (-4.900542772999927, 51.76211172100005), (-4.906239386999914, 51.747300523000035), (-4.8920792309999115, 51.73940664300005), (-4.895659959999932, 51.728176174000055), (-4.9105525379999335, 51.71820709800005), (-4.988189256999931, 51.70685455900008), (-5.009917772999927, 51.706366278000075), (-5.149240688999953, 51.718085028000075), (-5.166900193999936, 51.71381256700005), (-5.156971808999913, 51.69757721600007), (-5.1686091789999296, 51.68891022300005), (-5.1828507149999155, 51.68927643400008), (-5.180653449999909, 51.70014069200005), (-5.180653449999909, 51.706366278000075), (-5.230132615999935, 51.73004791900007), (-5.2495011059999115, 51.733710028000075), (-5.228138800999943, 51.73395416900007), (-5.213937954999949, 51.73574453300006), (-5.202870245999918, 51.74079010600008), (-5.191151495999918, 51.75104401200008), (-5.176828579999949, 51.75967031500005), (-5.1432185539999296, 51.76386139500005), (-5.125965949999909, 51.76850006700005), (-5.110259568999936, 51.778509833000044), (-5.107085740999935, 51.78807200700004), (-5.112294074999909, 51.81317780200004), (-5.113392706999946, 51.82880280200004), (-5.11750240799995, 51.84369538000004), (-5.125884568999936, 51.85602448100008), (-5.139637824999909, 51.86399974200003), (-5.146473761999914, 51.85716380400004), (-5.16437740799995, 51.86676666900007), (-5.2037654289999296, 51.87018463700008), (-5.221587693999936, 51.87767161700003), (-5.2358292309999115, 51.87103913000004), (-5.2914119129999335, 51.86399974200003), (-5.3109431629999335, 51.86399974200003), (-5.304269985999952, 51.867621161000045), (-5.297352667999917, 51.87018463700008), (-5.297352667999917, 51.87767161700003), (-5.300689256999931, 51.882025458000044), (-5.302561001999948, 51.88523997600004), (-5.300160285999937, 51.888332424000055), (-5.2905167309999115, 51.89199453300006), (-5.2905167309999115, 51.898138739000046), (-5.2983292309999115, 51.91095612200007), (-5.288929816999939, 51.91693756700005), (-5.252837693999936, 51.91864655200004), (-5.234201626999948, 51.923041083000044), (-5.204172329999949, 51.942287502000056), (-5.191151495999918, 51.946600653000075), (-5.16038977799991, 51.94944896000004), (-5.1195369129999335, 51.95892975500004), (-5.088042772999927, 51.97601959800005), (-5.085031704999949, 52.00185781500005), (-5.070790167999917, 52.00185781500005), (-5.070790167999917, 52.00804271000004), (-5.082753058999913, 52.01447174700007), (-5.081206834999932, 52.021185614000046), (-5.070220506999931, 52.02635325700004), (-5.053700324999909, 52.028509833000044), (-5.0266007149999155, 52.027411200000074), (-5.015044725999928, 52.02533600500004), (-4.961740688999953, 52.007513739000046), (-4.942534959999932, 52.007473049000055), (-4.913685675999943, 52.014837958000044), (-4.920521613999938, 52.028509833000044), (-4.9016007149999155, 52.02643463700008), (-4.863189256999931, 52.01699453300006), (-4.841420050999943, 52.014837958000044), (-4.83226477799991, 52.01898834800005), (-4.833851691999939, 52.02875397300005), (-4.8382869129999335, 52.04010651200008), (-4.838002081999946, 52.04901764500005), (-4.83039303299995, 52.05292389500005), (-4.796986456999946, 52.05646393400008), (-4.77757727799991, 52.064886786000045), (-4.7631729809999115, 52.075873114000046), (-4.7386775379999335, 52.100816148000035), (-4.720285610999952, 52.113348700000074), (-4.7065323559999115, 52.11347077000005), (-4.673451300999943, 52.09739817900004), (-4.675689256999931, 52.126939195000034), (-4.637521938999953, 52.13849518400008), (-4.513824022999927, 52.13568756700005), (-4.50226803299995, 52.138373114000046), (-4.495757615999935, 52.14350006700005), (-4.490956183999913, 52.150376695000034), (-4.484283006999931, 52.156317450000074), (-4.454701300999943, 52.16205475500004), (-4.4348038399999155, 52.170355536000045), (-4.415394660999937, 52.18154531500005), (-4.385568813999953, 52.20343659100007), (-4.371245897999927, 52.20929596600007), (-4.3547257149999155, 52.212103583000044), (-4.334339972999942, 52.21283600500004), (-4.315825975999928, 52.21629466400003), (-4.197132941999939, 52.279282945000034), (-4.1390681629999335, 52.33022695500006), (-4.10960852799991, 52.365301825000074), (-4.096262173999946, 52.387884833000044), (-4.0873917309999115, 52.430121161000045), (-4.0789688789999445, 52.45302969000005), (-4.067941860999952, 52.47361888200004), (-4.056548631999931, 52.48786041900007), (-4.0618383449999556, 52.49705638200004), (-4.064035610999952, 52.50918203300006), (-4.062570766999954, 52.52098216400003), (-4.056548631999931, 52.52944570500006), (-4.048491990999935, 52.530462958000044), (-4.0266007149999155, 52.52338288000004), (-4.016184048999946, 52.52195872600004), (-3.998768683999913, 52.52594635600008), (-3.9473363919999542, 52.549261786000045), (-3.9473363919999542, 52.556708075000074), (-3.9744766919999392, 52.55654531500005), (-4.025868292999917, 52.545355536000045), (-4.0531306629999335, 52.54242584800005), (-4.068470831999946, 52.550116278000075), (-4.1141251289999445, 52.58860911700003), (-4.125477667999917, 52.60390859600005), (-4.122222459999932, 52.62872955900008), (-4.105946417999917, 52.653509833000044), (-4.0848282539999445, 52.67267487200007), (-4.067128058999913, 52.68024323100008), (-4.063547329999949, 52.68309153900003), (-4.05882727799991, 52.696600653000075), (-4.056548631999931, 52.70066966400003), (-4.052723761999914, 52.70221588700008), (-4.041981574999909, 52.70465729400007), (-4.001088019999941, 52.72410716400003), (-3.988270636999914, 52.73427969000005), (-4.014719204999949, 52.73232656500005), (-4.031971808999913, 52.723944403000075), (-4.048817511999914, 52.721584377000056), (-4.125152147999927, 52.77830638200004), (-4.144357876999948, 52.802801825000074), (-4.149037238999938, 52.81207916900007), (-4.146229620999918, 52.82021719000005), (-4.128895636999914, 52.82363515800006), (-4.117339647999927, 52.83075592700004), (-4.1197810539999296, 52.84625885600008), (-4.127756313999953, 52.86172109600005), (-4.132191535999937, 52.86831289300005), (-4.131988084999932, 52.882473049000055), (-4.129872199999909, 52.88922760600008), (-4.123605923999946, 52.89325592700004), (-4.064035610999952, 52.919175523000035), (-4.071400519999941, 52.921087958000044), (-4.074574347999942, 52.92279694200005), (-4.0776261059999115, 52.926662502000056), (-4.0891007149999155, 52.918850002000056), (-4.100493943999936, 52.914129950000074), (-4.1105850899999155, 52.915676174000055), (-4.118560350999928, 52.926662502000056), (-4.144398566999939, 52.91478099200003), (-4.171620245999918, 52.91347890800006), (-4.228505011999914, 52.919175523000035), (-4.300689256999931, 52.905585028000075), (-4.317290818999936, 52.89935944200005), (-4.337310350999928, 52.89203522300005), (-4.406605597999942, 52.89252350500004), (-4.4272354809999115, 52.885972398000035), (-4.446197068999936, 52.87592194200005), (-4.4816788399999155, 52.850897528000075), (-4.477935350999928, 52.84833405200004), (-4.475493943999936, 52.84414297100005), (-4.491363084999932, 52.83820221600007), (-4.500965949999909, 52.82680898600006), (-4.501332160999937, 52.81391022300005), (-4.4891251289999445, 52.803168036000045), (-4.501942511999914, 52.794989325000074), (-4.509185350999928, 52.791449286000045), (-4.5164688789999445, 52.789496161000045), (-4.5285538399999155, 52.79047272300005), (-4.5424698559999115, 52.80068594000005), (-4.5639542309999115, 52.80524323100008), (-4.583078579999949, 52.81464264500005), (-4.594634568999936, 52.81679922100005), (-4.606516079999949, 52.81509023600006), (-4.61351477799991, 52.81110260600008), (-4.619211391999954, 52.80654531500005), (-4.626332160999937, 52.803168036000045), (-4.648589647999927, 52.79962799700007), (-4.704497850999928, 52.803168036000045), (-4.719309048999946, 52.79751211100006), (-4.733225063999953, 52.78750234600005), (-4.747425910999937, 52.78343333500004), (-4.762847459999932, 52.789496161000045), (-4.752512173999946, 52.79877350500004), (-4.7514542309999115, 52.80320872600004), (-4.755441860999952, 52.80931224200003), (-4.7492569649999155, 52.81427643400008), (-4.734934048999946, 52.83047109600005), (-4.596058722999942, 52.92841217700004), (-4.580962693999936, 52.93349844000005), (-4.562082485999952, 52.93451569200005), (-4.543527798999946, 52.937933661000045), (-4.523996548999946, 52.944240627000056), (-4.443430141999954, 52.98216380400004), (-4.423695441999939, 53.00263092700004), (-4.358225063999953, 53.02846914300005), (-4.349964972999942, 53.04148997600004), (-4.345692511999914, 53.059475002000056), (-4.343861456999946, 53.10106028900003), (-4.340891079999949, 53.11273834800005), (-4.334339972999942, 53.11676666900007), (-4.3276261059999115, 53.11469147300005), (-4.324696417999917, 53.10789622600004), (-4.320668097999942, 53.10150788000004), (-4.312245245999918, 53.109442450000074), (-4.304758266999954, 53.12099844000005), (-4.303618943999936, 53.12531159100007), (-4.263539191999939, 53.15452708500004), (-4.2523494129999335, 53.159409898000035), (-4.234527147999927, 53.16400788000004), (-4.221302863999938, 53.175034898000035), (-4.200550910999937, 53.20099518400008), (-4.17796790299991, 53.21759674700007), (-4.151519334999932, 53.22809479400007), (-4.122222459999932, 53.23346588700008), (-4.0906876289999445, 53.23517487200007), (-4.08234615799995, 53.23354726800005), (-4.074330206999946, 53.23065827000005), (-4.066883917999917, 53.22907135600008), (-4.054107225999928, 53.234361070000034), (-4.032297329999949, 53.24070872600004), (-4.008900519999941, 53.24445221600007), (-3.974598761999914, 53.261786200000074), (-3.8653051419999542, 53.289129950000074), (-3.8312882149999155, 53.289129950000074), (-3.841420050999943, 53.30744049700007), (-3.870757615999935, 53.32562897300005), (-3.8784073559999115, 53.337591864000046), (-3.859974738999938, 53.33633047100005), (-3.840565558999913, 53.33283112200007), (-3.822987433999913, 53.32656484600005), (-3.8101293609999516, 53.31708405200004), (-3.7905167309999115, 53.323431708000044), (-3.7688695949999556, 53.31915924700007), (-3.748199022999927, 53.307806708000044), (-3.7319229809999115, 53.29287344000005), (-3.7162979809999115, 53.28693268400008), (-3.6022029289999296, 53.28888580900008), (-3.5623266269999476, 53.29441966400003), (-3.372059699999909, 53.350897528000075), (-3.33031165299991, 53.35179271000004), (-3.2923884759999282, 53.34052155200004), (-3.2713110019999476, 53.33055247600004), (-3.262074347999942, 53.32050202000005), (-3.250803188999953, 53.312567450000074), (-3.122222459999932, 53.26227448100008), (-3.107533331999946, 53.25189850500004), (-3.0951228509999282, 53.23932526200008), (-3.0877579419999392, 53.23468659100007), (-3.0845434239999463, 53.23859284100007), (-3.0845434239999463, 53.25857168200008), (-3.0845434239999463, 53.275458075000074), (-3.09593665299991, 53.28713613500008), (-3.1111954419999392, 53.302801825000074), (-3.1354060539999296, 53.33380768400008), (-3.171538865999935, 53.36225006700005), (-3.185210740999935, 53.37726471600007), (-3.186350063999953, 53.39276764500005), (-3.175526495999918, 53.40273672100005), (-3.157297329999949, 53.40875885600008), (-3.1146541009999282, 53.41266510600008), (-3.0942276679999168, 53.41738515800006), (-3.058257615999935, 53.434759833000044), (-3.0355525379999335, 53.43374258000006), (-3.0121964179999168, 53.41669342700004), (-2.9529516269999476, 53.323919989000046), (-2.9351293609999516, 53.309475002000056), (-2.9105525379999335, 53.29633209800005), (-2.8814998039999296, 53.288397528000075), (-2.850575324999909, 53.289129950000074), (-2.849598761999914, 53.29120514500005), (-2.848378058999913, 53.29555898600006), (-2.8449600899999155, 53.300116278000075), (-2.837554490999935, 53.302801825000074), (-2.8286026679999168, 53.302435614000046), (-2.813384568999936, 53.297756252000056), (-2.8061417309999115, 53.296576239000046), (-2.789784308999913, 53.29743073100008), (-2.775502081999946, 53.29987213700008), (-2.7481176419999542, 53.30963776200008), (-2.753651495999918, 53.32245514500005), (-2.750884568999936, 53.33161041900007), (-2.743153449999909, 53.33852773600006), (-2.734486456999946, 53.34442780200004), (-2.7261449859999516, 53.34198639500005), (-2.7174373039999296, 53.34271881700005), (-2.708607550999943, 53.346136786000045), (-2.6997777989999463, 53.35179271000004), (-2.7141007149999155, 53.35236237200007), (-2.764393683999913, 53.34516022300005), (-2.775380011999914, 53.341009833000044), (-2.782378709999932, 53.32636139500005), (-2.799794074999909, 53.32103099200003), (-2.810332811999956, 53.32172272300005), (-2.843658006999931, 53.323919989000046), (-2.886463995999918, 53.33356354400007), (-2.924956834999932, 53.35000234600005), (-2.956939256999931, 53.37055084800005), (-2.980824347999942, 53.39276764500005), (-3.096587693999936, 53.54433828300006), (-3.101918097999942, 53.55805084800005), (-3.0994766919999392, 53.57200755400004), (-3.087635870999918, 53.58771393400008), (-3.021839972999942, 53.65281810100004), (-2.968658006999931, 53.69403717700004), (-2.9603572259999282, 53.69757721600007), (-2.9517309239999463, 53.70807526200008), (-2.9114477199999556, 53.725043036000045), (-2.899037238999938, 53.73541901200008), (-2.9848526679999168, 53.73607005400004), (-3.021473761999914, 53.745794989000046), (-3.049183722999942, 53.769517320000034), (-3.056385870999918, 53.80304596600007), (-3.044911261999914, 53.87848541900007), (-3.056630011999914, 53.90615469000005), (-3.040679490999935, 53.923529364000046), (-3.017567511999914, 53.93195221600007), (-2.925689256999931, 53.95270416900007), (-2.909250454999949, 53.95384349200003), (-2.896107550999943, 53.94773997600004), (-2.8885391919999392, 53.94603099200003), (-2.885365363999938, 53.950506903000075), (-2.881988084999932, 53.95652903900003), (-2.874175584999932, 53.96165599200003), (-2.865142381999931, 53.96548086100006), (-2.8579809239999463, 53.96759674700007), (-2.869252081999946, 53.97882721600007), (-2.8344620429999168, 53.99982330900008), (-2.830067511999914, 54.01601797100005), (-2.8475235669999392, 54.00836823100008), (-2.864857550999943, 54.00429922100005), (-2.895497199999909, 54.00234609600005), (-2.900298631999931, 54.00495026200008), (-2.9160863919999542, 54.026556708000044), (-2.91820227799991, 54.03432851800005), (-2.911284959999932, 54.03998444200005), (-2.9007869129999335, 54.044907945000034), (-2.8920792309999115, 54.050116278000075), (-2.872670050999943, 54.071600653000075), (-2.8588761059999115, 54.08100006700005), (-2.826771613999938, 54.08881256700005), (-2.815174933999913, 54.09878164300005), (-2.795969204999949, 54.12518952000005), (-2.8128149079999503, 54.139878648000035), (-2.8364151679999168, 54.16758860900006), (-2.8509415359999366, 54.18463776200008), (-2.854237433999913, 54.19407786700003), (-2.8328751289999445, 54.19904205900008), (-2.810292120999918, 54.21190013200004), (-2.7952367829999503, 54.22947825700004), (-2.795969204999949, 54.24872467700004), (-2.8028051419999542, 54.24872467700004), (-2.806630011999914, 54.233710028000075), (-2.8208715489999463, 54.22174713700008), (-2.850575324999909, 54.20774974200003), (-2.886382615999935, 54.19627513200004), (-2.904652472999942, 54.18764883000006), (-2.9126684239999463, 54.176988023000035), (-2.9203995429999168, 54.16205475500004), (-2.939198370999918, 54.15509674700007), (-2.9842016269999476, 54.15314362200007), (-2.997710740999935, 54.15957265800006), (-3.011341925999943, 54.17413971600007), (-3.017323370999918, 54.19009023600006), (-3.008168097999942, 54.20034414300005), (-3.015370245999918, 54.21190013200004), (-3.024484829999949, 54.221584377000056), (-3.035755988999938, 54.22597890800006), (-3.049183722999942, 54.22207265800006), (-3.044667120999918, 54.208319403000075), (-3.047840949999909, 54.19432200700004), (-3.053537563999953, 54.181301174000055), (-3.056630011999914, 54.17023346600007), (-3.0610245429999168, 54.16193268400008), (-3.090728318999936, 54.13947174700007), (-3.10765540299991, 54.11855703300006), (-3.117909308999913, 54.10883209800005), (-3.145253058999913, 54.100043036000045), (-3.147450324999909, 54.08869049700007), (-3.1443985669999392, 54.07514069200005), (-3.1453751289999445, 54.063788153000075), (-3.1805313789999445, 54.09284088700008), (-3.1897680329999503, 54.09788646000004), (-3.2057185539999296, 54.098537502000056), (-3.219553188999953, 54.100775458000044), (-3.2311091789999296, 54.105129299000055), (-3.240956183999913, 54.11212799700007), (-3.2381078769999476, 54.12759023600006), (-3.232533331999946, 54.14468008000006), (-3.233143683999913, 54.15916575700004), (-3.248402472999942, 54.16681549700007), (-3.248402472999942, 54.17365143400008), (-3.215199347999942, 54.17983633000006), (-3.206776495999918, 54.20892975500004), (-3.2090551419999542, 54.24274323100008), (-3.207386847999942, 54.263006903000075), (-3.2231339179999168, 54.25763580900008), (-3.231353318999936, 54.24721914300005), (-3.240956183999913, 54.22207265800006), (-3.232167120999918, 54.20254140800006), (-3.247141079999949, 54.19794342700004), (-3.270130988999938, 54.19912344000005), (-3.2860001289999445, 54.19721100500004), (-3.306792772999927, 54.19188060100004), (-3.3285212879999335, 54.204738674000055), (-3.3644913399999155, 54.24249909100007), (-3.394195115999935, 54.26439036700003), (-3.407378709999932, 54.27773672100005), (-3.412912563999953, 54.29376862200007), (-3.41038977799991, 54.30145905200004), (-3.405995245999918, 54.30963776200008), (-3.4041235019999476, 54.31854889500005), (-3.4114477199999556, 54.33274974200003), (-3.4134415359999366, 54.342962958000044), (-3.4163305329999503, 54.344916083000044), (-3.440174933999913, 54.35175202000005), (-3.474273240999935, 54.39350006700005), (-3.497710740999935, 54.40582916900007), (-3.5918676419999542, 54.48309967700004), (-3.608143683999913, 54.488267320000034), (-3.613189256999931, 54.49164459800005), (-3.6236873039999296, 54.50608958500004), (-3.6341853509999282, 54.512884833000044), (-3.6268204419999392, 54.520412502000056), (-3.616200324999909, 54.52757396000004), (-3.61156165299991, 54.52993398600006), (-3.5903214179999168, 54.56464264500005), (-3.5638321609999366, 54.64276764500005), (-3.5301407539999445, 54.68805573100008), (-3.5160212879999335, 54.712876695000034), (-3.5091853509999282, 54.72166575700004), (-3.500721808999913, 54.72597890800006), (-3.478871222999942, 54.730902411000045), (-3.4681290359999366, 54.73529694200005), (-3.455433722999942, 54.745021877000056), (-3.439564581999946, 54.76146067900004), (-3.4309789699999556, 54.780462958000044), (-3.440174933999913, 54.79743073100008), (-3.4075414699999556, 54.85602448100008), (-3.3879288399999155, 54.88336823100008), (-3.3644913399999155, 54.89980703300006), (-3.3449600899999155, 54.90253327000005), (-3.3333634109999366, 54.89728424700007), (-3.3227432929999168, 54.889878648000035), (-3.3064672519999476, 54.88617584800005), (-3.295725063999953, 54.88690827000005), (-3.254628058999913, 54.89980703300006), (-3.267323370999918, 54.905503648000035), (-3.317290818999936, 54.92031484600005), (-3.2914932929999168, 54.93667226800005), (-3.276519334999932, 54.943426825000074), (-3.213612433999913, 54.954413153000075), (-3.2010391919999392, 54.95221588700008), (-3.1936742829999503, 54.94863515800006), (-3.1879776679999168, 54.94448476800005), (-3.1801651679999168, 54.94082265800006), (-3.14281165299991, 54.93353913000004), (-3.122792120999918, 54.93268463700008), (-3.0395401679999168, 54.94717031500005), (-3.021839972999942, 54.954413153000075), (-3.090728318999936, 54.954413153000075), (-3.090728318999936, 54.96124909100007), (-3.0715225899999155, 54.96312083500004), (-3.0562231109999516, 54.968817450000074), (-3.040923631999931, 54.97247955900008), (-3.021839972999942, 54.968085028000075), (-3.021839972999942, 54.97553131700005), (-3.0462947259999282, 54.982123114000046), (-3.0502913779999403, 54.981510325000045), (-3.1354060539999296, 54.968085028000075), (-3.453846808999913, 54.981756903000075), (-3.470692511999914, 54.984442450000074), (-3.486236131999931, 54.989488023000035), (-3.501047329999949, 54.99249909100007), (-3.515288865999935, 54.98920319200005), (-3.5123591789999296, 54.98712799700007), (-3.511463995999918, 54.98688385600008), (-3.510894334999932, 54.985988674000055), (-3.5091853509999282, 54.981756903000075), (-3.5260310539999296, 54.97711823100008), (-3.5418595039999445, 54.98065827000005), (-3.57054602799991, 54.995428778000075), (-3.583607550999943, 54.968085028000075), (-3.5756729809999115, 54.95734284100007), (-3.5706274079999503, 54.937567450000074), (-3.5687556629999335, 54.916001695000034), (-3.57054602799991, 54.89980703300006), (-3.581695115999935, 54.88361237200007), (-3.598378058999913, 54.87799713700008), (-3.691761847999942, 54.88320547100005), (-3.7176407539999445, 54.880845445000034), (-3.739247199999909, 54.859808661000045), (-3.8101293609999516, 54.86627838700008), (-3.8078507149999155, 54.86107005400004), (-3.806792772999927, 54.86090729400007), (-3.803334113999938, 54.85887278900003), (-3.8123673169999392, 54.855169989000046), (-3.8198136059999115, 54.855902411000045), (-3.826079881999931, 54.85993073100008), (-3.8312882149999155, 54.86627838700008), (-3.819976365999935, 54.878566799000055), (-3.815052863999938, 54.87714264500005), (-3.8101293609999516, 54.87250397300005), (-3.8116348949999406, 54.88003164300005), (-3.813221808999913, 54.88312409100007), (-3.8169652989999463, 54.88617584800005), (-3.828846808999913, 54.874986070000034), (-3.8443090489999463, 54.86627838700008), (-3.839751756999931, 54.855902411000045), (-3.8374731109999516, 54.851996161000045), (-3.844105597999942, 54.85097890800006), (-3.8578995429999168, 54.84454987200007), (-3.823841925999943, 54.82469310100004), (-3.833607550999943, 54.82005442900004), (-3.885731574999909, 54.80646393400008), (-3.9641820949999556, 54.771918036000045), (-4.011708136999914, 54.76821523600006), (-4.042876756999931, 54.76947663000004), (-4.042876756999931, 54.77692291900007), (-4.046783006999931, 54.77802155200004), (-4.050200975999928, 54.778550523000035), (-4.053334113999938, 54.77997467700004), (-4.055775519999941, 54.782538153000075), (-4.05296790299991, 54.78546784100007), (-4.050160285999937, 54.78900788000004), (-4.049712693999936, 54.78998444200005), (-4.051747199999909, 54.800034898000035), (-4.0477188789999445, 54.81305573100008), (-4.049956834999932, 54.82322825700004), (-4.063588019999941, 54.82684967700004), (-4.064035610999952, 54.83152903900003), (-4.078602667999917, 54.82412344000005), (-4.09007727799991, 54.809759833000044), (-4.093495245999918, 54.792669989000046), (-4.083851691999939, 54.77692291900007), (-4.122954881999931, 54.77301666900007), (-4.173939581999946, 54.792303778000075), (-4.209136522999927, 54.826239325000074), (-4.200550910999937, 54.86627838700008), (-4.215402798999946, 54.861029364000046), (-4.2397354809999115, 54.843003648000035), (-4.255767381999931, 54.838324286000045), (-4.2707413399999155, 54.83942291900007), (-4.345285610999952, 54.86017487200007), (-4.3569229809999115, 54.86554596600007), (-4.3656306629999335, 54.87250397300005), (-4.375152147999927, 54.88690827000005), (-4.379872199999909, 54.89789459800005), (-4.386789516999954, 54.90477122600004), (-4.402902798999946, 54.90729401200008), (-4.409006313999953, 54.90302155200004), (-4.416818813999953, 54.89280833500004), (-4.423573370999918, 54.88035716400003), (-4.426503058999913, 54.86945221600007), (-4.4172257149999155, 54.84593333500004), (-4.4094132149999155, 54.831244208000044), (-4.402902798999946, 54.82469310100004), (-4.386708136999914, 54.82416413000004), (-4.372425910999937, 54.82184479400007), (-4.35960852799991, 54.81663646000004), (-4.347645636999914, 54.80731842700004), (-4.344471808999913, 54.79450104400007), (-4.353179490999935, 54.78310781500005), (-4.358143683999913, 54.77098216400003), (-4.343861456999946, 54.75641510600008), (-4.356516079999949, 54.741888739000046), (-4.353260870999918, 54.72089264500005), (-4.348133917999917, 54.70197174700007), (-4.3547257149999155, 54.693793036000045), (-4.360340949999909, 54.69159577000005), (-4.365305141999954, 54.68695709800005), (-4.371896938999953, 54.68227773600006), (-4.382394985999952, 54.68008047100005), (-4.405262824999909, 54.682074286000045), (-4.426503058999913, 54.687567450000074), (-4.4518123039999296, 54.69879791900007), (-4.46117102799991, 54.701239325000074), (-4.4967341789999296, 54.70062897300005), (-4.505604620999918, 54.70465729400007), (-4.563628709999932, 54.75641510600008), (-4.596669074999909, 54.77529531500005), (-4.714466925999943, 54.81785716400003), (-4.759592251999948, 54.82534414300005), (-4.781076626999948, 54.83307526200008), (-4.799631313999953, 54.86127350500004), (-4.821034308999913, 54.86664459800005), (-4.859120245999918, 54.86627838700008), (-4.88304602799991, 54.86009349200003), (-4.905873175999943, 54.84979889500005), (-4.925770636999914, 54.83738841400003), (-4.941029425999943, 54.82469310100004), (-4.9496150379999335, 54.81582265800006), (-4.953684048999946, 54.81000397300005), (-4.954823370999918, 54.804754950000074), (-4.954701300999943, 54.79743073100008), (-4.952870245999918, 54.78896719000005), (-4.9479060539999296, 54.777329820000034), (-4.940256313999953, 54.76703522300005), (-4.930165167999917, 54.76264069200005), (-4.923247850999928, 54.75185781500005), (-4.911936001999948, 54.728216864000046), (-4.8959854809999115, 54.70453522300005), (-4.867258266999954, 54.69013092700004), (-4.866932745999918, 54.68146393400008), (-4.872141079999949, 54.663316148000035), (-4.872425910999937, 54.65403880400004), (-4.872059699999909, 54.64923737200007), (-4.859120245999918, 54.63296133000006), (-4.880604620999918, 54.63621653900003), (-4.923491990999935, 54.649725653000075), (-4.944081183999913, 54.652777411000045), (-4.953684048999946, 54.65973541900007), (-4.959868943999936, 54.67552317900004), (-4.958973761999914, 54.69196198100008), (-4.947255011999914, 54.701239325000074), (-4.954823370999918, 54.707464911000045), (-4.958892381999931, 54.714056708000044), (-4.959055141999954, 54.72093333500004), (-4.954701300999943, 54.728501695000034), (-4.973378058999913, 54.729722398000035), (-4.981556769999941, 54.731634833000044), (-4.988189256999931, 54.73529694200005), (-4.992665167999917, 54.74433014500005), (-4.997059699999909, 54.75836823100008), (-5.003285285999937, 54.77130768400008), (-5.0130102199999556, 54.77692291900007), (-5.033192511999914, 54.782416083000044), (-5.1282445949999556, 54.848944403000075), (-5.157134568999936, 54.87909577000005), (-5.175526495999918, 54.91461823100008), (-5.180653449999909, 54.954413153000075), (-5.177601691999939, 54.99054596600007), (-5.170806443999936, 55.008693752000056), (-5.156727667999917, 55.01654694200005), (-5.1356095039999445, 55.01585521000004), (-5.124582485999952, 55.016791083000044), (-5.119740363999938, 55.01992422100005), (-5.115142381999931, 55.03156159100007), (-5.105213995999918, 55.02619049700007), (-5.095529751999948, 55.01508209800005), (-5.091867641999954, 55.00971100500004), (-5.076893683999913, 54.99555084800005), (-5.069488084999932, 54.986029364000046), (-5.064564581999946, 54.97553131700005), (-5.0637914699999556, 54.96458567900004), (-5.065256313999953, 54.940334377000056), (-5.06086178299995, 54.93113841400003), (-5.0475154289999296, 54.92031484600005), (-5.030995245999918, 54.911322333000044), (-5.013091600999928, 54.90961334800005), (-4.9955948559999115, 54.92031484600005), (-4.992298956999946, 54.924261786000045), (-4.988189256999931, 54.927720445000034), (-4.988189256999931, 54.93455638200004), (-5.0240779289999296, 54.97638580900008), (-5.029774542999917, 54.98550039300005), (-5.032500779999907, 54.99371979400007), (-5.033029751999948, 54.99526601800005), (-5.047027147999927, 55.01508209800005), (-5.0502823559999115, 55.02680084800005), (-5.0496720039999445, 55.04897695500006), (-5.047596808999913, 55.05573151200008), (-5.043446417999917, 55.06427643400008), (-5.0257869129999335, 55.08869049700007), (-5.018950975999928, 55.10224030200004), (-5.016184048999946, 55.12262604400007), (-5.007801886999914, 55.14118073100008), (-4.988270636999914, 55.15265534100007), (-4.947255011999914, 55.16791413000004), (-4.882394985999952, 55.21857330900008), (-4.877552863999938, 55.22089264500005), (-4.867258266999954, 55.22247955900008), (-4.865305141999954, 55.22565338700008), (-4.865589972999942, 55.236314195000034), (-4.864816860999952, 55.24135976800005), (-4.841949022999927, 55.275091864000046), (-4.838002081999946, 55.28400299700007), (-4.8372289699999556, 55.293850002000056), (-4.839751756999931, 55.31557851800005), (-4.838002081999946, 55.32501862200007), (-4.832508917999917, 55.33112213700008), (-4.7992244129999335, 55.354722398000035), (-4.781076626999948, 55.36351146000004), (-4.773101365999935, 55.36937083500004), (-4.767160610999952, 55.37905508000006), (-4.758778449999909, 55.40228913000004), (-4.7492569649999155, 55.413763739000046), (-4.71703040299991, 55.43048737200007), (-4.650502081999946, 55.448472398000035), (-4.626332160999937, 55.468410549000055), (-4.617787238999938, 55.49559153900003), (-4.626779751999948, 55.51972077000005), (-4.6507869129999335, 55.53705475500004), (-4.687163865999935, 55.544134833000044), (-4.66624915299991, 55.562201239000046), (-4.666493292999917, 55.56329987200007), (-4.6711319649999155, 55.584418036000045), (-4.692738410999937, 55.60521067900004), (-4.7219945949999556, 55.619208075000074), (-4.776519334999932, 55.632879950000074), (-4.808745897999927, 55.63361237200007), (-4.818104620999918, 55.63719310100004), (-4.810617641999954, 55.646551825000074), (-4.810617641999954, 55.653998114000046), (-4.868560350999928, 55.67560455900008), (-4.900990363999938, 55.69232819200005), (-4.920521613999938, 55.70856354400007), (-4.876332160999937, 55.735256252000056), (-4.861073370999918, 55.756740627000056), (-4.865305141999954, 55.79047272300005), (-4.8717341789999296, 55.802435614000046), (-4.8777970039999445, 55.81102122600004), (-4.882720506999931, 55.82135651200008), (-4.888661261999914, 55.864528713000084), (-4.888824022999927, 55.865301825000074), (-4.892648891999954, 55.89288971600007), (-4.886463995999918, 55.91966380400004), (-4.872141079999949, 55.937201239000046), (-4.849354620999918, 55.94822825700004), (-4.818104620999918, 55.95563385600008), (-4.799387173999946, 55.957912502000056), (-4.7857966789999296, 55.95697663000004), (-4.722320115999935, 55.94009023600006), (-4.705433722999942, 55.93846263200004), (-4.693959113999938, 55.94135163000004), (-4.6725154289999296, 55.93378327000005), (-4.505970831999946, 55.91909414300005), (-4.4816788399999155, 55.92829010600008), (-4.590606248999961, 55.941514390000066), (-4.630034959999932, 55.94627513200004), (-4.673451300999943, 55.96185944200005), (-4.724517381999931, 55.99835846600007), (-4.765044725999928, 56.007066148000035), (-4.78343665299991, 56.017645575000074), (-4.7992244129999335, 56.030951239000046), (-4.810617641999954, 56.04376862200007), (-4.8237198559999115, 56.07367584800005), (-4.824330206999946, 56.07851797100005), (-4.8391820949999556, 56.08063385600008), (-4.844309048999946, 56.07298411700003), (-4.843739386999914, 56.06297435100004), (-4.837554490999935, 56.05060455900008), (-4.790150519999941, 56.010199286000045), (-4.778920050999943, 55.99209219000005), (-4.785308397999927, 55.984035549000055), (-4.803618943999936, 55.982082424000055), (-4.828033006999931, 55.98232656500005), (-4.851551886999914, 55.98802317900004), (-4.862294074999909, 56.00214264500005), (-4.865386522999927, 56.02020905200004), (-4.866851365999935, 56.05833567900004), (-4.865386522999927, 56.06671784100007), (-4.826324022999927, 56.124212958000044), (-4.755441860999952, 56.188381252000056), (-4.750884568999936, 56.20270416900007), (-4.755523240999935, 56.20652903900003), (-4.7662654289999296, 56.20209381700005), (-4.7799373039999296, 56.191473700000074), (-4.837269660999937, 56.12441640800006), (-4.851673956999946, 56.112616278000075), (-4.873117641999954, 56.11200592700004), (-4.880604620999918, 56.11985911700003), (-4.878977016999954, 56.15053945500006), (-4.883168097999942, 56.16400788000004), (-4.893544074999909, 56.174261786000045), (-4.9070938789999445, 56.177069403000075), (-4.920521613999938, 56.16791413000004), (-4.909087693999936, 56.14996979400007), (-4.895253058999913, 56.11473216400003), (-4.8862198559999115, 56.08038971600007), (-4.889149542999917, 56.06484609600005), (-4.901926235999952, 56.06191640800006), (-4.904367641999954, 56.054348049000055), (-4.900054490999935, 56.03412506700005), (-4.900054490999935, 56.01459381700005), (-4.898019985999952, 56.001166083000044), (-4.892648891999954, 55.98973216400003), (-4.906402147999927, 55.98574453300006), (-4.921457485999952, 55.98867422100005), (-4.937489386999914, 55.993841864000046), (-4.954701300999943, 55.99656810100004), (-4.954701300999943, 55.98973216400003), (-4.942005988999938, 55.986314195000034), (-4.928863084999932, 55.98114655200004), (-4.918446417999917, 55.97333405200004), (-4.913685675999943, 55.96185944200005), (-4.917388475999928, 55.94745514500005), (-4.9272354809999115, 55.93768952000005), (-4.9387100899999155, 55.92963288000004), (-4.947255011999914, 55.92084381700005), (-4.952137824999909, 55.90912506700005), (-4.954986131999931, 55.89935944200005), (-4.95921790299991, 55.89012278900003), (-4.96898352799991, 55.87986888200004), (-4.983143683999913, 55.87103913000004), (-4.994740363999938, 55.86981842700004), (-5.026356574999909, 55.87372467700004), (-5.0424698559999115, 55.884751695000034), (-5.056752081999946, 55.91030508000006), (-5.0668025379999335, 55.938788153000075), (-5.070790167999917, 55.958685614000046), (-5.1108292309999115, 55.98895905200004), (-5.116037563999953, 56.00169505400004), (-5.123605923999946, 56.00991445500006), (-5.139637824999909, 56.00275299700007), (-5.123768683999913, 55.986314195000034), (-5.085682745999918, 55.93187083500004), (-5.078236456999946, 55.91095612200007), (-5.086537238999938, 55.901271877000056), (-5.105620897999927, 55.90497467700004), (-5.171538865999935, 55.935532945000034), (-5.180653449999909, 55.948431708000044), (-5.180653449999909, 55.96930573100008), (-5.190825975999928, 55.96173737200007), (-5.1996150379999335, 55.948553778000075), (-5.2057185539999296, 55.93451569200005), (-5.207915818999936, 55.92462799700007), (-5.212635870999918, 55.91714101800005), (-5.242054816999939, 55.89288971600007), (-5.218129035999937, 55.86469147300005), (-5.208159959999932, 55.849269924000055), (-5.201079881999931, 55.83148834800005), (-5.2193904289999296, 55.83144765800006), (-5.2631729809999115, 55.845770575000074), (-5.296701626999948, 55.85268789300005), (-5.307118292999917, 55.86041901200008), (-5.313384568999936, 55.88544342700004), (-5.319325324999909, 55.889105536000045), (-5.327219204999949, 55.89154694200005), (-5.3348282539999445, 55.89667389500005), (-5.3382869129999335, 55.90375397300005), (-5.3391007149999155, 55.91303131700005), (-5.3382869129999335, 55.93138255400004), (-5.336089647999927, 55.93919505400004), (-5.326161261999914, 55.95026276200008), (-5.323963995999918, 55.958685614000046), (-5.325754360999952, 55.967230536000045), (-5.3382869129999335, 55.99656810100004), (-5.313628709999932, 56.01235586100006), (-5.204497850999928, 56.11945221600007), (-5.146473761999914, 56.13312409100007), (-5.104603644999941, 56.15151601800005), (-5.0949600899999155, 56.15737539300005), (-5.0594376289999445, 56.203111070000034), (-5.043446417999917, 56.21629466400003), (-5.013295050999943, 56.22760651200008), (-4.974964972999942, 56.23700592700004), (-4.9400935539999296, 56.25141022300005), (-4.920521613999938, 56.277777411000045), (-4.938099738999938, 56.27098216400003), (-4.975087042999917, 56.24799225500004), (-4.991932745999918, 56.24298737200007), (-5.0327042309999115, 56.24115631700005), (-5.049549933999913, 56.23704661700003), (-5.064564581999946, 56.22931549700007), (-5.0754288399999155, 56.21698639500005), (-5.099436001999948, 56.18195221600007), (-5.1088761059999115, 56.174709377000056), (-5.228138800999943, 56.12921784100007), (-5.3109431629999335, 56.05805084800005), (-5.319935675999943, 56.05491771000004), (-5.338042772999927, 56.05410390800006), (-5.345692511999914, 56.051214911000045), (-5.345285610999952, 56.046128648000035), (-5.350209113999938, 56.03192780200004), (-5.356353318999936, 56.01976146000004), (-5.359364386999914, 56.020738023000035), (-5.3686417309999115, 56.009426174000055), (-5.390288865999935, 56.00568268400008), (-5.415028449999909, 56.00690338700008), (-5.43382727799991, 56.010199286000045), (-5.434559699999909, 56.014960028000075), (-5.434722459999932, 56.02362702000005), (-5.437123175999943, 56.03001536700003), (-5.444406704999949, 56.02757396000004), (-5.4479060539999296, 56.02228424700007), (-5.448231574999909, 56.016058661000045), (-5.447621222999942, 56.009426174000055), (-5.454986131999931, 55.95563385600008), (-5.45140540299991, 55.95343659100007), (-5.436431443999936, 55.94896067900004), (-5.430775519999941, 55.94818756700005), (-5.420806443999936, 55.92829010600008), (-5.416737433999913, 55.91681549700007), (-5.416005011999914, 55.907416083000044), (-5.4125056629999335, 55.899603583000044), (-5.400380011999914, 55.89288971600007), (-5.400380011999914, 55.886704820000034), (-5.407215949999909, 55.886704820000034), (-5.407215949999909, 55.87986888200004), (-5.402943488999938, 55.87872955900008), (-5.39289303299995, 55.87372467700004), (-5.3976944649999155, 55.87156810100004), (-5.402495897999927, 55.868353583000044), (-5.407215949999909, 55.86627838700008), (-5.35179602799991, 55.83242422100005), (-5.326771613999938, 55.808579820000034), (-5.317779100999928, 55.78302643400008), (-5.324574347999942, 55.769232489000046), (-5.3385310539999296, 55.76264069200005), (-5.372425910999937, 55.75641510600008), (-5.3875626289999445, 55.75031159100007), (-5.433461066999939, 55.72101471600007), (-5.4445694649999155, 55.71161530200004), (-5.4539688789999445, 55.70058828300006), (-5.46117102799991, 55.68813711100006), (-5.463612433999913, 55.67983633000006), (-5.466175910999937, 55.662176825000074), (-5.468617316999939, 55.653998114000046), (-5.490101691999939, 55.644598700000074), (-5.488270636999914, 55.640326239000046), (-5.484283006999931, 55.63572825700004), (-5.482289191999939, 55.632879950000074), (-5.4838761059999115, 55.61005280200004), (-5.474761522999927, 55.603949286000045), (-5.462635870999918, 55.60203685100004), (-5.454986131999931, 55.59194570500006), (-5.461089647999927, 55.57880280200004), (-5.476918097999942, 55.57489655200004), (-5.488758917999917, 55.56907786700003), (-5.482289191999939, 55.55027903900003), (-5.503529425999943, 55.52651601800005), (-5.509632941999939, 55.516791083000044), (-5.5106095039999445, 55.51146067900004), (-5.509632941999939, 55.49258047100005), (-5.5109757149999155, 55.484442450000074), (-5.514271613999938, 55.48387278900003), (-5.5187882149999155, 55.48517487200007), (-5.523264126999948, 55.48265208500004), (-5.545521613999938, 55.44916413000004), (-5.561512824999909, 55.435532945000034), (-5.5846248039999296, 55.427435614000046), (-5.5846248039999296, 55.421210028000075), (-5.572132941999939, 55.422308661000045), (-5.562082485999952, 55.41986725500004), (-5.553089972999942, 55.41453685100004), (-5.543690558999913, 55.40692780200004), (-5.527455206999946, 55.38434479400007), (-5.5266820949999556, 55.38027578300006), (-5.5149633449999556, 55.37368398600006), (-5.525054490999935, 55.358628648000035), (-5.557972785999937, 55.33185455900008), (-5.574370897999927, 55.32200755400004), (-5.594105597999942, 55.31313711100006), (-5.616281704999949, 55.30658600500004), (-5.6399633449999556, 55.303900458000044), (-5.649525519999941, 55.30516185100004), (-5.669097459999932, 55.31085846600007), (-5.6808975899999155, 55.31134674700007), (-5.691395636999914, 55.308579820000034), (-5.714019334999932, 55.29913971600007), (-5.725575324999909, 55.29706452000005), (-5.7545466789999296, 55.29734935100004), (-5.772287563999953, 55.30125560100004), (-5.782866990999935, 55.31354401200008), (-5.794667120999918, 55.35639069200005), (-5.796701626999948, 55.37909577000005), (-5.7914119129999335, 55.39862702000005), (-5.763417120999918, 55.41205475500004), (-5.725412563999953, 55.437567450000074), (-5.715646938999953, 55.44790273600006), (-5.7152400379999335, 55.46889883000006), (-5.720122850999928, 55.491522528000075), (-5.7219132149999155, 55.51386139500005), (-5.707753058999913, 55.54336172100005), (-5.712066209999932, 55.55072663000004), (-5.718861456999946, 55.55731842700004), (-5.721831834999932, 55.56460195500006), (-5.718129035999937, 55.57575104400007), (-5.694488084999932, 55.605536200000074), (-5.6733292309999115, 55.640611070000034), (-5.6694229809999115, 55.66071198100008), (-5.6808975899999155, 55.67446523600006), (-5.626535610999952, 55.70062897300005), (-5.61945553299995, 55.71198151200008), (-5.613189256999931, 55.725775458000044), (-5.5982966789999296, 55.74298737200007), (-5.581206834999932, 55.75763580900008), (-5.5678604809999115, 55.76386139500005), (-5.539173956999946, 55.77094147300005), (-5.504628058999913, 55.78937409100007), (-5.4735001289999445, 55.815659898000035), (-5.454986131999931, 55.845770575000074), (-5.551747199999909, 55.783636786000045), (-5.587473110999952, 55.76715729400007), (-5.599436001999948, 55.76422760600008), (-5.6126195949999556, 55.76386139500005), (-5.60578365799995, 55.77684153900003), (-5.6332087879999335, 55.78278229400007), (-5.64671790299991, 55.78750234600005), (-5.66038977799991, 55.79734935100004), (-5.667958136999914, 55.81102122600004), (-5.669016079999949, 55.83783600500004), (-5.67406165299991, 55.845770575000074), (-5.631988084999932, 55.88178131700005), (-5.625599738999938, 55.889837958000044), (-5.61937415299991, 55.90314362200007), (-5.6043595039999445, 55.91364166900007), (-5.586293097999942, 55.92332591400003), (-5.571034308999913, 55.93451569200005), (-5.593495245999918, 55.92796458500004), (-5.6275935539999296, 55.90534088700008), (-5.6537979809999115, 55.89760976800005), (-5.671701626999948, 55.88690827000005), (-5.6808975899999155, 55.886704820000034), (-5.687977667999917, 55.89337799700007), (-5.694162563999953, 55.90497467700004), (-5.696400519999941, 55.91596100500004), (-5.586822068999936, 56.01203034100007), (-5.57843990799995, 56.02448151200008), (-5.5826716789999296, 56.028957424000055), (-5.576649542999917, 56.032538153000075), (-5.571034308999913, 56.037543036000045), (-5.583892381999931, 56.040716864000046), (-5.596424933999913, 56.036810614000046), (-5.609852667999917, 56.03001536700003), (-5.625599738999938, 56.02448151200008), (-5.6317032539999445, 56.005926825000074), (-5.674875454999949, 55.977728583000044), (-5.67406165299991, 55.95563385600008), (-5.690785285999937, 55.93764883000006), (-5.694488084999932, 55.93451569200005), (-5.704497850999928, 55.936753648000035), (-5.707508917999917, 55.942572333000044), (-5.705881313999953, 55.949652411000045), (-5.701975063999953, 55.95563385600008), (-5.696441209999932, 55.98216380400004), (-5.659901495999918, 56.02326080900008), (-5.5846248039999296, 56.08466217700004), (-5.5815323559999115, 56.08828359600005), (-5.580067511999914, 56.09292226800005), (-5.5774633449999556, 56.096991278000075), (-5.571034308999913, 56.09902578300006), (-5.564605272999927, 56.098089911000045), (-5.556548631999931, 56.09589264500005), (-5.550689256999931, 56.09349192900004), (-5.550526495999918, 56.09218984600005), (-5.547840949999909, 56.09003327000005), (-5.5394587879999335, 56.08685944200005), (-5.531605597999942, 56.08633047100005), (-5.530100063999953, 56.09218984600005), (-5.534738735999952, 56.098537502000056), (-5.5414119129999335, 56.10248444200005), (-5.5475154289999296, 56.10488515800006), (-5.550526495999918, 56.10643138200004), (-5.55695553299995, 56.12221914300005), (-5.558705206999946, 56.13080475500004), (-5.554676886999914, 56.13739655200004), (-5.522531704999949, 56.16575755400004), (-5.515736456999946, 56.174709377000056), (-5.509632941999939, 56.188381252000056), (-5.5399063789999445, 56.18341705900008), (-5.562489386999914, 56.16791413000004), (-5.5826716789999296, 56.15058014500005), (-5.60578365799995, 56.139960028000075), (-5.599354620999918, 56.160589911000045), (-5.586415167999917, 56.18113841400003), (-5.569406704999949, 56.20026276200008), (-5.550526495999918, 56.21629466400003), (-5.5594376289999445, 56.22955963700008), (-5.547230597999942, 56.24017975500004), (-5.52562415299991, 56.247259833000044), (-5.50617428299995, 56.24982330900008), (-5.494740363999938, 56.253119208000044), (-5.4928279289999296, 56.26040273600006), (-5.4992569649999155, 56.267645575000074), (-5.512684699999909, 56.27094147300005), (-5.554269985999952, 56.26349518400008), (-5.5631404289999296, 56.26032135600008), (-5.572621222999942, 56.25385163000004), (-5.58234615799995, 56.24876536700003), (-5.592152472999942, 56.24982330900008), (-5.5980525379999335, 56.25861237200007), (-5.595570441999939, 56.26992422100005), (-5.5846248039999296, 56.29075755400004), (-5.57258053299995, 56.32807038000004), (-5.56273352799991, 56.341050523000035), (-5.543690558999913, 56.352850653000075), (-5.525217251999948, 56.34662506700005), (-5.498199022999927, 56.34833405200004), (-5.4481095039999445, 56.35968659100007), (-5.4481095039999445, 56.36591217700004), (-5.4721573559999115, 56.364935614000046), (-5.515370245999918, 56.35683828300006), (-5.5375056629999335, 56.35968659100007), (-5.517323370999918, 56.39276764500005), (-5.509632941999939, 56.40062083500004), (-5.498931443999936, 56.404730536000045), (-5.486073370999918, 56.40810781500005), (-5.4780167309999115, 56.41290924700007), (-5.482289191999939, 56.421128648000035), (-5.457020636999914, 56.44086334800005), (-5.423573370999918, 56.45001862200007), (-5.322865363999938, 56.45498281500005), (-5.242054816999939, 56.44220612200007), (-5.208729620999918, 56.44684479400007), (-5.18187415299991, 56.45966217700004), (-5.118519660999937, 56.50775788000004), (-5.085682745999918, 56.54877350500004), (-5.064564581999946, 56.56513092700004), (-5.086537238999938, 56.55849844000005), (-5.099598761999914, 56.54364655200004), (-5.1105850899999155, 56.52586497600004), (-5.125965949999909, 56.51048411700003), (-5.166900193999936, 56.49005768400008), (-5.190174933999913, 56.46865469000005), (-5.201079881999931, 56.462103583000044), (-5.243763800999943, 56.45921458500004), (-5.350168423999946, 56.47296784100007), (-5.378081834999932, 56.458970445000034), (-5.394276495999918, 56.46548086100006), (-5.4105525379999335, 56.50364817900004), (-5.42414303299995, 56.500067450000074), (-5.4359431629999335, 56.49115631700005), (-5.454986131999931, 56.46954987200007), (-5.468617316999939, 56.47573476800005), (-5.433338995999918, 56.52362702000005), (-5.427642381999931, 56.53782786700003), (-5.4037979809999115, 56.524603583000044), (-5.379261847999942, 56.519191799000055), (-5.3566788399999155, 56.51968008000006), (-5.3382869129999335, 56.52415599200003), (-5.2905167309999115, 56.54466380400004), (-5.265044725999928, 56.551214911000045), (-5.252552863999938, 56.556341864000046), (-5.242054816999939, 56.56513092700004), (-5.27562415299991, 56.553615627000056), (-5.286773240999935, 56.552069403000075), (-5.306792772999927, 56.552801825000074), (-5.3109431629999335, 56.552069403000075), (-5.327707485999952, 56.54466380400004), (-5.338693813999953, 56.542303778000075), (-5.360340949999909, 56.53221263200004), (-5.372425910999937, 56.53034088700008), (-5.384348110999952, 56.53343333500004), (-5.400502081999946, 56.54364655200004), (-5.413929816999939, 56.54466380400004), (-5.410878058999913, 56.552069403000075), (-5.407297329999949, 56.55532461100006), (-5.402699347999942, 56.55744049700007), (-5.396636522999927, 56.561712958000044), (-5.392689581999946, 56.566473700000074), (-5.3893123039999296, 56.57489655200004), (-5.386626756999931, 56.57880280200004), (-5.360707160999937, 56.60626862200007), (-5.351918097999942, 56.612941799000055), (-5.31086178299995, 56.63361237200007), (-5.304514126999948, 56.64016347900008), (-5.298451300999943, 56.64642975500004), (-5.317779100999928, 56.65387604400007), (-5.317779100999928, 56.661322333000044), (-5.309071417999917, 56.66425202000005), (-5.286773240999935, 56.674994208000044), (-5.261463995999918, 56.67332591400003), (-5.248199022999927, 56.67405833500004), (-5.218902147999927, 56.688666083000044), (-5.196441209999932, 56.688666083000044), (-5.153309699999909, 56.68121979400007), (-5.132639126999948, 56.68451569200005), (-5.093373175999943, 56.69904205900008), (-5.012806769999941, 56.70929596600007), (-4.9955948559999115, 56.71596914300005), (-5.1605525379999335, 56.69586823100008), (-5.238270636999914, 56.71662018400008), (-5.23851477799991, 56.72256094000005), (-5.228423631999931, 56.73647695500006), (-5.222075975999928, 56.741522528000075), (-5.154652472999942, 56.78229401200008), (-5.136382615999935, 56.79877350500004), (-5.119740363999938, 56.818426825000074), (-5.179066535999937, 56.78925202000005), (-5.187489386999914, 56.78115469000005), (-5.191761847999942, 56.774644273000035), (-5.202259894999941, 56.76911041900007), (-5.214670376999948, 56.76520416900007), (-5.224964972999942, 56.763739325000074), (-5.233469204999949, 56.76068756700005), (-5.237049933999913, 56.75336334800005), (-5.2389216789999296, 56.74445221600007), (-5.242054816999939, 56.73647695500006), (-5.255238410999937, 56.721584377000056), (-5.268462693999936, 56.71308014500005), (-5.283355272999927, 56.70937734600005), (-5.30101477799991, 56.70856354400007), (-5.3098038399999155, 56.70648834800005), (-5.319162563999953, 56.69749583500004), (-5.34015865799995, 56.693060614000046), (-5.348378058999913, 56.687201239000046), (-5.359364386999914, 56.674994208000044), (-5.388050910999937, 56.65521881700005), (-5.403879360999952, 56.64923737200007), (-5.4242244129999335, 56.64704010600008), (-5.434396938999953, 56.64288971600007), (-5.4487198559999115, 56.62457916900007), (-5.458119269999941, 56.620347398000035), (-5.470773891999954, 56.618394273000035), (-5.482574022999927, 56.613267320000034), (-5.493316209999932, 56.60639069200005), (-5.53343665299991, 56.57290273600006), (-5.599598761999914, 56.52903880400004), (-5.667388475999928, 56.498480536000045), (-5.67406165299991, 56.49689362200007), (-5.683013475999928, 56.50063711100006), (-5.694691535999937, 56.51386139500005), (-5.70539303299995, 56.51666901200008), (-5.721791144999941, 56.51850006700005), (-5.740834113999938, 56.52326080900008), (-5.7582087879999335, 56.52997467700004), (-5.770253058999913, 56.53782786700003), (-5.7551977199999556, 56.554022528000075), (-5.751047329999949, 56.56199778900003), (-5.749134894999941, 56.571966864000046), (-5.756662563999953, 56.571966864000046), (-5.793853318999936, 56.54328034100007), (-5.8543595039999445, 56.550482489000046), (-6.0034073559999115, 56.61871979400007), (-6.009836391999954, 56.62653229400007), (-6.008168097999942, 56.642279364000046), (-5.998036261999914, 56.64988841400003), (-5.983509894999941, 56.65281810100004), (-5.933583136999914, 56.654730536000045), (-5.899037238999938, 56.650824286000045), (-5.866851365999935, 56.64154694200005), (-5.8391820949999556, 56.62653229400007), (-5.831695115999935, 56.633978583000044), (-5.855620897999927, 56.64472077000005), (-5.865589972999942, 56.65143463700008), (-5.865834113999938, 56.661322333000044), (-5.75999915299991, 56.70075104400007), (-5.735503709999932, 56.702337958000044), (-5.672596808999913, 56.68414948100008), (-5.647368943999936, 56.68121979400007), (-5.5941462879999335, 56.68333567900004), (-5.564808722999942, 56.68764883000006), (-5.543690558999913, 56.69546133000006), (-5.636545376999948, 56.688666083000044), (-5.658558722999942, 56.690741278000075), (-5.708851691999939, 56.70856354400007), (-5.749989386999914, 56.714544989000046), (-5.859038865999935, 56.68121979400007), (-5.89679928299995, 56.675116278000075), (-5.907378709999932, 56.674994208000044), (-5.9203181629999335, 56.67796458500004), (-5.942738410999937, 56.686753648000035), (-5.955555792999917, 56.688666083000044), (-6.0248917309999115, 56.68569570500006), (-6.098622199999909, 56.696966864000046), (-6.123850063999953, 56.69562409100007), (-6.143544074999909, 56.684881903000075), (-6.161732550999943, 56.67820872600004), (-6.186594204999949, 56.68109772300005), (-6.2096248039999296, 56.68846263200004), (-6.222767706999946, 56.69546133000006), (-6.228179490999935, 56.70107656500005), (-6.232533331999946, 56.70652903900003), (-6.235340949999909, 56.71238841400003), (-6.236398891999954, 56.71906159100007), (-6.234486456999946, 56.728583075000074), (-6.229562954999949, 56.72907135600008), (-6.222767706999946, 56.72719961100006), (-6.215321417999917, 56.72964101800005), (-6.193470831999946, 56.74852122600004), (-6.1805313789999445, 56.75462474200003), (-6.026966925999943, 56.763739325000074), (-6.0148819649999155, 56.76703522300005), (-5.979888475999928, 56.78156159100007), (-5.965199347999942, 56.784857489000046), (-5.948231574999909, 56.782538153000075), (-5.937977667999917, 56.77692291900007), (-5.928537563999953, 56.769964911000045), (-5.913644985999952, 56.763739325000074), (-5.860910610999952, 56.75079987200007), (-5.8522029289999296, 56.746975002000056), (-5.853342251999948, 56.757879950000074), (-5.858143683999913, 56.768459377000056), (-5.8683975899999155, 56.77586497600004), (-5.886341925999943, 56.777411200000074), (-5.886341925999943, 56.784857489000046), (-5.874012824999909, 56.78571198100008), (-5.861805792999917, 56.78510163000004), (-5.850087042999917, 56.782456773000035), (-5.8391820949999556, 56.777411200000074), (-5.8246150379999335, 56.78758372600004), (-5.8020727199999556, 56.79181549700007), (-5.7766007149999155, 56.787990627000056), (-5.756662563999953, 56.784857489000046), (-5.831695115999935, 56.80536530200004), (-5.8508194649999155, 56.818019924000055), (-5.851185675999943, 56.82892487200007), (-5.837473110999952, 56.83661530200004), (-5.7338761059999115, 56.84479401200008), (-5.692738410999937, 56.85492584800005), (-5.66038977799991, 56.87299225500004), (-5.673573370999918, 56.87653229400007), (-5.692005988999938, 56.87531159100007), (-5.7084854809999115, 56.87055084800005), (-5.724354620999918, 56.85382721600007), (-5.744496222999942, 56.85415273600006), (-5.783924933999913, 56.85993073100008), (-5.775380011999914, 56.86994049700007), (-5.735503709999932, 56.89411041900007), (-5.7805883449999556, 56.89874909100007), (-5.874867316999939, 56.887152411000045), (-5.9211319649999155, 56.89411041900007), (-5.8875626289999445, 56.89911530200004), (-5.8522029289999296, 56.90033600500004), (-5.8522029289999296, 56.90770091400003), (-5.859852667999917, 56.91054922100005), (-5.8801163399999155, 56.92202383000006), (-5.8625382149999155, 56.93374258000006), (-5.851429816999939, 56.95425039300005), (-5.842518683999913, 56.977443752000056), (-5.831695115999935, 56.99713776200008), (-5.814116990999935, 57.00950755400004), (-5.786040818999936, 57.02057526200008), (-5.755238410999937, 57.026556708000044), (-5.729318813999953, 57.02383047100005), (-5.719878709999932, 57.017564195000034), (-5.699940558999913, 56.998114325000074), (-5.688303188999953, 56.98969147300005), (-5.67406165299991, 56.983587958000044), (-5.658558722999942, 56.97947825700004), (-5.625599738999938, 56.976629950000074), (-5.571278449999909, 56.98383209800005), (-5.523264126999948, 56.99713776200008), (-5.523264126999948, 57.003973700000074), (-5.540435350999928, 57.001166083000044), (-5.556507941999939, 56.996079820000034), (-5.571278449999909, 56.99331289300005), (-5.5846248039999296, 56.99713776200008), (-5.607085740999935, 56.98851146000004), (-5.628814256999931, 56.991888739000046), (-5.6498917309999115, 56.999660549000055), (-5.6703181629999335, 57.003973700000074), (-5.685536261999914, 57.00958893400008), (-5.681711391999954, 57.02240631700005), (-5.680043097999942, 57.03620026200008), (-5.701975063999953, 57.044907945000034), (-5.710926886999914, 57.044175523000035), (-5.731353318999936, 57.03900788000004), (-5.742339647999927, 57.03807200700004), (-5.752552863999938, 57.04059479400007), (-5.769602016999954, 57.04975006700005), (-5.780181443999936, 57.05174388200004), (-5.791127081999946, 57.05927155200004), (-5.776193813999953, 57.075832424000055), (-5.734486456999946, 57.10541413000004), (-5.722645636999914, 57.116441148000035), (-5.715646938999953, 57.12006256700005), (-5.703277147999927, 57.120754299000055), (-5.673695441999939, 57.11904531500005), (-5.663482225999928, 57.12372467700004), (-5.645863410999937, 57.12946198100008), (-5.620838995999918, 57.12409088700008), (-5.57843990799995, 57.10639069200005), (-5.558257615999935, 57.10040924700007), (-5.4598282539999445, 57.09979889500005), (-5.454986131999931, 57.10297272300005), (-5.447417772999927, 57.11017487200007), (-5.430775519999941, 57.11074453300006), (-5.41429602799991, 57.10822174700007), (-5.407215949999909, 57.10639069200005), (-5.400380011999914, 57.10639069200005), (-5.400380011999914, 57.11383698100008), (-5.420033331999946, 57.12067291900007), (-5.503895636999914, 57.11269765800006), (-5.527414516999954, 57.107489325000074), (-5.540638800999943, 57.10639069200005), (-5.5477188789999445, 57.11009349200003), (-5.573312954999949, 57.12787506700005), (-5.5846248039999296, 57.133693752000056), (-5.668446417999917, 57.147650458000044), (-5.6808975899999155, 57.157904364000046), (-5.673817511999914, 57.174994208000044), (-5.638824022999927, 57.202378648000035), (-5.625599738999938, 57.21625397300005), (-5.644154425999943, 57.23322174700007), (-5.620106574999909, 57.25214264500005), (-5.578236456999946, 57.26675039300005), (-5.543690558999913, 57.27090078300006), (-5.511586066999939, 57.25763580900008), (-5.480091925999943, 57.23700592700004), (-5.446278449999909, 57.22304922100005), (-5.407215949999909, 57.22992584800005), (-5.407215949999909, 57.23672109600005), (-5.448841925999943, 57.24209219000005), (-5.458119269999941, 57.24664948100008), (-5.47288977799991, 57.26121653900003), (-5.482899542999917, 57.268011786000045), (-5.49250240799995, 57.27090078300006), (-5.501942511999914, 57.27765534100007), (-5.4889216789999296, 57.29242584800005), (-5.464833136999914, 57.306626695000034), (-5.4406632149999155, 57.311835028000075), (-5.4406632149999155, 57.31928131700005), (-5.464995897999927, 57.32493724200003), (-5.4817602199999556, 57.31671784100007), (-5.494292772999927, 57.30442942900004), (-5.50617428299995, 57.298163153000075), (-5.523426886999914, 57.29515208500004), (-5.558461066999939, 57.28143952000005), (-5.57843990799995, 57.27765534100007), (-5.599436001999948, 57.27924225500004), (-5.637440558999913, 57.28900788000004), (-5.656971808999913, 57.29132721600007), (-5.7000626289999445, 57.28359609600005), (-5.720570441999939, 57.284491278000075), (-5.729318813999953, 57.298163153000075), (-5.7252498039999296, 57.30158112200007), (-5.701975063999953, 57.33234284100007), (-5.6937556629999335, 57.337103583000044), (-5.671986456999946, 57.34442780200004), (-5.663482225999928, 57.349676825000074), (-5.654367641999954, 57.353949286000045), (-5.647206183999913, 57.34992096600007), (-5.6414688789999445, 57.34320709800005), (-5.636545376999948, 57.33978913000004), (-5.613189256999931, 57.34198639500005), (-5.5012914699999556, 57.37099844000005), (-5.456654425999943, 57.39354075700004), (-5.4481095039999445, 57.42169830900008), (-5.46507727799991, 57.423895575000074), (-5.492054816999939, 57.40875885600008), (-5.5375056629999335, 57.373928127000056), (-5.563465949999909, 57.36310455900008), (-5.586659308999913, 57.36505768400008), (-5.610910610999952, 57.37140534100007), (-5.6399633449999556, 57.373928127000056), (-5.615589972999942, 57.382473049000055), (-5.607085740999935, 57.389105536000045), (-5.609201626999948, 57.397772528000075), (-5.617746548999946, 57.41010163000004), (-5.619618292999917, 57.41669342700004), (-5.624012824999909, 57.41640859600005), (-5.6399633449999556, 57.40802643400008), (-5.707183397999927, 57.35976797100005), (-5.732411261999914, 57.352769273000035), (-5.784575975999928, 57.34857819200005), (-5.807769334999932, 57.35492584800005), (-5.8248591789999296, 57.39435455900008), (-5.822255011999914, 57.39350006700005), (-5.817372199999909, 57.39520905200004), (-5.812855597999942, 57.398098049000055), (-5.8111873039999296, 57.40119049700007), (-5.813872850999928, 57.40452708500004), (-5.8231095039999445, 57.41233958500004), (-5.8248591789999296, 57.41547272300005), (-5.825266079999949, 57.428900458000044), (-5.821888800999943, 57.435532945000034), (-5.8111873039999296, 57.44220612200007), (-5.8215225899999155, 57.44546133000006), (-5.852528449999909, 57.450384833000044), (-5.859038865999935, 57.45270416900007), (-5.861195441999939, 57.46344635600008), (-5.870513475999928, 57.48078034100007), (-5.872670050999943, 57.49371979400007), (-5.869699673999946, 57.500881252000056), (-5.856068488999938, 57.51780833500004), (-5.8522029289999296, 57.52411530200004), (-5.8510636059999115, 57.538397528000075), (-5.851470506999931, 57.55109284100007), (-5.847075975999928, 57.55890534100007), (-5.831695115999935, 57.55882396000004), (-5.833851691999939, 57.563381252000056), (-5.837025519999941, 57.57477448100008), (-5.8391820949999556, 57.579291083000044), (-5.821400519999941, 57.583197333000044), (-5.803618943999936, 57.581366278000075), (-5.7863663399999155, 57.57518138200004), (-5.732574022999927, 57.54523346600007), (-5.715646938999953, 57.538397528000075), (-5.707020636999914, 57.542303778000075), (-5.68976803299995, 57.52789948100008), (-5.6808975899999155, 57.52411530200004), (-5.650868292999917, 57.51264069200005), (-5.6399633449999556, 57.511053778000075), (-5.645334438999953, 57.51666901200008), (-5.648304816999939, 57.52187734600005), (-5.650542772999927, 57.52680084800005), (-5.6535538399999155, 57.53156159100007), (-5.5815323559999115, 57.538397528000075), (-5.5402725899999155, 57.534491278000075), (-5.5168350899999155, 57.534857489000046), (-5.512684699999909, 57.54148997600004), (-5.543120897999927, 57.55536530200004), (-5.588368292999917, 57.56102122600004), (-5.632720506999931, 57.55768463700008), (-5.66038977799991, 57.544582424000055), (-5.694488084999932, 57.56631094000005), (-5.689198370999918, 57.56940338700008), (-5.6808975899999155, 57.579291083000044), (-5.714222785999937, 57.58270905200004), (-5.7316788399999155, 57.59829336100006), (-5.744252081999946, 57.61798737200007), (-5.762806769999941, 57.633978583000044), (-5.778146938999953, 57.63743724200003), (-5.7936091789999296, 57.63857656500005), (-5.8058975899999155, 57.642645575000074), (-5.8111873039999296, 57.65509674700007), (-5.805409308999913, 57.667181708000044), (-5.785023566999939, 57.67951080900008), (-5.790760870999918, 57.68854401200008), (-5.790760870999918, 57.69599030200004), (-5.753570115999935, 57.707464911000045), (-5.734486456999946, 57.70795319200005), (-5.704986131999931, 57.69013092700004), (-5.692494269999941, 57.691066799000055), (-5.68195553299995, 57.69871653900003), (-5.67406165299991, 57.70966217700004), (-5.685170050999943, 57.71141185100004), (-5.692290818999936, 57.716498114000046), (-5.698841925999943, 57.723089911000045), (-5.708851691999939, 57.72955963700008), (-5.720529751999948, 57.73338450700004), (-5.803822394999941, 57.743841864000046), (-5.80695553299995, 57.75462474200003), (-5.8020727199999556, 57.780585028000075), (-5.803822394999941, 57.792222398000035), (-5.801258917999917, 57.800441799000055), (-5.809925910999937, 57.82062409100007), (-5.8111873039999296, 57.833197333000044), (-5.807362433999913, 57.84393952000005), (-5.799956834999932, 57.85370514500005), (-5.789540167999917, 57.86200592700004), (-5.776519334999932, 57.86790599200003), (-5.751128709999932, 57.87335846600007), (-5.724761522999927, 57.87352122600004), (-5.698638475999928, 57.86908600500004), (-5.67406165299991, 57.86050039300005), (-5.677886522999927, 57.846909898000035), (-5.674794074999909, 57.82709381700005), (-5.667958136999914, 57.80695221600007), (-5.66038977799991, 57.792222398000035), (-5.650542772999927, 57.78180573100008), (-5.6373591789999296, 57.77423737200007), (-5.622141079999949, 57.77020905200004), (-5.60578365799995, 57.77049388200004), (-5.613270636999914, 57.77521393400008), (-5.617909308999913, 57.78021881700005), (-5.625599738999938, 57.792222398000035), (-5.613026495999918, 57.792629299000055), (-5.603260870999918, 57.791083075000074), (-5.5846248039999296, 57.784816799000055), (-5.591175910999937, 57.80442942900004), (-5.587025519999941, 57.81858958500004), (-5.5852758449999556, 57.83144765800006), (-5.598988410999937, 57.846869208000044), (-5.6375626289999445, 57.86635976800005), (-5.650380011999914, 57.87775299700007), (-5.6399633449999556, 57.88784414300005), (-5.6476944649999155, 57.88898346600007), (-5.6507869129999335, 57.89081452000005), (-5.6535538399999155, 57.89468008000006), (-5.643950975999928, 57.90420156500005), (-5.620757615999935, 57.92088450700004), (-5.6126195949999556, 57.92877838700008), (-5.598215298999946, 57.91901276200008), (-5.587310350999928, 57.91510651200008), (-5.550526495999918, 57.91510651200008), (-5.556263800999943, 57.88776276200008), (-5.527902798999946, 57.86758047100005), (-5.487049933999913, 57.85586172100005), (-5.454986131999931, 57.85370514500005), (-5.46117102799991, 57.86050039300005), (-5.449045376999948, 57.869126695000034), (-5.437123175999943, 57.897650458000044), (-5.427642381999931, 57.908270575000074), (-5.4149063789999445, 57.90814850500004), (-5.369496222999942, 57.89752838700008), (-5.355620897999927, 57.89126211100006), (-5.327504035999937, 57.87327708500004), (-5.293853318999936, 57.86204661700003), (-5.221587693999936, 57.846869208000044), (-5.236317511999914, 57.86078522300005), (-5.2475479809999115, 57.86701080900008), (-5.276763475999928, 57.87417226800005), (-5.320668097999942, 57.898504950000074), (-5.384917772999927, 57.914129950000074), (-5.39289303299995, 57.91819896000004), (-5.394398566999939, 57.923895575000074), (-5.396839972999942, 57.926214911000045), (-5.3973282539999445, 57.928900458000044), (-5.39289303299995, 57.935614325000074), (-5.386545376999948, 57.936428127000056), (-5.378977016999954, 57.93183014500005), (-5.3717341789999296, 57.93105703300006), (-5.366200324999909, 57.943060614000046), (-5.3471573559999115, 57.936712958000044), (-5.319162563999953, 57.91474030200004), (-5.297352667999917, 57.908270575000074), (-5.2860001289999445, 57.90875885600008), (-5.266957160999937, 57.91400788000004), (-5.2562556629999335, 57.91510651200008), (-5.2436417309999115, 57.91290924700007), (-5.22101803299995, 57.90403880400004), (-5.211293097999942, 57.90208567900004), (-5.198801235999952, 57.897772528000075), (-5.162261522999927, 57.87848541900007), (-5.1199845039999445, 57.86798737200007), (-5.0911352199999556, 57.84031810100004), (-5.070790167999917, 57.833197333000044), (-5.07648678299995, 57.83852773600006), (-5.083404100999928, 57.84756094000005), (-5.0893448559999115, 57.85724518400008), (-5.091867641999954, 57.86420319200005), (-5.0971573559999115, 57.87091705900008), (-5.197255011999914, 57.91787344000005), (-5.221587693999936, 57.92133209800005), (-5.221587693999936, 57.92877838700008), (-5.201893683999913, 57.92865631700005), (-5.193959113999938, 57.935980536000045), (-5.19554602799991, 57.94765859600005), (-5.204497850999928, 57.960150458000044), (-5.216704881999931, 57.96588776200008), (-5.2488907539999445, 57.96938711100006), (-5.2631729809999115, 57.976548570000034), (-5.292632615999935, 57.98061758000006), (-5.333892381999931, 58.00853099200003), (-5.359364386999914, 58.011379299000055), (-5.357167120999918, 58.01406484600005), (-5.3566788399999155, 58.014878648000035), (-5.351918097999942, 58.01752350500004), (-5.366932745999918, 58.02887604400007), (-5.386586066999939, 58.032538153000075), (-5.427642381999931, 58.03119538000004), (-5.424305792999917, 58.03554922100005), (-5.422352667999917, 58.03896719000005), (-5.419585740999935, 58.04205963700008), (-5.413929816999939, 58.04547760600008), (-5.413929816999939, 58.05231354400007), (-5.447010870999918, 58.08437734600005), (-5.428089972999942, 58.09796784100007), (-5.390044725999928, 58.09218984600005), (-5.366200324999909, 58.06598541900007), (-5.344309048999946, 58.075506903000075), (-5.322865363999938, 58.07172272300005), (-5.300770636999914, 58.07013580900008), (-5.276763475999928, 58.08641185100004), (-5.283070441999939, 58.08641185100004), (-5.278065558999913, 58.09625885600008), (-5.2787979809999115, 58.10537344000005), (-5.283558722999942, 58.11347077000005), (-5.2905167309999115, 58.12055084800005), (-5.276763475999928, 58.12055084800005), (-5.276763475999928, 58.127386786000045), (-5.297352667999917, 58.134833075000074), (-5.284087693999936, 58.14008209800005), (-5.255523240999935, 58.143784898000035), (-5.242054816999939, 58.14789459800005), (-5.242054816999939, 58.15534088700008), (-5.275054490999935, 58.15452708500004), (-5.290842251999948, 58.156317450000074), (-5.304798956999946, 58.162095445000034), (-5.297352667999917, 58.168402411000045), (-5.304798956999946, 58.17332591400003), (-5.313059048999946, 58.17731354400007), (-5.321888800999943, 58.18024323100008), (-5.331450975999928, 58.18203359600005), (-5.3293350899999155, 58.186712958000044), (-5.326161261999914, 58.198431708000044), (-5.323963995999918, 58.203111070000034), (-5.336822068999936, 58.203192450000074), (-5.346791144999941, 58.20685455900008), (-5.39289303299995, 58.24469635600008), (-5.3920792309999115, 58.261379299000055), (-5.375884568999936, 58.26422760600008), (-5.352894660999937, 58.25893789300005), (-5.31078040299991, 58.243394273000035), (-5.293853318999936, 58.24091217700004), (-5.276966925999943, 58.243394273000035), (-5.237294074999909, 58.25763580900008), (-5.2160538399999155, 58.261419989000046), (-5.194325324999909, 58.25999583500004), (-5.173207160999937, 58.25092194200005), (-5.165638800999943, 58.258246161000045), (-5.152251756999931, 58.264837958000044), (-5.138335740999935, 58.269598700000074), (-5.129383917999917, 58.27138906500005), (-5.11156165299991, 58.26825592700004), (-5.0812882149999155, 58.25409577000005), (-5.0676977199999556, 58.25092194200005), (-5.017730272999927, 58.253241278000075), (-5.002430792999917, 58.25092194200005), (-4.933583136999914, 58.22304922100005), (-4.943430141999954, 58.233587958000044), (-4.954823370999918, 58.23981354400007), (-4.982004360999952, 58.25092194200005), (-4.968861456999946, 58.25678131700005), (-4.940337693999936, 58.259466864000046), (-4.926747199999909, 58.26459381700005), (-4.990223761999914, 58.27142975500004), (-5.009917772999927, 58.27138906500005), (-5.018055792999917, 58.26862213700008), (-5.029367641999954, 58.25971100500004), (-5.040028449999909, 58.25775788000004), (-5.0501195949999556, 58.25991445500006), (-5.0707087879999335, 58.269232489000046), (-5.081654425999943, 58.27138906500005), (-5.096424933999913, 58.27676015800006), (-5.125965949999909, 58.30019765800006), (-5.1362198559999115, 58.305568752000056), (-5.137440558999913, 58.30927155200004), (-5.156361456999946, 58.32461172100005), (-5.160145636999914, 58.326605536000045), (-5.167795376999948, 58.33926015800006), (-5.171009894999941, 58.34666575700004), (-5.173207160999937, 58.353949286000045), (-5.153309699999909, 58.353949286000045), (-5.1634008449999556, 58.364569403000075), (-5.162912563999953, 58.37449778900003), (-5.155913865999935, 58.384466864000046), (-5.146473761999914, 58.394964911000045), (-5.145497199999909, 58.400051174000055), (-5.14671790299991, 58.40664297100005), (-5.146839972999942, 58.41242096600007), (-5.143055792999917, 58.41478099200003), (-5.135487433999913, 58.413763739000046), (-5.122222459999932, 58.40957265800006), (-5.116037563999953, 58.40859609600005), (-5.057972785999937, 58.38727448100008), (-5.016184048999946, 58.38812897300005), (-5.043934699999909, 58.400091864000046), (-5.0533748039999296, 58.40664297100005), (-5.0502823559999115, 58.41478099200003), (-5.0570369129999335, 58.42218659100007), (-5.066151495999918, 58.41714101800005), (-5.076161261999914, 58.414496161000045), (-5.086822068999936, 58.41388580900008), (-5.0980525379999335, 58.41478099200003), (-5.0980525379999335, 58.42218659100007), (-5.08812415299991, 58.421942450000074), (-5.085031704999949, 58.42218659100007), (-5.085031704999949, 58.429022528000075), (-5.091786261999914, 58.429754950000074), (-5.09601803299995, 58.43146393400008), (-5.105539516999954, 58.43650950700004), (-5.0501195949999556, 58.45380280200004), (-5.025542772999927, 58.447699286000045), (-4.9955948559999115, 58.43650950700004), (-5.105539516999954, 58.48737213700008), (-5.105620897999927, 58.505560614000046), (-5.103667772999927, 58.51422760600008), (-5.095855272999927, 58.518866278000075), (-5.042795376999948, 58.53546784100007), (-5.0279841789999296, 58.54409414300005), (-5.016184048999946, 58.55939362200007), (-5.0229386059999115, 58.55939362200007), (-5.015207485999952, 58.580064195000034), (-5.011586066999939, 58.60057200700004), (-5.004953579999949, 58.61774323100008), (-4.988189256999931, 58.62832265800006), (-4.859486456999946, 58.61322663000004), (-4.835926886999914, 58.60504791900007), (-4.818104620999918, 58.59292226800005), (-4.817941860999952, 58.587591864000046), (-4.81281490799995, 58.571966864000046), (-4.806752081999946, 58.55841705900008), (-4.803822394999941, 58.55939362200007), (-4.804595506999931, 58.54832591400003), (-4.807240363999938, 58.53961823100008), (-4.811634894999941, 58.53204987200007), (-4.818104620999918, 58.524644273000035), (-4.799794074999909, 58.532456773000035), (-4.791818813999953, 58.54165273600006), (-4.7899063789999445, 58.55174388200004), (-4.790150519999941, 58.562486070000034), (-4.785755988999938, 58.577053127000056), (-4.777088995999918, 58.583319403000075), (-4.771595831999946, 58.59039948100008), (-4.776519334999932, 58.60716380400004), (-4.758859829999949, 58.59910716400003), (-4.7280167309999115, 58.577460028000075), (-4.7113337879999335, 58.57306549700007), (-4.683257615999935, 58.56150950700004), (-4.670399542999917, 58.55939362200007), (-4.660023566999939, 58.555853583000044), (-4.659291144999941, 58.54755280200004), (-4.663238084999932, 58.538397528000075), (-4.6673070949999556, 58.53204987200007), (-4.6790258449999556, 58.52391185100004), (-4.714466925999943, 58.50560130400004), (-4.732411261999914, 58.480454820000034), (-4.751535610999952, 58.46161530200004), (-4.7609757149999155, 58.44798411700003), (-4.74242102799991, 58.44953034100007), (-4.682972785999937, 58.48456452000005), (-4.673451300999943, 58.48737213700008), (-4.6668595039999445, 58.50291575700004), (-4.650502081999946, 58.50995514500005), (-4.630441860999952, 58.514960028000075), (-4.612131313999953, 58.524644273000035), (-4.6010636059999115, 58.54193756700005), (-4.595122850999928, 58.56000397300005), (-4.584950324999909, 58.57416413000004), (-4.560536261999914, 58.57990143400008), (-4.517486131999931, 58.575506903000075), (-4.475493943999936, 58.565619208000044), (-4.426503058999913, 58.54637278900003), (-4.426503058999913, 58.53888580900008), (-4.427886522999927, 58.53530508000006), (-4.428700324999909, 58.53473541900007), (-4.426503058999913, 58.524644273000035), (-4.449940558999913, 58.510199286000045), (-4.464751756999931, 58.49201080900008), (-4.477650519999941, 58.47134023600006), (-4.4953507149999155, 58.44953034100007), (-4.478098110999952, 58.453558661000045), (-4.46117102799991, 58.46246979400007), (-4.43390865799995, 58.483628648000035), (-4.432728644999941, 58.487616278000075), (-4.4339900379999335, 58.49237702000005), (-4.4342341789999296, 58.49628327000005), (-4.430165167999917, 58.49799225500004), (-4.425933397999927, 58.49909088700008), (-4.385365363999938, 58.52240631700005), (-4.382394985999952, 58.524644273000035), (-4.343861456999946, 58.53888580900008), (-4.317005988999938, 58.54572174700007), (-4.306996222999942, 58.54637278900003), (-4.287180141999954, 58.54291413000004), (-4.2573136059999115, 58.52798086100006), (-4.234730597999942, 58.524644273000035), (-4.248931443999936, 58.53204987200007), (-4.238189256999931, 58.536444403000075), (-4.232248501999948, 58.54242584800005), (-4.227691209999932, 58.548163153000075), (-4.22101803299995, 58.551947333000044), (-4.209706183999913, 58.55292389500005), (-4.190785285999937, 58.54783763200004), (-4.1769913399999155, 58.54637278900003), (-4.16820227799991, 58.54938385600008), (-4.1605525379999335, 58.562567450000074), (-4.149322068999936, 58.565619208000044), (-4.111195441999939, 58.565619208000044), (-4.0902400379999335, 58.56207916900007), (-4.081450975999928, 58.561835028000075), (-4.070220506999931, 58.565619208000044), (-4.061512824999909, 58.57282135600008), (-4.048817511999914, 58.58958567900004), (-4.039784308999913, 58.59292226800005), (-4.030629035999937, 58.59406159100007), (-4.029042120999918, 58.59516022300005), (-4.027821417999917, 58.59271881700005), (-4.0092667309999115, 58.57330963700008), (-4.003773566999939, 58.57062409100007), (-3.981434699999909, 58.57306549700007), (-3.8957413399999155, 58.565619208000044), (-3.8101293609999516, 58.57306549700007), (-3.7669571609999366, 58.58372630400004), (-3.6983536449999406, 58.61115143400008), (-3.659901495999918, 58.62083567900004), (-3.597564256999931, 58.62714264500005), (-3.565500454999949, 58.626613674000055), (-3.542591925999943, 58.62083567900004), (-3.552479620999918, 58.61546458500004), (-3.556263800999943, 58.61399974200003), (-3.532053188999953, 58.60211823100008), (-3.504017706999946, 58.60333893400008), (-3.447010870999918, 58.61399974200003), (-3.3914688789999445, 58.60065338700008), (-3.364084438999953, 58.600816148000035), (-3.3508194649999155, 58.62083567900004), (-3.3677465489999463, 58.624701239000046), (-3.3860570949999556, 58.631740627000056), (-3.402251756999931, 58.64203522300005), (-3.412912563999953, 58.655585028000075), (-3.3900447259999282, 58.67177969000005), (-3.3748673169999392, 58.677069403000075), (-3.3582657539999445, 58.675482489000046), (-3.3543595039999445, 58.67015208500004), (-3.35179602799991, 58.66083405200004), (-3.34788977799991, 58.652044989000046), (-3.340565558999913, 58.648138739000046), (-3.3098852199999556, 58.648138739000046), (-3.244252081999946, 58.65900299700007), (-3.204090949999909, 58.66111888200004), (-3.1519262359999516, 58.64126211100006), (-3.118763800999943, 58.64109935100004), (-3.052886522999927, 58.648138739000046), (-3.0191137359999516, 58.640326239000046), (-3.025380011999914, 58.62213776200008), (-3.0444229809999115, 58.601629950000074), (-3.049183722999942, 58.58673737200007), (-3.060454881999931, 58.57843659100007), (-3.0754288399999155, 58.56037018400008), (-3.0845434239999463, 58.551947333000044), (-3.1107478509999282, 58.53864166900007), (-3.1180313789999445, 58.53204987200007), (-3.129261847999942, 58.51264069200005), (-3.1293025379999335, 58.49640534100007), (-3.1187231109999516, 58.484442450000074), (-3.0975235669999392, 58.47748444200005), (-3.0850723949999406, 58.47825755400004), (-3.073963995999918, 58.481675523000035), (-3.064442511999914, 58.48297760600008), (-3.056630011999914, 58.47748444200005), (-3.053334113999938, 58.46576569200005), (-3.0577286449999406, 58.45685455900008), (-3.066761847999942, 58.451157945000034), (-3.077056443999936, 58.44953034100007), (-3.0863337879999335, 58.41421133000006), (-3.129790818999936, 58.36928945500006), (-3.182769334999932, 58.32843659100007), (-3.2205297519999476, 58.305568752000056), (-3.2622777989999463, 58.292629299000055), (-3.34984290299991, 58.27610911700003), (-3.38499915299991, 58.26459381700005), (-3.438099738999938, 58.236029364000046), (-3.447010870999918, 58.22675202000005), (-3.454741990999935, 58.210150458000044), (-3.473459438999953, 58.193426825000074), (-3.515288865999935, 58.168402411000045), (-3.7350154289999296, 58.07217031500005), (-3.809193488999938, 58.05190664300005), (-3.8275040359999366, 58.04205963700008), (-3.8362524079999503, 58.03143952000005), (-3.8460994129999335, 58.01117584800005), (-3.851714647999927, 58.003892320000034), (-3.8605850899999155, 57.998928127000056), (-3.8856095039999445, 57.991400458000044), (-3.9173070949999556, 57.98745351800005), (-3.981434699999909, 57.96356842700004), (-3.990956183999913, 57.96039459800005), (-3.997670050999943, 57.954413153000075), (-4.001372850999928, 57.94611237200007), (-4.001942511999914, 57.935614325000074), (-4.018299933999913, 57.940619208000044), (-4.023060675999943, 57.943060614000046), (-4.016184048999946, 57.949286200000074), (-4.0301407539999445, 57.953192450000074), (-4.055775519999941, 57.95498281500005), (-4.0843806629999335, 57.964178778000075), (-4.0891007149999155, 57.960150458000044), (-4.0863337879999335, 57.95189036700003), (-4.0776261059999115, 57.943060614000046), (-4.062652147999927, 57.93695709800005), (-4.03148352799991, 57.93618398600006), (-4.016184048999946, 57.93219635600008), (-4.009429490999935, 57.92767975500004), (-3.988270636999914, 57.908270575000074), (-4.008941209999932, 57.88959381700005), (-4.013824022999927, 57.879339911000045), (-4.009348110999952, 57.86790599200003), (-4.025135870999918, 57.868068752000056), (-4.054839647999927, 57.874335028000075), (-4.070220506999931, 57.87417226800005), (-4.0793350899999155, 57.87026601800005), (-4.0969132149999155, 57.85736725500004), (-4.1049698559999115, 57.85370514500005), (-4.132923956999946, 57.85415273600006), (-4.190419074999909, 57.87006256700005), (-4.218169725999928, 57.87417226800005), (-4.298898891999954, 57.86277903900003), (-4.3209529289999296, 57.87103913000004), (-4.353179490999935, 57.89520905200004), (-4.3723038399999155, 57.90448639500005), (-4.392404751999948, 57.908270575000074), (-4.339588995999918, 57.86570872600004), (-4.307728644999941, 57.85146719000005), (-4.269398566999939, 57.846869208000044), (-4.229074673999946, 57.85724518400008), (-4.2082413399999155, 57.85919830900008), (-4.190581834999932, 57.85028717700004), (-4.173451300999943, 57.83901601800005), (-4.1497289699999556, 57.82982005400004), (-4.1334529289999296, 57.830145575000074), (-4.1390681629999335, 57.846869208000044), (-4.0750626289999445, 57.82318756700005), (-4.0399063789999445, 57.81818268400008), (-3.9835098949999406, 57.84235260600008), (-3.9514867829999503, 57.838324286000045), (-3.933705206999946, 57.82566966400003), (-3.9473363919999542, 57.81268952000005), (-3.914784308999913, 57.80768463700008), (-3.877674933999913, 57.81671784100007), (-3.8418676419999542, 57.83490631700005), (-3.813547329999949, 57.857123114000046), (-3.798451300999943, 57.866522528000075), (-3.786040818999936, 57.86542389500005), (-3.779449022999927, 57.85565827000005), (-3.782215949999909, 57.83942291900007), (-3.790028449999909, 57.83071523600006), (-3.92601477799991, 57.734808661000045), (-3.948841925999943, 57.72492096600007), (-3.975209113999938, 57.70327383000006), (-3.988270636999914, 57.69599030200004), (-4.00804602799991, 57.693793036000045), (-4.02367102799991, 57.69782135600008), (-4.0286352199999556, 57.70770905200004), (-4.016184048999946, 57.72333405200004), (-4.042958136999914, 57.73729075700004), (-4.077951626999948, 57.73029205900008), (-4.155344204999949, 57.692572333000044), (-4.168568488999938, 57.689439195000034), (-4.1939998039999296, 57.68854401200008), (-4.2592667309999115, 57.67869700700004), (-4.277821417999917, 57.68060944200005), (-4.294789191999939, 57.68016185100004), (-4.302154100999928, 57.66860586100006), (-4.30882727799991, 57.65485260600008), (-4.324045376999948, 57.64826080900008), (-4.33820553299995, 57.64508698100008), (-4.4031876289999445, 57.60952383000006), (-4.412180141999954, 57.60297272300005), (-4.4203181629999335, 57.592962958000044), (-4.428456183999913, 57.57754140800006), (-4.423451300999943, 57.57680898600006), (-4.409901495999918, 57.582464911000045), (-4.379872199999909, 57.58934153900003), (-4.365101691999939, 57.59723541900007), (-4.3510636059999115, 57.60736725500004), (-4.340809699999909, 57.617173570000034), (-4.328724738999938, 57.626288153000075), (-4.283111131999931, 57.64142487200007), (-4.2445369129999335, 57.66303131700005), (-4.201893683999913, 57.674994208000044), (-4.1937556629999335, 57.67552317900004), (-4.182240363999938, 57.67279694200005), (-4.169016079999949, 57.663763739000046), (-4.118723110999952, 57.65770091400003), (-4.096791144999941, 57.65810781500005), (-4.0807185539999296, 57.66498444200005), (-4.068104620999918, 57.672308661000045), (-4.0246475899999155, 57.687201239000046), (-4.009348110999952, 57.68854401200008), (-4.004505988999938, 57.67597077000005), (-4.025257941999939, 57.65521881700005), (-4.0541886059999115, 57.63572825700004), (-4.083404100999928, 57.62335846600007), (-4.118560350999928, 57.592962958000044), (-4.11546790299991, 57.58783600500004), (-4.112294074999909, 57.58413320500006), (-4.1088761059999115, 57.58144765800006), (-4.1049698559999115, 57.579291083000044), (-4.151356574999909, 57.57684967700004), (-4.170643683999913, 57.570746161000045), (-4.187489386999914, 57.55882396000004), (-4.178089972999942, 57.54954661700003), (-4.184925910999937, 57.548163153000075), (-4.207997199999909, 57.552069403000075), (-4.262603318999936, 57.552069403000075), (-4.262603318999936, 57.544582424000055), (-4.233957485999952, 57.54511139500005), (-4.220285610999952, 57.543402411000045), (-4.207997199999909, 57.538397528000075), (-4.226307745999918, 57.51544830900008), (-4.237456834999932, 57.50531647300005), (-4.248931443999936, 57.49746328300006), (-4.212798631999931, 57.492173570000034), (-4.1948136059999115, 57.49160390800006), (-4.173898891999954, 57.49746328300006), (-4.157622850999928, 57.50849030200004), (-4.150054490999935, 57.51504140800006), (-4.149322068999936, 57.51788971600007), (-4.126779751999948, 57.518866278000075), (-4.116200324999909, 57.52179596600007), (-4.097523566999939, 57.53668854400007), (-4.082997199999909, 57.54441966400003), (-4.067290818999936, 57.54995351800005), (-4.0531306629999335, 57.552069403000075), (-4.034982876999948, 57.55687083500004), (-4.046457485999952, 57.56785716400003), (-4.083851691999939, 57.58612702000005), (-4.056019660999937, 57.585150458000044), (-3.9643448559999115, 57.592962958000044), (-3.8682755199999406, 57.587876695000034), (-3.8374731109999516, 57.592962958000044), (-3.6848038399999155, 57.65444570500006), (-3.625152147999927, 57.66193268400008), (-3.632557745999918, 57.65094635600008), (-3.637684699999909, 57.64622630400004), (-3.6456192699999406, 57.64142487200007), (-3.632476365999935, 57.635646877000056), (-3.6196182929999168, 57.63621653900003), (-3.606068488999938, 57.63947174700007), (-3.590972459999932, 57.64142487200007), (-3.61156165299991, 57.66811758000006), (-3.5747777989999463, 57.66111888200004), (-3.55492102799991, 57.659857489000046), (-3.535755988999938, 57.66193268400008), (-3.521473761999914, 57.66779205900008), (-3.5054418609999516, 57.67865631700005), (-3.4959610669999392, 57.69135163000004), (-3.501698370999918, 57.702826239000046), (-3.491851365999935, 57.71312083500004), (-3.4828181629999335, 57.71401601800005), (-3.4730525379999335, 57.711004950000074), (-3.460682745999918, 57.70966217700004), (-3.447865363999938, 57.71246979400007), (-3.4212540359999366, 57.72138092700004), (-3.409169074999909, 57.72333405200004), (-3.2847387359999516, 57.72044505400004), (-3.2100723949999406, 57.69399648600006), (-3.0786840489999463, 57.66941966400003), (-3.034901495999918, 57.66860586100006), (-2.994496222999942, 57.67552317900004), (-2.932687954999949, 57.69961172100005), (-2.9160863919999542, 57.702826239000046), (-2.75804602799991, 57.702826239000046), (-2.7512100899999155, 57.70062897300005), (-2.741118943999936, 57.69086334800005), (-2.731068488999938, 57.68854401200008), (-2.719878709999932, 57.690619208000044), (-2.711537238999938, 57.69399648600006), (-2.7035212879999335, 57.69472890800006), (-2.6929418609999516, 57.68854401200008), (-2.658924933999913, 57.69745514500005), (-2.573394334999932, 57.68146393400008), (-2.541981574999909, 57.68235911700003), (-2.526112433999913, 57.66860586100006), (-2.5181371739999463, 57.67011139500005), (-2.5110570949999556, 57.677801825000074), (-2.497954881999931, 57.68235911700003), (-2.4800512359999516, 57.68121979400007), (-2.4328507149999155, 57.66811758000006), (-2.425526495999918, 57.67572663000004), (-2.4177953769999476, 57.674261786000045), (-2.4087621739999463, 57.669623114000046), (-2.398060675999943, 57.66811758000006), (-2.3865860669999392, 57.671576239000046), (-2.369496222999942, 57.680568752000056), (-2.360503709999932, 57.68235911700003), (-2.3410538399999155, 57.675848700000074), (-2.3289688789999445, 57.67405833500004), (-2.3235977859999366, 57.678941148000035), (-2.32054602799991, 57.68455638200004), (-2.313384568999936, 57.68992747600004), (-2.3040665359999366, 57.69399648600006), (-2.295643683999913, 57.69599030200004), (-2.274322068999936, 57.69383372600004), (-2.230132615999935, 57.67914459800005), (-2.209950324999909, 57.67552317900004), (-2.1840714179999168, 57.67845286700003), (-2.1243383449999556, 57.702826239000046), (-2.108143683999913, 57.70498281500005), (-1.9976700509999432, 57.702826239000046), (-1.9969376289999445, 57.69904205900008), (-1.990834113999938, 57.69037506700005), (-1.982167120999918, 57.68109772300005), (-1.9735001289999445, 57.67552317900004), (-1.961293097999942, 57.674709377000056), (-1.9447322259999282, 57.68256256700005), (-1.9324845039999445, 57.68235911700003), (-1.9256892569999309, 57.678168036000045), (-1.914214647999927, 57.66474030200004), (-1.8294571609999366, 57.61347077000005), (-1.820464647999927, 57.59634023600006), (-1.817005988999938, 57.578192450000074), (-1.8113907539999445, 57.56049225500004), (-1.7960098949999406, 57.544582424000055), (-1.7960098949999406, 57.538397528000075), (-1.8000382149999155, 57.52586497600004), (-1.7895401679999168, 57.514837958000044), (-1.7611384759999282, 57.49746328300006), (-1.7753800119999141, 57.496527411000045), (-1.7821345689999362, 57.48899974200003), (-1.7812393869999141, 57.48041413000004), (-1.7717179029999102, 57.476263739000046), (-1.7593481109999516, 57.47357819200005), (-1.7659399079999503, 57.46743398600006), (-1.7891739569999459, 57.45644765800006), (-1.8301488919999542, 57.42617422100005), (-1.8474828769999476, 57.40814850500004), (-1.849964972999942, 57.39435455900008), (-1.9544978509999282, 57.341131903000075), (-1.9802953769999476, 57.31928131700005), (-2.044667120999918, 57.22650788000004), (-2.068511522999927, 57.17462799700007), (-2.074126756999931, 57.15420156500005), (-2.0714005199999406, 57.13556549700007), (-2.052357550999943, 57.12742747600004), (-2.0493057929999168, 57.118841864000046), (-2.065256313999953, 57.10053131700005), (-2.0658259759999282, 57.09983958500004), (-2.156158006999931, 57.020697333000044), (-2.1869197259999282, 56.98468659100007), (-2.200103318999936, 56.94871653900003), (-2.1971329419999392, 56.94025299700007), (-2.1912328769999476, 56.93414948100008), (-2.186268683999913, 56.92674388200004), (-2.1863907539999445, 56.91453685100004), (-2.191314256999931, 56.90892161700003), (-2.209706183999913, 56.895819403000075), (-2.213693813999953, 56.890692450000074), (-2.219878709999932, 56.87262604400007), (-2.23460852799991, 56.861395575000074), (-2.2689509759999282, 56.84634023600006), (-2.295806443999936, 56.82526276200008), (-2.3198136059999115, 56.80158112200007), (-2.336089647999927, 56.79083893400008), (-2.3918350899999155, 56.771185614000046), (-2.4086807929999168, 56.762925523000035), (-2.4264216789999296, 56.751288153000075), (-2.4359431629999335, 56.74038320500006), (-2.4407445949999556, 56.73484935100004), (-2.4516495429999168, 56.69098541900007), (-2.4637345039999445, 56.67877838700008), (-2.4774063789999445, 56.66868724200003), (-2.487456834999932, 56.65387604400007), (-2.4875382149999155, 56.64606354400007), (-2.481271938999953, 56.63239166900007), (-2.480620897999927, 56.62653229400007), (-2.4861954419999392, 56.619574286000045), (-2.504058397999927, 56.60883209800005), (-2.514556443999936, 56.591498114000046), (-2.530018683999913, 56.58075592700004), (-2.623768683999913, 56.543402411000045), (-2.6409399079999503, 56.522365627000056), (-2.6613663399999155, 56.51422760600008), (-2.6997777989999463, 56.50364817900004), (-2.708729620999918, 56.49599844000005), (-2.7276505199999406, 56.46954987200007), (-2.737294074999909, 56.46702708500004), (-2.74437415299991, 56.46954987200007), (-2.752308722999942, 56.47361888200004), (-2.764800584999932, 56.47573476800005), (-2.819325324999909, 56.47129954600007), (-3.055653449999909, 56.45213450700004), (-3.0606176419999542, 56.45172760600008), (-3.099273240999935, 56.44188060100004), (-3.1339005199999406, 56.426947333000044), (-3.238189256999931, 56.36774323100008), (-3.280181443999936, 56.35789622600004), (-3.3234757149999155, 56.36591217700004), (-3.311512824999909, 56.35651276200008), (-3.294016079999949, 56.352769273000035), (-3.2515356109999516, 56.352850653000075), (-3.230620897999927, 56.35602448100008), (-3.188384568999936, 56.37018463700008), (-3.149566209999932, 56.37555573100008), (-2.950266079999949, 56.43187083500004), (-2.9399307929999168, 56.43854401200008), (-2.930653449999909, 56.44806549700007), (-2.909087693999936, 56.45571523600006), (-2.88499915299991, 56.45799388200004), (-2.867909308999913, 56.45184967700004), (-2.8500870429999168, 56.44204336100006), (-2.8147680329999503, 56.44041575700004), (-2.8028051419999542, 56.42796458500004), (-2.800892706999946, 56.40892161700003), (-2.808257615999935, 56.391058661000045), (-2.8216039699999556, 56.376166083000044), (-2.837554490999935, 56.36591217700004), (-2.8129776679999168, 56.36591217700004), (-2.809193488999938, 56.36286041900007), (-2.8047582669999542, 56.34910716400003), (-2.8028051419999542, 56.345404364000046), (-2.7914932929999168, 56.34247467700004), (-2.7826228509999282, 56.34162018400008), (-2.7752579419999392, 56.33942291900007), (-2.768625454999949, 56.33234284100007), (-2.6771541009999282, 56.32843659100007), (-2.655262824999909, 56.32217031500005), (-2.621205206999946, 56.30442942900004), (-2.613189256999931, 56.30190664300005), (-2.5768123039999296, 56.28392161700003), (-2.5768123039999296, 56.277777411000045), (-2.6301163399999155, 56.24852122600004), (-2.648345506999931, 56.22870514500005), (-2.672027147999927, 56.22239817900004), (-2.7202042309999115, 56.21629466400003), (-2.7835994129999335, 56.19196198100008), (-2.8061417309999115, 56.188381252000056), (-2.8307185539999296, 56.190741278000075), (-2.8920792309999115, 56.20888906500005), (-2.940052863999938, 56.209418036000045), (-2.9643448559999115, 56.20563385600008), (-2.9746801419999542, 56.19830963700008), (-2.982411261999914, 56.189113674000055), (-3.0355525379999335, 56.16791413000004), (-3.0910538399999155, 56.13226959800005), (-3.107533331999946, 56.12689850500004), (-3.127552863999938, 56.12287018400008), (-3.138295050999943, 56.112209377000056), (-3.152251756999931, 56.07851797100005), (-3.1635636059999115, 56.06386953300006), (-3.1783748039999296, 56.05809153900003), (-3.2484431629999335, 56.055975653000075), (-3.268381313999953, 56.05093008000006), (-3.3030492829999503, 56.037543036000045), (-3.342681443999936, 56.02716705900008), (-3.381825324999909, 56.02338288000004), (-3.420969204999949, 56.02488841400003), (-3.5825902989999463, 56.05174388200004), (-3.671498175999943, 56.050848700000074), (-3.710031704999949, 56.05809153900003), (-3.7454320949999556, 56.07221100500004), (-3.7464900379999335, 56.072780666000085), (-3.782215949999909, 56.09218984600005), (-3.8031306629999335, 56.107123114000046), (-3.817005988999938, 56.11225006700005), (-3.8374731109999516, 56.112616278000075), (-3.8374731109999516, 56.10643138200004), (-3.777699347999942, 56.08283112200007), (-3.769154425999943, 56.07514069200005), (-3.7608536449999406, 56.07245514500005), (-3.7264298169999392, 56.03803131700005), (-3.721424933999913, 56.03070709800005), (-3.712635870999918, 56.028998114000046), (-3.693470831999946, 56.03115469000005), (-3.6866348949999406, 56.03070709800005), (-3.6795548169999392, 56.025458075000074), (-3.674794074999909, 56.01870351800005), (-3.6682836579999503, 56.01276276200008), (-3.656239386999914, 56.010199286000045), (-3.599720831999946, 56.017238674000055), (-3.5773819649999155, 56.01703522300005), (-3.405425584999932, 55.98973216400003), (-3.3582657539999445, 55.98973216400003), (-3.340891079999949, 55.99445221600007), (-3.331044074999909, 55.99408600500004), (-3.320423956999946, 55.986029364000046), (-3.303456183999913, 55.97760651200008), (-3.121815558999913, 55.96930573100008), (-3.1147354809999115, 55.966131903000075), (-3.096831834999932, 55.95197174700007), (-3.090728318999936, 55.94818756700005), (-3.078236456999946, 55.94684479400007), (-3.0156957669999542, 55.950506903000075), (-2.9399307929999168, 55.96930573100008), (-2.9166560539999296, 55.98061758000006), (-2.900054490999935, 55.996161200000074), (-2.8828832669999542, 56.00849030200004), (-2.8579809239999463, 56.010199286000045), (-2.863636847999942, 56.02228424700007), (-2.8663223949999406, 56.02676015800006), (-2.8709610669999392, 56.03070709800005), (-2.8527725899999155, 56.03978099200003), (-2.823150193999936, 56.059759833000044), (-2.8028051419999542, 56.06484609600005), (-2.635121222999942, 56.05805084800005), (-2.615956183999913, 56.053168036000045), (-2.587554490999935, 56.030951239000046), (-2.569406704999949, 56.02448151200008), (-2.57835852799991, 56.00800202000005), (-2.583648240999935, 56.00275299700007), (-2.5695694649999155, 55.99994538000004), (-2.5440567699999406, 56.00267161700003), (-2.528960740999935, 55.99656810100004), (-2.5248103509999282, 56.00055573100008), (-2.514556443999936, 56.00576406500005), (-2.507923956999946, 56.010199286000045), (-2.4932755199999406, 56.00153229400007), (-2.4525040359999366, 55.985256252000056), (-2.4143774079999503, 55.97833893400008), (-2.3509415359999366, 55.94818756700005), (-2.307769334999932, 55.93500397300005), (-2.146839972999942, 55.917303778000075), (-2.1380102199999556, 55.91461823100008), (-2.132557745999918, 55.90643952000005), (-2.13109290299991, 55.89720286700003), (-2.1287735669999392, 55.88979726800005), (-2.1209610669999392, 55.886704820000034), (-2.0994766919999392, 55.88178131700005), (-2.080189581999946, 55.86937083500004), (-2.0228572259999282, 55.80548737200007), (-2.009673631999931, 55.79083893400008), (-1.8778376939999362, 55.69489166900007), (-1.8631892569999309, 55.67161692900004), (-1.8530981109999516, 55.65932851800005), (-1.8315323559999115, 55.65070221600007), (-1.8260798819999309, 55.64362213700008), (-1.8216853509999282, 55.636419989000046), (-1.8164770169999542, 55.632879950000074), (-1.8071182929999168, 55.63450755400004), (-1.8007706369999141, 55.63922760600008), (-1.7962947259999282, 55.644232489000046), (-1.7925919259999432, 55.646551825000074), (-1.781402147999927, 55.64565664300005), (-1.768625454999949, 55.641913153000075), (-1.7564998039999296, 55.63361237200007), (-1.7476700509999432, 55.619208075000074), (-1.7679744129999335, 55.619208075000074), (-1.7679744129999335, 55.612982489000046), (-1.7559708319999459, 55.60887278900003), (-1.720855272999927, 55.614569403000075), (-1.6991267569999309, 55.612982489000046), (-1.6308487619999141, 55.58510976800005), (-1.6308487619999141, 55.57827383000006), (-1.6363419259999432, 55.57168203300006), (-1.6346736319999309, 55.56439850500004), (-1.6276749339999128, 55.55711497600004), (-1.6171768869999141, 55.55027903900003), (-1.6308487619999141, 55.544134833000044), (-1.6308487619999141, 55.53729889500005), (-1.6222224599999322, 55.534084377000056), (-1.6029353509999282, 55.52362702000005), (-1.6029353509999282, 55.516791083000044), (-1.6113175119999141, 55.50804271000004), (-1.6063533189999362, 55.503241278000075), (-1.5963435539999296, 55.49990469000005), (-1.5893448559999115, 55.49567291900007), (-1.5849503249999088, 55.483710028000075), (-1.5813695949999556, 55.41665273600006), (-1.5831192699999406, 55.40692780200004), (-1.5882869129999335, 55.39057038000004), (-1.5891007149999155, 55.385199286000045), (-1.5893448559999115, 55.37653229400007), (-1.5833227199999556, 55.354722398000035), (-1.5585831369999141, 55.32892487200007), (-1.5558162099999322, 55.31134674700007), (-1.5570369129999335, 55.306626695000034), (-1.5589900379999335, 55.302069403000075), (-1.5619197259999282, 55.29779694200005), (-1.5657445949999556, 55.29364655200004), (-1.570057745999918, 55.28620026200008), (-1.5682266919999392, 55.27960846600007), (-1.5642797519999476, 55.27326080900008), (-1.5620824859999516, 55.26666901200008), (-1.5564672519999476, 55.25503164300005), (-1.5439346999999088, 55.24388255400004), (-1.5209854809999115, 55.229396877000056), (-1.5291641919999392, 55.21625397300005), (-1.5240779289999296, 55.21010976800005), (-1.514271613999938, 55.204779364000046), (-1.507964647999927, 55.194647528000075), (-1.510812954999949, 55.184759833000044), (-1.5175675119999141, 55.176214911000045), (-1.5221248039999296, 55.16746653900003), (-1.517933722999942, 55.157131252000056), (-1.5007218089999128, 55.141791083000044), (-1.4959610669999392, 55.13458893400008), (-1.492543097999942, 55.112982489000046), (-1.4837540359999366, 55.09170156500005), (-1.4800919259999432, 55.08539459800005), (-1.4762263659999348, 55.083644924000055), (-1.4632869129999335, 55.08030833500004), (-1.459584113999938, 55.07859935100004), (-1.458078579999949, 55.07575104400007), (-1.4547013009999432, 55.067572333000044), (-1.438303188999953, 55.042303778000075), (-1.4291886059999115, 55.033270575000074), (-1.4240616529999102, 55.02435944200005), (-1.4195043609999516, 55.011704820000034), (-1.412912563999953, 55.00031159100007), (-1.4015193349999322, 54.995428778000075), (-1.398182745999918, 54.992621161000045), (-1.3702286449999406, 54.97553131700005), (-1.3626602859999366, 54.96478913000004), (-1.3617244129999335, 54.958685614000046), (-1.3635147779999102, 54.95425039300005), (-1.3640030589999128, 54.94818756700005), (-1.3628637359999516, 54.92593008000006), (-1.3603409499999088, 54.91705963700008), (-1.3531388009999432, 54.91351959800005), (-1.355824347999942, 54.904282945000034), (-1.2967830069999309, 54.77993398600006), (-1.2754613919999542, 54.74843984600005), (-1.2404679029999102, 54.72166575700004), (-1.2250870429999168, 54.71503327000005), (-1.172230597999942, 54.701239325000074), (-1.172230597999942, 54.693793036000045), (-1.1926163399999155, 54.693793036000045), (-1.192453579999949, 54.68927643400008), (-1.1907852859999366, 54.68618398600006), (-1.1851700509999432, 54.68008047100005), (-1.1827286449999406, 54.67206452000005), (-1.1788223949999406, 54.66474030200004), (-1.172922329999949, 54.65835195500006), (-1.1647029289999296, 54.652777411000045), (-1.172922329999949, 54.644191799000055), (-1.1824845039999445, 54.63922760600008), (-1.2062882149999155, 54.63296133000006), (-1.203724738999938, 54.62571849200003), (-1.1988419259999432, 54.62156810100004), (-1.1918025379999335, 54.61977773600006), (-1.1821182929999168, 54.61928945500006), (-1.1793513659999348, 54.62091705900008), (-1.1784561839999128, 54.624212958000044), (-1.1769913399999155, 54.62677643400008), (-1.172230597999942, 54.62612539300005), (-1.1695857409999348, 54.62360260600008), (-1.1654353509999282, 54.61871979400007), (-1.1629532539999445, 54.61395905200004), (-1.1647029289999296, 54.61180247600004), (-1.1526586579999503, 54.61318594000005), (-1.1467179029999102, 54.618475653000075), (-1.1380509109999366, 54.646551825000074), (-1.1205948559999115, 54.63300202000005), (-1.1036270819999459, 54.624660549000055), (-1.0842179029999102, 54.620428778000075), (-1.042062954999949, 54.61709219000005), (-0.9934789699999556, 54.59813060100004), (-0.7879125639999529, 54.56077708500004), (-0.5629776679999168, 54.47736237200007), (-0.5346573559999115, 54.461004950000074), (-0.5228572259999282, 54.44708893400008), (-0.5217992829999503, 54.43805573100008), (-0.5235896479999269, 54.43024323100008), (-0.5204158189999362, 54.42007070500006), (-0.5099991529999102, 54.41156647300005), (-0.47679602799991017, 54.39720286700003), (-0.46275794199993925, 54.38898346600007), (-0.4477432929999168, 54.37319570500006), (-0.43057206899993616, 54.349310614000046), (-0.4184464179999168, 54.32404205900008), (-0.41803951699995423, 54.303941148000035), (-0.4145401679999168, 54.297308661000045), (-0.4090063139999529, 54.29075755400004), (-0.4011938139999529, 54.28563060100004), (-0.39073645699994586, 54.28351471600007), (-0.3948868479999419, 54.273138739000046), (-0.39757239499994057, 54.269191799000055), (-0.3892716139999379, 54.26406484600005), (-0.3704727859999366, 54.247707424000055), (-0.3627823559999115, 54.24249909100007), (-0.3220108709999181, 54.23607005400004), (-0.31191972599992823, 54.231634833000044), (-0.30011959499995555, 54.224676825000074), (-0.2770889959999181, 54.21775950700004), (-0.26960201699995423, 54.20766836100006), (-0.26256262899994454, 54.18109772300005), (-0.2603653639999379, 54.176988023000035), (-0.2338761059999115, 54.16046784100007), (-0.11143958199994586, 54.13157786700003), (-0.07551021999995555, 54.11212799700007), (-0.16392981699993925, 54.08340078300006), (-0.1946915359999366, 54.06232330900008), (-0.2194718089999128, 54.022772528000075), (-0.1974177729999269, 53.99481842700004), (-0.1686905589999128, 53.929348049000055), (-0.1511124339999128, 53.899318752000056), (-0.045155402999910166, 53.801214911000045), (0.13347415500004445, 53.642645575000074), (0.1492619150000678, 53.60960521000004), (0.13689212300005238, 53.57713450700004), (0.13119550900006516, 53.573431708000044), (0.1096297540000819, 53.56289297100005), (0.1313582690000885, 53.59369538000004), (0.1359969410000872, 53.610663153000075), (0.12020918100006384, 53.61810944200005), (0.09945722700007309, 53.622300523000035), (0.056162957000083225, 53.64126211100006), (0.034515821000070446, 53.64606354400007), (0.014821811000047092, 53.64325592700004), (-0.023915167999916775, 53.62885163000004), (-0.04503333199994586, 53.62555573100008), (-0.06940670499994894, 53.626939195000034), (-0.09227454299991678, 53.63104889500005), (-0.11261959499995555, 53.63751862200007), (-0.1300349599999322, 53.64606354400007), (-0.2253311839999128, 53.719916083000044), (-0.2603653639999379, 53.73541901200008), (-0.2956436839999128, 53.738796291000085), (-0.3051651679999168, 53.73969147300005), (-0.4311417309999115, 53.71430084800005), (-0.4496964179999168, 53.71430084800005), (-0.5104874339999128, 53.71430084800005), (-0.5444229809999115, 53.70945872600004), (-0.5515030589999128, 53.71116771000004), (-0.5762426419999542, 53.72565338700008), (-0.5791723299999489, 53.72797272300005), (-0.6370336579999503, 53.73200104400007), (-0.6583552729999269, 53.72797272300005), (-0.7264705069999309, 53.70062897300005), (-0.7173559239999463, 53.69867584800005), (-0.7085668609999516, 53.695746161000045), (-0.7001846999999088, 53.691839911000045), (-0.6924535799999489, 53.68699778900003), (-0.6774796209999181, 53.702826239000046), (-0.6498103509999282, 53.710598049000055), (-0.6195369129999335, 53.71185944200005), (-0.5961807929999168, 53.70807526200008), (-0.5554906889999529, 53.69049713700008), (-0.5447485019999476, 53.683579820000034), (-0.5299373039999296, 53.67767975500004), (-0.5140274729999419, 53.681301174000055), (-0.48631751199991413, 53.69448476800005), (-0.3072403639999379, 53.71426015800006), (-0.27936764199995423, 53.707098700000074), (-0.2603653639999379, 53.68699778900003), (-0.1886287099999322, 53.620428778000075), (-0.1440323559999115, 53.606634833000044), (-0.11318925699993088, 53.58462148600006), (-0.09593665299991017, 53.57713450700004), (-0.06094316299993352, 53.57396067900004), (-0.0466202459999181, 53.570379950000074), (9.199300006912381e-05, 53.53534577000005), (0.0959578790000819, 53.488348700000074), (0.11508222700007309, 53.48322174700007), (0.1340438160000872, 53.48061758000006), (0.15186608200008322, 53.475816148000035), (0.1678166020000731, 53.464504299000055), (0.17090905000009116, 53.457017320000034), (0.1731063160000872, 53.44676341400003), (0.17579186300008587, 53.43768952000005), (0.1814884770000731, 53.43374258000006), (0.1906030610000471, 53.43187083500004), (0.21949303500008455, 53.41950104400007), (0.21192467500009116, 53.41266510600008), (0.2293400400000678, 53.40477122600004), (0.24488366000008455, 53.39093659100007), (0.2561141290000819, 53.375067450000074), (0.26042728000004445, 53.36147695500006), (0.34213300900006516, 53.22630442900004), (0.35621178500008455, 53.18854401200008), (0.3566186860000471, 53.145738023000035), (0.3357853520000731, 53.093451239000046), (0.32984459700008983, 53.08649323100008), (0.31869550900006516, 53.083685614000046), (0.29883873800008587, 53.08120351800005), (0.2824813160000872, 53.07485586100006), (0.19304446700004974, 53.02008698100008), (0.17448978000004445, 53.01544830900008), (0.16081790500004445, 53.008978583000044), (0.08212324300006912, 52.938666083000044), (0.061167839000063395, 52.924994208000044), (0.03760826900008851, 52.919175523000035), (0.022146030000044448, 52.91258372600004), (0.008555535000084546, 52.89862702000005), (0.010264519000088512, 52.88646067900004), (0.04066002700005811, 52.88507721600007), (0.09253991000008455, 52.89252350500004), (0.10564212300005238, 52.88934967700004), (0.13347415500004445, 52.87518952000005), (0.14714603000004445, 52.87201569200005), (0.17090905000009116, 52.86212799700007), (0.22242272200008983, 52.813666083000044), (0.24675540500004445, 52.79572174700007), (0.2644962900000678, 52.80369700700004), (0.2856551440000885, 52.805568752000056), (0.32553144600007045, 52.803168036000045), (0.34180748800008587, 52.79743073100008), (0.36988366000008455, 52.77301666900007), (0.38453209700008983, 52.76837799700007), (0.38453209700008983, 52.77521393400008), (0.37924238400006516, 52.79083893400008), (0.39942467500009116, 52.80951569200005), (0.42554772200008983, 52.827378648000035), (0.4386499360000471, 52.840725002000056), (0.44402103000004445, 52.86505768400008), (0.45671634200004974, 52.89199453300006), (0.47234134200004974, 52.916449286000045), (0.48568769600007045, 52.93349844000005), (0.5202742850000845, 52.95526764500005), (0.5695906910000872, 52.96930573100008), (0.6233830090000652, 52.97565338700008), (0.6718856130000859, 52.97443268400008), (0.6643986340000652, 52.98187897300005), (0.6847436860000471, 52.986395575000074), (0.7067977220000898, 52.98322174700007), (0.7291772800000444, 52.97748444200005), (0.7504988940000885, 52.97443268400008), (0.8357039720000898, 52.97443268400008), (0.8754988940000885, 52.96816640800006), (0.9210718110000471, 52.95465729400007), (0.9684350920000497, 52.94749583500004), (1.013926629000082, 52.960150458000044), (1.0034285820000832, 52.96474844000005), (0.9915470710000704, 52.96747467700004), (0.9790145190000885, 52.968410549000055), (0.9660750660000872, 52.96759674700007), (0.9660750660000872, 52.97443268400008), (1.2746688160000872, 52.92918528900003), (1.3960067070000832, 52.89142487200007), (1.6442163420000497, 52.775824286000045), (1.6733504570000832, 52.75568268400008), (1.6970320970000898, 52.73102448100008), (1.7158309250000912, 52.68374258000006), (1.7341414720000898, 52.65460846600007), (1.747243686000047, 52.62518952000005), (1.7407332690000885, 52.60390859600005), (1.7468367850000845, 52.58852773600006), (1.7487085300000444, 52.568793036000045), (1.7475692070000832, 52.53278229400007), (1.7711694670000497, 52.48590729400007), (1.7671004570000832, 52.47695547100005), (1.7544051440000885, 52.46735260600008), (1.7292586600000845, 52.41559479400007), (1.7301538420000497, 52.405910549000055), (1.7278751960000704, 52.39630768400008), (1.6836043630000859, 52.32453034100007), (1.6518660820000832, 52.289129950000074), (1.6411238940000885, 52.28180573100008), (1.6305444670000497, 52.27045319200005), (1.6282658210000704, 52.24481842700004), (1.6308699880000859, 52.19977448100008), (1.6254988940000885, 52.18036530200004), (1.6074324880000859, 52.14594147300005), (1.6035262380000859, 52.127834377000056), (1.5892033210000704, 52.100816148000035), (1.5875757170000497, 52.08698151200008), (1.582286004000082, 52.08148834800005), (1.5036727220000898, 52.060980536000045), (1.4868270190000885, 52.04901764500005), (1.4720158210000704, 52.05621979400007), (1.4668074880000859, 52.04800039300005), (1.4638778000000912, 52.035142320000034), (1.4558211600000845, 52.028509833000044), (1.4489852220000898, 52.02496979400007), (1.4248153000000912, 52.00185781500005), (1.3548283210000704, 51.95404694200005), (1.3435164720000898, 51.94285716400009), (1.332286004000082, 51.94009023600006), (1.2644149100000845, 51.99437083500004), (1.2348738940000885, 52.00031159100007), (1.1852319670000497, 52.025091864000046), (1.1578882170000497, 52.028509833000044), (1.1578882170000497, 52.02167389500005), (1.1935327480000524, 52.00079987200007), (1.2143660820000832, 51.991441148000035), (1.2602645190000885, 51.984808661000045), (1.2707625660000872, 51.98151276200008), (1.2751570970000898, 51.976996161000045), (1.2744246750000912, 51.96088288000004), (1.2710067070000832, 51.95644765800006), (1.2507430350000845, 51.95962148600006), (1.2389429050000444, 51.958644924000055), (1.2176212900000678, 51.954331773000035), (1.2057397800000444, 51.95343659100007), (1.193207227000073, 51.955511786000045), (1.1652938160000872, 51.96702708500004), (1.1430770190000885, 51.966050523000035), (1.0944930350000845, 51.955959377000056), (1.0691024100000845, 51.95343659100007), (1.0954695970000898, 51.945746161000045), (1.2620548840000652, 51.939154364000046), (1.2819930350000845, 51.946600653000075), (1.278493686000047, 51.92792389500005), (1.1995548840000652, 51.87767161700003), (1.2122501960000704, 51.87164948100008), (1.2278751960000704, 51.86737702000005), (1.2644149100000845, 51.86399974200003), (1.2747501960000704, 51.870306708000044), (1.2822371750000912, 51.880560614000046), (1.2866317070000832, 51.88165924700007), (1.288259311000047, 51.860581773000035), (1.2763778000000912, 51.84479401200008), (1.2192488940000885, 51.811835028000075), (1.167816602000073, 51.790228583000044), (1.1354272800000444, 51.78172435100004), (1.0654403000000912, 51.77529531500005), (1.0466414720000898, 51.777044989000046), (1.0372827480000524, 51.78217194200005), (1.021332227000073, 51.80255768400008), (0.9887801440000885, 51.83026764500005), (0.9798283210000704, 51.84357330900008), (0.9770613940000885, 51.82461172100005), (0.9620874360000471, 51.813788153000075), (0.9251408210000704, 51.80255768400008), (0.8942977220000898, 51.78461334800005), (0.8869735040000819, 51.782131252000056), (0.8864038420000497, 51.776678778000075), (0.8834741550000444, 51.76471588700008), (0.8789168630000859, 51.75275299700007), (0.8737085300000444, 51.747300523000035), (0.8619897800000444, 51.74555084800005), (0.8459578790000819, 51.736761786000045), (0.8357039720000898, 51.733710028000075), (0.8234969410000872, 51.73383209800005), (0.8014429050000444, 51.73969147300005), (0.7917586600000845, 51.74115631700005), (0.7671004570000832, 51.739447333000044), (0.7208764980000524, 51.728176174000055), (0.6985783210000704, 51.720038153000075), (0.7142033210000704, 51.715277411000045), (0.7324324880000859, 51.713771877000056), (0.7492781910000872, 51.70848216400009), (0.7607528000000912, 51.692694403000075), (0.7890731130000859, 51.710150458000044), (0.8530379570000832, 51.71889883000006), (0.8835555350000845, 51.72687409100007), (0.9123641290000819, 51.741522528000075), (0.9300236340000652, 51.74359772300005), (0.9455672540000819, 51.733710028000075), (0.9474389980000524, 51.72524648600006), (0.9445906910000872, 51.71548086100006), (0.9404403000000912, 51.70799388200004), (0.9381616550000444, 51.706366278000075), (0.9401961600000845, 51.698431708000044), (0.9440210300000444, 51.69057851800005), (0.9518335300000444, 51.67841217700004), (0.9417423840000652, 51.673041083000044), (0.9379988940000885, 51.664496161000045), (0.9381616550000444, 51.64126211100006), (0.9347436860000471, 51.63589101800005), (0.9267684250000912, 51.630926825000074), (0.9114689460000704, 51.62384674700007), (0.9384871750000912, 51.624986070000034), (0.9480900400000678, 51.621527411000045), (0.9518335300000444, 51.61701080900008), (0.9244897800000444, 51.588324286000045), (0.8733016290000819, 51.559475002000056), (0.8282983730000524, 51.541856187000064), (0.8162541020000731, 51.537176825000074), (0.7712508470000898, 51.52826569200005), (0.6920679050000444, 51.536322333000044), (0.6643986340000652, 51.53506094000005), (0.6637475920000497, 51.53554922100005), (0.6505639980000524, 51.53579336100006), (0.6466577480000524, 51.53534577000005), (0.6440535820000832, 51.53506094000005), (0.6427514980000524, 51.53351471600007), (0.6233830090000652, 51.52204010600008), (0.6086531910000872, 51.51898834800005), (0.5952254570000832, 51.51862213700008), (0.5822860040000819, 51.51654694200005), (0.5688582690000885, 51.50836823100008), (0.5527449880000859, 51.51797109600005), (0.5472111340000652, 51.51772695500006), (0.5254012380000859, 51.516913153000075), (0.45606530000009116, 51.505560614000046), (0.45085696700004974, 51.49827708500004), (0.44800866000008455, 51.48822663000004), (0.4416610040000819, 51.47703685100004), (0.42847741000008455, 51.46710846600007), (0.41407311300008587, 51.46190013200004), (0.39918053500008455, 51.45840078300006), (0.38453209700008983, 51.453111070000034), (0.4484155610000471, 51.45994700700004), (0.45679772200008983, 51.46312083500004), (0.4614363940000885, 51.47016022300005), (0.46485436300008587, 51.47724030200004), (0.4695744150000678, 51.48041413000004), (0.5348413420000497, 51.49168528900009), (0.6948348320000832, 51.47703685100004), (0.7094832690000885, 51.47052643400008), (0.7219344410000872, 51.456284898000035), (0.7231551440000885, 51.44672272300005), (0.7131453790000819, 51.44122955900008), (0.6923934250000912, 51.439520575000074), (0.6565047540000819, 51.444525458000044), (0.6409611340000652, 51.44415924700007), (0.6093856130000859, 51.425116278000075), (0.5727645190000885, 51.419582424000055), (0.5545353520000731, 51.412176825000074), (0.5622664720000898, 51.40656159100007), (0.5691024100000845, 51.399603583000044), (0.5765080090000652, 51.39362213700008), (0.5859481130000859, 51.391058661000045), (0.6718856130000859, 51.391058661000045), (0.7129012380000859, 51.38422272300005), (0.7049259770000731, 51.39598216400009), (0.7003686860000471, 51.409816799000055), (0.7053328790000819, 51.41950104400007), (0.7264103520000731, 51.41901276200008), (0.7283634770000731, 51.406236070000034), (0.7392684250000912, 51.387925523000035), (0.7534285820000832, 51.371527411000045), (0.7644149100000845, 51.36440664300005), (0.9772241550000444, 51.34918854400007), (1.1009220710000704, 51.37323639500005), (1.4238387380000859, 51.39207591400009), (1.4482528000000912, 51.382879950000074), (1.4391382170000497, 51.35008372600004), (1.4355574880000859, 51.343736070000034), (1.430837436000047, 51.33779531500005), (1.4251408210000704, 51.33295319200005), (1.4186304050000444, 51.32965729400007), (1.3829858730000524, 51.329779364000046), (1.3776147800000444, 51.326239325000074), (1.3806258470000898, 51.304754950000074), (1.387868686000047, 51.28790924700007), (1.4043074880000859, 51.261379299000055), (1.4130965500000912, 51.22174713700008), (1.4047957690000885, 51.18353913000004), (1.3844507170000497, 51.151678778000075), (1.3571883470000898, 51.13100820500006), (1.2903751960000704, 51.116522528000075), (1.2629500660000872, 51.10325755400004), (1.2516382170000497, 51.10252513200004), (1.2299910820000832, 51.10370514500005), (1.2181095710000704, 51.10097890800006), (1.2082625660000872, 51.09467194200005), (1.1997176440000885, 51.087591864000046), (1.1920679050000444, 51.08258698100008), (1.1722111340000652, 51.077378648000035), (1.1067000660000872, 51.07636139500005), (1.0871688160000872, 51.07298411700003), (1.0669051440000885, 51.06439850500004), (1.027598504000082, 51.04165273600006), (0.9764103520000731, 50.99445221600007), (0.9664819670000497, 50.98273346600007), (0.9690861340000652, 50.95685455900008), (0.9798283210000704, 50.91815827000005), (0.9451603520000731, 50.909369208000044), (0.8698022800000444, 50.925116278000075), (0.8022567070000832, 50.93919505400004), (0.7624617850000845, 50.930894273000035), (0.6643986340000652, 50.870306708000044), (0.6241968110000471, 50.858710028000075), (0.4074813160000872, 50.829331773000035), (0.3702905610000471, 50.818793036000045), (0.36524498800008587, 50.81899648600006), (0.35425866000008455, 50.80963776200008), (0.34441165500004445, 50.79905833500004), (0.3422957690000885, 50.79515208500004), (0.3081160820000832, 50.780951239000046), (0.2710067070000832, 50.747381903000075), (0.23389733200008322, 50.74701569200005), (0.2141219410000872, 50.748928127000056), (0.16830488400006516, 50.759833075000074), (0.1573999360000471, 50.761053778000075), (0.12208092500009116, 50.76080963700008), (0.11304772200008983, 50.76414622600004), (0.09555097700007309, 50.775051174000055), (0.07703698000005943, 50.778998114000046), (0.034515821000070446, 50.780951239000046), (0.01754804800009424, 50.784857489000046), (-0.17316646999995555, 50.829006252000056), (-0.20612545499994894, 50.83104075700004), (-0.20889238199993088, 50.83010488500008), (-0.2331436839999128, 50.821926174000055), (-0.2696833979999269, 50.831284898000035), (-0.39757239499994057, 50.802069403000075), (-0.5689591139999379, 50.802069403000075), (-0.7327367829999503, 50.767279364000046), (-0.7415665359999366, 50.769232489000046), (-0.7498673169999392, 50.773871161000045), (-0.7582087879999335, 50.77708567900004), (-0.7675675119999141, 50.774725653000075), (-0.7731013659999348, 50.76601797100005), (-0.7662654289999296, 50.74713776200008), (-0.7709854809999115, 50.73688385600008), (-0.7899470689999362, 50.73004791900007), (-0.8128149079999503, 50.73476797100005), (-0.9041235019999476, 50.77187734600005), (-0.9114884109999366, 50.77781810100004), (-0.9058731759999432, 50.78803131700005), (-0.8924861319999309, 50.794623114000046), (-0.8636368479999419, 50.802069403000075), (-0.8636368479999419, 50.808254299000055), (-0.8736059239999463, 50.812933661000045), (-0.8931371739999463, 50.82534414300005), (-0.9046931629999335, 50.829331773000035), (-0.9095352859999366, 50.82599518400008), (-0.9217016269999476, 50.821600653000075), (-0.9289444649999155, 50.82282135600008), (-0.9190160799999489, 50.83616771000004), (-0.9297989569999459, 50.83999258000006), (-0.9391983709999181, 50.84324778900009), (-0.9707738919999542, 50.846991278000075), (-0.9948624339999128, 50.84707265800006), (-1.0018611319999309, 50.84711334800005), (-1.0207413399999155, 50.84365469000005), (-1.033558722999942, 50.82591380400004), (-1.0426326159999348, 50.80190664300005), (-1.0562231109999516, 50.78302643400008), (-1.0827530589999128, 50.780951239000046), (-1.1030167309999115, 50.79547760600008), (-1.0936173169999392, 50.812933661000045), (-1.0753067699999406, 50.83002350500004), (-1.069162563999953, 50.84365469000005), (-1.0873103509999282, 50.84979889500005), (-1.0881241529999102, 50.84975820500006), (-1.1498103509999282, 50.84666575700004), (-1.1647029289999296, 50.84365469000005), (-1.129709438999953, 50.825100002000056), (-1.1237686839999128, 50.818793036000045), (-1.1212052069999459, 50.79938385600008), (-1.1249080069999309, 50.788723049000055), (-1.1380509109999366, 50.780951239000046), (-1.1511124339999128, 50.78139883000006), (-1.1693416009999282, 50.78587474200003), (-1.1856176419999542, 50.79242584800005), (-1.1926163399999155, 50.79865143400008), (-1.1992895169999542, 50.807928778000075), (-1.231516079999949, 50.81891510600008), (-1.2551977199999556, 50.83193594000005), (-1.288156704999949, 50.839178778000075), (-1.3014216789999296, 50.84365469000005), (-1.3185929029999102, 50.85691966400009), (-1.338937954999949, 50.872707424000055), (-1.4492895169999542, 50.91205475500004), (-1.4664200509999432, 50.91815827000005), (-1.4664200509999432, 50.91193268400008), (-1.4564509759999282, 50.90875885600008), (-1.4379776679999168, 50.90131256700005), (-1.4256078769999476, 50.900091864000046), (-1.4011124339999128, 50.88117096600007), (-1.323068813999953, 50.82575104400007), (-1.3142797519999476, 50.812160549000055), (-1.3172908189999362, 50.80023834800005), (-1.3398331369999141, 50.79515208500004), (-1.4039607409999348, 50.79157135600008), (-1.4186905589999128, 50.788397528000075), (-1.4113663399999155, 50.78489817900004), (-1.4049373039999296, 50.780951239000046), (-1.4049373039999296, 50.774725653000075), (-1.4505102199999556, 50.76935455900008), (-1.4762263659999348, 50.76341380400004), (-1.4875382149999155, 50.75771719000005), (-1.491932745999918, 50.75726959800005), (-1.5247289699999556, 50.761053778000075), (-1.5571996739999463, 50.72329336100006), (-1.559396938999953, 50.71922435100004), (-1.5611873039999296, 50.71898021000004), (-1.5807185539999296, 50.722642320000034), (-1.6021215489999463, 50.731756903000075), (-1.6706436839999128, 50.74005768400008), (-1.672922329999949, 50.74005768400008), (-1.6930232409999348, 50.739935614000046), (-1.7150772779999102, 50.73578522300005), (-1.7535294259999432, 50.72284577000005), (-1.7717179029999102, 50.72011953300006), (-1.7974340489999463, 50.723171291000085), (-1.8350723949999406, 50.72768789300005), (-1.8574112619999141, 50.72695547100005), (-1.8773494129999335, 50.72284577000005), (-1.8963516919999392, 50.71629466400009), (-1.8968806629999335, 50.716050523000035), (-1.9138891269999476, 50.70742422100005), (-1.9291072259999282, 50.69586823100008), (-1.9400121739999463, 50.69082265800006), (-1.9443253249999088, 50.69765859600005), (-1.946115688999953, 50.707912502000056), (-1.9492895169999542, 50.713324286000045), (-1.9877009759999282, 50.72011953300006), (-2.01390540299991, 50.71893952000005), (-2.0219620429999168, 50.72011953300006), (-2.0254613919999542, 50.723863023000035), (-2.026193813999953, 50.72508372600004), (-2.0338435539999296, 50.73712799700007), (-2.038970506999931, 50.739935614000046), (-2.0480850899999155, 50.734808661000045), (-2.0826716789999296, 50.69896067900004), (-2.0695694649999155, 50.700100002000056), (-2.0577286449999406, 50.702826239000046), (-2.046620245999918, 50.70726146000004), (-2.0356339179999168, 50.713324286000045), (-2.0141495429999168, 50.688788153000075), (-2.0025121739999463, 50.681301174000055), (-1.984120245999918, 50.67853424700007), (-1.9674373039999296, 50.67865631700005), (-1.9527888659999348, 50.67658112200007), (-1.9458715489999463, 50.668850002000056), (-1.9529516269999476, 50.65184153900009), (-1.9382218089999128, 50.645819403000075), (-1.9324845039999445, 50.64443594000005), (-1.9672745429999168, 50.61709219000005), (-1.965199347999942, 50.60219961100006), (-1.9837133449999556, 50.59662506700005), (-2.065174933999913, 50.59552643400008), (-2.082183397999927, 50.59784577000005), (-2.1573380199999406, 50.62051015800006), (-2.3426407539999445, 50.63377513200004), (-2.377064581999946, 50.64752838700008), (-2.398345506999931, 50.64557526200008), (-2.435902472999942, 50.63751862200007), (-2.447621222999942, 50.62787506700005), (-2.4600723949999406, 50.60651276200008), (-2.465646938999953, 50.585150458000044), (-2.4564509759999282, 50.575506903000075), (-2.4312231109999516, 50.57025788000004), (-2.428700324999909, 50.55756256700005), (-2.4392797519999476, 50.54181549700007), (-2.45335852799991, 50.52765534100007), (-2.4595434239999463, 50.52765534100007), (-2.4603572259999282, 50.56549713700008), (-2.4835098949999406, 50.59039948100008), (-2.6929418609999516, 50.69281647300005), (-2.8648168609999516, 50.73379140800006), (-2.887318488999938, 50.734361070000034), (-2.94554602799991, 50.725816148000035), (-2.9627579419999392, 50.72329336100006), (-2.998199022999927, 50.708238023000035), (-3.021839972999942, 50.70648834800005), (-3.059722459999932, 50.713324286000045), (-3.071359829999949, 50.711004950000074), (-3.0941462879999335, 50.69896067900004), (-3.099232550999943, 50.69708893400008), (-3.115834113999938, 50.68797435100004), (-3.1254776679999168, 50.68528880400004), (-3.135894334999932, 50.68593984600005), (-3.1551407539999445, 50.69135163000004), (-3.1664932929999168, 50.69281647300005), (-3.1856176419999542, 50.690741278000075), (-3.2191462879999335, 50.68081289300005), (-3.2598363919999542, 50.67454661700003), (-3.271392381999931, 50.664496161000045), (-3.280425584999932, 50.65119049700007), (-3.2955623039999296, 50.63751862200007), (-3.368153449999909, 50.61709219000005), (-3.390736456999946, 50.61782461100006), (-3.4075414699999556, 50.62128327000005), (-3.420969204999949, 50.62946198100008), (-3.433338995999918, 50.64443594000005), (-3.446359829999949, 50.66828034100007), (-3.4504288399999155, 50.672308661000045), (-3.453277147999927, 50.67328522300005), (-3.455433722999942, 50.675441799000055), (-3.458607550999943, 50.67755768400008), (-3.4644262359999516, 50.67853424700007), (-3.467762824999909, 50.67641836100006), (-3.468902147999927, 50.67169830900008), (-3.467844204999949, 50.66697825700004), (-3.45531165299991, 50.657904364000046), (-3.4420466789999296, 50.62352122600004), (-3.433338995999918, 50.610256252000056), (-3.451161261999914, 50.59943268400008), (-3.4672745429999168, 50.585598049000055), (-3.4817602199999556, 50.56854889500005), (-3.494862433999913, 50.548163153000075), (-3.505970831999946, 50.520819403000075), (-3.505034959999932, 50.501206773000035), (-3.487456834999932, 50.459418036000045), (-3.509755011999914, 50.45848216400009), (-3.532134568999936, 50.454779364000046), (-3.549427863999938, 50.446519273000035), (-3.556263800999943, 50.43211497600004), (-3.5493057929999168, 50.41559479400007), (-3.531971808999913, 50.410223700000074), (-3.487456834999932, 50.41156647300005), (-3.487456834999932, 50.40477122600004), (-3.4974666009999282, 50.38735586100006), (-3.49828040299991, 50.383693752000056), (-3.5073136059999115, 50.382798570000034), (-3.5149633449999556, 50.37995026200008), (-3.520130988999938, 50.37482330900008), (-3.5269262359999516, 50.34979889500005), (-3.5388891269999476, 50.34442780200004), (-3.5545141269999476, 50.347642320000034), (-3.57054602799991, 50.35639069200005), (-3.577788865999935, 50.334051825000074), (-3.5991104809999115, 50.325832424000055), (-3.6215714179999168, 50.321926174000055), (-3.631988084999932, 50.31232330900008), (-3.6373591789999296, 50.29539622600004), (-3.6475723949999406, 50.27456289300005), (-3.653309699999909, 50.25104401200008), (-3.6456192699999406, 50.22601959800005), (-3.6606339179999168, 50.22101471600007), (-3.700917120999918, 50.21352773600006), (-3.7180069649999155, 50.21238841400009), (-3.740386522999927, 50.21588776200008), (-3.758615688999953, 50.22174713700008), (-3.774240688999953, 50.22296784100007), (-3.788970506999931, 50.21238841400009), (-3.826324022999927, 50.23419830900008), (-3.8841853509999282, 50.280462958000044), (-3.949940558999913, 50.31899648600006), (-3.9610082669999542, 50.322251695000034), (-3.9702042309999115, 50.320746161000045), (-3.995757615999935, 50.311428127000056), (-4.005604620999918, 50.30923086100006), (-4.011341925999943, 50.30695221600007), (-4.024769660999937, 50.29718659100007), (-4.032948370999918, 50.294907945000034), (-4.044056769999941, 50.29645416900007), (-4.054351365999935, 50.30036041900007), (-4.070220506999931, 50.30923086100006), (-4.067941860999952, 50.31281159100007), (-4.064035610999952, 50.322251695000034), (-4.086008266999954, 50.326239325000074), (-4.1082657539999445, 50.33661530200004), (-4.118723110999952, 50.35187409100007), (-4.1049698559999115, 50.37067291900007), (-4.141753709999932, 50.36904531500005), (-4.1527400379999335, 50.37067291900007), (-4.1655167309999115, 50.37636953300006), (-4.171457485999952, 50.382798570000034), (-4.175770636999914, 50.39085521000004), (-4.18382727799991, 50.40106842700004), (-4.191477016999954, 50.417629299000055), (-4.18390865799995, 50.431708075000074), (-4.1703181629999335, 50.44513580900008), (-4.159535285999937, 50.459418036000045), (-4.179432745999918, 50.45307038000004), (-4.189564581999946, 50.45368073100008), (-4.200550910999937, 50.459418036000045), (-4.203684048999946, 50.45140208500004), (-4.204741990999935, 50.44867584800005), (-4.2123917309999115, 50.441473700000074), (-4.222523566999939, 50.43797435100004), (-4.234730597999942, 50.43829987200007), (-4.234730597999942, 50.43211497600004), (-4.2202042309999115, 50.425848700000074), (-4.2161352199999556, 50.415716864000046), (-4.219715949999909, 50.40509674700007), (-4.228505011999914, 50.397365627000056), (-4.2414444649999155, 50.39468008000006), (-4.2899063789999445, 50.397365627000056), (-4.273019985999952, 50.38190338700008), (-4.216175910999937, 50.38776276200008), (-4.1937556629999335, 50.37689850500004), (-4.228505011999914, 50.37067291900007), (-4.228505011999914, 50.36383698100008), (-4.220122850999928, 50.365301825000074), (-4.200550910999937, 50.36383698100008), (-4.207997199999909, 50.35639069200005), (-4.180043097999942, 50.35639069200005), (-4.180043097999942, 50.35016510600008), (-4.191314256999931, 50.34756094000005), (-4.197987433999913, 50.342230536000045), (-4.199126756999931, 50.33539459800005), (-4.1937556629999335, 50.32843659100007), (-4.1937556629999335, 50.322251695000034), (-4.214995897999927, 50.323146877000056), (-4.225697394999941, 50.33539459800005), (-4.235096808999913, 50.34955475500004), (-4.2523494129999335, 50.35639069200005), (-4.337717251999948, 50.37067291900007), (-4.383697068999936, 50.36749909100007), (-4.456206834999932, 50.33820221600007), (-4.4953507149999155, 50.32843659100007), (-4.659820115999935, 50.322251695000034), (-4.659575975999928, 50.32062409100007), (-4.662709113999938, 50.31777578300006), (-4.667795376999948, 50.315334377000056), (-4.673451300999943, 50.31541575700004), (-4.687163865999935, 50.34271881700005), (-4.694325324999909, 50.343451239000046), (-4.700184699999909, 50.34088776200008), (-4.705555792999917, 50.337551174000055), (-4.7113337879999335, 50.33588288000004), (-4.731556769999941, 50.33466217700004), (-4.752105272999927, 50.33030833500004), (-4.763295050999943, 50.32208893400008), (-4.755441860999952, 50.30923086100006), (-4.755441860999952, 50.30174388200004), (-4.7623591789999296, 50.298041083000044), (-4.771636522999927, 50.29157135600008), (-4.779855923999946, 50.28432851800005), (-4.783355272999927, 50.27789948100008), (-4.7818904289999296, 50.27179596600007), (-4.776519334999932, 50.26508209800005), (-4.776519334999932, 50.26080963700008), (-4.788441535999937, 50.24209219000005), (-4.790150519999941, 50.23655833500004), (-4.800160285999937, 50.22955963700008), (-4.849720831999946, 50.23456452000005), (-4.868723110999952, 50.22943756700005), (-4.887318488999938, 50.21499258000006), (-4.904774542999917, 50.20844147300005), (-4.947255011999914, 50.19936758000006), (-4.960682745999918, 50.19049713700008), (-5.002430792999917, 50.14411041900007), (-5.014556443999936, 50.15656159100007), (-5.0203751289999445, 50.19196198100008), (-5.033192511999914, 50.19936758000006), (-5.05296790299991, 50.19578685100004), (-5.053618943999936, 50.18691640800006), (-5.051869269999941, 50.17552317900004), (-5.064564581999946, 50.16461823100008), (-5.064564581999946, 50.15839264500005), (-5.058501756999931, 50.155462958000044), (-5.043446417999917, 50.14411041900007), (-5.051869269999941, 50.144598700000074), (-5.058461066999939, 50.14272695500006), (-5.070790167999917, 50.13727448100008), (-5.08031165299991, 50.13271719000005), (-5.081613735999952, 50.12539297100005), (-5.080962693999936, 50.117173570000034), (-5.085031704999949, 50.10993073100008), (-5.093902147999927, 50.105536200000074), (-5.125965949999909, 50.09634023600006), (-5.114654100999928, 50.09662506700005), (-5.106068488999938, 50.09511953300006), (-5.091867641999954, 50.089504299000055), (-5.086903449999909, 50.089056708000044), (-5.075347459999932, 50.09048086100006), (-5.070790167999917, 50.089504299000055), (-5.068470831999946, 50.085150458000044), (-5.064930792999917, 50.07184479400007), (-5.06086178299995, 50.06903717700004), (-5.056507941999939, 50.060614325000074), (-5.069488084999932, 50.042181708000044), (-5.0980525379999335, 50.01439036700003), (-5.107289191999939, 50.013006903000075), (-5.127430792999917, 50.01544830900008), (-5.139637824999909, 50.01439036700003), (-5.146473761999914, 50.01056549700007), (-5.176136847999942, 49.987941799000055), (-5.18773352799991, 49.964504299000055), (-5.191151495999918, 49.95913320500006), (-5.200103318999936, 49.961371161000045), (-5.210357225999928, 49.96674225500004), (-5.240386522999927, 49.988348700000074), (-5.245228644999941, 49.99310944200005), (-5.2495011059999115, 50.000067450000074), (-5.253041144999941, 50.01264069200005), (-5.25226803299995, 50.020697333000044), (-5.252674933999913, 50.027777411000045), (-5.259755011999914, 50.03766510600008), (-5.2884008449999556, 50.067694403000075), (-5.304351365999935, 50.08026764500005), (-5.323963995999918, 50.089504299000055), (-5.384185350999928, 50.10797760600008), (-5.424712693999936, 50.11273834800005), (-5.458119269999941, 50.125881252000056), (-5.47484290299991, 50.13043854400007), (-5.495676235999952, 50.12962474200003), (-5.521839972999942, 50.12372467700004), (-5.540923631999931, 50.11347077000005), (-5.540638800999943, 50.09975820500006), (-5.5346573559999115, 50.08234284100007), (-5.5455623039999296, 50.06891510600008), (-5.563465949999909, 50.05963776200008), (-5.57843990799995, 50.054754950000074), (-5.61945553299995, 50.046210028000075), (-5.667388475999928, 50.04287344000005), (-5.705148891999954, 50.05231354400007), (-5.715646938999953, 50.08270905200004), (-5.705962693999936, 50.08348216400009), (-5.698801235999952, 50.08539459800005), (-5.694488084999932, 50.089504299000055), (-5.694406704999949, 50.095770575000074), (-5.697092251999948, 50.10053131700005), (-5.700306769999941, 50.103216864000046), (-5.701975063999953, 50.103176174000055), (-5.707386847999942, 50.12201569200005), (-5.70921790299991, 50.13263580900008), (-5.70539303299995, 50.13727448100008), (-5.7035212879999335, 50.140611070000034), (-5.684641079999949, 50.16152578300006), (-5.676747199999909, 50.16502513200004), (-5.647368943999936, 50.17206452000005), (-5.583607550999943, 50.19586823100008), (-5.549427863999938, 50.20351797100005), (-5.5109757149999155, 50.21946849200003), (-5.4891251289999445, 50.21979401200008), (-5.458119269999941, 50.20075104400007), (-5.437977667999917, 50.19432200700004), (-5.417388475999928, 50.202460028000075), (-5.402943488999938, 50.21735260600008), (-5.395863410999937, 50.22724030200004), (-5.39289303299995, 50.23655833500004), (-5.3875626289999445, 50.240301825000074), (-5.351918097999942, 50.240301825000074), (-5.3148494129999335, 50.253607489000046), (-5.200306769999941, 50.33075592700004), (-5.1635636059999115, 50.34723541900007), (-5.1498917309999115, 50.35016510600008), (-5.146473761999914, 50.35529205900008), (-5.145659959999932, 50.366888739000046), (-5.147043423999946, 50.37938060100004), (-5.153675910999937, 50.39948151200008), (-5.142404751999948, 50.40448639500005), (-5.12726803299995, 50.40521881700005), (-5.119740363999938, 50.40477122600004), (-5.0502823559999115, 50.42869700700004), (-5.0481664699999556, 50.43439362200007), (-5.038726365999935, 50.44790273600006), (-5.029774542999917, 50.486761786000045), (-5.0286352199999556, 50.507025458000044), (-5.025257941999939, 50.52423737200007), (-5.015614386999914, 50.53803131700005), (-4.9955948559999115, 50.548163153000075), (-4.975168423999946, 50.548163153000075), (-4.967844204999949, 50.55158112200007), (-4.954823370999918, 50.56122467700004), (-4.947255011999914, 50.56244538000004), (-4.941477016999954, 50.55695221600007), (-4.937123175999943, 50.54531484600005), (-4.9344376289999445, 50.53164297100005), (-4.933583136999914, 50.52024974200003), (-4.926869269999941, 50.52289459800005), (-4.924305792999917, 50.52448151200008), (-4.920521613999938, 50.52765534100007), (-4.902414516999954, 50.52057526200008), (-4.860951300999943, 50.519191799000055), (-4.844838019999941, 50.51406484600005), (-4.855824347999942, 50.527411200000074), (-4.87328040299991, 50.534084377000056), (-4.906239386999914, 50.54197825700004), (-4.921864386999914, 50.55487702000005), (-4.92023678299995, 50.564154364000046), (-4.915191209999932, 50.57249583500004), (-4.920521613999938, 50.58295319200005), (-4.920521613999938, 50.589178778000075), (-4.895659959999932, 50.585923570000034), (-4.821197068999936, 50.589178778000075), (-4.7924698559999115, 50.59520091400009), (-4.7766007149999155, 50.60984935100004), (-4.765044725999928, 50.62799713700008), (-4.7492569649999155, 50.64443594000005), (-4.755441860999952, 50.659369208000044), (-4.751942511999914, 50.67007070500006), (-4.741932745999918, 50.67487213700008), (-4.728138800999943, 50.672308661000045), (-4.657297329999949, 50.71112702000005), (-4.645578579999949, 50.723537502000056), (-4.637806769999941, 50.74115631700005), (-4.619007941999939, 50.754787502000056), (-4.577259894999941, 50.774725653000075), (-4.5501195949999556, 50.80955638200004), (-4.55492102799991, 50.897772528000075), (-4.543771938999953, 50.93919505400004), (-4.536854620999918, 50.94757721600007), (-4.5226944649999155, 50.972723700000074), (-4.5266820949999556, 50.98037344000005), (-4.530425584999932, 50.99469635600008), (-4.531320766999954, 51.008693752000056), (-4.526437954999949, 51.014960028000075), (-4.437326626999948, 51.014960028000075), (-4.4264216789999296, 51.01268138200004), (-4.4057511059999115, 51.00287506700005), (-4.3957413399999155, 51.00067780200004), (-4.337717251999948, 50.99664948100008), (-4.317290818999936, 51.00067780200004), (-4.302316860999952, 51.007513739000046), (-4.234730597999942, 51.05532461100006), (-4.2291560539999296, 51.06110260600008), (-4.224680141999954, 51.06708405200004), (-4.218495245999918, 51.07245514500005), (-4.207997199999909, 51.07636139500005), (-4.214263475999928, 51.086004950000074), (-4.226307745999918, 51.11322663000004), (-4.228505011999914, 51.120428778000075), (-4.2319229809999115, 51.12669505400004), (-4.249012824999909, 51.14288971600007), (-4.255767381999931, 51.15151601800005), (-4.222320115999935, 51.149725653000075), (-4.214833136999914, 51.15151601800005), (-4.208363410999937, 51.16229889500005), (-4.2098282539999445, 51.17283763200004), (-4.217274542999917, 51.18138255400004), (-4.228505011999914, 51.18622467700004), (-4.228505011999914, 51.19245026200008), (-4.152333136999914, 51.21161530200004), (-3.969471808999913, 51.22239817900004), (-3.931996222999942, 51.231350002000056), (-3.9131973949999406, 51.23338450700004), (-3.840891079999949, 51.23338450700004), (-3.818959113999938, 51.23607005400004), (-3.787098761999914, 51.24677155200004), (-3.769154425999943, 51.247707424000055), (-3.6397598949999406, 51.22638580900008), (-3.559315558999913, 51.22809479400007), (-3.434193488999938, 51.20978424700007), (-3.4043676419999542, 51.19204336100006), (-3.38499915299991, 51.18622467700004), (-3.2707413399999155, 51.18939850500004), (-3.198882615999935, 51.203558661000045), (-3.1627498039999296, 51.206732489000046), (-3.096750454999949, 51.20453522300005), (-3.057525193999936, 51.20815664300005), (-3.029286261999914, 51.220404364000046), (-3.021839972999942, 51.21356842700004), (-3.0355525379999335, 51.199286200000074), (-3.021839972999942, 51.19245026200008), (-3.004790818999936, 51.21312083500004), (-3.0013321609999366, 51.220404364000046), (-2.9995824859999516, 51.23322174700007), (-3.0015356109999516, 51.23969147300005), (-3.0049942699999406, 51.24506256700005), (-3.008168097999942, 51.25454336100006), (-3.0076391269999476, 51.29197825700004), (-3.0106095039999445, 51.310980536000045), (-3.021839972999942, 51.32282135600008), (-3.0024307929999168, 51.31907786700003), (-2.992176886999914, 51.321926174000055), (-2.992095506999931, 51.32204824400009), (-2.988392706999946, 51.33112213700008), (-2.9877823559999115, 51.34666575700004), (-2.9798884759999282, 51.35586172100005), (-2.965972459999932, 51.364935614000046), (-2.959584113999938, 51.374253648000035), (-2.9746801419999542, 51.38422272300005), (-2.9529516269999476, 51.398504950000074), (-2.9210098949999406, 51.39443594000005), (-2.8841853509999282, 51.41697825700004), (-2.816395636999914, 51.47361888200004), (-2.798573370999918, 51.48261139500005), (-2.780873175999943, 51.48908112200007), (-2.7612198559999115, 51.49286530200004), (-2.7376195949999556, 51.49408600500004), (-2.716420050999943, 51.49957916900007), (-2.6961563789999445, 51.51264069200005), (-2.6078181629999335, 51.60736725500004), (-2.599598761999914, 51.611395575000074), (-2.5892227859999366, 51.61424388200004), (-2.580433722999942, 51.61863841400009), (-2.5768123039999296, 51.62750885600008), (-2.57445227799991, 51.63572825700004), (-2.568959113999938, 51.644964911000045), (-2.562245245999918, 51.65338776200008), (-2.556385870999918, 51.65924713700008), (-2.499175584999932, 51.69676341400009), (-2.464995897999927, 51.725897528000075), (-2.4477432929999168, 51.73187897300005), (-2.404896613999938, 51.74115631700005), (-2.3885391919999392, 51.750433661000045), (-2.380767381999931, 51.76190827000005), (-2.3833715489999463, 51.77326080900008), (-2.398060675999943, 51.782131252000056), (-2.4024145169999542, 51.76357656500005), (-2.4203995429999168, 51.753119208000044), (-2.4434301419999542, 51.74843984600005), (-2.4632869129999335, 51.747300523000035), (-2.482085740999935, 51.74286530200004), (-2.495838995999918, 51.73200104400007), (-2.507964647999927, 51.71857330900008), (-2.5221248039999296, 51.706366278000075), (-2.581695115999935, 51.681708075000074), (-2.5911352199999556, 51.67536041900007), (-2.600209113999938, 51.66559479400007), (-2.6653539699999556, 51.617254950000074)]\n", + "fig, ax = plt.subplots()\n", + "\n", + "x = tuple(map(merc_x, lons))\n", + "y = tuple(map(merc_y, lats))\n", + "\n", + "ax.tricontourf(x, y, tuple(datapoints.values()))\n", + "ax.plot(x, y, 'wo', ms=3)\n", + "ax.plot(\n", + " [merc_x(coord[0]) for coord in gb_boundary],\n", + " [merc_y(coord[1]) for coord in gb_boundary],\n", + " 'k-'\n", + ")\n", + "ax.set_aspect(1.0)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "apd.aggregation", + "language": "python", + "name": "apd.aggregation" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Ch09/apd.aggregation-chapter09/Pipfile b/Ch09/apd.aggregation-chapter09/Pipfile new file mode 100644 index 0000000..b308175 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09/Pipfile @@ -0,0 +1,25 @@ +[[source]] +name = "pypi" +url = "https://pypi.org/simple" +verify_ssl = true + +[dev-packages] +pytest = "*" +pytest-cov = "*" +pytest-asyncio = "*" +mypy = "*" +flake8 = "*" +black = "*" +pre-commit = "*" +wheel = "*" +twine = "*" +sqlalchemy-stubs = "*" + +[packages] +apd-aggregation = {editable = true,extras = ["jupyter"],path = "."} +apd-sensors = {editable = true,extras = ["webapp"],path = "./../code"} + +[requires] + +[pipenv] +allow_prereleases = true diff --git a/Ch09/apd.aggregation-chapter09/Pipfile.lock b/Ch09/apd.aggregation-chapter09/Pipfile.lock new file mode 100644 index 0000000..37ebbba --- /dev/null +++ b/Ch09/apd.aggregation-chapter09/Pipfile.lock @@ -0,0 +1,751 @@ +{ + "_meta": { + "hash": { + "sha256": "9cbbc3af88a1213ed8f4f93c33e35a9f9d7e047077cd25ff02f9bde13e2b606b" + }, + "pipfile-spec": 6, + "requires": {}, + "sources": [ + { + "name": "pypi", + "url": "https://pypi.org/simple", + "verify_ssl": true + } + ] + }, + "default": { + "aiohttp": { + "hashes": [ + "sha256:173267050501e1537293df06723bc5e719990889e2820ba3932969983892e960", + "sha256:438f1f1555c02c50894604d94944cff188fe138b46467b7fa99fdceb51ab5842", + "sha256:90bed250d1435aef33a1f8c439c5056d5d25a44fe6caf33fcafafed805bad4dc", + "sha256:93c3b14747413f38f094a60e98f55e73831f0c9a23ae7faa3dc97d8963e13021", + "sha256:a6e70a38d883185b1921d8122759661c39ade54949770394412a9e713fec6fa7", + "sha256:b5036133c1ba77ed5a70208d2a021a90b76fdf8bf523ae33dae46d4f4380d86f", + "sha256:c138451a82cdbf65cddf952941d5c7a1a2cac8ce3bc618dee8d889e5251ec7a5", + "sha256:c94770383e49f9cc5912b926364ad022a6c8a5dbf5498933ca3a5713c6daf738", + "sha256:ea26536ae06df6dac021303a0df72c79e55512070e6a304ba93ad468a3a754dc" + ], + "version": "==4.0.0a1" + }, + "alembic": { + "hashes": [ + "sha256:49277bb7242192bbb9eac58fed4fe02ec6c3a2a4b4345d2171197459266482b2" + ], + "version": "==1.3.1" + }, + "apd-aggregation": { + "editable": true, + "path": "." + }, + "apd-sensors": { + "editable": true, + "extras": [ + "webapp" + ], + "path": "./../code" + }, + "async-timeout": { + "hashes": [ + "sha256:0c3c816a028d47f659d6ff5c745cb2acf1f966da1fe5c19c77a70282b25f4c5f", + "sha256:4291ca197d287d274d0b6cb5d6f8f8f82d434ed288f962539ff18cc9012f9ea3" + ], + "version": "==3.0.1" + }, + "attrs": { + "hashes": [ + "sha256:08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c", + "sha256:f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72" + ], + "version": "==19.3.0" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:2335065e6395b9e67ca716de5f7526736bfa6ceead690adf616d925bdc622b13", + "sha256:5b94b49521f6456670fdb30cd82a4eca9412788a93fa6dd6df72c94d5a8ff2d7" + ], + "version": "==7.0" + }, + "flask": { + "hashes": [ + "sha256:13f9f196f330c7c2c5d7a5cf91af894110ca0215ac051b5844701f2bfd934d52", + "sha256:45eb5a6fd193d6cf7e0cf5d8a5b31f83d5faae0293695626f539a823e93b13f6" + ], + "version": "==1.1.1" + }, + "idna": { + "hashes": [ + "sha256:c357b3f628cf53ae2c4c05627ecc484553142ca23264e593d327bcde5e9c3407", + "sha256:ea8b7f6188e6fa117537c3df7da9fc686d485087abf6ac197f9c46432f7e4a3c" + ], + "version": "==2.8" + }, + "itsdangerous": { + "hashes": [ + "sha256:321b033d07f2a4136d3ec762eac9f16a10ccd60f53c0c91af90217ace7ba1f19", + "sha256:b12271b2047cb23eeb98c8b5622e2e5c5e9abd9784a153e9d8ef9cb4dd09d749" + ], + "version": "==1.1.0" + }, + "jinja2": { + "hashes": [ + "sha256:74320bb91f31270f9551d46522e33af46a80c3d619f4a4bf42b3164d30b5911f", + "sha256:9fe95f19286cfefaa917656583d020be14e7859c6b0252588391e47db34527de" + ], + "version": "==2.10.3" + }, + "mako": { + "hashes": [ + "sha256:a36919599a9b7dc5d86a7a8988f23a9a3a3d083070023bab23d64f7f1d1e0a4b" + ], + "version": "==1.1.0" + }, + "markupsafe": { + "hashes": [ + "sha256:00bc623926325b26bb9605ae9eae8a215691f33cae5df11ca5424f06f2d1f473", + "sha256:09027a7803a62ca78792ad89403b1b7a73a01c8cb65909cd876f7fcebd79b161", + "sha256:09c4b7f37d6c648cb13f9230d847adf22f8171b1ccc4d5682398e77f40309235", + "sha256:1027c282dad077d0bae18be6794e6b6b8c91d58ed8a8d89a89d59693b9131db5", + "sha256:24982cc2533820871eba85ba648cd53d8623687ff11cbb805be4ff7b4c971aff", + "sha256:29872e92839765e546828bb7754a68c418d927cd064fd4708fab9fe9c8bb116b", + "sha256:43a55c2930bbc139570ac2452adf3d70cdbb3cfe5912c71cdce1c2c6bbd9c5d1", + "sha256:46c99d2de99945ec5cb54f23c8cd5689f6d7177305ebff350a58ce5f8de1669e", + "sha256:500d4957e52ddc3351cabf489e79c91c17f6e0899158447047588650b5e69183", + "sha256:535f6fc4d397c1563d08b88e485c3496cf5784e927af890fb3c3aac7f933ec66", + "sha256:62fe6c95e3ec8a7fad637b7f3d372c15ec1caa01ab47926cfdf7a75b40e0eac1", + "sha256:6dd73240d2af64df90aa7c4e7481e23825ea70af4b4922f8ede5b9e35f78a3b1", + "sha256:717ba8fe3ae9cc0006d7c451f0bb265ee07739daf76355d06366154ee68d221e", + "sha256:79855e1c5b8da654cf486b830bd42c06e8780cea587384cf6545b7d9ac013a0b", + "sha256:7c1699dfe0cf8ff607dbdcc1e9b9af1755371f92a68f706051cc8c37d447c905", + "sha256:88e5fcfb52ee7b911e8bb6d6aa2fd21fbecc674eadd44118a9cc3863f938e735", + "sha256:8defac2f2ccd6805ebf65f5eeb132adcf2ab57aa11fdf4c0dd5169a004710e7d", + "sha256:98c7086708b163d425c67c7a91bad6e466bb99d797aa64f965e9d25c12111a5e", + "sha256:9add70b36c5666a2ed02b43b335fe19002ee5235efd4b8a89bfcf9005bebac0d", + "sha256:9bf40443012702a1d2070043cb6291650a0841ece432556f784f004937f0f32c", + "sha256:ade5e387d2ad0d7ebf59146cc00c8044acbd863725f887353a10df825fc8ae21", + "sha256:b00c1de48212e4cc9603895652c5c410df699856a2853135b3967591e4beebc2", + "sha256:b1282f8c00509d99fef04d8ba936b156d419be841854fe901d8ae224c59f0be5", + "sha256:b2051432115498d3562c084a49bba65d97cf251f5a331c64a12ee7e04dacc51b", + "sha256:ba59edeaa2fc6114428f1637ffff42da1e311e29382d81b339c1817d37ec93c6", + "sha256:c8716a48d94b06bb3b2524c2b77e055fb313aeb4ea620c8dd03a105574ba704f", + "sha256:cd5df75523866410809ca100dc9681e301e3c27567cf498077e8551b6d20e42f", + "sha256:e249096428b3ae81b08327a63a485ad0878de3fb939049038579ac0ef61e17e7" + ], + "version": "==1.1.1" + }, + "multidict": { + "hashes": [ + "sha256:07f9a6bf75ad675d53956b2c6a2d4ef2fa63132f33ecc99e9c24cf93beb0d10b", + "sha256:0ffe4d4d28cbe9801952bfb52a8095dd9ffecebd93f84bdf973c76300de783c5", + "sha256:1b605272c558e4c659dbaf0fb32a53bfede44121bcf77b356e6e906867b958b7", + "sha256:205a011e636d885af6dd0029e41e3514a46e05bb2a43251a619a6e8348b96fc0", + "sha256:250632316295f2311e1ed43e6b26a63b0216b866b45c11441886ac1543ca96e1", + "sha256:2bc9c2579312c68a3552ee816311c8da76412e6f6a9cf33b15152e385a572d2a", + "sha256:318aadf1cfb6741c555c7dd83d94f746dc95989f4f106b25b8a83dfb547f2756", + "sha256:42cdd649741a14b0602bf15985cad0dd4696a380081a3319cd1ead46fd0f0fab", + "sha256:5159c4975931a1a78bf6602bbebaa366747fce0a56cb2111f44789d2c45e379f", + "sha256:87e26d8b89127c25659e962c61a4c655ec7445d19150daea0759516884ecb8b4", + "sha256:891b7e142885e17a894d9d22b0349b92bb2da4769b4e675665d0331c08719be5", + "sha256:8d919034420378132d074bf89df148d0193e9780c9fe7c0e495e895b8af4d8a2", + "sha256:9c890978e2b37dd0dc1bd952da9a5d9f245d4807bee33e3517e4119c48d66f8c", + "sha256:a37433ce8cdb35fc9e6e47e1606fa1bfd6d70440879038dca7d8dd023197eaa9", + "sha256:c626029841ada34c030b94a00c573a0c7575fe66489cde148785b6535397d675", + "sha256:cfec9d001a83dc73580143f3c77e898cf7ad78b27bb5e64dbe9652668fcafec7", + "sha256:efaf1b18ea6c1f577b1371c0159edbe4749558bfe983e13aa24d0a0c01e1ad7b" + ], + "version": "==4.6.1" + }, + "pint": { + "hashes": [ + "sha256:32d8a9a9d63f4f81194c0014b3b742679dce81a26d45127d9810a68a561fe4e2", + "sha256:7ece3f639ad58073ce49982b022d464014e6d91d0b3eaa89c8e8ea9c38e32659" + ], + "version": "==0.9" + }, + "psutil": { + "hashes": [ + "sha256:094f899ac3ef72422b7e00411b4ed174e3c5a2e04c267db6643937ddba67a05b", + "sha256:10b7f75cc8bd676cfc6fa40cd7d5c25b3f45a0e06d43becd7c2d2871cbb5e806", + "sha256:1b1575240ca9a90b437e5a40db662acd87bbf181f6aa02f0204978737b913c6b", + "sha256:21231ef1c1a89728e29b98a885b8e0a8e00d09018f6da5cdc1f43f988471a995", + "sha256:28f771129bfee9fc6b63d83a15d857663bbdcae3828e1cb926e91320a9b5b5cd", + "sha256:70387772f84fa5c3bb6a106915a2445e20ac8f9821c5914d7cbde148f4d7ff73", + "sha256:b560f5cd86cf8df7bcd258a851ca1ad98f0d5b8b98748e877a0aec4e9032b465", + "sha256:b74b43fecce384a57094a83d2778cdfc2e2d9a6afaadd1ebecb2e75e0d34e10d", + "sha256:e85f727ffb21539849e6012f47b12f6dd4c44965e56591d8dec6e8bc9ab96f4a", + "sha256:fd2e09bb593ad9bdd7429e779699d2d47c1268cbde4dda95fcd1bd17544a0217", + "sha256:ffad8eb2ac614518bbe3c0b8eb9dffdb3a8d2e3a7d5da51c5b974fb723a5c5aa" + ], + "version": "==5.6.7" + }, + "psycopg2": { + "hashes": [ + "sha256:4212ca404c4445dc5746c0d68db27d2cbfb87b523fe233dc84ecd24062e35677", + "sha256:47fc642bf6f427805daf52d6e52619fe0637648fe27017062d898f3bf891419d", + "sha256:72772181d9bad1fa349792a1e7384dde56742c14af2b9986013eb94a240f005b", + "sha256:8396be6e5ff844282d4d49b81631772f80dabae5658d432202faf101f5283b7c", + "sha256:893c11064b347b24ecdd277a094413e1954f8a4e8cdaf7ffbe7ca3db87c103f0", + "sha256:92a07dfd4d7c325dd177548c4134052d4842222833576c8391aab6f74038fc3f", + "sha256:965c4c93e33e6984d8031f74e51227bd755376a9df6993774fd5b6fb3288b1f4", + "sha256:9ab75e0b2820880ae24b7136c4d230383e07db014456a476d096591172569c38", + "sha256:b0845e3bdd4aa18dc2f9b6fb78fbd3d9d371ad167fd6d1b7ad01c0a6cdad4fc6", + "sha256:dca2d7203f0dfce8ea4b3efd668f8ea65cd2b35112638e488a4c12594015f67b", + "sha256:ed686e5926929887e2c7ae0a700e32c6129abb798b4ad2b846e933de21508151", + "sha256:ef6df7e14698e79c59c7ee7cf94cd62e5b869db369ed4b1b8f7b729ea825712a", + "sha256:f898e5cc0a662a9e12bde6f931263a1bbd350cfb18e1d5336a12927851825bb6" + ], + "version": "==2.8.4" + }, + "python-dateutil": { + "hashes": [ + "sha256:73ebfe9dbf22e832286dafa60473e4cd239f8592f699aa5adaf10050e6e1823c", + "sha256:75bb3f31ea686f1197762692a9ee6a7550b59fc6ca3a1f4b5d7e32fb98e2da2a" + ], + "version": "==2.8.1" + }, + "python-editor": { + "hashes": [ + "sha256:1bf6e860a8ad52a14c3ee1252d5dc25b2030618ed80c022598f00176adc8367d", + "sha256:51fda6bcc5ddbbb7063b2af7509e43bd84bfc32a4ff71349ec7847713882327b", + "sha256:5f98b069316ea1c2ed3f67e7f5df6c0d8f10b689964a4a811ff64f0106819ec8" + ], + "version": "==1.0.4" + }, + "six": { + "hashes": [ + "sha256:1f1b7d42e254082a9db6279deae68afb421ceba6158efa6131de7b3003ee93fd", + "sha256:30f610279e8b2578cab6db20741130331735c781b56053c59c4076da27f06b66" + ], + "version": "==1.13.0" + }, + "sqlalchemy": { + "hashes": [ + "sha256:afa5541e9dea8ad0014251bc9d56171ca3d8b130c9627c6cb3681cff30be3f8a" + ], + "version": "==1.3.11" + }, + "typing-extensions": { + "hashes": [ + "sha256:091ecc894d5e908ac75209f10d5b4f118fbdb2eb1ede6a63544054bb1edb41f2", + "sha256:910f4656f54de5993ad9304959ce9bb903f90aadc7c67a0bef07e678014e892d", + "sha256:cf8b63fedea4d89bab840ecbb93e75578af28f76f66c35889bd7065f5af88575" + ], + "version": "==3.7.4.1" + }, + "werkzeug": { + "hashes": [ + "sha256:7280924747b5733b246fe23972186c6b348f9ae29724135a6dfc1e53cea433e7", + "sha256:e5f4a1f98b52b18a93da705a7458e55afb26f32bff83ff5d19189f92462d65c4" + ], + "version": "==0.16.0" + }, + "yarl": { + "hashes": [ + "sha256:2e5f4f4d709aed4f689843ef605fc432d0472e3325a8e165b1ecf1e2f3f22a89", + "sha256:412fe567284bdd16a8035c5a6f541da9872804b5702378532cf2e3ef5ae4a9e6", + "sha256:629f542dfd4e964c9e32039a1515b3262dae210f8802cfcceca9f0b529c68ee7", + "sha256:7bd0b31008afcba762d75171ac09135f49bc17c8d092bce49f0b9bf2c4b51850", + "sha256:9510699e48d7565a2c1dc0a9fcb396f1ac80802991621cf02d55540d571a5dc9", + "sha256:9a07c2a1b0c8b314ad5bcea37e62c109d8c19ad9f02985e8db898a56c129984f", + "sha256:9a49055f9e3121449c76709986aee829c74e2eee3b98185542799eec97808ed1", + "sha256:b59dd6679cb2ae172eb594f484e482aaac66fbff71a717603b0f9adf01649386", + "sha256:e5d6b530bec5817be9383452728c116d59868bfbed650ccc7657b2ec9aa51c03" + ], + "version": "==1.4.0a11" + } + }, + "develop": { + "appdirs": { + "hashes": [ + "sha256:9e5896d1372858f8dd3344faf4e5014d21849c756c8d5701f78f8a103b372d92", + "sha256:d8b24664561d0d34ddfaec54636d502d7cea6e29c3eaf68f3df6180863e2166e" + ], + "version": "==1.4.3" + }, + "aspy.yaml": { + "hashes": [ + "sha256:463372c043f70160a9ec950c3f1e4c3a82db5fca01d334b6bc89c7164d744bdc", + "sha256:e7c742382eff2caed61f87a39d13f99109088e5e93f04d76eb8d4b28aa143f45" + ], + "version": "==1.3.0" + }, + "atomicwrites": { + "hashes": [ + "sha256:03472c30eb2c5d1ba9227e4c2ca66ab8287fbfbbda3888aa93dc2e28fc6811b4", + "sha256:75a9445bac02d8d058d5e1fe689654ba5a6556a1dfd8ce6ec55a0ed79866cfa6" + ], + "markers": "sys_platform == 'win32'", + "version": "==1.3.0" + }, + "attrs": { + "hashes": [ + "sha256:08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c", + "sha256:f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72" + ], + "version": "==19.3.0" + }, + "black": { + "hashes": [ + "sha256:1b30e59be925fafc1ee4565e5e08abef6b03fe455102883820fe5ee2e4734e0b", + "sha256:c2edb73a08e9e0e6f65a0e6af18b059b8b1cdd5bef997d7a0b181df93dc81539" + ], + "index": "pypi", + "version": "==19.10b0" + }, + "bleach": { + "hashes": [ + "sha256:213336e49e102af26d9cde77dd2d0397afabc5a6bf2fed985dc35b5d1e285a16", + "sha256:3fdf7f77adcf649c9911387df51254b813185e32b2c6619f690b593a617e19fa" + ], + "version": "==3.1.0" + }, + "certifi": { + "hashes": [ + "sha256:e4f3620cfea4f83eedc95b24abd9cd56f3c4b146dd0177e83a21b4eb49e21e50", + "sha256:fd7c7c74727ddcf00e9acd26bba8da604ffec95bf1c2144e67aff7a8b50e6cef" + ], + "version": "==2019.9.11" + }, + "cfgv": { + "hashes": [ + "sha256:edb387943b665bf9c434f717bf630fa78aecd53d5900d2e05da6ad6048553144", + "sha256:fbd93c9ab0a523bf7daec408f3be2ed99a980e20b2d19b50fc184ca6b820d289" + ], + "version": "==2.0.1" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:2335065e6395b9e67ca716de5f7526736bfa6ceead690adf616d925bdc622b13", + "sha256:5b94b49521f6456670fdb30cd82a4eca9412788a93fa6dd6df72c94d5a8ff2d7" + ], + "version": "==7.0" + }, + "colorama": { + "hashes": [ + "sha256:05eed71e2e327246ad6b38c540c4a3117230b19679b875190486ddd2d721422d", + "sha256:f8ac84de7840f5b9c4e3347b3c1eaa50f7e49c2b07596221daec5edaabbd7c48" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.1" + }, + "coverage": { + "hashes": [ + "sha256:2358e685d0253125da42a48396038d4c7b4cd1448c00bbc4bda0cb8c43c2a870", + "sha256:25017cf384eeed2e6caf72efd3ec4124e32a8b7a4387600499104387975400c7", + "sha256:2e2de9423ff8b14303a97eafddd16c479fbcc9a0b8b0be3b7c3843a3e0cf6d69", + "sha256:324ed908e4e40a6e2451056fe502470ad4e79495cb7a03ecab94e6309c3e117e", + "sha256:34f865a0cf6255b694a46e4383a7131c61ea72c5b4c4f81d20e522fb1e440b4b", + "sha256:3a2bcc464b60a18f1f7167b95b2773ede93bf3722bfa59e0802717f652b6cc25", + "sha256:48d70865266d649b6602e2ba94820d7972ef470d3b72a8fd41a3d17321feed3a", + "sha256:50cf23523ab3a724c6905d3b60f87fa8250d9bae3995e09f49f63effa2b54f15", + "sha256:54c84a68abd8c4c5b71878b35eb85321df41f3d144c78181867d5b026ec74994", + "sha256:5b59d661ee7f3200aedd7b71882b7927ea7ed522df75e3853f316a79ad872a2e", + "sha256:5ffb39624bc573177888a21fb301ccee46838c600b27d58c3e9dae495f44d34a", + "sha256:699b3072b7f0e69ed175a88fa8b2ec7eefc4f34d490c54ed9a52feff21a15fdc", + "sha256:79ef4a2bb862110bd585174e551a783bee5c3aa461734a2ac7429193be357589", + "sha256:8210a6f93c4a8c6d460b402e20e38399529b99200c3318542faf6a520c9b6a5c", + "sha256:8d30c10cfd0a6fdf0a2d5023de00ef7b329cd6ead2310c9e53eab79c209acb70", + "sha256:97ac79ff28f2cda6ac00a803ee582b965951755f61ab43377482bfba450b619a", + "sha256:9fe4aacacff9028ed167db108bf013510654f148d83c4857fed61d2ce0588bf2", + "sha256:a5b6395d5957d638f8b1870561607e3c39b1a236ea6cff9eafe5b9bb1db913f2", + "sha256:ab32c5fad6905986a7e34e3acf01180a69bb60c2aa7331815b46e51c776a1943", + "sha256:ad67f0cfdfecbd49b9da46a7e488e6dc32a69388740b85c36a4ef4b33082cbad", + "sha256:aedad67c30326a1af324f45833a40b97180664912deb29942459ddbe9fa0ce19", + "sha256:b077cd0e70f41366ac1f9d09275258fa1906758a5d4f31cacc18b10dfcf90784", + "sha256:b8ea210810d3c14aec7561f8fe0d3eec582d1088100aaa0bb8153d53d867d20f", + "sha256:bf572722326ce6704e863447a070039a827072b7179352570859be899b9e6551", + "sha256:c0df57e189dacd2606cae6386acf127d01d85b2bf49acd9a65543b5d6c359ddc", + "sha256:d523e75f2a8a0b4a6a8be1287c0e0e3a561b8832b05ddd987d4cd7c62f3ad3bc", + "sha256:e10593c60c5f0bfd8b241bf9f27ef2191a3005b73dde8ada0424f642543a1e59", + "sha256:e9128444c83bc260aea988bf1ca6278a33ba730955bf94720468c656b61353eb", + "sha256:f7162f2e3711f3a08a8a741f92e1f63afd58d0713177979f2cf9723dd50161cf" + ], + "version": "==5.0b1" + }, + "docutils": { + "hashes": [ + "sha256:6c4f696463b79f1fb8ba0c594b63840ebd41f059e92b31957c46b74a4599b6d0", + "sha256:9e4d7ecfc600058e07ba661411a2b7de2fd0fafa17d1a7f7361cd47b1175c827", + "sha256:a2aeea129088da402665e92e0b25b04b073c04b2dce4ab65caaa38b7ce2e1a99" + ], + "version": "==0.15.2" + }, + "entrypoints": { + "hashes": [ + "sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19", + "sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451" + ], + "version": "==0.3" + }, + "flake8": { + "hashes": [ + "sha256:45681a117ecc81e870cbf1262835ae4af5e7a8b08e40b944a8a6e6b895914cfb", + "sha256:49356e766643ad15072a789a20915d3c91dc89fd313ccd71802303fd67e4deca" + ], + "index": "pypi", + "version": "==3.7.9" + }, + "identify": { + "hashes": [ + "sha256:4f1fe9a59df4e80fcb0213086fcf502bc1765a01ea4fe8be48da3b65afd2a017", + "sha256:d8919589bd2a5f99c66302fec0ef9027b12ae150b0b0213999ad3f695fc7296e" + ], + "version": "==1.4.7" + }, + "idna": { + "hashes": [ + "sha256:c357b3f628cf53ae2c4c05627ecc484553142ca23264e593d327bcde5e9c3407", + "sha256:ea8b7f6188e6fa117537c3df7da9fc686d485087abf6ac197f9c46432f7e4a3c" + ], + "version": "==2.8" + }, + "importlib-metadata": { + "hashes": [ + "sha256:aa18d7378b00b40847790e7c27e11673d7fed219354109d0e7b9e5b25dc3ad26", + "sha256:d5f18a79777f3aa179c145737780282e27b508fc8fd688cb17c7a813e8bd39af" + ], + "markers": "python_version < '3.8'", + "version": "==0.23" + }, + "keyring": { + "hashes": [ + "sha256:91037ccaf0c9a112a76f7740e4a416b9457a69b66c2799421581bee710a974b3", + "sha256:f5bb20ea6c57c2360daf0c591931c9ea0d7660a8d9e32ca84d63273f131ea605" + ], + "version": "==19.2.0" + }, + "mccabe": { + "hashes": [ + "sha256:ab8a6258860da4b6677da4bd2fe5dc2c659cff31b3ee4f7f5d64e79735b80d42", + "sha256:dd8d182285a0fe56bace7f45b5e7d1a6ebcbf524e8f3bd87eb0f125271b8831f" + ], + "version": "==0.6.1" + }, + "more-itertools": { + "hashes": [ + "sha256:409cd48d4db7052af495b09dec721011634af3753ae1ef92d2b32f73a745f832", + "sha256:92b8c4b06dac4f0611c0729b2f2ede52b2e1bac1ab48f089c7ddc12e26bb60c4" + ], + "version": "==7.2.0" + }, + "mypy": { + "hashes": [ + "sha256:1521c186a3d200c399bd5573c828ea2db1362af7209b2adb1bb8532cea2fb36f", + "sha256:31a046ab040a84a0fc38bc93694876398e62bc9f35eca8ccbf6418b7297f4c00", + "sha256:3b1a411909c84b2ae9b8283b58b48541654b918e8513c20a400bb946aa9111ae", + "sha256:48c8bc99380575deb39f5d3400ebb6a8a1cb5cc669bbba4d3bb30f904e0a0e7d", + "sha256:540c9caa57a22d0d5d3c69047cc9dd0094d49782603eb03069821b41f9e970e9", + "sha256:672e418425d957e276c291930a3921b4a6413204f53fe7c37cad7bc57b9a3391", + "sha256:6ed3b9b3fdc7193ea7aca6f3c20549b377a56f28769783a8f27191903a54170f", + "sha256:9371290aa2cad5ad133e4cdc43892778efd13293406f7340b9ffe99d5ec7c1d9", + "sha256:ace6ac1d0f87d4072f05b5468a084a45b4eda970e4d26704f201e06d47ab2990", + "sha256:b428f883d2b3fe1d052c630642cc6afddd07d5cd7873da948644508be3b9d4a7", + "sha256:d5bf0e6ec8ba346a2cf35cb55bf4adfddbc6b6576fcc9e10863daa523e418dbb", + "sha256:d7574e283f83c08501607586b3167728c58e8442947e027d2d4c7dcd6d82f453", + "sha256:dc889c84241a857c263a2b1cd1121507db7d5b5f5e87e77147097230f374d10b", + "sha256:f4748697b349f373002656bf32fede706a0e713d67bfdcf04edf39b1f61d46eb" + ], + "index": "pypi", + "version": "==0.740" + }, + "mypy-extensions": { + "hashes": [ + "sha256:090fedd75945a69ae91ce1303b5824f428daf5a028d2f6ab8a299250a846f15d", + "sha256:2d82818f5bb3e369420cb3c4060a7970edba416647068eb4c5343488a6c604a8" + ], + "version": "==0.4.3" + }, + "nodeenv": { + "hashes": [ + "sha256:ad8259494cf1c9034539f6cced78a1da4840a4b157e23640bc4a0c0546b0cb7a" + ], + "version": "==1.3.3" + }, + "packaging": { + "hashes": [ + "sha256:28b924174df7a2fa32c1953825ff29c61e2f5e082343165438812f00d3a7fc47", + "sha256:d9551545c6d761f3def1677baf08ab2a3ca17c56879e70fecba2fc4dde4ed108" + ], + "version": "==19.2" + }, + "pathspec": { + "hashes": [ + "sha256:e285ccc8b0785beadd4c18e5708b12bb8fcf529a1e61215b3feff1d1e559ea5c" + ], + "version": "==0.6.0" + }, + "pkginfo": { + "hashes": [ + "sha256:7424f2c8511c186cd5424bbf31045b77435b37a8d604990b79d4e70d741148bb", + "sha256:a6d9e40ca61ad3ebd0b72fbadd4fba16e4c0e4df0428c041e01e06eb6ee71f32" + ], + "version": "==1.5.0.1" + }, + "pluggy": { + "hashes": [ + "sha256:15b2acde666561e1298d71b523007ed7364de07029219b604cf808bfa1c765b0", + "sha256:966c145cd83c96502c3c3868f50408687b38434af77734af1e9ca461a4081d2d" + ], + "version": "==0.13.1" + }, + "pre-commit": { + "hashes": [ + "sha256:9f152687127ec90642a2cc3e4d9e1e6240c4eb153615cb02aa1ad41d331cbb6e", + "sha256:c2e4810d2d3102d354947907514a78c5d30424d299dc0fe48f5aa049826e9b50" + ], + "index": "pypi", + "version": "==1.20.0" + }, + "py": { + "hashes": [ + "sha256:64f65755aee5b381cea27766a3a147c3f15b9b6b9ac88676de66ba2ae36793fa", + "sha256:dc639b046a6e2cff5bbe40194ad65936d6ba360b52b3c3fe1d08a82dd50b5e53" + ], + "version": "==1.8.0" + }, + "pycodestyle": { + "hashes": [ + "sha256:95a2219d12372f05704562a14ec30bc76b05a5b297b21a5dfe3f6fac3491ae56", + "sha256:e40a936c9a450ad81df37f549d676d127b1b66000a6c500caa2b085bc0ca976c" + ], + "version": "==2.5.0" + }, + "pyflakes": { + "hashes": [ + "sha256:17dbeb2e3f4d772725c777fabc446d5634d1038f234e77343108ce445ea69ce0", + "sha256:d976835886f8c5b31d47970ed689944a0262b5f3afa00a5a7b4dc81e5449f8a2" + ], + "version": "==2.1.1" + }, + "pygments": { + "hashes": [ + "sha256:71e430bc85c88a430f000ac1d9b331d2407f681d6f6aec95e8bcfbc3df5b0127", + "sha256:881c4c157e45f30af185c1ffe8d549d48ac9127433f2c380c24b84572ad66297" + ], + "version": "==2.4.2" + }, + "pyparsing": { + "hashes": [ + "sha256:20f995ecd72f2a1f4bf6b072b63b22e2eb457836601e76d6e5dfcd75436acc1f", + "sha256:4ca62001be367f01bd3e92ecbb79070272a9d4964dce6a48a82ff0b8bc7e683a" + ], + "version": "==2.4.5" + }, + "pytest": { + "hashes": [ + "sha256:1897d74f60a5d8be02e06d708b41bf2445da2ee777066bd68edf14474fc201eb", + "sha256:f6a567e20c04259d41adce9a360bd8991e6aa29dd9695c5e6bd25a9779272673" + ], + "index": "pypi", + "version": "==5.3.0" + }, + "pytest-asyncio": { + "hashes": [ + "sha256:9fac5100fd716cbecf6ef89233e8590a4ad61d729d1732e0a96b84182df1daaf", + "sha256:d734718e25cfc32d2bf78d346e99d33724deeba774cc4afdf491530c6184b63b" + ], + "index": "pypi", + "version": "==0.10.0" + }, + "pytest-cov": { + "hashes": [ + "sha256:cc6742d8bac45070217169f5f72ceee1e0e55b0221f54bcf24845972d3a47f2b", + "sha256:cdbdef4f870408ebdbfeb44e63e07eb18bb4619fae852f6e760645fa36172626" + ], + "index": "pypi", + "version": "==2.8.1" + }, + "pywin32-ctypes": { + "hashes": [ + "sha256:24ffc3b341d457d48e8922352130cf2644024a4ff09762a2261fd34c36ee5942", + "sha256:9dc2d991b3479cc2df15930958b674a48a227d5361d413827a4cfd0b5876fc98" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.2.0" + }, + "pyyaml": { + "hashes": [ + "sha256:0113bc0ec2ad727182326b61326afa3d1d8280ae1122493553fd6f4397f33df9", + "sha256:01adf0b6c6f61bd11af6e10ca52b7d4057dd0be0343eb9283c878cf3af56aee4", + "sha256:5124373960b0b3f4aa7df1707e63e9f109b5263eca5976c66e08b1c552d4eaf8", + "sha256:5ca4f10adbddae56d824b2c09668e91219bb178a1eee1faa56af6f99f11bf696", + "sha256:7907be34ffa3c5a32b60b95f4d95ea25361c951383a894fec31be7252b2b6f34", + "sha256:7ec9b2a4ed5cad025c2278a1e6a19c011c80a3caaac804fd2d329e9cc2c287c9", + "sha256:87ae4c829bb25b9fe99cf71fbb2140c448f534e24c998cc60f39ae4f94396a73", + "sha256:9de9919becc9cc2ff03637872a440195ac4241c80536632fffeb6a1e25a74299", + "sha256:a5a85b10e450c66b49f98846937e8cfca1db3127a9d5d1e31ca45c3d0bef4c5b", + "sha256:b0997827b4f6a7c286c01c5f60384d218dca4ed7d9efa945c3e1aa623d5709ae", + "sha256:b631ef96d3222e62861443cc89d6563ba3eeb816eeb96b2629345ab795e53681", + "sha256:bf47c0607522fdbca6c9e817a6e81b08491de50f3766a7a0e6a5be7905961b41", + "sha256:f81025eddd0327c7d4cfe9b62cf33190e1e736cc6e97502b3ec425f574b3e7a8" + ], + "version": "==5.1.2" + }, + "readme-renderer": { + "hashes": [ + "sha256:bb16f55b259f27f75f640acf5e00cf897845a8b3e4731b5c1a436e4b8529202f", + "sha256:c8532b79afc0375a85f10433eca157d6b50f7d6990f337fa498c96cd4bfc203d" + ], + "version": "==24.0" + }, + "regex": { + "hashes": [ + "sha256:15454b37c5a278f46f7aa2d9339bda450c300617ca2fca6558d05d870245edc7", + "sha256:1ad40708c255943a227e778b022c6497c129ad614bb7a2a2f916e12e8a359ee7", + "sha256:5e00f65cc507d13ab4dfa92c1232d004fa202c1d43a32a13940ab8a5afe2fb96", + "sha256:604dc563a02a74d70ae1f55208ddc9bfb6d9f470f6d1a5054c4bd5ae58744ab1", + "sha256:720e34a539a76a1fedcebe4397290604cc2bdf6f81eca44adb9fb2ea071c0c69", + "sha256:7caf47e4a9ac6ef08cabd3442cc4ca3386db141fb3c8b2a7e202d0470028e910", + "sha256:7faf534c1841c09d8fefa60ccde7b9903c9b528853ecf41628689793290ca143", + "sha256:b4e0406d822aa4993ac45072a584d57aa4931cf8288b5455bbf30c1d59dbad59", + "sha256:c31eaf28c6fe75ea329add0022efeed249e37861c19681960f99bbc7db981fb2", + "sha256:c7393597191fc2043c744db021643549061e12abe0b3ff5c429d806de7b93b66", + "sha256:d2b302f8cdd82c8f48e9de749d1d17f85ce9a0f082880b9a4859f66b07037dc6", + "sha256:e3d8dd0ec0ea280cf89026b0898971f5750a7bd92cb62c51af5a52abd020054a", + "sha256:ec032cbfed59bd5a4b8eab943c310acfaaa81394e14f44454ad5c9eba4f24a74" + ], + "version": "==2019.11.1" + }, + "requests": { + "hashes": [ + "sha256:11e007a8a2aa0323f5a921e9e6a2d7e4e67d9877e85773fba9ba6419025cbeb4", + "sha256:9cf5292fcd0f598c671cfc1e0d7d1a7f13bb8085e9a590f48c010551dc6c4b31" + ], + "version": "==2.22.0" + }, + "requests-toolbelt": { + "hashes": [ + "sha256:380606e1d10dc85c3bd47bf5a6095f815ec007be7a8b69c878507068df059e6f", + "sha256:968089d4584ad4ad7c171454f0a5c6dac23971e9472521ea3b6d49d610aa6fc0" + ], + "version": "==0.9.1" + }, + "six": { + "hashes": [ + "sha256:1f1b7d42e254082a9db6279deae68afb421ceba6158efa6131de7b3003ee93fd", + "sha256:30f610279e8b2578cab6db20741130331735c781b56053c59c4076da27f06b66" + ], + "version": "==1.13.0" + }, + "sqlalchemy-stubs": { + "hashes": [ + "sha256:a3318c810697164e8c818aa2d90bac570c1a0e752ced3ec25455b309c0bee8fd", + "sha256:ca1250605a39648cc433f5c70cb1a6f9fe0b60bdda4c51e1f9a2ab3651daadc8" + ], + "index": "pypi", + "version": "==0.3" + }, + "toml": { + "hashes": [ + "sha256:229f81c57791a41d65e399fc06bf0848bab550a9dfd5ed66df18ce5f05e73d5c", + "sha256:235682dd292d5899d361a811df37e04a8828a5b1da3115886b73cf81ebc9100e" + ], + "version": "==0.10.0" + }, + "tqdm": { + "hashes": [ + "sha256:5a1f3d58f3eb53264387394387fe23df469d2a3fab98c9e7f99d5c146c119873", + "sha256:f1a1613fee07cc30a253051617f2a219a785c58877f9f6bfa129446cbaf8b4c1" + ], + "version": "==4.39.0" + }, + "twine": { + "hashes": [ + "sha256:1a87ae3f1e29a87a8ac174809bf0aa996085a0368fe500402196bda94b23aab3", + "sha256:ba8ba1b39987f1c22d9162f7dd3b4668388640e5f7158c15226624f88e464836" + ], + "index": "pypi", + "version": "==3.1.0" + }, + "typed-ast": { + "hashes": [ + "sha256:1170afa46a3799e18b4c977777ce137bb53c7485379d9706af8a59f2ea1aa161", + "sha256:18511a0b3e7922276346bcb47e2ef9f38fb90fd31cb9223eed42c85d1312344e", + "sha256:262c247a82d005e43b5b7f69aff746370538e176131c32dda9cb0f324d27141e", + "sha256:2b907eb046d049bcd9892e3076c7a6456c93a25bebfe554e931620c90e6a25b0", + "sha256:354c16e5babd09f5cb0ee000d54cfa38401d8b8891eefa878ac772f827181a3c", + "sha256:48e5b1e71f25cfdef98b013263a88d7145879fbb2d5185f2a0c79fa7ebbeae47", + "sha256:4e0b70c6fc4d010f8107726af5fd37921b666f5b31d9331f0bd24ad9a088e631", + "sha256:630968c5cdee51a11c05a30453f8cd65e0cc1d2ad0d9192819df9978984529f4", + "sha256:66480f95b8167c9c5c5c87f32cf437d585937970f3fc24386f313a4c97b44e34", + "sha256:71211d26ffd12d63a83e079ff258ac9d56a1376a25bc80b1cdcdf601b855b90b", + "sha256:7954560051331d003b4e2b3eb822d9dd2e376fa4f6d98fee32f452f52dd6ebb2", + "sha256:838997f4310012cf2e1ad3803bce2f3402e9ffb71ded61b5ee22617b3a7f6b6e", + "sha256:95bd11af7eafc16e829af2d3df510cecfd4387f6453355188342c3e79a2ec87a", + "sha256:bc6c7d3fa1325a0c6613512a093bc2a2a15aeec350451cbdf9e1d4bffe3e3233", + "sha256:cc34a6f5b426748a507dd5d1de4c1978f2eb5626d51326e43280941206c209e1", + "sha256:d755f03c1e4a51e9b24d899561fec4ccaf51f210d52abdf8c07ee2849b212a36", + "sha256:d7c45933b1bdfaf9f36c579671fec15d25b06c8398f113dab64c18ed1adda01d", + "sha256:d896919306dd0aa22d0132f62a1b78d11aaf4c9fc5b3410d3c666b818191630a", + "sha256:fdc1c9bbf79510b76408840e009ed65958feba92a88833cdceecff93ae8fff66", + "sha256:ffde2fbfad571af120fcbfbbc61c72469e72f550d676c3342492a9dfdefb8f12" + ], + "version": "==1.4.0" + }, + "typing-extensions": { + "hashes": [ + "sha256:091ecc894d5e908ac75209f10d5b4f118fbdb2eb1ede6a63544054bb1edb41f2", + "sha256:910f4656f54de5993ad9304959ce9bb903f90aadc7c67a0bef07e678014e892d", + "sha256:cf8b63fedea4d89bab840ecbb93e75578af28f76f66c35889bd7065f5af88575" + ], + "version": "==3.7.4.1" + }, + "urllib3": { + "hashes": [ + "sha256:a8a318824cc77d1fd4b2bec2ded92646630d7fe8619497b142c84a9e6f5a7293", + "sha256:f3c5fd51747d450d4dcf6f923c81f78f811aab8205fda64b0aba34a4e48b0745" + ], + "version": "==1.25.7" + }, + "virtualenv": { + "hashes": [ + "sha256:116655188441670978117d0ebb6451eb6a7526f9ae0796cc0dee6bd7356909b0", + "sha256:b57776b44f91511866594e477dd10e76a6eb44439cdd7f06dcd30ba4c5bd854f" + ], + "version": "==16.7.8" + }, + "wcwidth": { + "hashes": [ + "sha256:3df37372226d6e63e1b1e1eda15c594bca98a22d33a23832a90998faa96bc65e", + "sha256:f4ebe71925af7b40a864553f761ed559b43544f8f71746c2d756c7fe788ade7c" + ], + "version": "==0.1.7" + }, + "webencodings": { + "hashes": [ + "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", + "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923" + ], + "version": "==0.5.1" + }, + "wheel": { + "hashes": [ + "sha256:10c9da68765315ed98850f8e048347c3eb06dd81822dc2ab1d4fde9dc9702646", + "sha256:f4da1763d3becf2e2cd92a14a7c920f0f00eca30fdde9ea992c836685b9faf28" + ], + "index": "pypi", + "version": "==0.33.6" + }, + "zipp": { + "hashes": [ + "sha256:3718b1cbcd963c7d4c5511a8240812904164b7f381b647143a89d3b98f9bcd8e", + "sha256:f06903e9f1f43b12d371004b4ac7b06ab39a44adc747266928ae6debfa7b3335" + ], + "version": "==0.6.0" + } + } +} diff --git a/Ch09/apd.aggregation-chapter09/README.md b/Ch09/apd.aggregation-chapter09/README.md new file mode 100644 index 0000000..85669dd --- /dev/null +++ b/Ch09/apd.aggregation-chapter09/README.md @@ -0,0 +1,4 @@ +# APD Sensor aggregator + +A programme that queries apd.sensor endpoints and aggregates their results. + diff --git a/Ch09/apd.aggregation-chapter09/pyproject.toml b/Ch09/apd.aggregation-chapter09/pyproject.toml new file mode 100644 index 0000000..4d3bb67 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09/pyproject.toml @@ -0,0 +1,5 @@ +[build-system] +requires = [ + "setuptools", +] +build-backend = "setuptools.build_meta" diff --git a/Ch09/apd.aggregation-chapter09/pytest.ini b/Ch09/apd.aggregation-chapter09/pytest.ini new file mode 100644 index 0000000..c1d3e58 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09/pytest.ini @@ -0,0 +1,3 @@ +[pytest] +markers = + functional: these tests are significantly slower as they start a HTTP server \ No newline at end of file diff --git a/Ch09/apd.aggregation-chapter09/setup.cfg b/Ch09/apd.aggregation-chapter09/setup.cfg new file mode 100644 index 0000000..73fc36a --- /dev/null +++ b/Ch09/apd.aggregation-chapter09/setup.cfg @@ -0,0 +1,77 @@ +[mypy] +namespace_packages = True +mypy_path = src +plugins = sqlmypy + +[mypy-alembic] +ignore_missing_imports = True + +[mypy-alembic.config] +ignore_missing_imports = True + +[mypy-alembic.script] +ignore_missing_imports = True + +[mypy-alembic.runtime.environment] +ignore_missing_imports = True + +[mypy-matplotlib] +ignore_missing_imports = True + +[mypy-matplotlib.axes._base] +ignore_missing_imports = True + +[mypy-matplotlib.figure] +ignore_missing_imports = True + +[mypy-matplotlib.pyplot] +ignore_missing_imports = True + + +[mypy-pint] +ignore_missing_imports = True + +[mypy-pytest] +ignore_missing_imports = True + +[flake8] +max-line-length = 120 +ignore = E501 + +[metadata] +name = apd.aggregation +version = attr: apd.aggregation.VERSION +description = A programme that queries apd.sensor endpoints and aggregates their results. +long_description = file: README.md, CHANGES.md, LICENCE +long_description_content_type = text/markdown +keywords = +license = BSD +classifiers = + Programming Language :: Python :: 3 + Programming Language :: Python :: 3.7 + +[options] +zip_safe = False +include_package_data = True +package_dir = + =src +packages = find_namespace: +install_requires = + sqlalchemy + aiohttp + pint + psycopg2 + alembic + click + + +[options.extras_require] +jupyter = ipywidgets + +[options.packages.find] +where = src + +[options.entry_points] +console_scripts = + collect_sensor_data = apd.aggregation.cli:collect_sensor_data + sensor_deployments = apd.aggregation.cli:deployments diff --git a/Ch09/apd.aggregation-chapter09/setup.py b/Ch09/apd.aggregation-chapter09/setup.py new file mode 100644 index 0000000..6068493 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09/setup.py @@ -0,0 +1,3 @@ +from setuptools import setup + +setup() diff --git a/Ch09/apd.aggregation-chapter09/src/apd/aggregation/__init__.py b/Ch09/apd.aggregation-chapter09/src/apd/aggregation/__init__.py new file mode 100644 index 0000000..3277f64 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09/src/apd/aggregation/__init__.py @@ -0,0 +1 @@ +VERSION = "1.0.0" diff --git a/Ch09/apd.aggregation-chapter09/src/apd/aggregation/alembic/README b/Ch09/apd.aggregation-chapter09/src/apd/aggregation/alembic/README new file mode 100644 index 0000000..97a87d5 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09/src/apd/aggregation/alembic/README @@ -0,0 +1,12 @@ +Generic single-database configuration. + + +# Database setup + +To generate the required database tables you must create an alembic.ini file, as follows: + + [alembic] + script_location = apd.aggregation:alembic + sqlalchemy.url = postgresql+psycopg2://apd@localhost/apd + +and run `alembic upgrade head`. This should also be done after every upgrade of the software. \ No newline at end of file diff --git a/Ch09/apd.aggregation-chapter09/src/apd/aggregation/alembic/env.py b/Ch09/apd.aggregation-chapter09/src/apd/aggregation/alembic/env.py new file mode 100644 index 0000000..4c8a2c2 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09/src/apd/aggregation/alembic/env.py @@ -0,0 +1,80 @@ +from logging.config import fileConfig + +from sqlalchemy import engine_from_config +from sqlalchemy import pool +from alembic import context + +from apd.aggregation.database import metadata + + +# this is the Alembic Config object, which provides +# access to the values within the .ini file in use. +config = context.config + +# Interpret the config file for Python logging. +# This line sets up loggers basically. +if config.config_file_name: + fileConfig(config.config_file_name) + +target_metadata = metadata + + +def include_object(object, name, type_, reflected, compare_to): + if object.info.get("is_view", False): + return False + return True + + +def run_migrations_offline(): + """Run migrations in 'offline' mode. + + This configures the context with just a URL + and not an Engine, though an Engine is acceptable + here as well. By skipping the Engine creation + we don't even need a DBAPI to be available. + + Calls to context.execute() here emit the given string to the + script output. + + """ + url = config.get_main_option("sqlalchemy.url") + context.configure( + url=url, + include_object=include_object, + target_metadata=target_metadata, + literal_binds=True, + dialect_opts={"paramstyle": "named"}, + ) + + with context.begin_transaction(): + context.run_migrations() + + +def run_migrations_online(): + """Run migrations in 'online' mode. + + In this scenario we need to create an Engine + and associate a connection with the context. + + """ + connectable = engine_from_config( + config.get_section(config.config_ini_section), + prefix="sqlalchemy.", + poolclass=pool.NullPool, + ) + + with connectable.connect() as connection: + context.configure( + connection=connection, + target_metadata=target_metadata, + include_object=include_object, + ) + + with context.begin_transaction(): + context.run_migrations() + + +if context.is_offline_mode(): + run_migrations_offline() +else: + run_migrations_online() diff --git a/Ch09/apd.aggregation-chapter09/src/apd/aggregation/alembic/script.py.mako b/Ch09/apd.aggregation-chapter09/src/apd/aggregation/alembic/script.py.mako new file mode 100644 index 0000000..2c01563 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09/src/apd/aggregation/alembic/script.py.mako @@ -0,0 +1,24 @@ +"""${message} + +Revision ID: ${up_revision} +Revises: ${down_revision | comma,n} +Create Date: ${create_date} + +""" +from alembic import op +import sqlalchemy as sa +${imports if imports else ""} + +# revision identifiers, used by Alembic. +revision = ${repr(up_revision)} +down_revision = ${repr(down_revision)} +branch_labels = ${repr(branch_labels)} +depends_on = ${repr(depends_on)} + + +def upgrade(): + ${upgrades if upgrades else "pass"} + + +def downgrade(): + ${downgrades if downgrades else "pass"} diff --git a/Ch09/apd.aggregation-chapter09/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py b/Ch09/apd.aggregation-chapter09/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py new file mode 100644 index 0000000..ef671bd --- /dev/null +++ b/Ch09/apd.aggregation-chapter09/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py @@ -0,0 +1,32 @@ +"""Add indexes to datapoints + +Revision ID: 4b2df8a6e1ce +Revises: 6d2eacd5da3f +Create Date: 2019-12-02 16:07:41.123116 + +""" +from alembic import op + + +# revision identifiers, used by Alembic. +revision = "4b2df8a6e1ce" +down_revision = "6d2eacd5da3f" +branch_labels = None +depends_on = None + + +def upgrade(): + op.create_index( + op.f("ix_datapoints_collected_at"), + "datapoints", + ["collected_at"], + unique=False, + ) + op.create_index( + op.f("ix_datapoints_sensor_name"), "datapoints", ["sensor_name"], unique=False, + ) + + +def downgrade(): + op.drop_index(op.f("ix_datapoints_sensor_name"), table_name="datapoints") + op.drop_index(op.f("ix_datapoints_collected_at"), table_name="datapoints") diff --git a/Ch09/apd.aggregation-chapter09/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py b/Ch09/apd.aggregation-chapter09/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py new file mode 100644 index 0000000..eb02455 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py @@ -0,0 +1,38 @@ +"""Add daily summary view + +Revision ID: 6962f8455a6d +Revises: 4b2df8a6e1ce +Create Date: 2019-12-03 11:50:24.403402 + +""" +from alembic import op + + +# revision identifiers, used by Alembic. +revision = "6962f8455a6d" +down_revision = "4b2df8a6e1ce" +branch_labels = None +depends_on = None + + +def upgrade(): + create_view = """ + CREATE VIEW daily_summary AS + SELECT + datapoints.sensor_name AS sensor_name, + datapoints.data AS data, + count(datapoints.id) AS count + FROM datapoints + WHERE + datapoints.collected_at >= CAST(CURRENT_DATE AS DATE) + AND + datapoints.collected_at < CAST(CURRENT_DATE AS DATE) + 1 + GROUP BY + datapoints.sensor_name, + datapoints.data; + """ + op.execute(create_view) + + +def downgrade(): + op.execute("""DROP VIEW daily_summary""") diff --git a/Ch09/apd.aggregation-chapter09/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py b/Ch09/apd.aggregation-chapter09/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py new file mode 100644 index 0000000..b4a3545 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py @@ -0,0 +1,31 @@ +"""Create datapoints table + +Revision ID: 6d2eacd5da3f +Revises: N/A +Create Date: 2019-09-29 13:43:21.242706 + +""" +from alembic import op +import sqlalchemy as sa +from sqlalchemy.dialects import postgresql + +# revision identifiers, used by Alembic. +revision = "6d2eacd5da3f" +down_revision = None +branch_labels = None +depends_on = None + + +def upgrade(): + op.create_table( + "datapoints", + sa.Column("id", sa.Integer(), nullable=False), + sa.Column("sensor_name", sa.String(), nullable=True), + sa.Column("collected_at", postgresql.TIMESTAMP(), nullable=True), + sa.Column("data", postgresql.JSONB(astext_type=sa.Text()), nullable=True), + sa.PrimaryKeyConstraint("id"), + ) + + +def downgrade(): + op.drop_table("datapoints") diff --git a/Ch09/apd.aggregation-chapter09/src/apd/aggregation/alembic/versions/d8cdc709086b_add_deployment_table.py b/Ch09/apd.aggregation-chapter09/src/apd/aggregation/alembic/versions/d8cdc709086b_add_deployment_table.py new file mode 100644 index 0000000..204e096 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09/src/apd/aggregation/alembic/versions/d8cdc709086b_add_deployment_table.py @@ -0,0 +1,32 @@ +"""Add deployment table + +Revision ID: d8cdc709086b +Revises: d8d4cf6a178f +Create Date: 2019-12-17 16:28:58.585616 + +""" +from alembic import op +import sqlalchemy as sa +from sqlalchemy.dialects import postgresql + +# revision identifiers, used by Alembic. +revision = "d8cdc709086b" +down_revision = "d8d4cf6a178f" +branch_labels = None +depends_on = None + + +def upgrade(): + op.create_table( + "deployments", + sa.Column("id", postgresql.UUID(as_uuid=True), nullable=False), + sa.Column("uri", sa.String(), nullable=True), + sa.Column("name", sa.String(), nullable=True), + sa.Column("colour", sa.String(), nullable=True), + sa.Column("api_key", sa.String(), nullable=True), + sa.PrimaryKeyConstraint("id"), + ) + + +def downgrade(): + op.drop_table("deployments") diff --git a/Ch09/apd.aggregation-chapter09/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py b/Ch09/apd.aggregation-chapter09/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py new file mode 100644 index 0000000..88d5219 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py @@ -0,0 +1,34 @@ +"""Add deployment id to DataPoint + +Revision ID: d8d4cf6a178f +Revises: 6962f8455a6d +Create Date: 2019-12-03 20:58:11.285509 + +""" +from alembic import op +import sqlalchemy as sa +from sqlalchemy.dialects import postgresql + +# revision identifiers, used by Alembic. +revision = "d8d4cf6a178f" +down_revision = "6962f8455a6d" +branch_labels = None +depends_on = None + + +def upgrade(): + op.add_column( + "datapoints", + sa.Column("deployment_id", postgresql.UUID(as_uuid=True), nullable=True), + ) + op.create_index( + op.f("ix_datapoints_deployment_id"), + "datapoints", + ["deployment_id"], + unique=False, + ) + + +def downgrade(): + op.drop_index(op.f("ix_datapoints_deployment_id"), table_name="datapoints") + op.drop_column("datapoints", "deployment_id") diff --git a/Ch09/apd.aggregation-chapter09/src/apd/aggregation/analysis.py b/Ch09/apd.aggregation-chapter09/src/apd/aggregation/analysis.py new file mode 100644 index 0000000..60d352c --- /dev/null +++ b/Ch09/apd.aggregation-chapter09/src/apd/aggregation/analysis.py @@ -0,0 +1,381 @@ +from __future__ import annotations + +import asyncio +import collections +from concurrent.futures import ThreadPoolExecutor +import dataclasses +import datetime +import functools +import math +import typing as t +from uuid import UUID + +import matplotlib.pyplot as plt +from matplotlib.axes._base import _AxesBase +from matplotlib.figure import Figure +from pint import _DEFAULT_REGISTRY as ureg + +from apd.aggregation.query import ( + get_data, + get_data_by_deployment, + with_database, + get_deployment_by_id, +) +from apd.aggregation.database import DataPoint, deployment_table +from .utils import merc_x, merc_y + +plot_key = t.TypeVar("plot_key") +plot_value = t.TypeVar("plot_value") + +# Static UUID to represent aggregation of other deployments +GLOBAL = UUID("bd02526e-7619-4a59-b04b-1fafd1c262d1") + + +@dataclasses.dataclass +class Config(t.Generic[plot_key, plot_value]): + title: str + clean: t.Callable[ + [t.AsyncIterator[DataPoint]], t.AsyncIterator[t.Tuple[plot_key, plot_value]] + ] + draw: t.Optional[ + t.Callable[ + [t.Any, t.Iterable[plot_key], t.Iterable[plot_value], t.Optional[str]], None + ] + ] = None + get_data: t.Optional[ + t.Callable[..., t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]] + ] = None + ylabel: t.Optional[str] = None + sensor_name: dataclasses.InitVar[str] = None + + def __post_init__(self, sensor_name: t.Optional[str] = None) -> None: + if self.draw is None: + self.draw = draw_date # type: ignore + if self.get_data is None: + if sensor_name is None: + raise ValueError("You must specify either get_data or sensor_name") + self.get_data = get_one_sensor_by_deployment(sensor_name) + + +def draw_date( + plot: _AxesBase, + x: t.Iterable[datetime.datetime], + y: t.Iterable[float], + colour: t.Optional[str], +) -> None: + plot.plot_date(x, y, color=colour, linestyle="-", marker="", xdate=True) + + +def draw_map( + plot: _AxesBase, + x: t.Iterable[t.Tuple[float, float]], + y: t.Iterable[float], + colour: t.Optional[str], +) -> None: + lon = [merc_y(coord[0]) for coord in x] + lat = [merc_x(coord[1]) for coord in x] + + for axis in "x", "y": + plt.tick_params( + axis=axis, + which="both", + bottom=False, + top=False, + left=False, + right=False, + labelbottom=False, + labelleft=False, + ) + + plot.tricontourf(lat, lon, y) + plot.plot(lat, lon, "wo", ms=3) + plot.set_aspect(1.0) + + +def get_map_cleaner_for( + sensor_name: str, +) -> t.Callable[ + [t.AsyncIterator[DataPoint]], t.AsyncIterator[t.Tuple[t.Tuple[float, float], float]] +]: + """Given a sensor_name that represents a float, return a coroutine that acts as a cleaner + extracting that sensor's data keyed by the value of a Location sensor.""" + + async def clean_latest_coord_and_value( + datapoints: t.AsyncIterator[DataPoint], + ) -> t.AsyncIterator[t.Tuple[t.Tuple[float, float], float]]: + + # We will be building a dictionary of UUID to dictionary + # That inner dictionary should contain coord (float, float) + # and value (float) only. Either or both can be None. + class IntermediateData(t.TypedDict): + coord: t.Optional[t.Tuple[float, float]] + value: t.Optional[float] + + # We will iterate over data points and build an entry in cleaned_data + # for each deployment. This lets newer data replace older data, as + # datapoints is assumed to be in date order + cleaned_data: t.Dict[UUID, IntermediateData] = {} + async for datapoint in datapoints: + # Get the existing data for this deployment, if we've seen it before + row_data = cleaned_data.get(datapoint.deployment_id, None) + if row_data is None: + # This is the first time we've seen this deployment + row_data = {"coord": None, "value": None} + if datapoint.sensor_name == "Location": + # Coord is a 2-tuple of floats + row_data["coord"] = ( + float(datapoint.data[0]), + float(datapoint.data[1]), + ) + elif datapoint.sensor_name == sensor_name: + # Value is a single float + row_data["value"] = float(datapoint.data) + # Store the info about this deployment back into the cleaned_data set + cleaned_data[datapoint.deployment_id] = row_data + + for data in cleaned_data.values(): + if data["coord"] is None or data["value"] is None: + # We only got a partial record, don't plot this + continue + yield data["coord"], data["value"] + + # Return the set up cleaner coroutine + return clean_latest_coord_and_value + + +async def clean_watthours_to_watts( + datapoints: t.AsyncIterator[DataPoint], +) -> t.AsyncIterator[t.Tuple[datetime.datetime, float]]: + last_watthours = None + last_time = None + async for datapoint in datapoints: + if datapoint.data is None: + continue + time = datapoint.collected_at + watthours = ureg.Quantity(datapoint.data["magnitude"], datapoint.data["unit"]) + if last_watthours: + seconds_elapsed = (time - last_time).total_seconds() + time_elapsed = ureg.Quantity(seconds_elapsed, ureg.second) + additional_power = watthours - last_watthours + power = additional_power / time_elapsed + yield time, power.to(ureg.watt).magnitude + last_watthours = watthours + last_time = datapoint.collected_at + + +async def clean_magnitude( + datapoints: t.AsyncIterator[DataPoint], +) -> t.AsyncIterator[t.Tuple[datetime.datetime, float]]: + async for datapoint in datapoints: + if datapoint.data is None: + continue + yield datapoint.collected_at, datapoint.data["magnitude"] + + +async def clean_temperature_fluctuations( + datapoints: t.AsyncIterator[DataPoint], +) -> t.AsyncIterator[t.Tuple[datetime.datetime, float]]: + allowed_jitter = 2.5 + allowed_range = (-40, 80) + window_datapoints: t.Deque[DataPoint] = collections.deque(maxlen=3) + + def datapoint_ok(datapoint: DataPoint) -> bool: + """Return False if this data point does not contain a valid temperature""" + if datapoint.data is None: + return False + elif datapoint.data["unit"] != "degC": + # This point is in a different temperature system. While it could be converted + # this cleaner is not yet doing that. + return False + elif not allowed_range[0] < datapoint.data["magnitude"] < allowed_range[1]: + return False + return True + + async for datapoint in datapoints: + if not datapoint_ok(datapoint): + # If the datapoint is invalid then skip directly to the next item + continue + + window_datapoints.append(datapoint) + if len(window_datapoints) == 3: + # Find the temperatures of the datapoints in the window, then average + # the first and last and compare that to the middle point. + window_temperatures = [dp.data["magnitude"] for dp in window_datapoints] + avr_first_last = (window_temperatures[0] + window_temperatures[2]) / 2 + diff_middle_avr = abs(window_temperatures[1] - avr_first_last) + if diff_middle_avr > allowed_jitter: + pass + else: + yield window_datapoints[1].collected_at, window_temperatures[1] + elif len(window_datapoints) == 1: + # The item in the iterator can't be compared to both neighbours + # so should be yielded + yield datapoint.collected_at, datapoint.data["magnitude"] + else: + # Otherwise, let the window fill up, it will be yieleded later + pass + # When the iterator ends the final item is not yet in the middle + # of the window, so the last item must be explicitly yielded. + if len(window_datapoints) > 1 and datapoint_ok(datapoint): + yield datapoint.collected_at, datapoint.data["magnitude"] + + +async def clean_passthrough( + datapoints: t.AsyncIterator[DataPoint], +) -> t.AsyncIterator[t.Tuple[datetime.datetime, float]]: + async for datapoint in datapoints: + if datapoint.data is None: + continue + else: + yield datapoint.collected_at, datapoint.data + + +def get_one_sensor_by_deployment( + sensor_name: str, +) -> t.Callable[..., t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]]: + return functools.partial(get_data_by_deployment, sensor_name=sensor_name) + + +def get_all_data() -> t.Callable[ + ..., t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]] +]: + async def get_all_data_inner( + *args: t.Any, **kwargs: t.Any + ) -> t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]: + yield GLOBAL, get_data(*args, **kwargs) + + return get_all_data_inner + + +configs = ( + Config( + sensor_name="SolarCumulativeOutput", + clean=clean_watthours_to_watts, + title="Solar generation", + ylabel="Watts", + ), + Config( + sensor_name="RAMAvailable", + clean=clean_passthrough, + title="RAM available", + ylabel="Bytes", + ), + Config( + sensor_name="RelativeHumidity", + clean=clean_passthrough, + title="Relative humidity", + ylabel="Percent", + ), + Config( + sensor_name="Temperature", + clean=clean_temperature_fluctuations, + title="Ambient temperature", + ylabel="Degrees C", + ), +) + + +def get_known_configs() -> t.Dict[str, Config[t.Any, t.Any]]: + return {config.title: config for config in configs} + + +async def plot_sensor( + config: Config[t.Any, t.Any], + plot: _AxesBase, + location_names: t.Dict[UUID, str], + **kwargs: t.Any +) -> _AxesBase: + locations = [] + if config.get_data is None: + raise ValueError("You must provide a get_data function") + async for deployment_id, query_results in config.get_data(**kwargs): + if deployment_id == GLOBAL: + name = "Global" + else: + try: + deployment = await get_deployment_by_id(deployment_id) + except IndexError: + name = str(deployment_id) + colour = None + else: + name = deployment.name or str(deployment_id) + colour = deployment.colour + # Mypy currently doesn't understand callable fields on datatypes: https://github.com/python/mypy/issues/5485 + points = [dp async for dp in config.clean(query_results)] # type: ignore + if not points: + continue + locations.append(name) + x, y = zip(*points) + plot.set_title(config.title) + plot.set_ylabel(config.ylabel) + if config.draw is None: + raise ValueError("You must provide a get_data function") + config.draw(plot, x, y, colour) + plot.legend(locations) + return plot + + +_Coroutine_Result = t.TypeVar("_Coroutine_Result") + + +def wrap_coroutine( + f: t.Callable[..., t.Coroutine[t.Any, t.Any, _Coroutine_Result]] +) -> t.Callable[..., _Coroutine_Result]: + """Given a coroutine, return a function that runs that coroutine + in a new event loop in an isolated thread""" + + @functools.wraps(f) + def run_in_thread(*args: t.Any, **kwargs: t.Any) -> _Coroutine_Result: + loop = asyncio.new_event_loop() + wrapped = f(*args, **kwargs) + with ThreadPoolExecutor(max_workers=1) as pool: + task = pool.submit(loop.run_until_complete, wrapped) + # Mypy can get confused when nesting generic functions, like we do here + # The fact that Task is generic means we lose the association with + # _CoroutineResult. Adding an explicit cast restores this. + return t.cast(_Coroutine_Result, task.result()) + + return run_in_thread + + +async def plot_multiple_charts(*args: t.Any, **kwargs: t.Any) -> Figure: + # These parameters are pulled from kwargs to avoid confusing function + # introspection code in IPython widgets + location_names = kwargs.pop("location_names", None) + configs = kwargs.pop("configs", None) + dimensions = kwargs.pop("dimensions", None) + + with with_database("postgresql+psycopg2://apd@localhost/apd") as session: + loop = asyncio.get_running_loop() + coros = [] + if configs is None: + # If no configs are supplied, use all known configs + configs = get_known_configs().values() + if dimensions is None: + # If no dimensions are supplied, get the square root of the number + # of configs and round it to find a number of columns. This will + # keep the arrangement approximately square. Find rows by multiplying + # out rows. + total_configs = len(configs) + columns = round(math.sqrt(total_configs)) + rows = math.ceil(total_configs / columns) + if location_names is None: + location_query = session.query( + deployment_table.c.id, deployment_table.c.name + ) + location_data = await loop.run_in_executor(None, location_query.all) + location_names = dict(location_data) + + figure = plt.figure(figsize=(10 * columns, 5 * rows), dpi=300) + for i, config in enumerate(configs, start=1): + plot = figure.add_subplot(columns, rows, i) + coros.append(plot_sensor(config, plot, location_names, *args, **kwargs)) + await asyncio.gather(*coros) + return figure + + +def interactable_plot_multiple_charts( + *args: t.Any, **kwargs: t.Any +) -> t.Callable[..., Figure]: + with_config = functools.partial(plot_multiple_charts, *args, **kwargs) + return wrap_coroutine(with_config) diff --git a/Ch09/apd.aggregation-chapter09/src/apd/aggregation/cli.py b/Ch09/apd.aggregation-chapter09/src/apd/aggregation/cli.py new file mode 100644 index 0000000..6e98436 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09/src/apd/aggregation/cli.py @@ -0,0 +1,184 @@ +import asyncio +import typing as t +import uuid + +import aiohttp +import click +from sqlalchemy import create_engine +from sqlalchemy.orm import sessionmaker + +from . import collect +from .database import Deployment, deployment_table + + +@click.command() +@click.argument("server", nargs=-1) +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +@click.option("--api-key", metavar="", envvar="APD_API_KEY") +@click.option( + "--tolerate-failures", + "-f", + help="If provided, failure to retrieve some sensors' data will not abort the collection process", + is_flag=True, +) +@click.option("-v", "--verbose", is_flag=True, help="Enables verbose mode") +def collect_sensor_data( + db: str, server: t.Tuple[str], api_key: str, tolerate_failures: bool, verbose: bool +): + """This loads data from one or more sensors into the specified database. + + Only PostgreSQL databases are supported, as the column definitions use + multiple pg specific features. The database must already exist and be + populated with the required tables. + + The --api-key option is used to specify the access token for the sensors + being queried. + + You may specify any number of servers, the variable should be the full URL + to the sensor's HTTP interface, not including the /v/2.0 portion. Multiple + URLs should be separated with a space. + """ + if tolerate_failures: + attempts = [(s,) for s in server] + else: + attempts = [server] + success = True + for attempt in attempts: + try: + collect.standalone(db, attempt, api_key, echo=verbose) + except ValueError as e: + click.secho(str(e), err=True, fg="red") + success = False + return success + + +@click.group() +def deployments(): + pass + + +@deployments.command() +@click.argument("uri") +@click.argument("name") +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +@click.option("--api-key", metavar="", envvar="APD_API_KEY") +@click.option("--colour") +def add( + db: str, uri: str, name: str, api_key: t.Optional[str], colour: t.Optional[str], +): + """This creates a record of a new deployment in the database. + """ + deployment = Deployment(id=None, uri=uri, name=name, api_key=api_key, colour=colour) + + async def http_get_deployment_id(): + async with aiohttp.ClientSession() as http: + collect.http_session_var.set(http) + return await collect.get_deployment_id(uri) + + deployment.id = asyncio.run(http_get_deployment_id()) + insert = deployment_table.insert().values(**deployment._asdict()) + + engine = create_engine(db) + sm = sessionmaker(engine) + Session = sm() + Session.execute(insert) + Session.commit() + return True + + +@deployments.command() +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +def list(db: str): + """This creates a record of a new deployment in the database. + """ + engine = create_engine(db) + sm = sessionmaker(engine) + Session = sm() + deployments = Session.query(deployment_table).all() + for deployment in deployments: + click.secho(deployment.name, bold=True) + click.echo(click.style("ID ", bold=True) + deployment.id.hex) + click.echo(click.style("URI ", bold=True) + deployment.uri) + click.echo(click.style("API key ", bold=True) + deployment.api_key) + click.echo(click.style("Colour ", bold=True) + str(deployment.colour)) + click.echo() + Session.rollback() + return True + + +@deployments.command() +@click.argument("id") +@click.option("--uri") +@click.option("--name") +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +@click.option("--api-key", metavar="", envvar="APD_API_KEY") +@click.option("--colour") +def edit( + db: str, + id, + uri: t.Optional[str], + name: t.Optional[str], + api_key: t.Optional[str], + colour: t.Optional[str], +): + """This creates a record of a new deployment in the database. + """ + update = {} + if uri is not None: + update["uri"] = uri + if name is not None: + update["name"] = name + if api_key is not None: + update["api_key"] = api_key + if colour is not None: + update["colour"] = colour + deployment_id = uuid.UUID(id) + + update = ( + deployment_table.update() + .where(deployment_table.c.id == deployment_id) + .values(**update) + ) + + engine = create_engine(db) + sm = sessionmaker(engine) + Session = sm() + Session.execute(update) + deployments = Session.query(deployment_table).filter( + deployment_table.c.id == deployment_id + ) + Session.commit() + + for deployment in deployments: + click.secho(deployment.name, bold=True) + click.echo(click.style("ID ", bold=True) + deployment.id.hex) + click.echo(click.style("URI ", bold=True) + deployment.uri) + click.echo(click.style("API key ", bold=True) + deployment.api_key) + click.echo(click.style("Colour ", bold=True) + str(deployment.colour)) + click.echo() + + return True diff --git a/Ch09/apd.aggregation-chapter09/src/apd/aggregation/collect.py b/Ch09/apd.aggregation-chapter09/src/apd/aggregation/collect.py new file mode 100644 index 0000000..1d9ea08 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09/src/apd/aggregation/collect.py @@ -0,0 +1,112 @@ +import asyncio +from contextvars import ContextVar +import datetime +import typing as t +import uuid + +import aiohttp +from sqlalchemy import create_engine +from sqlalchemy.orm import sessionmaker +from sqlalchemy.orm.session import Session + +from .database import DataPoint, datapoint_table, Deployment, deployment_table + +http_session_var: ContextVar[aiohttp.ClientSession] = ContextVar("http_session") + + +async def get_deployment_id(server): + http = http_session_var.get() + if not server.endswith("/"): + server += "/" + url = server + "v/2.1/deployment_id" + async with http.get(url) as request: + if request.status != 200: + raise ValueError(f"Error loading deployment id from {server}") + result = await request.json() + return uuid.UUID(result["deployment_id"]) + + +async def get_data_points(server: str, api_key: t.Optional[str],) -> t.List[DataPoint]: + if not server.endswith("/"): + server += "/" + url = server + "v/2.1/sensors/" + headers = {} + if api_key: + headers["X-API-KEY"] = api_key + http = http_session_var.get() + + # Get the deployment ID in parallel to the sensor data + deployment_id = asyncio.create_task(get_deployment_id(server)) + + async with http.get(url, headers=headers) as request: + result = await request.json() + ok = request.status == 200 + now = datetime.datetime.now() + if ok: + points = [] + for value in result["sensors"]: + points.append( + DataPoint( + sensor_name=value["id"], + collected_at=now, + data=value["value"], + deployment_id=await deployment_id, + ) + ) + return points + else: + raise ValueError( + f"Error loading data from {server}: " + result.get("error", "Unknown") + ) + + +def handle_result(result: t.List[DataPoint], session: Session) -> t.List[DataPoint]: + for point in result: + insert = datapoint_table.insert().values(**point._asdict()) + sql_result = session.execute(insert) + point.id = sql_result.inserted_primary_key[0] + return result + + +async def add_data_from_sensors( + session: Session, servers: t.Iterable[Deployment] +) -> t.List[DataPoint]: + tasks: t.List[t.Awaitable[t.List[DataPoint]]] = [] + points: t.List[DataPoint] = [] + async with aiohttp.ClientSession() as http: + http_session_var.set(http) + tasks = [get_data_points(server.uri, server.api_key) for server in servers] + for results in await asyncio.gather(*tasks): + points += results + loop = asyncio.get_running_loop() + await loop.run_in_executor(None, handle_result, points, session) + return points + + +def standalone( + db_uri: str, servers: t.Tuple[str], api_key: t.Optional[str], echo: bool = False +) -> None: + engine = create_engine(db_uri, echo=echo) + sm = sessionmaker(engine) + Session = sm() + deployments: t.Iterable[Deployment] + if servers: + deployments = tuple( + Deployment(id=None, name=None, colour=None, api_key=api_key, uri=server) + for server in servers + ) + else: + deployment_data = Session.query(deployment_table).all() + deployments = tuple( + Deployment.from_sql_result(deployment) for deployment in deployment_data + ) + asyncio.run(add_data_from_sensors(Session, deployments)) + Session.commit() + + +if __name__ == "__main__": + standalone( + db_uri="postgresql+psycopg2://apd@localhost/apd", + servers=("http://pvoutput:8080/",), + api_key="h3hdfjksfhwkjehnwekj", + ) diff --git a/Ch09/apd.aggregation-chapter09/src/apd/aggregation/database.py b/Ch09/apd.aggregation-chapter09/src/apd/aggregation/database.py new file mode 100644 index 0000000..f28b469 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09/src/apd/aggregation/database.py @@ -0,0 +1,129 @@ +from __future__ import annotations + +from dataclasses import dataclass, field, asdict +import datetime +import typing as t +import uuid + +import sqlalchemy +from sqlalchemy.dialects.postgresql import JSONB, DATE, TIMESTAMP, UUID +from sqlalchemy.ext.hybrid import ExprComparator, hybrid_property +from sqlalchemy.orm import sessionmaker +from sqlalchemy.schema import Table + + +metadata = sqlalchemy.MetaData() + +deployment_table = Table( + "deployments", + metadata, + sqlalchemy.Column("id", UUID(as_uuid=True), primary_key=True), + sqlalchemy.Column("uri", sqlalchemy.String, index=False), + sqlalchemy.Column("name", sqlalchemy.String, index=False, nullable=True), + sqlalchemy.Column("colour", sqlalchemy.String, index=False, nullable=True), + sqlalchemy.Column("api_key", sqlalchemy.String, index=False), +) + +datapoint_table = Table( + "datapoints", + metadata, + sqlalchemy.Column("id", sqlalchemy.Integer, primary_key=True), + sqlalchemy.Column("sensor_name", sqlalchemy.String, index=True), + sqlalchemy.Column("collected_at", TIMESTAMP, index=True), + sqlalchemy.Column("deployment_id", UUID(as_uuid=True), index=True), + sqlalchemy.Column("data", JSONB), +) + +daily_summary_view = Table( + "daily_summary", + metadata, + sqlalchemy.Column("sensor_name", sqlalchemy.String), + sqlalchemy.Column("data", JSONB), + sqlalchemy.Column("count", sqlalchemy.Integer), + info={"is_view": True}, +) + + +class DateEqualComparator(ExprComparator): + def __init__(self, fallback_expression, raw_expression): + # Do not try and find update expression from parent + super().__init__(None, fallback_expression, None) + self.raw_expression = raw_expression + + def __eq__(self, other): + """ Returns True iff on the same day as other """ + other_date = sqlalchemy.cast(other, DATE) + return sqlalchemy.and_( + self.raw_expression >= other_date, self.raw_expression < other_date + 1, + ) + + def operate(self, op, *other, **kwargs): + other = [sqlalchemy.cast(date, DATE) for date in other] + return op(self.expression, *other, **kwargs) + + def reverse_operate(self, op, other, **kwargs): + other = [sqlalchemy.cast(date, DATE) for date in other] + return op(other, self.expression, **kwargs) + + +@dataclass +class DataPoint: + sensor_name: str + data: t.Any + deployment_id: uuid.UUID + id: t.Optional[int] = None + collected_at: datetime.datetime = field(default_factory=datetime.datetime.now) + + @classmethod + def from_sql_result(cls, result) -> DataPoint: + return cls(**result._asdict()) + + def _asdict(self) -> t.Dict[str, t.Any]: + data = asdict(self) + if data["id"] is None: + del data["id"] + return data + + @hybrid_property + def collected_on_date(self): + return self.collected_at.date() + + @collected_on_date.comparator # type: ignore + def collected_on_date(cls): + return DateEqualComparator( + fallback_expression=sqlalchemy.cast(datapoint_table.c.collected_at, DATE), + raw_expression=datapoint_table.c.collected_at, + ) + + +@dataclass +class Deployment: + id: t.Optional[uuid.UUID] + uri: str + name: t.Optional[str] + colour: t.Optional[str] + api_key: t.Optional[str] + + @classmethod + def from_sql_result(cls, result) -> Deployment: + return cls(**result._asdict()) + + def _asdict(self) -> t.Dict[str, t.Any]: + data = asdict(self) + return data + + +def main() -> None: + engine = sqlalchemy.create_engine( + "postgresql+psycopg2://apd@localhost/apd", echo=True + ) + sm = sessionmaker(engine) + Session = sm() + if False: + metadata.create_all(engine) + print(Session.query(DataPoint).all()) + pass + + +if __name__ == "__main__": + main() diff --git a/Ch09/apd.aggregation-chapter09/src/apd/aggregation/query.py b/Ch09/apd.aggregation-chapter09/src/apd/aggregation/query.py new file mode 100644 index 0000000..f3a8c95 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09/src/apd/aggregation/query.py @@ -0,0 +1,148 @@ +import asyncio +import contextlib +from contextvars import ContextVar +import datetime +import typing as t +from uuid import UUID + +from sqlalchemy import create_engine +from sqlalchemy.orm import sessionmaker +from sqlalchemy.orm.session import Session + + +from apd.aggregation.database import ( + datapoint_table, + DataPoint, + deployment_table, + Deployment, +) + + +db_session_var: ContextVar[Session] = ContextVar("db_session") + + +@contextlib.contextmanager +def with_database(uri: t.Optional[str] = None) -> t.Iterator[Session]: + """Given a URI, set up a DB connection, and return a Session as a context manager """ + if uri is None: + uri = "postgresql+psycopg2://localhost/apd" + engine = create_engine(uri) + sm = sessionmaker(engine) + Session = sm() + token = db_session_var.set(Session) + try: + yield Session + Session.commit() + finally: + db_session_var.reset(token) + Session.close() + + +async def get_data( + sensor_name: t.Optional[str] = None, + deployment_id: t.Optional[UUID] = None, + collected_before: t.Optional[datetime.datetime] = None, + collected_after: t.Optional[datetime.datetime] = None, +) -> t.AsyncIterator[DataPoint]: + db_session = db_session_var.get() + loop = asyncio.get_running_loop() + query = db_session.query(datapoint_table) + if sensor_name: + query = query.filter(datapoint_table.c.sensor_name == sensor_name) + if deployment_id: + query = query.filter(datapoint_table.c.deployment_id == deployment_id) + if collected_before: + query = query.filter(datapoint_table.c.collected_at < collected_before) + if collected_after: + query = query.filter(datapoint_table.c.collected_at > collected_after) + query = query.order_by( + datapoint_table.c.deployment_id, + datapoint_table.c.sensor_name, + datapoint_table.c.collected_at, + ) + + rows = await loop.run_in_executor(None, query.all) + for row in rows: + yield DataPoint.from_sql_result(row) + + +async def get_deployment_ids() -> t.List[UUID]: + db_session = db_session_var.get() + loop = asyncio.get_running_loop() + query = db_session.query(datapoint_table.c.deployment_id).distinct() + return [row.deployment_id for row in await loop.run_in_executor(None, query.all)] + + +async def get_deployment_by_id(deployment_id: UUID) -> Deployment: + db_session = db_session_var.get() + loop = asyncio.get_running_loop() + query = db_session.query(deployment_table).filter( + deployment_table.c.id == deployment_id + ) + return [ + Deployment.from_sql_result(row) + for row in await loop.run_in_executor(None, query.all) + ][0] + + +async def get_data_by_deployment( + *args: t.Any, **kwargs: t.Any +) -> t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]: + """Return an Async Iterator that contains two-item pairs. + These pairs are a string (deployment_id), and an async iterator that contains + the datapoints with that deployment_id. + + Usage example: + + async for deployment_id, datapoints in get_data_by_deployment(): + print(deployment_id) + async for datapoint in datapoints: + print(datapoint) + print() + """ + # Get the data, using the arguments to this function as filters + data = get_data(*args, **kwargs) + + # The two levels of iterator share the item variable, initialise it with the + # first item from the iterator. Also set last_deployment_id to None, so the + # outer iterator knows to start a new group. + last_deployment_id: t.Optional[UUID] = None + try: + item = await data.__anext__() + except StopAsyncIteration: + # There were no items in the underlying query, return immediately + return + + async def subiterator(group_id: UUID) -> t.AsyncIterator[DataPoint]: + """Using a closure, create an iterator that yields the current + item, then yields all items from data while the deployment_id matches + group_id, leaving the first that doesn't match as item in the enclosing + scope.""" + # item is from the enclosing scope + nonlocal item + while item.deployment_id == group_id: + # yield items from data while they match the group_id this iterator represents + yield item + try: + # Advance the underlying iterator + item = await data.__anext__() + except StopAsyncIteration: + # The underlying iterator came to an end, so end the subiterator too + return + + while True: + while item.deployment_id == last_deployment_id: + # We are trying to advance the outer iterator while the underlying iterator + # is still part-way through a group. Speed through the underlying until we + # hit an item where the deployment_id is different to the last one (or, is not + # None, in the case of the start of the iterator) + try: + item = await data.__anext__() + except StopAsyncIteration: + # We hit the end of the underlying iterator: end this iterator too + return + last_deployment_id = item.deployment_id + # Don't yield an iterator for unclassified deployments + if last_deployment_id is not None: + # Instantiate a subiterator for this group + yield last_deployment_id, subiterator(last_deployment_id) diff --git a/Ch09/apd.aggregation-chapter09/src/apd/aggregation/utils.py b/Ch09/apd.aggregation-chapter09/src/apd/aggregation/utils.py new file mode 100644 index 0000000..76f05ec --- /dev/null +++ b/Ch09/apd.aggregation-chapter09/src/apd/aggregation/utils.py @@ -0,0 +1,27 @@ +import math + + +# Set up mercator transform from https://wiki.openstreetmap.org/wiki/Mercator#Python +# Thanks to Paulo Silva and the OSM contributors +def merc_x(lon: float) -> float: + r_major = 6378137.000 + return r_major * math.radians(lon) + + +def merc_y(lat: float) -> float: + if lat > 89.5: + lat = 89.5 + if lat < -89.5: + lat = -89.5 + r_major = 6378137.000 + r_minor = 6356752.3142 + temp = r_minor / r_major + eccent = math.sqrt(1 - temp ** 2) + phi = math.radians(lat) + sinphi = math.sin(phi) + con = eccent * sinphi + com = eccent / 2 + con = ((1.0 - con) / (1.0 + con)) ** com + ts = math.tan((math.pi / 2 - phi) / 2) / con + y = 0 - r_major * math.log(ts) + return y diff --git a/Ch09/apd.aggregation-chapter09/tests/__init__.py b/Ch09/apd.aggregation-chapter09/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/Ch09/apd.aggregation-chapter09/tests/conftest.py b/Ch09/apd.aggregation-chapter09/tests/conftest.py new file mode 100644 index 0000000..328e95f --- /dev/null +++ b/Ch09/apd.aggregation-chapter09/tests/conftest.py @@ -0,0 +1,124 @@ +import datetime +from uuid import UUID + +from apd.aggregation.database import datapoint_table + +from alembic.config import Config +from alembic.script import ScriptDirectory +from alembic.runtime.environment import EnvironmentContext +import pytest + + +@pytest.fixture +def db_uri(): + return "postgresql+psycopg2://apd@localhost/apd-test" + + +@pytest.fixture +def db_session(db_uri): + from sqlalchemy import create_engine + from sqlalchemy.orm import sessionmaker + + engine = create_engine(db_uri, echo=True) + sm = sessionmaker(engine) + Session = sm() + yield Session + Session.close() + + +@pytest.fixture +def migrated_db(db_uri, db_session): + config = Config() + config.set_main_option("script_location", "apd.aggregation:alembic") + config.set_main_option("sqlalchemy.url", db_uri) + script = ScriptDirectory.from_config(config) + + def upgrade(rev, context): + return script._upgrade_revs(script.get_current_head(), rev) + + def downgrade(rev, context): + return script._downgrade_revs(None, rev) + + with EnvironmentContext(config, script, fn=upgrade): + script.run_env() + + try: + yield + finally: + # Clear any pending work from the db_session connection + db_session.rollback() + + with EnvironmentContext(config, script, fn=downgrade): + script.run_env() + + +@pytest.fixture +def populated_db(migrated_db, db_session): + datas = [ + { + "id": 1, + "sensor_name": "Test", + "data": "1", + "collected_at": datetime.datetime(2020, 4, 1, 12, 0, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 2, + "sensor_name": "Test", + "data": "2", + "collected_at": datetime.datetime(2020, 4, 1, 12, 1, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 3, + "sensor_name": "Test", + "data": "3", + "collected_at": datetime.datetime(2020, 4, 1, 12, 2, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 4, + "sensor_name": "Test", + "data": "4", + "collected_at": datetime.datetime(2020, 4, 1, 12, 3, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 5, + "sensor_name": "OtherTest", + "data": "5", + "collected_at": datetime.datetime(2020, 4, 1, 12, 4, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 6, + "sensor_name": "Test", + "data": "1", + "collected_at": datetime.datetime(2020, 4, 1, 12, 0, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + { + "id": 7, + "sensor_name": "Test", + "data": "1", + "collected_at": datetime.datetime(2020, 4, 1, 12, 1, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + { + "id": 8, + "sensor_name": "Test", + "data": "2", + "collected_at": datetime.datetime(2020, 4, 1, 12, 2, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + { + "id": 9, + "sensor_name": "OtherTest", + "data": "3", + "collected_at": datetime.datetime(2020, 4, 1, 12, 3, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + ] + for data in datas: + insert = datapoint_table.insert().values(**data) + db_session.execute(insert) diff --git a/Ch09/apd.aggregation-chapter09/tests/test_analysis.py b/Ch09/apd.aggregation-chapter09/tests/test_analysis.py new file mode 100644 index 0000000..34a32b4 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09/tests/test_analysis.py @@ -0,0 +1,423 @@ +import datetime +import uuid + +import pytest + +from apd.aggregation import analysis +from apd.aggregation.database import DataPoint, datapoint_table +from apd.aggregation.query import db_session_var + + +async def generate_datapoints(datas): + deployment_id = uuid.uuid4() + for i, (time, data) in enumerate(datas, start=1): + yield DataPoint( + id=i, + collected_at=time, + sensor_name="TestSensor", + data=data, + deployment_id=deployment_id, + ) + + +class TestPassThroughCleaner: + @pytest.fixture + def cleaner(self): + return analysis.clean_passthrough + + @pytest.mark.asyncio + async def test_float_passthrough(self, cleaner): + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 65.0), + (datetime.datetime(2020, 4, 1, 13, 0, 0), 65.5), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == data + + @pytest.mark.asyncio + async def test_Nones_are_skipped(self, cleaner): + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), None), + (datetime.datetime(2020, 4, 1, 13, 0, 0), 65.5), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 13, 0, 0), 65.5), + ] + + +class TestTemperatureCleaner: + @pytest.fixture + def cleaner(self): + return analysis.clean_temperature_fluctuations + + @pytest.mark.asyncio + async def test_window_not_full(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [(datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0)] + + @pytest.mark.asyncio + async def test_window_exactly_full(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 1), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 21.0), + ] + + @pytest.mark.asyncio + async def test_window_overfilled(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 3), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 4), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 1), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 3), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 4), 21.0), + ] + + @pytest.mark.asyncio + async def test_outlier_dropped(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 61.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 21.0), + ] + + @pytest.mark.asyncio + async def test_limited_to_DHT22_range(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 91.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 91.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 91.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [] + + @pytest.mark.asyncio + async def test_Nones_dropped(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 31.0, "unit": "degC"}, + ), + (datetime.datetime(2020, 4, 1, 12, 0, 1), None,), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 32.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 31.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 32.0), + ] + + +class TestWattHourCleaner: + @pytest.fixture + def cleaner(self): + return analysis.clean_watthours_to_watts + + @pytest.mark.asyncio + async def test_one_entry_insufficient_to_find_diff(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [] + + @pytest.mark.asyncio + async def test_two_entries_provides_diff_with_second_time(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 13, 0, 0), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 1 + assert output[0][0] == datetime.datetime(2020, 4, 1, 13, 0, 0) + assert output[0][1] == pytest.approx(9.0, 0.0001) + + @pytest.mark.asyncio + async def test_fractional_hour(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 23, 42), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 1 + assert output[0][0] == datetime.datetime(2020, 4, 1, 12, 23, 42) + assert output[0][1] == pytest.approx(22.7848, 0.001) + + @pytest.mark.asyncio + async def test_diff_happens_pairwise(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 23, 42), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 13, 23, 42), + {"magnitude": 13.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 2 + assert output[0][0] == datetime.datetime(2020, 4, 1, 12, 23, 42) + assert output[0][1] == pytest.approx(22.7848, 0.001) + assert output[1][0] == datetime.datetime(2020, 4, 1, 13, 23, 42) + assert output[1][1] == pytest.approx(3, 0.001) + + @pytest.mark.asyncio + async def test_None_ignored(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + (datetime.datetime(2020, 4, 1, 12, 58, 0), None,), + ( + datetime.datetime(2020, 4, 1, 13, 0, 0), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 1 + assert output[0][0] == datetime.datetime(2020, 4, 1, 13, 0, 0) + assert output[0][1] == pytest.approx(9.0, 0.0001) + + +class TestTemperatureMap: + @pytest.fixture + def temperature_data(self): + return { + (53.8667, -1.3333): -1, + (53.35, -2.2833): 1, + (52.45, -1.7333): 3, + (51.5, -0.1333): 6, + (51.55, -2.5667): 5, + (54.9667, -1.6167): -1, + (55.9667, -3.2167): -1, + (54.7667, -1.5833): 0, + (53.7667, -0.3): 1, + (53.7667, -3.0167): 0, + (51.4833, -3.1833): 4, + (53.2667, -3.5167): 2, + (52.0833, -2.8): 2, + (52.0167, -0.6): 2, + (52.6667, 1.2667): 5, + (50.4333, -4.9833): 9, + (50.35, -4.1167): 10, + (50.5167, -2.45): 9, + (50.8333, -1.1667): 9, + (56.45, -5.4333): 4, + (57.5333, -4.05): -2, + (54.5167, -3.6167): 3, + (53.0833, 0.2667): 4, + (51.35, 1.3333): 7, + (50.8833, 0.3167): 8, + (58.45, -3.1): 3, + (50.1, -5.6667): 9, + (58.2167, -6.3333): 4, + (55.6833, -6.25): 7, + } + + @pytest.fixture + def temperature_datapoints(self, migrated_db, db_session, temperature_data): + datas = [] + now = datetime.datetime.now() + for (coord, temp) in temperature_data.items(): + deployment_id = uuid.uuid4() + datas.append( + DataPoint( + sensor_name="Location", + deployment_id=deployment_id, + collected_at=now, + data=coord, + ) + ) + datas.append( + DataPoint( + sensor_name="Temperature", + deployment_id=deployment_id, + collected_at=now, + data=temp, + ) + ) + return datas + + @pytest.fixture + def populated_db(self, migrated_db, db_session, temperature_datapoints): + for data in temperature_datapoints: + insert = datapoint_table.insert().values(**data._asdict()) + db_session.execute(insert) + + @pytest.fixture + def cleaner(self): + return analysis.get_map_cleaner_for("Temperature") + + @pytest.fixture + def get_data(self, db_session): + db_session_var.set(db_session) + return analysis.get_all_data() + + @pytest.mark.asyncio + async def test_latest_coord_temp_cleaner( + self, temperature_data, populated_db, get_data, cleaner + ): + data = get_data() + deployments = 0 + async for deployment, data_points in cleaner(data): + deployments += 1 + cleaned = {a async for a in cleaner(data_points)} + # There should only be one deployment + assert deployments == 1 + expected = set(temperature_data.items()) + assert cleaned == expected + + @pytest.mark.asyncio + async def test_newer_items_superceed_older( + self, db_session, temperature_datapoints, populated_db, get_data, cleaner + ): + # Pick any of the deployment ids and find the pair of DataPoints in that deployment id + deployment_1 = temperature_datapoints[0].deployment_id + existing = [ + datapoint + for datapoint in temperature_datapoints + if datapoint.deployment_id == deployment_1 + ] + old_location = [ + datapoint for datapoint in existing if datapoint.sensor_name == "Location" + ][0] + old_temperature = [ + datapoint + for datapoint in existing + if datapoint.sensor_name == "Temperature" + ][0] + + new_location = DataPoint( + sensor_name="Location", + deployment_id=deployment_1, + collected_at=datetime.datetime(2031, 4, 1, 12, 0, 0), + data=(-10.5, 150.1), + ) + new_temperature = DataPoint( + sensor_name="Temperature", + deployment_id=deployment_1, + collected_at=datetime.datetime(2031, 4, 1, 12, 0, 0), + data=21, + ) + for data in [new_location, new_temperature]: + insert = datapoint_table.insert().values(**data._asdict()) + db_session.execute(insert) + + data = get_data() + deployments = 0 + async for deployment, data_points in cleaner(data): + deployments += 1 + cleaned = {a async for a in cleaner(data_points)} + # There should only be one deployment + assert deployments == 1 + + # We expect the newer one, not the older + assert (new_location.data, new_temperature.data) in cleaned + assert (old_location.data, old_temperature.data) not in cleaned + # The cleaner converts two data points to one plottable + assert len(cleaned) == len(temperature_datapoints) / 2 diff --git a/Ch09/apd.aggregation-chapter09/tests/test_cli.py b/Ch09/apd.aggregation-chapter09/tests/test_cli.py new file mode 100644 index 0000000..5cab441 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09/tests/test_cli.py @@ -0,0 +1,155 @@ +from unittest import mock +import uuid + +from click.testing import CliRunner +import pytest + +import apd.aggregation.cli +from apd.aggregation.database import Deployment, deployment_table + + +@pytest.mark.functional +def test_sensors_are_passed_to_get_data_points(db_uri): + runner = CliRunner() + with mock.patch("apd.aggregation.collect.get_data_points") as get_data_points: + runner.invoke( + apd.aggregation.cli.collect_sensor_data, + [ + "http://localhost", + "http://otherhost", + "--db", + db_uri, + "--api-key", + "key", + ], + ) + calls = get_data_points.call_args_list + assert len(calls) == 2 + details = {call[0] for call in get_data_points.call_args_list} + assert details == { + ("http://localhost", "key"), + ("http://otherhost", "key"), + } + + +@pytest.mark.functional +def test_add_deployment_to_db(db_uri, db_session, migrated_db): + runner = CliRunner() + deployment_id = uuid.UUID("76587cdd42dc489ea1d220e9b0bc62ca") + with mock.patch("apd.aggregation.collect.get_deployment_id") as get_deployment_id: + get_deployment_id.return_value = deployment_id + runner.invoke( + apd.aggregation.cli.deployments, + ["add", "http://otherhost", "Other", "--db", db_uri, "--api-key", "key"], + ) + deployments = db_session.query(deployment_table).all() + assert len(deployments) == 1 + deployment = Deployment.from_sql_result(deployments[0]) + assert deployment.uri == "http://otherhost" + assert deployment.api_key == "key" + assert deployment.id == deployment_id + + +@pytest.mark.functional +def test_use_stored_deployments(db_uri, migrated_db): + runner = CliRunner() + + deployment_id = uuid.UUID("76587cdd42dc489ea1d220e9b0bc62ca") + with mock.patch("apd.aggregation.collect.get_deployment_id") as get_deployment_id: + get_deployment_id.return_value = deployment_id + runner.invoke( + apd.aggregation.cli.deployments, + [ + "add", + "http://specifiedhost", + "Specified", + "--db", + db_uri, + "--api-key", + "an_api_key", + ], + ) + + with mock.patch("apd.aggregation.collect.get_data_points") as get_data_points: + runner.invoke( + apd.aggregation.cli.collect_sensor_data, ["--db", db_uri], + ) + calls = get_data_points.call_args_list + assert len(calls) == 1 + details = {call[0] for call in get_data_points.call_args_list} + assert details == { + ("http://specifiedhost", "an_api_key"), + } + + +@pytest.mark.functional +def test_list_deployments(db_uri, migrated_db): + runner = CliRunner() + + deployment_id = uuid.UUID("76587cdd42dc489ea1d220e9b0bc62ca") + with mock.patch("apd.aggregation.collect.get_deployment_id") as get_deployment_id: + get_deployment_id.return_value = deployment_id + runner.invoke( + apd.aggregation.cli.deployments, + [ + "add", + "http://specifiedhost", + "Specified", + "--db", + db_uri, + "--api-key", + "an_api_key", + ], + ) + + result = runner.invoke(apd.aggregation.cli.deployments, ["list", "--db", db_uri],) + expected = """Specified +ID 76587cdd42dc489ea1d220e9b0bc62ca +URI http://specifiedhost +API key an_api_key +Colour None + +""" + assert result.output == expected + + +@pytest.mark.functional +def test_edit_deployment(db_uri, migrated_db): + runner = CliRunner() + return + deployment_id = uuid.UUID("76587cdd42dc489ea1d220e9b0bc62ca") + with mock.patch("apd.aggregation.collect.get_deployment_id") as get_deployment_id: + get_deployment_id.return_value = deployment_id + runner.invoke( + apd.aggregation.cli.deployments, + [ + "add", + "http://specifiedhost", + "Specified", + "--db", + db_uri, + "--api-key", + "an_api_key", + ], + ) + + result = runner.invoke( + apd.aggregation.cli.deployments, + [ + "edit", + "--db", + db_uri, + deployment_id.hex(), + "--colour", + "red" "--name", + "New name", + ], + ) + expected = """New name +ID 76587cdd42dc489ea1d220e9b0bc62ca +URI http://specifiedhost +API key an_api_key +Colour red + +""" + assert result.output == expected diff --git a/Ch09/apd.aggregation-chapter09/tests/test_http_get.py b/Ch09/apd.aggregation-chapter09/tests/test_http_get.py new file mode 100644 index 0000000..df575c6 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09/tests/test_http_get.py @@ -0,0 +1,188 @@ +from concurrent.futures import ThreadPoolExecutor +import datetime +import typing as t +from unittest.mock import patch, MagicMock +import wsgiref.simple_server + +import aiohttp +from apd.sensors.base import Sensor +from apd.sensors.sensors import PythonVersion, ACStatus +from apd.sensors.wsgi import set_up_config +import flask +import pytest + +from apd.sensors.wsgi import v21 + +from apd.aggregation import collect +from apd.aggregation.database import Deployment + +pytestmark = [pytest.mark.functional] + + +@pytest.fixture +def sensors() -> t.Iterator[t.List[Sensor[t.Any]]]: + """ Patch the get_sensors method to return a known pair of sensors only """ + data: t.List[Sensor[t.Any]] = [PythonVersion(), ACStatus()] + with patch("apd.sensors.cli.get_sensors") as get_sensors: + get_sensors.return_value = data + yield data + + +def get_independent_flask_app(name: str) -> flask.Flask: + """ Create a new flask app with the v20 API blueprint loaded, so multiple copies + of the app can be run in parallel without conflicting configuration """ + app = flask.Flask(name) + app.register_blueprint(v21.version, url_prefix="/v/2.1") + return app + + +def run_server_in_thread( + name: str, config: t.Dict[str, t.Any], port: int +) -> t.Iterator[str]: + # Create a new flask app and load in required code, to prevent config conflicts + app = get_independent_flask_app(name) + flask_app = set_up_config(config, app) + server = wsgiref.simple_server.make_server("localhost", port, flask_app) + + with ThreadPoolExecutor() as pool: + pool.submit(server.serve_forever) + yield f"http://localhost:{port}/" + server.shutdown() + + +@pytest.fixture(scope="module") +def http_server(): + yield from run_server_in_thread( + "standard", + { + "APD_SENSORS_API_KEY": "testing", + "APD_SENSORS_DEPLOYMENT_ID": "a46b1d1207fd4cdcad39bbdf706dfe29", + }, + 12081, + ) + + +@pytest.fixture(scope="module") +def bad_api_key_http_server(): + yield from run_server_in_thread( + "alternate", + { + "APD_SENSORS_API_KEY": "penny", + "APD_SENSORS_DEPLOYMENT_ID": "38cf2bae9adb445fad946c82e290487a", + }, + 12082, + ) + + +class TestGetDataPoints: + @pytest.fixture + def mut(self): + return collect.get_data_points + + @pytest.mark.asyncio + async def test_get_data_points( + self, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + # Get the data from the server, storing the time before and after + # as bounds for the collected_at value + async with aiohttp.ClientSession() as http: + collect.http_session_var.set(http) + time_before = datetime.datetime.now() + results = await mut(http_server, "testing") + time_after = datetime.datetime.now() + + assert len(results) == len(sensors) == 2 + + for (sensor, result) in zip(sensors, results): + assert sensor.from_json_compatible(result.data) == sensor.value() + assert result.sensor_name == sensor.name + assert time_before <= result.collected_at <= time_after + + @pytest.mark.asyncio + async def test_get_data_points_fails_with_bad_api_key( + self, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + with pytest.raises( + ValueError, + match=f"Error loading data from {http_server}: Supply API key in X-API-Key header", + ): + async with aiohttp.ClientSession() as http: + collect.http_session_var.set(http) + await mut(http_server, "incorrect") + + +class TestAddDataFromSensors: + @pytest.fixture + def mut(self): + return collect.add_data_from_sensors + + @pytest.fixture + def mock_db_session(self): + return MagicMock() + + @pytest.mark.asyncio + async def test_get_get_data_from_sensors( + self, mock_db_session, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + results = await mut( + mock_db_session, + [ + Deployment( + id=None, colour=None, name=None, uri=http_server, api_key="testing" + ) + ], + ) + assert mock_db_session.execute.call_count == len(sensors) + assert len(results) == len(sensors) + + @pytest.mark.asyncio + async def test_get_get_data_from_sensors_with_multiple_servers( + self, mock_db_session, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + results = await mut( + mock_db_session, + [ + Deployment( + id=None, colour=None, name=None, uri=http_server, api_key="testing" + ), + Deployment( + id=None, colour=None, name=None, uri=http_server, api_key="testing" + ), + ], + ) + assert mock_db_session.execute.call_count == len(sensors) * 2 + assert len(results) == len(sensors) * 2 + + @pytest.mark.asyncio + async def test_data_points_not_added_if_only_partial_success( + self, + mock_db_session, + sensors: t.List[Sensor[t.Any]], + mut, + http_server: str, + bad_api_key_http_server: str, + ) -> None: + with pytest.raises( + ValueError, + match=f"Error loading data from {bad_api_key_http_server}: Supply API key in X-API-Key header", + ): + await mut( + mock_db_session, + [ + Deployment( + id=None, + colour=None, + name=None, + uri=http_server, + api_key="testing", + ), + Deployment( + id=None, + colour=None, + name=None, + uri=bad_api_key_http_server, + api_key="testing", + ), + ], + ) + assert mock_db_session.execute.call_count == 0 diff --git a/Ch09/apd.aggregation-chapter09/tests/test_query.py b/Ch09/apd.aggregation-chapter09/tests/test_query.py new file mode 100644 index 0000000..9b6e0aa --- /dev/null +++ b/Ch09/apd.aggregation-chapter09/tests/test_query.py @@ -0,0 +1,111 @@ +import datetime +from uuid import UUID + +import pytest + +from apd.aggregation.query import ( + get_data, + get_deployment_ids, + get_data_by_deployment, + db_session_var, +) + + +class TestGetData: + @pytest.fixture + def mut(self): + return get_data + + @pytest.mark.asyncio + @pytest.mark.parametrize( + "filter,num_items_expected", + [ + ({}, 9), + ({"sensor_name": "Test"}, 7), + ({"deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd")}, 5), + ({"collected_after": datetime.datetime(2020, 4, 1, 12, 2, 1)}, 3), + ({"collected_before": datetime.datetime(2020, 4, 1, 12, 2, 1)}, 4), + ( + { + "collected_after": datetime.datetime(2020, 4, 1, 12, 2, 1), + "collected_before": datetime.datetime(2020, 4, 1, 12, 3, 5), + }, + 2, + ), + ], + ) + async def test_iterate_over_items( + self, mut, db_session, populated_db, filter, num_items_expected + ): + db_session_var.set(db_session) + points = [dp async for dp in mut(**filter)] + assert len(points) == num_items_expected + + @pytest.mark.asyncio + async def test_empty_db(self, mut, db_session, migrated_db): + db_session_var.set(db_session) + points = [dp async for dp in mut()] + assert len(points) == 0 + + +class TestGetDeployments: + @pytest.fixture + def mut(self): + return get_deployment_ids + + @pytest.mark.asyncio + async def test_get_all_deployments(self, mut, db_session, populated_db): + db_session_var.set(db_session) + deployment_ids = await mut() + assert set(deployment_ids) == { + UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + } + + @pytest.mark.asyncio + async def test_empty_db(self, mut, db_session, migrated_db): + db_session_var.set(db_session) + deployment_ids = await mut() + assert deployment_ids == [] + + +@pytest.mark.usefixtures("populated_db") +class TestGetDataByDeployment: + @pytest.fixture + def mut(self): + return get_data_by_deployment + + @pytest.mark.asyncio + @pytest.mark.parametrize( + "filter,num_items_expected", [({}, 9), ({"sensor_name": "Test"}, 7)] + ) + async def test_iterate_over_all_items( + self, mut, db_session, filter, num_items_expected + ): + db_session_var.set(db_session) + num_items = 0 + num_deployments = 0 + async for deployment_id, items in mut(**filter): + num_deployments += 1 + async for item in items: + num_items += 1 + assert num_deployments == 2 + assert num_items == num_items_expected + + @pytest.mark.asyncio + @pytest.mark.parametrize( + "filter,num_items_expected", [({}, 5), ({"sensor_name": "Test"}, 4)] + ) + async def test_skip_first_deployment( + self, mut, db_session, filter, num_items_expected + ): + db_session_var.set(db_session) + num_items = 0 + num_deployments = 0 + async for deployment_id, items in mut(**filter): + num_deployments += 1 + if num_deployments == 2: + async for item in items: + num_items += 1 + assert num_deployments == 2 + assert num_items == num_items_expected diff --git a/Ch09/apd.aggregation-chapter09/tests/test_sensor_aggregation.py b/Ch09/apd.aggregation-chapter09/tests/test_sensor_aggregation.py new file mode 100644 index 0000000..311dd19 --- /dev/null +++ b/Ch09/apd.aggregation-chapter09/tests/test_sensor_aggregation.py @@ -0,0 +1,199 @@ +from __future__ import annotations + +import contextlib +from dataclasses import dataclass +import json +import typing as t +from unittest.mock import patch, Mock + +import pytest +import sqlalchemy + +import apd.aggregation.collect +from apd.aggregation.database import Deployment + + +@pytest.fixture +def data() -> t.Any: + return { + "sensors": [ + { + "human_readable": "3.7", + "id": "PythonVersion", + "title": "Python Version", + "value": [3, 7, 2, "final", 0], + }, + { + "human_readable": "Not connected", + "id": "ACStatus", + "title": "AC Connected", + "value": False, + }, + ] + } + + +@dataclass +class FakeAIOHttpClient: + responses: t.Dict[str, str] + + @contextlib.asynccontextmanager + async def get( + self, url: str, headers: t.Optional[t.Dict[str, str]] = None + ) -> t.AsyncIterator[FakeAIOHttpResponse]: + if url in self.responses: + yield FakeAIOHttpResponse(body=self.responses[url]) + else: + yield FakeAIOHttpResponse(body="", status=404) + + +@dataclass +class FakeAIOHttpResponse: + body: str + status: int = 200 + + async def json(self) -> t.Any: + return json.loads(self.body) + + +@pytest.fixture +def mockclient(data) -> FakeAIOHttpClient: + return FakeAIOHttpClient( + { + "http://localhost/v/2.1/sensors/": json.dumps(data), + "http://localhost/v/2.1/deployment_id": json.dumps( + {"deployment_id": "b29ba0ee10f14552b6b21327bb96d3fb"} + ), + } + ) + + +class TestGetDataPoints: + @pytest.fixture + def mut(self): + return apd.aggregation.collect.get_data_points + + @pytest.mark.asyncio + async def test_get_data_points( + self, mut, mockclient: FakeAIOHttpClient, data + ) -> None: + token = apd.aggregation.collect.http_session_var.set(mockclient) + try: + datapoints = await mut("http://localhost", "") + finally: + apd.aggregation.collect.http_session_var.reset(token) + + assert len(datapoints) == len(data["sensors"]) + for sensor in data["sensors"]: + assert sensor["value"] in (datapoint.data for datapoint in datapoints) + assert sensor["id"] in (datapoint.sensor_name for datapoint in datapoints) + + +class TestAddDataFromSensors: + @pytest.fixture + def mut(self): + return apd.aggregation.collect.add_data_from_sensors + + @pytest.fixture(autouse=True) + def patch_aiohttp(self, mockclient): + with patch("aiohttp.ClientSession") as ClientSession: + ClientSession.return_value.__aenter__.return_value = mockclient + yield ClientSession + + @pytest.fixture + def db_session(self): + session = Mock() + sql_result = session.execute.return_value + sql_result.inserted_primary_key = [1] + return session + + @pytest.mark.asyncio + async def test_datapoints_are_added_to_the_session(self, mut, db_session) -> None: + assert db_session.execute.call_count == 0 + datapoints = await mut( + db_session, + [ + Deployment( + id=None, colour=None, name=None, uri="http://localhost", api_key="" + ) + ], + ) + assert db_session.execute.call_count == len(datapoints) + + +@pytest.mark.usefixtures("migrated_db") +class TestDatabaseConnection: + @pytest.fixture(autouse=True) + def patch_aiohttp(self, mockclient): + with patch("aiohttp.ClientSession") as ClientSession: + ClientSession.return_value.__aenter__.return_value = mockclient + yield ClientSession + + @pytest.fixture + def table(self): + return apd.aggregation.database.datapoint_table + + @pytest.fixture + def daily_summary_view(self): + return apd.aggregation.database.daily_summary_view + + @pytest.fixture + def model(self): + return apd.aggregation.database.DataPoint + + @pytest.fixture + def mut(self): + return apd.aggregation.collect.add_data_from_sensors + + @pytest.mark.asyncio + async def test_datapoints_are_added_to_the_session(self, db_session, table) -> None: + datapoints = await apd.aggregation.collect.add_data_from_sensors( + db_session, + [ + Deployment( + id=None, colour=None, name=None, uri="http://localhost", api_key="" + ) + ], + ) + num_points = db_session.query(table).count() + assert num_points == len(datapoints) == 2 + + @pytest.mark.asyncio + async def test_datapoints_can_be_mapped_back_to_DataPoints( + self, mut, db_session, table, model + ) -> None: + datapoints = await mut( + db_session, + [ + Deployment( + id=None, colour=None, name=None, uri="http://localhost", api_key="" + ) + ], + ) + db_points = [ + model.from_sql_result(result) for result in db_session.query(table) + ] + assert db_points == datapoints + + @pytest.mark.asyncio + async def test_daily_summary_view_matches_query( + self, db_session, model, table, daily_summary_view + ) -> None: + await apd.aggregation.collect.add_data_from_sensors( + db_session, + [ + Deployment( + id=None, colour=None, name=None, uri="http://localhost", api_key="" + ) + ], + ) + + headers = table.c.sensor_name, table.c.data + value_counts = ( + db_session.query(*headers, sqlalchemy.func.count(table.c.id)) + .filter(model.collected_on_date == sqlalchemy.func.current_date()) + .group_by(*headers) + ) + + daily_summary_view = db_session.query(daily_summary_view) + assert value_counts.all() == daily_summary_view.all() diff --git a/Ch09/chapter09-analysis.ipynb b/Ch09/chapter09-analysis.ipynb new file mode 100644 index 0000000..98a74f0 --- /dev/null +++ b/Ch09/chapter09-analysis.ipynb @@ -0,0 +1,577 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "53635\n" + ] + } + ], + "source": [ + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.database import datapoint_table\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " print(session.query(datapoint_table).count())" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "53635\n" + ] + } + ], + "source": [ + "from apd.aggregation.query import with_database, get_data\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " count = 0\n", + " async for datapoint in get_data():\n", + " count += 1\n", + " print(count)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nO2df5RV5Xnvv88czuAZIhnGAMWJk1FK8cYMMOmk4KXXaiwlkahHIyFW1vKu5uptb1dbSjvtULnFZEEgkhC6bu+695L+olcWRQ0dTTASitqueoUuzIDERIpGRUcKNDhRYYRheO4fZ+9hz56999m/z95zvp+1Zp05++wfz373u9/nfd/neZ9HVBWEEEKIGw21FoAQQki2oaIghBDiCRUFIYQQT6goCCGEeEJFQQghxJMJtRYAAD7ykY9oe3t7rcUghJBc8cILL/y7qk5N+jqZUBTt7e04cOBArcUghJBcISJvpHEdTj0RQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+qej2JyF8B+ByAk6r6CWNbC4AdANoBvA7gC6r6jvHbKgBfAjAM4HdVdXcikhOSIr19/XjwiZcwMDgU6TxNxUrf7OzQRQDAlKYi1tx6HcqdrSPX2bj7CN4eGMSVzSV0L5498htJjiDlbq8LU5qKWDJnBp55+RTeHhjEh0tFnL8wPPKM/WCvB1lDqkWPFZEbALwP4G8tiuIhAKdVdYOI9ACYoqp/LCIfB7AdwC8BuBLAPwD4BVUd9rpGV1eX0j2WZJXevn50P3oIQxeTibRcLAg23jUXALBq52EMDl16XUrFAtbf2ZHZBmQ80NvX77vck6wLZj0I8qxF5AVV7YpdGBtVp55U9Z8AnLZtvh3AVuP/rQDKlu1/p6rnVPU1AK+gojQIyS0bdx9JTEkAwNCwYuPuI9i4+8ioxgoABoeGsXH3kcSuTRCo3JOsC2Y9yCJhF9xNV9XjAKCqx0VkmrG9FcA+y35vGdvGICL3A7gfANra2kKKQUjyvD0wWNNrpHH9esatfJ22J/0ssvqs4zZmi8M2R/WrqltUtUtVu6ZOTXwFOiGhubK5lMo13K6TxvXrmSDlnvSzyOqzDqsoTojIDAAwPk8a298CcJVlv48CeDu8eITUnu7Fs1FscOoDxUOxIOhePBvdi2ejVCyM+q1ULKB78ezErk0QqNyTrAtmPcgiYRXFEwDuNf6/F8Djlu1fFJGJInI1gFkA/iWaiITUlnJnKzYunYvmUjHyuZqKDSOeT0DF28U0YJY7W7H+zg60NpcgAFqbSzRkp0CQcneqC1Oaili+oG3k+OZScdQz9oO1HmQRP15P2wHcCOAjAE4AWAOgF8AjANoAHAOwVFVPG/s/AOA3AFwAsEJVv1dNCHo9EUJIcNLyeqpqzFbVu11+utll/3UA1kURihBCSHbgymxCCCGeUFEQQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhCRUEIIcQTKgpCCCGeUFEQQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhSNR8FIWHp7evHg0+8hIHBoTG/TWosYN0d/rO39fb1Y+PuI3h7YBBXNpfQvXh2bNnAvOQ0mdJUxJpbr0O5szWwLOb+/QODKIhgWBXNpSLOXxjG2aGLsdwDUElYXywIzg9fSkY2pamIJXNm4JmXT43I235FCft+8g6GVVEQwd3zr8LackdscvjFXu7WMq4FTvXA/tyr1RMrbveTZF1OiqoZ7tKAGe7GH719/eh+9BCGLrrXr0KD4BtLq6d/7O3rx6qdhzE4NDyyrVQsxJIm1I+cJsWCYNmnrsK3X+j3LYuT7Flk+YK2VJWFW7kXC1KTlKBe9cB87jv+5U1f9cR+rPV+4q7LaWW449QTSYSNu49UfamGLyo27j7i61z2hnZwaNjXsX7O7fflHxpWbN//ZiBZnGTPItv3v5nq9dzKfWjYX51ISx7g0nMPqiTMY633k2RdThIqCpIIbw8Mxraf2z5+rxH1+laGXUbgScqYBm73lRRe5VKLMqt2zSjlYz13XusJFQVJhCubS7Ht57aP32tEvb6Vgkig88QhYxq43VdSeJVLLcqs2jWjlI/13HmtJ1QUJBG6F89GscH75So0CLoXz/Z1rlKxMGpbqVjwdayfc1eT06RYqBh+g8jiJHsWuXv+Valez63ciwV/dSIteYBLz91vPbEfa72fJOtyklBRkEQod7Zi49K5aC4VHX+f1FjwZcg2z7X+zg60NpcgAFqbS7EYsv3IaTKlqYiNd83F2nJHIFmssgOXeqbNpSKaivG+fgKgsTC6MZvSVMTyBW2j5F04s2VEjoJI6oZswLnczTKuhQeQWz2wPnc/9cTpWOv9JFmXk4ReT4QQklPo9UQIISQTUFEQQgjxJJKiEJHfE5EfishLIrLC2NYiIntE5KjxOSUeUQkhhNSC0IpCRD4B4D4AvwRgLoDPicgsAD0A9qrqLAB7je+EEEJySpQRxX8AsE9Vz6rqBQD/COAOALcD2GrssxVAOZqIhBBCakkURfFDADeIyBUi0gTgFgBXAZiuqscBwPic5nSwiNwvIgdE5MCpU6ciiEEIISRJQisKVf0xgK8B2APgKQCHAFwIcPwWVe1S1a6pU6eGFYMQQkjCRDJmq+pfquonVfUGAKcBHAVwQkRmAIDxeTK6mIQQQmpFVK+nacZnG4A7AWwH8ASAe41d7gXweJRrEEIIqS1RExd9W0SuADAE4LdV9R0R2QDgERH5EoBjAJZGFZLUH1lLakNIPRNJUajqf3LY9lMAN0c5L6lvnJLIvHN2CN2PHQIAKgtCUoYrs0nmyFpSG0LqHebMJqlizR8tAOzqwGmblf6BQXz8v38vUK7pKU1FfHzG5Xju1dO+9rVOccU1Bba69zC2739zTJ5qr/zJ1t8+XCpCBBg4O+S436qdL2LQKJMGAa6/pgUvvf3emPzPZv5st/JvEODX56cfTdYtX/WSOTPw3UPHazIFubr3MLbtO+ZYH1tzkus6Lhg9lqRGXvJHm3mOAcSS13l172E8vO/YmO0LZ7bgB8d+5pg/GYBnWVn3W7njIPyrTX+kGXo8SN5yIJ282m7PzEpcedujkFb0WCoKkhoLNzyN/oynfDQx80e4ydvaXMJzPZ/2da6Zq54MlEqz2rWD7heGggheXX9L7Od1Iky9CFL+YfD7zJKWoxppKQpOPZFYqPQKD8JpRmhSYwHr7ujIfF5gK9VkDXIvQfMtx5lvPCxp5tAOcx9J1yW/95+nOh0FGrNJZHr7+rFih7OSAIAz54fxB48eQnOT/+xgtebK5lJseZ2D5luudu2g+4UhzRzaYe4h6RzTfu8/67mu44KKgkTGjyfS8EWFKnKRP9rMcxxXXme3fNQLZ7a45k+ulmvbul8SL3GaObSD5C0H0smr7ef+85DrOi6oKEhk/A6/fzY4NCp/tFPTYM/73FRsGJVb2v7dD1Oailg4s8X3vqahNK68zmvLHVi+oG1Mnupt913vmj/Znlu5uVTElKai436bls1DyVImDVJRQk75n8382YBz+TdIuoZswDtf9fIFbTXJq20+Mzf1lZdc13FBYzaJjF9jZK0Nf4SMN5gzm+QGP8PvQkPy0wWEkGSgoiCRKXe2YvOyeXCbEZrUWMA3liY/XUAISQa6x5JYMOfLCSHjD44oCCGEeEJFQQghxBMqCkIIIZ5QURBCCPGEioIQQognVBSEEEI8oXssyQT2JDFmxFm63BJSe6goSM1xShJjRpwFmCObkFrDqSdSc7bvf9Nx+/BF5sgmJAtwREFSx54L2itJjDUyrT3v9IJrpozKC91UbMDEYmEkr/RN104dlW8ZSDfncpbwys1t/h5HbvCgctifkVOebDNasD1Per0+y1rA6LEkVYLmzTYjzvrJYeyXNHIuZwmnMrfme3bLWR13OSWRM73enqUdRo8l45KNu4/4biisEWfdpqfCMDRcX1NaTmU+ODQ8UgYbdx8ZoySA+MspyLP3S709y1oRSVGIyO+LyEsi8kMR2S4il4lIi4jsEZGjxueUuIQl+cdvkiN7xNm4czjXS65jwP1eze1eZRFnOSVV5vX0LGtFaEUhIq0AfhdAl6p+AkABwBcB9ADYq6qzAOw1vhMCwF+O4dbmEl76ymdGTSfEncO5XnIdA+73am6PKzd4WDmyel5yiahTTxMAlERkAoAmAG8DuB3AVuP3rQDKEa9BxhF+c0HbiTOHcxo5l7OEU5lbyzmu3OBh5IhKvT3LWhFaUahqP4CvAzgG4DiAn6nq9wFMV9Xjxj7HAUyLQ1AyPvCbC9qOU95pe17opmLDqHPZ8y0D6eVczhL2MreXc1y5wcPI4ZQT277NLU96PT7LWhHa68mwPXwbwDIAAwAeBfAYgD9X1WbLfu+o6hg7hYjcD+B+AGhra/vFN954I5QchBBSr+TB6+lXAbymqqdUdQjATgD/EcAJEZkBAMbnSaeDVXWLqnapatfUqVMjiEEIISRJoiiKYwAWiEiTiAiAmwH8GMATAO419rkXwOPRRCSEEFJLQq/MVtX9IvIYgB8AuACgD8AWAB8C8IiIfAkVZbI0DkEJIYTUhkghPFR1DYA1ts3nUBldEEIIGQdwZTYhhBBPqCgIIYR4QkVBCCHEEyoKQgghnlBREEII8YSKghBCiCdUFIQQQjyhoiCEEOIJc2YTUidUy5udNfIm73iGioKQOsCer7p/YBCrdh4GgEw2vnmTd7zDqSdC6oBqebOzRt7kHe9QURBSB1TLm5018ibveIeKgpA6oFre7KyRN3nHO1QUhNQB1fJmZ428yTveoTGbkDrANADnxYsob/KOd0LnzI6Trq4uPXDgQK3FIISQXJGHnNmEEELqACoKQgghntBGYeGebz2P5149PfJ94cwWbLvv+hpKRAghtYcjCgO7kgCA5149jUWbnq2NQIQQkhHqZkRxdc8uWM32AuC1DUtGvtuVhMnRk2fQ29dPbwtCSN1SFyOKdpuSAAA1tvth1c4XY5eJEELywrhXFPd863nP3+ev21P1HINDF+MShxBCcse4VhS9ff2uU0omJ947n5I0hBCST8a1ovjjb/ubMpqz5qmEJSGEkPwSWlGIyGwROWj5e1dEVohIi4jsEZGjxueUOAUOwrkL/qaM3j03XH0nQgipU0IrClU9oqrzVHUegF8EcBbA3wPoAbBXVWcB2Gt8J4QQklPimnq6GcCrqvoGgNsBbDW2bwVQjukaNaW3r7/WItQVvX39WLjhaVzdswsLNzzN8iekhsSlKL4IYLvx/3RVPQ4Axuc0pwNE5H4ROSAiB06dOhWTGKOZNW1SbOdiZq30WLTpWazYcRD9A4NQVNJgrthxkMqCkBoRecGdiDQCuA3AqiDHqeoWAFuASvTYqHI4cfZ8fG6tWcisVQ/J5u/51vM4evKM428rHzmYi/uth+dEorO69zC2738Tw6ooiODu+Vdhbbmj1mI5EsfK7M8C+IGqnjC+nxCRGap6XERmADgZwzVCEWfj/uFSMbZzhWHOmqdGGd3Ha7J5L3fmi7WPiF+VRZueHaXozNEQML6eE4mGvZ4Mq+LhfccAIJPKIo6pp7txadoJAJ4AcK/x/70AHo/hGqFonBCf9++7g0OxnSso89ftcfTMGm/J5q994MlaixAJr9HQih0Hcc2qXZw+I1jde9i1npjKImtEGlGISBOARQD+q2XzBgCPiMiXABwDsDTKNcLS29fv2z3WD0mvzXaKXLu0qw0bdx/xXBTYn4EpsThY3XsYHwznYMjgQbXFnRcVHF2QzCoDLyIpClU9C+AK27afouIFVVO6Hz1YaxEccZq/fvTAMcfItdUaHqAS3DCvWMsi3yoiGH/02CEqijplde/hWosQinEbPbZaeKZJjQWcOZ/uQrvevn78/o6DI41i/8DgqO9hyGsD29vXj1U7D2NwqP4WO57P+ciJBKe3r39kNOlFVjt+uVYUUbxL1t3RMaahKhULng1Xe8+uSN4Jf/TYIccotvXIxt1HAiuJgmT1NQrO6t7DmTRaEm/CeCr5VRIAcM+CtjjEjJ3cKorevn50P3oIQ4YrTP/AILofPQQAOPCG95RNqdgwolDsiqbaA3XyTvCrsNiTvEQY28qwjp/ye3jfMSqKnBHWU+nBJ17yfY2s1oncKooHn3hpREmYDF1UPPjESxio4qG0/s45ACoGRXuD7lfzbzNedHtvge6Q/hAEH021NpeSEIWQqlTzVPJq4Ku1RyaTJxZCyZYGuVUUboXv56F4NeClYoOv/BNmI+emWFbsGL04jG6RowkzNmi/Il5FYe8hzpo2CXtW3hjqXEk8X7sn3MQJDfja5yudHC7oS5ft+98MdVy1fDhWXvzyZ0JdIw1yqyiSYv2dc3yPKqphTaGa5HqHepnvfu7V07GlpbUrCaCS9nbRpmerKguneeowLo/tPbuwfEGb47NzyuF+7sLFMXXTHMH+ae/hTDc0Tlz7wJNjXKInTyxk8j6qTXs6vYNOdcyNUjHbGR9EMzDv29XVpQcOHAh0jN80pnYmNAhe+eotnvvMXv09X2swFs5s8eXCmgavW/J/54Gwz880Z1frSVezG3ld36ssV/ceTsQP3q4wwpTPZQXBy+u863ZWcFISVtKsz15u2hMEeGX9Esxc9WRVZWGVOYgBGwA2L5sXqgMkIi+oalfgAwOSbTWWAF9fOrfqPubwvhppKYnNy+alcp08oMafGcLEacrHdL21BhX8/R0HY/FhT2qx1MP7jkWW74NhzY2ffrXFlVeH7EgExV5X7FzQitJecE2wtDpf/o5/A/bCmS2ZnzqsK0WxfEGbrweSlYfW2lwK3dPIMkHmbb1wC2Hi5HqrqDTGfmwJ7T27atLgxqGE8rjq1wlF+FFnEPy6afvpFFqV2ztn/Rmwly9ow7b7rve1by3JraJoLAT3qc/TPP5lBcFzPZ8eURILZ7bUWKJ4WN17uOpL1xDg0Tq52XoFg/TrqhhHDz8M7T27Umkg80LSSjvOwKGK4Cuv89Im5VZRTJoYzA4fdPomzlwWYbDPNVfrdeQl0Y+fHu+mLwR7VvZ79YoF6ddVEYindz5r2iQsz+giqlpyWYCOXpJK+8qYXa7NOtPsI9q0n32yQm4Vhd+hnUnQ6Zs9K2+sibKYPLEQypC38pHRiX7c5u+TIG4lFfRZ2UcJ1bybg8j386su9e4XbXo2iFgAKvVobbmDdiYbG+6qbiu08vC+Y7i6J/7ou92LZ8d6PqAyCvLTIXnwtutiv3ZS5NY9tiCS+ErdPStvxMINTyceoTUODw97rgZz/j5p+0aQBYdJ9QqDjBKAimJpbS75eq4XtGJTeeXk+55RfJ2YfnnjyP9mWcTlep13wriLKyrl94ePHsLXl87Nte1u1rRJuZI/tyOKtMI5JNHjsBIkflFTQF9r+/xrEtNTKz0WHNrZ5mMqx2xcJ8aYS8TOwOBQoOf63KunAysJANj/wKJR38udramMLPLg+RTFNnDhomLFjoNo79mF2au/F6ke1yKfS5SFnbUit4oiCFHmiMudrYnOMd89/yrf+371Tn9uuybWrHxOLqNxTE95zfK0WxRSb19/1dXY0y9vHGlc/booO+FnyjDpnr3bKLHc2Zr4GoGwtpVrH3hyxJje3rMr0URScdkGzl24iJWPhM+nXot8LnlTEkCdKIqongXmHHPcsYYWzmwJJFvQoap1sOLkBjg4NDzSM3P6i6Nnak5FVWuYly9oG9UDjzIs//f3g/f+42LWtEmZWPw4f92eQPtf3bNrzNqGD4Y1MWVx07VTYzvXRQ0/MhhPEYmTJLeKIu0HXO5sxXM9n8brG5Zg+YK2Mdf3WoK/edm8EUUjuLQ+Imn/aavBP0zPKU0X0ajK3JRzde/hwI4OcbF52TzfvcVJjcEDwF1WkJH6V40T750fZYj3YnXvYdfRXlJZB595+ZTj9rChLMJOZXlNYdMB4RK5NWb7ja+TxLTR2nKHY8O2uvcwtu07NvLSTWosYN0dHSO947SNV0HWI7hRLTLm9MsbQ83f24kaw+nhfcfQ9bGWmi04a7KErvfDujs6Ak9/mS7Ta8sdvu7zglZGCq9VGeHUoszcGvYPfATkdCLsVJabU0Nrc2kkuvScNU855qw3FUk9OCjkVlGsLXfgtVPvV128leaCFjcFUivsnlBh8WrEJxTiCY0ch4dWrV5YQXD7URAvKKvtxqSp2ICzPqMcz1+3Z+R4p4CGteBKlwb6yuYSbrp2amDlFdbppHvxbMcEZtbzVQtSeOCN0+NmRbwbuVUUQGURGlexJs+qnS+6NuJxrWx1Ok+YnBVpM6WpiDW3XhdKyZk91jCZGr8aIMqxOeL7+VW7cMFSoNbEO2nj1UCb924qND+E7WS4JTALcj6zc+inLPM6nZVrRQEAxQb3BVb1viI2rsjFg0MXMWfNU449K7eeYVCcpg7uWdCWekM2QTCqMfVi8sQC+v701yJf0ymBlp9j/vDRQ7jgc9gYtkOVVMNWrYE2R+dpdATDlL+dteUOPPPyKdd3oTXneUNya8w22bjUuSIH9SjKC1Oa/C/7H7oYX0Kdd88NY86ap8Zs7148G6VitOkn+1DfZG25I1VlP3liAa+sX+I7wX2t8yZ8fencWOxQXiTZsJkOIq9tWDIqrpkVPz4rWekQOr0LpWIBm5fNc72/vJB7RWEuYkrbo6hWrLn1OhQDxMl58ImXsHDD07Fc+91zw2MUT7mzFXoxuAFyQoOMPK/1d3a4vkRryx2hAkAGZfrljSMN/2sbloxaVW0nbJiVuCl3tmLTF+J3284S98yvrgSy0iEsd7Zi/Z0do9oir7qdJ3KbuKie6e3r95UbPAlam0t4rufTgbJ3AZWeVdiX5uqeXZFtFW6Z5LywZ5lbOLMl0x2QuKdpzGdda7ySHGU1I15apJW4iIoixzilywzLpMYCzpyvHpcf8O8S29pciiWvc9R4W+Mxp4cTQbOqVSNL5TZ/3Z4xda7elQSQE0UhIs0A/gLAJ1BxUPkNAEcA7ADQDuB1AF9Q1Xe8zkNFEZ6oqTmtaz06v/L9WBerxTU909vXj+5HD2EohL+vmcqyXohrVJH10ROpkJdUqH8G4ClVvRbAXAA/BtADYK+qzgKw1/hOEiLq/GxzU+NIr3HNrdclbhwNQ7mzFR+6LJyDXj0piTihkiBWQisKEZkM4AYAfwkAqnpeVQcA3A5gq7HbVgDlqEISb6I07tb1C6ZxNA4mT4xnIZ7JQIiRTpDkOOOFOAzbWfEiItkhyojiGgCnAPy1iPSJyF+IyCQA01X1OAAYn9OcDhaR+0XkgIgcOHXKOe4L8UeUFdj29QtxhcKOe+74wwGzgV1WkDFZAuuB7sWzfbv3OiHIjhcRyQ5RFtxNAPBJAL+jqvtF5M8QYJpJVbcA2AJUbBQR5Kh7/CbhccJp/UK5szWSUTQJ19GhYW8X3Cy4q2aBcmdr6JAS9apcSXWiKIq3ALylqvuN74+hoihOiMgMVT0uIjMAnIwqJPGme/Hs0A173F4tSTXYfj2ySGVE0PWxFnQ/etA1akHeVwrXgjChVsYLoRWFqv6biLwpIrNV9QiAmwH8yPi7F8AG4/PxWCQlrmQlzWaW4tg4Bb+rpymVOMJSkEuYib/M2FRm4i8g/ajQtSCq19PvANgmIi8CmAfgq6goiEUichTAIuM7SZhyZ6uvcAdW4ooFBSTvc98cwEZhugybAeXM4Hd5SBFKsolb4q9apFKtBZGaClU9qKpdqjpHVcuq+o6q/lRVb1bVWcZnPCvCSFX8hDuw4hYnKyiTJxYS71U9eNt1rr/ZkwBt3/+m435u2wmphluU5FqkUq0FuY/1RC6xttzhK180UHGB9Grcg3iWprE61ktWu/3CLTS135DVhNhp9gjGGVfgzSxDRTHO2LPyRixf0DbKRbKxIJjSVBwVNLHafP03fK6nSNPn3k131d9qCZI2Xn2Meph+yn0+CjKWODLtmT14a/DBYgMwrJV1G7UwELu9q2HHCfbAhrOmTfKd85rUFz/zCMBZD9NPVBTEFb+eM1nzMCqIOE4zWUceTtFvj548g0WbnqWyIGPwStBVCOpFkkM49UQikUUPIzdbhOLSfLJbiPQgodNJ/eCVk7sebF9UFCQS21xWALttTwOveEf1MJ9M4qfc2eoaU40jCkKqELfdICxWzxOv3p+bmyMh1XCLqcYRBSEJ0tvXj4UbnsbVPbuwcMPTVd0MvaLkWkcK5c5W19zi9iCIhJDq0JhNakJvXz9WPnJwpJfWPzCIlY9UQpC4GdC9ouTaDY1L5sxwDIx307VTfckWdgFh3tKnEuIHjihIYniNEP5k54tjGv6LWtnuhpftwT7YeOZl59D15na3EQdQcQkOg1Nq2udePY17vvV8qPMRkhU4oiCRcHNFBSrTQW4987MuYU3dtgPeUXLtEri5Mprb19x6neu5Bjx85r1wy18eNq951tyOawnLorZQUZBI3D3/KtfcB2EXIkWZ+jFpEOepKtNDJWrOjaAEvSd7LnTT7RgAuj7WUlfhrr3KIk1lIXB20nAznY0n5capJxKJteUOzxAafozUdpymn8wwz37o7etP1ENlde9hzFz1JNp7dmHmqid9rRkJ6pbrpnwf3ncMq3YeRv/AIBSXwl2P53hDXmWRJkE8/LK4vigKVBQkMl5Nr1tDZo/4asVp+skpzLMbXo1ykHDlToRtAOIM81DP4a7zwniLYExFQSJTrfF1asjW3RFsCB5k/YPXvlHXRnk1ACWPBB9JL8mqh3hDeWK8RTCmoiCROX+hek/f2pDNWfNUVfuAvYfuZ/3Dok3PVt134GzFUB12qsarAfjAwxCfRvMwnqef8obXau08PicqChIZL08lK6t7D6O9ZxfePVddsdhDgHQvno1S0X26CqjEabrnW8979q4/bIx+kpiqiWsxX9h57LBuvVlngstKS7ftWeDu+Ve5/pbHaUJ6PZHUCGJ8VADtPbtGvi+c2YL1d3ZUHYlUc0U1O3pJhPLwct8NQlgjbVi33jQJ4wl0wcUzwW17Flhb7nB9jnkMI0NFQXKBqQAmNRbGZLQLwjGz98wAAA/USURBVDvG1JNX2Og06e3rH+PqOl7JiptrEji5PzeXio7K+8MRHSpqAaeeSG547tXTgY3gdsy542oNcnvPrsBTQEGnFHr7+rFyx8FRrq4rU1zbkTZJeAKlOd8fdDW/m5liYHAolNt4LaGiIJFIu7JHndoxjdF+FqgF9XsPOqWwaueLsFt3/Fl78omXI0B7zy7MX7fH8fckwq2EYc2t17n+5jRyMEevTuRt/QsVBYlE3gxzQc2fQewFQY3Zgz6dAIJijco778vfR+dXvu87Qm8tOfHeeUdlEbSBToqgq9+r5akYHBrOjQMCbRQkMFaDZN6IKrFXmlU/xuw5a57y5fUVFqsDADC6Ie0fGET3o4cABG/00uLEe+fHbEs73EoUrDYnP3VtYHAolpA1SUNFQQLhFCE1r7jFg7Jz7QNP4orLL/N8+f00CkkrCT8MXVSs2vliphsmJwO/27PKkoesGWbGbwQBkxU7DuLAG6czbdCPNPUkIq+LyGEROSgiB4xtLSKyR0SOGp9T4hGV1Jrevv5xoyQA4Nfnt/na74NhHTE4e1FtGqHWSsJkcOhipqegVtgM/Ct2HHRV6HF5yAZNouVEkDAzdrIeByoOG8VNqjpPVbuM7z0A9qrqLAB7je9kHJCX4b9f4u7B5WEdg8kfPJL+s5w4IX6TaBz5qs2RQNRAi1HdrbMcByoJY/btALYa/28FUE7gGiRlstwDDYo1kdDyBf5GFX7x8tDJEsM1MC997fNzYp8qisNO5jQSCBNoMeq9ZdnmF9VGoQC+LyIK4P+o6hYA01X1OACo6nERmRZVSFJ78ubd5IU5fbZo07M4evJMrOf2conMGnbDt5VJjQWsu6MjVluGea6Nu4/EttgxajRgoHqSK79keKF4ZKKOKBaq6icBfBbAb4vIDX4PFJH7ReSAiBw4dco5bSXJDmmHHZg80TuuU1Tae3bFriTGE2fOD2PFjoOZH0nGMPMUCK/w+HGQ1fKOpChU9W3j8ySAvwfwSwBOiMgMADA+T7ocu0VVu1S1a+rU6gnvSW2JK+BdNVqbS3h9wxK8+OXPpHI94k2cdimrLSAukh7B2RvuqJEBqpHVdRWhFYWITBKRy83/AfwagB8CeALAvcZu9wJ4PKqQpPakEYOoVCyMuk7c9gNSW6J4BbkRhzHbi1WWbIs/v2pX4g4dWXWIiDKimA7gn0XkEIB/AbBLVZ8CsAHAIhE5CmCR8Z3knHJnKxbObIntfJuXzcPmZfPQ2lyCoDKSWH/n6DnxLPuVk+AkMX2ZtAHYXD3f3rMLF8axDaIaoY3ZqvoTAHMdtv8UwM1RhCLZZNt918eyKnvhzJYRhVDNWOqW0J7kj8YJDTh3If6wJUmvbM7y+oa0YKwnEoi15Q68uv4WvL5hSajjZ02bhG33Xe97/3sCTj8tX9CG1zcswfTLG4OKVhM2L5tXaxE8mRDjzE4SSgJIfk1I2PwgYfBKp1tLsikVyQVBlYUA2LPyxkDH+J1+EkMec/9F1/1coOvUiiyH0sgLUdaEZM3L6LIqWRxrBRUFSY3XQo5CqjF5YmHMudPsBY5n8jIvH7bBz5qX0UBG1+FQUZDQBHk5Gwvh5zCqhX5I2pV28sRCrIZ8k1nTJgHI/vRTHvjyd8I1+FnzMspq9jsqChKaIKu1H7prjN+Db772+TmuvyXtQrtwZgte/PJnsO2+62NVFtMvbxyZhit3tkZSpOMJQfCcIUC+VsR7kfYCQr9QUZDQ+HV3XL6gLdJcfLmzFZuXzRtl6GuQynnDuNCWig2jXHObS0XHF2H5grZRhvcwysLJDXjzsnnY/8CiUfs9dNdc11hB5jFhlGJrc2lk5JIHrmwu4Zt1PMLK6tQT81GQ0FzZXPJcZdtq5BKIw2Bb7mz1fZ5qU2Lr75wT6HxWtt13vWeMJDt+3YCtcZCseRisx5U7W0cUox8ZrM4GQWS2Eue02PIFbZ62I3PBZZiYUHHEfMoCaUVACAoVBQnNTddO9Xzxn+v5dIrSXKLalFhankZBG9kgymtSYwFnzruvcraPfESAoEtfNi+bF2tZmUrOXIcjAJoaCzh7fniMYjTLwm+irAdvc0+Xmiduujab4YyoKEhonnnZPZhjaw17RmkHMLQzpamINbdel6hCWndHh2c4CftalXvme/fmnUhC/rXljkDThX5GcFEUmt8sh2mxff+xTEYkoI2ChMarQa5lz8hr+J50bCAA6PvTX0t81OJ1fqc7XFvuCGTjSDp6b5xEKessKQmgNnlC/EBFQULj1SB7jTaSxiuAYdKxgdI0HLuN2tyey9pyh6/psMkTC3UTvbeWI988QUVBQuM1aqj19I8bcTQMXpnMgq48j0L34tko2Vby2iPw2jE9yOxeWK9vWDLyVy9KAog3KvKUpuK4jXhMGwUJjdeooZbeG27GbEE8DUNWpiv8eEq5HcfQIRXKna2xhA4vFmTELrVt/7HAjgMmWXVlpqIgofFyXUwjf4UbbqMZxfiLrVTvjX4aUyJOMc16+/pdFXQYxwFg9CLMrEFFQUJTEHGd869l4+W2viOu+Wi30OcZXVSbe7zq2aaEF+e5TSV5Kei15Y5AimJCg+DrS+dmWuFTUZDQeBmGk84R4EX34tlYtfPwqGxq1ebug+B21xmZkRp33D3/KseG15rXJCnCuqq6LS4MG02g1tCYTULj1UMPEgcqbsqdrVh/Z4dn9rwouLnYpuF6W4+Yrr1m+RZExoRXyRpuMudRSQAcUZAIdC+e7WoI9Bt6ISmSnLt3G0kl7XpbzwRdqBeEhTNbHFd/Rw0CmaTMacMRBQlNludUk8RtJEWf/HziFOxx4cyWTI9Y0oYjCkICkrQNhKQPlYI3VBQkEvXoARR2/QIheYWKgkSicUIDzl246Lh9PFPv6xdIdbzWWuQNKgoSCScl4bWdkHqgt69/1PRk/8AgVu08DCCftr3x3e0jhJAasHH3kVE2LAAYHBquqdt4FKgoSCTcMouNl4xjhITBLYxMVoNlViOyohCRgoj0ich3je8tIrJHRI4an1Oii0myyoO3XYeiLZxqsUHGTcYxQsLgFhQzq6lOqxHHiOL3APzY8r0HwF5VnQVgr/GdjFPKna3YuHTuqFXQGzMet4aQpAkTAj7LRDJmi8hHASwBsA7ASmPz7QBuNP7fCuBZAH8c5Tok29ADiJDRjDcX6qheT5sB/BGAyy3bpqvqcQBQ1eMiMs3pQBG5H8D9ANDWNj6TfRBC6pfx1IEKPfUkIp8DcFJVXwhzvKpuUdUuVe2aOrV2+ZUJIYR4E2VEsRDAbSJyC4DLAEwWkYcBnBCRGcZoYgaAk3EISgghpDaEHlGo6ipV/aiqtgP4IoCnVXU5gCcA3Gvsdi+AxyNLSQghpGYksY5iA4BFInIUwCLjOyGEkJwSSwgPVX0WFe8mqOpPAdwcx3kJIYTUHtEMJFsRkVMA3jC+fgTAv9dQnLBQ7nSh3OlCudPFr9wfU9XEvYEyoSisiMgBVe2qtRxBodzpQrnThXKnS9bkZqwnQgghnlBREEII8SSLimJLrQUICeVOF8qdLpQ7XTIld+ZsFIQQQrJFFkcUhBBCMgQVBSGEEG9U1fMPwFUAnkEl58RLAH7P2N4CYA+Ao8bnFGP7Fcb+7wP4c9u5lgF40TjPQx7XXAfgTQDv27avBPAj4xx7UfEhdjp+IiqhRM4CGATwrxa5hwG8B+AcKnGoMi83gJsAHLbIPQzgnqzLbfz2Z4Zs54zzZKm8bzDK9SKAtzC6fu8FMATgDLJXvx3lBvAxAAct9eTHeZA7B++lW3ln/b28AcAPAFwAcJftt68B+KHxt8xNhpH9q+4AzADwSeP/y1FpBD4O4CEAPcb2HgBfM/6fBOCXAfymtYCMgjsGYKrxfSuAm12uucC4rr2AbgLQZPz/WwB2uBz/3wD8LYBPohKH6tsWuc/nVO6HDHlbUGmQv5EDuX8TwOsA/sSQ8y0A38yQ3O0APg3guwDuwuj6/XcA/sb4LWv1xE3uuQC+Ycj7IQDvAPifOZA76++ll9xZfi/bAcxB5d28y7J9CSqdnwmGnAcATHY6h/lXdepJVY+r6g+M/99DpZfSikqCoq3GblsBlI19zqjqPwP4wHaqawD8q6qeMr7/A4DPu1xznxo5LWzbn1HVs8bXfQA+6iL27QD+lyH3YwB+xSL3hJzKbZb3XQC+B+BzOZD7k6hUxL9W1TMA/gmV3lQm5FbV11X1aRgrYG31uxOVURKQsXriIfc0VOrFVlRGeWcALM6B3Jl+L6vIndn30pD7RVRGQlY+DuAfVfWC8V4eAvAZp3OYBLJRiEg7Ki/QftgSFKFSSb14BcC1ItIuIhNQqQhXBbm+jS+h8mCcaEVlyAZVvYDKC/OLhtwC4Dsisg/A/BzJbZb3FwH8dU7kfhLAFAA/E5GPoNJDas6Q3KOw128Ap4FM1u9R2OT+OQC7UXke61HpwXqRFbmz/F6OwqUdzOJ76cYhAJ8VkSbjvbypmgy+gwKKyIdQmVJYoarvikggyVT1HRH5LQA7UNFw/w8V7RoYEVkOoAuVnqvjLja5fw7AfYbc76pql4hcA+BpVFGWGZIbRn6PDlQaAk8yIneviAwZ1z4F4HkAd2RIbiuXIT/124pdblXVOSJyJYBeWJ5NxuXO8nvpJXeW30s3Gb4vIp/C6PfygtcxvkYUIlJEpXC2qepOY/MJo4DMgqqaoEhVv6Oq81X1egBHABwVkYKIHDT+vuJDll8F8ACA21T1nLFtnXkOY7e3AFxlyL0TFaPk/zV++zcjsdJPUOkRvJ8TuU8A+C8A/h6VgGF5Ke9jAD6rqosAlGD00jMi98juAP4QtvqNyrxzFuu3p9xG/X4bwE9QGd3lQe4sv5decmf5vfSSYZ2qzjPeS0HFKcnzAM8/4yR/C2CzbftGjDY+PWT7/T9jrLV/mvE5BRXvjF+ocm27EacTwKsAZlU57rcB/G9D7icBPGK57iZDXjM6419mXW5LeR9DZZiYl/IuAPgfhrxzAPwbgI1ZkdtSv18B8F2H+r0Fl4zZmSlvN7lRmav+piHvFFR6i3+VA7kz/V76qCeZfC8t+/8NRhuzCwCuMP6fg4rn0wTPc/i4yC8DUFRcsQ4af7egMve5FxVNtBdAi+WY11HpOb6PSm/z48b27ai4df0IwBc9rvmQcZzpjvagsf0fUNHgphxPuBx/GSrDV0XFE+FHxv5/YPxvurP9KCdy3wJgHiqGsTyV9+2o9JjOoOI2uz9jcn8KlR6gojL0HrSU9/OoeOJcNMr9rhzI/QAqLpdW99g8lHfW30uvepLl9/JTxnFnAPwUwEuW99W8/j4A87x0gKoyhAchhBBvuDKbEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhCRUEIIcQTKgpCCCGe/H9DmsqiQBIg1AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from apd.aggregation.query import with_database, get_data\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "async def plot():\n", + " points = [(dp.collected_at, dp.data) async for dp in get_data() if dp.sensor_name==\"RelativeHumidity\"]\n", + " x, y = zip(*points)\n", + " plt.plot_date(x, y, \"o\", xdate=True)\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " await plot()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nO2df5RV5Xnvv88czuAZIhnGAMWJk1FK8cYMMOmk4KXXaiwlkahHIyFW1vKu5uptb1dbSjvtULnFZEEgkhC6bu+695L+olcWRQ0dTTASitqueoUuzIDERIpGRUcKNDhRYYRheO4fZ+9hz56999m/z95zvp+1Zp05++wfz373u9/nfd/neZ9HVBWEEEKIGw21FoAQQki2oaIghBDiCRUFIYQQT6goCCGEeEJFQQghxJMJtRYAAD7ykY9oe3t7rcUghJBc8cILL/y7qk5N+jqZUBTt7e04cOBArcUghJBcISJvpHEdTj0RQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+qej2JyF8B+ByAk6r6CWNbC4AdANoBvA7gC6r6jvHbKgBfAjAM4HdVdXcikhOSIr19/XjwiZcwMDgU6TxNxUrf7OzQRQDAlKYi1tx6HcqdrSPX2bj7CN4eGMSVzSV0L5498htJjiDlbq8LU5qKWDJnBp55+RTeHhjEh0tFnL8wPPKM/WCvB1lDqkWPFZEbALwP4G8tiuIhAKdVdYOI9ACYoqp/LCIfB7AdwC8BuBLAPwD4BVUd9rpGV1eX0j2WZJXevn50P3oIQxeTibRcLAg23jUXALBq52EMDl16XUrFAtbf2ZHZBmQ80NvX77vck6wLZj0I8qxF5AVV7YpdGBtVp55U9Z8AnLZtvh3AVuP/rQDKlu1/p6rnVPU1AK+gojQIyS0bdx9JTEkAwNCwYuPuI9i4+8ioxgoABoeGsXH3kcSuTRCo3JOsC2Y9yCJhF9xNV9XjAKCqx0VkmrG9FcA+y35vGdvGICL3A7gfANra2kKKQUjyvD0wWNNrpHH9esatfJ22J/0ssvqs4zZmi8M2R/WrqltUtUtVu6ZOTXwFOiGhubK5lMo13K6TxvXrmSDlnvSzyOqzDqsoTojIDAAwPk8a298CcJVlv48CeDu8eITUnu7Fs1FscOoDxUOxIOhePBvdi2ejVCyM+q1ULKB78ezErk0QqNyTrAtmPcgiYRXFEwDuNf6/F8Djlu1fFJGJInI1gFkA/iWaiITUlnJnKzYunYvmUjHyuZqKDSOeT0DF28U0YJY7W7H+zg60NpcgAFqbSzRkp0CQcneqC1Oaili+oG3k+OZScdQz9oO1HmQRP15P2wHcCOAjAE4AWAOgF8AjANoAHAOwVFVPG/s/AOA3AFwAsEJVv1dNCHo9EUJIcNLyeqpqzFbVu11+utll/3UA1kURihBCSHbgymxCCCGeUFEQQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhCRUEIIcQTKgpCCCGeUFEQQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhSNR8FIWHp7evHg0+8hIHBoTG/TWosYN0d/rO39fb1Y+PuI3h7YBBXNpfQvXh2bNnAvOQ0mdJUxJpbr0O5szWwLOb+/QODKIhgWBXNpSLOXxjG2aGLsdwDUElYXywIzg9fSkY2pamIJXNm4JmXT43I235FCft+8g6GVVEQwd3zr8LackdscvjFXu7WMq4FTvXA/tyr1RMrbveTZF1OiqoZ7tKAGe7GH719/eh+9BCGLrrXr0KD4BtLq6d/7O3rx6qdhzE4NDyyrVQsxJIm1I+cJsWCYNmnrsK3X+j3LYuT7Flk+YK2VJWFW7kXC1KTlKBe9cB87jv+5U1f9cR+rPV+4q7LaWW449QTSYSNu49UfamGLyo27j7i61z2hnZwaNjXsX7O7fflHxpWbN//ZiBZnGTPItv3v5nq9dzKfWjYX51ISx7g0nMPqiTMY633k2RdThIqCpIIbw8Mxraf2z5+rxH1+laGXUbgScqYBm73lRRe5VKLMqt2zSjlYz13XusJFQVJhCubS7Ht57aP32tEvb6Vgkig88QhYxq43VdSeJVLLcqs2jWjlI/13HmtJ1QUJBG6F89GscH75So0CLoXz/Z1rlKxMGpbqVjwdayfc1eT06RYqBh+g8jiJHsWuXv+Valez63ciwV/dSIteYBLz91vPbEfa72fJOtyklBRkEQod7Zi49K5aC4VHX+f1FjwZcg2z7X+zg60NpcgAFqbS7EYsv3IaTKlqYiNd83F2nJHIFmssgOXeqbNpSKaivG+fgKgsTC6MZvSVMTyBW2j5F04s2VEjoJI6oZswLnczTKuhQeQWz2wPnc/9cTpWOv9JFmXk4ReT4QQklPo9UQIISQTUFEQQgjxJJKiEJHfE5EfishLIrLC2NYiIntE5KjxOSUeUQkhhNSC0IpCRD4B4D4AvwRgLoDPicgsAD0A9qrqLAB7je+EEEJySpQRxX8AsE9Vz6rqBQD/COAOALcD2GrssxVAOZqIhBBCakkURfFDADeIyBUi0gTgFgBXAZiuqscBwPic5nSwiNwvIgdE5MCpU6ciiEEIISRJQisKVf0xgK8B2APgKQCHAFwIcPwWVe1S1a6pU6eGFYMQQkjCRDJmq+pfquonVfUGAKcBHAVwQkRmAIDxeTK6mIQQQmpFVK+nacZnG4A7AWwH8ASAe41d7gXweJRrEEIIqS1RExd9W0SuADAE4LdV9R0R2QDgERH5EoBjAJZGFZLUH1lLakNIPRNJUajqf3LY9lMAN0c5L6lvnJLIvHN2CN2PHQIAKgtCUoYrs0nmyFpSG0LqHebMJqlizR8tAOzqwGmblf6BQXz8v38vUK7pKU1FfHzG5Xju1dO+9rVOccU1Bba69zC2739zTJ5qr/zJ1t8+XCpCBBg4O+S436qdL2LQKJMGAa6/pgUvvf3emPzPZv5st/JvEODX56cfTdYtX/WSOTPw3UPHazIFubr3MLbtO+ZYH1tzkus6Lhg9lqRGXvJHm3mOAcSS13l172E8vO/YmO0LZ7bgB8d+5pg/GYBnWVn3W7njIPyrTX+kGXo8SN5yIJ282m7PzEpcedujkFb0WCoKkhoLNzyN/oynfDQx80e4ydvaXMJzPZ/2da6Zq54MlEqz2rWD7heGggheXX9L7Od1Iky9CFL+YfD7zJKWoxppKQpOPZFYqPQKD8JpRmhSYwHr7ujIfF5gK9VkDXIvQfMtx5lvPCxp5tAOcx9J1yW/95+nOh0FGrNJZHr7+rFih7OSAIAz54fxB48eQnOT/+xgtebK5lJseZ2D5luudu2g+4UhzRzaYe4h6RzTfu8/67mu44KKgkTGjyfS8EWFKnKRP9rMcxxXXme3fNQLZ7a45k+ulmvbul8SL3GaObSD5C0H0smr7ef+85DrOi6oKEhk/A6/fzY4NCp/tFPTYM/73FRsGJVb2v7dD1Oailg4s8X3vqahNK68zmvLHVi+oG1Mnupt913vmj/Znlu5uVTElKai436bls1DyVImDVJRQk75n8382YBz+TdIuoZswDtf9fIFbTXJq20+Mzf1lZdc13FBYzaJjF9jZK0Nf4SMN5gzm+QGP8PvQkPy0wWEkGSgoiCRKXe2YvOyeXCbEZrUWMA3liY/XUAISQa6x5JYMOfLCSHjD44oCCGEeEJFQQghxBMqCkIIIZ5QURBCCPGEioIQQognVBSEEEI8oXssyQT2JDFmxFm63BJSe6goSM1xShJjRpwFmCObkFrDqSdSc7bvf9Nx+/BF5sgmJAtwREFSx54L2itJjDUyrT3v9IJrpozKC91UbMDEYmEkr/RN104dlW8ZSDfncpbwys1t/h5HbvCgctifkVOebDNasD1Per0+y1rA6LEkVYLmzTYjzvrJYeyXNHIuZwmnMrfme3bLWR13OSWRM73enqUdRo8l45KNu4/4biisEWfdpqfCMDRcX1NaTmU+ODQ8UgYbdx8ZoySA+MspyLP3S709y1oRSVGIyO+LyEsi8kMR2S4il4lIi4jsEZGjxueUuIQl+cdvkiN7xNm4czjXS65jwP1eze1eZRFnOSVV5vX0LGtFaEUhIq0AfhdAl6p+AkABwBcB9ADYq6qzAOw1vhMCwF+O4dbmEl76ymdGTSfEncO5XnIdA+73am6PKzd4WDmyel5yiahTTxMAlERkAoAmAG8DuB3AVuP3rQDKEa9BxhF+c0HbiTOHcxo5l7OEU5lbyzmu3OBh5IhKvT3LWhFaUahqP4CvAzgG4DiAn6nq9wFMV9Xjxj7HAUyLQ1AyPvCbC9qOU95pe17opmLDqHPZ8y0D6eVczhL2MreXc1y5wcPI4ZQT277NLU96PT7LWhHa68mwPXwbwDIAAwAeBfAYgD9X1WbLfu+o6hg7hYjcD+B+AGhra/vFN954I5QchBBSr+TB6+lXAbymqqdUdQjATgD/EcAJEZkBAMbnSaeDVXWLqnapatfUqVMjiEEIISRJoiiKYwAWiEiTiAiAmwH8GMATAO419rkXwOPRRCSEEFJLQq/MVtX9IvIYgB8AuACgD8AWAB8C8IiIfAkVZbI0DkEJIYTUhkghPFR1DYA1ts3nUBldEEIIGQdwZTYhhBBPqCgIIYR4QkVBCCHEEyoKQgghnlBREEII8YSKghBCiCdUFIQQQjyhoiCEEOIJc2YTUidUy5udNfIm73iGioKQOsCer7p/YBCrdh4GgEw2vnmTd7zDqSdC6oBqebOzRt7kHe9QURBSB1TLm5018ibveIeKgpA6oFre7KyRN3nHO1QUhNQB1fJmZ428yTveoTGbkDrANADnxYsob/KOd0LnzI6Trq4uPXDgQK3FIISQXJGHnNmEEELqACoKQgghntBGYeGebz2P5149PfJ94cwWbLvv+hpKRAghtYcjCgO7kgCA5149jUWbnq2NQIQQkhHqZkRxdc8uWM32AuC1DUtGvtuVhMnRk2fQ29dPbwtCSN1SFyOKdpuSAAA1tvth1c4XY5eJEELywrhXFPd863nP3+ev21P1HINDF+MShxBCcse4VhS9ff2uU0omJ947n5I0hBCST8a1ovjjb/ubMpqz5qmEJSGEkPwSWlGIyGwROWj5e1dEVohIi4jsEZGjxueUOAUOwrkL/qaM3j03XH0nQgipU0IrClU9oqrzVHUegF8EcBbA3wPoAbBXVWcB2Gt8J4QQklPimnq6GcCrqvoGgNsBbDW2bwVQjukaNaW3r7/WItQVvX39WLjhaVzdswsLNzzN8iekhsSlKL4IYLvx/3RVPQ4Axuc0pwNE5H4ROSAiB06dOhWTGKOZNW1SbOdiZq30WLTpWazYcRD9A4NQVNJgrthxkMqCkBoRecGdiDQCuA3AqiDHqeoWAFuASvTYqHI4cfZ8fG6tWcisVQ/J5u/51vM4evKM428rHzmYi/uth+dEorO69zC2738Tw6ooiODu+Vdhbbmj1mI5EsfK7M8C+IGqnjC+nxCRGap6XERmADgZwzVCEWfj/uFSMbZzhWHOmqdGGd3Ha7J5L3fmi7WPiF+VRZueHaXozNEQML6eE4mGvZ4Mq+LhfccAIJPKIo6pp7txadoJAJ4AcK/x/70AHo/hGqFonBCf9++7g0OxnSso89ftcfTMGm/J5q994MlaixAJr9HQih0Hcc2qXZw+I1jde9i1npjKImtEGlGISBOARQD+q2XzBgCPiMiXABwDsDTKNcLS29fv2z3WD0mvzXaKXLu0qw0bdx/xXBTYn4EpsThY3XsYHwznYMjgQbXFnRcVHF2QzCoDLyIpClU9C+AK27afouIFVVO6Hz1YaxEccZq/fvTAMcfItdUaHqAS3DCvWMsi3yoiGH/02CEqijplde/hWosQinEbPbZaeKZJjQWcOZ/uQrvevn78/o6DI41i/8DgqO9hyGsD29vXj1U7D2NwqP4WO57P+ciJBKe3r39kNOlFVjt+uVYUUbxL1t3RMaahKhULng1Xe8+uSN4Jf/TYIccotvXIxt1HAiuJgmT1NQrO6t7DmTRaEm/CeCr5VRIAcM+CtjjEjJ3cKorevn50P3oIQ4YrTP/AILofPQQAOPCG95RNqdgwolDsiqbaA3XyTvCrsNiTvEQY28qwjp/ye3jfMSqKnBHWU+nBJ17yfY2s1oncKooHn3hpREmYDF1UPPjESxio4qG0/s45ACoGRXuD7lfzbzNedHtvge6Q/hAEH021NpeSEIWQqlTzVPJq4Ku1RyaTJxZCyZYGuVUUboXv56F4NeClYoOv/BNmI+emWFbsGL04jG6RowkzNmi/Il5FYe8hzpo2CXtW3hjqXEk8X7sn3MQJDfja5yudHC7oS5ft+98MdVy1fDhWXvzyZ0JdIw1yqyiSYv2dc3yPKqphTaGa5HqHepnvfu7V07GlpbUrCaCS9nbRpmerKguneeowLo/tPbuwfEGb47NzyuF+7sLFMXXTHMH+ae/hTDc0Tlz7wJNjXKInTyxk8j6qTXs6vYNOdcyNUjHbGR9EMzDv29XVpQcOHAh0jN80pnYmNAhe+eotnvvMXv09X2swFs5s8eXCmgavW/J/54Gwz880Z1frSVezG3ld36ssV/ceTsQP3q4wwpTPZQXBy+u863ZWcFISVtKsz15u2hMEeGX9Esxc9WRVZWGVOYgBGwA2L5sXqgMkIi+oalfgAwOSbTWWAF9fOrfqPubwvhppKYnNy+alcp08oMafGcLEacrHdL21BhX8/R0HY/FhT2qx1MP7jkWW74NhzY2ffrXFlVeH7EgExV5X7FzQitJecE2wtDpf/o5/A/bCmS2ZnzqsK0WxfEGbrweSlYfW2lwK3dPIMkHmbb1wC2Hi5HqrqDTGfmwJ7T27atLgxqGE8rjq1wlF+FFnEPy6afvpFFqV2ztn/Rmwly9ow7b7rve1by3JraJoLAT3qc/TPP5lBcFzPZ8eURILZ7bUWKJ4WN17uOpL1xDg0Tq52XoFg/TrqhhHDz8M7T27Umkg80LSSjvOwKGK4Cuv89Im5VZRTJoYzA4fdPomzlwWYbDPNVfrdeQl0Y+fHu+mLwR7VvZ79YoF6ddVEYindz5r2iQsz+giqlpyWYCOXpJK+8qYXa7NOtPsI9q0n32yQm4Vhd+hnUnQ6Zs9K2+sibKYPLEQypC38pHRiX7c5u+TIG4lFfRZ2UcJ1bybg8j386su9e4XbXo2iFgAKvVobbmDdiYbG+6qbiu08vC+Y7i6J/7ou92LZ8d6PqAyCvLTIXnwtutiv3ZS5NY9tiCS+ErdPStvxMINTyceoTUODw97rgZz/j5p+0aQBYdJ9QqDjBKAimJpbS75eq4XtGJTeeXk+55RfJ2YfnnjyP9mWcTlep13wriLKyrl94ePHsLXl87Nte1u1rRJuZI/tyOKtMI5JNHjsBIkflFTQF9r+/xrEtNTKz0WHNrZ5mMqx2xcJ8aYS8TOwOBQoOf63KunAysJANj/wKJR38udramMLPLg+RTFNnDhomLFjoNo79mF2au/F6ke1yKfS5SFnbUit4oiCFHmiMudrYnOMd89/yrf+371Tn9uuybWrHxOLqNxTE95zfK0WxRSb19/1dXY0y9vHGlc/booO+FnyjDpnr3bKLHc2Zr4GoGwtpVrH3hyxJje3rMr0URScdkGzl24iJWPhM+nXot8LnlTEkCdKIqongXmHHPcsYYWzmwJJFvQoap1sOLkBjg4NDzSM3P6i6Nnak5FVWuYly9oG9UDjzIs//f3g/f+42LWtEmZWPw4f92eQPtf3bNrzNqGD4Y1MWVx07VTYzvXRQ0/MhhPEYmTJLeKIu0HXO5sxXM9n8brG5Zg+YK2Mdf3WoK/edm8EUUjuLQ+Imn/aavBP0zPKU0X0ajK3JRzde/hwI4OcbF52TzfvcVJjcEDwF1WkJH6V40T750fZYj3YnXvYdfRXlJZB595+ZTj9rChLMJOZXlNYdMB4RK5NWb7ja+TxLTR2nKHY8O2uvcwtu07NvLSTWosYN0dHSO947SNV0HWI7hRLTLm9MsbQ83f24kaw+nhfcfQ9bGWmi04a7KErvfDujs6Ak9/mS7Ta8sdvu7zglZGCq9VGeHUoszcGvYPfATkdCLsVJabU0Nrc2kkuvScNU855qw3FUk9OCjkVlGsLXfgtVPvV128leaCFjcFUivsnlBh8WrEJxTiCY0ch4dWrV5YQXD7URAvKKvtxqSp2ICzPqMcz1+3Z+R4p4CGteBKlwb6yuYSbrp2amDlFdbppHvxbMcEZtbzVQtSeOCN0+NmRbwbuVUUQGURGlexJs+qnS+6NuJxrWx1Ok+YnBVpM6WpiDW3XhdKyZk91jCZGr8aIMqxOeL7+VW7cMFSoNbEO2nj1UCb924qND+E7WS4JTALcj6zc+inLPM6nZVrRQEAxQb3BVb1viI2rsjFg0MXMWfNU449K7eeYVCcpg7uWdCWekM2QTCqMfVi8sQC+v701yJf0ymBlp9j/vDRQ7jgc9gYtkOVVMNWrYE2R+dpdATDlL+dteUOPPPyKdd3oTXneUNya8w22bjUuSIH9SjKC1Oa/C/7H7oYX0Kdd88NY86ap8Zs7148G6VitOkn+1DfZG25I1VlP3liAa+sX+I7wX2t8yZ8fencWOxQXiTZsJkOIq9tWDIqrpkVPz4rWekQOr0LpWIBm5fNc72/vJB7RWEuYkrbo6hWrLn1OhQDxMl58ImXsHDD07Fc+91zw2MUT7mzFXoxuAFyQoOMPK/1d3a4vkRryx2hAkAGZfrljSMN/2sbloxaVW0nbJiVuCl3tmLTF+J3284S98yvrgSy0iEsd7Zi/Z0do9oir7qdJ3KbuKie6e3r95UbPAlam0t4rufTgbJ3AZWeVdiX5uqeXZFtFW6Z5LywZ5lbOLMl0x2QuKdpzGdda7ySHGU1I15apJW4iIoixzilywzLpMYCzpyvHpcf8O8S29pciiWvc9R4W+Mxp4cTQbOqVSNL5TZ/3Z4xda7elQSQE0UhIs0A/gLAJ1BxUPkNAEcA7ADQDuB1AF9Q1Xe8zkNFEZ6oqTmtaz06v/L9WBerxTU909vXj+5HD2EohL+vmcqyXohrVJH10ROpkJdUqH8G4ClVvRbAXAA/BtADYK+qzgKw1/hOEiLq/GxzU+NIr3HNrdclbhwNQ7mzFR+6LJyDXj0piTihkiBWQisKEZkM4AYAfwkAqnpeVQcA3A5gq7HbVgDlqEISb6I07tb1C6ZxNA4mT4xnIZ7JQIiRTpDkOOOFOAzbWfEiItkhyojiGgCnAPy1iPSJyF+IyCQA01X1OAAYn9OcDhaR+0XkgIgcOHXKOe4L8UeUFdj29QtxhcKOe+74wwGzgV1WkDFZAuuB7sWzfbv3OiHIjhcRyQ5RFtxNAPBJAL+jqvtF5M8QYJpJVbcA2AJUbBQR5Kh7/CbhccJp/UK5szWSUTQJ19GhYW8X3Cy4q2aBcmdr6JAS9apcSXWiKIq3ALylqvuN74+hoihOiMgMVT0uIjMAnIwqJPGme/Hs0A173F4tSTXYfj2ySGVE0PWxFnQ/etA1akHeVwrXgjChVsYLoRWFqv6biLwpIrNV9QiAmwH8yPi7F8AG4/PxWCQlrmQlzWaW4tg4Bb+rpymVOMJSkEuYib/M2FRm4i8g/ajQtSCq19PvANgmIi8CmAfgq6goiEUichTAIuM7SZhyZ6uvcAdW4ooFBSTvc98cwEZhugybAeXM4Hd5SBFKsolb4q9apFKtBZGaClU9qKpdqjpHVcuq+o6q/lRVb1bVWcZnPCvCSFX8hDuw4hYnKyiTJxYS71U9eNt1rr/ZkwBt3/+m435u2wmphluU5FqkUq0FuY/1RC6xttzhK180UHGB9Grcg3iWprE61ktWu/3CLTS135DVhNhp9gjGGVfgzSxDRTHO2LPyRixf0DbKRbKxIJjSVBwVNLHafP03fK6nSNPn3k131d9qCZI2Xn2Meph+yn0+CjKWODLtmT14a/DBYgMwrJV1G7UwELu9q2HHCfbAhrOmTfKd85rUFz/zCMBZD9NPVBTEFb+eM1nzMCqIOE4zWUceTtFvj548g0WbnqWyIGPwStBVCOpFkkM49UQikUUPIzdbhOLSfLJbiPQgodNJ/eCVk7sebF9UFCQS21xWALttTwOveEf1MJ9M4qfc2eoaU40jCkKqELfdICxWzxOv3p+bmyMh1XCLqcYRBSEJ0tvXj4UbnsbVPbuwcMPTVd0MvaLkWkcK5c5W19zi9iCIhJDq0JhNakJvXz9WPnJwpJfWPzCIlY9UQpC4GdC9ouTaDY1L5sxwDIx307VTfckWdgFh3tKnEuIHjihIYniNEP5k54tjGv6LWtnuhpftwT7YeOZl59D15na3EQdQcQkOg1Nq2udePY17vvV8qPMRkhU4oiCRcHNFBSrTQW4987MuYU3dtgPeUXLtEri5Mprb19x6neu5Bjx85r1wy18eNq951tyOawnLorZQUZBI3D3/KtfcB2EXIkWZ+jFpEOepKtNDJWrOjaAEvSd7LnTT7RgAuj7WUlfhrr3KIk1lIXB20nAznY0n5capJxKJteUOzxAafozUdpymn8wwz37o7etP1ENlde9hzFz1JNp7dmHmqid9rRkJ6pbrpnwf3ncMq3YeRv/AIBSXwl2P53hDXmWRJkE8/LK4vigKVBQkMl5Nr1tDZo/4asVp+skpzLMbXo1ykHDlToRtAOIM81DP4a7zwniLYExFQSJTrfF1asjW3RFsCB5k/YPXvlHXRnk1ACWPBB9JL8mqh3hDeWK8RTCmoiCROX+hek/f2pDNWfNUVfuAvYfuZ/3Dok3PVt134GzFUB12qsarAfjAwxCfRvMwnqef8obXau08PicqChIZL08lK6t7D6O9ZxfePVddsdhDgHQvno1S0X26CqjEabrnW8979q4/bIx+kpiqiWsxX9h57LBuvVlngstKS7ftWeDu+Ve5/pbHaUJ6PZHUCGJ8VADtPbtGvi+c2YL1d3ZUHYlUc0U1O3pJhPLwct8NQlgjbVi33jQJ4wl0wcUzwW17Flhb7nB9jnkMI0NFQXKBqQAmNRbGZLQLwjGz98wAAA/USURBVDvG1JNX2Og06e3rH+PqOl7JiptrEji5PzeXio7K+8MRHSpqAaeeSG547tXTgY3gdsy542oNcnvPrsBTQEGnFHr7+rFyx8FRrq4rU1zbkTZJeAKlOd8fdDW/m5liYHAolNt4LaGiIJFIu7JHndoxjdF+FqgF9XsPOqWwaueLsFt3/Fl78omXI0B7zy7MX7fH8fckwq2EYc2t17n+5jRyMEevTuRt/QsVBYlE3gxzQc2fQewFQY3Zgz6dAIJijco778vfR+dXvu87Qm8tOfHeeUdlEbSBToqgq9+r5akYHBrOjQMCbRQkMFaDZN6IKrFXmlU/xuw5a57y5fUVFqsDADC6Ie0fGET3o4cABG/00uLEe+fHbEs73EoUrDYnP3VtYHAolpA1SUNFQQLhFCE1r7jFg7Jz7QNP4orLL/N8+f00CkkrCT8MXVSs2vliphsmJwO/27PKkoesGWbGbwQBkxU7DuLAG6czbdCPNPUkIq+LyGEROSgiB4xtLSKyR0SOGp9T4hGV1Jrevv5xoyQA4Nfnt/na74NhHTE4e1FtGqHWSsJkcOhipqegVtgM/Ct2HHRV6HF5yAZNouVEkDAzdrIeByoOG8VNqjpPVbuM7z0A9qrqLAB7je9kHJCX4b9f4u7B5WEdg8kfPJL+s5w4IX6TaBz5qs2RQNRAi1HdrbMcByoJY/btALYa/28FUE7gGiRlstwDDYo1kdDyBf5GFX7x8tDJEsM1MC997fNzYp8qisNO5jQSCBNoMeq9ZdnmF9VGoQC+LyIK4P+o6hYA01X1OACo6nERmRZVSFJ78ubd5IU5fbZo07M4evJMrOf2conMGnbDt5VJjQWsu6MjVluGea6Nu4/EttgxajRgoHqSK79keKF4ZKKOKBaq6icBfBbAb4vIDX4PFJH7ReSAiBw4dco5bSXJDmmHHZg80TuuU1Tae3bFriTGE2fOD2PFjoOZH0nGMPMUCK/w+HGQ1fKOpChU9W3j8ySAvwfwSwBOiMgMADA+T7ocu0VVu1S1a+rU6gnvSW2JK+BdNVqbS3h9wxK8+OXPpHI94k2cdimrLSAukh7B2RvuqJEBqpHVdRWhFYWITBKRy83/AfwagB8CeALAvcZu9wJ4PKqQpPakEYOoVCyMuk7c9gNSW6J4BbkRhzHbi1WWbIs/v2pX4g4dWXWIiDKimA7gn0XkEIB/AbBLVZ8CsAHAIhE5CmCR8Z3knHJnKxbObIntfJuXzcPmZfPQ2lyCoDKSWH/n6DnxLPuVk+AkMX2ZtAHYXD3f3rMLF8axDaIaoY3ZqvoTAHMdtv8UwM1RhCLZZNt918eyKnvhzJYRhVDNWOqW0J7kj8YJDTh3If6wJUmvbM7y+oa0YKwnEoi15Q68uv4WvL5hSajjZ02bhG33Xe97/3sCTj8tX9CG1zcswfTLG4OKVhM2L5tXaxE8mRDjzE4SSgJIfk1I2PwgYfBKp1tLsikVyQVBlYUA2LPyxkDH+J1+EkMec/9F1/1coOvUiiyH0sgLUdaEZM3L6LIqWRxrBRUFSY3XQo5CqjF5YmHMudPsBY5n8jIvH7bBz5qX0UBG1+FQUZDQBHk5Gwvh5zCqhX5I2pV28sRCrIZ8k1nTJgHI/vRTHvjyd8I1+FnzMspq9jsqChKaIKu1H7prjN+Db772+TmuvyXtQrtwZgte/PJnsO2+62NVFtMvbxyZhit3tkZSpOMJQfCcIUC+VsR7kfYCQr9QUZDQ+HV3XL6gLdJcfLmzFZuXzRtl6GuQynnDuNCWig2jXHObS0XHF2H5grZRhvcwysLJDXjzsnnY/8CiUfs9dNdc11hB5jFhlGJrc2lk5JIHrmwu4Zt1PMLK6tQT81GQ0FzZXPJcZdtq5BKIw2Bb7mz1fZ5qU2Lr75wT6HxWtt13vWeMJDt+3YCtcZCseRisx5U7W0cUox8ZrM4GQWS2Eue02PIFbZ62I3PBZZiYUHHEfMoCaUVACAoVBQnNTddO9Xzxn+v5dIrSXKLalFhankZBG9kgymtSYwFnzruvcraPfESAoEtfNi+bF2tZmUrOXIcjAJoaCzh7fniMYjTLwm+irAdvc0+Xmiduujab4YyoKEhonnnZPZhjaw17RmkHMLQzpamINbdel6hCWndHh2c4CftalXvme/fmnUhC/rXljkDThX5GcFEUmt8sh2mxff+xTEYkoI2ChMarQa5lz8hr+J50bCAA6PvTX0t81OJ1fqc7XFvuCGTjSDp6b5xEKessKQmgNnlC/EBFQULj1SB7jTaSxiuAYdKxgdI0HLuN2tyey9pyh6/psMkTC3UTvbeWI988QUVBQuM1aqj19I8bcTQMXpnMgq48j0L34tko2Vby2iPw2jE9yOxeWK9vWDLyVy9KAog3KvKUpuK4jXhMGwUJjdeooZbeG27GbEE8DUNWpiv8eEq5HcfQIRXKna2xhA4vFmTELrVt/7HAjgMmWXVlpqIgofFyXUwjf4UbbqMZxfiLrVTvjX4aUyJOMc16+/pdFXQYxwFg9CLMrEFFQUJTEHGd869l4+W2viOu+Wi30OcZXVSbe7zq2aaEF+e5TSV5Kei15Y5AimJCg+DrS+dmWuFTUZDQeBmGk84R4EX34tlYtfPwqGxq1ebug+B21xmZkRp33D3/KseG15rXJCnCuqq6LS4MG02g1tCYTULj1UMPEgcqbsqdrVh/Z4dn9rwouLnYpuF6W4+Yrr1m+RZExoRXyRpuMudRSQAcUZAIdC+e7WoI9Bt6ISmSnLt3G0kl7XpbzwRdqBeEhTNbHFd/Rw0CmaTMacMRBQlNludUk8RtJEWf/HziFOxx4cyWTI9Y0oYjCkICkrQNhKQPlYI3VBQkEvXoARR2/QIheYWKgkSicUIDzl246Lh9PFPv6xdIdbzWWuQNKgoSCScl4bWdkHqgt69/1PRk/8AgVu08DCCftr3x3e0jhJAasHH3kVE2LAAYHBquqdt4FKgoSCTcMouNl4xjhITBLYxMVoNlViOyohCRgoj0ich3je8tIrJHRI4an1Oii0myyoO3XYeiLZxqsUHGTcYxQsLgFhQzq6lOqxHHiOL3APzY8r0HwF5VnQVgr/GdjFPKna3YuHTuqFXQGzMet4aQpAkTAj7LRDJmi8hHASwBsA7ASmPz7QBuNP7fCuBZAH8c5Tok29ADiJDRjDcX6qheT5sB/BGAyy3bpqvqcQBQ1eMiMs3pQBG5H8D9ANDWNj6TfRBC6pfx1IEKPfUkIp8DcFJVXwhzvKpuUdUuVe2aOrV2+ZUJIYR4E2VEsRDAbSJyC4DLAEwWkYcBnBCRGcZoYgaAk3EISgghpDaEHlGo6ipV/aiqtgP4IoCnVXU5gCcA3Gvsdi+AxyNLSQghpGYksY5iA4BFInIUwCLjOyGEkJwSSwgPVX0WFe8mqOpPAdwcx3kJIYTUHtEMJFsRkVMA3jC+fgTAv9dQnLBQ7nSh3OlCudPFr9wfU9XEvYEyoSisiMgBVe2qtRxBodzpQrnThXKnS9bkZqwnQgghnlBREEII8SSLimJLrQUICeVOF8qdLpQ7XTIld+ZsFIQQQrJFFkcUhBBCMgQVBSGEEG9U1fMPwFUAnkEl58RLAH7P2N4CYA+Ao8bnFGP7Fcb+7wP4c9u5lgF40TjPQx7XXAfgTQDv27avBPAj4xx7UfEhdjp+IiqhRM4CGATwrxa5hwG8B+AcKnGoMi83gJsAHLbIPQzgnqzLbfz2Z4Zs54zzZKm8bzDK9SKAtzC6fu8FMATgDLJXvx3lBvAxAAct9eTHeZA7B++lW3ln/b28AcAPAFwAcJftt68B+KHxt8xNhpH9q+4AzADwSeP/y1FpBD4O4CEAPcb2HgBfM/6fBOCXAfymtYCMgjsGYKrxfSuAm12uucC4rr2AbgLQZPz/WwB2uBz/3wD8LYBPohKH6tsWuc/nVO6HDHlbUGmQv5EDuX8TwOsA/sSQ8y0A38yQ3O0APg3guwDuwuj6/XcA/sb4LWv1xE3uuQC+Ycj7IQDvAPifOZA76++ll9xZfi/bAcxB5d28y7J9CSqdnwmGnAcATHY6h/lXdepJVY+r6g+M/99DpZfSikqCoq3GblsBlI19zqjqPwP4wHaqawD8q6qeMr7/A4DPu1xznxo5LWzbn1HVs8bXfQA+6iL27QD+lyH3YwB+xSL3hJzKbZb3XQC+B+BzOZD7k6hUxL9W1TMA/gmV3lQm5FbV11X1aRgrYG31uxOVURKQsXriIfc0VOrFVlRGeWcALM6B3Jl+L6vIndn30pD7RVRGQlY+DuAfVfWC8V4eAvAZp3OYBLJRiEg7Ki/QftgSFKFSSb14BcC1ItIuIhNQqQhXBbm+jS+h8mCcaEVlyAZVvYDKC/OLhtwC4Dsisg/A/BzJbZb3FwH8dU7kfhLAFAA/E5GPoNJDas6Q3KOw128Ap4FM1u9R2OT+OQC7UXke61HpwXqRFbmz/F6OwqUdzOJ76cYhAJ8VkSbjvbypmgy+gwKKyIdQmVJYoarvikggyVT1HRH5LQA7UNFw/w8V7RoYEVkOoAuVnqvjLja5fw7AfYbc76pql4hcA+BpVFGWGZIbRn6PDlQaAk8yIneviAwZ1z4F4HkAd2RIbiuXIT/124pdblXVOSJyJYBeWJ5NxuXO8nvpJXeW30s3Gb4vIp/C6PfygtcxvkYUIlJEpXC2qepOY/MJo4DMgqqaoEhVv6Oq81X1egBHABwVkYKIHDT+vuJDll8F8ACA21T1nLFtnXkOY7e3AFxlyL0TFaPk/zV++zcjsdJPUOkRvJ8TuU8A+C8A/h6VgGF5Ke9jAD6rqosAlGD00jMi98juAP4QtvqNyrxzFuu3p9xG/X4bwE9QGd3lQe4sv5decmf5vfSSYZ2qzjPeS0HFKcnzAM8/4yR/C2CzbftGjDY+PWT7/T9jrLV/mvE5BRXvjF+ocm27EacTwKsAZlU57rcB/G9D7icBPGK57iZDXjM6419mXW5LeR9DZZiYl/IuAPgfhrxzAPwbgI1ZkdtSv18B8F2H+r0Fl4zZmSlvN7lRmav+piHvFFR6i3+VA7kz/V76qCeZfC8t+/8NRhuzCwCuMP6fg4rn0wTPc/i4yC8DUFRcsQ4af7egMve5FxVNtBdAi+WY11HpOb6PSm/z48b27ai4df0IwBc9rvmQcZzpjvagsf0fUNHgphxPuBx/GSrDV0XFE+FHxv5/YPxvurP9KCdy3wJgHiqGsTyV9+2o9JjOoOI2uz9jcn8KlR6gojL0HrSU9/OoeOJcNMr9rhzI/QAqLpdW99g8lHfW30uvepLl9/JTxnFnAPwUwEuW99W8/j4A87x0gKoyhAchhBBvuDKbEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhCRUEIIcQTKgpCCCGe/H9DmsqiQBIg1AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from apd.aggregation.query import with_database, get_data\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "async def plot():\n", + " points = [(dp.collected_at, dp.data) async for dp in get_data(sensor_name=\"RelativeHumidity\")]\n", + " x, y = zip(*points)\n", + " plt.plot_date(x, y, \"o\", xdate=True)\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " await plot()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nO2de5wU1ZX4v3eaAQbUGZHXgOBoQsQX8pgoRFeTEDUKyMQH6C/+Vo0/XROzwbg+cEUZIsTnGtk1a1Y3UbLJqmgMChOTuGRN1kTMAhpMJEZFfM3wiDqjwgDzuL8/qmqmu6equp7dVdPn+/n0p7tv1+P0rap77j333HOU1hpBEARBcKKi1AIIgiAIyUYUhSAIguCKKApBEATBFVEUgiAIgiuiKARBEARXBpRaAIDhw4frurq6UoshCIKQKjZs2PBXrfWIuM+TCEVRV1fH+vXrSy2GIAhCqlBKvVmM84jpSRAEQXBFFIUgCILgiigKQRAEwRVRFIIgCIIroigEQRAEVwp6PSmlfgDMBnZorY82y4YBjwB1wFZgntb6A/O364FLgC7gG1rrX8QiuSAUkaYtTdzy/C207WsLdZyqTBUA7V3tANQMqmHhcQuZddisnvMs37icbbu2MXroaBZMXdDzmxAffuo9/16oGVTDaXWn8Zt3fsO2Xds4YOAB7Ova13ONvZB/HyQNVSh6rFLqJOBj4IdZiuJ24H2t9a1KqYXAgVrr65RSRwIPAccBY4D/Aj6lte5yO0d9fb0W91ghqTRtaWLRs4vo1J2xHL+yopKbT7gZgMbfNbKna0/Pb4Mzg2n8TGNiG5D+QNOWJs/1Hue9YN0Hfq61UmqD1ro+cmHyKGh60lr/Bng/r3gusML8vAJoyCp/WGu9V2v9BvAahtIQhNSyfOPy2JQEQEd3B8s3Lmf5xuU5jRXAnq49LN+4PLZzC/iq9zjvBes+SCJBF9yN0lq3AGitW5RSI83yscC6rO3eMcv6oJS6DLgMYPz48QHFEIT42bZrW0nPUYzzlzNO9WtXHve1SOq1jnoyW9mU2dq2tNb3aa3rtdb1I0bEvgJdEAIzeujoopzD6TzFOH8546fe474WSb3WQRXFdqVULYD5vsMsfwcYl7XdwUBzcPEEofQsmLqAASq+aDeVFZUsmLqABVMXMDgzOOe3wZnBLJi6ILZzC/iq9zjvBes+SCJB//GTwIXAreb7E1nl/6mUugtjMnsC8PuwQgpCKbEmF4vh9QSI11ORserXS73b3Qvi9QQopR4CPgsMB7YDi4FVwEpgPPAWcK7W+n1z+xuArwCdwJVa66cKCSFeT4IgCP4pltdTwRGF1vp8h59mOmy/DFgWRihBEAQhOcjKbEEQBMEVURSCIAiCK6IoBEEQBFdEUQiCIAiuiKIQBEEQXBFFIQiCILgiikIQBEFwRRSFIAiC4IooCkEQBMEVURSCIAiCK6IoBEEQBFdEUQiCIAiuiKIQBEEQXBFFIQiCILgiikIQBEFwJb78jkLZ07SlyTEr3JABQ7hpxk2eM3o1bWmKLfObm5wW2RnI/Mpibd+yq4UKVUG37qZ6YLXvLGheqFSVdOiOHLmzs6+NHjqaQ/Y/hN9v/z3dupsKVcG5nzqXRdMXRSqHF/LrvdRZ3uzug/zr7ifLodP/ifNejouCGe6KgWS46380bWli0bOL6NSdjttkVIZlJy4r+JA0bWmi8XeN7Ona01M2ODOYxs80hn7AvMhpUVlRyVkTzuKJ157wLIud7Elk/uHzi6osnOq9sqKSm0+4uegNp9t9YF33n/zlJ57uk/x9s/9P1PdysTLciaIQYuHUx06lZVdLwe1qh9byy3N+GehYXvYthFc5LawRgVdZ/B6/VFSoCv7wt38o2vnc6iWK6xqlPOB83b2Q/X+ivpeLpShkjkKIhW27tkW2ndM2Xs8R9vzZODUWccpYDII2gkFxq5dS1Fmhc4apn+xjp/U+EUUhxMLooaMj285pG6/nCHv+bCqU/SMTp4zFwOl/xYVbvZSizgqdM0z9ZB87rfeJKAohFhZMXcAA5e4rkVEZFkxd4OlYgzODc8oGZwZ72tfLsQvJaVFZUcm5nzrXlyx2sieRcz91blHP51TvlRWVkVzXqOSB3uvu9T7J3zf7/8R5L8eJeD0JsWBNzEXh9WRtE4enSCE5LbI9WKaMnOJZlmzZxeupF7t6L6XXk9N9kH/dw3o9xXkvx4lMZguCIKQUmcwWBEEQEoEoCkEQBMGVUIpCKbVAKfVHpdSflFJXmmXDlFJPK6VeNd8PjEZUQRAEoRQEVhRKqaOBS4HjgGOB2UqpCcBCYK3WegKw1vwuCIIgpJQwI4ojgHVa691a607g18CXgLnACnObFUBDOBEFQRCEUhJGUfwROEkpdZBSaghwBjAOGKW1bgEw30fa7ayUukwptV4ptX7nzp0hxBAEQRDiJLCi0FpvBm4DngZ+DvwB8BwxS2t9n9a6XmtdP2LEiKBiCIIgCDETajJba/19rfVUrfVJwPvAq8B2pVQtgPm+I7yYgiAIQqkI6/U00nwfD5wFPAQ8CVxobnIh8ESYcwiCIAilJWwIj58opQ4COoArtNYfKKVuBVYqpS4B3gKKG0RG6BckLamNIJQzoRSF1vpvbMreA2aGOa5Q3tglkWnd28qNv70RQJSFIBQZWZktJI7lG5fbZhLr6O5g+cblJZBIEMobiR4rFJXs/NFBaNnVwnE/Os5X1NWaQTVMPHAi67at87RttokrKhPY0nVLefQvj/aJ2OqWPzn7twMGHoBSira9bbbbLfndkp46USiOH308m9/f3CcSqhVJ1qn+FYp5h88rejRZp3zVp9Wdxs/f+HlJTJBL1y3lkVcesf2tdmhtKqK+RoVEjxWKRlryR1t5joFI8jo7NTjTR0/nxZ0v2uZPBlzrKnu76//nejTRPsfFzKHtJ285FCevtpuSsIgqb3sYJGe20O9IS/5oMHqMQCR5nY/94bG+UmkWOrff7YJQzBzaQe6LuPNqe71mpcjvnU2xFIWYnoRIaNrSxI3P3piTNMfCSlKU9LzA2RSS1c9/8ZtvOcp840EpZg7tIP8j7nvJ6/9P0z0dBpnMFkLTtKWJhf+z0FZJAOzu3M0Nz95A9aDqIksWnNFDR0eW19lvvuVC5/a7XRCKmUM7yH+IO8e01/+f9FzXUSGKQgiNF0+kLt2F1joV+aOtPMdR5XV2ykc9ffR0x/zJhXJtZ2+nUJ5l8Uoxc2j7yVsOxcmr7eX/pyHXdVSIohBC43X4/eG+D2n8TGOPbd2JSlXZ87kqU0VVpsrxuxdqBtUwffR0z9taE6WzDpvF0hOXUj2w2vZ3ryyavoj5h8/v6aVWqArmHz6f+0+7v6c+FIraobU9k6OzDpuV81v1wGpqBtXYbnfL39ySUycKxfTR03PktmSff/h81/pXqKJOZAO29Qy98oat/yBY18yJ7GtQDshkthAar5ORpZ74E4T+huTMFlKDl+F3RmXKZpguCP0NURRCaGYdNotb/+bWHJNRNkMGDGHZicvKZpguCP0NcY8VIsGylwuC0P+QEYUgCILgiigKQRAEwRVRFIIgCIIroigEQRAEV0RRCIIgCK6IohAEQRBcEfdYIRHkx/+3Is6Ky60glB4ZUQglxy5JjBVxtmlLU4mkEgTBQhSFUHIe/cujtuVduktyZAtCAhDTk1B08nNBuyWJyY5Mm593+rhRx+Xkha7KVDFowKCevNInHXxSTr5lKG7O5SThlpvb+j2K3OB+5ci/RnZ5sq3IuPl50sv1WpYCiR4rFBW/ebOtiLNechh7pRg5l5OEXZ1n53t2ylkddT3FkTO93K5lPhI9VuiXLN+43HNDkR1x1sk8FYSO7o6yMmnZ1fmerj09dbB84/I+SgKiryc/194r5XYtS0UoRaGU+qZS6k9KqT8qpR5SSg1WSg1TSj2tlHrVfD8wKmGF9OM1yVF+xNmocziXS65jcP6vVrlbXURZT3HVeTldy1IRWFEopcYC3wDqtdZHAxngPGAhsFZrPQFYa34XBMBbjuHaobU8/+Xnc8wJUedwLpdcx+D8X63yqHKDB5UjqccVegn79A0AqpRSA4AhQDMwF1hh/r4CaAh5DqEf4TUXdD5R5nAuRs7lJGFX59n1HFVu8CByhKXcrmWpCKwotNbvAncCbwEtQJvW+pfAKK11i7lNCzAyCkGF/oHXXND52OWdzs8LXZWpyjlWfr5lKF7O5SSRX+f59RxVbvAgctjlxM4vc8qTXo7XslQE9noy5x5+AswHWoFHgceAe7TWNVnbfaC17jNPoZS6DLgMYPz48dPefPPNQHIIgiCUK2nwevoC8IbWeqfWugN4HPgMsF0pVQtgvu+w21lrfZ/Wul5rXT9ixIgQYgiCIAhxEkZRvAVMV0oNUUopYCawGXgSuNDc5kLgiXAiCoIgCKUk8MpsrfXzSqnHgI1AJ/ACcB+wH7BSKXUJhjKJbhZSEARBKDqhQnhorRcDi/OK92KMLgRBEIR+gKzMFgRBEFwRRSEIgiC4IopCEARBcEUUhSAIguCKKApBEATBFVEUgiAIgiuiKARBEARXRFEIgiAIroiiEIQyoWlLE6c+diqTVkzi1MdOpWlLU6lFciVt8vZnQq3MFgQhHeTnq27Z1ULj7xoBEhmmO23y9ndkRCEIZUChvNlJI23y9ndEUQhCGVAob3bSSJu8/R1RFIJQBhTKm5000iZvf0cUhSCUAYXyZieNtMnb35HJbEEoA6wJ4OUbl7Nt1zZGDx3NgqkLEjsxnDZ5+zuBc2ZHSX19vV6/fn2pxRAEQUgVaciZLQiCIJQBoigEQRAEV2SOIpsVZ8Ibv+79fujJcOGTpZNHEAQhAciIwiJfSYDx/Z7jSyOPIAhCQiifEUXjgUB3VkEFNH7Q+zVfSVj89c+waSVMmhendIIgCImlPEYUjdXkKgmM743V3vZffWXUEgmCIKSG/q8oVpzp/vudEwsfo2NXNLIIgiCkkP6tKDatdDYpWXzcUhxZBEEQUkr/VhRPfN3bdreMj1cOQRCEFBNYUSilDldKvZj1+lApdaVSaphS6mml1Kvm+4FRCuyLrr3ettvbFq8cgiAIKSawotBav6K1nqy1ngxMA3YDPwUWAmu11hOAteZ3QRAEIaVEZXqaCbyutX4TmAusMMtXAA0RnaO0bFpZagnKi00r4TtHQ2ON8S71LwglIypFcR7wkPl5lNa6BcB8H2m3g1LqMqXUeqXU+p07d0YkRh7DPXg0eWXtt6I7luDOPcfD45dC29uANt4fv1SUhSCUiNCKQik1EDgTeNTPflrr+7TW9Vrr+hEjRoQVw54o3Vrb3onuWEEph172ijONRY52/PTviitLUMrhOgnhWXMVLBlmrOdaMsz4nlCiWJl9OrBRa73d/L5dKVWrtW5RStUCOyI4RzCibNyrSjcnDxieWdmT7m1vw+pvGJ/706pxN3dmnb9oMoHcc3yuorNGQ9C/rpMQjvz7RHfB+u8bn2ffVRqZXIjC9HQ+vWYngCeBC83PFwJPRHCOYGQGRnes9hJ6Rt050d4zq6O9f5nEbk55mku30dDjl8KSA2V0IRgjB6f7xFIWCSPUiEIpNQQ4Bci2CdwKrFRKXQK8BZwb5hyB2bTSu3usJ7oiPJYNdpFrp1xgKAK3RYFtb8crV7FYcxV0tZdainAUWtypu2V0ISRWGbgRSlForXcDB+WVvYfhBVVaVl1Ragns2bTSaPzb3oHqg2HmTfDCj+wj1xZqeABQsYhZFLLrgtJnWiwaT1whiqJcSfA8hBv9N3ps9z733wcOhX1FjuG0aSU8fhk9jWLb27nfA5HSBnbTSmOOpSPlo4ggdBW4N4X+R/6z70gyO37pDuERxrtk9t1QWZVblv89n7DeCU9cQd8bJaUNfVjWfsu/klCZeGQpBSntWZY9QTyVNq00TY4envX6r4QWMQ7Sqyg2rYRVX8v1tV/1NaO80MWrHGoM/ef8M1SPA5TxPuefC5/X8k7IPodXhSU9yV6CzK3omOeJikkK7dRlzz3HG9fNug/t2gI7nrrO+zkS6PEEaTY9PXUddHfklnV3GOXt77vvO+du433SvL62YmuysRDrf2Bc1J7egom4Q3pE4Xs0VT0uFkkEoSCFPJXcGvhC7ZHFII/5cUpAehWFU+V7uShuDXjlUI8L9cxGzkmxPH5p7nnELTKPACa3YYdFK0K+L/vwifD154MdK47rm+8JlxkEc+8xPuc7REinJF42PBhsv0L5cLK5/q1g5ygC6TU9xYU12oiC7MYjzvUO5WLvfuPX0TXI+UoCjO9ecqTb2am9jkSzaax2vnZ2Ody79hrnsQtvksZQ+TePNuog+5XU/1HI7Gl3He853qPnIkYHNcEorUs/mVpfX6/Xr1/vbyevaUzzqRgAN73nvs3NI72twTj0ZO83Qtw0pixUetDrZ3mFFOpJ27khZ2/rdn63ulxzVTzzC/WX5JovgtRPpgpu3BadTHFy82j3dTPFvJ/d3LRVJSz+q9EhKKQssmXON0kX4qz7A40KlVIbtNb1vnf0SfmNKBruLbyNNbwvRLGUxFn3F+c8qUDT05Ne/Q37EYblepvT674smpFXXJPQXiZFC9HVnp7RZaHFlY1FCpmTf6/kozsMpV13or/j+pnAPvTkxJsOy0tR1F/i7YIk5aJVjwvc00g0fuy2bjiFMLF1vdVGY+zFdOVmEoqTKJRQv/Gm6g4x6vSBVzdtL53CbOXmdQK7/hK48Elv25aQ9CqKIHGcEup6ZkumCr75x14lcejJpZUnKtZcVfih87News7N1i0YpNeeXhQ9/CBYtnrBIG6lHWlU6G7/sqakTUqvohi4n7/t/ZpvosxlEYR8W3OhXkdaQlt76fF+6Xv+jpn/Xysqnbf12tODaHrnwycavUYhl0yBxa3ZxKm0qw+O9njWPVM1rPC2XrZJCOlVFH4eePBvvvn686VRFoOqg03k/fTvcm3yTvb7OIhaSfm9VvmjhELhW/zIt2R472cvHlH5fP15o9co80y5zPWwuDWb9d837q+o7+mZN0V7PDBGQV7ap9Nvi/7cMZHedRQqE/9K3a8/bzR8cUdojcLDIz9Xg2W/j3t+w8+Cw7h6hX47DU9dZ8z/eLmuusOYU9n5F/covnbsV9v72aqLIG60/ZFA7uLaqL9VXzWcUtI8dzd8YqrkT++IoljhHOLocWTjxx7v19c63/4ah3nq8csdym0axPU/KHw8q3HNDAouUyHa3/d3Xd/4tX8lAXB13jqNSfOKM7JIg+dTmLmB7k7j/mqsNlzZw9zHpcjnEmZhZ4lIr6LwQxgb8aR58dqYp13kfVu/iwGzs/LZuYxGYp5yUdiN1b0KadNKCq7G3q+2t3H16qJshxeTYdw9e6dR4qR58a8RCDq3kr8ALs5EUlHNDXTtNcyuQe/jUuRzSZmSgHJRFGE9Cywbc9Sxhg492Z9sYYaqdm6AHe29PTO7VxQ9U8sUVahhrr8ktwce5r/uKl32XYZPTMbixzt9zq81Hth3bUNXe3zKYsKp0R1LdwcfGfSniMQxkl5FUewLPGme4a7a2GY0avnndzMLnXV/lqJRvesj4vafzrbdB+k5FdNFNKwyt+Rcc5X/OYuoOOt+773FgQFCNmSqeu+/QnzckjsR78aaqwCHfORxZR189Zf25UFDWQQ1ZbmZsMUBoYf0TmZPu8jbEDsOs9Hsu+wbtjVXmXZ408QycKiR98LqHRd78kpF0A8oFBlzv9pg9vt8Nq0sWD9tW6vYsWl/OndnGDCki5GTPqK6rr1XzvHTS7fgzApd75XZd/s3f1ku07Pv8vY/dYcxUmj8wH27UtSZU8PesTvY8YKaspycGqrH9UaXvmW8fc56S5GUgYNCehXF7LvgvdcKL94q5oIWJwVSKvI9oYLi1ohnIrqFCnhotW2touX3NehuI9ZT5+4BtPy+BqBXWZTsgVX+54/8eEFlz91YeI5y3G2Yoaz911xlRELVXcao2M8cWZRUH+zQQB9smKX8Kq+gTiczb+qbabGyKvd4haK6vrWuH62Itye9pidIxdL3fsHqK51/i2plq+1xetNCbt94QI+SsNDdiu0bD4jm/EGpGgZn3RdstGhNbNuZJRvbel/5SgL8KSZrxLdkuH3inVIw8yb7DJMzbzI6W3bmXTeCjtadEpj5Gh3e5d1ykVJzVnpHFBYVA50XWJX7itiKAGFO7OjYZQy/7XpWTj1Dv9iZDuq/0tOQde2z79M4lQdGVRomGy8Mqobr3gh/TrsEWl72WfVVw1XUC0HDgsTVsFn/1ynCrzU6L0Y4kyD1n8/su4x5F6dnoXpcqvOGpHtEAdDwXWwTkvv1KEoLfpb9d++LbiXr3jb7XAF2PUO/5A/1Lfz01KJgULURUtrrY1HqRDMN90YzD+VGnA1bj4NIa25cs2y8/L+kdAidRkln3e/8/1JC+hXFpHnG0L/YHkWl4vTb/AVEfOo6Yy1DFOxt66t4Js1zdJhxpWIAnob6s++CzEBUpf1JnMp9s19tb8Pf+EHuqup8goZZiZpJ8+BL/9a/U8ROu7jwNknpEEZhxkoo6U1cVM5sWuktN3gcVI8zekd2GeLcqKwK/tA01tC2dTDNz1eDzurbqG7GHN/WO5ntRn5iIC/kZ5k79ORkd0CiNtNY17rUuCU5GlRd+pFdCSlW4iJRFGnGLl1mUAYOhX1evGjw7hJbPS6avM5mvK2W/z2A1i1DDe9jBTWH7aL20x8W3r8/5vSww29WtUIkqd7unNj3nitzJQEpURRKqRrg34GjMR7frwCvAI8AdcBWYJ7W2tWRWxRFCMKm5sxe63HbodGOUqIyz2xaSdvyf6Bl3RB0V7a1VFPziQLKwkplWS5ENapI+uhJANKTCnU58HOt9UTgWGAzsBBYq7WeAKw1vwtxEdY+WzWst9d4+m3JDGkwaR47XhmbpyQAFK2vD6Vtq8tkejkpiSgRJSFkEVhRKKUOAE4Cvg+gtd6ntW4F5gIrzM1WAA1hhRQKEMbzJXv9wqR5/pMGOTEoWnt553tOowZFywaHtRR+kuP0F6KY2E6KF5GQGMKMKA4DdgIPKKVeUEr9u1JqKDBKa90CYL6PtNtZKXWZUmq9Umr9zp07Q4ghhFqBnb9+IapQ2BHbjlW1s+LRHTa3caaqb5bAcmDmTdi6i3umIjleREJiCLPgbgAwFfh7rfXzSqnl+DAzaa3vA+4DY44ihByC1yQ8dtitX5g0L9ykaByuo/vcstapZLirJoFJ84KHlChX5SoUJMyI4h3gHa21FS7zMQzFsV0pVQtgvpcw5nOZECa5UtReLTE12Hp3wGBx5YgVFt9tZb5dqBBREq60rV7Nq5+fyeYjjuTVz8+kbfXqUotUNAKPKLTW25RSbyulDtdavwLMBF42XxcCt5rvT0QiqeBMUtJsJiiOTcuSJbSufBS6uiCToWbeudQuXlxqsYpHFGEphB7aVq+m5cab0Hv2ANDZ3EzLjUYHrXrOnFKKVhTCej39PfBjpdQmYDLwbQwFcYpS6lXgFPO7EDeT5vmf1I4qFhTE7nOvamo8b9uyZAmtDz1sKAmAri5aH3qYliVLYpJO6O/s+M7dPUrCQu/Zw47v+IwanFJCKQqt9Yta63qt9SStdYPW+gOt9Xta65la6wnme4myyJQhXsIdZNPw3WjOO6g69t5r7Q3/6PibGjIk53vrykdtt3MqF4RCdLbYLzDtbG4usiSlIf2xnoReZt/lLV80GC6Qbo27n/UURVgd6za87zN/YY0k8nEqF4QCZFy87sphrkIURX/j68+bfvBZLpKZgWbU2aygiYVcIL2upyimz71ycPt0KheEiHBzQC8H81P681EIfYki05412sgOPlgxEHSnsW7Dyo5WTJ97p3AzAcPQvDZ7Nh2vvd7zvfKTn+CTa9YEOpbQv9Ftzt585WB+EkUhOOPRcyZxHkaZjL2ZKWvkka8kADpee53XZs8WZSH0YUBtrbNCyCQw7E3EiOlJCEUiPYyc5iK07rEn5ysJC6dyobwZ+U2XdMBlMPclikIIRevDj/gqLwYDxoxx/K0c7MlC9FTPmeM8FyYjCkEoQMTzBkHJ9jxx6/05uTkKQkGc7mkZUQhCfPgOieDi3ZQ9UqieM4eMwwK9AbUuKU4FQbBFFIVQEtpWr6b5uoXGBKHWdDY303zdQndl4TJKyZ9o3P/0L9put9/JJ3mSLShbL76YzROP6HltvdjnIkhBSCCiKITYcGtwW25aDN153und3Ua5A25zD/mjjY9//RvbzaxypxEHQMuybzufx4WtF19M+3Prcsran1snykJIPaIohHC4TOS5TRzr9nZf5VDA8yRvtOHkymiVj3IJCaJbW53P40K+kihUXoiWJUvYfNTRxujkqKPLOlaV1EVpEUUhhKJm3rmOvwVZiKSJKCRCAQ+VYkf89Puf3NyOyy3cdWJcsH1GBuhPyk0UhRCK2sWLXSeZ/TZkCnhryc19yq0wz15oW706Vg+VIA2AX7fc1ocedixvufGmnLmdlhtv6tfKwq0uiooPD7/EKLeIEEUhhKfAJLNdQ5Yf8TWbzMcf9SmzC/PshFuj7CdcuR1BG4AowzyUc7jrtNDfIhiLohBCU6jxtWvIapc04melhZ/1D27bhr3hXRuAqirnHWMOXFgO8YZSRT+LYCyKQgjP3r0FN8luyDZ/+jiar7nWdftFq17K+e5l/cNrs2cX3LbLDO4W2FTj1gC4jXiKsACxP5ufUoeLk0car5MoCiE0bp5K2bQsWcLmiUfAR4ZpyamPrYEfr8vNcTHym1eiBg92PX7Ha6+z9eKLXXvXyswrEIepJqrFfEHt2EHdehPPAIfYpU7lCcDNySONZkJRFELR8Dr5qDCURd3Cpp7X17YNp/bmbxXct5ArqnXDxxHKw9V91wdBJ2mDuvUWk0CeQJ2d/soTgFv05DSGkRFFISSSplVX8+AvlvLZtzcA8NvX3+dr24a7ToJ7octsTJMSyqOcXF37mydQNnbXzWnuTrlky0sqoiiExKEwbsxR7a1cu+EhfrbqappWXU3lM09Tu6Qx3MFN23Gh3v/miUf4bsD8mhTaVq+m+drrchv9cwIAABT/SURBVMOYXHudr2OkiTg8gYqpWP2u5ndqXHVra+o6BaIohFDEfbMrehXHtRseKjgJXhCzN+tlwZ3f3q5fk0LzTYv7TnIXOepuUXFxBNg88QheOelk25/jCLcSBL+r+btcTIFpW/8iikIIRTEn5iJxMPXppupnvsC3OcujE4Bfss1Zf54+g79Mn5EK01b3jh22yiKOcCtB8L2av0CeCr1nT2ocEJLrNiAklkWrXuKh59+mS2uampvT1dsI22N3SbM68ptXFhzxbP70cT1eX3GweeIROd91ayuWtJ3NzTRfbzS6xQ5h4pXuHTv6lFXPmRN+JFkk2lavZsd37jZGlx7uNd3aStvq1Ym9HhaiKARffPn+5/jt6+/3fN9ZVcOo9uR729iilKeHefOxkxlw0EHuD7+X48SsJDzR2UnzTYsT3TBlN7YDamuN+SSnaxXzQkY/WGFmvEYQsGi+5lp2b9xY2jzzBQjVGVRKbVVKvaSUelEptd4sG6aUelop9ar5fmA0ogqlZtUL7+YoCYAHjzydPZlK1/20+YqSKI5Xc958b+fau7dnwtmNgmaEUisJi/b2RJug3r3m2pwJ/reuvT72TIqrXniXE279FYcubOKEW3/Fqhfe9X0MP2Fm8km691cUVoPPaa0na63rze8LgbVa6wnAWvO70A+48pEX+5Q9M24ayyef49hwa+CMhjtpzwyMVBYFdONfYWRv77UH57XPmoZ1DBbN1xX/sVQDvd0D+fU9QHc5X+cI8lWveuFdrn/8Jd5tbUcD77a2c/3jL/lWFmHDqCQ5DlQc5uW5wArz8wqgIYZzCEXG7aH5wpv/W3D/f5l8duSjigrgw8oq3wrj/sX/2vO55vzzIpNH4+6hkyjyk0YVgdplS6EiWJPjqKwjiJ10xy9eob0j9zjtHV3c8YtX/B0orBkswXGgwioKDfxSKbVBKXWZWTZKa90CYL6PDHkOIQE4PTRLn/0eU//6WsFe9zPjpvk6n1dz1QEd7cxquNPzcRUw4cn/AODbV93FK6t+3qNowioyDXQWaVQRhdLNTtma//rz1GmRm6eq58xhzG23umcq9EnYaMBgjCD8lDvSj12bwyqKE7TWU4HTgSuUUoUTEpsopS5TSq1XSq3fuXNnSDGEuGl2eGjclIQGNg7/ZM53N3TWq+PAg7h92vmBzEuFGNneyssTj6DhZ/czqr2VCnrDhoQ5l7XmIw0UvBa7d9N8zbWJnsuA4vv3h40MUIik1neoetZaN5vvO4CfAscB25VStQDme19/N2Of+7TW9Vrr+hEjRoQRQygCY2pcQmjbYCmJRSde3lO2pm6G61zGh5lBXHrRdznyz5s59rlneWbcNM+jhR2D9vfcyCvsG/WwjU4QJRFUMRU6V6HjepU1SrdUyyso25YfthPgtqgtCvJNrqEjAxQgqesqAj8bSqmhSqn9rc/AqcAfgSeBC83NLgSeCCukUHquOe1w3/tkKwmAeyefzeq6GXQplTN6sJTKxWfdmnOeC6aP93yui05f3KMssl9+icNDy+1caTpuWOy8gqyRXGAimMx24/rHN/V83nzU0bGv50iqQ0SYdRSjgJ8qYwJnAPCfWuufK6X+F1iplLoEeAtwjrcrpIaGKWN5dP1bfdxj39hvJId+vCOnh6rNcjvunXw2904+m7vnTwaMuY/m1nbG1FRxy2mH0zBlbM+2SxuO4Ud54cbzyW5kLjo914vpZ6uuLvi/8tlZVcODR57ONRseSpUpKZ8uIEOy5HcKcWJdw0CyxjwB3N5hTPrnL2QsNwIrCq31FuBYm/L3gJlhhBKSyY8vnZGzKhtgaNe+Pg+4MsudOOETw3oUQrZisENhr4zAaGDW1M3w9R/c0BjrQp4ZN41nxk3rmai35IgSaxT1yQ+bqd63u+C2fs7/YWUV5826mTWrru6Zf0kCrfsNo+aj9/qU76yqYf89H1GljUbfr7xxr2xO8vqGYpGq6AtC6VnacAyv33IGW2+dBcAIh1XZTuUTRg7lx5d6b9y/PH08V3zhWt7Yb2Qfs9LquhncO/nsnO0vmD6erbfOYtT+/tdtaHK9sxadeDln+PCo8suiEy/niGWNBWXyQzfwvUmGR/rskLJriNS082+fOrXP4sw9mUoePPJ0zp57W+C6jntNSND8IIFwS6dbQiSEhxCYrbfO4plfLLUN4bGzqq/bogKevuqzvs5hmZ+u+IK7bVgBb5jKC+CUo0azY9D+jNz7kaceqgbumHa+L9miwEsco43DP1nQBVkDnaqCu6bOz1F2Hw4cUnDE4sacM2/jtcB752LJddHLTzGivbXHzJctr0ah/KrHEGtCVr3wLp99e4OjTEuf/V7gYwchM2hQUc/nFRlRCKGwC+Fh9RLzyW7Io+SAQZk+x/7RurccJ7jzmyFrdOK01mPj8E9GOjHuNodjx6ITL3edZLeOd+bc2/v8h+8dMzfwZHG3UnRGPDP+zLhpXHTaImY13MlFpy3qI++auumBVtsHdSv9zb/+BwtefKzHTXpUeyvXmDlQfrbq6h7TY7GwcronDVEUQmBWvfBuTwiP7VU1dAPbq2pYPvmcPg3AwExwS/mgAe636aYlX3T87aLTF3NGw505r9unnZ8j7+3Tzu9jwsrm9plXMGTG9ECyf5gZ1EdJvbHfSK74wrVMGDkUgDF33F7wOLMa7rRdU2K5FTuNuPwudMw+btMhwf5zGO6dfLbvOQoFvHlbMLPVmeufYHBXR06ZNa9TyJkhDg+5pGa/E9OTEBhrtbY1+evG7ef08XvwzG1nT7KNMwX+XGgtvMhrccInhplzKl9k68UXs/u5db4asvPmLLMtH7X/wB4zXPWcOTT/4w3Q0dFnu/as0drshjv56os/Ydab66jQmm6laDpkuquSC0Ncx3VDgeeovtkM+Kvtcq2COM2lecUyb4K/SXgnB4Wk9tyTKpeQApxWa+dzwfTxBb2b3GiYMpa750+mqrL3dq1QxnGXNhzj+3hVlRXcPX8yY2uqUEBNVaXtg3DB9PE5E+91DzzAkBn+TCN3z5+cc66xNVXcPX8yz99wSs52Y769rE8cpE4U90w+p2efC6aP597JZzN77h2c0XAns+feUbAxH1tTxa6jpzqawJLGmJoqxtx+m+/9dtjMiXnho8rgk8ea3hGr3/2cSKrpSUYUQmDG1FS5xsMZW1PFNXlrI4LSMGWs5+MUivp5y1mTfB0vm7oHHuBlDz71GvjroP09uwFb7p3ZeRjGfPNKHshy+2yYMrZHMdYtbCoow9aeeZvP86MT5+TY2/dVDGBgd2fBY1jrXaLggunjXdfFVFVmuOa0w6k262rHd+5mX3NzQRNQF4on6+fy2SBCBQzkl++a7XUS3jI9Du3aZ+sE4jtLYpEQRSEE5nMTR7g++L9d+PkiStNLoaifUSguJ6ymYseg/Wl98Ke+9q2eM8fzeoChAzPs2ue82OyETwzL+X7j31zex5pTaEHi3fMnR1pXlpKz1uEoYMjADLv3dTEmr1Nh1cWX73+Oa/7pEgai+yzqBEPh3T3lXBq+9n8DybR/CI+w7NHcmrrpzNn6nCfz0xVfuJbPvr2BBS8+ljM/sidTyftfupAJgSWKD1EUQmD++8/OwRzH+owNFSVeTWJx8eX/s5zFc46KVSEt+9IxjvM2QJ+1Kl8+vm9v3sl92PICuy4G+Zc2HOPLXPjjS2dQ9/odrnMzYRSaqqjw7V6rMeoum3snn82crc952hecXYX/p/kgXvclTXEQRSEExq1B/tzE0gV6dDOJZSJIndmtFBmHyVYFvHDTqaHPUYiGKWMdFYXdP7Qa52xlcdHpi3nwqSU9k7EWq+tm8OPj53FdZNKGxwr9YkcYhawKKAm7q7xj0P59wsVY2xbykspeq2PrVJHEiSNEUQghcGuQ3UYbcXPNaYc7NqJdEeQMaDrE3syggYGf/ETo43tlrEP9O0X6XdpwDPWHDMupG7sG74BBGVeX4/7EgDFjCmam8zpZvaZuhqP5qdBanaQjikIIjNscRanNP05EYRL7tylGz3Z2XqPwxn4jmbVmTejje+Wa0w7n+sdfysnOZk0IO2H1vrODMUblcJBGRn7zysgiwj78mfP42xmH8N7Dj1CR1SHZYbMCPW2IohAC4zZq8Ju/IkqcJrMVwcKl59OtnU0h8aw9tydoox/U46s/4iWEihcqM4rFc46idsqpfGZPfeBkd9YizKQhikIIjJtrbBQNclCcRjOaeD2eSkG5N/pxLwRTZLsZ97LqhXcdFbSd44AXshdhJg1RFEJgMko52vxL2Xg5zZ1E5YnllGwnKeG8+xtu99ldEa7zsKPm/PNsy90UtJc8KtkMqFDcee6xiVb4oiiEwLhNDK964d2S3fhBbPd+cAvOJ0TP+cePs214s/OaxEXt4r6T/V5wWlwYNJpAqZEQHkJg3HrohRa9xUnDlLHcctYxOWEzbjnrmMgaFScX2yhcb4W+LG04hgumj++p34xSfcKrJA0nmdOoJACUjsBdMCz19fV6/fr1pRZD8MmqF951XfRlZ9vtD7iFz+iv/7k/s/Xii2l/bl2f8qoZ06l74IESSOQdpdQGrXV93OeREYUQmCTbVOPEaSRVytXoQnDqHniAqrww8mlQEsVE5igEwSdxz4EIxUeUgjuiKIRQlKMHkCxaE8oNURRCKAYOqGBvZ994OQMLZKVLO+W+fkEojNtai7QhikIIhZ2ScCsXhHJg1Qvv5pgn321t5/rHXwLSObfXv7t9giAIJeCOX7ySM4cF0N7RVVK38TCIohBCUVNV6atcEMoBpzAySQ2WWYjQikIplVFKvaCUWmN+H6aUelop9ar5fmB4MYWk0njmUVRW5E5dV1YoGs88qkQSCULpcQqKWcpgmWGIYkSxANic9X0hsFZrPQFYa34X+ikNU8Zyx7nH5qyCviPhcWsEIW6uOe1wqiozOWVpdqEONZmtlDoYI7LyMuAqs3gu9OQ5XwE8A4lKliVEjHgACUIu/c2FOqzX093AtUB2AtlRWusWAK11i1JqpN2OSqnLgMsAxo8fH1IMQRCEZNGfOlCBTU9KqdnADq31hiD7a63v01rXa63rR4woXX5lQRAEwZ0wI4oTgDOVUmcAg4EDlFI/ArYrpWrN0UQtsCMKQQVBEITSEHhEobW+Xmt9sNa6DjgP+JXW+gLgSeBCc7MLgSdCSykIgiCUjDjWUdwKnKKUehU4xfwuCIIgpJRIQnhorZ/B8G5Ca/0eMDOK4wqCIAilJxGJi5RSO4E3za/Dgb+WUJygiNzFReQuLiJ3cfEq9yFa69i9gRKhKLJRSq0vRsamqBG5i4vIXVxE7uKSNLkl1pMgCILgiigKQRAEwZUkKor7Si1AQETu4iJyFxeRu7gkSu7EzVEIgiAIySKJIwpBEAQhQYiiEARBENzRWru+gHHAf2PknPgTsMAsHwY8Dbxqvh9olh9kbv8xcE/eseYDm8zj3O5yzmXA28DHeeVXAS+bx1iL4UNst/8gjFAiu4F24C9ZcncBHwF7MeJQJV5u4HPAS1lydwFfTrrc5m/LTdn2msdJUn2fZNZrN/AOuff3WqAD2EXy7m9buYFDgBez7pPNaZA7Bc+lU30n/bk8CdgIdALn5P12G/BH8zXfSYae7QtuALXAVPPz/hiNwJHA7cBCs3whcJv5eShwInB5dgWZFfcWMML8vgKY6XDO6eZ58yvoc8AQ8/NXgUcc9v8a8ENgKkYcqp9kyb0vpXLfbso7DKNB/qcUyH05sBX4R1POd4DvJEjuOuDzwBrgHHLv74eBB83fknafOMl9LPBPprz7AR8A302B3El/Lt3kTvJzWQdMwng2z8kqn4XR+RlgyrkeOMDuGNaroOlJa92itd5ofv4Io5cyFiNB0QpzsxVAg7nNLq31s8CevEMdBvxFa73T/P5fwNkO51ynzZwWeeX/rbXebX5dBxzsIPZc4F5T7seAk7PkHpBSua36Pgd4CpidArmnYtyID2itdwG/wehNJUJurfVWrfWvMFfA5t3fUzBGSZCw+8RF7pEY98UKjFHeLuC0FMid6OeygNyJfS5NuTdhjISyORL4tda603wu/wB80e4YFr7mKJRSdRgP0PPkJSjCuEndeA2YqJSqU0oNwLgRxvk5fx6XYFwYO8ZiDNnQWndiPDDTTLkVsFoptQ44PkVyW/V9HvBASuT+GXAg0KaUGo7RQ6pJkNw55N/fwPuQyPs7hzy5RwO/wLget2D0YN1IitxJfi5zcGgHk/hcOvEH4HSl1BDzufxcIRk8BwVUSu2HYVK4Umv9oVLKl2Ra6w+UUl8FHsHQcL/D0K6+UUpdANRj9FxtN8mTezRwqSn3h1rreqXUYcCvKKAsEyQ3Zn6PYzAaAlcSIvcqpVSHee6dwHPAlxIkdzaDSc/9nU2+3FprPUkpNQZYRda1SbjcSX4u3eRO8nPpJMMvlVKfJve57HTbx9OIQilViVE5P9ZaP24WbzcryKqoggmKtNartdbHa61nAK8AryqlMkqpF83XtzzI8gXgBuBMrfVes2yZdQxzs3eAcabcj2NMSv6H+ds2M7HSFowewccpkXs78P+An2IEDEtLfb8FnK61PgWowuylJ0Tuns2Bq8m7vzHszkm8v13lNu/vZmALxuguDXIn+bl0kzvJz6WbDMu01pPN51JhOCW57uD6Mg/yQ+DuvPI7yJ18uj3v94voO9s/0nw/EMM741MFzp0/iTMFeB2YUGC/K4DvmXL/DFiZdd67THmt6IzfT7rcWfX9FsYwMS31nQH+xZR3ErANuCMpcmfd368Ba2zu7/voncxOTH07yY1hq/6OKe+BGL3FH6RA7kQ/lx7uk0Q+l1nbP0juZHYGOMj8PAnD82mA6zE8nOREQGO4Yr1ovs7AsH2uxdBEa4FhWftsxeg5fozR2zzSLH8Iw63rZeA8l3Pebu5nuaM1muX/haHBLTmedNh/MMbwVWN4Irxsbv8P5mfLne3llMh9BjAZY2IsTfU9F6PHtAvDbfb5hMn9aYweoMYYerdn1fdzGJ443Wa9n5MCuW/AcLnMdo9NQ30n/bl0u0+S/Fx+2txvF/Ae8Kes59U6/zpgspsO0FpLCA9BEATBHVmZLQiCILgiikIQBEFwRRSFIAiC4IooCkEQBMEVURSCIAiCK6IoBEEQBFdEUQiCIAiu/H8KgxuCBe2ajgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import collections\n", + "\n", + "from apd.aggregation.query import with_database, get_data\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "async def plot():\n", + " legends = collections.defaultdict(list)\n", + " async for dp in get_data(sensor_name=\"RelativeHumidity\"):\n", + " legends[dp.deployment_id].append((dp.collected_at, dp.data))\n", + "\n", + " for deployment_id, points in legends.items():\n", + " x, y = zip(*points)\n", + " plt.plot_date(x, y, \"o\", xdate=True)\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " await plot()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nO2de5hU1ZXof6u7C+juIA3ysJuHRHQQFVDTRtQEJ2HUSQAlGRW8yTfEyeBkXtHkXhJUFFBUlEnUezPf3Gsmk5A7+QxqDLEhGXVIJsmMaXPxBWpLUIOK3QpRQYVG+rHvH+dUU1V9zqnzrDrVtX7f11917TqPVfucOmvvtdZeS4wxKIqiKIobNeUWQFEURUk3qigURVEUT1RRKIqiKJ6oolAURVE8UUWhKIqieFJXbgEAxo4da6ZOnVpuMRRFUSqKJ5544g/GmHFJnycVimLq1Kls27at3GIoiqJUFCLySinOo6YnRVEUxRNVFIqiKIonqigURVEUT1RRKIqiKJ6oolAURVE8KRr1JCL/AiwA9hpjTrPbxgAbganAbuByY8w79mfXAl8E+oAvG2MeTkRyRSkhm556ndUPPcf+7p5Ix2nIWGOzQz39AIxuyLBq4aksOmPiwHnWP7yTzv3dtDTVs/yi6QOfKckRpN8L74XRDRnmz2rmFy/so3N/N6PqMxzp7Ru4xn4ovA/ShhTLHisic4H3ge/nKIo7gLeNMetEZAUw2hjzdRE5BbgX+CjQAvw78EfGmD6vc7S2thoNj1XSyqanXmf5/c/Q059MpuVMrbD+0tkAXPvgDrp7jv5c6jO13PbZmal9gAwFNj31uu9+T/JeyN4HQa61iDxhjGmNXZgCipqejDG/At4uaL4E2GD/vwFYlNP+Q2PMB8aY3wMvYikNRalY1j+8MzElAdDTZ1j/8E7WP7wz72EF0N3Tx/qHdyZ2boVA/Z7kvZC9D9JI2AV3E4wxXQDGmC4RGW+3TwTac7bbY7cNQkSuAq4CmDJlSkgxFCV5Ovd3l/UcpTh/NePWv07tSV+LtF7ruJ3Z4tDmqH6NMfcYY1qNMa3jxiW+Al1RQtPSVF+Sc7idpxTnr2aC9HvS1yKt1zqsonhTRJoB7Ne9dvseYHLOdpOAzvDiKUr5WX7RdDI1TmOgeMjUCssvms7yi6ZTn6nN+6w+U8vyi6Yndm6FQP2e5L2QvQ/SSFhF8RCw1P5/KfCTnPYlIjJcRD4MnAT8NpqIilJeFp0xkfWXzaapPhP5WA2ZmoHIJ7CiXbIOzEVnTOS2z85kYlM9AkxsqldHdgkI0u9O98LohgyfnzNlYP+m+kzeNfZD7n2QRvxEPd0L/DEwFngTWAVsAu4DpgCvApcZY962t78e+AugF7jGGPOzYkJo1JOiKEpwShX1VNSZbYy5wuWjeS7b3wLcEkUoRVEUJT3oymxFURTFE1UUiqIoiieqKBRFURRPVFEoiqIonqiiUBRFUTxRRaEoiqJ4oopCURRF8UQVhaIoiuKJKgpFURTFE1UUiqIoiieqKBRFURRPVFEoiqIonqiiUBRFUTxRRaEoiqJ4oopCURRF8aRoPQpFCcump15n9UPPsb+7Z9BnjcNqueUz/qu3bXrqddY/vJPO/d20NNWz/KLpsVUD85Izy+iGDKsWnsqiMyYGliW7/ev7u6kVoc8YmuozHOnt41BPfyzfAayC9Zla4Ujf0WJkoxsyzJ/VzC9e2Dcg79Rj62l/+R36jKFWhCvOnszaRTNjk8Mvhf2e28flwOk+KLzuxe6TXNy+T5L3clIUrXBXCrTC3dBj01Ovs/z+Z+jpd7+/amuEb1xWvPzjpqde59oHd9Dd0zfQVp+pjaVMqB85s2RqhcVnTeZHT7zuWxYn2dPI5+dMKamycOv3TK2UpSSo132Qve4bf/uar/ukcN/c7xP3vVyqCndqelISYf3DO4v+qPr6Desf3unrWIUP2u6ePl/7+jm23x9/T5/h3sdfCySLk+xp5N7HXyvp+dz6vafP3z1RKnng6HUPqiSy++Z+nyTv5SRRRaEkQuf+7ti2c9vG7zminj+XPpcZeJIylgK375UUXv1Sjj4rds4o/ZN77Eq9T1RRKInQ0lQf23Zu2/g9R9Tz51IrEug4cchYCty+V1J49Us5+qzYOaP0T+6xK/U+UUWhJMLyi6aTqfH+cdXWCMsvmu7rWPWZ2ry2+kytr339HLuYnFkytZbjN4gsTrKnkSvOnlzS87n1e6bW3z1RKnng6HX3e58U7pv7fZK8l5NEFYWSCIvOmMj6y2bTVJ9x/LxxWK0vR3b2WLd9diYTm+oRYGJTfSyObD9yZhndkGH9pbNZu2hmIFlyZYejI9Om+gwNmXh/fgIMq81/mI1uyPD5OVPy5D1v2pgBOWpFSu7IBud+z/ZxOSKA3O6D3Ovu5z5x2jf3+yR5LyeJRj0piqJUKBr1pCiKoqQCVRSKoiiKJ5EUhYhcLSLPishzInKN3TZGRB4VkV326+h4RFUURVHKQWhFISKnAcuAjwKzgQUichKwAthqjDkJ2Gq/VxRFUSqUKDOKGUC7MeaQMaYX+CXwGeASYIO9zQZgUTQRFUVRlHISRVE8C8wVkWNFpAH4NDAZmGCM6QKwX8c77SwiV4nINhHZtm/fvghiKIqiKEkSWlEYYzqA24FHgX8DngF6A+x/jzGm1RjTOm7cuLBiKIqiKAkTyZltjPmOMeZMY8xc4G1gF/CmiDQD2K97o4upKIqilIuoUU/j7dcpwGeBe4GHgKX2JkuBn0Q5h6IoilJeohYu+pGIHAv0AH9rjHlHRNYB94nIF4FXgcuiCqlUH2kraqMo1UwkRWGM+bhD21vAvCjHVaobpyIy7xzqYfkDzwCoslCUEqMrs5XUkbaiNopS7WjNbKWk5NaPFqBQHTi15fL6/m5OueFngWpNj27IcErzSP7rpbd9bZtr4orLBLZy0w7uffy1QXWqveon5342qj6DCOw/1OO43bUPbqfb7pMagXNOGMNzne8Nqv+crZ/t1v81Av/t7NJnk3WrVz1/VjObn+kqiwly5aYd/KD9Vcf7cWKF1LqOC80eq5SMSqkfna1zDMRS13nlph38a/urg9rPmzaGJ1894Fg/GfDsq9ztvrrxafyrTX+UMvV4kLrlUJq62m7XLJe46rZHoVTZY1VRKCXjvHU/5/WUl3zMkq0f4SbvxKZ6/mvFJ30da9q1Pw1USrPYuYNuF4ZaEV667dOxH9eJMPdFkP4Pg99rlrQcxSiVolDTkxIL1qjwaZwsQo3DarnlMzNTXxc4l2KyBvkuQestx1lvPCylrKEd5nskfS/5/f6VdE9HQZ3ZSmQ2PfU612x0VhIAB4/08d/vf4amBv/VwcpNS1N9bHWdg9ZbLnbuoNuFoZQ1tMN8h6RrTPv9/mmvdR0XqiiUyPiJROrrNxhDRdSPztY5jquus1s96vOmjXGtn1ys1nbudkn8iEtZQztI3XIoTV1tP9+/Empdx4UqCiUyfqffB7p78upHOz0aCus+N2Rq8mpLF773w+iGDOdNG+N726yjNK66zmsXzeTzc6YMqlP9g2XnuNZPLqyt3FSfYXRDxnG7by4+nfqcPqkRSwk51X/O1s8G5/6vkdI6ssG7XvXn50wpS13t7DVzU1+VUus6LtSZrUTGrzOy3I4/RRlqaM1spWLwM/2urUneXKAoSjKoolAis+iMidy1+HTcLEKNw2r5xmXJmwsURUkGDY9VYiFrL1cUZeihMwpFURTFE1UUiqIoiieqKBRFURRPVFEoiqIonqiiUBRFUTxRRaEoiqJ4ouGxSiooLBKTzTirIbeKUn5UUShlx6lITDbjLGiNbEUpN2p6UsrOvY+/5tje1681shUlDeiMQik5hbWgvYrE5GamLaw7PeeE0Xl1oRsyNQzP1A7Ulf7EyePy6i1DaWsupwmv2tzZz+OoDR5UjsJr5FQnO5stuLBOerVey3Kg2WOVkhK0bnY246yfGsZ+KUXN5TTh1Oe59Z7dalbH3U9J1EyvtmtZiGaPVYYk6x/e6ftBkZtx1s08FYaevuoyaTn1eXdP30AfrH945yAlAfH3U5Br75dqu5blIpKiEJGviMhzIvKsiNwrIiNEZIyIPCoiu+zX0XEJq1Q+foscFWacjbuGc7XUOgb375pt9+qLOPspqT6vpmtZLkIrChGZCHwZaDXGnAbUAkuAFcBWY8xJwFb7vaIA/moMT2yq57mb/jTPnBB3DedqqXUM7t812x5XbfCwcqT1uMpRopqe6oB6EakDGoBO4BJgg/35BmBRxHMoQwi/taALibOGcylqLqcJpz7P7ee4aoOHkSMq1XYty0VoRWGMeR34B+BVoAs4YIx5BJhgjOmyt+kCxschqDI08FsLuhCnutOFdaEbMjV5xyqstwylq7mcJgr7vLCf46oNHkYOp5rYhW1uddKr8VqWi9BRT7bv4UfAYmA/cD/wAPAtY0xTznbvGGMG+SlE5CrgKoApU6Z85JVXXgklh6IoSrVSCVFPfwL83hizzxjTAzwInAu8KSLNAPbrXqedjTH3GGNajTGt48aNiyCGoiiKkiRRFMWrwBwRaRARAeYBHcBDwFJ7m6XAT6KJqCiKopST0CuzjTGPi8gDwJNAL/AUcA/wIeA+EfkiljK5LA5BFUVRlPIQKYWHMWYVsKqg+QOs2YWiKIoyBNCV2YqiKIonqigURVEUT1RRKIqiKJ6oolAURVE8UUWhKIqieKKKQlEURfFEFYWiKIriiSoKRVEUxROtma0oVUKxutlpo9LkHcqoolCUKqCwXvXr+7u59sEdAKl8+FaavEMdNT0pShVQrG522qg0eYc6qigUpQooVjc7bVSavEMdVRSKUgUUq5udNipN3qGOKgpFqQKK1c1OG5Um71BHndmKUgVkHcCVEkVUafIOdULXzI6T1tZWs23btnKLoSiKUlFUQs1sRVEUpQpQRaEoiqJ4oj6KHHZfeSXdv2kfeF9/zhymfve7ZZRIURSl/OiMwqZQSQB0/6adFxcsKJNEiqIo6aBqZhQdM06BXMe9CDM6nh94W6gksvS8+BIH2toYtXBh0iIqiqKkkqqYUXScPCNfSQAYY7X7oPPGVQlIpSiKUhkMeUWx+8orPT/fOff84gfp1rQBiqJUL0NaURxoa3M1KWXp37u3RNIoiqJUJkNaUXRdv9LXdh1nfTRhSRRFUSqX0IpCRKaLyNM5f++KyDUiMkZEHhWRXfbr6DgFDoI5csTfhu+9l6wgiqIoFUxoRWGM2WmMOd0YczrwEeAQ8GNgBbDVGHMSsNV+ryiKolQocZme5gEvGWNeAS4BNtjtG4BFMZ2jrBxoayu3CFXFgbY2dn1yHh0zTmHXJ+dp/ytKGYlLUSwB7rX/n2CM6QKwX8c77SAiV4nINhHZtm/fvpjEyCdz4rTYjrX3zrtiO5bizYsLFtC5/Gv0dnaCMfR2dtK5/GuqLBSlTERWFCIyDLgYuD/IfsaYe4wxrcaY1nHjxkUVw/kch+ILa+3t6ortWGGphlH27iuvpOfFlxw/6/x6ZVgxq+E6KdHpWrOGjlNPo+PkGXScehpda9aUWyRX4liZ/SngSWPMm/b7N0Wk2RjTJSLNQNniT+N8uMuoUbEdKwwdZ300z+ne29lJ1w03AgypVeOe4cz9/aUTJCQvLliQp+iysyEYWtdJiUbhfUJfH/vv/SEAzavSt8A3DtPTFRw1OwE8BCy1/18K/CSGc4RCMpnYjmXefTe2YwVl59zzHSOzzOHDQ8ok1jH79HKLEAnP2dDyr9Fxyqk6u1DoWrPG9T7JKou0EWlGISINwAXAX+U0rwPuE5EvAq8Cl0U5R1gOtLX5D4/1Q8KjWafMtaM/+1n23nmX56LA3s7OROUqFV1r1sAHH5RbjEgUW9xJf7/OLpTUKgMvIikKY8wh4NiCtrewoqDKSud115dbBEcOtLWx98676O3qoq65mfFfuYZ3HnzQMXNt0QcPgEhCkiZPbl8MysU1hOm87npVFFVKmv0QXgzd7LE9PZ4fS0MD5tChEgljcaCtjc6vfX3godjb2Zn3PhQV+oA90NZG1w03Yg4fLrcopafIvakMPQ60tQ3MJj1J6cCvolN4RIkuaV6zGhkxIq+t8H0hUaMTOq+73jGLbTWy9867giuJ2tpkhCkDlTqyrHbCRCr5VhJA05LFUUVMhIpVFAfa2ui89rr8WPtrr7NGqsUuXn09oxYupPnmm6hraQER6lpaaL75puIntqMTcs/hW2HpSHKAUL6Vvr74BSkTlWinrnZeXLDAum7Z+9DhWeBE1y23+j5HGiOeoIIVRdctt0Jvb35jby9dt9xa9EfYcpN1YUctXMhJP9/KjI7nOennWwPZjff/cCNwdLSgi8MCEmKKXdfSkoAgilKcKJFKZv9+fycZOTKoWCWjYn0Ubp3v56J4KoT6en/1J2yTkduUsnP51/LOo4qjgBAmt8zxU2IVoTCWPXPiNE7cvDnUsZK4voWRcDJsGM23rAUYFBChzvFk2X9foPXEAxSrh5PLjP/321DnKAUVO6NIiuxsIw5yHx5JrneoFnt392/aY3sgD1rwhFX21k+NdCc7tV8bdC4dJ89wvXZONdzNkSN0Lv+a4wy2ElPld8w+3erD3L+0fo8iZk+n6/jiggX+IhfBGqCmGDEpcKa2traabdu2BdrHbxnTQdTVMePZHZ6bvDBrtq81GPXnzPF/IyTMjBc6yi1CIEJfP9tkVWwk7RSGnLut1/m9+rJrzZpE/AtNVyzJs0+H6p/hw5nxzNMxSpUcHbNP91w3U8r72TNMu7aWGc89S8eppxVVFrkyB3FgA7SsvyPUrFBEnjDGtAbeMSBVN6Noua24Yyk7vS9GqZREy/o7SnKeisCYgZF01w03Os4wsqG3haPuOGZeSTmh/ThFi/LBB5UzuyyyuLJjxiklEaPwXhlEXx8dJ8+g/qNnBTrumwEc2PXnzEm96bCqFEXTFUt8XZC0XLS6lpbQI400E8Ru64VbChO30Nv99/7Ql+nKyySUJHEooSETTWVM+FlnAPyGafsZFOYqtz6fDuymK5Yw9bvf9bVtOalcRREij1NaQ88cGT48LxKr/pw5ZRYoHrrWrCn+o6vxf1s6hdl6JYP0G6oYywg/BFlbvWKRtNKONSu0MYFlrZRnUsUqitrGxkDbBzXfxFnLIgyFtuZio45KSW3tZ8Tbcvu6QMcc9F3r3IP5fIcqEs/oPHPiNJquWBL5OEOO4cN9b5qk0q5rbo71eNl7Rpqaim7rZ5u0ULGKwu/ULktQ882JmzeXR1mMHBnKkdf59RV5Nnk3+30SxK2kgl6rQbOEIgsbg8jXceppA//7iYgq5MTNm2letUr9TAW0rL050Pb77/0hHTNOif2eHv+Va2I9HlizID8Dkubrr4v93ElRsYqiFOkcTty8uSSLvGa80HH0L2wsdUF221KlIA+y4DCpUWGQWQJYisX3de3rY/eVV7Jz7vmuC67cqBl/tLjjqIULVVnkEOreNMYKBT5tZmpnzH7JnDitonyPlasoSpTOIYkRRx4BFJ4EjLUutL8mYZ5yqzrnFBqYXc3uRfbhKsOGRRPMA7N/f6Dr2v2bds9U725M/9Uv896XSllUQuRTJN9Ab6+lME6ewQuzZke6j8tRzyXKws5yUbmKIgBRbMSjFi5M1MbcdLn/ch3NARcD5lblcwoZjcU85VGno+PkGQMK6UBbW9HV2DXjxw88XP2GKDvhx2QYZoFcENzMh6MWLkx8jUBY38qgBXAJFpKKyzdgjhyh8+srQt/H5ajnUmlKAqpEUUSNLMjamOM2Q9WfMyeQbEGnqrkX1ykM0Bw+PDAyc/qLY2SaNUUVezA3XbEkbwQeZVre/4e3Qu8blcyJ01Kx+HHn3PMDbd8x45TBaxs++CAxZfGh8+fGd7D+/vAzgyGUkThJKldRlPgCDyQQfKHDmmEUnt/DLNSy/o6jisbOVNuy/o7E46dzHf5hRk6lDBGNqsyzcnatWRM40CEuWtbf4Xu0KA0NwU8wfPjR+68I/Xv35jnivehas8Z9tpdQ1cH3f/kr5w9CprIIbcryMGGrT+koFaso/JpskjAbNa9axYznns13Qj/1pHWunKyo0tAwsGAuSqba0MRQBKWYGSPXYRuFqCaw7GK6ci04Ezt1vV+a16wOfI5syLRvpdrX52uFczn6zPXBHrKQVVhTlpuVoK6l5aiZ0CWra3YAWA1UbPbY5lWr+GD37qKLt0q5oKV51ap0LaCJKY/XgbY214dgTV0dcVQT33vnXZGVZ9J+B1dEAvuPst/Vj8y5vpuBU9bXY3xmOd459/yB/bvWrLEyofb1QW1tIB9ZnNQ1NzvOcuuam/nQ+XMDK6+wQSfjv3LNoEqLMmJE3vGKRSIeevLJobMi3oWKnVFA8UVoSjx03uiu/OJa2ep4nJSWhcyltqmJljtuD6XksiNWJ7Nk7my1UElAsMCGbMRWx6mnORbeKQfjv3KNY4XJ8V+5huZVq5zNux6EHWS4FTALNDvMyuuDSp2BVGz22CwdM2e5LrAqzMg5FAiU3iGTYcaO7cH3c2LkSMeR1a5PzoslcqSupYWTfr41ry2pTK2e1Nb6D7126ZNS0XHazMHFu2ImyVxjxTL8gv/7Ng0BBF6/hbqWlkTqhmj2WJ+03HqLY3vQiKJKoTbIsv+envgWJr33nmOtAKeRYVAKp/pZgozUYmHkSGY896zvmUy5C8203HZroLxYYUjSl+bLb+fjWqQlRYrbLKll/R2l80smRMUriuwiplJHFJWLCddfhwRIiNh1y63s+uS8eE7+3nuDFM+ohQsJNSutq/M11W9etSpUAsig1IwfP/Dgn9HxvLeTPmSalbgZtXAhLbevG9IlYpuWLC66TVoGhHGYsdJKxZueqpEDbW103XJr4NQVcZA1ETlViPNCRowI/aPpmHFKZMd8GDNkYZW5+nPmpHoAEnfWWSdzYDnwLHJUZvNfuSmV6UkVRQXjVC4zLNLQgDl0yNe2NePH+0ppUdfSEktd56h+kKFY08OJoFXVipGmfts59/zB91yVKwmoEEUhIk3APwOnAQb4C2AnsBGYCuwGLjfGvON1HFUU4Ynq8JWGBprXrGbUwoX8bs45sS5Wi8s8c6Ctja7rr8ccyQ1aMIAPX4JdyrJaiGtWkfbZk2JRKc7su4F/M8acDMwGOoAVwFZjzEnAVvu9khBR7bO1TU0Do8YJ11+XuHM0DKMWLqT5Y73UNfQCZuDV+vOmmpREnKiSUHIJveBORI4B5gJfADDGHAGOiMglwB/bm20A/gP4ehQhlSKIhLbh565fCLIIrCguq1nDMmp8J6Muzv+OHT88zv7PZWYRoDjOUKGupSVyuHJaooiU9BBl+HgCsA/4rog8JSL/LCKNwARjTBeA/eoYPiIiV4nINhHZtm/fvghiKFEcvYWpD+JKhR277bh+9OBzLHmDpmkHcZxZDB8+qEpgNRA5Lb5IaqKIlPQQRVHUAWcC/2SMOQM4SAAzkzHmHmNMqzGmddy4cRHEUKKERzo9WKI6MBMJHe1zjnppPutdZizpys+79UJHVSoJiJgWf/hwZnQ8H69AypAgiqLYA+wxxjxuv38AS3G8KSLNAPZr8IovSiCijCLjjmpJbH3BkYPJHHcIMlB61WP9iVOqkGpVrr7Zfh/ceRqsbrJet99XbolKRmgfhTHmDRF5TUSmG2N2AvOA5+2/pcA6+/UnsUiquBKrbyECqcpjs/mr8MT3wPSB1MJHvgALvlluqUpGNmOxEhPb74O2L0OPnYjxwGvWe4BZl5dPrhIRNcTl74EfiMh24HTgViwFcYGI7AIusN8rCTNq4cLgSfRiXPGceMx9/Rj/227+Kmz7jqUkwHrd9h2rXVHCsPWmo0oiS0+31V4FRFIUxpinbT/DLGPMImPMO8aYt4wx84wxJ9mvb8clrOKNn3QHubjlyQrMyJHJj14/dbv7Z8Ma898/8T3n7dzaFaUYB/a4tL9WWjnKRPqC5pXQNK9a5ateNFghkJ4P9wApnkuyOtZrel/ovzAu2V/d2hWlGA5RdwNUga9CFcUQ48TNmwdV2iOTsbLO5iRNLBYC2bLuNl/nK23MvZtpLf11K5QhTBWYnyq2wp3iThyV9rKzjbzkg5mMVf/AmIHqaKWNuXdbLxJyHcm3zoY/vHD0/diT4e8ed99eqV66PbIQVYH5SRWF4orvyJm0RRhJrYuZKWfmUagkwHr/rbNVWSiDGTXJXSGIfzNtpaKmJyUaaYwwcvVFmKP25EIlkcWtXalu5t3o/lkV+L5UUSjR2PYvwdpLwajJ7p9VgT1ZSYBZl4O4PC51RqEoxYjZbxCW3MgTr9GfW5ijohTD9Lu064xCUZIjaEoEtxEd5M8UZl3uvkBv1KTgcipKlaOKQikP2++DH3/JdhAa6/XHX/JWFm4jOhjsaDz1M87bnXShP9nCsuFiWD3q6N+Gi8MfS1FSgioKJTm8Hrht1wyesps+q90NL99D4VqKXY84b5Zt90oJ8rOQ5VM2XAy//2V+2+9/qcpCqXhUUSjR8HLkeTmOe1yywbq1g7fvodAn4hbKmG33SgnSHTLrTKGSKNZejM1fhTVjrJnJmjHVnatK+6KsqKJQovGRL7h/5mMh0pbGBi6c1MKsqZO5cFILWxob4kmJUCxCpdQZP4N+J6+w42pLd52aEOyAmQGGkHJTRaFEY8E38Uyh4fEg29LYwLXjjqUrU4cRoStTx7XjjmXLL64fvHE2zbMftt+XbIRKmAdA0LDcbd9xb2/7cr5vp+3LQ1tZePVFSQkQ4Zca5RYPqiiUGPAIhXV7kA1r5IaxYzAFqdGNCDccM2zwcZzSPLvh9VAOkq7cibAPgDjTPFRxuuuKYYhlMFZFoUSn2MPX6UG24C56XOpnOLYHWf+Q5FoJrwdAptH5MyDxxIVVkG+oohhiGYxVUSjR6XWuZ51H7oPstinw4DLPzde2r81v8LP+4VtnF982m9wtrKnG6wHQc8hrx3DnC8JQNj9VGl5BHhV4nVRRKNHxilTKZfNXLbv+Bwe8txNh486N+W3zboRMvfd+f3jBCkX1Gl1n6wokYaqJazFfWDt22HXEKREAABUoSURBVLDetFPjkrvUrT0NeAV5VKCZUBWFUjoCOh9nbpg58Les61FY+D+L7+Q3FDUJ85Rn+G4Awjppw4b1lpIwgQD9vcHa04BX9uQKTCOjikJJJybfVNP+RrulLArLngYl+zBNSyqPagp1HWKRQHk4XTc3351XtbyUoopCSScODu32N9phwV0Rj2vbjouN/lePCv4AC2pS2H4fPPhX+aGuD/5VsGNUEklEApVSsca1mr/77YobFKiiUKIR4GY/d3ILM6dOHvgLjDFFneDFj2GPZv0suAs62g1qUmi7Bihc7+GRz6rS8QoEWD0K/uFk58+TSLcShqCr+b1MgRW2/kUVhRINn6Pocye38F5trTVTyP0LyOnHO5uMHFd4OxLwnEH8BUHNWX6DAIKSa866/cPWXyWYtt7vclYWSaRbCUPQ1fzF6lT0dFdMAIIqCiUwa9vXMvv7s5m5YSazR8PaMU1F9xlQElEQoU+ERS0T8pq3NDawomCF94pxxzJz6mSWTRhbcJCIYaquP37x58y+bcrRzLJJsHqUNevKmrO637YfprZpa9PfpF9ZFFLqdCtRyFXSftZMdL+d7uthk+L4MiWNLHt4meUrsOkXYeMxI/lpYwOPvdbpuI/76D4EIrw0LH/l9oqxYwYrIft9e3098yY1s3WPwwNIarxTl2e5+Tj40FjbtBShUNNtU4qHBidNf49l8krzw3f7fdZM9cAea5Y270b3a+VVo6TUZNPM+M0gkOXBZfBqe3nrzBchUi+LyG4R2SEiT4vINrttjIg8KiK77NfKc/Erjmx5eUuekhhAhPdqaweN9LOsGHds9NlEoSy5ysfr2CLsratznvV85Epf51o7ajizR8PMqZOYPXWy+wyqmBkhR0kU+muyf26mtVjpOZjqUeyi9pXMtPt75mhY1H6DR+6ueHw6W17ewoUPXMisDbO48IEL2fLyluAHCZJmppCUR3/FoY4/YYw53RjTar9fAWw1xpwEbLXfK0OAFb/2uJQOI32AeZOaY1cSiLBi3LFcOKnFl9kLe9Yz6CHvYwS3dkwTG48ZSb/tU8nOoOZNah68sQ97+bxJzcycOtnZX2Ob1maWQln8+EvJn6OQ2uFFN5l5/CTrPsrpk5eGZVwHIXHUq97y8hZWP7aaroNdGAxdB7tY/djq4MoiahqVFOeBSmLedgmwwf5/A7AogXMoJcbvj+bs4yflOZT31kWwbhoPc47ti9h4zEh/iijnIb928xeOtrd+0XM3x+Pbs5R5k5qZbc8EBpSQR4TOzOMnWf3h5ci3P0tcWZQj59Al3/I0Fc08fpJz37gMQoBYvsfdT97N4b7DeW2H+w5z95N3BztQVDNYivNARfVRGOARETHA/zHG3ANMMMZ0ARhjukRkfFQhlfLj60cjwiH7R551KIfGS0kUnDMQImz8wzZWAsseWEj7+7+HnFDdpv5+Vrz1DvMPHnJwhOcfZ+ChjxXUuvGYkcB7rHSwPpw7ucV/pJe9zazjJ7H9FeeQ27Vjmrj/mJH0Y432Lnv3PVa+vX/QdssmjKW9Pj/1ybQjR9jU+aa3Q31Yo7VmJU5fRvZYW28aNPp2VRI5bGlsYP7BgnxaUbMBA10HHfxXHu2uxGQGSyNRZxTnGWPOBD4F/K2IzPW7o4hcJSLbRGTbvn37IoqhJM0bB98IvlOYEFhjaO7pZd17ffGbrHKY988nW0qiwPSzv7aW68cdy8zjJ1kP2CL+j8L3G48ZyZbGBs48flKe7yFw1JcIRsRRWbmZwwrNcOdObjn6HfJMOcPcTTlZjhy0nKwJ+zK2NDb4UhKIcMPY6EohMlEzAxQjpb6jSIrCGNNpv+4Ffgx8FHhTRJoB7Ne9LvveY4xpNca0jhs3LooYSgk4rvG4eA/oMmNo/lALj/xlB/P/viPe8+VSMBsopC/COg+wnPc9NTWR14wgQnt9PWvHNOWZuNzMYdaMxmLZhLHuysnLlFNI1AWOuWSjguzZRDasmWxfFcEx/XzC6ygGmVyjZgYoRkrXVYRWFCLSKCIjs/8DFwLPAg8BS+3NlgI/iSqkUn6uPvPqeA9oDCP686fqI2pH5J1n8fTF8Z4zl2IPpiizmZhnQoWzh2K0TplYfDZEzGHLfiiICoolGi4GZ7YXax5bk/NmrKfiXNQyIW8WWXTW5kRKEztGmVFMAP5TRJ4BfgtsMcb8G7AOuEBEdgEX2O+VCmf+CfOZc9yc2I637vw7WH3+HTQ3NiMIzY3NrD53NfNPmD+wzco5K2M7X8Xi4tx1Y+bxk/jAzwhdhBVjx0R/sAXhwB6WTRgbPoULDivzE3YAd/fZim31KDA9rtvNm9TsEK3lw8RXIYR2ZhtjXgZmO7S/BcyLIpSSTr590bdZ276W+393P/0RHHdzjpszoBByFYMTgmBKUfQnLkL4ZELv63Z+v8cp2PalYcMGHuAj+/pcF1CGZdnESbRnCP89RejDGrlv6nzzaPv2+5JdQFhkfcNAdF+QaK0KI0XLGpVKYOWclTzz58+wY+kOq8FvdJLNtGOm8e2Lvu17+8unB3sALJ6+mB1LdzB+xHhLtoDylZodZ97Ijt0xlTEN6gtxmqnYf+/V1tpO5kw8sgHtw8L7fQawH755+bySXhNSJN9XMRNaIBOfZznd8qGKQgnNgLLwiSBs+symQPv4NT8Jwo6lOwa2/8Txn7A/iMlfkJTSsUfC6/a9lS6lZiuM06eWoW5Hsb7Oyee1bMLYSOanUCuwcyi63sVeHJo1t3mGXAPUFV+UWA5UUSjRCPAg3r50eyIijKwbOejYG3dujNWpXGsMtYnNUIT5Bw8xsq8vdcqijzIsAguwhqa9vt56+IYMK727/baisjitws86rn3N4nJmagPyupGt6Z4yVFEooQkyGstEMGEMq/G28z72ucdCH9sPI+tG8nTNNJ5+ZU/wB7nH9tOOmWb989l7ACyfQAWYy5Jmxyt7GN7f768f7Ifvll+Hq0PddWTwIsXC4++tq2PW8ZPY0tjAbHt9TJ7jOgi2vK6ktPqdKgolNEFSHNz8sZtDn+em89wfAomG0GI53h/73GOw9CH48Pms+8PbwR7kLg+S8SPGHzXDzbocai1luCOrjOJUFhWkfAQBhG2vvh5gJ+Hu4eFmPr4e8/bixxXjjqU/d31MBD5SkOom7aiiUELjd7X24umLi0Y3eTH/hPms+/g66muPjsQEYfH0xaFCaOtr61n38XUDobmjho2ixuGnsHj64nzH+9KHmD/+LBr8PnSNYd3H1+Wdq7mxmXUfX8fWxVvzt73kHwfWBOx4ZQ/r9r1Fc28vAgP7hFGKzY3NrJPKWdB6XONxAzOsOd3dvhXcG3Xh1lP4Vp8xKIfcYx2pqRmonbJ67JijyiKlpietR6GE5rjG4zzz4TQ3NnP1mVdHUhJZ5p8w3/dxipnEVp27KtDx8lj6EIe+d5qvTTMG32HA+XmQ9jC/7ljmn3VjXtjn/BPmDyjGmRtmFj1/brDBCh/bO7Hu4/Etg1o8fbHlO3JhYMGl3Vff3noTMz2sNLkcN8xHFuGUcrimhuvsvGjz6yLkR0sQVRRKaOZOmuv5w3/k0kdKKM1RipnE4lBcxagxhpvP9yjh6cSsy32vB2ioa+BQ7yHXzwsXRwZej2IM6+beHmtfZZVc7jqchroGunu7Oa7xuPxBhd0Xcx5eRnvXb4qO5q+ec20omZr6+9lfG+PqbmNCzTz6bdMWUz9D8ndncNT0pITmV3t+5fpZc6NDvYYSESqBYRzYvoCm4U3cGvNDtpAbz/Euu1q4ViXoehREEpE/dx3OjqU7ePxzj7N96XYeufQRx/N9+6JvF33wrvv4utCyrnj7AJm4/DdRjyPCda88FI8sMaOKQgmN1wN57iTfiYRjxyuBYU3CpTN37H6NXy/5deKzFq/ji4OLduWclYF8HCPrRhbfKCVE8n+9/z4373uL5p5exBjwG22VEP2kM1W5KgolNF4PZK/ZRtJ4JTCMknpkAK8R7tiTox/fJ26zNrfrsnLOSl8+h5F1IxMPOU4NoyYz/+AhHtnTyfbdr7HjlT1MO3IkXKSYCIvffa9iIsyCoIpCCY3XrKFs5p8ixGEScxqxD7T/3eORj++Xq8+8mhG1I/LaCjPwFpKNICuMwsqagnYs3VE9SgJg3mAT3qbON9mx+zXG9/YGeug3DW9i5Ql/Fqd0qUGd2UpovGYNsdevCICXMzuOdOluTmGTXJ0lR7Iml7ufvJs3Dr4x2CHssV8pHPoVwazLXVOHb93TxaKWCbw0vHhajUxNhhUfXQEnzEc2zAqdyHJgEWbKUEWhhMYrNDb2+hUB8JrNDLUHZLU/9J3Wv8SJVTL2wKD2LS9vcVXQl0+/3DMa0I28RZgpQxWFEpoaqXG1+Zfz4eW2vqOckVhKeLzus1s/fmuyJ2/9omOzl4JeOWdlIEVRJ3Ws/djaVCt89VEoofFyDEfNyhmFMLZ7Jb1c9keXObbn1jVJjAXfDLWbW4RZNg1+7t9Tf/5UqpUEqKJQIuA1Qg+SBypu5p8wn9XnrvasnhcFtxDbpENvq5VsaG+2f2ukZnB6lZThJnOlVm0Uk4JQrtbWVrNt27Zyi6EEZMvLW1jx6xWunwetV1EpeKXPGKrfeUiz4WL4/S8Ht3/4fCsZZIoRkSeMMa1Jn0eHQEpo0j5dTgq3mZT6QCoUOzNwHhWgJEqJOrMVJSBXn3k1qx9bzeG+wwNt6gOpcFQpeKKKQlECEnb9gqJUKqoolEgMqxnGkf4jju1DmWpfv6AUx2utRaWhikKJhJOS8GpXlGpgy8tb8syTXQe7WP3YaqAyfXvqzFYURYmZu5+8O8+HBXC473BZw8ajoIpCicSoYaMCtStKNeCWRiatyTKLEVlRiEitiDwlIpvt92NE5FER2WW/jo4uppJWrj37Wuok34JZJ3Vce3a4imOKMhRwS4pZzmSZUYhjRnE10JHzfgWw1RhzErDVfq8MUeafMJ+1H1ubtwo67XlrFCVphloamUjObBGZBMwHbgG+ajdfAvyx/f8G4D+Ar0c5j5JuNAJIUfIZaiHUUaOe7gK+BuTWTZxgjOkCMMZ0ich4px1F5CrgKoApU6ZEFENRFCVdDKUBVGjTk4gsAPYaY54Is78x5h5jTKsxpnXcuHFhxVAURVESJsqM4jzgYhH5NDACOEZE/hV4U0Sa7dlEM7A3DkEVRVGU8hB6RmGMudYYM8kYMxVYAvzcGPN54CFgqb3ZUuAnkaVUFEVRykYS6yjWAReIyC7gAvu9oiiKUqHEksLDGPMfWNFNGGPeAubFcVxFURSl/KSicJGI7ANesd+OBf5QRnHConKXFpW7tKjcpcWv3McbYxKPBkqFoshFRLaVomJT3KjcpUXlLi0qd2lJm9ya60lRFEXxRBWFoiiK4kkaFcU95RYgJCp3aVG5S4vKXVpSJXfqfBSKoihKukjjjEJRFEVJEaooFEVRFG+MMZ5/wGTgF1g1J54DrrbbxwCPArvs19F2+7H29u8D3yo41mJgu32cOzzOeQvwGvB+QftXgeftY2zFiiF22n84ViqRQ0A38LscufuA94APsPJQpV5u4BPAjhy5+4DPpV1u+7O7bdk+sI+Tpv6ea/drP7CH/Pt7K9ADHCR997ej3MDxwNM590lHJchdAb9Lt/5O++9yLvAk0AtcWvDZ7cCz9t9iNxkGti+6ATQDZ9r/j8R6CJwC3AGssNtXALfb/zcCHwO+lNtBdse9Coyz328A5rmcc4593sIO+gTQYP//18BGl/3/Bvg+cCZWHqof5ch9pELlvsOWdwzWA/kbFSD3l4DdwHW2nHuAO1Mk91Tgk8Bm4FLy7+8fAt+zP0vbfeIm92zgG7a8HwLeAf6xAuRO++/SS+40/y6nArOwfpuX5rTPxxr81NlybgOOcTpG9q+o6ckY02WMedL+/z2sUcpErAJFG+zNNgCL7G0OGmP+EzhccKgTgN8ZY/bZ7/8d+DOXc7Ybu6ZFQfsvjDGH7LftwCQXsS8B/smW+wHg/By56ypU7mx/Xwr8DFhQAXKfiXUjftcYcxD4FdZoKhVyG2N2G2N+jr0CtuD+PgNrlgQpu0885B6PdV9swJrlHQQuqgC5U/27LCJ3an+XttzbsWZCuZwC/NIY02v/Lp8B/tTpGFkC+ShEZCrWD+hxCgoUYd2kXrwInCwiU0WkDutGmBzk/AV8EevCODERa8qGMaYX6wfzEVtuAdpEpB04u4Lkzvb3EuC7FSL3T4HRwAERGYs1QmpKkdx5FN7fwNuQyvs7jwK5jwMexroet2GNYL1Ii9xp/l3m4fIcTOPv0o1ngE+JSIP9u/xEMRl8JwUUkQ9hmRSuMca8KyKBJDPGvCMifw1sxNJwj2Fp18CIyOeBVqyRq+MmBXIfByyz5X7XGNMqIicAP6eIskyR3Nj1PWZiPQg8SYncm0Skxz73PuA3wGdSJHcuI6ic+zuXQrmNMWaWiLQAm8i5NimXO82/Sy+50/y7dJPhERE5i/zfZa/XPr5mFCKSweqcHxhjHrSb37Q7KNtRRQsUGWPajDFnG2POAXYCu0SkVkSetv9u8iHLnwDXAxcbYz6w227JHsPebA8w2Zb7QSyn5P+1P3vDLqz0MtaI4P0KkftN4C+BH2MlDKuU/n4V+JQx5gKgHnuUnhK5BzYH/gcF9zeW3TmN97en3Pb93Qm8jDW7qwS50/y79JI7zb9LLxluMcacbv8uBSsoyXMHzz/7IN8H7ipoX0++8+mOgs+/wGBv/3j7dTRWdMYfFTl3oRPnDOAl4KQi+/0t8L9tuX8K3Jdz3m/a8mazM34n7XLn9PerWNPESunvWuB/2fLOAt4A1qdF7pz7+0Vgs8P9fQ9Hndmp6W83ubFs1Xfa8o7GGi3+SwXInerfpY/7JJW/y5ztv0e+M7sWONb+fxZW5FOd5zF8nORjgMEKxXra/vs0lu1zK5Ym2gqMydlnN9bI8X2s0eYpdvu9WGFdzwNLPM55h71fNhxttd3+71gaPCvHQy77j8CavhqsSITn7e3/u/1/Npzt+QqR+9PA6ViOsUrq70uwRkwHscJmH0+Z3GdhjQAN1tS7O6e/f4MVidNv9/ulFSD39Vghl7nhsZXQ32n/XXrdJ2n+XZ5l73cQeAt4Luf3mj1/O3C6lw4wxmgKD0VRFMUbXZmtKIqieKKKQlEURfFEFYWiKIriiSoKRVEUxRNVFIqiKIonqigURVEUT1RRKIqiKJ78f6S57F/6hNcgAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import collections\n", + "\n", + "from apd.aggregation.query import with_database, get_data, get_deployment_ids\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "async def plot(deployment_id):\n", + " points = []\n", + " async for dp in get_data(sensor_name=\"RelativeHumidity\", deployment_id=deployment_id):\n", + " points.append((dp.collected_at, dp.data))\n", + "\n", + " if points:\n", + " x, y = zip(*points)\n", + " plt.plot_date(x, y, \"o\", xdate=True)\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " deployment_ids = await get_deployment_ids()\n", + " for deployment in deployment_ids:\n", + " await plot(deployment)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAE0YAAAUsCAYAAAC9bUPVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdd7x0Z1Uv8N9KBwIJEAJSQ+9NihSBBJAqIL2HkCCCXq5cURD13ovYr6BwQakGCKFKByHIRQOitCAogjSBCKEESEIPIWTdP/a8Zt79zilzzpwzb/l+P5/5kL32fp5nzZk5w+eds/Z6qrsDAAAAAAAAAAAAAAAAAAAAAAAAsEz7LTsBAAAAAAAAAAAAAAAAAAAAAAAAAI3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAEaq6qiq6tHjuGXntZ2q6tTR8z912Tntjfyc92xV9bTxZ8WesL73HQAAAAAAAAAAwO5jE7VgS61hm9ey63OXvT4AAACwfhqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMRoAAAAw0wq7oq32OLeqzqyqz1bVKVX1R1V1n6o6aNnPBQAAAAAAAAAAANiYPaWesKruuEI+pyxwjaPXeO5HL2idY9dY56hFrAMAAAAAuyON0QAAAIBFOTjJZZJcI8ldk/xmkjclOaOq/qSqDl1mcnu7qnrpqOjpi8vOCdi7VNUXR58zL112TgAAAAAAAAAA7JaWVU94wgrxn6uqK2/RmmPH72bzAAAAAMAeR2M0AAAAYKsdkeTJSf6tqm697GQAAAAAAAAAAACApdiyesKqOjzJ/VY4vV+S4xa53iruX1WX2MwEVXW1JLdfUD4AAAAAsMc5YNkJAAAAAHuU7yf53ArnLprkUkkuvcL5qyQ5paru0N0f24rkAAAAAAAAAAAAgG2xu9UTPjzJIaucf3RV/V5394LWW8lFkzw4yYs2McfxSWox6QAAAADAnkdjNAAAAGAep3X30atdUFVXTHKvJE9KcvXR6UskeV1VXbe7f7w1KbIIa73OQNLdT0vytCWnMTe/3wAAAAAAAAAALMDuVk94wui4s3NzsaOS3CnJ/1vAWmNnJ7nk1PHx2WBjtKraL8mjRuGzMjSaYy+1p9aiAQAAAGyV/ZadAAAAALB36e4vd/fzktw4yRtmXHL1JL+0vVkBAAAAAAAAAAAA22m76gmr6iZJbjoK/3mS80ax4ze71gpeneQnU8e3qqrrbnCuuya54tTxOUnesdHEAAAAAGBPpDEaAAAAsCW6+/tJHp7k32ecfuQ2pwMAAAAAAAAAAAAswTbUEz5mvGSSZyd52yh+v6q65ALWG/tKkr8dxTbahG087pVJzt3gXAAAAACwR9IYDQAAANgy3X1ukj+acermVXWp7c4HAAAAAAAAAAAA2H5bVU9YVYckedgofGp3/2eSl43iB2do0LYVThwdP7KqDphngqq6dJJ7rzEvAAAAAOz15vpiDQAAAGADTpkR2y/JtZO8f6OTVtV+SW6a5Kgkl0lyqSTfSfKNJJ9L8tHuvmCj8y9SVV0hyXUy5HpYkotkyPWsJP+Z5MOToi+2QFVdJMktk/xUkiOTHJrkWxneK//S3f+xxPTWpaouk+RWSa6WIf9vJzkzyQe7+/Rl5rbVquqwDM/9mhl+f85NckaS98/z3Kvq8klukeH38NAMv39fTvKe7v7OgtPekKo6OMltk1w5yeWS/CTJ15N8PMnHuruXmB4AAAAAAAAAAGzWVtQT3i/JJUexkyb/+/YMdWKXmTp3QpLnbnCt1bwlyTeTHDE5vmySe0zi6/WIJAdNHf9rd3+kqhaT4QJU1f4Z6tiuk+QKSS6RZP8kZ08en0ry8d2lfnMR9pUa0Ko6KMk1MjzXy2V4bZPheZ6V4XX99DblckCSmye5fobfqQuSfDXJF5J8oLt/sh15rNfeUKcKAAAAuxuN0QAAAIAt1d3fqKrv5MICiR2OmHX9Wqrqdkl+JcnPZWiGtpKzqurtSf6ouz+5kbU2qqqOSHLfJHdOcocMBU6rOa+qPpCh2Or16y0IqqovJrnKCqevUlXraaJ0THefOmPuUzPkvsN7uvvoFfL4eJIbTIW+keQK3f3jdaw/U1U9NMkrR+Ff6e6/XOf4/TLs7PmIJLdPcsgq134hyWuTPKO7v7mxjLdGVR2d5LeS3ClDAeCsaz6Z5A+TvHKexllVdVySl4zCV+3uL24gz/G6v9vdT1tjzNOS/O/pWHfX1PlbJPmdDMWBM7/HrKr3JPnN7v7AKuvcK8lTktwmyawKwfOq6o1JnjzZJXbd1noOc8xzVJKnZfjcGH9W7vC1qnp+kmd29/fmXWO03qlZx+/3JK8vrDLVo6rqUWutt+NnUlWXyNDU7tCp06d29zFrJr2Kqnp2kv8+Ct+ku/9lM/MCAAAAAAAAALBYi64nnDhhdPyDJK+brHd+Vb0yya9Onb9JVd20uz+6iTV30d3nVdUrRmsdn/kaox0/Oj5x04ktQFVdM0MDujtm2PjxYmsM+XZVvStDTd4H51hnt6hF3K4a0NGaT8sCatE2sO5NkvxCkmOS/EySg9e4/htJ3pbhtV14bW5VXTbJbyY5LsnhK1x2ZlW9NsnTu/sbi85hvfaWOlUAAADYXc28mRIAAABgwWY18Vmp+c9MVXWtSaOz9yZ5cFZvipbJ+Uck+XhVvbiqViw4WKRJEdVXk7wwyYOydkFMMuzwePsMRQ//VlXX37oMt8S4udZlktxzk3MeNzr+UZJXrWdgVd0tyccz7Pp5l6xSbDJx1QyNsz5fVb+6xrXboqoOrqoXJfn7DE0AV/se73pJTk5ySlWtVXC226vB7yX5QJJ7Z/XNHe6Q5J+q6tdnzHNYVb0+Q2HhbTO7KVoy/P49OMknq+rOm0p+AybvuU8keVRW/1y8XIbmaZ+oqpttQ2oL193fyfBenXZ0VV13o3NOdto8dhR+v6ZoAAAAAAAAAAC7rU3XE+5QVVfN0NBp2htGGw++bMbQcTO1Rfmr0fE9q+rI9QysqpsnudFU6LzsWmuzrarq0lX1z0k+k+SPM9TjradG7bAkD0jygap6c1Wt1OBqbOm1iPtKDWhVXaeqPp3koxkast0+azRFm7hMkkdneJ4vqqr1jFlvTvdI8skkT8zKTdGS5Mgk/y3Jv1fVQxa1/jz2hjpVAAAA2N1pjAYAAABsh1kFCt9Z7+CqulOSDya5+wbW3i9DEdN7JjvJbbXbZPVGTmu5boZioG1v0LQJJycZ78j46I1OVlVXzLDT4rQ3dffZ6xj760n+JkOzsHldPMmzJo30NvMabsqkid87kjxmzqF3SfL2qtp/8Vltq+cn+Z2s/7vLSvKnVfXY/woMhXTvzrBL6XpdLMlbquoWc4zZlKr6gyTPSnLROYZdOcPn2R7ZHC3Drqhjj9vEfA/Nrv8f87xNzAcAAAAAAAAAwNbaVD3hyPHZdcPEk6YPuvujGRoYTXv4Vmy22t0fT/KRqdABSR65zuHHj47f0t3fWkhiG3fxJDfd5Bz3TvKhSV3gWnaHWsR9pQb0ckmutYnxlaHG8b1VtaHGhjtNVnWvJG/O2psmT7t0kldO1w5uh72hThUAAAD2BP7hDAAAAGypqrp6Zjf9+fw6x98ryeuTHDg6dV6Sv8vQMO1LSb6d5NAkRyW5Y5Lbja6/ZZI3VdXtu3tcOLNVfpLkn5N8IsmnknwrQwFXZdjh8ppJbpXkttm5CdShSV5dVTft7i+tMv8nk5wz+e8rJ7nk1LkfT86vZdbum3Pp7jOr6u1J7jMVvkdVHdndZ25gymOza1OsE9caVFV/nGFHvbGzkrwrQ8HZmUl+kKG47vpJ7pbk2qPrT8jwc/31ubJenBOz8y6mn87QKO1TGZ7LYRmKze6fXXejvH2S/5HkGVuf5uJNdkKcLlI6Pclbk/xbhud+eJKfSfLA7LpL7LOq6p0ZPg9enWS6cdhHkpyS5AtJvpvh53bHDEV30++1iyR5UVXdvLvPX9DTmqmqfi3Jb8049aNJru9N8pUMDduumuH36waTay6W5E1JXreVOWb4nP2XqePrZefP4rOT/Oc8E3b3J6rq1CRHT4WPraqndvcPNpDj40fH30ry1xuYBwAAAAAAAACALbbZesLRXPslOW4UPiPDhopjJyX506njwzNsuvjKedddhxOzc+3S8UmeudqASZO2h86YZ3fzvSQfTvLvST6boW7zu0kOylC/eL0MtW/XHY27ZpLXVNUdVqvL2l1qEadsdQ3o7uTsXPja/keG5/m9DDV1R2Sot7xLhlrVabdM8uIkD9rE2ldN8pxceL9zJ/mnJG9P8uXJ8ZUybK582+zcDLGSPL+qvtXdr99EDuuyF9WpAgAAwG5PYzQAAABgq91/RuzsDMUTq6qqq2YoSJpuxHN+kj9P8qfd/Y0Vhj6tqm6SodhiusDoVkn+OMmT1pH3Rp2X5A0Zdi78u+7+9loDquoqSf4oOxc2XTrJ85L8/ErjuvseU3O8NMmjpk5/pbtvMlfmm3Nidi5GOiDJI5L82QbmOm50/OUk/2+1AVV13+xabHJ2kt9MclJ3n7vCuEryC0men+TIqVNPqqr3dvdb5sh7EX4myY6dSL+W5AndPbP5VVU9JclfZCjemvbbVfUX3f3DrUtzy/zJ5H9/kOH39EXd/ZPRNS+qqt/O0DDxtlPxi2RoNPbpJHedxD6f5LHdPavY8TlVdfMMOzdOv/Y3ztB47VWbeSKrqaprJ/mDGafekSHfL8849zuT9/nzMjR2u2KSX9qqHJOku7+S5L8+R6rqi0muMnXJW7r7uA1M/dzs3Bjt8CQPyZzFnFV1syQ3H4VfstLvOwAAAAAAAAAAS7fhesIZ7pqhhmbayd19wYxrT85QO7j/VOyEbE1jtFdmaIS2ow7selX1M939wVXG3C9DDc0OZyT52y3IbSPOyfDze12Sf1rPxrRVdZskz87OtT23SfLErL3p51JrEbONNaC7ga8leWmSNyY5bYXfnf8yqbe8e5JnZWgKt8MDq+oBK9U6rsOTc+Hvy6eSHLfC78sfVtUtJzlPN9+rJM+rqvd09zc3mMOa9qI6VQAAANgjjLvdAwAAACxMVf1UZu9m9qq1CigmXpGdi31+kOSu3f3kVZqiJUm6+2MZCmneNTr1hKq60jrW3qhbdPf9u/uN6ymISZLuPr27H5bkaaNT96iq6yw8w63x9iRfH8WOm3eSqrptdi6YSZKXrfZ+qaojk7xkFP5skht19wtXa5LUgzdmKMAaN6P6o0lBynbaUdzz+SS3Wq1QqLu/l+Fn/M7RqcMzu4BwT3Bwht/zO3f382c0RUuSdPfXMxSMjXcBfUSSp0/++xNJbr1CU7Qd85yW2T+rR8+b+Jyelwtf6x1em+TnV2iKliSZvFfvkAuf90W2Jr0t96bs+vv2+A3MMx7TSV6woYwAAAAAAAAAANhSC6gnHDthRuykWRd299eya6OxYyabty5Ud5+TodHUtLXqkcbP5WUr1U5ts68kuXx3P6G737OepmhJ0t3/lOR2SU4ZnfrvVXXAGsOXVos4sa/UgH4oyZW6+6nd/aH1/A5O6i3fnmED2I+OTv/aJnLZUUv3iSQ/u1oTwe7+UIb31idGpy6TCzdmXbi9rE4VAAAA9ggaowEAAABboqqunqGo5TKjUz/IsDPeWuN/LsmtR+Hju/vv1ptDd5+X5IFJpneAOzCbK8BYa811FcKs4OlJPjx1XEmO31xG26O7z8+wQ+K0G1bVzeacalYB2LiYZOxXkxw2dfyDJHdbrcHUWHd/KclDRuHrJbn3eudYoB8neVB3n77Whd3dmf1+vuvCs9o+T+zu96910aSAcLx76EWTXCzJuRl+huPGabPmeV92LcA7pqrGjcsWoqpumOSYUfhzSY5dZ3HZp5McuxW5bZdJ0ea4gdnNq+rms66fpaoOy847rCbJu7r7c5vNDwAAAAAAAACAxdpsPeGM+Y5Icq9R+LTu/uQqw142niZbt4HiiaPjh1TVzE0Qq+qo7FpPtFbN3Lbo7vO6+4cbHHtukkdleI13uFKSu6wxbpm1iPtMDWh3/2Dys97I2LOzaw3bravqeptI6bwk9+vub61j/W8lud9kzLSHTz4btsLeVqcKAAAAuz2N0QAAAICFqKpDquoKVXXPqnphkn9NcqMZl/7iOgsBnjI6/ofufs28eU2KVJ49Ct933nm2w6TJ1ctH4Z9dRi4bNC7mSubYqbGqLprkQaPwe7v7P1YZc2iSXx6Fn9ndn1/vujt09z8mefcovIz3yiu7+yPrvXhSzPfPo/C8RWC7i88kefEc179+hfjL1yhyHHvd6PiAJDecY/w8Hjcj9qTu/tF6J+judyZ56+JSWooXZtfCtMfPMf5RGRrhTXv+pjICAAAAAAAAAGAhtqCecOzYJAeNYietMebNScZNr46rqq24x/LdSaY3xjwsyf1XuPbRGRpo7fDevWVzwMnGluNNK9dTE7nttYiLsBfUgK5bd/9bdq1b3MxzfU53f2aO9T+T5Dmj8MGZ432yXntpnSoAAADs9jRGAwAAAOZxh6rqWY8kP0zy5SRvS/KL2bVhzQ+SPLy7X7nWIlV1qSR3HIXnaZY09jej46tU1VU2Md9W+uzo+Ker6sClZDKnSSOqD43CD6uqg9c5xf2TXHwUW2uHxjsnOXwU+6t1rjfL+L1yh03MtVEv2sCY8c/9WotIZAleMikOW5dJYdGsHTrnfQ98dEbs2nPOsV53Hx1/Nbu+79bjBQvIZWkmRY9/PQo/pKrGv88r+aXR8RnZ85vFAQAAAAB7kUkTgDtV1QlV9ZSq+tWqemBV3XjZuQEAACzIttQTruD40fGPk7xqtQHdfW6S147CV0pylw3msNpaneSlo/A450yasj1qFJ7VFGxPNq6JvNVaA5ZUi7goe2wN6AbM/dquYiN1ky+cERvX5y3C3linCgAAALu9A5adAAAAALDX+26S1yR5end/aZ1jbpedd0BMkn/aRA5fmBG7aXbekXFLTHaKu32G3S6vl+TSSS6R5GKZ3bT+0NHxwUkum6FIbE/wkiS3nDq+VJJ7Z9cGSLM8enT8vXWMGxeEnNHdm3ldx++Vo6rq8O4+ZxNzzuOH2bWgaz3GO1nuX1WHdvf3FpDTdnrvBsb8Z5IbTh3/IMlH5pzjizNi623QtW5VdWSSq47Cb+7un2xguncm+X6Gz5I91XOTPHzq+KIZdvP9v6sNqqo7ZPg8nfai7j5/sekBAAAAANulqq6W5BZJbj7535/Ozjcwn97dRy0htblV1Q2S/K8k90pyyArXfDbD31Se2d3nbWN6AAAAy7aResKdVNWtklx/FH57d39zHcNflqFR27Tjk5yykVzW8JIM/z7cUQt5dFVdtbuna9TunGR6k9fvJnndFuSyMFV1hSS3yVATea0kh2WoibxIdq37TJLLjY6vvM6ltrsWcaZ9qQa0qq6eobnZjZJcPcPzvESG5zDrtR2/lut9bcc+1d2fnndQd3+mqj6RnT8PblFV+3X3BRvMZZa9rU4VAAAA9ggaowEAAABb7bQkz5mziOm2M2Kvn+wkuShHLHCuXVTVzZL8RoZCnItscrrDswcUxUy8KsmfZefnfFzWKCqqqqskOXoUfm13f3+N9cbvlUtW1cfWTnNF46KkZHivbFfByend/eMNjPv2jNhhGQq69iSf28CY746OT99Ag6zxHMnw81u0m82IzdvELUnS3edX1b8mufXmUlqe7v5AVX0kO/9cHpc1GqMlefzo+PwkL15kbgAAAADA1quqo5M8NUMztEstN5vNq6pK8j+TPC2zbxaeds0kf5jkoVX1sO7+ty1ODwAAYHexkXrCsRNmxE5az8Du/seq+lySa0yF71NVR6yzsdq6dffpVfV3Se40CVWGWrr/PXXZ8aNhr1lHzdxSVNUDkvxyhiZRsxqCrdd6N6zc7lrE8Tz7RA1oVe2X4XfqFzM0q9+MjW5GuqEauol/zs6N0S6eoWHfpzYx59jeVqcKAAAAewSN0QAAAIB5fD+zGxcdmOSSSX5qxrljkny4qo7r7letc50rzojdaJ1j1+vSC54vSVJVByb58wyNezZT/DNtKxo0bYnu/nZVvTHJw6bCd62qn+rur64y9LjsepPQS9ax5Pi9ctEkN17HuHlcOhtr2LURZ21w3KxmagduJpElOXsDY8bPfe45uvvHw/1qO9mKn9+RM2Jz73Q55VPZgxujTTw3O/+uX7eqju7uU2ddXFVHJrnvKPyW7j5ji/IDAAAAALbOTZLcZdlJLNCLsuvN+RdkuOn/i0kOSnK9DDfn7nDDJO+uqlt39+e3I0kAAIAF2q56wv9SVRdL8uBR+Kwkb5tjmpOSPH3q+KAkj0jyrHnzWYcTc2FjtCQ5rqp+t7svqKpLJvmFGdfvVqrq8klenuSOC5pyXfWQS6hFTLJv1YBW1XWTvCLJTRc05Uaf52Zr6MaOXCG+UXtbnSoAAADsERb1xQwAAACwbzitu28y43H97r58hj/MH5ddCwoOSvLyqrrXOtfZkqZlI5vdwW8Xk4KYv07yK1ns9y57WoOrcRHR/kkeudLFNXSkOnYU/mx3v28da11qztw2YuHvlVXManC2z+juRTz/3flnOGtHzG9vYr7NjN1dvDrJt0axx61y/QkZ/j9l2vMWmhEAAAAAsGw/SvIfy05iHlX1hOzaFO3VSa7c3T/T3Q/u7vt297WT3DLJR6euOzLJO6rqkG1KFwAAYFG2q55w2oOSXHwUe3V3nzfHHCcl6VFs/G+6RXlDknOmjq+cCxulPTzJwVPnPtXd79+iPDakqq6Q5NQsrilakhwwx7XbWYu4T9WAVtUNkrwni2uKlmz8eS66hm5Wnd5m7G11qgAAALBH0BgNAAAAWJjuPqu7X5bkJhlu9pi2f5KTq+qodUx1yQWntl2ekuQ+M+JnJPnLDLtK3jrJlTIUXhzS3TX9yLAj5p7u3UlOH8Uevcr1d0hytVFszR0aq+qi2bkwDHZ346LMZNg5d6M2M3a30N3nJvmrUfh+VXXZ8bVVtV+Sx47Cn83wmQMAAAAA7Jl+nORjSV6c5JeS3CzDd6mPWWZS86iqSyf5w1H4Od390O4+Y3x9d384ye2TfGgqfK0kT9y6LAEAALbfAusJp81qYHbSnHmdnqEh1LQbVNUt58xlPWudm+RVo/COWrrjR/ETF73+Arw0yTVnxD+W5I+S3DfJTye5XJJLJDloRk3k725i/W2pRZyyT9SAThrAvTbJZWac/sckT0vy80lunKGh+8WTHDDjub5sQSktuoZuVp3ehqhTBQAAgOWZp7s+AAAAwLp094+q6pFJLpudizwukaEBzp1mDrzQD0fH53T3bt0sraqOTPLUUfj8JL+R5Lndff46p9rjd33r7q6qlyX5X1Ph61TVrbr7AzOGjAuVfpL1Faudm+SC7Nz8/03dfd+5Eobt890ZsYttYr7NjN2d/GWSX8+Fv8sHZihiHd9IePckR41iL+ju8Q6+AAAAAMCe4WVJnj+5SXwnVbWEdDbsCUkOnTr+9yRPWm1Ad3+vqh6e5JMZvhNNkqdW1Qu6++ytSRMAAGA5FlBPmCSpqmsnue2MUx9Y0L8jj8/OTawX5SVJHj91fN+qOibJTadi5yd5+RasvWFVdc8kdx6Fz0xybHe/c46pNlwTuY21iPtaDehjk1x3FPuPJA/p7tPmmGdRz3XRNXSz6vQ2Sp0qAAAALMl+a18CAAAAML9JEcixSb4zOnXHqnrwGsO/OTo+vKoOX1hyW+PeSS46ij2lu581R0FMklxqgTkt00uTjJsVHTe+qKoOTXL/Ufhvu/uMtRbo7guSnDMKX3X9KbIIk90jWZ/x+zVJDtvEfJsZu9uY7ML7tlH4sVU1/v768aPjczN81gAAAAAAe6DuPntWU7Q90L1Gx8/u7h+vNai7P5fkTVOhSyS53yITAwAA2F1ssp5whxMWm9UuHlpV4xrATevuDyf5+FTokCQnjy57e3d/bdFrb9JDR8c/SXKvOZuiJZuviXxptrgWcWJfqgEdv7bfTXLnOZuiJYt7rouuoZtVp7ch6lQBAABgeTRGAwAAALZMd385O+/Ut8MfrtFM6eszYjdaTFZb5udGx2cnee4G5rnaAnJZuu7+QpJTR+GHVNUho9iDsuuOfS+ZY6nxe+VaVXXwHOP3ZbNuytpIk7NLbzaRfciZM2LX3sR819nE2N3N+PPyKknuvuOgqnY6nnhtd39rqxMDAAAAAPY+VXVoVd21qh5dVU+uqidV1SOr6uYzNm1YbZ6LJ2JdggYAACAASURBVLnJKDzPDeKnjI4fMMdYAACAPcom6glTVQdkaKy2lS6Rrft32bgm7vKj4xO3aN3NGNdEntLdH9rAPJuqidzGWsR9ogZ00kDu1qPwSd39xQ1Mt6jneq1NjJ1VfzerTm8z1KkCAADAEmiMBgAAAGy15yX5/Ch2tay+e+Os4plxQ5zdzZVGxx/s7vM2MM+44GRPNi4qOizJfUex40bHZyV5yxxrjN8rF0ly9Bzj92Xj3VeTobhvXtfYbCL7kI/MiN1sIxNNij1394aR8/h/ST49ij1+6r8fm12/z37elmYEAAAAAOx1Js3Q/i7D3yNOyXDj+Z8keUaSk5J8OMnXq+qPq+qS65jy8tn5u8vvz3kj8cdHx3dyYy0AALCX20g9YZL8fJLLjmJfS/Ivm3yMrZXHRr08yUr1hGcm+ZstWndDquqgJEeOwv+wgXn2T3LLBaS0HbWI+0oN6Pi7jGRjr+2RWVxjtA3V0K0w9rtJPrOJ+WZRpwoAAABLoDEaAAAAsKUmhSFPn3Hqt1e5seNdM2IPnjQC2l0dMTo+a94JquqIJMdscP3zR8f7b3CeRXp9dm2+9egd/1FVV09yu9H5V3T3j+ZYY9Z75RFzjN+XnTMjtpFCpTtsNpF9RXefmeQLo/C9q2oj39PeNbvucLrVtuxzprs7yV+OwnevqqtMdgQeF51+rLs/sKj1AQAAAIC9W1UdUVXvytAM7ZgkB65y+RFJnpLks1V1+zWmvtToeNZ376sZX39gkuvMOQcAAMAeY4P1hMnshmWP7u6bbOaRXRse3b6qFr5RZHd/M8nbVjj98u4e1+Us27geMtlATWSSeyQ5dJO5JNtTi7jsGtDtsqjX9sGbTWTKdavq2vMOqqprJbn+KPzh7r5gMWn9F3WqAAAAsAQaowEAAADb4eTsugPbFZP84qyLu/uMJB8Zha+aXXf02518f3Q8q3hkLb+S5JANrv/d0fEiiok2pbt/kOQ1o/CdqmrHzorHzRg23tlxLe9Mcu4o9tCNFMnsgz49IzbX7pyTHT2PX0w6+4x3jI4vn+SeG5hn5ufnFtvqz5mXJvne1PF+SR6bYXfX8Y6/z1vw2gAAAADAXmpyQ/sHk9x5dOq7SU7N8LeM1yU5Lcn0jbOXTvKuqrrrKtOfNzpe7Sb+WWZdf7055wAAANjTzFVPWFU/leTuo/DXM7tZ0UZyGduqeqgT54wv07geMtlYTeSvbTaRZNtqEZddA7pdNv3aTja6fMJi0vkvj9nAmFmfGeP6vEVQpwoAAABLoDEaAAAAsOW6+ydJfm/GqadW1UpFIH8wI/aMyQ5vu6Ovjo5vU1UXW+/gqrp+kqduYv2zR8eHV9UlNzHfooyLi/ZLcmxV7Zfk2NG5f+nuj84z+WQnzReOwvsneWVVXWSuTPcx3X1mki+Pwg+aNDtbr19JcrXFZbVPeP6M2DOq6qD1TlBVd05yn8WltG7jz5mFvvbd/Z0kLx+FT8iuRXTfSfLKRa4NAAAAAOydquqiSd6Ynb/P/HSSByS5ZHcf090P6e4HdvctMtyI/6Kpaw9KcnJVXWGFJb41Or7kKn/7muWnZsTcVAsAAOzVNlBPeFyGmrBpr5rMs1mvTnL+KPaoOWuo1uvtGf4dOP24bHd/cgvW2pTu/naSH4zCd5lnjqp6TJKjF5VTtrgWMcuvAd0u4+eZzPnaJvnfSa65gFymPWHS3H5dJteO68p+lGFzzoVSpwoAAADLoTEaAAAAsF1emeRTo9jlkzxu1sXd/cYkp43ChyV5x6SAZG5VdfGq+o2qesRGxq/hH0bHh2Yo/lhTVR2V5C1JDt7E+h+fEbvHJuZbiO5+f3Z93Y9LcqckVx7FN7rz5R9l110MfzrJGzfaHK6qrlJVz6mqG2wwpz3FeHfEKyd54noGVtWdkvyfhWe0l+vujyf5+1H4WkleMinSW1VVXTO7Ng/bLuPPmRtM7bq6KM8dHV82yc+OYid39/cWvC4AAAAAsHf60yTT3/W/I8lNu/v1s26g7+6vdvdjkzxpKnxEZt+wnwwbkEx/X7l/kpvPkd+tZ8QOm2M8AADAnmqeesJHz4idvIgkuvsbSd45I4+7L2L+0Vrd3V8bPc5c9DoL9L7R8dFVta6axKq6W5L/u8hktqEWcdk1oNti8p77zCj88Kq68XrGV9WjszUN4A5O8ob11HxOrnlDdv15v3LSxGwrqFMFAACAbaYxGgAAALAtuvuCJL8749RvVtVFVxj20CRnjWJXS/LBqvrtqlrzxpCq2q+qjqmq5yf5zwyNnC43R+rr9fokF4xiv1FVv1dVB6yS30OTvD/D80qS72xw/Q/MWP+ZVXWfqjpwg3MuyninxmskefYodl6SV2xk8u7+WpJHJenRqbsm+UhVPWK112CHqrpYVT24qt6Q5HNJ/luSWTuQ7k1ePCP2J1X1S1VVswZU1SFV9ZQMN48dnOTcrUxwL/XL2fXn9rAkb6mqK6w0qKp+Icl7c+Fn2A+3Jr0V/dPoeL8kf11V89zkt6rJDrjjxnFjz1/UegAAAADA3quqLp/kMVOhLyZ5QHev+d1qd/9ZkrdPhR5eVbv8fam7z0/yj6PwI9eZXyWZtZnPxdczHgAAYE+23nrCqrpDkmuOrvlUd39kgenMarJ2wgLn31O9dkbsNVX1gJUGTGrL/leSNye5yCS80ZrIWbayFnHZNaDbafzaHpjklKo6eqUBVXV4VT07yV/lwvuSF/Vcd9TS3TDJ+6rqlqvkcYsMTexuODr1jSRPWVA+u1CnCgAAANtvzX9oAwAAACzQa5P8TpLrT8Uum6FJ0DPGF3f356rqQRluPDlo6tTFkvx+kqdW1fsy3HDy1STnJLloksOTXCnDbmw/PTneUt39mao6Ocmxo1O/k+S4qnpdkn9N8r0kl0py7ST3TnL1qWt/kKEw43kbWP+rVXVKkukdGS+b5E1JzquqL2XYrW5clPGY7j5t3vXm9PIkf5hk/6nYdUfXvLW7v7XRBbr79ZOCqt8bnbrqZP1nVNWpSU7LUADz/SSXyPDeuEaSmye5UfaAHRsXqbs/VFVvTnKfqfD+GRpP/UpVvTFD8c15SS6T5GYZ3mNHTl3/xGhUNZfu/lRV/XaSZ45O3TPJ56rqHRmKt76aoUDwahleo+lirjOS/HWGn/92eXOGZpWXmor9TJIPV9V3k3wlMxrldfdN5lznL5Ics8K593X3x+ecDwAAAADYNz0uO/996Xe7+wdzjH9mLvy7y0FJ7pbkpTOuOznDTbA7PLqqntfdH1tj/idk15v7E43RAACAfcd66glnNSh7+YLzeHOGBk+XmIrds6qO7O4zF7zWnuSkJE/NzjWOh2bYSPGfk7w1Q23ZjzPUk90syc8nufTU9Z+cXLeohlVbVou47BrQbfbnGRpyTdfWXi7J31fVe5O8M0OD+Qsm8dskuXuG13+Hd2eoYRv/vDbi/yT5tcn810vygUlt8DuSfGlyzZUyfDdzuyTjTV87yeO7+xsLyGVF6lQBAABge2mMBgAAAGyb7r6gqn43u+429+TJDSLfnzHm3VV1uySvy1DYMO1iGW40uet43JL89yS3THKdUfyKWbt50Y+TPDBDYcxG/UaSO2T4uUw7KDsX30w7dIX4wkw1bbvnKpeduIB1fr+qvpKhqdJ4B73LJnnw5MHOHpfkFkkuP4rfMLvuqjj2p939gqrSGG1O3f1nVXVEhuLBaYckue/ksZLvJ/mFDIWE26a7z62q/5HkZTNOXzxDsd8ivClDQdv4Mz/Z/YsGAQAAAIDdx89N/fdPMvytaR7vS3J+Lqy1vV1mN0Z7dZKn5cK/xRyY5K1Vdbfu/sSsiavqwZmxadDEBXPmCQAAsEdaq54wQ/Or+4+HJXnFgvP4YVW9IclxU+EDMzR8Wunfbnu97v5xVT0ww7+PLzo6vWPT2tWckaFm8LgF5rTVtYjLrgHdFt19VlU9PMlbsnOTuSS5/eSxmn/L8Fz/fEEpfSHJw5O8YZJPZfge5nbrGNtJHtfdr19QLqsvpk4VAAAAts1+y04AAAAA2Ofs2DVv2mWSPGGlAd39oQxFNC/JUDyyUZ3k1CT/sIk5Vp68+9tJ7pzkA3MO/UqSO3f32ze5/icz3OTzuc3Ms0VWKzb6aoYdBjetu09Mcuskf7fJqc7NcCPTf246qd1cd38tyc9mvvfNeUl+vbufvDVZ7Ru6+7eS/I/MVwz35STHdPdpW5PV6rr7pCSPSfLdLVzjJ0leMOPUN5JsSwEbAAAAALBnq6pDktxsKvSlJEdU1VHrfWTYUOScqTlmbkLT3ednuHn3vKnwFZP8c1X9ZVXdtaquU1U3rKoHV9XbMvwN4sDJtV8eTXlOAAAA9h2r1RM+LLs25Hpfd5++BXmcPCN2whass0fp7o9m2Lj2q3MO/UCSW3X3Fxee1BbWIi67BnQ7TXJ9YJLvzDn0bUlu191nLzift2TYLHSe70XOSvLw7n7hInNZizpVAAAA2B4aowEAAADbqrs7ydNmnPr1qrr4KuO+2d3HJ7lGhl0YP5Gh0dlavpvkbzI0H7pqdx/T3R+cO/F16u4zMuyW99+SfH6Ny09P8j+TXKe737ug9d+fYbfCeyT5ywy7NX4lyfeSXLCINTborUm+ucK5kyaNkBaiuz/W3XdKcqskJ2XXG4pW8tUMBW6PSnK57n5od5+5qLx2Z939hSQ3SvJbWb2I7bwkr0ly0+5+5nbktrfr7mcluX6Sl2X1IrMzk/x+kut394e3I7eVdPdfJblCkkcneXmSj2bI74cLXGZW47cTu/tHC1wDAAAAANh7XS4XNh5LkqOSfGEDjyOm5rjUSotN/vb0iAw3tO5wUJLHJzklyb9nuNH/1UnuOXXNm5K8dDSdxmgAAMA+Y7V6wiS/NCM+q4HZIvx9kjNGsetU1W22aL09Rne/L8mNk/yfrP1v1tMy1N/dtrvXW7c3ry2tRVx2Deh26u43ZqgbfEFWr/26IMOmxPfp7nt195Z8d9Hdb0tyvSR/kdVr6b6R5LkZfu6v2opc1qJOFQAAALZeDd8dAgAAAOx5quoySW6WYYfISyc5NMn3MzRD+3KSTyU5vZf4BUhVXSvJLSc5XmyS35eT/Gt3f3pZee1rquoaGQpmLj15HJShWdy3M9zY9CnFJReqqhtlKGY7IsOuq99O8ukk7+/u7y0zt71ZVR2c5GeTXDnDTXsXJPl6hpvlPtbdy2xuuK2q6pVJHjoV6iTX6O61ig0BAAAAgL1AVR2d4ab0HU7v7qPmGH+zzN6AYTO+2N1XXWPdm2fYuOYWa8z14yR/mOQPJtc/ZurcE7v72ZtJFAAAALZCVe2f5OYZNoI8IskBGeo1v5DktO7+2hLT2xL7Sg3opHbtZ5JcO0ON5X4ZGuH9R5IPd/dZ25zPgRm+X7n+JJ8LMjQV+0KGOsaFbca7KOpUAQAAYLE0RgMAAAAAYLcxaXr5pSQHT4VP6e67LyklAAAAAGCbLaAx2q2T/NOC01p3DlX1c0nuneR2SS6f5PAkZyU5PcnfJHl5d39hcu37ktx2avjPdvc/LjBvAAAAAAAAAIA9ygHLTgAAAAAAAKb8YnZuipYkf7GMRAAAAACAPdY3R8d/29133a7Fu/tdSd611nVVdWCSm02Fzk/yz1uVFwAAAAAAAADAnmC/ZScAAAAAAABJUlUXS/Kro/Dnkrx9CekAAAAAAHuur4+Or7WULNZ22ySHTB1/sLt/uKxkAAAAAAAAAAB2BxqjAQAAAACwu3h6kiNHsWd19wXLSAYAAAAA2DN193eSfGIqdFRVXXNZ+azihNHxi5eSBQAAAAAAAADAbkRjNAAAAAAAlqqqLlVVz0jya6NTpyd50RJSAgAAAAD2fO8cHf/iUrJYQVVdPckDpkLnJHnNktIBAAAAAAAAANhtaIwGAAAAAMC2qqoXV9XHJo8vJ/lmkifNuPQ3uvu8bU4PAAAAANg7PC/J+VPHT6iq6y8rmWlVtX+S5yc5ZCr8+939wyWlBAAAAAAAAACw29AYDQAAAACA7XaNJDeePK6QpGZcc1J3//W2ZgUAAAAA7DW6+3NJXjIVOiTJ26vqevPMU1UHV9Vxa1xzwBzzHZjk5UnuPBX+UJJnzZMXAAAAAAAAAMDeSmM0AAAAAAB2NycnecyykwAAAAAAtlZVXbGqjho/klxudOkBs66bPI5YZYlfS/KvU8dXTnJaVf1BVV1plbwuUlV3rqr/m+RL2bnB2ix3q6rTquqXV5p30mDtvpN8Hjp16uwkx3b3T9ZYAwAAAAAAAABgn1DdvewcAAAAAADYh1TVqUnuMBX6YZIzkrw/yYndfeoS0gIAAAAAtllVfTHJVTY5zcu6+7hV1rhSkr9Ncp0Zpz+f5FNJzklyQJLDkhyV5BpJ9p++sLtrlTV+Pslbp0JfTvLJJGclOTDJZZPcNMnFRkO/leSe3f3BleYGAAAAAAAAANjXHLDsBAAAAAAA2Ld099HLzgEAAAAA2Dd095eq6hZJnp/k4aPTV5s81nLOnMtecfJYzT8mOba7Pz/n3AAAAAAAAAAAe7X9lp0AAAAAAAAAAAAAAGyV7v5edz8iyY2TnJzk7HUM+0qSVyR5YJLLrXHtJ5K8LMnX1kolyXsnc95OUzQAAAAAAAAAgF1Vdy87BwAAAAAAAAAAAADYFlW1X5IbJblekkslOTzJuUm+k+SLSf69u7+0wbmPSnLDJFdKcliGTYy/k+Q/knywu7+1uewBAAAAAAAAAPZuGqMBAAAAAAAAAAAAAAAAAAAAAAAAS7ffshMAAAAAAAAAAAAAAAAAAAAAAAAA0BgNAAAAAAAAAAAAAAAAAAAAAAAAWDqN0QAAAAAAAAAAAAAAAAAAAAAAAICl0xgNAAAAAAAAAAAAAAAAAAAAAAAAWDqN0QAAAAAAAAAAAAAAAAAAAAAAAICl0xgNAAAAAAAAAAAAAAAAAAAAAAAAWDqN0QAAAAAAAAAAAAAAAPj/7N15fFT1vf/x93cykw0SCJCwIzsoihtUQVzAurfWqkWtrbWLWpeuV722FtFqtdaqvfdqa7Uu1K3WqiAu2F8VFMUFQZQWUVH2NZAEsicz8/39cSBkJufMQiaZYfJ6Ph55JN/v+S6fcxLwjMx5BwAAAAAAAAAAAEg7gtEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApJ0/3QUA6WaM6SHp+FZd6yU1pakcAAAAAAAAAAAAAACA9siVNLhV+3Vr7c50FQMAAO/RAwAAAAAAAAAAAAAAWYL353USgtEA5w1Xc9JdBAAAAAAAAAAAAAAAQAf4mqTn010EAKBL4z16AAAAAAAAAAAAAAAgG/H+vA7iS3cBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAwGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIC086e7ACADrG/dmD17tkaOHJmuWgAAAAAAAAAAAAAAAPbZqlWrdNZZZ7XuWu81FgCATsJ79AAAAAAAAAAAAAAAwH6P9+d1HoLRAKmpdWPkyJEaN25cumoBAAAAAAAAAAAAAABIpab4QwAA6FC8Rw8AAAAAAAAAAAAAAGQj3p/XQXzpLgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACEYDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkHYEowEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIO4LRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKQdwWgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0o5gNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABpRzAaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgLQjGA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA2hGMBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACDtCEYDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkHYEowEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIO4LRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKQdwWgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0o5gNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABp5093AUBXZK1VOByWtTbdpQBAG8YY+Xw+GWPSXQoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACALoRgNKATWGvV0NCg6upqVVdXq6mpKd0lAUBcubm5KioqUlFRkfLz8wlKAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANChCEYDOlhdXZ02bdqk5ubmdJcCAElpamrSjh07tGPHDgUCAQ0YMECFhYXpLgsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAlvKluwAgm9XV1WndunWEogHY7zU3N2vdunWqq6tLdykAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAshTBaEAH2ROKZq1NdykAkBLWWsLRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHQYf7oLALKRtVabNm1qE4oWCARUXFys7t27KxAIyBiTpgoBwJu1Vs3NzaqpqdGuXbvU3NwccWzTpk0aMWIEf4cBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASCmC0YAO0NDQEBEkJElFRUUaOHAgQUIA9guBQECFhYUqLS3Vxo0bVV1d3XKsublZjY2Nys/PT2OFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALKNL90FANmodYCQ5AQMEYoGYH9kjNHAgQMVCAQi+nft2pWmigAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkK4LRgA4QHYxWXFxMKBqA/ZYxRsXFxRF90X/PAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEB7EYwGpJi1Vk1NTRF93bt3T1M1AJAa0X+PNTU1yVqbpmoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZCOC0YAUC4fDbfoCgUAaKgGA1PH7/W363P6+AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB9RTAakGLW2jZ9xpg0VAIAqePztb1lcPv7DgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2FcFoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANKOYDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaUcwGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIC0IxgNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQNoRjAYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg7QhGAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJB2/nQXgM5hjAlIOkbSEEn9JdVI2iTpA2vtmhTvNUzSYZIGSOouabOktZIWWWubU7kXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsgPBaGlijBkuaaKkCbs/HyGpqNWQtdbaoSnYp1TSTZLOk9TLY8wiSXdZa59p517nSvq5pEkeQyqMMU9JusFau709ewEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACC7EIzWiYwxJ0j6hZwwNNeQshTvd5qkRySVxRk6WdJkY8zjki6z1tYmuU93SQ9IOj/O0F6SLpd0tjHmO9baV5LZBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANnLl+4CupjDJJ2szglFO0HSbEWGollJSyQ9Len/SdoeNe1CSU8aYxL+uTDG5Eh6Sm1D0col/XP3Xkt3771HX0lzjDFTEt0HyGZDhw6VMablY8GCBekuCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACATkcwWmZolPR5qhYzxgyS9Kyk3Fbdb0kaZ62dYK2dbq09WdIgST+R1Nxq3Fcl3ZLEdr+VdHqrdrOkH0kaZK09ZfdeR0o6WNLbrcblSZptjOmfxF4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIUgSjdb5mScsk/UXSZZKOlFQk6Qcp3OMmSSWt2oskfdla+3HrQdbaRmvt/0qaHjX/58aYA+JtYowZLidYrbVvWGvvsdY2Re21QtKJigxH6y1pZrx9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkP0IRutcsyQVW2sPt9ZeYq2931q71FrbnKoNjDGjJH2nVVeTpIuttQ1ec6y1s3fXtkeeEgssmykp0Kr9iLV2Tox96iVdvLumPb6/O2ANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXRjBaJ3IWlsZK6AsRb4pKadV+1lr7WcJzLs9qj3dGJPvNdgYUyDp3DhrtGGt/VTS7FZdfjk1AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoAsjGC37fD2q/XAik6y1H0t6t1VXN0knx5hyiqTCVu23rbUrE6qwbU1nJzgPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWYpgtCxijOkn6dBWXUFJbyWxxIKo9mkxxp4aZ24sC+XUtsfhxpi+ScwHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAlvGnuwCk1MFR7Y+stbVJzF8U1R6XxF5vJ7qJtbbWGLNc0uFRe21NdA0AybPWaunSpVq5cqW2bdumxsZGlZaWauDAgZoyZYq6d++e7hL32fr167V48WJt2LBB9fX16tOnjw455BBNmDBBPl/7MkC3bdumhQsXatOmTaqvr9eAAQM0fPhwHX300e1e282KFSu0fPlylZeXa9euXerVq5f69++vKVOmqHfv3infDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyBcFo01ZDSQAAIABJREFU2eWgqPaqJOd/Hme91g5MwV6tg9EOkvRakmsASMD27dt166236rHHHlN5ebnrmNzcXE2bNk033nijjjrqqITWvfjiizVr1qyW9urVqzV06NCE5i5YsEBTp05tac+cOVM33nij53hjTMvXxx9/vBYsWCBJWrRokWbOnKnXXntN4XC4zby+ffvq+uuv15VXXpl0iNkHH3yga665RvPnz3dde9CgQbrssst03XXXye/368Ybb9RNN93Ucnz+/Pk64YQTEtprx44duuOOO/TYY49p48aNrmN8Pp8mT56smTNn6stf/nJS5wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+wOC0bLLyKj2uiTnr41q9zbGlFhrK1t3GmN6SerVzr2ix49Kcj6ABMyePVsXXXSRqqurY45ramrSvHnzNG/ePF166aW699575fdn9n8ibr31Vt1www0KhUKeY7Zu3aof//jHmj9/vv72t78pNzc3obXvuusuXXvttTHX3rBhg2bMmKGXX35Zzz77bNL17/HXv/5VP/rRj7Rr166Y48LhsN58802ddNJJ+ta3vqUHH3ww4fMBAAAAkN3qQ3Va3fCJmsKNSc3rE+inAXlD5DOxg6RDNqT1DZ+rKljRnjKzRq4vT8PyR6sgp1vK164J7dLa+s/UbJvbHMvz5WtYwRjl+wpSvm+qNIebtbbhM5UEeqt3oG+6ywEAANgv1IR2aUvjevXLG6zuOcXpLicjVTSXa0PjaoVt219kU5TTQwcUjJTfBFK+785gpbY2bdSQ/BHtug9vCNdrTf2nagjXp7C6jtM3d6D65Q6K+MVFbpz7/09VE4r975CFOd01uvDgVJYIAACAfRUOSrtWSsFaqfdEKc6/DwAAAAAAAAAAAAAAAKRLZqfeIFk9o9rbkplsra0xxjRIym/V3UNSZdTQ6H3qrLW1yezlUluPJOcDiOOhhx7SJZdconA48iGRESNG6KCDDlJhYaHWrVun9957LyIA7P7779e6des0d+7cjA1H+/3vf6/rr7++pT1mzBiNGTNG3bp10+bNm/XOO++ooaGh5fhzzz2nGTNm6Pbbb4+79p133qmrr766Tf9BBx2kUaNGKS8vT+vWrdPixYsVCoW0aNEiTZ8+Xccdd1zS53HDDTfo5ptvjugzxmjMmDEaNWqUioqKVFlZqffff1/l5eUtYx577DFt3rxZ8+bNy9jvEQAAAIDO8XrlS3p6218UVtuAgEQMyB2iqwbfqJ7+6Ax8x+bG9fq/DTeqKrijHVVmH598ml52iY4rOS0l61lr9fKOv+vFHX+TlY2xb44u7HeFJvU4MSX7ptKndct138bb1BCukySN7/4lfb//1Qr4CPUGAADw8tL2pzSv4mkFbVBGRueWfV9TS76S7rIyRsgG9fDmu7W0+q2Y47r5inTFoF9pWMGYlOwbtmE9te1+LayaJ0nKkV8X9f+xJhYn/29B7+5coMe23KOQgimprbMckD9KVw6a4RnW90ndcv15460Jhb0NzR+law+4I9UlAgAAIBnBOum9S6U1j7sfP/Q30kHXEZQGAAAAAAAAAAAAAAAyBmkq2aV7VHtffuV0vSKD0Yo6cJ/W3PZJmjGmTFJpktNGpGLvVLHBoFS+Id1lZL/SQTJZHCi1bNkyXX755RGhaIcddpjuvfdeTZ48OWJseXm5ZsyYoT//+c8tffPmzdMNN9ygW2+9tdNqTtTy5cu1cOFCSdJZZ52l2267TWPHjo0YU1lZqZ///Od65JFHWvruvPNOXX755Ro6dKjn2kuWLNF1110X0XfCCSfonnvu0bhx4yL6y8vLdcMNN+i+++7TG2+8oRUrViR1HrNmzYoIRfP5fLryyit19dVXa8iQIRFjrbWaM2eOfvKTn2jdunWSpFdffVUzZszQbbfdltS+AAAAALLHuoZVemrb/e1aY1PTOj26+X/1o8E3tjlmrdWfN95GKJqLsML627Y/a1jBGA3OH97u9VbUfaAXdjyZwL4hPbrl/zQ0f7T65w1u976p0hRu1J82/EaNdm9I+Uc17+nlHU/rzNIL01gZAABA5lpeszjiHtDK6ultf9HQ/FEpC/ja3/2z4tm4oWiSVBuu1h833qLfjnhYOab9//739s5XW0LRJCmkoB7ZfLeG5Y9Rn9y+Ca+zrWmTZm35Q7vrSYe1DZ/pqa336/sD2v4yocZwg+6Luv8HAABABmuqlF47Wap433vMh9dLDdulI+/qvLoAAAAAAAAAAAAAAABiyN5UoK4pOrBsX96JXC+pJMaaqdwn1pr76gpJM1O0VnqUb5CdzsMOHc38/ROp/9B0l9Fhvv/976upqamlPWXKFL3yyisqLCxsM7a0tFT33XefRo4cqWuuuaal//bbb9cFF1ygQw45pFNqTlRFRYUk6dprr9Xtt9/uOqakpEQPP/ywKisrNWfOHElSKBTSgw8+GBFGFu3KK69UMBhsaZ999tl66qmn5HcJ0SstLdWf/vQnDR8+XNdee622b9+e8DmsXbtWl19+eUs7Ly9Ps2fP1qmnnuo63hijs846S5MnT9YxxxyjVatWSZLuuOMOXXrppRo2bFjCewMAAADIHv+uWZKSdT6pW66GcL3yfQUR/duaN2lb86aU7JGtPqp5LyXBaB9Vv5fU+OU1izMqGO2TuuWuoQgf1bxLMBoAAICHl3c87dq/rOYdgtF2S+Y1T22oWp/Xr9TowoPbve/y2sVt+qysltcu1tTcryS+Tk3bdfYn/655XyEbUo7Jiej/1OP+HwAAABnIWmnRRbFD0fZY9Wdp/K+lQKreygkAAAAAAAAAAAAAALDvfOkuAB3KZtkcAAmYP3++li5d2tIuLi7WU0895RqK1trVV1+tr3xl78Mc4XBYd999d4fV2R5TpkzRbbfdFnfcb37zm4j2a6+95jl28eLFevfdd1va/fv310MPPeQaitbaNddco5NPPjluLa3dcccdqq/fmw959913e4aitVZWVqYnnniipR0KhTL2ewQAAACg4+0MVqZknbBCqgnuatNf1bwjJetns53BipSsUxVM7lrvDKVm31TZ6VF/qn5GAQAAss26hlVa0/Cp67Gq5sy610un6lBVUuNTdn/u8Voo2fvbZO/zM02jbVBjOPr3nUlVKbrOAAAA6ARrnpA2vZDY2FCdtHNFx9YDAAAAAAAAAAAAAACQIILRsktNVLtgH9aInhO9ZmfuA2AfzJo1K6J95ZVXasCAAQnN/e1vfxvRfvLJJ9XY2Jiy2lLl+uuvl88X/z9h48aN09ChQ1vay5Yt8xz75JNPRrSvuuoq9ejRI6F6ZsyYkdA4SaqtrdVDDz3U0h4+fLguu+yyhOdPnDhRxx57bEv7+eefT3guAAAAgOwStM0pW6vRtn3YvcHlAXhEStU1arQNadk3VRrD7vW7/VwBAABAer3qZc9j3EPtlexv2vK6L02W1/25W0hYLJl2374v3M4h2esAAACANKnfKi35cXJzPr6jbZ8NSxVLndA0G05NbQAAAAAAAAAAAAAAAHH4010AUopgNOmPkp5Ocs4ISXNStD+Qdm+++WZE+1vf+lbCc8eNG6cjjjhCS5culSQ1NDRoyZIlmjx5ckprbI+CggJNmzYt4fEHHnig1qxZI0mqq6tTTU2Nunfv3mbcokWLItrTp09PeI8pU6ZowIAB2rRpU9yxb775purr9z4wcu655yYU8tba1KlTtXDhQknS2rVrtW7dOg0ZMiSpNQAAAADs/7yC0XLkV64vt02/ldQQrnOd0+ASIBArrKvAV5hYkVmi2TYpaINt+lMWvJDkOqnaN1W86gnaoIK2WX4T6OSKAAAAMldtqFrv71roeTzT7vXSK7lotFQFdnkFmqUqGM3rNVu6WNkY59z259FrrE8+5fny2/S79QEAAKAT7NqHILP1/5Cq/i31PHj3Gp9Kb3xN2rXSaZceKx3zpFQ4MLW1AgAAAAAAAAAAAAAARCEYLbvsjGqXJjPZGNNdbQPLqhLYp9AY081aW5vEdmUJ7JM0a+02SduSmWOMScXWQEaorKzU559/3tLu2bOnDjzwwKTWmDx5ckswmiQtXrw4o4LRRowYodzcxB8WKSkpiWjv3LnTNRjtww8/bPm6Z8+eGjlyZFJ1TZgwQc8//3zccdHBdQMGDGgJbktU9Pl/8cUXBKMBAAAAXZBbUJckTe75ZV3Q94dt+q21+tGn5yistg9CuT3g7/Wwe2mgv24a/qckq92/PV/+uOZVtM3i97pGyfIKWPAbf4cGsqVKrOvQGG6QP4dgNAAAgD3e3vmqmm2T5/FUhXtlA2uTDUbr2ODiZNf3CqY+oeR0nVP2vaTr6igN4Xr9/LMLXI+5/Tx6XYcDux2mKwfdkNLaAAAA0A59p0pfWSEtvkLaMDvxeS8d4nzuNkyqXR15rHyhNHuQNPa/pG5DpZ6HSH0mSbLSJ3+Qts6XcntLPcdJRWMkhSVfrlT+llS/WSo5TBp6oVTQz1nPWon3bwIAAAAAAAAAAAAAABcEo2WXz6LaByQ5P3p8hbW2MnqQtXaHMaZSUuu0oSGSPm7HXtG1A9gH5eXlEe1Ro0YlHf43duzYiPa2bUllDXa46KCzeAKByIevm5ub24ypra1VQ8Pehzj2JWQs0Tnr16+PaP/0pz/VT3/606T3a62ioqJd8wEAAADsn4K27esbSQoY9xAqY4zyfAWqD7fNtk/mYfd8X3SufvbzOudGm5rgBa9gseKcElUEy9v0Z1pYRqyAiMZwg7rlFHViNQAAAJkrbMNaWDUv5phMC8Hdn6QiuNham8JgNPd68jLsNVWuyZORkVXbIDq3c/Z6PZJp5wUAAABJBf2lY5+V1j0tvX+V1FguHTxTskHpP7+JPTc6FK21lXfGnrvWo3/NY9IHV7sf8+VJg8+RAt2ljXOdIDVJ6n+qNPhsKbdE6neSlNvD6d/+rrTxBcnkSMMvds5110opv0wyfim/VKr8SFr9V0nWCWTrdUTsuqPVbZCaq6XiMZLxeY+zVqr+VNr8T8mGnPPoNji5vQAAAAAAAAAAAAAAQASC0bJLdDDZyCTnD49qr4iz1+SovZIJRoveK5m52a10kMzfP0l3FdmvdFC6K+gQlZWRWYY9evRIeo3oOZkWuuXzxXiT2T6qqqqKaBcVJf/AdnFxcULjduzYkfTa8VRXV6d8TQAAAACZzysYLcd4/y+/PF++RzBaMg+75ydYYfbwOudUBZR5BSz08PfyCEbLrLCMRut9HTKtVgAAgHT6uPYDlTdviTmG+6e93IK6YknFtWu2TbIKux5LNnjNa3yBrzDpujqSz/iUa/Jcg5/dzsHrOnfF14oAAAD7BWOkA6ZLfadJK38vjfultGtF/GC0zhZulNY+0bZ/8zznI5Z/3xR//ZV3OZ8Hny2FGpwws8IB0ohLpD5HSTYsrX1KWnadVLfOfY0BX5E2vRB/r6U/k3IKpeHfkXIKpKYKKdBDGvZtqaFcqt8obX/bOdZ9pFQ2xelv3imVHSfteN/5uvQYqfuw+PsBAAAAAAAAAAAAAJCFCEbLLv+Oao83xhRaa+sSnH9MnPWij7UORpskaW4imxhjukkan8ReXYrx+6X+Q9NdBvZT1kY+IGKMafeaqVgj0+Xl5UW0m5qakl4j0Tn7snY80d93AAAAAF2DVzCa3wQ85+T5Clz7kwtGc18jmyVz3ZJlrfVcp9hf4tqfbCBDR4t1HTKtVgAAgHR6verluGMIRtvLKxjNJ5/CLuFlsQJ7ExUr/NgtOCwWr3vhTHxNlecrUGPI5XWhyzl7XYc8k3nnBQAAgFby+0iH/db5uuQwaeCZ0sbn01tTOqx/NrL9xcPS5CekiqXSx7+LPTeRULQ9QnXSZ3+K7PvkfxKfv0fJ4dLYn0sDv+q0a1ZJ9ZulDXOkHYudALXaNXvH9zhIKj1WChRLvlyp21Cp71SpaETyewMAAAAAAAAAAAAAkEYEo2URa+1mY8xH2hs65pc0RdI/E1zihKh2rHfmz5N0aYy5sRyryJ+9D6y1W5OYD8BDr169Ito7d+5Meo3oOSUl7g9ht0coFEr5mu0RfY6VlZVJr1FRUZHQuD59+kS0Fy1apEmTJiW9HwAAAAAEbdC1P1YwWr7HA/huD+x7P8Sfn0B12cXrnFMR+hW0QYXl/jq52N/TtT/TwjJi1RMrWAIAAKAr2d60Vf+pXRJ3XCrCvbJdnq9A9eHaNv2puE9O5b1tQ9j995fl+wqTWqcz5PsKtCvU9t/Hknmt6PV6EwAAABlq8qPS0z3SXUX62bD01vnprsJb5QfS299OfPzOFc6Hm27DpCPulAZ/PTW1AQAAAAAAAAAAAADQgXzpLgAp91xU+7uJTDLGjJV0VKuuWsUOVHtFUut3PE/avUYiLo5qR9cMYB+VlpZGtD/99NOk1/jkk08i2mVlZa7j/P7IbM1g0P2BfDf7EjzWkXJycjRw4MCW9hdffKG6OveHVbwsX748oXF9+/aNaO/L9wgAAAAAJClom137YwWjeQV8uT387xUI0BUfdvc658Zwg6y17Vo7VvBFjxz3sPJMCxuLFRCXaSFuAAAA6fJG1cuyin/vGLRBz3v9rsbreiUT+JysWGs0JHlv63Xfnp+BYdOpeK3YFUO0AQAA9muBYumbVjr2WalodLqrQWeoXS0tPFvaMDfdlQAAAAAAAAAAAAAAEBfBaNnncUmhVu2zjTGjEpj331Htv1trPd/Zba2tk/SPOGu0YYwZLan1r5sLSnoigfoAJKCkpEQjRoxoaVdVVenjjz9Oao1FixZFtCdOnOg6rri4OKJdVVWV8B7/+c9/kqqpMxx99NEtX4fDYb3++usJz62oqNCHH36Y0NjJkydHtP/5z1gZlAAAAADgLWjdA6r9xu/aLyUXIOAVCNAVH3b3OmersJptU7vWjhVy1sPfy32ObVDYhtu1byrFCj9LRTgFAADA/q4p3Ki3d76a8HjCZXfzCCGOFVzcXrHWSCaguDnc7PmaLd9XmHRdHc07GK3tOXtdh674WhEAACArDP669NVPpNOWSQPPlHwByd8t3VWhI33yh3RXAAAAAAAAAAAAAABAXN5PSWK/ZK39zBgzS9L3dnflSnrEGHOiV9CZMeZrki5u1dUk6aYEtrtR0vmSArvbFxtjnrPWPu+xT76kh3fXtMeD1trPE9gLQIKmTJmizz/f+8fq8ccf1y233JLQ3I8//lhLlixpaefn5+vII490HVtWVhbRXrFihSZMmJDQPi+99FJC4zrTl7/8ZT3zzDMt7QceeECnnXZaQnNnzZqlpqbEHoQ/8cQTlZOTo1DIybB8/vnntW3btjbXEwAAAADiCXkGowVc+yUpz3g87G7dHnZ3DwTwCiHIZrHOuSFcr1xf3j6vHSt4odjf0/NYk21UvsmM70WsgIhG79+9AAAA0GUsrX5LteHqhMc3hhvULaeoAyvaP7jHonkHi6UkGC3G/WuzbVLYhuQzOfHXiXGPnImvqfI8w+YSD9HOxPMCAABAEkoOlY6fE9lnw1K4WcrJk2rXS3OGxF6j/ylSbolUu06yIWnIuVLP8dL8UzqubiRv62vSwnOl5l1SToFU0E/K7S11Gyw1bJdkpQGnS4Fi5+uCAc7nQHGchQEAAAAAAAAAAAAASB1fugvoaowxg4wxQ6M/JPWLGup3G7f7o0+cbWZKqmzVnizpX8aYsVG15BljfiTp6aj5d1pr18Y7F2vtF5L+J6r7H8aYq4wxrcPPZIw5UNKru2vZY4cSC2ADkISLLrooon3PPfdoy5YtCc39xS9+EdE+//zzlZfn/nD3EUccEdGeO3duQnu88soreu+99xIa25kuvPBCFRXtfcjoueee0yuvvBJ33saNG/XrX/864X1KSkp04YUXtrRramp09dVXJ1csAAAAAEgK2mbXfr/x/l0IeT6PYDSXAAGvB/nzMiSMqzN5XTcpduBBImKFN/Twl3TYvqkUKzwiFeEUAAAA+7vXq15Oajz3UA6rsGu/9+ua9t8je4V+7d0jse9NrHW8gt3SKbnXiu7XINbrJgAAAOynjM8JRZOc0Cwv3YZJ37TS1HnSMU9KJ78lnfKOdODVUv+TY+/xTa9I5ASUneB9zN9NGnzOvq+d7dY/I235f9LG56VV90srbpMWXyEtv0FaPlN6ZaL0whjphbHS08XS0z2kJ4zzsegi6dUT97bfvlja+IIU3v0LfUKNUuMOKdQg1a6Vdn4shWL80tEQr4EBAAAAAAAAAAAAAG15PyWJjvKmpAMSGDdQ0mqPY7MkXew10Vq7wRhztqRXJO0JKDtG0gpjzBJJX0jqIekISaVR01+QNCOB+va4TtI4Saftbgck/Z+kGcaYpZKqJQ3fvZdpNa9J0tettZuT2AtAAqZNm6bDDjtMy5YtkyTt3LlTF1xwgV566SUVFHg/vH733Xdrzpy9v/XTGKOf/exnnuMnTZqkwsJC1dXVSXKCxN5//31NmDDBc85nn32m73znO8meUqcoKirST37yE91yyy0tfdOnT9fs2bM1depU1zlr1qzR6aefrqqqqqT2uvHGG/XUU0+psbFRkvToo4+qf//+uvXWW5WTk5PwOitWrND27dt13HHHJbU/AAAAgOzgHYwW8JyT53N/XegWIOAVdtUVH3b3um5S/OCEeLxCBYyMuuf0SHpeOsSqJZMC3AAAANJhTf1nWtvwWVJz2nuPmS284hHyPV/XtP8eOd79a2O4QQU53eKu0xCu8zzmVX86JRqMZq31DtHOwPMCAABAipVOkcrfbNs/7rrY83ofLe14p23/2J+3r55jnpSe6+9+7KS3pJJDpeZq6fO/OHXnlUr5/aR/t/P3+V4Qkj78pbTidvfjx78g9TxYKhwsrXpA2jBbatwulRwmjbhEUlj68FfS1lfbV0e6rHk0sr16lvMRS6Cnc/6VyyRfQCo7Xlr/j8gxg8+RRv3QGRusltY/J1UskYyRhl4ojbzMCetrzVop3LQ3wC8clHy8NR4AAAAAAAAAAAAAsgH/+pulrLULjDFfl/SI9oafGUkTdn+4eVLSJdbaUBL7hIwx0yX9RdJ5rQ6VSTrVY9o2Sd+x1i5MdB+gK9myZYvWrFmzT3OHDh0qSXrwwQc1adIkNTU5v2lxwYIFOvbYY3XvvffqqKOOipizfft2zZw5U3/84x8j+q+99lqNHz/ec6+ioiKdd955evjhhyVJoVBIZ5xxhh599FGdfHLkb/psamrSrFmzdN1116miokIlJSWqrKzcp3PsSDNmzNCcOXO0fPlySdKuXbt04okn6txzz9X06dM1evRo5ebmat26dXrppZf0wAMPqK6uTvn5+TrllFMiguViGTZsmO6///6IkLjf/e53euONN/TLX/5Sp512mvx+9/9Er1mzRi+++KKeeeYZzZ8/XzNnziQYDQAAAOiimj2D0bz/l1+iD7tL3mEMXfFh9zzjfc7tDV/wvs75MQMTMiUsI2SDniF9EsFoAAAAb1S9lPQc7qH2cI9Gy/cVuvY32vZft3j32V4B0smsk4mvqbxee0SfR9A2K6yw69hMPC8AAACk2OBz2gajGb806Oux5w35hnsw2gEXxJ6XUygN+5a06v62x0b+UCroJ/WaKFUsjjzW7QCp5yHO14EiaezPnA9Jql3bvmC0HuOccK6BX3UPRsvvKw08Y2971GXOR7TRV3kHo522zDmHf5R41zHkPGndU+7Heh8lfel+qXCg9Ewf7zU6U3OVtG3B3nZ0KJokrX/G+XBT/pa0+IrE9ys7Xhr/a+f7tXW+1LBVsmGp15FSQX/n5za/zAlUa65xAtv8hVK3oVJuiRPGVr5IWvJTyeQ434+Rl0h9pznHWmuscMYEitse26Opyvl5zsl1Pw4AAAAAAAAAAAAAaINgtCxmrX3JGHOwpJvkhJZ5vUviHUm/t9Z6vKMg7j41ks43xvxD0n9JOtpjaIWkpyTNtNaW78teQFdwwQVx3vAVg7XOAyJHHHGE7rnnHv3whz9UOOw8nLBkyRIdffTRGjlypMaNG6f8/HytX79e7733noLBYMQ6J510km6++ea4+91888167rnnVFVVJUnatm2bTjnlFI0cOVLjx49XXl6etm7dqnfffVe1tbWSpH79+un222+PCAXLFLm5uXrxxRc1bdo0rVq1SpJzTZ9++mk9/fTTrnOMMbr33nu1bt26iGA04/Ump90uuugibdmyRb/4xS9avkfvvPOOzjzzTBUWFurwww9X3759VVBQoOrqam3fvl0rVqxoudYAAAAAELJB136/CXjOSfRhd8k78CtWWFe2CvgCypFfIbW95u0NrfCan+cr8Ayyc+a1L5AtVeLVkSl1AgAApENNcJfer37T9djYwkO1uv4T16At7qEcNslgtODu0N5Yr4niiX9/m9j9f0O4zrXfb/wK+Pa9vo7iFQYd/fMZ6/rkGe/XLwAAAMgSo6+UKpZKax512jkF0uQnpPzS2PNG/kDa+Ly07fW9fWN+4oRUSdJBv5BW3NZ23vibpR4HuQejDTnH+Xzk3dKCrzjBW5KUky9NuMcJL3PT7QD3MLVEHXC+87nPJCdEq3ZN5PGh30psndLJTo02Kng4p0AqGuWEdBUOkuo2tJ2bWyId9YATIub2b0VT/i51G+J8PeIH0ud/SaymbLLtdelfx6duvR3veAfRtTb0207gmr9Qat4lrX9WqlsfOabvNOfntP9p0ojvSatnSQ3bpb5TpdJjnHC1UINU/ZnzvS4YIMl4h64BAAAAAAAAAAAAQJYiGK2TWWuHdvJ+2yRdboz5iaRjJB0gqZ+kWkkbJX1grV2dor3+Iekfxphhko6QNEBSN0lbJK2V9Ja1tikVewGI75JLLlFJSYm++93vqqampqV/1apVLaFfbr73ve/pvvvuUyAQ/6GMgQMH6plnntFZZ52l6urquHsMGzZML76U+kb1AAAgAElEQVT4orZu3Zrk2XSewYMHa+HChbriiiv03HPPxRzbu3dvzZo1S2eccYb++7//O+JYUVFR3L2uvfZajR8/Xt/97ne1ZcuWlv66ujq99dZbCdVbUhLjN4MCAAAAyGpB2+zaHysEIM8j1Cz64XZrrecD77HCurJZvq9AteHqNv1uQRbJ8LzOJl85xi+/Cbh+r93C7NIhXh2EegAAgK5s0c5/ed63H9fzNG1qXKfGkEswWjvvMbOGey5azLDmxnCD/DkdF4yW6H14g+frqcwMmva6ptHXI9b5d8UQbQAAgC7HF5Am/1U69DdS7Won2MzfLf68QLE09RVpy7+kXSudULHSyXuPD/u29On/SsHavX25JdLQC6T8ftKB10gf37H32EHXSX1PdL4uPUY6/SNp04tSuMkJmyoeFbueCf8nvfE1qSHOe9iOnyu99U0puPvfBgafK439L+dr45NOeMlZp/ozp2/IeU6YWyLyy6T+p0ubXojsP+A8J1RLkkZfJS27ru3cA6+RAkXSwDOkDXMij5UeszcUbc/YjXPjnytSY09oYCxbX3M+b3pJWvKjvf3L48zrNVE67llp+7tS5QdS4WAnNC1Q7PxZDHR3xlUslWq+kHp/KfJnAQAAAAAAAAAAAAD2MwSjdRG7A8nmd9JeqyWlJGwNQPuce+65Ou6443Trrbfq8ccf1/bt213HBQIBTZ06VTNnztTkyZNdx3iZNm2a3nvvPV133XV6/vnnZW3bp1RKS0t18cUX61e/+pWKi4szOhhNkvr166dnn31Wb775pp588kktWLBAmzZtUkNDgwYMGKDhw4frG9/4hs477zz16NFDklRVVRWxxp7+eE499VStXr1aDz30kB544AF9+OGHrtdwj0AgoIkTJ+rkk0/WN7/5TY0aFeeNfAAAAACyUtiGFFbY9VjsYDT3ULPoh92bbZOsx/pd9WH3PF++azBaewPKvEIv9nyv8n0Fqgm1DdPIlMCxVAVHAAAAZJuwDWnhznmux0r8fXRI94l6rnyWFGp7PFPu9dLNeiSjxQtG65YT/5fXeM9PTfBvQ7jOtT/fV5h0TZ3B67Vi9P18o/W+Pl01RBsAAKBL6jbY+UhGTp4T5DXwjLbHehwoTfuX9OGvpKoPnZCnI+6SCvo7xw//nTTqcqlymVRyqNR9eNt6Rv0w8Vr6HCWdtkx653vS5pfdxxSPlQZ+RTpnm7Tj/d3nfEDbur/yiVS9SsrrLeX1SrwGSZr8mPTOxU6om3zS4HOkCX/ce3zot6WP75Qay/f25fWRhl/sfP2lB6T6rdKOd5x2z0OkyU9Encdo6ZTF0vtXSRufT64+ZJaKxdLsJP/cSc7PUW5P589P+cK2x7uPdAL56jdKhQc4P8s9D94dtla8d5y1kg1Ltlmq3+z8+cxp9Tow1CD58iRjkq8RAAAAAAAAAAAAAFwQjAYAabZmzZoOXb+srEx/+MMfdNddd2nJkiVauXKlysvL1djYqD59+mjQoEGaMmWKior2/SGRsWPHavbs2dq+fbtef/11bdiwQXV1derbt6+GDRumY489Vn7/3v/knHDCCTHDv6IlMzbaI488okceeWSf5k6ZMkVTpkxJaOyKFStavjbGqKysLOF98vPzdcUVV+iKK65QRUWF3nnnHW3evFkVFRVqbm5W9+7dVVZWptGjR2vs2LEqLMzMh2YAAAAAdJ6gDXoe8xvv/+XnFSAQ/fB/rDCrrvqwe57ntWtfaIXX/D375fnyVRPa5TIvMwLH4p2/V/AbAABAtvtP7VLtaN7memxKz1OUY3ISDqPqqvY1GK094t7fJri+1/16pgZNe4doRwWjxTj/rvpaEQAAACnS52jpxH95H+8+zPlIlYJ+0uRHpWf6uB/P3R1ylpMvlcV4/5gxUvE+/mLL3B7Scc9JwTrJ+CJDpiSpcIB08iLpo5lS1TKp56HS+Jv3Bsbll0qnvC3VrJbCzVLRKPdQqm6DpePnOMFWf/M74VboOtY8Gvt4zSrpP7+JPab7SKn2i7Y/O7m9nJ/DXZ/sbpdIQ86Txv1Cyu8r7fyPVP6mFKqXBn5VKj5QsiHJl+TjC6EGKRyUAt2TmwcAAAAAAAAAAABgv0YwGgB0ET6fTxMnTtTEiRM7bI8+ffronHPO6bD1M1Vtba2WLl3a0h49evQ+B8316tVLp59+eqpKAwAAAJClgrbZ85jfBDyP5RmPh91tg8I2LJ/xOe2YwWiZ+SB/R+uo0Aqva71nvzyTWJhdusSro73BFAAAAPur16tedu3PkV/H9DhJUuLBxV2XezBarNck7b4/t7HnJ7p+fbjOtT9zg9ESC4L2On+ffAqY3JTXBQAAAHSoPeFnbnoc1Hl1+GP8ksyikdIxj8een2hgnDHSuOulf9+ceG3tMeQ8qe/xUvMuadl1nbMnOkbNKvf+pgrno6VdKa26z/mI5vYz0PdEJzQtv0ySdUL+6tY763jp/SVp0NelwoFS+VtSU5VU+YHU6wgnmK3yQ+fP9shLpV6HS43bpZovpK0LpGC1tOU1qfcEadjF0sAznD2DtVLxWCmH17UAAAAAAAAAAABAJiEYDQCAdpo1a5bq6vY+4DJp0qQ0VgMAAACgKwjaoOexmMFoMR7Cb7KNyt8dwhXrYX+vgLBs5x1a0b7gL69rvWc/r+vdaDMjcCxeHe0NpgAAANgflTdt1orapa7HjiiarGJ/T0kx7vUIl5XkFYvmXDcjI+syor2hcg1xrn2i3xuvOjI3GM3rZ7Fe1loZY3a33c8/z5ffMgYAAADYbxgj9ZooVSxue2zYtzu/ns4w8Ez3YLS83lLjjtTtU3KYNOVve9sjL5PW/k3auULqfZR0wPmSL0cKNUn/uUXa+KITVlU2Veo5TnppfOpqQeba+mryc3a853xEq/40sr3pBe816tZJ65+Ns5GRDrpWql7lhPvZkFR2nBQOOu1ug6URP3BC1XJ7OWvuXOEEuxUOkvpMkkyOZPxSTn7sAEQAAAAAAAAAAAAArghGAwCgHTZs2KAZM2ZE9F100UVpqgYAAABAVxG0zZ7Hcoz3//KLFWrWGK5veUg/1sP+mfogf0eLFRTQHrGCBWLtmymBY/HOv73XBwAAYH/0RtU8z2PHlZze8jXBaPG4R6MZGeX58l3vidt77VJ1f+sdgJyZD0J7hWiHFVbQNitgciXFev3SNV8nAgAAIAuM/IH0XlQwWvGBUumU9NTT0XodKQ3/nvTFQ3v7ig+Ujn5E+ufRcn0dNvbn0sq72vb3Ptr5vOOdtsfG/DSyndtTGvXDtuNycqXxv3Y+Itb+knv4VY+DpTOWS5XLpHXPSKE6acg3pD5HS6+fKW2c23aOJA38qjThXql8obToQvcx8XQfKdWs2re52A9ZacXtkV1bX4tsf3DNvi/vy5XCTVJ+mTTgDCmnUPL5ndC1vic6IWzGSPVbnIC1hi1SyRFS7Rpp10qpaLQTQGiDzkduyb7XAgAAAAAAAAAAAGQogtEAAGjlmWee0ZIlS/Szn/1MpaWlMcd+8MEHOuecc1RRUdHSd+ihh2rq1KkdXSYAAACALi5WMJp/n4PRGlp97f4Qf4788ptAAhVmH68H/Ts6GM0riC5TwjLi1ZEpdQIAAHSWpnCj3t75quuxQXnDNDx/TEs7z2T2vV66WesRjGaM8ky+GtT2Xry9AcLxrn2i63sHo2VmgFh+nNeKAd+eYDT38yIYDQAAAPutEZdIwVpp5R+kxnKp71TpqAcl40t3ZR3DGOmov0iDviaVvykVjZSGTN8bXPbZnyLHFwyUxt8irf2bVL8p8tiI7znXLjoYzZcnDTqzfXUO/ZZ7MNqYHzufSw5zPiJq7e+93uirpG6DpYJveAejTfyT9O9fS/Wb2x47+mFp+MXO1407pGCNlN9Pyslz+p4wMU/H1Zf+LIWbpfevSn4u9n/hJudzwzbpi4cjj0W3E+XLlWSlkiOlgn7ShtlOf06B1Hea1HO8ZJulpkopWO8EvTVskfqfJo28ROp/irR1vlS7VtrxrtTjIKnHOGnA6W3/TmyqlIxfChTtW60AAAAAAAAAAABAAghGAwCglerqat122236/e9/r1NPPVUnnniiDj30UJWVlcnv96uiokLLly/XCy+8oLlz50Y8lJObm6tZs2alsXoAAAAAXUXQBj2PBWIEl8V6CL/1g/uN1j0MIFMf4u8MXqFy7Q5e8LjWe0IyvAIG2rtvqsSrozHcIGutjNmHh4IAAAD2Q+9XL1RduMb12PE9T4+4L/IM37WZca+XyfJ8BVKosk2/1/11ouIFHye6/v4WjOYV0ic559JdxZLiBzsDAAAA+x1jpLE/k8b8VLIhydcF3lZtjBNcFh1eduT/OEFnax53rkX34dJxcyR/gfTl16VFu8PKckukA6+WRvxAskFp57+lzx901ggUS8f83RnTHkO/KX32R2nXyr19PQ6WDrjAe06fY6RV97sfKz7Q+ewLSH0mSdvfjjxucqSBZ0qVH0qr7os65neCo/bI6+18RKw/NrLWPcbf7JxHdNjaAedLIy91vo4VjHZB2Kn1oxukyqVSqEE6/PfS+1d6z0HXtSdsLTqsMFQvbXrR+XCz+WXnI5Z+Jzl/rk2OtPbJvf09xjmhgf1Pcf6MGiOFQ87Pa7BG+vwhqWGrVDRKOvC/nL9XJCkcdNbi3w8BAAAAAAAAAAAQQxf4F3wAAJLX3NysuXPnau7cuQmNLygo0F//+lcdeuihHVwZAAAAAEhB2+x5zB8jGM0reEGKfMDd6yH+rvywu1eAgVcwQKLiXeuO2jdV4tURVkhB26yAye2kigAAANLHWqvXK19yPVbgK9TE4uMi+rzur+OFc3UVYYVd+41MjGvX3mC02PMTXb8hXOfaH+s1WTrFeq3XOqjP8/WL6bqvFQEAAJAljHECsLoyX0D6/+zdd3wc5YH/8c9s0aoXq1hWsS33btwwNrYxxWBMTSCUQAIJBFIuR5IjdwdJCKRwyd3lF3IJKZBASMhBOpcQSiAB23SI6QkYjLtxl9ykXWm18/vjsZBWO88WWbJW0vf9es1rd59nnjKzK2lmV/PdBXfB7G9DWxMUNHSGFhWNg9OegbYDECgAx2fKnSDM/zHMvBkOboCyY8DfC58HhMrhlNUmVKzxJdPvpM9AsNDepv598I9vwr6/x5dXnwoF9Z2Pp34BVp1rQt06jP8E5NfA1Oth5+PxIWez/gvyhiefb/158PrXE8tHXgCVi2DVOdC235SVTodjvtG5Ts0Z3oFVkz5n9n/lQjj50fi6wjHw+OmJbQCmfRleu8m7rvw4WLbKPFfrfgzh7dCy3QTRlU6Hoglm+1eeZd/WslnQ+GLn41AlRHbZ15fBYfsj3uX7XocXP2+WVO3f+n7qcQIFJmhw5IVwcB3sfcEEshVNhBGngi8H8kbAgbehYJRZcGDnY9C6D8rnmt8XAM1bYcdj4A+Z3wM5Jd5jxtqg6VXzO7Bkaufvt65cd+iEZ4qIiIiIiIiIiIiIiGQRfTojIiLSRWlpKX6/n/b29rTbHH/88dxyyy3MnTu3D2cmIiIiIiLSKVkwmj/JhTt+x0/QyaHNbU2o63qBu+1i/2y9iP9osF3obwsGSJdtX3cEomV7WEY6wRCRWJigT8FoIiIiMvhtCK9lc+Qdz7oFJSeT4wvFlfVVuNfg51jPTY70ODl1MFp6/dvWy/PlZzyno8EWyAzx+6RrSFq67UVEREREZIAJDTOLl2CRd3lulVl6U24FTL8h/fWDRXDKKvjbZ2DrHyHWCjWnw/w74terPQNO/iu8cye0NkLNChh7pakrqIfTnoVtD0LLNhh+YmfIUjITr4FtD8QHhk29HoonmOWcjbBzJQRLoWI++Lu8H1B3rncwWv159vFyyux1hWNMwFPM47PEmV8zdcXjYdY3vdtXLbX3DXD6GnPb3mqCojq25R6PMCmRTEUPwd6/maWr7Y/CW7ceWd8l06BiAQQKYc8zsPvpxHVC5VBzJpROg2izCf1b+73O+rpzYe53ze+XgtEmRC3aYgIFw7tgxDIT3JZM2wE48JYJnAwWH9k2iYiIiIiIiIiIiIiIDHIKRhMREeni3HPPZceOHTz00EM8+eSTvPrqq2zcuJG9e/cSDofJy8tj2LBhjBo1isWLF7NixQqOP/74/p62iIiIiIgMMcmC0QJOMGnbkC+XtvbEYLSuF7vbwr5swQ1Dge1C/yMNrbAFJnTsa3vgQ3aEZaQVjOa2UIj+sV9EREQGv5VND1jrlpSenlCmYLTkXFzPch9OnwQIx9wYETdVMFp6z02L9Tg/OwPEAk4QHz5ixBLq0gvRHrrniiIiIiIikkVC5bDw5xCLghsDv+VLW6oWm8VLsBhGXZjZuLmVsGy1CVQ7+A5ULobKBZ31OaVQd45324ZLTZDb1j90lk38jAlwsgmW2Ovy62DE6fH9AYQqoHJR6m0JFpoAt7amxLqyWZ33bfu2u7FXQKgK/v4f3vVnHQ6I+l/H3scHXdixEv6y1Lt+8e+h/lxzv+VdE1K390UonmRCqtpbTIBVfp3Zd2/fZgKvgsWwczWUTIUtv09ve2Tg2veaWZKJ7IH1d9nrt9xnlmQqFpqgxncfTm9e026AwrFQs9wETLZHYMv/Qds+GH6SCWHDgZJJ4Lrw7p/Na9xtN+GN9e8zr2+xa3kX9rwApdNNmONL/wbrf2bqSqbAsqcgJ8nvVRERERERERERERER6TcKRhMREemmvLycSy65hEsuuaS/pyIiIiIiIuIp6kY9y3348aX4x+eQL5eD7fsTyiNpXOxuCwcbCqwBZW7PgxcgdbBAXwQ+9KZ0tt8WtCciIiIymByINrHmwJOedZPzj6Eqpyah3HZ8reOnDt7BaDjJgtF6HirX6kZSrpNu/7bj9Ww9p3IO79OWWHNCnUK0RURERERkwPH1w7/HBwpg5PmZt/PnwuLfwq4nYd/rUH4slM9N3qZovAlQCu/sNociqDgO8muh8UVo3mzKfSGY90Pwh9KbU+0ZsOEXieWjk/w/5egPwYafJ5Y3XGa2yyZvhLmtXAS7nvDuF0x4EQ6e7xVUzI/vb+wVMNY+JPNu9S53XRMIt/o82PGY9zonPQJls+HBWdC8yXudJfdBtNmEL3U8B12N/AD4crz3sQx8u5/KbP3XvtLzsd46/FquXmYC1JpegdZGUzbmcvM7Ia/G/F7w50L0IOx/E8K7gJgJcYtF4NBmKBgJtWeaELEdj0GgEIonwLqfwObfmfJjf2h+Jve/AXueMeGC1ctM+GM22v8WvHwdbP6tfZ19f4fflMKKV0xwmoiIiIiIiIiIiIiIZBUFo4mIiIiIiIiIiAwwUbfNszzoBFO2DTmWgK+4YDRd7N6dNRjtCIIXXNdNEoxmxgs53vs8W8Iy0pnHkewjERERkYHiyX2PWgOMTyhb4VneF8eYg4lry0XD6ZNQuXTCh9PtP+wRMAbZG4wG5vXoHYymEG0REREREZE+5QvA8BPMktb6fph4Dbz8hfjyCZ+EQD4UT4QVL8O7f4a2/VB9MhSOSX8+026Anavjg7/GfMSMaTPpGtjyO4ge6iyrOsEEnhWOgec/SUKoWdEEEygHMPJC72C0hkvNbW6l2Y7tj8bXDz+pM1ztSDkO5JTBmCu8g9EKx0H1KeZ++bH2YLSaM8xzOvpiaA+b7coZBiXTwJ/Tud6Cn0PTyyYUz58L/nzAgUAehKqgZRs4Ptj9DLz7sAmpKptl9ltbkwnA2vaACZ7rGpLnFZrXXd4IE3Qlg8P2RxLL3vlp74/zzEfM0t38O6D+/RA9APv+AWXHmJ/ZTLQ2waGNUDw5/uekJ8K7TeDcWz8Ay/u1CVaeBedsOLJxRURERERERERERESk1ykYTUREREREREREZICxBS74ndRv99nCzSJu5wXu9mC0oXuxu22/HUnwQtRtI0a7ZTyzr20BA12fr/6UTmiHgj1ERERksIu57TzR9LBn3bBAJdMK5njWWY/NdfwEgNv9guku+mLfpRf6m3qdtlib9ZwtmwPE0gnqSxXsLCIiIiIiIkfJlOtM2NaG/wViUH9+fHBZThmMurBnfRdPgOUvwNb7IbzdhIGVz0veZtgcOGU1rP0eHFoPlUtg6r+bsLH8Wqg/Dzb/Jr5N1/mO+TBsuteEhHUYeQEMP7nz8XE/hZVnQuNL5nHpDDjuzp5tYzK1Z5igsvZu58Bd92fDhxO3B0x4mq/L57X+3M4wte4cxwRIlR2TfD7174NZ3/Sum3ytuW3eCsEiCBabx02vwwPTvNvM/DpMvR7cGLz2Vdj0K2g7CJXHmyC7muWw6v0mtE0kHc9+1Cw2TiA+oMyfBxULoGQKHNwA2+6PXz9UDgWjoe0AlM+H9hY4tAGKxsG4q6DieHDbYPtfIbIbgoWw/S+w7zXY8xzEvL9kLqlDG6FlB+QNz7ytiIiIiIiIiIiIiIj0GQWjiYiIiIiIiIiIDDBR1/ufeQNOMGVb24X4XUMAbIEAtvCBocC236JuG+1uNK1Quu6ShTaEHLOv7YEPPQ9k603pBE8cSXiciIiIyEDw2qG/sTe6y7NucelyfI7fs67jmK+7dqJE3ba0ju8HN+9gNAeHkNP7AcJphf6m0X+yY/VcX35Gczqa0gmbs4doD91zRRERERERkX7hODD+42bpC7mVMPYjmbUZNguO+4l33cK74ZXRsPWPECyFsVfAuI911geL4cRHYMv/wb7XoXwu1J4Fjq9znfxaWL4G9r9hyosmmP3Q23JKYcHd8NQlEIuYsuplMOVfO9cZscxsR1tTfNtRF/T+fNKRX5v8cVdlhwP8HR9M/7JZulvxUuf9/Wvh6Q+ZwKlgqQljm3o9vPh5eONb9nFGXQzbH4WI93tmMoR0/wKB9hbY8VezeInsMQvAgbWd5XtfgI339s0cAVq2KBhNRERERERERERERCTLKBhNRERERERERERkgGnv/s/DhwXSCOdK72J374v9beFgQ0GyC/0jsTD5/sKM+4y4yQITcg/f2gLZsiMsI63wiDTWERERERnIVjY+4FkecAIsLDnF2i7VMWbAP7SD0bxj0UwwWjqBz5lK79g2df/J5pDN51Tp7FPbPgpl8XaJiIiIiIhIFvCHYNZ/mcUmkAejL0rej+NAyeTenZuXkefB8KWw6ynIr4PSGeDrEnzvz4UT/gCrzoXWvaas7n0w9Yt9P7d05JTCsLkmSKqrYCkMPyGzvoonwGnPQtt+CBR2htXlVdvbzPpvmPwvnY9dF5o3wY7HTWhb5SKzDwHeuQueudy7n1NWQ9lMaN4Mr9wAm39rykPlMOV68AXBnwfEYOv9sO8fcPDtzLZPpEPLu/09AxERERERERERERER6UbBaCIiIiIiIiIiIgNMm9vmWZ5OSJbtgvWuF7jbLuQPOfbghsEuWYBBONbSs2C0JMELHSEZyQIGWmORfg/LSCcYIp11RERERAaqHa1b+UfzS551s4sWURQosbZNdYxZ4C864vkNbLZotPQCnzOVTqhaOgHF4ViztS7Xl9+juR0NtvO9roHOOlcUERERERGRISNUDnVn2eurFsP7t8PeNZBXAwX1R29u6Zj5dVh1DrSH48v8PTyHDxbHP85Psr1lM+MfOw4UjIIxlyWuO2yOvZ+icRAsgpIpsPg30NpkgtD8ocR1x12VWLb3RXhotnff026AGTfBr8ugrcl7nfMb4Tdl9vmN/hA0roF9r9vXkYHjiQvgQvv7eiIiIiIiIiIiIiIicvQpGE1ERERERERERGSAiVqD0VK/3WcLX+h6gbstTCBZcMNgZwtegJ6HLyQPRstLOW5PA9l6UzrbfiThFCIiIiLZbnXTQ9a6E0pXJG2bLARXx1DgWoLRHJwkwWg9D+VNd5+nCihOFrCW7Dnvb7bzva77xbZ/h/K5ooiIiIiIiAxhviBUzO/vWXgbcSqc+ixs+hVEm6HubBi+tPf6r15mtj/W7XPr8uOg6sT0+ymZAgUNcGh9fPmweZBXHV+WU5rZHLu3j6sbcbjPEnswWrLxpl5vguZcF+7xea/jC8FFYWjeCut+AgfXmSC40ZdAeAf8aaq9/1AlRHbZ66X3tbdA20EI9u/n7yIiIiIiIiIiIiIi0snyKYyIiIiIiIiIiIhkq3Y36lkecOwX53dIJ0Ag4npf7J7NF/H3teShFT0LX7AFJjj4CDo5aYzb/2EZttdKpuuIiIiIDESRWJin9/3Fs64+NIbRueOTtu+L8N0hwXGsx8lHFoyWXttkwWemvtmzPOAECPpSn7P1F9vrsWN7Y26MVjeSUVsRERERERER6UdlM2Dm12DO/+vdUDSA0DCY/xNwulyOMmweLP4N+Pzp9+P4YN73wZ/fWZZTBnNu6YU5VkGo3LtuxHJzO+la7/qqpfHrdTfqInPrOPbxqxab2/xamH4DLLgLJv6zmVPJFHu7QAHMv91ef8pKWPaEvb5gNHzQ+wsH3rPileT1ACMvSL3OYNP0an/PQEREREREREREREREulAwmoiIiIiIiIiIyAATdds8y9MLRrMFCIQ976fTdijIcULWulTBCDb2/ZyLc/if6JMFDPR03N4SdduIWkL6ulKoh4iIiAxWz+9fRYslBOuEshXvHdPZBJ0cHLzXOZKAr8HAde0XbzokC3wOJ22bTLr7PNXxbXiAnk8l26cArW4EF+99m+3bJiIiIiIiIiJ9oOFDcPYGOO6ncOKfYdlqEwKWqZrlcMZrMPdWOPZ2E9pVufDI5+fzw+gPJZYPPwkKR5v79efGh7t1GHWhuZ38L9A96L7mTCid3mXdi7zHH/+J5PMbfYl3+fSboGy2pZEDJVMhL8l+Lhpnbid9zrt++Mlm/uOutvcRqkgezlZ+rJlHtprwaXj/DsgbkVm79kN9Mx8REREREREREREREekRBaOJiIiIiIiIiIgMMNZgtO7/lO3BfrF7ZwiALXArWUjXYDn/xKEAACAASURBVOdzfIQc7+3veTBa6v2c44SyNiyjNRZJaz0Fo4mIiMhg5Louq5oe8KzL9xUyt2hxyj58js8awNvfIbj9zRbAZTjWIK4YMev5UioRN73j1lTH4bb6XF9+xnM6mlKFaCc7rs9VMJqIiIiIiIjI0FRQD2MugxHLwG//oqmUChtgwidh3JWQX9d785v1nyagLFAEvhyoPRsW/6azPr8OFt4Dvi5zH/sxGHuluV99Cpz4CIy8ACoXm9Cyxb+NH2Pcx8Hxd9ueMSZALZmGDyeW+XJg1MVmvw6bl1g/4lQIlUPBKCgc591v+bHmttYy/qgLzG1ejX1uBaPMPrMpGt85jpeL2uCCZnj/Lvs6ODD7Fnv1pM/BnP8xz0cyoy6CqqVQdgwc+yM4ZxPM/R/IrYLxn/QYNsklVFEFo4mIiIiIiIiIiIiIZJNAf09AREREREREREREMtMWswSjpfF2ny3cqyMEoN2NWoMEhvrF7iFfHpH2xDCAngZ/2dp1fY46wjK8Qhr6Oywj3fH7e54iIiIifeGdljfYEtngWbeg5GRyfOldCJrby8eYg0WyYDQfDrlJQpvDsRaCvpyMx0x3n6c6vg3Hmj3Ls/18yh6M1nL41r5/hnKItoiIiIiIiIhkMV8Q5n0f5nwH3Hbwe7yHMeoCqD0D9rwAReMgvza+fvgJZrEZfgKccD/8/T/gwDqoPB7m3AL+FO9PjTjVBHm9fD1E9kD+SFhwF+QfDixbeDc8dhoc2mAel0yBeT809x0HZnwVnr7UbFeHYDE0XG7uV51gAt7W/bizvvpUGH3p4fGXw6tf9p5bzZlmjNIZ0PRKYv3YK8GNwjt3JtaVTANfwCyBJO+Hjb4EiifZ66dcB7kVsOFeWHe79zqnrIaqRfY+pn7BPOfv/BTaW6D2HJhxI/y6xHt9BaOJiIiIiIiIiIiIiGQVBaOJiIiIiIiIiIgMMO1EPcsDvmDKtraL8cO62D2lXF8e+9sbE8ojPQz+8go7g8T9nK1hGemO39/zFBEREekLq5oe9Cx3cFhSujztfkK+PPA6xrQcKw4d9mA0cAg59osqI7EwRVgubkwi3UDfVMe3tn6yPxjNEqJ9eHuTnfcM9XNFEREREREREclyviCQ5LP0QEHy8LNUapabJVPjrjIhY+FdkDc8vq54Apz1Fux9AXw5JqTM1+Xyn9EXmRC3f/yXCS8rnQHTb4Ti8abe8cGxt5kgtL3PQ/FkGHFaZx/l82DM5SY0rKthc2Hip839hg/Bi5+Pry8cB1VLwI1Bfj00b46vH3NZ/OOJ18Cb30nc9rFXmDn486G92xcNlM6AUPnh/TAxsW2HgpH2OjDhbpOvNUtXeTXQsi1x/Ve+BMPmQdFYs/96gxvrvb66a9kO+16Hg+9A234TSld2jKl75yemvvoUs5+aXjP7snwetOyAyE4oGA3BosR+Y20mrC+nDPyHvwCk7QDseBxatoAThOhBs7SHoWAUFI4xQXfdgwVFRERERERERERERI6AgtFEREREREREREQGmGjMEozmpH67L9XF7snCALL9Qv6+Zt13PQytSDcwIVvDMtINhOtpcJyIiIhIttofbWLNgac866YUzKIyZ0TafaU6Ph+q3CTBaA5O0iCuiNvD4OJ0g39THIeHY82e5dl+PmWbX+S9EG0Fo4mIiIiIiIiI9DrHlxiK1sEXgIrj7G2rFpvF2rdjAt+8Qt8cB+bfAbXnwD/+0wRrTfosjLoYAvlmnUn/ApG98Nb3IXoAKhbAwl+YOTs+OOkv8OSF0PiiCTib8CmY9Ln4ccZ/CjbeC+EdnWXVp5hwNccH074AL3+hy7wCJuDNcczjspmQVwstW+P7LZ1ugtl6ImeYdzDawXfg/gmdcxx5oQn/Wv8z2P8G1J5p9lfN6bDhbnjjFvDnmHalx0DJZBMq1vIu7Hw8vu+RH4C8Oqg9A4afmF5YmhuDt38EW/4Ptj9iHo+7Gvx58OYt6W3r2u+mtx5A7dmw9Q+J5cPmwN6/pd9PXg2MWA5T/s0E/LVHYNuDsP8f0NoEB9aaELXqU6B0JjS9DIUNsOcFE/SWVw117zc/F+2t5uegr8LlRERERERERERERCSrKRhNRERERERERERkgIm6bZ7lASfJt1wfZrvYPeq20e5Gk4YBDPWL3UOWfZcsTC4Z277uPo49LKN/A8fSDo4Y4qEeIiIiMvg8ue8R2vEOK15SuiKjvrL1WK+/ufZcNHCcpCFj4R4ef6Z7XJ9qPVu97XwiW4Qc79di+L1gNO/9GnACaZ2LioiIiIiIiIhIlnEcqD/XLLb6Y26GGV+B9jAEC+Pri8fD6WsgvBtySsDn8R5R8Xg49Wl4+3YTiFV5vAlL6wi6mnq9Ccna/HsIFsHoS8w6783BB3O+DU9+ENzD78n68+CY/+oMT8tUoCD1OtsfNUtXm35tFi97nzeLTUe7N79tbstmQ+UiGHEaVC2CYHFimxf+Cd76QXzZ2z9KPfee8gpFg8xC0cCEzr1zh1mS+fs37HXPfzL+ccEoOPFhaG+Bkqner7Wu2iNwaBP4/JA/EnBN6F5PXzMiIiIiIiIiIiIi0i8UjCYiIiIiIiIiIjLA2ILR/E7qt/uSXYwfiYWTBjBk+4X8fc0WvtDT4C/bvu4ejmHb7/0dOBZx0xu/p8FxIiIiItmo3W1nddNDnnXlweFMLZiVUX/2Y72hfgxlT0ZzMKHQPnzEiCXU93Tfpdsu1XG47fg3z5ef8ZyOJltIX6sbIebG7IFvztA+TxQRERERERERGfR8AfAV2utzK5K3L2wwAWs29e83i83ID0DReNjyB/DlQN05UDI5+ZjJBJJsy9HSuMYsa/+nv2cyMBzaCPdP6nxcPBH2v9n52J8HbjvEWlP3lVsF4Z3J1ymbBSXTTFBf8QTY9zps/KW5bXwRChpMYF/NitQhbSIiIiIiIiIiIiLSYwpGExERERERERERGWCiHd+E3E3ASf0Pl7aL3cFcwJ8sxCrHCaWe3CBm23c9D17wDlRIDEbzHre/A8fSHT/dADURERGRgeDVg8/TFN3jWbekdDk+x59Rf/ZjzKF9DOUmDUZzcByHkC+XllhzQn3Pg4vTa5fq+N8aIJblQdO2IGgXlza31Xpcn+wcU0REREREREREpFeUHWOW3pA3onf6kf7TNRQNoD2D/51IFYoGJvys8UXY8HPv+kPrYdW5nY8X3A1lMyBYDE4QcsrgnTth2wPQsg0mfRaqToCCkenPU0REREREREREREQUjCYiIiIiIiIiIjLQRN02z/JgWsFo9ovxI7GwPazLycXn+NKb4CBlCwro7eCF7sEC9nH7Nxgt/eCIoR3qISIiIoPLyqYHPMsDTpAFJSdn3J+C0XrCAcy5Te8Go6UZ/Jui/7DHnMB+XJ8tkp0rJgvRzvbANxERERERERERkTijLoQNd/f3LGQwefrSFPUf7rxfOh1CFRA9BIEiCL8L+CBYBKUzoO59MOJUcJz0xj60GZo3mwC2QxuheBLUrDDtY+3gtoH/8OcQrfsgUAA+XUooIiIiIiIiIiIiA4PezRQRERERERERERlgbMFofif123224AUwQQC62N3Otu9s+ywVW7vugQnZGpaRSXCE67o46f7jroiIiEiW2h7ZwpvNr3jWzS1aRKG/OOM+Q44lBNcd2sFoLq61ruOo0naO0tMA4XT3ear+bfXZH4yW7FwxSYh2knYiIiIiIiIiIiJZp+YMmPBPsPZ7/T0TGYqaXrXX7X4a3v6Rue/PhfbD78nm15vwMwBfEEJVMGw2bP1j5uMHCqByCdScDi1bIX8kFI6F4olQONqEqfn8qftxXdj/pumvoD7zeYiIiIiIiIiIiIikQcFoIiIiIiIiIiIiA4wtGC3gBFO2zXFCODieQQORWNgaBpDtF/EfDUcreKF7OIZt3/c0kK23pBvM5hKjzW0lxwn18YxERERE+taqpgetdUtKV/Soz94O3x0skgWjdUSj9XaAcLrtUq3XYg1Gy894TkdTsnO+SKzFut06VxQRERERERERkQHFcWDud6FiAWz+vQmH2v10f88qfTnDIFQBgXwoPxbevi2z9mWzoXiC6UPhcNmrvcv7sR2haACxNvOa3bq1Z/1GD8G7D5ollfyRMGwOVC6C3U+BP88sW/8I4e3x6467Gnb81cw1VGmC1/LqoGAUDJsF4Z0Q3gFFE0zZwXfg4DoIlpoQuGGzzLZFdpvAtZxh5n7Ty2ZflEyFkilQdowJhxMREREREREREZEhQcFoIiIiIiIiIiIiA0zUjXqWpxOM5nN85Dghz1CucKzFGvJlCx0YSkJO74ZW2IIFuu/r3g586C2ZjB+JtZDjUzCaiIiIDFzhWAvP7H/Ms25U7nhG543vUb+2UKn+PtbLZo5zOBjNcnwecXt2fJ7ucb0t4Pi9emswWnYHiCU754voXFFERERERERERAab0R80C0DLDvh9tfd6+XUw6Vpw26HxRWjeBDtXmZCm6tPgzW97tysYBedsgFgUNv4Snv0oxFp7Pt+8WtOfr9tlYMmC0U5/CUpnQNt+EyYV6PblDXO/C64LTa/Cuh9D9CDUrIB37oJt93v3Oe+H8PzHvesuOAS/KrDP58y1sP5n8Nat0NoIReOhcCyEymHDL+ztpH80bzLLlt+nXvftH3VptznzwL6eqFgIs79tXkst20xoWm4V4Jjb6AETvLbjL3BwPQyba15zzVuAGOQOh8heyBsOweLOft0YOL6+n7+IiIiIiIiIiIikpGA0ERERERERERGRASbqtnmWpxOMBhDy5RFpT7yYP+KGk4R1ZfdF/EdDb4dWpBssEHJs4/Ys8KG3ZBIIF461UERpH85GREREpG89t38l4VizZ90Jpaf3uF97CG7/Huv1N9d1rXXO4Vvb8XlPgovb3aj1PCvT/m2vk2wPRvM7AQJO0HM/RGLhJOcv2b1dIiIiIiIiIiIiKeVW2utqz4JJ19jrbcFo+fXm1heAhkvMEovCX5fBzsczm1/1Mljw88RQNICp18PrNyeW170Pymaa+zkl9r4dB8pmwNz/iS/3CkarXgYjTvPuZ+SFicFrXQVLoHg8zPwqzPjK4dCqLmFUde+DJ863txfpbvdT8Of5vdtnoACih8z9ykWQVwP7/m7Ky2aCEzBhiWXHQMk0EwIX3mley4ECwAF/jglr84XAHzLhg3k1JojN5+8cy3Wh5V0TWrj/H6a+eGLvbUtrE7Rsh6Jx3r87REREREREREREBgC9syUiIiIiIiIiIjLARN2oZ3nASe/tvlxfHvvbGxPKw7EW60X+tsCGoaS3QyvSDaGzjuv2LJCtt2QSCNfT8DgRERGRbOC6LqsaH/SsK/AXMadoUY/7th9jDvXjJ3swWkc0Wm/uu946to26bdbztWwPRgOzT6PticFo4VhLkvMXnSuKiIiIiIiIiMgA5/igbBY0vphYN+qi5G2rlsDOVYnlEz3C1HwBWPQruK8WYim+qOHi2OG5OcnXq3ufdzBa/XnJ2yVTe6YJaQrviC8fdzUUjoYJ/wxruwSphcpNQBtA+bGw57nEPqff2HnfceJD0QCGLzUBUd33S/5IOGc93OMnYyc9Cn89JfN2oUqI7Mq8nQx8HaFoALueiK/b8+zRmUPVEhM02NoIhzZCy1bw55twtWAh5NVC8SSIRWDz700428R/horjoHUfvHw9bLynsz9fCKbfAFOu6/x94rqw7U+w+bfQvAVqzjB9OD7zM7hztSkvm2FC4LpqbQTHb36GY+1AzPzsioiIiIiIiIiI9AEFo4mISK/YtGkTt912GytXrmTt2rU0NjbS1tb5weSdd97J5Zdf3n8TFBERERERGUSirvc/yAac9P7RLFmAgC3kayBcxN/XugeWdehJQJnrutZ93f35sY1rC7E7WiJu+uMr2ENEREQGsnUtf2db60bPuoUlpxD05fS4b+sx5hA/fnKTBKM5fRCMlsmxdbJg5GT95PryM5pTfwg5uRziQEJ5xA3bQ7QdBaOJiIiIiIiIiMggMPZKeOFT8WVF46EyxRdjjL40MRgtpwxqVnivn1sJx94Oz14Jli9ZACd1IFqHYXNgxtfglS92lo35CIy6IL32Xvy5cMpqePajsPtpE8Q07Qsw8nDY2pxbTHjT9j+buoYPQWGDqas71yMYzYH69yUfM1QODZfDutvjyyd9zoQ1+UImCCpdEz4NxRPTX78rpwchbEsfhIPrTJhU44sQKITqk+HVGyG8s2fzkKFp5yrvsMVk3n3IXheLwMtfMIvN9kdhzWfN767WxC/aTClQCBM/A9O+BP4caDtofg7y66DpFdj6J/NzPP6TUFBvgtdClVA+14SquW7877zuj0VEREREREREZMhSMJqISD8bPXo0Gzd2Xkzz2GOPsXTp0v6bUA/cfvvtfPrTnyYSyeDDRhEREREREemxdss/xwac9N7uswcItFhDBGxthhJbOFwkFsZ1XZwM/ikv6rYRI+ZZ1z0cI9m4/SmT8XsSHiciIiKSLVY2PehZ7uCwuGT5EfVtO84Ox1oyPsYcTNIJRrMdJ/ckQDiTY9tk/YfbkwWjZX/YdLJzD9s+GgjbJSIiIiIiIiIiktL4T0DbPnjzOxDZY4K/FtxlwnySGXulCcN641sQPWTCuI7/JQSSfFHCmMtMaNYfxkKsNbF+5s3pz9txTGjZ6Etg7/NQMhWKJx95qFDxeFi2GtpbTdBR9zFHntcZlNbVhE/Djsdg+yMdK8Oc70DBqNRjzvuBWW/LfWb/NXwYxl5h6qZ9EV75UmKbmjNMKJTbHl/e8GHIHW4Cm6IHE9vl15nnrbv680wY3prPpp5vh8pFUGP5rKDpdXjr1vT7EulPPQlFA/Mz9vrXzJLM2z9K3VegCIJFULHA/D5t3moCJX05Zn7tERPe2HAZVBxr76e10fTV+BJED0DJNNOPiIiIiIiIiIgMKApGExGRI/LAAw9w9dVX47r2C1S6evzxxznxxBPfe/zlL3+ZG2+8sY9mJyIiIiIiMjhF3TbP8oATTKt99+CtDpFYi/Uif13sbt9vLi6tboSQk354XLLghe792IPsMg9k6029FR4hIiIiks32Rffy4oGnPeumFsyhImf4EfWf63gfY8ZoJ+pGCaZ5jD/YJAtG43Awmv28JvNQ3oxCf5Osm+y4N9eX5ELILGHbp+Ek54q2NiIiIiIiIiIiIgOK48DU62DKv0PscPBOuu1m3GSCuyJ7IK86vXb5dbDk/+Dx07v154fRF2c2d4DC0Wbpbd1D0VIJFsLSB2DP83BwHVQuhMIx6bX1+U3I27QvJNY1fAhe/w9ob+6yfg7M+k8YdxU8/3FoeRdyq2DOd6F8rlmn/jxYf1d8X/l1cMpqeGgOtO6Nrxt7JRRP8A5Gm/pF2PQrOLA2vnzc1fZtKpthrwuWQltTYnnNGbD4N3BwPYTKzTZ1aHzFbE97BEZdBFWLOutcF8I7IVRh5vinKd7jTv0izPwq7H8TGl+G3c+YAMBD62Hz7+zzFTkaogfMsvm3ydd76/sw4nTzM/Duw7BzFebzoySfL+UMg1n/DcNPhO2Pwr7XoOk1aNkG+/9h6qtPgeplUDrd/B3Iq4Xcit7cQhERERERERERyYCC0URE5Ihcd911caFoH/zgB7niiiuor68nGOy8WKeiQh8GiIiIiIiI9JY2azBaem/3JQvailgvdk8/9GuwSrYPwrGWjPZRxE0WmJBeMJpLjDa3lRwnlPa4vcn2WjnSdUVERESyyZNNjxCj3bPuhLIVR9x/smPIiNtCkKEZjJbsupWOXGD7eU3mx56ZHdvaA4rDsWaPFsZACBBLeq7oegfC6VxRREREREREREQGFcdJPxStK18w/VC0DjXLYc534OUvQPSgCbRa8DMoGJX5+NnEF4DKBWbpLQWj4OTH4G//DI0vmdCiWf8NJVPMUnuWCQXLrep8Exlg3q0mfGzLHwAXyo+D439hQuSWrYZnr4Q9z5n+p99onhOAmf8BL1/X2U/5cTDpszDhk/DsVbDjr5BfC5M+Bw2X2uddcyaeYU3D5sGI0+D1ryW2GXe1eQ2WTE6sK5sBZd/yHstxIO/wl7nk19nnNHypuS2eaJZRF3TWRZvh7dth52OQOwImX2uC7e6rM+FRXurfb9rl15twurzhUNAA5cfCc1ebwDWRvvDug2Z5T7Iv3cEEIT770eT1m35lllTKZpvfAfkjTUhjyxbYvxaCxeZn5uA6KDvG/K6qOgECRbDtftjzgqkrbIDKxSb00fEl9u+6cGij+bnOr/deR0RERERERERkCFAwmoiI9Nibb77JK6+88t7jFStW8Itf/KIfZyQiIiIiIjI0tLtRz/KAk15oQq7lgvxwrIVIzHKxu5P9F/H3Ndt+A6z7rSfrdw9MSD5uCzm+/gpGS3+bM90/IiIiItmg3Y2yet/DnnWVwWom5x9zxGMkDUaLhSn0Fx/xGAORm+TiFQdzUZstaKwnx5620C8vMdqJum0EnRyPsb0D1vwECPqyP+TOvk/t54rJzldEREREREREREQkhYn/DOM/Ac1bTDiXwm/sKo6F054BN5a4n7qGgnUVKIAl95nQNBwTPtcRnFYyBU59Ctpbwd/t/d6p/w41K2DnKhNyNPxECBx+L3TpH73n4CW/BsZcDu/c2WWuPpjyr1A+H9b/DJo3ddZVLoKa01P3m0qwCCqPh11PxpeHys0YNoF8mHSNWbqqXGQPi1r8W3t/x/wHPHmRd90FB83zAxBrh1ir2cfrfwFPW8LmVrwCudXw4udh/V2mLFgKE/4Jqk+G7Y/C2u9B277ONgUNJrytcIwZr3weRA/Bw8fa5y2SSuMas3jZtfrw7RP29juAdT+BZy5Pb7z682HYHDjwJuAzr+WcUvP3I2+EWWfnE7DzcROMWHs2hIaZ8i1/MIGSuVUw6iLTrruOn8FDG2D3UxAsMeGNwaL05iciIiIiIiIi0kcUjCYiIj32wgsvxD0+//zz+2kmIiIiIiIiQ0vUbfMsTzcYzRa+EImFCVsu5E8W2DBUJA+t8N5vNrb97DVOsnHDsRaK8PiHtaMgk8CJZNsrIiIikq1ePvgc+6J7PesWly7H1wsXqNmCqCDzY8zBxR6MRkcwmmM7r8l8v2XaJhILE/QlBqO1WPrJ9Q+M8DD7uWKLdR/pXFFEREREREREROQI+YJQ2NDfsxg4evLefG6Vva57KFqHshlmOdI5HHu7CWHb+icTTDb2is7ws1Ofgrd/BPv+ARXzTcCXr5cu9Zv5DVh5BrTtPzxnP8z6Fvh78OV7Yz7iHYxWfUrydiNOBV8IYpH48vJjO0PRAHx+6Pi8pPJ47758QRNyFiyEBT81S3fDl8L0L0PLdrOvA/lJJueQ/LOIo2T0pbDh7sTyQIEJcBMB2Pwbs3T32lcz6+f5T2Q+dv355vfHvteheAJE9prgyNY9EG2GfX83v+NireDPM7e5VRCq7Lxta4I9z0P0IFQtgRHLzXoH10PpNGhtAlyzbkd4pYiIiIiIiIgICkYTEZEjsGPHjrjHdXV1/TQTERERERGRoSPmthMj5lmXdjCa431RfsQNE3G9w65ykwQ2DBW9GYxmCxVz8BF04v/pNnlYRvrhZL0t4qa/zf05TxEREZGeWtn4gGd50MlhQcnJvTJGsuPsoXwMlTwW7XAwmi3Ey3JOk0w4w30dcVsopDix3BaMNkDOp2z7tDl2iDa3NaM2IiIiIiIiIiIiIoIJ/Zp8rVm6y6+FGV/pm3GrFsHyNbDlPhOwVXsGDJvTs76qTzahZIfWx5ePuzp5u5wys92vf72zzBeEaV+ytykcDcPmwt4X4strVphQtFR8QSioT73e1Ovg9ZsTy3OrILwzdft0lEw1YVI252yEgpGw8OfmcdsBaN4CeSMgpxTW3QHPXuHd1uv56HDMN6F0Jjy+3D72yAth0y/t9Sf80Yy/5ff2dWRo6BrItu81c7vz8fh1dvwl/f7e/I69LlAE0QPmfv5IqFgAw2YDDrjtEGszgWrRQ3DwbTjwlglZG3UxVBwLbQdNefMWaNkGG+81ZXtfMKGU9edBjeXnwnUPh7tlEB4Zi/ZemKWIiIiIiIiIeNKZt4iI9NjBgwfjHgeD6V2ALyIiIiIiIj0XdaPWuoCT3tt9tovyw7EW64X8ycK5hoqAEyTgBDyfg3AvBaOFfLk43b750hZk15Nxe0vUbUv6WuxuKId6iIiIyMC0LbKJt1pe86ybW7yYAn9Rr4wTdHJwcHA9osCG8jGU1/7oznZeE4mFcV034bg6mUyDjm3H4eFYs2d5ri8/o/77i22fHojuy7iNiIiIiIiIiIiIiPSzorEw+V+OvB9fEJatgueuhh2PmzCvyZ+Hkeenbjvjq1AyDbb+EXJKYPSHoHJB8jbH3wuPn25Cj8AEpc370RFvRpzas7yD0cb/E2y4Gw6sTawLlkJbU/pjjLwQNt0L+/7uUemYALS4/ougZHLn48Kx9r6X/A4ePtYERcV1G4CxV0LLu/a2s75lgvJswWjjroLaM03g1L2Wa4TGfRxm3ASvfsWEp0X2QNE4qDwe9rwAjWvs44vYdISiATRvgk2bkgf4Aex/A968JXXf635sllRyq81teHt8efUy8zM57ipYfxds+AVEdpu6k/4CFfPNz+PB9eA4sHMVtIehaglUHJd6XBERERERERHxpGA0EZEhwnVd1qxZwxtvvMHOnTuJRCJUVlZSW1vLokWLKCxM49tzuonFYn0wUxEREREREUkm6rZZ6wJOeoHVIV+uZ3kk1mINX9DF7kbIl0e0/UBCeaahFfYAusTnJugL4idAO4lBZBG3f8Iyemt7RURERLLV6qaHrHUnlK7otXEcxyHky/UM2uqvENzsYA9GczCBZ7bwZheXVjdCyPE+7/GS+fGt9/q252ygnE/Z9tm+6F57mwGybSIiIiIiIiIiIiJyBPLrYOmf2bgopgAAIABJREFUwI2B40u/nePA6IvMkq6isXDmG9D0GvhDUDTB9NObyudDw2Um4KhD6QwY/3Fz/9Ub4tcvGAXH3QWPLzdhRx1qz4a8anj7tsQxRn8QfAF4+frEusrjTeBcMhXzvcPYChrMXOvPg433xtfVnQuhYcn7HTYbcofb632hw7cBKJ0OTa8mrjPqQsitgnnfM4uXlneheYvpw58L/5vkORx3NbxtCb+rOgF2rrS3FelN3QPROmx/BHgE3v5hYt1fT07db+ViyK+H4klQNvPwz7/PBEYWTYCcMmjZZoLV/LnmZzyyG1obIb8G2iMmPHHbA4f7W2TCFWNR87N6aBPgQttB2Pu8uR15vvn9JCIiIiIiIjKAKRhNRGSQ2717NzfffDN33303u3bt8lwnJyeHk046iRtvvJH58+db+9qwYQMNDQ3W+hNPPNGz/M477+QjH/mIZ91NN93ETTfdZO3zscceY+nSpdZ6ERERERGRoSbqJoZjdUg/GM37wvUD0X24lgACW5jaUBNycjlEYjBapqEVmQbQhXy5NMcOevTTP2EZGQdHuEM51ENEREQGmnCshWf3P+ZZ15A7kZG5Y3t1vJCTS5jE46VMj7kGE3ssmgmTg+TnKJFYOKNzmN46ng/Hmj3LB0wwmmWe+9sb7W0yCKATERERERERERERkQEuk1C0Ix2nbEYf9u/AcXeYcLHdT5lgopHnm+ChqddBeAes+zHEIlA6Exb9GorHw8mPw1s/gJatMPwkmHwtHNpowoqat3T2P/EaE/A2/uOw7UHYtbqzzpcDU7+Yeo7+XJh6Pbz0r10nDtNvMPvn2NvBdWHL701V3Tkw/w5zPzQMhs2FvS/E9xmqNKFsTgCCJdC2L3HckR/ovD/mCljzmfj6wnFQtST1/PNGmKVD5eL4/dBh+k0mZM1m3g/hT5NTj9fdol+b53TnE/DCJ03AW6jChFMNmwsH3oSK46G92Tx3oXLzOBYx+/fZKzMfU8TG67Xf1/72afN7pOEywDGv//J50NpkAtOiB83vgmFzTfhaV64bH0gZPQSO3/QnIiIiIiIichQpGE1EZBC77777+PCHP8yBA4kXbHfV2trKQw89xEMPPcRVV13FrbfeSiCgPxEiIiIiIiLZKOq2WesCTnrncraAAK/grc42A+NC/r5mCzSIuJmFVtiCF2yhAvZgtP4Jy8g4GG0Ih3qIiIjIwPPsvsesx2tLSk/v9fFCvjzwCJ7qrxDcrOAmi0YzkgWfhWMtFFOa9nCZHq/aXh/W4/wBcj5lO99JFtA9ULZNRERERERERERERCSO44O6s8zSlS8A874Hs/8bWvdB3vDOuor5ZumqaByc+ixs+pUJSRt+ItQe7jOnDE56BN65E3auMmFkYy6DiuPSm+OUz0NhA2z+nQlUG3Ux1Jxm6oKFsOheaA+bz1UC3d6vP+YbsPJsE/zVsb2z/hN8h794s+5cWH9XfJu8EVCxoPPxxH+G1kZY+10TolZ5PCz4ec8C8mrP8g6HGnkBuO3ebXw5ZvtrzoRt9yfWVy2B3c9ArDW+3PGZIDaAqkWw4hWIHR7D509vvhUL4I1bzPbXnA6jLzX77h7Ltte9D5b8zozz9o9gz3OQO9wEseWNgMaX4PWvpTe2SG9pD5vXY28ac7l5ne9/w/xeyBthAtZ2PWF+VvJHmqA1X44JWswph433mt83FcdBw+VQMikxfM11TQBboCC+XERERERERIY0pd6IZJtYNP5bQqRv5NeZDysGsTvuuIOPfexjxGKxuPKxY8cyZcoU8vPz2bRpE8899xzt7Z0fItx2221s2rSJP/7xjwpHExERERERyULJgtH8RxiM1tttBiPbRf+ZhlbYgtRs+9kWUGALXuhrGW+vgtFERERkgHBdl1VND3rWFfpLmF10fK+PaTsGzDR8dzBxsQejOZh/hLcdI0PfH6/a1rcdn+f58jPqv7/07Fwx1AczERERERERERERERHpZ/5cyEvzffP8Gpj0GUs/IRj/cbP0xMjzzWLjt8yx+mRY/gJs+g3EwiaYrGsg26z/gn2vw94XzOOcMlj06/hrrRwHZtwI028wAUuBI/i8Y/wn4N2HYcdfOstmfLUzIKl4kgla6qr+/Wb/jfyAdzDaxM9A3m9g4//Gl49YHh9oB+kHonUomQLzb0ssL5sNjWsSy8d+tHOcCZ8EPhlfP/I8eOv70Lo3s3l4Of0l+Ns1sHNlZ1mwBGpWwMZ7Mu/P8ZtwupKp5rb789ATBQ0Q2Q3RA0fel2SXd34a//jA2s77W+6Lr1vzufjHO1fC37/Zs3Fzh0N4Bww/CUZdCIFCE4pY0AD5taa+PWJec74cwIG86p4FOYqIiIiIiEjWUOKNSLZp3gJ/aOjvWQx+Z6+HwtH9PYs+89JLL/GJT3wiLhTtmGOO4dZbb2XhwoVx6+7atYsvfelL/OhHnd8A8dBDD3HDDTdw8803x61bV1fH+vXr33t8yy238J3vfOe9x/fccw/HHZf4zTUVFRUsXboUgGeeeYaLL774vbprrrmGz3zG8gEQUF1dnWJrRUREREREhpaoG7XWBZ1gWn0kCxDozTaDkS0oINOAMluQgi14zRqW0U/BaJlub38FuImIiIhk6q2W13i3dbNn3fElpxD0pXfMnQl7+K6C0bx0BKMlC/HKOOjMzfR43nt923Gv7TnONpkGowWdHHxOhhcSiYiIiIiIiIiIiIjI0VEyGaZ/ybsutxJOfQaaXoLWRig/DoKF3us6viMLRQPT94kPwq4nTZBSxQIonX64fwcW/xYeWw7Nhz+nK58Ps28x90d+ADb8Arb/ubO/unOg9kyoXmaC37b8H+BC9Wmw8O4jm2syDR9ODEbLq4ERp6VuO+ZyeOP/Hdn4/lwomwmnPG4etzZCsNTsQ4BNvzLhZl4+aP/8LUHbAfh1sb2+ZKoJ1vNyfiPklJr70RYTkObPhUABrH6/CcjriWFz4cDb0NbUs/YysIV3mNsdfzVLJsZeATNvhtyq3p+XiIiIiIiI9CkFo4mIDEJXXHEFra2t7z1etGgRDz/8MPn5iR9EVFZW8sMf/pBx48bx+c9//r3yb37zm1x88cVMnz79vbJAIMDo0aPfe1xaWhrXV3V1dVx9V4WF5gOSDRs2xJWXlpZa24iIiIiIiEiiqNtmrQukGYyW6cXuPW0zGPVWaIUtSMEWQJdtYRmZb+/QDfUQERGRgWVl44Oe5Q4+FpWmcUFDD2RbCG626whGCzhB/ARoJzE8OtN9l/n63se3mR7nZ5tMA9wGynaJiIiIiIiIiIiIiIgHnx+GzTmK4wVh+FKzdFcyBc5+B/augWARFE80gWwAgTw44Q+w7QFofAnKZkHtWWb+vqAJVYseglgUckr6dhsmftoENK39HzNm6Qw4/pdmHqlM+BRsvAda3u0sG34i1KyAFz9vb9fV9JviH+eUxT+e9iV49cbEdmM+ml7/HYJF5jnZ93fv+pxS73KAYJfnIJAHgfrOxyNOtwejTbsBXvuKd92pT0PFcfFl79wFL3waogc6yyZfC2M+YuYe3mnGanwZdj4Oe//WuZ4vxwTIdQ+Ry683z2+sFRlE1v0Edq42gYJ5I/p7NiIiIiIiIpIBBaOJiAwyjz32GGvWdH77SHFxMb/85S89Q9G6uvbaa1m5ciX3338/ALFYjG9/+9vccccdfTpfERERERERyUxvBKNlevF6wAmk3fdgZ9t34V4KUrCFYtjKMx23t0RcBaOJiIjI4NPUtoeXDz7jWTe9cC7lwb75BulsO9bLBi6xJLXOe/dyfXkcih1IWKOvj1cjrvdzE441e5YPlACx3AwDsRWgLSIiIiIiIiIiIiIivcYXgIpjvev8Iah/n1m8BAr6bl5dOT445maYcRO07oPcivTbFo4xAV9v3wYH3oKKBTD+UybY652fwr7XO9f150N7t8+d/Pkw+oPJxxh1sQkXc7t91tbw4fTn2WHyv8IzlyeWVyw08971ZGJdyTRwnMTyDjWnw5rPJJbn10PJVHu7glGJZWMuM9t7aKOp9+fE1+dWQcOHzGLjutC8CXDMHBwH2iPwS8tnYKFyOOF+eOajsP8f9n4l+xxYC2/fDtNv6O+ZiIiIiIiISAYUjCYiMsjcddddcY8/9alPUVNTk1bbb3zjG+8FowHcc889/OAHPyAUCvXqHEVERERERKTnkgWj+Z303u4LOZldlJ/p+oOZ7cL/TIMUbCEXtv5tQQr9FTiWcXDEEA71EBERkYHjiX1/JmYJ5FpSenqfjZttx3rZwHXtdV2vpQj5cr2D0Xrp+NzG1r+tn1xf8i8wyhahDAPcBkrgm4iIiIiIiIiIiIiISK/yBTMLRetQMApmfj2+zF8Oy1bDujth32swbC6M/ShsfxRe+jfY/waUzoR5P4T8uuT9F0+Axb+HZ6+EyC4IFsOsb8HwEzKfa93Z4M+F9m6fi428AGpWgC8EsUh8Xf15qedXdQLsXBlfPu4qGH4iOH5w2+Pr8usht9q7P38OFI9PvS02jpMYuuYPQV4NtGxLXH/u96HiOCieaA9Guzhm+o3sgT3PwY7HIVQBvhzIKYNDGyBQCLEwvPyFxPb158Pm30DZbGhc0/Ntk0Q7HlMwmoiIiIiIyACjYDQRkUHmiSeeiHt86aWXpt126tSpzJ49mzVrzBun4XCYv/3tbyxcuLBX5ygiIiIiIiI9F3WjnuU+/PgcX1p92MK3emv9wcweWtE7QQq2fW0Lp+uvwLGMt9cNE3Njab9GRURERI62qNvGE01/9qyrCtYwKX9mn43dW+G7g0uSZDQ6k9Fs+663gs5sbP3bg9EGRoBYpsFoma4vIiIiIiIiIiIiIiIiHnLKYPLn4stqzzRLrM0EsaWr7myo3Q7NmyGvDnz+ns9pyR/giQ9A2z5TNu5qmPBPps9Fv4YnL+gMTqs5E6b8a+p+l9wHz10N2x4wwW1jPwZTrwfHB6MvgfU/i19/0mfjvznpaKg7B976QXyZPw9GnGbuj70CttyX2K5sdudcQ+VQc7pZbKZcB1vvh0PrTSBeZbfr9/43yXZ/0E1ef2GLeW62PwprPmdeDx1GXwIb700MoRvsWhv7ewYiIiIiIiKSIQWjiYgMIo2Njaxbt+69x6WlpUyePDmjPhYuXPheMBrA888/r2A0ERERERGRLBJ12zzLg076//wUcIL48BMjvX9s0cXunWz7ItMghYhrCUazBKBlW1iGLfAh4AStr9FWN0KuZftERERE+tvLB55lf7v3P0IvKV3epwGv1hBcyzHjUOAmCUZz4oLR+ja4uMBXxKHYgbTXtx0nD5RzqpCTYYh2huuLiIiIiIiIiIiIiIhIhjIJRevg+KBg1JGPPWIZnLcLml6B/FGQW9FZV3cWvH8n7H4GCkZC0YT0AsxySmHRLyHWbubZtc38n0D+SBM6FiyChstg/NVHvh2ZmnYD7H4aGl8yj31BOPY2yCkxj6uXQagCIrvj2zVcmtk4jmP2o03DZbD+rsTyydea27FXwLqfJNZXnwr+XLOMPB9qz4bILhPW5j/8+d6Mr8IfxniPO/ULMOMr8Ms8iLV6r3Pac7BzlQkbe/3r9m1IV+5wCO848n6SaWvq2/5FRERERESk1ykYTSTb5NfB2ev7exaDX35df8+gT+zatSvu8fjx43Ey/FaMSZMmxT3euXPnEc9LREREREREek/UjXqW+5303+pzHIeQL5eW2KG01s8dIBfxHw22gDJbAIKNLUjB1r/tOeivsAzb/EsCZexp834vIRIL67UkIiIiWWtl04Oe5TlOiONKTurTsbMtBDcb2GPR4vXGvnNd13o8Xxwo5VBresFoUbfNGhKcN0COg0O+UIbrD4ztEhERERERERERERERkR7yBWHYHO+6YJEJT+tRv36PsgDM/KpZ+lNeNSx7CnathpbtULUECkd31vtDcNJf4Inz4cBb4MuB8Z+Cidf07jxGnu8djDbyAnNbc6Z3MNqYy+Mf+3Mgvza+LK/GPm71ySa0bs534PlPJNZXHg/l88ziuvZgtJIpZj8+dxVs+pX3OufvhZyyzsdt+8GfB4c2mr4LG8zrItYOe56Dtd+FPc9C82aItZlrRCd+1gTVOQ7seQHW/9T0013rPvs2i4iIiIiISFZSMJpItvEF4t8oE8lAY2Nj3OOSkpKM++jeZu/evUc0JxEREREREeldtgvtA05m3wyZ68tLOxjNFjYwFFkDyjIORvNe3xYs0FuBbL3FFjRR7E8WjNYClHnWiYiIiPSnrZENvN3yumfdvOIl5PsL+3T8bDvWyw72aDSHzi8F6o1gtKgbJUa7Z11xoIx3Wzd79J/43CR7vgZKgJjP8ZPjhGh1I2mtr3NFERERERERERERERERGZQCeTDiVHt92Qw4ay0c2mxCuQJ98HlgzRkw9Yvw+tfMY8cHs79tAsmA/8/encfHUR72H//O7C3r9CFfMsjGF+bwgc0NxpyOCwRCEiAHOZq7JKGE8kubNnZ+ISRpaBNISEgoDTQl9JcmpKQOkNJgm9MhmBsbbIMNvvAtWedqj/n9MdjSaueZ3ZVWK630eb9e85LmeeZ55pnZtfyMtPMdTf4LNyStZ+jY5EukKe/L3XcgIk1cKu16OLM8MkYae4b7fcN7pWf/SnLSmdtM+UD395Ylo4bLpHCNNP2z3sFo4dFSqDazLFTtfq2anlluB6Rxp7mLn6kflSZfLK3yeO0Sze6xWLZ/HwAAAACAIYMrOAAYRhwn8yYRy++Xi3kqRh8AAAAAgOJJOUnP8qBV2DMQCrmBvVxu4i+FiNX/4AV3e1Mwmnf/pteg0EC2YjEGowVrPcv92gAAAAy2xw4+bKxbXLtswPdfrPDd4cTJMxjNdO4KCZXzO881Qe9gX6/+O1PmfmJ2Rd7jGWyFXSsSjAYAAAAAAAAAAIARbNSUgQlFk9zQsbnflN63RzrvUemKfdKsL3XX2yHp9F9KS/4gzfuOtPj30lm/dUPP8jHvu1J0QmZ/C38sBcLuemyidPp9kh3u3qbxo9KMz2f2M+2T3v03ftT9Wn+WFBmXXX/UB/2D1foqbPoMoyO9tFzavabvfae6pMShvrcHAAAAABSksLslAQBD2ujRozPWm5ubC+6jd5u6Ou8bPgAAAAAAgyPhJDzLg1aooH4KCTvjZvduxtAKJ//gBcdxjCFh5mA07/LOQQobMx1vtSE4QhrZwR4AAGDo6ki16ZlDqz3rjokdq4bo1AEfg2muR7CsQY8Px0csU6hc/ufOby5fHfCe33r17xfGVk5h01E7ppZUfn9jNF0fAQAAAAAAAAAAACiS6DgpusS7zg5IEy90l0LVnSi95wVp10Nu2NfEi6TqWZnbHP1BadJ7pP3PSFXTpVFHZ/dz7FeknSulzj3dZdM+KdXMfneMIems+6U1l0iJJrds3FnS3G8VPuZ8hMwPd9WrN7lLxvY10ugFkh11g+5qTpAsW5pwgRQZLXXulcJ10ssrpC13S6m4G/Z22r+5561lszTmZKlicu6xpbqk9relQ6+721fNcvfVsVMa1ej+Lbz5NSnVJlVOl0JVbj0AAAAAjFAEowHAMDJuXObTEzZu3FhwH6+//nrGen19fb/GBAAAAAAorqQxGK2wX/VFCwg7Ixitm+lcJJ2kkk4ir4C6pJNQWmlD/97BAuawjMEJGzPtt8KuVNAKeb5P/YIiAAAABsvaQ6sUd7xDtM6uXVqSMZjmgPF0pxzHkTUQT8ke4hzHMdb1PBvGebLhNfXc1idErcYQ/OvVf2e63dhP1K7IezyDrZDrP64VAQAAAAAAAAAAgDIWGy9N+7j/NqEqacJ55vqaOdKFa6Utv3BDv+qXSI0fytym/kzp8p3S/rVSZJzbZqACv8I1hW2faJZ2ryqszZ7HpAcazfUVDVKqQ4rvdwPOWjcX1n9P486S5nzVfQ3ssJTukgIRKdEqBSskWZKTlKyg5KSk1jek2EQ3qK51izT6JDfgzUuixW0fqsx/PJ173Nc61SE1XC7VHtf3YwMAAACAHAhGA4BhpK6uTsccc4zeeOMNSVJTU5M2bNigY489Nu8+nnrqqYz1RYsWFXWMI/HmHQAAAAAopmTaFIyWO5CrJ1P4gpdoAdsOd37nLZ7uVDCQ+3XwC14wBdaZXoOE06WUk1LACuTcbzGZjiFiRxWxo0qmst+nfscNAAAwGBzH0WNND3vWVQVqNK/y9JKMI2J5zwHTSinpJBSywiUZx1DiyC8YrfsD8qZ5ciEBwn4BvtWmYDSPNqZ9BhRUyC7sem0wFXKtWMi2AAAAAAAAAAAAAIapyqnSCV/33yYYk8YvGfixhAoMRhsI7du7v+9PKJok7X1cWvN4//robfwSqe0td3FSbtnML0pdTVK03g0/2/oLqW6eNOkvpMkXSzv+W3r15sx+XvoHaeaXpOpZUstGKZ2UGi5120XrJceRvO4ldRwp1S5ZASnAw7gAAAAAmBGMBgDDzJlnnnkkGE2S7r33Xt100015td2wYYPWrVt3ZD0ajeqkk04q6vgikUjGejweL2r/AAAAADDcpZT0LC84GM0q4GZ3Q1DDSOR3439nukOjAlU5+4g75uAF0+vit9+udKdigVE591tMfsFoUTumtlRLdhuHYDQAADC0vN7+knZ3bfesO6PmwpKFWeUK3w3ZIy8YzU/Pj01HDMHChQSjmea2lmxVBqqNbRzHyXggUIdhn9FAeYWHEaINAAAAAAAAAAAAoGwFIlLFUVL724M9kqFr96rsso0/zC47+IK7vPotc18bb8tc33R7YWMZc7I0+VLJDrqBaWMWSvWLpTJ6+BgAAACAgUMwGgAMM9dcc43uueeeI+s/+tGPdO2112rChAk52/7t3/5txvpVV12VFWTWX7W1tRnru3btKmr/AAAAADDcJZ2EZ3mwwA8BmAIEvHCzeze/c2EKVOit0yekwfS65NrvUAlGi9oxY5Ce33EDAAAMhjVND3mWW7J1Zu2FJRtH1GduHnc6VCnvcK7hzJHjU9sdRmYORss/lDdX6K9pfAmnS2Gr++9opjC2crueKiQYu5DrSgAAAAAAAAAAAAAoiakfkV69ebBHgXzsf8Zdept8qRSulWqOk0LV0oFn3UC39m3SpL+QImOlQExqeK9Uf45kWZJll3z4AAAAAAYWwWgAMMyce+65mjdvnl544QVJUnNzs66++mo9+OCDisXMN158//vf1wMPPHBk3bIs/fVf/3XRxzdt2jSFw2F1dXVJklatWqVEIqFQiBR/AAAAAMhHIm0IRivwV32F3MAeKbMb+QeS33kzBSFkb2cOaTD17xdOMBiBY6Z9Ruyo8f1SSDgFAADAQDuY2KeXWj0+XCvpxMqTNTo0rmRj8Z9jjtQ5lDkYzcojGK2QObJp26gd870W6kx3KGxHMta9+6nIeyxDQUHXigWEqAEAAAAAAAAAAABASZzwf6VEq7TxtsEeCfpqx+/Mddv/q/v7jT/s/j5UK4XrpMho92vG0rusx3qo2g1WAwAAADDkEIwGAEPMO++8o61bt/apbWNjoyTprrvu0mmnnXYkfGz16tU666yzdPvtt+uUU07JaLNv3z4tX75cP/7xjzPKb7zxRp144ol9GoefcDisM844Q6tWrZIkvf3227r00kv1uc99TjNmzFBFRebNIRMmTFA0yk0VAAAAAHBYSknP8qBdWOB0tICwM4LRuoWtiCxZcjyCGvINrTBtZ8lWyAp71vm9BnGn9GEZpmOI2DFjkMLIDfUAAABD0RPNf5CjtGfd4tr3lHQsvnO9ETqHSjvmYLQeuWhFCeU1BRy7ob+5gpFrj6x3pts9tyvk2mso4FoRAAAAAAAAAAAAQFmzA9LCW6UFt0g7Vkr7nnbDtFo2DfbIMJASTe7StqWwdpb9bqiaR6BaVshar/VgJaFqAAAAwAAiGA0Ahpirr766z22dd28SWbBggX70ox/pc5/7nNJp96aedevW6dRTT9X06dN13HHHKRqNatu2bXrmmWeUTGbeVH/BBRfom9/8Zt8PIofrr7/+SDCaJD388MN6+OGHPbddtWqVzjnnnAEbCwAAAACUm2TaEIxmFfarPr8b/Puz7XBnWZYidlSdHuEJXmVeTCENUTsqy/ABiYgdMfaX736LJekkjAF9ESvqE05R2nECAACYJJ2Enmx6xLNufLhBsyqK/+AYPyErLEu2Z1Bbqed6Q4c5GM3qkYxmmnt2OXGlnZRsK5BzT8bQXytXMFpmO9NrVW7BaFwrAgAAAAAAAAAAABgW7JA05XJ3OeZT0spZ3tud9ENp+mek302TOnZ4bzN+idS6RWrbOmDDxSBx0lLXAXcplBXMDlPLK2CtTgpUEKoGAAAA5EAwGgAMU5/+9KdVV1enT3ziE2ptbT1SvnnzZm3evNnY7pOf/KTuuOMOhUKhARvbxRdfrJtuuknLly9XKpUasP0AAAAAwHCUdBKe5UGrsOu4Qm7OL7cb+QdaxI55hh7kG/xl2s4U6iBJthVQyAor4XT1eb/FYgqOkNxgBFM4AsFoAABgqHi+5WkdSjV51p1du9QYVjtQusN327Pq/OZew5mTbzCa5RdcFlcsUJFzX3HHPD/3uxbqfU3g9fod7qecFBaMVl7HBgAAAAAAAAAAAGCEGnWUZEekdDy7bsJ5UiAszfyC9OLXvNuf96jkONILX5U23ialOqW6+dIp/yKNXtC93S8NnzeITZQu39m9vv4fpRf+j/e2l213A7feus/dX88xh+uksadJHTul8BgpEJV2/t7d3unxwNvq2W5Z8yvZ/QdiUorPcxaFk5Tie92lUHY4d6CaKWQtwEPMAAAAMDIQjAYAw9j73/9+nX322br55pt17733at++fZ7bhUIhLVmyRMuXL9fpp59ekrF97Wtf0+WXX65f/OIXeuqpp7Rx40Y1Nzero4NfqgEAAACAH1MwWsAq7Fd9hd3szh+o44m2AAAgAElEQVTQezKFL3iFpRWyXa7zHLVjSqSGejBazCcYbWSGegAAgKHnsaaHPMsjVlSnVi8p8Wje3bcxGI2/m/jxCy6LO52KKY9gNMM8NWJHFbRCCiiolJJZ9XEns52pn5idewxDSSFhZ4RoAwAAAAAAAAAAACgLgag05X1u2FhPdfPcEDFJmnSxdzDajM+7Xy1Lmv9d6YSvS+kuKVQjWXbmtpGxUtzjHs5jPpO5PuECSR7BaMEqN0TNsqXZ17lLPtIp96sdyK7r3CPteUyqminVHi81b5AePN67n+rZ0qHXvOtq5kjLXpGeu156/Qf5jQtm6S6pc7e7FCoQLTBQrcd6IFz8YwEAAAAGCMFoADDItm7dOqD919fX6wc/+IH++Z//WevWrdNrr72mvXv3Kh6Pa+zYsWpoaNCZZ56pqqqqgvtesWKFVqxY0eexzZkzR9/+9rf73B4AAAAARqKkk31DviQFrVBB/XCze9+Zzke+wV/G4AVD4NqRejuqllRzn/dbLH4BcBE72u/zAwAAMJC2d27RGx0bPOtOrj5HscCoEo/IZZoLjtQ5lCPHWGep+wnbfuHC+YbKmc7x4XltxI6qPd2as12HR7Cd2768rqcKuf4jRBsAAAAAAAAAAABA2Vj4I6ljp7RnjbtePUs68z/dwDNJqjtRmvYJ6c2fd7eJTZZmfyWzn+AoSYbPFjR+xDs0rPHqzPW6eVLVDKllU2b50Vdlh63lwysQ7bBovXTU+7vXYxPM2055n/Tqzd51jR91z9VJ33eD3faskZykNOtL0qijpWc+L22+w9z3pW9KO/5bWvdl7/rj/s4Nldv8M3MfcKU6pY5d7lKoQIUbkBbpFZ4W8ijLCFirlezCPqsOAAAA9BfBaAAwQti2rUWLFmnRokWDPRQAAAAAQD8knYRneWgAg9G42T2T6XzEnTyDFxxDMFqO12SoBI757S9qx4yhHn6BagAAAKWypulBY93ZdUtLOJJM5jnmyAxGk08wmoocjGaapx7uO2rHDMFoHb7rh5Vb0HS+14qWLIWtyACPBgAAAAAAAAAAAACKJDJaOn+11LpVSnVI1bO7Q9EOO+UuaeJF0u7VUmWjGwZWMSn/fcy+XtqxUmrd3F026zo3hK0ny5LO/p205mKp9Q23bOJSacEthR9XocJ1UqhGSmQ/qFdT3iftXiXtezq7rme42uRl7tLT1I/4B6ONapQmnO9dV3GUNPdb7vdjT5fWftx7u6kfk7bc41034QJ3jPEDUtfBXkuPMq/jHklS7VJHu9Sxo/C2wcpeYWl5BqyFav3D+wAAAAADgtEAAAAAAACAMmIKRgsWGoxmCK/y3LbMbuQfaKbzkW9AmWm7XAF0pv2WOnDMFPhgyVLICpvPz4gN9QAAAENFe6pVfz70mGfd9NgcTY40lnZAPZjCs0ZquKxvLJrVMxjNfK3S2e/5eezdr/kF/3am2z23K79gtPyuFSN2NOO1AAAAAAAAAAAAAICyUNlorrMs6egr3aUvRk2RLlorbfuN1LpFql/sBq15qZktXbJJOrTBDSqrmNy3fRbKst0AsTfuyiyvminVLZBmf0V64gPK+Mv9lCukqun+/Y49XQpWScmW7Lrx57nntmaONO4sae/jmfUzr+3+flSjeR+1J5jrZn9FmmQ41z2lU1KiyT887fDSO2TN69hGkmSru7S/XXjbUE1mWFrvgDWvkLXwaClU7b5nAQAAMCIRjAYAAAAAAACUEVMwWsAq7Fd9hdycH7YiBfU93PU3tMIULJbrNelvIFuxmPYXtiKyLdt4HKbjBgAAKJW1zY+qy4l71p1du8yzvFSGylxvqHAcv2i0bgEroJAVVsLpyqrLP7jYf35uCgrr3b/peqDsgtHyDNEuJGwbAAAAAAAAAAAAAEaMyBhp+mfy2/ZwWFipLfi+1LZNeud/3PXKadLZD7jjOeoK9/vNP5Xie6WJS6Xj/z53n5YlvXeL9JuxmeV2SDr2b7rXF/9O+vPnpR2/d4Owpn9WOvaG7vqxp7ghWonmzH4qjpKqZpj3H6rKPUZJsgPuaxQZk9/2PaUTUlfvUDWPQLXeZfEDUsr7YWsjRqLZXdq2FtjQksK1PoFqPgFrwSr3fQkAAICyRTAaAAAAAAAAUEaSTtKzPGiFCurHdHN/1nZWVDZP2sqQbzCCiWm7XK+JKXgg30C2Yok7pvEXFhwBAABQSmknrceaHvasqw7UaV7VKSUeUSbzHGqkhsuag9FsZV6fROyoEimvYLT8zp1pPn34NTGH1mW2MwejVeQ1jqEi3yA303kBAAAAAAAAAAAAAAxxoSrp3D+44WiJQ1LNsVLPzwo3XOIuhYqMka5KSK/9k7TrD1J0ohsSN35x9zbhWumM+yQnnbnPwwJRac6N0otfyyw//mvSmJO992sFpJrjCh9voeyQFB3nLoVKdeUIVPMJWEuN5M/fOt3no1BWwH2/hXqEpfkFqvUsC44iVA0AAGAIIBgNAAAAAAAAKCNJJ+FZPmDBaNzsnsV0TvINKMsVvGDe79AIHMsdHDE0AtwAAAB6er39Je1J7PSsO7P2woLn08U2VOZ6Q4U5Fi1bxI6pNXUoq7zfwcWW//y2dzvzPLm8rqnyv1bMbzsAAAAAAAAAAAAAwBA1akrx+7SD0pz/4y5+/B7afNzfSaMapbd/LQUi0tFXSw2XunXjzpL2Pp65/cSLpHBNv4Y94AJhKTbeXQqV6nSDweI+4WmmsnT2g+ZGDCclxfe7S2uBbe2QFKp1A9VCdVLNbGn656WxhnC+QqTi0r6npMhYN9CPB5gDAAAYEYwGAAAAAAAAlJGkk/QsD1qF/aov35vzo2V2E38pmM5JPM/gL2PwQo5zbdyvU9rAMdP4D4/PFJCQcLqUdlKyrcCAjQ0AAMBkTdODnuW2bJ1Zc2GJR5ONcNnezNFoljKfyHs4wKy3vOfnjv/8PGKZ5v/d7ZJOwhhiHSuza6p8rxXLLfANAAAAAAAAAAAAAFBGGj/kLr2d8Utp9TKp6WV3ffQi6ZR/Le3YSi0QlWIT3aUQjiOlOrzD07JC1jy2MXxmfURIJ6T4XneRpP1rpTfvdt9v486QxpwiVc+UAjEpOEoKVrpf7bBkWeZ+3/qV9Nx1Useu7rKTbpUmXCDVHJvf2BIt0p7H3PC2qunS3qeldFxqfUOKTpQmLXXLAQAAhgGC0QAAAAAAAIAyYrrZPmiFCuonYAUUssJKOP5PAjMFNIxkpnNiCgzL2s4UvGAIdMi931IHo3nv7/D4/ML04um4YoGKARkXAACAyYHEXr3c+qxn3dzKU1UbGlPiEWUzh+/mN8ccbhyfYDT1DkbrZ6hcX+e3Pfv321e5BYjlG45NiDYAAAAAAAAAAAAAoOQqGqT3vCgdet0Nhqqc5h9ENZJZlhSscJeKhsLaOo6UbM0OS+sdoNY7YC1xOFQtPTDHNNgO/NldTKxgZlDaka+jpP3PuOevt3VfNvcXGSPFGqT4HindJcX35x7jOkkTzpfmfls6sE5q3ybVnihN/gt3HJL7+qbj0rb/csPfxp4qjVmU2U/63XsW7MLuUQAAACgmgtEAAAAAAACAMpIyPH0raBX+q76IHVMilSsYjZvdezOdk/yDFwzBaDlC6Ez7LXVYRq7x+71n4ukOgtEAAEDJPd70sBx5f+Bycd17SjwabxHLMNczhOoOd45jDkbr/XlmY6hcHufOcRzj/PZwv8aA4h79d6bM1wIxu7zmvyErLEtWjnA6QrQBAAAAAAAAAAAAAIPEsqSa2YM9iuHNsqRQlbuMOqqwtk5aSrSYw9RMZfEDUqJZyvF5hSHNSbrHkGguTn/x/fmFofX2zv+6S2+BmBQZJ7W/7d3uwrXS/j9Lr39fan3TLas5Tjr2b6SjPuAGEsqRaua43zdvkNKdUuUxbvjaroelZJtUv1iqOqbwcQMAAPRCMBoAAAAAAABQRpJOwrM8aBX+NKaIHVVryv8Pr9zsni1iGYIR8gwoixsC1HKF0Jlei3wD2YrFPP53g9EM50caucEeAABg8CTSCT3Z7PFBP0kTw1M0I3Z8iUfkzRi+VeIQ3KHCL5TLUmYyWn/OXcLpMu4rkisYrce82G9OXm5h05ZlKWJHc15ncK0IAAAAAAAAAAAAAACyWLYUrnEXNRbW1km7oWKHg9JyBqr1WE8cGoijGV5SHeZQNEn6n1Ozy5pfldZ+3F0KMXqhVDFZsoLue6JqphSuk2Z8QerYKb34Nent/+duG6yUjvs7KTrBfS2j46TJl0qpTskKSJExUvN6qe0tafQCKdUubf6Z+5pH6qX6s6Sxp0nBCslxsp+6CAAAyhbBaAAAAAAAAEAZSRiD0Qr/VZ9fgNVh0TK7ib8UTOfEFBiW73a5ggXM+y1tWIZpf93BEeb3TL7nCAAAoFiea3nSGAZ8du17ZA2RD8LlE741svg9/bd3MJr3/DOfAGH/QDP3Ncln/u/3OkXtipzjGGoidizn+eNaEQAAAAAAAAAAAAAAFJVlu+FZ4TqpclphbdNJN1Std6Bawitkrdd6snVgjmckO/Csu/T2/A3ZZclW6cW/K96+Q7Xueygy+t33U6+vkdHeZYEKQtUAABhiCEYDAAAAAAAAykjSGIwWKrivfG5kzxXWNRIZgxGcTqWdtGzLNrZ1HMcYLJbr9ehP4EMxxR1DMJp1OBgtYmxb6rECAAA81vSQZ3nEiurk6nNKOxgfBKNlyj8Wze/c5Q4Q9ju/h/vNp//OdLvnNgEFFbILv1YbbPmEaHOtCAAAAAAAAAAAAAAAhgw7KEXGuEuh0olewWkHpd2rpA3fK/44MfASTe7StqWwdnaoV2Da6DwD1mrdtgAAoOgIRgMAAAAAAADKSMpJepb3JRgtnxvZ8wlPG2n8zluXE1fUMp+zpJNQWumC+/Wrj6c75TiOrBI9ocoUHnF4fLYVUMgKK+F0ebTNHU4BAABQLG93vqEtna971p1Ss0SxQEWJR2RmCsEt9VxvqHAKiEYzBhfnESrnNz893G9+wWje+4oGyvN6Kp9rxYjPdQ8AAAAAAAAAAAAAAEDZsENStN5dDpv0HqnhMmndddKBPw/e2FA66YTUudtdChWsMoeo+QWrBaukEfa5MAAACkEwGgAAAAAAAFAm0k7KGKrVl2C0fELP8rkhfqQxhVZIbviC33n1C17Ida5NgWtppZR0EgpZYd/2xWI6hp7jj9oxJVIEowEAgMG1pulBY93Zte8p4UhyM80x00qXdK43dJiD0axewWj5BJeZmALNevbrF1qXq59yDZrmWhEAAAAAAAAAAAAAAIx4406Xlj4jtWyW9r/71Q5LkbFSxRSp7kQp2SYlW92viVYp1eZdlmiVNt8x2EeEgZJscZf2twtrZwXMoWm5AtYCkYE5luEgnZT2PSUdeF6qmSONPVUKVkrxvVKoJvvcOWnJst1/px27pIpJUnCUuW/73ZiedEpS2g1XBAAMCILRAAAAAAAAgDKRdJLGuqBV+K/68rmRPWII4xrJ/M5bZ7pDNT5tfYMXcpxrv/3G050K2aUJyzAdQ8/xReyoWlLNWdsQjAYAAEqlPdWqZw897lk3I3a8JkWOKvGI/EWsoTHXGyrMsWiS1espqaZzF/eZex/ZxvGenwYUPBI+bQxGczqVdtKyLds8Ry7T6ym/MOhCtgEAAAAAAAAAAAAAACh7VdPdpb+6Dkpv/7/s8tN/KbVskl5e7t1u4e3SqKPcMKxHzvTeZuJF0mm/kLY/ID3z6ez6iilS7Vxp58q+jx/F56Sk+D53KVSgwiNEzSdY7XB5qMYNARuuWt6QnvigdPA573orIMUmSe3b/PupniUd8xk3IK1jl/TO/0iHXpe6DnhvHxkjTVwqVU6T9j/rBihOeZ/UcGn3+U51Sa98Q9rzuBSulWZ8Xpr07gNe0ynJSbj76Njlth+9wG3rOFLbFrcuFZcOrXdfz4bLpNjEvp0nACgTBKMBAAAAAAAAZSLpJIx1h2/aL0R+N7vnDk8baaI+5y1X8Ffc8QlGy3GufffrdKhS1b7ti8V0jD3HZ3pv+QXDAQAAFNPTzX9UwunyrFtct6zEo8ktmiN8t1RzvSHD8Y5Gs2RllfkFl+ViCk/LmNv6hNZ1OXFFrZg60+2e9bFARc4xDEV+1x6FbAMAAAAAAAAAAAAAAIB3Tf+MtO0/JSfdXRabLE25XNq92txu2selYIXbLjbRDU3qrfZEKTpOmv4p6ZhPukFrbW9LdXOlaH33do4jHXjWDeSqOV4KVUrxA9LeJ92wpdp50thTpa33SnvWuPvc9uvMfY09TQpWuWFxiWZp1x+kZJuU4nPiJZVqlzrapY4dBTa03FAur9C0XAFrgZhkZX9+a8hItEqrlkqtm83bOKncoWiSG0L2/Ffy33d8v/vvpqetv3C/BiulUFX2v90d/52739gkqWOnd91LX5fOfkByklKyQxp3hiTH3ZfjSJ17pJaNUvVs9+dDvnY+JL349264XN0CaeFt7/YtN3iu/W0pOkGKTXDfFyZdze5YTEF8Tto9z21vuT9XwjX5jxHAiEEwGgAAAAAAAFAmkk7SWDdQwWjc7J7N77zlCv7yC07Lda79gtNKGThmOoZIHuERpuAJAACAYko7aT3W9JBnXU1wtOZWnlziEeXmN8f0C9cdrhx5B6OpkGC0HKHFftv0nHv7ByN3KGrHjPPxfK65hqJ8ArIJ0QYAAAAAAAAAAAAAACjAhHOls34rvfotqWWzGzS08EdSICrVL3bDxpItmW3GneWGokluuNCiO6THL88MV7PD0tSPda9btlQ9y116syxpzKLMsshoqeESSZd0l838grscluqS7KA54OiwfWul3Y9KrVul2uOlUVOldFx64gPmNstelg6+KMX3SVv+zQ1j6qtQrXTsV6TIOKnrgNR1sPtrvOf6ATfMbURy3j0PBwtvakd6BKb1Ck3zC1gL17rvn4H29q/8Q9EGS7LVXfrCFIomuf9mHjnDu86yM39OTL7E/fkRqpLsd+89CkSldEra+4S072k38Gzbb6XOd7rbHXxOeuTMvo29p+pjpeh4ac9q8zbRCdLs66TwGCkQkYKjpPadUmSMNP5cN4Rx/5/c91X92W7g3Fv3Sa1bpNEnSXP+xm0DYFghGA0AAAAAAAAoE0knYawLWoX/qi+/m93L80b+gRSwAgpZYSWcrqy6XOELpnpbds5wO9+wjDxCH4qlP+ERcad04wQAACPXhvYXtDfxjmfdWTUXKdCHufNA85ubl3KuN9R5PW/UdO7yCQ82B5pFPb/3al8jqTPd7llfrkHTBKMBAAAAAAAAAAAAAAAMgIZL3aW3YEya/13pzz3CyIKV0tybstsv+YP07JekQ6+54WPzvifVHjew4w6E89tu7Knukq/Ri9xjqD3eXZ/9ZTcIqWWjG6QUGy/9Z62UaM5uO+YU6aK17ved+6R0l1QxKf99p7q6A8Jyhaj1rvN54P2wlo67oVmd3p/N8xWqNoSo+QWr1bn/DiyvT415OPh84eMarnqGoknSjv92l8FyaIO7+Ol8R3rhq/n192qv9Z0rpTf/VTr3Ee9QSABla+h94hsAAAAAAACAJ79gtL6EO+RzI3u53sg/0CJ2VImUVzCaf/iCX6iYleMPdiErLEu2HKWz6vIJfSiGpJNQSt5/yI1YucMjSjVOAAAwsq05+KBnua2Azqi9oMSjyY/fXG8kBqM5cgw12XNm0zVL0kko5SR9r5VM8/eeocT5hNaZXqNyvZ7KJyC7XI8NAAAAAAAAAAAAAABgSJrxeanmeDe8KFQtHfUB74CfCedLF6+X0knJLpO4kPHnSrsfzS6f9cXssopJmQFnM6+VXv1W9nYzPt/9fXRs4WMKhN3gtdj4wto5jpRsywxMix/IL2AtcajwcQ4XiUPu0ra1sHZWMDsszRSm1vTSgAwdZaJ9m7RytjT1Y1JwlBsON+4MafRJUrhWik7IP2QPwJBRJjMdAAAAAAAAAEmfJwuFrFDB/eVzI3s+4WkjUcSOqTWV/YfJXKEVpmCwfIIHLMtSxI6qM91e8H6LxS/YrOd7xfS+GYmhHgAAoLT2de3Wq23rPOvmVZ2qmuDoEo8oP0NhrjeUmILRLI9gtFzBZRWBSt96L5lzW/Nc/XD7Do/XTZKidoWx7VDWM/TYuA3XigAAAAAAAAAAAAAAAMVVf5a75KNcQtEkN6iodzBaqEZquDx322M+Jb1xp9S5p7usepYbHDcYLEsKVbrLqKMKa5tOSl1NPiFqPgFr6fjAHM9Q5yTd177n6w/42XJP9/eb78isO+dBaeJSAtKAMlJGsx0AAAAAAABgZEs6CWNdsA/BaPnd7J47sGskMp07v+AwSYr3IxhNcsPsvMMy/PdbLH6hHD2D9kzHMxJDPQAAQGk93vywMVRrce2yEo+mMKZgtFxzzJHE6/NIfgFdnemOfgejBayAQlZYCafLs3+3H+/XKJ8w6qEon9CziFWexwYAAAAAAAAAAAAAAIASm/pRqWO7tP67UuKQG2x2+i/dcLFcKhulC56UNtwiNb8qjV4kHf/3UrAMH1hoB6XoWHcpVLIjMzAt7hOidmT9gBvEZvg8HTDirF4mHfOX0sIfS4HwYI8GQB4IRgMAAAAAAADKRLGD0fK5ST+fG+JHItO5yxVQlk/wgh/TdqUKHPPbTySvYDRCPQAAwMBJpLv0VPP/etZNCh+l6bE5JR5RYaJ2TM0e5SNxDuU4aUNNdjKa33VNrnmyKXSud58RO6pEKjsY7XD/XoF2ucY2lOV3rViexwYAAAAAAAAAAAAAAIASsyzpuL+Tjr3RDe2KjiusfdV06eQ7BmZs5SIYk4KTpYrJhbVz0lKi2SM0LY+AtZT3Z6LKzqKfSH/+vHdd9SzpL9ZLlu2upxPSyyuk12+VUh1S/RJp3nekPyzybj/3ZmnOV6WWTdKh16Snr3HPd19M/ZjUcJm0c6W080E3RDDZJgWiUt0CKVwrJVqkvY/3rX+43rjLfV2nfniwRwIgDwSjAQAAAAAAAGXCLxgtYBX+q758wrjK9Ub+gWY6d6ZghcPijiEYzco3GM0UODYUgtGint/n2x4AAKC/1rU8obZUi2fd2XXLZFnZoVpDiWlOOBLnUI7hKaWWRzCaX0BXrnNnDC62egejxdSaOuTR3p3/5xuwVi5yhZ7ZCijYh2tQAAAAAAAAAAAAAAAAjGB2sPBQNPSPZUvhOnepnFZY21Q8OyzNFKLWu8xJDczx9MXEC6VgpZRsza6bfEl3KJok2SFp7rekE2+SUp1uIJ0k1S+W9qzJbj/l/W7wX/VMdxmzSHrH++GuOuUu6U9/6V13ZYcbgCZJUy7zP57OPdJz10tb73XXq2dLoVp37O3bpcar3fJEq7TxNv++vDRcLm3/rbl+yvukjl3SvqcL7/sw0/ksle33E4wGlAk+qQoAAAAAAACUiaST9Cy3FZDd848xecp1s7u7TX6BXSONKeDAFHx2pN4QmJDveTaFZeQKZCsW0/gtWQpbkSPr5mC00owTAACMTI81PeRZHrUrdHL14hKPpnDGOVSOOeZw5B2L5q3nPLS3XPNPY3Bxr9fCHFp3OBjNu5+oXeG7/6Eq1/VJxI4O+aBBAAAAAAAAAAAAAAAAAP0QiEixCe5SCMeRki3mMDW/gLWk94NR+2z8uW4g3NSPSpt+klkXqJBm/JV3O8vqDkWTpGNvkPY+kRn4NuX9UvWMzHaTLzUHo02+WLIC2aFx9Wd3h6LlI1ovnf7v7uI47lhN5n9X2ni7G2LWsVMK1UgtG6XWN723P365dOIK6eGF0oF13tuc9Rsp2SH9yuezcSfdJq37kmH8E6TzVkn3+dwDFaqREs3edXULpOmfkbb9RnrnEXMffkzHD2DIIRgNAAAAAAAAKBNJJ+FZHrJCfeovVzBa0Aoq2Me+h7u+Bn/FjYEJuUPqfPfrlCZwzBTA1jsYoa/BcQAAAH31Vudmbe3c5Fl3avWSvOdbg8k0Px+Z4bLe0WiWsj/EZVu2IlbUc67Z1+Di3u+XXKF1nel2z/p8wqiHolz/Xsrh3xMAAAAAAAAAAAAAAACAQWBZUqjaXUYdXVjbdELqasoMSzOFqGWUHXDb9jT2dOn0e93vF/xActLS1n+X0klp3BnSop9IlY35jWvyxdKSh6VNP5U6d0sTL5Lm3Ji9XcNl0rovK+vzb0d/yA00m329tOF73eWBqBtG1le5Hm4ZiErHfiWzrH2n9F+TvbcfNcX9OvNaae0nsusnLnW/Bn0+Pzbjr6RZXzQHox31fv9xW7Z00q3S2o9715+zUopNdI+tr8Fo8X19aweg5AhGAwAAAAAAAMpE0kl6lvc1vMx0c/+Reoub3U3MoRW5ghe863O9FoeZAghMgWXFZhy/FfVdP6xU4wQAACPPmoMPGuvOrn1PCUfSd8Zw2RxzzOHIKSAYTXLn0/GURzBazuBic/BvT36vTdJJGEOsY2UaIJbzWjHP6xcAAAAAAAAAAAAAAAAAyJsdkqLj3KUQjiOl2rtD02ITM/sIhKWT75BOuk2yg274VqEmnO8ufkZNcYPINtzSXRatl477qvv9vO9KdfOlnb+XIuOkqddIo+cXPpb+iI6XImOk+P7susPH13CZFLxWSrZl1k/9WPf345dIu1dl9zH1o+7XY/5SeuMuj/pr/McXHi1NOE+SpayAuegEd/yHtzM5+U7pmU+b63uH6AEYsvrw0xoAAAAAAADAYDDdbB+w+vb8A9PN/Ydxs7uZKRgtV/CXqd7UX/Z23q9JqcIy4o4p2C3Wa31wxwkAAEaW1tQhrWt5wrNuVsWJmhBpKPGI+oY5VN+Zzl1nn4OL85vfdqY7fK8B8p3nDzW5g9HK87gAAAAAAAAAAAAAAAAADEOWJQVHSRUNUt2J5mC1QLhvoWiFmPeP0tkPSDOvleZ+W7roGan2hO5xNl4tnf7v0knfL30omkVmrdIAACAASURBVCTZgcyAs8PGnyuNOtr9PlwrnfuoVDndXQ9Vu8d19JXd28+8NruPMadKY052v591XXZ42eRLpdEL3e8b3us9vhO/6b6Oky/Orpvxue7XL1jh3V5yg/GqZ5vru5rMdQCGlL7dMQkAAAAAAACg5FJO0rM82MdgtJAVliVLTu+nqLyLm93Non0MrTAHL+QXQmcKs4vnCGQrlnzHbxpn0kko5ST7HOYHAADg5enmPyrhdHnWLa5dVuLR9J1f+NZI4zje1yiW4UNp5lC5vgYXR3utm+bhnb77yBVGPVTluhY0XQ8BAAAAAAAAAAAAAAAAwIhmWVLDpe4yVM37rpTukrb8m5SKS5PeI53688xtxp4sXbpJ6tgtRca6gWo9TXmfdOavpNdvk9p3SBPOlxbc4h6/JNUeL134tPTGnVLrFql+sTTj8931R10pbX8gs087JDVc5n5/xn9I677kbhOqlqZ+XDr+a93bBqvMxxetl475tPT8V7zr03GpdavU9LK0f60UHiNNvUaKjpWctOQ42ccLYFBw9xkAAAAAAABQJhJOwrM8aIX61J9t2QpbEcUd77Crcr2JvxTMwQj+wQum+oiVX7CAXyBDKRjHn2dwhNtHpyoClUUdFwAAGLnSTkqPNT3sWVcbHKMTKheVeER9Zw73Ks1cbygxhTdbhu37Ok/ub/BvPN2hjpRfMJrPUymHsIjlfy1IiDYAAAAAAAAAAAAAAAAAlCk7KC38obTgB5KTlAIR87ax8ea6oz7gLibVM6X53/OuO/oqqWWT9OrNblBZZKx0xn1SbIJbH6yQTvkX6eQ7u8PUeqqb6wamJQ5llodHS7VzpYoGczCaJP1uauZ6723Do6WKKVL92e6+Nv5Yan7FDZSb9WVpwffdcXXuk+L7pMho6dBGN5Qt1S4l26TRC/3PLYCcCEYDAAAAAAAAykTSGIzW91/zRe2Y4qn8wgDQzRyMkCN4wRBCl++5HuywDHMwWqzXuvl4OtMdBKMBAICiebXtee1P7PasO6v2IgWs8nlqnymMKlf47sjiHY1mCurq9Dl3aSelLifuWdd7vm+a33amO3xfn3INmw5aQdkKKK2UZ32+wc4AAAAAAAAAAAAAAAAAgCHKDkgapM9YWpZ0wtelOTdKbW9JVTMky/bezksgIs34grT+O5nlM6+VAmEpNlE69xHp0Qv6Nr6uA+7S9GJ23eu3uku+Kqa4gWqxiVKkXho1RWr8iNS6xQ2Fa3ivW1eIdEJ69ovSsX8jVR1TWFugjBCMBgBDXHt7u5577jlt2rRJ+/btU2dnp2KxmMaPH6+ZM2dq/vz5CofDgz3MsnXOOedozZo1R9YdxxmQ/axevVpLliw5sr58+XKtWLFiQPYFAAAAYPhKpk3BaKE+9xmxY1LqoLkOnvyCEfyYAszyDUzoS+BDMZnG3/t8+L13ShXiBgAARobHmh70LA8oqDNqLizxaPrHGIJrCNcdzhx5/73GMgWjGYK6/Oae8bR3KJqUf/BvPN2pznS7Z11AwX5dqw0my7IUtWNqT7d61nOtCAAAAAAAAAAAAAAAAADot0BUqp7Vt7Zzb5Yi46S3/kOyQ9LRV0ozv9hdP/a04oyxv9q3uV87ezwE+I27ur//8+f73vfmn0on3SbN/CvvYDmgzBGMBgBDUCqV0q9+9Sv9/Oc/16pVq5RMJo3bRqNRXXTRRfrUpz6liy++uISjBAAAAACUWkre14f9C0bzvsE/V91I5xdQ5jiOLMNTaeKGALN8gwX6EvhQTPkHo5nfOwSjAQCAYtnbtUvr2573rJtfdZqqg7UlHlH/mOaEI3P+VFgwmilo2DcYzSdwrve8228ebgopjtox43VBOYjYUZ9gNK4VAQAAAAAAAAAAAAAAAACDyLKkY693Fy+BCqlymtT6ZmnHVWrrviRt+4106r+6xwsMI8T9AcAQ8+ijj2rOnDn60Ic+pEceecQ3FE2SOjs79cADD+iSSy7RokWL9Nxzz5VopIVpbGyUZVmyLEuNjY2DPRwAAAAAKEtJJ+FZHrT7E4xmDuQyhQvAHIyQVkpJx/ta3nGcvIPFTMyBD95hDMVmCo+IWJnjClsRcx8lGisAABj+Hm/6gxxDgNbi2mUlHk3/meaEI3H+5P2qSoZcNPO5c8znzu+89p53G0PrnA5zMFqgvK+n/K4HuVYEAAAAAAAAAAAAAAAAAAxpliU1fmSwR1Eae9ZIvz9B2vHgYI8EKCqC0QBgCPnGN76h888/Xxs3bswotyxLc+bM0YUXXqirr75a559/vmbOnJnV/tlnn9Vpp52mO++8s1RDBgAAAACUUCJtCEZTsM99+gVy5RvWNRL5BQGYAhYSTpfSSnvW5XuuzYEPnUo73n0Xkyn0ofe4bMs2hseZwtUAAAAK0ZWO6+nmP3rWNUQaNS02u8Qj6j/TXK8z3SnHMUaFDVPex2sZktH6EirnV9e7P2MwWrrTPEe2yjs8jGtFAAAAAAAAAAAAAAAAAEBZm3OjVLdgsEdRGoGINHr+YI8CKKq+3zEJACiq6667TrfeemtGWVVVlf72b/9WH/7wh3XUUUdltdm8ebPuvvtu3XLLLYrH45Kkrq4ufeYzn1FbW5uuu+66kowdAAAAAFAaSSfpWR60Q33u0y/gy69upPMLAog7HapUdXZ52hwIlm+wgN9r0uXEFR3g8AXTMXiNK2LHFE9lb+8XQAEAAJCvdS1PqC3d4ll3du0yWZZ3gNZQZprrOUor4XQpbEVKPKLBkzYGwZmC0czBZSadPnXhrGA0U/BapzrT7Z51sUCFsf9y4B+MxrUiAAAAAAAAAAAAAAAAAGCIC46SzntUWv9tac/jUmySVL9YClVL8X1S1wGp9U0pXCvtXi2lu6TWNwZ71H1z0g+l2MTBHgVQVASjAcAQcM8992SFop155pm677771NDQYGw3ffp03XTTTbrmmmt0xRVX6JVXXjlS95WvfEXz5s3TOeecM1DDHhZWr1492EMAAAAAgLylTMFoVt9/zed7s7uVX1jXSOQXUNZpCP7yC2XIN4TOL4Agnu4Y8DA7U6iZ1/soYkelVPa2fgEUAAAA+XAcR2sOPuhZF7MrtKj67BKPqDh8w3fTnQrbIycYTfIORjPF3ZnOnWluLpnn5yErrIAVyCgzzbMTTpfa062GMZV3eJjf+KN5BjsDAAAAAAAAAAAAAAAAADCowjXSvO8U3s5xpPZt0tpPSodekyJjpOh46Z1Hij/G/mp4r9T4ocEeBVB09mAPAABGuo0bN+raa6/NKDv99NP10EMP+Yai9TRz5kz98Y9/1LHHHnukLJ1O6yMf+Yj27dtX1PECAAAAAAZP0kl4lgetUJ/79AvSKvcb+QeSf0CZd8BC3DGHMkSsfIPR/MMyBpppH8ZgNM8+zOcBAAAgH1s7N+ntuPcT+U6rOc93zjSU+c0JSzHXG0ocYzCadzSa6brG77yZQ3+z+/J7TzUnDxY0pnLh937kWhEAAAAAAAAAAAAAAAAAMKxZljTqKOm8/5Uu3y4te1E669d96+uiP0tzvy1V9MgPmfVl6dxHpOP+XrIjUqg6u11kTO6+Ry+STvlXd7zAMBMc7AEAwEh3ww03qLW1+0nytbW1+s1vfqPKysqC+qmvr9evf/1rzZ8/X11dXZKkHTt26Jvf/KZuvfXWoo4ZAAAAADA4TMFoAavvv+bzu8Gfm93NQlZYlmw5SmfVdRoCFvxCGfIN7/ALVzDtt5jMwWjZ4+pLOAUAAEA+1jQ9aKw7q3ZpCUdSXL4huD4hu8OTdzCaDMFopmsX/2C0/of+SlJz8oBnedkHo/ldK1rlGT4IAAAAAAAAAAAAAAAAAECfBavMdWNPl/Y9lV1eO1cas9Bdjvtqdv2E86W53zT3+0ufwLPFv5cmnCcFIuZtgDJGMBoADKLXXntNK1euzCj7zne+owkTJvSpvzlz5uiGG27QzTfffKTsrrvu0ooVK1RXV9evsQ41mzdv1ksvvaQdO3aopaVFlmWpoqJC48eP19SpU3XCCSeooqJiwMcRj8e1Zs0abdmyRQcOHFB9fb0aGhp01llnDcj+d+3apT/96U/as2eP9u/fr8rKStXX12vRokWaNm1a0fcHAAAAYGgxBaMFrVCf+4xY5pv1o3mGdY1ElmUpakfVkW7PqjMFLJiCy2zZeb+GvmEZAxw45jiO8RgKCY8oRYAbAAAYvlqSzXqu5QnPutkVczU+PLnEIyoev7le5wgLlzXGohmeaOg393Qcx7Nd3DAv9Qo08ws5MwejDfzfqQaS3zETog0AAAAAAAAAAAAAAAAAGHEsSxp/nrT7j9l1J/9MWnWh1LEzs3zaJ/q3z/Boqcvjc4oTl0qTl/Wvb2CIIxgNAAbRrbfeKsfpvrVj7Nix+sQn+jexue666/S9731PiYR7s3xbW5vuvPNO3XjjjVnbfvzjH9c999xzZH3Lli1qbGzMaz+rV6/WkiVLjqwvX75cK1as8O3/sLfeest444okfexjH9Pdd9+dVR6Px3Xbbbfpzjvv1KZNm3zHFwgENG/ePF122WW6/vrrjSFl55xzjtasWXNkvefr4ae5uVlf//rXdffdd+vQoUNZ9VVVVbryyiv1jW98Q5MmTcqrT5NEIqG77rpLP/7xj/Xyyy8bt5sxY4ZuuOEGffKTn1QwyH/xAAAAwHCUdJKe5aH+BKP5hC9ws7u/iB0zBKN5ByyYgssidsz3OrmngBVU0Ap5huQNdOBY0kkqrZRnXdQjYM/03hroADcAADC8PdX8v8Z58eLa8v6AR8gKy5attNJZdaY55nBl+nuNJUMwmuU990wrpaST9LxmMob+evTld23UnDzoWe4XLFYO/K8VCdEGAAAAAAAAAAAAAAAAAIxAs6+X9qyWnB731zRcLtUeJ537R+nJq6SmF6VAhTTrS9KsL/Zzf38tvfQP2eXTP9O/foEyQGoKAAyihx9+OGP9mmuuUTgc7lef48aN0yWXXKL7778/Yz9ewWjlZNu2bbrooou0YcOGvLZPpVJat26d1q1bp6uuukrTp08v2lhefPFFLVu2TDt37jRu09LSon/5l3/R/fffr9/97nd93te6dev0wQ9+UG+++WbObTdt2qTPfvaz+slPfqKVK1dq8uTJfd4vAADlpjl5UK+2rdM78e0Dup+QHda02GzNrpirgBUY0H2NVK3JQ3q1bZ0OpZo1Z9Q8TY40DvaQMEy0JJv0Sts67YpvG+yhZAhYQTVGZ2jOqPkK2bmvB73CsCQp2K9gNPPN+uV+I/9AM507U/CXORitsFCBiB1VMpX9Xniy+X+0qf0VSZJlWZoUPkrHVZ6kykC1sS/HcfR6+0t6o2NDzsAy0/vv8Jiyy7zPzxsd63X/nruPrNcER2vOqPmaGJniu//dXTv0aus6NSU9nnQj9/06veI4zYgd5xs0V6p5Q6HCduTIPMO27D71sb1zqza0P6+WZHPebYJWSFNjszRn1DwFrOL+yeBgYp/Wtz2vuNOp40ctVH14YlH73xHfqvVtLyiRjmt6xRzNiB2fd8gggNxy/R8RtEKaFpulWRVzFbL7PhcBCpF2Unq86WHPutHBcTqhcmGJR1RclmUpYkc9w3cfb3pYr7W96NvetmxNjhyt40ctVCwwaqCG2S97unbp1bZ1OpjY57vdrq7Crt38rl1+u/duz2umzR3rPbf3mtuGrYix/4TTZeinvK+nCEYDAAAAAAAAAAAAAAAAAKCXycukJQ9Lm34qdb4jTbhQOu6rbl3NbGnZC1LnXilcJ9lFuEfjmL+U3vy51Nojb2Ls6dKk8n6YMJAPgtGAISblpNSU9L8RAP1XGxw76EEW27dv19atWzPKLrzwwqL0feGFF2YEo61du1aJREKhUHnenNbV1aWlS5dmhaKNHj1aJ5xwgsaPH69QKKSWlhbt2rVL69evV1tb24CMZf369TrvvPO0f//+jPLx48dr/vz5qq2t1e7du7V27Vp1dHTowIEDuvjii/W9732v4H2tXLlSV155pdrbM2+AmjhxoubOnavRo0erra1N69ev16ZNm47Uv/DCCzrllFO0du1aNTQ09O1AAQAoIzvjb+m2bct1KNVUsn0uqDpdn5h4fdHDQ0a6PV07ddu25TqQ3CtJ+q+9lj484a90es35gzwylLt34tt12/blakruz73xIJlVcYI+N/lrOW8uNwVT9efnkV+AADe7+zOdn850h2d53FBeaGBC1I6pLdWSVf5S6zNZZaOD4/TlKf9X4zwCqdJOWr/c/WM91fy/Be3fi2cwmuV9XLu6tmUFXfx2b0CfnHS9FlSd4dnmhZa1umvnLUop6T+Q/dKSuov1/nF/6RmQNRjzhkItqlqsayZ+qeDfXT3Z9Ih+ufvHcuT0ab/Hj1qoT0+6Ma+Qxnxs7dio27d/U21p9736X9Y9+sykr+r4IgXWPN38R/37O7fLUdot2C8trl2mD9Z/mnA0oAgcx9F9u+/QE81/yLntnFEL9NlJXy3azw/Azytt645cM/Z2Zu1FsodBiHnEjnkGo73Y+qe8+5gQbtCXGr6h2tCYYg6t315pfVZ37vxHY5BYPix5/z/vd+2yuun3Be3D6xrJtmxFrKjijn+YcE+xMg9G87tWJEQbAAAAAAAAAAAAAAAAADBiTTjfXUyi44q3r9hE6YKnpM0/lZpflcacLM34ghQwP/AVGC64gxsYYpqS+/QPb352sIcx7H1z2k81JjR+UMfw5JNPZpUtXFicG0NPOumkjPWOjg698MILWrRoUVH6z9ctt9yiFStWSJLOPPNM7dixQ5I0efJkPfHEE8Z2lZWVGes///nPtX79+iPrjY2Nuv3227V06VLZtp3V3nEcrVu3TitXrtRdd91VhCNxJRIJffjDH84IRZs4caJuvfVWXXHFFRljaW1t1T/90z/pW9/6lpqamnTjjTcWtK/169frqquuyghFW7p0qb7xjW/o5JNPztr++eef15e//GU9/vjjkqQdO3bo6quv1urVqxUIlP+NYAAA+Pnt3ntKHm7yXMtTWlh1tuZVnVrS/Q53K/fdl3GDuyNH/7H7Di2oOoMbbtEvv9v370M6FE2SXm9/WX9qXqWz697ju13S8Q6FClp9D8L2CxAoNLBrpDH9bIqnvcMSTOWFBtBFrPy3P5Dcq5X7/kOfmPTXWXWbO9YXJRRN8n6vFHJcaaV03zt3aG7lqVmBYGknpV/u/knuULR3rTq4UqdWn6sp0WlZdb/d+29DOhRNkv7cskYn1yzWcaMW5N2mM92hX+25s8+haJL0StuzWtfypE6tWdLnPnr6zd6fHwlFk9yfX/e+c7tuPuZf+x1c1pWO6z92/7Q7FO1da5oe1CnVS9QYm9Gv/gFIWzpfzysUTZLWtz2nZw6t0Rm1FwzwqADpsYMPeZYHraDOqBke78FihBO/07Vdjxz8rT5Q/6kijKg4HMfRL3f/pF+haJJfMFrxrl1Mr0HEjiqeyj8Yrdyvp/yvFQnRBgAAAAAAAAAAAAAAAACgJGLjpRO+PtijAEouO00GAFAS27dvz1gfP368xowZU5S+jz/++Jz7K4WxY8eqsbFRjY2NCga7sziDweCRcq9l7NixGf088MADGW0feeQRLVu2zDMUTZIsy9LChQu1YsUKbd26VUcffXRRjueHP/yhXnjhhSPrEydO1BNPPKEPfOADWWOprKzU8uXLdd9998m2bR08eDDv/aTTaV155ZVqa2s7UrZixQo99NBDnqFokjR//nw9+uijet/73nek7IknntC9996b934BAChHaSel19tfGpR9b2h7IfdGKMiG9uxzmnSSerPjtUEYDYaTcvn3ur79+ZzbJJ2EZ3l/gtFidoWxjlBCf6aAss50h2d53PEuLyToTJJigVEFbe/181WSXmt7saB+/Hi9V/zeW17a0i16u/ONrPId8bfUmmouqK/1bdn/ntx5Q/GOeSBt8Bi/nzc6NvQ7ZKQv+zXpTHfojY4NWeXNqYPa3bWj3/37He+GPH6WAsjt5dZnC9p+U8crAzQSoNuerp3GOfOCqjNUFawp8YgGRqFzKJNXCvx3PNDe6dpelMDqgOX97LdiXrtEDa+BqdykWK/lYIna3tcdIStsfB0AAAAAAAAAAAAAAAAAAACAYiAYDQAGyYEDBzLW6+rqitZ3NBpVJBLx3V85eeutt458P3fuXE2fPj3vtoFAQKFQ3wMCDkun0/rhD3+YUfazn/1M06ZN8213xRVX6Atf+EJB+7r//vv1yivdNxJ+8IMf1PLly3O2CwaDuueee1RfX3+k7JZbbilo3wDw/9m79zA56/r+/6/PHHZmctzNgUAJMWCMBAQRQQUMAaFgUBRRi1C/IlrlVxWlFbXW1hNopdJ+C/qzVdofWmurVRBPUMEDQUSI0SIIKIST4RSSzW4OuzOzc/j8/lg22Z293/fe95x39/m4Lq4rc99z3/dnDvchS+7nAtNNsVpU2Zc7su2h6q6ObHemqvqKhiq7A+cVqsNtHg1mklJ1REVf6PQwIrH2gfGsY16qgZvSD8wcHBgRWJF5rjKJeMGu2cYKIxSNMFq+Ejw9l4wXTFiVOyzW84cqu+W9nzQ9bmzMsiK7Sj2JzKTpq+bEG6ckDVUmn1/3BEybej2T96ditdCx64a49kQ4Hkx4frk5n2U973WQoM9xTL4J5/Ww726zXgMw2+0obYv1/GK12KKRAPvcOvg/5rx1vWe0cSSt9dyY13qWgfJ2VX21KetqhrDrgzgOyR0aOL0nkdFzss9ryjZWzTncmB79s0koaY51ujgk93wlAv5JyfPmTP4FTQAAAAAAAAAAAAAAAAAAAEAzEUYDgA6pDZX19vY2df216+vv72/q+jvlmWee6ch2b731Vj366KN7Hx977LF69atfHWnZj370o7HibFddddXePzvn9JnPfCbysvPmzdOFF1649/E999wzYdwAAMw0VnimHfIVYl3NVKza4apStdTGkWCmmU5hvSjHlbIP3h9Srv4gdDqR1qsWv6lmfSm9asm5da9ztsgmJwflJPt7V6gOBa/HCKxZXt57uhallkZ+vldVI35ysKbQhPNoyqUmfX/GrMyu1pHzXhJrfUHRrHpCWvmA97oZQa52iXvsasZnKTXvPRquBH/XJfs4Fkc+5PUWjAAhgHgGyvHCaNLkACfQTCPVon6x88eB8w7KHKKV2dVtHlHrrOtdr97U4obXU/blpsXImiHs/B3V3OR8nbroteb8Vy0+p6FotCQ9N7dGL5j74sB5r+h7jeYlF0Raz2mLztac5LyGxtJpc5Pz9ceLXjdhWsZl9cpFr+/QiAAAAAAAAAAAAAAAAAAAADBbNPavggEAXcs51+khNM2hhx6q++67T5K0ZcsWXXHFFbrkkkvaOobbbrttwuNzz40eCFi6dKlOO+00/eAHP5jyuUNDQ7rjjjv2Pj722GN18MEHRx+opJNPPlmXXnrp3sc/+9nPtHLlyljrAABguih6O6b1/DlHNBQKGrNt5Gk9U3py0vRmBUgwKizE0oyACmavsO/W6jlHKN2E40Rcg+UdeqL46KTpUUJIFV8OnN7ozf+nLHqt9us5UHfvuVOZRFYvnr9WB+dmTlyiVXJG0Mz63lkxCGs9lsXp/fT+FX+nX+z8sR4rbFZVFUlSsVrU5vy9gcsUqsPKJLI14wmOVy1OL9P+PQdOOY5lPQeGflcSLqF3/NEHdfvOH+uB4XsmfMc3D98XeB4POr9a+0ba9WhecoEGytsbWo8kPX/OkQ3vR/V4ZuQpbSs9NWl63ACr9VnmEnN1SO75k6bvKG3XUyN/iLyeuMKOvSU/0vD6CyHvT7NeAzDbBR1bJckpIa/qpOmeMBpa7Je7bjWP8ev6zphR/09kSc/+umTFZ3THzp/o0cKDgfvceBVf0e+GfxM4b6Dcr/mp5v5innpZ12Ipl9Lz5xwZuqxTQgdlD9FLFqzTspDr1BfMO0Z/edCntWn3bdo68nis8fW4jJ6bW6MTek9TTyIT+Jw/yqzQJSsu1527fqothYcDP5v5yV69YN4xetG842Jtv1u9ZsmbdVD2EN2759eam5yvlyw4ScuzKzs9LAAAAAAAAAAAAAAAAAAAAMxwhNEAoEMWLVo04fHOnTubuv7BwcHQ7U0n5513nq677rq9jz/wgQ/o+uuv1wUXXKAzzjhDBxxwQMvHsGnTpgmPX/rSl8Za/qUvfWmkMNodd9yhUmlf+OOQQw7Ro48+Gmtb1erEG3EeeuihWMsDADCdFEPiZO/8o79SLjm34W38dOD7+uYz/zppepSAEaILi5gQRkMjwvbVd/7RhzQnOa+Noxn1692361+f/PtJ08NCQmOs/aEZIcgj5h2jI+Yd0/B6ZpNMIhc43YpnFoxjXTZmGE2S+tJLdMaScyZMGyzv0F8/9DZzTAsjjvO4Ba+YtO56JV1Ka3tP19re0ydM/7tH/1Jbig9Pen6+Mvk9siJYS9MHaM3cF+rHA9+dvEzA/mSF6STpzw/8iBnAaKWbd3xb3972lUnT415nWJ/lc7Kr9O7lH500/c6dP9VXnr5y0vS4QTZL0Oc4phnn9bDjJfFaoHFVX9FgaUfgvL7UYu0ob2vziDDbee+1YfCGwHlzEvN0zPy1bR5R6y1KL418PVb1Vb3vgT9RRZMjygOl7VqRfW6zh1cX6/zdl1oaeL1Sr5W51VrZwsjzfj0H6Mwl57Vs/d3GOaej55+go+ef0OmhAAAAAAAAAAAAAAAAAAAAYBYhjAZ0md7UEl16yBc7PYwZrze1pNNDmBQqGxgYaNq6C4WCCoXChGmLFy9u2vrb7eyzz9bZZ589IY7285//XD//+c8lSatWrdLxxx+vE044QWvXrtWaNWuaPoatW7dOePy85z0v1vKrV0e7CWfLli0THn/961/X17/+9VjbqrVjR/BNjAAAzARh4YtMItuUbeSMWE2U/1AGSQAAIABJREFUgBGiK1Tsz5IwGhoRFvnJGlGrVrO2W6jm5b2Xc85cttTCMBrisz/L4O+dFeayzjXNGo8UHKqy4lXt2DesGFzQud063+eSc2KuJ/hzSSiptOuxhtpS9vjjXWdYxzrrs7TisWGh0ljjCRl/2U+OtsQV9v5wjQY0bldlZ2BgSRqNNRFGQ7s9XPi9Hi8+EjjvuIWv6EjctJskXEK96UXqLz0zad5gub8DIwpmxW479fcyAAAAAAAAAAAAAAAAAAAAAN2LMBrQZZIuqcXpZZ0eBtrgwAMPnPD46aefVn9/f1MCZvfee++U25tOnHP6xje+oY997GP6x3/8x0nRt82bN2vz5s3693//d0mjobQ3v/nNuuiiiyYF6OpVG65bsGBBrOUXLlwY6Xn9/c2/SWn37t1NXycAAN2iWC0ETk+7HiVcsinbaFawBOHCQiwlP9LGkWCmsQI5GZdt2nEirlwiOEjkVVXRF5R1dhjACgWmHD/m6wQraGaFvFodg8i4rJycvHykMdnBseDvaDPlktHPr9Y5IpvImefp4BBc8PufS8wJDRK2kvXZWxE9i3VdYh1vrOklP6KyLzUcWww7rzcjeBoWP+MaDWjcQGm7OW9ReqkUcIjyfvK5B2iWWwduMOet7V3fxpF0r97U4sAw2kA3hdGM6xvreg4AAAAAAAAAAAAAAAAAAADA7JXo9AAAYLY6/vjjJ03btGlTU9Zdu55cLqejjjqqKevulFQqpU996lN69NFHdcUVV2jt2rXKZDKBz928ebM+/vGP65BDDtE3vvGNNo+0MSMjzY9+cFMiAGAms2+qbU5gRgqP3lR9pWnbme3CAidlX27jSDDTWIGcrBFlaoewY5QVzhpTMfaHRiNGqI8dzzTCaFa8qknfR+dcSGgrXnCs1cygWcA4zYBbYm5IYC0oBNd9xwP7OsMOiwWxzqPZZPBnaYXRJDsgF2s8AWG6Mc0Io4XFz5oxfmC2GyhvC5yedj2al4z3CyOARu0qD+rXu28PnHfY3KO1X88BbR5Rd+pLLQmcHhY6bLdWXwsDAAAAAAAAAAAAAAAAAAAAmDkIowFAh6xYsUIrVqyYMO2mm25qyrpvvvnmCY9f+tKXqqenpynrHlOpdCYCsmzZMr3//e/Xrbfeqp07d+r222/XFVdcode+9rWaN2/ehOfu3LlT5557rq6//vqGt9vX1zfh8a5du2Itv3PnzkjPW7Jk4s1Ln/70p+W9b+i/L3/5y7HGCgDAdFKsFgKnZxLZpm0jLJZibR/xWdEbqTkBFcxeVizIihG1Qy4ZEiQKif1UfUVVVQPnEUbrDCsgVqzmVfWTPyszXtXE76Mda5u4be99aHCs1ewgWFDAzXrfcjEDa9bxoPUhOIs1/rIvq1SNfv6zX1vwZxkWILGCeXGEraNUbTwKHxY/C4umAYjGCimNhpdc4DwvfjkDWuP2nTerouA48Lre9W0eTffqTS0OnD5Y7v4wWjuivAAAADOVcy7lnHuJc+4C59wHnXN/45y72Dn3RufcC51zqU6PEQAAAAAAAAAAAAAAAKgHYTQA6KBXvvKVEx5/9atfVanUWPRh27Zt+u53vxu6nTGp1MR//1guB99cFGRgYCD+4Josk8nouOOO0/vf/35df/316u/v19e//nWtXr1673O893rve9+rajU4HhDVsmXLJjx+8MEHYy3/wAMP1LWdqMsBADBbFY2gS6aJN9WGxZPCAkaIJ18JCaj4xgMqmL3sm+87GEYL2XZY0Kfs7b+zpbi/rSOs75GX14gvTphW9iXzeNbMUJ8dRpt4ziz6ghmxaUecIlbQzIhgZRNzzLEWqnl5P/H1tSNMF1dYoKwQI1AWFo8LMickfteM65vhkLGHHcuiCjtWjviiKk3YBjCbDRghpb70YiOLBrRGxVf0s8EfBs5bnN5Ph889us0j6l596SWB0639uRPyxs9wOnktBgAAEMQ5d4hz7hzn3Gedc7c453Y55/y4/x7tgjE+zzn3JUn9ku6U9P9JulzSpZL+r6T/lnSXpF3OuZucc6/r2GABAAAAAAAAAAAAAACAOhBGA4AOet/73ifn9t1Ktm3bNl1zzTUNrfPKK6+cEFebO3eu3vGOdwQ+d8GCBRMeDw4ORt7OvffeG2tc419nq/T09Oicc87RnXfeqQMPPHDv9C1btuhXv/pVQ+s+5phjJjy+4447Yi1/5513RnrecccdN+G9uvnmmyfdyA0AAPYpVguB05sZdAm7QTcsyoF4aoM945WrxE1Qv7wRVGpmiCquHpdRwvixXFiQqOztkHbKpRseF+ILO9/UxrwKFfs418wYhB0Kqx2P/V3LJe1oVrNY+2DQuMKiXzkj8OVVVdFPvE7oxlBi2LateEjgc43AqPX+ZBI5OSNvFBYrjSrs+xV2LIu8/imuwcKuKwBMbUdpW+D0vtRSiTQa2uiePb80w15rF75SCZds84i6V18qOIw2WO7vmv/HYEVfO/l3MwAAgDHOuZOccz90zvVLekjS1yVdImmdpPkdHdw4zrmUc+6Tku6T9A5JC6ZYJCfpjyWd0+qxAQAAAAAAAAAAAAAAAM1EGA0AOuiwww7T+vXrJ0z70Ic+pK1bt9a1vvvuu0+f/exnJ0y74IILtGjRosDn77fffpOWj+qGG26INbZMJrP3z8ViMdaycfX29urss8+eMO2RRx5paJ0vf/nLJzz+r//6r8jLbtu2TTfddFOk5y5dulQvetGL9j5+4okndOONN0beFgAAs40Vvci4bNO2ERa9iRMsQbi8cYO01JyACmavbgwhOefM7YfFfsrejgQSRuuMbDIsalUTIgv5bHMh64nLiprVRgLDInzNDIya2zBec9C4rPN9Ljk3PE5Xs5wVp+tkjCNs23ECrNZ7ZL0/CZdQxpgXdk6OarjF5/WprsGsKCaAaAbK/YHT+9LB4SVJ8uqO8BJmllsHg382nnJpHb/w1DaPprv1phYHTi/7svZUdrV5NMGs83cn/24GAAAwzlGSTpMU/A9suoBzLifpO5L+VlJq3Cwv6beSbpD0n5K+++xjfusMAAAAAAAAAAAAAAAApi3CaADQYf/wD/+gOXP23fQxODios88+W3v27Im1nm3btukNb3iDRkZG9k474IAD9NGPftRc5uijj57w+Hvf+16kbf3whz/Uxo0bY42vt7d375+3b9+uUqm1cYtUKjXh8fgwWz1OPPFErVy5cu/jTZs26fvf/36kZT/5yU/Ger3vec97Jjy+5JJLYn8fAACYLYrVQuB0K/RRj7TrUVKpwHlxgiUIFxboKfkRcx4wFTuo1Nmb761YUVjMJywmlHLBxym0VpwoV3iIrHnfR2tMtees0FBbIjiu1ky5iOO0pkmjrzU0LDYpBhcc6+pkjCM8wBrtOsN7b75HVihPkuYYn/NwpfEwWtjYmxFGK0wRb+MaDWjMQGl74PRFqaVycsZShNHQXFtHntDvhn8TOO+Y+S/XvNSCNo+ou4WFCwfKwft0u9Vem41pR5QXAACgAUVJD3V6EM45J+nrks4YN7kg6ZOSDvLeH+G9f5X3/k+996/13h8haaGks55drrW/wRAAAAAAAAAAAAAAAABoMsJoANBhhx56qD73uc9NmHb77bdr/fr1evzxxyOt48EHH9Qpp5yi+++/f++0RCKhr371q1q6dKm53HHHHTchyvbtb39bmzZtmnJb559/fqRxjbdmzZq9fy6Xy/rpT38aabnh4WF97nOf0+7duyNva8+ePbruuuvM7dcjkUhMCpZdeOGFeuSRR0KXu+666/SFL3wh1rbe8pa36NBDD937+P7779frXvc6DQwMxFrPtm3bJr0PAADMNFbwKJPINm0bzjllk/EDRognLGDSjIAKZq9uDCFJdqzIGq8Uvi8kCaN1RMZlzUBMsUNhNCsUFjXUllBCadfTtPFYrNccdG63xppNzFE2JHJYu5x13WCd59sh4ZLKuODrFiseUmvEF1VVNXBeWDjO/gwav77Jh8TVSg2e10vVksq+HL59wmhA3UrVknZVgn8OGRZeApptw8CN5rwTe9e3cSTTw/zkQjPqPljub/NogpnXYh3+uxkAAMA4JUl3SfpXSRdKerGk+ZL+rJODeta7JL1m3OOnJB3tvf+Y9/6JoAW898Pe++9478+V9PZ2DBIAAAAAAAAAAAAAAABoFsJoANAF3va2t+nd7373hGm33XabDjvsMH3mM5/Rli1bApfbvHmz/uZv/kZHHHGE7rnnngnzLr/8cp1yyimh250/f77OOeecvY8rlYpe9apX6aabbpr03JGREV199dV62ctepq1bt6qvry/qy5MknXzyyRMeX3DBBfrCF76gX/3qV3r44Yf16KOP7v1v+/btE7b73ve+V8uXL9fb3vY2fe973wuNpG3cuFGnnHKKHnvssb3TXvayl2n16tWxxhvkve99r174whfuffzkk0/qhBNO0Le+9S1VqxNvQB4aGtInP/lJvelNb1K1Wo31fiWTSX3rW9/SggUL9k770Y9+pCOPPFL//M//HPr6d+zYoW984xs699xzddBBB+mqq66K8QoBAJh+it66qba5gZNWhkMwKiwyN1X8BAhj3XwfFgtqB+s4ZY1XCg+jpV264TEhPuec+VlOjnIFH+d6XEZJl2zamBodTy4xV84Fx96aydoHS35kwne96quTInPj1xEWp6t9jfZr7vDxwIi7Rb3OqDe6N8cMNDYhjNbC4GmU94VrNKB+O0MCSn0pO4zmWzEYzFqFal537PpJ4LwV2VVamWv85/0zTcIl1JteFDhvoLQ9cHq7mddiIaFbAACANvqKpAXe+xd579/hvf+S9/7X3nf+N7c451ZI+sy4SQVJp3rv7zcWmcR7/kcLAAAAAAAAAAAAAAAAppfgXxsNAGi7z3/+8+rr69OnPvUpeT96G9nu3bv14Q9/WH/913+tww47TAcddJD6+vrU39+vxx57TL///e8nrSedTuvKK6/Un//5n0fa7qWXXqpvf/vbGhwclCQ988wzOv3007Vq1SodeeSRymQy2rp1q+68804NDQ1Jkvbff39dfvnlOv/88yO/vje+8Y36yEc+oscff1zSaFSsNgY35vzzz9eXv/zlCdN27dqla665Rtdcc42cc1q1apUOOeQQ9fb2KpVKqb+/X7/97W/3rn/MnDlz9KUvfSnyOMOk02l97Wtf07p169TfP3qD4FNPPaU3vvGNWrZsmV784hdr4cKF2rp1q37xi18onx+9cXvhwoW6/PLL9c53vjPytg4//HBde+21esMb3qCdO3dKkh5//HG9613v0kUXXaQjjjhCK1as0IIFCzQ8PKzBwUE98MADk14/AAAznRVKySSyTd2OFUxpRjgEo8ICJo0GVDC75StDgdPDYkHtkEtYQaLg8UrhkcAUYbSOySbmBJ4Pao9rVgCy2VGuqDFPazzZZHPjopawfbBQyWteavQ7PeKL8kZuJ5uYszdOF+kzMM41nT4eZBNztFM7Jk2Pep1RCImLhn2/rNc9bBw3o/Lem8deqfHzepT3hWs0oH47ytvMeX3pJXY805NGQ/P8ctet5t8R1/Wub/Nopo/e1GL1l56ZNH0gJHjYLhVf1ogvBs7r9LUYAACAJHnvBzo9hhAfkTRv3ONPee/v69RgAAAAAAAAAAAAAAAAgHYgjAYAXeTSSy/VunXr9K53vUsPPvjg3unee91777269957Q5c/+uij9cUvflHHHHNM5G0eeOCBuvbaa3XWWWdp9+7de6dv3rxZmzdvnvT8gw8+WD/4wQ+0devWyNuQpFwup29/+9s666yz9MQTT8Ratpb3Xg8++OCE9yjIgQceqOuuu05HHHFEQ9sb7/DDD9ePfvQjnXHGGXrqqaf2Tt+6datuuOGGSc/v7e3Vd7/7XVUqldjbOvXUU7Vp0yade+652rRp097plUpFd911l+66664p19HX1xd7uwAATCfFaiFweibR3KhL1MgM6hf2Xpb8SBtHgpmmYAQUc8lOh9GM40oleLxSeEyIMFrnZI1zTu13zzrOZZv8XbTPWdHG0+xQmyVsH8xXhzRPC0b/HBLYGluHFaernWYFxDod48iZ36Fo1xlhEbCw75cVaCyEBBqjKPkRVWSHHBsNo0V5X8JicQDCDZS2B07PJeYqm8jJyQijAU3ivdeGgck/a5ekuYn5evH8l7d5RNNHX2pJ4PTBcvB+3U7W38uk9l1/AgAATEfOufmSzhs3aUjSlR0aDgAAAAAAAAAAAAAAANA2iU4PAAAw0amnnqr77rtPX/va13TKKacolQpvWGYyGZ155pn6zne+o02bNsWKoo15xSteoY0bN+q1r32tnAu+sW3p0qX6wAc+oLvuuktr1qyJvQ1JOuaYY3TffffpX/7lX3TWWWdp1apVWrBggZLJpLnMwoULtWHDBn3wgx/Ui1/84infD0l6/vOfr09/+tN64IEH9JKXvKSusYY56qijdP/99+uiiy7S/PnzA58zb948vfWtb9Xdd9+ttWvX1r2tVatWaePGjfre976nU089VZlMZspl1qxZo4suukg/+9nPdN1119W9bQAApgPrxtpMItvU7djRG6IbzRIWdSl7O64CTCVvBH46HUKytm+NVwqPCSUdv/+gU6LGM63jXLNDEFHPWdZ42rVvhG1n/Pk9LKIx9lrt0GBNGM0KJXbt8SDadYZ1PeLklHH2NdGcZHAYbbjBMFrYcUySStXGwmhR3peo7x2AyQaMgNKi9NLQ5bx8K4aDWeih/P16cuSxwHnHLTxFPYmpf0Y+W/WmFgdOt4KH7RT28xPr+hUAAACSpHMkzRv3+Frv/W7ryQAAAAAAAAAAAAAAAMBMwR2TANCFUqmUzjvvPJ133nkaGhrSr371K23evFnbtm3TyMiIMpmMli1bptWrV+voo4+OFMuayqGHHqrrr79e27dv14YNG/T4449reHhYy5Yt08EHH6y1a9dOiJKddNJJ8j7+zW4LFizQhRdeqAsvvDDS851zOvHEE3XiiSdKkvL5vO6991499NBDevrppzU0NCTnnBYsWKAVK1boyCOP1HOe85zI47nllltivwZpNNh21VVX6bOf/axuueUWPfLIIxoYGNDSpUu1fPlyrV27VnPn7rvBuN73Sxp9D1796lfr1a9+tQqFgu6880499thj6u/v19DQkObOnau+vj6tWrVKa9as0eLFwTc/AQAwExWrhcDpzb6pNpcIDofkK0Q3miXsJumwGBQQxnvftSGkXNKKadkRKCsSmFBSCcfvP+gU65xTe46wPttmh8hyRuxq8ni6N4w2PmoVdn4YOz/bcbp973nFV1T0xnWDsT+2ix12s48H49mRu5wZwB+dbwTZGry+Ga6Eh9EaPa/XBu8Cn0MYDajbDiOg1Jda8uyfgo8rhNHQLLcO3hg43cnpxN71bR7N9NKXXhI4fbDc3+aRTJYPua7pdLQaAACgy51c8/jmjowCAAAAAAAAAAAAAAAAaDPCaADQ5ebOnTshDNZqS5Ys0etf//q2bKseuVxOxxxzjI455phOD0WSlMlkdPrpp7dte9lsVuvWrWvb9gAA6HZWZCbT5DBaNhm8PqIbzVGqjpjBp7H5QD2KvmBGOjp9870Z06ojEph26aaMCfWxvku18c58NTgW1eyYp7W+QnVY3vu9oSwrftWuaGDSJdXjMhrxxUnzxp9frX0ioYTSrkeSHTYbv2wxJDqYa/JnEJc1/qjXGdbzrLDrmDlGRK/R65uplm80jBZ2nIzzHADBBsrhYTQ7twg0bmd5QP+7+xeB8w6f+2It6VnW5hFNL72p4F+aMlDun3Ad2Alh1wed/rsZAABAl3tJzeNfSJJzLifpdZLeJOlwSX8kqShpu6T/1WhA7b+897vbN1QAAAAAAAAAAAAAAACgeRKdHgAAAAAAAPXw3k+KzoxpdmTGCotYYTbEM1W8pNGACmavghF+ktoXf7K3Hz9IZAUEU4TROipqPLNQCT5nTBWvisv6bldVVcnvC01a3zUr0tUKVgRjfLTNHGdizt64h/WaowTWRtfV3M8gLmv8UeNeVuRuqusha7vDRsQvqqmWb/S8HiXcRrwWqN9AaVvg9L70kjaPBLPRzwdvUkXB17zrete3eTTTz1jAsFbZl7SnsqvNo5nIOjenXErpBH+fAQAACOKc65W0atykEUkPO+fWSbpX0tcknSnpEElZSQslPVfSGyR9UdIjzrn3tnXQAAAAAAAAAAAAAAAAQJMQRgMAAAAATEtlX1ZVlcB5GZdt6rassEjUYAnCTRUvsWJQwFRCQ0htjD8Fbj9CEKqWFRNKulRTxoT6RI1a5Y1YlBVWq5f13aodk7V/tDMamDP2wwlBM2OfGL9slPN02Lkm1+SgalzWZxY17mU9L5cMD76ZgcaQ41AU+cpUYbTGzutRrr/CjqUAwg2UtwdO3xdccoHzvXyLRoTZouIrum3nTYHzlqSXac3cF7V5RNNPX3qxOW+w3N/GkUxmnb87HagFAADocvvXPH5S0tmSfiLp4AjLL5Z0pXPuq87xQ2QAAAAAAAAAAAAAAABML/yDFwAAAADAtFSs5s15mSYHTqxITNRgCcJNFTgp+ZE2jQQzTXgIqbNhNCsIZcWzJKlixIRS3NPWUdY5p1Bznqp9PMaKU9XLioSNjmFYC9W398/By7dv3zADgROCZsHv2/hl7bDYvmXDQlntfM1Bosb1LHZoJPx6yAqn5atD8t7LueD4Ub3jGdPoeT3K9RfxWqA++cqwuf/0pUfDaM4IowGNunvPnWa8a23veiUcv+9rKvOTvUooGRiRHyhv10E6pAOjGmVfC3c2UAsAANDlemsez5P0H9r3y3Afk/T/SrpNUr+kRZJeLundklaOW+7NkrZKuqRZA3PO7SdpaczFntus7QMAAAAAAAAAAAAAAGDm465JAAAAAMC0VPR2GC2byDZ1W2ZwJSSygujyFTsEJUllX2rTSDDTWGGPhBLqcZk2j2Yi67hS8iOq+LKSAbGzkrEvpFy6qWNDPHaUa7jmcfCxbqp4VbPGMzqGcaEwY/9oZzQwSnjUigWOf9/MsNi484sV00q5lNKJninH2kpRv0MW63lTRfes962qqoq+oKyr77vZ6vN6WORuDPFaoD4D5e3mvEWpqe53980dDGadDYM3Bk5Pux4dv/CUNo9mekq4hHpTi7SjvG3SvIGSvX+3QzdEeQEAAKah2jDaknF//qak872f9D/L7nDOfV7Sv0t647jp73fOfcd7/7Mmje1dkj7WpHUBAAAAAAAAAAAAAAAAk/CrtQEAAAAA09L4uEutTJMjM7mkEVwhutEUYZ+lJJV9Wd4TWkB8YTffO+faPJqJwuJT1rHFigkRRuusnHHOqf3+5Y1j3VTxqrgyIXHQ8UFPK+7ZzjiFFYUbvw9Y54jx71vWOE+PX9ZaTzfEOKz3oVAJPz+OsUJhU0X3wr57U8XNQsdjxOzGNBpGixI94xoNqI8VRnNy6k0vGv2zcQnF1Toa8VRxix4Yvidw3jHz12pucn6bRzR99aWXBE4fKPe3eSQT2X83a+7PbwAAAGYY6992/lLSeQFRNEmS974g6bxnnzfe3zRxbAAAAAAAAAAAAAAAAEBLEUYDAAAAAExLxWrBnBcWhamHdaPuiC+q4itN3dZsNFVAxauqqnifEV+9saB2CAujWTGkctUKo6WaMibUxwprFWrOU+2KQSRcIlJwzApHWTHQVjDfu8r4oNnU75u1PxUivN6uOB4kgwNl+epQpDCodR6dKvoW9lk3EhYbnjKMVq573dLUQdXR5xBGA+oxUNoWOH1BsndciLWzcVnMTLcO3mjOW9e3vo0jmf76UsFhtEEjfNgueePvON0QqQUAAOhie4zpl3gf/gOWZ+f/Zc3k05xz+zVlZAAAAAAAAAAAAAAAAECLcdckAAAAAGBasqIYTgmlXU9Tt5VLBAdLRscxrLnJ+U3d3mwTJXBS8iUliT8hJiuMY0WI2iksAGBFjioKvtdtX6gEnWCFtcZ//7z3ZqivFd/HbGJO4LF1bEwVX9GIL5rLtosV5hq/D9iBwzmBfx5v/GdgHg9CzvHtYn2Hqqqq5EfU4zKhy1vn0am+W2GvvZEwWsH4zMaUfXDkMaqpgqrS6PfGey/nCDgBcQwY4aS+dHBoabwoIUcgSKGa1527fho4b2V2tVZkV7V5RNNbb2px4PSBUn+bRzKRHbsljAYAABAiKIz2mPf+1igLe+9vc849LOmQcZPXSfpmE8b2hTrW81xJ32nCtgEAAAAAAAAAAAAAADALcEcxAAAAAGBaKlYLgdOziWzTIxhWsEQijNYM+crUgZPRiIr9OQBBrLBP2D7dLlYQSrIjR1ZMKJUgjNZJVsyh7EsqVUtKJ9Iq+RFVVTGWb/73MZeYo0FNjl+M7RNWmGJs2Xaxg2b5cX+eej+2xlyo5lX1VSVcItJ6OiU8UDaknkR4GK3eY13a9SipVGB0MV8Juu82muEpwmWl6kjd65aiBVWrqkSKygGYaKBkhNFS+8JoTtbftQijoT4bd95iHtvX9a5v82imPytkOGiED9vFul4J+3sRAAAANBgw7Y6Y67hTE8Noa+ofzj7e+2ckPRNnGQL2AAAAAAAAAAAAAAAAiCPR6QEAAAAAAFCPonHjdKYlgZmQYEll6jgHwlk3SI9XrgYHoYAwVggpbJ9ul6RLKe16AufljahQydgPUo4wWieFxafGzlVhx7lWfB+nCo51SxjNDpoNjftz8Hk2l9z3vlmfgZfXiC9KkvIVKx7W+RhHeIB16uuMeo91zrkJ7+N4Uc7NlqmCp2U/OcTWzPXvfV4DrwGYrXYY4aS+9NI2jwSzhfdeGwZvDJw3L7lAR88/oc0jmv56U4sDpw+U++V95wKGdqS289diAAAAXewxScWaaU/FXMeTNY+DLxgBAAAAAADVtCxFAAAgAElEQVQAAAAAAACALkMYDQAAAAAwLRWrhcDprQijha2zYASMEF1YoGdM2RNGQ3x2CKn5x4l6WFEoa9xWTCjlUk0bE+ILizmMHd/CjnOt+D5a6xwbh/UdG122fXEKa1v5cTEwO6KRG/fnkM+gEv4ZdEOMI2wMYZ/VmEIDxzr7OFT/9c1UQbKKyqr6at3rjxKLG30eYTQgroGSEUZLLZly2c7lljCdPZi/V0+N/CFw3vEL/1jpRHBIGLY+I4xW9iXtqexq82j2sc7f3fJ3MwAAgG7kva9I+n3N5NpQ2lRqn5+tf0QAAAAAAAAAAAAAAABA+xBGAwAAAABMS9ZNtZlE8+/pSCfSSrl04Lx8xDgHbFMFVCSpRBgNdbCiOLnE3DaPJJgVQ7LGXSGM1pWyybB45ug5IixulUs2//tofrcqz44nLNQW8nqazYpyjd8HrLGOXzaXDAmLjcXgjPN12LLtkklk5eQC500V96r6ioo+OBYb5btlhtEaiIrlI0RjrePZVLz3kYNnUaJyAPbx3mugHBxGW5TeF0azjlek0VCPWwdvCJzulNDa3tPbPJqZoS9thwwHy/1tHMlE9t/NOn8tBgAA0OXurnncG3P52ud37qIQAAAAAAAAAAAAAAAAiIEwGgAAAABgWipWgyMg2URrgi5R4i2oTyFCuKRMGA11sMI+7Qw/hckaQSZr3NZ+YIUb0R5h552xc4R1rnBy6nGZ5o/J+I6PBaus8aRdT1u/T+Y+UBmW96OBHWus4+NvVghu/PIFI9YVtmy7JFxCGeN7NFWgzArFSlIuwjWRFU+LEjez5CtTL1vyI3Wte8QXVVU10nO5RgPi2VPZaV5r9KWihNGAeAbLO3TX7jsD5x0x7xgtTu/X5hHNDPOTC5VQMnCeFT9sB+vv/a36GQ4AAMAMUlsTPjzm8i+oefx4A2MBAAAAAAAAAAAAAAAA2oYwGgAAAABgWrJCIBmXbcn2rHDKVMESTC3Ke0gYDfWwojhW6LDd7OBi8PHN2g+SLtW0MSG+lEsr7XoC5+Wf/Syt41wmkVPCNf9HtFN9t6zxtHvfsM6tVVVU8iOq+qq5P4wfa4/LKGH8qHvsteaN9XRLjKPeAGvYOTSbCI6eRdluPkK0NEjFV1T0wfHa8cq+XNf641x3cY0GxBMWTOpLLzHnjfHyzRwOZoHbBn+oqiqB807sXd/m0cwcCZdUb2pR4LyBUgfDaNY1nRFpBQAAwF7fl1Qc9/hY51zwBV8N51yfpJfUTP5ZswYGAAAAAAAAAAAAAAAAtBJhNAAAAADAtFT07Q2cWOst1BkOwT5TRV8kqUQYDXWwojhWjKnd7ODiUOB0K4yWcummjQn1Mc8Rz34H2x3ps75be8djnLvavW+Evf58dVhFI6AhSdnkvmWdcyGveXQd1mvullBivQHWsIBZLsI1kRUjsY5DU4m6XL3B0zjXXVGuLwDss8MIJiWV0vxkb5tHg5mu4sv6+eBNgfOWpg/QoXNe2OYRzSxWzHCw3N/mkYwKC6d2S6QWAACgW3nvd0v61rhJGUnvibj4eySN/21Cj0n6bZOGBgAAAAAAAAAAAAAAALQUYTQAAAAAwLRkxVIyiWzg9EbZ4RCiG42K8h7WG1DB7NbtISRrHIVK8PGt7MuB09OE0TrODqONfpbtjvSZ361nx2GOJ9nefSMshFGoDoeeH2qXtdaVrww9uz4rqNodx4N6A6xh8a9sIvjaZbyc8Zx6w2hRw2X1ntfjXHdxjQbEM1AODqP1phcr4fb970TnXLuGhBnsrt13aGdlIHDeib3rJ3znEF9vanHg9IEOhdFCY7ddci0GAADQLs45X/PfSREW+1tJI+Me/7Vz7rgptnOcpL+pmfx33nsfb8QAAAAAAAAAAAAAAABAZ6Q6PQAAAAAAAOpRrBYCp2dCIiuNsKM3RDcaFeU9JIyGerQ7RhVXzohQWUEiaz9IEUbrOOs7NXZ8a3ekzxpP/tkohXXczbXoHGqxolzSaMis4iqRl7U/g7E4XfB+Ze2H7VZvgNWan3IppRNTHxvmWGG0iIGzWsMRg2r1ntfjXHdFjbQBGDVQCg6jLUotibQ899Yjjg2DNwZOT7seHbfwFW0ezczTZ+y31n7eauGx2+64FgMAAJAk59xyBf97yv1rHqeccyuN1ezx3jf1wst7/4hz7u+1L3SWkXSTc+6Dkv7V+30/aHHOpSS9XdIVknrGrWajpGuaOS4AAAAAAAAAAAAAAACglQijAQAAAACmpbHQSa1MItuS7VnxFmsciKbqK5HeQ8JoiKviKxrxxcB53RJCmiqmVcvaD5KOH/F1mh3PHItyGZG+Fn0Xp4p52tFAO1TWCplEVk5OXpNjOvnKkCqJsrls7Wu09utCdVgVX1bJjxjr6ZbjQX0BVmt+1M/S+g5aIbmpTBVyG1Oq87wedf1xnwtA2lHeFji9L10bWHKBzws6lgNBniw+ps35ewPnvWTBOs1JzmvziGae3vTiwOmD5f42j2RU2PVMu8O8AAAAU7hN0nMiPO9ASY8Y874i6a3NGtA4H5X0fElvfPbxPElfkPRp59wdknZIWiTpZZJ6a5Z9QtLrvTd+QAYAAAAAAAAAAAAAAAB0Ie6aBAAAAABMS8VqIXC6FRZplLXeesMhGGV9jrVKVcJoiCfs5vtuCSHlYofRgiNRKZdu2phQn6kid9Znan0HGh6PFQmr5OW9DxlPe8MUCZdQJpELHE+hmldFleDllFTa9UyYZn0G+epwaICzVZ9BXPbxIDweasW/on6W1nbrjYrlK9Gui8p1ntenCsXV+1wA0kBpe+D0vlRtGA1ozIbBG815J/aub+NIZq6+lB1G897LueDAYasUKvb1TLf83QwAAKDbee+9c+7/aDSAduG4Wb2SXhmy6EZJr/PeP9nK8QEAAAAAAAAAAAAAAADNRhhtFnHOzZf0cknLJS2RtFvSk5J+671/oInbSUs6QdIKSQdI2vPsdv7Xe/9os7YDAAAAYHazglqZloXR6guWIFzU8ErZE0ZDPGFBnG4JIYWFnIJY+wFhtM4zzxHPRiCsz7R1Mc/g8VRUVsmPKF+xxjO3JeMJkzXCaPnqkCpGDDCXnDMp6BEWGrRe79j2u0Hc48GYgvlZRjvO5YzPPGrgbNJyEYOx9Z7XrdcbPBbCaEAcA2UjjJZeOuFxe3NKmGnylWFt3HlL4LxDsofqoOwh7R3QDGUFDUt+REOV3ZqXWtDW8VjXBymXUjrREzgPAAAAk3nvi5L+H+fcNyV9SNIrJCWNp/9W0hWS/sN7H/zbBwAAAAAAAAAAAAAAAIAuRhhtFnDOnSDpbyWdIuMzd879RtK/SPqi997XuZ2lkj4h6RxJi4zn3C7pH73319azDQAAAAAYUzSCZNlEtiXbM4MrMQIdmKzVARXMXuEhpO4Io9nHleDjW9mIRKUcP+LrtGwyOK41FvyyIppWlKpRuZDYV6GaN8OBOeN1tFIuMUeD6p80vVDNq+qqgcsE7cN2wHR4ilBi+2NwQeq9zrDiX7lktNdlPa/oC6r4ipLOurfWGE/EoFq95/U4sTPitUB0FV/RzvJA4LzJgaXgNJpXXf9rCbPMnbt+qqIPjpyv61vf5tHMXL3p4DCaNBpBbHcYzTond8vfywAAAMZ471e2YRsN96a99z+W9ONn/63eyzT6i0vHfknqVkm3e+8fb3Q7AAAAAAAAAAAAAAAAQCdx1+QM5pxLS/qcpAsjPP2Fkv5Z0rnOuTd777fE3NZ6SV+WtN8UTz1e0vHOua9JutB7H+1OOQAAAACoUawG30ydCYnBNCKbDL5hN06gA5NZAahahNEQV1gIqVtuwLePK0Py3su5iffIWftByqWbPjbEkzXOPWPnCCtuZS3X+Hjs73ihOmyeu7IdiIRZY81XhlRJBMcAg8Jv5mdQCQ+jteq6Ia56rzOs1xb1uzUn5DMvVIc1Nzk/0nrGDEcMnpbqPK+HfZa1okbaAEg7yzvkFRyjXBQSWALi8N7r1sEbA+fNTy7UUfOOb/OIZq4FyYVKKKmqKpPmDZS36yAd0tbxNHq9AgAAgGDe+22SvtfpcQAAAAAAAAAAAAAAAACtQBhthnLOpTT6D59Or5lVknSnpMclzdVoEG3FuPknSrrZOXeC974/4rZOknS9pJ5xk72kX0t6WFKvpBdp9DdTjvlTSQucc2d574PvtgEAAAAAQ9VXVfTtDaMFRVikeIEOTJaPHFAZafFIMNNYMaGUSyud6I6QWM4IQlVVVcmPqMdlJkyv+OBIVMrxI75Os+Jehepo/NH6PuaSrQmRWd+t0THZobCw5VrF2mahmlfViPQEBdxyRlisUM1P6+PBVNcZ5ncrYuQu7DPPV4Zih9GiXhfVGzyNE6Qd2/8ATG1HaZs5ry81MYzm5Ixn+iaOCDPRA8P36OmRxwPnHb/wj7vmnDwTJFxSvalF2lGevG8PliL979+myhvn5G4JVgMAAAAAAAAAAAAAAAAAAADoPolODwAtc7kmR9GukrTMe7/We3+u9/413vvnPPu8h8c97/mSrnPOWXe37OWcWy7pOk2Mov1c0uHe+2O893/ivT9N0nJJ79NomG3MmZIui/vCAAAAAGDEF815GZdtyTaDIiwS0Y1GRX3/ykYQCrB0U/jJEhYuCooGWiGhlCMi0WlZI55ZfPYYZ30freUalUnY58J8SCisE3GKrBk0swNuQe+bHafrrhCcJWz8YRr9boXF+eJEyMYMV6IFT+sNo8UJ0kaNrwKQBsrbA6dnXHbS9YoVRiOLhqlsGLwhcLpTQmt7a/+XJhrVm1ocON3a31vJvl7pnmsxAAAAAAAAAAAAAAAAAAAAAN2FMNoM5JxbI+nimsnv996/z3s/UPt87/1Nkk7QxDjaiZLOibC5T0jqG/f4dkmneu/vr9lG0Xt/laQ/qVn+L51zz4mwHQAAAADYKyymFRaDaUTOCIyU/EjdcQ9Ej67wHiOufKX7b74PCxcFjb9EGK1rWYGtsWOcdawLi+M1IuGSZig0XxlSoRJ8Hs0ZkbJWCnvvrP04aJnQ9RjXDd10PLDGX6jmVfVVczn7PYr23Qp7D4brCIu1+rxuvd4gxGuB6AZKwaGkRemlivA7dIApDZS26+49GwPnHTnvWC1KL23ziGa+vvSSwOkD5f42j6T9kWAAAAAAAAAAAAAAAAAAAAAA0x9htJnpQ5r42f7Ie/+PYQt475+W9LaayZ92ziWtZZxzz5N0/rhJI5Le6r0vhGzneklfGTcpI+ljYWMDAAAAgFrFkNBFq26szYYERqzADKaWr0SLrhBGQ1xWEMeKD3VCLhlyXAmIB1j7QcqlmjYm1MeKS41FrazzVitjEFkjcranslMVlY3xtH//sN6DQnU4JKIxeZz2ZzCsghlK7J4YhzUWL68RXzSXazQ0kpwiohdXPmJMzQo9TiVO7Kw4RVQOwD4D5eAwWl8qOKwUxMs3aziYgW7b+UNVFXxMXtd7RptHMzv0phYHTh/sQBit0ZArAAAAAAAAAAAAAAAAAAAAgNmHMNoM45xzkl5VM/mKKMt67zdI+uW4SQdLOilkkfMkjQ+nXee9fzDCpi6vefwnzhl33wEAAABAgLAwWibRmr9e5JJ2YCRqBASTRQ2clKqE0RCPtV9asahO6HEZObnAefmA2FHFB8esUi7d1HEhPitCVazmVazmzVhMK0Nk1rqt+I3UmXCgFcTIV4YD9wNJygXsx3ZgLa9h63gwTUKJYYEyK4wWtr6oz63n+qbVwdM4Y/LyKlbN3+EBYBwzjJaeHEYb/d9QATxhNAQr+5J+Pnhz4LxlPQfq+XOObPOIZoc+I4w2ULKvBVvFDLmG/JwFAAAAAAAAAAAAAAAAAAAAwOxGGG3mOUzS+DtVRiTdEmP5/6l5/IaQ576u5vE1UTbgvb9f0p3jJs2VdFqUZQEAAABAkgohkYuMEUZpVFg8JWrcC5NFDZzUG1DB7GXtl50IP1kSLhESc5oYD6j6iqqqBj6XMFrnWZ+jl9dgeYe5XFDgq1lyxpjCYhjW62ilsH3A2o+DlgkLge00PoNWvv9xhb33YdcZVjwuzmdpHRetdYdp9Xk97jUX8Vogmh2lbYHT+1KTw2hAXHftvkO7KoOB807sXW/H9tCQoLChJA2W++XbHDKcDn83AwAAAAAAAAAAAAAAAAAAANBdUp0eAJpuec3jB733xRjL31Pz+FVBT3LO7S/pheMmlSX9PMZ2bpH00nGP10v6bozlgVljeHhYv/71r/Xggw9q+/btKhQKyuVyWrZsmVavXq0XvehF6unpacq2/vCHP+hLX/qSNmzYoAceeEADAwMqlfbdqHrNNdforW99a+CyGzdu1DXXXKPbb79dW7Zs0c6dO1Wt7rtp/5FHHtHKlSslSSeddJI2bNiwd167b8IBAADTX9G4qTbtepR0yZZsMyyMVk84BKOivneE0RCXFcMJ25c7IZeYG7gf1E4r+7K5DsJonRf2vRos99e1XKOsdQ+EjCeXsONirWIFzQrVvCpGDDDotYWFwAbKwTG4bjoehAdY7XOlNS9OaMT63AuVOsJoEZep97yer8QLnRGvBaKxjpPBYaXgiJUXP+NFsA2DNwROz7isXrbg5DaPZvboNcKGJT+iocpuzUstaNtYrOuVTkR5AQAAAAAAAAAAAAAAAAAAAEwPhNFmnkU1j4N/Bbut9vkHOecWeu931kx/Qc3ju733ce5Ku73m8eExlgVmvEqlov/+7//WNddco5/+9Kcql+0b4LPZrE4//XT92Z/9mV796lfXvc2rr75aF110kYrFOC1FqVwu613vepeuvvrqurcNAAAQV7FaCJyeaeFNtUmXVI/LaCSgPR0WLEG4qO9dyY+0eCSYaawYTpxYUDtYMYDaIFFYRCjl+BFfp2WT9YXRWvl9tNY9UAqO3zg5ZRLZlo3HYu0D+eqQKqoEzgt6bWFhMes1d9PxoMdllFBC1YAYnBURLVVHzGhinOhbzvj+DhuBSYv33oxS1ipV44fRqr6iog++BrQQrwWmNlItaqiyO3DeotTSSdOCs2hAsMcLj+qh/P2B845dsM4MpKJxwWHDUQPl7W0No+WNv5t1U6QWAAAAAAAAAAAAAAAAAAAAQHdJdHoAaLraO8UzMZcPev5hEaZtjrmdhyJsA5iVfvKTn+iwww7Teeedp5tvvjk0iiZJhUJB3/nOd3TmmWfq2GOP1a9//evY27zhhht04YUXxo6iSdJHPvIRomgAAKDtrOBRq4Mu1k27+QrRjXpFfe+s8AtgyVeC4zzddvO9FYOojfmE7QMpl27qmBCfFfeS7ChXQkmlXU+rhmR+1wfKwePJJHJKuPb/uDiXCN4HCtX8pEDgmKDXFhY5s+J03XQ8cM6Z47EiomFxUSt2Fvhc4zOIGjkbU/SFwLBbkHrO61YYNwzxWmBq1nlBCg8rAVHcOniDOe/E3vVtHMnssyC5UAnjnwKEhXtbwTofd1OkFgAAAAAAAAAAAAAAAAAAAEB3SXV6AGi62n/JfkDM5YOe/3xJv6iZtqrm8R9ibuexmseLnXN93vuBmOsBZpRPfOIT+sQnPiHv/YTpzjmtWbNGy5cv1+LFi7Vt2zb94Q9/0AMPPDDheZs2bdJxxx2nz3/+83rHO94Rebsf/vCHJ2zzvPPO09vf/nYddNBBSqf33WC/ZMnEG+G2bt2qf/qnf9r7uKenR3/1V3+lM844Q0uXLlUise+mm+XLl0ceDwAAwFSsMEZYmKYZcsk52lWZ/NcWohv1i/relX2pxSPBTGMFFOPEgtrBOm7V7hth+0DK8SO+Tsu4rJycvPykeVZwJpecI+dcy8aUTQZ/t0q+9vcqPPv8Fp9DLdZ2vbyK3jjfB+zHadejhJKqqjJpnvWauy3GkUvO0XB1z6TpVkS0NqA4XpzomxlGMwKTFitkF6RsfCZhwl6vuQzxWmBKVsBTknpTiydNcwo+dwWdAzG7DVf2aOOuDYHznptbo+XZle0d0CyTcEktTC0KvBYN2+9bIU7sFgAAAAAAAAAAAAAAAAAAAAAkwmgz0e9qHh/onFvuvX884vLHBUxbGDCtt+bxMxHXL0ny3u9xzhUkZWu201AYzTm3n6SlMRd7biPbBJrl4osv1pVXXjlh2vz58/XhD39Yf/qnf6oVK1ZMWmbz5s368pe/rCuuuELFYlGSNDIyone+850aGhrSxRdfPOV2f//73+vuu+/e+/iMM87Q1772tUhjvv766zUysu9G1ssuu0wf+MAHIi0LAADQiKIRPMq4bOD0ZrFu2q0n1IFRUcNoVtQGsOSrwUGfbrv53gwSxQqjpc15aA/nnLKJXOD5YKBc+3sMRrX6uxh3/dZ3sdXqeR9yATE155xyiTkaqu6Ose3OxOAs1nthnSvDrj/iRN+sYGTc65th47gbpJ7gadg1Q4/LaMQXA5aJF3cDZqMd5W2B0+clF6onkQmY07qoJ2aWO3b9NPDYLEnres9o82hmp77UkuAwmnF92gpVX4kVuwUAAAAAAAAAAAAAAAAAAAAASUp0egBoLu/905J+XzP5/0RZ1jk3V9LZAbPmB0ybV/M4uEoQrnaZoO3E9S5Jv43533easF2gIV/5ylcmRdFe/vKX67777tOHP/zhwCiaJK1atUqXXXaZ7r77br3gBS+YMO/973+/brnllim3vWnTpgmP3/CGN0Qed73L3nLLLfLe7/0PAAAgroIRRmt14MRavzUeTC1qdKXsyy0eCWYaa7+MEwtqB+u4kq/ECaPxuw+6Qcb4LAdLk2MUUuu/i3GDY52KhFlRrjBZI+IWN65Rz7ZbyTweGOfKQsU+h8b5PM1AYyVeVCzO8+s5r9ceF8frSwf/row812jAlAaM81RfanHMNfFzXuxT9VXdOnBj4LwFyV4dNf9lbR7R7NSbDt6Pg2JprRL285Kg2C0AAAAAAAAAAAAAAAAAAAAASITRZqr/qHn8QefcgRGWu1TSwoDpUcJowb/qO1ztv4SvXScwKzzwwAN6z3veM2Ha8ccfrxtvvFHLly+PtI7Vq1frxz/+sdasWbN3WrVa1Zvf/GZt3x5+g8vWrVsnPI66zUaXBQAAaESxGvxXkEwi29LtWhGbfDVeOAT7FCKH0ewoFFDLe28GdDoVf7JY8arafSMsIpRy6aaOCfWxzhED5f7A6XHDZXHFDU3kksFxrFar532wXlvc19zqzyAuK1BmnSutYFrGZZVwyRjbta5vop2j9z0/+vVQqY7zuvU+JJXS/GTQj7WlAtdowJSsQNIiIzjojPWQRcN4vx++W8+Ungycd0LvaVy/tklfakng9EHj+rQVwsJo3XYtBgAAAAAAAAAAAAAAAAAAAKB7EEabmT4vaee4x72SbgyLoznn/lLSxcbsaoRt1nPPC/fJAJIuueQS7dmzZ+/j3t5eXXvttZo3L14rcL/99tO3vvUt9fT07J32xBNP6NJLLw1dbvy2JSmdjn5DUiPLAgAANKLog2+szbQ4eGQGjCr2jb6wlaojobGn2ucCUZV9SRUFf7es8FCnWDGq2iBRWByQsER3sM4RVizKilE1S9zQRKeigT0uo0TMH1Nbry3+a+6uGIf1GViBMisUFjdyF/U4NJU4YbR6gqfWeLLJnB134xoNmNKO0rbA6VZQSc5KowH73Dp4Y+D0hBJau/D0No9m9upLLQ6cPlhqZxjNvp7otmsxAAAAAAAAAAAAAAAAAAAAAN0j1ekBoPm894POubdJunbc5CMk3e+c+xdJN0p6UlJO0lGS3i7p5eOe+7ik5eMeDwZsZk/N43runKxdpnad9fiCpG/GXOa5kr7ThG0Dsf3ud7/T97///QnTPvOZz2j//feva32HHXaYLrnkEn3605/eO+3f/u3f9PGPf1x9fX2By1SrUdqHwRpZthnuu+8+3XPPPerv79fAwICy2ayWLl2qNWvW6Mgjj1Qmk6lrveVyWRs3btTDDz+sbdu2qVgsaunSpVq5cqVOOOEEZbPZJr8SAAAQV7FaCJyeSbT2PJ1LGmG0mOEQjIoTXKknoILZK+y7lU12Jv5ksUJItceVsH0g6fgRXzeIGxZrdQgibnit1aE2i3NO2cQcDVej/Wgw5VJKJ3oC58V9Tzv1mi1WuLFQCT6mmaGwmN9FOyo2JO+9XMQIUt4YZ5Cyjx88NUNwiTkh12jRY23AbDVQDg4k9aWNMJrBe34XDkbtKG3T3Xt+GTjvhfNeqt50cKwLzddr7McD5e2xzvGNCLs+6LZrMQAAAAAAAAAAAAAAAAAAAADdg7smZyjv/XXOufdJ+r+SEs9Oni/pA8/+Z7lK0kJJ54+bNm3CaN77ZyQ9E2eZdvyjf8By5ZVXTrhhbMmSJbrgggsaWufFF1+sz372syqVRm+aHxoa0tVXX60PfvCDkqRHH31UBx98sLn8ySefHDj9mmuukaTQ8Vn70yOPPKKVK1fufXzSSSdpw4YNex/HuWluy5Yt+vu//3t985vf1NatW83n5XI5nXzyyTr//PP1+te/Xslkcsp133///brsssv0/e9/X7t27TLX+5rXvEaf/OQntXr16sjjBgAAzVWo5gOnxw2BxGUFV+IEvrBPnKBc2ZdbOBLMNGHfLSs81CnWeGqPK9Y+kFBSCZcInIf2ih3lMkJOzRJ3PK0OtYXJJaOH0cLGGTeu0cnXHMQKN1rXGXYoLN5xLpecFzi9orJKfkQ9Llp4fjhGhKye87odgpsTco0WfM0IYJT3XgOlbYHz+lJLA6c7Wf9PhTAaRv1s8IfyCv6lKif2ndHm0cxufangMFrJj2ioulvzkgtaPgbreiWplFIu3fLtAwAAAAAAAAAAAAAAAAAAAJieuGtyBvPeXyVpvaTfR3j6HknvlnSxpANr5j0d8PydNY+D75AxOOfmaXIYLSjABsxo//M//zPh8Vve8hb19PQ0tM6lS5fqzDPPDN3OdOS915tUPcUAACAASURBVGWXXaZVq1bp85//fGgUTZLy+bxuuOEGnXPOOdqyZUvocyuViv7iL/5CL3jBC/Sf//mfZhRtbL3f+MY3dPjhh+vKK6+s67UAAIDGFauFwOmZRLal27WiG3ECX9gnTlCu7EstHAlmmrDvVqsDinFZ4ylUasNowftAmphA17CiVubzWxzlijueuFGxZorzXoTtw7FjcDHfo1azrzOC4175ihUKa95nn48RO4tzPVSq47xuh+DmmK+hEGP8wGw0XN2jEV8MnNeXDg4qAWFK1ZJ+vvPmwHkH9Byk1bkXtHlEs1tfarE5b7DU35YxWJHSbDLHL68CAAAAAAAAAAAAAAAAAAAAYEp1egBoLe/9Tc65wyW9VtIZko6XtEzSfEnPSHpE0vWSvua9f1qSnHOH1qxmU8CqH6x5/JyYQ6t9/g7v/UDMdQDT2uOPP65HH310wrTTTjutKes+7bTTdN111+19fMcdd6hUKimdnp43zJfLZb3pTW/StddeO2ne/vvvryOOOEJLlixRsVjU1q1b9Zvf/EZ79uyJtO58Pq+zzjpLN91004Tp6XRaRx11lJYvX65MJqOnn35aGzdu1PDw8N4xXXzxxRoYGNDHP/7xhl8jAACIp2jcWJtpcfDIjm4QRqtHbfgpTMmPtHAkmGnCvlvdFkbLJecGTi/6gqq+ooRLSpLKvhz4vBRhtK4R97vV6u9i/EhYJ8No0d+LXCJ4n5GkXMzX0MkYXBBrPFbs0QyFNfF9yFeGtTC1KNJ6hivRI2Tlavwwmh2Cm2N+360YC4BRA6Xt5rxFqXhhNN/oYDAj/O+e27WnUvu7lUad2LueEFabLUj1KqGEqqpOmjdQ3q7lOrjlY7CuV1odCQYAAAAAAAAAAAAAAAAAAAAwvRFGmwW89xX9/+zdfZQkdX34+09VVz/OzM70zC4Py7LsCioBAYVFYIHFCIjL+cXEh9zk4rm/E0n8/WLIifeGXP3pzxuQHHz4eTw3JOolud5o4g1Jfh4fovcnETHyrCgPigIiyOOygLOzPTtP3T3dXd/7xzLLTPf3U13VD9XVM+/XORy3q7qrvtVdXVUza71X5Ksv/xfIcZzjRWTbqknPG2Oetzz10abHJ0Uc1quaHj8S8fXrVr1hZB+JuL7bVhTxUoO9Aefuu+9umbZr166eLPuss85a87hcLsuPf/xjOfvss2Xbtm3y1FNPHZn3l3/5l3LDDTccefxP//RPcu6557Ysc/PmwzfCvelNbzoy7Xd/93fl3nvvPfJ49XJX27Ztm3V6WFdffXVLFO3yyy+Xa6+9Vs4+++yW5/u+Lz/4wQ/kn//5n+WLX/xi4LKvuuqqNVG08fFxufbaa+X3f//3ZWxsbM1zy+WyfO5zn5OPfOQjUqlURETkuuuuk3POOUf27t3b4dYBAIBOVP2KdfqgIjNasATBorxvWhQKsNH2rayTOxIaS4p8wHGr4pelkBoVEZG6sUeEUg6/3kuKqHGHfke5oi5/kJGwoNhZs6BzfZTrgLSTSdz3R9uHtKCIdqyLvC8qgcagddifGyGMphzTggSF4NR4bYQIK7ARHaxPW6e74sq4V7TOc0T7vTppNIjcXvqWdXrWyckbN70p3sFAXCcl496klOqtEcRSfSaWMajn74QFqwEAAAAAAAAAAAAAAAAAAAAkS7Lu/EISXNz0+DbleT9reny64zgFY0zYO83Ob7O8DWtfSeRVH279l9vRW09+zJUdmwc7hn379q15fPTRR8vU1FRPlv26173Our6zzz5bPM+THTt2HJk+MTGx5nnHHHPMmvnNRkdHj/w5l8utmRf0uk7dcsst8ld/9Vdrpn3iE5+QD37wg+prXNeV3bt3y+7du+W6665rGeeKL3/5y/KFL3zhyOMTTjhBbrvtNnU78vm8XH311XLeeefJxRdfLJVKRYwx8id/8ify2GOPieu60TcQAAB0pOKXrdOzrv283yvajbuVRlmMMeI4g43vDpsoARUjvjRMQ1IJi1ohmfR4Tvj4UlxyAUGosr/UNozmJSzstJFFjVFFfX5U2YixiX6PJ3jd4ccaNM4o2zDIEJwmatxLD41E27askxNXXPGl9XeSUc7V0YKn0cNoZeX6L+cWJJeKFpUDcFip1hpLEhEZ9ybVmKweRsNG91zlSXmq8ph13hvH3yR55ViN/prwpuxhNOX732va728Gee0JAAAAAAAAAAAAAAAAAAAAIPkouKDZ7zc9/rztScaYF0TkoVWTPBG5IMJ63tT0+OYIrwXWhYMHD655XCwWe7bsXC4n2Ww2cH3D4rrrrlvz+A//8A8Do2jNJiYmrGE0Y8yaZXueJ9/4xjdCxd1WgmsrnnjiCfn6178eekwAAKB7Vb9inR41AhNVTokqNaTeUeBjo9NukNbUzHKfRoL1RovzRIkvxSUoYFReFUOqm7r1OZ6T7vmY0Bktnqk+v89xkJSTkoyTbf/Elw0yFJYPCAQ2C4poRNmGJMY4tLhX1VTEN42W6WUlmBZ12xzHUT+DciNCGC3Cczu5bqookba8W1A/+yixNmAjssWSREQm01siL8uI6XY4GHK3z35LnXfRxOUxjgSrFdP2fyVotj4Ty/q1yGoSr8UAAAAAAAAAAAAAAAAAAAAAJAdhNBzhOM4FsjZu9pgx5raAl3yt6fF7Qq7nZBE5Z9WkRRG5JcxrgfWkOVQ2MTHR0+U3L29mJp6bXHrpoYcekrvvvvvI47GxMfnkJz/Zk2V/73vfk5/97GdHHr/73e+W008/PfTrr7rqqjXBtW984xs9GRcAAGiv5tekIfZAUNZpDaL2UlD0hvBGdFECKiKdRVSwMVWU72OU+FJcgoIAq7dD2/8JoyVH1LhDHDGIYQmF5VLho3JBQbko26BFyAYp6DrDFhPVj3XRt017P7SYSbfPrXVwTi8rQdWcW1A/+5pZ5voBCFCq2cNoRc8eUgpCFm1jW2osyI/m7rDOe3X+VNma3R7ziLCi6E1Zp88qYcReqzTs5+9BRnkBAAAAAAAAAAAAAAAAAAAAJB9hNIiIiOM4BRG5sWnyf23zsn8Ukcaqx+9wHOfVIVb3wabH/90YUwnxOgAROI4z6CF07bvf/e6ax1dccYVs2rSpJ8v+zne+s+bx7/zO70R6faFQkDe+8Y1HHt955509GRcAAGivauw31YqI5AKCIr0QNmCEcKLG5OrGHsQDmpUb9n2r38eITqTdtBo3W/0dqftaGM3ry7gQXdT9K44YRJT4V1BwrN8iBc0CnhtpexN4PMgFxBtt50ztPNpJ9K2grDvKuTpK8LSTWFkl4Nge9H3SgiwAREpKGKmY1sNojgz/753Re98/9F2pmWXrvIuKl8c8Gqw2oYQOS7V4/jEd7Xclg4zyAgAAAAAAAAAAAAAAAAAAAEg+7pxcpxzH8YwJd8e44zijIvJNETl11eSvGGO+EvQ6Y8zjjuP8vYhc+fKkjIh80XGci7XQmeM4vykiv7dq0rKIfDTMOIH1ZnJycs3jQ4cO9XT5s7OzgesbBvfcc8+ax29605t6tuy77rprzePJyUl5+umnIy1jdaTt6aefFt/3xXVpjgIA0G9VX49bZN1cX9cdFN2IGvlC9Jhc3bffaA800/atQYafguTcgiw0Wn8mXL0dDbH/mkeLqiF+iQyj9Sg41m9R3oug9zlK7CyJMY6g8duOa9q1Ryf7lvZ+LEWInS350cJoxphIYX/92D7SNl47Kr0J7QPrzcHatHV6UQkpBTPdDQZDyze+3DH7b9Z5496knDF6Tswjwmpa6LBUPxD5XNwJPeSavEgtAAAAAAAAAAAAAAAAAAAAgOQgjLZ+/WfHcd4pIv8gIv/DGNNyd8vLQbR3isj1InLcqllPi8gfhVzPNSLydhEpvvx4t4jc6jjOHxhjfr5qXVkR+U8i8umm13/aGPNMyHUB60pzqKxUKvVs2ZVKRSqVtX3Cqampni0/Li+88MKax6eeeqryzOiee+65NY/PPffcrpbn+77Mzs4OZYAOAIBhU/WtHWYRiR6liSoovFZpEEaLKmpMrmZqfRoJ1puKElBMYghJ5HDEyBZGW/0dqSv7v+cSRkuKqPtXLoZQX5TzYhyhNk2U9y5onDl3pCfLGZSg8Vcaa49rvvHVWGw+wvtw5DXK/hg2Ylo3NamZ8AFTI0Z8aUgqwl9RqGEVNx8YviReC9j5piGz9YPWeYFhNCWiZAxhtI3q50s/kenaC9Z5F4y/RVIOfx09SEXP/ndDNbMsi/68jKb6Gw8dtp/NAAAAAAAAAAAAAAAAAAAAACQD/0/09csRkV9/+T/jOM5TIvKYiJREpCAix4jImSKSaXrdUyLyFmPMr8KsxBizz3Gcd4jIt1ct63wRecRxnPtF5EkRGX95XVuaXv7/icj/EXG71r1tRZEnP+YOehjr3rZi++f023HHHbfm8YsvvigzMzM9CZg9/PDDbdc3DGZmZtY8LhZ798E1L7sX5ufnCaMBABAD7aZaEZFsn8NorpOSnJu3joHoRnRBn6WNFoYCmpX9Rev0JIaQRPR41ergYs1XwmgOYbSkiBp3iGN/DDsmV1KSdpp/TRifKO9F0DblI1wHJDHGkXbT4jme1E29ZV7zca3qV8SIPULUSSi2oMTUtONpy/M6CMTWTC10LCcovJZ3RwK3mWs0wG6ucUh8aVjnTaab/zrnFY7Yw2jYuG4vfcs63ZWUXDDxlphHg2YTShhNRGS2NhNDGM1+Hk7qz2YAAAAAAAAAAAAAAAAAAAAAkoEw2sbgiMirXv4vyDdE5A+MMdNRFm6Muc1xnLeLyBfllfiZIyK7Xv7P5p9E5L3GGPtdNxuYl3Jkx+ZBjwJx2L17d8u0++67Ty677LKul33fffeteZzP5+X1r39918sdNMfp3U13y8v2m2m7YYz9hmQAANBbVb9ine6IG0vUJecWrEEv7WZf6MqNcLGVFYTREJYW3UtiCElEJJ/SgkSvHFdsoSQRES9kVAj9l0uFj1GlnUzoIFQ3wobC8qlCT3/mjiqXCv/dzAc8N8p3PKnHg5xbkIXGXMv05uNa0HWHdkwJXq/9NUshz9WdxMcOn9fD7aOVhh5Tzbl5STmeZJysLJtq62u5RgOsSjX9r4KKHn9JgXBmai/Jzxbvs857/di5Mu7xD4kM2rhXFFdc8cVvmVeqz8g22dnX9WvXCEm9FgMAAAAAAAAAAAAAAAAAAACQDO6gB4C+uUtEviwipTbPq4vIzSJyqTHmN6NG0VYYY74lIq8TkRvbrPMHIvIuY8wVxphod8AD68z27dtl+/bta6bdcsstPVn2d77znTWPzznnHMlk+h8J6bXNm9fegHfw4MG+LDuXy4nv+2KM6eq/HTt29Gx8AABApwWPsm4ulqhLTonMdBIE2eiihkpqhNEQkhbdyyf05nttXKu/Iw3CaImnnR9s4toXwwYnBh2miPJ+BL3PaTcT+jsRFFgbJO29aL7OCLruiLIvrigoMbWw5+qyH/1XvVrwMeo48i9H3bT9uNzgGg2wKdUPWKennYyMpMbU12k/cRnhH43YiO6c/bb62V80cXnMo4GN66Rkk1e0ztOOA71UUc7DnVyvAAAAAAAAAAAAAAAAAAAAANg4CKOtU8aYHxtj/icRmRKRk0XkHSLyJyLyERH5ryJylYhcKiKTxpjLjTG39mCdvzLGvE9EjhGRN4vIe0TkQy+v950i8ipjzHnGmK90uy5gvXjrW9+65vGXvvQlqdW6iz1MT0/LN77xjcD1DItjjz12zeNHHnmkZ8s++uijj/y5UqnIs88+27NlAwCA/qr6Fev0uG6qXYlvNNOCbdBFjcnVCaMhJO37mEtoCEmN+az6jmj7v+ek+zImROc5aUk74aLkcYXIwsa/Bh0NjPJ+aOfhqMsadAxOo42rOQwWJhQWhbYPLCmhyWZakDJI3V8O/dzAEFzq8DWgtr9HDbECG8XBmv3fySl6m9sEp/sfo8ZwqPnLcveh71jnHZvZLiflT4l5RNAUvc3W6bO1mb6u1zcNqRr773AGff0JAAAAAAAAAAAAAAAAAAAAINkIo61z5rDHjDFfM8b8tTHmemPMx4wxnzPG3GqMme/DOpeNMd8zxnzRGPOJl9f7VWPMU71eFzDs3v/+96+5yWx6elq+8IUvdLXMG264YU1cbWRkRN773vd2tcxBOf/889c8vu2223q27N27d695fMstt/Rs2QAAoL+qSvAo6+ZiWb8WYOskCLLRRQ2VEEZDWGXf/n1M6s332rgqhNGGTjZkpDOuSN+wRMLyEeKm7UKoYUOpcQVVo9LG1XzO1EJhrrihA31r19tdVEw77gapRTivB4XRVo6hYSKTAF5Rqh+wTi+m7QGl9kzng8FQun/+blls2P+a8aKJvW0Ce4hTMT1lna4dB3pFC9uLJDdaDQAAAAAAAAAAAAAAAAAAACAZCKMBwACdcsopsnfv3jXTPvjBD8pLL73U0fIeeeQR+dSnPrVm2nve8x6ZnJzseIyDdMkll6x5fNNNN8n8fG96jpdddtmax5///Od7slwAANB/2o21YWM03corN+9WlGAb7HzTiPyeEUZDGMYYdd8adPxJo8Z8Gu3DaCnH68uY0Jmwga8oIbBuhN3nBx0NzLkjEZ4bPNZ8yGUNeps1+ZR9/KuPByIilYY99pV3RzoK0RSU9S6FDJ4tKYHYoM8rynldC7SlncyR42CYyCSAV5Rq9iDSpLcl8HWO2I8xhjDahnPH7Les03NuXt44/qZ4B4NAE549eDjb5zBaUJw0qZFaAAAAAAAAAAAAAAAAAAAAAMlAGA0ABuzTn/60FAqv3Lg5Ozsr73jHO2RhYSHScqanp+Vd73qXLC8vH5l27LHHyp//+Z/3bKxxO/XUU+Wiiy468nhubk4+9KEP9WTZe/fulRNPPPHI4x/+8Ifyd3/3dz1ZNgAA6K+qsQePsk4ulvVrgQ+iG9FogbsgNZ8wGtqrmooa5khuCKn9caVu6tbnpJ10X8aEzoQNkUUJgXUjbHBi0NHAtJsWL2Tkr91Yh2WbNdr4m68ztNBILtVZZEQLylX9svjGb/t67TpoLDWuvkY7rtk0h+FWrB639t4FRVmAjeygEkQqpu0BJWC1ZypPyNOVx63zztn060SvEqaohNFKtZm+rjfo9yRhY7YAAAAAAAAAAAAAAAAAAAAANibCaAAwYCeffLL89V//9Zpp99xzj+zdu1f27dsXahmPP/64XHzxxfLoo48emea6rnzpS1+SLVu29HS8cWsOu332s5+VT3/606Fff+jQIalUWqMbnufJddddt2ba+973PvnqV78aeYy33nqrPPnkk5FfBwAAOlPx7WG0uG681kIqRDei6eT9qhvCaGivosRzRJIbQtKCbWV/8ciftf3fI4yWKGHPRfkBn7OaaXG+OIWJxXlOWtJu8D4fPk43+G220SIhzedNLTTSaQAyn7Kv14iRqnLttdrSquPVapu8CfU1NbOszmumbe/q75z23gWdF4CNbLamhNGUgFI79iwt1qs7Sjer8/ZM7I1xJAijmJ6yTi/VD4gx/fv2lgOuIYjnAQAAAAAAAAAAAAAAAAAAAAhCGA0AEuDKK6+Uq666as20u+66S0455RT5xCc+Ic8995z1dU888YR85CMfkdNOO01++tOfrpn3yU9+Ui6++OK+jTkub37zm+Xqq69eM+3P/uzP5G1ve5vcf//91tf4vi/f//735f3vf78cf/zx8uKLL1qfd8UVV8iVV1555PHy8rK8853vlHe/+93qskVEGo2GPPjgg/LRj35UTjnlFLn00kvl2Wef7WDrAABAJ6p+a/RURCTr5mJZvxYc0YIdsAt6v0bcMet0wmgIIyi6l4T4k40WaFodgiSMNhzCR7naR8B6IWyALQmRsDBjDTPOsN/z5B4P7O9D83lTO9Z1+lkGBdW06Nma8SjxsYI7Kq7y1xBRzuva9q4OuuVS9veOeC3QqubXZK4xa51XTAeH0RzHUeaQRtsoFhpzct/8ndZ5ry2cJsdmj495RGhHCx7WzLIs+Qt9W6/2c78rKUk7mb6tFwAAAAAAAAAAAAAAAAAAAMDw8wY9AADAYZ/5zGekWCzK9ddfL8Ycvolsfn5ePvShD8mHP/xhOeWUU+T444+XYrEoMzMz8swzz8hjjz3Wspx0Oi033HCDvO9974t7E/rmk5/8pDz77LPy5S9/+ci0b37zm/LNb35Ttm7dKqeddppMTU1JtVqVF198UR566CGZn58Ptewbb7xRSqWSfO1rXzsy7aabbpKbbrpJtmzZImeccYZMTU2J67oyNzcn+/fvl0cffVQqFXuQBQAA9N/qUNBqWkik17TgiBYEgV3Q+zXqjcvicuv1HGE0hBEU3UtC/MlGCxKVG0tijBHHcaRu6tbnpBx+vZckYfexvBJw6rXQ40nAdyNU9CzEc4Zpm23U64ym6x/tWNd5GE2P9ZUbSyJtGoxlJZ6WT41I2slI1bT+HiXKeT3M9Z+2DcRrgVaz9QPqPC2gtMIRLYyGjeL7h/5dambZOm/PxOUxjwZhTHhT6rxS7YCMpOxx8m5VlJ/7824hILIIAAAAAAAAAAAAAAAAAAAAAITRACBR/uIv/kIuuugi+aM/+iN5/PHHj0w3xsjDDz8sDz/8cODrzzzzTPmbv/kb2bVrV7+HGqtUKiX/8i//Iqeeeqpcf/31Uqu9cuPs/v37Zf/+/R0vO51Oy1e+8hX51Kc+Jddcc82a4Nn09LTceuutoZYxMqLfQAwAAHqr6tsDpVk3F8v6tQAb0Y1otIBKSjw1VlMjjIYQysp30RVXMk425tGEo4WMGlKXuqlJ2smoASHPaVMrQqzCRjpzARGqXgobyYorLho8hjDRs/bjDLvN2QRss412DmwOi2iB0U6Db/mU/jrtnB3mOXm3IJ6TVsJo9uBjlOWv/ry5RgPCKwWF0dLBYTTNyj/2gfXNN77cOXuzdd6ENyWnj74x5hEhjE1eURxxxYjfMq9Un5FtsrMv61XDpjFFggEAAAAAAAAAAAAAAAAAAAAML3fQAwAArHXJJZfII488Iv/4j/8oF198sXhecMMym83Kb/zGb8i//uu/yn333bfuomgrHMeRa665Rh577DF573vfK5OTk4HPHx0dld/6rd+Sr3/967J9+/a2y/7ABz4gTz31lPyX//Jf5IQTTmg7nrGxMbn88svls5/9rLzwwgty9tlnR9oeAADQuapyY21cgZN8yh6z0W74hZ32fuVTBUkroSctDAWspgVwcm5BHMeJeTThBAeJDm+PFhDyHP7dgyQJG3nIx3bOChfJ0s5tcQoz1jDRszBhsKyTk5STCjWuuOWU96H52KYe60J+5s08Jy1pJ2OdFyqM1rA/p5AaUY9TUc7rlYZy3bDq884rwUEtmAlsZAdr9jBawR1NRCwTyfXI4gNyoPaSdd6FE5cl9vy60aWclIx7Reu82fpM39Yb9LMZAAAAAAAAAAAAAAAAAAAAAAThzkkASCDP8+SKK66QK664QhYXF+X++++XJ554Qqanp2V5eVmy2awcffTR8prXvEbOPPNMyWazHa/r2muvlWuvvbaj1952222xvk5EZOfOnfK3f/u3cuONN8oDDzwgP//5z+XAgQOysLAgIyMjctRRR8nJJ58sp59+uqTT9qCG5phjjpGPf/zj8vGPf1yeeuopeeCBB2R6elpKpZK4ritjY2OydetWOfnkk+XVr361pFLc5AUAwCBU/Yp1elxhNC0UUPGXxBiT2PBS0miRkrxbEI8wGrpQbij7VoexoDgEhQEq/pJskgl1/9e+LxiMsJGHnBJw6rWwcZskRHBCRc9CxdPab0sStlejhd2az5tB59HO1z0itcZy67qV6Nna8difk3dHxHPTIo3WeTW/dV1Rl796v1Gv0ZSoGrCRler2MNpkenPb1zrCzzsb2e2zN1unp8ST3eOXxjwaRFH0NlsjaCUllNgL/bheAQAAAAAAAAAAAAAAAAAAALAxEEYDgIQbGRmRPXv2yJ49ewY9lERxXVd27dolu3bt6svyd+7cKTt37uzLsgEAQHcqvj1ukXVzsaw/r8RsfPFl2VQl68QzjmGnRVZyhNHQpYpy833YYNUgBIUBVmICehiNX+8lSdjgVj6mMFfK8STtZKRmggNU2rktTmECGWG+x6GeM4ShxJpZloapS+rl77wWGunmWJdPFWSuUWqZrq0rzHPy7oh4TsY6L8p5Xbv+Wx3Ly6fs+3HZXyReCzQp1aat0ye89mE0jRHT8WsxHA4svyiPLD5gnfeGsfNk3CvGPCJEMeFNWafPKqHEXhjGn80AAAAAAAAAAAAAAAAAAAAAJIM76AEAAAAAABBF1a9Yp4eN0XQraD3aTb9opQVOgsJoNZ8wGtrT4zzJvfk+G3RcaRzenoapW+dr3xcMRtj9LKcEnPohXHAsnnNo8BjajzPMtuRDRM+SHOMI+ixWH99Wjg3NujnWaYG8MGG0JSV4mk+NSFoJONaV45pNxdeDqq/82f7ercRrAbyipISQiukwYTR7ZJAw2vp3x+y/qZ/znom9MY8GUWnfb+140At6yHXw154AAAAAAAAAAAAAAAAAAAAAko0wGgAAAABgqFSVoFbWycWy/qDgSFmJlKBVWQmc5FMFSbv20FPdEEZDe1qgMMkhJNdx1TjASkygpuz/hNGSJex+lo8xBhEuOBZfqE0fQ28Cbr0KrA1K0GexOobWj2Od9r6UlejZCt/4avA0HxA8jXJeLwcs/5U/B7x3xGuBNUo1ewhp0tvS9rX2LBrWu2W/Kt8/9F3rvOOyO+TE/K/FPCJEVfSmrNNLtZm+rbPS0IPoAAAAAAAAAAAAAAAAAAAAABCEMBoAAAAAYGj4xpeqqVjnhYml9EIupd/AS3QjPC2gkutRQAUblxYoTHIISUSPA6xEBLX933O8vo0J0YU9F8UZgwgVE0vFvHdLFwAAIABJREFUF2pTxxBinGECbr0KrA1K0GdRXnWdUVauOfIB1ynt5FP291eLma6o+hUx4tuX6Y705LxeUY7tq79LQZ8r8VpgrYN1exitmN4c80gwLO6fv0sW/XnrvIsm9orjkMxLOu37PVufEWNMX9aph1yTey0GAAAAAAAAAAAAAAAAAAAAIBkIowEAAAAAhsayqarzsm4uljFknZw4Yr/pW4uUoJUWWckTRkOX9Jvvkx1G02JOKxHBuqlb52vfFwxG2MhDnKG+oKDniiSEA8MEvUJF3kI9Z/Dbqwn6LFaOBw1Tl5pZtj6nm23T1t0ujBY0P5/Sz+u1kOd1Y0yoEJwWdhMhXgusVm4sqd+JohcmjGb/WchIf8JKSIbbZ2+2Ts+7BTl700UxjwadmPCmrNOXTVWW/IW+rFMLogedswEAAAAAAAAAAAAAAAAAAABAhDAaAAAAAGCIVJWbakVEsiFjNN1yHEeNrhDdCK/cUAIn7oikuwyoYGMLE89JIi1mVG4sim8aYsS3zieMlixho1RxxTxF2kfP0k5GUo4X02h0Yd67cJG39qGNJB8PUo4naSdjnbcSIAsKsXYTudPeO+2c3Twum4I70nXwtGaWxZeGdd7q/SbjZInXAiGU6gfUeZPp9mE0x7F/z7B+PV3+hTxbecI679zxN8d6XYPOaWE0EZFSbaYv69SuEcLGhAEAAAAAAAAAAAAAAAAAAABsXIO/4w0AAAAAgJAqgWG0OCMzI9bARtD41osfzd0h3z/0XTWoMJraJKePvlHeXHybpJyUuhwtIpdz82J8ewAqbEAFG1vQvpVkWsyo4pelburq6wijJUuYcFfOzYsbcHzstXbBsTAhsTiECXqF+R6HCaWGDdgNSt4tSK2x3DJ95TqjEhAq6yqMllLCaAHhM5HDAUdNLiB4Gva8HjYE5zqu5Ny8co1GGA1YUapNW6c74gSGk9oypvPXItFun71ZnbdnYm+MI0E3xr1JccS1Bpdn6wdkm+zo+Tq135F0c70CAAAAAAAAAAAAAAAAAAAAYGMgjAYAAAAAGBpVv6LOizN6pK0rKAyyHtxRuln++Vd/E/icl+R5+WX5UfnV8n559zFXqc/TAiX51IjUTGsMRoQwGsLRAjpJiT9ptKBW2V8M3Pc9h1/vJUmYc1HcUa52Y0pKNDDM+xLme5x20+I56cDvTdLDaDm3IHON2ZbpK9cZQaGwMHE+jRYpCVpf0Py0kznyediEPa8HRc2a99+cW7COp902ABuJFjje5BUlFeK6wlGmk0Vbnxbqc3L//F3WeScXzpCjM8fFPCJ0KuWkZNwrymx9pmVeyTKtF/RodbKvxQAAAAAAAAAAAAAAAAAAAAAMnjvoAQAAAAAAEFbFL6vzsrGG0ew38QaNb9jV/Jp888BNoZ9/96HvyEvLz6vztUBJzs1L2snYx0AYDSFUGvq+lWRakKjil6Vu6urrtOAQBiPr5MRRkzGHaZ91v7QLT+RTyYgG5kMEvcJ+j9u9x3F/BlFpcbOV64ygyFc326aF58rKcXXFkhKGXVmedpyq+eHO60Hrb95e9VjaZhuAjeRgzR5GK3qbQy4h+DyH9eWeQ7eqIcs9E3tjHg26pX3PZ5VgYjd846u/I0n6z2YAAAAAAAAAAAAAAAAAAAAABo8wGgAAAABgaFT9inV62slIyknFNg4t3hIUKhl2jyw+IIv+fKTX3D93lzqvorxXebcgnuNZ52k35AOrad/DpMSfNFq8quwvBe772vcFg+E4TttQZ7tQWa+1C2UlJUwR5n0JG/1qt6y4P4Oo9FDi0pr/bXb4eqjzY4J+fWMPn7Wbv7I8z7WH0cKe17XtFWkN4wYdSwEcVlICSOHDaBrT5euRNL5pyB2zN1vnFb3Nctro2TGPCN2a8Kas00tKMLEb2u9vRJJ/LQYAAAAAAAAAAAAAAAAAAABg8AijAQAAAACGhnZjbdbNxToO7SbeoHDHsPvR/B2RX3P/vD2MVvOXpW7q1nl5d0Q8p7uACjauhmnIsqla5yUl/qTRQkjlxmKbMJr9+4LBabevhY179UrSxqMJ8x3NKeGuqMvKJ/x40C7uVW7ocdFuFFx7QLJmlqXm68chNUj58vLSXZ7XteXn3Ly4ztq/4tDibuv5Gg2ISgujTabDhdEccazTDWG0dedni/fLwfq0dd6FE5fFGidHbxTTShitPtPzdQWFVbXzNQAAAAAAAAAAAAAAAAAAAACsIIwGAAAAABgaVb9snZ6NOXCiBozWaXSj4pflpws/ivy6F5afk/3VZyzL09+nXCovaTdjnVfzlyOPARtL0L6VV4I/SaEFnyp+uU0YzevXkNChdnGqXCrec1a7mJgW4YpbyvEk42QDnxM2cJhPBX/fc23mD5oWbls5xmnHum4/y1zAcbISEDcpN+zzVkJr3QZPo2xvu6gcAJFSzR66KnrhwmiihNGw/txRutk63XM8OX/80phHg17QvuezfQijVZTf34gk5/oTAAAAAAAAAAAAAAAAAAAAQHIRRgMAAAAADA01jObkYh2HdhNvpbE+oxs/mb9XasYeJbts8p3y20f9gThKIOG+ubtapgXFSfLuiBp6qpt6iNFiIwuM7sUcUIxKDy4uBu77WnAIg9Mu9BB3pK9dqC3fJpwWp6D3Lu1kQu/v7b7vWngsKbRAWfnl6wztPNougtdO0L4QdO4uK9G0lfF0G0bT1m3bt7X9Pej8AGwkvvGlpASQiuktXS3bdPVqJM2vlvfLI0sPWue9YfR8GfMmYh4RemHCm7JOL9UOiDG9/RYHR6uTc/0JAAAAAAAAAAAAAAAAAAAAIJkIowEAAAAAhkZFCaPFHTzS1hcUDRlm983faZ2+KTUhv7H5Cvn14n+QE/OnWJ9z//xdLTdYB4fRCl0HVLBxlQPihHHHqKJSg4t+OXDfJ4yWPO3OSfGfs4LDE+3mxykozBXlfRumbbbJp+zbuhIY0UIj3UZGCgHHyaWGPX4moofRVpanBU9rIc/rWnjW9jlqn23Q+QHYSBYac+p1RdHbHGoZ9hyyCGm09eXO2X9T511U3BvjSNBLE2n793zZVNXzeae039+44krayfR0XQAAAAAAAAAAAAAAAAAAAADWH8JoAAAAAIChUTUV6/Ssm4t1HPmUPRyi3fg7zObrh+TRxQet884cu0BcJyUiIrvGLrA+Z7r2gjxXfXLNNC1wInL4s9RCTzWzHGbI2MC0WJCISE4JDSWFFjSq+mWp+fq+n1KCQxicdtGtuCN97YJi3ca0einovYvyvrXbpiRts01QKFFED4x2u11ZNy+OkjwKOr5q0bGV7dDiJ2GDp1G2V4vrrcdrNKATpfoBdV5RCSZh41n2q3LPoe9a5x2ffZXszL025hGhV4relDrvYE0/PnRCu3bIuQVxHD2xCAAAAAAAAAAAAAAAAAAAAAAihNEAAAAAAENEi1rEHUbTIjNlfzHWccThwfl7xBffOu/sTXuO/PkNY+eJo/ya4f75u9Y81gInOTcvrpMKCKjUwwwZG5i2b6WdjBrcSwotuGjEyKI/b53nSkpch1/vJU27EFm7+b3WLpbVLuQWp6CxRnnf2m1T3NcNUWnvw8p1hhYY7fazdB23o2scbV7h5eOadvwNG0ZTwyqWCJr2HqzHazSgEyUlfOQ5noylxkMtQwsaGTEdjwvJ8qO5O9Tj5p6JvUSthti4N6n+3D4bEE7shB5OTXawGgAAAAAAAAAAAAAAAAAAAEAycOck0GO2G0KM4YYgAMPN91tjKNwABwAYhKpfsU6P+8ZaLbqhhduG2X3zd1qnb04fLTtyrz7yeMybkNcWTrM+9/65u9b8XKTdZL/yvnqOZ51vxJeGaYQaNzYmNZ4zBDffB41xvn7IOj2d8NjbRpVLtQmjWWJO/dQultUunBanoO9BlPctaJuyTk5cJxVpXHFrd52hRSDzPdi38q490rjU0MNi2ryVZXUfRrNfX9k+Z+2zX4/XaEAnDtanrdMnvKkIsVXld4L8Nci6YIyRO2Zvts7LuyNr4tgYPiknJeNe0Tpvtj7T03VpP5tpQWgAAAAAAAAAAAAAAAAAAAAAWI0wGtBjrtv6tarVwt3kBwBJVa/XW6bZjncAAPRbVYlaZGOOHmnRjapfFt+0BkWH1cHatDxRfsQ6b9fYnpZQ6lljF9iXU5+Wpyu/OPK4XeBEC6iIhI+oYGMqN5Sb75XQT5IEjXGhMWedHvRdweAkLUTW7hwZd6gtSNB7F+V961VgbVC0bS03lsQYExCB7EEYTYmVaOsMmreyLC14Wjetv2uw0UJwtu3V3oNyQNgN2EhKtQPW6UVvS8wjQVI9VXlMnqs+aZ133vjFknGzMY8IvTbhTVmnl+r240On9PN38qPVAAAAAAAAAAAAAAAAAAAAAAaPognQY47jSCaTWTNtYWFhQKMBgN5oPo5lMpmWEAoAAHGo+hXr9LjDaFp0w4hRxziM7p+/S523a9OFLdNeP3auuJJquywtTpI7EkbLWOeLiNTMsjoP0KJ7w3DzfdAY5xuHrNO12BAGq12cqhfxqijSbjowohd3qC1IPiBaFuV9C1pOkrZXo21rQ+pSNzU9RNaLMJqyjCVfD4tp81aCj9r+F/acXlGjl61jVeO1piK+aYRaH7CeaeGjYnpz6GVovxE0YjoYEZLm9tLN6rw9E2+NcSTol6IWRqvN9HQ9+s9myb8WAwAAAAAAAAAAAAAAAAAAADB4hNGAPhgbG1vzeG5uTozhpiAAw8kYI3Nzc2umNR/nAACIi3ZjbdbNxTqOoOCKFisZRj+au8M6/bjsDtma3d4yfSQ1Jr828nrrax6Yv0d844uI/jmuxEzSrh7wqZt64JixsZW1OE/AdzYp0k5GUmIPnS0oYbQUYbREyrcJ8Q0izBW0ziTFKYLGEiVwGLyc5GyvJpfSt7XiL0lZudboxbZpyygrcbKavyx1U7POe+W8bg+e1n3761rWrW2v5dhum7ZCu/4ANpJSTQmjeeHDaFoajTDa8Juvz8qDC3db551SeIMcldka84jQD1oIUQsndqqfIVcAAAAAAAAAAAAAAAAAAAAA6x9hNKAPmoNBtVpNnn/+eeJoAIaOMUaef/55qdXW3qy8adOmAY0IALDRVf2KdXqUWEovBIVH1kt044Xqc7Kv+pR13tlje9TXnTV2gXX6bH1Gniw/KiJ6vGolZuIFxJ7CRlSwMWnfv2EIITmOowbc5utz1umeo0cEMTjt9rdB7I9B60xSnCJoLHl3JPRyehVYG5SgbS37S1JpBAdGu1FI2dddUc7dWrRs9bK0Y1XY2GmUsErQe7BertGAbmjho8n0lphHgiS6+9B31GPznuLemEeDfpnwpqzTZ+szPV2Pdv4ehmsxAAAAAAAAAAAAAAAAAAAAAIOn32kMoGO5XE7S6fSakND8/Lz88pe/lE2bNsno6Kh4nieuS5sQQPL4vi/1el0WFhZkbm6uJYqWTqclm80OaHQAgI2uqgQtsm4u1nEERTe06NewuW/+TnXeWZvs8TMRkTNG3yie41lvqL9//m45qXCqGlFZeV89J6Muv2aW1XmA9v1LUvgpSM7Ny0KjNYJmmyZCGC2psm1iD1oAr5+CAhR5JYQ1CL0KmvUqsDYoQdta9pfaBka7ob0/S2oYTb/uybnBwdOG1MU3vrhO8O9ItesG2/sUtA8dHivxJ2xcDVOXQ/WD1nlFJZRk44ijzOEfhhlmDdOQO2e/bZ036W2R142cFfOI0C9Fb7N1+mxtRowx4jjadzwaLeQ6DNFqAAAAAAAAAAAAAAAAAAAAAINHGA3oA8dxZOvWrfLss8+KMa/cDFSr1WRmZkZmZnr7r64DQFxWjm+9ujkKAICoqn7FOj1KLKUX0k5GXEmJL42WeRUl3jZMjDFy39wd1nkn5n9NptJHqa/Np0bklJEz5aGFH7bMe2D+bnnXUb+vvkcrN0inA2JPdVNT5wHt9q2k04JE841D1ulabAiDlW9zThrE/qit0xFHMk5ywteBYbQI0a/g5cR7zdCJoOuaufqs+OJb5/UiAqkdh8oNe5ys3NDDaIXUqIgERxzrpha4D/rGV8O4trEGvQdaoAXYKGbrB8Uo8bLJdPfRQLJow+1nC/dJqX7AOm/PxF5xnVTMI0K/TKTtYbSqqUjZXzxy/u6WGkQfQCQYAAAAAAAAAAAAAAAAAAAAwPDh7kmgTwqFgmzfvr0ljgYAw8pxHNm+fbsUCty4BAAYHC16lHVysY7DcRzJuwVZ9Odb5gUFQkREDtUPyrOVJ8VYoiY5Ny87cq+RjNs+UjNbPyjPVZ6UozPHyZb0MR2HS33TkH3Vp2S2fvDItFLtgEzXXrQ+f9fYhW2XuWvsQmsYbb5xSP699E05WPuV9XUrMZPggEq97fpFDsfdpmsvyIvL+0I9f8Wm1IQcnztRUiFu/F/2q/J05ReRYniuuLI9d5Js8ibaPrfmL8vTlcel7AfvU82Oy+4IjNd1quKX5enyL2TZVHu+7F45sPySdfqw3HyvxZAWG63HGpHg7woGp134bBAhMu07kHPz4jpuzKPRBX1X2wXnVguKn/UiHtZvrpOSrJOTqmkNwj6y+ID6ul5E97TPoFSftp7b91Wesj7fEffI9Vnayajrq5uaZET/TlT9ihpysh0z025GPMezXi88uvRj67VbGCnHkxNyJ8loalNHrweSoFSzR69ERIqePZTUSw3TkOcqv5S5xmyk123NnCCbM0f3fDzGGHlh+Vk5ULNfPx6V3ipHZ47bMP9AxO2z37JO95y07B6/JObRoJ+K3pQ670dzd0hRCadFdWjV7xhWG5ZoNQAAAAAAAAAAAAAAAAAAAIDBIowG9NFKHG3//v1Sq9UGPRwA6Fg6nZatW7cSRQMADFTd1KQh9ihWNkIspVdyqbw1rqFFshqmITe99Dn5/qHvBi437WTkPcf+qbx+7Fx9OS9+Tr4/98pyXls4Tf7zcR9Wo0qal5afl8/s+6jMKKGyZq64cubY7rbPe93oLkk7GamZ5ZZ5X5v+ovq6fGpEREQ8R/91hW2ZzcqNRbnx+Y/J4+WH2z7XZjxVlKu2XSPbcjvU5zw4f4988YW/DDUemwsn3iq/c9R/UoNEDy/cL5/f/ylrFCeMM0bPkSuPvVrSrh6jieIHh/5d/vHFz6nfwaQblpvvV74DzWwhRRERzyWMlkTt9rdBBFa080PSvhtB48m59u+HTVD8LGnbrMmlClKtt54DtHCNSG+ib3nlfT5Qe0lufP5jEZZTOLKvdxM8rfhL+jqUY2bOLchCY65l+rdm/iVwXWG8dfK35Tc2X7FhQklYX0r1aev0nJtXv082jmj7v/4PxOyrPCWf2XedzDVKodez2qkjZ8ofbP2AZN3eBLEP1Q/KXz/3Udm//Ezg87ZnT5Q/3naNjHrrO4r40vLz8vOln1jnnTV2wbrf/o1m3CuKI671Z4x/+dXf9n39UX9vAQAAAAAAAAAAAAAAAAAAAGBjst99C6BnCoWCnHjiibJz506ZmpqSTKY3N6UDQL9lMhmZmpqSnTt3yoknnkgUDQAwcFpwTER6doN8FFp8RAt43DF7c9somsjh8Nfn9/83OVQ/qC9nbu1yHlv6qXz1V19su+xm//fz/y10FE1E5OSR18uYN9H2eTk3L6eN7oo8npUbpF0nJa6krM+pm/bR6a9Of7HjKJqIyKFGSW58/noxxh53OFiblv9n/6c7jqKJiNw5+29yz6FbrfOWGgvyN/s/3nEUTUTkJwv3ys0zX+749au9WN0n//DiXw1tFE2kN7GgOESNBATFhjA4uVTyYg9aDCxp342g8eQjfD9Sjidpx/47uKRts6aTcfYi+tar92d1ZCkoeNruvF4OCKNpx8x+fsb/dvDL8pOFe/u2fKCfSrUZ6/SityXScqKGAX3jy//1/PUdR9FERB5efEC+eeCmjl/f7O9fuKFtFE1E5NnqL+X/fekzPVtvUt0xe7M676KJvTGOBHFIOZ5sCvFzfb8MS6QWAAAAAAAAAAAAAAAAAAAAwGDpdyQB6BnHcSSXy0kul5OjjjpKjDHi+756kz0ADJLjOOK6buSbHAEA6Leqr0eiosaEekG7mVcLeDwUIaLhiy8/W7hfzp+4tGWeFuN4aOFeuULeF3od08svhIoBrLZr7MLQzz1r7AJ5YP6eSMvPu69EVNJOWqqm0fKcMGG0XgRLDtanZV/1KTk+96qWeY8u/lh8aR1bVA8t/FAumHhLy/SHFx+Quuk+QvaThXvlbVve3fVyHlr4YdfLGLRhufl+9XcgjKDYEAYn6Jw0qCiX9h1I2ncj6L2LOta8W5BaozVgmbRt1kQdpyNOT0Kxq4NmXS1n1fiDIo7tzutacFZkcPv1Qws/lNePndvXdQD9cLA+bZ1eTG/uyfK1v+/YV31SSvUDXS//Jws/kHcddWXXy6n4ZfnF0s9CP//niz+RhqlLap1ed1X9ivzg0L9b523PnSQ78q+JeUSIQ9GbUmPs/TYskVoAAAAAAAAAAAAAAAAAAAAAg7U+/1/8QMI5jiOpVGrQwwAAAACGSlAYLZugMJoW8CjVZiItX4sH/GLpp9bpc41ZqZtaYHwkzPI1aScjZ4yeE/r5p46cJTk3LxW/HPo127I7j/zZc9JSNa2febuASs2vyUJjLvQ6g8zWZ+R4aQ2jzTVme7R8+2cwW4+2r0RdfvTl9GY8g7R630qyqOMclu3aaDwnLcdmjpcXlp9rmXd6hONoL2n7yrZcsvahCW9SRlPjstA4tGZ62snIUZmtkZa1LbtTHll6sHV6wrZZsy27U56u/CLS813H7Xq9x2V3iCOOGOnuH3RoPqdraqY1Xrdmvq/PzzhZdd3PVZ9sM8LOrYfzIjamUs1+bTjp9SaMpq+3N9+ZUm1GjDFd/2MOi435SJHjZVOVql+RQmq0q/Um1Y/mblfj3hdN7I15NIjL9txJ8nTl8djX64gjW7MnxL5eAAAAAAAAAAAAAAAAAAAAAMOn+zulAAAAAACIQTUgsJUbQBgtr4TRyg37TeVRAmGHn29fThBt3TaLjYVIy7508u2ST9m32SbjZuWyyXeFfv4pI2fK5szRRx57rj2iUvODw2gVfzH0OtvRAgHSZSym3fKjfI5BKn5ZfOP3YDm9Gc+gvLZwmhyT3TboYYRyxug5Mu5Nhnpuzi3IrrEL+zwidGqPJSSSEk/OH79kAKMRed3oWTKVPmrNtLSTkfPGLx7IeDSuk5ILJy5rmb57/BLJuPYIlubCibeKI2vjOTtyr5Ht2RO7GmNcdo9fHDp2KmLf5zox7hXl9aPndbUMz/Hk/PFLjzxOuxn1uXVTD1yWFkT1HE+NI+2euFQ8p3//JsywnxexcWlh5GI6Whit+djaTq++M740ZNlUu15Ou9CyTbexyKQyxsjtszdb5424Y3LW2AUxjwhxuWD8LZJ29PNzv7xhbLds8iZiXy8AAAAAAAAAAAAAAAAAAACA4dO/u4MAAAAAAOihql+xTnfEHcgNvTklElZWwlzadE0ncayyvyhjMh7quUtKGM0RR7Ju7sjjordFzh3/dbm4+LbI47l08u2SdtJyz6HvysH6r6zPGUuNy6kju+S3tvwva6ZrMZh2IYNyQIAu6+SsEZWqX7HGDirKZ2CMPYzgiCtZS7inYRpSM8utY1WWr+0rrrjWMJBvfGskwoiRql+JFLSzj8c+zpR4klYCdkkwmtokp46cJb+15T8OeiihjXqb5OrjPyZfm/4H+WX5EevnmnI8eVXuZLl88+8MTfBtI7qoeLmknJTcc+i78qvl/bI9d6JcOvl2Oalw6kDGk3Pz8qfHf0y+Nv338mT553JM9nh56+Q75YTcSQMZT5D/MPU/S87Ny31zd0rd1OXMsd2yd+q3Iy/njLFz5A+2/u9yW+l/SKl+QF5bOF3eseU9akwraXbkXyN/vO0auWXmK/J05XHxpWF93rGZ7XLBxFt6Grl7z9b/Taamj5KHFn4oc41S6Nc54soJuZPkLZPvkBMLv3ZkelCkrN4meFpTw2j6td+J+ZPlquP+XL598CvyTOUJMdJZJLRu6tbrDj2cCiRbqaaE0bxoYTSNFg/TvjPNP3ccWY4xUjX2n/3K/pL1NVG0Cy3brNcw2i/Lj8rz1aet884bvzhylBTDY1tup/zJto/KzTP/XZ6pPCENCQ6Vdmvcm5TTRs6Wt215d1/XAwAAAAAAAAAAAAAAAAAAAGD9IIwGAAAAABgKFSV4lXXtsat+y7v22JRtnA1Tt4axRESOyWyTF5f3WZbTGhBoFwVbaoSPry359jDacdkd8uEd/2fo5QRxHVfePPk2efNk9Khap2E02/u24voTPy+F1GjL9E8882fybOWJlulaxEELI5yYP1n+dPvHWqY/svigfGbfR61jNca07L/avr5r0x75vWP/15bpLy0/Lx996irrayr+UtdhNO09vWTyN+U3m4J26N7mzDHy3uM+MOhhoAcumLhMLpi4bNDDOKKY3ixXbr160MNoy3EcuXTy7XLp5Nu7XtYbxnbLG8Z292BUg/GawuvkNYXXxb5ez0nLO476PXnHUb/Xk+WlAv4aot15vW7soRbtOmHFa0dOl9eOnN5+cAHuPfQ9+fsXb2iZroVTgSSr+hVZ9Oet84rpLRGXZv/ZS7tG1q4lT8idJB844VMt02frB+XDv7zS+ppyY1EmvMmQ47Rrd9yx0cLIw+6O2Zut0x1xZM/EW2MeDeJ2YuHX5I8L1wx6GAAAAAAAAAAAAAAAAAAAAABg5Q56AAAAAAAAhFENCKMNQk4Jo9liWlpgS0Sk6G0OvZxKw/4evPKa8GG0xYY9jDZiCYcNQrrDMFrQe51z89bpWuQuahhNi0Roy/fFl2VTtazX/jlqy9H2xcPL6j7eUlYCMHl3pOtlAwDWP8dxOg6e1pWwrOf0/998yafs57lenFuBuJVqB9R52s+qBbXHAAAgAElEQVQjmqhJai36q13Date8ItF+3tF0EkYT9fp/eB2ql+TB+e9b550ycqZszhwT84gAAAAAAAAAAAAAAAAAAAAAAHgFYTQAAAAAwFDQbqjPOoMJo6kxrUbrzfpBQbNiOnwYrV0IYEmJndmfO2+dXnCTEUbTAiq1NiGDihLxyjo5cZ2UdZ4WZahEDJ84SiYiargsaogsOB7RfbxFj1nYQ3MAADTTgqftzutawEhbXi9p57llU5WGafR9/UAvlepBYbSpvq5bv7a1X8NmnKy4Yr9ut/2sFVUnYbT1l0UTuefQd6Qhdeu8iyb2xjwaAAAAAAAAAAAAAAAAAAAAAADWIowGAAAAABgKVb9inT6oOJMe02qNSAUFtoqePYxme40WqFrRLpy22pJvj6gVUskOo7ULGWghsFxKj4fpkTv7soz41umOYw+jBYbLbCE9bRuUfT3tZNR4RNS4m422X+UD3lMAAFbr9LyuhdO05fVSUNi02uaaDEgaLYw2lhqXtJuJtCwtBmyUfJh+bWv/jjmOo15n9iL62y7IaKNt27BqmIbcOftt67zN6aPllJEzYx4RAAAAAAAAAAAAAAAAAAAAAABrEUYDAAAAAAyFqrEHKLJuLuaRHKbfrN8akQq6gb+YtofRbFGuduGzJUtkS7PYsIfRRlJjoZfRT+kOAypRwwtB87RlGaWLYE9EBEfZooT08qkR+3qD4hFK3C0KLcgX9J4CALBap2G0uqlHWl4vBYZNI8RogSQ4WJu2TtcizYGUGLBG+1koKLJbcO3XvUs9+O61O+7YrLcw2kMLP5TZ+ox13oUTe8V1+OtjAAAAAAAAAAAAAAAAAAAAAMBg8f9sBwAAAAAMhapfsU7PuvmYR3JYXrlZv2aWpdEU8dBCV2knI6OpTdZ5ttdogaoVUSIdS0oYreCOhl5GP3UaUFHDCwFxEz1yp4TRlDCCo/yaJevk1HlRQnqB26DG3bqLR9RNTWpm2TqPMBoAIKzOw2j2c1AcYbSg81y5EXxNBiRNqX7AOr2Y3tLDtdivkXsaLu5B9Fc7rgTSyshD6o7Zb1mnp52MnDf+5phHAwAAAAAAAAAAAAAAAAAAAABAK8JoAAAAAIChoEXBcgMKowWttzlspcUA8m5BXc6yqbYE1sqN4MjVUpQwmq+E0VLJDqPV2gRU9PCC/nnpUbFoYTSN4zjq+pvXYYyRshJ8CNoGLR5RbhPTa6cSEH4JCrUBALBap+d1LZw26DBat+FRIG6lmhJG8zZHXpYjjnW61g7r5Pq8kLJHqKP8vKOpN/2MFUbU6/8ke6H6nDy29FPrvLPGLlDD3QAAAAAAAAAAAAAAAAAAAAAAxIkwGgAAAABgKFT9inV61s3FPJLD8q79Zn0RkUpT2EoPXRUCl9McWGt+3PL8NuG01RYbyQ6jpV178KTuBwdUtPc66H3Wo2La+20PI2iRiMPrV9bRNN66qUlD7LGGoG3Q427dxSO0kIVIcDAGAIDV0krITAufragp531teb2UdtNqgK3b8CgQt1JdCaOlo4fRotK+L8HX5/Z55R6E0bQgoxvwV6brKYx2x+zN6ryLipfHOBIAAAAAAAAAAAAAAAAAAAAAAHSE0QAAAAAAQ6Gi3FCfdfMxj+SwfEqPQjUHtbSx59y85ALGX2msfV1QpEpEZClkKKBhGuqyRtxkhNG0EEm7gIq2XbmU/j7rUTH7snzjW6c7jv5rlnzKHndoXkdQ/C5on9OWr4Xiwup0PAAArNbpeb1u7LFQTwmo9poWAW13TQYkiTFGSjV7GG3S610YTYuHNUejVwT9HFTQwmgRQtAa7biTdjLqa9ZLGK3il+Xeue9Z5+3IvVpOyJ0U84gAAAAAAAAAAAAAAAAAAAAAALAjjAYAAAAAGApVv2KdHnRDfT8Frbc5JlVWgmX5VEHyyk3/ttcFRapEwocCgp5XSA13GE17j4Le55wS+Co3lsSY8BEEJ2Cetr+E3VcOL0MPkWnL7zbcErTPDeq7BwAYPlrIrH0YzT5fu07oNS2e2u6aDEiSRX9elk3VOq+Yjh5Gc9Sr3tbrZmOM+n3RrsFF9ABvL757dV8Jo7l6GM22bcPoh4duU6PdeyYuj3k0AAAAAAAAAAAAAAAAAAAAAADoCKMBAAAAAIZCVbmBO+vmYh7JYSnHk4yTtc5rjlFpN5/n3ILkUuEDa5WGfTkrlgKiWqst+vPqvKSH0WptAipaCCwo4qVFT3xpSM0st0w3ahhBT6NpYbaw+8rhZQTEI5TldxuP0N7PtJORlON1tWwAwMahnteVQNGKuuU8HLS8XlPDow3CaBgepdoBdd6ktyXy8vQwWquaWRZfGtZ5HV3bhgxBB+kkuBihlZxYxhi5Y/Zm67zR1CY5a+z8mEcEAAAAAAAAAAAAAAAAAAAAAICOO1gBAAAAAJH9wws3yHTtxVjX+eLyPuv0bEDwqt/ybkGWG9WW6eWmWIYWp8q5BfGctKSdjDXA1RylKrcJn4UNBSwFPG8kNRZqGf2WVsIEWshgRfN7vyIovJALmFf2lyTjrg3gaWG0oEiEtv6WfUX5bBxxAvd1bRu6DaPp76c9VgEAgI2nxDTbndfrpm6drl0n9Fo+pYVNg2O1QJKU6vYwmisp2eRN9Gw9tivkoGvRoGtw9dq5y2tbET20rEWvDxv+MtoT5Udk//Kz1nm7xy+RtJuJeUQAAAAAAAAAAAAAAAAAAAAAAOgIowEAAAAAIttXfUr2VZ8e9DBERCTr5Aa27lyqIIcapZbpzUGz5scrVm74z7sFqTVaw2jNUap2EY524bQVS41563RXUgN9P1fzOgyjae91J+GFleWNS7FpavQwmh4uW2x6bB9/1s2L67jq8rVtqChhs7D093NwQUIAwPBJO/bgTrvzuhYw0q4Tek0734W95gKSoFSzh9EmvElxnVQP19R6jaxdS4oEX09qUcJefPe0405QGMxfB2G022e/ZZ3uiCMXTlwW82gAAAAAAAAAAAAAAAAAAAAAAAim31ELAAAAAMAQGGSgSYtRtcSulDjVSixLi2Y1hwTahQBqZllqfmtgrdmSv2CdXkiNiuPoca84dR5Gs8fj8ik9fhYUTbN9dkYLowW8d9r6m8fbaYgspyxfC62Fpb1ei1UAAGDT6Xldmx9fGC3c+RtIslLdHkYrpjd3tLygGHCzoO9K3tWvJ7V55UYfw2iBx5XhDqMdqh+UH8//wDrvdSO7ZCp9dMwjAgAAAAAAAAAAAAAAAAAAAAAgGGE0AAAAAMBQG0mNDWzdYWMZWuxqJZYVNmoVJsKx1CaeJiKy2LCH0UZSo21fGxctTFALCKgYYwLCYnr8LOvm1MCDbXnGKGG0gEiEtv7mz1gNkQWEIw7P708YTdvnBhkkBAAMH8/xrNPrph74ukGH0cJGcIEkO1ibtk4vep2F0TS2eHBQyCzr5tR5WoS3airSMI3og1tFP65k1NdoYeRhcdfsLeKL/X27qHh5zKMBAAAAAAAAAAAAAAAAAAAAAKA9wmgAAAAAgKGVdwuyM/+aga7fptxoDpoFx7q05TS/LigsEOU5S0oYreAmJ4ymBU+0kIGIyLKpii++dZ72HouIuI6rhr5sYTE9jKCH0fR9Ze3nVWloYTR9/CJBkb7uwmha+KXdeAAAWE07rwcFT0X0874WUO21sBFcIMlK9QPW6ZPpLZ0t0NGveZsFRXZdR/8ryqBrzW6vb7XjTiYgjDbMGqYud81+2zpvS/pYOblwRswjAgAAAAAAAAAAAAAAAAAAAACgPcJoAAAAAICh5Dme/Mdj3i8pxxvYGHIpJXbVFJMqBwQBRAKiWX5zYK19hEMLWa225CthtFSCwmhu9DCaLWK2QgubtJsfJbwQlIgIG1bRtkHb11Zo+1Dd1KTmB0dnglQa2r5LGA0AEF5aCQ7VzXLg67SAkRZa6zU1XquETIEkKtXsYbSit7mj5YXPorUPRGsK7og6rzlCHZUaXHT1MJpv7PHlYfCThXvlUKNknbdn4q2BgToAAAAAAAAAAAAAAAAAAAAAAAZlcHePAwAAAACG1p6Jy2W+MTuw9W9KFeXkkTNkKn3UwMYgEhDLaIpdVZRY2crr1WjWqpv+jTGhIl1LIcJoiw17GG0kQWG0tBI8CYp8BUVKtM9q9XxbLsAWKvPFHkZwAvrz+ZARPe0zbjv+gHBaxV+UtDsR+Hr9tZ3FLAAAWE0LmQUFT0VE6sp534spjKtHcAmjYTj4piGz9RnrvGK6szBaEGOMOM4r6TTtu9Lu2jYoChwmBB1EDaMpAcdhd3vpW9bpaScj541fHPNoAAAAAAAAAAAAAAAAAAAAAAAIhzAaAAAAACCyCybeMughJIIWh1p9s37Nr0nd1ANfr0ezXgkJLJuqGuRa85pG+1DAkhJGK7jJCaN1ElAJipQExRVEwsXpjjD2ZaxqQIRefs0sS8PUJfVy4EULPbSNRwTML/tlGZPOwmhqzKLN+wkAwGpayEy7RnplvhJGc+MJGOXdvHV6mFgtkARz9Vn1Z4ii12kYTb/oNWLEWTW/08hu3h1R53UdRlODi/afP0QOb9cw2l99Rh4vP2ydd/amPVJIUBgbAAAAAAAAAAAAAAAAAAAAAIDV3EEPAAAAAACAYaXdsP//s3evQZKlaWHfn5OXqszq7umunu7dZXeBXeEFA+Ky2l2WhWUGDCzM2FgXK5AEtqyLwxC6IFsKhxwmwjYKO8L2B4fsT3bYDiFHOPzFJqQIxw7Cus0uC5JASIAkECIwIUBcZnaqZ3q6srrzcvyhJ6ezqt/n5MlLZVX3/H5ftuu855aXOufNGvLPyWy08O88nDGPS+X7ebRtU/Rr0XGLUMDxLAmjXaIvxq8TRsue6yo6sV8NGo+Xx+kefz7zMEIeiWgKmy2+tifTUXGd5fGIfPxkg3jEujELAFiU3dfHDff1iPy+328IGG3TIJmjtZ2XwUV7bfJKOnbYXy+MVjXMec8alSLDsTz626266fz9uEUIukl23ek3BhefzDDay3deSseev/HiDs8EAAAAAAAAAAAAAABWI4wGAAAAaxp0hsXlo4Uv6zeFM+ZxqXQ/p4JZ7QIcoxahgHvTu8XlV7rXWh1jF/pVOUzQFFDJnutBZxhV1RxwyEJfi5G7uTpmxXU7DX9myeJ3Eadf2+wxZOG2uew9FJEHKdpIz0cYDYAV9DpJ8HT2oHG7LIzWq3obn1Mbw+T+OqnHMZ41R93gMjgav1pcvlftx5XOecz9TwfE0shuN5+7zg27y+PR68iuK3vJ54+IiFn95IXRRtPj+Aev/93i2AcHXxZfOPhduz0hAAAAAAAAAAAAAABYgTAaAAAArCn7sv6poFnDF/fncaksmrW4bVNgbdHx7M3l6yTxtIOGeNeuZcGTOmYxrafFsey5bhPxytYZzZaH5tpoij+MTr3O5eNl4ba5TtWN/WqwdP+rSmMWwmgArCALnk7qSeN2WRC1V5VDa9s2aJgb3S/EU+GyOZqUw2iH/VtLw8GZpq3O5sNKkeGIdnPJbH5+vOH8PA8u5mG0xx/Z5fcP3vi7cb8+KY49f/jijs8GAAAAAAAAAAAAAABWI4wGAAAAa8q+rH8yG0VdP/zyfFOUatAZnvrfs0bTdoG109s0hwLquo7j2d3i2EH3Wqtj7EJT8CSLGSw+X4vahBeydU6mj8cc6iSMUDVkIpribKdDeuV4RKu4WxLqa/veOauu6/Q5HXaF0QBoLwueZvf0ZePNAaPtGTaGTbcTT4Xz9No4CaP1bm2w1/ZBteyzUJu5bT4/Xz/6G5FfV/Y6+XUlm/9fVnVdx8t3Pl0cu9q9Hh+++g07PiMAAAAAAAAAAAAAAFiNMBoAAACsKfuyfh2zuF+fRET+xf39ahCdqhsRzUGrNoG1RcdLIh0P6vsxqSfFsYPu1VbH2IWmMNq4flBcngXA2kS8snVKz/v8NTmrqvJIRLfqxV61XxxbPO8sbNcm7pYFJtq+d84a1w9iFtO1zwcA5rL7elMYra7rdM7Sb5gnbFPT/S6LmcJlcjRJwmj9TcJoTU7Pk7P5eZu55EHyGWnZ551lLjq4uAu/NPon8VsPfr049o3Xvz36nd1cQwEAAAAAAAAAAAAAYF3CaAAAALCmLEQV8SiIlscAhkv3M4tZPKjvR0QezDpr2XrH0zfTsSudyxNG63fyMEEWSckCYG3CC9k6pdevjnIYLSIPozUdY/6azerp20G9s7J4Xpv9Z+/BZZqCL8OF9y8ALJOF0cYNYbRZTKOOWbK/3lbOa5mmOcRowzgT7EIaRuutH0arGua8Z+fJoyQS3fQ56tE65fnvpr972XVnryGMll2LLqvPHH26uLyKTnzTje/Y8dkAAAAAAAAAAAAAAMDqhNEAAABgTcNuUyzj+NT/njVYCF01RzfmgbU8UnV6/eZQwL2mMFr38oTRmoInk1k5ZpAFwNqFF5JoWXGf5TBaUyQiIn+/tHmN24TI0seQBCmWaXovtYnNAcBcPwmjTRrCaE3RtCy0tm3dqht71X5xrO3cDC7S0fiV4vKb/dvr77RqnvMuSiPRDZ+j5tIwWstgdCa77jRdV7Is8mV0NH41fvbNv18c+6qrH93stQcAAAAAAAAAAAAAgB0RRgMAAIA1NcWhTt6OXWWxruHCvxvCaG998X9Z8GzueEko4HiWh9EOLlUYLQ8TjOsHxeVpeKFFVCx7LUv7nK0bRltyjCyi9/D8ymGIU+uk4bX14hHNoTZhNADay+7rk3ocdV2+rzZF03YVRovI5wjrhkdhV8azB3F3+npx7LB361yOefbXOY1EtwkXL4kKryu7tux19tJtsuvUZfTjr/9YzGJWHHv+xos7PhsAAAAAAAAAAAAAAFiPMBoAAACsaa/aj07y0Xr0dhitHJdajAFkQavF7ZsiVYuOl0SwjqflMNp+NYhu1Wt1jF3oV3mYIIsZZIGSVuGFNFo2ilk9PbN0vTBaGlaZh9EaAittQmRNj2Edo4bI3n6L2BwAzGUhszrqmMXZ++xDk3qS7q/fEDDatizOlAVZ4bI4mnw+HdskjNY84300T67rOp2HtpvblsPATXPUNrLPEr2Gzx/Z/P+ymdTj+NydHyuOvav/3viyg6/e8RkBAAAAAAAAAAAAAMB6hNEAAABgTVVVpV/YP1kSu1qMAexXg6jSwNq9U/+7zGh6L+o6/+L+vend4vKD7tVW+9+VLKASkYdS0vBCQ3iuzTpn95s+vc2ViDQAMX+PnDS8xm3ibsvCa6vKo37D6FT+pARAe0339XESKZrMHjTsb3cx123fX2FXjiavpmOH/U3CaEsmvW+5X59EHbPi2Cbh4k1+92b1LP0ssdcQRqufkDDaP7779+KN6Z3i2HOHL5jDAwAAAAAAAAAAAADwxPB/AQ8AAAAbGHSHxeWPYlflL+4vxgCqqopBp7yf+fYn03Kk6qxpTGJc5yGR4yS+deXShdHy4MkkCahk8bhNomIRhTBaEnjoLPkzyyCJr70d0UtCZL2qH/1OHpSZy8Nr7aJ6j223wfMJAIuag6fl+3oWTFu2v23L7q/ZHA8ui6NxOYx2pXMt9juDcznmYkAsi+xGRPrZZ9GwWw5Qtw1Gl0yTKFpERK/z5IfRPnPnpeLyvWo/vv6Zb9nx2QAAAAAAAAAAAAAAwPqE0QAAAGADaYzqrS/sj5JoxvBMJCuPWs2jWe0DAFn8LCLieHq3uPyge631/nehU3WjE93iWBZ+y+IL2XPbdp1N4gunj5HFHeYRvfJx2px/RFN4rV1Ur+12bc8HAOaaAp+TWTmAlgXTInYbRssCTtkcDy6Lo8krxeWH/Vsb7rlqtdbJNP8dyaJnp9Zp+HxU1+uFypquK3tVUxjt8vuN+78avzz6Z8Wxr3vm+Ti4ZCFsAAAAAAAAAAAAAABoIowGAAAAGxgkX9ifR6VOkmjG2e3y/cyjWe3jVqNpHvK6N32zuPwgiXZdpH4SPcmCBtnjzp7btuucTE8/93WSRqiW/JklC6vMX+NREo/IgmqPr9cc6VtV2/cuACzTFDLL7uuTepJu028IGG1bOkebrhcehV05Gr9aXH7Y2yyM1i6L1hwPzObFi4ZJyGsakzSUvMzawcU1Q2y79PLRS+nYczde3OGZAAAAAAAAAAAAAADA5oTRAAAAYANZLGMeo8rjUqdjAMNutp/jU//bxnFDCOt4Vg6jXelea73/XcniBKVQyqyexv36pLh+Fgxb1O/sRa/qFcfOhsXqmBXXq5ZkIrLA2TyIlsXv2oQjmvafvQeXyUNtwmgArKYpODROw2hNAaPyPfs85HO09cKjsCuvTZIwWn+zMFqTxYBwNgetohP71WDpvprmnOv+/mXXm4iIvc5+OpbN/y+L0fRe/NQbLxfHvmT45fH+wQd2e0IAAAAAAAAAAAAAALAhYTQAAADYQBqjmj6MXGVBs7PbLYtarRK3Op6W42dNYwfdq633vyu9TjmiMp49eGxZFhWLyIMmZ2WRu7P7ruviarGki5aex8nb8bty4KH9+ZcDaiezUczq1WMOadSv2y7UBgBz/YYwWhZAG9eP3+8jIjrRiU7V3cp5tdF2fgCXzdG4HEa72bu94Z7zSW+bMNqgM4yqWjJxjoiD5PNRRMTxdL0wWnNwMb9OZdP/y+LvvfF30kj08zde3PHZAAAAAAAAAAAAAADA5oTRAAAAYANZJGoeuZoH0h7b7kzEKotajaZvhdGm7cNoWWAroiGM1rmEYbQkTlAKGjTFSbKgyVnDZL3H43blNEJnyZ9ZsvOYv15ZRG/QEIVYNOzm691fI97SNuoHAMs0BYeyUFG2vGlf5yGbH6wSrYWLcDQph9EO+89utN82UbOIprlky+hvQxx43d+/pjDaXrWXjtWXOI1W13V85s5LxbFnujfia699/Y7PCAAAAAAAAAAAAAAANieMBgAAABvIIlGj2XHUdZ1Gys5GrLL9nMyOY1ZP43590vqcRtM8jHZvVg6jXek+2WG0phhc6/hCy/DJbM0wQh5WGUVd12ngYZhE89ruPyIPUzTJzieL+AFApilmNk7DaJOV93Ue8rCpMBqX12h6L53LHfZu7eQcsrBz27nkfjVIw8PHDXP/Jk1htF5DGC0LI18G//z45+K3H/xGcewbb3z7zq+ZAAAAAAAAAAAAAACwDcJoAAAAsIGm2NW4fhCzmBXHzwYBht08unEyG610Tk2hgOPp3eLyg0sYRutXveLyUtDgZJo/R1nQpO16o8eiDuUwQhVV4/6z90odddyvTwrHmZ9XOZr3+Hr548zCGE2y913b5xMA5jpVJzrRLY5loaJsef+ShNHWubfCrhxNXk3HDvu3N9p304y3rh/Nk7O55NlAdHqcqsoj1Mm8eZnxrCmMll9bFh/XZfPynU8Xl3eiE5+8/h07PhsAAAAAAAAAAAAAANgOYTQAAADYwNnA2dxoei9GDcGMs5GNdD+z48b9ZMcumdXTdF8HncsXRutVe8Xl41IYLXlcvaoX/U55P2flcbrTz2edhdGq5jBaU1Cs6f2Snddj6zXuf/V4RPY+ajoOAGSyoFkWQBvPHhSX9zq7DaOl84Pp8aWOJfHO9tr4leLyKqq40bu54d6b57xzZ+fQc9nnnpK28/O2sutNxMPPDVnoOJv/X7TXxq/Ez735U8Wxr776dXHYv7XjMwIAAAAAAAAAAAAAgO0QRgMAAIANDLtXistPZsdprCvi8bjUsJPvZ9WoVRYKOG4ICFzpXlvpGLvQWyGgkkXFmmJkbdc9mY1O/ZxFULKQwlxT4OxkNkrfL20fQ7+zF72qVxxbJx5x9nG/fT4tQ20AsCi/r0+S5eWAUbaf85Ldh2cxjXFdjrfBRTuafL64/HrvZnST+eJ2PJonp3PJFebn2WekLOC7TNN15WHkuF307bL48Ts/FnXMimPP33hxx2cDAAAAAAAAAAAAAADbI4wGAAAAGzgbOJsbLQmanQ0CDDrD8n6mzYG1kuPpmystj4g4SAJvFymLfJWCBtlzlL0+q6x7NipWRzmMtiykkIUd5sfI4m6rPIa2cbc2spjaKucDAHO9TjloNp6V42JZMG3XYbSm+94691fYhaPxq8Xlh71bG++7KQa8OE/extw2i1CvE/2NiBgvCS5mjy2f/1+c8Wwcn3v9x4pj79l7f3zpwVft+IwAAAAAAAAAAAAAAGB7hNEAAABgA1mIalw/iHuzu8WxKqrY7wxOLcu+9H8yO06jApnjJBTQGEbrXFvpGLvQr/aKy0thtOw5yl6fVdZtGz1pikREPHw8neRPMaPZcZwkIb3txN1Wew/VdZ0+7lWeUwCYy4Jmpft60/Jdh9GyeG3E+nEmOG+vTV4pLj/sP7uzc8jmtqvMJbc1t51bdl15ksJo//jNn4i709eLY8/deCGqqvmzCQAAAAAAAAAAAAAAXGbCaAAAALCBpmjV0fjV4vL9zjA61emP5Fkg4EF9P+5Ny4G1zGhajnTcm5XDaJ3oNEY/LkoWPhkXggYnWwijpeGFM89nHbPiesvCaFVVxbBTDuCNpnkAb9DdPO6WvScy9+uTNACxSqgNAOa2FUbr7ziM1nTfaxtPhV3LPocc9m7v7BzycHH7zx353Hm9KOGy60rWEruMYbSXj14qLt+vBvHxZ75lx2cDAAAAAAAAAAAAAADbJYwGAAAAGxg2RKuOJuUgQSkG0BhYS/aTGc3KoYDjaTmMdtC9GlVWAbhAqwRURtNyeKHp9TkrC5CdjZ5skkXIjnF3eidmMS2OrRIiy8Joq4ZbTpLns+kYANCkX/WKyyf1pLi8FEKNyOcH52W/IeK0bpwJztud5PPDYf/WxvtuigEvBsSy+eewW46dlddNor9JdG2ZLIz26LqSldEuVxjt105+JX7l5BeLY193/ZtX+gwEAAAAAAAAAAAAAACXkTAaAAAAbKApEnU0LgcJhp3HYwCNYbRkP5njVcNonasr7X9X+jPjmQsAACAASURBVJ0kjDZ7PGhwksQRShG6TPYaPBZeSMIInWr5n1mGyfm8Nn6lYZttxCNWC7c0xSayuBsANFkleNq0fNdhtE7VSecTq4ZHYRdm9SwNK9/s3d7ZeWTzz9Xm5+V58Kpz27llwcUs+lZvlEbevs/ceSkde/7GCzs8EwAAAAAAAAAAAAAAOB/CaAAAALCBxjDapBy7KsUAmmJTWdggM5rei7oQ77o3vVtc/6B7OcNoqwRUspDXKlGx7LU8G12bxSzZQzmkcPoY5fNpeo23E4/IQ2clWWju4TGE0QBYXa/aKy4f1w+Ky/MwWm9r59RW2zkCXAZvTt+IST0pjh32b23hCPmcdzEgloUDmz4/nZXObafrhdGWXVeehDDa8fTN+AdvvFwc+9eGXxnv3f/iHZ8RAAAAAAAAAAAAAABsnzAaAAAAbKBbdWOv2i+OHY0/X1xeCks1xaaOxuVo1vXuYXH5LGZxvz55bPnxrBwQuPKEhdHGhaBBFiZZLSpWfg0m9TjGs3JEYdHyLFp+jOw1jogYdleJu5Uf76rhliyk1olO+n4HgCZZ0CwLOGUBo34SWDtP2f171fAo7MJr43KcOSLisLd5GK1qmvS+1Q+b1bO4n4TRVonsHiTz4HV/95ZdV56EMNpPvv6306Dk8zde2PHZAAAAAAAAAAAAAADA+RBGAwAAgA2lsatJOXY16D6+frfqpaGPbD+H/dvpOR1P3ywsu1tc96BzLd3PReonYbRS0GA0LccRhp1VomJ5pOFkISqXhRGqFn9myY6RvcZVVLFfDZbudy57vNnzk8lDcwdRNdYwAKAsC55moaJsebaf85Tdv1cNj8IuZPPKXtWPq91ndnIO92cn6Zy5ac7ddt1REnxeJr2udHZ/XVnHrJ7FZ+68VBy73j2Mr7329Ts+IwAAAAAAAAAAAAAAOB/CaAAAALChQbccoxrXD4rLs5BaGrVKvvh/syGMVtrmXiGWFhFxkJz/RVsloHIyGxXXHXSGrY83LATr5kYL+0/DaC16YdkxXp+8Vlw+6AxXCpFl+1813JKF1FZ5PgFg0SrB04iI8ezyhNGyuduq4VHYhTSq3Hs2OtXm/1mwinxuOp8nN809m+bcZx0kn49OZqOY1dPW+5lbdl2pkuenrsvz/137xeOfjVfGv1kc+8Ybn4pu1dvxGQEAAAAAAAAAAAAAwPkQRgMAAIANDVeMRQ2SuMaq0ambvYYw2vTxMNrxrBxGu9K9ttJxd2WVMFoWj1slvJBFTyIiThb2n4cRlgfMsmNksbUslpfJ3lurhtHy0Fz75xMAFvWqveLyLCSbBdN6nd2Hfwbd8hxt1fsr7MLR+JXi8sOGqPJqmua88zBaeS4Zsdp8smku33SMTHpdeSsolj2ybK6+a5+581JxeSe68ckb37HjswEAAAAAAAAAAAAAgPMjjAYAAAAbWjUWlcWxht3VIljXetejn0RGjguhsONpOYx20L260nF3JQujjQtBg22EvJrCdKOF/WdhhKpFGG3V98q23lujFcMt2wjNAcCiLGg2mU3Ky9OAUXl+cJ7y8OjqYSY4b0eTV4vLD3u3dnYO2VwyojlG/Pi6+eejpmNksuvKo89U5fn8ZQijfX78O/Hzb/50cexrr308bvRu7viMAAAAAAAAAAAAAADg/AijAQAAwIaavrBfkgW4VokEPNzPQRwkxx5NVwijdS5nGK2fhE/OBg0m9TjG9YPiuqs8p52qG/vVoDh2+vlcP4y26mu8aogsDaNNj6Ou2wcdthGaA4BFWdAsCxUtDxjtTh4eXT3MBOfttfH5htGa5rzz2WY2l+xEZ6Xf4abPWceFzzvLLAsu5o/t4sNon73zN6KOWXHsuRsv7vhsAAAAAAAAAAAAAADgfAmjAQAAwIYG3XLoLDPslr/gnwXT0v10DtJ9HZ8JddR1Hfdm5TDale7lDKP1Ou0CKifTcnghYvWQ1yAJkS3GHepNwmgrhs5WPv9k/WlM0hBESRZ6WTXsBgBzbYOnc+M0YNTb2jm1ld1fs/gTXKSjSTmMdrO/nTBaGyez4+LyYedKVNXyOfPb6zfMnUfJMZosu65k53bRWbTx7EH8xOv/b3HsC/a+KD40/ModnxEAAAAAAAAAAAAAAJwvYTQAAADY0LBTjpNlsgDaOvvJthlNT4etxvWDNDxy0LmkYbQkoDKenQmjNUQRVg2RZeGvxVBYXSdhtBaRh1VDZ6uGyLYVj8hic6uePwDMZff1bH6SLc/2c57S+cG0HBKFizKtJ/HG5Kg4dtg7/zDaPCA8mpbnnasGpbtVL/aq/eLYOr9/y64rWei4rmcrH2ubfubu5+LN6RvFsedufOdKsTkAAAAAAAAAAAAAAHgSCKMBAADAhlaNV2VxqdUjXlfioFsOox3PTocCjqdvpvs56F7OMFq/ZUClKfi1asgrW/9k9igUNg8+PG55kGDl0NnKsbymMFr7eES27qrvUQCYS4OnT0AYbZDc/xbnB3AZ3Jl8Pp2rHvZvb+UYWTzsoYfHzsLF60R2h8nnnVWiv3PZdaVf7b31rySMtvKRtuvlOy8Vlw86w/j49W/Z8dkAAAAAAAAAAAAAAMD5E0YDAACADa36Bf8sjrVyxKs7TMNZo+npsNW92d10P1e611Y67q5k4ZPzDKNlr83Z57NkeRYtYrBq6Kw7XGn9pvDaKvGWbN11YhYAENH+vr5s+aOA0e5k9791wkxwno7Gr6Zjh71bWzlGVS2f9Wa/G6tGgpu2WSX6O7csuNhJZ/QXl0b7lye/HL968kvFsY8/8y0x6Kz2eQEAAAAAAAAAAAAAAJ4EwmgAAACwoWF3xaBZ8uX+VUMBw86VGHbLoa3jM6GA44aw10Gyj4vWNqBykoQX9qr96FbdlY6ZvTaLx6hjVlynavFnluEWQ2cl+51hVEnQoU3cbS57ToUXAFhXf+Uw2qS4vFf1tnZObWX345PZKOr64oJJcNbRpBxGG3QOVv7Mso75b0M+l1wnjNYuBN3GeJaF0ebXlfI8ur7AMNrLRy+lY8/deGGHZwIAAAAAAAAAAAAAALsjjAYAAAAbWjlolkQJVg0FDDrDOOhcLY6NzoTR7k3vFtfbrwZpgOyiZQGVWcxiWk/f/nk0LYcXVn1dIvLX5mQ2evvfWRYhC5KdPqfVInSrrt+pOrGfxMtGSaBilXVXPR8AmGsbPJ0b1w9W2s95yuZodczifn2y47OB3GvjchjtZu/Wbk7grVBgNpdcJ7KbhaDPft5pI7vezK8r2Wz+osJob07fiJ+++9ni2JcefFV8wf4X7viMAAAAAAAAAAAAAABgN4TRAAAAYEOrB83K62dRrnw/wzjIQgHT06GA49mbyTEvb+iqKXyyGDU4ycILKz6fEXlMbTG8sEkYYdUYxDrxiGyb7HkqrpvE5tY5HwCIWD2MNpk1B4x2qSm2uhhPhYt2NCmH0Q772wujtYkBn0zLvxfrRHbz+Xn7ue1cdr3pd/Ye/qMqP7a6vpgw2t97/W+nkcjnb7yw47MBAAAAAAAAAAAAAIDdEUYDAACADTXFMs7qRCf2qv3i2CqBtf1qEJ2qm8YFzobQjqflMNqV7rXWx9y1tmG0LIqwyusyl70Gi9GTup4V16mq5X9m6VTd2K8Grc9nnXBd9p5oG4+Y1dO4X59s7XwAICK/r4+zMFo9Ke+ns/swWlNs9WyMFi7Sa+NXissPe7d3cvx5QHgxKrxo0F09spvObdf43UuvK29dn/Lo2+7DaLN6Fp+986PFsRu9Z+Orr358x2cEAAAAAAAAAAAAAAC7I4wGAAAAG1olaDboHERVlb9wv0rIax6oOkhCVcdnQgH3kjDaQedq62PuWr+zl44tRlROkuDXKq/LXPYatAkvZBmFs5riKo+tu8XHcDJtF0ZbjMA9vu/VYxYAEBHRT4Jmk0IYbVbPYhrlgFG/IZx6XgYN97+m+ybs2p3Jq8Xlh/1bWzxKPuudh9Gy34t1wsXDZO7cNvq7aFw/KC7vVb2IyMNou8+iRfzCvX8Ur4x/qzj2yeufim7V3fEZAQAAAAAAAAAAAADA7gijAQAAwIayL+uXNIU1VgusPdzPsFMOo53MjmNWz97++TgLo3UvbxhtHigomcweRVSyKELTc53JomWLcYc6SSNkIYWzVgrgrRGPyB5D23hE03qD5P0GAMv0kqDZ4j397WWFWNqy/Zyn/WoQVfKfU0az5fFU2JWj8eeLyw972wujtZnx5vPzdaK/SQh6jd+97Noyv67kYbRZcfl5evnOS8XlnejGN9741I7PBgAAAAAAAAAAAAAAdksYDQAAADaUfVm/uG43X7dpLDtmduw66ri/EPM6npXDaFcudRgtD58sRg1OpuXwwiqvy6NtsqjYo/DCpmG0VYIQ64TRsm1OWobRmtYbrhGbA4CIhjBaPSksu1xhtKqq0uDqYjwVLtL92Uncm90tjt3sby+M1kY2n1wvjJbMbZPPAE2ya0u/2lt5X+fp1Qe/Hf/03j8sjn342ifieu9wx2cEAAAAAAAAAAAAAAC7JYwGAAAAG+pXe9Fp+RE7i2osG8vWPWgImx0vxLzuTcuRhIPOkxlGG9cP3v73KAsvdFePeGWxhpPZKOr6YRBt/r+PqdqF0VaJnQ2624tHLMbdmpxM88DLOjELAIjI7+vTmMSsnp1aVoqlLdvPeds0PArn7Wj8ajp22NteGK0pBjwPCOfh4tXnkgdJPPq45dx2UXZt6VW9iIioqvJnuiyMfF4+c+el9JjP33hhp+cCAAAAAAAAAAAAAAAXQRgNAAAANlRVVQw75S/sn9UUltqvBq0Da8O3glkHDccdTR/FArJwQFNY7aL1q710bDFqcDIrh7zaviantym/PnXUcb8+efunkqZIxKljrBA7WycekcbdGoJni7KAWq/qRb+TvyYA0KTfEDSb1OPGn9vu5zxl99dREoCCXXtt8ko6dmOLYbRYMued1dOFefNp60R/B8mc/mR2Lw8WF9R1fSquvGgeXMwe2SrH2dSD2f34ydf/VnHsvXtfHF8y/IqdnQsAAAAAAAAAAAAAAFwUYTQAAADYgrZf8m8KXVVV1RhOO3W8t9Zrimwdz9589O/p3eI6V7rXWh3vIvSqXjq2GEw5SUJeg85w5WM2Pf/z0Fy9YRit7Wvcr/ai2/AcZLL3xGjWLtyShebanjcAlPS2FEZr2s95yu6vJy3vr3DejsavFpc/070R/c6ufm/qdC4ZETFcY36ehaAn9SQNnZVMY5KOzYPM2Xw+m/+fh39498fj3qz82e35wxejqtp95gAAAAAAAAAAAAAAgCeZMBoAAABsQdsv+S+LS7WNec0Da92qF/vVoLjO8fRRMOze9M3iOllo4DLoVN3oJH+6WIwgjJL4wnCNx9YUmptHHjYNozXF8U6vt95rk73HRklA7vH1yoGXtucNACXNYbTTwaKm2NFFhdHy+6swGpfD0aQcRrvRv7XV4zR1ueo6j+xGRAy2PD9f5ffv7HVmUe/tcFz24HYXRnv5zkvF5YPOQXzsmed2dh4AAAAAAAAAAAAAAHCRhNEAAABgC9p+yX9Z+GzYbbufR4GAbJt5CGtWT+MkiQZc6V5rdbyL0q/2issn9fjtf59My4+tbWTu9DZN4YWHz+emWYS2wbN1zv/h/suPoSlScXq97PkURgNgff3GMNr4zM8NAaMLCqPl91dhNC6Ho3E5jHazt90wWh4Pe6gpxts2Jn16m3zuPJq2C/9GRExm43SsV/UiIg8d7yqL9qujfxH/8uSXi2Nf/8y/sfbnAwAAAAAAAAAAAAAAeNIIowEAAMAWZLGMx9ZbEj5rvZ/FMFoSC5iHAkaz46iTr/MfdK+2Ot5FyeIn82BKXdcxSoIkbSNzi/aq/egkfy6Zh8XqelYcr6p2f2YZdLfzXkn3n7yH2oYj8jCaEAMA62sKmo3rB6d+bg4YXUwYLbsPCqNxWRxNymG0w/62w2hN6jiZ5jHedUK7TXPi7HNAydnrzKL5daWqsjDabtJon7nz6XTs+cMXdnIOAAAAAAAAAAAAAABwGQijAQAAwBa0/ZL/srhU6/0sxLUOkljA8exhCOve9M10Pwedyx5G6xWXT+qHwZRx/SBmMS2us07Iq6qqpaG5dNsohxTOWid+t4osHnG/PolZXX6uFo2m2wvNAcBcU9Bsfl/Pfj69n/Lc4Lzl4VFhNC6H18avFJcf9rYbRmua89ZRp7HAXtWLfmdv5ePtV4Ookv+cOZq1C/9GNF9X+tX8vJIwWhJG3qY3J2/ET9/98eLYv37wNfHuvfed+zkAAAAAAAAAAAAAAMBlIYwGAAAAWzDsto1dNcel1olmpSGvt0IBxw1htCvdSx5GS+IJ49mDiIgYJeGFiOXPdWbQLQfVTmajiHgYfChpl0XbXkQvM2zYbv4YmmQxi3XPBwAiInqdpjDa5NTP4/pBeR9VP6qq7R13u7K5Xpt7K5y3uq7jaPJqcexm//ZOzyWbn7edA5/1MFychQlXCaNN0rF5uPFiri4P/cTrfzONtz1344Udnw0AAAAAAAAAAAAAAFwsYTQAAADYgrZBs2VxqbbBgMXo10G3HAA7fisUcDwrh9E60Vk7ULAr80jBWfNoQBbxitgkLJaEF94KzdUxK45XLf/M0j5+t2bYrWG7ppDcsnXWPR8AiIjoVb10bDI7HQPKAkbZvGAXsjnTfH4AF+ne7G4aFDzs3drZedRxPpHdYfJ5Z5Xfvyw6FvHo+pTN57Mw8rbM6ml89vUfLY4d9m7FV1392LkeHwAAAAAAAAAAAAAALhthNAAAANiC9kGz5vWG3dUDa1mwah4KOJ6Ww2jD7pWoqqrV8S5KP4mozIMpo2ke+soCCstkr+XJbBQRsXEWofV7peV74bHtGvbf9HzNnUfMAgC60YsqyvOOs8GiLGB0kWG07P46nx/ARToav5qOHfZvb/VY2e/xQ3WMkt+JTSK7ebh4+dx2LgvHRTy6tmSP7LzDaP/03s/E58e/Uxz75I3viG7VPdfjAwAAAAAAAAAAAADAZSOMBgAAAFuwLHj29npLYlfto1mPwgIHSQDsePowjHZverc4fqVzrdWxLlKv2isun4cNsohXFVXsVftrHTN7DeahuSyN1qna/ZmlffxuvTBa03bZ87Uoi6dtErMAgKqq0rDZ2WBRHkYrB1N3IQ+ntg8zwXk5mpTDaJ3oxjPd61s9VnMYLeLk7TnzaZtEdrN56PzzThvZdSViMbpYfmznHUZ7+c5LxeXd6MU3Xv/2cz02AAAAAAAAAAAAAABcRsJoAAAAsAWDLcWu2gbWFsMCWShgHvI6nr1ZHM+CapdJFlCZhw1GSYxk0Bm2DpWdlb0G82BYXW8WRmgbGGv7Xjir3+mnz1v2fC06mY2KyzeJWQBARB42m9STMz+XA0b9JJi6C9l9+WQ2ilk93fHZwGlH43IY7UbvZnSq7s7Oo446RtNsLrne3DYiDwuvEiY8e52Z60bv7c8NVZVE3zac/zf5nQe/Gf/s3s8Ux37PtW+IZ3o3zu3YAAAAAAAAAAAAAABwWQmjAQAAwBa0jVgtW69tMGAxrpWG0aZvhdGmWRjtWqtjXaRlAZUshrBJeCGL3M2PVUc5jFBFElI4u/+WgbGN4hFpvOXe0m3T57Rl/A8AMsuCp3PjJIyWbb8LTffB+7OTHZ4JPO61ySvF5Tf7t7d/sCwe9pZsLpnFzdo4WBKCbmM8e1Bcvvh5I5vPn18WLeKzd15Kx547fPEcjwwAAAAAAAAAAAAAAJeXMBoAAABsQdsw2rLYVZtgQCc60a/23v75oHu1uN7xW6GAe0kY7UqnvN1lkgdUHoYNRucQRstey9GWwmj9ai+6UQ6+nTqPbjkA0Ub2+Eez0dJts+e07XscADJtw2hnf360/fL753lpug9m907YlaPxq8Xlh71bWz/WshnveczPB0kY7XjaPoyWXlc6j65LeRht1vo4q3gwux8/+frfLo69f/+D8bsGX3YuxwUAAAAAAAAAAAAAgMtOGA0AAAC2oM0X/bvRS4Mgq+xn2LkSVfXoS/sHSSjgZHYcs3oax7NyGC0Lql0miwG4ReO3wgYn0+1HvLLX4OStqFgWRlueiXhrrapqFcAbdIat9leSPf7s+Zqb1OMYvxWde/x8hNEA2Myy+/pcHkZrnkedp6b74IkwGhfsaJKE0fq3d3oedV2nvw+bzCUPkmDwKr972XUluy4tymb/m/rpu59NP6s9f+PFU5/5AAAAAAAAAAAAAADgnUQYDQAAALagTehq2D1Y+uX2NkGvQfd0MGuYhAIiIkaz4ziePrlhtCyAMg8bjLLwQovXI5O9BqPpvYf/qMtphFXCBW2iZ8MkeNdq/8njH83uNW53Mh01nI8wGgCb6VW94vKzwaI0YNRZHjA6L0337tEsv3/CLhyNkzBa79lzOFo+562jfjsmfNYmc8ls2+Np89x20aSeFJcvXpeq9LFtP41W13W8fPTp4tiwcyU+9sxzWz8mAAAAAAAAAAAAAAA8KYTRAAAAYAvaRKy2FcM6GwY4aNhmNL0X95Iw2pXOExBG6yQBldnDYMpJEkbbJLwwSLadRx6yLEIeUnjcOq/zKrJts1DFo/Hy8xmRPy8A0Nay4OnceFYOo2Xb70K/2otulOclJyvEmWDbZvU07kw+Xxw77N/a+vGWzXlHye9Dm89CmSwE3TR3PWtcPyguX7yuVFX5P5vWSRh5E7968kvxa/d/pTj2ievfGnud/a0fEwAAAAAAAAAAAAAAnhTCaAAAALAF+y2+6N8mLDXorr6fLBQQEXE8uxfHs3IY7aB7+cNo/WqvuHweUBklMYTNwgvl12k0exh5qGNWHF8ljNbuvbD9MNr8MWSy5zMif14AoK22YbSzPz/avhwm24WqqtJ52mhJeBTO0+uTo5gl89Obvds7Pps8xLtJZDeb2x4vmdsuyq8rC2G0ZNs6TSOv7+U7n07HnrvxnVs/HgAAAAAAAAAAAAAAPEmE0QAAAGALulU39qtB4zrZF/pXXeexMFrDNqPpvTiePrlhtCygMn4rbJCFF4adPBa3TBZtGNcPYlpPGrII7cNobSJjbd4LmewxjKZ5+CyiOYy2SWwOACIi+p1Nw2jl7XcluzefNNw/4bwdTV5Nxw77t7Z+vKYZbx11+vuwSWQ3m9vfn41iVpejcGdl15XTIebyo9t2GO3u5E78zN3PFce+/OBr4117793q8QAAAAAAAAAAAAAA4EkjjAYAAABbMljyZf8sVrWoW/Vir9pvXOdslKNTddN9/+hr/1eM6wfFsYPOkxtGm4cNRtN7xfFNIl6NobnZcUQSRuhU7cNoy94LnegsfR80ycITy8It2Xi/2otu1Vv7fAAgoiF4OnsywmhpeFQYjQv02rgcRtuvBuc038/nvNN6Eg/q+8WxNp+FMsNuOYzWFGI7a1JPist7C3PcKn1s2w2jfe71v5mez/OHL271WAAAAAAAAAAAAAAA8CQSRgMAAIAtWfZl/yxWtep+SgG2g045FvDPj38u3c+V7rVW53OR+kvCaCezUXE8iye00RRGO5keR11nYYT2YbSmY0Q8fA9UK4TWHt++/PiXhVtG0/L4MNkfAKxiWfD00c/lYFA2L9iVbI7WNswE5+FoUg6j3ejf2mg+uY5sbh6xfP7bpGku2jZMmMWiF69LWRhtm1m0WT2NH7/zN4pjN3u343df+cgWjwYAAAAAAAAAAAAAAE8mYTQAAADYkjaxq1b7WRJQKx1nnRDYQffqytvs2rKAymh2rzg+6AzXPmYpPDc3mh1HnaQRVslObCuil26fPP5l4Ygs7LLJ8wkAc23DaG0CRhchm+tlYVHYhaNxOYx22Hv2XI6XxcMi8rl5xKZhtIb5+TQ/5qKz15m5U2G0JCRX17NWx2jj59/86Xht8kpx7JtufGd0qu7WjgUAAAAAAAAAAAAAAE8qYTQAAADYkq2F0dbYz5XutVb7nquiioPOkx9GO5mNiuPDzuqhuEfbrhtGa/9nlmWv8SbhiIiIQfL4s/DZXBZOWye8BwBntQ2jtQkYXYRsLrfs/grn6SiJbN3s3z6fAzbUgJsigW0/C5U0RYOXhX/nJrNJcXm/s9vryst3Pl1c3qt68Q3Xv22n5wIAAAAAAAAAAAAAAJeVMBoAAABsybIv+7eNXa2zny87+OpW+577kuFX7DwCsI5+EkAZ1+OY1bO4n4TRBp3h2sfsVr3oV3vFsZOGMNoqloXGNglHPNx/efvR9DjqOj//LDS3yfMJAHPZfX1ST878fDnDaNn9VRiNi3Q0frW4/LB3a8dn0vy7MOiuP5/sVf10fj6a3Wu1jzbXlSqpvm1j/h8R8dsPfiN+8fhni2O/59on41rv+laOAwAAAAAAAAAAAAAATzphNAAAANiSLJYx1zYutSygVopmffL6t8cX7H1Rq/3vV4P4rlvf02rdi9ZL4m2Tehz3ZydppGBZeGyZ7DUYTY8jkmNmIYWSZe+FTcNo2fazmMa4fpBul8UsNj0fAIjIw2Zn701nQ2lzWVhtV7L74UgYjQv02qQcRrvZv30ux2ua82aRsn61t3HYcNgpz+9H03ZhtGwOvMsw2mfv/Gg69vyNF7dyDAAAAAAAAAAAAAAAeBr0LvoEAAAA4GmxLB7VNi61bL1SgO1a70b8+S/6r+MfvvHj8asnvxTTelbc9j3774sPX/2GeM/++1udy0XLAgqT2TiNeEW0j9Dl2x/EG9M7jy0/mR1HXSdhtKp9GG1Z/C4LP2xj/6PZcex19stj0/Jzuux8AaCN9L5ej0/9PD7z87LtdyWbX5zMRjs+E3hoPHsQb05fL44d9m6dyzGbw2hZZHezuXnEw/DxG9Ojx5YfJzG2s85eZ+ZOX1fOL4x2f3YSP/n63yqOfdH+l8QHBh/a+BgAAAAAAAAAAAAAAPC0EEYDAACALVkauyoEzdZZLwunXeleorFgUAAAIABJREFUi+cOX4jn4oVWx3kSZAGUcT1OwwsRm4fFBt2DiEI7YTQ7TsMITZGIs5ad36C7WTyi6b14MjuO63GYjhXPRxgNgC1oG0abzB6Ut+9cbBgtu7+Opu3CTLBtR5PPp2OH/fMJozXJIrvbmEtmv39NseRFk3pSXN5fuC7loePNw2g/9cZn0s8vzx++uFJkGQAAAAAAAAAAAAAAnnadiz4BAAAAeFosC6O1DQIsW2/ZcZ4m/YaASlMEYdA5n7DYSUMYLVYIoy0Ln20cdmt4jzTFW7JYQ9uoHwA06Sdhs7PBoixglIXVdiW7v57MRjs+E3joaPxKOnbY230YLZufb+Pzy0EyPz5uGSY8G2CcW7yupFm0DbtodV3HZ+58ujh20LkaH7n2yc0OAAAAAAAAAAAAAAAATxlhNAAAANiSwZJ4VNsgwLL13klhtCyAMqnHacSrG73oV3sbHTd7jkcNYbTOCmG0ZeGzTV/j/c4gquR8muItWcyibdQPAJpk9/XxmWBRFjDKgqm7koVCm2KtcJ6OJq8Wl1/pXou9zv65HDObY0ZEjGblSNmyz0ltZPto+/s3rh8Ul58Oo5X/s2keRm7nV0a/GL9+/1eLY5+4/q3n9loBAAAAAAAAAAAAAMCTShgNAAAAtmRbQbNlEap3UqQqC6jMYhbH07vFsUF3GFXVPlJW3EfyHJ9MjyOyMMIKxzzv+F2n6sSgMyyOZcGKh2PlsMQ7KcYHwPlJg6ez08GiLIyWbb8r2fzgQX0/pvVkx2cDeRjtZu/2js/kodE0i+yW56WrOEjCwsfTfG67aJL8jra5rmwaRnv5zqeLy6uo4rkb37nRvgEAAAAAAAAAAAAA4GkkjAYAAABbMky+rD/XNmg27C7ZT3fzsMCTot8QKrg7faO4fBvhuGG3vI/R7DjqrIsW7cNo+51B4/ggOf4qsuchi59FRJwkY++kGB8A5ycNo50JFo3rB8X1LjqM1hQKPZmNdngm8NBr41eKyw/7t87xqPmcN4/sNn++aSOf27YNo5WDi4ufN/L5/PphtDcmd+If3f3J4thXXPlw3N77grX3DQAAAAAAAAAAAAAATythNAAAANiSQac5WNY2aNa0n361d+FRkF1qeqx3J68XlzdFS9rKwgsns+OoY1YcWyWM1qm6ja/zNh5Dto+TaTlYUdd1nEzLUZfhkvc2ALTRq3rF5WeDRWdDaY+2v7xhtFFyf4XzdDT5fHH5Ye/8wmhV1RRGK0fKln1OauMgiUc3RX8XZWG0XoswWr1BGO1zr/9YTKN8TXvuxotr7xcAAAAAAAAAAAAAAJ5mwmgAAACwJcPky/oRqwXNhp18P9sIZj1Jmp6zN6flMFoWNVtFGhWbHadZhFXCaBHN57mVMNqK8Yhx/SCNNgwa3tsA0Fa/2isuXwwW1XWdBoz6FxxGa7p3n7SMM8E2HY1fKS4/zzBak+z3oOnzTVvZPkbTcoztrPHsQXF5r7MQRkuib3W9XhhtWk/js3f+RnHs2f674yuvfHit/QIAAAAAAAAAAAAAwNNOGA0AAAC2ZFuhq6Z1txH9epL0O3kA5W4SRttGVCx7nh9GxdYLI5x13q/zoDMsLs/CaCezUbqvYbIvAFhFFjwd14+CRbOYRp3ca9tGZs/LoJvfD4XRuAhHk1eLyw/7FxVGK88ns3npKvLob7sw2qQuB4BPX1eSMNqa8/+ff/On4s7k88Wx5258Z3Sq7lr7BQAAAAAAAAAAAACAp50wGgAAAGzJtkJXg27DfhrGnkZNAZS7k3IYbRtRsey1PJmO0jBCVa32Z5bGkN4WXudhpxyPyMItTVGJd1qQD4Dz0at6xeWLwaJxPW7Y/mLDaL2qH/1qrziWhUfhvIym99IQ2WHvYsJomW18hsnm521/9ybJtaW/cF2pkjDaumHkl+98OjnmXnzi+reutU8AAAAAAAAAAAAAAHgnEEYDAACALelXe9GJbnFs0Bm23k9TYK1p7GnUFEB5c1oOo20jKpbFG5riYVlGITPslsNlEXnUbBVZzGw0LccjsrDGw/N5Z73vADgf2X19Uo+jrh+GhyazyxtGi8jndFl4FM7La5NX0rGb/dvndtw8Hpbbxlwymx9P6nGMZw+Wbj+uy+u0ua6sk0X7rfu/Hv/8+OeKYx+59sm42n1mjb0CAAAAAAAAAAAAAMA7Q++iTwAAAACeFlVVxbB7EPemdx8bWyXWtVftRyc6MYvZY2NZ7Opp1a/20rE3JneKy7fxHGXxhtJr8shqkYimWN7+CiG9Vfd/b3a3+B69M/58w/kMNj4fAMgCRHXUMYtpdKMXkzoPo/U7Fx9GG3auxN1CnPX1yVHx/grn5bfu/3pxeRWduN67eW7HXSeMtpX5ecPnqdcmr7wdGht0htGtHv/Pn5N6Utx28brUqcr//6TGswcr/37/nTv/Tzr23I0XVtoXAAAAAAAAAAAAAAC80wijAQAAwBYNOuUw2ioxgKqqYtA5iOPZm4+NZcGup1WvEDWYu1+fFJdv4zkadq6svE1nxUhEdp771SC6VXfl4z+2/275MfzS8c/Hf/LL/17r/Qw6w+hs4XwAoN/Jg6fjehzdqjmM1jQv2JUsPPojr/xw/MgrP7zbk4GC673Drcwlt2m4hehv0/z8h/6/P/32v/erQXzFlQ/H977nT8dB92pEREzradRJ4DgLNi767Os/Gp99/UdXPOOyLx58KD4w/NBW9gUAAAAAAAAAAAAAAE+r8v/rcwAAAGAtWexqlTBaRMSwu539POk6VTc6K/75IguWnP8+Vg2jleMOg+S1X9W2InrvtPccAOenKWw2mT0Moo0bw2h5WG1XtnWfhvNy2Lt10afwmMEa0eGz2oaL79cn8Y/e/Mn4n3/jv3l7WVNwsb8QRqtWnM+v4/kbL5z7MQAAAAAAAAAAAAAA4EknjAYAAABblEWkVo1Upft5B8Y4eguxgjaG3S2EF9bYx6ohhSy+tq0Q2bb2s63AGgA03dPn4aK2AaOL4r7IZXfYP98w2jrxsGF383DxfmcQ1Qr/WfNfjP5JfH78OxERMa4fpOudvi6dbxjtSvdafOTaJ8/1GAAAAAAAAAAAAAAA8DQQRgMAAIAtut1/T3H5s/13r7SfW8l+bq24n6fBqs/dquuX7FeDuNq9vtI2N/u3V1r/9t75vsbZe3FV23g+ASAiYq/aT8fu1ycR0RxGWzWWeh7eiXMxnizv2Xv/ue6/V/Xj2grz5H61F9e6NzY+bqfqrPz799sPfiMiIib1JF1n8bry7Irz+VV9w/Vvi35n71yPAQAAAAAAAAAAAAAATwNhNAAAANiijzzzyceW9apefO21j6+2n2uP72ev2o/ffeWja5/bk+rD1z7Ret2bvdvxwcGXbnzMqqriI9e+sfX6Hxh8KA77t1Y6xlde+UjsV4PHlpde+3V8cPilcbO3edzho8980xbOBgAiBp2DdGw0PY6IiHFjGK239XNa1e+59o1RRXXRpwFFVXTiY888d77HqKr42qvt5+dfc/XjsdfJo4irWHWefDJ7eF2ZzNoFF7/m6tef2+/3oHMQ33Lj3zqXfQMAAAAAAAAAAAAAwNNGGO0dpKqqYVVVn6iq6k9UVfUXqqr6waqq/mxVVX+oqqoPVVW1lW97VFXVr6rqm6uq+qNVVf3Fqqr+dFVVv7+qqg9sY/8AAACX2Vdc+XD84Xd9Xww7VyIi4nr3ML7/fT8Yz/bfvdJ+PvrMJ+P33fqjMegMI+Jh8OvPvv+/jGu961s/58vuxWe/O77pxneeihaUvG//A/EDX/iXolNt588df+D2H4+PXXs+OtFtXO9Lhl8e3/++H1x5/wfdq/EDX/iX3n5v7FeD+K5b3xMff+ab1zndx3SqbvzAF/5QvG//A2ttv18N4t++9b3xsWvnG9cA4J1jvzNIo0NvB4ySMFonOtGpmu/Ju/DB4ZfFH33Pn4sr3WsXfSpwytXu9fi+9/2n8e699537sf7gu/5kfPTaN0U38lhhFZ346qtfF9/znj+1teP+m7f+cHzy+qdaRxLnwcXsuhIR0e88+ozxoYOvjH/3PX8mrnaf2exEz7jRezb+w/f+xbjRf3ar+wUAAAAAAAAAAAAAgKdVu28O8ESrquoTEfEfRcTvi4i9hlV/o6qq/y0i/oe6rl9b4zi3I+KHIuIPRcTNZJ2fiIj/vq7r/3vV/QMAADwpnjt8IT5541NxZ/JaHPZuxbod6k89+wfiW2/+3nhjchQ3es+uvZ8nXafqxh959/fHv3P7j8cr49+Mun58nau9Z+JGr/hRdG39Tj/++Hv/4/gjs++PVx/8dnGd673DjWJ1Hxx+afylD/5PcWfy+XimdyO6LSMPbb1r773xgx/4y3Fn8lq8OXmj9XadqhPv3nvv1s8HgHe2TtWJ/c7w7QjaotGSMFq/avrT9m59/Po3x8eeeS5eGf9mjGd5cAl2Za+zF7f7X7Czzwv9Tj/+xHv/QpzMRuk8+dn+7Rh2r2z1uN2qG9/znj8Vf/Bdf/LU54L/9V/9d/E743/12Prza824fpDu82x8+RPXvzU+/sy3bO33e7+zH8/23721eDMAAAAAAAAAAAAAALwT+HbrU6yqql5E/OWI+FMR0ebbMO+LiP88Ir6vqqo/Vtf1j65wrBci4ocj4l1LVv2GiPiGqqr+j4j4vrqu77U9BgAAwJOkU3XjZv/2xvvpVt047N/awhk9+fY6+/G+/Q/s/LiDzjDePzi/41ZVde6v8Y3eza2H4wBgHcPOQTGMdrIkjHY2XnTRHkZE33fRpwEX6rznyZmznwuu9a4Xw2iPgouTdF+la4vfbwAAAAAAAAAAAAAAuFjCaE+pqqqqiPg/I+IPFoZ/MSJ+ISJGEXE7Ij4aEYcL4++OiL9eVdXvbRNHq6rqmyPir0XE3sLiOiJ+JiJ+JSJuRMSHI2LxW97fGxHPVFX1++q6nrV8WAAAAAAAPMEGnYPi8nnAaDzLwmj+cwZQNuxcKS5fFlyMuHzRRQAAAAAAAAAAAAAAIKJz0SfAufkP4vEo2mci4qvquv7yuq7/QF3X31vX9aci4l0R8Sci4vWFdfci4q9WVXW96SBVVb0/In4kTkfRPhcRX1nX9Ufruv7ut47x/oj4cxGx+O2T74qI/2qNxwYAAAAAwBNomITRTqbNAaNeR7wIKBt0hsXloyVhtE50olt1z+28AAAAAAAAAAAAAACA9QijPb3+szM/fyYivq2u639ydsW6rid1Xf+ViPi2iLi/MPSuiPj+Jcf5oYg4XPj5J946zi+cOcb9uq7/x4j47jPb//mqqr54yTEAAAAAAHgKDLrlMNqygFGv2isuBxh2rhSXz4OL4/pBcbxXCS4CAAAAAAAAAAAAAMBlJIz2FKqq6qsi4gNnFv9AXSffKHtLXdc/HRH/y5nF39VwnA9FxL+/sOhBRPyxuq5PGo7x1yLiry4s2o+I/6LpvAAAAAAAeDoMO+Uw2snbYbRJcbxf9c7tnIAn26A7LC4fLbmuCKMBAAAAAAAAAAAAAMDlJIz2dPpdZ37+tbquf7bltn/9zM8falj3eyKiu/Dzj9R1/S9aHOO/PfPzd1dVNWhzcgAAAAAAPLkGneaA0bh+UBwXMAIyeXBxFBERk+T/b1DfdQUAAAAAAAAAAAAAAC4lYbSn05UzP//6Ctv+2pmfDxvW/f1nfv4rbQ5Q1/UvRMTfX1h0JSI+1WZbAAAAAACeXMPO2T9fP7QsYCSMBmQGSRhtHlxMrysd1xUAAAAAAAAAAAAAALiMhNGeTr915ufBCtueXfe10kpVVb0nIr5mYdEkIj63wnH+7pmfX1hhWwAAAAAAnkCDzrC4fDS9FxERk3pSHBdGAzJZGO3krTDaePagOO66AgAAAAAAAAAAAAAAl5Mw2tPppyLi/sLPX15VVfnbZo/7SGFfJb/7zM8/V9f1vZbHiIj4iTM/f+UK2wIAAAAA8AQadq8Ul5/MRhERManHxXEBIyAzzMJo04dhNMFFAAAAAAAAAAAAAAB4sgijPYXqur4bEf/7wqJBRPzJZdtVVdWNiD/z/7N370G2ZXV9wL+/3af7njN3YAaZGWAQGRkUmBJ5WoIgD8dIElO+5ZEyajQ+sICglq8KAYZoKkS0EsoiRKPySAoJQQQJhDg8FA1ItBBmBJIBh3dgiscwj3vvzNzbK390X+6hp0/3OX37nN2n7+dT1XX2Xnvtdb63qFpVQ+/+7i3DL58w/Yot5x+eOuCGj+yyHgAAAAAAh8yw2/4dHsfXN967cUe7fdvrqwqMgAmGK9sXo93WTmS9nZpYuGhfAQAAAAAAAAAAAACAg0kx2uH1y0k+Onb+b6vq2ydNrqrVJL+d5GFjw29L8toJt9x/y/nHZ8z3sS3nd6+qu824BgAAAAAAS2TUHd12/MT68SSZWGA0UGAETDDqti9GSzb2FvsKAAAAAAAAAAAAAAAsF8Voh1Rr7QtJnpjkvZtDoyRvqapXV9UPVtWDq+r+VfWoqvrZJNck+bGxJd6T5Adaa23CV1y45fyGGfPdkuTEluELZlkDAAAAAIDlMuxG247ftn486209J9dPbntdgREwyXCHYrTj68dyh2I0AABgBlV1v6p6SlX9elW9o6puqqo29vPRvjNuVVXnVdVHtuRsVfWyvrMBAAAAAAAAAMBeDPoOwPy01j5aVd+c5EeT/GSSRyR58ubPJJ9P8ptJfr21CX8psuH8LefH9xDxeJLh2Pld9rDGV6iqS5JcPONtl5/t9wIAAAAAsLvRytFtx1tabls/kZOTCow6BUbA9kY7FKOdWD82eV9RjAYAAGyqqick+ZUkj0zyVf2m2ZNfS3K/vkMAAAAAAAAAAMB+UYx2+K1s/tyWpCWpHeZ+Islzk/zBLqVoyZ2L0U7sIdvxJHfbYc29+Jkkz9uHdQAAAAAA2GfDbjTx2vH1WycWGK0qMAImGO5QjHb81ORiNPsKAAAw5qFJvqPvEHtRVY9K8qy+cwAAAAAAAAAAwH7q+g7A/FTVY5J8MMl/SPKY7P6/932S/H6Sj1fVP5vx69rsCfd0DwAAAAAAS2rUHZ147cT68dzRbt/22kCBETDBarc6cY84sX7MvgIAAJyN25J8pO8Qk1TVWpLfzZnnAm/uMQ4AAAAAAAAAAOwbxWiHVFVdmeTqJJeNDX8qyS8neViSC5OsJblnkr+f5OVJTm7OuzjJ71TVb1dVTfiKW7acj/YQc+s9W9cEAAAAAOAQGXaT/6/k4+vHcrKd3PaaAiNgJ8PuvG3Hj68fy8l1+woAADCVO5L8TZL/lOSnkjwiyV2SzPqC0UV6bpIrNo8/luQ/9pgFAAAAAAAAAAD2zaDvAOy/qro4yauSDMeG/zjJD7XWbtoy/bNJ3pLkLVX10iRvTHL3zWs/kY03Xr5wm685qMVoL0nymhnvuTzJ6/fhuwEAAAAA2MFqrWUlg5zKnYuKTqwfy8l2x7b3DcqvM4DJRt0ot5z60p3GT6wf32FfUYwGAAB82cuTvLS1dmLrhcnvFe1XVT0kyS+NDT09yTf3FAcAAAAAAAAAAPaVvyQ6nH4uycVj5x9K8uTtHtwa11p7d1U9JcnVY8PPq6rfb63dsGX61r8uuTgzqKrzc+ditBtnWWM7mzm3Zt0ty9l+LQAAAAAAU6iqDFdGufXUzXe6dvzU5GK01VqbdzRgiQ2787YdP37q1sn7SqcYDQAA2NBa+2LfGWZRVYMkv5czz3++qrX25qpSjAYAAAAAAAAAwKHQ9R2AufjBLecv3K0U7bTW2luTvHNsaJTkqdtMvW7L+X2nj7ft/C8s2wNmAAAAAADMbjShwOjE+rHcMaHAaFAKjIDJJhWjnVg/njva7dtes68AAABL7BeSPHzz+AtJnt1jFgAAAAAAAAAA2HeK0Q6Zqjqa5PItw2+dcZmrt5xv9ybJD245v/+M33G/LecfmPF+AAAAAACW0KQCo+Prx3JSMRqwB6OVyYWLJ9vJba/ZVwAAgGVUVQ9I8ryxoZ9vrd3QVx4AAAAAAAAAAJgHxWiHz4XbjH1mxjW2zr9omznXbjn/xqra/q9OtveYXdYDAAAAAOAQGk0oRjuxYzHaYJ6RgCW3t8JF+woAALBcqqpL8rtJjmwOva219rL+EgEAAAAAAAAAwHwoRjt8btxm7OiMa5y/5fyWrRNaa/8vyfvHhgZJHjvDdzxhy/mbZ7gXAAAAAIAlNbHA6NTkAqPVbm2ekYAlt5fCxdWyrwAAAEvnGTnzQtLjSX6qxywAAAAAAAAAADA3itEOmdbarUlu2jL8sBmXecSW889MmPe6Lef/dJrFq+qBSb55bOjWJP9zumgAAAAAACyz0coOBUbr2xcYDWp1npGAJTexcHH9WO6YUIxmXwEAAJZJVV2W5F+PDV3VWvtwP2kAAAAAAAAAAGC+Bn0HYC7ekeS7xs5/Msnbp7mxqu655d4keeeE6f8lyXOSrGyef19VfV1r7bpdvuaXtpz/19baiWnyAQAAAACw3BQYAfttNGFfOXHqWE7aVwAAgMPhd5Ic3Tx+X5Lf6CtIVV2S5OIZb7t8HlkAAAAAAAAAADicFKMdTq/OV5abPaWq/ntr7T/vdFNVHUnyyiTnjw3fkuQt281vrV1XVS9P8mObQ2tJXlZVV04qOquq707yo2NDtye5aqdcAAAAAAAcHpMKjI6v35r1nNr22qD8OgOYbLgyuXBxcjGafQUAAFgOVfXjSb5983Q9yU+01k72GOlnkjyvx+8HAAAAAAAAAOCQ6/oOwFz8QTbeCnlaJXlFVf37qrrXdjdU1ROTvDtnHqA67YWttS/u8F3PSzJ+/VuSXF1VD9yy/pGqemaS12y5/zdaax/bYX0AAAAAAA6R4YRitFtOfmniPYNanVcc4BAYdaNtx0/sUIy22q3NMxIAAMC+qKpLk7xobOjFrbX/3VceAAAAAAAAAABYBK9CP4Raa+tV9QNJ/iLJJZvDleRZSZ5RVe9P8ndJjif5qiQPS3LPbZZ6U5IX7vJdn6yq70vyliSn/4LkMUk+UFV/vfk9FyR5eJKLt9z+xiT/crZ/HQAAAAAAy2w0oRjt5lOTi9FWS4ERMNmwO7rt+In14+kmvCdK4SIAALAkXpLkws3jjyV5To9ZAAAAAAAAAABgIRSjHVKttQ9X1eOTvDLJI8cudUkeuvkz8fYkv5Pk2a21O6b4rndU1fcmeVnOlJ/V5vc+csJtr0ryE621U7utDwAAAADA4TFc2b4Y7ZZTN0+8R4ERsJNRN9p2/I52eyq17TX7CgAAcNBV1VOTfPfY0NNba7f2lWfMS5K8ZsZ7Lk/y+jlkAQAAAAAAAADgEFKMdoi11j5UVY9O8o+T/HSSRyUT/vpjw/Ekf5jkt1pr757xu95UVd+Q5KokT0lytwlT353kRa21186yPgAAAAAAh8Oo274YrWV94j2D8usMYLJhd3TitZa27bh9BQAAOMiq6qIkLx4belVr7c195RnXWrshyQ2z3FO102OLAAAAAAAAAADwlTzxf8i11k4meUWSV1TVBUkemeRrk1yY5EiSm5N8Mcm1Sa7ZnL/X77ohydOr6p8neUyS+ya5Z5Jbk3wqyXtba9efxT8HAAAAAIAlN5xQjLaTQa3OIQlwWIxWRjPfs1prc0gCAACwb16c5OLN4y8keXaPWQAAAAAAAAAAYKEUo51DWmtfSvLWBXzP7UnePu/vAQAAAABg+YwUowH7bNQdnfke+woAAHBQVdUDkjxtbOjfJTmvqi7b5dYLt5yfv+We9dbax882HwAAAAAAAAAAzJtiNAAAAAAAYGGGeyhGW+3W5pAEOCyOdKOZ71GMBgAAHGBb/yPnBZs/s/r+zZ/TvpQ7l6cBAAAAAAAAAMCB0/UdAAAAAAAAOHeMVmYvRhuU97wAk63UStbqyEz32FcAAAAAAAAAAAAAAOBgUowGAAAAAAAszLAbzXzPShQYATsbdbOVLq7W2pySAAAAAAAAAAAAAAAAZ0MxGgAAAAAAsDArNchaHZl6/qBWU1VzTAQcBsOV2YrRBrU6pyQAAABnp7X2N621mvUnyVVblnr5ljkX9vHvAQAAAAAAAACAWSlGAwAAAAAAFmrYTV9gtKq8CJjCaIZ9JUkGnb0FAAAAAAAAAAAAAAAOIsVoAAAAAADAQo1Wpi8wGihGA6YwS+FikgxqMKckAAAA26uqtuXnCX1nAgAAAAAAAACAg8gT/wAAAAAAwELNUmCkGA2YxmiGfaVSWfFrUgAAYExVfXW2f57ynlvOB1V12YRlbmmtfW4/cwEAAAAAAAAAwLnIE/8AAAAAAMBCzVJgpBgNmMashYtVNcc0AADAEvrzJPedYt69k1w/4drLk/zofgUCAAAAAAAAAIBzVdd3AAAAAAAA4Nwy7EZTz1WMBkxjtDJLMZp3RwEAAAAAAAAAAAAAwEGlGA0AAAAAAFioUXd06rmritGAKQy7WYrR7CsAAAAAAAAAAAAAAHBQeR06AAAAAACwUMOV0dRzFRgB0xh20+8rq7U2xyQAAMAyaq1dtoDvqDmv//wkz5/ndwAAAAAAAAAAwCJ0fQcAAAAAAADOLaPu6NRzB51iNGB3M+0rChcBAAAAAAAAAAAAAODAUowGAAAAAAAs1LAbTT1XgREwjdn2lcEckwAAAAAAAAAAAAAAAGdDMRoAAAAAALBQo+7o1HNXFaMBUxitTL+vKFwEAAAAAAAAAAAAAICDSzEaAAAAAACwUMNuNPVcBUbANGbZV1a7tTkmAQAAAAAAAAAAAAAAzoZiNAAAAAAAYKFGK0ennqsYDZjGqJtlXxnMMQkAAAAAAAAAAAAAAHA2FKMBAAAAAAALNexGU89VYARMY7Z9ReEiAAAAAAAAAAAAAAAcVIrRAAAAAACAhRp1R6eeq8AImMawO2/qufYVAAAAAAAAAAAAAAA4uBSjAQAAAAAACzXsRlPPXa21OSYBDosYiZDCAAAgAElEQVQj3TCVmmqufQUAAAAAAAAAAAAAAA4uxWgAAAAAAMBCjVaOTj13UKtzTAIcFl11OTJl6eKgBnNOAwAAAAAAAAAAAAAA7JViNAAAAAAAYKHW6kgqNdVcBUbAtEbdeVPNU7gIAAAAAAAAAAAAAAAHl2I0AAAAAABgobrqMuxGU81VYARMazh1MdranJMAAAAAAAAAAAAAAAB7pRgNAAAAAABYuGkLjFY7BUbAdEZTF6MN5pwEAAAAAAAAAAAAAADYK8VoAAAAAADAwk1bjDao1TknAQ6L4cq0hYv2FQAAAAAAAAAAAAAAOKgUowEAAAAAAAs3mroYbTDnJMBhMf2+ohgNAAAAAAAAAAAAAAAOKsVoAAAAAADAwg1XFBgB+2vYjaaaN6i1OScBAAAAAAAAAAAAAAD2SjEaAAAAAACwcKNOMRqwv4ZT7yuDOScBAAAAAAAAAAAAAAD2SjEaAAAAAACwcMNuNNW8VcVowJSmLVy0rwAAAAAAAAAAAAAAwMGlGA0AAAAAAFi4UXd0qnkDBUbAlIYr0xWj2VcAAAAAAAAAAAAAAODgUowGAAAAAAAs3LAbTTVPgREwrVE3bTHa2pyTAAAAAAAAAAAAAAAAe6UYDQAAAAAAWLjRytGp5ilGA6Y1nLoYbTDnJAAAAAAAAAAAAAAAwF4pRgMAAAAAABZu2I2mmqcYDZjWaMpitFX7CgAAAAAAAAAAAAAAHFiK0QAAAAAAgIUbdUenmrfaKTACpjOcshhN4SIAAAAAAAAAAAAAABxcitEAAAAAAICFG3ajqeYpMAKmNVqZshitW5tzEgAAAAAAAAAAAAAAYK8UowEAAAAAAAs3Wjk61TzFaMC0ht10xWirNZhzEgAAAAAAAAAAAAAAYK8UowEAAAAAAAs37EZTzVtVjAZMaTRlMZrCRQAAAAAAAAAAAAAAOLgUowEAAAAAAAs36o5ONU+BETCt1VpLl5Vd59lXAAAAAAAAAAAAAADg4FKMBgAAAAAALNywG001T4ERMK2qyqg7b9d59hUAAAAAAAAAAAAAADi4FKMBAAAAAAALt1prWclgxzldVtKVX2UA0xuu7F6MtqoYDQAAAAAAAAAAAAAADix/TQQAAAAAACxcVWW4MtpxjvIiYFajbud9JUkG9hYAAAAAAAAAAAAAADiwFKMBAAAAAAC9GHXn7XhdeREwq2F3dNc59hYAAAAAAAAAAAAAADi4FKMBAAAAAAC9GO5WjNYpLwJmM+xGu85RjAYAAAAAAAAAAAAAAAeXYjQAAAAAAKAXo92K0ZQXATPafV8ZpKoWlAYAAAAAAAAAAAAAAJiVYjQAAAAAAKAXQ8VowD4brthXAAAAAAAAAAAAAABgmSlGAwAAAAAAejHapcBotQYLSgIcFiOFiwAAAAAAAAAAAAAAsNQUowEAAAAAAL0Y7lpgtLagJMBhsfu+ohgNAAAAAAAAAAAAAAAOMsVoAAAAAABAL0YKjIB9ttu+smpfAQAAAAAAAAAAAACAA00xGgAAAAAA0IvhrsVogwUlAQ6L3fcVxWgAAAAAAAAAAAAAAHCQKUYDAAAAAAB6MVJgBOyz0Yp9BQAAAAAAAAAAAAAAlpliNAAAAAAAoBfDXQqMVhUYATMaKlwEAAAAAAAAAAAAAIClphgNAAAAAADoxWjXAqO1BSUBDovd9xXFaAAAAAAAAAAAAAAAcJApRgMAAAAAAHox3K3AqBssKAlwWAy70Y7XVxWjAQAAAAAAAAAAAADAgaYYDQAAAAAA6MVot2I0BUbAjEbd0R2vDzr7CgAAAAAAAAAAAAAAHGSK0QAAAAAAgF4MdylGW1WMBsxouDLa8brCRQAAAAAAAAAAAAAAONgUowEAAAAAAL0YrexcjDaotQUlAQ6LQa1mdYe9QzEaAAAAAAAAAAAAAAAcbIrRAAAAAACAXgy70Y7XBzVYUBLgMNlpb1lVjAYAAAAAAAAAAAAAAAeaYjQAAAAAAKAXKzXIWh2ZeH2gwAjYg1F3dOI1+woAAAAAAAAAAAAAABxsitEAAAAAAIDeDLvzJl5bVWAE7MGwG028phgNAAAAAAAAAAAAAAAONsVoAAAAAABAb0Yrk4vRFBgBe2FfAQAAAAAAAAAAAACA5aUYDQAAAAAA6M2wU2AE7K+d9pVV+woAAAAAAAAAAAAAABxoitEAAAAAAIDejBSjAftM4SIAAAAAAAAAAAAAACwvxWgAAAAAAEBvht1o4rXVToERMLsdCxftKwAAAAAAAAAAAAAAcKApRgMAAAAAAHoz6o5OvDYoBUbA7IY7FaPZVwAAAAAAAAAAAAAA4EBTjAYAAAAAAPRmuDKaeE2BEbAXo5XJxWir9hUAAAAAAAAAAAAAADjQFKMBAAAAAAC9GXVHJ15TjAbsxbCbXIxmXwEAAAAAAAAAAAAAgINNMRoAAAAAANCbYTeaeG1VgRGwByPFaAAAAAAAAAAAAAAAsLQUowEAAAAAAL0ZdUcnXlNgBOzFToWL9hUAAAAAAAAAAAAAADjYFKMBAAAAAAC9UWAE7Ldhd97Ea6v2FQAAAAAAAAAAAAAAONAUowEAAAAAAL0ZrRydeE2BEbAXo5XJxWgKFwEAAAAAAAAAAAAA4GBTjAYAAAAAAPRm2I0mXlNgBOzFsFOMBgAAAAAAAAAAAAAAy0oxGgAAAAAA0JsLBnfbdrxLl+HK5HIjgEnOX7lrugm/Bj1/5a4LTgMAAAAAAAAAAAAAAMxCMRoAAAAAANCbu6/eI/dau8+dxi8fPSjDbtRDImDZHemG+frzHnyn8UtWL81Fa/foIREAAAAAAAAAAAAAADAtxWgAAAAAAECvfuRez875Kxd8+fxug4vyQ/d8Ro+JgGX31Hv8dO6+esmXz8/rzs+PXfrzPSYCAAAAAAAAAAAAAACmMeg7AAAAAAAAcG77muHlueprX5KPHP9gulrJ/UdXZK070ncsYIldsnavPOeyF+f64/8nt7fb8vXnPTjDbtR3LAAAAAAAAAAAAAAAYBeK0QAAAAAAgN6NVo7mG85/ZN8xgEPkSDfMA48+pO8YAAAAAAAAAAAAAADADLq+AwAAAAAAAAAAAAAAAAAAAAAAAAAM+g4wi6p62+ZhS/K01toNe1znHkledXqt1tqV+5EPAAAAAAAAAAAAAAAAAAAAAAAA2JulKkZL8oRslKIlyfAs1hlurpWx9QAAAAAAAAAAAAAAAAAAAAAAAICedH0H2IPqOwAAAAAAAAAAAAAAAAAAAAAAAACwv5axGA0AAAAAAAAAAAAAAAAAAAAAAAA4ZM7VYrTB2PHJ3lIAAAAAAAAAAAAAAAAAAAAAAAAASc7dYrSLxo5v7S0FAAAAAAAAAAAAAAAAAAAAAAAAkOTcLUZ73OZnS/LpPoMAAAAAAAAAAAAAAAAAAAAAAAAAyaDvAGehzTK5qlaT3CvJdyT5F2OXrtnPUAAAAAAAAAAAAAAAAAAAAAAAAMDsDlwxWlWdmmZako9W1Z6/Zuz4DXtdBAAAAAAAAAAAAAAAAAAAAAAAANgfB64YLV9ZWrYf87bTNu//UJL/dhbrAAAAAAAAAAAAAAAAAAAAAAAAAPug6zvABG3O61eSv0ryj1prd8z5uwAAAAAAAAAAAAAAAAAAAAAAAIBdDPoOsI0/y+RitMdvfrYk70lyYso1W5LbktyY5INJ3t5ae+fZhAQAAAAAAAAAAAAAAAAAAAAAAAD2z4ErRmutPWHStapaz5nStKe01j6+kFAAAAAAAAAAAAAAAAAAAAAAAADAXHV9B9iD6jsAAAAAAAAAAAAAAAAAAAAAAAAAsL8GfQeY0VVjxzf2lgIAAAAAAAAAAAAAAAAAAAAAAADYV0tVjNZau2r3WQAAAAAAAAAAAAAAAAAAAAAAAMCy6foOAAAAAAAAAAAAAAAAAAAAAAAAAKAYDQAAAAAAAAAAAAAAAAAAAAAAAOidYjQAAAAAAAAAAAAAAAAAAAAAAACgd4O+A5yNqnpikm9L8rAklyS5IMnqjMu01trl+50NAAAAAAAAAAAAAAAAAAAAAAAAmN5SFqNV1ZOSvDjJ/ceH97hcO/tEAAAAAAAAAAAAwLSq6qIkt7XWbu47CwAAAAAAAAAAcHB0fQeYVVX9QpI3ZaMUbbwMre3hBwAAAAAAAAAAAFiAqrpvVb2iqm5M8tkkN1bVJ6vqV6tq1Hc+AAAAAAAAAACgf4O+A8yiqp6U5IWbp6fLzU6Xox1LcmOSO3qIBgAAAAAAAAAAAOeUqvqRJP9q8/TmJA9vrd02Ye43Jrk6yd3zlS9FvTTJryT5nqp6Qmvtc3OMDAAAAAAAAAAAHHBLVYyW5N9sfp4uRPtENorS3tha+3hvqQAAAAAAAAAAAODc87QkX52NZ/peukMp2iDJq5NctDnUtk5JckWS1yZ5/HyiAgAAAAAAAAAAy2BpitGq6vIkD8mZB6L+Msl3tNZu7i8VAAAAAAAAAAAAnHuqqkvy2LGh1+0w/YeTPCBfWYh2bZKT2XguMNkoR3tsVT2ltfbq/cwKAAAAAAAAAAAsj67vADN49OZnZePhqB9WigYAAAAAAAAAAAC9uCLJeZvHdyT50x3m/vjmZyX5UpJHt9Ye0lp7RJKHJ/lszpSmPX0OWQEAAAAAAAAAgCWxTMVol2x+tiTvba1d12cYAAAAAAAAAAAAOIddvvnZklzXWrtju0lVdc8kj9qc15L8amvtPaevt9ben+RZ2ShNqySPraq7zTM4AAAAAAAAAABwcC1TMVqNHX+4txQAAAAAAAAAAADAvceOr99h3uNypvTsZJLf22bO65J8afO4kjx0PwICAAAAAAAAAADLZ5mK0T41drzSWwoAAAAAAAAAAADg/LHjm3aY99jNz5bkXa21G7dOaK2dSvLesaH7n308AAAAAAAAAABgGS1TMdrfjh3fp7cUAAAAAAAAAAAAwOqU8x49dvyOHeZ9Zuz4rjOnAQAAAAAAAAAADoWlKUZrrV2T5NokleQRVXW3niMBAAAAAAAAAADAueqWseNtn+erqqNJHjo29Bc7rHdq7PjIWeQCAAAAAAAAAACW2NIUo236jc3PlSQ/32cQAAAAAAAAAAAAOId9buz4QRPmfHs2nvdLkpbkL3dY78Kx42NnkQsAAAAAAAAAAFhiS1WM1lp7eZLXJqkkv1hV/6DnSAAAAAAAAAAAAHAuunbzs5Lct6q+YZs5T938bEmuba3dtMN69x47/vw+5AMAAAAAAAAAAJbQUhWjbfqRJG9IMkjy+qp6QVVduMs9AAAAAAAAAAAAwP65NhsFZm3z/DeravX0xap6bJIfGLv+5kkLVdUgyRVjQ9fvb1QAAAAAAAAAAGBZDPoOMIuqeu7m4fuSfEuSi5L8iyQ/V1XvSvKBJF9Msj7Luq21F+xnTgAAAAAAAAAAADjMWmunqupVSZ6RjfKzK5O8v6r+OMkl2ShF65LU5vVX7rDcNyVZGzv/27mEBgAAAAAAAAAADrylKkZL8vyceXtkNo8ryXlJvm3zZy8UowEAAAAAAAAAAMBsfjXJP0ly183zByT5+s3j04VoLclrW2sf2GGd79n8bEk+3Fr74hyyAgAAAAAAAAAAS6DrO8A+OP3g1F7UfgYBAAAAAAAAAACAc0Vr7YYk35/kRM4UoX358ubYR5I8fdIaVdUlefLYve+YR1YAAAAAAAAAAGA5LGMxWu3jDwAAAAAAAAAAALBHrbW3JXlIklcnOZYzz+d9PslvJXlUa+3zOyzxXUnumzPP9L1pfmkBAAAAAAAAAICDbtB3gBk9se8AAAAAAAAAAAAAwBmttQ8neVqSVNVFm2Ofm/L265N879j5W/Y3HQAAAAAAAAAAsEyWqhittfanfWcAAAAAAAAAAAAAtjdDIdrp+e9L8r45xQEAAAAAAAAAAJbMUhWjAXCI3XhN8n9/Kzl1IvmaH0wu/c6kqu9UAAAAAAAAAAAAAAAAAAAAAAAsiGI0APr3mauTtz8paesb59e/InnwVcmDn9tvLgAAAAAAAAAAAAAAAAAAAAAAFqbrOwAA57jWkr965plStNP+9teSY5/sJxMAAAAAAAAAAPuiqi6sqvtU1df0nQUAAAAAAAAAADj4FKMB0K8b35fc9KE7j6/fnnziDxefBwAAAAAAAACAPauq76mq36uq66rqjiSfT/LRJH83Yf5lVfW4zZ9HLDIrAAAAAAAAAABw8Az6DnC2qmo1yaOTfGuSy5N8VZK7JElr7coeowEwjU//j8nXPv6a5AHPWlwWAAAAAAAAAAD2pKqelOTFSe5/emjKWy9P8idJWpLbq+rS1toX5xARAAAAAAAAAABYAktbjFZVR5P8bJJnJLl46+VsPCS13X1PS/Jrm6dfSPJNrbVt5wKwADdeM/na596V3Pb55MjdF5cHAAAAAAAAAICZVNVzkzw3G8/ubX1+r2WHkrTW2lur6oNJHpRkLclTkrx0fmkBAAAAAAAAAICDrOs7wF5U1Tcm+eskVyW5JNO/WTJJ/jjJ3ZNcluRhSf7efucDYAY3fWjytXYq+dQbF5cFAAAAAAAAAICZVNWzkjw/X/k84m1J/izJGzPd832vHjv+zn0LBwAAAAAAAAAALJ2lK0arqiuS/GmSr8tXvlny9Jsmd9RauyXJa8aGvn+/MwIwpba+czFaknzyjxaTBQAAAAAAAACAmVTV1yV5UTae42vZKET7xSR3b609Ickzp1zqDaeXTPKtVTXLy1IBAAAAAAAAAIBDZKmK0apqmI03SF4wNnxNkh9Pcr8kD8p0b5d8/djxlfsWEIDZHP9McurYznM+978WkwUAAAAAAAAAgFm9IMkgG8/tnUhyZWvtRa214zOu8/7N+5PkLtl4cSoAAAAAAAAAAHAOWqpitCTPSnJZNt4smSQvTvLw1trvt9Y+mjMPRu3m7ZtrVJKvrapL9jknwN7d+onkz5+cvO7eydWPTz7ztr4Tzc/xT+0+58QNye03zj8LAAAAAAAAAABTq6ojSb4rG8/itSTPaa29ay9rtdbWk3xwbOiBZ58QAAAAAAAAAABYRstWjPbMnClF+6PW2rM3H4iaSWvtliQfHRt60D5kAzh7J48lf/LY5OOvSY5/Ornhz5K3XZlc/8qktd3vXzbHpihGS5Kbr5tvDgAAAAAAAAAAZvWYJKNsvKD0WJKXnOV6nx47vvQs1wIAAAAAAAAAAJbU0hSjVdUVSe6djYeokuQXznLJj4wd3+8s1wLYH598Q3Ls43cef9cPJ3/01ckN71x8pnk6PmUx2o3XzDcHAAAAAAAAAACzumzzsyV5T2vttrNc76ax47uc5VoAAAAAAAAAAMCSWppitCQP3fxsSa5trf3dWa5349jxBWe5FsD++NirJl87/unk6scl17wg+ezbk7a+uFzzcmzKYrRPvXG+OQAAAAAAAAAAmNXFY8ef2Yf1ugnHAAAAAAAAAADAOWTQd4AZjD9Edd0+rDf+dsrz9mE9gLP3mT/Zfc41z9v4vPQfJt/6umRlbb6Z5un4/2fvvsPsLOv8j7/vaUlIIYUSCL1X6cIKCAKCggIWUHRXEVzLFt1V17KuhdV1159tXde2gmVVRBGkCdKb9F4iUhISkgAJ6ckkmUz5/v44MztnJqefM+fMmbxf13Wu8zz3/b3v5zuUk0nyzOd5sbS6xbdABKQ0sv1IkiRJkiRJkiRJkiSpVNn34I2rwX4zso5X1GA/SZIkSZIkSZIkSZIkSU2omZ6qOD7ruCtvVem2zDpeU4P9JKl67VNKr33xWnjuhyPXSz30lPjx270K1r80sr1IkiRJkiRJkiRJkiSpHK9kHe9Qg/0OyrO3JEmSJEmSJEmSJEmSpM1IMwWjLc063qoG++2WdbysBvtJUvVaxxevyTb3JyPTR730rC+9dvWfR64PSZIkSZIkSZIkSZIklWtu/3sCDk4pTax0o5TSocDWWUMPV9OYJEmSJEmSJEmSJEmSpObVTMFoL/e/J+CQajZKKc0A9s0aeq6a/SSpJiKga2nxumwrHoEVj41MP/XQazCaJEmSJEmSJEmSJElSk7ofWA0E0A6cV8VeH8s6nh8R86tpTJIkSZIkSZIkSZIkSVLzaqZgtLuBvv7jGSmlE6rY6zwyAWsAncCD1TQmSTXRtQx6Ostfd93BmVC1ZtS7ofRag9EkSZIkSZIkSZIkSZJGjYjoBX5P5l68BFyQUtqx3H1SSm8B3kUmYC2AX9WyT0mSJEmSJEmSJEmSJEnNpWmC0SJiBfBA1tCXUkopX30+KaVZwKcZvInqxojoK7xKkupgzTOVr33igtr1UU+960uvfeY7I9eHJEmSJEmSJEmSJEmSKvElMg88DWAqcFtKaf9SF6eUzgUu7l+fgA3At2vfpiRJkiRJkiRJkiRJkqRm0TTBaP2yb3g6CvhBOYtTStsCVwHTyNxEBfDN2rQmSVVa82zla5+8ALpX166XeiknGA1g2YMj04ckSZIkSZIkSZIkSZLKFhF/Br5D5n68AHYFHk4pXZRSOgXYZvialNKOKaXzU0r3ABcB47LWfyEiltTtC5AkSZIkSZIkSZIkSZI06jRVMFpEXAI82n+agPenlO5MKR1baF1KaWJK6UP9aw8mcwNVADdExF0j2bMklWzNM9Wtf+Gy2vRRT+UGoz39nyPThyRJkiRJkiRJkiRJkir1ceBGBsPN2oFzgWuBe/vHAEgpdQLzgP8BXp21BuB3EfH1ejUtSZIkSZIkSZIkSZIkaXRqa3QDFXg7mZulZvSfHw3cllJ6GXguuzCl9H1gL+AvGPpUyQQsAv6qTj1L0qZWPwPP/y9sWALbnZw5z2XaIdC9CtbOLbzffefDLu+C1nG173WklBuMtuj30NcNLe0j048kSZIkSZIkSZIkSZLKEhF9KaUzgO+RCUQbCDpLAyVZYxOyl2bV/Rj40Mh2KkmSJEmSJEmSJEmSJKkZtDS6gXJFxFzgTcDLDA062w44Jqs0AR8AjgfGD6tdCJwWEUvr1rgkZVv2IFz/apj9bzDnR/DHs2DBb3PXznozvOlpeP1dRTYNuOl46Oupdbcjp9xgtO6VsOSOkelFkiRJkiRJkiRJkiRJFYmIDRFxHvAOYDaDoWiblDI0EG0O8O6IeH9ENNFNL5IkSZIkSZIkSZIkSZJGStMFowFExP3AocB1DH2q5MB79s1T2XMJuBF4dUQ8XodWJSm3J78E3atKq528F7S0wdavgTc/W7h22b3w/M+r769eejfkHj/6kvxrFl09Mr1IkiRJkiRJkiRJkiSpKhFxaUS8CjgR+A/gj8ALQCfQDbwEPAp8Fzgd2CciftWgdiVJkiRJkiRJkiRJkiSNQm2NbqBSEbEYOC2ldBjwUTI3Um2Xp3wVcDPwnYi4vU4tSlJu0QeLriq9fvKeWcd7wHFXw+1vzl8//xLY/X2V91cvfd0QvbnnJsyCnc6GF36z6dyq2SPblyRJkiRJkiRJkiRJkqoSEbcCtza6D0mSJEmSJEmSJEmSJEnNp2mD0QZExEPAewBSSrsBOwIzgA5gKbAYmB0RfQ1rUpKydb5Qeu24rWD6IUPHtjkO2iZBz9rcaxbfAhtXQsfUynush971+efaJsC0Q3IHo21cMXI9SZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIapumD0bJFxFxgbqP7kKSCFt9Seu0+H4eW9qFj7ZPh0G/A/R/MvSZ64MXrYJdzKu+xHnoKBKO1jM8f7LZx5cj0I0mSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJElqqDEVjKbRIaXUDhwN7ARsB6wFXgQeiYh5DWxNarzVz8B955dWu+V+sM/Hcs/t8QGYfhj84fDc8y/fNPqD0XoLBKO1TYD2PMFo3QajSZIkSZIkSZIkSZIkjQYppYEnBAZwTkQsqXCfbYFfDewVESfWoj9JkiRJkiRJkiRJkiRJzcdgtDEopfRT4L012m5+ROxS4nW3Bi4A3gFMz1NzN/DNiLisRv1JzeX+D5Ree/j3oLUj//z0w2DPD8Oz3990bu6PoXs1zHoz7PJuaGktv9daWf8yPPc/MOciWPcCzDodDv0m9G3Mv6Z1AnTkCUbbuBIiIKWR6VeSJEmSJEmSJEmSJEmlOp5MKBrA+Cr2Gd+/F1n7SZIkSZIkSZIkSZIkSdoMGYymYtaXUpRSeiPwU2CbIqWvAV6TUvol8MGI6KyuPamJdK+BV+4srXbGq2Hb44rXTTsk/9yC32Zei66CYy5tTJDY2nlww5GwIethwIuuyrwO/Vb+da0ToGNa7rnohZ5OaJ9U01YlSZIkSZIkSZIkSZJUkYRhZpIkSZIkSZIkSZIkSZJqpKXRDZQjpXRASumW/tfNKaViIVy59ti2f+3APnuNRK9jyGXFClJKxwNXMDQULYCHgEuBG4Glw5a9G/hVSqmp/huUqtK1DKKvtNoZR5ZWN2Wf4jULLoOl95S2X6098cWhoWjZHv7H/OvaJkHH1Pzz6xZW1ZYkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkafRptlCqDwLHA8cBGyMiT9pOfhGxGOjO2ueva9jfaPEJYNcKXmcN2yeAHxe6UEppB+ByoCNr+C5g/4g4PCLOjoiTgR2Aj5L5Zz/gzcCXK/j6pObUs6b02hlHlFY3ucRsx+d/Xvq1a6W3KxPKVq62ydDSBu0FgtFuOArCBw1LkiRJkiRJkiRJkiSNEW1Zxz0N60KSJEmSJEmSJEmSJElSwzVbMNoZWcc/q2KfgbUJeEsV+4xKEbE0IuaV+wJOGrbVrRExt8jlLgCmZZ3fDZwUEU8N66krIv4LOHvY+o+llHau4MuUmk93GcFo00sMRuuYVrwGYG7BjMORsfgW6Flb/rqO/kC0ji3z13SvghWPVNaXJEmSJEmSJEmSJEmSRputso47G9aFJEmSJEmSJEmSJEmSpIZrmmC0lNJuwA79p33ANVVsdxzVuxAAACAASURBVDXQ23+8a0ppp2p6GwtSShOAdw4bvqjImj2B92YNbQTOjYgN+dZExBUMDbUbB3yhvG6lJlVqMFr7FJiyV2m1Le1kMh6LKaWmxhZeUdm6gWC01vEwbqv8dcsfrmx/SZIkSZIkSZIkSZIkjTav7X8P4MVGNiJJkiRJkiRJkiRJkiSpsZomGA04oP89gKcjYm2lG/WvfTpr6MBqGhsj3g5smXW+Ari8yJp3Aa1Z55dHxLMlXOurw87PTimNL2Gd1Nx6SgxG2/VcSCV+PKeUCRArpq+rtP1qJfpg4VWVre2YNng86/T8dT0+HFiSJEmSJEmSJEmSJGkUiXKKU0rtKaWdUkrvBz6bNfVEbduSJEmSJEmSJEmSJEmS1EyaKRht56zjOTXYL3uPnWqwX7M7f9j5LyNiQ5E1bxl2/pNSLhQRTwH3ZQ1NBE4uZa3U1LpLCEbb9gQ48PPl7VtKMBrAytnl7VuNZffDhpcrW9s+dfD40K/nr+upOB9TkiRJkiRJkiRJkiRJJUop9eZ7ZZcB8wrV5li7AXge+CEwJWuvCp/GJ0mSJEmSJEmSJEmSJGksaKZgtMlZx6tqsN/qrOMpeas2Ayml3YHXDhu+qMiamcBBWUM9wF1lXPa2YedvLGOt1Jx68gSjTdwVTrgJTn0cXncDjJtR3r6lBqMtvKK8favxSjkfB8Ok1sHjjmmZsLhcejorv4YkSZIkSZIkSZIkSZJKlQq8Sq0r9or+Pf4M/HbkvhRJkiRJkiRJkiRJkiRJo10zBaOtzzquRZBZdtBab96qzcN5DL1J7eGIeLTImgOGnT8eEeWkFN097Hz/MtZKzak7TzDa+G1g5okw9UBoac1dU0hLicFonfPK37tSa57JPb7tiXDmosJrezcMPW+fnLuuZ235fUmSJEmSJEmSJEmSJKkSUbykKgl4EHhTRHSP8LUkSZIkSZIkSZIkSZIkjWJtjW6gDEuzjneuwX47ZR0vq8F+TSml1Aq8d9jwRSUs3W/Y+XNlXnpOkf2ksacnTzBavuCvUrWWGIy2rkggWS2tfjr3+Jb7ZYLgCtnqL4aet07MXddTThajJEmSJEmSJEmSJEmSKnQH+YPRjut/D+B+YEOeuuEC6AJWAk8Bt0bEndU0KUmSJEmSJEmSJEmSJGlsaKZgtBf63xNwYEppRkRUFGiWUpoBvCprqI5pQaPOG4BZWefrgYtLWLfHsPMXclblN3/Y+YyU0rSIWFHmPlLz6M4TjNZWp2C0l66r7jqlWng1LLk999zkvaClyC89s04det4+KXddz9rye5MkSZIkSZIkSZIkSVJZIuL4fHMppT4GQ9PeERHl3kcmSZIkSZIkSZIkSZIkSUM0UzDavWSeENlBJhztb4F/rXCvvwFa+o97gLuq7q55nTfs/LKIWFnCuqnDzpeUc9GIWJtS2gBkJzptCVQVjJZS2gbYusxlu1dzTalk+YLR2qsMRmsZV3rt6mdgyl7VXa+QlbPhjtPzz0/ZO/M+9VWw8vEcBQmmHTp0qHVi7r16OitqUZIkSZIkSZIkSZIkSTWVGAxHkyRJkiRJkiRJkiRJkqSqNE0wWkR0pZTuBE7qH/pESul3EfFEOfuklA4A/onBG7HuiojNMl0npbQ18OZhwxeVuHzSsPP1FbSwnqHBaFWmQwGZ0Lsv1GAfqfZ68gSjtVX5n370ll57zd5wTh+kVN0185l/cf65lnaY8erM8azTcwejvX3Zpr21D/+46deztrIeJUmSJEmSJEmSJEmSVCsXZB2X8kBOSZIkSZIkSZIkSZIkSSqopdENlOnr/e9BJpjrupTSUaUuTim9GrgWmEjmKZXZe26O3gO0Z53PAW4vce3wpKINFVx/eJhanvQjaYzozhOM1l5lMFpfmf/73XQcbFhS3TXzWfFo/rltjoeOLTPH+38GtnvD4FzrFnDsZdAxbdN1bRNz72cwmiRJkiRJkiRJkiRJUkNFxAVZr9WN7keSJEmSJEmSJEmSJElS82uqYLSIuAG4jUyoWQDbA3eklC5KKb06pZSGr0kZR6SULgTuBHYY2A64MyKurU/3o9L7hp3/OCKiwr0qWVfptaTm1DNCwWi9ZQajvXInXH8kdM6v7rrDda+BFwt8pO73ycHjti3g+Gvh1CfhddfDmQtgx7fmXteWJzNx+UNQ8UeWJEmSJEmSJEmSJEmSqpVSaqp7ECVJkiRJkiRJkiRJkiSNfm2NbqAC7wQeBrYjE6zVBpzb/+pMKT0NrOifmw7sBQyk6gwEqiVgAXB2HfseVVJKRwH7Zw31Aj8tY4u1w84nVNDG8DXD96zE94BLy1yzO3BlDa4tFdadJxitrc7BaACd8+COt8AbH67u2tk9XL5t/vnpR8DMk4aOpQRT98+8CmmbmH9u1ZMw9cDS+5QkSZIkSZIkSZIkSVItvZBS+hFwYUQsanQzkiRJkiRJkiRJkiRJkppf0wWjRcSSlNIbgKuAXcgEnUEm7GwScNiwsf9bymAo2nPAGRGxpB49j1LnDzu/LiJeLGP9qAxG6/93Wta/15RS8SKpFnryBKO1NyAYDWDFI/DyLTDzhNzzfb0QPbBxOfT1wLitgIDoha5lmZqWdpiwPdx+OvSuz3+tAz9fWY8A7VPzzy2+zWA0SZKkRupeDa0ToaW10Z1IkiRJkiRJkqTG2B74PPDZlNI1wA8i4oYG9yRJkiRJkiRJkiRJkiSpiTVdMBpARDyZUjoM+C5wNtDCYBjakNKs4wT0Ar8EPhoRq0a80VEqpTQReMew4YvK3Gb4P7+ty+xhEpsGo60sswepuXTnCUZra1AwGsAtJ8Lu74fD/xtaxw2OL7gC7nxLdX1lm7B95Wu3OTb/XE/VeYqSJEmqxJo5cPe7YNkD0DEN9v4oHPA5MHhakiRJkiRJkqTNVRtwBnBGSul54IfATyJiaWPbkiRJkiRJkiRJkiRJktRsWhrdQKUiYkVEvAvYD/gW8ET/VBr2AngM+Dqwd0ScuzmHovU7C8hOYloMXFPmHs8OO9+5zPXD65dHxIoy95CaRwT05AlGa68yGK2vimA0gDkXwsP/OHi+6s+1DUUDmFjuR0SWcTPyz1UTCidJkqTK9HXDzcfDsvuBgI3L4YkvwLPfb3RnkiRJkiRJkiSp/jaSuU9v4CGmCdgN+A9gQUrpFymlYxrVnCRJkiRJkiRJkiRJkqTm07TBaAMi4pmI+HhEHAxsCewJHNX/2gOYEhGHRsQnI2JuI3sdRc4fdv6/EdFT5h5PDTvfo8z1uw07/1OZ66Xm0rseoi/3XFuVwWgd0/LPvelp2Oms4ns8+31Y8Vjm+KmvVdfPcFP2LRxuVoqZJ+ce7+uqbl9JkiSVb8kdsG7hpuPzL65/L5IkSZIkSZIkqdG2Bz4JPMfgg0yj/3gccA5we0rpiZTS36SUqrxRRpIkSZIkSZIkSZIkSdJY1zTBaCmlmSml07Ne04fXRMTaiJgTEff3v+ZGRGcj+h2tUkp7AcOfwHlRBVs9Oez8VSmlLcpYf3SR/aSxpXtN/rn2Ku/3POgrucd3+SuYshcc8xuYelDxfa47GC5OMPfH1fUz3LGXV79H6/jc470bqt9bkiRJ5Xnq67nHX7mrvn1IkiRJkiRJkqSGi4jlEfH1iNgbeD1wOdA7MN3/noD9ge8AL6aUfphSOrT+3UqSJEmSJEmSJEmSJElqBk0TjAa8Ffhd/+uXQFdj22la5w07/2NEPF3uJhHxEvB41lAbmwauFXL8sPPryu1Baio9IxiMtv2p0JZjj13ePXi8199Wd41K7fMx2HKf6vfJG4zmLwWSJEl1t3F5ozuQJEmSJEmSJEmjUETcHBFvB3YEPg8sIBOKBpmQtARMBN4PPJBSui+ldG5KKc+NIZIkSZIkSZIkSZIkSZI2R80UjDaVzI1RCXggIjob3E/TSSm1Au8ZNnxRFVv+btj5+0rsYx/gyKyhTuCGKvqQRr+edfnnWidWt/eE7eCEG2DL/QfPj7wItj9lsGa38+Cgr1R3nXJtc3ztrtkyLvd434ba7C9JkqTC+nrgyS/D9X8By+7PXxdRv54kSZIkSZIkSdKoFBGLI+LLwK7A6cC1ZILRyHpPwBFk7l97MaX0rf77yiRJkiRJkiRJkiRJkiRt5popGG15/3sALzWykSZ2KrBd1vka4NIq9vsl0Jt1/taU0p4lrPvUsPPfRITpRhrbetfnn2ubUP3+Wx0Fpz0Jb18BZy6C3c8bOt/SCvt/Bt4VsM1x1V+vmJmvh5NuhdY8gWblas3zYOBePzokSZLq4t73weOfg2X3Fq4r9H2vJEmSJEmSJEnarETGNRHxJjIhaV8BXiYTigaZewETmYemfgSYnVK6NaV0VkqprSFNS5IkSZIkSZIkSZIkSWq4ZgpGyw5Dm9iwLprb+cPOL4mIzko3i4hngZ9lDXUAP00p5UkwgpTSGcC5WUMbgQsq7UFqGoUCIlprEIw2oGMqpFS4Zud31u56+Rx3VW33yxew1ttV2+tIkiRpU53zYd4vS6vtqfi3mJIkSZIkSZIkaQyLiAUR8S/ATsDZwM3DSlL/67XAJcCClNKXU0o717dTSZIkSZIkSZIkSZIkSY3WTMFoj5B5QiTAXo1spBmllLYFThs2fGENtv4CsCLr/DXATSmlfYZdf1xK6e+BS4et/0ZEzK9BH9Loli8YraUDUp0/ind9D0x9Ven1bWVkUU7aDc5cAK158xErk2+/3g21vY4kSZKGWjsPHvkUg78dL8JgNEmSJEmSJEmSVEBE9EbEbyPi9WTuA/wGsIzMX0YEgwFp2wKfAZ5LKV2eUjqmUT1LkiRJkiRJkiRJkiRJqq+mCUaLiBeAe8nc9LR3SslwtPK8F2jLOn8yIu6vdtOIWAi8FdiYNXw08KeU0gMppV+nlP4ALAD+C2jPqrsG+Fy1PUhNIV8wWuuE+vYB0LYFnPIAHPqfhet2OhuO+gmcMPwBvVm23A+Ovw72/Sc45Bvwxkdgix1q2y9Ay7jc431dtb+WJEmSIAKe+BJcvTu88OvS1xmMJkmSJEmSJEmSSjcF2BLIfmJeZL0AWoEzgNtTStellHavb4uSJEmSJEmSJEmSJEmS6q2teMmo8jXg8qzjMxrYS7N537Dzi2q1cUTcllJ6C/BTYOv+4QQc3v/K5VfAX0dEb636kEa1nlEUjAbQ2gH7fBR2OgtuPBo65w2df+2VsMPpmeOVs/PvEwHbvyHzGkmt43OP924Y2etKqo3u1TD/N7DmGdj6WJh1GqSmyeeVpM3T0nvgic+Xv65nbe17kSRJkiRJkiRJY0ZKaQJwDvBBct9bloDu/tcWDAakJeAU4LGU0jsi4vd1aFeSJEmSJEmSJEmSJElSAzRVIkVEXAH8mMxNTm9KKX03pdRs4W51l1I6Gtgna2gj8ItaXiMirgUOAH4ArChQei/w9oh4V0R01rIHaVTrHWXBaAO22B7e/ByccDPs9xk4+tfwtmWDoWgAbYV6jAJzNWQwmtS8NiyBG4+B+/8anvoa3HE63Pd+iL5GdyZJKmTexZWt6/G3eZIkSZIkSZIkaVMppf1SSv8FvAj8iEwoWhqY7n+9BHwR2BnYHvg7YHb/XPS/tgB+k1LavZ79S5IkSZIkSZIkSZIkSaqfZgwV+yCwBvgo8CHguJTSN4CrImJZQzsbpSLiLgZvIhvJ6ywBPpxS+ihwNJkb1GYCncAi4JGIeH6k+5BGpXzBaAVDx+qkpRVmnpB55VIwvK1OwWgt43KP93XV5/qSKvfsD2HlE0PH5v4E9vgAbHVUY3qSJBX34rWVrTMYTZIkSZIkSSseh9lfga6lMP0QOPCL0Dax0V1JkhogpdQBnEXmPr/XDAz3v0fW+W3A94DfRURv1hbfA76XUnoj8DVgv/7x8cA/kglOkyRJkiRJkiRJkiRJkjTGNFUwWkrplqzTNcBkMjc7Xdg/vxBY0j9XqoiIE2vWpIiIjcCtje5DGlXyBaMVDB0bJUZDj63jc4/3bqhvH5LK98Tnc4+/8FuD0SRpNOusMNPaYDRJo0FfL0QPtOYJ2ZYkSZIkjZzVz8INRw7+Pd7im2HxrXDK/ZBaGtubJKluUkp7knkA6nuB6QPDZMLQov94LfBz4LsR8VSh/SLiupTSrcAfgUP7179+ZLqXJEmSJEmSJEmSJEmS1GhNFYwGHM/gkyJh8CapgadI7tj/CkozcLOVJI2ssRqMFnX6CG3J88PsfV31ub6k2ptzERz69UZ3IUkaLgKe/3nl63sNRpPUQH3d8PAn4PmfZn4Af7tT4KifwLgZje5MkiRJkjYfj35q04cbLX8IXroetn9jY3qSJNVFSqkVeAvwIeB1A8P975F1Phv4PvC/EbG21P0jYkNK6d+BS/uHdqy6aUmSJEmSJEmSJEmSJEmjUrMFo+VisJmk0a+Zg9FaOgpM1ukjuHV87vF1C+tzfUmVib78cx1T69eHJKl0L90A97638vXdJf/8kiTVRgSsnQOrn4FHPwmrZg/OLboa7nwbnHRbw9qTJEmSpM3KxlWw8He55xbfZjCaJI1RKaWdgQ8A5wHbDAyTualk4MGnvcAVwHcj4vYqLvenrOM8T9mTJEmSJEmSJEmSJEmS1OyaMRgtFS+RpFGmp4mD0VKBj91CoUe1lC8YDeCJL8EB/1K4T0mN8dz/5J8zGE2SRqdnvlPd+t7O2vQhSaXo7YL73g/zfpG/ZsntmdC0KXvVry9JkiRJ2lw9/vn8cwsuh0O+Wr9eJEn1NIfMPX0DN24MPGUvAS8B/wP8T0S8VINrrRt2DUmSJEmSJEmSJEmSJEljUFMFo0VES6N7kKSK9DZxMFpBdbrPdNzW+eee+Dxs93rY6qj69CKpNF3L4YEP559v37J+vUiSCls5GxZeARuWwIu/L23N9MNg+UObjvcYjCapjuZcWDgUbcBLNxiMJkmSJEkjbc1z8Ox/Fyio0wOXJEmN0ELmBpJgMCDtDuC7wO8iomcErpkwHE2SJEmSJEmSJEmSJEkas5oqGE2SmtacH+Ueb9uivn3UWtTpHtPph0DbxPxBG8//wmA0abRZeGXh+baJ9elDklTYgivgrrOhr7v0Ncf/AZ79LmAwmqQGm3dxaXWd80a0DUmSJEkSmd+jRYHws8550NsFrePq1pIkqa4SsBb4OfC9iJg9EheJiPlkgtgkSZIkSZIkSZIkSZIkjWHeJCRJI617bf651gn162NE1CkYrXU8bH1s/vlnv1ufPiSV7tnvFZ7v3VCfPiRJ+UUfPPT3ZYSiJTji+7D9KfkDLg1Gk1RPS+8urW79opHtQ5IkSZJU/IEp0Qdrnq1PL5KkensK+HtgVkT87UiFokmSJEmSJEmSJEmSJEnafLQ1ugFJGvNeuTP/XPvk+vUxEmaeVL9rTZhZv2tJqs7838DyBwvXGJwjSY23+mlYt7C02ld9Gfb/DKT+fPW2SbnregqEAktSLXUtK7121VP55/p6YeOKzHH7pEwwtyRJkiSpPJ0LYMXDxetWPwVTDxj5fiRJdRUR+ze6B0mSJEmSJEmSJEmSJEljS0ujG5CkMW/xLfnntn5t/fqoxt4fzTP+kfr10DGj8HznC/XpQ1Jxs79SvMZgNElqvGX3lV67/z8PhqIBtE3MXefnu6R6Wf1M6bUrH4NLp8Kjn4bejZmx3o1w/4fhsulw+daZ16VT4OYTMz/QL0mSJEkq3cIr88+1tMOs02HfT8LkPevXkyRJkiRJkiRJkiRJkiRJkppWW6MbkKQxLfrgqa/nn595Uv16qcbeH4UFv4N1WeFju50LW9bxie7jtio8f/2R8NaX6tOLpPw2rsgETxTTu27ke5EkbaqvN/M53dcN976veH3HdDjhJkhp6LjBaJIabf2i8uq7V8GfvpoJRDvsm/DwP8BzPxha09edCTe//nA480XoWQPLH4It94cJM2vXuyRJkiSNNYvyBKNN2Rve9Of69iJJkiRJkiRJkiRJkiRJkqSm1/TBaCmlg4HTgWOB3YHpwGQgImKTry+lNBWY0n/aFRGL69WrpM3Q0nvzz+3+19DaUb9eqjFpVzj5Hpj/K1jzHGxzHOx89qYBGSMpX/jGgA0vw7qFsMUO9elHUm6rny6tzuAcSaq/zvlw22mwanZp9ft8DPb6W5i026ZzbZNyr/HzXVK9dC2rbN3T34Ldz4e5P8tfs2EJXNKe+T1v9GXG9vk4HPK1+v4+WJIkSZKawcaVsPi23HM7nV3XViRJo1tKaQZwFnAksC2wHlgI3ARcHxEbG9ieJEmSJEmSJEmSJEmSpFGkaYPRUkoHAt8CXpc9XMLS1wG/7T/uTCnNjIh1te5PkoiAP38r//yMI+rXSy1ssT3s+/EGNlDCR/yL18Eefz3yrUjK78U/lFZncI4k1d99Hyg9FG2398Gh38g/ny+0tmdt+X1JUiU2VhiMBnDtASUUReb39QP+/A3Y6kjY6azKrytJkiRJY82qp+CPZ0P05J7f4cz69iNJqpuU0lbAq4CtgS5gLvBkxMCTBobUJuAzwD8DE3Js93fA/JTS30REiX/hLEmSJEmSJEmSJEmSJGksa2l0A5VIKZ0L3Esm5Gx4Uk5ssmCoK4EX+tdNBN5W6/4kiQi473xY8Nv8NT4hvTwTti1e0+fDg6WGWngVPHlBabU9nUODJiRJI6trObx8Y+n1+/5T4fm8wWgGX0qqk64qgtEqtfDK+l9TkiRJkkarZ38Iv98fVj2Ze36LHWHaIfXtSZI04lJKB6eUbgReAm4ELgYuAx4BFqWUPpVSas2qT8DPgC8BW5C5Zy/7fr+B812Aq1NK767H1yFJkiRJkiRJkiRJkiRpdGu6YLSU0tuAixj69MgELAAeZdOgtCH6n0r566yh02vdoySx9B6Y+5P88y3t0LFl/foZC2aelPnnVkjrFvXpRaq13g3w+Bfg5hPg3vfB8oca3VH5etbBHWeUsSCge9WItSNJGmbVnyieI55ly30Lz7cajCapwTYur/815/2y/teUJEmSpNFo/cvwyCco+OdNs06HVPD2DUlSk0kpvRO4HzgBaGUw1GzgtS3wFeCqlNLAfYkfBf6y/zgY/MVjYE1kvVqBH6eU9hvxL0aSJEmSJEmSJEmSJEnSqNZUwWgppe3IPEESBm+S+h6we0TsAry1xK2uHNgSOK5mDUrSgBevKzy/3Rvr08dY0jENdn1P4ZpiwWnSaBQBt54CT/4rLL4V5v4UbjoOlj3Y6M7Kc80+5a/pWlb7PiRJuW14qfTaPT5YvKZ9Uu7xnjWlX0eSquH3kpIkSZLUOAsuh561hWt2KOdhKpKk0S6ldATwc6CNoYFmAwbOE/AG4OMppcnAFxkahvYScA1wMfAHYAVDH4TaDnx7pL4OSZIkSZIkSZIkSZIkSc2hqYLRgM8DW5C5GaoPODsi/i4inu+fL/A44iEeALr7j2eklHatbZuSNnuzv1x4vmNqffoYa474QeH5znl1aUOqqSW3w5I7ho71dMIz/92YfiqxZg6sW1D+OsMsJKl+1j5fvGbA9qcVr2nfMvd47wbo7Sr9WpJUKb+XlCRJkqTGmf2VwvPtU2Abn1EnSWPM94FWhgagrSRzH96D/ccpa+4fgXOAKf3rlwFnRMQOEXF6RPxlRJwKbAN8ENjA4L1/J6SUdq/LVyVJkiRJkiRJkiRJkiRpVGqaYLSUUiuZm6UGbq76akRcVsleEdED/DlraJ/qO5SkLK3jC8+3G4xWkZa2wvOPfw6i1IxMaZR45ju5x5//WX37GNC7AZbeDyufKPz/U/TB8kdg+cPwxBcru1bX0srWSZLKV06A7HYnF68pFPTbvar0a0lSpbpXNua6i65pzHUlSZIkabToXgvrFxWu2f5UaO2oTz+SpBGXUjoSOJTB0LOlwFuBrSLiyIh4NbAV8BZgSX/dtsDH+rfoBk6KiKuH7x0RfRHxIzL3BQ4EqwGcNXJfkSRJkiRJkiRJkiRJkqTRrmmC0YCjyDxBMpG5Wer/VbnfwqzjHavcS5KGaptceL5QkISqs+yBRncglWfB5Y3uYNArd8E1+8INR8K1r4JbT4aNKzatW7coM/+HQ+EPh8G8X1R2vY3LqutXklS6tfNKqzt9DrSOK17XMS3/XK5fOySp1no6i9cc+K+1v+4z36v9npIkSZLUTB75p+I1O5w58n1Ikurpbf3vA/ftnRwRV0QMPmkrMq4ETgF6+of3IhN09ouIeLzQBSLiKuDW/msAHF7D/iVJkiRJkiRJkiRJkiQ1mWYKRtuj/z2AByJidZX7Za+fUuVekjRUX3fh+egpPK/8Dvr3wvNzLqxPH1ItrH6m8Hz0jXwP616EZ38A938YbjwGOucNzr18Ezz6z5uuuee9sGp2afuPm5F/rstgNEmqi1fugpeuK153+H/DpN1K27O9QNDvxpWl7SFJ1ehZV7zmwM/Bdm+o7XVL+TyVJEmSpLGkrxfm/wae+kbm/bkfFK5vaa/978UkSY12aP97AL+JiMfyFfYHoF3CYMAZwGUlXie7bv+yOpQkSZIkSZIkSZIkSZI0pjRTMNrWWccLarBfdtJIWw32k6SM7rXQXSQMYtIeheeV345vLTy//sX69CHVwqJrCs8//ImRvf7yR+C6g+GBD+f/Qaa5P4buNYPnG1fCkltL2//Af4U3PQ3bvDb3fNfS8vqVJJXviQsywZfFpDbY629L37dtIqTW3HMGo0mqh57O0urGbVX7a/s5J0mSJGlz0bsx82dLd70DHvlE5r2Y3c6Dji1HvjdJUj3tlXVc5C+5Abh22PnjJV5nIHAtAQWewCVJkiRJkiRJkiRJkiRprGumYLTIOs7z09dlmZ517E8zSqqdNc8Ur5lx+Mj3MVZN2avwfPTUpw81r+7V8Nhn4eYT4YG/gzXPNa6X9YsKzz/9LVhXpGa46IOnvwPX7AMXp8zr0U/DxlWb1j72z9D1SuH9+jbCpVMyU3VtCgAAIABJREFU+9z3flh4VeYaxUzeCw74Fxg3Azry3LPetaz4PpKkys25CJ74Ymm1O59T3t4pQcfU3HMbV5S3lySVK/qgd11ptTNeXfvrryz15zglSZIkqck9/Z+w7N7S63d8Oxz81ZHrR5LUKNmJl0+XUD+8ptS/GM5+staUEtdIkiRJkiRJkiRJkiRJGoPaGt1AGbJTO7avwX4HZB2byiGpdlYXuQd062Nh6oH16WWsmn44LH8w91xfd317UXPp7YKbjocVj2TOF98CL/wGTr4HJu9e/3561havWXQN7PGBTADNgL5eaMmTE3v/h2DOj4aO/emr8MKlcNpsaB0PfT2ZIImXri+v3zkXZV6lOPCLgz2P2yp3zUa/BZOkvCKGfvaX6/lfZAItS5HaYM8Pln+N9mm5Qy67zR6XNMJ615deu/M5mZDIjcsL142fCa/5BdxyUvE9bzoOzumr7nNakiRJkkar7L+DmPuT0te9bRmMm168TpLUjCZlHed4ItcmVmefRMSGEq+TXdde4prNSkppArAvsA+wNZl/N2uB5cCTwBMRPlFQkiRJkiRJkiRJkiRJza+ZgtFe6H9PwCEppfaIqCj9JqW0FzAra+jxapuTpP+z+s/55/b8Gzjka/XrZazq68o/t2p2/fpQ83nx2sFQtAFdr8BzP4RD/l/9++npLF7zwIcyL4CdzoJlD8KGxTDzRDjyQhi/TWau8wW47dT8/w+snQu/nlCbvov5i1/ALucMno+bkbuua2nucUnanEUfPP65zK9NvRth1pvhsP+E8VuXsUdkQjFLsc3xcNCXYeujy++1Y2ru8Y0Go0kaYaV8Hz1g/Fbwhofg3vfCkjvy1237usz32G94EB77bPEQ4aV3V/bZKUmSJEmj1ZI74eGPwcrHYOrBsNffFf57z2w7vMVQNEka27KfENBbQn0pNaNWSmk34Ajg8P73Q4HJWSXzI2KXOvZzKHAmcALwagqHxnWmlH4NfDsivCdSkiRJkiRJkiRJkiRJTaul0Q2U4R5gPRDABOCcwuUFfSTreHFEPF1NY5I0ROe83OM7vg2O+C60bVHXdsak3gLBaBsWwyv3ZEJFpOGe+2Hu8acaFFhYTqADwAuXQufz0LsOFl0NNx6bCb/p64HrDh4dwYDH/BZ2fffQsbzBaMtGvh9JajZPXACzv5L5jOxZA/Mvhnvek/m8L9XGFbDqydJqT7q18mCf9im5x7tXV7afJJWqZ1159ZN2gZNuhzc8DLu/H1qHBQZ3TIP9Pp05nn4YvO4PcMJNhfec+9PyepAkSZKk0ahnHbx8Czz1TbjptbD8QejrhuUPZAKmS7Xl/iPXoyRJdZBSOj6ldH1KaRkwB7gE+ARwHEND0erZ0/iU0hzgIeBzwNEUDkUDmAicBzycUvqPlFKxekmSJEmSJEmSJEmSJGlUamt0A6WKiK6U0s3Am/qH/i2ldFVErCxnn5TS0cAHyQSsAVxewzYlCdYtyj0+cef69jGW9RUIRgO48TUwZW847vcweff69KTm8NL1je5gqJ611a1f80wmPGfFw5kQnEYbvy1s/4ZNx8dtlbveYDRJGioC5v540/GX/pD5odQZR5S2T9fS2vaVT8u43OPRXZ/rS9p8lRswPGD6IXDkj+CQr8H8X8GyBzPfw+72Ppiy59DamSfChO1h/Yu595pzYWYvSZIkSWpWz/8S7vnL2uw1Ybva7CNJUuMcDJzc6CaGaQN2yzEewNPAC8BSYBJwwLDaVuBTwJ4ppXdERM8I9ypJkiRJkiRJkiRJkiTVVEujGyjTv/W/BzALuCGltE2pi1NKrwOuIvN1J6AX+Hqtm5S0mVtyW+7xCdvXtY0xrbdIMBrA6qfLe5K9FH31v2algQ7ZHv8XWDBKcl6PvBDaJm463jEjd33X0kwIkCQpo3cDrFuYe272v+Uez6VewWitHbnHezfW5/qSNl/Vfh/dMRX2/DAcdREc/JVNQ9EGTD2o8D6r/lRdH5IkSZLUKGueq10oGsDkPL+vkiSp+XUBcxrdBJn7HK8D3glsExH7RsQpEfHuiDgjInYHDgfuGLburcAX69uqJEmSJEmSJEmSJEmSVL2mCkaLiPuAS8iEmgWZm3n+nFL6XEppb3J8PSml1pTSiSmlS4CbgGlZ678dEfPq1b+kzcDCqyF6c89NmFXfXsayUn+44pW7YO28EW1FY0jXsvpfsxbBaLW23SmVrdvmeJj1ptxz4/IEo/V15Q8AkqTNUc/a/HMLryx9n1KD0aYfUfqeubTkCUbrMxhN0gjrrdP30X1FQrl/vz/0ddenF0mSJEmqpQW/q91e42fCtq+r3X6SJDVON/AocCHwQeAwYDLw/gb21AV8F9glIk6NiF9HRM6/CIqIh4ATgF8Nm/qnlNLOI9ynJEmSJEmSJEmSJEmSVFNtjW6gAucDewOHkAk3m0rmqYZfBIb89HVK6SlgV6B9YKh/TQLuBj5dj4YlbSb6euG+8/LPb7F9/XoZ6/b7JNx+Z2m1y+6HSbuMaDtqEp3zC8+vXwTjt65PLwMKBeA0wgFfgAO/AE9/Gx7+x/LWzjot/9ykXfPPvXgN7Pnh8q4lSWNVscDMNXNg8u7F9yk1GG3vj5RWl0++YLQwJEjSCOtZV5/r9G4oXvPUN2B//4hRkiRJ0ii28EqY9yugD3Z8O0w/DB79ZG32Hr8tnHATtDTjrSeSpDJF//tRKaVditTOzD5JKR1L5n69YmYWLxkxPwN+EBGb/KFgSqW0PiI2AHtERMlPG4uI3pTS+cAxwI79wx3A2cDXat+iJEmSJEmSJEmSJEmSNDKa7u7UiFifUjoFuITMEw4HbrpKwDgGg88SmQC1/1uaNXcDcHZE9Narb0mbgVf+WDiEYoLBaDWz7QkweU9Y82zx2rveATufPfI9aXRb/xJce1DhmnULYdrB9elnQLEAnHra6+/hVV/MHO/6VzD7y9C1rLS1HdNh53fmn5+wHUw9EFY+sencikfLblWSxqxivy4svBL2/VjxfbpeKV4zYRbscGZpfeXT0p57vHdj7nFJqpXeOgWjbXcyLL27cM2T/wq7vAsm7lSfniRJkiSpHM/+EB740OD5C5fWbu8dzoRjL4fGhcVIkuovAb+qYM1tZdQP3N9XVxGxot7XLCYieoCSQ9Gy1q1PKf0E+HzW8OswGE2SJEmSJEmSJEmSJElNpKXRDVQiIpYCrwc+BSxl8GaoyHrPftFfswr4LHBaRKyuW8OSxr71L8PNxxeu6ZhWl1Y2C21bwIm3wc7nlFa/fvGItqMmMPen0L2qcM3tb4Ybj4XlD9elJQB61tbvWvlM2RsOvAAO/ebg2LgZ8Pp7YNbpxddv90Z4/Z2wxQ6F62YcmXt848rSe5Wksa7YrwsLryhhj3Xw6Kfzz0+YBTu+DU6+B9onldffcC0ducf7DEaTNMJ6N9TnOju9o3hN73p4+r9GvhdJkiRpLFnxGFx/FFw6DW54DSy+tdEdjU0RMPvfRmbvg/4djvmtoWiStPnJfmBpsVf2vXulrvEXltp5ZNi5T3OUJEmSJEmSJEmSJElSU2lrdAOViogAvpZS+g5wDpmgtGPI3MSTHfi2ArgbuB74eUQUSUWRpDJFH9xyYvG61i1GvpfNyRbbw9EXwy7vygRaFTL/Ytj7H/zhjM3ZsgdKq3vlj3DzCXDqEzBxx5HtKSITXjNS9vs0HPzvla+fsiccdyVcsTOse2HT+SMvhN3PL32/9im5x7vXVNafJI1FPZ2F51+5EzYsgfHb5J5fOxduOy3/+l3eDa/5ReX9DWcwmqRG6e2qz3W23Ad2OzcTtFzIgsvgkK/5e05JkiSpFOsWwQ1/kQkZBlh6T+bveU59Eibt0tDWxpw1z8K6BbXf99BvwT7/UPt9JUnNIoqX1GSNqtMz7DzPX+pIkiRJkiRJkiRJkiRJo1PTBqMNiIgNwE/6X6SUEjCNzM08yyKiu4HtSdocLLkdVv2peF3r+JHvZXM08ySYMAvWL8pf8/DHYMHlcNzV0DG1fr1p9Fj4u9Jru1dl6vf+yMj1A/0/9JXn/u9tjoONK2HlY5XtvddHqgtFy7bjW+Dpbw8da2mHHc4sb5+2ybnHe1ZX1pckjUU9a4vXXL4tnLkQtpg1ONa7Ae7+K1jw28Jrpx9eXX/DGYwmqVH66hSMBnDkRZnvz1++GeblCZfsnAcrH4dpB9WvL0mSJKlZzfvlYCjagJ5OmP3lzAM5VDul/FlTJWYcMTL7SpJGsxcw3KzZ7DHs/KWGdCFJkiRJkiRJkiRJkiRVaNQHo6WUDgJOBvYDtuofXgo8BdwYEY9k10dEAMvr2qSk8kXAK3dlwqzWLcw8HX59/+uw78D0QxrdYemWPVhaXUoj28fmqnU8HPkj+OPZhX/A45U/wqOfhlf/oPieq/4EL/4h84M5Wx8D27zWf3/Nrn0KdJcRwFVK2GG1etblnzvsv2DKPnDZ9MwPhJVr/09X3tcme30WltwJKx7OnKdWOOL7/H/27js8ivNe+/h3dlWQRG+miI7pxQ2DjSvYuANuiUuKE6cnTk+cN8mJneqT3k5OihM7iePesA1umGLjgjumY3rvIARqSLvz/jHmSEgzszO7M7O70v25Ll1in/pDoN3ZlZ57Ke7mb53Cjvbt9Yczq09EpDXxep//1pfgnCahn8t/nDoUDaB8enp1OYkV2rcnlU8uIiFLRBiMZsRg8E3Wx6m/h8d6gploOW7r4wpGExERERHx4uAS+/b1/4AJf4VYPNp6WjO75y6ZKu4O3SYFv66IiOQ00zQHZrsG8e2aZrffyEoVIiIiIiIiIiIiIiIiIiIiIiJpytlgNMMwTgF+C5zlMuwOwzBeAb5umqbHZCIRyRkLprV8R3iAI+vzKxhtybezXYH0uQQuXwXPnAR1+53HbboXJvyvdbDdyYZ/w+s3g9nQ2Db0M1YQlNs8yW0lff0Fo6UTRuZX0iXMIV4M8SIovwo23eN/7Xa90q+rxVo9YNorsPtFqNkGPc+FDs3fXNqDwg727QpGExFptPNZb+O2zbKChUv7WuFAa/7obV7ZoPRrsxMrsm9PHg12HxGR5tyupcNU3NW6Ht49v2XfnoWRlyMiIiIikpc23+/cd3gtdBoRXS2tXRg/6xjxDYXXiYiI5DjDMCYAk5s1P243VkREREREREREREREREREREQkV+VkMJphGDOA+4B2gNGkyzw2pEnbWcBLhmHcYJrmrIhKFJFMGYYVVHRkXcu+6u3R15Ou5T/NdgVyTGm5FV728oecxzQcgaot0H6gfX/tPlj88Zbt6/4GA26AE84NpNRImSZsvAe2PwmFHWHQR+GE87NdVfSaBt150XAknDqacg1Ga2d9nvAnOLofdjztb23DSD3Gj3g76HNRZmsUOASjNSgYTUTk/2z8t/exs8qtYDI/IWRBPz4oGE1EsiWRpWA0gL6X2wejVa6KvhYRERERkXxTtcW9v3aXgtGCFPTPOnqeByO+HuyaIiIiEijDMAqBvzZrXmSa5hsB79MT6OFz2pAgaxARERERERERERERERERERGR1i3ngtEMwxgB3I8VigbHh6HZhaTxwdj7DMM41TRNnUIUyRelDsFoNXkSjLbhX7D0+9muQprqOz31mMrVzsFoj7n8zubO5/IzGO2978HKOxpvb/w3TH4Q+l+dvZqyoaHK5/iQg9FM0z3MIVZsfS7sAOfNgdq9VpDavtfh5Wvc1x5wQ3B1BqnQIRitXsFoIiIAVO/wP8dPAFn5TP/rp6JgNBHJFreQ4WM6DAtn787j7Ntr90DdASjuGs6+IiIiIiL5rmYnzD3bfUzdvmhqaSv8/mzETdcJcMGC4NYTERGRsPwSOLnJ7XrgyyHs8wXgthDWFREREREREREREREREREREREBIJbtAmz8BSvozPzgwwAagNeAh4CHP/hzPY1BaeYHc5q/26GI5LLScvv26jwIRtu9EBbflO0qpLl4MczY7D7m0Ar79n0p3hy3bm96NWXT0QpY/Zvj28wErPhJdurJpoZqf+N3vQCvfgzqK4OtY92dMGc0PNIVXrzceVy8+Pjb7XpY95ll/VPv0fuizGoMi1MwWrIOEgrQERGheku46/f/UPBrxgrt25P1we8lItKUW8jwMeN/Fs7eHUc49x1aGc6eIiIiIiKtwfq7Ur/+4fQzHElPUG8CU9QVLlgYzFoiIiISGsMwPgl8pVnz7aZpLslGPSIiIiIiIiIiIiIiIiIiIiIimcipYDTDMMYA59AYiAbwa6CXaZqTTdO8zjTND5umORnohfUOh01NNgxjXHQVi0hGSvrat9fkeDDaoVUw7/xsVyFOyvpDpzHO/bvm2bdvech93aMV6deULTuft0Knmju4BOoPR19PNiWq/M/ZdA8svCy4Gjb+B974jBWWUF8BRzY4j40V27e7hTAAdBwJA65Lv8YwFXZ07tu7KLo6RERyVc2OcNfvd1Xwa8aK7NuTCrwUkZDZPc9pqsdk6HNJOHuX9IECh9Dfnc+Fs6eIiIiISGtw4O3UY5bdDqYZeiltRn1AwWgXvgIFpcGsJSIiIqEwDONirDekbWo2cEcWyhERERERERERERERERERERERyVhOBaMBV3/w2cAKR/uyaZrfMk3zYPOBpmlWmKZ5K/DFJuMBQjjtLSKhKHUIRqvaHG0dfphJmDMq21VIKm7BH7vnQ0OzkCzThG2z3Nesz8NgtEPLnfvCDl/JJcl66yMde1+GtX8Npo71//A+1ikYrdAhgOGYS96BuENITbY5hUcArP97dHWIiOSq6hDDgftOh7jDY0smFIwmItniFox28q/gvGfCO7RvGND9DPu+VM8rRURERETasm2Pexu358Vw62grTBPe+Wrm63QeC51SvGmLiIiIZJVhGJOBR4HCJs0vAx82zdBSZ/8XGOPzY0ZItYiIiIiIiIiIiIiIiIiIiIhIK5RrwWgTPvhsAotN0/xTqgmmaf4FeAUrHA3g9JBqE5Gglfa3b6/aBDW7Ii3Fs5euzHYF4sXwr4Dh8BCXrINdLxzfdmgFHFnvvubRFhmduc/t91sPvBNdHdnWPAjPrzc/B/WHM69jz0Jv44wCiMWd+/tcZt9+0n9DvJ3vsiJT0su5b9/i6OoQEclVNSEGo/WaGs66TsFoiZpw9hMROSbhEMA4+CYY+Y3UgcKZKnc4v3doORxeF+7eIiIiIiL5ql1Pb+O2PRFuHW3FlocyXyNeAhP+kvk6IiIiEhrDME4F5gBN3yniDeAy0zSrw9rXNM09pmmu8PMBpPjFHBERERERERERERERERERERGRRrkWjDayyZ//5WPev5v8WW9XLJIvuk1w7tu7KLo6vHrzi7D9yWxXIV4Ud4VrXYKs9r12/O09L6Ve88DbkExkVlfUjh5w7nv1BtjxXHS1ZFNDAL/rOzvDyws/b8IcL3bvH/zxlm1GHAbc4K+mqBWUOfdVbYL1d0dWiohITqreYd/u9dCwEyMO/T+U2RpOYoX27TU7INkQzp4iImAFXtuJpbiWDkr5dOc+hTiIiIiIiNjrPM7buM0P+HtNXextfTz1mME3WW825GT6BuhxZmAliYiISLAMwxgHPA90atL8LnCRaZqV2alKRERERERERERERERERERERCQYuRaM1rnJn9/xMe/YWKPZGiKSy0r7Qvsh9n07no62llTW/A+s/d/U44bdYt9+yu+CrUdSKyiFftfY99XtP/521WZva27PswPuO59173/jM5CojaaWbGqoynyNmh1w8L305/v5OqcKc+h3DYy9HYwC63ZhJzj7USjrl3Z5kRnzX859b34e6l0CDUVEWru6vfbtncamv2ZRFzh3NpT0Sn8NN7Ei575ts8LZU0TapqrN8M434MUZsPIXUH/IflxUwWil5dDVIez93W9GU4OIiIiISL4xPb75TO0uOLQi3Fragj0LUo8Zcxuc+AX7vs7jw3tNSURERDJmGMYo4AWga5Pm5cA00zQrslOViIiIiIiIiIiIiIiIiIiIiEhwci0Yrem7F+53HNXSwSZ/7hBQLSIShZ7n2rdvvAcOrYq2FidbHoa3HQLPmjrxC9ZHQdnx7UVdod9V4dQm7oo62bc3D8qq2eFtvc0PZFZPlPYthiMb3MdUb4Fd86KpJ5sS1cGss+k/6c91Cm6wE08R5mAYMPY2uLYCLl0GV++D8hnp1xal0v7Ofck62PZkdLWIiOSaun327Z1G+V9r7A9hxma4ajf0uTizuty4BqPpPl1EAnJ4PTw7AVb/BrY/CUtuhZ3P2Y9NdS0dpH4znfvW/CG6OkRERERE8oXXYDSwrv0lM7V73Pv7XAbtB0LHYXDClJb9J342lLJEREQkc4ZhDAfmAT2aNK8GLjBN0+EHTiIiIiIiIiIiIiIiIiIiIiIi+SXXgtGa1uPjN6OPG5trfycRcdN7mn27mYBN90Vbi51EHbz8IW9jT/kNdBoBU16AE6ZCcTfofRFMXQBl/cKtU+zFy+zbN98PidrG2zuf9bbeloczrykqS2/zNm777HDryAWJmmDWWfUreOFcOPC2/7l+gtFi7byNKyiDzmMgVuC/nmwp7Ojev2NONHWIiOQip2C0zmOg/VB/a5WWQ1l/iBVmXpcbt2C0TfeEu7eItB1rfg91e72NjUUYjFbuEoy29DYwzehqERERERHJB76C0drAzy7CVuDyfnKFneCsJj/zOucJGHIzlPSBzmPhtD/BiZ8Pv0YRERHxzTCMocB8oFeT5rXAFNM0d2enKhERERERERERERERERERERGR4OVRkoaItErlM6G4h/0h5/1vRF9Pc2/dknqMUQDnzIL4Bwewu0+CqS+EW5d4U+AQjAbw2sfhrAehdp9zEImdZEPuB1GZJux/3dvYw++HW0suaBqC19zMrTDLR3Dhnpfg2dOsA0MdhkGn0RCLp55X6zHIARrvS1qjQpeDWCIibZ3T9UhxDxj3Q3j1I4DHkB23a6AguQWjiYgE5f0/eh8b5bV0x5FQNhCqNrXsq6+Amh1Q2je6ekREREREcl2ywfvY/W+AmQRD74mWNrfA/JlboaCk8XZhe5j49/BrEhERkYwYhjEIKxStT5PmDVihaDuzU5WIiIiIiIiIiIiIiIiIiIiISDj0m8Qikl3xYuh7mX1f8mi0tTR39CCsv9N9TL+r4eI3nf8Okl1uoSBbH4GanbD2T/7WPLIhs5qiULsb6g95G7t7PiQT4daTbYka+/ZYMZSWQ8fh/td8+Vp4ZjzMKoe9r7mP3XgPvHC297VjrTgYrUDBaCIithK10HDEvq+4Gwy8AabMhUEfs9pSHQqOLBjN5YCtiEgQ/AQnQLTX0oZhvSbgpC2EUIuIiIiI+GH6+FmEmYBVvwqvltbONKG+0r7vzPv1JiYiIiJ5yDCM/lihaE3f+W0zVijatuxUJSIiIiIiIiIiIiIiIiIiIiISHgWjiUj2lQ106EhGWUVL2+e490/6F5z9CHQ5KZp6xD+3UBAzCQfehTW/97dm7Z7MaopC5Sp/49f+OZw6ckWi1r493s76PPFuiJc2tvsJ76rdBS9eDg0O4WsVy+C1j3lfD6zAyNYq5WErI5IyRERyTt1+577i7tbnXlPhjH/BDSZcn4Bzn3KeU9A+2PqcOIWPiogEpWKpv/FRX0uP+5Fz37wpsPVxSGQ59D0f1eyG9f+A9XfB6t/Cxnvh8LpsVyUiIiIimfITjAaw5FZdB4IVcLblYVh6O7z9det5Rv1h9znJOjAdgqbL+tm3i4iISM4yDKMPMA8Y2KR5O1Yo2uasFCUiIiIiIiIiIiIiIiIiIiIiErKCbBdgw/zg8yTDMAZ6nNOr6Q3DMM7GR7KGaZoveR0rImFwyGjck+VvzT0LnfsKOsBgn2FHEj23YDSAd74KRw/6W7PhSPr1RMXvQaGtD8PwL4VTSy5wCm05FozW4wyYsQm2zYJYEfS+CJ6bCNVbvK1/9ADsfAb6XdWyb8vD/uuNteFgtM33weR7o6lFRCSX1O1z7jsWjNaCS855ZI8lLk+7DeWwi0iGDq2GZ0/1Nyfqa+mCUuh2Oux/w75/0VXQ9TSYMheKOkdbW77a+yosuKjlc+94iRUQ2v/a7NQlIiIiIpnzG4wGsOleGHtb8LXki6rNMG8qHFnf2Lbmt9BpFJw7G9oPcpjn8vONwo7B1igiIiK+GIZhNms63zTNhS7je2KFog1t0rzzg3kbgq9QRERERERERERERERERERERCQ35GIwGlinq+/PYO5CH+NNcvfrINI2xOLOfQffgy7jo6vlGNOE9f9w7h/00ehqkfSlCkY7vNb/mg2H06slSvWV/sZnO4QwbIla+/Z4SeOf2/WAoZ9uvN3zHNj0H+97LLoaupwEB5ekV+NxdbXLfI1cVZAiGA2gaiuU9Qu/FhGRXNJQ5dyXzmFVw3NOeGa6T3LuM5NQ+T50HBZNLdK6HdlgPT/b/6Z1kL5sIAy4DnpfmO3KJExL/8v/nE6jg68jla6nOgejARx4Cx7pAsNugZHfhLL+0dWWj16/2T6QPFEDb34e+s6AeFFj+5GNsOrXUF8BJ5wPg25yf50pSGYS1t0Ju+dDSW8YcjN0HhvN3iIiIiL5KJ1gtD2Lgq8jnyz57vGhaMccWgnLfwKTHH6WufLnzmt6eZ1eRESkjTIMoxz73yPs1ex2gcsbvh4xTdPlHXF81dMZmAuMaNJcBdwM1Pt401kATNPcFERdIiIiIiIiIiIiIiIiIiIiIiJRyNVAMBMr4MzvnGMiOgUuIoFINjj3bX0sO8FoS2517x/2xWjqkMykCkZz0uVkqNsP1Vta9tXnQTBasi7bFeQWx2A0lwCy4V/2F4wGwYSiAcdf0rQyXsJ9nugP19VDLFcvU0VEQuD0WAUQK7Zvb9fDeU5h58zq8aowxUHauWfC1IXQeUwk5UgrVbkWXjgHancd377hbph0Fwy+KStlSci9gnImAAAgAElEQVQStbDtcX9zOo1yD2wMy5BPwbq/pQ55eP+PVsDfpe9Bh6HR1JZvqrdD5Wrn/rr9sPdl6DXFun1oFTxzcuNz4E33wu6FcOY9oZcKwOJPwMZ/N95efxdMeQG6nx7N/iIiIiL5xumauXwmbJtl37d7HtQfgcL24dWVy3Y+49y3/Unnvg13OfelE8IvIiLSdrwMDPAwri+w0aHvX8BNAdVzEjCuWVsZ8HSa6+l3KkVEREREREREREREREREREQkb8SyXYAL0+dHOnNFJBeYSee+Qyuiq+OYimWw6pfO/ePvsA5cS+5LNxit/4ecgz7yIRjNLVzFSUN18HXkikSNfXu8xHlOtwkwZV449aRS2Ck7+0Yh7hDu09zeV8KtQ0Qk17iFeBoOZ1S6nALterZsL+0PHYcHV1sqZ97n3Fe3H9b8IbpapHVa+78tQ9EAMGHpDyCZIoxK/Nn7Ksy7AGb1h/kXQuX72amjck3qoLFjjALofy1MXZCdcN2up8CEv3gbm6iGp06E+wvgiYHw7rchWR9qeXmlelvqMUfWwXvfh/sMmDOqZTD4pv9YffOmBBhebePQquND0QAaDru/niQiIiLS1jld4/e+GPpd4zxv0VXh1JPrErVw9KBzf90+++fEqZ4npwq6FxERERERERERERERERERERERERERyQFZOC3oagsKLBNpe0r7OPfV7IyuDgDThKebv9lqM4M/EU0tEoA08z+HfQm2zbLvaziSfjlRSdSlHtNc3T4o6B98LbnALWzGTa8pcIMJtfvgsR7B1+WkqHN0e2VD/w/Blofcx2y6B044N5p6RERyQdLhsSrm8lgVi8OYH8BbXzq+fewPnMPUwlDUxb1//Z0w8W/R1CKtk1tgavVWOLIeOg6Lrp7WrGoLLLio8TlP9VZ49jSYvh7aRXg9DLBvceoxZz0C/a+2nsdHeb9nZ+inoL4C3v2Wt/FmAqo2WyFa1Vth8v3h1pcv3ILzj3njs97W2r0A5p4Fl62Csn6Z1WVn07327VsfgcRRiBcFv6eISNSObICa3VDSC8oGZv/xVkTyX7LBvt2Iw+jvWtdSdnbNtUJvu5wUXm25qG5/6jENlS1fm6na5D4nVph2SSIiIiIiIiIiIiIiIiIiIiIiIiIiIlHJqWA00zQHZrsGEcmCXhc490UdQrVrrnt/9zOg5IRoapHMJev9zzlhKhS2h8IO9v0NhzOrKQrJNIPRylprMFqNfXu8xNv8dt2hx2T3UI4gnTA1mn2yZeS3Ugejrf8HjL8j+gAOEZFsSTfEc9gXobQfbHnECkrrdy30vTT4+twUlEa7n7Q9Ttdyx1SuVjBaUJb/pOVz8IbDsOk/MOJr0dRgJq1wsdW/cR939uPQb6b151wJaRn5Teg8HhZM8zdv8wNQ0AFO/wsYaYZ7txZBvwbUUAUb7oKxtwW7LsDWR537HiqF0++EIQrWF5E8VbML5p4NR9Y1tpUNhClzocPQrJUlIq2AmbBvjxVAl/Huc9f+xbpmbku8BKMdPdQyGK1ytfP4XhdmVpOIiEgrF8XvLpqm6fkFTdM0FwI58gKoiIiIiIiIiIiIiIiIiIiIiEi02vhpOxHJCe0HQ8eR9n01O6KtZeN/3PtP+V00dUgwup6K798R7THZ+lzgEIxWnwfBaIk0gtG2zwHTDL6WXJBu2ExTp/wWirsHUw9AcTe45gAM/Ojx7f2vhf7XBLdPLup2Goz+bupxb381/FpERHJFJo9V5dPhzH/DpLujD0UDiHsIRks2hF+HtF7Jo+79bge+xbtkAtbfad934O3o6lh3Z+pQtFP/0BiKlmt6XwhXrEs9rrn1d8KSW4OvJ980VAW/pluAWSbcXhswE/D6J+HlD8O2J9N7ji4ikk2vXHd8KBpA1SZ46kRYcAm8ciOs+Bls+CfU7MxGhSKSr5yC0Yy4FRJ8+l+d5+5/M5yaclndvtRj6g+1bKva7Dy+rYXLiYiIiIiIiIiIiIiIiIiIiIiIiIhI3lIwmojkhtP+YN9ety+6A6TV22DTPc79Az8C3U+PphYJRrvu0OMsf3MG3mh9LszjYLSkQ7iKm2U/gLe+CGYy+HqyzTFspsT7Gt0mwKXLrNCZCX/OvKaZ26GoC5zxT5i6EE7+NUydD2feB7HCzNfPdeN/Ct0muY/Z8gDU7o2mHhGRbAvisSpbCjwEox09GH4d0nolUzwfVDBaMA6/79y36d7o6th8n3t//2th+C3R1JKuDkPgqjSuY1f9yvpoy8IIRqtYBttnB7+ul1q3PAQvzYC5k6HuQPA1iIiEoe4A7HnRuX/ns9bj9Xvfg8WfgNmjYLfLeBGRptyC0QCGfsZ57uE1rffNXZx4CUY7WtGyrWa7/djOY603qxIREREREREREREREREREREREREREckDCkYTkdxQ0se5r3ZXNDW8+QX3/vKZ0dQhwZr8AJQN8Db2jHug4zDrzwXt7cdsugcWXg6vfwpeuQGenQD3GfDC+fD+nyDZEEzdmUg3THDtn2H3wkBLyQmJGvv2eDt/65T0gsE3wYmfg37XpF/PkE9DvNj6sxGDE86FkV+HE86HWEH66+abY99rTsxkOAEGIiK5yDEYzedjVTbEPQSjeTnIK+IkedS9f8PdUBPRc8bWrGaHc19pv+jq2POSe/+A66OpI1PtusM1FVA+w9+8d78Fc8bAyl9Ag8PzmNas4Ug46y6+Kfivp59A8gNvw4qfBbu/iEhYanb6G19fAW98GpIOYUciIk2lCkYDOOsR+zENVdYbHLUlXl5Pafoz1K2zYPEnna89O44Kpi4REREREREREREREREREREREREREZEIKBhNRHKDWzBaze5oajjwlnNfURf/B5olN5T2gekbU4+7fDUM+kjj7cIOzmN3zIH1/4DN9zf+v9mzEN76Eiy6Ckwzo5IzlkwzGA1g+1PB1ZErwgibOfHzgOF/nlEAI7+Z/r6tSddTU4/Z92r4dYiI5AKncJV8CEYr8BCMtuOZ8OuQ1itVMBrA02Ogcm34tbRmRw8499UfiqaGnc+nHtNpdPh1BKWoE5z9OMzcBuc/B+c/D6XlqecdWgFLboV550PCw///1qShKpx16/bD7nnBrddQ7fw808mme6zwZxGRXGfW+59zeC3sfz34WkSk9fESjNZrqvP8vYuCrSfXHVqeeswr11lvlrPiDlh0pRUe7qS0b3C1iYiIiIiIiIiIiIiIiIiIiIiIiIiIhEzBaCKSGwo7OvclQjoY21QyAbUuAWyXLoVYQfh1SDgMA3qe69zfbSJ0HH58W3HP9Pba/hTsmpve3KA4HdAe8fXUc9f8LthacsGWh+zb4yXpr9lrCpz9KLQfat8/6ONw9mPQ5SQwYtbBri6nwJQXoOOw9PdtTfpdlXpM5Zrw6xARyQVhhHhGpahb6jFLvx9+HdJ6eQmGqtsPq38Tfi2tWd1+5776Sqg/En4Ni1JcH5b0hvZDwq8jSIZhhQ/0nga9L4STfu597v7XYdkPGm8nG2D17+Cp4fDkEFj6g/CCxLIlzL9PkCGddfv8z6ndAweXBFeDiEhYkmkEowHMnQwPlsAzJ8OmB4KtSaQ1OloBi2+Gx8vhuYmw8V5/87c8as17sBQeaAcPd4b5F0KFhyCtbPISjFbUGcoG2Y979Uao3Rt8Xblqx7Pexr3xWXjvu6nHlSgYTURERERERERERERERERERERERERE8odSfkQkNxgxK6QoUdOyr6E6/P3rK8BM2vdN/DuUlodfg4Rr1Hdg36stD/cZMTjtjy3Hl2ZwQOSdr8FlK9Kfn6lEnX17rBj6ToftT7rPP7weOgQcONBQBZWrrQNOnUZDrDD1HNOEqs0QK4K6Pdbfy4hDxxFQ2N7bvrsXgNlg31fgcQ0n/a60Pkzzg3o/uA8xYlYAwrExyQbAgFjcdpk2y8v9auXq8OsQEckFTsFosTwIRvPy+FbYIbz9kwk4sg7KBkK8OLx98k3VFuvrXtQl25VkLulwbdvcTo8HxsWeWzAaWEFQXq/B01H5fupQrGG35P81df9rYcUdcMhjYMXKn8Pwr0BBB1h8E2x9tLFv+Y+tsK3T/xJKqVnREGIAX5ChZOkEowEcWgVdTwmuDhGRMCQ9hNI6SdRa97evXm+FPPebGVxdIq2JacLCS2Hfa9btmu3w2kes174HXpd6/rYn4eVrjm9L1sGuF6yQwivWQrs03/glbE6v1RvNrvP7Xgbv/4/92HnnwSVL8/+5QSrJBqja6G3sxn95G6efdYqIiIiIiIiIiIiIiIiIiIiIiIiISB6JZbsAEZH/U1Bq357qcHQQ3A619poW/v4Svj4Xw9QFMOTmxrZBH4dLlkC3CS3Hl2QQjHZoJay/O/35mXIKj4i38xZMsum+4GoxTVj2I3i4Ezx7GjxzMjzSBTakOKhzeD08PQ6eHASz+lrznp8Ez02ARzrBe99zDjM8JlEL86Y493ce5//vY8cwrI9Y3Po4Fop2TKyg9R/SStcpv3Pvr9sLdQeiqUVEJJucgtHieRCMBlbAsZuwgo63z4bHesDsEfBIV1j163D2ySdVm+Hpk+CJAfBIN1h0DTTYhE/nC9P0Hs5RtSm//67ZlioYLRFyYPnO5937O46EEd8It4YoxArhotdhzH95n/N4H3i4w/GhaMes+ysc2RBcfdkW5us/h9cEt1aq7xcnr30EEhkEDomIRKH5m0qka9GVUB9i4KVIPju0vDEUram1/5t67rYn4KUZzv31lbDG5o1gcoWZsG83mr2XW7lLsOKhlbBjTnA15SqnELlMdDst+DVFRERERERERERERERERERERERERERCUpB6iIhIROKlgM3h0rAPYIN7MFpxt/D3l2j0mGx9TPx76rGl5Znt9fonYdfz0OFEqN4KBe1h0Meg62ktg7OClnAKRiuGAg/BaLueh7E+Durbqa+0wg1W/Qr2v358X0MVLL4JijpDuc0hLtOEl2ZaB8TsmElY8TOoWA5nP2YfOnb0oBXE5sQogD6XeP7rSEi8fC9UroEeZ4Rfi4hINuV7MNqoW2HZ7c79DVXW43uQ10BHNlrXC8cOVSeq4d1vQodhUH5FcPvkE9OEhZc3uYYyrSCldj1hgocD9rnI70Hwg0t03ZCuoymCnsIKrDJN2D0flnzbfdzZj0G8KJwaolZQCuN+BKO+Aw+VZb7egovh7Eeh89jM18q2hMP/s4Efsf4Pbnu8Zd+wL0O3063nmG73GXX7Ye9rwdxHuL2GlMrKn2f+fFtEJExuobSxQn/BaQ93gEl3Q68LMn+tVaQ12XiPffveRdbnhmrYvQCqt4ERs15rNxNQtQXW/in1+it+Ah2GQlEX6D0tt15bcAxGa/Yaf89zoLAz1FfYj3/rFqjZCV1OtsK+jFb4XnDJgIPROo2B9oODXVNERERERERERERERERERERERERERCRErfC3hEUkbxWU2rc3RBCMtvcV+/Z4iXNd0rqV9Ml8jc0PwPIfw4Z/wvv/A8+dDm98FpIOh3+CknQIV4kVQ2HH1PP3vgzb56S//+F18PRJ8PK1LUPRmnppJmx9rGX7wXecQ9Ga2v4kzCq3Drg3VbEMnhoORzY4z+15thXMJtnldBCuqcNrwq9DRCTb8j0YbeCNKQaYzn/HdG191P5xZJvNtUVbcXit/TXUlkes8Kl85BT462TumVC1OZxaWrtUQU9hPC9vqIYXr4D5F0Cixnnc+J9BpxHB759tBaXBBLEfXgtPj4cVd2S+VrY5BfAVlMGQT7ZsjxXDsC/CoBvh0qVwyu/gpP92Xn/umbD2r5nXmUkw2sZ/Zb6/iEiYnILP4iVw2Uo49Q/+1lv8CZg9ErY/nXltIq2F27XEkU3w/CR48XJ483PwxmesEPAlt3oLRTtm8U3w0gzrZxJHNmVYcICcXg9u/uYnsUIY+hnndaq3WF+f5yda9zNBh4jlAr9B4amM+Fqw64mIiIiIiIiIiIiIiIiIiIiIiIiIiIRMwWgikjviDgFkiQiC0Zbcat9e3D38vSU3xYuCOaTe3Po7Yeczwa/blFOARLwYDI8P/S9/CKq2+tt36yxYfDM8dSJUbfQ2Z9HVUF95fNuOZ73vWbsLFl5+fNsbn4O6ve7zJj/ofQ8Jj5cDa5Wrw69DRCTbnEJN8yUYrcNQOOMe9zFOYTfpevdb9u0b/hnsPvlky8P27XV7gw+mi0ryqP85Cy4Jvo624Mh69/5558GCi+HQysz2aaiGlb+E+wx4qAx2eAhkHvGNzPbMZT3OCWghE5Z+Hyo8BEznMseg0BLocymMvR2MD0IzirrC6X+BjsOs251GwoivwMhvQ0F75z3e/Bwsvd3//WLVVlj2Q3j1I7D61/7mNnVkffCPiSIiQXIKRosVWtf9w2+BGVug6wTvazYcgRcvgwaXIFSRtsTtzUve/or1xh9BqVgGK34S3HqZME0wk/Z9Rrxl25jve1t3479h2xPp15WrnO6P0zX4pmDXExERERERERERERERERERERERERERCZmC0UQkdxSU2bc3hByM5ra+gtHatqIQgtEA1v0tnHWPSToEo8XaQf1hb2skqp0DR+ws+zEsuhI23OV9zjGP9z3+9lKPB56O2b+4MUztaAXse819/Cm/hXY9/O0h4Sjrn3rMkQ3h1yEikm1O4SyxPAlGAxj0Ebh0qXN/QiEwWZWvITzpBKNVrmqdh+LDlGyAwymC0QB2PgdzRsPuF9PbJ1EL8y+EJd/2Pue8Z6zQ6tZq+C3BrWUmYWOKkMpclyrke+xtcOUOuOQ9mLHRPtzBMKDjcPd9lv8QXrzCe9jEkY0w90xYdjtsuheqNnub56Ty/czmi4iEyen6K1bY+OeyfnDRYrhspfVYPejj3tZ+fmLm9Ym0BoWdnPu2Pxn8fpvudw4ki5JbDXbBaIUd4FqPP8/Y8XR6NeUy08Obinh1yRLvb5ojIiIiIiIiIiIiIiIiIiIiIiIiIiKSI/QbsCKSO+Kl9u2JkIPRKtc497UfEu7ekttiBeGsu/0peOOz3kPKjknUwrvfhgdL4D7D+nhxOhx4p+U4O/FiaPCx55YHoWZ36nH1lbDip97Xba7hCDzaEyrXetvPzsJLrINVdfsB033s8K+kt4cEr89lEEsRdHH0YDS1iIhEYetj8PxkmDUAXvs41B2w2hM19uPjeRSMBlDsEjxasSK6Otoqu4Pkx7z1Je8BQLkknWA0gDc+F2wdrV3VJn+H7t/5Wnr7bJ8N+171Pj5WCN0mpLdXvjjhfDjnCSvIK9V1sRerfpEboRfpcgz5Lm78c7ue0GUcFHZ0XqfDsNR77XoBHiiCF86HJd+BuWfB7JHwyo1Qu/f4se//Caq3pV7Tq8rVwa0lIhI0p2vG5o9TRgw6jYQ+F8Oku72tXbEs83BJkdbA7TomDIlquD9u/TzhqeEwfxrsez3aGgDMhHOf0/PZwvbQeVzqtTfcBfVH0qsrVyUDDEbrMj64tURERERERERERERERERERERERERERCKiYDQRyR0FDsFoDSEHo70007lv7A/C3VvarnV/gxcvB9MlxKuhCmp2QaLOChOZMxpW/fL44LPtT8H8C44PFEu4HCbvc5m/Or0EF+xb7HyA3au6vTB7GGx/Mv013v5K6uC3S5eDYaS/hwSrsD2MSBGscbQimlpERMK27SlYdI312Fq9BTb+G+adbwXYNA9gOSZeEm2NmSooc+578TL/obDij1sw2pYHYfHN0dUSFKfrWoBupzv31e6CyveDr6e1qtnhb/zBd/1/fU0T1v7F35yBN0JxN39z8lH5dLh8NVxXBx+uzTwg7dUbg6krG5zCEP1+TToO9z52z0JY+XPY+4oVWLb5Ppg7GZJNgjtW/9rf/qnUbA92PRGRIDndFxuFznMMA6avh4IOqdd/73vW65xBBv6IiHeH34ddc2H+1OiDCt3CmA2XN6mZ4PF5xCvX+asn1/kJr3bT5/Jg1hEREREREREREREREREREREREREREYmYgtFEJHfEHYLREiEGozXUWMEUdow4dB4b3t4ie16CimX2fWv+CLP6w+O94cF28PQYOLLBfuzRg7DiZ423nULK4u2g9zT3Q0bNpQpJ2PsKLLjI+3qpvPGZ9Oeu+yvU7XPuv2QJdB6d/voSjvF3wMS7nPsVjCYircXaPwHNAlErlsKuF+DwGvs57QeGXVWwnK7nj9l8fzR1tFVuwWhgff2dQvhylVMwB8DZj7vP3fFMsLW0Zsl6/3N2Pu997KGV8FhP2D3P3x4n/cLf+NYgXgxX7XIf0/0M6Hqqc/+Wh8MPmA+LUxhivNjfOt0mZlbH4bWZhXan0lAT3toiIpkyHa4LUoVUth8Ml7wLQz7tPm7TvdbrnI92g033pVejSL5L5/r7mLKBx//cqvsZ6a3TUAXLbk+/jnSYCec+t+ezPTz+HXfMgQPv+KsplwUVIHni54JZR0REREREREREREREREREREREREREJGIKRhOR3FHgEKQQ5oHeytXOfX31LuoSgbdvafw/3lBjBQwsuhre/jIcPeB9nff/AKYJdQcg4XDIuqA9FHWG0/7gfd3qrdbn+iNWuMTGe6Dmg4P6Rytg/jTva2Wq9yXW38FJsh62PWXfFyuGLuPDqUsyYxgw5BNwpsNh2PpD0dYjIhKGhirY+Zx934KLIFFr39dxZHg1hSEWt4JYnWz4Z2SltEmG4d5vNsDWR6KpJShuwWgFpXC1SyjuoeXB19NapRPM8O43YOfc4++/qrbAhn/Bqt/Ae/8FS38Ai66FOaPdA4ztDP4ktOvhv67WoKgLTN8Ipf2bNBpw8q/hBhOmvQoXvwXdJtnPNxOwe0EkpQbO6Xs+VRhPcyec7/7c0Yt9r0HFcnj32+nNL+7m3Of0nF1EJBc4XRfEClPP7TAEJv4Nrk+mHltfCa/eCK9/yrp2WPtXqFjhr1aRfJVuMFpxd5i+AS5dal0X3mDCBS9CvCS99Tb8M7jwLS/SDUYD6HWBtz1W3OG9nlxnBvBv0/9a6H1x5uuIiIiIiIiIiIiIiIiIiIiIiIiIiIhkQUG2CxAR+T9xh2C0RIjBaIffd+4bdFN4+0p+KBsEh1aGu8eel+C502HS3dZBwIql6a/1/p+sQBInHYZan0/8PHQ/A1b+EjY7hFEds/LnMOB6eOW6xiDBWBGc/TjU7fX+/dn7Ihj6OTi8BpZ8x9ucpkp6w/lPW8ELz57q/O+y/Un79sIO/veUaBV1tm+vr7BC/1KFvYiI5KojG2G+xwO8zXUcEWwtUYiXOAe97XstmD0aFChjyy1E7JgjG8KvI0huf6dYkRWONuRTsP7vLfvdQrDleOkEMySPwoJp0HUCnDcbdr0Ar308mMP7RgyGfSnzdfJZ+4Fw6RLY+pgVSN3zHOg24fgxJ34e9i+2n//i5XB9wvpa5pNknX17rNjfOvFi6+uz6pfp17Lql5nNv/hd67lr3d6WfQpGE5FcFkRIpWFYwU1Pj0s9dv0/mk6E8T+B0d/1vpdIPjLTDEYbcEPL10hjhdbr9xvuSm/Nfa9Bz7PTm+tXJsFoA2+0nnOksvURWPVrGPkNf7XlonSeW53yWyjqar3hTZeToc8lel1dRERERERERERERERERERERERERETyVp6djhORVq3AIRitIcxgtLXOfeXTw9tX8kNUh/EPrbDC0TIJRQN4+xZ48wv2fQUdoKRP4+0uJ8G4H3lb95mTjg+WSB6FV2+AQ8u91zbx79BvJoy6Fdr18j7vmP7XWZ/j7eCS95zHVW2yby/s6H9PiVahQzBasl7BASKS3+ZNSS+MqmwQFLYPvp6wHT3o3m+ame/RcCTzNVojL4FxtTYBPbnMKSQJGoOSup5i37/3Zag7APWHYdWv4OUPwRufg13zYevjsPhmeOUGWPsXSLjs0xZkEmZ24E1477uw+BPBhKIBnPJ76HpyMGvls6IuMORmK9SheSgawKCPuM/f8nA4dYXJ6Xsx7jMYDWDsbZnVkq54KZz1EJT1g57n2o9J9VgpIpJNToGpsUJ/63QaA+2H+tzchPe+DwczfI1UJNelE0zc+yIY/2P7vpN/kX4tL5wDb38VDryT/hpeZRSM9lHvP69595tQ4eNnF7kqmcbzqxFfhcEfgzHfg76XKhRNRERERERERERERERERERERERERETymoLRRCR3FJTZtzdUhbfn3pft28tngqG7yDbvhClQNiDbVQSj44iWh2Ccvue8qD8EWx/zNrbTKCgtb7w9/qf+9yvp3fjnWAGM/La/+QUd/O8p0SpyCEYDeCuikEIRkaBtvNc5tDOVPpcEWkpkOpzo3h9EGEyi1r0/ncPDrUEyxdcFoHZP+HUEKXnUvt2IQeyDg/MdRzjPf7QbzBkF737LCola91eYPxUWXQUb7oLN98Obn4cXp0PCYa+2IJ1ghqbW/8P538qvS5fDcF37eWLE4Mz7nPvX3xVdLUFx+n8UK/K/VkEZnPY/mdXjV69pcOUO6H+tdTteYj9u478UyCgiucvxvthnMJphwOjvpFGAad1PirRmfq+/p6+H855xfvOP4m4w+nvp17Pm9/D8JNjxTPpreJFJMFosDqf9ES72GOD29Fgwk95ry0V+g6ebvjGOiIiIiIiIiIiIiIiIiIiIiIiIiIhIK6DUHxHJHfFS+/ZEdTj7NVTB7vn2fZ3HhbOn5Jd4EVzwknW4Od/1PKdlW7sToP2Q9Nc8ssHbuH7XHn+79zT/wYM9zjr+dmlff/MLFYyW89yC0TbcHUyQjohI1N79evpzB3w4uDqi1ONs9/66fZnvkahx72+rQQoNKb4uAHV7w68jSE5hZU1DkjqPAwz7cQDV21Lvs+t55+eGbUGmwWhBOWEKdB6d7SryS5+Lnfv2LICjh6KrJQhJh7CwWHF660UdMtp9IhR1arxd4BCMBrBrXvj1iIikw+m6IJ2QysGfhFN+AyU+X8db/Ru4z0BjXxoAACAASURBVGj8mD0SNj/kf3+RXOXn+nvoZ6H94JZvetLcwBsyr2nhpZB0CS/LlFuIeapgtGO6nARlA72N3b3A27hc5Tf0fcwPwqlDREREREREREREREREREREREREREQkSxSMJiK5o8AhGK0hpGC0ihXOB1D6Xh7OnpJ/yvrDlOfguobUQR+5bNgXW7YZBoz+f+HuW1oOI7/Rsm3Ip7yvccIU6D7p+Da/ByoLO/obL9ErdAlGA9j9YjR1iIgEpXob1O5Jf36+XncM+5L7gebqrZnvkSoY7fVPtc3ghGRt6jH5FjSadAhGMwob/1zcreW1Yjp2Pp/5GvnKzIFgNCMOJ/8q21Xkn6Iu0PcK+75kPex8Ntp6MuX0PR9PMxit/WAYcH369fgVb9fstksw2prfh1uLiEi6nO6LY4X27W4MA0Z8Da7cBtcehlFpvg5ZuRpe+TBs+Gd680VyjZ/r7+Ff9jau0ygovzK9epp6+RrnvoZqqN6e/tqmS+harMDbGoYBo7/nbeyuud7G5SrTJRittP/xt9sPhf4u/3YiIiIiIiIiIiIiIiIiIiIiIiIiIiJ5SMFoIpI74g7BaImQgtH2OLxbfEEZdD01nD0lf8XicOLns11FegZ/EtoPsu8bcjOcMwv6XR38vn0uh4vfhsIOLfsm/BlO/SP0vhgG3ADDv2Id3OpycuPHCefDuB/DeXOsA09NlfTxV0uBTQ2SWwpKoKirc3/VpshKERHJiGnCsh/BrH7przF9fcvHvnzR9WTr8d/J/Avgve9bX6d0pQpGA1j7p/TXz1cNHr4uTsHQucrpIHjzYI5BH818rzW/haW3g5nMfK18k3Q5cB+WE6ZCt0nQ5zLr+cDF71j3H+LfOU84921z6ctFiTr79lhR+mue8W/ockr68/2I+QhG29WGwxhFJLc5XS9mcl8MUNgexv8UzviP9Zphl5OtN0/wY5VCVKWV8Pq8bPBNVuCZV2c9CCf9HHpdaM2d9hrM3A7DbrGuvb3YNguObGxWbwO89WV4pDPMKofZI6Fiufe6jnELRnMLWG9u6Kfg7Meh31WAy2snK3/ufc1c5Pb/ZNprMPxr1s9QRn4TLlxkhYaLiIiIiIiIiIiIiIiIiIiIiIiIiIi0Ih7ffllEJAIFDsFoDSEFoy35jn17hxPBUG6k2Oh3FfS9ArY/lb0aSvpCzXZ/c4bf4t5fPsP6qN6WWYhLU6NuhZP+27nfiMHwL1kf6Sjr7298Uef09pFoDfmk8yHXRG20tYiIpGvzA7DstvTnn/wraD84uHqyoct4K+Sgept9/4qfQtlA6zBzOrwEox14N72181nSw2Nl9RY4vB46DAm/niA4BXbFmr2cNeRT8OYXMt9v+Q+tQOHBH898rXxiRhyYd119y39DSZ9hWCHea//csm/HHEgchXiGYTZujlbA7gVQvRWMAivoptvpVri4H2bSJQyxOP36YgVw5r0wZ2T6a3gVbx6M1s5+nIhILnMMRiu0b/fDMGDQjdbHMXPPgb2LvM0/tALW3Wm9jtmuZ+b1iGSLl2C0bqfDKb/1t26sEEZ92/po6rQ/WJ9X3AHvfTf1Ok8OhusaGq/nVv8a3v9jY3/lanh6LFx31N99Q1DBaAD9ZlofAI/1gtrd9uMOr4MOQ/2tnSucro2NAijtA6f+Jtp6REREREREREREREREREREREREREREIqbkHxHJHXGHYLRECMFoK3/h3NdhWPD7SesQL4azHoFzn4KR33YY4/D/OCiT7/c3vvsZ0Hm8t7Gl5TB9o/+amps63z0ULQglfaxAFa/0fZ0fhn7Wua9uX3R1iIhkYrWHg8sT74IPHYFzZ8MJU63HqbG3w7TFMPIboZcYieLu7v1bHkp/7QYPwWgNh60woLbEy9cFYPZwWP7TcGsJitPBeaNZqFasEKavD2bPxTdB3YFg1soXXoIZgqRQtOCVz7Rvr6+EA2+Ht+/BJTBnNCy6Ct7+Crz1RZh7Jrw003/IfdLlPjuWYbBbx+HRPCdsEYxW4jw2iIAhEZEwON0fGyHdb534eX/j3/gMzB4Bu+aHU49IFJyuv0v6wtgfwuQHrNfYg36zj0Efh4IO3sZu/Ffjnzf8037Mwsv97R9kMFpTbgFyT50Ippn+2tnkNShcRERERERERERERERERERERERERESklVIwmojkjgKnYLRaMJPB7ZOogyW3Ovd3OTm4vaT1iRdB38vh5J/D1AVQ2LGxr/xKuOYA9PF5IMir8XdAj7P8zZn4DzAM7+NL+/pbvykjBhe/Ayecn/4anvcynA//2+k4IrxaJDgdhjr3KRhNRPLBrhfgwJvuYwZ/EoZ8AgrKoO9lMPUFuGINjL0Nuk+Mps4opApG2zU3/bUTHgPAju5Pf498lKz1Ns5MwLIfwP63wq0nCKbDQfDmwWhgheYW9whm30VXBrNOvogyGK3XtOj2akt6nmc9rtipXBXOnqYJr38Gana07NsxGx7vA5Xve18vUefcFy/2X19ThgHnPG6FjYTJTzCaW5+ISDaZDtcFmYZUOhnwYRj2ZX9zjh6E+VPbXhCytB5O32fl02HsD6zvC6dru0yU9oFJd0Fxt9RjX78ZXpwBCy6FytX2Y3Y9DxUrvO8fVjBaqp/p3R+DRVfDax+HdX+HpEsducTx+bACdkVEREREREREREREREREREREREREpG1QMJqI5I64QzAaeA8/8GL3Avf+QR8Lbi9p3U44D67aAxe+DDM2wTmPWQe2h9xsP37KPJixBU78vLf1J90NF78N5z0DV++D0d/xF3I2czt0Gul9PECsEAo6+JsDUNofPlwLXSMMFvQTjOb36yDZ43QYVsFoIpLr9r0O8y9MPa7PxeHXkguCCqiy4/W5QV0bC0ZLeAxGAyt4ev3fw6slKI4HwW0OzRsxOPFzwey75yXY83Iwa+UDp69zGIZ+Krq92pJ4EXQcZd/3usPz00wdWuEeBlp/CJ473XsIY9Il3CaWYTAaQKdRMGMzTFsMA67LfD07zYPRXMcqGE1EcpRT2FgspCAeIwan/d56zfTc2f7ecOHFK8KpSSRsTsHEUQRe9b8GrlgH0163fu7gZvuTsDPFmKfHeH9jo7CC0Tp5eFOUrY/Bxn/DG5+Gl6+xQn5zndPztJhNULiIiIiIiIiIiIiIiIiIiIiIiIiIiEgrpGA0EckdBWXOfQ3Vwe1zaKV7f2mf4PaS1i9eDD0mQ9mAxrZ+M2HiXdB+CBgF0PNcuPx96DUFyvpZt70YfBN0PcUKUCnu5r2mrqdagWrp/l8u7up/zoUvh3dA0kmPydDuhNTjSvsd/+8jua24u317lMFo22fD/GkwewS8+QWor4xubxHJX8t+mHpMQXvo3UaC0coGhre2gtHsuYUK2Vn3V+8H2LMl6fMg+JjbYNStwez9zteDWScfOAUzZOqcWdDzPOt5QtkgOP2v0P/acPYS6OgSCFGxIti99r8FT49NPa7+EKz4qX3fkU2w6Gp4ehwsugYOvOO8TqworTJbrhOH7hPhzHth9Pes55MFZdDvauf7jo7Drf/HntZvFozmFlipYDQRyVWmw3VBUPfFTsr6Qd/L4JTfeZ+z63l4ajhseyK8ukTC4HT9HdXr60Wdofvp1s8dTr8z8/Xuj0Pl2tTjjh5w7sskGA3gCg/7H7NtFtwfg/kXeQ/xzQan58OGgtFERERERERERERERERERERERERERKRt0G/OikjuKCh17ksEGIx29KBz36j/F9w+0rYN+YT1kaxveaDJS0hXpzHOfQM/Cpvuse+b9hp0n+S9TjtFXaBqs/fx3SZahxejFiuA8T+D1292Hzfm+2AoCzZvtHMIRqveGs3+O56Fl2aCmbBuV66Bg0us8D/9PxIRN3tfTj1m3I+hsEP4teSCbqeFt7Zb0ExTR9taMJrDoWk3+9+yDsTnKtPnQfBYHE76bxh/BzQchlhx43PJwk7WY/nq38E7X0u994E3oaHKPcC7tQgjGK3PZdB3OpTPsH9OJMHr5BKMtuUh6OwhwNOLw+vguQnex2+b1bKt7gA8OajxdsUy2Pqo8xrxYu/7eWHEYPxPrMdlM2E9t6w7ABv+CbW7G8e1HwoXvwsFJdbfe+5Zx/c3V9jx+NvJOuexCkYTkVzlFLYb1WN5l3HWNcT2J72NP/y+9TrOuU9B38vDrU0kKNkORmtq6Kfg0HJY8/vM1pk9DGZsafw5Qd0B6+9T2AFME6q3wLwpzvOdwq+96jDUCqLf+az3Obuehz0L4JKl7tfS2eL0fDjTr5WIiIiIiIiIiIiIiIiIiIiIiIiIiEieULqDiOSOuEswWkNVcPtsf8K5r//Vwe0jAvaHmbqeBiW93ecNcQn7Gvpp+/aBH808FA2gqKu/8Z1dQtzCNuST7v2TH4Chn4mmFglG2SD79podsOO58Pdf95fGULRj9r0GB98Nf28RyW9uQb5lA+Dsx2D4V6KrJ9u6eghGW/yJ9AKZEjXextW1sWA0M42v5fMToXp78LUEpflj8jGpDoIbhhVQFC+2Qn+LujQGnLoFcjf3UHvY8C/v4/NVkMFoPc+BcT+x7vMMw2pTKFo0+riEwSz/UXD/zsvSCFjb8Uzjn2v3wqPd/M2PFfnf0wvDaLw/Ke4Kly6FoZ+zQjVGfAOmvWqFooEVtnHhK1Babr9WQRl0axYY5xQuBApGE5HclXAKRgs4pNLN2Y9aQbcdh3ufs+z20MoRCZzTc7dsXTeP/n7LgNd0bLgLanbDvKnW9d4jXeDRHvBod3hioPtcI575/ufN8T8nWQ8rfpb53mFwCj93CgoXERERERERERERERERERERERERERFpZRSMJiK5w+2AeoNL0IQf9YehYplzf9dTg9lHxE2sAE7+tfOBwm6T3AO/ekyGwTcd39b9DDjtD8HU5zcYreOIYPZN16S77ds7joQBH462Fsmc2/+nhRdD7b5w99/mEJ658hfh7isi+c00nQOcup8BMzZBvysbQ4LagtJ+qcds+Ce8e6v/tb0Go9VX+l87nzkdmk5l0VXB1hGkMA6CuwVy21l8Exx4O/39ckn1dtj6OOxeYN1vHWM6fJ27nAQF7b2tXX4lXJ+EC16EMd+DeEhBVuKsy7jGAEA7b34x8z2SDbD9Kf/zFl5qBaIBvHK9//nxiMJ42vWE0/8M5z8Dp/wK2vU4vr/DEJixBfpfe3y7EYPT/tSyzvIrnfdy+7cSEcmmZJ19e5SP7bECGP0duHw13GBa1xipHHgbqrfZ9x1aaV0DHXgn2DpF0uUUWGtkKRitXXcYlcZz8+b2vgqzymH3fOu2mYC6fXD0QOq5QQThGjGY8oIVWOvHpntg6W3w5hdg84OQqM28FgAzCQffg3V3wvbZ1s8nfc1XMJqIiIiIiIiIiIiIiIiIiIiIiIiIiLRt+s1ZEckd8RLnvoaqYPZ49jTnvvF3BLOHiBcDr4fOY61DQsmjUNwTDq+FjsOh/zUQb+c814jBxH9A/w/Bvteg4ygov8L/gR8nRV38je9xTjD7pqt8JsS/0DIkZeAN2alHMlPW3/r/73QAbddc6/snajU7o99TRPKHUygawEltNFjRMKxriqMH3cdteQhO/Y2/tb0GoyWP+ls33zkdrk9l/xtQsRw6jwm2niA4HgSPp79mOtfMK38OZz2U/p65YP3d8NYXG79/ekyG856FwvbO/3dK+8HU+fCITXByn0thwA1QvQU6jYK+09tW+GOumr4Jnuhv37fzuczXr1gK9YfSm7vlYeh7Geye53+uU6h4NhgGTH4QBlxvPR8v6mx9P3Q5qeXYLuOd13EKHhIRyTan+6ds3hcbBly2CuaMdB839xyYseH4tiXf+SDs/oNQ2ME3wcS7dN0i2eV0/R3LUjAawPCvwrLbnWsrv9K69ncLjd71fHp7d5sUXGhsr6lwyXuw9TGr3kQtrP976nnLf2R9Xvtn6/MVa6HD0PTrSDbAqx+BLQ82tpUNgHPnQOfR3tZwej4c0693iIiIiIiIiIiIiIiIiIiIiIiIiIhI26DfnBWR3BErsMLR7IIO6isyX79yDRx+37m/k8fDCCJB6Twm/QAKIwZ9LrE+glZsE3zgpKQvdHMJHIxCUWeY/AC8cj0kqq228pkw4mvZrUvSY8SgXW+o2mjfX7EUyEIwmg7MiliqtsKm/0D1Vuh5HvS/Vt8f4B5I1ZYPrI74Biz9vvuYmu2w7QnYOReKu8HAG6HjMPc5DR6D0dwObLdGToemvdj8YJ4Fo2XwfeUWyO1ky8PweDmc8msrnDif7veSCVj6X7CyWRD43lfgtY/COY+7BzMUdYHLV8P8C637foDO4+D0O6G0T7i1i39l/aBdL6jd1bKvegscPQRFnVr2JROw6V44+C6U9IITv2iF5jV3aGX6tVWuscL20pHO922YDAP6XWl9uI6LwdDPwLq/texLKBhNRHJUwiFcOJ7lkMpOI+D0v8FbX3IOQK7aCAeXQpdx1u3dC6yA26b+P3v3HSdXXe9//DWzfdN7L6SSBEJCIPTeI12QoldRwAJX9HcB9VqxYMGuV7nqtcBVUBSkd6T3ngBJCCSk9142m+zM/P445GY3O2f6zM7uvp6Pxzyy862f3cycPWfgvDP/T8Fjn68Hx+j6IcWsWkquHIPRKuvhgF/DC5e27qsdAEfcGpwDLX8QHj2psHsPO7uw63UbDROv3v181EXw5DnJz5HD3DU2uPYbdVFu/w3mqXOCzzqa27oQ7t0HJn0FJn4p+fl2c/EiXA9LkiRJkiRJkiRJkiRJkiRJ7UiB/vllSSqQmj7J2xvX5r/2on+k7h9U4Js5pPaqOotgtH2/Edzs3daGng5nr4BjH4HT5sERt0Fll7auSrkafm5437YlpaujhXYUgCIVy6a58MB0eP3LMO96ePo8ePHTbV1VeVh6V3hfZ75hdWyGr48nzoR5v4I3vgUPHAhrnks9Pr49s3UX3wrLHshsbEeQTzDa1oWFq6OQwm4EzytwMJHbtIal8PT58OxH89i7xOIx+NdxrUPRdllyexCQlggJZoi8H8zQfTycPh9OfBZOeR1OfsVQtHI24arwvs3zWrclEvDkWfDcx2Duz+C1L8E9k2BHkoD6TXNyr6thCWyem/28cVe0rzDCPfU5OHl73GA0SWUq7PgUrS5tHcmMuRTOXAK9poaPmf/H3V/P+034uDe+BffuC+teKVx9UqbCzr/bMhgNghCwZOcuYz69+3xs0InQZa/C7VndKwgpLKZ+h8Hp78Bxj2U3b9Et8NgMmPXt7ObNvKZ1KFpzb14Ltw9Nfr7dXGiAXif+nEmSJEmSJEmSJEmSJEmSJEmdShkkmUhSM9VFDEZLFVhx2F+hogxu7pLKQXWvzMbt9z0YfXFxa8lGVTcYeCx0G9O+b5xX6mC02v6lq6MFX1MSs38E21e0bHvnt7BxdtvUUy4S8dQBcW19Y3NbqukTnGdnY+cmmHVN6jHxHZmvN/Mr2e3fnoXdNJ2JxjWFq6OQErHk7fkEDoaFrWXqvT/DqifyW6NUlt4Jqx5PPeb5SzILoItWQt+DoddkiFYUrkYV3vjPh/dtej+YrGkbvHIl3BSBm6OtPy/Ztgj+0ev9/gq4uTL4+s1rw9c++eXUdS2+DV69OrPvobn9f5z9nHJSUZO8PWYwmqQyFRqMFnI8K7XafjD9t+H9c38WXKPFm2DR31KvtWM9vPGd4OsVj8Ajx8J9+8PL/wGN6wpXs7Sn0MCrNv78IFoJR98NQ88KwhBr+sDE/4R9vtZy3OFp3luZqu4Nxz4E1T0Ks14qlV1gwFFw6M3Zz5319eD4sH1V+rHb16Q+Z95l58bgfHvJneFjwsLPO3MAvyRJkiRJkiRJkiRJkiRJkjoVg9EklZeakGC0HXkGozWuhbXPh/ePOC+/9aWOpLp3+jEnvQiTvgQRTyVUBH0OCO9r2rb76+2rgkcsi4CcVBKJ8D7D9iRYGHLj63t/Lm0d5WbVk8EN9WE6+w2rA47Jfs7yB1KHfGUTALbu5cxuXu4Iwm6azkTj6sLVUUhh31M0j/dV15HhfWMvy2yNhVkG/rWVpSlust9l0xzY8m7yvrYOZlBuohXQY5/kfSsfga0L4d59Yc5PMlsvEQ8PKdxln69B7/3hlNezqzWdvf8jv/d7OQgLEoo3Bp9VFepaRpIKJey4FBb02BZSfW4E8MSZsHleZmst+WcQ+P2v42Hlo7D+VZj7U3jyrNSfE0n5CLumjZTB+XdNHzjyNjh3M5y9GqZ8t3Uwcvfxua9f1QM+tBUuTMA5a6H3tPzqzdbwc6HX/tnPW/koPHoKxNOcF69+Irtr8yfOgCUh/6iTwWiSJEmSJEmSJEmSJEmSJEnq5EwzkVRewoLRGvMMRpv7y/C+g36f39pSR1OTJhitblBw07tUTCPOT97etBXWz4Sbq+C2AcHjbzXw6tVBaEM+UgY+eNqsTi6RgKbNyfvm31DaWsrNsrtT93f2YKGKutzmbZkf3hfPMgBs09u51dDeZBMYt6fGNYWro5DC/q4jFcnbM9FjH+gyonV7z33hgP+CYR9Mv8a863Pfv1Te/T3M/1NmY1c9nry9HIIZlJs+05O3z/8j3DEy9TE2n/16TYbJ3y7cuiMvLNxabSUsSGjHeri1L9zWD2Z90/AdSeUj3pi8PSzosa2ctTy8b+ld8NwnMl/rhU+1blv1BCxNc60n5Srs2q2cPj+oqA7/hyKquucWgg5B8G1lfe515StaAcc/CntfCb0PzG7u+ldgUcg/GrDLtiXZ1/TE6clDKcOuh8vpdSJJkiRJkiRJkiRJkiRJkiQVkQkPkspLdRGC0RJxeOOb4f29puS+ttQR1Q1N3T/tlxDxFEJFVt0reXvjGnj4CEjscWPY7B/BnJ/mt2eqQJmwGwGlzmLH+vC+sMC0zmLjnNT90crS1FGuKmpzm7cpxc81kWUAWKq1OpJsA+OaK9dgtD1/3+8SyeN9FYkE57PR6t1tFfWw/0+CvoP/2LIvzM4yPfZtWwKvfQmevyT/tTr78as9G3JaafdrHowx9IzCrDn+/0HvaYVZqy2lCxLauQlmXROEGUpSOQgNRsvg/KiU6gZC/6PC+9c+l/8eS25r+TyRgA1vwsJbYOvC/NdX5xXbmry93AIIU8klDLf73jDh6sLXkq2q7rD/j+DkF+C87dBrauZzF9+Wur9hWW41vXBp67aw62Gv0yRJkiRJkiRJkiRJkiRJktRJmGoiqbzU9E7enuuN+k0NcM8+qcdkc9OD1Bl0GwPdJyTvO/DXMPyDpa1HnVNFffL25fcF4QHJLPjf/PaM78hvvtSRNSwP79u5KQii7ay2zEvdH6kqTR3lKprj97/2pfC+VEGWyXSWYLRsA+Oaa9oCse2Fq6VQwsLe8r0RfOhpcMqrsN/3YOoP4ZRXYODxQV9VNxj54fRrbH47vxqKYcH/wp1j4K0fFGa9zn78as/6HlS6vQYeD5Vddj/vkeYzmGQmfhEmfAH2+mgQsnHswzDtJ4WrsS1lGhC68K/FrUOSMhUL+WykogwDm8Z8qrjrL7hx99fxpiB49t594Onz4I6R8Ma1xd1fHVM8Bo3rkvfV9i1tLfnodxicsSi8P1IJXUYGj65j4MDrYcZMqKwrVYWZqaiBk54PArIzsfjW1NfO23IMRlt2XxC+2FzY9XA+QeGSJEmSJEmSJEmSJEmSJElSO+L/OSupvNQOTN6+5d3c1nvkaNg0O7z/yNshEsltbamjikTg8Fvg0ZOgodmNPPt9D8Z+pu3qUufSPFwhUxteD24gy/W4njIYzTxhdXINaW7sXPM89DukNLWUk/hO2JzmPDXfAKfOaumdsN+3k/cZjJZc2E3TmWpcA/VDC1NLoSRiydsLcSN4j4nBI5kp34dNc2HNM+HzN86B3tPyr6NQGtfCC5+CeGPh1sw12FBtr3YgVHYNQg+LbcgZLZ9HIjDhKpj9o8zmV/UMrjU76mcz0QyDhFY+Utw6JClTYecSmR7PSmnE+fDMhcVbPxEPAqxqegcBlvP/0LJ/5ldh4AnQd3rxalDHs2MdkEjeV9OOgtEAugyDczbAk2fDyn8FbbUD4OAbYPBJbVtbNqJVMOoiGHBc8L2sSxHUDnD3BOgyArqOglgjJJpg0S3BP/QR25ZbDY2rYfsKqBu0uy1hMJokSZIkSZIkSZIkSZIkSZI6NxMeJJWXbuOStzcsg52bs1vrxctg7Qvh/T0mwtAzwvulzqznPnD6Ajj+ySBA8OxVMOlLbV2VOpPK+tzm7Vif+56pgtE6alCDlKntK1P3L72zNHWUm60Lw29U3cUbVnOzYSZsmZ+8L93PfE+dIRgtHiP05vpMNa4pSCkFFXojeEVx963tD8c/DienuCF+9VPFrSFbi2+DWENh1zQYrf2KRKDb2OLvUz80CJHY0/DzMl9j0Akd+1y7ogyDhCQpldBgtOrS1pGJSAROnVvcPe4eHwQz7xmKtsvSO4q7vzqeVNdd7S0YDaC6Bxz7MJz8cnANddq89hWK1lyXYXDS88F/E0ll63uw6nGY/0dYeFMQiga5h6LtsmmP41nYZ9XFvh6WJEmSJEmSJEmSJEmSJEmSyoR3aEsqL93Hh/dtnge9psDmd2Ddy8Fj/StBCE6XkTD5O9BzUjB20zyYd33qvUZcWLCypQ6pohr6H97WVaizqsgxGK1hKdT0zm1uqmA0OnBYg5SJdGE7S+6AKd8rTS3lZPvq9GMMFoJBJ8Py+7Oft/RuGH9F6/b4zuzW2boAYtuhojb7GtqLTMPijnsMHjk6ed99U2HkR2C/7wY3hJeD0GC0EnycFa2E3tNgr4/Cghtb97/z38H7e/8fl8f7fPFt6cd0GwfHPAB37pXZmgY7tm/9DoP1r+Y+P1IZvAe7joa6wbDupZbnA30PgQN+BVVdW8/tMQmqesLODen3GfbB3GtsD2r7Zz72latg4hehtl/x6pGkipK2bwAAIABJREFUVOIxSMST95Vr0GP3cTD6Ynj398VZv3ENLH8AVj6avP/N78J+1xZnbxVXIg6xxiAMcNef8R2t25L1terfkXxOsrk7UpwfVfcp3fdfSJEI9N6/rasojEg0+G8ip86Bu/cu/PoH/xGe+3jyvkeOgRkzoee+wfOwfwCkukfh65IkSZIkSZIkSZIkSZIkSZLKkHc4Siov9cMgWhPcILKnZy6EhuWwc1PrvvWvwfIH4dTZ0GU4LLs39T7RKhj374WpWZJUeJU5BqNtW7b75rFspQraiURzW1PqKGJJzs2a2zQ7CKbtPrY09ZSLxjXpxxgsBOM/Dysezjy8a5cNbyRvzzYYLRGHrYs79usz05/JgKOgujfsWJe8/70/w8pH4ANvQnWvwtWXq3jIayZawvfV4A8kD0YDePuX0LQ5uLm9LcUaMwsfPPnlIMRqxiy4N4Pzpcq6/GtT2xl7efDaTfYZCsDoS+Dd/wmff+6m4LOZ6p7Z711ZBxOuhJlfSz2u11QYdk7267cntQMzHzvnx7D6aTjhKYhWFK8mSQqT7DP5XaJlGowGQbhvJsFoIy6EQ/8cXB/sWAuvfgEW3JB+3tv/lX+NuzSuDc6zO9vnTPGm9IFh+fZlG1KW7fVpsVV28fy7nHQfD4f/A54q8LlqtDoIMF79dPL+eyfDic8G55ANy5KPqelb2JokSZIkSZIkSZIkSZIkSZKkMuUd2pLKS7QCuo2FjUlCEDbNTT03tg3e+A4c9FtY82zqsacv8F9Vl6RyVtElt3kNS3PfM74jvG/9q7mvK3UEqW6Q32XpHdD9quLXUk4yCUaLVhW/jnI3+CQ45j741wnZzduxPnl7tsFoEAQf0IGD0bK5qb+mb3gwGgRh1Av+DOM/m39d+UrEkreXMnBw8ClQ2RWatiTvn/8nIAIH/U/bBVwsuT39mIEnBqFoAD0mQddRsGV+6jndJ+Zfm9pOj73hhKfhretg3Uu7jxN1Q2DE+TDmk6mD0SrrgDzCOSZ9JQh0WPhX2L4CmrZCVbcgiKSyC/Q/Cva9puMHgEUi2Y1f+xws+juMPL849UhSKimD0apLV0e2Mg0JGnlhcFyOVEBtfxj7mcyC0ZY/kF99AOtegWc+EoSKV/WESV+GCVdl/3sinUQiuF5KGhjWCLEdSdqKGVL2fn8iXtjvsyMy7Kr8DDqp8GtGq6D39PBgNIAHD0m9hq8VSZIkSZIkSZIkSZIkSZIkdRIGo0kqP93HJw9Gy8TSOyDx3xDfHj5m6o+hfkhu60uSSqOyPrd5Dcty3zNVMFrDctixAap75r5+udqyIAh+630AdBne1tWoXKV6f+zy3l+CG7s7ungTrHocYtth4c3px5cywKmcDTweqnunDuTa084NyduzCQHbZfvq7Oe0J5mExQ09M/izth9sfjv12AU3lEkwWsjfdbSE76uqbjDhapj1jfAx8/8I/Q6D0ReXrq7mVj+Tfszkb+3+OhIJXg9zfhI+PloTvG/VvvXcBw69Mbx//Odh7s9at4/6RP57RyIw5pLg0dmNuCCzc4Zd3v6FwWiS2kYsxXVfRU3p6shWJiFBwz4Ig2e0bOt7EOz1sczC0fKxfTXcP233850b4LUvwOJbYdjZ4WFiuYaUqX2qH9rWFWhPVV1h7ythzo8Lt2akCoaeDnN/mvsaBqNJkiRJkiRJkiRJkiRJkiSpk/AObUnlp/v43OduXwXLH4Ald4SPGfnh3NeXJJVGuQWjASy5E0Z9NPf1y00iEdyIO/tHu9smfQUmfzsIspCaizWmH7P+NVh2Hww+pfj1tJUt8+Hx02Hjm5nPiVYUr572Jlqd3fgdIcFomYSA7alxTfZz2pNMwuJ2BR1lchP1upfzq6dQ4iHfV6TE76uJXwxCjTbNCR/z/CUw5AyobYOb1FMF3Y35NOz7dagb1LI9XTDaXv8WBAGoYxt+TvJgtKFnlL6Wjmz0J7ILRlvzbPFqkaRU4imu+6LlHIzWJ3X/gdfDmE8m/6zj4D8G50VPnpXb3pFo6v5Nb8PdIf+9Y+3zwUOC4FpC5WfqD4MQs0S8MOtFq6Df4dB9AmyandsaBqNJkiRJkiRJkiRJkiRJkiSpkzAYTVL56bV/fvMfmxHe1+9wqBuQ3/qSpOKr6JLbvG1Lc98zXTDaq1d1rGC0Zfe2DEUDePNa6H8UDDqhbWpS+Up1g3xzj82AC+IdM1wvth3uHN3WVbRvFVmGKax7KXl7wmC0VsICxHaZ8AUYcmrwdXWa4IhdXroChp0FA47Jva5Nb8N7N8Ha54KwtX6HQd3QYM1hZ6c/VoQFvkVK/HFWRQ0cfR/cuVfqcY+dAie/WJqamgsLRht4Iky/Pnlf30Ohph80rk7SGYH9vluw8lTG+h4Kk78DM7+6u23CVTDktLarqSMacFz2c9a+BH0OKHwtKr1ty2DBDbBpLpBo62qk1HZuDu/L9ly+lKJVqfvHfCr8vDMSgWFnwr7XwKxrctg7TfjzC5dmv6Y6n2EfhPFXtHUVSiYSgVNeC0Lyt76X/3rRKohWwiE3wKMnwY712a9hMJokSZIkSZIkSZIkSZIkSZI6CYPRJJWfoadD/VDYtiR8TCSa27/Q7s0lktQ+VNbnNq9hWe57xtME7SQNDmnH5oUEpcz/k8Foai1dcGBz8/8Eoz9etFLaRKwR7hjR1lW0f9EcwhTe/jWMu6xlW7rjdTIdPRgtVVjcCU9Dv0N3P8/05/f2L4PH1B8GQUnZWvUEPHoKxLbtbltyR/DnvF/B6EvhoN+mXiMs8K3UwWgAXUfCmUvh9iHhY9a9BCv+BQOPLVlZxJvCb9Df873TXLQC9vk6vPzZ1n3n7wz61fFFIrDPV2DURbD+Veg5GboMb+uqOp5IBOoGQcPyzOc8cCAcejOMPL94dan4Ns6Bh4/o+Och6hzSBYC1tV5Tg99le+qyV3GDu1P9XLavDs6J1b5FKoJr2YqaJH9WJ++L1kBFdbOvQ+ZW1EGfA6HbuI4ZMN9R9NwXPvAmPHoirH66df+hf4G3fgAbZqZfa1eQY58D4YxF8PCRyY9dqdRkGHYuSZIkSZIkSZIkSZIkSZIktXMGo0kqP9EqOPZhePYiWPcCEIEeE6HX/tB7WvDotR/cfyBsmp3d2n2mF6NiSVKhVbRFMFoWwU8dwbJ7krcvvAkO+0tpa1H5izVmPvb5T2QXjBZvCm4gXfFQEHY04UoYfEr2NRbTO7+F7avauor2L5cwhde+AMPPgdr+u9vCwrJS6eiBJKl+Jl32CPXbsS67tV+9GrqNh6Gntd5zwY3w5rWwZX7QVjcEGpZmtu67vwseu+qr6gEDjoPJ34KqrkFbIpZ8brSNPs6qHxwEzT10WPiY5y6CMxeVrCR2rA8PDa9PE3A19jPQuArm/CwIsBtwDBz0B0PROqP6IcFDxZPL767XvxT8DmyrY56yl4jDnJ/A4tuCa9OtC9u6Iqlwcgk5LqV9vgpPfrB1e78U522FkOr47jEge/8XNJYiVCxaHRI0lkVfxgFn1Z4bK1BZD8c9Bq9eBe/+AZo2Q1VP2PfrMOICGHoWvHolzP8jxLaHrxOp2v11Vdfg+vLVK8P/AYtWdXSD7nvn9a1IkiRJkiRJkiRJkiRJkiRJ7YV3VUkqT93Hw0nPBjcUxpuCG2H2VNM3uzWHn9c6FECSVJ4qcwxG274SEgmIRLKf29mC0TqCxnXQtAWqe+2+cVbFEc8iGA1g6yLokiaQZ5dnPwoLb979fOUjcNRdMOTU7PYspoV/besKOoaKHMIUmrbCkjtgzKW72xI7s19n+8rs57Qn8RQ/k2hVy+fDPhgejhnmidPh+Meh/5HB79n4Tph9Hcz8WstxmYaiNdc8MGLDTFj3UrBXJAKJkKCJSBt+nNXvUDjyzuBnksy2xbBxNlR2CR6x7VDTBypqC1dDvCm4Vq6ohsa14eNq+qReJ1oRBNHt87XgZ5rL+ZOkzAw9MwiDzMbWhcFxsduYIAQRgjCNyvogTNL3bPl5+fPw9i/bugqp8CJRqKhr6ypSG3pWEPK68tHdbdEaGPfZzOb3PiC3fWPbIB5LHp6VT3h/0UVSB4MVIogsVeBY0j2r/d2m8hathGk/g6k/CsLz6wYGx0eAyjo48Ncw7efwwidh/p9C1tjj+rz5vPumwMa3Utcw7t8Le20pSZIkSZIkSZIkSZIkSZIklTGD0SSVt0g0POQk22C0Q/83/3okSaVR2SW3eYlYEHCWS/iOwWjtx7pX4LmLYMOslu3jPwdTf5z8hmTlJ9v3x5I7YHwGN6AvubNlKNouj58GR94BQ0OCh0pp+xpY82xbV9ExRHM4NgMsub1lMFqqELAwZR1KUABhAWLQOkRs0Am57THz67D/T+DFz8DaF3JbIxOrn4TlD8Dgk1MEo7XxcX7oaVA/LAhBS+aeia3b9vooHPBfUNUt931jjfD6l4PQnfhOGHwqjLwgfHy6YLRd9rw5X1LhDZ6RfTAawP3TgAiQaN037edB4I8hMuVhw5uGoqnj6nto+QeRRyJwxK0w5+ew/H6oGwz7fh16Tcls/sDjoKo77NyU/d5NW6C6R+v2Wdekn1vVE3pMTB04lk/YWFifobhS7qKVUD84pK8quFYMnRty7RWtghOfh1evhHd+m3zMtF/CuMuzq1WSJEmSJEmSJEmSJEmSJElqxwxGk9R+ZROMdvyT3uwtSe1JRX3uc5u25haMFjMY7f8suRP6HZZ5oEo+Eokg4KxhGVT3hqZN0HVU8NjT5ndh/Svw1IeSrzX358FNxZOvKWrJnVKsMbvxyYLRdmyA1U9B47rgtdVrCjxxRvgaT5wBp86B7uOzr3f9a7DyseA1NeBo6DI8s3k7N8Ga56BhRXCja+0AmPsLkoaRKHu5no8vuxe2LYH6ocHzXILR1r8KO9ZDda/caih3qX4me/7c64fCxP+Et76X3R6rHn8/oKcEFv09CEaLhwSjRcvg46wTn4Pbh2Q+fsGNUFEL03+T+55v/QDm/GT382V3B49kojX5nU9JKqzBM2DgibDiwRwmh5yHvPw5qBsCwz+YV2kqkHv3aesKpOKo7AZTvt/WVWSmulfweUAunwlU1MKU6+DFT2c/N1kw2tJ7g2uQVPa7FiZ9Ofv9JJW5FKGDqT4XqeoaXC/22AdevmJ3e2WX4L9x9p5auBIlSZIkSZIkSZIkSZIkSZKkdqAM7iSVpBxlGoxW2RX6HlLcWiRJhRWtgkgFJGLZz23aCjW9s5+XyCBoJ5GASIqb2zqKJ84AInD432D4ucXbp2krPHcxLPpby/ZIZXBz8ORvBs8TcXj9q5mF+Cy40WC0YohnGYy26nGIbQ9uLocgKO2JM7Pf9+694YIYRKKZjY83wdPnw+JbW7ZP/RFMuDL13DXPw5NnQcPyzOsbcQH0PgBeTbO23pciYK6iNnjNhLl9WHCD8JhPQiIkLCudW/vCEbfB0BSBfO1Vqp9JJMlHP/tdC/2PgqV3wrxfF6+uXM3/Q/A7YPWTyfuTfU+lVj8YJlwNs3+Y+Zx3fw/7fTe34NGmBph9Xebja/p0jnMWqb2oqIaj74X3/gLPfaxw68673mC0crBhVnbjR11UlDKkguu+Nww9C7qPa+tKSmPsp6DnvvDQYdnNa9rauu3d/0k958Rnoe/B2e0jqf2LZBAYP/6zwX/TXPJPiNbCmEuhbmDxa5MkSZIkSZIkSZIkSZIkSZLKTBncSSpJOartl9m44R+CaEVxa5EkFVYkApVdYOem7OcmuyF1l3gMlj8AK/8F9UNg9MVQ1T39vF0STZndwNYhJODZj8HA46G6V2GX3jIf3rsZZn41ZOsmeONbsHNzEIi16O+wbVFma29dAPGdQbieCie+I3n7gGNg5aOt2xNNQQDQuMuD9/HT5+e+980V0H1C8HXfg6HLSBh2VnDD+i5bF8GsbwZhSsm8ehW8dxP0mtKsMQ6rn4Eek2DQiUG4UTahaOOugAN+/v76BqNlpMe+sOqJ1u3R6iAY4L6pqee/8KngmBTPIMgymUQcnjoPzl4J1T1yW6PcrHkBltwOy+4OH5PseBiJwOCTgkfD8uCG63Jz+7DwvmiZfJw16uPZBaMlYvDSv8NhN2e/18pHMjtX2SWX8DVJxRWtgFEfDQIp1z5fmDVXPhL8fss0RFbFsf71zMd+aEtwrSupPPU7FMZ9Ft7+ZeZzYttat6U6vx7//wxFkzqrTD+v7HNA8JAkSZIkSZIkSZIkSZIkSZI6sTK5k1SSclA3JLNxE79Q3DokScVRUZ9bMFosJDQkkYCXLod3frO7bc5P4KQXoW5gEMKVTnxH5wrcijXAkjth1McKt+bqZ+DRk6BpS/qxc3+a2x4Lb4G9PpzbXCUXa0ze3nsarHoyCELb00v/HoT4dBkJse357b9pdss/3/wuHH4LDD0dVj4Ojxydfo31rwSPPW1+O4dQqAiMuSTLOWLEh4IwGBIt24efF4TWfWgr3JImKGTRreHBaEfeEbzmnrkwfH68EVY8CMPPzar0sjT/T/D8xUEgTiqRNCHRmQZO52P674LwtiV3FGa9dN9zqXTfG7qNhc3zMp+z8K/Qa2r216lLbs9ufLXBaFLZGnFB4YLRADa/C93HFm49ZW/b4szGHfeooWhSe1A7ILvxe4bXNiUJSmuu+/js1pfUzkTCuzrT58qSJEmSJEmSJEmSJEmSJElSnqJtXYAk5axucPoxR/zTG40kqb2qqMtt3v0HwFPnw4ZZLdtf+0LLUDSAbUtg1jeCrxfelH7tsDCejmzjW/mvEdsB8/4bHjoCHjoss1C0fLxgYFXBxXckb6/sCt1Gh8977Yvw9HlFqKcRXr0K1r+eWShaoY29DHruW/p927v+R8Ih/wv1Q4Pn0eogHGb69cHzyvogaCqVNc/SKlhtl+qeMOJ86DYu9RrblmRVdllqXAvPfTyDULRKiKS4KRugpn/h6kpm/OeCIMEDfhXUUwgNywuzTr4iERh2TvbzZl0D21elH7f6GXjsVPhHb3j399nt0efA7OuSVBrjr4B9vla49e6fCg8dGfxe2LqwcOsqMzs2wutfTj2mpl8QEjrg6JKUJClPVd2zG79nMNrmt1OP7zEhu/UldRwGo0mSJEmSJEmSJEmSJEmSJEkZMxhNUvtVPyS8b9RFcH4TDDuzZOVIkgqsojr3uYv+Bg8cBFsWBM/n/gJm/yj52Hd+C/NvaB2klkxnDEbL5Oeyp9j2lj+r1/8TXvwMrH6qcHWl279hZWn26izijcnbozXpg6yKZfM8uG9K6fftsQ/sd23p9+0o9vownLEIzlwC526Ew26Cyi67+7uMSD1/e4r39q4QsAlXpl6jYUXm9ZaT2PYgEC3eBLf2zWxONIMgstoiB6PVvX/dVj8E9vpoYdbsMakw6xTCxKuDwJtsxBpg4V+Dv0sIAu4ScUgkIB4LfoeteiIIE112D+xYn31doz6R/RxJpRGJwORvBZ9bjb44//WatsLqJ2H+n+D+A3M7Zig38SZ45NjUY87dDGctC0JCJbUPVd2yG79nMNrGOanHt9U1tKTSSBVOHjEYTZIkSZIkSZIkSZIkSZIkScpUBnfISlKZqhuUuj9aUZo6JEnFEcnzVDXWAHeOgklfhXd+k3rscxdltmZnDEZbfj9sXwO1GYTw7NwCz18MS+6ASBSGnwsjPwJzflL8Ovf0xjfhwF+Xft+OKhYWjFYNg04O/s47g0EnwaF/geoebV1J+xaJhIccpwtGq6gL74u+f4PxmE9CZVd45sPJx82+DhbeHBwjhpyavt62tmM9PPcJWHJ79nMzuem6JsOQtVwNOnH319N/C93Hw7J7g+fjPwfrXoY3swwb7Htw4erLV3UvOOk5mPkNeO/Pmc97+XPwyn9AIhac8ySaClfT6Iuhh4EbUtmLVkC3sYVds3E13DsFzlxY2HWV3Mp/wfpXwvvHfAqqupauHkmFUZltMNq2ls+X/DN8bO9p2YfqSuo4ogajSZIkSZIkSZIkSZIkSZIkSZmKtnUBkpSzilqoqE/eN/z80tYiSSq8Qt0o9uZ3goCAQojvKMw6bS2eTfhKAmZ+LbOhz30MFt0C8cYgmG7BjfDoiennFcO862HNC22zd0cU9tqvqAnC7/oclP8e9cPg4D9BpEzDbSd9BY65H2r6tHUlHVu6YLRUx/PmvzdGXghjPh0+dttiePw02PBGdvW1hacvzC0UDTJ7vVaGXFMVwqiPQ6/9dj+PVsDEL8DxjwWPYWfBuM9mt+aYT0HPyYWsMn9dR8Gh/wsXJlo+zgsJldwlEXv/zwKGovWeBgf8qnDrSSquwTNS99cPg3PWw/FPZr7mtkWw8rG8ylKGFt+aur/HPqWpQ1JhVWUZjBbb2uzr7cHnImGmfD8IipbUORmMJkmSJEmSJEmSJEmSJEmSJGXMYDRJ7duoj7duq+wKA44qfS2SpMKq7NrWFbQW39nWFRRGbHt24xfcAE3bUo9pXAdL7si9pmKY86O2rqDjiIeE+0RroKorHPcoTLgq9/WHngGnvAajPganvJ77Osn0PyoIb9v1qKjLfO7Ij8C4K+Coe2C/7xS2LiXXZWTq/g0zw/silS2f1/RNv9+8X6cf05a2LoTl9+c+f9BJ6cdUZhn8kE7X0TD2cjj873DQ79OPrxsQhP6kUzsQjrwjCP1qL2ESFdVw8svFW3/az2H/n8Koi2DUJ+DAX8MJTwehlZLahx77QI9Jyfv2/wl84C2o7gn9D4dpv8h83Xd+V5j6FG7rQnjnt6nH1A8uTS2SCivb8+OmZsFoS+8KHzfsbBh4fG41SWo/9vxsojmD0SRJkiRJkiRJkiRJkiRJkqSMpfg/cyWpHdj3Glj/Cqx5NnheURvcgF9R26ZlSZIKoNBBLYWQ6CjBaA3Zj3/7lzDxi+Fj1r8GiVh+dWWjsmsQ+LP41vAxi/4OjWuhpk/p6uqoYmHBaNXBn5V1MPWH0GUveOny7Nbe5xsw+Zrdz3tOgt4HwroXcyoVCMLQjvsXRJJkgSduhBcvg3f+O/UaZy6G+qGZ7Tf9d/DCpa3bR12U2Xzt1mVEVsMXNIzkjjWns6GpJ6ct68q0ns06MwpGuz4IkypXKx7Ob/6U76cf0+fA4L0c35HfXgDjPw/7/zj5ey+V6p5wwlPwxFnQuHqPvt7BNd7AY/Ovry303j8IWXzvz4Vfe8QFUNuv8OtKKp1IBA7+IzxxBjQsD9q6jAzOY7ru1XLs0NPh5SsyW3fhTTDiPBhyWvsJk2xvXrws/Zi6IcWvQ1LhVWX5eVTjut1fr3s1fNyIC3OrR1L7MvLDMPOrrdvrh6YOTZMkSZIkSZIkSZIkSZIkSZLUgv/3raT2rbYvHP94cMPR9uXQ/0io7tXWVUmSCqGqa3jfgdfDi58pXS27FCI0phxkG4wG8NqXoOtoGH5O8v7Z1+VXU7ZGnAdDz04djAZwa184aznUDSxNXR1V2Gt/VzDaLuMuC8I3MgmKABh9cctQtF2yDVVqrtdUOP6x8P5IBKZfH7yGHjkm+ZizV0Jt/8z3HDwDKrtA09aW7cPOzXwNBbIIRntu40HMmHU3G5qC8/9v/zzBHy+K89FD3n/9ZBKMBjDr27Dv17KttPi2vAfPX5L7/LNXBoFj6VR1g6FnwqJbct8L4NS50H1c7vP7HQanzYXVT0PDiqCttj/0OxxqeudXW1ub+kNYeifs3FS4NcdeZiia1FH0ORBOnQNrng/OgfodDhU1rcfVD4OKuszP5Z84A0ZfCgf9trD1Cja/C8vuTT+ubnDxa5FUeNkGo735HZj0peCacNOc8HFDTs2vLkntQ9eR0Gc6rH2hZfvw8wyslSRJkiRJkiRJkiRJkiRJkrKQx93mklQmolXQdzoMPcNQNEnqSCpTBKMN+yCMu6J0tewS31n6PYth41u5zXv1CxCPtWzbuQlevByWP5BfTZXdoH54+nHRahj5YZj2SxgyIwjJS+e1L+VXm8Jf+xXVrdvGfgb2/xlU9Ui95t5XwvSQoI5cg9H2+igc90hmYwccDcc/AV1H7doU+hwEZ7yXXSgaQP1gOOZB6PZ+KFTtAJj+m+A1quzUDsp46FcWfOf/QtEAEokIn705wc6mRNDQ54DMFpr1ddgyP5sqi6thBTz/Sbhzr/zWyeZ1fNDvg9+t0argMfRMGHF+5vMHnZJfKNou1b2CwIgxlwSPoae3/1A0CMI5J3+ngAtGYMr3CriepDZX1R0GnQADj0seigbB+VHfQ7Jb993fwd/qYf4NkEjkX6cCS+/KbJzhzFL7VJllMBrAg4fATRFY8s/k/cPPCz++S+p4jroLBhwbnL9V1AdhtVO+39ZVSZIkSZIkSZIkSZIkSZIkSe1KZVsXIEmSJCWV6kbUaDWMvhjm/wGatpSupo4SjDb3Z7nN27oA1r+6O2wokYAnzoKV/8ptvaoecNrbEKmEqm4Qb4Jb6sPHz5gZhFhVdtndNvbTMOaT8OgpsOLB5PMW3RIEqFXW5VanIBHy2o9UJW/f+3NBQFp8R3Dzd3wHNK4N/u4iFVBRl+am8EjmtfXaH054Aohm/3fc/wg47R1oWA4VtfkFMPU7FE6bC9vXQE0fiGTxPWi3aEVGwxrj1Ty64ZhW7Zu3w2NvwwkTge7jM9934S0wqQxCFHduhvsPgIal+a3T+8Dsxld1hSP+AU3bIBEPnq97FRb+Nf3cSAWMb4Ow0vZm7Kfh9a9A0+b81uk6Gk6dHQTYSep89r4SVj0WHKszFWuA5y6C7atg4tXFqqxz2fhG+jG1AzxWS+1VVQ7BaBtmpe4f/sHcapHUPtX2D4L7d2wMPm8yGFGSJEmSJEmSJEmSJEmSJEnKWrStC5AkSZKSquoa3hetgl6T4diHS1cPdIxgtMZ1sOKh3Oc/cCDM+WkQirb0rtxC0bqMhGEfhJNeDG4UrOkd/J2mC7WqG9IyFG2XSBTGXBI+L9YAKx/Jvk7tFm87yJnlAAAgAElEQVRK3h5NkbVdUR28j6NVwd9bl+FBYFh1z/Q3hKYKFZv+W+h/JPTYByZ+EU54Klg/1+C7SATqB+cXitZcbV9D0fI19jNph2xs6hHaN2dFYveTkf+W2Z5Lbs9sXDHt2Ah/755dKFq/w5O3Dz0jtxoq63f//u09FU58Drrvvbt/4Akw4w0Y//ngPTjoFDjqHhh8cm77dSbRKtjrI9nNqR8a/J6sHQC9pwVBoCc8bdCO1JkNmQFH3gWDToK6wVA3KPO5r30Bti4uXm2dybu/Tz9m8AeKX4ek4ohWQb8jCrtmtyxCmyV1HNU9DEWTJEmSJEmSJEmSJEmSJEmScpTiLnZJkiSpDQ06Cd78bvK+itrgz74HwYSrYfYPS1NTfEdp9imm9a9AIp7fGq/8B2xfCeteyW7ePl+Dyd9KPSZaHf5zruoePm/QyRCpgEQsef+S22HIqZnVqdYSIaGARQvnSREsNvIjMObSIu2rsrD3f8CSO1MGhG1qCj8edG1+z3HdwMz2XPs8vP3rIFCsfkiGhRbYMx/Ofs6oTwTBgMsf2N3WfQKM+VRhaup7EJw6u3X7tJ8WZv3OZvJ3YP6fgsDO5iKVcNjNMPycNilLUjszZEbw2GXVU/DYDGjanH7u3XvDeVuLV1sxNTXAhplAAvoc1HZBtOtfTz+mbhBMuLL4tUgqnv2uhYePLNx63cYWbi1JkiRJkiRJkiRJkiRJkiRJkjqBaFsXIEmSJCXV73CoH9q6feiZEGl2GlvKsKt4SDhUe1Ko7+GtH8CKhzIbO/YyOOru9KFoEITDhImm6KvqBnt9NLx/xSPp91ZyiXh4mF6qv6+8pAi62BWMqI6r2xg46YWUr6+NsR6hfV2aB6NV98x835cuh9uHwutfhUQi83mFsG0JLLsn+3lV3YLj60F/gDGfhv1/Bic+A7V9C1+j8lfTG85eAZO+GhzLolVBwOtJzxmKJil3/Q+Hk1+ECVelHxvbBhuTBF6Wu3WvwH37wYMHw4OHwAPTYVt4gGpRzfpm6v6uY+CU16DHxNLUI6k4+h8BtRmGLKdT1RMq6wqzliRJkiRJkiRJkiRJkiRJkiRJnYTBaJIkSSpPkSgcenNwA+ku3cbBAb9qOa7fETDpyy3bRl9SnJoSHSEYral0e03+NlyYgAN/BUM+kNmcVOFn6Uy5Lrxv63ulDzrqKBKx8L5iBaNFUlyqRlKEpqnjqB8M+3w1tHtjU3gwWn11s9dIVRbBaLu8eS2seDj7efnY8EaOEyPBcXP0x2H69bD357ILg1PpVXWH/b4N5zXA+Ttg6nXQe1pbVyWpves+Hqb+EI66JzjOpDLz66WpqVASCXj+Utg8b3fbupfgpc+WvpblD8KSf6Yec9rbUNu/NPVIKq6+hxRmnQHHFGYdSZIkSZIkSZIkSZIkSZIkSZI6EYPRJEmSVL76Hw5nzIej7oLjHoUZs4KwnOYiEdjvWjjtnSBI7ZTXYfpvi1NPfEdx1i2lVCFXhTT4AylDjUL1PiD3PWv7wonPhvcvfyD3tTuzeIpAwGhVcfbsOro466p9iVaHdm1IEYzWIgMxVcheKgtvym1erhqW5zbPEDRJUnNDZsBp82Cfr4WPWfwPmP3j0tWUr3Uvw/pXWrcv+SdsXVy6OmZ9Gx49KfWYg35viK/UkRTqXHvcZYVZR5IkSZIkSZIkSZIkSZIkSZKkTsRgNEmSJJW36l4w5FQYcDRUhIfk0G00jDwfek0Obkaf+KXC15IqIKq9SDSVZp9cf/4TrkrevtfHMptf2z+874VLs69HqV8z0cri7Dnu35O3D55RnP1UnqI1oV0bUwSjNcWbPUnEQ8eltOjW3OblatuS7OdUdoG+hxa+FklS+1bbHyZ/C3pNDR/z6lWw+Z3S1ZSPtc+H9y27uzQ1LPgLzPp6+nFV3Ypfi6TSqSpAMNr038CA4/JfR5IkSZIkSZIkSZIkSZIkSZKkTsZgNEmSJHVMoy4q/JodIRgtnkEw2oBj8tujz8HQ77Dc5g48HnpMatkWrYExn8xsfk3f8L5tS2Dn5tzq6sxSve4jVcXZs9cU6HfEHntFYexnirOfylNFbsFoseZZaN3H57Z30+bSBsZkErayp9GfhMq6wtciSeoYDvtr6v67xpamjnytezm8b/1rxd9/8e3w7EcyG1tpMJrUoVTnGYw2+NTgs4xIpDD1SJIkSZIkSZIkSZIkSZIkSZLUiRiMJkmSpI4p1zCcVDpCMFoilrq/y0g45iGY8gOo6p79+v2PgmMfzP3G32gVHP84jL4k+Dsc/AE45n7od2hm89OFEWyel1tdnVmqML1oZXH2jETg6Hth3Gehx0QYeCIceQcMObU4+6k8RatDuzbGwoPRmmKJ3U/6HQFVOQYa3DUWEon04/K14Y3U/X2mw4QvwJTrguDJ3gfAlO/D/j8qfm2SpPar+7j058ZrXypNLflY+2J4X+Oa4u0ba4QXPgVPnpX5nCqD0aQOJd9gtNEXF6YOSZIkSZIkSZIkSZIkSZIkSZI6oSLdxS5JkiR1QPEdbV1B/hIpQq4ilbDf9yBaARO/AGM+Cf/old36R9yWfyBATR846He5zU0XyLb4Vti5CbqOhi7Dctujs0mkCASMVBVv36qucMAvire+yl+0JrRra6xLaF/zXDQqqmHK9+DFz7Rct/f+sObZ9DXMux7GXZZBsXlY9I/wvn2/Cft+fffziVcXtxZJUscy7jJ46wfh/cvvhz4HlK6eTDWshK0LoKYfbHorfFwxg9Fe+iy8m+U1SWXX4tQiqW3UDsx97oBjYfCMwtUiSZIkSZIkSZIkSZIkSZIkSVInYzCaJEmSlKl4ioCo9iIRC+874Unoe/Du51U9sl+/OssgtVJ787vBA2D0JXDgfwdBcAoXTxGmF/WSUkVUER6MFk9EQ/ua9jzMjf00dN8bltwBlfUw/FzoNQWW3Q+vfQk2vB5ew0uXQ91gGHZmlsVnYcVD4X1Di7ivJKnjG/Xx1MFoM78W/I4cfk7pakolkYC3fwWv/L/Ugc67FCsYbecWeO9/s58X8dxY6lAGnRC8r/c8HtUNgpEfgZ0b4Z3ftp4XqYSj7w1CmiVJkiRJkiRJkiRJkiRJkiRJUk7C7ySWJEmS2rsJVxd2vQ0zC7teWwgLGOg6pmUoGkAkAt3HZ7d+JJJbXYWUaZDQu/8ThC689QOY+wvYurC4dbVXqUIpDH9QMUXDgwRiVT3D++JJGgccDdN+CvtdG4SiAQw+GWa8Bqe8lrqOJ8+ChpXp683VlvnJ22v6Qa/JxdtXktTxdR8P036ResxT58JLV8DG2aWpKZUFN8DLn80sFA2KF4y2aQ7Etmc3p6IOuo4qTj2S2kZ1LzjkxpbXvX0PhQ/MhqnXwfTfwGF/g2izQOfeB8CZS1KGPEuSJEmSJEmSJEmSJEmSJEmSpPQMRpMkSVLHNewcoIBBXfP/AItvL9x6bSERS94eDQm4GnFh8WoplhEXZD727V/Ca1+Clz8H906B1U8Xr672Kr4zvC9aVbo61PlEw8MEYtGuoX1NyYLRUum1Hww/L/WY5fdnuWiG4jthe0jo2iE3FmdPSVLnMv6zMO6K1GPe/iXcNxUW/7M0NSUz/0Z47uPZzWlcC4lsf/FnYNOc7OcMOR0q6wpfi6S2NfICOGMhHPZXOOFpOP4xqO6xu3/Eh+D0d+HQm+G4R+GEp6BuQJuVK0mSJEmSJEmSJEmSJEmSJElSR2EwmiRJkjquvtPh0L9ATd+W7ZVdcg90eumy4tx8XyrxpuTtkZBgtElfgbGX7Q4o6rlf0JbM2Mvzr68QRnwIBhyb/bydG+DVqwtfT3uXCHnNQPjrRiqEivBgtHi0S2hfLJdD9MF/SN3fsCyHRVPY8h48fjr8tRpIJB9TP6Swe0qSOq8RaQJAAeKN8OTZEGssfj172rkpCCrOViIGT5wJa1/Mv4Y1z8EzH4F/nQTP/lv28w/6n/xrkFSe6gcHx9F+hyb/LKl+CIw8HwYcnfIaRpIkSZIkSZIkSZIkSZIkSZIkZc5gNEmSJHVsIy+As1fCmYvhgljw5zkbYcabUFHXcmzdEDjldeh/ZPh6DcthwxvFrbmYwkKuIhXJ26MVcOCv4NwNcNZymPEaTPrP4GfVXEUdjLm0sLXm4/Bbcpu35tkgsKi59hyEVwjxneF9uQYMSpmIVod2xaJ14X25vGUr6+Ho+8L7m7bksGiIhuVw1xhYelfqcXseZyVJylXfQ4JHJh4+qri1JLP0niCkOKe5dwU1r3429/2X3QcPHwnv/QVWPJj9/HFXQFXX3PeXJEmSJEmSJEmSJEmSJEmSJEmS1ILBaJIkSer4IlGoH7r7z2gFdB8LJz4Dg06GLnvBiAvg+Meg1+TWgWl7um8/eORY2PxuScovqEQseXu0MvW8ilqoGxh8XdkFTnoeRpwf/OwGfwCOfQR67VfYWvNR0yf3uXfuBbd0gyfPhbsnwl+r4b5psOKRwtXXnsRDwvQg/etGyke0JrQrFqkN7WvKNctw8MlAJHlfId//s74ZfizepaIWqnsVbk9JUucWicAxD2Q2du3zsHNTcevZ07J785sfa4C5P819/pyfpA4DTqeqW+5zJUmSJEmSJEmSJEmSJEmSJEmSJLViMJokSZI6r15T4Jj74Iz5cNhN0G1M0J4ijOf/rHwUHj4KmrYVt8ZCCwu5ilRkt079EDjs5uBnd/Td0O+Q/GsrtOHn5T63aQss/gdsmh0EGK1/BR4/HTbOKVx97UUiRUhEpKp0dajzqUgVjJaiL9dgNAgCH5NZ+zw0rs1j4ffFm+C9P6cfVzswCLGRJKlQqrrB6EsyG7vulcLvn0jAlgWw+mmIbW/Zt/nt/Ndf9Pfc61r1RH571/bPb74kSZIkSZIkSZIkSZIkSZIkSZKkFgxGkyRJkvZU0yezcQ1LYcUjxa2l0BKx5O2RytLWUQqjPlbY9WLbgrC0ziYsTA8g2gFfNyof0erQrkSKYLSmfILRKruG9839eR4Lv2/WNdC0Nf24vmUYNilJav8qu2U2blOBw4CbtsKTZ8Odo+Chw+G2gbDi4d39jWsKs08uIaZNWyC+I/24ab+Eqh7J+wadkv2+kiRJkiRJkiRJkiRJkiRJkiRJkkIZjCZJkiTtKdNgNIA3v1u8OoohERJy1REDrgadDL2mFnbNjW8Wdr32IOw1QwQiXlKqiKJVoV0xwoPRYnkFo3UJ73vj27DuVXjz+/DKlTD3v2DrwszX3rkF3rw2s7Ejzs98XUmSMlWVaTDa3MLu+9Z1sOT23c93boR/nQDLHgieFyoY7ZUrs5+T6d6jPgqH3AgVtS3b9/8pdB+b/b6SJEmSJEmSJEmSJEmSJEmSJEmSQnXA9ANJkiQpTzV9Mx+7Y23x6iiGRCx5e6SitHWUQiQCh94E90wo3JqL/g6H3Vy49dqD+M7k7SlCq6Rii0XrQ/ua8gpG65q6//79Wz6f+VU46m7of3j6te/dJ7Maeu4Lg0/JbKwkSdnINBht87zC7vveX5K3P3Yy7PUx2LmpMPssuAEO+VN2czIJRqvsBlXdYejpcPp8WPkoxLZD/6Og2+icSpUkSZIkSZIkSZIkSZIkSZIkSZIUzmA0SZIkaU/ZBKO1t3CoeFPy9kgHvTSo7lHY9RIxSCSC0LXOItHJXjMqH11HBcfjPQNLKuqJ1w4MnRbLKxitS3bjd26Eh4+A0+ZBtzHh4zbNha0L069XOxAOvbn9/W6RJLUPVd0zG7f+FXjuYpj/h+B5RT0c/ncYMiP5+KYGeOsHsOpxaNoctFV2gwFHw9jLYcu74XstuCHj8jPSuBZq+gTn7Av/Cgvf/7069jIYeFyS8RkEozUPlKsbBCMvLFy9kiRJkiRJkiRJkiRJkiRJkiRJklqJtnUBkiRJUtmp7p352Eg7C68JDbmqKG0dpVLVs/Brzvxq4dcsZ/GdydsNblKxRaIw5tOt20d/glgiPJivKZbHnpX1uc27ayxsfie8f/FtqefPeAPOWg5nLYOek3KrQZKkdKI1mY1rWL47FA0gtg0e/wAs+EvrsYkEPHoSvPFNWPUYrHs5eKx6DGZdA3eOKkDhWXjr+0FNs66BZy6EpXcFv4f/dTy8d3Pr8Y1r06/ZPBhNkiRJkiRJkiRJkiRJkiRJkiRJUtEZjCZJkiTtKRHPfGy0unh1FEMiJDEoEh4y1K5V1kHvA5L3jb08tzXn/ASaGnKvqb0JC9OLdtDXjMrL5G/BlOug5+Tgse83YdrPicUToVNi4V3pxUNe75m4ayw8cixsmd+6b9m94fNGXBCEodUNhEgk9/0lSUpn5+b85r/5ndZtS++G1U+Gz2nKc8/m6galHzP7R/C3GnjjW637nrkQmra1bGtck37NSoPRJEmSJEmSJEmSJEmSJEmSJEmSpFIyGE2SJEnaU++pmY+taGfBaGGhPx055Gryt1sH2E35ARz4X7mtF9sOKx/Nv672Yvvq5O2RqtLWoc4pEoGJV8OM14PHvl+HSJQUuWg0heQ/ZiSWZ+jhykfhocMh1tiyfcf68DlDz8xvT0mSMtVnen7zN81pGSy2fRXM/Gp+a2ZjwPGZjYvvDO+7b0rL51sXpl+vymA0SZIkSZIkSZIkSZIkSZIkSZIkqZQMRpMkSZL21GUv6D4hs7HtLRwqEZIYFKkobR2lNPhkOOFpGHcFjP0MHHUPTPxCfms2rilMbeUskYC3roOXLk/e35HD9FT2YvHc+tKKFOBjkoblsPjW3c8TCdi2OHz84Bn57ylJUiZ67w81ffJbY1cw2qxvwe1DYcPM/OvKVEU1jL44vzU2z4N1L+9+vmlu+jlh11CSJEmSJEmSJEmSJEmSJEmSJEmSisJgNEmSJGlPkQgc/MfMxkbbWzBaU/L2SAcPuepzABzwczjw1zCkWQjRpC/ntl5Vt8LUVc5WPQ6vfTG8v72FAqpDSRV+1pRPMNrQM/KY3MwzH4YXL4d7JsF9+8HOTcnHjb0cqroWZk9JktKJVsKhN0G0Jvc1Yg2w/EGY9Q2I7yxcbZmIVsO+10DPffNb5/4DYO2Lwdeb5qQfv3NzfvtJkiRJkiRJkiRJkiRJkiRJkiRJyorBaJIkSVIyfQ+Cg29IP669BYolYsnbIxWlraNcDD8XiGQ/L58wifbivb+k7o+2s9e+OpR4IrwvVWhaWt0nQI+JeSzQzLxfw8a3YMOs8DGTv1mYvSRJytSgE+HMRXDIjTD+89nPjzXAnJ8Uvq5MRKuhfiic+BwcfV9+az0wHWZ9C7a+l35sWMCpJEmSJEmSJEmSJEmSJEmSJEmSpKIwGE2SJEkK031c+jGJncWvo7mdW2D2j+DxM+DFy2DbkuzmJ5qSt3fWkKteU+DQm6CqR3bz4juKU085efd/Uve3t1BAdSipws+a8glGi0Tg6HuDY0Ox1fSDmj7F30eSpD3V9oe9/g2Gn5P93LvHw/IHCl9TJqJVwZ+V9TD4ZOi+d37rzfoGkCJtdZemLfntI0mSJEn/n737jo/sru+F/zmSthfvet3WvdtUY7BxsE1wgiFwSR5aKAkhIaSQkEuAkHvTHi6hPJc0SCMJISEO3HATjAOEJJRQQzHFlBgwLtjGhV23NdtXqzbn+UO7rHZ2yhlpRpqR3u/XSy/p/OpXs6NBZ/DvIwAAAAAAAAAAAKAjTrIDAEAzK45pP2Zqf+/rOKisJf/5o8n9/3mo7c53J0+5Lll7ZrU1ak2C0ZZyyNXpz09OfU7yzdcn33xttTmLPRitrBAQcTCYAhbAVIunaKvQtErWnJY89WvJ3ruT5Ucly9YnYw8me++cDpIZWp6MrEtu+N/JDW+Y/T5zDXMBgLkaXr3QFXRmaPnh16tOTHbd1Pt9T3567/cAAAAAAAAAAAAAAAAAvm8Jpx8sbUVRnJ/kgiQnJ1mVZH+S+5PcmuT6siz3zmHtZUkuS3Jqks1J9iTZmuRrZVneMbfKAQDmUb8Fo9159eGhaEky/r3klr9IHv2mamuUU43bi+G51TbohoaTs168OIPRtnww+fqrk313Jkc9LHns3ybrz2k959a/br/uUg7TY8G1Cj+bczDaQWtOOfT1ik3THzNd8Ppk5fHJV142u/VPeOLsawOAbhgZ8GC0NafNz76n/9T87AMAAAAAAAAAAAAAAAAkEYy2pBRFsSHJy5O8ONOhZc1MFUXxX0muKcvy9zpY/9gkr03yvCRHNxlzbZI3l2X5z5ULBwBYKMuOmj583yoEaz6D0W76o8bt932i+hrlZOP2IbcGWXNqcvYvJbe+tf3YQQlG23FD8plnJLWJ6ev7P5185LHJ0+9Ilh/VeM5d1yTX/XL7tZdv7FqZ0Kla2byva8FoVZz335PxB5Nv/G7nc89+SdfLAYCODC9wMNrQiung0dGtFccvO/z6tJ9Ibr+q+3XNdOLTkmMu7e0eAAAAAAAAAAAAAAAAwGGkHywRRVE8J8lfJdlUYfhwksckOTlJpWC0oiiemuTvkxzXZuilSS4tiuJdSV5SluXeKusDACyIokiOvijZdm3zMfMVjFaWyfe+0rhv+391sM5U4/ZiuPOaFqOL/zI59tLk1rclD3y2+bhBCUb7xv86FIp20MSO5O5rkrN+7vD22kTyhRcnd/xDtbVPeGJ3aoRZaBV+NtnkZa5nHvGaZMMjky0fSEbvTfbekey6qfWci96SrDphXsoDgKZGFjAY7bxXJme8INl4YXL7O5L7Pp6sPnX6d/AHPtN4ztDyw6+PvyJZd26y+5bu13faTyTHPT458+eSIfdKAAAAAAAAAAAAAAAAMJ8Eoy0BRVG8JsnvNui6K8ktSR5IsjLJ5iSPSLKmw/WvSPL+JDNPppVJvprk9iQbklyY5JgZ/S9Isr4oimeUZdniSDsAwAI78amtg9Fq8xSMNrGrdf/4zmT5Ue3XqU02bi/cGiSZDsM744XJKc9OrtlwZKjYQYMQjDa5L7n7vY37vvjzyfE/lKw9M9lze7L1w8mXf6X62sc/MTnv5d2pE2ahVTDaVK2cv0IOOuWZ0x8H3fKXyVdf0fg15PQXJOe8dP5qA4BmhhcoGO2kH0se8+ZD12f97PRHknzpl5sHoxXLDr8eWpZc8vbkY4/vbn2P+r3kob/R3TUBAAAAAAAAAAAAAACAyqQfLHJFUbwqR4ai/WOSN5Zl+Y0G44eSPC7Js5P8SIX1T07y3hweiva5JL9QluWNM8atSPKSJH+U5OAJth9L8oYkv13x2wEAmH8rT2jdPzUPwWhTY8kn2/xqtvfOZPkj269VNglGG3JrcJiR1cnmpyZbPtC4fxCC0T799Nb9HzgrOfNFyZ1XJ1P7qq/7xE8lx146HUQBC6RV9tnUAuSiHeHclyabn5w8cG0ytTcZWj4dcHn0Rcmxl0+HMALAQhteuTD7nvEzzfuGV7ToW35k23GXJz++I7n9quSrr5x7bUmy6sTurAMAAAAAAAAAAAAAAADMivSDRawoiguS/N6MpokkP1mW5TXN5pRlWct0sNnniqKo8vx4bZKNM66vTXJlWZaHJYSUZTmW5M+KorgryftmdP1aURR/XZblnRX2AgCYfyOrW/ePbUsm9iTL1vauhruuTh78Yusxe+9INlYJRptq3F4Md1zWovcDVyX/vKlx33wE4s3F/geSez/Wftztf9/Zuhe/NTn+CbMqCbppqta8b7LJy9y8W3f29AcA9KuiSDY8ItlxxN/PSIqhpGzxP7j1hpYnx12R3Psf7cee8szW63Tat/yo5PxXJJsuST56afv921m1ee5rAAAAAAAAAAAAAAAAALM2tNAF0BsHQs3+LoeH372kVShavbIsJ9vscU6Sn5nRNJ7kRfWhaHVrvj/JO2Y0rUjymqo1AQDMu+E2wWhJ8h+XJJOjSVn2poab/qT9mL0Vc2ZrTX7Fq5SJu8SsODo5rkkI2NdfPb+1dKpKKFqnVhybnPHC7q8Ls9AqGK1VHwBQ56xfPLJt81Or3QfN9OM7kkf8r/bjHvI/p0PXmhle2byvWNZ67WMuSTY+qn0N7aw6ae5rAAAAAAAAAAAAAAAAALMmGG3xek6SR8+4/nhZlld1eY+fTDI84/q9ZVl+u8K836+7fm5RFC1OvAEALKCRCoEAO7+VXL06uWZD8pnnJPvv724N27/afsyDX2w/Zu9dyX0fb9xXDDduX+qGljfv6/a/czftv7e76534o8lTrqv28wDzoNYih3JSMBoAVHfef08uekuy4YJk9anJ2b+UPP6aZHJP9TVWn5qMrEo2Xth+7KrNbfpPbN7X6nfzZDpw7Yc/lpz+wmTlCcnRFyWX/mPyzK3Jyc9IVh7fvr7Vpybrzm0/DgAAAAAAAAAAAAAAAOiZkYUugJ55Sd31/+7BHs+su64UvFaW5Y1FUXwxySUHmtYkeXKSD3SxNgCA7hheVX3sxK7k7muSB7+UPP070wfz56o2UW3cHe9KfuAdyVCTgLOpseSjlzWfX7g1aKhV+MKd707Oe1nr+VNjyc4bkvXnz2+o2Ni2ua9x/quSR//R3NeBHphqEX7Wqg8AaODcX5n+mKuR1cmKY5OxB5qPaReMtv785n2Tu9vXsGJTcuk7j2z/wfcd2faddyWf/6kZDUXyiP/V/J4KAAAAAAAAAAAAAAAAmBddSGqg3xRFcXaSJ8xouiPJJ7u8xwlJLpjRNJnkcx0s8am666fOtSYAgJ6YTZjVvruS9x6XTI3Pff89d1Qf+8Bnmvdt+UCy77vN+x3+b6Js3rX71tZTb39ncs2G5MOPSa7ZmNz4pu6W1spcg9Eu/b/JhX/YnVqgB1qFn00KRgOAhfO4BqFkM7UNRjuved/UaOf1tHLGC5InfyE582eTc34leeInkrN+rrt7AAAAAAAAAAAAAAAAAB0bWegC6Ikfqrv+eFmWLRIdZuXhdddfL8tybwfzr627ftgc6wEA6I3hWQSjJcnYg8k3X59c8Pq57T92fz91sfoAACAASURBVPWxD3wuOf6Kxn0PXtd67u7bqu+zlLQKX2gVmrf9+uQLP3PoujaefO3Xkw2PSDY/uXv1zbTzW8k9H03Gv5fc+rbZr/OI1yWn/0T36oIemGpxh9sqNA0AqOiclybf/svO522of9u4ztqzWvevPCFZtiGZ2HFk37GXd15PO8dcMv0BAAAAAAAAAAAAAAAA9I2hhS6Annhs3fXnk6SYdmVRFFcVRfGtoih2FkWxtyiKO4ui+FhRFL9ZFMXpFfd4aN31rR3WWJ+8Ub8eAEB/aBV+1c7d75n7/hO7q4/9+v+b7Pr2ke1lmdz4h63nHuXXsYYm9zXvG17VvO+772/cfvf75lZPM7f+bfLBRyZffUXyzdfNYaEiOeOnulYW9EqtRfjZxNT81QEAi9bJz6g+dt3Zh75efXJy/A83Hnfs45PVJ7VeqyiSs3/+yPY1pyUbH1W9JgAAAAAAAAAAAAAAAGBgCUZbnC6qu77xQODZx5J8NMmLkjwkyfokq5OcmuSJSd6Y5JaiKP6iKIp2CSBn113f1WGNd9ZdbyqKYmOHawAA9N7wHILR9twxHUrWiS3/nnz+RckXXpxs/Ugysauz+f92bvLZ5yYfvzL52v9Mdt+WbPtC+3nrz+9sn6ViapbBaN/43cbtt751TuU0tG9r8qVfSMoupEFdfnWy9oy5rwM9NtXipXX/xPzVAQCL1uYnJY9+c7X7oYf8+uHXj3tncvTFh7cd/Zjksn+qtvfDX5Oc+pxD1+vOSa74cFL4vzMAAAAAAAAAAAAAAABgKRhZ6ALoic1116uTXJfkmApzlyV5aZLHFUXxtLIs72kybkPd9f2dFFiW5Z6iKPYnWTmj+agk2ztZp15RFMclObbDaWfNZU8AYJEbmUMwWm0smdybLFtbbfy335pc98uHrm+/Kjn2ss73ves905/v+3jynXckx/5g6/HrzkmOe0Ln+ywFky2C0YaWzV8drbz/pO6s89y9c3u+wzyaqjXv2zs+f3UAwKJ2/iuTs38p2XNbsuvm5LM/fuSYtWclxz/x8LbVJyVP+dJ0UPS+u5PVpyRrT6++77K104G9Yw8mY9uSdecmRTGX7wQAAAAAAAAAAAAAAAAYIILRFqf60LKrcigUbW+Styb5UJLvJlmT5IIkL05y+Yw5Fyb556IonlCW5USDPerTPUZnUedoDg9GWzeLNeq9NMlrurAOAMC04VVzmz/+YLVgtLKWfOO1R7Y/8Lm57b///uTua5r3H/v45HF/Xz28bamZahGMdvOfJee/osGc/b2rp96DX57dvGIkSS0ZWZcc/0PJRW8RisZAqZXN+27tKLYbAGhpZFWy4eHTH497Z/L5nz7Ud8KVyQ+8Ixle3nju2tM7C0Srt2LT9AcAAAAAAAAAAAAAAACwpAhGW2SKoliRZEVd88kHPn8ryVPKsry7rv+rSa4qiuJVSf5oRvvjkvxGkjc02Ko+OWM26Q+jSTa2WBMAYOEVQ3ObP7YtWXNa+3EPfjnZf+/c9pqNJ316/vccJJMtgtH2fie57e+Ss158ePu1L+xtTTPd94nOxj/rvmTlcb2pBebRVK11/7uvq+V5F8/x9RsAONwZL5z+AAAAAAAAAAAAAAAAAOghp4QXn+Em7TvTOBTt+8qyfFOSP65rfmVRFFUCy8qK9c11DgDAYNm/rdq4sft7W0cjF75p/vccNGWb9KXb/vbw6/3bku++t/WcqfG51TTTDW+sPnb5xmTFsd3bGxZQu2C0t3/W7SYAAAAAAAAAAAAAAAAAAAwiwWiLTFmW+5I0OiL+5lahaDO8OtMhagcdneSpDcbtqbteVa3ClnPq15yNv0zy8A4/nt6FfQGAxWz9ebOfu++uauPKBQjxWX3S/O85aC78g9b92z5/+PWuG9uHqX38h5LRe+ZWV5LsvTuZ2FF9/KrNSVHMfV/oA7U2L5kfu3F+6gAAAAAAAAAAAAAAAAAAALpLMNritLdB2zurTCzLcm+S99Y1X9FgaF8Go5VleX9Zljd08pHktrnuCwAscqc+/8i25Ucnz96WXPL25NJ3JcvWN577pV9Mtn+9/R7l1NxqnI1VgtHaOrFRRnALE7vbj9l2bfLhxyQPXDu7mg667e2djT/uirntB31kqk3+IAAAAAAAAAAAAAAAAAAAMJhGFroAemJHknUzru8ry/KODuZ/IcnPzrh+SIMxO+uuj+1g/RRFsTZHBqPt6GQNAIB58/DfSfbcntzxD0nKZNWJyRM+kKzYlJz14ukxt7wl2fb5xvO/+PPJeS9Ptv57suKY5IyfTjZddPiYhQhGW3vm/O85aNaclgyvTKb2Nx9TlklRTH89WSEYLUlG70k+fkVy7suSYjjZe2dy/BXJWb+YDA1XW+Obr6027qCzfq6z8dDHBKMBAAAAAAAAAAAAAAAAAMDiJBhtcbolySkzru/pcP7WuutNDcZ8u+76tA73qB//vbIst3e4BgDA/Bhallz6zuQxfzwdaHXUQ5Ni6PAxI+saz02S712XfP6nDl3f9jfJE/41OeHKQ21To92tuZ2jHp6sPnF+9xxUpzw7ueNdzfvLyaRYNv31RMVgtCSpTSQ3vfnQ9V1XJ/d9Mrns3YeC1pr5+muq75Mkpz43OfrRnc2BPlYr24/5yA1lfuRhbX6WAAAAAAAAAAAAAAAAAACAvjLUfggD6Ia667EO59ePX9lgzI1112d3uMeZddff6nA+AMD8W7Ep2fDwI0PRkmRZi2C0elP7k088KXnfycmXXzZ9Pbm3e3VWsfnJ87vfIBta0bq/Nn7o68kOgtEaues9yc5vNu67+/3JBx+V/N8i+ebrmq/x1P9KHvNnydqzkpXHJee9Irn4r+ZWF/SZqVr7Ma9+f4VBAAAAAAAAAAAAAAAAAABAXxlZ6ALoia/XXW/ocH79+AcbjKlPa3hkURSry7LcV3GPy9qsBwAwWDoJRjtodEtyy1uSXTdPh1h14gfekdz8p8n2r3a+b5Ic9bDZzVuKhpa37p8aS0bWTH89sWvu+9329uQxf3J42z0fTT777KRsE/S04YJk44GP814291qgT1UJRvvynUmtVmZoqOh9QQAAAAAAAAAAAAAAAAAAQFcMLXQB9MSHkpQzrs8simJlB/MfXnf93foBZVnek8MD2EaSXN7BHlfUXX+og7kAAP1nZBbBaAfd+9Hk1rd2NmfFMclZL579nuvPm/3cpaacaN1fGzv09cTuue9370ePbLv1be1D0ZLkjJ+e+/4wAKbK9mOSZNue3tYBAAAAAAAAAAAAAAAAAAB0l2C0Ragsy61JPj+jaVmSJ3awxFPqrj/TZNz76q5/tsriRVGcn+SSGU17k/xHtdIAAPrUsjkEo83GimOSM180y8lFsv4h3axmcZscbd0/NSMYbbILwWg7v5WUdalPd19Tbe65L537/tDnyrI84kekmXt29rYWAAAAAAAAAAAAAAAAAACguwSjLV5X1V3/WpVJRVE8PsljZzTVknywyfB3JZmacf2soijOqbDNb9RdX12W5f4q9QEA9K1l6+d3v5XHJCNrkif8W+dzT3xasuLo7te0WE21CUarzQhGm2gTjHb0Y5Infbb9nl/8+aQ21X7cTFd+Jhle2dkcGEC1iqFoSbJ1R+/qAAAAAAAAAAAAAAAAAAAAuk8w2uJ1VZIbZ1z/cFEULcPRiqI4LkcGql1dluVtjcaXZfntJO+Y0bQ8yd8XRdE0jaEoiqcnedGMpvEkr21VFwDAQBhZN7/7Ld904POGzude8rbu1rLYtQtGm6oYjLb+/OTyq5NjL0tWbW695u1/l9z+9uTrr0k+/az2NT76T5LjLm8/DhaBqVr1sffs7CBFDQAAAAAAAAAAAAAAAAAAWHCC0Rapsiynkrw8ycwj428qiuJPi6LYWD++KIork3wuyVkzmrcn+e02W73mwLiDLk3ysaIozq9bf0VRFC9L8p66+W8qy/LONnsAAPS/opjf/Zatn/48vKqzeatPbh/KxeHaBaPVxg99Pf5g4zGnPjd52reStWdOXxfL2u/7pZck33xd8t33tR535ouT81/efj1YJGodZJ1t3dm7OgAAAAAAAAAAAAAAAAAAgO4bWegC6J2yLD9aFMXLk/z5jOZfTfLLRVF8IcmWJKuSPCrJaXXTx5P8RFmW32mzx3eLonhWko8kWX6g+bIk3yqK4itJbk9yVJJHJzm2bvq/JXl1x98YAEA/GmsSiNUrB4PYhld3Nq9dyBdHahuMNpbc9KfJ7X+X7Ph64zHH//Dh4XlDyxuPm43jfrB7a8EAmKq1H3PQPYLRAAAAAAAAAAAAAAAAAABgoAhGW+TKsnxLURRTSf4oycHUjGVJHt9i2n1JnlWW5bUV9/hUURTPTPL3ORR+ViS56MBHI/+Y5BfKspyqsgcAQN9bqHCqkQ6D0c791d7UsZid8uPJg19q3n/DG5Ot/956jfXnH3599i8k//Ubc68tSTb/SHfWgQHRSTDavTvL3hUCAAAAAAAAAAAAAAAAAAB03dBCF0DvlWX5V0kemeQfkuxuMfTeJL+b5LyqoWgz9vhgkocneWuS7S2GfiHJj5dl+ZNlWe7tZA8AgL626ZJkZN387LVs/aGvVx7X2dxTntXdWpaC057Xur9dKFqSrD+vbs3nz76emTY/NVl1QnfWggFR6yDrbOuO3tUBAAAAAAAAAAAAAAAAAAB038hCF8D8KMvytiQvLIpiVZLLkpyc5IQk40keSHJ9WZZfn+Me9yf55aIoXn5gj9MO7LE3yZYkXyvL8jtz2QMAoG8Nr0gu+Zvk2hck5VRv97rwTTP2XVl93kP+R3LUw7pfz2K35tTkgjcm1//W7OYv25CsPL7Bmv9fcv3vzK22i98yt/kwgKZq1cfes7N3dQAAAAAAAAAAAAAAAAAAAN0nGG2JKctyNMnHerzHeJJP9nIPAIC+dNrzko2PSr70S8n9n+rNHsOrk1OfXX384/852f3t5NjLk2MuTYqiN3Utdg/7zdkHox3/hMaP+8N+OznhSdPPl+1f7XzdTY9N1p45u5pggHUajFaWZQqvfQAAAAAAAAAAAAAAAAAAMBCGFroAAABYVNafl1zwht6svWx9cvl7kuUbq8855VnJQ38jOfYyoWhztfrk2c3b/NTmfZsuTp706WRoeefrPnSWQW0w4Gpl9bETU8n4ZO9qAQAAAAAAAAAAAAAAAAAAumtkoQsAAIBFZ/mmuc0fXp1c8W/JxguT5RuS0XuTfXcnRz08GVl15PgVxyZjDxzZvvqUudXB4WoTs5u37qzW/SNrkrVnJbturL7mpkuSk35sdvXAgCs7CEZLktGJZMWy3tQCAAAAAAAAAAAAAAAAAAB019BCFwAAAIvOimPaj9lwQfO+/3Z9cvwPTYeiJcmqE5JNFzcORUuSR76+cftDfr19HVQ3tm1281ad2H7MU75ScbEiOe0nk8vfnQwNz64eGHC1ToPRxntTBwAAAAAAAAAAAAAAAAAA0H2C0QAAoNuWb2w/5ke+lGx+yuFtw6un29ed3dl+pz03WXfO4W1rz0xOe35n69DapsfObt6qk9qPGVmVnPHTrccMrUh+Yiq57F3JmtNmVwssAh3momV0oidlAAAAAAAAAAAAAAAAAAAAPSAYDQAAum1oODnxv7UeM7w8+cF/SS54Y3Li05IzX5Q86TPJpos732/5xuRJ1yYP+R/JCVdOf77yM8nK42ZVPk0c/8Ozm7dsfbVxJz+jdf+KTUlRzK4GWERqtc7GC0YDAAAAAAAAAAAAAAAAAIDBMbLQBQAAwKL0qN9Ltn6wcd9RD5/+PLw8edhvdme/lcckF/5Bd9aisfNfOf1vuv1r1edseGT1MLPNT05SJCkb9y/fWH1fWMRqTX5Emhkd700dAAAAAAAAAAAAAAAAAABA9w0tdAEAALAobXhE8v/c1rjvlGfNby10x4pNyZX/2dmc03+q+tiRNcnGC5v3Lzuqs71hkeowFy2jEz0pAwAAAAAAAAAAAAAAAAAA6AHBaAAA0Ctrz0ye+KnDA61OeXbysN9asJKYo2Xrqo8982eTc3+ls/Wf8IHmfa1C02AJqdU6G79fMBoAAAD0jU/cVOZX/6mWX39PLV+8vdP4cwAAAAAAAAAAAABgKRhZ6AIAAGBRO/4JybPuT773lWT1ycmaUxa6IuZqeHUyta9x3+YfSR7x2mTVCcma0zpfe/VJybkvS27588Pbi+HkjJ/ufD1YhDo9Mj063pMyAAAAgA79zWdqecn/OXRn/+efKPPuXxzKMy4sFrAqAAAAAAAAAAAAAKDfDC10AQAAsOgNL0+OfZxQtMXiob/ZuH3FpuTyq5NjLpldKNpBj35Tct4rptdLkg2PSH7w/ckxj539mrCI1DpMRhud6DRKDQAAAOi2qVqZ33nf4ffoE1PJq/+ltkAVAQAAAAAAAAAAAAD9amShCwAAABgoZ/5McutfJaP3HGpb/5DkKdclI2vmvv7QsuQxf5w8+s3J1Ggysnrua8IiUuvwvPToRG/q6Gej42W270uOW5eMDBcLXQ4AAADkc7cm2/Yc2X7D1mTrjjInbnD/CgAAAAAAAAAAAABME4wGAADQiTWnJk/6XHLTHyc7vpFsujh56G92JxRtpqIQigYNlB2OHx3vSRl9648/Wsvr/q3MztFk81HJX79wKD/6SIfLAQAAWFh3Ptj8jn7XaHLihnksBgAAAAAAAAAAAADoa4LRAAAAOrX2jOSiP1voKmBJqnWYjDY60Zs6+tG/Xl/mVe859ADdszN53l/XcuPrhnLqJuFoAAAA9KepTlPQAQAAAAAAAAAAAIBFbWihCwAAAACoquw0GG28N3X0o2u+cuSDMzqR/OV/OmEOAADAwmp1Z7pvCd27AwAAAAAAAAAAAADtCUYDAAAABkat02C0id7U0Y+uu6Pxg/MHHxaMBgAAwMJqFXS+d2z+6gAAAAAAAAAAAAAA+p9gNAAAAGBgdBqMtm+8N3X0o5vubd63e79wNAAAABbO/hbB5YLRAAAAAAAAAAAAAICZBKMBAAAAA6PsMN9r+97e1NGP1qxo3reUHgcAAAD6z54W4WdLKdQcAAAAAAAAAAAAAGhPMBoAAAAwMGodBqNt29PhhAG2alnzvt0tDqADAABAr+1tEX62d3zp3LsDAAAAAAAAAAAAAO0JRgMAAAAGRtlxMFpv6uhHy0ea9+0anb86AAAAoN7eFoHdrfoAAAAAAAAAAAAAgKVHMBoAAAAwMGqC0ZoaLpr37d4/f3UAAABAvVbhZ/vG568OAAAAAAAAAAAAAKD/CUYDAAAABoZgtObGJpv37RKMBgAAwAJqFYzWqg8AAAAAAAAAAAAAWHoEowEAAAADo+wwGG3naDI+2eGkAdUqGG33/qXxGAAAANCf9o41vy/dOz6PhQAAAAAAAAAAAAAAfU8wGgAAADAwarPI93pwT/fr6Eetg9Hmrw4AAACot69F+FmrPgAAAAAAAAAAAABg6RGMBgAAAAyMchbBaDtGu19HvynLsmUw2i7BaAAAACygyVrzvomp+asDAAAAAAAAAAAAAOh/gtEAAACAgVGbTTDavu7X0W8mp1qHxu0WjAYAAMACanXPOikYDQAAAAAAAAAAAACYQTAaAAAAMDBaBaONNHmXYykEo41Ntu7fJRgNAACAPjVVW+gKAAAAAAAAAAAAAIB+IhgNAAAAGBhli2C0jWsat+8YbTFpkWgXjLZXMBoAAAALqNWd+aRgNAAAAAAAAAAAAABgBsFoAAAAwMCoNTlJXRTJhlWN+3bs6109/aJdMFq7fgAAAOilVkHnk1PzVwcAAAAAAAAAAAAA0P8EowEAAAADo9lB6qEi2bC6cd+O0d7V0y/aBZ/tn2hxAh0AAAB6rNVd6WSzFHQAAAAAAAAAAAAAYEkSjAYAAAAMjGZnpYskG1Y17tuxr2fl9I3xtsFo81MHAAAANNIs6DxJJqfmrw4AAAAAAAAAAAAAoP8JRgMAAAAGRrNgtKGhZMPqomHfUghGG2sXjNamHwAAAHqpVTDaLffNXx0AAAAAAAAAAAAAQP8TjAYAAAAMjGYHqYeK5KjVjft2jvaunn7RNhhtYn7qAAAAgE7dfF+ydUeL5DQAAAAAAAAAAAAAYEkRjAYAAAAMjFqTc9JFknUrG/ft3r/4D1ePtQk+E4wGAADAQmp3Z37NVxb/vTsAAAAAAAAAAAAAUI1gNAAAAGBgNDsmPTSUrG8ajNazcvrG+FTrfsFoAAAALKSyTe7ZK94tGA0AAAAAAAAAAAAAmCYYDQAAABgYtVrj9iLJuibBaLuWQDBas8flIMFoAAAALCSxZwAAAAAAAAAAAABAVYLRAAAAgIFRa3KSeqhoHoy2ewkEo021OWE+KhgNAACABVRKRgMAAAAAAAAAAAAAKhKMBgAAAAyMZueoh4aS9Us4GK1Wa92/XzAaAAAAC0gwGgAAAAAAAAAAAABQ1chCFwAAAABQVbMAsCLJupVFGkWn7VoCwWhTbQ6YD3ow2te/W+aNHyzzlbvKDBfJRacXef3Ti5x+TLHQpQEAAFCBXDQAAAAAAAAAAAAAoCrBaAAAAMDAaHaQeqhI1q1s3Dc+mYxPllk+snhDtJoFxh00WUsmp8qMDA/eY3DjPWUu//1a9owdarv5vjIfuaHMja8byqa1g/c9AQAAAAAAAAAAAAAAAADQ2NBCFwAAAABQVa1sHI1WFMn6JsFoSbJ7f48K6hNTzRLjZhib7H0dvfAXnywPC0U7aNue5E8/XuEbBwAAYME1uZ0HAAAAAAAAAAAAADiCYDQAAABgYNRqjduHimRdi2C0XYs9GK3J4zLT/one19EL197W/PT8e7/qZD0AAMAgcPcGAAAAAAAAAAAAAFQlGA0AAAAYGM0OUrcNRhvtSTl9o1a2P2I+iMFotVqZm+9t3v+te5Jv3+d4PQAAQL+rcNsKAAAAAAAAAAAAAJBEMBoAAAAVPbC7zJs/WsvvvK+WD33DaVYWRq3JU68okg2rms+7b1dv6ukXU7X2YwYxGO3u7clom7r/5XqvRwAAAP1OMBoAAAAAAAAAAAAAUNXIQhcAAABA/7vzwTKX/34tW3YcbCnziiuLvPm58raZX80OUg8VybKRIsetS+7ffWT/1p1lkqKntS2kZoFxM7ULGOtHtz/Qfsxnbinz60/ufS0AAADMXpVctInJMstGFu+9OwAAAAAAAAAAAABQjRPsAAAAtPWGfy9nhKJN+9OPl7n+7irHWqF7mgWAFQfOTZ+4oXH/lu29qadfTNXajxmf7H0d3bZvvP2Ym+7tfR0AAAD03iAGegMAAAAAAAAAAAAA3ScYDQAAgLY+d+uRaVRlmbzxQ4LRmF/NgtGGDgSjndQsGG1H4/bFotnjMtP4VO/r6LbJCoFvt29Lxie9FgEAAPSzssJtW5VwbAAAAAAAAAAAAABg8ROMBgAAQFs33du4/eovCyNifjU7SH0wGO3EDUXD/q07FvdzdapCgNj4ZO/r6LaJCmFuU7Xktgd6XwsAAACzV+WufHSi52UAAAAAAAAAAAAAAANAMBoAAAAwMGpNTlIXB/LQNh/VuH/bnt7U0y8WbzBatUC7Ox/scSEAAADMSbOg85l27+99HQAAAAAAAAAAAABA/xOMBgAAwJzs3l8tuAi6odlB6qEDwWhHrWrcv2esN/X0i2aBcTONT/W+jm6bqFjzlh1ehwAAAPqZYDQAAAAAAAAAAAAAoCrBaAAAALRUtjm5es/OeSoE0jwArDgQjLZ2ZeP+xX64eqrWfsz4ZO/r6LbJisFoW3f0tg4AAADmpkqc9a7RnpcBAAAAAAAAAAAAAAwAwWgAAAC0NNYmTOkegUTMo2Y5fUMHgtHWrWjcv9iD0ZoFxs00NlnlGHp/magYjLbF6xAAAEBfa5O7nyTZOTp4960AAAAAAAAAAAAAQPcJRgMAAKCl0fHW/ffsdGiV+dMsAOz7wWgri4b9e8Z6VFCfmKq1HzPeJuSwH1UNRrtnh9chAACAQbdrkYeaAwAAAAAAAAAAAADVCEYDAACgpdGJ1v337Z6fOiBpHoxWHMhDW7uicf/+iWRyavGGZ1UKRqsYMtZPqgajbdnR2zoAAACYmyp35ILRAAAAAAAAAAAAAIBEMBoAAABtjI637t81Oj91QJKUTU5SDx0IRlu3svnc3Yv4gHWzwLiZxid7X0e3TVYIfEuSrYLRAAAA+lqz+/mZvMcEAAAAAAAAAAAAACSC0QAAAGhjf5swpV2LOGyK/tMsAOxALlrLYLQ9Y10vp29MVQgQG5/qfR3dNlGx5vt2JxOTFU7ZAwAAsCAqBaN5jwkAAAAAAAAAAAAAiGA0AAAA2hgdb92/a3R+6oAkaXaOeujAOxxrVzSfu31f18vpG80C42YabxNy2I+qBqOV5XQ4GgAAAP2pSpS195gAAAAAAAAAAAAAgEQwGgAAAG2MTrTu371/fuqAJKnVGrcPFdOf161sPvcPP1LlGPZgmmryuMw0iMFokxW+r4O2bO9dHQAAAMxNWeGWfNfo4r1vBwAAAAAAAAAAAACqE4wGAABAS6PjrfsdWmU+1Zo83Q7komXNiqQoGo/5/G2L97na7HGZaWwAg9EmpqqP3bqzd3UAAAAwN1XuyHcJ3wcAAAAAAAAAAAAAIhgNAACANkYnWvc7tMp8anaQeujAOxxFUaRsMmjZcE9K6gtTtfZjxjsIGesXnQSjbduzeIPvAAAAloJdowtdAQAAAAAAAAAAAADQDwSjAQAA0NLoeOuwIcFozKdakwCwYsbXTzy/8Zgdi/iAdaVgtMne19FtnQWj9a4OAAAA5qZZiPlM3mMCAAAAAAAAAAAAABLBaAAAALSxv02Y0q5FHDZF/2l2jnpoRjLaK65s/HbHjn3dr6df1CocMB/EYLRJwWgAAACLQpVgtJ3eYwIAAAAAAAAAAAAAkowsdAEAAAD05I0k1wAAIABJREFUt7GJ1v279s9PHZA0DwAbmpGFtmF14zFjk8n+iTIrlxWNBwywqVr7MeMdhIz1i4kOan5QMBoAAEDfqpCL5j0mAIAOFEXx6CTnJDnpQNOWJLeUZfm1hasKAAAAAAAAAAC6QzAaAAAALTULojpo12hSlmWKYvGFTdF/ak0CwGY++5oFoyXJ9r3J5g1dLakvtPs5TZKJyd7X0W2THQWjVTlmDwAAwEIoK9yy7R1Lpmplhoe8xwQALJyiKM5McnGSiw58fnSSdTOG3FmW5ekLUFqKoliW5FVJfj7JWU3G3Jrkb5O8uSzLNn/+CAAAAAAAAAAA+pNgNAAAAFpqF7g0WUv2TySrls9PPSxtzZ6OM89Mb1jVfP6O0cUZjDbVJDBuprEBDEab6CAYbdue3tUBAADA3FSNst69v3XgOQBALxRFcUWS38p0GNrRC1tNY0VRnJPknzId1NbK2Ul+L8lziqJ4flmWt/a8OAAAAAAAAAAA6DLBaAAAALTULhgtSXaOCkZjfjR7PhYzg9FaHKDesa+79fSLKj+n45NVj6H3j8kKgW8HCUYDAAAYfLtGBaMBAAviUUmevNBFNFMUxQlJPprktLquW5PckKRI8rAkZ83oe0yS/yiK4gfKsrx/XgoFAAAAAAAAAIAuEYwGAABAS1MVgol27U9OOKr3tSx27/piLVdfV2aoSJ7/2CLPu3hooUvqO2WTbK+hGcFoq5cnI0ONQ7UWazBalZ/T8ane19FtE1PVw9wEowEAAPSvZvfz9XaO9rYOAIAOjSX5bg4PHJtXRVEMJXl/Dg9FuyfJi8qy/I+6sU9JclWSEw40nZHkfUVRXF6WVX8jAwAAAAAAAACAhScYDQAAgJZqFY5J7HJodc5+/8O1/NZ7Dz3Y/3J9ma07annlk4SjzdTs+TgzGK0oimxY3Tgo695dZZLiyI4BVyU/bP9E7+votokOwtx2jiYTk2WWjSy+f18AAIBBVzWGY9f+3tYBANDCRJIbknw5yXUHPn8jyWVJPrmAdb0gySUzrr+X5NKyLO+oH1iW5YeLorg0yVeSbDzQfGmS5yX5px7XCQAAAAAAAAAAXeN0NQAAAC1VCkZzaHVO9k+U+YMPH/lAv/FDZcYnK54cXiKaPR+Luiys0zc1Hnfzfd2tp1/Uau3H7BzAAMNOgtGS5Hv7elMHAAAAc1P13Q3h+wDAAnlHkvVlWV5YluUvlGX5trIsv1qW5YL+yZGiKIaTvLau+dcahaIdVJbld5L8Wl3zG4qi8N+KAgAAAAAAAAAwMPzHLgAAALRUJXDJodW5+dpdyfYGgU7b9iTf3DL/9fSzsslJ6qG6YLTzTygajrv5nsUZNDdV4dvaMYChYZMdBqNt29ObOuhvd2wrc/3dZXbsW5w/3wAAsBg0u5+vt2u/3+sBgPlXluX2siz78c8AXZ7kjBnXW5L8Q4V5/+fA2IPOSnJpF+sCAAAAAAAAAICeEowGAABAS7UK51EdWp2bm+9r/vjd0qJvKWr2fCzqctDOPaHxuJvu7W49/aJKgOGOAQwwnOg0GG13b+qgP9VqZX7pH2o5+3dqufD1tZz527X881e8ZgIAQD+q+pv6rn6MIwEAWDjPrLt+Z1mWbd85PzCmPkDtWV2rCgAAAAAAAAAAekwwGgAAAC1VCkYbwMClfnLr/c37bmnRtxSVTZ6PQ/XBaMc3Hnf39qRstsgAq/JzumPf4H3vHQej7elNHfSnq64t87ZPl99//u/Ylzznr2vZtnuwnucAALAUVL0d3ek9JgCAmZ5Sd/2pDubWj33qnCoBAAAAAAAAAIB5JBgNAACAlqoELjm0Oje3tQg/u/ne+atjEDR7PtYHo52ysWg4bt/44ny+1mrtx0xMJaPjva+lmzoPRhOItZT8ycca/3sf96rawIUAAgAA04TvAwBMK4piRZKz65q/0MES19Zdn1MUxfK5VQUAAAAAAAAAAPNDMBoAAAAtVQlG2ztgYUv9Zu948wf5pnuE+8zU7PlY1OWgnbih+RpbdnSvnn4xVfFpsmPADphPVgh8m2n7vt7UQf+588EyN2xt3v+l78xfLQAAQHtVs4t37e9tHQAAA+S8JMMzru8vy3JX1ckHxm6b0TSc5Nwu1QYAAAAAAAAAAD0lGA0AAICWahWCifaM9b6OxWxyqnnfzfcltSrpdEtEs4PUQ3XBaJuPar7Glu3dq6dfTFUMENsxYMFhEy1+NhoRjLZ0fHNL6/73/ZfXTQAA6CdVf0PfNWCB3gAAPXR23fVds1ijfs45s6wFAAAAAAAAAADm1chCFwAAAEB/m6pwcnWvYLQ5aRX+tG88uXt7ctqm+aunnzXLiCvqgtGWjxQ5bl1y/+4jx27ZUSYpjuwYYFXD83YO2AFzwWg0s2+8df/HvlUmz5qfWgAAgPaaBZ3X271fyDEAwAEb6q7vn8Ua9XNa/FmZ6oqiOC7JsR1OO6sbewMAAAAAAAAAsDQIRgMAAKClWq39GMFoczPZ5jG+Y5tgtIOaHaQeapBzdtKGxsFotz3Q3Zr6QZUAwyTZtb+3dXRbs2C04aFkqsHPzY69DtAvFeNtnvSjE/NUCAAAUEnVu7VBC/QGAOihtXXXs/lNqX7OulnWUu+lSV7TpbUAAAAAAAAAAOAIQwtdAAAAAP2tVuHk6t4xYURzMdkk/OmgLTs8vgc1ez42CkY75/gGjUluumfxPZ5VAgyTZGzAwqKa/WwcW38c7IAdDtAvGeOTrfvbva4CAADzq1nQeT3BaAAA31f/Tvhs/vRJ/W9XTd5dBwAAAAAAAACA/jKy0AUAAADQ36oFo/W+jsVsom0w2vzUMQiaPR+LBhlo55/QeOxN93avnn4xVfGA+f7JMknjwLh+1Oxn47j1yb27jmzfvq+39dA/xtoEo23ZkZRlmaLRiwMAwCzcen+Zj9xQZvlI8rRHFDlxg98zoBce2L3QFQAA9K3Z/NWXxfeXYgAAAAAAAAAAWBIEowEAANBSlWC0PYLR5mSy1rp/q2C07yubPB+HGmQSPGRz47Hfvj+ZnCozMrx4ggxqbZ5DB41N9LaObmsajLaucfv2vb2rhf4y3iYYbd/4dFDe0Wvmpx4AYHH71+vLPO9ttew/8Pv0xtVlPvKKoVx0+uK5p/j/2bvzODnqOv/j7+qZyT2TmyQT7isBRBQvZFlF8b5W8WQFj3VX/Hlf6wEKKKIoiAouIMqxIIeCgghyiBwLBJCbJCSTkJPMlbmnp+fsru/vj84wPTP1ra7q6e6p7n49Hw8e6a5vVfWn6/h2VZHvO0Ch2e7nJ2ruIeQYAABgj74J72fnsI6Jy0xcZ64ulnRjyGUOkvSXPH0+AAAAAAAAAAAAAAAAyhzBaAAAAAAAX0GC0RLDha+jnBGMFpztePQaLn3YCkfS5AVGUtKWNmnV8ryWNq1SAQeYD2UJk4oa27mxtNZ733b1F7YeRMewJTQv06ZW6ZgDC18LCuOxrUYX3WtkJL3jCOnkYxzCMQAA08J1jb5w3VgompS+7nztj125l1VNX2FAiQl426qhJCHHAAAAe0Q2GM0Ys1vS7jDL8GwPAAAAAAAAAAAAAAAAYcSmuwAAAAAAQLS5WUK7JKlvsPB1lLORLAE/Td1Bhw+XP9uWiMUmD6g5dJnkMVmStKE5fzVFQSrAeSppXJhDKbCdG0vmeU/vHkgHV6D8DQU4lhtaOBZK1V3rjV5/rqvr/ml0/T+NPnml0Xf+zP4EAEyPR7dJu7q8235yR8ALcQAyIS7nCIgHAACQJPVMeL80h3XsNeE9V1oAAAAAAAAAAAAAAAAoCQSjAQAAAAB8BckYSgwXvo5ylswSjNaRKE4dpcAW1OcVgDarxtEBS7zn31BmgUlBs8CGkoWtI99swWh71XpPN0bqJaixIgxn6TclaWNL4etA/hlj9KXrJ3f2F91r1B4vr74bAFAaHttq//05/WajFMG8QCBhzhSC0QAAACRJmye83y+HdUxcZuI6AQAAAAAAAAAAAAAAgEgiGA0AAAAA4CtlCaLK1DdU+DrKWTLLNm7vK04dpcCWOeB4BKNJ0mErvKfv7MxPPVER5DyVpMGRwtaRT8YYezBanX25rv7C1INoGQ4Q8tfYVfg6kH9P7ZRe2D15+uCI9PCW4tcDAEB/liDwtY3FqQModSZEMlpTD4GDo7a2GTW0EMIIAECFapCU+ZR8L8dxLP9syGSO49RJyvznY1IiGA0AAAAAAAAAAAAAAAAlgmA0AAAAAICvIOMuh5NSMsUAzVzZwp9GdSbEANg9bFshZglGW1bn3dBZZmFzQQ+PoQBhUlHh952WzrPscEndBKNVhOEs/aYkxQfpN0vRX56x77e1jexTAEDxZQsCb48Xpw6g1IUKRusuXB2lIj5o9JYLUjr4dFeHneHq8DNcPd/E9TAAAJXEGDMkaeI/FfD6EKs4dsL7zXvWCQAAAAAAAAAAAAAAAEQewWgAAAAAAF9BA5cSDKXIWTJLwI9rpK7mTpm7rpO56dcyL24uTmER5Lre020xWYvneU/vSJTXYOKUZbtMVErBaH6Bgbb9KkldBKNVhKGR7PPE+V0qSbc+a++ft7YVsRAAAPZoyxKqXErX2ECpaO6Z7gqm3xevM7p349j7zbulj13myoRJmAMAAOXgzgnvjw+x7MR575hSJQAAAAAAAAAAAAAAAEAREYwGAAAAAPAVNBitjwCanCUDhFq1f/WjMj/6tMyvviFzylEy/7ix8IWVkJjlCcfiud7TO7KEG5SaoOfpYIAwqajwC0abXSPVzvJu60oUph5Ey3CWQElJ6h0ofB3Ir94Bo+d22dsf304IBACg+Fq6/X9/yi10GSiUMGdKc5bzrtwZY3T72snbYF2T9OjWaSgIAABMp5snvD/FcZyqbAvtmefkLOsCAAAAAAAAAAAAAAAAIotgNAAAAACAr6CBS4nhwtZRzvwCoEa192Rs4FRK5rzPywxXXhqd7Xh0LPPbgtEaWvNSTmSkAoTrSdJQsrB15JPfeVFTJS2c493W1V/ZA+grxUiAYzk+WPg6kF8vdvm3r2+SGlqicY4/vt3o89e6+vClKf32QVfGRKMuAED+9We51y230GWgUMJcLjX1FK6OUjCSkjotod9XP8p1JwAAFeZBSdsy3u+tyYFnXk6WtDLj/RZJD+exLgAAAAAAAAAAAAAAAKCgCEYDAAAAAPhyAwYu9RFAk7NkgG3cVrXX+AmJXmn9Y4UpKMJsx6NjSUZbPM+7YXBE6imjAK2gAYbDJRSMlvQJRqv2DUYrTD2IluEAgZLxysuOLHmNWYLRJOmwMwJemBTQAw1GbzzP1aUPGP3pKenUa4w+f135/KYAAMbLdt3RYQkvAjBemKulHR0FK6Mk+IXIbdnNdScAAKXMcRwz4b/j/eY3xqQknTlh8gWO4+zv8xn7S/rFhMnfM8ZM/4M1AAAAAAAAAAAAAAAAICCC0QAAAAAAvvwGY2ZKDBe2jnLmFwA1qqlmxeSJax/JfzERZzscY5YnHIvm2td17p3lM5g4aIDh4Ehh68inEZ/zoqbKvm8JpqgMQyPZz984gZ0lp6knWL/81I7p7b9/dpc7qT+97P+MmrvL53cFADAmW7gw159AMEGfL0lSc4/UO1C511Z+4eebdxevDgAAKo3jOHs7jrP/xP8kLZ8wa7XXfHv+W1KA0q6VlPkv5SyStMZxnLd5fIe3S3pE0sKMyWsk/aEAdQEAAAAAAAAAAAAAAAAFQzAaAAAAAMCX32DMTImhwtZRzvwCoEY1VtdPnjhrdv6LiTjb8RhzvKevmG9f11+eKZ9B1qmAX2UoWTrfOVsw2mJbMFpfYeqpBMYYbWw2aukxMmFSC6bBcIB+Mz4ouUF/xBAJjV3B5rt/0/Tu1zvWTZ5mjHTZgxxvAFCOsl13dBOMBgQS9hajobUwdZQCv9uYlp7i1QEAQAV6SNI2j/+unzDfSst82ySdn++ijDGupA9I2pkxeYWkuxzH2eQ4zs2O49ziOM5mSXdqfJDbdkknmqg/8AUAAAAAAAAAAAAAAAAmIBgNAAAAAOAraKZMH8FoOXFdE2gbN1WvmDwx0Zv/giIu5XpPtwWjHbTUvq6NLVJjV3mMBXIt22WioZHC1pFP2YLRFs3z3uldifLYp8W2qdXo2HNdHX6mq/r/dvW+X7uR3pbDyWDzJYYLWwfyq7E72HwbWwpbR66eb5ruCgAAhZDtuiM+GN1rJiBKwp4pDS2Ve275xZYMBbwXAgAA5cUY0yzprZKentB0iKT3S/o3SQdPaHtK0luNMRUcOQsAAAAAAAAAAAAAAIBSRTAaAAAAAMCXLYhqosRQ+AGrfYNGtzxtdNG9rtbuqswBr0G3b2N1/aRpprstz9VEn2tJkbMFozmOo+v+09IoaUdnPqqafkEDDAdLaAB10ufcqI5Ji+d6t3UkClNPOXNdo89c5eqxbWPTbl8rfePG6PbLQYPR4oOFrQP5tWV3sGNuU0RDMoaT0awLADA1foG9khQnJBwoiLb4dFcwfYLe4wMAgMpijNkk6XWSvitpq8+sW/bMc4wx5oVi1AYAAAAAAAAAAAAAAADkW/V0FwAAAAAAiLaggzH7Qg4Gb+01escvXT27a3SK0S8+6ugrJ1RWhne2QfajmmtWTJ7Y3ZHfYkqA7Xi0BaNJ0kdf4+jff+e9YHuZDLQOep4OjRS2jnzyOzdqqqTF87zbOvoKU085e2Sr9PCWydNvetLo0pONZlT7nGDTZChgMFrvgFS/oLC1IH8aWoPNtyngfIVgC+iUgh+XAIDSki2QtY8gViAQEzLsKzFcmDpKQdhtBQAA8sMYs38RPmNKD1uNMSOSzpV0ruM4r5J0qKTRf1mnSdImY8yTU6sSAAAAAAAAAAAAAAAAmH4EowEAAAAAfPkFgGRKhAxG++mdJiMULe0bfzT66KuNls+PXghPoSTdYPN1xzySfXra81tMCbAdjlU+eXqO42jvhdKurslt7X1GUukfb4GD0UootCdrMNpc77aORGHqKWcX/sP7AOobktr7ohksNhwwVLKlV1rtkSuJ6EkMGe3sDDZva1waSRrVTENon1/fFPS4BACUlmz9ezzkvTBQqcJmfYV9zlROgt7jAwCAyrYnAI0QNAAAAAAAAAAAAAAAAJQln2HDAAAAAAAEH4zZF3LA6m8emLxi10i3PFNZoz/9AlYyxWPzJk/sastvMSXAdjzGsmTjLPHYfFI69KkcBD1PB0cKW0c+ZQ1Gm+e909v7JGMqqx+Zqq3t9u3VEdFzZDhgyF9TN8dCqdi8O/i8xqRD76aDXzjOUAn1sQCA4LJdd8QHi1MHUOpst2nVlr+xEPY5UzkhGA0AAAAAAAAAAAAAAAAAAACVjmA0AAAAAICvoIMxE8Ph1jtgCQ+56uHKGv2ZdIPNF6+qk6sJQVAdzfkvKOKswWhZnnAstQSjbQoRxBNlbsDjyHbeRVHSJ3yoOibtVevdNpKSOhOFqalc1VTZ26IaHjgUMBitsbuwdSB/NjaH+/2frn3rF47jF5oGAChd2fp3gtGAYGzBaPNmeU9PVHAwWras72Sqsp6dAQAAAAAAAAAAAAAAAAAAoPIQjAYAAAAA8BU0GK1nIPg6E0P2lWYLuCo3fuFPEyVic8dP6OmQGa6skcK2ALCY4z191JJa7xmueMjIZBtxXAKCnqf9IQMMp9OIXzBalbRivr29uSf/9ZSzlE+wXkdEQ+b8wqkyNRGMVjIaWsPNP1371q9vCnpcAgBKi1/fL6WvsVNBL8iBCmY7S+bN9J5eSvev+ZatS6nk0DgAAAAAAAAAAAAAAAAAAABUhgobbg4AAAAACCvo+O7OvuADwVt77W1VWQKuyk22QfaZemN1kye2N+WvmBJgOx6zBaMtnmdve3Bz7vVERdDztJQGT9vOjeqY5DiOlnmcDqMIRgtnwCdwoD1E315MwwH7ToLRSsemkMFojd3Tc2z6hZ8NEYwGAGXHGBMo+LKUrrOBqKmd5T29bzCa9yLFkO2bV3JoHAAAAAAAAAAAAAAAAAAAACoDwWgAAAAAAF+uG2y+tnjwdfoGo1XYnWoy4PaVpHjMI92rvTl/xZSAXIPRDlhsbzvr1hA7IaKCBqOV0uBp27lRXZX+c0a1oyWWwLvmnsodQJ+LQZ+wj/a+4tURRpCAEklqi3MslIqOkCF8nYkCFZKFXygfwWgAUH6SAcNY44OFrQMoB8ZyuTdvpvf0RAndv+ZbtmdxlbxtAAAAAAAAAAAAAAAAAAAAUBkqbLg5AAAAACCsoIFLYcJzdvuEqFVaqEjQgfaSFI/VTp64e1f+iikBuQajfeCV9hnu3ySdWeLhaEHP06QrjSRLIyhqxHJu1FSNvV4x33ue5p7811POBnwG1XdENBgt6G9FxzSFZyG8sL//0xVAY+ubpOCBfQCA0uEXiJmJYDQgO9udqDUYbahgpURetnv8St42AAAAAAAAAAAAAAAAAAAAqAwEowEAAAAAfKUC5kW1hQjPae21j/CstBAbv4CViXq9gtEat+SvmBJgDUbL8oRj/yWO3neUvf3s24ye3lkagWFe3BC5bv0+IVhRYut7qjP29fI673nCBDVCGhyxt0U1GC1oAFWl/aaUMr/j0Mt0BdD4HXuN3dLQSOn+lgAAJgt6zVEq19jAdDKWyyRbMFpfBYd/ZbuiTNDnAAAAAAAAAAAAAAAAAAAAoMwRjAYAAAAA8GULopqoq19KpoLN3Nprb9veLnX3V06oSDJEoFWfRzCaeXFzHquJPlsAWMzJvuxZ7/N/DPK/j5TucRf0PJVKJ7TB9p2cjH29pNZ7x0c1zCuqBn0CPzoS0TsvjDEaDhgq2dGXnh/RNxQweGbUtAWjZTn2TrzE5ZgDgDISNMh6IGTAJ1CJrMFos7zv6xIVHIyWLfy8krcNAAAAAAAAAAAAAAAAAAAAKgPBaAAAAAAAX0EDl4xJh6MFsTtub0u60h3rSj9Q5KkdRm8+P6W6L6W077dT+uofXA0MT/5eYYLReqsmB6Op0oLRLIdGkGC0Q/fyb7/k/tI97lIhjqPSCUbz3h+Z+3rxPO9l2/tKd18WmzFGAz7HRHsEQ+ZSrj1UYaKhZOkc85XOFoxWU+U9PT44Ped5toCcO9ZJtzxTnFoAAIUXNIyV6w0gO9vV29yZ3tMTFXxeZbvS9buHAwAAAAAAAAAAAAAAAAAAAMoBwWgAAAAAAF9Bg9EkqTMRbL7dvf7tv7zHyARNvYmghhajV5/j6v5NUt+QtKtLuvAfRp+9ZvJ3yhawkqmjatHkic3bc66zFE0lGG3OTEf7Lba3j6SkxFBpHndhztNSCW2wdQGZ+3qJJRitI4JhXlGVTPkfP1EMRrMFaNlwPJSGoRHv6Us9MkElKT5YuFr8DAc4/s66NURaJQAg0oL0+xIhRUAQtnu82lne03sGpFSYm90yku1r93sE7wMAAAAAAAAAAAAAAAAAAADlhGA0AAAAAICvMGNQE0PB5rvxSf+VPr5detlZrja3ltZAT9c1+tZNrg47wzsQ5drHjLbsHv+dkiGC0Zqrl0+e2N0mkwyZElTCphKMJkn/9gr/GZ/cEbKgiCjHYLQg+9oWjBbFMK+oGrCEUY2KYqhY0ICSUS1ZwjgRDbbAO9t5HuVgtLWNKumAVwDAmKDXHYQUAblbMd97esqV2uLFrSUq3Cw5u6VyXw8AAAAAAAAAAAAAAAAAAADkimA0AAAAAICvbIMxMyWyDMw0xui6x4KtcEOztOr7rjY0l84A8yseNjr/bv96b3lmQjBaiO3bXL1i8kRjpK7W4CspcSnL9ooFfMLxrbc7OsxjM456z0UhdkiEVFQwWsa+XjzXex6C0YIbzBKM1jsoDSej1Q8PhwiUlKT7GqJVP8Zbu8vo8odcNXZ7t1uD0QKGsebbSMDjL4qhggCA8IJed2QLmwUg2a7K915gX6bJco1Y7rLdwZTKfT0AAAAAAAAAAAAAAAAAAACQK4LRAAAAAAC+wgQuJXxCSgaGjT7yG1cnXx4uoOaIM11dfH9phFVd/Uj273bfxvHzBA1YkaQmr2A0SWpvDr6SEmcNy3KCLV+/wNGj37U/DukbkoZGSi9EqSyD0WwheBn7esk87x3f1R+9MK+oyhaMJkmdicLXEcZwMtz8D23mWIiqs29zddQPXf3X1fZ9tNRynvcOFKoqf0EDcpp6ClsHAKA4gt6vlco1NjCdjOWSb2mto2rLbbotPLfcZbvHp88BAAAAAAAAAAAAAAAAAABAuSMYDQAAAADgK0zg0ieucPWPDd4L/PEJoz89lVsNX7zOTAoUixpjjNY2Zp9vQ8v498lQwWj13g0dBKMFDUaTpNpZjt59pL39hbZwNRWKMUa/f9TVKZe7+u+bXD3fZD8HbCFiXkplAHWQfb1ivn35LRHZj1E3ECAYrb2v8HWEMRQyGK0tXpg6MDVP7zT6wV+z/7Yvnuc9PT6Y54ICChq62NhV4EIAAEURNJA1yDUVAG9VMfu9XVN3tJ8FFYotRG4UfQ4AAAAAAAAAAAAAAAAAAADKHcFoAAAAAABfqRCBS+190tt+6eqKhyYvdNOTUxvMesIFrh7fHt0Bsa29Us9A9vm2d0iDI2PfIxli+zZVr/Bu6Gjxnl6GbAFgYYLRJOnrb7U/EtkQkZy5L11v9IkrjK59zOjndxsd8xNXj271PgfCBBgmhqN7HmUKEox20FL7vt9YOafFlAyWYDBa0ICSUfGhwtSBqblyjQnUdy2t9Z4+MCL1DhS/PxsJGGjaWKEhHgBQboJed5RK+DAwXUyWpK+VC72nN/cUoJgSkO06mT4HAAAAAAAAAAAAAAAAAAAA5Y5gNAAAAACArzCBS5JkjHTGrUbJ1PgFb1879Vq+9ocQKWJ50Dtg9L1bXB10WkqvPSflGfg2KmgIkzHSptax90EDViSpr6pW8di8yetsj0iSVxEECcsK4k2r7Qtc7rN+Ln3tAAAgAElEQVSfi+XFTqOL7x//ZfuGpGPPdT0HlIc5T+ODU62uOGzfycnYdTNrHB241Hu+jS2EEgUxECAYrSNqwWgh+k2pdI75SvO7B4Odo4cus7c9uytPxYQQNCCnqUJDPACg3AS9zh4gpAjw5ZeL5khaOvlRhySpO0AAfTkiGA0AAAAAAAAAAAAAAAAAAACVjmA0AAAAAICvsMFoktTULW0ImdV1w2ezJ1ut2ZIOjCqWL11v9OO/GW1rl57YIf3n1Ub/c593aNa29uB1vdg59npigFw2TdUrJk/sIBitKocnHO9/hff0u9ZLm1unN1Tr7uftn//zv1d2MNrEELxVltCkrW35radcDQUIRmvvi1bIXJCaM/VWaJhClCWGjAYD7sdDlzlaMMe77amdxT82gwbzbaMPAoCyEPQ6m5AiwJ/fqeQ40oI53s+EevoLU0/U+QXJSfQ5AAAAAAAAAAAAAAAAAAAAKH8EowEAAAAAfOUSjCZJG1rGFhwY9l/J8jrpA69w9LbDs693v++42t1b+CCUZ180uubRyZ9z8f3en93YHXzdPQNj60h656xZNVbXT57YTjDaxLCsIFavsC+06vuu3FwP/jy453l722l/NjITRkmHKbW3VILRLOfGxH2972Lv/djcHa0wr6gKcux0JApfRxhBg6lG9Q1p0jmD6dUU4jdzdo109L7ebU/vzE89YYwEPP4apjlgEwCQH0EvIQZCBrcCGOM4Ut1s77bu/sq8psp2nzZAMBoAAAAAAAAAAAAAAAAAAADKHMFoAAAAAABftnCibDZkZHWdfbv/iM6LToqpptrRrz4W01612dd9xJljoVWPbTW67jFX/9yW38Gyv7jHe30bmqX+ocltYUJeegbGXgcNWBnVXL1i8sSOlnArKWHWYLQcnnActty//bIHp28A9rxZ9rakK8Uzws2MMYEDG6Txy0aZ7StNDEZbucB7vjBhhZUsSDBae1/h6whjOBluftdI/QQHREqY38yZ1dIr9/UOQHxqR/H76aDHX0MLgXwAiqO7P30/dMvTRh199Dv5FnSLElIE+PO7LHIkLZjj3dY94D293GW7jMz2DxAAAAAAAAAAAAAAAAAAAAAApa56ugsAAAAAAERbkNAcL5tax17f9qx9JU+cHtPR+6UDT1Ytd7T5nJhe/SNXm3fb192RkI7+kasj6h1d/8/RdRt95jhHl53iyHG8A1TCuHu9veaOhDRn5vhpTd3BN1TmwN5kyOC5Jq9gtKatMsmknOryv823BfVNDMsK4rAVjvyiDq591Ohzbwy/3nzoyxJe1pmQ6manX4fN3YmXyMDyoCF4tmC0pp781lOughw/HSUejCalAwHnzsw+H4qjqSd4xzWzRjp6X++2DS3ScNJoRvXUf/eDGg4YaNrVL7XFpb3qClsPgMr2xHajEy5w9wTfGtUvkG79wtj9FaYu6P1wPyFFgC/fYDRHWjDbu627vzD1RF22vofgZwAAAAAAAAAAAAAAAAAAAJS7WPZZAAAAAACVLNdgtBc7xxYc9AmxmThov3aWo3VnxfThV/kP5n9ulzJC0dIuf8io6lRXH/+dq9884CqVa/GShnxqbvcICWrqDr7unoxgqpGAASujmms8gtH6eqS1a8KtaAqM68rc9ye5554q99LvyXS0FO2zrWFZOWQ/HL5CmuGTJffwFsmETR3Lk2yhQV0Zg8PDHubxwdIIbQgagle/wHvnt8WloZHS+K7TKcjx0zMQre3o1z/b9GYJG0RxNYb4zZxZLR250vs8T7lSS5FDEFMhAk0bWrPPAwBTccrlo6FoaU3d0lduCJm8DF9BbwfiXGsAvrKdSgvmeE/vLpFg73wjGA0AAAAAAAAAAAAAAAAAAACVjmA0AAAAAICvXLPFMkNPeiwDWV9W7z29ptrRH06N6Ten5JB2pXRg2v+71ujDl7o5B1v5BZ94BaPt7Ay+7sztkQwZjNY0Y2/P6WbN7eFWNAXmZ/9P5ox/l26/Srr2PJlPHi2zY2NRPjufwWhzZjr6/PH+C976bPj15kO242lKwWhD4euZDkH39coF9nW09OavnnIV5PjpjVgYwXDKu+hqnyedhJVES5gw0ZnV/ud5c5GD0cL0uRtbohUqCKC8NHUbzwDGh7dIW3bT/+RL0H6/uz/7PEAl83s04zjSgtne9+aVem5le5RFMBoAAAAAAAAAAAAAAAAAAADKHcFoAAAAAABftoHgPznR0YeOti/X1K2XQslswWg/PtH/tvS//jWm1+wfoEiLW56Rqk51dcjpKX3rJleDI8FGtSdTRr0+ITodfePX05Uw2h0PXldmyFDSJ4DNy721J3g3PPTXnEPgwjD3/CEdiJapp0Pm+l8U/LOl/AajSdK5Jzr6zHH2hT9wsavz73bl5poQmIP+IZM9GC0x9tovxM9L1EKubILu63qfwKTGEOFLlSpQMFrEQsVsx/yCOfZlSuW4rxTNIc7NWTXpfTurxru9qdjBaCH63IaWwtUBAH7XOY9uIxgtX4LeYnVzrQH48juVHNmv5XsHVdT78ajI9pUJRgMAAAAAAAAAAAAAAAAAAEC5IxgNAAAAAODLFkCzZJ70x89V6eFve99aDiWljj5pcMRoOOm9jgWzs3/+3V+d+q3rljbp/LuN/uVcV+ubjJ7bZfR8k1Ey5T3StDPhOfkl7X3j3ze0hqunp3/sc0dS4ZbtNLVqq1oyuWHXFmlnQ7iVBWTiXTKbnpF59iGZH3zCe6ZH7izIZ09kDcvK8TCZUe3ot5+IaWmtfZ5v3WR09u3FG4i9eXf2AIaujGMo7BjxeMRCrmyCBqPNny3NmeE9bxPBaFmVYjCareYZ1dK8md5t/9xeeWEKUdbYHXx/1FRJjuOofr53e1OIdeVDmE97MUvIJQBMxWxLYKQkbQ55fwK7oNfa3f2FrQMoZ45jD0YzJvszmnKU7ZnAwEhx6gAAAAAAAAAAAAAAAAAAAACmC8FoAAAAAABf2cKJ9l1kX7axW+oZsLfPDxCMNn+Oo+bz83P7+vSL0pFnuXrFD1297CxXS77m6ppHJie/7Y77r6dtQjDac7vChbJ0Z2yTZMhgNEm6cNEXvBseuzv8ynyYRK/cM0+Weddymc+8TuaLJ9hn7myRiRc+hcq1BPVNDMsK6/hD/Vfwg78avbC7OOE7G1uyf05XRvBC2GC0qIVc2di+l+NMfO+ofoH3vGHClyqV7ZzK1OvTj08HW81VjnTU3t5td6zlWIiSoKGFc2emz3FJWmEJRmvuyVNRAYXpc+ODHHcACsevP3phd/HqKHfZwolGdfVLJujMQAXyOz0cScvr7O1NRb7ei4Js15z9w8WpAwAAAAAAAAAAAAAAAAAAAJguBKMBAAAAAHxlC6JaVmcPpcoWjLZgTrAaltU5evr7+b+F7R2UPnml0X9c5eo7f3Z18u9c/eQOVy//gX9S0I6O8e//FjJwpy0jeC1p+aiFqU7r8n9ecpLndLN1fag6bIwxMs88KPOOpdK9NwZfcOemvHy+n2xBfbk694PZV/CqHwVIkMqDiceXl87E2OsgwVaZSiW0IUwI3kpLMFrQ8KVKFiTkKWphetZ+ICa99yjvc3ltY2kc94XSO2B04xNGtz5j1JmY3u1gjAkcbjF3xtjr+gXe+7bY53mYPjcesXMHQHnx+w1v6a3c37x8CxqImXKlxFBhawFKmW8wmuP/bKkS7+sIRgMAAAAAAAAAAAAAAAAAAEClIxgNAAAAAODLNhizas8dZXWVo+XzvefZ1WV8Q57mzw5ex1H7ONrww8Lcxl61xuhndxpd90+j02/OPvK9oWVsHmOM7m/wnm+/xd7TG7vHAnpGUt7zvGLwWfvna1+1VC2b3LDDUkgIZmRY5jsnynzpLeEX3rFxyp+fTaGC0Q5Y4ui0d/mvJD4obWwufMhEY4BB3139Y6+DhjWMGhwpjdCGMPs6KoFJpSjI4TM4Ig0noxOwkvIJzTvmQO9joatfau8rYFER9vROowO+6+qjl7l6/8Xp8M+ndkzf/uxMpI+pIObNHHu9whKA2NxT3O8Sps+NWqgggPJi+z2UxofoYmrC/Mp0+4SCA5Uu27lUXeVoWZ13W2N3dO5FiiVbpnP/cGUHPwMAAAAAAAAAAAAAAAAAAKD8EYwGAAAAAPAVJJxob0tYSWO3dPrN3iP2HWd84EkQq5Y7uuurMS2eG265fGtoHRuAmhiyB5985jjvgJ7+Yal3z6D5pCXQoMYk9bed77XW0FhTP3nijo2hB8Y+ttXoC9e5+tZlzXr2Z+fLvLlWWvO3UOsYZXZOPZgtG79ApKn6/rsdffx1/is6/ExXL+wOt40f2mz0lRtcffkGVw9uzr5sU4BB391TCEaTpLYSCIiyfa2Yx9OseksfdO1jhsHiWbg+oSqZeiMU9OH3u7R6uX25jS2FqSfqPnmFOy5Msalb+vINAXd8AWxqDT7v3IzrhHpLCGtzz9TqCStMnxsnGA1AAfn1R5n9PqYm6LWSNP4aHcB4frdlzp7bcNt9XSUGXge55gwaNgwAAAAAAAAAAAAAAAAAAACUIoLRAAAAAAC+ggSjrVzoPU9jt7SlzbutbpYUyyHN6q2HO9p+bkz3fzOmWz4f07qzYhq+JKa1Z6Xf//zDeUjIyqK7X2qLp1+3+wRMHXOAvZbGPQN7kynv9mqT1FsS91qXb6taMnlivEvavsFe0AS/fdDV6891dcn9Ruc/sZeO2fT/dNu8dwZefpIdG3NfNiDr8ZiHJxwzaxxd/R+Obv+S/8pe9SNXT+8Mloxz7WOujj/f1UX3Gv36XqM3ne/q6kf80xUaAwz67kqMfX4uwWi7e8MvU2y2EAqvbmOlZQC9JH3rTwSj+Ql6/NgCIKeDreaqmLS0Vlowx7t9S1vlHQvN3UbrmiZPX7NF2tY+PdujoTX452ae7ysswWjFDsogGA1AVPgFdnUlildHuQvza9nJdges/M6l0Us+231dU5GDcKMgSL73AMFoAAAAAAAAAAAAAAAAAAAAKGMEowEAAAAAfAUJoqpf4B0A1tRl5FiywXoGcq9p7kxHbzjU0fte4ejwekfVVY6OqE+//9pbY7r1izGtWpb7+oNoaE3/6ReMduTe9rbRIJcRWzCakorJaK9kq2d7e81S7wUfus3+oRkau4xOvWb8zh2KzdKZS88MNfh/nBChbLmyB/XlJxDPcRy980hHbz3MPk98MB2O1hb331LJlNFpfzbjanaNdPrNRsmU97LGGD26NXudXf3j1xlWm89xGxVBQhlH1fsEo/38bqMlX0vpw5emtL5p/Ep39xp94TpXR5yZ0nE/TenOdZUXnOUGGXGv0ghGiznpc3gfS1hnJYbE7Oy0tz26dXqO940twedNZoT+2K412vuk4WTxvkuoYLShwtUBAJbLSUnp320T8Dce/sJsxuYetjlg43cujd7Or/B5tlRpglxz9g8Xvg4AAAAAAAAAAAAAAAAAAABguhCMBgAAAADw5bre0zODqFZaQole7Bof4JTpW+/IT5CVl/e83NGGs6vkXlalR79bmFvfhpb0KFVbMFpVTFo6T1pa692+rSO9fNKyfWvMiCRpabLds71t79d4TjcNT1kqHm+fb3t/8LOzXq7m6hXeCzmOnGuekfOd32jAmaX1Mw7TgDNrrH3XFpmmbYE+P1dhwrKm4n8+nv24WfYNV/FB+2jlDc3pc2Cixm5pfZP3Mv95dbAB350ZAU+2c9RPtlC3KAizr1daBtCP6kxIf3pKetP5rjr60it2XaMPXOzqkvuNNjRLa7ZI77rQ1QMN0d82+RQ05Kl3CmGW+Zbt2Fg4x7vd9ntUzvz274s+oWmFtN37Z81Talwwmn2+HR251xNWmD53OCkNjVRWnwKgeLL1R1MJosaYoCGyUvo6H0B4o3dztmdLTT1FKyUyCEYDAAAAAAAAAAAAAAAAAABApSMYDQAAAADgK0g4kW3w6vomyTaO/KOvLlwwWqbXHuDoye/F9KGjx0+vnSUdtbf/sm89zN7W0Jr+0xYwtWSeFIs5Omip9/Kb9yyfTHm3V5tkej0p7wSZ9mUv815wZ4P39Az/c59/ikLDjEMmT3z3p+X8YaOSe6/W5xpP1OJDm3XUQU9q4apWfWuvc5RUVXq+h2/L+vlTYQ/qy+/nHLyXo6oAT03mf9nVbx/0Lmp9k30k8zqPtmTK6MYnggUvZAY8+Q2YnjvTe3pbPNDHTKswwWh+gUmZ2vukn92VXvHX/mj0yNbJ87zp564GKyjIKHAw2mBh6wgjlaUfWGAJRuuuwICYxJC9bXsRw8QyNfcEP78yw0P3Xyw5lr5+9De5GML2DvEInTsAyku23/Bv3GhkQoR6wVuYTUgwGmDndy6NXuPVz/dub/QIHC93QfoegtEAAAAAAAAAAAAAAAAAAABQzghGAwAAAAD4yhZAI0krF4ZPpVoyL8eCcvDKfR398XNVci8b+6/nwio9fUaVei+M6Yj68fN/9g2O3MuqdNfXqnTKMd7fbVdn+s/2Pu/PHP1+h+zlvfzm1vQo1xFbMJpGg9G8k2vaZ9Z7Tte252WSSe82SfFBoy9d7z/CdtOMQ8e9d367RrHvXCpnxf764e1Gv31iroZj6cStpFOjCxZ/TbMOi+v3dSep78G/+657qsKEZU1V0FWeeo3R2be5Gk6OL25Lm32ZrR5tW9qkPp8Qo0zdA5K7Z2P4hWIsq/We3mY5bqPE9r28gpFsA+i9nHeXUWuv0UX32jfct/5UOSEitrDBiXoHorNNrP3AniedC+Z4n73diQIVFGF+YQmbWqdnnzb3BJ83Mzx09gxH+y3ynm9jS/G+S9AwwVHxgP06AISVrT+68mGjm58uTi3lLEy/30wwGmDldyq9FIy2wPs6vjWeDhKvJEH6nqkEo7mu0VM7jK59zNXWtsratgAAAAAAAAAAAAAAAAAAACgNBKMBAAAAAHwFCaJauSD8ehfPza2efJs3y9FT34vpik85+smJju7+akyXnjx2u1xv+W5NPekNszvu3f5SMNoy7/bNu9N/2oLnakw63Gxpqt2zfVtqqfeCknTNudam6399t325PRpmHDL25u0fl7P6VS+9/f2j9gGzn1p5ueYP3qzH14dIvQnJdjxWFeAJxxsPzT7PqDNvNXrDz1x19I0VOLqPvTyxffIX2dAc/POMkXoH0699g9HqvKe3W47bKLEFdnmF4M2scTRnRvB1/+QO/4Hf1z9mKmbgfdBv2TNQ0DJCsR0bVXuOjQVzvNu7IxTuViyJYft33thSxEL2MMaoKURoTHLCvl613Hu+hiJ+l6BhgqOidO4AKC+2+4hM594RstPCJGGuHhq7K+9aAwjKBDg9bM+WjAkXrlsOgvQm/TkG8A4njU76rdGrz3F1yuVGB5/u8nsBAAAAAAAAAAAAAAAAAACAyCEYDQAAAADgyzbgPjOIKmww2pwZ0pyZHulG06Sm2tGnjo3p2++I6S2Hj69rxXzvZUYH5W7Z7T1cdXldej37L/ZeviOR/nNi6Muo6j3BaPuO7PRsf7BxrnpqFnm2mSvOlhmanMRitqzTrU8lvT8wwyWLTk2/eP075Xz9Vy9N7+k32tGRdXH911UjSvmldU1BkKC+fPnE68Ot9J/bpaVfd18KPWuL27fB3zdI/UPj2ze2hNtmXf3pP3MJRvOrLSrC7usz3hN8f134D//v35GQ1mwJvLqSFvRUHQ3iiwLrsbHnd2nBbO/2rkRh6omyhE9YQlO31FvksLj4oNQ/HHz+idcgB+/lfZ43dhXve4T9edvaVpg6ACBIf/TEDqmJsK4pCROIWYnXGkBQfj3R6BXePt6POCT5B4+XoyB9z8BIbuu+8mGjG58cv0dOu9nomRf5vQAAAAAAAAAAAAAAAAAAAEB0EIwGAAAAAPBlDe6qGns9b5aj+ZYgGi9L5k2tpmJasfUBz+nN3UbGGG1s8V5u1fL0n/O7t3u298TTyTAjSe+Bp9VKB5idkLjPs30k5eifh3/SUrWkJ+6dNMn96xVaM/t19mVG1+3M0IVf2i7npzfLmVP7Up37fzdYKsBzPQv16NZAs4aWLRApnz54tJPTsfraH7u6+Wmj7n77PIMj0lMTMu8aLMeSTeee4AVbeKEk7VXnHSLU1hfus6ZD2H196hvym453yzOVMSg8aNhH7+SsxWljO+ZHQ/MWzvVu747QdyiWRJYQsi1FDu1a1xRu/tfsP/69LYi1qSencnISNhgtbOglAAQVtD+6fS390FSE2XpdPtf/QKUzPieTs+c6fsEcR0trvec59ZoQKYVlIEgfnxjKrX//n/u8l/v9o/xeAAAAAAAAAAAAAAAAAAAAIDoIRgMAAAAA+LIF0FRPuKO0hZV4KZVgNDMyrOV3XejZlhh21BVPatNu72VX7wlGq7vvas/2QTNDg2v+bg2eqzEjkqSjB5/W0qT3hzx1wAfsxW/fMO6teeE5td5yk7qrFtqXyfDd+/dS31D6dWLIaM4XXfWECBX6+h/Hf7G71xu9+fyU6r+Z0ht+ltK1j+U2qNkW4hTLbyaWJGnOTEf/998xvf7A8Mt+8BJXj2QJh5sYlnPD4+EGIXftCUbzGzC9rM57+u54qI+aFraB87Z9PX+Oox+9P38Hwi/vMXLDJiCVoKBfsXewsHWEYQ3NGw1UsAR1VmJYSX+WYLS2IvcFd6wLd0599S3jLzbqLdcajV25VhRe2G5hU2th6gAAv3DcTH97rvyvZwopTL9fiSGsQD5k3sWNPkuZaEub1BavnP4syDcN8oxmzRajt/8i/Sxm2TdSOvrslDWs+IK/V872BQAAAAAAAAAAAAAAAAAAQPQRjAYAAAAAsHJdYx0IXgnBaNqyVvWd663ND/z0NxpOeretWu7IGKP56++1Lt992qc1kvTewFUmvWJH0uFDGzznOb3h1TJKD5iNx+Zp0Jn5UpvZ0TD2unm7zKdfo4/tfY21lomGktI1jxo932R05Flu4OCFUY9vTw/ANf1x3ft0n97xK1f3b5JaeqWHXpBOudzoqjXple7uNdrVFWwAbrZApHxbvcLRw9+p0uDFMX3lhPx+yMaWsdebWo2GLMeSzWjIky0sTpKWW4LRih2GlItc9vXHXpPfffSBi3ML8CslQcM+4iUQjFa153dp0Vzv42B3r6x9brlKDPm3t/cVd3us2+X9eXsvlOpmjZ927EHScQePn7Zygfe+7UhIQyPF+S5hg9F2dFTWMQegeIL2R0/uDL/uzoTRhmajrW1GxpZWWyHCfP3EUOVdawBB+Z1LTsYl3qHL7Pd0f322cs4vv/v8UdmCn5950eiN57n6+4b0s5i2uPTMi/mpDwAAAAAAAAAAAAAAAAAAACg0gtEAAAAAAFZ+YVhVE4PRFgYPJFo8r0ApVvm2o0F7jzSq2ox4Nt+62Z7wdugySR3Nmp9oss7TE6vTyBbv0LNqM5aStXp4k3UdFx57lQ4+aIMWrtqt/Q/epIsXnppu2LJWkmSM0baPv1Wv3/8BPTTnOOt6vHzxOqOXneVqe0eoxV5y3E9dDb1rb73lktme7Z/7vdGrzk5p+Tdd7fttVwefltKjW/0HOhc7GG3UjGpHF3zE0UUnOZpZnZ91NrSMfZmL7g0/wLurP72MXyjGsjrvDdM/LPUPRXtQeS77er/F+a3hr89JPf3R3k5TFTRUpXcgOtsh27Gxv+U4SLrSthz7s1K0vd3ox3/z32/tfUUqZo/Gbu/pnznO0f3/HdOn/8XRvx4infYuR3d+JabqqvEnfL1PCOuNTxYpGC1kXmJHkbcxgMoRtD/a1SX1DQbrIxu7jI4/L6UlX3N1xJmuDj7d1fJvuvpTkfrYKAobiNkzUJg6gFLndyplBqO95+X2G74711VOXxTkm3Zn6W/OuT18yD0AAAAAAAAAAAAAAAAAAAAQFXkaygsAAAAAKEdJnwGU1VXj3/uFlUy02J4nFilmZ4NqlNTBw1u0cebqSe1/qX2P53L7LpLmznRk1jVovttrXX9P1Xwl21ukuYdPaqvRWDDaEUPPW9fxja6PSDPSr9url+rLy3+h1UMb9eZND8jc/r9yXVdv3/d2bZlxkHUdhTT3kHZr23BSevrFsfdb26W3XOBq509jWjR38mBoY+xDgwsdjCZJjuPoC29y9IU3Sade4+q3D05tUPbGlozXzfZ17b9YnuF0Xf3pP/2D0extbX3SfjOzFDmNcglGq4o5elm9tM6eRxja3zdIH3pV/tYXNYGD0QYLW0cYtsH9o8fGIcvS4QpeXcbG5j3BlWXOGKN3X5Q9BaHYwWhNPd7TVy6QXrGPo8s/6d+Z77MwHczqdQycfZvRx19n5DiF/UHw+Sny1JEoTB0AECaw6+s3Gh29r/8CxkhfuG7yPG1x6cO/cfXsGTEduXeJBFznUdh+v3tAWlJbmFqAUhb0XHr3kfa2zbvzU0spCNLHd/fb2wZHjO5YF+4zi/FcBQAAAAAAAAAAAAAAAAAAAAgqNt0FAAAAAACiyxY+I0nVE+4oV4YIRltSIsFo2tEgSVo1vMmzubtqoef0VfPSYWjmzI+rzu2VY7w3ZE+sTiOq8WyrNmPBaCf23hK4ZEn68ZJvpz//3M/qtCt3T1somiQZJ9yjh/5h6eanvUcA+w0MjhX5CcdvTonpzq/E9I235T5yeFt7erCyZA8LkqSDlnpP79wTtpNzMFo8S4HTzBqMlmVff+y1+R3Nfe/GqQXgRZ2bPTtLktQ7UNg6wsgWmjerxtEBi73naWgt7/056vRbjDY0Z5+vmMFoKdeoxRqMFuy8nTfL0VsO827bvFt6YkeOxYVgO4Js1zadCf9gTwDIld+92kS/e9Do89f6/+cVipbpqkcqsy8LE0An+QcVAZXM71TKvBKsrrKH5frdN5ebIPdpfv3N49vTz1fCqOJvjgAAAAAAAAAAAAAAAAAAACBC+OutAAAAAACrpF8wWtX490FDTaPm5OkAACAASURBVKQSCkbbmQ5GO3xoQ6jF9t9xn8yWdVJPh2IyqnW9E6h6q+Yr6VR7ttWYkZdeL0+1hvr8++cer46qRdo441Cdt+SbWef/9b/nHiT12cX/1LWNn8h5eS8bW7yn+w0MjuU3CyuQtx3h6LwPxeReVpVTQJprpBd2p183WwZ4n/MBRwvneLd19Y+tx2bRXPvg5sgHo1n2d7Yt/dUTHJ34yvzV8djW8g4BCfrtekogGC3zWD/QEijY2pv/eqKmd8Do3DuC7dmOIgajtfba9119iHDVs95rf6T93K7Cn6+2vmlprff0oWT4UAoACCJsYNdUPbipvK+JbMJmWxKMBnjzO5ecCTd5+yz0vutri0tDI5XRFwX5lt399rnWN4XfTpnPVZ550ej7f3H17T+5WrOlMrY5AAAAAAAAAAAAAAAAAAAAooVgNAAAAACAVTJlb6uecEe5cmHw9ZZCMJpJpaRdL0iS3py4L9SydZ1bZK4656X3813vJJ6u2AKNODWebdVKjnv/kZeFSyVaM/sYfX75hVnn++dpMZ38uvChXld+ytH2n8R0yVf31msHHg+9vJ+mbu/pKZ+xuNMRjJbpvA/F9Kljwxfx0AtGA8PGGqDw+gMdLZjrvd6uRHqD+AXGVcfs51tbX7QHN9vCPrLt6zkzHd34uZgazo7pxlNj+peDgn3em1Z5T3/6xbFtXY6Chqr0Dha2jjBsx3zmsbFknveB0pkoQEER88qzfTqFCXIJTMiVrW+XwgWjve5AR4ev8G5rsARr5pPtnFnqc21TzAA6AJXDDZvYNUVP7JA6In79WAhhv3F3hMJkgSjxDUab8N7v+VJLBQQdS8H6eL8gRlvgvJ/RfwDhjrVGx/zE1Tm3G513l9Ebfubq948Gv8cAAAAAAAAAAAAAAAAAAAAA8oFgNAAAAACAVdJn3GPVhDvKvUMEo61cMM0pVkG0bJdGhiVJx/Wv0Uw3eCpQrdsn3f/nl94vTbZ7f0T1MiVicz3b5rrjR7gurg13C/+BfW7S/819g+88f/hsTK/e31HdbEcXfCT7PnEc6V8Okjb8MKZPHhvTvosdOcv2Uf3b3h6qtmwau7wHAPsFgE13MJokXXqyo2+8zVHtrODL3PqMUXOPvX3FfHuw2WjQjl+wVcyxh/XsjgercbpYg9EC7GzHcXTIMkcffJWjTwYMrPvSm+3n2PHnl+8gcL/zKlNvhEI+7MfG2OtF3l1r2Qa67Ogw+vffuop9NqVt3j85np5vlra2FWeb2ILRaqqkxZb9ZfPq/b3P64aWwn8X2/HnF/ra6RNaMd2MMfrD466O+2lKrzknpXPvcDU4Em47/v5RV286P738mbe6SvolmQLIm6Dhpvn0q39U3vkddjv3DVXeNgKmyplwaVc/3z6vX9huOQmSfdnlc42Zy3Vx1Z798J0/uxrOyOp3jfTfNxm50/HDAwAAAAAAAAAAAAAAAAAAgIpVPd0FAAAAAACiyy8YrXpChtDSeelwk5FU9vWuXj61uopiR8NLL2uU1MHDW7R+1hGBFq1L9Y57vzzZ4jlfS/Vy9cbqvNfhjl/H4vn5u4V3ZDR0SZWqq8ZGH3/lBEd/W2t0z4bJ81/wEUcnvdbRvJnS3JmTw2hmfeGHWvqVNrVVL81LfY2Wgc6+AWARiH6fUe3ovA85+umJRv+3WXrzz7MnTt3bIK1ttLf7BaO1Bw1Gq/VuayvVYLSQIXjvOtKR5D+A+/PHO3rVfvb2tY3SI1uMXn9QBBL48izo2PaBEWkkaVRTPf3bIGU5tTKPjcWW86Yzkf96pltPv9ExP3HV2pt9Xi9P7DA6cGnh92tjt/fBVr8gWOBhpkOXeU9vaA1bVXi2c2bRPEeOYzxDLBq7pFfsU9i6ghoYNoo56fNlJCX98Umj/7hqrOgndxhtaZN+/mGpdlY6aNLP7x509dlrxi+/rU26+jPT31cA5c72e1hID22uvFCcIOFEmRJDhakDKHV+p9LEy4262dLcmd7n0/aO8rwvmyjIfVq3T3j1hubwn1kVk1p6jOczitZeac0W6bhDwq8XAAAAAAAAAAAAAAAAAAAAyAXBaAAAAAAAK7/B9tVV49/HYo5WzJd2dvqvc2mttHheCQxi3dkw7u0hwy8EDkardfvGvV9hCUZrrl6u3ph3alVdanxq1eK6amULdwqq7SubVF11+LhpjuPoL1+I6Zy/Gd3zvFHPgHTQUunUN8b03qP895dTu1Bvn3GXfu++JS/1NXZ7BzBlCwCLiljM0fGrpGfOiOmc212tf3yLulJz1FyzYtK8w0npl/d4n2hLa6W62Y6WzPP+4oGC0WLS0lrvYLCoB6PZQijC7uv6BY5WLfMPTLropPRK62ZJvYPe83z/L67u+XqVd2MJCxqMJknxIWlRBJ4m2mquyghIXDzXe56OMgxG+5/7Tc6haJLU4P0TlXdNPd7T6+eHX9fq5d792pY2aThpNKOAAX6u5QCsqZL2Weh9HdTQavRuTe8PlTFG5/zN6Iy/ZD/pL3/I6PKHjF69n3TRSTG97kB77Rf+Y/L6rvun0U8/aLRiQYR+nIEyZPs93KtWOvWNjv7+vFFXDr97RtImy3XT5t3h11fqwlwrSVIfwWiAJ7+QwYlXDI7j6MAl3iHitv6p3AQJZezuT1/jTQyyTQyZrM/mvFTFpB6fsLUdnUbHTfM1LQAAAAAAAAAAAAAAAAAAACpHBIYyAgAAAACiKpmyt1XHJk9buSB7MNrq5VOrqVjM1ufHvT90eFPgZWvd8YlTyy3BaI019YpX1VnWkZFyM2uO9lnkHQITxkx3UE8ffokWHfFNz/bZMxz96P2OfvT+8Os+7bMH6/eXTqm8lwyOSA++IL159fjppRKMNurlezu64aQemd8fKVeO9j94s5pq6ifN94Dl0Bo9V5bM89737X3pQdDZtsuSed5t7X35CdorFNv3ymVff+JYR6ff7L3Cx06LvTSQ/LJPOPrYZd7z3btRuuVpo9kzpDev0qTgvlIVJuyjd0BaZAkcK6Ygx8Ziy3Ef1WC0jj6j53ZJ65uMDljiaN9FUmdC2rzbqG62dOxBjvZeOPmY60wYfe+WYDvxA6+Ubn568vRiBaM1dnlPr18Qfl2rLNcSKVfa2iatnpxDmTd+x9/q5d7XQRuLtI39/PzvwULRMj2xQ/rwb1ytOyumutmTj7+RpNG6psnLuUb645NGXzmhPPpJIKps/dHsGdIP3hfTD96X+7q//kdXv7xn8gc0dkt9g0bzZlXO+R0knChTgmA0wFPYu89Dl3kHo20ukWC0+KDRA5ukBbOl1+wvzawJ128GuU8bSUn9w9LcmeOn5xoe194n3fSk/YNdn388AQAAAAAAAAAAAAAAAAAAAMg3j2HsAAAAAACkJX0GPVZZgtGy+ddDoj+I3vR0SHdcPW7acf1rAi8/MRhthSUYbdOMQ6zrqMtcx8w5euvhgT/e6qup67T6696haFO1+uiDtGvV2frB7h/kZX1/f37yYNxSC0aTJLWlE2NiMnpv3+2hFl21PP2lbMFmSTcdVOU3ODnmSEtrLaXFvadHhS2EIpbD06xPHONo3szJ0z9znKPX7D928Hzk1THtZdleknTiJa7e+StXq89w9XxTtIPlggoVjDZYuDrCCBSMNte7U+hMSG6YL10EDzQYHXGmqxMucPXlG4ze+2tXR/3Q1Zt+7uqz1xh97DKjg093ddWa8Sf7/Q1GS74WLJ3gxZ/GdOgy723S0Fqc7dHc4/059QvCd+AHL7X3+w0FDsvwO/4OXe5d1KaW6T3mrnzY1bduyq2GXV3SlWu8l437hP/kGsgBILiU5ScgH9fFX3yTfSXPeQQVlbOwlw2J4cLUAZQ6v5BBx6PLOcRy7bqpSNeuU/HwC0b7fMvV+37t6g3nuXrtj101dYerO2jf090/eVrDFK49v+8TpBux2ygAAAAAAAAAAAAAAAAAAACUOYLRkFeO49Q4jnO84zifcBzn247jfMFxnA84jrP/dNcGAAAAlCvT0yFz9blyf/k1ud85Ue7F35W581qZVGrK6/YLRqv2uKOsX5h9FP67j4xqglWacV2ZEw+cNP3N/fdrjpsItI6JwWgrk97pAd1VC63rqHN7x97MmqPaWY5OfePUtt0pb5w9peWzWfHl03T6ERt1Us8NU17XhmaPYLQsAWCR1N700sv3xf8aatEDnXSgni3YTJIeekH6xBX2DVMVkzXoK+rBaEHCr4JaudDRZac4mp9xCrzvKOnXJ01e2VPfz/64bFu79F9XuzJ+o/tLRJiv0DNQuDrCCBIEYztvUq7U3pf/mnLlukafvsrV7izn43BS+o+rjGKfTekVP0zp33/r6s0/zx6KNmeGdO1/Olq50NHq5d7zNLSoKMdyh2W7L6sLv66ZNY72WeTd1tpb2O/i1zfZtvFG73zUvNnYbPTD21x9+kpX59/tqisxVuTd640+879T2yY//Kv38n0+YYnxiPQXQDnL57XSRPstlmbXeLfdsa70r3/CCPsT6dc3ApXMNxjNY9qhy7znbWgtzrVrrlzX6MOXuuNCpdc2St+8MVzNQb9it8c1V6HudwhGAwAAAAAAAAAAAAAAAAAAQDFVT3cByD/Hcc6SdOYUVvG/xphPhfzMpZJ+IOmjkjyHJTqOs0bSBcaYP02hNgAAAAAZTNM2mf98vRTvGpv48O0yknTPDdJ5t8pxch8ZbwufkaTqqsnTVi7Ivs5D9sq5nIIzxsiccZI0PHk0+ywzpLf13aNb6v4t63pq3fGjUFcPNYSupS6VkZIzK53mdNHHHP3mgdxGoh46tEmrD7OMLM4Tp2aGnHP+qO88sknXXzm1dXmFyPgNwo1FNfo9Ixjt+P7/U22qV/GqYClAC2/6icwB79CSV73LOs97f+0fjOQ4zp6AqMkbry1C4VBe/ILwcvGx18b0lsOM1jZKC+dKr9jHu2+sX+Do7UdId633X98jW6VnXpReuW9+6yy2MIPbu/sLV0cYQYJg6ufbl2/slvbKIYyrEB7bJm3vCLfMc7uk53Zl33G3fjGmYw6QltSmN8yq5Y68+oK+IampW1ppz+rMiy7L8bNwTm7rWzpP2uGx7QodfGcLqYjFpFXLvLfx7rjUlTBaODf/KZ73Nxi999euEkNj0359r9Gj342poUV6x6+m3pl29aevkSZeU8aHLAtI6h0kOQMoNNu1UlUerourYo6OXyXdsW5y25oXKuv8DhsE1D9cmDqAUud3Knk9tjrUcl0VH5Rae6XlPtf70+npF6WW3snTb3jc6PefMYoFTK8M2vd0eeT39xYooJFgNAAAUIqMMXLd8vhHTgCUFsdxFIvFpvR3NQAAAAAAAAAAAACg0hGMhilzHOedkq6SlC3e4FhJxzqOc62kU40xHn9VGwAAAEAY5uLvjg9Fy/TY3dK9N0knfDjn9SdT9rZqjwH32YLRZlRLi+flXE5BmVRK5vwvSg/cYp3nfTMe1y0KEowWH/f+gJHtqjHDGnFmBK6nzs0YSTsznRpTXeXols/H9P6Lw4ecfHDgr3Je9rnQy+XiyNcfqptmGn3o0tzDWDa1Sv1DRnNmjv1lcb9BuFVR/TvlbWPBaDPNsE5I3BcoXE+SFg63yVxymuZe/U4tq0sP/g5jdLz1Uss5Fx+UBkeMZtVEc+NZw6+mEPaxpNbRm1Znn+9lKx3dtT77QKmbnjR65b7R3H5BhRnc3txjJE3/97XVXJURMrBXXToYxivgs6k7OoF2Da2FGZB35nsdvefl4/fVKp9szI0tpReMtsTStxU6GM0vmG/1cvtyDa3SMQfmv57Tbx4fiiZJOzul4893tak1f5/T1S8tmjt+Wp9P6EbvQP4+G4C3IEGhU/GWwxzdsW7yh9zXIPUOGNXNLu41wTWPuLpqjdHgiPSeoxx9++1O4IChqQj7S91HMCQQmmcwms//dd7UGt1gNK9+c1RnQlpSG2w9QXM7uj2uuQhGAwAAlcwYo8HBQcXjccXjcQ0Pk14NYHrNmDFDtbW1qq2t1axZswhKAwAAAAAAAAAAAIAQ8vDvxqOSOY5zvKRbND4UzUh6UtKNkv4uqX3CYh+XdL3jOBx/AAAAwBSYvh7p4dv857n7uil9RtIn16rK44p+74X+f5G3fr6i+5d9b7xQuu0K31neffK/BgoaqHXHp7JUK6VDhl8IVc5s8//Zu+/wKKr9DeDvmU0DQgoJhA7Su14EVEQFARuKyvXaC9ixYa8/FRuK2JVrV7Bju4IdUVAQEZEi0ovUhISE9J6d7++PJZBk58zObDbJAu/nefIkO6fM2dnZKZucN1Vmt8bsT40ZfYTCBYOsBxHfCNj4mIE4T/WElJYVu3DbcSVQTeJcjaE2xvRX8L5qoPy0t7BrfTvkr22GMXn/c9VH34eq74B2k3BrE5ZVlyQztdrj3qWrHbeNN3OBrWuhdm3ByZ3dZ4vvC0azmXidVccBQrVR12EfduzCjapyEp4W7kwX+YWpOXU3Djd0Y656HPAYCq00YQk7c8LnddtTB/82oEVT4KYT/d8oiU0UWmiOB3UV0FbJNAU5umC0JsG9qZNjrdvVxTatyu7Y1DoBiI22Lt+8O7TbuMIryMgT/LbZujyUoWgAkJbrvyzfJnQjI983EXVPoUCcJnsQkStW4Z9A6K6V+rTRd9TiNhOFpfX33n7lZxOXvS2Yuw74bTNw3/8E49+vn/W7uVYCgELOuSeyZHc5YHW0SW6q/EJZK62v42vX2oi2+bd0u13cfzsNIcsp8q+YW0cBtU6Ph6Xlgp3ZvAYkIiKi+ldUVIRNmzZhy5YtyMrKYigaEYWFsrIyZGVlYcuWLdi0aROKijS/LCEiIiIiIiIiIiIiIiIiIj9hOm2YQuwCAIe5+LrdSadKqbYAPgcQVWXxrwB6i8gAETlXRE4C0BbABADlVeqdAeDRWjwnIiIiIiJa/ANQUW5fZ+E3kKL8oFdhF4wWYXFH2beN/UT8NglBD6VOybZ1kKl321dKaoXmJ52Gw9vaVzPEiwSvf3rQgOI/XY2p2maMblStbNpYhYfPVGhZJefs9H7AmocNdGqusOLRRhjbYTOGGH9jrPE9Fp74IxJvuN/V+kNBKQWjzWFI9mahkZRgdL59kF9N/2QC/2Tun0hrG4wWpnl7qBGM1qNsneOmCV5fCo2c1xNnfHml61VXhkTFN9LXsQu1aWgNGYx2cm9lGf5Y09JtwC/rD+zJ3k4n3APAzjAJRvM63Dd055xweR6AddhUbaTEAX/cZ2jDxnShf2t3hXYcNeWX6Pe1xMbWywNJirVenplfxyFvmu6V8p332jezLg/Va71ul+CYx72IGm+i5e0u03pqIc3ifVNQ6r+s0uo0oM0dJpJvMdHhbhNf/XVgHyuJwpHueOTkGsYJu6DYsgqg6Y0mLnjNREFJ3b+/n5vjv45pCwVZBXW/brdrsDs2Eh3Kgnm3dkuxXh7qANhQionUl2XkOe/H6X1atsV8+nxNMNqxnZ2v34ruPqxSSbngsrdMNLvZRLu7TLS/y8QHv9ff9SoREREd2oqKirBt2zaUlwf4vSkRUQMqLy/Htm3bGI5GREREREREREREREREROQQg9EODbtEZIuLr0yH/T4EILHK44UARojImqqVRKRURF4AcG6N9rcqpToE/7SIiIiIiA4NYpqQVYshi76rFnImCxyGTM35OOh1V3j1ZREe/2WJTRSO76pv0zYx/NKrRARyUb+A9dQrPwMAerayfw7NvHvggf/Ez9EFXzseU8/SNdUXxFRPjYmMUPi/UQZSn/LAfM33NesGD1rG+8bWIUnhrfu64pdXDsdbr5yGjhdfCqUaaNu3777vx3PzPsXgooWumn+xrEowms182nAMRhMR4I851Zb1KHUTjLY/hWZkwRxEm+5SzCq3SZxNMFpeGAejSQMGo7VNVLjnVGcrGvqUCa+bdLEgFJcJvlkpmLdOUFYR2nW5GXpqTngEG+mOBTX3jbaJ1vW2OP3kqx7sCnEwWuoUA+2a6ffdbi2ty9bvqtvX1iqwoVKwwWjJmmC0P7cF159Tgfa/lvHW5YGC0QpLBT+sFrz/u4nVqdavR0m5oOcDJn7/x+FgXYj0AEfafFKblus/pvwAYUi79oZ/7MgGzpqqf15EFJy6DpFtkwA0jbGvM2OJ4Nr36va9XVAiliFI5V7gf8vq/rji9jKvkMFoRJZ093eAL2DWSrcUzbVrevheU5RV6Mt2Fzjvx257VevT4n8h5Gmu0Y7sqHDT8OBPEqUBMkZu+FDw7iJB8d56O3OAS94SzN8Qvq8XERERHRwqQ9HE6UUUEVEDEhGGoxERERERERERERERERERORTR0AOgA5NSqiuAy6osKgMwVkS0U6pF5Aul1PQq7aIBPAjg8jobKBERERHRAU6yd0MmXgwsnedbEJ8E3PsG1ODTgGU/O+tjynVAcitfG5e8QQRRnfUvhXnrrScfHNPZ9RDqnLz5UMA66pbnoFr60kK6tbSvm+zNslw+smAOYjxelHgtEuVqOKXg++oLYoJMjQkHLdoCjZoAxYWIQjnmbj0J0+MvwaTku5DricO4nOloYhbhkeb3WTafs0Zwy0jfz3ahBOEWjCalJZDHrwLKqicj9CldhQRvNnI8msSmKhLM/Sk6sVKIC/I+xrSESx2PoXKbNInS18kP42A0UzOJqb5e64fPNDDoMMHol2wOhHtd977g1UvqZmB/bBGc8py5L1iqT2tg5g0GDksOzfrchH3szAlcpz7o5rd5avwLiE7NFQD/yuEUpLB5d+jG8s/jRsAQzB6ac9iy7YBpCow6eoPVRTBakiYYLT0PeOYHE7eOrJv/CRIoiKhVvPV+ZxeCt2K74MypJrbtqVwiuOo4hVcuVvte04w8QcvbAx+PnDi6E3DUYQptEn3nAQXgkqMVOrdQMK62TsXdbBEoWOAi/McU4O2FginnhNkJm+gAprtXC9Wh3DAUzh2g8OYC+3PVJ38KXrpQkNC4bt7fhWX6sg0ZdbLKatzOq3dzbCQ6lNgGo2mWd21hvXz5dt9E8gYLgLdhd4+dkS/QP9vqnN6npVpcY+YVW9eNbwRMPEPhpF4Kp7/o/rqy1Cb0rbxC8OkS/0GLADP+EBzXNfxeKyIiIjo4iAhSU1P9QtEiIyMRFxeH2NhYREZGhuW1IxEd3EQE5eXlKCgoQF5eHsrLy6uVpaamonPnzjw+ERERERERERERERERERHZYDAaBetCAFVn838uIhsctJuM6oFq5yqlrrMLVCMiIiIiOpTJczfvD0UDgNwsyF1nA7e/BGSmOu/nrrOBb9Khmia4Wn+FZp5khAHtH+meeYTCzTOsZ3CeeUR4/WGvbFgBTH88cMUBJ+77sXcr68CTSkmaYLQm/x6HER4PvvrLflXHFv2Kibsfrb4w+sANRlNKQdp3B9YtBQB4YOLy3Om4PHd6tXq6YLTVaft/PpCC0fDNdODHj/0WR6ICpxTMxkfx5wXsIt5bfYbzYxkPYFV0T/zRaKCjIVRuE8NQaBpjPUE7L4zvxrXhQ3WTdWTp9H4KP99h4JxXTOzO19d7fb7g0bMEzZuGdkcUEfznFbNaqNTfqcBNH5r48sbAIYvO1uG87p7CkKyy1nT7Rs3TUrcU63rr0sMjSCG7UPDbZvs6bROBj642MHO54OnZYvncYyKBVy5W6JAU+Pn00pzDducDi7f4ArPqgl0wWkKQp7iWcfrz8e2fCIZ2E/TvEPrXOFAwWst46/K03OoNswsFb/4q2J0PTPnev9PX5wteny+4daTCfacpPDArdCF6C+/WHz9O7wfLa5XZqwQPnlF9mdtwzadnC6ac464NEenVx7XSo2cFDkYr9wLHPG7i9MMVTu6lMKJXaI+9RTbBaHl5pQAahXR9NbkNRrMbL9GhzO6tpLss76m5dt22B1iVCvRpE5KhhVS+TTii3T1lTU4PPWk5/jVzNcFocTG+z2hO6wv89yKF6953d4ArKdeXZRboP1/4cU34BFMTERHRwaekpKRa2BAANG3aFG3atGnwz3+JiCIjI9G4cWM0b94cO3fuRH7+/hvD8vJylJaWIiYmpgFHSEREREREREREREREREQU3upxKikdZM6u8fhtJ41EZA2A36ssagLgpFANioiIiIjoYCJ//Qr89Kl12VM3uO9vzGGu21R4rZd7bO4mOyQpXHaM/2SDS49xFtpSX2Ttn5DLBwWuePgQqPbd9z0c2t3++SdHWcyCHTUWxoRncKSDgJZ5W0eiidRIkIk+wP8gukOPgFVmbh9juXxrFlBY6ptEaxuMFmafcIhFKFql/iXLArZvbBYiCtUn86R4M/DLluGYv2Uo3k69Em+fss22j6phcU01u1B+SfhOUDY1wYz1HYJ3XFeF9Y8YeONS+xWn3KYZcC2sTvNN+q/p65XA9j2hee3s3lc15diEW9WnQMFUlbqlWL9mOUXAxowQDyoIgybp95mXLlSYfbOBtQ8bGNxZYfK/Dax52MDsm33ff7vbwPRxCp+PN7B5koFLj3F2EBzSBYjW/KuMmcvr7niQrQnVaxoDRHiCe1N3b2lfPuAxE+UVoX9Ogfa/VppgtB3Z+3/emCE44mETd34qlqFoVT3zgyDpFhOv/RKa55ISZ19+Qjfr12PRP0BmfvUxFNgEfxBR3dMdj4I8rFpKiVMomhr4HLMu3Rd+eNJzJh75KrTXRIU2x5rcn2dDMtP0FULAzbUSABQzGI3INV1ehd3nL7NWhOe9bJ4mlAwAMlwEo+nuh2tKzbEYgyagLK5KjmRCEJmSpRX6MrtQyEIeF4mIiKgOVQ0ZAnwhRAxFI6Jwo5RCmzZtEBkZWW15Xl5eA42IiIiIiIiIiIiIiIiIiOjAEGbThulAoJRqCeDwKosqAPzqoot5NR6fWtsxEREREREdjGTK9aHtsKQIsmWNqyYVmomYER77ds+cqzB2sIJSvgmuYwcreNMYbgAAIABJREFUPHNueExCkIwdMB8ZB7lqcODKR50E9chH1RYlxSoc31XfJPmoQcCxo3wPIqOA8yZA3foCAKB7iv3qLsz9EJZbKTI68FjDmOrQPWCdHqXrtGXr033fbYPRwmP32m/FAm1Rd2NnwObNKzItl0eiAscUL8YluR/gkj3TcctI/ROvGhYXpw1GCziUBuM0/Ko+xDdWuHyIgfFD7Vd+3fsmREI3Qd9qknslJ0EAO7IF49420ftBLwY/4cXTs014a2xYN2EfBaVAhbfhAwi8DkPzerfW9/HGgvp9HhVeweTvTLS90wvjat/Xpt3WddslAuNPUBjRS6Fx9P4n1TXFt6zbznkYOPUMXPTucJy5cjJSom3SF2qIjVEYrsmqrNNgtCLrvhMbB99n5+aB68xaEXz/Otpj095jbvtm1seJfzL3v3+mfC/Ynm1Zrc5dfqz9cWxUX+tyEeD71dWffHG5ZVVb4RzISXSgCXQ8CpWYSIUNjxoY0sVZ/Ue+EqTnhe69bhuMVhYBefeJkK3LittnUmITHER0KLO7TdJdnTRronBsZ+uyb1aG5zVFgc099ortzsfs9D4tLdd/mS6cLb5KGFpiE/c31iU21352wWghvEUmIiIi8lMzGC0uLo6haEQUlpRSiIur/p9Lah7DiIiIiIiIiIiIiIiIiIioOgajUTD61Hj8l4gUumi/sMbj3rUcDxERERHRQUcKcgGXIWaOLPreVXVd+ExEgLvJxCYKb401UDLV9/XWWAPNgph0GWqSkwkZNxCY/UHAuurrNBhPfQmV6J+8cuYR+ufSvEVTGE98DjW3AGp2NowbnoSK8gWb9WgVIIyk4FvrAk+AJLpw1z5wMFrH8q2INq1nEK/d5ZtFq9sfgfAKRpO5n9mW9xxxdMA+WlekBl7R/FloHqsvNqtsr6aaYLS8AzAYrSHnNL1wvv3KX/lZcM//JGThaHaTy5dssW+bWyToO9HE9N8Ea9KARZuBOz4V3PJx8MFoQHjsM7oxe2qcm5o1URjU0bruc3MEa9Lqb4b++PcF93wutmF3lU7rp7ST92TxD5CbTwEW/wCsXAh5/UHIY1f41zNNSJFvQo2U+3YkKS2GpG/HGZ2sB7F2F7A+vW62SY4mnKE2wWhREQpdW9jX+ebv0D8f3du78jzUTROCWmECW7J8P3/pINiwLiQ2DhyM1r0l0CnZuuzPrdUf24Vj6Pyy3n0bIrLmNCg0FDq3UPjlTg/O6Be4boUJ/LgmdMc5u+uhHCMe+OkziGlzo1BLbrsuq4BfEC2RU1JRASl1Hnp7IAn2XXHG4dYHtZWB88YbhF0I7MJNQIHDkFin2ysjHyiv2F9bRJCr2YXiYvZvy4RG1nXslNoEP9oGo7lfFREREZEjIoKysuoXIrGxNr80ISJqYDWPUWVlZSH9h0tERERERERERERERERERAcbBqMdGq5RSs1RSu1USpUopfKVUluUUj8rpR5TSh3nsr9eNR5vdNl+U4D+iIiIiIhoW92kRsjX01zVrwgyGK1SZIRCZEQYJVbNegPI2xOwmnr6K6i4ZtryMf0VoiKsy0b09D1fFREJFVG9Up/WQNtE63bx0V6cUjDbutCjWdmBoueRAat4YKJb2QbLsrW7fN/t8gXCKhjt+dv0hWPvw2HX3oDkAHNz2jgJRtu8Cn2LlmuLqwZYxWmC0fLDIORKR/d6N+Rr7TEUfrnD/gD45HeChAkmXvm59gEddpPq1/6+BrLbPw1gd77g6EleJN5sWk6If+knwZIt+/t1G/aRU+Sufl0wNTuH1b4xpr/1DlPuBW74wKzzCSemKbj6XRNvLnC+nvMG+I9ZigthPnYF5LbT/RvM+xwy83VfPRHI+09BRreFnJwM87hoyIlNfd9HJEDO6YLTn+6vXffM5XWzPbI1/1KhNsFoADDaJqgUAN7+NfTPJ9CxqYt/nuo+G9KBvGLBrryQDwsAEBsNtNNcZ1w4SOGXOw10bmG/zZRSOL6bdZ1Xfq7+5IMJRvt+NSd5EYWK06DQUBrWw9mF2MVvSrWgntootAnbSY9IAXJ2Axv018S1pXsWjaP0bYI5PtKhTbxemC/cBjmjNeSU5jBvOx2Sk9nQwwopu8tuu/Dr/u2tC/NLgApv+F1X5Jfal78419mY3dynVb22LCnXf5YXVyUMLSGI63C7Y5tdMJpdyD0RERFRbZgWF02RkZENMBIiImciIvx/5291LCMiIiIiIiIiIiIiIiIiIh8Gox0azgcwHEBrANEAYgF0AHA8gHsB/KKU+kMpNcJhf11qPN7mcjxbazxOUkpppuwRERERER2itq0Lrl3zNsCJ/9GXb1kDyc5w3J1ukmldTravS7J8fuBKY66FGjTStkrbRIWJZ/hPzv13f+CEbvp2ER6FJ/+t/ILllAImn5iJeFOTlHKAB6OplPZAl34B63Uvsw4EnL3Ktx/a/V14uASjSWYqkJVmXdg0Eery++HxGDi9n/2AW5dXCUaLTdDWG/b8UEfjaqoJRsuzCM4KF+EYjAYAQ7oqJDWxr5NfAlz3vmDc2yZScwJPfDdNwapUwYeLTSzavD9IpMBmUv268hSYF/XzC/b6zysmFm+xX9+gSfsDwewCB62ERTCabt+wODddc7xCSpx1/bnrgA8X122YwtsLBW/Md7eOod2r7+RSXAi54ijgu/e0beSpGyDFhcA370BeuQ/IzdLWbVWxC4OKF1uWBbM9TFMwf4Ng4SZBYal1+2zNfpMY4L0UyM3DFTol29epGgQYCrr9rzLQo3G00oagrs8QbHB+GebKqL5A7gsGtk72wHzN/+u9Kw30bu3sANo1xXp5STmwLUuqPXZrQ3r4BZgQHah018Z1ea10Wl/nnR92r4lXfzaxOrV273vduQUAUiNa+YLLNv1dq3XY0R33m0Tr2xTbBAQRWZE3JgKfvAQU5AIV5cDiHyB3j2noYYWUbTCaTTu7AK+8MAz6tgqnrurzpc6OiW6OnKk5+3+22yZVA9ObN3Wxgr3KKvRldsFoPCYSERFRXbH6pxfKLnWXiKiBGRa/yKrrf+BDRERERERERERERERERHQgO0CnslMdGABgtlLqMRX4L4Rqzsh2NZ1PRAoA1Pyz7Hg3fRARERERHexk/fLgGsY1g5r4LtB/qL7OrDcdd1ehmWwf4XE3rLDxxxz78q6HQ938nKOu7j7VwA+3GLh5hML4oQofXKnw0dUGPAGSCM4fZGDh3QbuPU3h0mMUbj9JYf6dBq4aqE8bUgd4MBoA4LjRAat0L7UORvv9H+Dhr0zbACerQKSGIA+P1RcOHL5vUs5ZR9jvJ21HDgcuvA1qwjNQX2wFeg60rBcjNslZVcQ1sl5ffhhOJK/UEGEfTm2a5GyHm/6boO2dJl6ep0/1KywVjHnZRN+JJi56QzD4CRNDnjSRliO2r0+OJxH/VCRDzuoIKfSFKm5IF/yywdlzWLI3tt51MFoYhOl5Xewb8Y0Vppyj32lu/0SQW1Q3k05yigRXveOu751PVt+3ZNkvkLM7AtsdvLA/fAj56i1H6xmd/5Xl8uXbgW9XOh/z1ixB/0dNnDDFxJDJJo542MTSrf7tdYF6CY1r94Zuk6iw7AEDZ9hkb776S4iD0Rzsf900wWIb0oGNGaEdzzUnKEwfp/DF9UbIJn52a6Hv56W5VYPR3D+XqsEdRFQ7mgzrOr1W6pai0Eaf2VtNag4w/n1Bn4kmrnzHDHqSZ2HGbm1ZidEIuUY8JNhgcQd0w24cpW9THERwJB3ifpzhv2zV75AdG+t/LHXE7ghgdwljF4wWDqHNNe0ptC//c6vvPiEQN/dpqbn7f7YLZotvtP/nZk0UurRwvg4AKLa59rMLRiss40R/IiIiIiIiIiIiIiIiIiIiIiIiIiJyL0ymDVMd2QngdQBXARgCoBeAHgCOBXAjgO9r1FcA7gUwKUC/sTUeBzMltmabIP4vtT+lVAulVG83XwA6h2LdREREREShIiLAr9aBJQE1bw2lFNSVE/X9L/jScXfaYLQD8G5SSgMnQKl7XncVKjK8p8Iz5xqYeqGB8wcFDkWrNKCjwqNnGZg2zsCT5xgY3FkBkTYz6w+CYDTlIBjt8NK/tGUTZwlW7NBPpI0Jg00kqZuBZT9ry9XNz+77eWQv+zCFHoP7wBg/Ceqc66GiY6COP1Nb992dYy2XD+q4/2fdZPKM/PCdnKwbWTgEo8U1UvjqRucHwus/EPSd6EXENV6cMMWLXzfuf3Yv/iSYtaJ6/T+2AG3uNHHXZ/avz5exo4A9u4DPXgYArNjheEhYvt3Xt9v56eEQPqALCdDtGxcdpXBCN+uyXXnAA7Pq5n1w68fO+20UCbx72lakfPYIzGcnQN5/CuYbEyE3jQT2Bt8FIlOuB/5e5KiuLhgNAEa9aMLrMIlhxDMm/qqy323aDVzznn/4TbYm/CHRJujCqaYxCm9epn8/rkoNcTCag/2viyZYbEO6IN3Zy+lI0VQDL19k4JJjnF+DOHF4O33ZrBVVg9Hc952WG7gOETnTUCGy/xngfgVvLRBMnev8eCy/z4Y59S6U3n42XpyRals3NaIVsM06YDkUdMd9BqNRqIjXC6RttS777r16Hk3dsbvvsA1Ga6QvC4d7k5qyHYxpp4OgWN0x3kpqzv6Nm2fzW/u4mOqPzwwQ2F5Tgc3HakVl+hfYawKlFa5WRURERERERERERERERERERERERERExGC0g9RiACcDaCciV4vIGyLyq4isEZF1IrJQRF4SkVMADASwoUb7u5VS+hnX/sFogdMF/NX8s+yafQbrOgB/u/yaGaJ1ExERERGFxuZVQOo/QTVV/Yf6fuhztL7S2j8hu3c66s97MAWjPXKZfYUjhwFd+tXPYKxERuvLjANwg9fUpR/QsoNtlVMKZiPRu0dbPn2h9UTbRpFA4+iGT8uSr6frC4eOgUpsse9hoyiF64Zaj7llHHBSrxoLTx+n7XpM/hfo2sh/ZvV5A/f33zreuu3ObP2QG5o2fChM3g6n9VX4doLzwaxK9T2n+RuA45408fBXvgPsjD+CD22a33gIAEC+9e17O3Oc97V2l++7w/yrfXI0AVf1STdmj+blUEph6oWG9tw1da5g2bbQP68fVjvr85NrDGwc+QUueK4PMO0x4PNXIK/cB0x/PORjqtSzbC26lG3Uli/cFLiPV342sWm3//I/t/r296qyC637CEUwGgAkN9WfA9btgl9QW204CUbrlmJdZ+NuIEuzLSrFRgPbJwc+tvx+r4GYyLo59+mC3QBgfTqwNs23EYIJRsssAErLG/44QnQwcHs+DJWbhwd37LnpI0FGXuD3v/nyvZDbz0DpjP/imIz7sSLG/h5te2RbYNu6oMbkhO4UYhuMVlY3Y6GDVIXNCbXg0EgUtTuqxNkFowXzr7vqUFmFoLA0cL3M/MB13FwtpVb5OCDP5rf2sTWC0W4YphDtImTebnsXBTjuOdkuREREREREREREREREREREREREREREVYXJVFIKJRH5RkRmi4MZfyKyBMDRANbXKHpCKeVxukq3YwyyDRERERHRoWH+rODbHjcagC8ERr0wW1/v168ddVfhtV4e4fRuIUzInI+Bn7/QV+g/FOr/3oZSDRiu5bGZjWpXdoBQSgHHnWFbp7EU49GMidryv3ZYL09WuTDHD4X5wIWQZT/XYpS19NU0fVnzNn6LHhqtcOVxCpFV3k//agfMvd1AVET1fVElJAP/ucGy62gpwyfld2JQR9/j2GjgrlMUbh6xv482idbD2plWAPPifjDvPAvyS3jlhpuaYEaj4TPw9jm5t8L7VyokBxH3PnGWwLjaixWa/dqJddHdfD/s2IT8vBLcMsP5xy3r9gYbuQ1GKwiDCe1Ogqlq6tVa4daTrCuYArz4U2g+qsotEtz1mYn+j3ix0z+vsJpLjlbYPcXE2cseRsrTFwJezUm3DigAZ+Xp3/OzVthvDxHB9R/o6/y9s3pZdpF1vcQmtqtx5csbrD/qzi4CdjsIn3DKyf53WLL1vpaaA2QV6PvulAzMusFAm0SF2TfrP7p/41KFgR3r9mC4cqJ+/ZX7R3EQwWgAsCsvuHZEVF0w58NQaJ+k8PWNwf16seXtJvJL/AcuInhzgYkTb9+EfosuQKcua9GkRw6WxxwesM9NUZ2Bresge8OlKryC+2eaMK72wrjaixa3evHVX8Gf53Xb2TYYLcjjIx2ivDY7TEmYJX/Vgt270O6jGI+h0DTGuixHc43ZUHTXvDXttrkerOTmPi2tSn5enmaXaRrj25ZVdUhS+N91Btrt/bwg0PnDbnszGI2IiIiIiIiIiIiIiIiIiIiIiIiIiEKNwWgEEdkD4AJU/5v0HgCGaZrU/HNtm//VrVWzjYM/ASciIiIiOjRIsMFox42Gattl30P1rxOAw3pZr2PBl/ZjKPHNdqzQBBN5griblNJiOMhvDjlZ8iPkoUv0FfoPhfH891DJrepvUFaiNDN9AaB9t/obRx1Se4P77FyZ85a2LKvQenly3j/A378Bcz+D3HY65M+5wQ4xKFJcCEn9B9izS1tH9TjSb1mjKIXXLjGQ94KBDY8a2P2MgT/v96B7S+vZyOr6J7X991n1AX4bn4WCFw2kP23g8TFGtaC/1vHWfWZLLIq3bQV++xZy37mQ7z/QrqO+NVTYh1sXDPJt8yfG1P/ANkZ1RjkiYELhpIkZrtpu2u37fiAGo3mDDM27f5TaN+m/pp/W1v78ZJqCk58zMeV7wfLt+nrPnqdQNNXA9MsNJD53BTB9Uq3XHYxb9ryoLVuyxX57bMkC7E7p62vsjtpgtMa2q3FlYEd92ebM0K1He2yqcm3UJsG6TmkFsDHDuoNT+wAbJ3kwtLtvRx7RS+HGE/136hcvULh8SN1/rN+7tcLgztZllftHSZDBP6kBQgOJyJlgz4ehcGpfhfJXDBS8aCD7OQN/3Of8uDTiGRNZBdWPhY9/K7jqHcG8vI5YHd0L2yLbO+5vY9Teg9WnLwEA/vOKice+3t9/ZgEw+iUT0xeaKC5zf77Xne9sg9ECBAQRVVNus8OUhlnyVy3U5uOgBM1vonOKwuv/cO3RfGZR07hpmgN4FW62V1ru/sq5xdYN4zQfOZ3SR2HLEwZ2PGkg61n7Y3mOTU5foGC0cLiPJCIiIiIiIiIiIiIiIiIiIiIiIiKiAwuD0QgAICJLAcyusfgUTfVwDkb7L4A+Lr/ODNG6iYiIiIhqTdK3AeuXBdVWTXjaf+GQM6wrL50HKcr3X/8Xr8E8+zDISc1gXns8KnanWzaPcHE3KTs3wbxuGOTkJMiYTpAZzztvHALy+kTbcjX6yvoZSACqUROg91H+BU0TgYEj6n9AdaHvsUCLtrZVPDBxccHHrrpNqqiSeFNeBvl0ajCjc03StsC8YTjk1OaQ83rYV7Z5DaMjFTq3UEiKtU+xUB4P1FRN6JtpQp67BY2jFRpF+ffTRhMGBQCpEftDAeXdybZjqE+68CEVZsFoAKCUwp2nGJj87/odXLmKwj9RHfFjk2H4vaCNq7Y79wYTuQ1GKwyDCe3BhuY1iVZ46EzrSrvyUOvwzts/FSzeErjejcMUYiIVZNPfwJwZtVpnbaR4M3DjHuvj5bo0+7CGtWn2fa9O3f+ziNgEo4XuPdO8KRATaV2Wlhuy1cB0EETUWhOMBgArd1ov79Xaf1tMOUfh2fMUBnUEju0MvH+lwvgT6u84M6yH9bo+Xer7rgtGu2KIwn+O1I8zlK8H0aFMdz4MJsQ6GB5DoXG0QnxjhSM7KPx6l4GTewdu98cWoPmtJtre6cWXKwQv/mTi/74I/hy8PqorAECmTcK6XYKZK6zrjZsmSJhg4rTnvcjIc74+XU2PAqIjrMuKgwyOpENUhc0OU3JoBKMFurpJ0ITpfrkivILRdNe8NRWWwi8gsiY392lVQ2fzSqzrxNn8Nl8phdYJvuO5nZwi/T1ToGC0QgZGEhERERERERERERERERERERERERGRSwxGo6q+q/G4n6Zezalrzd2sRCkVC/9gtByrum6JSIaIrHLzBWBTKNZNRERERBQS6duBVh1dN1N3vwaV0t5/uS4YrbwM+L16NrLM/Rzy9I1AZqpvxuqq31Hxv9ctmzsNRpOyUsiNI4GVCwGvF8hMhbx0J+S795x1EAQpKYIsnw9ZswTy9yJg9WL7BsP+XWdjcUtd8wgQU2XGr1JQ4ydBRWiSXg4wKiICasIzgEeTILBXi1JNaoxGsjer+oIFX7odmiuSuhky9zPIud2BFQt8+7ady+6FSnR166zX9xigbRfrsp8+haRutixqHa/vMj2ixf4HW9dCcrP0letRsOFXDemOkw08NLp+B7guqjt+bTTYdbuCUiC/RLQhTzoNPaG9wiv4/R/rMidBMD1bWr8+ZRVAbnHw40rNETw3J3B6Qf/2gGEoiAjk9QeCX2HbzsG1O+ZUqE837ns4Kv8by2q78g3kFOmfz9pd9s/1h9WCCq+vTkEp4NXsZ4makItgKKXQSnOsS8sNXWiGrqeqx6aWcfoQR10oWLMm/suiIhQmDDew6F4P5t/lwQWDDBj1eBDsnqIve/VnUxuAcdRhwIxrDHTWnPpSc8IrxIToQBVu10rHdFb4doIH301wdrOYmgOcOdXEhI9qd0zYF/JbUoQF6yts65Z7ge9WAWe85PwCyC6st1GUdVkxA4DIDbtgtNJaXKCGGbt3eqDw6+RY6+UzVwAfLzFRVhEe1xZ7Cp3XXbLVvjzoYDTNLhMX47w/nXKv/vgWKBgt5+DJ+CMiIiIiIiIiIiIiIiIiIiIiIiIionrCYDSqakuNx7pZ2xtqPO7gcj016+8RkWyXfRARERERHZRUv2OhZqyFmvYn1BUPAt3+FbhRoyZQoy6zLutxJJDUyrJI/vyp+uNvpvnVeTZmnGXbCE/gYQEA/loA7PYPuZIfPnLYgTuyfD7kwj6QG0dArj4WMv4E2/rqvRVQRvjcGqt/nQD12q9Qlz8AXHgb1Es/Qp1xeUMPK6TU8WdCvboAuOh24PgzLeskeDWpMRp+wWh1yJx6N+S8npAHLnTcxrjywZCtXykFHDdaWy7n9YSI/wzqJtFAjCZfL8uTXH3BtvW1GWLIhFvYh1P3n27gp9sMDNj76UenZPv6tbU2qhvWRXcLqu3ObF8OphsFpUGtKiR2ZAsGPGYiv8S63Mm+kRKnL0vPC25cADDjD2cb8tguCpKbBblxBPDr1+5XNHA41B1ToaYthZrwtKum6ooHoZ74HCqlHdTVjwAAupfp3+/rdun7Wr7dfl3ZRcD8vZ8gZtsERCRahIHVhi4Ybdby0IVl2AXkVIrwKKQ0dddvUoi3RSh0baF/U41/X7BFc/qtPN/oXo9Ud6d5ItLQXis18O3NSb0V1j9af4PI8iT5fvBWYPVGZyfzP7YAf+90dm7QXSsZCmikub4uLg+PkCY6QFTYJEr9Maf+xlHH7O47AgWjHdlBX+H81wTd7zfx++aGf9/tKXQ+hnd+s6/r5j4tqxAoLvM10IU9x9f8l2VBSs+3Xh4oGC2roOFfHyIiIiIiIiIiIiIiIiIiIiIiIiIiOrCEz+xvCgc1/1Ra9yfSa2o87uJyPZ1qPF7tsj0RERER0UFNKQXVuQ/U2HthvLkI6pbn7Ou/tVhfZhjA0adYF37/AczXHoD50p2Qn78AFn1frXhJTH+kRra2bOpxeDcpbz5sXbD4B2cduCAlRZDHrrAMYrOibn0eqkOPkI+jttRhvaDG3Qdj/CSofsc29HDqhOr+LxjXPgbjsY+Bwaf5lSeaOa76a12R6rdMvN6gx6djvnwv8NGz7hqdeE7Ix6E0gXL7fPmmfxulkBxrXT2zMkxiL1n4TbBDCynTtF4e7sFoADC0u8Li+zwwX/Ng4yQPXruk7ga9Lro71kXpg9GePU+/7tRcwO309MKCUsjnL8Mc0wnmdcMgv31rGcZXFyZ8ZOKvHfpyJ0EwLWzCqmoTjLYqzVm90W13QU5vDaxY4Hod6p7XYTzzDdToK6GiY4Ax1zlve+vzUGPv3R8GesGtwPBz0aYiFU3MAss2a6dMhnn5UTCfuh7y9qOQDSsAAF5T8M3KwK/5zBW+OtlF+jqJjR0/BUd0QVyzVwOmLkHIJafHpraJ7vptkxB+B7ceLYFIp2G4VcRE+p5La81zSnN3miciDW8YXyt1aaHw5mX1M5BMT9K+65nSHOcn8zlrnJ0X7AIx9cFojodBBFTY7zBSHiBx6iAQ6Ghxej/7GluzgLFvmyiraNjwLbvr3po+XCy216duL103Z/q+52lCpONinPUzcbT9tn70a+uBFQfYTTOtbzmIiIiIiIiIiIiIiIiIiIiIiIiIiIi0GIxGVSXXeJypqfd3jcf9lFJupjHWnNlfsz8iIiIiIqpq9FVAp97WZWdeCdXWPqtYtdOUlxQB704GZjwP+b/z/Iq/iz1J22eE07vJEhezQmvrt2+BXVud1R15PtTZ19bteMiZlh38FsV7c111MazwZ/+FxaGddSsfPQd88LTrdmrU2JCOAwDQ+yjbYplyPSQ7w2+502A0vPck5Nevgx1dyOgmgodD2IdbVx5nYNtkAy9fpHDTcIW7T9U/iZcuVPhugoHnz1d4bUw+Xkm7HlPS70JKRbpl/b+je2FjVGfLssfPNDFhuIFmTazXtW2PaEOedAp+nw959mZfCOXKhZA7z4JMvLjOw9EKSwWzVtjXcbJvNI5WiI22LsvIdz+uSqnZgZ9/35KVOOGemv8vwBn16Qao0y6tvswwoKb9Gbjx6Cv8znkqIgLqwXfgmfA0upVttGy2Nh3AhuXAzDcgbz0CueoYyPcfYH06kFUYeLULNgQORkvQ/VuGIKXE6XeCJQ4vEQJxemzq3tL5wSrCAI51+68n6kF8Y4WOSYHr1VQZFKQLqkvLbdjQEqKDhe545AmTi6XzBii0jAt23je8AAAgAElEQVRdf31LVlouLzViULT3V1Rp6c7vP52e93WXOIYCYnTBaAd/jhWFUkWFffkyi/vdA5Dd2V8FOGwNcXCdtC4d+KGB/xXXHgfXyFXZXZ+6vb1at8v3PV8TjNa0kbNzwzn97et9skQs7/0KS+0HzGA0IiIiImpoHTt29P1zsr1f8+bNa+ghERERERERERERERERERERUQAMRqOqas6sTrWqJCJpAP6qsigCwBAX6xla4/G3LtoSERERER1yVEQE1CMfAq06Vi849VKoCc8G7qB5m6DWm+FpoS37V3uHk+1tZnLKb6G9FZCnb3JcV51zQ0jXTcFTCTUzuoFSpUkt0hhQYhEMVBQ46UBS/4H5yDiYx0X7vq44GuZlR8KccDLMe86BrPrdV++XmZCpd7kaE2IToG5/CWrQSHftHFBKQb29xLaOjG4HqbENdMFouyP8XwP5790Qt4lZIaY7ehgH6KdZbRMVrjnBwHPnGZh0toGvbjTQOmF/eaNI4NGzFK49XuGk3go3nmjgip67cGXO27hlz4t4JGOiZb9LGg1AkWGdfDY4bgcAoEMz6zGtT9eHqugUVnj8F/70KfDrV+46cmlDBuANsEt6HO4bKZqQlvS84MOaUgPkOTYyi/Bm2jUwbCMhLBxxvC8ULaW9ZbHq3AfqwXeAFu20XajzJlgvVwo4+1p0F+tEhvVRXasv8Hohj47D9uXrHA196TbgkjdNjHnZ+oWLjQYiI0Ib3jOwo77snd9CE8blNBitW4rzPgcdBiQ0Do8go5oW3eP+oFsZFKR7r4VDMMY/mYLL3jJx7BNe3DzDRGoOw9rowKO7VAuTXDQ0jlb4+qbaXbhFG17cVvAyStY0xYydF2vrVQb9pu0pd9x3WYAsqkq6475SQBPNbUsRg9HIjYoAO8zWtfUzjjpWmxxlw1CYd3vg40morveCZRcIbGX7Hn2Z2/u0dem+BrlF1g3jYpz106u1wpc36Ld1QanvPrKmQMe9cLj+IyIiIiIiIiIiIiIiIiIiIiIiIiKiA8sBOpWUQk0pFQNgTI3F82ya/K/G43EO19MD1QPYCgHMdtKWiIiIiOhQptp3h/HxOqjvdkN9uhHqxzwY974OFRkVuHFyq6DWWab0fY8d7DQYTZ9iI3ePgcz9zO2wrPta8CWQm+ms8jGnQvUaGJL1UgjEJ/kt6la23nHzm7JehOXeGCAYTVL/gYwbCMz+YP/C9cuAzX8DS+cBC76EXHs85N0nIfed62gs6s6Xod7/C2rGGqiv06DOvMrx83BLdekLHDvKto7cMBzi9e57nBxr/b7N8vgHo2HbemCbs/CjuuIm7EPKSrX92JU1pNP6KmyfbGDL4wbWPWIg53kD955mwKj6BPdk7PvxyJKlrteR+M9iAECPVtav/bpd4nrCfYFhnbAn377rriOXrn03cFCf0yCYFk2tl6fnuRhQDf/YnII8UoE3U69B/5LlgTs65WKoX0qgPlkP9XUajBd/0IaiVVIjzoP6aDXU3a/5Fx59ClT77vq2Hg+6tbYIuwOwLrqb5fK0qZNtx1PV+78LcjQBEYmNHXfj2Jj++p3gv/MEi/+pfViGNiCnRuhdj5bOk4k6JoVJipGFxCYKL5zvbnyVwWhJmkDOrMJaDipI+SWCknLB3zsFRzxs4t1Fgt82Ay/8KBj+tIkcTZBIICIC0+3BlCgEvA6DGhvSv9orrJzo7leRL+y6BasHvI21jxjIfSkST753HSJnrELyhwu1bbIiklCqorBSDnO8nrQAoaaVdGFOCkATzS1zQXheflK4qrAP9JPtG+ppIHXLLhjNyWHr+G4K/9JnAQMAfl7fsOfkbJfXOFmF+rG6fRrrd/m+55VYl8c3ct7XqH4KD43WvyrLtvkPrjBAMFoWg9GIiIiIiIiIiIiIiIiIiIiIiIiIiMglBqNRpbsAtKny2Avga5v67++tU2mMUqqrw/VU9bGIaP5Em4iIiIiIalJN4qBS2kFFRTtvlNw6qHWVqUjL5d1SfBPcHdElG+0tkxnPBzGy/aSoAObk8ZB7znHW4D83QD3yYa3WSSEW7x/KNcBFANSjuydaFxQGCEb7dGrA8DQAkNfudzaQgcOhzrgcqn13qNadoIy6/8hFTfrUvsKGFZDXH9j3UBdQs9sqGG1v+4akmwheNexDvp4G89xukJEJMMefANmyZn/Z3M98ZSPiYV41GLL2zzoesXtKKbRPUuiaohAZ4X9clZfv3fdz79LVaGRqEqY0EpZ+BQDonmJdvnaX+wn3RYYmzeqXmZAAoQ7B2pUrWLwlcD2nQTApcdbLgwlGy8gTnPKcF/maT7c8UoGftwzHufnOgkDVeROglIJq2QEqrpnjcajIKKhRl0E98hFw5DCgUx/g/FugHp0RsG2P/tYhMhsjO6MC/qFpaREtHY/LTpcWIemmmqYxCsfbfEL54KzAAXuBaI9NU8bDPL0NzFfvh3i9GNDReZ9tEms9rDp1/TCFNy51nrQUHeH7ntREE8hZz8EYizYL+k30Iv4mE42vN9HvIdPvPbsuHZi53H2Qyp9bBcOeMhE13kS7O72Y8Uft9zEip9yEyDak3q0VFl6fi5YVu/zKUirS930NLlqIdzKvw/XjeqP7VVegW4pCVISCMgyo1ochMbmp9rllepLwW6OjUKgJcLWSmuPsPW93TRobY11WyGA0ciPQNfTBEoxmU6YcHreG97SvmJEPR/cNdSXbJujMil1YrF2QnJV16b4GumC0OBfBaABw/+n6zzR25vgvC3TcyyxgiCwREREREREREREREREREREREREREbkT0dADoNBSSl0CYLaIpLtocxWAB2ssniYiW3VtRGSDUmo6gMv3LooCME0pNVwXdKaUOhPA2CqLygA85HScREREREQUpBZtg2pWpqIslx/X1cVMewkQDrHqdxcjqtKtCLB9PeS6YUBuVuAGHg/UA+9AnegwQI3qT3yS36JoKcNxhfMxv8lxtk07lm1BYym2Lty5Ceg9yG+x7EkH1i0FPnkxqOFaatfVUfhQqCnDAJ74DHL3v/WV3n8K8p8boZJaonlT6yrbI62PEfLwZVAjzw/BSIOjC6FQq3+HRGUA2RmQp27YX/D3IshNJwEfrvKFwj1w4f6ytX9CbjkVeO8vqKTQhDqFgmTt8u2Ppf4fpcjiH4A1f+x7HAEvjihZgd8aH+O4/8SlsyAFueiasRKAf7ud2YLerazbRkcApRX+ywvsAke2bwQO6+l4fE61v8tZ0JDjYLR4Batohm173E3WFxFc8LqJuev0dVZu7o9uZRuddXjW1VBd+rkaQ01q6NlQQ8921ab7MX2AH/2fe5kRjS2RHdClfHO15btCFIw2oGPdJPcM7a7wywbr1/L7VUBOkSChcfDr1gYRmeVAbibw3pMQpXDY1Q+jVytgdVrgPtskBD2ceqGUwuVDFI7rKjh2sonMAMFmSXmbIX/tQrPNAHC0X3lBKVBaLoiOrLv0psJSwYodwKpUwTXvOntv/7EFuGyw83XkFgnOnGoidW84yM4c4ILXBS2aCob1UNhTKFi6FejeEmjXLMySquigoAvN8YTZv0SSjX9h0Cs3YseGRfYVz70Jxo2vaos9hkJiY+sgoT2eZihW7lJ/duU6q6c7giil0CTKukYBg9HIjfIy+/LtDq8lw5xd0JfTYLQeDi5DZy4XHN2pYc67e9zlWGOPTTCa2wDr9Xv/MiBP8xFJnCbI0c6InsCcNf7LV6UCc1YL+rYFUuJ827oowG6c7XLbEBERERERERERERERERERERERERERMRjt4HMFgFeVUp8A+BjAPBGx/LNqpdQAAPcCqDlbcieA/3Owrgf3tk3c+3gwgDlKqStFZG2V9UQDuBrA0zXaP20XvkZERERERKGhYhpDOvcFNq101a5cRVouj/S46MRu5mtlFa8XyuO8UykrhUy6EvjxY2cNzr8Zatg5UL0GOl4H1aOE5paL78l6MmAw2jl5n2nL5JGxQGEe1NnX7F/2+cuQF+8AKsqDGakldd3jwJlXQTXWpI7VMXXs6ZA+RwN/2wRNLPoeGHUZulhvaqyP6govDHjgn/YjmWlQyZrkrDrm1YQPqTkfQT55xbowOwNYPAfyyxf+ZQW5wK9fAaOvDN0ga0E+fgHy33sAr0X6mMbAkj8dB6NFmyVoJCWQSVcieVssYNEuv0RQYVqHBsQ1Anbn+y8vVI31K926NuTBaDuzBRXOctEcB8F01rwX1u1y1r7Skq2wDUVLqshE57LN+gpVqIfeB4bZhBzWoe4p1kFxALAuuptfMFpaqILROtRNYMV/Big8/JX++uOSN018eaObi5nqdD0bVcNgv30XcuVE/Ku9wuq0wNdCbRIOjNCsrikKy+438OavgrVpwEd/+D+3LmUb0f76fhAAzaJ7AZ2WWPaVVQi0rqNAuDmrBZe+ZWJXnrt2ny0VvHRh4HqVXpsv+0LRqpo618SGDIXrP5B957LxQxWeP08hwnNgvNZ0YNCGyIbJbiZFBZA7zwJWzA9ceeBwqBueDFgtKdY6GC3T4x+2HIhVP1a0gZgKaKIJGgoUEERUjTfA/Wn6NkhpMVS0u/C/cGN3ReT0sNW9pf66tdKsFYLHxzgdVWhlOzyuVMqyCZvVfZzWJBootAhf3FMIZOYLcjXBaPGN3J8cWidYb+9pCwXTFvqW3zdK4eHRCoUBjnvFofsYhoiIiIiIiIiIiIiIiIiIiIiIiIiIDhEMRjs4NQJw6d4vUym1AcAWALkAvACSABwOIMWi7R4Ap4hIwKmgIrJDKTUGwPcAovYuPhbAaqXUnwA2A4gH0B9AzSmnXwG4393TIiIiIiKioA053XUwWpmKslwe5eZO0vQGrlNRBnicT/CVaY85DkVTX+6ESkh23Dc1gOatLRfHee3TTI4t+hV37HnWto48cxNw5FCo9t0hG/+CPHtz0MP0k9QK6vPNUIbDJKY6pCZ9AhndTlsuOzZCAeihmUReasRga2R7dCrf4t9400qgnoLRSssFny8TLNnqmwS+Os26XqxpP9tcPnoWWL3Yuuy796EaOBhNVv8BefcJYMFXrtseWbzUcd1Ec29az/xZSIj5F3CYxVhgICe7GL6PkqqLjbYORisyAgSjhdjUeYFDpSoZDuf6d2th/V7YugcoLhM0inLW0RfL7Md2esG3loGD1StdDnXnf6EaMMWmcbRC+2bAtj3+ZeuiumEUvqu2LMOjSZZzaWDHkHTjp3drhUlnK9z7P+vX5+uVwLYsQfuk4La5Noio6j6VmQoU5qJVfLyjPusqIKwutElUeOB037a7b5TgjEfSscXr2ycSvNl4f+dl+8JNkiuytP1kFQR+3hl5gpkrfOFjJ/VSOKZz4Ncsv0Qwdpr7UDQA6G71abmNh7603hk+XwZ8XuP48PI8Qf/2wBVDwiSxivYxTV+AnVd8AVhe8YWzVvsKsMx03Ub827rswxRgyVbrfTAMLk8BADL5GmehaADUk7McnQuTY4H16f7LszxJiJESV+PbU+h7LTwBLiB0Z3ulgCbWt8woLHV+/ULkKLh7xyagc5+6H0sDcXop3Ls1EGHANjh5TRqwPl3QLaX+z7m68K/YaKDAMsxMf6zQXXP2bOkLaLayLh3I0xwK44LI1Wvl4FL2sa8FRx+mAgZCMjCSiIiIiIiIiIiIiIiIiIiIiIiIiIjcYjDawc8A0H3vVyA/AhgrIjucdi4i85RSZwOYhv3hZwrAgL1fVj4EcJWIOEhIICIiIiKiUFBnXgWZ/rirNtpgNI+LTswAgTCAbxJwtLMZmrJzE/DuZEd11d2vMRTtAKDikyCdegObV1VbHiv68Kv7B6Xi3umnIhIVAfuX2R8BY++DjBtY67FWpS6+PSxC0QBAJbYA5uRCRmhmLYvvfdjNJvBlfVRX62C07RuAo06q/SADKCgRnPaCiQUbA9ftUhagUobNxxqb/3Y3sBCTz/4Lef5WX/JbEHqWOQ8eS/Rm7/s5wZujrZedkQurYDRd0Eex0RgCwCpmQP7+zXJ5sMa/b+LVn0MfjNa9pfVyEWDTbqBPG2f9zFyuH5uC4KY9L9m2V09+AXXMqc5WVsd6tNQEo8X28/0bhSoyPbU/tyY1ATok1bobrbtPNTB/gxffat7y7y4S3DcqyGA0zaWNUTMELycTbRKdBaM1bxrUUBpcr1bAii1HYR6OQJmKxkkFP6CJFO0rb+a12Kn2yrLPuMSGdMHIZ819++VDXwqmnKNw20n2597PlvqC1Opaep64Dvi46h3BOf0F8Y3d7XsiYhm8VZtALb8yyzZiH/7lcL124/QfiyDgWB0sq9YuQP2DkScM8vdk1e/AT586qqum/QkV4ezXlUlNrJdneZKqXfs4YQqQUwQkxQauZ8VQQJNo6zKrACQirYrA97XYsfGAD0azuwVyethKaKwwpr/Cx0vs7xFmLhfccXL9Hwx155UWTa2PCxkWQdSVdMeeVvFA0xgg3yIAbdk20Y6haYx+XTptHIb3TltoojDAcY/BaERERER0qBARLF26FGvXrkVGRgZKS0vRvHlztGnTBkOGDEFsbIAPIsLY9u3b8ccff2DHjh0oLi5GcnIy+vbtiwEDBsCo5e9MMzIyMH/+fKSmpqK4uBitW7dGp06dcPTRR9e6byurV6/GypUrsXv3buTl5aFZs2Zo1aoVhgwZgqSkOvzlBRERERERERERERERERERucJgtIPP8wB2AjgWQAcH9QsBzAYwVUR+DGaFIvKNUqoPgIcAnAcgUVN1EYCnROSzYNZDRERERETBU83bQEaNA75+23GbMhVpuTzKzZ2kOEgbKA88O1IyUyHvTgY+f8XRatXlDwCnXuKoLoWBY071C0brVroB8d4c5Hqqz8RtGgPc0XO9o1A0AMCKBcB374ZqpD5HnwKcdW1o+6wlFR0Dad8N2Lbev9DryyWPjVFoFQ+k5fpX2RnpnwQlAF7/qxm+Tfe1v/FEA8N7Wk8uX7RZ8NT3JgrLgFP6KIw/QSEqwlf3l/WC134R/J0qEAG6tgCuH2ZgWI/9fb27SByFogFAjzKL51hVZqq+LEmTiBVi4vUC370HeeLq/QsTWwDZGbXqt1vpBsd14737X+gE0+JF32tPESyTCHRBHwBQqqIRIxYz3xd9DynKh2pc+5Snjxa7C0UDAKdzYzolAx7DOrhg3S5nwWjr0wWr0/Tl73SeicPXrLQubN4G6p7XoAaOcDbgetCtpcLs1f7be32/84H8e6vtu7sjah+MNqw7oFTdhlXcfpKBb/+2vg75coXgvlHO+yqvEEz/TfDJEsGuPOs6Rs1rntwstIrv7Kh/XdBPuJLtGyCTxwMr5qMJgFH4zrJeFMrR1JuHfE+cX1lmgf06HvtG/ML67v5cMHawIClWv+98tDi44EkAyC12Xvfrv4JbT+LNJjoluwv+0gWjEOk0dHavpG6GXHu8o7rq/96GchH25Hv/+78psjzNEGV1bRJAZkHgYDRdmJNSQKzmeilQQBBRNQ4+E8HunXU/jjoWZDa0n1cvViguE3y9Un+OvOszwR0nh2Z9bujG064ZsDnTf/mGdH1fuu1lKKB7CrBkq3/ZcpuMcN3xys6AjtbH3Jo+Wxq4LwajEREREdHBLjMzE5MmTcJ7772H3bt3W9aJiorCiSeeiIkTJ+Koo45y1O/YsWMxffr0fY//+ecfdOzY0VHbefPmYdiwYfseP/jgg5g4caK2ftXP7E844QTMmzcPALBw4UI8+OCD+Omnn2Ba/OeQlJQU3Hfffbj++utdh5gtW7YMd9xxB+bOnWvZd9u2bXHNNdfg7rvvRkREBCZOnIiHHnpoX/ncuXMxdOhQR+vKysrClClT8N5772HnTuv7bMMwMHjwYDz44IMYMSJ8fodDRERERERERERERERERHSoauDpERRqIvI/EblIRDrCF1A2BMAFAG4GcC+A/wNwA4CLAPQHEC8iY4INRauy3gwRGQ+gJYATAYwDcA+AmwD8G0AnETmGoWhERERERA1H3TEV6DnAcf3yUASjOUlyqLCfHSm5WZBrjnMeivbpRqhx90E1dCIAOaY6+YchRKEcV2e/4bd8/FCFJmU5zjvfsgYy+8PaDK+6Y06FMWUmVEQYZs2362q93PTu+7FNgnWVnRGt4YWBArU/nee2FpMxfte5mLUCmLUCGPmsiWkLTZRVCPKKBbJ3pvbXfwkGP2Hi82XA96uAW2YIrnrHV/bDasHIZ018sFjw1w5g5U7g82XAiGdNfLty//HhK4cBM80qspDszXJU11JC8+DbuiCv3V89FA2odSgaAMRKIdo1KnRUN9Hc/z6pGpJW0x6xTgOxC0YrVo20ZXLjyMCDC2BPoeDCN9wnJxiarKTKfVUqygEAkREKnRpZb5N16eLXzsrM5fqybZMNXBDzq3Vhp95Qn20Kq1A0AOihyQxcm2FAzVi777EJhSxPkmXdRzMegAdey7KqlALuOa3uz9FDu+vLFm8BduU638du+1Rw9buCH9bo6xioGYyWiXaJgcPfPAYQr39LhR1J2wK5sA+wYr6j+knePZbLswrst/87v/mXe03gC5v3XnGZYF6A7Ew7boLRZq0IPt1lcyawNQvYkQ2k5gDpeb5wpuwiIK/EF6hUUg6UexmKRsGJacDLVMnPgZzX01FdddNTUCdf6Kp/XYhZlqcZio3GlmWDOur7y3JwWWUXTqS7XipgMBq5sfca1Y7YhT8fIOxOaW7ycuMbK8y8wYPMZw3ceYq+4Ys/OQjqDzGr4GUA6NHKepxZhUBmvvWW0V0DKAV0b2nd35pU/VaOsf6Iz9ZRh7lvo1NUZn9/RURERER0IPviiy/QqVMnPPvss9pQNAAoKyvDd999h6OPPhrXXHMNKioc/hOoBjRp0iQcf/zxmDNnjmVwGQCkp6fjpptuwjnnnIOyMuepyM888wwGDhyIH3/8Udv3jh07cP/99+OEE05AerpNunQA77zzDjp16oTJkydrQ9EAwDRNLFiwACNHjsQll1zi6vkQEREREREREREREREREVHocZb4QUxEckTkVxH5SESeF5HHReQxEZkqIh+IyDIRCTxb0d06y0RkrohME5EnRORFEflcRP4J5XqIiIiIiMg95fFATf4COOtqoFMf4IjjoZ79FjjJejJ6mYqyXB7lcbFSJ5MeywP8QfG37wAZOwL3c+woqPdWQKW0czY2Ch/tu1kunrT7ATwR+yGOaAcM7Ag8eY7C42croEAf8uTHMByHtwAA+g8FDj/Of3mH7sBFt0M98pHzvuqb0nzMI/snE+iC0R5u/n+I7lmAhB670aHLBrwTfxFeTbzKr97l0wQx15lImGDCc83/s3ff8U3V+x/HX9+ke9CWtoyydwGZiiKCIkNRZAiK4p4o4h7g1qu/K6I4roqgXlCc14kILtyKqCiKomyQPbso3W3y/f0ROtKeb3LSpgP8PB8PHuSc70yanJyc9vuOG8ckF6OeqbpY4ZUfNSu2ah5b4qbY4sqD1nDX++Xt1ttcy9C34Dd7FU3y7YWK1YTeux1ef6x6jUPDIC6x/F9YhFexuu9lurSNNjT2luDKLLsdgosY10HLerkO64SRKOu3AADyHT5SnNb/hrZzzPbhuIeqF2LgrPAS0Hu3475nIu5B4egTIzz/nxyDe1A47ufvpfMe6+Cy9Zuy+Gy1xjHJVfYcd0xy8eVa7/czUzDace2gZYKP41THXqhAkh/qSJem1nPafxDSSqLghJEAZDoTcCnrxJ1huV/yqftGhqRCjxaefa0SyoMuHAqGpMKyaQ76tK79x0ApxYq7zZe/7QYyrt2tmfWV/7pVgtGy0jm6DcT4CBkESIwGhynVrwHSL9wfUH1jMJqPw7HbRxrY56vN7T5fA0U1WEtoNxituETzmY95CFHfTuhY+8cU/cf3uK8ahHtoHO7zjkL/8gU6cx/69Ka22qvbn4Ozrg143CRTMFpIErnKOhgttbki0hAIlGZ9euTF9JFWKfMxPleC0UQgXP6D0UjbXfvzqGW+Lg9V5/Q4PkpxUX9zw0c+qfsQLlMwWrfm5jZr91jvN83eoaCNdU4xm8z5C9UKzVRKccmA4LynaA2FDT/zQQghhBBCiIDNmzeP8ePHc/Cg90WGDh06MGrUKM455xyOP/54nE7vX7A///zzjBo1qkGHo82cOZO77roLl8vzi74uXbowevRoJk6cyODBg4mI8P4d1oIFC7jnnnts9f3YY49xyy23lPVdqlu3bowZM4YJEybQv3//ssdt2bJlTJgwoUp9O+69914uvvhisrOzy/YppUhNTWXUqFGcd955nHbaaSQne3+50quvvsrpp5/eoH9GQgghhBBCCCGEEEIIIYQQQghxpKvH740XQgghhBBCCFHXVEIy6panvXcefTK6uBC+etdrd7EhGC00oGA0G+E2Jb4XAeuV/kOt1H9/QHXpa3dWoqExBKMp4Nb9M5n6+AVe+3VuAMFoGTYTt0JCUR/uRkXF2u+7oXEaXpwVFgmkJCjMS6w9doa24LKUF2o8nXsXulniIzhm5XbYvF/TMgG2pNvr8/ScT2o2qZysmrW347uF1Wqmbn0GNaZqGF1lqWluPl/jf5F/gsv7vsa7D5DjtP/8jg4zP1cKlJ+kp+8+gPHX2B6rom/WaZ8L+n0pzZbSbjf6XxfBqmXWFV+ZQecmD/Ehp1cp+uS3Al5eVfW9a9jjblb/y0Fqc8XebM0Pm627HtP70CRMwWgxcf7uRr1IbWYuu/JlNwsGjUZ//yFpTkMKA5Bcsp9jNs7n5BdmNZjwtz6tFanNrAMnFv+hucIiB7Oy+T9oWzmvjsqvlwNphIUoZoxXTHnd3IEp5Kch0kWF8NkbAbVp7LI+wPsKRsvyEVAWYQg3Aljwm/lxdjpg8XUOTu2u+PQvzWn/qfo6zy4ArbXf5++OLMi3kWEjRH04uQuM7FG7Y+iMvXqme70AACAASURBVOgpQ8p3bN+Avqnqe6qJ+t9qVIsO1Ro70ZAPm+5sTJ7DOhgtKgwSY2BHZtWytByN51OHma9womhDkGyOBKOJQPgLiwfYv7P251HLfJ1OVffMsWtzaN0YtlnksO7Mgqw8TXxU3Z2XmrJdU+IUjSI02QVVy7ZmaAZaPAKmkDWlzIHn+3yEPfo6h/Kli4/PCYGa9ZXmllMaxucEIYQQQghdUgL7a/YFH8Km5JaokCPzz5RXrlzJ5MmTcbvLT+B79+7NrFmzGDBggFfd/fv3c8899/Dcc8+V7fvkk0+49957eeihh+psznatWrWK777z/I5+7NixTJ8+ndTUVK86mZmZ3Hzzzbz00ktl+x577DEmT55M27ZtjX2vWLGC22+/3Wvf4MGDeeaZZ+jevbvX/v3793PvvfcyZ84cvv32W1avDuwbK+bPn8+DDz5Ytu1wOJgyZQq33norrVu39qqrtWbhwoXccMMNbNu2DYAvvviCe+65h+nTpwc0rhBCCCGEEEIIIYQQQgghhBBCiOA4Mv/iQAghhBBCCCGEbUopuP9VdKVgtCKsV02GBfJJ0l3zYDS2rfdd3newhKId5lRUrHmR9JY16LyDXoFlOt1m2FkgBo87vEPRAJTDen+FgELTAura8PGf/uss+kMzorsyLvquKNKdx9kH36vZpExhVUGiC/LQ/7klsEb9hqIumIrqO9hW9S5N7XUbXykYLc51gB2hLW1PK8pH9lm+ivTZVq/6AVXNYLRHPrXxZDDIK82U+OULcyjaIV2KNlju3xdifoBnfa15eqLiizXmoKyx/oLRYuvwRRiAlHiICbcOcvngdyg5fwzOmGnsdyUZ+0h2pYEugW8Xwklja3G2gRnVS7F2T9Uf2GerIb9IExnmO5zhrV9spKIBjkphsDorDQVMHuzgh01uXv3Jup/EwykYbd4DAbdJMgSjpf29C7A+Jq3Zbe4v3BDqsStL89Iy88/ql7sc9Grl+VnHGQ5hLrfnNRAbYR4fIC3Hd7kQpZyOQ/9UhduH/jmUuczXPoehLDpccWJnOP845fe4VlN6TGv/lawMHoe66UlUY5snMxYSY6yDW9OcieQ6rFPTosM9IZTWwWj+x/T1kTY63Ho+uRKMJgLh75oIwM7NtsI7GzJfQbPVvVtKKUb1Usz6yrrzL9bA+KOr13d1mD7XOh3QqjH8tatq2U6LY5PvvhQt4v0HnldW3WC0lCDmOs/5RnPLKcHrTwghhBCiRvbvQE/oUt+z+EdQb62D5m3rexq14vLLL6eoqDzseuDAgXz66adERVUNb09OTmbOnDl07NiR2267rWz/jBkzmDhxIj161HLSfYAyMjwJ1FOnTmXGjBmWdRISEnjxxRfJzMxk4ULPlwa5XC7mzp3rFUZW2ZQpUygpKSnbHjduHG+++SYhFgF6ycnJzJ49m/bt2zN16lTS0tJs34etW7cyefLksu3w8HDef/99RowYYVlfKcXYsWMZMGAAJ5xwAhs3bgTg0UcfZdKkSbRr18722EIIIYQQQgghhBBCCCGEEEIIIYJDgtGEEEIIIYQQQqAcDvSQs+HLt8v2Fakwy7phzgA61jYCboqLjEX6YBZstw6vKaXOuzmACYmGSj3wOvre8yzL9BM3oe76b/mO5UuCO3j77qir/x3cPuuDw/DidLvKbtZlMJodN72paTPZ/yr4MHchz+y5keYle2o2YO4BtNuNchhC5GpA79uBPu8o+w0cDtSUGagJ1wc0Tmoze4vgE9zeK+wbuzICGifaVzCaw3cwGvnVSw06WKD5Ym21mgKw6e8DuGc/Cq8/5rduJ0Mwmi9LN3ged6tAA4BOTSC1eWkwWpZlHRUTxGSBIFJK0bMlLNtkXf793nhOmjqbtCfetSyPcucSpfMB0HefA1/noZyBnDDUnlE9FY9+WvU1k18MS1bDmN7BGUdVfl3u+rvs5sPjlTEYrUPy4RFwovNy4LWZAbdLNBx70n9bic6JtXxNTHndfP4YaQj1GDvL3ObdyeWhaOAJSDLZkgY9/GRIph30XX44Ucp/MFeVIK4AgrwclmXKO+grgPAvf/u82inzmJbzrEZIma/Hx+E4PF7bgdK/fFmtdurfb6FOHFPj8U2v3zxHNOnOxpZlUWHmdum5/sc0nXU5HJ5QUSv5xeBya5xH6PNABJmdYLS922DLGmjXrfbnUw9q8kqZMc4cjHb2c27cz9fdOanbcMBwOjyfxa0+R+wy5Cn7CllrmRD43KobjNYiIfAQNpNN+4PSjRBCCCGEEA3CV199xa+//lq23ahRI958803LULSKbr31Vr755hsWL14MgNvt5oknnmDevHm1Ot/qGDhwINOnT/db79///ndZMBrAl19+aQxG+/nnn/npp5/Ktps3b868efMsQ9Equu222/j8889ZssT+74gfffRR8vPzy7afeOIJYyhaRU2aNOH111/n2GOPBTxhb0888QRPPfWU7bGFEEIIIYQQQgghhBBCCCGEEEIEhwSjCSGEEEIIIYTwqBRgUqysV02GBfJJUttYPPnr19C5aiqJPpCOPiPFd9sufeGYYQFMSDRYx59mLvv1q7KbOjcbNv9V8/Hik1GX3AktO0DvE1HhfoKeDgemsC93+YrqlLjgLGgOpnGzzWE2T+y5hXj3AQblLaVt8baaD+Z2ewKrGlkHZ1SXXv0z+paRUJjvu+KZV6Fad4bIWOhxvOd2gFKb2asX7/JeYZ9SsjugcaKsszEByFcRvhunVy/AbslfUFRSraYANFv0CKQ/bqtul8LAg9F+3wFaa9btsX4dHdO2QqRDjiHhIKaBpRNWcN5ximWbrO/bwpWaweeMY3/eSbCwanlySZrXtn7oCtQ9L9bGNAN2fAdIjLYOvznzWTdFsx2EOM1xHBk2QnMAFJWOZdvWld1MiVdMOEbx1i9VH9+Jxx4moTnfWvzgbTCFMqY7G8M3C2DkJV773W7NHzvM/Vk9QwuKNb8b2kSEwimVMmTaNIZQJxS7qtZfu8dGMFpOYO+lY3t7jg/xUf6Cv5StUC5z+FfgIWVKHSbPP9Eg6MIC9E0+ztlNjhkSlFA08BzPTXaEWr94o1Z+RlLz4VgdQdJsZLmago4UvoNk84og1s8pkxCAvWA0gJXfHtbBaHYuD1VHVLjiqBT40xBePOcbN1efFPxgbCu+wsxS4q0DxnZlWj8wxr4UtAgwGE0pz7lPdaQ0zFxnIYQQQggh6t38+fO9tqdMmUJKip/fax/y8MMPlwWjAbzxxhvMnj2b8HAfFxrqwV133YXDxhcNde/enbZt27JlyxYAVq5caaz7xhtveG1fe+21xMXZ++Bxzz332A5Gy83N9Qqba9++PVdddZWttgD9+vVj0KBBfPfddwB88MEHEowmhBBCCCGEEEIIIYQQQgghhBD1QILRhBBCCCGEEEJ4OLxXSRYp61ScysFoWmtY9iF60TwIj0INPbt84bvbHHhU1n7WNNS5N3puf78Y/fGrkHcQfv7cd8Ou/VB3z0U5q7m6UzQoKiIKHRYBRQVVC/ftQBcVosLCIXNfcMa7aBpq/DVB6avBcBheCxVehy0auYDD4zUzPOczrsucHfyOl38Gw86pcTfa5YJ3Z6F/+Bh++dJvffWv11BDzqrxuCnxEBMOOYW+6yW4sry2mwcYjBYe4lnAb7UgP9/hJ0hw23q01gEH7iz6w39aQqsE2J5pXXZqzme2x2rq2kuboq1sDWtjuw3AvoOwxpD71uVQaJ3WGg4aJhndcJMFrj5Rce3r1j+DRb9rnjgH0kjAKtAh2eUdjMaS19FDxqNOOKMWZmpNp+1CP30bfPmOZ8ewc1DXP4YzIZmRPRUv/2B938ImuxnZA07prmgUAQt+0+w7CEe3Udw+QnHAT95hKYeu9GLZsRHtcpWdpzwzUZFToPnoT09xowiYPk4xvFvDDqbSBzPRL/4fvP1MtdqbgtEOOOPQSxejKgWjWQXYVZRrcezbsNc65Azg6NYQHe79GIeGKDoke0LQKlu3V+OJOzLzN8eKXrtCMfHYugljEaLWLZhTrWbq3peDNoWkGHPZnhDr9NioXz6i8elHA1WThNJtBB2awpyU8pyTmeQWSjCasEfv2Wqv3vYNft6hGjZfr7aa5nQe117x5y7rEa55TXPZCZqwkNp/9ExBig7l+RxnZZchT9l07HE6IDkG4iKxfZ4aEVL9MNRAQ9iEEEIIIYT4p1i6dKnX9gUXXGC7bffu3enbty+//vorAAUFBaxYsYIBAwYEdY41ERkZyZAhQ2zX79q1a1kwWl5eHjk5OcTEVL2Qs2zZMq/tCRMm2B5j4MCBpKSksGuXIRm7gqVLl5KfX/6h6ayzzrIV8lbRySefXBaMtnXrVrZt20br1q0D6kMIIYQQQgghhBBCCCGEEEIIIUTNSDCaEEIIIYQQQggP5f3HwEUq1LJamLPSYsr3n0c/fn3Zpv7ybbh+Jurs68BtSKmoRGfugx8+QU+/0t5cux2LmvNttRd2igZqwvXw6iPWZe/NhnNv9ITeBMMp5wWnn4bE9Af9FYPRYko4XILROhdtrJV+9b8ugl4DUcktatbPvy+Dz/5nq6669pGghKKBZ0F7ajP4xU9+QrzbO5irRYn/hSJe42hNZKh1AFuB8hOMlp8D6bshKSWgMZdtsl79f8UgxayJit0HoFVjWLgSxs32DqEakLeMHoV/2h5LAddkzmFa0+kBzfH1nzRrDBlzqaV5LKt/htxs60qxhkSEBsDhULx4ieLSl6r+HDanQdpBzf4c67aJrvQq+/Tt4+GpJag+JwV7qt7jFBdB+m702Z29Cz5/E/3jp/DmGkb1TDAGowF8uAo+XOVd/uNmzXPf+A/MKeWgUjBacRHs2QItOgCQFKtYfL2T9BzN3mxPkJ7T0bDPY3ReDvrSY2HvtsAaxiV5zgEPZhLvsk77yHLGe14rlezMsqhcQV5R1X3r9prrP3q29XtjajPrYLTN+32PD5BmeB1U1iYRzuzTsH/GQgRCfzQ/sAYxcaj3t6HCg5cO1jg68DbR7lwS9/wBVH0/svN69hV0FO0jGM1fiK0QcOhayMIX7FXevqF2J1PLTEFfUPNgtCknK+YuNQ/wzXoY3q1mY9hhFSoNnjAzUzDaHkMwmqkvh8Nz3n5qd8Vbv9g7V42wvrxnS2xEcM9lqhOgLYQQQgghREOTmZnJpk2byrbj4+Pp2rVrQH0MGDCgLBgN4Oeff25QwWgdOnQgLMz6S9SsJCR4pyofOHDAMhjt999/L7sdHx9Px44dA5rXMcccwwcffOC3XuXgupSUlLLgNrsq3//NmzdLMJoQQgghhBBCCCGEEEIIIYQQQtSxwL4CSwghhBBCCCHEkcvpHZZUpKz/2Dm0QjWdm42ec1eVOvq1x9AlJaANKzkry0pHvzLD9lTVuMmykPIIpC6921imZ01D5+XAso9qPs6tz6DiEmvcT4PjMASeVQgobBRWQozrYNCGjIuEHi3gkbMU718T3MtMvQt+91+puj55rdpN9bZ1uM9oYTsUDUCdc0O1x7PSp7X/419SiXdQVUqJIc3LQL0xk8gS6+dKvsNGwMnfqwMa72CBZuM+67JTuylCQxStExVKKcb2USy4xsGgTtA+CSYn/8wH28fjwH6IFUPO5hb9BvGuTP91K7jlbfMYR7dWaK3RVw+yrqAUdDgqoPHq2vBu5udWk1vczDMETiSXWKdJ6etPQW/8Iyhzq9L3ljW4rx2KHp5QNRStVE4WLPwvp3Sv3hglNk9jwCIYDWDruiq7EmMU3VJUgw9FA+DjlwMPRQPU+MmoZ76AgaOIi7M+nzzgaAQZe9A53mkgu/wEo+UWVn0Ort1jfl32b2/9OKfEW+/PyPV/HPEVpNQuCVrEw8RjFcumOYgIPQx+zkL4obdvwH1u18De29t3R72yMqihaAAhTkV8VGBtotx5JG1bbllmJxjNFOakFET7WB+cK8Fowo4lb9ivu2197c2jDvgMRqth371bKUb2MJef+3wAJ3U26MUv4j67M+7TmuK+eST60PmSy0eQYmPDsetAvvV+U1/OQx+7B3exP9+aBKMFW7G9708QQgghhBCiQdu/3/t6eKdOnQL+vXVqaqrX9r59hl+Q1JPKQWf+hIZ6f/AoLi6uUic3N5eCgoKy7eqEjNlts337dq/tG2+8kXbt2gX07+67vX9vnZGREfB8hRBCCCGEEEIIIYQQQgghhBBC1ExIfU9ACCGEEEIIIUQD4fAONTIFo4VV/CT57ULIswjOSd8NOzb4Xvla0YE02LHRXt0OPWDYOfbqisOKCgtHt+oE2zdYlutz/Xzb+plXwYLnfNcZPA415spqzrCBU4ZgMneFReCuEtoU7+AvZ2ApQZdlvcTzu69BTXoQkltAi/bQqRcqwnt19xc3Oxj6eM0XnSvt5vScT2rcj4l+/h5o3w2at4O2XVEOc6ibLimGdb9B1n7ISkM/PMn+QDHxqDnfBGHG3kb1Urzwne/ja6LLe4FGSvGugMZwFOQSWZAJobFVyvJVpN/2+qclqH7DbI+3aqe5rI/FOpfRqfmMDvkDMveh7zzb9jg4Q1D3vYI6eRxaa1YNaUuHDmsocoTb78NC1+bQoYlCvzbTXKnfMFRCkxqNU9uax0GjCMgusC7PMYS8JLnSjH3qS/vBR3tRsfEBz0cX5sPqn2HvdgiPhLDyn5O+fZy9Pj59ldgLpzJ5sGL21wGE5wXIYRUGu209DDi91sasCV1cBDs2eUJs23WrsnBPFxag33oq8I5btIdRl6OSmqOmv0PjDRoerfrY5DuiKFRhuDZt5PfovnRuCsmxip1Zvn9GVs/B9Xus647pZe4nMcZ6f0auz+EBSM+xnuMVgxTPXyjfRSOOHLqkBNb9ag78NGnSCvXSiloLsm4SC1l59utH6TwS9/4JLaqWpdsIRnMbPtM6FMT4yH3LLbI5QfGPpt/8j/3Ku/5G52ajohvV3oRqQV6h5uct8P0m83t8MA4Xb1zpoNH11p9FM/PgnoVupp6qiI2o2WB62UfoGVeX7/j5c/R1w9GvrzZeAnM6IC5SgUWQc3YBaK2rHDNdho/VpcFoLROs+7NS02C0/u3hx80166NUQXGl64pCCCGEEPUluSXqrapfaiBqQXLL+p5B0GVmen/hSlxcXMB9VG7T0EK3HD5+b1ZdWVne34oRG1v190/+NGpk7zNxenq6/0oBOngweF88JYQQQgghhBBCCCGEEEIIIYQQwh75s1MhhBBCCCGEEB4Op9dmsbJeORlWoZr+frG5v7RdkJtta2j946e26gGoF5ahnE7/FcXh6fjTjMFoZPr+tnQ1cBTaRzCauu1ZGHlJDSbXwDlNwWiu8tuuEkblfMhfEdbBaO2T4IyCz/h7tyd5Js51gGG5X3J+9hvAoUCxip74CHXM0LLNQZ2gQzJs2l+1767N4bUrHPR90H9w2mk5n9LU5fvnXVP69vGeGx17wsPvoZq2qlpn9c/oO86CDEPqji9xiaj//oBq1qaGM61qaCpEh0OuIaQKINHlvegjpWR3QGM4cBPpzrcsK1A+UkBKLf8soPFW7bBe1B8bAW0Tvffpbxei/+9SyLeRYFTqpDOhSUvUkLNQR/UHQClF8zHjuGLpizzb+Go/Hfg2upcnyEB//LKxzuEQyqiUIrUZLN8SWLtkH8FoACyeBxNvDqhP/e1C9F0TApuIla3rcD9+PU9f/wSzv655dyYOqh7b9LZ11E4sUM3ov1ej778QNv/p2dFrEPzrVVRiM0/5+pXoy4+z1Zea+xP89SN6zQpUmy4w4oKyfgDifOQoPh9/ObfP7kHhoQDP64cq4v3kLlod99busT5+dGlufvQbR1vvT7cVjGa9P8kQtibE4Ujv3uI5Bm/4PfDGp11Qa6FoAP3aKtbvtR90Ge3OJUSXWJYdyLcOJKrIFHSkgPAQT0Ca26LO5v2aAR0a4ruAaFD2+0gHtrLhd+gdYFhhPXrrFzcXz9MUWr8EywTjmBEToZh9vmLya9Yv2n9/qHnqC828ix2MP7r64+kX7qu6c/cW3Ms+AqwDcR0KGhnOcYpdUFhSNbzMZXVgAZyHpt4igMzhyBoGo13QX/Hj5uAEDBcUmx8LIYQQQoi6pEJCoHnb+p6GOEzpShcLgvGZpjavpTQU4eHeX1BTVBR4qrzdNtXp25/KP3chhBBCCCGEEEIIIYQQQgghhBC1L/hf6yWEEEIIIYQQ4vBUIWzMhQOXss7SDju0WxcXwS9fGrvTH79qf+zXHrVVTb2zARUaZr9fcdhRF99R/cbHDIVxFuFGkdGo6e+gRl9+ZIfqKcNlHl0hrKekmFvSn+SEvO+rVOuYUMSnNzp44p6+LNgxgQU7JvDS7iu5IPsNY7CPvul03LPvRKd7gsNCnIoXhm8lIaTAq975od/wx5Zj6fXLc6y4aCPNwwypMoc8vvc2n+Xqtlk4viuEo473Wc+WjX+gH72mym5dUoK++5zqhaIB6v1ttRKKBhAZphhhnW0HQKMICD3tPK99KaeeGtAYDtxE6gLLsnyHjWC03VsCWiSyLcN6/1Ep4HCUPwN15n70/RcEForWYwCO//sfjutnloWilVIXTOXhfXdxXN5PZftCdDGXZJkDzqyMPrgYvXc7bF1nXSEkFAaMDKjP+tKjZeALsJIHneizXD97B9rl8lnHq376nuCEopVa8Byc15Wvx6wKXp+VWAWjsW19rY1XHbqwAP3Jq+iL+pSHogH8/h16bBvcs25HvzbTdigaSkGbVNSZV+O48wXU+bd6haIBPoPObmr2GIXu8vflp77QPLDY93GjcjCa1pp1e63rdmlq7ifRFIzm++0JgDQJRhP/AHrmtdULRet5AirAIMxAndEzsPpR7nzi3Acsy0rckO9nnazpqORweBYtR4dbl180TxbLilqw/rf6noFtW9M1E1/wH4oWTOf0U4T4+OuHgwVw9nNulv9dvdene+fffL0rjocSp/JW7HjyVPmJjmut+WfjdHg+o5kcsMijdhnyxEvz0FMCCEarHLoWqEsHBC+goaA4aF0JIYQQQghRbxo3buy1feCA9XUHXyq3SUhIqNGcrLgCuCZfFyrfx8zMzID7yMgw/DKpkqSkJK/tZcuWobWu0b9LLrkk4PkKIYQQQgghhBBCCCGEEEIIIYSoGetV7kIIIYQQQggh/nkc5cEUxcq8arI0GI3Nf0Jutrm/Ja8HaWIe6p2NqKatgtqnaHhUo8Zw83/Qj98QeFuHA258Es64DNb8jN6zDZV6NHQ9BpXcohZm28CYQt8qLnxwlZDgzuKzrafzQ9RxrAzvhVs56Fy0gZPueJJGTdoBTdAXToNXZtgb9/XH0K8/BrO+gl1/c+LDk/iLBL6MHky6M5G+Bb/SP385CtCP30Av4A9HPGe0WsBPUVXDd3avb02yK808XngknDweAHXezeg7z7Y3T1+Wf4bOSkPFV1go8ft3sH9ntbpTc39ChdTuZbfRvRTv/mq9oD+7ABx3voAeOwl2/Q0tOxCdejQJN7rIzLPXv0IT4bZYoQ/kVwgAICwcigqrVirIg7yDEN3I1ni7DeuGWiZUWoT/zQIo9pNgUom6wBy0p5KaE33N/Xw3awhfRJ9MujORPgUraVW8g/lxF6BNgYMVNCvZQ7//TkD/10fAwugrav05ESyXDFDMXRpYWESToadC+A3w5n+MdfSkE+C5pbYeBz22FkIFd29l4MPHcd6AZbye2Tvo3Sur6JwGFIym03ahbzkDNv9lrvS/J4wBQJaatUGF+w5KjI8KpEP/DlY63OzN9oScWEltZg7xSIxWWMUdZeR6wtaUMrc1BaOZwtaEONzoXZth+We26qr7XoHIKM/5Rtuu0Gdwrb/f9W1t/fo1ida5ON3mhcBZ+RBlCDcDcBvCiUqPEqZjEEBeoSYqPHiBQuLIok1PLl9t1v1mDK1uaBau1ASQkxwU8VGKAR3g2w2+6/Wf7mbpNAcDOgT2aN40L4un23xatn10/q98tH00ia4MXCu+Ae6ybOdQEOcjLDY7H5pW+tjkLxgtOQZCnVBsI+egpsFokWGKt69ycPZzgT9nKyuow6A8IYQQQgghaktycrLX9vr1gV8HXrfO+0tWmjRpYlkvpNJ1lpIS+yfV1Qkeq01Op5MWLVqwc6fnd2+bN28mLy+PqCj7F5FXrbL35SdNm3p/a8b69es5/vggfNmSEEIIIYQQQgghhBBCCCGEEEKIOuV/ZZ8QQgghhBBCiH+GCuEvRSrMWC3k67dx3zYafUUd/vFwn5MkFO2fZOxV1W6qlEJ16oUafQWOSQ+gThzzzwhFA6/XsBddYfGyy7NgIoxiTspbyg2Zs7gp42lG5nxCbFR5sJoadk7Aw+spJ6P/fRm4Smji2s+52W8zJXMOxx8KRasowZ3F11uHc23Gszi1Z069Cv7gx78H+g5FA9TMRajYQ98qP3BUwPO0nryG377B/eRNuO8Yj/u5e9DvzAq8n6hY1J3/RXUOfuhSZSN7+l/Er7r1Qw2b4AkIBFrE2+8/0ZVBlLZOUct1VEj/adLS3EnaLtvj7T5gnZrQvMKcdV4O+rHrbPdZSg043XeFCdfjQDM890vOzX6bLkUbiNL5dCraaKv/Mw5+hMNPQIu69hG70613J3RUPH+hCihAITkW1OTp4OuxXv8bfPwyOn0P7gcuwT0o3PNvxmT0gfSyavrHT2owe/+e+fFUzuqY7r9igNxWl9oz9+G+9zz0ht+DPl6g9FtP+w5Fq45ux/qtEhPuCQMJln3ZnuCyUjuzzHU7JJvLEmOs95e4fYccaa2NwWhJMYdLVI0QZlpr9N3n2m/QuTfqhDNQZ1+H6jesTkJA2yaWBwPZEeXOI95tSGDFE8765OduRj/j4sqX3fyd5v2ebnqHt3NsMx0vhAAgc1/gbdb/Fvx51JKtGfUz7oJr7B0gBs5w45jkYshMJflFWQAAIABJREFUF2t3+09w+22b5untPb32rYjsy7MJnusX7gLrUGnwHLMa+QhGO2DR1F8wmsOhaJXgc8plahqMBhBlvkwYkILi4PQjhBBCCCFEfUpISKBDhw5l21lZWaxZsyagPpYtW+a13a9fP8t6jRp5pyhnZfm4IFrJX38F+XpwEPTv37/sttvt5ptvvrHdNiMjg99/t3etfcCAAV7bS5YssT2OEEIIIYQQQgghhBBCCCGEEEKIhkOC0YQQQgghhBBCeDjLQ5GKlXnVZOjrD8OPn9bFjMqoSQ/U6XiifimloN+wwBod1d9/nSOdw2m93+0qv+3y8U3yzvIgC9W+O5w0NkgTsxZKCU/uvZW961uxbUMHlv89gGMKfjU3aNYG9U0+qveg8nkqhXr9z6DMR997Hrz7LCxdDK8+AksX2W6r3l6Pmv8r6sPdqNMuDMp8/GkcrWjayLpsZA/r/SkBBKN1KVxHjDvXsizPEVW+0cRHaGX6Htvj7TKs5UmJ8/yvi4vQkwZYV/JBvfiL/zoOB+rWZ6rsn5I5x9YYo3IW+67QujMqNEhJAnXkikEOsp9y0NtmJmlSDCinE/Xwe9C4qbGefuNx9Pj28Nkb5TsXz0Of3wNd4Ani0x+9XL1JN24KJ53pt1oj90H+t6gV+2fC8ts1v0wtpmcQ8jOj3IYwjK/eRU8Zgl7j/7lYG3RxEbq4CL54K7gdO0NQ46/xW83hUMT5CAIJVH4xZFd4qE3HjlCn53lp0jjaXLbbnJ/EwQJPeJoVX+MJcbjQ/70fAglzTGlXa3MxCQ1RtEuyXz/anUe8y7xoeOhjLm5+S7P4D5i7VNPrX25W7yoPSXIb8pKUjWC0Ah+n3kLw10+Bt9m2Dl1UGPy51IJ0m8GA4UHOU0yIVsy92H5Y6dfrodt9bn7Zoskv8v7nqnAAeHuF9cHgg1hPWLdr51bjGE4HxEaY55BtEcrqMhx7KgZDdm1u7rOiiCA8xmFB+jlJMJoQQgghhDhSDBw40Gv7tddes912zZo1rFixomw7IiKCo48+2rJukyZNvLZXr15te5yPPvrIdt26MmyY9+9/X3jhBdtt58+fT1FRka26Q4cOxVnhbx8++OAD9u2rRkC5EEIIIYQQQgghhBBCCCGEEEKIeiXBaEIIIYQQQgghPCqEKhUpc4BLmLb3B8fBomYuQkno1T9P5z4BVVejLq+liRxGHIbLPO4KCS4ul3Ud8ApGA1B3vwhnTQnCxHyLdx8gpWQ3TgxJMwAjLkQ9vxRlcR9Vq06o57+vxRn6cfZ1qGZtUO27o0LMoZK14f/GWi/4H97Nen9KvP2AgC5FG4g2BKPlOCqk/0REQaPG1p3s22l7PFMQUfNDwWh88TZsXWe7PwB1+X2ojoaUuMpOOKPKLjvBaIklaQzN/cp3pXbd7M2hgQlxKm4cZu85kxzr+V8pBb7CAbdvsD4OHUhHD09AvzMLvno38MmOuQL1vzWoB99AXfeorSYJI6Poe3E0vS+NY9nSFG6JWEjbhOol2IS5C+lZuMpcIT8H/fbT1eq7uvSKr3Bfcgx6SCx6SCzs2xG8zvuchJr5AarH8baqm0IcqyvhRjd3LnCTX6TZmWWdGtI8zhPKZtIi3hxqtNHH+rg0HyEvEowm6ov+43vcU4bgPq0J7sv7o1f/XL1+CvLgf0/ab3DMkDo/9ynVt7X9c5oonUeELiDU8Dk2u8C7r5xCmLmk/NiiDeFEPg4xZfLq9qOzOMzoHz4JvJHbDTs3B38ytSA9x/DiqeT49sEf+5IBnnC0+Cj/dUsd+5Cb6Gu9/8Vd7yZ6iovkm1w8/LH1/fktojcacBWbE78cCpwORUy4dXm2Rb6uy/Dx2Fnh2NOlmb1jYUQQDtWhhhz2QOXLcVEIIYQQQhwhLrroIq/tZ555hj177H1ZzB133OG1fe655xIebv2BoW/fvl7bixbZ+1KfTz/9lOXLl9uqW5fOP/98YmNjy7YXLFjAp5/6/0K2nTt38sAD9r9ILSEhgfPPP79sOycnh1tvvTWwyQohhBBCCCGEEEIIIYQQQgghhKh3EowmhBBCCCGEEMKjYjAa5lWTdRmMpp5bijrulDobTzQcamDVkCKfThpbOxM5nDgMK5XdFUKIXD5CfyoFW6iIKBw3PI56dKE5dK2OqDtfQCU0MZd3PQbOv60OZ3RIYnPUpXfV/biHXDJAcUIH732pzeC8Y03BaPb6beQ6QJIrjWh3nmV5rqqQMOAMgaQUy3r696W2xssp0MawoZR4hS7MR7883VZfXkbbD0xUSc1Rkx6ssv/XzccS68o2tnt4391E6ELffQ8aY3seDU3X5v7DFsJCIC6yfFtNvLna4+n/BNhWKdRd83DcOgsVGY1SCjXherhwWkDdRBRkMeO3iWzc1ofHzvJd96zeLpzKOxjjX/sfIFIX+G74e90FOOrNf6FvHAGbfIS1VUf341Bf5+F4agnqmKG2m9k99gTi4Y81932g2bzfuryFnzEjwxSt4q0TR9bvNQe5bMsw9ynBaKI+6P070VPHwh/fQ84BWP8b+qqB6F3VCE7atAqK/BzLSkVGoy69O/AxguSMnvbrRrnzUEC8K8t2my/Xlh8H3IZDQmm44oju5n7yimBftmbVDk1Grr2QKPEPsmGlsUjd8Lj5M9j29bU0oZorLNYs/1vz7XrN32n+60eEwr2jgv9ZUynFpSc4yHjSya2n2A9SrCyvCPKLId06L7rMzpAWuH382YXzUFGjSOvyA/lVjw/GYLQKw3Rt7ntepSJCq/8YlOpo/jgekILq5RALIYQQQgjR4AwZMoTevXuXbR84cICJEyeSn2+RfFzBE088wcKFC8u2lVLcdNNNxvrHH388UVHlv5NZsGABv/zyi88xNmzYwMUXX+zvLtSL2NhYbrjhBq99EyZM4KuvzF9As2XLFoYPH05Wlv1rOwD333+/V+DcK6+8wrRp03D5+hIpC6tXr+bbb78NqI0QQgghhBBCCCGEEEIIIYQQQojgkGA0IYQQQgghhBAezvJQpQhdyLkH3mRc9gLOcPzIqd3h5Mh1nJD3vTEoJ+g69oTUo+tmLNHwdDvWdlX15Ceo6Ea1OJnDhGnhvLvCimpfwWjOEMvdqv8I1LyfYcwVNZhczSjlfyG3uqAOg9E69IBL7kK98hsqNqHuxq3E6VB8drOD2ecrLhmgeGCM4qc7HSTFWj9e/oKCSrUt3ooCot3WaWW5jugKkwiBrsdYd/TLF7bGW7/XXNZ+57foce1h+wZbfZXpNRDVuGlATdSFU1GPLYbWncv29Sz8k5//HsDN6U9w+sGPOS3nE07L+YQrM+fy2dYRXHrgZd+dxsTDCSMDm3sD0sXGQ9i1mfdrVMUlohbvqp0Jjb4cddm9MGg0jLkC9Z8lqBHnV6mmRlxQJezRlh2buOG3a2kUYV0c5i7k2cXdWd7paa7JmMPFWa+wcPs4bs14wn/fGXvQuvZDcfS639AX9w1+x6MuQz31GcppCOH0oUV8zcM4rMxcopm5xPox9RXGprVGv/hvOm23XmznKxht7R7rssRoiIuqnfsphC/6tZmQWzXAU5/TNfBjjq9QtA49UPe9AiMuhIk3o+Z8h+p5QoCzDZ5Bney93iLc+TjxnAvHuw7Y7n9bBqQd9Dx+poexdAYje5rncvu7btre4abXA25aT3Mzd6kh6Uj842itYds668LhE1FnTYHmba3LtzXMYLSlGzTt73TTf7qbwTPdrN5trjs0FW49RfH9NAeDu9Tu++eM8YrTjqrVIVgb1hmXMp8jOQ7dxThDMFq2xeHXTjBa68b2HruocP91/EmJVxzbtub9FBTXvA8hhBBCCCGCYc+ePWzZsqVa/0rNnTuXsLCwsu2vv/6aQYMG8dNPP1UZLy0tjSlTpnDzzd5fDjJ16lR69jQnwMfGxnLOOeeUbbtcLkaOHMmSJUuq1C0qKuKFF16gf//+7N27l4SE+vv9lS/33HMPPXr0KNvOzs5m6NChTJgwgXfeeYc//viDtWvXsmTJEm688Ua6d+/OmjVriIiIYMwY+19E065dO55//nmvfY888ggDBw5k0aJFlJSYf2e6ZcsWZs2axZAhQ+jevTtffvll4HdUCCGEEEIIIYQQQgghhBBCCCFEjVmveBVCCCGEEEII8c/jKF/E2dS1j1d3XerZSBqE44bPcT81D359us6mo6bNQZmCnsQRTzkc6IvvhPkP+a/cd3Ctz+ew4DAsxHZX+OZzH3/kbwpGA1AdjkLdOgtunYUuKUafHFPNSdYeFROHbtYG9mytvTEmP4Q675Za6786IkIVV52kuOok/3VT4hXgPyRl/q7LAYjW1kGYOZWC0VT/EegPX6pace82dEkxyk9AlSmEKDxE0/LxiXAww++cvSQ2R13/WGBtDlHHDke9tgoAveA59OPX07F4M4/su6t6/U2bg4qJq1bbhqBRpKJJLOw7aK7Tp3XVQAYVl4iecD289VRQ56POnIzq2AN/ERCqdWeY/BD62Tt8B0JaWTyPn09N4qitd1KswryKXtp1BY0PbqPxwtsJ+J6VFMOBdIhPCrSlTzptN/zwsSfQ6LhT0Ff0D2r/ADRvg2Pq7Oo3txnKGEytE308S75fjJ73AB2aPYVVfOOe7elAE8um6/ZYd9klIR/95lxIbAaDxqDCDel6QgSR1hrefdZc4aOXYeTF9jssLjIWqdueRXU/FjVsQgAzrD2tEiAyFPL9BOxEVQj1TnBnBjTG5fPdLLzWidtw6lT6UfWKgYrr3rCutHRj+e28Ipj0imZQJ03nphKk+I+3fyfk51oWqfGTPTdadYadm6uU623r/Z4L1bX8Is3EF9zstpE/+MaVinP61d21HqUUH1zr4NQn3Xy5tnbGWBfehR6FfxnLS8PMTOG72flV95mC0RwVfvh2g69jghCMBjDnQs/juP/QZ4OEKFhyk4NeLWHsLDcf/em/j4JiDQ3uGSyEEEIIIf6JJk6cWO22pWH0ffv25ZlnnuHqq6/GfehLilasWEH//v3p2LEj3bt3JyIigu3bt7N8+fIqQVzDhw/nwQcf9Dvegw8+yIIFC8jKygJg3759nHrqqXTs2JGePXsSHh7O3r17+emnn8jN9XzWbNasGTNmzODiiwO4NlRHwsLC+PDDDxkyZAgbN3ounmitefvtt3n77bct2yilmDVrFtu2bWPhwoVe+3256KKL2LNnD3fccUfZz+jHH39k9OjRREVF0adPH5o2bUpkZCQHDx4kLS2N1atXlz3WQgghhBBCCCGEEEIIIYQQQggh6pcEowkhhBBCCCGEAEAph3Vcjj60GjM7wGCamjjqeFTq0XU3nmiQ1BmXoP0Fo/Ub6veP3v8xTEGC7gorqn0FBPkIRqtIhYTCiz+jL+3nu96jCyEvBz3zWjhoCKJo1sYTNJafg559p63xfRpxAbz075r3Y2Xc1Q0uFC1QdhbOR7tzyhb1R7utwxpyKwWj0aqTdWdaQ8ZeaNLS55gb91vv7xiRifNgut85lwmPRN39IvQ5ERWXaL+dybBzYNY0KLRIKrBBTX8HNXBUzedRz/wFo/Vtbb1fjZ2EfvfZwIPJTNp2hQ5H2a6uJlwP/UfAqh/QD08KaKgOnz5CpvoPC2LH8F7sWAbk/8CE7HdpUbIr0Fl7S98T1GA0vfI79N3neALXapGa93ON2tsN7QimEzuZzw30d4sASHKlWZan787EFIy2wRDk2OXPt9CfTfVsdOoFj7yPSkqxP2EhqmPvNp/F+uFJcOJoVGyCvf58BaN1PzaQmdU6h0PRpRms3O67XsWQ15Ti3RBpf4zSUDNtCEYrPcqEhyoSoyHd+rTJi9Yw73vNw+Pk88s/3vYN5rLWncv///ETi7bra2dONbDoD81Om2vGk2Lq/vnvdCg+u8lBj/vdrN4d/P7Xh3XCpQxB5ZSHmZmC0Q5YBaMZjj3OCh/77Z5jRQcpGK13K8Xqfzn4eh2UuDXDuioSD/08F13n4Kt1sGm/pn87xRlPu9lucRmgwE+gpRBCCCGEEIebK6+8koSEBC699FJycnLK9m/cuLEs9MvKZZddxpw5cwgN9f3FMgAtWrTg3XffZezYsRw8WH6x3jRGu3bt+PDDD9m7d2+A96butGrViu+++45rrrmGBQsW+KybmJjI/PnzGTlyJNOmTfMqi42N9TvW1KlT6dmzJ5deeil79pR/80VeXh7ff/+9rfkmJNi8viaEEEIIIYQQQgghhBBCCCGEECKo6u7rmIUQQgghhBBCNGxOwyJOt8vzf3otrB41iYyqu7FEw9Wklf86ccELmDnsOUyv4QrBaKaAMl/tLaiOPVF3/te6sEV71H9/QPUfgRpyFmrRTnM/F92OOvOqoAWOqQunwekXQ2lYnum4Vp2+r388aH3Vly7Nyhflm/Qu+L3sdozdYLRkH+E/+/0HSWUYgkRa7QksjEn951PU4DODE4oGqNh41MxF/isOGg09BpRvh0eibnv2iAhFA0iK8V3et431k0q16oS6dz7ExNV8Eu2PQs1YEHAQpmrdGTXyYjjlvICHjNCFTMx+i7d3nsdNGU/bD0Xz9fwL4rmU1hp93bCghaKp+16Bxk29dzZuhnr6c1QNf4atG9d9AMrwrj4K164AIKnEEIyWZ/61iSn0pX3R5vKNDb+j35nlb4pC1Ny+Hf7rvPOs/f5MQZYx9ZBuaEOXpv6PLVHO8vuUUhLYMTgzD3ILNW5DOFHFc6pYQ9iRlc9XGzoU/yyZhmTgmPiyMENVGpBW2bb1aFNiXz355E/7dRP9nFvWFqUUS6c5GNUz+H2vDeuM28efXZSGmcUZwhmzC6ruc7mr7qvYF0CjSIgK8z+/mCAFowEkxijGH604p5+jLBQNPI/vkFTFlYMc9GipiDBkO0gwmhBCCCGEOBKdddZZbNq0iRtuuIGkJPPvLUNDQznllFP4/vvvmTt3rq1QtFJDhgxh+fLljBkzxnidPDk5mdtuu42VK1fStauvC6QNQ7NmzXjvvffKAtK6detGfHw8ERERtG/fnmHDhvHcc8+xadMmRo4cCUBWlvcF2rg4e9euR4wYwd9//82sWbPo3bu33981hIaGMmDAAO6//37Wr1/PDTfcUL07KYQQQgghhBBCCCGEEEIIIYQQokZC6nsCQgghhBBCCCEaCFMokutQMJqdhffBkrGv7sYSDZZyONAde8LGP8yVghSAdCRQyoHl8njtWVGtiwrRt4+zbuxwoByB5eer0y6EIWd5gn4y9wMKGiVAy45eCwqU0wlzvkNfPci7gzapMOKCgMb0O6ewcNQdz6OvexR2bITWndGjW0Fhfs36ffEXz/04zMVGKLqnwCpzVh2phevLbkfbDUaLTYCwCCiyWNGf5j9MKivPen+Cy0eQX2Vd+kK3Y+3Xt0n1HgTPfIG+dqi5zhmXogacjk7bDZn7oE0qKiyI6QP1zFcwmlLQs4WP8iFnwYljYMvaqq/DkFD0Z2/Am//xOb6a+xOqc+8AZmzRxyV3ope8XqM+bI1z+X1w/q3oIbHWFYJwLqVdLtAa/WSQF2INHuf5eW1bB7kHIToWWncJ+L3BSpem/usE05heEBXuY2HboeN5kss6VC5NN0Jrbbk4zhSM1rKk0oH1m/fh6n/bmq8Q1Za+x28V/eXbqEvvstdfcZH1/lAbqTv1oEsz/3WiW7eGnXGQc4AUuwGXFazfi/X5NeU5vGAvmKjUr9sCnoY4Eh2wDuckvsICelMwWnYG/L0a2ncP/ryq6fft9oPa/IXu1qb4KMXCa53szdbsyoIQB+RVOvS5NAycYUglM1gf3hmXjWC02EiF1VEl2+Ljqp1gNKUULeJhg59LaMEMRrPLGIxmyOAUQgghhBCitm3ZsqVW+2/SpAlPPvkkjz/+OCtWrGDt2rXs37+fwsJCkpKSaNmyJQMHDiQ21nDt2IbU1FTef/990tLS+Oabb9ixYwd5eXk0bdqUdu3aMWjQIEJCyv8kfPDgwQEFa9ckhPull17ipZdeqlbbgQMHMnDgQFt1V69eXXZbKUWTJk1sjxMREcE111zDNddcQ0ZGBj/++CO7d+8mIyOD4uJiYmJiaNKkCZ07dyY1NZWoKPkiNyGEEEIIIYQQQgghhBBCCCGEqG8SjCaEEEIIIYQQwsMUfOF2oUtKYNff5rbtu0OPAbDwheDMpcA6jEf886hL70bfNcFcHmf+5vV/HFNwV2m44YovfbSt3iUiFR4JKe09/3zV634szFyEnvsAZO2H7sehrnoQVUtBGyomDlKPBkD7+dZ3n47qj5r0AKpjjyDNrP4tv9NB5BTzQv8uRevKbhuD0VSFxSBOB0opdHIK7NxctfJ+Hylsh2TlWS+2iXcd8NsWgBEXoK5/zDLEKBhUr4HwwBvoeydWLYxLhKOHeOolNYek5rUyh/rUOMY6wAGgSSzERPh+3FVIKJheQ517Q/uj0NOvtG577SM1DkUDUK06wayv0LeOgvycGvdn1G8oKjQM3fUYWPNLlWL98+eoMy4NqEtdmI9+ZQbMn16zuTVrA8cMhcXzqpb1OQlVumCubdeajWOhfbInxMMU8BFs5/TzcywoKQYg0RCMlu5IwJ2+D2eSd6JbYbEmzfD0aV6823vHjo3GcLV/Iq2153zEXeGfy3Dba9t96F+AbUpva3fAbXTZuAGMU7FMuw1z9XM/vOZq6sNi258ta+z/oA6zYLRUG8FoyXFO1PPfo5++jZTN2QGP8dcujdtw7HJUeHmbAoCsKAW5hZpoXwGO4siXnWG9v2IwWseenus0Vk/C7z9sUMFoWQHkUCdG+69T25o2UjRtZC7fPdPBTXMz+XJVAQcccQC0Ld5K85LdfB09uEr97aGtyHaaOyw9XsRFWpdn51c91zYGo1U6dLRL8h+MFt2QgtGK63YeQgghhBBC1DWHw0G/fv3o169frY2RlJTE+PHja63/hio3N5dff/21bLtz587VDppr3Lgxp59+erCmJoQQQgghhBBCCCGEEEIIIYQQopZIMJoQQgghhBBCCA+HIVTJ7YK9W8tCJCpTL/6C6tgD7Xajv/sAMvbWeCpq7FU17kMcIQaN9l2eaCMR4Z9CGcINtRutNfq1mea21QxGC4Q67hTUcafU+jhVxj3/NvTcfwXebtKDqAun1sKM6ld4qOKSAYqXllkHXXUpWl922xSMluOIKd8ofe4kWQej6S2r8Rf7kZVnvT/ObQ5GUzMWoAbU3aIVdfI4uP159MOTvPdf+wgqPKLO5lEfkmLMZfGGcAe7lFJw+kXQbyj6oj6QU+FnPuB0mHB9zQaoOFbPAaglVYOw3E/fBm89FZxB2qR6/m/Z0TIYjS/fQd85N6DnjH7hPnjzP9WfU7djUbO/QR0KwHXHNYaK7wdhEaiL76h+/zaEhSg6JMP6mp8i2jLhGD9HnTxPulmSIRjNrZxkbdxMYqVgtN0+shpblOyqunP1cnTnPrDhd8jJsgj8MgRgGQOxyutqY/hWxW1TuJeP/f7m4TWujbmXbovDQ4khGC0kgNSvOpTa3BzcWSolXqFadUI98j5t1mp4PLCExs9Wm0eomHvo6/hQmdaefsf2CWgq4gijs9KsC+ISy26q2AR0jxPg9++qtl//m99z7Lp0sMBevagwiAxrSDP3pnOzYeMfNCkq4NX3RlYp3xzals4dV1u2XRfW2div89BH9UaGU8Bsi8fPGIxW6WN/p6aKJat9Hwtj6iGIUYLRhBBCCCGEEME2f/588vLKf6F0/PHH1+NshBBCCCGEEEIIIYQQQgghhBBC1AUJRhNCCCGEEEII4eE0BKO5XLBjo7ldyw4AKIcDfdqF3mEb1VUP4UmiYVJKwXub0ePaW1fof2rdTqghcxiC0bZvQJ93lO/XsSlU7Ugw4HSwCkYbNxnem21u161f7c2pnl18vHUwWrzKZcilI1HR49APTyJaWwejFToiKMFJCK7yYLT4ZOvBFv4X3aQVXDjN83quRO/dTtbag+DoUnU+rizLLtW85ahOvQz3rvaokRdDq07oj+YDCjXyYlSPI3/hjc9gtKjgjKGSW8Brq9D/exKy0lDd+sEZl1k+Z4JNXfsIeuMf8OvXNesooQkqJs7TZ6tO5qieL97yhMHZoDP3wTvP1Gha6unPy0LRANRV/wedeqN/+BgaNUadej6qS+2n86Q2q5tgtDUPOHA4/Dxv9m4DINEQjAawf/N2Evt7v753Wh+SAEgp2V1ln776RN/zEKKhKTYEo4WG1e08bOrW3H+dlPjy2yd0DHyMD1dpUg05zI5qBqMBfPynZmyfhhsOJerAAcN7UFyS93bvQZbBaHz9HnrvdlTTVsGfWzXkFNqrlxhdu/OoCf3us+hnphq/FACgTfE2wt0FFDqqJpytDu9qbFd6vGhkCBU+kF91n8twMlk5GK1LU+t6FUXXw2E8wvBXKBKMJoQQQgghhKiOHTt2cM8993jtu+gie9fZhRBCCCGEEEIIIYQQQgghhBBCHL6O4FWvQgghhBBCCCECYgpG0m5I22NdltgcFVGeiqIumApdj6nZNC67F9WuW436EEcWldwCdeszUCkgR133KKpJy3qaVQNkCkbLzvAdigaQnxP8+QTqkrus94+/pmb9duoFF0z13tdvqCccqEtf6zYx8dBrYM3GbcBO6qK4Yaj36yksBGZfEUP0hEkQFg5AI9dBYx9ZzkNJI2XBaInGuvqF++Dnz6vu37IGfVZHskrCLdvFu6umjKhP0+slFK1s/J4DcNz+HI7b5/wjQtEAkmPNZcEKRgNQjZviuGY6jjtfQI2dhAqpm+/0UEqhHv8IBp5RtTA2AfX05zBotP+OOvYov92uu7Ga/u4D23PTbz/jCaitjvZHoRZuQ4V5v76UUqihZ+O4ex6O62fWSSgaQOem1Q8AWrexO2dmv++33kNnKro08z2OXrqo7HaTkv3Gepu3VD3+bN5vnVAS7c6hkTvn4DNdAAAgAElEQVTb7/yEqC963W9oO8eSEkMwmjM0uBMKkrAQxYRjfL/mkyuEe4aFKO44LbBjUUYuLNtkXVaT7M6/dhnjM8U/xYE06/1x3ufUqk3V8OBS+v4LgjmjaitxadthV74Cd+uT/vNH9JM3+QxFA3DipkPxZsuynSEtzO0OfVSPMwSjZRdU3edy++6rVNfm/g9GMVVz3GpdpCGMTYLRhBBCCCGEEADvvvsud955J/v3m6/Rlvrtt9848cQTycjIKNvXq1cvTj755NqcohBCCCGEEEIIIYQQQgghhBBCiAagblaXCSGEEEIIIYRo+JxO6/1uF2SnW5fFJ3ltqpg4mPUVLF8CW9ZC01awYxN67r8sm6tpc+CU82Dlt7BzM/Q8AdXhqJrcC3GEUmOuhD4nwa9fe8L6+pyEatu1vqfVsDgMr+HDhDpxDHr+Q6C9gyLUSWNr1q9SqKseRJ88Hv76EVp2hD6DPaFLs75ED4uv2mbCdaiQhhkCEixPnOPg3H6aHzZrosNhWFdFu6RDi+oPJX0kuQyBDcA+ZzJJrvTyYLS4JGNdAP3BXNSxw8u3P3oZPf1KALKccZZt4l1ZXtvqmumoqAaapnAES4lTgHWAS/gRcnVZOZ3w0Duw4ivYsBKKiyE5BY4djkpsBgW5fgPN1KkVwkmOH2GuuPJbtNYoP4k6+qOX4ZUZgdwNjxEXoAaNhuNOQYUb0jfqQWqz6rftUPw3/9t5AW8fHM8FLeZXKe/ZEl6+zEHPlv6DQfQrj5TdjtL5tCjeyc7QqkEm67YVcHqlfRv2WffZqWgTNchHEqLW6Sv6Q1Qs+qj+qF4DoecJ0LUfKrxSUk6xIRgt1JBu0wDcPFzx1i/mkLG2id6vzv8bq/jfz5q/K53ixLmyKFah5DmibY9dsedOTczHCCtrdmPrvUAcwTKsnzCqUjAarc3BaPz5I3rfjnoPC88ptF83sQGeyuviIvTkk2zXTy7ZDxa5zvtCko1tHIde6o0irM+rD+RXbWM3GK1/e885eWGJcXii6+EwHhFqfV8LfMxTCCGEEEII8c9x8OBBpk+fzsyZMxkxYgRDhw6lV69eNGnShJCQEDIyMli1ahWLFy9m0aJF6Aq/OwwLC2P+/KrXiYUQQgghhBBCCCGEEEIIIYQQQhx5jpCla0IIIYT4f/buOzyqKv/j+OfMTHoggSSU0HuVJoiAIIK42FgLKthWdC3outZ117ViXV3Xsquua8Gy9rVXXAvqCvpDsaBrwUWaSi+hhbQ5vz8Gkgxz78ydSSb1/XoeHnLP+Z5zv0kmk5lJ7icAANSYW6hSRYVs0UbnuT0v2pVkUlKlMYeF/kmy3y6UnILROvaQDj0ldDF4tbAcwI3p3Fvq3Lu+22i4fL7YNQ2Y6TVYuvxB2Vt+IxVvkzKyZGbeKDPU+0XqUffvPUTqPSR8LC1D+scHsjf8Wlr+bSgQbPJJ0gm/q5VzNnQjuxuN7O4QyGFCt6WCKMFo6wL5Uqkqg9FMy9Yu0Vm7vPe8Xp/1Nz2de5xKUlvo1y88ovGSgjIq8jkHo+UEi8IHeuwV7QxIksLI7MBKO1wydBojY4w0fELo355G/kJm5g2y910llZeFz/n90vEXS5OmVe2VliGddb3sPZdF7rWtSNqwWspv79qL3bC6Mjgwrvfh0vtkDjk57nV1oU8794C9aJ5beawkya+gpm35lzKDxZpReK+K/LkK2DJd0f0TXf6HMZ7Chezm9dLXC8L7Kv3OMRht8cZU2c3rZaqFAC/+qVRSZGhmz9L/xfleAfVgx1ZpwZuyC94MHaekyvYdLg0aLTNojLTX6Mj7t90acDDaPt2M7phmdN6TkfcvxkhDOu05ZvTmBT6d8mBQH+z60j1062u6b9VMndX+Tr3U4nDP506vdncwY4zRH5/3fh+3aYe0dqvUtqXnJWhCbDAo/bTEeTJvj8cHXfqEvgbdggt/XirVczDa1p3eawtzG04YoK2okF68V/a28+Nal1/h/IcD1vrdg9F2h5m1ynSeLyqWyiusAv6qj49rMNoeH8KsNKMJfaXXv3I9vbLT3eeSJd0lZ7zE5VsNAAAAgOaprKxML7/8sl5++WVP9RkZGXrkkUc0ePDgJHcGAAAAAAAAAAAAAGgICEYDAAAAAIS4BaMFK6Qtzhd+qmXrmNuavnvLDhojLZoXPn7WDZ5CLAB45PY13IiYg6ZLE6ZKK7+XOvYMBS0m+5z9R0gPLZTWrpTSMmTy2iX9nA3erpC9dFuiFhVbtNUfmdqx3r8rLGhXMJpy8iNqqvt7qzN07k9nSz+Fjp/s8oZm/3y6Jm/7t6xxDvXLrdgjGK1rP+/vA2pNtGC07SV110d9MsZIx18kHXGGtHmdlFcobd0orflR6tZfJjM7ctGhp0hOwWiStOK76MFoR3SJv8fTr2mwoWiS1DfBu9b9d7wfdjxl2ytas7iTvkvtrW5ly5RZeJiM2c/bZt9+EtlXyWK9kxUZhvdDoEsoRG30IZVjy5YXSYq8r+tZ6hJug7rh94ceA/n8oe9fvmrH1ef80eb8oVDQsPE9j/d4O2KdL3qdzy9Tfc6Y2HtHvO0Lfx+r1dh/XCF99aH3j1tZqfTlfOnL+bKP3RLqJ8slpSvQcIPRJOncCT6VlAd1yTPhwWRTBkmd8yKfb3YvMHrvdz4t3yD5X39QHe6dKUkaWPLfuILRstKq3j6m/zb98fmsuPp+9zur40bwfLhZWrtSKil2nuvSJ+zQpGfKHjVTeuoO5/oNq2u5ufhti+PxYO+2yesjHtbaUDj2vx/3vqh9V5l/fq78+7dKX0ROrw20cV3q2/Wlnt/CrZ9QYGJBtXnXYDSHp06HDzZ6/Sv3cMbsNNeppElz+S2UnQSjAQAAAJCUm5srv9+viooKz2vGjBmj22+/XcOHD09iZwAAAAAAAAAAAACAhoRgNAAAAABAiGswWlDastF5rmUrT1ubm56XvfP30hfvS4FUmRMulsb9MsFGATjyOYdLNTYmkCJ161/H5wxIhd3q9JwNWrWgsoKK9Y7BaOv8BaHSXcFoL2/po8u7LdCaQBtN2P6url13tbqXLZMklZhUXZ//h4g9Ti28L2obnctWVh106iUVdIj3PUEtaJHuHtqyo7QOG2kATGYLKXNXYkVaoZRf6F6bmy+bkycVOYTLLvtGGjbecZ39vzfib+zQU6STLol/XR3KyzbKy5I2bPe+Zu/iT5UT3BIxHlCFBpR+EzpY/7P3DZd/FzHUsfxHx9IN/nxpxQdhwWg/r90ppUTWdi1b7r0HKXQb2jPEq3rwVayArLAAL5cwLsc99gjVclljItZEOY/jHj6XXj2u8e1a5yE0zDSRxz614ubnZQ+pQbirtdK2Iue5FIcbfgNz4YFGmanSX9+2MpIOGmB009Hu37+MMeqaL9kTZ8gu/0B64zH1Lvk+rnNmVcuL6/7xP3V8UY4ez5nuef30+6xOebBCfl8o6Ciw5/9+yW/C3w74w2sc11XOmbB1Ps/rInvYfd7IHkz0PV3Xxeil2vvu8zXB8DiH70eVOveOGDIzb5R1C0ZbsbiWmkrc1p3ea/u0rd/Pp138uewdF0YE90fVopU0bH+Z826VSctQfsc06YvIELI1UYLRdoeZ5Ttk6e62flt4MFrQJefM94/LZEuGyxxwdOXYYYOMzn7MPRitnUvuZTKlu3zr2Fnm3icAAACA5uOII47QmjVrNGfOHM2bN09ffvmlli9fro0bN2rnzp3KyMhQ69at1aVLF40dO1aHHHKIxowZU99tAwAAAAAAAAAAAADqGMFoAAAAAIAQt2CBYIVU5BaMludpa5OdI/OHexJsDIAnbuGGXvQaUnt9oPEzVYEF+RXr9YO6R5SsC+SH3vD59ebXVke8NVRKDw09lXOsvk7rpwVLxyhF5foqbYBWB+ILa2lVsVFtKtbuOodP5tdXy5gmGIzRSKQFpJLyyPEzxvE5iapzH+nL+RHD9uO3ZI6aGTleXiZ78ZT4znHUWfJd4BKW0sD0bSfNWxI53raldMxwozvfqQrKSLGlumL99bE3jSMYza6MDI/JL3cIrpO0PpAnu+I7lZRZfb5Syv3qTa0K7O9Y2758lXTkmdLz/4jZgzn9GpmTf++5Z8CzjBaxaxIVSI1dU898PqOzxxudPT6+dcYYmctnKyip/3v/jWttdlrV90D7zjM6oSgzrmA0yfl7a+2pi/Ch5J/DmERC4eIJd5MCPlNZ66tRGF2085qqt/8r+bImKC1YoiEli9QyuDX0zrZuJ5MVmWBl/H7ZoftLn70XMWdnXyMz47Ja/7gX7bD6abPUvUBKT4n+eG9bifd9+7WvYWM1YDeslj1tpPcF086X75ybIobdws12+LJct/LZoCS/8txLtH5b+HFF0LnOv36l7JW3Sre+KjPiQElSx1ZGQztJn62MrD9uuKmXgEH3YLS67QMAAABAw5WXl6cTTjhBJ5xwQn23AgAAAAAAAAAAAABooAhGAwAAAACEuIUqBYPSFufQCJPTOokNAYiLcQk39GKYc9gLmqlqAWQF5esdS9b5C0Jv+P26463Iq/a/TN9LT+Qcp5OLHtN3qb3jbqFPyWIZSTrkVzKTT5QZOi7uPVB7Lphk9KfXI8NPDhtEMFpUA/d1DEbTJ+/IlpfLBPZ4ef6dZ2JuaS57QPabT6QtG2XG/VLa/8haajb5jhpmNG9J5O3o1mONpo0wGt1devmNpWq56E2dWPSYRhUviL3p+p9lrY0ZnGhLiqUX748Yz69wCUbz5+nB/3XSuecHdwV4TJRcTtFh5kUyh4+VBu0ne/2pUnmUxI/0jKh9AokygUDyIqoCLuk2TYj54/0a2vsu6S3va7LSqh18OV99UjrXel+QrJXKrVTuEhJVS2dJ5uYO55godZ4oSQrYMv124526ae1l0V9fyXdPFLNLvpLpMbBWugwGrW56w+qKF6yCVmqfI912nNGxw92fa27Y5joVZlDHeg5GO7pHXPVOoWiSooabue41/xVp4i+VkWqUlSZtdwiTiwhGc7lZ+m2FJMnOvq4yGE2STt3P6NwnIhedul/9PF53C0YrJhgNAAAAAAAAAAAAAAAAAAAAHtXgilkAAAAAQJPidwtGq5A2rnWey8lPXj8A4uP2NRxLarrMry6t3V7QuPmqXjJ0Cw3a5M8NveEP6O1vnbc5tfA+HdHxX7ox/5K4WxhY8rXMqVfKd+m9hKI1ABceaDSia/jYLccYdWpNMFo0ZsyhzhM7d0hrlkcM2/dfiL7h8RfJTD5Rvgtul++qR2QOOFrG13he4v/1WKMJfcPHLpkcCkUzxmjaPj49ut/numv1ed5C0SSptETauil23bN3Ow63drmP2+HL0un6/a5QtOgKR4+UMUbmwGPlm7tN5t0dUka2c/FQgkiRRB17us/1GiLtO1nKzol/39ZtE++pkTA+n/zHnqvZLf7ueU32rmA0uysMsXPZSrWsKEpGe2jCyk2Kbs27QA/lnCylR0nc6uAe6mUfubHW+nl5kXTZ86FQNElaVSRNu9dq6Xr38Li3vokdLJefLd1+nC9mkGlts+Vlsm89reCMEVJFubdFuQUy9zkE2+5S0CL+98H3zxsq33YLVlu/LfzjWOESBuhXKBhNX30ou3FN5fiZ44x+MSC8duZ4o0n9G1YwmpfHVgAAAAAAAAAAAAAAAAAAAIAkBeq7AQAAAABAA+FzCVUqKZa2b3Gey2+fvH4AxMckFo5jXl0lk55Zy82gUasWWJBb4Rw4tMnfSpL0xY62KomSMfBKC5dgqBhOLHpMyvhlQmtR+/JbGL17sU/vfCstXW81vo/RwA6EosXUe6j73IrFYSEntmSn9F6UYLQDj5Nv5g3u841Ai3Sj13/r01vfSN+vtRrT02hYZ4WHpKSkxr/xsm+kQWOiltgnb3ccdwt/9Mpvy9WmdXjPxu+XPWia9OL94cVd+kg9B9XofEBU+x8pPfbnyPGMbJm/vyeTli5bUSEt/a/0xQeyi+ZJX8yTNqyKuq0Ze3iSGm54fjWxpc57dou2+lvGrM3aFYymNSskST5Z7b/jP3q5xWFJ7BBN1YstDteMjBWu82bCVNmHrneefOcZ2X4jZKadX+M+/vmhcxpXjz8GVfGPyGCzYNDqlUXOwWi/HCxNGWKUGpAm9jVql1PHoWib18uec0DoMZdH5re3SAceJ9OqjWtNYQL5kr4liyrfzs+WVmyMrFm/LfzYNRjNVpuY96p0+KmSpIDf6LXf+vTvr6WVG60GFBqN6lF/j9fTXX4LhWA0AAAAAAAAAAAAAAAAAAAAeEUwGgAAAAAgxC0YzS0UTZLyOySnFwDxc/sajubwUwlFQ6RqIXu5wSLHks2+UCLAtEWTav30bcrXaL/iD6X042t9byQuI9Xo0EGSRCCaVyYjS7ZNJ2ntysjJld/L7jtZev2fsnMelT57L/peR56VpC7rVkrA6OC9pIPdbkcpac7jUdj5r8lECUaz81+TNq11nKtpMFq77Ar5fJHvi5l5o+zan6QPXw8NdOolc+OzEYEyQG0yp10p+/MP0txnw8dveUkmLT30tt8fCujrOUjm6LNlrZVWLZW+mCf7xTxp0QfSyu9DC9MyZGZcLjPyF3X9rtSfUQfrzAfu1y15F8Yszd59d7Wt6vnyIz+fqlZ9nO9vOpWt1MqUTrXRJZqgn1I6SBlZrvOmW3/ZXkOk7z93nLd3/V4aNVmmS9+w8Y3brW75t9VD86xWb5H26Sp1yzc6clgooOrVRdL6baFgs06tjZ77zL1H/5lBnTLaaHwf6aR9jYwxWrhCWuX8dEEn7OvT1L3r5/ueLS2RPTy+16vMba/LDJ8Qs65Dq/j78Skoa62MMcrPdq7xGozmU9WEnfeKzK5gNCkUNvuLAVJDeLyenuI8TjAaAAAAAAAAAAAAAAAAAAAAvCIYDQAAAAAQ4vPFrtlTfvva7wNAYuL9Gs7IlvnVpcnpBY1btdtSq4pNjiVF/hztMBlauqNFrZ46PVisL3/YO3QQcLmaHmhMOvdyDEazKxZLd1woPXt37D16DZb2GpWE5hqg1PiD0fTV/7lO2X8/IXvtKa7zrSo2yRjJ2vhPK0mFrZ1DSU1WS5mbX5DdsFratlnq3IdQNCSdSUmVueZx2XU/ST/9ILVuK7XrIhPl68oYIxV2lwq7yxx8kiTJblorbV4v5bWTadm6rtpvEEyrAk1ps1y3VMSuzdr9YS0prhxrEdymx388Scd3/GdY7eCdi7Rg6WitDbTR9yk9VDH5JAUnn6KKoFQeDAUglVdIFdZWe3vX/9VqwuqDUeb2WB8M28s61tbWectdwpwQXbFJl9Ldg9EkyVz9iOwJg1zn7YmDpfd3Vn6/KdphNXhWUD9trqpZsExasMzqqU8cd4jZ50PzrR6aL/3fUumu441e+sJ5TWpAuwK66p61Vva8+AIdzT3vywwY6am2VaaUFpBKyj3ubYOhmLIdW6WslsrPNnL6WG/wHIxW7Q7q47dli7fLRAnVqy+uwWgeP24AAAAAAAAAAAAAAAAAAAAAwWgAAAAAgJB4Q5XSM6XsnOT0AiB+PudwFkeDx8qcMUumbefk9YPGq1p4T25FkWPJJn8rvZs5TmU2jttdFOnBYo0sXqA71lykvIqNtbIn0CB06iV98k7k+Iv3ed7C3D6n+YRqpabHv2blYsdhW14ue3f0AFD/6MnqkyZ9uzr+00pSu9bRf8Ri8tpJee0S2xxIkCnoIBV0SHx9qzZSqza12FHjMmpCX3V6baVWpnSKWpeVuuuN0uKw8WO2PqvinzN0U97FWhfI10Hb3tJf1vxefgXVvny12pevlp6fJz1/VmLh5I1AUEYV8qvC+FWuwB7/h8Yr5Fe5CVT9b3wRtVU1vsraisr/q/aqXLd7Tn6VG+fzO+0VeY7IfsP3ruo3GNGvw/smf2V9iUlTqS8yrLDYZEgZ2dE/sJ16S936S0u/dq95/C/SCRdLkm543YaFotWme9+3uuQXVi997hyMNqGP1CK99h+72OLtsg/Mkt57QZJkDj1FOvkPMtW+luzsa6WvPvS2YadeMr+52XMomhQKlCzMlZau91bv3x1kVrRBymqpPJdP84Zt4R/LCpecOr+tFoxWulP6+C1p3C+9NVOHXIPRyuq2DwAAAAAAAAAAAAAAAAAAADReBKMBAAAAAELiCVWSpNZtm09IB9AYeAxWMKddJXPKH5PcDBo1U3Vbygk6B6Nt9uXo8/TBCZ/ijtUX6pxN90gTj5XefjrhfYCGznTuLZdcC2/rr3tKpmXrWuunwUuJDIuJaeMa2a2bZFq0Ch//cr60YVXUpebkS3Xw10bfrk7ss1SYy2NhoKnxTfm1bn5whqZ3fDRqXdbuu6uS8GA0I+lXRY/qV0XR10uSgsHEmmzgfJJ8qpBLLlKz9mTLY3Rih4cjxot96VJGZtS1xhhp5g2ylxzhWmPvuUw6bIY+29xaf36jJo9AoqsISne/a/XlT87zhw9OzvdHe+0p0n9eqjp+YJZUViJz+izZYFD6eoH00PWe9jJXPCRz0PSE+ugQTzCarRaMVthN+S7BaOu3hR9XuNw9VAat7WLnvSrTIIPRjOTwKJhgNAAAAAAAAAAAAAAAAAAAAHjVNP8UOQAAAAAgfv44g9GyWianDwCJ8RpuOHRccvtA41ctZC+3YrNjyU5fhhal75XQ9nsXf6qzNt0rc+XDMmdck9AeQKPRqXfN1o84sHb6aCwSCUaTpBWLI4bsBy9HX3PA0TID9tE+XRM7pSQV5iS+FkDDZNLSdezlJ+nN5ZOj1gX8u4KfSnbWQVdoKjKCzreXYpMhpWfFXG9GHSxzzROu8xXy6eJbF2v49ckP3YsWvFbbwWg2GFTw8mlhoWiVXnpAdslXsoe0lZ25v6f9zG9vSTgUTZJ6tvH+/vm063OxeoUk1TwYzYYHo2n+a7IVFc7F9Sjd5c/zEYwGAAAAAAAAAAAAAAAAAAAArwhGAwAAAACE+F2uWnSTlpmcPgAkxufxZZ4ufZPbB5qAqgv9c4NFrlULMkY4jh+zt3tQQPfSH/TUT8cr8M9PZSZNkwo6SOku30+aWyAUmqYufRJfO/oQmUyX9IymKjU1sXXLv5Mk2fIy2bnPyr75pPT0X93r+wyTueAOSVKH3MTDW3oUJLwUQANmRh+iA3a8r72LP3Wc7+lfU3VQUlxHXaEpSLfOt5diX4ZMhrfv+eaAo6R9I4P7PksbrPFd3tRtq/apUY81Nayz1LFV7QWj2fJy2cuPk9573rlg8zrZU/aWtm/xtuGMy2WOObdGPfVu6712d5CZveE0SVJ+tvPHpnowWjDoHjrn1x4haJvXSf/9yHtDdSQ9xXm8pFyy1v39AwAAAAAAAAAAAAAAAAAAAHaL86p3AAAAAECTFYgziCI9Izl9AEiMl2C0nDyZ3Pzk94LGrdptqVXFZteyFSmdHcd/MUB68BSfZt/1np7+1Khr6XJ1LVuugSX/1YHb31GrZz6TKeggSTIpqbKjD5HeeSZ8kz7DZNp2qvn7AtS3tp2ldl2k1cvjXmqO/W0SGmrgUtISWmZXLJY2rpGdub/089LoxWOnyFz5sMyuUMbC3IROKUk6bFDtBb8AaFjMSz/q6Bm3amHGsIi5X256RrbsLJmUVILREJeMoPPtpdykqFw+uWRJRTA3/Et2QovK42vzL9WsgitqocOaO3xwLYaiFW2Q/c1Eadk3tbKf+dtbMkPG1nifvu2MJG/hXj4FQ2/s3CEbDLoGoxUVSzvLrNJTjF7/yn2/3UFrYT57Xxo0xlM/dcUtGE0KhaNFmwcAAAAAAAAAAAAAAAAAAAAkycMVswAAAACAZiEl3mC0zOT0ASAxxsPLPN0GJL8PNH7Vbkt5FRviXt63vVFmmtE5543Vu0Of0UOrz9DV66/TVL2rVrc+VRmKVnm6i++SBlcLKOjaT+a6JxNuH2hIjDHS6IPjX3jQ8TJ7H1D7DTV0qemJrVv+rexfL44diibJXPjXylA0SWqfk9gp92mxWi0zCEYDmirTqkAXHlChUzY/EjZ+9JbndM3Pl0mfvRcacAtG67GXzNPfSQNHJblTNCbptsR1bsfa9Z73MSmpMjf8S5J0R6tzaiUU7aXf+DR5gGRq+K3tl0OqNrClJbLP3KngVScoeP8s2TUrQuOb1yt45yUKjk0L/bvnMtnvv1Dw7ksVvOoE2RfulS0vk73vytoLRbvn/VoJRZOkoc750I78qhZktmVj1McdS9ZJO0qsTn046G2/Xey/7vTeUB3JiPIS486yuusDAAAAAAAAAAAAAAAAAAAAjVegvhsAAAAAADQQgTiD0dIIRgMaFL8/ZokZeVAdNIJGr1oaQobdqdblG7QxkOd5eZ+2u7bx+2Uu+pvsGddIq5ZL3QfKBCJfjjQtcmXufCsUlFCyU+rUKxQmBTQRZvShss/dE9+a8/6SpG4auNS0xNZ9+JpUERkUEsHvl1q3DRvKSDVqnWm1cUd89ztn9FkhqUPMOgCNV8rZ1+n+l/J109o/6su0AepX8p3aVqwNTf5vkbTPJKnUJegqLUOmfVfp7rnSysWhupKdUvG2OusfDU/m+nTpOee5km6D49rLjJ2iO3pfr4v8F3iq/2Dp/rqr9Uw9kTMtYi7bFOvQvbJ02CC/Nm63WvRj6DH94wusfveM9dzTwQOlIZ1C309tebnsH46SPn6rct6+/oh0w79kLzlS2ri6auFjt8g+dktV3TvPSB++Ln36rudzu0rPlHl9rUwgpeZ77dIlz2hiX+ntb2PX+my1kLMNq9W9S578PqnCIfvs21XS92ukdVvd9/Nbh4VF62VfekBmymmxG6ojXfOkJ88wSg8Ypaco7F92gg/3AAAAAAAAAAAAAAAAAAAA0LwQjAYAAAAACEmJMxgtnWA0oEExvtg1e41Kfh9o/Hzht6UO5T97DkbLz5byssPDhUyLVlKLVjHXmqpv4mMAACAASURBVLadvfcINCZD94+vvms/T18zTVJK9KQMc9pVsg/MipzwEoomSS3zZHyR3y+HdTF66xtvW+w2rhcBjkBTZ1JSZfuNUN4XH2j8jv+Ezdm//1EadbBsSbHz4rSM0B7GSJ37JLtVNBKZa630nEOwlaTiAePi2mtLsdWVqedIHr4FFn/TUikqlzbKMRjtwKJ/S990kvqPUOsso/G7brLnTQz97yUc7djhRv84sdr3xi/+ExaKJkla+6Ps2QdIpTtjNz3/tdg1HphTr6jVULTdbp7q097XOX8uq/NX/wRtWKWU/Pbq7ivR98G2EbXH/CPO/aqx914pHTbD8XFOfcjNNDp2OI+VAAAAAAAAAAAAAAAAAAAAkLiG8ZuxAAAAAID6F++Forsu9AbQQPj9sWuycpLfBxq/PUL2CstXeV7at11tNwM0fiY1TTrp997rf/XHUJBOcxTt8Wh2rjTt/Jo9Bs1xDnm84rD4flRyyuZH1KNH68T7ANB4+N3/xpQ9+wDpx/85T6alJ6khNGYZUb7N7cwpjGuv17+y2lYRO+D++ZXHhELRJO2782OdtPnRsPnM4HZdsuEv0oI3I9YG/EYXHeTTwsujf5+cOd7oyTN8ysmsevxin7zdudhLKFpt6dBdOurspGw9tLNRew9Pr32qFiq3YbXstaeo96aFCZ/Xb12S8IrWSz//kPC+AAAAAAAAAAAAAAAAAAAAQENDMBoAAAAAICQl9gW1YdIzk9MHgMQYDy/zZLVIfh9o/Hzht6UO5T97Xtq7XTMNcwJi8J1xjac6c9trMgcem+RuGi5jjLTvZOe555fKpGdK/fdJ/AQ5+Y7DY3sZjUv52nFu9I75mrV2liZte1OHb31Fd646T/euminlxxdgA6CRihY+vG2z9PbTznMEicNBRpSXXYrLvO9TEbSafp+NWde/5Gsdvu3VsLF7V52t+34+S0dseVG/3jRbnywdpX12fiL7wCzXfYZ2NjpqqPt57jre4bnoR3Ni9pdUx5wrc/9HMkkMKezXPnZN9SAz+84z0v/9W13KViR8Tr9cgtEkaevmhPcFAAAAAAAAAAAAAAAAAAAAGhr3P3MOAAAAAGhe4gxGMwSjAQ2LL0pow26ZBKPBi/Bws8Iy78FofdvVdi9A02Hu/1D216Pc5295WWb4xDrsqGEy594su/hzaePq0EBKqswfH6h67Nm5l/TZe4ltnpvnOvWvAa9o4kdBfZU+sHKsXflq3b36txpY8rW0oVpxVkuZzOzEegDQuHh5jO0klWA0RMpIcZ8rLvW2x6fLrU6eHfRUO2fF4RFjKSrXjKJHNKPokYg5u/J7mU69HPeafYpPyzcGtXB51Vh+tvTqbxvW32EzVzwkc9D0OjlX77ZG73wbPaAuLMhsV1hc+/JVCZ+zetBahO1FCe8LAAAAAAAAAAAAAAAAAAAANDQEowEAAAAAQgLxBaMpjQu9gQbF5+GCdILR4MUet6WCivWel/Zpa2IXAc2U6TNMUaMz8gvrqpUGzXTuIz28MBQesmOrtPcBMl36Vs136h394xhNjnswWn73TvrwyXF6scXh+jqtn7qWLtfh2151vg/Mb59oBwAaG3+CP0rl+TIcpEcLRiuLvf4PzwV18xxv3wUf+PkMFcYZwGWPHyi9v1PGRD6mb5lhNO/3Pr3wudVXP0mdWkuHDzJql9PAHv+PnVJnp+rdNnaNz0aG2HUo9x48vaewoLU9bduS8L4AAAAAAAAAAAAAAAAAAABAQ0MwGgAAAAAgJCXOYLT0zOT0ASAxJkYwWmqaTLxf52ie9ghGy48jGG0AuU5AdDl5UtEG5znuoyuZ3Hxp8onOk90HJL5vt/7uk90GKMPu1LQt/4q9UbfEewDQyCQcjJZeu32gSTDGKD1F2ukQglZcGn3th0us51A0Y4OatP3tBDqU7Lh02YnHygzbXzp0hozfXzmXGjA6drjRscMT2jrpzNk3ymRk1dn5QqHQ0T8nTkFm7eMMrKvOKkoQ3fai8Nr1P8v+/TLp34+HBg4/VWbyiTKDxiR+/s/el333WSkYlBl/lMzeByS8FwAAAAAAAAAAAAAAAAAAABBNjCtmAQAAAADNRiDOMI40gtGABqXaBeuOMlrUTR9oAsIvts8v9xaM1rut1C0/Gf0ATYgvyn01wWje7DVaSstIbO34o9zneg6Scgs8bWMOPzWx8wNofKLdb0eTSjAanGWkOI8XO4SlVffwh95C0STpsG2vqbAG4Vt6+2nZP58je9UJie9RHyafVKen6902do3PBiPGOpT9nPA5U2yUG8q2qmA0+/NS2SO7VYWiSdLLs2XPPVD2nWcSOrd980nZ838hPXeP9MK9shccLPvqwwntBQAAAAAAAAAAAAAAAAAAAMRCMBoAAAAAICTgcnWum3SC0YAGxcR4mSczu276QOPnC78t5Vds8LTsoAFGxpjYhUBzRjBajZn0TGn0IfGv+9NzMvmF7vN+v7T/EbE3atNRZp9JcZ8fQCPlDyS2jmA0uMh0+Xa/vcQ9+CwYtLr3/djBaC3TpVO6LdOj5jr3ouxcmQc/ibmXJOm95xUcmyb74HWy5eUxy+1n7yn4mwMVnN7f2/61KZAi5eTV6Sm75oc+5tH4VREx1r1sqVKDJXGfr035GnUrW+Y6bzdXBVrbv//RuSgYlL3qBNnS+M5vrZW97yopGKw+KHv/1bLWe2gfAAAAAAAAAAAAAAAAAAAA4BXBaAAAAAAASbvCIPxRwjr2lMaF3kCDEuvrN7NF3fSBxs8kFow20D1vCMBu0QJ2AgSjeWVmXBH/olEHx9735D9I2bnuBbkFMrMXxH9uAI1XPM+RqzGEXcJFdprz+PZS9zWH3xl0n5QU8ElvXuDTxtt9mn1pD7V4/GOZd7bKnH1jRK054xqZnntJIw703LOdfa3sPS5BW7trfviv7AWHSF/8R/pxiee941LQwX0ur72Mr25/9cHvMzooRgZcuo0MIEu3JZq4Y27Udf3bR45dtv4m+RQlhOzRmyVJdsdW6T8vRd3fHtNLdueOqDVhVn4vrVoWOb7+Z2nxZ973AQAAAAAAAAAAAAAAAAAAADwiGA0AAAAAUCWeQI60jOT1ASB+JsbLPFkt66YPNH7GhB3mV6z3tKxfexO7CGju/FHuq1NdklIQwXTrJ/Pwp94XTJrmKSzFtOko8+AC6YgzpIGjpH0mST0HSWOnSEefLfPgxzI5eTXoHECjEy3QMppASu32gSYjy+Xb/badzuNl5VbvLXbf74gh0vuX+DSxn5HPV/V43KSkStMukLn5BWn/I6T9j5S55SWZI88Mzd/ycnyNP3u37JaNrtP2vqukivL49oxHZgupZWv3+XyHJLE6MHV49OdAA3d+5Tg+ZesrUde9fZFPz870aZpvro7c8oL+9eN0nbPpnpj92PU/Sx/Oif252LhGdlIrBe/6g2wwevCeJCnK516b1sZeDwAAAKBWrFixQpdffrnGjh2rtm3bKjU1VcaYyn8PPfRQfbcIAAAAAAAAAAAAAECtSfC3+QEAAAAATVJKqlRS7K02NT25vQCIT6zQhszsuukDjd8e4UFptlStyzdoYyB6GFD/+skiABoXn999Lp6AWsh0HyCdfo3sfVdGL2zXReaUy7zv266LzEV/q2F3AJqMRIPRUrhPh7Nsl2C07aXO4ys3STtc5kZ2k5472/2xhTFGGnWwzKiDI+d8PumON2QvnSrt2Bqrbam8TPbP54RC1vqPkCnsXjllt26WPogzaK26vQ+QFs6NXpPfPnqIbOu2iZ+/Bo4aajSoo9WiH53nD9v2muv4TJc9jx1u1Lal0ZFDpV/6rpd+mu+9oS8/lH3/Re/1T94mW7xVGrK/VNhNpv8I5zpr3fcwBGQDAACg4evatauWL19eeTx37lyNHz++/hpKwH333adzzz1XJSUl9d0KAAAAAAAAAAAAAAB1whe7BAAAAADQbMQTyEEwGtCwBGIFo7Womz7Q+Dlc2D66+KOoSwYWSnnZXBAPxBQ1GC2l7vpoKk66ROrQPXK8dTuZs66XuewBmfs/lOncu+57A9A0+BL8UWpKlAAnNGtZbsFoLte1rypy3+vs8TV7/G2GjZd5eKHMebdKLVrFXvDuc7KzTpY9YZDsc3+XJNlNa2UPqVkomRn3S6lNx+hF+YXRv66ycmrUQ6ICfqO7jvfJ5/Cp6NiiTIedNNZxXfvy1Tqu6OmIcaOgHj2t2mYV5XH1Y688Xnr32bjW6MX7ZWedJHvmfgpePk02GIxvPQAAAICke+2113TmmWd6DkV79913ZYyp/Hf11Vcnt0EAAAAAAAAAAAAAAJKAYDQAAAAAQJUUgtGARivW129my7rpA42fQzDakVtfjLrkiKGEogGeRAlGM4mG7zRjxhiZ2+dI/fepGuw3XObud2ROuFhm8okyOXn11yCAxs8fI3zYTTzPrdGsZLncNLYlEIx24r41fwxu2nWRmXqOzF/f9L6ovEz2tvMVHJsmO6VTjXtQQQeZPz0XvabHQCk1SjBaZnbN+0jQmJ5Gj59ulF4t47Z9jvTEzDRlTj9H5qUfpaH7R6z7y5rfa9z29yuPB+z8rxam/UYBf+LBaJKkmgSbvfe89MrsyPGoffBcEAAAAEi2Sy+9VNbayuPjjz9eb7/9thYvXqylS5dW/ps6dWo9dgkAAAAAAAAAAAAAQO1K8Lf5AQAAAABNUiAlds1u0S5IBVD3/DG+fuvxQnE0MiYynOmwba/Jb8tVYZxfTjySYDTAm0QDduDKtOsi3fO+tOQrKTVVKuwuE89jWgCIJkqgZVQBgtHgLDvdSLIR4ztcg9EiayWpR0EoILS2mJ57yQ4eK33xn1rb07P8Qpleg6W3imR/O0n6ekH4vD8gM/kk2fuvdt8js0VSW4zl2OE+HT7I6uNlUmpAGtJJSk8JfX5MqwLp9jnSj99Lq5ZL3fpLc59Vuzsv0dsrJuvr1H4qMykaWPJfBTr3CN/YLZDM56tZAFoU9um/yUz5dfhgmcsNVEosvA0AAACAZ999950WLVpUeXzIIYfoscceq8eOAAAAAAAAAAAAAACoG5FXOQIAAAAAmq+UOC7eTk1PXh8A4hcrBKaeLxRHI+KLfMkwr2KjJm6f61jes03own8AHvgTDNhBVMYYmZ57yXTuQygagNqVaKBlPM+t0axkutw0tpc6B6CtLnKub59TSw1VY254WjrwOCknv/Y3j6agMHT+tHSZO96QjjxTys6VjJF6DZa5+QWZ3kOiBvSbBvB8NyPVaFxvo327m8pQtN2Mzxd6nDLyIJk2HaWCDqFxSQNKv9GQkkUKqEJasTh8U7fQsb0nJOE92GX5t7KrloWPle50ry+NEpoGAAAAoMY++eSTsOOpU6fWUycAAAAAAAAAAAAAANQtgtEAAAAAAFUCBKMBjVaM8AWTmV1HjaDRM8Zx+Jp1s5QaLIkovelon4zLGgB78BGMBgCNCsFoqGXZLi+lbHPJnVrlEozWrmXt9FOdadlavqseke+Vn2Se+rb2T+DEH5Bata3qIT1Tvgv/KvPqKpk3N8s3e4HMPpNCk6kZ7vs0tue7+e1dp+xn71cduASjmf0Ocwy0rjXffRZ+HC38rMx5zlZUyG5aK7t9Sy02BgAAADQ/a9asCTvu2LFjPXUCAAAAAAAAAAAAAEDdIhgNAAAAAFAlnou30whGAxqUQEr0+awkXDmPpsk4v2Q4fOenmr9sf524+TEN3/mpjtnb6N/n+3TkUELRAM8IRgOAxsWf4P12rMfmaLayXF522V7qPL66yDqOt8tN7mNwU9hNatOpdjbrOUgaMNJ5buRBMg5fZ8bnk9nzdadWBe7naGzPd/MLXafs3y+tOnAJRlNKmszjX9VyU9Us3yMYr8QluU+SSiPn7DefyJ42UnZKJ9nDChW88xLZiopabhIAAABoHrZt2xZ2nJLCaw4AAAAAAAAAAAAAgOYhwT9zDgAAAABoklLSvNemEowGNCj+GBdCZLaomz7Q+Pnc/5bCkJJFemjV6VJOnnxn/lyHTQFNgznmN7LX/CpyolOvum8GABCbP8EfpcYTOo5mJdvlZZdtJc7jq4qcx9vn1E4/0ZirHpY9Z0LNNsnOkTnnT1KPQbLnTpSWf1c117qtzOnXeO+noFDOMXFqfM938wul1DSp1OET/8N/ZXfukEnPlNzCxPwBqV3XUHhjEgLH7PLvFBa95xB+VjVXIrt1s/TxW1JmtjRgpOwZY6rmy8ukp+6Q/eBlaeo5MlN/U+v9AgAAAA2FtVaffvqpvv32W61du1YlJSUqKChQhw4dtN9++yk7OzvuPYPBYBI6BQAAAAAAAAAAAACg4SMYDQAAAABQxevF2z5f4heIA0iOQIxgtIz4L7ZAM2Xcg9EqpWclvw+gKRpzqJSWIZUUhw2bSdPrqSEAQFQ+f2Lr4gkdR7OS5RaM5pA7VV5h9cWPzvV1Eow2aIzsxGOlt5+Ob93jX0nzXpXS0qXRh8i07RyauO9D6Z1nZJd9I9OpV2guv733jfOi1GY2rue7JjVNtnMf6X+LIidLiqVvPpGGjpMqyp038Adk/H7ZvPbSWpcbSU2sXBx+HCUYzf7nJeneK6Vtm6Pv+dMPsndcRDAaAAAAmqT169frhhtu0KOPPqp169Y51qSmpmrChAm6+uqrNXLkSNe9li1bpm7durnOH3DAAY7jDz74oGbMmOE4N2vWLM2aNct1z7lz52r8+PGu8wAAAAAAAAAAAAAA1AeuYgcAAAAAVIkVrLRbarqMMcntBUBcjN8vG60gs0VdtYLGzsv9ewbBaEAiTGYL6abnZf94jLRja2jwgKOlE39Xv40BABwZfyD6Y2w3XkPH0ezkZDiPb9oROfb8Z+77tGtZN6/JmEv+Llu8TZr/mrcF+0wKhZ5NOz9yr4ws6dBfKeHOs6OkwXkJd25gzJ9fkj2yq/PkhlWh/6MEo0mSug9ITjBa0fqwQzvvFffaj9+q/fMDAAAAjcgLL7ygk08+WVu3bo1aV1paqjlz5mjOnDk644wzdNdddykQ4Fe4AQAAAAAAAAAAAABww0/VAQAAAABVvF68nZqe3D4A1D6C0eCVz0OoAMFoQMLM3gdIL/8kffep1KajTNtO9d0SAMCNP8EfpQYIRoOz/GwjOcTtbdohlVdYBfxVsWFPfRx03ad9lIyw2mQys2Vuel526TfSzu2hIK6iDdJn78teN2OPYiMz4/LkNZNf6D6X1TJ5500Sk99etmNP6cf/RU4WbQj9HyMYzRx2quxHb0Q/0fQLpSduja+5rUWVb9oHr5M+eSe+9W68PNcEAACoC8FyaUcSAmYRKbOj5Gu6v6Y8e/ZsnX766QoGw5+/9ejRQ/3791dmZqZWrFihBQsWqKKionL+3nvv1YoVK/Tyyy8TjgYAAAAAAAAAAAAAgAt+og4AAAAAqEIwGtB0ZWTWdwdoLIyXYLTs5PcBNGEmNU3aa1R9twEAiCXREB+vz63R7ORHeRi9cbvUplq+13Ofudf2bVd7PXlhuvWrOmjTUfrF8VLXvrK3Xyh9/7nUuq3MWdfLDNw3eU10HyjltZc2rAofb9FK6jk4eedNppw8x2A0u/ZHGSlKMJpfkmT2P0L2qLOk5+5xPYXJzZftPlD64SvvfW3brOCvR4WCfAEAAJqiHT9KL3Wr7y6ahylLpeyu9d1FUnz++eeaOXNmWCjakCFDdNddd2n06NFhtevWrdMVV1yhf/zjH5Vjc+bM0ZVXXqkbbrghrLZjx45aunRp5fHtt9+uO+64o/L4iSee0L77Rj73ys/P1/jx4yVJH330kaZPn145d9555+n88893fV/atavjJ5kAAAAAAAAAAAAAAHhAMBoAAAAAoErAazBaWnL7AFD70jLquwM0FsbErkknaA8AADQD/gR/lBpIqd0+0GREC0Zbv60qGO2zFda1rn97KS3Fw2P2JDN9hsn8/d26O5/fL514sewdF4WPH3+RTKCR/tpDy9bO44//Rfbgk6RtRc7z1e6bzIwrZKMEoykjW+bE38lee4pk3W9XEQhFAwAAAKI67bTTVFpaWnm833776Y033lBmZuTPTwoKCnTPPfeoZ8+e+t3vflc5ftNNN2n69Onaa6+9KscCgYC6du1aeZybmxu2V7t27cLmq8vODj3pXLZsWdh4bm6u6xoAAAAAAAAAAAAAABqqRvobwgAAAACApEjxGoyWntw+ANS+VILR4JHxxa7JiJLoAAAA0FT4/Ymt8/rcGs1OXoxgtN0ufS7oWvfQDA+P15soM/U3Uqu2su/8SyorlZlwjMzkE+q7rcTl5LlO2ZOGuK+rHgSXkxe6zykrda7NyJKZNE3Kain72sPSey8k2GwNtG4rtWoj+ZrvbRcAAABNy9y5c/Xpp1Vhwi1bttRTTz3lGIpW3cUXX6z33ntPr7zyiiQpGAzqtttu0+zZs5PaLwAAAAAAAAAAAAAAjRG/eQoAAAAAqBIgGA1ostIIRoNHXi5WzyQYDQAANAP+BP/GFMFocJGeYpSd5jy3OxittNzqwx+ca3xG6tMuOb01FmbiMfJd/7R8N7/QuEPRJGlbUWLrqoVZG2Ok/PbutbtCrc3oQ+S77imZ659O7JyJOnSGfC+ukO+hT+SbvaBuzw0AAAAkycMPPxx2fM4556iwsNDT2j/96U9hx0888YRKSkpqrTcAAAAAAAAAAAAAAJoKgtEAAAAAAFVSUrzVEYwGND4Eo8ErY2LX5BYkvw8AAID6lnAwmkvyFSAp3yVjeN1WK0n6z/fS1p3ONT0KpBbpHh6vo1EwvYcmttDnDz/O7+Bem54Zfpzo/VqCzCV31+n5AAAAgLrwwQcfhB2feOKJntcOGDBAw4YNqzzeuXOnFi5cWGu9AQAAAAAAAAAAAADQVBCMBgAAAACoEkj1VpfisQ5Ag2H8/thFgCSZ2C8Zmtz8OmgEAACgnu0ZPuQVz5kRRZ5LMNrm4tD/ryyyrmvfOJ8f7zcpPfdKbJ1vj9tB6zbutRl73OD6DfcWhl1T7bvKPPixzJ69AgAAAI3cpk2btGTJksrj3Nxc9evXL649Ro8eHXb88ccf10pvAAAAAAAAAAAAAAA0JXX754ABAAAAAA2b14u3AzydBIAmy8uF67kFye8DAACgvvkTfO7rNXQczVJuhvP45h2h/z9c4hyMdvQwqWt+HQRaoe7sOzmxdXuGWecXutdmZIUvbd1WduRB0kdvJHbuaG3NekzauUPq1EvqPVQmLb3WzwEAAFArMjtKU5bWdxfNQ2bH+u6g1q1bty7suFevXjJxhg/37ds37Hjt2rU17gsAAAAAAAAAAAAAgKaGK9kBAAAAAFW8BqP5U5LbBwCg/ni5gCc3P/l9AAAA1DefP7F1AZ4zw12OWzBasWSt1WKX6+En9ScUrakxKanSdU/JXn5cfAv3CLM2bTrKOU5PUmpa5HmvflT25rOlea9IJcXxndtJ594yt74q07ZzzfcCAACoC76AlN21vrtAI7Vp06aw45ycnLj32HPNxo0ba9QTAAAAAAAAAAAAAABNEcFoAAAAAIBKJpDqfiFldQGeTgJAk2V8sWtatUl+HwAAAPUtwee+xufh8RSarZxMIzm8+lK0Q1q/Tdq8w3ld//YEozVFZv8jZPedLH00J45Fe9wWBo5yr82JDLU2WS1lZj0qW1YqPf1X2Xsui33O7gPle3ihbHmZVLpTKi2RMrJl0tK99w0AAAA0AdaGP58zXv7YTAy1sQcAAAAAAAAAAAAAAE0Nv5UPAAAAAKiSkuqtzp+S3D4AAPXHS5BHbuTF9QAAAE2OP4FgtBETa78PNCm5mc7jm3dYLV7jvq532+T0g/pnbnwmzgV7PGcbMFJq3yWyrvsAmSjP3UxKqjRhqhSI/TqfmXJa6P9AikxmC5ncfELRAAAA0Cy1bt067LioqCjuPfZc06pVqxr1BAAAAAAAAAAAAABAU0QwGgAAAACgiocLIeOqAwA0QiZ2SQ7BaAAAoBnw+eNeYs65OQmNoCnJzXAeLyqWFq+xjnM5GVJBiyQ2hXplAikyLyyXuvbztmCPMGvj98v85s9SalrVYGq6zG//Evvc7bvKnHpl9KLeQ6WDT/LWGwAAANDEFRQUhB0vXrw47j2+++67sOM2bdrUqCcAAAAAAAAAAAAAAJqiBP7MOQAAAACgyUpJ9VZHMBoANF2+GH9LISdfpvoF9wAAAE2VP85gtBETZXoMTE4vaDJyM53HNxdLi9c4z/VuKxnjIcAYjZbJayfd/6Hs5AKpvCxGceRzNjPul9L9H0kfvi4Fg9L+R8h06uXt3CddIg0aLfvRG9Ibj0nrfgpNtOkk8+urpInH8hwQAAAA2KVVq1bq0aOHlixZIknavHmzvvnmG/Xr5zHoWNL8+fPDjkeMGFGrPfL8EQAAAAAAAAAAAADQFBCMBgAAAACoEvAYjObn6SQANFkOF9mHyW9fN30AAADUN198wWjmpN8nqRE0JbkZzuObd0jfr7GOc73bclF7c2DSMmRP+r304HXRC13CrE23/lK3/omde/B+MoP3k868NqH1AAAAQHOy3377VQajSdJjjz2m666L8Th+l2+++UYLFy6sPE5PT9fee+9dq/2lpYUHG5eUlNTq/gAAAAAAAAAAAAAA1IUYVzkCAAAAAJqVFI/BaAGC0QCgyTIxQhcKCuumDwAAgPoWTyh4597S4LHJ6wVNRm6m8+PtdVuleUscp9SrbRIbQoNicvI8FPFrHgAAAEB9Ovnkk8OO77zzTq1evdrT2ksvvTTseNq0aRFBZjWVm5sbdrxq1apa3R8AAAAAAAAAAAAAgLrAb8wCAAAAAKp4DkZLSW4fAID644vxkmEewWgAAKCZiBWMlpMfqhk2Xua212ViPY4CJBXmOo+XB6U1W5zn9uoQI7wYTUdOfuwa7msAAACAejVhwgQNGTKk8rioqEjTp09XFVSUYwAAIABJREFUcXFx1HW33XabXnzxxcpjY4wuuOCCWu+ve/fuSk2t+rn/3LlzVVZWVuvnAQAAtcdaq29XWd3xdlB/fiNY3+0AAAAAAAAAANAgxPFnzgEAAAAATV7AYzBarIvDAdSPbv2lpV9HjnfoXve9oNEyxshGK8hvX1etAAAA1K/UNPe5fSbJ/PklqaxUJi297npCo9enbXz1qQFpYt/k9IIGKKd17BpDMBoAAABQE6tXr9ayZcsSWtu1a1dJ0gMPPKBRo0aptLRUkvTuu+9q7NixuuuuuzRy5MiwNevXr9dVV12lu+++O2z8kksu0aBBgxLqI5rU1FSNGTNGc+fOlSStWLFCU6ZM0VlnnaVevXopMzMzrL5du3ZKT+e1DQAA6tqWYqs3v5be+Nrq3/+1WrExNJ6XJV04ycrv4w9mAAAAAAAAAACaN65kBwAAAABUSUnxVuf3WAegTpkTL5G99pTI8V9fXcedoNHz+aSg818hNtkt67gZAACAetK5j/tcRpaMzycRioY4ZacbdWwl/bjJW/3EvlLLDC6AazZy8mPX+AhGAwAAAGpi+vTpCa+1NvSnZYYNG6Y777xTZ511loK7fp6ycOFC7bvvvurZs6cGDBig9PR0rVy5UgsWLFB5eXnYPpMmTdK1116b+DsRw4UXXlgZjCZJc+bM0Zw5cxxr586dq/HjxyetFwAA4Gz+EumYf0T+XsaG7dKnK6QRXeu+JwAAAAAAAAAAGhJ+YxYAAAAAUCWQ6rGOYDSgQdr/SGnEgeFjIw6Uxk6pn37QeJkowQtpmXXXBwAAQD0yuflSx57Oc/1G1HE3aEr6tvNeO2UwoWjNSkGH6M/HpNjzAAAAAOrE6aefrqeeekrZ2dlh4//73//04osv6qmnntL8+fMjQtFOPfVUvfrqq0rx+kfLEnDYYYfpuuuuk9/vT9o5AABAzYzrJaUFnOfOeMT5D9kBAAAAAAAAANCcEIwGAAAAAKiS4jEYze/yW1kA6pVJS5e58VmZWY9Jx18kc/WjMn96TiYto75bQ2NjorxsmE4wGgAAaD7Mib9znhh5UN02gialTzvvwVajehCC1ZyYVgXSsPExirhNAAAAAA3F1KlTtWTJEp133nnKz893rUtJSdFBBx2kefPm6YEHHkhqKNpul112mRYtWqQ//OEPGjdunNq1a6eMDH5mCABAQ5GZZjSul/PcFz9KvjMqNPKGCp37RFAfLrGy1tZtgwAAAAAAAAAA1DOuZAcAAAAAVEnzFnZjAsn/RW0AiTFp6dKEqTITptZ3K2jMfASjAQAASJImnyQtmi+99nDo2B+Q+c1NMj0H1W9faNT6tvNe27MgeX2gYTIX/U32+IHuBdGerwEAAACIsGzZsqTu36ZNG91+++269dZbtXDhQn377bdat26dSkpKlJ+fr44dO2q//fZTixYt4t776quv1tVXX51wb/3799eNN96Y8HoAAJBcBw0wevMb98Czj5dJHy+z/8/enUfLddV32n92zXcepCvJlmTLxgg8QGyMwRiS2C95ISFkaKATArwMTQIhhMQdIAkdXmKMkyYJazUm6SyGJoZOdwhTAoSX0A6TAYMbTAPG4NmWZE1X0p2nqlvDfv/YV7rz1ZV0Bw3PZ61aVWefffb5nVOnbg23zrf4r1+NvP0XAzf/ij+aIEmSJEmSJEk6dxiMJkmSJEma1tG9vH4Go0nSWW6JL9MWm9auDEmSpHUWslnC2z5I/I3/CAd2wZOvJnRtWu+ydIZ78pYALH6y21Hbu6C56Ilu55qw/YlLHx3BYDRJkiTpdJTJZLjmmmu45ppr1rsUSZJ0hvj5KwJv/dTxPysGuOX/i7zqWZEnbPIzY0mSJEmSJEnSucFvzEqSJEmSpnVsWF6/bHZ165Aknb5KzetdgSRJ0poLOy4lPOsXDEXTinjaBRCWce7azs2rX4vOQBm/5iFJkiRJkiSdDS4/P/DkLcvv/7UHlxeiJkmSJEmSJEnS2cBvzEqSJEmSprV0LO/kylx+9WuRJK2f2uTi84oGo0mSJEmnoqslcOPPHT8Z7Ymbl5GepnNP8GsekiRJkiRJ0tnia29Z/ud9R0ZXsRBJkiRJkiRJkk4zfmNWkiRJknRMyGSgrev4HQ1Gk6SzW6Ox+LySwWiSJEnSqXrPS44ferZz8xoUojPPcn7UQJIkSZIkSdIZYVN74P53ZXhCz/H7Dk2sfj2SJEmSJEmSJJ0u/MasJEmSJGm29u7j98kajCZJ56xS03pXIEmSJJ3xQgg8//Kl++zcfPzwNJ2Dgl/zkCRJkiRJks4mOzcHfvLODN/9kwyf+93FP/8zGE2SJEmSJEmSdC7xG7OSJEmSpNk6Nhy/Tza3+nVIkk5Pxeb1rkCSJEk6K5zXsXjwWSbAtRevYTE6c2T8mockSZIkSZJ0tsnnAldfGHjhUwOvvm7hz46HDUaTJEmSJEmSJJ1D/MasJEmSJGm25rbj98nlV78OSdLpqWQwmiRJkrQSLtq4+LxrdkB3y+LBaTqHBb/mIUmSJEmSJJ3N2psWbh+aiGtbiCRJkiRJkiRJ68hvzEqSJEmSZisUj9/HYDRJOncZjCZJkiStiOdeunjw2b+7ylA0LSJ4bEiSJEmSJElns45Fg9HWtg5JkiRJkiRJktaTwWiSJEmSpNnyywhGy+ZWvw5J0mkpGI4pSZIkrYhrL4KtnQvP++WfMvxKi8j4NQ9JkiRJkiTpbGYwmiRJkiRJkiRJBqNJkiRJkuZaTjBazmA0SZIkSZKkU5HJBP7yJfMD0P7DcwJPPs9gNC0i+DUPSZIkSZIk6Wy2WDDa4Pja1iFJkiRJkiRJ0nryTHZJkiRJ0mzLCkbLr34dkiRJkiRJZ7mXXhNoLgRu/VKDcg1e9LTAm24wFE1LyBiMJkmSJEmSJJ3NOpoCEOe1949BjJEQ/AxZkiRJkiRJknT2MxhNkiRJkjRboXD8PlnfTkqSJEmSJJ2qEAK/ciX8ypXZ9S5FZ4pgMJokSZIkSZJ0NtvSvnD7aAUOj8CmReZLkiRJkiRJknQ28RuzkiRJkqTZ8sXj98nlV78OSZIkSZIkSbNl/JqHJEmSJEmSdDbbuXnxeQ/0rl0dkiRJkiRJkiStJ78xK0mSJEmaLV84fp+swWiSJEmSJEnSmgt+zUOSJEmSJEk6m/W0QWfzwvMe7I1rW4wkSZIkSZIkSevEb8xKkiRJkmbLF4/fJ5tb/TokSaeflvb1rkCSJEmSzm0Zv+YhSZIkSZIknc1CCOzctPC8Pf1rW4skSZIkSZIkSevFb8xKkiRJkmYJywlGy+VXvxBJ0umnvWu9K5AkSZKkc1vwax6SJEmSJEnS2a6jaeH2an1t65AkSZIkSZIkab34jVlJkiRJ0myFwvH7GIwmSeema35uvSuQJEmSpHNbxq95SJIkSZIkSWe7XHbh9prBaJIkSZIkSZKkc4TfmJUkSZIkzZYvHr9PLrf6dUiS1s8v/YcFm8PL3rzGhUiSJEmSZglhvSuQJEmSJEmStMpyi5ztVWusbR2SJEmSJEmSJK0Xg9EkSZIkSbMtJxgtazCaJJ3NwiveCj1bZze++HcIW5+wPgVJkiRJkpLg1zwkSZIkSZKks10uu3C7wWiSJEmSJEmSpHOFZ7JLkiRJkmYrLCMYLZdf/TokSesmnH8xfOAb8OVPEHsfJ1z1s/DTv7zeZUmSJEmSMgajSZIkSZIkSWe7XCYAcV57rb72tUiSJEmSJEmStB4MRpMkSZIkzZY3GE2SBKFnK7z0PxLWuxBJkiRJ0jEh+C5NkiRJkiRJOtvlsgu31xprW4ckSZIkSZIkSevFYDRJkiRJ0mz5wvH7ZH07KUmSJEmSJEmSpLNXCOEi4ErgfKAVOADsBr4VY6yuY13dwNOBi4BOIABDwF7guzHGg+tVmyRJkqSVkV3k9xFq9bWtQ5IkSZIkSZKk9eKZ7JIkSZKk2ZYTjJbLr34dkiRJkiRJkiRJ0hoLIbwE+APgWYt06Q8hfBx4R4zxyBrVFIBfB94IPOc4fb8PvB/4uxhjbQ3KkyRJkrTCctmF2+uNta1DkiRJkiRJkqT1klnvAiRJkiRJp5l88fh9sgajSZIkSZIkSZIk6ewRQmgNIXwM+CSLh6IBdANvAO4NITx/DeraAnwZ+BjHCUWbchXwAeCuEMIlq1mbJEmSpNWRXeRsr5rBaJIkSZIkSZKkc0RuvQuQJEmSJJ1mCssJRvPtpCRJkiRJkiRJks4OIYQs8HHgBXNmHQa+DwwBTyCFjoWpeZuBz4YQfi7G+M1VqqsH+Crw5DmzqlN17QYawDbgaqA0o8/VwFdDCM+JMe5ejfokSZIkrY5cduH2usFokiRJkiRJkqRzxCK/ISJJkiRJOmc1tx+/Ty6/+nVIkiRJkiRJkiRJa+PdzA5FqwJvArbFGJ8fY/y1GOPVwBXAt2f0KwKfCSGct0p1vZf5oWjvn6rrmVN1vTTG+BzgvKntmBmVsA34wCrVJkmSJGmV5BY526tWj2tbiCRJkiRJkiRJ68RgNEmSJEnSbBfshKaWxeeHQMgu8pOUkiRJkiRJkiRJ0hkkhHAx8Ptzmv99jPFvYoyTMxtjjD8BnsvscLQNwJ+uQl07gJfNaf7PMcY3xBgPze0fYxyMMb6N+dvy/BDCM1e6PkmSJEmrZ9FgtMbC7ZIkSZIkSZIknW0MRpMkSZIkzRIKRbjyZxbvkMuvXTGSJEmSJEmSJEnS6vpTYOY/wD4SY/zsYp1jjBPAq4GZoWmvnQpYW0m/NGe6F3jnMpb7r8A9xxlLkiRJ0mkst8jvltbqa1uHJEmSJEmSJEnrxWA0SZIkSdJ87d2Lz8vm1q4OSZIkSZIkSZIkaZWEEJqAl8xp/ovjLRdjfBD4zIymHPCyFSwNYG7Q2u0xxsrxFooxRuBf5jQ/ccWqkiRJkrTqcouc7fWFe+H7eyKTtbi2BUmSJEmSJEmStMY8m12SJEmSNF++uPi8XH7t6pAkSZIkSZIkSZJWz/OB5hnT344x3r/MZW8Dfm3G9IuAW1aqMKBlzvTeE1j28TnTXadYi3TWGh8f5//8n//DQw89xJEjRyiXyzQ1NbF582Z27tzJVVddRaFQWJF17dmzhw9+8IPccccdPPjggwwMDFCtVo/Nv+2223j1q1+94LLf+c53uO222/jWt77F448/ztDQEI1G49j8xx57jB07dgBw/fXXc8cddxybl/ISJUnSmSSXXXze1bc0aC3C+34j8OrrFklQkyRJkiRJkiTpDGcwmiRJkiRpvqW+2J01GE2SJEmSJEmSJElnhZ+fM/21E1j2G0CN6e9hXhVC2Bxj7F2JwoCDc6ZLJ7Ds3L79p1iLdFap1+t84hOf4LbbbuOrX/0qtVpt0b6lUonnP//5/OZv/iYvfOELT3qdH/rQh3jTm95EpVI5oeVqtRq/8zu/w4c+9KGTXrckSTrzZMPS80cr8NqPRn5qW+SqC47TWZIkSZIkSZKkM5DBaJIkSZKk+XJLBaP5VlKSJEmSJEmSJElnhSvmTH97uQvGGMdCCD8CrprRfDmwUsFo35gz/bQTWPbqOdPfPcVapLPGV77yFd7whjfw4IMPLqt/uVzms5/9LJ/97Gd5+tOfzgc+8AGe9rQTeTjCF77wBV7/+tcTYzzhev/kT/7EUDRJks5Btcbx+8QIV9/S4JZfDRRz0NUMEcgEKOagszkQIxwcjtQbsL0r0D+ebk/WoJBLbddeDE0Fw9UkSZIkSZIkSacXz2aXJEmSJM2XLy4+L5dfuzokSZIkSZIkSZKk1XPpnOmHT3D5R5gdjHYZ8JVTqmjal4EHgCdNTf90COGpMcZ7lloohLAVePGMpirwsRWqSTqjvfOd7+Sd73znvICyEAKXXnop27ZtY8OGDRw+fJg9e/bMC0+7++67edaznsXf/M3f8Fu/9VvLXu/b3va2Wet82ctexmtf+1q2b99OPj/9//eNGzfOWq63t5f3vve9x6YLhQJ//Md/zAte8AJ6enrIZDLH5m3btm3Z9UiSpNPfPXuXH6j69s8s1ndu+0L9Ils74V/elOHK7YajSZIkSZIkSZJOHwajSZIkSZLmyxcWn5fzraQkSZIkSZIkSZLObCGEbqB7TvOeExxmbv8nnnxFs8UYGyGE/0AKWisCGeBTIYTnxRh3LbRMCGEz8BmgeUbzLTHG/StVl3SmuvHGG7n11ltntbW1tfG2t72Nl7/85VxwwQXzlnn44Yf5yEc+wnve8x4qlQoAk5OTvO51r2NsbIwbb7zxuOt94IEHuOee6TzDF7zgBfzP//k/l1XzZz7zGSYnJ49N33LLLbz1rW9d1rKSJOnMdtUFgc/fs/xwtFOxbxBe9XcNfvCODCEYjiZJktZHoxEJAV+PSJIkSZKO8Wx2SZIkSdI8IV9c8PchAcj6VlKSJEmSJEmSJElnvM450+MxxrETHOPQnOmOU6hnnhjjt0IILwT+AeghBa/dE0L4MPBFYDcQgW3Ac4HXARtmDPEB4F0rWVMIYdNULSfiCStZg3SiPvrRj84LRXvOc57Dxz72MbZt27bocpdccgm33HILr3zlK3nxi1/Mvffee2zem9/8Zq688kquv/76Jdd99913z5p+yUtesuy6T3bZr33ta8tehyRJOj096+IAi3+Db8X9aB9c+58b/PwVgQDs6Yf//u1II8LPXw5HRqGrGbpaAs0FyGQgTpXXXoLmAkxUodaAfBZKORguw8GhyCWbApkAlRq0N8HeARiZgJ1b0vJjFSjkoKUAoxUo5uDaiwPPv9xgFEnS4sYrkb+/K/IvP4zs6YfJOjQi1BvpuqMJrtoeeO6lUMwFclnIBMhmYKwSOTAEh0dgfBLqESpVGByHliIcHonUG9BahHwuPTcCNBVgSwf0tKZxchkIIT1PDo6n9Y5PQu9w5JkXBTIZ6G6G7d2BzmZoNKB/DA4MRXb3Ty/fPPUcmMvA/sE0VqmQnhsv3AAHh2BgPG1bSzE93w6OwWQ98r3dabt+7rJwrKamPAxOpOfY0XJk7wA8eiQ9V+/YkPpM1tPz9fmdacx6A3b1wcRk2sZGAx45DDs3wyWbAyMTUK2n/ZL2RWCkHDk0AvsGoJSHC7rTfm/E9DqhMXUZKad1V2pQrUMg1ZfLpNcAlWqaPzSRXlc8ZSu0lVLb3oG0f7e0w9hk2qYQ0n4EuOJ8uPz8wK9cCT+1PTA8AZ3N0+NO1tN6K1Prz4R0P5anphsNGC5H7juQXv/0jUbK1VTno0fSvu5qTnU9chgOjaTbF26A8zrgkk2B8ztTrfsGoFaHwYnIdx5L+2THhvSaqDH1uqlWnz6W6o10HI2W0zFwxda0T/vH0vHQ1Qyb2gOXbErb31pM6+tpg/sPpnEu6UmvvfYPpX0yPhmPratcTcdOrQH3H0jHy2Xnh2P3TT6baizmUl2tpbRtMcKOjYHLz0/HY0dT6lPKw4GhtP8na+n20ERa57auwAXdaTvy2VT/WCWtZ3N76jtSTvf9ldtTv/sPphqbCulYyGamH1czr7OZtD0HprYFOPaYDGH6diaTbmdCas+E2bfnXs9qm7P8QmMZ2idJkiStD89mlyRJkiTNVygsPi+XX7s6JEmSJEmSJEmSpNXROmd64iTGmLtM20nWsqgY45dCCJcCNwIvBy6aun3jEovdD7wjxvjJla4H+B3gT1dhXGlVPPjgg/zu7/7urLbrrruOf/3Xf6W1de6fgYXt3LmTL3/5y1x//fXcd999ADQaDV7xilfwgx/8gI0bNy66bG9v76zppYLYVnJZSZJ0ZvvZnSno4979a7fO7+6C7+6aH8b2xR/PnDqZsLaTW6a9BC97ZqBcTSEzh0ciE1XY1AYXbgiMT6bwksMjKTylEVMISimXgk4KuRTusq070FZKAR6TdXjscDwW9HI0rCUToG8sBeRctDEF0mQzKXwjE1IQSXMBeochl03LDE2koI8t7bChJYW1DIxPh+7EqXCeo0EihVwad6Kawkc6m6dDP0r5dD1amQ4O6WhKASl/9ZLA1i5DOCRppsla5Pr3NLh799L97tkb+ei34dTCRk9u2X/+/szlVj/s9L99Y3nreHD2Rw0LvtZ4aMZPQRwchq8/tNDY89t29S2rhCUNl+HOR+a3Dy3yye29++He/ZGP371wTSth/+Ds6eFyCpX90T64/SdLr3NP//LX8/3Hl7OfT20bZx+XSznR9axdoO96WzBsjRSmdiIha4sGty0x1moFvmVCWHLMcFJjrmR9J7uvlt6uZdUyZ8yhien3JfksdDUHWoopZLE+9fr/aEDn9O04r32yDud3BJ53OZTygUYjjZnLQDGfXvvHGBmtpHUXsun4OzQV6NmIqR5I8za2pvcUY5XU1tEcODwSuXffVOhkU3ovUmtEelrT+6NsZvq9S72R3qd0NsElm9J7o3v3pfU8/cIUkD1TvRHZP5jq7WiCfYPpr8CevvQ3MpuBkXIkn4XWYmC4HGkrBdpLs0NMq3X40b5ItZ7e041Pwq4jaTuO1relI91+5BBUaik88pkXp/DGGFPAYrmW3vsdvR1jGq+9lLa9rRjS9ay2FAiZzfheS5Kk053BaJIkSZKk+XIGo0mSJEmSJEmSJOmsNjcRqXwSY8w9JW95KUsn7uh3PSvL6Pst4CbgS6tUi3RGectb3sLo6Oix6c7OTj796U8vOxTtqE2bNvGpT32Kq666isnJSQD27dvHu971Lm699dZFl5u5boB8fvn/bz+VZSVJ0pmtqRD419/P8I7PRb5yf2R7F7z9FzP83Z2RT9x9bgRPDJfh/Xcstq0nsg8W7vvI4YV7HxlduH0hI2V4+NDx+52MxwdS0MsdD0buvSkzL4xAks5l/+VL8bihaJK0GhoRiFBf70JW1Nn6/mIttmvlgzfbSymgeXzyFIY+ifUuJZ9NIWalPDTlUyD0ia9v5e6PhQM7l1PDfC3FqbC00lRw2lRoWntTCpCb3QbtpbBAWxonBN+zSZK0GgxGkyRJkiTNVyguPi/rW0lJkiRJkiRJkiSddU7mrIxVP7MmhPBbwH8BWpa5yHXA7cC9IYTfjjHeuWrFSae5+++/n89//vOz2t797nezZcuWkxrvsssu4y1veQt//ud/fqztwx/+MDfddBNdXV0LLtNoNE5qXae67Er4yU9+wo9+9CP6+voYGBigVCrR09PDpZdeylOf+lSKxSW+V7CEWq3Gd77zHR599FEOHz5MpVKhp6eHHTt28OxnP5tSqbTCWyJJ0plpa1fgw6+afWL1cy+FG54En/lB5Mf7oTZ1cvrYJLQWU1DD4ZF0En0+CyHAZG2dNkAr4sAQ/N2dkd+9AfrG0kn3gxOwuQ3yucBkLXJgKB0LG1vTm9QHDqa+h0ciTQV48pbAkdEUZpDLQDGXjpn+schoJbXHqWPnyChcfSF0NAXqDWjESLmajqULuwOVWjq+6g0Ymojcsy8da8MT8Hh/ZGAculugqzlQKkDfSCQCm9oDuQxkM9DRlLZttAIXbYRrLwp8b0/k8X44PAqDY+mt9iOHoVKD518eaMQURHdeBzQVIJDmPXYkHeMb21INh4bTNm1shV+5MvArVwYOjUD/1L5rRHiwFwo5ODIaGZqAickUZJDPpkC+GNM21hpQyqWxmgppfZO12dfDZegfhSduTmMf3TdHL0f75rKwbyBtVyEH3S2B8UqkuzVtW62e+hVyUMxDcyHtpyOjabsyIe3vah02tAQ2tMJEFXqHIk2FQDaT7sdyNVLMBc7vTPs6E9L9PVqByTp0N8P/fVng2ZcY2nCmiDEeC9mo1SMTVdh1JB1z5WoK6wikY3F8Mh2HMU5fl6spsGNwPIWYhJDaW4vp+Mpm0jFeb6TH10g5PQ7z2dSn3kiPhVo9HWMHhqBSi/S0pcd0vZHGmKimxxikdUCq6+h0tQ5jlVRPT1tapphLj830tyb9/ao30vPa8AR0Nqf2C7pTzRHYsSHV9uFvnq0hPpKkc93wyfyEzyqrTiUBlqvpcjYZq6TLgaG5c04spDuEFJR2NDTtWNBaCdpKgbZ5bSlkrb1pbtvU+x1D1iRJOsaz2SVJkiRJ8+WX+AJzzl+hliRJkiRJkiRJ0hlvdM5000mMMXeZuWOekhDCnwC3zGm+G/hb4BvAfqABbAGuBV4H3DDV7wrgjhDCa2OMH13Bsv4W+OQJLvME4LMrWIO0LLfeeisxTp+otHHjRl7zmtec0pg33ngjf/VXf0W1ms4AGxsb40Mf+hB/+Id/CMCuXbu46KKLFl3+hhtuWLD9tttuA1iyvsVOhnrsscfYsWPHsenrr7+eO+6449j0zH1wPI8//jh/+Zd/ySc/+Ul6e3sX7dfU1MQNN9zAq171Kl784heTzWaPO/Z9993HLbfcwuc//3mGh4cXHfeXf/mXufnmm9m5c+ey65Yk6WTFx34CBMJFl653KcuSzQRe/7OB1//s0v2qtUg+N/u1w8RkCtT54r2RV3zYQJkzyVs/FXnrp+bfZz1tKezoaFDB4lYqB/xExpnbd6lllx73/oMnd7z+yz2R3/zvp+uxHudcn8yyy52e7ebPp/ndLSkEAqZD00pToWwT1RSy1VKA5zwxheS1FNO8o8v0j8VjYVn7BlOIVXdLCngbraS2egMKWajH6bC4Yg62dEyHdzUiNBrTt+uNFM5VjynYraNpOpwL0nQuk8InxiqpfbSctnqylsYYLqfbT9qcQr8mqtPLj0/CoeEUONFegs3tsKktzZuoptoHxuD8Tnji5sBl58GmtsBIJdI7PB0Qdng07a9aPQXfNeXTOsu1FBgyOXU9PpkC+OpT69/cDtmQgg3HKpHzOgMTkzBaTqF+I2XYPwR9U2GGldM23PJ0fWxJkiStvTj1GnS4nF4Hz5m72FILtmYz88PS2pumgteawry2FK4WFmhLr70NWZMknekMRpMkSZIkzZcvLD4vazCaJEmSJEmSJEnrOTk3AAAgAElEQVSSznindTBaCOH/At41p/km4OY4P+Vo19TlH0MIrwPeDwQgC3w4hPBwjPHOlagrxngIOHQiy3jShdbLF7/4xVnTr3zlKykUlvhf+DL09PTwS7/0S/zTP/3TrPUcDUY7U8UY+bM/+zPe9a53MTk5edz+ExMTfOELX+ALX/jCvGC2uer1Om95y1t43/veR6PROO64H//4x/n0pz/Ne97zHn7/93//RDdFkqTjiof2wpc+TvzwzTBZhpZ2+MxuQql5vUtbMXND0QCaCoGmAvza0+F9X458Z9fa16WVdXhkvSvQmax/bPZ039jCfT72nZUPwNrVt/y+ewdOfj0P9KbLQobL0DsMDy3yCce9++H2n5xKgN3xrObYkiRJOlPVGykAe3B8obknFrKWz84IWJsRmtZeCrTOazsaxBam+88IaCss8DmDJElrwWA0SZIkSdJ8+eLi83K+lZQkSZIkSZIkSdIZb2jOdHMIoSXGuMCpwIvaNGd63u/An4I/I4WbHfXRGOM7j7dQjPGDIYTtwNunmrLArcDTV7C2M1atHk/ppGot37YuyGXX70SZvXv3smvXrlltz3ve81Zk7Oc973mzgtHuuusuqtUq+fyZ+SNjtVqNl770pXz605+eN2/Lli085SlPYePGjVQqFXp7e/nhD3/I6OjyciAnJib41V/9VW6//fZZ7fl8niuvvJJt27ZRLBY5ePAg3/nOdxgfHz9W04033sjAwAA33XTTKW+jJEkA8ftfJ952C/zg6zAza3hsmPjaZ8LffIXQ1bN+Ba6yODoEfQfIdm3iK2/u5NZ/a3DXrsDYZDpZenwSJmtQqcEPHp+97JM2w4ZW2NQGzYX0Gi8EKFcjvcNQyEEpBxNVKFehlIf9g2nMXDZNdzfD/qEU5rW9G2p1aCmm60aEnxxYh50iSTqrvP8VgU99L/Kl+2a3ZzPQWkxP//WYAkfyWbigO1329EPfaHpeuuw8uGBDIJ+FoQkYLUPvcKRSg7FKGqvemB6n3kiBIT1taf6djyyv1p426GlNz5sT1fS8el4HDIzBo0dm1z00kaafug22tKfn2KGJFIFSzKXn51oDmvLQVIBGAzqaoL05bUcpB90tabyxCoxW4J69keYC7NwcqMdUx8GhSC4DI2XIBOgdgc1tsKE1BaQU85AN6Xl7oppCUoq59FyeyaTXEZCWzYS0TZmQXge0ldIHnYdG0jYV89NhLYUcFHOB/rHInv70WqGtlO6P5gK0FKBcg919cGg4tT9yOPKNh07teAkBcplU4xN6YOdmaC0GNrWnfdtSSLX2jaX901RI+68RU11DE/B4f6RvNL3e2daZQmN29UWyGdjSHjivM61rU1va/7lM6lupputHDsMPH49pPzbggu5AMZ/uw/sOpM8x+8fS/p5bO8x+SduUT6/jGnF6+gk9qdbeEajW0/HT2QwTkzA4AcMT0NWc7oOBcXjsyIntw6OPB0nS6alaT89j80OQlwrnXXheMbdIkFpToHVeuBq0lcICbemynv87kiSdeTybXZIkSZI0X26JL2xnfSspSZIkSZIkSZKkM1uMsS+EMAB0zWi+ALhvkUUWcuGc6VM8HS8JIWwFrp3TfNxQtBneDbwZaJqavjqE8NQY4z0rUd+ZbO8AXPyfPFtvLTz65xl2bFy/9d95553z2p7+9JXJB7z66qtnTU9MTPCDH/yAa665hm3btvHYY48dm/fe976XW2+99dj0xz72Ma69du7DGzZuTDvr+uuvP9b20pe+lP/9v//3semZ4860bdu2k9qOo9785jfPC0V7wQtewE033cQ111wzr3+j0eCuu+7iH//xH/nIRz6y5NhvfOMbZ4WidXR0cNNNN/Ha176Wtra2WX0nJib427/9W97+9rdTLpcBuPnmm3nmM5/JL/zCL5zk1kmSNEO1At+/Y+F5ex4k/vI24q++DiYrMNwH9To0tcLAoZQ+0bWJ8LP/jnDDi1aspBgj3P89uPfbxEN74fB+woVPJpbHoNhEyOag1AytnTAyAK0d0LUJJkZhZBAGj0BXT0rFaGpJP4gaGzA6BCODxN7dcHAPPHYfHJpOOysBfwTQvQWe91LCb91MKCzxY6prZHdf5K/+V+SbD6cgkPM7UkjJ4AR88+EU0Lap7WhQSqC5yLHAl3ItBXMEUkjH4/2RpnxqbzRS4Ee9AQeGUrjIBd3Q1ZxO1K41oG80hbFsboNrLgqEkMJpKlMhL22lFDLTWkwBL8PlFCoyPpmCRNpKKVgEUttENQWq5LJToTeTKXTnyGhk55bAhpa03rEKHJkK47ntzki5uujukSQt4ZOvz/DiqwOv+5n0/HpgKD1HbGyFENY2fCPGeGydk7X0t/1oWFg2MxWQdZxAkEYjEoFs5lwKDjnxbe0djjzUm56HxyZT2FyY2s/F3OxLLguD4ynQbEsHlPJnzr6NMfJg7/Rrjgu60/F0eGR6W3vaTv1YjzHyo31w775IPhtoKqQgm3w2vY7a3D79+uVJW1LoTaMR2TeYgvFqjbSPJ6pw0cbUb/8gnNcJl/TAwWF49HAK6qnU0njbuqZCCxtp+ZnXR2/X6inQrbtlOgwuMuN2TNONmG7PvF6oLZJeH868PXf5BZc7qTHjiY85p6aF6lup5ZfalrjAWMeWm/obtS77fIWXnzvWyZj5933m7WxIwZFH/+QfHD658c9UIaR9Wsilx/3R/Xs0OPPofVLMpfDsXCb1a8rDvftT32IuhZbuH4Le4enlN7SkfqWpy8zbMcJIJQV9Dk+k924j5engSJ2cSi097xwemTtnsR27+A5vLswOS2svTYWulcKx8LTpNmifap/dlt6fZ86p10qSdG7ybHZJkiRJ0nxLfclpqdA0SZIkSZIkSZIk6cxxH3DdjOlLOLFgtIsXGG8lXDln+tEY42PLXTjGOBZCuAu4YUbzM4FzPhhN5469e/fOmt68eTMbNmxYkbGvuOKKBdd3zTXXkMvl2LFjx7H2zs7OWf22bNkya/5cra2tx26XSqVZ85Za7mTdfvvtvO9975vV9u53v5s/+qM/WnSZTCbDddddx3XXXcfNN988r86jPvnJT3Lbbbcdm77wwgv52te+tuh2NDU18eY3v5lnPetZPPe5z6VcLhNj5Pd+7/d44IEHyGQyJ76BkiTN9LQbUhBY/8HF+3zmg0sOEb/8CXj9LYRXvPWUy4nVSeI7Xwl3/PPs9kVur4r+g/CP7yX2HyL8v7cdv/8MsV6HRj19n3DwcApqO/9iGOmfDm4b7odiE2zeDhvOB6bSBvoPpvnjIzAxli7DfVzQd5C/zmThsrZ0f1102ZqH2aynZ17U4NW3eba+JJ2oi7O9vOAbt9L43L4UbprJsqXUDLkCcXyYODYCLe0wNgy1agoTLRThwG5o64Tx0XR99Lktm4Mj+4EI2TxUJ6HUlAJTi1MpmF09afrwXii1pOe7fAE6U/B5HBsm9Gwlf9kzyG/YAn0HoFKGoT4Y7p/9fD86lFJe6jVCezexPA7jI4Rsjgakeob70nNnow5NbSnwdbg/BaI2tabrfY/CxvOgrzfVkc1CrQZbnwAP/xAKpbR8rZqCVtu709gToylcNV+E8WHY+0ja9tzU9ux/DHbfn7bvBa9Mz+UT43B4H9RrKbi1tSPt4wO7UnBrvZa2iZCuj14KpdQvNqBjYwqALTal+6AynvZv34F0X1UraazKRKq5Vk1hsY36VOppkZ62LnrqNSiWpu+/Rn327UYd6g1iSxsdnT10bN4OIUPj6GuMRj3V25j6MYWRgVRnvQb33gXdm+Dya9P+nrr/UqpPBtq6p7ZzSiaT9sXYcNpf+WLax7XJdN1oTK+vfvS6loJsx4Zgw5a0b4+Oc8GTCBddBlsuYGf35rS/hmqwvwa1KheWJ2B0EM7bARvPIx7ck+prNGbs90xa/8Ah4lB6fFCZSP36DsL2S9J2VCZg4BBXVCa4oqkVymPp2C41pWVCSPfHwKH0+q86SWPqvt5ar6Vw4WolbUeukI7LEHjyxGjaHx0b2N7cyvZIegxOltNjIpOZPk4yIa1r41YolgjXvwg6NqT7vjqZjpsYob+XeGgvYdO2tM+6NqVxZqZaHbsdZ0/PvV5O37m3T3acuMAr/VOp61jKFBDmtGVOcp3H7bNAfae6nccbbznrnNEnHq/PQvt4xvWxQDgCjRiIMdIgEDM5stlAMZ+l0dSajslalWwum/7eZnPpsZHNTV9mTWfJ/v0vzt/uKR961j10jB+g0dJJpWUDBWpsyo/TnJmkQoFGtQqZDDtaxskXcsRaDRp1+icL9B4uM1ZpkG9ro5Zvolxop1TI8JSWw5yfH2GYZpoH99EysIdKI0ulPEnjyEHquSKN5g4aA0fIDRzksZYn0t9opVQe4MLKboY6L+CBrmugtYPYtZl97U+iXM9Ao0FbY4Se7AitXe3Q1Eq2VqaVca7oGCJfK1MsD5KrjlOu5yiWB2mQIVz0ZEJlgpDJQHsX5PLEzs3EiTEyI33pPjq8P/1tqlVhdJD4wPfTc9BkBZ74U4TLnwlbL05/b6qTMDZC3DX1r7lMBqoVQltX+tswI3Azxsh4PcdILcdwLc9wNc/IsescI7UCw7X81PwCI9Xc1PRUv1nXhUXvRy3P+FTIeO+8sMATD1lrzU7Snp2kLTtJey5dt2UnyYbIUK3IcL1AyOXpLlXZ1p3h4s4qV5b2siE7znjrFvbX2jk8UOWi2m66myOPNzYyXoXNrQ1am3I82lvl4GQrFErkMpFaI1Cv16k1MtTzTdQi1Kt1apk89RhoCxM0F+BArZ09IwU68jV+6RnNvOTqsO6fb8RGIz1PZ7LQ3JZei4wPp+fgkQHo2EhoaSdWJ9PrgnoNHn8ovSaA9JlPeze0tK/ptsRGI4X9T4ylv6f5ArR2Eto6j7+wpLOCwWiSJEmSpPnySwSjFZsWnydJkiRJkiRJkiSdOe5ldjDas4B/Wc6CIYQW4KkLjLcS5n6Te4nkhkXNXWbjSdYinZH6+/tnTXd1da3Y2KVSiWKxSKVSWXR9Z4qbb7551vRv//ZvLxmKNtfc4LejYoyzxs7lcnzuc59bVrjb0cC1P/zDPwTg4Ycf5jOf+QwvetGLll2XJEkLCbkc8bn/Hj7516c0TvzA24n9vYTOHigUoLk9BXlUJ1Nww8bz0wmmPefDob2pPZNNoSOH9hJ7H08nbH/lU7D34RXaulN0+z/QuP0fYMuFKVhi68WEHZcSa1VCNkccOpJqHTicTlQfPDQdHrJcISwcgHAc8eIr4NF7ob2b8Kq3QaNOHB8lNE+F0wz1pZNis7l00m6tmgJAzrsQrvxpQs/WE17nvBqG++HIAThvB6GpZeE+MaZ15/KzThCOjUYK/qhOpoCTo4b60v4MwKZthOY2uppPudQl5bORan3+ycuZAI0Zd01TPlLKQ4ZIvQFj1UCtDpFAJkSa85FcJjJYzh5bZmtnpCnXYFtH5NKtWcargdHhcfpG4fAIPLF1hGypyGQo8OhQkR8fzM6rA2BDC/S0waGhOhtKNTaWakyUazRqNbL1KiOhmdFajiJVag0gZNhSnGBLW51iU4GvP97Mkcnlf8d1e3uVbIBGJksx06CzNUuDQFMe7j8II2XY2AqFHBRz6bqQTbfzWegfh4ExqNRgSwec3wG5LGQDZDOQywYKWegfi0xUodZID51sBs7rCNQbMfXJpUOhfzxSyKZ91jeW9kc+CxtbA81FGC3DaCUei3hobwrks9P3X60OtUbkwBBU69BWgskafPM0+VOjs0Muk47llZTPQr0x+2/Rcm2u9XLbrt+geO9dK1vUCjiZqMtTjsd87Cfz275/x6mOmlQn4bP/bWXGOlnjI7OnD+5e/XWODMDuB1Z/PQCjQ7OnH75n9YNyv/ullR9zsjL/vhrqS5fl2PcoAPE7/7ZkN+NktRqmIh1Z6icaZs47kePwxk3/mfdu+P157ZdW7uM1f3ftCYw07Xxg/s94zHb0n0MRKExdFtK9QNtTTqqq6fUdPTNt0X2WyRAajeXtx4d+QPzCR5e13oU0T102L2ddS2gQGMu0MJxpZyTTynCmneFMG6PZNoYzbYxk0vVwpo3RTBvD2em2kaPLZNP1WKb1+CvUkkbrBUbrywyrO3D0xkKfE+xYmYLm/Ys3z//4QQQiT2I3bYzTzjhtjFNikjIF2sIEO3mcPHXy5WGuOng7143fRZ5aCmtt7YShIxwLrs0Xpl8zZDLTn8+EkM75bOuCXC71naykz6NGB2d/jpPLp88w5ohHx1nq85t8gdi1eToouDIBHd0paO2H30yfgeQL6fOxo0Gw2akQyfYNad7R0Nujl0Y9fUYyMZrW0dqRPp+arMCRfWmchWp92vWE17ydcOVPL+vekXRmMhhNkiRJkjRffokPBZvb1q4OSZIkSZIkSZIkafV8EXjdjOnrT2DZn2b2dzC/H2PsXYmigME50wufeb+0uWdTjJ5kLdIZaW5Q2WIBXiers7OT3t7ph3xf3zJP7DyN3HPPPdx5553Hptva2viLv/iLFRn7q1/9KvfeO50V+fKXv5ynPnVuluTi3vjGN/KOd7yDcrkMwOc+9zmD0SRJKyI87zeIpxiMBsAn//rsDGI4uDtd7vvuse1bse08iVA0IIWiAQz3E//6rdPDLXe1MB2clsunE3O7p06Fr9emw9TqtXQy78RYCrIbH0lBKAuNB+lE4YsuTyf8jgxMB320dhCLzVAemw5Em2mxk487e+huPBm2/q9Ft+WLu38RgH35reRjGiMQGcp0sLl+iAaBQpzkssp9bK/uJRCphjyD2U5aGmN0NIYhm6XcyBGIFPKBsdhES32Y0GikE65rkwuG3kWgRo4cNWZGqw1l2mlvDDM/bu349uXOZ3d+O531IXZUd9McJ9JJ3JWJkxhtWo0s95SewlCmndZslc1Pv4ruOExvpUh9cpLOyX56hh8h7HtkwfuCfCHti+zUieRtnel+e84LCa0dUK8T9z8Kux6E3j1pmUwG9k+d6J3NpeM9l0/HQK6QThZvbk3XE6NpvYeK6Vgrj0N/L4wMwuDhdCxCGmvTNqiU0zEbYzrxPGQgTiWsNRrpNgE2bEnL1Krp+JysQF85Hcu9u3hspMi3mp7FUOtWWijTUumnVBvhcNsT2M8Gzht5hCx1vld6Gn/f8TI21PvJ0CBPnQsyhxjPt1PMNBgPTWRqFY40WtnQGODi7GGqjUA15OkplOmoHKZ54ggtjXFaKaddUhkjW6+SaW7mUKabMiUyIZIZGyTT1UP2p64jU2oiMzpIGB2gqTIAITARC9TLZTK1KvlGhTFK9MZOamQphiq5WCOWJzhSbaapMU42l6VYyHA3TybbqLGxvI/O8YN05yboLNQglyOTzdCaq1PMRfZmtnB/ZTMxBFor/TTFCfLUOBK6uCt3JY9mtlOJOVoKkVIOMtlAUy6SpUFXrkxrZpKxWpZ8pkExGylm6hRr45RyDYotzZSydUpU6Qhj5GsTlAcGuH34idxduXDWIdccKjw99yjPiPfSGifozFdoClWKpRwjjRIj9QKhMk5LuZ8L9n+b3p4riG3dDOa72XzhZrqf/TNsKZVpG+slOzZAKBQI+QIBGKtliUB26DDnVQ/Qn+0m09YB+Tzn9TRRHR5i93gro9lW6mTY1Ohj71CGA+NFtrdN8qS2YXLNLeRCg3y9QmFigGyIVIutxI4ectsuZiQ0U29AcyEdepAO16N/9iu1yOBYpFgdZWOhTN+BAeoxUGnupqm7ky1dOTKZQLUW6RtLYY2lPNRrDe49GBgvR0Ym6jy4r8Zgvcjw0AQtP/w3Cnsf4JLJR3jJyD/R1vBjL0nS6e8vD/2nBYPRXjt42zpUc5o40cDt00CGSFtjdEVef9TIMpppPRawNh2aNiNgbSpEbWTRILbUVs4sPyBa6+MBLlx4xswPOIrAhW8B4Nnjd3J55T5GMy1szB2hFMucVzvIwdwWHuq4hEoo0tYYoRryfLo9/f/kZ8a+zrbaPrKxTrE6SQyBkdZWNjb10dYYmfp8YJRqKNCX7SYfa+RijR3VXWyop/+r1UKOC6p7yMUak6HIWKaZ/mw3dTKUMyWOZDcwmO2iMZyhZXCMWshR6J+kQYbHNr2BQKS1MUopVviZyjfYk99Oo5Gh0cgwOtBCjhqbaoe5oPo4hVilszFAV32QOu1Mlgo8WriIkUwb2ZE6IUa6mgeZCCVGM60MZDupkSOGQFt9hI5Hhhl/5z9x5AUXMNC2nVw2hVv2DsMjhyPDEzA+CQeGoLMZJiahuwU2t8P+wbTrWwop6HxrZyCbSWHNh4YjD/RCSxGa8ikcvZibfs/TiLC7D34yFbaXz8KmNtjWBWMVqE+9H2oupLDyYh62d6WQ6UMjsG8QJqrQVoQjoyk8/TXPDrQWU9h6/xgcnAo839ye+sYIwxPQNHXK7/gkPPdS2NAS2DcYeegQHBqGf3zdUtGe0pnJYDRJkiRJ0nz54uLzmv1FCkmSJEmSJEmSJJ0V/hcwARw9W+BZIYQnxxjvX8ayr54z/c8rWNf+OdNPCiE0xxjHT2CMp82ZPniKNUmaIYSTiX44vXz5y1+eNf2yl72M9vb2FRn73/7t32ZN//qv//oJLd/c3MwznvEMvv71rwPwjW98Y0XqkiSJJz0Nrr4BvvfV9a5Ea6k6OR1QNjoEu+479TFjnA5tm2l0KF0Ws1AQF8DgYc7LL34i+7PH7+Tnxk/8uM3HGs21GUFj9Tol6un2JLRSmZ43WV50nADkqc1r72gMn3BNR22t7Wdrbc7b31MMRQPIUedp5R9MN3z128D89PBFzTxeAPqn3k4/8qO1DUSs1+HA7qkaTj2H/SLgoupumHuXzTlcXzX0P3hf7x+c8vqW7RDwwNqt7kTUSSeUZ1m5wI6bp8b9cfEy+rNdPHHykfmPg+MZ/dfp298D/mn5i86NDC8Cl89pu+Q4Y0Rmn5TcDtDZkyYmy9PBfTFCbFBq1Omo14/13zyvqB4am7aRrUywqVpJy1cqMNDLs082VFOSpNNQhsijD+3kVed/mDubr6O9Mcwb+9/P7/X/1/UuTeskR53OxhCdjSFg3ymNVSWXwtSyM0LVMu2MHgtbmxGqNjV/5Fi42uwgtmoorMwG6pTc2fxs7mx+9gkt8/WWn1mlak7ORzv/n7VZ0XfheBH6vVPvhYfLsGvObx090Hv85ZdSraews31zf/pshu/tXnqMv/jiia//E3fD3Lo/8IpIR/OZ/z9MaSaD0SRJkiRJ8y0VjNZkMJokSZIkSZIkSZLOfDHG8RDCp4CZ38r+I+A1Sy0XQtgJ/LsZTTXgH1awtHuAAaBraro0VeMHlrNwCOGFwNY5zd9cseqkM0B3d/es6aGhJcIpTsLg4OyzG+au70zwrW99a9b09ddfv2Jjf/Obs//kdHd3s2vXrhMaY2ZI265du2g0GmQy/tK9JOnUhBDg7bcRX//TcOjx9S5HmmVHdQ9PLd/DPaWnzpu3c/LhdahIOretZCDa3HGfWlkgWPFMNnj41JY9leUlSTqDXFDby1f3PJ+x0ExTnCCzttG7OovlqdHdGKC7MXDKY1VCgeHMdJjayLFwtekAtWPX2dn9RqbC1Y621YNxNtJaeugQPH3HelchrSyfSSRJkiRJ8+Xzi84KzW1rWIgkSZIkSZIkSZK0qm4CXgoc/QfZq0MI/xxj/NxCnUMIJeA2YObPpX84xvjIUisJIcw9u+WGGOPXFuobY6xPBbb91ozmd4cQ7owxLnnmbAjhAuD9c5rvjDEeWGq5c8W2Lnj0zw1WWgvbuo7fZzXNDSobGDj1k4GOKpfLlMvlWW0bNmxYsfHXyoEDs/8sXH755Ss29uOPzw6aufbaa09pvEajweDg4BkZQCdJOv2EjecRPv0w8ch+4if/Bnofh0Z9ukO1ArsfgO7N8MN1yBfeeRXECBOjMDYM5fFUU74AxWYYHYRadbp/vgDVyXS71AzN7ZDNQjYHLe2w8yrCRZfCjkthw3lwz53EW/9g7bdLy/LHR/6Kl237+3ntLxn+9DpUI0mSJGk1tMTx9S5BWlQxTtJTP0JP/cgpjROBcigxnGmfClGbDlVLwWrToWujU0Fqaf5CbW3E4P/3pON5+FDk6TvCepchrSiD0SRJkiRJ8+ULi89ralm7OiRJkiRJkiRJkqRVFGN8NIRwK/CWGc2fCiH8AfDBGOPk0cYQwqXAfwOum9G3D3jnKpR2M/AKoGlquhP4VgjhPwF/F+Pss2ZCCAXgN4D3ABvnjPW2VajvjJTLBnbM3Ts6K23dunXW9MGDB+nr61uRALMf//jHx13fmaCvr2/WdFfXyqXZzR17JYyMjBiMJklaUWHj+YQ3/PmSfWJ1kvjqq2HPg2tT0++9h/Dv33TcfrFWhWyOENKJjnFkAAiEts7jr2TnlVCZIH7oT6FeO8WKV0A2l76TWGqBI/vXu5p192sjn6b/QDc3bnkPtZAnE+vcdPhdPG/sS+tdmiSd/i6+HPJF2HpxChONEWIjPdeUmiBXILR2EIf6YGwEQkjhqI06dPZMPy+2dqTn1EYDcvkUNFqZgLERYnkstQ8cgslyGhugUITxUTi8H+77bpo3UwiQyabrrk0pgDWTTfMq49B3MLXHmPr0bE31TIxCUyu0dUJ7d1rf+Ggav3tzClAd7oORIRgbSsvmCjB0JN3e9+hUfaXpmi57Blx2DQwPpPVVxtO8GKGlIwWstnWlgNbxEfjG59K6N22DzdvTvh0fhpHB1DY09RlAsQk6NqRlW9oJLe1AnLof0iX296Z9P3QkjX20tuZWGDyStrm9Gy6+nJArQPcmqNeIvY+n/Z4vpNdApea0bL2e2mpVyGTSPs1m0/XM20cOEI/uJ6Z+vyJOXTcaMHh4uv6WdqhNwoHdcHhfuk+fcAWcf3H68fkDu9Jx0dYNXT1puaPK42m/1ibTsh0b0kyITZMAACAASURBVDE5MpD2VS6f7sPMVIjtVH0hk0mv55paCe3d0NRCPLgH7r8bHvg+DPfPPp6y2VR/ozH/cVBqhtbO6f3OVL9MFto60ryBQ6nWYgk2X5iOs0IpLVsopuX6DqZjqrkdOrrT/Z7NQlMbtLan4N6Bw/8/e3ceZ9ld1wn/86u1u6v39JI0WToJwZAQNuMy4AMqKEYeZH1kBpwRQVScBR/hUXFhURllEJ8HBQcHWRwEZHBhGR1FeAgOZJAJwQlZYJIQkgnZOp2kt3R39fKbP051ddWt6u6quvfWrbr1fr9e59V9zj3n9/vdc3/3c6tOnfpWsnFLytk7m1N6163Na79xS7JlR/OaDI8277GHdyXjh1MPH0yOjKeMrErWb2rm3IkxHjua+oG3NOd4Nus3N18zpiZloJm3hx6Z/n6b+Pp48t9p/y/d3Wfqvp3a54x9Tmlu0cY1y/gWsk+n25vTPpm5fqp2pu5z8EDzfjh4oHlfP/xA817ZsKWZ30ePNPl1Yjl6pMmnaestj8/FwMDs7/NTWb22eT/PZt2mic+WI01+H9jbfLat3ZisWdfk1Oq1yWVXNu/3kVXJHV9LbvrS3PvvhpHRZPzwzO3DI02+DI80Yx1dlaQkd38j2Xx2k9cznKJQUOv8ON32U+27VNqeT3+nanu+bZym7ZLmh5yrk2yf3Hf/xDLlD7fMoe2a5EBdnX1lLHuzJnszln1ZM7nszdiMbUeO1mw5dE8GjhzMAwObc8Po5bl+1eNPMd4ze+Kh/5GRejhD9WgG67EM5cS/x1JSs2twS/YMbMhQjubm0ccuuB9oxy3393oE0HkKowEAADA/m7b3egQAAAAAAADQSb+U5PIkV02sDyf5/SS/Vkq5Lsm+JBcleXKm/5bAeJLn11qn3L3fGbXWu0opL03y0SQTvyWZdRPj+nellC8nuTvJ8SRnJ7kyydpZmvqVWut/7fT4YKl7ylOeMmPbtddem2c961ltt33ttddOW1+9enWe+MQntt1ur5VT/gLT/I2Pj595p3mqJ35hGQAWURkeSd7196nv+83kxi81v8S+Zl3zy+lHx5tfJN+zO9m/p/ll7D0PLLyvn3xj8vyfmdu+Q9N/ybusm1+B0/LS1ybf94Lk5i+n3vSllHMfnaQmD+9OPfxIcvO1yT23N4VLtpzTFPLYuC1lx87meW7ZkWx7VFPQ48h4UzxjYKI4xcatTdGKo0eaogHHjzeFNR6892RhjPWbm1/KX7MuZWR02tjqF/4q9Qv/ObnvfzV93fSlpqjAngeac3/2BU3BkgN7ThbBGBxufiF+aLh5LR5+INn/8LzOyVLyMw+/Oy/d++HcMHpZHnv469l4fE+vh9R7o6ub13j/nmaObd3RvPcOHmiKOAAr22XfmfIHV6cMDp5535yyvEhHj60HDzRFyY4fa4p7bdjSfF2xwi303HfiikXnrnp0R+v4pq7Xwweb/wwOTSuOmyT1wN5k9z3JkSPJ5m0pm7Z1faynMpdzfKZ9ynNe3lwD2r+nKZ47ONR8bTe2fsbXjbBc1WPHknu/2RQrW702ueV/NN9PXfS45nPjvjuT9WelbNqa+si+5PCh5v0wurr53mpgIGXz9tSjR5vvi8bWT36PWMcPJ1/7clNQ7MLLJnosKaOrFjbWWpMbvph867bm+7nVY82YR0ab7wUHBpvvk4eGJ4tXZmAwWbsh2bil+V5u9Vhy/11NQcXR1c2+j+xrCrQ9eF9TnG3jlpPFFA8fbL7OP/v8lA3NHzqpD9yTfPWa5nvJx313ytSilKwY6yeWhfyZmhPvl/27bsuRkbUZ2rw1I8cPZfTYoTxy4HDuGl+XgbF1Gd+zN2vGH865Zw2l1GMZGD+Ysmlrc/1h7DHNfB9Zlex7sCnat2pNM6dPFEfdd19zvePwzfnmdV/Pn9y0IffWTdkxciAbBg9n37Hh7Ds2kvvH1+Ta/dvz1QNbU5f8VyksJ7ft6vUIoPMURgMAAGCmrec2f3XqoZYy8SOjyXc+szdjAgAAAAAAgC6otR4rpfxokj9K8uIpD21L8kOnOOz+JD/ezaJjtda/LKU8N8l7MvHH1CesTvI9Zzj8QJJfqrW+o1vjg6Xs/PPPz/nnn58777xzctunPvWpjhRG+7u/+7tp69/1Xd+VkZHl98vNW7Zsmbb+4IMP5lGPWsivFM3e9t13350kWbVqVR555JGOFl4DgMVU1m1K+Tdvm9O+9fjx5hfZ9+9piqHU48l5lzS/rP7IgWTHhSlr1qbee0fyxb9tfoH2in+S8qiLu/wsZio7Lkp2XJTyjP9r+vZudLZpa5Ir5rRreeqzU5767La7rPffldx9e1Og7djRZnloV+rtNzav0eq1TfGAiQIjGRpullVjzes2uropxnbsWHLsaOo3v5Zy7qNTDx2YLIhXLrys+YX/E0XgNpyVPHBPUkpTxG10dfML08MjzS/873uoKRQ3PJqctb0pOHf0aFMU4f5vNfufe3FyYG/WHxnPU8YPNX0NDjW/WL1hSzK2bqLgwEThgYHBpnDCoUeacSRN20fGmzGMH0oOHZwoXHe4KVB38ECz35q1zfEDA0lKcnB/MydH1zRtD48mIyPJ0Ehz7+iJIgV7H0q+dm2yZ3fqoUeaQj/nPSZZt7E5H+OHmuWBe5rCBY9+fPLQrua81tqcgxNFD46ON30myV23Jvv3Jhs2N8dt3JKUgaYQ2qo1KQMDp3699+9p2l491jyXq/889SufS47Xpo/hkeb8jq5uiiisWpNsO68psLZmfVNI78jhk3Pl2LHk4IHUv/9Y89o9sr8Z84nzVQaStetTrnhqsv28Zk4dO3ry34OPpD50f8rGrc25O3igKWpxcH9z/k+0c2BP8vDu5jW74NLknjua12jz9qbAxYYtyeBQ6pHDzfMbP3Ty2InxlDKQ+sje5nU5fqyZZ+s2J2vXN/NvZFXK6rHmvA8ONoUskmbfgcFm3h/cn+zfk/rVa5JHXZxy0eMmCg0+3BTaSW2KbBx+pNn3kf1NkZodO1PO3pkMjzSFefbvaR7b9qiU9Zua99PAYPMaHDvWjCc19b9/JvnMf5r+Ig4OJWdNFGLctLUplHFw/8TrurbZtv28iRd8omjy+KFmXp91dsrY+tQ9u5tjJopFlo0T3/McGU/GD6c+eG8zF1KasRzc37x3Vq1O2X5+6u57k6/+t+Tm/z6/wJl4XkmasR4Zb4p9JM28WzXWzM39Dzf9DQ6dfD3H1ic7H9sUobzthuY9tPOxzRw7fqzZ98H7ki/+zcT7dt3Jtudr89nNa3hg78KOX4oGB5MnPi3l1z8056Joi6WsHksePbfPPjiT0xUAKmPrmyzpI6WU5uuKEzZt7d1goAvK4GAy9XvAy75j+g4XXHpy3zXrms//E7acc/KxoaHme5CpbY+MJo+f+UdDFjzWUpIr/kmztOPE13EnzLOIY9lyTvJ9L2xvDKxoJ94v66a9Z4aTrMvYpuTbTmzavjHJxhnHzzC6Y/r6+s3N9zJTXHjx4/JrZ2jm0JGakcFkYKDkjt01f/blmr+7qebevcna0eSsseT+fcmBw8ldDzfrG9ckj9lesnFN8tW7aj5/68n2HrM9+fYLSr56V80Nd0/v6zt3JoMDyQP7k90HktXDyc6zktHh5KEDyb7DybHjyaEjTZ8DJVk13Cyb1jT/JsnYSNPGbbuSi7YmOzYkR48nDz/S7HPdyR/LpZTk3I3Nv0eONf2OH03GRpM1I8neg8nho9PHOTyYnL85+ebuZjwnnLMh2bH2SEZuuTY1JfsG1mXf4LoczVBG6+FsOfZABurxjNUD2XZ0Vw4MjOXhgQ3ZeeSOlNQMpObSw19LTcn9Q1tTUrPu+P7sHViXvQMbcqQMZSA1ZWI5UNbkWBnMjiN3Z8ux3TlcRrNvYG2OlaEcK4O5ZvV3Z9vR+3PloetysKzKhuN7M1SPZuz4gQznaPYOrMv9g1tTy0BGjx/K/omxHi8D2Xx0d/YNrs8fbnrl5PMbrEez5djubBg4mNF6OAP1eIaPH87WI/fn9qHzc7CsTi0l/2vo3Kyqh3K4jGZ1PZiakk3HHs6jx2/NJUduy9Mf/WNpbiWA/qEwGgAAADOUgYHU57w8+Y+/Pf2BH3hJ88MzAAAAAAAA6CO11v1J/mkp5c+SvCbJd59i1weTfCTJG2qtXf+by7XWvyqlXJbkp5O8IsmZKibcl+QDSd5Ra72j2+ODpeyHfuiH8h/+w3+YXP/ABz6Q3/7t387w8PCC29y1a1c+8YlPzOhnOTrnnHOmrd9000254orO/NL29u3bJwujHTp0KHfeeWcuuOCCjrQNAEtZOVGsaOOWZjmh9ZfVz74ged5PLfLoVpay7dwZv5ScLLzwW2n5t6Muflx7x194WWfGMVfbzp0s9jPn8zHLazHDzscueEhl7YbpG5754pRnvnj2nefT7rNesvBjz7DeTlvzfbwT/XRyDOXZL0ve+IHUR/YnI6NNkcIOaHeMUx+v44eTe25vCrolTbGzA3tOFiYZP5xs3ZFyzs4Z7dRam0KFQ8MzCkTXWlNKafYZP9w8/wUUka4P3JNc89fJ+MHmj2FvP695nw0MNsXChkdPFpBLmrEMNwW967FjTVG4h+5vCjgceqQpvjY41LQzNlHg8PDBZp99DyUXXZ6sWZ8yONgcf/3nU//mg815WbU6Zdt5E8eub/ovAyeLCKY2+20+uykcNzTUFIzb+2DT7923p+76VlP4adO25jmU0hSTGxqeKCK4rykId9bZTZHILec0Bfe27GgKxgAAwDK0avjk9wIXnFXymh8sec0Pdqbtg+NNcbR1o8m3nZ1F/eM1d+6uTVG0TTP7PXqsZnCg2X7seM2ufU2xtGM12bwmWbsqGRxojnnoQM0D+5tCaaPDJfXo8dTve8aiPY9ue+e9r87+MpZDA6ty1rHdc/6++sR3erPtX7ZdmeRJnRkgLBEKowEAADCr8pNvTEbXpH7qg81finvac1N+8k29HhYAAAAAAAB0Ta31z5L8WSnlwiRPTrIjyViSe5PckeQLtdbxBbS74LvNa60PJvmtJL9VSjk3ybcnOSfNnywvSfYk2ZXkK7XWW0/ZEKwwr371q/Pud7+7+YXzNEXN3ve+9+WnfmrhRUje/va358iRI5PrY2NjeeUrX3maI5aupz71qfnoRz86uX711VfnxS9uv3hEkjzlKU/JV77ylcn1T33qU8v2PAEAAN1R1qzt9RBOqYyMJhdcurBjS0kmipDN+tiJf0dXLXx8W85JfuQVCzt2cDBZu6FZkqZ45/bzpu80tDZZszbZtHX245/09JQnPX1B/U+aUjBx8Uo0AADAyrB6pOQ7dvam7/PPOvVX+EODJx8bHCg5e8Mpd82msZJNYyfXy9Bw6tqNyf6HOzHMJWFtPZC1xw7M65jTfv/0zZuTb1MYjf4y0OsBAAAAsDSVUlL+xS9m4E+uz8CHbsjAz7w5ZUh9bQAAAADoqme/bPbtq8dm3w4AdEWt9fZa65/XWn+/1vrbtdb311o/u5CiaB0e11211o/XWt81Ma7fqrX+Qa31o4qiwXSXXXZZrrrqqmnbfvEXfzH33Xffgtq76aab8ta3vnXatp/4iZ/I5s2bFzzGXnrmM585bf1DH/pQ9u3b15G2n/WsZ01b/6M/+qOOtAsAAAAAAMAKtXNhBaxXinr7Tb0eAnScwmgAAAAAAAAAAEtEecGrZt/+8tcv8kgAAGD5e9vb3pY1a9ZMrj/88MN5wQtekP3798+rnV27duVFL3pRxsdP1kY855xz8vrXL9+v0y+//PI8/elPn1zfu3dvXve613Wk7auuuioXX3zx5PqXvvSlvPe97+1I2wAAAAAAAKw85ap/3ushLG133NzrEUDHDfV6AAAAAAAAAAAANMpjnpj6E7+avO83T278zh9Inv/TvRsUAAAsU5deeml+//d/P694xSsmt11zzTW56qqr8uEPfzjnnnvuGdu45ZZb8sIXvjA333zylwkGBgbygQ98IFu3bu3KuBfL61//+jzjGc+YXH/nO9+ZCy+8MK95zWvmdPyePXsyOjqaVatWTds+NDSUX//1X89LX/rSyW2vetWrsnHjxrzgBS+Y1xg//elP56KLLspFF100r+MAAAAAAADoI895Rcq+h1P/0+8lD96XlJJsPz85+4Lk7m8kA4PJhrOSoeHkyHjz+DdvTradm5z/mGTtxmTN2uSBe5KH7k+OH09WjyXrNycH9iaP7E/2PJAcPtg8tn5zctb25K7bknu+2YzhrHOafY4emT62gYHmmNkMDjaP1dq5czE0nIytb577zsem7Hxs8tgrO9c+LBEKowEAAAAAAAAALCEDL/+11Kc9L/nqNcnOxyZX/JOUoeFeDwsAAJall7/85bnuuuvyzne+c3Lb5z//+Vx22WX55V/+5bz0pS/NeeedN+O4W2+9Ne9///vzO7/zOzl8+PC0x97ylrdMKyi2XH3/939/XvOa1+Rtb3vb5LbXvva1+dznPpc3vOEN+fZv//YZxxw/fjz/8A//kD/90z/N+973vlx//fXZuXPnjP1e8pKX5DOf+Uze+973JknGx8fzwhe+MC95yUvy8z//87O2nSTHjh3L9ddfn0984hP5yEc+kptvvjmf/exnFUYDAAAAAABYwUopyUtfm7zkNcme3cn6zSkDA13vt9aa1DprX/X48eT4saYo25HDTYG1gcGmGNrAYDI8mjIymnr4ULLvwWTjtpShptRT3b8n+fwnm0JtQ8PJ8EgyPJqMjCZDI8mq1U3xsxNF1dZvbgq/bdqWMjLa9ecNS4HCaAAAAAAAAAAAS0x59BXJo6/o9TAAAKAvvOMd78imTZvy5je/ufnlhST79u3L6173uvzyL/9yLrvsspx33nnZtGlTdu/enTvuuCNf//rXZ7QzPDyct7/97XnVq1612E+ha97ylrfkzjvvzEc/+tHJbZ/85CfzyU9+Mjt27MgVV1yRs846K4cPH869996b66+/Pvv27ZtT2+9617vy0EMP5S//8i8nt33oQx/Khz70oWzdujVPeMITctZZZ2VgYCB79+7N3XffnZtvvjmHDh3q+PMEAAAAAABg+SulJBu3LG5/pcz+2MBAcqJg2ujqZpltv9FVyeiO6dvWbkh+6Mc6OlboNwqjAQAAAAAAAAAAAAB97Td+4zfy9Kc/PT/7sz+bW265ZXJ7rTU33nhjbrzxxtMe/+QnPzl/+Id/mCuvvLLbQ11Ug4OD+chHPpLLL788b37zm3PkyJHJx+6+++7cfffdC257eHg4f/7nf563vvWtecMb3jCt4NmuXbvy6U9/ek5tjI2NLXgMAAAAAAAAACw/A70eAAAAAAAAAAAAAABAtz3zmc/MTTfdlA9+8IN5xjOekaGh0/+N6dHR0TznOc/Jxz/+8Vx77bV9VxTthFJK3vCGN+TrX/96XvnKV2bz5s2n3X/t2rV53vOel4997GM5//zzz9j2L/zCL+T222/PL/3SL+WCCy4443jWrVuXH/7hH8473/nO3HPPPfmO7/iOeT0fAAAAAAAAAJa3Umvt9Rigp0oplye54cT6DTfckMsvv7yHIwIAAAAAAAAAWJgbb7wxj3vc46Zuelyt9cZejQcAOn2P3tGjR3PLLbdM23bJJZecscAVzObAgQP58pe/nFtvvTW7du3K+Ph4RkdHs3379jzmMY/Jk5/85IyOjvZ6mIvu+PHjue666/K1r30tDzzwQPbv35+xsbFs27Ytl156aR7/+MdneHh4we3ffvvtue6667Jr16489NBDGRgYyLp167Jjx45ceumlueSSSzI4ONjBZ9RbcgsAAAAAAAD6g/vzFo+fptJRpZThJE9Ncn6Sc5LsT3J3kq/UWr/Zw6EBAAAAAAAAAAAAwKSxsbE87WlPy9Oe9rReD2VJGRgYyJVXXpkrr7yyK+1feOGFufDCC7vSNgAAAAAAAADLn8JoK1gp5U+TvLhl8x211p0LaGtrkjdNtLf5FPtck+R3a61/Pt/2AQAAAAAAAAAAAAAAAAAAAAAA6G8DvR4AvVFK+ZHMLIq20LauSnJDklflFEXRJjwlyZ+VUv6klDLWib4BAAAAAAAAAAAAAAAAAAAAAADoD0O9HgCLr5SyMcm/71Bb35vkY0lGpmyuSa5L8o0kG5M8KcmWKY+/NMn6Usrzaq3HOzEOAAAAAAAAAAAAAAAAAAAAAAAAlreBXg+Annhbkh0T/9+30EZKKecm+YtML4r2hSSX11qvrLX+aK31B5Ocm+TVSY5M2e85SX5zoX0DAAAAAAAAAAAAAAAAAAAAAADQXxRGW2FKKc9M8vKJ1aNJXt9Gc29KsmnK+jVJnllrvXnqTrXWw7XW30vyoy3H/3wp5YI2+gcAAAAAAAAAAAAAAAAAAAAAAKBPKIy2gpRSxpK8e8qm303yjwts65IkPz5l03iSl9VaD53qmFrrx5L88ZRNo0nesJD+AQAAAAAAAAAAAAAAAAAAAAAA6C8Ko60sv5Vk58T/v5HkjW209ZIkg1PW/6LWesscjntLy/qPllJWtTEOAAAAAAAAAAAAAAAAAAAAAAAA+oDCaCtEKeUpSf7llE0/XWs92EaTz29Zf99cDqq13pzkH6ZsGkvyg22MAwAAAAAAAAAAAAAAAAAAAAAAgD6gMNoKUEoZTfLenHy9/7jW+uk22js7yROmbDqa5AvzaOLqlvWrFjoWAAAAAAAAAAAAAAAAAAAAAAAA+oPCaCvDG5N828T/dyV5TZvtPa5l/fpa64F5HH9Ny/rlbY4HAAAAAAAAAAAAAAAAAAAAAACAZU5htD5XSnlyktdO2fRztdbdbTZ7Wcv6rfM8/rYztAcAAAAAAAAAAAAAAAAAAAAAAMAKozBaHyulDCV5b5KhiU1/U2v9UAeafnTL+p3zPP6OlvWzSimb2hgPAAAAAAAAAAAAAAAAAAAAAAAAy9zQmXdhGfulJE+Y+P+BJK/qULsbW9bvn8/Btdb9pZRDSVZN2bwhyUPtDqyUsi3J1nkednG7/QIAAAAAAAAAAAAAAAAAAAAAANAehdH6VCnlsiS/OmXTr9Vav9mh5te2rB9cQBsHM70w2rqFD2ean03yhg61BQAAAAAAAAAAAAAAAAAAAAAAwCIZ6PUA6LxSykCS9yQZndj05SS/18EuWgujHVpAG63F1FrbBAAAAAAAAAAAAJimlDJjW621ByMBmJvjx4/P2DZblgEAAAAAAADQUBitP706yXdP/P9okp+stR7rYn8LuaPIXUgAAAAAAAAAAADAvAwMzLz19ciRIz0YCcDcHD16dMa22bIMAAAAAAAAgMZQrwdAZ5VSLkrym1M2/W6t9R873M3+lvXVC2ij9ZjWNhfqD5J8dJ7HXJzk4x3qHwAAAAAAAAAAAOiSUkpGRkYyPj4+uW3//v1Zs2ZND0cFcGr790+/TXpkZCSllB6NBgAAAAAAAGDpUxitj5TmJ+TvTnLi7p5vJHljF7pasoXRaq33J7l/Pse4sQAAAAAAAAAAAACWj3Xr1mX37t2T63v37s3WrVvdDwgsObXW7N27d9q2devW9Wg0AAAAAAAAAMvDQK8HQEe9Msn3T1n/6VrrwS70s6dlfet8Di6lrM3MwmgPtzUiAAAAAAAAAAAAYEVoLSp05MiRfOtb30qttUcjApip1ppvfetbOXLkyLTt69ev79GIAAAAAAAAAJaHoV4PgI5605T//3WSW0spO89wzNkt60OzHHN3rXV8yvotLY9fMMfxnWr/B2utD82zDQAAAAAAAAAAAGAFWrVqVYaHh6cVG9q3b19uu+22rF+/PmvXrs3Q0FAGBvz9YGBxHT9+PEePHs3+/fuzd+/eGUXRhoeHMzo62qPRAQAAAAAAACwPCqP1l9VT/v/DSW5fQBuPmuW4JyX5xynrN7c8/uh59nFRy/pN8zweAAAAAAAAAAAAWKFKKdmxY0fuvPPO1Fontx85ciS7d+/O7t27ezg6gNmdyK5SSq+HAgAAAAAAALCk+VN4LMQNLeuPL6WsmcfxTz1DewAAAAAAAAAAAACntGbNmpx//vkKDAHLQikl559/ftasmc8t1wAAAAAAAAArk8JozFut9Z4k10/ZNJTke+bRxPe2rP+XdscEAAAAAAAAAAAArCwniqMNDw/3eigApzQ8PKwoGgAAAAAAAMA8DPV6AHROrXXjfI8ppXxvks9O2XRHrXXnHA79yySPn7L+E0k+NYf+Lk3yXVM2HZjLcQAAAAAAAAAAAACt1qxZk4svvjiHDx/O3r17s2/fvoyPj/d6WMAKNzIyknXr1mX9+vUZHR1NKaXXQwIAAAAAAABYNhRGY6E+mORXkwxOrL+glHJJrfWWMxz3iy3r/6nWeqjjowMAAAAAAAAAAABWhFJKVq1alVWrVmXbtm2pteb48eOptfZ6aMAKU0rJwMCAQmgAAAAAAAAAbVAYjQWptd5SSvnjJC+f2DSS5P2llGecqtBZKeW5SV42ZdN4kjd1daAAAAAAAAAAAADAilJKyeDg4Jl3BAAAAAAAAABgyRno9QBY1t6Q5KEp609J8ulSyqVTdyqljJZS/nWSj7Yc/7Za6x1dHiMAAAAAAAAAAAAAAAAAAAAAAADLwFCvB8DyVWu9q5TygiR/m2RkYvNTk9xUSvlykm8k2ZDkyUm2thz+n5P82mKNFQAAAAAAAAAAAAAAAAAAAAAAgKVNYTTaUmu9upTy/CTvz8niZyXJlRPLbD6c5JW11mPdHyEAAAAAAAAAAAAAAAAAAAAAAADLwUCvB8DyV2v96ySPS/KuJA+dZtcvJnlRrfUltdYDizI4AAAAAAAAAAAAAAAAAAAAAAAAloWhXg+A3qq1Xp2kdKCd+5O8qpTy6iRPTXJBkrOTHEjyrSRfqbXe3m4/AAAAAAAAAAAAAAAAAAAAAAAA9CeF0eioWut4ks/2ehwAAAAANQ/O7gAAIABJREFUAAAAAAAAAAAAAAAAAAAsLwO9HgAAAAAAAAAAAAAAAAAAAAAAAACAwmgAAAAAAAAAAAAAAAAAAAAAAABAzymMBgAAAAAAAAAAAAAAAAAAAAAAAPScwmgAAAAAAAAAAAAAAAAAAAAAAABAzymMBgAAAAAAAAAAAAAAAAAAAAAAAPScwmgAAAAAAAAAAAAAAAAAAAAAAABAzymMBgAAAAAAAAAAAAAAAAAAAAAAAPScwmgAAAAAAAAAAAAAAAAAAAAAAABAzymMBgAAAAAAAAAAAAAAAAAAAAAAAPTcUK8HAEvAyNSVW2+9tVfjAAAAAAAAAABoyyz3PYzMth8ALCL36AEAAAAAAAAAy5778xZPqbX2egzQU6WUH0ny8V6PAwAAAAAAAACgC55ba/1ErwcBwMrlHj0AAAAAAAAAoE+5P69LBno9AAAAAAAAAAAAAAAAAAAAAAAAAACF0QAAAAAAAAAAAAAAAAAAAAAAAICeK7XWXo8BeqqUsiHJ06ds+l9Jxtto8uIkH5+y/twkt7XRHsB8ySFgKZBFQK/JIaDX5BDQa3IIWApkEdBrKzWHRpKcN2X9c7XWPb0aDAC4Rw/oQ3II6DU5BPSaHAJ6TQ4BS4EsAnpNDgG9tlJzyP15i2So1wOAXpsIl090qr1SSuum22qtN3aqfYAzkUPAUiCLgF6TQ0CvySGg1+QQsBTIIqDXVngOfaXXAwCAE9yjB/QbOQT0mhwCek0OAb0mh4ClQBYBvSaHgF5b4Tnk/rxFMNDrAQAAAAAAAAAAAAAAAAAAAAAAAAAojAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8pjAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8pjAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8pjAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8pjAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8N9XoA0Id2JXlTyzrAYpJDwFIgi4Bek0NAr8khoNfkELAUyCKg1+QQAPQnn/FAr8khoNfkENBrcgjoNTkELAWyCOg1OQT0mhyiq0qttddjAAAAAAAAAAAAAAAAAAAAAAAAAFa4gV4PAAAAAAAAAAAAAAAAAAAAAAAAAEBhNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnhno9AGYqpQwmeXSSy5LsSLIhyeEkDyW5Lcm1tdYDHe5zOMlTk5yf5Jwk+5PcneQrtdZvdrKvxVJKuTzJE5NsTTKa5N4kdyX5Qq31UC/HtphKKZuSXJ7kkiSbk6xK8nCSXUm+XGu9rYfDm6GUcmGa121HkrVJ7klyR5Jraq1Hejm2lUQOdYYcasghFkoWdYYsasiiU/ZjfpyGHOoM86yx3HKIpUEOdYYcasih6Uop56U5F+cm2ZJkdZLxJHuS3JnmnOzq3QiXBjnUGXKoIYdYKFnUGbKoIYtYCDnUGXKoIYdmZ34AveAzvjNkeGO5fca7N2ZpkEOdIYcacoiFkEOdIYcacuiU/ZgfpyGHOsM8ayy3HGJpkEOdIYcacmg69+fNnSzqDFnUkEUshBzqDDnUkEMshBzqDDnUkEOzW9bzo9ZqWQJLmsD8uST/Oc039/U0y9Ek/yXJszvQ79Ykf5Bk92n6+0KSF7bZz0VJXpzkrUmuTrK3pY9vdug8rkvyK0m+dZrnszfJB5Jc3MPXu2vnI8lwkmcleUeSG84wl+rEufr1JGf3+D3woiTXnGacuyfm6pYFtH2mc3CmZWcvz80ivgZyqDPnUQ7Joalt7uxABk1dXtbLc7RIr4Ms6sx5lEWyaNnPjx6+BnKoM+dxWcwzOdSz+TGW5HuS/N9JPpjkfyY53tLXy3p1Hnq9yCE5JIe6dj4uSfJvk3w2zQ81znQ+apLrkvzLJKO9Oic9eh3kUGfOoxySQ7O1P5fsOd2ys1fnpgevhSzqzHmURbJoars7O5BDU5eX9eocLdLrIIc6cx7lkBxa9vPDYrH01+IzfmVluM/4WcftHr0eL3JIDskh9+j1epFDckgOuT+v14sckkMrOYcWcX64P+/050cOdeY8yiE51Nq2+/Pmd75kUWfOoyySRbO1P5f8Od2ys1fnZpFfBznUmfMoh+TQ1HZ3diCDpi4v69U5WqTXQQ515jzKITm07OfHGZ9HrwdgqUnyoTY+0D6ZZPsC+70qyX3z6OtPkozNo/3vTfK3Z/hQ6NgbM8l3panCOdfncyDJqxbxde76+Zg4Bw8ucC49lOTHejD/1yb58DzGeW+SZ82zj4W+v04sOxf7vPTgdZBDckgOdSGH0vlvZF+82OdnkV8LWSSLZFEXsmg5zY9eL3JIDq3EHFrM+ZHmwvFX01yQPlNfL1usc7CUFjkkh+RQ9+ZHkp9s4/319STftVjnpJeLHJJDcqi786ON99eJZedinZdeLrJIFsmirp2PnR3IoalL316vjhySQ3Joxc8Pi8XSn4vP+JWR4T7jTzlm9+gtgUUOySE55B69Xi+RQ3JIDrk/r8eLHJJDKzGHFnN+xP15czlHckgOyaEuzY+4P28+50oWySJZ1MX50cb768Syc7HOS68WOSSH5FDXzsfODmTQ1MW1ajk0l/egHJJDy3J+zGcZCkvBY06x/VtJbkkTrkNpqv49IcnAlH3+zyR/X0p5eq313rl2WEr53iQfSzIyZXNNU2X9G0k2JnlSki1THn9pkvWllOfVWo/PoZsnJvnBuY6pHaWUZ6apBjra8tAdSa5P8yY8N82bd3jisTVJ/qCUMlBrfeciDHMxzsfWJJtm2T6e5uL2vWkqpp6V5MqJf0/YmOQDpZRttdbf7fI4kySllMEkH0nywy0P7UrylYmxXpxmLpaJx7Yn+Xgp5Zm11s8vxjhXCDnUJjk0SQ51zyNpKlr3M1nUJlk0SRbN3s9ymB+9JofatEzmmRyabtHmR5KXJNmwSH0tV3KoTXJokhw6s5rmIv+taX6w8Eiav5h7YZLLc3J+JM178zOllGfXWj+32ANdZHKoTXJokhyiHbKoTbJokizqnn6/Xi2H2iSHJsmhWSyT+QH0J5/xbVomGe4zvsUyuzem38mhNsmhSXKoe1zzkEOnJYcmyaHZ+1kO86PX5FCblsk8k0PTuT9vaZFDbZJDk+TQmbk/79RkUZtk0SRZxELJoTbJoUlyqHtcq5ZDpyWHJsmhWSyT+TF3va7MZqlJcm1OVtG7Lsm/SnLxKfZ9VJI/zMzqe/81SZljf+dmZtXDzyd5bMt+o0n+TZo3/dR9/+0c+/m5WcZZkxxKc0GjIxUL01RPba2KeGuSH5hl301Jfr9l32Oz7duF17nr5yPNB/mJNvYleU+SZyRZPcu+Jcnz04RX65i6fj4mxvDWln7HJ+b/SMt+lyW5pmXfB5KcM8d+ph73xYk5M59laDHORy+XyCE5JIe6kkNpvvE6U8acavl8S3/vX4xz0sslskgWyaKufU20XOZHrxc5JIdWYg4t1vyY6OvhU/R11yyPvazbz30pLnJIDsmhrs6PVyT5WpqvvZ6dZNNp9t2Y5OfT/ABkav/fSrKh2+ekl4sckkNyqOtfD01ty7XqU58nWSSLZFF3zofr1XM/V3JIDsmhFT4/LBZLfy4+41dGhvuMn3W87tFbIkvkkBySQ13JobjmMZ/XQg7JITnUpa+Hlsv86PUih+TQSsyhxZofE325P+/M50gOySE51L354f68uZ8rWSSLZFF3vyaa2pZr1bOfIzkkh+RQd86Ha9VzP1dySA7JoRU+P+b1nHo9AEtNkv+eptrelfM45mdnmfD/dI7HvqfluC8kWXWa/Z83yxvrgjn083MTof+VJO9O8lNJnpymYuD3dvCN+eGWtm5Jsu0Mx/xCyzE3Jhns8uvc9fMxEdz3JXlNkrE5HnNWkpta+r85c/xCoI3zcVFmflHw3NPsvzozf9D4rjn2NfWYq7v5vJbrIofkkBzqbg4tYGyPSnK0pa//o5vnYyksskgWyaLuZdFymR+9XuSQHFqhObQo82Oir4fT/KWFv0ryponztH3isatb+npZN5/3Ul3kkBySQ12dH8MLOOaJSfa3jOEXu3k+er3IITkkh7r+9dDUtq7u5vNazosskkWyqLtZtICxrbjr1XJIDskh88NisfTn4jN+ZWS4z/gZ/bpHbwktckgOyaHu5tACxuaax9yOkUMn+5FDJ/uQQ8t0fvR6kUNyaIXmkPvzltAih+SQHHJ/3lJYZJEskkXu0ev1IofkkBxyf16vFzkkh+SQ+TGv59TrAVhqkuxc4HF/1jK5/moOx1zS8sF4OMklczju/S19vXcOx2w61QdCB4PqojQVB6e29T1zPPb/bznu5V1+nRfjfGyda2C3HPeEWc7jd3T5fPxxS3/vm8Mxj5mYsyeOOZLkojkcN7Wfq7v5vJbrIofkkBzqbg4tYGy/0jK2/9nNc7FUFlkki2RRd7JoOc2PXi9ySA6t0Bzq+vmY0t4p/4Ju3Hh14jzsXOBxckgOtbYjhzo3vl9vGcMXF3sMi/x8dy7wODkkh1rbkUOztze1rau7+byW8yKLZJEs6s75aGNsK+56tRySQ3LI/LBYLP25+IxfGRnuM35Gn+7RW0KLHJJDcqi7ObSAsbnmMffj5JAcam1HDi3T+dHrRQ7JoRWaQ+7PW0KLHJJDcqg756PN8a2o+/MmnvPOBR4ni2RRazuyaPb2prZ1dTef13Jd5JAckkPdOR9tjM216rkfJ4fkUGs7cmiZzo/5LAOh52qt31zgoe9sWf++ORzzkiSDU9b/otZ6yxyOe0vL+o+WUlad7oBa60O11kNzaLsdz06mzeMv1lo/P8djf6dl/Sc6M6TZLcb5qLXuqrUeWMBx/yNJ63mby3xakFLK6iQvatncOsdmqLX+zyQfm7JpKM2cpk1yqC1yaHofcqhNpZSSmXPhPZ3sY6mSRW2RRdP7kEXTLZv50WtyqC3LZp7JoRl9Lsb8ONHXPYvRz3Imh9oih6b3IYc6569b1h/dk1EsEjnUFjk0vQ85xILJorbIoul9yKI2rdTr1XKoLXJoeh9yaLplMz+A/uQzvi3LJsN9xp+0lO+NWankUFvk0PQ+5FCbXPOYNzkkh1r7kEPTLZv50WtyqC3LZp7JoRl9uj9vCZFDbZFD0/uQQ52zou7PS2RRm2TR9D5kEQsih9oih6b3IYfa5Fr1vMkhOdTahxyabtnMj/lQGG15+0rL+upSysYzHPP8lvX3zaWjWuvNSf5hyqaxJD84l2O77Gkt6387j2M/k2R8yvpTSinntD+kZat1Pu3oYl/PSrJmyvp/q7V+bY7Hts7ZF3RmSCyQHJJDnSSHGk9PcvGU9aNp/mIdpyaLZFEn9WMWmR/dJ4fMs05azByif8ghOdRJcmi6B1vW1/VkFEufHJJDnSSHWChZJIs6SRY1XK+eHzkkhzqpH3PI/ACWK5/xMryT+vHn0XSfHJJDnSSHGq55zI8ckkOd1I85ZH50nxwyzzqpH6+90n1ySA51khyazv15cyeLZFEnySIWQg7JoU6SQw3XqudHDsmhTurHHOrL+aEw2vJ2dJZtI6fauZRydpIntBz/hXn0d3XL+lXzOLZbzm1Zv2GuB9ZaDye5dcqmgSyN59QrrfPplHOpA36oZf3qeRz7XzN9rE8qpWxve0QslBySQ50khxqvaFn/q1rrvR1svx/JIlnUSf2YReZH98kh86yTFjOH6B9ySA51khya7oKW9bt7MoqlTw7JoU6SQyyULJJFnSSLGq5Xz48ckkOd1I85ZH4Ay5XPeBneSf3482i6Tw7JoU6SQw3XPOZHDsmhTurHHDI/uk8OmWed1I/XXuk+OSSHOkkOTef+vLmTRbKok2QRCyGH5FAnyaGGa9XzI4fkUCf1Yw715fxQGG15e3TL+tEkD5xm/8e1rF9faz0wj/6uaVm/fB7HdsvmlvWH53l86/5XtDGW5a51Pt3Txb5a5+J/m+uBE3P2qy2bl8JcXKnkkBzqpBWfQ6WUDUle2LL5PZ1ou8/JIlnUSf2YReZH98kh86yTFjOH6B9ySA51khya7l+0rH+2J6NY+uSQHOokOcRCySJZ1EkrPotcr14QOSSHOqkfc8j8AJYrn/EyvJP68efRdJ8ckkOdtOJzyDWPBZFDcqiT+jGHzI/uk0PmWSf147VXuk8OyaFOkkPTuT9v7mSRLOokWcRCyCE51EkrPodcq14QOSSHOqkfc6gv54fCaMvbi1rWr621Hj/N/pe1rN86616ndtsZ2uuF8Zb10Xke37r/UnhOi66Usj7JD7Rs/lIXu3xsy/pizsXzSynvK6XcWEp5qJQyXkq5b2L9T0opP1VKaQ18Tk0OyaGOWGE5dDr/LMnqKev3JPkvHWq7n8kiWdQRfZxF5kf3ySHzrCN6kEP0DzkkhzpCDk1XSvmXSX5syqajSf6/Hg1nqZNDcqgjVlgOuVbdebJIFnXECsui03G9ev7kkBzqiD7OIfMDWK58xsvwjujjn0fPxnWPzpJDcqgjVlgOnY5rHvMnh+RQR/RxDpkf3SeHzLOO6ONrr3SfHJJDHSGHpnN/3rzJIlnUESssi1yr7iw5JIc6YoXl0Om4Vj1/ckgOdUQf51Bfzg+F0ZapUsraJK9o2fyXZzistWLhnfPs9o6W9bNKKZvm2Uan7W5ZP2eex7fu/21tjGU5++kka6as70mXqutPfJPY+o3ifOdi6/6XzOPYC5O8LE0Ib0wynGTbxPpLk/xhkjtLKf/vxPuMU5BDk+RQZ6ykHDqd1vfUH9daj3ao7b4kiybJos7o1ywyP7pIDk0yzzpj0XKI/iGHJsmhzljROVRKGSulfFsp5cdLKZ9L8o6WXV5Xa72+F2NbyuTQJDnUGSsph1yr7iBZNEkWdcZKyqLTcb16HuTQJDnUGf2aQ+YHsOz4jJ8kwzujX38ePRvXPTpEDk2SQ52xknLodFzzmAc5NEkOdUa/5pD50UVyaJJ51hn9eu2VLpJDk+RQZ6zoHHJ/3sLJokmyqDNWUha5Vt0hcmiSHOqMlZRDp+Na9TzIoUlyqDP6NYf6cn4ojLZ8/VaSs6esP5zkj85wzMaW9fvn02GtdX+SQy2bN8ynjS64uWX9u+d6YCnl/CQ7Wjb3+vksulLKziS/1rL57bXW1mqQndI6Dx+ptR6YZxutc7fTr9tYkp9L8uVSyuUdbrufyKGGHGqTHGqUUq5IcmXL5ve02+4KIIsasqhNfZ5F5kd3yaGGedamHuQQ/UMONeRQm1ZaDpVSNpZS6tQlyf4kX0vy/iRPm7L7/iQ/VWv9nR4MdTmQQw051KaVlkNz5Fr13MmihixqkyxquF69IHKoIYfa1Oc5ZH4Ay5HP+IYMb1Of/zx6oVz3mBs51JBDbZJDDdc8FkQONeRQm/o8h8yP7pJDDfOsTX1+7ZXukkMNOdSmlZZD7s/rOFnUkEVtWmlZNEeuVc+NHGrIoTbJoYZr1QsihxpyqE19nkN9OT8URluGSinPT/KvWjb/Sq31wTMc2lqt+OACum89Zt0C2uikz7Wsv7CUsmbWPWf6F7Ns6/XzWVSllJEkH8n05/3NJP+ui932ah4eTXJ1kl9N8iNJnpzmrzY9Kclzk/xOZn4x85gkny6lXLCAMfY1OTSNHGrDCsuhM2mtVP25WuutHWi3b8miaWRRG1ZAFpkfXSKHpjHP2tCjHKIPyKFp5FAb5NAp3ZfkV5JcWGt9d68HsxTJoWnkUBtWWA65Vt1hsmgaWdSGFZZFZ+J69TzIoWnkUBtWQA6ZH8Cy4jN+GhnehhXw8+ipXPfoIDk0jRxqwwrLoTNxzWMe5NA0cqgNKyCHzI8ukUPTmGdtWAHXXukSOTSNHGqDHDol9+fNgSyaRha1YYVlkWvVHSSHppFDbVhhOXQmrlXPgxyaRg61YQXkUF/OD4XRlplSyhOS/MeWzZ9K8u/ncHhrcLdWp5yL1uBubXOx/VWaap4nbEzyxjMdVEo5L8lrZ3losJSyujNDWxb+KMl3Tlk/luTHF/DXkOajF/PwV5M8qtb6fbXWN9daP1lr/Uqt9dZa6z/WWj9Ra/1/klyQ5LeT1CnHnp3kL0opZQHj7EtyaAY51J6VkkOnNfGF9I+1bFbd+zRk0QyyqD39nkXmRxfIoRnMs/b0IodY5uTQDHKoPXJodtuT/EySV5VS1vd6MEuNHJpBDrVnpeSQa9UdJotmkEXtWSlZdFquV8+PHJpBDrWn33PI/ACWDZ/xM8jw9vT7z6NPcN2jg+TQDHKoPSslh07LNY/5kUMzyKH29HsOmR9dIIdmMM/a0+/XXukCOTSDHGqPHJqd+/POQBbNIIvas1KyyLXqDpJDM8ih9qyUHDot16rnRw7NIIfa0+851JfzQ2G0ZaSUcn6aiTg1LO9I8mO11jr7Uae1WMd0Ta11X5K3t2x+bSnl1ac6ppRybpK/SbLhVM12aHhLWinlN5L885bNr6u1/v0iD6Xr83Dim9fW6t2z7Xeo1vq6JP+65aEnJ/ln8+mzX8mhmeTQwq2kHJqD5yY5a8r6nv/d3v3HWpMX9B3/fJctIIJSi0AVdSn+wlBSFFMBTTcUDNSAsqAQmoYVtLbYJrVt0pSadGsbTNNo7R+NUotiKdBSBEREQMSVVuOvZlGoW0oqawVd5JdF9vey3/5x7tN77px75sycHzNzzrxeyflj5p4zZ57zfJ/33Od7J9+b5A17fo+ToUWrtGh7c2iR8bF/OrTKONvehDrEEdGhVTq0vRl36NNJHr30eEwWc0DXJfnXST529rwvSfIDSd5XSvn6Ec5zknRolQ5tb04dMle9X1q0Sou2N6cWdWC+uiMdWqVD25tDh4wP4Fi4xq/S8O1N6BrvHr0jokOrdGh7c+pQB+Y8OtKhVTq0vTl0yPjYPx1aZZxtb0Id4ojo0Cod2t6MO+T+vB1p0Sot2t6cWmSuen90aJUObW9OHerAXHVHOrRKh7Y3hw6d6vi4euwToJtSysOT/EKSL17afWuSp9daP3b5q1Z8prG9zcp8zdc0jzmGlyd5Zs5XZixJfqSU8rwsVkd9bxYrcX7R2fP+ds4vfh9O8qilY91Za11Z6bOUck3Xk6m13tLr7EdQSvl7Wax6veyHa63/quPrr+n6Xpd8HpMfh7XWf1tK+eYkz17a/dIkr93n+xwbHWqlQz3p0IqXNLZfW2ttriJNtGgDLeppZi06+PiYCx1qpUM9jdwhjpQOtdKhnubcoVrrfUluueRLNyV5Uynl+5P8yyR/52z/lyZ5VynlKbXW9w9zltOkQ610qKc5d6gLc9XraVErLepJi1aYr+5Ah1rpUE8z65C5amDSXONbucb3NLOfR/dm3uNyOtRKh3rSoRXmPDrQoVY61NPMOmTOY090qJUO9TSzuVf2RIda6VBPc+6Q+/N2o0WttKinObeoC3PVl9OhVjrUkw6tMFfdgQ610qGeZtahk5urtjDaESilfEGSdyX5yqXdH0/ytFrrB3sc6iTDXWu9u5RyXZK3JXn80pe+8eyxziey+MbhHUv7/mTNcz/U45RKj+cOrpTy3Ul+uLH7R2ut/6DHYXb5PI5lHP5gLv5H9htKKQ+tta4bIydNh9rpUD86dFEp5UuSPL2x+5XbHu+UaVE7Lepnbi0aaHycPB1qp0P9TKBDHCEdaqdD/ehQu1rr7Un+binlniTfd7b785L8h1LK1235G4aOng6106F+dKgzc9UNWtROi/rRoovMV3ejQ+10qJ+5dchcNTBlrvHtXOP7mcA1/ljGoXmPJTrUTof60aGLzHl0o0PtdKifuXXInMd+6FA7HepnAh3iCOlQOx3qR4fauT9vPS1qp0X9aFFn5qqX6FA7HepHhy4yV92NDrXToX7m1qFTnKu+auwToF0p5fOTvDPJX1za/aksVrL8Hz0P938b21/Y81wenNVwT2Ig11o/kuTJSV6R5J4OL/mlJE9Mcltj/617PrVJKaX8jSQ/losx/ckk3zvgaTTH4YNKKZ/b8xgPb2wfYhz+Rhb/1q64X5KvOcD7TJ4OdaND3ejQpa7Pxe/JfrvW+t93ON5J0qJutKibubbI+NiNDnVjnHUzkQ5xZHSoGx3qRod6+SdJ/nBp+wlJnjbSuYxKh7rRoW50qBdz1Uu0qBst6kaLLnV9zFe30qFudKibuXbI+ACmyDW+Gw3vZiLX+KndG7OOeY8zOtSNDnWjQ5e6PuY8WulQNzrUzVw7ZHzsRoe6Mc66mUiHODI61I0OdaNDvbg/b4kWdaNF3WhRL+aqz+hQNzrUjQ5d6vqYq26lQ93oUDdz7dCpjQ8Lo01YKeUhSd6e5OuWdn86yTNqre/d4pDN1S+/rOfrm8//ZK31U5c+cwS11ttqrX8ryVdlMSHyS0k+nOSOJH+a5OYkP5XFKqp/tdZ6S5LHNg7zW4Od8MBKKS/IItLL/+5fk+S7hlxBv9b6iVz8D2KSfGnPwzTHYp+VXTuptd6X5P80dvf6ZucU6FA/OtROh1aVUkqS72zstrp3gxb1o0Xt5t4i42M7OtSPcdY3m3gKAAARjElEQVRuKh3iuOhQPzrUTof6qbXekeTNjd3PGONcxqRD/ehQOx3qx1z1OS3qR4vaadEq89Wb6VA/OtRu7h0yPoApcY3vR8PbTeUaP6V7Y9qY91jQoX50qJ0OrTLnsZkO9aND7ebeIeNjOzrUj3HWbiod4rjoUD861E6H+nF/3jkt6keL2mlRP+aqF3SoHx1qp0OrzFVvpkP96FC7uXfolMbH1WOfAJc7+200b0vyDUu7P5PkmbXW39jysDc3tr+85+v/QmP7d7c8j4OqtX4oycvPHps8qbH962uOWS7bfyxKKc9N8uosVqm+4r8kedHZf9h62cPncXMWK0xe8eVZHZ9tmmOxz2v7uKOx3VzR9aTp0PZ0aJUOrfXUJI9e2r4ri2+qOaNF29OiVVp07hDj41Tp0PZ0aNUEO8QR0KHt6dAqHdraBxrbff/NHDUd2p4OrdKhrc16rjrRol1o0SotWst8dQsd2p4OrdKhc+aqgbG5xm/PNX7VBK/xU7k3ZpNZz3vo0PZ0aJUOrWXOo4UObU+HVunQOXMe3enQ9nRo1QQ7xBHQoe3p0Cod2tqs789LtGgXWrRKi7ZmrlqHtqJDq3RoLXPVLXRoezq0SofOncJc9VWbn8LQSimfk+StSb5xafftSb6l1vqrOxz6/Y3tx5dSHtTj9U/ZcLyjcraq6lMbu395jHM5pFLKs5O8LhcXQnxzkhfWWj87zlmtjJ1mINc6+6bm8RuOty8Pa2x//EDvMzk6NAwd0qEkL25sv7HW+sktj3VytGgYWqRFG95nFuNjHR0axlzG2UQ7xMTp0DB0SIc6uKex/YBRzmIEOjQMHdKhDmY7V51o0VC0SItivnotHRqGDulQm7mMD2BYrvHDmEvDJ3qNn/zPo8/Mdt5Dh4ahQzoUcx5r6dAwdEiHNrzPLMbHOjo0jLmMs4l2iInToWHokA51MNv78xItGooWaVEH5qp16KB0SIdirnotHRqGDulQmymPDwujTUwp5YFJ3pLk2qXddyZ5dq31Pbscu9b6R0l+Z2nX1bl4cdjk2sb2z+9yPhPw1CTXLG3/cq31gyOdy0GUUv5aFitX/pml3T+X5Pm11nvHOaskydsb29f2eO035eJF6KZa60d3PqOGUsrDsrqK6x/u+32mSIcGpUPjGb1DpZSHJrmusfuVfY9zqrRoUFo0ntFb1MHJj491dGhQJz/OJtwhJkyHBqVDbPKoxvYhvu+aHB0alA6x1pznqhMtGpgWzZj56vV0aFA6RJuTHx/AsFzjB3XyDZ/wNX7yP4+e87yHDg1Kh8YzeofMeaynQ4PSofGM3qEOTn58rKNDgzr5cTbhDjFhOjQoHWKTWd6fl2jRwLSItcxV69BAdGjGzFWvp0OD0iHaTHZ8WBhtQkop90/yxiRPW9p9V5Jvq7X+4p7e5k2N7e/seG5fneQvL+26Lck793ROY/lHje1XjHIWB1JKeXqSn05y/6Xd70zy3Frr3eOc1f/3jiR3LG0/6WyMdXF9Y7s5pvflBbnYyI8muflA7zUZOjQ4HRrPFDr015M8cGn7liTv3vJYJ0WLBqdF45lCizY56fGxjg4N7qTH2cQ7xETp0OB0iE2+ubE9icn9Q9KhwekQbWY5V51o0Qi0aN7MV19ChwanQ7Q56fEBDMs1fnAn3fCJX+OP4efRs5z30KHB6dB4ptAhcx6X0KHB6dB4ptChTU56fKyjQ4M76XE28Q4xUTo0OB1ik9ndn5do0Qi0iDbmqs/p0OHo0LyZq76EDg1Oh2gz2fFhYbSJKKVcneT1SZ65tPueJM+rtb5jj2/1miSfXdq+rpTyFR1e1xzEr6+13rm/0xpWKeVFSZ6+tOu9Waz8eBJKKX8lyc/k4jdI787im4C7xjmrc7XW25O8obG7OcZWlFK+Mslzlnbdm+S1ezy1K+/ziCTf39j9s7XWuu/3mhIdGpYOjWsiHXpxY/snTr0zXWjRsLRoXBNpUdv7nPT4WEeHhnXq42zqHWKadGhYOsQmpZRvSfLExu6fGeNchqJDw9Ih2sx1rjrRoqFpETFfvUKHhqVDtDn18QEMyzV+WKfe8Klf44/g59GznPfQoWHp0Lgm0iFzHg06NCwdGtdEOtT2Pic9PtbRoWGd+jibeoeYJh0alg6xyRzvz0u0aGhaRBtz1To0BB0i5qpX6NCwdIg2Ux8fFkabgFLK/bII6rcu7b43yfNrrW/d53vVWj+Y5KeWdt0/yatKKQ9c85KUUr41F3/jzd1J/tk+z2tXZxe+rs+9LsmPL+26N8mLa6337v3ERlBKeVKStyb5nKXd70nyrFrrHZe/ahQ3ZPHNyRXXl1Keve7JZ2P0J3Nxhc5X1lr/d8trvqqU8qw+J1VKeWQWn98jlnbfneQH+xzn2OjQ7nTonA5tVkr5S0m+dmnXfUle1fc4p0aLdqdF57To0tcaHxvo0O6Ms3NH1CEmRId2p0PndOhcKeWJpZTnbH7myuu+PsmrG7vfU2t9337ObHp0aHc6dE6Hzpmr7keLdqdF57RoM/PVq3Rodzp0TodWGR/AWFzjd6fh547oGn9D3KM3GTq0Ox06p0ObmfNYpUO706FzOnTpa42PDXRod8bZuSPqEBOiQ7vToXM6dM79ef1o0e606JwWnTNX3Z0O7U6HzunQZuaqV+nQ7nTonA6tOrXx0fkPw0H9RJLvaOx7WZKbSinX9DzWrR1WmvynWfwGmz97tv3kJO8qpXxXrfV/XnlSKeUBSf5mkh9qvP6Haq2/3+VkSimPyuXj7JGN7atb/qyfqbV+fMNbva+U8nNJfjrJr9da77vkXB6X5B8neWHjSy+rtd604fh7cejPo5TyhCQ/n+TBS7s/kOR7kzy8lNLndO+std7a5wV91Fp/r5Tyb5L8w6Xdbyil/P0k/67WeveVnaWUxyb591mM1Ss+kc3fQPz5JG8ppbwvyX9M8qazb15WlFIekuRFWazs/YjGl/9FrfX3OvyxjpkO6ZAOLey7Q+u8pLH9jlrrH2x5rFOiRVqkRQuHatFRjI+R6ZAOza5DyXDjo5Ty4CQPW/Pl5oTyw1re68NTmlzbMx3SIR26aF/j41FJ3lhKeX8WP0B7c5IP1Hr5b1kqpXxNku9J8tLGed15tu+U6ZAO6dBF+xof5qr70SIt0qKL9j0+msxXr9IhHdKhi2Y5PoCT5Bo/k4a7xp9zj97k6JAO6dCCe/TGo0M6pEML7s8bjw7p0Ow6lLg/b2J0SId06CL3541Di7RIiy5yj97wdEiHdOgi9+cNT4d0SIcumuX46KzW6jHyI0nd4+Paju95bZK7Gq+9L8lvJvnPSd6e5I8vOf7PJrlfjz/bLXv4M72qw/t8fOn5f5rkV7P4R/qaJO9sOY9/PvDf9UE/jyx+o9G+xtKNA3we90vytkve+6NZXIBen+S3zsbm8tfvSvJNHcd589h/kuS/ZTHB9uokbzp7j3vWfA6vGLsRA41NHdIhHTpAh9a85wOyuFFi+XjPHbMBU3nscexokRbdsMexdOMAn8cgLTqW8THmY4/jRocmPs4O/Xnk+Do01Pi4fk+fyTVj9+KAfxc6pEM6dJjP49suef6nz8bHW7K4AeL1Sd6V5NY1x789ydPG7sQAfxc6pEM6dJjP49pLnm+uev3npUVapEUHHB+N9zRfffnnokM6pEPGh4eHxwk+9thk1/iJN/zQn0eO7xrvHr2JPPY4bnRIh27Y41i6cYDPwz16E3nscdzokA7dsMexdOMAn4f78yby2OO40aGJj7NDfx45vg4NNT6u39Nncs3YvTjg34UO6ZAOHebzcH9ev78PLdIiLTrM53HtJc83V335Z6VDOqRDBxwfjfc0V33556JDOqRDxkfnx2UryTEDtdYbSynPSfKqJF94trskeeLZ4zKvS/LdtdbPHv4Md/LgJE/a8JxPJXlprfU/DXA+rFFr/Wwp5Tuy+M1Kz1/60sOTPGPNy/44yYtqrf91y7f9/CRP6fC825J8X631x7d8HzbQIR2agpE69JwkX7C0/bEsJvoZgRZp0RSM1CLjYyJ0yDiDsemQDs3YQ7J5fFzxa0m+p9b6Owc8n9nSIR2aMXPVE6JFWjRj5qsnQod0aMaMD+CkucZr+BS4R2/edEiHpsA9evOmQzo0Be7PmzcdMs5gbDqkQzPm/rwJ0SItmjFz1ROhQzo0Y+aqJ0KHdGjGjn58XDX2CTCeWuvbkjwuyY9lMVDX+bUkz6u1vrDWetsgJ9ffjyS5KYtVOdv8QZIfSPKYqf6jnJta62dqrS9I8u1ZjLV1PpnkR5M8rtb69o6HvznJy5P8SpI7Or7mfyV5WRa/4cR/Yg9Mh3RoCg7cocu8pLH96lrrPTscjx1pkRZNwUAtMj4mSoeMMxibDunQDLw7i9+K+7okH+74mtuTvCHJs5I82U1Xh6VDOjQD5qqPgBZp0UyZr54QHdKhGTE+gFlxjdfwKXCP3rzpkA5NgXv05k2HdGgK3J83bzpknMHYdEiHZsD9eUdAi7RoBsxVT5wO6dBMmaueEB3SoRk5qfFRaq1jnwMTUEq5fxarHn9ZkkdmsbrxR5LcVGv90Jjn1kcp5fOSPCHJo7NYqfOBWfwH5iNJfrvW+rsjnh4dlFIeneRrk3xRks9NcmuS30/yK7XWu3c47lVJviLJY5J8cZKH5nx8fCrJHyX5zVrrx3b6A7A1HWIqDtUhjoMWMRWHbJHxMW06BIxNh5iDUsojkjw2i3H+55I8KMk9ST6d5BNJ3p/kA0fwm31Okg5x6sxVHwctAsamQ8yB8QHMkWs8U+EevfnSIabCPXrzpUNMhfvz5kuHgLHpEHPg/rzp0yJOnbnq6dMhYGw6xBycyviwMBoAAAAAAAAAAAAAAAAAAAAAAAAwuqvGPgEAAAAAAAAAAAAAAAAAAAAAAAAAC6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADC6/wfh0VgquWOTFwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 5), dpi=300)\n", + " configs = get_known_configs()\n", + " to_display = configs[\"Relative humidity\"], configs[\"RAM available\"]\n", + " for i, config in enumerate(to_display, start=1):\n", + " plot = figure.add_subplot(1, 2, i)\n", + " coros.append(plot_sensor(config, plot, {}))\n", + " await asyncio.gather(*coros)\n", + "\n", + "display(figure)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAE0YAAAUsCAYAAAC9bUPVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdd5h1Z1kv/u8dAqEEEnoRSIBIVUA6AiYRPDSlKr0EIgiCla6IAVEPR1DPQQRF6aKIQEDqT8HQu1IUBUKJEECQloSSEHL//lj7lXnX7Cl7z57Z8877+VzXXGQ9az1l773WzsXMN/dT3R0AAAAAAAAAAAAAAAAAAAAAAACAZTpk2QsAAAAAAAAAAAAAAAAAAAAAAAAAUBgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAYKSqjq6qHv2csOx17aSqOmX0+k9Z9pr2Iu/zga2qThp/VxwI87vvAAAAAAAAAAAObgdq7gUAAAAAODgojAYAAAAAAAAAAAAAAAAAAAAAAAAs3aHLXgAAAACwO1XV0Uk+M0OXs5OckeSbST6V5F+SvCfJG7r7nEWvDwAAAAAAAAAAAFaqqsqQeztqdOr7SY7q7tN3flUAAAAAAMzikGUvAAAAANgzDkty6STHJLltkscnOTnJ6VX1tKo6fJmL2+uq6gVV1St+PrvsNQF7S1V9dvQ984JlrwkAAAAAAAAAYOQ2WV0ULUnOl+SEnV0KLEZVHTfK7XRVHbfE9cgrwgJ5pgAAAGA1hdEAAACA7XapJI9N8q9VdfNlLwYAAAAAAAAAAIA968R1zj24qmrHVgIAAAAAwFwOXfYCAAAAgAPKt5Kcusa5Cye5RJJLrnH+qCRvrKpju/tD27E4AAAAAAAAAAAADk5VdYkkd1nnkqsmOS7JP+3IggAAAAAAmIvCaAAAAMAsPtDdx613QVVdMcnPJHlUkquNTl8syd9V1bW6+3vbs0QWYaPPGUi6+6QkJy15GTPzfAMAAAAAAAAAe9T9khw2auskteL4xCiMtnQHau4GAAAAANgZhyx7AQAAAMDe0t2f7+5nJ7lekldOueRqSX5hZ1cFAAAAAAAAAADAHvfg0fEnszrDdreqOmKH1gMAAAAAwBwURgMAAAC2RXd/K8l9k/z7lNP33+HlAAAAAAAAAAAAsEdV1Y0ybOa50ouSvHDUdqEk99mRRQEAAAAAMBeF0QAAAIBt093fTfL7U07dqKousdPrAQAAAAAAAAAAYE86cXTcSV6c5A1JvrzBtQAAAAAA7CKHLnsBAAAAwJ73xilthyS5RpJ3zztoVR2S5MeSHJ3k0kkukeSMJF9JcmqSf+nu8+Ydf5Gq6oeSXDPDWo/IsOvoGUm+luQ/k7x/UkSObVBVF0pykySXT3KZJIcn+WqGe+XD3f2pJS5vU6rq0kluluSqGdb/zQyBzfd292nLXNt2q6ojMrz2H87w/Hw3yelJ3j3La6+qKyS5cYbn8PAMz9/nk7y1u89Y8LLnUlWHJblFkisnuVyS7yf5ryQfTfKh7u4lLg8AAAAAAAAAYFea5IPuPWp+275sSVW9NMmvrjh3w6q6Xnd/eJvXdf4MuaVrJ7nkpPm/kvzzLHNX1cUy5F6ukeTIJN9K8qUk7+zuzy900avnvmSSmya5WpKLZcgtfSG7NHdVVVdMcr0MmcJLZyiQ95UkX0zynp3ICVXVDye5YZIfSnJYhqzaF5K8o7u/vt3z70VV9SNJjsmQ/7tkkm9n+Fw/myF/+b1tnt+zPP+8u+WZvF6SK2bIDp6T5Ivd/eJN9pcB3gZVdYEkN8rwPFwqw/flGRlyse+dYZxjMjyb++6xs5P8d4Z86Hu6+zsLXjoAAAA7RGE0AAAAYFt191eq6owMQYqVLjXPeFV1qySPSPJTGYqhreVrVfX6JL/f3R+bZ655VdWlktw1yW2SHJvksht0Oaeq3pPkT5K8YrMF3arqs0mOWuP0UVW1mSJKx3f3KVPGPiXD2vd5a3cft8Y6PprkR1Y0fSXJD20lbFRV907y0lHzI7r7TzfZ/5Ak901yvyQ/keSC61z7mSR/m+Tp3f3f8614e1TVcUl+I8mtMxQUnHbNx5L8XpKXzlI4q6pOSPL8UfNVuvuzc6xzPO+Tu/ukDfqclOS3V7Z1d604f+MkT0xyh6zxe8yqemuSx3f3e9aZ52eSPC7JjyepKZecU1WvSvLY7v7P9dY862uYYZyjk5yU4Xtj/F25z5eq6jlJntHdZ806x2i+U7KJ53uyrs+sM9QDq+qBG8237z2ZBPtOzxAu2+eU7j5+w0Wvo6r+b5JfHjVff7vDywAAAAAAAADArvGzGYrVrPTC0T//6uj8g5P8yjyTTTI9/zRq/p8c1mQDv99Mcv8kF11jjE8keep6hXmq6roZ8jN3ylAwZto1707ymO5+52yvYn1VdWx+kFs63xrX/HOSZyf5y1k3/FtU7mYy1mWS/FqSn0lynXUuPbeq3pvkWUleNuvGq+tlpCZ5tQcm+fXsn6Vb6fuT3M4T18s7rZjvpIzeo5F/qtrwLXthd5+w0UWbsZ15xTXmu26G5/a2Sa6wzqVnVdU/JnnaZt7X0RzH5QB/ljeRw9vWZ3mN8XbDM3mRJL+U5CEZNqSdZupndqBngDe6r2cxZY0bfqdslE2tquskeWySuye5yJQhXphk3cJoVXWVDN+3d8jan2+SfLeq3p7kj7r7DeuNCQAAwO4z9T+mBAAAAFiwaUV81ir+M1VVXX1S6OxtSe6Z9YuiZXL+fkk+WlV/UVVrFsZapMnuol9M8udJ7pGNAxFJcoEMxbv+Nsm/Tv7ofyAZBxguneSOWxzzhNHx2Un+ejMdq+p2ST6a5EVJ/lfWKYo2cZUMhbM+XVVzhR0XraoOq6rnZgin/FTW/z3etZO8JMkbJ2GeA1oNfifJezIEwdbb3OHYJO+qqkdPGeeIqnpFktckuUWmF0VLhufvnkk+VlW32dLi5zC55/4tQzByve/Fy2UonvZvVXXDHVjawk1293zJqPm4qrrWvGNOdnx+wKj53YqiAQAAAAAAAMBB5cTR8beT/N2+g+7+UJKPjK65X1VNLVC0FVV1tyQfS/KLWaOQ0sTVk7yoqv52vI5JfuZJSf45yc9ljUJKEzdP8vaq+o2trfx/5j5fVf1JklMyZK+mFlKauEGS5yZ526RIzY6qqgtU1VOSfDrJ47N+AaZkyCHdIsOGnR+eFKtaxDqumOQdSZ6XtYuiJcN7eesk766q313E3HtRVV2+qv4qyYeSPCjrF0VLhk0a75LhfT25qjbKlm52HZ7l2efcLc/kTTN8dr+f9YtmTet7MGaAd0xVPTHDs/2ATC+KtlH/i03u648neWQ2/nwvmCGD+/qqentVXXnWOQEAAFgehdEAAACAnXDklLYzNtu5qm6dYfev288x9yEZgm9vrarNBBS26sezfiGnjVwryXuWUaBpC16S5HujtgfNO9gkKDZ+/Sd399c30ffRSV6XoVjYrC6a5I8nhfS28hluyaSI3xuS/PyMXf9XhvDGegGmA8FzMuyOudnfXVaSP6iqh/5PQ9WRSd6c5G4zzHuRJK+pqhvP0GdLJgHHP05y4Rm6XTnD99kBWRwtw66YYw/bwnj3zup/xzx7C+MBAAAAAAAAAAeQqjomQ0GalU7u7jNHbS8cHV8iQzGlRa7lfhkKsh0xQ7efy1BQa98YlaFA0ZOzfiGj/aZO8rtV9cgZ5l09yDD3S5I8Ysaut8yQZ5mpANFWTIpf/X9JfitzFNfJUMDsnVX1M1tcx1UzbAB58xm7/kZVPXUrc+9FVXW9JO9Lcp+svRHmeu6cIX959S2uw7M8+5y75Zn8iQzF4OYtgHUwZoB3xKSg2e9kzve3qo5K8s4M9/X55xjilkneV1U3m2d+AAAAdt7S/gNPAAAA4OBQVVfL9KI/n95k/59J8oqs/iP2OUnekqFg2ueSfDPDzn9HJ/nJJLcaXX+TJCdX1U9097iI13b5foad/v4tyX8k+WqGgnCV5GJJfjjJzTLseLeyCNThSf6mqn6suz+3zvgfS/KNyT9fOcnFV5z73uT8Rs7axDXr6u4vV9XrM4SK9rlDVV2mu788x5APyOqiWM+bduFKVfW/kzxuyqmvJfmHJB9M8uUMO8IemWE3wtslucbo+hMzvK+PnmnVi/O8JMevOP54hkJp/5HhtRyR5MeS3D2rdyP8iSS/luTp27/MxauqX0ny0BVNpyX5+yT/muG1H5nkphlCZBcbdf/jqnpThu+Dv0mysnDYB5O8MclnkpyZ4X37ySR3yv732oWSPLeqbtTd5y7oZU1VVb+eZNrunmdP1vq2JF/IEBK7Sobna9+OshdJcnJW7Gy8Tc5J8uEVx9fO/t/FX0/yn7MM2N3/VlWnJDluRfMDquoJ3f3tOdb48NHxV5O8fI5xAAAAAAAAAIAD04OzuoDSuAhakvxVkv+T/QsUnZjkZQtax42S/N6KtXwjyeszFM36coZcyrWS3CNDxm2l+1TVyd398gx5khNXnDstyWsz5Ge+miE/c5PJOOP8zNOq6rXd/dk5X8OjktxrxfGZSV6d5P1J/msy9zUz5JauNOp7pSRvqarrd/c3so0mmya+c7KWsX9N8tYMmb1967hMhsJld8iweeY+hyd5eVXdors/OMdSLpoh1/VDk+NO8q4k/5ghU3NWkktnyAfeNckFR/2fUFV/393vXWP8L+UH2Z3Dk1xtdP5T2Tj/N1O2ZwPbmlesqhsl+acMr3Wl85K8PcN7+5nJGi6U5IpJjk1y6+z/XP9whg1Gb9jd39zEmsY8yzM+y7vombxckldm/2ftfRkKtp2W4X24fIYc3M9tYryDIgO8Qx6S/Qv1nZUh1/vODPfkIRme6eMzvO/7mRRFe29WZ2aT4TN+Z4as7deTXCDD5/zjGTbkPmzFtZdN8rqqukF3n7a1lwQAAMB2q+5e9hoAAACAXaiqjs4QIlnprd193IzjPDbJ00bNX09yqe4+b4O+V8kQKjhyRfO5Sf4oyR9091fW6Xv9JH+R/YsjJckfdvejNpj36Kx+7Q/q7hes12/S9xNJPppht723bCZYM/mD/e8nuffo1Ou6+6c36j8Z4wVJHrii6bTuPnozfdcY75QMoaF91v3sq+pOGYIzKz2qu/9wjrk/kSEwss/nkxy13v1SVXfNEGhZ6etJHp/kRd393TX6VYadX5+TIWyz0p27+zUzLn8mU97n7+YHoZwvJfml7p5a/KqqDk/yrAyF5Fb6RpIrdPd3Npj7hCTPHzVfZZ4wVVWNf8n45O4+aYM+JyX57VHz2RlCKN/OEM56bndPC7lcNkPBxFuMTv15hnDLMybHn07y0O5+8xpruFGS12X1Z3+f7v7r9da/1mvo7g13Kq2qayT5UFaHHd8wWe/n1+h31yTPzg/CPd/JELSbdf5TMsPzvaLfZ5MctaLphd19wkb9poxz96wu6nZid29YAHE0zg2TfGDU/PTufsysawIAAAAAAAAADjxVdb4MhZ+usKL5C0muNC1rVFWvy1CIZ5/zklx11uIoVXVchgJOK+3LvSTJM5M8aVpRoao6LEO25RGjUx/PkAN6d4YCMRvlZy6XIT/z46NTf97dv7CJ13BSVmd3VmaXnp/k19d4DYdk2LzxqVmdf3lBdz9onvk3k3uZ9H1VhszXSu+arHetImP7ijf9Voa1r5zrs0mu291nbjDvOCO18v16b5Jf7O5/XqPv0Rk+rxuMTr2pu2+33ryT/sdl9T13fHefslHf7bANecWLZ8iKjsd4fpKTunvNAm+TzXufleS2o1Ov7O67bzDvcfEsb+lZnoyzW57J7+cHRfI+kuRh3f3uNfpecFqudC9kgBf5fTFPZnCNbOrKz+Y5SZ7Y3V9do/9+n01VXSDJO5LceHTpa5M8trv/fZ21XC7JHyS53+jU+5PcfNozCQAAwO5xyMaXAAAAAMynqi6f5NFTTv31RkXRJv4q+xdF+3aS23b3Y9cripYk3f2hDEGRfxid+qWqGu9wt0g37u67d/erNrvbYHef1t33SXLS6NQdqmraDnq70esz7Nq20gmzDlJVt8j+RdGSIUixXlG0y2R1iOKTGYIxf75WUbQk6cGrMuzyOC5G9fuTwmk7aV+46NNJbrZWUbQk6e6zMrzHbxqdOjLDTo4Hon1F0W7T3c9ZK3TS3f+V5Kcz7MC50v2SPGXyz/+WIbgytSjaZJwPZPp7talA1xY8O6uDZH+b5KfXKoqWJJN79dj84HVfaK1rd7mTs/p5e/gc44z7dJI/m2tFAAAAAAAAAMCB6PbZvyhakrxknazRC0fHh2SOjNMa9hVS+pXu/uVpRYiSpLvP7u5HZnXm5xpJ/n6yprOS/OQG+ZkvZcjPjHN096qqeTMl+/Is/7u7H7zOazivu5+R5OcybHS60glV9RNzzr+hqnpoVhdg+tMkt1yvAFOSdPc3Jpuqnjg6dXSSX5xjOfver9cmOW6tomiTuT+b5KeyOmP3U1V15Tnm3muelf2Lon0/yf0m9+GaRdGSpLs/leG7YJwhvFtV3XSOtXiWB5t6lnfZM7mv8NY7k9xqraJok7nXypUerBng7bbvs3lUdz98raJoydTP5qSsLor2+O7+mfWKok3G+lJ33z/Jk0enbpzkZzdeNgAAAMukMBoAAACwLSa78L0xyaVHp76dYWe0jfr/VJKbj5of3N1v2ewauvucDIGN/17RfP4kv77ZMWa12SDEGp6SYReyfSrJg7e2op3R3edm2CFvpR+tqhvOONS0glTjwNLYryQ5YsXxt5Pcbr0CU2Pd/bkk9xo1XzvJnTY7xgJ9L8k9NrMTbXd3pt/P490vDyS/ul4gaZ9JWOvpo+YLJ7lIhh0v79Hd48Jp08Z5R4bvqpWOr6px4bKFqKofTXL8qPnUJA/YTMHI7t63o+gBaxLyGxcwu1FV3WizY1TVEVm9w+Y/dPepW10fAAAAAAAAAHDAGBfTSZIXrXP9q5OMCwQ9qKoW9d/YvbS7/98mr/2tKW2Xmfzvr2xUUChJuvvrSZ4xar5Yhg1F53VKdz9hMxd292uTPHXKqV/ewvxrqqpDk/zGqPmN3f2ISY5qU7r7+Un+YtT8a1V12LTrN/DZDAW81ty8c8W8X8vq4jyHZCiYdtCqqmskueeo+Te7+682O8bk8/+FJOMiSY+fc1me5cG6z/IufSa/meSe3X3GHH0P2gzwDnlFd//hLB2q6uJJfmnU/Jzuftos43T3SVm90fa83w8AAADsEIXRAAAAgIWoqgtW1Q9V1R2r6s+TfCTJdadc+pBNFqx63Oj47d39slnXNQkp/N9R811nHWcnTIIgLx4133IZa5nT86a0nbDZzlV14ST3GDW/bbKj41p9Ds/qnQGf0d2f3uy8+3T3O5O8edS8jHvlpd39wc1e3N0fSzLebXTWgnS7xSeyOuC0nles0f7iyfuyWX83Oj40yY/O0H8WD5vS9qjuPnuzA3T3mzLsKnog+/Mk54zaHj5D/wdmKIS30nO2tCIAAAAAAAAA4IBRVZdJcsdR8z9397+t1WeSzxhn0I5KcusFLOn7WV0gaE3d/f4k/znl1Mez8UaSK41zL0lygxn6j81a1OxpScZ5wDtX1eW3sIa13CvD57VPZ3XBnM16yqT/PpfN6o1cN+PJMxZS+psM98pKB2rWa1Eek/3/O9fPZPWGmRvq7u8l+b1R8+3n2CDTs/wDGz3Lu/GZ/MPuPn3ONWzJHsgAb6fzkjx6jn6PSHL4iuOzsjpfvllPGR1fv6qOnnMsAAAAdoDCaAAAAMAsjq2qnvaT5DsZQhGvTfKQrC5Y8+0k9+3ul240SVVdIslPjppnKZY09rrR8VFVddTUK5fvk6PjG1TV+ZeykhlNClG9b9R8nxl27bt7kouO2jYKBt0myZGjtr/c5HzTjO+VY7cw1ryeO0ef8ft+9UUsZAmeP+NOkZ/OsMPj2Kz3wL9MabvGjGNs1u1Hx1/M6vtuM/5sAWtZmu7+cpKXj5rvVVXj53ktvzA6Pj0HfrE4AAAAAAAAAGDzHphknKt64Sb6vWhK24lbX07+sbtPm7HPh6a0zZqf+VSSM0bN8+Ze3tPdH52lQ3d/N6sLAR2aIde1aD87Oj6lu0+dZ6Du/lyS8WudNSv2rSQb5iFH8349qzOC25VT2vWqqpLcbdT8gu4eF4/brNePjg9LctMZx/As/8BGz/JueyY70zf43UkHbAZ4m72luz87R7/xPfby7h4/J5v1riTfGLUtIyMMAADAJimMBgAAAGy3MzMUNbvmZoqiTdwqSY3a3rWFNXxmStuPbWG8Tauqw6vqDlX1+Kp6UVW9rqreXlX/XFUfGv8k+ZPREIdl2PnuQDEuZHaJJHfaZN8HjY7PyurCSWPjUMLpc4SSVhrfK0fPUKhpEb6T1UXONuNTo+PzVdXhU6/c3d42R5/xbpvfTvLBGcf47JS2hX/uk52KrzJqfvWcQb43ZQhXHsjG33cXTvKAjTpV1bFJrj1qfm53n7uohQEAAAAAAAAAu96DR8fnJvnrjTp197uyunDNXSabeW7FPLmXaTmnty9gnHlzLyfP2e+VU9puNudYU00KaN1q1LyVTGGyOis2a6bwPd19zhzzjrNeR8wxxl5x3SQXH7XN/bl299eyeqPNWT9Xz/L+pj7Lu/SZPLW7P7/FNeznIMwAb5d/mrVDVV08yY+Omrfy/XBeVj9jO5IlBwAAYD6HLnsBAAAAwJ73gSTPnOzmtlm3mNL2iqra9O55m3CpBY61SlXdMMljMhQFu9AWhzsyyULDGtvor5P8YfZ/zSdkgwJnVXVUkuNGzX/b3RsVfhrfKxefhEvmNa2Y2KWyepe47XJad39vjn7jMFcyBObO2uJ6dto8u0WeOTo+bY4CWeMxku0JHN5wStusRdySJN19blV9JMnNt7ak5enu91TVB7P/+/KwJP9vg64PHx2fm6EAJwAAAAAAAABwEKiqWyS55qj5Dd39lU0O8aIkv7Pi+LAk903yzC0saxG5l0WNM2/uZa4cS5KPJvlekvOvaJuWk9mKa2XYpHOlB1bVT29hzCuPjmfNFI4L7G3WOOt1MBdGm5YVfWZVnb2FMS88Op71c/Usb+5Z3o3P5D9vYe79HMQZ4O0yz2dz8ySHjNqeUFWP3MI6jhkdb2uWHAAAgK1RGA0AAACYxbcyPaxx/gy79l1+yrnjk7y/qk7o7g135Jy44pS2626y72ZdcsHjJUmq6vxJ/ihD4Z7xH+TndcAEn7r7m1X1qiT3WdF826q6fHd/cZ2uJySpUdvzNzHl+F65cJLrbaLfLC6Z+UJK8/janP2mFVM7/5S23e7rc/QZv/aZx+ju7w0bWO5nO96/y0xp+/gWxvuPHMCF0Sb+JPs/69eqquO6+5RpF1fVZZLcddT8mu4+fZvWBwAAAAAAAADsPidOaXvhDP1fnOQp2T+vdGK2VhhtEbmXRY0zb+5lrhxLd59dVZ9N8sMrmqflZLZiWqbwimu0z2vWTOGisl4HYs5rUaZ9fuOih1s16+fqWd7cs7wbn8kvb3XCgz0DvI3m+Wym3UtX3epCRrYlSw4AAMBiLOr/mAMAAAAHhw909/Wn/Fynu6+Q4Q/EJ2Qo1rPSBZK8uKp+ZpPz7MQfmre6g9sqk0DEy5M8Iov9vcuBFnwaFzQ7X5L7r3VxDRWpHjBq/mR3v2MTc413HNwOC79X1jEtIHXQ6O5FvP7d/B4eOaVtvAPsLLbSd7f4myRfHbU9bJ3rT8zw75SVnr3QFQEAAAAAAAAAu1ZVHZ7kHqPmryd57WbH6O7Tkpwyar5eVd1wC0tbSGZlQfmZeS0yxzItJ7MVuzFTuJtzSgeKPfu5HgTP8m787M7YymQywNtqns9mN95jAAAA7CCF0QAAAICF6e6vdfcLk1w/Q7Gblc6X5CVVdfQmhrr4gpe2Ux6X5M5T2k9P8qdJ7pfk5kmulCEscsHurpU/SY7fsdVunzcnOW3U9qB1rj82q3dxGxdXW6WqLpzksNmWBkt10Slt39rCeFvpuyt093eT/OWo+W5VddnxtVV1SJKHjpo/meE7BwAAAAAAAAA4ONwryUVGbS/r7rNnHOeFU9pOnG9Je8YicyzTcjJbcaBmClmfz3V77MSzvBs/u3O32F8GePvM89nsxnsMAACAHXToshcAAAAA7D3dfXZV3T/JZbP/H/kvlqEAzq03GOI7o+NvdPeu/gN3VV0myRNGzecmeUySP+nuzf5R/4Dffay7u6pemORJK5qvWVU36+73TOkyLpr2/SQv2sRU301yXvYv/ioagZ8AACAASURBVH9yd991pgXDzjlzSts4qDuLrfTdTf40yaPzg2f5/BmCxr83uu72SY4etf1Zd/e2rg4AAAAAAAAA2E2mFS97WFU9bAFj37uqHtXd4/zaweIiSc7YQt+VpuVktmLaZ3KX7n71gudhZ037XC/e3d/Y8ZXsLTvxLO+pZ1IGeFeado9dv7s/vOMrAQAAYCkO2fgSAAAAgNlNQgAPyOpwxU9W1T036P7fo+Mjq+rIhS1ue9wpyYVHbY/r7j+eIRCRJJdY4JqW6QVJxsWKThhfVFWHJ7n7qPn/6+7TN5qgu89LMg5AXWXzS2QRqur8y17DAWRaYO+ILYy3lb67RnefluS1o+aHVtX499cPHx1/N8N3DQAAAAAAAABwEKiqaye52TZOcWSSu23j+LvdInMsiy5sNc4UJrJie8G0z/XonV7EHrQTz/JeeyZlgKdbZj50r91jAAAAzEhhNAAAAGDbdPfnkzxpyqnf26CY0n9NabvuYla1bX5qdPz1JH8yxzhXXcBalq67P5PklFHzvarqgqO2e2T1DoPPn2Gq8b1y9ao6bIb+B7PvTWmbJ8Ryya0u5CDy5Slt19jCeNfcQt/dZvx9eVSS2+87qKr9jif+tru/ut0LAwAAAAAAAAB2jRP3yBy71dXn6VRVF8jqYlbTcjJbcSBmCtmYz3V77MSzvNc+u72UAV5UNjRZbqG3vXaPAQAAMCOF0QAAAIDt9uwknx61XTXrB8jeN6VtXBBnt7nS6Pi93X3OHOPcfBGL2SXGBc6OSHLXUdsJo+OvJXnNDHOM75ULJTluhv4HszOmtF1sjnGO2epCDiIfnNJ2w3kGqqpDs7dCPv+Y5OOjtoev+OeHZvXvs5+9rSsCAAAAAAAAAHaNyUac9x81n5Pkw1v8+dpozOOqajcUtlmGuXIsGTIs46I703IyW/GRJN8dtd1uwXOw8w7ErOiBYCee5b32TO6lDPBCsqFVdcUk482Qd9J7p7T5fgAAADiIKIwGAAAAbKtJMOApU079ZlUdtka3f5jSds9JIaDd6lKj43FgbkNVdakkx885/7mj4/PNOc4ivSKrAxYP2vcPVXW1JLcanf+r7j57hjmm3Sv3m6H/wewbU9rmCXUeu9WFHCy6+8tJPjNqvlNVzfN72tsmucjWVzWTbfue6e5O8qej5ttX1VGTYPO4mOaHuvs9i5ofAAAAAAAAANj17pTk0qO2V3X39bfyk+SJozErKzJOB5m7zNnvblPaFprr6O7vJnnHqPnyVXXrRc6zi41zO8lyM4KLyhG9K8m3Rm13rKqLzzkeg21/lvfgM7mXMsB7Ihva3aclOXXUfJOquvoy1gMAAMDOUxgNAAAA2AkvSfKJUdsVkzxk2sXdfXpW7zJ3lSQnLHxlizMO54xDEpvxiMy/u9qZo+PD5xxnYbr720leNmq+dVXt21nvhCndnj/jNG/K6l0H711V15hxnIPRx6e03WSWAarqfEkevJjlHDTeMDq+QpI7zjHO1O/Pbbbd3zMvSHLWiuNDkjw0yV2TXHZ07bMXPDcAAAAAAAAAsLuNN1VLhlzaVr0syTmjthPm3OjuQHfzqrrOLB0mm6Pef9R8bpJ/XNiqfuDVU9pO2oZ5dqNxbidZbkZwITmiyca7bxw1XzTJo+YZj/+xU8/yXnom91IG+PTsn8NLZsyGTjx0C2tYlPE9dkiSJy1jIQAAAOy8g/EXtAAAAMAO6+7vJ/mdKaeeUFVrhQB+d0rb03fxTl9fHB3/eFVdZLOdJyGUJ2xh/q+Pjo/cJbsmjgudHZLkAZPg4ANG5z7c3f8yy+Dd/d9J/nzUfL4kL62qC8200oNMd385yedHzfeYFDvbrEdkvp0ED2bPmdL29Kq6wGYHqKrbJLnz4pa0aePvmYV+9t19RpIXj5pPTPJLo7Yzkrx0kXMDAAAAAAAAALtXVf1Qkv81av5KVhdUmll3fy2rN7q7YpLbbnXsA9T/nfH6x2Z4v1Z6dXeP83SL8JdJvjRqu2VVPW4b5tptxrmdZLm5rUXmFadlRR9bVbecczwGO/Es76Vncs9kgLv7vCQfGjXfsaqO2OwYVXWnJD8xz/wL9oys3jz5vlV1z2UsBgAAgJ2lMBoAAACwU16a5D9GbVdI8rBpF3f3q5J8YNR8RJI3zLqT3T5VddGqekxV3W+e/ht4++j48CS/vZmOVXV0ktckOWwL8390StsdtjDeQnT3u7P6cz8hya2TXHnU/rw5p/n9rN6t7wZJXjVvMKSqjqqqZ1bVj8y5pgPFONR55SS/upmOVXXrJP9n4Sva47r7o0n+adR89STP38xOw1X1w1ldPGynjL9nfqSqrrTgOf5kdHzZJOOQ40u6e7yjJQAAAAAAAACwdz0ow2aJK72su89d0PgvmdJ24oLGPtDcuqqeupkLq+r2SX5ryqn/t9glDbr7O5leROv3quqR845bVberqj+df2U74nNJvjlqW2Y+cGF5xclmqq8YNZ8/Q/5vrsJMVXVYVT20qn5tnv57xLY/y3vsmdxrGeBxNvRCSTZ7P1w3qzdFXopJYb5nTTn1vKq6+zxjVtX5quqeVTXt3gUAAGAXURgNAAAA2BGTHciePOXU46vqwmt0u3eSr43arprkvVX1m5vZvayqDqmq46vqOUn+M0Mhp8vNsPTNekWS80Ztj6mq36mqQ9dZ372TvDs/2L3xjDnnf8+U+Z9RVXeuqvPPOeaijAMSx2T1boTnJPmreQbv7i8leWCSHp26bZIPVtX91vsM9qmqi0zCDq9McmqSRya54DxrOoD8xZS2p1XVL1RVTetQVRec7Oj4hgxBnvFufGzsF7P6fbtPktdMdjieqqrukuRt+cF32He2Z3lretfo+JAkL6+qGy1qgu7+WFYXjht7zqLmAwAAAAAAAAB2t0mG5UFTTk0rZjavv8/qolN3qqpLL3COA8G+PMtvVtVz18rnTTJ5v5rklRkKWK30gu5+2zau8VlJXj1qOyTJM6vqVVV1vc0MUlVXqarHVdVHMuSg5irAtVO6uzPkDFe6TVX9flVdZglLWnRe8ReSfGbUdqkkb66qP6iqTWU+q+qmVfWMJJ9N8mdJrjbHWvaCnXyW98ozudcywC9I8v1R2yOr6slrvZ5JwbATk7wjySUyZHLPmWPuRXtikveN2i6c5O+q6i+qalPPeVX9SFU9JcknkvxNkk3dmwAAACzPhv9BKAAAAMAC/W2GP1BfZ0XbZTMUCXr6+OLuPrWq7pHk9UkusOLURTLsXPaEqnpHkncm+WKSb2T4Y/eRSa6U5AaTnyMX/kpWr/UTVfWSJA8YnXpikhOq6u+SfCTJWRkCA9dIcqfsH7z5dpLHJXn2HPN/saremP13iLtskpOTnFNVn0vyrawuHvbz3f2BWeeb0YuT/F7237X1WqNr/r67vzrvBN39iqp6UpLfGZ26ymT+p1fVKUk+kOQrGd6Li2W4N45JcqMk183Wduw74HT3+6rq1UnuvKL5fBkKTz2iql6VoUjcOUkuneSGGe6xlWG6X41CVTPp7v+oqt9M8ozRqTsmObWq3pBhB8ovZtip8aoZPqMfXXHt6UlenuH93ymvzlCs8hIr2m6a5P1VdWaSL2RKobzuvv6M8zwryfFrnHtHd0/bHRMAAAAAAAAA2JuOzw8Kzuzzye5+76Im6O6zq+rlSX5+RfP5k9wvyR8tap4DwJMybDyaDO/FParq5CTvT/LlDFmraya5e5IrT+l/WpJf284FdndX1f0yFO4ZF7W5S5K7VNWHk5yS5JNJ9mXSjsxQaOu6GTJQ43vqQPC8JLcbtT0+w+a0X8yQ6zl3dP413f2kRS9k0XnF7v5qVd0pw+e6sojXoUkeneSXq+rdGTaV/HySr2fI+h2Z5PJJfixDBvBgK2a4lh17lvfKM7nXMsDd/YWqemZW5wuflOS+VfWKJP8+WfMlM2QT75j974enZdjg+qhZX88idfd3q+quGYrHXWl0+sQMn88Hkrw1Q1HEr2XIwR6ZIet6/QzfD2tuWgsAAMDupDAaAAAAsGO6+7yqenKGAmkrPbaqnt3d35rS581Vdaskf5fVf9C+SJLbTn52g19OcpMMgZGVrpiNixd9L8nPZQgZzOsxSY7N8L6sdIGsvfPh4VuYb1NWBDbuuM5lz1vAPE+tqi9kKKp0wdHpyya55+SH/T0syY2TXGHU/qPZvxDXNH/Q3X9WVQqjzai7/7CqLpXkCaNTF0xy18nPWr6VITT209u0vKkmAaNfS/LCKacvmiHstQgnJ/lcVn/nJ3OExgAAAAAAAACAA9qJU9pesg3zvCT7F0bbN/fBVBjt6RmKx9xjcnyxDEWCxoWCpvl8kp/s7m9s09r+R3efNckUPj9DYaex62V1gaa94BVJ3pzk1lPOXX7yM/ahbVzPQvOK3f2vVXXjJK9M8iNTxjx28sPGdvRZ3kPP5F7LAP9mkttk9fN0tSSP3WAtL5v0v/cG1+2ISaG3m2RY10+MTp8vwwavN93xhQEAALCtDln2AgAAAICDzr5d01a6dJJfWqtDd78vyQ0yhCa+t4W5O8Ouc2/fwhhrD979zQwhgvfM2PULSW7T3a/f4vwfS/JTSU7dyjjbZL3CZ19M8qZFTNLdz0ty8yRv2eJQ303yN0n+c8uL2uW6+0tJbpnZ7ptzkjy6uzcKx7CO7v6NDDtrzhKG+nyS46ft8rgTuvtFGULAZ27jHN9P8mdTTn0lQ8ATAAAAAAAAADgIVNWRSe425dRfbcN0b8vqrNB1quqgKbTS3Z3kvklm3STxnUmO7e5PL35V03X3md39s0kenuT0LQ73nxmyibtad5+X5GeTvHTZa0m2J6/Y3Z/MUNzoDzNsHrkVH0iypUzmgWoZz/JeeCb3Wga4u7+d5Lgk75ulW4bCeveZfOfsGpOs662TPDHJ17Y43L9n9SbfAAAA7DIKowEAAAA7ahK4OGnKqUdX1UXX6fff3f3gJMdk+KP7v2X4A/xGzkzyugzFh67S3cd393tnXvgmdffpGXYje2SSjcIhpyX5rSTX7O63LWj+d2fYre4OSf40yTsyhC7OSrLMkMLfJ/nvNc69aFIIaSG6+0PdfeskN0vyogyFpDbjixl2fn1gkst19727+8uLWtdu1t2fSXLdJL+R4X1YyzkZdtz7se5+xk6sba/r7j9Ocp0kL0xyxjqXfjnJU5Ncp7vfvxNrW0t3/2WSH0ryoCQvTvIvGdb3nQVOM63w2/O6++wFzgEAAAAAAAAA7G73TXLBUdu7u/tTi55okmubVnDtxEXPtZt197nd/fAMxYHekvUzZ/+S5CFJbrWTRdFW6u7nJLnqZB3/mM1tUHhehrX/QZLjkxx9oGShuvsb3X3fDBnBk5K8Nsmnknw9W9t0dt71LDyv2N3f7u5HJTk6w2v8QJLN5Au/m+Ge/Y0MGasbb7VQ1YFsWc/ygf5M7rUMcHd/NcktMhSsW+/fnd9P8oYkt+jux+y2omj7TO7r301yVJJHZXh/ztlE13OTvCvJU5LcpLuvPdkkFgAAgF2sht/ZAgAAABx4qurSSW6Y5NJJLpnk8Ay7BJ6ZoRjWfyQ5rZf4C5CqunqSm0zWeJHJ+j6f5CPd/fFlretgU1XHJLl2hvvkkkkukCEo8s0kn0nyHwdLEbTNqKrrJrlekksluXCG9+njGYKlZy1zbXtZVR2W5JZJrpzkchmCTP+V5CNJPrRbw0bboapemuTeK5o6yTHLCtECAAAAAAAAAByMqupSGTaovFqGfN4ZGTZe/JftKFC3VVV1gQyZwitmyD5dPENBnDMzbOz5iSSf6O5FbgDINquqI5LcOMllMuT/jsiwieOZGYpGfTzJpxe5QeuBoqpOSvLbK9u6u6Zct5Rn+UB/JvdaBnjyem6Y4Vm6aIbP4VNJ3tXdX1vm2uZVVRdOcqMkV8jw/XBkkrMzvLYvZ/h+OLW7N1NADQAAgF1EYTQAAAAAAHaNSdHLzyU5bEXzG7v79ktaEgAAAAAAAAAAwK6z2cJoAAAAAAeaQ5a9AAAAAAAAWOEh2b8oWpI8axkLAQAAAAAAAAAAAAAAAGBnKYwGAAAAAMCuUFUXSfIro+ZTk7x+CcsBAAAAAAAAAAAAAAAAYIcpjAYAAAAAwG7xlCSXGbX9cXeft4zFAAAAAAAAAAAAAAAAALCzFEYDAAAAAGCpquoSVfX0JL8+OnVakucuYUkAAAAAAAAAAAAAAAAALMGhy14AAAAAAAAHl6r6iyQ3mhxeKskVktSUSx/T3efs2MIAAAAAAAAAAAAAAAAAWCqF0QAAAAAA2GnHJLneBte8qLtfvhOLAQAAAAAAAAAAAAAAAGB3OGTZCwAAAAAAgJGXJPn5ZS8CAAAAAAAAAAAAAAAAgJ116LIXAAAAAADAQe87SU5P8u4kz+vuU5a7HAAAAAAAAAAAAAAAAACWobp72WsAAAAAAAAAAAAAAAAAAAAAAAAADnKHLHsBAAAAAAAAAAAAAAAAAAAAAAAAAAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdIcuewGwbFV1RJJjVzR9Lsk5S1oOAAAAAAAAAMBWXCDJlVYcv7W7v7msxQCAjB4AAAAAAAAAsEfI5+0QhdFgCFy9etmLAAAAAAAAAADYBndO8pplLwKAg5qMHgAAAAAAAACwF8nnbZNDlr0AAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgKU7dNkLgF3gcysPTj755BxzzDHLWgsAAAAAAAAAwNxOPfXU3OUud1nZ9Lm1ruX/Z+/Owyyr6nvh//bpmrrpEehmVJtJQKIiyhtoGkRARcwbjfGS+JKHaHzVKDF4fRH1GgbjjUOccm/kxuGiYDSGoIISofFGmVFB0NgJIIJAM3dDz0ONZ71/dHdRw9nn7FN1qs6pU5/P8/RD77X3GvbuemBteq3vBmCaWKMHAAAAAAAAAMx41udNH8FoENE/8uDQQw+No446qlljAQAAAAAAAABopP7alwDAlLJGDwAAAAAAAABoR9bnTZFSswcAAAAAAAAAAAAAAAAAAAAAAAAAIBgNAAAAAAAAAAAAAAAAAAAAAAAAaDrBaAAAAAAAAAAAAAAAAAAAAAAAAEDTCUYDAAAAAAAAAAAAAAAAAAAAAAAAmk4wGgAAAAAAAAAAAAAAAAAAAAAAANB0gtEAAAAAAAAAAAAAAAAAAAAAAACAphOMBgAAAAAAAAAAAAAAAAAAAAAAADSdYDQAAAAAAAAAAAAAAAAAAAAAAACg6QSjAQAAAAAAAAAAAAAAAAAAAAAAAE0nGA0AAAAAAAAAAAAAAAAAAAAAAABoOsFoAAAAAAAAAAAAAAAAAAAAAAAAQNMJRgMAAAAAAAAAAAAAAAAAAAAAAACaTjAaAAAAAAAAAAAAAAAAAAAAAAAA0HSC0QAAAAAAAAAAAAAAAAAAAAAAAICm62j2AGA2SilFuVyOlFKzhwIwTpZlUSqVIsuyZg8FAAAAAAAAAADqZo0e0KqszwMAAAAAAACoTTAaTIOUUvT29saWLVtiy5Yt0d/f3+whAdTU1dUVCxYsiAULFkRPT4+FWAAAAAAAAAAAtCRr9ICZxvo8AAAAAAAAgHyC0WCKbd++PZ544okYGBho9lAA6tLf3x/PPvtsPPvss9HZ2Rn7779/zJs3r9nDAgAAAAAAAACAYdboATOR9XkAAAAAAAAA+UrNHgC0s+3bt8eaNWssuAJmvIGBgVizZk1s37692UMBAAAAAAAAAICIsEYPaA/W5wEAAAAAAACMJhgNpsjuBVcppWYPBaAhUkoWXwEAAAAAAAAA0BKs0QPaifV5AAAAAAAAAM/paPYAoB2llOKJJ54Yt+Cqs7MzFi5cGPPnz4/Ozs7IsqxJIwTIl1KKgYGB2Lp1a2zevHnUF3V3//vtkEMO8e8wAAAAAAAAAACawho9YKayPg8AAAAAAACgNsFoMAV6e3tHLVSIiFiwYEEccMABFioAM0JnZ2fMmzcvli5dGo8//nhs2bJl+NzAwED09fVFT09PE0cIAAAAAAAAAMBsZY0eMJNZnwcAAAAAAABQXanZA4B2NHKBQsTOBQwWXAEzUZZlccABB0RnZ+eo8s2bNzdpRAAAAAAAAAAAzHbW6AHtwPo8AAAAAAAAgMoEo8EUGLvoauHChRZcATNWlmWxcOHCUWVj/z0HAAAAAAAAAADTxRo9oF1YnwcAAAAAAAAwnmA0aLCUUvT3948qmz9/fpNGA9AYY/891t/fHymlJo0GAAAAAAAAAIDZyho9oN1YnwcAAAAAAAAwmmA0aLByuTyurLOzswkjAWicjo6OcWWV/n0HAAAAAAAAAABTyRo9oN1YnwcAAAAAAAAwmmA0aLBKX2jLsqwJIwFonFJp/JTBFykBAAAAAAAAAJhu1ugB7cb6PAAAAAAAAIDRBKMBAAAAAAAAAAAAAAAAAAAAAAAATScYDQAAAAAAAAAAAAAAAAAAAAAAAGg6wWgAAAAAAAAAAAAAAAAAAAAAAABA0wlGAwAAAAAAAAAAAAAAAAAAAAAAAJpOMBoAAAAAAAAAAAAAAAAAAAAAAADQdILRAAAAAAAAAAAAAAAAAAAAAAAAgKbraPYAmB5ZlnVGxAkR8fyI2C8itkbEExHxi5TSww3u66CIODoi9o+I+RHxZEQ8EhG3p5QGGtkXAAAAAAAAAAAAAAAAAAAAAAAA7UEwWpNkWXZwRBwbEa/Y9c9jImLBiEseSSktb0A/SyPioxHxRxGxZ841t0fE51JK35lkX2+OiPdHxPE5l6zPsuyKiLgwpfTMZPoCAAAAAAAAAAAAAAAAAAAAAACgvQhGm0ZZlp0cER+OnWFoFUPKGtzf6yLisohYVuPSFRGxIsuyb0bEu1JK2+rsZ35EfCUi/rjGpXtGxLsj4k1Zlv1pSun6evoBAAAAAAAAAAAAAAAAAAAAAACgfZWaPYBZ5uiIeE1MTyjayRFxdYwORUsRcVdEXBkR/ycinhlT7ayI+FaWZYV/LrIsmxMRV8T4ULR1EfHDXX3dvavv3faJiO9lWbayaD/QzpYvXx5Zlg3/uvHGG5s9JAAAAAAAAAAAAJjxrM8DAAAAAAAAgJlHMFpr6IuIBxvVWJZlB0bEdyOia0TxbRFxVErpFSmlM1NKr4mIAyPi3IgYGHHd/x0R/72O7j4ZEWeMOB6IiPdGxIEppdfu6uvlEfE7EfGTEdd1R8TVWZbtV0dfAAAAAAAAAAAAAAAAAAAAAAAAtCnBaNNvICJ+GRH/OyLeFREvj4gFEfH/NrCPj0bEkhHHt0fEaSmle0delFLqSyn9z4g4c0z992dZ9oJanWRZdnDsDFYb6b+klL6QUuof09c9EXFqjA5H2ysiLqrVDwAAAAAAAAAAAAAAAAAAAAAAAO1PMNr0ujwiFqaUXpZSekdK6csppbtTSgON6iDLssMi4k9HFPVHxFtTSr15dVJKV+8a227dUSyw7KKI6BxxfFlK6XtV+tkREW/dNabd3r4rYA0AAAAAAAAAAAAAAAAAAAAAAIBZTDDaNEopbagWUNYg/09EzBlx/N2U0m8K1PvUmOMzsyzrybs4y7K5EfHmGm2Mk1K6PyKuHlHUETvHDAAAAAAAAAAAAAAAAAAAAAAAwCwmGK39/MGY468VqZRSujcifjaiaI+IeE2VKq+NiHkjjn+SUrqv0AjHj+lNBesBAAAAAAAAAAAAAAAAAAAAAADQpgSjtZEsy/aNiJeOKBqMiNvqaOLGMcevq3Lt6TXqVnNL7Bzbbi/LsmyfOuoDAAAAAAAAAAAAAAAAAAAAAADQZjqaPQAa6nfGHP8qpbStjvq3jzk+qo6+flK0k5TStizLVkfEy8b09XTRNoD6pZTi7rvvjvvuuy/Wrl0bfX19sXTp0jjggANi5cqVMX/+/GYPccIeffTRuPPOO+Oxxx6LHTt2xN577x0vfvGL4xWveEWUSpPLAF27dm3ccsst8cQTT8SOHTti//33j4MPPjiOO+64SbddyT333BOrV6+OdevWxebNm2PPPfeM/fbbL1auXBl77bVXw/sDAAAAAAAAAABgcqzPmxjr8wAAAAAAAACoRDBae3nRmOMH6qz/YI32RjqyAX2NDEZ7UUT8uM42gAKeeeaZ+PjHPx7f+MY3Yt26dRWv6erqilNOOSUuvvji+N3f/d1C7b71rW+Nyy+/fPj4oYceiuXLlxeqe+ONN8arXvWq4eOLLrooLr744tzrsywb/v0rX/nKuPHGGyMi4vbbb4+LLroofvzjH0e5XB5Xb5999omPfOQjcc4559S9SOoXv/hFfOADH4gbbrihYtsHHnhgvOtd74oPfehD0dHRERdffHF89KMfHT5/ww03xMknn1yor2effTY+/elPxze+8Y14/PHHK15TKpVixYoVcdFFF8Vpp51W170AAAAAAAAAAADQeNbnWZ8HAAAAAAAAQOMJRmsvh445XlNn/UfGHO+VZdmSlNKGkYVZlu0ZEXtOsq+x1x9WZ32ggKuvvjrOPvvs2LJlS9Xr+vv7Y9WqVbFq1ap45zvfGZdcckl0dLT2fyI+/vGPx4UXXhhDQ0O51zz99NPxl3/5l3HDDTfEP//zP0dXV1ehtj/3uc/F+eefX7Xtxx57LC644IK47rrr4rvf/W7d49/t61//erz3ve+NzZs3V72uXv0wVQAAIABJREFUXC7HrbfeGq9+9avjT/7kT+LSSy8tfD8AAEB72zG0PR7q/XX0l/vqqrd3576xf/fzo5RV36gylIbi0d4HY+Pg+skMs210lbrjoJ4Xxtw5ezS87a1Dm+ORHb+JgTQw7lx3qScOmnt49JTmNrzfRhkoD8Qjvb+JJZ17xV6d+zR7OAAAM8LWoc3xVN+jsW/382L+nIXNHk5LWj+wLh7reyjKafxG+QVzFsUL5h4aHVlnw/vdNLghnu5/PJ7fc8ik5uG95R3x8I77o7e8o4Gjmzr7dB0Q+3YdOCoYoZKd8//7Y+tQ9b+HnDdnfrxw3u80cogAANAyrM+zPg8AAAAAAICJGxxKcfeaiMXzIg5bFjXXrQGzS2v/rTr1WjzmeG09lVNKW7Ms642InhHFiyJiw5hLx/azPaW0rZ6+KoxtUZ31gRq++tWvxjve8Y5xX1M85JBD4kUvelHMmzcv1qxZE3fccceoBUZf/vKXY82aNXHNNde07OKrz3zmM/GRj3xk+Pjwww+Pww8/PPbYY4948skn46c//Wn09vYOn7/qqqviggsuiE996lM12/7sZz8b55133rjyF73oRXHYYYdFd3d3rFmzJu68884YGhqK22+/Pc4888w46aST6r6PCy+8MD72sY+NKsuyLA4//PA47LDDYsGCBbFhw4b4+c9/Puprot/4xjfiySefjFWrVrXsnxEAADA9btpwbVy59n9HOcYHBBSxf9fz4y+ed3Es7hibgb/Tk32Pxt8/dnFsHHx2EqNsP6UoxZnL3hEnLXldQ9pLKcV1z/5L/ODZf44UqUq/c+Ksfd8Txy86tSH9NtL921fHFx//RPSWt0dExEvm/1/x9v3Oi86STUMAAHmufeaKWLX+yhhMg5FFFm9e9vZ41ZLfa/awWsZQGoyvPfn5uHvLbVWv26O0IN5z4F/FQXMPb0i/5VSOK9Z+OW7ZuCoiIuZER5y931/GsQvr/7ugn226Mb7x1BdiKAYbMrbp8oKew+KcAy/IDev79fbV8aXHP14o7G15z2Fx/gs+3eghAgBA01mfZ30eAAAAAAAAE/cfj6d47d+V48lNO49XHhpxzV+UYtE84WjATv62tr3MH3M8kU9O74jRwWgLprCfkSr1U7csy5ZFxNI6qx3SiL4bJQ0ORqx7rNnDaH9LD4ysjRes/PKXv4x3v/vdoxZdHX300XHJJZfEihUrRl27bt26uOCCC+JLX/rScNmqVaviwgsvjI9//OPTNuaiVq9eHbfccktERLzxjW+MT3ziE3HEEUeMumbDhg3x/ve/Py677LLhss9+9rPx7ne/O5YvX57b9l133RUf+tCHRpWdfPLJ8YUvfCGOOuqoUeXr1q2LCy+8ML74xS/GzTffHPfcc09d93H55ZePWnRVKpXinHPOifPOOy+e//znj7o2pRTf+9734txzz401a9ZERMSPfvSjuOCCC+ITn/hEXf0CAADtY03vA3HF2i9Pqo0n+tfEPz75P+O9z7t43LmUUnzp8U8IRaugHOX457VfioPmHh7P6zl40u3ds/0X8a/PfqtAv0Pxj0/9fSzveWHs1/28SffbKP3lvviHx/4m+tJzm6B+tfWOuO7ZK+P3l57VxJEBALSu1VvvHDUHTJHiyrX/O5b3HNawgK+Z7ofrv1szFC0iYlt5S/yvx/97fPKQr8WcbPJ///eTTT8aDkWLiBiKwbjsyc/HQT2Hx95d+xRuZ23/E3H5U3836fE0wyO9v4krnv5yvH3/8WEFfeXe+OKY+T8AwExifd40auM1etbnWZ8HAAAAAADAxKWU4vf+/rlQtIiIWx+IOPeKFJe9TTAasFN7rjiYvcYGlk1kJfKOiFhSpc1G9lOtzYl6T0Rc1KC2mmPdY5HOtNlhqmX/8uuI/ZY3exhT5u1vf3v09/cPH69cuTKuv/76mDdv3rhrly5dGl/84hfj0EMPjQ984APD5Z/61KfiLW95S7z4xS+eljEXtX79+oiIOP/883O/MLlkyZL42te+Fhs2bIjvfe97ERExNDQUl1566bgvQI50zjnnxODg4PDxm970prjiiisqfvVx6dKl8Q//8A9x8MEHx/nnnx/PPPNM4Xt45JFH4t3vfvfwcXd3d1x99dVx+umnV7w+y7J44xvfGCtWrIgTTjghHnjggYiI+PSnPx3vfOc746CDDircNwAA0D7+Y+tdDWnn19tXR295R/SU5o4qXzvwRKwdeKIhfbSrX229oyHBaL/ackdd16/eemdLBaP9evvqiqEIv9r6M8FoAAA5rnv2yorlv9z6U8Fou9TzzrNtaEs8uOO+eOG835l0v6u33TmuLEWK1dvujFd1/V7xdraOb2cm+Y+tP4+hNBRzsjmjyu/Pmf8DAMwY1udNm3Zeo2d9nvV5AAAAAAAATNydD0esWT++/Os/SXHZ26Z9OECLKjV7AEyp1GZ1gAJuuOGGuPvuu4ePFy5cGFdccUXFRVcjnXfeefF7v/fcZo5yuRyf//znp2yck7Fy5cpCX2L8m7/5m1HHP/7xj3OvvfPOO+NnP/vZ8PF+++0XX/3qVysuuhrpAx/4QLzmNa+pOZaRPv3pT8eOHc/lQ37+85/PXXQ10rJly+Kf/umfho+HhoZa9s8IAACYepsGNzSknXIMxdbBzePKNw4825D229mmwQp/CzMBGwfre9abhhrTb6Nsyhl/o35GAQDazZreB+Lh3vsrnts40FpzvWbaMrSxrusbNj/PeReqd35b7zy/1fSl3ugrj/3eWcTGBj1nAACYqazPe471eQAwC6QUUR5o9igAAAAAaDM/WC1yBqhNMFp72TrmeO4E2hhbZ2yb09kPMAGXX375qONzzjkn9t9//0J1P/nJT446/ta3vhV9fX0NG1ujfOQjH4lSqfZ/wo466qhYvnz58PEvf/nL3Gu/9a1vjTr+i7/4i1i0aFGh8VxwwQWFrouI2LZtW3z1q18dPj744IPjXe96V+H6xx57bJx44onDx9///vcL1wUAANrLYGrcwtO+NH6ze2+FDfCM1qhn1Jd6m9Jvo/SVK4+/0s8VAAARN228LvecOdRz6l32lDcvrVfe/LxSSFg1rTZvn4hK91DvcwAAgHZjfd5zrM8DgDZ33/+I+P5BEf+yIOLHr43Y/lizRwQAAAAAwCxS/TNbzDSC0SL+V0RcWWedQyLiew3qH5ru1ltvHXX8J3/yJ4XrHnXUUXHMMccMf9Gyt7c37rrrrlixYkVDxzgZc+fOjVNOOaXw9UceeWQ8/PDDERGxffv22Lp1a8yfP3/cdbfffvuo4zPPPLNwHytXroz9998/nnjiiZrX3nrrraO+RvnmN7+50CKykV71qlfFLbfcEhERjzzySKxZsyae//zn19UGAAAw8+UFo82JjugqdY0rTxHRW95esU5vhQCBamFdc0vzig2yTQyk/hhMg+PKGxa8UGc7jeq3UfLGM5gGYzANREfWOc0jAgBoXduGtsTPN9+Se77V5nrNVV80WqMCu/ICzRoVjJb3ztYsKVKVex7/85h3bSlK0V3qGVdeqQwAAGYy6/NGsz4PANrUg1+LuPt9zx0/9cOIf3tVxO/dG1GyFQ0AAAAAgKnn/0a3l01jjpfWUznLsvkxPrBsY4F+5mVZtkdKaVsd3S0r0E/dUkprI2JtPXWyLGtE19ASNmzYEA8++ODw8eLFi+PII4+sq40VK1YML7yKiLjzzjtbauHVIYccEl1dxTeLLFmyZNTxpk2bKi68+vd///fh3y9evDgOPfTQusb1ile8otDXIccujNt///2HF4YVNfb+f/vb31p4BQAAs1CloK6IiBWLT4u37PPn48pTSvHe+/8wylEed67SBv+8ze5LO/eLjx78D3WOdmb7/rpvxqr147P4855RvfICFjqyjikNZGuUas+hr9wbHXMEowEA7PaTTT+KgdSfe75R4V7tIKV6g9GmNri43vbzgqlPXnJG/OGyP6t7XFOlt7wj3v+bt1Q8V+nnMe85HLnH0XHOgRc2dGwAANBqrM8bz/o8AGhTD39zfNnWByKevTNi6fHTPx4AAAAAAGYdwWjt5Tdjjl9QZ/2x169PKW0Ye1FK6dksyzZExMjVDM+PiHsn0dfYsQMTsG7dulHHhx12WN3hf0ccccSo47Vr68oanHJjF1LV0tk5evP1wMDAuGu2bdsWvb3PbeKYyCKmonUeffTRUcfve9/74n3ve1/O1cWsX79+UvUBAICZaTCNf7+JiOjMKodQZVkW3aW5saM8Ptu+ns3uPaWxufrtL++e+1JjghfygsUWzlkS6wfXjStvtbCMagERfeXe2GPOgmkcDQBA6yqnctyycVXVa1otBHcmaURwcUqpgcFolcfT3WLvVF1Zd2SRRYrxQXSV7jnvfaTV7gsAAKaC9XnjWZ8HAG3q6R9VLl99ccQp10/rUAAAAAAAmJ0Eo7WXscFk9X1OLeLgMcf31Ohr5CfqDq3Qfz191VO3vS09MLJ/+XWzR9H+lh7Y7BFMiQ0bRmcZLlq0qO42xtZptUU9pVKp4W1u3Lhx1PGCBfVv2F64cGGh65599tm6265ly5YtDW8TAABofXnBaHOy/P/l113qyQlGq2eze0/BEbaPvHtuVEBZXsDCoo49c4LRWissoy/lP4dWGysAQDPdu+0XsW7gqarXmD89p1JQVzWNeHYDqT9SlCueqzd4Le/6uaV5dY9rKpWyUnRl3RWDnyvdQ95zno3vigDADGV93vRpwzV61udNjPV5ANBG0mCzRwAAAAAAwCwhGK29/MeY45dkWTYvpbS9YP0TarQ39tzIYLTjI+KaIp1kWbZHRLykjr5mlayjI2K/5c0eBjNUSqM3iNT7NcpKGtFGq+vu7h513N/fX3cbRetMpO1axv65AwAAs0NeMFpH1plbp7s0t2J5fcFoldtoZ/U8t3qllHLbWdixpGJ5vYEMU63ac2i1sQIANNNNG6+reY1gtOfkBaOVohTlCuFl1QJ7i6oWflwpOKyavLlwK75TdZfmRt9QhffCCvec9xy6s9a7LwCASqzPYzKsz5sY6/MAAAAAAAAAqJdgtDaSUnoyy7JfxXOhYx0RsTIifliwiZPHHFdbmb8qIt5ZpW41J8bon71fpJSerqM+kGPPPfccdbxp06a62xhbZ8mSypuwJ2NoaKjhbU7G2Hsc+2XPIop+uXPvvfcedXz77bfH8ccfX3d/AAAAgzlf4a0WjNaTswG/0ob9/E38PQVG117y7rkRoV+DaTDKUfk9eWHH4orlrRaWUW081YIlAABmk2f6n47/3HZXzesaEe7V7rpLc2NHedu48kbMkxs5t+0tV/5+WU9pXl3tTIee0tzYPDT+78fqeVfMe98EAIB2Yn3exFifBwAAAAAAQFEppVnxcSGgtlKzB0DDXTXm+G1FKmVZdkRE/O6Iom1RPVDt+ogYueL5+F1tFPHWMcdjxwxM0NKlS0cd33///XW38etf/3rU8bJlyype19ExOltzcLDyhvxKJrKwaSrNmTMnDjjggOHj3/72t7F9e+XNKnlWr15d6Lp99tln1PFE/owAAAAiIgbTQMXyasFoeQFflTb/5wUCzMbN7nn33FfujZTSpNquFnyxaE7lzVCtFjZWLSCu1ULcAACa5eaN10WK2nPHwTSYO9efbfKeVz2Bz/Wq1kZvnXPbvHl7TwuGTTfiXXE2hmgDADD7WJ83MdbnAQAAAAAAAFAvwWjt55sRMfJTb2/KsuywAvU+OOb4X1JKuSu7U0rbI+LbNdoYJ8uyF0bEH4woGoyIfyowPqCAJUuWxCGHHDJ8vHHjxrj33nvrauP2228fdXzsscdWvG7hwoWjjjdu3Fi4j//8z/+sa0zT4bjjjhv+fblcjptuuqlw3fXr18e///u/F7p2xYoVo45/+MNqGZQAAAD5BlPlDTAdWUfF8oj6AgTyAgFm42b3vHtOUY6B1D+ptquFnC3q2LNyndQb5VSeVL+NVC38rBHhFAAAM11/uS9+sulHha8XLrtLTghxteDiyarWRj0BxQPlgdx3tp7SvLrHNdXyg9HG33Pec5iN74oAAMw+1udNnPV5AAAAAAAAANRDMFqbSSn9JiIuH1HUFRGXZVmWuwo5y7I3RMRbRxT1R8RHC3R3cUSM/Fz5W7Ms+/0q/fRExNd2jWm3S1NKDxboCyho5cqVo46/+c1vFq577733xl133TV83NPTEy9/+csrXjv2S5X33HNP4X6uvfbawtdOl9NOO23U8Ve+8pXCdS+//PLo7y+2Ef7UU0+NOXPmDB9///vfj7Vr1xbuCwAAYLeh3GC0ztw63Tn/i6gvVdrsXjkQIC+EoJ1Vu+fJBn9VC15Y2LE491x/6ptUv41ULSCiL//bCwAAs8bdW26LbeUtha8XjLZT5Vi0/GCxhgSjVZm/DqT+KKeh3POjx5I/R27Fd6ru3LC54iHarXhfAAAwFazPmxjr8wAAAAAAAACoh2C0aZZl2YFZli0f+ysi9h1zaUel63b92rtGNxdFxIYRxysi4t+yLDtizFi6syx7b0RcOab+Z1NKj9S6l5TSbyPif4wp/naWZX+RZdnI8LPIsuzIiPjRrrHs9mwUC2AD6nD22WePOv7CF74QTz31VKG6H/7wh0cd//Ef/3F0d3dXvPaYY44ZdXzNNdcU6uP666+PO+64o9C10+mss86KBQsWDB9fddVVcf3119es9/jjj8df//VfF+5nyZIlcdZZZw0fb926Nc4777z6BgsAABARg2mgYnlH1pFbp7uUE4xWIUAgbyN/dzb7NrvnPbeI6oEHRVQLb1jUsWTK+m2kauERQj0AACJu2nhdXdebQ+2UolyxPP+9ZvJz5FrBx0X/bKq1kxfs1kz1vStWfgbV3psAAKCdWJ83MdbnAQAAAAAAAFAPwWjT79aIeKjCr2+Nue6AnOseiojPVOsgpfRYRLwpIkZ+Hu2EiLgny7I7syy7IsuyVRHxaET8z4joHHHdv0bEBXXcz4ciYuRK/s6I+PuIeDTLsuuyLPuXLMt+HhH/GaND0foj4g9SSk/W0RdQwCmnnBJHH3308PGmTZviLW95S+zYUX0jx+c///n43ve+N3ycZVn81//6X3OvP/7442PevOc2blx11VXx85//vGofv/nNb+JP//RPa91CUyxYsCDOPffcUWVnnnlm3HDDDbl1Hn744Xj1q18dGzdurKuviy++eNSCtn/8x3+MD37wgzE0NFRXO/fcc0/cfPPNddUBAADaR34wWmfF8oiI7lLlULNKAQJ5YVezcbN73nOLqB2cUEteqEAWWcyfs6jues1QbSytFOAGANAMD+/4TTzS+5u66kx2jtkuUk55T+57zeTnyLXmr8WD0bbnnssbfzMVDUZLKeWHaLfgfQEAwFSwPm9irM8DAAAAAAAAoB6C0dpUSunGiPiDiFg3ojiLiFdExJkR8dqIWDqm2rci4o9TSoX/5n/XtWdGxBVjTi2LiNMj4r9ExMt39b3b2oh4Q0rplqL9wGzy1FNPxcMPPzyhX7tdeuml0dXVNXx84403xoknnhg/+9nPxvX3zDPPxDnnnBPvf//7R5Wff/758ZKXvCR3nAsWLIg/+qM/Gj4eGhqK17/+9fHDH/5w3LX9/f3xla98JY477rh4+umnY8mSJfU8kmlzwQUXxItf/OLh482bN8epp54aZ555Znz729+OX/3qV3HffffFD3/4w3jf+94XRx11VNx7773R09MTb3jDGwr3c9BBB8WXv/zlUWV/+7d/GytXroxrrrkmBgcHc+s+/PDDcckll8Qpp5wSRx11VPz4xz+u/0YBAIC2MJAbjNaRW6foZveI/DCG2bjZvTvLv+fJhi/kP+eeqoEJrRKWMZQGc0P6IgSjAQDcvPHauuuYQ+1WORqtpzSvYnlfmvxzqzXPzguQrqedVnynynv3GHsfg2kgylGueG0r3hcAAFRifV7zWJ8HAAAAAAAAQFH5uySZ8VJK12ZZ9jsR8dGI+KOIyFvp8NOI+ExK6TsT7GdrRPxxlmXfjoj/LyKOy7l0fewMULsopbQu5xqY9d7ylrdMuG5KOzeIHHPMMfGFL3wh/vzP/zzK5Z2bE+6666447rjj4tBDD42jjjoqenp64tFHH4077rhj3EKfV7/61fGxj32sZn8f+9jH4qqrrhr+IuPatWvjta99bRx66KHxkpe8JLq7u+Ppp5+On/3sZ7Ft27aIiNh3333jU5/6VEt+mbKrqyt+8IMfxCmnnBIPPPBAROx8pldeeWVceeWVFetkWRaXXHJJrFmzZtwXPas5++yz46mnnooPf/jDw39GP/3pT+P3f//3Y968efGyl70s9tlnn5g7d25s2bIlnnnmmbjnnnvq/volAADQvoZS5U0bHVlnbp2im90j8gO/qoV1tavOUmfMiY4YivHPfLKhFXn1u0tzc4PsdtabXCBbo9QaR6uMEwCgGbYObo6fb7m14rkj5r00Htrx64pBW+ZQO6U6g9EGd4X2VnsnqqX2/LbY/L+3vL1ieUfWEZ2liY9vquSFQY/9+az2fLqz/PcXAABoJdbnNY/1eQAAAAAAAAAUJRhtmqWUlk9zf2sj4t1Zlp0bESdExAsiYt+I2BYRj0fEL1JKDzWor29HxLezLDsoIo6JiP0jYo+IeCoiHomI21JK/Y3oC6jtHe94RyxZsiTe9ra3xdatW4fLH3jggeFFRZX82Z/9WXzxi1+Mzs7amzIOOOCA+M53vhNvfOMbY8uWLTX7OOigg+IHP/hBPP3003XezfR53vOeF7fccku85z3viauuuqrqtXvttVdcfvnl8frXvz4++MEPjjq3YMGCmn3t/urn2972tnjqqaeGy7dv3x633XZbofG26tc9AQCAqTeYBiqWVwsB6M4JNRu7uT2llLvhvVpYVzvrKc2NbeUt48orBVnUI/c5Zz0xJ+uIjqyz4p91pTC7Zqg1DqEeAMBsdvumf8udt5+0+HXxRN+a6BuqEIw2yTlm26ici1Y1rLmv3Bsdc6YuGK3oPLw3932qNYOm857p2OdR7f5nY4g2AACzm/V5E2N9HgAAAAAAANWkFFHjGznALFFq9gCYHiml/pTSDSmly1JKn0wp/X1K6buNCkUb09dDKaXv7Orjk7v6vEEoGky/N7/5zfHggw/GueeeG3vvvXfudZ2dnfGa17wmbrvttrj00ksLLbra7ZRTTok77rgj3vCGN+R+hXHp0qXxgQ98IH75y1/GkUceWfd9TLd99903vvvd7w4vwHrRi14Uixcvjp6enjj44IPjtNNOiy996Uvx4IMPxutf//qIiHFfily0aFGhvk4//fR46KGH4pJLLomjjz665pcsOzs7Y8WKFXHxxRfH/fffH+eee+7EbhIAAJjRymkoylGueK56MFrlULOxm90HUn+knPZn62b3vGc32YCyvNCL3f0VDSholkYFRwAAtJtyGopbNq2qeG5Jx97x4vnHFp6fz1YpJxmtVjDaZPQ1KPi3t7y9YnlPaV7dY5oORd93+lL+85mtIdoAAMxu1udNjPV5AAAAAAAAANTS0ewBAMx2Dz/88JS2v2zZsvi7v/u7+NznPhd33XVX3HfffbFu3bro6+uLvffeOw488MBYuXJloS8o5jniiCPi6quvjmeeeSZuuummeOyxx2L79u2xzz77xEEHHRQnnnhidHQ895+ck08+OVKqvJmlknquHeuyyy6Lyy67bEJ1V65cGStXrix07T333DP8+yzLYtmyZYX76enpife85z3xnve8J9avXx8//elP48knn4z169fHwMBAzJ8/P5YtWxYvfOEL44gjjoh581pz0wwAADB9BtNg7rmOLP9/+eWHbI3e3F4tzGq2bnbvnqKAsrz6u/vrLvXE1qHNFeq1RuBYrfvPC34DAGh3/7nt7nh2YG3FcysXvzbmZHOmLHy3XTQnGK3G/LZg+3nz9VYNms4P6RsTjFbl/mfruyIAAK3P+rzarM+zPg8AAAAAAACg1QhGA5glSqVSHHvssXHsscdOWR977713/OEf/uGUtd+qtm3bFnfffffw8Qtf+MIJL2Tbc88944wzzmjU0AAAgDY1mAZyz3VknbnnurOcze6pN8qpHKWstPO4ajBaa27kn2pTFVqR96x399edFQuza5Za45hsMAUAwEx108brKpbPiY44YdGrI6J4cPHsVXljfrV3kknPz1P1+kXb31HeXrG8dYPRigVB591/KUrRmXU1fFwAADCTWJ83dazPAwAAAAAAAJh9Ss0eAADMdJdffnls3/7cBpfjjz++iaMBAABmg8E0mHuuajBalU34/alv+PfVNvvnBYS1u/zQiskFf+U969395T3vvtQagWO1xjHZYAoAgJloXf+Tcc+2uyueO2bBiljYsTgiqsz1hMtGRF4s2s7nlkVW8dxkQ+V6azz7on82eeNo3WC0vJ/FHZFSGnFc+f67Sz2RZZX/TAAAACbL+jwAAAAAAACA2UcwGgBMwmOPPRYXXHDBqLKzzz67SaMBAABmi8E0kHtuTtaRe65aqNnIjfvVNvu36kb+qVYtKGAyqgULVOu3VQLHat3/ZJ8PAMBMdPPGVbnnTlpyxvDvBaPVUjkaLYtsyp5do+a3+QHI8+oe03TIC9EuR3nU+2f++8vsfE8EAACmnvV5AAAAAAAAALOTYDQAGOE73/lO/Lf/9t9i3bp1Na/9xS9+ESeddFKsX79+uOylL31pvOpVr5rKIQIAAFQNRuuYcDBa74jfV97EPyc6oiPrLDDC9pO30X+qg9HyguhaJSyj1jhaZZwAANOlv9wXP9n0o4rnDuw+KA7uOXz4uDtr7bles6WUE4yWZdGdTU2AcK1nX7T9/GC01gwQ65nku6JgNAAAoCjr8wAAAAAAAAAoIn+XJADMQlu2bIlPfOIT8ZnPfCZOP/30OPXUU+OlL31pLFu2LDolexdaAAAgAElEQVQ6OmL9+vWxevXq+Nd//de45pprRm3K6erqissvv7yJowcAAGaLwTSYe66zSnBZtU34Izfu96XKYQCtuol/OuSFyk06eCHnWe8OycgLGJhsv41Saxx95d5IKUWWZdM0IgCA5vr5lltie3lrxXOvXHzGqHlRbvhuao25XivrLs2NGNowrjxvfl1UreDjou3PtGC0vJC+iJ33Mj8WRkTtYGcAAIBarM8DAAAAAACgmsqfVAVmI8FoAFDBwMBAXHPNNXHNNdcUun7u3Lnx9a9/PV760pdO8cgAAAAiBtNA7rmOKsFoecELEaM3uOdt4p/Nm93zAgzyggGKqvWsp6rfRqk1jnIMxWAaiM6sa5pGBADQPCmluGnDtRXPzS3Ni2MXnjSqLG9+XSuca7YoR7lieRZZlWc32WC06vWLtt9b3l6xvNo7WTNVe9cbGdSX+/6Szd53RQAAYGKszwMAAAAAAACgmlKzBwAArWTx4sUxZ86cuuqccMIJcfPNN8eb3/zmKRoVAADAaNWC0eZk+d9CmJPNyQ2oGrnBPW+zf6tu4p8OeRv984IBisp71rsD0Vo9LKNIMESrhLgBAEy1h3vvj0f7flvx3PGLTo2uUveosqkK92p/We67yWTnybWD0Yq1n3fd3NK8usc0HfICmSNGP5ORIWlF6wMAAIxkfR4AAAAAAAAAReTvkgSAWeiNb3xjPP3007Fq1aq47bbbYvXq1fHII4/E+vXro7e3N+bOnRt77rlnvOAFL4gTTzwxzjjjjDjhhBOaPWwAAGCWqRaM1pF1Vq3bXeqJgaH+ceUjN7vnhX3lBTfMBnkb/ScbWpEXmLD7WecHPrRGWEahYLS0I+bHwmkYDQBAc9208drccyctft24MsFo1aVIFctLkU1JgHA5laMv1QpGK/ZnsyN3nt+aAWIdWWeUohTlKI87VyxEe/a+KwIAAPWxPg8AAAAAAACAIgSjAcAYe+21V5x11llx1llnNXsoAAAAFQ2mwYrlpZgTpaxUtW53qSe2Dm0eV95XYLN7XjjYbJAbUJYmHrwQUTtYYCoCHxqpyP3nBe0BALSTLYMb4+4tt1U8d+S8o2NZ1/7jyvPm1+ZPu1UORousWjDaxEPl+lNfzWuKtp83X2/Vd6ps1zPdUd4+7pwQbQAAoNGszwMAAAAAAACgluq7JAEAAACAljOYBiqWd2adNet2ZzkBX6OC0Wx2Hys3GG0SwQsppSrBaDv7684qP/NWCcsoMo7JPCMAgJnitk3/lhtg/MolZ1Qsn4o5ZjtJeblokU1JqFyR8OGi7fdWCBiLaN1gtIhqP49CtAEAAAAAAAAAAACYXoLRAAAAAGCGyQtcmJN11KybF27Wl57b4J4fjDZ7N7vnPbfJBC8MpoEox1BOfzufdV7AwMg/r2YqEtoh2AMAaHflNBS3bry+4rk9O5bG7+zx8orncufm5k8REZEiJxktpubZFQv9rX3NQHkg952tlQPEigT11Qp2BgAAAAAAAAAAAIBGEIwGAAAAADPMYBqoWN6Rddasm7cRf2QIQF4gQF74wGyQ99wG00AM5YQe1FIttKE72/ms8wMfJh7I1khFgicmEx4HADAT/Me2u2L94LqK505cfHqUsjkVz+2e8401FIO5c/7ZpXIwWhZZdGeNDxAuFPpboP1qc/We0ry6xjSdioTN5Ydoz953RQAAAAAAAAAAAAAaTzAaAAAAAMwweUFcHVlHzbrFNrtX3uyfFw42G1Tb6F8kQKFivVQtMKFn1z/zAtlaIyyjUHjEBJ8PAMBMcdOGayuWd2QdsWLRabn1pmKO2U4qx6LtDEYrEvhcr2Jz29rtVxtDK79TFXmmec+ou4XvCwAAAAAAAAAAgJkj5S0eBGYdwWgAAAAAMMMM5ARidWSdNevmbVgfucE9byN/d5Yf3NDuqgUYTDR8oVrwwu6QjGoBA/3lvgn120hFgiGKXAMAMFM93f943Lv9lxXPHbNgZSzoWJRbdyrmmO0lf3VTkcDnehV55kUCinvL23PP9ZTm1T2u6ZL3vjcy0Nm7IgAAAAAAAAAAAADTQTAaAAAAAMwweRvxO7KOmnXzwhdGbnDPCxOoFtzQ7vKCFyImHr5QPRhtbs1+WyEso8i9TyacAgCg1d2ycVXuuVcuPqNq3WohuOZQESknGC2LrEow2sTnyEWfea2A4mrz9Gp/5s2W97438rnkPd/Z/K4IAAAAAAAAAAAAQOMJRgMAAACAGWYoDVYs78g6a9YtEiDQlypvdm/lTfxTrXpoxcTCF/ICE7IoRWfWVaDf5odl5P2s1HsNAMBM1FfujZ9s+lHFc8/rPjiW9xxWtf5UhO/OClmWO0+eXDBasbq1Aop7y9srlndkHdFZqv3O1ix5P4+777ecytGfKofCVftZBgAAAAAAAAAAAIB6CUYDAAAAgBlmMA1ULC8WjJYXINBb8fdF6s4GXVl37rlawQh58p9zT2RZNvz7RvfbKINpIAZzQvpGEuoBALSrOzffHDtyQrBeueSM4Tldns6sK7KofM1kAr7aQUop91wW1QKfe6vWraboM681v+2doe9T1Z5pRER/6osUlZ9tq98bAAAAAAAAAAAAADOLYDQAAAAAmGFyg9FKRYLR8ja7PxcCkBe4VS2kq92VslJ0Z5Xvf+LBaLWfc1fW3bJhGf3lvkLXCUYDANpRSilu3nhtxXPzSvPjFQtOrNlGKSvlBvA2OwS32fICuHbKcoO4ylHOfV+qpS8Vm7fWmofnne8pzat7TNOpVoh2tXl9j2A0AAAAAAAAAAAAABpIMBoAAAAAzDAD5ZxgtOioWTcv3Gt3CMBQGswNEpjtm91rBQXUK6/eyD+jVg7LKNp/s8cJADAVfrvjvnis7+GK545fdGp0lSrP4cbKm2PP9nDZasFopciip0po88SDi4s981rt95a3Vyxv9fep/PedHbv+mf98ZnOINgAAAAAAAAAAAACNJxgNAAAAAGaYoRisWN5R6qxZN28zfq/N7jXlh1ZMMHgh5QSjjXnOrRqWUbT/Zo8TAGAq3LzxuorlWWRx0uLTC7eTG0aVM1ecPfKD0SKy6M7yQ8YmOv8sGqhWq/28dlo/GC0nRHvX/VZ775nt74oAAAAAAAAAAAA0Rqq2fBCYVQSjAQAAAMAMM1jOCUbLOmrWrbXZvVoYQKtv5J9quc9ugqEVRQMTWjUso2gg3ESD4wAAWtXmwY1x95bbK5570R4vi6Vd+xVuq9b8fLZKVYLRssiqBnH1pQkGFxcN/q0xD+8tb69Y3urvU7WCoAWjAQAAAAAAAAAAADBdBKMBAAAAwAwzmAYqlndknTXr5m12H0wDMZQGq4YBzPbN7nkBZdXC5KrJe9Zj+8kPy2hu4Fjh4IhZHuoBALSf2zb9nxiKymHFJy0+o662WnWu12xVv/iYZVVDxnonOP8sOq+vdV3e+bz3iVbRnVX+WewdDkar/Fw7so5C76IAAAAAAAAAAAAAUJRgNAAAAACYYfKC0eZkHTXrVtuM31furRrA0Oob+adaXvjCRIO/8p712HCMvOfe7MCxvlSs/4kGxwEAtKKhNBS3bFxV8dxenfvEUXu8rK728ud6s30OlZ+MlsXOUOhSznKHiT67ovVqzcPz5r9zS/PqHtN0ygvp6099UU7l/MC3bHa/JwIAAAAAAAAAAADQeILRAAAAAGCGGUyDFcs7ss6adfM2u0fs3MBfLcSqK+uuPbg2lvfsJh68UDlQYXwwWuV+mx04VrT/ogFqAAAzweqtd8bGwWcrnjtp8elRyubU1V7+HHN2z6FS1WC0LLIsa/izK1qv1vw/N0CsxYOm84KgU6QYSP258/pq75gAAAAAAAAAAAAAMBGC0QAAAABghhlMAxXLOwsFo+Vvxu8r9+aHdWU9Ucpm9/9OzAsKaHTwwthggfx+mxuMVjw4YnaHegAA7eWmjddWLO/IOuP4RafW3Z5gtInIIiL/3Wbi8/OCwb812u8tb69YnjevbxXV3hWrhWi3euAbAAAAAAAAAAAAADPP7N7JCAAAAAAzUF4w2pyso2bdvOCFiJ1BADa758t7dnnPrJa8emMDE1o1LKOe4IiU0hSPBgBg6j3V91j8evuvKp57xYKVMX/Owrrb7M5ywr3S7A5GS5E/f8x2/TM/GG1i8/Oiz7xW+3nnWz8Yrdq7YpUQ7Sr1AAAAAAAAAAAAAGAiBKMBAAAAwAyTF4zWkXXWrNuVdUc2HCUwWl+5NzcMoNU38U+H6QpeGBuOkffsJxrI1ihFg9lSlGMg9U/xaAAApt7NG6/LPXfS4jMm1Gajw3fbRbVgtN3RaI0OEC5ar9Z1O3KD0ebVPabpVO2dr6+8I/e+vSsCAAAAAAAAAAAA0GiC0QAAAABghhlMgxXLiwSjlbJSdGXdFc/1lnfkhnzlhQ7MJt1ZY0Mr8oIFxj7rRgc+NEo9/U80PA4AoFX0lnfETzffUPHcC3oOi+VzD5tQu3mhUs2e67WyLNsVjJYzP+9LE5t7Fp3X5wUcD5/PDUZr7QCxau98fd4VAQAAAAAAAAAAmAbVPqsKzC6C0QAAAABghhlMAxXLiwSjRUR054UvpN4qYV2tvYl/OjQ6tKJosEB3ltdvc8PG6gmEm2h4HABAq7hj803RW95e8dwrF79uwu3mh+DO7vlTSvlLm7Jd/8ybn09k7jmUBnPfs+ptP+/npNWD0eZkHbnvlH3l3irvL619XwAAAAAAAAAAAADMPILRAAAAAGCGGUyDFcs7so5C9asFCORt8s8LbJhNGh1aUTSELrffNLFAtkapJxBuouFxAACtIKUUN2+4ruK5PeYsiJcvWDnhtvPnmLN9/lTtm487o9Ea+ewaNbcdTAO572utHowWkf9Me8s7qry/eFcEAAAAAAAAAAAAoLEEowHQEGvWrIm/+qu/ihNPPDH22Wef6OrqiizLhn9ddtllzR4iAABA2xhMAxXLO7LOQvWrBQjkhXzNhE38U21sYNluEwkoSynlPuuxfz55/eaF2E2XvlS8f8EeAMBM9uCOe+KJ/kcqnlux6LToLHVNuO3cOeYsnz+lKsFo2RQEo9Uzt64WjFytnZ7SvLrG1AzdWX4oc26Idk4dAACgsazPAwAAAAAAAGA26Wj2AABmu+XLl8cjjzy3meaGG26Ik08+uXkDmoCvfOUr8d73vjf6+vqaPRQAAIBZYSgNVizvyIr97778AIEduSECeXVmk7xwuL5yb6SUIsuywm0NpoEoR7niubHhGNX6baZ6+p9IeBwAQKu4aeN1FcuzyOLERadPqu28eXZveUfdc8x2UiQYLW+ePJEA4XrmttXa7x2qFozW+mHT1d498p7RTLgvAABmN+vzAAAAAAAAAGDmKTV7AADMbNdee228613vKrzo6sYbbxz1pcqLL754agcIAADQhgbTQMXyjqyzUP2xwVu79ZV35G7yt9k9/7mlSNGf6tuMVC14oTsbHY6RH2S3M5CtWRoVHgEA0Mo2Da6PX2z5ScVzR+3x8ti7a59Jtd+TVZ5jlmMoBnMCkWeDasFosSsYLf+9pv5Q3rpCf6tcW23e21OaV9eYmiHvmfZWeVfMqwMAADSG9XkAAP8/e3ceJldx2Hv/V71M94xG0khoAwQIIbFjFiMQIDYvAhTsxEsMxH68hmAnuRdCiK95c21JFwfj1yQ2tnFsEwK8jzEh18bGwSDHxpJAYMAIsACJ1QgQCC1IM0gz0z291PuHNKPpnlOnz+npvb+f5+FBp+qcqurTrVGdmarfAAAAAAAAAADaUazeAwAANLerr766YBP2X/zFX+hzn/ucDjroIMXj+zbkT5s2rR7DAwAAAICWlHEGowX7dp9f0Fbaudnd+5p24ncPUvnBUPcobf0CE4IFo1nllbFD6jCJwP1WkuuzMt5zAQAAGslDvb9WXjnPurOnLBl3+35zyLQdVFzBwo9bjk8umtmTi+bzXBN+7hlubrsnoNgMD2SUVH7AeV0zBIj5Pita70A4nhUBAACA6mJ9HgAAAAAAAAAAAACgHRGMBgAo2/PPP69169aNHC9ZskS33357HUcEAAAAAO0hZ7Oe5TETLDQh6diQn8oPKp13bHY3jb+Jv9pc902S876Vc35xYIJ/v4PqiNQrGC34aw57fwAAABpBzmb1YN+vPOumx2fpqK4Txt2HbzBaPqXu6KRx99GMrE8ymtGeQDJX0Fg5c09X6JeXvHLK2ozipsOjb++AtahiikcaP+TOfU/dz4p+zysAAAAAxof1eQAAAAAAAAAAAACAdhWp9wAAAM3r8ccfLzj+6Ec/WqeRAAAAAEB7ydqMZ3nQYDRX+EI6n1LKsZHfL7ChXfiHVnjfNxfXffbqx69fv3aqLUzgRD3HCQAAUK4/7H5MfdkdnnVn9pyviBn/j9tdQVRS+Dlma3EHo2k4GM24nmvC37ew17jmwoOOdpLR5ggPcz8rDjrvEc+KAAAAQPWwPg8AAAAAAAAAAADtxvotHwTQVghGAwCUbcuWLQXHs2fPrtNIAAAAAKB95G1OeeU96wIHoxnvTflpm1Laem/wT/oENrSLSgajuYIUjCKKm46ifv3CMoKHk1Va2gZ/zfUcJwAAQLlW77zXszxuOnTa5PdWpA+/eXY7z6H8Y9H2BqO5QrwczzR+UiHvtWsu7HouaJbnKdc9Hcj3K2OHQl0DAAAAYPxYnwcAAAAAAAAAAAAAaFcEowEAyrZ79+6C43g82AZ8AAAAAED5sjbrrIuZWKA2XJvyU/lB50Z+v3CudhEzcec9TlUoGC0RScoYU1jmCLIrp99KydqM72exWDuHegAAgOb0Zvo1vTj4jGfdyZPO1IToxIr0EzcdI0Ffxdp5DmV9o9H2cD3XpPMp2ZC/MjJs0LFrHp7KD3iWJyNdodqvF9c93ZXtC30NAAAAgPFjfR4AAAAAAAAAAAAAoF0F2ykJAGh61lo98cQTeu6557R161al02lNnz5dBx54oBYtWqTu7u7Qbebz+SqMFAAAAADgJ2szzrqYCbYhJhFJepan84PO8AU2u++RiHQqm9s1pjxsaIU7gG7sexOPxBVVTDmNDSJL2/qEZVTq9QIAADSqB3tXOOvO7llSsX6MMUpEkp5BW/UKwW0M7mCz4SA5V3izldWQTSthvJ97vISf33qf73rPmuV5ynXP+rI73Nc0yWsDAAAAqo31eQAAAAAAAAAAAAAAVA7BaADQ4rZv365rr71WP/rRj7Rt2zbPczo6OvSe97xHy5Yt06mnnupsa+PGjTr00EOd9eeee65n+S233KLPfOYznnXLly/X8uXLnW2uXLlS55xzjrMeAAAAANpN1o4NxxoWPBjNe+P6rmyfrCOAwBWm1m4SJql+jQ1GCxtaETaALhFJaiC/26Od+oRlhA6OsO0c6gEAAJpNKj+oR99Z6Vl3aPIIHZw8rKL9JUxSKY2dL4Wdc7USdyzanjA5yf8ZJZ1PhXqGqdR8PpUf8CxvmmA0xzjfye10XxMigA4AAABoRazPAwAAAAAAAAAAAACg8iL1HgAAoHp+/vOfa+7cufrmN7/pXHQlSUNDQ1qxYoUWLlyoyy67TNmse5M9AAAAAKC+sjbjrIuZYL8HwRUQ4BW8te+a5tjIX22uQIO0DRda4QpecIUKuN6zeoVlhA5Ga+NQDwAA0Hwe7VvpnK+d1XNBxftzzbXrFYLbEKxfNNoefsFnlQo6C9u+c57fJM9Trucdv4DuZnltAAAAQDWwPg8AAAAAAAAAAAAAgOoItlMSQO3ks9LApnqPovV1zZYirf0l8N///d916aWXKp/PF5QfdthhOvroo9XV1aXXXntNjz32mHK53Ej9D3/4Q7322mv6r//6L8VirX2PAAAAAKAZ+QWjRccZjFbpa1pRpUIrXEFqrvvsCigIG/hQKaFfL8FoAACgSVhr9UDvfZ513dHJOmniGRXv0xmCGzJ8t5VYuYPRjIwk9xxZqv581XW+a37eGekK1X69lPesmKjCSAAAAKqI9Xm10+Jr9FifBwAAAAAAAAAAAABA9fATdaDRDGySfnFovUfR+j74itQ9p96jqJqnnnpKX/jCFwoWXZ1wwgm68cYbdfrppxecu23bNn35y1/WD37wg5GyFStW6Ctf+YquvfbagnNnz56tV155ZeT4W9/6lm644YaR4zvuuEMLFy4cM55p06bpnHPOkSQ98sgjuuSSS0bqLr/8cl1xxRXO1zJr1qwSrxYAAAAA2kvWZp11cRMP1IZfgEAlr2lFrqCAsAFlriAFV/CaMyyjTsFoYV9vvQLcAAAAwnpx8BltHnrds+6Mye9TPBJszh2GO3yXYDQvw8FofiFeoYPObNj5vPf5rnmv6z1uNGGD0eKmQxETrdJoAAAAqoT1ebXTwmv0WJ8HAAAAAAAAAAAAVId79SCAdkMwGgC0oM997nMaGhoaOV60aJF+9atfqatr7G+jnz59ur7//e9r3rx5+od/+IeR8q9//eu65JJLdNxxx42UxWIxzZkzZ+S4p6enoK1Zs2YV1I/W3d0tSdq4cWNBeU9Pj/MaAAAAAMBYWZtx1sUCBqOF3exe7jWtqFKhFa4gBVcAXaOFZYR/ve0b6gEAAJrL6p33eZYbRbSo57yq9NloIbiNbjgYLWbiiiqmnMaGR4e9d+HP957fhp3nN5qwAW7N8roAAACASmN9HgAAAAAAAAAAAAAA1RWp9wAAAJW1cuVKPfHEEyPHkyZN0p133um56Gq0q666ShdeeOHIcT6f1ze/+c2qjRMAAAAAUJ5KBKOF3bweM7HAbbc6171LVShIwRWK4SoP22+lpC3BaAAAoPX0Zt7WH3Y/4ll3XPfJ2i8+oyr9NtpcrxFY5X1qzcifXPPzas9X09b7vUnlBzzLmyVALBkyEJsAbQAAALQj1ucBAAAAAAAAAAAAAFB9BKMBQIu57bbbCo7/5m/+RgcccECga6+77rqC4zvuuEPpdLpiYwMAAAAAjJ9fMFrUxAK1kTDhNuWHPb+VuTb+hw1ScIVcuNp3Bj7UKXAsdHBEG4d6AACA5rGm77+VdwRyndVzQdX6bbS5XiOw1l1n9uWiVX1+7uJq39VOMuIfkNAoEiED3Jol8A0AAACoJNbnAQAAAAAAAAAAAABQfQSjAUCLWbNmTcHxJz7xicDXHnPMMTrppJNGjlOplNauXVuxsQEAAAAAxi9rs57lEUUVMcG+3ecKD6jU+a3MHVpRmSAF1712hdPVK3As9Ou1KeWtd8gIAABAI8jajNb0/rdn3Yz4ATqy6/iq9V2pcK/W4pOMpn3JaK57V6mgMxdX++5gtOYIEAsbjBb2fAAAAKAVsD4PAAAAAAAAAAAAAIDqIxgNAFrIzp079fLLL48c9/T06KijjgrVxumnn15w/Pvf/74iYwMAAAAAVEbWZjzL4yYeuI2YiSuiaODz2ey+j+tehA1SSFtHMJojAK3RwjJcgQ8xn8/hkE1XazgAAADj9oddj+qd3E7PurN6zg8cQlwOZwiuY87YDqxPMJopCEarbnDxhMjEUOe75snN8kyVMCFDtEOeDwAAADQ71ucBAAAAAAAAAAAAAFAbsXoPAECRrtnSB1+p9yhaX9fseo+gKrZt21ZwPH/+fBljHGd7O/LIIwuOt27dOu5xAQAAAAAqJ2uznuVRE/xbfcYYJSJJDeb7A52fbJJN/LXgCihzBSC4uIIUXO273oN6hWW4xj85NkVvZ7y/l5DOp/gsAQCAhrW69z7P8g6T0MLJ76lq340WgtsI3LFohSpx76y1zvn8pFiP+od2BWo/azPOIOvOJpkHJyKJkOc3x+sCAAAowPq82mnBNXqszwMAAAAAAAAAAAAAoDYIRgMaTSQmdc+p9yjQpHbu3FlwPHny5NBtFF+zY8eOcY0JAAAAAFBZro32MRMP1U4y0hk4GM0VNtCOnAFloYPRvM93BQtUKpCtUlxBE5OifsFog5KmVHFUAAAA5XkjvVEvDT7rWbdg0lnqinZXtf9Gm+s1Bnc0mtG+0IFKBKNlbVZ55TzrJsWmaPPQ6x7tj31v/N6vZgkQi5ioOkxCQzYd6HyeFQEAQFNifR7GgfV5AAAAAAAAAAAAAADURqTeAwAAVI61hZtEwv42Si+VaAMAAAAAUDk5m/Usj5lwvwMhzAb2ZtnEXwsJM/7ghT3nu4LRvNt3vQdhA9kqxRmMFusJfQ0AAEC9PbBzhbPu7J4lVe+/UuG7rcQGDEZz3bswoXJ+93lyzDvY16v9VM7dTmekK/B46i3csyLBaAAAAGgvrM8DAAAAAAAAAAAAqsu6lw8CaDMEowFAC5k6dWrBcV9fX+g2iq+ZMsV7wwcAAAAAoD4yNuNZHjPxUO2ECTtjs/s+ztAKGzx4wVrrDAlzB6N5l6fqFDbmer2THMERUnsHewAAgMY1mOvXY++s8qw7rPMozU4eWvUxuOZ6BMs6jAoNSBhXqFzwe+c3l58U9Z7ferXvF8bWTGHTrmee8Z4LAAAAtALW5wEAAAAAAAAAAAAAUBsEowFAC5k+fXrB8QsvvBC6jeeff77geMaMGeMaEwAAAACgsrLOYLRYqHaSIcLOCEbbx3UvsjbrfG/GnptRXnlH+97BAu6wjPqEjbn67Yp0O0P6/IIiAAAA6uWRd1Yqbb1DtM7qOb8mY3DNAdP5lGyb/upDv9dtRv3ZOU92vKee5/qEqE12BP96tZ/KDzjbSUa6Ao+n3sI8//GsCAAAgHbD+jwAAAAAAAAAAAAAAGqDYDQAaCFTpkzRYYcdNnLc29urDRs2hGrj4YcfLjhesGBBRcY2zBhT+iQAAAAAgFM27wpG8w6jcnGFL3hJhji31fndN79AhaDnuQLrXO9Bxg4pZ3OB+q0k12tIRJI+IW7BwykAAABqwVqrB3pXeNZNjE7WCd2n12QcCeM9f8orFzh8t9VY+QWj7Vvm4JonhwkQ9gvwneQKRvO4xtVnVDHFI65Z5bAAACAASURBVOGe1+opzLNimHMBAACAVsD6PAAAAAAAAAAAAAAAaoNgNABoMYsWLSo4vv322wNfu2HDBq1du3bkOJlM6t3vfnfFxiZJiUSi4DidTle0fQAAAABodTllPctDB6OZEJvdHUEN7chv479foMJoaes+z/W++PU7VIfAMb9gNGc4hSUYDQAANJbnB9Zpy9Amz7ozJi+uWZhVJcJ328noLf7uUN7gwWiue2wUUXd0kvMaawvD2wYdfSajzRUeRog2AAAA4I/1eQAAAAAAAAAAAAAAVB/BaADQYj75yU8WHH/3u9/VW2+9Fejaq6++uuD44osvHrNQarx6enoKjjdv3lzR9gEAAACg1WVtxrM8FjK0wRUg4IXN7vv43YugoRV+AWqu96US/VaSq89kpNMZpBc0OA4AAKBWVvfe51luFNGinsU1G0fSZ27uF6rbyqysT+2+aDR3MFrwOXI5ob9WVhk7VNSOIxityZ6nwgRjh3muBAAAAFoF6/MAAAAAAAAAAAAAAKg+gtEAoMW85z3v0QknnDBy3NfXp0suuUSDg/4bZ775zW/q7rvvHjk2xujv/u7vKj6+uXPnqqOjY+R45cqVymS8N/UDAAAAAMbK5B3BaIqFaifMBvZEk23krya/++YKQhh7njukwdW+XzhBPQLHXH0mIknn56UeAW4AAAAuOzPbtW73Y5517+o+RVPj02s2Fv85ZrvOodzBaCZAMFqYObLr3GSk0/dZqPg6dztdgcfSCEI9K4YIUQMAAABaBevzAAAAAAAAAAAAAACovnC7JQEAVffWW29p48aNZV07Z84cSdLNN9+s0047TUNDe35T/apVq3TmmWfqxhtv1Kmnnlpwzfbt27V06VJ973vfKyj/4he/qHe9611ljcNPR0eHzjjjDK1cuVKS9Nprr+mDH/ygPv/5z2v+/Pnq6ircHDJr1iwlk2yqAAAAAIBhOWU9y2OReKh2kiHCzghG26fDJGRkZD2CGoKGVrjOM4oobjo86/zeg7StfViG6zUkIp3OIIX2DfUAAACNaE3fr2SV96w7u+eCmo7Fd67XpnOovHUHo43KRatIKK8r4HhP6G+pYOSekeNUfsDzvDDPXo2AZ0UAAAC0OtbnsT4PAAAAAAAAAAAAAND4CEYDgAZzySWXlH2t3btJ5KSTTtJ3v/tdff7zn1c+v2dTz9q1a7Vw4ULNmzdPxxxzjJLJpF5//XU99thjymYLN9W///3v1zXXXFP+iyjhyiuvHFl4JUkrVqzQihUrPM9duXKlzjnnnKqNBQAAAACaTTbvCEYz4b7V57fBfzzntjpjjBKRpFIe4QleZV5cIQ3JSFLGGM+6RCThbC9ov5WStRlnQF/CJH3CKWo7TgAAAJeszeih3l971s3smK0juiq/Md1P3HTIKOIZ1FbruV7jcAejmVHJaK6555BNK29ziphoyZ6cob+mVDBa4XWu96rZgtF4VgQAAECrY31eIdbnAQAAAAAAAAAAoJH4/V5VAO0lUu8BAACq49JLL9Wdd96p7u7ugvKXXnpJd999t+688049/PDDYxZdffazn9Uvf/lLxePxqo3twgsv1Fe/+lVFo6U3owAAAAAACmVtxrM8ZsI9x4XZnN9sG/mrbbzBX67zXO1KUsREFTcd4+q3UlzBEdKeYARXOALBaAAAoFE8uet3eifX61l3Vs/5zrDaahkO3/XiN/dqZTZoMJrxCy5LB+orbd3zc79noeIgtFR+wNlOMwkXjNZcrw0AAACoJNbnAQAAAAAAAAAAAABQPQSjAUAL++hHP6qXX35Zl19+uaZNm+Y8Lx6Pa/HixXrooYd08803V3XR1bB//Md/1Lp16/SlL31JZ511lmbNmqXOTjZPAAAAAEAprmC0qImFaifcZvfg57YDV/hCcTCCi+u8UvfZFcrQWMFonYR6AACAhvdA732e5QmT1MJJ59Z4NHv7Jly2LH7BZWkbbP7pmqcmIknFTFxReT9rFbfvaqcz0hVoHI0iTNgZIdoAAABod6zPAwAAAAAAAAAAAACgOsLtlgQAVNzGjRur2v6MGTP0rW99S//yL/+itWvX6rnnntO2bduUTqc1bdo0zZ49W4sWLdLEiRNDt71s2TItW7as7LEdffTR+trXvlb29QAAAADQjrI261keM+E20bDZvXzugLJxBi84AtdG6iNJ7cr1ld1vpfgFwCUiyXHfHwAAgGralHpFLw9u8Kw7ZdI56oxOqPGI9nDNBdt1DmVlnXVGZuTPfuHCQUPlXPd4eF6biCQ1kN9d8rrB/IBnO2GevRpBmOc/QrQBAADQDFifx/o8AAAAAAAAAAAAAEDzIRgNANpEJBLRggULtGDBgnoPBQAAAAAwDlmb8SyPVzEYjc3uhVz3I20DBi9YRzBaifekUQLH/PpLRjqdoR5+gWoAAAC1srr3XmfdWVPOr+FICrnnmO0ZjCafYDRVOBjNNU8dbjsZ6XQEow36Hg9rtqDpoM+KRkYdJlHl0QAA0FyMMYdKOkHSAZK6JW2W9Kqkh611fGO3vH7iks6QdLCk/SXtlvSmpCettRsr1Q+AcFifBwAAAAAAAAAAAABA5RCMBgAAAAAAADQRVzBaLGwwmiO8yvPcJtvIX22u+xE0oMx1XqkAOle/tQ4ccwU+GBnFTYf7/rRtqAcAAGgUA7nd+v07D3jWzes8Wgcm5tR2QKO4wrPaNVzWNxbNjA5Gcz+rpMY9P+/c+/9gwb+p/IDnec0XjBbsWTERSRa8FwAABGWMmStpgaST9/7/JEkTR53yqrV2Tplt+00jgji0nGAxY8xHJV0p6TTHKTuMMXdK+oq1dnu5gzPGTJe0XNJFkqY6znlY0r9Ya39abj8AAAAAAAAAAAAAAABAvRGMBgAAAAAAADQRVzBa1IT7Vl+YzfkdJhGq7VY33tAKV7BYqfdkvIFsleLqr8MkFDER5+twvW4AAIBaeaTvtxqyac+6s3qW1Hg0hRplrtcorA2WaRI1UcVNhzJ2aExd8OBi//m5KyisuH3X80DTBaMFDNEOE7YNAIAx5hxJV2tPGJpnoFczMsZ0S7pJ0sUlTp0q6QuSPmyM+ZS19ldl9HWBpFslzShx6umSTjfG3C7pMmttf9i+AAAAAAAAAAAAAAAAgHojGA0AAAAAAABoIlmb9SyPmXiodlyb+8ecZ5KKmEiotltd0GAEF9d5pd4TV/BA0EC2Sklb1/jDBUcAAADUUt7m9UDvCs+6SdEpOmHiqTUeUSH3HKpdw2XdwWgRFT6fJCJJZXJewWjB7p1rPj38nrhD6wqvcwejdQUaR6MIGuTmui8AADicIGlxvQdRScaYqKQ7JRUn7G6T9KSkPkmHSTpRktlbN1PS3caY91lr14To6xxJP5fUMarYSnpC0h8l9eztZ9qo+o9LmmSM+TNrbT5oXwAAAAAAAAAAAAAA1FOwX6sKoB0QjAYAAAAAAAA0kazNeJZXLRiNze5juO5J0ICyUsEL7n4bI3CsdHBEYwS4AQAAjPb8wDptzbzpWbeoZ3Ho+XSlNcpcr1GEWdiUiHRqd+6dMeXjDi42/vPb4uvc8+TmeqYK/qwY7DwAAEpIS9qkPQFilfaopItDXrMpxLnXqTAULSPpSkk/tNaOpLYaY46W9G+STttblJD0c2PMcdbazaU6McbMlnSXCkPRHpJ0qbV2w6jzEpIuk3S9pOHJ7QckfVXS/xPidQEAAAAAAAAAAAAAAAB1RzAaAAAAAAAA0ESyNutZHjPhvtUXdHN+ssk28deC656kAwZ/OYMXStxrZ7+2toFjrvEPj88VkJCxQ8rbnCImWrWxAQAAuKzuvdezPKKIFk1eXOPRjEW4bDF3NJqRKTgeDjArFnh+bv3n5wnjmv/vuy5rM84Q684me6YK+qzYbIFvAICGkJH0rKTHJf1+7/+flnSGpJVV6C9lrd1YhXZljJkr6fKi4j+31t5dfK61dr0x5r2S7te+cLT9JC2V9PkA3S2XNGXU8cOS3mdt4STGWpuW9G1jzGuSfjaq6kpjzA+sta8G6AsAAAAAAAAAAAAAAABoCJF6DwAAAAAAAABAcK7N9jETD9VO1EQVNx0lz3MFNLQz1z1xBYaNOc8VvOAIdCjdb62D0bz7Gx6fX5heOp+uypgAAAD87Mhs09O7H/esO757oXri+9V4RGO5w3eDzTFbjfUJRlNxMNo4Q+XKnd+Obt+vr2YLEAsajk2INgAgpNskTbLWnmitvdRa+0Nr7RPWOr7Z2fiWShr9DdlbvULRhllrByV9WtLQqOLP7Q1YczLGzJf0qVFFQ5I+XRyKVtTXz7Xnfg9L7B0vAAAAAAAAAAAAAAAA0DQIRgMAAAAAAACaSM5mPctjJha6rSAb9JttE38tuO5J8OAFRzBaiRA6V7+1DssoNX6/z0ytQ9wAAAAk6cHeFbLKe9adPeWCGo/GW8I45nruzIuWZq07GM0U5qK5Q+UC3DtrrXN+O9yuM6B4VPupnHue2xnpKjmORhI3HTJF4XNeCNEGAIRhrd3pF+bVTIwxnZI+WlT89VLXWWtfkPTzUUUxSX9R4rK/kBQddXyXtfbFAMMsHs/HjCnxWxkAAAAAAAAAAAAAAACABkIwGgAAAAAAANBEsjbjWR4z8dBtBdnIzmb3sRKOPYRBA8pc4WClQuhc70XQQLZKcY9/bzCazx7Ldg32AAAA9ZPJZ/RQ32886/bvOEjzO4+t8Yi8OcO3ahyC2yisfILRikK7xnPvMnbI2VeiVDDaqHmx35y82cKmjTE8KwIA4O88SaOTT39nrX0u4LW3FB1/uMT5HypxvSdr7QZJj44qmiBpcZBrAQAAAAAAAAAAAAAAgEZAMBoAAAAAAADQRDLOYLRY6Lb8AqyGJZtsE38tuO6JKzAs6HmlggXc/dY2LMPV377gCPdnJug9AgAAqJQndj2k3bk+z7qzei6QMcazrtaChG+1F3cwmsYEo3nPP4MECPsHmu15T4LM//3ep2Sky1nXqIKEufGsCABoY+cXHa8Kce2DkrKjjk80xsz0OtEYM0vS8aOKspIeCtFX8bguCHEtAAAAAAAAAAAAAAAAUFcEowEAAAAAAABNJOsMRouHbivIRvZSYV3tyBmMYFPK27zvtdZaZ7BYqfdjPIEPlZS2jmA0MxyMlnBeW+uxAgAAPNB7n2d5wiR1yqRzajsYHwSjFQoei+Z370oHCPvd3+F2g7Sfyg94nhNVTPFI+Ge1egsSos2zIgCgjR1bdPy7oBdaa/slPV1UfEzAftbtvT6ohwP2AwAAAAAhNMYvGwEAAAAAAAAAtD6C0QAAAAAAAIAmkrNZz/JygtGCbGQPEp7Wbvzu25BN+16btRnl5R2eVur98AtksNYvOqKyXOERw+OLmKjipsNxbelwCgAAgEp5LfWyXkk971l36uRz1RntqvGI3FwhuLWe6zUKGyIazRlcHCBUzm9+OtxusGA0776S0eZ8ngryrDgcjAwAQAM72BhzizHmWWPMTmPMkDFmy97jHxlj/soYM7WMdo8qOn4p5PUvFx0f7TivuLxa/QAAAABACO33/WoAAAAAAADUVhsumQTgQDAaAAAAAAAA0CTyNucM1SonGC1I6FmQDfHtxhVaIZUOX/ALXih1r5OO4IG8csrajO+1leR6DaPH7w6nIBgNAADUzuree511Z/VcUMORlOaaY+aVr+lcr3G4VzaZomC0IMFlLq5As9Ht+oXWlWqnWYOmeVYEALSIQyV9WnsCwXokxSXN2Hv8cUk/kPSaMeabxpjuIA3uDVIrDlN7LeS4is+f7zhv3jj7ebXoeD9jzJSQbQAAAAAAAAAAAAAAAAB1Eav3AAAAAAAAAAAEk7VZZ13MhP9WX5CN7AlHGFc787tvqfygJvtc6xu8UOJe+/WbzqcUj3T4Xl8prtcwenyJSFK7cn1jziEYDQAA1MpAbrcef+dBz7r5ncfqgMTBNR6Rv4RpjLleo/D7hY/GFAWjOe5dqdBiSUpb7/lpVLGR8GlnMJpNKW/zipiIe47cpM9TfmHQYc4BAKAJTJB0haQlxpgPW2ufLXF+T9HxgLW2P2SfW4uOXd9OLO6r+Dpf1trdxpiUpNGTpcmSdoZpx4sxZoak6SEvO2y8/QIAAAAAAAAAAAAAAKB9EIwGAAAAAAAANImszTjrhjfthxFss3vp8LR2k/S5b6WCv9LWJxitxL327dcOqluTfK+vFNdrHD0+12fLLxgOAACgkn7Xd78ydsiz7uwpS2o8mtKSJcJ3azXXaxjWOxrNyIwp8wsuK8UVnlYwt/UJrRuyaSVNp1L5Ac/6zmhXyTE0Ir9njzDnAABQJ1lJayT9RtI6SZsk7ZLULelgSWdK+qSkGaOuOVzSb4wxC621r/q03V10XM43u4qvmVjlvkZPZlx9hfXXkpZWqC0AAAAAAAAAAAAAAABgDILRAAAAAAAAgCaRtVlnXbWC0djsPpbffSsV/OUXnFbqXvsFp9UycMz1GhIBwiNcwRMAAACVlLd5PdB7n2fd5NhUHd99So1HVJrfHNMvXLdVWXkHoylMMFqJ0GK/c0bPvf2DkQeVjHQ65+NBnrkaUZCAbEK0AQAN6n9Luslau9VR/5SkXxhjvqw9wV7/S/smGLMk3WWMOdlaR0rr2LCy0hOOsYonDsVtVrqvKQH6AgAAAAAAAAAAAAAAABpKpN4DAAAAAAAAABBM1macdTET/ncgBNvs3pwb+aspaqKKmw7PulLhC676iCIlw+18wzIChD5UynjCI9K2duMEAADta8PAU9qWecuz7szJ5ylaxty52vzm5rWc6zW6sbFo7nsXJDzYHWiW9Pyz6/pUfsCzvlmDpglGAwA0K2vtP/mEoo0+L2WtvVrS/yiqOknSJWG6DDO+cVxT674AAAAAAAAAAAAAAACAumq8Fd8AAAAAAAAAPPkFo5UT7hBkI3uzbuSvtkQkqUxuaEx5ukT4gl+omDFeMQ/7xE2HjCKyyo+pCxL6UAlZm1FOWc+6hCkdHlGrcQIAgPa2eue9nuURRXVGz/trPJpg/OZ67RiMZp0ZHmPnzK5nlqzNKGezvs9Krvn76FDiIKF1rveoWZ+nggRkN+trAwBgNGvtjcaYxZI+OKr4ryX92HHJ7qLjcv5BLL6muM169BXW9yT935DXHCbp7gr1DwAAAKBu/Nc1AAAAAAAAAABQKQSjAQAAAAAAAE0ia70DqSQpbuKh2wuykT1IeFo7SkQ6tTv3zpjyUqEVrmCwIMEDxhglIkml8gOh+60Uv2Cz0Z8V1+emHUM9AABAbW0f2qJn+9d61p0wcaEmx6bWeETBNMJcr5G4gtGMx6a7UsFlXdFu33ovhXNb91x9+PpBj/dNkpKRLue1jWx06LHzHJ4VAQCt42sqDEZbaIzpsdb2epxLMJoka+1WSVvDXFPql0IAAAAAaBauX2oBAAAAAAAAAEBlReo9AAAAAAAAAADBZG3GWRcrIxgt2Gb3cvbbtT7XvfMLDpOk9DiC0SR3mJ2r3UrzC+UYPTbX62nHUA8AAFBbD/atcIZqnd2zpMajCccVNFVqjtlOvPI0/AK6Ss/PSwejRU1UcdPh275rPh4kjLoRBQk9S5jmfG0AAHh4TNLOUcdRSUc7zu0rOu4yxkwI2d+MomOvADavvqaH6cQY062xwWiuvgAAAAAAAAAAAAAAaAhE8wMYRjAaAAAAAAAA0CQqHYwWZJN+kA3x7ajcgLIgwQt+XOfVKnDMr59EoGA0Qj0AAED1ZPJDerjvN551B3QcrHmdrnyLxlDvENxGYm3eUTM2Gc3vuabUPNkVnFbcZql5eCo/EKidZhHsWbE5XxsAAMXsnonHa0XFniFk1tq3VRiiJkkHh+zykKLjFx3nFZcXXxe2nx3W2uKxAwAAAAAAAAAAAAAAAA2JYDQAAAAAAACgSfgFo0VNLHR7QcK4mnUjf7W57p0rWGFY2jqC0UzQYDRXWEYjBKMlPf8c9HoAAIDxWrtrjfpzuzzrzpqyRMaMDdVqJK45YTvOoazjdz4aj2A0v4CuUvfOGVxsioPR/EPrggasNYtSoWcRRRUr4xkUAIAGVvyPud8/hhuKjueF7Gtuifaq1c/6kNcDAAAAAAAAAAAAAAAAdUMwGgAAAAAAANAksjbrWR5RVBET/lt9pTa77zknWGBXu3EFHLiCz0bqHYEJQe+zKyyjVCBbpbjGb2TUYRIjx+5gtNqMEwAAtKcHeu/zLE9GunTKpLNrPJrwnHOoEnPMVuQdi+Zt9Dy0WKn5pzO4uOi9cIfWDQejebeTjHT59t+oSj2fJCLJhg8aBAAgpGlFx9t9zn2m6Pi0oJ0YYyZIeleJ9lzl7zLGhJlcnBGwHwAAAAAAAAAAAAAAAKDhEIwGAAAAAAAANImszXiWx028rPZKBaPFTEyxMttudeUGf6WdgQmlQ+p8+7W1CRxzBbAVByOUGxwHAABQrldTL2lj6kXPuoWTzg0836on1/y8PcNlvaPRjMaGcUVMxB1cVmZwcfHnpVRoXSo/4FkfJIy6EZX6+9IMf58AAAjKGDNN0tyi4jd9LllRdHxOiO7OlBQbdfyktXaL14nW2s2S1o0qiklaFKKv4nF5pwgDAAAAAAAAAAAAAAAADYhgNAAAAAAAAKBJZG3Ws7zc8DLX5v6ResNmdxd3aEWp4AXv+lLvxTBXAIErsKzSnOMvCqJwBVPUapwAAKD9rN55r7PurJ4LajiS8jnDZUvMMVuRDRGMJo0nuNgd/Dua33uTtRlniHVnkwaIlXxWDPj8AgBAk7hYhesot0ja4HP+rySNnkScZow5MmBfny46/lmJ84vrPxOkk73jOXVUUb+k/w5yLQAAAAAAAAAAAAAAANAICEYDAAAAAAAAmoRrs33UxMpqz7W5fxib3d1cwWilgr9c9a72xp7nCnyoTVhG2rqC3TqLjus7TgAA0F52597R2l1rPOuO6HqXZiVm13hE5WEOVT7XvUuVHVwcbH6byg/6PgMEnec3mtLBaM35ugAAKGaMmSnpfxcV/5e11julVZK1dkDST4qK/1eAvg6X9KFRRVlJPy5x2e2ScqOOP2yMmV+qL4/x/Ke1jm/sAQAAAAAAAAAAAAAAAA2IYDQAAAAAAACgSeRs1rM8VmYwWtx0yMg469ns7pYsM7TCHbwQLITOFWaXLhHIVilBx+8aZ9ZmnJ9jAACAcv2u735l7JBn3dk9S2o8mvL5hW+1G1cWiTHeSxzcoXLlBhcni45d8/CUbx+lwqgbValnQdfzEAAA9WKMOcIY84GQ18ySdI+kmaOKhyR9LcDlyySN/i0WnzbGfNCnr6SkWyR1jCq+2Vr7sl8n1toXJd02qqhD0q1723P19aeSPj2qaEjScr9+AAAAAAAAAAAAAABoFO5fZQag3RCMBgAAAAAAADSJjM14lsdMvKz2IiaiDpNw1jfrJv5acAcj+AcvuOoT7r2MAfv1D2SrFOf4AwZH7GmjNmMFAADtIW9zeqB3hWddT2w/Hde9oMYjKp873Kv95k9WjmA0x/nlzpPHG/ybzg9qMOcXjNbl23+jShj/Z0FCtAEA5TDGzDbGzCn+T9KsolNjXuft/W+ao/n9Jf3CGLPOGPNFY8x8n3FMNMb8raSnJJ1cVP1Va+0fS72WvefcUFT8E2PM3xpjRoefyRhzlKT7JZ0+qvhtBQ8rWypp56jj0yX9xhhzZFE/CWPM/5D0f4uu/2dr7asB+wIAAAAAAAAAAAAAAAAaQqzeAwAAAAAAAAAQTNYZjFb+t/mSkU6lc8HCALCPOxihRPCCHd+9rndYhjsYrbPo2P16UvlBdUW7KzouAADQvp7tf1JvZ7Z41p3Zc56iJlrjEZXPFUZVKny3vXhHo7mCulI+9y5vcxqyac+64vm+a36byg/6vj/NGjYdMzFFFFVeOc/6oMHOAAAUWSPpkADnHSjpFUfdbZI+7XPtcZK+Lunrxpg+Sc9I2i5pl6RuSQdJOl7e6yZ/aK29JsD4hn1J0jGSLth7HJf0HUlfNsY8sbfPuZJOUuEkZkjSh6y1m4N0Yq3dZIz5sKRfSRoOXTtD0npjzFpJf5Q0eW8/04suv0fSl0O8JgAAAAAAAAAAAAAAAKAhEIwGAA1uYGBATzzxhF588UVt375dqVRKnZ2dmjlzpg4//HCdeOKJ6ujoKN0QPJ1zzjlavXr1yLG1tir9rFq1Sueee+7I8dKlS7Vs2bKq9AUAAACgdWXzrmC0eNltJiKdUm6nuw6e/IIR/LgCzIIGJpQT+FBJrvEX3w+/z06tQtwAAEB7eKD3Xs/yqGI6Y/LiGo9mfJwhuI5w3VZm5f3zGuMKRnMEdfnNPdN571A0KXjwbzqfUio/4FkXVWxcz2r1ZIxRMtKpgfxuz3qeFQEATWKy9gSIldIv6e+stTeFadxamzPGfEzSv0m6aFTVDEnnOy7bKulT1toHQ/a1yhjzIUm3al/4mZF08t7/vNwh6VJrrXfSKYARrM+rLtbnAQAAAAAAAAAAAADKQTAaADSgXC6n//zP/9Qtt9yilStXKpvNOs9NJpM677zz9Jd/+Ze68MILazhKAAAAAECt5eT9fDi+YDTvDf6l6tqdX0CZtVbGeAc2pB0BZkGDBcoJfKik4MFo7s8OwWgAAKBStg1t1vr+Jz3rTpx4mibFemo8ovFxzQnbc/4ULhjNFTTsG4zmEzhXPO/2m4e7QoqTkU7nc0EzSESSPsFoPCsCABrOBknXSjpb0kmSgnyz7QXtCRq7yVq7vZxOrbW7JV1sjPmJpL+XtNBx6g5Jd0paaq3dVmZf9xpjjpW0XHuC2KY4Tn1E0vXW2p+W0w/QLlifBwAAAAAAAAAAAABAYyMYDQAazG9/+1t94Qtf0AsvvBDo/FQqpbvvvlt33323Tj75ZP3gBz/QSSedVOVRhjdnzhy9+uqrkqRDDjlEGzdurO+AAAAAAKAJZW3GWIaAlgAAIABJREFUszwWGU8wmnuPoCtcAO5ghLxyytqs4h5hddbawMFiLu7AB+8whkpzhUckTOG4OkzC3UaNxgoAAFrfg72/knUEaJ3ds6TGoxk/15ywHedP3u+q5MhFc9876753fve1eN7tDK2zg+5gtGhzP0/5PQ/yrAgAKIe1dk4V294i6R8lyRgTkTRf0mGSDpTUIykpaVDSTkmbJf2+3IAyR/8/kfQTY8yh2hPMdoCkCZLekvSqpIestUMV6GerpC8YYy6XdIakQyTNktQv6Q1JT1prXxlvP0CrY30eAAAAAAAAAAAAAACNj2A0AGggy5cv1/Lly2Vt4XYPY4yOOuoozZ49W/vtt5+2bdum1157bczirMcff1ynnXaavvvd7+rSSy+t5dABAAAAADWQyTuC0cbxbT6/QK6gYV3tyC8IIJ0fVNwjrC5jh5RX3vOaoPfaHfiQUt7mFTGRQO2UyxX6UDyuiIkoYZKeQWqucDUAAIAwhvJp/a7vfs+62Yk5mtt5ZI1HNH6uuV4qn5K1VsY4UsFaknc0mnEko5UTKudXV9yeMxgtn3LPkU1zh4fxrAgAaFbW2ryk5/f+V+u+X5FU9WCyvSFrK6vdD9CKWJ8HAAAAAAAAAAAAAEBzIBgNABrEFVdcoRtuuKGgbOLEibr66qv18Y9/XAcffPCYa1566SXdeuutuv7665VOpyVJQ0ND+qu/+iv19/friiuuqMnYAQAAAAC1kbVZz/KYRwhXUH4BX3517c4vCCBtB9WtSWPL8+5AsKDBAn7vyZBNK1nl8AXXa/AaVyLSqXTOIxjNJ4ACAAAgqLW71qg/v8uz7qyeJU0ZIuaa61nllbFD6jCJGo+ofvLWOxhNzmA0d3CZS8qnrmNMMJoreC2lVH7As64z2uVsvxn4B6PxrAgAAIDmw/o8AAAAAAAAAAAAAACaR6TeAwAASLfddtuYRVeLFi3S+vXrdfXVV3suupKkefPm6atf/arWrVunY489tqDu7//+77Vq1apqDbllrFq1Stbakf8AAAAAoJHlXMFopvzff+C72d0EC+tqR34BZSlH8JdfKEPQEDq/AIJaBI65+vD6HLk+W34BFAAAAEFYa7V6572edZ2RLi2YdFaNR1QZvuG7bTeH8v6ZjSvuzj33dM+RXfc0bjoUNdGCMtd8PWOHNJDf7RhTc4eH+Y0/GTDYGQAAAGgUrM+rH9bnAQAAAAAAAAAAIAx+pARgGMFoAFBnL7zwgv72b/+2oOz000/Xfffdp9mzZwdq4/DDD9f999+vo446aqQsn8/rE5/4hLZv317R8QIAAAAA6idrM57lMRMvu02/QK5m38hfTf4BZd4BC2nrDmVImKDBaPUNy3D1ESYYrRYBbgAAoLVtTL2o19Ive9adNvm9vnOmRuY3J2y3YDTrDEbzjkZzPdf43Td36O/Ytvw+U33ZnaHG1Cz8Po88KwIAAKCZsD4PAAAAAAAAAAAAAIDmQzAaANTZVVddpd279/0m+Z6eHv30pz9Vd3d3qHZmzJihn/zkJ+ro6Bgpe+ONN3TNNddUbKwAAAAAgPpyBaNFTazsNv02+LPZ3S1uOmQc315NOQIW/EIZgoZ3+IUruPqtJHcw2thxlRNOAQAAEMTq3nuddWf2nF/DkVSWbwiuT8hua3L9ykfvYDTXs4t/MNr4Q38lqS+7w7O86YPR/J4VTXOGDwIAAKA9sT4PAAAAAAAAAAAAAIDmU/6OSQDAuD333HO65557Csquu+46zZo1q6z2jj76aF111VW69tprR8puvvlmLVu2TFOmTBnXWBvNSy+9pHXr1umNN97Qrl27ZIxRV1eXZs6cqUMPPVTHHXecurq6qj6OdDqt1atX65VXXtGOHTs0Y8YMzZ49W2eeeWZV+t+8ebMeffRRbd26VW+//ba6u7s1Y8YMLViwQHPnzq14fwAAAAAaiysYLWbiZbeZMO7N+smAYV3tyBijZCSpwfzAmDpXwIIruCyiSOD30Dcso8qBY9Za52sIEx5RiwA3AADQunZl+/TErjWedUd2Ha+ZHQfWeESV4zfXS7VZuKwzFs24gtHcc09rred1ace81CvQzC/kzB2MVv2fU1WT32smRBsAAADNgvV55WN9HuvzAAAAAAAAAAAAAKCeCEYDgDq64YYbZO2+rR3Tpk3TZz7zmXG1ecUVV+gb3/iGMpk9m+X7+/t100036Ytf/OKYcz/96U/rtttuGzl+5ZVXNGfOnED9rFq1Sueee+7I8dKlS7Vs2TLf9oe9+uqrzo0rkvSpT31Kt95665jydDqtb3/727rpppv04osv+o4vGo3qhBNO0J/92Z/pyiuvdC6COuecc7R69eqR49Hvh5++vj595Stf0a233qp33nlnTP3EiRN10UUXafny5TrggAMCtemSyWR0880363vf+56efvpp53nz58/XVVddpc9+9rOKxfgnHgAAAGhFWZv1LI+PJxjNJ3yBze7+EpFORzCad8CCK7gsEen0fU4eLWpiipm4Z0hetQPHsjarvHKedUmPgD3XZ6vaAW4AAKC1Pdz3G+e8+OyeJTUeTWXFTYciiiiv/Jg61xyzVbl+XmPkCEYz3nPPvHLK2qznM5Mz9NejLb9no77sTs9yv2CxZuD/rEiINgAAAJoD6/O8sT6vEOvzAAAAAAAAAAAAAKDx8FNZAKijFStWFBx/8pOfVEdHx7janD59uj7wgQ/orrvuKujHa+FVM3n99dd13nnnacOGDYHOz+VyWrt2rdauXauLL75Y8+bNq9hY/vCHP2jJkiV68803nefs2rVL//Zv/6a77rpLv/jFL8rua+3atfrYxz6mP/7xjyXPffHFF3XZZZfpX//1X3XPPffowAMPLLtfAACaTV92p57tX6u30puq2k880qG5nUfqyK7jFTXRqvbVrnZn39Gz/Wv1Tq5PR084QQcm5tR7SGgRu7K9eqZ/rTanX6/3UApETUxzkvN19IQTFY+Ufh70CsOSpNi4gtHcm/WbfSN/tbnunSv4yx2MFi5UIBFJKpsb+1l4qO+/9eLAM5IkY4wO6DhYx3S/W93RSc62rLV6fmCdXh7cUDKwzPX5Gx7T2DLv+/Py4HrdtfXWkePJsak6esKJ2j9xkG//W4be0LO716o3u8OzPhnp1LyuYzS/8xjfDV+1mjeE1RFJjMwzIiZSVhubUhu1YeBJ7cr2Bb4mZuI6tPMIHT3hBEVNZX9ksDOzXev7n1TapnTshJM1o2P/irb/Rnqj1vc/pUw+rXldR2t+57GBQwYBlFbq34iYiWtu5xE6out4xSPlz0WAMPI2pwd7V3jWTY1N13HdJ9d4RJVljFEikvQM332wd4We6/+D7/URE9GBiUN07IST1RmdUK1hjsvWoc16tn+tdma2+563eSjcs5vfs8vPtt3q+cz00uB6z/O95rYdJuFsP2OHHO009/MUwWgAAABoBazPC471eazPAwAgGH4eCwAAAAAAAACoDYLRgAaTszn1Zv03AmD8emLT6h5ksWnTJm3cuLGgbPHixRVpe/HixQULrx555BFlMhnF4825OW1oaEjnn3/+mEVXU6dO1XHHHaeZM2cqHo9r165d2rx5s9avX6/+/v6qjGX9+vV673vfq7fffrugfObMmTrxxBPV09OjLVu26JFHHtHg4KB27NihCy+8UN/4xjdC93XPPffooosu0sBA4Qao/fffX8cff7ymTp2q/v5+rV+/vuA3dD711FM69dRT9cgjj2j27NnlvVAAAJrIm+lX9e3Xl+qdXG/N+jxp4un6zP5XVjw8pN1tHXpT3359qXZkt0mSfr7N6OOz/kanT35fnUeGZvdWepO+vWmperNvlz65To7oOk6fP/AfS24udwVTjefrkV+AAJvd/bnuTyo/6FmedpSHDUxIRjrVn9s1pnzd7sfGlE2NTdflB/0fTfcIpMrbvH685Xt6uO83ofr34hmMZrxf1+ah18cEXfxsW1SfPeBKnTTxDM9rntr1iG5+83rllPUfyNvSuVMu1Eenf84zIKse84awFkw8W5/c/3+G/t7VQ72/1o+3fE9Wtqx+j51wsi494IuBQhqD2Dj4gm7cdI3683s+qz83t+mvDviSjq1QYM3v+u7Xj966UVb5PQVvS2f3LNHHZlxKOBpQAdZa3bHl+1rT96uS5x494SRddsCXKvb1A/DzTP/akWfGYot6zlOkBULME5FOz2C0P+x+NHAbszpm63/OXq6e+H6VHNq4PbP7cd305v/rDBILwjg23fk9u6zq/WWoPryekSImooRJKm39w4RH62zyYDS/Z0VCtAEAQDNjfV7t1HuNHuvzgmN9HuvzAAAIrryfRwMAAAAAAAAAEBY7uIEG05vdri//8bJ6D6PlXTP3B9ovPrOuY3jooYfGlJ18cmU2hr773e8uOB4cHNRTTz2lBQsWVKT9oK6//notW7ZMkrRo0SK98cYbkqQDDzxQa9ascV7X3d1dcHzLLbdo/fr1I8dz5szRjTfeqPPPP1+RSGTM9dZarV27Vvfcc49uvvnmCrySPTKZjD7+8Y8XLLraf//9dcMNN+gjH/lIwVh2796tf/7nf9Y//dM/qbe3N/RvBF2/fr0uvvjigkVX559/vpYvX65TTjllzPlPPvmkLr/8cj344IOSpDfeeEOXXHKJVq1apWi0+TeCAQDg52fbbqt5uMkTux7WyRPP0gkTF9a031Z3z/Y7Cja4W1n9x5bv66SJZ7DhFuPyi+0/auhQNEl6fuBpPdq3UmdNucD3vKz1DoWKmfI32vgFCIQN7Go3rq9N6bx3WIKrPGwAXcIEP39Hdpvu2f4f+swBfzem7qXB9RUJRZO8PythXldeOd3x1vd1fPfCMRvl8janH2/519KhaHut3HmPFk56jw5Kzh1T97Nt/19Dh6JJ0u93rdYpk8/WMRNOCnxNKj+o/9x6U9mhaJL0TP/jWrvrIS2cfG7ZbYz20223jISiSXu+ft3+1o269rB/H3dw2VA+rf/Y8oN9oWh7re69V6dOOldzOuePq30A0iup5wOFoknS+v4n9Ng7q3VGz/urPCpAemDnfZ7lMRPTGZNb4zNYiXDit4Y26dc7f6Y/n/GXFRhRZVhr9eMt/zquUDTJLxitcs8urvcgEUkqnQsejNbsz1P+z4qEaAMAgObF+rzaqfcaPdbnsT7PD+vzAAAAAAAAAAAAGhPR/ACGjf1pNQCgJjZt2lRwPHPmTO23334VafvYY48t2V8tTJs2TXPmzNGcOXMUi+3L4ozFYiPlXv9NmzatoJ2777674Npf//rXWrJkieeiK0kyxujkk0/WsmXLtHHjRh1yyCEVeT3f+c539NRTT40c77///lqzZo3+/M//fMxYuru7tXTpUt1xxx2KRCLauXNn4H7y+bwuuuiigt+quWzZMt13332ei64k6cQTT9Rvf/tbffjDHx4pW7NmjW6//fbA/QIA0IzyNqfnB9bVpe8N/U+VPgmhbBgYe0+zNqs/Dj5Xh9GglTTL39f1A0+WPCdrM57l4wlG64x0OesIJfTnCihL5Qc9y9PWuzxM0JkkdUYnhDrf6+urJD3X/4dQ7fjx+qz4fba89Od36bXUy2PK30i/qt25vlBtre8f+/dpz7yhcq+5mjZ4jN/Py4Mbxh0yUk6/Lqn8oF4e3DCmvC+3U1uG3hh3+36vd0OAr6UASnt69+Ohzn9x8JkqjQTYZ+vQm84580kTz9DE2OQaj6g6ws6hXJ4J+fe42t4a2lSRwOqo8f7db5V8dkk63gNXuUul3st6SUa8nzvipsP5PgAAAACNhPV5rM9zYX0eAAAAAAAAAAAAADQ+gtEAoE527NhRcDxlypSKtZ1MJpVIJHz7ayavvvrqyJ+PP/54zZs3L/C10WhU8Xj5AQHD8vm8vvOd7xSU/fCHP9TcuXN9r/vIRz6iv/7rvw7V11133aVnntm3kfBjH/uYli5dWvK6WCym2267TTNmzBgpu/7660P1DQBAs0nn08rabF367s+/U5d+W1Xe5tSf2+VZl8oPeJYDQWTyQ0rbVL2HEYjr78Borq95sXFsSj8wcahniMDBicOUiIQL7Go3rmCEtCMYbTDnXd4ZDReYMK/z6FDn9+d2ydqxvzMnbNiYy8HJeeqIJMaUz+sKN05J6s+N/fd1t0dZ6XbG/n1K51N1mzeEtTvA14OC87OVeS/LuddevN7HYYMV+Hfd77NbqdcAtLsdmW2hzk/n01UaCbDPA70rnHVn9yyp4Uiq67CQcz2Xndntytt8RdqqBL/5QRhzO4/0LO+IJHRIcn5F+pjXdYyjPPh7E1HUOdZmMbfzCEU8lpTM7xobAAEAAAA0ItbnBcf6PNbnAQAAAAAAAAAAAECjIRgNAOqkeCFUT09PRdsvbu/tt9+uaPv1snXr1rr0+8ADD2jjxo0jxwsWLNCFF14Y6NqvfOUroRZ/ffvb3x75szFG1113XeBru7u7ddlll40cP/300wXjBgCg1biCZ2phMEdYVyWl8+7gqkw+U8ORoNU0U7BekK8rWev99yFmyt9wEo/E9Sf7XVzUXkx/Mu2SsttsF8no2EA5yf25S+X7vdtxBKy5LOo5T1Nj0wOfb5XXkB0bWJOqwL+jMRMb8/kZNid5uN7VfUqo9rxCs8oJ0hr0uNeVCOSqlbBfuyrxXkqVu0cDOe/PuuT+OhbGoM/rTTkCCAGEszMbLhhNGhvACVTSUD6t3/Xd71l3UGKu5iQPr/GIqufsngvUE9tv3O1kbbZiYWSV4Pfvd1ATohP1vql/6qz/k/0uGldotCQd1nmUjp3wbs+690z5oLqjkwK1s3jqh9UV7R7XWOptQnSi3j/1QwVlCZPU+VM/UqcRAQAAAOGwPq88rM/zx/o8AAAAAAAAAAAAAKiN8a0KBgA0LGNMvYdQMUceeaTWr18vSXr99dd1/fXX66qrrqrpGNasWVNwfMklwQMCpk+frsWLF+uXv/xlyXP7+/v1yCOPjBwvWLBAhx56aPCBSjr33HN1zTXXjBw/+OCDmjNnTqg2AABoFmnrDtM6ouu4cQUFDds29Ja2Zt4cU16pABLs4RfEUokAFbQvv8/W4V3HKV6BrxNh9WZ36I30xjHlQYKQcjbrWT7ezf/vnfqnmtFxoNbtflSJSFLvnnimDu1snXCJaul0BJq5PneuMAhXOy77xWfo7w/+mn7Xd79eTb2kvHKSpHQ+rZcGn/W8JpUfUCKSLBqPd3jVfvGZmtVxYMlxzOw40PezEjERXXrAF/Vw3/16YeDpgs/4SwPrPf8d9/r31fV3I2461B2dpJ3Z7eNqR5KO6HrXuP8elWPr0GZty2weUx42gNX1XnZGJmhu5xFjyndktmvz0GuB2wnL72tvxg6Nu/2Uz/2p1GsA2p3X11ZJMorIKj+m3BKMhir7/TsPOL/Gnz1lSUv9TGRaxyxddfB1eqTvt9qYetHz79xoOZvTcwN/8KzbmX1bE2OV3fhfLtdcLGZiOqLrXb7XGkV0UHKuTpl0tmb6zFOP7T5ZVx50rR7ftUZbhjaFGl+HSeiwzqN0Rs9idUQSnucckDhYVx38df3/7N17mCRlfff/z92H6e49zuzBhbAgkg1hQVAR5LiAwUeyRCNBExT9RdFEEg1KHjzEmCdBRH8STX6BeBkTkwtMHhONgogGImhgUQiQ1RAUEFg5CArr7uzMsrvTPdOH+/fH7MxO99zf6qqePs3M+3VdXBdd1VV197FqZqvec+/zt+vp0uPB12Z5elAvXnaCXrbslETb71e/vuYtOjR/hB7c+30tTS/XK1acpfX5w3s9LAAAAKAvLKSfRTk/j/PzAAAAAAAAAAAAAKDfEEYDgB5ZtWpV3e3du3e3df2jo6OR25tPLrzwQt1www3Tt9///vfrxhtv1EUXXaRzzz1XBx98cMfHsHXr1rrbJ510UqLlTzrppFgnXt1zzz0qlw+EP4444ojEf1GyVqu/EOfHP/5xouUBAJhPxiPiZO/8hT9SIb10ztu4feQb+vLP/37W9DgBI8QXFTEhjIa5iPqsvvMXPqgl6WVdHM2k7++5W3//sz+fNT0qJDTF+jy0IwR57LITdOyyE+a8nsUklyoEp1vxzJLxXZdPGEaTpKHsGp275oK6aaOVXfrjH7/dHNPKmOM8ZcWvzFp3q9Iuo02D52jT4Dl10//fJ/+3nh5/fNb9i9XZz5EVwVqbPVgbl75E3x65afYygc+TFaaTpN8/5MNmAKOTbtv1VX11x+dnTU96nGG9li/Mb9C71//prOn37r5dn3/u6lnTkwbZLKHXcUo79utR35fEa4G5q/mqRsu7gvOGMqu1q7KjyyPCYue915bRm4PzlqSW6YTlm7o8os5blV0b+3is5mt676O/papmR5RHyjt1WP4X2z28llj776HM2uDxSqsOLxypwzsYeX7BwMF67ZoLO7b+fuOc0/HLT9Pxy0/r9VAAAACAxDg/Lz7Oz3sy0bY4Pw8AsLgtnDgsAAAAAAAAAKC/EUYD+sxgZo0+esTf9noYC95gZk2vhzDrRKiRkZG2rbtUKqlUKtVNW716ddvW323nn3++zj///LqTr+666y7dddddkqQNGzbo1FNP1WmnnaZNmzZp48aNbR/D9u3b627/0i/9UqLljzwy3kU4Tz/9dN3tL37xi/riF7+YaFuNdu0KX8QIAMBCEBW+yKXybdlGwYjVxAkYIb5S1X4tCaNhLqIiP3kjatVp1nZLtaK893LOPom03MEwGpKzX8vw+84Kc1n7mnaNRwqHqqx4VTc+G1YMLrRvt/b3hfSShOsJvy4ppZV1A9ZQO8oef7LjDOu7znotrXhsVKg00Xgixl/xs6MtSUU9PxyjAXP3fHV3MLAkTcaaCKOh2x4vPaJnxp8Izjtl5a/0JG7aT1IupcHsKg2Xfz5r3mhluAcjCrNit736uQwAAACLF+fndU+vz9Hj/Lz4OD+P8/MAAIjP93oAAAAAAAAAAIBFgjAa0GfSLq3V2XW9Hga64JBDDqm7/dxzz2l4eLgtJ0g9+OCDTbc3nzjn9KUvfUl/9md/pr/8y7+cdVLZtm3btG3bNv3jP/6jpMkTsd7ylrfokksuadtf4mw8MW7FihWJll+5cmWs+w0Pt/8ipT179rR9nQAA9IvxWik4PesGlHLptmyjXcESRIsKsZT9RBdHgoXGCuTkXL5t3xNJFVLhIJFXTeO+pLyzwwBWKDDj+DVfL1hBMyvk1ekYRM7l5eTkAyciJwuOhd+j7VRIx9+/WvuIfKpg7qfDIbjw819ILYkMEnaS9dpbET2LdVxifd9Y08t+QhVfnnNsMWq/3o7gaVT8jGM0YO5GyjvNeauya6XAV5T3XASDzrlz5GZz3qbBzV0cSf8azKwOhtFG+imMZhzfWMdzAAAAQKdwft7iwfl58XF+3txwfh4AAAAAAAAAAAAAtF+q1wMAgMXq1FNPnTVt69atbVl343oKhYJe+tKXtmXdvZLJZPSxj31MTz75pD71qU9p06ZNyuVywftu27ZNl19+uY444gh96Utf6vJI52Ziov3RDy5KBAAsZPZFte0JzEjR0Zuar7ZtO4tdVOCk4itdHAkWGiuQkzeiTN0Q9R1lhbOmVI3Pw1wjRmiNHc80wmhWvKpN70fnXERoK1lwrNPMoFlgnGbALbU0IrAWCsH13/eBfZxhh8VCrP1oPh1+La0wmmQH5BKNJxCmm9KOMFpU/Kwd4wcWu5HKjuD0rBvQsnSyC1KBuXq+Mqrv77k7OO/opcfrBQMHd3lE/WkosyY4PSp02G2dPhYGAAAAgEacn5cM5+e1jvPzAAAAAAAAAAAA2od/egEwhTAaAPTIYYcdpsMOO6xu2q233tqWdd922211t0866SQNDAy0Zd1TqtXeREDWrVunyy67THfeead2796tu+++W5/61Kf0ute9TsuWLau77+7du/WmN71JN95445y3OzQ0VHf7+eefT7T87t27Y91vzZr6i5c+/vGPy3s/p/+uu+66RGMFAGA+Ga+VgtNzqXzbthEVS7G2j+Ss6I3UnoAKFi8rFmTFiLqhkI4IEkXEfmq+qppqwXmE0XrDCoiN14qq+dmvlRmvauP70Y611W/bex8ZHOs0OwgWCrhZz1shYWDN+j7ofAjOYo2/4isq1+Lv/+zHFn4towIkVjAviah1lGtzv+gsKn4WFU0DEI8VUpoML7ngPC/OQEBn3L37NlUVjgOfObi5y6PpX4OZ1cHpo5X+D6N1I8oLAAAAYHHi/LzWcH4e5+cBAAAAAAAAAAAAQD8gjAYAPfSrv/qrdbf/6Z/+SeXy3KIPO3bs0E033RS5nSmZTKbudqUSvrgoZGRkJPng2iyXy+mUU07RZZddphtvvFHDw8P64he/qCOPPHL6Pt57vec971GtFo4HxLVu3bq624899lii5R999NGWthN3OQAAFqtxI+iSa+NFtVHxpKiAEZIpViMCKr79f7Ubi4d98X0Pw2gR244K+lS8/TNbxmXMeegc633k5TXhx+umVXzZ/D5rZ6jPDqPV7zPHfcmM2HQjTpEoaGZEsPKpJeZYS7WifMOfCepGmC6pqEBZKUGgLCoeF7IkIn7XjuObsYixR32XxRX1XTnhx1VtwzaAxWzECCkNZVcbWTSgM6q+qu+MfjM4b3X2BTpm6fFdHlH/GsquCU63Ps+9UDR+h9PLYzEAAAAACx/n580N5+cBAAAAAAAAAAAAAHqFMBoA9NB73/teOXfgUrIdO3bo2muvndM6r7766rqTt5YuXarf/d3fDd53xYoVdbdHR0djb+fBBx9MNK6Zj7NTBgYGdMEFF+jee+/VIYccMj396aef1ve+9705rfuEE06ou33PPfckWv7ee++Ndb9TTjml7rm67bbbZl3IDQAADhivlYLT2xl0ibpANyrKgWQagz0zVWrETdC6ohFUameIKqkBl1PK+LXBplxvAAAgAElEQVRcVJCo4u0LdTIuO+dxIbmo/U1jzKtUtb/n2hmDsENhjeOx32uFtB3NahfrMxgaV1T0q2AEvrxqGvf1xwn9GEqM2rYVDwne1wiMWs9PLlWQM/JGUbHSuKLeX1HfZbHX3+QYLOq4AkBzu8o7gtOHMmsl0mjooh/s/S8z7LVp5a8q5dJdHlH/GsqEw2ijleG++TcGK/ray5/NAAAAACx8nJ/XXpyfBwAAAAAAAAAAAADoFsJoANBDRx99tDZv3lw37YMf/KC2b9/e0voeeughffKTn6ybdtFFF2nVqlXB+7/gBS+YtXxcN998c6Kx5XK56f8fHx9PtGxSg4ODOv/88+umPfHEE3Na5+mnn153+1/+5V9iL7tjxw7deuutse67du1avexlL5u+/dOf/lS33HJL7G0BALDYWNGLnMu3bRtR0ZskwRJEKxoXSEvtCahg8erHEJJzztx+VOyn4u1IIGG03sino6JWDSGyiNe2ELGepKyoWWMkMCrC187AqLkN4zGHxmXt7wvppdFxuoblrDhdL2McUdtOEmC1niPr+Um5lHLGvKh9clxjHd6vNzsGs6KYAOIZqQwHpw9lw+ElSfLi4lG0352j4d+NZ1xWp658VZdH098GM6uD0yu+or3V57s8mjBr/93Ln80AAAAALHycn9cZnJ8HAMBixh/RAQAAAAAAAAB0B2E0AOixv/iLv9CSJQcu+hgdHdX555+vvXv3JlrPjh079IY3vEETExPT0w4++GD96Z/+qbnM8ccfX3f761//eqxtffOb39R9992XaHyDg4PT/79z5866v5rZCZlMpu72zBO/WnHGGWfo8MMPn769detWfeMb34i17BVXXJHo8f7BH/xB3e33ve99id8PAAAsFuO1UnC6FfpoRdYNKK1McF6SYAmiRQV6yn7CnAc0YweVenvxvRUrior5RMWEMi78PYXOShLlig6Rte/9aI2pcZ8VGWpLheNq7VSIOU5rmjT5WCPDYrNicOFYVy9jHNEB1njHGd578zmyQnmStMR4nceqcw+jRY29HWG0UpN4G8dowNyMlHcGp6/KrJUzL3YhjIb22j7xU/1o7H+C805YfrqWZVZ0eUT9LSpcOFIJf6a7rfHYbEo3orwAAAAAFjfOz+sMzs8DAGCx4t+EAAAAAAAAAADdQRgNAHrsqKOO0l//9V/XTbv77ru1efNmPfPMM7HW8dhjj+nss8/Www8/PD0tlUrpn/7pn7R27VpzuVNOOaXupK+vfvWr2rp1a9NtvfWtb401rpk2btw4/f+VSkW33357rOXGxsb013/919qzZ0/sbe3du1c33HCDuf1WpFKpWSdEXXzxxU3/0uUNN9ygz3zmM4m29du//ds66qijpm8//PDD+o3f+A2NjIwkWs+OHTtmPQ8AACw0VvAol8q3bRvOOeXTyQNGSCYqYNKOgAoWr34MIUl2rMgarxT9WUgTRuuJnMubgZjxHoXRrFBY3FBbSill3UDbxmOxHnNo326NNZ9aonxE5LBxOeu4wdrPd0PKpZVz4eMWKx7SaMKPq6ZacF5UOM5+DeZ+fFOMiKuV57hfL9fKqvhK9PYJowEtK9fKer4a/j1kVHgJaLctI7eY884Y3NzFkcwPy9Mrzaj7aGW4y6MJM4/FevyzGQAAAICFj/PzonF+HufnAQAAAAAAAAAAAEA/IowGAH3g7W9/u9797nfXTfvud7+ro48+Wp/4xCf09NNPB5fbtm2b/uRP/kTHHnusfvCDH9TNu+qqq3T22WdHbnf58uW64IILpm9Xq1X92q/9mm699dZZ952YmNDnPvc5nXzyydq+fbuGhobiPjxJ0itf+cq62xdddJE+85nP6Hvf+54ef/xxPfnkk9P/7dy5s26773nPe7R+/Xq9/e1v19e//vXIk7Duu+8+nX322Xrqqaemp5188sk68sgjE4035D3veY9e8pKXTN/+2c9+ptNOO01f+cpXVKvVX4C8b98+XXHFFXrjG9+oWq2W6PlKp9P6yle+ohUrVkxP+9a3vqXjjjtOf/M3fxP5+Hft2qUvfelLetOb3qRDDz1U11xzTYJHCADA/DPurYtq2xs46WQ4BJOiInPN4idAFOvi+6hYUDdY31PWeKXoMFrWZec8JiTnnDNfy9lRrvD33IDLKe3SbRvTXMdTSC2Vc+HYWztZn8Gyn6h7r9d8bVZkbuY6ouJ0jY/Rfsw9/j4w4m5xjzNaje4tMQONbQijdTB4Gud54RgNaN3uiIDSUMYOo/lODAaLVqlW1D3P/0dw3mH5DTq8MPff9y80KZfSYHZVcN5IeWdwereZx2IRoVsAAAAAaBfOz+P8vJk4Pw8AAAAAAAAAAAAA+l/4z0YDALru05/+tIaGhvSxj31M3k9eRrZnzx596EMf0h//8R/r6KOP1qGHHqqhoSENDw/rqaee0iOPPDJrPdlsVldffbV+//d/P9Z2P/rRj+qrX/2qRkdHJUk///nPdc4552jDhg067rjjlMvltH37dt17773at2+fJOmggw7SVVddlegvU/7mb/6mPvzhD0//lc2f/exns042m/LWt75V1113Xd20559/Xtdee62uvfZaOee0YcMGHXHEERocHFQmk9Hw8LB++MMfzvornkuWLNHf/d3fxR5nlGw2qy984Qs688wzNTw8eYHgs88+q9/8zd/UunXr9PKXv1wrV67U9u3b9Z//+Z8qFicv3F65cqWuuuoqvfOd74y9rWOOOUbXX3+93vCGN2j37t2SpGeeeUbvete7dMkll+jYY4/VYYcdphUrVmhsbEyjo6N69NFHY/8VUwAAFgorlJJL5du6HSuY0o5wCCZFBUzmGlDB4las7gtOj4oFdUMhZQWJwuOVoiOBGcJoPZNPLQnuDxq/16wAZLujXHFjntZ48un2xkUtUZ/BUrWoZZnJ9/SEH5c3cjv51JLpOF2s18DY1/T6+yCfWqLd2jVretzjjFJEXDTq/WU97jHjezMu77353SvNfb8e53nhGA1o3a7KDnPeUHaNHc/0pNHQPv/1/J3mz4hnDm7u8mjmj8HMag2Xfz5r+khE8LBbqr6iCT8enNfrYzEAAAAAiwfn5x3A+XmcnwcAAAAAAAAAANCvOCsZwBTCaADQRz760Y/qzDPP1Lve9S499thj09O993rwwQf14IMPRi5//PHH62//9m91wgknxN7mIYccouuvv17nnXde3V863LZtm7Zt2zbr/i960Yv0b//2b9q+fXvsbUhSoVDQV7/6VZ133nn66U9/mmjZRt57PfbYY3XPUcghhxyiG264Qccee+yctjfTMccco29961s699xz9eyzz05P3759u26++eZZ9x8cHNRNN92karWaeFuvetWrtHXrVr3pTW/S1q1bp6dXq1Xdf//9uv/++5uuI+lfDgUAYL4Zr5WC03Op9kZd4kZm0Lqo57LsJ7o4Eiw0JSOgWEj3OoxmfK9Uw+OVomNChNF6J2/scxrfe9b3XL7N70V7nxVvPO0OtVmiPoPF2j4t04rJ/48IbE2tw4rTNU6zAmK9jnEUzPdQvOOMqAhY1PvLCjSWIgKNcZT9hKqyQ45zDaPFeV6iYnEAoo2UdwanF1JLlU8V5GSE0YA28d5ry8js37VL0tLUcr18+eldHtH8MZRZE5w+Wgl/rrvJ+rlM6t7xJwAAAABInJ8XF+fncX4eAAAAAAAAAAAAAPRaqtcDAADUe9WrXqWHHnpIX/jCF3T22Wcrk4luWOZyOb32ta/V1772NW3dujXRSVdTfuVXfkX33XefXve618m58IVta9eu1fvf/37df//92rhxY+JtSNIJJ5yghx56SJ/97Gd13nnnacOGDVqxYoXS6bS5zMqVK7VlyxZ94AMf0Mtf/vKmz4ck/fIv/7I+/vGP69FHH9UrXvGKlsYa5aUvfakefvhhXXLJJVq+fHnwPsuWLdPb3vY2PfDAA9q0aVPL29qwYYPuu+8+ff3rX9erXvUq5XK5psts3LhRl1xyib7zne/ohhtuaHnbAADMB9aFtblUvq3bsaM3RDfaJSrqUvF2XAVopmgEfnodQrK2b41Xio4JpR1//6BX4sYzre+5docg4u6zrPF067MRtZ2Z+/eoiMbUY7VDgw1hNCuU2LffB/GOM6zjESennLOPiZakw2G0sTmG0aK+xySpXJtbGC3O8xL3uQMw24gRUFqVXRu5nOdvs6FNflx8WD+beCo475SVZ2sg1fx35IvVYGZ1cLoVPOymqN+fWMevAAAAANApnJ9Xj/PzOD8PAAAAAAAAAAAAAPoRV0wCQB/KZDK68MILdeGFF2rfvn363ve+p23btmnHjh2amJhQLpfTunXrdOSRR+r444+PdTJOM0cddZRuvPFG7dy5U1u2bNEzzzyjsbExrVu3Ti960Yu0adOmupOezjrrLHmf/GK3FStW6OKLL9bFF18c6/7OOZ1xxhk644wzJEnFYlEPPvigfvzjH+u5557Tvn375JzTihUrdNhhh+m4447TC1/4wtjjueOOOxI/BmnyhLBrrrlGn/zkJ3XHHXfoiSee0MjIiNauXav169dr06ZNWrr0wAXGrT5f0uRz8JrXvEavec1rVCqVdO+99+qpp57S8PCw9u3bp6VLl2poaEgbNmzQxo0btXp1+OInAAAWovFaKTi93RfVFlLhcEixSnSjXaIuko6KQQFRvPd9G0IqpK2Ylh2BsiKBKaWVcvz9g16x9jmN+wjrtW13iKxgxK5mj6d/w2gzo1ZR+4ep/bMdpzvwnFd9VePeOG4wPo/dYofd7O+DmezIXcG8wG5yvhFkm+PxzVg1Oow21/16Y/AueB/CaEDLdhkBpaHMmv3/F/5eIYyGdrlz9JbgdCenMwY3d3k088tQdk1w+mhluMsjma0YcVzT62g1AAAAgMWJ8/MO4Pw8zs8DACAZ+9+gAQAAAAAAAABoJ8JoANDnli5dWnfiUaetWbNGr3/967uyrVYUCgWdcMIJLf3lzU7I5XI655xzura9fD6vM888s2vbAwCg31mRmVybw2j5dHh9RDfao1ybMINPU/OBVoz7khnp6PXF92ZMq4VIYNZl2zImtMZ6LzXGO4u1cCyq3TFPa32l2pi899OhLCt+1a1oYNqlNeBymvDjs+bN3L9an4mUUsq6AUl22GzmsuMR0cFCm1+DpKzxxz3OsO5nhV2nLDEienM9vmm2/FzDaFHfk0nuAyBspBIdRuNSF3TS7sqI/nvPfwbnHbP05VozsK7LI5pfBjPhi7JHKsN1x4G9EHV80OufzQAAAACA8/PqcX4e5+cBABCNP5YDAAAAAAAAAOiOVK8HAAAAAABAK7z3s6IzU9odmbHCIlaYDck0i5fMNaCCxatkhJ+k7sWf7O0nDxJZAcEMYbSeihvPLFXD+4xm8aqkrPd2TTWV/YHQpPVesyJdnWBFMGZG28xxppZMxz2sxxwnsDa5rva+BklZ448b97Iid82Oh6ztjhkRv7iaLT/X/XqccBvxWqB1I+UdwelD2TVdHgkWo7tGb1VV4WPeMwc3d3k0889UwLBRxZe1t/p8l0dTz9o3Z1xG2RQ/zwAAAAAAAAAAAAAAAAAAAACoRxgNAAAAADAvVXxFNVWD83Iu39ZtWWGRuMESRGsWL7FiUEAzkSGkLsafgtuPEYRqZMWE0i7TljGhNXGjVkUjFmWF1Vplvbcax2R9ProZDSwYn8O6oJnxmZi5bJz9dNS+ptDmoGpS1msWN+5l3a+Qjg6+mYHGiO+hOIrVZmG0ue3X4xx/RX2XAog2UtkZnH4guOSC8718h0aExaLqq/ru7luD89Zk12nj0pd1eUTzz1B2tTlvtDLcxZHMZu2/ex2oBQAAAAAAAAAAAAAAAAAAANCfCKMBAAAAAOal8VrRnJdrc+DEisTEDZYgWrPASdlPdGkkWGiiQ0i9DaNZQSgrniVJVSMmlCGM1lPWPqfUsJ9qvD3FilO1yoqETY6heSgsKqzWbmYgsG6c4edt5rJ2WOzAslGhrG4+5pC4cT2LHRqJPh6ywmnF2j5533rgqNP79TjHX8RrgdYUq2Pm52coOxlGc0YYDZirB/bea8a7Ng1uVsrxz9rNLE8PKqV0cJ4VPewW+1i4t4FaAAAAAAAAAAAAAAAAAADQX+ZwOQOABYYzyAEAAAAA89K4t8No+VS+rdsygysRkRXEV6zaIShJqvhyl0aChcYKe6SU0oDLdXk09azvlbKfMANoZeOzkHHZto0LydlRrrGG2+HvumbxqnaNZ3IMM0Jhxuejm9HAOOFRKxY483kzw2Iz9i9WTCvjMsqmBpqOtZPivocs1v2aRfes562mmsZ9Kda2Qzq9X4+K3E0hXgu0JiqctCqztsnSnIGAudkyektwetYN6NSVZ3d5NPNTyqU0mFkVnDdS7nUYrfdRXgAAAAAAAAAAAAAAAAAAAADzB2E0AAAAAMC8NDPu0ijX5shMIW0EV4hutEXUaylJFV+R5089oAVRF98757o8mnpR8Snru8WKCRFG662Csc9pfP8Vje+6ZvGqpHIRcdCZQU8r7tnNOIUVhZv5GbD2ETOft7yxn565rLWefohxWM9DqRq9f5xihcKaRfei3nvN4maR4zFidlPmGkaLEz3jGA1ojRVGc3IazE7GlqxDKI7WMRfPjj+tR8d+EJx3wvJNWppe3uURzV9D2TXB6SOV4S6PpJ79s1l7f38DAAAAAAAAAAAAAAAAAAAAYGEgjAYAAAAAmJfGayVzXlQUphXWhboTflxVX23rthajZgEVr5pq4nlGcq3GgrohKoxmxZAqNSuMlmnLmNAaK6xVathPdSsGkXKpWMExKxxlxUA7wXzuqjODZs2fN+vzVIrxePvi+yAdDpQVa/tihUGt/Wiz6FvUaz2XsNhY0zBapeV1S82DqpP3IYwGtGKkvCM4fUV6cEaItbdxWSxMd47eYs47c2hzF0cy/w1lwmG0USN82C1F42ecfojUAgAAAAAAAACS4N+KAAAAAAAAAADdQRgNAAAAADAvWVEMp5SybqCt2yqkwsGSyXEQ3pirOIGTsg8HoYAo1ufTihB1U1QAwIocVRWOCR0IlaAXrLDWzPef994M9XXi/WjH2ibHUPVVTfjxRMt2ghXmmvkZsAOHS4L/P9PM18D8PojYx3eL9R6qqaayn2i6vLUfbfbeinrscwmjlYzXbEpljvv0ZkFVafJ9EycqB6DeiBFOGsqGQ0sz8ZlDq0q1ou59/vbgvMPzR+qw/IYuj2h+G8ysDk4fKQ93eST17NgtYTQAAAAAAAAAAAAAAAAAAAAAsxFGAwAAAADMS+O1UnB6PpWXc+39y5RWsEQijNYOxWrzwMlcIypYnKywT9RnulusIJRkR46sz0EmRRitl6yYQ8WXVa5NvmZlP6Gaqsby7X8/FowxTX0movZd1rKdYAfNijP+v/nn2BpzqVZUzddir6dXogNlMSJgLT62rBtQWpnwOqt7m27XMtZkzOVa89hblDhB1ZqqsaJyAOqNlI0wWuZAGM3J+lmLMBpac9/uO8zv9jMHN3d5NPOfFTIcNcKH3WIdr0T9XAQAAAAAAAAA6Ef8mxAAAAAAAAAAoDsIowEAAAAA5qVx48LpXEcCMxHBkmrzOAeiWRdIz1SpEUZDclYIKeoz3S1pl1HWDQTnWSGksvE5yDjCaL0UFZ+a2ldFfc914v3YLDjWL2E0O2i2b8b/h/ezhfSB5816Dby8Jvy4JKlYteJhvY9xRAdYmx9ntPpd55yrex5nirNvtjQLnlZ8peV1x1n/9P2I1wKJ7TLCSUPZtV0eCRYL7722jN4SnLcsvULHLz+tyyOa/wYzq4PTRyrD8r53F6vZkdreH4sBAAAAAAAAAAAAAAAAAAAA6D+E0QAAAAAA89J4rRSc3okwWtQ6S0bACPFFBXqmVDxhNCRnh5Da/z3RCisKZY3bigllXKZtY0JyUTGHqe+3qO+5TrwfrXVOjcN6j00u2704hbWt4owYmB3RKMz4/4jXoBr9GvRDjCNqDFGv1ZTSHL7r7O+h1o9vmgXJqqqo5mstrz9OLG7yfoTRgKRGykYYLbOm6bK9yy1hPnus+KCenfhJcN6pK/+XsqlwSBi2ISOMVvFl7a0+3+XRHGDtv/vlZzMAAAAAAAAAAAAAAAAAAAAA/YUwGgAAAABgXrIuqs2l8m3fVjaVVcZlg/OKMeMcsDULqEhSmTAaWmBFcQqppV0eSZgVQ7LGXSWM1pfy6ah45uQ+IipuVUi3//1ovreq+8cTFWqLeDztZkW5Zn4GrLHOXLaQjgiLTcXgjP111LLdkkvl5eSC85rFvWq+qnEfjsXGeW+ZYbQ5RMWKMaKx1vdZM9772MGzOFE5AAd47zVSCYfRVmUPhNGs7yvSaGjFnaM3B6c7pbRp8Jwuj2ZhGMraIcPRynAXR1LP/tms98diAAAAAAAAAAAAAAAAAACgf3hOSwawH2E0AAAAAMC8NF4LR0Dyqc4EXeLEW9CaUoxwSYUwGlpghX26GX6KkjeCTNa4rc+BFW5Ed0Ttd6b2Eda+wslpwOXaPybjPT4VrLLGk3UDXX0/mZ+B6pj8/n/JssY6M/5mheBmLl8yYl1Ry3ZLyqWUM95HzQJlVihWkgoxjomseFqcuJmlWG2+bNlPtLTuCT+ummqx7ssxGpDM3upu81hjKBMnjAYkM1rZpfv33Bucd+yyE7Q6+4Iuj2hhWJ5eqZTSwXlW/LAbrJ/7O/U7HAAAAAAAAAAAAAAAAAAAAADzG2E0AAAAAMC8ZIVAci7fke1Z4ZRmwRI0F+c5JIyGVlhRHCt02G12cDH8/WZ9DtIu07YxIbmMyyrrBoLzivtfS+t7LpcqKOXa/yvaZu8tazzd/mxY+9aaqir7CdV8zfw8zBzrgMspZfyqe+qxFo319EuMo9UAa9Q+NJ8KR8/ibLcYI1oaUvVVjftwvHamiq+0tP4kx10cowHJRAWThrJrzHlTvPjTbEjmu6PfVE3V4LwzBjd3eTQLR8qlNZhZFZw3Uu5hGM06pjMirQAAAAAAAAAAAAAAAAAAAAAWN8JoAAAAAIB5adx3N3BirbfUYjgEBzSLvkhSmTAaWmBFcawYU7fZwcV9welWGC3jsm0bE1pj7iP2vwe7Hemz3lvT4zH2Xd3+bEQ9/mJtTONGQEOS8ukDyzrnIh7z5Dqsx9wvocRWA6xRAbNCjGMiK0ZifQ81E3e5VoOnSY674hxfADhglxFMSiuj5enBLo8GC13VV3TX6K3BeWuzB+uoJS/p8ogWFitmOFoZ7vJIJkWFU/slUgsAAAAAAAAAiMv1egAAAAAAAAAAgEWCMBoAAAAAYF6yYim5VL4j27PDIUQ35irOc9hqQAWLW7+HkKxxlKrh77eKrwSnZwmj9ZwdRpt8Lbsd6TPfW/vHYY4n3d3PRlQIo1Qbi9w/NC5rratY3bd/fVZQtT++D1oNsEbFv/Kp8LHLTAXjPq2G0eKGy1rdryc57uIYDUhmpBIOow1mVyvlDvxzonNc7IK5u3/PPdpdHQnOO2Nwc917DskNZlYHp4/0KIwWGbvtk2MxAAAAAAAAAEBcvtcDAAAAAAAAAAAsEpleDwAAAAAAgFaM10rB6bmIyMpc2NEbohtzFec5JIyGVnQ7RpVUwYhQWUEi63OQIYzWc9Z7aur7rduRPms8xf1RCut7t9ChfajFinJJkyGzqqvGXtZ+DabidOHPlfU57LZWA6zW/IzLKJtq/t2wxAqjxQycNRqLGVRrdb+e5LgrbqQNwKSRcjiMtiqzJtby3nMRDOLbMnpLcHrWDeiUlb/S5dEsPEPG59b6nHdadOy2P47FAAAAAAAAAAAAAAAAAAAAAPQXwmgAAAAAgHlpKnTSKJfKd2R7VrzFGgfiqflqrOeQMBqSqvqqJvx4cF6/hJCaxbQaWZ+DtONXfL1mxzOnolxGpK9D78VmMU87GmiHyjohl8rLyckH/qJ0sbpP1VTFXLbxMVqf61JtTFVfUdlPGOvpl++D1gKs1vy4r6X1HrRCcs00C7lNKbe4X4+7/qT3BSDtquwITh/KNgaWXPB+oe9yIORn409pW/HB4LxXrDhTS9LLujyihWcwuzo4fbQy3OWRTIo6nul2mBcAAAAAAAAAAAAAAAAAAADA/JDq9QAAAAAAAGjFeK0UnG6FRebKWm+r4RBMsl7HRuUaYTQkE3Xxfb+EkAqJw2jhSFTGZds2JrSmWeTOek2t98Ccx2NFwqpFee8jxtPdMEXKpZSLiMpZYauU0sq6gbpp1mtQrI1FBjg79RokZX8fRMdDreco7mtpbbfVqFixGu+4qNLifr1ZKK7V+wKQRso7g9OHMo1hNGButozeYs47Y3BzF0eycA1l7DCa992PGJaq9vFMv/xsBgAAAAAAAAAAAAAAAAAAAKC/ZHo9AHSPc265pNMlrZe0RtIeST+T9EPv/aNt3E5W0mmSDpN0sKS9+7fz3977J9u1HQAAAACLmxXUsgIrc2VHb6KDJYgWN7xS8YTRkExUEKdfQkhRIacQ63NAGK33zH3E/giE9Zp2LuYZHk9VFZX9hIpVazxLOzKeKPlUIfh5Ldb2qWrEAAvpJXLO1U+LiNNZj3dq+/0g6ffBlJL5Wsb7nisYr3ncwNms5WIGY1vdr1uPNzwWwmhAEiMVI4yWXVt32wXvBcRTrI7pvt13BOcdkT9Kh+aP6O6AFigraFj2E9pX3aNlmRVdHY91fJBxGWVTA8F5AAAAAAAAAAAAAAAAAABgcer+n4AF0K8Ioy0CzrnTJP0fSWfLeM2dc/8j6bOS/ta3+KfCnXNrJX1E0gWSVhn3uVvSX3rvr29lGwAAAAAwZdwIkuVT+Y5szwyuJAh0YLZOB1SweEWHkPojjGZ/r4S/3ypGJCrj+BVfr+XT4bjWVPDLimhaUaq5KkTEvkq1ohkOLBiPo5MKqUEmqwYAACAASURBVCUa1fCs6aVaUTVXCy4T+gzbAdOxJqHE7sfgQlo9zrDiX4V0vMdl3W/cl1T1VaVdOtZ6pscTM6jW6n49SeyMeC0QX9VXtbsyEpw3O7AUTqN5TkFADPc+f7vGfThyfubQ5i6PZuEazIbDaNJkBLHbYTRrn9wvP5cBAAAAAAAAAAAAAAAAAAAA6D+pXg8AneOcyzrnPivpu5LOUXQI7yWS/kbSHc65Q1vY1mZJP5T0+zKiaPudKukrzrn/65zrj6sOAQAAAMxL47XwxdS5iBjMXOTT4Qt2kwQ6MJsVgGpEGA1JRYWQ+uUCfPt7ZZ9C3Xrrc5Bx2baOC8nljX3P1D7CiltZy819PPZ7vFQbM/dd+R5EwqyxFqv7zHhmKPxmvgbV6DBap44bkmr1OMN6bHHfW0siXvOo580yFjN4Wm5xv55kTHEjbQCk3ZVd8grHKFdFBJaAJLz3unP0luC85emVeumyU7s8ooVrRXqlUgrHTUcqO7s8mrkfrwAAAAAAAAAA+kn4j+gAAAAAAAAAANBuUaEszGPOuYykr2syiDZTWdK9kp6RtFSTQbTDZsw/Q9JtzrnTvPfDMbd1lqQbJQ3MmOwlfV/S45IGJb1M0syrZ94saYVz7jzvffhqGwAAAAAw1HxN4767YbRQhEVqLRqCA6zoTaOyn+jwSLDQWDGhjMsqm+qPkFjBCELVVFPZT2jA5eqmV30leP+M41d8vWbFvUq1yfij9X4spDsTIrPeW5NjskNhUct1irXNUq2omhHpCQXcCkZYrFQrzuvvg2bHGeZ7K2bkLuo1L1b3aWl6eaz1TIl7XNRq8DRJkHbq8weguV3lHea8oUx9GM2ZF7vMjroCMz069gM9N/FMcN6pK/9X3+yTF4KUS2sws0q7KrM/26PlWP/821ZFY5/cL8FqAAAAAAAAAEAS/JsQAAAAAAAAAKA7Ur0eADrmKs2Ool0jaZ33fpP3/k3e+1/33r9w//0en3G/X5Z0g3Ou6Z9ycc6tl3SD6qNod0k6xnt/gvf+t7z3r5a0XtJ7NRlmm/JaSVcmfWAAAAAAMOHHzXk5l+/INkMRFonoxlzFff4qRhAKsPRT+MkSFS4KRQOtkFDGEZHotbwRzxzf/x1nvR+t5eYql7L3hcWIUFgv4hR5M2hmB9xCz5sdp+uvEJwlavxR5vreiorzJYmQTRmrxguethpGSxKkjRtfBSCNVHYGp+dcftbxihVG4xIYNLNl9ObgdKeUNg02/pMm5mowszo43fq8d5J9vNI/x2IAAAAAAAAAAAAAAAAAAAAA+gthtAXIObdR0qUNky/z3r/Xez/SeH/v/a2STlN9HO0MSRfE2NxHJA3NuH23pFd57x9u2Ma49/4aSb/VsPz/ds69MMZ2AAAAAGBaVEwrKgYzFwUjMFL2Ey3HPRA/usJzjKSK1f6/+D4qXBQaf5kwWt+yAltT33HWd11UHG8uUi5thkKL1X0qVcP70YIRKeukqOfO+hyHlolcj3Hc0E/fB9b4S7Wiar5mLmc/R/HeW1HPwVgLYbFO79etxxtCvBaIb6QcDiWtyq5VjL+hAzQ1Ut6pB/beF5x33LITtSq7tssjWviGsmuC00cqw10eSfcjwQAAAAAAAAAAAAAAAAAAAADmP8JoC9MHVf/afst7/5dRC3jvn5P09obJH3fOpa1lnHO/JOmtMyZNSHqb974UsZ0bJX1+xqScpD+LGhsAAAAANBqPCF106sLafERgxArMoLliNV50hTAakrKCOFZ8qBcK6YjvlUA8wPocZFymbWNCa6y41FTUytpvdTIGkTciZ3uru1VVxRhP9z8f1nNQqo1FRDRmj9N+DcZUMkOJ/RPjsMbi5TXhx83l5hoaSTeJ6CVVjBlTs0KPzSSJnY03icoBOGCkEg6jDWXCYaUQL9+u4WAB+u7ub6qm8HfymYPndnk0i8NgZnVw+mgPwmhzDbkCAAAAAAAAAAAAAAAAAAAAWHwIoy0wzjkn6dcaJn8qzrLe+y2S/mvGpBdJOitikQslzQyn3eC9fyzGpq5quP1bzhlX3wEAAABAQFQYLZfqzI8XhbQdGIkbAcFscQMn5RphNCRjfS6tWFQvDLicnFxwXjEQO6r6cMwq47JtHReSsyJU47WixmtFMxbTyRCZtW4rfiP1JhxoBTGK1bHg50CSCoHPsR1YK2rM+j6YJ6HEqECZFUaLWl/c+7ZyfNPp4GmSMXl5jdfMv+EBYAYzjJadHUab/GeoAE8YDWEVX9Zdo7cF560bOES/vOS4Lo9ocRgywmgjZftYsFPMkGvE71kAAAAAAAAAAAAAAAAAAMDixGnJAKYQRlt4jpY080qVCUl3JFj+3xtuvyHivr/RcPvaOBvw3j8s6d4Zk5ZKenWcZQEAAABAkkoRkYucEUaZq6h4Sty4F2aLGzhpNaCCxcv6XPYi/GRJuVREzKk+HlDzVdVUC96XMFrvWa+jl9doZZe5XCjw1S4FY0xRMQzrcXRS1GfA+hyHlokKge02XoNOPv9JRT33UccZVjwuyWtpfS9a647S6f160mMu4rVAPLvKO4LThzKzw2hAUvfvuUfPV0eD884Y3GzH9jAnobChJI1WhuW7fMbQfPjZDAAAAAAAAAAAAAAAAAAAAEB/yfR6AGi79Q23H/PejydY/gcNt38tdCfn3EGSXjJjUkXSXQm2c4ekk2bc3izppgTLA4vG2NiYvv/97+uxxx7Tzp07VSqVVCgUtG7dOh155JF62ctepoGBgbZs6yc/+Yn+7u/+Tlu2bNGjjz6qkZERlcsHLlS99tpr9ba3vS247H333adrr71Wd999t55++mnt3r1btdqBi/afeOIJHX744ZKks846S1u2bJme1+2LcAAAwPw3blxUm3UDSrt0R7YZFUZrJRyCSXGfO8JoSMqK4UR9lnuhkFoa/Bw0Tqv4irkOwmi9F/W+Gq0Mt7TcXFnrHokYTyFlx8U6xQqalWpFVY0YYOixRYXARirhGFw/fR9EB1jtfaU1L0loxHrdS9UWwmgxl2l1v16sJgudEa8F4rG+J8NhpXDEyovf8SJsy+jNwek5l9fJK17Z5dEsHoNG2LDsJ7SvukfLMiu6NhbreKUXUV4AAAAACOH8PAAAgCT4gycAAAAAAAAAgO4gjLbwrGq4Hf4T7LbG+x/qnFvpvd/dMP3FDbcf8N4nuSrt7obbxyRYFljwqtWq/vVf/1XXXnutbr/9dlUq9gXw+Xxe55xzjn7nd35Hr3nNa1re5uc+9zldcsklGh9P0lKUKpWK3vWud+lzn/tcy9sGAABIarxWCk7PdfCi2rRLa8DlNBFoT0cFSxAt7nNX9hMdHgkWGiuGkyQW1A1WDKAxSBQVEco4fsXXa/l0a2G0Tr4frXWPlMPxGyenXCrfsfFYrM9AsbZPVVWD80KPLSosZj3mfvo+GHA5pZRSLRCDsyKi5dqEGU1MEn0rGO/fMSMwafHem1HKRuVa8jBazVc17sPHgBbitUBzE7Vx7avuCc5blVk7axqXuiCJZ0pP6sfFh4PzTlxxphlIxdyFw4aTRio7uxpGKxo/m/VTpBYAAADA4sP5eQAAAK0iuAoAAAAAAAAA6I5UrweAtmu8UjyXcPnQ/Y+OMW1bwu38OMY2gEXpP/7jP3T00Ufrwgsv1G233RZ50pUklUolfe1rX9NrX/tanXjiifr+97+feJs333yzLr744sQnXUnShz/8YU66AgAAXWcFjzoddLEu2i1WiW60Ku5zZ4VfAEuxGo7z9NvF91YMojHmE/UZyLhsW8eE5Ky4l2RHuVJKK+sGOjUk870+UgmPJ5cqKOW6/+viQir8GSjVirMCgVNCjy0qcmbF6frp+8A5Z47HiohGxUWt2FnwvsZrEDdyNmXcl4Jht5BW9utWGDcK8VqgOWu/IEWHlYA47hy92Zx3xuDmLo5k8VmRXqmUcSpAVLi3E6z9cT9FagEAAAAsLpyfBwAAAAAAAAAAAABA/8v0egBou8Yz2Q9OuHzo/r8s6T8bpm1ouP2ThNt5quH2aufckPd+JOF6gAXlIx/5iD7ykY/I+/q/pOSc08aNG7V+/XqtXr1aO3bs0E9+8hM9+uijdffbunWrTjnlFH3605/W7/7u78be7oc+9KG6bV544YV6xzveoUMPPVTZ7IEL7Nesqb8Qbvv27fqrv/qr6dsDAwP6oz/6I5177rlau3atUqkDF92sX78+9ngAAACascIYUWGadiikl+j56uwfW4hutC7uc1fx5Q6PBAuNFVBMEgvqBut7q/GzEfUZyDh+xddrOZeXk5MP/GVkKzhTSC+Rc65jY8qnw++tsm/8uwr779/hfajF2q6X17g39veBz3HWDSiltGqqzppnPeZ+i3EU0ks0Vts7a7oVEW0MKM6UJPpmhtGMwKTFCtmFVIzXJErU4zWXIV4LNGUFPCVpMLN61jSn8L4rtA/E4jZW3av7nt8SnPeLhY1anz+8uwNaZFIurZWZVcFj0ajPfSckid0CAAAAQKdxfh4AAAAAAAAAAAAAAPMDV00uPD9quH2Ic2699/6ZmMufEpi2MjBtsOH2z2OuX5Lkvd/rnCtJyjdsZ05hNOfcCyStTbjYL85lm0C7XHrppbr66qvrpi1fvlwf+tCH9OY3v1mHHXbYrGW2bdum6667Tp/61Kem/5rkxMSE3vnOd2rfvn269NJLm273kUce0QMPPDB9+9xzz9UXvvCFWGO+8cYbNTFx4ELWK6+8Uu9///tjLQsAADAX40bwKOfywentYl2020qoA5PihtGsqA1gKdbCQZ9+u/jeDBIlCqNlzXnoDuec8qlCcH8wUmn8OwaTOv1eTLp+673Yaa08D4VATM05p0JqifbV9iTYdm9icBbrubD2lVHHH0mib1YwMunxzZjxvRvSSvA06phhwOU04ccDyySLuwGL0a7KjuD0ZemVGkjlAnM6F/XEwnLP87cHv5sl6czBc7s8msVpKLMmHEYzjk87oeariWK3AAAAANBJnJ8HAAAAAAAAAAAAAMD8kWp+F8wn3vvnJD3SMPn/ibOsc26ppPMDs5YHpi1ruB2uEkRrXCa0naTeJemHCf/7Whu2C8zJ5z//+VknXZ1++ul66KGH9KEPfSh40pUkbdiwQVdeeaUeeOABvfjFL66bd9lll+mOO+5ouu2tW7fW3X7DG94Qe9ytLnvHHXfIez/9HwAAQFIlI4zW6cCJtX5rPGgubnSl4isdHgkWGutzmSQW1A3W90qxmiSMxt8+6Ac547UcLc+OUUidfy8mDY71KhJmRbmi5I2IW9K4Rivb7iTz+8DYV5aq9j40yetpBhqryaJiSe7fyn698XtxpqFs+G9lFDlGA5oaMfZTQ5nVCdfE73lxQM3XdOfILcF5K9KDeunyk7s8osVpMBv+HIdiaZ0S9fuSUOwWAAAAADqF8/MAAAAAAAAAAAAAAJhfCKMtTP+34fYHnHOHxFjuo5JWBqbHCaOF/9R3tMYz4RvXCSwKjz76qP7gD/6gbtqpp56qW265RevXr4+1jiOPPFLf/va3tXHjxulptVpNb3nLW7RzZ/QFLtu3b6+7HXebc10WAABgLsZr4R9Bcql8R7drRWyKtWThEBxQih1Gs6NQQCPvvRnQ6VX8yWLFqxo/G1ERoYzLtnVMaI21jxipDAenJw2XJZU0NFFIh+NYndbK82A9tqSPudOvQVJWoMzaV1rBtJzLK+XSCbZrHd/E20cfuH/846FyC/t163lIK6Pl6dCvtaUSx2hAU1YgaZURHHTGeri8FjM9MvaAfl7+WXDeaYOv5vi1S4Yya4LTR43j006ICqP127EYAAAAgIWL8/MAAAAAAAAAAACA+YPzkgFMIYy2MH1a0u4Ztwcl3RIVR3PO/W9JlxqzazG22cq+hf0RIOl973uf9u7dO317cHBQ119/vZYtS9YKfMELXqCvfOUrGhgYmJ7205/+VB/96Ecjl5u5bUnKZuNfkDSXZQEAAOZi3IcvrM11OHhkBoyq9oW+sJVrE5Gxp8b7AnFVfFlVhd9bVnioV6wYVWOQKCoOSFiiP1j7CCsWZcWo2iVpaKJX0cABl1Mq4a+prceW/DH3V4zDeg2sQJkVCksauYv7PdRMkjBaK8FTazz5dMGOu3GMBjS1q7wjON0KKslZaTTggDtHbwlOTymlTSvP6fJoFq+hzOrg9NFyN8No9vFEvx2LAQAAAFi4OD8PAACgnfi3IgAAAAAAAABAd2R6PQC0n/d+1Dn3dknXz5h8rKSHnXOflXSLpJ9JKkh6qaR3SDp9xn2fkTTzz8qNBjazt+F2K1dONi7TuM5WfEbSlxMu84uSvtaGbQOJ/ehHP9I3vvGNummf+MQndNBBB7W0vqOPPlrve9/79PGPf3x62j/8wz/o8ssv19DQUHCZWi1O+zBsLsu2w0MPPaQf/OAHGh4e1sjIiPL5vNauXauNGzfquOOOUy6Xa2m9lUpF9913nx5//HHt2LFD4+PjWrt2rQ4//HCddtppyufzbX4kAAAgqfFaKTg9l+rsfrqQNsJoCcMhmJQkuNJKQAWLV9R7K5/uTfzJYoWQGr9Xoj4Dacev+PpB0rBYp0MQScNrnQ61WZxzyqeWaKwW71eDGZdRNjUQnJf0Oe3VY7ZY4cZSNfydZobCEr4X7ajYPnnv5WJGkIrGOEMqPnnw1AzBpZZEHKPFj7UBi9VIJRxIGsoaYTSD9/wtHEzaVd6hB/b+V3DeS5adpMFsONaF9hs0PscjlZ2J9vFzEXV80G/HYgAAAAAWJs7PmxvOzwMAAAAAAAAAAAAA9ApXTS5Q3vsbnHPvlfT/SUrtn7xc0vv3/2e5RtJKSW+dMW3ehNG89z+X9PMky3TjpH/AcvXVV9ddMLZmzRpddNFFc1rnpZdeqk9+8pMqlycvmt+3b58+97nP6QMf+IAk6cknn9SLXvQic/lXvvKVwenXXnutJEWOz/o8PfHEEzr88MOnb5911lnasmXL9O0kF809/fTT+vM//3N9+ctf1vbt2837FQoFvfKVr9Rb3/pWvf71r1c6nW667ocfflhXXnmlvvGNb+j555831/vrv/7ruuKKK3TkkUfGHjcAAGivUq0YnJ40BJKUFVxJEvjCAUmCchVf6eBIsNBEvbes8FCvWONp/F6xPgMppZVyqeA8dFfiKJcRcmqXpOPpdKgtSiEdP4wWNc6kcY1ePuYQK9xoHWfYobBk33OF9LLg9KoqKvsJDbh4F7aNJYiQtbJft0NwSyKO0cLHjAAmee81Ut4RnDeUWRuc7mT9mwphNEz6zug35RW+aPuMoXO7PJrFbSgTDqOV/YT21fZoWXpFx8dgHa+klVHGZTu+fQAAAADg/LxJnJ8HAADah38TAgAAAAAAAAB0B1dNLmDe+2skbZb0SIy775X0bkmXSjqkYd5zgfvvbrgdvkLG4JxbptlhtFCADVjQ/v3f/73u9m//9m9rYGBgTutcu3atXvva10ZuZz7y3uvKK6/Uhg0b9OlPfzrypCtJKhaLuvnmm3XBBRfo6aefjrxvtVrVH/7hH+rFL36x/vmf/9k86WpqvV/60pd0zDHH6Oqrr27psQAAgLkbr5WC03Opzv7laCu6kSTwhQOSBOUqvtzBkWChiXpvdTqgmJQ1nlK1MYwW/gxkiQn0DStqZd6/w1GupONJGhVrpyTPRdRnOHEMLuFz1Gn2cUY47lWsWqGw9r32xQSxsyTHQ+UW9ut2CG6J+RhKCcYPLEZjtb2a8OPBeUPZcFAJiFKulXXX7tuC8w4eOFRHFl7c5REtbkOZ1ea80fJwV8ZgRUrz6QJ/vAoAAABAV3B+XnycnwcAAAAAAAAAAAAA6CeZXg8AneW9v9U5d4yk10k6V9KpktZJWi7p55KekHSjpC9475+TJOfcUQ2r2RpY9WMNt1+YcGiN99/lvR9JuA5gXnvmmWf05JNP1k179atf3ZZ1v/rVr9YNN9wwffuee+5RuVxWNjs/L5ivVCp64xvfqOuvv37WvIMOOkjHHnus1qxZo/HxcW3fvl3/8z//o71798Zad7FY1Hnnnadbb721bno2m9VLX/pSrV+/XrlcTs8995zuu+8+jY2NTY/p0ksv1cjIiC6//PI5P0YAAJDMuHFhba7DwSM7ukEYrRWN4acoZT/RwZFgoYl6b/VbGK2QXhqcPu5LqvmqUi4tSar4SvB+GcJofSPpe6vT78XkkbBehtHiPxeFVPgzI0mFhI+hlzG4EGs8VuzRDIW18XkoVse0MrMq1nrGqvEjZJVa8jCaHYJbYr7frRgLgEkj5Z3mvFWZZGE0P9fBYEH47713a2+18W8rTTpjcDMhrC5bkRlUSinVVJs1b6SyU+v1oo6PwTpe6XQkGAAAAAAkzs9LgvPzAAAAAAAAAAAAAAD9hjDaIuC9r0q6Yf9/kZxzh0paP2PST733Pw3c9eGG2xsSDuuIhtsPJVx+wapUvZ4hEddx64ekTLq3F+Dcdddds6adcMIJbVn3y1/+8rrbxWJR999/v0488UStX79eTzzxxPS8v/qrv6r7y4r/8i//opNPPnnWOtesmbwQ7qyzzpqe9sY3vlH33nvv9O2Z651p/fr1welxXXbZZbNOujr33HN1+eWX68QTT5x1/1qtpnvuuUdf/OIXdd1110Wu+93vfnfdSVcrV67U5Zdfrne84x1avnx53X2LxaI+85nP6E/+5E9UKpUkSVdccYVOOukkbd68ucVHBwAAWjFeKwWn9yoyYwVLEC3J82ZFoYAQ672Vc/np0Fi/KER8b5VqRS1JL5MkVXw4IpR2/HqvXySNO3Q6ypV0/b2MhEXFzhpF7euTHAdk3UDffX6s95AVFLG+6xK/F41AY9Q2wvdNEEYzvtOiRIXgzHhtgggrsBjtquwITk8ppZWZoeA8J+v36qTRIG0ZuTk4PefyesWKs7o7GCjl0lqZWaWRyuwI4khluCtjMPfffRasBgAAwOLC+Xnd0+tz9Dg/Lz7OzwMAAAAAAAAAAAAA9Jv+uvIL/eDshtt3GPf7YcPt45xzS7z3ca80O63J+hatZ0akI/549l9uR3s9/vGUDl/T2zE888wzdbfXrVun1atXt2XdL37xi4PbO/HEE5XJZHT44YdPTx8cHKy730EHHVQ3v9GyZcum/z+fz9fNi1quVbfeequuueaaummf+MQn9MEPftBcJpVK6dRTT9Wpp56qK664YtY4p3z5y1/WtddeO337hS98oe644w7zcRQKBV122WU65ZRTdPbZZ6tUKsl7r/e85z165JFHlEqlkj9AAADQklKtGJyeS4X3++1iXbhbqhblvZdzvY3vzjdJAipeNVV9Vek+i1qhP9nxnPjxpW7JRwShirWxpmG0TJ+FnRazpDGqpPdPKpcwNtHp8URvO/5Yo8aZ5DH0MgRnSRr3skMjyR5bzuWVUko1zf6dZJJ9dbLgafIwWtE4/sunliifThaVAzBppDw7liRJKzOrzJisHUbDYvd06XE9UXokOO8VK89SwfiuRmcNZlaHw2jG57/drN/f9PLYEwAAAOD8vO7p9Tl6nJ8XD+fnAQAAAAAAAAAAAAD6Ef9CjEbvaLj996E7ee+flfTAjEkZSacn2M5ZDbdvSbAssCDs2rWr7vbQ0FDb1p3P55XL5SK3N19cccUVdbd/7/d+L/Kkq0aDg4PBE6+893XrzmQyuummm2KdPDZ1QteUbdu26cYbb4w9JgAAMHfjtVJwetIITFJ5I6pUVaWlwMdiZ10gbSn7iQ6NBAuNFedJEl/qlqiAUXFGDKniK8H7ZFy27WNCa6x4pnn/DsdB0i6tAZdrfsf9ehkKK0QEAhtFRTSSPIZ+jHFYca9xX1LNV2dNLxrBtKSPzTlnvgbFaoIwWoL7tnLcVDIibYXUEvO1TxJrAxajUCxJklZl1yZel5ef63Awz20Zvdmcd+bguV0cCWYayoYLBKOV4a5s34qs9uOxGAAAAICFh/Pz4uH8PAAAkAx/RAcAAAAAAACd5TktGcB+hNEwzTl3uurjZo947++IWOSrDbcvirmdoySdNGPSPkm3xlkWWEgaT4Rq/MuQc9W4vuHh7lzk0k4PPPCA7rrrrunby5cv11VXXdWWdd9+++364Q9/OH37zW9+s4477rjYy7/73e+uO6Hrpptuasu4AABAc+VaWVWFA0E5F/5L1O0SFb0hvJFckoCK1FpEBYtTyfg8JokvdUtUEGDm47De/4TR+kfSuEM3YhDzJRSWT8ePykUF5ZI8BitC1ktRxxmhmKj9XZf8sVnPhxUzmet9yy3s04tGUDWfWmK+9mU/wfEDEGGkHA6jDWXCIaUonH+wuI1V9+q/nr8zOO+XCsfoF3KHdXlEmDKUWR2cPmqEEdutVA3vv3sZ5QUAAACweHB+XnOcnwcAAAAAAAAAAAAA6FeE0SBJcs4tkfTZhskfbrLYFyRVZ9w+3zn3SzE21/in5P7Ve1+KsRyABJyb/3+N6dvf/nbd7QsvvFArVqxoy7pvu+22utsXXHBBouWXLFmiV7ziFdO3v/Od77RlXAAAoLlxH76oVpLyEUGRdogbMEI8SWNyFR8O4gGNitXwe6vT3xGtyKayZtxs5mekUrPCaJmOjAvJJX1/dSMGkST+FRUc67REQbOI+yZ6vH34fZCPiDeG9pnWfrSV6NsSY9tJ9tVJgqetxMpKEd/tUZ8nK8gCQBoxwkhDWTuM5jT/f++M9vvP3d9W2U8E5505dG6XR4OZBo3Q4Ui5OxfrW78r6WWUFwAAAADahfPzonF+HgAACxV/LgcAAAAAAAAA0B1cOblAOecy3se7Ytw5t0zS1yUdM2Py9d7766OW894/5pz7vKS37580IOk659zZVujMOfc6SW+bMWlC0kfijBNYaFatWlV3e/fu3W1d/+joaOT25oO777677vZZZ53VtnV/97vfrbu9atUqPfnkCQR+aQAAIABJREFUk4nWMfMksCeffFK1Wk2pFM1RAAA6bbxmxy1yqbw5rx2iohtJI19IHpOr1MIX2gONrPdWL8NPUfKpJdpbnf0z4czHUVX41zxWVA3d15dhtDYFxzotyXMR9TwniZ31Y4wjavyh7zXr2KOV95b1fIwliJ2N1ZKF0bz3iS4ctL/blzaN1y5Tey7kAxaaXeUdwelDRkgpGhfBLFY1X9Odo/8enLcys0ovWXZSl0eEmazQ4UhlZ+J9cSvskGv/RWoBAAAALDycn9cc5+cBAAAAAAAAAAAAAPoVYbSF62Ln3Osl/aOkf/Pez7q6ZX8Q7fWSPibpkBmznpT0rpjb+TNJvyFpaP/tUyV9yzn3O977H83YVk7SOyX9RcPyf+G9fyrmtoAFpfFEqJGRkbatu1QqqVSq7xOuXr26bevvlmeffbbu9jHHHGPcM7mnn3667vbJJ588p/XVajWNjo7OyxPcAACYb8ZrwQ6zpORRmqSiwmulKmG0pJLG5Mq+3KGRYKEpGQHFfgwhSZMRo1AYbeZnpGK8/zMpwmj9Iun7K9+FUF+S/WI3Qm2WJM9d1DjzqaVtWU+vRI2/VK3/Xqv5mhmLLSR4HqaXMd6PcSOmFV9W2ccPmHp51VRVOsE/UZhhlVQhMnxJvBYIq/mqRiu7gvMiw2hGRMl7wmiL1Y/G/kc7ys8G552+8tVKO/45upeGMuF/Gyr7Ce2r7dGydGfjofPtZzMAAAAACwvn5zXH+XkAAAAAAAAAAAAAgH7FmegLl5P0yv3/eefcE5IekTQiaYmkgyQdL2mgYbknJL3ae//zOBvx3j/jnDtf0jdnrOs0SQ85574n6XFJK/dva23D4t+Q9H8SPq4Fb/2Q9PjH+Yt2nbZ+qPl9Ou2QQw6pu/3cc89peHi4LSdIPfjgg023Nx8MDw/X3R4aat8L17judtizZw8nXgEA0AXWRbWSlOtwGC3l0sqnCsExEN1ILuq1DLHCUECjYm1fcHo/hpAkO141M7hYrhlhNEcYrV8kjTt04/0Yd0wppZV1jb8m7J4kz0XUYyokOA7oxxhHNpVVxmVU8ZVZ8xq/18ZrJXmFI0T/P3t3HibJXd95/vOLzKzKrOrqrupDRyO1JCRAlhCHEAaE1LKRhGg9BnN5PBaPx4Y16wfjGWaN1zasxwJ7AWMW7zDGDHgZG5tBuwwPYJtdZAO2dSFA6DBgJIMEultHH1Xd1VWZWZkZv/2jVa2srN83MvKKzKx6v55HjzojMiN+eUZkVcS7ugnFThkxNevzdN31ugjE1nwtdSwnKbxWiqYT7zP7aEDY0cYRxWoE520vtP4652lO4TAaNq8b578cnB4pp0tmX5nxaNBq1gijSdJC7VAGYbTwdnhUv5sBAABgc+D4vOwM+xg9js9rj+PzAAAAAAAAAAAAAACjijDa5uAkPfOp/5L8raRf8d4f6GTh3vsbnHOvk/QpPR0/c5Iueuq/kP9b0lu99+GzbjaxfM7pzJ3DHgWycPHFF6+bdvvtt+uqq67qedm33377msulUkkveMELel7usDnXv5PuVlbCJ9P2wvvwCckAAKC/qnElON0pyiTqUoymgkEv62Rf2MqNdLGVVYTRkJYV3RvFEJIklXJWkOjpz5VQKEmS8imjQhi8Yi59jKrgJlIHoXqRNhRWyk319Tt3p4q59O/NUsJ1O3mPj+rnQTGa0rHG0XXTWz/XkvY7rM+U5PWGb7OcclvdTXzs+HY93Wu00rBjqsWopJzLa8JNasVX19+WfTQgaL5m/ypoLs8vKZDOodoT+pel24PzXjDzUm3Lc6LysG3LzylSpFjxunnz9UM6TWcNdP3WPsKo7osBAABgc+D4vM2D4/M6x/F5AAAAAAAAAAAAAIBRwZ+927hukfQ5SfNtrleXdL2kK733P9tpFG2V9/7Lkp4r6eNt1vlNSW/03l/jve/sDHhgg9mzZ4/27NmzZtpXvvKVviz7q1/96prLL3nJSzQxMfhISL/t3Ln2KMTDhw8PZNnFYlFxHMt739N/Z555Zt/GBwAAbFbwaDIqZhJ1KRqRmW6CIJtdp6GSGmE0pGRF90ojevK9Na7m90iDMNrIs7YPIVm9FtMGJ4Ydpujk8Uh6nAvRROr3RFJgbZisx6J1PyNpv6OT1+KqKSOmlnZbXY47/1GvFXzsdBylp6Ju1uu43GAfDQiZrx8MTi+4CU3nZszbWd+4vDgpdTO6eeHvzef+stmrMx4NQiKX09b8XHCe9TnQTxVjO9zN/goAAAAAdIrj89rj+DwAANC54f3RNQAAAAAAAGwO/K0cAKsIo21Q3vt/9t7/G0k7JJ0r6fWS/oOk35X0v0l6u6QrJW333l/tvf9aH9b5pPf+bZJOkfQKSW+W9K6n1vsGSc/03r/Me//5XtcFbBSvetWr1lz+9Kc/rVqtt9jDgQMH9Ld/+7eJ6xkXp5566prLd999d9+WffLJJ5/4d6VS0UMPPdS3ZQMAgMGqxpXg9KxOql2Nb7Sygm2wdRqTqxNGQ0rW+7E4oiEkM+bT9B6xXv95VxjImNC5vCuo4NKd9JRViCxt/GvY0cBOHg9rO9zpsoYdg7NY42oNg6UJhXXCeg0sG6HJVlaQMkk9Xkl93cQQXO74PqD1eu80xApsFodr4b+TM5ff2SY4zckuOK4Wr+jrR74anHfqxB6dUzov4xHBMpffGZy+UDs00PXGvqGqD/8MZ9j7nwAAAAA2D47PS8bxeQAAAAAAAAAAAACAUUUYbYPzx/3Ae/9F7/2feO/f571/v/f+Y977r3nvFwewzhXv/T957z/lvf/Dp9b7Be/9/f1eFzDu3vGOd6w5yezAgQP6i7/4i56W+ZGPfGTNwVvT09N661vf2tMyh+XlL3/5mss33HBD35Z98cUXr7ncr78GCgAABq9qBI8mo2Im67cCbN0EQTa7TkMlhNGQVjkOvx9H9eR7a1wVwmhjZzJlpDOrSN+4RMJKHcRN24VQ04ZSswqqdsoaV+s20wqFRYpSB/rWrre3qJj1uZuk1sF2PSmMtvoZmiYyCeBp8/WDwelzhXBAqT3+NNtmc8fi17XUCP+a8bLZfW0Ce8jSXGFHcLr1OdAvVtheGt1oNQAAAICNh+PzknF8HgAA6By/EwIAAAAAAAAAZIMwGgAM0Xnnnad9+/atmfbbv/3beuKJJ7pa3t13360PfehDa6a9+c1v1vbt27se4zBdccUVay5fd911WlzsT8/xqquuWnP5k5/8ZF+WCwAABs86sTZtjKZXJePk3YoRbENY7BsdP2aE0ZCG9958bQ07/mQxYz6N9mG0nMsPZEzoTtrAVychsF6kfc0POxpYjKY7uG7yWEsplzXs+2wp5cLjb/48kKRKIxz7KkXTXYVopoz1LqcMni0bgdik56uT7boVaCu4iROfg2kikwCeNl8LB5G253cl3s4p/BnjOQlm07lp4cvB6cWopJ/c9lPZDgaJZvPh4OHCgMNoSXHSUY3UAgAAANh4OD4vGcfnAQAAAAAAAAAAAABGFWE0ABiyD3/4w5qaevrEzYWFBb3+9a/XsWPHOlrOgQMH9MY3vlErKysnpp166qn6vd/7vb6NNWvnn3++LrvsshOXjx49qne96119Wfa+fft09tlnn7h822236c///M/7smwAADBYVR8OHk26YibrtwIfRDc6YwXuktRiwmhor+orZphjdENI7T9X6r4evE7BFQYyJnQnbYiskxBYL9IGJ4YdDSxEBeVTRv7ajXVc7rPFGn/rfoYVGinmuouMWEG5alxW7OO2t7f2g2Zy28zbWJ9rIa1huFXN47Yeu6QoC7CZHTaCSHOFcEAJaPZg5T49ULk3OO8lW3+a6NWImTPCaPO1QwNdb9LPSdLGbAEAAACgHzg+z8bxeQAAAAAAAAAAAACAUUUYDQCG7Nxzz9Wf/MmfrJl26623at++fXrkkUdSLePee+/V5ZdfrnvuuefEtCiK9OlPf1q7du3q63iz1nrg2J/+6Z/qwx/+cOrbHzlyRJXK+uhGPp/X7//+76+Z9ra3vU1f+MIXOh7j1772Nf34xz/u+HYAAKA7lTgcRsvqxGsrpEJ0ozPdPF51TxgN7VWMeI40uiEkK9hWjpdO/Nt6/ecJo42UtNui0pC3Wa2sOF+W0sTi8q6gQpT8mk8fpxv+fQ6xIiGt200rNNJtALKUC6/Xy6tq7Hs1W276vGq2NT9r3qbmV8x5raz72/yesx67pO0CsJkt1IwwmhFQaiecpcVGddP89ea8vbP7MhwJ0pgr7AhOn68flPeDe/eWE/YhiOcBAAAAyBLH5yXj+DwAAAAAAAAAAAAAwCgijAYAI+Atb3mL3v72t6+Zdsstt+i8887TH/7hH+rhhx8O3u6+++7T7/7u7+qCCy7Q9773vTXzPvjBD+ryyy8f2Jiz8opXvELvfOc710z7zd/8Tb3mNa/RHXfcEbxNHMf6xje+oXe84x06/fTT9fjjjwevd8011+gtb3nLicsrKyt6wxveoDe96U3msiWp0Wjorrvu0nvf+16dd955uvLKK/XQQw91ce8AAEA3qvH6g6olaTIqZrJ+KzhiBTsQlvR4TUczwemE0ZBGUnRvFOJPIVagqTkESRhtPKSPcrWPgPVD2gDbKETC0ow1zTjTvs9H9/Mg/Di0bjetz7pun8ukoJoVPVszHiM+NhVtUWT8GqKT7bp1f5uDbsVc+LEjXgusV4trOtpYCM6bKySH0ZxzxhzSaJvFscZR3b54c3Dec6Yu0KmTp2c8IrRjBQ9rfkXL8bGBrdf63h8pp4KbGNh6AQAAACCE4/NsHJ8HAAAAAAAAAAAAABhF+WEPAABw3Ec/+lHNzc3pfe97n7w/fhLZ4uKi3vWud+nd7363zjvvPJ1++umam5vToUOH9OCDD+oHP/jBuuUUCgV95CMf0dve9ras78LAfPCDH9RDDz2kz33ucyemfelLX9KXvvQl7d69WxdccIF27NiharWqxx9/XN/97ne1uLiYatkf//jHNT8/ry9+8Ysnpl133XW67rrrtGvXLj3/+c/Xjh07FEWRjh49qv379+uee+4J/pVLAACQjeZQUDMrJNJvVnDECoIgLOnx2pLfpqWV9ftzhNGQRlJ0bxTiTyFWkKjcWJb3Xs451X09eJ2c48d7oyTta6xkBJz6LfV4RuC9kSp6luI643SfQ8z9jJb9H+uzrvswmh3rKzeWpTYNxrIRTyvlplVwE6r69T9H6WS7nmb/z7oPxGuB9RbqB815VkBplZMVRsNm8Y0j/6iaXwnO2zt7dcajQRqz+R3mvPnaQU3nwnHyXlWM7/2laCohsggAAAAAg8PxeTaOzwMAAAAAAAAAAAAAjBrOnASAEfIHf/AHuuyyy/Rrv/Zruvfee09M997r+9//vr7//e8n3v7CCy/UJz7xCV100UWDHmqmcrmcPvvZz+r888/X+973PtVqT584u3//fu3fv7/rZRcKBX3+85/Xhz70IV177bVrDqg6cOCAvva1r6VaxvS0fQIxAADor2ocPgB6Mipmsn4rwEZ0ozNWQCWnvBmrqRFGQwpl470YKdKEm8x4NOlYIaOG6qr7mgpuwgwI5V2bWhEylTbSWUyIUPVT2khWVnHR5DGkiZ61H2fa+zw5Avc5xNoGtoZFrMBot8G3Us6+nbXNTnOdUjSlvCsYYbRw8LGT5Tc/3+yjAenNJ4XRCslhNMvqycTY2GIf6+aF64PzZvM79LwtP5nxiJDG1vycnCJ5xevmzdcP6TSdNZD1mmHTjCLBAAAAABDC8XlhHJ8HAADS4w9fAAAAAAAAYLA4KhnAqmjYAwAArHXFFVfo7rvv1mc+8xldfvnlyueTG5aTk5N69atfrb/5m7/R7bffvuEOulrlnNO1116rH/zgB3rrW9+q7du3J15/y5Yteu1rX6u//uu/1p49e9ou+7d+67d0//3363d+53d0xhlntB3PzMyMrr76av3pn/6pHnvsMb34xS/u6P4AAIDuVY0Ta7MKnJRy4QOurRN+EWY9XqXclApG6MkKQwHNrABOMZqSc6N5cGZykOj4/bECQnnH3z0YJWkjD6XMtlnpIlnWti1LacaaJnqWJgw26YrKuVyqcWWtaDwOrZ9t5mddyue8Vd4VVHATwXmpwmiN8HWmctPm51Qn2/VKw9hvaHq+S0Zw0ApmApvZ4Vo4jDYVbRmJWCZG191Ld+pg7YngvEtnrxrZ7etml3M5bcvPBect1A8NbL1J380AAAAAYJg4Pi+M4/MAAEA6nJYKAAAAAAAAAMgGZ04CwAjK5/O65pprdM0112hpaUl33HGH7rvvPh04cEArKyuanJzUySefrGc/+9m68MILNTk52fW63vOe9+g973lPV7e94YYbMr2dJJ111ln6sz/7M3384x/XnXfeqX/913/VwYMHdezYMU1PT+ukk07Sueeeq+c973kqFMJBDcspp5yiD3zgA/rABz6g+++/X3feeacOHDig+fl5RVGkmZkZ7d69W+eee66e9axnKZfjJC8AAIahGleC07MKo1mhgEq8LO/9yIaXRo0VKSlFU8oTRkMPyg3jtdVlLCgLSWGASrysrZo1X//W+wXDkTbyUDQCTv2WNm4zChGcVNGzVPG09vdlFO6vxQq7tW43k7aj3a97WrXGyvp1G9GzteMJX6cUTSsfFaTG+nm1eP26Ol1+8+vG3EczomrAZjZfD4fRthd2tr2tE993NrMbF64PTs8pr4u3XZnxaNCJufzOYARt3ggl9sMg9lcAAAAAoF84Ps/G8XkAAAAAAAAAAAAAgFFAGA0ARtz09LT27t2rvXv3DnsoIyWKIl100UUD+wucZ511ls4666yBLBsAAPSmEofjFpNRMZP1l4yYTaxYK76qSZfNOMadFVkpEkZDjyrGyfdpg1XDkBQGWI0J2GE0frw3StIGt0oZhblyLq+Cm1DNJweorG1bltIEMtK8j1NdZwxDiTW/ooavK/fUe94KjfTyWVfKTeloY37ddGtdaa5TiqaVdxPBeZ1s1639v+ZYXikXfh2X4yXitUCL+dqB4PTZfPswmsXLd31bjIeDK4/r7qU7g/NeOPMybcvPZTwidGI2vyM4fcEIJfbDOH43AwAAALA5cXxeGMfnAQAAAAAAAAAAAACGKRr2AAAAAAAA6EQ1rgSnp43R9CppPdZJv1jPCpwkhdFqMWE0tGfHeUb35PvJpM+VxvH70/D14Hzr/YLhSPs6KxoBp0FIFxzLZhuaPIb240xzX0opomejHONIei6aP99WPxta9fJZZwXy0oTRlo3gaSk3rYIRcKwbn2shldgOqj797/BjtxqvBfC0eSOENFdIE0YLRwYJo218Ny38nfk8753dl/Fo0Cnr/W19HvSDHXId/r4nAAAAAAAAAAAAAAAAAAAAgNFGGA0AAAAAMFaqRlBr0hUzWX9ScKRsREqwXtkInJRyUypE4dBT3RNGQ3tWoHCUQ0iRi8w4wGpMoGa8/gmjjZa0r7NShjGIdMGx7EJt9hj6E3DrV2BtWJKei+YY2iA+66zHpWxEz1bFPjaDp6WE4Gkn2/VywvKf/nfCY0e8FlhjvhYOIW3P72p723AWDRvdSlzVN478Q3DeMybP1Nmln8h4ROjUXH5HcPp87dDA1llp2EF0AAAAAAAAAAAAAAAAAAAAAEhCGA0AAAAAMDZiH6vqK8F5aWIp/VDM2SfwEt1IzwqoFPsUUMHmZQUKRzmEJNlxgNWIoPX6z7v8wMaEzqXdFmUZg0gVE8tlF2ozx5BinGkCbv0KrA1L0nNRbtrPKBv7HKWE/ZR2Srnw42vFTFdV44q84vAyo+m+bNcrxmd783sp6XklXgusdbgeDqPNFXZmPBKMizsWb9FSvBicd9nsPjlHMm/UWe/vhfohee8Hsk475Dq6+2IAAAAAAAAAAAAAAAAAAAAARgNhNAAAAADA2FjxVXPeZFTMZAyTriin8EnfVqQE61mRlRJhNPTIPvl+tMNoVsxpNSJY9/XgfOv9guFIG3nIMtSXFPRcNQrhwDRBr1SRt1TXGf79tSQ9F6ufBw1fV82vBK/Ty32z1t0ujJY0v5Szt+u1lNt1732qEJwVdpOI1wLNyo1l8z0xl08TRgt/F/IaTFgJo+HGheuD00vRlF689bKMR4NuzOZ3BKev+KqW42MDWacVRE/aZgMAAAAAAAAARh1/LAUAAAAAAACDNaC/9wpgDBFGAwAAAACMjapxUq0kTaaM0fTKOWdGV4hupFduGIGTaFqFHgMq2NzSxHNGkRUzKjeWFPuGvOLgfMJooyVtlCqrmKfUPnpWcBPKuXxGo7GleezSRd7ahzZG+fMg5/IquIngvNUAWVKItZfInfXYWdvs1nGFTEXTPQdPa35FsRrBec2vmwk3SbwWSGG+ftCct73QPozmHCe7bDYPlH+ohyr3Bee9dNsrMt2vQfesMJokzdcODWSd1j5C2pgwAAAAAAAAAAAAAAAAAAAAgM1r+Ge8AQAAAACQUiUxjJZlZGY6GNhIGt9G8e2jN+kbR/7BDCpsyW3V87b8pF4x9xrlXM5cjhWRK0Yl+TgcgEobUMHmlvTaGmVWzKgSl1X3dfN2hNFGS5pwVzEqKUr4fOy3dsGxNCGxLKQJeqV5H6cJpaYN2A1LKZpSrbGybvrqfkYlIVTWUxgtZ4TREsJn0vGAo6WYEDxNu11PG4KLXKRiVDL20QijAavmaweC051cYjipLf4024Z148L15ry9s/syHAl6sS2/XU5RMLi8UD+o03Rm39dp/Yykl/0VAAAAAAAAAMCw8TshAAAAAAAAAEA2CKMBAAAAAMZGNa6Y87KMHlnrSgqDbAQ3zV+v/+fJTyRe5wk9qh+V79GTK/v1plPebl7PCpSUctOq+fUxGIkwGtKxAjqjEn+yWEGtcryU+NrPO368N0rSbIuyjnK1G9OoRAPTPC5p3seFqKC8KyS+b0Y9jFaMpnS0sbBu+up+RlIoLE2cz2JFSpLWlzS/4CZOPB8habfrSVGz1tdvMZoKjqfdfQA2EytwvDU/p1yK/QpnTOcUmI3pWP2o7li8JTjv3Knn6+SJZ2Q8InQr53Lalp/TQv3QunnzgWn9YEerR3tfDAAAAAAAAAAAAAAAAAAAAMDwRcMeAAAAAAAAaVXisjlvMtMwWvgk3qTxjbtaXNOXDl6X+vpfP/JVPbHyqDnfCpQUo5IKbiI8BsJoSKHSsF9bo8wKElXisuq+bt7OCg5hOCZdUc5MxhxnPdeD0i48UcqNRjSwlCLolfZ93O4xzvo56JQVN1vdz0iKfPVy36zwXNn4XF21bIRhV5dnfU7V4nTb9aT1t95f87O0zX0ANpPDtXAYbS6/M+USkrdz2FhuPfI1M2S5d3ZfxqNBr6z3+YIRTOxF7GPzZySj/t0MAAAAAAAAAAAAAAAAAAAAwPARRgMAAAAAjI1qXAlOL7gJ5Vwus3FY8ZakUMm4u3vpTi3Fix3d5o6jt5jzKsZjVYqmlHf54DzrhHygmfU+HJX4k8WKV5Xj5cTXvvV+wXA459qGOtuFyvqtXShrVMIUaR6XtNGvdsvK+jnolB1KXF7z/1bH94e6/0yw92/C4bN281eXl4/CYbS023Xr/krrw7hJn6UAjps3Akjpw2gW3+PtMWpi39BNC9cH583ld+qCLS/OeETo1Wx+R3D6vBFM7IX18xtp9PfFAAAAAAAAAAAAAAAAAAAAAAwfYTQAAAAAwNiwTqydjIqZjsM6iTcp3DHuvr14U8e3uWMxHEarxSuq+3pwXimaVt71FlDB5tXwDa34anDeqMSfLFYIqdxYahNGC79fMDztXmtp4179MmrjsaR5jxaNcFenyyqN+OdBu7hXuWHHRXsxFYUDkjW/olpsfw6ZQcqnllfocbtuLb8YlRS5tb/isOJuG3kfDeiUFUbbXkgXRnNywemeMNqG8y9Ld+hw/UBw3qWzV2UaJ0d/zBWMMFr9UN/XlRRWtbbXAAAAAAAAAAAAAAAAAAAAALCKMBoAAAAAYGxU43Jw+mTGgRMzYLRBoxuVuKzvHft2x7d7bOVh7a8+GFie/TgVcyUVoongvFq80vEYsLkkvbZKRvBnVFjBp0pcbhNGyw9qSOhSuzhVMZftNqtdTMyKcGUt5/KacJOJ10kbOCzlkt/vxTbzh80Kt61+xlmfdb0+l8WEz8lKQtyk3AjPWw2t9Ro87eT+tovKAZDma+HQ1Vw+XRhNRhgNG89N89cHp+ddXi/fdmXGo0E/WO/zhQGE0SrGz2+k0dn/BAAAAAAAAAB0g98VAQAAAAAAAACyQRgNAAAAADA2zDCaK2Y6Dusk3kpjY0Y3vrP4LdV8OEp21fY36OdO+hU546C324/esm5aUpykFE2boae6r6cYLTazxOhexgHFTtnBxaXE174VHMLwtAs9ZB3paxdqK7UJp2Up6bEruInUr/d273crPDYqrEBZ+an9DGs72i6C107SayFp2102ommr4+k1jGatO/Tatl7vSdsHYDOJfax5I4A0V9jV07J9T7fGqHlyZb/uXr4rOO+FW16umfxsxiNCP8zmdwSnz9cOyvv+vouTo9Wjs/8JAAAAAAAAAAAAAAAAAABGC8clA1hFGA0AAAAAMDYqRhgt6+CRtb6kaMg4u33x5uD0rblZvXrnNfrpuZ/R2aXzgte5Y/GWdSdYJ4fRpnoOqGDzKifECbOOUXXKDC7G5cTXPmG00dNum5T9Nis5PNFufpaSwlydPG7jdJ9DSrnwfV0NjFihkV4jI1MJn5PLjXD8TLLDaKvLs4KntZTbdSs8G3oerec2afsAbCbHGkfN/Yq5/M5UywjnkCUOQdhYbl74O3PeZXP7MhwJ+mm2EH6fr/iquT3vlvXzm0iRCm6ir+sCAAAAAAAAAGSJ3wkBAAAAAAAAALJBGA0AAAAAMDaqvhKcPhkVMx1HKRcOh1g5YW0NAAAgAElEQVQn/o6zxfoR3bN0V3DehTOXKHI5SdJFM5cEr3Og9pgerv54zTQrcCIdfy6t0FPNr6QZMjYxKxYkSUUjNDQqrKBRNS6rFtuv/ZwRHMLwtItuZR3paxcU6zWm1U9Jj10nj1u7+zRK9zkkKZQo2YHRXu/XZFSSM5JHSZ+vVnRs9X5Y8ZO0wdNO7q8V19uI+2hAN+brB815c0YwCZvPSlzVrUf+ITjv9Mln6qziczIeEfplLr/DnHe4Zn8+dMPadyhGU3LOTiwCAAAAAAAAAAAAAAAAAAAAgEQYDQAAAAAwRqyoRdZhNCsyU46XMh1HFu5avFWx4uC8F2/de+LfL5x5mZzxY4Y7Fm9Zc9kKnBSjkiKXSwio1NMMGZuY9doquAkzuDcqrOCil9dSvBicFymnyPHjvVHTLkTWbn6/tYtltQu5ZSlprJ08bu3uU9b7DZ2yHofV/QwrMNrrcxm5qKt9HGve1FOfa9bnb9owmhlWCUTQrMdgI+6jAd2YN8JHeZfXTG5bqmVYQSMv3/W4MFq+ffQm83Nz7+w+olZjbFt+u/m9fSEhnNgNO5w62sFqAAAAAAAAAAAAAAAAAAAAAKOBMyeBPgudEOI9JwQBGG9xvD6GwglwAIBhqMaV4PSsT6y1ohtWuG2c3b54c3D6zsLJOrP4rBOXZ/Kzes7UBcHr3nH0ljXfi6yT7Fcf17zLB+d7xWr4RqpxY3My4zljcPJ90hgX60eC0wsjHnvbrIq5NmG0QMxpkNrFstqF07KU9D7o5HFLuk+TrqjI5ToaV9ba7WdYEchSH15bpSgcaVxu2GExa97qsnoPo4X3r0LPs/Xcb8R9NKAbh+sHgtNn8zs6iK0aPxPk1yAbgvdeNy1cH5xXiqbXxLExfnIup235ueC8hfqhvq7L+m5mBaEBAACATnGMHoCNhuPzAAAAAAAAAAAAAGAtwmhAn0XR+rdVrZbuJD8AGFX1en3dtNDnHQAAg1Y1ohaTGUePrOhGNS4r9usPWB5Xh2sHdF/57uC8i2b2rjsQ+0Uzl4SXUz+gByo/PHG5XeDECqhI6SMq2JzKDePkeyP0M0qSxniscTQ4Pem9guEZtRBZu21k1qG2JEmPXSePW78Ca8Ni3ddyY1ne+4QIZB/CaEasxFpn0rzVZVnB07pf/7OGECsEF7q/1mNQTgi7AZvJfO1gcPpcflfGI8Gour/yAz1c/XFw3su2Xa6JaDLjEaHfZvM7gtPn6+HPh27Z2+/Rj1YDAABgPHCMHoCNhuPzAAAAAAAAAAAAAGAtfmMK9JlzThMTE2umHTt2bEijAYD+aP0cm5iY4C9SAgCGohpXgtOzDqNZ0Q0vb45xHN2xeIs576Ktl66b9oKZlypSru2yrDhJ8UQYbSI4X5JqfsWcB1jRvXE4+T5pjIuNI8HpVmwIw9UuTtWPeFUnClEhMaKXdagtSSkhWtbJ45a0nFG6vxbrvjZUV93X7BBZP8JoxjKWYzssZs1bDT5ar7+02/SKGb1cP1YzXusrin0j1fqAjcwKH80VdqZehvUTQS/fxYgwam6cv96ct3f2VRmOBIMyZ4XRaof6uh77u9no74sBAABgPHCMHoCNhuPzAADjg+0TAAAAAAAAACAbhNGAAZiZmVlz+ejRo/Kek4IAjCfvvY4ePbpmWuvnHAAAWbFOrJ2MipmOIym4YsVKxtG3j94UnP6MyTO1e3LPuunTuRn9xPQLgre5c/FWxT6WZD+PqzGTQmQHfOp+/V/KBlaVrThPwnt2VBTchHIKh86OGWG0HGG0kVRqE+IbRpgraZ2jFKdIGksngcPk5YzO/bUUc/Z9rcTLKhv7Gv24b9YyykacrBavqO5rwXlPb9fDwdN6HL7dunVb9zfw2R6atsra/wA2k/maEUbLpw+jWSe7EEYbf4v1Bd117OvBeedNvVAnTezOeEQYBCuEaIUTuzXIkCsAAACwimP0AGwUHJ8HAAAAAAAAAAAAAOsRRgMGoPWAhFqtpkcffZQDrwCMHe+9Hn30UdVqa09W3rp165BGBADY7KpxJTi9k1hKPySFRzZKdOOx6sN6pHp/cN6LZ/aat3vRzCXB6Qv1Q/px+R5JdrxqNWaST4g9pY2oYHOy3n/jEEJyzpkBt8X60eD0vLMjghiedq+3Ybwek9Y5SnGKpLGUounUy+lXYG1Yku5rOV5WpZEcGO3FVC687oqx7baiZc3Lsj6r0sZOOwmrJD0GG2UfDeiFFT7aXtiV8Ugwir5+5KvmZ/PeuX0ZjwaDMpvfEZy+UD/U1/VY2+9x2BcDAADA+OAYPQAbAcfnAQDGD/vbAAAAAAAAGCx+5QtglX2mMYCuFYtFFQqFNQcqLC4u6kc/+pG2bt2qLVu2KJ/PK4poEwIYPXEcq16v69ixYzp69Oi6g64KhYImJyeHNDoAwGZXNYIWk1Ex03EkRTes6Ne4uX3xZnPei7aG42eS9PwtP6m8ywdPqL9j8es6Z+p8M6Ky+rjm3YS5/JpfMecB1vtvlMJPSYpRScca6yNooWkSYbRRNdkm9mAF8AYpKUBRMkJYw9CvoFm/AmvDknRfy/Fy28BoL6zHZ9kMo9n7PcUoOXjaUF2xjxW55J+RWvsNoccp6TV0fKzEn7B5NXxdR+qHg/PmjFBSiJMz5nAEwjhr+IZuXvj74Lzt+V167vSLMh4RBmUuvzM4faF2SN57OWe9xztjhVzHIVoNAACA8cExegDGFcfnAQAAAAAAAAAAAEB7hNGAAXDOaffu3XrooYfW/AXKWq2mQ4cO6dCh/v7VdQDIyurnW79OjgIAoFPVuBKc3kkspR8KbkKRcorVWDevYsTbxon3XrcfvSk47+zST2hH4STztqXctM6bvlDfPXbbunl3Ln5dbzzpfzIfo9UTpAsJsae6r5nzgHavrVFnBYkWG0eC063YEIar1GabNIzXo7VOJ6cJNzon1iSG0TqIfiUvJ9t9hm4k7dccrS8oVhyc148IpPU5VG6E42Tlhh1Gm8ptkZQccaz7WuJrMPaxGcYNjTXpMbACLcBmsVA/LG/Ey7YXeo8GkkUbb/9y7HbN1w8G5+2d3afI5TIeEQZlthAOo1V9ReV46cT2u1dmEH0IkWAAAABsXByjB2Aj4vg8AAAAAAAAAAAAADiOsyeBAZmamtKePXvWHXgFAOPKOac9e/ZoaooTlwAAw2NFjyZdMdNxOOdUiqa0FC+um5cUCJGkI/XDeqjyY/lA1KQYlXRm8dmaiNpHahbqh/Vw5cc6eeIZ2lU4pesDo2Pf0CPV+7VQP3xi2nztoA7UHg9e/6KZS9su86KZS4NhtMXGEf3j/Jd0uPZk8HarMZPkgEq97fql43G3A7XH9PjKI6muv2prblanF89WLsWJ/ytxVQ9UfthRDC9SpD3Fc7Q1P9v2urV4RQ9U7lU5Tn5NtXrG5JmJ8bpuVeKyHij/UCu+2vdl98vBlSeC08fl5HsrhrTUWP9ZIyW/VzA87cJnwwiRWe+BYlRS5KKMR2NLeq+2C841S4qf9SMeNmiRy2nSFVX164Owdy/dad6uH9E96zmYrx8IbtsfqdwfvL5TdGL/rOAmzPXVfU0Tst8T1bhihpxCn5mFaEJ5lw/uL9yz/M/Bfbc0ci6vM4rnaEtua1e3B0bBfC0cvZKkuXw4lNRPDd/Qw5Uf6WhjoaPb7Z44QzsnTu77eLz3emzlIR2shfcfTyrs1skTz9g0J6DeuPDl4PS8K+jibVdkPBoM0lx+hznv20dv0pwRTuvUkaafMTQbl2g1AAAAxgfH6AHYSDg+DwAAAAAAAAAAAACeRhgNGKDVA6/279+vWq027OEAQNcKhYJ2797NQVcAgKGq+5oaCkexJjuIpfRLMVcKxjWsSFbDN3TdEx/TN478Q+JyC25Cbz71N/SCmZfay3n8Y/rG0aeX85ypC/Srz3i3GVWyPLHyqD76yHt1yAiVtYoU6cKZi9te77lbLlLBTajmV9bN++KBT5m3K+WmJUl5Z/+4IrTMVuXGkj7+6Pt1b/n7ba8bsi03p7efdq1OK55pXueuxVv1qcf+c6rxhFw6+yr9/En/sxkk+v6xO/TJ/R8KRnHSeP6Wl+gtp75ThciO0XTim0f+UZ95/GPme3DUjcvJ96vvgVahkKIk5SPCaKOo3ettGIEVa/swau+NpPEUo/D7IyQpfjZq99lSzE2pWl+/DbDCNVJ/om8l43E+WHtCH3/0/R0sZ+rEa72X4GklXrbXYXxmFqMpHWscXTf9y4c+m7iuNF61/ef06p3XbJpQEjaW+fqB4PRiVDLfTyFO1uvfPvn8kcr9+ugjv6+jjfnU62l2/vSF+pXdv6XJqD9B7CP1w/qTh9+r/SsPJl5vz+TZ+vXTrtWW/MaOIj6x8qj+dfk7wXkvmrlkw9//zWZbfk5OUfA7xmef/LOBr7/Tn1sAAAAAaXCMHoCNgOPzAAAjhegwAAAAAAAAAGAEhM++BdA3U1NTOvvss3XWWWdpx44dmpjoz0npADBoExMT2rFjh8466yydffbZHHQFABg6KzgmqW8nyHfCio9YAY+bFq5vG0WTjoe/Prn/j3SkftheztG1y/nB8vf0hSc/1XbZrf6vR/8odRRNks6dfoFm8rNtr1eMSrpgy0Udj2f1BOnI5RQpF7xO3bc/oeULBz7VdRRNko405vXxR98nbxzkd7h2QP9t/4e7jqJJ0s0Lf6dbj3wtOG+5cUyf2P+BrqNokvSdY9/S9Yc+1/Xtmz1efUR/9fh/GdsomtSfWFAWOo0EJMWGMDzF3OjFHqwY2Ki9N5LGU+rg/ZFzeRVc+Gdwo3afLd2Msx/Rt349Ps2RpaTgabvtejkhjGZ9Zg7yOf67w5/Td459a2DLBwZpvnYoOH0uv6uj5XQaBox9rP/66Pu6jqJJ0veX7tSXDl7X9e1b/eVjH2kbRZOkh6o/0n9/4qN9W++oumnhenPeZbP7MhwJspBzeW1N8b1+UMYlUgsAAIDxwzF6AMYRx+cBAMYTf0QKAAAAAAAAAJAN+4wkAH3jnFOxWFSxWNRJJ50k773iODZPsgeAYXLOKYqijk9yBABg0KqxHYnqNCbUD9bJvFbA47sdRDRixfqXY3fo5bNXrptnxTi+e+xbukZvS72OAyuPpYoBNLto5tLU133RzCW6c/HWjpZfip6OqBRcQVXfWHedNGG0fgRLDtcP6JHq/Tq9+Mx18+5Z+mfFWj+2Tn332G26ZPaV66Z/f+lO1X3vEbLvHPuWXrPrTT0v57vHbut5GcM2LiffN78H0kiKDWF4krZJw4pyWe+BUXtvJD12nY61FE2p1lgfsBy1+2zpdJxOri+h2OagWU/LaRp/UsSx3XbdCs5Kw3tdf/fYbXrBzEsHug5gEA7XDwSnzxV29mX51u87Hqn+WPP1gz0v/zvHvqk3nvSWnpdTicv64fK/pL7+vy59Rw1fV26D7ndV44q+eeQfg/P2FM/RmaVnZzwiZGEuv8OMsQ/auERqAQAAMJ44Rg/AuOD4PAAAAAAAAAAAAABob2MexQ+MOOeccrncsIcBAAAAjJWkMNrkCIXRrIDHfO1QR8u34gE/XP5ecPrRxoLqvpYYH0mzfEvBTej5W16S+vrnT79IxaikSlxOfZvTJs868e+8K6jq1z/n7QIqtbimY42jqdeZZKF+SKdrfRjtaGOhT8sPPwcL9c5eK50uv/Pl9Gc8w9T82hplnY5zXO7XZpN3BZ06cboeW3l43bzndfA52k/Wa+W04mi9hmbz27Ult03HGkfWTC+4CZ00sbujZZ02eZbuXr5r/fQRu8+W0ybP0gOVH3Z0/chFPa/3GZNnysnJq7eTRVu36ZaaXx+vWzM/tudPuElz3Q9Xf9xmhN3bCNtFbE7ztfC+4fZ8f8Jo9nr7856Zrx2S977nk0WXGosdRY5XfFXVuKKp3Jae1juqvn30RjPufdnsvoxHg6zsKZ6jByr3Zr5eJ6fdk2dkvl4AAABsXhyjBwAAAAwC4WEAAAAAAAAMFn/7CsCq3s+UAgAAAAAgA9WEwFZxCGG0khFGKzfCJ5V3Egg7fv3wcpJY6w5ZahzraNlXbn+dSrnwfQ6ZiCZ11fY3pr7+edMXaufEyScu56NwRKUWJ4fRKvFS6nW2YwUC+nWAn7X8Tp7HJJW4rNjHfVhOf8YzLM+ZukCnTJ427GGk8vwtL9G2/PZU1y1GU7po5tIBjwjd2hsIieSU18u3XTGE0UjP3fIi7SictGZawU3oZdsuH8p4LJHL6dLZq9ZNv3jbFZqIwhEsy6Wzr5LT2njOmcVna8/k2T2NMSsXb7s8dexUCr/murEtP6cXbHlZT8vIu7xevu3KE5cL0YR53bqvJy7LCqLmXd6MI108e6XybnB/E2bct4vYvKww8lyhszBa62drO/16z8RqaMVXe15Ou9BySK+xyFHlvdeNC9cH501HM3rRzCUZjwhZuWTbK1Vw9vZ5UF44c7G25mczXy8AAAAAAAAAAAAAAAAAAACA8TO4s4MAAAAAAOijalwJTneKhnJCb9GIhJWNMJc13dJNHKscL2lG21Jdd9kIozk5TUbFE5fn8rv00m0/rcvnXtPxeK7c/joVXEG3HvkHHa4/GbzOTG6bzp++SK/d9YtrplsxmHYhg3JCgG7SFYMRlWpcCcYOKsZz4I0/O+EUaTIQ7mn4hmp+Zf1YjeVbr5VIUTAMFPs4GInw8qrGlY6CduHxhMeZU14FI2A3Crbktur86Rfptbv+3bCHktqW/Fa98/T364sH/ko/Kt8dfF5zLq9nFs/V1Tt/fmyCb5vRZXNXK+dyuvXIP+jJlf3aUzxbV25/nc6ZOn8o4ylGJf3G6e/XFw/8pX5c/ledMnm6XrX9DTqjeM5QxpPkZ3b8gopRSbcfvVl1X9eFMxdr346f63g5z595iX5l9/+qG+b/P83XD+o5U8/T63e92YxpjZozS8/Wr592rb5y6PN6oHKvYjWC1zt1Yo8umX1lXyN3b979v2jHgZP03WO36WhjPvXtnCKdUTxHr9z+ep099RMnpidFyuptgqc1M4xm7/udXTpXb3/G7+nvD39eD1buk1d3kdC6rwf3O+xwKjDa5mtGGC3fWRjNYsXDrPdM6/eOE8vxXlUf/u5XjpeDt+lEu9ByyEYNo/2ofI8erT4QnPeybZd3HCXF+DiteJb+w2nv1fWH/ocerNynhpJDpb3alt+uC6ZfrNfsetNA1wMAAAAAAAAAAAAAAAAAAABg4yCMBgAAAAAYCxUjeDUZhWNXg1aKwrGp0Dgbvh4MY0nSKROn6fGVRwLLWR8QaBcFW26kj68tx+Ew2jMmz9S7z/w/Uy8nSeQivWL7a/SK7Z1H1boNo4Uet1XvO/uTmsptWTf9Dx/8TT1UuW/ddCviYIURzi6dq9/Y8/510+9euksffeS9wbF679e9fq3X+kVb9+qXT/2P66Y/sfKo3nv/24O3qcTLPYfRrMf0iu0/q59tCdqhdzsnTtFbn/Fbwx4G+uCS2at0yexVwx7GCXOFnXrL7ncOexhtOed05fbX6crtr+t5WS+cuVgvnLm4D6MajmdPPVfPnnpu5uvNu4Jef9Iv6/Un/XJflpdL+DVEu+163YdDLdZ+wqrnTD9Pz5l+XvvBJfjWkX/SXz7+kXXTrXAqMMqqcUVL8WJw3lxhV4dLC3/3svaRrX3JM4rn6LfO+NC66Qv1w3r3j94SvE25saTZ/PaU4wxr97kTYoWRx91NC9cHpzs57Z19VcajQdbOnvoJ/frUtcMeBgAAAAAAAAAAAAAAAAAAAAAERcMeAAAAAAAAaVQTwmjDUDTCaKGYlhXYkqS5/M7Uy6k0wo/B07dJH0ZbaoTDaNOBcNgwFLoMoyU91sWoFJxuRe46DaNZkQhr+bFirfhqYL3h59FajvVaPL6s3uMtZSMAU4qme142AGDjc851HTytG2HZvBv833wp5cLbuX5sW4GszdcOmvOs7yOWTpPUVvTX2oe19nmlzr7vWLoJo8nc/x9fR+rzumvxG8F5501fqJ0Tp2Q8IgAAAAAAAAAAMDo23u9GAAAAAAAAAADjZ/BnDwEAAAAA0AfWCfWTbjhhNDOm1Vh/sn5S0GyukD6M1i4EsGzEzsLXXQxOn4pGI4xmBVRqbUIGFSPiNemKilwuOM+KMlQ6DJ84IxPRLlzWGvfrNESWHI/oPd5ixyzCoTkAAFoVXCEYI2q3XbcCRlZAtZ+s7dyKr6rhG8oZ+xXAKJqvJ4XRdgx03fa+bXgfdsJNKlJOsRqBZQ0njLYRT/259chX1VA9OO+y2X0ZjwYAAAAYDOfcnKTzJT1L0nZJRUkLkg5IusN7/6MhDq8nzrmCpJdL2iPpVEnHJO2XdJf3/oEhDg0AAADAhtfpn9EBAAAAAAAAAKA7hNEAAAAAAGOhGleC04cVZ7JjWusjUkmBrbl8OIwWuo0VqFrVLpzWbDkOR9SmcqMdRmsXMrBCYMWcHQ+zI3fhZXnFwenOhQ/8SwyXNZY0m9++Zpr1erFe6wU3YcYjOo27BcdovK5KCY8pAADNut2uW+E0a3n9lBQ2rcblkdlnAtKwwmgzuW0qRBMdLcuKAXsjH2bv24bfY845lXJTWgqEnPsR/W0XZAyx7tu4aviGbl74++C8nYWTdd70hRmPCAAAAJuNc+6Zkl4s6aKn/n+hpJmmqzzovT+zi+UWJL1C0qsl/ZSOR9GSrr9f0n+T9DHv/eMdrus9kq7tdIxN/tJ7/8ud3sg5t0vSeyX9vI7H3kLXuVXSH3vvP9/D+AAAAAAAAAAAAAAAAIChIowGAAAAABgLVR+Ogk1GxYxHcpwVhQpFpJJO4J8rhMNooShXu/DZciN9GG2pEQ6jTedmgtOzVugyoNJpeCFpnrUsb3QRrL+HmhRl6ySkV8pNh9ebFI8w4m6dsIJ8SY8pAADNug2j1X29o+X1U2LYNF4ijIaxcrh2IDjdijQnMmLAFuu7UFJkdyqaDu7bLncQgra0+9wJ2WhhtO8eu00L9UPBeZfO7lPkooxHBAAAgM3AOfdTkt6l4zG0YNCrx+W/RNL1kuY6uNluSf9J0r93zv177/1/7/e4+sk5t0/SpySd1OaqF0u62Dn3GUm/6r3v/csUAAAAAAAAAAAAAAAAkDHCaAAAAACAsVCNK8Hpk1Ep45EcV4rCkaqaX1HD15VzT3/ltkJXBTehLbmtwXmh21iBqlXtwmnNlo0w2lQ0GpGPbgMqZnghIW5iR+6MMJoRRnAKBwQmXVFOkbziwDrSh/QS70MUDqNVeoxH1H1NNb8SnEcYDQCQVvdhtPA2KIswWtJ2rtwoS4MfAtA38/WDwelzhV19XEt4H7mv4eI+RH+tz5VEVhl5TN208OXg9IKb0Mu2vSLj0QAAAGATeYGkVw5w+bsUjqKtSPqepMclHZG0Q8fjbDuarjMr6dPOuZO89388wDF27amw3F9Lmmia7CXdKenHOn4fXiipuYD9JklbnXOv9d6v/wUFAAAAAHRlY/3eBAAAAAAAAKOHn0ABWEUYDQAAAAAwFqwoWHFIYbSk9Zbj5TXBMysGUIqmzOWs+Oq6wFq5kRy5Wu4kjBYbYbTcaIfRam0CKnZ4wX6+rOCYtSwrjGZxzqkYlYIRtNZ1eO9VNoIPSffBikeU28T02qk07NsnhdoAAGjW7XbdCqcNO4zWa3gUyNp8zQij5XcGpydxcsHpVjusm/3zqVw4Qt3J9x1L3dc7vk2n+/+j7LHqw/rB8veC8140c4kZ7gYAAAAGqCrpEUln93GZxyT9D0nXSbrVe7/mB93OOSfptZL+s6Q9TbM+7Jz7nvf+q12s8xckfbPDMabinDtN0he0Nor2dUlv9d7f03S9SUm/Kun/0NNJ91dL+t8lvbuDsQEAAAAAAAAAAAAAAABDRxgNAAAAADAWqnElOH0yKmY8kuNKUfhkfUmqNNaG0ezQ1VTicloDa2UjKvD0etKHApYaox1GK0Th4Ek9Tg6oWI910uNsR8WsxzscRrAiEcfXPxUMo7WOt+5raigca0i6D3bcrbd4hBWykJKDMQAANCsYITMrfLaqZmz3reX1UyEqKO8KwTH2Gh4FsjZfN8Johc7DaJ2y3i/J++fheaH96U5ZQcZIkWLFwXkbKYx208L15rzL5q7OcCQAAADYpGqSvi/pdknffur/35P0ckn/1IflPynpjyR93HtvfoHw3ntJX3TO3STpZkk/0TT7vzjnznvqOp143Hv/QKcDTum9kuaaLt8q6Qrv/ZpfnHnvqzo+/ockfbFp1m845z7hvX9wQOMDAAAAAAAAAAAAAAAA+i4a9gAAAAAAAEijYpxQPxmVMh7JcaWcHYVqDWpZYy9GJRUTxl9prL1dUqRKkpZThgIavmEuazoajTBavsuAinW/ijn7cbajYuFlxT4cTHDO/jFLKReOO7SuIyl+l/Sas5ZvheLS6nY8AAA063a7XvfhWGjeCKj2mxUBbbdPBowS773ma+Ew2vZ8/8JoVjysYkai7f3zKSuM1kEI2mJ97hTchHmbjRJGq8RlfetouDVxZvFZOqN4TsYjAgAAwCbzl5K2eu9f6L1/q/f+z7z3d3rf5ocD6X1L0jO99x9OiqI1894fkvQL0ppK8rmSLurTmHrmnHuWpF9qmrQi6Zdbo2jNvPd/reOP96pJSdcOZoQAAAAANqSOW9EAAAAAAAAAAPQfYTQAAAAAwFioxuFzPJJOqB+kpPW2xqTKRrCslJtSyTjpP3S7pEiVlD4UkHS9qdx4h9GsxyjpcS4aga9yY1m+gwP9XMI86/WS9rVyfBl2iMxafq/hlqTX3LDeewCA8WOFzNqH0cLzrf2EfrPiqe32yYBRshQvasVXg/PmCp2H0Zy517t+v9l7b75frH1wyQ7w9uO9V4+NMFpkh9FC920c3XbkBjPavXf26oxHAwAAgM3Gez+fFPPqw/IPpA2itdzuO5JuadWc6psAACAASURBVJn80/0ZVV9cIynXdPkL3vt7U9zugy2X/41zrti/YQEAAADYvJKOkAIAAAAAAAAAoH8IowEAAAAAxkLVOIF7MhrOeRw5l9eEmwzOa41RWSefF6MpFXPpA2uVRng5q5YTolrNluJFc96oh9FqbQIqVggsKeJlRU9iNVTzK+umezOMYB/4Z4XZ0r5Wji8jIR5hLL/XeIT1eBbchHIu39OyAQCbh7ldNwJFq+qB7XDS8vrNDI82CKNhfMzXDprztud3dbw8O4y2Xs2vKFYjOK+rfduUIegk3QQXO2gljyzvvW5auD44b0tuq1408/KMRwQAAACMlLtaLu8eyijCXtdy+S/S3Mh7f4+kbzVNmpb0yn4NCgAAAAAAAAAAAAAAABg0zmAFAAAAAHTsrx77iA7UHs90nY+vPBKcPpkQvBq0UjSllUZ13fRySyzDilMVoynlXUEFNxEMcLVGqcptwmdpQwHLCdebzs2kWsagFYwwgRUyWNX62K9KCi8UE+aV42VNRGsDeFYYLSkSYa1/3WvFeG6cXOJr3boPvYbR7MczHKsAACAkb8Q0223X674enG7tJ/RbKWeFTZNjtcAoma+Hw2iRctqan+3bekJ7yEn7okn74Oa+c4/7tpIdWrai18eNfxntvvLd2r/yUHDexduuUCGayHhEAAAAwEhp/QHESOwgO+dOkfT8pkl1SV/vYBE3SHpJ0+V9kv6295EBAAAAAAAAAAAAAAAAg0cYDQAAAADQsUeq9+uR6gPDHoYkadIVh7buYm5KRxrz66a3Bs1aL69aPeG/FE2p1lgfRmuNUrWLcLQLp61abiwGp0fKDfXxbJbvMoxmPdbdhBdWl7dNcy1TOw+j2eGypZbL4fFPRiVFLjKXb92HihE2S8t+PIcXJAQAjJ+CC59P3G67bgWMrP2EfrO2d2n3uYBRMF8Lh9Fm89sVuVwf17R+H9nal5SS9yetKGE/3nvW505SGCzeAGG0Gxe+HJzu5HTp7FUZjwYAAAAYOee0XH5sKKNY77ktl7/rve/ki9GtLZfP73E8AAAAAKCN8AdlAAAAAAAAAADjwT6jFgAAAACAMTDMQJMVo1oXuzLiVKuxLCua1RoSaBcCqPkV1eL1gbVWy/Gx4PSp3BY5Z8e9stR9GC0cjyvl7PhZUjQt9Nx5K4yW8NhZ628db7chsqKxfCu0lpZ1eytWAQBASLfbdWt+dmG0dNtvYJTN18NhtLnCzq6WlxQDbpX0XilF9v6kNa/cGGAYLfFzZbxP8DlSP6x/XvxmcN5zpy/SjsLJGY8IAAAAGB3Oua2SrmyZfFsXi/pV59zXnHOPOucqzrlF59wDzrkbnXPvc85d2sUyz2u5fF+Ht/9Rm+UBAAAAAAAAAAAAADBy/HgfugugjwijAQAAAADG2nRuZmjrThvLsGJXq7GstFGrNBGO5TbxNElaaoTDaNO5LW1vmxUrTFBLCKh47xPCYnb8bDIqmoGH0PK88dPVpEiEtf7W59gMkSWEI47PH0wYzXrNDTNICAAYP3mXD06v+3ri7YYdRksbwQVG2eHageD0uXx3YTRLKB6cFDKbjIrmPCvCW/UVNXyj88E1sT9XJszbWGHkcXHLwlcUK/y4XTZ3dcajAQAAAEbOr0pq/gHAEUn/1MVy/q2kyyXtljQpaYukMyTtlfRuSTc5577tnLuig2We03L5oQ7H9GDL5R3OubkOlwEAAAAAAAAAAAAAAAAMBWE0AAAAAMDYKkVTOqv07KGuP6TcaA2aJce6rOW03i4pLNDJdZaNMNpUNDphNCt4YoUMJGnFVxUrDs6zHmNJilxkhr5CYTE7jGCH0ezXytrnq9Kwwmj2+KWkSF9vYTQr/NJuPAAANLO260nBU8ne7lsB1X5LG8EFRtl8/WBw+vbCru4W6Ox93lZJkd3I2b+iTNrX7HX/1vrcmUgIo42zhq/rloW/D87bVThV5049P+MRAQAAAKPDOXempP/UMvkj3vuVAa3yIklfcc69z7lUX65mWy4/2cnKvPfHJFVaJm/rZBkAAAAAAAAAAAAAAADAsOSHPQAAAAAAALqRd3n9u1PeoZwb3lfbYs6IXbXEpMoJQQApIZoVtwbW2kc4rJBVs+XYCKPlRiiMFnUeRgtFzFZZYZPm+aHbdxJeSDqLKW1YxboP1mttlfUaqvuaanFNBePxbKfSsF67hNEAAOkVjOBQvc15xlbAyAqt9ZsZrzVCpsAomq+Fw2hz+Z1dLS99Fq19INoyFU2b88qNZU3nZjoYxVpmcDGyw2ixD8eXx8F3jn1LRxrzwXl7Z1+VGKgDAAAANjLn3ISkz0pq/oLxgKQ/6nBRj0r6sqTbJN0j6bCkWNIOSRdK+hlJVzWvWtK7dfwP2r6rzbJbf2nTTam9LKnYdLn7L1RNnHMnSeq0uH12P9YNAAAAIAvWH40EAAAAAAAAACA7hNEAAAAAAB3bO3u1FhsLQ1v/1tyczp1+vnYUThraGKSEWEZL7KpixMpWb29Gs5qiG977VJGu5RRhtKVGOIw2PUJhtIIRPKnFdhgtKVJiPVfN80O5gFCoLFY4jOBkRwVKKSN61nPcdvwJ4bRKvKRCNJt4e/u23cUsAABoZoXMkoKnklQ3tvv5jMK4dgSXMBrGQ+wbWqgfCs6bK3QXRkvivZdzT6fTrPdKu33bpChwmhB0EjOMZgQcx92N818OTi+4Cb1s2+UZjwYAAAAYKZ+U9JNNlxuSfsl7n/ZLx206Hjz7qvfeKgbcKumjzrmLJF0n6VlN837HOfdN7/3fJKyj9Zc2lZRja1aWNJewzG79mqRr+7QsAAAAAGOlkz+jAwAAAAAAAABA9wijAQAAAAA6dsnsK4c9hJFgxaGaT9avxTXVfT3x9nY06+mQwIqvmkGuNbdptD9nZ9kIo01FoxNG6yagkhQpSYorSOnidCcYpzi5hOP+rOXX/Ioavq7cU4EXK/TQNh6RML8clzWj7sJoZsyizeMJAEAzK2Rm7SM9Pd8Io0XZBIxKUSk4PU2sFhgFR+sL5neIuXy3YTR7p9fLyzXN7zayW4qmzXk9h9HM4GL4+4d0/H6No/3VB3Vv+fvBeS/euldTIxTGBgAAALLknPsDSb/YMvld3vub0i7Dex+uEIeve7tz7qWSviHp2U2z/tA59/967xtpF5V2nT3eBgAAAAAAAAAAAAAAABi6aNgDAAAAAABgXFkn7FfictO/7XDGalzKXs7Tt02KfjVbThEKWI6NMNoInRjfTRjNeqydIk26YuL67Djd+sfTDiPYkYiksFnzc1tplIPXaR+PsOdXeohHdBuzAACgmbVdryVs1yV7u19ICBj1U9HYR0u7XwYM2+H6AXPeXKG7MJpL2OdtVQ5FhtU++ptzOXP/fTlFCDqJ9blTSAwujmdH4MaF6815l81eneFIAAAAgNHhnPuPkn63ZfIfe+8/NMj1eu8PS/oFrf2Cca6kn064Wesvc8IF92Sttwn/gggAAAAAUhvP35sAAAAAAAAAAMZPftgDAAAAAABgXBWj8Dko5aaT9ZPCGatxKXM5a4JZ6QIc5RShgKXGYnD6dG4m1TqyUHDhMEFSQMV6rItRSc4lBxys0Fdz5G6VVxy8bpTQn7fid9Lx53ZLbqsk+z5Y4bZV1mtIsoMUaZjjIYwGAOhAPjKCp/FK4u2sMFreZfOrjZKxfa37mmpxTQXjfgGjYr52MDh9wk1qOhrEvv/aE2HMyG6u/bn8pdy0qvXKuulJ4ek0rM+VCeP7hyTFfvxO8Ck3lnXbkRuC884qPkenF5+Z7YAAAACAEeCce6ukP26Z/F+99+/MYv3e+zudc1+RdFXT5FdJ+ppxk1EOo31M0uc6vM3Zkv6mT+sHAAAAAAAAAAAAAGxQ43fkLoBBIYwGAAAAAECXSrlw7GpN0CzhxP3VuJQVzWq+bVJgrdly3P6clmUjnjaVEO/KmhU88YrV8A3lXG7dPOuxThPxsq5TjtuH5tJIij+U1zzP4fVZ4bZVkctp0hVV9evjEWlfOyFmzIIwGgCgA1bwtO7ribezgqh5l02QrJiwb1SNy4TRMPLm6+Ew2lxhZ9twsCXpVq0HIYQiw1K6fclSNKUFHVo3fbnH/XM7uGiH0cbx8Irbjt4Q/G4gSZfNXZ3xaAAAAIDhc879oqSPa+3Xmr+Q9PaMh/J3WhtGe17CdY+0XN7VyYqcc1u0Poy20MkyLN77JyU92eF4+rFqAAAAAAAAAAAAAAAAbBLRsAcAAAAAAMC4smJalbgs74+fPJ8UpSpGpTX/b1VupAusrb1NcijAe6/leDE4byo3k2odWUgKnlgxg+bHq1ma8IJ1nUpjfczBG2EEl5CJSIqzrQ3pheMRqeJuRqgv7WunlffefExLOcJoAID0rOCptU1vNz85YNQ/pcSwaX/iqcAgHa4ZYbT8zh6Wmv5Eduu7UJp9W3v/vPvor2R/rkxE9ueKtf8/qrz3unHhy8F5W3Lb9MItF2c8IgAAAGC4nHP/VscjaM3HSn5G0q/41V/mZOeBlstJsbN7Wy6f0eG6Wq9/2Hs/3+EyAAAAAAAAAAAAAAAAgKEgjAYAAAAAQJesk/W9YlV9RZJ94v6kKypyOUnJQas0gbVmy20iHSu+qrqvB+dN5bakWkcWksJoNb8SnG4FwNJEvKzrhB536zwp5+xIRM7lNeEmg/Oax22F7dLE3azARNrXTquaX1GsRtfjAQBglbVdTwqjee/NfZZCwn5CPyVt76yYKTBK5utGGK3QSxgtydr9ZGv/PM2+5JTxHand9512hh1czMIPy/+ix1ceCc57+bYrVYiy+QwFAAAARoFz7g2SPi0p1zT5c5J+yXsfD2FIrT9QsKvs0j0tl8/pcF3PbLl8d4e3B/D/s3enQZLmeWHff08eVZnV09NdPd27y+4Ci/CCYLmWXViWXWbAwMKsjThEIAksDEISWEjIlsIhh7EtobAjbEfIIfmVFLZD4AhZEZKFpAhpZ8ESYvYAZC4BkjiNkGDFMbNTPdPdldWdx+MX1dmdnf38nnzyrOruzydiYjqfO68n/1lV+U0AgCfWo/WlMQAAAAAAPJ6E0QAAAGBFWYgq4n4QLY8B3P+sS7adSUziTnk7IvJg1rxFyx2Pb6bzLrTOTxit28rDBFkkJQuANQkvZMtU3X9l+sd/eRitbh/T+2xSju8F9eZl8bwm288eg4vUBV/6rbrPagHAg7Iw2rAmjDaJcZRR/fnkTtHZyHEtUjeGGKwZZ4JdSMNondXDaEXNmHd+nDxIItF176PuL1M9/l33uZedd/ZqwmjZuei8+tDRByqnF9GKL7n8VTs+GgAAODtFUfyBiPjbETH7g4R/EBHfXJZl9beCbN/8G7LqN26n/uXc5c8pimKZby15z4LtAQAArKD+76MAAAAAAGBThNEAAABgRf12XSzj+IH/z+vNhK7qoxvTwFoeqXpw+fpQwK26MFr7/ITR6oIno0l1zCALgDULLyTRssptVofR6iIREfnjpcl93CREll6HJEixSN1jqUlsDgCmukkYbVQTRquLpmWhtU1rF+3YK/Yr5zUdm8FZOhq+VDn9Svfa6hstmn/YJY1E17yPmkrDaA2D0ZnsvFN3XsmyyOfR0fDl+Lmb/7xy3mc/9c717nsAAHiEFEXx/oj4uxExO9j/xxHxh8oy+faV3XjX3OV/ny1YluVvR8TPz0zqRMR7l9jXl85dfmGJdQEAAAAAAAAA4EwJowEAAMCK6uJQJ/diV1msqz/z75ow2t0P/i8Knk0dLwgFHE/yMNrBuQqj5WGCYXmncnoaXmgQFcvuy6ptTlYNoy3YRxbROz2+6jDEA8uk4bXV4hH1oTZhNACay17XR+UwyrL6dbUumrarMFpEPkZYNTwKuzKc3Ikb41cr5x12rm5ln/NP5zQS3SRcvCAqvKrs3LLX2kvXyc5T59FHXv3hmMSkct5zl9+/46MBAICzURTFV0bE34uI2YH+D0fEHyzL5BcMO1AURS8ivmFu8o8uWO3vz13+9ob7+v3xYITtVpzeBgAAAGt6dH5vAgAAAADAo00YDQAAAFa0V+xHK3lrPbgXRquOS83GALKg1ez6dZGqWccLIljH4+ow2n7Ri3bRabSPXegWeZggixlkgZJG4YU0WjaISTmem7paGC0Nq0zDaDWBlSYhsrrrsIpBTWRvv0FsDgCmspBZGWVMYv519tSoHKXb69YEjDYtizNlQVY4L45GH0/nrRNGqx/x3h8nl2WZjkObjW2rw8B1Y9QmsvcSnZr3H4/KB3xG5TA+er26c/C67hvj0w8+Z8dHBAAAu1cUxXMR8Q8jojcz+Uci4uvKsrx9Nkd1z1+IiDfNXB5HxD9esM7furvc1DcURfHWhvua9XfKsjxpsB4AAAAAAAAAAJwLwmgAAACwoqIo0g/snyyIXc3GAPaLXhRpYO3WA/9fZDC+FWWZf3D/1vhG5fSD9lONtr8rWUAlIg+lpOGFmvBck2Xmt5vevPWViDQAMX2MnNTcx03ibovCa8vKo379aBV+pARAc3Wv68MkUjSa3KnZ3u5irpt+fYVdORq9nM477K4TRlsw6L3rdnkSZUwq560TLl7nuTcpJ+l7ib2aMFr5iITR/sWNn4jXxtcr5z17+LwxPAAAj72iKN4dEf8oIma/2eNDEfE1ZVmu9g0i1fv5o0VRvH7Jdf5ERPzFucnfX5blv61bryzLX42IH5iZtBcR318URS9ZJYqi+NqI+LaZSXci4vuWOV4AAAAAAAAAOCs1H40EnjC7+/QQAAAAPIZ67X7cmjwcG7sfu6r+4P5sDKAoiui1+pXxs+n6J+Nmn9kZxyiG5Z3YK/Yr5x8n8a0L5y6Mlv/IYpQEVLJ43DpRsYjTQNhsOC4LPLQW9Od7SXztXkQvCZF1im50W3lQZioPrzWL6j203hq3JwDMqg+eDuPBzyufyoJpi7a3adnrazbGg/PiaFgdRrvQuhj7rfTz82uZDYhlkd2I09DuIv12dYC6aTC6yjiJokVEdFqPfhjtQ9dfqJy+V+zHFz39ZTs+GgAAeFhRFG+O6r9XfMPc5U5RFG9JNnOzLMuH3vAURfH2iHghImZ/2fHLEfHdEfG6omgWeb7rpCzL36mZ/x0R8TeKovi7EfF3IuJHy7KsfLNSFMU7I+K/joivn5v1sYj4bxoez1+8u/7h3ctfHBH/pCiKP16W5S/N7Gs/Iv5kRPyVufX/yqIAGwAAAAAAAAAAnDfCaAAAALCGNEZ19wP7gySa0Z+LZPVbB5Uf8p8G1pYJABxPbsVeKwmjjR+OuEVEHLQvNt7+LrSKdrSiHZMYPzRvWN6pXCeLL2T3UdNlTm/7awu3sXgfWdxhGtGrvo+bHH9EXXitWVSv6XpNjwcApuoCn6PJMKJdMf2chNGygFM2xoPz4mj0UuX0w+7VNbfcLCZwMs6fI1n07IFl0ujvcZRlGUtGDSKi/ryyV9SF0c6/j93+jfi1wb+unPeFTz/3QOgZAADO0Eci4pMbLPemiPg3ybwfiIhvq5j+tRFxaW7ap0fELzQ9uBkvRsSXLlimHxHfeve/SVEUvxoRvxERr0bEOCKeiYjPjYjXV6z7SkR89YL42j1lWf5WURTfEBE/FBHTNy/viYh/XRTFT0fEr8fpdf/8ePiXGf8oIv7bJvsBAAC4p3wUfjsCAAAAAMDjThgNAAAA1tBLPrA/jUqdJNGM+fXy7UyjWc3jVoPxrbjcuVI579b4ZuX0gyTadZa6RTdulw+H0bKgwWBcHRbLbtumy5yMH7ztyySNUERrwT6qwyrT+3iQxCOyoNrDy9VH+pbV9LELAIvUhcyy1/VROUrX6dYEjDYtHaONVwuPwq4cDV+unH7YWS+M1jRHVhcPzMbFs/pJyGscoxiWd2KvqA5B11k5uPgIfPjnxaMX0nnPXn7/Do8EAACeSK04jbB9eoNl/2lEfFtZlr+1zA7KsvzRoii+PiK+P+7Hz4qIeOfd/6r87Yj4E2VZ8YsWAACAlS3/5TUAAAAAALCK+k/sAgAAALWyWMY0RpXHpR6MAfTb2XaOH/h/E8c1IazjSXUY7UL7YuPt70oWJ6gKpUzKcdwuTyqXz4Jhs7qtvegU1f34+bBYGZPK5YoFf/iXBc6mQbQsftckHFG3/ewxuEgeahNGA2A5dcGhYRpGqwsY7e47X/Ix2mrhUdiVV0ZJGK27XhitzmxAOBuDFtGK/aK3cFt1Y85Vn3/Z+SYiYq+Vh9ay8f95MRjfip987cXKeZ/a/4x4c+8tuz0gAAB4/P21iPi/IuLfNlz+VkT8/Yj4irIsv2LZKNpUWZYfiIjPioi/HhFHNYv+RER8Y1mW31yWpR9gAAAAAAAAAADwSNrdp4cAAADgMZTGqMankassaDa/3qKo1TJxq+Nxdfysbt5B+6nG29+VTqsbVQ2C4eTOQ9OyqFhEHjSZ12sdxM3xawu3XZYPLXJqwReiZsdxci9+V/35pObHXx1QO5kMYlJOolUs18dPo37tZqE2AJjq1oTRsgDasHz49T4iohWtaBXtjRxXE1kEt27sAefB0bA6jHalc23NLeeD3iZhtF6rH0WxYOAcEQfJ+6OIiOPxrbjUubJwG/Pqg4v5eSob/p8XP/HaP0sj0c9dfv+OjwYAAHJlWb5li9v+SxHxl7a1/bl9/f04DZ1FURSXI+JtEfGJEfH6iDiI0y+rvR6n8bJfjIifL8tyvKF9/15E/GdFUfzZiHhPRHxyRLwhTuNrH4uIny3L8t9sYl8AAAAAAAAAAHCWhNEAAABgDVkkahq5mgbSHlpvLmKVRa0G47thtHHzMFoW2IqoCaO1zmEYLYkTVAUN6uIkWdBkXj8Joz0ct6tOI7SiPjyWHcf0/soier2aKMSsfjtf7vZkUDu/+riaRf0AYJG64FAWKsqm121rG/ppGK352AzOwtGoOox22H1mre02iZpF1I0lG0Z/a+LAqz7/6sJoe8VeOq88x2m0sizjQ9dfqJz3dPtyfN7FL9rxEQEAwJOlLMvrEfHRM9jvnYj4Z7veLwAAwPn/ShkAAAAAAB4X9Z/YBQAAAGplkajB5DjKskwjZfORqmw7J5PjmJTjuF2eND6mwTgPo92aVIfRLrQf7TBaXQyucXyhYfhksuIf+OVhlUGUZZkGHvpJNK/p9iPyMEWd7HiyiB8AZOpiZsM0jDZaelvbkIdNhdE4vwbjW+lY7rBzdSfHkIWdm44l94teGh4+rhn716kLo3Vqwmjn+QM+v3z88/G7dz5WOe89l79y5+dMAAAAAAAAAAAAAFikPL9/ngucI8JoAAAAsIa62NWwvBOTmFTOnw8C9Nt5dONkMljqmOpCAcfjG5XTD85hGK1bdCqnVwUNTsb5bZQFTZouN3go6lD9k9ciitrtZ4+VMsq4XZ5U7Gd6XNXRvIeXy69nFsaokz3umt6eADDVKlrRinblvCxUlE3vnpMw2iqvrbArR6OX03mH3WtrbbtuxFvO/IVCNpacD0Sn+ymKPEKdjJsXGU7qwmj5uaU8x3958eL1D1ROb0Ur3nvpq3Z8NAAAAAAAAAAAAACwnnP8p7vAjgmjAQAAwBrmA2dTg/GtGNQEM+YjG+l2Jse128n2XWVSjtNtHbTOXxitU+xVTh9WhdGS69UpOtFtVW9nXh6ne/D2LLMwWlEfRqsLitU9XrLjemi52u0vH4/IHkd1+wGATBY0ywJow8mdyumd1m7DaOn4YHx8rmNJPNleGb5UOb2IIi53rqy59fox79T8GHoqe99Tpen4vKnsfBNx+r4hCx1n4/+z9srwpfj5mz9ZOe9znvrCOOxe3fERAQAAAAAAj4fz+bsRAAAAAB4fCz6GBxARwmgAAACwln77QuX0k8lxGuuKeDgu1W/l21k2apWFAo5rAgIX2heX2scudJYIqGRRsboYWdNlTyaDBy5nEZQspDBVFzg7mQzSx0vT69Bt7UWn6FTOWyUeMX+97x1Pw1AbAMzKX9dHyfTqgFG2nW3JXocnMY5hWR1vg7N2NPp45fRLnSvRTsaLm3F/nJyOJZcYn2fvkbKA7yJ155XTyPGj9RcWH7n+w1HGpHLec5ffv+OjAQAAAAAAngyP1u9TAAAAAAB4dAmjAQAAwBrmA2dTgwVBs/kgQK/Vr97OuD6wVuV4fHOp6RERB0ng7Sxlka+qoEF2G2X3zzLLzkfFyvRbUReE0ZKww3QfWdxtmevQNO7WRBZTW+Z4AGCq06oOmg0n1XGxLJi26zBa3eveKq+vsAtHw5crpx92rq697boY8Ow4eRNj2yxCvUr0NyJiuCC4mF23fPx/doaTYXz01R+unPeGvTfHpx189o6PCAAAAAAAAAAAAAAANkcYDQAAANaQhaiG5Z24NblROa+IIvZbvQemZR/6P5kcp1GBzHESCqgNo7UuLrWPXegWe5XTq8Jo2W2U3T/LLNs0elIXiYg4vT6t5Ecxg8lxnCQhvc3E3ZZ7DJVlmV7vZW5TAJjKgmZVr+t103cdRsvitRGrx5lg214ZvVQ5/bD7zM6OIRvbLjOW3NTYdmrReeVRCqP9i5s/FjfGr1bOe/by81EU9e9NAAAAAAAAAAAAAADgPBNGAwAAgDXURauOhi9XTt9v9aNVPPiWPAsE3Clvx61xdWAtMxhXRzpuTarDaK1o1UY/zkoWPhlWBA1ONhBGS8MLc7dnGZPK5RaF0YqiiH6rOoA3GOcBvF57/bhb9pjI3C5P0gDEMqE2AJjaVBitu+MwWt3rXtN4Kuxa9j7ksHNtZ8eQh4ubv+/Ix86rRQkXnVeylth5DKO9ePRC5fT9ohfvevrLdnw0AAAAAADAk+P8/d4EAAAAAIDHkzAaAAAArKFfE606GlUHCapiALWBtWQ7mcGkOhRwPK4Oox20n4oiqwCcoWUCKoNxdXih7v6ZlwXI5qMn6/x5X7aPG+PrMYlx5bxlQmRZGG3Z+5MAfQAAIABJREFUcMtJcnvW7QMA6nSLTuX0UTmqnF4VQo3Ixwfbsl8TcVo1zgTbdj15/3DYvbr2tutiwLMBsWz82W9Xx86ql02iv0l0bZEsjHb/vJKV0c7XB3x+8+TX49dPfqly3hde+tKl3gMBAAAAAAAAAAAAAMB5JIwGAAAAa6iLRB0Nq4ME/dbDMYDaMFqynczxsmG01lNLbX9Xuq0kjDZ5OGhwksQRqiJ0mew+eCi8kIQRWsXiH7P0k+N5ZfhSzTqbiEcsF26pi01kcTcAqLNM8LRu+q7DaK2ilY4nlg2Pwi5MykkaVr7Subaz48jGn8uNz6vHwcuObacWBRez6Fu5Vhp58z50/YV03nOXn9/hkQAAAAAAAAAAAADAZp2vv9wFzpIwGgAAAKyhNow2qo5dVcUA6mJTWdggMxjfirIi3nVrfKNy+YP2+QyjLRNQyUJey0TFsvtyPro2iUmyheqQwoP7qD6euvt4M/GIPHRWJQvNne5DGA2A5XWKvcrpw/JO5fQ8jNbZ2DE11XSMAOfBzfFrMSpHlfMOu1c3sId8zDsbEMvCgXXvn+alY9vxamG0ReeVRyGMdjy+Gf/vay9WzvsP+m+LN+5/8o6PCAAAAAAAePycn9+NAAAAAADw5BJGAwAAgDW0i3bsFfuV846GH6+cXhWWqotNHQ2ro1mX2oeV0ycxidvlyUPTjyfVAYELj1gYbVgRNMjCJMtFxarvg1E5jOGkOqIwa3EWLd9Hdh9HRPTby8Tdqq/vsuGWLKTWilb6eAeAOlnQLAs4ZQGjbhJY26bs9XvZ8CjswivD6jhzRMRhZ/0wWlE36L37GZlJOYnbSRhtmcjuQTIOXvW5t+i88iiE0X781R9Jg5LPXX5+x0cDAAAAAAA8eZr8hRQAAAAAAKxPGA0AAADWlMauRtWxq1774eXbRScNfWTbOexeS4/peHyzYtqNymUPWhfT7ZylbhJGqwoaDMbVcYR+a5moWB5pOJmJymVhhKLBj1myfWT3cRFF7Be9hdudyq5vdvtk8tDcQRS1NQwAqJYFT7NQUTY92842Za/fy4ZHYReycWWn6MZT7ad3cgy3JyfpmLluzN102UESfF4kPa+0dn9eWcWknMSHrr9QOe9S+zA+7+IX7fiIAAAAAAAAAAAAAABgO4TRAAAAYE29dnWMaljeqZyehdTSqFXywf8rNWG0qnVuVcTSIiIOkuM/a8sEVE4mg8ple61+4/31K4J1U4OZ7adhtAa9sGwfr45eqZzea/WXCpFl21823JKF1Ja5PQFg1jLB04iI4eT8hNGysduy4VHYhTSq3HkmWsX6vxYsIh+bTsfJdWPPujH3vIPk/dHJZBCTctx4O1OLzitFcvuUZfX4f9d+6fjn4qXhb1fOe8/l90W76Oz4iAAAAAAAAAAAAAAAYDuE0QAAAGBN/SVjUb0krrFsdOpKpyaMNn44jHY8qQ6jXWhfXGq/u7JMGC2Lxy0TXsiiJxERJzPbz8MIiwNm2T6y2FoWy8tkj61lw2h5aK757QkAszrFXuX0LCSbBdM6rd2Hf3rt6jHasq+vsAtHw5cqpx/WRJWXUzfmnYbRqseSEcuNJ+vG8nX7yKTnlbtBseyaZWP1XfvQ9Rcqp7eiHe+9/FU7PhoAAAAAAODJdD5+bwIAAAAAwONPGA0AAADWtGwsKotj9dvLRbAudi5FN4mMHFeEwo7H1WG0g/ZTS+13V7Iw2rAiaLCJkFddmG4ws/0sjFA0CKMt+1jZ1GNrsGS4ZROhOQCYlQXNRpNR9fQ0YFQ9PtimPDy6fJgJtu1o9HLl9MPO1Z0dQzaWjKiPET+8bP7+qG4fmey8cv89VfV4/jyE0T4+/L34hZs/VTnv8y6+Ky53ruz4iAAAAAAAAAAAAAAAYHuE0QAAAGBNdR/Yr5IFuJaJBJxu5yAOkn0PxkuE0VrnM4zWTcIn80GDUTmMYXmnctllbtNW0Y79olc578Hbc/Uw2rL38bIhsjSMNj6OsmwedNhEaA4AZmVBsyxUtDhgtDt5eHT5MBNs2yvD7YbR6sa809FmNpZsRWup53Dd+6zjivc7iywKLubX7ezDaB++/kNRxqRy3rOX37/jowEAAAAAAAAAAAAAgO0SRgMAAIA19drVobNMv139Af8smJZup3WQbut4LtRRlmXcmlSH0S60z2cYrdNqFlA5GVeHFyKWD3n1khDZbNyhXCeMtmTobOnjT5YfxygNQVTJQi/Lht0AYKpp8HRqmAaMOhs7pqay19cs/gRn6WhUHUa70t1MGK2Jk8lx5fR+60IUxeIx873la8bOg2QfdRadV7JjO+ss2nByJ37s1f+nct4n7H1SvLX/th0fEQAAAAAA8Fhb4ssXAQAAAGDT/HgKmBJGAwAAgDX1W9VxskwWQFtlO9k6g/GDYatheScNjxy0zmkYLQmoDCdzYbSaKMKyIbIs/DUbCiuTn642iTwsGzpbNkS2qXhEFptb9vgBYCp7Xc/GJ9n0bDvblI4PxtUhUTgr43IUr42OKucddrYfRpsGhAfj6nHnskHpdtGJvWK/ct4qz79F55UsdFyWk6X3tUk/c+OjcXP8WuW8Zy9/9VKxOQAAAAAAgPX4vQQAAAAAALshjAYAAABrWjZelcWllo94XYiDdnUY7XjyYCjgeHwz3c5B+3yG0boNAyp1wa9lQ17Z8ieT+6GwafDhYYv/8G/p0NnSsby6MFrzeES27LKPUQCYSoOnj0AYrZe8/s2OD+A8uD76eDpWPexe28g+snjYqdN9Z+HiVSK7/eT9zjLR36nsvNIt9u7+KwmjLb2nzXrx+guV03utfrzr0pft+GgAAAAAAAAAAAAAAGD7hNEAAABgTct+wD+LYy0d8Wr303DWYPxg2OrW5Ea6nQvti0vtd1ey8Mk2w2jZfTN/e1Zp8n2ovWVDZ+3+UsvXhdeWibdky64SswCAiOav64um3w8Y7U72+rdKmAm26Wj4cjrvsHN1I/soisWj3uy5sWwkuG6dZaK/U4uCi610RH92abR/d/Jr8Rsnv1I5711Pf1n0Wsu9XwAAAAAAAAAAAAAAgEeBMBoAAACsqd9eMmiWfLh/2VBAv3Uh+u3q0NbxXCjguCbsdZBs46w1DaicJOGFvWI/2kV7qX1m983sPsqYVC5TNPgxS3+DobMq+61+FEnQoUncbSq7TYUXAFhVd+kw2qhyeqfobOyYmspej08mgyjLswsmwbyjUXUYrdc6WPo9yyqmz4Z8LLlKGK1ZCLqJ4SQLo03PK9Xj6PIMw2gvHr2Qznv28vM7PBIAAAAAAICIs/xCGQAAAAAAnizCaAAAALCmpYNmSZRg2VBAr9WPg9ZTlfMGc2G0W+MblcvtF700QHbWsoDKJCYxLsf3Lg/G1eGFZe+XiPy+OZkM7v07+/O+LEj24DEtF6FbdvlW0Yr9JF42SAIVyyy77PEAwFTT4OnUsLyz1Ha2KRujlTGJ2+XJjo8Gcq8Mq8NoVzpXd3MAd0OB2VhylchuFoKef7/TRHa+mZ5XstH8WYXRbo5fi5+68eHKeZ928NnxCfufuOMjAgAAAAAAAAAAAACA3RBGAwAAgDUtHzSrXj6LcuXb6cdBFgoYPxgKOJ7cTPZ5fkNXdeGT2ajBSRZeWPL2jMhjarPhhXXCCMvGIFaJR2TrZLdT5bJJbG6V4wGAiOXDaKNJfcBol+piq7PxVDhrR6PqMNphd3NhtCYx4JNx9fNilchuPj5vPradys433dbe6T+K6utWlmcTRvuJV38kjUQ+d/n5HR8NAAAAAAAAAAAAAADsjjAaAAAArKkuljGvFa3YK/Yr5y0TWNsvetEq2mlcYD6EdjyuDqNdaF9svM9daxpGy6IIy9wvU9l9MBs9KctJ5TJFsfjHLK2iHftFr/HxrBKuyx4TTeMRk3Ict8uTjR0PAETkr+vDLIxWjqq309p9GK0utjofo4Wz9Mrwpcrph51rO9n/NCA8GxWe1WsvH9lNx7YrPPfS88rd81Mefdt9GG1STuLD1z9YOe9y55n4nKfeteMjAgAAAAAAnhxn86UxAAAAABDhp1PAfcJoAAAAsKZlgma91kEURfUH7pcJeU0DVQdJqOp4LhRwKwmjHbSearzPXeu29tJ5sxGVkyT4tcz9MpXdB03CC1lGYV5dXOWhZTd4HU7GzcJosxG4h7e9fMwCACIiuknQbFQRRpuUkxhHdcCoWxNO3ZZezetf3esm7Nr10cuV0w+7Vze4l3zUOw2jZc+LVcLF/WTs3DT6O2tY3qmc3ik6EZGH0c7ijyt+8dbPxkvD36mc995L74t20d7xEQEAAAAAAEQ0/wspAAAAAABYjzAaAAAArCn7sH6VurDGcoG10+30W9VhtJPJcUzKyb3Lx1kYrX1+w2jTQEGV0eR+RCWLItTd1pksWjYbdyiTNEIWUpi3VABvhXhEdh2axiPqlusljzcAWKSTBM1mX9PvTauIpS3azjbtF70okl+nDCaL46mwK0fDj1dOP+xsLozWZMSbj89Xif4mIegVnnvZuWV6XsnDaJPK6dv04vUXKqe3oh3vufy+HR8NAAAAAAAAAAAAAADsljAaAAAArCn7sH7lsu182bp52T6zfZdRxu2ZmNfxpDqMduFch9Hy8Mls1OBkXB1eWOZ+ub9OFhW7H15YN4y2TBBilTBats5JwzBa3XL9FWJzABBRE0YrRxXTzlcYrSiKNLg6G0+Fs3R7chK3Jjcq513pbi6M1kQ2nlwtjJaMbZP3AHWyc0u32Ft6W9v08p3fjX9166cr57394rvjUudwx0cEAAAAAAAAAAAAAAC7JYwGAAAAa+oWe9Fq+BY7i2osmpcte1ATNjueiXndGldHEg5aj2YYbVjeuffvQRZeaC8f8cpiDSeTQZTlaRBt+v+HFM3CaMvEznrtzcUjZuNudU7GeeBllZgFAETkr+vjGMWknDwwrSqWtmg727ZueBS27Wj4cjrvsLO5MFpdDHgaEM7DxcuPJQ+SePRxw7HtrOzc0ik6ERFRFNXv6bIw8rZ86PoL6T6fu/z8To8FAAAAAAAAAAAAAADOgjAaAAAArKkoiui3qj+wP68uLLVf9BoH1vp3g1kHNfsdjO/HArJwQF1Y7ax1i7103mzU4GRSHfJqep88uE71/VNGGbfLk3uXqtRFIh7YxxKxs1XiEWncrSZ4NisLqHWKTnRb+X0CAHW6NUGzUTmsvdx0O9uUvb4OkgAU7Noro5fSeZc3GEaLBWPeSTmeGTc/aJXoby8Z059MbuXB4gplWT4QV541DS5m12yZ/azrzuR2/Pir/7Ry3hv3Pjk+tf+ZOzsWAAAAAACAh+32C2UAAAAAAHhyCaMBAADABjT9kH9d6Kooitpw2gP7u7tcXWTreHLz/r/HNyqXudC+2Gh/Z6FTdNJ5s8GUkyTk1Wv1l95n3e0/Dc2Va4bRmt7H3WIv2jW3QSZ7TAwmzcItWWiu6XEDQJXOhsJoddvZpuz19aTh6yts29Hw5crpT7cvR7e1q+dNmY4lIyL6K4zPsxD0qBylobMq4xil86ZB5mw8n43/t+Gnb3wkbk2q37s9d/j+KIpm7zkAAAAAAAAAAAAAAOBRJowGAAAAG9D0Q/6L4lJNY17TwFq76MR+0atc5nh8Pxh2a3yzcpksNHAetIp2tJIfXcxGEAZJfKG/wnWrC81NIw/rhtHq4ngPLrfafZM9xgZJQO7h5aoDL02PGwCq1IfRHgwW1cWOziqMlr++CqNxPhyNqsNol7tXN7qfui5XWeaR3YiI3obH58s8/+bPM7M698Jx2ZXbXRjtxesvVE7vtQ7iC55+dmfHAQAAAAAAAAAAAAAAZ0kYDQAAADag6Yf8F4XP+u2m27kfCMjWmYawJuU4TpJowIX2xUb7OyvdYq9y+qgc3vv3ybj6ujWNzD24Tl144fT2XDeL0DR4tsrxn26/+jrURSoeXC67PYXRAFhdtzaMNpy7XBMwOqMwWv76KozG+XA0rA6jXelsNoyWx8NO1cV4m8akH1wnHzsPxs3CvxERo8kwndcpOhGRh453lUX7jcGvxr87+bXKeV/09H+48vsDAAAAAACA5ezuS2MAAAAAYF7px1PAXcJoAAAAsAFZLOOh5RaEzxpvZzaMlsQCpqGAweQ4yuQP1g7aTzXa31nJ4ifTYEpZljFIgiRNI3Oz9or9aCU/LpmGxcpyUjm/KJr9mKXX3sxjJd1+8hhqGo7Iw2hCDACsri5oNizvPHC5PmB0NmG07HVQGI3z4mhUHUY77G46jFanjJNxHuNdJbRbNybO3gdUmT/PzJqeV4oiC6Pt5q8rPnT9A+m85w6f38kxAAAAAAAA1Kv/Eh0AAAAAANgUYTQAAADYgKYf8l8Ul2q8nZm41kESCzienIawbo1vpts5aJ33MFqncvqoPA2mDMs7MYlx5TKrhLyKolgYmkvXbfiHf6vE75aRxSNulycxKatvq1mD8eZCcwAwVRc0m76uZ5cf3E712GDb8vCoMBrnwyvDlyqnH3Y2G0arG/OWUaaxwE7RiW5rb+n97Re9KJJfZw4mzcK/EfXnlW4xPa4kjJaEkTfp5ui1+KkbH6mc9/sPPjdev/emrR8DAAAAAAAAAAAAAACcF8JoAAAAsAH9dtPYVX1capVoVhryuhsKOK4Jo11on/MwWhJPGE7uRETEIAkvRCy+rTO9dnVQ7WQyiIjT4EOVpt+HuqmIXqZfs970OtTJYharHg8ARER0WnVhtNEDl4flneptFN0oirP5BvJsrNfktRW2rSzLOBq9XDnvSvfaTo8lG583HQPPOw0XZ2HCZcJoo3TeNNx4NmeXUz/26j9J423PXn5+x0cDAAAAAAAAAAAAAABnSxgNAAAANqBp0GxRXKppMGA2+nXQrg6AHd8NBRxPqsNorWitHCjYlWmkYN40GpBFvCLWCYsl4YW7obkyJpXzi4Y/Zmkev1sx7FazXl1IbtEyqx4PAEREdIpOOm80eTAGlAWMsnHBLmRjpun4AM7SrcmNNCh42Lm6s+MoYzuR3X7yfmeZ518WHYu4f37KxvNZGHlTJuU4PvzqByvnHXauxmc/9QVb3T8AAAAAAEBz2/29CQAAAAAATAmjAQAAwAY0D5rVL9dvLx9Yy4JV01DA8bg6jNZvX4iiKBrt76x0k4jKNJgyGOehryygsEh2X55MBhGx/p/3NX6sNHwsPLRezfbrbq+pbcQsAKAdnSiietwxHyzKAkZnGUbLXl+n4wM4S0fDl9N5h91rG91X9jw+VcYgeU6sE9nNw8WLx7ZTWTgu4v65Jbtm2w6j/atbPxMfH/5e5bz3Xv6qaBftre4fAAAAAAAAAAAAAADOG2E0AAAA2IBFwbN7yy2IXTWPZt0PCxwkAbDj8WkY7db4RuX8C62LjfZ1ljrFXuX0adggi3gVUcResb/SPrP7YBqay9JoraLZj1max+9WC6PVrZfdXrOyeNo6MQsAKIoiDZvNB4vyMFp1MHUX8nBq8zATbMvRqDqM1op2PN2+tNF91YfRIk7ujZkftE5kNxuHTt/vNJGdVyJmo4vV123bYbQXr79QOb0dnXjPpa/c6r4BAAAAAAAAAAAAAOA8EkYDAACADehtKHbVNLA2GxbIQgHTkNfx5Gbl/Cyodp5kAZVp2GCQxEh6rX7jUNm87D6YBsPKcr0wQtPAWNPHwrxuq5vebtntNetkMqicvk7MAgAi8rDZqBzNXa4OGHWTYOouZK/LJ5NBTMrxjo8GHnQ0rA6jXe5ciVbR3tlxlFHGYJyNJVcb20bkYeFlwoTz55mpdnTuvW8oiiT6tub4v87v3fnt+Ne3fqZy3udf/OJ4unN5a/sGAAAAAACotMXfjQAAAAAAQFPCaAAAALABTSNWi5ZrGgyYjWulYbTx3TDaOAujXWy0r7O0KKCSxRDWCS9kkbvpvsqo/uO/IpKQwvz2GwbG1opHpPGWWwvXTW/ThvE/AMgsCp5ODZMwWrb+LtS9Dt6enOzwSOBhr4xeqpx+pXtt8zvL4mF3ZWPJLG7WxMGCEHQTw8mdyumz7zey8fw2P/rz4esvpPOePXz/FvcMAAAAAACwimZ/HwUAAAAAq9LtB6aE0QAAAGADmobRFsWumgQDWtGKbrF37/JB+6nK5Y7vhgJuJWG0C63q9c6TPKByGjYYbCGMlt2Xgw2F0brFXrSjOvj2wHG0qwMQTWTXfzAZLFw3u02bPsYBINM0jDZ/+f76i18/t6XudTB77YRdORq+XDn9sHN14/taNOLdxvi8l4TRjsfNw2jpeaV1/7yUh9EmjfezjDuT2/Hjr/5I5bw3739K/L7ep29lvwAAAAAAAAAAAAAAcN4JowEAAMAGNPmgfzs6aRBkme30WxeiKO5/aP8gCQWcTI5jUo7jeFIdRsuCaufJbABu1vBu2OBkvPmIV3YfnNyNimVhtKbfiFoURaMAXq/Vb7S9Ktn1z26vqVE5jOHd6NzDxyOMBsB6Fr2uT+VhtPpx1DbVvQ6eCKNxxo5GSRite22nx1GWZfp8WGcseZAEg5d57mXnley8NGtbXzr3Uzc+nL5Xe+7y+x94zwcAAAAAAAAAAAAAAE8SYTQAAADYgCahq377YOGH25sEvXrtB4NZ/SQUEBExmBzH8fjRDaNlAZRp2GCQhRca3B+Z7D4YjG+d/qOsTiMsEy5oEj3rJ8G7RttPrv9gcqt2vZPxoOZ4hNEAWE+n6FROnw8WpQGj1uKA0bbUvXYPJvnrJ+zC0TAJo3We2cLe8jFvGeW9mPC8dcaS2brH4/qx7axROaqcPnteKtLrtvk0WlmW8eLRByrn9VsX4guefnbj+wQAAAAAAFjftr5SBgAAAAAAHiSMBgAAABvQJGK1qRjWfBjgoGadwfhW3ErCaBdaj0AYrZUEVCanwZSTJIy2Tnihl6w7jTxkf96XhxQetsr9vIxs3SxUcX9+9e0Zkd8uANDUouDp1HBSHUbL1t+FbrEX7agel5wsEWeCTZuU47g++njlvMPu1Y3vb9GYd5A8H5q8F8pkIei6seu8YXmncvrseaUoqn9tWiZh5HX8xsmvxG/e/vXKee++9OWx19rf+D4BAAAAAAAAAAAAAOBRIYwGAAAAG7Df4IP+TcJSvfby28lCARERx5NbcTypDqMdtM9/GK1b7FVOnwZUBkkMYb3wQvX9NJicRh7KmFTOXyaM1uyxsPkw2vQ6ZLLbMyK/XQCgqaZhtPnL99evDpPtQlEU6ThtsCA8Ctv06ugoJsn49Ern2o6PJg/xrhPZzca2xwvGtrPy88pMGC1Zt0zTyKt78foH0nnPXv7qje8PAAAAAAAAAAAAAAAeJcJoAAAAsAHtoh37Ra92mewD/csu81AYrWadwfhWHI8f3TBaFlAZ3g0bZOGFfiuPxS2SRRuG5Z0Yl6OaLELzMFqTyFiTx0Imuw6DcR4+i6gPo60TmwOAiIhua90wWvX6u5K9Np/UvH7Cth2NXk7nHXavbnx/dSPeMsr0+bBOZDcb29+eDGJSVkfh5mXnlQdDzNXXbtNhtBuj6/EzNz5aOe8zDj4vXrf3xo3uDwAAAAAAYDmb/9IYAAAAAABYljAaAAAAbEhvwYf9s1jVrHbRib1iv3aZ+ShHq2in2/7gK/93DMs7lfMOWo9uGG0aNhiMb1XOXyfiVRuamxxH9sd/raJ5GG3RY6EVrYWPgzpZeGJRuCWb3y32ol10Vj4eAIioCZ5OHo0wWhoeFUbjDL0yrA6j7Re9LY338zHvuBzFnfJ25bwm74Uy/XZ1GK0uxDZvVI4qp3dmxrhFet02++Gfj776T9Ljee7w/RvdFwAAAAAAwGY1//soAAAAAFiFbD8wJYwGAAAAG7Low/5ZrGrZ7VQF2A5a1bGAXz7++XQ7F9oXGx3PWeouCKOdTAaV87N4QhN1YbST8XGUZfbj1eZ/+Fe3j4jTx0CxRGjt4fWrr/+icMtgXD2/n2wPAJaxKHh6/3J1MCgbF+xKNkZrGmaCbTgaVYfRLnevrjWeXEU2No9YPP6tUzcWbRomzGLRs+elLIy2yT+umJTj+Mj1H6qcd6VzLT7rwjs2uDcAAAAAAAAAAAAAAHg0CaMBAADAhjSJXTXazoKAWtV+VgmBHbSfWnqdXVsUUBlMblXO77X6K++zKjw3NZgcR5mkEZbJTmwqopeun1z/ReGILOyyzu0JAFNNw2hNAkZnIRvrZWFR2IWjYXUY7bDzzFb2l8XDIvKxecS6YbSa8fk43+es+fPM1ANhtCQkV5aTRvto4hdu/lS8Mnqpct6XXP7qaBXtje0LAAAAAAAAAAAAAAAeVcJoAAAAsCEbC6OtsJ0L7YuNtj1VRBEHrUc/jHYyGVTO77eWD8XdX3fVMFrzH7Msuo/XCUdERPSS65+Fz6aycNoq4T0AmNc0jNYkYHQWsrHcotdX2KajJLJ1pXttOzusqQHXRQKbvheqUhcNXhT+nRpNRpXTu63dnldevP6ByumdohNffOkrdnosAAAAAAAAy6v+uykAAAAAANg0YTQAAADYkEUf9m8au1plO59+8DmNtj31qf3P3HkEYBXdJIAyLIcxKSdxOwmj9Vr9lffZLjrRLfYq553UhNGWsSg0tk444nT71esPxsdRlvnxZ6G5dW5PAJjKXtdH5Wju8vkMo2Wvr8JonKWj4cuV0w87V3d8JPXPhV579fFkp+im4/PB5FajbTQ5rxRJ9W0T4/+IiN+987H4peOfq5z3+RffGxc7lzayHwAAAAAAAAAAAAAAeNQJowEAAMCGZLGMqaZxqUUBtapo1nsvfWV8wt4nNdr+ftGLr7n6zY2WPWudJN42Kodxe3KSRgoWhccWye6Dwfg4sm8+zUIKVRY9FtYNo2XrT2Icw/JOul4Ws1j3eAAgIg+bzb82zYfSprKw2q5kr4cDYTTO0Cuj6jDale61reyvbsybRcq6xd7aYcN+q3p8Pxj094j4AAAgAElEQVQ3C6NlY+BdhtE+fP2D6bznLr9/I/sAAAAAAAAAAAAAAIDHQeesDwAAAAAeF4viUU3jUouWqwqwXexcjj/3Sf9D/PRrH4nfOPmVGJeTynXfsP+mePtTXxxv2H9zo2M5a1lAYTQZphGviOYRunz9g3htfP2h6SeT4yjLJIxWNA+jLYrfZeGHTWx/MDmOvdZ+9bxx9W266HgBoIn0db0cPnB5OHd50fq7ko0vTiaDHR8JnBpO7sTN8auV8w47V7eyz/owWhbZXW9sHnEaPn5tfPTQ9OMkxjZv/jwz9eB5ZXthtNuTk/jxV/9p5bxP2v/UeEvvrWvvAwAAAAAAYDM286UxAAAAAACwDmE0AAAA2JCFsauKoNkqy2XhtAvti/Hs4fPxbDzfaD+PgiyAMiyHaXghYv2wWK99EFHRThhMjtMwQl0kYt6i4+u114tH1D0WTybHcSkO03mVxyOMBsAGNA2jjSZ3qtdvnW0YLXt9HYybhZlg045GH0/nHXa3E0ark0V2NzGWzJ5/dbHkWaNyVDm9O3NeykPH63/45ydf+1D6/uW5w/cvFVkGAAAAAAA4O36nAQAAAADAbrTO+gAAAADgcbEojNY0CLBouUX7eZx0awIqdRGEXms7YbGTmjDaMn/4tyh8tnbYreYxUhdvyWINTaN+AFCnm4TN5oNFWcAoC6vtSvb6ejIZ7PhI4NTR8KV03mFn92G0bHy+ifcvB8n4+LhhmHA+wDg1e15Js2hrdtHKsowPXf9A5byD1lPxjovvXW8HAAAAAAAAAAAAAPCYWPdvd4HHhzAaAAAAbEhvQTyqaRBg0XJPUhgtC6CMymEa8WpHJ7rF3lr7zW7jQU0YrbVEGG1R+Gzd+3i/1YsiOZ66eEsWs2ga9QOAOtnr+nAuWJQFjLJg6q5kodC6WCts09Ho5crpF9oXY6+1v5V9ZmPMiIjBpDpStuh9UhPZNpo+/4blncrpD4bRqn9tmoeRm/n1wS/Fb93+jcp577705Vu7rwAAAAAAAAAAAAAA4FEljAYAAAAbsqmg2aII1ZMUqcoCKpOYxPH4RuW8XrsfRdE8Ula5jeQ2PhkfR2RhhCX2ue34XatoRa/Vr5yXBStO51WHJZ6kGB8A25MGTycPBouyMFq2/q5k44M75e0Yl6MdHw3kYbQrnWs7PpJTg3EW2a0ely7jIAkLH4/zse2sUfIcbXJeWTeM9uL1D1ROL6KIZy9/9VrbBgAAAAAAAAAAAACAx5EwGgAAAGxIP/mw/lTToFm/vWA77fXDAo+Kbk2o4Mb4tcrpmwjH9dvV2xhMjqPMumjRPIy23+rVzu8l+19Gdjtk8bOIiJNk3pMU4wNge9Iw2lywaFjeqVzurMNodaHQk8lgh0cCp14ZvlQ5/bB7dYt7zce8eWS3/v1NE/nYtmkYrTq4OPt+Ix/Prx5Ge210PX72xo9XzvvMC2+Pa3ufsPK2AQAAAAAAdm+9L5QBAAAAAICmhNEAAABgQ3qt+mBZ06BZ3Xa6xd6ZR0F2qe663hi9Wjm9LlrSVBZeOJkcRxmTynnLhNFaRbv2ft7Edci2cTKuDlaUZRkn4+qoS3/BYxsAmugUncrp88Gi+VDa/fXPbxhtkLy+wjYdjT5eOf2ws70wWlHUhdGqI2WL3ic1cZDEo+uiv7OyMFqnQRitXOMDPh999YdjHNXntGcvv3/l7QIAAAAAAAAAAAAAwONMGA0AAAA2pJ98WD9iuaBZv5VvZxPBrEdJ3W12c1wdRsuiZstIo2KT4zSLsEwYLaL+ODcSRlsyHjEs76TRhl7NYxsAmuoWe5XTZ4NFZVmmAaPuGYfR6l67TxrGmWCTjoYvVU7fZhitTvY8qHt/01S2jcG4OsY2bzi5Uzm905oJoyXRt7JcLYw2Lsfx4es/VDnvme7r420X3r7SdgEAAAAAALZqxd+NAAAAAADAJgmjAQAAwIZsKnRVt+wmol+Pkm4rD6DcSMJom4iKZbfzaVRsM3/8t+37udfqV07Pwmgnk0G6rX6yLQBYRhY8HZb3g0WTGEeZvNY2jcxuS6+dvx4Ko3EWjkYvV04/7J5VGK16PJmNS5eRR3+bhdFGZXUA+MHzShJGW3H8/ws3fzKujz5eOe/Zy18draK90nYBAAAAAADOznJfHAkAAAAAAKsSRgMAAIAN2VToqteu2U7NvMdRXQDlxqg6jLaJqFh2X56MB2kYoSiW+zFLbUhvA/dzv1Udj8jCLXVRiSctyAfAdnSKTuX02WDRsBzWrH+2YbRO0Y1usVc5LwuPwrYMxrfSENlh52zCaJlNvIfJxudNn3uj5NzSnTmvFOkHeVYLo714/QPJPvfi3Ze+fKVtAgAAAAAAAAAAAADAk0AYDQAAADakW+xFK9qV83qtfuPt1AXW6uY9juoCKDfH1WG0TUTFsnhDXTxs2e9D7berw2URedRsGVnMbDCujkdkYY3T43myHncAbEf2uj4qh1GWp+Gh0eT8htEi8jFdFh6FbXll9FI670r32tb2m8fDcpsYS2bj41E5jOHkzsL1h2X1Mk3OK6tk0X7n9m/FLx//fOW8d1x8bzzVfnqFrQIAAAAAAAAAAADA4221rzQGHkedsz4AAAAAeFwURRH99kHcGt94aN4ysa69Yj9a0YpJTB6al8WuHlfdYi+d99roeuX0TdxGWbyh6j65b7lIRF0sb3+JkN6y2781uVH5GL0+/HjN8fTWPh4AyAJEZZQxiXG0oxOjMg+jdVtnH0brty7EjYo466ujo8rXV9iW37n9W5XTi2jFpc6Vre13lTDaRsbnNe+nXhm9dC801mv1o108/OvPUTmqXHf2vNQqqr9Paji5s/Tz+59d/0fpvGcvP7/UtgAAAAAAAAAAAAAA4EkjjAYAAAAb1GtVh9GWiQEURRG91kEcT24+NC8Ldj2uOhVRg6nb5Unl9E3cRv3WhaXXaS0ZiciOc7/oRbtoL73/h7bfrr4Ov3L8C/Ff/tofbbydXqsfrQ0cDwB0W3nwdFgOo13Uh9HqxgW7koVHf/Cl748ffOn7d3swUOFS53AjY8lN6m8g+ls3Pv++f/Pd9/69X/TiMy+8Pb7lDd8dB+2nIiJiXI6jTALHWbBx1odf/WB8+NUPLnnE1T6599Z4S/+tG9kWAAAAAADA7pVnfQAAAAAAADwhqr/6HAAAAFhJFrtaJowWEdFvb2Y7j7pW0Y7Wkj++yIIl29/GsmG06rhDL7nvl7WpiN6T9pgDYHvqwmajyWkQbVgbRsvDaruyqddp2JbDztWzPoSH9FaIDs9rGi6+XZ7Ez9788fgbH/sf702rCy52Z8JoxZLj+VU8d/n5re8DAAAAAAAAAAAAAAAedcJoAAAAsEFZRGrZSFW6nScwxtGZiRU00W9vILywwjaWDSlk8bVNhcg2tZ1NBdYAoO41fRouahowOiteFznvDrvbDaOtEg/rt9cPF++3elEs8WvNXx38y/j48PciImJY3kmXe/C8tN0w2oX2xXjHxfdudR8AAAAAAADrK8/6AAAAAAAAQBgNAAAANula9w2V05/pvn6p7VxNtnN1ye08Dpa97ZZdvsp+0Yun2peWWudK99pSy1/b2+59nD0Wl7WJ2xMAIiL2iv103u3yJCLqw2jLxlK34Ukci/FoecPem7e6/U7RjYtLjJO7xV5cbF9ee7+torX08+9373wsIiJG5ShdZva88syS4/llffGlr4hua2+r+wAAAAAAANiu7X7RDAAAAAAATAmjAQAAwAa94+n3PjStU3Ti8y6+a7ntXHx4O3vFfnzWhXeufGyPqrdffHfjZa90rsWn9D5t7X0WRRHvuPiexsu/pffWOOxeXWofb7vwjtgveg9Nr7rvV/Ep/U+LK5314w7vfPpLNnA0ABDRax2k8wbj44iIGNaG0TobP6Zlff7F90Thj/05p4poxRc8/ex291EU8XlPNR+ff+5T74q9Vh5FXMay4+STyel5ZTRpFlz83Ke+aGvP717rIL7s8n+8lW0DAAAAAAAAAAAAAMDjRhjtCVIURb8oincXRfHHiqL480VRfG9RFH+mKIo/VBTFW4ui2MinPYqi6BZF8aVFUXxrURR/oSiK7y6K4uuLonjLJrYPAABwnn3mhbfHH37dd0a/dSEiIi61D+O73vS98Uz39Utt551Pvze+7uq3Rq/Vj4jT4NefefNfioudSxs/5vPu/c98U3zJ5a9+IFpQ5U37b4nv+cS/HK1iMz/u+IZr3x5fcPG5aEW7drlP7X9GfNebvnfp7R+0n4rv+cS/fO+xsV/04muufnO86+kvXeVwH9Iq2vE9n/h98ab9t6y0/n7Riz9w9VviCy5uN64BwJNjv9VLo0P3AkZJGK0VrWgV9a/Ju/Ap/U+Pb33Dn40L7YtnfSjwgKfal+I73/Rfxev33rT1fX3j674j3nnxS6IdeaywiFZ8zlNfGN/8hj+1sf3+R1f/cLz30vsaRxKnwcXsvBIR0W3df4/x1oO3xX/yhj8dT7WfXu9A51zuPBN/8o1/IS53n9nodgEAAAAAAAAAAADgcVOWZ30EwHnR7JMDPNKKonh3RPznEfF1EbFXs+jHiqL4PyLir5Vl+coK+7kWEd8XEX8oIq4ky/xYRPwvZVn+vWW3DwAA8Kh49vD5eO/l98X10Stx2Lkaq3ao3/fMN8SXX/naeG10FJc7z6y8nUddq2jHH3n9d8UfvPbt8dLwtyt/uPlU5+m43Kl8K7qybqsb3/7G/yL+yOS74uU7v1u5zKXO4Vqxuk/pf1r85U/563F99PF4unM52g0jD029bu+N8b1v+atxffRK3By91ni9VtGK1++9cePHA8CTrVW0Yr/VvxdBmzVYEEbrFnU/2t6td1360viCp5+Nl4a/HcNJHlyCXdlr7cW17ifs7P1Ct9WNP/bGPx8nk0E6Tn6mey367Qsb3W+7aMc3v+FPxTe+7jseeF/wv//7/zl+b/jvH1p+eq4ZlnfSbc7Hl9996cvjXU9/2cae3/ut/Xim+/qNxZsBAAAAAAAAAAAAAOBJ4NOtj7GiKDoR8Vcj4k9FRJNPw7wpIv67iPjOoii+rSzLDy6xr+cj4vsj4nULFv3iiPjioij+VkR8Z1mWt5ruAwAA4FHSKtpxpXtt7e20i3Ycdq9u4IgefXut/XjT/lt2vt9eqx9v7m1vv0VRbP0+vty5svFwHACsot86qAyjnSwIo83Hi87aaUT0TWd9GHCmtj1Ozsy/L7jYuVQZRrsfXByl26o6t3h+AwAAAAAAZCq+0RIAAAAAALZAGO0xVRRFERF/OyK+sWL2L0XEL0bEICKuRcQ7I+JwZv7rI+IfFkXxtU3iaEVRfGlE/IOI2JuZXEbEz0TEr0fE5Yh4e0TMfsr7WyLi6aIovq4sy0nDqwUAAAAAwCOs1zqonD4NGA0nWRjNrzOAav3Whcrpi4KLEecvuggAAAAAAAAAAAAAAES0zvoA2Jo/Hg9H0T4UEZ9dluVnlGX5DWVZfktZlu+LiNdFxB+LiFdnlt2LiB8oiuJS3U6KonhzRPxgPBhF+2hEvK0sy3eWZflNd/fx5oj4sxEx++mTr4mI/36F6wYAAAAAwCOon4TRTsb1AaNOS7wIqNZr9SunDxaE0VrRinbR3tpxAQAAAAAAPJrKsz4AAAAAAAAQRnuM/ddzlz8UEV9RluW/nF+wLMtRWZZ/MyK+IiJuz8x6XUR814L9fF9EHM5c/rG7+/nFuX3cLsvyf42Ib5pb/88VRfHJC/YBAAAAAMBjoNeuDqMtChh1ir3K6QD91oXK6dPg4rC8Uzm/UwguAgAAAAAALKc46wMAAAAAAOAJIYz2GCqK4rMj4i1zk7+nLJNPlN1VluVPRcT/Njf5a2r289aI+E9nJt2JiG8ry/KkZh//ICJ+YGbSfkT8xbrjAgAAAADg8dBvVYfRTu6F0UaV87tFZ2vHBDzaeu1+5fTBgvOKMBoAAAAAAAAAAAAAAJxPwmiPp983d/k3y7L8uYbr/sO5y2+tWfabI6I9c/kHy7L81Qb7+J/mLn9TURS9JgcHAAAAAMCjq9eqDxgNyzuV8wWMgEweXBxERMQo+d6grvMKAAAAAAAAAAAAAACcS8Joj6cLc5d/a4l1f3Pu8mHNsl8/d/lvNtlBWZa/GBH/fGbShYh4X5N1AQAAAAB4dPVb8z++PrUoYCSMBmR6SRhtGlxMzyst5xUAAAAAAAAAAAAAOE/K8qyPADgvhNEeT78zd7m3xLrzy75StVBRFG+IiM+dmTSKiI8usZ8fnbv8/BLrAgAAAADwCOq1+pXTB+NbERExKkeV84XRgEwWRju5G0YbTu5UzndeAQAAAAAAWJZPpQIAAAAAsBvCaI+nn4yI2zOXP6MoiupPmz3sHRXbqvJZc5d/vizLWw33ERHxY3OX37bEugAAAAAAPIL67QuV008mg4iIGJXDyvkCRkCmn4XRxqdhNMFFAAAAAAAAAAAAAAB4tAijPYbKsrwREf/nzKReRHzHovWKomhHxJ+em/wDyeKfOXf51xof4Kn/b8H2AAAAAAB4zPRa1d/hMZicfu/GsLxTOf//Z+/uo2W/6/rQvz+z9z6ZyQnkgSQECoaQgFBBwdDLIqlXEBaoqxcFEbiUXmJv1dorpVeWFttqROtawq3epe2yVsviwStoxSAtRdMFQos8yC1QkCb0hgBBeTAKCSYn5yTn4Xv/2HM8k8mevWf2mZnf7L1fr7Vmze/h+/t+Pr/FWt9wZs+8fxsCjIAJ+mtbB6Pd247lVDs5MXDRugIAAAAAAAAAAAAAAKtJMNr+9aoknxvZf21VPWvS4KraSPKrSZ48cvgPkvzOhEuuGtv//Iz93Ta2/5CqunDGOQAAAAAA2EMGvcNbHj926miSTAwwWhdgBEww6G0djJZsri3WFQAAAAAAgBm01nUHAAAAAACQ9a4bYDFaa1+tqmckuSGbYWeDJDdW1VuTvDXJp5IcTXJxkqcl+cEkXz8yxYeTvKC1iX/RuGBs//YZ+7u7qo4l6Y8cPj/JHbPMAwAAAADA3tHvDbY8fu+poznVTuXEqRNbnhdgBEzS3yYY7eipe3JcMBoAAAAAAMCcVNcNAAAAAABwQAhG28daa5+rqqcmuS7JDyS5OskLh69JvpLkF5L8X61N+KXIpvPG9o/uosWjuX8w2oN2Mcf9VNWlSS6Z8bIrz7YuAAAAAAA7G6wd3vJ4S8u9p47lxKQAo54AI2Brg22C0Y6dumfyuiIYDQAAAAAAAAAAAAAAVpJgtP1vbfi6N0nL9o9n+ZMkP5nkN3cIRUseGIx2bBe9HU1y4TZz7sY/SHL9HOYBAAAAAGDO+r3BxHNHTx2ZGGC0IcAImKC/TTDa0ZOTg9GsKwAAAAAAAAAAAACwWlrXDQAro9d1AyxOVV2b5OYk/zrJtdn5f+9HJnl9ks9X1d+bsdxu/tviv0cAAAAAAAfIoHd44rljp47meLtvy3PrAoyACTZ6GxPXiGOn7rGuAAAAAAAAAAAAAADAHiMYbZ+qqmcmeVeSR40c/kKSVyV5cpILkhxKclmSb0/yxiQnhuMuSfJrVfWrVVUTStw9tj/YRZvj14zPCQAAAADAPtLvTf4o+eipe3KindjynAAjYDv93rlbHj966p6cOGVdAQAAAAAAmI/WdQMAAAAAABwQ6103wPxV1SVJ3pKkP3L4PyR5aWvtL8eG/1mSG5PcWFW/kuQdSR4yPPf9SW5N8potyqxqMNovJ/ntGa+5Msnb51AbAAAAAIBtbNShrGU9J/PAoKJjp+7JiXZ8y+vWy58zgMkGvUHuPvm1Bxw/duroNuuKYDQAAAAAAAAAAAAAAFhFfkm0P/1IkktG9j+V5IWttWPbXdRa+1BVvSjJu0YOX19Vr2+t3T42fPzXJZdkBlV1Xh4YjHbnLHNsZdjneK879XK2ZQEAAAAAmEJVpb82yJGTdz3g3NGTk4PRNurQolsD9rB+79wtjx89eWTyutITjAYAAAAAAPBAresGAAAAAAAgva4bYCG+d2z/NTuFop3WWnt3kveNHBokefEWQ28Z2798+va2HP/V1todM84BAAAAAMAeM5gQYHTs1D05PiHAaL0EGAGTTQpGO3bqaI63+7Y8Z10BAAAAAACYVXXdAAAAAAAAB4RgtH2mqg4nuXLs8LtnnOZdY/tP3WLMzWP7V81Y49Fj+zfNeD0AAAAAAHvQpACjo6fuyQnBaMAuDNYmBy6eaCe2PGddAQAAAAAAAAAAAACA1SQYbf+5YItjX55xjvHxF28x5pNj+99YVVv/6mRr1+4wHwAAAAAA+9BgQjDasW2D0dYX2RKwx+0ucNG6AgAAAAAAAAAAAAAAq0gw2v5z5xbHDs84x3lj+3ePD2itfSnJJ0YOrSf5mzPUePrY/u/NcC0AAAAAAHvUxACjk5MDjDZ6hxbZErDH7SZwcaOsKwAAAAAAAAAAAACwSlrrugNgVQhG22daa0eS/OXY4SfPOM3VY/tfnjDubWP73zfN5FX1uCRPHTl0JMl/mq41AAAAAAD2ssHaNgFGp7YOMFqvjUW2BOxxEwMXT92T4xOC0awrAAAAAAAAs/KrVAAAAAAAlkMw2v703rH9H5j2wqq6LMlzxw6/b8Lw30hycmT/+VX1mCnK/OOx/X/XWjs2ZYsAAAAAAOxhAoyAeRtMWFeOnbwnJ6wrAAAAAAAAAAAAAACwpwhG259+a2z/RVX10p0uqqpzkvx6kvNGDt+d5MatxrfWbknyxpFDh5K8oar629T4riTXjRy6L8mrd+oNAAAAAID9YVKA0dFTR3Lqfs/iOGO91hfZErDH9dcmBy5ODkazrgAAAAAAADxAa113AAAAAAAAgtH2qd9M8vGR/Urypqr6xap62FYXVNUzknwoybPGTr2mtXbHNrWuTzJ6/pok76qqx43Nf05VvTzJb49d//Ottdu2mR8AAAAAgH2kPyEY7e4TX5t4zXptLKodYB8Y9AZbHj+2TTDaRu/QIlsCAAAAAADYh6rrBgAAAAAAOCA8Cn0faq2dqqoXJHl/kkuHhyvJP0zyw1X1iSSfSXI0yUVJnpzksi2memeS1+xQ60+r6vlJbkxy+hck1ya5qao+MqxzfpJvTnLJ2OXvSPITs90dAAAAAAB72WBCMNpdJycHo22UACNgsn7v8JbHj506mt6E50QJXAQAAAAAAAAAAAAAgNUkGG2faq19uqq+NcmvJ3nKyKlekicNXxMvT/JrSf5Ra+34FLXeW1XPS/KGnAk/q2Hdp0y47C1Jvr+1dnKn+QEAAAAA2D/6a1sHo9198q6J1wgwArYz6A22PH683ZdKbXnOugIAAAAAAAAAAAAAAKtp60eksy+01j6V5GlJXpbkg9kMPNvO0SS/keSa1toPttaOzlDrnUmekORXktyxzdAPJXlBa+0lrbUj084PAAAAAMD+MOhtHYzWcmriNevlOS/AZP3e4Ynn2oQ/j1lXAAAAAAAAAAAAAABgNfnG/z7XWjuR5E1J3lRV5yd5SpIrklyQ5Jwkd2UzyOyTSf54OH63tW5P8kNV9Yok1ya5PMllSY4k+UKSj7XWPnsWtwMAAAAAwB7XnxCMtp312lhAJ8B+MVgbzHzNRh1aQCcAAAAAAAD72dYPpAEAAACAefEJFHCaYLQDpLX2tSTvXkKd+5K8Z9F1AAAAAADYewaC0YA5G/QOz3yNdQUAAAAAAAAAAAAAAFZTr+sGAAAAAACAg6O/i2C0jd6hBXQC7Bfn9AYzXyMYDQAAAAAAYCut6wYAAAAAAEAwGgAAAAAAsDyDtdmD0dZrfQGdAPvFWq3lUJ0z0zXWFQAAAAAAgFlV1w0AAAAAAHBACEYDAAAAAACWpt8bzHzNWgQYAdsb9GYLXdyoQwvqBAAAAAAAAAAAAAAAOBuC0QAAAAAAgKVZq/UcqnOmHr9eG6ny5HFge/212YLR1mtjQZ0AAAAAAAAAAAAAAABnQzAaAAAAAACwVP3e9AFGG8KLgCkMZlhXkmS9Z20BAAAAAAAAAAAAAIBVJBgNAAAAAABYqsHa9AFG64LRgCnMEriYJOu1vqBOAAAAAAAA9qvWdQMAAAAA7HPNR1DAkGA0AAAAAABgqWYJMBKMBkxjMMO6UqmsRTAaAAAAAAAAAAAAAACsIsFoAAAAAADAUs0SYCQYDZjGrIGLVbXAbgAAAAAAAPaq1nUDAAAAAAAgGA0AAAAAAFiufm8w9VjBaMA0BmuzBKOtL7ATAAAAAACA/cqDZwAAAAAAWA7BaAAAAAAAwFINeoenHrshGA2YQr83SzCadQUAAAAAAAAAAAAAAFaVYDQAAAAAAGCp+muDqccKMAKm0e9Nv65s1KEFdgIAAAAAAAAAAAAAAJwNwWgAAAAAAMBSDXqHpx673hOMBuxspnVF4CIAAAAAAAAAAAAAAKwswWgAAAAAAMBS9XuDqccKMAKmMdu6sr7ATgAAAAAAAAAAAAAAgLMhGA0AAAAAAFiqQe/w1GM3BKMBUxisTb+uCFwEAAAAAADYjdZ1AwAAAADsc81HUMCQYDQAAAAAAGCp+r3B1GMFGAHTmGVd2egdWmAnAAAAAAAAe5hfngIAAAAAsAIEowEAAAAAAEs1WDs89VjBaMA0Br1Z1pX1BXYCAAAAAACwX1XXDQAAAAAAcEAIRgMAAAAAAJaq3xtMPVaAETCN2dYVgYsAAAAAAAAAAAAAALCqBKMBAAAAAABLNegdnnqsACNgGv3euVOPta4AAAAAAAAAAAAAAMDqEowGAAAAAAAsVb83mHrsRh1aYCfAfnFOr59KTTXWugIAAAAAAAAAAAAAAKtrvesGAAAAAACAg2Wwdnjqseu1scBOgP2iV72c0xvk2Kl7dhy7Xv5ECgAAB0VVbSS5NsnXJXlYkruTfDHJx1prn5tzrSuSPCnJw5Ocl+RLSW5L8oHW2vE51lnaPQEAAAAAAAAAQBd86yO3vQAAACAASURBVB8AAAAAAFiqQ3VOKpWWtuNYAUbAtAa9c6cMRhO4CAAAXamqRyf5G0meMnz/5iQPGhlyW2vtUXOoc0mSVyd5UZKLJoz5QJJfaK39zlnWekGSH0nytAlDvlpVv5XkJ1trf3EWdZZ2TwAAAFvb+e+7AAAAAAAwD35NBAAAAAAALFWveun3BjkqwAiYo37v3KnGrdehBXcCAACMqqqnJ/nxbIahbRnoNed635HkDUku3WHoNUmuqarfSPKDrbUjM9Y5L8mvJXnxDkMvSvJDSZ5fVS9rrd04S51hraXcEwAAgPAzAAAAALrk0yngNMFoAAAAAADA0vV7504VjLbRE2AETGcwdTCaP5ECAMCSPSnJs5dRaBjC9rtJRj9QaEk+muQzSS5I8uQkF4+c/9tJHlxV391aOzVlnbUkv5XkO8dO/XmSjyX5WpIrh7VqeO6hSd5eVc9qrf3hqt0TAADAzmrnIQAAAAAAMAe9rhsAAAAAAAAOnv7UAUYbC+4E2C/6a9OtKxs96woAAKyIe5PcOq/JquoRSW7I/QPE3p/kG1prT2mtvbC19uwkj0jyiiTHR8b9L0n++Qzlfi73D0U7nuTlSR7RWnvOsNbVSZ6Q5IMj485J8rtV9bAVvCcAAAAAAAAAAFgJgtEAAAAAAIClG0wdjLa+4E6A/WL6dUUwGgAAdOB4kv+W5N8m+cEkVyd5UJK/N8car05y4cj+B5I8q7V28+ig1tq9rbVfSvLCset/pKou36lIVT06myFko763tfavWmv3jdW6Kckzc/9wtIckuX6nOkNLuScAAAAAAAAAAFglgtEAAAAAAICl668JMALmq98bTDVuvQ4tuBMAAGDMG5M8uLX25Nba97fWfrW19tHW2vF5FaiqxyR52cih+5Jc11o7Numa1trvDns77ZxMF1h2fZLRDyze0Fp7+zZ1jia5btjTaf/7MGBtoiXfEwAAAAAAAAAArAzBaAAAAAAAwNINeoLRgPnqT72urC+4EwAAYFRr7Y7twrzm5CVJ1kb2b2it3TLFda8Z239hVfUnDa6qQZIX7DDHA7TW/r8kvztyaD2bPW9nKfcEAAAAAAAAAACrRjAaAAAAAACwdP3eYKpxG4LRgClNG7hoXQEAgH3peWP7r5/motbazUn+aOTQ4STP3uaS5yQZ/cfHB1trn5qqwwf29Pwdxi/rngAAAKbUum4AAAAAAIADQjAaAAAAAACwdIPe4anGrQswAqbUX5suGM26AgAA+0tVXZbkm0YOnUjy/hmmeO/Y/ndsM/bbd7h2O+/LZm+nPbmqHrrVwCXfEwAAAAAAAACshCabHxgSjAYAAAAAACxdvzeYapwAI2Bag960wWiHFtwJAACwZE8Y2/9Ea+3IDNd/YGz/G2ao9cFpiwx7+uMpay3zngAAAEb45SkAAAAAAN0TjAYAAAAAACzdYO3wVOMEowHT6k8djLa+4E4AAIAl++tj+5+e8fpbd5hv1OOXVGuZ9wQAADCl6roBAAAAAAAOCMFoAAAAAADA0vV7g6nGCUYDpjWYMhhtw7oCAAD7zVVj+5+f8frbxvYfUlUXjg+qqouSXHSWtcbHP2bCuKXcEwAAAAAAAAAArCKPQwcAAAAAAJZu0Ds81biNngAjYDr9KYPRBC4CAMC+c8HY/u2zXNxau7uqjiXpjxw+P8kdO9S5p7V2ZJZaW/R2/oRxy7qnmVXVpUkumfGyK8+2LgAAAAAAAAAAB4dgNAAAAAAAYOn6vcFU4wQYAdMarE0ZjNY7tOBOAACAJTtvbP/oLuY4mvuHiD1ogXVGbVVnnrV2uqfd+AdJrp/TXAAAAAAAAAAA8AC9rhsAAAAAAAAOnsHa4anGCUYDptXvTReMtlGeHQUAAPvMeIjYsV3MMR48Nj7nMussuxYAAMCUWtcNAAAAAABwQAhGAwAAAAAAlq7fG0w1bkMwGjClwZTBaAIXAQBg39vNL/VX+Zpl1wIAAAAAAAAAgE55HDoAAAAAALB0g97hqcYJMAKmtVGH0staTuXktuOsKwAAsO/cPbY/XRr79teMz7nMOsuuNatfTvLbM15zZZK3z6k+AACwSE3GMgAAAADd8ekUcJpgNAAAAAAAYOn6vel+zyvACJhWVWXQOzdHTt217TjrCgAA7DuC0c6u1kxaa7cnuX2Wa6pqHqUBAIDO+f/2AAAAAAAsR6/rBgAAAAAAgINnow5lbYfnt/Syll75UwYwvf7auTuO2RCMBgAA+83XxvYvmeXiqjovDwwRu3OKOudW1eFZaiW5dIo6W9Va1D0BAAAAAAAAAMDK8WsiAAAAAABg6aoq/bXx3+fen/AiYFaD3vbrSpKsW1sAAGC/uWVs//IZrx8f/9XW2h3jg1prX0kyfvzrzrLWeO+Tji/kngAAAAAAAAAAYBUJRgMAAAAAADox6J277XnhRcCs+r3DO46xtgAAwL5z89j+VTNe/+ix/ZuWWGt8vkXV2e6eAAAAAAAAAABgpQhGAwAAAAAAOtHfKRitJ7wImE2/N9hxjGA0AADYdz45tv+NVbX9hw73d+0O82137mnTFqmqw0m+ccpay7wnAAAAAAAAAABYKetdNwAAAAAAABxMg52C0YQXATPaeV1ZT1UtqRsAANhabf6f0h9N0h85/KbW2ufOct4rkvydkUP3tNb+xdnMuRe01r5UVZ/ImdCx9SR/M8l/mnKKp4/t/942Y38/yQ9sc+12viX3/87mx1prf7bVwCXfEwAAwJRa1w0AAAAAAHBACEYDAAAAAAA60ReMBsxZf826AgDAnvCSJD+XM78ov+FsQ9GSpLX22ap6YpLnnz5WVZ9prd1wtnPvAW/LmRCxJPm+TBEiVlWPS/LUkUNHdrjuxiRHkwyG+0+rqse11j41RY/Xje2/bYfxy7onAACAEcLPAAAAAADoXq/rBgAAAAAAgINpsEOA0UZ5vgswm4HARQAAVlxV9ZL89OndJLckedkcS1yX5Nbh3JXkZ+c49yr7jSQnR/afX1WPmeK6fzy2/+9aa8cmDW6t3ZPkrTvM8QBV9dgkzxs5dCLJm3e4bCn3BAAAML3qugEAAAAA9rkmtx8YEowGAAAAAAB0or9jgNGhJXUC7Bc7ryuC0QAA6NyzklyRpA1fPz4M25qL1tqRJK8aOfTYqvq2ec2/qlprtyR548ihQ0neUFX9SddU1XdlM0jutPuSvHqKcj+V5PjI/nVV9dxt6vSTvH7Y02mva63dul2RJd8TAAAAAAAAAACsDMFoAAAAAABAJwYCjIA522ld2bCuAADQvZeObH+ktfa2eRdord2Q5CMjh/72vGvMqqoeUVWPGn8luWxs6PpW44avi3coc32SO0b2r0nyrqp63Fgv51TVy5P89tj1P99au22ne2mtfSbJL44dfmtV/XDV/VPeq+rxSd497OW0r2T6sLKl3BMAAAAAAAAAAKyS9a4bAAAAAAAADqb+jsFo/owBzGbndUUwGgAAnfv2ke3XLbDO65JcnaSSfOcC60zrD5NcPsW4v5bksxPOvTHJdZMubK39aVU9P8mNSU4HlF2b5Kaq+kiSzyQ5P8k3J7lk7PJ3JPmJKfo77VVJviHJdwz3N5L8yyQ/UVUfTXJXkkcPa9XIdfcleV5r7UvTFFnyPQEAAAAAAAAAwErodd0AAAAAAABwMA0EGAFzNlizrgAAsLqq6vIkF48cescCy43OfWlVPXKBtVZGa+29SZ6X5M9HDleSpyR5YZLn5IEBYm9J8uLW2skZ6pwczvdbY6cuzWb43ffmTDDdabcn+a7W2vumrTOs9d4s4Z4AAAAAAAAAAGBVCEYDAAAAAAA60d8hwGhDgBEwo77ARQAAVts3Dd9bkltba19YVKHW2p8m+fTIoSctqtaqaa29M8kTkvxKkju2GfqhJC9orb2ktXZkF3Xubq29OJshaB/aZuhXk/zrJE9orf3+rHWGtZZyTwAAANtrXTcAAAAAAMABsd51AwAAAAAAwME02DHA6NCSOgH2i53XFcFoAAB06pKR7S8uod4Xk1w13L50CfUmaq09asn1bk/yQ1X1iiTXJrk8yWVJjiT5QpKPtdY+O6dab03y1qq6Isk3J3l4ksNJvpzktiTvb63dN4c6S7snAADgIBN+BgAAAABA9wSjAQAAAAAAnejvFGDU82cMYDb93mDb8xuC0QAA6NaFI9tfXkK90RoXLKHeyhkGkr1nSbU+m2ThwWTLvCcAAID7q64bAAAAAGCfa3L7gaFe1w0AAAAAAAAH02CnYDQBRsCMBr3D255f71lXAADo1KGR7WV8d2+0xjlLqAcAAAAAAAAAAHDWBKMBAAAAAACd6O8QjLYhGA2YUX9tsO15gYsAAHTsnpHtS5ZQb7TGPRNHAQAAAAAAAAAArBDBaAAAAAAAQCcGa9sHo63XoSV1AuwX67WRjW3WDsFoAAB07Msj25cvod5ojT9bQj0AAAAAAAAAAICzJhgNAAAAAADoRL832Pb8eq0vqRNgP9lubdkQjAYAQLduHb5Xksur6qpFFaqqK5M8aovaAAAAAAAAAAAAK00wGgAAAAAA0Im1Ws+hOmfi+XUBRsAuDHqHJ56zrgAA0LGPJ7kvSRvuP3eBtb57ZPt4kv+2wFoAAAAcCG3nIQAAAAAAMAeC0QAAAAAAgM70e+dOPLchwAjYhX5vMPGcYDQAALrUWrsvyX9OUsPXj1XV5GTfXRrO+aPZ/MV6S/JfhrUBAABge034GQAAAAAA3ROMBgAAAAAAdGawNjkYTYARsBvWFQAAVtxbhu8tySVJXruAGj+X5NJshq8lyZsXUAMAAIADp3YeAgAAAAAAcyAYDQAAAAAA6Ey/J8AImK/t1pUN6woAAN17c5IvDbcryd+vqn8yr8mr6lVJ/o9sBq8lyZ9FMBoAAAAAAAAAsAe0nYcAB4RgNAAAAAAAoDMDwWjAnAlcBABglbXW7kvy49kMRWvD95+pqt+sqgt3O29VXVBVb07ysyPztiT/ZFgTAAAAAAAAAABgTxCMBgAAAAAAdKbfG0w8t9ETYATMbtvAResKAAAroLX2piRvz/3D0b43yS1V9dqqesy0c1XVVVX12iS3JHnRcK4M5/0PrbU3zLN3AAAAAAAAAACARVvvugEAAAAAAODgGvQOTzy3XgKMgNn1twtGs64AALA6/k6SP0jylJwJR7soySuTvLKqvpTkw0luTnLn8JUk5ye5IMnjk/xPSR4+PD4aiFZJPpLkpQu/CwAAAAAAAAAAgDkTjAYAAAAAAHSmvzaYeE6AEbAbg7XJwWgb1hUAAFZEa+3uqnpmkjckeV42A82SMwFnD0/yXcPXJDWyPXr925O8rLV299waBgAAgL/6pycAAAAAACxWr+sGAAAAAACAg2vQOzzxnGA0YDf6vcnBaNYVAABWSWvtrtba9yR5ZZKj2Qw1ayOvDI9t9crY2EpyLMmPtdae11r7y2XdBwAAAPuJ8DMAAAAAALonGA0AAAAAAOhMvzeYeG5DgBGwCwPBaAAA7DGttf87yeVJfjbJnbl/AFqb8Bodc+fw2stba/9i2f0DAABwUNTOQwAAAAAAYA7Wu24AAAAAAAA4uAa9wxPPCTACdmO7wEXrCgAAq6q19pUkP1FVP53kqUm+Ncm1Sf5akouSPGQ49KtJvpLki0nen+Q/J/mj1tp9S28aAAAAAAAAAGCOWuu6A2BVCEYDAAAAAAA6I8AImLd+79yJ5zasKwAArLjW2vEkfzh8AQAAAAAAAAAAHDi9rhsAAAAAAAAOrsHa4YnnBBgBuzFYmxyMJnARAAAAAAAAAAAAAABWm2A0AAAAAACgM/3eYOI5AUbAbvR7gtEAAAAAAAAAAAAAAGCvEowGAAAAAAB05vz1C7c83ksv/bXJ4UYAk5y39uD0JvwZ9Ly1By+5GwAAAAAAAAAAAAAAYBaC0QAAAAAAgM48ZOOhedihRz7g+JWDx6ffG3TQEbDXndPr57HnPvEBxy/deHguPvTQDjoCAAAAAADYK1rXDQAAAAAAgGA0AAAAAACgWy972D/KeWvn/9X+hesX56WX/XCHHQF73Ysf+vfzkI1L/2r/3N55+bsPf2WHHQEAAAAAAAAAAAAAANNY77oBAAAAAADgYPu6/pV59RW/nFuP3pxereWqwV/Pod45XbcF7GGXHnpY/tmjfimfPfo/cl+7N48994np9wZdtwUAAAAAAAAAAAAAAOxAMBoAAAAAANC5wdrhPOG8p3TdBrCPnNPr53GHv6nrNgAAAAAAAAAAAACAKbSuGwBWRq/rBgAAAAAAAAAAAAAAAAAAAAAAAADWu25gFlX1B8PNluR/ba3dvst5HprkLafnaq09cx79AQAAAAAAAAAAAAAAAAAAAAAAALuzp4LRkjw9m6FoSdI/i3n6w7kyMh8AAAAAAAAAAAAAAAAAAAAAAADQkV7XDexCdd0AAAAAAAAAAAAAAAAAwMHRum4AAAAAAIADYi8GowEAAAAAAAAAAAAAAAAwT034GQAAAAAA3TuowWjrI9snOusCAAAAAAAAAAAAAAAAYOVV1w0AAAAAAHBAHNRgtItHto901gUAAAAAAAAAAAAAAAAAAAAAAACQ5OAGo/3Pw/eW5ItdNgIAAAAAAAAAAAAAAAAAAAAAAAdZa113AKyK9a4bOAszLWVVtZHkYUmeneSfjpz643k2BQAAAAAAAAAAAAAAAAAAAAAAAMxu5YLRqurkNMOSfK6qdl1mZPvf73YSAAAAAAAAAAAA6FpVXZ3kiiT3Jrm5tfbpjlsCAAAAAAAAAADYlZULRsv9Q8vmMW4rbXj9p5K89SzmAQAAAAAAAAAAgLmoqn6Sh48cuq21NvFho1X13CS/lOSRY8c/mOQHWms3LaRRAAAADqDWdQMAAAAAABwQva4bmGDRn5RXkv+a5G+11o4vuBYAAAAAAAAAAABM45VJbhm+3pPk1KSBVfXCJDdkMxStxl7XJPmjqrp60Q0DAACwnwg/AwAAAACge+tdN7CF/5LJn6J/6/C9JflwkmNTztmS3JvkziQ3J3lPa+19Z9MkAAAAAAAAAAAAzNl3ZzPYrCV5XWtty+/SVdWFSf5NNh+O2oavGp4+fc3hJDdU1de31qb9rh0AAABMUDsPAQAAAACAOVi5YLTW2tMnnauqUznzpa0XtdY+v5SmAAAAAAAAAAAAYIGqapDkSTnzHbl3bDP85UnOz5lAtC8kuSHJiSTPT3L5cNwjkvzDJK9dQMsAAAAAAAAAAABz1+u6gV3weBEAAAAAAAAAAAD2mycmWcvmd+SOtNY+us3Yl+ZMKNr/SPKE1torWmuvHM7z/w7HVZLrFtYxAAAAAAAAAMCctLbzGOBgWO+6gRm9emT7zs66AAAAAAAAAAAAgPm6Yvjektw0aVBVPS7JVcNxLclPtta+dvp8a+3uqnp5kg8ND319VT2ytfYni2kbAAAAAAAAAABgfvZUMFpr7dU7jwIAAAAAAAAAAIA956Ej21/aZty3DN8ryV1J3jY+oLX24ar60ySPGB76xiSC0QAAAAAAAAAAgJXX67oBAAAAAAAAAAAAIOeObN+1zbhrh+8tybtbaycmjPvkyPbXnU1jAAAAsPnPUAAAAAAAWDzBaAAAAAAAAAAAANC9Gtne2GbcNSPb79tm3FdGth+8q44AAAA4YISfAQAAAADQPcFoAAAAAAAAAAAA0L27RrYfutWAqrosyVUjhz6wzXzro5eeRV8AAAAQ/7QEAAAAAGBZ1ncesrqq6hlJvi3Jk5NcmuT8bP+kzK201tqV8+4NAAAAAAAAAAAAZvCF4XsleeKEMd85sn1vko9uM98FI9tHzqIvAAAAAAAAAACApdmTwWhV9Zwkv5T7P/lyt48daWffEQAAAAAAAAAAAJyVT4xsX1RVz2mt3Tg25vuG7y3Jh1trx7eZ79Ej21+eR4MAAAAAAAAAAACL1uu6gVlV1Y8meWc2Q9FGw9DaLl4AAAAAAAAAAADQudbarUluyeZ32yrJL1fVFafPV9Urk1w7csnbJ81VVefl/g8evXW+3QIAAAAAAAAAzJcwIOC09a4bmEVVPSfJa4a7p8PNToej3ZPkziTbPQETAAAAAAAAAAAAVtW/zeZ35FqSK5J8qqo+nuTSJI/Mme/MHUvy/2wzz9Nz5rt1J5L89wX1CwAAAAAAAAAAMFd7Khgtyc8N309/uetPsvklsHe01j7fWVcAAAAAAAAAAABw9n4xyfcl+fpsfk9uI8nVORNydvqBor/QWvvzbeZ53sj4j7fW7l1MuwAAAAAAAAAAAPO1Z4LRqurKJN+UzS9qJckfJXl2a+2u7roCAAAAAAAAAACA+Wit3VdVz0ny+0kePzxcOfMw0UryO0munzRHVZ2X5Hty5rt2715YwwAAAOwvre08BgAAAAAAFmzPBKMledrwvZKcSvK/CUUDAAAAAAAAAABgP2mt/UlVPSnJ303y3CSXD099KsmbW2s37DDFdUkePLL/H+feJAAAAAAAAAAAwILspWC0S4fvLcnHWmu3dNkMAAAAAAAAAAAALEJr7XiSfzN8zep1SX59ZK6vzasvAAAAAAAAAACARdtLwWg1sv3pzroAAAAAAAAAAACAFdVaO5rkaNd9AAAAAAAAAAAA7Eav6wZm8IWR7bXOugAAAAAAAAAAAAAAAAAAAAAAAADmbi8Fo/33ke1HdtYFAAAAAAAAAAAAAAAAAAAAAAAwN6113QGwKta7bmBarbU/rqpPJnlCkqur6sLW2h1d9wUAAAAAAAAAAACLVlWPSPLoJBcleVCSaq29qduuAAAAAAAAAAAA5mvPBKMN/XyS1ydZS/LKJP+s23YAAAAAAAAAAABgMarq8iT/Z5LnJrl8iyEPCEarqm9J8ozh7h2ttX+5uA4BAADYX1rXDQAAAAAAwN4KRmutvbGq/laS70nyY1X1/tba73XdFwAAAAAAAAAAAMxLVfWS/EySH83mg0Rri2GTfq3+F0l+6vT5qnpna+3WBbQJAAAAAAAAAAAwd72uG9iFlyX599kMdXt7Vf10VV3QcU8AAAAAAAAAAABw1qpqI8nvJ3lVtn746aRAtM2Trd2c5D05E6b2krk2CAAAAAAAAAAAsEBbfWlqZVXVTw43P57kmiQXJ/mnSX6kqj6Y5KYkdyQ5Ncu8rbWfnmefAAAAAAAAAAAAsEuvS/KsbAagtWwGnL0vm2Fn9yX551PM8TtJnjHcfnaSn5l/mwAAAAAAAAAAAPO3p4LRkvxU7v+0y9Nf+jo3ybcNX7shGA0AAAAAAAAAAIBOVdUzk7w0Z74b9+kkL2mt/dfh+cszXTDaf0zyr4Zz/I2q6rfWji2mawAAAAAAAAAAgPnpdd3AHJx+KuZu1DwbAQAAAAAAAAAAgLNw/fC9ktyW5JrToWizaK3dluTO4e5GksfNpz0AAAAAAAAAgMVou00QAvadvRiMVnN8AQAAAAAAAAAAQOeq6qIk1+TMw0Jf0Vr7i7OY8qaR7ceeTW8AAAAAAADA/8/enYfZWdd3H39/ZyYLBAgh7Ci7yC7ghkUKCIorWhdcerkA1qV1aa1a21oRa/WxdXnaurUa3K2KIiAF2UFEWWSRgAghEEgCSci+LzPzff44Z545OZlz5pw525zJ+3Vd93Xu33p/x+BJZuY+n1uSJEnt0tfpAup0WqcLkCRJkiRJkiRJkiRJkiSpBV7I8MNOl2TmZQ3uVxqqtmeDe0mSJEmStgeZna5AkiRJkiRJkqTuCkbLzJs6XYMkSZIkSZIkSZIkSZIkSS2wT/E1gd81Yb81Jec7NWE/SZIkSZIkSZIkSZIkSWq5rgpGkyRNYCtnw0NfhoGNsP8bYN9XQESnq5IkSZIkSZIkSZIkSWqX3UrOVzRhvx1Kzrc0YT9JkiRJkiRJkiRJkiRJajmD0SRJnbfoWrjhTMjBQvvR78IxF8Axn+hsXZIkSZIkSZIkSZIkSe2zuuR85ybst1fJ+fIm7CdJkiRJkiRJkiRJkiRJLdfT6QIkSdu5TPjd+4dD0Ybc/y+wfkFnapIkSZIkSZIkSZIkSWq/p0rOn9HIRhHRCxxf0vVkI/tJkiRJkiRJkiRJkiRJUrsYjCZJ6qyVv4fVf9y2f3AzzL+4/fVIkiRJkiRJkiRJkiR1xuziawDPjIinNbDXy4Adi+cJ3NpIYZIkSZIkSZIkSZIkSZLULl0fjBYRkyLiTyPiHyPiwoi4JCKui4jrOl2bJKkGT/yy8tjjF7WvDkmSJEmSJEmSJEmSpA7KzAeAhcVmAH87ln0iogf4h6Ftgd9n5srGK5QkSZIkSZIkSZIkSWqd7HQBksaNvk4XMFYRMQ34G+B9wB7lw1R4r4uINwP/UmwuB56bmb4vSlKnrJxdeWzpb2HTMpgys331SJIkSZIkSZIkSZIkdc4PgI9SuAfufRFxRWZeU+cenwFOLGl/o1nFSZIkSZK2Z378SpIkSZIkSZLUHj2dLmAsIuJY4E7gAmBPCjeB1eoXwEzgQOB44MXNrk+SVIfVf6w8lgOw8PL21SJJkiRJkiRJkiRJktRZ/wqspvBp817g0oh4Vy0LI2L3iPg28BGGP62+CLiwBXVKkiRJkiYkw88kSZIkSZIkSZ3XdcFoEXEkcBPwDAqBaEM/cQ9qCEjLzLXARSVdr2t2jZKkGuVg9WA0gAWXtKcWSZIkSZIkSZIkSZKkDsvM5cAHGL43birwtYiYExGfBc4qnR8Rz4uIt0bE94C5wFsZvpduADgnMze382uQJEmSJE1Uo35sS5IkSZIkSZKkpujrdAH1iIipwOXAdIYD0WYD/w7cAEwBHqhhq0uBc4vnpze5TElSrTYsgoH11ecs/U17apEkSZIkSZIkSZIkSRoHMvO7EXEo8HEK98kFcAjw0bKpAfy2rJ0la/4+M69ufcWSJEmSJEmSJEmSJEmS1Dw9nS6gTh8ADmQ4FO0/gBMy81uZOQ/Yipk/qAAAIABJREFUWOM+NzB889dBEbFnk+uUpLFbNx9+fTb8fD+49hRYdH2nK2qdDQtHn7NxCWxe2fpaJEmSJEmSJEmSJEmSxonM/ARwDsP3xA3dM1cafjZ0D1yUzAlgM/D2zPx82wqWJEmSJEmSJEmSJEmSpCbptmC09zN8g9clmfnXmTlY7yaZuRaYV9J1RBNqk6TG9a+Ha14Ij18EG56AJb+C60+HR78HmaOv7zbrawhGA1gzp7V1SJIkSZIkSZIkSZIkjTOZ+R0K97Z9lUJA2lAAWrB1INpQ3yDwXeCIzPxeG0uVJEmSJEmSJEmSJEmSpKbp63QBtYqII4H9is0EPtLglnOBg4rnBwM3NbifJDVuwWWw/vFt+3/7NrjnY3DSj2DPk9tfV6tsqDEYbeVsmPnc1tYiSZIkSZIkSZIkSZI0zmTm48D7IuKjwAuLx9OBmcBkYCmwGPgNcF1mruxUrZIkSZIkSZIkSZIkSaPJ7HQFkrpB1wSjAccVXxO4LzMfaXC/0hvApje4lyQ1x2P/U3lswxNw7Z/CMRcUwtH2PAWip321tcL6GoPRFl4Oh5zb2lokSZIkSZIkSZIkSZLGqcxcD1xdPCRJkiRJkiRJkiRJkiYcQ9MkDemmYLQ9Ss7nNGG/TSXnOzZhP0lq3KJrRp8z+/zC674vh5N/Dr2TW1tTK214orZ5i68v/As2orX1SJIkSZIkSZIkSZIkSZIkSZK03fKTp5IkSZIkSZKkzuvpdAF1mFpyvqnirNpNLzlf04T9JKlxk3apfe4TV8DD/9W6Wtqhv8a33y2rYMOTra1FkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJktRR3RSMtrTkfPcm7HdwyfmyJuwnSY3rnTr6nFKPfKs1dbRL/4ba567+Y+vqkCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiR1XF+nC6jDouJrAMc3slFEzASOKOl6uJH9JKkpMmHT0tHnlVpxN6z4Pcx4VmtqarWBOoPR9n5R62qRJEmSJEmSJEmSJEkahyJiEvAC4GTgEGA3YGeAzDy9g6VJkiRJkiRJkiRJkiRJUtN1UzDab4BBoAeYGREvyszrx7jXuRQC1gDWAb9rQn2S1JhNy6B/Xf3rrjwO3jwIEaPPHW8GNtY+d/UfW1eHJEmSJEmSJEmSJEnSOBMR04C/Ad4H7FE+DGSFdW8G/qXYXA48NzNHnCtJkiRJkiRJkiRJkiRJ401PpwuoVWauAO4o6frniPpTgCJiP+BjFG4KS+CazBxsTpWS1IA1D4197ewLmldHOw1sqH3uQ//ZujokSZIkSZIkSZIkSZLGkYg4FrgTuADYk+EHgdbiF8BM4EDgeODFza5PkiRJkiRJkiRJkiRJklqla4LRiv695PxE4Ov1LI6IvYDLgBkM3yj2xeaUJkkNWjNn7GvvuwC2rG5eLe1STzAawLLftaYOSZIkSZIkSZIkSZKkcSIijgRuAp5B4T63HBqihoC0zFwLXFTS9bpm1yhJkiRJksaBNQ/DrefBlcfDbX8Bax/tdEWSJEmSJEmjyjGOSdq+dFUwWmb+CLin2AzgnRFxc0ScXG1dREyLiPcU1x5H4X0wgasz85ZW1ixJNVvzUGPrH/9Zc+pop3qD0R78v62pQ5IkSZIkSZIkSZIkaRyIiKnA5cD0ku7ZwHnAwcAR1BCOBlxacn560wqUJEmSJI0sE+7/LFzxLPjfo2H2pyAHO11V/dKPnnaN9Qvh2lPhkQthxT0w95tw7Smw4clOVyZJ0taW3Aw3v67w76TffQA2ryz0b1wCt78X/vcY+PUbYdkdna1TkiRJkjSu9HW6gDF4PXArMLPYPgm4MSIWAQ+XToyIrwGHAS8ApjD89MwAFgJvbVPNkrSt1Q/Bo98t/ABvn5cU2iOZcTxsWQVrH6m+323nwYFvgd4pza+1VeoNRlv4vzC4BXomtaYeSZIkSZIkSZIkSZKkzvoAcCDDD0H+D+BDmYVP00fEATXucwPD98odFBF7ZuaSJtcqSZIkSRry+3+EP3x2uD37fNi8Ap79pc7VpInt8Ytgw8Kt+9bPh/k/h8P+sjM1SZJUbumtcMOZw58jXHkvLP0tnHYVXHcarPpDoX/VffDElfDiX8OMYztXryRJkjSerX0E7v4IPPUb2PVoOOofYa9TO12V1DI9nS6gXpn5CPBKYBFbB53tA7ywZGoA7wJOBaaWzV0AvCIzl7atcEkqtex3cNXz4P5/gbnfgF+/Aeb/dOS5+70KXvkgvPiWUTbNwtN+BvubXW3r1BuMtmUlLPlVa2qRJEmSJEmSJEmSJEnqvPczHIp2SWb+9VAoWj0ycy0wr6TriCbUJkmSJEkaSQ7C3P/etn/urMKDwaVWuOtvRu7/3V+1tw5Jkqp5+BvbfoZw+e/gvk8Ph6IN6V8Dj36nfbVJkiRJ3WTT8kKeyPyLYeMiWHQt3PhyWH5npyuTWqbrgtEAMvN24ATgSgpBZzB8M1iWHJSNBXAN8LzMvLcNpUrSyO77Z9iyqra5Ox8GPX2wx5/Aq+ZUn7vsVnj0e43X1y4DG0fuP+lHldcs/EVrapEkSZIkSZIkSZIkSeqgiDgS2I/he+I+0uCWc0vOD25wL0mSJElSJSt+D5uWbdvfv8YHg0uSpO3bIxeO3P/gl0bu/+MXW1eLJEmS1M2evArWz9+6b2ADPPqDztQjtUFXBqMBZObizHwF8Fzg+8AiCjeEjXSsBi4GTsvMMzNzUWeqliQKT4NaeFnt83d+Rsn5oXDKKMFgj1UJFRtPBrdADow8tsN+sP/ZI4+tur91NUmSJEmSJEmSJEmSJHXOccXXBO7LzEca3G9lyfn0BveSJEmSJFUyuHlsY5IkSZIkSZJUi9veOXJ/pdBhaQLo63QBjcrMO4G3AUTEwcDTgZnAZGApsBi4PzMHO1akJJVa93jtc6fsDrsdv3XfnqdA307Qv3bkNYuvh80rYfKuY6+xHQY2VB7r2wFmHA+P/2Tbsc0rWleTJEmSJEmSJEmSJElS5+xRcj6nCfttKjnfsQn7SZIkSZIkSZIkSZIkqd0G1ne6Aqntuj4YrVTxCZmNPiVTklpr8fW1zz38b6Fn0tZ9k3aGE74At7975DXZD09cCQe+eew1tkN/lWC0nqmVg902rxy5X5IkSZIkSZIkSZIkqbtNLTnfVHFW7aaXnK9pwn6SJEmSJEmSJEmSJEmS1HITKhhN40NETAJOAvYH9gHWAk8Ad2fmvA6WJnXe6ofgtvNqmzv9SDj8QyOPHfou2O3Z8MvnjDy+6NrxH4w2UCUYrW8HmFQhGG2LwWiSJEmSJEmSJEmSJGlCWlpyvnsT9ju45HxZE/aTJEmSJE142ekCJEmSJEmSNMFllR9BVRuTtH0xGG0CiohvA29v0naPZeaBNV53D+AC4I3AbhXm/Ab4Ymb+rEn1Sd3l9nfVPvc5X4XeyZXHd3s2POO9MOdr2449ciFsWQ37vQoO/HPo6a2/1mbZsAge/m+YOwvWPw77nQUnfBEGN1de07sDTK4QjLZ5ZeFfsxGtqVeSJEmSJEmSJEmSJKkzFhVfAzi+kY0iYiZwREnXw43sJ0mSJEmSJEmSJEmSJEnt0tPpAjTubahlUkS8DLgPeC8VQtGK/gT4aUR8PyKmNaE+qXtsWQNP3Vzb3JnPg71OGX3ejCr3wM7/Kdz6drjljZ2LxV07D658Fsw+vxCKBrDwMvjFofDkVZXX9e4Ak2eMPJYD0L+u6aVKkiRJkiRJkiRJkiR12G+AweL5zIh4UQN7nUshYA1gHfC7RgqTJEmSJEmSJEmSJEmSpHbpqmC0iDg6Iq4vHtdFxJ5j2GOv4tqhfQ5rRa0TyM9GmxARpwKXAKV/HgncCVwEXAMsLVv258D/RERX/TcoNWTTMsjB0ecBzHx+bfN2OXz0OfN/Bkt/W9t+zTb7k7Bxychjd/1N5XV9O8HkXSuPr1/QUFmSJEmSJEmSJEmSJEnjTWauAO4o6frniIhK8yuJiP2Aj1G4hyuBazJrvWlFkiRJkiRJkiRJkiRJkjqr20Kp3g2cCpwCbM7MCmk7lWXmYmBLyT5/0cT6xosPAweN4XhD2T4JXFjtQhHxNOBiYHJJ9y3AUZn5nMw8OzNfAjwN+CCF/+2HvAr49Bi+Pqk79a+pfe7M59Y2b+casx0f/V7t126WgU2FULZ69e0MPX0wqUow2tUnQubYa5MkSZIkSZIkSZIkSRqf/r3k/ETg6/Usjoi9gMuAGcBQqNoXm1OaJEmSJEmSJEmSJEmSJLVetwWjvbrk/DsN7DO0NoA/a2CfcSkzl2bmvHoP4IyyrW7IzEdGudwFFG6iG/Ib4IzMfKCspk2Z+R/A2WXrPxQRB4zhy5S6z5Y6gtF2qzEYbfKM0ecAPFI147A1Fl8P/WvrXze5GIg2eXrlOVtWwYq7x1aXJEmSJEmSJEmSJEnSOJWZPwLuKTYDeGdE3BwRJ1dbFxHTIuI9xbXHUXgoZgJXZ+YtraxZkiRJkiRJkiRJkiRJkpqpa4LRIuJg4GnF5iBweQPb/QIYKJ4fFBH7N1LbRBAROwBvKuueNcqaZwBvL+naDLwjMzdWWpOZl7B1qN0U4Pz6qpW6VK3BaJN2gV0Oq21uzySGH+5bTS1zmmzBJWNbNxSM1jsVpuxeed7yu8a2vyRJkiRJkiRJkiRJ0vj2emAZhWAzgJOAGyNiIfDd0okR8bWIuA54CvgKsNfQEPAE8Na2VCxJkiRJ27UcfYokSZIkSZIkSapZ1wSjAUcXXxN4MDPXjnWj4toHS7qOaaSwCeL1wPSS9grg4lHWvAXoLWlfnJlzarjW58raZ0fE1BrWSd2tv8ZgtIPeAVHj23NEIUBsNIObatuvWXIQFlw2trWTZwyf73dW5Xn968a2vyRJkiRJkiRJkiRJ0jiWmY8ArwQWUQg4y+LrPsALS6YG8C7gVGBq2dwFwCsyc2nbCpckSZIkTQCGvEmSJEmSJKm1ssqPoKqNSdq+dFMw2gEl53ObsF/pHvs3Yb9ud15Z+weZuXGUNX9W1v5WLRfKzAeA20q6pgEvqWWt1NW21BCMtteL4JhP1LdvLcFoACvvr2/fRiy7HTYuGtvaSbsOn5/w+crz+secjylJkiRJkiRJkiRJkjSuZebtwAnAlRSCzmD40+lZclA2FsA1wPMy8942lCpJkiRJ+v/ftkmSJEmSJEmSpGbopmC0nUvOVzVhv9Ul57s0Yb+uFRGHAH9a1j1rlDV7A88q6eoHbqnjsjeWtV9Wx1qpO/VXCEabdhC86Fp4+b1w2tUwZWZ9+9YajLbgkvr2bcRT9bwdlIne4fPJMwphcSPpXzf2a0iSJEmSJEmSJEmSJI1zmbk4M18BPBf4PrCIwqftRzpWAxcDp2XmmZk5xifaSZIkSZIkSZIkSZIkSVJn9XW6gDpsKDlvRpBZadDaQBP262bnsvXjae7KzHtGWXN0WfvezKwnpeg3Ze2j6lgrdactFYLRpu4Je58+9n17agxGWzdv7Neo15qHRu7f63R4wXfhkv0qrx3YuHV70s4jz+tfO7baJEmSJEmSJEmSJEmSukhm3gm8DSAiDgaeDswEJgNLgcXA/Zk52LEiJUmSJEmSJEmSJEmSJKlJuikYbWnJ+QFN2G//kvNlTdivK0VEL/D2su5ZNSw9sqz9cJ2XnjvKftLE018hGK1S8FetemsMRlu/sLHr1GP1gyP3Tz+yEARXze4v2LrdO23kef31ZDFKkiRJkiRJkiRJkiSNbxGxM3BQSdfc8odVZuYjwCNtLUySJEmSJEmSJEmSJEmS2qin0wXU4fHiawDHRMTMsW5UXHtsSVcb04LGnZcC+5W0NwA/rGHdoWXtx0ecVdljZe2ZETGjzj2k7rKlQjBaX5uC0Z68srHr1GrBL2DJTSOP7XwY9IySybnfy7duT9pp5Hn9a+uvTZIkSZIkSZIkSZIkafx6M3B38bgdmNLZciRJkiRJkiRJkiRJkiSp/UZJpxlXbgU2AZMphKP9FfCpMe71lwyHwvUDtzRcXfc6t6z9s8xcWcO6XcvaS+q5aGaujYiNQGmi03RgRT37lIuIPYE96lx2SCPXlGpWKRhtUoPBaD113AO7+iHY5bDGrlfNyvvhV2dVHt/lmYXXXY+FlfeOMCFgxglbd/VOG3mv/nUj90uSJEmSJEmSJEmSJHWn3SncGwdwR2Yu72QxkiRJkiRJkiRJkiRJktQJXROMlpmbIuJm4Ixi14cj4ueZObuefSLiaOAjQBa7bsnM7TJdJyL2AF5V1j2rxuU7lbU3jKGEDWwdjNZgOhRQCL07vwn7SM3XXyEYra/B//RzoPa5lz8T3jwIEaPPHYvHflh5rGcSzHxe4Xy/s0YORnv9sm1rm1T+dlPUv3ZsNUqSJEmSJEmSJEmSJI1Pq4qvCSzoZCGSJEmSpO1U5uhzJEmSJEmSJElqsZ5OF1Cnzxdfk0Iw15URcWKtiyPiecAVwDSGn6z5+corJry3AZNK2nOBm2pcW55UtHEM1y8PU6uQfiRNEFsqBKNNajAYbbDO//tdewpsXNLYNStZcU/lsT1PhcnTC+dH/T3s89Lhsd4d4eSfweQZ267rmzbyfgajSZIkSZIkSZIkSZKkieXJkvPJHatCkiRJkiRJkiRJkiSpRapF8xvbL2lIVwWjZebVwI0UQs0S2Bf4VUTMiojnRUSUr4mC50bEN4GbgacNbQfcnJlXtKf6cemcsvaFmWN+tMtY1vn3kbYv/S0KRhuoMxjtqZvhqufDuscau265LWvgiSpvqUd+dPi8b0c49Qp4+X1w2lXwmvnw9NeOvK6vQmbi8jt9GpUkSZIkSZIkSZIkSZpI7is5P6hjVUiSJEmSJEmSJEmSJElSB/V1uoAxeBNwF7APhWCtPuAdxWNdRDwIrCiO7QYcBgyl6gwFqgUwHzi7jXWPKxFxInBUSdcA8O06tlhb1t5hDGWUrynfcyy+ClxU55pDgEubcG2pui0VgtH62hyMBrBuHvzqz+BldzV27dIaLt6r8vhuz4W9z9i6LwJ2PapwVNM3rfLYqvtg12Nqr1OSJEmSJEmSJEmSJGmcysyHIuJe4Fjg2IjYLzMXdrouSZIkSdJofOC3JEmSJEmSJEnN1HXBaJm5JCJeClwGHMjwbw+CQgDas8v6/v9ShkPRHgZenZlL2lHzOHVeWfvKzHyijvXjMhit+Gda159rRIw+SWqG/grBaJM6EIwGsOJuWHQ97P2ikccHByD7YfNyGOyHKbsDCTkAm5YV5vRMgh32hZvOgoENla91zCfGViPApF0rjy2+0WA0SZKkTtqyGnqnQU9vpyuRJEmSJEmSJGmi+E/gGxTuc/sU297nJUmSJEmSJEmSJEmSJEkTWtcFowFk5n0R8WzgK8DZQA8jP16ltC+AAeAHwAczc1XLCx2nImIa8May7ll1blP+v98eddawE9sGo62sswapu2ypEIzW16FgNIDrT4dD3gnP+TL0Thnun38J3PxnjdVVaod9x752z5Mrj/U3nKcoSZKksVgzF37zFlh2B0yeAc/8IBz9T2DwtCRJkiRJkiRJDcnMWRHxGuAVwDsi4sHM/NdO1yVJkiRJqsb7piRJkiRJkiRJaqaeThcwVpm5IjPfAhwJfAmYXRyKsgPg98DngWdm5ju251C0ojcApUlMi4HL69xjTln7gDrXl89fnpkr6txD6h6Z0F8hGG1Sg8Fogw0EowHM/Sbc9TfD7VV/bG4oGsC0et8iSkyZWXmskVA4SZIkjc3gFrjuVFh2O5CweTnMPh/mfK3TlUmSJEmSJEmSNFG8Gfg5hfvfPhsRV0XEaR2uSZIkSZIkSZIkSZIkSZLaoq/TBTQqMx8C/hYgInYC9gKGUnSWAoszc12Hyhuvzitrfzcz++vc44Gy9qF1rj+4rP2HOtdL3WVgA+TgyGN9DQajTZ4BG5eMPPbKB+Hej8PjF1XfY87X4NB3w4xnwQP/1lg95XY5onq4WS32fgksunrb/sFNje0rSZKk+i35FaxfsG3/Yz+Ew/6y/fVIkiRJkiRJkjSBRMSFxdPVwBoKD8A8AzgjItZQeEjokuJYrTIzy+8ZkyRJkiRpBNnpAiRJkiRJkiRJ6p5gtIjYG3heSdevM3N56ZzMXAusBea2s7ZuEhGHAS8s6541hq3uK2sfGxE7Zub6GtefNMp+0sSypcq9qJMaDEZ71mfgtndu23/gW2GXw+CFP4ErjoOVv6++z5XHNVZHJSdf3PgevVNH7h/Y2PjekiRJqs8Dnx+5/6lb2luHJEmSJEmSJEkT0zvY+lPoCUTxfBe2vfdrNFHcw2A0SZIkSZIkSZIkSZIkSV2hp9MF1OG1wM+Lxw+ATZ0tp2udW9b+dWY+WO8mmfkkcG9JVx/13XR3aln7ynprkLpKfwuD0fZ9OfSNsMeBfz58fthfNXaNsTr8QzD98Mb3qRiM5l8FkiRJbbd5+ehzJEmSJEmSJElSM2XJIUmSJEmSJEmSJEmS1LWyyt0P1cYkbV+6KRhtVwpPrwzgjsxc1+F6uk5E9AJvK+ue1cCWPy9rn1NjHYcDzy/pWgdc3UAd0vjXv77yWO+0xvbeYR940dUw/ajh9vNnwb5nDs85+Fx41mcau0699jy1edfsmTJy/+DG5uwvSZKk6gb74b5Pw1UvgGW3V57nTx0lSZIkSZIkSWqGaOIhSZIkSWo575uSJEmSJEmSJKmZ+jpdQB2WF18TeLKThXSxlwP7lLTXABc1sN8PgI8DvcX2ayPiGZk5Z5R1f1fW/klmmm6kiW1gQ+Wxvh0a33/3E+EV98HmlTBpOkTZfa09vXDU3xeOa0+FJTc1fs1q9n5xIaytWXqnjtw/4FuHJElSW9x6Dsz7/ujzBjZA346tr0eSJEmSJEmSpInroE4XIEmSJEmSJEmSJEmSJEmd1E3BaKVhaNM6VkV3O6+s/aPMXDfWzTJzTkR8Bzi32DUZ+HZEnF4p6CwiXg28o6RrM3DBWGuQuka1YLTeJgSjDZm86+hzDnhT64PRTrmsufv1Thm5f2BTc68jSZKkba17DOb9oLa5/esMRpMkSZIkSZIkqQGZ+Vina5AkSZIk1StGnyJJkiRJkiRJkmrW0+kC6nA3kMXzwzpZSDeKiL2AV5R1f7MJW58PrChp/wlwbUQcXnb9KRHxfuCisvVf8GY+bRcqBaP1TIZo81vxQW+DXY+tfX5fHVmUOx0Mr5kPvVPrr6uaSvsNjJjBKEmSpGZZOw/u/juGvx0fRf+Ys7clSZIkSZIkSZIkSZIkSZIkSZIkSZIkib5OF1CrzHw8Im4FXgA8MyIOy8yHOl1XF3k7W/9535eZtze6aWYuiIjXAlcBk4vdJwF/iIg7gUeA6cAJwB5lyy8H/qnRGqSuUCkYrXeH9tYB0LcjnHkHzPka3PXXleftfzbs+zLY5Qi4+sSR50w/Eo7/Aiy+HqbuDYe+Eybt0vyae6aM3D+4qfnXkiRJEmTCfZ+G+z4JOVj7OoPRJEmSJEmSJEmSJEmSJG13anzwpCRJkiRJkiRJqknXBKMV/Rtwccn5qztYS7c5p6w9q1kbZ+aNEfFnwLcZDj8L4DnFYyT/A/xFZg40qw5pXOsfR8FoAL2T4fAPwv5vgGtOgnXzth7/00vhaWcVzlfeX3mfTNj3pYWjlXqnjtw/sLG115XUHFtWw2M/gTUPwR4nw36vgOjpdFWSpGqW/hZmf6L+df1rm1+LJEmSJEmSJEmSJEmSJKlNDHmTJEmSJEmSJHVeVwWjZeYlEXEhcC7wyoj4CvDBzOzvcGnjWkScBBxe0rUZ+H4zr5GZV0TE0cAFwBuBGRWm3gp8PjN/1szrS+PewDgLRhuy477wqodhyU2w6FqYcRzsfQZM2W14Tl+1Gtv0S0+D0aTutXEJXH8GrJxdaD/wb3DwOfD8bxqOJknj2bwfjm1d/7rm1iFJkiRJkiRJkqStRMRBwHHAvsBOwJPAY8BvMnNLJ2uTJEmStl/R6QIkSZIkSZKkrlEtpcLYfklDuioYrejdwBrgg8B7gFMi4gvAZZm5rKOVjVOZeQtt+C1LZi4B3hsRHwROAg4A9gbWAQuBuzPz0VbXIY1LlYLRqoaOtUlPL+z9osIxkqrhbW36Z2XPlJH7Bze15/qSxm7Ofw2Hog155Ftw6Ltg9xM7U5MkaXRPXDG2dQajSZIkSZIkacW9cP9nYNNS2O14OOaT0Det01VJkia4iPg28PYmbfdYZh5Y5VqN3jBzUGbOq3dRRLwe+BDwggpTlkfEj4FPZObSBuqTJEmSJEmSJEmSJEmSOqqrgtEi4vqS5hpgZ+BI4JvF8QXAkuJYrTIzT29akSIzNwM3dLoOaVypFIxWNXRsnBgPNfZOHbl/YGN765BUv9mfGLn/8Z8ajCZJ49m6MWZaG4wmaTwYHIDsh94KIduSJEmSpNZZPQeufv7w7/EWXweLb4Azb4fo6WxtktQlIuJtTdwuKdxLtwpYBPwxM3248ugq3OjTGRGxE/AN4E2jTN0NeC/w2oh4e2Ze1fLiJEmSJEmSJEmSJEmSpBboqmA04FQKN2sNSSCKB8DTi0etN29FHXMlaewmajBau+6V7anwYfbBTe25vqTmmzsLTvh8p6uQJJXLhEe/N/b1AwajSeqgwS1w14fh0W8XPoC/z5lw4rdgysxOVyZJkiRJ2497/m7bhxstvxOevAr2fVlnapKk7vNtWndP27qIuAP4DvDjzPTGi5H9rNMFDImIXuDHwMvLhp4C7qYQencIcDzD91HuBVwaEWdk5q/bVaskSZIkSZIkSZIkSZLULN0WjDYSg80kjX/dHIzWM7nKYJvegnunjty/fkF7ri9pbHKw8tjkXdtXhySpdk9eDbe+fezrt6xtXi2SVItMWDsXVj8E93wUVt0/PLbwF3Dz6+CMGztWniRJkiRtVzavggU/H3ls8Y0Go0lS/WL5V3KCAAAgAElEQVT0KXXbicLDSU8FPhsR52Tm1S24Tid8GPjkGNY9B7iopJ3AhXWsvw14U53XrOeGl//D1qFoW4APAf+dmZuHOiPiSOCbwAuKXVOASyLimMx8ss76JEmSJEmSJEmSJEmSpI7qxmC0VtzwJUmt1d/FwWhR5W23WuhRM1UKRgOY/c9w9Mer1ympMx7+78pjBqNJ0vj00H82tn5gXXPqkKRaDGyC294J875fec6Smwqhabsc1r66JEmSJGl7de8nKo/NvxiO/1z7apGk7ld6E0RW6C9X/nS7keZmydg+wJUR8YHM/Er9JY4vmbkUWFrvuoj4WFnXDZn5SB1bbMzMefVetxYRcTDwwbLuN2TmpeVzM/MPEXE6cB3D4WgzgfOB97SiPkmSJEml2vTAcUmSJEmSJEmSthNdFYyWmT2drkGSxmSgi4PRqmrTL3Cn7FF5bPYnYJ8Xw+4ntqcWSbXZtBzueG/l8UnT21eLJKm6lffDgktg4xJ44n9rW7Pbs2H5ndv29xuMJqmN5n6zeijakCevNhhNkiRJklptzcMw58tVJrTpgUuSNDGcU3zdGfgEhXCroPBmeitwB/A4sBqYDOwGHAOcDOxdXJvAj4FfAjsAuwJHFuccwNYBaV+KiAcy8/qWflXjUETsALyprHtWJ2qp4HxgUkn72yOFog3JzA0R8Q5gNoX/NgDOi4h/rTPsTZIkSdL2LA15kyRJkiRJkiR1XlcFo0lS15r7jZH7+3Zsbx3N1q5feu52PPRNqxy08ej3DUaTxpsFFe/FLuib1p46JEnVzb8EbjkbBrfUvubUX8KcrwAGo0nqsHk/rG3eunktLUOSJEmSROF7tKwSfrZuHgxsgt4pbStJkrpVZn4nIp4BXEYhFA3gG8CnM3N+pXUR0QO8Gvg8cBDwBuCBzPxU2byXA/8OHEIhIK0P+AJwfJO/lG7weqD0qV4rgIs7VMtWiqFtry/r/txo6zLzoYi4BDi72NUHvAX4dHMrlCRJkrS16HQBkiRJkiRJkiRNKD2dLkCSJrwtayuP9e7Qvjpaok3BaL1TYY+TK4/P+Up76pBUuzlfrT4+sLE9dUiSKstBuPP9dYSiBTz3a7DvmZUDLg1Gk9ROS39T27wNC1tbhyRJkiRp9Aem5CCsmdOeWiSpy0XEjsAlwDOBfuDNmfnuaqFoAJk5mJk/B44Ffk3h3sDzI+IdZfOuAE4A7i7pPjYiXty8r6JrnFfW/kFmjpdfZp8JlD5x8beZ+cca136rrP3a5pQkSZIkSZIkSZIkSVLjskpMRbUxSdsXg9EkqdWeurny2KSd21dHK+x9RvuutcPe7buWpMY89hNY/rvqcwzOkaTOW/0grF9Q29xjPw1v7odnvKfQ7ttp5Hn9VUKBJamZNi2rfe6qByqPDQ7AxqWFw/BeSZIkSRqbdfNhxV2jz1td5fszSVKpTwFHUHha3ecy8yf1LM7MdRSCsJYDAXw5IvYom7MGeD2F4LWhW4pf0mDdXSUiDgH+tKx7VidqqeClZe0b61h7M4U/2yHHR8ReDVckSZIkSZIkSZIkSZIktYnBaJLUaouvrzy2R/n9lePUMz9Yof8D7ath8szq4+seb08dkkZ3/2dGn2MwmiR13rLbap971D9AlPwIoW/ayPN8f5fULqsfqn3uyt/DRbvCPR+Dgc2FvoHNcPt74We7wcV7FI6LdoHrTi98oF+SJEmSVLsFl1Ye65kE+50FR3wUdn5G+2qSpC4VEX3A24rNTcDnxrJPZi4F/qvY3AF4ywhzHgUuohCeBnDSWK7Vxc5l+GsHuCsz7+lUMSM4uqz921oXFsPxZpd1H9VwRZIkSZIkSZIkSZIkSVKbGIwmSa2Ug/DA5yuP731G+2ppxDM/CDvuv3Xfwe+A6eX3YLbQlN2rj1/1/PbUIam6zSsKwROjGVjf+lokSdsaHIDld8HS2+DWc0afP3k3eOldELF1v8Fokjptw8L65m9ZBX/4XCEcDeCuv4aHvw5bVg/PGdxSCDe/6jmF98vNK2HRdbBhUfPqliRJkqSJaGGFYLRdnglv2gynXArHfw5mHNfeuiSpO70Q2B1I4PZiwNVYXV1y/poKc64qvgbwtAau1VUiohd4e1n3rDFut39EfCsi7o+IFRGxOSIWF9vfj4h3RcRuY9j3iLL2w3Wun1vWPnIMNUiSJEmSJEmSJEmSJEkd0dfpAhoVEccBZwEnA4cAuwE7A5mZ23x9EbErsEuxuSkzF7erVknboaW3Vh475C+gd3L7amnETgfBS34Lj/0PrHkY9jwFDjh724CMVqoUvjFk4yJYvwB23G7u05XGp9UP1jbP4BxJar91j8GNr4BV99c2//APwWF/BTsdvO1Y304jr/H9XVK7bFo2tnUPfgkOOQ8e+U7lORuXwI8mFb7nzcFC3+F/C8f/W3u/D5YkSZKkbrB5JSy+ceSx/c9uaymSNEGUPrXuiQb3erLk/IAKcx4oOZ/R4PW6yUuB/UraG4AfjnGvg4pHqT2Lx5HAnwNfjIhvAP+UmWtH27AYpFYepvZ4nXWVz39GneslSZIk1SU7XYAkSZIkSZIkSRNK1wajRcQxwJeA00q7a1h6GvDT4vm6iNg7M9c3uz5JIhP++KXK4zOf275ammHHfeGIv+1gATW8xT9xJRz6F60vRVJlT/yytnkG50hS+932rtpD0Q4+B074QuXxSqG1/aN+lkeSmmPzGIPRAK44uoZJWfi+fsgfvwC7Px/2f8PYrytJkiRJE82qB+DXZ0P2jzz+tNe0tx5Jmhj2KTkf5Qlyo9qx+BrA3hXmrCg5n9Lg9brJuWXtn2XmyhZebxrw18DLI+K1mTnaL2x2LWuvz8x6f8m+pKw9vc71FUXEnsAedS47pFnXlyRJktRqhrxJkiRJkiRJkjqvK4PRIuIdwFeAqRRu3Cr9qXtSPT3nUgpPQzyAwg1HrwO+15JCJW2/MuG282D+TyvP8Qnp9dlhr9HnDG5ufR2SKltwGdx3QW1z+9cV3iujllxbSVLDNi2HRdfUPv+Ij1QfrxiMZvClpDbZ1EAw2lgtuNRgNEmSJEkaMue/4I73UvFDkjs+HWYc39aSJGmCWF1yfmSDex1Vcl7pySZTS843NHi9rhARewCvKuueNYat+oFfA9cC9wILgDXATsD+wMnA24A9S9YcBlwbESdm5mNV9t6prD2WP5vyNTuPYY9K/hI4v4n7SZIkSROA98NKkiRJkiRJktRMPZ0uoF4R8ToKNyLtUNoNzAfuYZTfJmTmIPDjkq6zml2jJLH0t/DItyqP90yCyU17EOv2Ye8zCv+7VdO7Y/Vxabwa2Aj3ng/XvQhuPQeW39npiurXvx5+9eo6FiRsWdWyciRJZVb9gbqe5Dn9iOrjvQajSeqwzcvbf815P2j/NSVJkiRpPNqwCO7+MFV/3rTfWT4cRZLGZkHxNYCDI+L5Dez11uJrluxbbu+SOU81cK1u8jag9AaUucBNde7xcWC/zDwtM/8lM3+RmXdn5sOZeU9mXpaZH6Hw8Nb/w9Z/ae4NXBxR9S/K8mC0jXXWB9sGo5XvKUmSJEmSJEmSJEmSJI1bXRWMFhH7AN8pNoduFvoqcEhmHgi8tsatLh3aEjilaQVK0pAnrqw+vs/L2lPHRDJ5Bhz0tupzRgtOk8ajTLjhTLjvU7D4Bnjk23DtKbDsd52urD6XH17/mk3Lml+HJGlkG5+sfe6h7x59zqQKn53pX1P7dSSpEf5bUpIkSZI6Z/7F0L+2+pyn1fMwFUlSiZuALRTujQvgqxFR91PiIuKNwEsYvsfumgpTTyg5n1fvdbrUOWXtCzOzjqfLQDEMbUkN8zZm5t8D7y8bOgF4cz2XrKe+BtZIkiRJGjP/CS5JkiRJkiTVqtpv6ev7Db6kiayrgtGATwA7UrjpaxA4OzPfl5mPFsdrfXu7g8INZAAzI+Kg5pYpabt3/6erj0/etT11TDTP/Xr18XXz2lKG1FRLboIlv9q6r38dPPTlztQzFmvmwvr59a8zzEKS2mfto6PPGbLvK0afM2n6yP0DG2FgU+3XkqSx8t+SkiRJktQ593+m+vikXWBPn1EnSWORmauByyncH5fAccBVEfH0WveIiHdSePjoULhaAt+vMP3MkvPfj6XmbhIRJwJHlXQNAN9u9XUz8yvAZWXdf1llSXkC6Q5juGz5mlFSTevyVeDoOg9TUyVJkiRJkiRJkiRJklSzrglGi4heCk9JzOLxucz82Vj2ysx+4I8lXYc3XqEkleidWn18ksFoY9LTV3383n8yAljd56H/HLn/0e+0t44hAxth6e2wcvYocduDsPxuWH4XzP7k2K61aenY1kmS6ldPgOw+Lxl9TrWg3y2rar+WJI3VlpWdue7CyztzXUmSJEkaL7ashQ0Lq8/Z9+XQO7k99UjSxPRhYGNJ+yTgDxHxtYh4UUTsUr4gIg6LiHdHxB3AfwGTGQ5Fm5WZs0dY83TgVIYfRnpzc7+Mcem8svaVmflEm6792bL2iRFR6Rcu4zoYLTOXZOb99RzA3GZdX5IkSRqfotMFSJIkSZIkSZI0oXRNMBpwIrALhd8WbAH+tcH9FpSc1/xETUmqSd/O1cerBUmoMcvu6HQFUn3mX9zpCoY9dQtcfgRc/Xy44li44SWwecW289YvLIz/8gT45bNhXqWHi49i87LG6pUk1W7tvNrmnTUXeqeMPm/yjMpjI/3dIUnN1r9u9DnHfKr5133oq83fU5IkSZK6yd0fGX3O017T+jokaQLLzEeBc4HBoS5gGvAu4BpgRUSsiIjHI2JRRGwAHgC+Cjyb4UA0gNuAD1W41Mco3D8YwKbi3hNWREwD3ljWPauNJdwOlP4SpRc4ssLc8qfQ7Fisvx57lrU79LQJSZIkSZIkSZIkSZIkqX7dFIx2aPE1gTsyc3WD+5Wu3+YpmpLUkMEt1cezvz11TETPKn+Abpm532xPHVIzrH6o+ngOVh9vhvVPwJyvw+3vhWteCOvmDY8tuhbu+Ydt1/z27bDq/tr2nzKz8tgmg9EkqS2eugWevHL0ec/5Mux0cG17TqoS9LvZz9VIaoP+9aPPOeafYJ+XNve6tbyfSpIkSdJEMjgAj/0EHvhC4fXhr1ef3zOp+d+LSdJ2KDN/BPw5sIatg86ieEwHnkYh/GpKSX8WjwCuAl6WmZWeMvA94LTicXKVeRPFG4DSJx0uBi5v18UzcxB4vKx7jwpzl7F1iBrA/nVe8oCy9pw610uSJEnabuXoUyRJkiRJkiRJarFuCkYrvQlofhP2K00a6WvCfpJUsGUtbBklDGKnQ6uPq7Knv7b6+IYn2lOH1AwLR7nH+q4Pt/b6y++GK4+DO95b+YNMj1wIW9YMtzevhCU31Lb/MZ+CVz4Ie/7pyOObltZXrySpfrMvKARfjib64LC/qn3fvmkQvSOPGYwmqR36a/yM5pTdm39t3+ckSZIkbS8GNhd+tnTLG+HuDxdeR3PwuTB5eutrk6TtQGb+BDga+AkwQCHsDIbDz0qPIQHMA96ZmS/LzFVV9r81M28qHne24EsYb84ra383s+1PNtxQ1t6hytwHytr13mxU/jSc8v0kSZIkSZIkSZIkSZKkcaubgtFKb+Cq8OnruuxWcu6nGSU1z5qHRp8z8zmtr2Oi2uWw6uNtv2dVXWfLavj9P8J1p8Md74M1D3eulg0Lq48/+CVYP8qccjkID/4nXH44/DAKxz0fg80j3O/++3+ATU9V329wM1y0S2Gf294JCy4rXGM0Ox8GR38cpsyEyTNHnrNp2ej7SJLGbu4smP3J2uYe8Ob69o6AybuOPLZ5RX17SVK9chAG1tc2d+bzmn/9lfc2f09JkiRJGo8e/L+w7Nba5z/99XDc51pXjyRthzJzQWa+CTgA+CDwY+BBYBmFsLT1wELgFuALwMuAQzPzws5UPD5FxGFA+ZNkZnWglPInOVR7mth9Ze0X1HqRiJgGHDvKfpIkSZIkSZIkSZIkSdK41U3BaKWpHfs2Yb+jS85N5ZDUPKsfrD6+x8mw6zHtqWWi2q1KsNzglvbVoe4zsAmuPRXu/wwsvh7mfAWu/hNYM7cz9fSvHX3Owsshc+u+wYHK829/D9z5ga3fi/7wOfjlCTCwsbi+vxAQ9+RV9dU7dxb8P/buOzyO8l77+PdRtST33jEYXDBgmunV9N4J7QQSckIaSU4K5KSQHt4USM9JQghJCL33YmxjbIPpxtjYYNx7r2qWtM/7x1jRSp6Znd2dmS26P9elS7tP/UkYbZu5Z9a1wcYe+AMnNAegsuOx3bvt0lMwERFPHf/2p2vJv51AyyBMGex3Q/p7lPdyb29S9riIRKylPvjYva6Eit6px3UZCBNfCrbmSydm/3daREREREQkXyV/BrH4ruDzLtkExz8EFT3Cr0lERLDWrrHW/t5ae6W1dn9rbX9rbYW1tpu1dri19nhr7TettS9YqzevXHy6w/0Z1toUB/iEyxjTF9inQ/NqnynPd7h/UhrbHQ+UJd1/11q7Lo35IiIiIiKSNr0UExERERERERERCcrv3TS90yYirQopGG357u8GOMQYU57pQruvADkkqWlONoWJiLSzfYF3335fgJM7HrcoaUs0evdtmxdfHVJ4Vj8LW95t39a4AT7+S27qaa5NPebNz8F9JXCvgRmXwxP7wEPdYdr50LC+bVztcnjmAFh0h/s6OxfDA1XOOveXw0M9iOyl4dH/hhFXtt2v7OM+rtHv4tciIp2UTcB734FH+8GD3WHm1dCwIfW8dmtYJxQziP4nwakvQ79j060UKnq6t+9SMJqIRCzI8+hWXfrCmW9D/xP8xw04GQaeAme+BYPOSL3uxleD1yAiIiIiIlII1k+H5yfAg1Xw/BGw+F/+n3smG3oRVAYIpRYREckBY0wp8MkOzXfmoJQraH+85jpgvs/4F4Dkq0QcbYwZE3Cv6zrcfyzgPBERERERERERERERERERERGRvFBIwWiv4RzoY4Eq4Er/4b6+nHR7XdxXfxSRIle71L192CUw4Y9QVh1rOUWpxScYrWEdbHjNCRUR6cgrAG3+L+Oto1U6gQ4Ayx+C2iXQUgernoJJxzvhN4lmeO7g/AgGPO5h2Pvq9m2ewWiboq9HRKTQvP9DmPcz529k8w5Ydi+89knn731Qu7bAtrnBxp46NbNQNIDy7u7tTdszW09EJKjmuvTGdx0Bp06DM9+BkZ+B0qr2/RW9YP9vObd7H+YEmk98yX/Nxf9IrwYREREREZF81FwHa6fA/NvhpRNg81uQaILNb8Ksa4Ov02NcdDWKiIhk72xgUNL9HcBDcRZgjBkAfLdD81PWen8AZK2tAx7u0HxzgL1GARclNTUD9wYsVUREREREMmZyXYCIiIiIiIiIiIiISFEpmGA0a20jMBnn0wID/NQY0zPddYwxxwI34ASsWeDRMOsUEaFulXt7zV7x1lHMEj7BaACTjoFn9ocdi+KpRwrHmhdyXUF7zTuzm7/jIyc8Z+YnnBCcXOsyAAafuWd7ZV/38QpGExFpz1pY/Pc929c875yUGlTjxvBq8lNS6d5um+LZX0Q6r3QDhlv1PgSOvAMuWg0T/gT7fBr2/184/XXodVD7sQNPgarB3mst+ltmNYiIiIiIiOSLJffAgzUw5RR49+vZrVU1KPUYERGR3Lm+w/37rbUZvclojBltjDkvzTkDgaeBAUnNu4BbA0z/AZD8wct1xpjzffbqAtwFVCQ132mt1QE0IiIiIiIiIiIiIiIiIiIiIlJQCiYYbbef7v5ugSHAi8aY/kEnG2NOBp7E+bkN0AL8KuwiRaSTW/+ye7vfCdWSnpYUwWgA2z9M70r2IjYR/56ZBjokm/NdWJEnOa9H/g3KavZsr+jjPr5xoxMCJCIijpYGqFvp3jfvp+7tbuIKRiutcG9v2RXP/iLSeWX7PLqiJ+z3eTjqTjj4Z9B9P/dxPcf7r7Ptg+zqEBERERERyZUdH8Nr14S3XjeP11UiIhIqY0y5MeZYY8wnjTFfNcZ8zxhzS67rymfGmAHAOR2as7nqwSDgSWPMHGPMTcYYzwdBY0w3Y8yXgNnA4R26f2KtXZxqs91jftuh+WFjzJeMMe0+qDHGjMW58OwxSc2bgB+m2kdERERERMJQRMfD6theEREREREREREREckDZbkuIB3W2teNMfcDV+B8anA4sMAY82vgQZwrKbZjjCkFTgL+G7gMJxCN3fN/a61dGn3lItJprHwKbIt7X9WQeGspZt32g4a1qcdtmAk7l0LXEVFXJMWgcRN06RfvnmEEo4Vt0Bmw5oX05/U/CYac695X6RGMlmh0AoBqhqW/n4hIMWre6d238ong6wQNRus9Ifiabko8gtESCkYTkYi1xPQ8OpEilPuZcXDFLigpj6ceERERERGRsKx4LLy1ugyEASeHt56IiOzBGHMc8A3gdKDSZciPXOacCVy+++5ma+03oqswr11L+2Mk51pr3whh3QOBnwM/N8ZsA+YCG4EdQFdgGDAe9+Mz/2qt/XEae30LGAectft+OfB74HvGmHd277kPcChtx0aCcyzlRdbaNWnsJSIiIiIiIiIiIiIiIiIiIiKSF0pyXUAGrgfexTmIxwI9gR8AH+z++g9jzHygFniRtlC01kuXvIpz0JCISDgSLfD6p737qwfHV0ux2/+m4GM3hXE8qxSF2mX+/fWr4qkjmV8ATi4c8H046Tk49Nfpzx3S8SLbSbru7d23+un09xIRKVapAjN3LAq2TtBgtNFfDjbOi1cwmm3Kbl0RkVSa6+LZp6Uh9Zj5t0Vfh4iIiIiISDZWPgEzroAZl8OyB533mGan8Vmbny4DYOJLUFJQ1+QTESkYxpgaY8w9wDTgPKALzvFvyV9e5gH/hRMM9j/GmPERl5uvPtXh/p0R7NEDOBa4ALgGuBA4jD1D0WqBz1prb0hncWttC07I3QMduvoDZ+IcF3kY7f89rAcusNZOT2cvERERERHJht9LNBERERERERERERERSVfBBaNZa+uBM4AptA86MzhXxEy+PxqooO0TBrv79ovAObsPGhIRCceGGf4hFFUKRgvNgInQbb9gY2d+ItpapDDUr4FnUxznXbcynlqSpQrAidOoG+GgH4AxsPd/QWWf4HMresNeV3j3Vw2Cnge6922ZnVaZIiJFLdXjwsongq3TuCH1mKohMPTCYOt5KSl3b2/Zld26IiKptMQUjDbo9NRj5v4IapdHX4uIiIiIiEgmFv4FXrkQlj8Ayx9yPjd7at9w1h56IVy0BnqOC2c9ERFpxxjTHefCn1fgfna9dWlr67R2BfBs0lyfD3SLkzHmWGBMUtMu4N9ZLjsf+BkwE6gPOOcj4NvACGvtHZlsaq3daa29AicEbZbP0M3A/wEHWGufz2QvERERERHJlO/LNBERERERERERERERSVPBBaMBWGs3AqcBNwMbaR981vo9+YvdY7YB38EJRdseW8EiUvzq18Lkk/zHVPSKpZROoawaTnkZ9roy2Pj6dZGWIwVg8T+gaZv/mGnnwaTjYfM7sZQEQPPO+Pby0n00HPhDOPT2trbKPnDaazDk/NTzB50Fp02H6qH+4/oc6d6+a2vwWkVEil2qx4WVjwdYow5mf8u7v2oIDLsETn8NyrumV19HJRXu7QkFo4lIxFoa4tlneICg7ZZ6+PB30dciIiIiIlJMtrwHLxwFD/WCF4+BdVNzXVFxshbm/TSatcffCsc97FxsRUREovIwkHz1qV3A3cCngetwD0vr6LGk26eFVlmBsNbOtNaapK/K3ccdZrPmOmvtd6y1xwFdcYLXzgE+C9wE3AJ8E/jM7vb+1trR1tpbs9179/4PW2uPBvYBLgW+DPwv8ClgIjDIWvsFa22Aq+iIiIiIiIiIiIiIiIiIiIjkhvW5zoBfn4h0LmW5LiBT1loL/NIY83vgSpyDt44DBtM+8G0LztUzXwDuttamSEUREUmTTcCUU1KPK62OvpbOpHowHHsvjLjKCbTys+xeGP1VnZzRmW16M9i4DTNg8kQ4+32oGRZtTdY64TVR2f9bcPCtmc/vvh+c+AQ8vhfULd+z/8i/wcjrg69X3t29vWlHZvWJiBSj5lr//g3ToWE9dOnv3r9zMbx8jvf8EVfDMf/OvL6OFIwmIrnS0hjPPj3GwD7XOUHLflY8Aof8Uq85RURERESCqFsFLx7thAwDbHzN+Zzn7LnQdUROSys6OxZC3Yrw1z301zDmq+GvKyIi/2GMuRQ4lbYLgr4GfMJau3J3/14Bl3q+dUlgvDGmq7U2D67eVRystQngw91fce+9BFgS974iIiIiIuJHxwyIiIiIiIiIiIiIiISpJPWQ/GatbbDW3mWtvcpaOxwoB/riBKRVWmv7WGvPs9b+QaFoIhKJ9dNg2wepx5V2ib6WzmjgqVA1xH/MO1+Dl06AXVvjqUnyz8rHUo9p1bQtvfGZaqmn7Tj2DvqfCD3HZ772qC9nF4qWbNhFe7aVlMPQC9Nbp6ybe3vz9vRrEhEpVs0BzkV6dIBzAnGylgaYfhk8ORK2L/Ce2/vw7OrrSMFoIpIriZiC0QCOvBOOugtGXOM9pnYpbJ0TW0kiIiIiIgVt6T1toWitmmth3k9yU08xC/JeUyb6TIhmXRERSfbtpNtzgdNaQ9HSYa1dC6zffbcEGBtCbSIiIiIiIiIiIiIiIiIiIiIiIpHL+2A0Y8x4Y8w3jTF3GWOe2v11lzHmJmPMIR3HW8dma+1aa21TLmoWkQCshfUzYNkDMP82ePtrMOMTMOk42PxurqtLz6a3go0zugpUJEq7wJF3QFlX/3EbZsDsbwVbc9sHMP92mPtTWDfN+fcqha28e3rjg4QdZqu5zrvvsN/BGW9AWU1ma48L+G890FrfgV6Htt03pTDh/6CyT3rreP03aNqReW0iIsWmuTbYuLe+1P7+3KxeMQcAACAASURBVB/DiodTzxt6fvo1+Skpd29P6KW4iESsJcZgNFMC+1wHx9wNl2xyng+7WRFDuLKIiIiISDHYMtu9fdGdkGiJt5ZiZyP4fVb2hT5Hhb+uiIj8hzFmEHBwUtON1lqfD5dTSr6iyn5ZrCMiIiIiIiK+iul482L6WURERERERERERESkUJXlugAvxphDgV8Dx/kMu9UYMxP4mrU2YDKRiOSNqafveUV4gJ2LoPceuYf5a/ZNua5ABp8F586H5w6Gxk3e45beAxP+5JzY7mXxv+D168E2t7Xt+1knCMpvnuS3qiHQtD34+KDBNNlI+IQ5lFZCaQUMvRiW3p3+2l0GZl7XHmv1g9NnOiGB9Suh/4nQbd/01ynv5t6uYDQRkTZrng82buXjULcKqoc44UAf/j7YvJq9M6/NTUmFe3tiV7j7iIh05PdcOkqVvZ3nw+um7Nm3/uXYyxERERERKUjL7vPu27EQeoyJr5ZiF8VnHWO+DiUegdEiIhKWo3d/t8AKa+0rWa63Oel2mle/EhERERERERERERERERERERERyY28THgxxlwATMcJRTNJX/8ZkvR1HPCKMebCuOsUkSwY4wQVualbFW8t2Zj701xXIK2qhzrhZX6ad0Ltcu/+ho0w69r2oWgAH/8V1k/PvsZcsNYJe5t+Kcz6NKybmuuKcqPjf9NUmndGU0cy32C0Ls73CX+EwWenv7Yxqceko7QLDD4DRl6fWSgaQJlHMFqzgtFERP5jyb+Cj318KNxfCQ90Cf63NOzHBwWjiUiutOQoGA1gyLnu7dvnx1uHiIiIiEgh8vuMBqBhbTx1dBZhf9bR/yQY87Vw1xQRETfJV8F6L4T1kh8QuoawnoiIiIiIiLgK+dgsEREREREREREREZFOLu+C0YwxY4D7gCqcTwbs7i9oH5Bmk766APcaY8bGW62IZKXaIxitvkCC0Rb/E+Z8N9dVSLIh56ces32Bd9+j/bz71ryQfj354L3vOGFvKx6BxXfBlNNg+SO5rip+zbVpjo84GM1a/zCHkkrne3k3OOkZuHg9XLgCjns49dp7XRVOjWEr9whGa1IwmogIAHWr05+TTgDZ0AiyxBWMJiK54hcy3KrbqGj27nmQe3vDemjcHM2eIiIiIiLFoH4NTDref0zjxnhq6SzS/WzET+8JcOpUKPV4P0hERMLUI+n29hDWSw5DawhhPRERERERERERERERERERERERkcjlXTAa8GecoLPW0DMDNAOvAQ8CD+2+3UT7kLQuwF/iLlZEslA91L29rgCC0da9DLOuy3UV0lFpJVywzH/Mtnnu7Rvf8J/XuCGzmnJp11ZYcHv7NtsC836Sm3pyqbkuvfFrX4JXPwlNYRxnnuTjO+CZcfBwb5h2rve40sr297v0c/5m1gxPvcegM7KrMSpewWiJRmhRgI6ICHXLo11/+OXhr1lS7t6eaAp/LxGRZH4hw63G/yyavbuP8e7b9kE0e4qIiIiIFINFf0/9/ofXZziSmbAuAlPRG059OZy1REQkiC1Jt3t4jgpucNJtJfuLiIiIiIhExua6ABERERERERERkYKhd9NEJIi8CkYzxhwAnEBbIBrAbcBAa+2x1torrLWfsNYeCwwEftlhiWONMQfFV7GIZKVqiHt7fZ4Ho22bD5NPznUV4qVmOPQ4wLt/7WT39uUP+q+7a2vmNeXKmhed0KmOtsyGph3x15NLLbXpz1l6N7x8Tng1LPk3vPFZJyyhaSvsXOw9tqTSvd0vhAGg+1jY64rMa4xSeXfvvg3T46tDRCRf1a+Odv1hF4e/ZkmFe3tCgZciEjG31znJ+h0Lg8+KZu+qwVDmEfq75oVo9hQRERERKQab30495v0fgNXhTqFpCikY7bSZUFYdzloiIhJE8lXbxmWzkDGmEjg4qWllNuuJiIiIiIiIiIiIiIiIiIiIRE1HEYpIq7wKRgMu2f3d4Pyt+rK19pvW2i0dB1prt1prbwa+mDQeIIKzvUUkEtUewWi1y+KtIx02Ac/sn+sqJBW/4I91U6C5Q0iWtbDycf81mwowGG3bXO++qMNX8kmiyfnKxIYZsPAv4dSx6M7gY72C0co9AhhanfUOlHqE1OSaV3gEwKK/xVeHiEi+qoswHHjI+VDq8diSDQWjiUiu+AWjHfIrOOm56E7aNwb6Hu3el+p1pYiIiIhIZ7bysWDj1k+Lto7Owlp456vZr9PzQOiR4qItIiIStnd2fzfACGNMNn+ILwFa38xvBmZlU5iIiIiIiIj4MbkuQERERERERERERESkqORbMNqE3d8tMMta+8dUE6y1fwZm0vYpwhER1SYiYase7t5euxTq18ZaSmCvXJTrCiSI0V8B4/EQl2iEtS+1b9s2D3Yu8l9z1x4ZnfnP+uQhb37Hu6/YdAzCS9ebn4OmHdnXsf7lYONMGZSUevcPPse9/eD/B6Vd0i4rNlUDvfs26vh7ERHqIwxGG3hKNOt6BaO11Eezn4hIqxaPAMZ9roOxX08dKJytoRe4t2+bCzs+jnZvEREREZFC1aV/sHErn4i2js5i+YPZr1FaBRP+nP06IiKSFmvtEiD5Tab/zWQdY0wl8J3WZYE3rbVZfnguIiIiIiIi3nyO2y44xfSziIiIiIiIiIiIiEihyrdgtLFJt/+Zxrx/Jd3W5YpFCkWfCd59G6bHV0dQb34RVj2Z6yokiMrecJlPkNXG19rfX/9K6jU3vw2Jluzqituuzd59r14Fq1+Ir5Zcaq7Lfo2ns3x64RdS11FppX//Ptfu2WZKYa+r0qspbmU13n21S2HRXbGVIiKSl+pWu7cHPWnYiymF4Zdnt4aXknL39vrVkGiOZk8REXACr92UpHguHZah53v3KcRBRERERMRdz4OCjVt2f3rvqYu7FY+lHrPPdc7Fhrycvxj6HRNaSSIikpbWD08NcI0xxuVDYm/GmBLgDtofi5fyAqUiIiIiIiIiIiIiIiIiIiIiIiL5It+C0Xom3X4njXmtY02HNUQkn1UPga4j3ftWPxtvLal8+AdY+KfU40bd6N5+6G/CrUdSK6uGYZe69zVuan+/dlmwNVcV2Anua57373/js9DSEE8tudQcwkWv61fDlvcyn5/O7zlVmMOwS+HAH4Apc+6X94DjH4GaYRmXF5sDvufd9+bnockn0FBEpNg1bnBv73Fg5mtW9IITn4aqgZmv4aekwrtv5ePR7CkinVPtMnjn6zDtAvjgF9C0zX1cXMFo1UOht0fY+7vfiKcGEREREZFCYwNefKZhLWybF20tncH6qanHHPB92O8L7n09x0f3npKIiATxW2A9YHGOh7vTGPMzY0x1qonGmP2BF4Grd8+3wMfA/dGVKyIiIiIiIs7LNxERERERERERERERCUu+BaP1SLq9yXPUnrYk3e4WUi0iEof+J7q3L7kbts2PtxYvyx+Ctz0Cz5Lt9wXnq6ymfXtFbxh2cTS1ib+KHu7tHYOy6lcHW29ZAR0nvHEW7FzsP6ZuOaydHE89udRSF846S/+d+Vyv4AY3pSnCHIyBA78Pl22Fs9+HSzbC0Asyry1O1cO9+xKNsPLJ+GoREck3jRvd23vsn/5aB/4QLlgGF6+DwWdmV5cf32A0/U0XkZDsWATPT4AFt8OqJ2H2zbDmBfexqZ5Lh2nYhd59H/4uvjpERERERApF0GA0cJ77S3Ya1vv3Dz4Huo6A7qNgwMQ9+/e7IZKyREQkGGttHXAtkMAJNisBbgbWGGPuA9olWxpjPmGM+Z4xZjowBzgZ54x8AzQCV1prbYw/goiIiIiIiIiIiIiIiIiIiIiISFbyLRgtuZ40joxuNzbffiYR8TPodPd22wJL7423FjctjTDj8mBjD70deoyBiS/BgFOgsg8MOgNOmQo1w6KtU9yV1ri3L7sPWhra7q95Pth6yx/Kvqa4zPl+sHGrno62jnzQUh/OOvN/BS+dCJvfTn9uOsFoJV2CjSurgZ4HQElZ+vXkSnl3//7Vz8RTh4hIPvIKRut5AHTdN721qodCzXAoKc++Lj9+wWhL7452bxHpPD78LTRuCDa2JMZgtKE+wWhzvg86z1REREREpL20gtE6wWcXUSvzuZ5ceQ84LukzrxOegJHXQ9Vg6HkgHP5H2O/z0dcoIiK+rLUv4ASgtYajgXPB0MuBbyQNNcC9wA+AY2h/7FwzcL219p2o6xUREREREREdJyAiIiIiIiIiIiIiEqYCStIQkaI09EKo7Od+kvOmN+Kvp6O3bkw9xpTBCY9D6e4TsPseBae8FG1dEkyZRzAawGvXwnEPQMNG7yASN4nm/A+ishY2vR5s7I6Poq0lHySH4HV04Qp4PI3gwvWvwPOHOycMdRsFPcZBSWnqeQ0Bgxyg7W9JMSr3ORFLRKSz83o+UtkPDvohvHoNgQ+e83sOFCa/YDQRkbB89PvgY+N8Lt19LNSMgNqle/Y1bYX61VA9JL56RERERETyXaI5+NhNb4BNgNE10TLmF5h/4Qooq2q7X94Vjvxb9DWJiEjarLV3GGMWAfcAA2j/QUHybZN03+6+vxH4hLV2ahy1ioiIiIiIiIiIiIiIiIiIiARlfU6V9OsTkc5FRxKLSG6VVsKQc9z7ErviraWjXVtg0R3+Y4ZdAme+6f0zSG75hYKseBjq18DCP6a35s7F2dUUh4Z10LQt2Nh1UyDREm09udZS795eUgnVQ6H76PTXnHEZPDceHh8KG17zH7vkbnjp+OBrlxRxMFqZgtFERFy1NEDzTve+yj4w4iqYOAn2/qTTluqk4NiC0XxOsBURCUM6wQkQ73NpY5z3BLx0hhBqEREREZF02DQ+i7AtMP9X0dVS7KyFpu3ufcfcp4uYiIgUGGvtFGBf4CZgBU7oWccvkm5vAn4EjFQomoiIiIiISJxM6iEiIiIiIiIiIiIiIhJYWa4LEBGhZoRHRyLOKva06hn//qP+Cft8Mp5aJDN+oSA2AZvfhQ9/m96aDeuh+6js6ora9vnpjV/4fzD6S9HUkg9aGtzbS7s434+8C6acCi11zv2ybtC8I9jaDWth2rlw4Uooq9qzf+v78FqafydKizgYLeXJVjooREQ6qcZN3n2VfZ3vA09xvo7+p3N/1dMw7Tz3OWVdw63Pi1f4qIhIWLbOSW983M+lD/oRLLjNvW/yRDj+URh8DpRWxFtXoatfB6ufBowT+l3ZH/oeCd32zXVlIiIiIpKNdILRAGbfDMMu1vPApu2w5gXYOs+53f94GHiq//vtiUawHkHTNcOiqVNERCJlra0FfgX8yhgzCjgOGAb0ASqAjcA64FXgHWt17WQREREREZH46aWYiIiIiIiIiIiIiEiY8jEYrfXTgKOMMSMCzhmYfMcYczxpJGtYa18JOlZEolDi3rw+x/9rrn/Zu6+sm0LRCoFfMBrAO1+FXVvSW7N5Z+b1xGXHx+mNX/FQkQejeYS2tAaj9TsaLlgKKx+HkgoYdAa8cCTULQ+2/q7NsOY55wStjpY/lH69JZ04GG3ZvXDsPfHUIiKSTxo3eve1BqPtweM5NMT4WOLzstv41CciEsS2BfD8YenNifu5dFk19DkCNr3h3j/9Yuh9OEycBBU9462tUG14Faaesedr79IqJxx0+GW5qUtEREREspduMBrA0nvgwO+HX0uhqF0Gk0+BnYva2j78NfTYH058Grru7THP5/ON8u7h1igiIrGz1n4EfJTrOkRERERERCQdBXbhYOVti4iIiIiIiIiIiEgeyMdgNHDe9b8vi7kvpzHekr+/B5HOoaTUu2/Le9BrfHy1tLIWFt3p3b/3f8VXi2QuVTDajoXpr9m8I7Na4tS0Pb3xuQ4hjFpLg3t7aVXb7S79YN//brvf/wRY+u/ge0y/BHodDFtmZ1Zju7q6ZL9GvipLEYwGULsCaoZFX4uISD5prvXuy+RkVRPTgXR9j/LuswnY/hF0HxVPLVLcdi52Xp9tetM5kb5mBOx1BQw6LdeVSZTmfC/9OT3GhV9HKr0P8w5GA9j8FjzcC0bdCGO/ATXD46utEL1+vXsgeUs9vPl5GHIBlFa0te9cAvNvg6atMOBk2Ps6//eZwmQT8PEdsG4KVA2CkddDzwPj2VtERESkEGUSjLZ+evh1FJLZ324fitZq2wcw9ydwlMdnmR/83HvNIO/Ti4iIiIiIiIiISMgUNCYiIiIiIiIiIiIikq6SXBfgweIEnKXzZZO+0p0rIrmUaPbuW/FofHUkm32zf/+oL8ZTh2QnVTCal16HQLXHyepNBRCMlmjMdQX5xTMYzSeAbPSX098njFA0oKgPfggS7vPEcP/HBRGRYuT1WAVQUune3qWf95zyntnVE1R5ihNpJx0DW+fGU4sUr+0L4cVjYd7PYO0kJ4Bo8d9h6hmw+B+5rk6i0tIAKx9Lb06P/f0DG6My8jNgAgRxffR7eHos7Pg4+poKVd0q2L7Au79xE2yY0XZ/23znd7rwj7D0Hnj9MzDrusjL/I9Zn4I3PwfLH4QPf+v8rdroE5InIiIi0tl5BaMNvdB7zrrJ0OQSnNtZrHnOu2/Vk959i//u3ZdJCL+IiIiIiIiIiIgEoFOTRERERERERERERETClK/BaNA+6CzIVyZzRSQf2IR337Z58dXRauv7MP+X3v3jb3VOuJb8l2kw2vDLvYM+CiEYzS9cxUtzXfh15IuWevf20irvOX0mwMTJ0dSTSnmP3Owbh1KPcJ+ONsyMtg4RkXzjF+JpPA6Y63UodOm/Z3v1cOg+OrzaUjnmXu++xk3w4e/iq0WK08I/QcNalw4Lc26BhMeJ9ZKZDa/C5FPh8eEw5TTY/lFu6tj+oXdoQkemDIZfBqdMhZKyaOty0/tQmPDnYGNb6uCp/eC+MnhiBLx7EySaIi2voNStTD1m58fw3nfhXgPP7L9nMPjSfzt9kyeGGF7tYtt8WPKv9m3NO/zfTxIRERHp7Lye4w86E4Zd6j1v+sXR1JPvWhpg1xbv/saN7q+JU71OThV0LyIiIiIiIiIiIhnSKUoiIiIiIiIiIiIiImHKwdmCvpajTwNEOp/qwd599WviqwPAWnj2IP8x+3wqnlokBBnmf476Eqx83L2veWfm5cSlpTH1mI4aN0LZ8PBryQd+YTN+Bk6Eqyw0bIRH+4Vfl5eKnvHtlQvDL4flD/qPWXo3DDgxnnpERPJBwuOxqsTnsaqkFA64Bd76Uvv2A2/xDlOLQkUv//5Fd8CRf42nFilOfoGpdStg5yLoPiq+eopZ7XKYekbba566FfD84XD+IugS4/NhgI2zUo857mEYfonzOj7Ov3tu9v0MNG2Fd78ZbLxtgdplTohW3Qo49r5o6ysUfsH5rd64Idha66bCpOPgnPlQMyy7utwsvce9fcXD0LILSivC31NEJG47F0P9OqgaCDUjcv94KyKFL9Hs3m5KYdy3nedSbtZOckJvex0cXW35qHFT6jHN2/d8b6Z2qf+ckvKMSxIRkXgZY0qAA4DxwHCgH1CFc2xdPbAe51i794B51lodcyciIiIiIiIiIiIiIiIiIiIiIkUjr4LRrLUjcl2DiOTAwFO9++IOoVo7yb+/79FQNSCeWiR7iab05ww4Bcq7Qnk39/7mHdnVFIdEhsFoNcUajFbv3l5aFWx+l77Q71j/UI4wDTglnn1yZew3UwejLboTxt8afwCHiEiuZBriOeqLUD0Mlj/sBKUNuwyGnB1+fX7KquPdTzofr+dyrbYvUDBaWOb+ZM/X4M07YOm/Ycz/xFODTTjhYgtu9x93/GMw7ELndr6EtIz9BvQcD1NPT2/esvuhrBsc8WcwGYZ7F4uw3wNqroXFf4cDvx/uugArHvHue7AajrgDRipYX0QKVP1amHQ87Py4ra1mBEycBN32zVlZIlIEbIt7e0kZ9BrvP3fhn53nzJ1JkGC0Xdv2DEbbvsB7/MDTsqtJRERiYYw5AbgBOAvoEXDaFmPMM8Ad1toZkRUnIiIiIiIiPvLk+AUREREREREREZEC4Hf5N10aTkRadfKz7UQkL3TdB7qPde+rXx1vLUv+7d9/6G/iqUPC0fsw0v6Qud+xzvcyj2C0pgIIRmvJIBht1TPF+yoh07CZZIf+Gir7hlMPQGUfuHQzjPiv9u3DL4Phl4a3Tz7qcziM+3bqcW9/NfpaRETyRTaPVUPPh2P+BUfdFX8oGkBpgGC0RHP0dUjxSuzy7/c74VuCS7TAojvc+za/HV8dH9+ROhTtsN+1haLlm0GnwXkfpx7X0aI7YPbN4ddTaJprw1/TL8AsG37vDdgWeP3TMOMTsPLJzF6ji4jk0swr2oeiAdQuhaf2g6lnwcyrYd7PYPE/oH5NLioUkULlFYxmSp2Q4CP+4j1305vR1JTPGjemHtO0bc+22mXe4ztbuJyISIExxuxvjJkKTAWuAHriHPAQ5Ks3cA0wzRjzkjFGV5MQEREREREREREREREREREREZGCpmA0EckPh//Ovb1xY3wnkNathKV3e/ePuAb6HhFPLRKOLn2h33HpzRlxtfO9vICD0RIe4Sp+3r8F3voi2ET49eSaZ9hMVfA1+kyAs993Qmcm/F/2NV24Cip6wdH/gFNehkNug1OmwDH3Qkl59uvnu/E/hT5H+Y9Zfj80bIinHhGRXAvjsSpXygIEo+3aEn0dUrwSKV4PKhgtHDs+8u5bek98dSy7179/+GUw+sZ4aslUt5FwcQbPY+f/yvnqzKIIRtv6Pqx6Ovx1g9S6/EF45QKYdCw0bg6/BhGRKDRuhvXTvPvXPO88Xr/3HZj1KXh6f1jnM15EJJlfMBrAvp/1nrvjw+K9uIuXIMFou7bu2Va/yn1szwOdi1WJiEheMsZcDrwBnEBb2Jl1+Wrl1tc6byLwtjHmkrjqFxEREREREWj/sq3QFdPPIiIiIiIiIiIiIiKFSsFoIpIfqgZ79zWsjaeGN7/g3z/0wnjqkHAdez/U7BVs7NF3Q/fdF04u6+o+Zund8PK58PpnYOZV8PwEuNfASyfDR3+ERHM4dWcj0zDBhf8H614OtZS80FLv3l7aJb11qgbCPtfBfp+DYZdmXs/I/4bSSue2KYEBJ8LYr8GAk6GkLPN1C033FBcpt4loAgxERPKRZzBamo9VuVAaIBgtyIm8Il4Su/z7F98F9TG9Zixm9au9+6qHxVfH+lf8+/e6Mp46stWlL1y6FYZekN68d78JzxwAH/wCmj1exxSz5p3RrDvruvB/n+kEkm9+G+b9LNz9RUSiUr8mvfFNW+GN/4aER9iRiEiyVMFoAMc97D6muda5wFFnEuT9lOTPUFc8DrM+7f3cs/v+4dQlIiKhM8ZcBtwLVNM+EK016AxgA/ARMAsnQG0hsDFpTPI8gBrgPmPMRfH8FCIiIiIiIiIiIiIiIiIiIiIiIuFSMJqI5Ae/YLT6dfHUsPkt776KXumf0Cz5oXownL8k9bhzF8De17TdL+/mPXb1M7DoTlh2X9u/m/Uvw1tfgukXg83xVbISGQajAax6Krw68kUUYTP7fZ62Y9DTYMpg7Dcy37eY9D4s9ZiNr0Zfh4hIPvAKVymEYLSyAMFoq5+Lvg4pXqmC0QCePQC2L4y+lmK2a7N3X9O2eGpY82LqMT3GRV9HWCp6wPGPwYUr4eQX4OQXoXpo6nnb5sHsm2HyydAS4N9/MWmujWbdxk2wbnJ46zXXeb/O9LL0bif8WUQk39mm9OfsWAibXg+/FhEpPkGC0Qae4j1/w/Rw68l32+amHjPzCudiOfNuhekXOeHhXqqHhFebiIiExhgzGrgL5xi+5EC07cBvgHOAvtbagdbasdbaY6y1R1lrx1hrBwD9gPOA3wE7aB+QVgb80xizX9w/l4iIiIiISOeUwXHFIiIiIiIiIiIiIiLiScFoIpIfyrt797VEdGJsskQLNPgEsJ09B0rKoq9DomEM9D/Ru7/PkdB9dPu2yv6Z7bXqKVg7KbO5YfE6QXvM11LP/fA34daSD5Y/6N5eWpX5mgMnwvGPQNd93fv3vhaOfxR6HQymxDmxq9ehMPEl6D4q832LybCLU4/Z/mH0dYiI5IMoQjzjUtEn9Zg5342+DileQYKhGjfBgtujr6WYNW7y7mvaDk07o69heornh1WDoOvI6OsIkzFO+MCg02HQaXDwz4PP3fQ6vH9L2/1EMyz4DTw1Gp4cCXNuiS5ILFei/HnCDOls3Jj+nIb1sGV2eDWIiEQlkUEwGsCkY+GBKnjuEFh6f7g1iRSjXVth1vXw2FB44UhYck9685c/4sx7oBru7wIP9YQpp8HWAEFauRQkGK2iJ9Ts7T7u1auhYUP4deWr1c8HG/fGDfDet1OPq1IwmohInvoDUE1bIJoFfggMs9Z+zVr7nLV2i9dka+0ma+0z1tqvAsOAH+9eo1VX4PeRVS8iIiIiIiJJcnxhbRERERERERERERGRIqOUHxHJD6bECSlqqd+zr7ku+v2btoJNuPcd+TeoHhp9DRKt/b8FG1/d8+Q+UwKHuxwHXJ3FCSLv/A+cMy/z+dlqaXRvL6mEIefDqif95+9YBN1CDhxoroXtC5wTnHqMg5Ly1HOshdplUFIBjeudn8uUQvcxUN412L7rpoJtdu8rC7iGl2EXOV9294EMrX9DTIkTgNA6JtEMGCgpdV2m0wryd3X7gujrEBHJB17BaCUFEIwW5PGtvFt0+ydaYOfHUDMCSiuj26fQ1C53fu8VvXJdSfYSHs9tO1oT8IRxcecXjAZOEFTQ5+CZ2P5R6lCsUTcW/nPq4ZfBvFthW8DAig9+DqO/AmXdYNZ1sOKRtr65P3bCto74cySl5kRzhAF8YYaSZRKMBrBtPvQ+NLw6RESikAgQSuulpcH5e/vqlU7I87ALw6tLpJhYCy+fDRtfc+7Xr4LXrnHe+x5xRer5K5+EGZe2b0s0wtqXnJDC8xZClwwv/BI1r/fqTYfn+UPOgY/+iyAqkQAAIABJREFU4D528klw1pzCf22QSqIZapcEG7vkn8HG6bNOEZG8Y4w5FjiFtlC0HcDF1trJmaxnrd0BfN8YMx14FKjZve5pxphjrLWvhlO5iIiIiIiIpM/kugARERERERERERERkYJTkusCRET+o6zavT3VydFh8DupdeDp0e8v0Rt8JpwyFUZe39a297Vw1mzoM2HP8VVZBKNt+wAW3ZX5/Gx5hUeUdgkWTLL03vBqsRbe/xE81AOePxyeOwQe7gWLU5yos2MRPHsQPLk3PD7EmffiUfDCBHi4B7z3He8ww1YtDTB5ond/z4PS/3ncGON8lZQ6X6bDwQslZcV/klamDv2Nf3/jBmjcHE8tIiK55BWMVloAwWjgBBz7iSroeNXT8Gg/eHoMPNwb5t8WzT6FpHYZPHswPLEXPNwHpl8KzS7h04XC2uDhHLVLC/tnzbVUwWgtEQeWr3nRv7/7WBjz9WhriENJOZzxOhzwveBzHhsMD3VrH4rW6uO/wM7F4dWXa1G+/7Pjw/DWSvX/i5fXroGWLAKHRETi0PGiEpmafhE0RRh4KVLIts1tC0VLtvBPqeeufAJeucC7v2k7fOhyIZh8YVvc202Ha7kN9QlW3PYBrH4mvJrylVeIXDb6HB7+miIikq0v7P5ucMLRbsg0FC2ZtfYl4IakdQE+n+26IiIiIiIikg2beoiIiIiIiIiIiEgn4veOmd5NE5FWCkYTkfxR6hGMFvUJ2OAfjFbZJ/r9JR79joUj/wZXWefr6H9AzwPdx1YPzW6v1z8NM6+EObfArE/BWzfCpjedcIeotXgFo1VCWYBgtLUpQgmCaNoOyx+GF4+G97/f/oSn5lqYdZ1zEpcba+GVC50TxFz7EzDvZ/DKRZDwOJFq1xZ4Zpx3faYMBp8V6EeRCHUMkXOzPcQAAxGRfFXowWj73+zf31wb/nOgnUuc5wu7tjj3W+rg3W/AyqfC3aeQWAsvnwtb32ttcIKU3i3gMKl0TwTfMjuaOjqDXSmCnqIKrLIW1k6G2Tf5jzv+USitiKaGuJVVw0E/gstD+p1OPRO2vh/OWrnW4vE7GXENDL3IvW/Ul+Hof+8ZptFR4ybY4BJAkgm/95BS+eDn4dQgIhIVv1DakvL01nqoGyz+B9StzKokkaKz5G739g3Tne/NdbDqGVj4F/j4DicE/INfwJtfcl4HpzLvJ86FSVY+6f1+Q654BqN1uLBI/xOgvKf3Om/d6Px+Nr6R+gIqhSoRcjBajwOg6z7hrikiIlkxxlQC5+Ecy2uBR6y194e1vrX2PuARnHA0A5xvjCmSN9hERERERETyVYBjYkVEREREREREREREJDAFo4lI/ijzCEZrjiEYbcNM9/bSKu+6pLhVDc5+jWX3w9wfOycAfvQHeOEIeOMG7zCvsCQ8TnYqqYTy7qnnb5jhnHiVqR0fw7MHw4zLYNPr3uNeuRBWPLpn+5Z3vEPRkq16Eh4f6pzgnmzr+/DUaNi52Htu/+OhwufEKomH14lwyXYoGE1EOoFCD0YbcXWKATb8k7FXPOL+OLLS5blFZ7FjoftzqOUPxxPOGwWvwF8vk46B2mXR1FLsUgU9RfG6vLkOpp0HU06FlnrvceN/Bj3GhL9/rpVVhxPEvmMhPDse5t2a/Vq55hXAV1YDIz+9Z3tJJYz6Iux9NZw9Bw79DRz8/7zXn3SME6CRrWyC0Zb8M/v9RUSilGhyby+tgnM+gMN+l956sz4FT4+FVc9mX5tIsfB7LrFzKbx4FEw7F978HLzxWScEfPbNsPCPwfeYdR28coHzmcTOpVkWHCKv94NLOgSjlZTDvp/1XqduufP7efFI5+9M2CFi+SDdoPBUxvxPuOuJiEgYjgK60nbW/O0R7HFb0u2uwNER7CEiIiIiIiL/UaDH57gp1GONRERERERERERERKSoKBhNRPJHqUcAWUsMwWizb3Zvr+wb/d6Sn0orwjlJvaNFd8Ca58JfN5lXgERpJZiAD/0zLofaFentu+JxmHU9PLUf1C4JNmf6JdC0vX3b6ueD79mwFl4+t33bG5+Dxg3+8459IPgeEp0gJ6xtXxB9HSIiueYValoowWjd9oWj7/Yf4xV2k6l3v+nevvgf4e5TSJY/5N7euCH8YLq4JHalP2fqWeHX0RnsXOTfP/kkmHombPsgu32a6+CDX8K9Bh6sgdUBApnHfD27PfNZvxNCWsjCnO/C1gAB0/nMMyi0CgafDQf+AMzu0IyK3nDEn6H7KOd+j7Ew5isw9iYo6+q9x5ufgzk/SP/vYu0KeP+H8Oo1sOC21OO97FwU/mOiiEiYvILRSsqd5/2jb4QLlkPvCcHXbN4J086BZp8gVJHOxO/iJW9/xbnwR1i2vg/zfhLeetmwFmzCvc+U7tl2wHeDrbvkX7Dyiczryldef48ztc914a4nIiJhaA0ps8B8a+2ssDfYvWbyG3oKRhMRERERERERERERERERERERkYKhYDQRyR9lNe7tzREHo/mtr2C0zq0igmA0gI//Gs26rRIewWglXaBpR7A1Wuq8A0fcvP9jmH4RLP578DmtHhvS/v6cgCc8tdo0qy1MbddW2Pia//hDfw1d+qW3h0SjZnjqMTsXR1+HiEiueYWzlBRIMBrA3tfA2XO8+1sUApNThRrCk0kw2vb5xXlSfJQSzbAjRTAawJoX4JlxsG5aZvu0NMCU02D2TcHnnPScE1pdrEbfGN5aNgFLUoRU5rtUId8Hfh8uWg1nvQcXLHEPdzAGuo/232fuD2HaecHDJnYugUnHwPs/gKX3QO2yYPO8bP8ou/kiIlHyev5VUt52u2YYnDELzvnAeaze+9pga794ZPb1iRSD8h7efaueDH+/pfd5B5LFya8Gt2C08m5wWcDPM1Y/m1lN+cwGuKhIUGfNDn7RHBERidO4pNszI9xnhseeIiIiIiIiEjqT6wJERERERERERERERIqKjoAVkfxRWu3e3hJxMNr2D737uo6Mdm/JbyVl0ay76il444bgIWWtWhrg3ZvggSq41zhf086Hze/sOc5NaSU0p7Hn8gegfl3qcU3bYd5Pg6/bUfNOeKQ/bF8YbD83L5/lnFjVuAnnoto+Rn8lsz0kfIPPgZIUQRe7tsRTi4hIHFY8Ci8eC4/vBa9dC42bnfaWevfxpQUUjAZQ6RM8unVefHV0Vm4nkrd660vBA4DySSbBaABvfC7cOopd7dL0Trp/538y22fV07Dx1eDjS8qhz4TM9ioUA06GE55wgrxSPS8OYv4v8iP0IlOeId+Vbbe79IdeB0F5d+91uo1Kvdfal+D+CnjpZJj9LZh0HDw9FmZeDQ0b2o/96I9QtzL1mkFtXxDeWiIiYfN6ztjxccqUQI+xMPhMOOquYGtvfT/7cEmRYuD3PCYKLXVwX6nzecJTo2HK6bDx9XhrALAt3n1er2fLu0LPg1Kvvfjv0LQzs7ryVSLEYLRe48NbS0REwpR8MEqUD87Ja+sAGBERERERkUilOH5ZRERERERERERERETSomA0EckfZR7BaM0RB6O9cqF334G3RLu3dF4f/xWmnQvW50Pw5lqoXwstjU6YyDPjYP4v2wefrXoKppzaPlCsxedk8sHnpFdnkOCCjbO8T2APqnEDPD0KVj2Z+RpvfyV18NvZc8Hoimx5o7wrjEkRrLFrazy1iIhEbeVTMP1S57G1bjks+RdMPtkJsOkYwNKqtCreGrNVVuPdN+2c9ENhJT1+wWjLH4BZ18dXS1i8ntcC9DnCu69hLWz/KPx6ilX96vTGb3k3/d+vtbDwz+nNGXE1VPZJb04hGno+nLsArmiETzRkH5D26tXh1JULXmGI6f5Ouo8OPnb9y/DBz2HDTCewbNm9MOlYSCQFdyy4Lb39U6lfFe56IiJh8vpbbMq95xgD5y+Csm6p13/vO877nGEG/ohIcDs+grWTYMop8QcV+oUxG5+L1EwI+Dpi5hXp1ZPv0gmv9jP43HDWERGRKAxIuh3lA3Py2gMj3EdERERERER86dhlEREREREREREREZF0KRhNRPJHqUcwWkuEwWjN9U4whRtTCj0PjG5vkfWvwNb33fs+/D08PhweGwQPdIFnD4Cdi93H7toC837Wdt8rpKy0Cww63f8ko45ShSRsmAlTzwi+XipvfDbzuR//BRo3evefNRt6jst8fYnG+FvhyL979ysYTUSKxcI/ssdVQbfOgbUvwY4P3ed0HRF1VeHyej7fatl98dTRWfkFo4Hz+/cK4ctXXsEcAMc/5j939XPh1lLMEk3pz1nzYvCx2z6AR/vDusnp7XHwL9IbXwxKK+Hitf5j+h4NvQ/z7l/+UPQB81HxCkMsrUxvnT5HZlfHjoXZhXan0lwf3doiItmyHs8LUoVUdt0HznoXRv63/7il9zjvcz7SB5bem1mNIoUuk+ffrWpGtP/cqu/Rma3TXAvv/yDzOjJhW7z7/F7P9gv4M65+Bja/k15N+SysAMn9PhfOOiIiEoXkKwJE+YFo69oG6B3hPiIiIiIiIuLL50LaIiIiIiIiIiIiIiLiSsFoIpI/yjyCFKI8oXf7Au++IbqKusTg7Rvb/o031zsBA9Mvgbe/DLs2B1/no9+BtdC4GVo8TrIu6woVPeHw3wVft26F871ppxMuseRuqN99ov6urTDl9OBrZWvQWc7P4CXRBCufcu8rqYRe46OpS7JjDIz8FBzjcTJs07Z46xERiUJzLax5wb1v6hnQ0uDe131sdDVFoaTUCWL1svgfsZXSKZkUV5a1zbDi4XhqCYtfMFpZNVziE4q7bW749RSrTIIZ3v06rJnU/u9X7XJY/E+Yfzu89z2YcwtMvwyeGecfYOxmn09Dl37p11UMKnrB+UugenhSo4FDboOrLJz+Kpz5FvQ5yn2+bYF1U2MpNXRe/8+nCuPpaMDJ/q8dg9j4GmydC+/elNn8yj7efV6v2UVE8oHX84KS8tRzu42EI/8KVyZSj23aDq9eDa9/xnnusPAvsHVeerWKFKpMg9Eq+8L5i+HsOc7zwqssnDoNSqsyW2/xP8IL3woi02A0gIGnBttj3q3B68l3NoT/NsMvg0FnZr+OiIhEJTkJPspgtOQPW33ewBcRERERERERERERERERERGJj/W5loBfn4h0LmW5LkBE5D9KPYLRWiIMRtvxkXff3tdFt68Uhpq9YdsH0e6x/hV44Qg46i7nRMCtczJf66M/OoEkXrrt63zf7/PQ92j44JewzCOMqtUHP4e9roSZV7QFCZZUwPGPQeOG4P9/DjoD9v0c7PgQZn8r2JxkVYPg5Ged4IXnD/P+77LqSff28m7p7ynxqujp3t601XkFmyrsRUQkX+1cAlMCnsDbUfcx4dYSh9Iq76C3ja+Fs0ezAmVc+YWItdq5OPo6wuT3M5VUOOFoIz8Di/62Z79fCLa0l0kwQ2IXTD0dek+Ak56GtS/Ba9eGc/K+KYFRX8p+nULWdQScPRtWPOoEUvc/AfpMaD9mv8/Dplnu86edC1e2OL/LQpJodG8vqXRv91Ja6fx+5v8y81rm/zK7+We+67x2bdywZ5+C0UQkn4URUmmME9z07EGpxy66M3kijP8JjPt28L1ECpHNMBhtr6v2fI+0pNx5/37x3zNbc+Nr0P/4zOamK5tgtBFXO685UlnxMMy/DcZ+Pb3a8lEmr60O/TVU9HYueNPrEBh8lt5XFxHJb8lveGT4BCGQ5AeVAInHIiIiIiIikrGiOluzmH4WERERERERERERESlUBXZ2nIgUtTKPYLTmKIPRFnr3DT0/un2lMMR1Mv62eU44WjahaABv3whvfsG9r6wbVA1uu9/rYDjoR8HWfe7g9sESiV3w6lWwbW7w2o78Gwy7EPa/GboMDD6v1fArnO+lXeCs97zH1S51by/vnv6eEq9yj2C0RJOCA0SksE2emFkYVc3eUN41/HqitmuLf38YBwA278x+jWIUJDCuwSWgJ595hSRBW1BS70Pd+zfMgMbN0LQD5v8KZlwOb3wO1k6BFY/BrOth5lWw8M/Q4rNPZ5BNmNnmN+G9b8OsT4UTigZw6G+h9yHhrFXIKnrByOudUIeOoWgAe1/jP3/5Q9HUFSWv/xdL0wxGAzjw+9nVkqnSajjuQagZBv1PdB+T6rFSRCSXvAJTS9LMT+hxAHTdN83NLbz3XdiS5XukIvkuk2DiQWfA+B+79x3yi8xreekEePursPmdzNcIKqtgtP8K/nnNu9+ArWl8dpGvEhm8vhrzVdjnk3DAd2DI2QpFExERERERERERySt6v05EREREREREREREJF0KRhOR/FFW497eXBvdnhtmuLcPvRCM/kR2egMmQs1eua4iHN3H7HkSjNf/c0E0bYMVjwYb22N/qB7adn/8T9Pfr2pQ2+2SMhh7U3rzy7qlv6fEq8IjGA3grZhCCkVEwrbkHu/QzlQGnxVqKbHptp9/fxhhMC0N/v2ZnDxcDBIpfi8ADeujryNMiV3u7aYESnafON99jPf8R/rAM/vDu990QqI+/gtMOQWmXwyL/w7L7oM3Pw/TzocWj706g0yCGZItutP7v1W6zp4Lo/XcLxBTAsfc692/6O/x1RIWr39HJRXpr1VWA4f/Ibt60jXwdLhoNQy/zLlfWuU+bsk/FcgoIvnL829xmsFoxsC4b2VQgHX+TooUs3Sff5+/CE56zvviH5V9YNx3Mq/nw9/Ci0fB6ucyXyOIbILRSkrh8N/DmQED3J49EGwieG35KN3g6eQL44iIiIiIiIiIiEgeCuFikiIiIiIiIiIiIiIinYxSf0Qkf5RWu7e31EWzX3MtrJvi3tfzoGj2lMJSWgGnvuKc3Fzo+p+wZ1uXAdB1ZOZr7lwcbNywy9rfH3R6+sGD/Y5rf796SHrzyxWMlvf8gtEW3xVOkI6ISNze/Vrmc/f6RHh1xKnf8f79jRuz36Ol3r+/swYpNKf4vQA0boi+jjB5hZUlhyT1PAjfq+rWrUy9z9oXvV8bdgbZBqOFZcBE6Dku11UUlsFnevetnwq7tsVXSxgSHmFhJZWZrRd3yGjfI6GiR9v9Mo9gNIC1k6OvR0QkE17PCzIJqdzn03Do7VCV5vt4C26He03b19NjYdmD6e8vkq/Sef697w3QdZ89L3rS0Yirsq/p5bMh4RNeli2/EPNUwWiteh0MNSOCjV03Ndi4fJVu6PsBt0RTh4iIiIiIiIiIiIiIiIiIiIiIiIiISI4oGE1E8keZRzBac0TBaFvneZ+AMuTcaPaUwlMzHCa+AFc0pw76yGejvrhnmzEw7n+j3bd6KIz9+p5tIz8TfI0BE6HvUe3b0j2hsrx7euMlfuU+wWgA66bFU4eISFjqVkLD+sznF+rzjlFf8j+huW5F9nukCkZ7/TOdMzgh0ZB6TKEFjSY8gtFMedvtyj57PlfMxJoXs1+jUNk8CEYzpXDIr3JdReGp6AVDznPvSzTBmufjrSdbXv/Pl2YYjNZ1H9jryszrSVdplw73fYLRPvxttLWIiGTK629xSfn/Z+++49uq7/2PvyR5z9jZibP3TsgCwl6BkJCEUUZ7KWW1hZb2Fkq5LaW0QCfQ9Wtp6aXQCaVlBMIegbASRgIJIZNMZyfO9oot/f744uulc3SOdDT9fj4eesQ63/WxI8lHsr5vhT9ux+eD4f8NcyvhokMwMsrXIQ+ugrcuhvUPRTdeJNW4Of8edoOzfqUjoWJudPW09OaF1m0N1VC9Nfq5Qzaha/4sZ3P4fDDqe8767njJWb9UFbIJRivo2/p60WDoa/N/JyIiqSz02b/H+ny+k+JxAaYm8xsUERERERHpWEKRu4iIiIiIiIiIiIiIiGMO32UsIpIAAYtgtMY4BaPtsvi0+KxCKJ8YnzUlffkDMOSrsPuNZFfi3sAroWhA+LZBV0FuF9jwN9jymLfr9poJxz4A2cXt2ybfB6VjYNszkFMOeV3hyGY4srG5T04nE4o24iaz4aml/F7uaskKU4Oklqx8c1uorwrf3vK2ISKSykIh+PgOWP6D6Oc479P2v/vSRfkEOPsDeG58+PZXzzCbmMfeEf33GCkYDWDt76Df56KbP101OPi5WAVDpyqrjeBtgzkG/BfseSe2tVb/0oTpjrkNfB3scwSCNhvu46X76dBwxATbZZfCyO9A2djE15EJTpoHD1vcZivnQb+LE1tPLBrrwh/350Q/53F/hYOrYd+S6Odwyu8iGG1HBw5jFJHUZnW+GMtjMUB2EYy7C0pHwaZHoGYr1O02gdJOrbwbBl4RWx0iqcDp87KBV5jAM6dO+Bes+iXseBkKesPgL5sArU9+Cnvfg72LIs9R+SQc3tD67wnBBljyLVj3B1N7yXA44d/QabTz2sA+GM0uYL2twVebv2ls/BtseQLLjYaf/AzG/9RViSnF7nZy1jvmMXH/h+bvmcNvNM+tREQkXfmAh+O8RuizdURERERERERERERERERERERERNKGgtFEJHVkWQSjNcQpGO3DW8IfLx7S8TbCizN9zofes2Dr08mrIb+32TjoxrCv27dXzDaX6kp4sk/0tbU08jv2m458fhj2NXOJRmFfd/1zOkW3jiTWoCvNhq5wGmsTW4uISLQ2PRJbKNqEu6FooHf1JEPZOCiosA45WHEXFPY3m5mj4SQYrWppdHOns6CD35XVm+HQp1A8KP71eMEqsMvf5uWsQVfDe9fFvt7HPzQBAAO/GPtc6SSU4MC8S462/z+U6Pl8JsR77X3t27Y9A431EIgxzMZO/X7YuQCqt4AvC8omQOcpJlzcjVDQJgwxN/r6/Flw/D/gmRHRz+FUoG0wWl74fiIiqcwyGC07/HE3fD4Y8HlzafLSSc4/iOLAClj3J/M6Zl632OsRSRYnwWidp8Axv3Q3rz8bRt5sLi1N+o35d8VP4KPvRp7nqYFwSUPz+dyqe2DNb5vbD66CZ8fAJfXuHhu8CkYD6DPHXAAe7wG1O8P3O7QOige7mztVWJ0b+7KgoBdMvDex9YiISDwlIrTMIklUREREREREREREREREREREREQkdSn5R0RSR8AiGK0xDsFon/zcuq14qPfrSWYI5MIJ/4GTn4YRN1v0sbgde2Wayw+L7nIcdBrnrG9BBZy3wX1NbZ3+qn0omhfye5lAFad0v04Pg79s3Va3J3F1iIjEYpWDjctT/wyfOwwnz4fup5vfU2Nuh7MWwYgb415iQuR2sW/f/Gj0czc4CEZrOGTCgDoSJz8XgPnD4OO74luLV6w2zvvahGr5s+G8T71Zc9EVUFflzVzpwkkwg5cUiua9ijnhjx89CFUfxG/dfR/CM6PgjfPhg2/A+9fDS8fDwjnuQ+6DNo/Z/hiD3UqGJeY5YbtgtHzrvl4EDImIxIPV47EvTo9bQ77qrv+718L84bDj1fjUI5IIVuff+b1hzA9h2iPmNXavP+xjwBchq9hZ3w1/af56/UPh+7w20936XgajtWQXIPf0EAilaQ6M06BwERHJFKE4X0RERERERCQhMukpWCZ9LyIiIiIiIiIikorsXoHSq1Mi0kTvnBWR1JFlFYxWC6Eg+DzKcmysgw+/Y91eNsGbdSQzBXKg90xz6XUOLJxtNpsDVMw1wWVvXAjb5nu/9rifQNcT3I2Z+gD4XHzAdEFvd/O35PPD9PehPAH3IZ/PbP5f/Stn/UuGx7ce8UbxYOs2BaOJSDrY8TJUvWffZ+CVMOhL5uve55pLJooUjLbjpejnbnQYAFa/F/J7Rr9OugnWOusXaoTlt0HP6dB5UnxrilXIYiN422A0MKG5uV2hbnfs674xF854PfZ50kUig9F6nJW4tTqSbqdAViE0HGnfdnAldD3O+zVDIVh8LdRsa9+2bT480QumvwslDgPJGuus2wK50dXYxOeDk56AV8+Cmq2xzWXHTTCaXZuISDKFLM4LYg2ptNLvYtizCNb8xvmY+n3w6ulwcZ15rVYk3VjdzyrOgzG3xW/dgl5w7J/hva9A3V77vouvgsp55rnCwVXh++x4EfavgE6jnK0fr2C0SH/Te9gPfc6HrCLoeiIM/BL4Y1gvUSyfDytgV0Qkg2xG7+MVERERERHpQFy8lzvVuXlfuoiIiIiIiIiIiIhIDBSMJiKpI2ARjAYm/CCr0Jt1di6wbx9wuTfrSObrfgqcvwuq3oeCCijsZ44Puip8MNppr0DxEPjkJ7D2vsjzH/sgdBoLtbug82TI7eyuvjlbzWYnN/zZkFUMDYfcjSvoC+etM+MTxU0wWumI+NYi3hl6Q/jNsApGE5FUt2cxvHpm5H69zo5/Lakgt2v85nYajFbXwYLRGh0Go4EJnv70f9M4GC3MJnafH4Z8BT6+I/Z1dy2EXW9CN5ehxOnK6uccD4OvTtxaHUkgB0pGhg/nXHwVDLrS+zUPrLAPAz16AF6YAqe97OyxJlhv3eaPMRgNoHQkzN5knr+v/hVseiT2OdtqG4xm21fBaCKSohotHo/j9Zqfzw+Tfg0jboL9y2DVPZFfv2/y+iw47YX41CUST1bBxIkIvOp7IfQ4Aw6ugfoqeO0c675bn4o837Oj4dJGZx9sFK9gtFIHH4qy5XHz74a/wrZn4MTHU3/jntXzNL/e3iEikilCoVD/ZNcgIiIiIiIiiZRB2dihDPpeRERERERERERERCSlOXiXsohIgtgFnzVUe7fOgU/s290GSUnHFsiFrtOaQ9EA+syBqX+GokHgy4JuJ8PMNdDjNCjsY647MfAKKD/GBKi4CUUrnwhnfxD9bTm33P2YM99MbCgamJ97XvfI/Qr6tP7/kdSW2yX88UQGo22dD6+eBfOHw3vXwdGDiVtbRNLX8h9G7pNVBD07SDBaYf/4ze0mGK0jsQsVCmfdH01AWioLutwIPvoHMPI73qy95FvezJMOrIIZYnXSk9DtFPM8oXAATPkj9L0oPmsJlNgEQuxf4e1ae9+HZ8dE7ndnMFE6AAAgAElEQVT0AKy4K3zb4Y3wxgXw7Fh440KoWmI9jz8nqjLbzxOALlPh+H/AqO+Z55NZhdDnAuvHjpJh5nbsaP42wWh2gZUKRhORVBWyOC/w6rHYSmEf6H0uHOPwQxAAdrwITw+Dynnxq0skHqzOvxP1+npOJ+gyxfzdYcqfYp/v4QAcXBu5X32VdVsswWgAsxys36TySXjYD69ON+e1qcrq+bBPwWgiIiIiIiIiIiIiIiIiIiIiIiIiItIx6J2zIpI6sgqs2xo9DEar32fdNvJ/vFtHOrZBXzKX4NH2G5qchHSVjrZu6/9fsPFv4dvOege6HOu8znByyuDIJuf9O081mxcTzZ8F434Mi6+y7zf6VvApCzZt5FkEo1VvScz6256HhXMg1GiuH1wN+z404X+6HYmInd1vRu4z9g7ILo5/Lamg86T4zW0XNNNSfUcLRrPYNG1n7/tmQ3yqCrncCO4PwPifwrifQMMh8Oc2P5fMLjW/y1f9Cpb8d+S1q96DhiP2Ad6ZIh7BaL3Ohd7nQcXs8M+JxHulNsFomx+FTg4CPJ04tA5emOy8f+WT7Y/VVcFTA5qv718OWx6zniOQ63w9J3x+GHen+b0cajTPLeuqYP1DULuzuV/RYDh7KWTlm+/7pRNat7eVXdL6erDOuq+C0UQkVVmF7Sbqd3nZWHMOsfUpZ/0PrTGv45z8NPSeGd/aRLyS7GC0lgZfDQc+htW/jm2e+UNh9ubmvxPUVZnvJ7sYQiGo3gyvnGY93ir82qniwSaIfvvzzsfseBF2LYBzltmfSyeL1fPhWH9WIiIiIiIiIiIiEj+hULIrEBERERERERERERHJKEp3EJHUEbAJRms44t06W+dZt/W9wLt1RCD8ZqbySZDf037cIJuwr8HXhD/e/79iD0UDyCl317+TTYhbvA260r592iMw+NrE1CLeKBwQ/njNNtj2QvzXX/eH5lC0JnvegX1L47+2iKQ3uyDfwn5w4uMw7BuJqyfZyh0Eoy36UnSBTI01zvrVdbBgtFAUP8sXp0L1Vu9r8Urb38lNIm0E9/lMQFEg14T+5pQ1B5zaBXK39WgRrP+L8/7pystgtG4nwdg7zWOez2eOKRQtMXrZhMF8/CPv/p+XRxGwtu255q9rd8Njnd2N9+e4X9MJn6/58SS3HGYsg8FfMaEaw2+Es942oWhgwjbOfAsKKsLPlVUIndsExlmFC4GC0UQkdTVaBaN5HFJp58THTNBtyTDnY5bfHrdyRDxn9dwtWefNo25tH/AajfV/hpqd8Mrp5nzvP2XwWFd4rAvM628/1heIff1TnnE/JngUVvw49rXjwSr83CooXERERERERERERFKcL9kFiIiIiIiIiIiIiIikHQWjiUjqsNug3mATNOHG0UOwf7l1e/lEb9YRsePPggn3WG8o7HysfeBX12kw8IrWx7ocB5N+4019boPRSoZ7s260jn0w/PGSEdDv4sTWIrGzuz29djbU7onv+pUW4Zmf/Dy+64pIeguFrAOcuhwHszdCn7nNIUEdQUGfyH3WPwRLv+N+bqfBaEcPup87nVltmo7kjfO9rcNL8dgIbhfIHc6iK6Dqg+jXSyXVW2HLE7BzQetPKQ5Z/JzLxkNWkbO5K+bCpUE443UY/T0IxCnISqyVjW0OAAznvetjXyPYAFufdj/utRkmEA3grUvdjw8kKIwnrxtMuQ9OfQ6OuRvyurZuLx4EszdD34taH/f5YdLv2tdZMdd6Lbv/KxGRZArWhT+eyN/t/iwYdQvMXAWXhcw5RiRVH0B1Zfi2A5+Yc6CqJd7WKRItq8BaX5KC0fK6wMgonpu3tftteLICdr5qrocaoW4P1FdFHutFEK7PD6e9bAJr3dj4N1j2A3jvOtj0L2isjb0WgFAQ9n0E6/4EW+ebv0+6Gq9gNBERERERERERkcwSitxFRERERERERERERERa0TtnRSR1BPKt2xqOeLPG85Os28b9xJs1RJzofyl0GmM2CQXrIbcbHFoLJcOg74UQyLMe6/PD1Aeg7+dgzztQMhIqZrnf8GMlp8xd/64nebNutCrmQOC69iEp/S9LTj0Sm8K+5vZvtQFtx0vm/pNoNdsTv6aIpA+rUDSA8R00WNHnM+cU9fvs+21+FCbe625up8FowXp386Y7q831kex9F/Z/DJ1Ge1uPFyw3ggeinzOac+ZPfgYnPBr9mqng0wfh/eub7z9dp8Epz0N2kfVtp6APnP4q/CdMcHKvGdDvMqjeDKUjofd5HSv8MVWdtxHm9Q3ftv2F2OffvwyOHohu7OZ/Q+9zYecr7sdahYong88H0/4F/S41z8dzOpn7Q9n49n3LxlnPYxU8JCKSbFaPT8l8LPb54NyV8MwI+34vnQSz17c+9uEtn4Xdf7bZaOAVMPXPOm+R5LI6//YnKRgNYNg3Yfnt1rVVzDXn/nah0TtejG7tzsd6Fxrb43Q45yPY8ript7EWPv3fyOM+/pH5d+195t9Za6F4cPR1BBvg7S/A5n81HyvsByc/A51GOZvD6vmwX2/vEBERERERERERSV0ZFH4WyqDvRUREREREREREUpLdS1B6eUpEmuidsyKSOvxZJhwtXNDB0f2xz39wNRxaY91e6nAzgohXOo2OPoDC54de55iL13LDBB9Yye8NnW0CBxMhpxNMewTeuhQaq82xijkw/L+TW5dEx+eHvJ5wZEP49v3LgCQEo2nDrIhxZAts/DtUb4Fup0Dfi3T/APtAqo68YXX4jbDsVvs+NVuhch5sfwlyO0P/z0PJUPsxDQ6D0ew2bGciq03TTmz6V5oFo8Vwv7IL5Lay+d/wRAUcc48JJ06nx71gIyz7PnzSJgh891vwzn/BSU/YBzPklMHMVfDqmeaxH6DTWJjyJyjoFd/axb3CPpDXA2p3tG+r3gz1ByCntH1bsBE2/gP2LYX8HjDkehOa19aBT6Kv7eBqE7YXjWjut/Hk80GfueZi288Pg6+Fdfe3b2tUMJqIpKhGi3DhQJJDKkuHw5T74f2vWQcgH9kA+5ZB2VhzfecCE3Db0vqHzGX0beYxuqB3PKsWCS8Vg9GyCmDS7+Hda9q35XWHEx8z50DbX4QF071du8/53s5XPAhGfrv5+sAr4I0Lw58jW3l6iHnuN/CK6P4G8+aF5rWOlo5sgmdHw6jvwchbwp9vtxSMw/NhERERERERERERSaI0eq9JJOn0vhkRERERERERERERSWseffyyiIhHcjuHP163N/a5N//Hvr2nx5s5RNJVjotgtDE/MJu9k63iPDh/B5z2CsxaCyc+DlmFya5KotX3Iuu26srE1dGK3sghwsHV8MIU+Oi7sPY+eOtieO8rya4qNWx92rqtI29YHeLw9rFwDqz9HXz8I3hhMuxZZN8/WOts3i2PwbYXnPXNBLEEox3Z5F0dXrLaCB5T4GCUHxlSsxXeugTeuTyGtRMs2Aivnt4+FK1J5ZMmIC1kEczg+yyYoWQYnLceznoHzvkIzl6iULRUNuIm67ZDa9sfC4Xgjbmw6Iuw+lfw4S3wzCioDxNQf3BV9HXVVMKh1e7HDb0hvd9U3fnY8MeDCkYTkRRl9fjkz0lsHeEMvgbmVELZBOs+6x9s/nrtH637ffwjeHYMVC3xrj4Rp6zOv5MZjAYmBCzcucvgrzSfj/U8CwoHeLdmTpkJKYynrtPgvHVw+mvuxm1+FF6bAcvvcDdu2e3tQ9FaWnEXPFkR/ny7JcsAvQ78OpOIiIiIiIiIiEhai/L9KqkolEHfi4iIiIiIiIiIiIiktBRIMhERaSEnjsFodoEV0x6BQAps7hJJBTllzvqN+wkMuiq+tbiRXQw9ToPiwem9cV7sg9HyuiWujlZ0mxJh5d1Qu6P1sXX3w4GVyaknVYSC9gFxyd7YnEy5nc15thtHD8Ly2+37BOudz7fse+7WT2dWm6adqNvjXR1eCjWGPx5L4KBV2JpTG/8OuxbGNkeibH0Kdr1u32fx1c4C6PxZ0OVYKBsL/oB3NYr3hn3Tuu3gZ8FkDdWw5Eb4pw8e9rd/vaR6M/yn7LP2ADycZb5ecZf13Gd/YF/Xlsdh6bedfQ8tHXOP+zGpJJAb/nijgtFEJEVZBqNZPJ4lWl5XmHK/dfvqX5nnaMEG2Pwv+7nq98HHd5qvd7wCr5wGzx0DH3wL6qq8q1mkLcvAqyS/fuDPglPmQ8VcE4aY2xlG/g+M/n7rfidEuG85lVMOp70EOaXezGcnqxC6nwzHP+x+7PLbzOND7a7IfWv32J8zNzl6wJxvVz5l3ccq/LwjB/CLiIiIiIiIiIiIiIiIiIiIiIiIiEiHomA0EUktuRbBaPUxBqPV7YW9i63b+10c2/wimSSnPHKf6e/BqFvAp1MJiYPOk6zbGqqbv67dZS6NLgJy7Nh9ip3C9kRgk8XG141/T2wdqWbXG2ZDvZWOvmG1+6nux2x/wT7ky00AWNUHzjYvZwKrTdNO1O32rg4vWX1P/hjuV0X9rduGXOdsjk0uA/+SZavNJvsmB1fB4U/DtyU7mEGi4w9A6ejwbTtfgSOb4NkxsOpeZ/OFgtYhhU1Gfx/Kj4FzPnJXayTDvxXb/T0VWAUJBevMa1VePZcREfGK1eOSVdBjMti9bgSwcA4cWutsrsonTOD3q2fAzgWwbyms/iW8Mdf+dSKRWFg9p/WlwPl3bmc46XG46BCcvxvG/7h9MHLJsOjnzy6Fzx2By0Jw4V4onxhbvW71vQjKjnE/bucCWHAOBCOcF+9e6O65+cLZUGnxoU4KRhMREREREREREUlD+tuCiIiIiIiIiIiIiIiXlGYiIqnFKhitLsZgtNW/tW6b+kBsc4tkmtwIwWj5Pc2md5F46ndJ+OMNR2DfMng4Gx7vbi7/yoWl3zahDbGwDXzQabN0cKEQNBwK37b+L4mtJdVsm2/f3tGDhQL50Y07vN66LegyAOzgmuhqSDduAuPaqtvjXR1esvq/9gXCH3eidDQU9mt/vNMYmPT/oM8FkedYe1/06yfKpw/A+oec9d31evjjqRDMINHpPCX88fUPwrz+9o+xsaxXNhbG3uHdvP0v826uZLEKEqrfB491gce7wvIfKnxHRFJHsC78caugx2SZu926bevTsOhK53O9++X2x3YthK0RnuuJRMvquVsqvX4QyLH+oIjskuhC0MEE32YVRF9XrPwBOGMBDL8Ryie7G7tvCWy2+NCAJtWV7mtaeF74UEqr58OpdDsRERERERERERERF/ThvCIiIiIiIiIiIiIibinhQURSS04cgtFCQfj4h9btZeOjn1skE+VX2LdP/C34dAohcZZTFv543R54+UQItdkYtvJuWPXL2Na0C5Sx2ggo0lHU77NuswpM6ygOrLJv92clpo5UFciLbtxBm59ryGUAmN1cmcRtYFxLqRqM1vb3fRNfDPcrn8+cz/pzmo8FCuCYe03bsQ+2brNyNEUf+6or4cNbYPHVsc/V0R+/0lnvWYldr2UwRsVsb+Yc9t9QPtGbuZIpUpDQ0YOw/HYTZigikgosg9EcnB8lUn4P6HaydfveRbGvUfl46+uhEOxfAZsehSObYp9fOq7GI+GPp1oAoZ1ownBLhsOIb3tfi1vZJXDM3XD2u3BxLZRNcD52y+P27TXboqvp3WvaH7N6PqznaSIiIiIiIiIiImlKH5YlIiIiIiIiIiIiIuKWUk1EJLXkloc/Hu1G/YYaeGa0fR83mx5EOoLiwVAyInzb5N9D3wsSW490TIGC8Me3P2fCA8LZ8LfY1gzWxzZeJJPVbLduO3rQBNF2VIfX2rf7shNTR6ryR/n9733fus0uyDKcjhKM5jYwrqWGw9BY610tXrEKe4t1I3jFLDhnKYz7CUz4BZyzBHqcYdqyi6H/5yPPcWhNbDXEw4a/wVOD4ZOfeTNfR3/8SmddpiZurR5nQFZh8/XSCK/BhDPyOzDiZhhwuQnZOO1lmHivdzUmk9OA0E2PxLcOERGnGi1eGwmkYGDT4C/Hd/4Nf23+OthggmefHQ1vXQzz+sPHd8V3fclMwUaoqwrfltclsbXEous0mL3Zut2XBYX9zaVoMEy+D2Ysg6z8RFXoTCAXpi82AdlObHnM/rlzdZTBaNueM+GLLVk9H44lKFxERERERERERETEMQW5iYiIiIiIiIiIiEjy6Z2zIpJa8nqEP3740+jme+UUOLjSuv2kJ8Hni25ukUzl88EJj8KC6VDTYiPPuJ/AkK8mry7pWFqGKzi1/yOzgSzax3XbYDTlCUsHVxNhY+eexdD1uMTUkkqCR+FQhPPUWAOcOqqtT8G4O8K3KRgtPKtN007V7YGCCm9q8UqoMfxxLzaCl440l3DG/xQOroY9b1uPP7AKyifGXodX6vbCu1+GYJ13c0YbbCjJl9cDsopM6GG89Z7d+rrPByNugpV3Oxuf3ck818zU12b8DoOEdr4S3zpERJyyOpdw+niWSP0ugbcvi9/8oaAJsMotNwGW6//cun3ZrdDjTOgyJX41SOapr8JyM1luGgWjART2gQv3wxvnw85XzbG87nDsX6DX9OTW5oY/GwZeAd1PN99LlU1QO8D8EVDYD4oGQmMdhBpg86Pmgz4aq6OroW431O6A/J7Nx0IKRhMREREREREREUk7bT8AIVNl6t/3RUREREREREQkoexeTusoL7WJSGRKeBCR1FI8NPzxmm1w9JC7ud67Dva+a91eOhIqZlu3i3RknUbDeRvgjDdMgOD5u2DULcmuSjqSrILoxtXvi35Nu2A0vZFDOrranfbtW59KTB2p5sgm642qTbRhNTr7l8Hh9eHbIv3M2+oIwWjBRmL+pNa6PZ6U4inLjeCB+K6b1w3OeB3OttkQv/vN+Nbg1pbHobHG2zkVjJa+fD4oHhL/dQoqTIhEW30vdj5HzzMz+1w7kIJBQiIidiyD0XISW4cTPh/MXB3fNeYPM8HMbUPRmmydF9/1JfPYPe9Kt2A0gJxSOO1lOPsD8xxq1tr0CkVrqbAPTF9s/iZi58hG2PU6rH8QNv3ThKJB9KFoTQ62eTyzeq063s+HRUREREREREREJE4y6O/i2pUqIiIiIiIiIiIiIgmiHdoiklpKhlm3HVoLZePh0Dqo+sBc9i0xITiF/WHsndBplOl7cC2svc9+rX6XeVa2SEYK5EC3E5JdhXRUgSiD0Wq2Qm55dGPtgtEy6U0pItGIFLZTOQ/G/yQxtaSS2t2R+yhYCHqeDdufdz9u63wYdkP748Gj7uY5sgEaayGQ576GdOE0LO701+CVU8K3PTcB+n8Bxv3YbAhPBZbBaAl4OcufBeUTYcDlsOGv7dvX/cHcv4+5JzXu51sej9yneCic+gI8NcDZnAp2TG9dp8G+pdGP92WZ+2DRIMjvBVXvtz4f6HIcTPodZBe1H1s6CrI7wdH9kdfpc0H0NaaDvG7O+y65CUZ+B/K6xq8eERE7wUYIBcO3pWrQY8lQGHQVfPpAfOav2wPbX4CdC8K3r/gxjLsrPmtLfIWC0FhnwgCb/g3Wtz8Wrq1de334MeHG1tucH+V0Ttz37yWfD8qPSXYV3vD5zd9EZq6C+cO9n//YB2HRl8K3vXIqzFgGncaY61YfAJJT6n1dIiIiIiIiIiIikgAKExMRERERERERERERcUs7HEUktRT0AX+u2SDS1tuXQc12OHqwfdu+D2H7izBzJRT2hW3P2q/jz4ahX/OmZhER8V5WlMFo1duaN4+5ZRe04/NHN6dIpmgMc27W0sGVJpi2ZEhi6kkVdXsi91GwEAz7Jux42Xl4V5P9H4c/7jYYLRSEI1sy+/bp9GfS/WTIKYf6qvDtG/8OO1+Bc1dATpl39UUraHGb8SfwftXr3PDBaABrfgsNh8zm9mRqrHMWPnj2BybEasZyeNbB+VJWfuy1SfIMud7cdsO9hgIw6Gr49H+tx1900Lw2k9PJ/dpZ+TDiRlj2fft+ZROgz4Xu508neT2c9111D+x+C858E/yB+NUkImIl3GvyTfwpGowGJtzXSTBav8vg+L+b5wf1e2HpzbDhL5HHrfl/sdfYpG6vOc/uaK8zBRsiB4bF2uY2pMzt89N4yyrU+XcqKRkGJ/wH3vT4XNWfYwKMd78Vvv3ZsXDWO+YcsmZb+D65XbytSURERERERERERDyk8DMRERERERERERERES9ph7aIpBZ/AIqHwIEwIQgHV9uPbayGj++EqffDnnfs+563QZ+qLiKSygKF0Y2r2Rr9msF667Z9S6OfVyQT2G2Qb7J1HpTcFP9aUomTYDR/dvzrSHW9psOpz8GrZ7obV78v/HG3wWhggg/I4GA0N5v6c7tYB6OBCaPe8HcY9vXY64pVqDH88UQGDvY6B7KKoOFw+Pb1DwE+mPq/yQu4qHwycp8eZ5lQNIDSUVA0EA6vtx9TMjL22iR5SofDmW/BJz+HqvebHyfye0O/S2DwtfbBaFn5QAzhHKO+ZwIdNj0CtTug4QhkF5sgkqxC6HYyjLk98wPAfD53/fcugs3/hv6XxKceERE7tsFoOYmrwy2nIUH9LzOPy74A5HWDIV91Foy2/YXY6gOoWgJvf8GEimd3glHfhRE3uf89EUkoZJ4vhQ0Mq4PG+jDH4hlS9ll7KOjt95mJFHaVenpO935OfzaUT7EORgN48Tj7OXRbERERERERERERSVMe/01ARERERERERERERKQDUDCaiKSekmHhg9Gc2DoPQn+AYK11nwn3QEHv6OYXEZHEyCqIblzNtujXtAtGq9kO9fshp1P086eqwxtM8Fv5JCjsm+xqJFXZ3T+abPyH2did6YINsOt1aKyFTQ9H7p/IAKdU1uMMyCm3D+Rq6+j+8MfdhIA1qd3tfkw6cRIWVzHH/JvXFQ6tse+74S8pEoxm8X/tT+D9KrsYRnwblv/Aus/6B6HrNBh0VeLqamn325H7jP1R89c+n7k9rLrXur8/19xvJb11Gg3H/9W6fdg3YfWv2h8feGXsa/t8MPhqc+no+l3q7JyhyZrfKBhNRJKj0eZ5XyA3cXW45SQkqM8F0GtG62NdpsKALzoLR4tF7W54fmLz9aP74cObYctj0Od86zCxaEPKJD0VVCS7AmkruwiG3wir7vFuTl82VJwHq38Z/RwKRhMREREREREREUlToWQXICIiIiIiIiIiIiKSdrRDW0RST8mw6MfW7oLtL0DlPOs+/T8f/fwiIpIYqRaMBlD5FAy8PPr5U00oZDbirry7+dio78HYO0yQhUhLjXWR++z7ELY9B73OiX89yXJ4Pbx+HhxY4XyMPxC/etKNP8dd/3qLYDQnIWBt1e1xPyadOAmLawo6crKJuuqD2OrxStDi+/Il+H418jsm1OjgKus+i6+G3rMhLwmb1O2C7gZ/BcbcBvk9Wx+PFIw24L9MEIBktr4Xhg9Gq5id+Foy2aAr3QWj7XknfrWIiNgJ2jzv86dyMFpn+/bJ98Hga8O/1nHsg+a86I250a3t89u3H1wD8y3+3rF3sbmIgHkuIalnwi9MiFko6M18/mzoegKUjICDK6ObQ8FoIiIiIiIiIiIiIiIiIiIiIiIiIiLSQSgYTURST9kxsY1/bYZ1W9cTIL97bPOLiEj8BQqjG1e9Nfo1IwWjLb0ps4LRtj3bOhQNYMVd0O1k6HlmcmqS1GW3Qb6l12bApcHMDNdrrIWnBiW7ivQWcBmmUPV++OMhBaO1YxUg1mTEzdB7pvk6J0JwRJP3b4A+c6H7qdHXdXANbPwn7F1kwta6ToP8CjNnn/MjP1ZYBb75EvxyViAXTnkOnhpg3++1c+Ds9xJTU0tWwWg9zoIp94Vv63I85HaFut1hGn0w7seelScprMvxMPZOWHZr87ERN0HvWcmrKRN1P939mL3vQ+dJ3tciiVe9DTb8BQ6uRp8CLynv6CHrNrfn8onkz7ZvH/xl6/NOnw/6zIExt8Py26NYO0L487vXuJ9TOp4+F8CwG5JdhYTj88E5H5qQ/CMbY5/Pnw3+LDjuL7BgOtTvcz+HgtFERERERERERERSWCb9PTCTvhcRERERERERERERSVcKRhOR1FNxHhRUQHWldR+fP7pPaNfmEhGR9JBVEN24mm3RrxmMELQTNjgkja21CEpZ/5CC0aS9SMGBLa1/CAZ9KW6lJEVjHczrl+wq0p8/ijCFNb+Hode1Phbp8TqcTA9GswuLO/Mt6Hp883WnP781vzWXCb8wQUlu7VoIC86BxurmY5XzzL9rfweDroGp99vPYRX4luhgNICi/jBnKzzZ27pP1fuw41XocVrCyiLYYL1Bv+19pyV/AEbfBh98vX3bJUdNu2Q+nw9Gfw8GXgH7lkKnsVDYN9lVZR6fD/J7Qs1252NemAzHPwz9L4lfXRJ/B1bByydm/nmIdAyRAsCSrWyC+V3WVuGA+AZ32/1canebc2JJb76AeS4byA3zb074Nn8uBHJafG0xNpAPnSdD8dDMDJjPFJ3GwLkrYMFZsPut9u3H/wM++RnsXxZ5rqYgx86TYfZmePmk8I9ddnIdhp2LiIiIiIiIiIiIiIiIiIiIiIiIpDC7aH7F9otIEwWjiUjq8WfDaS/DO1dA1buAD0pHQtkxUD7RXMrGwfOT4eBKd3N3nhKPikVExGuBZASjuQh+ygTbngl/fNM/Ydo/EluLpL7GOud9F1/pLhgt2GA2kO54yYQdjbgRep3jvsZ4Wnc/1O5KdhXpL5owhQ9vhr4XQl635mNWYVl2Mj2QxO5nUtgm1K++yt3cS78NxcOgYlb7NTf8FVbcBYfXm2P5vaFmq7N5P/2TuTTVl10K3U+HsT+C7CJzLNQYfqw/SS9nFfQyQXMvTbPus+gKmLM5YSVRv886NLwgQsDVkK9C3S5Y9SsTYNf9VJj6Z4WidUQFvc1F4iea310f3WJ+BybrMU/cCwVh1b2w5XHz3PTIpmRXJOKdaEKOE2n0rfDGBYn/YfoAACAASURBVO2Pd7U5b/OC3eO7HgPc+7+gMZtQMX+ORdCYizbHAWc5OjcWI6sATn8Nlt4En/4ZGg5BdicYcxv0uxQq5sLSG2H9g9BYaz2PL7v56+wi8/xy6Y3WH2DRro5iKBke07ciIiIiIiIiIiIiSRLSVk4REREREREREREREbe0q0pEUlPJMJj+jtlQGGwwG2Hayu3ibs6+F7cPBRARkdSUFWUwWu1O8wYSn8/92I4WjJYJ6qqg4TDklDVvnJX4CLoIRgM4shkKIwTyNHnnctj0cPP1na/AyU9D75nu1oynTY8ku4LMEIgiTKHhCFTOg8HXNB8LHXU/T+1O92PSSdDmZ+LPbn29zwXW4ZhWFp4HZ7wO3U4yv2eDR2Hlz2HZ91v3cxqK1lLLwIj9y6DqfbOWzwchi6AJXxJfzup6PJz0lPmZhFO9BQ6shKxCc2mshdzOEMjzroZgg3muHMiBur3W/XI728/jD5ggutHfNz/TaM6fRMSZijkmDNKNI5vM42LxYBOCCCZMI6vAhEnqPpt6PvgmrPltsqsQ8Z7PD4H8ZFdhr2KuCXnduaD5mD8Xhn7d2fjySdGt21gNwcbw4VmxhPfHnc8+GMyLIDK7wLGwa+bod5ukNn8WTPwVTLjbhOfn9zCPjwBZ+TD59zDx1/DutbD+IYs52jw/bznuufFw4BP7GoZ+zdvnliIiIiIiIiIiIuIthZ+JiIiIiIiIiIiIiHhKwWgiktp8fuuQE7fBaMf/LfZ6REQkMbIKoxsXajQBZ9GE7ygYLX1ULYFFV8D+5a2PD/sGTLgn/IZkiY3b+0flPBjmYAN65VOtQ9GavD4LTpoHFRbBQ4lUuwf2vJPsKjKDP4rHZoDKJ1sHo9mFgFlJ6VACD1gFiEH7ELGeZ0a3xrLb4Jh74b2vwt53o5vDid1vwPYXoNfZNsFoSX6cr5gFBX1MCFo4z4xsf2zA5TDp/0F2cfTrNtbBR981oTvBo9BrJvS/1Lp/pGC0Jm0354uI93rNcB+MBvD8RMAHhHkD/cRfm8Afhcikhv0rFIommavL8akfRO7zwYmPwapfw/bnIb8XjLkNysY7G9/jdMgugaMH3a/dcBhyStsfX3575LHZnaB0pH3gWCxhY1ZtCsUViZ4/Cwp6WbRlm+eKlmMtnnv5s+GsxbD0Rlh3f/g+E38LQ693V6uIiIiIiIiIiIiIiIiIiIiIiIiIiEgaUzCaiKQvN8FoZ7yhzd4iIukkUBD92IYj0QWjNSoY7f9UPgVdpzkPVIlFKGQCzmq2QU45NByEooHm0tahT2HfEnjzc+HnWv1rs6l47O1xLblDaqxz1z9cMFr9ftj9JtRVmdtW2XhYONt6joWzYeYqKBnmvt59H8LO18xtqvspUNjX2bijB2HPIqjZYTa65nWH1b8hbBiJuBft+fi2Z6G6EgoqzPVogtH2LYX6fZBTFl0Nqc7uZ9L2515QASP/Bz75ibs1dr3+WUBPAmz+twlGC1oEo/lT4OWssxbBk72d99/wVwjkwZQ/Rr/mJz+DVfc2X98231zC8efGdj4lIt7qNQN6nAU7XoxisMV5yAffgPze0PeCmEoTjzw7OtkViMRHVjGM/2myq3Amp8y8HhDNawKBPBj/c3jvK+7HhgtG2/qseQ5iZ9xdMOq77tcTkRRnEzpo97pIdpF5vlg6Gj64ofl4VqH5G2f5BO9KFBERERERERERERERERERERERERERSQMpsJNURCRKToPRsoqgy3HxrUVERLzlzwZfAEKN7sc2HIHccvfjQg6CdkIh8NlsbssUC2cDPjjhX9D3ovit03AEFl0Fm//V+rgvy2wOHvtDcz0UhI9udRbis+GvCkaLh6DLYLRdr0NjrdlcDiYobeEc9+vOHw6XNoLP76x/sAHeugS2PNb6+IS7YcSN9mP3LIY35kLNduf19bsUyifB0ghzy2dsAuYCeeY2Y+XJPmaD8OBrIWQRlhXJY13gxMehwiaQL13Z/Ux8YV76GXcXdDsZtj4Fa38fv7qitf7P5nfA7jfCt4f7nhKtoBeM+Das/IXzMZ8+AON+HF3waEMNrPy58/65nTvGOYtIugjkwCnPwsZ/wKIvejfv2vsUjJYK9i9313/gFXEpQ8RzJcOhYi6UDE12JYkx5MvQaQy8NM3duIYj7Y99+r/2Y856B7oc624dEUl/PgeB8cO+bv6mWfkE+PNg8DWQ3yP+tYmIiIiIiIiIiEic6YM5RURERERERERERETcSoGdpCIiUcrr6qxf38+BPxDfWkRExFs+H2QVwtGD7seG25DaJNgI21+Ana9CQW8YdBVkl0Qe1yTU4GwDW0YIwTtfhB5nQE6Zt1MfXg8bH4Zlt1os3QAf/wiOHjKBWJv/DdWbnc19ZAMEj5pwPfFOsD788e6nws4F7Y+HGkwA0NDrzf34rUuiX/vhAJSMMF93ORYK+0OfuWbDepMjm2H5D02YUjhLb4KN/4Sy8S0OBmH321A6CnqeZcKN3ISiDb0BJv36s/kVjOZI6RjYtbD9cX+OCQZ4boL9+He/bB6Tgg6CLMMJBeHNi+H8nZBTGt0cqWbPu1D5JGybb90n3OOhzwe9pptLzXaz4TrVPNnHus2fIi9nDfySu2C0UCO8/zWY9rD7tXa+4uxcpUk04WsiEl/+AAy83ARS7l3szZw7XzG/35yGyEp87PvIed/PHTbPdUUkNXU9HoZ+Hdb81vmYxur2x+zOr4f9t0LRRDoqp69Xdp5kLiIiIiIiIiIiIpJmMij8LJRB34uIiIiIiIiIiIiIpK0U2UkqIhKF/N7O+o28Ob51iIhIfAQKogtGa7QIDQmF4P3rYd0fm4+tuhemvwf5PUwIVyTB+o4VuNVYA5VPwcAvejfn7rdhwXRoOBy57+pfRrfGpkdhwOejGyvhNdaFP14+EXa9YYLQ2nr/aybEp7A/NNbGtv7Bla3/XfFjOOFRqDgPdr4Or5wSeY59S8ylrUNrogiF8sHgq12OEfp9zoTBtH0TYN+LTWjd547AoxGCQjY/Zh2MdtI8c5t7+zLr8cE62PEi9L3IVekpaf1DsPgqE4hjxxchJNpp4HQspvzJhLdVzvNmvkjfc6KUDIfiIXBorfMxmx6Bsgnun6dWPumuf46C0URSVr9LvQtGAzj0KZQM8W4+ca96i7N+py9QKJpIOsjr7q5/2/DahjBBaS2VDHM3v4ikGZ91U0d6XVlEREREREREREQyl8/mdVARERERERERERGH7LL5ldsvIk38yS5ARCRq+b0i9znxCW00EhFJV4H86MY9PwnevAT2L299/MObW4eiAVRXwvIfmK83/TPy3FZhPJnswCexz9FYD2v/AC+dCC9NcxaKFot3FVjluWB9+ONZRVA8yHrch9+Bty6OQz11sPQm2PeRs1A0rw25DjqNSfy66a7bSXDc36Cgwlz355hwmCn3metZBSZoys6ed7D8dNWcTtDvEigeaj9HdaWrslNS3V5Y9CUHoWhZkd+MmNvNu7rCGfYNEyQ46XemHi/UbPdmnlj5fNDnQvfjlt8Otbsi99v9Nrw2E/5TDp8+4G6NzpPd1yUiiTHsBhj9fe/me34CvHSS+b1wZJN384oz9Qfgo+/a98ntakJCu5+SkJJEJEbZJe76tw1GO7TGvn/pCHfzi0jmUDCaiIiIiIiIiIhIB5ZBOzm1K1VEREREREREREREEkTBaCKSvgp6W7cNvAIuaYA+cxJWjoiIeCyQE/3Yzf+CF6bC4Q3m+urfwMq7w/dddz+s/0v7ILVwOmIwmpOfS1uNta1/Vh/9D7z3Vdj9pnd1RVq/Zmdi1uoognXhj/tzIwdZxcuhtfDc+MSvWzoaxt2V+HUzxYDPw+zNMKcSLjoA0/4JWYXN7YX97MfX2ty3m0LARtxoP0fNDuf1ppLGWhOIFmyAx7o4G+N3EESWF+dgtPzPnrcV9IYBl3szZ+kob+bxwshvm8AbNxprYNMj5v8STMBdKGjeOBpsNL/Ddi00YaLbnoH6fe7rGnil+zEikhg+H4z9kXndatBVsc/XcAR2vwHrH4LnJ0f3mCHRCTbAK6fZ97noEMzdZkJCRSQ9ZBe76982GO3AKvv+yXoOLSKJYRdO7lMwmoiIiIiIiIiIiIiIiIiIiIiIiIiIiFMOdsiKiKSo/J727f5AYuoQEZH48MV4qtpYA08NhFG3wro/2vdddIWzOTtiMNr256F2D+Q5COE5ehgWXwWV88Dnh74XQf8vwKp7419nWx//ECb/PvHrZqpGq2C0HOh5tvk/7wh6Tofj/wE5pcmuJL35fNYhx5GC0QL51m3+zzYYD74Wsorg7c+H77fy57DpYfMY0Xtm5HqTrX4fLLoSKp90P9bJputchyFr0ep5VvPXU+6HkmGw7Vlzfdg3oOoDWOEybLDLsd7VF6ucMpi+CJb9ADb+3fm4D74BS74FoUZzzhNq8K6mQVdBqQI3RFKePwDFQ7yds243PDse5mzydl4Jb+ersG+JdfvgL0N2UeLqERFvZLkNRqtufb3yCeu+5RPdh+qKSObwKxhNREREREREREQks4WSXYCIiIiIiIiIiIiISEbxJ7sAEZGoBfIgUBC+re8lia1FRES859VGsRV3moAALwTrvZkn2YJuwldCsOz7zrou+iJsfhSCdSaYbsNfYcFZkcfFw9r7YM+7yVk7E1nd9gO5Jvyu89TY1yjoA8c+BL4UDbcd9T049XnI7ZzsSjJbpGA0u8fzlr83+l8Gg79i3bd6C7w+C/Z/7K6+ZHjrsuhC0cDZ7TXL4jmVFwZ+CcrGNV/3B2DkzXDGa+bSZy4M/bq7OQd/GTqN9bLK2BUNhOP/BpeFWl8utgiVbBJq/OxfD0PRyifCpN95N5+IxFevGfbtBX3gwn1wxhvO56zeDDtfi6kscWjLY/btpaMTU4eIeCvbZTBa45EWX9ea10WsjP+pCYoWkY5JwWgiIiIiIiIiIiIiIiIiIiIiIiIiIiKOKRhNRNLbwC+1P5ZVBN1PTnwtIiLirayiZFfQXvBosivwRmOtu/4b/gIN1fZ96qqgcl70NcXDqruTXUHmCFqE+/hzIbsITl8AI26Kfv6K2XDOhzDwi3DOR9HPE063k014W9MlkO98bP8vwNAb4ORnYNyd3tYl4RX2t2/fv8y6zZfV+npul8jrrf195D7JdGQTbH8++vE9p0fuk+Uy+CGSokEw5Ho44d8w9YHI/fO7m9CfSPJ6wEnzTOhXuoRJBHLg7A/iN//EX8Mxv4SBV8DAK2Hy7+HMt0xopYikh9LRUDoqfNsx98K5n0BOJ+h2Akz8jfN51/3Jm/rE2pFNsO5++z4FvRJTi4h4y+35cUOLYLStT1v363M+9DgjuppEJH20fW2iJQWjiYiIiIiIiIiIdFyhULIrEBERERERERERERFJOzbvzBURSQNjbod9S2DPO+Z6IM9swA/kJbUsERHxgNdBLV4IZUowWo37/mt+CyO/Y91n34cQaoytLjeyikzgz5bHrPts/jfU7YXczomrK1M1WgWj5Zh/s/Jhwi+gcAC8f727uUf/AMbe3ny90ygonwxV70VVKmDC0E5/FXxhssBDf4X3roN1f7CfY84WKKhwtt6UP8G717Q/PvAKZ+OlWWE/V9031PRn3p7z2N/QiVnbipjYqUWjo2C0+0yYVKra8XJs48f/NHKfzpPNfTlYH9taAMO+CcfcE/6+ZyenE5z5JiycC3W727SVm+d4PU6Lvb5kKD/GhCxu/Lv3c/e7FPK6ej+viCSOzwfHPggLZ0PNdnOssL85jyka0LpvxXnwwQ3O5t30T+h3MfSelT5hkunmvesi98nvHf86RMR72S5fj6qrav66aql1v36XRVePiKSX/p+HZbe2P15QYR+aJiIiIiIiIiIiIukvo8LPMul7EREREREREREREZF0pXffikh6y+sCZ7xuNhzVboduJ0FOWbKrEhERL2QXWbdNvg/e+2riamniRWhMKnAbjAbw4S1QNAj6Xhi+feXPY6vJrX4XQ8X59sFoAI91gbnbIb9HYurKVFa3/aZgtCZDrzPhG06CIgAGXdU6FK2J21CllsomwBmvWbf7fDDlPnMbeuXU8H3O3wl53Zyv2WsGZBVCw5HWx/tc5HwOMVwEoy06MJUZy+ezv8Gc/9/x6xAPXhHk8uM+u/04CUYDWH4HjPm+20rj7/BGWHx19OPP32kCxyLJLoaKObD50ejXApi5GkqGRj++6zSYtRp2vwU1O8yxvG7Q9QTILY+ttmSb8AvY+hQcPejdnEOuUyiaSKboPBlmroI9i805UNcTIJDbvl9BHwjkOz+XXzgbBl0DU+/3tl6BQ5/Ctmcj98vvFf9aRMR7boPRVtwJo24xzwkPrrLu13tmbHWJSHoo6g+dp8Ded1sf73uxAmtFREREREREREQkM+i1ThERERERERERERFJkBh2m4uIpAh/NnSZAhWzFYomIpJJsmyC0fpcAENvSFwtTYJHE79mPBz4JLpxS2+GYGPrY0cPwnvXw/YXYqspqxgK+kbu58+B/p+Hib+F3jNMSF4kH94SW21ifdsP5LQ/NuSrcMyvILvUfs7hN8IUi6COaIPRBlwOp7/irG/3U+CMhVA0sGlR6DwVZm90F4oGUNALTn0Rij8LhcrrDlP+aG6j4k5eT8ddv7fhzv8LRQMIhXx8/eEQRxs++8TSzpOcTbT8Nji83k2V8VWzAxZfC08NiG0eN7fjqQ+Y363+bHOpmAP9LnE+vuc5sYWiNckpM4ERg682l4rz0j8UDUw459g7PZzQB+N/4uF8IpJ02SXQ80zocXr4UDQw50ddjnM376d/gn8VwPq/ZNinkyfZ1qed9VM4s0h6ynIZjAbw4nHwTx9UPhG+ve/F1o/vIpJ5Tn4aup9mzt8CBSasdvxPk12ViIiIiIiIiIiIiDf0t2cREREREREREfGA3atMIdtWEelIspJdgIiIiIhIWHYbUf05MOgqWP9naDicuJoyJRht9a+iG3dkA+xb2hw2FArBwrmw89Xo5ssuhVlrwJcF2cUQbIBHC6z7z1hmQqyyCpuPDfkKDL4WFpwDO14MP27zoyZALSs/ujoFQha3fV92+OPDv2EC0oL1ZvN3sB7q9pr/O18AAvkRNoW7+FTJsmPgzIWA3/3/cbcTYdY6qNkOgbzYApi6Hg+zVkPtHsjtrE/GjJY/4KhbXTCHBftPbXf8UC28tgbOHAmUDHO+7qZHYVQKhCgePQTPT4KarbHNUz7ZXf/sIjjxP9BQDaGguV61FDY9EnmsLwDDkhBWmm6GfAU++h40HIptnqJBMHOlCbATkY5n+I2w6zXzWO1UYw0sugJqd8HIb8erso7lwMeR++R112O1SLrKjiIYbf9y+/a+F0RXi4ikp7xuJri//oB5vUnBiCIiIiIiIiIiIqKNnCIiIiIiIiIiIiIirvmTXYCIiIiISFjZRdZt/mwoGwunvZy4eiAzgtHqqmDHS9GPf2EyrPqlCUXb+nR0oWiF/aHPBTD9PbNRMLfc/J9GCrXK7906FK2Jzw+Dr7Ye11gDO19xX6c0CzaEP+63ydoO5Jj7sT/b/L8V9jWBYTmdIm8ItQsVm3I/dDsJSkfDyO/AmW+a+aMNvvP5oKBXbKFoLeV1USharIZ8NWKXAw2llm2rdrR4I2H//3K2ZuWTzvrFU/0B+HeJu1C0rieEP14xO7oasgqaf/+WT4CzFkHJ8Ob2HmfCjI9h2DfNfbDnOXDyM9Dr7OjW60j82TDgC+7GFFSY35N53aF8ogkCPfMtBe2IdGS9Z8BJT0PP6ZDfC/J7Oh/74c1wZEv8autIPn0gcp9e58a/DhGJD382dD3R2zmLXYQ2i0jmyClVKJqIiIiIiIiIiEiHovAzEREREREREREREREv2exiFxERERFJop7TYcWPw7cF8sy/XabCiG/Dyl8kpqZgfWLWiad9SyAUjG2OJd+C2p1QtcTduNHfh7E/su/jz7H+OWeXWI/reTb4AhBqDN9e+ST0numsTmkvZBEKGLdwHptgsf5fgMHXxGldSQnDvwWVT9kGhB1ssH48KGq55zi/h7M19y6GNb83gWIFvR0W6rG3P+9+zMArTTDg9heaj5WMgMFf9qamLlNh5sr2xyf+0pv5O5qxd8L6h0xgZ0u+LJj2MPS9MClliUia6T3DXJrsehNemwENhyKPnT8cLj4Sv9riqaEG9i8DQtB5avKCaPd9FLlPfk8YcWP8axGR+Bl3F7x8knfzFQ/xbi4RERERERERERERERERERERERERERERkQ7An+wCRERERETC6noCFFS0P14xB3wtTmMTGXYVtAiHSidefQ+f/Ax2vOSs75Dr4OT5kUPRwITDWPHbtGUXw4DLrdt3vBJ5bQkvFLQO07P7/4qJTdBFUzCiZK7iwTD9Xdvb14HGUsu2wpbBaDmdnK/7/vXwZAV8dCuEEvwJrtWVsO0Z9+Oyi83j69Q/w+CvwDG/grPehrwu3tcoscsth/N3wKhbzWOZP9sEvE5fpFA0EYletxPg7PdgxE2R+zZWw4EwgZeprmoJPDcOXjwWXjwOXpgC1dYBqnG1/If27UWD4ZwPoXRkYuoRkfjodiLkOQxZjiS7E2TlezOXiIiIiIiIiIiIiIikqQS/F0lEREREREREREREJAMoGE1EREREUpPPD8c/bDaQNikeCpN+17pf1xNh1HdbHxt0dXxqCmVCMFpD4tYaewdcFoLJv4Pe5zobYxd+Fsn4n1u3HdmY+KCjTBFqtG6LVzCaz+apqs8mNE0yR0EvGH2rZfOBButgtIKcFreRbBfBaE1W3AU7XnY/Lhb7P45yoM88bg76Eky5D4Z/w10YnCRedgmMuwMuroFL6mHCz6F8YrKrEpF0VzIMJvwCTn7GPM7YWXZbYmrySigEi6+BQ2ubj1W9D+9/PfG1bH8RKp+w7zNrDeR1S0w9IhJfXY7zZp7up3ozj4iIiIiIiIiIiIiIpLaMen9iJn0vIiIiIiIiIiIiIpKuFIwmIiIiIqmr2wkwez2c/DScvgBmLDdhOS35fDDuLpi1zgSpnfMRTLk/PvUE6+MzbyLZhVx5qde5tqFGlsonRb9mXhc46x3r9u0vRD93Rxa0CQT0Z8dnzaJB8ZlX0os/x7Jpv00wWqv3GNqF7NnZ9M/oxkWrZnt04xSCJiIiLfWeAbPWwujvW/fZ8h9YeU/iaopV1Qewb0n745VPwJEtiatj+R2wYLp9n6kPKMRXJJN4da499Dpv5hEREREREREREREREUkF+puoiIiIiIiIiIiIiCSIgtFEREREJLXllEHvmdD9FAhYh+RQPAj6XwJlY80bL0be4n0tdgFR6SLUkJh1ov35j7gp/PEBX3Q2Pq+bddu717ivR+xvM/6s+Kw59Gvhj/eaEZ/1JDX5cy2bDtgEozUEW1wJBS372dr8WHTjolVd6X5MViF0Od77WkREJL3ldYOxP4KyCdZ9lt4Eh9YlrqZY7F1s3bZtfmJq2PAPWH5b5H7ZxfGvRUQSJ9uDYLQpf4Tup8c+j4iIiIiIiIiIiIiISKpo9amVIiIiIiIiIiIi0bF7mUkvQYlIEwWjiYiIiEhmGniF93NmQjBa0EEwWvdTY1uj87HQdVp0Y3ucAaWjWh/z58Lga52Nz+1i3VZdCUcPRVdXR2Z3u/dlx2fNsvHQ9cQ2a/lhyFfjs56kpkB0wWiNLbPQSoZFt3bDocQGxjgJW2lr0LWQle99LSIikhmmPWLf/vSQxNQRq6oPrNv2fRj/9bc8Ce98wVnfLAWjiWSUnBiD0XrNNK9l+Hze1CMiIiIiIiIiIv+fvfuOl7Os8///uk5NTnovhAQSQu9VAghSpLgrRVDBhthx7bvquiqiu2v5Ka5lbasifBcLIGADpCiKFKlK7ySUBEJCek6Sc2au3x+TbOZMZu65p50y5/V8POaRXP2TcHKYOXPP+5Ykaejyk5ySJEmSJEmSJFXMYDRJkiQ1p2rDcJI0QzBazCSPj9oBXnU97PtlaB9b+f5Tj4Sjr6v+g78t7XDsn2DeO3P/DWe+Bl51LUxZkG59uTCCNY9XV9dwlhSm19LWmDNDgKOuhp0/AON2h+mvhlf+Crb7h8acp8GppaPk0KpM6WC03kzehYRTjoD2KgMNfjO/fy5KXPlA8vikg2G3j8O+X8kFT048EPb9Euz/1cbXJkkausbuXP658fK7+qeWWiy/s/TYxmWNOzezEe54D9x8avo17QajSU2l1mC0ee+oTx2SJEmSJEmSJGmIMPxMkiRJkiRJkqR6atCn2CVJkqQmlN000BXULiaEXIU22OeL0NIKu38cdno3XD6hsv2PuKL2QIDOSXDI/1S3tlwg27O/hJ7VMHoejNq+ujOGm5gQCBjaG3du+2g48JuN21+DX0tnyaF1mVElx/Jz0WjtgH2/CHe+r+++E/eHZbeVr+Hx78LO56YotgbPXF56bK/zYa/Pbm3v/i+NrUWS1Fx2Phce+nLp8SXXwqQD+6+etLpfhHVPQ+cUWP1Q6XmNDEa76wPwZIWvSdpGN6YWSQNjxPTq1047GmaeVL9aJEmSJEmSJEmSJEmSJEmSJEkaZgxGkyRJktLKJgREDRUxU3rsuJth8iu2ttvHVb5/R4VBav3twf/MPQDmvRMO+l4uCE6lZRPC9Fp8SakGai0djJaNLSXHegu/zc1/L4zdFZ77FbR1wewzYMK+sPha+NsnYeXfS9dw1/th5EzY/pQKi6/AC9eXHpvVwHMlSc1v7tuTg9Hu+0zu/5GzT++/mpLECI/9N9zzkeRA5y0aFYzWsxYW/r/K1wWfG0tNZcZxuX/Xhd+PRs6AHd4MPavgiR9suy60wVFX50KaJUmSJEmSJEmSAIjlp0iSJEmSJEmSpD5Kf5JYkiRJGup2+5f67rfyvvruNxBKBQyM3qlvKBpACDB2l8r2D6G6uuophHMn4gAAIABJREFUbZDQkz/MhS489GV49JuwblFj6xqqkkIpDH9QI7WUDhLItI8vPZYt0jntKDjg67DPf+RC0QBmngAn/Q1O/FtyHTefCt0vlq+3WmufKt7fOQUm7N24cyVJzW/sLnDAN5Pn/OUMuOuDsOrh/qkpydMXwd0fSBeKBo0LRlv9CGQ2VLamdSSMntuYeiQNjI4JcOjFfV/3Tl4Ar3kY9vsKHPx9OOwX0JIX6DzxQDjlucSQZ0mSJEmSJEmSpEEvGuQmSZIkSZIkSRp4BqNJkiSpeW1/OlDHoK6nfgzPXlW//QZCzBTvbykRcDXnrMbV0ihzzkw/97Fvwd8+CXd/CK7eF166pXF1DVXZntJjLe39V4eGn5bSYQKZltElx3qLBaMlmbAPzH5D8pwl11a4aUrZHthQInTt0Isbc6YkaXjZ5QOw8weT5zz2LbhmP3j2yv6pqZinLobb317Zmo3LIVb6P/4UVj9S+ZrtXgttI+tfi6SBtcOZcPIiOOzncNwtcOxN0DFu6/ic18Nrn4QFP4Nj/gjH/QVGThuwciVJkiRJkiRJ0kAaJmFig+HmuZIkSZIkSZKkYcFgNEmSJDWvyQfDgkugc3Lf/rZR1Qc63XVuYz5831+yvcX7Q4lgtD3+DeafuzWgaPw+ub5i5r+/9vrqYc7rYdrRla/rWQn3/kv96xnqYomvGSj9dSPVQ2vpYLRsy6iSY5lqvkW/4sfJ492Lq9g0wdqF8KfXws87KHlRZNd29T1TkjR8zSkTAAqQ3Qg3nwaZjY2vp1DP6lxQcaViBv58Ciy/s/Yalt0Ot74Z/nA83PaWytcf8sPaa5A0OHXNzH0fnbKg+M+SuraDHd4I045KfA0jSZIkSZIkSZLUFOIwCYCTJEmSJEmSJA04g9EkSZLU3HY4E057EU55Fs7M5H49fRWc9CC0juw7d+R2cOLfYeorS+/XvQRWPtDYmhupVMhVaC3e39IKB/03nLESTl0CJ/0N9vjX3N9VvtaRsNO76ltrLQ6/tLp1y27LBRblG8pBePWQ7Sk9Vm3AoJRGS0fJoUzLyNJj1fyTbeuCo64pPd67topNS+heAr/ZCZ7/TfK8wu+zkiRVa/KhuUcaNxzZ2FqKef53uZDiqtb+JlfzS7dVf/7ia+CGV8LCS+CF6ypfv/MHoX109edLkiRJkiRJkiRJanKGiUmSJEmSJEn5kvL3zeaXtIXBaJIkSWp+oQW6Zm39taUVxs6HV98KM06AUTvCnDPh2Jtgwt7bBqYVumYfuPFoWPNkv5RfVzFTvL+lLXld6wgYOT33+7ZRcPxfYc4bc393M18DR98IE/apb6216JxU/dpf7wiXjoGbz4Df7g4/74BrDoAXbqxffUNJtkSYHpT/upFq0dJZcigTRpQc6602y3DmCUAoPlbPf//3n1/6e/EWrSOgY0L9zpQkDW8hwKt+n27u8r9Cz+rG1lNo8dW1rc90w6Nfr379IxckhwGX0z6m+rWSJEmSJEmSJEmSmoOf1pQkSZIkSZIkqa4MRpMkSdLwNWFfeNU1cPJTcNhPYcxOuf6EMJ7/8+If4YYjoXd9Y2ust1IhV6G1sn26toPDfpb7uzvqtzDl0Nprq7fZb6h+be9aePZyWP1wLsBoxT3wp9fCqkfqV99QERNCIkJ7/9Wh4ac1KRgtYazaYDTIBT4Ws/yvsHF5DRtvlu2Fhf9bft6I6bkQG0mS6qV9DMx7Z7q5L99T//NjhLVPw0u3QGZD37E1j9W+/zOXVV/X0j/XdvaIqbWtlyRJkiRJkiRJkiRJkiRJkiRJktSHwWiSJElSoc5J6eZ1Pw8v3NjYWuotZor3h7b+raM/zH1bfffLrM+FpQ03pcL0AFqa8OtGg0dLR8mhmBCM1ltLMFrb6NJjj36jho03u/9z0Luu/LzJgzBsUpI09LWNSTdvdZ3DgHvXwc2nwa/nwvWHwxXT4YUbto5vXFafc6oJMe1dC9lN5ecd8C1oH1d8bMaJlZ8rSZIkSZIkSZIkSZIkSZIkSZIkqSSD0SRJkqRCaYPRAB78z8bV0QixRMhVMwZczTgBJuxX3z1XPVjf/YaCUl8zBAi+pFQDtbSXHMpQOhgtU1Mw2qjSYw98AV6+Fx78EtzzMXj027BuUfq9e9bCg/+Rbu6cN6bfV5KktNrTBqM9Wt9zH/oKPHfV1nbPKvjDcbD497l2vYLR7vlY5WvSnj33rXDoxdA6om///l+HsfMrP1eSJEmSJEmSJEnS8BHjQFdQoaFWryRJkiRJkiSpGTVh+oEkSZJUo87J6eduWt64OhohZor3h9b+raM/hAALfgq/261+ez5zGRz2s/rtNxRke4r3J4RWSY2WaekqOdZbUzDa6OTxa/fv277v03Dkb2Hq4eX3vnrPdDWM3wtmnphuriRJlUgbjLbm8fqeu/CS4v03nQA7vg16VtfnnKcvgkN/UtmaNMFobWOgfSzMei289il48Y+Q2QBTj4Qx86oqVZIkSZIkSZIkSVKzGSZhYiEMdAWSJEmSJEmSpGHCYDRJkiSpUCXBaEMtHCrbW7w/NOlLg45x9d0vZnJ3bxxOF/fEYfY1o8Fj9Nzc9+PCwJLWLrIjppdclqkpGG1UZfN7VsENR8A/Pg5jdio9b/WjsG5R+f1GTIcFPxt6/2+RJA0N7WPTzVtxD9z+Dnjqx7l2axccfhlsd1Lx+b3d8NCXYemfoHdNrq9tDEw7Cua/H9Y+Wfqspy9KXX4qG5dD56Tcc/ZFP4dFm/+/Ov9cmH5MkfkpgtHyA+VGzoAdzqpfvZIkSZIkSZIkSZIkSZIkSZIkSZK20TLQBUiSJEmDTsfE9HPDEAuvKRly1dq/dfSX9vH13/O+T9d/z8Es21O83+AmNVpogZ3eu23/vHPIxNLBfL2ZGs5s66pu3W/mw5onSo8/e0Xy+pMegFOXwKmLYfwe1dUgSVI5LZ3p5nUv2RqKBpBZD396DTx9ybZzY4Q/Hg8PnA9Lb4KX7849lt4E938Ofj23DoVX4KEv5Wq6/3Nw61nw/G9y/x/+w7Gw8Gfbzt+4vPye+cFokiRJkiRJkiRJklSxONAF1E9soj+LJEmSJEmSJGlQMxhNkiRJKhSz6ee2dDSujkaIJRKDQumQoSGtbSRMPLD42Pz3V7fnIxdAb3f1NQ01pcL0Wpr0a0aDy96fh32/AuP3zj32Oh8O+AaZbOkL7DK1XHuXLfH1nsZv5sONR8Pap7YdW3x16XVzzsyFoY2cDiFUf74kSeX0rKlt/YP/vm3f87+Fl24uvaa3xjPzjZxRfs7DX4VfdMIDn9927NazoHd9376Ny8rv2WYwmiRJkiRJkiRJkqRyDAyTJEmSJEmS0kr6aZo/aZO0hcFokiRJUqGJ+6Wf2zrEgtFKhf40c8jV3l/YNsBu3y/DQd+ubr/MBnjxj7XXNVRseKl4f2jv3zo0PIUAu/8LnPT33GOvz0JoISEXjd4S+Y+pZGoMPXzxj3D94ZDZ2Ld/04rSa2adUtuZkiSlNeng2tavfqRvsNiGpXDfp2vbsxLTjk03L9tTeuyaffu21y0qv1+7wWiSJEmSJEmSJEmSJEmSJEmSJElSfzIYTZIkSSo0akcYu1u6uUMtHCqWSAwKrf1bR3+aeQIcdwvs/EGY/z448new+8dr23PjsvrUNpjFCA99Be56f/HxZg7T06CXyVY3Vlaow49JupfAs7/c2o4R1j9bev7Mk2o/U5KkNCbuD52TattjSzDa/Z+Hq2bByvtqryut1g6Y947a9ljzOLx899b26kfLryn1GkqSJEmSJEmSJEmSJEmSJEmSJElSQxiMJkmSJBUKAV5xYbq5LUMtGK23eH9o8pCrSQfCgd+Ag74D2+WFEO3xqer2ax9Tn7oGs6V/gr99ovT4UAsFVFNJCj/rrSUYbdbJNSzOc+ub4M73w+/2gGv2gZ7VxefNfz+0j67PmZIkldPSBgt+Ci2d1e+R6YYl18H950G2p361pdHSAXt9DsbvVds+1x4Iy+/M/X71I+Xn96yp7TxJkiRJkiRJkiRJw1wc6AIqNNTqlSRJkiRJkiQ1I4PRJEmSpGImHwKvuKj8vKEWKBYzxftDa//WMVjMPgMIla+rJUxiqFh4SfJ4yxD72ldTySZce5cUmlbW2N1g3O41bJDn8e/Aqodg5f2l5+x9fn3OkiQprRmvhlOegUMvhl0+XPn6TDc8ckH960qjpQO6ZsGrb4ejrqltr98fDPd/HtYtLD+3VMCpJEmSJEmSJEmSJG0RDROTJEmSJEmSJKmeDEaTJEmSShm7c/k5safxdeTrWQsPfxX+dDLceS6sf66y9bG3eP9wDbmasC8s+Cm0j6tsXXZTY+oZTJ78YfL4UAsFVFNJCj/rrSUYLQQ46urc94ZG65wCnZMaf44kSYVGTIUd3wKzT6987W93gSW/r39NabS0535t64KZJ8DYXWvb7/7zSHWn8961tZ0jSZIkSZIkSZIkSZIkSZIkSZIkqSJ+kl2SJEkqpXNy+TmZDY2vY4uYhT/9Ayz909a+Rb+AE+6E0XPT7ZEtEYw2nEOudngjzD4DHvgCPHB+ujXNHoyW5u6VW4IppAGQSfgSTQpNS2XUHDjxXlj3LHSMg/axsHE5rFuUC5Jp6YC2MfDgf8KD/179ObWGuUiSVKvWroGuoDItHX3bI2fC6kcaf+6skxt/hiRJkiRJkiRJkiQNCSmuLZQkSZIkSZIkqQ6GcfrB8BZC2BXYB5gFjAQ2AEuBJ4C/xxjX1bB3O3AYMBuYAawFFgP3xhgX1la5JElSPxpswWiLLu0bigaw6WV47L9h/6+l2yNmiveH1tpqG+paWmHeOc0ZjPb81XDfZ2D9Ihi3Bxz8Qxg7P3nNE98vv+9wDtPTgEsKP6s5GG2LUdtv/X3npNwj3z5fgBHT4O4PVLf/9GOqr02SpHpoG+LBaKPm9M+5O7y5f86RJEmSJEmSJEmS1JzS3KhUkiSpGfk8SJIkSSUkPVX0aaSkLfwk+zASQhgPfAg4h1xoWSmZEMLfgMtjjF+qYP8pwPnAG4CJJebcClwQY/xl6sIlSZIGSvu43Ifvk0Kw+jMY7ZGvFu9/8Q/p94i9xftbfGnAqNmw03vhie+VnztUgtFWPgg3nwLZnlx76Z/h9wfDyQuhY1zxNc9cDne+r/zeHRPqVqZUqWzCDzfrFoyWxi7/BJuWw/2fq3ztTu+pezmSJFWkdYCD0Vo6c8Gj3YtTzm/v255zJjx1Yf3ryjfzNTB5QWPPkCRJkiRJkiRJktQE/LSmJEmSJEmSJEn1ZPrBMBFCOAP4LjApxfRW4ABgFpAqGC2EcCLwE2BqmakLgAUhhEuA98QY16XZX5IkaUCEABMPhGW3lp7TX8FoMcLLdxcfW/G3CvbJFO8PrZXX1IwO+g5MWQBP/ABe+kvpeUMlGO3+z24NRduiZyU8eznMe0ff/mwP3H4OLPzfdHtPP6Y+NUpVSAo/6y3xba5h9joPxu8Nz/8aul+AdQth9SPJaw78Noyc3i/lSZJUUtsABqPt8hHY8U0wYT946iJ48Ubomp17Dv7SzcXXtHT0bU87CsbsDGseq399c86EqUfA3HdAi6+VJEmSJEmSJEmSJEmSJEmSJEmSpP5kMNowEEI4D/hckaFngMeAl4ARwAxgL2BUhfsfBVwF5H8yLQL3AE8B44H9gMl5428CxoYQTokxJnykXZIkaYDNPDE5GC3bT8FoPauTxzetgo5x5ffJ9hbvD740AHJheDu+BbZ/HVw+fttQsS2GQjBa73p49oriY399J0x7FYyeC2ufgsXXwl3vT7/3tGNglw/Vp06pCknBaJnsANx9dftTc48tHvsO3PPh4t9DdngTzD+3/2qTJKmU1gEKRtvuH+GAC7a257099wC4432lg9FCe992Szsc8iO44Yj61rfvl2D3T9R3T0mSJEmSJEmSJEnD2ABczyRJkjQo+DxIkiRJklQ90w+aXAjhY2wbivYz4IsxxvuLzG8BDgVeBxyfYv9ZwBX0DUW7BXhXjPHhvHmdwHuArwJbPsH2j8C/A59K+ceRJEnqfyOmJ49n+iEYLbMR/ljmqdm6RdCxd/m9YolgtBZfGvTR1gUzToTnf118fCgEo/355OTxX8+DuWfDokshsz79vsfcBFMW5IIopAGSlH2WGQzvn+98Lsx4Nbx0K2TWQUtHLuBy4oEw5fBcCKMkSQOtdcTAnLvj20qPtXYmjHVs2zf1cDh9JTx1IdzzkdprAxg5sz77SJIkSZIkSZIkSRpGBsNFS3USm+jPIkmSJEmSJEkaskw/aGIhhH2AL+V19QBnxRgvL7UmxpglF2x2SwghzdfH+cCEvPatwLExxj4JITHGjcA3QwjPAFfmDX00hPD9GOOiFGdJkiT1v7au5PGNy6BnLbSPblwNz1wKy/+aPGfdQpiQJhgtU7w/tFZcVtN7xYXwy0nFx/ojEK8WG16CF24oP++pn1S270Hfg2lHVlWSVE+ZbOmx3hLf5vrdmJ1yD0mSBqsQYPxesHKb+2dAaIGY8D/cQi0dMPUoeOG68nO3PzV5n0rHOsbBrh+GSYfA9QvKn1/OyBm17yFJkiRJkiRJkiRJkiRJkiRJkiSpai0DXYAaY3Oo2Y/pG373nqRQtEIxxt4yZ8wH3pbXtQk4uzAUrWDPq4CL8ro6gfPS1iRJktTvWssEowFcdwj0djfuLnmP/Ff5OetS5sxmSzzFS5WJO8x0ToSpJULA7vtM/9ZSqTShaJXqnAI7vqX++0pVSApGSxqTJEkF5r17274ZJ6Z7HZTv9JWw12fLz9vt47nQtVJaR5QeC+3Je08+BCbsW76GckZuV/sekiRJkiRJkiRJktSUGnSdrCRJkiRJkiRJBQxGa15nAPvntW+MMV5Y5zPOAlrz2lfEGB9Pse7LBe3XhxASPvEmSZI0gNpSBAKseggu7YLLx8PNZ8CGpfWtYcU95ecs/2v5OeuegRdvLD4WWov3D3ctHaXH6v3fuZ42vFDf/Wb+A5xwZ7p/D1I/yCZcX9drMJokSent8k9w4Ldh/D7QNRt2ei8ccTn0rk2/R9dsaBsJE/YrP3fkjDLjM0uPJT03h1zg2tE3wA5vgRHTYeKBsOBncOpimHUKjJhWvr6u2TBm5/LzJEmSJEmSJEmSJCmtRt10V5IkabDzeZAkSZIkqQZtA12AGuY9Be3/bMAZpxa0UwWvxRgfDiH8FThkc9co4NXAr+tYmyRJUn20jkw/t2c1PHs5LL8DTn4698H8WmV70s1beAm84iJoKRFwltkI1x9Wen3wpUFRSeELi34Bu3wgeX1mI6x6EMbu2r+hYhuX1b7Hrh+D/b9a+z5SA2QSws+SxiRJUhE7vz/3qFVbF3ROgY0vlZ5TLhht7K6lx3rXlK+hcxIsuHjb/ldeuW3f05fAbW/O6wiw12dLv6aSJEmSJEmSJEmSpFIM/ZAkSZIkSZJSS/ppmj9pk7SF6QdNKISwE3BkXtdC4I91PmM6sE9eVy9wSwVb3MTWYDSAEzEYTZIkDUbVhFmtfwaumAqnLIbWhGCtNNYuTD/3pZth2lHFx57/Nax/rvRaP/xfQsKPUNY8kbz0qYvhzvdAZkMuYG2f/4TdPlbf8kqpNRhtwU9hzhvrU4vUAEnhZ70Go0mSNHAOvRhuOrH0eNlgtF1Kj2W6q6uplB3fBGN2gie+D61dMPv00q+nJEmSJEmSygghtAOHAbOBGcBaYDFwb4xxYZ3P2hHYF5gJjAaWAIuAW2OMKe+8JUmSJEmSJEmSJEmSJA1eBqM1p1cVtG+Mse63n9mzoH1fjHFdBetvLWjvUWM9kiRJjdFaRTAawMbl8MAXYJ8v1Hb+xqXp5750S+kP8i+/M3ntmifTnzOcJIUvJIXmrfg73P62re3sJrj3n2H8XjDj1fWrL9+qh2DJ9bDpZXjiB9Xvs9fnYYcz61eX1ACZhFe4SaFpkiQppfnnwuPfqXzd+MIfGxcYPS95fMR0aB8PPSu3HZtyeOX1lDP5kNxDkiRJkiQ1hRDC54Dzatjiohjj2RWeOQU4H3gDMLHEnFuBC2KMv6yhNkIIpwMfBQ4tMeXlEMIvgM/GGGu8k5IkSZIkSZIkSZIkSZI0cFoGugA1xMEF7dsAQs6xIYQLQwgPhRBWhRDWhRAWhRBuCCF8MoSwQ8ozdi9oP1FhjYXJG4X7SZIkDQ5J4VflPHtZ7ef3rEk/975Pw+rHt+2PER7+/5LXjvPpWFG960uPtY4sPfbcVcX7n72ytnpKeeKHcPXecM+H4YHP17BRgB3fXLeypEbJJoSf9WT6rw5JkprWrFPSzx2z09bfd82CaUcXnzflCOjaLnmvEGCnd27bP2oOTNg3fU2SJEmSJEn9IIRwIvAA8D5KhKJttgC4PITwvyGEUVWcMzqE8DPgMkqHorG5hvcBD4QQjq/0HEmSJEm1SLjTY+LYYDTU6pUkSYOXzyskSZIkSdUzGK05HVjQfnhz4NkNwPXA2cBuwFigC5gNHAN8EXgshPDfIYRyCSA7FbSfqbDGRQXtSSGECRXuIUmS1HitNQSjrV2YCyWrxPO/g9vOhtvPgcW/h57Vla3/7c7wl9fDjcfCvR+HNU/CstvLrxu7a2XnDBeZKoPR7v9c8f4nvldTOUWtXwx3vAtiHdKgDr8URu9Y+z5Sg2USvrVu6Om/OiRJalozjoP9L0j3emi3f+7bPvRimHhQ376JB8BhP0939p7nwewztrbHzIejroXg2xmSJEmSJGnwCCEcBVwFTM3rjsDd5ALMrgeWFSx7E/CzENL/oCOE0Ar8AnhjwdBLwHWbz7qHvp8wnAb8KoRweNpzJEmSJEmSJEmSJEmSpMGkbaALUEPMKGh3AXcCk1OsbQfOBQ4NIbwmxrikxLzxBe2llRQYY1wbQtgAjMjrHgesqGSfQiGEqcCUCpfNq+VMSZLU5NpqCEbLboTeddA+Ot38x78Hd75va/upC2HKYZWf+8xluV9fvBGevgimvDJ5/pj5MPXIys8ZDnoTgtFa2vuvjiRXbVeffV6/rravd6kfZbKlx9Zt6r86JElqart+BHZ6L6x9ElY/Cn85fds5o+fBtGP69nVtByfckQuKXv8sdG0Po3dIf2776Fxg78blsHEZjNkZQqjlTyJJkiRJkoavM4EUd5H6P2vTTAohzAKuADryum8B3hVjfDhvXifwHuCr5K7LA/hH4N+BT6Ws6UvASXntHuCjwA9ijP/3rkgIYXfgh8Chm7s6gatCCHslXAMoSZIkSZWp9GbBkiRJkiRJkiRVyWC05lQYWnYhW0PR1gHfA64BngNGAfsA5wD5d4jcD/hlCOHIGGNPkTMK0z26q6izm77BaGOq2KPQucB5ddhHkiQpp3Vkbes3LU8XjBazcP/52/a/dEtt529YCs9eXnp8yhFw6E/Sh7cNN5mEYLRHvwm7frjImg2Nq6fQ8ruqWxfagCy0jYFpr4IDv20omoaUbML1dU9UFNstSZIStY2E8XvmHodeDLe9devY9GPhFRdBa0fxtaN3qCwQrVDnpNxDkiRJkiSpei/EGBc2YN/zgQl57VuBY2OMfd4ojDFuBL4ZQngGuDJv6KMhhO/HGBclHRJCmAt8qKD7jBjjrwrnxhgfCiEcA9zI1nC0SeSupXtvij+TJEmSpIYxTEySJA1XPg+SJEmSJFXPYLQms/kuk50F3bM2//oQcEKM8dmC8XuAC0MIHyN3d8otDgU+Qe4OlYUKkzOqSX/opu8FYqZxSJKkwSe01LZ+4zIYNaf8vOV3wYYXajurGsf9uf/PHEp6E4LR1j0NT/4Y5p3Tt//WtzS2pnwv/qGy+ae9CCOmNqYWqR9lssnjv7gzyxsOqvH7tyRJ6mvHt+QekiRJkiRJw1gIYT7wtryuTcDZhaFo+WKMV4UQLspb10kusOycUms2Ow9oz2v/pFgoWt453SGEs4H7gS1p9u8IIXwlxvhUmbMkSZIk1cTQD0mSJEmSJEmS6slPCTef1hL9qygeivZ/YoxfA75e0P2REEKawLJq3sXxnR9JktT8NixLN2/j0sbWUcx+X+v/M4eaWCZ96ckf9m1vWAbPXZG8JrOptpryPfjF9HM7JkDnlPqdLQ2gcsFoP/qLLzclSZIkSZIkSVJDnEXfa/SuiDE+nmLdlwvarw8hjCg1OYQwEji9zB7biDE+BlyV19VGrmZJkiRJkiRJkiRJkgaFmPDxv6QxScOLwWhNJsa4Hij2EfELkkLR8nyGXIjaFhOBE4vMW1vQHpmuwsQ1hXtW4zvAnhU+Tq7DuZIkqZmN3aX6teufSTdvIF6pd23X/2cONft9JXl82W1926sfLh+mduOroHtJbXUBrHsWelamnz9yBoRQ+7nSIJAt8y3zhof7pw5JkiRJkiRJkjTsnFrQvjDNohjjw8Bf87pGAa9OWHI80JXXvi3G+EiqCret6bSU6yRJkiRJkiRJkiRJkqRBwWC05rSuSN/FaRbGGNcBVxR0H1Vk6qAMRosxLo0xPljJA3iy1nMlSVKTm/3Gbfs6JsLrlsEhP4IFl0D72OJr73g3rLiv/BkxU1uN1RhpMFpZM4tlBCfoWVN+zrJb4doD4KVbq6tpiyd/VNn8qUfVdp40iGTK5A9KkiRJkiRJkiTVWwhhOrBPXlcvcEsFW9xU0E56M/KEMmuT3Eyuti32CyFMq2C9JEmSpHoaiBvn1mSo1StJkgatIfc8SJIkSZI0mBiM1pxWFrRfjDEurGD97QXt3YrMWVXQnlLB/oQQRrNtMFph3ZIkSYPDnv8GO7wFCLn2yJlw9HXQOQnmnQM7nAXj9ii9/q/vhKcvgVvOgrs+CMvv2nbOQASjjZ7b/2cONaPmQOuI5Dn5b9b1pghGA+heAjceBfd8DO79OPzlDfD4dyFbwdfBA+ennwsw7x2VzZcGMYPRJEmSJEmSJEnSANizoH3f5huRplV456Sk2cPnAAAgAElEQVSEN5m3Oeu2tIdsrun+Cs6SJEmSVCtDPyRJkiRJkiRJqqu2gS5ADfEYsH1ee0mF6xcXtCcVmfN4QXtOhWcUzn85xriiwj0kSZL6R0s7LLgYDvh6LtBq3O4QCjKG28aUXv/ynXDbm7e2n/wfOPI3MP3YrX2Z7vrWXM64PaFrZv+eOVRt/zpYeEnp8dgLoT33+56UwWgA2R545IKt7WcuhRf/CIf9AkJIXnvfeenPAZj9epi4f2VrpEEsm+I6wt8/GDl+jzL/liRJkiRJkiRJUjN7Twjh0+RuDDoJ6AGWA4uAvwDXxhhvrmC/3QvaT1RYz5Nl9stXeDPTas7ar+CsP1S4hyRJkiRJkiRJkiRJkjQgWspP0RD0YEF7Y4XrC+ePKDLn4YL2ThWeMbeg/VCF6yVJkvpf5yQYv+e2oWgA7QnBaIUyG+APx8GVs+CuD+TavZXcSLwOZry6f88bylo6k8ezm7b+vreCYLRinrkMVj1QfOzZq+DqfeGnAR74fOk9TvwbHPBNGD0PRkyFXT4MB323trqkQSaTLT/nM1elmCRJkiRJkiRJkprZG4FjgJlAJzCa3A09Xwl8CvhzCOHOEMKxpbfoo/AauWcqrGdRQXtSCGFC4aQQwkRgYo1nFc6fX+F6SZIkSSoixR0tJUmSJEmSJEmqg7aBLkANcV9Be3yF6wvnLy8ypzCtYe8QQleMcX3KMw4rs58kSdLQUkkw2hbdz8Nj34bVj+ZCrCrxiovg0W/AinsqPxdg3B7VrRuOWjqSxzMboW1U7vc9q2s/78kfwQH/1bdvyfXwl9dBLBP0NH4fmLD5scsHaq9FGqTSBKPdtQiy2UhLS2h8QZIkSZIkSZIkaag6ELguhPBF4NMxxqRP+RdeV7e0koNijGtDCBvoe6PSccCKMuesjzFWeqetwtrGVbi+pBDCVGBKhcsqfENckiRJGmqSXkoYJiZJkoYrnwdJkiRJkqpnMFpzuobcTwy2fPp7bghhRIxxQ8r1exa0nyucEGNcEkK4D9h7c1cbcDhwXcozjipoX5NynSRJ0uDUVkUw2hYvXA9cX9mazskw7xy4q8pgtLG7VLduOIo9yePZjVt/37Om9vNeKPK18MQPyoeiAez41trPl4aATMr3yJethaljG1uLJEmSJEmSJEkadJ4HrgbuAB4GXgaywCRgf+AfgOPz5gfgU0AL8K8J+44uaHdXUVs3fYPRir3RXK9z8tXwhvY2zgXOq+N+kiRJkiRJkiRJkqRhJOmWZYm3M5M0rLQMdAGqvxjjYuC2vK524JgKtjihoH1ziXlXFrTfnmbzEMKuwCF5XetIH6gmSZI0OLXX8zryFDonw9yzq1wcYOxu9aymufWW+ZxBJi8YrbcOwWirHtr2JzfPXp5u7c7n1n6+NMjFGFP/cHPJqsbWIkmSJEmSJEmSBpU7yAWebR9jfHeM8YcxxltijA/HGB+NMd4aY/x2jPEE4CDg8YL1nwwhnJywf2FgWdobleYrfPOxcM/+PEeSJEmSJEmSJEmSJEkalAxGa14XFrQ/mmZRCOEI4OC8riy5u2cWcwmQyWufFkKYn+KYTxS0L40xVnPxliRJ0uDRPrZ/zxsxGdpGwZG/rXztzNdA58T619SsMmWC0bJ5wWg9ZYLRJh4Ax/2l/Jl/fSdkM+Xn5Tv2ZmgdUX6eNMRlK7jjw+KVjatDkiRJkiRJkiQNLjHGq2OM18VY/hYrMca7gFcAjxUMfSmE0Jr2yEprHORrJEmSJDXEEHt6nvaulZIkSWX5vEKSJEmSVL22gS5ADXMhuTC03Ta3jw4hfDTGeEGpBSGEqWwbqHZpjPHJYvNjjI+HEC4Cztnc1QH8JIRwTKmgs8131Dw7r2sTcH65P4wkSdKg1zamf8/rmLT51/GVrz3kB/WtpdmVC0bLpAxGG7srHH4pjJ4LI2dA95LSc5/6MUw+BNY/DyvvL1/j/v8FUw8vP09qApls+rlLVkUgNKwWSZIkSZIkSZI0dMUYXw4hnAncxdY3FHYFXgXcUGTJ2oL2yCqOLVxTuGd/nlOt7wCXVbhmHvCrOtYgSZIkDTKGfkiSJEmSJEmSVE8GozWpGGMmhPAh4FqgZXP310IIc4DPxRhX5M8PIRwLfJfcBUhbrAA+Veao84BTgQmb2wuAG0II74wxPpK3fyfwbuBrBeu/FmNclP5PJkmSNEiFfg7eaR+b+7W1wmvgu2blQrmUXrlgtOymrb/ftLz4nNmvh8N+vvXrJLSXP/eO96Srb+45sOuH0s2VmkC2gmsIF69qXB2SJEmSJEmSJGnoizHeE0K4Djg+r/sEDEYrKca4FFhayZrQ3++nS5IkSZIkSZIkSZIkaUgzGK2JxRiv3xyO9q287g8C7wsh3A48T+4CqH2BOQXLNwFnxhifLnPGcyGE04DfAx2buw8DHgoh3A08BYwD9gemFCz/LfCZiv9gkiRJg9HGEoFYjbLlwvHWrsrWlQv50rbKBqNthEe+AU/9GFbeV3zOtKP7hue1dBSfV42pr6zfXtIQkMmmn7vEYDRJkiRJkiRJklTetfQNRtu7xLzCdx4Kr4dLFEIYzbaBZStTnNMVQhgVY1xXwXFTU5wjSZIkSRWq4K6WkiRJkiRJkiTVwGC0Jhdj/HYIIQN8FdiSmtEOHJGw7EXgtBjjrSnPuCmEcCrwE7Ze7BWAAzc/ivkZ8K4YYybNGZIkSYPeQIVTtVUYjLbzBxtTRzPb/nRYfkfp8Qe/CIt/l7zH2F37tnd6F/ztE7XXBjDj+PJzpCZSSTDaC6u8EE+SJEmSJEmSJJW1sKBdKvDs8YJ24c1Iyymc/3KMcUXhpBjj8hDCCmBCXvds4OEaziqsXZIkSVI9xYTrlJLGJEmSmpnPgyRJkiRJNWgZ6ALUeDHG75K7i+X/AmsSpr4AfA7YJW0oWt4ZVwN7At8DtrlYK8/twOkxxrMqvIOlJEnS4DbpEGgb0z9ntY/d+vsRhTf6LmP70+pby3Aw5w3J4+VC0QDG7lKw5xurryffjBNh5PT67CUNEdkK3h9fvLJxdUiSJEmSJEmSpKbRXdAeWWJeYTDZThWeM7eg/VDC3HqfVUmomiRJkiRJkiRJkiRJkjSg2ga6APWPGOOTwFtCCCOBw4BZwHRgE/AS8PcY4301nrEUeF8I4UObz5iz+Yx1wPPAvTHGp2s5Q5IkadBq7YRD/gdufRPETGPP2u9reeeOSL9ut3+BcXvUv55mN2o27PNF+Pu/Vre+fTyMmFZkz/+Av/9bbbUd9O3a1ktDUCabfu6SVY2rQ5IkSZIkSZIkNY3JBe1lJeY9UNDeO4TQFWNcn/Kcw8rsVzi2IK99KPCbNIeEEEaRu5Fq2rMkSZIkSZIkSZIkSRoU4kAXIGnQMBhtmIkxdgM3NPiMTcAfG3mGJEnSoDTnDTBhX7jjvbD0psac0doFs1+Xfv4Rv4Q1j8OUw2HyAgihMXU1uz0+WX0w2rQji/+97/EpmH5c7utlxT2V7zvpYBhdeKN3qflVGowWYyT4vU+SJEmSJEmSJJV2SEF7cbFJMcYlIYT72Bo61gYcDlyX8pyjCtrXJMy9Fnh3wtokR9D32tB7Y4wvVrBekiRJ0rDmR08lSVK9+LxCkiRJklS9loEuQJIkSWoqY3eBff69MXu3j4XDL4OOCenXbH8a7P4JmHKYoWi16ppV3boZJ5Yem3QQHPdnaOmofN/dqwxqk4a4bAXvj/dkYFNv42qRJEmSJEmSJElDWwhhBHBaQfdNCUuuLGi/PeU5u9I3gG0dyYFqvwe689qHbt4jjbML2oU1S5IkSaq7pIuaDASRJEmSJEmSJKlSBqNJkiRJ9dYxqbb1rV1wzB/g9BVwVoRTl8Dxd8CpL8B2J207v3NK8X26tq+tDvWV7alu3Zh5yeNto2B0mTmFJh0C2/1jdfVIQ1ys8DrB7ir/6UqSJEmSJEmSpGHhE8B2ee0M8LuE+ZdsnrPFaSGE+SnPyXdpjHFDqckxxvXA5WX22EYIYWfg1LyuXuCnKeqTJEmSJEmSJEmSJEmSBg2D0SRJkqR665xcfs74fUqPnfR3mPYq6Bifa4+cDpMOgraRxefv/YXi/bv9c/k6lN7GZdWtGzmz/JwT7k65WYA5Z8Hhv4CW1urqkYa4bKXBaJsaU4ckSZIkSZIkSRo8QghvCSFMq3DNu4DzCrp/EmNcVGpNjPFx4KK8rg7gJyGEEQnnnAycnde1CTg/RYmfA/JvAXN2COG1CeeMAC7cXNMWP4oxPpniLEmSJEkqr9K7WkqSJEmSJEmSVCWD0SRJkqR665hQfs7xd8CME/r2tXbl+sfsVNl5c14PYwpuQj56Lsx5Y2X7KNmkg6tbN3K78nPaRsKOb02e09IJZ2bgsEtg1JzqapGaQKWX1nX3lJ8jSZIkSZIkSZKGvHcAT4cQLgohvCaEMKrUxBDCgSGEK4AfACFv6Hng0ynOOg9YkddeANwQQti14JzOEMIHgMsK1n8tKXxtixjjU8A3CrovDyH8UwghP/yMEMJuwI2ba9liOekC2CRJkiQ1lGFikiRpuPJ5kCRJkiSpem0DXYAkSZLUdFpaYeZJsPjq0nNaO+CVv4JHLoCX/gIjpsDOH4CJ+1d+XscEOO5WePgrsOJemLAf7PJhGDG1+j+DtjXtaFh2W+Xr2semmzfrFHj64tLjnZMghNLj0jCRzVY232A0SZIkSZIkSZKGjZHAWzc/siGEx4GFwCogA0wC9gGmFVn7MnBCjPGFcofEGJ8LIZwG/B7YElB2GPBQCOFu4ClgHLA/MKVg+W+Bz1TwZ/oksAdw4uZ2O/At4DMhhHuANcDczWflv5m4CTg1xrikgrMkSZIkVSsa+iFJkiRJkiRJUj0ZjCZJkiQ1wr5fKh2MNm7P3K+tHbDHJ+tz3ojJsN9X6rOXitv1I7n/pivuTb9m/N7pw8xmvJrcZxVKXCDVMSH9uVITy1Z4DWH3psbUIUmSJEmSJEmSBrUWYJfNj3JuBM6OMT6XdvMY400hhFOBn7A1/CwAB25+FPMz4F0xxkwF52RCCK8Hfgi8IW9oKnBCiWVLgbfFGG9Oe44kSZIkSZIkSZIkSZI0mLQMdAGSJElSUxq/F7z2yeJj25/Wv7WoPjonwbF/qmzNDm9OP7dtFEzYr/R4+7jKzpaaVKX3Vu3uaUgZkiRJkiRJkiRpcPkG8FNgUcr564ArgWNjjMdWEoq2RYzxamBP4HvAioSptwOnxxjPijGuq+KctTHGNwJnbN6rlJeB7wJ7xhivrfQcSZIkSQIgVnqFliRJkiRJklSZpB9B+eMpSVu0DXQBkiRJUtMaPReOuQn+fDL0rMr1bf862ONfB7Qs1aB9TPq5c98OO7+/sv2P/DVcNav4WFJomjSMZLOVzd9gMJokSZIkSYPGHx6JXPW3SEcrnHFA4JC5YaBLkiRJTSLGeCW5oDNCCOOBPYDtgWlAF7mbyK4kF2D2MHBfjDFTh3OXAu8LIXwIOAyYA0wnF7z2PHBvjPHpWs/ZfNblwOUhhB2B/YGZwCjgBXKBcLfEGDfV4yxJkiRJlfKTnJIkSdvweZAkSZIkqQYGo0mSJEmNNO1IOG0pvHw3dM2CUdsPdEWqVWsXZNYXH5txPOx1PoycDqPmVL5313aw8wfgsW/17Q+tsONbK99PakKVvj3e7cd/JEmSJEkaFP7n5izv+X9bX9l/6w+RX7y7hVP2MxxNkiTVV4xxJXBLP5+5CfhjP531NFCXsDVJkiRJkiRJkiRJkiRpMGoZ6AIkSZKkptfaAVMONRStWez+yeL9nZPg8Eth8iHVhaJtsf/XYJcP5/YDGL8XvPIqmHxw9XtKTSRbYTJad493GpMkSZIkaaBlspF/u7Lva/SeDHzmV9kBqkiSJEmSJEmSVDmvxZIkSZIkSZIk9Y+2gS5AkiRJkoaUuW+DJ74L3Uu29o3dDU64E9pG1b5/Szsc8HXY/wLIdENbV+17Sk0kW+Hnpbt7GlPHYNa9KbJiPUwdA22tYaDLkSRJkiSJW56AZWu37X9wMSxeGZk53tevkiRJkiRJkiRJktRcDFWVJEmSJFXPYDRJkiRJqsSo2XDcLfDI12Hl/TDpINj9k/UJRcsXgqFoUhGVvj3evakhZQxaX78+y+d/G1nVDTPGwfff0sI/7O2HyyVJkiRJA2vR8tKv6Fd3w8zx/ViMJEmSJEmSJNVd0lVNBoJIkiRJkiRJklQpg9EkSZIkqVKjd4QDvznQVUjDUrbC6wS7expTx2D0m79HPnbZ1r+gJavgDd/P8vDnW5g9yXA0SZIkSdLglPEzgZIkSZIkSZIkSZIkSZIkSZLytAx0AZIkSZIkSWnFSoPRNjWmjsHo8ru3/cvp7oHv/MlPmEuSJEmSBlbSK9P1w+i1uyRJkiRJkiQNfl5rJEmSJEmSpMZK+gmUP52StIXBaJIkSZIkacjIVhqM1tOYOgajOxcW/8v5yrX+OFiSJEmSNLCSgs7Xbey/OiRJkiRJkiSpIRLv9ui1O5IkabjyeZAkSZIkqXoGo0mSJEmSpCGj0mC09ZsaU8dg9MgLpcfWbPDCAkmSJEnSwNmQEFxuMJokSZIkSZIkSZIkSZIkSZKkfAajSZIkSZKkISPx5qpFrFjXmDoGo1GdpceG09+DJEmSJGnwWZsQfjacQs0lSZIkSZIkSZIkSZIkSZIklWcwmiRJkiRJGjKyFQajLVtb4YIhbGR76bE1CR9AlyRJkiSp0dYlhJ+t2zR8XrtLkiRJkiRJ0tDmz3MlSZIkSZIkSf3DYDRJkiRJkjRkxIqD0RpTx2DU0VZ6bHV3/9UhSZIkSVKhdQmB3UljkiRJkiRJkjQ0JFzUVOkFT5IkSc3C50GSJEmSpBoYjCZJkiRJkoaMrMFoJbWG0mNrNvRfHZIkSZIkFUoKP1u/qf/qkCRJkiRJkiRJkiRJkiRJkjT4GYwmSZIkSZKGDIPRStvYW3pstcFokiRJkqQBlBSMljQmSZIkSZIkSZIkSZIkSZIkafgxGE2SJEmSJA0ZscJgtFXdsKm3wkVDVFIw2poNw+PvQJIkSZI0OK3bWPp16bpN/ViIJEmSJEmSJKkMrzOSJEn14vMKSZIkFZf0GcFKPz8oqXkZjCZJkiRJkoaMbBU/2Fy+tv51DEbJwWj9V4ckSZIkSYXWJ4SfJY1JkiRJkiRJ0tCQdFGTn+SUJEmSJEmSJKlSBqNJkiRJkqQho5o7Pqzsrn8dg02MMTEYbbXBaJIkSZKkAdSbLT3Wk+m/OiRJkiRJkiRJkiRJkiRJkiQNfgajSZIkSZKkISNbTTDa+vrXMdj0ZpJD49YYjCZJkiRJGkBJr1l7DUaTJEmSJEmSpKGhmrtaSpIkSZIkSZJUBYPRJEmSJEnSkJEUjNZW4qccwyEYbWNv8vhqg9EkSZIkSYNUJjvQFUiSJEmSJElSjRIDwwwTkyRJw5XPgyRJkiRJ1TMYTZIkSZIkDRlJ1xBOGFW8f2V387+pXi4YbZ3BaJIkSZKkAZT0yrzXYDRJkiRJkiRJkiRJkiRJkiRJeQxGkyRJkiRJQ0a2xCepQ4DxI4uPrVzfuHoGi3LBaOXGJUmSJElqpKSg895M/9UhSZIkSZIkSZIkSRrkkt5gliRJkqT/n707j5MkrevE/42q6pmenu6Zhjm7BxFW5VLExWN11/VC3V113RWXdf0puL91d3FFXFAXDxRQVA7RVTxAEGRBhlNADmFGLndgmIFhDmaG6Z6h566qvrvuMytj/6iu6equiMiIqsysyMz3+/Wa11THE5n5zbgy4sl4PsnAEIwGAAAA9Iy877mHkoi9u7LbJuY7V09dtAo+W1h2gwAAAADbp+iqtJGXgg4AAAAAQPcJIgEAAACgw4q6oHRPAWsEowEAAAA9I2+sdBIRey/IbpuY61g5tbHUMhitO3UAAABAlqIblRor3asDAAAAAKAzjOQEANjAeRAAAABbIBgNAAAA6Bl5wWhDQxF7dyWZbYMQjLbYKhitRTsAAAB0UtH97ncf6V4dAAAAAAAAAAAAAED9CUYDAAAAekbeQOqhJOLiXdltk/Odq6cuWgajLXenDgAAAKjq4JGIsQm/FA4AAAAAUH/6cgGAbnDOAQAAgGA0AAAAoIc0c77nTiJiz87stumF/v9yfLFF8JlgNAAAALZTqyvz936x/6/dAQAAAIB+po8TAGAj50gAAGxNs5nGTfen8abPNOOO0TTS1DkmDJKR7S4AAAAAoKy8rsuhoYiLcoPROlZObSytFLcLRgMAAGA7tboX6QXvSuMXn9GdWgAAAAAAustgTQAAAAB6S/rRt0X6sb+JmJuO5F/8SMSzfzWS4eGu1rDSTONn3pzG1Z9f619L41d+MIlX/XhEkiRdrQXYHoLRAAAAgJ7RbGZPTyJiT04w2tQABKPlLZc1gtEAAADYTob9AQAAAAAAAFBKmq7eHA4AwLZIP/CGSP/w+Wf+feCLEUcfiuRFr+tqHVffuD4UbdVrrk3jh56axPc8saulANtkaLsLAAAAACirmTOSeijJD0abHoBgtJUWI8znBaMBAACwjVLJaAAAAAAAPUKHLgAAAMAgS9/75xsn/v1bI52b7modr/hodj/V//6HZlfrALaPYDQAAACgZ+Tddjc0FHHRAAejNVv05y4IRgMAAGAbCUYDAAAAAPpaYSeoDlIAYED5ohgAoOekczMRDxzY2LDSiPjke9v3OiXaDhzObv/Ql9pWBlBzI9tdAAAAAEBZeQFgSUTs2ZlEVrfo1AAEo620uG+g14PRvvRwGq/4+zS++GAaw0nEtzwuiZf/uyQed2my3aUBAABQgtvdAQAAAAAAAABggKTNiEgiEuM+oKc0V/LbZqe6VwdACEYDAAAAekjeQOqhJGLPzuy2pUbEUiON80b698uUvMC4NY1mRGMljZHh3lsGd42n8Z2vasbM4plpB4+kcc2dadz1O0Nxye7ee08AAAAAAAAAANBzUj+DAQB0g3MOgJ7WmIu46XkRD38wYmRXxOOfE/GNL49Ihra7MgCgxzh7AAAAAHpGM+fmuiSJuCgnGC0iYnqhQwXVxEqJ7/8XG52voxP+/FPpWaFoa47PRPzJJ9z4AAAA0AuMlQMAAAAAAAAAgAHw2Z+MuPctEUsnI+Yejrjz9yO+9NLtrgoA6EGC0QAAAICe0WxmTx9KIvYUBKNN9XswWs5yWW9hufN1dML1h/JHz7/vZiPrAQAAeoGrNwAAAACgvxX0gvrlCABgYDkPAhg4iyciRj+0cfp9b3V9DABUJhgNAAAA6Bl5X4O0DEab70g5tdEs8QVRLwajNZtpHDyc3/7l8Yh7jvhyDAAAoO7c1wgAAAAAAAAAAH3ugXdF5sifuQcjlie6Xg7AwHCTJn1KMBoAAAClHJtO44/+oRkvfn8zPnq7jhK2RzNn00uSiL0X5D/uyFRn6qmLlWbreXoxGO2hUxHzLer+u9scjwAAAOrOPTcAAAAAAL1Chy4AsN2cjwD0rGbBABA3EAEAFY1sdwEAAADU3wMn0vjOVzVj9JEf50jjBd+fxB/9R3nbdFfe9yBDScSOkSQu3xNxdHpj+9hkGhFJR2vbTnmBceu1Chiro3uPtZ7nurvT+JUf7HwtAAAAbF6Z2xqXG2nsGOnfa3cAAAAAoJ8Z3A0AsJFzJAAAADbPCHYAAABa+t2PpOtC0Vb9ySfSuO0hX1bSXXkBYMnpcdP792a3j57qTD11sdJsPc9So/N1tNvcUut5DhzufB0AAAB0Xi8GegMAAAAAtOYeOwAAAHhk4A9ARKQFXWZFbeSx0OhPgtEAAABo6bNf2dgxkqYRr/ioDhO6Ky8Ybej09yNX5QWjTWRP7xd5y2W9pZXO19FujRKBb/cej1hqOBYBAADUWZkblcqEYwMAAAAAAADQ5yRhAAAAEILRAAAAKOHA4ezp777Jl450V9733GvBaPv3Zv+CzNhEf2+rKyUCxJYana+j3ZZLhLmtNCMOHet8LQAAAGxemavy+eWOlwEAAAAAwJb09z1YAAAAAADUh2A0AAAAoGc0c+6tS07noe27OLv9+Exn6qmL/g1GK3cz5QMnOlwIAAAAW1LmB72nFzpfBwAAAABARxR1gpbpIAUA6EfOgwAAANgCwWgAAABsyfSCLyzpnrzvx4dOB6NdfEF2+8xiZ+qpi7zAuPWWVjpfR7stl6x5dMJxCAAAoM4EowEAAAAAAAAAAAB0gFBi+pRgNAAAAAqlLTpFxie7VAhEfgBYcjoYbffO7PZ+H1y90mw9z1Kj83W0W6NkMNrYRGfrAAAAYGvK3HIzNd/xMgAAAAAAaMUgSgBg2zkfAQAAQDAaAAAALSy2CFMaF0hEF+Xddzd0Ohhtz/nZ7f0ejJYXGLfeYqP3bhJYLhmMNuo4BAAAUGtlxtFNzvfedSsAAAAAwCr9mwAAAAD0AaH5QI0IRgMAAKDQ/FJx+/ikzi66Jy8A7JFgtJ1JZvvMYocKqomVZut5llqEHNZR2WC08QnHIQAAgF431eeh5gAAAADAoHJfCwAwqJwHAbCOsCVgnaIjgqPFZlhq9CfBaAAAABSaXy5uPzLdnTogIj8YLTmdh7b7/Oz2heWIxkr/dvCVCkYrGTJWJ2WD0UYnOlsHAAAAW1PmilwwGgAAAAAAAABCHQAAtpNzMaA+BKMBAABQaH6puH1qvjt1QET+D8QMnQ5G27Mz/7HTfTzAOi8wbr2lRufraLdGicC3iIgxwWgAAAC1VuYHX/UxAQAAAADUnYGxAAAAAAB0h2A0AAAACi20CFOa6uOwKeonLwDsdC5aYTDazGLby6mNlRIBYksrna+j3ZZL1nxkOmK54cZLAACAuioVjKaPCQAAAADoWUWdoO5pAQAGlfMgAICeU+ZmP4AuEYwGAABAofml4vap+e7UARH5X48Pne7h2H1+/mNPzbW9nNrIC4xbb6lFyGEdlQ1GS9PVcL8/ECEAACAASURBVDQAAADqqcytUvqYAAAAAAAAAAAAAKoSaEd/EowGAABAofnl4vbphe7UARERzWb29KFk9f97duY/9g+u6d8OvpWc5bJeLwajNUq8rzWjpzpXBwAAAFtT5kckp+b797odAAAAAKB36KsFALZZmS+YAQDoDOdiQI0IRgMAAKDQ/FJxu0GrdFMzZ3M7nYsWF54fkSTZ83zuUP9uq3nLZb3FHgxGW14pP+/YZOfqAAAAYGvKXJFPCd8HAAAAAAAAAACA7SMYDagRwWgAAAAUml8ubjdolW7K61odOt3DkSRJbv/rjuGOlFQLK83W8yxVCBmriyrBaMdndLwDAAD0sqn57a4AAAAAAGCTigaMGkwKAAwq50EAAABsgWA0AAAACs0vFX8hKRiNbmrmBIAl6/5+xpOy55no4wHWpYLRGp2vo92qBaN1rg4AAAC2psz97vqYAAAAAAAAAACgXwnMhJ7QpXBbvzPQZhYafUowGgAAAIUWWoQpTfVx2BT1k9dFN7QuGe0F35/d3TEx1/566qJZou+yF4PRGoLRAAAA+kKZe24m9TEBAAAAANSbAZYAQFc45wDoWUmS3+aaEgCoSDAaAAAAhRaXi9unFrpTB0TkB4ANrevh2Lsre57FRsTCcn9+kbLSbD3PUoWQsbpYrlDzCcFoAAAAtVXmalwfEwAAAADQu/rzniQAAAAABo1+LqA+BKMBAABQKC+Ias3UfETqVzvokmZOANj635TJC0aLiDg129ZyaqPVfhoRsdzofB3t1qgUjOY4BAAAUFdluo5mFyNWylzgAgAAAAD0FP2eAMCgch4EwHo+FwA6xzGW/iQYDQAAgEKtxqM2mhELy92pBfI2x6F1yWh7L8h//MR8W8upjZWcwLj1FnswGG25QjDa8ZnO1QEAAMDWlL3lZnqho2UAAAAAAAAAUHtCHQAAtk2ZX0EF6BLBaAAAABRqFYwWETHZp2FT1E/e9pisD0bblf/4ibn21lMXZfbTpUbvdUw3SgS+rRGMBgAA0Pum9DEBAAAAAGyz3rvHCAAAgF7gehMAqGZkuwsAAACg3lZKBBNNLURceXHna+l3b7+xGe/+QhpDScR/+rYkfuJb5ZmfK+9HJ4bWBaPtOi9iZCg7VKtfg9HK7KdLK52vo92WV8p/8SUYDQAAoL7K/oik8H0AAAAAoDcVdYIa+A0ADCrnQQAAPafszX4AXSAYDQAAgELNEn1ZUwatbtmrPtaMX3/fmYX9d7elMTbRjBf+gHC09fK2x/XBaEmSxN5d2UFZh6fSiEg2NvS4MvlhC8udr6PdliuEuU3ORyw30tgx0n/rFwAAoNeVvVdqaqGzdQAAAAAAAAAAANtA2BJABznG0p+MrgYAAKBQqWA0g1a3ZGE5jVd/bOOCfsVH01hq6JRaL297TM7JwnrcJdnzHTzS3nrqotlsPc9kDwYYVglGi4g4OdeZOgAAANiasr0bwvcBAAAAAOrMvWwAQBcIzgEA2D5dOhcrehmng8AawWgAAAAUKhO4ZNDq1tzyYMSpjECn4zMRd4x2v546y+vYHDonGO1JVyaZ8x0c78+e0ZUSb2uiB0PDGhWD0Y7PdKYO6u3+42nc9lAaE3P9uX8DAEA/KHuj0tSC83oAAAAAoAcZrQkAAAAtuHaG3mBfBepjZLsLAAAAoN6aJfqyVgetZgdR0drBI/kL+e4jaTz9qy3bNXnbY3LOInrCldnzHTjc3nrqokyA4UQPBhguVw1Gm+5MHdRTs5nGz1+dxl9dl0Yzjdi7K+KNzx6KH/9mx0wAAKibsrdKTS10tAwAAAAAgO4TmgYADCrnQQCcxecCQMc496ZPDW13AQAAANRbqWC0HgxcqpOvHM1vu7ugbRDl9dENnRuMdkX2fA+dikj7sKOvzH46Mdd7771yMNpMZ+qgnv76+jTe8H/TR7b/ibmIZ/1lM45P99Z2DgAAg6Ds5eikPiYAAAAAAAAAAADYHj029gzob4LRAAAAKFQmcMmg1a05VBB+dvBw9+roBXnb47nBaF/1qCRzvrml/txem83W8yyvRMwvdb6WdqoejKbzfZD88cez1/flv9zsuRBAAABglfB9AAAAAIBt5p4LAGDbOR8B6EuuNwGAigSjAQAAUKhMMNpsj4Ut1c3sUv5CPjCu43+9vO0xOScHbf/e/OcYnWhfPXWxUnIzmeixAeaNEoFv652a60wd1M8DJ9K4cyy//fP3da8WAACgtbL3NU4tdLYOAAAAAIDOcI8XAAAAAH1AiCFQI4LRAAAAKNQsEUw0s9j5OvpZYyW/7eCRiGaZdLoBkde3OnROMNq+i/OfY/RU++qpi5WSAWITPRYctlywb2QRjDY47hgtbn//rY6bAABQJ2XP0Kd6LNAbAAAAAKA19zAAAIPKeRAA6/lcAOgcx1j6k2A0AAAACq2U6BOZFYy2JUXhT3NLEQ/1YZDXZuVlxCXnBKOdN5LE5Xuy5x2d6L+OvrLheZM9NsBcMBp55paK2z/+5f7bzwEAoJeV/RHJ6QXn8gAAAAAAAACDzffGAADbpuzNflt9mU22AYNFMBoAAACFms3W8whG25pGi2V8//Hu1NEL8vpWh5KN067amz3voWPtq6cuygQYRkRMLXS2jnbLC0YbzunRmpjV9T0ollps9PPLXSoEAAAopezVWq8FegMAAAAADBb35gAAALBZrikBgGoEowEAAFCoWaLfeXZR5/RWNHLCn9aMTli+a/K2x6xgtK+7ImNiRBwY77/lWSbAMCJiscfCovL2jct2Z0+fMIB+YCw1ittbHVcBAIDuKvsjkoLRAAAAAICeVNgJ2n/3KgEAlOM8CACg9ziHA+pjZLsLAAAAoN7KBaN1vo5+ttwyGK07dfSCvO0xychAe9KV2fMeONy+eupipWSf80IjjYjswLg6yts3Lr8o4vDUxumn5jpbD/Wx2CIYbXQiIk3TSLIODgAAm/CVo2lcc2ca541E/PBTk9i/13kGdMKx6e2uAAAAAAAAAAAAaLuyv6wIbC/7ao+y3uhPgtEAAAAoVCYYbUYw2pY0msXtY4LRHpHXtzqUkUnw5H3Z895zNKKxksbIcP8EGTRbbENrFpc7W0e75Qaj7cmefmq2c7VQL0stgtHmllaD8h59YXfqAQD624duS+Mn3tCMhdPn04/alcY1LxiKb3lc/1xTQKeVvVdqfFLIMQAAAADA9jKIEgDYZsI4APqU4zsAUM3QdhcAAABAvZUJRptd6nwd/UwwWnl522PWcOkn78seRL28EnHoWPtqqoOVkt8PLbYIk6qbvH3jsj3Z6/bUXAeLoVaWckLz1rv7SOfroHNuvDeNn/6rZvzUXzXjbZ9rRupGJwC2SbOZxvOuPhOKFrF63vltv18ynRiIiPK3NS42XNsBAAAAAL3Id9oAAAAA9AFjN4AaEYwGAABAoWaJsd4zC52vo58ttwj4GZvQobgmb0kMDW0MynrCFREZkyMi4q7x9tVUByslMxnWhzn0grx949Ld2dMn5leDK+h/iyW25YOHbQu96po70/iOVzbj6s+n8Y7Pp/Ezf53Gr73P+gRge9xwX8TDp7LbXvFR4WhQVpV7pQTEAwAAAAB9xWBSAGBQOQ8C4Cw+FwA6xrk3fUowGgAAAIXKZAzNLnW+jn7WaBGMdmK2O3X0grygvqwAtJ07knj8pdnz39VngUlls8AWG52to93ygtEu35M9PU0jpgQ1DoSlFsfNiIgDhztfB+2Xpmk8/x0bD/Z/+sk0jk/317EbgN5w4735nz8vfn8aK4J5oZQqe4pgNAAAAAAAAIBB5l4MAIBtI2ALqBHBaAAAABRayQmiWm9msfN19LNGi2V8fKY7dfSCvMyBJCMYLSLiyfuypz94sj311EWZ/TQiYmG5s3W0U5qm+cFoF+U/7tRcZ+qhXpZKhPyNnup8HbTfzQ9GfOXoxukLyxGfPdT9egBgrkUQ+O2j3akDel2Ve6XGJt1YtebeY2kcPCyEEQAAAACoCQNjAQAA2CzXlMA6RYcEhwtgjWA0AAAACpUZd7nUiGis6HHarLzwpzUnZ8MA2NPylsJQTjDaFRdlN5zss7C5spvHYokwqbooek+X7c5Z4RExIRhtICy1OG5GREwvOG72or+7NX+93T5qnQLQfa2CwI9Pd6cO6HWVgtEmOldHr5heSOP7/2glvvbFzXjyS5rxlJc048tjzocBAAAAoL703wEAbOQcCQCg9ziHA+pDMBoAAACFygYuzbYYLE6+RouAn2YacWr8ZKTXXB3pe/8s0ofu6U5hNdRsZk/Pi8m6ZHf29BOz/dVJu5KzXM7VS8FoRYGBees1IuKUYLSBsLjcep5pn0s96YO35R+f7z3WxUIA4LRjLUKVe+kcG3rF+OR2V7D9fuHqND554My/7zka8Z/e0IzUT2ECAAAAQA/SrwcAAACujwE6yTGW/jSy3QUAAABQb2WD0WYWIy7e1dla+lWjRKjV8Rf8RDz68HWr/xh+UcRv/Z9InvGszhbWQ4Zyot8vuTB7+okW4Qa9pux+ulAiTKouioLRLtgRsWdnxPTCxrZTs52rifpYahEoGRExNd/5Omivqfk0vvRwfvsX7vdFDQDdd3ii+PNnNXQ5L6oZWFPlTG68xX7X79I0jY/cvnEZ3DEWccO9Ed/xNdtQFAAAAAAwQAa7jxYAqAPnIwAA28aPdwI1kjNsGAAAAFaVDVyaXepsHf2sKABqzfHJdQt4ZSXSP/j5SJcWO1dUTeVtj3kxBHnBaAePtKWc2lgpEa4XEbHY6Gwd7VS0X+wYjnhUThDjqTkd8INgucS2nBWcR709dKq4/c6xiIOH67GPf+H+NH7+7c141utX4o3XNSP15R9A35prca3bb6HL0ClVTpfGJjtXRy9YXok4mRP6/dYbnHcCAAAAQC35zhgAAABacO0MPUE/F1AjgtEAAAAo1CwZuDQjgGbTGiWW8bHhy8+eMDsVceeNnSmoxvK2xyQnGe2S3dkNC8sRk30UoFU2wHCph4LRGgXBaCOFwWidqYd6WSoRKDk9eNmRPW+0RTBaRMSTX1LyxKSD/vFgGt/9B814/T+m8bc3Rzz3bWn8/NX985kCwNlanXecyAkvAs5W5WzpgRMdK6MnFN1Xduio804AAAAA6D369QCAQeU8CGDw5AzuiRC2BNBRjrH0J8FoAAAAFCrb7zy71Nk6+llRANSasR37Nk68/XPtL6bm8jbHoZwejkdfmP9cr/xY/3T4lQ0wXFjubB3ttFywX+wYzl+3gikGw+Jy6/13WmBnzxmbLHdcvvmB7T1+v/qa5obj6Rv+bxrjE/3zuQLAGa3ChZ1/QjlV7mscn4yYmh/cc6ui8PN7jnavDgAAAAAAAAAAAAaMEEOgRgSjAQAAUKhoMOZ6s4udraOfFQVArRkd2b9x4s4L2l9MzeVtj0M5Pyqz7+L85/q7W/uno3al5FtZbPTOe24VjHZJXjDaTGfqGQRpmsaB8TQOT6aR1vyLjKUSx83phYhm2Q8xamH0VLn5Pn339q7Xj96xcVqaRrzhOtsbQD9qdd4xIRgNSql6iXHwSGfq6AVFlzGHJ7tXBwAAAADARr4XBwC6oOb3sAKwWY7vwBl1H7cE1INgNAAAAAqVzZSZEYy2Kc1mWmoZj43s2zhxdqr9BdXcSjN7el4w2tdclv9cBw5HjJ7qj07UZs5yOdficmfraKdWwWiP3p290k/N9sc67ba7j6Txz1/ZjKe8tBn7/1czfvTPmrVelkuNcvPNLnW2DtprdKLcfAcOd7aOzfry2HZXAEAntDrvmF6o7zkT1EnVPeXg4cHdt4ru91oseS0EAAAAAHTb4PZpAgAAANBHahBYtv0VAHUhGA0AAIBCeUFU55pdrN7lNLOQxgduSeNPP9mM2x8ezC6rsst3dGT/hmnpxLE2V1N/zZwUubxgtCRJ4ur/mtMYEQ+cbEdV269sgOFCDw2gbhTsGyNDEZdcmN12YrYz9fSzZjONn31LM26878y0j9we8cvvqe9xuWww2vRCZ+ugvQ4dLbfN3V3TkIylRj3rAmBrigJ7IyKmhYRDRxyb3u4Ktk/Za3wAAAAAoEfUYDApAMC2cB4EwHo+FwA6xzGWPiUYDQAAgEJlB2POVBwMfmQqjX/56mY883XN+J/vTONpv9OMP/lEyZSwPtJqkP2a8R37Nk6cONHeYnpA3vaYF4wWEfET35rfeLxPBlqX3U8XlztbRzsV7Rs7hiMu2Z3ddmKmM/X0s8/dG/HZQxunv/eLaW2DnhZLBqNNzXe2Dtrr4JFy891dcr5OyAvojCi/XQLQW1oFss4IYoVSqt5zM7vUmTp6gfuTAAAAAIBtpZMSANh2zkcAALaPczGgPgSjAQAAUKgoAGS92YrBaK/6WBq3PXz2tF9+dxqHJwer86xRMgtuYmjvxomTx9tbTA/I2xyHC3o4kiSJxzwqu+34TH9sb6WD0XootKdlMNqF2W0nZjtTTz977SeyN6CZxYjjNQ2aWyoZKnl4qrN10D6zi2k8eLLcvEemI5a3KbSv6NhUdrsEoLe0Or5PV7wWhkFV9eytaj9TPyl7jQ8AAAAAAAAAAL3DTTEAQDWC0QAAAChUdjDmTMUBq3/5jxufuJlGfODWweroLgpYWW96aPfGiaeOtbeYHpC3PQ4lxY+7NGPxRdQ39KmqsvvpwnJn62inlsFou7NX+vGZiNQv11Zy7/H85XWipvvIUsmQv7EJ20KvuOdo+XnTdPtC74rCcRZ76BgLQHmtzjumF7pTB/S6vMu0kZw7Fqr2M/UTwWgAAAAA0It07AEAbOQcCWDwOPZDzzMmC6gRwWgAAAAUKjsYc3ap2vPO54SHvOWzg9V51miWm296+KJoxjlBUCfG219QzeUGo7Xo4bgsJxjt7gpBPHXWLLkd5e13ddQoCB8aGYq4fE922/JKxMnZztTUr3YM57fVNTxwsWQw2uhEZ+ugfQ6MV/v83651WxSOUxSaBkDvanV8F4wG5eTdK7V7Z/b02QEORmt1X1ljZbD6zgAAAACg9+nTAwAAANfHAJ3kGEt/EowGAABAobLBaJPz5Z9zdjH/SVsFXPWbovCnc80OXXj2hMkTkS4N1kjhvACwoSR7+ppL92TP8ObPpJH2wS9ZlN1P5yoGGG6n5aJgtOGIfRfnt49Ptr+efrZSEKx3oqYhc0XhVOuNCUbrGQePVJt/u9Zt0bGp7HYJQG8pOvZHrJ5jr5Q9IYcBlreX7D4/e3ovXb+2W6tDyiCHxgEAAAAA2813IgBAF/TBvd0Ag6tgcI/jO/QG+ypQIwM23BwAAICqyo7vPjlTvtPryFR+23CLgKt+02qQ/XpTQxdtnHh8rH3F9IC87bFVMNolu/Pbrrtn8/XURdn9tJcGT+ftGyNDEUmSxBUZu8MawWjVzBcEDhyvcGzvpqWSx07BaL3j7orBaKMT27NtFoWfLQpGA+g7aZqWCr7spfNsqJs9O7OnzyzU81qkG1q980EOjQMAAACA2jJgFAAAAIB+0KVurqKX0dUGrBGMBgAAQKFms9x8x6bLP2dhMNqAXak2Si7fiIjpoYx0r+Pj7SumB2w2GO3xl+S3veyDFVZCTZUNRuulwdN5+8bI8Or/zxtJ4tKcwLvxST3gVSwUhH0cn+leHVWUCSiJiDg2bVvoFScqhvCdnO1QIS0UhfIJRgPoP42SYazTC52tA/pB3o1Ku8/Pnj7bQ9ev7daqL26Qlw0AAAAA9Cb3LgAAA0qiBQBn8bkA0DmOsfSnARtuDgAAQFVlA5eqhOccLQhRG7RQkbID7SMipof2bJx49OH2FdMDNhuM9mP/NH+GT98d8dIeD0cru582mhHLjd7o6FzO2Td2DJ/5e9/F2fOMT7a/nn42XzCo/kRNg9HKflac2KbwLKqr+vm/XQE0ecemiPKBfQD0jqJAzPUEo0FreVeiucFoix0rpfZaXeMP8rIBAAAAALqhN+4tAgAAAKAT9A0B9SEYDQAAgEIrJfOijlUIzzkyld9BNmghNkUBK+eaygpGGz3UvmJ6QG4wWosejsddmsSPPi2//eUfTuOWB3u347ZZIddtriAEq07yjj0j69b1lRdlz1MlqJGIheX8troGo5UNoBq0z5ReVrQdZtmuAJqibW90ImJxuXc/SwDYqOw5R6+cY8N2yvsh8LxgtJkBDv9qdUY565gDAAAAAAAA9DX34QH0J8d3AKAawWgAAAAUyguiOtepuYjGSrmZj0zlt91/PGJibnA6uxsVAq1mMoLR0ofuaWM19ZcXADaUtH7sy360uBvk/3yud7e7svtpRO+ENuS9p2Tdur50T/aKr2uYV10tFAR+nJit336RpmkslQyVPDGzOj/1t1gyeGbNtgWjtdj2nvm6pm0OoI+UDbKerxjwCYMoNxhtZ/Z13ewAB6O1Cj8f5GUDAAAAAPXle2IAAAAA+oDxEECNCEYDAACgUNnApTRdDUcr4+h0flujGfHRO3q/A+3mB9L4vtesxEXPX4nH/upKvOBdzZhf2vi+qgSjTQ1vDEaLQQtGy9k0ygSjPeHy4vbXfbp3t7uVCttR7wSjZa+P9ev6kt3Zjz0+07vrstvSNI35gm3ieA1D5laa5b9nWWz0zjY/6PKC0XYMZ0+fXtie/bxVQM5H74j4wK3dqQWAzisbxup8A1rLO3u78Pzs6bMDvF+1OtMtuoYDAAAAAGrIYFIAYGA5DwJgHdfHAJ3jGEufEowGAABAobLBaBERJ2fLzXd0qrj9jz+eRtrDnTEHD6fxLb/XjE/fHTGzGPHwqYjXfiKN//62je+pVcDKeieGH71x4vj9m66zF20lGG3X+Ul89SX57csrEbOLvbndVdlPeyW0Ie8QsH5dX5oTjHaihmFeddVYKd5+6hiMlheglcf20BsWl7OnX5aRCRoRMb3QuVqKLJXY/l72wQpplQDUWpnjfoSQIigj7xpvz87s6ZPzEStVLnb7SKu3PZcRvA8AAAAAAADQP3wnCgCwbXp4TCfQfwSjAQAAUKjKGNTZxXLzveeLxU/6hfsjvuFlzbjnSG91pDWbabzovc148kuyA1HefmMah46e/Z4aFYLRxkeu3Dhx4likjYopQT1sK8FoERH/7puKZ/ziAxULqol+DEYrs67zgtHqGOZVV/M5YVRr6hgqVjagZM3hFmGc1ENe4F3efl7nYLTbR6OnA14BOKPseYeQIti8fRdnT19pRhyb7m4tddFskbPbK9f1AAAAADBYBuS7At+FAwAAsGmuKQGAagSjAQAAUKjVYMz1ZlsMzEzTNK6+sdwT3jUe8cTfasZd473T8f3mz6bxmmuL6/3ArecEo1VYvuMj+zZOTNOIU0fKP0mPW8lZXkMlezhe9K+SeHLGYlzzI39aYYXUyEAFo61b15dcmD2PYLTyFloEo00tRCw16nUcXqoQKBkR8amD9aqfs93+cBpv+kwzRiey23OD0UqGsbbbcsntr46hggBUV/a8o1XYLJB/W+Nj9uY/ZiznHLHftbqC6ZXregAAAAAAAGDQuX8TgPV8LkBP6FIwftHLyObfDAuN/iQYDQAAgEJVApdmC0JK5pfS+I9/2YyfflO1Tpavf2kz/uLTvRFW9dbPtX5vnzpw9jxlA1YiIsaygtEiIo6Pl3+SHpcblpWUe/z+vUnc8Ov53SEzixGLy73XEdiXwWh5IXjr1vWlu7NX/Km5+oV51VWrYLSIiJOzna+jiqVGtfk/c49toa5e/uFmPO13mvHf3pq/ji7L2c+n5jtVVbGyATljk52tA4DuKHu91ivn2LCd8m5UumxPEiM5l+l54bn9rtU1vmMOAAAAAPSaXrtvodfqBQAAAKB99A0B9SEYDQAAgEJVApee8+ZmfOKu7Ae8+6Y0/vbmzdXwC1enGwLF6iZN07h9tPV8dx0++9+NSsFo+7MbTghGKxuMFhGxZ2cSP/zU/PavHKtWU6ekaRp/c0Mznv2mZvyv9zbjy2P5+0BeiFiWXhlAXWZd77s4//GHarIe626+RDDa8ZnO11HFYsVgtGPTnamDrbnlwTR++0OtP9sv2Z09fXqhzQWVVDZ0cfRUhwsBoCvKBrKWOacCsg0P5V/bjU3Uuy+oU1r92qVjDgAAAAAAANDXWn1pCkBvcnwHACoSjAYAAEChlQqBS8dnIn7wj5vx5s9sfNB7v7i1Duxn/FEzvnB/fTvBj0xFTM63nu/+ExELy2feR6PC8h0b2ZfdcOJw9vQ+lBcAViUYLSLil34gv0vkrprkzD3/HWk8581pvP3GNP7w2jS+/RXNuOHe7H2gSoDh7FJ996P1ygSjfc1l+ev+wODsFluy0IPBaGUDStZML3amDrbmr69PSx27LtuTPX1+OWJqvvvHs+WSgaajAxriAdBvyp539Er4MGyXtMVNjVc9Knv6+GQHiukBrc6THXMAAAAAoIYM7gYAAACgH+jnAmpEMBoAAACFqgQuRaz2fb3kg2k0Vs5+4Edu33otL3xXhRSxNpiaT+M3P9CMr/mNlfi231vJDHxbUzaEKU0j7j5y5t9lA1YiImaG98T00O6Nz3m8JkleXVAmLKuM731S/gPeVLCeu+Whk2n8xafPfrMzixH//JXNzAHlVfbT6YWtVtcdee8pWbfqzt+RxD+5LHu+A4d1xJcxXyIY7UTdgtEqHDcjemebHzR/dV25ffQJV+S33fZwm4qpoGxAztiAhngA9Juy59nzQoqgUNF9UklEXLaxqyMiIiZKBND3I8FoAAAAANBnDCYFAAaV8yAAzuJzAaBjnHvTpwSjAQAAUKhqMFpExNhExF0Vs7re+d9bJ1tdf2g1MKpbnv+ONH7/79O473jETQ9E/Ne3pvHnn8oOzbrvePm6Hjp55u9zA+RaGRvZt3HiCcFow5vo4fj335Q9/Zo7I+45sr2dgdd+Of/1//AfBjsY7dwQvCfmhCbde6y99fSrxRLBlfGueQAAIABJREFUaMdn6tU5Xqbm9aYGNEyhzmYX01gouR6fcEUSe3dlt938YPe3zbLBfPc5BgH0hbLn2UKKoFjRrpQkEXt3ZfcJTc51pp66a3V/kmMOAAAAAAAA0N/qdd8qAMBAEbAF1IhgNAAAAAptJhgtIuKuw2ceOL9U/CRXXhTxY9+UxA8+pfXzfvWvNePoVOc72G57KI233bDxdf7i09mvPTpR/rkn5888RyM7Zy3X6Mj+jROPC0Y7NyyrjCfty3/QE3+rGc3Nbvxt8PEv57f9xvvSSM/pZK5S6lSvBKPl7BvnruvHXpK9HscndMSXUWbbOTHb+TqqKBtMtWZmMTbsM2yvsQqfmRfsiHj6Y7PbbnmwPfVUsVxy+zu4zQGbALRH2VOI+YrBrcAZSRJx0QXZbRNzg3lO1eo6bV4wGgAAAACwbQaz3xYAAIB2cE0JAFQjGA0AAIBCeeFErdy1Lqvr5R8p7rz+058cih0jSfzJfxqKy/e0fu6vf+mZ0Kob703j6hub8fn72ttB/r8/nv18d41HzC1ubKsS8jI5f+bvsgEra8ZH9m2ceOJwtSfpYbnBaJvo4XjylcXtb7hu+7502b0zv63RjJheF26WpmmlH+OY7pFgtLy3dG4w2lV7s+erElY4yMoEox2f6XwdVSw1qs3fTCPmBAfUSpXPzPNHIv7pY7MDEG9+oPvH6bLb38HDAvmA7piYW70e+sAtaZyYcdxpt7JLVEgRFCs6LUoiYu+u7LaJ+ezp/a7VaWSrHyAAAAAAALaDfjsAAAAA+kCXxkEUvYqeNmDNyHYXAAAAQL2VCc3JcveRM39/+Lb8J7npxUPx9K9eDTx54pVJ3PN7Q/Etv9uMe47mP/eJ2Yin/24zvn5/Eu/4/Npzp/Gz35nEG56dRJJkB6hUce2d+TWfmI3Ydf7Z08Ymyi+o9QN7GxWD58aygtHG7o200YhkpP8v8/OC+s4NyyrjyfuSKOoqffsNafzcd1d/3naYaRFednI24qILVv+u2t883SMDy8uG4OUFo41NtreeflVm+znR48FoEauBgBee33o+umNssvyB6/wdEU9/bHbbXYcjlhppnDey9c/9spZKBpqemos4Nh1x+UWdrQcYbDfdn8Yz/qh5Ovg2jf17Iz74vDPXV2xd2evhOSFFUKgwGC2J2HtBdtvEXGfqqbtWxx7BzwAAAADQa3yPAAAMKudBAKzjR6cBOsgxlv401HoWAAAABtlmg9EeOnnmgQsFITbnDtrfszOJO142FM/65uLB/F96ONaFoq1602fSGH5uM37qr5rxl//YjJXNFh8RiwU1H88ICRqbKP/ck+uCqZZLBqysGd+REYw2Mxlx+/XVnmgL0mYz0k/9bTRf+dxovv43Iz1xuGuvnRuWtYnsh6fsizivIEvus4ci0m364qVVaNCpdYPDq27m0wu90dFZNgRv/97slX9sOmJxuTfe63Yqs/1MztdrORYdn/NMtQgbpLtGK3xmnj8S8dSrsvfzlWbE4S6HIK5UCDQ9eKT1PABb8ew3rYWirRqbiPif76yYvEyhspcD0841oFCrXWnvruzpEz0S7N1ugtEAAAAAgG1loDoAsO2cjwD0rqLBPY7v0Bvsq0B9CEYDAACg0GazxdaHnkzmDGT9hv3Z03eMJPGu5w7FXz57E2lXsRqY9j/ensazXt/cdLBVUfBJVjDagyfLP/f65dGoGIw2dt5jMqen13+k2hNtQfrq/xHpS/6/iI+8JeLtfxDpzzw90gcOdOW12xmMtuv8JH7+e4of+MHbqj9vO7TanrYUjLZYvZ7tUHZdX7U3/zkOT7Wvnn5VZvuZqlkYwdJKdtEjBT2dwkrqpUqY6Pkjxfv5eJeD0aoccw8c9oUg0DljE2lmAONnD0UcOur40y5lj/sTc63ngUFW1DWTJBF7L8i+Nh/UfatVV5ZgNAAAAACoI9/PAAAAANAHhOYDNSIYDQAAgEJ5A8Ff8cwk/sPT8x83NhGPhJLlBaP9/jOLL0v/278cim99XIkic3zg1ojh5zbj6168Ei96bzMWlst1zDVW0pgqCNE5MXP285yaTePodPm61ocMNQoC2LJ8cs8zshs+86FNh8BVkX78XauBaOtNnoj0Hf+7468d0d5gtIiIVz4ziZ/9zvwH/9hfNOM11zajudmEwE2YW0xbB6PNnvm7KMQvS91CrvKUXdf7CwKTRiuELw2qUsFoNQsVy9vm9+7Kf0yvbPeDYrzCvrlzx+q63bkju32s28FoFY65Bw93rg6AovOcG+5zQ0K7lL3EmnCuAYWKdqUk8s/lpxaiq9fjddHqLQtGAwAAAAAAAHrD4H3fC0ARnwsAneMYS38SjAYAAEChvACaS3dHvPvnhuOzv5p9abnYiDgxE7GwnMZSI/s59l7Q+vWvfcHWL10PHYt4zbVp/ItXNuPOsTS+9HAaXx5Lo7GS3eFzcjZz8iOOz5z974NHqtUzOXfmdZdXqj32ZLonjg1furHh4UMRDx6s9mQlpdOnIr371khv+0ykv/2c7Jk+97GOvPa5csOyNrmZnDeSxBufMxSX7cmf50XvTePlH+le5+A9R1sHMJxatw1VHSM+XbOQqzxlg9EuviBi13nZ844JRmupF4PR8mo+byRi9/nZbZ+/Xwd/nYxOlF8fO4YjkiSJ/Rdnt49VeK52qPJqD7UIuQTYigtyAiMjIu6peH1CvrLn2hNzna0D+lmS5AejpWnrPpp+1KpPYH65O3UAAAAAAO3ingUAAAAAekTZXxUG6ALBaAAAABRqFU702EfnP3Z0ImJyPr/94hLBaBfvSmL8Ne25fL3loYinvqwZ3/Q7zfiGlzXj0hc2422f25j8dnS6+HmOnROM9qWHq3X4TaxbJo2KwWgREa999POyG268tvqTFUhnp6L50p+O9IeujPRn/1mkv/CM/JlPHo50uvMpVM2coL5zw7Kq+p4nFD/Bb38oja8c7U7H7oHDrV/n1LrgharBaHULucqT976S5Nx/J7F/b/a8VcKXBlXePrXeVMFxfDvk1TycRDztMdltH73dtlAnZUMLLzx/dR+PiNiXE4w2PtmmokqqcsydXrDdAZ1TdDz6ytHu1dHvyt7bcWouInUjCOQq2j2SiLjyovz2sS6f79VBq3POuaXu1AEAAAAAsJHvQwCALnAPBkB/cnwHACoSjAYAAEChVkFUV1yUH0rVKhht765yNVxxURK3/Fb7L2GnFiJ+5q/T+C9vacavva8ZP/1XzXjFR5vxjb9dnBT0wImz//33FQN3jq0LXmvkvNSjVk7mPv59l/5k5vT03jsr1ZEnTdNIb70u0n99WcQn31P+gQ/e3ZbXL9IqqG+zXvnjrZ/gm3+3RIJUG5y7fWU5OXvm7zLBVuv1SmhDlRC8q3KC0cqGLw2yMiFPdQvTyz0ODEX826dl78u3j/bGdt8pU/NpvOemND54axonZ7d3OaRpWjrc4sLzzvy9f2/2uu32fl7lmDtds30H6C9Fn+GHpwb3M6/dygZirjQjZhc7Wwv0ssJgtKS4b2kQr+sEowEAAABADxrgexIAAADgDNfH0PP0cwE1IhgNAACAQnmDMYdPX1GODCdx5cXZ8zx8Ki0Mebr4gvJ1PO2rkrjrdzpzGfuW69N49cfSuPrzabz4/a077w4ePjNPmqbx6YPZ8331JdnTRyfOBPQsr2TP800Lt+W/fjw2Dg9fsbHhgZxCKkiXlyL9tWdG+vzvr/7gBw5s+fVb6VQw2uMvTeI3fqj4SaYXIg6Md75zd7TEoO9Tc2f+LhvWsGZhuTdCG6qs67oEJvWiMpvPwnLEUqM+X2ysFITmffs/yd4WTs1FHJ/pYFE1dsuDaTz+15vxE29oxr//i9Xwz5sf2L71eXJ2dZsqY/f5Z/7elxOAOD7Z3fdS5Zhbt1BBoL/kfR5GnB2iy9ZU+ZSZKAgFh0HXal8aGU7iiouy20Yn6nMt0i2t7iubWxrs4GcAAAAA6Dn68+gE2xUAvcDnFQBn8bkAnFF0qug0chMsNPqUYDQAAAAKlQknekxOWMnoRMSL3589Yj9Jzg48KeOJVyZxzQuG4pILqz2u3Q4eOTMAdXYxP/jkZ78zO6Bnbili6vSg+UZOoMGOtBF//+C/za1hdMf+jRMfOFB5YOyN96bxvKub8aI3jMdtr35NpN+3J+L6v6/0HGvSB7cezNZKUSDSVv3WDyfxU/+s+Ime8tJmfOVotWX8mXvS+J/vbMYvvrMZ193T+rFjJQZ9T2whGC0i4lgPBETlva2hjN6s/TnHoLffmBos3kKzIFRlvakaBX0UfS496cr8xx043Jl66u5n3tw8K0xxbCLiF99ZcsV3wN1Hys974brzhP05Iazjk1urp6oqx9xpwWhABxUdj9Yf99masudKEWefowNnK7osS05fhudd1w1i4HWZc86yYcMAAAAAANW51wYA2G7ORwAAto1xWECNCEYDAACgUJlgtKselT3P6ETEoWPZbRftjBjaRJrVDzwliftfORSf/pWh+MDPD8UdLxuKpdcNxe0vW/33Hz6rDQlZLUzMRRybXv37eEHA1Lc/Pr+W0dMDexsr2e0jaSO+f/aTuY8/NnzpxonTpyLuvyu/oHO88bpmfMcrm/G6T6fxmpsuj2+/+3/Eh3f/m9KP3+CBA5t/bEm522MbejjO35HEW/9LEh95fvGTffPvNuOWB8t18r79xmZ8z2ua8aefTOPPPpnG976mGW/9XHG6wmiJQd+nZs+8/maC0Y5OVX9Mt+WFUGQdNq7KGUAfEfGiv9UhX6Ts9pMXALkd8moeHoq4bE/E3l3Z7YeODd62MD6Rxh1jG6dffyjivuPbszwOHin/uuv39305wWjdDsoQjAbURVFg16nZ7tXR76p8Wp603CFX0b60dsqXd1031uUg3Dooc1/ZvGA0AAAAAKiZwbsnAQAAACoRtgQAVCQYDQAAgEJlgqj2780OABs7lUaSkw02Ob/5mi48P4nvekISP/pNSTxlfxIjw0l8/f7Vf7/wB4big78wFE+8YvPPX8bBI6v/LwpGe+pj8tvWglyW84LRohFDkcbljSOZ7cd3XJb9wM98OP9F1xk9lcZz33b2yl0c2hkvveylm79Nr0Io22blB/W1JxAvSZL4N09N4geenD/P9MJqONqx6eIl1VhJ4zfel55VczONePH702isZD82TdO44d7WdZ6aO/s5qzpWsN3WRZlQxjX7C4LR/vDaNC594Uo86/UrcefY2U96dCqN513djK9/6Up856tW4mN3DN4Xbc2SXy72QjDaULK6D39VTljnIIbEPHgyv+2Ge7dnez9wuPy8jXWhP3nnGsdnIpYa3XsvlYLRFjtXB0DO6WRErH5up24gaosqi3F80jKHPEX70trl/L6CvqVBU+acc26p83UAAAAAAAAAAEA1RWN7Bu8+IOhN9tXeZL3RnwSjAQAAUKjZzJ6+PojqqpxQoodOnR3gtN6L/nV7gqyy/Mg3JnHXy4ej+YbhuOHXO3Ppe/DwamdRXjDa8FDEZbsjLtuT3X7fidXHN3KW7450OSIiLmscz2w/9phvzZyeHrw5p+KzfdWvZr/wbTu/McZH9mU/KEkiedutkfzaX8Z8sjPuPO/JMZ/sPNP+8KFIx+4r9fqbVSUsayv+/KdabzdX/HIzphfyOw3vGl/dB841OhFx51j2Y/7rW8t1Qp5cF/CUt48WaRXqVgdV1vVVOQPo15ycjfjbmyO+9zXNODGz+sTNZho/9hfNeN2n07hrPOL6QxE/9Npm/OPB+i+bdiob8jS1hTDLdmu1bTxqV3Z73udRPytavw8VhKZ10v3ZH2uZVs4KRsuf74ETm6+nqirH3KVGxOLyYB1TgO5pdTzaShA1Z5QNkY1YPc8Hqlu7msvrWxqb7FoptSEYDQAAAAD6je+N6QTbFQC9wOcVAAAAmycYDQAAgEJlwonyBq/eORaRN478J76lc8Fo633b45P44m8OxX94+tnT9+yMeNpjih/7A0/Obzt4ZPX/eQFTl+6OGBpK4msuy378Pacf31jJbh9JG6vPs5KdIHP8im/IfuCDB7Onr/PnnypOUTh43tdtnPjD/38k7zoQjcc8KX5u9JlxyRPG42lf88V41BOPxIsu/71oxPDqfJ/9cMvX34r8oL72vs7XXp7EcIlek4t/sRlvvC67qDvH8r/MvyOjrbGSxntuKncDwPqAp6IB0xeenz392HSpl9lWVYLRigKT1js+E/Hqa1af+IXvTuNz926c53v/sBkLAxRkVDoYbaGzdVSx0uI4sDcnGG1iAANiZhfz2+7vYpjYeuOT5fev9eGhj7skIsk51q99JndD1aPDdI32HaC/tPoM/+X3pJFWCPUiW5VFKBgN8hXtS2vnePsvzm4fzQgc73dljj2C0QAAAACAbeH7JwCgK5xzAPQnx3foCfp/gBoRjAYAAEChVgE0ERFXPap6KtWluzdZ0Cb808cm8e6fG47mG878N/na4bjlJcMx9dqh+Pr9Z8//378rieYbhuOaFw7Hs789+709fHL1/8dnsl9z7f193eXZj7/nyGon4XJeMFqsBaNlJ9ccP39/5vS478uRNhrZbRExvZDG899R3EF593lPOOvfyRuvj6Ffe30k+x4Xv/ORNN5404WxNLSauNVIdsQfXfLC2Pnk6fibi34yZq77h8Ln3qoqYVlbVfYpn/u2NF7+4WYsNc4u7tCx/Mfcm9F26FjETEGI0XoT8xHN0wujKBTjij3Z04/lbLd1kve+soKR8gbQZ/mDa9I4MpXGn34yf8G96G8HpxM/L2zwXFPz9VkmuceB0z2de3dl770Tsx0qqMaKwhLuPrI963R8svy868NDLzgvia9+dPZ8Bw53772UDRNcM13yuA5QVavj0V9/No3339KdWvpZleP+uGA0yFW0Kz0SjLY3+zz+yPRqkPggKXPs2UowWrOZxs0PpPH2G5tx77HBWrYAAAAA0Dn62gAAAADoA4LRgBoRjAYAAEChMkFUV+2t/ryXXLi5etpt984kbv7NoXjzf07iFc9M4toXDMXrf/rM5fL+nPc2Nrm6YI5OZ7c/Eox2RXb7PUdX/58XPLcjXQ03u2zleGb7fSuXZT8wIuJtr8xtesefXZv/uNMOnvd1Z/7xr34qkid98yP//Jsb8js3//NVb4qLF94fX7izQupNRXnb43AHeji++wmt51nz0g+m8V2vbsaJmTMFrq3jLDfdv/GN3DVe/vXSNGJqYfXvwmC0i7KnH8/ZbuskL7ArKwTv/B1J7Dqv/HO/4qPFnfTvuDEdmIH3Zd/l5HxHy6gkb9sYPr1t7N2V3T5Ro3C3bpldyn/PBw53sZDT0jSNsQqhMY1z1vUTr8ye72AX30vZMME1ddp3gP6Sdx2x3is/WvGgxQZVzh5GJwbvXAPKKnOfVF7fUppWC9ftB2WOJnObDOBdaqTxk29M41t+rxnPflMaX/vips8LAAAAAIBeZJAyAD3B5xUA67iOAeggx1j6k2A0AAAACuUNuF8fRFU1GG3XeRG7zs9IN9omO0aS+M//fCh+9V8Pxfc/5ey69l2c/Zi1QbmHjmZ3Gl150erzPO6S7MefmF39/7mhL2tGTgejPXb5wcz260YvjMkdj85sS9/88kgXNyaxpIfuiA/e3Mh+wXVe9+jnrv7xHf8mkl/6k0emT86l8cCJlg+P//aW5VgpSuvagjJBfe3ynO+o9qSfvz/isl9qPhJ6dmw6fxn8w10Rc4tntx84XG2ZnZpb/f9mgtGKaquLquv6JT9Sfn299hPF7//EbMT1h0o/XU8ru6uuBfHVQe62cfpzae8F2e2nZjtTT53NFoQljE1ETHU5LG56IWJuqfz8556DfO3l2fv56KnuvY+qH2/3HutMHQBljkc3PRAxJqxrS6oEYg7iuQaUVXQkWjvD+6rsLo6IKA4e70dljj3zy5t77r/+bBrv+eLZa+Q33p/GrQ/5vAAAAACAzumx/jcD1fuD9QgAAABsRpf6FIpeRq8GsEYwGgAAAIVyg7uGz/y9e2cSF+cE0WS5dPfWauqmfff+Y+b08Yk00jSNA4ezH/fEK1f/f/HE/Zntk9OryTDLjeyuupFYDTB7xuynMtuXV5L4/FN+JqfqiLjpkxsmNT/05rj+gn+W/5i1507Oi9c+//5IXvX+SHbteaTOx/16uVSAL00+Km64t9SslbUKRGqnH396sqlt9dt+vxnvvyWNibn8eRaWI24+J/PuYM62lOfk6eCFvPDCiIjLL8oOETo2U+21tkPVdf3c72pvOt4Hbh2MbvSyYR9TG7MWt03eNr8WmveoC7PbJ2r0HrpltkUI2aEuh3bdMVZt/m993Nn/zgtiHZvcVDmbUjUYrWroJUBZZY9HH7ndcWgrqiy9UwXn/zDoim5gSk6fx+/dlcRle7Lnee7bKqQU9oEyx/jZxc0d3//8U9mP+5sbfF4A0H+SJBlOkuSJSZL8WJIkz0uS5DeSJPnlJEn+S5Ik350kSU5PYm9IkuTx697bryZJ8pzT72vHdtcGAAAAALAlAj4B+pTjOwBQjWA0AAAACuUF0Iycc0WZF1aSpVeC0dLlpbjymtdmts0uJXFquhF3H81+7JNOB6Nd9Km3ZrYvpOfFwvX/kBs8tyNdjoiIpy/cEpc1sl/k5sf/WH7x99911j/Tr3wpjnzgvTEx/Kj8x6zz65++PGYWV/+eXUxj1y80Y7JCqNAvvfvsN3btnWl832tWYv+vrMR3vXol3n7j5gY154U4DbU3EysiInadn8T//V9D8R3/pPpjf/x1zfhci3C4c8Ny3vmFal/ynDodjFY0YPqKi7KnH52u9FLbIu+ehrx1ffGuJH7337dvQ/jjj6fRrJqA9P/Yu+/wKKr9DeDvmU2DkEAgkFAEpEvRaxdFRcEuqFy71+5Pr+1i16tXxYINe+/itVwLKmJBEQuCqKACSgu9hkAI6SFt5/v7YwnZ7M6ZndnsbjbJ+3keHjIzZ86cnZ2+e95thpy+xJLK6LbDDW1oXl2ggiaoszWGlVSECEbLj/GxYPpid/vUdaMbXmx001xrbC4Mt0XuuT0srNganXYQEdmF4/r78s+Wfz0TTW6O+60xhJUoEvzv4uqepQRanQ/kl7ae45mTV+rkGc3c1YLjnvA9i8m60Yv97vNqw4of/6b1rF8iImrZlFI9lVLXKaU+B7ADwHIAHwN4FsBEAI8CeA3ADwCKlVLTlVInhbksaeS/3mEu93Sl1FwAa/xe20MA3tz1uvKUUs8rpTLDqZ+IiIiIiMLE8A4iIiIiIiIiImoR+JyLiOIHg9GIiIiIiIhIyzRF2xG8NQSjYfVf6LZjiXbyrIdfQnWt9bSB2QoigvZLvtPOX3T7xaiptV7BHvFVrAAMrlpmWeaOnAMg8D1uLDXaoVIl754m63Pq/96yDnLxgTi7x1vatgSqqgXe+kWwNFcwbILpOHihzvx1vg64UlGK7xaU4finTPywAsgrAeasAs5/TTB5rq/SbSWCTYXOHpqGCkSKtEFdFX66zYPK5w2MHxXZhSzPq/97xVZBlWZb0qkLedKFxQFAtiYYLdZhSOEI570++8DIvkenPR9egF9z4jTso7QZBKN5dp2XOqZabwfbSqA95rZU5VX207eXxXZ9LN5kvbweGUB6SsNxh/YFRvRrOK57B+v3tqAcqKqJzWtxG4y2vqB1bXNEFDtOj0e/b3Bf945ywbItgjX5AmnlnXjcvPzyqtZ3rUHklN2+pPwu8QZk6e/pPlvUevYvu/v8OqGCnxduFBw5ycQ3y3zPYvJLgYUbI9M+IiKieKWUehfAegBPADgJgOYJ+W4eAMcD+Fwp9ZlSKivKTWwUpVQ7pdT/AHwIYLhN0Y4ArgSwWCl1XEwaR0RERERE9lr55y0ULdyuiIioGeB1EBERNcDzAhFR1PDam1ooBqMRERERERGRll0YlicwGC3DeSBRp3ZRSrGKtPU56FGzGQlSYzl52kp9wtuALAAFW9C+PFdbpthIR81q69CzBKlPyRpUvUJbx9OHTka/vsuQMXAbevdbgeczrvBNWP0XAEBEsPa8YzC89yzMaTtCW4+Va94VDJ1gYl2Bq9l2G/GwiaoTe2D0C20sp//zbcH+93mRfZOJnrea6He7F7+ssX8IF+tgtDpJCQqPn6nwzDkKyQmRqTMnr/7FPPOd+4ePhRW+eexCMbLSrVdMRTVQURXfDzzDea97dYpsGz77EyiuiO/11FhOQ1VKdsbPegi1bfTWbAe1JrA2zONZc7Ruu+CBL+3ft+1lMWrMLpuLrMdfOkLhh5sNXHyYwuH9gdtPVPhqvIEET8MdvptNCOuHv8coGM1lXmJBjNcxEbUeTo9HmwqBskpnx8jNhYKRk7zIvN7EkLtN9LvDRPZNJj6K0TE2HrkNxCzeGZ12EDV3druSfzDayXvrb/i+Wtx6jkVOXmlRiOPNxC/ch9wTERG1AAM04zcD+AHA+wA+ArAAQOCZ8mQAPyqlsqPWukZQSnnga//ZAZPyAcyALyztDzS8lMgC8KlSyt2HQ0RERERERNRCtJ7n6kRE1BLxPEZE1CIxtIeoeeC+SkRxJEJdeYmIiIiIiKglqrXpQJngaThsF1YSqJM+TyyuyIYcJKIW/apXY3nyoKDpn6adbDlfz45AarKCLM5Be7NEW3+xpz1qt+cBqYODpiWiPhhtSNVSbR03Fp4JJPn+3p7QGf/KfgKDqpbj6BWzIF+8CdM0cVzPL7A6qa+2jmhK7b9dO626FliwsX54zXZg9OMmNjxsoGNqcGdosXmwGu1gNABQSuHqoxSuPgq44i0Tr8xu3IPe5Xl+f2/R19W7EyzD6QorfP/bB6Ppp+WXAb2SQzSyCYUTjOYxFIZ2Axbr8whd+2YZcPr+kasv3jgORquMbjvc0HXur9s2+mf5whWsDhnLt+wKrmzhRAQnPRM6BSHh++xxAAAgAElEQVTWwWi5xdbju3cA/raHwmsX2h/M98jwBbNabQP3fS4472CBUtE9Ibj9jK+gPDrtICJyE9h1w4eC/XrazyACXP1ucJn8UuCMl0wsusvAsB7NJOA6gtwe94t2Aplp0WkLUXPmdF86aZh+2sptkWlLc+DkGF9UoZ9WWSOYvtjdMmPxXIWIiCjGFgB4HcB0EVkdOFEp1R3AXQAu9xs9AMCHSqkjxO4DCWu/Iji0LJRNLso+BOBEv+EaADcAeFlEqutGKqUGA3gVwPBdo5IBTFVKDRORLS7bR0RERERErrSWDqOt5XUSERERERERERERUVNjMBoRERERERFp6cJnACDBaDjc3UUwWmYzCUbD+hwAwMDqFZbBaEWeDMvZBrYrAZABufs8pJslUGJClBFUrthIRw0SLetIkPpgtHElU/Gv7CccN/uBzFtx9IZZkIcux+2d78XqzKYJRQNg+brtVFQDnywQXDoiuEeuXcdgw91iGu2l8w38fT/BN8sEj80I7wt/a7f7OiunJCptWBAA9O1sHYy2Y1fYTtjBaKVAr07O2toUtMFoId7rsw9S+M/UyH0J87vlgtP3b7k9xM3Q2VkAgJKd0W2HG6FC81ISFfbs5AtbDJSzVQC03Pezzh1TBcscdHOMZTCa1xTkaYPRnL0n7VIURu8FfL0keNrKbcBv64EDe4ffRid0R5fMdtbrc0e5L6gu2oFtRNT62N2rBXq1kYG+ADD5Z8FjZ7S+Y5mbADrAPqiIqDWz25X8jywJHl9Y7qVvBs9hd9/c0ji5T7M73sxf53u+4oYnxs9ViIiIokQAfAFggoj8ZltQZDOAK5RSiwA85zdpBICzALznctmVIrLO5TyOKKX6ABgfMPoMEfk0sKyILFVKjQLwLerD0ToBuBvAP6PRPiIiIiIiImoqDKkjIiIiIqLmhvcxRM2C698Ro/jA941aJn69lYiIiIiIiLRq7YLRPA2HnYaaAM0oGG2DLxhtcNUyV7P1Xv89ZPVioLgABgRpZqlluRJPe9Qq68zyRKnZ/Xe2d6ur5f+QOhIFno5YnjQAkzJvCln+2XPDDzi4vNM8vLP5grDnt7I8z3q8XcdgowkyGo4dojDpdAPmyx7ceKz7BpgCrNrm+3uLpoP3xNMUMtpaTyusqK9Hp2OqvnNzvvVmGTd073eoNX3dKIVx+0auHb+uadkPhp2+uuJmEIzmv6336WxdZmtJ5NsTb0p2Ch6a7uydLYhhMNrWEv17181FuOqEMfpH2n9uiv7+qjs2dU6zHl9V6z6UgojICbeBXY01e0XLvibScfvdDgajEVmz25cC82P3yLC+68svBapqWsexyMmrLKrQl1qS6349+T9XWbhRcOenJm79yMTc1a1jnRMRUYtxhoicHCoUzZ+IPA/go4DR50e2WY12N9DgV3YmW4Wi1RGRnQAuAuD/VOrSXQFrRERERETUJJrbc7bm1l6yxE7MREQUF3g+IiIiImp2YvRMwW4pfKxBRHUYjEZERERERERatV79tISAO8ruGc7rbQ7BaOL1AptWAQCOLv/e1bzpO1ZDJk/cPdzetE7iKTQ6oEYlWk5LQG2D4TOHukslmtvmEFyV/XTIcvNuN/CPg92Her1xkcK6Bw28cF0PHLRzvuv57eQWWY/32jzUbIpgNH+TTjdw0aHuGzFnlWBntWgDFIb3UeiQal1vYblvhdgFxiUY+v0tvyy+nxLrwj5CvddtkxU+/KeBnPsMfHiFgcP6OlveUQOtxy/YWL+uWyKnoSolldFthxu6bd5/28hsZ72h7CiPQoPizL732RwUAoQTmBAu3bEdcBeMdnAfhcFdraflaII1I0m3z3S2ubaJZQAdEbUeZow/8f9tPVAQ59eP0eD2FRfFUZgsUTyxDUYLGLZ7vpTXCoKOAWfHeLsgRl3gvJ26H0CY/pfgkAdNTPxCMOlrwRGPmHj7F+f3GERERE1JRNaFOetzAcNHNbIpEaOUagPg9IDRD4eaT0RWAJjqNyoBwLkRbBoRERERERERERFRFLW+76gQEbUOPL4TERGROwxGIyIiIiIiIq1am36PnoA7yh4ugtG6d2jiFCsn8tYBNdUAgBEVc5FsOk8FSjPLgB8+3j3cuXa79SISslBupFpOSzUb9nDtlObuFv60Pabgx9QjbMu8f7mBA3orpLdRePzM0O+JUsBhfYFl9xq48FADPTspqKw90O3Y41y1LZTNhdYfdtgFgDV1MBoAvPgPhRuPVUhLcT7PtIWCLcX66V3b64PN6oJ27IKtDKUP69lW6qyNTUUbjObgzVZKoX+Wwt/3V7jQYWDdtUfr97GRj7bcTuB2+5W/kjgK+dBvG/V/d7Q+tLbYQJf1BYJzXzFhXO7FWutTjqWlW4A1+bFZJ7pgtEQP0Enzfukc0Nt6v87Ji/5r0W1/dqGvO2xCK5qaiOD9+SZGPOzFgRO9eGi6icoad+vx7V9MHPWob/67p5motUsyJaKIcRpuGklPfdv69m+367msqvWtI6LGUgGXdt3a68vahe22JE6yLwttrjHDuS727HofbvvYRLVfVr8pwM1TBGZTnHiIiIhiZ0HAcBullIso/6g6DkBbv+GfRWS5w3nfCBgeF5kmERERERGRpRj/qA0REREREREREVF08DkXEcWPhKZuABEREREREcUvu2C0hIAMoc7tfOEmNd7Q9Q7Kbly7YmJ9zu4/E1GLftWrsSRliKNZ070lDYaza/Msy+UlZKPESLeuw2xYR6f2kbuFVxBUveBBgqe+9/H4UQpf/iWYuSy4/ONnKpxzkEK7ZCA1OTiMJuXqe9F5fD7yEzpHpH2bNR2dbQPA4iD6PSlBYdLpCg+PE/y4Ejj6sdCJU9/lAH9t1k+3C0bb7jQYLc16Wn5zDUZzGYJ34jCFUA/lrxqpsH8v/fS/NgM/rxYM7xsHCXwR5rRv+84aoKZWkJjQ9OvAq9m1/LeNTpr9Zkd55NvT1IorBIc8aGJrSeiyVn5bL+jTOfrv6+Yi642tWwdngYf+BmRZj8/Z6rZV7un2mY7tFJQSy++6by4E/rZHdNvl1M5qgaF8+0uNF/jgd8Elk+sb/ft6wep84LEzgLQUX9CknVdnm7j8rYbzr80H/ntp0x8riFo63fkwmuasbH1fdHDbh6m8KjrtIGru7HalwMuN9DZAarL1/rSuoGXelwVycp9WZBNevWyL+2V6DCCvWCyfUWwtAeauBkb0d18vERFRM1FrMS4p5q2wdnzA8A8u5p0N32ur+4BpX6VUlojE4CkaERERERERRR3D+IiIqFng+YqIiPzwPoaIKIp4jKWWicFoREREREREpGXX2T7B03DYMBS6tgc27LCvs3Ma0KldM+jEuiGnwWD/6lWOg9HSzLIGw101wWhbErJRYlinVqV7G6ZWdUpPQKQeUOWPX4EEz+AG45RS+PRqAxO/FMxcKijeCfTtDFxxpIEx+9i/XyotA8clfY23zdERad/mIusAplABYPHCMBRGDgQW3mVg4hcmlsxfjUJvW2xJ7BpUtroWeHKm9Y7WOQ1Ib6OQ2c76hTsKRjOAzmnWwWDxHoym+8zL7XvdrYPCwCz7wKRnzvFVmp4ClFRal7nzUxMzb/BYT2zGnAajAUBpFdAxDp4m6trs8QtI7JRqXaagBQajPfeDhB2KBgA51qeoiMstth7frb37ugZlWx/XVucD1bWCpCgG+JmaDTDRA+yRYX0dlLNVcBKa9kQlIpj4peCuT0Pv9K/NEbw2R3BAL+CZcwwc3Eff9qe/Da7v3XmCh/8u6Nohjk7ORC2Q7nzYJQ244kiFb5YKCsM47wmAFZrrppXb3NfX3Lm5VgKAMgajEVmy+05j4BWDUgp9Mq1DxHXHp5bGyXdAiyp813iBQbblVRLy2ZwVjwEU24Strd8hGNHE17RERERR1C9guBbA9qZoiIWhAcM/O51RRMqVUn8B2Ndv9BAAreSqioiIiIgonrBTIjUFbndERNSMMTiHiIiIqOnYXYvxOo2IYiwOujISERERERFRvKr16qclGMHjuncIHYw2KLtxbYoVWbO0wfCA6hWO500zGyZOZWuC0TYndkOpJ11Th1/KTUpb7NHROgTGjWSzEgsGv4COQ26ynN4mSeH+UxXuP9V93bdf3g9vv9io5u1WWQPMXgUcPajh+OYSjFZn7x4K751TDHl7GEwo9O63ErmJ3YLKzdJsWnX7SmY76/d+e5mvE3So9ZLZznra9rL4fhite13hvNcXHKpwxyfWFf56u7G7I/nLFyic/bJ1ue+WA1MXCNokAUcPRFBwX3PlJuyjZCfQURM4FktOto1Omu0+XoPRCsoEf24CluQK9sxU6NkR2FEOrNwmSG8DHNpXoUdG8Da3o1zwn6nO3sTT9gU+WRA8PlbBaJsLrcd36+C+roGaawmvCazJBwYF51BGjN32Nyjb+jpoeYzWsZ3HvnEWiubvt/XAGS+ZWDzBQHqb4O2vplawODd4PlOAD34XjB/VMo6TRPFKdzxqkwTcM9bAPWPDr/uGD0w8OTN4AZuLgLJKQbuU1rN/u/3+RjmD0Ygsub37HJBlHYy2splEeJRWCmatADq0AQ7sDSQnujtuOrlPq/ECFdVAanLD8eGGx20vA6b8rl+wafPjCURERC3A6QHDv4mI27NfT6XUGwAOAtANQCqAQvgC1hYA+BHAFBFxG2G6V8DwKpfzr0bDYLTBAL5zWQcRERERETkS39/DiZzW8jqJiIiIiIgo8nhPSURERO5YdGMnIiIiIiIi8qm16fbh0QSjhXJ4//jvRC/FBcD0/zYYN6JiruP5A4PRumqC0VYk9dfWke5fR3JbHDPY8eK1rvO+i0E3WIeiNdag/fpi08D7cM+2eyJS3zdLgz/waG7BaACAfF9ijAHBmLIvXM06MNv3onTBZrWmL6jKrnOyoYDOaZqmlVqPjxe6EAojjKdZFxyi0C45ePylIxQO7F2/8Zx5gIEumvUFAONeMHHCUyYG3WViaW7L+FDOVTBaZfTa4YajYLRU64PCjnLAdPOiY2BWjmDI3SZGPW7iX+8JxjxrYp97TRz1mInL3xKc/bKg3x0mJs9tuLP/kCPIvN5Z/8yNDxsYkGW9TnK2xmZ9bCm2Xk63Du4P4P0664/7OVEOy7Db/gZkWzdqRV7TbnNv/GTilinhtWFTIfDGXOt5S23Cf8IN5CAi57yaU0AkrouvOUpfyZ8WQUUtmdvLhvLq6LSDqLmzCxlUFoec/ppr1xUxunZtjJ9WCfa4xcTYZ00cMcnEQQ+YyC1y126nx56iiuBxOY249rzTJkg3zm6jiIiIIkYp1Q7ApQGjPwmjqj0BXARf8FgHAIkAuuwaPg/ASwA2KKWe2LVMJ23rCKBjwOgNLtsVWF7/wRQRERERERERERERERFRVPELKETNgu2vCnM/jltufw2aqJlgMBpFlFIqUSk1Uil1gVLqVqXU1Uqp05RSvZu6bURERERELZUUF0D++xDMJ6+Heds4mM//G/LVOxCvt9F12wWjJVjcUXbLCN0L/6Rh8Zpg5SOmCRnXJ2j80RU/oK1Z7qiOwGC07rXW6QFFngxtHelmSf1ASlukpShccWTj1t35R7Zp1PyhdP3X7bhjyHKcU/xeo+tatsUiGC1EAFhc2p67+8+xpZ+5mrWP8gXq6YLNAGDOKuCC1/UrxmNAG/QV78FoTsKvnOqeofDy+Qrt/XaBsfsAz54TXNkfd4Z+XLZ2O/B//zUhLeChsZuXULwzeu1ww0kQjG6/8ZrA9rLItylcpim4eLKJbSH2x+pa4JLJAuNyL/52rxfnvmLi6MdCh6K1TQLeuUyhe4bCoGzrMjl5iMm2XKBZ71np7utKTlTYI7BL6C5bS6L7WuyOTbp1vNw6HzVilm8R3Pu5iYvfMPHoDBOF5fWNnLFEcOmbjVsn935mPX+ZTVhiaZwcL4haskheKwXq1Qlok2g9bfri5n/944bbU6TdsZGoNbMNRrMYNyDLumzO1thcu4bLNAVnvGg2CJX+azNw04fu2uz0JRZZXHNF636HwWhERNSCPQjA/6lOEYBXo7SsVADXAfhdKTXEQfnAnyOqEBFnH1TV2xYw3N7l/EREREREFAlx/FzTWnNrb2sV6n3i+0hERHGg2V0HERERERERUTxJaOoGUOQppSYAuLsRVbwpIhe5XGZnAPcAOAvBv1RZV2YugMdF5KNGtI2IiIiIiPxI7lrIZcOB0sL6kT994ftKy8z3gEnToFT4PeN14TMAkOAJHtc9sIuGhf5dwm5O1IkI5K5zgOrg3uwpUoVjy2ZiavopIetJMxv2Qh1UleO6Lelev5ScFF+a0zNnK7w0K7wPiAdUrcCgvTQ9iyNEJSZBTfwAt/28Av97o3F1WYXI2HXCNeI1+t0vGG1kxY9I85ag1OMsBShjyoOQPY9H5v4nasuMedY+GEkptSsgKnjl5cdROJQVuyC8cJx9kIHRewn+2gxkpAJ/28P62Nitg8JxQ4Cvl9jX9/MaYOFGYN+ekW1nrLnp3F5UEb12uOEkCKabTfe+zUVAlzDCuKLh17XAugJ38/y5CfhzU+g3bto1Bg7ZE8hM862YgdkKVseCsiogtwjors/qjIhCzfaT0Ta8+jq3A9ZbrLtoB9/pvqdlGMDALOt1vK0UKCwXZKRGPsXzhxzBmGdNlFfVj3v2O8Ev/zaQkwcc/1TjD6aFFb5rpMBrytIqzQwASir5hTaiaNNdK3kicF3sMRRGDgSmLw6eNndV69q/3QYBVVRHpx1EzZ3drmT12GqA5rqqtBLYWgJkx2mcx4KNQF5J8Pj35gvevlRgOEyvdHrsKbSIRSmJUkAjg9GIiKglUkqdBuCagNF3iMgOF9XUApgDYCaAPwFsAlAKoB2AngAOB3ABAP9PxwYAmKmUOkRE1tvU3S5gOJwo+sB5bH6KxTmlVBcAnV3O1jcSyyYiIiIiIiIiIqLWgB9QEhE1XzbHcAZmEjUPdvtqBPfjGC2GiJq5eO02TM2IUuoEAIsBXAlNKNouhwKYopR6WymVGpPGERERERG1cPL8vxuGovn7dQbw3ZRG1V/r1U9LsLijDBWMlpQAdArsxhEnxOuFPHIVMGuqtszYpPmO6kozSxsM71mzDonirod8uunXkzbZlxqT4FGYelV4t/J/3/kZ1NCDw5rXrWHDB2DKPxv3yGHFVqCiquFTTLtOuJ7IZ81ERn59MFqyVGNU+feOZ82ozoe8cDtSkwRZYYQ41fW37qzZ50orgcqa+H1SrA2/asSmlZmmcNQgpQ1FqzO0u7MNasrv8bv+nHLTuX1LcXy8Xl2bPX4hA13S9cEwuUVRaFSYcrZGZ53ePUbh5L3V7lA0ABhok41pFUYZaZEORsvUHNuiHYxmF8w3KFs/X87W6LTnjk8ahqIBwIYdwMhHTRz1WOQSJq3evzKb0I2ScLrpEpErToJCG2P0XtYVfZ8DlOyM/TXBWz+bGPWYF4c95MWD002YMUrocbuUMgZDErlmGYxmE6q/IkrXVZEwfbH+GLDDIsRMx+mXuoosrrkYjEZEROSMUmofAP8NGD0DwAsuqvkPgO4icpSITBSRz0RkgYisEpGFIjJNRG4G0AvAQ2h4i5EN4GNl/+tGgU/AwjnTB14xROpTuqvg+76gm3+fRmjZRERERERxig/RiIiIiIiIiHh/TNQSMLGMiOIHg9GoUZRSIwFMRcNftRQAvwP4EMA3ALYHzHYegP8ppbj9ERERERE1gpQVAz99bl9mxruNWkatTZ6GVeBMjwz7Xvjd2gP2fTya0IdPA5+/blvkpH8c7ihoIM1smMqSAC/6V69y1Zw24tdXJaU+NWbs3xTOOci6Ee3bAKsmGkj3NExIya7Nw42HV0KlhpGuFaZx+yl4XzJQc+LryFuxB0qXd8S4kk9c1THsnoYboF0n3MaEZUWTbM9tMDykaqnjedubxcD65VB563BcXxc9qHfZHYyWpi9TEOUAocaIdtiHHbtwI39fL2n+D/RNF7lJ8RIopmuz/3HAYyh0bW9dbnNR/LxvbsIRnOqSBvzr6OAdJSNVoYvmeBCtgLY6piko0gWjpYa3U2e2s54vGuvUn92xqVsHoF2y9fQ1+ZFdx7VewbYSwc9rrKdHOjBkS3HwuFKbrrjbSgERwY5ygfDDT6Ko8OrOhxG6VrILiu1yo4nyqtjt2y/OMnHhG4Lvc4Cf1wB3fCK48p3YLN/NtRIAlLvLwyZqNewuB6yONplpCh01P7O1IsrXro2RnKCflu/i/ttpCFlRRXDB4igF1Do9HlbVCDYX8hqQiIjim1KqJ4Av0DAkbD2Af4iLk9iuMLRtDspVisi/AVwbMGk/AOc4XR7C60XCkzIREREREVGLxVs+IiIiIiJqbngfQ0QUPTzGUssUp92GKcLOAbCni383OalUKdUDwMcAkvxG/wRgiIgcICJnisixAHoAGA+gxq/cGAD3N+I1ERERERHRvG+A2hr7MnO/hFSUhr0Iu2C0BIs7ymHd7Tvid+8QdlOiSjbkQJ67zb5Qp67ofOyJ2KeHfTFDvOjgDU4POmDn767a1GA1JrdpMG3yRQr3nqKQ7ZdzdvLewLJ7DfTprLDo/ja4qNcajDAW4yLja8w9+ltkXHOnq+VHglIKRvc9kektQBupxNhS+yC/QGu3A2u31z+Usw1Gi9O8PQQEow2qznE8awevL4VGztoLYz67zPWi60Ki2rfRl7ELtWlqTRmMdtwQZRn+GOiPDcCPK5r3g2OnHe4BYHOcBKN5HW4bunNOvLwOwDpsqjGy0oH5dxjasDFd6N/yvMi2I1BppX5by2hrPT6UTu2sx28vjXLIm6Z6pXznvZ4dradH6r3OyRMMf9CLpCtNZN/kMq2nEbZY7DdlVcHj6izdAnS/2UTm9SZ63Wbi8z+b97GSKB7pjkdOrmGcsAuKra4F0q41cc7LJsoqo79/PzkzeBmT5woKyqK/bLdLsDs2ErVm4eytA7Ksx0c6ADaSUhL107aVOK/H6X1aoUX4cKkmGO2wvs6Xb0V3H1anskZw4esmOl5nYo9bTfS81cS7v8buepWIiMgppVQX+H7os7vf6DwAx4hIfjSXLSLPAZgWMPoqm1kCo1VtnvZrBc4Txz+XQkRERETUkvHzUmoC/AELIiKKCzwfERG1OrwXIWr+7PZj7uNEFGMMRmsd8kRknYt/2x3Wew+ADL/huQBGi8gy/0IiUiUiTwM4M2D+G5RSvcJ/WURERERErYOYJmTJPMgvXzUIOZM5DkOmZn4Q9rJrvfppCZ7gcRmpCkf018/TIyP+0qtEBHLe3iHLqRdnAQD26mr/Gjp6d8CD4I6fY8u+cNymvaqWNRyR0jA1JjFB4T8nGch91APzZd+/add4kN3e17ZenRRev6M/fnxxH7z+4ono/Y8LoFQTrfueA3f/eWbJFBxaMdfV7FMX+AWj2fSnjcdgNBEB5s9sMG5QlZtgtPoUmmPKZiLZdJdiVrdO0m26SpXEcTCa7ll5LN7rHhkK/z7B2YJGPmrC6yZdLAw7qwVf/iX4IUdQXRvZZblpem5RfHyAoTsWBG4bPTKsy61z+uQrBvIiHIyWO8nAHh312+6AbOtpK/Ki+95aBTbUCTcYLVMTjPb7hvDqcyrU9pfd3np6qGC08irBN0sF7/xqYmmu9ftRWSPY6y4Tv6512FgXEj3A/jZParcUB7epNEQYUt6u8I9NhcCpz+lfFxGFJ9ohst07AGkp9mXe/03wz7eju2+XVYplCFKNF/hkQfSPK24v88oZjEZkye67ULrHFQOyNNeuW+P3mqK6Vj8t30UEidPvjuVb/BZCieYabf/eCv8aFf5JoirEbzNc8z/BW78Idu4qt7kIOP91weyV8ft+ERFR66OU6ghgJoABfqO3w/d9t5UxasaDAcOHKKV0PysUz8FozwMY6vLfKRFaNhERERERNSV2fiUiIqKY4DUHEVHLxOM7ERERucNgNAqLUqo/gAv9RlUDuEhEtF2qRWQqgDf9RiUDuDs6LSQiIiIiahmkMB9y/QmQfx4OufkUyJkDIXO/9E1cMMtZHZOuqp/HJW8YQVSn7qvvZDm8b1jNiCp57Z6QZdT1T0Jl+9JCBmTbl830FliOP6ZsJlI8Nklzfo4v+7rhiJQwU2PiQZceQJtUAEASavD9+mPxcu6V6F29DhneHbih4AncmT9RO/vMZX7BaDafgcRbMJpUVULuuQCobpiMMLRqCTp4Cx3V0cGsT9FpJ+U4p8RdyGHdOklN0pcpjeNgNFPzRcpYvdf3nmJg2jXOHp1d9U70PqCbv07Q4xYTJz9j4ujHTBxwv4m12yO3PDdhH5uLQpeJBd13bD0Bb1efzvEfpLAmP3JtWfugETIEc5DmHLZgI2BGMeAvGsFonTTBaFtLgMe/sbmAaaRQQURd21u/B3YheIs2CobcbeK4J02c/5pg6AQTV7xl+gI2d9lWImh7dWRe1yF9gPGjFB45XeHOkxXuOllh6T0G5t9hkXq7yxqLQMEyF+E/pgBvzI2ffY+oJdDdq0XqWskwFM48IHRlH/4uKKqI3v5dXq2ftnJb1Ba7m9u+PW6OjUStiW0wmmZ8/y7W4xduRIPrpHhid4+9rdR5m51emudaXGOW7LQu274N8MSZCp9fG95XRKpsQt9qagVTfgtutAjw/vz4fK+IiKj1UUq1BzADwDC/0YUAjhGRJTFsyrxdy63jATBYUzbwbN9WKZXqcnmBV1URecorIttEZImbfwBWR2LZRERERERxK06fWxIRERERERHFFu+PiZo9PuciojjCYDQK17nwfTGrzscOfznz4YDhM5VSKZFrFhERERFRyyJPXgf88UP9iOICyK2nQT59Bdie67yeW0+DlLrv61Cr6WyfYEAbvnLK3/Sd5+2mNQVZuQh488HQBQ84evefQ7rav4ZOmmC01L9fjNFD9IEjdfrzLNQAACAASURBVA6r+AkT8u9vODK5+QajKaWAngN3D3tg4pLiN7Fq9WDkr+iBR7bdgbu364PRlm6p/7s5BaPhyzeBb4ODzBJRi+PLZjiqor23YZ+nidvuwoE75ztuQt06MQyFNM2dd0lcB6NZjzdi+DTr5L0VZt1soHOafblXZgvyXXRyd0pEcMaLZoNQqcW5wL/+F7nQJzefV+woj9hiG0W3bQSelgZkWZfL2RofQQqF5YKf19iX6ZEBzLnVwM3HKe1xLiURmHyxQq9OoQ+EgzXnsPxSYN66kLOHzS4YrUOYp7jsdP3rvelDwR/ro/MehwpGy25vPX1LccMZC8sFj84wcetHJva9z8SGHQ3LvzJb4LnCxE0fmigsF9w1LXKvZ+5tHjxxloGbjjVwz1gDE8Ya6NvF9wJO3tt6nhlLgpfvNlzzsRlNv98RtSSxuFa6/9TQ55YaLzD8QRM3TzExc2nk9/MKm2C0kpLop5C5vWSway9Ra2a3K+myfffSXLtu2AEscf5ILKZKbQ5L+aXO63F66NlSFFyyWBOMlp7ie0Zz4jCF589z/xClskY/bXuZ/vnCt8t4DUhERE1PKZUG4CsA+/uNLgFwvIgsjGVbRMQEsCFgdGdN2QI0DFEDgJ4uF9krYNjJ9/uIiIiIiKi1i4PvVJADId8nvo9ERBQPeD4iIiI/vN8kIooiHmOpZWIwGoXrtIDhN5zMJCLLAPzqNyoVwLGRahQRERERUUsif/4EfDfFetqj17ivb9yeruep9VqP99jcTfbqpHDh8OAOlhcMdxbaEiuy/HfIJQeFLrjPCCi/YK+RA+1ff2aSRS/Yky6CMf5x7N8r9Ov/Yf0xSJWABJnkZp4n3WtQyCKfbhxnOX59AVBe5XswZxuMFmdPOMQiFK3OfpULQs7f1ixHEhr2Os7ybsOP60Zh9rqReCP3MrxxfGDfqYb8Q5R0wWillfH70NPUZH/FOgTv8P4KK+4z8OoF9gvOujFyYWV1lm5BUFgSAHzxF7BxR2TeO7v9KlCRTbhVLIUKpqozIMv6PSuqAFZti3CjwnDQA/pt5tlzFWZcZ2D5vQYO7avw8N8NLLvXwIzrfP//fJuBNy9W+PhKA2seMHDBcGcHwRH9gOQE62mfLoze8aBQE6qXlgIkeMLbqQdm208/YKKJmtrIv6ZQ219XTTDaJr8urKu2Cf52r4lbpggmfW3fxse/EXS63sTLP0bmtWSl208/coD1+/HLWmB7QABkWfTziIjIhu54FOZh1VJWukLFc6HPMTlbfeGHxz5p4r7PI3tNVG5zrCmeNQOyfYu+QAS4uVYCgJ0MRiNyTReMZvf8Zdqi+LyXLdGEkgHANhfBaLr74UC5Fr+BoAsoS29T/3eHNtZl7FTV6qfZhUKW87hIRERNTCmVCuBLAIf4jS4DcIKIzGuaViHwqsHu7LwsYLify2X1CVEfERERERHFRHw+0yQiIiKKWwzOISJqxuyO4Ty+EzULdtdivE4johiLs27D1BwopbIB7OM3qhbATy6q+CFg+ITGtomIiIiIqCWSSVdHtsLKCsg6d/0dajUdMRM89vM9fqbCRYcqKOXr4HrRoQqPnxkfoWiybRPM+y6G/N+hoQsffCzUfe81GNWpncIR/fWzZB58EHDYSb6BxCTgrPFQNzwNABiYZb+4c4v/B8u1lJgcuq1xTPUaGLLMoKoc7bQVW33/2wajxcfmVW/RHO2kgcbmkLN3rt1uOT4RtRi+cx7OL34X5+94E9cfo3/h/mFx6dpgtJBNaTJOw69ioX1bhUtGGLhypP3Cr3rHhETwIb9VJ/c6ToIANhUKLn7DxJC7vTj0IS8em2HCG7Bi3YR9lFUBtd6m/xDD6zA0b0g3fR2vzont66j1Ch7+ykSPW7wwLvf9W51vXXaPDODKIxVGD1Zom1z/ovpn+cYN2PwDDnxuDM57axRO+ethZCXbpC8EaJeiMEqTVRnVYLQK67oz2oZfZ9/OoctMWxR+/TraY9OuY27PjtbHibXb6/efSV8LNhZaFou6Sw6zP46dNMx6ugjw9dKGL35njWVRW/EcyEnU3IQ6HkVKSqLCyvsNjHDY9f6+zwVbSyK3r9sGo1UnQN56KGLLsuL2lVTaBAcRtWZ2t0m6q5OOqQqH9bWe9uVf8XlNUWZzj71oo/M2O71P21IcPE4XztbeL24lI9X9jXWlzbWfXTAavwdHRERNSSnVBsDnAEb4ja4AcJKIzG2aVgEAMgOGrT8Q8FkcMDzc6UJ2hcLtHaI+IiIiIiKKGD4MIyIiIiIiIiIicooxikTkBIPRKBxDA4b/FJFyF/MHfrFsSCPbQ0RERETU4khZMeAyxMyRX752VVwXPpMQ4m4yI1Xh9YsMVD7n+/f6RQY6htHpMtKkaDvk4gOBGe+GLKu+2ALj0c+gMoKTV075m/61dO6SBuOhj6G+L4OaUQjjmkegknzBZoO6hggjKZtuPcETIoku3vUMHYzWu2Y9kk3rHsTL83yPM3XbIxBfwWjy/Ue20/cafUjIOrrV5oZe0Oxp6NxOP9n0W19pmmC0kmYYjKaa8L1++mz7hb84S/DvTyRi4Wh2nct/W2c/b3GFYNgEE2/+LFi2BfhlDXDzFMH1H4QfjAbExzaja7Mn4NzUMVXhoN7WZZ+cKVi2JXYflVz5juDfH4tt2F2dE/dWUJoNXeZ9A7nueGDeN8BfcyGv3A2ZeGlwOdOEVJT6/q7xbUhStROydSPG9LFuxPI8YMXW6KyTIk04Q2OC0ZISFPp3sS/z5eLIvx7d7l13HhqgCUGtNYF1Bb6/P3MQbBgNGW1DB6MNzAb6BHbN3eX39Q2H7cIxdH5c4X4eIrLmNCg0Evp2UfjxFg/GBHant1BrAt8ui9xxzu56qMhoD3z3EcS0uVFoJLdVV9ciKIiWyCmprYVUOQ+9bU7C3SvG7GN9UPsrdN54k7ALgZ27GihzGBLrdH1tKwVqautLiwiKNZtQekr9uuzQxrqMnSqb4EfbYDT3iyIiIooIpVQKgGkARvqNrgQwVkR+bJJGAVBKZQLoEzDa7gOBrwKGR7pY3OEAEvyGF4jIVhfzExERERERUVzjE1giIiIiIopDdn0p+At7RM0E9+Nmie8NtVAMRmsdrlBKzVRKbVZKVSqlSpVS65RSs5RSE5VSh7usb3DA8CqX868OUR8REREREW2ITmqEfDHZVfnaMIPR6iQmKCQmxFFi1bRXgZIdIYupxz6HSu+onT5uP4WkBOtpo/fyvV6VkAiV0LDQ0G5Ajwzr+done3F82QzriR7NwpqLvfYPWcQDEwOqV1pOW57n+98uXyCugtGeulE/8aI7sOc/r0GmTaAZAHR3Eoy2ZgmGVSzUTvYPsErXBKOVxkHIlY7u/W7K99pjKPx4s/0B8JGvBB3Gm3hxVuMDOuw61S//dRkkPzgNIL9UcMgDXmRcZ1p2iH/2O8Fv6+rrdRv2UVThrnw0mJqNw2rbGLef9QZT4wWuedeMWIidjmkKLn/LxGtznC/nrAOC2yw7y2FOvBRy48nBM/zwMeTTV3zlRCDvPAoZ2wNyXCbMw5MhR6f5/h/dAXJ6P5z82H7aZX+6MDrro1DzkwqNCUYDgLE2QaUA8MZPkX89oY5N/YLzVHdbuRUo2SnIK4l4swAA7ZKBPTTXGecepPDjLQb6drFfZ0opHDHAusyLsxq++HCC0b5eyg/biCLFaVBoJB01yNmF2D9ekwZBPY1RbhO2szUhCyjKB1bqr4kbS/cq2ibp5wnn+Eitm3i9MJ++ETKmG+T4zjBvPBlStL2pmxVRdpfdduHX+/W0nlhaCdR64++6orTKfvoz3ztrs5v7NP9ry8oa/bO8dL8wtA5hXIfbHdvsgtHsQu6JiIiiRSmVBOBjAKP9RlcBOFVEvm2aVu12Nhp+Z3MrALtfSvoagP+T3uFKqUEOl3VRwPAnDucjIiIiIqJIY6dEahLc7oiIKA7wOoiIiIiIiIgagcForcPZAEYB6AYgGUA7AL0AHAHgdgA/KqXmK6VG66tooF/A8AaX7VkfMNxJKaXpskdERERE1EptyAlvvs7dgaPP0E9ftwxSuM1xdbpOptHsbB9NsnB26ELj/gl10DG2RXpkKEwYE9w59+/7AUcO0M+X4FF45O8qKFhOKeDho7ejvalJSmnmwWgqqyfQb++Q5QZWWwcCzlji2w7tOgbHSzCabM8FCrZYT0zLgLrkTng8Bk7e277B3Wr8gtHaddCWO+qpkY7alaYJRiuxCM6KF/EYjAYAI/ordEq1L1NaCVz1juDiN0zkFoX+UodpCpbkCv43z8Qva+qDRMpsOtXn1GTBPG/voGCvM140MW+d/fIOeqA+EMwucNBKXASj6bYNi3PTFUcoZKVbl/8+B/jfvOh+6eaNuYJXZ7tbxsiBDTdy2VkOufRg4Ku3tfPIo9dAdpYDX/4X8uIdQHGBtmzX2jwctHOe5bRw1odpCmavFMxdLSivsp6/ULPdZITYl0K5bpRCn0z7Mv5BgJGg2/7qAj3aJittCOqKbYKVzi/DXDlpGFD8tIH1D3tgvhz87+3LDAzp5uwA2j/LenxlDbChQBoMu7VyK7/oRhQpumvjaF4rnTjMeeV73m7ipVkmluY2br/XnVsAIDehq687x+rFjVqGHd1xPzVZP89Om4AgIivy6gTgw2eBsmKgtgaY9w3ktnFN3ayIsg1Gs5nPLsCrJA6Dvq3Cqf19/IezY6KbI2duUf3fduvEPzC9c5qLBexSXaufZheMxmMiERHFmlIqAcAHAE7wG10D4HQR+bppWuWjlMoC8J+A0Z+Jza83iEgFgCkBo291sKwBAE7zG1UL4F2HTSUiIiIiIrLBz3yJiIgoFnjNQUTUfNkdw3l8J2oW7L7wx+BbIoqxZtqVnaLgAAAzlFITlbL7XW4AQGCPbFfd+USkDEDg17Lbu6mDiIiIiKilkxULw5sxvSPUhLeA/Ubqy0x7zXF1tZrO9gked82KG/Nn2k/vvw/UdU86quq2Ewx8c72B60YrXDlS4d3LFN673IAnRBLB2QcZmHubgdtPVLhguMJNxyrMvsXA/x2oTxtSzTwYDQBw+NiQRQZWWQej/boWuPdz0zbAySoQqSnIvRfpJx44CnW33Kf+zX476XHMKODcG6HGPw41dT2w14GW5VLEJjnLT3ob6+WVxmFH8jpNEfbh1OoHnG1wb/4s6HGLiRd+0Kf6lVcJxr1gYtgEE+e9Kjj0IRMjHjGxpUhs358iTwbW1mZCTu0NKfeFKq7cKvhxpbPX8Nuu2HrXwWhxEKbndbFttG+rMOl0/UZz04eC4orofDBTVCH4v/+6q3vzIw23LVnwI+S03sBGB2/sN/+DfP66o+WMLf3ccvzCjcD0v5y3eX2BYL/7TRw5ycSIh0387V4Tf6wPnl8XqNehbeN26O4ZCgvuMjDGJnvzpR8jHIzmYPsboAkWW7kVWLUtsu254kiFNy9WmHq1gdCPdZ0Z0EVfz7Pf+wejuX8t/sEdRNQ4mgzrqF4rDchS6K7P7G0gtwi48h3B0AkmLvuvGRTm6lT5tnzttEqjDYqN9pBwg8Ud0DW7bZJ+np1hBEdSK/ft+8HjlvwK2bQq9m2JErsjgN0ljF0wWjyENgfaUW4//ff1vvuEUNzcp+UW1/9tF8zWvk393x1TFfp1cb4MANhpc+1nF4xWXo2wzwFERERuKaU8AN4BcIrf6FoAZ4mI9QOx8JYzUCk1xuU82QA+B+D/5KgawIMOZp8AX7hbnYuUUtoPXZRSKQDeAOB/5/KaiKx23GAiIiIiIgoDn4MREREREREREVELYPt9Lz4DI6LYipNuwxQlmwG8AuD/AIwAMBjAIACHAbgWQOCvYCoAtwN4IES97QKGw+kSGzhPGL9LHUwp1UUpNcTNPwB9I7FsIiIiIqJIERHgpzD7Z3TuBqUU1GUT9PXP+cxxddpgtGZ4NylVoROg1L9fcRUqMmovhcfPNPDcuQbOPih0KFqdA3or3H+qgckXG3jkdAOH9lVAok3P+hYQjKYcBKPtU/WndtqEaYJFm/QPT1PiYBVJ7hpgwSztdHXdE7v/PmawfZjCoEOHwrjyAajTr4ZKToE64hRt2bc2X2Q5/qDe9X/rOpNvK43fB9K6lsVDMFp6G4XPr3V+ILz6XcGwCV4kXOHFkZO8+GlV/at75jvBtEUNy89fB3S/xcStH9m/P5+1OwnYkQd89AIAYNEmx03Cwo2+ut32T4+H8AFdSIBu2zjvYIUjB1hPyysB7poWnf3ghg+c19smEXjrxPXI+ug+mE+Mh7zzKMxXJ0D+dQywK/guFJl0NbD4F0dldcFoAHDSMya8DpMYRj9u4k+/7W51PnDF28HhN4Wa8IcMm6ALp9JSFF67UL8/LsmNcDCag+2vnyZYbOVWwVZnb6cjFc8ZeOE8A+cPd34N4sQ+e+inTVvkH4zmvu4txaHLEJEzTRUie8YB7hfw+hzBc987Px7LrzNgPncrqm46Dc+8n2tbNjehK7DBOmA5EnTHfQajUaSI1wtsWW897au3Y9ya6LG777ANRmujnxYP9yaBCh20abODoFjdMd5KblH9yi2x+dQ+PaXh8CkhAtsDldk8Vquo1r/BXhOoqnW1KCIiosZ4HcCZAeNuB7BAKdXb5b8Ui/rrdAUwTSn1p1LqFqVUf11BpVSaUuoaAAvh++FSf/eLyJpQL2pXmacCRk9RSl2jlGpwd6KU2gvAtwAO9RtdAOCeUMshIiIiIiKqF7/fJyJ/Id4n/mgFERHFBZ6PiIhaHwYqERE1DR5jqWVqhl3ZyYF5AI4DsIeIXC4ir4rITyKyTERyRGSuiDwrIscDOBDAyoD5b1NK6XtcBwejhU4XCBb4tezAOsN1FYDFLv99GqFlExERERFFxpolQO7asGZV+430/TH0EH2h5b9D8jc7qs/bkoLR7rvQvsD+RwH99o5NY6wkJuunGc1whQfqtzeQ3cu2yPFlM5Dh3aGd/uZc6wd0bRKBtslNn5YlX7ypnzhyHFRGl92DbZIUrhpp3ebsdODYwQEjT75YW/W40qno3ya4Z/VZB9bX36299bybC/VNbmra8KE42R1OHKYwfbzzxizJ9b2m2SuBwx8xce/nvgPs+/PDf/A8u+0IAIBM9217m4uc17U8z/e/w/yr3Yo0AVexpGuzR/N2KKXw3LmG9tz13PeCBRsi/7q+Weqszg+vMLDqmKk458mhwOSJwMcvQl68A3jzwYi3qc5e1cvRr3qVdvrc1aHreHGWidX5weN/X+/b3v0VllvXEYlgNADITNOfA3LyEBTU1hhOgtEGZFmXWZUPFGjWRZ12ycDGh0MfW3693UBKYnTOfbpgNwBYsRVYvsW3EsIJRtteBlTVNP1xhKglcHs+jJTrRoV37PnXe4JtJaH3f/OF2yE3jUHV+89j+LY7sSjF/h5tY2IPYENOWG1yQncKsQ1Gq45OW6iFqrU5oZa1jkRRu6NKul0wWjg/3RVF1bWC8qrQ5baXhi7j5mop1+9xQInNp/btAqJdrjlKIdlFyLzd+q4Icdxzsl6IiIgi5AKLcY8AWBvGP5sP2nYbBuBhACuUUkVKqTlKqalKqbeUUp8opX4DsAPAMwACnxi9LCL3uXhttwGY7jecuKvejUqp6UqpD3YtbwkahqJVAzhNRLa4WBYREREREUUcPyMlIiIiIiIiIqJmwq7/BYPYiSjG4qQrKUWSiHwpIjPEQY8/EfkNvi9yrQiY9JBSyuN0kW7bGOY8REREREStw+xp4c97+FgAvhAY9fQMfbmfvnBUXa3XenyC07uFOCEzPwBmTdUX2G8k1H/egFJNGK7lsemNajetmVBKAYePsS3TVnbi/m0TtNP/3GQ9PlMVw7xyJMy7zoUsmNWIVjbS55P10zp3Dxp1z1iFyw5XSPTbn/bdA/j+JgNJCQ23RdUhEzjjGsuqk6UaH9bcgoN6+4bbJQO3Hq9w3ej6OrpnWDdr85YymP/YG+Ytp0J+jK/ccFMTzGg0fQbebscNUXjnMoXMMOLeJ0wTGJd7sUizXTuRkzzA98em1SgtqcT17zt/3JKzK9jIbTBaWRx0aHcSTBVocDeFG461LmAK8Mx3kXlUVVwhuPUjE/vd58Xm4LzCBs4/RCF/konTFtyLrMfOBbyak24UKACnluj3+WmL7NeHiODqd/VlFm9uOK2wwrpcRqrtYlz57BrrR92FFUC+g/AJp5xsf3tmWm9ruUVAQZm+7j6ZwLRrDHTPUJhxnf7R/asXKBzYO7oHw78m6Jdft33sDCMYDQDySsKbj4gaCud8GAk9Oyl8cW14Hy9m32SitDK44SKC1+aYOPqm1dj7l3PQp99ypA4qwsKUfULWuTqpL7A+B7IrXKrWK7jzUxPG5V4Yl3vR5QYvPv8z/PO8bj3bBqOFeXykVsprs8FUxlnyVyPY7YV2j2I8hkJaivW0Is01ZlPRXfMGyre5Hqzj5j5ti19+Xolmk0lL8a1Lf706KXxylYE9dj0vCHX+sFvfDEYjIiICALQHcBiAUwD8A8CpAPYHEPgBTzmAy0XkCjeVi4gXwJkA3g+Y1AXA8QDO2LU8/7P6NgCniMhsN8siIiIiIqIwsVMoERERUeTw2oqIqPlioBIROcTDBRE5wWA0gojsAHAOGn4nfRCAozSzBH5d2+a3urUC53HwFXAiIiIiotZBwg1GO3wsVI9+uwfVvkcCew62Xsacz+zbUOnr7VirCSbyhHE3KVU74SC/OeLkt28h95yvL7DfSBhPfQ2V2TV2jbKSpOnpCwA9B8SuHVGkdgX32bms6HXttIJy6/GZJWuBxT8D338EufFkyO/fh9vEsMjOckjuWmBHnraMGrR/0Lg2SQovn2+g5GkDK+83kP+4gd/v9GBgtnVvZHX1I9r6hy55Fz9fWYCyZwxsfczAg+OMBkF/3dpb11ko7bBzw3rg5+mQO86EfP2udhmx1lRhH26dc5BvnT80LvYNW5XUFzVIgAmFYydsczXv6nzf/80xGM0bZmjenSep3Z3+A323vPHnJ9MUHPekiUlfCxZu1Jd74iyFiucMvHmJgYwnLwXefKDRyw7H9Tue0U77bZ39+lhXYP9B04qAzVEbjNbWdjGuHNhbP23N9sgtR3ts8rs26t7BukxVLbBqm3UFJwwFVj3gwciBvg159GCFa48O3qifOUfhkhHRf6w/pJvCoX2tp9VtH5VhBv/khggNJCJnwj0fRsIJwxRqXjRQ9oyBwicNzL/D+XFp9OMmCsoaHgsfnC74v/8KfijpjaXJg7Ehsafj+lYl7TpYTXkWAHDGiyYmflFf//YyYOyzJt6ca2Jntfvzve58ZxuMFiIgiKiBGpsNpirOkr8aoTGPgzpoPokuqoivbz7t0DyzCHTxZM0B3I+b9bWluL5w8U7rGdM1j5yOH6qw7iEDmx4xUPCE/bG8yCanL1QwWjzcRxIREUXYMgAPAPgJgNM02xUAbgfQW0ReCWehIlImImfDF4L2i03RHQBeADBURL4KZ1lERERERETUDIR8mBxfz9GJiIiIiIh4n0LUTDCxrJnie0MtE4PRCAAgIn8AmBEw+nhN8XgORnsewFCX/06J0LKJiIiIiBpNtm4AViwIa141/rHgkSPGWBf+4wdIRWnw8qe+DPO0PSHHdoT5zyNQm7/VcvYEF3eTsnk1zKuOghzXCTKuD+T9p5zPHAHyygTb6WrsZbFpSAiqTSow5ODgCWkZwIGjY9+gaBh2GNClh20RD0z8o+wDV9V2qvVLvKmphkx5LpzWuSZb1sG8ZhTkhM6QswbZF7Z5D5MTFfp2UejUzj7FQnk8UM9pQt9ME/Lk9WibrNAmKbie7powKADITagPBZS3HrZtQyzpwodUnAWjAYBSCrccb+Dhv8e2cTUqCWuTeuPb1KPwa1l3V/Nu3hVM5DYYrTwOOrSHG5qXmqxwzynWhfJK0OjwzpumCOatC13u2qMUUhIVZPViYOb7jVpmY2R5t+HaHdbHy5wt9mENy7fY1700t/5vEbEJRovcPtM5DUhJtJ62pThii4HpIIiomyYYDQD+2mw9fnC34HUx6XSFJ85SOKg3cFhf4J3LFK48MnbHmaMGWS9ryh++/3XBaJeOUDhjf307I/l+ELVmuvNhOCHW4fAYCm2TFdq3Vdi/l8JPtxo4bkjo+eavAzrfYKLHLV58tkjwzHcm/jM1/HPwiqT+AACZ/ABy8gSfLrIud/FkQYfxJk58yottJc6XpyvpUUBygvW0nWEGR1IrVWuzwVS2jmC0UFc3HTRhup8tiq8v8eiueQOVVyEoIDKQm/s0/9DZkkrrMuk2n+YrpdCtg+94bqeoQn/PFCoYrZyBkUREFCMioiL47web5WwVkTtEZASAdvD9AOlJAC4HcAuAuwDcDOCyXeO7iMhAEXlQRBod4S8iU0RkOIA+AE4H8C8A/wZwMYCjAXQVkatEJL+xyyIiIiIiokiJr+eZRERERDHD4AwiolaIx34iIiKKHAajkb/AX4jcW1MusOtaZzcLUUq1Q3AwWpFVWbdEZJuILHHzD8DqSCybiIiIiCgitm4EuvZ2PZu67WWorJ7B43XBaDXVwK8Ns5Hl+48hj10LbM/1fQi55FfUfmL9o/VOg9Gkugpy7THAX3MBrxfYngt59hbIV287qyAMUlkBWTgbsuw3yOJfgKXz7Gc46u9Ra4tb6or7gBS/Hr9KQV35AFSCJumlmVEJCVDjHwc8mgSBXbpUaVJjNDK9BQ1HzPnMbdNckdw1kO8/gpw5EFg0x7dt27nwdqgMV7fOesOGAz36WU/7bgokd43lpG7t9VVuTehSP7B+OaS4QF84hsINv2pKNx9n4J6xsW1gTtJA/NTmUNfzlVUBpZWiDXnSaeoO7bVewa9rrac5CYLZK9v6/amuBYp3ht+u3CLBkzNDf4i7X0/AMBREBPLKXeEvsEffri6bOgAAIABJREFU8OYbfgLUlFW7B08q/dKyWF6pgaIK/etZnmf/Wr9ZKqj1+sqUVQFezXaWoQm5CIdSCl01x7otxZH7gF1Xk/+xKTtdH+KoCwXrmBo8LilBYfwoA7/c7sHsWz045yADRgwPggOz9NNemmVqAzAO3hN4/woDfTWnvtwifuGBKBLi7VppeF+F6eM9+Gq8s5vF3CLglOdMjH+vcceE3SG/lRWYs6LWtmyNF/hqCTDmWecXQHZhvW2SrKftZAAQuWEXjFbViAvUOGO3p4cKv85sZz3+00XAB7+ZqK6Nj2uLHeXOy/623n562MFomk0mPcV5fTo1Xv3xLVQwWlHLyfgjIiIKIiKmiOSIyJci8oqITBKR+0TkURF5bdf4qASUichaEflIRJ4RkYdEZLKIfC8ivCshIiIiIiIiIiKiZi4+PgcmIqJI4/GdqHmw2VcZfEtEMcZgNPK3LmBY12t7ZcBwL5fLCSy/Q0QKXdZBRERERNQiqb0Pg3p/OdTk36EuvRsYsG/omdqkQp10ofW0QfsDnbpaTpLfv2s4/OXkoDJPpFxsOW+CJ3SzAAB/zgHyg0Ou5Jv3HFbgjiycDTl3KOTa0ZDLD4NceaRtefX2Iigjfm6N1b5HQr38E9QldwHn3gj17LdQYy5p6mZFlDriFKiX5gDn3QQccYplmQ5eTWqMRlAwWhSZz90GOWsvyF3nOp7HuOzuiC1fKQUcPlY7Xc7aC2LxkDk1GUjR5OsVeDIbjtiwojFNjJh4C/tw6s6TDXx3o4EDdj396JNpX76xlicNQE7ygLDm3Vzo/jOJsqqwFhURmwoFB0w0UVppPd3JtpGVrp+2tSS8dgHA+/OdrcjD+ilIcQHk2tHAT1+4X9CBo6Bufg5q8h9Q4x9zNau69G6ohz6GytoD6vL7AAADq/X7e06evq6FG+2XVVgBzN71BLHQJiAiwyIMrDF0wWjTFkbuwze7gJw6CR6FrDR39XaK8LqIhP5d9DvVle8I1mlOv3XnG937kevuNE9EGtprpSa+vTl2iMKK+2PXiAJPJ98f3losXeXsZD5/HbB4s7Nzg+5ayVBAG8319c4afumDXKi1yayYPzN27Ygyu/uOUMFo+/fSFzj7ZcHAO038uqbp97sd5c7b8N+f7cu6uU8rKAd2Vvtm0IU9tw/8ybIwbS21Hh8qGK2grOnfHyIiIiIiIiIiouhrLc/BWsvrJIoR0wvUlDV1K4iIiIiIIoj3jURERBQ58dP7m+JB4FeldV+RXhYw3M/lcvoEDC91OT8RERERUYumlILqOxTqotthvPYL1PVP2pd/fZ5+mmEAhxxvPfHrd2G+fBfMZ2+BzJoK/PJ1g8m/peyH3MRulrN6HN5Nymv3Wk+Y942zClyQygrIxEstg9isqBueguo1KOLtaCy152Coi++AceUDUHsf1tTNiQo1cF8Y/5wIY+IHwKEnBk3PMItc1detNjdonHi9YbdPx3zhduC9J9zNdPTpEW+H0gTK7fbZa8HzKIXMdtbFt9eFSewic78Mt2kRZZrW4+M9GA0ARg5UmHeHB+bLHqx6wIOXz49eo3OSByInSR+M9sRZ+mXnFrv/2LG8rAry8Qswx/WBedVRkJ+nW4bxRcP4/2fvvqOjqP42gD93Nj2BJIQapAjSBQTBgqIodqzYey9YsPdeXhV7w94rVn4o2LuIiCi9hd7SSEIS0pOd7/vHElJ27uzMZjdswvM5h0N25rYtc3dmd+bZKSYWbtKvdxIE09EmrKopwWhLspyVO363bMix6cCCma77ULe/BuOpr6GOvwQqNg4Yf6Xzujc8C3XBHXVhoGfeAIw9DV1rMpFoWp9cufzxSTAv2hfmE1dB3noIsnIBAMBrCr5eFPg5n7bAV2Zrmb5MaoLju+CILojr+6WAqUsQcsnp3LRbqrt2u6ZE3uTWvzMQ7TQMt564aN99Sdfcpyx3b/NEpOGN4H2lPToqvHF+8wwkz5O2Y3+mstD5m/mPy5y9L9gFYuqD0RwPgwiosX/BSHWAxKlWINBscewQ+xLr84EL3jJRVbNzT6q02+9t7KM5Yrt/6nbXdU2e7/9iTYh02zhn7dx3vP1j/dAM64GVB3iZ5vF6LiIiIiIiIiIiIqIwCPRhMsMImkVlATB3IvDNMODPM4E8/fm8DYgA824FPm8PfJYC/DgGKPM/D5KItsv+EfjlKN82893+wKpXd/aIiIiIKBjNdN0BETWR7bbK7ThicY6lVorBaFRf+0a38zTlFje6PUQp5eYyxsZX9jduj4iIiIiI6jv+UqDXIOt1J1wCtZt9VrHqpllfUQa8Nwn4+FnIXaf7rf426Qhtm1FOjyYrXFwV2lR/fQNkr3dW9vAzoE66IrzjIWc69/BblOwtctXEIaW/+S8sD+1VtzLlGeDDJ13XU+MuCOk4AACD9rVdLY9fBdma67fcaTAa3n8M8ueMYEcXMroLwSMh7MOtS0Yb2DDJwEtnK0wcq3Db0fo78cJZCt9ea+DZMxReHb8NL2ddhcdzbkWnmhzL8otjB2JVTG/LdY+cYOLasQbaJVr3taFAtCFPOiV//wF5+jpfCOWiWZBbToTcd07Yw9FKKwVfLrAv4+S1kRCrkBRrvS53m/tx1crcGvj+D65YhINvb/x7Ac6oz1ZCHXNew2WGAfX2v4ErH3+x33ueioqCuvddeK59En2rVllWW54DYOV8YNrrkDcfhFy6P+S7D5GRA+SXBu525srAwWgpup9lCFKntvoXwVyHuwiBOJ2b+nV2PllFGcABbn96ohkkJyj0TAtcrrHaoCBdUF1WEb9wIwoF3XzkiZCdpdNHKHRuG7r2BlcsslxeacShbPtXVFk5zo8/nb7v63ZxDAXE6YLRWn+OFYVSTY39+nkWx7stkN27vwowbR3oYD9pRQ7ww07+Ka4CB/vI9dntn7o9vFqR7ft/myYYrU28s/eGU4bbl/t0rlge+5VW2g+YwWhERERERERERLTLa3EXJba08RLtJDXlwM9jgYznga3zgfVTfLe3zg9cd+kkYNljQHUhIF4g9zfg58Na4HxB1AxyZwK/jgOyvgMq84H82cCcy4GMyTt7ZOQI5zUiol0O92mJWj6b7Tjc1w4RETXGYDSqr/GV1ZY/NSEiWQAW1lsUBeBAF/2MaXT7Gxd1iYiIiIh2OSoqCurBj4AuPRuuOPo8qGufDtxAh65B9Zvr6ahdN6y7w4vt7T4I+yu0hwLy5ETHZdUpV4e0bwqeSmmc0Q1UKk1qkcaICotgoLLASQeSuRbmgxfCHB3r+3fxfjDP3xvmtUfCvP0UyJK/feV+nwaZfKurMSEpBeqmF6D2OdxdPQeUUlBvzbUtI8d3gzR6DHTBaFui/J8DefE2iNvErBDTzR5GC/00a7dUhcsPNvDM6QYePsnA9GsMpKfUrY+PBh46UeGKgxSOGKRwzaEGLh6QjUsK38L1Bc/jwdz7LNudGz8CZYZ18tmotpsAAD3aWY8pI0cfqqJTWuPxX/jzZ8Cf09015NLKXMAb4CXpcfja6KQJackpDv4LmswAeY7xZhneyLochtuTfPY6yBeK1qm75WrVe0+oe98FOnbTNqFOv9Z6uVLASVegn1gnMmTE9Gm4wOuFPHQhNs5f4Wjo/20Azn3DxPiXrJ+4pFggOiq04T0je+rXvftXaL6AcxqM1reT8zb32R1ISYiMIKPGZt/uftKtDQrSbWuREIyxNk9w/psmDnjUi+s+NpFZyC9oqeXR7apFSC4aEmIVZkxs2o5brOHFjSUvoWJZG3y8+Rxtudqg36yCasdtVwXIoqqlm/eVAhI1hy1lDEYjN2oCvGDWL2+ecYRZU86FMgyFX28KPJ+Ean8vWHaBwFY2FujXuT1OW5Hjq1BUZl2xbZyzdgamK3x1tf6xLqn0HUc2Fmjei4T9PyIiIiIiIiIiIiKikMv9zT8EraYEWP1m4LobPvZfVrwMKFocmrERtSZr3gJMiy+kVr7c/GOhZsTzuYiIWifO70REROROC72UlEJNKRUHYHyjxb/aVJna6PaFDvvpj4YBbKUAvndSl4iIiIhoV6a694PxyQqob7dAfbYK6qdiGHe8BhUdE7hy+y5B9Vml9G1fMMppMJo+xUZuGw/55XO3w7Jua+ZXQFGes8L7Hw01cGRI+qUQSE7zW9S3KsNx9Yn5z8Py1RggGE0y10IuHAl8/2Hdwox5wJrFwH+/AjO/glxxEOS9xyB3nuZoLOqWl6A+WAj18TKoGVlQJ1zq+H64pfYYDBwwzraMXD0W4vXuuN0+yXq7zff4B6NhQwawwVn4Ubi4CfuQqkptO3brdqZjBitsnGRg3SMGVjxooPBZA3ccY8CofwcLcnf8uXfFf677SF07BwDQv4v1c78iW1xfcF9iWCfsyTfvuWvIpSveCxzU5zQIpmMb6+U5xS4G1Mham7cgj9TgjczLMbzCwa/BHnUO1O8VUJ9mQM3IgvH8D9pQtFrqsNOhpiyFuu1V/5X7HQXVvZ++rseDvukWYXcAVsT2tVyeNXmS7Xjq++BvQaEmICI1wXEzjo0frn8RvPirYM7apn+Zrg3IafRFff/OzpOJeqZFSIqRhdREhefOcDe+2mC0NE0gZ35pEwcVpG0VgopqweLNgr0eMPHebMFfa4DnfhKMfdJEoSZIJBARgel2MiUKAa/DoMadaVh3hUX3ufsq8rns67F0xFtY/qCBohei8dj7VyL64yVo/9EsbZ38qDRUqhgskt0d95MVINS0li7MSQFI1Bwyl0Tm7idFqhr7QD/ZuLKZBhJedsFoTqatg/oqDNNnAQMAfsvYue/JW13u4+SX6sfq9m5kZPv+L66wXp8c77ytcUMU7j9e/6zM2+A/uNIAwWj5DEYjIiIiIiIiIqJdAr8zpOYW4DXXlF8tIWfm3Wy9POP5wHUbB6rVWv5M8OMhaq3WT7FeXrTY9jx1IiIi2ll4LELU4tl9phDCzxtsuwlZL0TU0jEYjWrdCqBrvdteADNsyn+wvUyt8UqpPg77qe8TEdGcok1ERERERI2pxLZQnbpBxcQ6r9Q+Pai+qlS05fK+nXwXuDuiSzbavk4+fjaIkdWRshKYkyZAbj/FWYVTr4Z68KMm9UkhluwfyjXCRQDUQ1vus15RGiAY7bPJAcPTAEBevdvZQEaOhTruIqju/aDSe0EZ4f/IRT38mX2BlQsgr92z46YuoGaLVTDa9vo7k+5C8PphHzLjbZin9YUcngJzwsGQdcvq1v3yuW/dYckwLx0FWf5vmEfsnlIK3dMU+nRSiI7yn1flpTt2/D2ociniTU3ClEbKf9MBAP06Wa9fnu3+gvsyQ5Nm9fs0SIBQh2BlFwnmrAtczmkQTKe21suDCUbLLRYc9YwX2zSfbnmkBr+tG4vTtjkLAlWnXwulFFTnHlBt2zkeh4qOgRp3PtSDU4C9DwF67QmccT3UQxa/LttI/+HWITKronujBv6haVlRnR2Py84eHUPSTANt4hQOsvmE8t4vm34inHZuenwCzGO7wnzlbojXixE9nbfZNbXJwwqrqw5ReP0850lLsVG+/9MSNYGczRyMMXuNYMh9XiRPNJFwlYkh95t+2+yKHGDafPdfn/67XnDIEyZiJpjodosXH//Dky2p+bgJkd2ZBqUrzLqqCJ1rsv3WdarJ2fFvVNksvJt3Ja66cBD6XXox+nZSiIlSUIYBlb47Utu30d63PE8a/orfF6WaAFcrmYXOtnm7fdKkOOt1pQxGIzcC7UO3lmA0m3XK4bw1doB9wdxtcHTcEC5bbYLOrNiFxbo9d2xFjq+CLhitrYtgNAC4+1j9ZxqbC/2XBZr38kp4mhoRERERERERERERtUIla3b2CIh2DV6b8yYZAtkC8DkiIqL6+L5ARBQ+nGOpdYra2QOg0FJKnQvgexHJcVHnUgD3Nlr8tois19URkZVKqXcAXLR9UQyAt5VSY3VBZ0qpEwBcUG9RFYD7nY6TiIiIiIiC1HG3oKpVqRjL5aP7uLjSPtAvcS3528WI6jUrAmzMgFx5CFCUH7iCxwN1z7tQhzoMUKPmk5zmtyhWqjC69A/8kTjatmrPqnVIkHLrlZtXA4P28VssBTnAiv+ATx38KqNT3fo4Ch8KNWUYwKOfQ247WV/ogycgp14DldYZHdpYF9kYbT1HyAPnQx1+RghGGhxdCIVa+jckJhfYmgt54uq6FYtnQyYeAXy0xBcKd89ZdeuW/wu5/mjg/YVQaaEJdQoFyc/2vR4r/T9KkTk/AMv+2XE7Cl7sVbEAfyXs77j91P++hJQUoU/uIgD+9TZvFQzqYl03NgqorPFfXmIXOLJxFbD7AMfjc6r7rc6ChhwHoyUrWH3gv6HA3ZcAIoIzXzPxywp9mUVrhqNv1SpnDZ54GdQeQ1yNoTE15iSoMSe5qtNv/z2Bn/zve5URi3XRPbBHdcOTOLNDFIw2omd4knvG9FP4faX1c/ndEqCwTJCSEHzf2iAisxooygPefwyiFHa/7AEM7AIszQrcZteUoIfTLJRSuOhAhdF9BAdMMpEXINgsrXgNZGE22q0BgP381pdUApXVgtjo8KU3lVYKFmwClmQKLn/P2bb9zzrg/FHO+ygqE5ww2UTm9nCQzYXAma8JOrYRHNJfoaBU8N96oF9noFu7CEuqolZBd26vJ8J+EklWLcQ+L1+DTStn2xc8bSKMa17RrvYYCqkJ1kFCBZ52KFfuUn+yi5yV080gSikkxliXKGEwGrlRXWW/fqPDfckIZ3c9gtNgtP4OdkOnzRfs12vnvO8WuMuxRoFNMJrbAOuM7WcGFGs+ImmrCXK0c9gA4Mdl/suXZAI/LhUM3g3o1Nb3WJcFeBlvdfnYEBERERERERERtT68KJGIiCg8TMDixz+pFWDoHRFRC2Yzh3N+J2r5uB0TUTNjMFrrczGAV5RSnwL4BMCvImJ5WrVSagSAOwA0vlpyM4C7HPR17/a6qdtvjwLwo1LqEhFZXq+fWACXAXiyUf0n7cLXiIiIiIgoNFRcAqT3YGD1Ilf1qlW05fJoN98fO/iwS7xeKI/zRqWqEvLwJcBPnzircMZ1UIecAjVwpOM+qBmldLBcfHv+YwGD0U4p/ly7Th68ACgthjrp8rplX7wEef5moKY6mJFaUlc+ApxwKVSCJnUszNQBx0L23A9YbBM0Mfs7YNz52MP6oUZGTB94YcAD/7QfycuCaq9JzgozryZ8SP04BfLpy9Yrt+YCc36E/P4//3UlRcCf04HjLwndIJtAPnkO8uLtgNcifUxjZMW/joPRYs0KxEsF5OFL0H5DEmBRb1uFoMa0Dg1oGw9s2ea/vFQl6DtdvzzkwWibtwpqnOWiOQ6C6a3ZFlZkO6tfa+562IaipdXkoXeVs1+GVfd/ABxiE3IYRv06WQfFAcCK2L5+wWhZoQpG6xGewIpTRyg8MF2//3HuGya+uib4k+F0LRv1w2C/eQ9yyX0Y1l1haVbgfaGuKS0jNKtPJ4V5dxt440/B8ixgyj/+922PqlXoftUQCIB2sQOBXnMt28ovBdLDFAj341LBeW+ayC52V+/z/wQvnBW4XK1X/5AdoWj1Tf7FxMpchas+lB3vZRPGKDx7ukKUp2U819QyaENkI+RlJmUlkFtOBBb8EbjwyLFQVz8WsFhaknUwWp7HP2w5EKt2rGgDMRWQqAkaChQQRNSAN8Dxac4GSGU5VKy78L9IY7dH5HTa6tdZv99a68sFgkfGOx1VaG11OK/UyrcJm9V9nJYYC5RahC8WlAJ52wRFmmC05Hj3bw7pKdaP99uzBG/P8i2/c5zCA8crlAaY98pD9zEMERERERERERFR5NpVLgrdVe4nERG1DHxfIiIiijx8fyYiIqIQYjBa6xQP4Lzt/0yl1EoA6wAUAfACSAMwFEAni7oFAI4SkYCXgorIJqXUeADfAYjZvvgAAEuVUv8CWAMgGcBwAI0vOZ0O4G53d4uIiIiIiIJ24LGug9GqVIzl8hg3R5KmN3CZmirA4/wCX3n7/xyHoqmvNkOltHfcNu0EHdItF7f12qeZHFD2J24ueNq2jDw1Edh7DFT3fpBVCyFPXxf0MP2kdYH6Yg2U4TCJKYzUw59Cju+mXS+bVkEB6K+5iLzSiMP66O7oVb3Ov/LqRUAzBaNVVgu+mCeYu973XdjSLOtySab91eYy5Wlg6Rzrdd9+ALWTg9Fk6T+Q9x4FZk53XXfv8v8cl001t6f1/PElUuKGAbtbjAUGCreWw/dRUkNJsdbBaGVGgGC0EJv8q/MvRg2H1/r37Wi9LawvAMqrBPExzhr63zz7sR1b8o1l4GDDQhdB3fIi1E5MsUmIVejeDthQ4L9uRUxfjMO3DZblejTJci6N7BmSZvwMSld4+CSFO6ZaPz8zFgEb8gXd04J7zLVBRPVfU3mZQGkRuiQnO2ozXAFh4dA1VeGeY32P3Z3jBMc9mIN1Xt9rIsW7FR9sPn9HuEn7mnxtO/klge93brFg2gJf+NgRAxX27x34OdtWIbjgbfehaADQz+rTchv3f2X9YvhiHvBFo/nhpV8Fw7sDFx8YIYlVtINp+gLsvOILwPKKL5y1wb8Ay0zXdcS/rss2TAHmrrd+DUbA7ikAQCZd7iwUDYB67EtH74Xtk4CMHP/l+Z40xEmFq/EVlPqeC0+AHQjdu71SQKL1ITNKK3liF7ngJLh702qg957hH8tO4nRXeFA6EGXANjh5WRaQkSPo26n533N14V9JsUCJZZiZfq7Q7XMO6OwLaLayIgco1kyFbYPI1eviYFf2/2YI9ttdBQyEZGAkERERERERERERURgEDBvgd1ZEtCvgXEdERNSy8L2bqEWw/cyB23HEYjAltVIMRmv9DAD9tv8L5CcAF4jIJqeNi8ivSqmTALyNuvAzBWDE9n9WPgJwqYg4SEggIiIiIqJQUCdcCnnnEVd1tMFoHheNmAECYQDfRcCxzq7QlM2rgfcmOSqrbnuVoWgtgEpOg/QaBKxZ0mB5kujDr+7eJxN3vHM0olETsH35fgpwwZ2QC0c2eaz1qXNuiohQNABQqR2BH4sgh2muWhbfdtjXJvAlI6aPdTDaxpXAvkc0fZABlFQIjnnOxMxVgcvuURWgUK7NxxprFrsbWIjJ5y9Cnr0h6A+bB1Q5Dx5L9W7d8XeKt1BbbmtuEayC0XRBH+VGAgSAVcyALP7LcnmwJnxg4pXfQh+M1q+z9XIRYPUWYM+uztqZNl8/NgXBxIIXbOurx/4Htf/RzjoLs/6dNcFoSUN8P6NQT56n6e+taYlAj7QmN6N129EG/ljpxTeaTf692YI7xwUZjKbZtTEah+AV5qFrqrNgtA5tghrKTjewC7Bg3b74FXuhSsXiiJIfkChlO9a381q8qLbLt8+4xMocweFPmztel/d/JXj8FIUbj7B/7/38P1+QWrjlFIvrgI9L3xWcMlyQnODutScilsFbTQnU8ltnWUfsw78c9ms3Tv+xCAKO1cGyBvUClG+NPBGQvydL/gZ+/sxRWfX2v1BRzr6uTEu0Xp7vSWuw7+OEKUBhGZCWFLicFUMBibHW66wCkIi0agIf12LTqhYfjGZ3COR02kpJUBg/XOGTufbHCNPmC24+svknQ937Ssc21vNCrkUQdS3d3NMlGWgTB2yzCECbt0G0Y2gTp+9Lp6vD8N63Z5koDTDvMRiNiIiIiIiIiIh2eS3tosSWNl4iItqF8T0r4nG/gohoF8S5n4iIiEKHwWitz7MANgM4AEAPB+VLAXwPYLKI/BRMhyLytVJqTwD3AzgdQKqm6GwAT4jI58H0Q0REREREwVMdukLGXQjMeMtxnSoVbbk8xs2RpDhIG6gOfHWk5GVC3psEfPGyo27VRfcAR5/rqCxFgP2P9gtG61u5EsneQhR5Gl6J2yYOuHlAhqNQNADAgpnAt++FaqQ++x0FnHhFaNtsIhUbB+neF9iQ4b/S68slT4pT6JIMZBX5F9kc7Z8EJQBeW9gO3+T46l9zqIGxA6wvLp+9RvDEdyZKq4Cj9lSYcLBCTJSv7O8Zgld/FyzOFIgAfToCVx1i4JD+dW29N1schaIBQP8qi/tYX16mfl2aJhErxMTrBb59H/LoZXULUzsCW3Ob1G7fypWOyyZ7657oFNPiSd+uoAyWSQS6oA8AqFSxiBOLK99nfwcp2waV0PSUpylz3IWiAYDTrMJe7QGPYR1csCLbWTBaRo5gaZZ+/bu9p2HoskXWKzt0hbr9VaiRhzkbcDPo21nh+6X+j3fGkDOAbXc0eO1uiWp6MNoh/QClwhtWcdMRBr5ZbL0f8tUCwZ3jnLdVXSN45y/Bp3MF2cXWZYzG+zxF+eiS3NtR+7qgn0glG1dCJk0AFvyBRADj8K1luRhUo423GNs8bf3W5ZXY9/F/X4tfWN9tXwguGCVIS9K/dqbMCf5kiqJy52VnLAyun9TrTPRq7y74SxeMQqSzs7N7JXMN5IqDHJVVd70F5SLsybf9+28U+Z52iLHaNwkgryRwMJru/FylgCTN/lKggCCiBhx8JoItm8M/jjAL1bnur5yjUF4lmLFI/x556+eCm48MTX9u6MbTrR2wJs9/+cocfVu6x8tQQL9OwNz1/uvm22SE6+YrOyN6Ws+5jX3+X+C2GIxGREREREREREREREREYcHQrVaMzy0RUevE+Z2oRbDbz+Y+OBE1MwajtTIiMhXAVABQSqUAGASgG4BOABIAGAAKAWwFsAzAQhHxhqDfXAATlFLXoi6UrTN8wWubAcwTkbVN7YeIiIiIiIKnbp4MWbMIWDbXUfnqUASjOUlyqLG/OlKK8iGXjwZyba7wrEd9tgqqUzdHZSkyqF57+n29EYNqXLb1dTze/qYGyyeMUUisKnT+dci6ZZDvPwrFMH32PxrGY/8LXXuh1K2PdTCaWXfY3zVFE4wWlQ4vDJSreCRJKQDgxo6T8Fz2aUDBxMzBAAAgAElEQVS2r8yXC0y8eYHCWfsoVFT7QuqUUpixUHDcC3WBQN8tEfy3HnjnIoUflgqOfd5Edb1PHhZtBqbONzH9agNHD/aF20x3GDDTriYf7b35jspaSukQfF0X5NW7gQ+fbLiwiaFoAJAkpegWX4qN5YFTlFLNwh1/1w9Ja6xAklwHo5WreOtgNAByzeFQb8wOOD47BaWCs153/2WJoclKEhEopSA11VBR0YiOUugVX4SVpcl+ZVfkCGofkNp6VqbN149vwyQD6e/+ab2y1yCot/8NeyiYW/01mYHLcw2oj5dDjmgHADChkO9Jsyz7UO49uLfjvfDCY9uXUsDtx4Q/tWdMP/26OeuA7CJB52Rnz8ONnwle+Nn+NWmgcTBaHrp1Dhwm4TGA5HhHw4gIkrUOcpaLECNvgWUwWn5J3bZm5d2//B83rwn8b77g4gOt65VXCX4NkJ1px00w2pcLgv9C1yoYhSiU4nbiN3+yrRBy+gBHZdXEJ6COPMtV+7oQs3xPO20Q7D49ffO+Zb3SwH3ahRPp9pdKGIxGbtRUBywieZk275otg907p5td4+QEhWlXe1BYJnj0W8Fj31q3/PzPJq45tHmTIq2ClwGgfxeF3zIsQh1LgbxtgvZt/B8A3cdpSgH9OivMXe9fYFmm/lGOs/6Iz9a+u7uvo1NWZX98RURERERERERE1DrwolCKNHxNEtGugHMdERFRxGFoElHL10zBaJwtiMiJnfy78RROIlIoIn+KyBQReVZEHhGR/xORySLyoYjMC0UoWqM+q0TkFxF5W0QeFZHnReQLhqIREREREe18yuOBmvQ/4MTLgF57AnsdBPX0N8AR1hejV6kYy+Ux9nknDTn5sKvaPhgN37zrLBTtgHFQ7y9gKFpL1L2v5eKHt9yDR5M+wl7dgJE9gcdOUXjkJAWU6EOe/BgGsOAP5+WHjwGGjvZf3qMfcPZNUA9Ocd5Wc1Oaj3mk7ursrinWRR7ocBdiB5Qgpf8W9NhjJd5NPhuvpF7qV+6itwVxV5pIudaE53ITxmXeBqFotd6bLfh3veDJ7xuGou0YkgB3/q+uXkaO/V2rNbxinrOCOuUO0i+aSHI2+oeiORUdAySn1f2LiWuwWt37Lvr1DByKBgCp3q07/o6CF0nebZblSg3rhJEE67cAAEC5YZPilDEP4jDIUmffhzWJAgF46m0CkrMR5t1nwhwdCzkozvf/IUkwR8fCfPUe9M22Di7LWF2IH5YKjMu8O17jxmVe/Ly84fuZLhht392B3VJt5qk9hkZkGEC/TtZj2rINyKtJAA4YBwDY6kmFV1kn7hxW+jO+M6/Dof2BwV19y7ql1gVdGAo4tD8w61YDw7qH/zFQSuHfu/QffzsNZFyeJZj8S+CyfsFohfnYuweQZBMyCABpiYChS/WLQPLafa7Kp3kLLJfbhRGZNsG6Py7V1/txGVBV43Rk/pwGo1XXCH6wGQfRznbAHuGfU2ThnzAvHw1zbDLMs/aEzP0JsjUXckwnR/XVba8Ap1ztut/2umC0qPYoVQmW6/p3UYjXBALlWe8eNaA7pFVKP8eXMhiN3PAGDkZDXlb4xxFmdh8PBbN7nJKgcN5++oq6wLRw0gWjDeyir7M823q5bvSGAnpY5xRj9RZ9P8GEZiqlcMGo0LyniACVTdhPIyIiIiIiIiIiIiIrvHy4deLzSuQOtxkiIqIWhaFpROQQp4tg8EGj1mkn/m48ERERERERNTeV2gHqxucbLtz7EEh1JfDL5w0WV2uC0aJdBaM5CLepsb8IWOYHDrVSr/8F1W+401FRpNEEoykAN215Arc8dU6D5VLqIhitwGHiVlQ01IwsqIQ2ztuONB7NxumtSyZLT1UI9EHn5uiuuCj9tSYP555pJr63CY6ZvxFYs0WwWyqwLt9Zm8eUfNu0QZUUNq2+E39MC6qauukFqBP8w+ga659n4sdlgT+sTvU2vK8pZhFKPM5f34kx+tdKhQqQ9PTHl8DJVzruq77fVojtBf12arOlxDQh958HLJplXfC9Sejb8WHMwDF+q76dV4F3F/m/dx32lIml9xvo30Uhp1jw1xrrpk/Ya/sgdMFoScmB7sZO0b+zft2l75qYOvp4yJ8zkOfRpDAA6FCzBSNWvYNDXpscMeFvw7or9O9sHTgxfaHgEosczMbe+UscfalmNN5eivIQE6Uw6WSFqz7UN6AL+YlEUlUJ/PCRqzrtvNYTvF0wWqFNQFmcJtwIAKbO0z/OHgOYfo2BIwcpfLdEcPSz/tt5cQUgIgFfv5sKgXIHGTZEO8Mh/YBxg8PbhxTkQK46tG7BxpWQ6/3fU3XUlKVQXXsH1XeaJh8239MOZYZ1MFpCDJCWBGza6r8ur0TgO+rQswsnStQEyZYwGI3cCBQWDwBbNod/HGFmtzsV7J7jgC5A93bABosc1s2FQGGZICWh+fZLddmu6ckKbeMExRX+69YXCA60eAR0IWtK6QPPc23CHu32oez0szlOcGvyL4Ibj4iM4wQiIiIiIiIiIqLmx4sSiVonbttEOx3TEloAPkdERLsezv1ELZ/Ndsx9cCJqZgxGIyIiIiIi2sUppYD73oc0CkargvVVkzFujiTNpgejYUOG/frhYxiK1sKphDb6j0zXLYOUbWsQWCb5DsPO3BgzvmWHogGAMqyX1wso1F1AHQ7fLA5c5quFgqMGKe1F3/XFm2U4ddsXTRuULqwqRKSiDPLsje4qjRwLdc4tUMPHOCrer5OzZlMaBaMle4uwKXo3x8NKsMk+K1fxtnVl0V9QQQajPfadgxeDRlltpsTcn/ShaNv1q1ppuTw3Sv8AT/5V8PyZCj8t0wdlnRgoGK1NM26ELqSnAEmx1kEuXy4Aas4+AZ6kW7HF217bRgdvHiA1wO/TgINPDONo3TluqMLybP8n7IelQHmVID7GPpzhk7nOvrgzGoXBSmEeFIAJYwz8tdrE+39bt5PWkoLR3nzAdZ32mmC0vLWZAKznpGVZ+vZiNaEemYWCt2fpn6u5dxoY2s33XCdrpjCv6dsG2sTp+weAvBL79US1PMb2f6re39v/GUq/zm6ZoVmXGKtwUF/g7H1VwHmtqeSE7sFVHDMe6vpnoNo53JmxkJZkHdya50lDqWGdmpYY6wuhtA5GC9yn3SFtYqz1eEoZjEZuBPpMBAA2r3EU3hnJ7M6FCvZuKaVw3FCFyb9YN/7TMuDkvYNrOxi641qPAXRrByzJ9F+32WJusm9LoWtK4MDzxoINRksPYa7zy78JbjwidO0RERERERERERFFnl3lotBd5X4S7Swt9/sgop2D70utF59bIqLWifM7ERERucNgNCIiIiIiIoIyDMihpwI/f7pjWZWKsSwb43HRsDgIuKmu0q6SbYXARuvwmlrqrBtcDIgilXrgQ8g9Z1muk6evh7rz9boFc74Pbee9BkFd8X+hbXNnMDQbp+nd8WdzBqM5cf3Hgh4TAp/MFWNW4oXs69ClJrtpHZYWQUwTytCEyDWB5G6CnLWn8wqGAXXVJKjTJrrqp39nZxfBp5oNr7Bv5y1w1U+iXTCaYR+MhvLgUoO2VQh+Wh5UVQDA6rVFMF96HPjwyYBl+2iC0ezMXOl73K0CDQCgT0egf5faYLRCyzIqKYTJAiGklMKQ3YBZq63X/5mTgoNveQl5T39uuT7BLEWClAMA5K7TgV/LoDxudhjC57ghCo9/57/NlFcD3y8FTtgrNP2oxttl5todfz56stIGo/Xu0DJOaJWyEuCDJ1zXS9PMPfnz5kNK2lhuE1d9qN9/jNeEepw4WV/n8wl1oWiALyBJZ10eMDhAhmTeNvv1LYlSgYO5/IK4XAR5GZbrVMOgLxfhX4GWNain9H1ajjOIkDK7x8cwWsa27ZbM/Tmoeur/PoE66IQm96/bfsuMROR72lmuS4jR18svDdynbq/LMHyholbKqwGvKfC00tcBhZiTYLScDcC6ZcDuA8M/np2gKVvKpPH6YLRTXzFhvtp8+6SmZsLwGL5jcavjiExNnrJdyNpuqe7HFmwwWtdU9yFsOqu3hKQZIiIiIiIiIiIiItohwOe3dr9aQiHC7wOJdjon56kTERFRM7M7FuFxClGLYPeZAj9viGB8bqh1YjAaERERERER+TQKMKlW1ldNxrg5knTyYdd/vwJ9/VNJpCgfcmy6fd1+w4ERh7kYEEWs/Y/Wr/vvlx1/SmkxsGZJ0/tL6QB1wR3Abr2BvQ6Cig0Q9NQS6MK+zLoTP9KTI+9DzvEv6U9MeTr7RqSYRRhdNhM9qzc0vTPT9AVWtbUOzgiWLP0HcuM4oLLcvuBJl0N17wvEtwEG7+/726X+nZ2VS/E2vMI+vSbLVT8J1tmYAIByFWdfOT+4ALvvlwBVNUFVBQB0/uoxIP8pR2X7VboPRluwCRARrMi23o5G9Kx3smOJJuEgKcLSCes5a1+FWaut79u0+YIxp4/HlrKDgWn+6zvU5DW4LQ9fAnX3W+EYpmv79wbSEq3Db0560UTVSwaiPPoTVQschOYAgEKjuWzDih1/pqconDZC4ZO5/o/vmfu0kJNkf7d44h3QhTLme9oBv00Fxl3QYLlpChZu0rdn9QqtqBYs0NSJiwaOaJQh06MdEO0Bqr3+5ZdnOwhGK3H3XnriXr75ISUhUPCXchTKpQ//ch9SplQLef1RRJDKCsj1NvvsOiMODUkoGuCbz3U2RVtvvAnzf0D7LofDagbJc5Dlqgs6UrAPki2rAtoE2GUiAuAsGA0A5v/eooPRwnUuVEKswp7pwGJNePHLv5m44uDQB2NbsQszS0+xDhjL3Gr9wGjbUkBXl8FoSvn2fYKRHpm5zkRERERERERERBR2kXd+ERERkTW+Z0U+PkdEREREREQUPAajERERERERkY/R8CrJKmWditM4GE1EgFkzIF+9CcQmQI09te7CdzPwL3HJ5FuhzrjO9/ef0yHfvA+UbQP++dG+4oCRUHe9AeUJ8upOiigqLgESEwdUVfivzN0EqaqEiokFtuaGpr/zboU6+cqQtBUxDM22UG877NrWC6BlbDOHl/yAa7a+FPqG5/wAHHZ6k5sRrxf4fDLkr2+AuT8HLK/u/wDq0FOa3G96CpAUC5RU2pdL9RY2uN3FZTBabJTvAn6rC/LLjQBBghsyICKuA3e+Whj4BJhuqcDGrdbrjiz5wXFfnbw56FG1HutjejiuAwC524Blmty3fttD60QE2KYZZGLkJgtccZDC1R9aPwdfLRA8fTqQh1RYnajUwdswGA3ffwg59GSoA44Nw0itSV4m5PmbgZ8/8y047HSoiU/Ck9oB44YovPuX9X2LmWBi3GDgiEEKbeOAqfMEuduAvXso3HaUQlGAvMNaRuNfH920CuL17thPeeFMhZIKwdeLfavbxgGPjFc4fGBkB1PJtq2Qtx4CPn0hqPq6YLQiTzJk5nSoRsFoVgF29ZVazH0rc6xDzgBg7+5AYmzDxzg6SqF3B18IWmMrcgSBftE50Bjr++AShTP3aZ4wFqKwm/pyUNXUPe+GbAjtk/TrsqOs02MT5n6NdsfsDcA/SSjfQdChLsxJKd8+mU5pJYPRyBnJXu+s3MaVAd6hIpvd1tbUnM59eykszrTu4coPBBcdIIiJCv+jpwtSNJTvOM5KpiZPWTf3eAygQxKQHA/H+6lxUcGHoboNYSMiIiIiIiIiIiIdBoIQUT3h+kUZol0St6dWi3MlEVHLZTeHc34nahlst1Vux0TUvHhFDhEREREREfmohoeIVSrasliMp9HFlP97FXLbycCfM4CfP4XceRrk0+d960xNSkUjsjUX8vW7vnZ+mxo4FG3gPlCv/AHVvZ+j9qmFOG2ift0XvoAsef7m0PR1xFmhaSeSGJqPeeoHoyXVNNNgmq5v1aqwtCv3nwfZsrnp7fzfRb7Xo5NQtKsfC0koGuC7oL2/de5HAylmw2CurjWZ7voRQbz12wAqVIBgtPISIN9dEBsAzFpt/QXJJaMVKl80sO4RA+seNfDFBP/X+qiyWRhcudhxXwrAlVvdB7x8+Ldgmeau7Xhelv4DlBZbF2qjSUSIAIah8NYF1oEJa/KAvG2CLSXWddO8+X7L5LaTIfN+C+UQLUl1FSR7PeSk3etC0QDgx48hZ+0JKS7AcUPsgyBmLAKunSK48G3BlwuA2WuAyb8Idr89cMBrLQONylZXAdnrdtxs30Zh+kQPtjxlYPF9BvKfMTBhTGR/PC9lJZAL93EfipbcHmjjS9FI8VqnfRR6UnzbSiObCy0K11NW5b9sRY6+/OOnWj/Gunl0zRb7/gEgT7MdNNYjDThpWEuOsCFqSL5+x12FpGSoH4ugUjuEbAztEt3XSTRLkZa90HKdk+3ZLugo0SYYLVCILRHg+ywE015zVnjjyvAOJszszpNqajDaVYfYN/BbRtPad8oqVBrwhZnpgtGyNcFourYMw7fffuQg5w9anOa4zok2caHdlxGe3EpERERERERERK0ZP/+iiMPXZOTic0MUMnz/JSIiIiIiImrVIvvKKyIiIiIiImo+Hk+Dm1UqxrJYdL1iUloMeflOvzLywZOQmhpAHAaKFOZD3pvkeKhq/ASopl45SxFHXXiXdp1MvhVSVgLM+rrp/dz0AlRyWpPbiTiGx3p5vYDCtjE1SPJuC1mXyfHA4K7AY6co/O/K0H7MtFfFgpC218C3HwRdVTasgHlsV+CHKY7rqNOvDbo/K8O6B57/2tc0DKpKr3EXVKY+egLxNdavlXIjLnADa5e66m9bhWBVrvW6IwcqREcpdE9TUErhxGEKU680MLoP0Ks9MKHDP/hy48kw3Jw0eOipuFE+Qop3a+Cy9dz4qb6PvbsriAjkitHWBZQCeu/pqr/mdvhA/Wur440m3pxpff871FinScnEIyCrrMNomkrWLYN59VjI4amQU/taFyopBKa9jiMGBddHjfNcNP9gNABYv8JvUVqSwsB0BY/RAvZjvnkXyNngupo6eQLUCz8BBx6H5GTr/ckioy1QkA0paZgGkhkgGK200v81uDxbv13u18v6cU5PsV5eUBp4HrELUtq9PdA1BThzH4VZtxqIi24BzzNRALJxJcwzBrh7b+81COq9+VCxDvYZXIjyKKQkuKuTYJah/YY5luucBKPpzqFWCki0nuIAAKUMRiMnvv/IedkNzZTuFSa2wWhNbHuvbgrjBuvXn/Gqi506B2T6WzBP7Qvz6E4wbxgH2b6/5LUJUmynmbuKyq2X69rybD/sHuPidwKaEowWatXOfj+BiIiIiIiIiIiIiJxgGFDLxeeOKIS4PREREUUeu/dnvncTtQh2x60hPKZtpm52HXzQqJWK2tkDICIiIiIioghhNAw10gWjxdQ/kvx9GlBmEZyTnwVsWun8A5WiPGDTKmdlew8GDjvdWVlqUVRMLKRbH2DjSsv1csYA+wZOuhyY+op9mTHjoU64NMgRRjilCSYz610E7q1Bj+pNWOJxlxJ0UeHbeDXrSqjLHgQ6dAW69gL6DIWKa3h19083GBj7VNMvOldi4piSb5vcjo68ejfQayDQZXeg5wAoQx/qJjXVwIp5QOEWoDAP8uhlzjtKSoF6+bcQjLih44YqvPaH/fya5i1ocDu9OtNVH0ZFKeIrtgLRbfzWlav4gPXl7++hRh7muL9Fm/XrhnX3X3Z8/3IcH7UQ2JoLueNUx/3AEwV173tQh4yHiGDRoT3Ru/cyVBmxztuwMKAL0LujgnzwhL7QyMOgUjs2qZ9w65IMtI0Diius15doQl7ae/O0bcqFI4Gvc6DapLgej1SWA0v/AXI2ArHxQEzd8yS3jXfWxnfvo825t2DCGIWXfg3fFz2GVRjshgxg1DFh67MppLoK2LTaF2K7+0C/wFmprIB88pz7hrv2Ao67GKp9F6hHPkO7lQI87v/YlBsJqFQx8K5ehQWJw9G3E9ChjcLmQvvnyOo1mJFtXfaEofp20pKslxeU2nYPAMgvsR7jJaMVXj2Xv0VDrYfU1AAr/tMHfup07Ab19r9hC7Lu2AYoLHNePkHKkJazGOjqvy7fQTCaqTmmNRSQZJP7VlrlcIC0S5OPn3VeOHMtpLQYKrFt+AYUBmWVgn/WAX+u1r/Hh2K6+OhSA20nWh+Lbi0D7p5m4pYjFdrENa0zmfU1ZNIVdQv++RFyzeGQD5dqPwLzGEByvILViZ3FFYCI+M2ZXs1hdW0w2m6p1u1ZaWow2n69gNlrmtZGrYrqRp8rEhERERERERER7Sp4USIRNcA5gShk+B4b+fgcERERERERURPwtFMiIiIiIiLyMTwNblYr6ysnY+oVkz+n69vLywRKix11LbO/c1QOANRrs6A8nsAFqWXa/2htMBq25tpWVQceB7EJRlM3vwiMu6AJg4twHl0wmrfub28NjiuZgSVx1sFovdoDx1b8gLVZvuSZZG8RDiv9GWcXfwRge6BYfU9/DTVi7I6bo/sAvTsAq7f4tz2gC/DBJQaGPxg4OO3oku/QyWv/fDeV3Hay7489hgCPfgHVqZt/maX/QG4/BSjQpO7YSU6Dev0vqM49mjhSf2P7A4mxQKkmpAoA0rz5DW6n12S56sOAiXiz3HJdhbJJAak15wdX/S3aZH3yS5s4oGdaw2Xy+zTIQxcC5Q4SjGodfBLQcTeoQ0+B2nM/AIBSCl1OGI9LZr6FF9tdEaABe8cP9QUZyDfvasu0hFBGpRT6dwbmrHNXr4NNMBoAYPqbwJk3uGpTfp8GufM0dwOxsn4FzKcm4vmJT+OlX5venI4B/7lNNqxAeGKBmkbWLoXcdy6wZrFvwdDRwP3vQ6V19q3PmA+5eF9Hbak3/gaWzIYs+xeqRz/gqHN2tAMAyTY5iq+mXIzbXhqMyu0BnhPHKqQEyF20mveWZ1vPH/266B/9donWy/MdBaNZL2+vCVsjaokka51vDl65wH3lo88JWygaAIzsqZCR4/yk2USzFFFSY7muqNw6kKg+3fm5CkBslC8gzbQos2aLYFTvSHwXoIiyxSYd2MrKBcBeLsMKd6JP5po4/01BpfUmuEMo5oykOIWXzlaY8IH1Rvt/MwTP/SR483wDJ+8dfH/y2r3+C7PWwZz1NQDrQFxDAW01+zjVXqCyxj+8zGs1sQDwbB96VxeZw/FNDEY7Zz+F2WtCc7FCRbX+sSAiIiIiIiIiIqIWguEmRPUEuz3Y1eM2RuQOt5nWi88tEVHLZTOH85iSqIXgdkxEkUNzxSwRERERERHtcuqFjXlhwKuss7Rjti+W6ipg7s/a5uSb9533/cHjjoqpz1ZCRcc4b5daHHX+7cFXHjEWGG8RbhSfCPXIZ1DHX9y6Q/WU5mMeqRfWU1ONG/OfwQFlf/oV2yO1Ct9dZ+Dpu4dj6qbTMHXTaXg761KcU/yRNthHrj8G5kt3QPJ9wWFRHoXXDl+P1KiKBuXOjv4NC9ftg6FzX8G/561ClxhNqsx2T+XcbLte3TwZxh+VwJ7725ZzZNVCyONX+i2WmhrIXacHF4oGQP1vQ1hC0QAgPkbhKOtsOwBA2zgg+uizGixLP/JIV30YMBEvFZbryg0HwWhZ6yAuvvDYUGC9fM90wDDqXoGydQvkvnPchaINHgXjoSkwJj6xIxStljrnFjyaeyf2Lft7x7IoqcYFhfqAMyvHb5sOydkIrF9hXSAqGhg1zlWbO8vg3dwHRXQYfZDtennxdojXa1umQfn87NCEotWa+gpw1gD8esKi0LXZiFUwGjZkhK2/YEhlBeTb9yHnDasLRQOABX9ATuwBc/JtkA+ecByKBqWAHv2hTroCxh2vQZ19U4NQNAC2QWfXd34SlWbd+/JzPwkemG4/bzQORhMRrMixLtuvk76dNF0wmv3bEwAgj8FotAuQJ64OLhRtyAFQLoMw3Tp2iLvyCWY5ks0iy3U1JlBeZV9fNysZhi/MKTHWev15b/LEDwqDjHk7ewSOrc8XnPla4FC0UDp9pEKUzdkP2yqAU18xMWdtcNunuXktfs1MxsNpt+CTNiejTNXt6HiX658bj+E7RtMpssij9mryxGvz0NNdBKM1Dl1z68JRoQt5rKgOWVNEREREREREREQRiN8NUHML9JrjazJi8SJyohDi9kREREREFHJ2x608piWiZmZ9lTsRERERERHteoy6YIpqpb9qsjYYDWsWA6XF+va+/zBEA/NRn62C6tQtpG1S5FFt2wE3PAt56lr3dQ0DuO4Z4NiLgGX/QLI3QPXfGxgwAqpD1zCMNsLoQt/qhxF5a5BqFuKH9cfgr4R9MT92KExloG/VShx8+zNo23F3AB0h594KvDfJWb8fPgn58Elg8i9A5loc9OhlWIJU/Jw4BvmeNAyv+A/7lc+BAiBPXYuhABYaKTi221T8neAfvpOV0R0dvHn6/mLjgUNOBgCos26A3HGqs3HamfMDpDAPKqV93bIFfwBbNgfVnHrjb6io8H7sdvxQhc//s/5CobgCMO54DXLiZUDmWmC33kjsvzdSr/Nia5mz9hUEcabFFfoAyusFACAmFqiq9C9UUQaUbQMS2zrqL8s6rwS7pTa6CP+3qUB1gASTRtQ5+qA91b4LEq+8D39MPhQ/JR6CfE8ahlXMR7fqTXgn+RyILnCwns412Rj5+mmQ122+4Dn+krC/JkLlglEKb8x092VVx7FHArHXAh8/qy0jlx0AvDLT0eMgJ4YhVDBrPQ58dF+cNWoWPty6V8ibV1Yn2UVQMJrkZUJuPBZYs0RfaMrT7k4V7NwDKtY+KDElwU2DgW1rNN3kFPtCTqz076wP8UhLVLA6MbKg1Be2ppS+ri4YTRe2RtTSSOYaYM4Pjsqqe98D4hN8+xs9BwDDxoT9/W54d+vtVydRSuEx9eGcheVAgibcDABMTThR7Syhm4MAoKxSkBAbukAhal1E9+Kyq7Ninja0OtJMmy/Nfv5TSoLCqN7A7yvtyze4V0AAACAASURBVO33iImZtxoY1dvdo3n9m4V4vsd3O27vXf4fvt54PNK8BfD++xuAOy3rGQpItgmLLS4HOjU6bAoUjNYhCYj2ANUOsoebGowWH6Pw6eUGTn3F/Wu2sYpmDMojIiIiIiIiIiKipuAFrkThZfeZe0v5NogoQjCUgYiIKPLYvj/zvZuIKHw4x1Lr1DKuxiMiIiIiIqLwqxf+UqVitMWifv0U5kvvA7O/05YJuWEHMxRtV3Li5UAQwWgAfEEmfYYCfYbueqcI6QKcpN6JVF7fVcgxqMbBZTNxcNnMuuoJdcFq6rDTIU6D0Wq7ueqQHX93xBacUfyptmyqWYhf1x+Omzs9ipdSL4NXRWFoxUK8knWlfSgaAPXEV1BtUn03DjzO1Ri1RIB5v8FcMBPI2QD0HAisW+a+nYQ2UNc9DdU39KFLjY0bEjgURA0cCQwcueN21xQ4DkZL8xYgQawLlxr10n867gZsWm3dSF6mi2A06/vSJaXubykrgTx5jaP26lOjjrEvcNpEGJNvxeGlPzdY3KdqFTJi+wZs/9htX8MI9Fxc/VjAdiLFAXsovHquwsQpgopqZ3U6tAHUhEcgG1cCs762LpQxD/jmXcioYyCTbwN++Mi3/NiLoK54CCo5DQAgs78Nwb3Qe2H2kagatxSfrUoLabsmLObgrbkw7zkL6txbofoMDWl/bsknz9uHogVj4D4BiyTF+sJAzBB9x5Zb3DC4bHOhvmzvDvp1aUnWy2tMX8hRW014iYhog9HaJ+1yex7UCokI5K4znFfouxdU98DvlaHUM80XDKQLDWoswSxDvOjTy7KKgE/mmvh5uaBTW4U7jlHYvX3d9qybvgwHm3xeCdDdJnSNdnFbc93XyZgX+nGEyfqCndPv1CsNpF0feII4cJKvzJi+wItnG+jfxX6jnrdB8PzGIQ2W/Rs/HC+mXo678x6BWVEOaLZ3j6HftwCAIos86kDBaIah0C0VWGN/+Ayg6cFoAJCg/5jQFafHF0RERERERERERK0PL0okap2CPE+AQU5EIdT0H/ehcOOcR0RE9fF9gahFYMAhEUUQzRWzREREREREtMvx1IUiVSv9VZPRHz7avKFoANRlDzRrf7RzKaWAkYe5q7TnfuEZTEtieKyXm966v7cHo1ny1OXnq16DgINPDNHArEWjBs/k3IScjG7YsLI35qwdhREV/+krdO4B9Vs51F6j68apFNSHi0MyHrnnLODzF4GZ04H3HwNmfuW4rvo0A+qd/6BmZEEdfW5IxhNIu0SFTprMsXGDrZenp1gvt9KvcgWSzFLLdWVGQt2NjjahlfnZjvvL1IQbpSf7/pfqKshloxy3V0u9NTdwGcOAuukFv+VXbX3ZUR/HlUy3L9C9L1R0iJIEmsklow0UP2dgL4eZpO2TAOXxQD36BdCuk7acfPQU5ORedaFoADD9TcjZgyEVviA++frd4AbdrhNw8EkBi7U1t2HKV92w5Qlgzm2CubdUY0jX4LqsL8G0SLQAgF8+h1x1KGRZ4NdiOEh1FaS6Cvjpk9A27ImCOvnKgMUMQyHZJgjErfJqoLjeQ62bO6I9vtelTrtE/bqsIv26bRW+8DQrdv0RtRTy+n3AygXOK6TvHrax6ERHKeze3nn5RLMMKV59iuLYJ7244RPB9IXAGzMFQ+83sTSz7qQNXbCjcnCNQ4XNrjcRlvztvs6GFZCqytCPJQzyNUGijcWG+GfcUhMV3jjf+UVIv2YAA+81MXedoLyq4T9vvQng03+tJ4Mv2/jCur2b12v78BhAmzj9GIotshu9mrnHU+/sjgFd9G3WFxeCxzgmRM8Tg9GIiIiIiIiIiKh140WhFGEYvhXB+NwQhQznulaMzy0RUcvFOZyIiIhCh8FoRERERERE5FMvVKlK6QNcYqSqOUazg3riKyiGXu16+g5zVVwdd3GYBtKCGJqPecx6CS5er3UZoEEwGgCou94CTrkqBAOzl2IWIb0mCx67X+476lyoV2dCWdxH1a0P1Kt/hnGEAZx6DVTnHlC9BkFF6UMlw+GhE60v+D98oPXy9BTnAQH9qlYiUROMVmLUS/+JSwDatrNuJHez4/50QURdtgej4adPgfUrHLcHAOrie6H20KTENXbAsX6LnASjpdXkYWzpL/aFdh/obAwRJsqjcN1hzl4zHdr4/ldKAXbhgBtXWs9DRfmQw1Mhn00Gfvnc/WBPuARqyjKoBz+CuuZxR1VSxyVg+PmJ2OvCZMyamY4b46ahZ2pwCTYxZiWGVC7SFygvgXz6fFBtB0v+/QXmBSMgh7aBHNoGyN0UusaHHQz1xJdQg/d3VFwX4his1OtM3DHVRHmVYHOh9ckTXZJ9oWw6XVP0oUarcvV959mEvDAYjXYWWfgnzKsOhXl0R5gX7wdZ+k9w7VSUAVOecV5hxKHNvu9Ta3h35/s0CVKGOKlAtOY4triiYVsllcAT39fNLbpzqG2mmB3KmvfQmVoY+etb95VME9i8JvSDCYP8EmcnOO7fK/R9XzDKF46WkhC4bK19HjaReHXDf8kTTSRe5UWH67149Bvr+zMvbi8IAG+1PvHLUIDHUEiKtV5fbJGv69UcHnvqzT39OjubC+NCMFVHa3LY3SrnvEhEREREREREREQUOgwDasH43BGFDrcnIiKiFoXHMUQtg922yu04gvG5odaJwWhERERERETkUz8YDfqrJpszGE29MhNq3yOarT+KHOpA/5AiWwefGJ6BtCSG5kpls14Ikdcm9KdRsIWKS4Bx7VNQj0/Th641E3XHa1CpHfXrB4wAzr65GUe0XVoXqAvvbP5+t7tglMIBvRsu698ZOGsfXTCas3bbeovQ3puHRLPMcn2pqpcw4IkC2qdblpMFMx31V1Ih2rCh9BQFqSyHvPuIo7YaON55YKJq3wXqsgf9lv+3Zh+08RZr6z2aexfipNK+7dEnOB5HpBnQJXDYQkwUkBxfd1udeUPQ/cmzLusqBXXnmzBumgwVnwilFNRpE4Fzb3XVTFxFISbNOxOrNgzDk6fYlz1lLy88quEXRvdveQDxUmFfcUHzBTjKmiWQ644CVtuEtQVj0L5Qv5bBeO57qBFjHVdzOve48eg3gnu/FKzZYr2+a4A+42MUuqVYJ45k5Oi/ENxQoG+TwWi0M8iWzZBbTgQW/gmUFAEZ8yCXHwjJDCI4afUioCrAXFYrPhHqwrvc9xEixw5xXjbBLIMCkOItdFzn5+V184CpmRJqwxWPGqRvp6wKyC0WLNokKCjlyQbUyMr52lXq2qf0x2AbM8I0oKarrBbMWSv4PUOwNi9w+bho4J7jQn+sqZTChQcYKHjGg5uOcB6k2FhZFVBeDeRb50XvsDmqK0yb0y4821e1jbdeX1TuPz9og9HqdTOgi/24asVFB/8Y1NpDfzjuSkVwOcRERERERERERERERK0LLyInCiFuT5GPzxER0a6Hcz8ROWM3W3AmIaJaUTt7AERERERERBQhPHWhSnFSiTOKPkaVikFVShdUD9gPVWtWoCpfH5QTcnsMAfrv3Tx9UeQZuI/jouqZb6ES24ZxMC2E7sJ5s94V1XbBaB7rj4nUfkcBb/4DmfoSMO31JgwweEoFvpBbnXMz5IPHm2E0AHoPBkYfD3XaNVBtUpunTwseQ+GHGwy8M0vw91qgVwfg2rEKbeKsH69AQUG1elavhwKQaFqnlZUaifUGEQUMGAGsWexfcO5PjvrLyNGv67X5d8hNZwDFNmlEVoYeCNWuk6sq6txbgH7DfOFcG3yBE0MqF+OftaPwaurFWB7TH7L9tbhb9WacVvwpDin73b7RpBTggHHuxh5B+jl4CAd0briNquQ0YHom5FjrwLwmOf5iqPZdISvnA+06Qo09HWrYQX7F1FHnQD56Cqipdtf+ptW4dt7VuD/uBRRbZAPFmJV4cfpQ3H7olXhjdgxKjUSM3zYVx5R8G7jtgmyIiKP5rClkxTzIJfuFvuHjLoK67hkojyaE00bXFIVwfDX5xPf6Nu3C2EQEePth9Nk4EhuS/APe7ILRlmdbr0tLBJITwvvcElmRD54ASv0DPOX0AcDvFe7mHLtQtN6Doc65BfL390BqB6ijzoHqZZMIFmaj+zibV+LMcnjg2xdO8RZhS5SzZJ8NBUDeNkH7Nkp7TULtIztuiMK3S6wL3fa5ibnrgYpqICEGePYMhYsP5G9W0fb3og0rrFcefibUKVdBPnsB2GwRcrghMoPRZq4UnP6qiayiwGXH9geGdVc4cx+FYd3D+/456WSFJZmCbywOV0JleUxfDK3UB9Ia2+9icjyQaZHRaLXf6SQYrXs7Z3NhQmzAIgGlpyjs0xOYs65p7VS43D0nIiIiIiIiIiJqPXgpJxHVxzmBKGQYNNh68bklImqlOL8TtQh2+2LcTyOiZsZgNCIiIiIiIvIx6oIuOnlz8X7mhb4b7UfDuPZHmM+9Cfz3fLMNR936MpQu6IlaPWUYkPPvAN55OHDh4WPCPp4WwdCE1Zjeur9r3AejAYDqvSfUTZOBmyZDaqohhyQFOcjwUUnJkM49gOz14etjwsNQZ90YtvaDERetcPnBCpcfHLhsusNwoncyLwYAJIp1EGZJo2A0td9RkBlv+xfM2QCpqYaKirbtTxdCFBsl2O2pM4FtLkPR0rpATXzSXZ3t1D6HQ33gCzWQqa9AnpqIParX4LHcO4Nr79aXoZKSg6obCdrGq/9n777Do6jzP4C/P7ObnpCEJAQCoZPQixQFBRQsqKBiwQYKnqJYz3L208N6ep5n1xPFdnbsXRF7+WEFESlKlR4ggZC6u9/fH5u22ZnZmc3uZnfzfj0PD9n5lvkkszM7u5l5Bx0ygO17jfvohVlIZg7UtIuBl+4LaT0ydQ6k9yAEis+QrkXAnNugHrrGPBBSz9vz8d0RuRi4/lrUSqJP05Obz0b7vRvQ/o2rYfs7c9UCZTuBrFy7I02pki3AN+95A432Pzw8oWidukG78uHgh1sMZQylrjkmz5Kv3oaafxN6dbwPevGNWzfuBKAfnrRyq/6UxdmVUC8+DuR0BMYeC0lKtl0zkV1KKeCVh4w7vPs0cPSZ1iesrTFskr89BBkwCnLoNBsVhk9hNpCSAFQGCNhJbRLqne3ZbWsdf3nKgzcudMBjcOpU/1b17IMEFz2v3+nL3xu/rqgBZj+jMLaPQlE+gxTbvB2bgMp9uk1ywhzvF4VFusFoasOqgOdCkVZZo3DqPGuhaM+fIzh5ZOQ+6xERvHmhhiPu8WDRivCsY2VSMQZV/2rYXh9m1s7g9GBPpf8yo2A0rcnGtxp8nR6CYDQAeGSG9+e4o+69QXYq8OGlGoZ0AY570IN3LYTPVdUqIOqewURERERERERERCHSZm4KbSvfZywItC24rcIv2J+x2ThuNyJ7uM8QERFFnTbz/piIiIgigXeYExEREREREQBAxOAtoqq7G3OPzWCalhg4GtJ3eOTWR1FJJs8M3GnkRIjwploAjekMzXma3FFtFhBkEozWlDgTIE98F7jfv96AzH0WyMg27tSxG+Sy+yBzLATgWTFpemjm0XP8eVEXimaXlRvn0zzlDTf1p3n0wxr2NQtGQ2Ef/cmUAnZtC7jO33foL++dvBuOvTsDjm+QlAK5+QXIUz9AioZaH2fk0JOBpJSgh8vtCyAHT215Ha2sQ4Z5+35d9ZfLcbMtH1cs6d4P6DXQcneZdjHk6Z8gVz9qe1W9PrgTu1fm45lNMzF1z+v417arsH51b0zb+4rtuXzsNEjVCpL6+QuomcOh7pwDdc+lUKcOCOn89WR+4GO+GauhHaE0ro/xuYH64i0AQK67RLd95xbj8KTVBkGOxctegnrgSqi5Z0DNGQdVstlGtURB2rbBtFn9czbUXhthYGbBaANGWZ8nAjRNUNwxcL+mIa8FtVtsraM+1MzoGq36o0xSgiAnTb9Pc0oB87/iRV8EYONq47auRb7/+41dFfp6WuitpQqbSq31zU2P/Pt3hyb46FIN/TuFZ/5ViX3gFoOgcjSGmRkFo5XpBaMZHCocTd72Wz3HSgtRMNrQQsHyuRpePlfD8+cIVt2iYXg3gdMheOsiDQsv0/DfGYIlN2goNPgYoCpAoCURERERERERERFFCd7EThRe3MeIQoj7ExERUWzhazdRbDDZVyP4nlbx/bM9/HlRnGIwGhEREREREXk5DG7i9Li9/++0dyN5i6SkRm5dFL06FAbuk5kb/jpihWa0DzcJRjMLxzAar0N6D4Zc+5h+Y+eekMe+gRwwCTLhRMhbm4znOeNqyNRzQxY4JjOuAo46E6gPyzM6rgUz98V3h2yu1lLcsfGmfCNDq5Y0fJ1uNRgtr8B4wh2Bw4F26a8GhVvthTHJvR9ADp4KycyxNc5wvowsyF1vBe449hhg0JjGx0kpkL89BDloSkjqaG256ebt+3XTf1JJYR/IDU8B6ZktL6LnQMgdr9kOwpSuRZCjzwQOP832KpNVNU7d8xJe3nQaLt11Pzq7LAZdmT3/QngupZSCuuhQoMxGeKAJufEZoH2+78L2HSH3L4S0cBt2bR/5AJTD+pk0rvgBAJDrMghGqzD+tYlR6EvPmjWND1YvgVrwYKASiVpu+5+B+yx4yPp8RgG66a2QbmhBcX7gY0uqo/F7KnDZOwbvrgD2VSt4DK4RaHpOlWEQdqRn4XJedEAAdhskA6dnQeqCpcUoGG3Dqqi72Of9Zdb75gQ4twwXEcGXV2mYMjj0c69ILILH5LKL+jCzTIPM5T1V/svcHv9lTecCgHYpQGpi4PrSQxSMBgA56YIThgtOHqkhp0nInYhgQl/BOWM1DOoiSE7QH89gNCIiIiIiIiIiarOi7HNdImptPCYQhQxfY6MftxERURvEYz9RzDM9h+M+TkSR5WztAoiIiIiIiChKGIUiueuC0azceB8qu7ZHbl0UtUTToHoPBn5fatwpRAFI8UBE0/94WXnvqFY11VBXH68/WNMgmr38fDlyBjDhRG/Qz+4dAARolw106e0TXiQOB/DIF1DnjfWdoFtfYNJ0W+sMWFNiEuSaR6Eu+hfw5+9A1yKoYwqB6sqWzfvE997vI8ZlJAsGFAC/GGfVoW/1qoav06wGo2VkA4nJQI3OHf0lgcOkSiv0l2e7TYL8miveD+g/ynp/i2ToWOCBj6EunGjcZ/IsyJijoEq2ALu3A936QhJDmD7QysyC0USAwZ1N2iecCIw7Fli3wn8/dCZAffQ88OK9puuXx/8PUjTURsU6c8y8FurD51o0h6X1/OVG4PQroCZk6HcIwbmUcrsBpaDuuaTFc/k4+Hjv9tqwEti3F0jLALoW235t0FOcH7hPKB07BEhNMglMqjue57r1Q+VKVDsopXSD+IyC0bq4mh1YP3sdOO9WS/USBW3n1oBd1KKXIbOuszZfbY3+8gQLqTutoLhj4D5pXbsCmzKB8jIUWA24bGLVNuPLN5oeIqwEE9X7cYPtMigelemHcyKrSfC3UTDanl3A2uVAzwGhrytISzZav9ApUOhuOGWlCt640IFtexQ2lwJODahoduhzK+CgOwxSyQysSiqC20IwWkaKQO+oskfn7aqVYDQRQecsYHWAj9BCGYxmlWEwmkEGJxERERERERERUXzgTaEUZRhEEwFB/qE4Zfa7iMj/8Tmi2Gbvd3sUS/g6RkQUu0yO4XyfQkQ28JBBRACD0YiIiIiIiKieUfCFxw3lcgGb1xqP7TkAGDQGeGNeaGqp0g/jobZHZl0Pdd004/bMXMO2NscouKs+3PCHRSZjg/uISJJSgIKe3n9m/QaMAu56C+rxm4DSHcCA/SHn3gwJU9CGpGcCfYcDAJROsI1lAw+AzL4J0ntQiCprfYuv1ZBygfHFQMU1Kxu+NgxGk9TGBw4NIgKVVwBsWuPfeYdJClud0gr931ZkucsCjgUATJoOufjfuiFGoSBDDgJueh7qhlP9GzNzgOETvP1yOwG5ncJSQ2tqn64f4AAAHTKA9GTzn7s4EwCjfahoKNBzINTt5+iPvfDOFoeiAYAU9gEe/ATqiilAZXmL5zM0ciIkIRGq3wjgt+/9mtV3CyGTZ9maUlVXQj1zB/DU7S2rrWM3YMRE4O35/m3DxkOcda8D3fu1bD06euZ5QzyMAj5C7eSRAY4FrloAQI5BMNpOLRuendvhyPVNdKuuVSgxePp0qt3iu+DP3w3D1doipZT3fMTT5J/b4Gufx566fzbH1H+tPLbHqIb12lhP0zblMag1wPfhU6vRHDqPA1n3m/UNFWPBaH0tBKPlZTogj34Fdf/fULBmj+11/LpZwWNw7NKa7N5GAUB6RIB91QppZgGOFP/27NJf3jQYrfdg7+c0ek/Cr96JqmC0Uhs51DlpgfuEW347QX474/Ytd2m49PHdWPRLFcq0TABA99r16OTagk/TDvbrvzGhEHscxhPWHy8yU/Tb91T6n2sbBqM1O3T0yA0cjJYWTcFotZGtg4iIiIiIiIiIiCi+8e7g2MVtRxQyTEogIiKKMXztJooJZufZETwH5xHDLv7EKD4xGI2IiIiIiIi8NINQJY8b2La+IUSiOXnie0jvQVAeD9QXbwK7trW4FDnu3BbPQXFi7DHm7TkWEhHaCjEIN1QeKKWgnr3LeGyQwWh2yP6HQ/Y/POzr8Vvv6X+Denyu/XGzb4bMuDIMFbWupATBzDGCJ7/W/8C7uGZVw9dGwWjlWnrjg/rnTq5+MJpatzzg3zEtrdBfnukxDkaTO16DjDkqwMyhI4ccD1z9KNQ/Z/suv/BOSFJyxOpoDbnpxm1ZBuEOVokIcNQZwMiJUGcMA8qbbPMxRwHTLm7ZCpqua/AYyIf+QVie+/8GvHRfaFbSra/3/y69dYPRsGgB1LWP23rOqHk3Ai/eG3xN/UdBHv4MUheA68lsDzR9PUhMhpx5TfDzW5DoFPTKA1a1/BTRkmkjAhx1KrzpZrkGwWgecaD09zXIaRaMtsUkq7Gza7P/wuWLoYqGAauXAOWlOoFfBgFYhoFYjX2VYfhW08dG4V4mywPV4bNeC7XXP6bY4DIIRnPaSP2KoL6djIM76xVkCaSwD+TO19FthQLutpfQ+NFy4zU0zT00Oz40p5R33uOG2SqF4owqLdFvyMxp+FIysqEGHQgs+cJ//KqfAp5jR9LeKmv9UhOBlMRoqtyX2rcH+H0pOtRU4X+vHu3XviahO4p6L9cduzKxyHBeR91b9XYGp4B7dH5+hsFozd7298kXfLjc/FiY3gpBjAxGIyIiIiIiIiIiIiIywSAnohDi/kRERBR1eL5LRBZFSf4aEUU5BqMRERERERGRl8MgGM3tBv783Xhcl14AANE0qCNn+IZtBKsVwpMoOokI8OoaqON76nc44IjIFhTNNINgtI2roU4baL4fG4WqxYMxRwF6wWjHzwFefdh4XP+R4auplZ05Wj8YLUv2YcKsoyFpx0P9czbSlH4wWrWWDBcccMLdGIyWlae/sjceg+pQCMy4yrs/N6O2bUTpir2AVuxfj7tUd0qZvxjSZ4jBdxc+cvSZQGEfqHefAiCQo8+EDBod8ToizTQYLTU065C8zsCzv0C9cA9QWgLpPxKYfJbucybU5MI7oX5fCvz4acsmyu4ASc/0zlnYx/iSu49f8obBWaB2bwcWPNCisuT+hQ2haAAg594C9BkK9c17QLv2kCNOhxSHP52nb8fIBKP9dpMGTQvwvNm2AQCQYxCMBgA71mxEzgG++/cm/UMSAKDAtcVvmTpvnHkdRNGm1iAYLSExsnVY1L9T4D4FWY1fH9jb/jre+UWhr0EOsxZkMBoAvLdM4bhh0RsORRFQZvAalJnr+3joWN1gNHz6KtS2jZD8wtDXFoTyamv9ctLCW0dLqFcegnrgSsM/CgAA3Wo3IMlThWrNP+FseVI/w3H1x4t2BqHCZZX+y9wGJ5PNg9GK8/X7NZXWCofxZIOrUBiMRkREREREREREbRfv5KTWwOdd9OK2IQoZpiXEgGC3EbctEVF84vGdKCZESWIZT/eJCADi+K5XIiIiIiIissUoGEl5gJKt+m05nSDJjakoMv1KoN+IlpVx1g2QHv1bNAfFF8nrDLniAaBZQI5c9C9Ihy6tVFUUMgpG27PLPBQNACrLQ1+PXTOv019+wvktm7fPEGD6lb7LRk70hgMV76c/Jj0LGHJQy9YbxcYXCy6Z6Ls/JTqBh89OR9q02UBiEgCgnXuv4RyljrqkkYZgtBzDvmrejcB3C/2Xr/sN6sTeKHUl6Y7L8vinjMgHO1slFK1h/YPHQLv6v9CufqRNhKIBQF6GcVuogtEAQNrnQzv/dmjXzoMcNxvijMzf9BARyN3vAgdN9m/MyIbcvxAYe0zgiXoPavy6xwDDbuqLNy3Xpl5+wBtQG4yeAyFvbIAk+u5fIgKZeBK06+dDu/iuiISiAUBRfvABQCt/H4Cpe14P2O+2qYLijubrUV++1fB1B9cOw35r1vkff9bs0P/NapqnHO08ewLWR9Ra1MqfoKwcS1wGwWiOhNAWFCKJTsG0Eeb7fF6TcM9Ep+CaI+0di3btA77+Q7+tJdmdv27mlRptXlmJ/vJM33Nq6eYfHlxP/WN6KCsKmsutLIddmQXutia17Fuoey41DUUDAAc86FW7Rrdtk7Oz8bi6t+qZBsFoe6r8l7k95nPV69cp8MEo3T/HLexSDMLYGIxGRERERERERERxrc3cqdlWvs8Y0Gaec/GI244odLg/ERERRR++PhMREVHoRObuMiIiIiIiIop+Dof+co8b2LNTvy0r1+ehpGcCD34CLP4QWLcCyC8E/vwD6vG5usPlqkeAw08Dfv4c2LQGGHwgpNfAlnwXFKfk2HOAYeOBHz/1hvUNGw/p3q+1y4oumsE+HCNk3LFQT93md9GejD+uZfOKQM69GeqQE4BfvwW69AaGHewNXXpwEdShHzoXrAAAIABJREFUWf5jpl0EcUZnCEio/OdkDaeMVPhmjUJaEnBoP0GP3Lqb6uuSPnLdBoENALY78pDr3tkYjJaZa9gXANSbj0NGHdb4+N2noW4/BwBQ6sjUHZPlLvV5LOffDkmN0jSFOFaQKTD6BXVSnHy6LA4HcNsC4IdPgNU/A7W1QF4BMOowSE5HoGpfwEAzOaJJOMnoScYdf/4cSilIgEQd9e7TwDN32Pk2vCZNh4w9Btj/cEiSQfpGK+jbMfixvWrX4oVN0/Hy3hMwvfNTfu2DuwBPn6VhcJfAwSDqmTsbvk5VlehcuwmbEvyDTFZuqMJRzZat3q4/Z5+aP9CCfCSisFNnHwCkZkANPAAy5CBg8IFAv5GQpGZJObUGwWgJBuk2UeCywwQvfW98EVX3HN+985bjBC98p7C22SlOprsUtZKACi3N8rqbztyng/ExQs9vW2DptYDi2C79J4w0C0ZDV+NgNCz7Fmr7n60eFl5ebb1vThSeyqvaGqg54y33z3PtAHRynbc78wzHaHW7ertk/fPqskr/MVaD0Q7o6T0nr3YZrh5prXAYT07Q/16rTOokIiIiIiIiIiKiaMKb2ImsCXJfYagdUQhxfyIiIoopPBcmihEm+2oE92MeMuziD4ziU5zcukZEREREREQtZhSq5HZDle3Sb2t+0y4ASUgEDpzs/QdArfgB0AtG69ILOHqm92bwJmE5REakaxHQtai1y4hemha4TxSTPkOA65+AuutCoLIcSEmDzLkdMsz6Teqm8xcNBYqG+i5LSgH++yXUbWcD61d4A8EmzQBO/1tI1hnt9u8p2L+nTiCHeJ9LeSbBaDucuUANGoLRpF1784/QP3sN7829Hy9lnYzqxAyc/frTOBiAB4IyTT8YLdNT5rug1yCzNVCYFPhnBzaoMMjQiUUiAoyY4P3X3P5HQObcBjXvRsBV69vmcACnXQEcdkrjXEkpwHm3Qj1ynf9c5WXAzq1AbifDWtTOrQ3Bgba+h2vmQY46w/a4SCjuaBywZ+bVjdMAAA54cMqel5HqqcSsgkdR5siCU9Xi7z2/x/VXH2gpXEiVlgDLF/vWVbNSNxht1a5EqNISSJMQ4FWbagD4h2b2rvnd5ndF1Aoq9gKLP4Ja/JH3cUIiVN8RwOAxkMEHAoPG+B/f6kVxMNqoHoJ7TxFc8oL/8UUEGFrYfJngo0s1zHzCgy/rdt2j976LeVvm4LxOD+DNjCmW153c5HAw60DBta9ZP8btrgC27wXy21keQnFEeTzApj/0G3OanR90K/bug0bBhZvXAq0cjLa3ynrfgqzoCQNUbjfwxqNQ//mrrXG5bv0/HLDdYRyMVh9mlp2q315WCbjcCk5H48/HMBit2Y8wLUkwoS/w3jLD1SM92bgtXJINcsarDV5qiIiIiIiIiIiIiIjaFrPfLfImZiJbmJQQA7iNiIjaHh77iYiIKHQYjEZEREREREReRsFoHjewR//GT7RrH3Ba6TscavCBwNKvfJefd5ulEAsisshoH44hcvipwIQTgY2rgS69vUGL4V5n/5HAkz8A2zcCSSmQnI5hX2fUqwvZS1bVyHDvwV6Hf2pHiaMuLKguGA2ZuX59mno4ezYu2nQ+sMn7+IVuH2D+5nMwqfxDKNEP9ctyNwtG697P+vdAIWMWjLavOnJ1tCYRAU67HDhuNlC6A8gpAPbuArb9CfToD0lN9x909ExALxgNADasNA9GO66b/RrPuSlqQ9EAoG+Qh9bxFZ/7PD6m/G1sW1WIlYlF6FG7DqkFkyFykLXJVnzvX1f1KixK8w/DW+Ps5g1RG3NUw7J168sA+B/retcYhNtQZDgc3nMgzeF9/dKaPG7a5jBrc3hDQX2WN3/c7Gu/cZp5P80BadomEnhuv6813++xSR/1378Dy76x/nOrrQF++Rr45WuoZ+/y1pNmkNLljN5gNAC4aIKGapcHVy7wvZjqmMFA1xz/95s98wSf/U3D+p2A470n0PnROQCAgdW/2gpGS0tq/Pqk/uW49rU0W3V/ulLh5JF8P9wmbd8IVFfqt3Ur9nkoyalQx88BXrxXv//OrSEuzr5yG+eDRfnhq8MOpZQ3HPvD56wP6tQd8szPyH1sL7DEv3m7s4PhUK1uV8/NMKrHG5iY16TdMBhN563TlCGC95YZX1CanmTYFDZJBlehVDEYjYiIiIiIiIiI4hqDjija8HkXvbhtiEKH+1PcYugdEVGc4vGdKCaYnotFbj/mEYOIAAajERERERERUT3DYDQPsGeXflu7bEtTyx2vQT1wFbDkc8CZCDn9CmDcsUEWSkS6NP1wqVgjzgSgR/8Ir9MJFPSI6DqjWpOgsjx3iW4w2g5HnrdrXTDaW3uKcX2Pxdjm7IAJ+z7FzTv+gZ616wAA1ZKIW3Ov9pvjrIJ5pmV0rd3Y+KCwD5DX2e53QiGQkWwc2lJRE8FCooCkZgCpdYkVSQVAboFx36xcqMwcoEwnXHbdb8B+B+uOU//3gf3Cjp4JzLjS/rgIykkX5KQBO/dZHzO88kdkevb4LXfCjQE1v3kflGy2PuH6lX6Lurj+1O2605ELbPjSJxht8/YqIMG/b/fa9dZrALzPoeYhXk2DrwIFZPkEeBmEcenO0SxUy2CM+I0xWY/uHJpBrRbHaHXjLISGSZyc+4TEna9BHdWCcFelgPIy/bYEnSd+lLnsUEFqInDfxwoC4PABgjtOMH79EhF0zwXU9FlQ678EPngWRdWrba0zrUleXM/vnsFpZZl4LvNUy+NPnacw8wk3HJo36MjZ/H8H4BDfr50O3z664xraxGecZnmcfw316/WvQcznNBwXoJYm37umxWF4nM7rUYOuRX6LZM7tUEbBaBtWhaio4O2tst63OL91t6da9TPUvZf5BfebysgG9hsPueRuSFIKcrskAUv8L7faZhKMVh9mlquTpVuvpNw3GM1jcEWX9t/roKpHQA45oWHZ5MGC8581vgSso0HuZTglG7x0VNXyUjUiIiIiIiIiIiKi0OFnrq0vyN99MOyHKIS4PxEREUUdnu8SxT7ux0QURRiMRkRERERERF5GwQIeN1BmFIyWY2lqSc+EXP1IkIURkSVG4YZW9Bkaujoo9knjRXu57hKsQU+/Ljucud4vNAc+Wq5w3MJhQLJ30YuZ07A8qR8Wrz0QCXBhWdIAbHXaC2vJdu9CB/f2unVokLP/AZE4DMaIEUlOoNrlv3z2OG4TU12LgV++9lusvlsIOX6O/3JXLdQVx9hbx/HnQbvUICwlyvTtCHz1h//y/HbASSMEDyxq/AVqgqrB30tuDTypjWA0tdE/PCbXpRNcB6DEmQO1YSWqaxV+3ghkLfsIW5zjdft2cm0Bpp4LvPbfgDXIOTdBzrjKcs1ElqVkBO4TLGdi4D6tTNME5x8sOP9ge+NEBHL9fHgA9P/sV1tj05MaXwPVogU4vSzVVjAaoP/aGjqRuCgl/OsQCSYUzk64G+DUpKGv1qIwOrP1SuPXvwJa2gQkeaoxtHop2nn2er/Z9h0haf4JVuJwQA0bD/z0mV+bmn8TZNZ1If+5l1UobCoFeuYByQnm53vl1dbn7dephYW1gNq5Feov+1sfcMpfoV1wh99io3CzCi3NcCpNeQA4kGPcBSXlvo/dHv1+jpKNUDfcDdz9DmTkoQCALtmCYYXATxv9+588QlolYNA4GC2ydRARERERERERERERRSez37PxWhwiW5TBL9aIiIgoSjFsiSjmRTA0jflsNvEHRnGKwWhERERERETkZRSq5PEAe/RDIySzfRgLIiJbxCDc0Ir99MNeqI1qEkCW5yrR7bLDkef9wuHAvQv9Ly76JXkQns88GWeUPYuViUW2SyiuXuW9zO+oMyGTpkOGjbM9B4XOpYcJ/vme/y9JJg/mxZimBh6gG4yG7xdBuVwQZ7OP5xctCDilXPc41G/fA3t2QcYdC4yfGqJiw+/4/QRf/eH/PLp7muCUkYIxPYG3PliLdks/wvSyZzG6cnHgSUs2QykVMDhRVVcCbzzmtzzXbRCM5sjBE78X4qK/euoCPCYaXnvcec7lkCljgcEHQd16FuAySfxITjGtkyhY4nSG73Ihp0G6TRyRax/DsKIHgYXWx6QlNXnwy9coTuga8rrIe42GSwGusF7LHukQuYlA14kAAKeqxcW7HsAd268z/3wl1zhRTP2xDNJrYEiq9HgU7vhA4e+vK3gU0CkT+M/JgmkjjN9r7iw3bPIxuEsrB6Od0MtWf71QNACm4WaGc339NjDxWKQkCtKSgH06YXJ+wWgGT0uHcgMA1PxbGoLRAOCsgwQXPe8/6KyDWud83SgYrZLBaERERERERERE1FbxpkRqDXzeRS8GORGFEI91UY+vR0REbZDJsZ+vC0SxwWxfDeF+bLqakK2FiGJdC+6YJSIiIiIiorjiMApGcwO7tuu3ZeaGrx4issdoHw4kMRly5jWhrYVim9b4kaFRaNBuR5b3C4cTH6/Qn+asgnk4rsvLuD33StslDKxeDjnrBmjXPMpQtChw2aGCkd19l911kqCwPYPRzMiBR+s3VFUA29b7LVafv24+4WmXQyZNh3bpPdBufBpyyAkQLXY+4j97rGBCX99lV07yhqKJCE4ZpeF/B/2MB7deYi0UDQBqqoG9uwP3e+Uh3cXtDY5xFVoazsFVdaFo5grG7A8RgRw6Ddon5ZBPK4CUdP3OwxhESmHUpbdxW5+hwAGTgPRM+/O2zw++phghmgbHtIswP+Nhy2PS64LRVF0YYtfajWjnLgtHeRTHXJKAu3MuxZOZZwDJJolbnY1DvdTTt4esnreWAte95g1FA4AtZcApjyqsLTG+xGjhb4EvP8pNB+45WQsYZBpqylULtfAleGaNBNwua4Oy8iDzdIJt6+Rl2P8etGdua/jaKFitpNz35+g2uB/KAW8wGpZ9A7VrW8Pyc8cJjhjg23fOwYLD+kdXMJqVcysiIiIiIiIiIqLY1UZu1+RN7FGE2yJ2cdsRhQxfl+IYty0RERFRW8czQiICAGdrF0BERERERERRQjMIVaquBPbt0W/L7RS+eojIHgkuHEfe2QJJTg1xMRTTmgQWZLn1A4d2O7IBAEsq8lFtkjHwdoZBMFQA08ueBVKODWoshV5uhuDTKzQsWgGsLVE4uFgwsDND0QIqGmbctmGVT8iJqq4CPjMJRjv0ZGhzbjNujwEZyYL3Ltaw8Ddg9XaFA3sL9usK35CUhET7E6/7DRh8oGkX9cI9usuNwh+tcigXOrT3rVkcDqjDTwHeeMy3c7dioPfgFq2PyNT4qcCz//JfnpIOefgzSFIylNsNrP0VWPIl1NKvgCVfATu3mE4rY6eEqeDoc+bEdrjklT3Y62gXsG9aXTAatm0AAGhQGF/xBd7KmBzGCilevZExBbNSNhi2y4QToZ68Vb9x0QKofiMhp/y1xXU8841+Glevaz1w/9c/2MzjUXh7qf6lR8cOAY4ZKkh0AhP7CjpmRjgUrbQE6oJDvOdcFsnFdwGHngzJ7mDYpyCIfEntj6UNX+emAxt2+fcpKfd9bBiMppo0fPUOMOUsAIDTIXj3Yg0fLgc27lIYUCAY3av1zteTDa5CYTAaERERERERERFRrOBtp0ThxX2MKHS4PxEREUUd0+BSvnYTxQaTfZXhxFGM24biE4PRiIiIiIiIyMsoGM0oFA0AcjuHpxYiss9oHzYz5SyGopG/JiF7WZ4y3S6lmjcR4JSlh4V89R1c23BQ5TdA8mkhn5uCl5IoOHowADAQzSpJSYPqUAhs3+jfuHE11AGTgPeegXr/f8BPn5nPNfW8MFUZWQlOwZGDgCONnkcJSfrLTaiv34WYBKOpr98Fdm/XbWtpMFrHdDc0zf97kTm3Q23fBHzznndBYR/I7a/4BcoQhZL85QaozWuAT17xXX7Xm5CkZO/XDoc3oK/3YMgJ50MpBWxZCyz5CmrJV8DSL4GNq70Dk1Igs66H7H9EpL+V1jP6SJz7+GO4K+eygF3T6w9X5Y3vl5/efBayi/WPN4W1G7ExoTAUVVIc2pTQGUhJM2yXHv2h+gwFVv+s264evAoYPQnSra/P8l37FO76UOHJrxS27gFGdQd65Aqm7ucNqHpnKVBS7r0QprC94NWfjGt0nOvBzDGCg4uBGQcIRAQ/bAC26L9dwOkHaDhxeOu87qmaaqgp9j6vkv+8BxkxIWC/ztn269HggVIKIoLcdP0+VoPRNDQ2qK/ehtQFowHesNkjBgDRcL6enKC/nMFoRERERERERERERBRfgrzhmDeRE4UQ9yciIiIionjFt89EBDAYjYiIiIiIiOppWuA+zeV2Cn0dRBQcu/twSjrkzGvCUwvFtibPpWz3bt0uZY5MVEgK1lZkhHTVyZ5K/LJmuPeB0+BueqJY0rWPbjCa2rAKuPcy4JWHAs/RZwgwaHQYiotCifaD0bDs/wyb1IfPQ90807A9270bIsH/0rSgvX4oqaS1g9z5OtTOrUB5KdC1mKFoFHaSkAi56TmoHZuATWuA9vlAx24Qk/1KRICCnkBBT8iRMwAAavd2oLQEyOkIadc+UuVHBcnOwzEd1uMud+C+afU/1urKhmUZnnI89+cMnNblGZ++Q6qWYvHaMdju7IDVCb3gnjQDnkkz4fYALo83AMnlBtxKNfm67v8mfXz6e0zamo33+MyldPuGar0ugzAnMlcpyUCycTAaAMg/noY6fbBhu5o+BPi8quH1pqxCYchcDzaVNvZZvA5YvE7hxe91ZwhY55NfKzz5NfB/a4EHTxO8uUR/TKITdQFdkaeUgrrEXqCjPPI5ZMD+lvpmpwJJTqDaZXFu5fHGlFXsBdLaITddoPez3mk5GK3JAeq7j6Eq90FMQvVai2EwmsWfGxERERERERERUfzhXZzUGvi8i17cNkQhw6SEGBDsNuK2JSKKXWbHcB7fiWKC6Xk292MiiiwGoxEREREREZGX3VCl5FQgPTM8tRCRfZp+OIuuIWMhs+dC8ruGrx6KXU3Ce7LcZbpddjuy8WnqONQqG887E8meSuxfuRj3brscOe5dIZmTKCoU9gG+X+S//I15lqeQe95vO6Faicn2x2xcpbtYuVxQD5kHgDrGTEJxErBiq/3VAkDH9ua/YpGcjkBOx+AmJwqS5HUG8joHPz67A5DdIYQVxZbRE/qi8N2N2JhQaNovLbHui5pKn+Un7X0FlZtTcEfOFdjhzMXh5Qvx721XwQEPOrm2opNrK/DaV8Br5wUXTh4DPBC44YBbHHDB2ex/73I3HHCJs/F/0fz6NvbRGvq6G/5vnKthXH0bHHCJ/vr15vJfh3+9vnM31uvxq1fne4OjoX+1JKFG8w8rrJQUICXd/AdbWAT06A+sXW7c57l/A6dfAQC47T3lE4oWSo9+rnDlEQpv/qx/gdOEYiAjOfTnLqpyH9Tjc4HPXgcAyNEzgTOuhjTZl9T8m4Fl31ibsLAP5MI7LYeiAd5AyYIsYG2Jtf6O+iCzsp1AWjvkGGzmneW+P0u3wbVjDtUkGK2mCvhuITDuWGvFRJBhMFptZOsgIiIiIiIiIiKKKAazUKTxORfDeIM5UehwnyEiIiIiilf86IOIAAajERERERERUT07oUoA0D6/7YR0EMUCi8EK8pcbITOvDXMxFNOk8bmU6dEPRivVMvFz8pCgV3Hv1stwwe5HgInTgI9fCnoeomgnXYtadPmd3PIipF37kNUT9RL8w2IC2rUNau9uSEa27/JfvgZ2bjEdKmdcgyOXC1ZsDW4rFWTxXJgo3mjHnI07n5iFU7v8z7RfWv3hqto3GE0AnFn2P5xZZj4eAODxBFdklNMAaHDDIBepTXuh3UmY3vkpv+WVWjKQkmo6VkSAObdBXXmcYR/1yHXA5Fn4qbQ9/vVB+K4IcnuAhz5V+GWTfvuUIeF5fVQ3zwS+eLPx8eNzgdpqyDlzoTweYPli4MlbLc0lf38ScvipQdXR2U4wmmoSjFbQA7kGwWgl5b6P3QaHh4agtTrqq3cgURmMJtC7CYXBaERERERERERERERE4J3dRCHF/YmIiCj6mLw+81yYKDaY7avcj6MYtw3Fp/j8U+RERERERERkn8NmMFpau/DUQUTBsRpuOGxceOug2NckZC/LXarbpUpLwdLkQUFNP7zyR5y3+1HIDU9BZt8U1BxEMaOwqGXjRx4amjpiRTDBaACwYZXfIvXlW+ZjDjkBMmAURnUPbpUAUJAZ/Fgiik6SlIxp18/AR+snmfZzOuqCn6qrIlAVxYsUj/7zpVJSgOS0gONl9JGQm543bHdDwxV3r8KIW8MfumcWvBbqYDTl8cBz/Sk+oWgN3nwc6o9lUEflQ80Zb2k+ufiuoEPRAKB3B+vfn4a6bbF1AwC0PBhN+Qaj4et3odxu/c6tKNngz/MxGI2IiIiIiIiIiIgokngzbPgF+zsRbhuikGEoQwzgNiIiIiKi4PBMkogABqMRERERERFRPYfBXYtGklLDUwcRBUez+DFPt77hrYPiQONFe1meMsNei1NG6i4/abjxRX89a9bgxU2nwfnMj5DDTgHyOgPJBq8nbS0QiuJTt+Lgx445CpJqkJ4RrxITgxu3fiUAQLlqoT55BeqjF4CX7jPuX7wf5NJ7AQCds4IPb+mVF/RQIopiMuYoHFLxOYZX/qjb3tuxrfFBdWWEqqJ4kKz0ny+VWgokxdprvhxyPHCAf3DfT0lDcHC3j/CfLaNaVGNL7dcV6JIdumA05XJBXX8y8Nlr+h1Kd0DNHA7s22NtwlnXQ066qEU1FeVb71sfZKZu+wsAIDdd/2fTNBjN4zG+nMuBZiFopTuAX7+1XlCEJCfoL692AYo3pxARERERERERUdwy++wrnj4Xi6fvhaiVmH5WHto/QEMU91T4/2gUtRL+XpGIKHaZHsN5fCeKCWb7cQjP00yPFjxcEFEdm3e9ExERERERUdxy2gyiSE4JTx1EFBwrwWiZOZCs3PDXQrGtyXMp211q2G1DQlfd5UcMAJ6YqWH+g5/hpR8F3WvWo3vtegys/hWH7luE7AU/QfI6AwAkIRFqzFHAogW+kxTvB8kvbPn3QtTa8rsCHbsBW9fbHirTLg5DQVEuISmoYWrDKmDXNqg544HNa807jz0GcsNTkLpQxoKsoFYJAJg8mBckE8UrefNPnDDrbvyQsp9f27G7F0DVngdJSGQwGtmS4tF/vrgkAS5oMMiS8iO3vQw1IaPh8c2512Bu3t9DUGHLTRkSwlC0sp1QF04E1v0Wkvnk/oWQoWNbPE/fjgKrF2lqqLsRo6oCyuMxDEYrqwSqahWSEwTvLTOerz5ozcdPnwODD7RUT6QYBaMB3nA0s3YiIiIiIiIiIiIisop3CMcuBjkRhQ6PhURERLGFr91EscEsGC2CVfCQYQ9/YBSnLNwxS0RERERERG1Cgt1gtNTw1EFEwRELH/P0GBD+Oij2NXku5bh32h7et5MgNUlwwSVj8emwBXhy62z8o+QWnIhPkX33iw2haA2ru+JBYEiTgILu/SC3vBB0+UTRRESAMUfaH3j4aZDhh4S+oGiXmBzcuPUroO67InAoGgC57L6GUDQA6JQZ3CpHZWxFuxQGoxHFK8nOw2WHuDGz9Gmf5SfseRU3bb4O+Okz7wKjYLRegyAvrQQGjg5zpRRLklW1YVvF9hLL80hCIuS2lwEA92ZfEJJQtDcv1DBpACAtfGk7dmjjBKqmGmrBA/DceDo8j82F2rbBu7y0BJ4HroRnbJL33yPXQa1eAs9D18Bz4+lQrz8K5aqFmndD6ELRHvk8JKFoADBMPx9alwNNgsz27DI97/hjB1BRrXDWU8Y3Q/nMV0e9/ID1giIkxeQjxqrayNVBREREREREREREQeJNlEThxX2MKIS4PxEREUUfvj4TERFR6DhbuwAiIiIiIiKKEk6bwWhJDEYjiioOR8Ausv/hESiEYl6TNIQUVYX2rp3Y5cyxPLw4v24ahwNy+f1Qs28CtqwHeg6EOP0/jpSMLMgDC71BCdVVQGEfb5gUUZyQMUdDvfqIvTGX/DtM1US5xKTgxn3zLuD2Dwrx43AA7fN9FqUkCtqnKuyqsHfcmV28AUDngP2IKHYlnH8LHnszF3dsvxa/JA1Av+qVyHdv9zb+vhQYdRhQYxB0lZQC6dQdeOgTYOMqb7/qKqCyPGL1U/RJLUkGXtVvq+4xxNZcMvYY3Ft0Ky53XGqp/5drx+PB9nPwfOYpfm3pUomjB6Vh8mAHdu1TWPqn95z+ucUKf1tg/ULFIwcCQwu9r6fK5YK6+njgu4UN7eq9p4HbXoa6ciqwa2vjwGfvgnr2rsZ+ixYA37wH/Pip5XUbSk6FvLcd4kxo+Vx1uuUIJvYFPl4RuK+mmoSc7dyKnt1y4NAAt0722YotwOptwI69xvM5lM7AshKoNx+HHPOXwAVFSPcc4IXZgmSnIDkBPv/SgzzdIyIiIiIiIiIiimkMQaLWwOddBAT7M+a2IQoZHuuiH7cRERE1xdcFothgtq9GcD/mEYOIAAajERERERERUb0Em8FoyQxGI4oqogXuM2h0+Oug2Kf5Ppc6uzZbDkbLTQdy0n3DhSQjG8jIDjhW8rtar5Eolgwbb69/936W9pm4lGCelCF/uRHq8bn+DVZC0QCgXQ5E83+93K+bYOFv1qaoN64PAxyJ4p0kJEL1G4mcJV/i4IovfNrUw9cCo4+Eqq7UH5yU4p1DBOhaHO5SKUakblfAqzrBVgAqB4yzNdeeSoUbEi8ALLwEVv7WDglwAbugG4x2aNmHwG+FQP+RaJ8mOLjuKXvJRO//VsLRpo0Q/Hd6k9fGJV/4hKIBALb/CXX+IUBNVeCiv343cB8L5Ky/hzQUrd6dJ2oYfov+tmzK0XQD7dyChNxO6KlVY7Un36/vSf+1OV8T6tEbgMmzdM9zWkNWqmDaCJ4rERERERGML+8QAAAgAElEQVQRERFRW8NbNSnS+JyLXdx2RJYFDF3g/hS/uG2JiGIXj+FEFBrMUiQiAIiOK2OJiIiIiIio9dm9UbTuRm8iihIOR+A+aZnhr4NiX7OQvQLXFstD+3YMdTFEsU8Sk4AZV1nvf+a13iCdtsjsfDQ9Czjlry07B83UD3n8+2R7vyqZWfo0evVqH3wdRBQ7HMZ/Y0qdfwjw5+/6jUnJYSqIYlmKyctcVWaBrbneW6ZQ7g4ccP/axpO8oWgADqj6DjNK/+fTnurZhyt3/htY/JHfWKdDcPnhGn643vx1cs7Bghdma8hMbTx/US/co9/ZSihaqHTuCRx/flimHtZV0MnC22ut6YWeO7dC3TwTRbt/CHq9DmWQhFdWAmxeE/S8REREREREREREREQUQaZ3dvOubyJfDEYjIiKKL3ztJooJfN8ao7htKD4xGI2IiIiIiIi8EgLfUOsjOTU8dRBRcMTCxzxpGeGvg2Kf5vtc6uzabHloUcc2GuZEFIA2+yZL/eQ/70IOnRbmaqKXiAAHTNJve20tJDkV6D8q+BVk5uouHttHMC5huW7bmIqvMXf7XBxW/hGm7H0bD2y5BI9umQPk2guwIaIYZRY+XF4KfPySfhuDxElHisnHLpW11udxexROnRf4Apb+1csxpfwdn2WPbjkf8zafh+P2vIGzd8/H92tHY1TV91CPzzWcZ1hXwfHDjNfz4Gk670W/fT9gfWF10kWQx76FhDGksF+nwH2aBpmpRQuA//sQ3Wo3BL1OBwyC0QBgb2nQ8xIRERERERERERFRPOLNsK2KN5EThYbpvmShnYiIiCKPr89EFCI8nBARABj/mXMiIiIiIiJqW2wGowmD0Yiii2YS2lAvlcFoZIVvuFlBrfVgtL4dQ10LUfyQx76BOnu0cftdb0FGTIxgRdFJLroTatXPwK6t3gUJiZBrH2889+zaB/jps+Amz8oxbHp5wNuY+K0Hy5IHNizr6NqKh7ZejIHVy4GdTTqntYOkpgdXAxHFFivn2HoSGYxG/lISjNsqa6zN8eN6hTPmeyz1fX/DFL9lCXBhVtnTmFX2tF+b2rgaUthHd675MzWs3+XBD+sbl+WmA+9cHF1/h03+/iTk8FMjsq6ifMGiFeZXXvkEmdWFxXVybQl6nU2D1vzsKwt6XiIiIiIiIiIiIgoBhiARtUFmf0BSmbTzmEBkXaD9hftT9AtyGzEFg4gohpkcw3l8J4oNZvtqCPfjCK2GiGIcg9GIiIiIiIjIy2kvGA1JvNGbKKpoFm5IZzAaWdHsuZTnLrE8tDjf7II/orZNivczv8wrtyBSpUQ16VoMPPWDNzykYi8w/BBIt76N7YVFwV/SmGkcjJbbsxDfvDAOb2RMwfKkfuhesx5Tyt/RPwbmdgq2AiKKNY4gf5XK98ukI9ksGK028PirX/XgzvetvQo+vnk2CmwGcKnTBgKfV0HE/5y+XYrgq6s0vP6zwrJNQGF7YMpgQcfMKDv/H3tMxFZVlB+4j6b8Q+w6u6wHTzfnE7TWXPmeoOclIiIiIiIiIiIiso53pUYN3iEc3ZQyyUXjtiOyLsD+ovP7OCIiIiIiig9890xEAIPRiIiIiIiIqF6CzWC05NTw1EFEwZEAwWiJSRC7+zm1Tc2C0XJtBKMNYK4TkbnMHKBsp34bj9ENJCsXmDRdv7HngODn7dHfuLHHAKSoKpyy5+XAE/UIvgYiijFBB6Mlh7YOigsiguQEoEonBK2yxnzsN38oy6Foojw4bN/HQVQIqHHJUBOnQfYbDxw9C+JwNLQlOgXTRgimjQhq6rCT82+HpKRFbH3eUGjzbaIXZNbJZmBdU8rwDioA+8p8+5Zshnr4OuDD57wLppwFmTQdMvjA4Nf/0+dQn74CeDyQg4+HDD8k6LmIiIiIiIiIiIhiidqyDvjqHaC2Ghh9JKR7v1auKNx42ylRy5ntR2ZtUfZHaYhaW8DgM75mERERRZ9gz4WJKHqY7KsM+45i3DYUnxiMRkRERERERF5Om2EcSQxGI4oqTW5Y15WSEZk6KA74XmCX67IWjFaUD/TIDUc9RHFEMzlWMxjNmkFjgKQUoLrS/tiDjzdu6z0YyMoDSncEnEamnGV/3UQUm8yO22YSGYxG+lKMgtF0ljX11DfWL1iZXP4uCloQvoWPX4L6+CVg8ULILS8EP0+kTZoR0dUV5Qfuo+ncqNG5dnPQ60xQJk+U8sZgNLV5LdTJfX3b35oP9c6TwI3PQCacaHvd6qMXoG6ZBXi835N6Yx5w1X8hR59pey4iIiIiIiIiIqJYopZ9C3X5ZKBir3fBozcAt7wAOXBy6xZGFBBvhm1dZjeRBwp6IqJGgY5lPNZFPQZnxL23lii8uUQhMwU4dZRgeDeGfBKRGb4uEMUEs3O4CJ7f8VSSiABAa+0CiIiIiIiIKEo4E+z1T2YwGlFUkQAf86SmR6YOin2a73Mp173T0rDDBwhEeEEDkSkGo7WYJKcCY46yP+6fr0JyC4zbHQ5g/HGBJ+rQBTLqMNvrJ6IY5Qjyb0wxGI0MpBq83O+rNr6Cx+NRePTzwFf4tEsGZvZYh//JLcad0rMgT3wfcC4AwGevwTM2CeqJW6BcroDd1U+fwXPhofCc2t/a/KHkTAAycyK6yu653p+5GQfcfst61q5Foqfa9vo6uLahR+06w3ZV2hhorR6+Vr+TxwN14+lQNfbWr5SCmndjQyha3UKox/4BxavPiIiIiIiIiIgozqn7rmgMRQMAVy3UXRfpfDZm9lkZP0ejcODzqvUFe6M4tx2RZYF+F8XfVcUxbttYcMf7Hhz7oAePf6lw90cKB93hwcLl3HZEbR5fn4mIiCiEGIxGREREREREAOrCIBwmYR3NJfFGb6KoEmj/Tc2ITB0U+yS4YLSBxnlDRFTPLGDHyWA0q2TW3+0PGn1k4HnPuBpIzzLukJUHmb/Y/rqJKHbZeY/chDDskgykJ+kv31djPGbKAx7jRgBODfjoUg277tEw/5peyHjuO8iivZDzb/frK7NvgvQeBIw81HLNav7NUI8YBG3V91nzK9SlRwFLvgD+/MPy3LbkdTZuy+kE0SJ76YNDExweIAMuWfkHkCWrakys+MR0XP9O/suuK7kDmtnF//+7EwCgKvYCX7xpOr86qQ9UVYVpHx8bVwNb1vkvL9kMrPrJ+jxEREREREREREQxRu3ZBfz2nX9DyWbg1/+LfEFEFEMYjEYUGoH2F+5PRK2lskZh7lu++2C1C5j7lvk1DkTUxjE0jSg2REnYN48YNvEYS3GKwWhERERERETUyE4gR1JK+OogIvskwMc8ae0iUwfFPhGfh7nuEkvD+nWSwJ2I2jqHybE60SAphfxIj36Qp360PuCwUyyFpUiHLpAnFgPHzQYGjgZGHQb0HgyMPQY44XzIE99BMnNaUDkRxRyzQEszzoTQ1kFxI83g5b68Sn95rUvhs1XG8x03FPj8Sg0T+wk0rfF8XBISgVMuhdz5OjD+OGD8VMhdb0Kmnuttv+ste4W/8pD3BkADat6NgNtlb047UjOAdu2N23N1ksQi4MQR5u+BBlYt011+zN63Tcd9fLmGV+ZoOEX7BFP3vI6X/zwVF+x+JGA9qmQz8M37gbfFrm1Qh2XD8+DVUB4LF6WbbHvs3h54PBERERERERERUazau9u47c/fG7/2uICa0vDXQ2QHb4ZtZSY/f24bIhsYjEYUrV77SaGq1n/5V38ALjf3TaK2jccAIiIiCp0gr+YnIiIiIiKiuJSQCFRXWuubmBzeWojInkChDanpkamDYl+z8KAkVYP2rp3Y5TQPA+rfOlkERLFFcxi32QmoJUjPAcA5N0HNu8G8Y8dukJnXWZ+3YzfI5fe3sDoiihvBBqMl8JhO+tINgtH21egv37gbqDBo278H8Or5xucWIgKMPhIy+kj/Nk0D7v0A6poTgYq9gcoGXLVQ/7rAG7LWfySkoGdDk9pbCnxpM2itqeGHAD98Yt4nt5N5iGz7/ODX3wLHDxMM7qKw9E/99snl7xoun2Mw57QRgvx2gqnDgGO1W4FNX1sv6JdvoD5/w3r/F/4DVbkXGDoeKOgB6T9Sv5/ZDVrCgGwiIiIiIiIiImqrxPvZ2ZLrgNUPAbVlxl0ZgkTU9pju98G2EbVBgV5DW/s1tnYvsOVDYN86IH8C0H5Y69YTlYLdRjweRru1Jn9z2cPNR0SGeIAgiglm59kRPAdv7dN9IooOWuAuRERERERE1GbYCeRgMBpRdHEGCkbLiEwdFPt0bmwfU/mt6ZCBBUBOOm+IJwrINBgtIXJ1xIsZVwKde/ovb98Rct6tkOsehzz2DaRrUeRrI6L4oAX5q9QEkwAnatPSjILRqvWXbzG5j+78g1t2/i37HQx56gfIJXcDGdmBB3z6KtTcM6BOHwz16sMAALV7O9RRLQslk3HHAh26mHfKLTDfr9IyW1RDsJwOwYOnadB0NkWXjFpMnjFWd1wn11acXPaS33KBB//7S5PJ3C5b9agbTgM+fcXWGLzxGNTcGVDnHgTP9adAeTz2xhMREREREREREbVlK+8Blt9uHooWb3hHahThtohuJp+3cz8isiHQ/tKK+1PVduDD0cCXJwI/XQG8vx+w4j+tVw9RFOFLHVFbx4MAEVnD2HAisoLBaERERERERNQogcFoRDEr0P6b2i4ydVDs0wlGm7r3DdMhxw1jKBqRJSbBaBJs+E4bJiKQe94H+o9qXNhvBOShRZDTr4BMmg7JzGm9Aoko9jkChA8bsfPemtqUNIOnRnkQwWjTD2j5Obh07AY58QLIfR9ZH+SqhfrPX+EZmwR1TGGLa0BeZ8g/XzXv02sgkGgSjJaa3vI6gnRgb8Fz5wiSm2TcdsoEnp+ThNRTL4C8+ScwbLzfuH9vuwrj9n3e8HhA1a/4IelCOB3BB6MBAFoSbPbZa8Db8/2Xm9bB94JERERERERERNSGrff/Awjxgbeexgdux/Az+YzcNBGG24bIugD7S2umLy27FSj71XfZj5cBFZtbpx6iKOLhSx0RGeIBgigmmJ1nR/AcnGGrdvEHRvEpyKv5iYiIiIiIKC45EwL3qWd2QyoRRZ4jwP7bijeKU4wR/3CmyeXvwqFccIv+x4lTGYxGZE2wATtkSDp2Ax75HPhjGZCYCBT0hNg5pyUiMmMSaGnKyWA00peeLNC7+KTCMBhN/0KVXnnegNBQkd6DoIaMBZZ8EbI5LcstgPQZAiwsg7r4MGD5Yt92hxMyaQbUY/8wniM1I6wlBjJthIYpgxW+WwckOoGhhUBygnf7SHYecM/7wJ+rgS3rgR79gU9eQccHrsTHGyZheWI/1EoCBlb/CmfXXr4TGwWSaVrLAtBMqJfuhxxztu/CWoMnKBBceBsREREREREREVFcUMDOb1u7CCKKWsEGo/EaLCIfAZMQwvM7M0tW3ae//I/HgEE3RLYWoijjbsVdk4iiAJOMiIiIKIT873IkIiIiIiKitivBxs3bicnhq4OI7AsUAtPKN4pTDNH8PzLMce/CxH2f6Hbv3cF74z8RWeAIMmCHTIkIpPcgSNdihqIRUWgFG2hp5701tSmpBk+NfTX6FwRuLdPv3ykzRAU1Ibe9BBx6MpCZG/rJzeQVeNeflAy59wNg6rlAehYgAvQZArnzdUjRUNOAfomC97spiYJxRYIDekpDKFo90TTvecr+h0M6dAHyOnuXAxhQ8xuGVi+FE25gwyrfSY1Cx4ZPCMN3UGf9Cqgt63yX1VQZ968xCU0jIiIiIiIiIiKKdSH7AxW8KZzCgGEDUSDI8DNuOyIbAuwv0bg/bX6vtSuIMkFuo2jctmSZh5uPiIzw+E4UI6LjPS2PGEQEMBiNiIiIiIiImnIyGI0oZgUIX5DU9AgVQjHP4MLem3bMRaKn2q/rHSdokJBdDEwU5zQGoxERxRQGo1GIpRt8lFJukDu1xSAYrWO70NTTlLRrD+3Gp6G9vQny4orQr0CPwwlk5zfWkJwK7bL7IO9sgXxUCm3+Ysiow7yNiSnG88Ta+93cToZN6qfPGx8YBKPJQZN1A61DZuVPvo/Nws9q9duU2w21ezvUvj0hLIyIiIiIiIiIiIiIKEaY3ijOW7uJrAu0v0Tj/hSNNRFFFoPRiNo6ngsTxTyGGEanQNuF243iFIPRiIiIiIiIqJGdm7eTGIxGFFWcCebtaWG4c57ik+h/ZDii6kd8vW48ppc+ixFVP+Kk4YIP/6ph6jCGohFZxmA0IqLY4gjyuB3o3JzarDSDj1321egv31qmf6FKx6zwnoNLQQ+gQ2FoJus9GBiwv37b/odDdPYz0TRI88+dsvOM1xFr73dzCwyb1MPXND4wCEZDQhLkuWUhLqqJ9c2C8aoNkvsAoMa/Tf32PdRf9oc6phBqcgE8D1wJ5XaHuEgiIiIiIiIiIqII4M2EFNP4/G1dJj9/5YlcGUSxLuBrMY91RNGIwWhERETxLHIv9PxojogABqMRERERERFRUwlJ1vsmMhiNKKo4AoQvpGZEpg6KfZrxR4ZDq5fiyS3n4Ntdx+LFczVM7MdQNCI75KQL9RsK+0S2ECIissbhDG6cndBxalPSDT52Ka/WX76lTH95p8zQ1GNGbnyq5ZOkZ0Iu+Cfk9leAbsW+be3zIefcZL2ePOMwsZh7v5tbACQaPBnW/ApVVeH92ihMzOEEOnYPPrwxALV+pe8CnfCzxrZqqL2lUIsWQH37PtTe3VCzDwT++MXb7qoFXrwX6vSBUAseCEu9REREREREREREYeNheBERBcvs7m3e2U1kXYD9JSqTEnhNpY+o3EYUCmZb1s3TaKI2jufCRDHP7ByO53dEFGFBXs1PREREREREccnqzduaFvwN4kQUHs4AwWgp6ZGpg2KfWPhbCslp4a+DKB4deDSQlAJUV/oslsNObaWCiIjIlBZk6JCd0HFqU9KMgtF0cqdcboUlf+r3j0gw2uADoSZOAz5+yd6455YBX70DJCUDY46C5Hf1Nsz7Bli0AGrdb5DCPt623E7WJ84x6ZsaW+93JTEJqmsx8PtS/8bqSuC374Fh4wC3S38ChxPicEDldAK2GzxJWmLjKt/HJsFo6os3gUdvAMpLzefctAbq3sshJxoEBRMREREREREREUUjFapEh3i6YTSevpdYx20R1UxvFOe2I7IsYOgC96f4xW0byzzcfERERBQCPKUgIoDBaERERERERNRUoGCleonJEOFftCKKJuJwmH/om5oRqVIo1lk5vqcwGI3o/9m78zhZ9oK++99fbb3NPnPOnDnn7vdyd9Z4lYsQhAsRCUFF8EV4IAoxL01iXPCRPElMhMgrbnGL0fgQn4fogxrQKK5IAsqDyEXhEZDlwt3XM2ebfaanl6r6PX9Uz9Jzuqt7eqaX6f68X68+3V31q6rfdFX9qqpP/b7dCZMfl37y92T/9Ruk4kYy8GXfJr35h/tbMQBAQ8b1Oruxot3QcYycyVzj4SvFq4f93mebz+fMRG++kzHv+C+y25vSJ/+kvQm+9pVJ6Nkbf+DqeeUK0t//js5/H30sJQ2unXDnAWN++g9kv/WGxiOXFpPnlGA0SdJNd3UnGG3tSt1b+5d/1Lzspz9y/MsHAAAAAAAABkV8XMFoJ0zLEBqcCKzHPkv5/AlNAw6BYDRgUKX93/+onkYDqEk73+U6BTgZerQf01wcFtdHGE0EowEAAAAA9rTbeTvIdrceAI4fwWhol9NGqADBaEDHzN95mfSHz0hf/Rvp9DUy89f2u0oAgGbcDv8r1SMYDY3NjRk1uvlkpSiFkZXn7t06/P5PN79TeCElI+w4mfyYzE/+nuxjD0ilrSSIa21J+uzHZd/91gOFjcxbf6R7lZk723xcYaJ7y+0SM7cge80t0tMPXz1ybSl5bhGMZl7zNtlPfTh9Qf/w7dJv/ezhKrextvvSvvfd0mf+7HDTN9POtSYAAAAAAAAwSOiBCSBVSiSMTUuEoW0B2tdif+FYDQykmF0TAAAcg1an+9ZaGdObH5kF0D/ceQoAAAAA2EMwGjC8cvl+1wAnhWknGG2s+/UAhpgJMjLPvpdQNAAYdJ2G+LR7bY2RM5dyGr28Vf/+dz/bvOztZ46nPu0yN94hc8fXyGRyMqevkfnGN8n86v3S3fdKmZy0cIPMO98nc/cLu1eJm+6WZheuHj4+Ld3y3O4tt5smZxsOtpeeTl40DUZzJUnmpd8ive57UhdhpuaSz+4wNlcVf9e9il+Skf2/f+xw0wIAAAAAAADDJE4LNjoEQlvQFWxXgy1t/XQ6DhhBLY+h7DODr9N1xLo9yQhGA0Yd57vAUOvh91x8pQZAIhgNAAAAALCf124wWqa79QBw/DK5ftcAJ0U7v5iSJWgPAACMANfrbDrPP956YGikBaNd2dx7/dknm9/Rc+eClPH7/yuH5rYXyPkvH5PzkVU5H/iqzMtf393lua7Mm//3q4e/6YdkvA731X6bmGk8/Dd/RvbxB6TNtcbj97VN5q3/Nn0ZuTGZN/9we9d5+331bw5XHgAAAAAAABhGNiUYjZ6ZANJCHdLaiE7HASOpRUhp2rEaQFelHbEidk0AANADXEIDo+GE3iEMAAAAAOgKv91gtGx36wHg+AUEo6FNpo3fUsilJDoAAAAMC9ftbLp2r60xcmbbDEb7V7/b/C7h//bW0f3tM/P675Wm52X/7LelakXm5W+QedX/1u9qdW5ytuko+5bnNZ9ufxDc5GzS5lQrjcvmCjKvfKNUmJD9k1+T/t8PdljZI5iZl6ZPS87obrsAAAAAAAA4oWISHXCS0Tu4v9I+/07HASOoZdIB+wwwiGJ2TWDEcb4LnHip5+G9249pMQ7g+ggjimA0AAAAAMAej2A0YGhlCEZDm9rprJ4nGA0AAIwAt8P/SiUYDU1kfaOxjLRZvnrcTjBaJbS6/9HG0ztGuu1M9+p3Epj73iBz3xv6XY3jsbnW2XT7wqyNMbJzC9LiE43L1kKtzYteLfOiV8t+/Pdl/823d7bcTvz9t8r5P36ld8sDAAAAAAAAjlMcNR/XsiMigNHWYSdy2hbgADr+n3yso2FlUsYRjAagKc53ARwjWhRgNPCTvAAAAACAPb7fXjmC0YCTh2A0tMuk3a5QM3Wq+/UAAADot46D0TLHWw8MlbkmGcOXN5LbdP7iIWmj1LjMzaek8Wwb5+s4Ecytz+9sQsetfz93rnnZbL7+faftWofMO365p8sDAAAAAAAAjlUcp4w8TNfLYeqmOUx/ywlHoMBgS1s/9rjaFmAUtNgnaAuHF+v2RCMYDRhxtOHAyZd6Tdu7fZzmBIBEMBoAAAAAYD8vaK+c32Y5AAPDuG7rQoAkmdZfGZqpuR5UBAAAoM8Ohg+1i2tmpJhtEoy2up08/9HfNr+b58M/wH/vD5Vbnt3ZdM6B7WDmdPOyuQMb3B1f014Y9lEt3CDz3k/LHKwrAAAAAAAAcJKkhheljTvp6HU6HFiP/dVpJ3LWG1CnZRIC+wwwiFLzhQGMOI7dwInQo2C01MUccfrhRHA0RlNvfw4YAAAAADDY2u287XE5CQBDq52O61Onul8PAACAfnM7vPZtN3QcI2kq13j4ajF5vv+RxjenfNsLpBvmehBohd554as6m+5gmPXc2eZlc4X6SWfmZb/u70mf+nBny06r1rt+QyoVpWufJd36fJlM9tiXAQAAAAAAAPRUaqIDaQ8A0nQYfkYnZuAAOv4Dgypt74vYNYERRyMA4HjQmgCQJH6eFwAAAACwp91gNNfvbj0AAP1j2ghbmJrrfj0AAAD6zXE7m87jmhnNTTYLRtuWrLV68FLj8a+8k1C0YWP8QObd7z/8hAfCrM3pa5qXDTJXL/ed75Ne/gYp02RjPKzrbpX5nYdkXv56mVf/I5ln30soGgAAAAAAAIaDTQs/o2sm+o1tsP9S/u+m4/aD9QrUa7VPsM8MPMLrRlJqvjCA4Zfa9nNcAE6GkxHoPUBVAdBFHf7MOQAAAABgGBkvaO9rZo/LSQAYWqaN31KYPt39egAAAPRbh9e+xuG3qdDcZN6o0Y1Da0Xpyqa0Wmw83Z0LBKMNI/PSb5F94aukT/3pISY6sC3cfW/zspNXh1qbwoTMu94nW61IH/hPsr/yb1ov86a75fza/ycbVqVKSaqUpdwYAWgAAAAAAAAYbqmJDofoeUkvTWAEddiJPDVQDRhBLY+hHGOHF+t20KXdwRCz+gAAwDFodTnAKQcwGrgrHwAAAACwxw/aK+f63a0HAKB/2gnymLq6cz0AAMDQcTsIRrvnvuOvB4bKVL7x8NWi1YMXm09363x36oP+Mz/+O4ec4MA1211fJy1cf3W5m+6SSbl2M34gvfz1ktf6ez7z2n+cPHu+TH5cZmqOUDQAAAAAAAAMv7SAIsKLMOgI5OuBDsPPUrtus96Aeq2SEPp0PKaNBVIRjAaMuk7PkwEMjI6vadFdBEdjNBGMBgAAAADY00ZHyEOVAwCcQGm/41YzSTAaAAAYAY576EnMP/+pLlQEw2Qq13j42rb04MXGN6ZM5qRT412sFPrKeL7MB5+QbrijvQkOhFkb15X53p+WgszewCAr830/03rZCzfIvO3fpRe69fnSN72lvboBAAAAAAAAwyROC0aLelcPACcQwWjA8RjUjv/sq0AagtEAAMBxaJWlSNYiMBo6+JlzAAAAAMDQ8oP2yhGMBgDDy2nxWwqTczL7O9wDAAAMK/eQwWj33Cdz893dqQuGxlS+8fDVbenBi43H3TovGdNGgDFOLDN7RvrV+2VfdUoKqy0KX33NZv7uN0u/+inp/g8lnTVf+i0y1z6rvWW/5R3Sc14k+6kPSx/+DenyM8mI09fKfNePSvd9O9eAAAAAAAAAGE1xSvhZHB5iRvTSRBfQ+3fApayftHXHegXqDWoSgk0JT8UBna4j2sNBl7aGInYRYMQRBHO2JPEAACAASURBVAyceFy3AhggBKMBAAAAAPZ4bQajuVxOAsDQatDJvs7cQm/qAQAA0G/O4YLRzFv+ZZcqgmEylWs8fLUoPXSx8U1Dt84TijYKTCYn+5Z/Kb333ekFm4RZmxvvlG68s7NlP/fFMs99sfTdP9bR9AAAAAAAAMBQilMSHWxKaNqJR+fX4cC66qvUfYWgCKB9rfYJgtGAQRRzOAPQDNeUAA5hQK8G+qdlGzpynwhGRItejgAAAACAkeK3GYzmEYwGAEPLtAhdOHW2N/UAAADot8OEgl93q/Tcl3SvLhgaU/nG59uXN6S/fKTxNM+a72KFMFDM5GwbhbjNAwAAAAAAAOiJtNCTeJiD0QAcXVrAYFqgEp2YgToD2/GfYDQg7U5jgtGAEUf4GXDype3Hx7iPp8aG05QAqOGOWQAAAADAnraD0fzu1gMA0D9Oi68MZwlGAwAAI6JVMNrkXFLmBd8g83Mfkml1HgVIOjvVeHgYSxfXG4979rkW4cUYHpNzrcvQ1gAAAAAAAAC9EacFo4W9qweAkye1B3dvOpgDw6HFPtGvfcYSkNo+2rVRlHYaDWDUcVwATobBuG5ttSguoYHRcIifOQcAAAAADD2vzWC0Vp3DAfTHjXdKj3356uHnbup9XXBiGWPS/8txbqFXVQEAAOivINN83Ne+Uuan/0CqVmQy2d7VCSfebfOHKx940n23d6cuGECTM63LGILRAAAAAAAAgJ6wacFohwlEoZcmuoHtarClJcJ0GJoGjKRW+0S/gtFIfeo6Ui5OtJjVB4w4GgEAAHB8uGMWAAAAALDH99sr57ZZDkBPmTe/o/Hw73pnT+uBIeA0/9rQjE30sCIAAAB9dN1tzcflCjKOQygaDm0sa3TNdPvl77tdmsiZ7lUIg2VyrnWZlOs1AAAAAAAAAMcoTgk9sWHv6gF0gkCZHkj5/5u0zz91HGFLQJ2WbdkABqMZ/m8XoyFt74s4nAFoiusU4CSwqefhvduPW14NjFyT0uIPHr0PBCOCO2YBAAAAAHu8oM1yBKMBA+ml3yrd84r6Yfe8QnrJa/tTH5xcaTfnZPK9qwcAAEAfmak56ZpbGo+7454e1wbD5PYz7Zd97XO5cX6knDrXurMEnSkAAAAAAACA3kjrTBhHvasHgAHVaUfxwehgDpwMg9rxn9QnIE47VeZwBow4GgEAvUFrA4wGgtEAAAAAAHv8NoPRXK+79QDQEZPJyvz4/5B5129Ib/ohmXe+T+Ynflcmk+t31XDSmJSvDbMEowEAgNFh3vzDjUd83d/rbUUwVG47036w1b03E4I1Ssz0KekF39CiENsEAAAAAAAA0BNRSviZJRAF/Ub338HWYfhZ30KegEHVap/o0/GY84D2ddyu0R4OujhlNyAYDUBTnO8CJ0PavtrD/ZgmA4BEMBoAAAAAYL9Me2E3xvO7XBEAnTKZrMzLXy/nn/4HmfveIBNk+l0lnEQOwWgAAACSpFe9RXr1d+y9dz2Z7/8ZmVue07864cS7/Uz7ZW851b16YDCZH/rF9AJp12sAAAAAAAAAjk9a6EkcHmI+J6wXZ2p9T9jf0ivbF6Snflda+/IAre9BqceI6rgTOesNqNMqgKxfbW5avQbmOAB0V1r4GcFowIjjWAigR2hugNHg9bsCAAAAAIABMjnTXjmC0QBgyJnmozK53lUDAACgz4zryvyr98j+wx+UFh+Xbv87MtOn+10tnHC3nzFqp2PLtdNSPpNybo6hZK59VvrWYQhGAwAAAAAAAHoiTgs9iVJvrcAIefg90l9/9977a18vff1vSg73WI62TsPP6NUN1Gu1TwxgMBowIqK0DGF2EQBNcb6LPrIx9121q+Ow7+NdDMFnBw3o9RHQZbTcAAAAAIA9k7PtlXPd7tYDADC4svl+1wAAAKDnzA13yNz7TYSi4Vi84DrJtNFh7tb57tcFJ5DDbR4AAAAAAABAT6SFnpD2AEnaeLg+FE2Snvod6cFf7k99MEA67EROr2+gXst9ol/7DOcBQJyy+0UczoARRxAwBsz5D0t/eo/0gYL0kZdKK5/vd43QpkG9GgDQW9wxCwAAAADYU5hsr3Olx68ZAsBQCyvNx2UIRgMAAACOYrpg9AOvaJ2M9qz5NtLTMHr45VIAAAAAAACgN9LCz2x0iBnRTXNoPfprjYd/9ee7v2wCtAZb6vohKAJoX4t9ol9tYVp4Kg7odB3RHg66tGA0MoQBAANj6TPSx18rLX9GikrSpY9LH32ZVDzf75oNOAK9AQwO7pgFAAAAAOwyjiONT7cuSDAaAAy3tLsSsgSjAQAAAEf1H1/fOvTs1vkeVAQnTzs/agAAAAAAAADg6NJCTw4VjIah9dWfazx86/GeVqMxOir3V1on8rS0GNYbUK/VPkEwGtAvqcFoHM6AEUegEgbIE/9diiv1wyor0vk/6k99TooB2VdbVWNAqtk7Lf/gUftAMCq4YxYAAAAAUG9ipnUZl2A0ABhZ2Vy/awAAAACceMYYfeNd6WVunW8dnoYRZLjNAwAAAAAAAOiJlB+VszHBaABS/h+n0/CzkevVDbQwqEkIBKQCBKMBAE6Gr/xM4+F//d29rccw4boVQI9xxywAAAAAoN7kbOsyrtf9egAABlMm3+8aAAAAAENhYbJ5hxnHSC+8qYeVwcnhcJsHAAAAAAAA0BNpwUYEoqDv6Ijcf2nroNNxaYFqwChq1db1qy1kX20fx6thFaXsBmnjAIyA1NAkjgvAiTAg+3HLqwGaFGAkcMcsAAAAAKBefrx1Gc/vfj0AAIMpSzAaAAAAcBxunGs+7p4bpJlC8+A0jDDDbR4AAAAAAABAT0Qp4WeHCkYbpl6aw/S3DDl6B/dZyueftm5Yb8ABAxqMlhaeavg/3mNBezjw4pRVFLP+AAAAABwT7pgFAAAAANQLMq3LEIwGAKOLYDQAAADgWNx3R/Ob4r/1+dwwjyboTAEAAAAAAAD0RlroSXyYYLSThiAL4MhSA2E6HQeMoFbhSmnH6m7q13KBARKnnSpzOANGHOe7wIk3IIHeLS8HelONAdLqAxm9TwSjgWA0AAAAAEA9v41gNNfrfj0AAAPJEI4JAAAAHIsX3iidm2o87rXPJfwKTTjc5gEAAAAAAAD0RFragx3mYDQAR0cwGnA8Wu0TfdpnCEYDUsPPCEYDAADtOOrVMTlgwGjgjlkAAAAAQL12gtE8gtEAAAAAAACOwnGMfur1Vwegve3FRrcvEIyGJgy3eQAAAAAAAAA9kRZ6cphAFHppoisGNCwIibT9vtNxwChqtU/0bZ8hGK1tHa8j2sNBlxqMxi4CjDjOd4ETb0CuW2kyAEgSPdkBAAAAAPXaCkbzu18PAAAAAACAIffGe4zygdEvfCRWKZRe9wKjf/EyQtGQwiEYDQAAAAAAAOiJtEQHG/WuHgBOoLTe252OA0bRgIZAHiYgFRhSUcpuEHE4A9AUDQSA4zN6LcqAXh8BXUYwGgAAAACgXhC0LuNyOQkAAAAAAHBUxhh98/Okb36e2++q4KQwBKMBAAAAAAAAPZEWekIwGoBUBKMBx2NAO/6nniOwH2M0xCmbelq+MIARwLEQGAIp+3EP93FaEwCSxB2zAAAAAIB6fqZ1Gc/vfj0AAAAAAAAA1HO4zQMAAAAAAADoibREh7RAFKAXCBsYAKb5qNTQJAKVgLa12if6ts9wHgCk7X5poWkARgFBwAB6g0toYDRwxywAAAAAoJ4ftC7jEowGAAAAAAAA9JzhNg8AAAAAAACgJ1LDi6LDzOjIVRkY9Dg9QVhX3ddp4ANBEUD7Wu0TfdpnCEg9hE7XEe3hoEsLPyMYDQCAEy71+5/eHej5GgqARDAaAAAAAOAgP9O6jOt1vx4AgMFTmOh3DQAAAABgtDnc5gEAAAAAAAD0RJQSfjbMgSj0Om0fnxWaSds2UscNcdsCdGRQg9EOE5AKDKc45ZBFMBow6jo8FwYwODq9pu2xAapKb7T8g0ftA8Go4I5ZAAAAAEAd004wmud3vyIAgMEzMd3vGgAAAADAaDPc5gEAAAAAAAD0RGonUAJR0MLI9c5FvbT13+k4YAS1akv7FSZIiCGgKGX3jNhFAADAMeAKGYBEMBoAAAAA4KAgaF2GYDQAGE33vKLfNQAAAACA0eZwmwcAAAAAAADQE3FKogOBKJAkY5qP6/o20iosiO7D/dVh+BnrDTigVVvap32G84BDoF0bVmmnyjGrHRhtqee0NBDAiZD6YwHHtx8fdTG0KMBo4I5ZAAAAAEA9P9O6jOd1vx4AgP75B29rONi86Yd6XBEAAAAAQJ20jnYAAAAAAAAAjk9a6ImNDjOjI1cFJ5Ct9rsG6KeOe3fTXgB1WqUh9C1MMOUcgf/LOx4ERQ68tPAzgtEAAMBxGNjLAQA9RTAaAAAAAKBeO8FoLsFoADDMzJt/WDp1rn7gt/0zmXM396dCAAAAAICE4TYPAAAAAAAAoCfitGC0lHGAJMVhv2uAvuo0/Ixe3UC9VvtEn/YZzgMAxSlJJGmn0QBGAee7wMnXadg3uoukOIwmerIDAAAAAOoFbQSjeX736wEA6Btz9ibp//wL6aMfkL34lMzzXyq95LX9rhYAAAAAwCEYDQAAAAAAAOgFmxZ6QiAKpPQOp7bbwWh0du2/DgMfUrcb1itQb0A7/nMeAChK2Q1iDmcAmuF8F8AhtGoyaFGA0UAwGgAAAACgnk8wGgBAMqfOSW/8QZl+VwQAAAAAsMsYrtIAAAAAAACAnoiPKRiNjt+jKa72uQJsd13XccBZp+OAEdTyGNqvfSbtHIH9uE7Hnwef46BLCz9LC00DMAI4FgInH/sxgAHCTwkDAAAAAOr5QesyLjnbAAAAAAAAAAAAAAAAAIAhFUdpI3tWjd4jtOlY2LDfNUDXpe0PaW0E+xjQvgENRksNSB3mcwRgT1owWto4AKOOBgI9RLjXidfyamDkVvGAXh8BXUYwGgAAAACgXjvBaJ7f/XoAAAAAAAAAAAAAAAAAANAPcUqwiU0LTQMkxdV+1wDdlhaMlNY7O3U6ApWAei069vcrCYH9GEg9VSYYDRh1NAIYEASWdy71mrZ3+/joBZ8BaIRgNAAAAABAPT/TuoxLMBoAAAAAAAAAAAAAAAAAYEgReoKj6HYH7Ja9g+k93H1pn3E3xgEjaFDbOs4RgNTwM4LRADRFyhF6icDyzvUoGC11MUecHsDw8PpdAQAAAADAgAnaCUbjchIAAAAAAAAAAAAAAAAAMKTi4wo9ad5L05aK0sUnpZXL0ulz0vz1Mq57iHljYNEBewR02FG8Rx3MgeHQYp/oWwhZ2jlC1LtqnAgdtmu0hwMvStkNCEYDRh2NAAZEtwPL0XW0Ju2pxL6WqzNaupTXLbNWGd/0u0rAsaInOwAAAACgXn6idRnP7349AAAAAAAAAAAAAAAAAADoh9SwlaMFsdj7PyT7mz+rX3v8euWiol6z+SfK223pOV8vvfv9MtOnjjR/HI21VltlKfCkwOuwM2m81wHb1sJdjKFj6lBJDe3pxjjgZKqEVhfWpLGsVKpK41lpLFPfJpaqVuXqTrsruU5tXMtwrD7tM6nhZ/0KaxtO1loVK1LW37ddYCCkhZ+lhaYBGHWc76J3SuWq3NiT7xCQdngnI9B7cGrSuTCyurwhXdmUKpEURlIYJ+dTxYpU3rf5bhddPf3k2/VM5Zy+tHWXHtm+SVeqc9qIan2B75e++E7pzrN9+VOAriEYDQAAAABQ77pbpVxB2t5qPN4YfpUSAAAAAAAAAAAA6CNjzI2SnifprKQxSYuSnpD0SWtttZ91AwAAAIZCnJLokBqIkjJZHMv+zPdKf/B/KZKjH7nlvVr0FzQWbej5pc9pZnlF629/UCunjIwx8kwsV1aeiZVxIq1WfW2Fniqxo63IUyUymvCqunlsU+cKZc1kQ02PuZo/ldWZ+YLmZ7MaGws0kXN0ekLK+sMbKBLFVo9clr50XrqyaRXHUmST1RhbqRpJz6xKTy9bXd6U1rYl3036807nJWOSzqYX16Unl5POpzuMkRwjGVk5+1/b8zKyyjolZZ2SYusosq5iOYo+NaVYFYWx0VbFyGrvszeyMkYykhyz93qnlDF7rzNurNlMVVk32p1Wkow9LYWfrpWz9eOMlf4qK8WPSrXxxiYfhjFWMo528ohM7R+z7++c87Z17VhJ1+S3lR0f15lzE7r92oxuvWFM3vikHG847x+11uriurRZrh++XUm2ncsbSThPKZQ2S9Lywz8lx8SKraOVcEqr4bSsNXJNJPfSs2Xyse5/xKoUSi+7zShwpfWSldl8jdy165JyJpJnQmWdbW1HeYX+nKpPRAojq82SVdaXpnLJOt3te24lu6/7985wa+1ur3Bb+7d+GklxLBvV2i/XlY1jqVqRjW0SBmltMj6sJK9lJOPImuRZjpss29pkGlkpilSNjbZjX55j5TpJoODpSUc3zvu64ZqCnnU20JnJJNhoLCPlg+EOCiyWrRbXpNVtyXWStmbn8ZVF6W+fScY7RvIcyXOlTC0QbG1burwhrWwl6891kjAo10nKViOpWLGKk9UgqwPPbQxb207auiubSfu4U7esJ03lkzZxZ9NxjbS0lXTK99ykDq4j5fykztVap/1qlOw7lTApu9P+RnGs1W3nqs8o64SaDqqqxkbFyFMxqu/mPOaHOjse6WzhOTpb/nUtZBZ1Njivs5nzOhss1p7PK9e3YLS0c4TOEqGstXrokvTAorRatJodM6pG0nbFqlRN1teF9WTdrW8n20AYS3EYKYqlami1WZYiaxRb7W4jyevkCLEzfLtqtFxMxvuuFLhJYJ0knV8z8t3kc61GyX5ayEinx7V7DHSM5Dg7x7Fk2/3sU3vt0b03WnkmSgaUv17a+vPDfyBfuUXr4boeXs1oK/RkZDXnb2vGL6tiHW2EgULryDOxPMfKN7Gm/IrmM9tayG7rTLakhWlXZ07ndfrMhKbnp3V60tGp8SOEng65OLZaLyXrNR9IfovPKS0YLW1cM6Wq1fp20obEtv65EknLW8n52cFxca29ObjIRpkt9kCphmUaTtdZuZM0/7brMILzv7AufWXRqrhZlmtDZZ2qZr2STmUr8p1kq0qOs6b+GCxz4Bi8N16SrjuT1Rvum9P1c8N1bm2t1Xo5p+3yfHJdZF1F1lXFBnq6fI0WH3q+VtZizRSk2TEj1ySf0TOrybn40mYyn4mcNJFNjjPFSnIcvLKZfH7ezrmLn5TNeNJ2VVotJsfQAcpsQp9cWJc+84Rk7ZSkkiTJVSjHxHJNJEexPBNq8vORpgvJuW0+kM5MGmX95Jw38JLzI99Nzn8dU/9cCKRckGx/Gc+okEkCrXaCrWztemynHdg9f985T4utbFRVXKnIGkdPr3mKjaNrZoyscevP5WOruLwtWyrKRnHyPo5l41iVSqzl9arCyKrgx5rKxnpiK6/xnKOiNyZXkbxCQUE20KlxozOT0sKk0ZkJaWFSGssO9nlRq/35uPb3jZLVlc3kmsiY2jVN7bomiqX1benSRnJNX6pKG6XauflqrMvrsaphrCiKFYeR4p3zcRmVYk/lSqTxwGo6b3fPnSuR0VLR1cNLrhY3rr5eai4r6adSS1xZqUhnM0f6PIBBQzAaAAAAAKCOCTKyz/u70v0falzA83tbIQAAAAAAAAAAAACSJGPM6yW9XdK9TYosG2PeL+nfWWuv9K5mAAAAwMlgP/J+2Z9/e5Lo4bi1ZA+n9mz23j/9cPOZPPx56do2l/eF+2X/4LVSpSz9zcd2h/95/qVa9BckSZvuuP6i8JK9iVbb/3tWwqyeKI1LqWf/SUjLtNnUvL+lqUykuVxVp8akXD6QF/jyAk9e4CtXep7yV35IgVNRYCqa8NY1460o65QUZAvKPmFVCJLOwTshObkgCTvy3aOFHVlrtVpMQqieWZWeWbG7r8+vWi1v7XV6fexK0glVkm6blx5fSoLNusHapDOstP9vM0oyqqXNaPzqiVLiqndCEqQkwCbNZigtlYMmY0+lTnsk6/tef7Z+1HR8RePaVsZEKrhVzQYljfuR8hlH4zlH2SAJ4ZsaczU5ESiTDRTkA40VAs1MeMoVssoErrK+NDuWbDueIznO8XXILletLqzvbDvJ9nNxXdoqRVqrhSWslR0VK0bVMNbWdqSHrxitlA7T1fIHm4+6Iu2P2fjAZ/b31r6l9mjiGWknKq838t2Z7dOSvrTzpj4oylWkCaekca+qvG81HVQ1nalqMhNrvOArN5ZVNp/R9JiryQlP2cBVLpBmC0YTub0gp7FMEojh7wvH8Nzj+dyKZavza9IzK9L5Nbu7LW2UpHJV2qokQXnhvmCwpU1pcU1aLx1LFfbpbrpHJUweW+UkBO14Ne7kX4o9Labsb5tVTw8ue3pw+bSkNzUtV/jLonyzuRuONeaFyrp2d5vIebFybrR3nHONfE8az+yE0RnlMo7GxgJlMt7uuJmCUeDtBV+4+wLhJnPSVNFVWDkl31RVcLcUOHuNvo1jXVhN2qArm9KFteT10pZUqiZhi8tbVmtFq+1yrPVS8tlf3jLaKO//vNpd70cL1CmHyWNjXyjkTiDajq2y9NiB0Mg09z9mtNd1faH2OKS1+rdWRpereV2uNm+znipJX9hIm2nSFnkKNe6UNReUNeZHKvixxrJSNnCUDRzNTbo6NZ1RYTwj33eVqQWjFIIk9GQnJCXwktCemcLgBD5GcXK8u7QhLa4mYULFShLS+dhiRV96sqIrG1aKQimKJMfRetnR4nZGq9VA8b599oy7plsyS7p9cktnphzNz2Z05kxBC2cnNTOTT23rDuYLP7Fk9cdfsPrbp6wuX95UtL2tqFxRqRSqUol0sVrQQ9VTsk3aDGAwZGqPY/Il6R0flZ43u6pX3mmUy3rKZhwVcp6yWXc3jNRzpHxgNDuWBDFlakGzOX/vemznPOg426HNktXfPiM9uWT11EpyHuQ60qnx5PpocU26sCZd2tgLj96uSg9dki5vvL/F3O2BZ6D7InmKrFTdt9mtr0hPrewv1ek22el0fu3RzvxytcdRXL3vFZyKFrLbmshKhZyjsaxRoXhZk1++Q9Onfkw5W1LWljQeb6oQbykfF1WIr1fuAaup2mnZwe+IxrPJ46ht0lPL0m/9dfpn++MfsnrBdVanJ8zuddrimnR+Odb5K2UtrsRa3HAURlYZJ1beDZUzFYXVWNU4CShbrI5rLe70szVKzsfTzsl7G+m09JlPS3e9uKfLBLqNYDQAAAAAwNUmZpqPc7mUBAAAAAAAAAAAAHrJGDMm6b9KemOLojOS/qmk1xljvsNa++GuVw4AAAA4Scrb0toRM4QP07dzeVH61NWn5b812erU/vit2DGtVMakiqQNSZcalXpR7dHEX8XNx0nyTaSCFynrxfKcvY764zmjwDPyHFsbbjUWJK+LVaP1kvSli65Wyof/4davXjz0JDiCFWdaK5pO3sSSSrVHahjNQVdvR44iZVTVuCkpMJECJ1beqSrvhrvbjO9IWd8q7yfbl2uSzteB76gUSl9cyuvJ7YKuhIUmy20UuOI0GY5uieRqJS5opaKkPWoZxtV+eEbWCZVxIuWcUGNeKN/dCbUycl2jjCflfemjTyWBhm9+7paymSQksxK7euDJsh5a8rRabRZIiEGyFR8IyaocZW62yetGXiVpcfddxpSUd4sadzdUjMd05Q/Tj5WJnRAF9FooTyuxp5VSITl+pWp/uyg4FY25FQWuVeBYTWYiTWcjZfzkHCif8zSWkTImVN63Gg9iZTKOctNTGit4ygdGWV+azu8Fz07lkuOcWzvmuU7yvhDsBYo+sWT1p18I9Rsf39Zfnc+pGjc7pjULX2nsQjSpC8VJfaKo/Zt7W378Q1alxx+Uokh/fvGUPrc2vW/smHbCZQFIn1sa1+f+4uDQg+1N63Mg18TKuLECV8q4tTbGk3zPKBcYGSNN5aWxrCPPd+W7Ru6BoFlrpYcuShfXrT71aKxKxDkyMOy24kAPFwOpuH/omDR9Y/OJQkk/l36+65pYGScJL/aMVeBZjde+A/JcyfMcea7Rp59ufm7y6/e3bvt++WPNrhWNpGzL6YfRUgffqwGDjt7sAAAAAICr+Sm/ZOLxBQkAAAAAAAAAAADQK8YYV9L7Jb36wKjLkj4raU3SzZKer72IhnlJv2+MeYW19hO9qiuAAWZrHUPMYZJcAAAYQlHU7xpo22T1u+Pf3O9qdEXVulqtulL1wIjVvlQHJ0gsV9tytW2zSZ/mdnKFgANKsadS7GlNmbZCst73+YMhevmG5YA0ZZtVOcxqJUz5YXIMva040FYc7J0DFVOLH2DVTvDRDkeRxkxZZeurLF9JwGezUND++LkHbu53FYCREllHxdBRMUzeX2zZBrVqcwhFA9C5yDoqRo608xVcRbpwqHMjdGq5Qsg3hg/BaAAAAACAqwUpX4K4BKMBAAAAAAAAAAAAPfQTqg9Fq0p6u6T3WGt3u/kaY+6U9KuS7q0Nykj6oDHm2dbaxV5VFgNi6dPSY7++995aKSpKlVXJ8SR/UsrOS8G05GQkx5ecIHm4gWT8vdc7w/eXaTTMeNrtyGlt+6/3D4tKycPGko0k1Z5tLMWhFG4kzzaqHx+HUrgpxVVp7UvJ3xluSPlrJK+wN4+d6cJiEhAWVa6el42TR7SdPJIPsP6zbDps//AW0+y8bjhtq/H75x1J4VZ93RXvvd75u6Ni7e+sMY6SLEVTC0tzas9mb5xxJS+fvN75nGwkVVb25pO/LtkOjJs8HE/yxpLtYXc+Kc/GlTKzUvZ0Ml1cldys5I1LXi4Zr1q5nfJuNlmvO9ueV5DiSm3YvroYtzZ+rMHfWwuIIyju6OIwWW/7t5GdbS4q7dvX4/rng8PCrdr6tlJUrs38KPtRl/fRqLzXTpSXOjCgMwAAIABJREFUpNx80nZ2zErVjaRd9sdVv62afdvqwe34wDa98964yT7hZmvteXZv33S82j7q1fYZ9gOMGHsMaUtH7CP+R2Ov1oY7cfR6AAAAYOTEcrVuCXIEAABAvaUywWgYPgSjAQAAAACu5qUFo3EpCQAAAAAAAAAAAPSCMeYmSd9/YPAbrLW/f7CstfbLxpj7JH1Ue+Fos5J+VNL3dLWiGDzrD0oP/ud+1wKDbH8ojG1eTNW19PkUnzyW6vRfs6CpfQFqTpCEZNkwvbxxrh5XulS/uMINtWBBPwmBqwt085JlSUk4nBxdFeaVFvR1VchXs+HtlI2TILzS5b1wvf1Bg3FVisvCCeb4kltIQtT8CcnNJAFvXiEJLXQytSC1fdunP5YM391ePcnNJduD4+9tG9lTSYDcbmDjvgBHW5VKV6TylSSEM5jZW5YTSMGUlDmVhF5KybD9wZhxJQml8ydrgW8H9sVGYYh1w9zk7zDeXpm68QeCHB0/Caxzs5KbT/aHuFoLmHP36i1Hctxer8XREEfH99nGjYLRrORqr+lv9HBrD0kmn3bwPMCRlLG7mZCy0h3VB/Q9K+/Rb4+/TkveXMd/CgAAAAAAAIDh49mqcvG2zL7/0zkzdkELwQXdlHtEdxW+rOsyT2rOX9Ksv6Tpj61p7s6flnRX/yoNdAG92QEAAAAAV/Mzzcd5R/l1WwAAAAAAAAAAAACH8KOS9v8H3X9rFIq2w1q7bYz5TklfkLTza0j/2BjzU9baR7tXTQA46Wx92FijvJuodHyL23r8+OYFHEVcleJVqboqbT/T79oMB8fX1aGJOvB+X+hiXdkD5dys5GT3jWvBWinaSgLb3FwtqHF/yNtOcGPt2c0mgXOytWEHyu9M43i1ADp338NJnt1sEqQnSdsXpa1HpYk7pLEbDyzvwLydIAmZk62F59l9IXq196XL0pd/ItlObZgs48wrk2C8uJqE45UuSXFp7+/fbc93Hqp/b60UVWX+SXXvc9ufh9cF5gYr87Zq3bDn6PP6peif6ef0dv2v9VfpE6sv0lJlWjlTVN4pata9Is9ECq2r0PoqxVmV4qymnFVNOJvKmJKypqzACXW+sqDHSjfoSjij1XBSy+GMLoTzWgwXVFHKfYBDylGka92nlFFFjonlmlCOsXJMLM+t6obs43pW/mFNByuq2EBGVivhtBzFyjhlTXprujbzlBYy57XpZLTh5rTuZrXlZrTpBdp0s9p0M9p0M9pyM9pyMqpGGUWRJ+PEMrLJs4lljJUxsTyvLMdJAvmsTTa45LSj/nUyTpI1srX3YTWjcmlcsXX2NmkZyRpNV4q6c+2y5subu9Na7T3vvm4wbrfMgXHlOKPzlQU9Xb5W58sL2o5zerJ0nSK6IGrGLGnWWVbWKSnnbmsmvyxrjYyxmnTXNO0vyzdVRdZVJFer1WktVha0Fk4o55b0rNxDmvRWJUmRdRXLUWRdVeKMtuOcCu6WfFORZ0J5JlTWKasUZ7QRje92gt7fGdqYBsMavN4pVzfsYDkrGbsX4JgchkzyemeafcHKe/NJyjk2VsHZUhR5qlpPxSirJ6vX6vHKjXq0eqO27NgRP/3hci5+WneWH1BGZYXyFBpPRZNXxQQajzc0Fy9pzl6RZyNFxlUoV5FxVZWvkslqLl5SoFJtL689HCtjrYxN1vnucLPv2bEysVXObmtel3TKXlJgqqoaT1Xjq+jltWqmtGKmku3GSOvOhObskqbMqiK5Co2n0PG05RQUGXd3e/XcUDmnqJy7LVdRrf2N5CqSZ0L9TeUFqiijyPX0TZMf1mo8qY14TBm3oqzZ1nSwrLxXVNV4KjtZXaqe0vnyWZ0vn9ViZUHnK2d1vrygxcqC1qPJfq/Cvrjb/aLOOItacC5oxluW71blulHyMJFcJ9KYtynfrcpYK8fdOxY5iuXsvDaxfKeq2WBFgVNRJQ5UijPajMa0Gk7p+x/+haZ1ePP8+/TiyU/Iyii2jmI5+hcP/WLT8v/2+h+Ta6KO/2bHxrou84RuzD6urbigi9XT2ogmlHVKKrhbCkxFUewpjD2Vo4yuVE7rQnlei9UFXajM60J1XovhGa3FUx3XAYPFtaFcm7QtjmI5NparSEZWjr06/Hj/8a7ZsMZlrtawnO10/kcYZrs3/07/xiPN/xiXeaR12aIeRlZnwgvJcTpa0mV3TkverGI59cfj/Y/aedT+x1PeNfpc9rkNajU6Jpw1FapbqhpfK2Z6d3heRZ3TeU1rWTmVtKgFhcaTr6oyKmtaKzqly/JVVdX4qhpfm2ZMrkJVTKCcU9K4u6EZd1m+qo0X3uZXK313Eup5EuooyQ0i3Tr9oG7JPbJ7nRZZV7F1VLG+lp+a0Xo8qbLJaNWd1OXsKVUqvqoVX2Wb0ZYd25tOyXSRXIXytBkXVLYZlW1yPVeM8wpMRb6pyjXJcWr//u+Y+Ko2oRjntRQ3Dsufcy5r1l3am17xzjcIe++NlatIU86qPlJ6Repn8WL/E7oYz+tCPK8NO9GFT3v4OTbSdLSinC0pF29rLrqiM+FFzUeXlIuLchTLtZEc2dpzLN9WFdiK1t0JLbszsjIK5Sljy8rHW5qM13R3+cu6PnxCp8PLKtgteUrOdzwTykkuyvdkJOcfNWnjJMUFV8Zsdf/DAHqMbyUBAAAAAFfzg+bjPC4lAQAAAAAAAAAAgG4zxuQkvf7A4J9sNZ219kFjzAclfXttkCfpTZLefbw1BAAAwFXi5p3TRsblv+zevC/8ryPPwkgD0ZvKuFJGJb1m+oN6zfQHj33+1kqb0ZiKcV4r1WldqJzRYuWMLldPaSWc1uXKnJaqc6paX5F1FVpPVetrKyqoFGdUsYFKcVYr4bTWwklVbco9hV1gFOu0f0nnMs/oXOa8zmae0Zngot71+I82neZnb367vvvse5RzW4eZWkkrflZPFqZ1PjeuVT+nNT+jNT+nz/oZfdyfVbyblhdJKtYeiVzt0bgLc+9sSprfXNJrn3lAt24udWUZ5TjQA1t36JnKOVViXxUbaDvKqRRntRZNark6o2Kc01Y0ps1oTOU4o2KU13I4rY1oXNU4CfdbDadUttmu1DFNzinqXOYZnQ0WNeWtKu8mHZYnvVVNeBu7ndfng4u6Nf+Qbsw+Jkf14SpZp6RZf6ntnErsiayji5V5bcfJNrMeTmg9mtBaOKFilNdmNKalcFYr1SmtR5N129BSOKONcFxluxPaNN16gV0w5a3obHBe5zLnNesvKeuUlHW2NeZuyTdVeSaUb6oquFtaCBZ1NrOohWBRc/6VpOO79VSuBeDN+kua9Zf78nf00zfrD49tXpthQYuVBT1TPqfNaExV6ym0nio20EY4rooNVLW+qrGvrbig7SiXBFjUjnXlOKutqKBKHKhsk21tK8qran2V44zWokmtVKd3gzOsjpacOudf1kKwqNP+ZeXdojJOWVPeiqa9VRXcLY27Gyq4W/qeB3+l6Tz+53O+Ua+Y+eiR6tEuI6vve/g/NRz36pk/0RvnP1A3LOds67u++qtXlb0z/yW968Z3daWOhxXGrlbCaV2qntZydUZbUUFr0UTt+JXXRjietD020FZU0OXKaV2pzqlifVXiQNtxTuvRhLajnLbikxv0+Lyxz+o2/6u6LfOgAqeinZQNR5HOTTyj08FlzXpLUuxpKZzVI9s364ubd+h8ZUFL1RktVs5osbqgbZvvvA7B5/Q1wWfkmVCBEynvVRSMbSjrlHRz9nHd5l+W70ZyHCvXsbXnWK4Ta9pbVd4tSYolVZScn+0LnG52kG4QstXcYcoe1iDUo0t1ONRnfBiD8Jntm7cxkuPuvm68xbWux+VNV//PxTfrgeLtKsdZFaO8NqJxleOMSnFWG9GYqtZXaD1F1lXV+loPJ1SMC8f1Bx1KwdnUddkndW3maVkZXaqckiSdCS5qIbOo+eDibrBccoxb1d2FL+lscD4JSlUtwNNEmvTWNOmt9+XvABo61e8KSD/xxDv0rx/7D3XDfuT6d+vf3/jOQ83n3Cef1GLlbMNxB88lt6J88h1ROQmTvVQ9ra2ooM1oTBvRuLaivFbD6eQavnYdsx6Oqxgn12/FKN+Xa/v9vmHsY6paX8U4p0fLNymUp8BUFJiKTnuXteCd11lvUWe98zrrnlfO3VY5Ts7lKllPvlcLJS8GmgrPJwH52QuqWl/OTBLy7IRGrvHkulY5r6wZf1WOo9p5R60ipvaPkSQrlUtSaas+zGzntetK2bwUb8vs/ADEMXNeFsleV2xdEDhhBuCrfAAAAADAoDF+pvlX8i6XkgAAAAAAAAAAAEAPfKOk/T3N7rfWfqXNad+rvWA0SXqdCEYDAAAARoYx0ri3qXFtaj64pNsLXz3S/KxV0uk0yms7zimsBdFUra/NaEylOKtKnISpbUaF3c781VqoyEY0vjtsJyRoMyoosq62ojFl3W09u/BFPafwBd2Ue1QLwaJ85+qOon+9fo8+tPzqhnW86Zq/0eMT45LGG44vO66ezk/qyfyUnihMacPvb0fe4/LI2Kx+/rYXa7KyLefAnZ/GSjOVoq4vrur6rVVdV1zVqfJWXR9dK2nLDbQaZLXpBbINYh6yk+f1nPAxTVVLKoSVjmOCynGgShzsBhgthbMqxVlV42TbSALWCrsBRUlQX7Zue9uK8irbzG5YRGS9ZB7W143Zx3R34Yu6LvuUzgbndTZzXhPuOoFmfeSaWGczi8cyr8g6u21NOc5oI6qFYMX+brBjMc6rHCfhRltxobaNJIFYv/D09+nJ8vUN5z3urus1s3+sWf+KnlP4gp6Vf3h3Gyq4dCzvp5LjadXPat3PKNoNrFzTvNY0X3vnx5GmqiVNVkvybdxsVh2xVrvb0FZc0Fo4qZVwWhlTVmg9bUTj2ojGtRpO6lLltPJuUbfkHtFdhS9pxltueCxr5Oef/n59pXhHw3G+c3zBu7GkTS+jNT+rbdfTWFjRVLWkXFSVkTTlrTaddtrfG2clbbu+vvbcn8t/qKxqnKkr++2nf/vY6nxUnhPpVHBFp4IrR57XTju0P/RzJZyuBayNaTvO7YXLVqe1Fk3W2qxAxbiwex61Ewy5E8a2Ewq5FRU6Dhp5TuHzGnO39Mn1F9UNv2f807r/BS+SY44eHGWttB5N6Ep1To9s36xLlVM6Xzmr+9fulTFW096yilFh9zMoxVmdDc7r6yb+Sv9g7o90ffbJo1XgeHdv4PCio8/iVCC9/dqfP/R05Xhvv9oJAj14vZWcZ/vajnPajMbqzrslaaUWcpScR9dCRWvTVa2vxcoZXanO6ebso3rFzEf0mtk/1j3jnz6W9gNAY++47qd1Jrig/7r4T2Rl9NYz79XbFt576Pm4pnkDlQSi7im4Rd2ce1Q35x499HJ2FKOcyrXzv51r9qpNrstWwymthlO16/jkPDoJmC3sXsfvfC+0HM5oK8pruTqrDy2/Sp4J9ZLJT+gPll7bdNmPvfCmo59TdMoqPQPTUf3/7NeJpGjj2Kt0kMl0HmILDCp6swMAAAAArhak/Lqj5/euHgAAAAAAAAAAAMDoetWB9x87xLR/ISnU3n2izzfGzFtrLx5HxQAAAACMFmOkwFQVOGua0lpPlrnqZ/X5qTN6rDCjlSCnNT+rBx4/LS03Lv8/br9FhbHZntRtEK0FuYbDlzN5PTw+t/s+F1Z0zfaaQuNqrRY2FDpu28tx41iTtQCiiWMJISrXHpK0F7rjSpqJYy2UNvT1V56QF3e2nKqSv821sdzUHsytxZJC0/iz2nY9rflZrQVZrflZrfrJc7nJjxF7cayJsKyJ2uc4US1rslrSeFiWFx89fMLIHntAVL+5JlbBLe4GlZ3R4b7iyDol/fOHfqnhuD9/3n16wfhnj1zHYWclVY0jNQhQbKbqOFr3M1r3kvZm3c9qrfYcN0gtjGW06QVarbX7zfahZgphRZPVkqYq28lztaTJSklT1e3d17movbAySbt/qqNQ41rTeLCma9ReEIOVVFF77WujUMrdKjihKrW2xxqp7Hi7n+H+z3PL9WUbfKZV42jdz2q11j7F5up4Sz8ONVUp6TH3JqnJzzJ8/Loz+tLZr0/auCCrqpOsm5fm/rP+7E+/T3GU9DG4+fq/lvPyv9J7dI+8LrdD+bCqid1jUnn3+JSNQx1Hjo+jWJ7dm9FOO5Ss1jWdyRz/V63FKKfIurWwtXFFcndDHiPrqmp9LYcz2o6yCpyqCu6W7sg/oNPBZUnS/1x+pf794/9Wq+GkXjT1l/rRG9+l0Gkv0rTVsdIYadJb16S3fqQwFWBQ7M+32WmHrdn3WtLOgcDIyrPxIY6Ax6NqHFkZGTdSzt1STluaziwdej4H27M0SXCyr3U/q6/4c3XHkC2vcV8zY+1u2ObkvmPvRLUst83ldi5ZY461MrXX5CLjpHCM1Xcu/Lq+c+HXjzQfk3L8Dkyl6bhO5d1t5d3tY5/vju/56i/pPYvf3XDcmeBC15Y7iNK+h9jPs1HHIfbAoCMYDQAAAABwtSZfVifjCEYDAAAAAAAAAAAAeuDuA+/vb3dCa+2WMeYLkp6/b/Bd0iF7DePkKlwrXfu6+mFORgqmJRtK5SWpdFEKN6W4IkUVyVaT1/vfR2Wl//x5Hzi+ZFxJTvJsXKm62nIyLbxKcoKkvJuRbCy52b1hxtk3XycZ7uWT91LS+3PXvte7wxuMbzhNo2lbjW+xbK+QrF/j7NV/5yEnKefmkr9JVrK1bn823vc+3hu+M86GUriVLNO40iffpKae++OSPy7F1WS7slGT+cf1y4/LUulSsj1GpWTdhMVkHlG5Vj7am5+NkjpF3et0gwFgXPVkP2q2X6eNNyZpQ9OM3Zw+fr/NR5qP88Zqn8W+/VY68L7JOBvtGwYAJ4OVdCE7rs9PndHnpxb0RGH6qjKNQnR2ZDJbXazd8Nj2Aj00fqrj6SPH0XImr+VM/hhrle73rrnryPNIwhrKu8FIO+E5hbByVXCClVRy/STcrBYCsRMi1yhQaFDlwqqmqrVwqNrfPB6W5RxDOIXRXgDVzvwDGx290l1078Snmo67Ift47yrSIyXH2wvpC7Iquoe7/zsyjtb8jFaD3G7Q3/4wrEG15QXa8gKdz030uyqHcvHzY1Kx8bhfvPPr9N/nO2+321F1PF3OjulSvtC0zEPTU1rZF7S545bbP6lz131BlxZv1djEZc3MPaXzJq/z6t1xopsahe2NVSupASTHJ649qpIkz8b6/9m783jJ8ro++J9f3bpLr/d2T3fP9Cw9PdMzMMzgDMIExhlAlE0kiqABxW0QlxA1atBgngSRPGqSx0fNo9FHY1BMFMWgAhoVFyQoIxhZwi7MwGzAMFsv0/tdTv6o27fr1l36LlV17vJ+v16nb51T5/zOt06d+lTd6qrv3Tl+OteN3znTVPNcI7MjgyO5Z+tYTl96X1721Nfk3m1jOdEcyk/mlmXtcc+ZE7ni5NFcPj1dcepoRsdPpySZTMnRweEcHdySo0MjOdYcXvS1Wa+ca1ZVlY75ZHpZafsNuX29tmZX082vZjXFKud+y25fr8xtnlU69tm23sw+Z/bRUU/Hesl8jbgy0+Sw6lhv1j47jsF86y12DOZb78LHYP7btvgxmHvbltKM7EK3rX29C92uObd/Fedtc2oyA1WVZjWZ5lTr50BVpTk1mWZ1bn4qg1NTGaim0qym0pya/llNZaDtcvvyUs1ukfmJnXvzkbH9KVW1qnrbbZs4m9Gzp2aal42Nn87g1OT069zWa4Zjg8M5OjiyrMbJa1GZbpLWqDqaplVpWz7dRK2q0phzXfvyKq22sK11zi2bO98xdtt1jY7xZq/bXu+5/XTUNM/2i92mxWqYtd/FrutcPt/tXaimWTV01j+930Vuby+b202mzJznR4a21PZc1k0lydlFHrNDje43Ruu1b7r4zfM2Rrti+N4Mr8Pbs5gqyUPD23Lv1rE8PLx1+ne41mutI8t4H+J1H/2LXHzG+2JsTGv7XQgAAADqMTS88HXL/MtbAAAAAAAAwIo8oWP+zmVuf1dmN0a7Psk7V1UR68e+Z7ambpiaPN80bXK6cVo1fv7y1NlWM6xqPDn3lZVS5l6eb9msy2k192pua2tU1sispmUDW6abfXW4+3eSO75p8dvx5X+YrPEvcK95izVGu+a7k+Hd/avlXOOnyVOtRmoDQ62f1URr+dRk6/LUmVYjtfYmUue2n9NUquO6zuUTJ843zVto+87LD70n+dTPz38bDrw02XNrWyO5tulcQ7qpM20bdDbrKt1dvtB6ze3JyN5kcDQzzQjbp8HtSZluWNhoW94YaTUXbG/Qd+5naX2dcOZnSqtRYTXV2ufAIn/Qby04fnfy9qsWvv5rl/GU/dYrkpP3z3/d8+5Ixr5kWaXNqKpk8uT57J48Of1YOPfYmGxdN/HYdDPCx5Lx4+fzfvxYqwFcNZFMTZw/N6fOTjfVnGgba7w1dqPZug8nT08/Xkpbprc3tJz+OTSWDO9pbX/2yPS+p5tynnm4NTW3thpiVpPT2zbPjzcw3Npu6szcx965xoztj8v2ZVPj083jYG061mx9SbcuE9PNcI52NMM50RyaaTDQC6cGBvPI8MINWZIkZeEKmoP1fjm2JNmW4TTan9/aX/eeW6ltvlEGsiPDGX34AzMNpkbHT2fH+JkMVFXrefa230mSTFYTee+xd+bDx/+u3zdtQ6hKyWODI3lscCT3bYxePRd0qjmYU83BfKFPDaK2TJzN6PiZNHv8HDs4NTXT0GP07OmZ5m9bJ8bnbXJ3ojmUo4MjefTiU9nzyc/n4ROXzlrnyv0fzi/feOPM/NaJ8Vx+6miuPHEkV548kr1nTnSlMcN4aeTo4EhOLbNB2Xij0dbg7Hwun1jgD12PNwZydHAkp5e5H9auRqN/r1svueyT89cwMJ7RXQ8suN2WrY/lykPv71VZtVrLzfZKVWXbxNk0UuVYl147Pjy8LQ8Pb8sHd53Pyu3jZ9JIlceaw11r0ATr1URjIBNJzvSpRUc3H3MzeZbRro25VrUa8JVMiax1aznN7ea/bnbjtiQ50RzOscGN+Vx2ornw++lvPHRT/vSiC7+OGZmcyL4zJ/LMhz672FsvfXFg+KO5ePgL+eKZ/bOWf9Wlb8/9W3Zmz5mTGZmaqKm6CztbBnJkaCRn5vk/ySrJ4aEtuXvbrtyzbSz3bh3LyUXuP0BjNAAAAOYzuEhjtAX+Ix0AAAAAAADojlLK7iSdHYbuXeYwnetfu/KK2NQaA0kGWk2L1up/F1/ynAuvoylabzUv0MSk20ppNUhq7EgGd7SWDe3qbw1LcelXJ3f951ajqHaNoeSpv9JqDMX6M9CnZkWreVyda0qWPj8214uqajV5a2+YNt/PqkoylRz+UPJXz59/rC//o2T4ounH+bmma0tovjjrusxdt7253XKMH281k2sMtWpvvx0zP6enieOtBnNl4Pyymds+dX7dmSaTU9MN8dp+ThxL7n/bwvXsvrljzOp8A72p05ndOLExu3FiabTWO/6Z1lgH/kkyvLeVnWWw9Vgc2ddq4HjBBqznLmeB6xqtx0xjsK2hY1uj1jRa1zW3JZ3tccpAq4nf+GOt+YGRVnPBieOzj2P75clTycSpuefC9DH6u/GP5PfP/q/l3febxA03/lnu/czNc5bvHF24WctqNdLIzuaujDZ3Z7S5KzsHdmWsuXvWstHm7uwY2JlGGVj+Do7fnbxvgYabQ2eT7edv75N23JK7T30qf/jwm/KJkx9a2Q2CHjnVHMqpNf6F7qc+/w35s7f/SCYmWq/nRrYczc3P/m+5f+vs1+Wf2rl35vKWibOtBmmnT6SxjPaQZ6cblJ1raLZYswJItXCDjkajf00ftm47kv2XfyxfuP+GWcsPXPWBDA6eWWAr6lKVkuOLfe+jS/qxDwBop7ld9zy8bUsmti7t/yHu3LEnd+y5sscVLc0z9v10/vSt/yrHH2v9bnbVte9N9YL35KcGvyKNaipXH3801x97MDcc/WIuP3WsK82sO1VJHh3akvu2juX+LTsX/J3u9EAzR8/9YYHBLTnlu7fQVf6HHwAAgLkGF/nPd39BDAAAAAAAAHqt8xPqJ6uqOrHMMR7smB9dRT2wto3sSR7/Q8k//FzdlWxeDV/yn9fg9uTgtyZ3/ers5Vd+k6Zo69nAli4OtshXtgY0NeuZUloNwZbqkucmY1+SHPnI7OX7nplc9sLu1rYevWmR8/irNlFzr+bW85eHVvnS+9Gp5KFNdOyW4bIDH8ng4KmMj8/O4quued+Kx9w7uD/7h69oNTkbmN3sbLS5O9sHdqys4dlSNbcva/WDWx6X77/ix3PnyY/l7Q+/KXee+liPCoON58BVH8rLXvGDue/umzIwMJ4rDn4oW7cdXXSbU82hfHLnvnxyZ5+KhA6Ngf41RkuS57zwZ/Onb/1XeeiL1yRJ9l/28Tzreb/U1xoAAOiOfr+W7JY9++7JN3/Xq3L4kcszsuWxbN12ZOa6qdLInTv25M4de/L2y67PaIZzfS7KNRlLM6XtDxBUrT/4UBrJPW9eeGe7n5zsvC6ZOpvx8SP5fDmV+4YGc3/jTE5lvPc3thu+8i+S5t5kZO+F14V1RmM0AAAA5lrsr/o0/SoJAAAAAAAAPdb5zfhTKxijc5sdK6xlRillX5LlfqL60Gr3C0vy5J/RGK1OZZGmOJvdzf+p1YDpnt9JUiUHXpo82bm6rvWrMdrg8hrl0EOlJE/9L8m7vyY5Pd17dusVyc2/WG9dsAk1B8/meV/7/+Qdb/+XmZhujnb5gQ/nqbe+JY0s3ryspGS0uSsHRg7lypFrc+XINTkwcihbB2rO2xXm/TVbb8gPXfETeXj8gdxz+s5MVHO/7Hxy6njuO/2Z3HP60/ni2ftTLWHcRjWVlIEkjZllVaZSLWlrWPt27HygV20BAAAgAElEQVQo19/4F3WXwQrMn/NVpjLV91q6riycsQON/jaz2Lb9SL7+W16TY0f3ptGYzPYdj/Z1/wAAdE+jz68lu6mUKrv33HfB9Y7mTP42n8/f5vPTG+b8z3NvbVx98wVG+VRr3ZmvzZ5Zbrn12nZFMnRZ3VVAT/g2OwAAAHM1Bxe+bsCvkgAAAAAAANBjnd+MP72CMTobo3Xj2/7/LMnrujAOdJ/GXKxVA0PJzb+QPOXnk1RJaVxwE9a4xiKfq+mmrjZgY9X2PDX5x/+QPPjXSaOZ7H16MrjqvrPAElw6dGWesO2m7B7cl9Hm7owe2J3mrSfy8XuGcmD3YK7f/6SU8qa6y1y5xiJ/yHaxBppJSinZO7Q/e4f2X3A3pz//R7nv72/PPVvHcnhoS4anJjI6fjpjZ0+3fo6fzo7xMxlIldz628nBb5zZdqqazGOTx3J04tEcmXgkRycO58jEIzk+cSxVDxoSHZl4NB898fddH7cfGmlkZ3NXxpoXZbS5O9sHdqR03I9VqpyeOpVjE4dzdOJwjk0eyempkzVVDP2ztbE9O5tj2dncldGBXRlujMxeoaqS05/PyNkTGdv2uIzuvDGjzd3Tj6ddGWwMzTvu6alT0/n0aI6MPzJz+ejEI9M/W/NTmezDrey+xsD8zSxKGtkxMDpzTHcOjKZZ5v6uUtLIjubo9LHcPXNMtzS25bHJI+eP3UTr2J08+0hy+gvJnmay5ZKknP/uwNaB7TPjnMu5HQNjOfnR1+XoXb+UI0MjOTK4JUcHR3J8cChVSrL/q5JtB1Z3EO78z3MWTZaSx5rDOXbxbTk6eTiPTRzZGE3yANaYHQOt55DR5q7sGBhLs8z9Ttl4NZ5jE4dnnndPTh2voVJgPgMLvJYEWC98mx0AAIC5hhb5oM1iTdMAAAAAAACAXqj6tA0AvVJKLtTchHWim40YFxtLE721Z2gsufxr6q4CNrySkqu3XJebtj8tN25/WvYt0PTryif2ubBe6VOD35HmWK49/kiuPf7IhVdubp012ygDGW3uymhzVw7kUI8qnOvI+CM5MrGEei+gSnJq6kSOTjdqONfY7ejEozkzdWbebQbL4HQDiPONhEabu7JtnkZnSTJQmtON0HamsYLn8LNTZ3Js4nCOTz6Wbvw6f7Y6k6MTh9saRLWaHp2cPLHqsZNksprQ0G0d2dbYke3N0TSy9HOzJNneHJ3VAGuseVF2DoxloAwsfZzSyPaBndk5MLZgY7PVGmlsycjQZbl46LIF15mqpnJ8usHjZLWE5hBVlZy4Jzn7SDJ6QzIwcuFtVuHPB/flyALX/eCB12Zs2/mGXwOlmZ3NXdk+sHNZ98V8djf2Zvfg3lWNkSSjAzsyeupoDpw6OvfKa38uufgrVreDd37vwtc97b1JWvfxicljOTpxJBPV2cXHmziV/OWz5r9uZF/y5X+YJDkzdXomQ49OPpoj460sPT3V+fco+qHKqamTOTZxZNEmfxcN7suVI9fkyk/8aq44eSQjk/Oc789/3zyjJ0cnHs39Zz6b+898Nved/kwOTzy84H6a08+TQ2WxBq+LqKaSk/cmE23Nk4Z2J1v2ZynvnZTpf0sp5y+3XUopHUvaLpW29dqvWWCs8+MtbayZf0v7CB3rzbqubdwyd+kFryvz3JZzl0qZ97r2/c+ppMyz/jzXzRq3LDDWYvdFxzYL3xeN1rXz1HXB++GCdS10P8weKUmmMpWJajwT1Xgmq4npy7N/zl2+0HUTmWy7PFGNZ6qav7HjlsbWHNr6hHzp9i+b9/qlas+z9teGE9V4djbHZl7rjg6cf9072tydnc2xDMzTCO1Czk6dydGJR3Ni8rFV1b0UVVr3T1VNpUo163KVKlPVZNvlqVSZXq+aXntm3am2dapU1VRrrOnL58euZi0/f/nc8qk5l+fse7rGqentWkumZi7PqqOjxql51pl7m8/vq1XL5OwaZ7abezvbb8+5ujaqVT+XrQVHP5qJC/z+uVCTXdaWkpKLhy7LRYMXz2pmvFDD9U67mnv6VCn0n8ZoAAAAzDW4yJt6w/4aLQAAAAAAAPTY8Y75lfwnXec2nWMCAADMqzk1mdHx0xk7ezqjO56QsV1Py86BXSv6UvxyjDZ35/Fbn5gdzbGe7mdT6mh2tvi623pXxzKMDV6UscGL6i6jL4Yaw9kzdEn25JK6S1mW01Oncqyt0dxjk8dSVb3s017lZFuTuyMP/VWODo7k+GKfe06yY2B0TqO7LY2t6Wy+M5XJfOHMvbnn9J154Oz9qdZIz/nBMtTWnGz3TKOSRuY2xWqURnYMjE03NNudnc1dGWqs42YPXdIojexsjmXncp5ftj6+dwV1aC7S6Oqa7YeyfWSNN9lerCHHQH+eUxqlkR3NsaW9hqimkpMLtaLbnmx5XFdr66apaionJ4/n2OThHJ04nGMTh3OmOpOLmntzYOSa7GiOtlZ812sWHmSR2/ekHbfMXD4+eSz3n/5sHhp/IANlIGPNi2YyaGtj+0wzqpXfmPHkgXcmxz6e7P5Hyd7b+tYwFuitocZw9g7tz97M3+Sa9WVu87bOBmtzG8bNadDWNn++udu5y53N3dqbwc1u2DZfk7jFmtu1jz3c2DL9PHZRxgZ3Z1tjx+qfy+r2plb9bzx7asH/BH7J5/93Rpqnky/96WSe93Q+d+buvPfYO1PSSLWBG+GtNRcNXtxqZjtyba4cuSYHRg5lpOE7uzAfjdEAAACYa3CRv8i1dUf/6gAAAAAAAIDNaa02RvulJP99mdscSvK2LuwbADagdf7lO0iS0ScmRz86d/nup/S/lg3iy8demNtGn9vfnR75WPLntyVpJdPw1MT5hHrKS5N9r+xvPXTfwDIaoy1nXTa1kcaWjAxtyb6hS+sp4O6PJ/e+OROlZLy0NQm76KnJV/5ZkmSwMZRmGVz20KenTuW+05/JvafvzOfO3J0zU6eXtX0pjewc2DXTROjczx3N0TSySBOpecYZLiPrv2kDKza03r8FvpzGnMs1OLqy7RZr5LbGNUoj25s7s725M5cOX9nTfW0f2Jnrtt2U63JTb3bQGEwufX5rAmDNKqWkZKDVlNdL0rVl3zOTB9+96CrPf/gf0mxMJhe9ZMF1vm3/P8/41NlMVOPdrrDrHhl/KB8/8YF87MQHctepT2RqkQbD3bR3cH8uGbo8zXmayw2UZnY2d2X0+GRGf/EnM3rkTEaPnM7242dTzvXafvZL0/jh/zSzvubVsHTr/VdiAAAAemGxv5y2dXv/6gAAAAAAAIDN6WjH/NZSyraqqk4sY4x9HfNHVllTqqp6MMmDy9nGF3dhAynNpJqouwrYWK78xuTj/77uKmB1nvAjyXu/fe7y6364/7VsEIONwQxm+U18VmV4TzLleX7NOfAN3RtrOY1petnEBrrp0CuTe9+cZlWl2f67yqHvSQa2rWrokcaWXLv1hly79YZVFgmrMzhw4XVqV1ULX9dc3WMxSXLTv0v+97+au/xJ/2H1YwMArFfX/fAFG6MNlMlUD2+5YE+7wcZQBjPUvdp65PKBbbl85GCed9FLcmryZP7h5IfzsRPvz12nPpGTk4v8N/rpLyaZmv+6kf0zF0uSnc1duXz4qlw+clWuGL46lw0fzJYlNJCvpu5J9XffN/+VE400Vvk7KmxWGqMBAAAw12KN0bZojAYAAAAAAAC9VFXVI6WUw0l2tS0+kOQTyxjmyo75T6+6MGBzu/kXkv/1qrnLH/8D/a8FNopDr5y/Mdr1P9r/WmClDnx98plfTx581/llFz87ufxFtZXECgxsqbuCze2G/yv52E/NXX7tPK+9VmoJX+Jd0bpQp4u/Mjn0Xcldv3p+2eUvTq58WX01QZet+z860I3GaAdfnvzDf5xuaDFt25XJFS9Z/dhzrPPjfc7Wy5OT99ddBQDQS/uf13oPbjFTSfXpXRvlFc4sWwa25kk7bsmTdtxy4ZXf/XXJ/W+b/7qXL9Lkdzmaa7+xHKxHjboLAAAAYA0aXPivTZatO/pYCAAAAAAAAGxanU3Qrlnm9ldfYDyA5bn8RcnQrtnLGoPJwW+upx7YCHZckzzxtbOXjd2YXPdD9dQDK9Hcljzrj5NbfqPVLPPL/mvyrD9KmhptrSuDowtft/vJ/atjs3rc9yc7nzB72TXfnYzd1L19NJfR7Kwx0L39Qi81BpKn/kry3L9JnvxzybPfmTz9d5OBRf5ANNB9izU/60azzW0Hkuf8dXL1K5JdX9pqiPicv05G9q5+7E6X/ePuj1mHm/7d/Ms14QaAjWNguPUe3NDuBVep/qiZfHF7H4tao677F/MvP/TK7u1jyO+h0AvNugsAAABgDRpcpEP9li781SYAAAAAAADgQj6a5Na2+S9L8odL2bCUsi3JjfOMB7ByW/Ynz/6r5O+/P3nk75KxJyY3/kRy0T+quzJY3278t8n+r0oe/J/J9kPJpS9IBv3hQtaZ5pbk6m9L8m11V8JKNbcmF39l8sV3zl4+ckmy58vqqWkz2XJJq7HTfb+fPPapZO8zWo1ZSunePgZGlr7u0EXd2y/0WinJ3ttaE1CPK74+ef8/n7t86+WLN01bjp3XJrf8WnfGSpLrXp188mfmLr/2Vd3bR50u+5pk21XJic+eXzY4mlzl9ToAbCgDI0lzcOHrP99I9lf9q2et2nNbsufW5OE7zi9rbu/ua7/mIt/HBVZMYzQAAACWZ9fFdVcAAAAAAAAAm8GfJvnutvlnLWPbZ2T2Z0Q/WFXVF7tRFKxpo09Mjs7TA3DfM/tfy0a166bkue9OqqmkNOquBuqz43GtxjWdDn7Lysbbe2trAqjTU/5j8s7nJKcfbM03hpOnvcFzfr8M706u+c7ejV8aySXPTR7488XX2/uMZGi0d3UAsPFsvTS55DnJA38xe/lV39bdJp/d9PgfSO5/a3L8rvPLDn1n672ljWBoNHnuXycffm3yyPtat+v6H01Gn1B3ZQAA/dcYSL7iHcnHfip56N3J9muSx39/svsp3dvHoMZo0AsaowEAADDX3suTXfuSww/OXj40nDz1OfXUBAAAAAAAAJvLO5KcSrJlev7LSinXVVX1ySVse3vH/B90szBYs65/TfK33zp3+XWv7n8tG50GKWx2T3h18nffM3f5tf+0/7UAdMvYlyRf/ZHkC+9IJk4k+5+XbL+67qropht/Innk75Lxo/NfP7w3ufkX+lsTABvDM34ved93JZ//46S5Nbnq9uTG/7vuqha27YrkeXck9/xucvzOVlP9y1+8dhu5rcTWy5Jbfq3uKgAA1obB7cmTfqp34zcHezc2bGIaowEAADBHaTRSfc13JP/138++4rkvT9m2s56iAAAAAAAAYBOpqupkKeUtSdq7PL0mySsW266U8rgkL25bNJHkTd2vENagA/8kufd3k8/9YduylyWXvqC+moCN6apvTz73P5LPvf38suteney5tb6aALphZF9y1TyNZtkY9jw1+ar3J/f9fnL2cHLZC5OtB5IH/ixpjLSa4Y3srbtKANajwZ3J09+cTE0kZWB9NBgb2Zc8/vvqrgIAoLequgvYHEopixzqdfDaGNYojdEAAACYV/nOH0+Gt6b6s99KpqaSZ74o5TtfX3dZAAAAAAAAsJn8eJJvTHLuT0zfXkr5g6qq3j7fyqWUkSS/nmSobfEbqqq6q6dVwloxMJw84/eSL/x5cviDye6bk0uenTR8ZBrosnN58/AdyZGPJHtuSXY9eX18+R+AzW3HoeT6H5m97NAr66kFgI3HezAAAAB0SaPuAgAAAFibSikp3/aaNH7zw2m86aNp/NOfTGn6j0oAAAAA6KkX3j7/8i3b+loGALA2VFX1mST/X8fit5RSvq+U0t78LKWUJyT5yyS3ti1+JIm/fsTm0hhMLvvq5In/Orn0+b6QC/ROo5nse2byuO9Ndj9FUzQAAGBFXnHb/L9LjAzOuxgAAGZ8yy2Lvy9dvvVf9qkScsmV8y4uX/MdfS4ENg6N0QAAAAAAAAAA1ojyklfNv/w7fqzPlQAAa8iPJvmTtvnBJL+Q5L5Syp+UUn63lPL3ST6W2U3RziZ5cVVVX+hfqQAAAADAcnzrLWXePss/8nzNlwEAWNwrnz7/a8bXPvSTyeBQ8oyv7XNFm9izXzp32Z5Lkxue1v9aYIPQGA0AAAAAAAAAYI0oj3tS8op/M3vhU5+bvPh76ikIAKhdVVWTSV6a5M0dV+1L8lVJ/kmSpyRp/9T7g0leVFXVX/elSAAAAABgRfaPlfzat89ujvbs65LXaIwGAMAFXL235Ke/YfbrxltP3pEfOvlfUn7yd1N27aupss2nvPLHkud+U9KYbuV06VUpP/vHKQMD9RYG61iz7gIAAAAAAAAAADiv8R2vTfXMr0s+ckdy8AnJl3xZSnOw7rIAgBpVVXU8yTeWUt6S5NVJbllg1UfTaqD2uqqqHupXfQAAAADAyn37rY089/oq7/5UlUP7Sp58IBloaIwGAMCFvfp5jbzgiVXe/ekqh7YczTOGhjJ8/adThobrLm1TKYNDKT/2xlQ/9HPJkYeTy69JKV7Tw2pojAYAAAAAAAAAsMaUa74kueZL6i4DAFhjqqp6S5K3lFKuSvLkJJcm2ZbkgST3JHlPVVVnaywRAAAAAFiBS8dKvvGpGicAALB8119acv2lJcmuJE+ru5xNrezYlezYVXcZsCFojAYAAAAAAAAAAACwjlRV9dkkn627DgAAAAAAAAAA6LZG3QUAAAAAAAAAAAAAAAAAAAAAAAAAaIwGAAAAAAAAAAAAAAAAAAAAAAAA1K5ZdwFsLKWUwSS3JTmQZH+S40k+n+SDVVXdXWNpAAAAAAAAAAAAAAAAAAAAAAAArGEao21ipZTfSfKyjsX3VFV1cAVj7U3y+unxdi+wzh1Jfraqqt9b7vgAAAAAAAAAAAAAAAAAAAAAAABsbI26C6AepZSvzdymaCsd6wVJPprkVVmgKdq0W5O8pZTym6WUbd3YNwAAAAAAAAAAAAAAAAAAAAAAABtDs+4C6L9SyliS/79LYz0ryVuTDLUtrpJ8IMlnkowl+dIke9qu/+YkO0spX1dV1VQ36gAAAAAAAAAAAAAAAAAAAAAAAGB9a9RdALX4mSSXTl9+bKWDlFIuT/L7md0U7T1Jbqiq6uaqql5aVdXzklye5AeSjLet9zVJfmKl+wYAAAAAAAAAAAAAAAAAAAAAAGBj0RhtkymlPCfJd0zPTiT5sVUM9/oku9rm70jynKqqPtG+UlVVZ6qq+vkkL+3Y/l+UUq5cxf4BAAAAAAAAAAAAAAAAAAAAAADYIDRG20RKKduS/Grbop9N8qEVjnVtkm9vW3Q2ye1VVZ1eaJuqqt6a5DfaFg0ned1K9g8AAAAAAAAAAAAAAAAAAAAAAMDGojHa5vLvkhycvvyZJD++irFenmSgbf73q6r69BK2+w8d8y8tpYysog4AAAAAAAAAAAAAAAAAAAAAAAA2AI3RNolSyq1Jvrdt0fdUVXVqFUO+uGP+15eyUVVVn0jyvrZF25I8bxV1AAAAAAAAAAAAAAAAAAAAAAAAsAFojLYJlFKGk/xazt/fv1FV1V+sYrxLktzUtmgiyXuWMcS7OuZfsNJaAAAAAAAAAAAAAAAAAAAAAAAA2Bg0RtscfjzJ46cvP5Tk1asc74kd8x+uqurEMra/o2P+hlXWAwAAAAAAAAAAAAAAAAAAAAAAwDqnMdoGV0p5cpIfblv0g1VVPbLKYa/vmL9zmdvfdYHxAAAAAAAAAAAAAAAAAAAAAAAA2GQ0RtvASinNJL+WpDm96E+rqnpTF4a+pmP+3mVuf0/H/EWllF2rqAcAAAAAAAAAAAAAAAAAAAAAAIB1rnnhVVjHfjTJTdOXTyR5VZfGHeuYf3A5G1dVdbyUcjrJSNvi0SSHV1tYKWVfkr3L3OzQavcLAAAAAAAAAAAAAAAAAAAAAADA6miMtkGVUq5P8m/aFr22qqq7uzT89o75UysY41RmN0bbsfJyZvlnSV7XpbEAAAAAAAAAAAAAAAAAAAAAAADok0bdBdB9pZRGkjckGZ5e9P4kP9/FXXQ2Rju9gjE6m6l1jgkAAAAAAAAAAAAAAAAAAAAAAMAmojHaxvQDSW6ZvjyR5Durqprs4f6qPm0DAAAAAAAAAAAAAAAAAAAAAADABtWsuwC6q5RydZKfaFv0s1VVfajLuzneMb9lBWN0btM55kr9UpL/vsxtDiV5W5f2DwAAAAAAAAAAAAAAAAAAAAAAwApojLaBlFJKkl9NsnV60WeS/HgPdrVmG6NVVfVgkgeXs03rsAEAAAAAAAAAAAAAAAAAAAAAAFCnRt0F0FXfleQr2+a/p6qqUz3Yz9GO+b3L2biUsj1zG6MdWVVFAAAAAAAAAAAAAAAAAAAAAAAArGvNugugq17fdvmPk9xZSjl4gW0u6ZhvzrPN56uqOts2/+mO669cYn0Lrf9oVVWHlzkGAAAAAAAAAAAAAAAAAAAAAAAAG4jGaBvLlrbLX53ksysY47J5tvvSJB9qm/9Ex/XXLHMfV3fMf3yZ2wMAAAAAAAAAAAAAAAAAAAAAALDBNOougHXpox3zN5ZSti5j+9suMB4AAAAAAAAAAAAAAAAAAAAAAACbjMZoLFtVVV9I8uG2Rc0kT1/GEM/qmP+T1dYEAAAAAAAAAAAAAAAAAAAAAADA+qYx2gZSVdVYVVVlOVOSr+gY5p551vvQPLv7g475VyylxlLKdUme1rboRJI/W/KNBAAAAAAAAAAAAAAAAAAAAAAAYEPSGI2V+q0kk23zLymlXLuE7V7TMf+7VVWd7l5ZAAAAAAAAAAAAAAAAAAAAAAAArEcao7EiVVV9OslvtC0aSvLGUsrIQtuUUl6U5Pa2RWeTvL4nBQIAAAAAAAAAAAAAAAAAAAAAALCuaIzGarwuyeG2+VuT/EUp5br2lUopw6WU70/y3zu2/5mqqu7pcY0AAAAAAAAAAAAAAAAAAAAAAACsA826C2D9qqrq/lLKS5K8I8nQ9OLbkny8lPL+JJ9JMprkyUn2dmz+R0le269aAQAAAAAAAAAAAAAAAAAAAAAAWNs0RmNVqqp6VynlxUnemPPNz0qSm6en+fx2ku+qqmqy9xUCAAAAAAAAAAAAAAAAAAAAAACwHjTqLoD1r6qqP07yxCS/nOTwIqu+N8k3VFX18qqqTvSlOAAAAAAAAAAAAAAAAAAAAAAAANaFZt0FUK+qqt6VpHRhnAeTvKqU8gNJbktyZZJLkpxI8rkkH6yq6rOr3Q8AAAAAAAAAAAAAAAAAAAAAAAAbk8ZodFVVVWeT/FXddQAAAAAAAAAAAAAAAAAAAAAAALC+NOouAAAAAAAAAAAAAAAAAAAAAAAAAEBjNAAAAAAAAAAAAAAAAAAAAAAAAKB2GqMBAAAAAAAAAAAAAAAAAAAAAAAAtdMYDQAAAAAAAAAAAAAAAAAAAAAAAKidxmgAAAAAAAAAAAAAAAAAAAAAAABA7TRGAwAAAAAAAAAAAAAAAAAAAAAAAGqnMRoAAAAAAAAAAAAAAAAAAAAAAABQO43RAAAAAAAAAAAAAAAAAAAAAAAAgNppjAYAAAAAAAAAAAAAAAAAAAAAAADUrll3AbAGDLXP3HnnnXXVAQAAAAAAAACwKvN87mFovvUAoI98Rg8AAAAAAAAAWPd8Pq9/SlVVddcAtSqlfG2St9VdBwAAAAAAAABAD7yoqqq3110EAJuXz+gBAAAAAAAAABuUz+f1SKPuAgAAAAAAAAAAAAAAAAAAAAAAAAA0RgMAAAAAAAAAAAAAAAAAAAAAAABqV6qqqrsGqFUpZTTJl7ctui/J2VUMeSjJ29rmX5TkrlWMB7BccghYC2QRUDc5BNRNDgF1k0PAWiCLgLpt1hwaSnJF2/z/rKrqaF3FAIDP6AEbkBwC6iaHgLrJIaBucghYC2QRUDc5BNRts+aQz+f1SbPuAqBu0+Hy9m6NV0rpXHRXVVUf69b4ABcih4C1QBYBdZNDQN3kEFA3OQSsBbIIqNsmz6EP1l0AAJzjM3rARiOHgLrJIaBucgiomxwC1gJZBNRNDgF12+Q55PN5fdCouwAAAAAAAAAAAAAAAAAAAAAAAAAAjdEAAAAAAAAAAAAAAAAAAAAAAACA2mmMBgAAAAAAAAAAAAAAAAAAAAAAANROYzQAAAAAAAAAAAAAAAAAAAAAAACgdhqjAQAAAAAAAAAAAAAAAAAAAAAAALXTGA0AAAAAAAAAAAAAAAAAAAAAAAConcZoAAAAAAAAAAAAAAAAAAAAAAAAQO00RgMAAAAAAAAAAAAAAAAAAAAAAABqpzEaAAAAAAAAAAAAAAAAAAAAAAAAUDuN0QAAAAAAAAAAAAAAAAAAAAAAAIDaaYwGAAAAAAAAAAAAAAAAAAAAAAAA1K5ZdwGwAT2U5PUd8wD9JIeAtUAWAXWTQ0Dd5BBQNzkErAWyCKibHAKAjclzPFA3OQTUTQ4BdZNDQN3kELAWyCKgbnIIqJscoqdKVVV11wAAAAAAAAAAAAAAAAAAAAAAAABsco26CwAAAAAAAAAAAAAAAAAAAAAAAADQGA0AAAAAAAAAAAAAAAAAAAAAAAConcZoAAAAAAAAAAAAAAAAAAAAAAAAQO00RgMAAAAAAAAAAAAAAAAAAAAAAABqpzEaAAAAAAAAAAAAAAAAAAAAAAAAUDuN0QAAAAAAAAAAAAAAAAAAAAAAAIDaaYwGAAAAAAAAAAAAAAAAAAAAAAAA1E5jNAAAAAAAAAAAAAAAAAAAAAAAAKB2GqMBAAAAAAAAAAAAAAAAAAAAAAAAtdMYDQAAAAAAAAAAAAAAAAAAAAAAAKidxmgAAAAAAAAAAAAAAAAAAAAAAABA7TRGAwAAAAAAAAAAAAAAAAAAAAAAAGrXrLsA5iqlDCS5Jsn1SS5NMprkTHZQCE0AACAASURBVJLDSe5K8vdVVZ3o8j4Hk9yW5ECS/UmOJ/l8kg9WVXV3N/fVL6WUG5I8KcneJMNJHkhyf5L3VFV1us7a+qmUsivJDUmuTbI7yUiSI0keSvL+qqruqrG8OUopV6V1v12aZHuSLyS5J8kdVVWN11nbZiKHukMOtcghVkoWdYcsapFFC+7H+bEIOdQdzrOW9ZZDrA1yqDvkUIscmq2UckVax+LyJHuSbElyNsnRJPemdUweqq/CtUEOdYccapFDrJQs6g5Z1CKLWAk51B1yqEUOzc/5AdTBc3x3yPCW9fYc77Mxa4Mc6g451CKHWAk51B1yqEUOLbgf58ci5FB3OM9a1lsOsTbIoe6QQy1yaDafz1s6WdQdsqhFFrEScqg75FCLHGIl5FB3yKEWOTS/dX1+VFVlWgNTWoH5g0n+KK1f7qtFpokkf5LkhV3Y794kv5TkkUX2954kX7/K/Vyd5GVJfjrJu5Ic69jH3V06jjuS/Oskn1vk9hxL8t+SHKrx/u7Z8UgymOT5Sf5Tko9e4Fyqpo/Vv01ySc2PgW9IcscidT4yfa7uWcHYFzoGF5oO1nls+ngfyKHuHEc5JIfaxzzYhQxqn26v8xj16X6QRd05jrJIFq3786PG+0AOdec4rovzTA7Vdn5sS/L0JD+U5LeSfCrJVMe+bq/rONQ9ySE5JId6djyuTfJTSf4qrf/UuNDxqJJ8IMn3Jhmu65jUdD/Ioe4cRzkkh+YbfynZs9h0sK5jU8N9IYu6cxxlkSxqH/dgF3Kofbq9rmPUp/tBDnXnOMohObTuzw+TybSxJs/xmyvDPcfPW7fP6NU8ySE5JId8Rq/uSQ7JITnk83l1T3JIDm3mHOrj+eHzeYsfHznUneMoh+RQ59g+n7e84yWLunMcZZEsmm/8peTPYtPBuo5Nn+8HOdSd4yiH5FD7uAe7kEHt0+11HaM+3Q9yqDvHUQ7JoXV/flzwdtRdgKlKkjet4gntD5NcvML9viDJF5exr99Msm0Z4z8ryTsu8KTQtQdmkqel1YVzqbfnRJJX9fF+7vnxmD4Gj67wXDqc5FtqOP+3J/ntZdT5QJLnL3MfK318nZsO9vu41HA/yCE5JId6kEPp/i+yL+v38enzfSGLZJEs6kEWrafzo+5JDsmhzZhD/Tw/0nrj+CNpvSF9oX3d3q9jsJYmOSSH5FDvzo8k37mKx9c/JHlav45JnZMckkNyqLfnxyoeX+emg/06LnVOskgWyaKeHY+DXcih9mnDvl8dOSSH5NCmPz9MJtPGnDzHb44M9xy/YM0+o7cGJjkkh+SQz+jVPUUOySE55PN5NU9ySA5txhzq5/kRn89byjGSQ3JIDvXo/IjP5y3nWMkiWSSLenh+rOLxdW462K/jUtckh+SQHOrZ8TjYhQxqn7xXLYeW8hiUQ3JoXZ4fy5maYS143ALLP5fk02mFazOtrn83JWm0rfOPk7y7lPLlVVU9sNQdllKeleStSYbaFldpdVn/TJKxJF+aZE/b9d+cZGcp5euqqppawm6elOR5S61pNUopz0mrG+hwx1X3JPlwWg/Cy9N68A5OX7c1yS+VUhpVVf1iH8rsx/HYm2TXPMvPpvXm9gNpdUy9KMnN0z/PGUvy30op+6qq+tke15kkKaUMJHlzkq/uuOqhJB+crvVQWudimb7u4iRvK6U8p6qqv+lHnZuEHFolOTRDDvXOybQ6Wm9ksmiVZNEMWTT/ftbD+VE3ObRK6+Q8k0Oz9e38SPLyJKN92td6JYdWSQ7NkEMXVqX1Jv+daf3Hwsm0/mLuVUluyPnzI2k9Nv+ylPLCqqr+Z78L7TM5tEpyaIYcYjVk0SrJohmyqHc2+vvVcmiV5NAMOTSPdXJ+ABuT5/hVWicZ7jm+wzr7bMxGJ4dWSQ7NkEO94z0PObQoOTRDDs2/n/VwftRNDq3SOjnP5NBsPp+3tsihVZJDM+TQhfl83sJk0SrJohmyiJWSQ6skh2bIod7xXrUcWpQcmiGH5rFOzo+lq7szm6lKkr/P+S56H0jyfUkOLbDuZUl+JXO77/11krLE/V2euV0P/ybJEzrWG07yz9N60Lev+1NL3M8PzlNnleR0Wm9odKVjYVrdUzu7It6Z5LnzrLsryS90rDs537o9uJ97fjzSeiI/N8ZjSd6Q5NlJtsyzbkny4rTCq7Omnh+P6Rp+umO/Z6fP/6GO9a5PckfHug8n2b/E/bRv997pc2Y5U7Mfx6POKXJIDsmhnuRQWr94XShjFpr+pmN/b+zHMalziiySRbKoZ6+J1sv5Ufckh+TQZsyhfp0f0/s6ssC+7p/nutt7fdvX4iSH5JAc6un58cokn0zrtdcLk+xaZN2xJP8irf8Aad//55KM9vqY1DnJITkkh3r+eqh9LO9VL3ycZJEskkW9OR7er176sZJDckgObfLzw2QybczJc/zmyHDP8fPW6zN6a2SKHJJDcqgnORTveSznvpBDckgO9ej10Ho5P+qe5JAc2ow51K/zY3pfPp934WMkh+SQHOrd+eHzeUs/VrJIFsmi3r4mah/Le9XzHyM5JIfkUG+Oh/eql36s5JAckkOb/PxY1m2quwBTlST/K61uezcvY5t/Ns8J/41L3PYNHdu9J8nIIut/3TwPrCuXsJ8fnA79Dyb51STfneTJaXUMfFYXH5i/3THWp5Psu8A2/7Jjm48lGejx/dzz4zEd3F9M8uok25a4zUVJPt6x/09kiS8EVnE8rs7cFwUvWmT9LZn7H42/vMR9tW/zrl7ervU6ySE5JId6m0MrqO2yJBMd+3pGL4/HWphkkSySRb3LovVyftQ9ySE5tElzqC/nx/S+jqT1lxb+R5LXTx+ni6eve1fHvm7v5e1eq5MckkNyqKfnx+AKtnlSkuMdNbyml8ej7kkOySE51PPXQ+1jvauXt2s9T7JIFsmi3mbRCmrbdO9XyyE5JIecHyaTaWNOnuM3R4Z7jp+zX5/RW0OTHJJDcqi3ObSC2rznsbRt5ND5/cih8/uQQ+v0/Kh7kkNyaJPmkM/nraFJDskhOeTzeWthkkWySBb5jF7dkxySQ3LI5/PqnuSQHJJDzo9l3aa6CzBVSXJwhdu9pePk+h9L2ObajifGM0muXcJ2b+zY168tYZtdCz0hdDGork6r42D7WE9f4rbv7NjuO3p8P/fjeOxdamB3bHfTPMfxH/X4ePxGx/5+fQnbPG76nD23zXiSq5ewXft+3tXL27VeJzkkh+RQb3NoBbX9647aPtXLY7FWJlkki2RRb7JoPZ0fdU9ySA5t0hzq+fFoG2/Bv6AbH7w6dxwOrnA7OSSHOseRQ92r79921PDeftfQ59t7cIXbySE51DmOHJp/vPax3tXL27WeJ1kki2RRb47HKmrbdO9XyyE5JIecHyaTaWNOnuM3R4Z7jp+zT5/RW0OTHJJDcqi3ObSC2rznsfTt5JAc6hxHDq3T86PuSQ7JoU2aQz6ft4YmOSSH5FBvjscq69tUn8+bvs0HV7idLJJFnePIovnHax/rXb28Xet1kkNySA715nisojbvVS99OzkkhzrHkUPr9PxYztQItauq6u4VbvqLHfNfsYRtXp5koG3+96uq+vQStvsPHfMvLaWMLLZBVVWHq6o6vYSxV+OFyazz+L1VVf3NErf9fzvmX9GdkubXj+NRVdVDVVWdWMF2/ztJ53Fbyvm0IqWULUm+oWNx5zk2R1VVn0ry1rZFzbTOaVZJDq2KHJq9Dzm0SqWUkrnnwhu6uY+1ShatiiyavQ9ZNNu6OT/qJodWZd2cZ3Jozj77cX6c29cX+rGf9UwOrYocmr0POdQ9f9wxf00tVfSJHFoVOTR7H3KIFZNFqyKLZu9DFq3SZn2/Wg6tihyavQ85NNu6OT+Ajclz/Kqsmwz3HH/eWv5szGYlh1ZFDs3ehxxaJe95LJsckkOd+5BDs62b86NucmhV1s15Jofm7NPn89YQObQqcmj2PuRQ92yqz+clsmiVZNHsfcgiVkQOrYocmr0PObRK3qteNjkkhzr3IYdmWzfnx3JojLa+fbBjfkspZewC27y4Y/7Xl7Kjqqo+keR9bYu2JXneUrbtsWd2zL9jGdv+ZZKzbfO3llL2r76kdavzfLq0h/t6fpKtbfN/+3/au/dgafK6vuOfHyD3y6oIiAhLUAmKGhAT8RI3BiyIJcgl3pVVvF8qmphKoaRCNGIuXquSUqIoipdIEBQFgRBdMBqvtQgoElFBUZY74i677C788secfc6cnjNzpmd6unu6X6+q80f3M9PT5zzf5z3n+Z2uPrXWP9nyuc2ZfXw3p8SOdEiHuqRDC5+Z5AFL2zdn8RvrWE+LtKhLU2yR+Tg8HTJnXeqzQ0yHDulQl3TorHc2tu8yyFmMnw7pUJd0iF1pkRZ1SYsWrFe3o0M61KUpdsh8AMfKe7yGd2mKP4/m8HRIh7qkQwvWPNrRIR3q0hQ7ZD4OT4fMWZemuPbK4emQDnVJh85yfd72tEiLuqRF7EKHdKhLOrRgrbodHdKhLk2xQ5OcDzdGO243n7PvtuseXEq5V5JPbDz/N1u83lWN7Ue3eO6h3Kex/Zptn1hrfV+S1y/tulXG8TkNpTlPa2epA49qbF/V4rm/kbPn+pBSyj33PiN2pUM61CUdWnhyY/uFtdZrOjz+FGmRFnVpii0yH4enQ+asS312iOnQIR3qkg6ddb/G9t8Mchbjp0M61CUdYldapEVd0qIF69Xt6JAOdWmKHTIfwLHyHq/hXZriz6M5PB3SoS7p0II1j3Z0SIe6NMUOmY/D0yFz1qUprr1yeDqkQ13SobNcn7c9LdKiLmkRu9AhHeqSDi1Yq25Hh3SoS1Ps0CTnw43RjttHNbZvTvL2DY9/cGP7VbXW61q83m81tj+uxXMP5UMa2+9u+fzm4z9+j3M5ds15evMBX6s5i/932yeezOyrG7vHMItzpUM61KXZd6iUcrckT2jsfmYXx544LdKiLk2xRebj8HTInHWpzw4xHTqkQ13SobO+vLH964OcxfjpkA51SYfYlRZpUZdm3yLr1TvRIR3q0hQ7ZD6AY+U9XsO7NMWfR3N4OqRDXZp9h6x57ESHdKhLU+yQ+Tg8HTJnXZri2iuHp0M61CUdOsv1edvTIi3qkhaxCx3SoS7NvkPWqneiQzrUpSl2aJLz4cZox+2Jje3fr7V+YMPjP7ax/fpzH7Xen11wvCHc2Ni+XcvnNx8/hs+pd6WUuyZ5ZGP37x7wJR/U2O5zFu9bSvmJUsoflVLeVUq5sZTylpPtny6lfE0ppRl81tMhHerEzDq0yRclucPS9puT/GpHx54yLdKiTky4Rebj8HTInHVigA4xHTqkQ53QobNKKd+Y5EuXdt2c5AcHOp2x0yEd6sTMOmStuntapEWdmFmLNrFe3Z4O6VAnJtwh8wEcK+/xGt6JCf88+jzWPbqlQzrUiZl1aBNrHu3pkA51YsIdMh+Hp0PmrBMTXnvl8HRIhzqhQ2e5Pq81LdKiTsysRdaqu6VDOtSJmXVoE2vV7emQDnViwh2a5Hy4MdqRKqXcOcmTG7uff8HTmncs/MuWL/vGxvaHllI+uOUxuvaOxvaHt3x+8/EP3ONcjtnXJrnj0vbf5kB31z/5T2LzP4ptZ7H5+I9u8dz7J7kyiwhfluSDktzjZPtLkjwjyV+WUn7g5N8Za+jQJTrUjTl1aJPmv6mfrLXe3NGxJ0mLLtGibky1RebjgHToEnPWjd46xHTo0CU61I1Zd6iUcqdSygNLKU8qpbw8yX9tPOQptdZXDXFuY6ZDl+hQN+bUIWvVHdKiS7SoG3Nq0SbWq1vQoUt0qBtT7ZD5AI6O9/hLNLwbU/159Hmse3REhy7RoW7MqUObWPNoQYcu0aFuTLVD5uOAdOgSc9aNqa69ckA6dIkOdWPWHXJ93u606BIt6sacWmStuiM6dIkOdWNOHdrEWnULOnSJDnVjqh2a5Hy4Mdrx+p4k91rafneSH7vgOZc1tt/a5gVrrdcmuaGx+25tjnEAr21sf8q2Tyyl3DfJvRu7h/58eldKuTzJv23s/qFaa/NukF1pzuF7a63XtTxGc3a7/nu7U5JvSfIHpZSP6/jYU6JDCzq0Jx1aKKV8fJKHNXY/c9/jzoAWLWjRnibeIvNxWDq0YM72NECHmA4dWtChPc2tQ6WUy0opdfkjybVJ/iTJs5L846WHX5vka2qt3zvAqR4DHVrQoT3NrUNbsla9PS1a0KI9adGC9eqd6NCCDu1p4h0yH8Ax8h6/oOF7mvjPo3dl3WM7OrSgQ3vSoQVrHjvRoQUd2tPEO2Q+DkuHFszZnia+9sph6dCCDu1pbh1yfV7ntGhBi/Y0txZtyVr1dnRoQYf2pEML1qp3okMLOrSniXdokvPhxmhHqJTyuCTf1Nj9HbXWd17w1Obdiq/f4eWbz7nLDsfo0ssb208opdzx3Eeu+vJz9g39+fSqlHLbJD+fs5/3G5L85wO+7FBzeHOSq5I8Ncljkjw0i9/a9JAkj03yvVn9ZuZjkryslHK/Hc5x0nToDB3aw8w6dJHmnapfXmt9fQfHnSwtOkOL9jCDFpmPA9GhM8zZHgbqEBOgQ2fo0B50aK23JPmOJPevtf7o0CczRjp0hg7tYWYdslbdMS06Q4v2MLMWXcR6dQs6dIYO7WEGHTIfwFHxHn+Ghu9hBj+PXmbdo0M6dIYO7WFmHbqINY8WdOgMHdrDDDpkPg5Eh84wZ3uYwdorB6JDZ+jQHnRoLdfnbUGLztCiPcysRdaqO6RDZ+jQHmbWoYtYq25Bh87QoT3MoEOTnA83RjsypZRPTPJTjd0vTfLDWzy9Ge7m3Sm30Qx385h9e2EWd/O8xWVJnnbRk0opH5nk2875o1uXUu7QzakdhR9L8g+Xtt+f5Ek7/DakNoaYw6cm+Yha6z+ptX53rfWXa61X11pfX2t9Za31BbXWf53kfkn+Y5K69Nx7JXleKaXscJ6TpEMrdGg/c+nQRiffSH9pY7e7e2+gRSu0aD9Tb5H5OAAdWmHO9jNEhzhyOrRCh/ajQ+e7Z5KvS/L1pZS7Dn0yY6NDK3RoP3PpkLXqjmnRCi3az1xatJH16nZ0aIUO7WfqHTIfwNHwHr9Cw/cz9Z9H38K6R4d0aIUO7WcuHdrImkc7OrRCh/Yz9Q6ZjwPQoRXmbD9TX3vlAHRohQ7tR4fO5/q8C2jRCi3az1xaZK26Qzq0Qof2M5cObWStuh0dWqFD+5l6hyY5H26MdkRKKffNYhCXY/nGJF9aa63nP2ujvp5zMLXWv0vyQ43d31ZK+RfrnlNKuU+SFye527rDdnR6o1ZK+a4kX9bY/ZRa6yt6PpWDz+HJf16bd+8+73E31FqfkuSbG3/00CRf1OY1p0qHVunQ7ubUoS08NsmHLm3/bZLndvwak6FFq7Rod3Nokfnong6tMme7G1GHOCI6tEqHdjfjDr0nyf2XPh6QxRrQ45P8QJK3nTzuI5N8Z5JXl1I+eYDzHCUdWqVDu5tTh6xVd0uLVmnR7ubUoi1Yr96SDq3Sod3NoUPmAzgW3uNXafjuRvQe7xq9I6JDq3Rod3Pq0BaseWxJh1bp0O7m0CHz0T0dWmXOdjeiDnFEdGiVDu1uxh1yfd6etGiVFu1uTi2yVt0dHVqlQ7ubU4e2YK16Szq0Sod2N4cOTXU+bjP0CbCdUso9kvyvJB+xtPuaJI+stb7t/GetuLaxvcud+ZrPaR5zCE9P8uic3pmxJPnBUsoTs7g76iuzuBPnvU8e9/U5ffN7U5L7LB3rhlrryp0+SymXb3sytdY3tDr7AZRSviWLu14v+/5a63/Z8vmXb/ta53w9Rj+Htdb/Vkr57CSPWdr9DUl+tsvXOTY6tJEOtaRDK57c2P7ZWmvzLtJEiy6gRS3NrEUHn4+50KGNdKilgTvEkdKhjXSopTl3qNb6gSRvOOePrk7y/FLKU5P8pyTfdLL/vkleVkr5tFrra/o5y3HSoY10qKU5d2gb1qrX06KNtKglLVphvXoLOrSRDrU0sw5ZqwZGzXv8Rt7jW5rZz6Nbs+5xPh3aSIda0qEV1jy2oEMb6VBLM+uQNY+O6NBGOtTSzNZe6YgObaRDLc25Q67P248WbaRFLc25RduwVn0+HdpIh1rSoRXWqregQxvpUEsz69Dk1qrdGO0IlFI+JMnLknzM0u63J3lErfVPWxxqkuGutd5YSnl8khcl+YSlP/r0k4913pHFNw4vWdr37jWP/YsWp1RaPLZ3pZSvTvL9jd0/XGv9Vy0Os8/X41jm8Hty9j+yn1JKuazWum5GJk2HNtOhdnTorFLKRyZ5ZGP3M3c93pRp0WZa1M7cWtTTfEyeDm2mQ+2MoEMcIR3aTIfa0aHNaq3vTfLNpZSbknzrye67JvmpUson7fgbho6eDm2mQ+3o0NasVTdo0WZa1I4WnWW9ejs6tJkOtTO3DlmrBsbMe/xm3uPbGcF7/LHMoXWPJTq0mQ61o0NnWfPYjg5tpkPtzK1D1jy6oUOb6VA7I+gQR0iHNtOhdnRoM9fnradFm2lRO1q0NWvVS3RoMx1qR4fOsla9HR3aTIfamVuHprhWfauhT4DNSil3S/LSJB+/tPtdWdzJ8o9aHu5vG9sf1vJc7pzVcI9ikGutf53kU5M8I8lNWzzl15M8LMl1jf3XdHxqo1JK+bIkP5KzMf2JJN/Y42k05/COpZQ7tTzGPRrbh5jD383i39otbp3kYw/wOqOnQ9vRoe3o0LmuzNnvyf6w1voHexxvkrRoO1q0nbm2yHzsR4e2Y862M5IOcWR0aDs6tB0dauU7kvzN0vZDkjxioHMZlA5tR4e2o0OtWKteokXb0aLtaNG5roz16o10aDs6tJ25dsh8AGPkPX47Gr6dkbzHj+3amHWse5zQoe3o0HZ06FxXxprHRjq0HR3azlw7ZD72o0PbMWfbGUmHODI6tB0d2o4OteL6vCVatB0t2o4WtWKt+oQObUeHtqND57oy1qo30qHt6NB25tqhqc2HG6ONWCnlLklenOSTlna/J8mjaq2v3OGQzbtf3q/l85uPf2et9V3nPnIAtdbraq1fl+SBWSyI/HqSNyW5PsnfJXltkp/M4i6q/7TW+oYkD2oc5vd7O+GelVK+MItIL/+7/5kkX9XnHfRrre/I2f8gJsl9Wx6mOYtt7uy6lVrrB5L8ZWN3q292pkCH2tGhzXRoVSmlJPmKxm53927Qona0aLO5t8h87EaH2jFnm42lQxwXHWpHhzbToXZqrdcn+cXG7kcNcS5D0qF2dGgzHWrHWvUpLWpHizbTolXWqy+mQ+3o0GZz75D5AMbEe3w7Gr7ZWN7jx3RtzCbWPRZ0qB0d2kyHVlnzuJgOtaNDm829Q+ZjNzrUjjnbbCwd4rjoUDs6tJkOteP6vFNa1I4WbaZF7VirXtChdnRoMx1aZa36YjrUjg5tNvcOTWk+bjP0CXC+k99G86Ikn7K0+9okj661/u6Oh31tY/ujWj7/7zW2/3jH8zioWutfJHn6ycdFHt7Y/p01xyzn7T8WpZQnJHl2FnepvsX/TPKkk/+wtdLB1+O1Wdxh8hYfldX53KQ5i22e28b1je3mHV0nTYd2p0OrdGitz0py/6Xt92XxTTUntGh3WrRKi04dYj6mSod2p0OrRtghjoAO7U6HVunQzl7X2G77b+ao6dDudGiVDu1s1mvViRbtQ4tWadFa1qs30KHd6dAqHTplrRoYmvf43XmPXzXC9/ixXBtzkVmve+jQ7nRolQ6tZc1jAx3anQ6t0qFT1jy2p0O706FVI+wQR0CHdqdDq3RoZ7O+Pi/Ron1o0Sot2pm1ah3aiQ6t0qG1rFVvoEO706FVOnRqCmvVt7r4IfStlHKHJL+S5NOXdr83yefUWn9rj0O/prH9CaWUO7Z4/qddcLyjcnJX1c9q7H75EOdySKWUxyT5uZy9EeIvJvniWuv7hzmrldlpBnKtk29qPuGC43Xl7o3ttx/odUZHh/qhQzqU5Csb28+rtb5zx2NNjhb1Q4u06ILXmcV8rKND/ZjLnI20Q4ycDvVDh3RoCzc1tm83yFkMQIf6oUM6tIXZrlUnWtQXLdKiWK9eS4f6oUM6tMlc5gPol/f4fsyl4SN9jx/9z6NPzHbdQ4f6oUM6FGsea+lQP3RIhy54nVnMxzo61I+5zNlIO8TI6VA/dEiHtjDb6/MSLeqLFmnRFqxV69BB6ZAOxVr1WjrUDx3SoU3GPB9ujDYypZTbJ3lBkiuWdt+Q5DG11lfsc+xa65uTvGpp121y9s3hIlc0tn91n/MZgc9KcvnS9strrX860LkcRCnln2Vx58oPWtr9wiRfUGu9eZizSpK8uLF9RYvnfkbOvgldXWt9y95n1FBKuXtW7+L6N12/zhjpUK90aDiDd6iUclmSxzd2P7PtcaZKi3qlRcMZvEVbmPx8rKNDvZr8nI24Q4yYDvVKh7jIfRrbh/i+a3R0qFc6xFpzXqtOtKhnWjRj1qvX06Fe6RCbTH4+gH55j+/V5Bs+4vf40f88es7rHjrUKx0azuAdsuaxng71SoeGM3iHtjD5+VhHh3o1+TkbcYcYMR3qlQ5xkVlen5doUc+0iLWsVetQT3RoxqxVr6dDvdIhNhntfLgx2oiUUm6b5HlJHrG0+31JPq/W+r87epnnN7a/Ystz+/tJ/tHSruuSvLSjcxrKv2lsP2OQsziQUsojk/xCktsu7X5pkifUWm8c5qwueUmS65e2H34yY9u4srHdnOmufGHONvItSV57oNcaDR3qnQ4NZwwd+pIkt1/afkOSX9vxWJOiRb3TouGMoUUXmfR8rKNDvZv0nI28Q4yUDvVOh7jIZze2R7G4f0g61DsdYpNZrlUnWjQALZo369Xn0KHe6RCbTHo+gH55j+/dpBs+8vf4Y/h59CzXPXSodzo0nDF0yJrHOXSoxYhGTgAADKBJREFUdzo0nDF06CKTno91dKh3k56zkXeIkdKh3ukQF5nd9XmJFg1Ai9jEWvUpHTocHZo3a9Xn0KHe6RCbjHY+3BhtJEopt0nynCSPXtp9U5In1lpf0uFL/UyS9y9tP76U8tFbPK85xM+ptd7Q3Wn1q5TypCSPXNr1yizu/DgJpZTPTPJLOfsN0q9l8U3A+4Y5q1O11vcmeW5jd3PGVpRSPibJ45Z23ZzkZzs8tVte555JntrY/cu11tr1a42JDvVLh4Y1kg59ZWP7x6femW1oUb+0aFgjadGm15n0fKyjQ/2a+pyNvUOMkw71S4e4SCnlc5I8rLH7l4Y4l77oUL90iE3muladaFHftIhYr16hQ/3SITaZ+nwA/fIe36+pN3zs7/FH8PPoWa576FC/dGhYI+mQNY8GHeqXDg1rJB3a9DqTno91dKhfU5+zsXeIcdKhfukQF5nj9XmJFvVNi9jEWrUO9UGHiLXqFTrULx1ik7HPhxujjUAp5dZZBPWxS7tvTvIFtdZf6fK1aq1/muQnl3bdNsmzSim3X/OUlFIem7O/8ebGJP++y/Pa18kb37aPfXySH13adXOSr6y13tz5iQ2glPLwJL+S5A5Lu1+R5HNrrdef/6xBPC2Lb05ucWUp5THrHnwyoz+Rs3fofGat9c82POeBpZTPbXNSpZR7ZfH1u+fS7huTfE+b4xwbHdqfDp3SoYuVUv5Bkocu7fpAkme1Pc7UaNH+tOiUFp37XPNxAR3anzk7dUQdYkR0aH86dEqHTpVSHlZKedzFj1x53icneXZj9ytqra/u5szGR4f2p0OndOiUtep2tGh/WnRKiy5mvXqVDu1Ph07p0CrzAQzFe/z+NPzUEb3HPy2u0RsNHdqfDp3SoYtZ81ilQ/vToVM6dO5zzccFdGh/5uzUEXWIEdGh/enQKR065fq8drRof1p0SotOWaveng7tT4dO6dDFrFWv0qH96dApHVo1tfnY+pPhoH48yec39n17kqtLKZe3PNY1W9xp8t9l8RtsPvhk+1OTvKyU8lW11j+55UGllNsl+Zok39d4/vfVWt+4zcmUUu6T8+fsXo3t22z4XK+ttb79gpd6dSnlhUl+Icnv1Fo/cM65PDjJU5J8ceOPvr3WevUFx+/Eob8epZSHJPnVJHde2v26JN+Y5B6llDane0Ot9Zo2T2ij1vrnpZQfSvJtS7ufW0r5l0n+e631xlt2llIelOTHspjVW7wjF38D8eFJXlBKeXWSn07y/JNvXlaUUu6S5ElZ3Nn7no0//g+11j/f4tM6ZjqkQzq00HWH1nlyY/sltda/2vFYU6JFWqRFC4dq0VHMx8B0SIdm16Gkv/kopdw5yd3X/HFzQfnuG17rTWNaXOuYDumQDp3V1XzcJ8nzSimvyeIHaL+Y5HW1nv9blkopH5vka5N8Q+O8bjjZN2U6pEM6dFZX82Gtuh0t0iItOqvr+WiyXr1Kh3RIh86a5XwAk+Q9fiYN9x5/yjV6o6NDOqRDC67RG44O6ZAOLbg+bzg6pEOz61Di+ryR0SEd0qGzXJ83DC3SIi06yzV6/dMhHdKhs1yf1z8d0iEdOmuW87G1WquPgT+S1A4/rtjyNa9I8r7Gcz+Q5PeS/HySFyd56znH/+Ukt27xub2hg8/pWVu8ztuXHv93SX4ri3+kP5PkpRvO47t6/rs+6Ncji99o1NUsXdXD1+PWSV50zmu/JYs3oOck+f2T2Vz+8/cl+Ywt57x57Hcn+T9ZLLA9O8nzT17jpjVfh2cM3YieZlOHdEiHDtChNa95uywulFg+3hOGbMBYPjqcHS3Soqd1OEtX9fD16KVFxzIfQ350ODc6NPI5O/TXI8fXob7m48qOviaXD92LA/5d6JAO6dBhvh6fd87j33MyHy/I4gKI5yR5WZJr1hz/vUkeMXQnevi70CEd0qHDfD2uOOfx1qrXf720SIu06IDz0XhN69Xnf110SId0yHz48OFjgh8dNtl7/MgbfuivR47vPd41eiP56HBudEiHntbhLF3Vw9fDNXoj+ehwbnRIh57W4Sxd1cPXw/V5I/nocG50aORzduivR46vQ33Nx5UdfU0uH7oXB/y70CEd0qHDfD1cn9fu70OLtEiLDvP1uOKcx1urPv9rpUM6pEMHnI/Ga1qrPv/rokM6pEPmY+uP8+4kxwzUWq8qpTwuybOSfNjJ7pLkYScf5/m5JF9da33/4c9wL3dO8vALHvOuJN9Qa/0fPZwPa9Ra319K+fwsfrPSFyz90T2SPGrN096a5Em11t/Y8WXvluTTtnjcdUm+tdb6ozu+DhfQIR0ag4E69LgkH7K0/bYsFvoZgBZp0RgM1CLzMRI6ZM5gaDqkQzN2l1w8H7f47SRfW2t91QHPZ7Z0SIdmzFr1iGiRFs2Y9eqR0CEdmjHzAUya93gNHwPX6M2bDunQGLhGb950SIfGwPV586ZD5gyGpkM6NGOuzxsRLdKiGbNWPRI6pEMzZq16JHRIh2bs6OfjVkOfAMOptb4oyYOT/EgWg7rObyd5Yq31i2ut1/Vycu39YJKrs7gr5yZ/leQ7kzxgrP8o56bWem2t9QuT/PMsZm2ddyb54SQPrrW+eMvDvzbJ05P8ZpLrt3zO/0vy7Vn8hhP/iT0wHdKhMThwh87z5Mb2s2utN+1xPPakRVo0Bj21yHyMlA6ZMxiaDunQDPxaFr8V9+eSvGnL57w3yXOTfG6ST3XR1WHpkA7NgLXqI6BFWjRT1qtHRId0aEbMBzAr3uM1fAxcozdvOqRDY+AavXnTIR0aA9fnzZsOmTMYmg7p0Ay4Pu8IaJEWzYC16pHTIR2aKWvVI6JDOjQjk5qPUmsd+hwYgVLKbbO46/H9ktwri7sb/3WSq2utfzHkubVRSrlrkockuX8Wd+q8fRb/gfnrJH9Ya/3jAU+PLZRS7p/koUnuneROSa5J8sYkv1lrvXGP494qyUcneUCSj0hyWU7n411J3pzk92qtb9vrE2BnOsRYHKpDHActYiwO2SLzMW46BAxNh5iDUso9kzwoizn/0CR3THJTkvckeUeS1yR53RH8Zp9J0iGmzlr1cdAiYGg6xByYD2COvMczFq7Rmy8dYixcozdfOsRYuD5vvnQIGJoOMQeuzxs/LWLqrFWPnw4BQ9Mh5mAq8+HGaAAAAAAAAAAAAAAAAAAAAAAAAMDgbjX0CQAAAAAAAAAAAAAAAAAAAAAAAAC4MRoAAAAAAAAAAAAAAAAAAAAAAAAwODdGAwAAAAAAAAAAAAAAAAAAAAAAAAbnxmgAAAAAAAAAAAAAAAAAAAAAAADA4NwYDQAAAAAAAAAAAAAAAAAAAAAAABicG6MBAAAAAAAAAAAAAAAAAAAAAAAAg3NjNAAAAAAAAAAAAAAAAAAAAAAAAGBwbowGAAAAAAAAAAAAAAAAAAAAAAAADM6N0QAAAAAAAAAAAAAAAAAAAAAAAIDBuTEaAAAAAAAAAAAAAAAAAAAAAAAAMDg3RgMAAAAAAAAAAAAAAAAAAAAAAAAG58ZoAAAAAAAAAAAAAAAAAAAAAAAAwODcGA0AAAAAAAAAAAAAAAAAAAAAAAAYnBujAQAAAAAAAAAAAAAAAAAAAAAAAINzYzQAAAAAAAAAAAAAAAAAAAAAAABgcG6MBgAAAAAAAAAAAAAAAAAAAAAAAAzOjdEAAAAAAAAAAAAAAAAAAAAAAACAwbkxGgAAAAAAAAAAAAAAAAAAAAAAADA4N0YDAAAAAAAAAAAAAAAAAAAAAAAABufGaAAAAAAAAAAAAAAAAAAAAAAAAMDg3BgNAAAAAAAAAAAAAAAAAAAAAAAAGJwbowEAAAAAAAAAAAAAAAAAAAAAAACDc2M0AAAAAAAAAAAAAAAAAAAAAAAAYHBujAYAAAAAAAAAAAAAAAAAAAAAAAAMzo3RAAAAAAAAAAAAAAAAAAAAAAAAgMG5MRoAAAAAAAAAAAAAAAAAAAAAAAAwODdGAwAAAAAAAAAAAAAAAAAAAAAAAAbnxmgAAAAAAAAAAAAAAAAAAAAAAADA4NwYDQAAAAAAAAAAAAAAAAAAAAAAABicG6MBAAAAAAAAAAAAAAAAAAAAAAAAg3NjNAAAAAAAAAAAAAAAAAAAAAAAAGBwbowGAAAAAAAAAAAAAAAAAAAAAAAADM6N0QAAAAAAAAAAAAAAAAAAAAAAAIDBuTEaAAAAAAAAAAAAAAAAAAAAAAAAMDg3RgMAAAAAAAAAAAAAAAAAAAAAAAAG58ZoAAAAAAAAAAAAAAAAAAAAAAAAwODcGA0AAAAAAAAAAAAAAAAAAAAAAAAY3P8H9Ry3/pQ2KlkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor, Config\n", + "\n", + "async def clean_magnitude(datapoints):\n", + " async for datapoint in datapoints:\n", + " if datapoint.data is None:\n", + " continue\n", + " yield datapoint.collected_at, datapoint.data[\"magnitude\"]\n", + "\n", + "TemperatureConfig = Config(\n", + " sensor_name=\"Temperature\",\n", + " clean=clean_magnitude,\n", + " title=\"Ambient temperature\",\n", + " ylabel=\"Degrees C\",\n", + ")\n", + " \n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 5), dpi=300)\n", + " configs = get_known_configs()\n", + " to_display = configs[\"Relative humidity\"], TemperatureConfig\n", + " for i, config in enumerate(to_display, start=1):\n", + " plot = figure.add_subplot(1, 2, i)\n", + " coros.append(plot_sensor(config, plot, {}))\n", + " await asyncio.gather(*coros)\n", + "\n", + "display(figure)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAE0YAAAUsCAYAAAC9bUPVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdd5h1Z1kv/u8dAqEEEnoRSIBIVUA6AiYRPDSlKr0EIgiCla6IAVEPR1DPQQRF6aKIQEDqT8HQu1IUBUKJEECQloSSEHL//lj7lXnX7Cl7z57Z8877+VzXXGQ9az1l773WzsXMN/dT3R0AAAAAAAAAAAAAAAAAAAAAAACAZTpk2QsAAAAAAAAAAAAAAAAAAAAAAAAAUBgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAYKSqjq6qHv2csOx17aSqOmX0+k9Z9pr2Iu/zga2qThp/VxwI87vvAAAAAAAAAAAObgdq7gUAAAAAODgojAYAAAAAAAAAAAAAAAAAAAAAAAAs3aHLXgAAAACwO1XV0Uk+M0OXs5OckeSbST6V5F+SvCfJG7r7nEWvDwAAAAAAAAAAAFaqqsqQeztqdOr7SY7q7tN3flUAAAAAAMzikGUvAAAAANgzDkty6STHJLltkscnOTnJ6VX1tKo6fJmL2+uq6gVV1St+PrvsNQF7S1V9dvQ984JlrwkAAAAAAAAAYOQ2WV0ULUnOl+SEnV0KLEZVHTfK7XRVHbfE9cgrwgJ5pgAAAGA1hdEAAACA7XapJI9N8q9VdfNlLwYAAAAAAAAAAIA968R1zj24qmrHVgIAAAAAwFwOXfYCAAAAgAPKt5Kcusa5Cye5RJJLrnH+qCRvrKpju/tD27E4AAAAAAAAAAAADk5VdYkkd1nnkqsmOS7JP+3IggAAAAAAmIvCaAAAAMAsPtDdx613QVVdMcnPJHlUkquNTl8syd9V1bW6+3vbs0QWYaPPGUi6+6QkJy15GTPzfAMAAAAAAAAAe9T9khw2auskteL4xCiMtnQHau4GAAAAANgZhyx7AQAAAMDe0t2f7+5nJ7lekldOueRqSX5hZ1cFAAAAAAAAAADAHvfg0fEnszrDdreqOmKH1gMAAAAAwBwURgMAAAC2RXd/K8l9k/z7lNP33+HlAAAAAAAAAAAAsEdV1Y0ybOa50ouSvHDUdqEk99mRRQEAAAAAMBeF0QAAAIBt093fTfL7U07dqKousdPrAQAAAAAAAAAAYE86cXTcSV6c5A1JvrzBtQAAAAAA7CKHLnsBAAAAwJ73xilthyS5RpJ3zztoVR2S5MeSHJ3k0kkukeSMJF9JcmqSf+nu8+Ydf5Gq6oeSXDPDWo/IsOvoGUm+luQ/k7x/UkSObVBVF0pykySXT3KZJIcn+WqGe+XD3f2pJS5vU6rq0kluluSqGdb/zQyBzfd292nLXNt2q6ojMrz2H87w/Hw3yelJ3j3La6+qKyS5cYbn8PAMz9/nk7y1u89Y8LLnUlWHJblFkisnuVyS7yf5ryQfTfKh7u4lLg8AAAAAAAAAYFea5IPuPWp+275sSVW9NMmvrjh3w6q6Xnd/eJvXdf4MuaVrJ7nkpPm/kvzzLHNX1cUy5F6ukeTIJN9K8qUk7+zuzy900avnvmSSmya5WpKLZcgtfSG7NHdVVVdMcr0MmcJLZyiQ95UkX0zynp3ICVXVDye5YZIfSnJYhqzaF5K8o7u/vt3z70VV9SNJjsmQ/7tkkm9n+Fw/myF/+b1tnt+zPP+8u+WZvF6SK2bIDp6T5Ivd/eJN9pcB3gZVdYEkN8rwPFwqw/flGRlyse+dYZxjMjyb++6xs5P8d4Z86Hu6+zsLXjoAAAA7RGE0AAAAYFt191eq6owMQYqVLjXPeFV1qySPSPJTGYqhreVrVfX6JL/f3R+bZ655VdWlktw1yW2SHJvksht0Oaeq3pPkT5K8YrMF3arqs0mOWuP0UVW1mSJKx3f3KVPGPiXD2vd5a3cft8Y6PprkR1Y0fSXJD20lbFRV907y0lHzI7r7TzfZ/5Ak901yvyQ/keSC61z7mSR/m+Tp3f3f8614e1TVcUl+I8mtMxQUnHbNx5L8XpKXzlI4q6pOSPL8UfNVuvuzc6xzPO+Tu/ukDfqclOS3V7Z1d604f+MkT0xyh6zxe8yqemuSx3f3e9aZ52eSPC7JjyepKZecU1WvSvLY7v7P9dY862uYYZyjk5yU4Xtj/F25z5eq6jlJntHdZ806x2i+U7KJ53uyrs+sM9QDq+qBG8237z2ZBPtOzxAu2+eU7j5+w0Wvo6r+b5JfHjVff7vDywAAAAAAAADArvGzGYrVrPTC0T//6uj8g5P8yjyTTTI9/zRq/p8c1mQDv99Mcv8kF11jjE8keep6hXmq6roZ8jN3ylAwZto1707ymO5+52yvYn1VdWx+kFs63xrX/HOSZyf5y1k3/FtU7mYy1mWS/FqSn0lynXUuPbeq3pvkWUleNuvGq+tlpCZ5tQcm+fXsn6Vb6fuT3M4T18s7rZjvpIzeo5F/qtrwLXthd5+w0UWbsZ15xTXmu26G5/a2Sa6wzqVnVdU/JnnaZt7X0RzH5QB/ljeRw9vWZ3mN8XbDM3mRJL+U5CEZNqSdZupndqBngDe6r2cxZY0bfqdslE2tquskeWySuye5yJQhXphk3cJoVXWVDN+3d8jan2+SfLeq3p7kj7r7DeuNCQAAwO4z9T+mBAAAAFiwaUV81ir+M1VVXX1S6OxtSe6Z9YuiZXL+fkk+WlV/UVVrFsZapMnuol9M8udJ7pGNAxFJcoEMxbv+Nsm/Tv7ofyAZBxguneSOWxzzhNHx2Un+ejMdq+p2ST6a5EVJ/lfWKYo2cZUMhbM+XVVzhR0XraoOq6rnZgin/FTW/z3etZO8JMkbJ2GeA1oNfifJezIEwdbb3OHYJO+qqkdPGeeIqnpFktckuUWmF0VLhufvnkk+VlW32dLi5zC55/4tQzByve/Fy2UonvZvVXXDHVjawk1293zJqPm4qrrWvGNOdnx+wKj53YqiAQAAAAAAAMBB5cTR8beT/N2+g+7+UJKPjK65X1VNLVC0FVV1tyQfS/KLWaOQ0sTVk7yoqv52vI5JfuZJSf45yc9ljUJKEzdP8vaq+o2trfx/5j5fVf1JklMyZK+mFlKauEGS5yZ526RIzY6qqgtU1VOSfDrJ47N+AaZkyCHdIsOGnR+eFKtaxDqumOQdSZ6XtYuiJcN7eesk766q313E3HtRVV2+qv4qyYeSPCjrF0VLhk0a75LhfT25qjbKlm52HZ7l2efcLc/kTTN8dr+f9YtmTet7MGaAd0xVPTHDs/2ATC+KtlH/i03u648neWQ2/nwvmCGD+/qqentVXXnWOQEAAFgehdEAAACAnXDklLYzNtu5qm6dYfev288x9yEZgm9vrarNBBS26sezfiGnjVwryXuWUaBpC16S5HujtgfNO9gkKDZ+/Sd399c30ffRSV6XoVjYrC6a5I8nhfS28hluyaSI3xuS/PyMXf9XhvDGegGmA8FzMuyOudnfXVaSP6iqh/5PQ9WRSd6c5G4zzHuRJK+pqhvP0GdLJgHHP05y4Rm6XTnD99kBWRwtw66YYw/bwnj3zup/xzx7C+MBAAAAAAAAAAeQqjomQ0GalU7u7jNHbS8cHV8iQzGlRa7lfhkKsh0xQ7efy1BQa98YlaFA0ZOzfiGj/aZO8rtV9cgZ5l09yDD3S5I8Ysaut8yQZ5mpANFWTIpf/X9JfitzFNfJUMDsnVX1M1tcx1UzbAB58xm7/kZVPXUrc+9FVXW9JO9Lcp+svRHmeu6cIX959S2uw7M8+5y75Zn8iQzF4OYtgHUwZoB3xKSg2e9kzve3qo5K8s4M9/X55xjilkneV1U3m2d+AAAAdt7S/gNPAAAA4OBQVVfL9KI/n95k/59J8oqs/iP2OUnekqFg2ueSfDPDzn9HJ/nJJLcaXX+TJCdX1U9097iI13b5foad/v4tyX8k+WqGgnCV5GJJfjjJzTLseLeyCNThSf6mqn6suz+3zvgfS/KNyT9fOcnFV5z73uT8Rs7axDXr6u4vV9XrM4SK9rlDVV2mu788x5APyOqiWM+bduFKVfW/kzxuyqmvJfmHJB9M8uUMO8IemWE3wtslucbo+hMzvK+PnmnVi/O8JMevOP54hkJp/5HhtRyR5MeS3D2rdyP8iSS/luTp27/MxauqX0ny0BVNpyX5+yT/muG1H5nkphlCZBcbdf/jqnpThu+Dv0mysnDYB5O8MclnkpyZ4X37ySR3yv732oWSPLeqbtTd5y7oZU1VVb+eZNrunmdP1vq2JF/IEBK7Sobna9+OshdJcnJW7Gy8Tc5J8uEVx9fO/t/FX0/yn7MM2N3/VlWnJDluRfMDquoJ3f3tOdb48NHxV5O8fI5xAAAAAAAAAIAD04OzuoDSuAhakvxVkv+T/QsUnZjkZQtax42S/N6KtXwjyeszFM36coZcyrWS3CNDxm2l+1TVyd398gx5khNXnDstyWsz5Ge+miE/c5PJOOP8zNOq6rXd/dk5X8OjktxrxfGZSV6d5P1J/msy9zUz5JauNOp7pSRvqarrd/c3so0mmya+c7KWsX9N8tYMmb1967hMhsJld8iweeY+hyd5eVXdors/OMdSLpoh1/VDk+NO8q4k/5ghU3NWkktnyAfeNckFR/2fUFV/393vXWP8L+UH2Z3Dk1xtdP5T2Tj/N1O2ZwPbmlesqhsl+acMr3Wl85K8PcN7+5nJGi6U5IpJjk1y6+z/XP9whg1Gb9jd39zEmsY8yzM+y7vombxckldm/2ftfRkKtp2W4X24fIYc3M9tYryDIgO8Qx6S/Qv1nZUh1/vODPfkIRme6eMzvO/7mRRFe29WZ2aT4TN+Z4as7deTXCDD5/zjGTbkPmzFtZdN8rqqukF3n7a1lwQAAMB2q+5e9hoAAACAXaiqjs4QIlnprd193IzjPDbJ00bNX09yqe4+b4O+V8kQKjhyRfO5Sf4oyR9091fW6Xv9JH+R/YsjJckfdvejNpj36Kx+7Q/q7hes12/S9xNJPppht723bCZYM/mD/e8nuffo1Ou6+6c36j8Z4wVJHrii6bTuPnozfdcY75QMoaF91v3sq+pOGYIzKz2qu/9wjrk/kSEwss/nkxy13v1SVXfNEGhZ6etJHp/kRd393TX6VYadX5+TIWyz0p27+zUzLn8mU97n7+YHoZwvJfml7p5a/KqqDk/yrAyF5Fb6RpIrdPd3Npj7hCTPHzVfZZ4wVVWNf8n45O4+aYM+JyX57VHz2RlCKN/OEM56bndPC7lcNkPBxFuMTv15hnDLMybHn07y0O5+8xpruFGS12X1Z3+f7v7r9da/1mvo7g13Kq2qayT5UFaHHd8wWe/n1+h31yTPzg/CPd/JELSbdf5TMsPzvaLfZ5MctaLphd19wkb9poxz96wu6nZid29YAHE0zg2TfGDU/PTufsysawIAAAAAAAAADjxVdb4MhZ+usKL5C0muNC1rVFWvy1CIZ5/zklx11uIoVXVchgJOK+3LvSTJM5M8aVpRoao6LEO25RGjUx/PkAN6d4YCMRvlZy6XIT/z46NTf97dv7CJ13BSVmd3VmaXnp/k19d4DYdk2LzxqVmdf3lBdz9onvk3k3uZ9H1VhszXSu+arHetImP7ijf9Voa1r5zrs0mu291nbjDvOCO18v16b5Jf7O5/XqPv0Rk+rxuMTr2pu2+33ryT/sdl9T13fHefslHf7bANecWLZ8iKjsd4fpKTunvNAm+TzXufleS2o1Ov7O67bzDvcfEsb+lZnoyzW57J7+cHRfI+kuRh3f3uNfpecFqudC9kgBf5fTFPZnCNbOrKz+Y5SZ7Y3V9do/9+n01VXSDJO5LceHTpa5M8trv/fZ21XC7JHyS53+jU+5PcfNozCQAAwO5xyMaXAAAAAMynqi6f5NFTTv31RkXRJv4q+xdF+3aS23b3Y9cripYk3f2hDEGRfxid+qWqGu9wt0g37u67d/erNrvbYHef1t33SXLS6NQdqmraDnq70esz7Nq20gmzDlJVt8j+RdGSIUixXlG0y2R1iOKTGYIxf75WUbQk6cGrMuzyOC5G9fuTwmk7aV+46NNJbrZWUbQk6e6zMrzHbxqdOjLDTo4Hon1F0W7T3c9ZK3TS3f+V5Kcz7MC50v2SPGXyz/+WIbgytSjaZJwPZPp7talA1xY8O6uDZH+b5KfXKoqWJJN79dj84HVfaK1rd7mTs/p5e/gc44z7dJI/m2tFAAAAAAAAAMCB6PbZvyhakrxknazRC0fHh2SOjNMa9hVS+pXu/uVpRYiSpLvP7u5HZnXm5xpJ/n6yprOS/OQG+ZkvZcjPjHN096qqeTMl+/Is/7u7H7zOazivu5+R5OcybHS60glV9RNzzr+hqnpoVhdg+tMkt1yvAFOSdPc3Jpuqnjg6dXSSX5xjOfver9cmOW6tomiTuT+b5KeyOmP3U1V15Tnm3muelf2Lon0/yf0m9+GaRdGSpLs/leG7YJwhvFtV3XSOtXiWB5t6lnfZM7mv8NY7k9xqraJok7nXypUerBng7bbvs3lUdz98raJoydTP5qSsLor2+O7+mfWKok3G+lJ33z/Jk0enbpzkZzdeNgAAAMukMBoAAACwLSa78L0xyaVHp76dYWe0jfr/VJKbj5of3N1v2ewauvucDIGN/17RfP4kv77ZMWa12SDEGp6SYReyfSrJg7e2op3R3edm2CFvpR+tqhvOONS0glTjwNLYryQ5YsXxt5Pcbr0CU2Pd/bkk9xo1XzvJnTY7xgJ9L8k9NrMTbXd3pt/P490vDyS/ul4gaZ9JWOvpo+YLJ7lIhh0v79Hd48Jp08Z5R4bvqpWOr6px4bKFqKofTXL8qPnUJA/YTMHI7t63o+gBaxLyGxcwu1FV3WizY1TVEVm9w+Y/dPepW10fAAAAAAAAAHDAGBfTSZIXrXP9q5OMCwQ9qKoW9d/YvbS7/98mr/2tKW2Xmfzvr2xUUChJuvvrSZ4xar5Yhg1F53VKdz9hMxd292uTPHXKqV/ewvxrqqpDk/zGqPmN3f2ISY5qU7r7+Un+YtT8a1V12LTrN/DZDAW81ty8c8W8X8vq4jyHZCiYdtCqqmskueeo+Te7+682O8bk8/+FJOMiSY+fc1me5cG6z/IufSa/meSe3X3GHH0P2gzwDnlFd//hLB2q6uJJfmnU/Jzuftos43T3SVm90fa83w8AAADsEIXRAAAAgIWoqgtW1Q9V1R2r6s+TfCTJdadc+pBNFqx63Oj47d39slnXNQkp/N9R811nHWcnTIIgLx4133IZa5nT86a0nbDZzlV14ST3GDW/bbKj41p9Ds/qnQGf0d2f3uy8+3T3O5O8edS8jHvlpd39wc1e3N0fSzLebXTWgnS7xSeyOuC0nles0f7iyfuyWX83Oj40yY/O0H8WD5vS9qjuPnuzA3T3mzLsKnog+/Mk54zaHj5D/wdmKIS30nO2tCIAAAAAAAAA4IBRVZdJcsdR8z9397+t1WeSzxhn0I5KcusFLOn7WV0gaE3d/f4k/znl1Mez8UaSK41zL0lygxn6j81a1OxpScZ5wDtX1eW3sIa13CvD57VPZ3XBnM16yqT/PpfN6o1cN+PJMxZS+psM98pKB2rWa1Eek/3/O9fPZPWGmRvq7u8l+b1R8+3n2CDTs/wDGz3Lu/GZ/MPuPn3ONWzJHsgAb6fzkjx6jn6PSHL4iuOzsjpfvllPGR1fv6qOnnMsAAAAdoDCaAAAAMAsjq2qnvaT5DsZQhGvTfKQrC5Y8+0k9+3ul240SVVdIslPjppnKZY09rrR8VFVddTUK5fvk6PjG1TV+ZeykhlNClG9b9R8nxl27bt7kouO2jYKBt0myZGjtr/c5HzTjO+VY7cw1ryeO0ef8ft+9UUsZAmeP+NOkZ/OsMPj2Kz3wL9MabvGjGNs1u1Hx1/M6vtuM/5sAWtZmu7+cpKXj5rvVVXj53ktvzA6Pj0HfrE4AAAAAAAAAGDzHphknKt64Sb6vWhK24lbX07+sbtPm7HPh6a0zZqf+VSSM0bN8+Ze3tPdH52lQ3d/N6sLAR2aIde1aD87Oj6lu0+dZ6Du/lyS8WudNSv2rSQb5iFH8349qzOC25VT2vWqqpLcbdT8gu4eF4/brNePjg9LctMZx/As/8BGz/JueyY70zf43UkHbAZ4m72luz87R7/xPfby7h4/J5v1riTfGLUtIyMMAADAJimMBgAAAGy3MzMUNbvmZoqiTdwqSY3a3rWFNXxmStuPbWG8Tauqw6vqDlX1+Kp6UVW9rqreXlX/XFUfGv8k+ZPREIdl2PnuQDEuZHaJJHfaZN8HjY7PyurCSWPjUMLpc4SSVhrfK0fPUKhpEb6T1UXONuNTo+PzVdXhU6/c3d42R5/xbpvfTvLBGcf47JS2hX/uk52KrzJqfvWcQb43ZQhXHsjG33cXTvKAjTpV1bFJrj1qfm53n7uohQEAAAAAAAAAu96DR8fnJvnrjTp197uyunDNXSabeW7FPLmXaTmnty9gnHlzLyfP2e+VU9puNudYU00KaN1q1LyVTGGyOis2a6bwPd19zhzzjrNeR8wxxl5x3SQXH7XN/bl299eyeqPNWT9Xz/L+pj7Lu/SZPLW7P7/FNeznIMwAb5d/mrVDVV08yY+Omrfy/XBeVj9jO5IlBwAAYD6HLnsBAAAAwJ73gSTPnOzmtlm3mNL2iqra9O55m3CpBY61SlXdMMljMhQFu9AWhzsyyULDGtvor5P8YfZ/zSdkgwJnVXVUkuNGzX/b3RsVfhrfKxefhEvmNa2Y2KWyepe47XJad39vjn7jMFcyBObO2uJ6dto8u0WeOTo+bY4CWeMxku0JHN5wStusRdySJN19blV9JMnNt7ak5enu91TVB7P/+/KwJP9vg64PHx2fm6EAJwAAAAAAAABwEKiqWyS55qj5Dd39lU0O8aIkv7Pi+LAk903yzC0saxG5l0WNM2/uZa4cS5KPJvlekvOvaJuWk9mKa2XYpHOlB1bVT29hzCuPjmfNFI4L7G3WOOt1MBdGm5YVfWZVnb2FMS88Op71c/Usb+5Z3o3P5D9vYe79HMQZ4O0yz2dz8ySHjNqeUFWP3MI6jhkdb2uWHAAAgK1RGA0AAACYxbcyPaxx/gy79l1+yrnjk7y/qk7o7g135Jy44pS2626y72ZdcsHjJUmq6vxJ/ihD4Z7xH+TndcAEn7r7m1X1qiT3WdF826q6fHd/cZ2uJySpUdvzNzHl+F65cJLrbaLfLC6Z+UJK8/janP2mFVM7/5S23e7rc/QZv/aZx+ju7w0bWO5nO96/y0xp+/gWxvuPHMCF0Sb+JPs/69eqquO6+5RpF1fVZZLcddT8mu4+fZvWBwAAAAAAAADsPidOaXvhDP1fnOQp2T+vdGK2VhhtEbmXRY0zb+5lrhxLd59dVZ9N8sMrmqflZLZiWqbwimu0z2vWTOGisl4HYs5rUaZ9fuOih1s16+fqWd7cs7wbn8kvb3XCgz0DvI3m+Wym3UtX3epCRrYlSw4AAMBiLOr/mAMAAAAHhw909/Wn/Fynu6+Q4Q/EJ2Qo1rPSBZK8uKp+ZpPz7MQfmre6g9sqk0DEy5M8Iov9vcuBFnwaFzQ7X5L7r3VxDRWpHjBq/mR3v2MTc413HNwOC79X1jEtIHXQ6O5FvP7d/B4eOaVtvAPsLLbSd7f4myRfHbU9bJ3rT8zw75SVnr3QFQEAAAAAAAAAu1ZVHZ7kHqPmryd57WbH6O7Tkpwyar5eVd1wC0tbSGZlQfmZeS0yxzItJ7MVuzFTuJtzSgeKPfu5HgTP8m787M7YymQywNtqns9mN95jAAAA7CCF0QAAAICF6e6vdfcLk1w/Q7Gblc6X5CVVdfQmhrr4gpe2Ux6X5M5T2k9P8qdJ7pfk5kmulCEscsHurpU/SY7fsdVunzcnOW3U9qB1rj82q3dxGxdXW6WqLpzksNmWBkt10Slt39rCeFvpuyt093eT/OWo+W5VddnxtVV1SJKHjpo/meE7BwAAAAAAAAA4ONwryUVGbS/r7rNnHOeFU9pOnG9Je8YicyzTcjJbcaBmClmfz3V77MSzvBs/u3O32F8GePvM89nsxnsMAACAHXToshcAAAAA7D3dfXZV3T/JZbP/H/kvlqEAzq03GOI7o+NvdPeu/gN3VV0myRNGzecmeUySP+nuzf5R/4Dffay7u6pemORJK5qvWVU36+73TOkyLpr2/SQv2sRU301yXvYv/ioagZ8AACAASURBVH9yd991pgXDzjlzSts4qDuLrfTdTf40yaPzg2f5/BmCxr83uu72SY4etf1Zd/e2rg4AAAAAAAAA2E2mFS97WFU9bAFj37uqHtXd4/zaweIiSc7YQt+VpuVktmLaZ3KX7n71gudhZ037XC/e3d/Y8ZXsLTvxLO+pZ1IGeFeado9dv7s/vOMrAQAAYCkO2fgSAAAAgNlNQgAPyOpwxU9W1T036P7fo+Mjq+rIhS1ue9wpyYVHbY/r7j+eIRCRJJdY4JqW6QVJxsWKThhfVFWHJ7n7qPn/6+7TN5qgu89LMg5AXWXzS2QRqur8y17DAWRaYO+ILYy3lb67RnefluS1o+aHVtX499cPHx1/N8N3DQAAAAAAAABwEKiqaye52TZOcWSSu23j+LvdInMsiy5sNc4UJrJie8G0z/XonV7EHrQTz/JeeyZlgKdbZj50r91jAAAAzEhhNAAAAGDbdPfnkzxpyqnf26CY0n9NabvuYla1bX5qdPz1JH8yxzhXXcBalq67P5PklFHzvarqgqO2e2T1DoPPn2Gq8b1y9ao6bIb+B7PvTWmbJ8Ryya0u5CDy5Slt19jCeNfcQt/dZvx9eVSS2+87qKr9jif+tru/ut0LAwAAAAAAAAB2jRP3yBy71dXn6VRVF8jqYlbTcjJbcSBmCtmYz3V77MSzvNc+u72UAV5UNjRZbqG3vXaPAQAAMCOF0QAAAIDt9uwknx61XTXrB8jeN6VtXBBnt7nS6Pi93X3OHOPcfBGL2SXGBc6OSHLXUdsJo+OvJXnNDHOM75ULJTluhv4HszOmtF1sjnGO2epCDiIfnNJ2w3kGqqpDs7dCPv+Y5OOjtoev+OeHZvXvs5+9rSsCAAAAAAAAAHaNyUac9x81n5Pkw1v8+dpozOOqajcUtlmGuXIsGTIs46I703IyW/GRJN8dtd1uwXOw8w7ErOiBYCee5b32TO6lDPBCsqFVdcUk482Qd9J7p7T5fgAAADiIKIwGAAAAbKtJMOApU079ZlUdtka3f5jSds9JIaDd6lKj43FgbkNVdakkx885/7mj4/PNOc4ivSKrAxYP2vcPVXW1JLcanf+r7j57hjmm3Sv3m6H/wewbU9rmCXUeu9WFHCy6+8tJPjNqvlNVzfN72tsmucjWVzWTbfue6e5O8qej5ttX1VGTYPO4mOaHuvs9i5ofAAAAAAAAANj17pTk0qO2V3X39bfyk+SJozErKzJOB5m7zNnvblPaFprr6O7vJnnHqPnyVXXrRc6zi41zO8lyM4KLyhG9K8m3Rm13rKqLzzkeg21/lvfgM7mXMsB7Ihva3aclOXXUfJOquvoy1gMAAMDOUxgNAAAA2AkvSfKJUdsVkzxk2sXdfXpW7zJ3lSQnLHxlizMO54xDEpvxiMy/u9qZo+PD5xxnYbr720leNmq+dVXt21nvhCndnj/jNG/K6l0H711V15hxnIPRx6e03WSWAarqfEkevJjlHDTeMDq+QpI7zjHO1O/Pbbbd3zMvSHLWiuNDkjw0yV2TXHZ07bMXPDcAAAAAAAAAsLuNN1VLhlzaVr0syTmjthPm3OjuQHfzqrrOLB0mm6Pef9R8bpJ/XNiqfuDVU9pO2oZ5dqNxbidZbkZwITmiyca7bxw1XzTJo+YZj/+xU8/yXnom91IG+PTsn8NLZsyGTjx0C2tYlPE9dkiSJy1jIQAAAOy8g/EXtAAAAMAO6+7vJ/mdKaeeUFVrhQB+d0rb03fxTl9fHB3/eFVdZLOdJyGUJ2xh/q+Pjo/cJbsmjgudHZLkAZPg4ANG5z7c3f8yy+Dd/d9J/nzUfL4kL62qC8200oNMd385yedHzfeYFDvbrEdkvp0ED2bPmdL29Kq6wGYHqKrbJLnz4pa0aePvmYV+9t19RpIXj5pPTPJLo7Yzkrx0kXMDAAAAAAAAALtXVf1Qkv81av5KVhdUmll3fy2rN7q7YpLbbnXsA9T/nfH6x2Z4v1Z6dXeP83SL8JdJvjRqu2VVPW4b5tptxrmdZLm5rUXmFadlRR9bVbecczwGO/Es76Vncs9kgLv7vCQfGjXfsaqO2OwYVXWnJD8xz/wL9oys3jz5vlV1z2UsBgAAgJ2lMBoAAACwU16a5D9GbVdI8rBpF3f3q5J8YNR8RJI3zLqT3T5VddGqekxV3W+e/ht4++j48CS/vZmOVXV0ktckOWwL8390StsdtjDeQnT3u7P6cz8hya2TXHnU/rw5p/n9rN6t7wZJXjVvMKSqjqqqZ1bVj8y5pgPFONR55SS/upmOVXXrJP9n4Sva47r7o0n+adR89STP38xOw1X1w1ldPGynjL9nfqSqrrTgOf5kdHzZJOOQ40u6e7yjJQAAAAAAAACwdz0ow2aJK72su89d0PgvmdJ24oLGPtDcuqqeupkLq+r2SX5ryqn/t9glDbr7O5leROv3quqR845bVberqj+df2U74nNJvjlqW2Y+cGF5xclmqq8YNZ8/Q/5vrsJMVXVYVT20qn5tnv57xLY/y3vsmdxrGeBxNvRCSTZ7P1w3qzdFXopJYb5nTTn1vKq6+zxjVtX5quqeVTXt3gUAAGAXURgNAAAA2BGTHciePOXU46vqwmt0u3eSr43arprkvVX1m5vZvayqDqmq46vqOUn+M0Mhp8vNsPTNekWS80Ztj6mq36mqQ9dZ372TvDs/2L3xjDnnf8+U+Z9RVXeuqvPPOeaijAMSx2T1boTnJPmreQbv7i8leWCSHp26bZIPVtX91vsM9qmqi0zCDq9McmqSRya54DxrOoD8xZS2p1XVL1RVTetQVRec7Oj4hgxBnvFufGzsF7P6fbtPktdMdjieqqrukuRt+cF32He2Z3lretfo+JAkL6+qGy1qgu7+WFYXjht7zqLmAwAAAAAAAAB2t0mG5UFTTk0rZjavv8/qolN3qqpLL3COA8G+PMtvVtVz18rnTTJ5v5rklRkKWK30gu5+2zau8VlJXj1qOyTJM6vqVVV1vc0MUlVXqarHVdVHMuSg5irAtVO6uzPkDFe6TVX9flVdZglLWnRe8ReSfGbUdqkkb66qP6iqTWU+q+qmVfWMJJ9N8mdJrjbHWvaCnXyW98ozudcywC9I8v1R2yOr6slrvZ5JwbATk7wjySUyZHLPmWPuRXtikveN2i6c5O+q6i+qalPPeVX9SFU9JcknkvxNkk3dmwAAACzPhv9BKAAAAMAC/W2GP1BfZ0XbZTMUCXr6+OLuPrWq7pHk9UkusOLURTLsXPaEqnpHkncm+WKSb2T4Y/eRSa6U5AaTnyMX/kpWr/UTVfWSJA8YnXpikhOq6u+SfCTJWRkCA9dIcqfsH7z5dpLHJXn2HPN/saremP13iLtskpOTnFNVn0vyrawuHvbz3f2BWeeb0YuT/F7237X1WqNr/r67vzrvBN39iqp6UpLfGZ26ymT+p1fVKUk+kOQrGd6Li2W4N45JcqMk183Wduw74HT3+6rq1UnuvKL5fBkKTz2iql6VoUjcOUkuneSGGe6xlWG6X41CVTPp7v+oqt9M8ozRqTsmObWq3pBhB8ovZtip8aoZPqMfXXHt6UlenuH93ymvzlCs8hIr2m6a5P1VdWaSL2RKobzuvv6M8zwryfFrnHtHd0/bHRMAAAAAAAAA2JuOzw8Kzuzzye5+76Im6O6zq+rlSX5+RfP5k9wvyR8tap4DwJMybDyaDO/FParq5CTvT/LlDFmraya5e5IrT+l/WpJf284FdndX1f0yFO4ZF7W5S5K7VNWHk5yS5JNJ9mXSjsxQaOu6GTJQ43vqQPC8JLcbtT0+w+a0X8yQ6zl3dP413f2kRS9k0XnF7v5qVd0pw+e6sojXoUkeneSXq+rdGTaV/HySr2fI+h2Z5PJJfixDBvBgK2a4lh17lvfKM7nXMsDd/YWqemZW5wuflOS+VfWKJP8+WfMlM2QT75j974enZdjg+qhZX88idfd3q+quGYrHXWl0+sQMn88Hkrw1Q1HEr2XIwR6ZIet6/QzfD2tuWgsAAMDupDAaAAAAsGO6+7yqenKGAmkrPbaqnt3d35rS581Vdaskf5fVf9C+SJLbTn52g19OcpMMgZGVrpiNixd9L8nPZQgZzOsxSY7N8L6sdIGsvfPh4VuYb1NWBDbuuM5lz1vAPE+tqi9kKKp0wdHpyya55+SH/T0syY2TXGHU/qPZvxDXNH/Q3X9WVQqjzai7/7CqLpXkCaNTF0xy18nPWr6VITT209u0vKkmAaNfS/LCKacvmiHstQgnJ/lcVn/nJ3OExgAAAAAAAACAA9qJU9pesg3zvCT7F0bbN/fBVBjt6RmKx9xjcnyxDEWCxoWCpvl8kp/s7m9s09r+R3efNckUPj9DYaex62V1gaa94BVJ3pzk1lPOXX7yM/ahbVzPQvOK3f2vVXXjJK9M8iNTxjx28sPGdvRZ3kPP5F7LAP9mkttk9fN0tSSP3WAtL5v0v/cG1+2ISaG3m2RY10+MTp8vwwavN93xhQEAALCtDln2AgAAAICDzr5d01a6dJJfWqtDd78vyQ0yhCa+t4W5O8Ouc2/fwhhrD979zQwhgvfM2PULSW7T3a/f4vwfS/JTSU7dyjjbZL3CZ19M8qZFTNLdz0ty8yRv2eJQ303yN0n+c8uL2uW6+0tJbpnZ7ptzkjy6uzcKx7CO7v6NDDtrzhKG+nyS46ft8rgTuvtFGULAZ27jHN9P8mdTTn0lQ8ATAAAAAAAAADgIVNWRSe425dRfbcN0b8vqrNB1quqgKbTS3Z3kvklm3STxnUmO7e5PL35V03X3md39s0kenuT0LQ73nxmyibtad5+X5GeTvHTZa0m2J6/Y3Z/MUNzoDzNsHrkVH0iypUzmgWoZz/JeeCb3Wga4u7+d5Lgk75ulW4bCeveZfOfsGpOs662TPDHJ17Y43L9n9SbfAAAA7DIKowEAAAA7ahK4OGnKqUdX1UXX6fff3f3gJMdk+KP7v2X4A/xGzkzyugzFh67S3cd393tnXvgmdffpGXYje2SSjcIhpyX5rSTX7O63LWj+d2fYre4OSf40yTsyhC7OSrLMkMLfJ/nvNc69aFIIaSG6+0PdfeskN0vyogyFpDbjixl2fn1gkst19727+8uLWtdu1t2fSXLdJL+R4X1YyzkZdtz7se5+xk6sba/r7j9Ocp0kL0xyxjqXfjnJU5Ncp7vfvxNrW0t3/2WSH0ryoCQvTvIvGdb3nQVOM63w2/O6++wFzgEAAAAAAAAA7G73TXLBUdu7u/tTi55okmubVnDtxEXPtZt197nd/fAMxYHekvUzZ/+S5CFJbrWTRdFW6u7nJLnqZB3/mM1tUHhehrX/QZLjkxx9oGShuvsb3X3fDBnBk5K8Nsmnknw9W9t0dt71LDyv2N3f7u5HJTk6w2v8QJLN5Au/m+Ge/Y0MGasbb7VQ1YFsWc/ygf5M7rUMcHd/NcktMhSsW+/fnd9P8oYkt+jux+y2omj7TO7r301yVJJHZXh/ztlE13OTvCvJU5LcpLuvPdkkFgAAgF2sht/ZAgAAABx4qurSSW6Y5NJJLpnk8Ay7BJ6ZoRjWfyQ5rZf4C5CqunqSm0zWeJHJ+j6f5CPd/fFlretgU1XHJLl2hvvkkkkukCEo8s0kn0nyHwdLEbTNqKrrJrlekksluXCG9+njGYKlZy1zbXtZVR2W5JZJrpzkchmCTP+V5CNJPrRbw0bboapemuTeK5o6yTHLCtECAAAAAAAAAByMqupSGTaovFqGfN4ZGTZe/JftKFC3VVV1gQyZwitmyD5dPENBnDMzbOz5iSSf6O5FbgDINquqI5LcOMllMuT/jsiwieOZGYpGfTzJpxe5QeuBoqpOSvLbK9u6u6Zct5Rn+UB/JvdaBnjyem6Y4Vm6aIbP4VNJ3tXdX1vm2uZVVRdOcqMkV8jw/XBkkrMzvLYvZ/h+OLW7N1NADQAAgF1EYTQAAAAAAHaNSdHLzyU5bEXzG7v79ktaEgAAAAAAAAAAwK6z2cJoAAAAAAeaQ5a9AAAAAAAAWOEh2b8oWpI8axkLAQAAAAAAAAAAAAAAAGBnKYwGAAAAAMCuUFUXSfIro+ZTk7x+CcsBAAAAAAAAAAAAAAAAYIcpjAYAAAAAwG7xlCSXGbX9cXeft4zFAAAAAAAAAAAAAAAAALCzFEYDAAAAAGCpquoSVfX0JL8+OnVakucuYUkAAAAAAAAAAAAAAAAALMGhy14AAAAAAAAHl6r6iyQ3mhxeKskVktSUSx/T3efs2MIAAAAAAAAAAAAAAAAAWCqF0QAAAAAA2GnHJLneBte8qLtfvhOLAQAAAAAAAAAAAAAAAGB3OGTZCwAAAAAAgJGXJPn5ZS8CAAAAAAAAAAAAAAAAgJ116LIXAAAAAADAQe87SU5P8u4kz+vuU5a7HAAAAAAAAAAAAAAAAACWobp72WsAAAAAAAAAAAAAAAAAAAAAAAAADnKHLHsBAAAAAAAAAAAAAAAAAAAAAAAAAAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdIcuewGwbFV1RJJjVzR9Lsk5S1oOAAAAAAAAAMBWXCDJlVYcv7W7v7msxQCAjB4AAAAAAAAAsEfI5+0QhdFgCFy9etmLAAAAAAAAAADYBndO8pplLwKAg5qMHgAAAAAAAACwF8nnbZNDlr0AAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgKU7dNkLgF3gcysPTj755BxzzDHLWgsAAAAAAAAAwNxOPfXU3OUud1nZ9Lm1ruX/Z+/Owyyr6nvh//bpmrrpEehmVBkFJCqivIGmQQRUgnkjMV4SL3mIxleNEoPxRdQYBuONQ5zyJnLjcFFITAxBBSUKeq8yo4IMsZNGGQSaubvpeajxrPeP7i5qOPucfapO1Tl16vN5nn7ovfZae62zq55m7aq1vhuAaWKNHgAAAAAAAAAw41mfN30Eo0FE/8iDww47LI4++uhmjQUAAAAAAAAAoJH6a1cBgClljR4AAAAAAAAA0I6sz5sipWYPAAAAAAAAAAAAAAAAAAAAAAAAAEAwGgAAAAAAAAAAAAAAAAAAAAAAANB0gtEAAAAAAAAAAAAAAAAAAAAAAACAphOMBgAAAAAAAAAAAAAAAAAAAAAAADSdYDQAAAAAAAAAAAAAAAAAAAAAAACg6QSjAQAAAAAAAAAAAAAAAAAAAAAAAE0nGA0AAAAAAAAAAAAAAAAAAAAAAABoOsFoAAAAAAAAAAAAAAAAAAAAAAAAQNMJRgMAAAAAAAAAAAAAAAAAAAAAAACaTjAaAAAAAAAAAAAAAAAAAAAAAAAA0HSC0QAAAAAAAAAAAAAAAAAAAAAAAICmE4wGAAAAAAAAAAAAAAAAAAAAAAAANJ1gNAAAAAAAAAAAAAAAAAAAAAAAAKDpBKMBAAAAAAAAAAAAAAAAAAAAAAAATdfR7AHAbJRSinK5HCmlZg8FYJwsy6JUKkWWZc0eCgAAAAAAAAAA1M0aPaBVWZ8HAAAAAAAAUJtgNJgGKaXo7e2NLVu2xJYtW6K/v7/ZQwKoqaurKxYsWBALFiyInp4eC7EAAAAAAAAAAGhJ1ugBM431eQAAAAAAAAD5BKPBFNu+fXs89dRTMTAw0OyhANSlv78/nnvuuXjuueeis7Mz9t9//5g3b16zhwUAAAAAAAAAAMOs0QNmIuvzAAAAAAAAAPKVmj0AaGfbt2+P1atXW3AFzHgDAwOxevXq2L59e7OHAgAAAAAAAAAAEWGNHtAerM8DAAAAAAAAGE0wGkyR3QuuUkrNHgpAQ6SULL4CAAAAAAAAAKAlWKMHtBPr8wAAAAAAAACe19HsAUA7SinFU089NW7BVWdnZyxcuDDmz58fnZ2dkWVZk0YIkC+lFAMDA7F169bYvHnzqDfq7v737dBDD/VvGAAAAAAAAAAATWGNHjBTWZ8HAAAAAAAAUJtgNJgCvb29oxYqREQsWLAgDjjgAAsVgBmhs7Mz5s2bF0uXLo0nn3wytmzZMnxuYGAg+vr6oqenp4kjBAAAAAAAAABgtrJGD5jJrM8DAAAAAAAAqK7U7AFAOxq5QCFi5wIGC66AmSjLsjjggAOis7NzVPnmzZubNCIAAAAAAAAAAGY7a/SAdmB9HgAAAAAAAEBlgtFgCoxddLVw4UILroAZK8uyWLhw4aiysf/OAQAAAAAAAADAdLFGD2gX1ucBAAAAAAAAjCcYDRospRT9/f2jyubPn9+k0QA0xth/x/r7+yOl1KTRAAAAAAAAAAAwW1mjB7Qb6/MAAAAAAAAARhOMBg1WLpfHlXV2djZhJACN09HRMa6s0r93AAAAAAAAAAAwlazRA9qN9XkAAAAAAAAAowlGgwar9Ia2LMuaMBKAximVxk8ZvJESAAAAAAAAAIDpZo0e0G6szwMAAAAAAAAYTTAaAAAAAAAAAAAAAAAAAAAAAAAA0HSC0QAAAAAAAAAAAAAAAAAAAAAAAICmE4wGAAAAAAAAAAAAAAAAAAAAAAAANJ1gNAAAAAAAAAAAAAAAAAAAAAAAAKDpBKMBAAAAAAAAAAAAAAAAAAAAAAAATScYDQAAAAAAAAAAAAAAAAAAAAAAAGi6jmYPgOmRZVlnRJwYES+MiP0iYmtEPBUR96aUHm1wXwdHxDERsX9EzI+IpyPisYi4I6U00Mi+AAAAAAAAAAAAAAAAAAAAAAAAaA+C0Zoky7JDIuK4iHjVrv8eGxELRlR5LKV0UAP6WRoRH42I34+IPXPq3BERn0spfWuSfb05It4fESfkVFmfZdlVEXFxSmndZPoCAAAAAAAAAAAAAAAAAAAAAACgvQhGm0ZZlp0SER+OnWFoFUPKGtzfb0XEFRGxrEbV5RGxPMuyf46Id6WUttXZz/yI+EpE/EGNqntGxLsj4k1Zlv1RSukH9fQDAAAAAAAAAAAAAAAAAAAAAABA+yo1ewCzzDER8bqYnlC0UyLi2hgdipYi4u6IuDoi/ndErBvT7JyI+EaWZYW/L7IsmxMRV8X4ULS1EfHDXX3ds6vv3faJiO9kWbaiaD/Qzg466KDIsmz4z0033dTsIQEAAAAAAAAAAMCMZ30eAAAAAAAAAMw8gtFaQ19EPNyoi2VZdmBEfDsiukYU3x4RR6eUXpVSOjul9LqIODAizo+IgRH1/u+I+B91dPfJiDhzxPFARLw3Ig5MKb1+V1+vjIjfiIifjKjXHRHXZlm2Xx19AQAAAAAAAAAAAAAAAAAAAAAA0KYEo02/gYi4LyL+V0S8KyJeGRELIuL/aWAfH42IJSOO74iI01NK94+slFLqSyn9XUScPab9+7Mse1GtTrIsOyR2BquN9N9SSl9IKfWP6WtVRJwWo8PR9oqIS2r1AwAAAAAAAAAAAAAAAAAAAAAAQPsTjDa9royIhSmlV6SU3pFS+nJK6Z6U0kCjOsiy7PCI+KMRRf0R8daUUm9em5TStbvGtlt3FAssuyQiOkccX5FS+k6VfnZExFt3jWm3t+8KWAMAAAAAAAAAAAAAAAAAAAAAAGAWE4w2jVJKG6oFlDXIf4+IOSOOv51SerBAu0+NOT47y7KevMpZls2NiDfXuMY4KaUHIuLaEUUdsXPMAAAAAAAAAAAAAAAAAAAAAAAAzGKC0drP7445/lqRRiml+yPiZyOK9oiI11Vp8vqImDfi+CcppV8WGuH4Mb2pYDsAAAAAAAAAAAAAAAAAAAAAAADalGC0NpJl2b4R8fIRRYMRcXsdl7hpzPFvVal7Ro221dwaO8e22yuyLNunjvYAAAAAAAAAAAAAAAAAAAAAAAC0mY5mD4CG+o0xx79IKW2ro/0dY46PrqOvnxTtJKW0LcuylRHxijF9PVv0GkD9Ukpxzz33xC9/+ctYs2ZN9PX1xdKlS+OAAw6IFStWxPz585s9xAl7/PHH46677oonnngiduzYEXvvvXe89KUvjVe96lVRKk0uA3TNmjVx6623xlNPPRU7duyI/fffPw455JA4/vjjJ33tSlatWhUrV66MtWvXxubNm2PPPfeM/fbbL1asWBF77bVXw/sDAAAAAAAAAABgcqzPmxjr8wAAAAAAAACoRDBae3nJmOOH6mz/cI3rjXRUA/oaGYz2koj4cZ3XAApYt25dfPzjH4+vf/3rsXbt2op1urq64tRTT41LL700fvM3f7PQdd/61rfGlVdeOXz8yCOPxEEHHVSo7U033RSvec1rho8vueSSuPTSS3PrZ1k2/PdXv/rVcdNNN0VExB133BGXXHJJ/PjHP45yuTyu3T777BMf+chH4rzzzqt7kdS9994bH/jAB+LGG2+seO0DDzww3vWud8WHPvSh6OjoiEsvvTQ++tGPDp+/8cYb45RTTinU13PPPRef/vSn4+tf/3o8+eSTFeuUSqVYvnx5XHLJJXH66afX9VkAAAAAAAAAAABoPOvzrM8DAAAAAAAAoPEEo7WXw8Ycr66z/WNjjvfKsmxJSmnDyMIsy/aMiD0n2dfY+ofX2R4o4Nprr41zzz03tmzZUrVef39/3HDDDXHDDTfEO9/5zrjsssuio6O1/xfx8Y9/PC6++OIYGhrKrfPss8/Gn/3Zn8WNN94Y//qv/xpdXV2Frv25z30uLrzwwqrXfuKJJ+Kiiy6K66+/Pr797W/XPf7d/vEf/zHe+973xubNm6vWfx0p0gAAIABJREFUK5fLcdttt8VrX/va+MM//MO4/PLLC38eAACgve0Y2h6P9P4q+st9dbXbu3Pf2L/7hVHKqm9UGUpD8Xjvw7FxcP1khtk2ukrdcXDPi2PunD0afu2tQ5vjsR0PxkAaGHeuu9QTB889InpKcxveb6MMlAfisd4HY0nnXrFX5z7NHg4AwIywdWhzPNP3eOzb/YKYP2dhs4fTktYPrI0n+h6Jchq/UX7BnEXxormHRUfW2fB+Nw1uiGf7n4wX9hw6qXl4b3lHPLrjgegt72jg6KbOPl0HxL5dB44KRqhk5/z/gdg6VP33kPPmzI8Xz/uNRg4RAABahvV51ucBQCOkgf6IR1ZFlEoRh7605s/mAAAAAABgNmjt36pTr8VjjtfU0ziltDXLst6I6BlRvCgiNoypOraf7SmlbfX0VWFsi+psD9Tw1a9+Nd7xjneMe5vioYceGi95yUti3rx5sXr16rjzzjtHLTD68pe/HKtXr47rrruuZRdffeYzn4mPfOQjw8dHHHFEHHHEEbHHHnvE008/HT/96U+jt7d3+Pw111wTF110UXzqU5+qee3PfvazccEFF4wrf8lLXhKHH354dHd3x+rVq+Ouu+6KoaGhuOOOO+Lss8+Ok08+ue7PcfHFF8fHPvaxUWVZlsURRxwRhx9+eCxYsCA2bNgQP//5z0e9TfTrX/96PP3003HDDTe07NcIAACYHjdv+H5cveZ/RTnGBwQUsX/XC+NPX3BpLO4Ym4G/09N9j8ffP3FpbBx8bhKjbD+lKMXZy94RJy/5rYZcL6UU1z/3b/G95/41UqQq/c6Jc/Z9T5yw6LSG9NtID2xfGV988hPRW94eEREvm/9/xdv3uyA6SzYNAQDk+f66q+KG9VfHYBqMLLJ487K3x2uW/Hazh9UyhtJgfO3pz8c9W26vWm+P0oJ4z4F/GQfPPaIh/ZZTOa5a8+W4deMNERExJzri3P3+LI5bWP/vgn626ab4+jNfiKEYbMjYpsuLeg6P8w68KDes71fbV8aXnvx4obC3g3oOjwtf9OlGDxEAAJrO+jzr8wCgEdIj90f64FkRTz+6s+DwYyI++++RLVnazGEBAAAAAEDT+W1te5k/5ngir5zeEaOD0RZMYT8jVeqnblmWLYuIen8DdGgj+m6UNDgYsfaJZg+j/S09MLI2XrBy3333xbvf/e5Ri66OOeaYuOyyy2L58uWj6q5duzYuuuii+NKXvjRcdsMNN8TFF18cH//4x6dtzEWtXLkybr311oiIOOuss+ITn/hEHHnkkaPqbNiwId7//vfHFVdcMVz22c9+Nt797nfHQQcdlHvtu+++Oz70oQ+NKjvllFPiC1/4Qhx99NGjyteuXRsXX3xxfPGLX4xbbrklVq1aVdfnuPLKK0ctuiqVSnHeeefFBRdcEC984QtH1U0pxXe+8504//zzY/Xq1RER8aMf/Sguuuii+MQnPlFXvwAAQPtY3ftQXLXmy5O6xlP9q+Ofnv67eO8LLh13LqUUX3ryE0LRKihHOf51zZfi4LlHxAt6Dpn09VZtvzf+/blvFOh3KP7pmb+Pg3peHPt1v2DS/TZKf7kv/uGJv46+9PwmqF9svTOuf+7q+J2l5zRxZAAArWvl1rtGzQFTpLh6zf+Kg3oOb1jA10z3w/XfrhmKFhGxrbwl/ueT/yM+eejXYk42+d///WTTj4ZD0SIihmIwrnj683FwzxGxd9c+ha+zpv+puPKZv530eJrhsd4H46pnvxxv3398WEFfuTe+OGb+DwAwk1ifN43aeI2e9XnW5wFAI6SUIv3Vuc+HokVEPHhfpL95d2Sf+GazhgUAAAAAAC2hPVcczF5jA8smshJ5R0QsqXLNRvZT7ZoT9Z6IuKRB12qOtU9EOttmh6mW/duvIvY7qNnDmDJvf/vbo7+/f/h4xYoV8YMf/CDmzZs3ru7SpUvji1/8Yhx22GHxgQ98YLj8U5/6VLzlLW+Jl770pdMy5qLWr18fEREXXnhh7hsmlyxZEl/72tdiw4YN8Z3vfCciIoaGhuLyyy8f9wbIkc4777wYHBwcPn7Tm94UV111VcW3Pi5dujT+4R/+IQ455JC48MILY926dYU/w2OPPRbvfve7h4+7u7vj2muvjTPOOKNi/SzL4qyzzorly5fHiSeeGA899FBERHz605+Od77znXHwwQcX7hsAAGgf/7n17oZc51fbV0ZveUf0lOaOKl8z8FSsGXiqIX20q19svbMhwWi/2HJnXfVXbr2rpYLRfrV9ZcVQhF9s/ZlgNACAHNc/d3XF8vu2/lQw2i71PPNsG9oSD+/4Zbx43m9Mut+V2+4aV5Yixcptd8Vrun67+HW2jr/OTPKfW38eQ2ko5mRzRpU/kDP/BwCYMazPmzbtvEbP+jzr8wCgIR76xc4/Y/38R5EGByLr6Jz+MQEAAAAAQIsoNXsATKnUZm2AAm688ca45557ho8XLlwYV111VcVFVyNdcMEF8du//fxmjnK5HJ///OenbJyTsWLFikJvYvzrv/7rUcc//vGPc+vedddd8bOf/Wz4eL/99ouvfvWrFRddjfSBD3wgXve619Ucy0if/vSnY8eO5/MhP//5z+cuuhpp2bJl8S//8i/Dx0NDQy37NQIAAKbepsENDblOOYZi6+DmceUbB55ryPXb2abB9Q25zsbB+u71pqHG9Nsom3LG36jvUQCAdrO696F4tPeBiuc2DrTWXK+ZtgxtrKt+w+bnOc9C9c5v653nt5q+1Bt95bHvO4vY2KD7DAAAM5X1ec+zPg8AJum26yqX926P2LF1escCAAAAAAAtRjBaexn7m4+5E7jG2DaVfpsyXf0AE3DllVeOOj7vvPNi//33L9T2k5/85Kjjb3zjG9HX19ewsTXKRz7ykSiVav8v7Oijj46DDjpo+Pi+++7LrfuNb3xj1PGf/umfxqJFiwqN56KLLipULyJi27Zt8dWvfnX4+JBDDol3vetdhdsfd9xxcdJJJw0ff/e73y3cFgAAaC+DaaBh1+pL4ze791bYAM9ojbpHfam3Kf02Sl+58vgrfV8BABBx88brc8+ZQz2v3jdt5c1L65U3P68UElZNq83bJ6LSZ6j3PgAAQLuxPu951ucBwOSkZ5+ocrLen5ACAAAAAEB7qf6aLWYawWgR/zMirq6zzaER8Z0G9Q9Nd9ttt406/sM//MPCbY8++ug49thjh99o2dvbG3fffXcsX768oWOcjLlz58app55auP5RRx0Vjz76aEREbN++PbZu3Rrz588fV++OO+4YdXz22WcX7mPFihWx//77x1NPPVWz7m233TbqbZRvfvObCy0iG+k1r3lN3HrrrRER8dhjj8Xq1avjhS98YV3XAAAAZr68YLQ50RFdpa5x5SkiesvbK7bprRAgUC2sa25pXrFBtomB1B+DaXBcecOCF+q8TqP6bZS88QymwRhMA9GRdU7ziAAAWte2oS3x88235p5vtblec9W38a9RgV15gWaNCkbLe2ZrlhSpymce//2YV7cUpegu9Ywrr1QGAAAzmfV5o1mfBwCTsLZKMNrQ0PSNAwAAAAAAWpBgtPayaczx0noaZ1k2P8YHlm0s0M+8LMv2SCltq6O7ZQX6qVtKaU1ErKmnTZZljegaWsKGDRvi4YcfHj5evHhxHHXUUXVdY/ny5cMLryIi7rrrrpZaeHXooYdGV1fxzSJLliwZdbxp06aKC6/+4z/+Y/jvixcvjsMOO6yucb3qVa8q9HbIsQvj9t9//+GFYUWN/fy//vWvLbwCAIBZqFJQV0TE8sWnx1v2+ZNx5SmleO8DvxflKI87V2mDf95m96Wd+8VHD/mHOkc7s3137T/HDevHZ/Hn3aN65QUsdGQdUxrI1ijV7kNfuTc65ghGAwDY7SebfhQDqT/3fKPCvdpBSvUGo01tcHG9188Lpj5lyZnxe8v+uO5xTZXe8o54/4NvqXiu0vdj3n04ao9j4rwDL27o2AAAoNVYnzee9XkAMAlrn8w/l8av7QAAAAAAgNlEMFp7eXDM8YvqbD+2/vqU0oaxlVJKz2VZtiEiRq5meGFE3D+JvsaOHZiAtWvXjjo+/PDD6w7/O/LII0cdr1lTV9bglBu7kKqWzs7Rm68HBgbG1dm2bVv09j6/iWMii5iKtnn88cdHHb/vfe+L973vfXX3N9L69esn1R4AAJiZBtP455uIiM6scghVlmXRXZobO8rjs+3r2ezeUxqbq9/+8j5zX2pM8EJesNjCOUti/eDaceWtFpZRLSCir9wbe8xZMI2jAQBoXeVUjls33lC1TquF4M4kjQguTik1MBit8ni6W+yZqivrjiyySDE+iK7SZ857Hmm1zwUAAFPB+rzxrM8DgEnY9Fz+ufLQ9I0DAAAAAABakGC09jI2mKy+16lFHDLmeFWNvka+ou6wCv3X01c9bdvb0gMj+7dfNXsU7W/pgc0ewZTYsGF0luGiRYvqvsbYNq22qKdUKjX8mhs3bhx1vGBB/Ru2Fy5cWKjec89V+QX2BG3ZsqXh1wQAAFpfXjDanCz/R37dpZ6cYLR6Nrv3FBxh+8j7zI0KKMsLWFjUsWdOMFprhWX0pfz70GpjBQBopvu33RtrB56pWsf86XmVgrqqacS9G0j9kaJc8Vy9wWt59eeW5tU9rqlUykrRlXVXDH6u9Bny7vNsfFYEAGYo6/OmTxuu0bM+b2KszwOAHNs2558bEowGAAAAAMDsJhitvfznmOOXZVk2L6W0vWD7E2tcb+y5kcFoJ0TEdUU6ybJsj4h4WR19zSpZR0fEfgc1exjMUCmN3iBS79soK2nENVpdd3f3qOP+/v66r1G0zUSuXcvYrzsAADA75AWjdWSduW26S3MrltcXjFb5Gu2snvtWr5RS7nUWdiypWF5vIMNUq3YfWm2sAADNdPPG62vWEYz2vLxgtFKUolwhvKxaYG9R1cKPKwWHVZM3F27FZ6ru0tzoG6rwXFjhM+fdh+6s9T4XAEAl1ucxGdbnTYz1eQCQo6/KzzRT5Rc4AAAAAADAbCEYrY2klJ7OsuwX8XzoWEdErIiIHxa8xCljjqutzL8hIt5ZpW01J8Xo7717U0rP1tEeyLHnnnuOOt60aVPd1xjbZsmSypuwJ2Ooxd5gNfYzjn2zZxFF39y59957jzq+44474oQTTqi7PwAAgME0WLG8WjBaT84G/Eob9vM38fcUGF17yfvMjQj9GkyDUY7Kz8kLOxZXLG+1sIxq46kWLAEAMJus6382/mvb3TXrNSLcq911l+bGjvK2ceWNmCc3cm7bW678/rKe0ry6rjMdekpzY/PQ+N+P1fOsmPe8CQAA7cT6vImxPg8AJqDcWv8/BwAAAACA6VZq9gBouGvGHL+tSKMsy46MiN8cUbQtqgeq/SAiRq54PmHXNYp465jjsWMGJmjp0qWjjh944IG6r/GrX/1q1PGyZcsq1uvoGJ2tOThYeUN+JRNZ2DSV5syZEwcccMDw8a9//evYvr3yZpU8K1euLFRvn332GXU8ka8RAABARMRgGqhYXi0YLS/gq9Lm/7xAgNm42T3vM/eVeyOlNKlrVwu+WDSn8maoVgsbqxYQ12ohbgAAzXLLxusjRe2542AazJ3rzzZ596uewOd6VbtGb51z27x5e08Lhk034llxNoZoAwAw+1ifNzHW5wHAeKmvxs8zy+XpGQgAAAAAALQowWjt558jYuSrYd6UZdnhBdp9cMzxv6WUcld2p5S2R8Q3a1xjnCzLXhwRvzuiaDAi/qXA+IAClixZEoceeujw8caNG+P++++v6xp33HHHqOPjjjuuYr2FCxeOOt64cWPhPv7rv/6rrjFNh+OPP3747+VyOW6++ebCbdevXx//8R//Uaju8uXLRx3/8IfVMigBAADyDabKG2A6so6K5RH1BQjkBQLMxs3ueZ85RTkGUv+krl0t5GxRx56V26TeKKfWWQRdLfysEeEUAAAzXX+5L36y6UeF6wuX3SUnhLhacPFkVbtGPQHFA+WB3Ge2ntK8usc11fKD0cZ/5rz7MBufFQEAmH2sz5s46/MAYIwtNYJMy0PVzwMAAAAAQJsTjNZmUkoPRsSVI4q6IuKKLMtyVyFnWfbGiHjriKL+iPhoge4ujYiRryt/a5Zlv1Oln56I+NquMe12eUrp4QJ9AQWtWLFi1PE///M/F257//33x9133z183NPTE6985Ssr1h37pspVq1YV7uf73/9+4brT5fTTTx91/JWvfKVw2yuvvDL6+4tthD/ttNNizpw5w8ff/e53Y82aNYX7AgAA2G0oNxitM7dNd86PiPpSpc3ulQMB8kII2lm1zzzZ4K9qwQsLOxbnnutPfZPqt5GqBUT05b97AQBg1rhny+2xrbylcH3BaDtVjkXLDxZrSDBalfnrQOqPciq2GbHaHLkVn6m6c8Pmiodot+LnAgCAqWB93sRYnwcAY/zq3urnh1rnZWkAAAAAANAMgtGmWZZlB2ZZdtDYPxGx75iqHZXq7fqzd41uLomIka+PWR4R/yfLsiPHjKU7y7L3RsTVY9p/NqX0WK3PklL6dUT8f2OKv5ll2Z9mWTYy/CyyLDsqIn60ayy7PRfFAtiAOpx77rmjjr/whS/EM888U6jthz/84VHHf/AHfxDd3d0V6x577LGjjq+77rpCffzgBz+IO++8s1Dd6XTOOefEggULho+vueaa+MEPflCz3ZNPPhl/9Vd/VbifJUuWxDnnnDN8vHXr1rjgggvqGywAAEBEDKaBiuUdWUdum+5STjBahQCBvI383dns2+yed98iqgceFFEtvGFRx5Ip67eRqoVHCPUAAIi4eeP1ddU3h9opReWNf/nPNZOfI9cKPi76tal2nbxgt2aq71mx8j2o9twEAADtxPq8ibE+DwBGS1+5pEYFwWgAAAAAAMxugtGm320R8UiFP98YU++AnHqPRMRnqnWQUnoiIt4UESNfj3ZiRKzKsuyuLMuuyrLshoh4PCL+LiI6R9T794i4qI7P86GIGLmSvzMi/j4iHs+y7Posy/4ty7KfR8R/xehQtP6I+N2U0tN19AUUcOqpp8YxxxwzfLxp06Z4y1veEjt2VN/I8fnPfz6+853vDB9nWRZ//ud/nlv/hBNOiHnznt+4cc0118TPf/7zqn08+OCD8Ud/9Ee1PkJTLFiwIM4///xRZWeffXbceOONuW0effTReO1rXxsbN26sq69LL7101IK2f/qnf4oPfvCDMTQ0VNd1Vq1aFbfccktdbQAAgPaRH4zWWbE8IqK7VDnUrFKAQF7Y1Wzc7J533yJqByfUkhcqkEUW8+csqrtdM1QbSysFuAEANMOjOx6Mx3ofrKvNZOeY7SLllPfkPtdMfo5ca/5aPBhte+65vPE3U9FgtJRSfoh2C34uAACYCtbnTYz1eQAwxvpnq58v1/f/LQAAAAAAaDeC0dpUSummiPjdiFg7ojiLiFdFxNkR8fqIWDqm2Tci4g9SSoV/g7Kr7tkRcdWYU8si4oyI+G8R8cpdfe+2JiLemFK6tWg/MJs888wz8eijj07oz26XX355dHV1DR/fdNNNcdJJJ8XPfvazcf2tW7cuzjvvvHj/+98/qvzCCy+Ml73sZbnjXLBgQfz+7//+8PHQ0FC84Q1viB/+8Ifj6vb398dXvvKVOP744+PZZ5+NJUuW1HNLps1FF10UL33pS4ePN2/eHKeddlqcffbZ8c1vfjN+8YtfxC9/+cv44Q9/GO973/vi6KOPjvvvvz96enrijW98Y+F+Dj744Pjyl788quxv/uZvYsWKFXHdddfF4OBgbttHH300Lrvssjj11FPj6KOPjh//+Mf1f1AAAKAtDOQGo3Xktim62T0iP4xhNm52787yP/Nkwxfy73NP1cCEVgnLGEqDuSF9EYLRAABu2fj9utuYQ+1WORqtpzSvYnlfmvx9qzXPzguQruc6rfhMlffsMfZzDKaBKEe5Yt1W/FwAAFCJ9XnNY30eAOyUhoYiNq+vXqlc+edwAAAAAAAwW+TvkmTGSyl9P8uy34iIj0bE70dE3kqHn0bEZ1JK35pgP1sj4g+yLPtmRPy/EXF8TtX1sTNA7ZKU0tqcOjDrveUtb5lw25R2bhA59thj4wtf+EL8yZ/8SZR3/VL07rvvjuOPPz4OO+ywOProo6Onpycef/zxuPPOO8ct9Hnta18bH/vYx2r297GPfSyuueaa4TcyrlmzJl7/+tfHYYcdFi972cuiu7s7nn322fjZz34W27Zti4iIfffdNz71qU+15Jspu7q64nvf+16ceuqp8dBDD0XEznt69dVXx9VXX12xTZZlcdlll8Xq1avHvdGzmnPPPTeeeeaZ+PCHPzz8NfrpT38av/M7vxPz5s2LV7ziFbHPPvvE3LlzY8uWLbFu3bpYtWpV3W+/BAAA2tdQqrxpoyPrzG1TdLN7RH7gV7WwrnbVWeqMOdERQzH+nk82tCKvfXdpbm6Q3c52kwtka5Ra42iVcQIANMPWwc3x8y23VTx35LyXxyM7flUxaMscaqdUZzDa4K7Q3mrPRLXUnt8Wm//3lrdXLO/IOqKzNPHxTZW8MOix35/V7k93lv/8AgAArcT6vOaxPg8Adnnu6Yih/KDOiIgoD03PWAAAAAAAoEUJRptmKaWDprm/NRHx7izLzo+IEyPiRRGxb0Rsi4gnI+LelNIjDerrmxHxzSzLDo6IYyNi/4jYIyKeiYjHIuL2lFJ/I/oCanvHO94RS5Ysibe97W2xdevW4fKHHnpoeFFRJX/8x38cX/ziF6Ozs/amjAMOOCC+9a1vxVlnnRVbtmyp2cfBBx8c3/ve9+LZZ5+t89NMnxe84AVx6623xnve85645pprqtbda6+94sorr4w3vOEN8cEPfnDUuQULFtTsa/dbP9/2trfFM888M1y+ffv2uP322wuNt1Xf7gkAAEy9wTRQsbxaCEB3TqjZ2M3tKaXcDe/VwrraWU9pbmwrbxlXXinIoh659znriTlZR3RknRW/1pXC7Jqh1jiEegAAs9kdm/5P7rz95MW/FU/1rY6+oQrBaJOcY7aNyrloVcOa+8q90TFn6oLRis7De3Ofp1ozaDrvno69H9U+/2wM0QYAYHazPm9irM8DgIh45rHadYYEowEAAAAAMLuVmj0ApkdKqT+ldGNK6YqU0idTSn+fUvp2o0LRxvT1SErpW7v6+OSuPm8UigbT781vfnM8/PDDcf7558fee++dW6+zszNe97rXxe233x6XX355oUVXu5166qlx5513xhvf+MbctzAuXbo0PvCBD8R9990XRx11VN2fY7rtu+++8e1vf3t4AdZLXvKSWLx4cfT09MQhhxwSp59+enzpS1+Khx9+ON7whjdERIx7U+SiRYsK9XXGGWfEI488Epdddlkcc8wxNd9k2dnZGcuXL49LL700HnjggTj//PMn9iEBAIAZrZyGohzliueqB6NVDjUbu9l9IPVHyrn+bN3snnfvJhtQlhd6sbu/ogEFzdKo4AgAgHZTTkNx66YbKp5b0rF3vHT+cYXn57NVyklGqxWMNhl9DQr+7S1vr1jeU5pX95imQ9Hnnb6Uf39ma4g2AACzm/V5E2N9HgCz3pona9dJlddsAAAAAADAbNHR7AEAzHaPPvrolF5/2bJl8bd/+7fxuc99Lu6+++745S9/GWvXro2+vr7Ye++948ADD4wVK1YUeoNiniOPPDKuvfbaWLduXdx8883xxBNPxPbt22OfffaJgw8+OE466aTo6Hj+fzmnnHJKpFR5M0sl9dQd64orrogrrrhiQm1XrFgRK1asKFR31apVw3/PsiyWLVtWuJ+enp54z3veE+95z3ti/fr18dOf/jSefvrpWL9+fQwMDMT8+fNj2bJl8eIXvziOPPLImDevNTfNAAAA02cwDeae68jyf+SXH7I1enN7tTCr2brZvXuKAsry2u/ur7vUE1uHNldo1xqBY7U+f17wGwBAu/uvbffEcwNrKp5bsfj1MSebM2Xhu+2iOcFoNea3Ba+fN19v1aDp/JC+McFoVT7/bH1WBACg9VmfV5v1edbnATDNerfVrlMemvpxAAAAAAAz1rotKbb0PX+8dH7E/J7qLwmCmUYwGsAsUSqV4rjjjovjjjtuyvrYe++94/d+7/em7Pqtatu2bXHPPfcMH7/4xS+e8EK2PffcM84888xGDQ0AAGhTg2kg91xH1pl7rjvL2eyeeqOcylHKSjuPqwajteZG/qk2VaEVefd6d3/dWbEwu2apNY7JBlMAAMxUN2+8vmL5nOiIExe9NiKKBxfPXpU35ld7Jpn0/DxVb1/0+jvK2yuWt24wWrEg6LzPX4pSdGZdDR8XAADMJNbnTR3r8wBoO/0Ffo9eLk/9OAAAAACAGeeex1Kc+9VyrHp6dPnX357Ff/9NwWi0F8FoADBJV155ZWzf/vwGlxNOOKGJowEAAGaDwTSYe65qMFqVTfj9qS96doVwVdvsnxcQ1u7yQysmF/yVd69395d3v/tSawSO1RrHZIMpAABmorX9T8eqbfdUPHfsguWxsGNxRFSZ6wmXjYi8WLSd9y2LLFKFGpMNleutce+Lfm3yxtG6wWh534s7IqUUWZbtOq78+btLPcN1AAAAGs36PADaTqFgtKGpHwcAAAAAMKNs3pHi1M+WY7NlpswSpWYPAABmsieeeCIuuuiiUWXnnntuk0YDAADMFoNpIPfcnCz/XQjVQs1Gbtyvttm/VTfyT7VqQQGTUS1YoFq/rRI4VuvzT/b+AADMRLdsvCH33MlLzhz+u2C0WipHo2WRTdm9a9T8Nj8AeV7dY5oOeSHa5SiPev7Mf36Znc+JAADA1LM+D4C21N9fu45gNAAAAABgjG/fm4SiMasIRgOAEb71rW/FX/zFX8TatWtr1r333nvj5JNPjvXr1w+XvfyA4QheAAAgAElEQVTlL4/XvOY1UzlEAACAqsFoHRMORusd8ffKm/jnREd0ZJ0FRth+8jb6T3UwWl4QXauEZdQaR6uMEwBguvSX++Inm35U8dyB3QfHIT1HDB93Z60912u2lHKC0bIsurOpCRCude+LXj8/GK01A8R6JvmsKBgNAAAoyvo8AIhI/QV+BlwuT/1AAAAAAIAZZeWTzR4BTK/8XZIAMAtt2bIlPvGJT8RnPvOZOOOMM+K0006Ll7/85bFs2bLo6OiI9evXx8qVK+Pf//3f47rrrhu1KaerqyuuvPLKJo4eAACYLQbTYO65zirBZdU24Y/cuN+XKi/CbdVN/NMhL1Ru0sELOfd6d0hGXsDAZPttlFrj6Cv3RkopsiybphEBADTXz7fcGtvLWyuee/XiM0fNi3LDd1NrzPVaWXdpbsTQhnHlefPromoFHxe9/kwLRssL6YvY+Vnmx8KIqB3sDAAAUIv1eQAQEYWC0YamfhwAAAAAwIzy6LrKL5yFdiUYDQAqGBgYiOuuuy6uu+66QvXnzp0b//iP/xgvf/nLp3hkAAAAEYNpIPdcR5VgtLzghYjRG9zzNvHP5s3ueQEGecEARdW611PVb6PUGkc5hmIwDURn1jVNIwIAaJ6UUty84fsVz80tzYvjFp48qixvfl0rnGu2KEe5YnkWWZV7N9lgtOrti16/t7y9Ynm1Z7JmqvasNzKoL/f5JZu9z4oAAMDEWJ8HwKxWKBit8s9HAQAAAIDZ65F1zR4BTK9SswcAAK1k8eLFMWfOnLranHjiiXHLLbfEm9/85ikaFQAAwGjVgtHmZPnvQpiTzckNqBq5wT1vs3+rbuKfDnkb/fOCAYrKu9e7A9FaPSyjSDBEq4S4AQBMtUd7H4jH+35d8dwJi06LrlL3qLKpCvdqf1nus8lk58m1g9GKXT+v3tzSvLrHNB3yApkjRt+TkSFpRdsDAACMZH0eAETBYLShqR8HAAAAADCj5AWjffR3snjjMdn0DgamQf4uSQCYhc4666x49tln44Ybbojbb789Vq5cGY899lisX78+ent7Y+7cubHnnnvGi170ojjppJPizDPPjBNPPLHZwwYAAGaZasFoHVln1bbdpZ4YGOofVz5ys3te2FdecMNskLfRf7KhFXmBCbvvdX7gQ2uEZRQKRks7Yn4snIbRAAA0180bv5977uTFvzWuTDBadSlSxfJSZFMSIFxO5ehLtYLRin1tduTO81szQKwj64xSlKIc5XHnioVoz95nRQAAoD7W5wFARAyMX7MxTnn8z+oAAAAAgNlrw7YUm3KWSJ5yRBZ7dAtGo/0IRgOAMfbaa68455xz4pxzzmn2UAAAACoaTIMVy0sxJ0pZqWrb7lJPbB3aPK68r8Bm97xwsNkgN6AsTTx4IaJ2sMBUBD40UpHPnxe0BwDQTrYMbox7ttxe8dxR846JZV37jyvPm1+bP+1WORgtsmrBaBMPletPfTXrFL1+3ny9VZ+psl33dEd5+7hzQrQBAIBGsz4PgFmvv8DPGQWjAQAAAAAjPLIu/9zBe0/fOGA6Vd8lCQAAAAC0nME0ULG8M+us2bY7ywn4GhWMZrP7WLnBaJMIXkgpVQlG29lfd1b5nrdKWEaRcUzmHgEAzBS3b/o/uQHGr15yZsXyqZhjtpOUl4sW2ZSEyhUJHy56/d4KAWMRrRuMFlHt+1GINgAAAAA0VKFgtKGpHwcAAAAAMGP8OicYrasjYv9F0zsWmC6C0QAAAABghskLXJiTddRsmxdu1peeX3ibH4w2eze75923yQQvDKaBKEflxcy773VewMDIr1czFQntEOwBALS7chqK2zb+oOK5PTuWxm/s8cqK53Ln5uZPERGRIicZLabm3hUL/a1dZ6A8kPvM1soBYkWC+moFOwMAAAAABfQVCUYrT/04AAAAAIAZ45F1lddUvmjPiFIpm+bRwPQQjAYAAAAAM8xgGqhY3pF11mybtxF/ZAhAXiBAXvjAbJB33wbTQAzlhB7UUi20oTvbea/zAx8mHsjWSEWCJyYTHgcAMBP857a7Y/3g2ornTlp8RpSyORXP7Z7zjTUUg7lz/tml8iKeLLLozhofIFwo9LfA9avN1XtK8+oa03QqEjaXH6I9e58VAQAAAKBu/X2165Qrv2QNAAAAAJidHllXufzgvad3HDCdBKMBAAAAwAyTF8TVkXXUbFtss3vlzf554WCzQbWN/kUCFCq2S9UCE3p2/TcvkK01wjIKhUdM8P4AAMwUN2/4fsXyjqwjli86PbfdVMwx20nlWLSdwWhFAp/rVWxuW/v61cbQys9URe5p3j3qbuHPBQAAAAAtZ0AwGgAAAABQn0fXVV5VedDe2TSPBKaPYDQAAAAAmGEGcgKxOrLOmm3zNqyP3OCet5G/O8sPbmh31QIMJhq+UC14YXdIRrWAgf5ygcXSU6xIMESROgAAM9Wz/U/G/dvvq3ju2AUrYkHHoty2UzHHbC950WjFAp/rVeSeFwko7i1vzz3XU5pX97imS97z3shAZ8+KAAAAANAA/QV+jlkuT/04AAAAAIAZ45F1lcsP3nt6xwHTSTAaAAAAAMwweRvxO7KOmm3zwhdGbnDPCxOoFtzQ7vKCFyImHr5QPRhtbs1+WyEso8hnn0w4BQBAq7t14w255169+MyqbauF4JpDRaScYLQssirBaBOfIxe957UCiqvN06t9zZst73lv5H3Ju7+z+VkRAAAAAOpWKBhtaOrHAQAAAADMCOVyikefq3xOMBrtTDAaAAAAAMwwQ2mwYnlH1lmzbZEAgb5UebN7K2/in2rVQysmFr6QF5iQRSk6s64C/TY/LCPve6XeOgAAM1FfuTd+sulHFc+9oPuQOKjn8KrtpyJ8d1bIstx58uSC0Yq1rRVQ3FveXrG8I+uIzlLtZ7Zmyft+3P15y6kc/alyKFy172UAAAAAYIz+6i9fiIiIcnnqxwEAAAAAzAhrt0b0Vd5KFgfvnU3vYGAaCUYDAAAAgBlmMA1ULC8WjJYXINBb8e9F2s4GXVl37rlawQh58u9zT2RZNvz3RvfbKINpIAZzQvpGEuoBALSruzbfEjtyQrBeveTM4Tldns6sK7KoXGcyAV/tIKWUey6LaoHPvVXbVlP0ntea3/bO0Oepavc0IqI/9UWKyve21T8bAAAAALSUQsFoQ1M/DgAAAABgRli/Lf/cfoumbxww3QSjAQAAAMAMkxuMVioSjJa32f35EIC8wK1qIV3trpSVojur/PknHoxW+z53Zd0tG5bRXy6wWDsEowEA7SmlFLds/H7Fc/NK8+NVC06qeY1SVsoN4G12CG6z5QVw7ZTlBnGVo5z7vFRLXyo2b601D88731OaV/eYplOtEO1q8/oewWgAAAAAUFx/gZ9FCkYDAAAAAHbZWPkdvhERsaS1lybCpAhGAwAAAIAZZqCcE4wWHTXb5oV77Q4BGEqDuUECs32ze62ggHrltRv5NWrlsIyi/Td7nAAAU+HXO34ZT/Q9WvHcCYtOi65S5TncWHlz7NkeLlstGK0UWfRUCW2eeHBxsXte6/q95corkFr9eSr/eWfHrv/m35/ZHKINAAAAAHUrFIxWnvpxAAAAAAAzwoacYLSOUsS8rukdC0wnwWgAAAAAMMMMxWDF8o5SZ822eZvxe212ryk/tGKCwQspJxhtzH1u1bCMov03e5wAAFPhlo3XVyzPIouTF59R+Dq5YVQ5c8XZIz8YLSKL7iw/ZGyi88+igWq1rp93ndYPRssJ0d71eas998z2Z0UAAAAAKCqlVDAYbWjqBwMAAAAAzAgbt1deU7lkj4gsy6Z5NDB9BKMBAAAAwAwzWM4JRss6arattdm9WhhAq2/kn2q5926CoRVFAxNaNSyjaCDcRIPjAABa1ebBjXHPljsqnnvJHq+IpV37Fb5Wrfn5bJWqBKNlkVUN4upLEwwuLhr8W2Me3luu/GrGVn+eqhUELRgNAAAAABpgoL9YvXJ5ascBAAAAAMwYGyovS4zFrb0sESZNMBoAAAAAzDCDaaBieUfWWbNt3mb3wTQQQ2mwahjAbN/snhdQVi1Mrpq8ez22n/ywjOYGjhUOjpjloR4AQPu5fdP/jqGoHFZ88uIz67pWq871mi3l56JFZFnVkLHeCc4/i87ra9XLO5/3PNEqurPK34u9w8Fole9rR9ZR6FkUAAAAAIiIgb5i9cpDUzsOAAAAAGDG2JgTjLZk3vSOA6abYDQAAAAAmGHygtHmZB0121bbjN9X7q0awNDqG/mnWl74wkSDv/Lu9dhwjLz73uzAsb5UrP+JBscBALSioTQUt268oeK5vTr3iaP3eEVd18uf6832OVR+MloWO0OhSznLHSZ674q2qzUPz5v/zi219gqkvJC+/tQX5VTOD3zLZvdzIgAAAADUpb/g7/nL5akdBwAAAAAwY2zIC0bbY3rHAdNNMBoAAAAAzDCDabBieUfWWbNt3mb3iJ0b+KuFWHVl3bUH18by7t3EgxcqL3geH4xWud9mB44V7b9ogBoAwEywcutdsXHwuYrnTl58RpSyOXVdL3+OObvnUKlqMFoWWZY1/N4VbVdr/p8bINbiQdN5QdApUgyk/tx5fbVnTAAAAABgDMFoAAAAAECdNuYsW1w8N5vegcA0E4wGAAAAADPMYBqoWN5ZKBgtfzN+X7k3P6wr64lSNrt/nJgXFNDo4IWxwQL5/TY3GK14cMTsDvUAANrLzRu/X7G8I+uMExadVvf1BKNNxM6FPHnPNhOfnxcM/q1x/d5y5Vcz5s3rW0W1Z8VqIdqtHvgGAAAAAC2lr2gw2tDUjgMAAAAAmDE2bqv8stnFe0zzQGCaze6djAAAAAAwA+UFo83JOmq2zQteiNgZBGCze768e5d3z2rJazc2MKFVwzLqCY5IqfIvYQAAZpJn+p6IX23/RcVzr1qwIubPWVj3NbuznHCvNLuD0VLkzx93v98wPxhtYvPzove81vXzzrd+MFq1Z8UqIdpV2gEAAAAAYwz0F6uXylM7DgAAAABgxthQ+X2tsbi1lyXCpAlGAwAAAIAZJi8YrSPrrNm2K+uObDhKYLS+cm9uGECrb+KfDtMVvDA2HCPv3k80kK1RigazpSjHQCq4uBsAoIXdsvH63HMnLz5zQtdsdPhuu6gWjLY7Gq3RAcJF29WqtyM3GG1e3WOaTtWe+frKO3I/t2dFAAAAAKhDf8Hfsw8NTfFAAAAAAICZYmNOMNqS1l6WCJMmGA0AAAAAZpjBNFixvEgwWikrRVfWXfFcb3lHbshXXujAbNKdNTa0Ii9YYOy9bnTgQ6PU0/9Ew+MAAFpFb3lH/HTzjRXPvajn8Dho7uETum5eqFSz53qtLMt2BaPlzM/70sTmnkXn9XkBx8Pnc4PRWjtArNozX59nRQAAAABojILBaFEWjAYAAAAA7LQhJxhtsWA02pxgNAAAAACYYQbTQMXyIsFoERHdeeELqbdKWFdrb+KfDo0OrSgaLNCd5fXb3LCxegLhJhoeBwDQKu7cfHP0liuvLHn14t+a8HXzQ3Bn9/wppZR7Ltv137z5+UTmnkNpMPc5q97r532ftHow2pysI/eZsq/cW+X5pbU/FwAAAAC0lMLBaOWpHQcAAAAAMGNszFm2uGReVvkEtAnBaAAAAAAwwwymwYrlHVlHofbVAgTyNvnnBTbMJo0OrSgaQpfbb5pYIFuj1BMIN9HwOACAVpBSils2XF/x3B5zFsQrF6yY8LXz55izff6UH4y2OxqtkfeuUXPbwTSQ+7zW6sFoEfn3tLe8o8rzi2dFAAAAACiscDDa0NSOAwAAAACYEcrlFJtyti0tnje9Y4HpJhgNgIZYvXp1/OVf/mWcdNJJsc8++0RXV1dkWTb854orrmj2EAEAANrGYBqoWN6RdRZqXy1AIC/kayZs4p9qYwPLdptIQFlKKfdej/365PWbF2I3XfpS8f4FewAAM9nDO1bFU/2PVTy3fNHp0VnqmvC1c+eYs3z+lKoEo2VTEIxWz9y6WjBytev0/P/s3XmcHGWB//Hv09Mz3TO5JmQSAkRICDcIGOW+AiIgouuBB14rIovXeqDrrusB7LreirqKJyJe/EBAUYFwbQj3lQDhNiSThDNkkkyume7p7np+f0wmme6pp7qqr+nj8369eJG6nnq6qqf7qern+Vas/nsgJYw7lNkZou3YBgAAAEBl0T8PAIAmMTQUbj3rVbceAAAAAAAAABrCppRkHV0qp9Z/t0SgLPHxrgAAtLrZs2dr1aodg2kWLlyo+fPnj1+FSvDLX/5S//qv/6p0Oj3eVQEAAACAlpCzWd/5cRPudp87QGDQGSLg2qaVuMLh0l5K1loZY0KXlbUZefLvyFwYjhG03/EUZf+lhMcBAADUi0X9N/rONzI6bsppZZXtamenvMHIbcxmEiYYzdVOLiVAOErbNqj8VC4oGK3+w6aDrj1cx6gRXhcAAABaG/3zAABAXRkKeS8yl6tuPQAAAAAAAAA0hA0D7mXdBKOhycXGuwIAgMZ2ww036Lzzzgvd6er222/Pe1LlhRdeWN0KAgAAAEATytqM7/y4aQ+1fWHw1oi0N+gc5M9gd/dxs7IastEGIwUFLyRMfjiGO8huOJBtvFQqPAIAAKCebcyu18Ob7/VdduCE16qnY+eyyk8a/zamp5yyjkDkVhAUjKZtwWju65roobyRQn8D1g1q9yZj9d8DyXVMUwHXiq5tAAAAAFQG/fMAAGgyYYPRPILRAAAAAAAAAEjrtriXddN9D00uPt4VAAA0ti9+8Yt5g7Df+9736pxzztGrXvUqtbfvGJDf09MzHtUDAAAAgKaUcQajhbvdFxS0lXYOdvffppUEHYOUNxjpGKVtUGBCuGA0K08ZO6QOkwi930pyvVfKXRcAAKCe3N1/izz5D0A7YerpZZcf1IZM20G1K1z4cdMJyEUzw7loAdc10due0dq2wwHFZqQio6Q896MZGyFALPBa0foP2ORaEQAAAKgu+ucBANBkciEfiEEwGgAAAAAAAABJq9b5z++ISztNqG1dgFojGA0AULJnnnlGS5cu3T59+umn6w9/+MM41ggAAAAAWkPO+neUjZtwoQlJx4D8lDeotOcY7G7qfxB/tbmOmyTncStl/cLAhOD9DqojNl7BaOFfc9TjAwAAUA9yNqs7N97ku2x6+0zt33Vo2fsIDEbzUprYNrnsfTQiG5CMZjQcSOYKGiul7ekK/fLjKaeszajddPjs2z9grU1xtcfqP+TOfUzd14pB1ysAAAAAykP/PAAAmlDYYLSw6wEAAAAAAABoaivX+fen3GMnKRYb+4BXoJnExrsCAIDG9dBDD+VNn3nmmeNUEwAAAABoLVmb8Z0fNhjNFb6Q9lJKOQbyBwU2tIrg0Ar/4+biOs5++wnab1A51RYlcGI86wkAAFCqR7c8oI3Z9b7Ljus+TTFT/s/triAqKXobs7m4g9E0EoxmXNc10Y9b1G1cbeFBRznJtsYID3NfKw46jxHXigAAAED10D8PAIAmFDoYzatuPQAAAAAAAAA0hJXr/OfP6altPYDxQDAaAKBka9asyZueNWvWONUEAAAAAFqHZ3Py5N8BNnQwmvEflJ+2KaWt/wD/ZEBgQ6uoZDCaK0jBKKZ201Gw36CwjPDhZJWWtuFf83jWEwAAoFSLNtzgO7/ddOioKa+vyD6C2tmt3IYKjkXbFozmCvFyXNMESUU81q62sOu6oFGup1zHdMDbqowdirQNAAAAgPLRPw8AgCYUOhgt5HoAAAAAAAAAmtrKPv8elXtMMzWuCVB7BKMBAEq2ZcuWvOn29nAD8AEAAAAApctad+fXuImHKsM1KD/lDToH8geFc7WKuGl3HuNUhYLRErGkjMn/ccIVZFfKfislazOB78VCrRzqAQAAGtOL6dVaNvi477LXTT5OE9omVWQ/7aZje9BXoVZuQ9nAaLRhruuatJeStcW3z98mWrva1Q5PeQO+85OxrkjljxfXMd2c3Rh5GwAAAADlo38eAABNKJcLuR7BaAAAAAAAAACklev858/uqW09gPEQbqQkAKDhWWu1ZMkSPf3003rllVeUTqc1ffp07bbbbjr22GM1ceLEyGV6nleFmgIAAAAAgmRtxrksbsINiEnEkr7z096gM3yBwe7DErFOZXObx8yPGlrhDqAbe27aY+1qU1w5je34nLbjE5ZRqdcLAABQr+7sX+BcdkL36RXbjzFGiVjSN2hrvEJw64M72GwkSM4V3mxlNWTTShj/6x4/0du3/uu7zlmjXE+5jtnG7Hr3Ng3y2gAAAIBqo38eAAAIJWzgmRcyQA0AAAAAAABA07LW6okX/ZfNnlbbugDjgWA0AGhyfX19+vrXv67f//73Wrt2re86HR0dOumkk3ThhRfqiCOOcJa1cuVKzZkzx7n8xBNP9J1/2WWX6eyzz/ZddtFFF+miiy5ylrlw4ULNnz/fuRwAAAAAWk3WujvJhg9G8x+4vjm7UdYRQOAKU2s1CZPUVo0NRosaWhE1gC4RS2rA2+JTzviEZUQOjrCtHOoBAAAaTcob1P2bFvoum5PcV7sn51Z0fwmTVEpj20tR21zNxB2LNhwmJwVfo6S9VKRrmEq151PegO/8hglGc9RzU26De5sIAXQAAABAM6J/HgAAiCRs4FnYADUAAAAAAAAATev/PejuTTl7mqlhTYDxERvvCgAAqucvf/mL9txzT1188cXOTleSNDQ0pAULFujII4/Ueeedp2yWH1IBAAAAoF5lbca5LG7CPQfBFRDgF7y1Y5vGGMhfba5Ag7SNFlrhCl5whQq4ztl4hWVEDkZr4VAPAADQeO7fuNDZXju++40V35+rrT1eIbh1wQZFow0LCj6rVNBZ1PKd7fwGuZ5yXe8EBXQ3ymsDAAAAqoH+eQAAICobNvCMYDQAAAAAAACg5f1kobsv5ZyeGlYEGCfhRkoCqB0vKw08P961aH5ds6RYc38E/vrXv9a5554rz/Py5s+dO1cHHHCAurq6tHr1aj3wwAPK5XY8eeoXv/iFVq9erb/97W+Kx5v7GAEAAABAIwoKRmsrMxit0ts0o0qFVriC1FzH2RVQEDXwoVIiv16C0QAAQIOw1uqO/ht9l01sm6J5k46p+D6dIbgRw3ebiZW7M4/R8FMOXW1kqfrtVdf6rvZ5Z6wrUvnjpbRrxUQVagIAAFBF9M+rnSbvo0f/PAAAUJKwAakEowEAAAAAAAAtr3/AvWzGpNrVAxgv/KIO1JuB56W/zhnvWjS/t/RKE2ePdy2q5pFHHtHHPvaxvE5Xhx56qH7yk5/o6KOPzlt37dq1+spXvqKf//zn2+ctWLBAX/3qV/X1r389b91Zs2apt7d3+/QPfvAD/fCHP9w+fcUVV+jII48cU5+enh7Nnz9fknTffffprLPO2r7s05/+tD7zmc84X8vMmTOLvFoAAAAAaC1Z6+782m7aQ5URFCBQyW2akSsoIGpAmStIwRW85gzLGKdgtKivd7wC3AAAAKJaNvi4Xhp6znfZMVNOVnssXJs7Cnf4LsFofkaC0YJCvCIHndmo7Xn/9V3tXtc5rjdRg9HaTYdipq1KtQEAAKgS+ufVThP30aN/HgAAKFnYwDMvV3wdAAAAAAAAAE3tyZf8509ISLGYqW1lgHFAMBoANKFzzjlHQ0ND26ePPfZY3XTTTerqGvs0+unTp+tnP/uZ9tprL/3bv/3b9vnf+ta3dNZZZ+nVr3719nnxeFyzZ8/ePt3d3Z1X1syZM/OWjzZx4kRJ0sqVK/Pmd3d3O7cBAAAAAIyVtRnnsnjIYLSog91L3aYZVSq0whWk4Aqgq7ewjOivt3VDPQAAQGNZtOFG3/lGMR3bfWpV9llvIbj1biQYLW7a1aa4cho7kDDqsYu+vn/7Nmo7v95EDXBrlNcFAAAAVBr98wAAQMnCBqOFXQ8AAAAAAABAU7pnufsBsz9/P6FoaA2x8a4AAKCyFi5cqCVLlmyfnjx5sq688krfTlejff7zn9cZZ5yxfdrzPF188cVVqycAAAAAoDSVCEaLOng9buKhy252rmOXqlCQgisUwzU/6n4rJW0JRgMAAM2nP7NOj265z3fZqye+TtPaZ1Rlv/XW1qsHVl7A0h0delzt82q3V9PW/9ykvAHf+Y0SIJaMGIhNgDYAAABaEf3zAABAWUIHo+WqWw8AAAAAAAAAde1rf3f3o3zVTgSjoTUQjAYATebyyy/Pm/7EJz6hXXfdNdS23/zmN/Omr7jiCqXT6YrVDQAAAABQvqBgtDYTD1VGwkQblB91/WbmGvgfNUjBFXLhKt8Z+DBOgWORgyNaONQDAAA0jrs23izPEch1fPcbq7bfemvr1QPrftChzKj+PNVun7u4yneVk4wFByTUi0TEALdGCXwDAAAAKon+eQAAoCwEowEAAAAAAAAIYcET7mVTG6NLIlA2gtEAoMncddddedPvf//7Q2974IEHat68edunU6mUFi9eXLG6AQAAAADKl7X+nWRjalPMhLvd5woPqNT6zcwdWlGZIAXXsXaF041X4Fjk12tT8qz7aTUAAADjLWszuqv/Zt9lM9p31X5dh1Rt35UK92ouAclo2pGM5jp2lQo6c3GV7w5Ga4wAsajBaFHXBwAAAJoB/fMAAEBZwgaehQ1QAwAAAAAAANA0rLW65Umrz/0pePxNN8FoaBEEowFAE9mwYYOWL1++fbq7u1v7779/pDKOPvrovOkHH3ywInUDAAAAAFRG1mZ857eb9tBlxE27YmoLvT6D3XdwHYuoQQpp6whGcwSg1VtYhivwIR7wPhyy6WpVBwAAoGyPbr5fm3IbfJcd331a6BDiUjhDcB1txlZgA4LRTF4wWnWDiyfEJkVa39VObpRrqoSJGKIdcX0AAACg0dE/DwAAlC1s4BnBaAAAAAAAAEBLyXlWH/y11WxCGWAAACAASURBVKk/8HTxLUEPl5WmEoyGFhEf7woAKNA1S3pL73jXovl1zRrvGlTF2rVr86b33ntvGWMca/vbb7/98qZfeeWVsusFAAAAAKicrPXv/Npmwt/qM8YoEUtq0Nsaav1kgwzirwVXQJkrAMHFFaTgKt91DsYrLMNV/ynxqVqX8b+XkPZSvJcAAEDdWtR/o+/8DpPQkVNOquq+6y0Etx4Ed+nZoRLHzlrrbM9Pjndr69DmUOVnbcYZZN3ZIO3gRCwRcf3GeF0AAAB56J9XO03YR4/+eQAAoGxerrLrAQAAAAAAAGgKNz8h/eH+cL0nuzqqXBmgThCMBtSbWFyaOHu8a4EGtWHDhrzpKVOmRC6jcJv169eXVScAAAAAQGW5BtrHTXukcpKxztDBaK6wgVbkDCiLHIzmv74rWKBSgWyV4gqamNwWFIw2KGlqFWsFAABQmhfSK/Xs4BO+yw6bfLy62iZWdf/11tarD+7OPUY7QgcqEYyWtVl58h9kODk+VS8NPedT/thzE3S+GiVALGba1GESGrLpUOtzrQgAABoS/fNQBvrnAQCAsuX8H4ZX8noAAAAAAAAAmsJfl4Z9pKwiP7wJaFSx8a4AAKByrM1v7FSiQUOjCAAAAADqS876d36Nm2jPQIgygL1RBvHXQsKUH7wwvL4rGM2/fNc5iBrIVinOYLR4d+RtAAAAxtsdGxY4l53QfXrV91+p8N1mYkMGo7mOXZRQuaDjPCXuH+zrV34q5y6nM9YVuj7jLdq1IsFoAAAAaC30zwMAAGUjGA0AAAAAAABAgWzO6soHwwWjvWNelSsD1BGC0QCgiey000550xs3boxcRuE2U6f6D/gAAAAAAIyPjM34zo+b9kjlRAk7Y7D7Ds7QChs+eMFa6wwJcwej+c9PjVPYmOv1TnYER0itHewBAADq12Buqx7YdLvvsrmd+2tWck7V6+Bq6xEs6zAqNCBhXKFy4Y9dUFt+cpt/+9av/KAwtkYKm3Zd85S7LgAAANAM6J8HAADKRjAaAAAAAAAAgFEeWmnV8TFP/QPh1v+3U4mKQuvg3Q4ATWT69Ol50//4xz8il/HMM8/kTc+YMaOsOgEAAAAAKivrDEaLRyonGSHsjGC0HVzHImuzznMzdt2MPHmO8v2DBdxhGeMTNubab1dsojOkLygoAgAAYLzct2mh0tY/ROv47tNqUgdXGzDtpWRtuCcANpug121G/dvZTnacU991A0LUpjiCf/3KT3nuXknJWFfo+oy3KNd/XCsCAACg1dA/DwAAlC1s4JmXq249AAAAAAAAAIy7nGf1tkv8xxcVeuuh0mMXxnT4HFN8ZaBJEIwGAE1k6tSpmjt37vbp/v5+PfXUU5HKuOeee/KmDzvssIrUbYQxNLQAAAAAoBxZzxWM5h9G5eIKX/CTjLBusws6bkGBCmHXcwXWuc5Bxg4pZ2vfIdr1GhKxZECIW/hwCgAAgFqw1uqO/gW+yya1TdGhE4+uST0Sxr/95CkXOny32VgFBaPt6ObgaidHCRAOCvCd7ApG89nGtc82xdUei3a9Np6iXCtGWRcAAABoBvTPAwAAZQsbjBZ2PQAAAAAAAAAN665l0gv9wess/nJM3i/adO3H23TgrvwWiNZCMBoANJljjz02b/oPf/hD6G2feuopLV68ePt0MpnUa1/72orVTZISiUTedDqdrmj5AAAAANDscvLv/Bo5GM1EGOzuCGpoRUED/4MCFUZLW/d6rvMStN+hcQgcCwpGc4ZTWILRAABAfXlmYKnWDD3vu+yYKafULMyqEuG7rWR0tx53KG/4YDTXMTaKaWLbZOc21uaHtw069plsa6zwMEK0AQAAgGD0zwMAAGUJHYxW+wekAQAAAAAAAKitKx50P0RWkiYmpH13rlFlgDpEMBoANJkPfvCDedM//vGP9fLLL4fa9otf/GLe9Hve854xHaXK1d3dnTf90ksvVbR8AAAAAGh2WZvxnR+PGNrgChDww2D3HYKORdjQiqAANdd5qcR+K8m1z2Ss0xmkFzY4DgAAoFYW9d/oO98opmO7T6lZPZIBbfOgUN1mZhXU2WdHNJo7GC18G7mU0F8rq4wdKijHEYzWYNdTUYKxo1xXAgAAAM2C/nkAAKAsYQPPCEYDAAAAAAAAmtbiVVZHfD2nX9wRHIx2zrFGXQkTuA7QzAhGA4Amc9JJJ+nQQw/dPr1x40adddZZGhwMHjhz8cUX67rrrts+bYzRZz/72YrXb88991RHR8f26YULFyqT8R/UDwAAAAAYK+M5gtEUj1ROlAHsiQYbyF9NQcfNFYQwdj13SIOr/KBwgvEIHHPtMxFLOt8v4xHgBgAA4LIh06elWx7wXXbwxMO1U/v0mtUluI3Zqm0od2cfEyIYLUob2bVuMtYZeC1UuJ27nK7QdakHka4VI4SoAQAAAM2C/nkAAKAsuWxl1wMAAAAAAADQUF7eaDX/u54eXFl83e++k1A0tLZooyUBAFX38ssva+XKlSVtO3v2bEnSpZdeqqOOOkpDQ8NPqr/99tt13HHH6Sc/+YmOOOKIvG36+vp0wQUX6JJLLsmb/4UvfEEHH3xwSfUI0tHRoWOOOUYLFy6UJK1evVpvectb9NGPflR77723urryB4fMnDlTySSDKgAAAABgRE7+nV/jsfZI5SQjhJ0RjLZDh0nIyMj6BDWEDa1wrWcUU7vp8F0WdA7StvZhGa7XkIh1OoMUWjfUAwAA1KO7Nt4kK8932Qndb6xpXQLbei3ahvJswFMQR/XzqUQoryvgeDj0t1gwcvf26ZQ34LtelGuvesC1IgAAAJod/fPonwcAwLgiGA0AAAAAAABoaX+432pruvh6u3ZLbTGC0dDaCEYDgDpz1llnlbyt3TZIZN68efrxj3+sj370o/K84UE9ixcv1pFHHqm99tpLBx54oJLJpJ577jk98MADymbzfzh9wxveoP/+7/8u/UUUcf7552/veCVJCxYs0IIFC3zXXbhwoebPn1+1ugAAAABAo8l6jmA0E+1WX9AA/3LWbXbGGCViSaV8whP85vlxhTQkY0kZ4/+jRSKWcJYXdr+VkrUZZ0BfwiQDwilqW08AAACXrM3o7v5bfJft3DFL+3ZVfmB6kHbTIaOYb1Bbrdt69cMdjGZGJaO52p5DNi3P5hQzbUX35Az9NcWC0fK3c52rRgtG41oRAAAAzY7+efnonwcAQI3lcuHW80KuBwAAAAAAAKChPPpcuPU+9wZC0YDYeFcAAFAd5557rq688kpNnDgxb/6zzz6r6667TldeeaXuueeeMZ2uPvzhD+v6669Xe3t71ep2xhln6Gtf+5ra2ooPRgEAAAAA5MvajO/8uIl2HRdlcH6jDeSvtnKDv1zrucqVpJhpU7vpKGu/leIKjpCGgxFc4QgEowEAgHrx8OZ7tSnX77vs+O7TnGG11TISvusnqO3VzGzYYDQTFFwW4pGKktLW3T4PuhYqDEJLeQPOchpJtGC0xnptAAAAQCXRPw8AAJQk5/8QspLXAwCgjj2/weqTf/QU+5fc9v/OudzT4y+4fwsEAAAAgGbX2xfumujdhxGMBhCMBgBN7Mwzz9Ty5cv16U9/Wj09Pc712tvbdcopp+juu+/WpZdeWtVOVyO+9KUvaenSpfqP//gPHX/88Zo5c6Y6Oxk8AQAAAADFuILR2kw8UjnRBruHX7cVuMIXCoMRXFzrFTvOrlCG+gpG6yTUAwAA1L07+m/0nZ8wSR05+cQa12bbvgmXLUlQcFnahmt/utqpiVhScdOuNvlfaxWW7yqnM9YVqh71IkrYGSHaAAAAaHX0zwMAAJERjAYAaBFrNlkd9Q1Pl9yeP+D/srutjv2Wp8eeJxwNAAAAQGvqXVd8nQWfjmnXboLRgGijJQEAFbdy5cqqlj9jxgz94Ac/0Pe//30tXrxYTz/9tNauXat0Oq2enh7NmjVLxx57rCZNmhS57AsvvFAXXnhhyXU74IAD9I1vfKPk7QEAAACgFWWtf+fXuIk2iIbB7qVzB5SVGbzgCFzbvjyW1ObcxpL3WylBAXCJWLLs4wMAAFBNz6d6tXzwKd9lh0+er862CTWu0TBXW7BV21BW7oEQRjs6+wSFC4cNlXMd45F2bSKW1IC3peh2g96AbzlRrr3qQZTrP0K0AQAA0Ajon0f/PAAA6grBaACAFvGbe6xe6Pdftikl/ej/rH75QQb5AwAAAGgtqYzVi45rpe+90+gthxjN6ZFiMa6XAIlgNABoGbFYTIcddpgOO+yw8a4KAAAAAKAMWZvxnd9exWA0Brvncx2PtA0ZvGAdwWhFzkm9BI4F7S8Z63SGegQFqgEAANTKov4bnMuOn3paDWuSz93GbM1gNAUEo6nCwWiudupI2clYpyMYbTBwekSjBU2HvVY0MuowiSrXBgAAAGgc9M8DAAChhA088zxZa2UMAyABAI3pxseCfu+T/ni/1S8/WKPKAAAAAECdWLPJvey0g4zmzuB+IDAawWgAAAAAAABAA3EFo8WjBqM5wqt8122wgfzV5joeYQPKXOsVC6Bz7bfWgWOuwAcjo3bT4T4+LRvqAQAA6sVAbose3HSH77K9Og/QbonZta3QKK7wrFYNlw2MRTOjg9Hc1yqpstvnndv+Hy74N+UN+K7XeMFo4a4VE7EkgzIBAAAAAACAqMIGo0lSLifFGfZVa9Za3fi4dM9yq71nSG+fZzQpyb1QAIjq6ZeDlw9mhj9zV6+X/vKI1bI1w/OnTpBev5/R/H357G11fCcDAIBSZHNWNz0h3bvCav9dpDPnGSXaaUOgfvT7dzOUJPVMrF09gEbBHXIAAAAAAACggbiC0dpMtFt9UQbnd5hEpLKbXbmhFa5gsWLnpNxAtkpx7a/DJBQzMefrcL1uAACAWrlv4/9pyKZ9lx3ffXqNa5OvXtp69cLa4CfIj2gzbWo3HcrYoTHLwgcXB7fPXUFhheW7rgcaLhgtZIh2lLBtAACanTGmTdJekg6QtKukKZLSkjZIWi7pIWvt1grvs13SMZJ2l7SLpC2SXpT0sLV2ZSX3BQAAAKCCcrkI62YJRqsxa63O+73Vr+7ccY/6B7da3fzZmKZPYhA1AIRlrdUrm4uv97dHpbN/42lDQTDA/1xv9eU3Gf3XP8WqU0HUPWutzv2d1a/v2vGd/MPbrG7+TEw9fCcDAACHbM7q/ZdaXfXQjjbEzxdZXf+pGAGrqBuF1z+jdTdWV0OgJrhDDgAAAAAAADSQrPV/enDctEcqxzW4f8x6JqmYoYPRaGGDEVxc6xU7J67ggbCBbJWStq76RwuOAAAAqCXPerqjf4HvssltU3XopCNqXKN87jZUq4bLuoPRYsq/PknEksrk/ILRwh07V3t65Jy4Q+vyt3MHo3WFqke9CBvk5jouAAC0CmPM7pLeLulkScdJmhywes4Yc4ukH1trry9zv9MlXSTp3ZJ2cqxzj6TvW2uvKWdfAAAAAKog59/nw5cXIUQNFbF4lfJC0STp0eelS263uuDNDKAGgLDWhghFk6Szfulp0P85sfqfG6zOOdZqj2l8/raiB3qVF4omSY88J/10kdVXzuA9AQAA/N38pPJC0STprmel399n9bH5tCFQH/odwWgTElJ7nPcpUIgRjQAAAAAAAEADyVr/nkBVC0ZjsPsYrmMSNqCsWPCCe7/1EThWPDiiPgLcAAAARntmYKleybzou+zY7lMit6crrV7aevXCHYs2lju4rMzgYhPcvi3czt1ObqxrqvDXiuHWAwCgGRlj/ihplaSLJb1JwaFoktQm6TRJfzfG/M0Ys3OJ+32jpMclfUyOULRtjpZ0tTHm98aYCaXsCwAAAECVRAlGi7IuKuKaJf53p698MMpdawDA8xvCrecKRZMka6UFj/P526r+/Ij/ub96Me8JAADgdvOT/m2Fz/2JNgTqx4YB//fj1MZ6/ipQM/HxrgAAAAAAAACA8LLWv+Nr3ES71Rd2cH6ywQbx14LrmKRDBn85gxeKHGvnfm1tA8dc9R+pnysgIWOH5NmcYqatanUDAABwWdR/g+/8mGI6dsopNa7NWITLFnJ3RjPKfyriSIBZodDtcxvcPk+Y4sFrWZtxhlh3Ntg1VdhrxUYLfAMAoML2ccx/QdIySWs03DdzT0mHKP8BtmdIusMYc4K19uWwOzTGzJf0F0kdo2ZbSUskrZDULek1knpGLX+fpMnGmLdaa72w+wIAAABQRV6EpjnBaDX3rQX+96afLrh625Kyum+FlMlJR82VuruM73aeZ/XkS9KTL1lZK+030+jVu0mxmNHmlNX9K6RpE6Utaekfa6w8KyXi0sCQFDNSsl06aT+jWVP9yweAUm1OWd27XPKsdNSe0hTH51ip+iv0E+eKvsqUgx2stXr2FenR56WcZ7XndKPXvEqKt9XXd823Hd/Jj72w4985z2rp89KKtdK8PaQ5PfX1GgAAQO396Db/NkQqI12z2CrrDS/frdvosNlSop32A2pvw4D/fILRAH8EowEAAAAAAAANxDXYPm7aI5XTZtrUbjqUsUOB67kCGlqZ65i4AsPGrOcKXnAEOhTfb62D0fz3N1K/oDC9tJdWZxu/2AAAgNpan1mrx7Y85LvskIlHqrt9Wo1rNJY7fDdcG7PZ2IBgNBUGo5UZKldq+3Z0+UH7arQAsbDh2IRoAwCw3cOSfi3pRmvt8sKFxpjdJH1V0r+Mmr2PpD8ZY4631hZ9PLkxZpaka5Ufina3pHOttU+NWi8h6TxJ35U0csP4zZK+Juk/o7woAAAAAFUSJbPYy1WvHojsukes/ulQo1uftHrHzzxt3nb7viMu/eZDRu85PJa3fv+A1Tt+6mnhM6PnWh09V/rYfKOP/t5qazrMnq0+f4rRN99uFIsxYBtA+a5favXuX3ga2NZtMBGXfndOTGe+tnKfMf2Ogf5RrSQYraLSGasPXWZ15UOjb0laHbCLdP2nYtpjWmN8z2xNW21JS2f8r6fFq3bM/8CRRpf+s6m7kDcAAFA73V3utug7fz76nozVrKnSDZ+K6aDdaDugtlzv0W6G2QC+YsVXAQAAAAAAAFAvctb/icBxE/0ZCGEG6DfaIP5acB2T8MELjmC0IiF0rv3WOiyjWP2D3jO1DnEDAACQpDv7F8jKf7DZCVPfWOPa+EsYR1vPEarb7ILyQUxBXzRnqFyIY2etdbZvR8p1BhSPKj+Vc7dzO2ON1WOp3XTIqHiHP0K0AQAtzkq6XtJh1tp51tof+4WiSZK19gVr7XmSPlGw6FhJ7w65v4skTR01fY+kk0eHom3bV9pa+yNJ7yrY/nxjzB4h9wUAAACgmqKEneX8+4egOp54MTi3+m2XeNqw1epdv9gRiiZJQ1npg7+2WrMpf/uL/mYLQtGG3bNc+sClYUPRhn33ZqsbHw+/PgC4bBrMD0WTpHRWev+lnvo2F83vD61/oDJl9fZVrk6QfrqoMBRt2JMvSZ/8Y4Tw1nG2cp30uatsXiiaJP3uPqufLeI9AwBAK5vVHX7d5zcMt4NDPMcKqKgNjmC0qY3VzRCoGYLRAAAAAAAAgAaStRnf+XHTHrmsMAPZGew+VsI4ghFCBpS5wsGKhdC5zkXYQLZKcdd/WzCa4/hIrRvsAQAAxk/Gy+jujbf6Ltul41Xau/OgGtfInzN8q8YhuPXCKiAYrSC0q5xjl7FDzn0ligWjjWoXB7XJGy1s2hjDtSIAAMW901p7hrX2obAbWGsvkXRNwewPFNvOGLO3pH8eNWtI0oesdd9os9b+RdLlo2YlJF0Qtq4AAAAAqsiLEDqS9e8fgur466PFB0J/4Rqrfp/Bq1lPunZJ/vZ/WlzZgdVXPshAbQDlu+ExmxeKNmIoK10X4nMwrP4KdWfr7atMORh2lU8o2ogbHx8OzqsHqUxwPZatka592H+dv1XwfQwAABrPblOLrzPa0uelf6ypTl0Alw1b/ed3dxV/mCnQighGAwAAAAAAABpIxhmMFo9cVlCA1Yhkgw3irwXXMXEFhoVdr1iwgHu/tQ3LcO1vR3CE+z0T9hgBAABUypLNd2tLbqPvsuO73yhj6qMzSZjwrdYS1GG9MBjNv/0ZJkA4ONBs+JyEaf8HnadkrPEe5RgmzI1rRQBAK7PWrixx058UTJ8YYpv3SmobNX2ttXZZiO2+VTD9LmNC3BAGAAAAUF22csFoGwesXuy38jwCQCrh+Q3F17nhMfexHj2QekvK6sX+ClRqlN/fz3kGUL5lr7iXPfJc5fbjFyJZinVbpc0pPv8qZVlA6IdnpRV1EkS3en3w8ruXW6UczaS7l1e+PgAAoHFMSkTfJqiNDFTDynX+1zg7T65xRYAGQTAaAAAAAAAA0ECyzmC09shlhRnIXiysqxU5gxFsSl6RTszWWmewWLHzUU7gQyWlrSMYzYwEo7l/Uax1XQEAAO7ov9F3fsIkdfjk+bWtTACC0fKFj0ULOnbFA4SDju9IuWHKT3n+ozvaFFd7LPq12ngLE6LNtSIAACV5uGC60xjTXWSbtxVMXxZmR9bapyTdP2rWBEmnhNkWAAAAQBXlcuHXzfj3D3niRavD/iennT7radYXPPWc7+lLf/YISCtTmBCfl/yfwyJJ+uFtVqnM8DlgUDWAenX9Uvd3xU8WWp3xo5z6Npf/fbKxgj9x9tZJWFej25yyWrc1eJ3v3FQfbYli5/x7N9dHPQEAQP3JRLjtMmJlH20L1JarvTunp7b1ABoFwWgAAAAAAABAA8nZrO/8UoLRwgxkDxOe1mqCjtuQTQdum7UZefIPTyt2PoICGayt3Q9yrvCIkfrFTJvaTYdj2+LhFAAAAJWyOrVcvalnfJcdMeVEdbZ11bhGbq4Q3Fq39eqFjRCN5gwuDhEqF9Q+HSk3XDCa/76SbY15PRXmWnEkGBkAAETid3PX/0aaJGPMTEmHFGx/d4T93V4w/cYI2wIAAACohiIPW8uTGdv/YGvaav53PC1eJY3cOu4fkL5xo9V3CAkpS/9A+cfvk1cMl3HWLyOc5wg2pzjHAEq3JWX1wMrgdW54XHr7T8v/DKtkMNqKtZUrq5WFCZi74gGre5aP/3dNbxnhJOTEAgDQ2oZKCEbrXVf5egAug0PWGbw/p6fwkbEAJILRAAAAAAAAgIbh2ZwzVKuUYLQwoWdhBsS3GldohVQ8fCEoeKHYsU46ggc85ZS1/k+KrgbXaxhdf3c4BcFoAACgdhb13+Bcdnx3fWVCuNqYnryatvXqh7vHuikIRgsTXObiCjQbXW5QaF2xcho1aJprRQAAqmavgumspKAhiQcVTC+11m6NsL97CqYPjLAtAAAAgGrwygtGu+4Rq3WOq4JL7yIJpBwbBsov44r7rbakrP6xpvyy/IQJtQEAlz8/HO574q5npadfKu87ZcPWyn0nlROShR3Cfodcdvf4H+9yvu9SGSmVGf/XAAAAxkemhGC0VbQ3UUOr17uXzempXT2ARkIwGgAAAAAAANAgsjbrXBY38cjlhRnInnCEcbWyoOMWFKxQbHmxYx2031oGjrlew+j6lRNOAQAAUAkDuS16aNOdvsv27jxIuyZ2r3GNgiVMfbT16kVQdzNjCoLRHMeuWGixJKWt/7FtU3x7+LQzGM2m5NnhQYzONnKDXk8FhUFHWQcAAIxxZsH0Q9baoFSEAwqmn424v+VFygMAAABQa16EEbqZoTGzlr7gXv3ZV6TBIQbzlqq/AsFogxnpzmXll+OyYm31ygbQ/IK+Q8auW973yQv9ZW2ep3dd5cpqZWED5h57fvzbEivLDALdWPxnYgAA0KSG3MNtnAghRy2tD3gM2m7dtasH0Eiij5YEAAAAAAAAMC6yNuNcNjJoP4pwg92Lh6e1mmTAcSsWWpG2AcFoRY514H7toCZqcuD2leJ6jaPr53pvFQuOAwAAqJR7N96mjB07aEySTph6eo1rU1yySPhurdp6dcP6d7g3MmPmBQWXFeMKT8tr2waE1g3ZtJKmUynPf8RcZ1tX0TrUo6BrjyjrAACAHYwxEyWdUzD7z0U226tgenXE3a4qmJ5mjJlqrd0QsRwAAAAAFWCtdd779JVJj5n17QXB269cJ+2/S9SaQZI2VCAYTZLe9L9B+dfleWaNlXzukxey1uqHt1n94g6rp18enjenR+rulF6/v9GFbzbqShgtesbqh7d5euwFybPSXtOlDx1jdNbhsaq9BgDjp3dt+O+g5Wul/gGrr/7V6o5/WG0e9bPbvjtLHzkuprfPG/48um+F1fdv9vTI81Ju20fg6vWVq/d9y8c/qKsR+J2vA3aRzjshpi0pq/OvCnccH1gpxf4lp50nS10dw/NGh4XsvpPUtu1rYk6P9L4jjM4+prLfGyvXlXfON2yVdm6xn9cBAMCwTIQ8+hErCeJFDQ34d2mVtKP9DSAfwWgAAAAAAABAg8ha9yNsqhWMxmD3sYKOW7Hgr6DgtGLHOig4rZaBY67XkAgRHuEKngAAAKgkz3q6o/9G32VT4jvpkImH17hGxQW1MYPCdZuVlauze4RgtCKhxUHrjG57BwcjDyoZ63S2x8Ncc9WjMAHZhGgDABDZNyTNHDXdL+lXRbYpfCb0K1F2aK3dYoxJSRr9xT1FUlnBaMaYGZKmR9xsbjn7BAAAAJpClFA0Scrkj5T87s3FA7dWrCUYrRTW2ooFo1XTF6+1+vfTiq/3+autLr4l//02Emrz8HNWD/RaXfiWmE79gZc3aLy3T7rlKauNg54+egLhaECzWdFXfJ0Ry9ZIJ37X06PPj13W2ycteMLT5Wcb7TvT6KTveUq5n/datodWSRsHrKZ0FQ+GbFWZrNUJ3xkOuhytt0+6/rHSAjvXbPKfPzr0rrdP+r+nrdZt9fT5Uyr3vdEb4b3q55olVl96E+8XAABa0VAJwWgbBmhvonZcwWhdHZIxvAcBPwSjAQAAAAAAAA0iLliMLgAAIABJREFUa909iOIm+q2+cIPdG3MgfzW1mTa1mw5l7NhfJYqFL7iWxxQrGm4XGJYRIvShUsoJj0jb2tUTAAC0rqcGHtHazMu+y46bcqraSmg7V1tQ27yWbb1659f1x3XswoQHuwPNkr7/9tt+iqSU5z9irlGDpglGAwCgsowxb5P0yYLZX7LWrvdbf5SJBdOlJOYOKj8YbVIJZRT6uKQLKlAOAAAA0Fq8iKNzRwWjZXNW37u5eLBab5+V/51UBEllpCHHswr//PGYDvAJmzvzZ2MDaIIcMku69uMxZUe9DaZ0SlvSUrJdmtolZb3hgbDv/rmnax/2L+epl6z238V9jjcNWv3s9uD3yh3LpLN+mR+KNtp3brI673jLgFygiVhrtWJt+PV/c0/x75zv3mx1yCxVLBStI+7+LL7uUasPHsVnksuNjyvSd1Klff9mq8+83ireVv452pKy6ttSXhnfuNHqS28quyoAAKABua5zPz7f6NOvN9r3K/6hsSvXSYd0VbFiwDZb0/7XWhMSNa4I0EB4fAMAAAAAAADQIIKC0UoJdwgzkL1RB/JXm+vYpYuELwSFihXrUNpuOmQct3TDhD5UQtZmlJN/D7SEKR4eUat6AgCA1rZoww2+82Nq0zHdb6hxbcIJauu1YjCalWuwxdg2s+uaJWszylnH6IltXO330aHEYULrXOeoUa+nwgRkN+prAwCg1owxh0j6bcHsmyX9NMTmhcFopTQMCxs8hWUCAAAAqBXPf/CtUya9/Z+9fdKaTcU3eTnEOhjrxX73sr1nSHvvbMb8d/Re0cJf5k6X5vTklzFjstGe04127Tbq7DCalDRqixkdOddd9v29wWFF966QBkOEFAW9n8K+3wA0jg0D0qYK/+T42AvSrU8VD1AL67QD3cseXFmx3TSle1dU7jyU4uVN0qp1lSurXMng59MCAIAm5graPWBXaU6PFHek6/T2Va9OwGgDQ/7zuzpqWw+gkdTfo7ABAAAAAAAA+MoGDOpvN9F7c4QZyB4mPK0VJWKd2pIb2wunWGiFKxgsTPCAMUaJWFIpbyDyfislKNhs9HvFHRzXeqEeAACgtvqG1uiJrYt9lx066UhNie9U4xqFUw9tvXriCkYzPsFoxYLLutrc2R9BwcU7/u1uq49sP+hz3iQpGWvMR4mODj12rsO1IgAARRljdpd0vfLDyFZJer+1tpTRirXaBgAAAEA12PxgtP+d+jH1ts/WYKxLA7FObTUTtCU2QT25ddopt0Gb7n2tzGpPbTFpzaZwTft+/1uVGOWuZVZ/W2p1/wqrF/qlNx9iNCWgy8bujp8Vzpxn9PNF4S+5ZveED1J7xzyjL1ztX/btz0gn7GN15YNWT78sjVxdela67hGrLWnfzSLr7ZNmTqlMWQDG34q11Sm3koGc//O2mP76qH+IKN9vwf766PjfAtz7y55uPT+mk/aLFhxaqBLnev1WadOg1eTO8uoCAAAaTybnP7+jTYq3Gb1qJ/8QtHf/wtOKr8e021TaDyiftVY3PCbd/KRV/4C03y7Su183HI6/1RGMNoFgNMCJYDQAAAAAAACgQWSt+5Gu8RKC0cINdi8e2NWKXMcuKDhMktJlBKNJw2F2/mEZwfutlKBQjtFBe67X04qhHgAAoLbu3LjAGap1QvfpNa5NNK5gtGJtzFZifPqeBQV0pbzBsoPR2kyb2k2HMnZsr6SRc+Nqj4cJo65HYULPEqYxXxsAALVijJkh6RZJu42a/bKkN1hrww5F3VIwXcoXcOE2hWWW4hJJf4q4zVxJ11Vg3wAAAEDjyuWPzv39lPdpcec89/rPSXouWtDJRm4nB/rZIk+f+KPV6KjqH9zqPsbTJ0kTk/6Dok/aT/r304y+tSDcOZrTE76ecwJC1H57r9Vv761+AM53b/Z0zcfaqr4fALWxom/8g7NcjJG+906jA3c1OmKOdH/v2HX6B+q3/uPt70utnnqp9O2nTZDWba1MXU7+vqdvvcPo306NlVzGhgqF4K1cJx08qzJlAQCAxjGU9Z/fvu3ydk6PfzBaJie96t89PfVfMe07k3A0lOcL11h97+b8a5jv3mS14DMxDTiC0boIRgOcSr/CBAAAAAAAAFBTlQ5GCzNIP8yA+FbkOnbFAsrCBC8Eca1Xq8CxoP0kQgWj0QsbAABUT8Yb0j0bb/VdtmvH7tqr84Aa1yiaUtuYzcha/6fBS2M7ngVd1xRrJ7tC5wrLLNYO9wu0K1a3ehbuWrExXxsAALVgjNlJ0q2S9hk1u0/SydbaZRGKqstgNGvtK9baJ6L8J2l5ufsFAAAAGl7Bfc9OW6Hkj1E2bCU4xmVwyOqL1+aHohUzZ5p7mTFG33h7TG96dciyAsLO/Hzm5PEdiP3nhyXP4/0ENIsVjpj+2QGfc+X48XuNfvXB4M+xyz5kdMW5Rqu+GdNnTh4e5nzaQf7bVCosq9lYa/WFq12/q4bz/Ldj6ohXqEKSvnitLSvIrr9C59ov8AQAADS/oZz//JH2zh7TgtuoYcPPAZfevrGhaNLwNc1//c3T1rT/dhMSVa4Y0MAIRgMAAAAAAAAaRFAwWpuJ3jslTBhXow7krzbXsXMFK4xIW0cwmgkbjOYKy6iHYLSk77/Dbg8AAFCuxZvv0tbcZt9lx089XcbU99McXW3CVmxDWfl3MjM+wWhBAV3Fjp0zuNgUBqMFh9aFDVhrFMVCz2JqU7yEa1AAAFqBMWaKpJsljR4av0HSG7YFhEWxsWB6esS6TNTYYLT+iHUAAAAAUClefnDJBMcDF8rR33rP2QjtvhXSxojHZ8/pxX9XeP3+4X57mNMTbd/VCiuK4pk1410DAJWywhESdeCu0q7dld3XxIT0sROMPnxs8NDlfz46pncfFtOsqTs+R6d2+a9LMJq/59ZLT79c+vbdXVKi3Wj+PsXXDcuz0i1Plr59/2BlwkhWriPUBACAVpRxBKO1tw23OYtdm//mHtoQKM8tT7rfQzc/KW12dGfs6qhShYAmQE9VAAAAAAAAoEFkbdZ3fkxtipnoz0AoNth9eJ1wgV2txhVw4Ao+277cEZgQ9ji7wjKKBbJViqv+RkYdZsdjatzBaPTCBgAA1XNH/42+85OxLh0++YQa1yY6ZxuqSBuzGUXpYja6HVqoWPvTGVxccC7coXUjwWj+5SRjjtEbda7Y9Ukilqz7oEEAAMaDMWaSpAWSXjtq9iZJp1lrHymhyGUF03tE3L5w/fXW2g0l1AMAAABAJXj5o3O7qhCMRnCMW29f9MHNs0OEmZ12oNH5Re5qz+mR9t052r5PO8hIV47vgOzePmn/Xca1Cg2nf8DqzmXSpKR05J5Ssr20e+nPrbe6b4W0987SwbtJsVj93pPfsHX4Na/ZPPx+7WiTjphjtO9M8VtClVhr9dgL0uJVVtltmZs7TzI6bm9p6oQdx3z1Oqu7l1sl240e7PX/PJkz3WhTyurFCkbpn3Zg6ee+2/HTWj/fb2N4ntWfHynve+Kfj6rO3+jXb/DUPzhcdiIuHT7baOoEadE/rB5eLa3dIu2xkzRzirRnj9Gu3dKS1VYDQ9Kld1bmu6/XEQYIAFFZa/X4C9LCZ6xe2igds5fRSftKXQnaOUA9GvIfbqOOtuH/v/Ego69eF9zeGByy6uzgbxzheZ7V0hekJaus/vPP7vdXJictW+O/fALBaIATwWgAAAAAAABAg8jajO/8dtNeUnnFgtHiJq54iWU3u1KDv9LOwITiIXWB+7W1CRxzBbAVBiOUGhwHAABQqlWpZ7UyVZgbMezIySeGbm+NJ1f7vDXDZf07ABmN7XQWMzElTNK3rVlqcHHh+6VYaF3KMYAxTBh1PSr299IIf08AANSaMWaCpBskHTlq9hZJb7TWPlBisU8VTO8Vcfs9C6afLLEeAAAAACrB8/Imu2zlU14IjnFbUUJAypwQwWj77WL0iRONfrLQ/752e5v07XfEIgdb7bOz0QePMvrtveMXjjYcJsdg8LDu+IfVWy/xtv8d7r+LdMOnYtpjWrRj+KPbPH32Kiu77dS/Y5702w/H6nJg/m1PWb3jp542jfk5xurj841++B6prY5D3RpROmP14cutrnig8LPBanJSuvbjMZ20n9HFt3j6/NUj7yP358iePdLmQaM7l1Xus+bLZ0R/wOuIqV1GfvUl+DPfQNrqrF96+tvS0svYs0f6zMnF/z6PmSvdvXzH9MzJUkdcWr3evc2jz0vn/W70eQx6f5X+3jv9IKlnkv935Y9us/rBu0suGgAkDX/vnvVLT3/Je/SNVVtMeuyCmPbbhXYOUG8yOf/57duC0ebtLh08S1r6vLuMVeuk/QgJR0ipjNX7f+Xp2ofDrf/4i/7zCdwE3AhGAwAAAAAAABpE1vo/wqbU8DLX4P7tyw2D3V3coRXFghf8lxc7FyNcAQSuwLJKc9bfJAOnR9SqngAAoPUs2nCDc9nx3W+sYU1K5wyXLdLGbEY2QjCaNNyeTud8gtGKBhe7g39HCzo3WZtxhlh3NmiAWNFrxZDXLwAAtApjTKekv0s6dtTsAUlvstbeU0bRjxdMH2yM6bI2dHrCMUXKAwAAAFBLXv7o3AmOBy6Ug2A0t5WlBKOFDLT60XuMTjnAaOEzNu8c7L6T9NbXGB36qtIGt172ocoFo33trUb9A1Lflvz5sZj067v899FbwjFrVTnP6gOXennn/6mXpM//ydOfPtoWupxla6w+c2X++bhmiXTCPlafPKm+Bklnslbvv9QvFG3YJbdbnXKA0VsOrW29mt3v7vMLRRu2KSW9/1eebjk/ps/9Kdxnx549RptTlQtFO/sYo4Nnlf5endrlPz+VGQ4cSLbX19/BePnpIltWKJok3ffFmHomFT+ef/hITItXS3c9azV3uvSu1xpNSEgTPukV3baSpnRK5x5n1LdF6uqQjp4rvet1Rt9c4H7/9vZZzenhPQOgdD9eaAtC0YblPOkTf/R02+fCt/MA1MaQIxitY1uqjjFGt342phmfc7dlVvQRjIbwfnmnDR2KJrkDhrs6KlMfoBkRjAYAAAAAAAA0CNdg+zZT2m0+1+D+EQx2d3MFoxUL/nItd5U3dj3/c1KrsIy0dQW7dRZMj289AQBAa9mS26TFm+/yXbZv18GamZhV4xqVhjZU6RKxpOTTsS1VcnBxuPZtyhsMvAYI286vN8WD0RrzdQEAUA3GmKSkv0qaP2p2StJbrLV3lFO2tfYlY8xSSQdvmxXXcPjazSGLmF8wfWM59QEAAABQJps/6LazCsFogxlpIG3VlSAEpFBvX/Tgnzk94dYzxujNh0hvPqSyx90Yo3m7S0tWl1fO2ccY/efpMefyXM7T5T4BbCtLOGat6sGV0nMbxs7/66NSOmOVCBnmdO3D/sf8miVWnzypjApWwd3LpTWbgte5erHVWw7l86iSrl4c/Hf58ibpc1eFD6zac7q0JV1urXY4fu/ytu92BKNJ0rot0m5Tyyu/WVyzpLzP55P3V14omg0obkJCettrjN72mvy/5ZP3l259qqxqRPL2eUbfPnPsd9mcHnflr1li9flT+AwCULqbn3B/xix8RurbbEOFTAKojZxnne2a9lE5htMmBpczfP+Av22Ec02Ra7SwCEYD3AhGAwAAAAAAABpEzmZ958dLDEZrNx0yMrLyvxnPYHe3ZImhFe7ghXAhdK4wu3SRQLZKCVt/Vz2zNqOczZYc5gcAAODn3o23KWOHfJed0H16jWtTuqDwrVZjHb3UjPEfuOUOlSs1uDhZMO1qh6cC91EsjLpeFbsWdF0PAQDQaowxHZKulXTyqNlpSW+11t5Wod38WTuC0STpbIUIRjPG7CfpiFGztobZDgAAAEAVeflBNRNs5YPRJGnVemn/XapSdEPr7Yu+zR7TKl+PqI6aa7RkdXmDbN97+PCAbtvfJ3VNkulI5C2fPWGrpLFpRKUcs1Z1kyM0I5OTVq+X9t55eJB+b5+UHfWgl50nS1Mn7Bhw/7Xr/ctZ9I8d/35hg9XmUd139pgmdXa4B+1vTVu9vHE46C8WKz64f90Wq7Wbd0xP6ZQ2+vwUcvezxd+Xz64lXK9Uo89zZ4e0+07DYYlPvFh825ufDL+fOT3ShISRHP0HozpqbnkBErtMcS9btZ5gtK1pq+fWS/etKK+cw+eEP0+ugIYPH2N061O1+xs/Yo7//CPnuN+/y9dWrz4AWsODq4KXP7NG6plUm7qgOGutVq+XBv27kKEFpP2H2kiSOkYNXTDG6A37S7c4Ql65FkYUdyyrTDnT+T4BnBh9BgAAAAAAADSIjM34zo+b9pLKi5mYOkxCaesfdtWog/hrwR2MEBy84FqeMOGCBYICGWrBWf+QwRHDZaTU1VbkUUsAAAAheTanO/oX+C7rjk/TqyceVuMalc4d7lWbtl49cYU3u7rol9pOLjf4N+0NajAXFIwW8Fj7OpYwwdeChGgDACAZY+KSrpL0xlGzM5LOtNbeVMFd/UHSlyWNPMf87caYva21xbpY/3vB9FXWOm4EAwAAAKgNL5c32eVVJxitt49gtEKDQ1Yvb4q2zev3k+Jt5QX8VMLH5xv97l6rTY4rugkJ6UNHG/1kof999cNnS/MnrZB3zvukfzwsdSRl3/xhmU9+R3pltexX36fZL+8n7fqrMduuYDB4KI8+Z3XR39zhQL190o2Pe7rgr3ZMwJgx0vx9pCvOjamrQ9qadu/n/562Ove33phB+h1x6X1HGP30fUYd8R3v2YG01Ud+a3X1YqusJ03tkr75DqNzj/N/CM3qdVbv/oWn+3uLvuTQ7lsxHFBhzPj/LTWKe5dbfeBSb8zf38zJw3/vL/RXbl87Tx4ORZuTkN5zmNH/e7B4yNWMSdIrm/2XvWOetM/O5Z3rnSZIk5LKC/8bsWKt1dFlBq81qq1pqw//xurPDw//PRdz2/kxvf2nnm+o4bQJ0j8flX8cg/5Ek46uqW99jdFeM6yefaV4fSrhHfP8Kzl3hrvyK/sIZwRQnslJqT/gsu2Ffit3TxbU0k1PWH3kcq+ibSU0l/a2/OnzT4nplqf8G1a0IRDGvcut3vXzEI3zkGbXQTg/UK8IRgMAAAAAAAAaRNYZjFb6bb5krFPpXLgwAOzgDkYoErzgGHsY9liPd1iGOxits2Da/XpS3iDBaAAAoGKe2Pqw1mXW+C47rvtUtZk232X1yBVGVSx8t7X4dyh1BXWlAo6dZ3Masv4jjArb+672bcobDDw/jRo2HTdxxdQmTznf5WGDnQEAaFbGmDYNB5b906jZWUnvttb+vZL7stYuM8ZcLunD22Z1SPqNMeb1rqAzY8w/SfrQqFlDki6qZL0AAAAAlMDLHyw5wdtaclG7dQ+HmDy/Yeyy3j4G5xdauS76Nj98j394VK3tv4vRnV+I6ds3WS1etSMQp81I8/YwOv8NRq/dw+j4va3e9ysvLzDnX08y+tpbrMzZb5Je3JZ2NZSSrrlE6p4ue9PvpeeXa3an/z3fjYPShq1WUyfwfnIZHLJ6/feDB0L/6DZPNzzuv8xaaeEz0pk/87THtODjfLJjP0NZ6bK7raZ2Sd99544yPnWlzQu62jAgnfc7qz17rF6/f/6+rLV60/96euLFwCqU5Pf3WX3gKN5DYazfavWGiz0NDI1dFjXcMYw9e3b8+7cfNjpwV+nGx63uWe7e5u5/j+l/brB6cKVVOjs8b/pE6dSDjL54Wvnn2RijOT3S0ufHLisMBWwln/ij1Z8Whwvo2GOadOJ+2747Flg9tO27o71NOmKO0edPMdp758LPAHd5rmDDZLvRvf8R0+f/ZHX5vTsK2GuGNDhU2RC/Gz4V07SJ7vfX195q9OW/jH0RK1v4PQOgMgqDlAq18ndTPents3rz/3qhwkPRujoK/p5PPdDomLnS3T5tX/62UUzQtVupit0TAFoZwWgAUOcGBga0ZMkSLVu2TH19fUqlUurs7NTOO++sffbZR695zWvU0dEx3tVsWPPnz9eiRYu2T9ugu7lluP3223XiiSdun77gggt04YUXVmVfAAAAAJpX1nMFozkeyxdCItYp5Xx6ysodLoDgYIQgrgCzsIEJpQQ+VJKr/oXHI+i9U6sQNwAA0Bru6L/Bd36b4jpmyik1rk15nCG4jnDdZmbl/3uNcQWjOYK6gtqeac8/FE0KH/yb9lJKef6PB25TvKxrtfFkjFEy1qkBb4vvcq4VAQDQryW9q2Def0p62BgzO2JZL7sCzka5QNLbJE3dNn20pFuNMR+x1j49spIxJiHpXyR9r2D771lrV0WsF9Ay6J9XXfTPAwBgFJs/SrvLlv47/zF7Gb200TqC0UoutmmVckxmT6t8PUr16llGvzsneIDsO19n9M7XjU1usI/cKTsSijZ6/qU78rPnZNyXjL190tQJESrbYv6+VFpfJOPQFYo22l3PSnc9W15b+fJ7rL5zppUxRqmM1f97wL+8y+8ZG4y2eJWqEoomSb+4w+oDR1Wn7Gbzp4dsRQfWF7Pn9B3vg3ib0ZfeZPSlN0ntH80p5wgWmTvD6Ncfqu6A/TnTCEYbbSBtddVD4T8f5u8zfH4O2s3ot0W+O0ZMKfGnv2kTjS472+iys/PnP/6C1cEXVS6d5pi9gpfvPcNIPr8vr1o/fB/CFe4GAMUMZYOXlxLAjMr7w/2WUDQU5Rd0eM5xRncvH9uG6OVvG0Vcvbjy1271dB8KqDcEowFAHcrlcrrqqqt02WWXaeHChcpm3VfQyWRSp556qj7ykY/ojDPOqGEtAQAAAAC1lpP/9WF5wWj+A/yLLWt1QQFlQZ1p0o4As7DBAqUEPlRS+GA093uHYDQAAFApa4de0pNbH/Zd9ppJR2lyvLvGNSqPq03Ymu2naMForqDhwGC0gPyRwnZ3UDvcFVKcjHU2dCf7RCwZEIzGtSIAoOV90Gfet7f9F9WJkm4PWsFa+7wx5u2SbpI0ks50jKQnjTGLJa2QNEXSPEnTCzb/u6SvlFAvoKnRPw8AAIyLXC5vssvx0IXRJielTT63Mt9/pNHVi6U7l429l7qyrzpBpI2sN+Ix2WuG1JVo3Pu7o9nbry26zq7ZF9XhpTUUS4xZ1tsnzdujGjVrDo+/WD9/b+u2Si9vlHbpllb2yTlI2y+ArZqv48WNVSu66TxepXA6l4N285//vXcafebKse+Js4+pzefi7B7/kKtW/X5b0Sel/J+n6+vVs6Lv41Ovj+nqJWMTZY6ZG70sSdqzR+rqcH8ORTF7mjQpGfzem93jPz+V2fG5CAClGMoFL1/Vot9N9ebJGreh0HgScelVO42dP2eaf7uzf0DqH7Dq7mqO+wKovEpfu02fJM2YVNkygWYSG+8KAADy/d//Z+++46Oq8v6Bf86dmcxMGqmEThIpgnRBpCiwKM2yigVRf7ZddW3oKutaHttaVldcF3tZH2Ctu4+AulgRBQUFDE1pQiAJEEJIL5NMvef3x0CSydxzc6e37/v14kXm1jN37tx77txzPvebbzB06FBceeWVWL16tWqjKwCwWq34+OOPccEFF2DcuHHYunVrmErqm/z8fDDGwBhDfn5+pItDCCGEEEIIITHJyZVbuOilQILRxIFconABIg5GkOGCkytfy3PONQeLiYgDH/x/krQvROERRuZZriTm3Vi2bRlhKishhBBC4t/39V+CCwK0pmTMCXNpAieqEyZi/UnYdFTQ3ky47bh426lt1871bmFoHW8VB6PpYvt6Su16kK4VCSGEkPDjnK8FcDGAqg6DGYCxAC4HMBPeoWjvA7iCc95F1x1CEgu1zyOEEEJIxHDPwJEUDcFoT1zk/aNon0xg5lB3UIiSj3f4Vbq4VlLt2/S/nxwfnZ959VFg+StdTieBI99RpjjuIIU9qPpBIWQskt7bzHHbezKGPuIdcHRSaY27DdNr62RM+KsLuX904fb3Qvc+DtUCTld0badotXp3+LaTyQBcPV75WDf/DIbkJM9hjImnD7YCQchVSU1YVh91fDmHmQ3A/HG+f04TTgFO6fzLItxBrP5INjLMPyM4+8sNGs7JBYI6EeA+5hFCiL/s6j8d0zEmTFZu4/jNIhe63+2uu+b+0YU+97pwyasu7K3g+PQXqmsSdReNYkhRCD8X1TsBYH1xCAtEYt6aPcE97lw/iUGS4uO3KEJCgYLRCCEkijz22GM455xzsG/fPo/hjDEMHToUM2bMwPz583HOOedg0KBBXvMXFRVhwoQJePPNN8NVZEIIIYQQQgghYeSQBcFo0Pu9TLVALq1hXYlILQhAFLDg4HbIUG54qHVbiwMfrJC5uFFjsIhCHzqXS2KSMDxOFK5GCCGEEOILu2zDjw1rFMf1Meaj0HxqmEsUOFFdzypbwXmiNeJTfr9MkIzmT6ic2rjOyxMGo8lWcR2ZxXZ4GF0rEkIIIdGHc/4ZgGEAXgNQpzLpRgCXcs6v5JxbwlI4QmIEtc8jhBBCSETJnr97mrl6MFou6nDbNIZnL2XISwd0EjB5ALB2oQSDngk78Lpk4MDxRPtNWV2pSrhXVorn3w+ex7BwRux3RuWtFvA/TNE8vSgYzddQuURisXGs2RvpUnj604ccr67t+vv/m+dk3Poux6YSoMYCtNgDW6/EgCRB8zWXDBxW+xWDAAAqGzn2Vfo+38Duvs8zrBfw9d0SemcqH+ty0xjWLpQwoo87EK0wB3j7BoZpp4YrGE15PYdrAYcz8c5vpTXa3vOwXsCaeyT0zPD9c9JJDN/cI2HaYEAvAT3Sgb/OZbjpbP8/85fmM/xuMkOq+PmqqrJSgD/PYnhgdtdlyE4FUgTr0br9CCFEiU1DMFritecJrxVbOS55VcbafUB1s7vuWmMBjtYDK7cBQx+R0UTN0olAqhH4f2cy/O91yvWJ3pmAQac874UvyWiy0vebeKtq4thToT5NqtEdRq3FvLEMT/w29n+HIiSU/O9LzY9AAAAgAElEQVQxSQghJKjuuusuLF682GNYWloa7r//flx11VXo16+f1zzFxcVYunQpFi1aBJvNBgCw2+246aabYLFYcNddd4Wl7IQQQgghhBBCwsPJle+w6iWNv5orUAv4UhuX6NSCAGy8FalI9x4ui++8ag0WUPtM7NwGU4jDF0TvQalcRskMm8t7erUACkIIIYQQrbY0rYdFblIcd3bGHDAWe41FRHU9DhkObkcS87PVeAyShQ1HRcFo4uAyEavKuCSvYDRR8JoVVlm586JZlyxcfixQD0aja0VCCCGJjXMescom5/w4gFsYY3cCmASgP4AeACwAygFs45yXRKp8hEQzap9HCCGEkIiTXR4vU2T1HON8uRyM5eCeGQx3n8thdQDmpPbLEXdwjPJvqS9+y/GPebH3O3moHBSEez1yAcND5zEcb3KH/+SmApIUJ9tt3Uqg8pDmyQscpYrD1ULlEt3yrbG7bdbt63oakaPPSl7DTgYfpS9QfqjjwSoIwxyJ29sb/duf1i6U8O8ijrv/I55/60MSepxoymY2AN2Suz7Ojc1n2P6wDq127nHuCQfRviJzd8heYW5YixNxooDKU3sA3y6UkG4C7E5tn6uavlkMa+7RwergMOoR8P12o4HhzWsYXr2Ko7rZPSzdBEgSwDlg1LvPubUWDrvTHYSWpGew2DiarED3NO3nZMYY8rOBXUe9x1HAJyEkEPYugtGsDqCyEejRLTzlSUSL1/j/0PD3b2SYMihOru+IX7JTAINevA/oJIZ+WcCBKuXx/1fEccNk2oeIJ7Vrt3d+x3DleAkumcPpAs5/Ue4yUP29G1lMtnUlJJwoGI0QQqLAsmXLvBpdTZ48Ge+//z769OkjnG/AgAF44okncM011+CSSy7Bzp0728bdc889GDVqFKZOnRqqYseFtWvXRroIhBBCCCGEEKKZSxSMxvz/mU+1szvTFtaViNQCyqyC4C+1UAatIXRqAQQ2uTXkYXaiUDOl/cgomQCX97RqARSEEEIIIVpwzrGu7jPFcWYpGePSzw5ziYJDNXxXtiJJSpxgNFFnPlETING2E9XNAXH93MCSoGOejwMV1bMd3I4WuVlQptgOD1Mrv0ljsDMhhBBCQodzbgfwbaTLQUisoPZ5kUPt8wghhJAOuGeH7p7OY6qTD3IeBDASgDvww5zkOX5gd/G8O8tjN7ApFKqVf8ZFvyx36Eo8BhnwPT/5NH2+vVRxOAXKiG1OwFjyKYOAHt3EHba7pwHHFZ5rVFLNIb7LQwDgJz/3p25mYGB3cVBmkh4Y0sMdUuWPQEPR7pzOsHiNd9nOHSKeRy1Er6Q68YLRRAGVZxYy5KW7P5/OdYRAmPzcV0T0OvXzbFaK5/pSjAwpftwWL8hRDkYrrfF9WYQQAgCyzOHUkMlVWkPBaKEiyzygOve4fKZadyUEAAbniYPRfioDbpgc3vKQ6Kd27Ta4h/uYo5MYdBIwqAfDmr3i3+iG9w48kJiQROAd0U8IISSs9u3bh9tvv91j2MSJE/H555+rNrrqaNCgQVizZg2GDGn/ZViWZVx99dWorqY7UYQQQgghhBASL5zcoThczwx+L1MtSCvWO/KHknpAmXLAgo2LQxmMTGswmnpYRqiJ1iEMRlNchng7EEIIIYRoUWrdj0O2A4rjJnSbrlpnimZqdcJw1PWiCRcGoyk3BBJd16htN3Hor/ey1PapBmedT2WKFWr7I10rEkIIIYSQWELt8wghhBASNWTPXvUFjjIMte0WTn655SPVxfXMEHec3HjQt6LFO4tNeXiaKX46n3KnE/yTtyBP7wb5LCOw4jWf5i9wlCoOL61xBxKQdodrOR5fJeOVtYm3XS4bq/6dEQVaHaTLpjbHGjie+kzGZa+5MPcVF+76t4wNxRwHBeFXagw6dyDW9CFAZrLyNBePYn6HogXDNROU1/37s8TdmlOMDN3TlMeV+LGdYp0o2CtfJUAuEfXPVt7XyhJwnyGEBIdd4cHQSkQBlqJpX10r45Z3ZSz4QMaOw3SMOolzjvc3y7hhqYzrl8hY9oOMow2ATfmZ8poU5sbP9R4JncvHifeT19dxNFmj+3u6fj/HXf+WccUbMp77SkZ9C8eROvc168lrjvtWyPjlSHS/j1iidk0ypp/n6ytU9i8AuLyLa2xCiJs+0gUghJBEt3DhQjQ3tz+CKCMjA8uXL0dqaqpPy+nevTs+/PBDjB49Gna7HQBQXl6Oxx9/3Otpl4QQQgghhBBCYpMoGE3H/P+ZT62DP3V2FzOwJDBI4PB+HJhVELCgFsqgNbxDLVxBtN5gEgejeZfLn3AKQgghhBAt1tV/Jhx3VsasMJYkuFRDcFVCduOTqAGRcmMg0bWLejBa4KG/ANDgrFUcHvPBaGrXiiw2wwcJIYQQQkhiovZ5hBBCCIkasnfP+v8cuRIz+32KckNvj+H3Vf8Nc5pXdbnIZy9l+NOH3r+nttjdne7zc6iDJQA0C4LRUo3hLUeocM7BH7oCWP9fv5chCkazOYGKBqB3pt+Ljiv7KzmmLpJR0RDYckb1BbYfDk6ZQsGoB84bDvz3Z8Bx4tB17QSGGyerH1MKcxk2lXgfk0qqQlHK2HOohmPKIhllHkFXHC99w+FP/mCSHmCMwWQAPvyDhLmvymjocEvx9P7A8/Miex4Y3Y/hlasYbn+v/T0unMFw6enq8xXkAMebvIcnYsheieA9F2SHtxzRThTMWCIIliOEkK7YNQZy3f0fjivOEC2D4/v9wOc7OT7fybGnwnP8q2s5Pl8g4ZyhdN1223scr61rrxAt+xHon+1/kNNTF9M2JdpcNZ7huiXifW3qszK+XSgh3Rx9+9Q7G2Vct6S9nv2fIuDhj90vWj26HbmvOT69Q8KUwdH3PmKNqH55y1QGxjy37+QBwJMXMzy40nsfmzsauPtc+jwI0YKC0QghJIL27t2LVas8b1g+/fTT6NGjh1/LGzp0KBYuXIinnnqqbdhbb72FRx99FJmZ8XUnqri4GD///DPKy8vR1NQExhiSk5ORl5eHgoICDB8+HMnJgkeeBJHNZsO6detQUlKC2tpadO/eHX369MFZZ50VkvVXVFRg06ZNOH78OGpqapCamoru3btj3LhxKCwsDPr6CCGEEEIIIdFFFIymZwa/l2lk4s76Jo1hXYmIMQaTZEKr3OI1ThSwIAoukyBp/gxVwzJCHDjGORe+B1/CI8IR4EYIIYSQ+NXkbMDWpvWK405NHom8pN6K42KBWl3PmmDhssJYNCYKRhPXPTnnivPZBPVSpUAztZAzcTBa6O9ThZLae6YQbUIIIYQQEiuofZ7/qH0etc8jhBASArL3g9dOte/DgeJTUWQag3JDbyRxB8Zat6Cn8xjAmPD3zZPOGcIg+kX1oY853v4ddbB0OHlbsFNnKXESjIafN2gPRTtzJtic6zyH1RxFwYtPCGcpqaZgtJOe/5p3GYp2zhDg6z3q03x+p4SeC72PCSe98zuGKYMYPtnBcdt7yt/xu89l+Ptq/8MiOhvQHXjqYgndzMD4AiDdzNDQwlFU5h7XP7vr40m+IKippDp45YxlL6/lnULR3NRC0V65iuHWd5UnsHQIfZx2KsPRZyVsKgGqm4FBecCwXoAkRf488IcpEuaPc+9Lw3oDeeldl6kgRzlkrzTBgtHqLNwj7K6jAgo/9ZCfrVwnKqsBZJlHxXeBEBJbtAajHWsEWu0c5iT3ceZwrTsE7fNfONbsFYc0A4BLBu5dLmPrUF0QShy7Dhz3DEU7SanepNXsYXTcJ9roJIb3fs9w5T+V69zbDgPvb+a4eUp07VMumePBld4By63K3Y3QYgce+6+MbwYn9vEmUM1WjiqFAGcAmDvaex9hjOH+2Qy/m8SxqQQ43sSRZgJO78dQmCtuC0kI8UTBaIQQEkGLFy8G5+21zpycHFx//fUBLfOuu+7Cs88+C4fDXXu1WCx48803ce+993pNe91112HZsmVtr0tKSpCfn69pPWvXrsW0adPaXj/yyCN49NFHVZd/UllZmWpl7dprr8XSpUu9httsNrzwwgt48803sX//ftXy6XQ6jBo1ChdddBHuvvtuYSOoqVOnYt26dW2vO34eahoaGvDwww9j6dKlaGxs9BqflpaGefPm4bHHHkOvXr00LVPE4XDgrbfewiuvvIJffvlFON3AgQOxcOFC3HDDDdDr6RRPCCGEEEJIPHJy5bushkCC0VTCF6izuzqjZBYEoym3RhIFlxkls+abGjqmh54ZFEPyQh045uROyFBuLWxSCNgT7VuhDnAjhBBCSHz7oeFrYb14SsacMJcmuAwsCRIkyPDuCCOqY8Yr0f0aBkEwGlOue8pwwcmditdMwtBfhWWpXRs1OOsUh6sFi8UC9WtFCtEmhBBCCCGxgdrnKaP2eZ6ofR4hhJCw4cohSHq4cKb1J8D6U6fpOWBrBUziMNCCHPHq9lRQEBEAWOzicSlJ4StHKPFv/k/ztOz/3Qc2YqLn/K0WZC6+B+muBjTqunnNU1LNMXkgddYFgC93df29Gtab4es94ukyk93BUFkpQK3Fe/zLVzJcOV4CAMwaBojCD88fEdxgtJF9gEtP9/ycuyUzTB+ifRmFucrDDyZYmJXIGpX9QuRclQDMMztlN5uTGKYO9qNgYeDrvpQvOL+V1yfWua28XjyuvyCIMFGJghkdLqCigQI+CSG+swvClZU8+xVHs5Xji50cO4/6tp4dRwC7kyNJn7j17TV7g39+V7tWJqSz/BxxnRsAvt7DcfOU8JVHi/2VwGHlJmtC6/YDNgeH0ZC4x5tAlahc24quhwGgezrDBSMBCNo+EkLU0V1ZQgiJoC+++MLj9TXXXIOkpMDuruXm5uKCCy7AihUrPNaj1PAqlhw+fBgzZ87Enj1dPDrnBJfLhS1btmDLli244oorMGDAgKCVZceOHZgzZw6OHhX/StHU1IR//vOfWLFiBT755BO/17VlyxZcfvnlOHjwYJfT7t+/HzfffDNeffVVrFq1Cr179/Z7vYQQQkisaXDWYZdlC47ZjoR0PQYpCYXmU3Fq8kjoGD0lIRSanY3YZdmCRlcDhqaMQm9jfqSLROJEk7MeOy1bUGE7HOmieNAxPfJNAzE0ZTQMUtfXg0phWACgDygYTdxZP9Y78oeaaNuJgr/EwWi+hQoYJROcLu99YUPDV9jfshOA++kxvZL64bTU05GqSxcui3OOX1t+xoHWPV0Glon2v5Nl8h6mvH0OtO7GiuNL215302dhaMpo9DT2VV1/pb0cu5q3oN5ZqzjeJJkxIPk0DDSfptrhK1z1Bl8lSca2eobEJL+WccRaij0t29Dk7OLxxB3omQEF5sEYmjIKOhbcWwZ1jmrstmyDjVsxLGUsuif1DOryy22l2G3ZDodsw4DkoRhoHkZPTiIkiLo6R+iZAYXmwRicPBIGyf+6CCG+kLkL39d/oTguS5+L4aljw1yi4GKMwSiZFMN3v6//AnstO1Tnl5iE3sb+GJYyFmZdSqiKGZDj9grssmxBnUO9B0yF3bdrN7Vrl5VVSxWvmYpbdytOr1S3TWJG4fIdXLlXXawHTVMwGiGEEEIIiQfUPk87ap9H7fMIIYSEgcuHnvUntVpUg9HSzeL7o2U1vq8uHlls4nEp4p9+Y8uK17RN1y0HGOJ9L4WZU8Ayu6PAUYYduhFe40toXwIAyDJX7QR90tAumkZcMNL9vb30dIY3vvPsfC+x9vGAO+hnaE9gd4XnMgZ0B6YMAsb2B4rKxOsy6IBZpwH//bnrcp83IvD2FgWCQIHqZqDJypFmSuw2Hb4GxBl07oCwOcOAz3Z6jz93aPxuz9xU5eH13rdR45ra+81NC185YoFaAE5JNQWjEUJ8Z1N+ZqOiRz/xP9iLc8ClnKGdMEqDfL2RnaJ+rUxIZ6f3A7qnAceblMcXlQF/X+3+oibpgLH5DGfkA5IUuf3Mn+8N58ChWmBgXvDLkyhEvwnoJKAv1TcJCRkKRiMkyri4C/VOehRGqGXocyIeZHHkyBGUlpZ6DJsxY0ZQlj1jxgyPhlcbN26Ew+GAwRCbndPsdjtmzZrl1egqKysLw4cPR15eHgwGA5qamlBRUYHdu3fDYlF4dE4Q7N69G9OnT0dNjedVQ15eHkaPHo2MjAxUVlZi48aNaG1tRW1tLc4//3w8++yzPq9r1apVmDdvHlpaPH/J7tmzJ0aOHImsrCxYLBbs3r3b4wmd27dvx/jx47Fx40b06dPHvzdKCCGExJCjtjK8cPgRNLpUHosVZGPSJuL6nncHPTwk0R23H8ULhx9BrbMKAPBRFcNVPW7DxG7nRLhkJNYdsx3BC0ceQb0zelvpDU4ejj/0frDLzuWiYKpAjkdqAQLU2V2daPtY5VbF4TbBcF8DE0ySGRaX9523n5s3ew3L0ufizr5/Qa5CIJXMZbxX+Qp+aPjap/UrUQxGY8rvq8J+2CvoYmWVDjf0uhtj0iYpzrO9aSPeOroILnTR0qAGmJZ5Pi7N/Z1iQFYk6g2+Gpc2Bdf0XODzb1cb6lfjvcpXwFWeWKVmWMpY3NjrXk0hjVqUtu7Dy0ceh0V276sfsWW4qdd9GBakwJofG9bgnWMvg+NEi5AaYErGHFze/UYKRyMkCDjneL/yNaxv+LLLaYemjMHNve4L2vGDEDU7LVvarhk7m5wxE1IchJgbJbNiMNqO5k2al9EjqQ8W9HkMGYboekz4zuYivHn0b8IgMS2Y4KmJatcua+s/9WkdStdIEpNgZCbYuHqYcEfmGA9GU7tWpBBtQgghhMQyap8XPpFuo0ft87Sj9nnUPo8QQkiYcD96u1stAHJVJ3nyYoYHV3rfJ66xUBARADTHeTAa5xrbCOj0YHf9HcwguKfXMx/5jaXYYfIORiulSygAwFENz6hLMwG9MpTDwU56cI77O3nfLIY1ezgOdLj19cgFDH0y27+zjDE8P0/C3FfltpA/swH4xzwJjDEsukzChS/JaBTcvnjiIoZLxjD8Ui6rdpw/Zwhw+emBHysKuwgmGpHA1ec6C/c51Cs/G9BJDE9cLKGoTPYIahjVF7h9Wvwe3zMEmaB1iRaMptzcECYDYDLE7+fvj4xkIN0ExeNhaQ3H5IG0vQghvrH7EIwWKNn/XLW4cCjIXTwK1S+hCfFi0DMsvoJh/pvKX8ayGmDh/3UcxzH/DIYl1wFJ+sjUMd7e6N+BY9ZiGfuekKCLYKhbLCupUd7ufTMBvY62KSGhQj24CYky9c5qPHTw5kgXI+49Xvg6sg2RjbTdsGGD17CxY4PTMfT000/3eN3a2ort27dj3LhxQVm+VosWLcKjjz4KAJg8eTLKy8sBAL1798b69euF86Wmej7aY8mSJdi9e3fb6/z8fLz88suYNWsWJEnymp9zji1btmDVqlV46623gvBO3BwOB6666iqPRlc9e/bE4sWLcckll3iUpbm5Gc899xyefPJJ1NfX+/xE0N27d+OKK67waHQ1a9YsPPbYYzjjjDO8pt+2bRvuvPNOfP/99wCA8vJyzJ8/H2vXroVOF/sdwQghhBA1K6uWhT3cZGvTDxibdjZGpZ0Z1vXGu1XV73t0cOfg+KDyNYxJm0QdbklAPql+J6pD0QDg15ZfsKnhW5ydOVt1OidXvsuqZ/53tFELEPA1sCvRiI5NNlm5taFouK8BdEamffpaZxVWVX+A63v90WtccevuoISiAcr7ii/vS4YL7x97DSNTz/TqKCdzF96rfLXrULQTvq1bhTPTf4O+pkKvcSur/hXVoWgA8FPTOpzRbQpOSxmjeR6r3Ir/HH/T71A0ANhpKcKWpg04s9s0v5fR0fKqJW2haID7+PXusZfx1Cn/G3BwmV224YPK19tD0U5YV/8ZxqdPQ755YEDLJ4QAJdZfNYWiAcBuy1ZsblyHSRnnhrhUhADf1X2uOFzP9JjULT72wWCEEx+zH8HqupW4rPvvg1Ci4OCc473KVwMKRQPUgtGCd+0i+gyMkgk2l/ZgtFi/nlK/VqQQbUIIIYTELmqfFz6RbqNH7fOofZ4aap9HCCEkImR/gtG6ToC5YpxyMBrg7rw7rLfvq40nFrVgtHh47s+urh+swv7wJHDmLLBThokn6lWAguoSxVEHK50A4mFjBUZLQFxBjjuwSGTuaGBgnvteR34Ow8b7JXy8neNIPTD9VIZJA7zvg5w7lGHbQxL+u4ND5sD5IxgG93BPd/Yghm0Pu8d1DFjLTgVmDGU4s9A93eYHJHy8g+OXcqBjlp5RD5xRwHDhyOB06O+TCegkwKVwuEv0YLSDfgQMngz1GNWXYetD7n2luAo4vZ97P0g3x2/H+8xk5YBBX8PlYl2dRfn8nhHbtyFDgjGG/Bzg5yPe49SCIQkhRCScwWhas47jVZkgaMhfBTnxW0cioTNvnIQai4zb39O2P76/meO84cCV48O/v8kyx/ub/fvelFQDX+0CZg8PcqESRInguq5AJSScEBI4CkYjhJAIOXLE85e2vLw8ZGdnB2XZw4Z537A6cuRI2Bte5eTkICfHXZvT69tPOXq9Hvn5+ZqX8/HHH3vMu3r1agwYMEA4PWMMY8eOxdixY/HQQw9B9ucmsoIXX3wR27dvb3vds2dPrF+/HoWF3h2tU1NT8cgjj2DYsGG4/PLLUVdXp3k9sixj3rx5Hk/VfPTRR/HII48I5xk9ejS++eYbzJs3r+1ppOvXr8e7776La665RvO6CSGEkFgjcxd+bfk5IuveY9lOwWhBtqdlu9cwJ3fiYOteDE0ZHYESkXixx+K9b0Wj3S3bNASjORSHBxKMZpYEj1eEOPiLuIkCyqyy8qMabVx5uC9BZwBg1qX4NL3S8RUA9lp2+LQcNUr7itq+pcQiN+GQ9QAKzIM8hpfbytDs0vDY3Q52W7Z5BaO56w3Be8+htMeyzadgtAOtewIOGTm53mAEo1nlVhxo3eM1vMFVh0p7OXoYA2vpqvZ+97Rso2A0QoLgl+Yin6bf37qTgtFIyB23H8Xulm2K48akTUKavluYSxQavtahRHY2F0VVMNox+5GgBFbrmHITh2Beu5gEn4FJSvYpZDdYn2WkmCTl6w4DSxJ+DoQQQgghhEQTap+Xr3k51D6P2ucRQggJE9nl+zwtzV1O0icDkBggK/SJLaVgNFhUbqWnGMNXjlDh6z5SHc9ueQrsynu6XlDPfBRsKVMcVVJhBwWjASXVXXc8L+wiGK17umen+exUhhsmd92RfkB3hj+eqzxdQQ7Dgunqy8hJY/idhvUESq9j6J+lHAJ2sIoDggfgJIJDtb7P0zHUo1cGwy1TE2f7ZQhuszXbAIeTwxCEIL9YUK/c3BCZvjUfTBgF2crBaP58/wghxBbEYLR0EzCyL/D9fuXxStdyieRIkJ93TQFFxF8XjGCag9EAYOU2jivHh7BAAj+XBzb/im0cs4cnRn062EqqlPePfApkJCSkvB/jRQghJCxqaz1/VcvMzAzask0mE4xGz7t0ndcXS8rK2m+wjRw5UrXRVWc6nQ4Gg/8BASfJsowXX3zRY9gbb7yh2Oiqo0suuQS33nqrT+tasWIFdu7c2fb68ssvV210dZJer8eyZcvQvXv3tmGLFi3yad2EEEJIrLHJNjh5GB/F0oFFbozIeuOVzF2wuJoUx1nlBHvEGwkqh2yHjVsjXQxNRN+BjkTHPH0AndJ7GwsUQwT6GU+BUfItsCvRiAITbIJgtFaX8nCzzrfAhAHmoT5Nb3E1gSs8TszXsDGRfqYBSJK8WwsPSPatnABgcXmfX5sVhnW9HO/vk022Rqze4KtmDccDj+mdwfks/dnWSpQ+x5Nag3BeV9t3g/UeCEl0tY6qrifqwCbbQlQSQtp9V/+FcNyUjDlhLEloneJjXU+kzlkNmQenY3owqNUPfFFoPlVxeJJkRH9TcMJRBySfJhiu/bORoBOWNVYUmgdDUmhSMjDZOwCCEEIIIYSQaETt87Sj9nnUPo8QQkiYiH6zZQyQBN27LOJ7o7ylGfzXrdBbG9FHUNUpq0nMHvaccxys4mhs5bAIbmMZdEBSPATrHClWHz/5Ak2LYSMnId9RqjjucIsZdmdi7ksdlWp4/sukAQymBHy2CLdZwX/dBr77JxRkKKcRlgT+/JyYVmfx/TuUyKEemSrN6RoEYWHxqF7QzCojwZ53yzkHP7QPfE8ReMlu8NpK8OKfwXf/5PEvT1Zu6+LP948Qktg4F19HaDWiD3DvLIa1CyVU/V3CP+aJIz0UmnjHrcZWjtJq7tGuvc6iMoMfJg+Ig+s8EhG9M4B8H56vc8C3ZraaNLRwbCnjsNjEB4aDAa73oCDci3StRCEEHHCHpBNCQicBf2ojhJDo0LkhVEZGRlCXn5GRgcrKyrbXNTXxcRfh+PHjEVnvd999h9LS0rbX48aNw/nnn69p3ocffhivv/46HA6HpulfeOGFtr8ZY3j66ac1lzM1NRU333wzHn/8cQDAL7/8gtLSUp+eAEoIIYTEElHwTDi0uiisK5hssji4yiFrq0cRoiSWgvW0HFecXPn7oGf+dzgxSAacl30Fllct6bA8Pc7Lme/3MhOFSafcwki031ll5Tu3ooA1kckZM/FT43eodWq7q8Uhw85tMDLPoDtrEM6jeqbHedlXKI7LNw3CiNQz8HPzZs3LUwrN8idIq1VhWwcjkCtcfD12BeOzBIK3jVpc4lYKouOYL1pV3q9VEEBICPFNncZzTDtqKEFCyy7b8GPDGsVxfY2FyDcNCnOJQmdKxmxsaVqPemdg93Wc3AmLqxFp+uDef/KX2vlbqxRdGs7J+q1w/HnZ8/DG0acDCsM9xTwEw1JOVxz3m8wL8XPzZk1BrDOy5iJZl+p3OaJBii4N52ZdjC9rl7cNMzITZmVdEsFSEUIIIYQQoh21z/MPtc9TR+3zCCGEBEQWBKPp9IA5FWiq8x7X7B2MxqzU87MAACAASURBVF0u8BcXAh+9DrhcgCSh/4itOATv38q1BDnFm1+OcFzymozi44DEAFlwGyvF+/lvMYdXHgLW/1c8wfTLwfppvIcy9hwU2O8Vjn5ljQN3zUzysYTxRdQB+qR+WcA1ExiqVJ6FF293VTnnwDvPgi99ArC700MKerwEZN7gNW1Jgne+r/fjVllhTuKGemSoNKerawFy0sJXlkiqEwWj+dbcMKbxXZvBH54PHD/S5bQZuY8BOX/yGi7ajoSQ+MM5R6sdaLS6/zW0Ao2tJ1638hP/t49rEgxvbAWcPj6LMM0EnDMEmD2MYdYwhj6ZnudxxsR1IdE1SzxxujhufY9j6QYOp+wOEVp+i4SB3d3b3Ren5IoDqc7IB2bR8/6InySJ4cHzGG78l7Yv5fbD7uMOY4HX2+1Ojpvf5nh7I4fMAb0E3DqN4bnLGHSS5/JLAwzB7+ralijjnAsDvxM51JqQcKBgNEIIiVPBqEhHi1NPPRW7d+8GABw+fBiLFi3CwoULw1qG9evXe7yeP197QEBubi5mzJiBTz/9tMtpLRYLNm7c2PZ63LhxKCgo0F5QANOmTWtreAUA33//PTW8IoQQErdsXPwL+ODk4QEFBZ1UZT+G446jXsODFUBC3NSCWIIRoEISl9q+NSh5OAxBOE74qt5Zi3JbqddwLUFILkEHfz0L7Ge+6Vm/Rfek3vi5eROMkgmnp52FAnP8hEuEilkQaCba70RhEKLliGQbuuOefn/Fjw1rUGYthgwXAMAm21DcuktxHqvcAqPkGYymFB7mXn4eeiT17rIceUm9VfcViUm4sde9+KFhDfa1/OKxjxe37FY8jyudX0XfDQNLQqouHXVO77tzviwHAAYnjwj4e+SP4/YKVDkqvIb7GsAq+izNUgoKzYO9htc6qlFhP6R5Ob5SO/Y6uPKTgX1hVdk+wXoPhCQ6pWMrADBI4PBu9cXjrgk/iTY/NX4nPMZPyZwTV/dEcpJ6YGG/p7Gx4RuUWvcrfuc6cnEX9rbsUBxX56yJmmA0UV1Mz/QYnDxCdV4GCX1NhTgjfQryVOqpw1LH4u6+T6GoaT0q7V03jO8oiRlxinkIJmXMQJKk3Buul7EfFvZ7Bpsav8Vh60HFzyZNl4FhqWMxOnWCT+uPVhfmXI2+pkLsat6KFF0azkifij6m/EgXixBCCCGEkKgQT9ei1D6P2ucRQggJE9mlPFySgLQM5WA0pWEfvgQsf6XDcmXkV27G9xne9+7LqhPrHo7TxTH7BRlH692v1QIGUuIg44s/cLl45KDRYA8t1bwsptMhf9okwLspAQDg7uU6XDyWo392/NSDfVWq8n1aMJ3hzzMZctMYmqwJ9L377mPwNx7yGJTvKFWc9GCCd76v9yOYqTA3+OWIFZkqzen8CZmLVaL9JjM5MY7FvNUCfs95gKXrB1cBQKarXnF4HTUnIyTqcc7RYncHkjW0BZmdDDjjXsM9As06BaC5fAw088f9sxnWF3MwAOMKGOYMY5g0AEjSi4/PksqhOxFqj09/wfHP79vf6cFqYPZiGbOH+3ZO654GFD0o4bFVHP/42r28dBMwqi9w1iCG+2Z5h0gR4ovfTZaQm8rx7iaO4uPufazFDvxaqTz9q+s4bp0a+D73l1Ucy35s/444ZeCFNRwFOcCd0zsHowW2rsN17t9P9Dr6rviiuhmw2JTHFSRwqDUh4UDBaIQQEiFZWVkerxsavJ/mFIj6es8f8zqvL5ZceeWVWLFiRdvrP/3pT/joo49w/fXXY86cOejZs2fIy1BUVOTxevz48T7NP378eE0NrzZu3Ojx5MrCwkKPJ2FqIXd6mtiBAwd8mp8QQgiJJTaVcLKbet0Hsy4l4HV8W7cK/3f8n17DtQQYEe3UQkwoGI0EQu27elOvPyNZlxrG0rhtbfoB/zz6N6/hakFCJ4m+D8EIghyeOhbDU8cGvJxEYpTMisNF4ZlWwbHO5GMwGgBkGnIwJ2eex7B6Zy0eOOD9xNWTZeqmsZwT0n/jtWx/6ZgeZ2XMxFkZMz2G/7X0bhy2HfSavtXlvY1EIVi5hp4YkjISa+o+8Z5H4fskCqYDgFt6PygMwAil1bUrsbJqmddwX+sZos+yv2kAbuvzsNfwTQ3fYtmxxV7DfQ1kE1H6HE8Kxnld7XhJ4bWEBE7mLtQ7ahXHZeqzUesUPG6RkBDhnGNd/WeK45KlVIxNOyvMJQq9LEOu5vqYzGXcue9yuOAdolznqEY/0ynBLp5fROfvTH2uYn3FX/nmQcgPYchz96SeuCDnypAtP9owxjAmbRLGpE2KdFEIIYQQQgjxGbXP047a55X6tC5qn0cIIcRvsqCHvqQDUgUPuWj2rsPwL9/zGtbfoZxmFWhn2Vjz7a9oC0XrSkr4mwgEFS/dA+zbJhzP7n4BTKfzaZkpAwYi72AlKvV5iuPf38xx3+zE7ewr+j79Yx7DgulS22tT+J/TGTH8K+/jUaG9RHHa0mr3fb94Cpn2RYMfzVkKc4JfjliRanQHyCgFXNYmUMhVnUU5Kqeb780NY9OGTzWHogFApiwIRqMm/4SEDOcczbYOIWYe/3OvkLOmjsPbgs/cf6uFGkeT5CTgyYulrifsRK0GJLpUjCcfbvH+gI81Aks2+PbBF+QA3ZIZ/n45w99VcqIJCcSFoxguHNX+rT1Sx9Hvz8pf1Hc2ctw6NfB1vrtJ+bvwzkaOO6d7Dgs0BN8lA0fqgPwEvt7wR4lK2HcBbUtCQoqC0QiJMhn6HDxe+HqkixH3MvSRr2F0bghVV6fwNCc/Wa1WWK1Wj2HZ2dlBW364zZ07F3PnzvVofLVhwwZs2LABADBgwABMnDgRkyZNwllnnYUhQ4YEvQyVlZ5xzgMHDvRp/kGDtHXCOXz4sMfrDz74AB988IFP6+qstla5EyMhhBASD9SCL4ySKSjrMAvCarQEGBHtrC7xZ0nBaCQQaiE/JkGoVaiJ1muVW7ts/OUIYTAa8Z34s1Te70TBXKJzTbDKAygHVYnCq8Lx3RCFwSmd20Xne7Mu2cflKH8uEnQwsMg8Clpcft/qGaJjneizFIXHqgWV+lQelfI7uXdoi6/Utg/V0QgJXKOrQTFgCXCHNVEwGgm3g9ZfccSm3IFiQrffRCTcNJpITEKGIQs1juNe4+qd0dPjTRR2G6nrMkIIIYQQkriofV74RLqNHrXP047a51H7PEIIIWHCBb3dmQSkKQej8aY6jw70XJaB/du9pqNgNLcPftLeOXho6LNfQ+vQPvE4QxLQf7Dvyxw4CgWrSoTBaH/9nOO+2b4vNh44XRyHBZcU+dmebb3UgtHiLhKsbK/XoD7OI4qTtjqAVjuQnKC39nwNRsvPdod+JCpJYshNAyoVMrEO1XLE4bdJ0RFB2GdO+J8HHBG8dI9P02e6lA/UFIxGiDdZPhFo1inMrOFEcFnn0LImK9DQyr0D0KwAj5FAs2A5tYd/86llwybCJvxZuYrosz6ZwVkOIb7o1fnp9B1UBOGZPBYbR5ng95stZd4B01p/6zklFzggaO5bUk3BaL4qEQTSmQ1AXnqYC0NIgqFgNEKijI7pkG1QvolA4kvv3r09Xh87dgw1NTVBaSC1a9euLtcXSxhj+Pe//41HHnkEf//7370alRUXF6O4uBj/+te/ALgbYl199dW44447gvYkzs4N49LTfaulduumcuXTQU1N8O8+NzU1BX2ZhBBCSLSwyVbF4QaWBIn59rRDkWAFlhB1akEsDm4PY0lIvBEF5BiZKWjHCV+ZJeVAIg4ZNm6FiYmDAURBgXpGP/NFgijQTBTkFeowCCMzgYGBK9wi9y1wTHkfDSazTvv5VXSOMElm4XlaOQhOefubpeSIPY1W9NmLQvRERPUS0fFGNNzB7XByR8Bhi2rn9WAEnqqFn1EdjZDA1TnEjzXLMuQCCoconmgt3EhYfVf3mXDcWRkJ2vumkwx9tmIwWl00BaMJ6jei+hwhhBBCCCGhQu3zEge1z9OO2ucFhtrnEUII0czlUh4uSUCqcjAamuvBW5rAX/gTsOlLoPqo4mT9HWWKw6ubgWYrR6op/gNkOOdYskH7PatrJ0ohLE0YlOwWjzvnCrBUbfUjD6OnoMDxPjbiTMXRTcrNNeNeUSnHFW/IcAmyDQs6dSY3xXAzLr51Lfj/Pg78uhVwnXiYVlYPYNJ5YLc+DWZsf2AxX7UEKPvVaxmZLkGSE4DalsQNRqtv8e2e+k1nx99xm3/+NviSJ4CKUuUJxkwFu+kvYKeNB+AOh1MKRisRN2mIO1uUT+/oH5xL8ei3Y71Pk2cIjj8NrYBL5tBJ8fe9IonHJXM0Wz1Dy7zCzE7839AKNLVyj2nbgs5siRdoFizXTvTvWKJ2CJLj/LNwuoL3BjMSODiWRI4kMYzooxzwV1YDHKrh6HciMHt/Jccf/y3jh4NAix3ITgFmDGV4fh5T3H+LSjkueElwsXnC1kPA6f3df3PO8Ut512VO0nO8da0Ol7wqo0ahWX9JNce0BAkbDpaDguuQghxErC8KIYkihn9qI4SQ2DZx4kSvYUVFRZg5c2bAyy4qKvJ4bTabMWrUqICXG0l6vR5PPvkkFixYgHfeeQcff/wxNm/eDJvN5jVtcXExHn30UTz//PN4/fXXMW/evAiU2D92e/BDP6hTIiGEkHgm7lQbnIAZQD30RuauiAUrxRu1gBMnd4axJCTeiAJyTIJQpnBQO0ZZXS2q412C70OgIUbEP+LwTEEwmii8Kkj7I2MMJsmseExVHiYOHAs1YaCZQjmFAW5SikrAmlIQXPQdD8T1DHGwmBLRedSkU/4sRcFogDtALk3vRwNpj2WENhhNLfxMFIBHCNGuzqn8iDgDS0Kqjh5rRsKr0VmPrU0/KI4bmjIG3ZN6hrlE0SlTr/z4RrWgw3ALdV2YEEIIIYQQQjqj9nm+ofZ5/qP2eYQQQjQTnTMknTgYrakB/N6LugwGyRcEowHA019wPHFR/HfQfPlb7efksf2B346K7W3C//mocBxb+JJfy2SShJTxZwN7/SxUHCo+zjF1kYwWlWpkfqfbNMYYbcbF924Bv+d8wNmpXUflIWDFq+BV5WBP/Z972s/fBn/mD4rLUQtGq7MAfTKDVuSY0iB4RuJ1ExmONXCs2we0OoC+mcCNZzP8eVZsH6M641++B/7U79Un2roWfMEM4K2NYPlDUJDDsKnE+9heGj23QEPq+/3i81r/7PjaP5Rwawuw/Tuf5smUxcefhlYgK/TPiyVEyCVzNHkEmZ0MKuNeYWaNrUBTx6CzDsObvX+qI2HSPxu4dSrD7dP8OwarZebE+8+LonqQPzKpmRGJkGXXSxj9uHKA2ci/yKh8TkKzDZj0jIzq5vZxFQ3Ash85dldwbLxf8gjQKj7OMe05GZYuju3jnpTR/KKEZCPDqp/Vp2VcxljrFjzQaz3OHrQQBTlQDkaLnuetxgxRQHPnsHRCSPBRMBohhERIv3790K9fPxw6dKht2FdffRWUhlerV6/2eD1+/HgkJSUFvNyOXKInVoVYXl4e7rnnHtxzzz2w2WzYunUrfvjhB3z//fdYs2YNmpvbrxgaGhowf/58GI1GXHTRRQGtNzPT8+5LY2MjcnNzNc/f0NCgabqcHM8a8FNPPYX7779f83oIIYSQRGOTlR9BaJRMisP9oRaWYpOtMOvoLmkwiEJvgOAEqJDEJQoLEoURhYPacaNVbkEGshXHydwFGco3UygYLTJEAWI2uRUylyExz6cLC8Orgrg/mqRkQbiY5zDOuWrgWKiJA8G0hboB7u3vW8Ca6HgQ+iA4EVH5ndwJh+yAQdL23Ra/N+XPUi2ApFW2IA0BBqOpBLs55MA7namFn6mFphFCtBEFKbmDl5RbaHHEeessEjE/NKyGC8rhwFMyZoe5NNErQ698DVHvjJ5eAcKQ2gjWxQghhBBCCCHxjdrn+Yfa5xFCCCEhJCu3+YAkAWmCYLRt64C6410uuo+jHBJ3QVZ4yOfL33I8EdipOia85EMw2sMXSF1PFMV4yR7xyPOuA0sy+r3szOxU1fE2B4fREP+BPCct2cBVQ9GyU4A0k+f20EmxuX34x//0DkXr6PtPwCsPgeX1A1/+inCyTLlOOK4ugZt01Ave+2m9gP+9Tgeni8PuBJKNsbn/dEVtn/Fgt4J/uhTstme8QgdPOliVGO0TFn0pqDfAHc4T99Z9pHlS9vI3QH01Mh/9k3CaOgsFoxH/OF3uQDPPMDOgsZW3B5ZZT4aZtQ/3CECzosvQGxJaaSYg3QSkm93/dzvxf5qZeQ83A+km1jbs5PhuZngEGvlKrYoY78FowawDZtKxnETIKSq3KxpagX/9yGFzwiMUraOfSoHNJcD4wvZhS3/gms8PK7dzXDWe4bmvxHXE0v0DkeuqgpHbgUMSePVVKMjJQ1FZ4oYNB1NptfLBOj8nPq/hCIkmFIxGCCERNGvWLLzxxhttr99++208/fTTMBj879BeVVWFTz75xGs9SvR6z9OA06ncuUhJXZ34ZkW4GI1GTJgwARMmTMA999wDu92OlStX4uGHH8a+ffsAuDt6L1iwABdeeCEkyf8bmHl5eR6v9+/f71PDq5Pl8XU9WucjhBBCEpVNEOhiDGKnWrXwpFa5hYLRgqTVpRKgwoP/1G6SOMSd7yMYjKaybrVAHycXX7PpGf3MFwmi/YiDw85tMLH285GTO4THs2AG9YnK1DkEzcatwhCbcIRT+BRoJgjBMknJwrJa5VZwzj0aIYQjmM5XagFlVtkCgyRo/N6JWnickmSV8DvRsnzRohKMpnYs00rtWGnnNri4Ezo6LhLitzpBkFKmIVsQi0ZIaLi4C9/Xf6k4LtvQHaeljAlziaJXpkG5V4Do+xwJrYLfcCJZFyOEEEIIIYTEP2qfFxhqn0cIIYQEmSwIPmUSWHqW8h18DaFoAJAEB1LlZjTqvB+CZXMCsswhxWhYkxZNVo59ldqnz4/1QJlftwhHsb4DA1r0BSOAZzeIx1c3A70zxePjzRaFDuQdDe6hPDwrBahVaDpx9ZlR/D1U2a/a7NsOnt0LKN4hnMTI7TDLLWhVuAeUyMFoRwVZzpknNpNex6D3zraMC9zlAvb8pH2GD/4B3PYMCgTBaCU1wSlXtDui8rNA3wQ4DvNft2qbUJKA/CFAYy2yXbXCyY42AKd0D1LhSExwOHlbKFmjR6gZdweWdQgta1IafuJ/tYBUElqMAWnG9lCy9gAzhrROAWdeYWYd5kk1IiquhdQy1eQ4D0YTBcT6I4Oev0giJNXE0DsDKK9XHv/05xyTBqgfa4rKOMYXtk/T1fWmx7ylwFXjgeNN4ml6OY9COvnrkiwDB35G/+xzFacVhXwRsRJBU8xCwXULISR4qGcQIYRE0J133ok333wT/ESkd1VVFZYsWYKbbrrJ72UuXrwYDkf7U1pSUlJw4403Kk6bnp7u8bq+XlAjV7Br1y6fyhVIGrpWSUlJmDdvHmbOnIlhw4ahvLwcAHD48GFs2bIF48aN83vZY8eOxccff9z2euPGjZg4caLm+Tdt2qRpugkTJoAx1rZPrF692qsjNyGEEELa2WSr4vBgBrqoddBVC+Ugvukc2NORUw48QIUkrlZBoFIwg6h8lcSMkCBBhvfTWtQCiZxc/EROPfO/Aw/xn9r5xupq8RhvdYmPc8EMgxAHhXnuW6KwMQBhCf0UfQeVyqUW+mUWBHxxyLBxq0c4XTQGJaqtu1VuRRo0BqMJAkZF28comcHAFMPx1MJKtVLbv9SOZZqX30UdzCq3IkWXFvB6CElUtY4qxeGZ+lyAotFIGP3S/JMw2OusbrMgsTjtGeCHTL1y65p6Z03U3GOwCoJTI3ltRgghhBBCCIl/1D4vuKh9HiGEEBIg7t1OBAAg6YC8vgEvfkLrJnyZOsNruNUBHGsEemm7/RyTynwMyYn2YDT+4+fg364AjpYAO753D5xyMdhNj4H1Gwx+5IB45mmXBLTuCYONMMmtsAranzS0JlYwmqjj80lXjFOuR141nuHFbzzbZPTsBowvCFbJQqCirMtJ+D8fBTtlGOASBD2ekOmqFwSjcSTiPecWG0eVIMCgX1YCbI/qcp9nkf/xR+SfdiuAQq9xVU1As5Uj1RRf287h5Hh5Lcemg+6AnG2HxdMaDfH13hVVlGqb7oxzwdKzgPQspMtNyHDVoV7nfaIqreY4a2ACbLc4trWMY8kPHNVNwKxhwDUTGL7ZC7z/E8eB4xzNNs9Qs9bAmykSP0kM7QFlpg5/mxnSToaZeYxn7SFnHYLNUpKiI9AsWNTeSrzHEwUzGC2TmhmRCLriDIbnvlL+xh6sBg52ETb23FccK7e5oGPAqH4MX/pwG+iDnzh+KXehWJCfn+5qaA9FO6miLOHDhoNlSxnHAeWm1SjIiZ9zFSHRioLRCCEkgoYOHYrZs2fjs88+axv25z//Gb/97W+9nkyoxe7du/Hss896DLv++uuRlZWlOH337p6POti9ezfGjh2raV0dy6yF0Whs+9tms/k0r68yMjIwd+5cvPjii23DSkpKAmp4NXnyZI/X77//Pu6++25N81ZVVeGrr77SNG1ubi5Gjx6NrVvdT7YoLy/H559/jjlz5vhWYEIIISRBiMK0jMwUtHWohd60qoR5Ed+0CjpIA8EJUCGJKxqDkBhjMEnJaJGbvcaphf04uTgkkILRIsOkUwu1akEG2lvSqn22ZpXl+EoUatY5JFAthC+YAaPCdQjes1K5ROd7sy5FPZxObtUUThfJMA61dfsSwCraRqLtIzEJRsmsuA61c7JWLSE+r3dVB2t1tVAwGiEBqHMqt3jINOTALiv/tqsUtEhIoL6r/1xxuJ4ZMLHbOWEuTXTL0Cv34HJyJ5pdjUjTdwtzibyJzt+RvDYjhBBCCCGExD9qnxca1D6PEEII8ZMsCkaTgB79A178GxW3ov/AYsVxB6soGO2knFREdZgOX/Eq+PN3eY9YtxJ83UpgSRGw7Cnh/KxXYMlbktmMNYfOwqT8dYrj6xOoyaRL5ihV2bduOpvhD1OU96Wn5zKUVHOs+tn9uncG8OkCCbooDffgTfVAs4Yg54O7wOcN6XKyTFcdjhp6eQ2vDbxJSkw6VCse1z/KgxqDgX/4iu8zLX8F+V98C/Tbojj67Y0ct0yNzu+TP2SZ48KXZU3hGMtvkUJfoGhQUdr1NIPHgP359fbX1/8P8tcewnalYDQK/4hp3+7lOO9FGdYTTQ//XQTc9W+ORivAqclS0EhMKbQM6HYi0KxjaJl7PPMKM0s3ASnG8DzEIdaobRHRpWK8qAtiMFpGMu1bJHIevYBhzR6O7SoBtmpKa9rrJKv3+HYCq2x0/xP5z5ErvYbxY2UoGMCgFL94tB6wOjhMiRC4G6Dv93NMeVZ8oBaFzxFCgoeC0QghJMKee+45rF27Fi0t7qu7+vp6zJ07F19++SVSU1M1L6eqqgqXXnop7HZ727CePXvi4YcfFs4zZswYj9f//e9/cc0113S5ri+//BKbN2/WXDbA3RjqpOrqajgcDhgMoeu4r9d7nuI6Nvzyx9lnn438/HyUlpYCAIqKirBq1Sqcf/75Xc77l7/8xeMpoV25/fbbccMNN7S9XrhwIc4++2yf9gdCCCEkUdhkq+JwYxADXQwsCTro4YJ3IJEvgSVEnVpAj4PbheMI6Yo4UCmyne9NklkxGK1zeFVHamFCekY/80VCV6FcHakHkQVvfxSVqfM5SzWoTVIOVwsms8ZyioYB7veqGizmagH07Z3RRIFfkQzjUA9g1VbP4JwLt5EoKA8AkqUUxflaXIG3QlUrezCC0axdhLdRHY2QwNQ5lB97nqXPRaVd9CRnamVIgqvSXo69LTsUx41Nm4xUfXqYSxTdMg3i1jV1zuqoCEazCq51whHKSwghhBBCCEls1D4vNKh9HiGEEOIH2aU8XJKAHv18W9bAkWC3/hVoagB/eD4AoJfzKLq56tGg805AK6nmmDwwfju7ltVqv1cVzQFx3OkAX/Kk+jRP/U48ct6dAZeBMYYzsAc67oRLoT1SfQLdjj9aDzgEX9sv7pQw4zTxd8qcxPDJ7TqU13FUNwPDewNSlIaiAdAWQOSDTLlOcXgwQzFiSZlKMFpf5Zzt+PLB837N1s+yHxJckKHzGnfvco5bpgZYrijywwFoCkUDgNN9rDLEIs65+Lg062qw6ZcBvQqBvgM9wpfYmKnov7oM200jvWYrPWYDQPemY9VTn7WHop3UkEBhrV3RSScCzdqCzE7+fSLQrENomTvIjHUKOHP/nZxEgWahJKnkWsZ7y7v6Vt/e4Wm9gF1HlcdFc5WaxL8UI8PWh3SY8bwLX++JdGk8jbL97D2wokw1tKusBhjcI3Rlihd//Uw9vZKC0QgJvQSJByeEkOh16qmnejw5EQB++OEHzJ49G0eOHNG0jP3792P69OnYs6e9Ji1JEt5++23k5uYK55swYQKSk9s7/65cuRJFRUVdruvaa6/VVK6OhgxpfyqM0+nEt99+q2m+lpYWvPjii2hqatK8rubmZqxYsUK4fn9IkoTbb7/dY9jNN9+MkpIS1flWrFiBV17x7ekm11xzDU499dS213v27MHFF1+Mujrlm0MiVVVVXtuBEEIIiTeiwCOjZAraOhhjMOmUb4SqBRgR36gFmAQjQIUkrmgMQgLEYUWi8gLq3wUdBaNFhJGZwATP8LJFKBhNFBSmNahNggQDSwpaeURE71np3C4qq0lKhkkl5LDzfKJ6g+g8Hw4S08HIlOstovCQzuzcBhnKN9zUguPEn0Hg9ZtWlXA1R4DndYfsgJN7B9Z6rJ+C0Qjxm0N2oNGl/DukWvASIcG2ru5z4bizM2aHsSSxIU3XDTrBM9HqndHx6GthXSzC12aEEEIIIYSQ+Eft89RR+zxqn0cIISSMZEFHSkkHZPcEkrQHjbKL/IdRgwAAIABJREFUbgIbOx0YP6N9GIACR5ni9AeVn4sTNyoatE87OC+Ke9KX7gHqq9Sn2a/8YBkAYL0KglIMZk5Blks5yam+Jd5jG9qp7Vfj8rUto3cmw8i+LLpD0YCgB6NlCe45H/PhuxpPKhqUvzd56YDJEOX7RoB4i/Zrzc4McCLPeVxxnNMFyHL8HI/W7tP2XpL0QO/MEBcmGjTWAoJ9h13wO7AzZ4H1G+Qd4NQzH/3tynWhsmP0kO5Y5ZI51uyNdClCQy8B2SnuQJVRfYGzBwLnjwCuPIPh5ikMf5rJ8MRFDC9cwbD0eoYVt0j4+m4Jmx+QsPdxCRWLJFhekmB/VUL18zoc/KsO2x/WYd2fdPjvHTq8+3sJr10t4W+XSvif8yQsmC7h2okSLh7NMH0Iw7h8hsE9GHpmMKQYGYWihZja1o2jU5qiykbfpp94inhrDcwLsDCEBMFLV0qIpkNmmqsR2S6FNoKVh9A/WzxfSZz/VhQMnHOs3Scen53iDhwlhIQW9ZgkhJAocMMNN2Dr1q14+eWX24atX78eQ4cOxQMPPICrrroKffv29ZqvuLgYS5cuxaJFi2Cz2TzGPfPMM5g+fbrqetPS0jBv3jwsWbIEAOByuXDeeefh7bffxowZMzymtdvtWLZsGe677z7U1tYiMzPTp4ZA06ZNw9KlS9teX3/99XjwwQcxfvx4ZGZmQuoQeZ6amoqcnJy29S5YsAD/8z//g0suuQQXX3wxpk6dirS0NMX1bN68GXfccQfKytp/yDzzzDMxaNAgzWUVWbBgAd5++23s2OG+mXj06FFMmjQJL7zwAubOnevxHiwWC5577jk88cQTkGXZp+2l0+nw4YcfYuLEiWhsdF/1f/311xgxYgQeeOABXH311cL3X1tbi9WrV+Ojjz7CypUrceaZZ2Lu3LkBvnNCCCEketm4qFNtcANOTFIyLC7vG6zBCA4hbmohc12FnxCiRtT5Xi0sKBxExylReQH1YDQDMwRcJuI7xhhMklkxhMk7lEv5OJfEjNAx76da+ku0b2ktj1lKCUvjBtF30MHtcHIH9Cf2aZnLXiFzHZdxMpyOKzwvrfN7FL/nCB8PdMmwOa1ew7XWM/wN3UsWBjQGIRgthIGnWrYL1dEI8V+DSoBSpl4cjBbnbbNImFnlVmxs/EZxXD/TAOSbA/+9P95ITEKGIQs1Du+OAXWO6GjBJKyLqQTdEkIIIYQQQkiwUPs8ap/XEbXPI4QQEjGyS3k4Y2A6HfiEOcC6lV0vR5KAiXPcsyanetynKbCXYLtppNcs8d7Ztd6HW8QXjgpdOfzBZRnYuhbYUwT+7YeBLWzSeUEpE0zJyHA1oErf3WtUg7hpU9yx2MTjukXuGXyhUaEeSOyrvg7lEOrS6sS8syw6RuWmhrccEVF+MKDZ8+2lqND39BpucwLHm4Ae3QJafNTQGhhzwQhAF+1Bi8FwTDncDADQK188LqcX+svliqO+OZQKm4PDGOdhhPGo3Lcc+7BI0rvrAummE/9O/m1mSDOdGOcxniG983AzYNSDwshiDK+uADavBlc7TonY0gHcrjiKx3kVydfr0ZF9gbH9gaJOm3lgdyBfJeSJkHAZlMcwZSBUA7P8NbovcLTBt0DBC5tXKYcvlu2FycDQs5ty8HdpDYd6bCOpbASsKl0fLhxF24+QcKBgNEIIiRIvvfQSMjMz8eSTT4KfuJJtamrC/fffjwceeABDhw5F3759kZmZiZqaGpSVleHXX3/1Wo7BYMDixYtxyy23aFrv448/jpUrV6K+vh4AcPz4ccycORMDBgzAiBEjYDQaUVlZiU2bNsFisQAAevTogWeeecanJ1NedtllePDBB9uesnn06FHcdtttitNee+21Ho20AKCxsRFLlizBkiVLwBjDgAEDUFhYiIyMDOj1etTU1GDnzp1eT/FMTk7GG2+8obmcagwGA959911MmTIFNTXuDoIVFRW47LLLkJeXh9NPPx3dunVDZWUlfvzxR7S2uu/6devWDc888wxuuukmzes67bTTsHz5clx66aVoaHBfcRw5cgS33nor7rjjDgwfPhz9+vVDeno6WlpaUF9fj3379ml+iikhhBASL0RBKUbJFNT1iAJTghEcQtzUAkwCDVAhia3VZVEcrhYWFA5mSRRIpFxeQD0kUE/BaBFjkpIVzwedj2uiAMhgh3KJ9m2t5THpwtNyU+07aHW1IlXv3qft3KYYenZyGWrhdF7vWXCuifTxwCQlowHeT1rWWs+wqoSLqu1fovfdIjhuasU5Fx57gcDP61q2C9XRCPFfrVP8BPpMQ464MV68t84iYfVT43fCa8QpGbPDXJrYkaHPVg5GUwk8DBcXd8LOlXsPRbouRgghhBBCCEkc1D6vHbXPo/Z5hBBCIkSWlYefCP9kNz0GvqcIOH5YdTHslqfAcnq1v779b+Av3QsAKHAohxsdrIrvezkNGm8R/3YkcOmY6Om0yp0O8L9cC3y7PCjLY3n9grIcmFLQTVboNQ2gPpGC0ezKw80GQIqzYCL+8n2BL6R3YVsIluhYFO8hjSKiYLSMOL9Nxh128BsnBrSMl47dhdMLNymOK6uJn2A0tSDGjp64SOp6ojjAv3xPeUSSEcjqIZyP6XTITxFXCn7znIxPF0jISI6vY3i8+2RH8OqxJkOnILMTf3c7EWjWMbTMPZ55hZmlm0ABewmK79wI/ueLgUbv9r5aMH1vYKByMJocx5drnHMs2eDbG8xMBp6fJ+HCl2TUnTispxiB1/+fRGGCJGoUdmdYuy/4X96XrpRwrBG48k0ZNnH3ofZy2A/i4aonlUc2N4BXlaMgp4diMFqiXp/54tNfxJ9xRjLw0Hl0TCIkHCgYjRBCosjjjz+OKVOm4NZbb8X+/fvbhnPOsWvXLuzatUt1/jFjxuD111/H2LFjNa+zd+/eWL58OS666CI0NTW1DS8uLkZxcbHX9AUFBfj0009RWVmpeR0AYDabsXLlSlx00UUoL1d++oJWnHPs37/fYxsp6d27N1asWIHhw4cHtL6OTjvtNHz99deYM2cOKioq2oZXVlbis88+85o+IyMDn3zyCVwuwRO+VJxzzjkoKirC/PnzUVRU1Dbc5XJh+/bt2L59e5fLyMzM9Hm9hBBCSCyxyVbF4UYpuKEuWkNmiP/UtqWDC1oYEaKBVRCgaNZFOhhNcFxxiVsPqoUJUTBa5JgE55zO+57oOGcK8r4oPmdpK0+wg9pE1L6DrbIFqUh3/60SsHVyGaJwus7DRAFikQ7jMAv3IW31DLUQMLX9SxTQaFUJaNTCwe1wQXwnNtBgNC3bRS0sjhCirs6h3NLBLKXA9P/Zu+8wN6qzbeD3kbRFu+tt7gXvrgGDDRgwpmNDDJjQQkgIJEA+SDAlkISQhIQ3gQQICeQl8AIJPdQQWgqE3rHpNiVgG2NsbK+Ne9tdb9FqJc35/pC36jyjGXVp7991+fJq5syZI2maZs7c4/FD8elwlGZaa8xtij3XDgDlniHYb8hhGW5R/qjxDTMObw5nvweT9LsMyNzxJxEREREREcD+eU6xfx775xERUZpoKRjNCwBQ43cD7p0HzH8ZetWSmGKqogqY+hWoifv0HzH9a8COYLQJXY3GWRT6za4tAfONql/fBzh2L4WN24ED6hWOnAR4cynQ6s2nUxeKdu5VKakHAOAvR9V2IRhtEF2Ob+s0L1flJRluSJrpptgH77g2bAwwaf/eYLSuVcZiq7YB4YiGz5tD62EGSIGChR6MhrlPAhGbNIed9wLKhgC1I4HmLcAnb8YUmRJcKE7euFXjwAmFsSxJ+7G+Vl7rQd3Qwni/drTWwD/+bB45cjyUxz4crq5WA+bbC/DuCuCOuRqXHVv4n2Mh+fGj7kJnHjpHodKvjAFoxT5+95Q4fdMlCYeiAYBHeEg0UNjPJH13hftpqv0Kh+6isOC3Hrz8mUYwBBw/RWFcDddhyh31Q+3H33GmwphqhWUbNbZ1AJ0h4IaX7Ff2IyYCB+8cXc4XXenBi4u1MdAMlgYevBaTuz7DrLZXUGM1i3Xqv/wSDeMfxDvLY+fdWODnilLh3Afl72zFHxi4S5QpDEYjIsoxRx11FBYvXozHH38c9957L+bOnYtwWD4RXFJSglmzZmH27Nk48cQTE0q8njlzJubPn4/LLrsMTz31VM8TMfsaPnw4zj77bFx++eWorKx03fEKAKZNm4bFixfjkUcewQsvvIBFixZh06ZNaG9vFzsmVVVVYe7cuXj22Wfx6quv4pNPPrH9PABgt912w1lnnYWLL74YZWWpv1Kwzz774LPPPsMVV1yB+++/v1+HtW4VFRU45ZRTcPXVV2OnnXbCnDlzEprXLrvsgvnz5+PZZ5/FzTffjDfffBPBoP2jQCZNmoSjjjoKp556Kg499NCE5ktERJQvpBtrSzylKZ2PHHoziHr5pJldqEtYO3jMBZEgIAT8ZDsISZq/1F7APkzIq3iaL1uchmdK27lUB0E43WdJ7cnUumE3n777d7sQje736veUoclUz4BwLDEoMWe3B86OM6TjEQWFEiUfE5V5zcFoHUkGo9ltxwAgZCUXjObkc3H62RFRrCYhQKm2aLjtdNqm4xaRG8sDn2GdcKPEwVVHothTYHeapFC1z9zbSgo8zCS78yfS8SsREREREVG6sH9ef+yfx/55RESUQZYQ5Nkn4ENVDQWO/ra7R9WMGBetw7JQH2o0FlnbDHSGNEqLCvOGTSl0aK9xCudOtw9QySb95lOpq2xMQ+rqKqtAdbM5GG3L1k4AhZ7mFNUuPM+10ILR8O4L8rjakcA2B79N6nbrtww2hFYai0UsYMN2YNwgyxduES6VVfsLc5vcTb/1tDxy6hHw3Pxiv0HWWfsBKxb1G6YATPJvwWeB2IdErdqailbmhnihk7XlGBShaACAjavlcaPr405eP6oUaJTH/+djjcuOdd0qypL2oLv+SN/aT+H0A3P32I/yl968Fvj8o6TqUDb96yLhCAo18uOFRe77FXaHx46tUTj7kEGy/6O8U1crj/v+YQrnzejeH0WXYa01bntdI2DTjb47FA0Adh6hcOEI8/KvP/8IesvvnDX0i09QP9U8auUW9vu10xmSP5/Jo8FQNKIMKsyjJCKiPOfz+XD66afj9NNPR3t7Oz788EN88cUX2Lx5M7q6ulBSUoKRI0di4sSJmDp1KkpKkr+ysvvuu+PJJ5/Eli1bMHfuXKxZswYdHR0YOXIkGhoaMH36dPh8vbuNI444wthBK57Kykqcf/75OP/88x2VV0phxowZmDFjBgAgEAjg008/xfLly7Fhwwa0t7dDKYXKykqMHz8eU6ZMQV1dneP2JNohqqqqCrfccguuv/56zJkzBytXrkRTUxOGDx+OcePGYfr06Sgv773BONHPC4h+BieccAJOOOEEdHZ2Yt68eVi1ahW2bt2K9vZ2lJeXo6amBrvssgsmTZqEoUPjRE0TEREVkKBlfqRTqm+q9XvMwSGBCEM3UsXuJmm7MCgiO1rrnA1C8nulMC05BEoKCfTAC4/ihfxskfY5A/cR0neb6iAyvxB2Fdue3A1G6xtqZbd/6N4/y+F0vZ95REcQ1MJxg7A+Zoq0PeqMyNuDvuSQO7/tDXpiIFuSxzcdEftgtGT36wMD74xlGIxGlLBtQoBSja+7k7HQ0YLBaJQibzQ/bxyuoDCjmr2T7dQUxd4MAADN4ezfERCwOa7Jdmg1ERERERENTuyf14v989g/j4iIMsiyzMOT7POhfEXQO+qeIIQRAUDjFmD30UnNKmdJgTLVaXw2h27ZGg3wiUSAMfXA6AZXIbp66wbg5UdS0xiPB5iSwsDW8bth9OoNxlGrNgZRyMFoWmus2AxENNAu5OVWFFAwmt6wCvrpe8Tx6nuXQ9/wo/gVTT4AanR9z1XjUWE5TG1be+EHo23arrFoHaA1UFYMbNhu/q1SVbirUtS6FeIote/hsQNH18UEowHAeGzEZ4i9FtqY/cugKdMUp6vTzN0y046csFZebjBp/7iT14wbib2XLMAnpVOM41dk/7li5MJKl99XHU/ZULrYbZscsgtG0+EQCjXyY1PsMy/iGlOd+nYQpdqMiQpKaZguS5ywV+y5AaUUDp8IvPCpXOcRuzk8p+Bmm7R5HeqF/aPb/exgYxfE7PaYQ3d2AEs/BiJhYJcpUEO4oSNyozCPkoiICkh5eXm/jkfpNmzYMHzzm9/MyLwS4ff7MW3aNEybNi3bTQEQfSLoMccck7H5lZaW4vDDDRcAiIiIBikpZKYkxcFopV5zfQzdSI2Q1SUGPnWPJ0pEUHeKIR3ZvvleDNNKICSwSBWlpE2UGGlZGhjeGbDMYVGpDvOU6uu0OqC17umEK4VfZSo00Ku8KFYl6NKxvUj77l+ldcIDD4pUMQA52KzvtEGb0EF/ir8Dt6T2Oz3OkMpJwa7dyoQQvWSPb+JNn2wwmt120k0ZIjJrCtsHo/H5ZpROLeEm/Lf1XeO4Pcr3w7DikRluUX6p9pl72zSFt/Y7DswGu+ODbP82IyIiIiIiYv+8/tg/j/3ziIgojbQQjObxJl/39y4H7rsGdaHVUNqCNoStXfh3C6/+zJPV88XpIgajpeEUtA6HoW/5KfDEnf1HNEwGbnoBqtb+eoYOdkJfey7w6uOpa9RJ50KNGJey6tR3LkH96zcbx63cloLlNUdtaNE46VYL7zfalysvzkhz0kpv3wb969OAj9+wL3jSucAHrwJzn7Qtpr55IbBqSc/r6kizWFZaXwtBV1jj3Ac1/vaes9DmdGyjcoXWGvjsA7nACd+LHTa63li0PtQIYI+Y4XfM1bjtjISal3Ps1ouKEuBnswbHg3O1ZUFffZY4Xn3jgviVjKnHFVv+gFPGPWocvbkVaA9qlJcU3vFQIXpnubsQ/Hrz8+SIkvfJW0lX4ZF+D0LO0C4Ebo/9fJ7CD9GlwlA3VGH2YQp3v9l/X3XYLsDX9jZPc9mxHsxdaiFg6Ep/+ETgyN2dzVu/+4Lzhgba0FC6HcCQmFFb24HWTo0hpTwuMrELjvvDyc6Pz/UTd0Df8nMgvOOLVwr69J9DnXc1lGdwHOcTJYvBaERERERERJSXtNYxoTPdUh0yIwWLSMFs5E688JJkA1Ro8OoUgp+AzIU/yfN3H0gkBQj6GIyWVU7DMzsj5n1GvPAqt6Rl24KFkO5CsSoxtq+bFNKVDqWeMnRFYoPR+oa2ie30lPV01pbes5OAtWhdqf0O3JLa7zTcSwq5i3c8JM23Qwjxcyre9Mnu150EtzG8lihxTaHNxuE1Rew5SOn3dvNLiMB8zHt49bEZbk3+6Q4wHCisQ2iLbMcQX1WGW9RL2jf7lA9FHv6eISIiIiIiIiIiokEiEjEPT8FNkOpr50Dfdw1KdBfGhdfiy6KdYsrMWQq88hlw9OSkZ5dzmoVufFX+NNzc+9TdsaFoALByMfT1F0Jd+y/byfXf/ugsFO3AWUBRCbBlHbDkw+iwvacDfYPtqoZCHXQMcPzZztvvgBo5Hg1qo3Hc6nY/whENn7fwbpye/UD8UDQAKC9Je1PSTt90SfxQtFN/HO2bc+XfgSfvhL75p2JRNXQUdFdvf95ihFBmtaPD0CenqYC7dPzpJeehaABQU8DBaHjxYXGUuuJ+qGGjY4ePrjc+Bnd821Kg9HhjXcs2auw6Mv+3R9J6MbYaePEnHkwek//v0ZHX/glsM+9/MHJ83PBRAMCoOny99Sncs+48nDPmLmORxq3AHmOSaCdlzAUPuQxGGzpI1hXKOP3XK80jyiuBXfdxVIfqkAOGdQEnozV3uFuPx9cCXg/XZcoPd5ypsH898OKnGp0h4NBdFH5ylIJHWIZnTFR48xce3Pu2xuJ1GhrAkFJg+q4KP54pT9eX1hp44W+u2lkfXg1T0DAANG4B9kpdznpBWbFF3n7tvZOz7ZT+dD70jRcPGKiBv18P7LIXcNRpyTSRaNBgMBoRERERERHlpbAOw4K5s1iJKk3pvKRgEaeBJWQvXniJFAZFFI9tEFIGw5+M85eCkGzC3KQwIa/iKb5schpqFRDCoqRgtURJy1Z3m4o9JT1/m2QyNNDvLcP2SFPM8H6BZsI64e+zDjvZT9vta/wpDlR1S/rOnIZ7SeX8XvvANzGg0WY75EQgEi8YLbn9upPjL7ttKRHZawqbH3HWG7hkvpivjd2TiZyL6AjeannJOG5Y0UhMKt83wy3KPzVFQ8VxzeGtWQ1Gk/bf2Q6oJSIiIiIiIiIiIsooLdzsrpIPRkPtKKC4BOgKor6r0RiMBgCPzNc4enJh3WQejmi0mp+viuo0dIHQr9iEmr3zHHRbC1SFzTn5Vx6NOw/12GdQYyYk0LrUqZ9QC7TFDo/Ag7XNQJ18WSIvbW3TeOFTZ2XzPRhNBzuBuU/ELafG7RL93+cDTrlIDkYbPnbH/+MArw+IRPuFVEdahGA0Dem6c757ZL676+bV2e2ylFb65UfkkXseZB4+qs44uL5pARCbowYA+M8nGj+fld/Lk2VpbBf2Y/edPYhC0QBou33k5P2dVTK6HgBwesujOHf07bBUbBDRyi0MRssHW1rd90WqL7DjE8oNeuOX8shpM+G55jFH9Xj/+zFwuzCPAu571+yyO28Dn99KeUQphdnTFWZPdz7N1DqFqXVJHN8t/a/rScZ9+Bi8nqsRMZyWWslgNNFKc3dqHLaL8zrsjm/1y49CMRiNyJEUnD0nIiIiIiIiyrygJTzmEUBJigNOpJAYp4ElZC9ewElId2WoJVRo7IOQshuM5heC2aTwLACICGFCPgajZZW0z+kcsJ8a+LqbFE6VKCkkLNqG+EFhdsFqqSYGBPZrp/lz6zutHCzWO61dUFYm37OJ03A9iRw0Yn88JAWnBaz26NOkEpTu/bqT4y+G1xIlJhDpENefmqJojyNVoB3UKfsWtM1Dc3ircdz06mPhScVNYQVuiLcaHpifLiuFHmaKfCxcwHd7EBEREREREREREQ0UMT8EFL7k+30oj6cnUGZqp3yT7OcbCu+G+zWxz2PrMbwiDTNc+I48zrKAVZ8bR+lQF3RHK7BupX39VcOAEeOTaGBqjB0p96XYZv+8tLy0aC1gOVw9yovz95qptizgy2VAVzB+4YkDHlx02sXGYupbP4z+7/MBo3qX3RrDwxIB9+EY+SJiaSzd6G6a6rL8XZbi2rJeHjfCHN6JMQ3Gwft2fChWtcp8iTmvbO8EpK5aNQXynKl4fdG01tDhELBysVhG7TbV2cxqRwLFpShCGOPCa41FVm4pvOOhQqG17lleFq1zN21lKTBheBoaRbTafHwPAGrnvRxXo2z6PlmRwtsuRSyNYEijyeWxX1KBUUQFTofDwBcLXE/ne/I27FRlPie1cmvhbX8SobVGeMC2eOVm82fTMEx4wLRlQXcF+/2zO761278QUX/sQU5ERERERER5KajlYLRST2lK5yUGrtiErJBzgYh9T6mwDmWoJVRopGAPDzwoVtl9dKe0XQnpLjEALSSsCz5VlLJ2kXtyKFfHgNfmbV288KpUtSfahj5BYcL6kcnQQCfBo1JYYN/PTQwW67N/kcK0fMqHIk9x3Lamk9NlSCKVixe6J31uFiwEtfAYUgfSvV+3C7nrxvBaosTYBSfV+uL1HGTnCErO3ObnjcOLVDEOqToyw63JTx7lQbWv1jiuKZTtYLTsh/ISERERERERERERZZ0UjOZN0QPxRtcDAM5pvl8ssjK7p4vTwi4Up25o6uaj13wB6weHxy930VegW5t7X7/wd1hn7g09cwj0McPk9JtuXz8vGjCVZTVjR4jj3IYb5IPlwg3PJmXZ7XaWEN20CdavvgX91eHQ35sWf4JJ04DJ+/cbpE74HlA8oG9uRRUw6/Te1zu2QwBQbTXDZK15cN5b1wyEhM28pLpAL5VprYGNq80jxzTI27gdAZ8DTez6QpxXSwFsj+y2qdV5/pwp/cVCWBfNhD6qGtb3D4Se/3L/8ZEIrNt/BT2jFPorFfbhocecLo/rQykFjIyG79V3NRrLFOLxUL6zLI0rn7JQf5kF7/kWPOdFMPMGy1Uds6crlBYxUInSYPkiedxxZzmuxmOT6JHMw4xzzcbtGt+4LYKaiy34L7KwbJPzaf1FwDmHcT0mGkivWgLrx7OgZ9VAX3e+WE59/wrziM4O1IdWGUcN9uOirrDGxY9aGHNpdJt10B8iePuL6DZZ+mwahvV/rVubYP32TOjjR0EfWdnvHz58XZ75muXQG79M0TshKmwMRiMiIiIiIqK81DfcZaCSFIfM+L1C4ApDN1LC7rsEgLAOF9TFHsocu5vvlcruRTO78Clp2yKFCTEYLbv8wj5n4PIXELZ18cKr3CqxCQftG+gphXtmMpxCCoXruw5I+4i+n1upsJ/uO61UTy6EcUifQ2fEfv/YTQoKixe6Z7fsxQs3s22PEGbXLdlgNCehZzxGI0qMFIymoFBdFA1bkg6heLROyVgf/BJLOxYax00bMh3l3iEZblH+qikaZhzeFM7uo9Ll32Z53pOfiIiIiIiIiIiIyI2IcK00xcFok7uW4PLNfzAW2bAdCHQV1pWdVdvM76e6DKj0p6Z/kO5og77wK8Ci9+IXjoShf3lydLo3n4L+/feBVUviTzdiJ6hzr5JvZM4w39g6DIlsN45r+mJFhluTfrMfdL5elOdZMJq2LOiffBV48ykg0GZfuHo4MOt0qBuejelfp+onQd30ArD3dKCyFtj/SKjb5kANHdVbaExDb1WRFuMsbnipsLZB3RIJFMj30CtRWzPQbt5+qF/9VZxMVVQBQ2qM486pM4ejNXXk//LUbBeMlv2ubQnTTZugfzgTWPA20NUJLPsY+hdfh/78o94yt10GPHxD3LrUr/4KNWyM85mPGg8AaBACQBq35P9yU2iufkbj6mc0vmxyP+3Ow4GbadqDAAAgAElEQVTLj1f44zcZpkTpoW/9pXlEiR9qRxCjE3b3LlhWYWyXLEvjqBstPPkx0Ba0L/vr4xVm7AqUFkX/HT4ReO1nHkwcyXWZqC/d2hw9H/HfuUCoSy5Ytzvw7UuAGnPIecP6d4zDB/tx0YUPa/z5NY2N24GIBcxvBI660cLSjRorhS6XfYPRtNbQl54EvPYPoM38G9iO/s5k6HA4scYTDSLZf4QEERERERERUQKCVqc4zi4UJhHSjbpdOoiIjsCrvCmd32ATL0BFw4KFCLw8jUEuJRoWlAl2wWidkQAqvJUxw8OWFIzGdSObpGCtzgH7qUyFQXiUB6UevzEIrG9YlBQcJYWBpoP42UX6BprF/9yk9anTwfvNie2B1xxQFrDaobWOG+Qo7Ufjhb7ZfdcBqwPmbobxdcQNRkvu4l28QNVoGQajESWiKbTZOLzSW90niJUdjyj13mh+Xhx3eM2xGWxJ/qvxmYPRmoXgw0wJCIGvuRBSS0RERERERERERJQpOiJcK01RMJoaXd/zMJvTtz+Ka4b/yliucSswaXRKZpkTVgk3qtbVpnAmbzwJNG1yXn7hO9DLF0H/525n5YeOhudf5tCfrBlVh2qrBa2GPkxNb70BnLBzFhqVHpu2u7sRvLw4TQ1JlwVvAys+jV9uyqHw3PqabRG118FQf3lFHj+6oWc7VBOR022+3KaxU21hXXtemUCgQD6HXtnasFoeN6rOftrR9UBr7LIzJrwewC4xw+1CxfKF3Xuoyn7XtsS9/GhsQF4kDP3MfVC7TYUOdQHPPeCsrkOPdzfvkdHlrE4KRsvuc8VoAMvSuPMN59vQE6cA//kh792gzNBrl8sjDzvRVV0ej0eeT4EEo731BfDpOmdlj9tT4XcnyZ8JEe3w+j+B7dvil9vvCCh/OXD6T6FvvSxmdH1gOWB4Pm0iAc+FYntA4+/vxW5/g2Hgple0eJw+YXif37LLFwKfzku8EaEu4P2XgYPZT5bIDo8YiIiIiIiIKC9JoRgKHhSp1PY88XvMgSXRdhTAVfUscxJwEtLCE1OJbEjrpxRClEl2AQBSyFEE5g6yvUEllA1SsFbf5U9rLQb1pWN5lMPaom2I6Ai6tPlRXJkMp5CCufquA3LAYZnx7776fgfi9sBmH58p0jJkwUJI2zzZaQdpPxpv2bJ771KQnBOdwnfWLZzkPj1eoCoQXW60LoyOIkSZ1CQEJ9UUmYOW+uI6R4nqtAKYt/1147j60okYXxrbuZ1k1b6hxuFNoez27JbDbgv1bg8iIiIiIiIiIiIig7AUjJaiYIfRDT1/1oVWQ2nLWKyxwG563dxmHj4u0aeBGeil/3U/0bKPgWWfOCtbt5v7+tNt3M5isFVzU2H1mfxsvbvydebLMblr2cfOyo2uT35eY3q3Q/VCIBEALFiT/KxyTSKBAgUbjGYX3DBsjP20I3cyDq4JmT/gQtgcSe9hSCng8+ZvgKD+x1/MI568K/r/+kagrSV+RTUjgCHuduqqbiIAoCHUaBw/mANActGG7cDG7fHLddt9dP6uF5SHli0QR6m63V1VZfeQZKtAgtH++6Xz91Gb/e7bRHlBL3X2e06N33Fe4aTzosdPA9gdFw3W/r+fb4yGoJk89Yn8mYzvG8Tv9LyPHYffMdFglprHihARERERERFlWNDqNA4v9ZTaXjRIhBRYAkRv7i33Gh6bQI4FIvEDTqIhKvn86DPKBinYx26dzhQpEAqQQ46kMCGfh8Fo2SSFOYR1CCErhCJPEUK6CxYiwvSpXx79njI0Izb8onudsAv19GcwnEIONAv0+Tv+eiy1udMKwNIWPMrjqJ5ssQ8oa0exp8R2+kS3dUWqGF74jKGLgYjQc9yBjjjBZSErftibHSeBqhYiCOkuFCv7z46I+msSOhLX+HqD0RSk31qDs2MEJW9+yxxx2354NZ+C55YUZNgsBB9minS8Yve7iIiIiIiIiIiIiKjgRKRgtBT1+xhT3/Nnie7CmPB6rC0aG1Ns5VYNiNd88k+L0AWitjyF73HJR64n0Xf/Fti20VFZNet01/WnmxpSg6qI+Qbfps0OgmzySHP8bgg9in3ACVPSu/7o91+Bfv4hYM0y5xP5ioFJ06C+81OoYaN762prgb7l587qSHEw2jdan8Q1w39lLPb0Ao3j0/w5ZlpjAs8pqsp+t6X0CAj9jvzlUPHCQCtrjYOru8wfsJv1N1c1d5j7W9TEuZSqtQaevgf6+ot6B06aFv2/shbYsBoYXQe0uF04FTBhT6iTZkN11+eCXt8I/djNwAY5HNE671Cgw2H/tFnfcX9fwMxvAbdehvquRuPolgDQ1K5Rk8pjhTz339Uat83RWLRWo7wEmL6rwqWzFMpK0v8ZuQ2qO+NAfm+UQetXyuOOPs1VVR6PPK5QQomWbHBeNu/CholSSFsW8J+7oN95HmjpsyP0FgGT9oP69iVQI8ZFh33u4HyErwg44hsAAOUvhz7gaODFv/crUi8Eo7UFga1twLBBeFuk3YMD1jXL44buuPVDd3ZAX3de0u3Qf70SOOUiqPJKd9N98Br0cw/GnDtQ5/wG6sBjkm4XUS5hMBoRERERERHlpaBw43RJWgJmbAJLIgGAmURJkW6Q7itshYAUPRyVBg8pCMlunc4Ur/KhSBUjpGMDggJCqFDIEoLRFDdC2WQXPhW0AijyFNlu59KxPMYLHMuVYDQ50Ky9z9/m/b3f2/u5Sd+BhkaXDqJU+RGISOFh2Q/jsA9gDaAqzvSJbuuUUvB7y9EWie2w7GTfLIkXeBrWQmf/FNXfU87qiBsqR0T9bROCk2qKhme4JTRYaK0xt/l547gKbyWmDjk0wy3Kf9U+c6/BpvBWaK1THiTvlBxSm/1jMSIiIiIiIiIiIqKMkYLRfCm6tWtAqFF9qNEcjJbdZ2mknBQoU5WiU9C6fTuw8B33E25aE7+M1wd8+xLg2O+6rz8DanadAKyLHd7iqYJe/D7U5P0z36g0aBKWoYEqSoB/XODBuJr0XW/Rr/0T+qrvApblfuKF70C/8R/grregakZABzuhf3ik48lVKoLRxk7o+XNKcJFY7K43NM6drrFfXeGE26zc4j7QxOspnPffT0Do2+OviD9thbmnVE3QHDTZ5KwbUU5rErppVccLRrvlZ8A/b+0/8LMP+r9etSSxRn32PvTLjwA3Pgu192GOJ9MbVkFfMCN+MOjAdkpmfgvq3Kscz7+bGjEOGkBDSA5nu+MNjf85tkDXQZfmrdA48kYLHX26M7+2ROOlTzXe+IUn7duqS//pbJ9XXgLcfobClHH83ihz9PpGcZwat4urupRNMppl5X8wmmVp3DnX2fsYXQWUFnFdpsFL3/BD4Kl7zCMXvQs95wngzjejx89LPrSvrLIW6rcPQg0d1TtsVF1MsfrQarGKW+do/PbEwbdOrtqWyG+46DGJjkSgLzk2sd/uBvqHRwJ3vAlVUuqs/Ov/hr7yDPP8tzelpE1EucQmX5aIiIiIiIgodwWtTuPwdASj2dXZKQQYkXN2AT3dwtocCEVkRw5Cyo1HLUqhUFK7pTAhn+KzD7LJLsyhe/tmt51Lx/Io1dndDmkZi06buXAKaV6BPmFocoiGv8/fNt9BxP47yIUwDrs22H1X3TqT2NbJ26HEj2/ihapFEIalE78IKIXlxZZLPNyNaLBqCgnBaL5hcafN/65ZlA3LAp9ifZe5w80hVUejyFOc4RblvxohGC2sQ2iLbM9wa3pJ++9c+W1GRERERERERERElBFSMJo3Rf0+htQA5ZU9Lxu6Go3FGhMI78llzcIl5JpUdQd45TFxlLroj8C0me7qUwrq1teg7nwL6vlN8FxwjW1IQjZVD680Dm/yVkPfdUWGW5M+ToOVmm/24Jg90nuzuH7g2uRurN6wCnjuwejfbz4FLF/ofNoUBKOpITXRbdEOZzb/XSx70yuFtS0qtNDJpATazMNL42+YVZ/lp6+qzk3mWYWAYCi/l6VE9mO6aVNsKFqqdXVCP3Kjq0n0f/4aPxTNqWP/HzxXPQRVkuA15Un7Y0x4HYoMDy8GgCuezO/lJpVueKl/KFq3d1cALy9O77zDEY33VsQv9+HlHmz7Pw/OPCg3j5mogK1vNA8/abbrquwO+bXO/23SG8ucl22I3x2RqGDpTWuAZ+6zL7R5LfDM/bbnI3DaxVAPfAT11BqoA47uN0qNjg1GGxXegBJtvg/zqqfzfxuUiMYEfsPVlEUfTo8PXgEWvScXPPrbULfP7fcPZ/9aLv/FAuCtpx23Qz+Y5LkDojzDXwFERERERESUl6Sbaks8ztLx3SjyFMGniozjAg7DOUgWL0AFAEIMRqMESKE4fk95hltiJoUhSe2OMBgtJ5V67cIzo/sIu3Arvzf1y6O4bEV2tMcuqM3m/aSaFMrVdx2Q2tp3Wr/XJlisOwxO2F/bTZspJZ5SKJg7zsYL97J0BEHhIqWTZUsMRksiVCzgIDRW2p7Fo7V2HHjmJFSOiHpprdEUNl/lry3q7Ykkba8YjUaJeKP5OeNwBQ+mVx+T4dYUhpoiuedgc3hrBlvSn/zbLPvHYkREREREREREREQZk+ZgNKUUMHbnntf1oVXGcoUW3tMsXBquTlH3B/3JW/LIvQ6BmvF1dxWOHA815VCoyftD+XOjD5Okdqi5fet9o6I3ahcIKZSor5m7Ax5PmkPRWpuBFYuSr2fB29H/P3nT3YRj6pOeNwBg+NiePxtCjWKxN5YWzjVmrTXWt7ibZv/6tDQlNwSEvkP+ivjTVlQZB9e2rxEncfvZ55qE9mPzXk5LW2LY7QNTUd6G+uoZyVVQUQUPNEaHNxhHe1Q0lIvsw4zeXJbez+gLc+ZhP3uOAfYdr1DkS+9+mMhoq3kbokbGhg7Fo2yOJS0r/7dHb7jYXkwYxvWZBrGF7zoKtNIL3ur5bWeijv4O1IQ9oLze2JEjx8cM8kBjTGi9sS6PAkLh/N8OubW51f003eHF+mP74161x4FQex7U/9+UQ2yn0QucHUvr9u3RIDWiQYTBaERERERERJSXgpY5BKTUk55AFyfhLZSYTgfBJWEGo1ECpGCfTAY/2SkVApmkdkvrgRTcSJlht9/p3kdI+woFhWJVkvo2Cct4d2CV1J4iVZzR5UlcByIdPU8/k9raN/xNCoLrO32nENZlN22meJQHJcJyFC+gTAqKBQC/g2MiKTzNSbiZJBCJP21IeBJnPF06CAvOnm7EYzQid9oiLeKxRo3PSTAakTvN4W34uHWecdxeFdMwtGhEhltUGIZ4q+CBobMTIIYfZoL0uz9d53CIiIiIiIiIiIiIclIkYh6eomA0AFAzTur5WwokGjTBaKnqDrBupTxu9/2AQ48HPC5uz+vzHeW68cPM1xzmlB8BbFjd07cj3zU56F5w8r6910n1p/OgH/wj9PN/g96+LXUNWbciNfW88xysM6cAT97lbrphY+OXcWLPA3v+PKn1abHYl01AV4HcfN8WBCJCd5YG4blGx+6Z+WvvOhyGfutpWHdeAeu2/4F++VHojgTSAOJJJhhtSI1x8PjWz8VJPt/opFG5S96PycuI/vzDNLVmgLYW6Aevg96xL9Sf/xfWNd+HdeYU6Pt+D71pDbTW0B/NgfXzE4GF76RmvtXDgb3sgyPiGlINANgjuNg4OmwBa5uTm0UhaA9qbLLZDKT7uNFJ/V/fl32VKIvahPTNqqGuq1LKZrteAMfVjS62FydP5XpNg5de8oGzgh+8Brz8qDx+173lcaPN4Y1TgguNwy0d/X022LQF3W97u4PR8MGrciGlgMNOiB2+93T7/cf8V2D95RfR4+wBgcN6wdvR4Q9eB33v71y3myjfMRiNiIiIiIiI8pIUBFKiStMyPyk4JV5gCcXn5DNkMBolQgrFkYIOM00OXDRv36T1wKtS10GW3POpIhSpYuO4wI7vUtrOlXj88KjUn6KNt2xJ7cn0uiHtWy1EENJdsLQlrg9921qsSuARTnV3v9eAUE+uhHEkGsBqtw8t9cR/srQ034CD0FKTiI4gqM3htX2FtfAk9DjcHHfxGI3IHbvApJoioad2Hxr53zmLMuut5hdhwXwD2IzqYzPcmsLhUV5U+2qN45pCWQxGk47phJBWIiIiIiIiIiIiooIUEa6TpjAYDd/4Qc+fdaFVxiJNHUBLR+Fc22kWnidmFyjjyvpG8/DDT4byeqFGjIP60fXRG1/j2W0q1JmXpqZdGTBhmPye/q/iXKBpUwZbkz7NcZ7/dtyewNmHRD8L/dD10BfMgL77N9B/mA193qHQ6xuTboMOdkLPPjjpenqskkOkJMprDsJzXc/51/T8vU9wAU7e/qRY9uTbnD0cL9dJwVYAcOvpHuw64JlQ03cFLjkqs4EguisIffmp0P9zCvDQ/wKP3Ah99VnQF82ETvG6rANt5hF+B9cGd4RZDVTZugbDhFy1Y2+20J5AqEGuaBb2ybYBn5YQtpoG+u7fQn9vf1i/OR169kHAi38HVn0Ofe/V0N/cGfqHR0JffAww76XUzNDrg/rl7VBF5j6ZjlVUAQBu2XCJWOTxD/J3uUmVxq324x99XyNipe9zWrnVvu5Dd8789pKoHykYTdhf2fF45GXZSuN6limNW5y9h7MOVjhxSpobQ5Sj9JfLgEdvSr6imadA2QW0j9jJeI7ipg0/EycptBB9J9qD7qepKQf0vBeBJXJQsbroj1Ajx8cOLy6B+sXtcuVrvgAeuzl6nP3DI2Hd/VsAgPXXK6O/2+69Gvru3wKP3+K+4UR5jndNEhERERERUV4K6swGnEj1diYYHEK94oW+AECIwWiUACkURwpjyjQ5cNHc204KRvOpopS1iRJT6vEjFOmKGd69fct0SJ+0bPW0R9h3ZXrdsHv/AasDxULgHACUenunVUqh1FOGDiu2U113CIf0nnMlKDHRAFa7ADO/g2MiKYxE2g7F43S6RANP3Rx3OTm+IKJe24TAJC98GOJ135GLyE5Eh/F2s7lT9PCi0di9zOZphhRXTdEwbAtvjhneHI7TozlN7IJTcyWkloiIiIiIiIiIiCgjMhCMpoZUA9c8Bn35aWjoahTLNW4F9s6Ny+VJCUc0WoVnd1Wn4BS0DrQD2zYax6mvn9v79yk/BA44GvjvG+bwBI8HmLAnsM90qJL8OTc+Ybg87tKRf8T3Vn6M2tqRmWtQmjQH5BCHOT/34JCdAZ9XQW9ZB333b/oXWLsC+qH/hbr0tuQa8YYcHobq4VDf/knMYL15LfCvJOebBqqyFnrETsCmLwEAD6w7B09Uft1Y9vlFwMdfauyzU36H3jTZdFGZOh744HIP5nwOLN2oMXW8wqG7AMW+DL/nN58C3n42dvgXC6D/dRvU7CtTN69Oof+Qk2C0CqF/QqgLE4Za2NJmDoB4eL7GudPzczmSlh/bYLRNa93PaPIBUDNOEkfru38DRITAtY5W4PV/mccteDv+vHfdB9jvCKhqYccS6oLu7ICq2w3Y7ytQI8bFrzOeHctSQ2gVyq02tHtik/V++S+NS49Jflb5zEkIyqufAbP2SM/8G23m/9JPPJi+K1BSlJ/rNuU/rTXQLgSjlVe6rs8uxEjr/A9GWyl0S6ofClxwuEJJEXBgg8KBDdF+30SDkb7/DympRx1/tv34omLo4WOBTWv6Dd8pvBaVkRZs91bFTLNyiwYwuNbNtgSC0arLAH3TT+UCp10MddrF4mg14yTggt9D3/Hr+DN78DrofWcAD1zruH3qgt8Du7D/LRUeBqMRERERERFRXgpa5mC0Ek9pWuYnB4cwdCNZTj7DRANUaHDL9SAkqR2dEfP2LazNHWSLGIyWdaUeP1ojsRe/u0O5Mh3SJy5bO9ohtseb2XXDLgij0+pARAmdwg3Tlnr8xmC0QKR9R31SoGpubA8SDWC1C/8q9cTvTOgXyiQajOY0uCzR/bqb4y4eoxG50xQ29zSsLhoKj+rtlMVOSZQKH7e+h5ZIk3HcjOpj+y1z5F61b6hxeFOWgtGk8zdA7hyLEREREREREREREWVEWLhO6vWmdj477QoAGBdeC58OIWzoV7JyC7D3TqmdbTa0yKeg7QNlnFrfKI8b09DvpRq/GzB+txTMNHc0DLMf/9gHGj/YLzNtSacmoYvEFScozJjY5/rouy8AlhVb8PV/A0kGo+l3n5dHNkyGOuPnscM3r4VOVTDarvukpp5udRN7gtHKdAAjwxux0WcO0XtmQQEEo9l0s6kui4agnbg3kM2gAf3Oc/LIt58FZl+Zupl1SMFoscFUMYbID26bUBnAfJj7Oj27QOPc6U4al3uahS5ONXb7sfWNruejDjrGvC3ZQT9xJ7Bxtet6Hc379rlQJfb9+1O9dqiKanTHDO0eXIoP/VON5Vo7NYaU5vc2KBnREBR7Ty/QmLVHej6jNeauIzjzQIWjJg/e74VyRKDNfOwHyEGeNjweeZnWVn4Ho2mtsVZYn286zYOv7cP1mUhrDbxjCCpOxOj6+GVG1cUEowHAxK5l+MA/LWa4k7DUQtOeQDBardUMrPlCHK8OcpC6u9chjuenb/ix47LY7yu2x/tE+YzBaERERERERJSXgpb5UY8lNiEryRADSxi6kTQnnyGD0SgRmQ6jcssvhFBJgUTSeuBjMFrWSctU9/Yt0yF9UnsCO0IppO2uP037UIkUygVEg8wiSngCpWFa+TvoDqczr1fSephpiQawSuN9yociT/xtQ5kUjOYw4GygDoeBaonu190cdzkNaSOiqKaQuVdDrS/O3Q47FMJTKylz5jabb+woUsU4uGpmhltTeGqE9VZaz9PN7ngmV36bEREREREREREREWVERHg4mC/F/T5G1QEAvLAwPvQlVhRPiCkSDcHI/5vTpTAZIEXBaOtWmId7PMCIAkiWi6O8RKGsGOjoMo//9/Ja/CCzTUqLZiFgb2AokX7mPnPB1iboYACqxH2/G93RBix8B3j5UbGMmnakecSwMcD4icDqpa7nGzOPMy9Nuo5+9jgIeP/VnpdHtr+Gh6u+YyxaCDfgS8tQWXE0FC0nrG+Ux61bCa116h6UFoh9uCUAwB//IY8YPlYcNXPoOjyKXY3jPljlpGG5SVp+pP2Y1hpYvtD9jPaLcy1+2kzg2fvd1xvP3ofFDUVLi4qqnj937VomBqM1bgH2GpepRuWeRgfPV2t0EJ6WqOYOc90jKp3XoVubgMXvA0GbxFyiRGzfJo/rs41xym4/m+e5aGgLAmEhQ26U+4+KqKDoriCw5EPgy6VAW0vyFY6qA8buHL/cznsCC96OGdwQajQGo63KzjNXs6pdONdh5/Cy5fJIXxEw+YD4ley2bzRgs605flmbELaBxHMHRAWAwWhERERERESUl7qDTgYq8aTn4qkU3iK1g5yxdMTRZ8hgNHIroiPo0uZHeORKEFK8MK2BpPXAq3iKL9vk8MzuUC4hpC9Ny2K8ME85NNBB57MUKvGUQkFBI/aKfiDSjohH6BSO2PcordedVgciOoyQNl+5ypUwjkQDWKXxTr9LaRmUguTiiRfk1i2U4H7daf1uyxIRsC282Ti8pmhgwJK5g5ZpW05ksi64Cl8EPjWOO6DycJR5HTwlnGxVFw01Dm8OZ6f3kt3xTKaDeYmIiIiIiIiIiIiySgpG86a234cqq4CuHg40b0Z9qNEcjFYgN7xKYTIAUJ2CU9D69X+bR4zcCSrVgXY5yueRx73aXJe5hqRRk3ApIyaUyC40an0jUD/J1Xz1G/+B/vWp8QuecLZxsFIKOPdq6CvPlLcvA1UNBWpGAI2f9Q7b8yDgsBOdTe+Q+uaF0Pf/vuf1pVtvFIPRVm3N/2vNTUKwT0oCGlNlfaM8rqMV2LQGGJmiwEcxGC3+tWBVXgldWWsMozmt/EOcJwSjrWsGrn3ewmVfVakLeMuQJqGbVrU/9n3ojjbonx7nfiaHnQDsdbBtEXXaT6DffhZoNvcfSUiJH+rsX6euPjeGVPf8efXmq/Bo1WnGYnOWauw1Lr+WmVRyEnqWzgBLt8GAA+kn7oC+6RLAEhKZiNIlgWA0eDxQ2oJWsQfYOs+T0dIeWE2Up/Ti96Ev+wbQtCk1FXo8UOdeBeWx+aG+g/p/l0E/cWfM8PquRmP5h+drPDQ72Qbml3bz7Waiw0a14Li7Z4nj1ewrocqGxK1HlfiBc66Avvln7hpgZ6ddgePPTl19RDkm/laPiIiIiIiIKAcFrU7jcClYJFlSvYkGh1CU9D0OFLIYjEbu2N18nytBSH7XwWjmDmw+NTg6WuayeCF30ncqLQNJt0cKCYsEoLW2aU9mgyk8yoMSm1A5KdjKAy+KVHG/YdJ3ELA6bAM40/UduCVvD+zDQ6XPyOl3Kc030VCxQMTZcVE4wf16vKC4RMsSEdAUMvdirPENDEYjSs7c5ufFcTOqj81gSwpXjU8ORtM68x0pOyPy8Uyu/DYjIiIiIiIiIiIiyogMBaMBAEbXAwAaulYZRzsJwcgHdjfgVybZBUJbFvDSw+aRoxuSqzyPxMsXam0SApDyiBRKVFM24M1bEbmS9Y2u5qmbtzgKRVNX3A9VO1Ief8TJUH951fF81a/+CvXnV6AuvBY45gyoH10PddOLUMUljutwNJ/qYcC4nXte7xX8FBdtu91YtjGNgTuZIm2LanLkUpjuCgJb1tmXueFHqZthp/kDUX6HD+3csQ8bqHzzF3j2R/Lt0L9+QuPNZc5mkSuCIY2A0I2qxvBx6QevBT6dJ9anHl0M9et7gGPOAA45Djj621CX3gr1u8fiBsaphklQd74JpDDITN0+F2razJTV50qf0KIJoUaUCP3VL360MI6JEuUk9KxxK9LW10DafjoJuNXLF0HfeDFD0Sg7yhMIRlPRR0mbWFnoz5NKUtAwkJrAaqJ8pCMR6MtPcxSKpv6+MH6F3/gB1M0vQc0yB07H1DlsDFAV28EBIjoAACAASURBVP+3PrRanOb9xvzeFrnVJgSjDS0HTpjS++/UaQo3fTOC5z6cijIt94VUZ/zc8bzVKT+E+tPTwEmzo8ftLoPWY+q7fS5UzfCk6iDKZWk4e065Sik1BMBhAMYBGAagFcA6AIu01ktTOJ8iAIcCGA9gNIC2HfP5r9a6MVXzISIiIiKiwU0K1JICVpIlh97YB5aQPafBK2HNYDRyxy4QJ1eCkOyCnEyk9YDBaNkn7iN2hEBI32n6wjzN7YkgjJDuQiAitcdh57MUKvX4jetrwGpHRAgD9HvLYjpq2QUNSu+3e/65wO32oFun+F062875he/cacBZzHQOA2MT3a9L79fcFgajEbnRFBaC0Yr6XygfvM/IpVQIRDowv2WOcdyE0t2xU+mEzDaoQEmBhiHdhfZIKyp8lRltj3R84FM+FHmKjeOIiIiIiIiIiIiIClKmg9E+ex/1oUbjaCchGPlACtOoLAW8niSvbC2eL49jMFqP5/6zEKedfXBmGpMGtqFEA7tebN0gV7RBvrnc6M2nnJXbbd+4RdSeB0HPPAV47Z/x6xvdEA0t+85P03/td+JUYM3ynpcz2+fg1tofxBRbvQ2IWDr5dTaLtgrdZXImCGSjg+Vz8fupm19ACEx0E4z2+Uexw9c3Yo8x9pM++r7GjIn5syxts+lqZVx+Xv2HPEFxSXQdH7sz1FfPTKg9akwD1Dm/gfXFAuCtpxOqo6eu2VdC7bp3UnUkpaK638uDAvMwt/xwY9GN2zVGVubPcpNKTo4JO7qATa3AyDR0NZCO5aqcBKO9ZrM+EKVTcQlUSan76ZQHHliw4I0Zpa38DiOyC6yuzo3bNogyb+E7wOa18cuN2wUY0wB4PGLYp7rg965Ct3pMmga890K/QdJ5IiB6LL1//eA4JgqFNUJC9vm/fuCJ+U2h334Jevt6ucIEjr/VgbOgDpwVrf/Fh6Gv+Z7rOgAAXzsHqsr8MF2iQsFgtEFAKXUogCsAHAnhO1dKfQLgDgB36gTju5VSwwFcBeA0ALVCmXcA3Ki1/lci8yAiIiIiIuoWFALJSj0JXGRwQAxccRHQQbHSHaBCg5d9EFJuXGGTtyvm7VtYCInyKZ7iy7ZSr7kXRnfglxSiKYVSJctvE/bVaQXE4EC/8D7Sye8pQzO2xgzvtAKwlPninmkdlgNMO+IEJWY+DM4k0eMMKfzL73X2vqRyQd2JiI7Aq2I7YNi2x2GgWqL7dTdhZwyvJXIuoiNoCTcZx8UGLJk7PWjhaZZEfc3b/jqC2hxyfnjNsRluTeGqLjIHowHREMRMB6NJ++Rc+V1GREREREREREREg48OdsaGthSXAFBAVyfgrwA624HSMqiSFF5Hz3QwGoD60Crj6MatgNY65qFk+aY5YL5GVRPnkrlubQbKK6E8HrnQ6qXiKDVpPyfNKwjxlpBla4IZaUe6NNt0Legb4qC7gsCmNXLhoLs+Cvpft8UvVFkLjHH2YCH11TOh4wWjDakBxmbuQUVq0rR+oTXSDfhhC1jXDOxkvBMxP6yO7foEID0hQibasoDt26Iv/OU9+66e4Us+jF9JWzN0JALldddXqF87WpuASARo324u4K9wVtGOfViM9Y0YWwOMrgLWt5iLLNuYX30XVm+Txw1cfnSwE9hg3q8DACZOtd+vuaAm7Q+dZDAaZpyUkrYkrKKq38s9g4vFYLRlGzO3vuaSpnaNFoe7r5Vb0hSMJsy/uqz3CESHQ0CbYaVf8WnqG0TkxK77JDadUlBCHzurQIPRyoqBYl9+/+YkSpjNOYV+Jk2D8hVBT9xXPm7fPcFzEKPrYgbt2/mJWDzfjqWd6gprBMPAkNLe7VF7l1y+osQwMM73qRL9jrolcZ5J7TZ4zlHR4JWaX7qUk5RSRUqpOwC8BeAY2Afh7Q3gdgBzlFI7JTCvYwEsAvADCKFoOxwC4J9KqYeUUrlx1yEREREREeWloGW+mbrEJgwmGaVe8w27bgI6KJYUADUQg9HILbsgpFy5AV/errTDlFsvrQc+VZTSdpF7pcK+p3sfIYVbSdMl3x55Ge+0OsR9V2kWQsKktgYi7WJ4pin4TfwOIvbBaOk6bnAr0eMM6b05XbbKbL5zu89N0uEw8DSU4H7dTZuchrQREdAS3gYNcxhlrU3AEpEbWmu80fy8cdwQbxX2qTgkwy0qXJXeKngMT5cFosFomZbs8QoRERERERERERFRyr34d+gTx/b/d8ww6GOGRv8+qgr6hDHQR1XDumgm9NrlqZlvJGIenoZgNLXj5lcpiKg9CGxuTflsM066Ab9aOAWtX3gI1rcmQh83Evpr42D95RfQwvei7cJnjjzVZUvzV7zsvGdWD81MQ9KkyaZrQc2Orhy6Kwh96dfsK5KCDw30oveA5QvjFzz5fKiiYmeV7n80ULd7/PqKTXd4p8kxp/d7WRdaLRa95638vgG/cau5/fXD0hsEoi0L1p1XQH9tXL/9mfWDw2H98mTo40dHh119VvzKImHg1ccTa8fT98I6ZVfo40ZBnzgWWLfSXNBhMJqSgtEWvgPPk3fgRzPlz/XVJcDf3jX3f8hFC9eal52yYmD4kAED1wuf6w7q1B+lqFUAjj0zGqaYqP2PgmqYnLr2JKKiut/LH26TAymldbjQrXDRfWDlltR/Rp0hjU6hG2F1GaA7WmH99kzoY0fEHrufOBZINryPKEHq5AsSnFDBo837qHzfCjV1CIHVuXHLBlHG6VVLoK+/MH5BX1HPNkV9SziW22UKsK853DUe03H1iMhmsfzKzHctTKvmDo1v3RFBzcUWqn5sYe+rInhneXR71WaT8V4+4Gez1hr6tv+RJ6gZARz97aTaqsbvBhz0VfcTDh0NzDwlqXkT5YM0PFaEcoFSygfgaUQD0foKAZgHYA2AckQD0cb3GT8DwMtKqUO11sLzCmLmdQSAJwH0PduqAXwEYAWAagD7Auh798wZACqVUl/XWjiSJyIiIiIiEljaQlBnNhjNFMICJBYaQr2k0JuBQtrmcQxEBlKYkE8VociTG0FifiEQyoKFkO5Csep/Rj2izR3ofIqn+LJNCvfqtKLhj9Ly6PemJ4hMWraibZKDwuymSxdpnp1WAJYQ0mMKcPMLwWKdViCvtwfxjjPEZcthyJ3ddx6ItKPcO7CHnT2nx0WJBp66CaTtXv+IKL5tIbmjQ42vfzCaEp8Jn+/dsyjdlnYsxIauNcZxh1QdnTP75ELgUV5U+2qxLRy7bjeHHF3+TamAsE/OlcBqIiIiIiIiIiIiIlsL3ob+0dHAY0ucBxRJhOAklYZgNOy4+bWhSw73+unjGg/NTm9oT7o1C5eFqw2noPW8F6F/f07vgJatwGM3Q/uKoC74fewE64XPbvf9oCqq3Dc2T8VbQuZjMrZva0Vlrbv+BblCWoaA3uVI/99PgI/m2FfkMBhNb1oD/ZP4Nzuri64DTvuJozoBQPl8wF9ehf7TRcDcJ/uPHDEO6psXAt/5qeP6UkHVjIAe09ATklVttaA60oRmb2zY0tXPaJy2v8ak0fm5TZICBBrS/RyyB64FHvrf/sMiYWDRewlVp393NrDnQVBjGpxP88Z/oP/3B84Klzq8Pmgzf/1/P8EvflOLV3Y/Ba8tMZc56z6N4UM0vrpn7i9P5/1NCNUbCqgByZT6uvPFetSv74X6yjdT1i41fCxw2+vQd14BLH4f6NrRZ7+tObZwRXX/4V87B+pHf0pZWxI2pH8w2q4hOei20EJAnDr7Pue3dafjM2qx2wf7AX3ld4F3zQ/gs1VaBviSPG4nGkgpYMIeUCedC5Vo+I3yQAl97KxIfve9c/O7jKjQ6UA79EVH2heqGgpM3AfqjEuh9joYAKBmfQdQCvqJO4HGz4CKSmDqTKiLroXyeBJrzGjzcfX9G8/H2SPvjBm+cks0BGzgcWi+OvVOC6981vt64VrgyBssfP47D55eIG93Bwaj4R9/tp2PumMuVGVtEi3dUc81j0aPv997AWga0Pcz0NZ73sFXBFQPB/Y6GOrCawfVOSoavHjXZOH6I2JD0W4BcKXWuqnvQKXULAC3A5iwY9BuAP6tlDpCa217NK2UGgfg3+gfivY2gHO11p/1KVcC4HwAfwLQfWfDiQCuAfArF++LiIiIiIgIXVqO5i9RpWmZpymEBWDoRrKcfn5hIRCKSJJLwU8Su+CigNWOYk//M+pSkJBPMUQi20qF8Mzgjm2ctDxK0yWrxCPvCwM2QWHZCKcoFQPNOmDB/FRm0+cmh9PlVhCcxK79dpJdtuzC+dyEkHXriDgLPE00GM1NIK3T8FUiAprC5t6LJao05nhFCkbL765ZlAlzm58zDlfwYHr1wEualKxq31BjMJq0vqeTfLySO8diRERERERERERERLY2r43elDj9a8nVIwUnpTEYbWRkI/xWBwKGc7KPf6Dx0OzUzzqTmoTLwtWGS+b66XvNhV98GPr8a2Jv/F3faC6/z3SnzSsIteXA1jiX3//9+Cc4+4LDMtOgFJOWIa8HqCiJ3tSOlx+JX5HDYDS8/CgQjNNn8vCTob59ibP6+lDVw6Cuecz1dGk1bSbw1D09L+tDq/GxIRgNAB54V+O6b+TfDfhdYY21hqwoAGgYlr73o7WGfvqe+AXdevFh4Hu/dt4OadtqUlbhrNyOfZjo6Xvwp0tPxdTfyaFO97xl4at7ep23LQs2tMg9LQaG6mmtgU/nmQsPHQ311TNS2LIoVT8J6tp/przejCkuBYqKgVDvg7m/1vo0nhpyYkzRwRiMprXGp+ucl0/HZ9Rs0xWwqmN9YqFoANQfn4CaekRijSJKJ6XgER4YbZ/kkPvc/C4jKnhvPgW02Ow4v/tLeM672jhKHf3txMMXTYTj6p0DnxuHd3QBm1uBEZWpa0K2rNyi+4WidQuGgYfmafzjA5tgtAH5qvqZ+8Sy6oLfQ42ZII53Q5X4oX78J+DHORAyTJRjEoyHpFymlJoEYOBjIX6mtb54YCgaAGitXwJwKIAVfQbPAHCag9ldBaDvGcl3ABzVNxRtxzyCWutbAJw6YPqfKqXqHMyHiIiIiIioh12Yll0YTDL8QsBISHclHO5BzkNX+BmTW4FI7t98bxdcZGp/iMFoOUsK2OrexknbOrtwvGR4lFcMCg1E2tEZMe9H/UJIWTrZfXbSemyaxrYe4bghl7YHUvs7rQAsLXfikz8jZ8uW3WfQkUCwWLr369L7NWF4LZFzTSFzJ4zaouEF8+Q3yq6m0BYsaJtvHDelYn/UFg3PcIsKX02R+fHzTeGtGW5J5kOCiYiIiIiIiIiIiNJi+aLk65CCk3xpCEYbOR5Q0UfeVFnbzc3R0UCffLamydz+2grDNa65T5or2bIOCBiuj29YZSyuRg2uW6B+c2L864ULVufvQ0+/FJahYRWIXitduzx+kBkAHXbWD0IvXxi3TDoCjrJF1U/q93pycLFYduGa/Nwerdoqh5kMDLdKqe3bosGdKeZkGe1nhYv9Y7zAs26j6oBSm35dyxdil+FAsc3uc8Ea583KlkU2X9/uowdse1tsrvNWp3NBy19KKWBASEV9V6OxbOOW/Nz+JCPQFb9MX6u2pv4zsgtGq974aWKVKgXU7Z7YtETpphSU8PhRK8+T0ZqFw+Wa9HSTJ8pp+osFtuNVw+QMtQTAaPP5i4Yu8/kOAGjMfPfCtLD7PbBwDdBp8xO+sk+3Rh3qAhoNCWvdMvl9Eg1iDEYrTL9E/+/2Fa31jXYTaK03APj+gMF/UEqJ0fhKqV0BnNVnUBeAs7XWnTbzeRLAA30GlQD4rV3biIiIiIiIBgraBF2k68baUpuAESlghuILRJyFrjAYjdySAnGk8KFs8HtttiuG8ABpPfCpNHSQJVekcKnuUCtpv5XOMIhSIeSsLdKCCMwdUrMRFCZ9Bp1Wh02IRmw75e+gA51iUGLuhHFIbdHQ6NJBcbpkg0a8cUL03Ao4DFOTgh7jcRN2FowTKkdEvZrC5mC0Gp/zzrNa6LRFBABvtbwIS3ji6eHVx2W4NYNDtW+ocXhzFoLRkg1yJSIiIiIiIiIiIsoFroNiTKTgJG/q+32o4hJg+FgAwMnb/2Mso3U00CefPDzPwnE3RzDlygi+d5+FF4TMjPoBp8l1JGJfcaCtf/lwCNgs3EXrNNinQBy/l0JFiX2Zm7ZMz0xj0mCl+VJpb6DV2hXOKpKCDwf65C378dXDgQNmOasrH8z8Vr+XZ7Y8LBaV1udcZxccMHBblCpaa+jbf5Weyt9/xXk7Ql3Ow9l23w9q7M6OiqriEuDI0+QC27ehPNKKU6bKwY3LNgHtwdzux/DsQrl9Zx084L2tbxTLqlnfSU2DCpA6qv9y1BBqNJabsxSIWLm9vKTaApe5itL+MhlSkJJHAeVvPJ5YpQccDTV0VOKNIkon5YFH6NOq83wb1CIEHVb744cs69ZmWLf8HNbsg2GduTesq8+CXvReiltIlBy9djms686HddZ+sM7YK/rvzL1hXfld6E/nRctoDf3UX4FHbCJdKqqAQ0/IUKsBDKkByitjBo+MbITfa/4Nu2Jzfm+Pui3bJL+Pxz7Q+HyjedzQcsDr6bPt2vSlnIQNAPsflWALicgNBqMVGKWUAnD8gMF/cjKt1nougPf7DGoAcITNJKcD6Buc9m+t9TIHs/rjgNenKiXcfUdERERERGRgF4xW4knPzwu/Vw4YcRoCQrGcBpyELAajkTvSeimFRWVDsSpB9Nm8sQKGsKOINl988KmilLaL3JNCqIJWAEErIIbFpDOITKpbCr8BshMcKAViBCIdxvUAAPyG9VgOWAugQ9oe5ElQol1AmRSMZlef07KJHN+kO/DUTZs0NIKW+AwPIupDDEYrig1Gi16GMsjzp1ZS+oR1CG83v2wcN7J4LHYrm5LhFg0ONUIwWlMoDb2V4xCDXG3OsxARERERERERERHlnDn/hg4mef1RCk5KQzAagJ4Ar+s2/VoscuXT+XON55ZXLZx5j8YLnwKL1gEPvKvRJXykDQMvc738qH3lnQOuRW/6ErCEB3ENsmC06jKFV37qwYQ4z1S67vn8fHCZHIwWvS6qL7cJZ+pLCj7sQ2/dAGwSAvcAoLQM6uYXo6FQBUINHQVU1va8ntX+Kg5vn2ssqzWwbGP+bJO6rdxibvPISsBfHD8MJBH6ziuAZ+9PS93oaIVe3+is7MbVzvoK7HUI1LX/ctUMdfENwOQD5ALrG3H7mQp1NuFzU39nQedoX4bF6zRuflVu255j+y87+i+/kCv79iWpalbh+e4v+72sD60Si85+IDeXlXTYuF3jkOvc7bdXb0t9eFxzh7m+6pIw1AsPuqtMKWD/I6GuuD/5hhGli1JQQn/yPM9FQ5O0PsfpyqxDXdAXfQX4x5+Bzz8CVi0BXn4U+idfhV74bhpaSuSe3vgl9AWHR4+/VywCVi+N/lu1BHj1cegfz4Je9B70PVdDX3+RbV3qphegyioy03Ds6O9rOIehANR3mCNhTv9rnm+QdvjFPxN7H09c2D9+Sd9/rVhW3fU2VFFxQvMhIncYjFZ4JgPoe7q5C8AcF9O/MOD1KTZlTx7w+j4nM9BafwZgXp9B5QAK6HEWRERERESUbp02IRclQjBKsuzCU5yGe1EspwEniQao0OAlrZfZCH6SeJTHJsypf3iApSOwYO6IwGC07JO+Rw2N5vA2cTpTwFeq+IU22YVhSO8jnezWAWk9Nk1jFwTWInwH6fz83bL77O2OM6TwODffpbRdlOq2k+79uttjLobXEjmzLbTZOLzGF+fuBiIHPm59D9sjzcZxM6qPlcP2KCmmYEMAaA5vzXjn/3z4bUZERERERERERESDzBEnQz3wEdSPrnc33YK3kptvloLRynUHRoU3GIs8Ml/nbGhMXxFL439fdN7O7lCrbvreq+0nCAy4Pr5eDk7ByPGO21EoDmhQ+OIPXly7x8dimRtf1ugK5/6yNJAUatUwDNCtTc4rktbvvp59QBylLrsLnpeboCbs4Xye+eK4/9fv5bWbrhCL/tHFep4rGreah8cENKaI7mgF/nVr0vWoG56R5/GPvzirZIO8rVR/fTe6r316LTy3vQ41bLS79vnLoW6bIxdYtxJDShU+uly+PXrZJuC9Fa5mmzG3zZGX9W9O7f9aRyLAgrfNhcdPhPLwFnGJ8nqBY87oeW0XjPbAuxrrm/NvG5SIB991/z5DEWCti92iE81C98TqkNznFoedEN22DPz37Hp4bnwOqsomLZEo2zweMRgtH36T2RHX53hdmd9+Fli5OHZ4MAD9xB1Jt4soFfQz9wHN5j62AICuTui//TEa8GdDXXYX1G5TbcukhRDubndctK09v7dJX2xKvP27jxow4IW/mQtWD4eaNC3h+RCRO2k6e05ZNG7A62Va66CL6RcOeH28qZBSahSAvfsMCgMQzrAYzQFwYJ/XxwJ4ysX0RINGR0cHPvroIyxbtgxbtmxBZ2cn/H4/Ro4ciYkTJ2LfffdFcXFqEmVXr16Nu+66C3PnzsXSpUvR1NSEUKj3RtX77rsPZ599tnHa+fPn47777sM777yDL7/8Ei0tLbD6PCVp5cqVqK+vBwAcccQRmDu39ykv+f7DnYiIiDIvKNxUW6SK4VXetMzTLhgtkeAQinL62TEYjdySwnDs1uVs8HvKjevBwGFhLXeeYzBa9tktV81hofdbnOmSJdXdZNMevyfOo7nSQAo067QCiAhhgKb3ZhcE1hQ2h8Hl0vbAPoBV3ldK49wEjUjfe2ckgWA0h9Mkul8PRNwFnTG8lsgZaTtpDlYyh1hpodMW0dzm54zDS1QpDqr8SoZbM3hUC8GGId2F9kgrKnyVGWuLdLySjVBeIiIiIiIiE/bPIyIiGnxUZS1QWQtdWQv8+VLnEy75CNj/qMRnnKVgNAAYE1qPDb6Bd3dGbWsHhlakpwmpsmorsM78HBajCQNPk7e12E/QOeBatBT2Uz0cqizHP6w0mv7/2Tvv8DiK849/5+5kFVvWqdiW5CbZFOMCprjSTDPYtFBCaIGYEpKQEAjwA0IzpgdIgACBQOi9mF4N2BhjwJhusI2LzlWSbVmy6p3ubuf3hyzpyrxzu6eruvfzPDz4ZmZn506zu7O773xmlAP4SZ23rblDQjSmPLFt6ilrifntlSUAVn5rviJf5DgIuXwJnTluivl9pRmirCLobfJIL22qWlGdfvcuLmKNyoriOC0Qtep7wN3DmOWBQ4ARY+n81T+Yq4eSSBYOjIn0QdjtkOWVwOYqxb5dHbvqK1DcF6gjQooWr5GYMjL1FutavIbu6yMGhLS3ViPrHDA4Ri3qxfQr6PpnZbsLNumHQcw1WOICjh+foHYlEZ2YT0dNIzAsht6xBiK0z+nRyGd2Hd87JaJMhiBgI+KiDSP9xkCB1FNitAihzPLHxXTmz5qxM8MkEl0/7WSxOkYyiCEje96WaBis3u+u7avxLrHJN+uAw0fHr0nxRjfW1mETwc/HtLL0YvUzNoZh4gOL0XofRSGfLTz6V5YfKoQokFKGvgUIffr1g5TSyqy00FEA340yTAB+vx8vvvgiHnvsMcyfPx8+Hz0BPicnB0ceeSTOO+88HHPMMVHv8+GHH8Zf/vIXeDxWXIqAz+fDn/70Jzz88MNR75thGIZhGMYqHsOtTM+O46Rau7Cjj8hGu8I9rROWMHrM/nZe2R7nljC9DUqGY0UWlAgoGUCokEgnEXIIfsSXbHLs0YnR4tkfqbrrvepoPAGBbFtO3NpDQR0DbUYL/PAr81TfTScWo75zKp0P+ohs2GCDoQh6oCSiXqOdlCZakb7lEv23lRBMUkgpSSllKF7DuhjNkH54pHoMSMHyWoaJTLvhQYu/SZlX5BgQlpZ64cJMKrPR7cKatuXKvAn9DyYFqUzPUYsNO6j3bUuoGK2NuDdLJUktwzAMwzAMwzCZB8fnMQzDMAwDAKKkDHLsFGDZ56bKS68nqncl0t0KfPSiWuwCxE2MFigjOrTlY3yTu7eynKsu9cVoP24yXzYnCyjtdqBANjUAusmsQJgYTVa71OXKhptvSC9k4vgSDHqhFrWOQcr8dXXpJUZrcktSpjSiRACrXOYro8SHgVASKQAYuqv5faUbAZJGACj2byeLfq35iVIVV5160n0F/boOACB9XmDBXMhlXwD9iyCmzoQYtW/E/cnXY3BvePAJHddAKv/bT2Dccn7Hv5d+BLQ1A0eeATHtRIjxB3a3pdql3r40hufKsgrl9VN+txDiN38FAJy4j8DDn6q/zeUvSxw1VmJMeWpFO3y3gc47aZ+QtmrOHeKg42PUol5MfmHXP/vJFhzV/AHeyZ+hLNpxPKdWX4klNTskXvpaYh0d0oqB+R2yU5WjqSHGoXjv/qg+bgs8W8htxLQTY9sIhkkkQkAQC1ik47oWtY0SLy2VWLaZvl8rjBQatHE1ndfG8b9MivD1/J7XUVIOjJnc83qiQEw7AfL5f4Wln9D4Gu4t+rNym3Xb03tMVEXIqyMxpBAQIuB7b3bRhfeZFt1OGIaJCluyG8DEnNCZ4tkWt1eVVzk9Q9M0o08la0zsg2Eyko8//hijR4/G6aefjnnz5mmDrgDA7Xbj9ddfx7HHHosJEybgm2++sbzPd955BxdccIHloCsAuPrqqznoimEYhmGYhEMJj+ItdKEm7bb5+aF7tJj97SjxC8NQtPnVUWupNvmekkGEynx0x4BDZMW0TYx1KLkXQEu5bLAjS/SJV5PIvl7vU7cn25YLm0j84+Jcm/oYcBttYYLATlTfTSc5o+R0qXQ+EEKQ7aEkojq5KCU7U5Yl/gZmJWedeKRbKXZTEc11nRLj6mB5LcNEhrouAHqxEsOYYWEDvRLiQU51oDETG/rbC2AjQgF04t54QF2PU0lSyzAMwzAMwzBMZsHxeQzDMAzDBCIuvx8YOMRc4cdu6hDZWEA2j2HnewAAIABJREFU74C86AjI2y6gC8VJjBYoI7p2261kMVeUE0YTxfYWiRMeMPcuGgAqikMmsn70YuSN2kLej1MSmljKftIQ+4AyPFN7Lpn/z3nm/06pgG6ydGWJRvqkIsJ9BQCgdr06/dd/Ce6zvY0QMRoA/LPmMmVRjw9YvSW9zCBUP6rUvG6X3nbIK0+EvOEs4JUHOq4vFxwA+f6z2n0Z918JzHu+B60FMHYyxFlXAgDE+XPocu8+2fHf1k1A8w7glQcg/3I45LN3dZd56nb1toq/edSUVarTF70FubLj/nzO8frjZ8LNBt7+IXX61Xcb6LYcNgqYUBGcFvSbh3IsfU5mOhD9CoI+/6tWff4BgEteSJ1+Emt+qZWYcLOBvz6v/45FfQEn8Sq/vjV2v889HxlYuEqd5/TvUGcceQbEiDExawPDJBxbx/LJKqRMr3H06i0Sk24xcNHzEv9dSJ8bnHn0NVp624HFdGwZPBz/yyQf45HZPa+kb3+Iax6FcMTp2U8kRk9UJh/Qtpjc5OpX03tMdMOb0bX/yXOC4y3ly/eRZcV510e1D4ZhooPFaL2P0Ej2Movbq8rvrkjbJeQz8XSWJPQtQbEQolBZkmEyiBtuuAGHH344fvnll6B0IQRGjx6N6dOn47TTTsPhhx+O3XbbLWz7pUuXYsqUKZYDoa666irIAK346aefjo8++gi//PILqqqquv47+eSTg7arra3F3Xff3fW5T58+uO666/DFF19gzZo1QdsOGWLyhTHDMAzDMIwJKDGGTkwTCyjJCEs3osfsb+eT1oIKGYYSKFqRBSUC6rwVemzojgGHSNJLEqaLbJEDQayKQwlncu15cQ1qzLGr+5ZXhq6rsLN8nK+hFNR+JSQ8krjeK47jLNEHNtiV5anvnGoyDur8RElEQwWKgViRvpFiNEIwSUGJ7FT4iL+JDt33JbdheS3DRIQSeAKA01EclkZd7yS9ljSTobT6m7Gk8RNl3sjcPTAkpyKxDcowbMKOAkeRMk933McDK7JbhmEYhmEYhmGYeMPxeQzDMAzDhCJGjIF46juIO9+A+MdrEM/8oN9AN3FbxbtPAsuX6ss44rQgXoCYpq9sxcj2NcpirrrUfs/z8KfW2hcqI5J3/SXyRu6QZ9k1LEZTIWw2TCvYgD08y5X5H68A/EZq96dA1m5VpztswJBCANUu85X59WI02dTQIZdSIKadYH4/6YhCknVUywdk8UtfTB8xSFu7RG2jOq+iWBMXtvgd4MuQ38AwIO+9FNLvV24iN60Bnv9XlC0FMOMsiPvnQ9w7D8K580R5wDGWq5GPzIZs3A65eS1dqCx250qhkazJR24AAAzqL3D9sfTv7fYCl79sBN2XJ5OLnqP7+GOzbEExhdLvB5bMUxcetS9EVvwWZu015AdPWR7prcLJja+Qxbc2pUY/iTW3vSuxqSFyOZsAnEQoaUOMQvEa2yT+PlcjUjKI6+Xf7o1NAxgmaQgIIsbOSJ/hDwDg9vck1m+PXK5QFxq06C39xu6WlLl2M5mJ3FYNPEFL5s0iXlgBse8hMWhRlPsXAjjqt+HpAE5qnKvcZksT0OpJz+OvJ6LtSQFOZikl8N7T6oJDRkLk5Ue9H4ZhrMOzJnsfK0I+DxZCDJFSbjS5/RRFWoEizRnyeYvJ+gEAUspmIYQbQE7Ifuqt1BOKEGIggAEWNxvZk30yTKy4+OKLcc899wSl5efn46qrrsIZZ5yBYcOGhW2zevVqPP7447jzzju7VpNsb2/H73//e7S0tODiiy+OuN+VK1fihx+6X+DOnDkTzzzzjKk2v/baa2hv757IetNNN+Hyyy83tS3DMAzDMExP8BDCo2yRo0yPFdSk3WhEHUwHZsVolNSGYSjaDLXQJ9Um35NCIktitDgFyDKmEUIgx5arvB7U+0LXMegg3n3Rav1UX4w30fwOuQqZmhACubY8tBhNFvadHBkcBfVbUNdK3fjDivSNFLJZHN+0EuddFdEIT3Vjhj4iG+3So9jGmtyNYTKR7T51tH8/ewH62LIVOb14pXImpnzROF95bgaAg50zE9yazKTQUaKU9FLj03hgSL8l2S3DMAzDMAzDMEw84fg8hmEYhmEoRF4+MOnIrs9yn2nANwuUZeX9V0AcdLzpuuXn70UuZI/T1K6S8g7pmq/j/WxlexXW9AmfPuNK3GPjqHhvmbVJrRUlAUIZj/oZdRhtIe+Wq13KYjpBT8ZQVoHxG7/H8uw9lNnLNgF7DU1wm6Kkapu6bw0rAhx2AWNzlfnKfBHiICjZHtDrhXsiOxeyqBTYXtOVNty7niy/mhDWpSK682eopDEQ+dnb6ozG7cDaZcCue4XnUXKsTnbfB1j5DZktTr0YYsSY4MRozmneduDrBUADPZVUxLJPl1fQeV/Ng/T5IBwO7D5IX82Kmo6/l+7vkigoOZXDBpSFzuKt+pmuiK9J5ugXPjV6D0/oFOxuPloucerE3hcb867J8dTwYpDCx/oYTZdYuApo01w2C/0K25JzAERev9g0gGGShc0GGyFGSzf/1zs/mmuwUxMaJL98X7+x398xxmYJKJMsln7U8zqOOxeiIHyB4kQjyiuUZ59hmvuyxWuAw0fHr03x4v2fojuhDnYC2VkBY8BN6sUFAADlI6LaB8Mw0cNitF6GlLJGCLESwO4Byb8FEFFJKoToC+BERZZKWRl6F6m2EuhpQ7AYLRZqzD8BuD4G9TBMQnniiSfCgq4OOOAAPPfcc9qVHHfZZRfcdNNNOOuss3DSSSdh2bJlXXmXXnopxo8fj2nTpmn3vXRp8ApUoatOxmPbBQsWmN4HwzAMwzCMCjchRou34ISqn2oPExmz0hWf1K+oyDChUMelFVlQIqDOK21+K2I0fsSXCmQTYrQGb7iMAoh/X7QqHEuWJIyScunIISRuOXZrYrRo9h1PyPMBca10++lrqJW/Jylo9FuTilkpH811PfS8GEhh1gDUtoevDdLGYzSGiUg9cZ0qdFgNxkiz6CwmrhjSwML6d5V5/e1OjM+fnOAWZSbOrGJAMd9LJUuLF7rnJSrZLcMwDMMwDMMwTLzg+DyGYRiGYSxhs9F5JkVJ0ucDVn0HfPVh5MJ2u8mGWUPY7ZCDhgKb1gIAKogJry5CDpUqrLUoSQqS3tTSk3yDcHe/75btHmDbZnW5st4tsDJFeSUOWzkfzxWcqsyu2pb6YjQpJVZvAW59V933RwzY+Y+dx44p/BHiIKpd6nRHFlBcZn4/6Up5RZAYLVuzUO66uo6/kRCpKyba2iSxeA3w/BJ1HxICGFqoqWCzpm+1NSuTZYTrj5h1NeSNs4AWhdFo4BBg+KjwbXL7Qu65P/DDZ9q6w9ry6RtAyw66wMTDLdWnZZ9pdJ7fD2zZAJRX4pBRAg6bhM+gi983X+LaowFnXvL6lt+QqNK8rrXbQtqm6Stiv8Ni1KpezoDBYUlHtHyIGwdcrSyeTnJGs7R4JCk7C+XwPQQpPGqIQSje5gaJf7ynOVABHNqyIDxx4hE93znDJBshIIgYO8NI7XuyQNraJao1w4BABjs1mdWuyBW4W0yJ0WRrM/DTF0BdTcSyTIZROhwYMwkiCsGe3LCqx7sXE6f3uI6YMPEI4NEbw5Knt3yIfxWrFwCqqpNIx4WU10YZGlkRGjKtuf8Sex8c3U4YhokanjXZO3kaQODV6f+EEE9KKTdF2O5GAOEKdHNiNJPLqATRBiDwMR8ru5mM5JdffsGf//znoLSpU6fi3XffRb9+5g6L3XbbDR999BGmTZuG5cuXAwAMw8CZZ56J7777DiUl9JIWtbW1QZ91gV6x3JZhGIZhGKYneAz1LUi2LUeZHisoiU2bYU0cwnTjNi1Gi7CiIsMEIKUkBTrJkj9RUPKq0GNDJxFyiKyYtomJjlxbHhoQvgxovU+9NKhVcZn19ljr67l2tRwr3kTzO1Dfzep3jvffwCqUoIy6VlLCtGyRA5swHzhPj2+sLfFoZTzkjeK6Tv0OdjiQby9ALcLFaG4eozFMRChBUlHWAGU6FeaQPqFZTCJY2foDtnjVE4b2d07n8WuCKHSo3w01EOPTeKATo6XaWIxhGIZhGIZhmN4Lx+cxDMMwDGMZoRGjmUDWb4G84gRg+dLIhYEOg068KKsIEKO5lEXe/rFjIr4tVMaSArT7JDY2WNumsjjge3y/yNxG7oD30Vs2AJJ4+1XKYjRRVoFTGm/EeeUPKfOf+sLAr/aOj+wvFvj8En9+TuK/C+k3nBUlAnJ7LbDDwozqSGI0StI3cAhEnOSIKUVZBbDsi6Ck22uvwhWDbg0r2toObNgODLO6lleCePoLA+c+IeH102UGO4HsLM05dcsGOs9HxNQ8fze9zf5HA1NmQlxwI+Q//xqcZ7dD/OFmsp+J82Z3XLMIIZuSec9ps0X5CPN1RUAUDYI89WLy+8vrTgf++xkG9bfh7zMF5rxFH9v/mtdx7L/wextmjkvONU/XvgfOCG+TXDCXruwItaCSCaGsIixpStuXZPHrXpf4/YESA/un3rgoWlwmQwTGDwXOniqweA0hRrMWThjGv+YZuPQlfYTR0U3v4LCW+WHp4szLe7ZzhkkJBGxSLQaU1P1HCmL2nNI3GyghHr9Lvx/4ZkHkStytQL7ONgvIn5Z0jGWsjN2ZzGLAYOCe9yGG7mp6E1m/BXjytp7td99DgKkze1ZHrBg9Edh1fIfAPwCljHQnFzwlcdoEiX456TUmilb+7wwNZdSJqY8/L6p9MAwTPT17Ws+kKvcBCPTtOgG8K4QI15vvRAjxNwBqpSegV3B3EM1VIn1G6gwTRy677DI0N3c/QHY6nXjllVdMB111MnDgQLz88svo06fbXLxp0ybceGO4xTeQwH0DQFaW+QlJPdmWYRiGYRimJ3ikemJtdpyFR6TAyB+DJZAyEK/RrpU9hZZlGLP4pBd+qPsWJR5KFpSMKlRIpJMDslgiNaCuEZQsipJRxQqroolkSQP7iGzYLD6mpr6b9e+cWjIO6m9ACcooUZhVyZ3Z81AkrIjRohGeUu3JsefScjceozFMRLZ71UvdUkKluE7MYXoNCxveVabbYMOBBUcmuDWZS6FDPVukwZtIMRo9nki1sRjDMAzDMAzDML0Xjs9jGIZhGMYyESRF0q+x4QCQD11rXooGAHW1kctES4AMpMK7jiw2b3n8mtAT1m+nHWUUlQGvueQ//mhqG9kW8L672kUXVMhVMo6ySuTJNkxtXazMfvVbwG+k7nSxl77WS9EAYEQJIP9FTbEjoGRWO5HVxPGXKbI9xbFzauNLZPFLXjQzlTHx1OyQmPW4XooGABUaqZv0+YAt4Yv/deENj5WVNfT5G+WVEDe9CGGzQZzwB4h/fwicenGHNOuMyyEe+ARCI9ASex8E8fBnEOdcR+/DCr+7Ojb1BGC78HY6c+U3wFfzAACzj7PhnYv0cWgtHuD0hw20ehJ/nlpfJ3GjRoz2632D4zGklMC859WFx06GyE2tWNiUpaAYyA1+BiQA/KH+v+Qm17yeutexaKiK4Arae2iHmG/+pTYU9RVw5qljg3oiRvtxo4woRbNLH17eeCqyQuO/jzkHonJ09DtnmFTBZoMgtAopPHwOI9I5pZPKYkBQsYafvGquErf+xCMNA3LOWSxFY/Rs3QR5w1mWNpH/vZ7OnDoT4uVVEH+4GTjitI5xd+B/R8+CuPIhiDvegMjqQ9eTQIQQEP9ZEJZuh4FfNb5ObvfPD9Po5LQT6hx19dECN/2Kjn8OXStAUmK0keMgIggbGYaJPY5kN4CJPVLKBiHEOQBeCUgeB2C5EOJBAO8C2AwgF8B4AOcCOCCg7EYAgcvKqdZXCV0GIJqZk6HbWFhagOQBAPSTUTUjAdBXbYaJIytWrMBbb70VlHbbbbehtLQ0qvpGjx6Nyy67DLfccktX2v/+9z/Mnj0bhYXqgZZhRP/CoCfbxoKff/4ZP/74I+rq6lBfX4+cnBwMGDAAe+yxB/bcc09kZ2dHVa/P58OSJUuwdu1abN26FR6PBwMGDEBFRQX2339/5OTkxPibMAzDMAxjFY/hVqZn2+J7nc61E2I0i+IQpgMrwpVoBCpM5qLrWzn25MifKCgRUuh5RXcM2AU/4ksFrIrF4i2CsCpei7eojUIIgRxbHloNc48GHcKBLJv6JaHV3zRZ35mCEje6/epzGikKs9gXaalYC6SUdGBCWHkr13XrwlNSBGfL04zRzMvaGCZTqfepBUmFWYQYjSCdVq1k4st271b80PyVMm+vfpPgzErRpd17IU7iOK73bbN0je8JuvFBqo3FGIZhGIZhGIbpnXB8Xs/g+DyGYRgmYxERFvfaupGUGUkpgfmvKPNI8p3WyltAlFV2Tb0frhGjvfCVxJFjUm+BHLOT7gPpFKMFyc4i4Q4UoxG/U9EgiOzUijtKCuUVAIDRnhVYnDdVWWTxGuDAXRPYJgu8/HXk95qVJQB++tJaxf4IC8RSYqsMke2JsoowDUiZrxpZsh1eER4H9JUrIc2yzGvfSfhN3KZVlmjOp1s2ADrBpkqy98lrZHHxu6shHN3xg2L8gRDjD4zcyMA6ho8CZl0N+f2nwNfzLW0bVle8+vQeE4Dl6vfQcv5ciEkdC3QdNVbglP0EXlxKH+uN7g4h6PHj49JSkrnf0m0qzAMKQmVUq76nKxu+R4xa1fsRQkCWVQBrlwWlj2hfS27z0lKJh85MzDv1RLB+u7rvDS0E1t0eLgR2Eq/yG1qjjw16ycT195ptt4ZL0QCIPdXjDYZJO4SADeqBRDrF3lVtM9fWSk34ofzoRXM7iyBGw6rvAUpexDCBrPwGsmEbhDNyXKyUElhAP9cRk6ZDDBoGnHEZ0mmkILJzIUvKgW2bg9IrvfQx9PJSieuOiXfLYouLWDN214HAGZMErnlNfQ6bWBny16x2qSsaOS7qtjEMEz08a7KXIqWcK4T4K4B/Aeh8K5MP4PKd/1HcC6AAwNkBaWkjRpNSbgGwxco2veUBBZOe3HPPPUE3rSUlJZg1a1aP6rz44otxxx13wOvteBje0tKChx9+GP/3f/8HAHC5XKisrCS3P+SQQ5Tpjz32GABo20cdT1VVVaioqOj6PG3aNHzyySddn63cuG/YsAH/+Mc/8NJLL6G2ll4dKzc3F4cccgjOPvtsnHTSSbBHWLkLAJYvX46bbroJb731FhobG8l6jzvuOMyZMwe77bab6XYzDMMwDBNb3EabMt2qCMQqlHDFiuCL6caKUM4nIwQOMUwAur5FiYeSBdWe0PMKdQzYYIctUkAukxAsS7kIkVOssNqeeIvadOTazYvRdO20KtdI5ndWQYkbqXEGLQqzdp7LtfdTpvvhg1e2o48wN7Gt1YKELJrrOi2Cy9OM0dRjRoZhOpBSot67VZlX6BigTBdkKEf6BGcx8eXThvchiSC+gwpnJrg1mU2hQx3I5ZXtaDGa0M/eP+5toMYrdjjgEFlx3z/DMAzDMAzDMAzH53XA8XkMwzAMYxFbhDiM6nWkGA31W4DWJmv722eatfJWCBDUjPX8TBZbuzU13/WYnXTfyahSoLDvzjFTtcv8hl5P1z8lJbCi/uaZRkWHjGdS2xI8UniOssiqWokDd03NuVq/0EPcLiYMl0CD+j0qSZRiNJEp/WrM5LAkGyQk8f65rhkJW+jHCmb6DwBU6HwL1S79xgoxmty4mi4/ZqKZJpljzKQei9Fi2p7QegkxGjauCfo4qRJ4cam+utVbJJBglcUqzYzXySMUiZvWKBI7EPH6nXsrZcPDxGiT22gB5o62jvNQSX68G5YYthNhfWUF4WnSMOD0N6BjinkwDT2YLrHaxIzvSW1L1BmjJ0S/Y4ZJKQQEEWOX5PUxLLHWpLx68kjNdbZ2g7lKIonRNqwyVw/DAEDjdsCEGA0NW4HmHXT+mEmxa1Oi6V8YJkabTF1/AazZKlPyvoyioVWS45XKEgG7TWDqyA6Zeygn7hPyHSnpYjn9/o9hmPjBsyZ7MVLKewHMALDSRPFmABcCuBjA4JC8GkX50Cu6eoYMgRCiH8LFaCoBG8P0at57772gz2eddRb69Alf7cQKAwYMwLHHHqvdTzoipcRNN92EXXbZBffdd5826AoA2tra8M477+A3v/kNNmzQ3yj7/X5ccsklGDt2LJ599lky6Kqz3hdeeAFjxozBPffcE9V3YRiGYRim53gMtzI92xbflaMp6YYVwRfTjRWhnE8qVsFjGAJd34q3QNEqVHvc/lAxmvoYyGKZQMpASa3I8nGWclltj1WpWCyx8lvojmHLMjiLv1G8occZarlXm58ShcXub99mQXZmZTzkjeK6Tovg8sjv4LbQfobJRFqNZrRLjzKvMMtEAAjDhOA1vPhsxzxlXlmfodgtd2yCW5TZFDqKybwGL7E0YoyhJKU59ty0CZhiGIZhGIZhGCa94fg883B8HsMwDMMEEGmBumqXMlm2NEKeGy7/0TLjLIgC+nlujwkQo+Ubzcgm4u6qTE5uTzRUuyaPAH43Nfw582XTA9KqiUmsKtrbA7ZzqcsE/JaZjMjOBfoV4NeNr5Bl5tEOvqTi2ibx02Z9mVP2E6g0NgLedn3BUCKJ0aop4d4wa/tJU0TlHsr0S+rUY/42L1BL3zYkjWe+NCdrrNCc1uUDV+k3VojRKLEeAIhhu5tqkxnE0b8D8gujr+CAYyCGj4pZewIRx59PZ37/adDHMycLpfApkMtflli2KbFSUJdG9nnx4eFjD7nsC7qyQ0+ORZMyB8U1fErblxgp6IvCQwtTUxobDZQgpDBk/VX5ygOQxw2B85nrleXrezBdIpLsNs9owWEtCjHjfofG7bzCMAnHZoNNqg1oFy2shM+fHucd3fWskwH5wNlTNHFBK78xtzM3HQMspYS85Vxz9TAMALOL/8pXHqAzR4wBdts7Ru1JPOLsv4elHdP8Dlm+zStQ86/ZkH5/PJsVM3TPtjrv0f52hA2hYYvH7AnsURaS+Mu3ynoEi9EYJik4kt0AJr5IKT8QQowBcDyAmQCmAhgEIB/AFgBVAF4D8IyUsgYAhBChd4oqR36oRtfqEhWh5bdLKest1sEwac3GjRvhcrmC0qZPnx6TuqdPn465c+d2ff7iiy/g9XqRlZWeE+Z9Ph9OPfVUvPJK+Muz0tJSjBs3DiUlJfB4PKitrcX333+P5uZmU3W3tbXhV7/6FT744IOg9KysLIwfPx5DhgxBdnY2ampqsGTJErS2tna16eKLL0Z9fT1mz57d4+/IMAzDMIw1PMTE2uw4C49o6QaL0aIhVPykwystBhoxGY2ub6WaGC3X3leZ7pFuGNIPm7ADAHxSHTznYDFaymC1b8W7L1qXhCVTjGb+t8i1qY8ZAMi1+B2SKYNTQbWHkj2SorAY/g5t/lYUOIpM1dPqNy8h8xnWxWi0CC6P7O+UjIVhmA7qvXQUQJHDmhgtPcKymHjzbfNiNPvVqyUe5JzBIqwE09/hhA02GAgPqqz3bcMQxD9IhxqvxFsSzDAMwzAMwzAMA3B8nhU4Po9hGIZhQrDpxWiyZh1UT7zlLecB2yJYlwIQ580GzrjcUtMsU14R9PGFTWfgV0PDr/kbG4B2n0QfR2o9y3cRr7MqSwQeOlNg10HAq99IlPQDzjnAhpP3DRSjuczvyBuwmBAlICq1Om2q9yKu/h/6XXUyDmhdhEV5B4Tlv7BU4qlzJRz21OlPhiGx1xy1iKKTa48RuGamgLzsArrQaX8DnvtneLpKZrUT2bwDaG5QZ2ZQvxLnzYZ8ZHZQ2iXb/407Si5Tlq/aBpRGkFslkpodElubzJWtLFH3ffnpG+QE+y5UUr5ql7KoOFctL4oWUV4JPDAf8olbgeVfAZvWBhcoKgUcivteZwkwaTrErGti2p6gtlXsAZx/A+TD6u8sv18EsVfH+WhAvsDiK224/g2JJz+noxkOudPAuttsyMtOzLmKEjUcvgdwxOjgNkgpgRfvVW8wYgxE3/4xbl3vRpRVhMW1CABfNxwPZ8FXym2ufV3iNxMkdhmYOteyaGkgQuicud3fTS58HfLuSzrS+6uvWVQ9Zogk4V29ejTsitgGcftr0e+UYVINISCIKLsWnx2z35S46Vepf85Zu5XO22UgMKlSYPaxAuVOYjw073nzO3Nr5hu99hAtM87OBQp4YdiMxPDTz2Vk5ChXWfUz8MStZL7472fpHQN5yEnA9WcEJWXLdvywZh/sOVItLLzqi0o8WnAzxLnXJaKFPYIab2TZgXJnx79P3Efg9Qtt+M8CA7WNwPQxAtcfEzIW/+A5eicszWeYpMBitAxASukHMHfnf1qEEEMBDAlI2iSl3KQoujzk8y4WmzUi5HOKrgeSeHx+iY2siIs7QwqR9Jcsn332WVjafvvtF5O6991336DPbW1t+O677zBhwgQMGTIEVVXdqx/dfffdQSsrPvfcc5g8OXylqpKSjhvBadOmdaWdeuqp+PLLL7s+B9YbyJAhQ5TpZrn00kvDgq5mzpyJ2bNnY8KECWHlDcPAF198geeffx6PP/64tu4LL7wwKOiqoKAAs2fPxrnnnov8/Pygsm1tbXjggQdwzTXXwO3uWC1rzpw5mDRpEmbMmBHlt2MYhmEYJho8xMqVyZLMUMISRo+V342SQjGMCqpvZYucLtFYqpCrOW+5jTbk2fsBAHxSHTxnF/x4L1WwKneIt5TLav3JlITpZGeh6K71VsYBWaJPyh0/VB+ihCLUuc5yXyQEjbp9qMtaEKMR5zQdOhEcKa+1IGFlmExku08dpWSDDQUO9SrQQjnNB2A1GgMAn9SrVw/MFjmY2H9aYhvDwCbsKHAUod4XHvFT76tLSBvI63eKCasZhmEYhmGYzILj8xJHsmP0OD7PPByfxzAMwzAhCL0YTSWokTvqgM/eorepHA3bkxFkOPHAOQDIyeuaUD6iXT2ekBIAWK/HAAAgAElEQVRYv71jInsqUbVN/Q6qohjIcghcNUPgKmKYIDe7zO8ocEJ9tVqMJsoyR2AVkbKOxVcmt36pFKMBwIfLgaPGJrJRehatBprUYacAgOo7bRjUv+P+xfh6vrpQvwIIZ4n6zahfE99Ys57Oy6R+NWy3sKQB/q3oazSjxdYvLK9qm8SUkakjHXhuifl34hXF6nT5zpORN/YHx9RIKcnzEobuarpNZhEVe0Bcb6KdyWD/YwBKjPbaf7vEaAAwvFjg8VkCIwcYuP4N9d+urgV460eJU/aLfz+TUsJFvKI970DF/n/5jq5s9KTYNCqTICSU/WpXYtTuwIoa9WZPfSFxw3Gpcx6KloYW9THgDAgblO880Z3uV4vR6ls6+rJVIUyLR2JLBLHkQL8ihmnsZIg+2Zb2xTCpjNCI0QDgsc8kbjze+jGWaKjr2ROzBH47JcK9NAD5+sPmd6YRo2nHVcfMgu3if5nfD9NrkNtrIY8fRmSaEKO9/wydWTkaIju9Y96EEJDDdwfWrQxK36N9BXJsPriN8LkVr+cfC3x4EJAGYjRXnfpvPLwYsNu6z63H7ClwzJ70vDL55qP0TsrjvxgtwzDhpNbMLyYVOCzk8wKi3LKQz3sKIfKklGZnmu0fob6MZWM9MOLv+lVImJ6z9hYbKpIsfN64cWPQ50GDBqG4mHj6bZGxY8PfIG3cuBETJkyAw+FARUVFV7rT6QwqV1paGpQfSr9+3S8ccnJygvJ020XLBx98gHvvDV7l4rbbbsMVV1xBbmOz2TB16lRMnToVc+bMCWtnJy+99BIee+yxrs/Dhw/HggULyO+Rm5uLSy+9FFOmTMFhhx0Gt9sNKSUuuugirFy5ErYIq4MxDMMwDBM73IZ6yaFsm/q6Hyuoibtuf1tUL/oyHSsCFQkDfumHPcWkVkxqQstzzMuXEkWORgjVZrRGFKM5UkzslMlYlVFZLW+VbIuyiXi3R79v823VtdPKd0imCI7CqtyLFo1Y+27ZIgc22GAoVly0cq22Jjy1LkZrI8Z/ObY85NitSeUYhumg3qteHq3AUUTKZGkxGpPpbHCvRZV7pTJvYsE05BLnaia+OB3FajEacfzHGur5TTLHngzDMAzDMAzD8XmJI9kxehyfZw6Oz2MYhmEYBZGuOdWu8LR1KwC/n95mRHIMUUIIyL4FXRPKK7yEXAdA1bYUFKMRk+4rzYwzq9USOCVeDwBAetqAump1GUKqkpHsnAi8p4eeCvbjJomjxqbOu8UXl9KT4LPswMCdzl7Z0khXkl8I2IlYLZ8mDqLGpU63O4Dicnq73obiGBIAKttdWJYTfo6sSszrLNP8uMlcuYLcDlG4krUmpk8GihoBYHst0E5Y/coqzDWqt6CTENRuUCaPHSygW+jtx03AKbFxqGup2QG4idNEZYniXFn1E1mXGDE6Rq3KIKi+4/dhbHErVtSo31//tKl3LBLYoH5tD2dg2GbA+clpqMVoPgNobQf6WnSVrYuwbtv05nnqjBFjrO2IYdKAEd4qrO0zQplXvQPY3gIUh/tiUwavT2IHcU4ZUmhy7E/db6lo9yiTpZTAWt21MoUMzUxi0c3pM3NZ1/SrZD3XiTmlw8PEaAJALjxwK9RDbSIXxsY1EGkwZ3Jbszp9iFOdTrKdsOYCQEkG3cMzTArBb4iZUM4N+fyIqpCUshrADwFJDgDqZT7UTAv5/K6FbRmmV7B9+/agz4WF1JNv6+Tk5CA7O/gpU+j+0oU5c+YEff7DH/6gDboKxel0KgOvpJRBdTscDrzxxhumgsc6A7o6Wb16NV577TXTbWIYhmEYpud4DPVLfqsSGKvkEFIlP3xRCT4yHWqCNIVXtkcuxDCg5TxW5EuJQicwaguQIfmkelVRh8iKeZuY6KDkmWT5OMtB7MKOPsJ8BEoyRWG5GkFgKDqJhpXvkIoyDkru5ZFuGDI8gL6NEKZZ/W5CCPJv0Oa3IEazUDaacZObkLTl2vLIv70VWRvDZCIqWRIAFGUNsFyXNBU1wvRmPml4h8w72DkzgS1hAinMUs8Ma/BFiDyOEZRkNRXHYgzDMAzDMAzD9D44Ps8cHJ/HMAzDMApEJDFauFxMfviCvsqZZ/WkRT3j8FO6/pkn2zDIV6ss9oJGHJUMmt0SW5vUeUqJTCifvW1+ZzvFaKhdT5fJNAGRBpHbFxACxze9SZa56e3U6k/LNHKbLDu6J3hXu8hyYsZvaTGaXx3bBQCoIYSEAwdDODJoUUziGKKEjXPeSp0+JKXE44vNteesKQIOe/g5Svp8wGYTwsZQyR7VfwCgLLOEjSJXE2NGnL9njgUG9ac3uzlB5ypK9AkAFQqHu3StoDc47BQ6j1GjuYbPqlhL5qWaoDFaGogQusKdr+2lzwds6V5gwOnfYbkuHZF+x1kNTyjTxYwkjp8ZJk6c0vSKNj8Vzzten8S1rxvY90Y/Jt5CLzpTaCIUXLY2AxvXWNi5WoyGuhpaHAsAh5xkfh9ML0P3rEA/7pOGAXxO607E0WdH2aYUgxgX/cq+WJnebstGjaNUf8ylCNQ4pUhxfpLtHhgPXgNj1gQYJ1TCOHUPGDefC7l5LVBDPBsaNAyCF/BhmKTARx7ThRDiAATLzVZKKRdoNnk15PMsk/sZBWBSQFILgA/MbMswvYnQQKjQlSF7Smh9dXWJmeQSS3744Qd89tlnXZ/z8/Nx++23x6Tu+fPnY9my7tUMzjjjDOy5556mt7/wwguDArreeOONmLSLYRiGYZjIeA0v/FAHkWQL9UrUsUInvWHxhnWsCFSA6CQqTGbiJo5HK/KlRKETAgR+D6r/sxgtdbAqd0iEDCJdRGE5dvNSOZ1Qzsp3oCRkyUQ3zlDJROlznfXvRv0elMykp2W9UVzT2wihao4tj/zbe2U7jx8YRkO9Vx1JVehQi5R0pE5IOpMMWv3N+KpxoTJv19wxKM8eluAWMZ0UOhRR9AAaCDFirHH71dfvZEp5GYZhGIZhGIbJHDg+LzIcn8cwDMMwBJEmOW7dCOntXuBRrvgaePUhsri48iGIiUfEqnWWEeffEPS5ot2lLPfoIolv16fOWx+dFKAywussuWEVIC18F+/O98oK6V0Xg/h9RyDijjfQV7biwJZPlflNbuDhT2lxQiKRUmLhKjpfBM6d14mrfnsl4CBitUJlVoH7p/pVaQW9r95IQTGgEFtVel3K4l4/cP/81OhD17wW+XyS1wc4/0CBO04mZAzvP21uZ76QBYSrXepyOXmA0/qiZ+mOuPF5dca2zUHX5k6yswTmX6q/rt/9Yfz72QVPqffRNxso6afIeOYOdUVFpRBFg2LXsAxB9O0P9C9S5h351Mk4cFf1djqhXTpRT0xxcHa+tt+6EfB3L9xa6G8g63rrB+tjxapt9Db/rLkMv26aG5YubngGYuxky/timFTnnMancdOW68j8VBSjnfWoxM1vS3y7Afh+I13OGSEUXEoJee5EazsPHRd11vX4TeQm4s43IfJj+y6ASSOERowW4RmB/OdFdOZ+h0JMODzKRqUWghCj3VpPH1c3l1wJtFmb/5cMKDFaQZ5CXH396R1j7tU/ANs2A5vWAu89DXn6OFICJ2Y/FcvmMgxjARajMQAAIUQegAdDkq+OsNkzAPwBn08UQhCPAYIIXUruRSll6mtCGSbNELoBfJrw0UcfBX0+/fTT0b+/ZqkOC8ybNy/o829+8xtL2+fl5WHixO4b8U8/Vb/QYxiGYRgm9nikelItAORohCKxwKzAiDGHVZmcT2pWVWSYANr86r4V73NENGTZski5WeAx4jMoMVoGrRqa4ljtX4mQQViRf+mEY/HGktBMU9bS903B80GORt6oumZS19FopG95xL6tXKutCE+jkZW5Ned23fFECVkYhgHqCTFSYRY9k0RoV9RjMpXPd3wEr1QHoh1cODPBrWECcRKiw3pvYiK4qWclyZTyMgzDMAzDMAzDxAqOz9PD8XkMwzBMWiMiTLWSEtiyofvj3NCpOAEccCzE0b+LTbuiRGTnAsVlXZ8pCREAPLAg9cVoNgEMLdRvK1+819rOvJ6O/9cQAqviMojs+C7amnZU7AEAOK75LbLIXR+kRn9a+Is+vyjwtUW1S12ovBLC4QDsRKyWXxPbWLtenV46XN+wXoYQAlBMwqdkjUBHH5JWJIdxoK1d4r75dBuePlfAdasN9Xfb8NBvbejjUN8ryqcJ0VUovpC+RIn1yip6xX2pZYbvrk43DGDzWmXWqDKB+0+nf6t/zpMwjPj1M69P4qfN6rzK4vDnC3LNMnVhADjC2r01EwB1zq1djzkz1efwhlagoTU1rmU9gZKEdInRql3B6QYtRvvH+1GI0YjwhANaF+Gi+gfCMw79NcShJ1veD8OkBULgyro7satHbe3ViQSTwbo6iRe/Ntemgkhh2Su+BjausdYAhfQUAPD6I+r03H5AEqXkTAoQpRhNtjQCrz9MVzvr2p60KrUoq1QmF9d8j3y7R5n3UOH5gDsdxGjqv3FhSKiiXP8LsIh4lqG7tx+yS5QtYximp/DMyV6KEMIhpbkZ40KIfgDeBDAmIPkVKeUruu2klKuEEE8AOGdnUh8AjwshDqNEZ0KI4wH8LiCpHcANqrIM09spKgpeaWDHjh0xrb+hIfghVOj+0oHFixcHfZ42bVrM6l60aFHQ56KiIrhcLkt1BAaBuVwuGIYBW6QVwhiGYRiG6TEeg5ZbZNviG3ykk25YlXwx1mVyPoN4scEwIVB9K5niJx05tjw0+8PvCQO/hx/qxzyUVI1JPCkpRouRcCzeWPktdL+zFdlZKso4dO1XndeosUc0fYv6PVotyM5aDWtiNCmlpQBN+tzeN6K8th9iM5GPYXob271blemFhEhJT2oFZTGJw5AGFja8p8wrcBRhr36TEtwiJhBKdFjv22b5WhwNtMg19SS1DMMwDMMwDMP0Pjg+LzIcn8cwDMMwBGauN9UuYPDIjn///CVdLlUmTZZVAHXVAIBd21eTxb5cmzrvfKrq1G0ZWgRkEeKh7o2XW9vZzgn3stqlzlfInDKeknLAkaXtT7/UdkxMduYlV970RZW+X19+ZHf75OYqdaHOPuAgYrX8fnoHhNhKlGWWGA1Ah5ho7U9BSbo+5KoDtjYBA5MY9rGiBmhSzpLsYO9hAsOKTfTx1mZzOwwRgMhqok9mmFivC933/uxtYPgoZdZugwSouIaN9UD1DmBwBOlmtFBSKAAYotrnz0vI8iJVxhXpSOkw4JdvlVmVnrUAdlPmueqA8akXamgaw5DYQUy9KOy8Ple7gtJzpFqKAgB+w3obtjSq0yvaCfHjkJHWd8Iw6cLOOJ1KrwursncNy9ZdM5LB2z9KnUsqiP6RQoF+0tw3U3jDF2GWujFV0cDMFMcy3UQpRgu9Rwlj8Ijo2pOKDBqqTBbedgzKakGTP1uZ39bYhrzSeDas5zQQYx5n6Fju56+sV57bFygotr4dwzAxgcVovZcLhBAnAXgSwNtSyrDZLTuFaCcBuBnA4IAsF4A/mdzP9QBOAND5GGYqgA+FEOdJKVcE7CsbwO8B3BWy/V1SSuIOlmF6N6GBUPX19TGr2+12w+0OfvJeXJx+A67q6uqgz2PGjCFKWmfDhg1BnydPntyj+gzDQENDQ1oGuDEMwzBMuuEx6AgDq1Iaq+jEa24/i9GsYlUm55XhLzYYRoWbECimoggJ6JAYqcRogceIj+j/DhuL0VIFq/0rJwGiPivXxUSI2iis/Ha6dubY+saknmSha7/bH3xeM6RBymJzLfwOXdsQ/dGsxNQnvfBK8wJTCQkDftgtvKIgxSq2XK34kuW1DKPGkH40+LYr87RiNCJwJNmrdDPJY0Xr99jqrVbmHVAwHXbBr6OTSaFD/W7IK9vRYjShnz2+s0jS7d6MYRiGYRiGYZjeBcfnRYbj8xiGYRiGwGaPXGazCwAgDQNYt5IsJg49OUaN6iFlFcCyzwEAJzfOxY0DrlYWW7YZuO51A6dNFNijLLkTyqu2qdMrzQy7ql3WdubdKQAhBFbIRIFVBITdDlk6DIdv+lhb7sdNwIHhzoeEsnqLPv/EfQL6+roV6kLllR3/txPvvnya2MYaol8NGqZvWG9EIbU6tHWBdpOfq5MrRnNpBCWjy4BRJuQA0uMGtteY2p/0exF09qX6T4YKG0VuX8hR+wIrvg7Lk//5e4fc9MgzIQoHBOUdtCuQZQe8hMPw0c8krj0mPte9b9fT8RSnTAjfp6xdT1d20PGxaFJGIg47BXLh68q88qZVyLLvpuwfVduA8Wp/SFrQ5AYMogt2SkJUUtAS31ZscwwIS9/UAPj8Eg67+eOloVXdgCK/Om5JHHKS6boZJu0QHRLuSq9Lmf3yUon/nJHA9kTgh43myvXPAew2/XmBFBDrtvG1I6xWamwEAPseYnkfTC9DK8bTxLg2N9B5ex0IUZziRjArFNDvWA7qW4XVbnW+a4sXo9Ue2bhT3yLxxOcS36wLH887+wJH7CFwwt5APbHGuzN0Sk21y3ojSoezeJFhkghHovdeBIBDdv4nhRBVAFYCqAeQB6AUwD4A+oRsVwVgupQywmPfDqSUG4UQJwJ4P6Cu/QH8LIT4GsBaAAU79xV6J/wWgGstfq9ez5BCYO0tvKJdvFGuqJBgBg8eHPS5pqYGdXV1MQmQ+umncDtx6P7Sgbq64DcIhYWx+8OF1h0LmpqaOPCKYRiGYRIANakWALLjLEazCTtybLnKNrB0wzq6v6UKSgzFMKG0Geon2qkoQgJoeVWgcNFrEGI0wWK0VMGq3CER/dFsm2ywI0uEPiZMHFZ+C913yrUwDkhFGUeWLQsO4YBP+sLyQs9rHsMNSbygjUYUm0fI1KjzaVi5KASxXuk1LcvRiddybX2135nHaAyjptG/AwbUEb9FWeGBjZ2I8FAjJsP5pP4dZboNdhzgnJ7g1jChOAkxGgA0eOsSIEZTX4dT9d6MYRiGYRiGyQw4Pi9xJDtGj+PzIsPxeQzDMAxDYIs8XpQ16yAAyKtPoQtNOxEYtW/s2tUTyiu6/jmmfTlO2/E8nis4VVn0prcl7v5Q4q2/2HDQbsl7N+Tapn4nXlESYcK9tx3YSszgrxwNVP0cnt4pRqMm2StkTgyAsgrkbFyDd9Yfi5nD3lQWOfgOAw332NA/Nzl9yTAk/reIngD/xCyBcmdH22S7B/h6vrKcKNspRnMQsVr+8FgPAJAtjUCjWvySicI9UVYRFu2SIz14b93ROGr428ptDr3LQOO9NvTLSU4fos5FAPDMeTZzk+N1oqtQvCHxMdUuZTGRgf2nEzHtREiFGA0A5P1XAq8+BNz3EcSA7vv0LIfAvEtsmHanodzu+jcknHkG/nJobJ8ZbW2SOO1hug/9drKi/zxxK1leFA2KRbMyk4NPILPsW9ZhWBGwZmt43rWvGThhbxPS3BSlQROqX9j52v7J28LyXth0Bg4b/kFYut8ANtQDlZo1F0OpJ8L3Cg21hEbssqf5yhkm3dg5bqhodymz61qAl7+WOHnf1IjR++9Cc4ulFkQIW5ZSAi/9my6w+z7Aym/C09s94WnVtGBN/Cn8fMZkGppjR7f4b0sjXeMV/+lBe1KQfPo90D9KXsWjdernWP/5xol/HxCvRtFsa5KYdqeBn9Vr9wIAHvpE4i+HCnLc4wwJVZSPzrHekAwVUzNMqsBitMxAABix8z8dbwA4T0qpuIWnkVIuEEKcAOBxdMvPBID9dv6n4jkA50spCc9+5uKwC1RYeDDApC9Tp04NS1u6dCmOPPLIHte9dOnSoM+5ubkYP358j+tNNrG06ba3qyfT9gSpuzFiGIZhGCZmeAy3Ml3AlhCpS44tTyn0oib7MjRtfnOylU5YjMaYhZLupaIICQBy7ZSQqPu8ohIlAYDDpFSIiT85dvMyqizRx7QQqieYFYXl2vOSuoJNjt38sZmrKWvlGE/V80GOLQ/N/vCXq6HnNd24gzqn6Per3qbV5LU6GvlYx3XdXB91++kIrRxbLuzCgT4iG+0yPAiCx2gMo6beS78KKnTwSwrGHHXeWixrWarMG58/GQUOnqicbAochbDBBgPhAf71vjoMQWVc90+NEVJ1LMYwDMMwDMNkBhyflzlwfJ51OD6PYRiGYXYiTEhRql2Q61cCi9QyKAAQl92X1HfxgYTKiO6ovYoUowFAsweY/YaBjy9Lngikaps6fQS9xk8HtevpCc9TZhBitJ1xadUu5WaCJ8CqKe94zzC95SOU+mpQ4yhVFnv6S4k/TUvOsbDgFzrvyhkCv50ScLwvfJ0u3NkH7ES8j4+IbazRCLEyUbhHHEuHt85HeU4rNrvV75Ce+0ri/AOT04eqCOfzAbsAew012SYrYrSAviQNg+5DZfF9z5fSHHIS8ODVdP7mKsi5D0JccGNQ8kG7CYwcoJZfAcC1r0mcu79EXnbs+tojGjHjlBGA3Ra8L1ntois79ZLYNCpDEXY75D7TgG8WhOXJahcqS9R94+dqoN0n0ceRGmM6qzRoQuecuYCsWq7M28f9Hbmda5s1MRrVBqdfIUabfrr5ihkmHdkp4a70usgiV75i4MS9bbDZknve2VRv/llsqHQoDJX0rJOz/w788q06z6d4xryZEKMNGgbRN74LRDJpgO4ZjO79QpNa1onS4RBDd+1Zm1KNPPo4cbZUo9y7GZuzysPy7l9WjnulTPhzrkcWSa0UrZN/f0z/fQvzutss12seEujIxPt3hkkheNm73ssiAC8BqI9QzgfgXQBHSCmPtypF60RK+Q6AsQAejLDPLwCcLKU8XUppbQY8w/Qyhg0bhmHDhgWlffBBuEk/GubNmxf0edKkSejTJ/6SkFhTUhL8lGz7dmKlnB7WnZOTA8MwIKXs0X8VFRUxax/DMAzDMDSU8CjblpOQB2w5hGQmGiFIpmNVVOJlMRpjEkq6l5uik++pdgUeI34Wo6U81PVBRaL6olnhRLLFFFZ+D93vnGXrY/qY0AnWkgn1W4SOM3TjDit9sZM8QqZm9lrdZlh/1EsJH622I3en1I3qx21+HqMxjIp6n3omSZbog772fHI76o5Lhq3rzWQCnza8T/7tD3bOTHBrGBU2YUd/h3qVR+o8EEvcxHU4mvEKwzAMwzAMwzCMVTg+LzIcn8cwDMMwBGYmoFe7gK8+ovPz8oH+KbSASIiMaJC/FnkR3vN+sgpwe5PzDkhKSYrRIoo4qInyAMSw3dQZXg+k3w/Ub1Hnlw5Tp2c4IkDMtKf7R7LcBz8l713i+5p97zc8REi0VHNM75TAwUHEpfiJGIiadep0ux0YMITeX29FIxkcY6wh85LZh9ZtU+9791IL8co6QV4ogQKQbZtp6V4GT8wX5ZXAqH31hb76UJk8bjC9SaMbWOKKvl0qdH23skTRh5Z+TJYXZZn7N48Z1Dmo2oXhxfQx/d2GuLQmIdRrQucKcgF8NU+Zl280o5iIKXDVWTsnU21wGjvCE7mfM72ejnONToy2dhstiU4kn/xi/lgviBQGtER9XQYAMXgE0CdbnekNF6OREtHBIyI0gskIohWjNSuuSQDg7H0rLQmHo+OZlYrGOgzz0vcuW5vi1CgNHy7v+b1gkLxRd9+vgcfiDJNcWIzWS5FSfielPAVAMYBRAE4EcBGAawBcDeBCAEcAKJJSzpRS0qNK8/vcIqX8I4BSAIcCmAXgqp37PQnACCnlFCnlKz3dF8P0Fo466qigz0899RS83p7JHrZu3Yo33nhDu590oaysLOjzzz8rVmeKkkGDBnX92+12Y/16Cy8aGIZhGIZJKh7DrUxP1KTaTvlGKJSwjaGxKpPzsRiNMQl1POakqAiJlPkEHCNU/3eIrLi0ibGOQ2QhS5ib9JQoEZlZ+VeypYFWfg/qOmy1rmTL4CiodoWKwcyIwqxA9YFWQjQZCiWk1OEzFCu5UfXrRHD2jjEg1d+tilgZJlPY7lWvk1PoKIkgnE7PFXCZ2OM12vHZDnWAbFmfYdgld3SCW8RQFDrUAVoNXmJ5+xhhSD88Uv0MJ9njT4ZhGIZhGIZhMgeOz9PD8XkMwzAMQyBMTLX66Ut6QjYATJmRkEU+TRMiAhEAjmrWS2OlBNbF91EySV0z0OxR5ylFMoFUu9TpRaVAP6c6z9sOuDXvvantMp3J3ePgGc3vkcWSKXao2kpPoj50VEhCtYuuaLfxHf+3U2I04j6DEqOVDO6YkJ5pjBxHZs1on0/mrVW/3k4Ia6OVNAagle6FEihCo/oPAJRXmK+zFyKOOlNfYOU3yuQZ4/TXkM9Wx1bCt5rwbQLATMXhIHV/80nTe96gDEdQYrSfl2Kmpm98vjZ9FwtsIELn+mUDWQ6hHc9WEGIUq9d1qg1Of0NYmpgyw1rlDJNu7LxH3Mv9AwoUx0Ana5I49umkzkJY8GCn/vqqvXeeeATgIOLvfYo4Y6oujYCXySC0z2Ho67lsJo7HfgU9a0+qkq9eaBU76jCx7Stys2Tc27tisM8hAV9Xez7SUVrR84YwDBM1LEbr5cgOVkopX5VS/ltKebOU8hYp5QNSyg+llDF3c0op26WU86WUj0spb9u537lSSnrZFYbJUP76178GvfDcunUrHnvssR7Vec899wQFb/Xt2xfnn39+j+pMFvvvv3/Q5wULFsSs7qlTpwZ9jtVqoAzDMAzDxB8PITzKtuUkZP+UgC0aIUimY1VUwmI0xixtxIq2qTr5nmqXm8VoaUe2SUlnoiR96SIJy7UgN40kQjUrSk2UUNUqVLtCr5mUKMwGm2lBX/B+eyYVo867OrwWrus6MVrnOdSMZJJhmG7qiVVdC7OiXeEufYNAmej4uukztPjVrxkPdqbYZK8MpzCrWJlOnQdiBSW2B1JXWs0wDMMwDMMwTO+D4/P0cHwewzAMwxDYTE61euEeMkuc/fcYNSZGDBgC2O1BSdduuwWDfHK0aE4AACAASURBVLXazWbea8BvJP490Mcr6X1Wqh97d0FOci2vABxEnI3XA7Rp3nvnWF+gLBMQI8d2/fusHc+Q5aq2AVIm530iJbXKzwGceSHvszYT097GTobo7DtUH/L7lMmk5Kh0uDq9lyPs9g75hYKza/5LbvftBsDjTXwfamuX+GmzOq8iwrmoE/nErcDHL5vfaaDMe7NLXaZfAQQlM8gUjj8fGDdVW0S+9O+wtNMmCBy4K73Nta9LPLfE6GnrAAD1LRKbaOcNTtxH8U69mhajicEjY9CqDIeS5myvwdEeWmB4yQsSLy6NTb9INPWt6nOns/OVfbWL3LbCq86zIs71eCXaiDBBlRgNoyear5xh0pGd95oO+PFg9Z/JYkfdY6DVk9x4vHoLobfDIo2Lqmm9hCguBbKIuGfVIifE+IiUXzIZhiZmUXdP2rJDnd5bJemU8G1HHa6uu53cbNqdBry+xJ2bDENiQ33P6rDbgMGBf8bn746uIj7HMExSYTEawzBMEhk9ejRmzAg22V9xxRWordW/YKT4+eefcccddwSlzZo1C0VFRVG3MZkcfvjhQZ+fffZZNDXFxud45JFHBn1+5JFHYlIvwzAMwzDxh5pYa1ZG01Nyicm7bkLYxqgxpN/yb8ZiNMYMUkqybyVb/kRBynz8kcVodpGBK4emMGYFX1ZEYD3BbJ9PtjQwx2Y+gDjSd8o1WVeyvzNFrl3d/sDzAQC4/eqIg1xb36hENHnEfltNCs9aCUGs7u9l5bpOCdqyRJ+u86AZySTDMN3Ue9UzAIocA7TbCSJwRLIYLeNY2PCOMj3HlouJBdMS2xhGi9OhFh42xFmMppOTpqqklmEYhmEYhmGY3gfH5+nh+DyGYRiGIRA9nGp13LkQlXvEpi0xQjgcwMChQWnjPD9hSdX+uLvmb+R2VduAd5fFu3XhnPpf9bunnCyglJi/20W1S51eVgH0yVbneT2AR/NuOTc1YwxSgjMuBwAUGI14f91MZZFmD1DXnMhGdUOJ0e49Nfi9p/R5gS0blGXFmZd3f7ATsVp+v1r+RkmOyjJTjAYA4jT1Oaegfi3e+r2H3O4/nyT+nfQ/59H7rCiJHJ8jV30P+chsazv1BcTTsFiPRDiyIO79AOLc68ky8t7LIOu3BqX1yxF4/2L9df7cJyR2EDIpK1w5l67jm2ttyMlS9CHqb376pT1uDwOt0MJx5XE4dHf6b3b2oxJN7vSLjWkghjeFJsRow73q/uiqM/87NGimCjiNEAnNzLN5ET4mA+ju479umotcTWzNI4uSe86hzh8qhkcSoxHXN/Hnf3T8w0GJ0YLHhlJK/f0ew+iuIzoxWhMhRusb6QFEmkJJlnfUodi/HUO96ntjjw945ZvEnZuqdwBef8/qGFoIOOwd/YIUl5shg+/hGSYVYDEawzBMkrnrrruQl9f9oqyhoQEnnngimputvfnZunUrTj75ZLS3t3ellZWV4brrrotZWxPNmDFjcPDBB3d9bmxsxFVXXRWTumfMmIGRI7tXy1iyZAkeffTRmNTNMAzDMEx88Uj1G7JskZOQ/VOCD5ZuWIMS3OnwGixGYyLjkW5SzJG6IqTI5xWfVK8qmiWIVUiZpGBWRGZFBNYTzAonki0NzLJlwWFS8heprenynSmo9oeOMyjRSI49OskIJZTzGG0wZOTVLqlxUL6dfiFMnddUhIrhOglsN/Xb6aQsDJPJbCeESIVZaoESwwSyzr0aLvcqZd6k/oew9CrFKCTEaPVeC8s4R4HuOYlZmS3DMAzDMAzDMEws4Pg8Go7PYxiGYRgCW8+mWomxU2LUkBijmCg+2LcZf65/EPtX0O9v5yZw0isAtPs0IqJiRBZmVLvU6WUVQBYhRvP7gVbN+DCHn2tTiPKKrn+Pbl9BlquK72sJJfUtkhQ6jBgQ0o+2bAAMIj6irLL733ZNrJZfcRxt2aguO2gYXU9vJ6DPhDLGrp6ADwDv/Jh4Oci7y/Tno0jIT16zvlNf9z2nrCV+DxZ/AOiQo+G3V9DCQgBY/HZYUk6WwKXT6WuJ26v/25tl8Rq6jl2oNesocQzL8GKDTmjh96PSRov0PT7g/Z/i0KY4U0esi+rMiyAYAlBJiNGqLKzBphMrFfobgj6L8kqiJMP0IkLuZY5reossmuj7sFAsidGK6Ouq9PuBSGOaPpQYrT34c3MD0Ebct/H4iAGiF6NR9235vVSM1o/4Xq0dC+eM9dCDnkSem5Zt7nkdQfdti96MrpK8fFomxzBMQmAxGsMwTJIZNWoU/v3vfwelLV68GDNmzMDGjcRgOoRVq1bhsMMOw/Lly7vSbDYbnnrqKQwYQD0tTQ9CA8fuv/9+3HXXXaa337FjB9zucOmGw+HAnDlzgtL++Mc/Yu7cuZbb+OGHH2Lt2rWWt2MYhmEYJjrchlqMlqiJ15RIhaUb1ojm9/JJFqMxkXET8hwgdUVIlLCtzeiOSKD6v4PFaCmF2WtRbpKvWaFQcr5EYkYW5xBZyLLp+7x5OV3yv7MKShISet2kRCPRCiBz7er9Skh4iLFXIK2GOoKqv8NJbuOV7WReKNT3DTzmqN9Od11gmEymwUuI0QiBUiTSb01cpicsrH+XzDvIOSOBLWHMUJilnpVR79vWEegcJ9o0YwiW5zEMwzAMwzAMk0g4Pk8Px+cxDMMwjALRw6lWYyfHph2xpnI0mbV/MW24+GlzYt8EbdhO5w01Mw91s0uZLMoqgCxiwj0ANNXTebksRiMJEBCU+mqQQ7wfWLs18W8U12rELSNCX4sS/QYAECgk0gmYfIr4riZ1hxbFpXQ9vZ2BQ0kB5ZAW9eJMALCpgcyKG7p9lvY3U8Ea6zsN7EdE/0HRIOv19lKE3a697sqN6r/B/iP1ks3VW3vULADAZk3/6ZcTvn/Z7gG2EfYHjVCQsUBxGaCRb03N0T97eGJx5AVGU411hJi0tL8AGrYCbYQ5DcDwdrUYbVODXmQbSL0mdM8ZIkZL2TE0w8SSkDHQ/m2fk0VjcS3qCQ2t5sfvEyo0mds2qcfJQPe9hIO4T/OFxBk3am4WM3l8zXQThRhNetzAyq/V1fVW4V6x/n5iamtqnJvmr+z5c4SKku4+ITdF+Z6pdHhkST/DMHGFxWgMwzApwDnnnIMLL7wwKG3RokUYPXo0brvtNmzYoDZir169Gtdccw3GjRuHH3/8MSjv9ttvx2GHHRa3NieKQw89FJdeemlQ2mWXXYbjjjsOX3+tvtkwDAOff/45/vrXv2Lo0KGoqalRljv99NNxzjnndH1ub2/HSSedhDPOOIOsGwD8fj++/fZb3HDDDRg9ejSOOOIIrF+/PopvxzAMwzBMNHiM8KBqAMi25SRk/5RwhBJ2MGp0v1dfW74yncVojBl00r1UkD+poARNgSJIFqOlB+alXIkJmDUrYEsFSZiZtpppp9njPHXPB+rfIfS6SZ3rov1b6oRqlPQsqD2EfCzP1g824jWEles69X0DhW45dvVvx/JahgnHa3jRGBpcuJPCLL0YjX65z2q0TKHZ34ilTZ8q83bPG4ey7KEJbhETCUp46JXtaDWIVVRjAHXfb4MdWUIz8YxhGIZhGIZhGCYOcHweDcfnMQzDMIwCQthjFjF01xg1JLaI0y4h884f9B2Z95ULuO51I66LbQTiIgQeAHDD8fq/jWxtBnYQNqyyCiArm964kRCjCQH0SUxsYloSMFFcAKj0upTFTntYJlyy9/ka9f6yHUBZQUhitUtdSeFAiLx+3Z8dmlgtvy88rWmHumw+vdBcb0c4sjrkaKq87xbikN3V2y2vRsLOQ0CH9IcSCh23F2CzmZgY/+EL1nfsDRCANBFmrXwzlsjMQZz2Nzrz6X9AusPfWx49DthrCL3Zda9LeLzR97cdrZIUQv1xGtF3ateTwo4gQSMTNUIIiDP/j8w/qfoJ7fYLaXdjyuLapu5TFc0rII/TxHeUVaDCqxajSakX2QbSQBwHdulDXxkSl7j3weYqZZi0JvgacNoOeqywuQH4Ym3yYvLe/8l82YH96XGRfPoOesPOewlKYO0NEaM1E2NrgMdHzE50Y3TieProxfC+1sm4qT1uUSoiymhRLAD8bsdTZN53G4BVtYk5Ny1Yod6P08J0ieGBa8q+82R0DWFJMcMkHc0yBQzDMEwiue+++1BYWIibb76562F9U1MTrrrqKvz973/H6NGjMXToUBQWFqKurg7r1q3DypUrw+rJysrCPffcgz/+8Y+J/gpx4/bbb8f69evx0ksvdaW9+eabePPNN1FeXo5x48ahuLgYHo8HNTU1+OGHH9DU1GSq7gcffBD19fV49dVXu9KeffZZPPvssxgwYAD22msvFBcXw2azobGxEZs3b8by5cuVq1wyDMMwDJMY3MSKgpRIJNZQwhFKCMKo0f1e/RwFaGkPH8+xGI0xg066lwryJxWUkKjN3wopJYQQ8ElF4BwAu+DHe6mE2T6WSwicYo3p9qTAsWFKemaiTDp9ZxXkOCNk/EOd66IXo9GyvjZ/KxDBwdhGyNNy7X2RJfrAI8Ofo1i5rpsZ/1HfgeW1DBNOg49eGp0SKHUitIEjTCbw+Y6P4ZXqQKCDnDMT3BrGDE5HMZlX7932/+ydeZwcRd3/P9UzszuzV3ZzX2R3E44gZzgEAyRyyX0piKIi8Mij4K2PeAuiiA94iwieqMAjigry45I73EICAQkhQHZyTpJNsvc5M12/Pza7mZ2pb3XP7szs7M7n/XrllZ2qPqpnqquru7/1LlQGzHLy0dIr3PdHnArOoEgIIYQQQggZExifJ8P4PEIIISQNJzDiVdUn/zeHBcktasY86LIw0J95nZ3f8Rp++oFT8Nk/mwedfvdejYYpwCVH5//5bnSHPMD2yPke+49F5bxZDUCfpY/RIYjRwnyubWXGvAF53K4+dmN/FK+X72tc9D0/dhG91kEoWJjv8zNCfW6cmim10rGoeSMp4jcAQMASq5UmRtNaA51CvSphMRqAAcnTFoNw546f4po/fB+Lv2/+7X7+qMZnji9M/fnWP+W26Ltnews09dv/kTOnzQGOPw/4808y85Ip8TRCu6RKvf6koY46DXrfw4HXXzDm6198GeqLPx+WFgoqPPElB7WfdcXtfv0ujR+cN7L6ZpN8fvkkYZumc2IQitFyhjrjEujrLzdK6Koe+xOw783iuh29QEevRnV4/PQLmoS62PD4L+SVysLAfkeg4ZF/ytvdDiyY7r3/1m5zW1qXbBkegXTQMVCjlBMTMi5Iq+d1bisejZ6I4xoeMi6++Psuum5wECkrbLvT2q3R4zPE99cXWqRob70C3PUrc2Z1HVTVLltxUBCjJdIKId2zKQVU1niUlJQEtnt3w7Vfaw197aXm5asmAfP3z1HBioz0+9z07MQW/HHTxbhwzu+N+Ude66L5R44/WfQIaevWeFHoHp99sMItz/iTszXsCp3UO7YA3f7ea2XAvjghYw5HThJCSBHxne98B0uXLsXll1+ON9/cPY2A1hqvvfYaXnvNrtk+5JBDcPPNN+Owww7Ld1ELSiAQwB133IH99tsP11xzDeLx3Te0mzdvxubNm0e87VAohL/97W+4/vrrceWVVw4LqGpubsbDDz/saxuVlfIAYkIIIYTklj7XHJxU7hRmVkZJwEbpRnZIApUAgqKsJk4xGvFBj3AuOnBQpiyzvo4hksgoiQQSOo6QKhMFQkHlYSsiBcWvpDNskVDlEr+SrELJRe1l8CM98y6n32MuL4JjNiFdA9PFIpJgdKTCt0hAXk+6ZvtZJuJUIKhCghjNLHzMZvupvzf7aIT4p8UmRgvZxWgShZyZm4wdrnbxZOv9xrza4BQcWPXOApeI+KEmWAcFBxqZQf0tiR2YC/sMkCNFFJsWSBJMCCGEEEIIISYYn2eG8XmEEEJIGqORMsxdkLty5INDjwWezXzWr2NNOPEEBUB+5/On5zQuOTqPZduFJJN5Z4OPlWNN5vRAAJi+B7AlKq/bvtOcHmY/xIYKlUFPmwts2wAAaIxHxWVjbcAjq4GTCzC2fL1FsDff9Eo0FjUvnI0YLV3c0NMFJJPmZatKXGw1qwF4eZkxq771NQDvMObd+pzGZ47PX7FSufNFuQ41yPMSDaEfuFXMU1/9FfSrz5ozU+7H0NlqXqa6zrsAJYY6/SJoQYyGh/4M/dkfQwWHn781EYUfvV/hC38x/9Z/ek7j+nP1iOSYTUJYRtAB5kg/X0wwP0yeAVXOd6w55bxPA3/5mTFr6ew2PLF5krjq3S9rfPjI8SFG641rbBaakfq4RcQ3qx6Y3YgK3YPpia3YFpyRsciAyNb7e2gRQvdq3bbhCVNneW6LkAmB4Zryzt4Xravc9yrwvkPzVSBpn/5jAWfWWMRoD94mr5jSz1ahMvOdaDxt8s6ONtNSQOUkyhXJAFmK0bBK6D8CwP7vggqMXJxf1HiI0QDgmO6nxLyWbuDpt4Fj9sphmdJ48i3AFZqicxZlI0bbVSceu3PEZVEUoxEy5vAqTwghRcYJJ5yAVatW4bbbbsPxxx+PYNDusCwvL8cZZ5yBu+++Gy+++OKEC7oaRCmFK6+8Em+88QYuvfRSTJ482bp8VVUVzj77bNx1112YN2+e57avuOIKNDU14Stf+Qrq6707qdXV1Tj11FPxi1/8ArFYDIcffnhWx0MIIYSQkdMnDKwtlOAkEjAHOkkDfokZ6fuKBCoQEkRPkhiKkFQkAU7YKd7ZW+1CooHjkQRCQcV5D4oJv5KHSMGuWf4kWdK1rZD4Kasf6ZkfMVi5CiOgivNFZVj4HtLbNrGt8/mbpxNUIYSUecY1X2K0pHmZikCl2E5lc13vTQr9hpTfOyIIByVhJiGlzM64OQK3wqkqClkmKV5Wda3A9vhWY94xtScV7fW11AmoACYFzdH1rQnLVOWjxHZvRgghhBBCCCFjCePzzDA+jxBCCElBjWKo1YIDcleOfCANfo1F0TgVqLbMTfp6LB8FymSdIJNpmOoj7icWNadP32NAiGORnOmd5ncgCPO5tieTpw/9eWDfq9ZFX48VZsKlVZb6esBcQ12KRc0Lp58ztvuHZFp8V0eLvGx1aYvR1F4Hinkztsl1aFtHPkpjZoclXKYq7KM9ir4u5zXuByVJ9lLrUQfFaL5ZINcpdLUD2zcZsw4ytQe7aO4AdnSOrDhN281t3bzJQMAx71NvEURVFDHkHGXpr1061S4osl1fio11lnAAm8gUU2ZB7TlwTtXH1xsXkUS26bQKwytqk2lyoypZRkfIxCLzGhDWfVhY3S6usapA/edU1srzrg4j6ABH2OZjtPWHUtvikDl+GfG+4Z+l/nU12xCyi2zFaJY6qhYtyUGBihQfYrTZiRimJprF/FWb89s2PbravP1ZkzzanTTqd0mtta098sLH90UIyS8cOUkIIUVIMBjEBRdcgAsuuABdXV1Yvnw53nrrLTQ3N6O/vx/l5eWYMWMG9t57bxxyyCEoLy8f8b6uuuoqXHXVVSNa9/HHHy/oegDQ2NiIX/3qV7jpppuwYsUKrF69Gtu3b0dnZycqKysxffp0LFy4EAceeCBCIbNQQ2LmzJm49tprce2116KpqQkrVqxAc3MzWlpa4DgOqqurMXv2bCxcuBB77bUXAhPV9kwIIYQUOX1urzG9UGI0SRTQ63ZD65HNDFaKSJKSiFOBIMVoZBT0JIW6NUJZUCGwiQF63W7UoFas/9L5QsYGv5KHsCBwyjV+5TbFIMHxJT3zJU/zPpZiOF4JSeyWft20XUdHvu9KxJP9GemS9Gx4eczLRJxKBJ0QYJgAOe5m7ivb7afWG7GPJkjVCCllWhLmyKXJIdPU6MNRPmZ7JROXJ1rvN6YHEMTiSScWuDQkG+qCU40StBZBlJgL8tFfIYQQQgghhJBcwfg8GcbnEUIIIQCcEYrRDj8BqsgHS6pZDTAOLX3xUZSHFD66WOGGR82DT7d1AN19GhXl+X1fFN1h3v/gYFYbetUL5ozB38UmE9q+2ZweGfvJ5ood9d7LoL/3MQDAue1/x5enX4PWgPm7/s69Gp8vwGslSUoEABcfZajDm5uMy2ac05LMCgASafFdnW3m5QCgqrTFaDjhfOBn/2POu+ZiLDrhXLy0KfN+YP1OINaqMas2v+1QS5dGmxBucrrFvzWM5x4Qs9TUWdAeYjSdTMp1iAKhTN5xODCrHoiZ5WL6qo8ANzwCFRx+H7t07wEpaIc5NB1NO4Cp1dkXp0mQRjXawjIoRisc7z4HuPZSY9aZrXdhSuXxohzx+/drXHN28Y8XeGy1xvE/csV8SXgGYKDvs/g0AEBjfxQvRDJl9VGfoQYtwvdYm0yTG1H4SEoF4V7z0sa1+OIrBxvzrvynxh0vJPH+wxW+caqCIwg2c0mrz/mI33eIwtRqQfgZ7weee1BcV51+8e4PohgtLc5YEqOVet+apGA7PzLvEXUsKi9+2kWjLEsRM2kKEKkCemQLcAAuLmm9BddN/ZIxf+XGfBVugMffMN/TH7dQYZLPoSABB5hbB2itgbt/M/LCFPmzPkJKAYrRCCGkyKmsrMSSJUuwZMkEtguPAMdxcNhhh+VtBs7GxkY0NmahDSaEEEJIweh1zdEG5Y5lusocEhFkNi5c9Os+lKvClGO8I0lWwhSjkVHSKwy+9yusGgtsYoBBmYAsRuPjvWLCr3ArUiAxV0AFEVJliGu7gEq6thUSP4IMP+exr2XGoSgxrvuR1AkEdp3zkmhkNG1dJFCB9vSAI8u+/CwTcSoRVOaAhWyu61L/L1WWFwmY63GP20V5LSFptMTNs7jVBr3FaBLaPISGTCC292/Bqq4VxrxF1e/CpCCDVIuZ2qB5tFirIErMBePx3owQQgghhBBSmjA+zwzj8wghhJQ0amRiNPWd/8txQfLAbPn6q994CT8892A0NWvc+6p5megO4B2z81S2lH2YaPAQo+lEAnj4DnPmrIHjVuVh6LJyoL8vc5lmQYxWzufanpz8YWCXGG2S247H152Ig+e/aFy0tRu45RkXFy0eoYDQJ02WVyB7zxgeP6B7uoCWbeaFZzcM/xy0yIF3Ca2GkMQNQMnLG1TddOgZ84CtZjHP79Z9FIuCtxrz5n/NRecNDgJ5lIJI7RAA3PBB77qrm1aJeeorNw/8IYmg3V2zD3ZZxHoUCGWglAJuehL6rHnmBV57Hvq6y6G+9uthyY6j8Nq3Hcz7slkg9bE/uFh5ZfbS7nWCnLFhqqXeClI3zKIYLdeoimrohYcCq5dn5FU8+Fs8/ZefY+GV8vrfu0/j66cVbyza82s1Tv6pLEWbFY8hrA19oUHKKwb6TJNnoD5urpeSyDadVkEyWesOb+MUhY+kVBDiWD+7YLUoRgOAVTHgqn9qtHQBPz4//+2PJIgFgLoKIOkC7z1E4YYPymUZFCcbOf79UAcu3v05KIjREsPj37UkjWXfiAxiixXXhmuXJKad3Qg1yYedfZyilIKe1QCs/Y91ue80f1sUo930hMYvLshPfP6OTo2XN5jz3r0PUB5SiISAHo+hCHPrgGBAwf3dd0ZXIIqKCRlz8vsUkRBCCCGEEEIIyTF9rnlaLr8ymtFi24806JdkIglObGK0uEsxGvFGlvMUb5Biua1dSQ4cT1InjPnS+ULGBr/1LCwInPKBP+FYYa6h9jJ4l9PPsUR8SM+KWcZh+y1S27fBtiGd0bR1kiDPjxitWxCeRgKVCAkCx4TQrpnodWWh6u6/zd/doLyWELKbFkGEVBfyI0YTZnikGG3Cs6z1AfF3XlJ7SoFLQ7JFOr+l9iAXyCLXse97EkIIIYQQQgghhBBCiBVnhGK0ypocFyQPzGoQs/TtP0QoqPC3y+Tjt8mCckF/QmNTqzmvYYrHYNvnHxSzVKrcShJSbd9kTo+M/WRzxY5SClhwwNDn/ftW4dvbvi0u/9OH8/9usUmQEn34CEM9kgbDA5nnTMAyiWUiLb5REqOVR6DKyuXtlApLzhKz5r/1gJjXlwAekr1jOUES64UCwBwf3g3955/ImY37DfzvCLKtQcGeTaxXXdpiPQk1eQaw9yJ5gfv/CN2a+ePOrVPYZ4Z5lVc3AYlk9m2WVIcabWEZQlukKGLID0eeLGbtteFR3PwRud9xw2MaSbd442RuekIjnpTzG+JR+wbCu2Ly9jkEjYIYzSYgTaVNCD2sS6Z1+NiukVJBEAgppX0Jz37zlEZXX/7bn7Zu8z7+e4lC848c7PiJg99d5KCiXIgl3LFFllYDUOd/dnhCSBCjxdMmBpf6R5QrkkFyJUZbcnZuylPM+JDvBuDiq9v/V8x/bm0uC7Sbp9+S845bOPAbT/IRgtgwBdCJOPD3m0ZemKpJUOynEDLmUIxGCCGEEEIIIWRc0ScItcpVuCD7twlHegRJCcmkRxCcRAIVCDlm0VNCU4xGvJEEhcUsQnKUI8oBBmUCcaH+U4xWXPitZ5ECyiD8CcfGPog3VwK3XAnWxgrbb5EqQ8tHWyd9Lz2C9GwQV7ui8DRiEZ5mc13vsWx/99+W747yWkKG0RI3RydODk7zXLd457sl+aTf7cOzbY8Y8+aUN2BBZN8Cl4hkS13QPINlSzx/I9h6k7IQnRBCCCGEEEIIIYQQQooZpSxDrcqF99Yf/EJ+CpNr5syX82JNAICyoMIegvgnuiO/g/DX7zSPVQaABo85fvQbK+TMPfbe/bc0oLV5szk9zOfavpi397CPe/e/KS76yiagL57fuiQJW4z1aHOTeWHHAWbMG54WtMRqJdMsNNuFOlUzWd5GCaHS6kwqlbobc8s7xPwXovmuP+bt108BAo6Pt+br18h5cxcM/C9J9gbFaDu2yNtgHZKZOc+ev/IpY7JNeLfB4qgzobVGk/AatsH82ha6v09uM3xIK0j22NogrF6BfWbI5/rWdmBjlvWikHi1kXv3W2wjABDe1d+trkO9fTKEzAAAIABJREFUIEaLtQG9Pq7l7b3mZard9uEJNcLJQchEQ7rX1Nra7gzS1QestnQRckWrOeQHkyKA4yjv/tCbL8t5SmXel0r32T1p8cvStbKafSOyi2zFaDFBTJsqV5+oWMT5qezTJ9/bvLguP/dl63eatzu3DmicOvAbT/Yx/KVhihqQ37WNYvLYaXNGvi4hJGdQjEYIIYQQQgghZNzgahd9uteY50eWkgvCATnQidIN/0gClXCOBCqkdJEEhcUsQgJkOcCgRFCq/0FlmYWUFBy/16JCyiB8ycQChRO1iWXwUU4/ArdcCdbGCttv0ZPSz+gR+hwRSz/Fi0jA/P1KMtNB+txeaLjmbTqVObmu9wpte+q5ZPtdKa8lZDg7E+aX/HUhj9EkpGRZ3vEUulzzwIOltadA2QKKSFEgnd+tiR3Q0gizUSKLXIu3L0YIIYQQQgghhBBCCCEABmRIEid8wJisjn9/ngqTW1RFtZy5Zf3Qn5KE7FO3azz9Vv6ERFHLWNV6r7HuwoBmAMCRJ+3+u0oQoyWEd9jhsZ9sbjygTjh/2OdTOh8Ul9UaiOZv7hYAshhtvmmuqFjUvPC0uVDpIjRJZgVk1CG9WdjuTEqOAABLz7aK5s6reEHMW7M1HwXajVR/Gv16e2JRMUsNSs1EMdouwV5KmzyMyhqoqkk+C1J6qPdcYF9gq/l7ff9h8jvvnz6S3XVve+eAuMbEoMjBb7kAsM3IF4tPFbP0hjU4ak+g2jJnu63PMpZorT2vse9v/6t9gcG+T9UkNMaj4mLrfFzLpXOhMj2ewEtqSMhEQYqxcl0ctxCYZrldG8TPuTda2gQxWq3fEOWtG+S8d564uz80iNS36WwdHtcUixoXU5SIkl3Y4xiH9+l0vB9o3mhetAT6X8qnGO30zvvEvCvu1HmRnrcIYf9zU2TG9T7uzeqnAPrvvxxdYSprRrc+ISQnUIxGCCGEEEIIIWTc0K+Ft2MAyh3L28ccUq7CUDA/LJUkJSQTSbISoRiNjBJ58H1xi9EkmdOgRDChE8Z86XwhY4NfyUMhRX02oecgxSAO9CP08iV587XM2B+vhO23GGwPkjqBuO43LjOaY5P27SVGs+VHAvJ1Pe7zuq619iWCk8RuAOW1hKTSk+wWz4m6oB8xmvleSCO/M3KTseWJ1vuN6RGnAofXLC1wachIqA2aI4H6dR+63c687FMSotuu2YQQQgghhBBCCCGEEFIUKHmolVp8CnDR13cnOA7U538Ctc+iAhQsN6iv/86c0bINum/g2W7DFHkw8THXufjri/l5NxTdYd7ujBqgotxjopZY1Jy+18FQkZRn09kKhSJ8ru2LY84E6vcZ+lilu3D3hveKi69tzl9RWru1OJC60VC3dSxqXtg0UNwi8kIyLb4rm+2WIKpuOtS3bxPzr0z8Ssy77XmNpJtPSaN52w2S1CoF3dcD7IgZ89RXbt79IRAwb2CwHm0RZI8zKA+ysuQsa7ZuM9tkPna0/Nv+7BGN791nnjTShCTWA4BGKSwjFpVXKgExx1igKmuA+oXmzAduhaNdPPIFuU/4zbv914lC0twBdJtDCwEAVzVfjfd0PWzdhgrvismrrsO8uCw3stX1QaSyVKbHHLKek1JBkDbpVc+jLKjwj8sdTPG4/Vgn3DPlklahLz3J51yI+gefEvPUFQZJkSSvjvcD/b0D29Sa/WsyOtInD922ITNtkJkNeS/OmOPzvKl12zA9YTZT9yWAM29wEU/ktl1qleSMKW2Qn3uz+jX3A3+9QcxXn77euzDh4h13QkgpQTEaIYQQQgghhJBxQ58wqBYAyn3KaEaLUkqUrlC64Z+epCA4cSoRGqVAhZQ2fuQ5xYgkM+pJdsHVSWiYgygoRisu/EqpCiXzBLylZyFVhoCyzGZbIPx8d/4kb94BycXcHgRUECFVZswbFJDZRKyjkdxJ3510zU4vl4kKp3LUwtO47oeLpDEvtd6UqXLKawnxQUtCjkqcHPIWo9ln1CMTkWjPGqzvfcuYd+Sk4wraryEjRxKjAUBLPD9TyUp9BL8yYUIIIYQQQgghhBBCCBkzHMtQq0AQzn99C+r/bYa64RGoe7dAvfeywpUtF+z3Tjlvl4inXn6sDAD41t3uwMD0HBMVHlk3eJQHgCgRUqd9dHhCdV12hSrnc20/KKWgrvzTsLTTOh/A1ITZgLZWEE/lgqylRLGoeeHZjZlpAUuMTSItDkLaLsUNQ6glZ0Fd8k1jXtWW1fjx+fL76YdW5atUQJPQFolSq1QkoRkAHLB4999SXdolRtPSdmZSjGbDM6YhZv5eHUfh8AZ5te/dp9He46/dkiSf4dCA6NOI9HtPngnF61DeUGf+l5z54iM4rEHhgDnm7KfeAhLJ4ptE0HYNfLXq0/jG9u8LEXYp7KpzqmoSwroPs+ObhX15H39Xnzm9UqfE80WqgEl+OnuETACk69Q/fwsAWLxAYdP1Dp7+snxPKt0z5ZI2H1IiCd1qaYiOOw9q+tzMdEmMBgAdrQP/t24HeoR4ZVO/nZQu0nmW/gxD6BcCKI0+9yz/582lLYJgH8BDrwNPrMlFgXYjyRnrKnf/tn7uzeqXGUSMg+x1ELC3j0kOwpTlE1IMjP2IN0IIIYQQQgghxCe9VjFaISUzlUbBhq18E4UX2pfh2bZHRKFCVaAGB1a9E8fVnYmAEma0gyyRCzsRaNcsgPIrUCGlja1uFTOSzKjX7UFCJ4x5AMVoxYYfcVfYicCxtI+5xks45kckVgj8CL38nMd+RKl+BXZjRcSpQDyZOVXiYD+j1yIqG5UYLSCI0SziM2BA4CgRtghP/V7X/YrgHOUg7ESEPhrFaIQM0hI3DzxQUFZxkid5GPhCioMnWu8X85bUnlLAkpDRMCk4GQqOUbjcmtiOuWjI+T6lZySj6a8QQgghhBBCCCGEEEJIQbBJVXZJ09SkKcBBRxeoQDlm+h5y3pb1QP1CzJ9m38QbW4ENO4F5OXZYrBPFaHaFh07EgeaN5syZ9cM/V03KrlCR4oirGBcYhAT79q3Gk8HMCrXW4ksYLZIUJhQA5pi8eJubjMsrk8DMJkZLpsV4xaL+t1vKNOxrTt+yDo1T5PfQD7+ucfL+uZ/YS2uNqFCHfInRYlFzulLD2yOpLg3Gz26PmfNnWNpwMsDJHwEe+JM5LxYVV5s/VeGFqLnOdfcDzzcBJ77De/dSG9QwRRa3aUnMMavenE5yw5z5YpZe/hjUEe/BntOBVzeZl3k9Bhxg8PuMJc83metwJAQs3PaUv42Ed73Trx24fjfEo9gcmp2xmE3CNkhXZhgkAKAiNZ5vVgMnaiSlQ5k85klrDaUUyoIK71oAXLRY4ZZnMs/p9YKAM1ckkho7hLDgSREf5+orT8t5Uj+42kOMNnUWsEPoGwGZ93yktFHKHM+aniaJaeumQ5XCc4DZDb4XbYxHrflPvKlxwjtydy1v7Ta3c5NShonMn6oA2NvDhs435Mw5C4Cgj7FYpVAXCBkHWKYxIYQQQgghhBBCios+t1fMK6T0SNqXTQwyEVjWcj9+H/sRVnevxNb+TcZ/b/e8jn80/wF/3nqTdVuSoCQSqBRFTxSjET9IAp1ikT9JSEKtHrfLWveDivMeFBN+rkWFlnJ5lalYpIF+vhc/53HICXkKA4tdjCaVb7CfYROF+ZHzSUiSEtv+bPkhVWb9Pfxe121Ss/T6K353FKMRMoQkOK4J1iHgo18hhS5QizYx6Uy0Y3mHOTB2YcVBmFEmTI1Mio6ACmBS0DTSB2hJ5GcqWVlaXdx9MUIIIYQQQgghhBBCCEHAMtmZM/6HYanyMDBlljlz63oAwMn7eQ9oXbczl6UaILrd/Nap3ktGtG3jbplQOumD76vNz8slVLi4Y46KCVVZk5E2XxhA/eOHtPh7j5YmqR5NAQLO8LqttZZFSQZxg3IcuR1IEaPpzjago8W8nEEgV9JIgoz+Prx72jZxtX8L8p/RsrUd6BFCWhqn+hjsH4ua06fOhior3/3ZEa41g/Woo9WcX+thriRQx5whZ66X5QinH2Tf7idudXHXSxrtPfa6J8mirGK9WNScTtFLflm0VM6LRQEApx0gn/ePrC6+aJnH3zCXadE8QEkCvnQG+z6HHw9AlqH4uY53C2K0ytTJWrMQsxAy7olUyXmtwy8gDcJ14+6VQDyRv/ZnYwuQFG6t9pjsYwOxqJiljjrNnGETo3Xu6hNJfSMAqPVjryUlgyjbHH7e6FjUvFiJ9L9URbXvZU/qegiOTor5b8Ry2ya1CmH/dSlhh8cv9N5OfXy9mKeOOs2fGC3MWEdCioHx/0SeEEIIIYQQQkjJ0Ov2iHnlBRWjmR9s2co33om7cdyz/Xbfyz/d9hC29gtTZEEWlISdCEKqzFwGitGID3qTct0qZiQhUa/bg4ROGPMAeAqgSGEpV2EoURkzgPRb5wsv8UQkUBwBvBEfQi+/57HXd1zo3yBbJLnZYD/DJvkazbFJ4rkeoV0dpFsQww5uT2qn4q6/67pt/+nHK7alHsdASCmxM26OwK0L+g0O4gytpcQzbQ+LIssltacUuDRktEjneasgTBwNrnbFZyTFfm9GCCGEEEIIIYQQQgghUJahVra88cTMecZkfet1A9mTFK460/5e6A/P5n4wflSYy6NhiseKWyyij7RBzapqUnaF4iDYrFCf/P6wz43xJnHZfb/l4s7lua9HX7rTvM1GUz1q3wl0d5g3JAm7pMHTyZT3arGoUDpQAJOO9D0DqF5+H+YKLsOn3gKeW5v7+iNJrQAPsdUu9J+uM2ekCxYCwsRlQ2I0s1hP2cQhZIDFpwIGUSMAoH0n9PbNxqxzD1E4/UB5s03bgff+0sVh17hY2yzXPUkW1SCI9bTWwCN/MW+sRMQcY4WqqJZlsY//Hdp1ccERcn/oC3/RuPU5wR40BiRdjcfXmPPePa8L6JcnqB/Grr6PmjITANDQb+5n3bkCcF17O9zVZ06vSI2BZD0nJYS64kY5c/mjwz7WWyRkZ9zgorM3P3I06Z4M8HFfBkDb7s32P9KcXhYGQuYxREN9Ikk6HKmC8iM3IiWEcO3WaeeMJAydVTrXJXXJN30tNyuxBdds+5aYf+cK4Jm3c9cmSWK02pTHM5Mq1LDP6Vw2/QU52vnIk4Bj3wcEhXYnFcryCSkKJsgTeUIIIYQQQgghpUCfa34hF1JlCCjLTJ05RpK32EQl451VXSvQ5QoBQALL258S83qF7yriVCCozAEf0oB8QlKRzsNikT9JSPKqHrfbWvel84WMDUopT1Gnl6gs13iJsopFTOHne/Er/fLaVqF/g2yRRYndw/5PZ6A/NPI2Qe7fmMVnXvmD2ws65oADv9d16XiBTDGurS0lhAzQIgiQ/IvRJIpvFlwyOlydxLLW+415dcGpOKDq8AKXiIyW2qA5OrFFECaOBun5DVD8fTFCCCGEEEIIIYQQQgiBYxlqZcsbT8wwi9EQWwfdM/AO+Fun24/1d0/pAZlLjuiLa2xuM+c1TPGYvEca0DxpKlRF1fC0qiylQpHijjkqOo5937CP8/tlMVpfAvj4n1z0xnNXj7a2y9sySoliUXljksBMElolUia/3CwcdzAETJ0j77MUqZkMVFQbs/T1l+Pqs+Tz/1O3515I1CRIrSrLgalVxqwhdHcn0CxMKJwugJPqkZsc+L9TaBCrBVMcGUIFQ1A3Pynm659fYUwvDyn8/TIHVeX27b+1Dfjm3RYxmiCUEcV6K+VYa1VCYo6xQl16lZy5/FGEQwpH7ykvctltGh15khNly8oNskjk3bUb/G+ofHdMnvr4d9EQlyVHj66WN5N0NfqEeaEr9O6CKosgk5AJx4IDxCx99UeHfa633AP9axXw+2fy0/ZIfaHJlUBNxMekqrGoOf20i6GUeX2llNzHGewTiX0jSmNJGkI9yxCjSRK/UhJ2Lj3H96Jf2vljHD1TOA8BXH6bm7NnRC1Cf6YuLezws8fLbdJHYY59RXkE6tq/QZVHgKCPcRd8JkRIUTBBnsgTQgghhBBCCCkFpIG15U64oOWQBvHaxB3jnRc6lmW9zvIO88v6uNuPhDa/6Yw4lQiq0QlUSOmS1En0a/P0YsUif5KQREg9yS4PMRpnOCo2vOqaX7lXrii28kj4OUfDgrgr221Firw98JJ79SRluehoqHDML+7iuh9xV26HRCHlru2FRnldl7YfdiJw0mZjl+RuE7mPRki2SGK0ySF/YjQlzKGmKUabcPynazl2JpqNecfUnlRQOTnJDXUhQYyWsEz1OkJsYlXpek0IIYQQQgghhBBCCCFFg7KJ0SbI83GbaGX5o0N/VnuE5a3ekqPyAFi/M3Oc8iAN5kfcQ2hpQLPpOLOVCpXzuXZWTJ0zIP/aRWNcFqMBAwOel63J3e7vfUV+bzl/miExFjUvXFYOTJ5pzpOEVsmUmMjmjeZlZuwBFZgg7UiOUEplSsNSaKg2xwMCwIr1wIaduX1X3STMKdQ4BaLMY4iU9jOD9GOURJuD9aijxZxP+Yc/ZjbIeW++LGYFAwqfOs5b+nLXSxqum1n3XFeLYjRJ8qmX3S3vqJTEHGOFpf0Z/G32nC7Xia4+4OHXc12okbFivbk9LAsCi9Vr/jeUKpWd1YCGeFRc9B8vy21wd7+8i8rUeD6K0UgJoZQC6heaM7WGTiaHPnrdA931Un7i9TYIXRCv8gwRixqTlSQdHqRqkjm9s3Xgf6lvJK1HSpdRitFKStg5U5DmC5wwPSbmvbJRFgRnS1uPOX1SmpzxwLlyH61x+wpzxrmfhBp8ZhH0HoulwhSjEVIMUIxGCCGEEEIIIWTc0Oean26VF1hwIgqMJqh0o9ftwaudL2S9Xqx/Azb3ZT4stslJwoEIQk6ZMS/uWt6QEgJ73YoIwp9iQRI+9bo9HmI0H7OUkILiJacKBwp7zfKSiUkSrkITUEGUKft0m34Fh5GA/XwPe+SPNZK4bbCNk9q60f6WYUs72WuRm/QkzXmDorXRCk+zOV4vqRwhBGiJm0VXdUF/YjQIYjQy8VjWYp4xL6iCOGrSiQUuDckF0nnemgcxWq/w/AYonv4nIYQQQgghhBBCCCGEiNjENzZp2jhCHXS0nLl5t8jq8nfb3w29tS1XJbIPoK33GoQfi5rTZxgG+VZnOXA+UtwxBsWGCgSAxO54gIN6X0VNss26ztrtuZM6vGV+HQoAWLKXoT5vFsRtM+uhJHFVQBg8nSpG6xbiLCb5fS9bYsxuFLMOKVtnbZbftvzmI6FJaIsa/fx0m94Ws9TBae2uRbCn+3qBfvNE0qiiGM0Pqtxi9tweg1751MA/gxBj6d7ecRE9cWBLe2Z6rA3oN88bLdehzWvlHb3jcM+ykFGy8FA5b9PAb7N0b/sm1jYXx2SCawWx48Fzgcg2Sz1LJVQG7HPI7s+zGnBYryAWgf3Yu2SvJSpT4xFLSUBDCABMEeS7ALB909Cf8ybb74Ny3QcapEXoxs6s8V5Xay3fm3md61Ifp2NAjKY7hXuKbMXXZOIj3jzsvmbp/j5g+2bzYjaR/ARDVVRntXyta+gAp/B2jp4RdQp9iJq0IRbH7gOEDbfn+80GJsdeMW5jmPjOhxgNEcY6ElIMTIwn8oQQQgghhBBCSgJRjKY8pqbMMdIg3t7kxJRurOx4HnFtlpKdNPl9OG/6x6AEQcKL7U9lpNnkJBGnUhQ9JbQQLUDILqzSvQILFLNFFi52Weu+JBwiY4eX6KHQkj4vUVvEQ5xWSGzfXUiV+a7vXue7JB4rFiRBWc+ufoZ0HfWS4Hlhqwu2a3ePIE0bLM9oxWjSvk11W6rvtusDIaWEq120CAKkupBpenT/FEeIJ8kV2/o3Y1X3S8a8RVVHoTrIYPvxSG3QHC3ZEt8+EJiYQ+zS6uLpfxJCCCGEEEIIIYQQQkjWSKKk8cbh8iQo+om7hv7++BKFMsucfWf9wsXydbl5xhzdYd7OjBogUuYhqTGIbQCYB99nO3A+zOfa2aI+dtXQ3xW6B1fs+KF1+X++nLv3FFFBCgMAR87PTNOxqHlhm7hBElqlCOF0r2CUYH0yklpn0qluieJbp8ttwEd+6+b0XVdUEPU1TPWWZen7b5UzDzl2+OegJEZLAh0t8nYo//DPh75kTu/phP7U8QP/ztsb7ieWQO/YMpR9wr7AUQu8N3/VPZl1ZeVGeXlRjBaLiuso/t55R1VUy23zrv7FuYcq7Ddb3saX7tSIJ8Y+cubXy8xlmD9NQd/3B38bef9nhktSZtWj2u1ERIgBePA1eVPdlvnQK3TK9ihGIyWG+u+r5cw3dsdrOY7CN0+T+x/rdwK98dy3Pa1CyE9dpY8JVVu3Az1CP9jrXK82x6PpzgExmtg/qspSfE1KAKGupt4zbF0//HMqM0tHjAYAOPO/fC9am2y15r/nJy7e3Dq6dime0IgnzXkVZWnlqVD4/AnDf29HAd84sQ9q5xYYSW2LnIB3gcKU5RNSDEyQJ/KEEEIIIYQQQkqBXkGMVmjhkbQ/mzRkPPNix5PG9JpALc6YegGOrTsdCyLvMC6zvOOpjKATuxitYtQCFVK69FjkhIWWUWWLKFx0e6x1n2K04sPrmlT4a5Y9oNIrv5DYxFzZfG/j6ZhNRALmYx0UjEiikdFKRios7WR3UghUgCxGG9yeJDyN+7yuS+JZ0+8o/ba26wMhpURnsl3sV9QF/c1MLoc3jX2AJ8kdT7Y+IOYtrTulgCUhuaQ2ZD7P+3WfeD0fKdLzGwcOQqrMmEcIIYQQQgghhBBCCCFFg02woybGMCwVDALHv9+c+crT0PEBk0XDVIXVV9uP+bSfuejPgQxEElo1mOf9GE4sakxWsxsyE7MdOB8p7pijouT0i4d9/MqOH+C2TReKiz/wGnImlFnbbN7OF9+joJThbWcsat6QTdwQFOK1kimTX/YKcQoUoxlR8/eTM2NRXHmG3A5tagX+79+5e1/dJLRFotRqF7qzDVj7H3PmKRdCpYs1pUH4yQTQYREOCNIQkok65+P+FnzteehrdgshAo7Cvz7v4OqzFE7cV17tN09qrNwwvO6d/nPXuGxNGKgznP5aayBmlnuqb97iWXSSG9TXfmvO2LIO2nVRWa7w5BX2/tD1/xrbuJmt7Ro7hNf+9dW9wKa18sqHvBtYchbUV38N9fHvDs+rnQaEK/D7zZeKqz+8ynzsXX3yLisHYyBrJkNV1sgLEjIBUfsdIebprw+/R7vkaAf/+z45Yu/rd+VDjGbe5iQ/YdySsBrwlk1VCX2cwX5RZ1t265HSxXTfBwx/1jOaujrBUOd/1veyTp93jOHZN45OXN1lEatWGsIOv3u2wi0XK7x3EXDhuxQe/JyD8575H3kjqff6kvQ8FYrRCCkKJsYTeUIIIYQQQgghJUGf7jWmlzvhgpYjEjA/2JIG/o5nOhJteL3rJWPeIdVHw1EDwRmHVR9tXKY5HsOGvuEvUyXBCTDwW0qip7i2POEkBLIsCADCgmioWJCERn1uD+KuXPcDgnCIjB1e0q1CS/q8hGKjlWnlEtt3l8335nVMxXTMJmyiREAWjI72uMqdCJSgPLK1r5J0bPA4JPmJX+FpNscryfUmYh+NkJHQkpCnR68ThEmk9Oh3+/BM2yPGvD3K56MxvE+BS0RyRV1QHjm2My63DyNB6juEnQrzoCNCCCGEEEIIIYQQQggZL6SLbcYxqn6hnPnvh4b+bJiqcNFi+dnutg7g4ddHX551O8zpjVPtz5V1vB9o3mTONA1oznbgPAfBZk/ddKCsfFjS+e134ivbrxNXeeyN3Ox63U5z+j4zhBU2NxmTlU2MFhCEVomUOIheYcA465PMgUcZk/UuadS5h8ir3v58bqQgrquxQahDXm0RnntQzFKNBruWNAg/mQA6bWK0Ons5yG6mzvYnOwCAFx+Bbtk29DFSpvCN0xw8+PkADpgjr3ZbSt2zSUIbpsL8nrRtB9DTaV7J1g6R3GISqQJAvB/YEQMA1FYofO8cuR24LUft0Ei5Z6Wl/u18WcxTn7oOzk8fhHPNX6BOvTCjniqlgFkNaIjLApnbBTmlVWwyOHkb6zkpVfY6WMzSPcP7kZctldse27k/UlqEcOE6P93YWNScXhYGpsy0rysJrAf7RVL/iNJYko4vMdp68zKTZ0CVF/e4o5wzw78IrqpfuFlK4fUY8JLw9frBKlYtz0xTSuHCdzm487IAbrnYwfH7KvneTClgxrzdn/3cK0SKe9wJIaXCxHkiTwghhBBCCCFkwiNJLQotRpMkMz2u9+wH442XOp6BC/MMZofXLBn6e1H1u6CExwzLO54a9lkSnISdCBwVsAhUEsZ0QgaR6lZIlYnCvWJBEi5qaHS5HcY8BwE4E2Qm4omEl4jMKz/XeMmyvERuhcRW1my+N69jKnS/IVuk72GwnyEJRkf7WzrKGVEfR8qr2NWuSe2vXzGaKFYxSNCk72Ai9tEIGQktgvgoqIKoDgiBRWlIQiONsQ3wJLnjhfZlYru5pPYUSq3GMZOCk8X79laLOHEkyOLUEgscI4QQQgghhBBCCCGETDwcQYg0Htn7IDlv/XBL1aJ5wnK7WL1l9O+KojvM26iX5/0YYNuG4QOcU5nZkJlW6e+92BDlxR1jUIwoxwECmbECi3plMcvrOahDWmtsF/xCc+sy33Fp1wW2CiO2Z8+XdxQU4tCSKfGNvcIEbuHiidMpOkwiQwDYMiDjWVQvv6dcvSU3RWjrARLmcFnM9fKRbZGlQUb5iW0QfrtgigyGgFITNYwCFQgACw7wt7DWwIY3jVmHzJPr3hspbdcOof0BgFrpZ4tF5ZUojCoctu86tvvcXmSpC29uBZLu2MXORIVmAwAW9ayQM/de5L3xWQ1Y2CcbTLe0mY+72yJGC+vegT+mzfbePyETkVkWEVEsOuxjVVhue6S+72hoFbqx4rUslVjUnD5SP1xEAAAgAElEQVSr3jvmTJK/drQO/z+dbMXXZOLjR4zWLgi+pszKfXmKHJXFM4/FyVfg+AgfHc0zIqtY1SBGS0drLf++WkOlStz9iNEqqr2XIYTkHY6cJCTHmDrnWnrJQggh4wTXzXy7wwFwhBBCxoI+t9eYXuiBtZJ0QxK3jWde7HjSmD41NAMN4b2GPlcHa7FPhTmAYHn7U8Pui6RB9oPfa1CZHy5quEjqpK9yk9JElOeMg8H3tjJ2JNqM6aEil72VKuGAhxjNIHPKJ16yLC9xWiGxnQfZfG+2YypXYTiquAPVvfoZkgQykoO6FXHMksbupCwWk/IGtzV6MZq5f2X6naXffiL20QgZCTsTzcb02uCULGSrUtDIyMpEigutNZa13m/MiziVw+TYZPwRUAFMCpqDCFsTlijpESDdm0lCaEIIIYQQQrKFMXqEkIkG4/MIIWQc4UygYVhHnCRm6Ru/OqyP/cHDFWotr6T/568a37/fHVW/XBJ6NHiJ0WJROc8gHFDBYHYDWykhGhmnXpiRdFqn+T0UADzz1uh32dkHJAWpVZ2p/m7fDMSFUdc2SY40eDqREgfRZ35XQjGaBUkQ8tjfAAAfOVLuH6/dDhx8dRJrm0f3bEASgQBCHUpBd7TImYe8OzPNJtpsFSY1qq7jfUKWqHM+7n/h6Gpj8qVL5O/8nleAj/7ORVu3ttafTx+X2X/Qz94P/d9HmVcoCwNTZlqLS3JIdZ3YN9D3/XHo7xP2lTeRcIGNlmYg37QKlx0AOLTtWTnzoKO9Nz6zHlVajh+U6n5Xnzm9wu2CMxhoVOVlnSRkYqLO/5yYpx/5S0baewWHYWs38OrG3L4bkdoT2/3gIHrlU+YMH7JPVSUIrNe8NPB/p1mMpqopRiPpSH233eeKlkR7pVqf3nOBr8Wm9mzEOT6cqh/+rcbPHhnZMyKp/wAAlWU+NtDaDPQKDdnJHxn+2Y8YrXqyj50SQvLNBHoiT0hx4BhedMXj/gb5EUJIsZJIJDLSTO0dIYQQkm/6BKlFeYGlR5J0o8/tgauFyJpxyM54M97qWWXMO6x6SUaAxaHV5pejOxPNiPauGfrsJTiRBCqAf4kKKU16ksLge0H0U0zYytiZbDem284VMnYUm4jM6xpZaFGbDdt3l833livB2lghHWtPshtaa4sEMgdiNEFWIu3Tlje4LUl4mtCZzxpMSCI40/FK30GPRexGSCnREjcHT9cFpxW4JKRYaep9Axv61hrz3jXpeJQ5PqbcI0VNbdA8eqwlIQyuGCHy9ZuDxwghhBBCSG5gjB4hZKLB+DxCCBlH+J5spvhRwRCw+FR5gT//eOjPqdUKT11hP/av/UPje/eNbFB+b1xjszAuuWGqhwQots6cXjcdSpJQVWUx2Lks7H9ZMoT66Ncy0sK6D8d3PmJc/q/LNeKJUUqtLFKYOlM4RCwqrzC7Qc4LCjFbyZQ+XY8Qp0AxmoiaKYjRAOiNb2FuncLvL5Lbg1c2Akde66Kzd+T1yFaHPGUggqwDBx0NZerb2wbhi2K0EhU1jAJ1+sVQX/gZUL+P57L6+suN6YsXKHzoCLnu/ek5jTNucNFiqT+nps07rV95Bvqr75NXmFVPCV4BUUrJ0p57fw/91isAgICj8PrVcn/oi38ZuzEEUvt19sGA2hI1Z575X+b2KQ2167v5wdYrjPktwiWvq8/cHlekxhNUCyIkQiY46sDFcuYfvw+9/o1hST96v3yuHnS1i57+3MnRpOtZXYX9uqT7+4BnBRGyDzEaqgVRYmcbdHcnIImssrm3I6WB1IdKlXR1tZmXKdH+tvrEd/0t2NGKP17i4ONLvfupn7tD48bHcyxG8xO+ujkqZqnLrhme4EuMVpp1gpBiY+I8kSekSFBKoaxsuHK0s7NzjEpDCCG5Ib0dKysr40N2QgghY0Kf22tML7QYTZJuaGixjOOR5R3CjC0ADqs5JiPt4Ooj4cA8i13qtiQ5SXhIjCZP4xDXwgyNhECW7o2Hwfe2MnYkzS9eJNkQGVu85FS5kFdlQ8gJWSV6hRa12YhYpGXZfG+27RTT8UpIx5pEAgkdl0VkuRCjCdvodmWxmJQ3KHyU6p/fa3qvKL3MLKsor9W9cHXS1/4ImchI4qO60FTf25Dn0svtzJNkbHiiRQhOA7Ck9uQCloTkizpJjBbfkdP9yPdmxd8XI4QQQggh4wPG6BFCJhqMzyOEkHHEBBNXqgOPEvP0P24a9vkdsxWuOcd+fbrxcQ2ts39vtH6nnNdgfrQ9hN4iiNEskqWsBrZSjDYyaqcaJWBLuuWYxPv+M7pd2qREtabQrFjUvHDVJChJzADIg6dTxWh95ncloqyPWM9Zfc/vAADnLLK3Qds7gb+tGPm7a1sdmuQVgijJOvbY25xuGYSv24R3d7Z6SUTUOR+Hc+srUI93Qz3eDRxzpris3rbRmH75u+1176m3gGVrzHWvLAiE08Kn9D9/AyQtsUx+BDIkt1i+c33Pb4f+3memQp3QlP/9pRyXKQtau831r2GqEgUhat/D/W18diMAYJoQd9RqvuShWwgPrEyJf7RebwmZ6Njuxe79w7DPc+qAoOVW9J8rcxO7l3Q1OoThUJ6S2GfuE7OULzGa5R5t2V2yhLaKgkWShh8xWqcgRqss0fo0ZZYsAE+lsxWRMoVffshB8mYHnzrO+xlRtnQJ/YegA5QFfbwziUXN6eEKoG768DRfYjT2VQgpBibWE3lCioTq6uphn9vb20f0cocQQooBrTXa29uHpaW3c4QQQkihkAbWljuFDT6yCVckWcl45IX2Zcb0OeUNmF0+LyO9MlCNfSsPNq6zouMZuHpgJizpdxyUmYQc+YFqQmfOlE3IID2SnMdyzhYLIVWGAMwP1jsFMVqAYrSiJOIh4hsLMZdtn8Ukp7CVJRvBoX07xXO8EuGAfKy9bjd6hL5GLo5N2kaPICeLu/1I6Lgxb/d13Sw8Tbjm9TL2LR2voW03pQ0i9T8IKSVa4oIYLehfjCap0ShGG/90JFrxUufTxrx3VCzC9LLZBS4RyQeSCFESJ46UfIpcCSGEEEIIGYQxeoSQiQLj8wghZJzhmCeNHLfU7yPnxdZBd7QMS9p3pn0QaqwN2CKML7YRtTymnjfZY+VY1JxuG3xflYUYrbz4J2QsRpRSRiHUvv2rxXVWrB/dPV2LPOebWWITi5oX9hI3SAPGEymxjT1CYShGk5knCMQA4O1XAQA1EYXZHqfvzctGXo9ahfDfmjAQcDwG4UuyDknyEbBcT1qFRjEbqSPJQAUCUIEAMM9y7XvrFWOyl6QTAB5/w1z3aiPIFF+v8TBo2cpI8oOtT7Tm5WEfp1bJi3b2js3zSUlOVhvsB9qENsWvgG/XcrWuuZ2T2k5JbFKpU66RFBqRUkaSpwIZ14mAo7D3DHnxFetzU6ROQYoGeEtite3aZuvnDTIjc3zS0LZff0HuX1NaRNLxJUajaC8V5TjA9LneC6YI5ZRSWDjTvvjrMaCnP7u+UVefOb2y3OcGYlFz+sz6zD657Z4MGLj3j1T63DEhJJ9QjEZIHkgPSIjH49i0aRMDrwgh4w6tNTZt2oR4fPhg5ZqamjEqESGEkFKnzzU/ac9GlpILbOKRiSLdiPVtwMa+JmPe4dVLxPUOrT7amN6a2IG1Pa8DkOVVgzKToEX25FeiQkoT6fwbDyIkpZQocOtItBvTg8rHrCyk4HjVt7Goj7Z9FpOcwlaWiOP/pVKuBGtjhe1Ye9xu9CbtgtHRUBEw77tXuHZL0rLUbUltlV/ZaTZiFdt3MFH6aISMBkl8NDk0rcAlIcXI020PiW3zkrpTClwaki9qg+aI/daEMOv8CJGu3+OhL0YIIYQQQsYPjNEjhEwEGJ9HCCHjEGeCDcM6/ER7/ubosI8n7y8IplL43v3Z98mjO8zrzKwBImUeMqLYOnP6rHp5Hb9yIaVkCRbxRJ14fkbaKZ0Pist/5/9p7OwahdRKCAuoLAeCSELf8VO4Xz4H7iePg/vJ46B/9x3zCl6imIAQ35hMedfWJ8RTUIwmomwD8Z//19D9/gffaW8Tnls78jK0dAtiKz8/W4dZrqAkEaNUjwBZYpSN1JGIqBM/IObpG78CnUxmpM/04ciQpDTp102dSABNq6zbspWR5Ad1guU7T+sPnXGQ3A5Fc/vq3TctwmWnLrFTXsmvGG3mQJ+qNmlu5/oSZumJJDapSI3jo9CIlDCmvvIQLz4K7brDki44Qm57rn9Q44o7XWxqGd37EUloCACV5jmSdxOLynle950AsPBQOe9Ns7gUAMWxxIDHMwQA6DSPzxH77qXATMszlEHS5PnnHqIQ8nCLZds36uozt2N+xWh6nSBjN/R7lFJ2OVp1XaZMjRAyJlieoBBCRko4HEYoFBoWqNDR0YG3334bNTU1qKqqQjAYhDPRXooRQiYErusikUigs7MT7e3tGUFXoVAI5eV+9cqEEEJIbukThBblTrig5bBJNyTp13jjxY4nxbxDa8zyMwA4qOqdCKqgcUD98o6nsWfFfqJEZfB7DSr5rUlcW962kJJHOv+KSfxkI+xE0JnMfMliSgMoRitWyj1kD5IAL5/YBBQRQYQ1FuRKaJYrwdpYYTvWHrfbUzA6GqTvp1sUo8n9nrBjF54mkYCrXTjK/oxU6jeYvidbHRooK+VPpHRJ6gTahGDHOkGUZEKJQSMcdD6eSeoknmw1D0KZHJyG/SstgWdkXFEXnGpMb43vgNY6Z4E8ksh1PEirCSGEEELI+IExeoSQ8Qrj8wghZJwzwQZEqvIw8MsnoC9baszXv7kK6vq7hz6HQwr3fsbBe290scUczoJfPKYxtcrFlWf474tLA2UbzI+1h7PFLEZTtkG9fgc7l4U5CHY0nPdpYMObwD2/G0qK6F4s7n4Gz1QsNq5y9P+6eO6rDmoi2X/votQqAuhvfgB46h5/G/ISxQiyPJ2I736b2itY2sLFH7cylqhPXQd9wxXGPH3zN6A+cQ2+fYbCD/9lfz/9i8dcfPLY7J8HtEpiIT+vuDrNwiBR1mEbgN8qiNEo/sgJasH+coTDujegr7kE6lt/GL6Oj2vB9k5zerpYT3/ePjGZ+tKNUDY5DMkLas8DoE/8APDQnzMzd26B7u2G2iW3/O7ZCj96yFyLvnefxu2XFr7vILVfk16615zhOIBNSJmCqq6FrqpFXb/Qzu3afyQt/L9bCPmvSI05rPJhHSRkgqIOPRb6oGOAleZxO/q6y6G+ctPQ5/95j8I37pL7QD/4l8YdL2g8+1UHs2tH1g5JQkPAh5QoFjWnH3osVJn3s07lONDHvx945C+ZmW+tlFdkO0LSkfptqRMriX33Eq5PM+Z5L9PXA93fN3ROT69RuPuTDs69yRWv+//7gMYtF/tvkyRBo6ecERgQHD94mzlTus8PBAGDGBkA778IKSIoRiMkDyilMHv2bKxfv37YDJTxeBw7duzAjh1jpH4nhJBRMti+8QUvIYSQsaLP7TWmZyNLyQUhVQYHAbjIfPjVK8jbxhNaa7zYvsyYtyCyL6aEpovrRgKVeEflIXil898ZeSs6nsa50/9L/I4GB0iHLLKnhI6LeYR41a1iRxISdSTbjOmSbIiMLRGPa9JY1EdpnwoKZap4BtZYxWhZSL/s2ylsn2Ek2Po17YlWuHCNebmQQErtUE/SHDnVk5TFaBWBKgB2iWNCx6110NWuKMY1ldX2HUiCFkJKhdbETmghtHdyaPTSQGrRxjf/6XwRLQlzcP2S2lPgKI9p/ci4oTZkHkHWp3vR43YNXb9HiyhEHwNJMCGEEEIImbgwRo8QMhFhfB4hhBQLljcfE1C8q/Y/EnrOfGDT2szM5x6Adl2olOM+cr7CxuscBD9hfncNDAzK/8KJGtVhf9e0dZIYbYp9fd3XC2zfbM60ya38DnYuK+yErRMNFQxBXfFLuK88Dax7Yyj9g+1/EcVoq7cAt/9b4xNLs+8PiVKrYA/wpE8pGgDlJUaThFbJlMlke4V4ijDflVg5SJ60F7f9APqCL6KiZjI+cLjCn1+Q2+rv3qvx38dohILZ1aNWIbQkXWxlpMMc4ycOpncs72DbJDFanY+CEF+c/GHggVvNeQ/9GfqjX4WqX5iTXaXWH/32f4CXzfHZAKD+usYu9iR5RV3yTWiTGA0AYuuAxn0BDIhi66eY+y9/fkHjto/lblIyv4hitJfvM2dM3wNKEH0amdWA2qat8v57gFlpzZ0oNtEphWW7Rkoc9bkfQV98uDnz3t9DX/w1qF2yorKgwq8vVLj0j3IfaEML8JunNL51+sjaIElsBAAVXlKiWNSYrI471/f+1ZEnQZvEaD1yrDLbEZKBLzGa0HevLGEx2kwfYjQA6GoDynaPKTx5f4XWnzoou8z8jOiPz2r8/iL/fSNJ0OgpZwSAFx8Ws8T7/EAQgLBTti+EFA0cPUlInqioqMC8efMyAq8IIWS8opTCvHnzUFHBl3GEEELGDkl6VK4KG4CklELEqUCX25GRZxOEAEBbYifW966FNkhNwk4EDeG9UeZ4P7FrTezEht61mFE2B9NCM0f8AtXVSWzsa0JrYudQWkt8O5rjW4zLH1Z9jOc2D6s+xihG60i24dGWe7Azvs243qDMxC5QSYh5qWit0RyPYUv/Rl/LD1ITqMUe4QUI+Bj43+/2Idq7JisZngMH88J7oiboPXNE3O1HtPdN9Lj2OpXOnPIGq7xupPS6PYj2rEG/tkwFNMZs7ze/dB8vg+8lGVJXMrOtAeznChk7vMRnYyEik86BsBOBo4onaNt2rnoJ51Kxyc9yIQ/LN44KoFyF0aczhbCrulaI6+VCuif9Bi2JZuO1fWNvk3F5BWeofxZScjREQsdRBvmc6HN7RZGTqc0MOWUIqqCxv/B698vGvpsfAiqI+vCeqArUjGh9QoqBlrgQOA2gLmgWJeWSpE5iQ+/baE/Ks8eamF1Wj6llM3JeHq01Yv3rsT1u7j9OD83GjLI5JTMA9YlWcyBsUIWweNIJBS4NySd1wSli3gvty1AniNOypS3lGUMq40VaTQghhBBCxg+M0SOETCQYn0cIIeOEInrHnlNm1pvFaACwJQrMnj8syXEUzjoIuHuleZWuPmDFOmDpPv52H91u7s/Xy4+1B9i6Xs6bJYtlVHWdv4l/yot/8rVxwT6HDhOjze8X6toulq0BPrE0+91saTen18XN7y1E5sy35weEmK14SlxdnxBTyDplZ3ajPf/1F4AjTsL5HmK0re3AG1uB/edkt/stgh+hzqOLruP9QLtgeJTEaAHLsN4287aUtC2SNWr2fPt1YOVTQJoY7ZPHKvziseyfP9VVpMQdWKRoiFQCM3wKKUh+mDFvQKZies4YaxoSowHA3FpZ7Lq1HZhZQK9Ke49GjzDveF2yxZwxLcsGcspM1L21Wsze0gbsO2t4miRYqkidaK2K7RopcbyEvK88A5y4+9qwYJqC1xSmy9aM/F2JJDQE7FIi3dcD7BTkiV7HmEq2clClgEhuJoEkEwgPMZp2XVlEXFW6YjQ1u9Hfc5IdW4G64ePVggGFI+cDzwm3+s0dwHSfIfiiWNVLzghAv/SknCnda9ruy0q4PhBSbFCMRkgeGQy82rx5M+Jx4ekCIYSMA0KhEGbPns2gK0IIIWNKQseRhFmKVZ6FLCVXhAMRo1xDkmQldRK3b70Rz7Y9Yt1uSJXh4llfwMHVR8rb2XIjnm3fvZ19Kg7Ax+d8TZQqSWzt34QbNn4bOwRRWToOHBxSbZ6pMZX9qw5DSJUhrjOfSP6j+RZxvUigEgAQVPLjCtM20+lJduGmTd/Dmz2veS5rYlKgDp+ceyXmhhvEZV7qeAa3xH7iqzwmjqk9GedP/29RSPRa53L8ZvP1RimOHw6qOgKXzPoiQo6Pp78+eK7tUdy25UbxHCx2xsvg+8FzIB2TSBEAgg7FaMWIV30bC8GKdH0otnPDVp6wYz4/TNjkZ8V2zBLhQAX6EpnXAElcA+RG+hYRvuft8a24adP3sthOxVBdH43wtNcVprKE3GaGnQp0JjOjne/bcYd1X344efJ5OGPqBSUjSiITi5ZEszE97ETE88mEglT/5ZCIjb1NuGHj1WiXgi092K/yEHxs9hUod3IjxG5L7MTPN3wbm/vXWZebV74An5p7JaqCE1uKuLV/E1Z3m0ctHVp99IQ//lJjUrAOCo7xHuOObb/K+/6zfW5BCCGEEEKIHxijRwiZCDA+jxBCxhEB78kWxyPqyJOglz9mzly/JkOMBgBnLVK4e6X8jmhVTGPpPv7erUYFsUij13wesaicN8MyqN7v4Naywk9+NxFRS86C/tftQ5+XdD+F2mQLWgN1xuXvfXVkMoeoMLZ9D22eJFZkkYeVLSK8X+1NmQA1Lkw+yjplRdVMhj7oGGClMKB9cxQAcPxCIBwCei2PAdaMQIzWJEga95js0ZZtXW8WKQHAdEF0ZRuA3ykY2igQyh3HnAH87moxW2+OZkRHnHXQyMRoe0xO2W4sKi949BmMSRpjVKgMevoeRvGq/vmXgHe8E6p2oHNy7EKFp98214em7YUVozXJcyViXnyDOePAo7Lah3rXyYg89wCmJpqxPTjNUAaNY9POmm7hUliZOmE4hY+kxFGVNdCHHgtI92Kx6LCPixcAU6uA7Z3yNh9dDby0XmPRvOyvKdJ5qxRQbjOSxKJyXjayM4vc2kioHMqZoPJyMgo8Ylx3xIC4MA5s+h55KdG44IiTBu5Rkh5jxmJNwJ4HZCQv3VvhubXmvtG/Vml8+Eh/bVKX1H/wcysdi8p5hx1nTrfdl1G8SEjRwKs9IXmmoqICCxYsQGNjI6ZMmYKystwMSieEkHxTVlaGKVOmoLGxEQsWLGDQFSGEkDFHEo4ByNkA+WyQ5COSwGNZ6/2eUjRgQPz1m83XoS1hnqVwWev9w6RoAPBG96v4+7ZbPLedzq83XedbigYACysPRnXQ+wVk2InggKrDsi7P4ABpRwXgwBxEmNDeA1r+3nzLiKVoANCWbMFNm66BFgJVdsab8dvNPxyxFA0Anmx9AM+0PWzM60524ubN145YigYAKzufx/07/jri9VPZ0rcRf9zys3ErRQNyIwsqBNlKAmyyITJ2hAPFJ3uQZGDFdm7YyhPJ4vwIqCBCyvwMrtiOWWIk5cyF9C1X30+qZMkmPPW6rvdYxGhSm5nP3/iBnX/Fys7n87Z9QvJJS9w8mqTOEKxoI9sgXFe7+OWma0YsRQOA17pW4J7tt3sv6JM/xH7qKUUDgPV9b+PWrTfkbL/FyrLW+8W8pbWnFLAkpBAEVBA1Pu7r88V4kdQSQgghhJDxB2P0CCHjEcbnEULIOEWYBHHcc/bHxSz9pbOguzMnEP3A4QpnHSRv8pO3a2zv8BbI9PRrxAQHUMMUj3dTW4R3PlNmQZVbYgqrzUKuDMoKH5c4ITnq9GEfI7oXv4x9Wly8oxe47XnzRJI2JKlV/VpznJ4JddWtUOUeMSphQYzWMxDjoJNJwBXKH6IYzQv1mR+IefqXXwMAVIUVfvURe/tw7k0uOnuzk1hJcqFRSRolwYczAtGm37aLeKL2PBD40JfkBW67PiPpuIXAx47JXjLTMCXlwx0/lcv0sSuz3jbJA7MazOkb34I+Yw509HUAwBUnyXXhN0+NTPA5UqS2K6hczElsNuapC7+c3U5OuxgA0BDPlMYBQJMhLKmrz/w9VKbGBFL4SAjUpzKvOYPoXw+/NpQFFW7+iGOXlAE49LsufvJw9v3pLmF4TGWZR9xgLGpOVwqYIUhiTUyZbZcUpRPiuyBiQKqrg+PDtpivZQCAmVnU1wmGqpsG9dkfyd/fILGoMflrp8rrXfg7jX+85K9/lBcx2vQ9oCqqzXm2Nke69yeEFJwsegeEkJGilEI4HEY4HMb06dOhtYbruuIge0IIGUuUUnAchzONEEIIKTr6XFkSla1MKBdIg3klgccrWUg0XLj4T+dyHFV7YkaeJON4pfN5XIDLfO+juT/mSwaQymHVx/he9tDqo7Gi45msth9xdj80DKkQ+nQyYxk/YrRcCEt2Jpqxsa8Je4QzZzt9vetluMgsW7a80vlvHF37noz017pWIKFHLyFb2fk8zpz2oVFv55XOf496G2PNeBl8n3oO+MEmGyJjh+2aNFZSLukcKLZzw/bdZVvWiFOBeDLzDX2xHbNEtuVUUDkRxaYKzUa1nZTy2ySOXtd1STgLjF29fqXz3zi4+si87oOQfLAz0WxMrwt5RXD7Q3rfsbFvLVoSlqlpfbKy8zmcO/2SUW+n1+3Bmu7/+F5+dddKJHUCgQna7+pze/Fc26PGvHnhPdEQ2bvAJSKFoC44RZSx55vxIqklhBBCCCHjE8boEULGC4zPI4SQcY4zMcVoKlwBvdfBwJsvmxe47w/AuZ8alhQOKdx5mYMpn3PRLoT2/fwxjW+fab/mrbc8sm7weJWlY0L8myQiGqRqkj1/EIrRcoIKBqEXnwo8c99Q2nkdf0d77HJ8fNaNxnUu+r3GexdpRMr895lEqVV/1N8GwhVQx5/nvVxEeN/R2zXwf1wYyQ0AQcobvFB7Hwx9xHuA5/+VmdnTCd3RAlVdhw8f6eCIRo19vilLP/70nMZl7/ZXhxJJLbZHjVNHJgfA5BlQYaG+ZCP9GKSaAqFc4nziu3DffBn490PGfL1+DdS83e/MHUfh5g8DFy1WOO6HLvp9hvkO1h/dtEpe6PzPQs3OjFcmY8DsRuDlZWK2/s23ob77Z1SFFRbOBFZvyVzm909r/OZCXbD7fkkMOq+8HQEY2sg582U5iIAqD0NX1qAhHsWLkUMz8qOGa3C3IFiK6F0xgYEAEKFwhBC15wHQJ34QeOj/jPl620ao6XOHPp+zSOH1qx386GGNGx6V3398+W8aHzpCY1q1/7aou9+8vQqvLmwsak6fNgeqzL8YWLQrXUIAACAASURBVAWD0NPn2qWzqVA6TEx4idG2CmK0SBVQMzk/ZRonqHM+DixaAqx4HPrHnzMuo2NRmL7h6rDCntOBt7aZt/3J21yccaCDYMDeJkn9h0o/zwZiUWOyuuhr8jo2YbV0708IKTgTM4qfkCJHKYVAYAQzOxBCCCGEEFLC2MRo5UUkRpMEHi1xw1RIFiR5wJruV43p7clWJHTcKh/xs32JkCrDQVVH+F5+v8pDEXYi6HV7fK8zt7xx6O+gCqFPZ/7mXgKVuBtHZ7Ld9z5ttCZ2YA9kBhq0J1tztH3zb9CayK6uZLv97LeTm/KMJal1q5jJtpzj5bhKjaAKYVbZHoj1b8jIOzCLdjSXSHVlbri46lBtcDKqApPQmRw+FXRIlWF62eystjW3vBGrul/KTC+yY5aYW96IaO+arJZ3cjAz+ZzyBigoaIxusGj6NV0iroW3l4P5rpxfpswBDXPLG7Ghb61HCUfORLguktKkJW7uG04O5kaMJu83N+dMS3wHtB590GhXsiMryXG/7kOf24uKQNWo9lusvND+hCj3Xlp7SoFLQwrFvPCeiPa+WfD9KijMLvcYiEYIIYQQQkgOYYweIYQQQgjJCzl4L1u07LGXKEbTT94DlSZGA4CAo3DRUQo/e8T8jvmelRrfPtO+26jlddI8rzHJsag5fVaDfb0qn3Kh8sLHJU5Y5mTG4R3X9Zi4eNIFnnwTeM9+/jbf2auxvdOc1xCP+tvIYcf5Wy4sSFx6BsVolliILMQQJc3Cw8xiNAB44RHguHMBAHvNULhoscItz5jboH+u1Ljs3f52ubFloN6ZaPSSNG6OmjNsbVFwJGK0uuzXIVbU0nOgBTEanrkXmDd8MjGlFBYvAH54nvr/7N13eBzF/T/w9+zd6Yok6+RuuUm2sXGhGJteDMGGQKhOIAmEGkIKCakkkMYvvZPeviGEkEYgQEJCTQi9JxTTYmywbGNkY2zJRbqTrszvD+ns0918ZndPp9NJfr+ehwdpZ3d2fNrbnbudeS8+8idv46t2HT8P3ya3Y9a+nuqiwacmNdtHzj1yG3QmAxUIYPYEczAaAKx6A5g9YTBaWOw1YVh7s7PJXDB1r9J2NGo0moWwUVM4W6cUbJIbp1IXZ2g8UR81ZyG0EIyGR+8ATn1fv0XNYxW+dhqswWipDHDn8xrnHOr9fdYp5PvWunRhdVurucDtc5nJxOneg9HYtyYTt2C0N14zl0+cxusSANU8F2ieC/3ys8BtvyleYdWz4razLcFoG7cDT7YCh8607186D0VdAhp1106gw/wAaeu5yBZYHWYwGlG1GMHfyBMREREREdFI0m0J2IoMQTBaVAhGS2TMk8r9BIT1rm+ux0bat0lnRhgFJFg2+nREA96/1Ktxwjh+9Ds8rz+v9gCMrdl9BzjomENUUll7MFoy2+l5n26kgAAMMCzGrX4/f0ebZDaBrJafhui9nvK0Z6jMie2DieEp7itWgf3qDkZD0NtTZiJODIvrjxzkFlGpjjIEiQQQxOENS4egNcCCukUYExrfb1lI1eDQhmOHpD0SRwVwZPz4ouWHNSxFjePv5vWR8bdCFTyPqDkyG9PCLnfTqsRhDcd6DjsFzMdcKRqCjdi/7tAB1RFUQRzesGzX7yFHvhOZ1vZHp0qBqEEVFG8+HxZfhqAavGfCDPfrIu25pGDkxpC/YLTCc6ubcr1nssigR1uerO6RW9CyyUDDIquV1hr3d9xhLKt16rGo/ogKt4gq5YiG4xBSbo9yLb+F9YdhVJBPsSciIiIiIiIiIqJhzhm54btq0dFyYdsasegtc+T7R8+sB1a/oaG1fL+l1RCkAQCTGoBIqH/deuc26P/8G/rRO6BXPgVseMVc6USXB3V4DRfiRPuyUQccXbRsemodZvTIDz7790r7sZPPFrDX4jUYzWNwg5KC0ZJ990ZTlvuawcrfoxmOrOej1/ufj96yt7zqSiGwyGSN5Tm0bsFoJYU0lnI9qWvwvw3ZHbBELBJDXgAcY7n2FZowqq++DZYHPe7PsaBVw3C96ifVA2xpAwAcNlM+DmznlHLbKTx7fkyPkExSSlARANTF0ZxaZywyXYfFgKXcWP96jh8g2mXRMWKRdD2qjygsdvnY86rPc1GXEGgYE7qwevMG6MfvBp550LxCqcFoXgW9j7OmPYl0fe79bKl3CImijePNy/dQasY8c8GKh6GT5nHBx+xt7yOv3OT++b6z27yOFNCo33y97zz0gFxpU7NcZnvIVlT47E9EFTd4s4OIiIiIiIiIyqg7a75rp+AMyYTeiBASlhCCuaTlklLCsRLZTtTD28CHLiEYTUEh7ER2/d4YHIdDGo7BsY0uj+40WDb6dIRUCI9suwdb0+abq/WBBsyvXYzTxp3Tb7kUBuMWZJCwBNCFVcQYotKdTRrDDpLC30AabKXgIGwI7snoDFK6+C6R9DeWjhUHjjEYKKuzxpAIDY3ubNJXoJ25PeZ2BhBESAiwqwZ1gVGYX7sIp407d6ib4lldcBQ+OfXruGXzdXgl8aLx7xpQQcyI7I0Tx75z2AS+7YmWNJ6IgArgkW334I2e1zEtMhPLRp+OWTGPj7Ets4gTxSemfh23bP4tXk38DxPDU/HW0W/H9MisIWmPzUlj3o2IE8V/tj+ItE7jgPrDcMKYM3zXs1/9wbio6TLc134b2tNvYk5sXywfd8GweZJTc3Q2PjzlSty95Sa0Jlchi4xxvUk103BE/Liyhtxd0PRxjNk8Hit2PoHtmXbP2yk4mB6ZheNGL8fM2Nxdy20hZWmXwNOUGIwm9/1mRvfGJZO/iLu23oS1ydXQKC0kNK3Txn6HHJxKVN3aU0IwWtBfMJpECg+T3jOFnzt21aM1urX5s18i22Xcxg+3oGWTkRqM9kriJWzobjWWHdpwrO9QUho+pkRacOmUL+GOLTdgbXI1MrAHlQ5UQ3A09qk9EKeMO3tQ90NERERERERERERUEY4z1C0YPMeeCXznEnNZ21ro7gRUuPgBpicsABwFZIVbKrM/n8WS2cBNH3Qwurb4nr0UaNU8ZvfPWmvg+u9D/+JzQNb9HrBym0zvNVyoZmD3pijPIcUPfHOg8aXNX8Y5k681bvLtOzWee03j+osd1Efs4z2kAJqATmNq6jVPTVRNLZ7WQ1QYj5fsG/dnC0arYTCaJ/sfJRbpW34J9Z7Ldv2+fKHCucI93dYtwAMvaxw123280BohpHFMLVyPv5KC0QIlTOv1GupInqkps+QRATf/Avj4D41F85oUzjlE4XeP2ccTKAWMivQGNuAf18jr+QmBocG1z6HAlFnAa6vlddpagfFTcNGRCpffbD4Gzr46i81XORUZrygFGdUmzBdHz9e7QvVxNL/eaix6vQNIpnS/UFsxYEn3jfWvYzAaUY6ata98Pbr++8AHvmYsuvJkB8t/nkXKPMQYP7pH48qTvbejUzqfFHRhdXcS+hvvA+65wV5hCdc3NWm699F6IY5vIwPp2pubB7ZTCEZjYGd/C4UAYa2BG34MnPuZoqLzD1O4+kGNlZvMm154rcZe4zUOnyX3j8TzUMHbXfd0Q3/zYuCf14t1Aej9Hm/8VLnc8rlMRQY2F4+IyofBaERERERERDQsJIXAq7BjDrsabFHH/AWXqZ0ZnTYGYwHAxJop2NhTPPAmaQgQcAsF68p4D1/rypqD0SaHm/HZ5u97rsfGUQ7eMvoUvGW0/1C1UoPRTK9bztdmXo1YoK5o+TfXfgrrksU3sKUQBykYYWZ0b3xi2teLlr/Y+TR+8tqXjG3VWhcdv9KxvnjUUTh/0seKlm/q2YAvrTEPSkxmuwYcjCa9pktHn4pTCwLtaODG1kzE+yZ/eqibQWVwRPx4HBE/fqibsUtjaCwubPrkUDfDlVIKy0afjmWjTx9wXQvrD8PC+sPK0KqhMTu2ALNjCyq+36AKYfn487F8/PllqS9guQ3hdl1Pa3NQi9RPyJlTuy/m1O7r3jiLx7fdi99uLB7cKAWnElWz7mwSndkdxrLG0DiftZk/e0l9ZKkvOT0yC5+e/p2i5R3prfjsKxcat0lkOhEPjvbYTjO3846J16fQDzcPdNxhXK6gcFT8rRVuDVXazNhcfDh25VA3g4iIiIiIiIiIiGj4USM3GE3VjgJ+ei/0JccYy/X/fRHqI8X3d0JBhZe/6mDW5+TAsvtfBj51o8Y15xffa1orBaONzVv32Yegf3aF/R+Qr6nZXu51wjOD0cpGBYPQRy8H7ru53/J3b78Bl4//GjaEJhu3u+N54It/0/j+O92C0cz39KakNiAoPIyuyDiPD6mM1JqXJ3LBaMJMbgAIMhjNC6UU9CnvBW79dXHhG+uhd7RD9YWExcIK91/mYMl3zOego7+bRddPnX5hPSavCuF6LV6eNdbWalysyhmM5jhArN7fNuSJuvgr0P/3BWOZfm011BTzw0d/c77C/S9rrNsq190QBRxHIfvtD8n7v+SbvtpLg0spBfz6cejjx8grtbUC+x2B0bUKcycBL7UVr7K1E7jlaWD5AYPV0t06u83XwNpO80PNMan0YLSW1Ati8dotwJyJ+e0yr1ebe4C416Baoj3F2ZcBfyj+vIVMBnrzBqhxxf3lt+2r8MBlDg79prkf1N4FbN6hMa7e23wrMdCwsAv75x+4h6LBpS8k8ROmVsNgNDJwDUbbZi5nYGd/M/cBRo0Gthd3dvWvvgic9UmoYP/PNGPqFB76jINxn5C/Hzr1p1ls+LaDsPD5TOw/FJ6HbviReygaAIybAhW0zDuwfS5jMBpR1Ri538gTERERERHRiNJtCUYbChEhGM0UpiUFbAFAY9A8asK0TTJjfg12b+M9GK0zYw5GqzUEhw2FUInBaLbXOuIUP7EUkEPu/AajSSERUv1ZZNGji7+1lf6OUj3Ssdhb18DDWxJCAEzUEQZ4ERER5VFKlRx4mhaCZYNq8J/5Eg2Yr3PluLYSVVp7ShjBDfnziMRvJLUU+iv1YaU+L+Dv846klGA0eH8G5bCxLd2Op3c8aiybV3sAxtZMNJYREREREREREREREe0RbA9NcUb4NKxZlgdQPXanWNQ8Bgi73Ma94T8amWzxa7t2i/n1np6XR6I9TLrvx20yfbQOCATc62EwWnlNm21cfN6231k3u/5J9/t1a4Rbos2pVtdtdxnb5G09KRgt2TeewBaMxvAGz9TUveTCB27t9+sClz/dP1903986IaSxZaz9LrnuTgAdm82FtjAQx8M5KF9dHGqkX4OGSpMlJOrffxGLHEfhK6faj4/GGKB3dACP32XZ/wy3FlKFqZjLWPq2tbt+PGCafAxc/4QcClJOUoBILG1+iKL13GRTF8f01DqxuPBa3CkFLOXG3zGAhqgfNdlyPSgIF8538AyFH79bPhfd/JT3sW9iIFFBF1b/68/eKhzsYDSGDpOJWzDajnZzOQM7+1GOAyw8Sl7hmfuNi8fUKVx6rHxO2toJ/PMluVqp/1B0HvL6PZHbecgajMY5c0TVgt+GEBERERER0bAgTagPq6EZfCSGaWWKJ+vbAs0aQ96D0dyCALqEsDPzuuabnTGnOoLRpACVlEuQQVII8QqrCBxlHkgihTIkfQafKCEmwm9wmd8gMnt4xMDDW+QwC3PQHBERUSEp8NTtui4FGEn1lZN0nevR3choj0+TJqoS7WlbMJrlCbdlIPdtzX3YGhWGA3O/3fRZy69SgtFGXiwa8Mi2fyKDtLFsSfyECreGiIiIiIiIiIiIiGgYkSbYjhDWIJBtQmoQesNhFrnMX+/qATYY5h9vEW4BNeXPSV73sr3yfEoB46e6rKKA+Hj3uhpGe98vuVJzDjAuX5x4yrrdpu3Ati77XbvWN83lLam1xuVF6uL2YMB8USkYre9gtgWjMbzBuzmLxCK9vv85obFWYYblmWArN7nf9d3SaV6nqSC3R2sNncy7D245N2KcJbHNb8hZrN7f+uTd3uZzEwBol+vP5EZ7vyAeBfD6q0DWEpA1e39rHTREjjhJLNJtrbt+tvV/Vm4qX3NsxAARLYwhLzUYLT4OEd2NSak2Y/GagmtxlxSMlmtXPYPRiPqZu1gs0utXWTddPF2+Hr1ofssaycFou+vXmQywxkPqLAA0NXvfec4kH8FoDB0mE7dgtJ3bzJsxsLOIOmiZXGjpJy92eRuv3Ch/PhPPQ3kfpbXWwOoV9p3kWPr6AFyC0eS5ekRUWQxGIyIiIiIiomGhO5s0Lh+qcCY5TKs4RMoWsNUYNI/GMG0jBVTluAWn5evKmkPUYoHqDkZzCzKQgsAiAfkLSTnkzlyXhnmAghK+QLcGl5mC9KR/g3Csh1SNGB7hN9zNRDquopbXlIiIKF+p13UpOE2qr5xswabdLn0yomojBaPVBxoQcvwNvJfCgLUQHyb3bc3vMaWU2M8sR+ivWyCjifRvG64yOoMHO8xPox4bmoB5tS4DQYiIiIiIiIiIiIiI9mQjPBgNAHDM283Lt22BXv2cuNlH3uL+2vzqoeL7Lh3CLaDG/Oypp+5zrXuXcZOhvEyQ9xAKokoNDiGzQ08AmlqKFp+w807M6llt3XT1ZnvVrUI2VXOq1VvbTn0fVNjjQ3qlydGJXDCaMJMbYHiDH/sdIZc9fFvRokuPlc9Bn/6LxrPr7fd93c5FOp1G9seXQZ88BXpZI7Lv2Q/6gb+JwQoAgPpGsUgpZZ+EX0gK5KMBU5NnyoV3/QH60TvE4rjLEPbGWkDf+BN5hSNOhproIwCGKkYt/6Bc+K/rd/149sHyuee5DcA1D1lC8cpEDBAxjf+ui0OVGEim+gKOpGvrw3mX8kxWIykM0dnVLgbQEPWjbCG9t/wSOm1+CCYAHFTcxd7lx//WuPDaLBI97mPgElKgYf4Qwyf/6VoPgN5+ztjJ3tbNN3YyEDDPjSkSHPyxxDQcSdfmXDBah7mYgZ3FjjtLLNLPPSqWLV+oMEX+KITL/qLxUpv5nCQHNOb90iE/LLqQOukC+woMRiMaFhiMRkRERERERMNCtzYHUIQdj4NRykyerF98E9E2gb8xZA5GM4VyuQWfdRlCtiSdGXMwWm2gOp4qFyoxQMVv8IKtTKpLC/eEpK/PbaFsfoL0ogHzwBZreIQQ7uaHFMhne02JiIjylRqMltbmgRyVCEazBpv6CKMlqgZbU+ZZAlJIs5XPyT7SZyFbyG7MMfd7u8rw3nM775iMtGC0FTufQEfaPDPkyPgJcBRvHxMRERERERERERER7cnUB74qlukLFkN3mx9w+s4DHfzhIoWDLZPyv3abxvMbdt970VqjXRjeFI/23pfSTz/g3uh8XgNmvISeMRitrFSoBupn9xUtDyGN+1uX4h3bbxK3PetXcrCM1hprhHnRLT2txe348p+A8z4LTN0LmLEA6n1fhrr4y27N300KqMqkoVM9QEpIlACAoL8HV+3JlOMAp11sLmx9CXpHe79Flx5rv8951HeyeHOHfO+3Q3hGXi74Sv/scuCGHwHb+g62tf+D/vw7gUdul3fqFvrjNfQDACIMRhtM6pJvimX6irdDr3zKWNbgEozWkNoK3PUHeb//7/ee2keVpw5cChy41FyY6oFuawUAjKtXuOZ8eSzNRddp3PL04I476ZSCjEzjvw0BpZ719YtahGC0Pz6hkcn2/lulcKX8dikGoxEVO+8KsUj/8vNimVIKn1gmn4uufUTjgmvdz0WdQnhaLhhN79wGfdmprvUAACZMhfLT1+mjgkFg/BRvK4cYOkwG0hjX3ESwHUKwMa9LRVQkBux/lLnwX3+Gzpo/p8fCCo9cbv98duS3s9iRLD7nSP2a2vDuv6u+Vv7eqp93fwJq+t72dRxLOxlOTVQ1OLKdiIiIiIiIhoXurHlAVdhxuas8SKLCZP2U7kGmIMRDCroKqRrUBUYZy0zbSAFVOX5COrqEYLSYU+e5jsFUaoCKGLxgCTeRQ+6EYDQhGEEJX7OEVUQs8xOkZ/03iOFuAwuPSOsUUtr8zTKD0YiIyKvSg9HM16BKBKPZrnOJjL1PRlRt2tPmWQCNoXFl3Iu5j1zW4OIyhP5K5xUrKRl5mHqgwzwwP6RqcGjDWyrcGiIiIiIiIiIiIiIiqjrjptgflmMJAXr3QQ4evSKARZZsst88svveS6IHSGXM6zX2Dc/TN/7Y1tpiXoPRmprd15k0gPAQMlJjJkJd8aui5RMyb+D6DedgZmy7cbtVbwDpjPm+XXsXsN08vBTTU2sNC+fAuehKOH98Hs5v/wt17md6Q7i8sgVUJTuBVLe5LBAoKRxiT6ZmL5QL77mxaNE3lsvnrh1J4E9Pyvd+24Whlo0x9Abe3f7b4kKtof90lXnDcBSqxiWsIxC0l+fjpPzBZQtMyGSgb7vWWBR3GUbb+MZLcuFBy6DCQ/NwcPJGvf2DcuGduwPvjptnf8jgrx6Qwz3LoVO47NSaxpAPJPS1b9vpqXXiKvf0HfJSqEm/dtU3lN4WohFKzVggF952LXTa/LBhANh/qr3um57S2GwJiQWALiloMZfte9/N9p3kG8j5ZqLHbd36WrRncgtG29luLq/jdclo/yPlsmfkIPspjQpfO13uI23t7D0v5ctmNZLC1ILa/Izxu6+X25RHveUd7ivZgs3DnDNHVC0YjEZERERERETDghQKFhmiYDTbfguDraQwgKgTE+vp0d1FAWuJjD3kqstPMFpWCEYLVHcwWsolQEUOXpD/XnKomL9gNIlSStx/4T601kgIgQ+2f4MUHpFwCdNzk7QEv9iC2oiIiPKVel2XgtOGOhhtoMGjRJXWnhKC0YJjfdelYB6oIGWHldI/jwXMA7r9fN6RpLU8OEzit/9fzdq612Nl13PGskX1R4jB3UREREREREREREREe5SjTjUvr4kAtSN/oqwK1QBTZonl+pUVrnXMmyRPfl2xfve9l3bLc3HiudtJGw3BVjYeJ+Cr5rn2FUI1QBOD0QaF5bWfpDeLZa8J89fXmG+HAgBaCoPRasID/7tGLOPmEp3yxOoQgxt8a5knFunVxeci27kHAJ59TS7rEIZKxmMKaGsFOs2hfdi+1by8Lm5tCwAg4GP8i+24o4FzuyasMl/7Rrnkmo3etkYutIWxUXWwHBf5/aGJo3pDFCW2c085SEFGtdrQ0XI71m0mTAMAzO9+UVzlmb5+nhTW1tuuXDBaY+ltIRqpbO/RHe3AG+vFYrd+UCYLvPC6ffdi0GJfN9bU/xIN5HwzfY639YI17uvQnkd6K2gN3Z0EeoQDvd5D/30PpCyfyeByTpjvcl56puCUtkMIPAeAur5+t9ZaDiPPFwgAk2e6r9dt+WIqWh3zK4mIwWhEREREREQ0THRnzd9whZ2heVpW1JGfvpYsCLaSg65i1noKA9YKfy9a3yU4LV9nprqD0UKOecBHOmsPUJFea9vrLIeKSa+3ORhBCono3b+wj4L2pnUKGZjDGmz/BjncbWDhEVKQBWAPjCEiIsoXEoLMpOCznJRw3ZfqK6eQExID2AYaPEpUae1pIRgt5D8YzS/p/WLvn5vLEmUIRpMCGR3LLdORFIz2QMcdYtmSxhMr2BIiIiIiIiIiIiIiouqlJkwD5i4uLjjuLChnz5iGpY4/Wy5c9azr9uccIo+juud/wFm/yuLe/2kxiAjoDRjRqR5P+8unJk33tuLhJwF1lqC7o06DilXHWLoRx/T+6nPBK98Sy5ZelcVzrxXfu5OC0cLZJCal2/ovXLIcaqABU1H5XieSlmA0Bjf4N+8guezFJ4sWHT8fGF8vb3LNQxrHfi+Db92ZRTqz+1hKpjSSwhCWxhh6g9H88hKsUOMjLC9iOe5owNSkZmC/I+QVnn8UOpMpWhwKql1hMSYt256X93n8WT5aSENB2cI07v8r9JregDDHUTjb0vdp2wZ0pwZv7IkUZBQzjLNRy95Z8n5UqAaI1uGkHbeL6zy/off/Ulhbb7v6OoC2fhjRnqplHjDFcu5paxWLFk4D5jfZq//g7/v3gQpJ791Yrhvr47OZOq7065z182g+P30p2oOIyWjAzg55MwZ2mh0mjyvV6162bnr8fGCs5WuVH92j8cE/ZNH6Zu95yRaevyuEdusmoNvDOP7D3gbl5TNZwjIumWF5RFVjz/hGnoiIiIiIiIa9pDChPuxEjcsHWzQgD44pDNSS2h5xoohY2p/M9N/OFlIFAF0egwIyOiPWVetUx2AuKYjELUBF+ndFAvLrLIeKmevK6qxxuVLy1yzRgHlQSuE+bOF3tmNOql8KivOq1PYQERHlK/W6ntbmsNCgEKBablIIqFufjKiaaK3RnjLPBBgdLF8wmhQeVhganWP7HBSTgtF8BEFLpPNOSMmTEEZKMFoym8Dj2+81ljVH9sL0yKwKt4iIiIiIiIiIiIiIqHqpr/8FmH9w7y+BALDkdKiPXTW0jaqksy+Tyx65Hbrb/JDTnKXzFJbOlcuvf1LjuB9k8fvH5Psw8RigP36CW0uLTfQWjKaitVBX3W5e/9AToD71E//7Jk+UUsCpFxnLzt32e3G7V98Ejvx2cTha6xbzcTQ9tQ5Owb0+9ckf+WytgS2gKtElB6MxuME35TjAKe81F656BnpH/2CDmqDCXR+zT5e9dyVwxc0a7/n17mOjwzIMJB4D9Pc+4rnNu9R5mEQf8nFM2AL5qCzU/5PPPwCgrzSHtISD8jbNO140F5x0IdScA7w2jYaQev9XxTL9oaN3haN9a7nCflPkev74xOCMPelJa6TNw9pRawpGm773gPanvvEX1OlOLEo8ZSz//eMamawWw9r6tcvLeZJoD6OUgvrBnWK5/u6Hrdve+mEH+0+V61+5CTj7avl8JL13a8OATnYBKx6WK8+J1UN99mqoeQe6rytQCw4Blr3bfcUQg4fJQAnBaNolGI2BnUYqEgNmLDAX/u1X0Fo+p4RDCnd/3P757Jf3axz6zSzWaYENLgAAIABJREFUb7WH58f7hhzrG3/s1mTgwKVQV/yf+3oA0LVDLmMwGlHVYDAaERERERERDQvdWfNgKtuE+sFk229hmFRCCCyLBmKICpP+TdvZQqoA70EBtvVigeEdjCa9RrbXOSIEfCUyXdYvaQvJz/qSjxevx0pvHXIQmVT/QINbbMfcUL33iIho+JGCzNyD0czlUj+h3KTwVLc+GVE16czuQI82j1hqDPkPRlO2p+kVLtFafL9IfXBADuAtx3svnRWC0RzbIKmREYz2xLb7xNDuo+LyU/2IiIiIiIiIiIiIiPZEauwkOL94AOpv66Bu2wjnq9dDhfecsTIqGIT6pGWy6YO3utbx3TPsU9YyWeBbd5rvw4SDQGTdc8CzD7nup8ikZs+rqrmLoW5YCfXnl6Cufqz3v9va4Hz7r1CcFD2o1KJjzcsBLO5+WtxuexL40b/7HzdrzM+JQnNqbf8F7/woVO0oP800swVUJTuBlJAoEWRwQynU4qVy4b+uL1q031SFWz7kPmX2hv9ovLyp91iyBqOFeoC2Vtf6iniZRO8nLI/BaINOjZ0E9Yfn5BXuvwV6wytFi3vMz30EAMzoWWPe13mX+20eDZUFh8hlO7dB3/RTAEC0RuGhz8jnnitvHZyxJ/YAsoKT2wnnDnyHM+YDAM7Y/hdxlVueBjqFjFAAiOq+sSvsaxEZqQnTgLmLzYWvrYbukd/4LWMVnvpCAAe3yPXf+F+NlRvN56Qu4b0bqwFw3y1ype/6WO9nqeuehrp9E9QJ58jreqTe+wX3lRiMRia2YLQdtmA0hmBJ1NGny4UugYn7T1W47kLbbDtg03bg6oc02i1TIuO5YcV/+K64jrr6Uai/b4Bz1W1Q9Y3Wfe5iCUbbk74HJKp2DEYjIiIiIiKiYaFbmMAddiIVbkmvgAqiRpkHJRSGUUmTzyNODJGA94C1ZMby+AMAXZZQrXydWfmLu2oPRku5BKhIQWC2EC8p9CSLDFK6+O6OFoMR5C9rpWA2r8dKbx2W8Aih/oGGR0ivZ0jVIKAsj7kjIiLKI17XhYCinLThOmyrr9zE4NEMg9Fo+GhPCbMAAIwOjvNdnxyMViyle5BFxlhWUt/WYxC0TSmBiz6ykquW1hoPdNxhLKsLjMKi+sMr3CIiIiIiIiIiIiIiouFBjZ5QniCl4WjKTLFIP/eI6+YtY+X5yG7iMZQWihYMAeOn+NpEKQXVNANqzsLe/0aN9r9f8s9yfM1Kvmzd9OHV/W/gbdxmvqE3PbWu3++qyZIQ4YMKhnqPNZNkJ5ASEiVqGNxQkskzxCL93KPG5bPGe6s6dyy1bZPXadxiPx5FXibih3wEo0UYjFYRE6YBgYBc/txjRYsOEk4tjtKYll5fXBAIAuP8XatoCE2abi//29W7fqwNK9QJb2spbGigbPXGdP8xbspHeKwoPg6IxDAzZQ79A4Dbn9Niu6LZLji5cfgMoCGSTZgml61b6br5UbPtH8Ruedrcf5ZCDWtrFPQK+fOZOvKU3s9SLfOgbNdRPyZMAxyXGBQ/fSnac9iC0XYKwWiBIBCRx7Tu8Zrkz2RY4f790Kzx7l8OPbJao0OYTlcXBoIB1RsMKf19J8+AmnMAVNznA6OzWX/rE9GQ4AxWIiIiIiIi8u26th9ic2pjRfe5sec14/KwJfBqsEWdGHoyxU9cSRSEZUjhVBEnhqAKIaRqjAFchaFUCZfgM69BAV2W9WoD9Z7qGGwhIZhACjLIKXztc2zBCxFLWSLbhRqn/w0TKRjNFhIh7b/oWBH+NgrKeqxL/4aBBqPJrycH2RARkXdBIUzT7bqe1uZHqkr9hHKLBqRgU3tYLVE1aU+bg9EcBDAqWL4BhqYesq0vauuDi33nAfZtATloWQq97jX8k9FWJ17E6z3rjGWHNSxFyOEkDCIiIiIiIiIiIiIiKrDvEXLZzT+H/tA3oMLyeKb6iMJx84C7XvC/68YYoNta/W94+Em9oVVU/WbuAzS1AK8XB6ucvuNvuL7hneKm/9sIrNuiMW1M73i9dmE45JjMlv4LyhEIkxOpNU+qT3QBqeIxpQCAIO/JlWTWvnLZ+lXGxfMmAXMmACs32at+9c3c/833hMfUArEtraXdMZ4w1X2dGu9hHirKMZuVoMIR6ENPAB76h7Fc33o1cPxZUHmBDCcsUPj3/4qPkpPHrkHY9FDICVPLFxpDg2/s5N4wzLQ8zk1rveuYmDYaeLGteJ2tncCK1zT2nVJiaqwgaRl+Fy0c41aG66BSCnpSM5auvUdc596VGsfPN5fV5s+F8BIgSbSHUktOh77vZnPhxrX2/hGA5QsVvnOX3IN54GWNy08oXi6FGsZqAKxfLe9w3sHW9pRCBUPQ46f2/nsl7F+TkXSt1cBOIRG5vrFf/44KHPpWsUj/+QfAWZ+09m8PbAYmx4ENQi4dAKzYALR3ms9bjbkhxRvXyk86nneQXDkRDXsuUalERERERERExV7rXoNXEi9V9D9TcBgAhFWkwv/63SIB84T9wkCzwt9zchP+vYZmuYVwuAWn5XRldhiXOwgM6euZL1hiMJr0WpcSvCDX5z8YTQ4u6yz43dz+sBOFo+SvcaR/Q1IINvNKfj2HLpCQiIiGn5AyDz5wu65LAUZSP6HcpOud1z4XUTVoT5mD0eLB0XBUOQfaFveRpb4kYO9PSqGE5XjvSecdWzBYdgQEo93fcbtxuYLCkfHjK9waIiIiIiIiIiIiIiIaDlRNGNj3cLFcf/R4aGlScZ8fvNNB8xj/+47HALS1yiuMnlC8bMosqA993f/OaEgox4G64lfGslN3/B3nd1xn3b75iiyeWtt7H69DGFbZmGnvv6CcwWhSSFVipxyMFvIegkW7KccBjj3TXPi//0Iniu8jK6Xw6/MdjHbJEvvabb3H0BrzbXW0jAX0H77rp7m72+DleKvxMV43Io9zpfJSH/62XPjcI9A/+Hi/RR86WuHEBf1XmzUe+PajJ5vrmDh9gC2kSlKBgHvQ4cqndv34mwvksd77fzmLR18p7xiUbvNzRwGgOJivqbk8O53UjPrsTpy57UZj8dotwPOvmzetzY0lqglDhatjzgJRVTp6uVik//wj180ParGX32kIr85ktRi2GHO6gWceMBcefBxU0Pzw5AFz60/5CJmlPYgUcKY1sENI5qprGLz2jABq1GigdpS5cNsW6M+dAW0JkQ04Ctde4KDecunfvAN4aaO5LN73UUjf9Qe5jbY+PBENewxGIyIiIiIiomFtKAOaxECzwrArIZwqF5YlhWYVBgm4BQGkdA9SWeExLXm6sjuNy2OBuqp5ykXpwWjmUU5RIcQOsIemmf52WgpGs7x20v4L21tqEJkU0icFrXklbS+FVRAREZmUel2XyisXjObt+k1UzdrT5hHcjaGxJdVnCwMuZHuvRB25PymVJTKDGIxmPa8M72C0bemteGbHY8ayBbWLMSZkmDhEREREREREREREREQEQJ3+AbnwhceBO+zhVXMmKjx7pYO/f9jf9LVGWzDaWZ+EunEV1A/vgvro96Au/S7Ud2+FuuYJqKYZvvZDQ0vtfyQw/+Ci5UFk8Ku2D+D2Wb+1bv/5v2YBAO3CELl4tiC4r5zBaFJIVbITSAljIULyw5rITh1/llwoTI4/bKbCyq84uPH9DmosWR0rN2q0CsFozWM08Lz5XqsrL8ebn2MiwjGblaImzwROvlBe4eafQ7/y/K5fozUKf73EwaOXO/jxuxVu+4iD/17yJmam1pi3n+SSVkPVx+X9rK/66K6fD5hmr+qKm7NlaNBuUogRAER0sv+CcoXy9dXz400fF1e5bYV5rE1M91206+LlaQvRCKWCQWC/I82FzzwAncnYt1fK2v8BgJc39X+fJizTkGLP3iPv65SL7DsaCJfzr2LwMJmUEoxWz+uSG3X+Z+XCh28DHjE/vDfn2LkKq77q4LMnymOQv3e3uf+QC0bDdd80bxgfB2UK0CeiEYPBaERERERERDSs1Qbqh2zfXsMypLCrXFiW11ArLyEcXS7haQDQmTEHo9UG6ly3rRQpmCBlCVDRWluCxeTws7ATEQMeTPVpLQSjWUIipP0X/o3FIDJLcERv+eAEo0nH3FAGEhIR0fATVOYRFmlteWQlhj4YzWsILlE125rabFzeGCwtGE1iCg+2BZmFHfnRb1IIb7dOIqPtg7rcyOcVecC5FIw8XDzUcTeyML9uSxpPrHBriIiIiIiIiIiIiIhoWGmyh7foR+9wraI+ovC2fRUOn+l9t/GYEoPRVMs8qJow1AFHQ73jw1BnfATq4OOhogwNGpb2XmRcrAAse+EnqJdvK+LuF4GetEaHMESuMdO++5fRE6HCZRzzJoVUJTqhU93mMgY3lG5is1ikH79LLBtTp/D2RQo/eKc8tvP25zReazffE25RGz03sUhTs/s6fo4JnuMqSs2Yb1/hsTv7/RoMKBw8Q+GSYxycsI9C3QpLgIyXY4Oqi1vQ4Zbd54qAozDDMiTngVXAjmT5xqEkLcPv+gWjhWqAsU1l2afqez3GZLZi/+SzxnWeWW/etjY3rr2uoSxtIRrRJlnCDNe84Lr5h462PwD19uf6n4s6bcFoz98nF5YzfLiAcqubwcNkYglG0zuFYDRel9y5hPvqR++0lgPA+FEKnz7e+8OZcxpjgN62RV5hio8vnArttb95ebR65lcSEYPRiIiIiIiIaBiLOjG0RGcP6f5NEpnCQDN7WJdUT+F2tmABP+t0CcFoMad6vriTAk+kIAMA6NHdyML8JC3pNQYARzli0JcpWEwORpC/oJWPlf5/r2RGCkaT2w/YQvoGFowmBb+4tYeIiCifdF23BZ4C8nVfClAtN68huETVrD1tfrT16NC40iqUBo0Y2EJ2HSXforT1NQfav5XOOzWWYLThLKPTeKjDPBFgXGgS9o7tV+EWERERERERERERERHRsLLXfkCDJd3jFfcJ+TnL5nu/zxQPdgM7t5kLB3HiPVWeOnCpXPbqC1g6V942q4EHVwHbhFv4DZm8Yyg+psQWCoSQKp3sAlJCqkSoMmMdRqRplnHCG9e5br50rnz+WbMF2CoMu52Q3uRat1EgAIyf6r5e2JL8V6jGx7o0cIuPtRbrtlb79q+vKbluqj62axUA4I310OndCWVL59n7POu2lqNVvZKW4Xc1Ou96NGEalFOmOIG84NzFif/62jSaG/dT31iethCNYGrRMXJhW6vr9mcssp+L/vSERk9697yYTiHbFwBqt7wqF7a4hIkOhNv5d+ykwds3DWPSsa8BKRiN1yV3+x0BBC2fadss/d88o6L+g9Fs4fkAgJkLfNeZo878iHn5R79Xcp1EVH4MRiMiIiIiIqJhKaiCOHfiRxFQwSFrQyQghF0VhEklLIEAgCU0K1sYsOYewiEFWeXrygrBaIEqCkZz/AejmULMcqRgE7dyP8ELtq9nvQarSP8G6VjLkY6htE4hlbWHztgkM9Kxy2A0IiLyLiQEDqW15RFzkAOMpKC1chPDa4UgU6Jq1J4yB6M1Bi0TWCz8DElwC4iWxBz5SdeFIdR+iYGLjhyMltXm8OXh4Nmdj2Nbpt1YdlT8rdaAOiIiIiIiIiIiIiIiIhWqgbr4y/IKWzdCP3anp7ref5SPYLSdr8mFDEYbWQ4+HgibH2oKAJ+t/wfCliGiy74v38trzO6e9K4+elVJzRNFhHueiU4gJaRKhMLlbcMeRAUCcjDG6hXQafsYyVnj5fNP65saHcLQ3PgdP/faxP7GT4GyhQbk+DkmQiPzYV/VSjXPBU66UF7hb7+ybm8NTpu7uJQm0VA6/CRgvyPt69zww10/fnKZwljLkPyHVkkP6PavWzj9hbPJ/mN8ytl/mjh914/NqVZfm9bqvnE/dQ3law/RSHXM28Ui/fBtrpsfMgN4xwFy+ZOtwNwvZrFyY+85qcsynDf28uPmgn0OgwoO4nyueQfay/nZkEykh/9qLQew87rkSsXHQp17ubxCW6vnuq44wV84WjwG4Il/iuXq/M/5qq+fJacD+xzWf9m8g4Cjl5deJxGV3dDNHiciIiIiIqJh66j4idiREZ6UUAGjAo3Yu3Y/jAmNH7I2AJawjIKwq6QQVpbbXgzNypv0r7X2FNLV5SEYrTNjDkarraJgtJAQeGIL+bKFlEh/q/xyU1yAKagsC/NgKmXJn496DNGT/sau7bcEpyWznQg5cev28ralhVkQERHlk4LMbIGnAJAWrvvBCgXjyiG4DEaj4SGrM+hIbzGWNYZKC0az0VpD5Q0qkd4rbn1bWyiwlyBoGzEYTQhwHO7ub7/duDykanBoA59CTURERERERERERERE7tQp7wWSndA/vsxYri87FfhnO5QUFNVnwiiFq89VuOg69zCQ+L+vMReEaoCxTa7b0/ChgkHgd89AnznHWL7wl2dixXWbMOcb9b7rjuePcV24pNQmmkWFhz0lOwEnYC5jsNWAqPOugH7yX+bCP/8QOPtT1u2/eprC5/9afP55ZTPQLgwDiWeF4IRFx0DtdwT0NV8xl09qsbZlFz/BaDUM1qs09emfQf/vP8DqFcZyvX4V1NS9zBu3tZqXn/HhfuMqaHhQNWHgqtuAG38M/Qtz8Ib++WeBE86FahyHvSYoPPUFB9M+Yx5v/sE/aLy/TJelZNq8PKKT/RdMmm5esRR5QUQtfoPRcuN+6kob1060J1HhKPTcA4GXniwuvO1a6M/8wnpNUUrhTxc7ePaLWax6w7zOmjeBC6/N4uHLA+gUsn2BvPdu4T4u/ILtnzBgSinoeQcBLz5hXqHJY5+L9iy2YLQd5ofM8rrkjbrg89BvbAD+YfjOZtN66EymN9TaxfuOVPjGHd6DYuNRQP/kSnNhwxioAXxPpKK1wHdvBf71Z+iX/gs1a5/ePl2seuZXEhGD0YiIiIiIiKgER8SPG+omVAUpHCp/sn4qm0Jam+865raXQ7N2j7bo0d1iIFe/bTLuQQFdQjBazKmeL+5KCVCxhZTYwhUAb+F0uwjfv9rGKkj1p3QPMjqNQF/AixT04BoeYSlPZBOoR2lf1IthFi6vJxERUT4pyEzqI+0uF4LRnMoMFo465qdSewmrJaoG29Md4meIxmCpwWhyp1dDQ+WVlxqyG3WESQQoQzCaGLgoP61bSx8Aqtzr3WuxKvGCsezAUUchVkXB2EREREREREREREREVOVOOBcQgtEAAE/8EzjqVNdqDmxWEAdf5YmntpoLJkyDcuSHV9IwNWFab2hYqsdYPGvlP3Bwy7vx+Bp/1TbmgtGa55Y/iCgi3NPs3AFEzGMNfIVgUbG8IJ5C+sFboVyC0VqEW+QvtcnbxDNCcELzXGDBIfKGlrb24yfsjMdPxSmlgLMvg/7SOeYV7r0JOPdyc9nGteY6m2aUqXVUaaomDJz9KejffxvYKYQmPvg34JSLAABTGhUOnwk8/Ip51R1JjfrIwK9NyZS5XxXR/ROOlNfARg9UfRy6Lg7s7MD0HvOxLonlxhLVNZStPUQj2vS9zcFoAND6EtAyz7p5wFG48mSF9/xa/gz26KvA+q0aXeauOAAgqhPmgkoEk+17uByMFh83+Pun4ccWjCZcwxWD0TxTb/8gtCkYLZMGNr8GTHQPY53SCAQcIOM+RRJAQeh5ob0XeavEQsXqgVMugurrxxFR9eG3wUREREREREQlkibsJ7OJvJ/l4IxcuJRcz+5tbaFf+bo8BAV0ZYVgtCqaGF9KMJr0Wis4CKuIdX9yOF3x6ykHI8g3qG3BZvl/22TGfNPIPTxCLk8OIDyi1DALIiKifNJ1PWW5rgPydT9kCTAqp4jQR/PaLyMaalvTm8WyxlBpwWjK0uctlDCFDMM99DegAmL/vctDELSNdN4JWQMXh2cw2v0dd4hlS+InVrAlREREREREREREREQ03Kn6ODB1L3mF9as81TN7AhD3MOyoUQojGjfZ035oeFGOA+y9WCzX61fh4Bn+w2NGZbf3/uBhYrZvceF+6xvrgZQwFoLBVgMztkkue9OSbtZn4VT/x1CjMAFfzTsI2Gt/IGB+UKCaKx/P/fgJRgtW5iGCVGCuHLSg1682L0+nes8FJpMG4XxElWV5fxceEy1j5fNO65vlaU5SuOSEC4LRPAc2ehXrnXPQkvIXjFar+8YS1TeWtz1EI5SyXIe8fgY7qMW9D7TqDaBTCEaL6gQcafzc+Kme2jAQ6i3vMBcccHT5w49phJCOCw3sFAK26hmM5pnt83Wbt35BMKCw2Ee3OJ7YKBfO2s97RUQ0bDEYjYiIiIiIiKhEEcf8ZL9E3mR9W3BGLlxKrKdfYJa3AI6Eh6CAzswO4/LaQL2nfVRCSJkHcdgCVKTXOuJEXW96SEFf+SF3ORrmx1I4lq9ZpPA7oP/fVvo3SMFtOdIxBMiBFF6I7WEwGhER+RB0hMDTrOURc5CD0YLKPLC03KLC9TWtU0hl7aFuRNWgPWUeRVmjwqh1BqPv338AlBiyG5D7rjnRgHt4dCmk80qN8PkDALJ6+AWjJTJdeGLbfcaylsgcTI3wKdREREREREREREREROSPetfHxTL9xD891REOKVxyjPvk9YbMNnMbzrvC035o+FFnXioXXvdNXDz6CdT6yJBqyHQgkBvn19Q8oLaZKClgpq0VSHWby0KVeQjcSKUcB1h0jLlw0zroNS9Zt997ksLBLf72GReC0bDkNKj4WOCt7ykuG9sEHHumtx34CcvzE6JGZaMmz5QL21rNy99YD2TN44wxyedBSFVHnfERufDem/r9+um3yn2eA7+exfbEwMejdKfNyyPZZP8FZQ5GU2d/CgAwPvMGoj7G8sT6Hvat6hrK2h6iEWvpO8Ui/aNPeapi1niFU11yg678WxZdPeZzUkyanzTnAKhgBcby7r0I2O+I/suUgjrTcj6mPZs0d0xrYIf5uwbUMRjNK1XXIAac6t9+3XM9H1vqPdgwvkUOglSnX+y5HiIavhiMRkRERERERFQiabJ+v0Azy82+XLiUFJqVv60tYC1fV3an+zrCzYmYJbyr0qTAE40sMjpjLJNeay8hXtI6iax70JwXtvCHRL+/s3l/UnBbjqMCCKuIa/1+iWEWDEYjIiIfpMDTtBZGZvWRAlGDqjKDhSOWvlG3ITyVqNq0p83BaI2hsSU/LdG2VeHQKFPIMOCtLyn1z7sG2D+XAxdtT9cefsFoT2y/D906aSxb0nhihVtDREREREREREREREQjgTrlvUC0zlz41H3QPUIYVIEvn6Jw1Zn2e1WNWXMYkZJCkWjYU0efDkyfI5bv/fWluO/cDag3D5Er0pgXaCWGmA1EkxButHkD0GV+cK2vECwyUh+9SizT5+4PnbI/oO/Lp/qbSms6F6nf/Acq3DseVH3qp1AXfhHYa//e0KFl74b6xQPeA39qPB7QABCy3dOmwaQu+Za5oK1VWL5Wrmzi9IE2h4aYOvSE3pAek03roNs37/p1wWS5v9OTBs75tRCg50NSeLZnpHDMyKQyH3unXASgdxxRc8pyzBeI5cYS1TOAhsgLNWo0MHUvc+GmddD/vN5TPddf7FjDGh9+Bbj5KXNZrTbPJ1Gf+omnfQ+UUgrqO7cCZ3wYaJkHHHgs1Ddugjr8pIrsn4YhWzDaznZzWT0DO32RPmP/917o//zbUxXvPNDBje93EPcwNa3hHz8yF0TroCZM87Q/IhreGIxGREREREREVCJpsn4ym4DWvZPnbaFUESfa7/+FEhlvAWv9t7EHBWit0ZU1D7yJBeo97aMSbIEnUphB/uuVz0vwgrROMlMc5qCFYARliYmwhbP1D9Izh0d4CncTgvq8HjuFtNbiaxoNMBiNiIi8kwJPpWu6W7k9wKh8otZg0/KEpxINpq0pIRgtOHYAtXoPVJM+C3np28r989JDfwH5vFLjyOcVqf9frbTWuL/jdmNZXaABC+sOq3CLiIiIiIiIiIiIiIhopFDnf1YufOxOb3UohY8tdTC1UV4nnjEEo8090FP9NHypMy+VC9MpLFxxLf77eW9TIePZbbt/mSSEmA2ENBFca+C11eYyBlsNnFuolMt5aOlcYMlsb7tydAb1hWNtIzFg5oJdv6pgEOqCz8G55nE4N6yE88VroSZM9bYDAMpPWF4Ng/WGzDThoHlzgzmMr63VvH58HFRMCBilYUWd/gG58N839vv1GDnzE/94Dti4bWBjUqRgtLDOC6yNxID4uAHtp5AKhoC+IBI/wWi1uTF3dQxGI/Js/yPFIv2P33iqIhxS+OZyB2csksf+3fAf8/koJs1FGYzwYYGK1sK59HtwrnsazlW3Qx3+tortm4YhKRitayeQyZjLeF3yx/L+17df57maty9S2HyV4xqA3mj6jggADn2r530R0fDGYDQiIiIiIiKiEkmT9TWy6O570pI0cT+sInBUAIA90MpLwFq+LpeQjh7djbROG8tigeq54W4LRktp81P9pAAwLyFe0jqm1z33NymkpC/QAQRUEDXKPDAlv91SsJ2XcDcpYMLrsVMopXuQhfmLfy/tISIiypGu67ZgNK212GcJWfoJ5WS73klhpkTVpD0tBKOFBhKMZtO/nyz1z730JWPCZyS3zztuhjpwsRJeTjyPjT2vGcsOb1iGkFOZcygREREREREREREREY1AM+bLZa++ULbdGCe9VnDiPQ2RFsvxBQCvPo9po4E6D/lQ8Uz77l/cwrRKYTse168yL/cTgkVGKlprf+1dzkNKKXzlVG/Tacdm3ix+bNjE6dZxor7V+LhPzeNn6EjHXDYLvLG+aLFuaxXqGYRzEQ0NS39Iv/p8v9/nT5bPGVoDL7w+sKZ4Ckab1Fzec1devQAwP+m9D7gruLSeATREXqkyfgabP9n//muluSijRvuvjKgizNc83bXDuBwAEBs1SG0ZoWznpTX+zksBR+HQGfZ1xma2GJer5nm+9kUb22FZAAAgAElEQVREwxeD0YiIiIiIiIhKJAVRAbsD0eQwgKhrPVlk0dN3Y1IKzCrktl5XZqdYVutUTzBayJEHfEghKVIAmJfgBWkd099PQ3o6l/2msbSP3N8sqzO7AvUKSeF5XuqXjkE3tsCXaN7xS0RE5EYKRktZgtGyyEAjK9QXLEu73Nj6EIkBhjMRVYIYjBYsPRhNWfq8hf3khBASbfsctXsdc/93oO896bxTYwlGk85F1eqB9tuNyxUcHBk/vsKtISIiIiIiIiIiIiKiEWXxsWKR/uN3y7abUdntRcvUae8rW/1UpRYcAkzdSy5/4G8IvfwfnHWwe7hLPLNt9y9NzQNvWwEVjgJjJvnbKDRyHtY0lNQJ54pl+rpvuG5/xF4K7zrQ/RianlpXvLDcAY01Ee/rMhht6FjCFfW75iH76y9Dp/PGIrz0H/PKDPgcOeYcIJfd+mvodSt3/XreoQq2TLJXNktj0r3pNg+pRySbNx59sI69vnrP2fZHONr8IO5CU1N9YYJ1DEYj8uzYM+Wyjs3QXfL8oELv8dCPLhTVhjGAsxcOTuAiUTlIx2bC8l6Juo9ppd3Uce+WC1evgO7plssN9pogn0/CThoT0xvNhcdb2kFEIwqD0YiIiIiIiIhKFA3YwjK6+v2/UCQv6MoeupELWJNDqvqvbw8K6LQFowWqJxjNFniSzprDDKQAMG/BC0JombFO801oW0gEIB8vXv7GXoLIxH+DEEjhxnYseQmbIyIiygkJwWhpSzCaLTRNClort4AKoEaZB5Z67ZsRDaX21Gbj8tGhcaVX6mNAkxgSbfkclSMGo3kMjJZI5x3beWVgQ1Arqz31Jp7d+bixbJ+6xQP72xMRERERERERERER0R5PBUPAwceZCxOd0Lf+uiz7CRgeXKMWLilL3VS9lFJQ3/uHdR196TJ8f+GzOOcQ+33LxmxH7w91DVD1jeVqYn8+g2YUg63K45zPyGU93dC3/NK1it+cr3DWQfZjqKWntXhhucOF/BwTNTx+hoqK1gKN4+UVrv0a9P87BwCguxPAk/8yr8dgtBFDKQWc8RGxXH/waOjX1wAAFk1XuP598jT+D/x+YKNSksIQu4jOCySxhPsNhOo7puf3vISbXnsXmlKvu26zK3SyrmFQ2kQ0EqnG8VCfu0Ze4eafe65rxjiFr53uL9Cs1jAGUH3+N77qIKooaYxr0jKvKmIer0pmasos6+cy/Ym3+aqvxfKs5+mhDjjSHL6mGb72Q0TDF4PRiIiIiIiIiEpkC4dK7gq7ksK6onk/W4LR+ib+uwWe5XS5BAV0ZeVgtFhVBaPJwQQp3WNcLgYveAgVk/6WpjqzpQajuexDCtHrbZ/7F+1SwITXY6e4XbagNgajERGRd9J1Pa1T0Np8XbWFplUqGA2Q+wilBo8SVUoq24Md+U9Bz9MYtIwiGIDCt7MYEu0luNglVLhU0rmlxpGfzi6dp6rRQ9vuRtYwUQgAlsRPrHBriIiIiIiIiIiIiIhoJFIHLhXL9J++Nzj3VhYdU/46qSqpSc1QP/23vEJ3AuG//hS/vdDBN5bL4/UaMn3BaIMUBgPAf8hRqHJjHUYyFQxCffR7YrmX81A4pPD7ixxccYJ8DLWkWov3PZTBaAzWG1pu55L7b4F+bTXw4K3iKmowz0dUcWq/I+TC7Vuhb//trl/PWKxw5mL5fLOhvfS+UzJtXh7OC0Yr+7krJ6/ek3fehrWrZ+G97fawpGmp9b0/1MUHp01EI9XSMwHHHAmir/umr6ouPtJvMFrBXBSlgMkMI6IqJgWjJSzzqiKcH+WXOuW9cuGzD0KvedFzXc1j5PPSdGw0F7zlDM/1E9Hwx2A0IiIiIiIiohLVqDAc4aN1YlcwmjlcKj8MQAq0yt/eFlKVr8slBKsrYw5GC6sIAiroaR+VEFJyMIEUZiAFlHgKXhBDyxLI6kzB0tKC0cRglVwwmiVgxUsQme3fUIqEJWQv7CFsjoiIKEcKMtPQyKLwOtsrrYVRWwBClgCjcpPCmaRAVqJq0Z7eIpYNJBjN3uPd3U/WWov9UG99W3MwsK2P6oX0WSJo+fwh9f+rTVqn8HDH3cay8aEmzIntW+EWERERERERERERERHRiGSbBP/aK8A2+T5VvsuFQKJ9kyuKF05s9lQnjRCTZ9rLX3gMALDvZPnuZVO6rfeHxvHlalURNXUvfxsw2Kp8psySy9rWAluEyfMF5jfJZbN6XjHs1+XY9Csc8b5ukMF6Q8p2zOW8+CT0848NrA4aPlyvVY/3+3WW5XL0ZGvpzejqNi+P5o/ZaWopfQc2k/qH/SkARyQeFlcfm96MWt035q6ewWhEfqhgCKgfbS5M90BnzQ/SNBldCzT6yIAqCkYb2wRVw34tVTExGM08lw4AEOb8KN/GTgZs54KCvpDNXpZ+0uye1eaCidM8109Ewx+D0YiIiIiIiIhKpJQSJ+wnXcKu8sMAwioCJQasdfb7v5tEptP6tLvOzA7j8ligzlP9lSIFqAByUIoYvGAJnvOyTmG94svr8vAcKQAid4wkLX9jL+FubsFrfsmhflE4il8pERGRd7brekoIKUpneyz1VS7MtdzXV6JKaU+/KZY1hgYSjObtiZHdOgkN84CrgQQXD+S9l9VZ8bNEjSUYTQ+TYLRndjyG7bkn3xc4qvEE9uGJiIiIiIiIiIiIiKg8Fh9rL29r9VTNafsr43zlM7f/pWiZKgjeoJFNjZkI7HeEvML6VdCZDI7ZWw51OGnn7b11LTltEFrY5+jl/tYPVe4hcCPewqOtxfqLZ0E//YBrNW/bRyFiGNJSk+3GyTtvKy44cKnHBnrk9ZioCUNJAQ9UEeoY9/e7/v7HgBVyKBT2P7KMLaIhN3MBYAvIfPWFfr+esUh+D//03qx17L9NR5d5u3h22+5fJjWXVLcrQ73Te9aKqzfmxrREa3tDnojIn9n7mZeneoAtbZ6rUUrhHZZzUqF+5xNg8M4pRGUjHN9JYexpJMa+dglUMAgccYpYrv97r+e6FkwG5kwwl7399V+b989gNKI9CkfAExEREREREQ1AJGB+MsTusCvzl6f5YQBKKUQccz257ZMZc0hVoQzSSGk5SKRLCN+qrbpgNDnwJC0EqEjhcQMJFQMMwWhCwIPj8jVLRAhf2xWiJwSRBVUIIcf9BrAcvOYtVK9ouwG8nkRERPnsgafm67oUmOZWX7lJ11epj0dULdpT5mC0WqceYcfHU6d9yA8Qk0J2AYifffJFA+YAaq+B0SYZIRQNAILO8A9Ge6DjDuPyGhXGIaOOqXBriIiIiIiIiIiIiIhopFKRGNS3bhHL9Q0/8lTPpLjCby9QCOQNuTopcRc+tvXHxStPZDDankZd9lNruf7MaYiEFP74Pgd1od33AZXO4qdtl2J2z+reBSeeN3htbJnrb4NQeHAasgdS4QjUd/8ur/DcI9CXLoO+0XA+ydMQU/jdhQ7CecNVa7LduKbtYozNbOm/8uyFUGH3e92+eD0meOwMvcPeBrzjEvs6OzuAVc+ayw44mkFQI4xSCuoL18orbN0E3bF77M5+U+XAlXv+B3z6ptLGprQLQ9ji+Q/WG6x+1NimooDH5pQcjKZzoTN18cFpD9EIpz5l6R/f/SdfdX3lVIWDmr2t25BhMBoNM1LIWWKneXnEPFaV3KkPf0su/Nefof/3X2/1KIXfvdfB+Pr+yz+3ZAeO7LjHvNEEBqMR7UkYjEZEREREREQ0AGIYVd+E/YQQmhEtCMmSQ61yoVneAwCk8DMA6MrsMC6PBeqNy4eKowJwEDCWScFvUviC9Np6XWcg4Qv99yGFO+RC9Mz78dJ+wBa85i1Uz+t2XttDRESUYwv4TGfNAWhSYBpQ2WA0KcBJ6uMRVYv29Gbj8sbQ2AHW7O3JeMmM/B6RQs/6rWP5fFTqU3Jt55UaZQtGq34buluxOvGiseygUUsQq7IgbCIiIiIiIiIiIiIiGt7UYScCoyeYC//1Z8/3c95ziIPXv+Pglg85eOZTnbi5dTkiurt4xUkMRtvTqOl7Q938qrzC43dDr3oWx89XaD3lbtyy/h24/rWzsX7VTLy/4+redeoaoELyfcCycAtKysdwq7JSBx8HjJtsXUf/6kroLvOY2Zy3L1JY/y0HN3/QwY1L/ovW1bPxru03Fu/v9PcPqL1GNR4fahYc5OOYXKlAAOrS70H98fmSQp3USRcMQqtoqKm5i6F+dLdYrv/wnX6/X3iEPObmqn9qrN3if4RKhxSMlu0LRquLQ9UPThCZcpyiUJKmdJu4vs6NOaprGJT2EI14k5qBiHlMnf7F53xVNX6UwoOfdvBey3kpZ9f5JIeh1VTtxGA0YV6Y8L4id2rcZOCMj4jl+pqveK5rcbPC6q85uOOjDn7/XoVXvu7gS69+XB6xzHMR0R6FwWhEREREREREAxARJuznQqWSQmhG4XZyPbnQLO/hVomMHOTVmTE/5SImhHYNpZAQeiIFGkj/bum19bpOMtP/tddCNIJy+ZpFClbJ/Y0TQniEFKhWvJ49pM8vr8cuERGRG1uQmXRdT+u0cTkAhCwBRuUm9tEypQWPElVKe+pN4/LG4MCC0bzFotnDA6V+cb6oEOSVQVoMSnZTcuBiiUFslXR/+x1i2VHxEyvYEiIiIiIiIiIiIiIi2mPstZ9ctuEVz9WMq1c4dX+FfdQaONIjazjhdc80tskenvJ4bxhNY/cbOHnn7XjHjlswMbNpd/kgBcHkU5Oava882CFte6I5C+3liU7guUdcqxlbr3DaQoXT267D+Iz5IWTw87f2qsZjWJ7X9WhQKaWgpu4Fde5n/G88GMcPVYeW+XLZy8/0+3WGZciO1sDdL5YQjCYMYYtntvX+MNjHXkH9QWQQFcYMXdDx294fony4H1EplFJA0wyxXHf7G9MaCiq860APwWi580muHbymUbVjMFpFqelz5MIn/wWdyXiuqy6icPx8hbMOdtAyVgFr/yevPHGaXEZEIw6D0YiIiIiIiIgGQArLyIVRyeFS/cMAogGpnq5+//eiyxKE1ZU1B6PVBuo9118pUjiBKSglqzPo1knj+lJgWL6QU4OgChrLCoPFNLLG9ZRLTIQUcJYLRJPC77wER9jql45BN3JQG7/4JyIif2yBQykxGM0WYGS+Zg8GuY9WWvAoUaVsTQvBaKGBBaPZ5AcIS31QBQdh5f7Ua1ufs9T3n3S+AYAaRx5ILvX/q0Ui04knt99vLJsZnYspkebKNoiIiIiIiIiIiIiIiPYIauESufD1Nf4rbGs1Lw+GgDGT/NdHw55SCjjoOLFc//X/oLt2ADs7zCvUNQ5Sy/I0tXhfl8FoZacsx0eOfu4x7xXazl0LDvFej1chj4FnPHaqi4fjrghDZEYsFbeMw3nqvn5hIG+dbx9nvnaL//23C0PEGzN918amZv+V+mGo//yO3xlXXb7jr70/JEsb105EAKbuJZdtXOu7ukPlnLVd4tn+wWg4aKnv/RBVlnC9TTIYbVAcaDknpFPAm6+XXrflvKZi1TcHkogGD4PRiIiIiIiIiAZADKPK9IZcSYFmhdu5hVr5CbfqypjDz2xlsUD1PX0p6JhDVFLZnqJlUqgYIAeaFJJC7grr1tIDuVwemCO1I7kr/M78Rbv39psD1JLZBLLaf5iDGOoX8BbURkRElBOyBKNJAWgpXXy9BwAHDhwVKEu7vPDaPyCqNu0pczDa6OC4AdYsd3q9BKNFnGjvBAYXMeHzEQB0ZUoLRrMHLsrnKf/P462sx7bfK4ZEL4mfWOHWEBERERERERERERHRHuPU94lF+pMnQafM93zFbe65wVwwYSpUoHL3iKm6qPOukAs3rYN+9wLop+4zl9fHB6VN/UxiMNqQOv4sYP7B9nV++3Xov1/jrb62VvPyyTOgwoMwbrLGazCax/WoItTMBcCpF3nfoCYCjJ4weA2iobf8g2KRvuwU6K7esfsHTFe44HB5zMzXb/c3QiWV1ujsNpc1ZPuC0SZO91WnX8pwHfz41h9iek//IJOPbP0pZves7v2lc/ugtoloJFMf+oZYpr94NnTW35yRWFjh82+zj+VryPQPIVbjJvvaB1HFSeNTE8I8u4g8VpXcqaYW4JT3iuX6y+dBi5PwZLprB7DNnBqrLvyi7/qIaHhjMBoRERERERHRAEghUbmQq1xAWtF2BSFWUqhVItMXjJbxHowmBWwBlmA0pwqD0YRwAlOggS2cRAo0KRQV1isOtzN/Keu4fM0itSP395JC9CKWUIh80YC8XncJ4S1eQ/2IiIjc2AKHpKAiabmtrsEg9Q/8hNYSDYX2tDkYrTE0ZkD1egk1A2x9SY+hv5Zw4FLff7ZgtBolT0LQVRyNprXGAx13GMtGBeLYv34QnlpOREREREREREREREQEQNU1ADP3kVe4+0+e69LZLPDvv5gLBznQg6qbmjEfOPNSeYWtG4HH7zaXVSQYrdn7ugy3KjsVq4f64V1Ql/+fdT393UugN2+wr5PNApvWmffz/q+V3EYrr8FoXtejilGf/AnUlz1e5yZN9zzWgoYndfKFcuGT/wJu+tmuX68+V2HWeHn1N3d4H6OyzTI0PJ7Z1ts2P9epUoyZWLRoRqoVj7YehR9u/AQ+seX7+Ov6t+OqTZftXqFz2+C2iWgEU00tgBTW+urzwNP3+67zE8vs16jc+QSwB7MRVQ2p3yUFB0YGIQB5D+Nc9jO5cMXDvf/51bZWLnvr2f7rI6JhjcFoRERERERERAMghUQlsl3QWoshZYUhVlI9yWwXsjqDbp303KZERg5G68yag9FqA8M7GM0WBuc5fMFj8Em2xGAEOVglAa21GPAQFULzvNYPyMEUNlJ7pBA/IiIiiS3MLCUGo6V91zUY5GBTBqNR9UpkOsW+XGNwbEXaIAU7e+1LhlVEDB7usvT9bWzBaEFLMJoUjFwNVnatwKYe8wD+w+PLKn7OJCIiIiIiIiIiIiKiPUzLPLFI33ez93pWr5DLJjZ7r4dGJLXv4aVtWDf4wWgqVgc0eLwHy2C0QaHCUai3nQecd4W8UjYLPHirvaI3XwdSPeaypuaS22fl9ZjgsVN1lFJQxywHxk12X3mwg6lo6LmEuOb3iZRSuPQtcgjR31d4H6PSYQtGy3b0/jDYx9+EacbF4zObcUn7L/DtNz6Hk3begX7/4kVvGdw2EY10sxeKRfrem3xXF7MNmwPQkM0LM+RnMxoO/AbShr3NNyMXe+0vFvn6fiinbY15eSAAjJvivz4iGtYYjEZEREREREQ0ALawq5TuQRbmp0oUBgJEA3LoRjJruXNpYAsK6MrsMC6PVWEwWkgFjcv/P3v3HSbJVd9t/3uqu2e6J+zMbNDuKq4kJFACBYQkkHclgoRkko2JIhkcCA8YY4IJNvYLGAfA5sEIv4Bfg7EJxg/2izESIIIQGGwRTJBF1kqAVkLSzmyY6d7t7jrPH7O92zNzftVVHad37s916dJOneqqM6m7uqf6rlDQoFK3v0ZW0CTteuUVUYfwH52dkl9At35WvLwO+EpgP415haN5K9ezP08rjJHE+rlL+/UEAKAhcpEi5YJjVqjIWl5YJWG0dh5bgX6Zrd1rjs0UNnW07aQjXu+PHCdbx5LLA9HmfpyzI9TGcXMr1TgpjGbftzR/XqvNjXOfDC6PFOnSqSv7PBsAAAAAAAAAALDWuHMusQfv/En6Df3cXted9ZAMM8JR6cwLpaiNt0Cu39z9uYScc3G69U45q7fzWOPc2cnfB/+zHydvYNdOe6xXYaGRYrr18lwQa9Vq8XMnSe6slPcRGFpuYioxFrv8mOihp9pn3/z4nvT73X/AHlvXeL/Ahi3pN9iOMx4sjWa74La76hk9mgywRiQ9B/vpDzNvbiSf/B6Y6XpTGG1rcggSWB2yhtGyPY7BkPS8+Jb/yr69XTvDy485Xi4ffq8hgKMXYTQAAAAAADqwPHDWUK7Pq5wQzFge2TC3Ey8kbsfad0js6+a2xqLVF0bLu/DlZ6qhMJrxeeVdXoWoxWVsDrHjdEu/nt4Ko7W4skhSUCzp58Wa14r1ErefPR5h/Rwl7QcAAIsVNLMCaNU4fBXefNTfkz3N44P6wqqOJWFt210NnyXp5DSdX9/h1tOdNLL8GLrBet4Tkvb4PC3r/kZafN5ghY6t4/9B2129R9/ef3Nw7IETD9FMIeWV6QEAAAAAAAAAANr1qKfaY3f8QP7276Xbzl077bGH/1qmKeHo4zYdJ12ZPaLijj25B7MJ7OcpL2290pNeLFdKdxEptOnCR0mnnWuPf/Qd8uWEvzXv2hlePr5OmpzpZGa2wmi69QijrVruSS+WRhK+jzPHSL/87P5NCAPjnv5ye3D/Hvl9c4c/PO9Ee9U/+aTXwVq681TmE8Jo4/7Q/d3kdKpttcsVx6SnpngcbPbgR/ZmMsAa4R73PHvwG1+Q/9Dbunpu67p475EPthBGwxBo8b6uFQrp3m+GZO4Jz7cHb71Z8fO3y9/909Tb87t2hge29ud5PoDVhTAaAAAAAAAdKOXCJ6tU4gUz1iWtjEuVIns7WaNWVihgISEgMJ6bzLSPfshnCKhYUbGkGFnadStxecnH1h+KrJBCQ1LgrBKXzZ+XtJ9DIRpR3oWvfNFOPGL55314PilDbQAANLMf12vG8nDAyNpOr1iPw7HqqvpwvA0YtNnafcHlU/n1yhnHi91x5DjZPJbMcHxuPUeyAr6tJN2vLEaOM54QM2Bfmvu0vOLg2I7pq/s8GwAAAAAAAAAAsBa5yRm5P/moOe6f82D5WvhvwkvWu+v28MBpD5IbX9fu9HAUca/6G7nnvynbjbZu68lclnPn/pLcOz+XvM6L/6Ivc1nLXC4n947PJK7j3/YSe3DXzvDyY09uedHctiUFtZrlevl3fnTCnXOJ3Ns/vRjxPOE06fhTF//bdoZ09bPl/ubGxbgjjnru0dfI/c7b7BWajnWcc3rxw+37lVf/S2dhtJyvaaRxXluvwo5N3PNen37lU86SGy32bjLAGuCOO1Xut95gjvtrXy194WNd219e9cV/lMalqQ1d2y7QM1mP3YkQd4U7+Qzpma+yV7jlP+Vf+fj04cZdO8PL+/Q8H8DqQhgNAAAAAIAOLA+cNZRbBM2WBwGKUSm8nXpyYC1kob4/03JJGjMCb4NkRb5CQQPra2R9f7Ksuzwq5mW9ENsijGaEHRr7sOJuWT6HtHG3NKyYWpb5AADQkI/CfziuxuG4mBVM63cYLelxr53HV6AfZqv3BpfP5Dd2vO2kGHDzcXI3jm2tCHU70V9JqrYILlqfm338PzjVuKov7/l0cGzLyPE6feycPs8IAAAAAAAAAACsWWdfbI/VqtLXk4NRkqRdRhjtzAvbmxOOOi6Xk7vm5dIjnpz+Rn18w7R74MPswYmp3oW1sIQbXyf3ur+zV/jcP8tXwn/L9tb9UC9/jnJ5KUrx9l5iDauaO/tiRX/8j4o++F1FH/qfxf8+8N+KXv1uuWNPGfT00E+/8nz793XXziUfnr7Z3swHvuJTRUPmjWt6jsULR86AGet9YNY5J/3yc9KtvGFrT+cCrBkXXZE47K/7QPf3uXUbx7QYDll/TgsjvZnHGuQufWzyCj+5RfrBN9NtzHh+5gijAWsSYTQAAAAAADpghaiq/qDm433BMSen0Wjp1Y6sN/1X4gUzKmBZMEIBiWG0aDLTPvqh4MIvMIfCaNbXyPr+ZFk3bfQkKRIhLX4+kfFSTDleUMUI6XUn7pbtZ8h7b37eWb6mAAA0WEGz0ON60vJ+h9GseK3UfpwJ6LXdtXuCy2cK/btio3Vsm+VYslvHtg2t7leGKYz23/v/Q/vqe4Jj26ev4iQ0AAAAAAAAAADQP9ObpPUJdY/b/qf1Nu4y3vC6+aQ2J4WjlTvl7HQr5nLSMSf0djLLPf43govd01/e33msdacmXETqYEW687bw2Fz47+zadFznczI456TCaOsVCaMBQ8HlctJm47Fn2bHOOcfZ53Xcu1+6J/wWhCXmD4TPZxn3h86rmZhanFMfuFNTPj6PFluvA6C14+8njST8Pu1M8Rwsqy08N8NRKs3xONI58fTWobnbbm25Ge/9iqjsYYTRgDWJMBoAAAAAAB1IilbNVu8NLh+NSorc0qfkViDgoD+g+XqKv242KdfDkY75OBxGixQlRj8GxQqfVANBg0oXwmhmeGHZ19MrDq7XKozmnFMpCgfwynU7gFfMdR53s34mLAd8xQxAZAm1AQDQ0K0wWqHPYbSkx7208VSg36znITP5TX2bgx0uTv+8wz52bi9K2Op+xWqJrcYw2o2z1wWXj7qiLlp3eZ9nAwAAAAAAAAAA1jLnnPSYXzfH/TtfJb/7bnvcezOMpq28+R7LXPFUaSTFG9ePOV4un+/9fJq4q5+z8o+OI6PSFU/r6zzWOne/c6TTzjXH/ef+OTywP3xhKq1b34VZJSCMBhxdjHCQf8crlhwPXXo/aTrhdOzPfq/1uSrzB8LLxxsX+5yYbrmNrnnkU9KtN7L63q8ADCM3NiE94sn2Crtul6/VurtTwmgYFlkvKtsq5IXU3MSUdPmvJa9kvf7TbO9uacF4HyX3RcCaRBgNAAAAAIAOlBKiVbO1cJAgFANIDKwZ27GU43AoYKEeDqON5SYWT1BbZbIEVMr1cHgh6fuznBUgWx496SSLYO1jX31OserBsSwhMiuMljXcUjG+nkn7AAAgScGFTziu+fDJF6EQqmQfH/TKaELEqd04E9Brc8bzh5nCxo63nRQDbg6IWcefpVw4dhZe14j+GtG1Vqww2pH7FauMtrrCaD+t/EQ/qXwvOPaQqcsyPQcCAAAAAAAAAADoBvfcP0wc9y/YIX+gEh7cc59UNv72yhtesYzbcpLc2z4pTc4kr7j15P5MqIk780K5N35EOu6UxQUnnyn3l9fLbT6h73NZ6/eQ2FsAACAASURBVNxbP2EPvv9P5H/83ZXL982GtzUx1aVZGUaKrdchjAYMjy3bzKHm46EocvrWH9pv77/mvV53700+X2X+YHj5kTBaj++/mriZY+T+4H2tV0xznwcgFfd775DOeLC9wnV/3939Ea3GsMj43jiXJ4zWTe6V10qPfqY57tOE0XbttMeO3ZZ1SgCOAoTRAAAAAADoQFIkarYaDhKUopUxgMQwmrEdy0LWMFo0kWn7/VKIjDBavDJoUDHiCKEIncX6HqwILxhhhMi1fpmlZMxnd/WehNt0Ix6RLdySFJuw4m4AACTJEjxNWt7vMFrkIvN4Imt4FOiH2MdmWHl9flPf5mEdf2Y7Pg8fB2c9tm1oFVy0om++ozRy931x7jpzbMf0VX2cCQAAAAAAAAAAwCKXy8n91hvsFe68TfqyESpKelMsYTQEuAddKveJO5NX2rqtL3NZzm1/vKIP3yp3w5yiv/+m3AMfOpB5rHVuZpN03g5z3H/8PSsX7t8TXrlVhK9TI6Ot18mFL0YIYPVJDActOx46Yb3T6Zvt1T/w1RZhtAPh5WONc8B7ff+13GW/2jpGM5riPg9AKm60KPdXnzLH/Qff2t0dJoQfgVUlYxgt1fE4UnOjJUWvfa/0q88Pr7BrZ+uN7DJeJxoZldZvaXdqAIYYYTQAAAAAADqQGEarhWNXoRhAUmzKChtYyvV5+UC8a76+L7j+WG51htGyBFSskFeWqJj1vVweXYsVG1to/QJ60ZhP0ve4O/EIO3QWYoXmFvdBGA0AkF3eha+oVfXhS1faYbT+n+yZ9hgBWA321/eq5mvBsZnCxi7swT7mbQ6IWeHApOdPy5nHtvX2wmit7leGIYy2UN+v/9p7Y3DsfqWzdOwobw4CAAAAAAAAAAADcuLpicP+1q+FBxLf8JpQC8Ga5qJIOuUse/yE0/o4m8D+R9Of84ceOeF+9titX1+5bN9seN2Jqe7Mx5IqjNbfiwgC6MDxCfc9kvytNy/5+LRj7HVvvi15V/Ph0+403rjg4Lr+htHcyKhUbHHe/kixP5MB1gg3NiHlcuHBhf2pt/PcS8Pnzb149zuPfLD5hCxTAwYoYxgtz7F2LzjrmGjXztY3nr07vPyYExZfCwCw5vCbDwAAAABAB3IupxEXPjFhtnpfcHkoLJUUm5qthqNZU7nwHyxjxTrgKyuWL8ThgMD4kIXRqoGggRUmyRYVC38Par6qahyOKDRL8/K5tQ/reyxJpVyWuFv4880abrFCapEi8+cdAIAkVtDMCjhZAaOCEVjrJevxO2t4FOiH3dVwnFmSZvKdh9ESL6Z3qB8W+1gHjDBalsjumHEc3O7vXqv7lWEIo31lz+fMoOSO6av6PBsAAAAAAAAAAIAmD3mUNL7OHr/hI+Hld+0ML998Im94RSL38CfZg5c/sX8TwaqU+PNx681LLj7sDx6QDoT/xq3JHoeFSinO3833/yKCANp0yaOlUsJ537d/f8mHT3qwfSLOR7/uddce+5yV+QPh5eP+0Hk1m0+059Erp5+XPE4YDei+E4xA9e675CvpzrN73APD90VP3fNPRz7oc2wRaFviSa4Bhf6fl74mbDEu8rtrp/xt/5N8231z4eVTGzqaEoDhxSvEAAAAAAB0yIxd1cKxq2Ju5fo5lzdDH9Z2ZgqbzDkt1Fde4WWhvi+47lg0aW5nkApGGC0UNCjXw3+0KUVZomJ2pKHSFJWzwgguxcss1j6s77GT06hL/0dg6/O1vj4WOzQ3Jpf1DwUAAMgOnlqhImu5tZ1esh6/s4ZHgX6wjivzrqCJXMIbUbroQFwxj5mTjrnTrls2gs+tmPcr0XBc8S/2sb44d11wbCo3o3MnL+7zjAAAAAAAAAAAAI5wpXG5N3zIXuHeO+Vv+KcVi/1dt4fXt95ECzQ85Xek7Y9fuiyXl3vNe+WOPXkwc8Lqcf5l0oMuNYf9215y5IP9xhvvJWliuntzCkkVRhuOv2kDkNzYpNz/80F7ha9cJ187cv7KNRc5jSa0D+//B7HuuC98Do4ZRjt0Xo3b2v9jKffKdyaPj6a/4DmAdNyr32OO+RdetiQGa3nsg6TXXH3kPSLOx3rrXa/QRZWbj6zU62MioFuyvt8pTxitJ7ZuM4f8s86Tv+U/7XHr+dnEVIeTAjCsCKMBAAAAANChYi4co6r6g8HlVkjNjFoZb/xfnxBGC91mPhBLk6QxY/6DliWgUonDV+srRun/gFoKBOsayk3bN8NoKV4/t/axp7Y7uLwYlTKFyKztZw23WCG1LF9PAACaZQmeSlI1Xj1hNOvYLWt4FOgHM6qc36DIdf5nQSf72LRxnJx07Jl0zL3cmPH8qBKXFft66u00tLpfccbXJ83JYf3wvYVv6Z7qruDYw6avUM5xlXAAAAAAAAAAADBY7sJHyr30L81x/+4/kI/jpQt3GWG0AcQ8MFxccUzujR+R+9Ati/9/y8fl/u3nclc9c9BTwyrgnJN75bvsFf713fK/+Nniv5PCaJM9joAUU/wNnTAaMFTcxY+We9nb7RW+ev3hf+Yip39/iX0+z76KdO2N4fNWyuG3KWi8cd5OQpCkZ44/Lfk+ayT9xcIBpHTKWfbYD78l3fq1lptwzumNT4i069lf1aduv1p3/+AE/c7sstDhOEEiDImsYbSR0d7MY61rEbv373+zPbjPCqMRaATWKsJoAAAAAAB0qJQxFlU04hpZo1Pr8wlhtPrKMNpCHA6jjecmM+23X7KE0ax4XJbwghU9kaRK0/btMELrF9CtfVixNSuWZ7F+trKG0ezQXPqvJwAAzfIufEUtKyRrBdPyUf/DP8Vc+Bgt6+Mr0A+z1XuCy2cSosrZJB3zNsJo4WNJKdvxZNKxfNI+LOb9yqGgmPWZWcfq/fbFueuCyyPldOn0lX2eDQAAAAAAAAAAgGHbGfbYrp3SnT9ZuuzeO4Orus2E0dCac07u+PvJ7XiC3EVXyvU6YoXhsvnE5DDCN25c/L/1xnup92G0sYnW6xBGA4bPKWebQ/7mzy5ddWPypv72pvB5K/sPhJePNc5537ItecM94KJI2nyCvcLY6nzPAjDMXHFMmjnGXuFrn0u9rWPq9+oRC1/Q+nh26UBpQi7PRTsxLDKG0fLh89vRGTcxJa1bb6/w9c+tDOc3WOFqnu8DaxZhNAAAAAAAOpQ1FmXFsUq5bBGsyfyUCkZkZCEQCluoh8NoY7kUJ1YMgBVGqwaCBt0IeSWF6cpN27fCCC7FC+hZf1a69bNVzhhu6UZoDgCAZlbQrBbXwsvNgFH/T/a0w6PZw0xAr83W7g0un8m3OIuyi6xjSSk5RrxyXfv5UdI+LNb9ypHnVOHj+dUQRruv+gt9Z3/46p3nTl6k6XzCCSQAAAAAAAAAAAD9dPYl0sioPb5r59KPrTe8Tvfv71sAjk5utChdcLk57q/9ffnvfV3aNxteIZeTSj0+vzbN9gmjAcPnjAvtsY+9S/FfvlTxG58r//G/1YnVOxI3dZ9xisyccWr4dLxn8R9TG1JMtAceerU9lnCfDKADl1xlDvnP/7O8T3n+mxWLJUaEYZIURg4pEEbrmYT7Jh08IO2+Kzxm3RdNcF8ErFWE0QAAAAAA6FDSG/ZDrABXlkjA4nbGNGbsu1zPEEaLVmcYrWCET5YHDWq+qqo/GFw3y9c0cjmNumJwbOnXs/0wWtbvcdYQmRlGqy+k/4OWuhOaAwCgmRU0s0JFrQNG/WOHR7OHmYBe213tbRgt6Zi3cbRpHUtGijL9Dic9z1oIPN9ppVVw0f7cBh9Gu2nuU/IKXx1v+3TCCaUAAAAAAAAAAAB95kaLci9/pznu//39Sxfw5nsAPeSe/yZ7cPYX8r/5UPk/vCY8PjEjlzWskFWx9TmZLhe+GCGA1cuNjErbzrBX+Ni7pE/9o/xfvFB68un6zW0/StzebfeuPHdlzrim53T90LHVgI6l3FN/Vzrx9JUD17xCLrQcQMfcs15lD/7o2/J//kL5er31hqxo9cRUexMDBoEw2qrhnv1qqWSfB+xf8+Tw+9yM14kcrxMBaxZhNAAAAAAAOlTMhUNnllIu/MKeFUwztxONmdtaWBbq8N5rPg6H0cZzqzOMlo/SBVQqdeMvu8oe8ioaIbLmuIPvJIyWMXSWef7G+nXVzBBEiBV6yRp2AwCgIW3wtKFqBoz6f7Kn9fhqxZ+AQZqthcNo6wvdCaOlUYnDl6QtReOZThpPOnYuG/tI0up+xZrboLNo1fig/mPPZ4JjW0dO1Gmls/o8IwAAAAAAAAAAgGTuqmdKo8a5cJ/9J/l48YIwPo6l+b3h9XjDK4AucPc/X3r4ryWvVA6fW6vJPkRASinO382Fz7kBsLq5Z7wy9brPvfE3Esdf/MGVF9ObM06dmY73SPmCNBK+WHivuWOOl/ubm+Re817pSS+WnvNauf/9GbnffsNA5gOsBe64U6Vn/b69wif+P+mr17fcjt+/JzwwwXMzDBHCaKuGO+E0uY98317h1pulb3955XIz0sh9EbBWEUYDAAAAAKBDpci+gkGIFUBrZzvWbcr1pWGrqj9ohkfGolUaRjMCKtV4WRgtIYqQNURmhb+aQ2HBK1LIDik0yxo6yxoi61Y8worNZZ0/AAAN1uO6dXxiLbe200vm8UE9HBIFBqXua9pbmw2OzeR7H0ZrBITL9fBxZ9agdM7lNeJGg2Pt/P61ul+xQsferzy5tJ++se/L2l8PvyFo+/Sje3+FcgAAAAAAAAAAgHb80uPssR9+a/H/83sk41ws3vAKoFvcOQ9t74aTM92dSIBLE0bL9/8iggC6YOtJqVc9+cCPE8e/e+fKZXPGNT2n6nuliemBnk/iJqflrnqmope8RdHz/lDuvO2c3wL0mHvABYnj/sZ/bb2ReSuM1odYLNAtWR9v8oTResnNbJJOOdscX37f5L2X9twXXpmAPrBmEUYDAAAAAKBDWeNVVlwqe8RrXGO5cBhtIV4aClioG1e0kzSWW51htELKgEpS8CtryMtavxIf+etxI/iwUusX0DOHzjLH8pLCaOnjEda6WX9GAQBoMIOnQxBGKxqPf83HB8BqMFe7zzxWnSls6so+rHjYosV9W+HidiK7JeP5Tpbob4N1v1JwjRNbjDBa5j11141z1wWXF6OSLpq6vM+zAQAAAAAAAAAASMc98GHmmL/hw/K33Srd/n17A7zhFUC3POjS9m7XjwhIKcXf0fP9P1cGQBfc70GpV91Qv09njIcvhihJd+yWvn671665xbNYqjWv+QPhdafiOSJGwFp01kVSLiGmetstrbexzwqj8dwMwyRjGK1AGK3nzk14PnbHsteF9s1KC/vC627Y0r05ARgqhNEAAAAAAOhQ1jf4W3GszBGvXMkMZ5XrS8NW87HxwqCk8dxkpv32ixU+6WUYzfreLP96hqR5+byYNXSWK2VaPym8liXeYq3bTswCAAAp/eN6q+VHAkb9Yz3+tRNmAnpptnqvOTaT39iVfaS5eqv1u5E1Epx0myzR34ZWwcXIPKIfXBrtjsqPtLPyg+DYResuVzHK9nwBAAAAAAAAAACgbx71VHvsw38l/6xz5V+ww16HN98D6BJ32oOkSx+T/YaTM92fzHKlFBc2JowGDCU3NiGNpTtH30l6zXFfSlznwjfFOu6Vsbb/eV0//IW93nR9D2E0YA1y6zdLj/8Ne4XvfV3xe/9I3iecC7d/Lryc+xQMkxTnuC5RGO3NPHCY+5Xn24P/+Wn5/3PtkY937bTX3bqtSzMCMGwIowEAAAAA0KFSLmPQzHhzf9ZQQCkaVykXDm0tLAsFLCSEvcaMbQxa2oBKxQgvjLhR5Vwu0z6t703zPrzi4DouxcsspS6GzkJGo5KcEXRIE3drsL6mhBcAAO0qZA6j1YLL8y7hinY9Yj0eV+Jy8kkiQJ/N1sJhtGI0lvk5Szsavw32sWQ7YbR0Ieg0qrEVRmvcr4SPo/0Aw2g3zl5njm2fvqqPMwEAAAAAAAAAAMjGTUxJZzy4/Q2M8+Z7AN3j3vBhud9+Y7Yb9SMCQhgNOKq51/5t6nWfVvqK3v/rrWMuX/qR9Jh3hM9ll6TpeI6IEbBGuZf+lXRJwjll73+zdP0/2OP794SXTxKtxhDJHEbr/wW71xq37Qzpma8yx/1f/a781z67+MGu28MrjYxKG7Z2f3IAhgJhNAAAAAAAOpQ5aGZECbKGAopRSWNR+KSI8rIw2nx9X3C9UVc0A2SDZgVUYsWq+/rhj8v1cHgh6/dFsr83lbh8+N9WFsEKki2dU7YIXdb1Ixdp1IiXlY1ARZZ1s84HAICGtMHThqo/mGk7vWQdo3nFOuArfZ4NYNtdDYfR1uc39mcCh0KB1rFkO5FdKwS9/PlOGtb9TeN+xTqaH1QYbX99r76276bg2Olj52jr6Al9nhEAAAAAAAAAAEBG7YbRxibl8v2/aBaAo5fLF+Se8Qq5v//v9DeanOndhBqKKc5zzXF/CAytjcemX3f/Xj3jYqdSitPjdt5nj03X9xCYBdYo55zcC96cuI7/9Aftwf1z4e0SW8QwyRpGI0LcF+4hj0oc95/60OI/7toZXmHziXIRaSRgreK3HwAAAACADmUPmoXXt6Jc9nZKGrNCAfWloYCFeL+xz9UbukoKnzRHDSpWeCHj11OyY2rN4YVOwghZYxDtxCOs21hfp+C6RmyunfkAACBlD6PV4uSAUT8lxVab46nAoM3WwmG0mUL3wmhpYsCVevj3op3Irn18nv7YtsG6vylEh674Z5wQ4/1gwmhf3fM5MxK5Yzrhyp4AAAAAAAAAAACrhDvt3PZuON2nC/8AWHuOPVkam0y1qpuY7vFkJI2va71OjlgDMLROOStdAFGS9s/JOadzO7hOnvOx1sV7pekN7W8EwHBrdaxz+/ftsf17wsv7cUwEdE3GMFphpDfTwFInn5kcfL79e5Ikv2d3eHzTcT2YFIBhQRgNAAAAAIAOJcUylosUacSNBseyBNZGXVGRy5lxgeUhtIV6OIw2nkt3gscgpA2jWVGELN+XBut70Bw98T4OruNc65dZIpfTqCumnk874TrrZyJtPCL2dR3wla7NBwAAyX5cr1phNF8Lbyfq/8meSbHV5TFaYJB2V+8JLp/Jb+rL/hsB4eaocLNiLntk1zy2beN3z7xfOXT/ZEff+h9Gi32sm+auD45N5zfogRMX9XlGAAAAAAAAAAAAbbj8idK69dlvt3Vb16cCAJLkRovS1c9Kt/JkHyIgkzOt18kTRgOGlSuOSVdek27ln/9YkvTbOzIGXZqsi/cqkpfbenLb2wAw3Foe69zzc8W/9xj5O29bObZ/LnwbwmgYJsYFck1RrjfzwBJuasPia0SWW29W/EfPlH76w/B4P56bAVi1CKMBAAAAANChLEGzYjQmZ7zQmiXk1QhUjRmhqoVloYB5I4w2Fk2k3me/FSL7yhvNEZWKEfzK8n1psL4HacILaV8+T4qrrFi3i59DpZ4ujNYcgVu57ewxCwAAJKlgBM1qgTBa7GPVFQ4YFRLCqb1STHj8S3rcBPptrnZvcPlMYWMX92If9TbCaNbvRTvh4pJx7Jw2+tus6g8Gl+fd4lXorDBa/7No0q3z39Q91buCY5dOXaGc42QcAAAAAAAAAACw+rnxdXLXfl46d7tUsM8FW4GYB4Aeci/6c2n741uv2I8ISJo3+BNGA4aae+lfSk/6X9LMMdJUwjk8P/yWfL2uZ10S6a+f3l4cbbq+Z/EfRGaBNc296M+lS66yV/ivz8i/4DL5hSPvMfJxLM3vDa8/MdXlGQI9lDWMlsv3Zh5Ywf3+u6XjT7VX+Ow/STf+S3hsIkVQGsBRizAaAAAAAAAdst6sH5IU1sgWWFvcTikKh9Eq8YJiHx/+eMEKo+VWbxitESgIqcVHIipWFCHpa22xomXNcQdvpBGskMJymQJ4bcQjrM8hbTwiab2i8fMGAEAreSNo1vyYfnhZIJbWaju9NOqKcsafU8px63gq0C+z1fuCy2fy3QujpTnitY/P24n+GiHoNn73rPuWxv2KHUaLg8t76ca564LLI+X0sOkr+jwbAAAAAAAAAACA9rmTHqDoHZ+R+/Tu9Lch5gGgh1w+L/fH/yhFLd5amyZa1qnJFG/wzxNrAIaZyxcUveStcv//HXIf/6ncy95ur/yNz0uSXnhZpA//VvY42nR8KIy25aR2pgrgKOHyebk3fDh5pd13SV/42JGP5/dK3riEaD+OiYBuIYy2arnRotxbP9HejScJNAJrGWE0AAAAAAA6ZL1ZP7huzl43aczap7VvL68DTTGvhTgcRhtf1WE0O3zSHDWo1MPhhSzflyO3saJiR8ILnYbRsgQh2gmjWbeppAyjJa1XaiM2BwCAlBBG87XAstUVRnPOmcHV5ngqMEgH4orm433BsfWF7oXR0rCOJ9sLoxnHtsZzgCTWfUvBjWTeVi/de/Bu3TL/9eDYeZOXaCrPle8AAAAAAAAAAMDwcfmCdPWz06180v17OxkAa57LF6Rii3NM00TLOlUck/ItzoVpNQ5gKDjn5KJIOuYEe6Uf/Pfhf15ySvYw2lR9bvEfmxP2AWBNcKNFaWtyJNF//xtHPtg/Z684QZAIwyTj4ycR4v465gRpNPv70lw/npsBWLUIowEAAAAA0KGCG1GU8im2FdVoNWatO5YQNltoinnN18ORhLFoOMNoVX/w8L/LVnghl/3FUivWUInL8oeugOOtK+GkvLJIlthZMde9eERz3C1JpW4HXtqJWQAAINmP63XVFPt4ybJQLK3Vdnqt0/Ao0Guz1XvNsZl898JoSTHgRkDYDhdnP5YcM+LRCymPbZtZ9y15t3hii3Ph53RWGLlXvjh3nbnPHdNX9XUuAAAAAAAAAAAA3eQe9ZTWK01MSRdf2fvJAMCZFyaP9yEC4pxrHWAjjAYcXR78cHPI/81r5d//Zvn9e3TCeqdL75dt09PxnsV/EA8BIEkPf3Ly+Mfepfj3HqP49c+Qf9Pz7PUmprs7L6CXUr6v67AcYbR+cvmCdPkTs9+QQCOwphFGAwAAAACgQ845laIWV447JCksNeqKqQNrpUPBrLGE/ZbrR2IBVjggKaw2aAU3Yo41Rw0qcTjklfZ7svQ24e+Pl9cBXzn8UUhSJGLJPjLEztqJR5hxt4TgWTMroJZ3eRUi+3sCAECSQkLQrOariR+n3U4vWY+vZSMABfTb7to95th0F8Nora6mF/t603HzUu1Ef4vGMX0lnreDxQHe+yVx5WaN4KL1mWXZT6cOxgf0lT2fDY4dO3KSTi2d2be5AAAAAAAAAAAAdN0FD5d7/pvs8akNcn/2L3Kj2S+ICQBZuZf/dfIK/QoLTbaIjRBrAI4qbrQknXqOOe7f+0fy/+sR8gv79YHnRTr72PTbnqrvkUZLciOjXZgpgGHnnvMaaccTklf6r89In/uo9K0v2euMEyTCECGMtuq5l7xFOm9HthsRaATWNMJoAAAAAAB0Qdo3+SeFrpxzieG0Jfs7tF5SZGsh3n/k3/V9wXXGc5Op9jcIeWe/wNwcTKkYIa9ilP0EuaSvfyM05zsMo6X9HhfciHIJXwOL9TNRjtOFW6zQXNp5AwAQku9SGC1pO71kPb5WUj6+Ar02W703uHxdblqFqF+/N948lpSkUhvH51YIuuZrZugspK6aOdYIMlvH89bxfy98fd+XNB+Hn7vtmLl68WrhAAAAAAAAAAAAQ8o5J3fNy+Wuv0fu7Z+Se8vH5d7yb4v/vfvLcv96h9wDHzboaQJYK7ZsSx6f6FMEpNWb/HODOVcGQO+4Rz4leYUff0f63Ed10ganb70+0nW/ky4FMB3vIRwC4DBXHFP0xo/IvehP299IaUIuTzgKQ4Qw2qrnJmfk3v4p6VdfkP5GrWLSAI5q3FMDAAAAANAFad/k3youVYxKS4Jm9v4Wt5NzeY26og74yop1FupHgmHz9fA2rdDAahC5nCJFihWvGGuOIJSN+EKpjc8tKTTXiDx0GkZLiuMtXa+97431M1Y2AnIr1wsHXtLOGwCAkOQw2tJgUVLsaFBhNPvxlTAaVofZWjiMNl3Y2NX9JJ0z4r0d2ZWkYpePz8vxgkaidFe4XX4/0yx/OBxnfXL9C6PdOHddcHkxGtOF67b3bR4AAAAAsnHOnSLpQkkPPvT/8yU1X5nmdu/9tja33emTkpO99zs73AYAAAAAdJUbXyedf9mgpwFgjXO5nPyWk6S7bl85ODkjl+/TOSqt3uRfGOnPPAD0z9ZtLVfx131A7jG/LuecHvGAdC8TT9X39C/qCGB4PPDS9m/LfQqGTsYwWpTrzTSQyDknXXC5/Mfele4GhF+BNS1dJhoAAAAAACRK+yb/YouAWimXdjtHAgHWbRohrNjXVTGiHeO5yeDy1aLgwid01Hz18L8r9fDn1uprHb5NUnhh8evZ6TuQ0gbP2pn/4vbDn0NSpGLpetbXkzAaAKB9hcQwWnXZxwkBowGF0ezHV8JoWB1mq+Ew2vp8d8NorU4aSYrxpo1JL72NfexcrqcL/0pSLa6aY3m3eB0pK3TcryzazvIPdUflR8Gxi9c9vO3nBwAAAAB6wzl3mXPuU865+yT9WNKHJb1c0g4tjaIBAAAAAABgtdrxhPDyi6/s3xwmZ5LHi5y7CRx1LnxE63W+/eXD/8zn0kVepuO51rFFAGvP6edJG49t77aE0TBskq7+u1wUyUXkdgbmgsvTP9fZfEJv5wJgVeOeGgAAAACALrBiGSvWaxE+S72d5jCaEQtohALK8YK88Xb+sdxEqv0NihU/aQRTvPcqG0GStJG5ZiNuVJHxckkjLOZ9HBx3Lt3LLMVcd35WzO0bP0NpwxF2GI0QAwCgfUlBs6o/uOTj5IDRYMJo1uMgYTSsFrO1cBhtptDtMFoSr0rdjvG2E9pNOia2ngeELL+fada4iXEGQwAAIABJREFUX3HGCTHWc6lu++LcJ82xHTNX9WUOAAAAADI5V9IVktYPeiIAAAAAAABoj3vay6RTz1m6cOs2ud94ff8m0SpiVGrvXFIAq5dbt14azXZe9t8/t3XoZbq+Rxpf1+60ABylXD4v9/J3SCPF7DeeILaIIZMljJbL924eaMmNr5N76V9JuVzyivlC+3FHAEcF7q0BAAAAAOiCtG/ybxWXSr2dprjWmBELWIgXQ1jz9f3mdsai1R5GC790UfOLwZSqP6hY9eA67YS8nHMqReOaj/etGGsVFnNK9wJ6O/G7LKx4xAFfUezrilzyi8blevdCcwAANCQFzRqP69bHS7czmD9r2OFRwmhYHXZX7wkun8l3N4yWdMzr5c1YYN7lVYhGMu9v1BXlFMlrZZy4HKcL/0rJ9ysF15iXEUYzwsjdtL+2V1/b96Xg2APGHqTNI8f1fA4AAAAAuuaApJ9JOrUH2/5PSU/NeJuf9WAeAAAAAAAARwW3YYt07Rekm2+Q//F35LadIV34CLnJmf5NotW+ipy7CRyN3PPfJP/2lyWu4w9U5EYXQ0ZXn+OkFhf3m473EDECEOQe9hjpA9+Uf8oZ2W44MdWbCQG9QhhtqLhffrZ05kPkr32V9NVPhVdav0Uuivo7MQCrCvfWAAAAAAB0QSmXNnaVfIJCO9Esa5uNUMBCQhhtPLfKw2jRiELds2p8UJJUNsILUuuvtaWYKwXDaJW4LGkx+BCS9uXzbkX0LKWE21XissZafM+tmEW78wEAQJLyUVIYrbbk46o/GN6GK8hl+YN1F1nHeo3jA2CQvPeard0bHFtf2NTXuVjH52mPgZdbDBePaSFe+ZymVbi42fL7mWaNcONg7l0W/ceeG8x42/bpq/o8GwAAAAAZVCXdIulrkm4+9P/vSHqYpM/3YH8V7/3OHmwXAAAAAABgzXJjE9KOJ8jteMJg9j85nZw6KhFGA45KW7e1XufuO6QTT5ckzYxJk0VpX8Vefao+J03cvzvzA3DUcceeIn/NK6R//Iv0NyK2iKFDGG3YuJPPkF78F/JWGO34XlyPDMAwIY0IAAAAAEAXpA2atYpLpQ0GNEe/xnLhkx4WDoUCQhEBSYoUtR0o6JdGpGC5RjTAinhJnYTFwl+TRmjOKw6Ou5Qvs6SP37UZdku4XVJIrtU67c4HAABJyjv7j8e1eGkMyAoYWccF/WAdMzWOD4BBmo/3mUHBmfzGvs3DqzeR3ZLxfCfL758VHZOO3D9Zx/NWGLlbYl/XTXuuD47N5DfqnIkLe7p/AAAAAG17v6R13vvzvPe/6b1/t/f+G94nPAEBAAAAAAAAlpucsceck0aK/ZsLgP45+2KpMJK4iv/E38nfd5ekxYsLjiWvrun6HiJGABK587Znu8HkVG8mAvRKlgtwR7nezQPZHHc/adNxwSF3wcP7PBkAqw1hNAAAAAAAuiB90Cx5vVIue2DNClY1QgEL9XAYrZQbl8vyou8AFIyISiOYUq7boS8roNCK9b2sxGVJ6jiLkPpnJeXPworbJWw/6evV0IuYBQAAOeXljKtwLQ8WWQGjQYbRrMfXxvEBMEiz1XvNsZnCpq7uy/o9XuRVNn4nOons2uHi1se2DVY4Tjpy32J9Zr0Oo90y/w3dV/1FcOzS6SuVc5x8AwAAAKxG3vtZ731l0PMAAAAAAADAkEsKo5UmVv15vgDa46Y2SE/+neSVPvQ2+SecpPj118gfqOjPnph8fzAdz8lNEkYDkODBj5Ae9Evp1ye2iGGT5dg5Z1/0G/3lcjm5X3/dyoGtJ0m//Oz+TwjAqsK9NQAAAAAAXdAqeHZ4vRaxq/TRrCNhgTEjALZQXwyjzdf3BcfHo8lU+xqkvAtf2qoRNrAiXk5OI260rX1a34NGaM5Ko0UuXX8+ffyuvTBa0u2sr1czK57WScwCAADnnPKuEIwTLV9mh9EG9ycNO5yaPswE9MpsLRxGi5TTulx3r9iYHEaTKoePmZfqJLJrHYc2nu+kYd2vSM3RxfDn1usw2o1z1wWX55TXw6Ye1dN9AwAAAAAAAAAAAAAGLCliVGjvPFgAw8H99hukU86Sf8Nzklf83D/Ln3CanvLs1+s5f2efxzJd3yNNdPdcIQBHF5fLSW/9hPR/3in/rS9JP/qO9Iuf2utzn4JhQxhtaLnHPlc65jj5Gz4q3Xen9IAHyz3xhXIbtgx6agAGjHtrAAAAAAC6oNil2FXawFpzWMAKBTRCXgvx/uC4FVRbTY5ECpZqhA3KRoykGJVSh8qWs74HjWCY952FEdIGxtL+LCxXiArKu0Iw/mB9vZpV4nJweScxCwAApMWwWSiMVvO1ZR+HA0YFI5jaD9bjciUuK/Z1RS7X5xkBR8xWw2G06fz6vv5senmV69axZHvHtpIdFs4SJlx+P9OQU/7w8wbzKtsdHv8n+cXBXfqf+W8Ex86ffKjW5bniJgAAAAAAAAAAAAAc1SZn7LHqgf7NA0DfOeekK54m/9Xrpc98OHnlGz6i0d/4o8RV1sV7pQnONQGQzI0Wpaf/ntzTf0+SFL/00dLXPx9emfsUDB3CaMPMXXSl3EVXDnoaAFaZ9t4hDAAAAAAAlkgbsWq1XtpgQHNcywyj1Q+F0epWGG0y1b4GKe/CLzQ3wgZWDKGT8IIVuWvsyyscRnApX0BPGxjrKB5hxlvmW97W/JqmjP8BAGBpFTxtqBphNOv2/ZD0OHggrvRxJsBKu2v3BJevL2zq/s5aXE3POpa04mZpjLUIQadRjVdGGaWlzzes4/neZdGkm+auM8e2z1zdwz0DAAAAAAAAAAAAAFaF6YS/7S/s6988AAyMO/281ivdeZv8wQN63IPCw2dVblFOsTSxrruTA3D023KSPUYYDcOmxTmuS+S4KDYADAPCaAAAAAAAdEHaMFqr2FWaYECkSAU3cvjjsdxEcL2FQ6GAeSOMNh6Fb7ea2AGVxbBBuQdhNOt7We5SGK3gRpRT6yuLlHLhAEQa1udfjsstb2t9TdP+jAMAYEkbRlv+8ZHbD+7KXEmPg9ZjJ9Avs9V7g8tn8hu7vq9WR7y9OD4vGmG0hXr6MJp5vxIduV+yw2hx6v1kcTA+oK/s+Vxw7PjRk3VK8f492S8AAACAoXaic+7vnHO3OOdmnXMHnXN3H/r4H5xzv+WcWz/oSQIAAAAAACCDDVsGPQMAg3bF01rHh7yXvnq9XnBZJOdWnsv+m3N/u/gPIkYAsjrmeHtscqp/8wC6IUMXTbnBnZcOAEiPe2sAAAAAALogzRv9c8qbQZAs2ylF43JNV7EYM0IBlXhBsa9rIQ6H0ayg2mrSHIBrVj0UNqjUux/xsr4HlUNRMSuMlvYVdOecSrkx7a/vbTGPUqrthVifv/X1aqj5qqqHonMr50MYDQDQmVaP6w12GC35OKqXkh4HK4TRMGCzNSOMVki4qnQPeO/N34dOjiXHjGBwlt89637Ful9qZh39d+pr+24yn6vtmL56yXM+AAAAADjk5EP/NTvm0H9nSrpG0tucc++R9Afe+/CTjg45546RlPVJ56m9mAsAAAAAAMCwc8717O/SAIaDW79ZuvYL8u94ufSNz0v1enA9/9on64pP3KmPPi3Wn/3tj/Wt0QfqAQe/r+fNvU8vmv2bxZUmiBgByMatm7GPRYgtYthkOe+SMBoADAXurQEAAAAA6IJSLkXQLDfW8s3taYJexdzSYFbJCAVIUjle0EJ9eMNoVgClETYoW+GFFN8Pi/U9KNfnF//hw3/2yRIuKEallmG0khG8S7V94/Mvx/OJt6vUywnzIYwGAOhM3oX/JLE8WGQGjKLWAaNeSQqWlmP78RPoh9mqEUbLb+jB3uxjXi9/OCa8XCfHktZtF+rJx7bNar4WXN58v+TMz637p6B773Xj7CeDY6VoXBeu2971fQIAAABYM8YlvVTS1c65X/Xe39KDfbxQ0ut7sF0AAAAAAAAAWJPcyWfIve3fJUnx40+Udt8dXvGGj+hXzr9MT9i5IzxOxAhAVusSzjMctc+dBVYlwmgAcNSJBj0BAAAAAACOBmkiVklBjSzbWR4GGEu4Tbk+r3kjjDYeDUEYLTICKvFiMKVihNE6CS8Ujds2Ig9WFsEOKazUzvc5C+u2VqjiyHj46ynZXxcAANJqFTxtqMbhMJp1+34ouBHljGvNVDLEmYBui31dc7X7gmMzhY1d31+rY96y8fuQ5rmQxQpBJx27Llf1B4PLm+9XnAv/2dQbYeRO7Kz8QD898JPg2CVTj9BINNr1fQIAAAAYajVJX5D0OkmPk3S+pNMknSfp8ZLeIukXy25zuqQbnHMn9W+aAAAAAAAAaMvTXhZe/msv6u88AKwO284wh/wPvyXtm7NvSxgNQFbnXxZeXhiRNp/Y16kAnSOMBgBHG8JoAAAAAAB0wWiKN/qnCUsVc9m3Y4UCJGkhntdCHA6jjeVWfxit4EaCyxsBlbIRQ+gsvBD+PpXjxciDVxwczxJGS/ez0P0wWuNzsFhfT8n+ugAAkFbaMNryj4/cfnB/gHbOmcdp5RbhUaCX9tRmFRvHp+vzm/o8GzvE20lk1zq2XWhxbNvMvl9pCqMZt/VmGrl9N8590hzbPv3oru8PAAAAwFB7naTjvPeXe+/f5L3/N+/9N733P/Le/7f3/uPe+1dIOknSn2rp9V22SPqYc1kujQ4AAAAAAIB+c1deE16+41f6PBMAq4G74mn24L+/T/5Fl4fHRkblRou9mRSAo5bbuFW6IHC/ctGVcmOr/z1HwBJZ/iyaJ4wGAMOAMBoAAAAAAF2QczmNuuQ/JFpv6M+6zoowWsJtyvV5LdSHN4xmBVSqh8IGVnihFNmxuFasaEPVH1Td1xKyCOlfQE8TGUvzs2CxPody3Q6fSclhtE5icwAASFIh6jSMFr59v1iPzZWEx0+g12Zr95pjM4WNXd9f0hGvlzd/HzqJ7FrH9gfismIfjsItZ92vLA0xhz+7bofR9tXm9I19Xw6OnTF2ro4ZObar+wMAAAAw3A7F0H6RYr2K9/7Vkl68bOh8SQnvomvLtZLOzvjf47s8BwAAAAAAgKOGO/VsuT98v1Q89Lf1sUm5l/1vuXN/abATAzAYVz1LKrVxLvz4VPfnAmBNcH/wPunsi48sOP8yude8Z2DzAdqWJYyWI4wGAMOAe2sAAAAAALqkmBvTgVrFHk8Rusq5vEbcqA76A+Y6y6MckcupGI0FIwTX7/5nVf3B4HbGouENozXCBuX6fHC8k4hXYmguXpCMMEKU4QX0Vj8LkSKNuNHU21vOCk+0CrdY4wU3opzjZSQAQGfM4Gk8HGE0MzxKGA0DtLsaDqONumKPjvftY966r5nPY9I8F7KUcuETPRshtjTB55qvBZfnm45xnfm5dTeM9uU9N5jz2TFzdVf3BQAAAGDt8d6/0zl3haTHNS1+oaQPdnEfv5DUMtbWzGV5EwIAAAAAAMAa5B71VOnyJ0o/+5F03KlyhZHWNwJwVHJRJP3RP8i/6ley3XCCMBqA9rgNW+TedaP8vXcufryRi3tiSBFGA4CjTjToCQAAAAAAcLRo9WZ/K1aVdTvFwHbGonAs4PsL3za3M56bTDWfQSq0CKNV4nJw3IonpJEURqvUF+S9FUZI/wJ60j6kxZ+BTt4kVDR+HlqFW8r18HjJ2B4AAFm0Cp4e+TgcDLKOC/rFOkZrFR4Femm2Fg6jTRc29v1N59axudT6+DdJ0rFo2jChFYtuvl+ywmjdzKLFvq4vzX0qOLY+v0lnj1/Qxb0BAAAAWMPevOzji51z0wOZCQAAAAAAAFJz+YLctjOIogGQjj81+20meBkYQGfcxmOJomHIZThvNsr1bhoAgK4hjAYAAAAAQJekiV2l2k6LgFpoP+2EwMZyE5lv02+tAirleD44XoxKbe8zFJ5rKMcL8kYaIUt2olsRPfP2xuffKhxhhV06+XoCANCQNoyWJmA0CNaxnhUWBfphthoOo83kN/Rkf1Y8TLKPzaVOw2gJx+d1e5/Nlt/PNCwJoxkhOe/jVPtI4zv7v6bdtXuCY780/WhFjhNtAAAAAHTFf0mabfo4J+nMAc0FAAAAAAAAAJDVCadL287IdpuJqd7MBQCAYZHlgsI5ztcEgGFAGA0AAAAAgC7pWhitje2M5yZTbbvByWksGv4wWiUuB8dLUfZQ3JHbthtGS/8yS6vvcSfhCEkqGp+/FT5rsMJp7YT3AABYLm0YLU3AaBCsY7lWj69AL80aka31hU292WHCOSNJkcC0z4VCkqLBrcK/DbW4FlxeiPp7v3Lj3CeDy/Mur4dOPbKvcwEAAABw9PKLhec7li3u0RNFAAAAAAAAAEC3OefkXnGtNDmT/kaT072bEAAAwyBTGC3fu3kAALqGMBoAAAAAAF3S6s3+aWNX7Wzn/mMPTLXthlNLZ/Y9AtCOghFAqfqqYh/rgBFGK0altveZc3kV3EhwrJIQRsuiVWisk3DE4vbDty/XF+S9PX8rNNfJ1xMAgAbrcb3ma8s+Xp1hNOvxlTAaBmm2em9w+Ux+Y59nkvy7UMy1fzyZdwXz+Lwcz6faRpr7FWdU37px/C9Jdx/8ub638K3g2PmTl2oyz1V7AQAAAHTV8hf8eaEfAAAAAAAAAIaIe+BD5f7x23Kv/4D0jFe2vsEE554AANY4wmgAcNQhjAYAAAAAQJdYsYyGtHGpVgG1UDTr0qlHaevIiam2P+qKeuzGp6dad9DyRryt5qs6EFfMSEGr8Fgr1vegXF+QjH1aIYWQVj8LnYbRrNvHqqvqD5q3s2IWnc4HAADJDpstf2xaHkprsMJq/WI9HpYJo2GAdtfCYbT1hU092V/SMa8VKSu4kY7DhqUofHxfrqcLo1nHwP0Mo900d705tmP66q7sAwAAAACaLC9mh59AAgAAAAAAAABWLTdzjNwjn6zot9/QOnw2ThgNALDGuQz5HMJoADAUuLcGAAAAAKBLWsWj0salWq0XCrBN5qf1shPfpK/v/ZJ2Vn6guo+Dt90yepzOm3iotowen2oug2YFFGpx1Yx4SekjdPbtx7S3PrdieSVekPdGGC3DlUVaxe+s8EM3tl+OFzQSjYbH6uGvaav5AgCQhvm47qtLPq4u+7jV7fvFOr6oxOU+zwRYVI0Pan99T3BsJr/8/e/dkRxGsyK7nR2bS4vh47312RXLF4wY23LL72calt6v9C6MdiCu6Ct7PhscO3H0VG0rntbxPgAAAACgwTm3UdIpyxbfOYi5AAAAAAAAAAC6ZOs26YffMofdpmP7NxcAAFajscn06xJGA4ChwL01AAAAAABd0jJ2FQiatbOeFU4bz01q+8xV2q6rUu1nGFgBlKqvmuEFqfOwWDE3JgXaCeV4wQwjJEUilms1v2Kus3hE0s9iJV7QlGbMseB8CKMBALogbRitFh8M3z4abBjNenwt19OFmYBum63dZ47NFHoTRktiRXa7cSxp/f4lxZKb1XwtuLzQdL9kh447D6PdvPeL5vOXHTNXZ4osAwAAAEAKT5XUfDn0uyXdOqC5AAAAAAAAAAC6oUUYTVu39WsmAACsSm5iKv0Zn4TRAGAoRK1XAQAAAAAAabQKo6UNArRar9V+jiaFhIBKUgShGPUmLFZJCKMpQxitVfis47Bbws9IUrzFijWkjfoBAJCkYITNlgeLrICRFVbrF+vxtRKX+zwTYNFs9R5zbCbf/zCadXzejecvY8bx8ULKMOHyAGND8/2KmUXrsIvmvdcX5z4ZHBuLJnTB5KWd7QAAAAAAmjjnNkt63bLF/+Z9p89uAAAAAAAAAAADteWk5PGtJ/dnHgAArFaTM+nXJYwGAEOBMBoAAAAAAF1SbBGPShsEaLXeWgqjWQGUmq+aEa+c8iq4kY72a32NywlhtChDGK1V+KzT7/FoVJQz5pMUb7FiFmmjfgAAJLEe16vLgkVWwMgKpvaLFQpNirUCvTRbuze4fDw3qZFotCf7tI4xJakchyNlrZ4npWFtI+3vX9UfDC5fGkYL/9nUDiOn85Py9/SzAzuDY5dMPaJn3ysAAAAAw805d3/n3GMz3maLpE9I2ty0+KCkN3dzbgAAAAAAAACA/nNbtyWv0GocAICj3cRU+nWjXO/mAQDoGjKWAAAAAAB0SbeCZq0iVGspUmUFVGLFWqjvC44VcyU5lz5SFtyG8TWu1BckK4yQYZ+9jt9FLlIxKgXjcVawYnEsHJZYSzE+AEDvmMHTeGmwyAqjWbfvF+v44KA/oLqvKef4kwv6ywqjrc9v6vNMFpXrVmS31PG2x4yw8ELdPrZtVvO14PI09yudhtFunPtkcLmT0/bpR3e0bQAAAACD5Zw7XuFzMLcs+zjvnNtmbGa/9z70BG+rpI87574j6R8k/Yv3/ofGPCYlPVvS67Q0iiZJb/Te/8TYNwAAAAAAAABgWJxxoT120gPkxib6NxcAAFajyZn0646Fz0sFAKwuvEsHAAAAAIAuKRlv1m9IGzQr5VpsJ9d5WGBYFBJCBfvqe4PLuxGOK+XC2yjHC/JWF03pw2ijUTFxvGjsP4tiNGaE0cLBCkmqGGNrKcYHAOgdM4y2LFhU9QeD6w06jJYUCq3EZY3nJvs4G0DaXb0nuHymsLGHe7WPee3Ibucnj1jHo0nR32ZWcLH5+YZ9PN9+GG1vbU7f3PeV4NiZ4+dp08jWtrcNAAAAYFX4kqSTUqx3nKTbjLH3S3pOwm3PkfRnkv7MObdH0ncl3Stpn6QJSSdIepDC54K+23v/hhTzAwAAAAAAAACsdmdeKJ19sfTdr64Yck9+8QAmBADAKjM5nX7diQzrAgAGhjAaAAAAAABdUoySg2Vpg2ZJ2ym4kYFHQfop6XPdV9sTXJ4ULUnLCi9U4gV5xcGxLGG0yOVUjEqqxOXgeDc+h1I0ptnA8ko9HKzw3qtSt+azdmJ8AIDeybvwnySWB4uWh9KO3H71htHK9QXCaOi72dp9weUz+d6F0ZxLCqOFI2WtnielMWbEo5Oiv82sMFo+RRjNdxBG+/KeT6uu8H3a9umr294uAAAAgDVrStLDUqw3L+l3vffv6fF8AAAAAAAAAAB94pyT3voJ+WtfLd18g7R3Vtr2ALnHPk/u6mcNenoAAAxehjCayxJRAwAMDGE0AAAAAAC6pGS8WV/KFjQrRfZ2uhHMGiZJX7P99XAYzYqaZWF9nRfDaGFZwmjS4jx7GkbLGI+o+oNmtKGY8LMNAEBaBTcSXN4cLPLemwGjwoDDaEnHGJWUcSagm2ar9wSX9zKMlsT6PUh6fpOWtY1yPRxjW64aHwwuz0dNYTQj+uZ9e2G0uq/rprlPBcc2FDbrrPHz2touAAAAgDXjVkl/ImmHpPMlpalO/0DS+yS9x3t/b++mBgAAAAAAAAAYBDc2Kffyvx70NAAAWJ0mMsTOsqwLABgYwmgAAAAAAHRJUiwjS+gqad1uRL+GSSGyAyj7jDBaN6Ji1td5MSrWXhhhuVI0pjndl2n/WRSj8HukrDCaFWmTpJKxLQAAsrCCp1V/JFgUqy5vPNamjcz2SjFnPx4SRsMgzNbC73GfKQwqjBY+nrSOS7Owo7/pwmg1Hw4AL71fMcJobR7/f2f/zZqrhY/3t08/WpHLtbVdAAAAAKuH935bD7d9t6TXSpJzLpJ0mqRTJR0naVpSUVJZ0qykXZJu9t6HC9oAAAAAAAAAAAAAcLQbm5QKI1I1fDHdJSZnej8fAEDHCKMBAAAAANAl3QqaFXMJ20kYOxolBVD21cJhtG5ExazvZaVeNsMIi+9LSi8xpNeF73MpCscjrHBLUlRirQX5AAC9kXfhP0k0B4uqvppw+8GG0fKuoIIbWRJya7DCo0CvlOvzZohsJj+YMJqlG89hrOPztL97NeO+pdB0v+KMMFq7YeQb5z5p7HNEl0w9oq1tAgAAAFibvPexpO8f+g8AAAAAAAAAAAAAsIxzTn7zidLPftR65cnp3k8IANCxbO/YBQAAAAAApoIbUaRccKwYlVJvJymwljR2NEoKoOyvh8No3YiKWfGGpHiYlVGwlHLhcJlkR82ysGJm5Xo4HmGFNRbns7Z+7gAAvWE9rtd8Vd4vhodq8eoNo0n2MZ0VHgV6ZXftHnNsfWFTz/Zrx8Ns3TiWtI6Pa76qatz6yn6hoKGU7n6lnSzaXQd+pu8vfDs4dsHkpZrIrWtjqwAAAAAAAAAAAAAAAAAAADAde3K69SYIowHAMMgPegIAAAAAABwtnHMq5cY0X9+3YixLrGvEjSpSpFjxijErdnW0KrgRc2xvbS64vBtfIyveEPqeHJEtEpEUyxvNENLLuv35eF/wZ3Suel/CfIodzwcAACtA5OUVq66c8qp5O4xWiAYfRitF49oXiLPuqc0GH1+BXrnrwM+Cy50iTeXX92y/7YTRunJ8nvB8anftnsOhsWJUUs6t/PNnzdeCt22+X4pc+HpS1fhg5t/vz899whzbPn1Vpm0BAAAAAAAAAAAAAAAAAAAgha3b0q03wQVuAWAYEEYDAAAAAKCLilE4jJYlBuCcUzEa00K8f8WYFew6WuUDUYOGA74SXN6Nr1EpGs98myhjJMKa56grKudymfe/Yvu58Ofwg4Xv6BU/embq7RSjkqIuzAcAgEJkB0+rvqqcSw6jJR0X9IsVHv3YPe/Tx+55X38nAwRM5We6cizZTaUuRH+Tjs//+LYXHf73qCvqzPHzdM2WF2ksNyFJqvu6vBE4toKNzW7ac71u2nN9xhmHnVQ8TdtKp3VlWwAAAAAAAAAAAAAAAAAAADjCHX8/+VYrRZE0fUw/pgMA6FD40ucAAAAAAKAtVuwqSxhNkkq57mxn2EUupyjjyxdWsKT328gaRgvHHYrG9z6rbkX01trPHACgd5LCZrV4MYhWTQyj2WG1funW4zTQKzP5jYOewgrFNqLDy6UNFx/wFX1z/1f0//78Tw/Oha74AAAgAElEQVQvSwouFprCaC7j8Xw7dkxf1fN9AAAAAAAAAAAAAAAAAAAArEnbH996nfN2yI1N9H4uAICOEUYDAAAAAKCLrIhU1kiVuZ01GOPIN8UK0ijluhBeaGMbWUMKVnytWyGybm2nW4E1AACSHtMb4aK0AaNB4XERq91MobdhtHbiYaVc5+Hi0agol+HPmj8sf1f3VX8hSar6g+Z6S++XehtGG89N6oLJS3u6DwAAAAAAAAAAAAAAAAAAgLXKHXuy3Ev/UnLGOaG5vNwr3tnfSQEA2pYf9AQAAAAAADiabCps0Y/Kt6xYvqGwOdN2Nha26OcHdgaWZ9vO0WBDYbN2Hbwj0/qdGnVFTeSmtL++J/Vt1hc2ZdrHppEtweXd+h5vKoS3n1U3vp4AAEjSiBs1xw74iqTkMFrWWGovrMVjMQyXLSPH93T7eVfQZG5K+1IeJxfciCZz0x3vN3KRNhY2657qrtS3ufvgz7WhcIxqvmau03y/siHj8XxWD516pArRSE/3AQAAAAAAAAAAAAAAAAAAsJa5J75QetgvS9/+D+muO+Tvvl0qTcid+0vShY+SGy0OeooAgJTSX1odAAAAAAC0dMH/Ze/O4+yu63vxvz5nlpyTCSQBEsImhB0RAUVQca1KXapWtO5XRa9LW5dbrVWrrVWrVm9rl9vFq7+6XrVqRVGLdUMEpSIugCAqsoY1SICQZLJM5vv7Y0IZJuecOTOZcyYz83w+HueR+X4+78/n8w7JfDmTmfM6ez5ip7H+0p8T9jhlavvssfM+g2VRHjB00rR7m6tO3ONhHdfu1b8iq+tH7vKZpZQ8eI9TO64/pH5Elg/sM6Uzjh16cBaVnf8xvdmf/XSsbhyZvfp3PdzhpD0fOQPdAEBSry1uOTe8fVOSZFvbYLTZf6+XB+1xakpavIMYzLKSWh6y56O6e0YpOWFJ58/Pj19ySgZrrUMRp2Kqz5M3j47dV0ZGOwtcPH7JQ7v2+V2vLc5jl/1OV/YGAAAAAAAAAAAA4F5l1cEppz0v5UVvSu2N/5zaq9+f8oinCkUDmGMEoy0gpZRGKeVhpZSXllLeUEp5aynlNaWU55RSjiilzMirPUopA6WUx5RSXlRKeVMp5Q9LKc8opRwyE/sDAADszu4/dGKeu/KVadSGkiRL+5bnVQe8NXsP7DulfU7a8xH53X1elHqtkWQs8Os1B/5F9uhfOuM97+6evPez88hlT7xPaEEzByw6JK896J2plZn5547TV5yRh+zx6NTS17busMYxedUBb53y/ov7luS1B73zv/9uLCr1PHWf5+eUPR8znXZ3Uit9ee1B78gBiw6Z1vpFpZ6n7fOCPGSP7oZrALBwLKrVW4YO/XeAUYtgtFpqqZX2/0/uhdWNo/KiVa/LUN8es90K3MeSvqV55QFvzr6DB3T9rGetfFlO2uOR6UvrsMKSWh645OQ8f9UfzNi5T9nnuXnE0tM6Dkm8J3Cx1X0lSQZq936NccTiY/PCVa/Okr49d63RCZb1751X7P+mLBvYe0b3BQAAAAAAAAAAAACA+aqzVw4wp5VSHpbkfyX53SSDbUpvLKX8a5K/r6pq3TTOWZHkHUmek2SvFjUXJPlAVVVfmOr+AAAAc8Wjlj8pj1h2Wu4cWZfl/ftkujnUp+19eh6319OzfuSOLOvfe9r7zHW10pfn7fuqPHPFGblt282pqp1rlvTvmWX9Tb8UnbaB2kDO2P+P8rzRV+U3W29tWrO0f/kuhdWtbhyZd67+YO4cuT179i9LX4chD51aObh/3nrI3+XOkXXZMLK+43W1Usu+g/vPeD8ALGy1UsuiWuO/Q9DGG54kGG2gtPun7d46Zelj8pA9H5Xbtt2cbaOtA5egVwZrg1kxsF/Pvl4YqA3kpfu/IZtHh1s+T957YEUafUMzem5f6cvzV/1BnrXyZff5uuD/u+n9Wbvtpp3q77nXbKu2ttxzYvjyw5Y+Lqfs+dgZ+/xeVFuUvQf2nbHwZgAAAAAAAAAAAAAAWAi8unUeK6X0J/m7JH+QpJNXwxyQ5M+TvLKU8pKqqv5zCmc9KcnHkqycpPThSR5eSvlUkldWVbWx0zMAAADmklrpy14DK3Z5n77Sl+UD+8xAR3PfYG1RDlh0SM/PrdcaObDevXNLKV3/M17Wv9eMB8cBwHQ0aoubBqNtniQYbWJ40WwbCxE9YLbbgFnV7efJrUz8umCP/qVNg9HuDVwcablXs3uLz28AAAAAAAAAAAAAAJhdgtHmqVJKSfKZJM9qMv2LJFckGU6yIslJSZaPm983yVmllKd3Eo5WSnlMki8lGRw3XCX5SZKrkyxLcmKS8a/yfkGSPUspv1tV1WiHvy0AAAAAAOawem1x0/F7Aoy2jbYKRvPtDKC5Rm2o6fhkgYvJ7he6CAAAAAAAAAAAAAAAJLXZboCu+Z/ZORTtvCTHVVV1TFVVp1dV9YKqqk5LsjLJS5PcNa52MMnHSylL2x1SSjkwyZm5byja95McW1XVSVVVPXvHGQcmeV2S8a8+eWqSv5zG7w0AAAAAgDmo0SIYbfP29gFG/TXhRUBz9Vqj6fjwJMFotdTSV/q61hcAAAAAAAAAAAAAADA9gtHmrz+dcH1eksdXVXXZxMKqqkaqqvpokscn2TJuamWSV01yzjuSLB93fcGOc66YcMaWqqr+IcmzJ6x/fSnl4EnOAAAAAABgHqj3NQ9GmyzAqL8MNh0HaNSGmo7fE7i4rdradL6/CFwEAAAAAAAAAAAAAIDdkWC0eaiUclySQyYMv7aqWryibIeqqn6U5MMThp/a5pwjkrx43NDWJC+pqmpzmzO+lOTj44YWJXl7u74AAAAAAJgfGrXmwWib/zsYbaTp/EDp71pPwNxW72s0HR+e5L4iGA0AAAAAAAAAAAAAAHZPgtHmp0MnXK+pquqSDteeNeH6iDa1z0/SN+76zKqqruzgjPdNuH52KaXeSXMAAAAAAMxd9Vr7AKNt1dam8wKMgFZaBy4OJ0lGWrxv0ID7CgAAAAAAAAAAAAAA7JYEo81PQxOub5jC2jUTrpe3qX3GhOuPdnJAVVVXJLlw3NBQktM6WQsAAAAAwNzVqE385+sxkwUYCUYDWqm3CEa7J3Cx5X2l5r4CAAAAAAAAAAAAAAC7I8Fo89MtE67rU1g7sXZds6JSyqokx48bGkny/Smcc+6E6ydNYS0AAAAAAHNQvdZoOj68fWOSZKQaaTovGA1opVUw2uYdwWjbRrc2nXdfAQAAAAAAAAAAAACA3ZNgtPnpoiRbxl0fU0pp/mqznT24yV7NPGDC9aVVVW3s8IwkuWDC9bFTWAsAAAAAwBzU6BtqOr55dDhJMlJtazovwAhopdEqGG37WDCawEUAAAAAAAAAAAAAAJhbBKPNQ1VV3Z3kE+OG6kleNtm6UkpfkldPGP54i/L7T7j+dccNjrlqkv0AAAAAAJhn6rXm7+ExPDr2vhvbqq1N5wcEGAEt1PuaB6NtqTZntNreMnDRfQUAAAAAAAAAAAAAAHZPgtHmrzcnuXbc9ftLKY9vVVxKGUjyoSQnjhs+J8kXWiw5fML19VPs77oJ13uXUpZPcQ8AAAAAAOaQRm2o6fjm0eEkaRlg1C/ACGihUWsejJaM3VvcVwAAAAAAAAAAAAAAYG7pn+0G6I6qqtaVUh6b5MyMhZ01kny9lPLvSf49yS+SDCfZJ8nDkrwyyVHjtvhhkmdVVVW1OGLZhOu1U+xvQyllc5L6uOGlSe6Yyj4AAAAAAMwd9Vqj6fiW0eGMVqMZGR1pOi/ACGil3iYYbXh0U7YJRgMAAAAAAAAAAAAAgDlFMNo8VlXVtaWUU5K8JMkrkjw4ybN3PFq5PckHkvzvqmrxSpExSyZcD0+jxeHcNxhtj2nscR+llJVJVkxx2WG7ei4AAAAAAJNr9A01Ha9SZcvo5oy0CjCqCTACmmu0CUbbPLqp9X1FMBoAAAAAAAAAAAAAAOyWBKPNf307HluSVElKm9o1Sf48yb9NEoqW7ByMtnkavQ0nWd5mz+n4gyRvn4F9AAAAAACYYfVao+Xc8OjGlgFGAwKMgBbqbYLRhre3DkZzXwEAAAAAAAAAAAAAgN1TbbYboHtKKacmuSLJvyQ5NZP/eR+U5KNJri+l/M8pHldNvcNprQEAAAAAYI5q1IZazm0eHc62amvTuX4BRkALA7WBlveIzaOb3FcAAAAAAAAAAAAAAGCOEYw2T5VSHpfkW0kOGTd8Y5I3JzkxybIkg0lWJXliko8nGdlRtyLJh0spHyqllBZHbJhw3ZhGmxPXTNwTAAAAAIB5pF5r/U/Jw6ObMlKNNJ0TYAS0U68tbjo+PLopI6PuKwAAAAAAAAAAAAAAMJf0z3YDzLxSyookn0lSHzf8lSQvrKpq/YTyW5N8PcnXSykfTPLVJHvvmHt5kquSvK/JMbtrMNo/J/n8FNccluSsGTgbAAAAAIA2Bspg+tKf7dk5qGjz6KaMVNuarusvvp0BtNaoNbJh+107jW8eHW5zXxGMBgAAAAAAAAAAAAAAuyOvJJqfXp9kxbjrXyR5dlVVm9stqqrqB6WU5yT51rjht5dSPlpV1doJ5RNfXbIiU1BKWZKdg9HunMoezezoc2Kvk/Wyq8cCAAAAANCBUkrqfY1s3H73TnPD21sHow2UwW63Bsxh9dripuPD2ze2vq/UBKMBAAAAAAAAAAAAAMDuqDbbDdAVvzfh+n2ThaLdo6qqbyc5f9xQI8lzm5ReOeH64M7ba1q/rqqqO6a4BwAAAAAAc0yjRYDR5tFN2dYiwKi/CDACWmsVjLZ5dDjbqq1N59xXAAAAAAAAAAAAAABg99Q/2w0ws0opQ0kOmzD87Slu860kjxx3fUqTmismXB8+xTMOnXD98ymuBwAAAABgDmoVYDQ8uikjgtGAaWj0tQ5cHKlGms65rwAAAAAL0tY7ko3X7zw+dL+kNphsW5809ut9XwAAAAAAAAAwjmC0+WdZk7FbprjHxPp9mtRcNuH6gaWUxVVVberwjFMn2Q8AAAAAgHmo0SIYbXPbYDTfzgBam17govsKAAAAsIBsvSu54PnJTV9LUrWvXXZ88sgvJHtMfJ9mAAAAAAAAAOiN2mw3wIy7s8nY0BT3WDLhesPEgqqqbk5y6bih/iSPmMIZj5lw/bUprAUAAAAAYI5qGWC0vXWA0UBtsJstAXPcdAIXB4r7CgAAALCA/PDlyU1nZ9JQtCS585Lk3CclVQe1AAAAAAAAANAFgtHmmaqqNiZZP2H4xClu8+AJ17e0qPvihOszOtm8lHJ0klPGDW1M8o3OWgMAAAAAYC5r9LUJMBptHmDUXwa62RIwx7UMXBzdlG0tgtHcVwAAAIAFY9v65IYvTW3N3Vcmt1/YnX4AAAAAAAAAYBKC0eancydcv6LThaWUVUmeNmH4/Bbln0qyfdz16aWUIzo45k0Trj9XVdXmDlsEAAAAAGAOE2AEzLRGi/vK5u2bMuK+AgAAACx0d1+ZtHhTirZu+PLM9wIAAAAAAAAAHRCMNj99dsL1c0opL5xsUSllUZJPJlkybnhDkq83q6+q6sokHx83NJjkY6WUepsznp7kJeOGtiZ5x2S9AQAAAAAwP7QKMBoe3ZjR+7wXx736S383WwLmuHpf68DF1sFo7isAAADAAnHNJ6e3bsNVM9sHAAAAAAAAAHRIMNr89G9JLhl3XZJ8opTy96WU/ZotKKU8NskPkjx+wtT7qqq6o81Zb08yfv7hSb5VSjl6wv6LSimvSfL5Cev/pqqq69rsDwAAAADAPFJvEYy2YeSulmv6y0C32gHmgUat0XR8c5tgtIHaYDdbAgAAANg9rPtJ8su/n97a6z83s70AAAAAAAAAQIe8Ffo8VFXVaCnlWUm+n2TljuGS5LVJXl1KuTTJ1UmGk+yV5MQkq5psdXaS901y1g2llNOTfD3JPa8gOTXJz0spP95xztIkD0qyYsLyryb5s6n97gAAAAAAmMsaLYLR7t7eOhhtoAgwAlqr14aajm8eHU6txftECVwEAAAAFoQrP7hr6++4OFl+wsz0AgAAAAAAAAAdEow2T1VV9etSyqOTfDLJSeOmaklO2PFouTzJh5P8r6qqtnVw1rmllGck+VjuDT8rO849qcWyzyR5eVVV2yfbHwAAAACA+aPe1zwYbcP2u1uuEWAEtNOoNZqOb6u2pqQ0nXNfAQAAABaEdRft2vrbLxKMBgAAAAAAAEDPCUabx6qq+kUp5WFJnp/kVUkemrR49ceY4SRnJvnHqqp+MMWzzi6lPCDJO5I8J8nyFqU/SPLXVVV9YSr7AwAAAAAwPzRqzYPRqoy2XNNffDsDaK1eG2o5V6VqOu6+AgAAAMxLN5yV3PDlZPjmseu7rmhde8L7k4v/pP1+P3xFcvl7kqX3T6oqGdmQ3Hb+2Nzx702OeGUy2OpHhgEAAAAAAABgevzE/zxXVdVIkk8k+UQpZWmSk5KsTrIsyaIkdye5I8llSX62o366Z61N8vullNclOTXJwUlWJdmY5MYkP62q6ppd+O0AAAAAADDH1VsEo7XTXwa60AkwXzT6GlNeM1AGu9AJAAAAwCy6/L3JJX/aWe2Bz0iO+eOk1JKfvjFpES6fJNl47dhjokveklz/ueTx5yUDS6bRMAAAAAAAAAA0JxhtAamq6q4k3+7BOVuTfKfb5wAAAAAAMPc0BKMBM6xRG5ryGvcVAAAAYF7Zdndy+bs7rz/pH5JSkmPekBz20uScJyTrfjz1c+/4aXL5XyYn/NXU1wIAAAAAAABAC7XZbgAAAAAAAFg46tMIRhuoDXahE2C+WFRrTHmNYDQAAABgXrn9wmRkY2e1tUVJY/97rweXJ4e/cvpn//x9yfAt018PAAAAAAAAABMIRgMAAAAAAHqm0Tf1YLT+0t+FToD5oq/0ZbAsmtIa9xUAAABgXth6V3L9F5ILX9H5mgN+JykTfoR8/yfvPDYVX9wvWfOlZNvd098DAAAAAAAAAHYQjAYAAAAAAPRMvdaY8pq+CDAC2mvUpha6OFAGu9QJAAAAQI+s/1XytROS7z0r2XhNZ2saByQPfOfO44sPSI5/z671c/4zkq8/JNl43a7tAwAAAAAAAMCC55VEAAAAAABAz/SV/gyWRdlabemovr8MpJTS5a6Aua7etzh3bb+j4/r+MtDFbgAAAAB64OI3JxuvbV+z9AHJ/k/a8fH9k/2fktRXNK+9/5uSlY9NLv6TZO13p9fT+l8ml749edjHprceAAAAAAAAACIYDQAAAAAA6LF6bXG2bu8sGG1AeBHQgUZt8ZTq+2vuLQAAAMAcNrotufErk9cd8NTkhPd0vu8+Jycnfyj56lHT7+2GLyVVlXjDCwAAAAAAAACmSTAaAAAAAADQU42+xVm//Y6OavsFowEdqE81GK34NikAAAAwTaPbk/VXJNvuSqrRGd68JKUv6R9K+hYlm9c2L9t8a1KNTL7dykdPvYUlhyWNA5LhG6e+Nhn77zJ8c7J4/+mtBwAAAAAAAGDB8xP/AAAAAABAT00lwEgwGtCJxhTuKyUlfb5NCgAAAEzH2vOSb00jbGw2rDg1WfX4qa+r9SUPeFty0e9P/+wvHZA8+P8kR716+nsAAAAAAAAAsGD5iX8AAAAAAKCnphJgJBgN6MRUAxdLKV3sBgAAAJiXtq1Pvv3Y2e5icqtOS1Y+Kjn69WMhZ9NxxKuSxv7JdZ9NNl6T1FclBzw16asna85MUiVb70xu/XbrPX78mmT5A8d6AQAAAAAAAIApEIwGAAAAAAD0VL3W6LhWMBrQiUbfVILRfIsUAAAAmIYbzkqq0dnuor29T05+6+szs9eBTxt7THTI8+79+MuHJxuuar3HtZ8SjAYAAAAAAADAlNVmuwEAAAAAAGBhadSGOq4dEIwGdKBem0owmvsKAAAAMA1X/stsdzC55SfuXuet/0Vv+gAAAAAAAABgXvF26AAAAAAAQE/V+xod1wowAjpRr3V+Xxkog13sBAAAAHZDo9uTn709ueYTSaklB56enPBXSZ+vkZvaeH1y0R8ma7+bjNw92910rvQnh7+it2ce8apkzReSVM3n156XfLq0Xr/02OSo1yWHv7wr7QEAAAAAAAAwN9VmuwEAAAAAAGBhadSGOq7trwlGAyY3pfuKwEUAAAAWmkvenFz+7mTTmmTjdckv/za56JWz3dXuafuW5JuPSG766twJRSt9yd4nJ4/9WrLXg3p79qrHJY/89+mvv+vy5IevSK7++Mz1BAAAAAAAAMCc1z/bDQAAAAAAAAtLvdbouFaAEdCJqd1XfIsUAACABaQaTa76yM7j1/y/5IT3J/UVve9pd3bjl8cC5KbqoNOTUz83vTNHtyafW9y+5og/TB78983nSknKLL5X9kGnJ0+5PPmPY6e/x6/+KTn0xTPXEwAAAAAAAABz2ix+FxwAAAAAAFiIGrWhjmsHBKMBHWj0dX5fEbgIAADAgrJ5bbJ13c7j1Uiy5gu972d3t+4n01u3+iVJrW96j/5GsuTw9vsvPab1+tkMRbvH0Oqktmj66++8OBndPnP9AAAAAAAAADCn7QbfCQcAAAAAABaSeq3Rca0AI6ATU7mvDNQGu9gJAAAA7GaqkdZza8/vXR+7s6pKrvpocv4zk5//1dTXDyxL9jtt13o45AWt52oDyf1+b9f277b+RnLQ6dNfP7otWX/FzPUDAAAAAAAAwJwmGA0AAAAAAOipRt9Qx7WC0YBONGpTua/0d7ETAAAA2M2MtglGu+7TybYNvetld/WTNyQXvjRZc+b01j/260nfol3r4di3JIe8cOfxgaXJo85K6it3bf9eOOkfk30fO/31Zx+XjGycuX4AAAAAAAAAmLP81D8AAAAAANBT9Vqj41oBRkAnpnZfEbgIAADAAlK1CUZLkjX/nhz6kp60slvavDb51f+ZvO6YP0n2f9K916WWDC5Plh479vGu6luUPPyTyYM+kGy+JamqpNqWLDs+qc2RfyNdtFfyuHOSTTckd/96bOw3FySXvLXzPa7//ML++wgAAAAAAABAEsFoAAAAAABAjzVqQx3XCjACOlGvLe641n0FAACABWXb3e3n1353YQdR3XbB5OFxSbLfbyf7Pqbr7aS+Yuwxly0+cOyRjIXHTSUYbaH/fQQAAAAAAAAgiWA0AAAAAACgx+q1Rse1A2Wwi50A88WiWj0lJVWqSWvdVwAAAFhQNq1pP7/h2p60sdsYHUlu/npyw1nJHT9J1v148jWL9k5WnNr93uajZcclQ6uTjdd0Vr+hwzoAAAAAAAAA5jXBaAAAAAAAQE81+oY6ru0vA13sBJgvaqWWRbVGNo9umrS2v/gWKQAAAAvIxusnmb+uN33sDkaGk+89K7np7M7X1BYlJ38o6VvUvb7ms1JLTvlQct4zkpENk9dvvLbrLQEAAAAAAACw+/NT/wAAAAAAQE8NlkUpKalSTVorwAjoVKO2uMNgNIGLAAAALCCb1kw+P7o9qfX1pp/ZdP1npxaKdvKHklWPT5as7l5PC8Gqxye/c0Vy8zeT4RuTxQcm29YnP37dzrWb1iSj25Kaf78BAAAAAAAAWMi8mggAAAAAAOipWqmlXmtkWIARMIPqtcUd1fWXwS53AgAAALuRTde3n69GkuGbkqGDetPPbLrxK53XHv/u5PCXd6+XhWbxgclhZ9x7fedlzeuq0bFwtCWH9qYvAAAAAAAAAHZLtdluAAAAAAAAWHg6DTAaqAkwAjrT6DgYzXtHAQAAsABsujG58ezkun+bvHbjtV1vZ9YN35ysObPz+n1/q3u9kAwd0npuwzU9awMAAAAAAACA3ZNgNAAAAAAAoOc6DUbrLwNd7gSYL+p9nQYuuq8AAACwANx6bvLdp3RWu/a7XW1lVo1uSy54YfLF/Ttfc8DTkr1P6V5PJANLkkUrms8JRgMAAAAAAABY8ASjAQAAAAAAPdfoOBitv8udAPNF5/cVwWgAAABwH5f+2Wx30D1X/E1y7ac6q73f7yUn/VPyyC8kpXS3L5Ilq5uPbxSMBgAAAAAAALDQeTURAAAAAADQc/U+AUbAzKrXGh3V9ZfBLncCAAAAc9Cmm5LF+892FzNvzZmd1z7ic93rg50NrU5u/+HO4xsEowEAAAAAAAAsdLXZbgAAAAAAAFh4GjXBaMDMqnd8X/HeUQAAALCTu3812x10x92/7KzumDd2tw92tmR18/E7f9bbPgAAdldVlYxsnO0uAAAAAABmhWA0AAAAAACg5+q1Rkd1A4LRgA51GrjovgIAAABNbLx2tjuYWWvPT84+Idm2fvLavsXJYS/rfk/c19Ahzcfvuiw565Dkl//Qy24AAHYf1WhyyduSL+6ffG5J8pUjk2s/PdtdAQAAAAD0lGA0AAAAAACg5xq1oY7q+gUYAR2q93UWjOa+AgAAwIJQ+pK+xn0fex7Tun7DtT1rres2XJuc++Tkzksmr131hOTx5yZ7HtXtrphoyerWcxuvS378uuSqj/auHwCA3cXP3plc/u5k8y1j13dfmVzwguSmr89uXwAAAAAAPdQ/2w0AAAAAAAALT73W6KhOgBHQqUat02C0wS53AgAAALuBQ5479pjo/Gcla76w8/jGa7veUs/8/L3JyIb2NU++LFl2bG/6obmhNsFo9/j1/00OO6P7vQAA7C6qKrnqQ83nrvpwsv9v97YfAAAAAIBZUpvtBgAAAAAAgIWn0TfUUZ1gNKBT9Y6D0bx3FAAAAAvY0CHNx+dLMNrm25JrPjF53eDy7vdCe0MHT15z56Vj4SAAAAvF5rXJ8M3N5275dm97AQAAAACYRX7qHwAAAAAA6Ll6rdFRnWA0oFONDoPRBtxXAAAAWMhaBaNtuKanbXTNlf+SbN88ed3gsu73Qnt9g0n/kmRkQ+ua7cPJ5luTxqre9QW74pZvJ7/+cLL+ipDAke0AACAASURBVPuOb7sr2XjdfceWHZ+c/MFkn4f2rj8Adn+3ntN6btudybYNycCS3vUDAAAAADBLarPdAAAAAAAAsPA0akMd1Q3UBBgBnal3GIwmcBEAAIAFbcnq5uPDNySj23rby0zbvjm58p86q+3r7I0b6LJHf2Xymiv+uvt9wEy44cvJd347uf6zyZ2X3vcxMRQtSe68JPnGw5K15/W+VwB2T5tuTC54fvuasx+QVKO96QcAAAAAYBYJRgMAAAAAAHquXuvshYcCjIBONfo6DEarDXa5EwAAANiNDR3SfLwaTdb9pKetzLhrP5VsXttZbSnd7YXOLH3A5DW/+Jvu9wEz4fL3JtX2qa8T/gfAPX76x5PXbLxOqCYAAAAAsCAIRgMAAAAAAHqu0TfUUZ1gNKBT9VpnwWgDpb/LnQAAAMBubMkhSVqEgl32zl52MrOqKvnFBzqrXfbA7vZC5xbtnQwsnbxuZFP3e4FdsX1rcvuF01t741dmthcA5qY7Lk6u+7fOam/7Xnd7AQAAAADYDfipfwAAAAAAoOfqtUZHdQOC0YAONToMRhO4CAAAwILWP5SseHhy2/d3nrvp7GTt95KVj+h9X7ti45rkh69M7vp5Z/X7P6m7/dC5UpKDnplc/ZH2dec+JVn5yGTVaXPv7yfz0y3fTm49J9l659j1yIYk1fT3++Grkr56sufRyfbhZMu6ZNVvJfs+dufakU1jwTmXvyfZeE0yuFey5zHJsuPGPt7vCcnKR02/FwB6b8M1yddOnFo9AAAAAMA8JxgNAAAAAADouUZtqKM6AUZApwbKYGrpy2i2t61zXwEAAGDBO+ZNyW1Paz536VuTx507Flg1F6z7SfKd3062/Kaz+hWnJsf+aXd7Ymoe+M5k3Y+SOy9tXbP23LHHZe9Kjn9PcuxbetUd7OziNyc/f9/M7vnr/7vz2OV/mdz/LckJ77l3bOudybcefd/Ply2/SW47f+xxz7rj3pEc9+cz2yMA3XHb95NvTjH4dcPV3ekFAAAAAGA3UpvtBgAAAAAAgIWnXmt0VCfACOhUKSWN2uJJ69xXAAAAWPAO+J1k74c2n1t7XnLLN3vbz6645G3tQ9EOembytGuSh38qefx5Y6FvA3v2rD06sPiA5LQfJL/1rc7qL/3zZPiW7vYErdx91cyHorXz8/cmG6659/qqj7QPEbzHZe9INt3Yvb4AmDkXv2nqazZeM3kNAAAAAMAcJxgNAAAAAADouYEymL70t62ppS+14lsZQOfqfZMHow0IRgMAAGChKyU54T2t5y/506SqetfPdI1uS275Rvuao1+fLDkkOeT5ycpHJrX2/ybJLOlvJKsel6x89OS11Uhy8yR/7tAtN/9n78+84cv3fnz95ztbU436PAGYC7bemdz2/amv27Rm7LkwAAAAAMA85rv7AAAAAABAz5VSUu9rZOP2u1vWCC8CpqpRa0xa0+/eAgAAAMm+j032fVxy67d3nlv34+SGLyYHnd77vjo1Mpxc95mk2t66Zu+HJise3rue2HWrnpCs/e7kddf9W3LI85Kaf+chyfYtye0XJrXBJCUZ3ZLsfXLSV98xvzVZd1Gycc2un3XLN6dWv+z45M5Ldu3Mn/5xUt937OPbf9D5unU/Sg47Y9fOBqC77rys/fxJ/5T86A93Hq9Gk43XJ3sc1p2+AAAAAAB2A4LRAAAAAACAWdGoLW4bjCa8CJiqem1o0hr3FgAAANjh+Hcn32gSjJYkl7wtOeDpSa2vtz114vYfJd99SrJ5bfu6kz/Ym36YOYe/PLn2k8n6X7avu/lrydnHJY/5WrJkdW96Y/d0x8XJuU9Ohm++73h9VfKYs8fC0c59UrLxut73tuTw5NFfTn5wRnLrOdPfpxpJLnje1Ndd+c/JsuOSI141/bMB6J7f/CD51iNbz9//LcmhL24ejJYkt35HMBoAAAAAMK/VZrsBAAAAAABgYarXFred768JLwKmpl5rTFojGA0AAAB22OeU5MCnN59bf0Vy3ad7208nqtHk+8+ZPBTtaVcly4/vTU/MnPrK5AkXJCf+TXLwJEFQ63+Z/FDg04JWVcn3n7tzKFqSbL5lbO6/XtybULSlxyYHPWvscfBzkxP/d3LaBcnQ/cYC/E7+v8nyB913TW0wOeiZycpHd6+vi35/8qBBAHpvdHvyvWe3rzn+3Un/UFLft/n8D18+830BAAAAAOxG+me7AQAAAAAAYGFqTBaMJrwImKLJ7yv9KaX0qBsAAFg4ytgT7TcmqY8b/kRVVdfu4r6rk/yPcUObqqr6613ZE5jgge9KbvhykmrnuUvfntzvOUnfYM/bamndT5INV7ev2fuUZMmhvemHmbdor+SY1499vM/Dkx+/pnXtLd9MtqwbW8PCc9dl7UO/7v5V73o5+o+Sw17WfK5vMDn8FWOPZrZvST5bbz43E677XHLcn3VvfwCm7vYLk01rWs/v96Tknu9nDa1ONt/avM7zIAAAAABgHhOMBgAAAAAAzIq6YDRghtX73FcAAGCWPD/JX+XeZKUzdzUULUmqqrqmlHJcktPvGSulXF1V1Zm7ujeww7LjkoOfl1z36Z3nNl6TXP2vyRG/3/u+mhndnqw9d/K6vU/peiv0yD4PnaSgSu7+dbLo5J60QxdVVbJ5bbJo72TbXcn2zZOvWfPF7vfVqb134e9g36LkIf+SXNSle+3dV3ZnXwCmb/0v2s/vM+757NKjk9t/0Lxuw1WTB6ONjiTVSNLXxRBOAAAAAIAuEIwGAAAAAADMisYkAUYDxbcxgKlpCFwEAICeK6XUkrzznsskv0ry4hk84iVJjk9y+I7rdycRjAYz6YHvSK7/bFJt33nusnclq1+c9Lf/mrurRkeSn74xufojybb17Wv7h5IjXtmbvui+vR6crHx0sva7rWu+cUpy+q1JfWXv+mJmXfWR5NI/S4Zvmu1OpmfVE8ZCJnfFoS9Nrv1Uctv3Zqan8a79ZPLwT8z8vgBM3ej25OI3Jb/4m9Y1g8uTQ8+49/qYNyZXf6x57c/+InnMf7Q4ayT58euSa/9fsn1Lsv8Tk4d+LBlcNs3mAQAAAAB6qzbbDQAAAAAAAAtTfdIAo8EedQLMF5PfVwSjAQBAFzw+yeok1Y7HW6qq2jRTm1dVtTHJm8cNHVlK+a2Z2h9IssfhyWEvaz43fHNy5T/3tp+JfvYXyS//bvJQtAN/N3n8ecnS+/ekLXqglLGwj6P+V/u67z6tN/0w8276WnLhy3obilYbSOr77vpj6bHJ0a9PHnXWrvfUNzi2z+Gvuu94s3MXrdh5/arT2u+//spd7xGAXXfZu9qHoiXJEy5Ihu5373W757Y3nZ3c/M3mcz/9k7Hn8dvWJ6NbkhvOSs5/5tR7BgAAAACYJf2z3QAAAAAAALAwNQQYATNssvvKgPsKAAB0wwvHffzjqqq+ONMHVFV1Zinlx0kevGPoBUnOmelzYEF7wJ8lV398LDRhosvfmxz+imRgz973VVXJVf86ed2Rr01O+vvu90Pv9Q8lD/7b5O4rk5v+o3nN7Rcmd16WLHtAb3tj13Xy+T3TDvq95NRP9f7cySzaKzn5X8Ye03Hj2cl3n9J87ppPJMe/a/q9ATAzrv5I+/mj/ihZevTO4/s/eSwErdWe+z3hvmNVlVz/bzvX3npOMnxL0ljVWb8AAAAAALOoNtsNAAAAAAAAC1N90mA07+8CTM3k9xXBaAAA0AVPHPdxN9NN7tm7JHlyF8+BhWnxgckRf9B8buu65IoP9Lafe2z5TbL5lsnrBGLNf8uOaz9/58960wcz69bv9P7M+Xq/WHZs67m7fH4AzLqtdySb1rSvaXUvb/c8qNlzoK13JMM3N6+//vPtewAAAAAA2E0IRgMAAAAAAGZFQ4ARMMMafe4rAADQS6WUg5PsM27oq108bvzeK0spB3XxLFiYjn1L0r+k+dxl70juuLh3vYxuTy5/b/LFVZPX9g8l93tW93tidq1+UVLa/Oj7Bc9PfvjKZPPa3vXE1Gy4NvmvlyRfPTo5a/XYY+u63vZQ+pNDnt/bM3tl6ODWczeclVSjvesFgJ3dck77+f4lyUHPbD53yP9ove6uy5Oq6ryPanvntQAAAAAAs0gwGgAAAAAAMCvqkwQYDQgwAqaoLnARAAB67fgdv1ZJrqqq6sZuHVRV1Q1Jfj1u6IRunQULVn1FcvQftZ7/2onJltt708sPX5Fc8qeTB/nscWTyW+ckg8t70xezZ+kxyaPOal/z6w8l33hYMrKxNz3RueFbx/5srvl4sv6XycZrxx69tPh+yWP/s32A2Fz3oL9tPfej1/auDwDua/jm5Httgnz3OCJ53DnJ4LLm88uOTe7/5tbrb/nmhIEpBKUBAAAAAOym+me7AQAAAAAAYGFqTBpgNNijToD5YvL7imA0AACYYSvGfXxTD867KcnhOz5e2YPzYOE5+g3Jr/4x2XpH8/lrP50c9Zru9jB8y1h4UjulP/ndNUljVXd7YfdywO8kR7567O9oKxuuTq7/QnLoi3rXF5O75hPJ5lumvu4Rn0+WHT95Xf/ipBoZ+7j0JyObdp5ffMDUz59r9jqp9dyV/5Q88B3Jor171w8AY65u89x2YM/kqb+afI8jX5P8/K+az132rmS/0+69rrZPrT8AAAAAgN2QYDQAAAAAAGBW1CcLMKr5NgYwNfVao+38gGA0AACYacvHfTyNtJMpG3/Gsh6cBwvP4NLk/m9KLn5z8/nf/Ff3g9Fuv2jyMIf9nyQUbaHa44jJa37zX4LRdje/+a/prVv5qKQuC7Vjexzefn7dT5L9ntCbXgC4V7v/D654RGd7tHvuu+W2+16PjnS2JwAAAADAbqw22w0AAAAAAAALU2OyYDQBRsAUNWpDbef7a+4rAAAwwwbHfdyLn0ccf8aiHpwHC9ORbYLPrvtMctPXZ/7M7VuSqz6SXPiK5LynTV5/v9+b+R6YGw46ffKaX38w+Ux/ctm7k613dL8n7mv85/MFLxp73Pa9qe+z8jFC0aaqsSpZ8cjW87/8h6SqetcPwEK36Ybk5/87ufHLrWs6fV5baklfizcIWv/LZP2v7r2uBKMBAAAAAHOfYDQAAAAAAGBW1CcJRhsQjAZMUb3VC0J2ELgIAAAzbtO4j1f04LzxZ2xqWQXsmv7FyVGvaz1/7hOTS/9i5s7bvjn5zhOTC1+WXPXhyesPPSM5+Lkzdz5zy+IDkwe+a/K6anty6duSrxyZDN/S/b4YM/Hz+dpPjj223Da1fYZWJyd/sDs9zncnf6j13E1fTX7yht71ArCQ3fXz5D8fklz8J61ragPJIS/ofM9HfL713FePSm6/aOxjwWgAAAAAwDwgGA0AAAAAAJgVjb72wWj9ZbBHnQDzRX8ZyECbe4dgNAAAmHHjk2YO7sF548+4tQfnwcJ1wO+0n7/83cnwDH0arjkzWXvu5HW1geQpVySn/OvYxyxcx76189otv0muFLDVM51+Pt/j2Lclp3xk7PGwTyYP/WjyuO8kT7k82fOorrU5ry09OjnwGa3nf/m3yYare9cPwEJ1+XuSzZOEsz7u3Kk9r93nYe3nL3nb2K+j7YLRqs7PAwAAAACYRYLRAAAAAACAWVGvNdrO95f+HnUCzCft7i0DgtEAAGCmXbXj15Lk4FLK4d06qJRyWJJDmpwNdMOSQ9vPVyPJrefMzFk3/Wdndcf+2VjgTykzcy5zVylJfWXn9Vd/tHu9cF83f31q9Ue8MjnsjLHH6hcmh74k2fcxSX/77x8wiaX3bz9/8zd60wfAQnZzB89xJ3vOPdHg8mRgaev5284f+7VqF4wGAAAAADA3CEYDAAAAAABmRV/pz2BZ1HK+X4ARMA2N2lDLOfcVAACYcZck2Zqk2nH9tC6e9bvjPt6W5OIungUMrU72OLJ9zZX/lIxs2rVztqxLrv1kZ7X7P2nXzmJ+OfgFndduur57fXCvajRZ84XO65c+IGkc0L1+FrL9nth+/uqPJSPDPWkFYEHZekdyw5eTm76WbLm9fe3yE5LGqqntX0r758TbN4/9OioYDQAAAACY+wSjAQAAAAAAs6ZeW9xybkCAETAN9Vqj5ZxgNAAAmFlVVW1N8t0kZcfjT0oprdOKp2nHnm/MWABbleS8HWcD3VJKcuJfJ7XWb2yQ276f/PteyfpfTe+Mm7+ZnHVIZ7WrX5zs9eDpncP8dPQfJUsO67z+yg92rxfGQhLPe0YysrGz+r56cuL7x+41zLwVpyYHP7f1/O0XJl87Idlwde96Apjvbvl28qWDkvOenpz75Pa1fYuTE943vXOOfVubySqpqqQSjAYAAAAAzH2C0QAAAAAAgFnT6GsdjCbACJgO9xUAAOi5z+z4tUqyIsn7u3DGXyVZmbHwtST5dBfOACY68KnJEy9qXzO6JfnRq6e+9+i25L9emIzc3bqmvio58rXJI89MHvpRAUrc19BByWk/SE76x2Tfx+be/0W0cNHvJ5tv60lrC9KVH0xu/HLr+f2elBx6xtjjge9KfvtHyf5P6l1/C00pycM/1T488O5fJT/+o971BDCfjW5LvvfszgJCj3tH8sQfJfudNr2zlh2bPLzdl8RVMioYDQAAAACY+/pnuwEAAAAAAGDhqtcEGAEzq919ZcB9BQAAuuHTSd6dZFXGUmleVUq5saqq98zE5qWUNyf5w4wFr5Ukt0YwGvTOsuOSB30g+cnrW9fc8s1k6x3J4PLO9117frJ5bfuax30nWXp053uy8NT3SY78w7HH1juTf5/k7+CNX0kOe2lvelto1nyh/fyDPuDzuddKLTnmDclFf9C65qb/SEY2Jf2t/00VgA6sPT/Zum7yuqHVyXF/vuvnDd2v9Vw1mlSC0QAAAACAuU8wGgAAAAAAMGsagtGAGSZwEQAAequqqq2llLck+VjuDS97VynlgUl+v6qqO6azbyllWZJ/TvKccftWSf60qqqtM9E70KF9Tp285pZvJUsfkCxZnfTV7x0f3ZZsWZc09h0LaRi+JRndOhZQ1U59ZbLHYbvWNwvL4LJkz2OS9Ve0rrn5G8mhZySjW5IN17TeZ+tdGftfTpLFByYDe8x4u/PGtg3JpjXJby5oXePzefbs8/D289X2sc+FZcf2ph+A+WrNmZ3VrZjkvtyxWuspwWgAAAAAwDwhGA0AAAAAAJg19Vqj5dxATYARMHVtAxfdVwAAoCuqqvpEKeUZSZ6ee0PMfi/J40spH0ny4aqqruxkr1LK4UlekeSMJHvl3kC0KslXqqr62Mz/DoC29n5IsvzE5I6ftq753rPHfq0tSg57WfLgv0su+8vkF3+TjGyc+plH/3Hi63im6v5vSn7wktbz13927DEVpS858OnJQz8mIG28bRuSH5yR3PDFsXCtdnw+z57lxyf7PTG5+T9b15z9gOTBf58c9dre9QWwUB31upnZp5TWc+c8LjnyNa3nq9GZ6QEAAAAAoMsEowEAAAAAALOmURtqOddfvFAKmLp6u2A09xUAAOim/5HknCQn5d5wtL2SvCHJG0opNyf5YZIrkty545EkS5MsS3JMkpOT7L9j/J5Xet+z14+TvLDrvwtgZ6UkT/h+8rnWX3P/t9EtyZX/PBaWNHzz9M576EeTQ18yvbUsbIe+eCy87Pxnztye1fZkzZlJrf7/s3ff4XFddf7H32ekkVXcbcklbrHTnR7SExISUigJoZelZhd2YYEsS1nI0kLgt7CFXcrCshD6AqEEUoFU0kmB9B7HvUlx72rn98fISI7vHc2MZkYa+/16nvvo6nzPPeer2BnZ8tzPhZP/r3zr1rr73gdLfzn4vPkXwyEfrXw/Svfi38BjX4BHL02f86eLoGUOzDi/am1J0l5nv7/LBQ6XRSa91HFH7kjT21WmHiRJkiRJkiSpsgxGkyRJkiRJkiRJw6axrim1ZoCRpFI01aXfpJ31dUWSJEmqmBjj5hDCmcD3gVeTCzSD/oCz6cCr+o40YcD5wOuvBN4RY9xctoYlFac+/ed4iUoNRZt/saFoGpqZr4Hj/hfufU951136S+j6FmRHl3fdWtS9BZb8vLC5h36qsr1ocHWj4PDPweo/QMft6fMW/sBgNEmqpNlvKN9aIU8w2mBid/n6kCRJkiRJkqQKGsJPQiVJkiRJkiRJkoamKdOSWjMYTVIpGjPpwWi+rkiSJEmVFWPcFGN8LfBhYBu5ULM44KBvLOngBXMDsB34WIzx1THGjdX6OiSl2Pcdld9j/OGV30N7vvFHlH/N3k7Y/Gz5161FmxZA747B5405AOoaK9+PCjPY6+uGx6rThyTtiXo7B58zbn759htKMFqvwWiSJEmSJEmSakP9cDcgSZIkSZIkSZL2Xo2ZptRa1gAjSSVoMhhNkiRJGnYxxv8MIfwQ+AfgfcCEgeWUy8KA83XAN4CvxBifr0yXkoo270JY+IPKrT+qFfY5v3Lra+8x6VgYfxisf6S86/72qN3HRk3afSzTAJOOg8O/AOPLGIIynLatggc+Bh23wZbFhV0z768r25OKM+9CePabEHuT6xufgmVXw4zzqtuXJO0Jutbnr8+4ABrbClpq2faFXP38T1iy/Vm62T3ELBsamFs3lfNGtTBlx5bie40Go0mSJEmSJEmqDQajSZIkSZIkSZKkYdOUaUmtGWAkqRT5Ahd9XZEkSZKqJ8a4BvhUCOFzwPHAacDJwD7ARGBnksxaYA2wArgTuBW4J8bYWfWmJeXX9mI4+Wdw55vKu27IwMTj4MTvQ3363+ulgoUAL/k93P1OWHV9ZffasSZ5fNmVsPoP8PKHoWVWZXuotJ7tcMPJsPm5wuaPmgz7vxcO/khl+1JxJh4Np/4GbssTQHnb+XD6dTD9ZdXrS5L2BJ3r8tdP/FFBy7R3ruQ/lnyCHXF73nl/7l7DsweewsefuJXxXfnn7sZgNEmSJEmSJEk1wmA0SZIkSZIkSZI0bAwwklRujZnm1FrW1xVJkiSp6mKMXcAdfYekWjf7jbmjexv07oCeHfC7Y2Db8tLWO/abMOetkB1d3j6lpmlwxu+h465cqFea5lnQ2wnbV5W/h64N8Nz34LDPlH/talp2ZWGhaOPmw5k354LRQqbyfal4M86D1z4Pv5qcPueprxiMJknF6lyfv17gn3XvWP/7QUPRdtqYbeTB8dM4vWNhQfP/otdgNEmSJEmSJEm1wX9xlCRJkiRJkiRJw6apriW1ZoCRpFI01aUHoxm4KEmSJElSmdQ3QcN4aJoCYw8sfZ3pLzcUTZU1bn7+kK6xB8L8iyu3/5p7K7d2tTx/T2HzWk+FxjZD0Ua6hom5I82a+6rXiyTtKfKFBB92ScHLLNr+dFHbLm0eV9R8AKLBaJIkSZIkSZJqQ/1wNyBJkiRJkiRJkvZejZmm1JoBRpJK0ZgxGE2SJEmSpKqa/UZYfXPx1006AVpmlb8faaCGcTDtZbDi2uT67Dfm6n/+EMSe8u/fcSfcdsHu443TYMb5MP1l5d+z3Bb9qLB5s99Y2T5UHiHkfq2e+WZyvXMtdG02tFKSCtW9DbatTK/PflPBS7V35lknaetSwkh7DUaTJEmSJEmSVBt8HJMkSZIkSZIkSRo24+onJI5nyNBYlx5uJElpRteNJZPyz6Cj68ZWuRtJkiRJkvYCc98Fcy8s7pq6Zjjxh5XpR3qh4/4Hxh+2+/i8d8O+74Dm6XDijyHTUP69uzbAsit3P579H/jDy+Hxfyv/nuW08Eew4/nB5x3+eWg7rfL9qDyO+AI05wmm3LK4er1IUq3bsii9dvBHYewBBS2zvXcbG3vWFbV1d6auqPkAxK7ir5EkSZIkSZKkYVA/3A1IkiRJkiRJkqS916TsFKY1zGRl59Jdxuc1HUxjpmmYupJUy0ZlGjmg+TCe3PrQLuNt2elMbpgyTF1JkiRJkrQHy2ThhMvgsE/D2gcgdvfXenZA73bIjoXYC91bYNwhMPFFkPFtzKqS5hlw7gOw/mHYvABCPUw8Blpm9s+Z8ybY5+Ww5j4Ysx+0zIbt7XBFAT9POuar0LMdHvxY8b09+jnY/72QHV38tZXW2wMPXZxe3+c82O89MOk4aGyrXl8auoYJcN4zcPmo5PqWxTB+fnV7kqRatf7h9Nrhlxa8TEfnytTa3MaDeG77k7uNd4XkBwXl1ds9+BxJkiRJkiRJGgF8R4EkSZIkSZIkSRpW75j2D3x92efY3LMBgAn1k3nr1PcPc1eSatmbpvwdX1v2GdZ0tQPQnBnNhdM/PMxdSZIkSZK0h2uZnTukkShTBxOPyh1psmNh6pn9nze2wfGXwT1/nX/tue8qPRitezOsuWfXfUeKTU/D1mXp9YM/Bm2nVK8flVddQy40MOnXeOvi6vcjSbUo9sLjX0yuNc+AupQAygTtnSsSx+tDPXObkoPRujMlBKNFg9EkSZIkSZIk1QaD0SRJkiRJkiRJ0rCa1TiPS/b9Bgu2PUEm1LFf0yE0ZAp/k7gkvVBbwzQ+OeerLNz2FJ1xBwc0H0Zjpmm425IkSZIkSVKtmf5yCHUQe5LrU14C2dG5Y9LxuZCzYq28fmQGo21emF7LjoNJx1WvF1VGy+zkYLTl18L+761+P5JUa5b+CtY9mFxrO72opdq7ViaOT85OTf238+5QQjBar8FokiRJkiRJkmpDCT8BlSRJkiRJkiRJKq+muhYOHf0iDmk5ylA0SWUxKtPIQS1HcPjo4wxFkyRJkiRJUmmapsLhn0+uNUyEI77Y//lR/54LDCvWE/8KT329tP4qafNz6bVjvwF1DdXrRZXRPDt5fMW18NCnqtuLJNWa3h54+NPp9YP+oajlOjpXJI63NUynPmQTa92ZuqL2ACAajCZJkiRJkiSpNtQPdwOSJEmSJEmSJEmSJEmSJEmSJI1I8z8ObafB6ptgxxrIZKFlDuxzHrTM7J/Xdgq87EFYfg1sfnb37ZH24AAAIABJREFUdVbdABseT97jzxfBzFdD8z4V+RJKsmVh8njDBJjzlur2ospoSQlGA3js87nfkxOPrl4/klRLll8NG59Mrs18DUw8pqjl2jtXJo63ZqeRTQtGC5mi9gAMRpMkSZIkSZJUM2oqGC2EcHPfaQTeHGNsL3GdKcBPd64VYzyzHP1JkiRJkiRJkiRJkiRJkiRJkvYwrSfmjsGMngMHvj+59uDF6cFosReWXQkHvK/kFstuc0ow2j7nV7cPVU6+YDSApVcYjCZJaVbdkFIIcNjnil6uvWtF4nhbw3R6Y09irauUYLReg9EkSZIkSZIk1YYSfgI6rE4HTuv72DiEdRr71th5SJIkSZIkSZIkSZIkSZIkSZJUGW2n5q8v/ims/TP0bK9OP4PZ/Fzy+Oi51e1DlTPY78nNC6rThyTVorTXyJmvhfHzi1pqa89mNvdsTKy1ZadRH7KJte5MCbcFRoPRJEmSJEmSJNWGWgtGAwjD3YAkSZIkSZIkSZIkSZIkSZIkSQWbejZMOj693nEH/O4Y+MV4eOyLEGP1enuhGGH9Q8m10ftWtxdVzrhDcgE+aRb/DLa3V68fSaolK3+fPD7puKKXau9cmVprbcgTjBbqit6L3q7ir5EkSZIkSZKkYVCLwWiSJEmSJEmSJEmSJEmSJEmSJNWOTB2cedPg83p3wEOfgGVXVr6nNM98M73WYjDaHuXkn8GYA9Lrd721er1IUq1YeUN6rYQA0Y6uFYnj2dDA+PpJZDMpwWiZEm4LjN3FXyNJkiRJkiRJw2BvDUarH3DuT3QlSZIkSZIkSZIkSZIkSZIkSZVV3wInfL+wuYt+XNFWSt67hMAXjWCZejj2v9Prq26Abauq148k1YIFl6XXRs8tern2zpWJ463ZqWRChvqQEowWSrgtsLez+GskSZIkSZIkaRjsrcFokwecbxm2LiRJkiRJkiRJkiRJkiRJkiRJe48JRxU2b8Pjle0jn23JAS0ANE2rXh+qjnGH5a9vfKo6fUhSrdj8XHptzAFFL5cajNYwHSA1GK0rU8JtgVtXFH+NJEmSJEmSJA2DvTUY7cV9HyPgT3QlSZIkSZIkSZIkSZIkSZIkSZU34XCYfOLg8zY+ATeeBluXVb6ngXq7Ycui5Nr4IyDsrbcg7MGapsDM16bXtyyuXi+SNNJ1boC19yXXQgayo4tesqMr+da2toZcGGlaMFpvyNCb2Edd+mZbFua+10uSJEmSJEnSCFfL/yoZi5kcQsiGEGaFEP4G+OcBpUfK25YkSZIkSZIkSZIkSZIkSZIkSSlOvxZmvR7qx+Sf134bXH8S9GyvTl8AT301vXbiD6vXh6or369tWlCeJO1tYoQbT02vn3ZdScu2d65MHG/LTgcgmxKMBtCdFIJ22rX5w9Ge/lpR/UmSJEmSJEnScBhxwWghhJ60Y+A0YFG+uQnXbgcWAt8Cxg5Y66oqfnmSJEmSJEmSJEmSJEmSJGkQIYRjQgivCyGcF0LYb7j7kSSprBomwCk/h9etg1ctyj9361JYVsW3vD/1X+m10XOr14eqq74ZZlyQXDMYTZJy1j0A6x9Jr489oOglN/dsZGvv5sRaW0MuGK0+XzBaJuHWwOnnwOvWp2/66KVF9ShJkiRJkiRJw2HEBaORCz1LOwqdN9gR+9Z4Evhl5b4USZIkSZIkSZIkSZIkSZL2XiGExhDC3AFH3SDzzw8hLALuBS4HfgM8FUK4I4RwSBValiSpejJ10DwLGibmn7fgsur0A9C1MXk81EN2dPX6UPW1zEke37K4qm1I0oi19v70Wl0zNM8sesn2zhWptbaGaUD+YLSukHJrYHY0NO2TXOtcDzvWFtyjJEmSJEmSJA2H+uFuIEVk9yC0cgrA/cAbY4xdFdxHkiRJkiRJkiRJkiRJkqS92YeBz/WdLwPmpE0MIbwB+AnJD1M9CbgnhHB6jPFPFehTkqThEQLMfjM889/pc1ZdDz8J0DABOtf1j9c1Q8/W3PmUM5IWh/GHwry/yX1Ms+L3sORyWPcgdG1InjPxRYN+KapxacFoa+6Bm86E+tHQdioc8H6oaxzaXjHCc9+FlddD41SYdyFMOGJoa0pSpW1emF6b9XrIFH+bXnvnysTxUaGRsXUTAMjmCUbrzqQEowG0ngRLfpFQiLDydzDnLcW0KkmSJEmSJElVNRKD0W4jF4yW5LS+j5Hc0yC3F7hmBHYA64EngFtijLcPpUlJkiRJkiRJkiRJkiRJkjSoC8iFnEXgshhj4vsDQwgTgG8Bmb65Ax+wuvOaFuCKEMKBMcZC3z8oSdLId+S/5A9G22lgKBr0h6IBrL45+ZrVN8GC78IZN8Lk43avP/ttuPc9g+994g8Gn6PaNnpO8nj3lv7fX8uvguVXwxk3Q6au9L3u/VtY8O3+zxd8B864HlpPLn1NSaq0x7+YXjvmP0tasqNrReJ4a8M0Qsj9lbg+XzBayPNafML3UoLRgLv+Cma9oaQwN0mSJEmSJEmqhhH308sY4+lptRBCL/1vcHpjjHFJVZqSJEmSJEmSJEmSJEmSJElFCSE0AUfS/76/a/JM/wAwjv5AtOXAFUA38Bpgdt+8GcAHgX+tQMuSJA2P7BiYdi6s/F1l1u/eBE98CU791a7jvd3wyGcHvz7TAGP2q0hrGkFa5hQ2r/02WHU9TH9ZaftsXrhrKBrkQv4e+xc4Pd8fFyVpGG14Ir128MegYUJJy7Z3rkwcb2uY9pfzfMFoXZlM+uL1LTD3nfDc95PrK34LM84roEtJkiRJkiRJqr48P/0cscLgUyRJkiRJkiRJkiRJkiRJ0jA7DKgj976/LTHGP+eZ+1b6Q9GeAg6NMV4UY/xw3zr39c0LwDsr1rEkScNl7jsru/7qW3Yf2/QMbFsx+LUtcyDU4q0HKkqhwWiQ/PupUMt+kzy+4lqIMbkmScOt/Q/ptdFzSl+2M/n7cGt2+l/O6zPpwWjdg31/nnJmem0or+WSJEmSJEmSVGH1w91AkS4ZcL5+2LqQJEmSJEmSJEmSJEmSJEmD2bfvYwQeT5sUQjgI2K9vXgQ+HWPcsLMeY9wcQvgA8Me+oQNDCDNjjEsr07YkScNg2tnk8j8rFAzVuQ4e+iSEAbcQbFlY2LUzXlWZnjSyNIyDttOg/dbB524u8PdOkhW/Ta/t6IDGttLXlqRKWfun9Nr0V5a0ZIyRjq6VibW2hml/Oc+GIQSjTX95em3Lc/mvlSRJkiRJkqRhVFPBaDHGSwafJUmSJEmSJEmSJEmSJEmSRoApA86T7/bOObXvYwA2Ab9+4YQY470hhGXAjL6hwwGD0SRJe46GCXDsN+G+v6vcHo99ofhrJhwJB324/L1oZDr6y3DLubmAsnyW/hJ6eyBTV979Ny8yGE3SyLP+MVhwWXq9ZWZJy27q2cD23m2Jtbbs9L+cZ6gjEIgJ4andg70Oj5oILfsmh6EuuxJ6uyFTU7cXSpIkSZIkSdpLDPJYCEmSJEmSJEmSJEmSJEmSpJI0DzjflGfeyX0fI3BTjLE7Zd6jA85nDaUxSZJGpP3/Fl7+CBzwwdLDoeZ/EkIZAk4O/TSc+is46w5omjL4fO0ZJh6d+z14wvdzv5dmXJA+d/VNpe3RszW9lhTcI0nD7cF/Sq/N/+eSl23vXJFaa2uY9pfzEAL1IZs4rysUcGvg4Zek11ZcN/j1kiRJkiRJkjQMDEaTJEmSJEmSJEmSJEmSJEmVEAacJ9/FnXPSgPPb88xbM+B8bEkdSZI00o0/FF70FTh/UWnXH3EptMweWg/7vj0XojLzNVDfMrS1VHuapsDcd+R+Lx34wfR5y35T2vqbF+WpGYwmaYTp2Q4rf5teb5lT8tIdXSsTxxszzYyuG7fLWH1K6Gl3poBbA1v2Ta+V+louSZIkSZIkSRVmMJokSZIkSZIkSZIkSZIkSaqETQPOpyRNCCFMBfYbMHRXnvUG3gkeUmdJkrQnqG+CSScUd83+78t9nHL60PZuG+L12nNMfFF6bcFlsP353cc3L4KNT0GMu9d6dsC2Felrrvxd8nWSNFy2LIbYm15vO63kpVd3Jr8etmWnEcKuf+WtD8lZ492hgFsDJx6dXlv6a+jtGXwNSZIkSZIkSaqymg5GCyG8JIRwaQjhmhDCvSGEp0IIzxV5LBjur0OSJEmSJEmSJEmSJEmSpD3Q8r6PATgsZc7LB5zvAP6cZ73xA863DKEvSZJqw2GfhkxyEMpuRrXCgR/MnR/4IWiYWNqe4w+DWa8v7VrtebJjIDs2udbbCVe0wj3vht4u2LEGbjgFrtoXrjkIrjsMtizd9ZoNjwF5gs/ab81dt3lRub4CSSpdjHDve9Lrs94IY/cvefmOtGC0hum7jWVDQ+Lc7kzd4BvVN0PTPsm1rvVw5UxYc//g60iSJEmSJElSFdUPPmXkCSGcA3yVXZ8SWerTH32ckCRJkiRJkiRJkiRJkiRJ5ffwgPOJIYRzYoy/f8Gcd/V9jMC9McauPOvNHXC+qhwNSpI0ok1/GZx5Kyz8AWx6JhcqtX11rjZ6Low5AOoaYfQ82P+9MGZerjZ+Ppx9Nzz7LVj3IMSewfeqa4LJJ8KBF0F2dOW+JtWe4y+DO/KE5S34Dow7BNpvh447+8c3PJa77pw/9o/d9VeD77fhMbjzzXDO3aX3LEnlsPJ30H5bev3knwxp+faulYnjScFo9SE5KLUrZArb7Nhvwm3nJ9e2rYRbXwEXLCs8kFWSJEmSJEmSKqzmgtFCCB8FvrjzU/qDzUoJOCs1TE2SJEmSJEmSJEmSJEmSJOURY1wQQniG3ENQA/CNEMJLY4wLAUIIHwZOHnDJlWlrhRBGs+vDVBdUoGVJkkae1hNzR7HGHgBH/0f5+9HeZ/S+g89Z8N1ceN8LrbkHti6D5hkQI2x8srA91/wRNi8sbG9JqpRFP02vtZ4KhYaSJYgx0tGZHIzWmp2221h9SL4FsDtTYA+j5+avb2+HVTfB9HMLW0+SJEmSJEmSKqymgtFCCOcAX+r7NPYdO8PNtgLrgXxPi5QkSZIkSZIkSZIkSZIkSdXzHXLv+4vAvsCTIYSHgDZgJv3vA9wO/DjPOqfT/37BbuCxCvUrSZKkgcYeBHXN0LM1fc6GR9Nrq2+F2W+Aro3F7bvxqfzBaDFCCOl1SRqqjU+k1yYeM6SlN3SvpTPuSKy1NUzfbaw+ZBPndhcazjZmHmTH5n8t3vikwWiSJEmSJEmSRozSH00xPL7Y93HnG6GWAe8H5sQYR8cYZ8QY9y32GLavRpIkSZIkSZIkSZIkSZKkPdtXgCf7ziOQBY4BZtEfdBaBL8cYO/Ks8+oBcx+KMeUOckmSJJVXfQvMu7D06+9+K/ysAX41ubjrHv9i8viin8K18+Hno+Hmc2DzotJ7k6Q0z3wL1t6fXp/3N0Navr1rRWqtrWHabmPZTEPi3IKD0eoaYb/3DNLUbYWtJUmSJEmSJElVUDPBaCGEecAR5N7UBHAPcGiM8RsxxiXD15kkSZIkSZIkSZIkSZIkSUoSY+wEziEXjrYzCC3Q/17AAFwBfCZtjRDCaOC1A665qSLNSpIkKdnR/wXzL84F61RL+62w4re7ji2/Fu56C2x4HHq2wqrr4YZToGd79fqStOdb+CO47+/S64dfCuPnD2mL9s6VieMtmTG01I3Zbbw+1CfO78rUFb7pkV+CQ1P/6g3Lfg09nYWvJ0mSJEmSJEkVVDPBaMCJfR93viHq7THGTcPYjyRJkiRJkiRJkiRJkiRJGkSMcSlwJPBe4LfA48AT5ALRXhdjfH2MsTfPEu8ExpJ7/2AArq1ow5IkSdpVpg6O+AK8YQtkGqq37zP/s+vnz35r9znblsPya6rTj6S9wzPfzF+f89Yhb9HeuSJxvLVhWuJ4fcgmjneHIm4NDBk4/LNw+OfT56y4rvD1JEmSJEmSJKmCaikYra3vYwQeiDE+M5zNSJIkSZIkSZIkSZIkSZKkwsQYu2KM34oxviLGeGjf8boY4xUFXH4ZMGHnEWO8o7LdSpIkKVHIwNiDqrffugd3/Xz51cnzFlxW+V4k7R1i3P21Z6D60dA8Y8jbdHStTBxvKzYYLVPCrYHjDkmv5fvaJUmSJEmSJKmKaikYLQw4f3bYupAkSZIkSZIkSZIkSZIkSVUTY9wWY9yw8xjufiRJkvZq+76tvOvNe3d6besSuONNsOxquP+i9Hmrri9vT5L2XlsWQs+29PrsN0GmfsjbtHeuSBxvy05PHE8NRgsl3Bo47dz02ubnil9PkiRJkiRJkiqgloLRlg84rxu2LiRJkiRJkiRJkiRJkiRJkiRJkvZGB/4DzH5z+dY7/FI44gvp9SWXw23nw9NfTZ8Te6FnR/l6krR36u2Bq+al1yefBEf/59C3ib10dK1KrLU2TEscz6YEo3VlSrjFrr4J2k5Prm1ZWPx6kiRJkiRJklQBtRSM9tiA85nD1oUkSZIkSZIkSZIkSZIkSZIkSdLeKFMPJ/1f+dZrGA8HXjT0dZZdOfQ1JO3dVt2Qv37WHZAdPeRt1nU/T3fsSqy1NUxPHK9PCUbrDiXeGjjr9cnjGx6D7q2lrSlJkiRJkiRJZVQzwWgxxkeAR4EAHBNCmDDMLUmSJEmSJEmSJEmSJEmSpBKFEGaEEF4cQrgghPC2EMLbh7snSZIkFSAEGH/E0Nepa4S6UVDfAtmxQ1ur/bah9yNp75bvdWT8EbnXvjLo6FyZWmvLTkscTw1Gy5R4a+DoucnjnevgmW+UtqYkSZIkSZIklVH9cDdQpP8AvgfUAR8GPjm87UiSJEmSJEmSJEmSJEmSpEKFEGYDHwLOB2YnTPlhwjWnAi/p+3RdjPFrletQkiRJBZlxAax/aGhrZMf1nzfPhA2Plb7WM/8Nm56GcYf2j9U1wKTjYPorc+eSlE/H7em1ma/Je+nWns08vPlelu9YTCTmnbtqx9LE8TF142iqa0mspQajhRKD0VpPyYVT9mzfvfbAR2HSCdB2SmlrS5IkSZIkSVIZ1FQwWozxByGEVwKvBT4WQrgzxvjb4e5LkiRJkiRJkiRJkiRJkiSlCyFkgEuBj5J7OGpImJZ29/jzwGd31kMI18UYF1SgTUmSJBXqoItg9c35g4QG0zC+//y4b8MNJw2tp1U35I4XmnImnHYV1DcPbX1Je67n/wgdd6TXD/xgamlNVztfXfoZOrpWDqmFtobpqbVspszBaNnRsN974an/TK7feCocfxnMu7C09SVJkiRJkiRpiEr86eewegdwFblQtytDCJ8LIYwf5BpJkiRJkiRJkiRJkiRJkjQMQghZ4HfAx0l+oGtaIFquGOMTwC30h6m9pawNSpIkqXgNE+CMG+GMm+Cof4d9zhvaepNeVJ6+kqy+CRb/tHLrS6p9D3w0vXbMV3YNcnyB69dcMeRQNIDW7LTUWn1IDkbrytSVvuH8j0N9S3r9zx+C7q2lry9JkiRJkiRJQ5D0BqMRK4Tw6b7Th4CTgMnAPwP/GEK4G3gcWAf0FrNujPFz5exTkiRJkiRJkiRJkiRJkiT9xWXAS8kFoEVyAWe3kws76wQ+X8AavwJe0nd+NnBp+duUJElSUeoaYOoZueOAv4fLm4q7vnlm/3kmm/t869Ly9rjT8mtg3l9XZm1Jta1zPXTckV4fs3/eyx/Zcl9Z2mhrKD4YrTtkSt+wsQ0OvAge+3/J9a6N0H47TD+n9D0kSZIkSZIkqUQ1FYwGfJZdnwy58w1SzcAZfUcpDEaTJEmSJEmSJEmSJEmSJKnMQghnAm+l//1+zwJviTHe31efTWHBaNcCX+9b49gQQmOMcXtlupYkSVLR6hqh9VTouH3X8cwoaBgH29t3v2bKmbt+3jK7csFo6x+Bpb/OndePhsnHQ3ZsZfaSVFs2L8xfn3xSaqmzdwfru9eUpY2Dmo9MraUGo2WGEIwGcPBH4On/hq4NyfUn/wNiD0w6Fhpbh7aXJEmSJEmSJBVhiD/9HBF2PkGyFKGcjUiSJEmSJEmSJEmSJEmSpF18pu9jABYDJ+0MRStGjHExsL7v0yxwUHnakyRJUtkc9lmoa9p1bP7F8KL/hlC/6/jYA2Huu3Ydq2RQ2eYFcPtrcsctZ8OvWmHRTyq3n6TaseqG9Nphn8uFO6Z4vmtVWVo4esxJzG7cL7WeGowWhnhrYMMEOOnH6fVVN8Ctr4Ar2uDRL0As9RY+SZIkSZIkSSpO/eBTRhzDzCRJkiRJkiRJkiRJkiRJGuFCCBOBk+h/+OlFMcbnh7Dk433rARwAPDiEtSRJklRuU8+As+/OBY51roN9XgEzXpWrNe0DSy6HrUth0vG5ULTG1sLXDvUQu3PnDRNz6z73vdJ77e2Eu94KradCy8zS15FU+x78p/TaYZ/Ke2l758rE8UCGQ1uOGXTrprpm9m86lBPHnUEI6bfMZdOC0TJDDEYD2OeVMGZ/2PRM/nkPfxJaT4IpLxn6npIkSZIkSZI0iFoLRvMnp5IkSZIkSZIkSZIkSZIk1YZTgJ13abfHGK8a4noDQ9XahriWJEmSKmHCEbnjhVpPzB15rz0aVlyXXHvTDggvCADasQaWD+WPmBGW/hIO+tAQ1pBU07YsSa9NPXvQyzu6ViWOT85O4b0z/rnUrnZTnxKM1hXqyrPB7DfBo5cOPm/x5QajSZIkSZIkSaqKmgpGizHeOtw9SJIkSZIkSZIkSZIkSZKkgkzr+xiB+8uw3qYB56PLsJ4kSZJGklmvhcc+v/v45BN3D0UDmPvOIQajAWvu7T/v2Q5dA/7ImamHhglDW1/SyLbxqfTahCMHvbyjc0XieGvDtMTxUqUFo3VnEl4bSzHpuMLmbXq6PPupcD3bc0f9GMjU5c4zoyAE6OnMfa9K+h4pSZIkSZIk1biaCkaTJO3B1j8CT3899480s14P01+R+4caSZIkSZIkSZIkSZIk1aqJA87XlWG9pgHnXWVYT5IkSSPJhCOh7XRo/8Ou4wdelDx/+itg9H6w+dn+sUwWpp4NK64tbM/FP4PlV0P3Fsg0QG/nrvWWOXD4pbDvWwv8IiTVlDX3pNf2/7tBL+/oWpk43pqdWmpHiepD8i2A3eUKxJp2Low9GDY+kX/e6lvg2e/Afn9Tnn2VbsH34J4Lk2vZsdC1EeqaciFpc98JR/1bLiRNkiRJkiRJ2kP4OABJ0vBbdSP89kh49n9h4Q/h1vPg0UuHuytJkiRJkiRJkiRJkiQNzcYB52PKsN6UAedry7CeJEmSRprTr4H9/x7G7A+tp8LJl8PsNybPrWuAs++EOW+Dln1h6lnwkt/DaVfDMV+BiS+C7PjcUdeUvAbkQtFg91A0gC2L4O63wcobhvylSRphYoSHP5Vcqx8No/cddImOzlWJ460N04bS2W6yoSFxvDtTRyzHBpl6eOltsO87oGV2/rn3vhuW/rocuyrN8mvSQ9EgF4oG0LMNutbDU/8FD11cnd4kSZIkSZKkKvExAJKk4RUj3P8BiL27jj/2BZh3ITTPGJ6+JEmSJEmSJEmSJEmSNFQdA873H8pCIYQ64KgBQyuHsp4kSZJGqPoWOPbrhc9vbIOTfrj7+IEfzB07LfkF3PGG0vta8B2Ydlbp10saedY/kl6bccGgl3f1drKu+/nEWmu2vMFo9SGbWusOGbIvvB+jFI2T4cTv587XPwLXHZ4+d8F3YOarh76nkj377eKvWXAZHPEvkKkrfz+SJEmSJEnSMMgMdwOSpL3c+odg45O7j/d2wtIrqt+PJEmSJEmSJEmSJEmSymXnXeYBODCEMJQn5L0MaO47j8Afh9KYJEmS9jLjDh3a9esfLk8fkkaO9Q+l18bNH/Ty57tWE4mJtbaGMgejZfIHo5Xd6HmQGZVezxcqp6FbflXx13SuhW3Lyt+LJEmSJEmSNEzqh7uBoQohZIETgVOBecBEYAxAjPHMYWxNklSIFb9Lry35xa5PapMkSZIkSZIkSZIkSVLNiDE+EUJYDuxDLhztw8CHil0nhJABLt65LPBQjHF92RqVJEnSnm/cwTDxWFh7X2nXb3wSenZAXZ6gIO2ZOjfAI5dAx23QvRm2LIae7blaYxs0TNh1fmYUTDoODrsEmqdXv18VZtmVcPfb0+tz3jLoEh1dKxPHAxkmZdtK7SxRfUi/BbA7k4Hesm4H9c0w6/Ww6MfJ9a1LYfm1sM8ryrzxHqbjTnjqq31BcuX+RUpw/UmwbUXuvHkmnPBdmPrSyu8rac+w5n548su5QOBxh0J2NCz4LrwwBHTGq2Deuwf/HrD4clj4Y+jZBjNfA/u/F0KoWPuSJEmSpD1PzQajhRBayL1B6v1A6wvL7Pa37b9c92bgC32frgWOjTEmP55DklR5+Z4U9PzdsGMNjJpUvX4kSZIkSZIkSZIkSZJUTv8HfIzc+/reH0K4LsZ4Q5Fr/D/ghAGff7tczUmSJGkv8uLfwJ1vhI47Srv+hpPh3PvL25NGtt4uuPHU9Pe8b2/PHS+0/mFYcS284gloGFfZHlW8hT+Gu9+WXq9vgZZZgy7T0ZkcjDYx20p9yJbaXXJLedbrDpmy7vUXx34zFya58ank+q2vzL2uznhVZfavde23wc1nQW9n9fbcGYoGufC6m8+C064xwE7S4NbcBzeelgsxA9jwWPrcZVfCsqvglMtzIZpJnvkfuO+9/Z+vvikXLnvUl8rXsyRJkiRpj1ehn3xWVgjhcOBPwCVAG7k3TBXqamASMAc4Cjir3P1Jkoqw8cn0WuyB5ddUrxdJkiRJkiRJkiRJkiSV278CG8k97LQOuDKE8J5CLgwhTA4hfB/4KP0PS10FfLcCfUqSJGlP1zwdzrodXvZAadev/ROse7i8PWlkW35N/geB57NtJTzzzfL2o/J4/Iv56/v9bUHLtHclB6O1ZqcW29GgsqEhtVaxYLTsaDhnkDDIxw24SfXkl6sbipbmiX8b7g4k1YKnvtLBKQYhAAAgAElEQVQfilaQCI+lfD+NMfm15+mvQ/fWktqTJEmSJO2dai4YLYRwCHArsD+5QLSdb3YKFBCQFmPcDPxiwNBry92jJKlAsTd/MBrAst9UpxdJkiRJkiRJkiRJkiSVXYxxLfBB+t/v1wh8M4TwTAjhX4DzB84PIRwXQnhbCOFHwALgbfS/P7AHeFeMcQTcWSxJkqSaNe4wqGsq7drn7ypvLxrZhvrrvfK35elD5dO5ATY8ln/OmP0KWqqjMyUYrWFasV0Nqj5kU2tdmbqy7/cX2dHQOCW9vuYe6O2q3P61rGOEfL9ovzV3744k5dNxZ/HXrPszdCeEqW1fBZuf2328Zyusvrn4fSRJkiRJe6364W6gGCGERuAaYBz9gWiPAF8BbgFGAU8UsNSVwIV952eWuU1JUqG2rcr9UDMf3zwgSZIkSZIkSZIkSZJU02KMPwwh7Ad8ktx7/wIwD/jYC6YG4O4XfB4HXPOJGOP1le9YkiRJe7RMHcx4NSz+SfHXPvu/sPZP0DwTZrwKJhxR/v7Ub+2fYNnVuXCmGRcUHFg1JKtuhJU3QOdaWP2Hoa3VfhusvB6mnV2W1lQGWxYOPmfGBQUt1dG1KnG8LVuJYLT0WwC7Q6bs++1i5mvhmW8k12JvLvxm7IGV7aHWdG2CHR3D3UW/2y6Afc6H2W+A7Njh7kbSSLJpASz5OWxZVNr191wI9aMh1MGEI2HWG3KvgWm2JX/vlCRJkiQpSU0Fo5F7auQc+kPRvgr8Y4y5xxaEEGYXuM4t9L9Rat8QQluMsb3MvUpSabYshQc+nHvSwpj94NDPwNQzhruryti2fPA529uhcz00jK98P5IkSZIkSZIkSZIkSaqIGOOnQwgLgG8ATfS/DzAMON/5OewaiLYDeE+M8UdValeSJEl7uqO+BBsegfWP7Doe6uHwS+GhTyRft+6B3AHw2OfhpJ/ArNdVtte91cIfwx/fkQteAnj0Ujj9d9B6YuX2fPjTuX3K6ZZz4Ogvw0EfKu+6Ks3mAoLRmgYPNuuOXaztSg6+am2oRDBaNr2XTIWD0Q77LLT/ATY8nly/9lB4w2aoG1XZPmpFjHDj6cPdxa6WX507nv4anHETNE4e7o4kjQQdd8EfXg5dG0pfY/HPdv38yf+EI780tL4kSZIkSepTa8FoH6D/DVC/iTH+QymLxBg3hxAWAfv2DR0MGIwmafh1b4UbToGtS3Kfb1sBN58JJ/4Q5rwVQsh/fa3ZWkAwGsCmZ2DSsZXtRZIkSZIkSZIkSZIkSRUVY/xBCOEW4GPAu8gFpEF/GNpAAegB/g/4bIxxUVWalCRJ0t6heQaccx88/0fY+ERuLDse2k6F5n2gcx088a/51+jtggc+AjNfA6HCwUR7m95uuP8D/aFoAF0b4cF/grNuq8yeW5fDY18o7dpDPgHPfgs61ybXH7oY5l4IDeNK70/lMVgw2uGfL2iZNV3tRHoTa63ZKgejVfr1p7EVzn0ALk8JPovdudAtQyJz1twL6/6cXAt18KKvkfxjkASd63Pfj5r3gUxD7vvO1qXQMAEaxsPWZRCyuV+j+98/+HrrH4YF/wvzLy74y5G0B3vo4qGFoiXZ9DQ8+rn0euwu736SJEmSpD1azQSjhRAOAfbp+zQCHx3ikgvoD0abC9w6xPUkaeiWXdUfijbQ3W+HBz8OJ/8s94/te4ptBQajrX/EYDRJkiRJkiRJkiRJkqQ9QIxxCfD+EMLHgFP6jpnAJKABeB5YDdwF3BRjXD9cvUqSJGkPVzcKppyWO15o7IGFrbFlMWx4AsbPL29ve7tVN0JXwl8FOm7PPYy8vrkCe96waxBbMQ68CDY9BUuvSK73bIf2W2HG+aX3p/LYMkgw2uh989f7tHeuTBwPBCZnpxTb1aAyIUMd9fSwe6BMV6au/5MpZ5R9bwDqGmDScbnQryQrrjMYbacVv02vNc+E/d9bmX0LCUaD3K+VwWiSurfm/mxSCeseSK+VO4hNkiRJkrRHq5lgNODIvo8ReDTG+NwQ1xv4LyQ+ckXSyLD4p+m1bSvgxhfDYZfkwtHaTqv9J4ttLTAYbfk1MO/CyvYiSZIkSZIkSZIkSZKkqokxbgWu7zskSZKkkWXqS4FA7haWQTz4T9B6ErS+GCYfD5lsf61rM6y+Ofeg6MY2CHWwfRW0zIFp58CoSRX6AmrcxqfSaz3byhuM1rMD1twDj1xS2vUTjoSmKTDjNenBaABLfwWd63Lno1qh9WRo8HamqtucJxgt1MGUMwtapqMrORhtQv1kspmGUjobVH2opyfuHozWPfC+kkM/XZG9AZh2bnow2srfQ4wQQuX2rxWrb06vTTu3cvvOeRss+tHg8zruhCW/hMknQfP0yvUjaWSKETY+AYvy3MNYSSt/Dwd9GHo74fk/wtalufFQBwQYfxiMP7T275mUJEmSJJVFLQWjtQ44f6YM6+0YcF6BR8VIUglW3TD4nEc+k/s4/eVw6q9zT96pVdtWFDZv9c3+I5kkSZIkSZIkSZIkSZIkSZKk6miZBQd/BJ74t8Hnrrg2dwA0z4Kz786FzTx/D1x/Qv5rT70CZr566P3uafK9bzwWEFZXqE0L4A8vg00l3qZU1whH/EvufPabYMG3of3W5LkLf5g7dsqOzd0PMPWM0vZW8WJv//+rSeb/cy7krgAdncnBaK0NU0vprCD1mSw7erbvNt6d6QuPmfX6XOBepez/Xnj0c8m1bSvg7nfA8d+p7XtchiL2wp//ETpuT59z8Icrt//8jxcWjAZwx+uBAMd8BQ78QOV6kjSy9GyHu98JSy4fvh5W3wJXtOV66dmWPGf6K+GUn0F9S3V7kyRJkiSNOLUUm9044HxH6qzCDXysyqYyrCdJQ5cdW/jcFdfBs9+qXC/V0F3gy2/XBtiW/A+HkiRJkiRJkiRJkiRJkiRJklR2R/0rvPgqOOD9MPst0FhA4NHWJfDgx3IBOXe9ZfD5d7weOjcMvdc9Tr7bnXrLt8197xs8FG3c/Nyv/8EfgZfeBmfdAQd/FA79NJxzL0w/NzcvUwdnFPCg9J26NsKdb4LertL7V3FWXJde2/ftcPglBS/V0bUqcbw1O63YrgpWH7KJ493TzoGTfpI7MvUV25+mqXD8Zen1RT8qPJhrT7T8WnjqK+n1Qz4BY/ar3P7jDoFXLYGDP1bgBRH+9EHY8GTlepI0sjz7ncJC0Y78Irz4ylxgaKbve092HLSeAs0zYMoZuT8bzXxdaX10rksPRQNYcQ089dXS1pYkSZIk7VEq+NPOsnt+wPnkMqw3d8D5mjKsJ0lDV9c4+JyBnvtebT+dpTvPDzFfaOOTuSenSZIkSZIkSZIkSZIkSZIkSVI1zDgvdwDc+Vew+CeDX7P0V3DgRbD5ucHnxh5Yfg3s+1dD63NPE0J6LfaUZ4/OdbCqgCCzee+Ggy7adaz15OS5mSwc+il49NLCetjRAe23wtSXFjZfQ7Pop+m1/d9X1FIdnckPfm9tqFwwWjYtGG3Om2H8WRXbdxcTjspfX/ILmPfX1ellpFnyi/z1ySdUvoeWmXDUl3JHz3a4vGnwa5b8Ag77VOV7kzT8lg7yOgUw6Xg45J9y5zPOhyM+nz439sLlzdC7ozz9DbTk5zD/E+VfV5IkSZJUU2opGG3nozQCMMhPUfMLIUwCDh4w9OxQ1pOksogRdjw/+LyB1j0A6x6CCUdUpqdKy/d0hxfa+CRMPaNyvUiSJEmSJEmSJEmSJKkqQghZ4ETgVGAeMBEYAxBjPHMYW5MkSZLSTT6hsGC0nu3w1FcLX/fJf4fWEyHUQfNMCJnSe+zalHtYdyY5QGmP0Ntd+rVdmyAzCuoaYNMCIA5+TbFhRpNPLG7+yt/DuEOhaWru8+3t0L0ZGibkDpXPloXptfGHFrxMT+xmTVd7Yq01W7lgtPqUYLSu2FmxPXcz9iDIjoOuDcn1jruq18tIs+np9FrIwMQXVa8XyH0vmHA0rPtz/nmrroe5b899/+nakAuNbJoB9OaCKOtbqtKutIsYYduKCgRuhb7XsPXQND33/8merGvjrvcqbszzOrVTMX/uCRmYfDy031Z8b4NZ92Du9YgAnWsHmZyBlllD+zO0JEmSJGlEqqVgtLuAXiADTAohnBFjvLnEtS4kF7AGsAW4vwz9SdLQ7FgD3VuKv+63R8Kbe/M/FWuk6tle+NyNT1auD0mSJEmSJEmSJEmSJFVcCKEF+BDwfqD1hWVSUglCCG8GvtD36Vrg2BhjAQkGkiRJUhnNeQs8/iXYtnzwuYt+XPi66x6Eq+blzkdNgsMugQP+vrjetq2Cu94C7bdCXRPMfRcc/V+QqStunREjz3vjYwnBaNtWw11/Be235ILRJh4NHXcOfl3rqTDpuOL2mnoWjD8C1j9U2Pwn/j13JJl4LJzyMxg9t7gelOz5u5PHs+OKCn9a09VBLz2JtbaG6gejdceuiu25exNNcOAH4dFLk+vdm+Cq/eCkn8DkIv/fqWVblsCae9Lrc94GzdOr189OB38U7npz/jkdd8CVc9Lr018JJ/3QoEZVz+Kfw4Mfzx9mWQ6ZLMx6Axz37dxr255k4J97Ym/h19WPgf3+tri9DvpI7nWkmH0K9cuJhc9tmADzL4aDPlyb91hKkiRJkhLVTAR2jHEdcN+AoUtDKP5vqCGEfYCPk3sDVQRuiLESf+uWpCLlezrMYB65pHx9VFPPtsLnPv21yvUhSZIkSZIkSZIkSZKkigohHA78CbgEaCNv0sFurgYmAXOAo4Czyt2fJEmSNKhRk+Dsu2HuOysXVLVjDdz/flj6m+Ku+8MrYHVf+EX3Fnj66/DIpyvTYzXku12ot4RgtNsugNU35f779GwbPBRt/BG5YI2X/K74cI1MPbz0D3DA+2HcodA8K3fUjy6+77X3wU1nQm9yCJeKsPTX6bWTLy9qqY6ulam1ydmpRa1VjBERjAa58MZ5706vb14AN58BO9ZWr6fhFCPccEp6ve00OP471etnoDlvglOvgGnnlr7GimvgzkHC1aRyWX1rLtCr0qFoAL1dsOj/cn/u2tPcdn7/n3sKNeuNcNbtMO7g4vaacR68+GqY/gpomd3/557mWVDXWNxaQ9G5Dh74KCz+afX2lCRJkiRVXM0Eo/X5yoDzE4D/KebiEMIU4CpgAv1vqvpyeVqTpCHa9Ezp1z56CXRtLF8v1VJMMBrAmvsr04ckSZIkSZIkSZIkSZIqJoRwCHArsD+59+7FnSUKCEiLMW4GfjFg6LXl7lGSJEkqSMtMOOF7cP6Cyu7z3HcLn7vhCVj3593HF/64fP1UXZ6/JsQig9E2PAlr/lj4/GnnwssfhKP/Heqbi9trp4bx8KKvwSsegQsW546DPlTaWlsWQfsfSrtW/Z75ZnqtyKDDjs7kYLTx9ZNoyIwqaq1iZFOD0UoICxyK/8/efYfHUd1tH/8eraolW5Z777gXsKm2AYNN7wkQAk+AUEMq6SEJLaQ8SQhvypMQkkACCaEaTHXoBowxNsXghnvvkqtsWdqVzvvHSPFqvbN1drQr3Z/r2ks7c86c81Pbnd2duccY5/8jltB+WP+4P/W0tMp34cAG9/bj7ncCE1tK34vglJlw8gupj7HlJTiw0buaRKKxFj78VvLP8+la9wiEkjy/LZvtWQJV85Lb5nM1MPlRqBiX2py9z4Ypz8MFaw/t91y4zhn3cgujfpTauKlYlcQ+tIiIiIiIiGS9nApGs9Y+CixoXDTAdcaYt40xJ8bazhhTaoz5UuO2R+IcVGWBl621cS7zIiLik33L09t+/XRv6vBTssFoy36bmTpEREREREREREREREREREREJCOMMcXA80B52OqFwLXAIGAECYSjAc+E3Z/qWYEiIiIiIqnqdXbmxt69KPG+buFDB9ZDfa039fguxkuEhmByQ215Kbn+Hcck19+PcZP5e5DoYoU6lfZPaqgdwejBaF0LeiQ1TrLyXYPRkvyf8EJBh/g/t7byd7t7oXtbQQco7edfLbF0HJ3e9ttne1OHiJuNM6IHvWZafQ1Ur/Z/3kxJ9rG3/VAIFGemlibdT83s+OH2tJHnHhERERERkTaiBS83kLKLgblA58blScAsY8xWYGV4R2PMvcBQ4ASgiENXmjTAJuALPtUsInK4vcthzUNwcDv0PN1ZjqbiKAjuif8m63vXwoDLIZC5Kwx5LtlgtE0vOB9k50X/QE9EREREREREREREREREREREss7XgQE4x+4B/B74lrW2AcAYk+gZ6G9w6Pi/gcaYbtba7R7XKiIiIiKSuMHXwuYXMzP2/jXw8iTAgglA9SqoCQtjKunpfK2JHtD0X3W7oaR7ZmrMJBMjGM2GoKEelvzCCVGp2Rx7rHg/o2bzBmDglYn3T0avc6GoK9TuSH7bD2+Gpb+EDiNgyI3Q/1Lv62vNrIW9S6O3FXWGQGFSw+2o2xp1fdfCnslWlhS3YLSgrcvovK4GXQsLb3NvX/FHJ6Bx5Peh6yT/6vLL/nXw8Y9g7cPufQZ8IXvOfyntBz1Og62vpLb9nM/Dojuh+ykw7hdQWB5/G5F4DmyGj2+B7W87+z4t5dWTmp+PVzoABlwBR3w59j5JNln7KCz7LVS9l9x2g6/JTD3huk9xAmJjBUl65eA2CNVAfknm5xIREREREZGMy7lgNGvtamPMucDTQE8OHejUEwi/tIYBbgi7T1jfjcC51tpKX4oWEYlU9T68Ps0JPANY9Vf3vr3Pg9G3QtU8eCXWh0EWXp0Cp70NeTny8J5sMFpwN2x/C3roor8iIiIiIiIiIiIiIiIiIiIiOeJrHApFm2GtvTmVQay11caYtcDAxlUjgDYXjGaMKcC5oGw/nOMmq4HNwEfW2rUtWJqIiIhI29P3MzDhD/DB1zIzfuUc97ZEw76CORqMRowQkoYQzP8SrPqb99Oe9Ax0HO39uOAEdEybBXO+ALs+TH77mi3Obdvr0FAHA//H8xJbrXWPured+HTSw+0IRv//61rQMsFooYZQRud1NeqHENoLS+9277PpOdjyMkx7E7oc519tmVZbBS8dDwejh+T91/jf+FNPoiY/Bu9eBVv+Aw3B5Lff+6lzq3wXzngf8gLe1yhtR3AfvHw8HNjQ0pVA3c7myzVbnL/zul0w+sctU1MyVv8D5n4xuW0KyuGIm2DEdzNSUjMmD05+znn82f4Wh94qBkoHQmnfxvUeWf4HGPk978YTERERERGRFpMjyTnNWWvnGWPGAw8AZzWtjvjabBOcT0UM8ApwlbU2zjuPIiIZtOiuQ6Fo8bQf6gSddZ0I562A545w71s1F9b8EwYn+WZmS6k/GH39pEfhncuit216TsFoIiIiIiIiIiIiIiIiIiIiIjnAGDMS6N24aIF0z7RbxaFgtEHAm2mOlzZjzCDgGODoxq/jgfZhXdZZawd4ME9X4E7gc0Anlz5zgHustdPTnU9EREREEjTsqzD0KxDaB6H90YNm8kvB5ENhubMc3AvWOseTh/bDCyMzV1/drsyNnVExgtEObnECQLx26mvQ41Tvxw1XPhLO+gDqdjvH/X/w9dTGWXq3gtGSsfhn7m0dRiQ1VIOtp7JuW9S2boUtFIxmUwi48kJeAI76NVQcBXOucO/XUAvL/691BaOtfTh+KNqoH0OgyJ96ElVYASc/C6EDsG8lzByX2ji7FsC216Dn6d7WJ23L+scTC0Wb+gaUDUpvrmf6p7bdst/CiO9BoDC9+TNtaQIhjAOvhLF3NS4YKOnlb7hhaX8nIDa479D+aaAdFHdx7jeEnAC1R+LUdME656sNwbNDiHo6+ZJfKhhNRERERESklcjJYDQAa+024BxjzATgG8BUnKsfRrMHeA34g7W2xQ+EEpE2zjbApmcT798+LAit/RDnCglvnufef92juRGM1hAEWx+9raQ39LvUeZM70p7Fma1LRERERERERERERERERERERLxyZONXCyyy1q5Oc7zdYffL0xwrZcaYKcAtOGFoUUPKPJ7vLOAfQLc4XScCE40xDwM3Wmv3Z7o2EREREQGMgYIOzi0RTf2agtKKu8PB6EFLaavbHb9PNjIxgtGq5jlhGF6rSDEgKBWFHdO7WPjujyFUA/kl3tXUmtVWubcVdU5qqJ3BSuqJ/vfXtSCzwWgFeVkWjNYkkXC5qnmZr8NPle/F7xN+LlC2yW8HFWOhqAvUVqY2RtU8BaNJeirnxu/T71LoPiX9ubqcAJXvJr9dbRVUr4by4enXkCnBatizKH6/iiOhtF/m64mnoL1zi5TXeKr74Oth1V+jb9vnwubfQ0E5BKPs69YfdEKIY+1PioiIiIiISE7I2WC0JtbaD4Ar4b9XXuwLdAYKgUpgG7DYWtvQYkWKiITbvz7xvkVdoNNRzdd1OxnyyyBUHX2bba87H2AXdky9Rj/U17i35Zc4Vw2KFoyWs1ctExEREREREREREREREREREWlzuobdX+HBeLVh99t5MF6qjgR8Ofu3MYRtBs4xkU0s8CGwGugIHAV0CWu/AuhgjLlQx06KiIiI5IB+l8Dy/8vM2It+Aqv/7gTfbHvdCWUb/1sY+IVDARTZyFr3tn1evLSI0OvspAOy0tZhBJSPhD1LUtt+9qVOuBFA2SAnPCby3AOB0AE4uDV6W+nApENTdgS3uLZ1KeyR1FjJyjfRg9GCti6j88ZVcSSUDYHqle599i2Hd6+CrpNh4FUQKHTvmwt2L4jdnlcEfc7zp5Z09LsEVtyb2rarH4TdC2HrK855Pv0ugZLeENoPHUfDoKsTDwyVtmfLy7Dqb7H75BXBmDu8ma/fJakFowGsfgCO+pU3dWTC/rUJdDLQ97OZrsQb/S5xD0brd2nz5YpxsP3Nw/vVH4Btb0CPU72vT0RERNq2fatg7cON7+XEeO/K5EOnCc7roqKMX2NLRKRVy+JPMZLXeDXJdK8oKSKSWdteT7zv8G9D5FV9CtrD+N/AvBujb2NDsHkmDPh86jX6IRQjGC2v2D3YLVevWiYiIiIiIiIiIiIiIiIiIiLS9hSH3a917ZW48rD7+zwYz2u1wEZgsBeDGWP6AE/RPBTtHeB6a+3SsH5FwI3A3UDTwUbnAT8FfuhFLSIiIiKSQWN/Ars/ge1veT925btAWBBIcC+8dw1sfBpOmgEmz/s5vWDr3du8DkYrHwlH/8HbMRNhDEz8N8w6C2rcw7ZcbX6++fKn98CJ06H3ud7U11qse8y9bdK/kx5uR13031WHQAXFeSVJj5cMt2C0kA1ldN64jIHJj8Ksc+DgNvd+ax5ybuseg1NmHn6uTK6o2xU70DBQDBMfhsIK/2pK1difOuFmO2Ynv231yuZheOufaN6+6n6YNis3fg7iryW/ggXfj90nrwgmPw7lI7yZ84iboHIurH88+W2X/hra9YNhX/WmFq8lEq57/ANQ2i/ztXihxzQY9WNY/NPm64d8yQlNC3fsX+H5odHHeX0qnPqawtFERETEOzs/gNdPc14TJmLdv2HVX2Dqm1DSPbO1iYi0Yq0qGE2ygzGmAJgE9AN6AtXAZuAja+3aFixNpOXtXQ7vXZtY3/KRMPxb0duG3OAkBf/n6OjtW1/N/mC0+hjBaPklUOASjBZUMJqIiIiIiIiIiIiIiIiIiIhIjqgMu9/Fg/EGhd2v8mC8dASBxcD7wPzGrwtxjp17w6M57gTCzyCeA0yz1h4M72StrQV+b4xZDzwd1vQtY8x91tp1HtUjIiIiIplQWAFT33DCaWYe6c+cm56DbbOyNywilWC0bifBEJeLjzeprXLCmAo6OMtlg6BiPAQKY2+XKRXj4PzVUPke1Gxy1hX3cM4l2LUA6nbCnCsSG6uhDhbcAr3OcYKqxDH/Jve2ivFJD7cjGD0YrWthj6THSpZ7MFow43PH1WkCnL/GCeybfWnsvtteg00vQN8L/anNayvudW8b9k0YcxsUupwPk22KOsHUWbBnkRP2VlgBJT1h33KorQTb4ITZVc1Lfuzdn8Dqh2D4NzwvW3JY3R5YeEfsPkO+BOPvhvxS7+YNFMOkR2HsXVC9Ckp6O/sTDWHXcVj8M/fQww++Dt1PgY6jvKvJC9bCyvti9ykfBYOu9qUcTxgD4+6CI26ELa+ADUKP06B0wOH7N+2HOL/b+oNRh+KTW7N3X1dERERyz6K7Eg9Fa7J3mbO/Nua2zNQkItIGKBitFTLG/AO4yqPh1llrByQ4b1ecA7E+B3Ry6TMHuMdaO92j+kRyy7wbEu979J9if8DaaYJzxYpoH6qsfsC5mlfv82DAFZAXSL5Wr9RshZV/ca72cmA99D4fxt/jfPDqJlDi/kFQ3W7njVt9WCsiIiIiIiIiIiIiIiIiIiKS7bY2fjXAUekMZIzpDIwIW7UynfHS9CDw58iAMgDj0TEtxpgjaH4cYB1wdbQ5m1hrZxhjHgzbrgi4HbjGk6JEREREJHNMnhOS1ft82PSsP3Oufyx7wyJiBaOF9kdf3/UkGHB5ZurJpEAxdD/58PUlZzpfV94H299KbKw9i+DgVifYSKCh3v1vqV2flALxdgS3Rl3ftSDzP/OCbA5GA8gvgb4XO2FGbv+nTba8lLvBaNvfdm8b+pXcCUVrkhdwnn8qxh1aF36/XT946/zUxl77sILRpLnKOVBfE7vPETd5G4rWxBjoMNS5AVSMbd6+eaZ7MBoWFt0Jkx/3vq50HIz+nNTMsBz9H2zXBwZ/MXYfY5yQW7ffW+UcCFZDQZn39YmIiEjbYq0T2pqKrS8rGE1EJA15LV2AZL047zQ5jDFnAYuAm3AJRWs0EXjSGPMvY0wG3qESyWLBfbAjxgcg4TofG/3DzUgVMY4X3fAkzL0K3vmcs8PdEqrXwsxxsPB2JxQNnA/qnxvifJDlJlDiXGkmGlsf/0MyEREREREREREREREREREREckGc4CGxvudjTHppC5cgxOwBrAfeD+dwoi/y6YAACAASURBVNJhrd0VK6DMI5cD4VdDfMpauyKB7X4ZsXypMabYu7JEREREJKN6ne3fXCv/Agvvci7UveNdaAj5N3c8sYLR3JQN9L6ObJDs38S6x5xAMIGajWBd/q5L+6c05I66LVHXdyvMfDBafrYHo4ETUtPzrPj91ufw3+m+GDntZYP8q8Mv3U+GQLvUtt05H6pXe1uP5K7qtbDwJ7H7tOsH5aN8Kecwvc6J3b7+CfjgZtjzqT/1xFOzBRb/b+w+JgC9z/WnnpYS7/e2f60vZYiIiEgr1BB0grGX/wmW3g31B1IbZ8c7sOp+2L3Y2/pERNqInApGM8aMNsa83nh7zRjTLYUxujdu2zTO0EzU2opMj9fBGDMFmAGE/z4s8AHwBPAKUBmx2RXAI8aYnPobFElLbRXYhvj9ADofl1i/DsPj99kwHSrfTWw8ry28Aw5uj9724Tfdt8svi32VnAMb0ypLRERERERERERERERERERERDLPWrsLmB+26i5jjHHr78YY0xv4Ac5xaRZ4xdpED8TJWRdFLP89kY2stUuB98JWlQKne1WUiIiIiGTYgCug64nx+5X0hE7HpD/fwttg/pfhlYnw5rkQrE5/TC8oGO2QwddDpwmJ9//wm/D2RRBK8YTd1mTzf9zbjv5T0sM12AZ2BLdGbeta0HLBaMFsCkYDGHMHFPeI3aduF7z9mdz7Ow3ug2qXYLSBVznBcK1NQQc4MjKDPQnPDoZPf+tdPZKbVtwLzw2GqrnuffIKYfw9kBdw75NJfS+CnmfE7rPsd/DCCPj4VrDWn7qi2TADnh0Ey38fu9/o2519xtZs2M1QNti9/bVTsyv8V0RERHJD3S5nP+LVk+D9r8CC76U33nvXwYuj4aPvt+x+pIhIDspv6QKSdCMwBefAppettS5pO+6stduMMUGcA30scD3wXS+LzALfAe5IYbujcYLMmljggVgbGGP6AE8BhWGr3wGubzzAqqlfEc7v726g6Z3484CfAj9MoVaR3BPal3jfzgl+SN0+wWzHNf+ErhMTn98L9bVOKFuy8ttDXj4UxAhGe/l4uHhX6/zQSERERERERERERERERERERKR1+R3w78b7xwN/xjmWLCHGmO7As0BF4yoL3ONlgdnGGNMDGBe2KoRzXF6iZgHhV2Y8C+dnKCIiIiLZrqAMTn0Z1k+HqnnQUAeBIigb5LTvXQ7lI6DvZ5zgoU3PQeVcqN0O5MGWmZBfCt2mAAbWPQrB3YnNveUlJ7hkZBacYpNKMFrpAM/LyApFnWDqLOfY/J3vHwr32DAdandE32bTc7DyrzD8G76VmZXmf8m9rWJs0sPtDlURcgkh61roRzBa9NMA3WpqMR1HwZkfwIanYNFPYvydPgur7odhX/O3vnR8crt729Cv+leH34Z9FTofDZtnwsHG0zlX/jnx7T/8JvQ5/9BzmbQtBzbC+1+FeNc4OPN96DjGn5qiCRTByc/B+idhzuWx+y7+KfS5wPm/8FvoAMy9CuoPxu43dRZ0P9mXklpUu15w5nx4slP09todsPEZ6PdZf+sSERGR3Lbk17Bjdvx+eQUw6Frnfqga1v4rdv+lv4Li7jDiW+nXKCLSRuRaMNoFYfcfTGOcB3GC0QzOVRWz4FMb71hrK4HKZLczxvwgYtUb1trVcTa7k0MHnAHMAaZZa5u9s2KtrQV+b4xZDzwd1vQtY8x91tp1ydYrknOCSQSjJXr1rsKK+H0AVj8Ax96b+Pxe2Pa6sxOfrMLGQLTCcvc+wT2w6yPoND612kRERERERERERERERERERETEF9baR40x38MJ+jLAdcaYkcAPrbVvu21njCkFvgDcDnTDCUQD56KqyYSE5aLREcufWGv3J7H9nIjlUWnWIyIiIiJ+ChTDwCucWzx9zndubspHwQdJhA5teDI3g9FMANr1zUwt2aCgDAZd5dya1GxyAtDcbJjetoPRgjHOZeh8bEpD7qjb4trWtaBHSmMmI98URF2fdcFo4ATVDPsqdD0B/hMjOGjD9NwKRtv2mntb2UD/6mgJXY53bk2SCUYDJyhvxHe8rUlyw4YZ8UPRRv2wZUPRmuQVwIDPQ6AE3r4odt8N01smGG3b6xDcG7tP7/PaRihak8IK6HYybH8zevuG6QpGExERkeRseDKxfqUDD+U31B+MH4wGsOB70PkY6HZi6vWJiLQheS1dQKKMMYOAPo2LDcDzaQz3HND0KclAY0y/dGprDYwxJcBlEavvj7PNEUDYpyrUAVdHhqKFs9bOoHmoXRHOgWsirV+iwWgFHaDD0MT65hXgHC8aTyJ9PLZxRmrbNQWjBYqhqIt7v50fpja+iIiIiIiIiIiIiIiIiIiIiPjtYqCKQ+Fmk4BZxphNwEPhHY0x9xpjXgN2AH8Eujc1AZtxwtJau5ERyyuT3H5VnPFEREREpK3oc15y/fetgF0Lmt/2b8hMbbE0hJLrb+shLz8ztWSrrpNjt+94G6yN3ac127/Ova1sUEpD7ghGD0YrC5RTEihNacxkFOQVRl0fasjCYLQm5aOgoKN7+/Y3c+vvtGaTe1thJ//qyAaDr0uu//on4cDGzNQi2W3f8vh9ukzKfB3J6HMBVIyP3Wfvp/7UEmlfAm8Tds2yn6cfYu0XJfIzExERkdzVUA+h/VBbBQc2Oc/9uxdB3e7kxqmvdbbbu9x5fywR4ftdgWLodEz8bWw9vPM52PHu4e/Bhd/qdkP1mkMhw9Y673XU1yb3fYmI5Lhcete/6QqIFlhmrY1x6Y7YrLXVxphlHDrYZwywPs36ct3FQHnY8i7gqTjbXA4EwpafstYm8iz/S5oHql1qjPlyrEA1kVYhlGAw2sCrwSSYW2mMs6NcXxO7X4PPO7m2ATY+m9q2hRWH7vc+H1Y/EL1fKJmL4IqIiIiIiIiIiIiIiIiIiIhIS7HWrjbGnAs8DfTEOQ7QNN7vEdbVADeE3Ses70bgXGttpS9Ft6whEcvJHt8YmQDQ2RhTYa3dlUZNIiIiIpKLSvvDwCthzUPx+wLU7YKZRx2+vsMIOHE6lI/wtj43tj65/qNvz0wd2WzgVbDs97GDmp7qDpOfgO4n+1dXtlgY429i9K0pDfnhvjlR13ct6BF1vdfyTUHU9SGbZJCgnwLFMOLb8EmMn/nTveDEJ7M/yKdut3OifTSDrnbO72lLhn4NVv0t8f5V78GMvlA+2nk+6TA0c7VJ9lj7KCz/Q+w+nSZAz9P9qSdRxsBxf4NXT3Y/H3DjDFj+Rxj6FX9rq14Tu72kl7OP0NYMuR4W/yx62875TjBjuz7+1iQiItKW2AaoP9h4qzl0v+EghGqcr5Fthy3XHNrGrS1aX9ewcAPdpzjvixR1jl3/kl/Bgu8n9z3nlzmvi8KNugVmX3wozMxNzRZ4ZWKC87SHI26CdY/AgQ3O6+yRP4DRt7W916Ei0iblUjBa/7D7kVczTMUqDgWj9fNgvFx3bcTywwkElV0Usfz3RCay1i41xrwHHNe4qhQ4HUgxRUkkRwQTCEbrfiqMuS25cRMJRgPYvRg6jkpu7FRVzYODW1PbNvxqQOPvjhGMlnI+poiIiIiIiIiIiIiIiIiIiIj4zFo7zxgzHngAOKtpdcTXZpvgBKIZ4BXgKmttigek5JyOEcvbk9m48eKxB4HisNXlOBdMTYsxphvQNcnNBqc7r4iIiIik4bgHoOMY+Oi7qY+xdym8cTqcvwbyfDgVKdlgtGFfz0wd2aykO5wxF+ZcAdvfit6ndgfMOhMu2ADFXfytryXteAc2THdvLx/p3uYi2FDHpwc+jtrWrbBX0uOlIt9E/98L2jpf5k/Z6B87oWKf/iZ6+8Gt8PppcNEmKKzwt7ZkfHCze9voJM8Dag0qxsJZH8O8G6FqbuLb7VkEb5wB562EvEDm6pOWt2sBzPl87D4jvw+jfuTPvkWyOh0F096Al44HtwDK978K7Y/wN9htf4xgtCNugpG3QIk/gZ1ZpbQ/HPsXmHdD9PbXp8G5n/pbk4iIiN9sA9TXphYwlkww2WFhZwehIRtfl1rY9gbMvhSmvubebeOziYeilY8Ekw8VR8Hwm6HiyObtfS+CKTOdEOk9S2DP4tTLbxLaB0t/dWi5/iAsvANKB8KgK9MfX0Qky2XhOwau2ofd3+PBeHvD7nfwYLycZYwZDJwUsfr+ONv0AMaFrQoB7yQx7SwOBaOBc6CbgtGkdXO7QkTpQDjur1DcDTqMTP6N/UBx/D7gXInCr2C0Hck8HEQwYd9/YYUTFrft9cP7hfanPoeIiIiIiIiIiIiIiIiIiIiI+M5auw04xxgzAfgGMBXo6dJ9D/Aa8Adr7Zs+lZgtyiKWE7hq4mFqaB6M1t6tY5K+DNzu0VgiIiIi4oe8AIz4jnN7ug/UbEptnAMbYfss6DHN0/KiSjYYLZvDlDKpXR84+QV4Isbufv1BWP84DP2yf3W1tDX/dG/rOjmlIRfv/9B9yAJ/AmjyTUHU9SEb9GX+tIy53T0YDZyT7Dc8BYOv9a+mZG1+Ifp6E4B2ff2tJVtUjIUz3m2+bsMMePui2NvtXws7ZkP3kzNWmmSBWI/FACf8Ewb+jz+1pKrTBDj1ZXjtVPc+ax7yNxit2iUYbexPYfSP/KsjG8XaR927DPYshfIR/tUjIiJtk7XQUOt9GNlhfaO0ZWU4WRbY9gYcrHQPjA8PHYulsBOck0DQWc/Tm+8fzvsSrLwvsTmSseYhBaOJSJuQS8Fo4Qf2eBFkFv6uf5KfmLQ61+BcVbPJh9baBXG2GR2x/Im1NpmUojkRyz6lNYm0oKBLMFpxN+gxNfVx8xIMRtu/NvU5krVvefT13afCCQ/BjN7u29YfbL5c4PIhbag6tdpEREREREREREREREREREREpEVZaz8ArgQwxgwC+gKdgUKgEtgGLLbWNrRYkS0rMhjtYNResdUA4ekQkWOKiIiISFs04tvw4bdS337PkuwLRut6IhgTv19rVVAGZYOgerV7nz0JnLjbmsT6fjuOS2nILXUbXNv6FA9MacxkFZjCqOsbaKDB1pMXfpH6bFPQHkoHwn6XQB9wHl+ylW2A4N7obSYf8nLpFM0Mq0jwf2zvEgWjtXbxnnsqjvSnjnSVj3ICEN32Tfx87LLW/fzAMn+ei7Jau75OWG7drujtexWMJiLSZvw3nCyBgLFQTVgoWYxgskT7NtS29Hcvh7FQszF6MFr1atjxTmLDJPpaJ9KE38LO92HnB6lt72bba96OJyKSpXLpXbfKsPv9PRivX9j9Kg/Gy0nGmABwVcTq+xPYdGTE8sokp14VZzyR1ifkEozmFvyVqECCwWgHUryyVyr2Lou+vnykEwQXS5cTmi8HSqP3CyWTxSgiIiIiIiIiIiIiIiIiIiIifjPGtAfCz8pbFXkBTmvtaiDGGfwCWJ+2EREREZHWrv/l8MmtqR+L/cE3YOV90O8yGP0jMHne1tckmWC0ITdkpoZcMuQGWPAD9/aV98Gah6CgHLqfCuPviX5CcGsQOgA7Zru3D/5iSsNWBre6to0qHZ/SmMnKNwWubSEbojCbg9HA+Tv9+Bb39k/vgYFXQcVY/2pKxO7F8O4XoKEuevuAK/ytJ9uVDYQep8HWV2L3m/9l2PISHHU3tB/iT23ivWA1fPB1WP33Q+vyG7P5Y+1rdDkBOo7ObG1eKe4GfS6CDU9Gb9/1EWx6EXqfnfla9i6DUHX0ttIBmZ8/2+Xlw+BrYend0dvf/ixMfhz6XeJvXSIikll7lsJH34OquU4wmQ05X0XC1UcJrFv3GLxzWeJjDLkxtbkDxTD5SXjpaKj1ONbm8YiMivB9RZMHgXYQKIGukxpfew32dn4RER9k6BOIjFjf+NUAY4wxnVMdqHHb8HdJfUwLyjpnAr3DlmuAfyewXeQ7juuj9nK3LmK5szGmImpPkdYi6BKMlu9TMNqWmenNk6iNz8H2N6O3tR8a/0o4kW8EF7hcrNbtjVwRERERERERERERERERERERyRafBz5qvM0Dilq2nJwReWBMSQpjRG7j1cE2fwJGJ3m7wKO5RURERCRdJd1h2pvQ6WhINURpzxJYeBt8+B1vawuXaDDa0f8HA/8nc3XkihHfgzF3uLfbeuf4+5pNsPaf8NrJ0JBE+FwumXWWe9vQr0KnCSkNWxXcHnX9uLLjCJg450h4JD/GPEHrEtqVTUZ+H0bfHrvPK5Oheq0v5STkwEZ4ZZITfOTmyF/6V0+umPwE9PvcoYAsNxufgZdPgIOV/tQl3nvzvOahaOA834SqiZnZf/JzGS3Lcyc8CGWD3NvfPAe2vpbZGhpC8MII9/ayge5tbcm4X8Run30prJ/uTy0iIpJ5BzbDyxNh8/NQW+nsgygUTaKJDLpe/2TioWilA+CYe6H/51Kfv2wAnDYHup4IXr6H0LTv/d998DC2wVlXuwM2znBee9Xu9G5uERGf+PPOqzfmArVAIU442leAn6Q41pc5FAoXAt5Ju7rcdU3E8nRr7e4EtusYsRz9HX4X1tpqY8xBIDzRqRzYlcw4kYwx3YCuSW6maFPxh1swWkGawWh5SRwvunc5dBia3nyx7F4Mb53v3t5hmPO141jY/UmUDgYqIq6WFCiNPlaqVykTEREREREREREREREREREREb90wTneD2C+tVZHWycma4PRrLXbSfJ4QWNM/E4iIiIi4p9OE+DM+dAQhLwCsBaCe2kWYLL017D457HHWfVXGHcX5Lsc752ORILRKsbD0K94P3cuMgbG3A7lo2H2xfH771kCW1+FXmdkvjY/7VkC299ybz8i9b+XquC2qOuHthuT8pjJyjcFrm0hG/StjpQZA2PvgNJ+8N610fuE9jkhS2Pv9LU0V6sfhOAe9/b8Uijq7F89uaKwHCY/6gQ5ffQdWPY79761lbDu3zDs6/7VJ97Y9TFsn5X8dme+n3v/N/ntYOoseKafe5/l/wc9pmauhq2vuLcFiqG4R+bmziV5+TDoGlj9gHuf5b+Hfp/1ryYREcmcNQ9CMJFYDGl5BgIlkF8CecXO/kug2FkXeT8vRlu0vuFjzjySqAG9DbXNl2O9Rol0wZq0vvP/6jAUTnvLCe9zC/Cb0ffwgDOv1O6AdY/ovTQRyTk5E4xmra01xrwNTGtc9R1jzNPW2oXJjGOMGQ18l0PPaO9Ya9tkuo4xpitwXsTq+xPcPPKSDTUplFBD82C0NNOhACf0Ls7lQ0RaSMglGC0/zT/9RK+GBfD8MPh8g/OBUias+7d7W14BdD7Wud/7/OjBaBdXHV5bgcsVYjK1Yy8iIiIiIiIiIiIiIiIiIiIiXmk6e9gCG1uykBwTedZ1UhcLNcaUcXgwms4MEREREZHm8hpDloxxQmzCdRwbf/tQNexdBp3Gx++brESOkS+NEU7SVnUYnnjfnfNbXzBa1Xz3trxCKBuQ0rD1NsTOYGXUts4F3VIaMxUFuR6M1qTDsNjtO9/3p45E7IzxNwXQ/ojMnZ/TGuTlQ+fj4veL9b8r2WvD9OS3MXlQNtj7WvxQ0ssJQwy5nIqc6ceuqhjjtx+qx6JwHYbGbq963wkG1s9MRCT3Vc1r6QpyjHEPGGu6Hy+0LGrfOGMGisHk+/PcGyiKHjpWHxaMZi3smJ3YeMO+6U1d4Zp+NtF0PwU2Pef9nE302ktEclDOBKM1uhsnGM3iBHPNNMZcbK2dm8jGxphjgSeBUpyrUNrGMduqK4Hwd8VXAW8muG1kUpFLLGlMNUBFjDFFWpegSzBaQZrBaA1J/vu9ejKc+CQUZ+ADuF0L3Nu6TTn0gfmoW5w3fLf8x1kOtIOJ/4TCisO3c7uCmILRRERERERERERERERERERERLLdlrD7hS1WRe5ZEbHcP8ntI/vvtNbuSqMeEREREWlrep0D+WXxj9l+eSIc8ycYdLUTduIVG4rfZ+AXvJuvtSgf6YTaRbuIeaRPboXh33Q/Xj+X1B+EFffCh99y79PnQvcTj+PYFazE0hC1rUtBj5TGTEV+nvvL6lAi/zPZovPx0K4fHFgfvX3zizD7MueE8MHXQV7A3/oAdi+CNQ/Cxmdi9+t/mT/15LLe58YOkwJY+y8o7e/8vlMMMBQfhQ44j7mL7kp+255nQmFH72vyQ14A+l0Kq/8evf3ARidwI1Dk/dxbX4OFt7m367GouX6XwoIfuLfXH4CNM6DvRf7VJCIimZFouFW2iRYcFjVkzCVwLK8Y8hMMMQvvm1fQ+oNB81yC0RrqnK/bZ8PyPyQ+Xv/PeVNXwvNdltlgtDUPOq/R+l2cuTlERDyWU8Fo1tqXjTGzgCk4oWa9gLeMMf8E7gPmW2tt+DbGGAMcDdwIfAEnCMw23t621r7o2zeQfb4YsfxA5M8vCalsl+pcIrkplKFgtGg76LHseBteOg6mzXI+OPBKcJ/zAZSbkd87dD+/HUx5EfYsgZpN0OloKOoUfbt8l8zEnR/o6gwiIiIiIiIiIiIiIiIiIiIi2W1R2P2BLVZF7lkasTwkye0HRSwvSaMWEREREWmLCsrgpBnw9mchuMe9X0MtvHctbH8TTnjQu/ltffw+fRRmcRhjYNJjMOts2L8mfv/XToVpb6YcGJYVGoLw+mnxT4g/OokTnyNUBre5tnUuyMAF613kG/fTAIMNQd/qSFteAE56Gv4zwb3P+sec29ZXYPIT/p43smMOvHFG/GDI/pfDsJv9qSmXFbSHE5+G2RdDcK97v8U/g1V/g2lvQYeh/tUnyak/6Dx3VL2X/LYVR8Kxf/G+Jj8ddTdseh5qd0Rv3/Qs9LvE2zlXPQDvXRe7z/AYwaBtUdlAOOGf8G6MEN23PwOTn4R+n/WvLhER8db+DVBbmfr2foWRHdZWqPPiM8ktULy+FtY/Ae98PrH3nEweHHUPdDnO2/ri6X8ZVL0Py/5f5uaYfQmM+hGM+2nm5hAR8VBOBaM1ugz4EOiJE6yVD1zdeNtvjFkG7Gps6wQMBZpSdUzjegNsAC71se6sYow5HhgVtqoe+EcSQ0S+u1uSQhmR28R5xzghfwKeSHKbwUCcS3iIeCDoEoyW73MwGsD+tfDWRXDWh+nNHV7DU93d2zsdAz2mNV9nDHQc5dxiiXUFqj2LoOOYxOsUEREREREREREREREREREREd9Ya5cbYz4BxgJjjTG9rbWbWrquHLAoYnmsMaadtfZAgttPijOeiIiIiEh8PabCZ7bBzvfhlcmx+655CEb+AMpHeDN3vJNUu5+iE4ndlA+H81bA7gVwYLNz8fOVf47et2oebJgBAy7zt0YvbXohfija8G9DceoBZm7BaB0CHSnK8y9ULt8UuLaFbJ1vdXii03g4/V14+YTY/TZMh50fQOej/akLnICueKFokx6D/m32tMTk9TzNeT5Z9FPn5+vm4DZY9js45o/+1SbJ2fhM4qFoJz176H7ZIGcfweRlpi6/FHWCC9bC4y7nus3/irfBaA0h+ORWnFOiXUz4HQSKvJuztRj4P9DnQngixnmbn9wKfT+jfUoRkVy16C73tnE/h25TogecBYohr0iP/62V235RQy0s+kVioWhTXoQuE6Gw3NvaEmHyYMI9MOoHTkBacC/kt8OJxwHqaxrD9QLNt1vzD9jwVOLzLP01DP8mFHX2qnIRkYzJuWA0a+12Y8yZwLPAAA69qjc4AWgTItb9d1MOhaKtBC6w1m73o+YsdW3E8kxr7eYkts/KYLTG32lSv1ejHVfxS8glGK2gBYLRAHZ9BFtfhx6nRm9vqAcbgrqdzhupRV0A6+z011Y5ffIKoKQXvHm+szPtZsxtqdUIUNDRvW3bLAWjiYiIiLSk4F4IlDpXcBQREREREREREREREYnuD8BfcY7d+wmHH7smEay1W8IC5cA51nMy8HKCQ0yJWJ7pUWkiIiIi0tYEiqDrJBhyI6y8L3bfra95F4zWEOdE1dKB3szTWuUFoNME5wbuwWgA217L7WC0ba/H79N+cFpTuAWjdS6IcXH5DCiIGYwW9LESj7Qfmli/ra/6F4xmLWx7I36/bidlvpbWJlAMA6+MHYwGzmOSZK+tCf5+xv0M+pyX2VpaSn47KO4BB7ce3hbaB/W13gWV7V0GNXFO+dU+kbuCMigfBXsWR2/fu9T5PZb09LcuERHxxu6F7m2Dr4Pirv7VItkjz2U/rHqNs28VT1Fn6HWWtzWlorgb9D478f771yUXjNZQ54TM97kg+dpERHyWkxHr1tpFOAFoj3Io7MyG3f7bleaBaA3AQ8Ax1tqlftacTYwxpcDnIlbfn+QweyKWk9o7NMaUcXgw2u4kaxDJLUGXYLT8FgpGA3h9Krx3vfOma7gNM+DRfHisGJ7uBc/0g8fbOVe0eKIDPDvQuc3oA4/kwdZXYs9T0iv1Grud6N4W7yo8IiIiIpIZ+1bBS8fBEx3hqW6w8CfOAUEiIiIiIiIiIiIiIiIRrLX3Ay/gHMN3tTHmey1cUq54OmL5i4lsZIwZDhwXtmo/iQeqiYiIiIhE1zuBcJMPvg7b3vTmOCIbJxgtkXrE0X0K5Je6t6/6m3MCbS6yDbDmoTidDPQ6J61pqlyD0bqlNW6y8ghgXE4FDNmQr7V4oqgTdJkYv9+in8CBOMFAXrAWNkyH+prY/TodAyU9Ml9Pa9T+COgwLHafvctg6T1QOVfHpWajyjmJ9etzUWbraGkdx0RfX38wscDORG1/M3Z7fqnzPC/u4u0zfvxjqF7rSykiIuKh4D6omuverlC0tiuvMPr6RXcmtn2fC72rxU+9U3jfY/XfYfHPYfVDULPF+5pERDySk8FoANbaXdbay4GRwP8DmmJdTcQN4GPgbmCYtfZqa21kqFdbcwkQnsS0DXg+yTFWRCz3T3L7yP47rbW7khxDJHdY61z1IZqCNIPRGtIIRgPng8wPv3loec+n8LbHb0CXJvsQEaaos3tbOqFwIiIiIpKahiC8NgWq5gEW6nbCupZEtwAAIABJREFUwtthxb0tXZmIiIiIiIiIiIiIiGSvz+MEfRngF8aYl4wxp7RwTdnuYSA8DeIzxpgjEtju+xHLj1trdZCNiIiIiKSn5xnQ/7I4naxzXNG7V6YfZhMrGK3vxamd8NlWFbSHCb+L3ef54bDxGX/q8Up9Lcz+HATjnCI29idQ2i+tqSpdgtG6FPgbjmWMId/kR20L2qCvtXhm/D1Q2Cl2n/oaeGEEbHsjc3U0hJzHrtmXxO5X0BEm/L/M1dHaGQMT/hA7rBHgo2/DyyfA/JucAETJDtvegD2L4/cb+X0oH5H5elrSMTGOmZ51NlSvTn+Ojc/C+19xbzd5zvN7uucltnbDboaO49zbVz/g7AdteMq/mkREJD3Va+H5GPsaY+/yrRTJQoGi1LfNL4VRP/KuFj+VDYQxdyS3zcZn4OMfwdyrnP+pbXFCeUVEWkj0d0NziLV2OfBtAGNMGdAdaErRqQS2WWv3t1B52eraiOWHrE360iBLI5aHJLn9oIjlJUluL5Jb6mvc34zPT/MNyMIKOLg9etu5y+CTH8P6J2KPseJeGHIjVIyDpb9Or55IHUbEDjdLRI/TYWuUC9c21KY3roiIiIgkb/tbcGDj4evX/RuGftn/ekREREREREREREREJKsZYx5ovLsX2IdzUc9pwDRjzD6cC59ub2xLlLXWRh4H16pYa1cYYx4ErmlcVQj8wxgz1S3ozBhzAXB12Ko6IMFLoIuIiIiIxJCXDxMfhoFXw6wzY/dd+y/oMQ0GXZX6fG7BaKUDYPJjThiIJG7wtXBgMyy8LXp7/UF473roeRYECv2tLVXrn4QNT7q3l4+E4x6ALselPVWVSzBa54JuaY+drHxTQNDWHbY+FGVdTuhyHJz9CWx+IXYIVnAvvHcDnLfcCdfy2qbnnceuWI65F3qdA6V9vZ+/Lel5Gpy9EFb/HRbFCa1YeR/0uwR6TPWnNnFnLcyN81Zcnwtg+Heg22R/ampJ7QdD52MbLzIdxce3wqSHUx+/IQjvXRe7z5kfQcXY1OdoK0q6w2mz4YkY52821MK8G5zH+HTCVERExB+f3Ao1m9zb+3/ev1ok++Sl8FxeMd5536T/ZVAUJ7g7m4253bmwwbbXAQPdp0JxF3h2cPxtg3tg/o1wztLMvOYWEUlDzgSjGWN6AMeGrZptrd0Z3sdaWw1UA6v8rC2XGGOGApHvLt2fwlCLIpbHGmPaWWsPJLj9pDjjibQuwRjHbaZ7ZYZxP4/+ZueAL0CHoTD5cXjxSNj9cexxZh6ZXh1uTvTgigmB4ujr63UxWxERERHfLb07+vod7/hbh4iIiIiIiIiIiIiI5IqrARu2bIGmI6o7cPjxbPGYxjFaNBjNGNOH6Mdg9ohYzjfGDHAZptpaWxljmtuBi4CKxuWJwKvGmOustZ+G1VIE3AD8JmL731hr18UYX0REREQkcSYPep0Bx/4V5l0fu++iu2DAFU6gWircgtF6n6tQtFT1Od89GA2gdgdUvgvdT/avpnRsnBG7/Zj7PAlFO9hQQ3X93qhtXQojX/5lXoEpoCbK+pAN+l6LZ9r1hiE3QFEXePuz7v2qV8KexdBxtPc1bHw6dnvHsXDEl7yft60qGwhj7oSlv45/XtCGpxWMlg32LIH9a9zbz/oIKjJ0Xlq26nOBezDaxhlOmFyqoRI75jjPy24GXqVQtGQUlEHv82HTs+59aqtgx2w93oiIZDtrY78WNHlQ2s+/eiT75CUZ9t7rXJjyXGZqaQldjndu4cbe5QQKxrN3Gez9FMpHZKY2EZEU5dKnAZ8Bnm68PQzUtmw5OeuaiOXZ1tplyQ5ird0CfBK2Kp/kDlCbErE8M9kaRHJKKIPBaL3OhvwoYwy44tD9oV9Jb45UDf8WlA9PfxzXYDQ9FYiIiIj4rm5n/D4iIiIiIiIiIiIiIiKx2bBbrpoNrIlyeySiX2+XfmsAlyvSOKy1G3GOnawLWz0JWGKMmW+MecwY8x9gA/B7oCCs3/NAAke5i4iIiIgkqdtJ8ftUr3ICb7a/7dx2LYCGUOJzWJe+JpD4GNJchxFQ1DV2nw3Tk/s9tZSG+tgnw+eXeRbQU1m3zbWtS0E3T+ZIRr4piLo+5PY/k0u6TIz/P775BecxZf9652911ydQ+R7U7Up93oOVsOah2H0SedyT5BgDXRP4ua75B+xeBLYh4yVJhIYQ7F4IwWrY+YF7v8IK6DDSv7qyRa+z3dvqD8Cm552LTtftTn7sne/Hbu+WIyGm2SSRn9nWVw49x4iISHaq3QGhavf2LhMhL/prJmkjAkXJ9W8Lr/WS2XesXpW5OkREUpRLwWgdca70aID51tr9LVxPzjHGBIArI1bfn8aQkZfD+GKCdQwHwi+7sh94OY06RLJf6IB7W6A0vbFLesKpL0P5qEPLx93vXI2ryaBrYNzP05snWd2meDdnnssLkYY4V4YREREREW80hGDRT+GlE9yvbgbO1VdEREREREREREREREQOZzy8tSnW2lnARcCOsNUGOBq4FDgDiEw3eAS4zFpb70eNIiIiItLGdBgK/S+P3+/jH8KrJzm3mUfBU91g80uJzbF3WfT1Jj/xOqW5QCGM/nHsPsv/ANO7wuaZ/tSUiu1vwdM93cPzAEZ8DwrKPJmuMrg16vo8AnTM7+LJHMlwC0YL2qDPlWRASQ844iux+yz4gfOY8kx/eLQAZo6Dl4+HJzvB3GugIYmfQ6gGZl8GT8UJDCzqAkO/lvi4krhRP3A/X6hJaD+8OAZm9IWq+f7UJbDxOZjeBV4cC0+0h7lXufcdfZvzHNPWVBwJ3ae6t791Prwy2Xl8mndTYsGjDUF473r46DvufcpHQb9Lkq+3rRt4JZQNit1nyS8PPcf851ioib4PICIiLWjhHbHbR/3IlzIki8V7fRGudAAMirGf21p0nQw9piXW983zYO/yzNYjIpKkXApG29n41QJbWrKQHHY20DNseR/wRBrjPQyEHzj1GWPMEQls9/2I5cettUo3ktatvsa9Lb8k/fG7HA/nLIKLd8GFm2DwNc3b8wIw6ha43PpzVYgep8G0N5JPVnYTKI6+vl4PHSIiIiK+mPtF+ORWqJobu1+s/V4REREREREREREREWmrBmbgFucsttbFWvsiMBr4M7ArRte5wMXW2st18VkRERERyagTHoIJv4de5ya+Td0ueOs8OLg9dj9rYZ/LSZgmkPh8crhhX4cTn4rdJ7gb3roAarb5U1Mygnth1tlQu8O9z5AvwZhbPZuyKhj977VTQRcCLfD36BaMFmoNwWgAE34Lx/41tW1X/x2W3p14/0V3wvrHYvfpMBxOf9cJhBTvdT8Fpr0Fg6+P37dmM8w6S+cR+eHAJnj7IgjuSaz/8JszW082OyWRwFcLK/8My34fv+un98Cqv8Xuc9psz8I/25TiLs7j+cjIU5td7JwP71yW2ZpERCQ5uxbAinvd26e9Db3O9K8eyU55CQT2lg2CEd919g2Ku2W+ppZmDJz8PBz5v9DzTOhyAhR0dO//1gXOe3MiIlkil4LRwsPQSlusitx2bcTyo+kc/GStXQE8GLaqEPiHMcYlwQiMMRcAV4etqgPuTLUGkZwRKyAi4EEwWpPCjs4Oaiz9fXhT7uRnvR3PLWCtvtbbeURERETkcPvXwdqHE+sb0vk1IiIiIiIiIiIiIiLSnLV2XSZuWfB9DbDWmjRvVycx33Zr7U1AD+BU4IvALcDXgc8Cg6y1J1hrp2fi+xURERERaSYvAMO+BlOeg/NWgEnw9KSGIKx/InafXQvc2xSMlr6+FzknAMeSyO+pJWx8Nv4xaqN+6OmUlcGtUdd3Kejh6TyJys9zCUZraCXBaMbAkOtg8HWpbZ/osY6J9j3pWWg/JLVaJDFdjoXj/gJnzIvft7YKtryc+ZraunWPga1PrO+AL2S2lmyXF4Dy0Yn1TeQxJ16fEd91zh2U1BR3cwJBRt6SWP/tb8HBGGGsIiLir1jPk+WjoNtk/2qR7OWWR9AkrwDOXQ5H/QpKWuZ1fYsIFDkBsafMhNPnQJ8L3Pvu/RR2fehfbSIiceRSMNpHQFO0pC6zkCRjTHfgnIjVceLjE3I7za9AORF41RgzPGL+ImPM14DIT0Z+kw0HqYlknFswWl5h4h8Ce2XgldBxbOL985PIoiwbBBdugIBrPmJq3MbTlV5EREREMqt6LXz0fQ69HI9DwWgiIiIiIiIiIiIiIiIZZa2ts9a+Ya39h7X2f621f7DWPmWtXdPStYmIiIhIG9V+CPS/PPH+e5aCbTweyUY5LmnvUvdty0cmV5tEVzE+fp+9jb+naL+jlrJnSez24m5Q0svTKauC26Ou71zQzdN5ElVgXILRbCsJRmvSKYG/0Wj2LIaG0KG/XbdbcB8c2Bh7rMIKKO2fWh2SvA7DIVASv1+s5wjxxpJfJN6301GZqyNXVCT4M9j7KdgG98elhnrYuyzOXCk+NkpzCT/HWKjZnNFSREQkTLTnx3B7YuwH6jlSmuTFCUbrOM4Jt23r4u0Pxfp/ExHxWX5LF5Aoa+16Y8xc4ARgmDFmqLV2eUvXlUOuovnve5G1NoFLKcRmrd1ojPkM8BJQ2Lh6ErDEGPMBsBooB8YDXSM2fx64Nd0aRHKCWzBaIm/aey2/HZwxH1bcCx/e7N6v36XQ6yzoMAJePj56n/KRcNRvYNvrUNzDuTJPQQfva3Z7IdJQ6/1cIiIiIuJ8gLDop7DoDudD+EQpGE1EREREREREREREREREREREpO0ZeydsfAZC++L3XfFHWH2/c5HsQAm06wtHfAmG3QzGQHWMzN+eZ3pXc1vW90Io6Q01m9z7rPiTcwPnvIFh34AhN/hTX6Rts2DBLVA1N3a/ITd5foJzZXBr1PWdC7p7Ok+i8l2C0YKtLRit/2Xw8Y+gblfy2z4a/WeUtMHXQ6Awfj/xRkF7GHgVrPxz7H4LfuAE2425U4EGXqs/CB/cDLWVifUvKE8uGLW1OuJGWPdw/OOt6w/AI2n8zZb0gj4XpL69HNL7PGf/88CG+H1nHgkTH4EBl2W+LhGRtmrFfTD/S4evD5RA10kw5iew9Few+QX3MVrqtapkn7w4r+GO+LI/dWS7/pfDJ7dBcE/09ne/AAvvhCHXw4jvOu/XiYi0kLyWLiBJv3a5L/F9MWL5fq8GttbOAi4CdoStNsDRwKXAGRweivYIcJm1tt6rOkSyWiiLgtHA+XBm+Dfgwk1QOuDw9pOegcmPwaCrIb/MfRxrodeZcNSvYMS3MhOKBhAojr6+/mBm5hMRbwX3wsq/wUffg43PJRewIyIiLaPyXVh4W/KP2aHqzNQjIiIiIiIiIiIiIiIiIiIiIiLZq2wQnPISdD4eTH78/k3HgdfXwL7l8OG3YNnvnXX710bfpv1QKO7iSbltXqAYTn8Hep6VWP89S2DejbDq75mtK5pdH8Mbp8cPRRvzExhzm6dTW2upCm6P2taloIencyXKLRgt1NqC0Qor4LQ50H2q+/kkmVLSG0b9GMb93N95BY7+PQz/tvM7iGXxz+DjH/hTU1vy7lWw8r7E+lYcBafNhpKWCYnMKl0nwUnPQqcJYDJ0unbn4+C0dyC/hc5DbG0CRc7fb6+zIb80fv85n4dNz2e+LhGRtmjV/dFD0cB5v2Drq/DKRNg4w32MAVdAt8mZqU9yT6DIva24GwyOjFxpo4q7OPuXsVSvhAXfh6WK9RGRlpVTwWjW2hnAAzihW+caY/5oTCKfmLRtxphJwPCwVXXAv7ycw1r7IjAa+DMQ63Icc4GLrbWXW2v3e1mDSFarz7JgtCbtesF5K+HU12DkLTDpMfhsFfQ5/1CfmG+a2oyXCCgYTSSXHdwOr0yGedc7L4DfOh/eu07haCIi2W7tv1PbLqSXeSIiIiIiIiIiIiIiIiIiIiIibVLXE+CMd+GyWrgsBBMfTm77FX90vlavid7e84z06pPmSvvDKS/CxEcS36bpd+SnVX+DhjihX8feB2Nu9TyQZm/9boK2Lmpbl4Juns6VqDYTjAZQPhymvgqX7nceU3qemfk52/WDizbCuLsgL5D5+aS5vAIYfzdcuAHG/SJ235V/hfpaf+pqC2q2wvrHE+tbUA5nfQgdR2e2plzS+xw48324LOjcAu28Gzu/PZz+LpQN8G5MgdJ+MOUFuGSv8xwT7xzPFff6U5eISFuz/E/pjzH0q+mPIa1HXqF727j/9a+OXNBxFAz7Rvx+y/8I1qc8CRGRKHIxVOxGYB/wDeBLwMnGmN8Az1prq1q0sixlrX0HJ0wu0/NsB24yxnwDmAT0B3oA+4FNwEfWWpdPqERaObdgtGy4UkNeAHqc6tyiifnGnk87snkuCc0N+hBDJOutuA92L2y+bvXfYcgN0OX4lqlJRETi2/xiatspGE1ERERERERERHZ9Aot/DrWV0OkoGHNHYldbFxERERERERGR1sHkOWewlI9Mbrt9KyBYDftdTjspG5h2aRJFMr+nXR9DQ72/gVE7P4jfp8PwjExdGdzm2taloEdG5oynoC0FozVpekzpMBy2/Cezc5WPyuz4khhj4oduBffA/rXQYZgvJbV6299MvG+HEZmrI9eZPOfWYRjs+sibMctHOP8TkhlNzzFu53422fmhL+WIiLQpDSHYlebjq8mD9kd4U4+0Du36urdl6L2DnPb/2bvv8Diqe//j76Nmyb33XrCNbYwNphubTiB0QighIZWUm/IjJIGEm5BcEkKSG0hCSGghhBog9GqqaTaYYoptjLstNxV3SZa02vP7Y6SrlTWzO7s7O7srfV7Ps49Wc86c+dqWV7M7cz7Hz99J7Xpo2AZd+mW+HhERF3kVjGaMeSnm291AD2B/4Lbm9nKgornNL2utPS6wIgVrbQPwcrbrEMkpXh+OJVpNIBfkQo2Fpe7bm/aGW4eIJO+jn7tvX/+QgtFERHKZ182FiSgYTURyQbQJbAQKPUK2RUREREREJHN2rYB5h7Zex9v6Imx9GU5627khVUREOiVjzBcDHM7i3B+4E9gCfGKtlqgWEREREclJvac7oVs7l/rf58Ee3m3dFIyWEb2nQa+psPPjxH1tBJ4/AgpiwrmKusOA2TDp/0FR1+DqqnzDWYy5akH8fl1HQv8jgztujGqPYLQuppRuhXF+VjOoyLhPBWzsyMFoLUZfCMtvyPAxLsrs+OLf4BOgS39nERYvT06CCd9yFm3vc2B4tXU0lQvgjfP999f/k8RGXxRcMJr+vnPD3i3w2rkw7qsw9DPZrkZE8pmNwqp/wKanYceHsGdVa9u4rzsLz3UdmrXyQpXMZwVehnxGYU3S1tBT4f3LwTa13d59HPQ/NDs15bIR58C734doQ/x+1e/A0JPCqUlEZB95FYwGzMW5samFxcnjbok8H9H88Hujk0mir4hI6jpqMFpY95UWeExmj9aHc3wRCd6q22HmH7JdhYiI7MtaWHNX6vs3KRhNRLIo2gjvXQ5r/ulMwB9yEhx2hy52ioiIiIiIhGnxT9ovbrTtXdj8nCYJiIh0bv8kc/fp1RhjFgF3Av+21upmEhERERGRXGEMzH4E5p8Guz9Nf7zuo9MfQ9ozBo5+BOZ/FnYtT9y/+u322zY/B5ueguNfhYIApqptfBJePcsJYoun22iY8zgUFKZ/TBdVDVtct/cvGYwxxrUt04pMiev2SGcIRus3Cw65Bd75bvBzSUwhTP6xE74muaGwC8x9Gl49E+o2efdb8TdY8y849gUt3J6KzfOc39O+GJjwbSeMTuKb+D3nd+qq20j9Y1EDE77p/J1LbtjwH+dx6O0w7ivZrkZE8tU734UVN7m3rboVNjwEpy6BsiHh1hW2SB08Mz39cQ77R/pjSMfScwIc9QAsuAQiu51t3cfBnCe0oKOb0gFw9ONOUHLjDu9+r5wM526Dkj7h1SYi0izfgtHcKNhMRHJfPgejFbhfOHOE9BJcWOq+vbY8nOOLSGps1LutpHd4dYiIiH+b58HCL6W+f+Oe4GoREfHDWmelrF2fwuIfw84lrW0bn4DXzoHjX8laeSIiIiIiIp1Kw04of8S9besrCkYTERFoXQA1SN1xFlydC1xrjPmytXZeBo4jIiIiIiKp6LkffPYTJxjttXPaXtdPVrcxwdUlbfUYD6cug90roG6zs+3VM+NPit1X1QLY9AwM9xuwE8fH1yQORTv6MRh2mhPsliHVjRWu2/sVD8zYMRMpMsWu2ztFMBrA+K/DmIth+wfOIh0FRYBxfl5sivNbCoqg9wFQ3CPQUiUA/WbBmRvgwZ4QibNwb6QGlv4Ojn44vNo6io+vgWhD4n7Hvwq9p2keiF8FxXDoLXDgb51zn5a5NW99DfasdN/n2Oeh5TXeFEDvqQqeyFUf/wrGXqJwFRFJXt1W71C0Fg3bYdXtMPWqcGrKlg0BnLeZIijN3nszyWEjzoZhp8P2xVDUHXpOzOhnB3lv6ElwTiXs+Aienendb809MPG/wqtLRKRZPgaj6beOiOSfSB4Ho8U72Y8XehQkr2A0gI/+x3mTrzclIrln5S3ebbogJiKSmz79S3r7N8W58UREJGhN9c6NQmvv9u5TMd8JTeu5X3h1iYiIiIiIdFYf/ty7bcPDMOO68GoREZFcFHtjh/XYvq99ZzS79bUxbUOAZ4wx37PW/jX5EkVEREREJCOMcSahjv0KvP/D1MYo7AolvYKtS9oyxrm/ouUeix7jYds7yY1RMT/9YLRIHVS/Fb+PKYQhJ2V8DkFV4xbX7f2LB2f0uPEUGfepgJFoJwlGA2d+Sf9Ds12FhMUUOKEG6+6L36/ilVDK6VCaGqDqjcT9xn0NBs7OfD0dUZe+bf/uDvglvHlR+36lg2Hw8eHVJempWec8uiu0V0SSVP22v34rb+74wWhBnLsd8Mv0x5COq6AI+h2c7SryR0ER9J0BQz4Dm59x71MxX8FoIpIVeRWMZq1VhLaI5KemPA5GiyvFFXWS1WWAd9tHP4chJ0D/w8KpRUT8qd8Gi77l3V6sm1NERHLGjiVQ/ijsrYBNT/nbp+9BsO3d9tvjrcgnIhK0VbfFD0VrsXmegtFEREREREQybfdKWHFjnA4hLbgkIiK56svNX3sAPwf64QSZRYGFwCJgPbALKAH6AtOA2UDLbHML/Bt4FigDegP7N/cZRduAtOuNMcustS9l9E8lIiIiIiLJGX566sFopQODrUUSG3FW8sFom5+BxcWwaxlsfRlK+sGwU2HYaU7gi0kwLSzaCCt85FwPPQUKuyRXWwqqGytct/crzt7PY3FBsev2RtuJgtGk8xl+RuJgtIbtUP4EDP2MM6lfWkXqnNfn3Sug22ho3AUbHoHqhWB9XL8ZfmbGS+w0hpwMBV0gWt92u/6O88+u5QpGE5HkRff661dbDouvhB4TnPc+ZdkLZs6Y3SvTH0O/P0WCN+JM72C0DQ/B4p9Crykw7BQo6RNubSLSaelTHhGRMKy61X17Uddw6wiaDSkYre8MKOrmHbSx5m4Fo4nkmvLH4rcXdQunDhERiW/Do/DGec4NZX7Nfbb55jMFo4lIlq2911+/mrUZLUNERERERERw3qPFmzxTsxaa6kOZrCgiIrnHWnunMWYC8DhOKBrArcA11toNXvsZYwqAM4A/AGOAzwHLrLW/2qffKcCfgHE4AWlFwP8CMwL+o4iIiIiISDp6jIfpv4YPfpb8vof9I/h6JL4J34ZNz0Lla/732bnUebRo3AWf3ug8Rl0Ah98FBYXu+0Zq4dUzYcvz8Y/RdSQceJ3/mlIUsY1sj1S5tvUvHpTx43spMiWu2yMKRpOObPhZMPI8WP9A/H6vng6jLoQj7kocxNhZNGyHl09xQtBSMfYSJ8xLgtGlLxx8Iyy6tPW6Wq+pMPWq7NYlyXvlM/C53VDcPduViEg+iUb89136W+dr6SA45jnoMz0zNWVDUz1UvJLeGFP/G3rtH0g5IhJj9Bfg7Uu925de63ztPg6OfV5BsSISCgWjiYhkWuMe77bCsvDqyIiQgtEKS2HAbNj8rHv7ir/CrHgr0ItI6FbcFL+9yecKByIikjk2Cu9+N4lQNAOzboKhJ8Gaf7p3UTCaiISp6k1//eo2ZrYOERERERERSbxgio3C7hXQe2o49YiISE4xxnQFHgUmAo3AxdbaBDNZwVobBR4xxswDngGOAn5hjFlvrf1nTL+njTGvAa8ABzZvPsAYc4K1NsGMehERERERCdWUn8LQU+HlE2Fvhf/9+h+RuZrEXUlvZ5Lr1ldg+3tgm1rbdnyUOKBoX+vucybYDjvFvX3tPYlD0Y56AAYfDyV9kjt2CrY1VmE95kv0Lx6c8eN7KTLFrtsVjCYdWmEJHHkf7PcdqHwTPrjSu++6e6H/oTDxe+HVl8tW/C21ULTRF8P4b8CAI8GY4OvqzMZ/DQbOhq0vQ9lQGHSswrXy1Zo7ndclERG/fM/dibF3Kyz+CRzjMbc6H8V7Lzn6YjjkZifcdcvzUNu8vlK0AXZ8CF1HwNivQF+tjSSSEUVd4dgX4KXj4/fbswo+vgYOuz2cukSkU1MwmohIpsVbIam4R3h1ZMLgBCe2QSrL3sVDEUnSugdg2zvx+yg4R0Qk+3Yth9pyf30PuAamXNm6gl6RxwX4SJxQYBGRINVX+++7c5l3W7TJuXAKzs1FhaXp1SUiIiIiItIZ1WxwJkYmsmuZgtFERDqvXwGTcVbgu85PKFosa22NMeZs4BOgL3CjMeYpa21lTJ/dxphzm/u03Bd5IqBgNBERERGRXNNnOhx6B8w/1V//siFQ2CWzNYm7wi7OQppDT2q7veK15IPRADY+5h2MtvGJ+PsOOApGfi75Y6aoqnGLZ1u/4oGh1bGvIuM+FTBiIyFXIhIyUwADj3Yeq26FPau9+y65FsZ9HYrKwqsvV5U/nvw+A46CI/4VfC3SqudE5yG5o88M2P64iqP7AAAgAElEQVR+cvuUP65gNBFJTqphxpvnQaSu45zbxHvvN/ky589ZVAZjvxReTSLSqsd4f/02PgYoGE1EMq8g2wWIiHR4W1/ybhtwdHh1pGPi9z22h7iCSkm/+O0168OpQ0QSW/KbxH0UjCYikn3Vb/nvO+WnraFoAEXd3Pvp9V1EwrLrU/99d3wAD/aGxVdAU4OzrakB3v4W/KcvPDzAeTzYE148zpnQLyIiIiIiIv6VP+bdVlAMw06HyT+GHhPCq0lERHKGMaYI+GLzt/XAdamMY62tAm5u/rYMuNClzxrgQcA0bzoylWOJiIiIiEgIBh7tfQ/SvgYdm9laJHl9D4KiFBaJX3mL83nirhWwcylseBQ2PAIbn4KdS+LvO+i41GpNUXVjhev2noV9KCnIXlBfsSl23R6xDSFXIpJFiX4v7N0Cr57uvMZsfh4ad4dTV7ZE6qDyTajbAnsrYdNzzmvrhkeSu1e4hX7vSmc0+cfu23tO8t5nyzznHGb3SrA2M3WJSMcSTTEYDQtr74FNz0Ld1kBLyoqqBd5tvaaEV4eIuOs6ErqPS9yvvho2POycD218CioXtM7XEREJkPsyESIiEgwbhWV/8G4ffHx4taRj4vedD8RrY8LHxl4CvUJc0b1L//jtzx0KZ28OpxYR8daw3QmeSKSpNvO1iIhIe9Em53U62ggLv5y4f0lfOPYFMKbtdgWjiUi21W1Mrn/jTlh6nXOh5aA/wns/gJV/b9sn2uiEmz93MJy5CSK7Ydu7zgXWssHB1S4iIiIiItLRbPQIRus5ET77Sbi1iIhILjoK6A9Y4G1rbToXE+YBVzY/PxP4k0uf53BC0wwwPI1jiYiIiIhIJhV3hylXwQdXxu9X0gcm/yicmsS/oq4w7efwfgr/Nq+emfw+3UbB+K8nv18aqhq3uG7vVzww1Dr2VeQRjNZoUw1ZEMlDky6D8kehvsq7z5YXnEeLQ26G8d/IfG1h2/AwvPkFaKoLZrxuo2H8pcGMJZJPhp8G/Q6D6oWt23pOhjlPwBPjvfeb/1nn68A5MPth6NI3s3WKSH6LRlLf9+2Y90MTvg0H/RkKCtOvKUzRRnj7Uqgtd2/ve7Cz+J6IZJcxcMD/wIIvODkZ8bx2TtvvS/rA7Edg0JzM1ScinU7eB6MZYw4ETgdmA+OAvkAPwFpr2/35jDG9gZ7N39ZbaztANK6I5Kyqhd5t474OhSXh1ZKO7mPgxAWw7j5nFYOBc2DUee0DMjIp0Ypge7c4b4i76p5WkazatdxfPwXniIiEr2YdvHJq4pU1W0y6DPb7DnQf276tqLv7Pnp9F5Gw1Fentt/y62HcV2H1nd599lbA/cXOe96WCzmTfggzfh/u+2AREREREZF80LADtr7i3jbyvFBLERGRnDUy5vmmNMeKXTFvlEefZTHP+6R5PBERERERyaQpV0CvybDmbtjwkLOIY8M2p633NBh6Coz9CvTcL7t1irvJl0OPiVD+CNQ2L3C3ZV7wxxl8Ahz+r9AXtatudJ9u1r84u4vrFRn3OSgRm0bIgki+6TUZTnoLVt4KS3/rb5+3L4X+hzu/XzqKus3w+nlgm4IZb+ovYMI3tYiodE5F3eDYebDyFqh+G/pMh3HfgNL+cNzL8OIx8fevmO8Exh52ezj1ikh+ShhmbHDWGUpgxU3Qd6ZzT3w+WfE3WH2Hd/uBPs/rRCTzRl8AZUNh3f2w+1PY+pK//Rq2w6tnwFmbnFB9EZEA5G0wmjFmGnA9EPuO0s/MxGOAh5qf1xhjBltra4OuT0QEa+GT673b+80Kr5YgdB0Kk3+YxQJ8vMRveib0laBEZB+bnvXXT8E5IiLhe+sb/kPRxn4ZZv6vd7tXaG1kT/J1iYikoiHFYDSAp6f66GSd9/UtPvlf6H8ojPxc6scVERERERHpaHYua55w4zHhbviZ4dYjIiK5akjM8wSr4iXUcve0AbxmaG6Ped4lzeOJiIiIiEimDT/DeUh+Gn6a82hxbwYWnDvsjqyE9FQ1eASjlQwMuZK2ioz7VMBIwpAFkQ6m+1g48FqY+H14fCw01SXeZ939HSsYbf1/ggtFm/wjOODqYMYSyVfFPdznTvaZ4W//9f+GQ26BgsJg6xKRjiPqcc7e92A4eZHz/LnDoXph4rHW3pd/wWjr7o/f3n1MOHWIiD+D5jgPgMfGQM1af/s17oTNz8KIszNWmoh0LgXZLiAVxphLgIU4IWf7fmqeKAr3MWB9837dgHOCrk9EBGvhra86K1d50QrpySkblLhPtCHzdYiIt/LH4eNf+usbqWkbNCEiIplVvw22PO+//+QfxW/3DEZT8KWIhKQ+jWC0VJU/Fv4xRUREREREctWKm+GpKbDzY/f2riP8TxIQEZGOblfM8/3THGtKzHOv1VpKY577mBErIiIiIiIigRlxbrDjlQ1xHllQ3Vjhur1/cfghbbGKTbHr9ojVXArppMoGw4Rv+eu75DfQuAua6jNbU9AitU7d0Sbna8tj2e+CO0bQr98iHUlJL+g+PnG/SA3s3Zz5ekQkf3ktOhcbftzvYH9j7fqk9ZwgGlBQaiZFI7DjI+/2LgOg68jw6hGR5PSblVz/6kXO+xgRkQDkXTCaMeYc4HagLHYzsAFYTPugtDastVHg3zGbTg+6RhERqhbA6ju82wuKnQ/FxL/Bxzt/b/EUdo3fLpKrmvbCh7+AF4+FhV+Gbe9mu6LkRWrh1WRW7LNO8reIiIRj51IS54jH6DU5fnuhgtFEJMsatoV/zLX3hH9MERERERGRXFS3Bd6/nLifNw07HUzc2zdERKTzKG/+aoCxxphD0xjr4uavNmbcfQ2O6VOZxrFEREREREQkWft9O+Dxvgsm/KlvdU011ER3u7b1Kx4YcjVtFXkGo0WwWrRaOqspP/UXWgTwYC94sAe8MAd2rchsXena9Aw8NRUe6ObUfX9Rc/3Nj9oNwRyn32HJBx2IdDYTv++v3+o7M1uHiOS3aKP79th50+O+DoWl7v1i1W1sPSf4Tz9nTmouhhBVLYR/l8H9xRDxWvMI2O87UFDk3S4i2TXhO2AK/fdf+lvnfcwTE6H88czVJSKdQl4FoxljhgAt7wxbPq29CRhnrR0NnO1zqMdahgTmBFagiEiLTc/Ebx/ymXDq6EhK+sCYL8bvkyg4TSQXWQsvnwQf/wq2vgyr/+lcZKt+J9uVJefJScnvU18dfB0iIuIumdWnxl+auE9xd/ftEfebwUREAqdzSRERERERkezZ8HD8G1YBhiezmIqIiHRw84FGnPv9DHCTMSbple+MMZ8HTqT1vsHnPbrOjHm+NtnjiIiIiIiISBoGHQNznkpvjMKu0Hs6zPwj7H9FMHUlqapxq2dbv+JBIVbSXlFBiWdbxEZCrEQkh3TpB8fOg9EX+esfbYSKV+GFo3IzQARg23sw/zTYuSSzxxn3VTj2OS12I5LIxP+CWTdBn5nOuYqXD6+CXZ+GV5eI5Bc/wWh9DoBjX4BBx0FxL38haY07nTmpCxLMvw5bzXqYdzg07Y3fb8K3YOrPw6lJRFIzaA7MeRIGHg1FPZzzocKuYBIEGu7+FF49I//my4tITsm36NSfAy3vGpuA8621/4lp97u0xSKcm62KgX7GmDHW2jXBlSkind6Sa+K3l/QOp46OZtbfYdXt3u01a0MrRSQwFfOdi2qxIjXw6Y1w+D+zUlLSdq9KbbWh+mroMS74ekREpL09SbzlHXpq4j7Fvdy3N+2Fpnoo7OL/eCIiqVAwmoiIiIiISPYs+U389uKeMFBr1ImIiMNau8sY8yRwFs79fQcCzxljLrTW+rrQbIz5GnAjreFqUeBuj+4nxTz/IOXCRUREREREJDXDToEL95neda/PwJ1Dbobx3wi+piRVN1a4bi+gkD5F/UKupq3iOJOOI7aRYrTYvHRS3cfAEXdDnwPh/R/522dvBZQ/BqMvyGxtqVj1D7BNwY139OMw/LTgxhPpjCZ8y3kAPDMDti9277f6n3BgguupItI5+QlGAxhwJBz3gvM8UgsPdPM3fvkjULcVyrIb5vx/1tzlo5OBmTcopFUkHww92XnEWvZHeP+Hiff95Ho48p7M1CUiHV5BtgvwyxhTCFyAc3OTBa7bJxTNN2ttBPgkZtOk9CsUEYmRKIW7WMFoKSlIkOf54X+D9ZuRKZIjPv2L+/Y1d4ZbR4umvVD1Nuz4KP7/JxuFbe87KxF9dHVqx6qvSm0/ERFJXjIBskNOTNwnXtBv407/xxIRSVXjjuwcd+OT2TmuiIiIiIhIrmjcA3Ub4/cZegoUloRTj4iI5IvLgdjl4I8Elhpj/maMOdYY03PfHYwx+xljLjXGLAJuBkpwQtEscLu19iOXfUYAc2ldYPW1YP8YIiIiIiIikpIBs/31G3RsZuvwqapxi+v2fsUDKDCFIVfTVpHxDj6LWI+gBZHOZMjJifvE8go2yrYdQeb9G+g3K8DxRISe+3u3Bfr/V0Q6FBtx3x4n/JiirtBtjM/xo7BzSfJ1ZcrS3ybu02O87i8RyWe94pwTxdr6kvIfRCRlCRJmcsphQMsNUA3A79IcrxyY1vx8RJpjiYi0VdTDCRfyEi9IQtJTvQj6H5LtKkT82/BwtitoVfkGvPmF1vCcwcfDUQ9ASZ+2/Wo3wssnpf9BWUN1evuLiIh/e9b663f6Kijskrjfvr8bYjVsh9KB/o4nIpKqSE3iPtN+BR/9PNjjfnoTDPtssGOKiIiIiIjkk/d/lLjP8DMzX4eIiOQVa+0aY8xXgLtwFnO1QDfgG80PjDG7gN04AWi9mr+CE4ZG8z4GeAu4zONQV9C6WOxe4PlA/yAiIiIiIiKSmjFfhMoE2dX9D3cmxeeAzfUbXLf3Kx4UciXtxQtGa7QNIVYikqN6TYE+B/oPPFv2O2jYBpN+CL0mZba2aBMsvwE2PQP1lW3buvSDvgdBUz1Uvw3VbwV33CEnQtng4MYTERhzMay7171t09Owazn0nBhuTSKS+6IeQcYF3uf4gPOa8/Gv/B3jpeNg1Pkw/lIYNDep8gJRtdC5337nRxDZk7j/6IszX5OIZM7g46BsCNRtjt9v7xZ4ehqYQigscz4DmvIzKO0fTp0dSd1mWPIbqHoLovXt26ddDSPOCr0skUzKp2C0lk+3LbDIWrsrzfFi92+34qSISFq83qC28Er2lsSmXwsfXOndvuo2BaNJ/tj1afx2GwVTEL9Pumo3wcbHYfsHsPLvbdu2vACLfwqH/K3t9gVf8h+K1qUf1HsEoHltFxGRYFW+AZufSdzv4Buh+1h/YxbHCfpt2OFvDBGRdERqE/eZ9t9Q9SZsfja44/p5PRUREREREelIok2w4T9QuwG6jmh/LWFfBcUw5ORwahMRkbxirb3fGBMFbsG5X69lSeiW4LNezY92u8b0ew4431rrtXLCXcADzc/3xOknIiIiIiIiYRr3FdizGpZe697e/3A46qFwa/IQtVEW7HrRta1/jgejRTRPRQSMgaMfgxfmtC4Yn8iq25xrIScuyGyQ0VtfgTX/8m7f+nLwxxw4Fw6/K/hxRTq7oSfDgCOd+/TdzDscTlwIPfcLty4RyW2pBqNNvQrqNsHqO8A2JT7Ouvth/UPOOdGwU5KvM1UVr8NLx7sH9bgZfylMiTNXXERyX0ExHDMPXjsHdieYLx87J736Ldj0FJz8LhT3yGyNHUl9tXOeWbPOu0/D9vDqEQlJPgWjDYh57r70RnKiMc/z6e9BRHJd4x5oTBAG0T03VjLKSyPOjh+MVrcpvFpE0rXxyfjt710OB/0xc8ff9j68fFL71YZirf4HzPhd65vLhh1Q4fOC27RfwX7fhtfOhopX27fXVyVfs4iIJOejX8JHVyfuZ4pgv+/4H7eom7NKg9tFFQWjiUgYIj7nM3bJwAoyDTugJE5ApIiIiIiISEfR1OBMHKpe6H+fsV+BErdMGxEREbDWPmCMeRP4A3A2rfftWZfuJubrGuDX1tp/JBg/iV9aIiIiIiIiEhpTAAf+Bqb9HGo2QFMdFBRB6SAnHKBscLYr/D+f1n7k2da/OPt1FscNRvMIWhDpbLqNhDPWOIvIN9VC4y5n7sZHv/Dep2E7fHoTHPynzNRUsw7WBBxQdvK7rc+LujffU2ehxwSINoCNQukAz91FJE0z/gjzDnVva9gOK/6e2TlhIpJ/vM7X45zjA07w0KG3wszrYfcKwMIHP4u/eLiNwLLrwg1G++QP/kPRpv3SeX8oIvmv91Q4bbnznqe+Gp47xF+I4+4VsP5BJ0xf/Flzd/xQNJEOKp8CwWJvfioMYLy+Mc81a1tEgpMo0Rag38GZr6OjSrRSglY5kkQad8HS66BqIfScDJN+AD2yFFZYtzF++/LrYfIPoesw/2PaKHz6V1jxV9i13Nm2/09g/yvbT0T64KfxQ9HAuSD2YE/n+bivwoCjnWMk0mM/ZzUCY6Ckn3uf+urE44iISOpW3e4vFA1g1AXJjW2MEwrk9lqulQVEJNNs1LlhzY9+h8Dau4M9/o4PYeDRwY4pIiIiIiKSi5bfkFwo2ohz4cDrMlePiIh0CNbacuB8Y8wQ4FzgCGA60B/oDdQD24F1wELgBWCetdYtPE1ERERERETySWEp9JyQ7SriWlm31LNtQEn2g9GKFIwm4l/Xoa3PI3vAO/fQUfl65mqpfBP3tQFSNPh46DszuPFEJHndx8Zvr3ojnDpEJH9EPeY+F/iM+yjuDn1nOM/7HhQ/GA2gagFEm6AgiFgOH5I5lxp2aubqEJHs6DbKeUy6DJb93t8+la8rGC0ZmXzPKpLD8ikYLTa1Y6hnL/+mxjxXKoeIBKcliMjLgNnQe1o4tXRUfQ+Gbe+4t0V1MU/iaKqHF+bC9ved77e+BOsfgBMXQI9x4dcT2ZO4z8YnYfw3nACaFvE+kHr7m7Dq1rbbll7nJGefusS5oSAacYIkNj+XXL2rbncefky7urXmLv3d+zToFExExJO1bV/7k7Xmbnjra/76miKYcGnyxyju4x6M1qjscRHJsKY6/31HXeCERDZsi9+vdDAccTe8dHziMV+YAxdE03udFhERERERyVWx1yBW3+F/v3OqoUvfxP1ERESaWWs3A39pfoiIiIiIiIjkhMqGzZ5tk7vNCLESdwpGE0lR/8OhdBDs3erdZ9cnsOg7bbdtexdq10P/I6F0YOt2UwC9D4ARZ0MXl4Xkd6+CdfdDUTcY9XnYszqYP0eLEWcHO56IJK+0PwycAxXz3dur34at82HQnHDrEpHc5TX3ucD7HN/TiLNhya8TH++N82DYGTDyHOe8JEhVC2HTs1D5GlS/BZEaf/t1Gw19sv/eSkQyZPRF/oPRVt8BZcNgyIkwcHZm68pVteWw4RFo2A5DTob+h4CNQvnjznvKipeh+3jocyBseCjb1YpkRT4Fo61v/mqAGcaYYmtT+8TWGLMfMCxm04fpFici8n92feLdNuHbMMPnyZx4i9Z7t+1cEl4dkn82Pd0aitaivhJW3gwzfhd+PX4+7Fn0TecBMPJzUP2OczFu8HFw6G2tF9dq1sMrp3j/H9izGv5dFkzdiRx+N4y+oPV7twt9APVV4dQjIpJPbBQ+/G/nd1NTAww7DQ66AUoHJDGGdUIx/Rg4F6ZfAwOOTL7Wkt7u2xsUjCYiGeb3oik4N56c/C4s/BJUvOrdb9Axzjn2ye/ABz9LHCJc9WZqr50iIiIiIiK5quI1eO8y2PEB9D4Q9vuv+Nc9Yw0/S6FoIiIiIiIiIiIi0iFUNroHo/UvHkRpQUj3YsdRaLynAjYqGE3EW0ExHHYnvH6u9wL3TbWw4ib3Nq8J6Euvg+NehG6jWretvR8WXAw24ny/5Br3hYhTNfwsGHNJcOOJSOoOvhGenubd/uJcmPZLmPbz0EoSkRzmdb4eJ/zYU9+Z/vpteNh5fPpnOGZecPd2LP8zvPv91PY97J9OyKyIdEx9psMB/+PMj/RjyTXOY/pvYMqVma0t12x7H14+sXWu/UdXO+eXFa/A+gdb++2tcOYwiXRS+XTWsACoAyxQBlwQv3tc34t5vtVauzydwkRE2qhZ6759xDkw669Q1DXUcjqkpjjBaHu3QuUCJ1REZF8rb3bf7jd9OmjJBDqA80amZo1zwW3jE/D8bCf8JhqBZw7MjWDAox6CMRe13eYZjBbgxT0RkY7io1/Ckt84r5GR3bDuXljwRef13q+G7bDzY399j3859WCf4p7u2xt3pTaeiIhfkdrk+ncfDcfPh5Pfg3Ffg8J9blIt6QP7X+E873sQHPMsHPtC/DFX/zO5GkRERERERHJRpBa2vATL/ggvHA3b3nFWDN62yAmY9qvXlMzVKCIiIiIiIiIiIhKiyoYtrttP6ntuyJW4KzAFFHmEo0UUjCYS39CT4LSVMCPA+SN7VsHSmPEa98B7P2gNRYP05k0MPgHmPAUnLXJCRE58C456EIqyH9QoIkDvqc7/z3g+/iXUbgynHhHJbVGP8/WCFILRAIp7+++77V1YdVtqx9lXww5Y/BP//addDeO/AYfcAmdXwKA5wdQhIrlr6lVw6lI45FaYeYPzGpDIhz+Huq2Zry2XfHhVaygaABbe+U7bUDQ/hp/p/D3PvAH6HRpoiSK5wHuZiBxjra03xrwIfLZ506+NMY9ba3ckM44x5kjgUpyANYCHAyxTRMT7g6rY1T8kPdE4wWgAzx8BPSc6H/73GBdOTZIfNj+X7Qra8lppyK/dnzrhOdvfc0Jwsq10EAw9uf32Lv3d+ysYTUSkLWth9T/ab9/8rDMptd8sf+O0+UAsgwq6uG/XzVUikmnJBgy36DsDDr3VubFt3X1Q/Y5zDjv2y9BzQtu+g4+DsqFQt8l9rFW3OWOJiIiIiIjkqzX3wIIvBDNW2ZBgxhERERERERERERHJopqm3dREd7u2DSjJnc9Bi0wxkdjQpWYRr6AFEWlVNggm/j/44Kfe4STJ2vR06/Mtz8PeACfzH3QD9Nrfed7v4ODGFZHg9J4av91Gnfls474STj0ikrui7c/hAfAIPk6oIMn9Nj0F+/84tWPF2voyNO3117eoB0z7RfrHFJH802uy8wDY9j6svCV+fxuBLfNgzMWZry0XRBvbvpdMx0E3KMdEOrS8CUZr9mucYDQLDAPmGWM+a62t8LOzMeYY4CGgADBABPhDhmoVkc6q4hX37WVDQy2jQ2tKEIwGsGu5s5L9Ca9nvh7pGGwUTEG4x0w10CHWh1elP0ZQDr0Nirq1317Sz71/fZUTAmRMZusSEckXTXuhtty9bcmv4ehH/Y0TVjBaYYn79qaGcI4vIp1XuufRJb1hwrdgQoJ+vad7B6MB7FzaetOZiIiIiIhIPtm9MrhQNIAeid5giYiIuDPGFAOHAOOAvkAPwFhrf5XVwkRERERERKRTqmzY7Nk2sDi3gtGgrt32iBY1FfGnoBAGHecsXByE2g2w9j7AwLLfBTMmQNeR0GNicOOJSGYUlsKA2VD5mnef9Q/BmC8mH2KUDbXlUP2287zvLOg2Irv1iHQkXufrBcWpjZfsXNidy2Dt/e5tvSZD72lgm2Dbu7Bnrfc4yZxDlfRJqkQR6aB6T4PSQYlDpJdcCz32g74zU39tzFU2CjuXOPOQrIWG6uDG7joyuLFEclAevItqZa19yxhzP3A+TjjawcAnxpjrgQeAdrOvjTGFwFzg68DncALRaN7/T9batZmvXEQ6jfInnDd+bsqGhVtLR9ZjAuzdkrhf5RvOG/DuozNdkXQE9dVQOiDcYwYRjBa0ISc5K5Eka+BcGPZZ97YuHsFo0XrnA3N9SC4i4ojs8W4rf8z/OH6D0frO8j+mmwKPYLSogtFEJMOaQjqPjiYI5X5qCpzf0PEuuIiIiIiISMe34ZHgxiodDIOOCW48ERHpFIwxRwGXAycCXVy6tAtGM8acDJzX/O02a+3lmatQREREREREOqPKRvdgtGJTQs+i3JnQ7wSjtdeoYDQR/6b9AqrehMZd6Y9lI/Dmhantu9934dO/tN9uCuHAa50QNxHJfQf8Cl45FZpq3ds3PwPPHgxzn4auQ8OtzS8bhcVXtg94nHQZzPh98gFMItJeNOBgtGTVV8KbF3i3lw115gP5nZPkx/4/CW4sEclfBUUw/Vp466s4MT8edi2DeYdBz0kw95mOkw/RsANePQsqXgl+7J6TwZjE/UTyWF4FozX7KjARmIHzqtcbuLr50Wb2tTFmGTAGaDkjNM37GOBN4IowChaRTiLaBG99xbs9Vz+0ykf7/xjmx1lFIVb12x3nxFfSU7MufnvdxiwEo8UJwMmGqb9wLvAt/xO89/+S23fYqd5t3cd4t216EiZ8K7ljiYh0VIkCM3evgh7jEo/j9yLExO/56+fFKxhNN1eJSKZFPG4cCVrT3sR9lv0vTNFHjCIiIiIiksPKH4O19wFRGHEu9D0IFv84mLFLB8GxL+THyuYiIpITjDHdgFtwFkaF1kVOY3ndCb0EuBgoaB7rLmvtB4EXKSIiIiIiIp1WZYP74u0DigdTkENhIEXG/TPZiO7dE/Gv/2Fw0tuw9l7YubR9+4aHMl/DxB/AzD/CwKNhy/NQv83Z3m0UjDgHBhye+RpEJBiD5jqvKU9P9e6z4wN49/sw+8HQykrKxqfah6IBfPJHGDAbRpwZfk0iHU3gwWgBB+HUbQp2PIBe+wc/pojkp3Ffhh7jnQU9l18fv++uT2DRN+GYZ8OpLdM++mVmQtEARn0+M+OK5JC8uzvVWltnjDkJuB84ltYboQzO6pEtwWcGJ0Dt/3aNaZsHnGetbQqrbhHpBCpfjx9CUaZgtMAMOhZ6TIDdKxL3fePzMOq8xP2kY6vbDE9Pj9+nthz6HBhOPS0SBeCEab/vwgFXO8/HXAxLroH6an/7lvSFUed7t5cNgd7TYMdH7du2L066VBGRDivR74Xyx2DyZaxdtZsAACAASURBVInHqa9M3KdsGAxP8+Kk18WXpgb37SIiQfFaUS9oQ050VgWN5+NfwegLodvIcGoSERERERFJxoqbnZvEWqwP8Cb74WfC7Ie14qSIiPhmjOkJvAZMpXWB01gt9/a5stZuMMY8DZzW3Pd8QMFoIiIiIiIiEpiKxs2u2weUDAm5kviKjfuipgpGE0lSz4lwwC/d2+4N4fpHt9HOdZaR5zoPEclvvafArL/Bom9599n4ODTVQ2GX8Orya/0D8dsUjCaSPhtx3+4RfNwhdOQ/m4gkb+Bs59F9DLz7vfh9N8+Dhu1Q0iec2jJp/b8zN7ZeZ6UTyMufcmttlTHmBODy5seAlqZ9vrZoCUrbAfwe+J1C0UQkUHVb4MW58ft0hBOvXFHUFY57Bd6/HNbdl7h/3VYoG5TxsiSHrf4nNO6M32f+aTDgKDjoT9B3ZihlEdkTznHi6TkRRl0IU37auq1LPzhhgfN/bOPj8fcf8hmY+QfoOjx+v36HugejNexIvmYRkY4q0e+F8kcTB6NFamHxFd7tZcOcVe5mXg/F3ZOvMVaB+81VRBWMJiIZ1rQ3nOOM/Dx8dHX8Pk11sPzPzjmxiIiIiIj4s/0DePtS2LUcek2G6b+GQcdku6qOx1pY8uvMjD39Wpj8I4WiiYhIsh4CptF6b18D8ADwMhAF/uljjEdwgtEATgCuDLZEERERERER6cwqGzyC0YpzKxityLgvaqpgNJEAjTof1t2f2WP0PzSz44tI+Pol+H8dbYDaDdBjfDj1xNNUD427oLR5ev7uT737bn8/nJpSsbcKoiHdVyySrojH4uAF7uf3HUJH/rOJSOoSnTMBYKFqIfSe1rqpdFBuva407oai7u730DXscOaKRuqgzv3zpkAU5GVklEhS8van3Fprgd8bY/4CXIBzo9NRwFCgIKbrduBN4DngLmttglQUEZEk2Si8dFzifoVdM19LZ9J1KBx5L4y+0Am0imfdvTDxB5qc0ZlVL/LXr/J1ePFYOOUj6DYiszVZ6/1hVhD2vwIOvDb1/XtOgDmPwaOjoHZ9+/ZDb4NxX/U/XnFP9+2Nu1OrT0SkI4rUxG+vfA32VkDpQPf2PavhlVO99x99ERxxd+r17UvBaCKSLU314Ryn1yQYe4kTtBzPhv/AjN/rPaeIiIiIiB+1G2He4U7IMEDVAuc6zykfQ/fRWS2tw9m9wrmpPmgzr4dJPwh+XBER6dCMMecCx9MairYA+Ly1try5fZTPoZ5tGRKYbozpbq3NgRXJREREREREpCOobNziun1giYLRRDqd/b7r3BcWjfl/1WsqTP8NvHamM5csHf2P8BkGICJ5pe8MGHQsbH3Ju8+8w+D0tekvcp6qxj3w1tecRduj9dBtNHQfC9Vve++z6xOYd6QzF6H7mNBKjWvzPFj0bdizKtuViKQv5ZCfOPeuT/4xLPtdiuMGSIE9IuKm3ywYMNuZKxnPK6e0/b6oG4y6AA6+EQq7ZK6+RCpeg7e/7iwM23UEzPgDjDrPadvxESz4UnjBskavs9LxFSTuktustXuttXdYay+01o4EioH+OAFpXay1/ay1p1lrb1QomohkRMV82Lk0cb/C0szX0hkNPh7KhsXv895l8MLRTrqudE7lj/jv27gzuf6paqqj9Z7vfQycA72npz72ft9LLxQt1oiz2m8rKIbhZyY3TlEP9+2RXcnXJCLSUUV8zNt5eJAzgThW01547XPw+DjnoqOXvgenV9++FIwmItkSDSkYDeDQ2+GwO2D0F7z71KyFHR+GVpKIiIiISF5be09rKFqLSA0suSY79XRkfj5rSkW/WZkZV0REOrqfxjz/GDihJRQtGdbaLUBF87cFwOQAahMRERERERGhrqmGPU3u084GFOdaMJr7pNdGBaOJBGfAEXDM8zD0VOg5CcZ9HY6fD8NPg6OfgMEnQulgKB3k/ogVu73nZCd07ZjntBCnSEc15wmY+P+82+urYeEloZXTzsIvw/p/t96LW7M2fpBbi6o34cVjINqU0fJ82bXcWVBeoWjSUXgEH6dl3FfgiPtg4Nw45ys+zkVMoff++57zuO6vwB4RcWEMHPOMMxe+ZxKX/CM1sOo2JzciW2o2wEvHO+cj4Cxc+sbnofJNaNwNzx/tPxStdFD7+Zl+X19b6HVWOoGc/yk3xkwHTgT2xwk8A6gClgHPW2vbvCpYay2wLdQiRSR51kLlG1C3EWrLnXCHuubHQX9x0vHzRfU7/vrpA+vMKCyFQ2+F18+LP8Gj8nVYfAUc8vfEY+5cCpuedSbmDDgKBh6tf798V9wTGpMI4PITdpiuSK1320F/di6e/aev80YtWVOuSL2udmP9zEmv3v6e870phFl/gy79khunuKf79sbd6dUnItKR+H3Nf+e/4OiYEM+P/wc2PJR4v+Gnp1aXF69VaaK6uUpEMqwpxGA0UwBjL3EeB/0JHh4I1uWmjg2PQJ80wo1FRERERDqL7Yvdt6+6HWbdDAWF4dbTkbm9d0lXl/7Q77DgxxURkQ7NGDMEODBm03ettXEumCf0CTCw+fkEYFEaY4mIiIiIiIgAUNm4xbNtQEluBaMVG/dFTSMKRhMJ1qA5zmNfw05xHiIiboq6wkF/hMrXYJvHvNPyR52AtGTnZqWrvhrKH0ncz0vNOtj6Igw5MbiaUrHmLrCR7NYgEqSCDMR9mCIYfb7z8PLkZNj1SfxxBh0Dxz4fv8+9BYD1rkNExE1RNzj4T87zl0+Gzc/533fNXTDzeih0/3wko9beA9GG9ttX3wEDZkPjDn/jdBsDZ6z21/eNi2Ddve5tmfgdIpJjcvan3BgzE7geOCpOt2uNMW8Al1lrfSYTiUjOePnE9ivCg5PUnk/BaIt/nO0KZOhn4LPL4JkDnQ/ovKy9B2bd5Exs97L6X/DWV9t+ODb+G04QVLz9JLeVDUsuGC2VMLJkReOEORR2cd6QDT8b1t6V/Nilg1Ovq91YA+DEN2DrfKgrh4FzoMf45Mcp7uG+XcFoIiKtNj/rr1/5o06wcNdhTjjQ8r/426/bmNRrc7PvigQt3D7cExEJUrxz6Uzq0tc5H3ZbGa/ildDLERERERHJS+vu827bvQJ6TQqvlo4uE9c6Jv1Q4XUiIpKKw5u/WmCDtfbVNMeLXTQ15FljIiIiIiIi0lFVNmx23V5kiuldlFtvP4s8FjVVMJqIiEgO6TXFOxjNNjlhRAOODLemncvSX2Br7b3ZD0bb8WF2jy8StO5jgx/TT1BOrymJg9F6Tcl8HSIivaYmF4wW2e0EtvackLmavCz7nfv2VbdBcS//4/Se6r9vvNdSo3v5pOPLybMJY8wZwL1AKWBimlriYmO3HQW8aoy50Fr7aEgliki6jHGCivasbN9WuzH8elL18a+zXYG06DrcCS97/TzvPpE9ULMeuo92b99bBQu/1H77yltg1IXuK73kOmud5OONj0NxTxhzsZPS3tkkuwpEZE9m6ogVNxit1Pk666/QUA2bnk5ubGMS90lGYSkMPSm9MYo8gtEiCkYTEfk/a/7lv++jw51gsmRCyIL+/aBgNBHJlqYsBaMBDPusezDarmXh1yIiIiIikm9q1sdv37tFwWhBCvpax8C5MOmyYMcUEZHOInZlrw8CGC/2l1z3AMYTERERERERobLRPRitf/EgCnJsgfUi4z4dMBJN8p55ERERyZyxl8CaO73bnz+q7fcTvg0H/I+ziG+Q6rfBh/8NFa/Czo/TH2/Nnc5j1AUw9SrotX/6Y/pV8Tp88kfY+ER4xxTJtNJBMPDo4Mf1eM/Qxtgvw4b/xBsExnzRx8Gsd5OfOkRExnzR+R0f7/VkXy8c7dxv2GL0RTDzeigdkF4tVW/Bst/D9sXugbIN2733Xfl3/8cZ+2X/feO9lup1VjqB3PpkFjDGTALuA8pwAtAsbQPRWmZy25hHKXCvMWZyuNWKSFq6DnPfXpcnwWir74QPr8p2FRJr2OmJ+8RLMH84zsluMknDueSDnzlhbxv+A6vvgJdOgPXxPqzooCI1SfbPcDCatfHDHAq6OF+Le8Dcp+DsCjhzAxz1UOKxR10YTI1BK/YIRmtUMJqICAC1m5LfJ5kAsuFnJj9+IgpGE5FsiRcy3KLHfpk5du8D3LfvrXBuHhEREREREXd1m+H52fH71FeFU0tnkey1kXj6zoLjX4ZCj8+DRERE4otdFnlXAOPFhqHtDWA8ERERERERESobtrhuH1A8JORKEisyxa7bG63u3RMREckZg+bCYXf477/iJicsLcjFg6ONzpgrbgomFC3Wuvtg3pGwe2Ww43qpfANeOg7KHwnneCJh6DMDjnsFCkuDH9sUJu4z7FQ4+K9Q4hLIWDYEjnoQ+s5Mr44CBfaIiA99DoDZDzuvPX7t3edznLX3wLzDIVKXeh3V78CLc51Mhj2roGZt+0c8fu7XK+kDB/0JRpzlv654r6V6nZVOIBd/yv+OE3QWG4bWCLwDbGj+fjhwEFBC23C0m4EMxOKKSEZ0He6+vTYPgtG2vgILL8l2FbKvwi5wxjp4bJR3n51LYOjJ7bdXvR1/7PrK9GrLhoYdzQnJMWwTLLkGRp6TnZqyJVKbXP8tL8CbX4RZN0Jxz+DqWHkrLL/BCb+Jt4JHYZe237ckVHdzX4msjSEnpV5fJnkFo0XroalBk6lERGrXZ3b8kecFP2aB+81VRBuDP5aISCw/N31M/01mjt1zknfbzqUw8CjvdhERERGRzmzVPxJ//rFzCXBuKOV0CkEtAlPSF45/JZixRESks4pdMrmXZy//hsY812oFIiIiIiIiEojKRvf7tAeU5E8wWsTq3j0REZGcMvYSWPcAbH7GX/9dy2DTUzDi7GCOX/6YM2amNO5w5srNuC5zx2jxyQ2JF3A/6iHoMz3ztYgEobg3lPbP3PjGZ4TIft+GCd+EmvVgI862gi7O/H9jwqtDRGTEmTD8DKjbCE0x66O9/nnY/p6/MfasckJUR1+YWg2f/qXtsYMy848w7DQntLLbKDAFye3v8TmQ06bXWen4cuqn3BgzFSfYzOIEoFngf4HfWGu379O3N3AlcHnM5iONMQdYaz8MqWQRSUfZMPftdTkejLZzGbx4TLarEC/dRkKvqd6rGGx5ESb/sP329Q/EH7dhR/q1hW3zPCd0al/bF0Pjbu+gqo6oyUfK8r7W3gU1a+CE14KpYc3d8PY3Wr9vjPMzVdDFfXu8EAaAnpNh1PnJ1xaGeAFzla/B4OPCq0VEJBfVbcrs+EFdHI1V4BFqmeiCo4hIutze58QacCQM/Uxmjl02FIp6QGR3+7bNzykYTURERETEy7Z3E/f56GqY+vNgbqwUaAwoGO2EN6CoazBjiYhIZxW7Et2UdAYyxnQBDozZVJ7OeCIiIiIiIiItKhs8gtGKB4dcSWLFxv3ePQWjiYiI5KAeE/wHowGsvjO4e/8rApoTF8/mZ8IJRqtakLjPwNlQOjDztYjkg4IkIkRMAXQfnZk6FNgjIskwxglmjNVriv9gNIBVt6cejObnfCMV/Y+EHuNT3z/ea7peZ6UTSDJKMOPOaf7aEor2PWvtj/YNRQOw1u6w1v4E+E5Mf4AMzPYWkYzo6hGMVrMu3DqSYaPw1P7ZrkISiffh39aXILJPSJa1UP5o/DHjhVjlKq9wOMh8+EouiTY6j1RUvg4rbg6mjlW3++/rFYyWKMzuM+9BoUdITbYVxal91W3h1SEikqtqMxgOPOx0KPT43ZIOBaOJSLbEC0ab8QeY+0zmJu0bA/0Pd29L9L5SRERERKQzK3/EX7+K+Zmto7OwFt77Qfrj9J4GvRIs2iIiIpJYy13KBhhtjEnnl8s5QMsFigiwMJ3CRERERERERADqo3vZ2dRu6hoAA0qGhFxNYkUek14jNhJyJSIiIpLQyHOT67/xcfj0Jmjclf6x480tDMqOj9pv2/gUvHsZLP091GxIb/ztH8DiK6AuwXyLgXMViiYSK1eCcpIJaBMRcTPyc8n13/oSvPlF5/Ha5+Cx0fDyKc4c/yaXuUjb3oMProI3LoLdKwIpuY1uo6HfwemNEe81Xa+z0gnkWjDarOavFlhorf1roh2stX8H3sC5cQrgkAzVJiJB6zrSfXvNWqjbEmopvr16VrYrED8mft9JKXcTrYctL7TdtnMJ7FkVf8wG9wudOc1a77ZtSaQj57t9g/CSteib0Lg7/ToqXvHXzxRBQaF3+9BT3bcf+FsoLE26rNCUxVktrUr3qouIJLxQl47Bx2VmXK9gtKa6zBxPRKRFk0cA49hLYPIPEwcKp2v4Ge7bd34Mu1dm9tgiIiIiIvnK7w3I5Y9lto7OYv0D6Y9RWAaz/p7+OCIi0ulZa9cAsR+cXZnKOMaYLsDPWoYFFllr07whQERERERERAQqG7znrwwszsVgtGLX7RGb4mLiIiIikjkDjoKpv0hun3e+A8/Phvrq9I4dRjAawJ7Vrc8XXwHzPwvLr4fFP4bnZsGOJamNu/FJeO5QWHpd/H7dxsAhurYtnZAx3m25EpRT4P7eRUTEt2GnwsQkFwhde5fz2PAQ1KyDzc/AW1+Dl0+Cpr2t/dY/6JxrLPk1rLs32LoBuvSDI+7xzrzwK95req4EYYpkUK4Fo02OeX5nEvv9K+a5lisWyRf9Znm3Vb4WXh1+LfqOk7gvua9LX/hcnCCrqgVtv694NfGY296FaFN6dYWtYZt325sXwqbnwqslmyK16Y/xZJqnF/FC6vZV2CV++9gvtd9mCmHUhcnVFLaibt5tNWth1R2hlSIikpNqN7lvT3fVIlMII89LbwwvXhco6jZBVCtPikgGRV1WaQEoSHAuHZThp3u3KcRBRERERMRd7wP89Vt3f3KfqYu7DY8k7jP2EmexIS+nr4YBRwRWkoiIdHotF4QN8AVjjMuFb2/GmALgVtreX5hw0VURERERERERPyob3e/fK6CQPsUDQq4mMa9gtEbrsdigiIiIZI8xcMDVcMqHye2340NY9Y/Uj7u3EvZWpL7/8fPhxLdg5g2J+77/E+drzQZY+rt96tgKS69N/vjWwuKfeN8z3GLuM3DqEug5MfljiHRkuRKUkyt1iEj+MgVw0PVw2gonZOzQf0Dv6amNVTG/9b46G4X3fwTWxxzIWX93jtvyiKelz9xngrv/Lt5raa4EYYpkUK4Fo/WOef5eEvu19DX7jCEiuazrMOg+zr1t09Ph1pLI8hthxU2J++33Xfftfj4AkmAVdYUR57q37btaQs06f2NuzLMJ7pufjd/+9jfaJht3VJEAFoiu2wTbP0h9/2T+nhOFOYw4F6Zd3fpGprgXzP4PdBuRcnmhmfrf3m2LvgWNcQINRUQ6uvpK9+29pqU+ZkkfmPMklA1OfYx4Ckq828ofzcwxRaRzqlkH7/0Q5p/h3DDRuNO9X1jBaF2HQ1+PsPf3Lw+nBhERERGRfGN9Lj6zdwvsTHG1aGlV8XLiPlN/ARO+7d7We3rmPlMSEZHO6k9ABWBx7vG73RjzG2NM10Q7GmP2B+YBFzXvb4GVwP2ZK1dEREREREQ6k8qGLa7b+xcPotAUhlxNYsXG/d69iJ/JvCIiIpIdvac59/cnI9HcwHjSve5e2BX6HwKT4iy21WL3p87X8sdwPsLfx9p7kj9+bTnsXBq/T+lgGHoyFJUlP75Ih2DiNOXI+xgFo4lIUHqMh9EXwrgvw9SrUh9nXfNtBrs+9ZcvUdwLJlzqHLfl4TVXvmxIa5+hJ0Nxz9TrjBXvtVSvs9IJ5NpPea+Y59WevdrbHvO8R0C1iEgYBs6BPavab19zF0z+MfSa3L4tbOsfhHc9As9iTfi281j9j7ZBTCV9YcTZmatPvJX0ct++b1BWnfsKT+2suz9//i2rFsKe1fH71K6HLS/CsFPDqSlbmmqDGWft3dAnxRRpr+AGN4UJwhyMgWm/gMmXw5410HNS/iQ6dx3p3Rath/LHYcxF4dUjIpJL6qvct/faH7a+mNxY034JYy9xPkwrcF8ZMhBxg9Eeh5EeIbUiIsnYvQrmHd4aILnxce++ic6lgzTiTNi2yL1t+Z9h4vfCq0VEREREJB/4DUYD57y/99TM1dIZJFr5e+ip0H2083zQsbD1pbbtEy7NSFkiItJ5WWtrjTFfAp7EWcy1APgJ8B1jzNPA+tj+xpjPA/sBJwKH48zsaJndsRe4wFrrMrtKREREREREJHmVjZtdtw8oGRJyJf4UeUx6jdjGkCsRERGRpAz5DKy713//rS/Bir85c8f6HZZcANiOj5OvL1Yy9+TuWQ0rb4EPf+bdZ9F/QY8JUNwD+s50FpDf+TFsexdsBGo3OfcVdB8NZcNg01OJjzv0FP81inQ2Jk5oWpjyZd6riOSXwcc7gWCpBMRvfBx2/n/27js8jure//h7dleSVVzl3ns3pts0B2x6MaYGCEloCSUhjSTkF3IhnRsCCUlubgoJkBB6B5tmbAOmmG7ce+/dkiVb0u7O749BV21mdnZ3Zov0eT2PHmvnnDnnK1lazc7O+cxSqFrnrX9hp5bb+l0Mi37RcvuAK5Kvxwu351I9z0obkGs/5aFGnydxZXSTviHHXiKSe3qdbgWJNWfGYN0jMN7moCCTYjXw9qXe+h75O+uEz+TX4bOfwL750OVoOPwuKO0XbJ1iL1xqv339ozDxfgi3sx57vXvChif9qSsTFtzhrd/m6W0gGO2gP+MsvRt2f2D9rnc5Krl9kwlGC7Xz1i9Smn8LwxKlW2+ZoWA0EWm7nILROo2FsqFwYJX3sUr6QqlLGKVf3ILR1j0Ex/87+BpEpPVb/oeGULREQhkMRus7DT5zuIBjwR0w/ObceUNZRERERCQXJBWMNh3G/Di4WtqCSHuIVtq3FXSEExu95zXpefjkO7DlZSgqh6E3wLAbM1OniIi0KaZpvmoYxk3A/9JwjV97oPmFOQbwSLPH9SFoUeBa0zQ/CbJWERERERERaVt21DoEoxXkajCa/Q1TFYwmIiKS48beZoWdHdrmfZ8Pb7L+7TASTn654QZYiexfnHR5TbitFWguegA+SHDzrZV/Tq+e5or7wOhb/R1TRPxnKPZDRAJQ2AmOuAs++V5q+88Y7b1v2GbNf+fDYOjXrWDYemVDYcS3U6snEYeA/IRtIq2EfspFJLv6ToOibvaLnHd/kPl6mvvo5sR9jAhMeq4hBb/rRJjyerB1iTcRh2A0gPe+Cic+Dod2OQeR2IlHcz891zRh9/ve+lauCLaWXBA75Nw2bSM8l0Rw4Y634JWjrQVD7YdDxzEQCife75DHIAdI7o4a+aagfbYrEBHJXU7HI0Xd4LCfwbtX0rDmJwG3YyA/JfNmp4hIqlb8yXvfTB5LdxgFpQPt7xJTtw8OboGSPpmrR0REREQk18WTuDvj7g/AjOviyHSE7BfFAdZ7I43vJF5QBhP+EXxNIiIigGma9xmGsRp4GOhB0zc/Gn/eOAzN/PzxLuCLpmnOyUStIiIiIiIi0nbsrHMIRivsmeFKvIk4nANWMJqIiEiO6zgazvwINjwJ22bBttcgXutt34pl8OktcNLT3vrvX+TcNvhqa13cop9D7KB9n0zerDhZR94LAy6F4twMsRUREZEMGPld6HIULPoF7HwbyidC2SCrbc0D/s0TsglGAzjmr9D7bNgxF8oGQ/9LoV1X/+ZtzO06SgWjSRugn3IRya5wEfQ5B9Y82LLN60mdoNTuhdX3uffpdxGM/Ql0PjwzNUly3EJBNj4FB7c2TeP14sAa6DA8vbqCdmg71O331nf7bIjHvIV75Su3E7QlfaHDCKhYntyYb19i/duuJ5z0DHQ7zrnv2ofgva94HzuXTxynK6JgNBERW7FD1l2S7BSVQ/dJ0K4HrP239WGErMXBTjIWjOaywFZExA/JBCdAZo+lDcM6J7DsHvv2yhUKRhMRERERacyMJdd36d0w+ofB1dOamSbUVdi3Hf+obmIiIiJZZ5rmbMMwhgI3At8E+jt0NT7/dxfwv8A9pmlWZqBEERERERERaUNq4zXsi+62betekJthGxHD/tq9uriC0URERHJeSR8Y+R3ro15dBTzZMfG+m16w1h6EHQI66pkm7HMIRjvmLzDsBuvz9Y/Bvs/s+zW+WbERATPJa3qD0u9CGPntbFchIiIiuaD7JJg8s+X23e/D/iX+zBEutt9uGND3fOsjm0KKjJLWTz/lIpJ9pQMdGlzCHjJh8wz39on/gsFJhB1J5rmFgphx2PMpLP9DcmMe2pH7wWgVS5Prv/IvMOKbwdSSC2KH7LfXnwSe8ADMPhVi1dbjSHuIeryW+tA2ePNcmLYJIjYvbvYtTC4UDZqeOG5tEi62MhK0i4i0UjX2F1UBUPT5nQJ6TrE+jvuX9XjzdHjzPPt9ImX+1ufEKXxURMQv+xYk1z/Tx9KH/dw5GG3WZCtEufc5EC7MbF357uB22DIdMKzQ76Lu0HUCtB+a7cpEREREJB3JBKMBzL/VuqC5rR8H1lXA1ldh32Lr8+4nQc9T3c+3x2ucL0ov7RdMnSIiIkkyTbMKuBu42zCM4cCJQD+gHCjECkPbDrwLfGKappmtWkVERERERKR121W33bGtW2FuBqMVOASjRU0Fo4mIiOSlgg7QcSzsdwgzq2dGYdd70GEk1FVa7xsXdIRISdN+B7dC3T77MTqOafjcCDnPFWp07evhv4FPb3GvLVO6HpftCkRERCTX9TjVx2C0HF/zb4SzXYFI4HIxGK3+IqaJhmEM9LhPz8YPDMM4iSSSNUzTfMtrXxEJgsMJlB1Z/tXc8YZzW6S9QtHygVswGsAn34HavcmNGT2Qej2ZUrkquf4bn2zlwWgOoS31wWjdjoPz18Gm56yTtr3OgFcnQPUGb+PX7oGtL1sLtJrb8GTy9YZy/EVSOhIFo61/BE54ODO1iIjkkppdzm31wWgtuL0Jmam/JS4vu93er5MFkAAAIABJREFUJBUR8WL/MnjlqOT2yfSxdKQEyo+F3R/Yt8+9ELocbd2BprBTZmvLVzvfhTlntHztHS62wkH7X5KdukREREQkfckGowGsexjG3eF/Lfmiaj3MmgIHVjdsW/576DgavjAdygY57Ofy/kZBB39rFBER8YFpmiuAFdmuQ0RERERERNqmnbVbbbeHCNGloFuGq/EmomA0ERGR1mf0rfDelxP3mzW55baBV8KEfzQEd2yf47y/52C0RtfkDrwclv0ODm5OXF+QinvDIK3pFRERkQSG3Qhr/wV1+9Mfy8jFSKZGcr0+ER/k6k+5ATyaxr5vJNHfJHe/DyJtQ8gliXTvZ9B5fOZqqWeasPqfzu2DPJxkkuxLFIxWuTL5MaOVqdWSSXUVyfXPdghh0GKH7LeHixs+b9cNhn6t4XH3SbDuP97nmHsRdD4c9s5PrcYmdbVLf4xcFUkQjAZQtRFK+wVfi4hILolWObelsljV8JwTnp6uE53bzDhUrIAOwzNTi7RuB9ZYr892f2gtpC8dCAMug16nZbsyCdKC/0p+n8YXa2RKl6Ocg9EA9nwET3WG4TfDqO9Daf/M1ZaP3r/WPpA8dhA+vBH6nA/hRnchPLAWlt5j3dmwxykw6Cr380x+MuOw6j7YPhuKe8GQa6HTuMzMLSIiIpKPUglG2zHX/zryyfwfNw1Fq7d/CSz6JUx0eC9zyW+cx/Rynl5ERERERERERESkDdlZZx+M1qWgm2MAWbYpGE1ERKQVGnQlxOvg/WuS33fdf6CoHI6613r83pX2/Yp7Q1GXRhvcgtEaXatZ3AtOexuW3Al7PoXaPVDY+fM1jGbLfVNZs5nIkOtg7O3Qrrv/Y4uIiEjr0nHk58cud8G6h9IbK1PrNFMVUlSStH65+lNuYgWcJbtPvRx/dhGRJuJR57aNz2QnGG3+re7tw7+RmTokPYmC0Zx0PgJqdkP1hpZtdXkQjBavyXYFucUxGM0lgGzEt5ILRgN/QtEA2xPCrYWXcJ/n+8NldXoxJiJti9PfKmh6p6XG2rncibKgU3r1eFWQYCHtzONhyhvQaWxGypFWqmIlvD4JDm1run3NAzDxfhh8VVbKkoDFDsGmZ5Pbp+No98DGoAy5Dlb9PXHIw4o/WQF/Z38G7YdmprZ8U70ZKpY5t9fshp1vQ8/P73a4fym8fETDa+B1D8P2N+D4NN+48mre1bD23w2PV98Pk1+HrsdmZn4RERGRfON0zNx3Gmx6zr5t+yyoOwAFZcHVlcu2vuzctvkF57Y19zu3pRLCLyIiIiIiIiIiItKK7azdZru9W0GvDFfinVMwWpw4MTNG2MjQTeVERETEX4OvSi0YDazrGY/8HVRvdO7T/AbEbkEfoWbHG2UD4di/JVfTIz4t9T/8NzD6h/6MJdKqKE5DRMRRp7Fw/L+tD4BoFTw/EGp2ZbUs3xlaiy+tn0ucc9aZSX6ksq+I5AIz7ty2f3Hm6qi3byEs/a1z+/g7rQXXkvtSDUbrf6lz0Ec+BKO5has4iVb7X0euiB203x4udt6n/BiYPCuYehIp6JideTMh7BDu09zOd4KtQ0Qk17iFeDq92dj5SPu7HZX0hw4j/KstkeMfcW6r2Q3L/5i5WqR1Wvm/LUPRADBhwe0QTxBGJcnZ+S7MOhWe6w+zT4OKFdmpo2J54qCxekYE+l8CU+ZkJ1y3y5FwzF+99Y1Vw4vD4NGI9YbKpz+07u4nlupNifscWAWf/cS6WGbG6JbB4Ov+Y7XNmuxjeLWN/UubhqIBRCvdzyeJiIiItHVOx/i9zoR+FzvvN/fCYOrJdbFDULvXub1ml/1r4kSvkxMF3YuIiIiIiIiIiIi0MTvrttpu71aYu8FoBQ7BaABRU9eiiIiI5C3DgG4npbZv7V44uA32L3Hu0+WoZhtcIgbcQtO8Gv7N9McA6HSYP+OIiIhI2xUphVGpBK3meAilgtGkDci1n/INKLBMpO0p6e3cdtD+TabAmCa8lOBEyeCrM1OL+CDF/M/h34RNz9m3RQ+kXk6mxGoS92muZhdE+vtfSy5wC5tx03MyXGHCoV3wTDf/63JS2Clzc2VD/0thwxPufdY9BD2+kJl6RERyQdzhb1XI5W9VKAxjb4ePmr1ZOO52f96E9Kqws3v76vtgwt8zU4u0Tm6BqdUb4cBq6DA8c/W0ZlUbYM4ZDa95qjfCK0fD1NXQLoPHwwC75iXuc+JT0P8i63V8Jp/37Ay9Dur2wac/8NbfjEHVeitEq3ojnPBosPXlC7fg/HofXO9trO1zYOaJcM5SKO2XXl121j1sv33jUxCrhXCh/3OKiGTagTVwcDsU94TSgdn/eysi+S8etd9uhGHMj61jKTvbZlqht50PD662XFSzO3GfaEXLczNV69z3aX5XbxERkQwyDCMEjAXGA/2BbkAx1vWCB4EdWNcPfgYsNk1T1xGKiIiIiIhI4ByD0QpyNxgtkiAYrYgE18mLiIhI7hpyHeycm9q+VeuhYpn72I0ZKa699GrwVdZNsr1cH+qkdAD0PNW3kkRERKQNG34TrH3QPUi2hVy4ftqlhlCuRUaJ+C+nfspN0xyY7RpEJAvcTkxkOoRq20z39q7HQXGPzNQi6YuncLejHlOgoAwK2tu3RyvTqykT4ikGo5W21mC0g/bbw8Xe9m/XFbqd4B7K4aceUzIzT7aM+kHiYLTV/4Txd2Y+gENEJFtSDfEc/g0o6QcbnrKC0vpdAn3O9r8+N5GSzM4nbY/TsVy9imUKRvPLol+2fA0erYR1/4GR381MDWbcChdb9jv3fic9C/2mWZ/nSkjLqO9Dp/Ew5/Tk9lv/GETaw7F/Df4Ck1zn9zmgaBWsuR/G3eHvuAAbn3Zue6IEjr0PhihYX0Ty1MFtMPMkOLCqYVvpQJg8E9oPzVpZItIKmDH77aEIdB7vvu/Kv1rHzG2Jl2C02v0tg9HcLnLveVp6NYmIiKTIMIxJwPXAWUBHj7vtNQxjBnCfaZpvB1aciIiIiIiItGl18Tr21O2ybetW2DPD1XiXKBhNRERE8tigL0PtblhyFxzalty+H98Mez52bm8/pOnjoK9b7XKUdc3vJ7c0vRapsUiZdf1ouARi1Y1qC1vr+Sb+S4EfIiIi4o9IKZzyKsy7Fna8AfHabFeUPkPHSdL66adcRLKvbDB0GAUVS1u2HdyS2VrW/se9/ch7M1OH+KPLUVgpuEncRLjbCda/EYdgtLo8CEaLpRCMtnkGdD4id0IF/JRq2ExjR/4e3jjbCpDzQ1E5nLcSPvo2rHuoYXv/S6D/xf7MkavKj4YxP4bFv3bv9/F34ISHM1OTiEi2pfO3qu9U6yNbwh6C0eJRvRkpqUt0krliGZDF34HWIh6D1ffZt7ldIOG3VfclDkU76o8NoWi5ptdpcN4qeDHJ0JjV90FhRzjit8HUlS+iVf6PufHpYILR3M4NmDF4/xrY+goM/BL0OgPCRf7XICISlHcua3khYtU6eHEY9DoTCrtApzFQ3Nt6jivulZUyRSQPOQWjGWHrYutj/wYfXG/fZ/eHwdWVq7y8H1G3v+W2qvXO/dtauJyIiGSdYRijgT8Dk+o3JbF7F+BK4ErDMOYAN5mmucLnEkVERERERKSN2xPdgUnctq17Qe8MV+OdgtFERERaMcOwbmg84jvWOoNIMTzi8fS62zW/A6+0myylEpNSv94hetD6Wsw4HNrZ0N6um3XNQDxqtYUKoGanFZimm7iLiIiI30r6wuRXrWOTugprW7gdPNUpu3WlSms2pQ0IOM5ZRMSjo/9ov71mV2ohT6mo3tQ0oKi5gVdC12MzU4v4o11X6HZicvsM/JL1b0EeB6PFHcJV3Cy8HT76hnUCsbVxDJsp9j5G+TFw9kKY+AAc85f0a5q2GQo7w3EPwpQ34Ih7YMpsOP4R6wRuazf+V1A+0b3PhseanugWEWnN/PhblS1e3mys3Rt8HdJ6xRO8HqxYlpk6WrtKl/WE6zIYVrv+Eff2/pfAiJszU0uq2g+BC1M4jl16t/XRlgURjLZvIWye7v+4Xmrd8AS8dT7MPAFq9vhfg4hIEGr2wI43ndu3vmL9vf7sNph3NUwfDdtd+ouINOYWjAYw9OvO+1YuBzOJm+C0Bl6C0Wr3tdx2cLN9307jrJtViYiIZIhhGJcCH2CFohk03NWu+Uc9u7b6/SYDHxuGcVGm6hcREREREZG2YUftVtvtBgblBT0yXI13EZfrzeviCkYTERFpFQzDChIDOPy/0x+v/fCW24bdaN+3uE/68zVX/7UYISju0fBhfB5zEIpAuND6utt1VyiaiBejfmC/vf2wzNYhIpKPIsUNxyORUud+RgaCZBNxq8FQMJq0fgpGE5HcUOxyN51D2zJTw4c3ubf3nZaZOsRfJzwGpQO89T3uIejw+Um+SJl9n3UPwRvnwvvXwTtXwCvHWHddeP0UWPFn6+4E2ZZqmODKv8D2N3wtJSfEDtpvD7dLbpzinjD4Khh2A/S7OPV6hnwNwkXW50YIenwBRn0PepzStpKZO9icUG/MjAcTYCAikoscg9GS/FuVDWEPbzh6Wcgr4iRe696+5gE4mKHXjK3ZwS3ObSX9MlfHjrfc2wdcnpk60tWuK1y8D/qen9x+n/4AZoyFJXdZd59pa6IHghl33lX+fz+TCSTf8zEs/rW/84uIBOWg/cIPR3X74IOvQdwh7EhEpLFEwWgAJz5l3ydaZd3gqC3xcj6l8XuoG5+Dedc4H3t2GO1PXSIiIh4YhnEJ8AhQQtNAtPqgM4CdwApgHlaA2kpgV6M+jfcDKAUeNQzjgsx8FSIiIiIiItIW7Ky1v2amc6QrBTl8s+sCw7m2qKlgNBERkVan/yXpjzHg0pbb+pxnfzP3IdekP5+IBG/AF+0DcZxCD0VExF4+r+3P59pFPFIwmojkBrdgtIPbM1PDno+c2wo7J7+gWXJDSW+YujZxv3OXwaArGx4XtHfuu2UGrP4nrH+04edmxxvw0Tdh7oVgms77ZkI8xWA0gM0v+ldHrggibGbYjTRcr50EIwKjvp/6vK1Jl6MS99n1bvB1iIjkAqdwlXwIRvNyJ6YtLwdfh7ReiYLRAF4aCxUrg6+lNavd49xWtz8zNWx9LXGfjmOCr8MvhR3hpGdh2iY45VU45TUo6Zt4v/2LYf6tMOsUiHn4+W9NolXBjFuzG7bP8m+8aLXz60wn6x6ywp9FRHJdKoskKlfC7vf9r0VEWh8vwWg9pzjvv3Ouv/Xkuv2LEvd55zLrZjmL74S5F1jh4U5KArijt4iIiA3DMEYAD2Bdl9g4EK0CuBc4B+hqmmZP0zRHmaZ5vGmaE03THGmaZg+gG3Ae8EegkqYBaRHgX4Zh6Db3IiIiIiIi4ouddfY3ZOxW2CvDlSQnomA0ERGRtqVsMEx0eT/Yiw4jWm4rKIMvvACRsoZtfc+HMbelN5eIZEZxTzjxSQgVNWwb+GUYfnP2ahIRkcyyC8gUaWUUjCYiuaGgg3NbLKCFsY3FY3DIJYDt7AVKTM1nhgHdv+DcXj6h5cm9ou6pzbX5Rdg2M7V9/eK0QHvk9xLvu/xef2vJBRuesN9ud0cLr3pOhpOehrKh9u2DvgonPQOdDwcjZC3s6nwkTH4dOgxPfd7WpN+FiftULA++DhGRXBBEiGemFJYn7rPgJ8HXIa2Xl2Comt2w7HfB19Ka1ex2bqurgLoDwdcwN8HxYXEvKBsSfB1+MgwrfKDX6dDrNDj8N9733f0+LLy94XE8CsvuhRdHwAtDYMHtwQWJZUuQX4+fIZ01u5Lf59AO2DvfvxpERIIST3GRxMwT4PFiePkIWPeYvzWJtEa1+2DetfBsX3h1Aqx9OLn9Nzxt7fd4CTzWDp7sBLNPg30egrSyyUswWmEnKB1k3+/dL8Ghnf7Xlau2vOKt3wfXw2c/TtyvWMFoIiKSMf8DlNAQiGYCPwP6mab5PdM0XzZNc6/TzqZp7jZNc4Zpmt8B+gG/+HyMemXAnwKrXkRERERERNqUnbVbbbd3K1AwmoiIiOSYwVfBxftg0nMw8V/J7TvsJue2nqfCRTvh1Ddh6hpr/HCRc38RyS39psHFu2HKbDh/Axz/b62FFxHxlZHtAtwZioyS1k9HNiKSG4yQFVIUO9iyLVod/Px1+8CM27dN+AeU9A2+BgnW6B/BrndbLu4zQnC0zTWzJWksEPnku3DO4tT3T1esxn57qAj6TIXNL7jvX7ka2vscOBCtgopl1gKnjmMg5Pxm7P8xTahaD6FCqNlhfV1GGDqMtO5I4cX2OWBG7dsiHsdw0u8C68P8/Brs+ucQI2QFINT3iUcBA0Jh22HaLC/PqxXLgq9DRCQXOAWjhfIgGM3L37eC9sHNH4/BgVVQOlBvwDZWtcH6vhd2znYl6Ys7HNs2t9XjgnGx5xaMBlYQlNdj8FRUrEgcijX85vw/pu5/CSy+E/Z7DKxY8hsY8W2ItId5V8HGpxvaFv3CCts69q+BlJoV0QAD+PwMJUslGA1g/1LocqR/dYiIBCHuIZTWSeyQ9Xz77uVWyHO/af7VJdKamCa8cTbses96fHAzvHelde574GWJ99/0Arx9cdNt8RrY9roVUnjeSmiX4o1fguZ0rt5odpzf5xxY8T/2fWedDGctyP/XBonEo1C11lvftR4veNd7nSIikgGGYZwATKEhFK0SuNA0zVmpjGeaZiVwh2EYc4FngNLPxz3NMIzjTdN815/KRUREREREpK3aWecQjFaY28FoYSOMQQiTlmtg6hSMJiIi0noVdoS+51ufb3oONj3rbb+ywe7t4XbQfVJ6tYlI9kRKoccp2Zt/wGWwXjdUFZFWquep2a4AOo5zbnMJzxdpLRT/JyK5I1Jivz3R4mg/uC1q7Xl68PNL8HqfCVPmwJBrG7YN+iqcNR/Kj2nZvziNYLT9S2D1A6nvny6n8IhwO2/BJOse8a8W04SFP4cnO8IrR8PLR8BTnWFNgoU6lavhpcPghUHwXB9rv9cmwqvHwFMd4bPbnMMM68UOwazJzu2dDkv+67FjGNZHKGx9GM3Sn0OR1r9IK1VH3uveXrMTavZkphYRkWxyCkYL50EwGlgBx26CCjrePB2e6QbTR8JTXWDpPcHMk0+q1sNLh8PzA+Cpcph7MURtwqfzhWl6D+eoWpffX2u2JQpGiwUcWL71Nff2DqNg5C3B1pAJoQI4430Y+1/e93m2NzzZvmkoWr1Vf4MDa/yrL9uCPP9Tudy/sRL9vjh570qIpRE4JCKSCc1vKpGquRdAXYCBlyL5bP+ihlC0xlb+b+J9Nz0Pb53v3F5XActtbgSTK8yY/Xaj2b3c+roEK+5fAltm+FdTrnIKkUtH+dH+jykiItLSTZ//a2CFo12faihaY6Zpvg5c32hcgBvTHVdERERERETatpgZZXfdDtu2bgU9M1xN8gocFr5GFYwmIiLSNvQ513vf3ucEV4eIyIjv2m8ff2dm6xARSUfj/In/Y8Cgr2S8lBZ6ToHCzi2395gC4cLM1yOSYQpGE5HcEXYIRgt6ATa4B6MVlQc/v2RGtxNgwj/gCtP6OO5B6OSQklvSN7253r8G3rkcFtwO866Gj26G3R9a4Q5BizkFoxVBxEMw2rYEoQRe1FXAhqfgteNg4R1NFzxFq2DeVdYiLjumCW9NsxaI2bbHYfGv4a0LIO6wkKp2L8wY41yfEYHeZ3n6UiRAzUPk7FT4GGAgIpKr8j0YbfSt7u3RKv+PgQ6stY4Xavdaj2PV8On3YdOL/s6TT0wT3jgX9n1Wv8EKUvo0j8Okkl0Ivnd+MHW0BbUJgp6CCqwyTdg2C+b/0L3fSc+0npP1kRI47OdwqU/f0zlnwr6F/oyVbTGH78nAK6HvBfZtw78Fx/2nZZhGczW7YadNAEkq3M4hJbLkN/7UICISFLdQ2lCSdxR7sj2seRCqN6VVkkirs/Yh++0751r/Rqth8wxY+TdYdZ8VAr7kLvjwm9br4EQW/9K6McmmF5zPN2SLYzBasxuLdJ8EBZ2cx/noZuv7s+uDxDdQyVdxn4PROo5NfAdwERGRNBmGUQSchxVcZgJPm6bp263hTdN8FHgaKxzNAKYahtFKThqKiIiIiIhINuyu20kc+/PM3Qt7Zbia5EUUjCYiItK2DbjMCsNIZNT3oePI4OsRkbar/BgY9o1m2ybAsBuyU4+ISCrG/heUDmq67YjfQrtu2amnsVAEjv1b02sti8rhyLuzV5NIBiVYMSYikkERh2C0aAaC0Xa+Y789XOxcl7Ruxb3TH2N9s2t8V/wPDPkaHPMXCIXt9/FD3GGxU6gICjok3n/n29bCqz4p3g2ichXMPh2q1rr3e2sanPQ09Luw6fa9nziHojW2+QV4ri+cs6hpgOG+hTBrCtTsdN63+0lQ6LKwSjLDaSFcY5XLodtxwdciIpJN+R6MNvBLsPCnLh1M62uMFPs358an7f+ObHoG+p7n3zz5pHKl/THUhqfg6D97CyTNNU6Bv05mHg/nr4PSAYGU06olCnoK4nV5tBrevhS2zHDvN/7XrfOCjEiJ9TqmJkEoXSKVK+Gl8TD+VzDm//lTW7Y4BfBFSmHAF2HTs023h4pg+Degw3DociRsfc16PTz/R/bjzDwejvkrDLs+vTrTCUZb+y8Y91/pzS8iEqS4wyKJcDGcvQC2vAwff8v7ePOuhkgZnPA49DnbnxpF8p3bscSBdfDW1PSDb+ddZf3baRxMegHKBqY3nl+czgc3f78kVABDvw5L77LvX70BPvz8wslBX4EJ/7Qu/GlNkg0KT2Skw515RURE/DURKPv8cxP4XQBz3ANc9PnnZcBxwJsBzCMiIiIiIiJtwM66rY5tXQt6ZrCS1CgYTUREpI2LlMDJL8HmF2H3+y1viFjQEXqcDD1OyUp5ItKGGAYc/Sfod4G1Vr/jKOh1FhSUJd5XRCRXlA6AMz+EzdOtm0L3PBW6Tsh2VQ36XwIdRsPWlyHS3sqAKOmb7apEMiKU7QJERP5P2CGALJaBYLT5t9pvL+oa/NySm8KFTcO2/LL6PuugM0hOARLhIjA8/ul/+1Ko2pjcvBufg3nXwovDEoei1Zt7EdRVNN225RXvcx7aBm+c23TbBze4h6KBtRhTsi/uYXFXxbLg6xARyTanUNN8CUZrPxSOe8i9j1PYTao+/YH99jUP+jtPPtnwpP32mp3O4Xu5rvkb9F7MOcv/OtqCA6vd22edDHPOhP1L0psnWg1LfguPGPBEaeJQNICRt6Q3Zy7rNsmngUxY8BPY5yFgOpc5BoUWQ++zYdxPG+5wU9gFjv2rFYoG1hvoI78No35oBfA4+fAGWPDT5J8XqzbCwp/Bu1fCsnuS27exA6v9/5soIuInp2C0UIF13D/iZjh/A3Q5xvuY0QPw5jkQPehPjSL5zu3mJR9/O/1QtMb2LYTFv/RvvHSYJphx+zbD5kYyY3/ibdy1/4ZNz6deV65yej5O1eCr/B1PRETEXv3drkxgqWma8/ye4PMxG5+k1B22REREREREJGW763bYbu8UKacwVJThapIXMexvGhL1++YbIiIikrvChdD/IjjiLjjq3qYfh/1MoWgikjmGAT2nwLjbrfAehaKJSD4qKofBX4Wxt+VWKFq9TmNg1Pdh2PUKRZM2RcFoIpI7IqX226MBB6O5ja9gtLatMIBgNIBVfw9m3Hpxh2C0UDuoq/Q2RqzaOXDEzsJfwNwLYM393vep92yfpo8XeFzwVG/3vIYwtdp9sOs99/5H/h7adUtuDglGaf/EfQ6sCb4OEZFscwpnCeVJMBrAoCvh7AXO7TGFwGRVvobwpBKMVrG0dS6KD1I8CpUJgtEAtr4KM8bA9jdTmyd2CGafBvN/6H2fk1+2LtporUbc7N9YZhzWJgipzHWJQr7H3QEXbIGzPoPz19qHOxgGdBjhPs+in8Gb53kPmziwFmYeDwt/Cusehqr13vZzUrEivf1FRILkdPwVanS3+dJ+cMY8OGeJ9bd60Fe9jf1aDl4gIJINBR2d2za/4P986x51DiTLJLca7ILRCtrDJR7fz9jyUmo15TI/F62dNd/7TXNERETSM6bR5+8EOM/bDnOKiIiIiIiIJKUqVmG7vVOkS4YrSU3EKLDdXpfKNVciIiIiIiIiIiIiOUhXwIpI7giX2G+PBRyMVrHcua1sSLBzS24L2d9FKW2bX4QPrvceUlYvdgg+/SE8XgyPGNbHm1Nhzyct+9kJF0E0iTk3PA4HtyfuV1cBi3/lfdzmogfg6e5QsdLbfHbeOMtaWFWzG+sG1C5GfDu1OcR/vc+BUIKgi9q9malFRCQTNj4Dr50Azw2A974KNXus7bGD9v3DeRSMBlDkEjy6b3Hm6mir7BaS1/vom94DgHJJqhfpfXCDv3W0dlXrklt0/8l3U5tn83TY9a73/qECKD8mtbnyRY9TYNLzVpBXouNiL5belRuhF6lyDPludBfmdt2h82FQ0MF5nPbDE8+17XV4rBBePwXm/whmngjTR8E7X4JDO5v2XfFnqN6UeEyvKpb5N5aIiN+cjhmb/50yQtBxFPQ+EyY+4G3sfQvTD5cUaQ3cjmOCEKuGR8PW+wkvjoDZp8Ou9zNbA4AZc25zej1bUAadDks89pr7oe5AanXlqriPwWidx/s3loiIiLvGF9gEecDReGxd1CMiIiIiIiIpq4rZn1suDbfPcCWpKXC41iRq5uF1YiIiIiIiIiIiIiI2FIwmIrkj4hCMFg04GO2tac5t424Pdm5pu1b9Hd48F0yXEK9oFRzcBrEaK0xkxhhY+tumwWebX4TZpzYNFIu5LCbvfU5ydXoJLtg1z3kBu1c1O2H6cNj8QupjfPztxMFvZy8Cw0h9DvFXQRmMTBCsUbsvM7WIiARt04sw92Lrb2v1Blj7b5h1ihVg0zyApV64OLM1pitS6tz25jnJh8JKctzuag3sAAAgAElEQVSC0TY8DvOuzVwtfnE6rgUoP9a57dA2qFjhfz2t1cEtyfXf+2ny31/ThJV/TW6fgV+CovLk9slHfafCucvgshr44qH0A9Le/ZI/dWWDUxhist+TDiO8993xBiz5Dex8xwosW/8IzDwB4o2CO5bdk9z8iRzc7O94IiJ+cnoudrjbvNVmwNTVEPGwQOSz26zznH4G/oiId5UrYNtMmD0l80GFbmHMhstNao7x+DrincuSqyfXJRNe7ab3uf6MIyIi4k2PRp8HebDReOyeAc4jIiIiIiIirVx1zP56tpJQfgSjRRzew4v6dY5ZREREREREREREJMsUjCYiuSPsEIwWCzAYLXrQCqawY4Sh07jg5hbZ8RbsW2jftvxP8Fx/eLYXPN4OXhoLB9bY963dC4t/3fDYKaQs3A56ne6+yKi5RCEJO9+BOWd4Hy+RD76e+r6r/gY1u5zbz5oPncakPr4EY/ydMOF+53YFo4lIa7Hyz0CzQNR9C2Db61C53H6fsoFBV+Uvp+P5eusfzUwdbZVbMBpY33+nEL5c5RTMAXDSs+77bnnZ31pas3gKd4nd+pr3vvuXwDPdYfus5OY4/K7k+rcG4SK4cJt7n67HQZejnNs3PBl8wHxQnMIQw0XJjVM+Ib06KlemF9qdSPRgcGOLiKTL6e7xiUIqywbDWZ/CkK+591v3sHWe8+lyWPdIajWK5LtUjr/rlQ5s+r5V1+NSGydaBQt/mnodqTBjzm1ur2e7efwat8yAPZ8kV1Mu8ytActgN/owjIiLiTeO7HAT5Jm/92AbQJcB5REREREREpJWrih2w3V4aLstwJamJOKwJiDq95yciIiIiIiIiIiKSZxSMJiK5I+IQpBDkgt6KZc5tfXQXdcmAj29u+BmPHrQCBuZeBB9/C2r3eB9nxR/BNKFmD8QcFllHyqCwExz9R+/jVm+0/q07YIVLrH0IDn6+UL92H8w+3ftY6ep1lvU1OInXwaYX7dtCRdB5fDB1SXoMA4ZcDcc7LIat25/ZekREghCtgq2v2rfNOQNih+zbOowKrqYghMJWEKuTNQ9mrJQ2yTDc280obHwqM7X4xS0YLVICF7mE4u5f5H89rVUqwQyf3gJbZzZ9/qraAGv+BUt/B5/9Fyy4HeZeAjPGuAcY2xl8DbTrlnxdrUFhZ5i6Fkr6N9powBH3wBUmnP4unPkRlE+039+MwfY5GSnVd06/84nCeJrrcYr7a0cvdr0H+xbBpz9Mbf+icuc2p9fsIiK5wOm4IGR/t/km2g+BCX+Hy+OJ+9ZVwLtfgvevs44dVv4N9i1OrlaRfJVqMFpRV5i6Bs5eYB0XXmHCqW9CuDi18dY86F/4lhepBqMB9DzV2xyL7/ReT64zffi/6X8J9Doz/XFERES8a5xuH2QwWuM3kF3elBARERERERFxVx23D0YryZtgNPv38OoUjCYiIiIiIiIiIiKthP3tIUREsiHsEIwWCzAYrXKFc9ugq4KbV/JD6SDYvyTYOXa8Ba8eCxMfsBYC7luQ+lgr/mwFkjhpP9T6d9iN0PU4WPJbWO8QRlVvyW9gwOXwzmUNQYKhQjjpWajZ6f33s9cZMPQGqFwO83/kbZ/GinvBKS9ZwQuvHOX8/7L5BfvtBe2Tn1Myq7CT/fa6fVboX6KwFxGRXHVgLcz2uIC3uQ4j/a0lE8LFzkFvu97zZ46oAmVsuYWI1TuwJvg6/OT2NYUKrXC0IdfB6n+0bHcLwZamUglmiNfCnNOhyzFw8nTY9jq891V/Fu8bIRj+zfTHyWdlA+Hs+bDxGSuQuvskKD+maZ9hN8Luefb7v3kuXB6zvpf5JF5jvz1UZL/dSbjI+v4s/W3qtSz9bXr7n/mp9dq1ZmfLNgWjiUgu8yOk0jCs4KaXDkvcd/U/G+8I438JY37sfS6RfJTqYqQBV7Q8RxoqsM7fr7k/tTF3vQfdT0pt32SlE4w28EvWa45ENj4FS++BUbckV1suSuW11ZG/h8Iu1g1vOh8Bvc/SeXUREcm0xidxglyB3fgPpYcUZxERERERERF7VbFK2+2l4fy47rzAsH8PL2p6uI5MREREREREREREJA/k2eo4EWnVIg7BaNEgg9FWOrf1nRrcvJIfMrUYf/9iKxwtnVA0gI9vhg9vsm+LtIfi3g2POx8Oh/3c27gvH940WCJeC+9eAfsXea9twj+g3zQYfSu06+l9v3r9L7P+DbeDsz5z7le1zn57QYfk55TMKnAIRovXKThARPLbrMmphVGVDoKC/LjzZBO1e93bTTP9OaL2d+ps87wExh2yCejJZU4hSdAQlNTlSPv2nW9DzR6oq4Sld8Pbl8IHN8C22bDxWZh3LbxzBaz8K8Rc5mkL0gkz2/MhfPZjmHe1P6FoAEf+Aboc4c9Y+aywMwy51gp1aB6KBjDoSvf9NzwZTF1BcvpdDCcZjAYw7o70aklVuAROfAJK+0H3L9j3SfS3UkQkm5wCU0NJZg10HAtlQ5Oc3ITPfgJ70zxHKpLrUgkm7nUGjP+FfdsRd6Vey+uT4OPvwJ5PUh/Dq7SC0b7s/f2aT78P+5J47yJXxVN4fTXyOzD4KzD2NuhztkLRRERERERERERERBJwCkYrCeXHdXsRI2K7PerXNTwiIiIiIiIiIiIiWaZgNBHJHZFS++3RquDm3Pm2/fa+08DQU2Sb12MylA7IdhX+6DCy5SIYp985L+r2w8ZnvPXtOBpK+jY8Hv+r5Ocr7tXweSgCo36Y3P6R/LhzV5tW6BCMBvBRhkIKRUT8tvZh59DORHqf5WspGdN+mHu7H2EwsUPu7aksHm4N4gm+LwCHdgRfh5/iDncvNUIQ+nzhfIeRzvs/XQ4zRsOnP7BColb9DWZPgbkXwpr7Yf2j8OGN8OZUiLXhO6WmEszQ2Op/Ov9fJevsRTBCx36eGCE4/hHn9tX3Z64Wvzj9HIXs73DsKlIKR/9PevUkq+fpcMEW6H+J9ThcbN9v7b8UyCgiucvxuTjJYDTDgDE/SqEA03qeFGnNkj3+nroaTn7Z+eYfReUw5rbU61n+B3htImx5OfUxvEgnGC0UhqP/BGd6DHB7aRyYce+15aJkF601vjGOiIiIiIiIiIiIiCRkmiZVMfsbdJaF8+O684hh/x5e1EzzWiARERERERERERGRHKHUHxHJHeES++2x6mDmi1bB9tn2bZ0OC2ZOyS/hQjj1LWtxc77rPqnltnY9oGxI6mMeWOOtX79Lmj7udXrywYPdTmz6uKRPcvsX5Mcb1G2aWzDamgf8CdIREcm0T7+X+r4DvuhfHZnU7ST39ppd6c8RO+je3laDFKIJvi8ANTuDr8NPTmFljUOSOh0GGPb9AKo3JZ5n22vOrw3bgnSD0fzSYzJ0GpPtKvJL7zOd23bMgdr9mavFD3GHsLBQUWrjZTpktOsEKOzY8DjiEIwGsG1W8PWIiKTC6bgglZDKwdfAkb+D4iTP4y37HTxiNHxMHwXrn0h+fpFclczx99DroWxwy5ueNDfwivRreuNsiLuEl6XLLcQ8UTBavc6HQ+lAb323z/HWL1clG/o+9vZg6hARERERERERERFppWrMQ8SxPy9ekufBaHUKRhMREREREREREZFWQsFoIpI7Ig7BaNGAgtH2LXZegNLn3GDmlPxT2h8mvwqXRRMHfeSy4d9ouc0wYMz/C3bekr4w6paW24Zc532MHpOh68Sm25JdUFnQIbn+knkFLsFoANvfzEwdIiJ+qd4Eh3akvn++HncM/6b7gubqjenPkSgY7f3r2mZwQvxQ4j75FjQadwhGa3xRX1F5y2PFVGx9Lf0x8lUuXAxphOGIu7NdRf4p7Ax9zrNvi9fB1lcyW0+6nH7nwykGo5UNhgGXp15PssLtmj12CUZb/odgaxERSZXTc3HIflGFK8OAkd+FCzbBJZUwOsXzkBXL4J0vwpoHU9tfJNckc/w94lve+nUcDX0vSK2ext6+2LktWg3Vm1Mf23QJXQtFvI1hGDDmNm99t8301i9XmS7BaCX9mz4uGwr9Xf7vREREMsv8/N+JhmFMCuIDmJDNL1BERERERERah6pYpWNbabgsg5WkzikYLWo6vOcnIiIiIiIiIiIikmc8XmUsIpIBYYdgtFhAwWg7HO4WHymFLkcFM6fkr1AYht0IO+dmu5LkDb4GygbZtw25Foq6wtqHYOPT/s7b+1yY+E8osLlr1jF/gY7jYMsMKOwC7bpB1QaoWtfQp7CTFYo26vvWgqfGinsnV0skP+7c1aZFiq2fhdo99u2NfzZERHKZacKiX8DCO1IfY+rqln/78kWXI+DMj+Hlw+3bZ59qLWI+7Bepf42JgtEAVv4ZBlya2vj5Kurh++IUDJ2rnBaCNw/mGPRl2PVeenMt/70VpjvudjDa2H0E4i4L7oPSYwpEq6xgu4KOMPpW6HxY5utoDSY9D486/Mxueh4GfDGz9aQjVmO/PVSY+pjH/RsqlsPeT1Ifw6tQEsFo29pwGKOI5Dan48V0nosBCspg/K+g4xhY/xgc3Aw1O61Aaa+W3g2Dr0qvDpFc4PV12eCrrMAzr058HJb9Hra9DiV9YOj1VoDWkv+G3R/C7nmJx9j0HBxY2/T9hHgUPvkerPqrVXuHkXDik9BprPfawD0YzS1gvbmh11nvaax7CDY+S0P2SjNLfgOH/3dSJeYUt5+T09+znhP3zbfezxx5i/XaSkREJHcYwKMBz2F+Po+IiIiIiIhISqpjBxzbSvIkGK3A4eZGUbebb4iIiIiIiIiIiIjkEQWjiUjuiDgEo0UDCkab/yP77e2Htb2F8OJNvwuhz3mw+cXs1VDcx1o4mIwRN7u39z3f+qjeBM/1S722xkbf6r7oyAjBiG9aH6ko7Z9c/8JOqc0jmTXkGmtBl53YoczWIiKSqvWPpReKdsTdUDbYv3qyofN4KOnrHHKw+FdQOtBazJwKL8Foez5Nbex8Fvfwt7J6A1SuhvZDgq/HD06BXaFmp7OGXAcf3pT+fIt+ZgUADP5q+mPlEzPDgXmX1bX8P5TUGYYV4r3yLy3btsyAWC2E0wyzcVO7D7bPgeqNYESg8xFQfqwVLp4MM+4ShliUen2hCBz/MMwYlfoYXoWbB6O1s+8nIpLLHIPR7BdVJMUwYNCXrI96Myd5vxHF/sWw6j7rPGa77unXI5ItXoLRyo+FI3+f3LihAhj9Q+ujsaP/aP27+E747MeJx3lhMFwWbTieW3YPrPhTQ3vFMnhpHFxWm9xzg1/BaAD9plkfAM/0hEPb7ftVroL2Q5MbO1c4HRsbESjpDUf9LrP1iIiIJCcToWUO6agiIiIiIiIi3lTFKm23GxiUhEozXE1qIoZDMFq+3TxTRERERERERERExIGSf0Qkd4QdgtFiAQSjLbnLua39cP/nk9YhXAQnPgVfeBFG/dChj8PPsV9OSPLGyl2Pg07jvfUt6QtT1yZfU3NTZruHovmhuLcVqOKVfq/zw9DrndtqdmWuDhGRdCzzsHB5wv1w6QH4wnToMcX6OzXup3D6PBh1S+AlZkRRV/f2DU+kPnbUQzBatNIKA2pLvHxfAKaPgEW/CrYWvzgtnDeahWqFCmDqan/mnHcV1OzxZ6x8kemLIRWK5r++0+y311XAno+Dm3fvfJgxBuZeCB9/Gz76Bsw8Ht6alnzIfdzlOTuUZrBbhxGZeU3YIhit2LmvHwFDIiJBcHo+dlhUkbZhNybX/4Ovw/SRsG12MPWIZILT8XdxHxj3MzjhMescu983+xj0VYi099Z37b8aPl/zoH2fN85Nbn4/g9EacwuQe3EYmHmameI1KFxERCR3mQF/iIiIiIiIiKTFKRitOFRKKJ3z1hnkFIxWl+mbJIqIiIiIiIiIiIgERFfOikjuiDgFox0CMw6GT1mOsRqYf6tze+cj/JlHWqdwIfQ51/rofRa8db612Byg7wVWcNnci2HLdP/nHn8ndDsxuX0m/BOMJG7GXNInufEbM0JwxkfQJQO/Q4ZhLf5ffq+3/h1GBluP+KP9UOc2BaOJSD7Y9jrs+dC9z+BrYMjV1ud9zrE+WqNEwWjbZqY+dsxjAFjtbijulfo8+SZ+yFs/MwYLb4deZ0D50cHWlC7TYSF482A0sEJzi7pBzc705517AZz6Zvrj5ItMBqP1PD1zc7Ul3U+GSClEq1q2VSyFbsf5P6dpwvtfh4NbWrZtmQ7P9oYzPoAOHgPJYjXObeGi1GqsZxgw6VmYfToc3JzeWG6SCUZzaxMRySanRRLphlQ6GfBF2DUPVvzR+z61e2H2FPhijXWuViTfOP2e9Z0K424Pbt6S3jDxfvjwBqjZ7d73/Wth0/PWa4WKZfZ9tr0G+xZDpzHe5g8qGC3Re3qPhqDfhRApg24nweCrIZQHC9ocXw8rYFdERHLaBhRaJiIiIiIiInmiKn7AdntpuCzDlaTOKRgtqmA0ERERERERERERaSUUjCYiuSPsEIwGVvhBpNSfebbPcW8f9BV/5pHWr8fJcOEO2PMRlPSF0gHW9iHX2gejTZ4F7YfBkjth5V8Sjz/xAeh0GBzaAeXHQFF5cvVN22wtdkpGqAAi7SFqfxcsRyX9Yeoqa/9MSSYYreOoYGsR/wz/lv1iWAWjiUiu2/U+zD4tcb/eZwZfSy4o6hbc2F6D0WraWDBazGMwGljB06v/kcfBaDaL2I0QDLsBFv0i/Xl3vAU73obuSYYS5yun73MQhl6XubnaknAhdBhtH875/rUw5Br/59y/2D0MtG4/vHosTH7d23NNvNa5LZRmMBpAx9Fw/nrr9fvye2H9Y+mP2VzzYDTXvgpGE5EcFXN4Pg7qnJ8RgqP/AKO+D/sWwLJ7Ep+/r/fmeTD51WDqEgmSUzBxJgKv+l8MPU+FihVQuwfeOMu57+YXEo/30li4PObtxkZBBaN19HBTlI3PWP+u/TdsmQEnPZPcDWWywel1WkiXd4iISO4yTXNgtmsQERERERER8ao6Zn+tfEm4fYYrSV2BgtFERERERERERESklfNwlbKISIa4BZ9Fq/2bZ/8S9/Zkg6SkbQsXQbcTGkLRAPpNgwn3Q9kQMCLQ/Qtw7groORlK+1mPvRh8FXQ50gpQSSYUrctRcObHqf8sF3VJfp/T3s5sKBpY3/d2PRL3K+nX9P9HcltRV/vtmQxG2zwdZp8O00fChzdBXUXm5haR/LXwZ4n7RMqgVxsJRisdGNzYyQSjtSVuoUJ2Vv3NCkjLZfEkF4KPvQNG3+rP3J98z59x8oFTMEO6Jj0H3U+2XieUDoJj/wb9LwlmLoEOLoEQ+xb7O9fuj+ClcYn71e2Hxb+ybzuwDuZeBC8dBnMvhj2fOI8TKkypzJbjhKHrBDj+YRhzm/V6MlIK/S5yfu7oMML6OfY0frNgNLfASgWjiUiuclok4ddzsZPSftDnHDjS400QALa9Bi+OgE3PB1eXSBCcjr8zdX69sBN0PdZ63+HY+9If79EwVKxM3K92j3NbOsFoAOd5mL/epufg0RDMPsM6rs1VTq+HDQWjiYiIiIiIiIiIiPihKnbAdntpqCzDlaQuomA0ERERERERERERaeV05ayI5I5IiXNbzMdgtNq9zm2j/59/80jbNuRq6yNe13JBk5eQro5jndsGfhnWPWTfdvp70HWi9zrtFHaGqvXe+5dPsBYvZlooAuN/De9f695v7E/AUBZs3mjnEIxWvTEz8295Bd6aBmbMelyxHPbOt8L/9HMkIm52vp24z2G/gIL8uaNkWsqPDm5st6CZxmrbWjCaw6JpN7s/shbE5yozyYXgoTAc/t8w/k6IVkKoqOG1ZEFH62/5snvhk+8mnnvPhxCtcg/wbi2CCEbrfQ70mQp9z7d/TST+6+gSjLbhCejkIcDTi8pV8Oox3vtveq7ltpo98MKghsf7FsLGp53HCBd5n88LIwTjf2n9XTZj1mvLmj2w5kE4tL2hX9lQOPNTiBRbX/fME5u2N1fQoenjeI1zXwWjiUiucgrbzdTf8s6HWccQm1/w1r9yhXUe5wsvQp9zg61NxC/ZDkZrbOh1sH8RLP9DeuNMHw7nb2h4n6Bmj/X1FLQH04TqDTBrsvP+TuHXXrUfagXRb33F+z7bXoMdc+CsBe7H0tni9Ho43e+ViIiIiIiIiIiIiABQ7RCMVhJWMJqIiIiIiIiIiIhIrlC6g4jkjrBLMFq0yr95Nj/v3Nb/Iv/mEQH7xUxdjobiXu77DXEJ+xr6NfvtA7+cfigaQGGX5Pp3cglxC9qQa9zbT3gMhn49M7WIP0oH2W8/uAW2vBr8/Kv+2hCKVm/Xe7D30+DnFpH85hbkWzoATnoGRnw7c/VkWxcPwWjzrk4tkCl20Fu/mjYWjJbKBW2vTYDqzf7X4pfmf5PrJVoIbhhWQFG4yAr9LezcEHDqFsjd3BNlsOZf3vvnKz+D0bpPgsN+aT3nGYa1TaFomdHbJQxm0c/9+39emELA2paXGz4/tBOeLk9u/1Bh8nN6YRgNzydFXeDsBTD0BitUY+QtcPq7VigaWGEbp70DJX3tx4qUQnmzwDincCFQMJqI5K6YUzCazyGVbk562gq67TDC+z4LfxpYOSK+c3rtlq3j5jE/aRnwmoo198PB7TBrinW891RneLobPN0Vnh/ovq8RTn/+k2ckv0+8Dhb/Ov25g+AUfu4UFC4iIiIiIiIiIiIiSamKV9puLw3nz41PnYLR6hSMJiIiIiIiIiIiIq2EgtFEJHe4LVCPugRNJKOuEvYtdG7vcpQ/84i4CUXgiHucFxSWT3QP/Op2Agy+qum2rsfB0X/0p75kg9E6jPRn3lRNfMB+e4dRMOCLma1F0uf28/TGmXBoV7Dzb3IIz1xyV7Dzikh+M03nAKeux8H566DfBQ0hQW1BSb/EfdY8CJ/emvzYXoPR6iqSHzufOS2aTmTuhf7W4acgFoK7BXLbmXcV7Pk49flySfVm2PgsbJ9jPW/VMx2+z50Ph4jHu+D2vQAuj8Opb8LY2yAcUJCVOOt8WEMAoJ0Pv5H+HPEobH4x+f3eONsKRAN45/Lk9w9nKIynXXc49i9wystw5N3QrlvT9vZD4PwN0P+SptuNEBz955Z19r3AeS63/ysRkWyK19hvz+Tf9lAExvwIzl0GV5jWMUYiez6G6k32bfuXWMdAez7xt06RVDkF1josXgpcu64wOoXX5s3tfBee6wvbZ1uPzRjU7ILaPYn39SMI1wjB5NetwNpkrHsIFtwBH94E6x+H2KH0awEw47D3M1h1H2yebr0/mdT+CkYTERERERERERERCVJVrPUGo0UVjCYiIiIiIiIiIiKthK6cFZHcES52botW+TPHK0c7t42/0585RLwYeDl0GmctEorXQlF3qFwJHUZA/4sh3M55XyMEE/4J/S+FXe9Bh9HQ97zkF/w4KeycXP9uk/yZN1V9p0H4ppYhKQOvyE49kp7S/tbPv9MCtG0zrd+fTDu4NfNzikj+cApFAzi8jQYrGoZ1TFG7173fhifgqN8lN7bXYLR4bXLj5junxfWJ7P4A9i2CTmP9rccPjgvBw6mPmcox85LfwIlPpD5nLlj9AHz0jYbfn24nwMmvQEGZ889OST+YMhuesglO7n02DLgCqjdAx9HQZ2rbCn/MVVPXwfP97du2vpr++PsWQN3+1Pbd8CT0OQe2z0p+X6dQ8WwwDDjhcRhwufV6vLCT9fvQ+fCWfTuPdx7HKXhIRCTbnJ6fsvlcbBhwzlKYMcq938xJcP6aptvm/+jzsPvPQ2EHXwUT7tdxi2SX0/F3KEvBaAAjvgMLf+pcW98LrGN/t9Doba+lNnf5RP9CY3tOgbM+g43PWPXGDsHqfyTeb9HPrX9X/sX697yV0H5o6nXEo/DulbDh8YZtpQPgCzOg0xhvYzi9Hg7p8g4RERERERERERERP1THDthuLwl7vIlgDihQMJqIiIiIiIiIiIi0crpyVkRyRyhihaPZBR3U7Ut//IrlULnCub2jx8UIIn7pNDb1AAojBL3Psj78VmQTfOCkuA+UuwQOZkJhJzjhMXjncohVW9v6ToOR381uXZIaIwTtekHVWvv2fQuALASjacGsiKVqI6z7D1RvhO4nQ/9L9PsB7oFUbXnB6shbYMFP3Psc3AybnoetM6GoHAZ+CToMd98n6jEYzW3BdmvktGjai/WP51kwWhq/V26B3E42PAnP9oUj77HCifPpeS8egwX/BUuaBYHvfAfe+zJMetY9mKGwM5y7DGafZj33A3Q6DI69D0p6B1u7JK+0H7TrCYe2tWyr3gC1+6GwY8u2eAzWPQx7P4XinjDsG1ZoXnP7l6ReW8VyK2wvFan83gbJMKDfBdaHa78QDP06rPp7y7aYgtFEJEfFHMKFw1kOqew4Eo79O3z0TecA5Kq1sHcBdD7Merx9jhVw29iaB62Psbdbz9ElfYKsWsReLgajRUrg6P+FD77Wsq1dDzjpaesYaOtrMOcMf+fud6G/47UfAqN/0PB48FUw92L7Y2QnLw6zXvsNviq192Devtg619FY1Xp4aSyMuQ1G/8j+eLuxeACvh0VERERERERERETk/1Q5BKOVhvInGC3i8N6CgtFERERERERERESktfDp9ssiIj4pKrffXrM7/bE3POXe3svnxRwi+aowiWC0cXdYi72zre9UuHAbTJ4F562Ek56BSGm2q5JU9b/Eua16U+bqaCKPAlBEglKxHF49Fj77Maz8C7zzRfjwhmxXlRs2v+jc1pYXrA7z+PPx1jRY+WdY9HN49RjYNc+9f/yQt3E3Pg1bXvXWtzVIJxitar1/dfjJaSF4WoGDZmq7HdwM71wG730ljbkzLB6D2VNahqLV2/ScFZDmdDFk/V1lO4yAqWvg9PfgrM/gzE8UipbLRn3fua1yZcttpglzL4B5X4Xl98L8H8GMMVBrE1BfsSz1ug5ugsrlye83/BfDx+AAACAASURBVFv5FUbYXPlE++1xBaOJSI5yen4KFWa2DjtDvwbTNkHnI5z7rHmg4fOVf3Put+jn8NI42POJf/WJeOV0/J3NYDSwQsDsjl2G3tBwPNbrdCgd5N+chZ2tkMIgdTsBpq6CKW8kt9+GJ+CNs2HhL5Lbb8FPW4aiNbb4V/BcX/vj7cYcA/Ta8HkmEREREREREREREZ+Ypkl1vNK2rSTcPsPVpC5iOAWjRTHNFK+REhEREREREREREckhOZBkIiLSSGGAwWhugRUnPAbhHFjcJZILCjt76zf+ThhybbC1JKOgPfScDO2H5vfCeXEPRmvXPXN1NKGfKRGW3g2HtjXdturvsH9pdurJFWbcPSAu2wubs6mo3DrOTkZdBSz8qXufeK338Rbcltz8+cxp0bQXNbv8q8NPZsx+ezqBg05ha16t+w/seCu9MTJl8wuw4033Pu9f5y2ALhSBrhP/P3v3GeZWfedt/JY0fdx7t3HFBoyNwfTeHXpCKMmmV9iQPEvabsqm955N2M1uCmwCaSS0UBIILfSOKabZuPfumfF4RtLz4uB101GXRtLcn+vS5dG//kbWaCTNOV/BwJkQjRWvRhXftI+F9215I5isux2evBKujcB10X3fL2lfAn8c+EZ/DK6rC75+/qvha5/xRPq6lv4JnvpEdt/D7g75bu5zKkmsMXV73GA0SRUqNBgt5PGs3JqGwtyfhfe/9IPgNVqiG5b8Lv1aOzbCc18Jvl51F9x1Etx2CDzxL9C5oXg1S3sLDbzq4fcPonVwwi0w5vwgDLFxMMz4Vzjwc3uOOybDz1a2GgbBSX+Dhv7FWS+dulYYfjwcdV3uc+d/Pnh82L4m89jt69I/Z96pa3PwfHvZTeFjwsLPe3MAvyRJkiRJkiQVyY5kJ90h78O2xvqUuZr8hQWjAaHfnyRJkiRJkiRVE4PRJFWWxpBgtB0FBqN1rof1j4T3j7+osPWlWtIwKPOY0x+DAz4NEZ9KqAQGHxre192+6+vta4JLPIeAnHTSfTqaYXsSLA458fX1X5e3jkqz5v7ghPowvf2E1eEn5j5n5R3pQ75yCQDb8ER2Jy/XgkIOZutcW7w6iinse4oW8HPVZ0J435TLsltjcY6Bfz1leZqT7HfasgC2vZa6r6eDGZSfaAz6H5i6b/Vd0LYYbj0IFnwvu/WSifCQwp0O/BwMOgTOfCa3WjPZ/18K+3mvBGFBQonO4L2qYr2WkaRiCXtcCgt67Anp3jcCuO882PpKdmst+3MQ+P33U2D13bDxKXjp+3D/+enfJ5IKEfaaNs3JS2XTOBiO+xNcuBUuWAuzvrZvMHK/afmvX98f3toGlybhLeth0JzC6s3VuAth4CG5z1t9N9x9JiQyPC9ee19ur83vOxeWhXyok8FokiRJkiRJklQybfGtoX2tsb5lrKQw9WmD0TweQZIkSZIkSVL1M81EUmUJC0brLDAY7aUfh/cd/vPC1pZqTWOGYLTmkcFJ71Ipjb84dXt3G2x8Fq6rhz8NDy6/a4SnPhGENhQibeCDT5vVyyWT0B1yMNDCq8tbS6VZcUv6/t4eLBRrzm/etoXhfYkcA8C2vJxfDdUml8C4vXWuK14dxRT2fx2JpW7PRv8DoXX8vu0DDoJD/wPGvjnzGq9clf/+5fLaz2Hhr7Ibu+be1O2VEMyg/Ayem7p94S/hxgnpH2ML2W/gTJj55eKtO+HS4q3VU8KChHZshOuHwJ+GwvwvGr4jqXIkOlO3hwU99pTzV4b3Lb8ZHn5P9ms9+sF929bcB8szvNaT8hX22q2S3j+INYR/UER9v/xC0CEIvq1ryb+uQkVjcMrdsP+VMOiw3OZufBKWhHxowE7ty3Kv6b5zUodShr0erqT7iSRJkiRJkiRVqbTBaNHqCUarSxuMVsCxZJIkSZIkSZJUIUx4kFRZGkoQjJZMwHNfDO8fOCv/taVa1Dwmff+cH0PEpxAqsYaBqds718Gdx0JyrxPDXvwOLPh+YXumC5QJOxFQ6i12bAzvCwtM6y02L0jfH60rTx2VKtaU37wtaW7XXA/aSrdWLck1MG53lRqMtvfv+50iBfxcRSLB89low662WAsc8r2g74hf7tkXpqtCH/val8HTn4ZH3lf4Wr398auajT67vPvtHowx5tzirDnt/8GgOcVZqydlChLq2gLzvxCEGUpSJQgNRsvi+VE5NY+AYceH969/uPA9lv1pz+vJJGx6Hhb/HtoWF76+eq94W+r2SgsgTCefMNx++8P0TxS/llzV94NDvgNnPAoXbYeBs7Ofu/RP6fs7VuRX06Pv37ct7PWwr9MkSZIkSZIkqWDt8W2hfc2x1jJWUph0wWhdBqNJkiRJkiRJqgGmmkiqLI2DUrfne6J+dwf85cD0Y3I56UHqDfpOhn7TU/cd9lMY9+by1qPeKdaSun3lbUF4QCqL/rewPRM7Cpsv1bKOleF9XVuCINreatsr6fvTHHzUK0Tz/P7XPx7ely7IMpXeEoxWyMFs3dsgvr14tRRLWNhboSeCjzkbznwKDv46zP42nPkkjDgl6KvvCxPelnmNrS8XVkMpLPpfuGkyvPDN4qzX2x+/qtmQw8u314hToG63g4L7Z3gPJpUZn4Lpn4T93hGEbJx0J8z5XvFq7EnZBoQu/m1p65CkbMVD3huJVWBg0+QPlnb9Rdfs+jrRHQTP3nogPHAR3DgBnvtqafdXbUrEoXND6r6mIeWtpRBDj4Zzl4T3R+qgdUJw6TMZDrsK5j0Ldc3lqjA7sUY4/ZEgIDsbS69P/9q5Pc9gtBW3BeGLuwt7PVxIULgkSZIkSZIkCYC2ROpgtOZoC7FIrMzV5K8uzXvG3WEfwCFJkiRJkiRJVcQjZyVVlqYRqdu3vZbfenedAFteDO8/7gaIRPJbW6pVkQgc83u4+3To2O1EnoO/DlM+3HN1qXepy+MT1zY9E5xAlu/jetpgNPOE1ct1ZDixc90jMPTI8tRSSRJdsDXD89RCA5x6q+U3wcFfTt1nMFpqYSdNZ6tzHbSMKU4txZKMp24vxong/WcEl1RmfQO2vATrHgyfv3kBDJpTeB3F0rkeHv0gJDqLt2a+wYbqeU0joK5PEHpYaqPP3fN6JALTPw4vfie7+fUDgteatfreTDTLIKHVd5W2DknKVthziWwfz8pp/MXw4KWlWz+ZCAKsGgcFAZYLf7Fn/7OfhRGnwpC5patBtWfHBiCZuq+xioLRAFrHwls2wf0XwOq/B21Nw+GIq2HU6T1bWy6i9TDxXTD85OB72ZAmqB3glunQOh76TIR4JyS7Ycnvgw/6iLfnV0PnWti+CppH7moLO2HNYDRJkiRJkiRJKlh7fGvK9pZY3zJXUpj6NB962F3Ih2xKkiRJkiRJUoUw4UFSZek7NXV7xwroSv0HqFCPXQbrHw3v7z8Dxpwb3i/1ZgMOhHMWwSn3BwGCF6yBAz7d01WpN6lryW/ejo3575kuGK1WgxqkbG1fnb5/+U3lqaPStC0OP1F1J09Yzc+mZ2HbwtR9uX6aZW8IRkvECT25Plud64pSSlGFnghe4k9mbRoGp9wLZ6Q5IX7tP0pbQ66W/gniHcVd02C06hWJQN8ppd+nZUwQIrG3cRdlv8bIU2v7uXasAoOEJCmd0GC0hvLWkY1IBM56qbR73DItCGbeOxRtp+U3lnZ/1Z50r7uqLRgNoKE/nHQnnPFE8Brq7FeqKxRtd61j4fRHgr+JpNP2Oqy5Fxb+EhZfG4SiQf6haDtt2evxLOy96lK/HpYkSZIkSZKkXqAtnvqD5lqjfcpcSWHqIuF/w+tOpvuwaEmSJEmSJEmqDp6hLamy9JsW3rf1FRg4C7a+ChueCC4bnwxCcFonwMyvwIADgrFbXoFXrkq/1/hLi1a2VJNiDTDsmJ6uQr1VLM9gtI7l0Dgov7npgtGo4bAGKRuZwnaW3Qizvl6eWirJ9rWZxxgsBCPPgJW35z5v+S0w7Yp92xM5fppl2yKIb4dYU+41VItsw+JOvgfuOiF1322zYcLb4eCvBSeEV4LQYLQyvJ0VrYNBc2C/d8Cia/btf/U/g5/vQ75bGT/nS/+UeUzfqXDiHXDTftmtabBjdRt6NGx8Kv/5kbrgZ7DPJGgeBRse3/P5wJAj4dCfQH2Kg4L7HwD1A6BrU+Z9xr45/xqrQdOw7Mc++XGY8SloGlq6eiQpnUQckonUfZUa9NhvKkx6L7z289Ks37kOVt4Bq+9O3f/81+Dgr5Zmb5VWMgHxziAMcOe/iR37tqXq26d/R+o5qebuSPP8qGFw+b7/YopEYNAhPV1FcUSiwd9EzloAt+xf/PWP+CU8/O7UfXedCPOehQEHBdfDPgCkoX/x65IkSZIkSZKkXqYtvjVle0us2oLRwo9Z6sr1w0clSZIkSZIkqQJ5hqOkytIyFqKNwQkie3vwUuhYCV1b9u3b+DSs/Cuc9SK0joMVt6bfJ1oPU/+5ODVLkoqvLs9gtPYVu04ey1W6oJ1INL81pVoRT/HcbHdbXgyCaftNKU89laJzXeYxBgvBtI/BqjuzD+/aadNzqdtzDUZLJqBtaW3fP7O9TYYfDw2DYMeG1P2v/xpW3wVveh4aBhavvnwlQu4z0TL+XI16U+pgNICXfwzdW4OT23tSvDO78MEznghCrObNh1uzeL5U11x4beo5Uy4P7rup3kMBmPQ+eO1/wudfuCV4b6ZhQO571zXD9Cvh2c+lHzdwNox9S+7rV5OmEdmPXfBdWPsAnPoPiMZKV5MkhUn1nvxO0QoNRoMg3DebYLTxl8JRvw5eH+xYD099EhZdnXney/9ReI07da4Pnmf3tveZEt2ZA8MK7cs1pKzSTgaqa/X5dyXpNw2O+SP8o8jPVaMNQYDx2gdS9986E057KHgO2bEi9ZjGIcWtSZIkSZIkSZJ6obZE6mC0PrF+Za6kMHVpjk3sTuZ4jJ0kSZIkSZIkVSDP0JZUWaIx6DsFNqcIQdjyUvq58XZ47itw+M9g3UPpx56zyE9Vl6RKFmvNb17H8vz3TOwI79v4VP7rSrUg3QnyOy2/Efp9vPS1VJJsgtGi4Z/K2GuMOh1OvA3+fmpu83ZsTN2eazAaBMEH1HAwWi4n9TcOCQ9GgyCMetGvYdpHCq+rUMl46vZyBg6OOhPq+kD3ttT9C38FRODw/+m5gItlN2QeM+K0IBQNoP8B0GcibFuYfk6/GYXXpp7Tf3849QF44Vuw4fFdjxPNo2H8xTD5A+mD0eqagQLCOQ74TBDosPi3sH0VdLdBfd8giKSuFYYdDwd9ofYDwCKR3MavfxiW/AEmXFyaeiQpnbTBaA3lqyNX2YYETbg0eFyOxKBpGEz5cHbBaCvvKKw+gA1PwoNvD0LF6wfAAf8G0z+e+++JTJLJ4PVSysCwTojvSNFWypCyN/qTieJ+n7XIsKvKM/L04q8ZrYdBc8OD0QD+emT6NbyvSJIkSZIkSVLB2uOpjwNqifUpcyWFiUQi1EXq6E5x7JjBaJIkSZIkSZJqgcFokipPv2mpg9GysfxGSP4nJLaHj5n9XWgZnd/6kqTyqGvJb17Hivz3TBeM1rESdmyChgH5r1+pti0Kgt8GHQqt43q6GlWqdD8fO73+m+DE7lqX6IY190J8Oyy+LvP4cgY4VbIRp0DDoPSBXHvr2pS6PZcQsJ22r819TjXJJixuzHnBv01DYevL6ccuurpCgtFC/q+jZfy5qu8L0z8B8/89fMzCX8LQo2HSe8tX1+7WPph5zMwv7fo6EgnuDwu+Fz4+2hj83Kq6DTgQjromvH/ax+ClH+zbPvE9he8dicDk9wWX3m78Jdk9Z9jp5R8ZjCapZ8TTvO6LNZavjlxlExI09s0wat6ebUMOh/3emV04WiG2r4Xb5+y63rUJnv4kLL0exl4QHiaWb0iZqlPLmJ6uQHur7wP7XwkLvlu8NSP1MOYceOn7+a9hMJokSZIkSZIkFawtJBittcqC0QDqIg0pg9G6/LuRJEmSJEmSpBrgGdqSKk+/afnP3b4GVt4By24MHzPhbfmvL0kqj0oLRgNYdhNMfEf+61eaZDI4EffF7+xqO+AzMPPLQZCFtLt4Z+YxG5+GFbfBqDNLX09P2bYQ7j0HNj+f/ZxorHT1VJtoQ27jd4QEo2UTAra3znW5z6km2YTF7Qw6yuYk6g1PFFZPsSRCvq9ImX+uZnwqCDXasiB8zCPvg9HnQlMPnKSeLuhu8ofgoM9D88g92zMFo+33T0EQgGrbuLekDkYbc275a6llk96TWzDauodKV4skpZNI87ovWsnBaIPT9x92FUz+QOr3Oo74ZfC86P7z89s7Ek3fv+VluCXk7x3rHwkuEgSvJVR5Zn87CDFLJoqzXrQehh4D/abDlhfzW8NgNEmSJEmSJEkqWHt8a8r2lmjfMldSuLpIfcr2VGFpkiRJkiRJklRtDEaTVHkGHlLY/HvmhfcNPQaahxe2viSp9GKt+c1rX57/npmC0Z76eG0Fo624dc9QNIDnvwrDjoeRp/ZMTapc6U6Q39098+CSRG2G68W3w02TerqK6hbLMUxhw+Op25MGo+0jLEBsp+mfhNFnBV83ZAiO2OnxK2Ds+TD8xPzr2vIyvH4trH84CFsbejQ0jwnWHHtB5seKsAP0ImV+OyvWCCfcBjftl37cPWfCGY+Vp6bdhQWjjTgN5l6Vum/IUdA4FDrXpuiMwMFfK1p5qmBDjoKZX4FnP7urbfrHYfTZPVdTLRp+cu5z1j8Ogw8tfi0qv/YVsOhq2PISkOzpaqT0ulKfAALk/ly+nKKpT/b4P5M/GP68MxKBsefBQV+A+V/IY+8M4c+Pvj/3NdX7jH0zTLuip6tQKpEInPl0EJLf9nrh60XrIVoHR14Nd58OOzbmvobBaJIkSZIkSZJUsLbEtpTtrbHq+xDBupDjqLrzOcZOkiRJkiRJkiqMwWiSKs+Yc6BlDLQvCx8Tieb3Ce2eXCJJ1aGuJb95HSvy3zOR4SCAlMEhVeyVkKCUhb8yGE37yhQcuLuFv4JJ7y5ZKT0i3gk3ju/pKqpfNI8whZd/ClMv27Mt0+N1KrUejJbuQLZTH4ChR+26nu3t9/KPg8vsbwdBSblacx/cfSbE23e1Lbsx+PeVn8Ck98PhP0u/RljgW7mD0QD6TIDzlsMNo8PHbHgcVv0dRpxUtrJIdIefoL/3z87uojE48PPwxEf27bu4K+hX7YtE4MDPwMR3wcanYMBMaB3X01XVnkgEmkdCx8rs59xxGBx1HUy4uHR1qfQ2L4A7j6395yHqHTIFgPW0gbOD32V7a92vtMHd6W6X7WuD58SqbpFY8Fo21pji34bUfdFGiDXs9nXI3FgzDD4M+k6tzYD5WjHgIHjT83D3abD2gX37j/oNvPBN2PRs5rV2BjkOPgzOXQJ3Hpf6sSudxizDziVJkiRJkiRJKSWTSdriqT8wqDXWt8zVFK4+kvpDhAxGkyRJkiRJklQLDEaTVHmi9XDSnfDQu2DDo0AE+s+AgYfAoDnBZeDBcPthsOXF3NYePLcUFUuSii3WE8FoOQQ/1YIVf0ndvvhaOPo35a1FlS/emf3YR96TWzBaojs4gXTV34Kwo+lXwqgzc6+xlF79GWxf09NVVL98whSe/iSMews0DdvVFhaWlU6tB5Kku01a9wr127Eht7Wf+gT0nQZjzt53z0XXwPNfhW0Lg7bm0dCxPLt1X/vv4LKzvvr+MPxkmPklqH/j01eT8dRzoz30dlbLqCBo7m9Hh495+F1w3pKylcSOjeGh4S0ZAq6mfBg618CCHwQBdsNPhMN/YShab9QyOriodPL53fXMp4PfgT31mKfcJROw4Huw9E/Ba9O2xT1dkVQ8+YQcl9OBn4X737xv+9A0z9uKId3ju48Bufu/oLE0oWLRhpCgsRz6sg44a/C5sQJ1LXDyPfDUx+G1X0D3VqgfAAd9HsZfAmPOh6euhIW/hPj28HV2Pzmtvk/w+vKpK8M/wGKfOvpCv/0L+lYkSZIkSZIkqbfrSu4IDQ1rqcJgtDqD0SRJkiRJkiTVMM+qklSZ+k2D0x8KTihMdAcnwuytcUhua467aN9QAElSZarLMxht+2pIJiESyX1ubwtGqwWdG6B7GzQM3HXirEojkUMwGkDbEmjNEMiz00PvgMXX7bq++i44/mYYfVZue5bS4t/2dAW1IZZHmEJ3Gyy7ESa/f1dbPgdtbV+d+5xqkkhzm0T3Ovht7JvDwzHD3HcOnHIvDDsu+D2b6IIXvwXPfm7PcdmGou1u98CITc/ChseDvSIRSIYETUR68O2soUfBcTcFt0kq7Uth84tQ1xpc4tuhcTDEmopXQ6I7eK0ca4DO9eHjGgenXycaC4LoDvxccJvm8/xJUnbGnBeEQeaibXHwuNh3chCCCEGYRl1LECbpz2zleeJj8PKPe7oKqfgiUYg193QV6Y05Pwh5XX33rrZoI0z9SHbzBx2a377xdkjEU4dnFRLeX3KR9MFgxQgiSxc4lnLPBn+3qbJF62DOD2D2d4Lw/OYRweMjQF0zHPZTmPNDePQDsPBXIWvs9fp893m3zYLNL6SvYeo/F/e1pSRJkiRJkiT1Qm3xraF9rdE+ZaykOMKC0boMRpMkSZIkSZJUAwxGk1TZItHwkJNcg9GO+t/C65EklUdda37zkvEg4Cyf8B2D0arHhifh4XfBpvl7tk/7KMz+buoTklWYXH8+lt0I07I4AX3ZTXuGou1079lw3I0wJiR4qJy2r4N1D/V0FbUhmsdjM8CyG/YMRksXAhamokMJiiAsQAz2DREbeWp+ezz7eTjke/DYh2H9o/mtkY2198PKO2DUGWmC0Xr4cX7M2dAyNghBS+UvM/Zt2+8dcOh/QH0Bnywb74Rn/i0I3Ul0waizYMIl4eMzBaPttPfJ+ZKKb9S83IPRAG6fA0SA5L59c34YBP4YIlMZNj1vKJpq15CjKj+IPBKBY6+HBT+ElbdD8yg46PMwcFZ280ecDPX9oGtL7nt3b4OG/vu2z/9C5rn1A6D/jPSBY4WEjYX1GYor5S9aBy2jQvrqg9eKoXNDXntF6+G0R+CpK+HVn6UeM+fHMPXy3GqVJEmSJEmSJO2jLb4ttK81VjvBaO3xrWzt3vzGmDqaY3kely1JkiRJkiRJPchgNEnVK5dgtFPu92RvSaomsZb853a35ReMFjcY7f8suwmGHp19oEohkskg4KxjBTQMgu4t0GdicNnb1tdg45Pwj7emXuulHwYnFc/8QklL7pXinbmNTxWMtmMTrP0HdG4I7lsDZ8F954avcd+5cNYC6Dct93o3Pg2r7wnuU8NPgNZx2c3r2gLrHoaOVcGJrk3D4aUfkTKMRLnL9/n4iluhfRm0jAmu5xOMtvEp2LERGgbmV0OlS3eb7H27t4yBGf8KL3w9tz3W3PtGQE8ZLPlDEIyWCAlGi1bA21mnPQw3jM5+/KJrINYEc/8r/z1f+CYs+N6u6ytuCS6pRBsLez4lqbhGzYMRp8Gqv+YxOeR5yBMfhebRMO7NBZWmIrn1wJ6uQCqNur4w6xs9XUV2GgYG7wfk855ArAlmfQse+1Duc1MFoy2/NXgNks7BX4UD/i33/SRVuDShg+neF6nvE7xe7H8gPHHFrva61uBvnINmF69ESZIkSZIkSerF2hNbQ/taaigY7Y4N13PHhuv/7/rwhjG8Zei7OaBPmY7/kiRJkiRJkqQiqIAzSSUpT9kGo9X1gSFHlrYWSVJxReshEoNkPPe53W3QOCj3ecksgnaSSYikObmtVtx3LhCBY34H4y4s3T7dbfDwe2HJ7/Zsj9QFJwfP/GJwPZmAZz6bXYjPomsMRiuFRI7BaGvuhfj24ORyCILS7jsv931v2R8uiUMkmt34RDc8cDEsvX7P9tnfgelXpp+77hG4/3zoWJl9feMvgUGHwlMZ1tYb0gTMxZqC+0yYG8YGJwhP/gAkQ8KyMrl+CBz7JxiTJpCvWqW7TSIp3vo5+Ksw7HhYfhO88tPS1ZWvhb8IfgesvT91f6rvqdxaRsH0T8CL385+zms/h4O/ll/waHcHvPit7Mc3Du4dz1mkahFrgBNuhdd/Aw+/s3jrvnKVwWiVYNP83MZPfFdJypCKrt/+MOZ86De1pyspjykfhAEHwd+Ozm1ed9u+ba/9T/o5pz0EQ47IbR9J1S/k5LQ9TPtI8DfNZX+GaBNMfj80jyh9bZIkSZIkSZLUS7TFt6Vsb4o2E6uEY5JyVJ/Ne8/A6h3LuGr51/jU+G8ztinFBxdLkiRJkiRJUgWqvndtJWmnpqHZjRv3VojGSluLJKm4IhGoa4WuLbnPTXVC6k6JOKy8A1b/HVpGw6T3Qn2/zPN2SnZndwJbTUjCQ++EEadAw8DiLr1tIbx+HTz72ZCtu+G5L0HX1iAQa8kfoH1Jdmu3LYJEVxCup+JJ7EjdPvxEWH33vu3J7iAAaOrlwc/xAxfnv/d1Meg3Pfh6yBHQOgHGnh+csL5T2xKY/8UgTCmVpz4Or18LA2ft1piAtQ9C/wNg5GlBuFEuoWhTr4BDf/jG+gajZaX/QbDmvn3bow1BMMBts9PPf/SDwWNSIosgy1SSCfjHRXDBamjon98alWbdo7DsBlhxS/iYVI+HkQiMOj24dKwMTriuNDeMDe+LVsjbWRPfnVswWjIOj/8zHH1d7nutviu75yo75RO+Jqm0ojGY+I4gkHL9I8VZc/Vdwe+3bENkVRobn8l+7Fu3Ba91JVWmoUfB1I/Ayz/Ofk68fd+2dM+vp/0/Q9Gk3irb9ysHHxpcJEmSJEmSJElF1xbfmrK9Nda3zJUUR10Ox8omiPPYlvsMRpMkSZIkSZJUNSrkTFJJykPz6OzGzfhkaeuQJJVGrCW/YLR4SGhIMgmPXw6v/teutgXfg9Mfg+YRQQhXJokdvStwK94By26Cie8s3pprH4S7T4fubqWuyAAAIABJREFU1J+6t4eXvp/fHot/D/u9Lb+5Si3embp90BxYc38QhLa3x/85CPFpnQDx7YXtv+XFPf99/mtwzO9hzDmw+l6464TMa2x8MrjsbevLeYRCRWDy+3KcI8a/NQiDIbln+7iLgtC6t7bB7zMEhSy5PjwY7bgbg/vcg5eGz090wqq/wrgLcyq9Ii38FTzy3iAQJ51IhpDobAOnCzH3v4PwtmU3Fme9TN9zufTbH/pOga2vZD9n8W9h4OzcX6cuuyG38Q0Go0kVa/wlxQtGA9j6GvSbUrz1lLv2pdmNO/luQ9GkatA0PLfxe4fXdqcISttdv2m5rS+pykTCu3rT+8qSJEmSJEmSVKHa46mPXW2J9ilzJcUxuH5YTuNX7VhWokokSZIkSZIkqfiiPV2AJOWteVTmMcf+2RONJKlaxZrzm3f7ofCPi2HT/D3bn/7knqFoAO3LYP6/B18vvjbz2mFhPLVs8wuFrxHfAa/8J/ztWPjb0dmFohXiUQOrii6xI3V7XR/oOyl83tOfggcuKkE9nfDUx2HjM9mFohXblMtgwEHl37faDTsOjvxfaBkTXI82BOEwc68Krte1BEFT6ax7iH2C1XZqGADjL4a+U9Ov0V4DB3d1roeH351FKFodRNKclA3QmNvBcTmb9tEgSPDQnwT1FEPHyuKsU6hIBMa+Jfd5878A29dkHrf2QbjnLPjjIHjt57ntMfiw3OuSVB7TroADP1e89W6fDX87Lvi90La4eOsqOzs2wzP/ln5M49AgJHT4CWUpSVKB6vvlNn7vYLStL6cf3396butLqh0Go0mSJEmSJElSj2tLpP4Q5dZY3zJXUhyz+xxFJN2HduwlLBhOkiRJkiRJkiqRwWiSqlfL6PC+ie+Ci7th7HllK0eSVGSxhvznLvkd3HE4bFsUXH/pR/Did1KPffVnsPDqfYPUUumNwWjZ3C57i2/f87Z65l/hsQ/D2n8Ur65M+3esLs9evUWiM3V7tDFzkFWpbH0FbptV/n37HwgHf7X8+9aK/d4G5y6B85bBhZvh6GuhrnVXf+v49PO3p/nZ3hkCNv3K9Gt0rMq+3koS3x4EoiW64foh2c2JZhFE1lTiYLTmN163tYyG/d5RnDX7H1CcdYphxieCwJtcxDtg8W+D/0sIAu6SCUgmIREPfoetuS8IE13xF9ixMfe6Jr4n9zmSyiMSgZlfCt63mvTewtfrboO198PCX8Hth+X3mKH8JLrhrpPSj7lwK5y/IggJlVQd6nM86WXvYLTNC9KP76nX0JLKI104ecRgNEmSJEmSJEnqaWHBYC2xPmWupDgmt8zgn0ZcQZ9Y/6zGtyUMRpMkSZIkSZJUPbI4Q1aSKlTzyPT90Vh56pAklUakwKeq8Q64aSIc8Fl49b/Sj334Xdmt2RuD0VbeDtvXQVMWITxd2+CR98KyGyEShXEXwoS3w4Lvlb7OvT33RTjsp+Xft1bFw4LRGmDkGcH/eW8w8nQ46jfQkN1BRAoRiYSHHGcKRos1h/dF3zjBePIHoK4PPPi21ONe/BYsvi54jBh9VuZ6e9qOjfDwe2DZDbnPzeak68YsQ9byNfK0XV/P/Rn0mwYrbg2uT/sobHgCns8xbHDIEcWrr1ANA+H0h+HZf4fXf539vCc+Ck/+CyTjwXOeZHfxapr0Xuhv4IZU8aIx6DuluGt2roVbZ8F5i4u7rlJb/XfY+GR4/+QPQn11Hjwv9Wp1uQajte95fdmfw8cOmpN7qK6k2hE1GE2SJEmSJEmSelpbfGvK9tZojn8jqiBH9D+Ruf2OZ13XarqTwXHOz217nBvWXbPP2PaQ71+SJEmSJEmSKlG0pwuQpLzFmiDWkrpv3MXlrUWSVHzFOlHs+a8EAQHFkNhRnHV6WiKX8JUkPPu57IY+/E5Y8ntIdAbBdIuugbtPyzyvFF65CtY92jN716Kw+36sMQi/G3x44Xu0jIUjfgWRCg23PeAzcOLt0Di4pyupbZmC0dI9nu/+e2PCpTD5Q+Fj25fCvWfDpudyq68nPHBpfqFokN39tS7kNVUxTHw3DDx41/VoDGZ8Ek65J7iMPR+mfiS3NSd/EAbMLGaVheszEY76X7g0ueflopBQyZ2S8Tf+LWIo2qA5cOhPireepNIaNS99f8tYeMtGOOX+7NdsXwKr7ymoLGVp6fXp+/sfWJ46JBVXfY4nvcTbdvt6e/C+SJhZ3wiCoiX1TgajSZIkSZIkSVKPa4tvS9neEqvuD72KRqIMaxjJqMZxjGocx+jG1MfhtcW3kUwmy1ydJEmSJEmSJOXHYDRJ1W3iu/dtq+sDw48vfy2SpOKqq8CDDBJdPV1BccS35zZ+0dXQ3Z5+TOcGWHZj/jWVwoLv9HQFtSMREu4TbYT6PnDy3TD94/mvP+ZcOPNpmPhOOPOZ/NdJZdjxQXjbzkusOfu5E94OU6+A4/8CB3+luHUptdYJ6fs3PRveF6nb83rjkMz7vfLTzGN6UttiWHl7/vNHnp55TF2RP+20zySYcjkc8wc4/OeZxzcPD0J/MmkaAcfdGIR+VUuYRKwBzniidOvP+SEc8n2Y+C6Y+B447Kdw6gNBaKWk6tD/QOh/QOq+Q74Hb3oBGgbAsGNgzo+yX/fV/y5OfQrXthhe/Vn6MS2jylOLpOLK9flx927BaMtvDh839gIYcUp+NUmqHnu/N7E7g9EkSZIkSZIkqce1xbembO8TK/IxVD2sJeT7SRBne6KjzNVIkiRJkiRJUn7SHJkrSVXgoC/Axidh3UPB9VhTcAJ+rKlHy5IkFUGxg1qKIVkrwWg5HtQQ74CXfwwzPhU+ZuPTkIwXVlcu6voEgT9Lrw8fs+QP0LkeGgeXr65aFQ8LRmsI/q1rhtnfhtb94PHLc1v7wH+HmV/YdX3AATDoMNjwWF6lAkEY2sl/h0iKLPDkNfDYZfDqf6Zf47yl0DImu/3m/jc8+v592ye+K7v52qU19SdVhlnUMYEb153Dpu4BnL2iD3MG7NaZVTDaVUGYVKVadWdh82d9I/OYwYcFP8uJHYXtBTDtY3DId1P/7KXTMABO/Qfcdz50rt2rb1DwGm/ESYXX1xMGHRKELL7+6+KvPf4SaBpa/HUllU8kAkf8Eu47FzpWBm2tE4LnMX3223PsmHPgiSuyW3fxtTD+Ihh9dvWESVabxy7LPKZ5dOnrkFR89Tm+H9W5YdfXG54KHzf+0vzqkVRdJrwNnv3svu0tY9KHpkmSJEmSJEmSyqI9sS1le0usAj/MuQCtab6f9sRWmmMtZaxGkiRJkiRJkvLj0beSqlvTEDjl3uCEo+0rYdhx0DCwp6uSJBVDfZqDDA67Ch77cPlq2akYoTGVINdgNICnPw19JsG4t6Tuf/FbhdWUq/EXwZgL0gejAVw/BM5fCc0jylNXrQq77+8MRttp6mVB+EY2QREAk967ZyjaTrmGKu1u4Gw45Z7w/kgE5l4V3IfuOjH1mAtWQ9Ow7PccNQ/qWqG7bc/2sRdmv4YCOQSjPbz5cObNv4VN3cHz/y//MMkv35XgHUe+cf/JJhgNYP6X4aDP5Vpp6W17HR55X/7zL1gdBI5lUt8XxpwHS36f/14AZ70E/abmP3/o0XD2S7D2AehYFbQ1DYOhx0DjoMJq62mzvw3Lb4KuLcVbc8plhqJJtWLwYXDWAlj3SPAcaOgxEGvcd1zLWIg1Z/9c/r5zYdL74fCfFbdewdbXYMWtmcc1jyp9LZKKL9dgtOe/Agd8OnhNuGVB+LjRZxVWl6Tq0GcCDJ4L6x/ds33cRQbWSpIkSZIkSVIFaItvTdneGqvAD3MuQLqgt7b4NgbXDy9jNZIkSZIkSZKUnwLONpekChGthyFzYcy5hqJJUi2pSxOMNvbNMPWK8tWyU6Kr/HuWwuYX8pv31CchEd+zrWsLPHY5rLyjsJrq+kLLuMzjog0w4W0w58cwel4QkpfJ058urDaF3/djDfu2TfkwHPIDqO+ffs39r4S5IUEd+Qaj7fcOOPmu7MYOPwFOuQ/6TNy5KQw+HM59PbdQNICWUXDiX6HvG6FQTcNh7n8F91Hlpmlk1kM/s+gr/xeKBpBMRvjIdUm6upNBw+BDs1to/udh28JcqiytjlXwyAfgpv0KWyeX+/HhPw9+t0brg8uY82D8xdnPH3lmYaFoOzUMDAIjJr8vuIw5p/pD0SAI55z5lSIuGIFZXy/iepJ6XH0/GHkqjDg5dSgaBM+PhhyZ27qv/Tf8rgUWXg3JZOF1KrD85uzGGc4sVae6PE56+euRcG0Elv05df+4i8If3yXVnuNvhuEnBc/fYi1BWO2sb/R0VZIkSZIkSZLU6+1IdNKVTP0hsS3RNMcsV6GWaGtoX3t8WxkrkSRJkiRJkqT81fV0AZIkSVJK6U5EjTbApPfCwl9Adxn/QF8rwWgv/SC/eW2LYONTu8KGkkm473xY/ff81qvvD2e/DJE6qO8LiW74fUv4+HnPBiFWdbsdsDHlQzD5A3D3mbDqr6nnLfl9EKBW15xfnYJkyH0/Up+6ff+PBgFpiR3Byd+JHdC5Pvi/i8Qg1pzhpPBI9rUNPAROvQ+I5v5/POxYOPtV6FgJsabCApiGHgVnvwTb10HjYIjk8D1ol2gsq2GdiQbu3nTiPu1bt8M9L8OpM4B+07Lfd/Hv4YAKCFHs2gq3HwodywtbZ9BhuY2v7wPH/hG62yGZCK5veAoW/zbz3EgMpvVAWGm1mfIheOYz0J36U2ez1mcSnPViEGAnqffZ/0pYc0/wWJ2teAc8/C7YvgZmfKJUlfUum5/LPKZpuI/VUrWqzyMYbdP89P3j3pxfLZKqU9OwILh/x+bg/SaDESVJkiRJkiSpIrQn2kL7WmN5/I2ogkUjMZqjrXSk+J7b4gUevyRJkiRJkiRJZRLt6QIkSZKklOrTfPpatB4GzoST7ixfPVAbwWidG2DV3/Kff8dhsOD7QSja8pvzC0VrnQBj3wynPxacKNg4KPg/zRRq1Tx6z1C0nSJRmPy+8HnxDlh9V+51apdEd+r2aJqs7VhD8HMcrQ/+31rHBYFhDQMynxCaLlRs7s9g2HHQ/0CY8Sk49R/B+vkG30Ui0DKqsFC03TUNMRStUFM+nHHI5u7+oX0LViV3XZnwT9ntueyG7MaV0o7N8Id+uYWiDT0mdfuYc/Oroa5l1+/fQbPhtIeh3/67+kecCvOeg2kfC34GR54Jx/8FRp2R3369SbQe9nt7bnNaxgS/J5uGw6A5QRDoqQ8YtCP1ZqPnwXE3w8jToXkUNI/Mfu7Tn4S2paWrrTd57eeZx4x6U+nrkFQa0XoYemxx1+ybQ2izpNrR0N9QNEmSJEmSJEmqIO1pAsFaYmmOWa5SfULC3gxGkyRJkiRJklQt0pzFLkmSJPWgkafD819L3RdrCv4dcjhM/wS8+O3y1JTYUZ59Smnjk5BMFLbGk/8C21fDhidzm3fg52Dml9KPiTaE3871/cLnjTwDIjFIxlP3L7sBRp+VXZ3aVzIkFLBk4TxpgsUmvB0mv79E+6oi7P8vsOymtAFhW7rDHw/67H7OcfOI7PZc/wi8/NMgUKxldJaFFtmDb8t9zsT3BMGAK+/Y1dZvOkz+YHFqGnI4nPXivu1zvl+c9XubmV+Bhb8KAjt3F6mDo6+DcW/pkbIkVZnR84LLTmv+AffMg+4sDly+ZX+4KPwTsCtadwdsehZIwuDDey6IduMzmcc0j4TpV5a+Fkmlc/BX4c7jirde3ynFW0uSJEmSJEmSJEl52ZYmEKy1BoPRWmJ9oWvVPu1tiW09UI0kSZIkSZIk5S7a0wVIkiRJKQ09BlrG7Ns+5jyI7PY0tpxhV4mQcKhqUqzv4YVvwqq/ZTd2ymVw/C2ZQ9EgCIcJE03TV98X9ntHeP+quzLvrdSSifAwvXT/XwVJE3SxMxhRtavvZDj90bT3r83x/qF9rbsHozUMyH7fxy+HG8bAM5+FZDL7ecXQvgxW/CX3efV9g8fXw38Bkz8Eh/wATnsQmoYUv0YVrnEQXLAKDvhs8FgWrQ8CXk9/2FA0Sfkbdgyc8RhM/3jmsfF22Jwi8LLSbXgSbjsY/noE/PVIuGMutIcHqJbU/C+m7+8zGc58GvrPKE89kkpj2LHQlGXIcib1A6CuuThrSZIkSZIkSZIkKW/t8dSBYI2RJuoipfqQ2J7TGk0d9taeJiBOkiRJkiRJkiqJwWiSJEmqTJEoHHVdcALpTn2nwqE/2XPc0GPhgH/bs23S+0pTU7IWgtG6y7fXzC/DpUk47Ccw+k3ZzUkXfpbJrG+F97W9Xv6go1qRjIf3lSoYLZLmpWokTWiaakfLKDjws6Hdm7vDg9FaGna7j9TnEIy20/NfhVV35j6vEJuey3NiJHjcnPRumHsV7P/R3MLgVH71/eDgL8NFHXDxDpj9LRg0p6erklTt+k2D2d+G4/8SPM6k8+zny1NTsSST8Mj7Yesru9o2PA6Pf6T8taz8Kyz7c/oxZ78MTcPKU4+k0hpyZHHWGX5icdaRJEmSJEmSJElSQdpCAsFaY33LXEl5tMRSB6O1hQTESZIkSZIkSVKlMRhNkiRJlWvYMXDuQjj+Zjj5bpg3PwjL2V0kAgd/Fc5+NQhSO/MZmPuz0tST2FGadcspXchVMY16U9pQo1CDDs1/z6YhcNpD4f0r78h/7d4skSYQMFqiT0nsM6k066q6RBtCuzalCUbbIwMxXcheOouvzW9evjpW5jfPEDRJ0u5Gz4OzX4EDPxc+Zukf4cXvlq+mQm14AjY+uW/7sj9D29Ly1TH/y3D36enHHP5zQ3ylWlKs59pTLyvOOpIkSZIkSZIkSSpIeyJ1IFhYgFi1Cwt8C7sdJEmSJEmSJKnSGIwmSZKkytYwEEafBcNPgFh4SA59J8GEi2HgzOBk9BmfLn4t6QKiqkWyuzz75Hv7T/946vb93pnd/KZh4X2Pvj/3epT+PhOtK82eU/85dfuoeaXZT5Up2hjatTlNMFp3YrcryUTouLSWXJ/fvHy1L8t9Tl0rDDmq+LVIkqpb0zCY+SUYODt8zFMfh62vlq+mQqx/JLxvxS3lqWHRb2D+5zOPq6/NTxGXeq36IgSjzf0vGH5y4etIkiRJkiRJkiSpYG3x1IFgrb0sGK0tvrXMlUiSJEmSJElSfgxGkyRJUm2a+K7ir1kLwWiJLILRhp9Y2B6Dj4ChR+c3d8Qp0P+APduijTD5A9nNbxwS3te+DLo8oCNn6e73kfrS7DlwFgw9dq+9ojDlw6XZT5Upll8wWnz3LLR+0/Lbu3treQNjsglb2dukD0Bdc/FrkSTVhqN/m77/5inlqaNQG54I79v4dOn3X3oDPPT27MbWGYwm1ZSGAoPRRp0VvJcRiRSnHkmSJEmSJEmSJBWkLb4lZXtLtDb/1tsSEvjWHhIQJ0mSJEmSJEmVxmA0SZIk1aZ8w3DSqYVgtGQ8fX/rBDjxbzDrm1DfL/f1hx0PJ/01/xN/o/Vwyr0w6X3B/+GoN8GJt8PQo7KbnymMYOsr+dXVm6UL04vWlWbPSAROuBWmfgT6z4ARp8FxN8Los0qznypTtCG0a3M8PBitO57cdWXosVCfZ6DBzVMgmcw8rlCbnkvfP3guTP8kzPpWEDw56FCY9Q045Dulr02SVL36Tc383Hj94+WppRDrHwvv61xXun3jnfDoB+H+87OfU1+bB8tLvVahwWiT3lucOiRJkiRJkiRJklQUYYFgrbHa/FtvazR1MFpb3A8YliRJkiRJklQdSnQWuyRJklSDEjt6uoLCJdOEXEXq4OCvQzQGMz4Jkz8AfxyY2/rH/qnwQIDGwXD4f+c3N1Mg29LroWsL9JkErWPz26O3SaYJBIzUl27f+j5w6I9Kt74qX7QxtKst3hrat3suGrEGmPV1eOzDe6476BBY91DmGl65CqZelkWxBVjyx/C+g74IB31+1/UZnyhtLZKk2jL1Mnjhm+H9K2+HwYeWr55sdayGtkXQOBS2vBA+rpTBaI9/BF7L8TVJXeqDyiVVqaYR+c8dfhKMmle8WiRJkiRJkiRJklSwtkRYMFpt/q23JSTwrS2+jWQySSTfD0CWJEmSJEmSpDIxGE2SJEnKViJNQFS1SMbD+069H4Ycset6ff/c12/IMUit3J7/WnABmPQ+OOw/gyA4hUukCdOL+pJSJRQLD0ZLJKOhfd17P8xN+RD02x+W3Qh1LTDuQhg4C1bcDk9/GjY9E17D45dD8ygYe16Oxedg1d/C+8aUcF9JUu2b+O70wWjPfi74HTnuLeWrKZ1kEl7+CTz5/9IHOu9UqmC0rm3w+v/mPi/ic2Oppow8Nfi53vvxqHkkTHg7dG2GV3+277xIHZxwaxDSLEmSJEmSJEmSpIrRHt+asj0sQKzahQW+xemmM7mdpkhzmSuSJEmSJEmSpNyEn0ksSZIkVbvpnyjuepueLe56PSEsYKDP5D1D0QAiEeg3Lbf1K+ET5LINEnrtf4LQhRe+CS/9CNoWl7auapUulMLwB5VSNDxIIF4/ILwvkaJx+Akw5/tw8FeDUDSAUWfAvKfhzKfT13H/+dCxOnO9+dq2MHV741AYOLN0+0qSal+/aTDnR+nH/ONCePwK2PxieWpKZ9HV8MRHsgtFg9IFo21ZAPHtuc2JNUOfiaWpR1LPaBgIR16z5+veIUfBm16E2d+Cuf8FR/8OorsFOg86FM5bljbkWZIkSZIkSZIkST2jLb4tZXtYgFi1a00T+NYecltIkiRJkiRJUiUxGE2SJEm1a+xbgCIGdS38BSy9oXjr9YRkPHV7NCTgavylpaulVMZfkv3Yl38MT38anvgo3DoL1j5QurqqVaIrvC9aX7461PtEw8ME4tHwg9G6UwWjpTPwYBh3UfoxK2/PcdEsJbpge0jo2pHXlGZPSVLvMu0jMPWK9GNe/jHcNhuW/rk8NaWy8Bp4+N25zelcD8lcf/FnYcuC3OeMPgfq/DRtqeZMuATOXQxH/xZOfQBOuQca+u/qH/9WOOc1OOo6OPluOPUf0Dy8x8qVJEmSJEmSJElSuLAwsJY0x6JVs9ZoeDBaW3xrGSuRJEmSJEmSpPwYjCZJkqTaNWQuHPUbaByyZ3tda/6BTo9fVpqT78sl0Z26PRISjHbAZ2DKZbsCigYcHLSlMuXywusrhvFvheEn5T6vaxM89Yni11PtkiH3GQi/30jFEAsPRktEW0P74vk8RB/xi/T9HSvyWDSNba/DvefAbxuAZOoxLaOLu6ckqfcanyEAFCDRCfdfAPHO0tezt64tQVBxrpJxuO88WP9Y4TWsexgefDv8/XR46J9yn3/4/xReg6TK1DIqeBwdelTq95JaRsOEi2H4CWlfw0iSJEmSJEmSJKnndCW66ExuT9nXJxYeIFbNmmPhx9iFhcRJkiRJkiRJUiUxGE2SJEm1bcIlcMFqOG8pXBIP/n3LZpj3PMSa9xzbPBrOfAaGHRe+XsdK2PRcaWsupbCQq0gsdXs0Bof9BC7cBOevhHlPwwH/GtxWu4s1w+T3F7fWQhzz+/zmrXsoCCzaXTUH4RVDoiu8L9+AQSkb0YbQrni0Obwvnx/ZuhY44bbw/u4iHgjWsRJungzLb04/bu/HWUmS8jXkyOCSjTuPL20tqSz/SxBSnNfcm4Oa1z6U//4rboM7j4PXfwOr/pr7/KlXQH1tfoK4JEmSJEmSJEmSJNWC9sTW0L6WGg1Gi0ViNEdbUva1pbk9JEmSJEmSJKlSGIwmSZKk2heJQsuYXf9GY9BvCpz2IIw8A1r3g/GXwCn3wMCZ+wam7e22g+Guk2Dra2Upv6iS8dTt0br082JN0Dwi+LquFU5/BMZfHNx2o94EJ90FAw8ubq2FaByc/9yb9oPf94X7L4RbZsBvG+C2ObDqruLVV00SIWF6kPl+IxUi2hjaFY80hfZ155tlOOoMIJK6r5g///O/GP5YvFOsCRoGFm9PSVLvFonAiXdkN3b9I9C1pbT17G3FrYXNj3fAS9/Pf/6C76UPA86kvjYPkpckSZIkSZIkSZKkWtEWD/9gzNZY7X4QVljoW7rbQ5IkSZIkSZIqhcFokiRJ6r0GzoITb4NzF8LR10LfyUF7mjCe/7P6brjzeOhuL22NxRYWchWJ5bZOy2g4+rrgtjvhFhh6ZOG1Fdu4i/Kf270Nlv4RtrwYBBhtfBLuPQc2LyhefdUimSYkIlJfvjrU+8TSBaOl6cs3GA2CwMdU1j8CnesLWPgNiW54/deZxzWNCEJsJEkqlvq+MOl92Y3d8GTx908mYdsiWPsAxLfv2bf15cLXX/KH/Otac19hezcNK2y+JEmSJEmSJEmSJKmk2uNbQ/taorUbjNYa8r21pbk9JEmSJEmSJKlSGIwmSZIk7a1xcHbjOpbDqrtKW0uxJeOp2yN15a2jHCa+s7jrxduDsLTeJixMDyBag/cbVY5oQ2hXMk0wWnchwWh1aQ5ye+mHBSz8hvlfgO62zOOGVGDYpCSp+tWl/iTofWwpchhwdxvcfwHcNBH+dgz8aQSsunNXf+e64uyTT4hp9zZI7Mg8bs6Pob5/6r6RZ+a+ryRJkiRJkiRJkiSpbNri21K2N0QaqU9znFq1a4mlPh6uPeT2kCRJkiRJkqRKYjCaJEmStLdsg9EAnv9a6eoohWRIyFUtBlyNPAMGzi7umpufL+561SDsPkMEIr6kVAlF60O74oQHo8ULCkZrDe977suw4Sl4/hvw5JXw0n9A2+Ls1+7aBs9/Nbux4y/Ofl1JkrJVn20w2kvF3feFb8GyG3Zd79oMfz8VVtwRXC9WMNqTV+Y+J9u9J74DjrwGYk17th/yfeg3Jfd9JUmSJEmSJEmSJEll055IHQQWFhxWK/rE+qVsb0tsLXMlkiRJkiRJkpS7Gkw/kCRJkgrUOCT7sTvWl66OUkjGU7dHYuWtoxwiETjqWvjL9OKtueQPcPR1xVsPNJzYAAAgAElEQVSvGiS6UrenCa2SSi0ebQnt6y4oGC3DgW63H7Ln9Wc/C8ffAsOOybz2rQdmV8OAg2DUmdmNlSQpF9kGo219pbj7vv6b1O33nAH7vRO6thRnn0VXw5G/ym1ONsFodX2hvh+MOQfOWQir74b4dhh2PPSdlFepkiRJkiRJkiRJkqTy2RZPHQTWJ5bl39GrVFjwW3s8dVCcJEmSJEmSJFUSg9EkSZKkveUSjFZt4VCJ7tTtkRp9adDQv7jrJeOQTAaha71FspfdZ1Q5+kwMHo/3DiyJtZBoGhE6LV5QMFprbuO7NsOdx8LZr0DfyeHjtrwEbYszr9c0Ao66rvp+t0iSqkN96k+C3sfGJ+Hh98LCXwTXYy1wzB9g9LzU47s74IVvwpp7ofuNg8nr+sLwE2DK5bDttfC9Fl2ddflZ6VwPjYOD5+yLfwuL3/i9OuUyGHFyivFZBKPtHijXPBImXFq8eiVJkiRJkiRJkiRJJdceEozWUuPBaK0hwWhtIbeHJEmSJEmSJFWSaE8XIEmSJFWchkHZj41UWXhNaMhVrLx1lEv9gOKv+exni79mJUt0pW43uEmlFonC5A/t2z7pPcST4cF83fEC9qxryW/ezVNg66vh/Uv/lH7+vOfg/JVw/goYcEB+NUiSlEm0MbtxHSt3haIBxNvh3jfBot/sOzaZhLtPh+e+CGvugQ1PBJc198D8L8BNE4tQeA5e+EZQ0/wvwIOXwvKbg9/Dfz8FXr9u3/Gd6zOvWV/bB8JLkiRJkiRJkiRJUq1ri29L2d4aTR0cVitaoqn/3h12e0iSJEmSJElSJTEYTZIkSdpbMpH92GhD6eoohWRIYlAkPGSoqtU1w6BDU/dNuTy/NRd8D7o78q+p2oSF6UVr9D6jyjLzSzDrWzBgZnA56Isw54fEE8nQKfHwrswSIff3bNw8Be46CbYt3Ldvxa3h88ZfEoShNY+ASCT//SVJyqSrwE98fv4r+7YtvwXW3h8+p7uInzLdPDLzmBe/A79rhOe+tG/fg5dCd/uebZ3rMq9ZZzCaJEmSJEmSJEmSJFWz9kTqv123xGo7GK015Ptrjxfxb/mSJEmSJEmSVCIGo0mSJEl7GzQ7+7GxKgtGCwv9qeWQq5lf3jfAbtY34bD/yG+9+HZYfXfhdVWL7WtTt0fqy1uHeqdIBGZ8AuY9E1wO+jxEoqTJRaM7JP8xK/ECQw9X3w1/OwbinXu279gYPmfMeYXtKUlStgbPLWz+lgV7BottXwPPfrawNXMx/JTsxiW6wvtum7Xn9bbFmderNxhNkiRJkiRJkiRJkqpZW3xbyvbWWG3/PTgs+K0tsY1kspBPIJUkSZIkSZKk0jMYTZIkSdpb637Qb3p2Y6stHCoZkhgUiZW3jnIadQac+gBMvQKmfBiO/wvM+GRha3auK05tlSyZhBe+BY9fnrq/lsP0VPHiifz6MooU4W2SjpWw9Ppd15NJaF8aPn7UvML3lCQpG4MOgcbBha2xMxht/pfghjGw6dnC68pWrAEmvbewNba+Ahue2HV9y0uZ54S9hpIkSZIkSZIkSZIkVYX2kGC0lmjq4LBa0Rrrl7K9O9lFV3JHmauRJEmSJEmSpNwYjCZJkiTtLRKBI36Z3dhotQWjdaduj9R4yNXgQ+HQH8JhP4XRu4UQHfBv+a1XX9ufEgjAmnvh6U+F91dbKKBqSrrws+5CgtHGnFvA5N08+DZ47HL4ywFw28HQtSX1uCmXQ31tH1wnSaog0To46lqINua/RrwDVv4V5v87JLqKV1s2og1w0BdgwEGFrXP7obD+seDrLQsyj+/aWth+kiRJkiRJkiRJkqQe1RZP/Xff1lhtHwvamib4Lew2kSRJkiRJkqRKYTCaJEmSlMqQw+GIqzOPq7ZAsWQ8dXskVt46KsW4C4FI7vMKCZOoFq//Jn1/tMru+6opiWR4X7rQtIz6TYf+MwpYYDev/BQ2vwCb5oePmfnF4uwlSVK2Rp4G5y2BI6+BaR/LfX68AxZ8r/h1ZSPaAC1j4LSH4YTbClvrjrkw/0vQ9nrmsWEBp5IkSZIkSZIkSZKkqtBrg9Fi6YLRtpWxEkmSJEmSJEnKncFokiRJUph+UzOPSXaVvo7ddW2DF78D954L/5+9O4+P667v/f/+zqbdliyNFie24zh7AtkJWYCQBZJSoATKvhVoadNLgUJb2lsaKC3w47LcUlpogQa4BUpICaUUAmHPBiQBErKROImdxYtGtixb6yzn+/tDsS3NnO+Zc2bVjF7Px0MP63y389FYOkejmfM+t10pzT4ebb7N+7ev1pCrgdOk874kJddGm+dl61PPSvLQZ4L7Wy0UEG0lKPwsX00wmjHShd9aPDbUW0da6his/34AACjWOSxtfo208SXR537zeGnnd2pfUxix5OK/iW5p/WXSmhOqW+/XV0kKSFs9KM+bwQEAAAAAAAAAAACgVeVtTgt23revOyA4rB0EfX0znn9YHAAAAAAAAACsFFzJDgAAALh0DJUfU/B/s0RdWE/68W9L4z8+3Lb9K9Jlt0m9R4dbw3MEo63mkKujXi5t/F3p7vdJd7833Jx2D0azIQIiDgZTAE1QCPgWDQpNC6Vnk3T5L6WZx6TUWim5RlrYI81sXwySiaWkRJ90z/ule/6u8v1UG+YCAEC14t3NriCaWGr5dtd6af/99d/vkS+s/z4AAAAAAAAAAAAAAHUxW5hx9vW0eTBa3CTUGevSvDdX0jdbIBgNAAAAAAAAwMq2itMPVjdjzAmSTpV0pKQuSfOSxiVtlXSntdb9l//yayclnS9po6QxSdOSdkj6pbV2W3WVAwAANNBKC0bbfs3yUDRJyu6VHvgn6YyPhFvDFvzbTby62lpdLC5teUN7BqM98S3prndLs9ultSdLT/uMtObY4Dlb/6X8uqs5TA9NFxR+VnUw2kE9Gw5/3jG4+LHUqe+TOkekO95S2fqjF1deGwAAtZBo8WC0nk2N2e9Rr27MfgAAAAAAAAAAAAAANTcTEADWE+trYCXN0R3r9Q1GmylMN6EaAAAAAAAAAAiPK9lXEWNMv6S3SnqDFkPLXArGmF9JutZa+8EI66clvVfSyyStc4y5RdJHrbX/GbpwAACAZkmuXbz4PigEq5HBaPd/2L999w/Cr2Hz/u0xnhqoZ6N0zB9KWz9VfmyrBKPtu0e68XckL7e4Pf4T6TtPk164TUqt9Z/z6LXSbX9Ufu3UQM3KBKLyrLuvZsFoYRz/v6TsHunX74k+95g317wcAAAiiTc5GC3WsRg8Orcj5Pjk8u1Nr5Aevrr2dS21/nnS0Hn13QcAAAAAAAAAAAAAIBJrrX62/4e6b+ZXmvGCA77mCjPOvu54b61LW3F64n3am8+UtM8WBaMtePP6yb5v6+G53yhnS98jG1dcmzqP0TP7L1dvYk3d6gWAYtZa/Xz/j3XvzC814/mHXQ4kBnV633k6qef0BlfXmqbyk7px3/XanX1CR3Uep2f2X6Zk8U0rQ8h5Od2479vaNv+ghlPr9Yz+y7Q2wTUGAAAAAIDaIf1glTDG/K6kT0oaDDE8LulMSUdKChWMZoy5XNLnJA2XGXqepPOMMV+U9GZrrfsVBgAAgGYzRlp3ljRxi3tMo4LRrJX23uHfN/mrCOsU/NtNPHpN7ejsf5bS50lb/1XK3OQe1yrBaL/+m8OhaAfl9kmPXStteePydi8n/fQN0rZ/D7f26MW1qRGoQFD4Wd5xmKubp1wl9T9VeuIb0twuaWabtP/+4DlnfULqGm1IeQAAOCWaGIx2/Nulza+SBk6XHv68tPv7UvfGxd/BMzf6zyl+893IhVLfcdKBB2pf36ZXSMPPkI5+oxTjuRIAAAAAAAAAAAAArCRf3v1J3TT13arWSJqUUrGOGlW0cvXE+3zbl4YL5bysPvbYX+vR+a2Ba/165jb9fP+P9Y6NH1BfwnFzXgCosa+Of0Y/2vc/ZcfdPHWDXj78Zj1z4PIGVNW69uX36sPb/+JQaOYdB27SndM/1Vs3vE/xCNeUFGxB//j4e7R17p5DbT+d+oHeufGD6k+GuYQZAAAAAIDyYs0uAPVnjLlK0jUqDUV7VNL3JH1Z0nWSfiopclCZMeZCSV/X8lA0K+kOSV+VdIOkiaJpr5L0ZWMM34MAAGBlW1/mhTGvQcFouf3B/dmpcOt4ef92Q2aypMUwvM2vkZ79HSmWdI9rhWC0/Kz02Nf8+372Jmn64cXPpx+WHvhn6T9S4UPRRi6Wjn9rbeoEKhAUjFbwbOMKOWjDi6SnXy09+9vSb98nnfVP7mPIUa+Sjr2ysfUBAOAn3qRgtCOeL535UWndmZKJSVt+Tzrv36XT3i+tPdk9zxSdW2NJ6ZzP1r6+0z4onf8l6dg/kuLR74QKAAAAAAAAAAAAAKif8ezOqkPRJHdgWLvpjvf6ts8Wpg99/svpW8uGoh00ntuhW6a+V5PaAKCcvbmMfrzv26HHf3PPl5W3ufIDV7Eb911/KBTtoK1z9+qemTsirXPPzB3LQtEkaW8+oxunrq+6RgAAAAAADiL9oM0ZY94h6T1FzV+W9AFr7a99xscknSvpxZKeG2L9IyV9TdLSK8RulvT71tr7lozrkPRmSR+WdPAKtudL+jtJfxXyywEAAGi8ztHg/kIDgtEKC9IPy/xqNrNdSj21/FrWEYwW46nBMoluaexy6Ylv+Pe3QjDaT14Y3P+NLdLRr5e2XyMVZsOve/GPpPR5wcFxQJ0FZZ8VmpCLVuK4K6Wx50iZW6TCjBRLLQZcrjtLSl+wGMIIAECzxTubs9/Nr3P3xQPuxu0XUjZ8gfSSfdLDV0u/eHv1tUlS1/rarAMAAAAAAAAAAAAAqLkHZu+qyTp98bU1WWel64n5B8BNFw4c+vz+mTsjrfmb2bv03MEXV1UXAITxwOzdsgq4m3KR6cJ+7VjYro2dx9Sxqtb2mxn/8+j9M3fpqb1PC7+O43x8/8xdev7QqyqqDQAAAACAYqQftDFjzKmSPrikKSfpldbaa11zrLWeFoPNbjbGhPn+eK+kgSXbt0i6xFq7LCHEWrsg6ePGmEclXbek60+NMf9ird0eYl8AAACNl+gO7l+YkHLTUtL/jmo18eg10p6fBY+Z2SYNhAlGK/i3m3jkstre06+W/nPQv68RgXjVmM9Iu0Lcke/hz0Vb9+xPSSPPqqgkoJYKAe9xyDsOcw3Xd8ziBwAAK5UxUv9TpH0l98+QTEyy4d9UqFhKGr5Q2hXirtwbXhS8TtS+1FrphLdJg+dIN5xXfv/ldI1VvwYAAAAAAAAAAAAAoC7Gsztrss5JPafXZJ2Vrjvu//7m2SXBaJlctMc0k9tVVU0AEFbU45MkjWd3EYwWwPWYRj4XZP3PBZwjAAAAAAC1FGt2AaiPJ0PN/k3Lw+/eHBSKVsxamy+zj2MlvW5JU1bS64tD0YrW/Lqkzy9p6pB0VdiaAAAAGi5eJhhNkr57jpSfk6ytTw33/9/yY2ZC5sx6jl/xQmXirjId66RhRwjYXe9ubC1RhQlFi6ojLW1+Te3XBSoQFIwW1AcAAIps+YPStrHLwz0PWuol+6Sn/E35cSf++WLomku8091nksFrD50jDZxWvoZyuo6ofg0AAAAAAAAAAAAAQF1UEpJT7MiOzbpo4Pk1qGbl63EEo80Upg997gq3cdmbyyhvc1XVBQBhZCoIw6zFeaJdzRVmdaAw5ds3ETHQzBWANl2Y0lxhNnJtAAAAAAD4If2gff2upDOWbH/fWnt1jffxSknxJdtfs9Y+GGLe/6flgWovNcZcGRSoBgAA0DSJEIEAU/dK13RLyTXS6HOks/9J6hyuXQ2Tvyg/Zs/PJL0leMzMo9Lu7/v3mbh/+2oXS7n75sdr+/9cS/M1vtPS+t+Wzv5EuJ8HoAG8gBzKPMFoAACEd/z/koyRtn5ayk5K639LOuMj0jU94dfo3igluqSBEHfT7hor07/e3Rf0u7m0GLh20fekO94u7bpB6j5SOuEd0sizpNuulCZuleZ3B6/RvVHqOy54DAAAAAAAAAAAAACgaVwhOcd2nayjuoJf740ppg2dW3RSz+nqjHXVo7wVpyfe59s+6y0Go817c9pfmPQdc0rPWbp75vaSditPe3LjGklx4zEA9TXuCDnb0nWipgv7tTv7REnfRMSwx9UkKPxsIrtbni0oFuK6Es8WtCdordwubYgfXVGNAAAAAAAsRTBa+3pz0fb767CPFxVthwpes9beZ4z5maRznmzqkfQcSd+oYW0AAAC1EY/wxofcfumxa6U9P5de+MjihfnV8kLeUW3bF6Wnf16KOV6IKixIN5zvnm94auArKHxh+1ek48uE0RUWpKl7pDUnNDZUbGGi+jVOeId0xoerXweog0JA+FlQHwAA8HHcHy9+VCvRLXWkpYWMe0y5YLQ1J7j78gfK19AxKJ33hdL2Z15X2vbIF6VbX72kwUhP+Rv3cyoAAAAAAAAAAAAAQFN51lPGEcRyQf9zdPaaZzW4opXPFYw2U1h8Dd4VNCdJL0q/TvfM3CGr0juZZrI7CUYDUFfWWmWyO3z7zl17sXYsPOobjJZxhKkh+LEpKK/J/B4NJsvfOH5ffq/yNh+wn13a0EkwGgAAAACgejVIasBKY4w5RtLSv+Zvk/TDGu9jVNKpS5rykm6OsMSPirYvr7YmAACAuqgkzGr2Uelrw1IhW/3+p7eFH5u50d33xDek2cfd/Vz871D6Zo5DDmwNnvrwF6Rr+6Xrz5SuHZDu+0htSwtSbTDaeV+STv8/takFqIOg8LM8wWgAADTPuT6hZEuVDUY73t1XmIteT5DNr5Ke81Pp6N+Tjv1j6eIfSFveWNt9AAAAAAAAAAAAAABqZiq/Vznr/97cdHJ9g6tpDd2xXt/2nM0q6y04g+biSmgktV79iUHfftc8AKiVGe+A5rxZ377h5JjSyVHfPo5Pbpls8GMTFJYZZVzYdQAAAAAAKIdgtPb07KLt71trAxIdKnJK0fZd1tqZCPNvKdo+ucp6AAAA6iNeQTCaJC3ske5+X/X7XxgPPzYTkFO757bguQceCr+f1SQofCEoNG/yTumnr5MK84vbXlb65Tulnd+tbX1LTd0r3f8P0l1XSVv/tfJ1nvK30lGvkIypXW1AjRUCnuEGhaYBAICQjr2ysnn9xX82LtK7Jbi/c1RK9vv3pS+orKYgQ+dIT/836exPSCMX1n59AAAAAAAAAAAAAEDNZHLuoJXhVJkbda1SPfE+Z99sYdoZXjOUGlHMxJV2PK6E3gCot6AQr3RqzHl8msrv1YI3X6+yWlrQeVSSJkKGypULnwu7DgAAAAAA5RCM1p6eVrR9qySZRZcYY642xtxrjJkyxswYY7YbY75njHmXMeaokPs4qWh7a8Qai5M3itcDAABYGYLCr8p57KvV7z93IPzYu/5a2v9gabu10n3/J3juWn4d85X3v8uUJCne5e57/Ov+7Y9dV109Lls/I33rqdIv3ibd/bdVLGSkza+uWVlAvXgB4We5QuPqAACgbR35O+HH9h1z+PPuI6WRi/zHpZ8hdR8RvJYx0jFvKm3v2SQNnBa+JgAAAAAAAAAAAABA23GF5PTE+9Qd721wNa0h6HGZ8Q44Q3LSybEn/x317S8XrgMA1RrP7vBt7zCdWhMfcB6fJIK5XMqFWo6HDL0sdw4Iuw4AAAAAAOUQjNaeziravu/JwLPvSbpB0uslnShpjaRuSRslXSzpA5IeMMb8kzGmXALIMUXbj0ascXvR9qAxZiDiGgAAAPUXryIYbXrbYihZFE/8j3Tr66WfvkHa8R0ptz/a/G8eJ930Uun7l0i//HPpwEPSxE/Lz1tzQrT9rBaFCoPRfv0e//atn6qqHF+zO6Sf/75ka5AGdcE1Uu/m6tcB6qwQcGidzzWuDgAA2tbYpdIZHw33fOjEdy7fPvcL0rqzl7etO1M6/z/C7fuUq6SNv3t4u+9Y6cLrJcPLGQAAAAAAAAAAAACwmo3n/ENyDoZ4oVRPUDBaYdoZXjOcOhiM5v/YukLqAKBWnMGNqVEZY7QumVbMcXk0xyh/mTKBcWED5coFrBGeCQAAAAColUSzC0BdFP/VuVvSbZKGQsxNSrpS0rnGmOdZa11/hegv2h6PUqC1dtoYMy+pc0nzWkmTUdYpZowZlpSOOG1LNfsEAABtLlFFMJq3IOVnpGTIu9A9+Cnptj86vP3w1VL6/Oj7ffSri//u/r70yOel9DODx/cdKw0/K/p+VoN8QDBaLNm4OoJ8/YjarPPSmeq+34EGKnjuvpls4+oAAKCtnfB26Zg/lKYfkvb/RrrpJaVjerdIIxcvb+s+Qrrs54tB0bOPSd0bpN6jwu832bsY2LuwR1qYkPqOk4yp5isBAAAAAAAAAAAAALQBVxALwWhuCZNUh+nUgp0v6ZstTLuDh558TNMp/8d2IrdbBVtQ3MRrVywALOEKNzt4fIqbhAaTw75hX+UCwFajrLegffk9gWPCPm7lAtT25fco6y0oFesIXR8AAAAAAH4IRmtPxaFlV+twKNqMpE9J+rakxyX1SDpV0hskXbBkzumS/tMY8yxrbc5nH8XpHnMV1Dmn5cFofRWsUexKSVfVYB0AAIBF8a7q5mf3hAtGs5706/eWtmdurm7/8+PSY9e6+9PPkM79XPjwttWmEBCM9puPSye8zWdO6ZtH6mbP7ZXNMwlJnpTok0aeLZ31CULR0FI86+7bGim2GwAABEp0Sf2nLH6c+wXp1tce7hu9RHr656V4yn9u71HRAtGKdQwufgAAAAAAAAAAAAAAIGncEYw27AjvwqKeeJ8W8qXvbZ3MT2gqv9d3zsFANFfonKeCJnMZDaVGa1coACzhDG5ccsxPJ8f8g9Ec54vVbCK3u/yY7C5Za2UCbmJprXWG1i21JzeusY4NkWoEAAAAAKAYwWhtxhjTIak4Sv3IJ/+9V9Jl1trHivp/IelqY8w7JH14Sfu5kv5C0t/57Ko4OaOS9Ic5SQMBawIAADSfiVU3f2FC6tlUftye26X5JtyZ6NKfNH6frSQfEIw284j00L9JW96wvP2W19S3pqV2/yDa+Ct2S53D9akFaKCCF9z/lds8vezsKo/fAABguc2vWfwAAAAAAAAAAAAAAKDBrLWhQnJQqjveq735TEn79vmtzjnp5GLg2VBqxDkmk9tFMBqAunGFmy0NbBxKjUo+b/ef8AlLW+3ChMUt2HntL+zT2sSAc8yBwpQWbPlLiTO5nQSjAQAAAACqxlXC7SfuaJ+SfyjaIdbaj0j6WFHz240xYQLLbMj6qp0DAADQWuYnwo1bGK9vHX5O/0jj99lqbJn0pYc+s3x7fkJ6/GvBcwrZ6mpa6p4PhB+bGpA60rXbN9BE5YLRPnsTTzcBAAAAAAAAAAAAAAAAoF1MFSaVs/7vv1wakoNSPXH/y8K2zT3g2x5TXOuSizfh7Yx1aU3cPyAnTMgOAFRipnBAM94B376lYZiu478rSHM1C/uYTGSDQ+XCHvszZdYBAAAAACAMgtHajLV2VpLfJeIfDQpFW+LdWgxRO2idpMt9xk0XbXeFqzBwTvGalfhnSadE/HhhDfYLAADa2ZrjK587+2i4cbYJIT7dRzR+n63m9A8F90/cunx7/33lw9S+/2xprgYvts48JuX2hR/fNSYZU/1+gRXAK3PI/N59jakDAAAAAAAAAAAAAAAAAFB/49kdzr7hFMFoQbpjfb7t4zn/x3QoOaK4iR/aTqdGfccRPASgXoJCtYaXhKG5jk97cxPK21zN62plYYPKyh3bM7lw60yEHAcAAAAAQBCC0drTjE/bF8JMtNbOSPpaUfOFPkNXZDCatXbcWntPlA9JD1W7XwAA0OY2vry0LbVOevGEdM5npfO+KCXX+M/9+R9Ik3eV34ctVFdjJboIRitrvV9GcICc/52plpm4Rbr+TClzS2U1HfTQZ6ONH76wuv0BK0ihTP4gAAAAAAAAAAAAAAAAAKB9ZLL+QS3dsV71xP2Dv7Ao6uNTHDSUTvoHz4UNxwGAqFzhXEmT0prEwKFt1/HJytOe3HhdamtVYcMsyx3bQ6/jOG8DAAAAABAFwWjtaV/R9m5r7bYI839atH2iz5ipou10hPVljOlVaTBacd0AAAArwyn/WzrqNZLM4nbXeumi70odg9KWN0hHvVJae7J7/s/eJD3yRenmV0q3/4m05/bSMc0IRus9uvH7bDU9m6R4Z/AYaw9/ng8RjCZJczul718o/eId0i//XLrpZdKDn5S8CN8Hd783/FhJ2vLGaOOBFYxgNAAAAAAAAAAAAAAAAABYPVxBLcMp/1AcHNYT7400Pp1cv3zb8RgTegOgXlzHl3RyTDFz+JLooeSIzMFrPEKusVrVKtBsIhsuFJPwTAAAAABALSSaXQDq4gFJG5ZsR/0rzo6i7UGfMQ8WbW+KuI/i8XuttZMR1wAAAGiMWFI67wvSmR9bDLRae5JkijKGEwF3U9t7m3Trqw9vP/Rp6Vn/LY1ecritMFfbmstZe4rUvb78OEgbXixt+6K73+Ylk1z8PBcyGE2SvJx0/0cPbz96jbT7h9L5X5GM/wu0h9x1Vfj9SNLGl0rrzog2B1jBPFt+zHfusXruyWV+lgAAAAAAAAAAAAAAAAAAK14mW3yp06J0kmC0crrjAe9x9pFOjS7fdjzGmdwuedZbFlIEALUw7gjxKg5qTMZS6k8MajI/UTKWYK7D8janvbnSx8jPRJnHLWzA2p7cuAq2oLiJhxoPAAAAAIAf/vLYnu4p2l6IOL94fKfPmPuKto+JuI+ji7bvjTgfAACg8ToGpf5TSkPRJCkZ4U0DhXnpB5dK1x0p3f6Wxe38TO3qDGPsOY3dXyuLdQT3e9nDn+cjBKP5efSr0tTd/n2PfV361mnSl4x099+617j8V9KZH5d6t0idw9Lxb5PO/ixCrxkAACAASURBVGR1dQErTMErP+bdXw8xCAAAAAAAAAAAAAAAAACw4rmCWIpDclCqJ94bafxwURDacFFQ2kF5m9O+/J6K6wIAl0zWccxPlh6PhnzaFtcgGO2gPblxWYV7X3W5xy1s4JyngiZzmVBjAQAAAABwIRitPd1VtN0fcX7xeL+/UhenNTzVGNMdYR/nl1kPAACgtUQJRjto7gnpgU9IP36BNPmraHOf/nlp4Izo+zxo7cmVz11tYqng/sKSXOHc/ur399BnS9t23iDd9GJp353Bc/tPlQZOlY5/i/SCrdIVu6UzPyZ1rKu+LmAFCROMdvt2yfNs/YsBAAAAAAAAAAAAAAAAANSNtdYZ1JJOEoxWTncsWjBacdicK3RICh+QAwBRuMIwh33CMP3agtZYjVxBc35mvAOaLUz79s0WpjVTCH8j+XH+DwAAAAAAVSIYrT19W9LSq7+PNsZ0Rph/StH248UDrLU7tTyALSHpggj7uLBo+9sR5gIAAKw8iQqC0Q7adYO09VPR5nQMSVveUPk+1xxf+dzVxuaC+72lwWjhX+hz2nVDadvWf5VsiCSoza+tfv9ACyiEzDub8H9dHgAAAAAAAAAAAAAAAADQIvYXJrVg5337XIE4OKwnHv49zjHFNJgcXtbWHe9Vb3yN7/goYTsAEMZsYVrTBf+bladT60vbHAGZHJ8Oixpi6Ro/EXGdCUeoKQAAAAAAYRGM1oastTsk3bqkKSnp4ghLXFa0faNj3HVF278XZnFjzAmSzlnSNCPpu+FKAwAAWKGSVQSjVaJjSDr69RVONtKaE2tZTXvLzwX3F5YEo+VrEIw2da9ki1KfHrs23Nzjrqx+/8AKZ60t+RFx2TlV31oAAAAAAAAAAAAAAAAAAPUVFG7jCsTBYVGC0QaTw4qbREm7M3goR/AQgNoKCt9KJ0dL2oZSpW2StCc3Ls8WalZXK4saEucaPx4x6IxzBAAAAACgWgSjta+ri7b/NMwkY8wzJD1tSZMn6VuO4V+UtPSvQ1cYY44NsZu/KNq+xlrHrVsAAABaRdL/Tmh10zkkJXqkZ30z+tz1z5M61tW+pnZVKBOM5i0JRsuVCUZbd6Z06U3l9/mzN0lexBdiL7lRindGmwO0IC9kKJok7dhXvzoAAAAAAAAAAAAAAAAAAPU37ghW6Yr1RAr9Wq164r2hx7oC0NKO4KGoYTsAUI4rfCtpUupPDJa0+4WlSVJBeU3mJ2paW6vKBITNRRkfNegs6n4BAAAAAChGMFr7ulrSfUu2LzLGBIajGWOGVRqodo219iG/8dbaByV9fklTStLnjDHONAZjzAslvX5JU1bSe4PqAgAAaAmJBr+xIvXki3qp/uhzz/nX2tbS7soFoxVCBqOtOUG64Bopfb7UVeYOhQ//m/TwZ6W7rpJ+ckX5Gs/4v9LwBeXHAW2g4IUfu3MqQooaAAAAAAAAAAAAAAAAAGDFcYVvpVNjMsY0uJrW0x2LEIyWcgSjOQLTJgi9AVBjmdwO3/ah5KhipvRyaNdxS5IyjpC11SZqiKVr/ETEx5PHHwAAAABQLYLR2pS1tiDprZKWXjL+EWPMPxhjBorHG2MukXSzpC1Lmicl/VWZXV315LiDzpP0PWPMCUXrdxhj3iLpq0XzP2Kt3V5mHwAAACtfo99YkVyz+G+8K9q87iPLh3JhuXLBaF728OfZPf5jNr5Uet69Uu/Ri9smWX6/P3+zdPffSo9fFzzu6DdIJ7y1/HpAm/AiZJ3tmKpfHQAAAAAAAAAAAAAAAACA+svk/ANahh1hXVguGUspZTpCjXUFDA0lR33bM9ldspYbmAKoHXcYpv9xqDPWpb74Wv+1CG9UwRa0Jzfu27cukfZtd4Veus7Ha+MllysfWsezEe6IDQAAAABAEYLR2pi19gYthqMt9SeSdhtjfmKM+bIx5uvGmG2SbpB0zJJxWUmvsNY+UmYfj0u64snxB50v6V5jzG3GmK8YY66X9Jikj0tamgDxTUnvruBLAwAAWHkWHIFY9XIwiC3eHW1euZAvlCobjLYg3f8P0rdOlSZu9R8zctHy8LxYqnb1DT+zdmsBLaAQ4fXxnQSjAQAAAAAAAAAAAAAAAEBLG3eG5BCMFlZ3vDfUuLQjbG7Y8Vgv2HntL+yruC4AKOYKM3Mdn4L6XCFrq8lkbkIF5X37Tuw5zbfd9bi5/m9O7Dndtz1ns9qfnwxRJQAAAAAA/ghGa3PW2k9IulLS7JLmpKRnSHq5pBdK2lQ0bbekZ1trvxNyHz+S9CJJmSXNRtJZkl4q6bmSiuPjvyzp5dbaQqgvBAAAYKVrVjhVImIw2nF/Up862tmGlwT33/MB6Rdvk/bd5R6z5oTl28f8fvV1HTT23NqtBbSAKMFou6a4EyUAAAAAAAAAAAAAAAAAtCprrTOgJSgkB8v1xPtCjXMFoAU91gQPAagl5zE/IAxzKDXqv5YjyGs1yeTcx+iTHIFmU4VJLXjzy9qy3oKm8nsjrSNJ4wH7BwAAAACgHILRVgFr7SclPVXSv0s6EDB0l6T3SDreWntLxH18S9Ipkj4lKSjG/aeSXmKtfaW1dibKPgAAAFa0wXOkRLg3DVQtuebw553D0eZuuKK2tawGm14W3L/jf8qvseb4ojVfXnk9S41dLnX5v5ALtCsvQtbZDm5ECQAAAAAAAAAAAAAAAAAta39hnxbsvG+fK8QLpcIEoxnFNJj0f19yT7xPXTH/mzkHhe4AQBRzhVntL/i/+Xc4IKDR1Udwo/sxWBMf0BEdm53zJopC5Yq3l9rYeYx6Yv7nmaB5AAAAAACUk2h2AWgMa+1Dkl5jjOmSdL6kIyWNSspKyki601p7V5X7GJf0R8aYtz65j01P7mNG0hOSfmmtfaSafQAAAKxY8Q7pnE9Lt7xKsoX67uv0jyzZb2f4eSf+mbT25NrX0+56NkqnfkC68y8rm5/slzpHfNb8e+nO/11dbWd/orr5QAsqeOHH7pyqXx0AAAAAAAAAAAAAAAAAgPoKCrVJB4TkYLmeWG/ZMeuSaSVM0rfPGKN0ckyPLjxU0pfJEnoDoDaCQrTSAWGY6ZT/jcYncrtkrZUxpuraWlXG8ZimU6MaTKYVU0yeSt+cncnu0hEdRx3aHnecj2OKaTCZ1lBqVDPzB3zWIZwOAAAAAFA5gtFWGWvtnKTv1XkfWUk/rOc+AAAAVqRNL5MGTpN+/ofS+I/qs494t7TxxeHHP+M/pQMPSukLpKHzpFX8ol5VTn5X5cFoI8/yf9xP/itp9NLF75fJX0Rfd/BpUu/RldUEtLCowWir/Q0NAAAAAAAAAAAAAAAAANCqMjn/QJXOWLd642saXE3r6o6XD0ZLJ/2DhQ71pxzBaI7/IwCIynU8SZiEBhKDznlDjqDMrF3Q/sKk1ibW1aS+VuR6TNPJUcVNQuuSaU3kdvvMWx6o5gqtW5dMK24SSidHtX3+wbLrAAAAAAAQRazZBQAAAABtZc3x0ql/V5+1k2ukC74qpQbCz9lwhXTSX0jp8wlFq1b3kZXNG7vc3Td4tnTpT6RYKvq6J1UY1Aa0OM+GH5srSNl8/WoBAAAAAAAAAACoJ2PMe4wxtoqPzzX7awAAAACAaoxn/QNdhpNj3DAzgp54X9kxw6n1gf1pR/BQxvF/BABRuY75Q8lRxUzcOS+dcgc7rvZjVCbrH0yWTi0e013H9omiec51npzv+j9Y7Y8/AAAAAKA6iWYXAAAAALSdlPtuRKHEu6ULvykNnC6l+qW5XdLsY9LaU6REV+n4jrS0kClt795QXR1YzstVNq9vS3B/okfq3SLtvy/8moPnSEc8v7J6gBZnIwSjSdJcTupI1qcWAAAAAAAAAAAAAAAAAED9ZHL+gSoHA10QTnest+wYVzjOoX5X6E1up6y1BNUBqJorRKvc8akn1qeuWI/mvJnSNXO7dIxOrkl9rcazniZywYFmQ6lRaba0v/j86zofDz15bnAGrOV2cY4AAAAAAFQs1uwCAAAAgLbTMVR+TP+p7r7fulMaefZiKJokdY1Kg2f7h6JJ0lPf599+4jvL14HwFiYqm9cVfAc9SdJld4RczEibXild8BUp5r7rFdDOvKjBaNn61AEAAAAAAAAAAAAAAAAAqK9KQ3KwXE+8r+wYV/DZoX7HYz7nzWqmcKCiugBgqUrDMI0xSicd4Y1Z/2Cw1WAqv1c56/9G6oOP6bDj2J4pClQr3j7o4Pwhx+PPOQIAAAAAUA2C0QAAAIBaSw2UH/Pcn0tjly1vi3cvtvcdE21/m14q9R27vK33aGnTy6Otg2CDT6tsXtcR5cckuqTNrw0eE+uQXlGQzv+i1LOpslqANhAxF01zubqUAQAAAAAAAAAA0AyvkLQ5wgd30wIAAADQsqy1zpCc4TIhOVguVDBambC5oGAi1/8TAEThDsMMDm6U3Meo1Xx8coWZSYcfU1eg2d5cRnm7+CbsvM1pby7jO+7gfM4RAAAAAIB6SDS7AAAAAKDtxOLS+t+SdnzLPSaekp75X9L9H5UyN0mdaem4t0jrzoi+v9SAdOkt0n0fkiZ/KQ2cLh3/NqlzuPKvAaVGLpImbo0+L7km3Lgjf0d65Avu/o5ByZjo+wfajOdFG08wGgAAAAAAAAAAaCO7rLXbml0EAAAAADTCdGFK896cb1+5EC8s1x3vDew3Ms5wnIPWxPvVYTq1YOdL+sazO7W56/iqagSwus17c5oqTPr2DafWl53vOi+4wtZWA9fX3hPrO3RecAWaWXnam8toOLVee3MZWfm/gfvg/KBzRCa3i3MEAAAAAKAiBKMBAAAA9XDaB93BaGtPWfw3npJOfldt9tc5JJ3+odqsBX8nvH3x/3Tyl+Hn9D81fJjZ2HMkGUnWvz81EH6/QBvzHD8iLnPZ+tQBAAAAAAAAAAAAAAAAAKif8YAwm2FHkAv89ZQJRhtIDCkZSwaOMcZoKDWqJxa2lfRN5HZVUx4AaCLrPo6ECcNMp/zDHTO5nbLWyqzCG5RnHMfmpY/VUHLEPT+7U8Op9YHhcgfnB50jVnM4HQAAAACgOrFmFwAAAAC0pf6nSC94yL9vwxWNrQW10TEoXfLjaHOOenX4sYkeaeB0d39ybbR9A20qYi6a5nJ1KQMAAAAAAAAAAAAAAAAAUEeZnH+QSmesS71x3lMZRU+sL7A/HTJoLp10Bw8BQDVcx5G4EhpIDpWd7zo+zXmzmvEOVFVbq3IFki0NmkvFOtSfGPSf/2SwmitgrT8xqFSs49D2kPMcQXgmAAAAAKAyBKMBAAAA9dJ7tHTxj5YHWm14sXTyXzatJFQpGfzGkGWO/j3puD+Otv6zvuHuCwpNA1YRz4s2fp5gNAAAAAAAVowf3G/1J//h6Z1f9fSzh6PGnwMAAAAAAAAAVhNXSE46OSZjTIOraW3d8d7A/uHk+lDruALUMllCbwBUx3UcGUqNKG7iZecHBTyu1mOU8zxa9Fi5A812Bq9TNM8ZnukIaAMAAAAAoJxEswsAAAAA2trIs6QrxqW9d0jdR0o9G5pdEaoV75YKs/59Y8+VnvJeqWtU6tkUfe3uI6Tj3iI98I/L201c2vza6OsBbSjqJdNz2bqUAQAAAAAAIvr0jZ7e/P8OP7P/xx9YfeUPYvqd07l4DQAAAAAAAABQatwRpBIUfgN/qViHkialnPV/Q1065R9mUzIu6QhGc4TmAEBY47kdvu2u406xNfEBpUyHsnahpG8it1Obu46rqr5WY611BpKVBJqlRrV17p6ScQcD5dyhdcXr+P9fTeRWZzAdAAAAAKB6sWYXAAAAALS9eEpKn0soWrs46V3+7R2D0gXXSEPnVBaKdtAZH5GOf9viepLU/xTpmV+Xhp5W+ZpAG/EiJqPN5aJGqQEAAAAAgForeFb/+7rlz9FzBend/+U1qSIAAAAAAAAAwErnDnQhGK0SPfE+Z1/Yx9QVejNd2K/ZwnRFdQGAFHDMDxncaIzRUNJ/rCvYq51NF6a0YOd9+4qP5cVBaQdlngw0yziCzYrPHa51DhSmNO/NBdYLAAAAAICfRLMLAAAAAICWcvTrpK2flOaWvPi65kTpstukRE/168eS0pkfk874qFSYkxLd1a8JtBEv4vXSc7n61LGSzWWtJmel4T4pETfNLgcAAAAAAN28VZrwuR7qnh3Sjn1W6/t5/goAABDSm40xfy3pREmDknKS9kjaLukmSddba29sYn0AAAAAUBPWWmVy/iE5w45wLgTrjvVqn/b49rkCz0rGOUJvJOmmfd/VQHKootpckialLV0nqi+xtqbrNoJnC3piYbt2ZR/37R9IDGpT53FKxpINrgxovgVvXo/M/UYHClOH2nY6flaihGGmU2Pakd1e0j7uOJ+0i4LNa/v8Vu3JjR9qm8jtdo4vPpa7HuM9uV26bf9PtMexVsk6AeeSG/ddr/7EoLO/EnGT0KbOLRpMjtR0XQCAv8nchLbNP6i8Lb1IJ2U6tLnreK1J9DehMgAA0M4IRgMAAACAKHo2SpfeLN3/MWnfr6XBs6WT3lWbULSljCEUDfBhI46fy9aljBXrYzd4+ttvWk3NSWNrpX95TUy//VQuLgcAAAAANNf2Pe5n9PvnpPW8LxIAACCslxdtd0jqlbRJ0jMl/ZUx5nZJf2mt/V6jiwMAAACAWpku7NecN+vbFyUkB4f1xHt9241MYODZUv2JQSVM0jcM4esTX6iqviAvSr9Ol657Ud3Wr7Xp/H596on36+H5+wPHrUukdeWR79b6jo0Nqgxovodm79OndrxfM4UDocYPp9aHXtt1LJvI7gq9RqvJZHfqnx5/n8ZzO0KN74x1qTe+PGwynfJ/3PI2r6t3ftS5VnEQ2kBiUHElVFC+ZOx1mc+Hqq8SF/Y/Ty8ZfoNiJl63fQDAauZZT/898SV9Z++1geOMjK5I/54uXveCBlUGAABWg1izCwAAAACAltO7WTrr49IlP5RO/5DUsa7ZFQGrhhcxGW2u9P1Xbeu/77R6x1cXQ9EkaeeU9LJ/8fRowMXnAAAAAAA0W4GnrQAAALV2lqTvGmP+3hhT87unGGOGjTEnR/mQtKXWdQAAAABob5ncTmdfcRALwumO9/m29ycGlYylQq0RM7HQIWq1dF3m83po9r6G77dS35j497KhaJK0N5/RF3Z9vAEVAStDwRb02Z0fDh2KJrnDznzHOs4PQeeUVvel3Z8MHYomLYaLFv/JcKjC43rx/03MxDWUGqlorWr8aN//6FfTP2v4fgFgtbh/9s6yoWiSZGX1n5l/0+PzjzSgKgAAsFoQjAYAAAAAAFqGjRqMlq1PHSvRtXeUPjhzOemff8wV5gAAAACA5gp6Zjq7ip67AwAAVOEJSZ+W9PuSLpB0kqQTJJ0v6S2SvlM03kj6K0nvr0MtV0q6O+LHf9WhDgAAAABtbE9ut297h+nUmnh/g6tpDz3xXt/2qEFzzQqmu2fmF03Zb1TWWt1x4KbQ4x+d36pMtn1Dm4ClHpq7V/vye0KPjymudcnh0ONdIWoHClOa9+ZCr9MqDuSn9JvZuyLNSadKH6PueK96HOGZLr3xNeqK95S0VxqyVq3b9/+kKfsFgNXg9v03Rhof5XdhAACAcghGAwAAAAAALcOLGoyWq08dK9Ft2/wfnA9dTzAaAAAAAKC5goLOZxYaVwcAAEAL+rmk50raYK39A2vtZ6y1N1tr77PW/sZae4u19hPW2ssknS3pwaL57zLGvLDhVQMAAABAleYKs77taxPrZIxpcDXtYWPHFt/2zZ3HR1rnqM7jalFOZNOFqabsN6r9hUnNef7fvy67s0/UqRpgZdm58Fik8Zs6j1HcxEOP9wv9OqgdAwjHszsiz3Edw2t1LtjcpHPEruzjTdkvAKwGUX9X5XdbAABQSwSjAQAAAACAlhE1GG02W586VqL7d7n7DswTjgYAAAAAaJ75gOBygtEAAADcrLXfstZ+19qgqNlDY2+X9HRJDxR1fdCYCFeQAgAAAMAKsGDnfds7Yp0NrqR9nN53rvoTg8vaumLduqD/0kjrnLv2IvXE+2pZWigFFRq+z0pUEr6UyQW8+Q9oI7sjBnldvO4FkcYPJIYUV8K3rx1/zqJ+TX3xtTpnzbN9+y4aeL5iIS83jymmiwae79t33tpL1BNr/Dkik92lgm2N8wQAtJqo55t2POcCAIDm8X+WDwAAAAAAsAKVv+xnucmZ+tSxEvV0uC8mn5yR+nhPIAAAAACgSaYDws9WU6g5AABAvVlr9xpjXiHpdknmyeYTJD1b0vdqtJt/lvTViHO2SPqvGu0fAAAAwCqw4BGMVmt9iX796Ya/1zf3/Ie2zz+osdQGPX/oVRpMjkRaZ21inf5s44f03xNf1Lb5B5TzAu6OUoE5b0Y5W/rigbVeTfdTL64gCKOY4iauvC19vDJZwiOwOoxnn/BtT5kOdca6JS3+QWusY6Oe2X+5Tut7eqT1YyauweSwxnOlAWyVhBaudJmc/9cUV2JZgGUyltTmzuP1gqFXqy+x1nfOCT2n6o+P/Bv9YPIbenxhm/zu02CM0REdR+migefrhJ5TfdfpTw7qnZs+uHiOmHtQeZuv4Ctz8+RpujBV0l5QXntz40qnxmq6PwBY7eYKM77HXUnqMJ2+gdaZ7E5Za2WM8ZkFAAAQDcFoAAAAAACgZXgRg9EmpiNOaGFdSXcw2oGAC9ABAAAAAKi3mYDws5ms1eHMDgAAAFTLWvsLY8x3JT13SfNlqlEwmrV2XNJ4lDlc/AIAAAAgqgVvzredYLTqDKVG9fqxt1W9znBqTG9c/84aVFTq/+38R926//sl7Z5aIxht3BG+tKHzaG3o2Kybp24o6XOFGwHtZnfOPxjteUMv16XrXlSTfaRTY77BaBOO0MJW5gp7O7XvHL1p/Z9FXu/EntN0Ys9p1ZalkdQRetP6P696HT8L3rze/uDLfft2Z58gGA0AaswV+itJrx37E316x4dK2rN2QfsLk1qbWFfP0gAAwCoRa3YBAAAAAAAAYfncgCzQxHR96liJUgHx9/v93ycIAAAAAEBDuIK8y/UBAACgYtcXbT+1KVUAAAAAQIUWPP8/HhOM1v5ixv9yR8+2RjBaxieQSZKGk2NKJ/0De1zhRkA7yXoL2pvL+PaNpI6o2X5cP2eu0MJW5gp7SydHG1xJ43TEOjWQGPLtG8/6H38BAJVz/Z6aMEkd23VK5HkAAABREYwGAAAAAABahkcwmlPcuPsOzDeuDgAAAAAAigWFn81mG1cHAADAKrKtaDvdjCIAAAAAoFILnv8bnjpMV4MrQaPFFPdt91RocCWVyWQdQUWpMaVT/mFFe3LjKtjW+PqASmVyO2Xl/ybgmgajOX7OXCFirSzoeNPOhlPrfdt3E4wGADWXyfkHnKWTo+pNrFF3rNe3f9wxDwAAICqC0QAAAAAAQMsgGM1tIe/u208wGgAAAACgiYKC0YL6AAAAULG5om2SAwAAAAC0lAVb/LRmUUess8GVoNFixv9yR896Da4kOmttQHjEmNJJ/7CigvKazE3UszSg6VyhVTHFNZQcqdl+0kn/YLTJ/ISyXvu8MDlbmNaMd8C3z3WsaReuIL3x3BMNrgQA2l+5EE5XGGcmSzAaAACoDYLRAAAAAABAy7ARg9Gm5qRsPuKkFhUUjHZgfnU8BgAAAACAlWlmwf28dCbbwEIAAABWj6Giba6uBgAAANBSFjz/O0ESjNb+jONyR08rPxjtQGFK855/qF86NaahlH9gkyRnoBrQLnZn/UOrhpIjiptEzfbjCmiRpD258Zrtp9kyOf+gGskdDtcuhlPrfdtd4XsAgMq5Q39Hl/0bdh4AAEBUBKMBAAAAAICW4VWQ77VnuvZ1rETBwWiNqwMAAAAAgGKzAeFnQX0AAACo2DlF21wVCAAAAKClEIy2esWNIxjNrvxgtEzWHQAxnBxVZ6xLa+ID/nMDQo6AduAKRhtJHVHT/Qwmh50Bi+0U0uI63iRNSmsS/seZduH6ntmX3+MMpwQAVMZ1vkknF4NIXYGkmSy/2wIAgNogGA0AAAAAALQMW0Ew2r5V8Bq3tTYwGG0/wWgAAAAAgCbKB1yrlCs0rg4AAIDVwBjTKemKouYfNaEUAAAAAKiYOxitq8GVoNFcgUaeWiAYzRG61BnrVm98rSQpnRr1nxsQqga0g/EGBaMlTFLrkkO+fe0U0uIKUxxKjirmCJhsFyPJ9c4+jqUAUDsL3rymCpO+fUNP/k57MCCtWCa3U7aSi38AAACKtPczXAAAAAAA0Fa8SoLRZmtfx0qTLwSHxh0gGA0AAAAA0ERBz1nzBKMBAADU2l9IWnpFaUHS/zSpFgAAAACoyILnfzfMjlhngytBo8VN3Lfdsyv/BQVXMFo6OSpjzKHPo8wF2oG1VrsbFIwmBYe0tAtXAJgrfLGdrEumlTAJ377d2R0NrgYA2teEI4RTkoafPNemU/7n3HlvTtOFqbrUBQAAVheC0QAAAAAAQMsICkZLOP7KsRqC0Rbywf37CUYDAAAAAKxQBa/ZFQAAAKxMxpjXGGNGIs75fUlXFTV/zlq7vXaVAQAAAED9LVj/NzylDMFo7S5m/N8I6Gnlv6Aw7gwqGvP9fKlM1h08AbS6A4UpzXn+b+YdSa2v+f6GHAGEE230c+YOYvQ/xrSTmIk7v85xRwAfACA61++nMcU1kExLkoYd51xJGg8IVgMAAAiLYDQAAAAAANAybEAw2kCPf/u+uYBJbaJcMNoMwWgAAAAAgCYKemaeX/nXMQEAADTLGyU9Yoz5vDHmecYYxyshkjHmLGPM1yT9qySzpOsJSX9d5zoBAAAAoOYWPP83PHXECEZrd8ZxuaNnV/4LChlXMNqSAB9XmM9EbldLfI1AJXYHhFWNpI6o+f6cAYSOMLFW5Ap5SwcE1LSTYcf3ze7sjgZXAgDty3XeHEqOKG7ikqTe+Fp1LmRZYgAAIABJREFUxrr85zt+NwYAAIgi0ewCAAAAAAAAwvIcV1IbI/V3SZkDpX37/G8y11bKBaOV6wcAAAAAoJ6Cgs7zhcbVAQAA0IK6JL32yQ/PGPOgpG2SpiQVJA1KOlXSiM/cvZIus9b6XyUJAAAAACtUwRaUtznfPoLR2t/BkIVinl3ZLyhYa53hEcNLQppcgU05m9X+/KT6k4N1qQ9oJlcwWlesR73xtTXfnyscbE9uXAWbV9y09mXVC968pgqTvn2uY0y7GUmt923fnXOH8AEAonGG/qYOn2eNMUonx/TYwsOl89sokBQAADRPaz+DBwAAAAAAq4rrQuqYkfq7/fv2zdWvnpWiXPDZfC7gCnQAAAAAAOos6Flp3pWCDgAAgGIxScc/+VHO9yW93lr7eH1LAgAAAIDay3rzzr5OgtHanlHMt92T1+BKopkpHNCc538X13RySTCaI7BJksZzOwlGQ1tyBaONpI6QMabm+1sa2LKUJ097c5mWDw/LZN33QVh6vGlnI6kjfNvHsztkra3L9xUArDauYLPic006NeofjOYIVgMAAIjC/y+FAAAAAAAAK5DrWmkjqb/Lv2+f/3uN2kq2bDBaY+oAAAAAAMCPK+hckvKFxtUBAADQYv5B0pckbQ85fkbSdZIusdZeQigaAAAAgFa1EBCM1hFzvEkMbSPWosFo47kdzr6lIUzd8V71xPt8xxEegXYVFIxWD0MBAYSZnDtUrFVMOL6GmOIaSA41uJrmGE6u922f92a1v7CvwdUAQHtyBXEWB4y6Qjnb4ZwLAACaL9HsAgAAAAAAAMJyBaPFYlJ/t5FUOmA1BKMtlAtGK9MPAAAAAEA9BQWjPbC7cXUAAAC0EmvtdVoMOpMxpl/SyZI2SBqR1K3FG+PukzQp6T5Jd1lriZ0FAAAA0PIWbEAwmulsYCVohriJ+7Z7K/wpryvUrMN0ak28f1lbOjmqmcKB0jUIj0CbGs/6BweOpPzDrarVEevU2sQ6TeX3lvRlsjulntPrst9GyeT8jzdDyRHnMbTdDAd874xnd2htYqCB1QBA+8l5WU3mJ3z70kUBpK5jMqG/AACgFghGAwAAAAAALcN1IXXMSGu7/fum5upXz0pRNhgt15g6AAAAAACI6je7pR37rNb3m2aXAgAAsGJZa/dJurnZdQAAAABAIyx47jd8dcQIRmt3xsR82z3rNbiSaFyhZunUmIxZ/hpIOjmmbfMPlq5BeATaUN7mNOH4+RhJHVG3/aaTo/7BaG0QQOg6VqRTo77t7ag3vkbdsV7NetMlfePZHTq2++QmVAUA7WMit1tW/hfvpFNjy7eT/uefWW9aM4UD6on31bw+AACwevj/pRAAAAAAAGAF8hzBaEZSn+M9bwfmHZPayEKZ4DOC0QAAAAAAzVTumfm1d7T/c3cAAAAAAAAAQDjz3ryzL0UwWtuLOS53tFrhwWiuoKLkWGlbqrRNkjI5gtHQfiayu+U5fn7rG4zm+DlrgwBCV7jbkCOYph0ZYzScWu/btzv7RIOrAYD24/q91CimweTwsjbX77ZSe5x3AQBAcxGMBgAAAAAAWobrMulYTFrjDEarWzkrRrYQ3E8wGgAAAACgmWyZ3LO3fYVgNAAAAAAAAADAogVHMFrSpBQ38QZXg0aLOf6PC7bMm+SabNwRHuEXFJF2hBdN5HbJlntRBWgxrpAqI+MML6uFdMr/56wdAgidQYwBwTTtyBWsN57b0eBKAKD9ZLL+IZzrkmklTHJZ25r4gFKmw3+dNjjvAgCA5iIYDQAAAAAAtAzPcdNHI6nPEYy2fxUEo7kel4MIRgMAAAAANBOX8AAAAAAAAAAAwnIFo3XEHG8QQ1uJOS53tCrzJrkmcwYV+YSgucKL5r05TRemaloX0GyuYLR1yWElY6m67XfIEbo2kdstz67s40mQnJfTZH7Ct88VutiuhlPrfdtd33MAgPBcgWZ+5xpjjPP323HH78gAAABhEYwGAAAAAABahue4kjpm3MFoB1ZBMFqhzBXmcwSjAQAAAACayJKMBgAAAAAAAAAIacGb821PmY4GV4JmiBn/yx29FRyMNlM4oFlv2rfPL7gnKLxoPLerZnUBK8HunH9I1UjqiLrudzjl/3OWtznty++p677raW9+XNZxW6q0IwyuXbm+hzLZXSrYQoOrAYD24gz9dQSguX6/dQWsAQCA/5+9O4+O5Czsvf+r6kVSt7bRqFujGW941djgGTtgsyRsISwhQGLWhPAmARJ4sydkuQnJzfoGSHJzk8ube8EkkJATDA4xEAw2YFZjY8DYI49taWzP2GN7tHRLo7VbvVbdP8Zjy9P1VFdL3a1evp9zOBxXtaofaaqrt3q+haAIowEAAAAAgLZhmkdt29JgF4fRnCrnfOUIowEAAAAAdhBhNAAAAAAAAABAUHnX+4SvHruvySPBTrAV8lzeypEbUzhC8o5H9IeG1GvYn/22BbSjVGHGc/mYRzSwnkZ9AoTpNg4QpgzHCEuWdkfGmjyanZWMeO9DjspaLM43eTQA0FlMQTNTAM0UTEsX2vc5FwAAtAbCaAAAAAAAoG2YAmCWpIFey3PdaheE0cpVJpi3exjtnsdd/fS1ji7+o7L2/3FZb/tnR48sMKseAAAAANoF7+AAAAAAAAAAAEHlHVMYzXDlTHQU2/Ke7ui6Va4euoNShnBE1OrRUGhXxXLLspSIGOIRhm0B7Wq+cMJz+VhkX0PvNxbqVzw04LluoY0jLQuGqNuu8KgidqTJo9lZSUOER5LmDUE+AEB1Zbekk8W05zrTa1he2wIAgEYhjAYAAAAAANqGaSK1bUkDhvPeCiWpUOrsKdimYNxpJUcqVauntaipWVc//AFHn7rT1UMp6ci89O/fdXXVXzlaXG/P3wkAAAAAAAAAAAAAAACAtwJhtK5mG6Y7OmrdMFq64B18SETHZVneF3xNRPd4Lm/nYBNwpkx5TevlVc91Y9HGhtGkzoy0mI833seUTha1ezQSTniuSxmCfACA6haLaeNr74QhSmlavl5eVba8XrexAQCA7kMYDQAAAAAAtA3H9Q5hWZY06HPe25r3uXIdI0jzLF9q/Dga4R+/7mo9X7l8YV36h68SRgMAAACAdmB4Ow8AAAAAAAAAQIU8YbSuZlshz+WO28JhNENkKRExh4o6MdgEnGneJ07VnDCa92PQFBdrB+bjjfcxpdMlo3s9l88XZpo8EgDoHH6vR0cjY57L/V73LhQJ/wIAgK0jjAYAAAAAANqGYzi3ybakAZ/z3lY7PYwW4JyvXLHx42iE24+aZ8/fcBcz6wEAAACgHfDuDQAAAAAAAAAQlDGMZvU1eSTYCbZhuqOjcpNHElzKEFlKRM2holFjsIlwBDqHKYzWY/VqKDzS8Ps3PQbTbRxoMR0jTMeUTmcK7PlF+QAA/kwB0eHwbkXtHuO6sBXxXJfi9S0AANgGwmgAAAAAAKBtmCZSVw2jbTRkOC3DcatPMW/HMJrjuDri8z3Y/bPSg/NMrwcAAACAVhfgbSsAAAAAAAAAAJKkvOt9sleP7XOCGDqGbRnCaG6Aq4fukHTREEaLmMNopmBTxllTprxWl3EBO22+MOO5PBndK8uyGn7/CWOAcFZuG36BWXbLWiymPNf5hRg7WTK613N5qui97wEAqtvKa1vbss3Pu4btAQAABEEYDQAAAAAQSHrN1d99xdF7P+PopsPt92UwOoNj2PUsSxr2uSDo/GpjxtMqygHO+WrHMNpjS9JGlXF/bpLjEQAAAAC0ujacVwAAAAAAAAAA2CF5J+e5nDBad7AN0x0dtWYYLVteN4bMkj6hoqRPWCJd8LmaKNBG5gsnPJePRfc15f5HDY/BvJvTenmlKWOop6Xigsoqea7zi9V0MtO+tFI6qZzT4VfVBoAGMb0W9XttK5kjnekCYTQAALB1hNEAAAAAAFUdX3R15V84+p3/cPW+m1y9+oOOfvv61jzJBJ3NNJHatqRI2FJywHv9zEpnz8A2BeM2qxYYa0XH0tVvc+sDnf1vCwAAAACdIMg7t2KJ93cAAAAAAAAAAMJo3c62Qp7LHbc1z1lNF80RM79Q0WB4lyJW1LBN4hHoDKkdDqMlI3uM61I+j91WteAz5tHoWBNH0jrGonuN61KFmSaOBAA6h+m1aLUIZ8LwvMtrWwAAsB2E0QAAAAAAVf3lF1ydWH76sn/4qqvJx5iwiuYyBcAs69T/7x32Xn9iqTHjaRXlAOd8FbwvEtfSsoXqt5luv3NTAAAAAAAe2jHoDQAAAAAAAACoP3MYra/JI8FOsA3THR21ZhjNFN6JWFENhUeMP2dbtjEe4Rc/AtqF45aNIZRmhdH6Q0PqNTx3pAvtF2lJGf6eg6Fdxt+z0+0KjypsRTzXzRvCfAAAM8cta6Ew77kuETUHRyVzOC1d4LUtAADYOsJoAAAAAICqbnuoskblutL7biKMhuYyhdHsJ8Jo+0xhtGXv5Z3C9HfZrFBu/DjqrRTgXLZjC1KhxLEIAAAAAFqZG+BtW5A4NgAAAAAAAACg85nDaL1NHgl2gm15T3d05cgN8oVDk5niSqORPcbf5bRE1BSPaL9gE3CmxWJKJdf7ir7NCqNZlqXRDgoQmo4N1UI1ncy2QkoaQjymcCUAwGyptKCyvJ+/TeGzJ9cbXtuulpeUcza2PTYAANCdCKMBAAAAAKqaNnz3e/2drXeSCTqb6bym02G0vcOW5/qZ5c7eV8sBAmIF7++nWloxQMyt7EhH040fCwAAAABg64K8K98oNnwYAAAAAAAAAIA2kDdMmu+xepo8EuwE22e6o6MAJ8o1WdoQV0oawhCbmYJNpm0C7WS+cMK4Lhnd27RxmCIu7RggNMXcEoZjSbcw7U9++yAAwFu6YH4dOlolxOkXTlvw2S4AAIAfwmgAAAAAAKBtOIaZ1NYTPbTxIe/1C+uNGU+r6NwwWrCg3fHFBg8EAAAAALAtptD5Zmu5xo8DAAAAAAAAAND68q73B8Y9dl+TR4KdYFkh4zrHbcEwmiGu5BeGePI2hnhaOwabgDPNF2Y8lw+Hd6vH7m3aOIyPs2L7Pc6Mx5sAIcZONhbd57k8ZdgHAQBmKcPz42Bol3qrvB/bFRlVSGHPde34vAsAAFoDYTQAAAAAwLas5YKFi4B6ME2ktp8Iow0ZvmtZzzdmPK3CFIzbrFBu/DjqrRhwzCeWOQ4BAAAAQCsjjAYAAAAAAAAACMJ1XeUd75O9mhnSwc4J+Ux3dNR6J8GZ4hFBQkVJQzxttbysnLOxrXEBO22+cMJzuSli1SiJyB7P5eniXFPHsV2u6xrHPGr4HbtFMrrXc/l84YTcIF9UAwCeZI5wVn+uCVkh7Y4kDdttr+ddAADQOgijAQAAAAB8VftCcHalSQMBZA6AWU+E0foN5751+uTqcoALYRZKjR9HvZUCnsc2s9zYcQAAAAAAtifI6earzO8BAAAAAAAAgK5XdAty5X0yFGG07mBbPmE0N8CJck20Uc5ovex9Eq0pxvS02/gEJhaIR6DNtUwYzfA4y5TXlC2vN3Us27FSXlLRLXiuSxgii93CtE/l3ZxWy0tNHg0AtLe0KfobMMJpigObtgsAAFANYTQAAAAAgK98lZjSLEEiNJGp02c/EUYb6PFe3+lhNFMwbrN8qf2uelYMGEY7wXEIAAAAAFpakAtxr2y03/tWAAAAAAAAAEB95R3ziV6E0bqD5TPd0RTN2ynpojlelozurfrzu8KjCils2DbxCLS3VKuE0XyiYX6P4VaTLpiPCUlDhKZb+B1vTYE+AIC3tCHOawqeVdzO8LybKsxseUwAAKC7EUYDAAAAAPja8L641JNmV5i0iuYxBcCeDKP1Wp7r1/MNGlCLKAc436tQJXLYioKG0WaXOQ4BAAAAQLtb7fCoOQAAAAAAAACgOt8wmtXXxJFgp4SskHFd2Q14QlmTmEJFYSui4fDuqj9vWyHtjiQN226fYBNwpo1yVivlJc91zQ6jDYVHFLYinuva6XG2YIi4xex+xUL9TR5Na+kPDSoeGvBcR4gHAIJzXMf4fOMXGn3a7aJ7PJe3U4wUAAC0FsJoAAAAAABfG0X/9fNrzRkHIJnDaNYTPbT+Hu/1uaJUKnduPCtQGK21zgkLJGgY7cRyY8cBAAAAANieIO/ICaMBAAAAAAAAAPLuhnFdj93bxJFgp1g+0x0dBThRrolSRe8w2mhkTLYVbNpmIuodmUgbtg20g1TRHKMai+5t4kgk27KViJgiLe3zOEsZQoymY0i3SUa896v5wokmjwQA2tdK6aSKbsFzXdDnm6QhoLZcWlTByW95bADQbR7NHdVD2fu0Ujop1+3c+ZBAEOGdHgAAAAAAoLVteH+u/aRV83lIQN2ZPsuznwijDfic+7aWk3bF6z+mVmAKxm1WKDV+HPVWCnge2wxhNAAAAABoaUHOzeEzJgAAAAAAAABA3jFfRYMwWnfwC4q99+g7Zcna0naHI7t1Rf/z9LrEzypk1Tal0nVdfX35Rt2+/BXNF54KPjnyvvJnwhCEqOW2t618RXesfL2mcW7WG+rTxX3P1JvGflFD4ZEtbwc47YHsYX1+4RN6NHdUjut/cqdriBhGrKh2hRONGJ6vRHRcs4XHKpbfuPAJfXHhU00fz1aYjzfe0bduMxbdq4dzRyqWf23p8/rG0he3vN14qF/741fojcl3KBbq384Qm+r+zN26afH6QI/XzWKhuCZiB/XGsXeoPzTYwBECrc1xHT2eP6apzKSms4c0VzihXrtPL9n1Gr1w+JVNGcPDGw/o8wv/roc3jqjkbn8iSDw0oEvjB/XG5DvVF/KeVOMXDA36fOMXUPvtB39my6/lTWzL1rm9F+o5gy/SC4ZeJtsK1XX7ALBTvnzyBt21dpskKWr1aDSyR4nouK4ceJ6eM/iiHR4d0FyE0QAAAAAAvnJVPkNfNZ+HBNSdKQB2+usRvzDaer5zw2jlAN9ZF7zPiWhpxYBjnl+TiiVXkXB9vygDAAAAANRHoDAanzEBAAAAAAAAQNczhdEs2YpY0SaPBjshJHPMwBQGCmKxOK9blj6rjLOmt+35tZp+9utLn9en0x8NfPukTxDiTImoOTJR1tYjGJnymu5e/44eyx/TnzzjH2uOwQGbPZo7qg8+9mfb2ielUyFAv/hho4waYi6u3G3/TjvN7xjSTZLRfZ7Lt/tvvFpe1ndXv675wgn97jkfkGW1/nnKR7NT+t+P/+WWnjPXyiv6/to3NVM4rj849+925PEK7JTFYkrTmUlNZQ/pSPYeZcprT1u/IumT8x+S6zp60a4fb+hY5vKP64OP/4lyTv2uMLhaXtIdq1/XfGFGv3PO+z2PZ+nCnOfPxkMDgeOQI5GEbNlyPCKp23ktb1J2pYc27tdDG/fr28tf0k+PvVvn9V1c9/sBgGZLF56KVRbcvGYKxzVTOK69Pefs4KiAncG7EgAAAACAr42C//rV+n3WDlRlmkdtP/EJR3+P+WeXsnUfTsswBeM2K7ThuRtBw2iueyqOBgAAAABoTQHetvIZEwAAAAAAAADAGEbrsXvbIkaC7bMaHGH53so3K0IXflzX1deXb6zpPhKR4GG0ZA233YqF4rwOr9/Z0PtA57t1+ea6BMTGDPGqRksYwmidoJbjTScbi+5t6PYfyT2g47kHG3of9XL7yi3bjg+dyD+ihzeO1GlEQGvaKGd0aO0OfXL+w/rTY7+sPz72S/r3+X/UXWu3+b5W/Gz641opnWzo2H6w9u26RtE2ezh3RMdzD3muSxdnPZfX8lwTtiIaiSS2NLbteix/TH/z6O/rurkPKVte35ExAEA9uK6rdNE7Vsnrf3QjwmgAAAAAAF8bRf/1a97nIQEN4VReOEaSZD9xzttAr/ln/+ZLQaZht6ey4e+yWTuG0UoBfq/TTiw1bhwAAAAAgO1xA7wlX93o3PftAAAAAAAAAIBg8oYAQI/lc8VMdJT+0KBCCjds+2WVdCL/SODbZ8prWiymarqPPT1nNeS2W/Vo7mjD7wOdrV770N6ec+qynVrt6Tl7R+63GfZEG38MaQd7e85t+H2YQkKt5vH8wy21HaBVlN2SHsrerxsXrtPfHP99/e5Db9O1M+/Xt5ZvUqo4E3g7eTen/1r49waOVJrJP9rQ7T9qOJ7NF7z/DrUGRvdEd+5515WrW1du1p8+/Cv6zspX5QY5YQkAWsx6eVU5J+u5rpOjz4BJ4z4lBAAAAAB0hI2C/3omraKZHMPudvpaoPEeybK8J1x/52jn7qumv8tm+TYMoxVruGDZzErjxgEAAAAA2J4g78hXie8DAAAAAAAAQNfLO94fFvfYfU0eCXZKj92rS2LP0v3Zuxt2H+nCnC6OPSvQbWsJZUjSrvCoLuy7NPDtd0fGdH7vhI7lpmu6n1qki7MN2zY6n+u6dduHnjP4orpsp1YX9l2q4fBuLZcWd+T+GyURGde5vRft9DBawlh0n87pvdAY+6mHdHGuYduup6yz3lLbAXaK67pKFWc0lTmk6eykHsgeVs4QYa7VHStf04uGf1zn9F5Ql+2dyVENkyi2wPS8njKE0cai+2ra/lWDL9K9mTtrHlc9rZdX9G9zH9TtK7foLWPv0r6e83Z0PABQiwWf152J6HgTRwK0BnunBwAAAAAAaG0bRf/1TFpFM5kmUttPfMJhWZZnFE2SIqGGDKkllJ3qtyk09vuxhqgljLaw3rnhOwAAAADoBqv1Of8UAAAAAAAAANDG8m7ec3mP3dvkkWAn/dz4b+ic3gsbtv1aYmfpQvAg1HB4t9697w9lW7WdrPgLe39L49FzavqZWtTyOwBnWi+vbjskE7Yi+vnx31Jyhybxh6yQ/t9979VwePeO3H8jjIQTete+/ybLsqrfuEu8ffw9Ncd7atEux9JMuT5Bs3ptB2imtdKK7ly9Vf8290H90bFf1J89/Cu6PvUR3bP+vbpF0STJlatPpz4q1zRxZZvKbqPDaJXBHcctG4NpyejemrZ/5cAL9PKRa2Rp55+jjm5M6X2P/LZuSP1LXfcBAGiklOF1Z4/Vq4HQUJNHA+y88E4PAAAAAADQ2jYK/h/WE0ZDMzmGANjmr0x+dEL6qsfFE5c7+HuMQGG0UuPHUW+1hdEaNw4AAAAAwPYEOReUz5gAAAAAAAAAAHnDZHXCaN1lIDys/3bu32qhMKeUIdAQxC0nP6vp7GTF8lriNqb7T0b26k1jv/jkfw+EhrSv59yao2iStDsypj867x80V3hcS6WFmn/+tAeyh/XlkzdULE8XZ+W6LgElbIkpkiJJ79z7e+q1+3x/Pmr16JzeCxS1e+o9tJqc3Xu+/vL8a3Uif1xr5ZUdHct2DYaGtbfnXNmWvdNDaSnJ6Lj++LwPaq7wuJZLi1vezt1rt+u2la9ULPd7LLSKsltWzsl6rvupxM9rX8+5Fcu/cvIzOpK9p2J5trxW9/EB9VZ0Cjq6MaWp7CFNZyb1WP5YXbcftsIKW1HPx9VDG/fp0Pp3dMXA8+t6n5LkyntyyBX9z9cLhn8s8HbuWrtNt6/cUrHc67XwyeKCSm7Rczu1Ridty9ZPJv4fvXzkGj2WO6ayGhN6c11H3175sibXv+t7O0eObln6rO5cu1VvSL5DV/Q/j9fFAFqa6XVnIjrO8QtdiTAaAAAAAMBXrkpMabWDY1NoPaZ51Pamz/V+82W2vjpd+WXQsvf3vB3BCTDBvB3DaCXCaAAAAADQEYKE0Vb4jAkAAAAAAAAAul7e8b6KBmG07jQa3aPR6J4t//yxjWnvMFpxLvA2TBG1fT3n6dL4FVse25ksy9J4z9ka7zl7y9vosXo9w2gbTlaZ8pr6w4PbGSK6VLrg/XjpsXrbLixiWyGd3Xv+Tg8DDWRbtvb2nKO9PedseRs5J+sZRlsozslxy1sKYDbLRjljXDcRu9xz/z+8/n3PMFqmzInZaD2O62gmf1xT2UlNZw7poY37VXQLdb2PfT3naSJ2QPvjB3Vh36Wazk7qQyf+yvO2N6T/Vc+MP1sRO1rXMTiudxgtEd1T0+vPbDnjHUYrzslxnacFNlPFGeN2EtHxwPe5WSzUr0vil2/pZ4O6rP+HdHj9+7o+9REtFlO+t10uLeqfZv5al8au0JvGfknJLf5eANBopvdgiQjHLXQnwmgAAAAAAF9574t+PGnV+zwkoCFMATB700XPhmPet8mXpFzRVW+kfU7CCKrs/d3X0xQac6GdhirWMOZFvn8HAAAAgJYVoIvGZ0wAAAAAAAAAAMJoqCvTpOF0YVau6wYKOqUK3pGIVgwp+EUr0sVZwmjYknTROw44Gt3TVlE0ICjTc0fJLWmptKjdkWSTRxRcxlkzrouHBmpannU4MRutYbm4qKnsIU1nJjWdndRaeaWu2x8Kj2h/7IAm4gc1ETugwfDw09Y/K/4cTcQOeMZ2F4vz+vrSjXr57mvqOiZH3pNDLNmey02ShsBwyS1qubSokUjiyWXzhROetx0O71av3VfT/Tbbs/qfo0til+tLJz+tr5z8jEpuyff292fv1l8+8ut6+cg1esXI6+setgOA7TK9B0tsIxwPtDPCaAAAAAAAX6YQ1WmrGwp8ggiwXY4hALZ57zOF0SRpKSOND5vXt6tqj1NJKvp/v9OSSjWF0YJMswcAAAAA7AQ3wFu2TF4qO65CNp8xAQAAAAAAAEC3MobRrNaejI/WlIzu9VxecPNaKS9pODzi+/Ou6xonJJu2vZMGQkPqsXqVdysfR6nCjJ7Rd8kOjArtbqE457k8EWFSPjrTqM++nS7MtnQYLVs2x8xiof6alvttC2iknLOhB7P3aiozqensIc0VHq/r9nusXl0Yu+zJGNp49GzfuVCWZen1yV/QXz3y23I9gmU3n/wPXT30Eg2Fd9VtjI7rPYkiZIVq2o7v8aw497QwmjkG3Hqveb1E7R69ZvStumrwxfpAI2cQAAAgAElEQVTU/LWeIbvNSm5RX1z8lL6/+k29KfmLuqz/h5o0UgCozhhGMwR8gU5HGA0AAAAA4KtacKnkSLmi1MdFMtAEpt1x85zpYZ9z4JY3OjOMVjYE4zbLt2EYrVhDGG2B798BAAAAoGUFTVmv5fyD5wAAAAAAAACAzpZ3NzyX99i9TR4JOkEiao5BpAozVcNo6+VVbThZ7223YBTKsiwlouN6PP9wxbq0IW4FVJMueO87frEVoJ31hWIaCA1prbxSsS5dnNOEDuzAqILJlNc8l4cUVo/l/VoqbnuH0TKE0dAkjlvW8dxRTWXu1nR2Usc2jshRDZMIqrBk69zeCzQRO6iJ+AGd33eJwlakpm3s6zlPPzz0ct26cnPFupyzoRsXPqG37vmVeg1ZjkeATZJs2TVtJxbqV39oUOvl1Yp16cKsLok968n/ni+c8NzGWGRfTfe508ai+/RrZ/2pfrB2m/4z9c9aKS/53j5dnNM/nvgLXdH/PL0++fanxeIAYCdky+vG13R+n3EAnYwwGgAAAADAV7UwmiStbBBGQ3OY9sfNF+nxm0C97H2OUtsL8jgtlIJOQ28dpQDBt9MIowEAAABA+1vdIIwGAAAAAAAAAN0s7+Q8lxNGw1b0hwYVs/uVdSpPLksXZnVx7Jm+P58qzhrXJaJ7tz2+RkhEDGG0gvl3AfyYonrJ6HiTRwI0TyIy7h1Ga/FjqSlmFg/1y9p8sv0msdCA5/KssybXdY0/B2xHujCrqeykpjOHdCR7WBtOpq7bH42MaSJ2UPvjB3RJ7HLFQt4BwFr8xOhP6/tr31LOI5p7+8oteuHwq3R27/nbvh9JclzvSRSWVVsYTTp1PPMMo53xOjdVmPH8+WSLvub1Y1mWnj34w7osfqW+sHidvrH0BWNs7rS717+j+zN368dH36yX7nqNQhYJFgA7Y8Enap6I8B4M3YlnZQAAAACAr3KAMNFqTtoz1PixdLp//66j67/vyrakt1xl6c3Pqf2Li07nGtpe9qbvXGNRKWx7R7U6NYwW5HFaqN+Fk5qmWA4ecyOMBgAAAACty/R+/kwrG40dBwAAAAAAAACgtRFGQ70louM6nnuwYvmZMQgvpgBOj9WrwdDwtsfWCAlDrCrI7wucaaOc1bpHHEqSRiN7mjwaoHkS0XEdy01XLG/1Y6lXCFSSbxQqblhXcksquHn1WLwGw/Zlyms6kj2s6cwhTWUntVicr+v2++y4JmKXayJ+UPtjBzQarf9z1EB4SD+++026If0vFetcufp06p/1m2f/ZV1igq4h4hVSqOZtJaJ79HDuSMXyza9zC05eJ0tpz58fa8Mw2ml9oZjekHyHnjv4Ul03/yHPv8NmeTenz6T/VXesfF1vGXuXLopd1qSRAsBTUgXvMFrEimooPNLk0QCtgTAaAAAAAMCXE2Di6iqTVrftAzc7+oMbnvpjf27S1cyyo9/6MeJom5n2x81hNMuyNBzzDmXNrbqSOu/KVUH6Ybli48dRb8UaYm4rG1Kx5CoS7rx/XwAAAABod0HDaKve890AAAAAAAAAAF3CFEaLEkbDFiUjhjCaIXr2tNsUZzyXJ6LjdYleNELCEKtKGyZXA34Wiub9xhThAzqB+Vja2mG0THnNc3k8NGD8Gb91mfIacVpsSckt6tjGtKYyk5rOTurR3FFj7GsrQgrrGX2XaH/8gCZiB3Vu7wWyrdqjYbV68a5X69blL3lGEh/cuE+T69/VwYHnbvt+yq73JArLqn1uUSJiiuY+9Ryf8jm2JaP7ar7PVnNW7zP0nnPepztWv6bPpP/VeKw8bbbwqP7nY+/V1YMv0TWJn9NAuDWDyAA6kynEOxoZk72F5wGgExBGAwAAAAD4ChRGY9LqtuSKrv765so/9PtucvUrL3EVJfT0JNP+eOY5Ruft9g6jHanvxYVahhPge8KVNgwY1hJGk6STWWlssDFjAQAAAABsXcAuGvF9AAAAAAAAAOhyecf7g+IeiygHtsYUb0oZJhs/7TaGSESyhYNQpt8346wpU17zDeAAZzJNyg8prF3h3U0eDdA8yehez+Xp4pwc12nZKEW27HHyvKSY3W/8Gb912fK6RiKJbY8Lnc91Xc0WHtN05pCmspN6KHuf8m59JxmNR8/WxBMhtItil6nX7qvr9oMIWxFdk/h5fXjmfZ7rb0h/TJfFf0gRO7Kt+zFF5GxtIYxmeG2YLszKdV1ZlqWUIQYcUli7I8ma77MV2Zat5w+9TJf3X6XPpf9Nt618perPfHf167pn/Xt63ejP6oeHX96U+B4AmEK8hKnRzQijAQAAAAB8BQkuMWl1e+5+VFrKVi5fWJfuPSFdeW7zx9SqXMNMavuMMNrEHkt3Hq+88ZHZoFOx20s5wK+17LGPtbpSjWG0hXXCaN3okQVXKxvSubul4RghSQAAAKAVmd7Pn2k150ridT0AAAAAAAAAdKuCm/dc3rMD4QN0hkSkegzCxDghOeIdzGkFScPvK0npwpzifYTREFy6MOe5fDQ6RhwEHc0Unii6Ba2WljQcac0wYMYQRouHfMJoPusyjvf2AElaKS1pOjOp6eyp/62UTtZ1+4OhYV0SO6D98QOaiB1omcfd5f1X6ZLYs3Qke7hi3UJxXt9YvlE/NvJT27oPxzWE0bYQZTS9Fi64ea2UlzQcHtF84YTnbUajexTqsOf7/tCg3rrnV/T8oZfpuvkP6fH8w76333Ay+mTqw7p99av66bF369zeC5s0UgDdyhSnTkT2NHkkQOsgjAYAAAAA8OUEmLjKpNXtOTJv/iM/MO/qynP5255m2h/PPDfpYsPnfdPe52i0vSABw+U2DBgWaw2jrTVmHGhNjuPqlz/h6p9udeW40nBM+sjbbL3+hzhmAgAAAK0maKZ8tb4XDAYAAAAAAAAAtJm84/1BcY/d2+SRoFMkDXGbzTEIL67rKmWYkGzaZisYCo8oYkVVdAsV69LFWZ3Xd9EOjArtyjQpf5RJ+ehwfuGJVHGmZQJNZ8o63idSx0LmKGbICqnXjinnVF6BO1vmxGw8peDk9eDGfZrOHNJUZlIzheN13X7EiurCvks1ET+o/bGD2tdzrm/AdqdYlqXXJ96h9x3/bbmqnMRx0+L1unrwJRoMD2/5Psoe25UkW1sIo0XNx7N0YVbD4RGlCjOe68eirRsD3q5n9F2i3z/3b/Wt5Zv0+YVPeB4DN3s095D++vjv6keGX6nXjr7VNyoJANuxYIhTm0KXQDcgjAYAAAAA8BUojNaGwaVW8lDKvO4Bn3XdyDXsj/aZYbQx79s9tqSqV3lsR0Eep8vZ9vvdaw6jcWGyrvKx211d+62ndv7lrPTGDztK/Q9bowPts58DAAAA3cD0fv5MK3zGBAAAAAAAAABdq+yWPWNOEmE0bF3CJ2J2OgbhZb28YgwktPKEZMuylIiMe8ZK0gXvyBVgkmZSPrpULNSveGhAGY8wWLowp4tjz9qBUVWXKXufSB2vEvCJh/o9n/NM20N3cFxHj+ePaSozqansIR3bmFLJLdVt+5YsndXzDO2PH9RE7IAu6NuviB2t2/Yb6aze8/SCoZfp2ytfrliXczZ048In9DN7fnnL23ddQxjNCtW8rbg9oD47rg0nU7EuXZzVRbpM84UTnj+bjHRuGE06FYZ8ya6f0JUDz9cNqX/R99e+5Xt7V66+tXyT7l67XT+V+HldPfjitpqbA6D15Z2cVspLnuv8PtsAOh1hNAAAAACAryDBJSatbs9Rn/jZEe9zCrqWaX88M4x29i5LUuWNs4VT++twrP5j20mO93dfT1MsSxsFKdbT+PHUS+1hNFcSXy51i7+/xfuAkHyPo/KHbb5oBAAAANoQ8X0AAAAAAAAA6F4FJ2dc10sYDVvkF4NIFWZ0Uewyz59LFc0nbyajrR2JSEQNYTSf3wnwki56x/QS0T1NHgnQfInIuHcYzfC4aAVZQ8gsZvuH0WJ2vxZVOaHBtD10rsViStNPhNCOZO/xfAxsx0g4oYn4AU3EDmoidrn6w4N13X4zvWb0Z3Tn2q3KOZUnuty2coteOPwqndX7jC1t25H3JApbds3bsixLiei4Hs09VLEuXZiV67rGMNpYdF/N99eOhsIj+oW9v63nZ16mT6Y+bPx7nLZWXtHH5/5Bt6/coreMvUt7e85p0kgBdDpTmFqSEhHeg6F7EUYDAAAAAPgKEkbLeF+kEQFlCuY/8vRsgH+ALmLaH8/sH+0dNm/jxHLnhdHKAXeT5Y32CqOVAgTfNlvyvkAnOtDxRVf3zZjXf+9h6erzmzceAAAAAP7cgO9bV81z3gAAAAAAAAAAHS7vE0brsfuaOBJ0EsuylIzu1fHcgxXr/EJh6YL3yUm9dp8GQkN1G18jmCZMpwutG/NB6yk4eS2XFj3XMSkf3SARGdcjuQcqlrfysTTrGMJoIf8wWjw04Lk849Q3ioXWs1HO6Ej2sKazk5rOTCpV9Dk5ewt67Zgujj1T+2MHNRE/oGRkb8dc+HogPKxX7X6TPpP+14p1rhx9Ov1R/cZZf76l39dxvSdR2FbtYTRJSkYMYbTirNbLq54BYUkaa/EYcL1dEr9c7z3v73XLyc/ppsXrVXT9J8o9tHGf/uqR39JLd71GPz76ZvXynhXANpkCvLZC2hVJNHk0QOsgjAYAAAAA8OUECBOt5xs/jk5W8r6giyTpyLzkOK5suzO+ANou00TqM/884z7nHZ1Yki7rsO9oygEDYstZ/2hcqyn6PDa8EEbrHvf6X4hJnznk6urzOW4CAAAArSJo9n218kK6AAAAAAAAAIAukXd9wmhWbxNHgk6TiOzxDqMZ4meSlDKEbxKR8ZYPeiSj457LU4ZJ1oCXxWLKuC5h2MeATpKIGiKTLXosdVxHmbJ3GM0UPjvNFE7LGraH9lV2S3p44wFNZyc1lTmk47kH5ajGK5n7sGXrvN6LNRE/oP2xgzqv7yKFrM5NWbx4+Cd06/LNWijOV6x7IHtY96x/TwcGrq55u6Z/E1tbC6OZnrfThTmlfF4PJ6P7tnR/7SxsRfTK3W/QcwZ/RP+R+mfds/4939s7KuuWpc/qzrVb9cbkO3Ww/7kt/14BQOsyBXhHI2MKWaEmjwZoHZ37ahIAAAAAUBflADNXM4TRtsUv/pQtSI8tSefubt54Wplj2B/P/O4gGraUHJBSHheqOrHsSuqsLxsc0x/mDCttNsGcMBpMsv4XYNIt97vSNc0ZCwAAAIDqTKHzM63lgibUAAAAAAAAAACdJu+YT27qsQmjYeuSUe8rqfrFbUzr2iEIlYh4j3G9vKKNckZ9oXiTR4R2ZHoMWLK1O5Js8miA5jMdS9OFObmu23Lhm7yzIdcQU4rZ3uGz0+K2dzgtU/Y4ER9txXVdpYozmsoc0nR2Ug9kDyvn85p7K5KRvdofP6iJ2AFdHHtmV73OiNgRXZP4BV07837P9TekP6ZL41cqYkdq2q7jGsJo1hbDaKbjWXFW80Xvq5X32TENhIa2dH+dYHdkTO/e94e6Z/17un7+IzpZSvvefrm0qI/MfECXxa/Um5K/2BbvGQC0HvPnEN7BXqBbEEYDAAAAAPhyAlwAhjDa9pSq/I0fWSCMdpppIrXt8d3yvmHvMNpR/+8k2lKQgKEkrZovqtqSTGG0kC2VPR43yxkm0HeLQpWdfqPYpIEAAAAACCTou7V2C3oDAAAAAAAAAOon55hPbooSRsM2JCLek4j94japwoznzyQj3pG1VuIXYkgX53RO6IImjgbtKl2Y81w+EhlV2Kot8AK0o6ThWJp3c1otL2sovKvJI/KXKa8b18VD/mG0mGG93zbRutZKKzqSvUdT2UOazkxqqbRQ1+3HQwOaiB3QROyA9scPaiSSqOv2282B/qt1Ud8z9eDGvRXr0sU5fXP5C3rZyE/WtE3HEDm0FNrSGE2vDXPOho5mpzzXJaP7Wi4AuRMu779KE7EDunnx0/rKyc+orJLv7e/L3KW/eOTX9YqR1+vlI9coYkebNFIAnWCh6P0ezBS4BLoFYTQAAAAAgC8nwMzVTJ4Y0XaUDPGn004su5L4UkEy749eYbSLxizd/VjlD0zPdt7+GiRgKEn5NotFmR4biX5pbrVy+TIT6LtGwf87xarHVQAAAADNZQqdn4kwGgAAAAAAAAB0r7whjBa2IgpZW4sAAJKUjHrHzE7FbZY0FB552nLXdZUuzhq21foTkofDuxW2Iiq5lScMpguzOqeXMBqqM03KHzWEBoFO4xuZLMy2XBgt63hcTfwJ8dCA78+awmlZhzBaOyg6BR3dmHoyhPZY/lhdtx+2wrqgb7/2x67QRPyAzup5hmzLrut9tDPLsvSG5Nv1/uPvketx2cAvLl6vqwdfooHwUOBtuq735JDQFv/uSZ/n7vsyd3kuHzO8fu5GUbtHr028VVcNvkifSn1YR7KHfW9fcov6wuIn9b3Vb+jNY+/SpfErmjRSAO3OFKf2e10KdAPCaAAAAAAAX8HCaI0fRycrVg2jNWcc7cC0P3pdjGbC8P3NtPfnhG2tHHCCea7UXpE902MjOegdRlvKNnY8aB35KmG0E8syXs0VAABgKx5KufrSfa6iYenVz7K0d5jXGUAjpM3nagMAAAAAAAAAOpwpjNZj9zZ5JOg0iUi1uM3Tw2jr5RXlHO+rufhtq1XYlq3RyJjmCo9XrDMF34AzpQve+0o7PAaAeojbA+qz49pwMhXr0sVZXahLd2BUZpmyd8TMkqVeO+b7s6ZwWqbMF/ityHEdzeSPayo7qenMIT20cb+KbqGu97Gv5zxNxA5of/ygLuy7VFG7p67b7zRn956v5w+9TLetfKViXc7J6saF6/TTe94deHtleU+isLS1MFp/aEi9dp/n69vV8pLnzyQjhNHOtKfnLP36WX+uH6x9W59OfdT4tzstXZzT///4n+mK/ufrDcm3a1dktEkjBdCOik5BS6UFz3XEqdHtCKMBAAAAAHwFCaOtE0bblpL3BV2eNEMY7UmuYX+0PZoE+w3nXjyYkkplV+FQ54QMnCr70Gn5ygtAtjRjGM1w4bKlynMP0KEKVcJo2cKpUN5IvDnjAQAAne3zk67efK2j3BOvp3fFXH3pN209+7zOeU8BNJrp/fyZZleIHAMAAAAAAABAtyq4hjCaRRgN2xMPmeM2qeKsLtRlT19mCEJJUjLaHlGoRGTcO4xW6MAry6Ih0kXvfSURZVI+uoNlWUpEx/Vo7qGKdX7PEzvFFEaL2f2yLf+YUszu91yeNWwTzbdcXNRU9pCmM5Oazk5qrbxS1+0PhUe0P3ZAE/GDmogd0GB4uK7b7wavGX2rfrD2bc/42LdXvqwX7nql9vWcF2hbrus9OaTaY9nEsiwlIuN6LH8s8M+MRfdt6b46nWVZevbgj+iy+JW6cfE6fWPpi3LlP5nn7vXbdX/mLr169C16ya6fUMgi7wKg0kJxXq68T7Jsl88hgEbhmRMAAAAA4CtIGC1T3wvMdB3CaMGZ9kev6dL7xy3J40PBYlk6mpYu6aBzM8oBJ5jnq8SkWo3psZEY8P63Xco2djxoHQVDNG+zB+al557f+LGgMb57zNUHv3bqq51XXib97HMt4hgAgB3hOK5+5RNPRdGkU687r/orR861oZ0bGNBmAr5tVb5E5BgAAAAAAAAAulXeMYTR7L4mjwSdxi9uk/aI26SKM57b6bVj6g8N1X18jZCIjkseFxpNF1sv5oPWU3bLWiymPNclIkzKR/dIRgzPHS14LM2W1zyXx0Le0bPN4obbFNy8ik5BETu6rbGhdjlnQw9m79VUZlLT2UOesdPt6LF6dVHsmZqIH9D+2EHtiZ7FObrbNBge1itH3qjPLny8Yp0rR59OfVS/ftafBfo7O4bQVkhbP1ctEd1TUxgtGd275fvqBn2huN6YfKeeO/hSfXL+w3o4d8T39nk3pxvS/6I7Vr6mt4y9WxfGLm3SSAG0C9PrS0u2RsLJJo8GaC2E0QAAAAAAvpwq0S5JWvc+HwkBFasEfmaWg04f7nymv4RtV35BdPGYZFveMbWp2Q4LowV4nEp6WsyhHZgeG6OG7+iXN06FK7z2B3SWfIB9+cicq+eez77Qjr50n6tX/cNTB7brvifdOyN94PX8ewIAmu+Oh6XHl7zXve8mR3/wqq1diRPoNm4NH23MLBNGAwAAAAAAAIBulHc2PJf32L1NHgk6kSluk/IKo3ksk6REZE/bREOShniVVwgOONNSMS1H3idwjkY66ORboIpE1Ht/b8VjacZZ91xuip5tFgsNGNdlnXUN2SNbHheCcdyyjueOajp7SFOZSR3bmDYeh7fCkq1zey/QROygJuIHdH7fJQpbkbptH6e8ZNdP6NaVL2mxOF+x7kj2Hh3OfF+X919VdTuO6z05xLK2fp5arWFTwmjBnN17vt5zzvv0nZWv6rPpjyvjeEcqT5spPKq/e+wP9dzBl+qnEj+ngXB7RJcBNF66MOe5fCQyqojNcza6G2E0AAAAAIAvr6jUmTKFxo+jk5WqfGe16HHVvm5lCvV5dbB6I5aeMSodTVeum5pz9ZNqjxOUggjyOJWkfKmx46g3Uxgtafj+3XWl1Zw0HGvcmNAaCgG+65/2/l4ALc51Xf3adZUH+w9+zdXvvtzV6EDnHLsBAO3hu8fML7bf+xlXv/cKVyHCvEBVtSTfZ5alZ+5r2FAAAAAAAAAAAC0q73hfoZUwGuohETWEwoqVcRuvZVJ7BSJMv+9KeUl5J8fjCr5ShseAZA5FAZ3IFBJKF+fkum5LxTKzZe8Yj1/07KnbmONpmfK6hsKE0RohXZjVVHZS05lDOpI9rA2nvpNGRiNjmogd1P74AV0Su9z33xn1EbGjuibxc/rIzF97rr8h9S+6NH5F1SidKYpnaxthNMNrQy/D4d28VqyBbdl6wfCP6UD/1frswsd1+8otVX/mjtWv6Z717+l1ibfpBUMvk22FmjBSAK1soeg9AarWsCXQiQijAQAAAAB8lQ0hqs3W840fRycrVfkbL3hfwKkrmQJgpu+V9497h9EePVm/MbWCII9TScoVGzuOenJd1xxGGzT/3FKWMFo3KASI/J1Yavw4UH93PSo9lKpcnitKtx2VXnew+WMCAHS3bJUQ+OET0sGzmzMWoJ25NZTRZlZcqYNi5ttxLH3qvfGFSRFhBAAAAAAAANDxCKOhkZKmuE1htiJuky6YwmjtMyHZb/J0ujCns3rPa95g0HYWCt6T8gdDuzgmo6uYjqU5J6v18qoGwkNNHpFZtuwd1Yrb1WNYMTvus10mMtRLprymI9nDms4c0lR2UovF+bpuv8+OayJ2uSbiB7U/dkCjhCx3xMH+5+nCvsv00MZ9FetSxRl9c+km/ejIa40/77quXMPlB21rG2G0GsI6Y20UA24l/eFB/eyeX9Xzhl6mT81/SI/nH/G9fdZZ13Xz/0ffWblFbxl7l87pvbA5AwXQkkyfQ4xGeD4HCKMBAAAAAHyZQlSbFUpSqewqHGKC5laY4k+nncxIZcdlAqxk+IpHMv1pxgYtz5862WHf0QZ5nEpSPkBMqlX4/U6Jfu9/V0lazjZmPGgthSrHTUlay9VQXkDL+Nwh87/b4ROuXneQ50IAQHNVC4EveF9wF8AZagqjLTduHO1iLefqp/63o69Nn/rvi5LSZ37Z1qV7eT0MAAAAAAAAoHMZw2hWX5NHgk6UMETN8m5Oq+VlDYV3SToVo0gVZry3EWmfSMSuyKhCCqusypMG08VZwmjwlS56T8pPENlBlzE9d0inHietFEbLON4nsMRC1cNoUbtHESuqolt59cCs02En3TdRyS3q2MYRTWcmNZU9pEdzR+Uq4NXQAwgprGf0XaL98QPaHzuoc3ovkG2F6rZ9bI1lWXpD8u36wPHf8QycfXHxk7p68MXqD3tfKd7x2Udsbf3f1+94dqZkdN+W7wfSBX0T+v1z/4e+ufxF3bjwCeWcDd/bP5J7UB84/nt64fAr9ZrRnwl03AbQeczvwdon0A40CmE0AAAAAICvoMGlTF4aijV2LJ2qVCXw47jS0uxJ7b73S9LaSenqV8g6+6LmDK7FOIbveUzTgncbvhNYzHRWMKkc8DvSdgqj+QUDTf+ukrREGK0r5IvVb7NWJWKC1vRfk+bj87F0EwcCAMAT0lXO72yn19hAu5hd2ekR7Lxf/YT7ZBRNkh5MSW+51tHkn9iyLOJoAAAAAAAAADpT3vWeMN5j9zZ5JOhESZ+oWbow82QYba28orzrHelrpwnJISuk3ZGkUsXKyFu64D3hGjgtXZzzXJ6IEEZDdxkIDanH6vV8XkgXZnV+38QOjMpbtux9gkvQwE48NKDl0mLF8kyZKwYG5bquZguPaTpzSFPZST2Uvc/4mmKrxqNnayJ+QBOxg7oodpl6bQLCreic3gv03KGX6jsrX61Yt+FkdePidXrL2Ls8f9ZxfcJolr3lMQ2FdhkDiGcaa6MYcKsKWSG9dNdrdOXAC3RD6mO6c+1W39u7cvTN5S/qrrXbdE3iF3TV4Is4PwjoImW3pMViynMd78EAwmgAAAAAgCqChtHWCaNtWSlA1GrhN9+skbknPgwP/Z70x/8q60ff2NiBtRHb8B3P7rj38sUOu3hV0MdpLkBMqlX4hdH6ItJAr7Tm8V3xUqZxY0LrKFQJSkrSqv/FldCCVjdc3fO4ef33H+msqCUAoD3MLfs//5yKLnMSElBNLa/kZqs87jqd67r6wuHKv8G9M9Idx6TnXbADgwIAAAAAAACAJsg73uEIwmioh3hoQH12TBtO5ZU308U5XajLJEmpQmVI7LRkpH3CaNKpkJtnGK1IGA3+0gVDGK2N4oBAPViWpWR0rx7LH6tYZwoI7pSMIYwWt4OF0WJ2v5ZVGUYzBddwykppSdOZSU1nT/1vpXSyrtsfDA3rktgB7Y8f0ETsgIYju+u6fXL/LZIAACAASURBVDTOa0ffqrtWb/OM4926/CW9cPiV2ttzbsU6R+aT5G1tPYxmWZYSkXHNFI5Xve1YdN+W7wdPNxwe0dv3vkfPz7xMn5z/sOdr883Wyiv617m/1+0rX9Fbxt6t8Z6zmzRSADtpsZiWI+/JpUnegwGE0QAAAAAA/oIGlzLVLxwCA78A1GkLKwVdfPo/ymW5f/PL0o+8Vla0p5FDazmm/dGUITCF0Y7M12U4LaMcIK4nSflSY8dRT36Pi0hI2hUzhNGyhCm6QTHAvuy1f6C1Pbbkv/6+GenInKtL9uz8Y/z7j7j62G2u0muuXn6ZpXf+sMWVuQCgQ2WrvNfttOgy0ChuDa2zmZXGjaMdFMvSSUP0++N3uHreBbzuBAAAAAAAANCZCKOhkSzLUiK6V4/mHqpYtzmGZoqG9dkx9YcGGza+RkgYQm6pAmE0mDmuowVD8Gk0sqfJowF2XiK6xzuM1mLH0mx5zXN5LDQQ6OfjIe+Amim41q0KTl4PbdyvqczdmspMBopM1SJiRXVR32WaiB/QROyg9vWcy7mpbWooPKJX7H69/mvh3yvWuXL06dRH9Wtn/WnFv6/jmieG2FZoW2NKRIOF0ZLRvdu6H1SaiB/Qe8/7B92y9FndvPgfKrr+JyU+uHGf/r9HflMvG3mdXrX7TbwnBjqcX7yc92AAYTQAAAAAQBVOwODSOgGaLSsF+BunQ8mnL8isSvd9V7rihY0ZVIsy7Y+m7/t291uSKmdf54rSStbVUKwzvigMGjAstFEYreQTRgs/EUZ71OOiWkuVF/REByoECEqu5Rs/DtTXiSphNEna/98dOddu74v97frmEVev+l+OcsVT//2fd7m661Hp/7y1M55TAABPV+11x6IhXgTg6Wrooul45UWou4pfRO5oqpa/JAAAAAAAAAC0F8JoaLRkZNwzjLZ5ErIpGpaIjLddmCQR9Z5A7TfpGlgtLRljHabYHtDJjJHJFjqWuq6rjOMdMDMFz85kCqhlHO/gWrdwXEeP549pKjOp6ewhHd2YUsmt3wn5liyd1fMM7Y8f1ETsgC7o26+IHa3b9rGzXrrrtfr28pd1spSuWDedndS9mR/oWf3PftpyVz5hNNnbGk8iQFwnpLB2R5JVb4faReyIXrX7jXrOwAt1feojujdzp+/tHZX15ZM36Pur39Ibk+/Ugf6r2+79CIBgFgreYeqh8Iiidk+TRwO0HsJoAAAAAABffpMxN8v4X7ACPvwCUKfNeH2pevg7XRdGM+2OtuE7npG4eVvvv9nV+67pjC8GggYMT0d82kHR53ERCZn/bQlTdId8sfqT0xrBzrYzsxLsRcddx11dee7OHb//+ktOxfH02m+5+u+vdjU+3BnPKwCAp1SLC/P6Ewgm6OdLkjS7Iq1uuBrs687XVn7x8wdTzRsHAAAAAAAAADSbMYxmEUZDfSSi3nGb9KZJyOnijOdtktG9DRlTIyUNMZ/l0qIKTp4J1vCULnpPypfMsT2gk5mfO1onjFZ0Cyq53ieJm4JnZzIF1LJl7+BaJ1sspjSdmdRU9pCOZO9RplzfONxIOKGJ+AFNxA5qIna5+sODdd0+WkfU7tFPJX5O/zz7t57r/zP1UV0aP6iQ9VTuw3F9wmjW9sJoScPxbLNEdI9sa2cvYN3pRqNj+uWz/kj3rH9P189/xDOct9lSaUHXzrxfz4w/W29KvlOjvB4DOo4pXk6YGjiFMBoAAAAAwJffZMzNMvnGjqOT+QWgTjsR9jipprev/oNpcab90TbMlR4fMm/rc4dcve+a7Y+pFZQDPk7zpRpmou+wamG03aYwWvd9/143ruvqyJw0HJPGBtXSVxQqBDhuruUkx3Flmw4QaDknloLd7hsP7GwY7aZ7K5e5rnTtra7+5DXsbwDQaaq97lgmjAYEUksYTZKOzEvPOa8hQ2l5fp/Fza00bxwAAAAAAAAA0Gx51xBGswmjoT5Mk4pThRm5rivLspQyhG5MYZxW5jfmheK89vac08TRoF2YJuXH7H7FAwaWgE5ieu7IOuvKlNda4nHhF+6K297BszPFDLerdxSsFW2UMzqSPazp7KSmM5NKGSKpW9Vrx3Rx7JnaHzuoifgBJSN7W/ocbdTXlQMv0DeWv6CjG1MV61LFGX1z+Sa9dNdrnlxWlvlkNUvbC6MlAoR+x6L7tnUfCO7y/qt0Sexy3bz4H7rl5OdUlv8VXO/N3Kkjj9yjV4y8Xj82co0idqRJIwXQaObPIQghAhJhNAAAAABAFUHDaOuE0bbEcdxAf+OZsMeXqpnV+g+oxZUNF8AxdY8uSJi3NT0nnVhytW9X+3+x6JgvDPQ0ee+LgbWkamG0kX5LUuWDZynTPvG3VvLAvKuf+6ij7z586r9f/Szp42+3tSvemo+Pgv/3fk/KFKQBzo1tGyeWg91u2nxR0h11f33PhQEAtIhqrzvWcrz+BIKo9ZFyZM7Vc85rzfcjjeYXkcsHfC8EAAAAAAAAAO0o75jCaN13AVE0RtIQCsu7Oa2VVzQQGlLaMCE5aQjjtLKRSEK2bDmqPMEwXZgljAZP6YL3yVmjTMpHl/KLTKYLs4r3tUIYzXxV6XgoWBjNFHjL+my7XZXdkh7ZeFBT2UOayhzS8dyDns+VW2XL1nm9F2sifkD7Ywd1Xt9FClnkHLqVZVl6Q/Id+sDx3/Fc/4WFT+qqwRepPzQoSXJd874YskLbGksiUv25PBkgnob66bF79brE23TV4Iv1qdS1eiB72Pf2RbegGxev0/dWv6k3j/2S9scPNmmkABopXfR+D2YK9ALdhlfSAAAAAABfphDVmTJ5V1JtE1bXc65umZIeW3L14ostPeus7pvwGvTveyJc+QWDu5yu8S/e/hxDRc4URrMsS594p6Wf+Sfvnzt+Utq3q16j2zlBA4a5NppAXfJ5bIRtaXfce91ipjHj6WSO4+od//JUFE2SvnBYes9/uProz7fmUSZoGG0tRxitnRxNBTuYPTDXmgGaQqk1xwUA2B6/YK8krREJBxoi3fkXnTYK+h4fAAAAAAAAADqJ67o+YTRO/kB9+E0qThVm5EZd5V3v/dAvjNOqwlZEI5GEForzFevSRe8AHGDaN9oxDgjUw1BolyJWVEW3ULEuXZzVeX0X78Coni7rmL9gjwUOo3nfLuO0fxjNdV2lijOayhzSdHZSD2QPK+ds1PU+kpG92h8/qInYAV0ce6b6QoYT3dGVzu29UM8dfInuWP16xboNJ6MvLHxSbx77JUnyjfTZsrc1juHwboWtiEpu0Xibsei+bd0Htma852z9xll/rjvXvqX/TH1Mq2X/q42nijP64ON/qisHXqA3JN6u4cju5gwUQN05blmLhjCaKe4OdBvCaAAAAAAAX0EnY67XOBl8ftXVK//e0eTjp5e4+p9vtvQbP7q9D+vbTbVJ9qfNep1QsLxY38G0AdP+aAqjSdKbn2MOoy10yETroI/TvPk7rJbj99iIhKTdhu/pF9v/+/em+84x6bajlcs//QNXH/pZV9Fw68XR8gHDaKsb0t7hxo4F9XOk8hxMTw8EvF0jmAKdUvD9EgDQXqoFWde950UAOINbY+wrU3lOedeo9W8FAAAAAAAAAJ2g6BbkGiIAhNFQL/2hQfXZMW042Yp1p2JQ5g/pk5HKi9u2g2Rkr3cYreA98RpYMOwbo5E9TR4J0Bosy1IiMq6ZwvGKda1yLM2UvU+e7rX7FLKCZQRioQHP5dlye55sv1Za0ZHsPZrKHtJ0ZlJLpYW6bj8eGtBE7IAmYge0P35QI5FEXbePzvPaxNt019rtKriVE69uXb5ZLxx+lcZ7zpbjmsNolrW9uVa2ZSsR2aPZwmPG27Tra95OYFmWnjP4Ij0z/mx9fuET+ubyTcb3yKfdtXab7lv/gX5i9Gf04l2vVsgKNWm0AOplqbSokut9ojLvwYBTCKMBAAAAAHz5BUA2y9QYRvvAze6mKNop77ne1Zuf7WrPUOtFeBql5P859ZOWbY+yz0p9v6BrB6bdMeTzHY9lWTprl/T4UuW6hXVXUvvvb4HDaG0U7akaRjNcSGsx05jxdLL/9VXvHWg9Ly2st2ZYrBAwKjm3Kk1wkZS2kMm7evRksNvOr0nFkqvIDkT7/I5NQfdLAEB7qXZ8X6vxvTDQrWptfdX6OVMnCfoeHwAAAAAAAAA6Sd4xX42GMBrq5XTc5tF85VUkU4VZ48/12XHFDcGYVpeIjkvZuyuWnwrBAU/nuq5x30hEmZSP7pWMeofRUi1yLM0awmgx23AVag9xw203nKzKbrnlYztFp6CjG1Oazk5qKnNIj+WP1XX7YSusC/ou1f7YQU3ED+isnmfI3makCt1lODyiV+x+vT6/8ImKdY4c/Wf6Y/rVs/67HJlPVgtp+4/DRHTcN4w2FiWMttP6QnG9aewX9byhH9V18x/SI7kHfG+fd3P6z/RHdcfq1/SW5Lt0QWx/k0YKoB5MYWpJShBGAyQRRgMAAAAAVBF0MuZ6jRNWP/zNyg07rvTZQ67e/aL2D1UF5RdY2WzN68vGpXR9B9MGTPujXWWXGe03hdG2P6ZWEPRxmis2dhz1VDWM1m/Ja2r9wvqpk3Msq3uOI9t1bMG8Ay22ahgtYORvZrkz4ofd4MFU8Nu67qno3dkjjRuPiV8cJ99Gx1gAQHDVXnesmefoANjENbztCNve0fhaP2fqJITRAAAAAAAAAHQj3zCa1dfEkaDTJaN7PcNop2JQ3h/SJ6N72/Z8NNNEasJo8JJx1rThZD3XMSkf3SwR9b5Cb9onqtlMWcf7hPhaop6xkDmitlHOqD88WPO4GslxHc3kj2sqO6npzCE9tHG/im6hrvexr+c8TcQOaH/8/7J33+FxVIfawN+ZLZJW3dJKstzBxqaFltAuaUAaKRdISOAmkOTmBpIQQgmhhl5DS0IJLRA+SgoQIISSEEIJYDCYYoyxZWNbLpIsrbq0K22b8/0hy15J58zOrLbM7r6/5+HBmjMze3anz5zzzr5YWLYHvHpJWudPxeeI2v/Gq/3PoS/WPaXsw+A7WDX8Nuo8jcrptTSE8Zkdz8v0clS4qqf9GZQec0p3wdlzr8XSgefxROB+5b5+XFu4FTduOR+HVB2Bo/0nodLNZUmUD1TX5hWuapS5yrNcGyJnYjAaERERERERmbLaGTNo8znSiCI85L7XBH70aXvzymeyzr8yQ64qGNCgJza86XHGw9RsUgajJXnG41c8q11rI4jHyQyL65Fqu3OimEn4kFsHGhTP6qNxoDcI1Fl/yVnR85i8PMqp4YFhi8Fobf2ZrQelz5oOe+kPbf05CkYzWffMQtOIiCh/Jdu/MxiNyBpVMFpFKdAv6VsRLOJgNNVvNS4WF3C78rPzFREREREREREREZFKWIwoy0r00izWhAqd3ysPg/gotApb9A3yafI4EEoV5tMbDeDBbbemPF8X3JhXthAfr/wkg2Icbjg+iLcHX0VbuBUGzBubhuLqBoOqdYmoGPg98vW/PbxpWvtSu2rd9fhYxYGYU7rLhOFBxbbrsxGmYRaiFjSGUIGdwWhCCHwQXI61oZXKMMVMGjVCWBdahaH4QFrnW+2egd19+2BJ+b5Y4tsHVW4Hvlma8ppXL8Ex/u/i3o4bpeV/6rwDc0t3VU6vIx3BaOrjeWMehwEXKl3TcVjN57FPxUF4ovt+vD7w76TTvD74b6wYXoaj/Sfi0OrPQU9DoF4hyvWxLJ08mhfzS3fDAVX/BbfmyXV1yKYuRdBuPt+HIEo3BqMRERERERGRKavBaAPqdklTBMPqmSYLuCo0ZuFPkwX1clQmvuVjoAciEobmLZ5GJaoAMD3J85f6Sg2ytzne+6rA3SeKvH+AY3U7DaX3RVgZFTULRnMBM01eYNMxwGA0O+ImbZ16gtmrhx1m4VSJ2hmMljdaOu2Nn6tla7ZvsrpeEhFRfjHb9wNj59hxQ8CV7KKEqMipLlsrSuTBaPl0/Zpuya7xg2Gg2peduhARERERERERERFlS9hQv42GwWiUTn5Ps3T4YLwfiMsbpDR45dPkA1X4hYDA0oHnpzXvVwaAV/v/idNmX4YyFx9eOFFftBu/3XIxuqLt05qPVytBlas2TbUiyj+qYMCwGJ32vtSuf/Q8iu83n4X9Kw/dMSwUH5KO69PVYWdTxnWpG15PDk18pOv3eKn/acvzdqoSrRSLfHthSfk+2N23L5q8s/O+TwE53wGVh+HFvqewcbRlSllvLIDe4YBy2nQEXJkFnTZ4Z017/pQZle5qnNh0Gg6tOhJ/6rwD7ZFNpuOHjGH8sfN2LB34N05o/NGUQE0CHu66Gy/3P5PraqTNy3gGywZfxI9n/RIeneFo+SQQ3SYdzmBqop2KrLs5ERERERER2WU1cKl32OKIADoH1WWuInuWlKyTfaJBvWrqwO7pNVbIN6r1MVkGgVlI1ivrUq+PU1jdToPhzNYjnVTbhlsHNE1Do2RzGNeR3heAFbwRk8CBbhv79myKWNx3Mhgtf6y1GYzW1p+bddMs/CzMYDQiooIjhLAUfJlP59lETlOp6Ms2POrMa5FsSPbNizk0joiIiIiIiIiIiAqXKhhNgwaP5s1ybaiQpdK5WBUulg/qPI3QkLmGua2j6/DG4AsZmz9Nz4t9T007FA0A6j1NDAuioub3NOW6CjvEEcNjXX+AIXY2pA1OCi4bV24SdjZZiVYKF9zSsmBC8FpHeEvehqJp0DG/dBG+OOM4nDHnSly/6AH8ZPYvcXjtVzGzZA73c5QVmqbhuIYfpDStDte0P9/svLYxj8OAi8Wuvt1x/vyb8HX//6JESx4g3jq6FtduOhsPd96NkXgwCzXMD+3hzQUVijZuTWgFVgy/ketqkE2BSId0uJPOP4lyjcFoREREREREZMowrI0XkL9oSMo0GK3IrlRjFn9fABjSJQ8nu+U3wApVqsFoC+rUZZc+aWMhOJTVYLR86jyt2jbc25/ned0a6hXP6zsGircDfSpGTcI+uuVtJXLOSkAJAASGuC7kix6bIXy9OXo2axbKx2A0IqLCE7MYxjok76dDRAmE4nSvokQ+PJhH16/pluxeXDH/NkRERERERERERFS4VMFoJXopQyoorRpSCDlrSCFMzSk8uge17vqMfsaq4DsZnT+lblXw7bTMx+9lp3wqbjXuOkcFtfbGAmgPb97xd8iQd+TwuSotz1PTNGWQWmLw2od5ts+v9zTisOov4IfN5+D6hffjnHnX42v+b2M3315wa55cV4+K1Pyy3XBg1WdsTaNBh1uThxfaUeupV4YgNngYjJYPXJoLR8z4Gi5ZcBsOqDws6fgCBl7qfxqXbTwVbw2+DKFqxFVECvn65YPg8lxXgWzqiwWkw+sZjEa0Q5F1NyciIiIiIiK7rAYu2QnP6TIJUSu2UBGrHe0BYEiXPJzs2pq+yuSBVIPRjtlPPcJLa4FL8jwczep2GjOAaCw/HmREFduGJ+FFRzOr5eN0DKS/PoVsxKRTfY9Dg9GsHit6+GKjvGH3+J+rABrVvgmwHthHRET5wywQMxGD0YiSU12JKoPRwhmriuMlu8Yv5t+GiIiIiIiIiIiICpcyGE0rzXJNqNBVuqsxp2QXy+NXuKoxp9T6+E60R/n+GZ1/IFJcL/jNF4YwEIhuS8u8Mr0OETmdrunYvXzfXFdjgq5o+45/JwaXJVIFnan4FOOHjJ3z74o6e59fppdjv4pDcELjj3H5gjtw+S534n+afoz9Kg9Vfj+iXPjv+u/AqykazUjMK10Ijz79gEaX5sKS8n2mDHdrbiz2fWza86fsqfHU4QfNZ+O02ZdaCrUbjPfjDx2/xm+3XoyO8JYs1NC5Cvn6JRBJz/k/ZUdcxDFihKRl1e7aLNeGyLkYjEZERERERESm4hbzogI2wnM6B9U9PIstxMYsYGWyQVkwWtv69FUmDyiD0ZLc4Zhfr+FrU5/f7HDFUwLvbs6PwDAZw0auW8gkBMtJVPsed8KybqqSj2MnqJGA0ai6zKnBaFYDqIrtmJLPzNZDmVwF0Jite239QDiav8cSIiKayuo5R76cYxPlkuplo6pgtOEiDv9KdkYZ5D6HiIiIiIiIiIiIClBYKILR9LIs14SKwdH+k+DRkgdLaNBxjP8kuDVPFmqVOZ+bcTRq3HUZm39PtAtxwTcKOk1/rAcxYbNRlsT80kX4RNWn0lAjovx2VN23UC5ry58jnZG2Hf8OKYLRfLq9ILByl/z7BeNDO/7ttDAZF9xYVLYnvlr/bZwz9zpcv/B+/HDWufhkzRdQ723KdfWIlGo99fjuzNOhW4j68GolONp/Yto++8t1x6NML58w7Et130KFW9E5gxxt9/J9ceH83+Kr9f9j6RpnbWglrm49E38LPKAMKC903WkKD3aiQv5uhWgkru7wpDovIypG7lxXgIiIiIiIiJxNFUQ1WV8IiMUF3C4t6bidg+qy1m6gPyRQ40s+n0IQsxFoNSx5mCq2rENx/FJjVAFguoUf4dKv6XhyhfoH/3+vC+w3Nz9/TavbKTAW2lDty1xd0kX1nbSERVRfqUHWZdypYV5ONWrSJq0n6LyQJyEEIhZDJXuGx8bXtPzctotJ2GbbyJwFoyVZ94693cBTp+lc54iICoTVIOuR6bclJyp4ymC0Uvl1XbCIg9GShZ8X829DREREREREREREhUvVIbtEL81yTagY7F6+L86ddz3eGVqKQETecbzGMwP7VByEXcqWZLl26ef3zsS5867HW4P/wdZwK4TqwU0SYTGC94ffnDLcQBy90QD83pnTrSqlUcAkFOHjlZ+EliSIxa27Mb90NxxU9Rl4dcXbjoiKyNzSXXHuvOuxfOhVbItsUT4DT7cNo6vRE+2aMjwxGC0xuCyR3UANVZBaYvCaat8yv3QR/J5mW583HdXuWizy7YVFvj1RyiBdylP7VR6KX8y7Du8PL0N3ZOp2DgBNJbOwb8UhmFkyJ22fO79sEc6bdwOWD72KYHwIe5Tvhz3K90vb/Cn7PLoHX6r7Jj5R+Sn8peturAq+bTp+HDH8s/eveGvwPziu4f+wT+VBWaqpMwSi8pDPbB/LpmM4PoDVofemDB+KD2DUGOGxMU8EDfk5HAD4XPYCbokKGYPRiIiIiIiIyJTVwCUhxsLR/Baen3Wp79sgZgDPfiBwwoH5HSjyziaBsx8xsHwTUOMDjt1fwzXHaCjzTvxedoLRBmUPJ7esm2ZN84tqfbQSjLZbg3n57S8J/OZb9uvkBHEb61Eokrl6pJOhaDGQuKzrFPd5u4edF+blVEIIjJisE90ODJmLG+pQhcnCsbF1vpztshxPFYzmcclDaYZGc7OdJwvIefYD4In3gGPYPoCIqCBYDWPNl3NsolxSnb2pztWDRbxdJTvTNbuGIyIiIiIiIiIiIspXYWNEOpzBaJQpzSXz0FwyL9fVyJpq9wwcOePoac0jbIzizHXHS8sC0W0MRnOYQEQe+FDhqsL/Nv88y7UhKgz13iZ8se4bWf3Mx7ruw/N9T0wZ3hVpBwDERBRhIQ+YtRuooRo/ZAzv+KzeaEA6zhfrjsPHKg609XlEBMwrXYh5pQuz/rl+70x8qe64rH8uZVa9twk/mfVLrBhehke6fo++WLfp+L2xAO5svwZ7l38CxzX8H+q9jVmqae6MHcvkv0s+Hcu6I524eOMpirJtmF26IMs1olQkhs9OZjfglqiQmce6ExERERERUdGzGowGAL1Ba+N1DZqX/+Z5kfIb6ZygZZvAx68y8NJaYDgMbO0Dbv63wMkPTP1OyQJWEvW4Zkwd2NGacj3z0XSC0XwlGubVqcujcSAYzs/1zs52mi+hDapdQOKyrlc8r+9xYJiXU8Xi5uuPE4PRVAFaKlwf8kM4Kh+uClwdkrfjybiIhfXv0idtpFUSEZGjWdnvAwwpIrJCdY1XqejPNjACxO1c7BaQZF87FCnO34WIiIiIiIiIiIgKW9iQNwRgMBqRc5Topah21UrLVCFclDuBqHyZ+D0MsCPKJ43eWdLhnZE2CCEQiqs7cJTbDEZTjR/cHtrRE+2CgLx9JPctRETOoGka9q08GBcvuBWfn/F16HAlnWZl8C1c0Xoanu15BFFD0ai/QPRGA8pjWb2nKcu1SV2tpx4uuKVlgei2LNeGUhWMD0mH63ChROP9MKJxDEYjIiIiIiIiU3b6oAbD1sZ75G3zmb7VCux1qYF1nfnV0dMwBM551MDuF8tvkj60TGB918TvFLMRjNbhltxk7Q9AxGymBOWx6QSjAcB/72s+4tubbFbIIQoxGM3KslYFozkxzMupRpI8t3JiqJjVgJJx25KEcZIzqALvVNu5k4PRVrYhrwNeiYhoJ6vnHQwpIkrdzGr58LgBBOTtfgqekSRnN1+u64mIiIiIiIiIiIjsYDAaUX7we+XBN6oQLsodVVidahkSkTOpgtFGjBCG4gPKQA0AKNcVb6ZV8OnyBpuh7cFoqv2KBg31nkZbn0VERJlVopfiaP+JuHD+b7CobK+k40dFBH/vfghXtZ6ONcEVWahhbpgFOufTscyluVDnaZCWMbQ6f4yHz05W7qqAplnsKElUBBiMRkRERERERKaSdcZMFEzSMVMIgT8uszbD1R3A4osMrO7Inw7m974mcMNz5vV94r1JwWg2ft8Ot6QxghBAX6f1meS5uOL30i3e4TjnCxp2N2nT8ZVbbCwQBymqYLSEZV1XLh+HwWjWjSYJRhscBSIxZ+2HIzYCJQHgxRZn1Z8mWrlV4J5XDbT1y8uVwWgWw1jTLWpx/XNiqCAREdln9bwjWdgsEQGqs/LZNepp2hXniIUu2RVMvlzXExEREREREREREdmhDEbTyrJcEyIy4/fIG2B2sfO946iWSYNiGRKRMzV6m5VlXZE2hIygstznUjTAVCh3yYPUxsPXAtFt0vJadz08utfWZxERUXbMLJmDR3HcowAAIABJREFUM+Zcge/NPBNVLpOGWtt1Rdtx89ZLcG/7jeiP9WahhtmlOpbVuOvg1UuyXJvpqfc2SYd3K74jOU/IkHc68SnOyYiKFYPRiIiIiIiIyJSdwKWgSUjJSETgm3ca+M499gJq9rzEwO9eyo+wqvtfT/7dXlwzcRyrASsA0C4LRgOA7uJpUKIMy7L4IoTmGg1vnK++HTIcBsLR/AtRKshgNFUIXsKyrq+QL/i+kPPCvJwqWTAaAPSq20zkRCRmb/xX13FdcKornjKwz+UGfni/ehn5Fdv54EimamXOakBO+0Bm60FERNlh9XotX86xiXJJKE75/JUa3IrLdFV4bqFLdo3PfQ4REREREREREREVorCQNwQo0UuzXBMiMuNXdL5XBQxQbgghEIjK2xarliEROVOFqxpluvxN0p2RdoS2h5ZN5tG8tgNeVEFq46EdAUXgIvcrRETOpmkaDqz6NC5ecCs+XXMUNAsRM8uHXsHlG0/FC31/R1zYfLO9g6lCw+o9+Xcs8yvqzGuz/BGKy4PRynV74bZEhY7BaERERERERGTKTuDSSfca+Pdq+QQPLxf46zup1eGnfxRTAsWcRgiBlW3Jx1s96f5izFYwmuKNTz0MRrMajAYAlaUavry3uvyjgL06ZYoQAg++YeDEewz84lEDH7artwFViJhMvnSgtrKsZ1arp1/vkOXodCMWgtG65ffacyZsMxgtIG/zQTn27maBy/6e/Nhep3imMyR/UXTGWQ1dbOvLcEWIiCgrrAayWjmnIiI5l66+tmvvd/a9oExRhciN4z6HiIiIiIiIiIiIClHYkDcE8DIYjchRGrzydqw90W0wCigwId8NxPsQFfLGon6P4iXNRORImqah0TtLWtYZaUNQEajhU4SpmSl3VUqHB+PDMIShDlzkfoWIKC/4XBX4VuPJOHfedZhXuijp+KPGCB7tuge/2vRzbBhZk4UaZl5XAYV8qsLcVOFv5DzK8zhFWC1RsWIwGhEREREREZmK2whc6h4GPv8bA/e+OnWiR9+eXmfWI24y8FarczvEdg4CA/KXVk7Q2gOMRnd+j5iN37fdrXho2FM8Ny1VAWB2gtEA4KzPqW+JrHZIztxpfxI46V6Bh5YJ3PicwMHXGHhjg3wbsBNgGIw4dztKZCUYbVe/etmvKZ7NYlpG8zAYzWpAybihcGbqQdPzh6XC0r7LL29ng5EoMDiS/f1Z1GL7zbYiDfEgIio0Vs878iV8mChXRJKkr1m18uEdAxmoTB5Idp7MfQ4REREREREREREVooghb+BRwmA0IkdRhd/ERAx9sZ4s14ZUAorABwDwexlgRJRvVKGUnZE2hOLytwf7FCFnZny6PIRDwEDYGEEgIm+czf0KEVF+mVu6EL+Yey1OaPyxct+faGu4FTdsPg8PbrsVw7HBLNQwc1ShYX5FyJiTqcLceqPdiAm+eTMfhAz5eZwqrJaoWDEYjYiIiIiIiEzZCVwCACGAi58UiMUnTvj0yunX5cy/2EgRS4PBEYFfPmFg1wviOPCquDTwbZzVECYhgLWdO/+2GrACAMOuSgxJbjqLbockeWWBlbAsKz67RD3BPSbLOVu29Ar87qWJX3Y4DBx6rSHtUG5nOx2Sv1zVcVTfSUtYdCUeDbv45eOt2cZQIitGLDzv6HFaMJrNF4vmyzpfbH7/irVtdLdGddmKrWmqjA1WA3LaizTEg4io0Fg9zx5hSBGRKbNcNA2AX9G+rt9CAH0hYjAaERERERERERERFaOwIb8pzGA0ImepNwkMMAvjouwKROXLwqdXsJM9UR5q9M6SDu+KtiNoyBv5lruSB93YmWYoPoDuaKe0TBWaSUREzqVrLnyy5gu4ZMGtOLjqcEvTLB14HpdtPBWv9f8Lhsh9vyu7DGEoj2X1eXgsUx1/BQz0RLuyXBtKRTAuP4/zucqzXBMiZ2MwGhEREREREZmyG4wGAO39wGqb7Rv+fHLyZKul68cCo7LltD8JXP2MwMZuYPkm4P/uF7jtRfnN243d1uu1pXfnvycHyCXT7pbcuOwpnsYkqvXRlcIdjqP3lQ//5ypgXWduQ7We+1D9+Tf+q7iD0SaH4C1WhCZtCKS3PoUqbCEYrXvYWSFzVuqcaLBIwxScLBgWGLW4HHdr1FDjk5e9szn766bVYL6N3AcRERUEq+fZDCkiMme2KWkaUOOT3xMaCGWmPk5nFiQHcJ9DREREREREREREhSks5I2aSjQGoxE5SZnLh0pXtbQsELX4hmHKOFVInd+bf4EPRKQORgtEtmEo1i8t86UUjKYOTtwa3ggD8gaUfq86NJOIiJyt0l2Dk2b+DGfNuRrN3rlJxw8aQ3io8zbcuPl8bBndkIUapk9/rAcxIe/E0JCHx7I6T4OyrDvCa7N8EFIEo5XrDLMmSsRgNCIiIiIiIjKVSjAaAKzetnPCkYj5TJqqgGP21fD5PZLPd955BroGMx+EsmKLwANvTP2c370k/+w2+TNFqYGRnfOI2XxJRpu7eerAbgajTQ7LsmLJTPVEiy8yYKS68qfB8x+qyy54TEBM6iVtp6qD+RKMptg2Ji/ruXXy5djR76wwL6eysu70BDNfDzusBlONGw5jyjZDudVu45hZ5gH2VzxjfXdzeupjR9Ti+teS44BNIiJKD6unECM2g1uJaCdNA6rK5GX9oeI8p0p2nTbCYDQiIiIiIiIiIiIqQGFDEYymK24iE1HO+D3ycC1VGBdlXyAqXxYNimVHRM7W6JX0HwBgII7No+ulZakEapTqPmiQt8veOLJWOV29J//CZIiIaKKFvj1w/vyb8HX/9y0FlG8cbcG1m87GI12/x0g8P95+2W0S5JyPxzKvXoIad520jKHV+SEYH5IOTyXglqiQMRiNiIiIiIiITKnCiZJZnfBM/YqnzXt03nKCDo9bw2+P19Fg4RncnpfsDK1atkHgj8sMvLkxvZ1lf/28fH6rO4BQeGqZnZCXgZGd/7YasDKuwy1plNBTPDcslcFoKdzh2D3Jfeu7XsldB+wKk+cIMQMYSmgHKISwHNgATJzWyVRfaXIw2qwa+Xh2wgqLmZVgtG75S0hyJhKzN74hgBCDAxzFzjGzxA3sN1fe0OadTdnfT1td/1q2MZCPiLKjPzR2PfTEuwI9w9zvpJvVX5QhRUTmzE6LNAA1PnlZ/4h8eKFLdhqZ7AUERERERERERERERPlIHYyWvEM2EWWX36sIRlOEcVH2BSLydsWqZUdEzub3zFQGlm0Nt0qHpxKooWs6fLp8uk2j66TDq90zeL5GRFQgXJobR8z4b1y84FbsX3lo0vEFDLzY9xQu33gqlg++4vi286pz5HJXZd4GUfkVgW5mIXDkHCFD3lmrPE/XR6JMYTAaERERERERmbISmiOztnPnv59aoZ7J8gt1fP2AsQd1i5s0rLtKx6IG83n3BIH9rzTw7d8bOORaA9+5R+Dgawz88H4jbTdSn1ulnk9PcOqw9n7rn5vYsTdmM3iuXRaM1r4BImYzKShPqYL6JodlWbH7TPOJHnojdzflh5OEl/UmrIN2V/mhPOlYbjUETxWM1j6Q3voUKivrT0+eB6MB+RMIWCzaB6zvuEo8wP5z5WWrtwGRWHb31RGLgaZ9ISAgf4EPEVHaLG8VmHfe2PXQsbcb2OdyIyehkYXM6vVwiCFFRKZMg9E0oKZMXtafHy8TTbtk+x4GPxMREREREREREVGhiYs4okJ+85NBG0TOo+p8H4gwGM0JhBDoirRLy1TLjoiczauXoNZdLy0zIG/UmGqghioYplURjOb3MHCRiKjQ1Hrq8X/N5+Cnsy+xtJ8fiPfh3o4bcfPWS9AZactCDVMTUISF5fM5cr1XXvcuXps5niEMBOPyzlo+V2WWa0PkbAxGIyIiIiIiIlOpBqNt6d054ahJiM3+8yaGU1WWavjgUh3HHWAeWvX+VuBPb06s3D2vCrhOGQtMu/NlA/FUKw8gbFLnbsl9p/Z+6/MeSAimiloMWBnXIbupPDwArFxqb0bTIAwD4sW/wrj2FBh3/BKiJ3tvklCGZaUQjLbHTMDrVpe/th45e2NJstCgvoTO4XZX86HR/AhtsBqC11wjX/iBISAczY/vmktW1p+BEWf9jmb7Z5VBBqM5SpuNY2aJG9h7lnw7jxvAtiyHIMZtBJq2dCYfh4hoOk68x5gQ/tneD5z+Z5vJy2TK6uUAQ1iJzCXblGp88uH9eRLsnW4MRiMiIiIiIiIiIqJiEzHUD1tKGYxG5Dh+rzwcIRDdBkPwmXWuDcUHEBby/apq2RGR8zV6Z9kaP9VADVWgWkxEpcP9ikAWIiLKf3uU74dfzv8tvlJ3AtyaJ+n4LaH3ceXG0/G3wIOIGOEs1NCe7qg8LKw+j4PRVKFu3YoQOHKOsDECAfn1c7meWsAtUaFiMBoRERERERGZSjVbLDH0ZEDRkXWvZvlwj1vDX07RceeJKaRdYSww7ccPCRx3h5FysJVZ8IksGG1zr/V5J/4eMZvBaO3e2dLhYunT9mY0DeK6H0Nc/D/A0/cBD10P8d39ITatycpnpzMYzVei4SefMZ/wyRX255sOydanaQWjOe/5gpTVZT2rRj2PbYPpq0+hsrL+DDosjCASl1fabXKnk2ElzmInTLTEbb6dd2Q5GM3OPnfNNmeFChJRYWnvF9IAxtfWA+u7uP9JF6v7/f5Q8nGIipnZrRlNA2rK5NfmxbptJbuVxWA0IiIiIiIiIiIiKjRhk2C0Er0sizUhIiv8shf8AoiKCAZjfVmuDU0WiMgDHwD1siMi52vwKjpeKKQaqGE3UI37FSKiwubRvTiq/lu4aP7N2LN8/6TjxxHDP3sfxeUbf4r3h9/MQg2tC0TkYWH5HB5crzgOd0c7GVrtcCFD0jl1u1QDbokKFYPRiIiIiIiIyJSqI/g1x2r4hsk9zfZ+7AglUwWjXX2s+WXpDz+p4xPzLVRS4Yn3ANcpBhZdGMc5jxoYjVrr1R6LCwyahOj0DE+cT19QoGvIer0SQ4ZiNu8zvlB5hLzg1b+nHAJnh3j+L2OBaIkGeiD+9OuMfzaQ3mA0ALj2WA0/OEw98TG/M3DDcwaMVBMCUxAKi+TBaMGd/zYL8ZNxWsiVitVl3WwSmNRmI3ypWFkKRnNYqJhqna/xqafJl/W+WHTY2DZLPWPLtlTxkqn2bAej2djntvBFS0SUQWbnOW9sZDBauli9xOrnuQaRKbNNSYP6XH5wFFm9HneKZF+ZwWhERERERERERERUaMLCJBhNK81iTYjIigaT4ICuqDqUi7IjoFgGpboPFa6qLNeGiNKl0TvL1vjlKQZq2A1UMzsmEBFR4fB7Z+Insy7Cyc3nocZdl3T83lgAd7RdjTvarkZPVPIW4CwTQiAQVQSjeZqyXJv08XvldY+JKAZiSTqmUU4F4+pgtHJXagG3RIWKwWhERERERERkShVAU18BPPwjF147V35pGY4BPcPAaFQgEpPPo8bCyxyfO2P6l67rA8ANzwn817UGVrULvL9V4MN2gVhc3tO0NygdvEP3pHtPLTbv0Q6Edn5uNG5v2l5RiYCrfmrB1vXA5hZ7M7NIDPVBrH0PYsWrEJedJB/p9X9k5LMnU4ZlpbiaeN0a7j5Jh9/k2e85jwpc8XT2OmKv60oewNCXsA7Z7SM+5LCQKxWrwWjVZYDPKx+3ncFoSeVjMJqqzl43UFEiL3uztfjCFJysrd/68vC4AE3T0FwtL2+3Ma90sPNpW/gskYgyqEwRGAkA63LfhqRgWD3X7g9lth5EhUzT1MFoQiS/R1OIkt0TGIlmpx5ERERERERERERE2RI21I1TvLqiMQgR5YzPVYFyXd7oMhBhMFquqYLR/J4maFqKbyEmopyzG4zmSzFQw+50fg+D0YiIioWmadi38mBcvOBWfG7GMdDhSjrN+8Nv4vKNp+EfPY8iJnLX6Gk4PohRQ97Qsz6fg9FM6q4KgiNnCCmC0TRoKNMVDSqJihSD0YiIiIiIiMhUsnCiuTPU07b1AwMj6vJqC8Fo1T4NHTek5/L13S3A3pca2PdyA3tdaqD+TAMPvD41+a1ryHw+gUn3nt7fai+UpT/hN4nZDEYDgJtnnCovWPac/ZmZEMFBGJd8B+KoJogfHATx0yPUI/dugxjKfAqVoQjqmxyWZddndjOfwWV/F/ioKzvhO2u2Jf+cvoT78XaD0ZwWcqWi+l6T2+VomobmGvm4dsKXipVqm0o0aLIfzwVVnV0asM9sedmzK7kuOInV0MLyEuxojDdTEYzWMZCmSllkZ587NMr1jogyx2x/9FFX9upR6JKFE43rC429UZCI5Mw2Dw1Ak8mL6duzfL7nBMnOOUOR7NSDiIiIiIiIiIiIKFvMgtFK9NIs1oSIrPJ75R3w2fk+9wIR+TLwexleRJTPGrzNtsYvTzEYrdxl8rZxiXwOkyEiotSU6mU4xv9dXDD/11hYtmfS8aMigie7H8RVrWeiJfh+Fmo4VbfJdUo+nycztDp/BePyzqtlejl0LXnoIFExYTAaERERERERmUoWRNVYpQ6lShaMVmMxwL6xSsO7F6X/EnZwFPjuHwT+9z4D5z1m4Du/N3DNswY+dpl5UtCmnol/P2MzcCeQcO8qpvio2nivcvrH6k+QDhcbVtmqh4oQAuK9VyC+6AdeeMT6hJvXpuXzzSQL6kvVtV9PPoMDrrSQIJUGk9cvmd7gzn9bCbZKlC+hDXZC8GYpgtGshi8VMyshT04L01PuB3Tgq/vIt+WVbfmx3mfK4IjAI8sFnnxPoDeY299BCGE53KLcu/PfzTXyZZvt7dzOPnfIYdsOERUWs2P4tsHiPealm9VAzLgBBMOZrQtRPjMNRtPM7y0V43Udg9GIiIiIiIiIiIio2IQNeSNDt+aBS3NnuTZEZIXfIw8PYOf73OuKypeBapkRUX6oddfDo3mTj7idT08tGM1nI1Ct0lWNMpfFDiFERFRwmkvm4sw5V+K7Taej0qV4C3qCzshW/HbrxfhD+00YiKn7zGWCKsC5RCtFlUvRISlP1CtCq83C4Cj3gsawdHiq4bZEhYzBaERERERERGRK1RnTtf2K0u3S0KS4f7m1T5iGPFWXWa/HPnM0rL48M5ex9y0VuO4fAn98U+DCx5P3fG/ZtnMcIQReapGPN69OPrytf2dATzQuH2ff0RXqz8dcbHM1Ti3YpKiIDSIagTjvWIjTjrQ/8aY10/78ZDIVjLagXsMFR5nPZGgUWNOR+ZCJNgudvvtCO/9tNaxh3Gg0P0Ib7CxrpwQm5SMrq89oFIjEnBOwEjcJzTt4F/m60BcCuuXPDQreu5sFFpxv4Ft3GTj6d2Phn+9syt3y7A2OrVNWVJTs/PdMxfPGjoHsfhc7+1ynhQoSUWFRHQ+BiSG6ND12jjL9JqHgRMUu2bbkdmlorJKXtfU751okW5JlOocixR38TERERERERERERIUnbMgfsJfopVmuCRFZ5fcqgtEUoVyUHUIIBCLt0rIGxTIjovygazoavM3WxoWOUj21wLJyG4FqDFwkIiJN03BQ9WdxyYLb8KmaL0FD8s5dbw39B5dt/Cle7HsKcaHoVJdmqgDnem8TNG2aHdJyzO+RB6OpwuDIGULxIenwMgajEU3BYDQiIiIiIiIyZSWcaLYirKStH7jwcXmPfU2bGHhixeImDf88Q0ddub3p0q2lc2cH1GBYHXzyg8PkN0dDEWBwe6f5mCLQwCNieGbzV5V1aPNIHmxuWmO7Y+yyDQKn/tHAOXd1YMV1N0AcXgksfcbWPMaJzdMPZkvGLBBpui76soZvH2Q+oz0uMfBRl73f+NV1Aqf/2cDP/mzglXXJp2230Om7fxrBaAAQyIOAKNXX0iV3s5oV+6CHlgl2Fk/CMAlVSTTooKAPs+PSEvkzHQDAmiJ9rvPde40JYYrt/cDP/mxxwWfA2k7r45YnnCc0K0JYOwamVx+77OxzhxiMRkQZZLY/Stzv0/RYPVcCJp6jE9FEZpdl4+3KVNd1xRh4beWc02rYMBEREREREREREVE+CAtFMJrGYDQip1J2vo90sM1eDgWNIYwY8ofXDDAiyn8Nsv4DEj5XRcohLz5XpeVxVSGZRERUfHyuChzfeArOmXc95pYuTDr+qBHCI12/x682nY2NI5nvi6YKCatXXNfkE79X/h26I0XagSZPBOPyjn12QmqJigWD0YiIiIiIiMiUlWC0WbXycdr6gfUBeVlVKaCnkGb1uT00tF6r46WzdTzxEx0fXKojcruOlZeO/X3jcZl/U0N/CAhsD+bvNgmYOniBui5t2zv2xhQvt3CLGI4MvqCcPuCqnzpwqA9oXa2u0CR3v2LgkGsN3P6SwA3LG3Dw2h/jqYovWZ5+ik1rUp/WIuX6mIY7HCUeDff/r4anTzOf2QFXGnh3s7WGOw8tM/CZGwzc8oLArS8IfPYGA/e/bp6u0Gah03dfcOfnpxKM1jVof5psU4VQyHYbsxQd6AHgnL+ykZUZq+uPKgAyF1R1dumAvxKoUbzkbn2g+NaFjn6BDyQvAF26HtjYnZvfo6XT+ucmbu8zFcFo2Q7KYDAaETmFWWBXXzB79Sh0do6WvfzdiZTMtqXxUz7VdV17loNwncBKX6ERBqMRERERERERERFRAQkbimA0vSzLNSEiq1RhOGExiqF4ET7gcYhApENZxgAjovzX6J1laTzfNAI1yl3Wp1WFZBIRUfGaV7oQ58z9FY5v/BHK9PKk428Nb8T1m8/FQ9tuw3A8cx2dVCFhhXAsU4W7BaIMrXaykCoYzUZILVGxYDAaERERERERmbISRNVcIw8Aa+8TUL1saGAk9TqVl2j41G4avravhj2aNbhdGvZsHvv7zM/pePKnOhY3pj5/K1o6x/5vFoy292x12XiQS1QVjIYYdAg0xDql5d0ev3zCV59Sf2iCtj6BUx6YuHDDeiku8V9iq/P/BDZC2VKlDupLTyCepmn40t4aPre7epyh0bFwtMCQ+S8Viwtc8JiYUGdDABc+LhCLy6cVQuCNDcnr2ZfwQr9UgtECJuutU1gJZRzXbBKMduNzAvVnxnHcHXGsap84065BgVP/aGDPS+I47Fdx/OOD4rvpb1h80JEPwWi6NrYNz1GEdRZjSMzmXnXZGxtys76vsfHioVhC6I/qXKN7GIjEsvddbAWjhTNXDyIixekkgLHjNhszpIedn7FjgL85kYrZtjR+OT/T5N5SsbFyzhmKZL4eRERERERERERERNkSNuSNCUv00izXhIis8nvUIVtm4VyUWV2K375EK0WVy6ShJRHlhUZvs6XxphOoYSdUjYGLREQko2sufKrmi7h0wW04uOqzlqZ5beBfuGzjqVg68DwMYfLm4BQFovLz5EI4lqnC3UaMEILGUJZrQ1aplo3PRkgtUbFgMBoRERERERGZMhT3ExODqGYpnpVv6ZsY4JTonC+mJ8hK5isf07D6CheMu1x44/zMXPq2bBvrpaoKRnPpgL8C8CueK27sGZs+pvh9PSIKAPDHuqXlgdmfkA4XLe8oajzRnHPlH7yi9GPocCtu7GoatAfeg3benRjRSrHKuztGtITGZ1vXQ7RvtPT5qbITljUdt307+XrT+HMDQ6Pq3sqrO8a2gcna+oFV7fJp/u9+ax2+exMCnlTbqJlkoW5OYGdZz1J0oB/XGwT++g7w2RsM9AyPzdgwBI75nYHbXxJY3QEsXQ8cdbOBl1uc/9ukk9WQp8FphFmmW7J1o9YnL1cdjwqZ2fLdYhKalkmt8sOaVHxCMJp6vE09qdfHLjv73EgMCEeLa59CRNmTbH80nSBq2slqiCwwdp5PRPaNX82p7i21D2StKo7BYDQiIiIiIiIiIiIqNmFD/sY+BqMROVeFqwqluryhlip0gDJPHfjQBC1NLyAmotxp8M6yNN50AjXKbUxrFpJJRERU6a7BSTNPx5lzrsJM79yk4wfjQ3hw2624afMF2DramrZ6jBojGIrLG6GpQsXySb1JuFt3xMZb7SmrQnF5h1Q752JExYLBaERERERERGTKSjiRqvPqqnZA1Y/8Wx/PzgP2AxdoePuXOr6x/8ThlaXAPrPNp/3c7uqyls6x/6sCpuorAF3XsKtfPv267dPH4vJyt4iNzScuT5DpbtxLPuHmFvnwBLe9aJ6i0OJdNHXgl78P7S9rEJu9BD9qOxZ1u3Vgn13fRu3iTpzTcBVicI2N99pTST9/OtRBfen9nIUNGlwW7ppU/8zA3a/IK7WqXd2T+QNJWSwu8Mhya8ELiQFPZh2my0vkwwN58NIPO8FoZoFJibqHgev+OTbjMx8WeH3D1HE+e6OB0SIKMrIcjCZvf5oT8ST7gRpFMFp/EQbEBMPqstYshokl6hiwvn0lhofOrwNUbfPGj8nZYHfvMOSgbYeICkuyY/jPHxEQNkK9SM7OT8hgNCI1s21p/ByvuVpe3iYJHC90VvY9DEYjIiIiIiIiIiKiQsJgNKL8o2maMkSAwWi5E1AEHzC8iKgwNHqbLY03nUANO6FqDSZBLEREROMW+fbEBfNvwjH+76FES36dv2F0Da7ddBYe7boXI/FQ0vGTCUTU1yd+b/4Ho1W7auHRvNKyQJTBaE4VVASj+fTKLNeEyPkYjEZERERERESmkgXQAMCsWvupVPVZDLDfb66Gh3/kgnHXzv8Gbnbh3YtdGLxZx56TnhGe/CkNxl0u/PNMF048WP7dtvaO/b9bfh9qx/db1CCffl3nWC/XqCoYDePBaPLkmu4SxYPNjR9CxGLyMgBDowKn/cm8h+1a724T/tbuXgr9vDugzZyPy58WuHt5OSL6WOJWTPPgprozUbr7EB6sOgHDr/zLdN7TZScsa7qszvKUBwSueMpAJDaxcusD6mk2SMrWB4BhkxCjRP0jgLH9xzALxWhU3A8NKNZbJ1F9L1kwkqoDvcz1/xTNJWnxAAAgAElEQVToHBS45QX1D3fOX4snREQVNjjZ4IhzfhPlfmD7nc4an3zr7Q9mqEIOZhaWsLYzN8u0Q/6yJanE8NAyr4Z5M+TjrdmWve9iNUxw3JDF/ToRkV3J9kd/eE3g8XezU5dCZme/38FgNCIls01pRzBajfw8vnNoLEi8mFjZ90wnGM0wBN7ZJPDQMgMbAsX12xIREREREREREZEzKYPRtLIs14SI7PArAnFU4VyUeapQOtWyIqL84nNVoNKVvNH0dAI1XJobpXryc7ByvdJWiBoRERU3l+bG52YcjYsW3IL9Kg5JOr4BAy/0PYnLW3+KtwdfndaLgrsV4WAuuFHrrk95vk5hFlqt+u6UeyFD3rFvOgG3RIWKwWhERERERERkykoQ1awa+/OtK0+tPulWUarhnV/quPd7Gq45VsNzZ+i44zs7L5ebFd+tfWDsh+kakpfvCEZrlJev6xr7vyp4ziPGws388W5p+ca4Xz4hADxwrbLoT7c+p55uuxbvop1/fOHb0JYcsOPPB99Q30z+3qx7UD36ON5aZSP1xibV+ujKwB2OT++WfJxxlzwp8KnrDPQM76zg+DKWWd469YustvGSRCGAwe3tAU2D0arkw7sV662TqAK7ZCF4JR4NPvkLTqSuedb8ociflomi6Xhv9VsOjGS0Grao1g3X9nWjxicv73dQuFu2BCPq77wmB8+4hBBotxEaE5u0rBcrXsjUksXvYjVMcJyTth0iKiyq64hE1z5rc6dFU9g5e2jrL75zDSKrrLRLU91bEsJeuG4hsLI3CaUYwBuJCZxwt8DHrzJw4j0CCy80eLwgIiIiIiIiIiKinAsLRTDa9pd3EpEz+T3ysK0uRTgXZZ4yGE2xrIgo/zR4FS9XTzDdQA2fnnx6v1fRoJOIiMjEDI8fP5x1Lk6dfbEyzCvRQKwX93TcgFu2XorOSFtKn6kKbq7zNEDXXCnN02nqFcflQITXZk4VisuD0Rg8SzQVg9GIiIiIiIjIlKrDfWIQld1gNJ8X8JVI0o1yxOPW8L1DdZz7RR1H7jGxXjMVL1Ua75S7vkveXbWpamw+8+vk0/cEx/4/OfRlnHt7MNrc6GZp+Stt5RjwzJCWiXuvgAhPTWIR6z/Ak+/E5B+Y4PYZp4z945AvQTvrtzuGD4QENvUknRw/vC+KuFla1zRYCepLl5MOsTfTN1sB/1nGjtCzwJD6N/jXaiAUnli+Zpu936wvNPb/VILRzOrmFHaX9cVfsb68bv63+ffvCQJL11ueXV6zuqkOytuf5oRy3dh+XKpRvKiuL5iZ+jhZ0CQsob0fGMxyWNzQKBCKWB9/8jnIwgb5dt7Wl73vYffwtiGQmXoQEVnZHy3fBLQzrGta7ARiFuO5BpFVZnui8TO8OfJbHADMg8cLkZV9z0g0tXn/4TWBR96euEQueFzgvS08XhAREREREREREVHuhA1VMFpplmtCRHY0eOVhW4FIO4SVN+dQWoXiwwjG5W/NZYARUeFo9M5KOs50AzXKXZVJx2HgIhERTcee5fvjl/Nvxpfrjodb8yQdf01oBa5qPR1/734IEcPeGyWV4cEFdI6sCpkLRLP4BnqyLGKEERXyjjXlevLzMKJiw2A0IiIiIiIiMqUM7kp4KUJFqYZqRRCNTH0ehdfP3PCydHhHv4AQAmsU9wgXb7+nWN3fKi0fGBq7gRWNyRt/uDEWYHZE8EVpeTSu4c09vquoNYDlL0wZZPz9XiwtO0g9zfi8NS9uPq0V2q8eh+ar3FHP+edbSwV4f6AWb2ywNKptyQKR0unr+2sprasHXm3g8XcF+kPqcUajwDuTMu9abN5v7t0evKAKLwSAhip5iFBA/mIJR7G7rE/5VHrT8Z54rzgaZlkN+xicmrWYM6p1fjw0r7ZcXt7voO+QLcEkIWTrsxza9UG7vfE/MX/i36og1vaBlKqTErvBaHZDL4mIrLK6P3p6JfdD02Hn1+szOf8nKnZm/V607efxNT4NfkWbnlMesJFSWACs7OOD4dT277e9KJ/uwTd4vCAiIiIiIiIiIqLcUQej2WiUSERZp+p8P2KEEDTkAV2UOWahBw2e5izWhIgyyUowmpVgMzNWgtX8inBMIiIiqzy6F1+uPx6/nH8z9vDtl3T8mIjh2Z5HcEXrz7ByeLnlz+lWnCfXK65n8pHqu3RHGIzmRKG4ulPfdANuiQoRg9GIiIiIiIjIlCqAxj3pilIVViKTL8FoIhpB0z9vlpYFIxr6hmJY2yWfdsn2e4pVL94vLR8VXowu/ZcyeM4jogCA/UffhT8m/5B3Fhyjrnzr6gl/io/eR+cTj6LfVaueJsH5LzVgePtLNIJhAd9PDQzYCBU66+GJX+y5VQKH3xBH89lxfOq6OB5allqnZlWIk57eTCwAgK9Ew39+oeOQXexP+/XbDbyeJBxucljOn9+y1wm5b3swmlmH6cYq+fCuPGhzpOo4r1rW1T4NVx6dvhXhN88LGHYTkPKQ1a84KG9/mhPK0LzxQAVFm9hiDCsJJQlGC2R5X/DsB/a2qTOOnHiy0aw412jrS7VG9tndLaztzEw9iIjMwnETPfN+4Z/PZJKd/X4xhrASpUPiVdwSRVuz9QEgMFQ8+zMr39TKPZql6wW+8OuxezGNP49j/yviyrDim/5VPL8vEREREREREREROU/YkN/0LNFLs1wTIrLDLBQnwA74WReIdEiHezQvqtzW2g4TkfNZCTos16fXWaPcSjCah8FoRESUHg3emTh19sX4YfM5qHHXJR2/J9qJ29uuxJ1t16AnqujUl0B1bVJIIZ+q7zIQ71OG0VPumAWJTzfglqgQMRiNiIiIiIiIlAxDKDuCF0MwGtavRHPvKmXxy7+6E5GYvGxxkwYhBKpXvaCcvv+C7yMak//ALjE2Yw3AHuHV0nEubPk4BMY6zA7pFRjVSnaUiU0tO//d0Qrx/U/g+NkPKOsyWTgGPPCGwIftAntfalgOXhj3VutYB1wRGsIL7w7ji7818NJaYNsg8OpHwIn3CNy3dGymXYMCW/usdcBNFoiUbktmanjtPBdGf6fj9CPS+yFrEu6tr+0UCCvWJZXxkCdVWBwANCmC0bIdhpSKVJb18Z9I7zI65nepBfjlE6thH0MOehaiqrNr+3FpRrl8PegahHKfW6iCYfPy7uHs/h4fbJV/3uxaoGpSW+ZDdwUOWzhx2Kwa+bLtCQLhaHa+i91gtE09xbXOEVH2WN0fvb3Z/rx7gwKrOwQ2BASEKq22SNj5+sFw8Z1rEFllti1pCad4uzWqr+n+vqJ4ti+z6/xxyYKf39si8OnrDfxr9di9mMAQ8N6W9NSPiIiIiIiIiIiIKN1UnXRLNAajETlZlasW3oR2q4kCUXlIF2VOV0T+hhy/pwm6xm7ERIWi0Tsr6Tg+C8FmptPryQM5GgooTIaIiHJP0zTsV3koLl5wK46sPRq6hRicFcPLcMXG0/Bcz2OIiah0nKgRRV+sW1rm9yje4pmHzL5Ld5Sh1U4TjA8ry3yu8izWhCg/8I4GERERERERKZmFYbkmB6PVWg8kqqvIUIpVum1qwexoG9yKG6RPrlM/NNytEUBPB6qD8oYGADCgVyG6Xh565hY7U7KWRNYq53Hzofdh4a6rUbu4C/MXrsXvak8ZK1i/EgAghMDGb38Oh8x/Ga/6DlPOR+anfxTY61IDrT22JtvhsF8ZCB81G0feXiYt/9GDAgdcEUfT2Qbmnmtg4QVxvLHBvKNztoPRxnndGm76poZbTtBQ4k7PPFu27fwyt7xgv4N3X2hsGrNQjMYq+Q8TigChsLM7laeyrOclfzmMLX9/HxgIOft3mi6roSqDI875HZKtG/MV60HMADamuD/LR63dAlc/Y77cutXPUzKirV8+/AeHaXjpFzq+/18aPrkIuOAoDf84XYfbNXGDbzYJYX3k7SwFo9nMS+zJ8m9MRMXD6v5oax8wPGptH9nWJ/CZ6+OoP9PAnpcYWHihgaazDfw1S/tYJ7IbiDkwkpl6EOU7s00pMRjtKx9TX/D944Pi2RdZ+ab9SfY3Vz1tP+SeiIiIiIiIiIiIKFfCQhGMpjMYjcjJNE2DXxGME4gwGC3bAorAA9UyIqL8VO9tTBoWM91gtHIL0/s93LcQEVH6leplOLbhe7hg/q+xa9nuScePiDCe6L4fV7eeibWhlVPKe2NdEIrWWPUFFIw2w+NXnh8EIgxGc5qQIhitRCuFW/NkuTZEzpemrrxERERERERUiGImHSjdrol/m4WVTFY3vWdtWSM2t8CDGBZG1mNNyZIp5X+r/Ip0urkzgPISDeKDFlQbg8r5D7iqEeveBpTvMaXMg53BaHuGP1TO4+d93wS8Y//udvvxs6ZfY0l4DQ5f+zLE0/8PhmHgC3Ofxnrvrsp5ZFL5IvmbNQAgEgPe3bLz7w3dwJE3Gdj8Kx0zyqd2hhZC3TU408FowFgjnlM/q+HUzwKnPGDg7lem1yl7TcK95TUd6nnNr4M0nK4vNPZ/82A0dVlgGJgnf1mjI6QSjObSNezVDHygziO07V+rgW8ckL75OY3lYDR5+9OcUHXuH183FjWOhSvIdhlrOrYHVxY4IQS+fEvyFIRsB6O1D8iHz6oB9p2j4Z7vmu/M59SOBbPK1oErnhL49kECmpbZA4LJoUiqJ5iZehAR2QnsOusRgf3nmk8gBHDqH6eOExgCjrvTwIqLdew9O08CrtPI7n6/fwSoT/7SXKKiY3Vb+vLe6rJ1XempSz6wso/vD6nLRqMCz35g7zOzcV+FiIiIiIiIiIiISCVsqILR5C/kJCLn8Hua0BZunTI8EGUwWrapwugYXkRUWNyaB3WeRtP9bLk+vcYrPpf59GW6D+VJxiEiIpqO5pJ5OGvO1Vg2+CIeC/w/DMcVHRG22xbZit9suQifqPw0jm34HqrdtQCALsU5sgYN9Z7C6Vji0tyY4fGjO9o5paxbEaBMuROMD0mHTzfclqhQmcdCExERERERUVFThc8AgHvSFeUsG8Fo9flyn2ZTCwBgcWSttLjfVSsdvrhiLAxNXPJtVBmD0IT8hxzQqxCFPMnfLXYGox07+ITlKgPA1fXnjn3+tSfjgj905SwUDQCEZu/WQygCPP6uvAewWcdgPct3OO48Ucc/Ttfx88+n3nN4Y/dYZ2VAHRYEALv65cN7t4ftpByMJr+P6hjKYLQky/r4A9Pbm/uFNdMLwHM6I3l2FgBgcCSz9bAjWWheqUfDgjr5OC2dhb08x134hMBqC20LsxmMFjcEtimD0axttxWlGo5UvPhpXRewfFOKlbNBtQapzm16g+bBnkREqTK7Vpvs968I/OQh8/9koWiJ7nu9OPdldgLoAPOgIqJiZrYpJZ4Jul3qsFyz6+ZCY+U6zWx/81br2P0VO1xsOUJEREREREREREQ5IoQwCUYrzXJtiMguv1ceuhWIsPN9tqlCklTLiIjyV6N3lml5mat8WvMvTxLK4ffMzPhLbImIiDRNw8HVh+PSBbfhkzVfhIbkx563hl7GZRtPxUt9T8MQcWUoWI27Dh7dm+4q51S9p0k6PMBgNMcJGfKOPMnOwYiKFZu3EhERERERkVLMLBjNNfFvq6EmQB4Fo20eC0bbI7za1mTzN70Isf4DYKAHOgQqDXkC1aCrGjHNLS3ziOiOfzfFp76xwcxL5Z9Bj2sG1nh3w/X1Zycd/9b/Sf3B5Ml1b+KhtpNSnl5mjeKeq1nHYD0Hz1Y/v6eG67+hw7jLlVJAmiGAj7rG/t2h6OB91TEaan3ysr7QzvmozChXd252fDCaYnkn+6XPOELDsfulrx7LNhR2CIjVbzeQB8Foiev6LopAwc7B9NfHaQZHBK591tqS7cliMFrnoHrZNdsIV730q+pb2u9vzfz2qto3+RUvPwzH7IdSEBFZYTewa7peWVvY50QqdrMtGYxGJGe2LU1uKz2nVn7VFxgCwtHi2BdZ+Zb9IfVYq9rt/06J91Xe2yJw0d8MnPtXA0vXF8dvTkRERERERERERLkTFREIyB/GMxiNyPn8HkUwmiKkizJjJB7CUFzeENWvCEggovzV6G1WlpXpPrg0l7LcCp+eJBiNgYtERJRFPlcFTmj8EX4x9zrMLdk16fijRggPd92NX236BVYNvy0dRxUils9Ux+duhlY7TjAu78jjcyk6pRAVOQajERERERERkVIsri5zT7qinFVrfb75EIwm4nFg60cAgMODL9qatqp3PcR9V+34u9qQJ/H06TWIah5pmRuxCX9/cy97qURLyw7GT5puTjremxfo+M5B9kO9/vA9Da3X6Lj9jNk4cOQt29Obae+XD4+b9MXNRTBaouu/oeN7h9qvxKsfCYxEhDJA4ZBdNNSUy+fbFxz7QcwC49y6ensLDDu7c7Mq7CPZsvaVaHjkRzpartDxyCk6/iv5cw8AwGcXy4e/u2Xnb12IrIaqDMpfzJsTqnU+cd2or5CvKL3BDFTIYfa7wmSnMEkqgQmpUu3bAXvBaAftomEPRZualiw8s1NtM36Tc5tsBtARUfEw7CZ2TdPyTUCPw88fM8HuN+53UJgskZOYBqNN+tvs/tK2Igg6Bqzt482CGFWB82bGX4Dw7EqBg68xcNXTAtf/U+BT1xl48A3r1xhEREREREREREREdoUNdaMUBqMROZ+q8/1wfBAhRWdvSr/uqPoBEQOMiApPo3eWsiwdgRrlSeahCsUkIiLKpPlli3DOvOvwrYaTUab7ko6/JbwBH4belZY1FOA5sioQmaHVzqO6Vi5PEk5LVKzcua4AEREREREROVfMpN+ja1Iw2mwbwWizanKcYmXFtlYgGgEAHBZaihJjFGGLDa0qjWHgpcd2/O2PdWOLZ87Uj3A3IqiXS+dRbkzs4VpXaS/b/Jg5jyYd5y8n6/j4/LFlcdM3NZz1sHnHW00DDt0F+P13dSxuGl+Gc9D8+S8AG2xVz1Rbn7weZgFguQ5GA4A7vqOhrgK46z8CQxZDpJ58T+Dze6grP7NaHWw2HrRjFmyla2NhPZ2SzuNdQ9bqmCvKYDQLC1vTNCxqBBY1An0hDa+tT96p/LTDdbzYIl/JPnODgRWXTO/taU5ltl0lGnRQyId63dj57xnyXWvBBrps6hE4/zGBP79l7/t92AFsCAjs4s/8TlQVjOZxAXWK5aXy8fkaPuyY+l1btmV++arWP7PQ194QMLcuM/WZLiEEHl4ucMsLAuEY8PX9NZxxpIZSj/V14sE3DNzzqsBwGDhqbw0XfVmD2+WAAzNRgbMabppOv/23wOX/XVzbt93feTgsMDXmiYjMaJM2meZq9bjt/cA8h55XpZOV7Ms+k2C0VM6Lx0/fznvMQCQhq98QwC8eFfifA4Wl63EiIiIiIiIiIiIqXBEjjLbwJsRENK3zHYz1KctKNAajETmdqvM9ALw3/EZGwnNmePyo8zSkPL0QAoHoNgzEeqXlDd6ZqHbPSHn+2TBqjKAtvAmGGHsD9kcjq6TjuTU3at1F8ICNqMg0eJuVZekI1Ch3mc/D71Xv+4mIiDJJ11z4dO1R2K/yUDwWuA9vDr6U0nzqTa5j8pXqO/VGA1gbWgkN5v0Sq90z4Pc0QZvcoI/SLmTIO/T5kpyDERUrBqMRERERERGRklkwmnvS/TB/xVi4STSefL5L8uH+4aaWHf/0IIaFkfVYVbqnpUmr4hNTqJpi8jexbXM3YVCvks/DmDiPuur0XcJrEAjf7poQWnL6ERqeWSnw/Oqp49/0TQ0nHKihogQoL5l6g7P01MvhPz2AgNuflvq1KcJzTAPA7OXGZYTXreH6b2j41bEC/1kHHH5j8sSpF1qAlW3qcrNgtG6rwWiKl3YF8jUYzeY99qP21gCYdwr/yWc0HDBPXb6yDXh9vcAhuxbeDX6rYR8jUSAaE/C4c/8bxBWbVuK6UafYbnqD6a9Prg2EBA6+xpAGIFqxfFN2gtHa+uUrW3ONtcDDRLs1yoe3dNqtlX2qbWZGhQZNE9IQi7Y+YN+p+ag5MRIR0LWx7SUaBx5+W+B/79tZ6bc3CawPADceB1SWIumDzd+/YuDkByZOvzEA3P+D3O8riAqd6niYSa+uK8yAUTNWwokSBcOZqQdRvjPblCafblSVAeUl8u2ptacwr8sms3Kd1m8SXr06hZd8unRg24CQ3qPoHASWrgcOW2R/vkRERERERERERFQYXu57Bn8N3IuYiCUfOY1KLL7IlIhyp8ZdB7fmkYYmPrjt1ox97oLSxThl1vmoctfYmq4n2ok72q5BW7jVdLwlvn3ww+ZzUebyTaOW6SeEwNM9f8Y/eh6BgeQNB+o9TdC1wnwpLFExa/TOUpalI1DD51I0Pt8uE6GXREREdlS5a/C9mWfg0Ooj8ZfOO9ER2WJrer+38I5lquBSAwZ+s+UiS/No8s7GT2ZdhHqvosMGpUUwPiwdXp7kHIyoWDmg2zARERERERE5lVlne/ek5+S6rmFmdfJ5+iuBuoo86MS6uWXCn4siH1metNKYeINqpiIYrcPdhEFdftOqKj4xtaquKn3BaIHT104IRQPGgk/+dqqOC47ScOB8YHEjcNRewN9O1XHGkToaqzRpKBoAaJW1+IJ3Rdrq19Y/FsA0WbIAMKfQdQ2fWazhvYt1HHcAsIexHjOj8l7JkRjwm+flG5q/Eqgq06YXjKYD/kr5j+P0YDRVCIXdZd1co2Fxknvyt5ygYXYtUGXSlvKiv+UgfSQLrAajAcCQQ4I+VHV2JdzprCuXj9NTgMFot70kUg5FA4AW+SEq7doH5MObLZw7TLakSb4jWB8AIpLjRzoZihXQ4wLm1MqnaenMfZCQEAJXPm2g/KcGyk41UPITAxWnGRNC0cbd86pAzekGDrrawLIN5nW/+d9Ty//4pkCHIgiPiNJHdTxsqAQu+oqGg3cZO6e3+58qfBIA1nVl5rs4mZ1zJQAYdsj5EpHTmIUMTj6z0zQNu9TLx12bhSBcJ7ASytgfGjvHmywYFtjca/8zXTowYBK2tqmX53dERERERERERETF6qPQh/hL111ZD0UDgBK9LOufSUT26JoOvyf7b0veONqSUvDaPe03JA1FA4A1oRX4S9edKdQss94dXopnev5iKRQNYHgRUaGqctWiVHGelI5ADZ+uaIS7XSGGyRARUX7azbcXzp9/E46uPwlercTydLm4hsm0+jR8p22Rrbi97co01IbMhBTBaD59+gG3RIUofb2qiYiIiIiIqODE4uoytyRqe1YNkna+XJIn9w7Fhg8n/L1bZK3laSuNiYlTTYpgtDZPM4ZcVYp5JKTclPowZ4YGYHqdUEuMUby7x+2YsefZ0vIyr4Yrj9Zw5dH2533ByQvx4B3Tqt4Oo1HglY+Aw5dMHJ4vwWjjPjZbw59PGIB4cG8Y0DB/4Tq0e5qnjPeyYtUa31bqK+TLvnt4rBN0st9FHazm7E7Nqu+VyrI+6VANFz4un+GyC3Ro2thM7zpJw/F3ycd7YQ3wxLsCZV7g8MWAx+3AlS4FdsI+BkeAGeZtHbLCyrpRp1jvnRqM1jMs8P5WYFW7wIJ6DXNnAL1BYF2XQFUZcOiuGmbXTl3neoMCv3zC2kI8Zj/g8XenDs9WMFpbn3x4s72XtgIAFivOJeIGsCEALMlgmxuz9W9Jk/w8aE2WfmMzN/5L4OK/2dvvL98EHHengQ8u1VFVNnX9i8YEPmifOp0hgIffFjj9iMLYTxI5lWp/VOYFLvuajsu+lvq8z3rYwG+en/oBbf3A8KhARWnxbN9WwokSBRmMRiRl9+pzt0ZgZdvU4evyJBhtaFTg5bVATRnwiflAicfeftPKdVo0DoQiQPmk9nyphsd1DwOPvq3+YKMws8KJiIiIiIiIiIjIgjcHX87J52rQ4NG8OflsIrLH752JjsiWrH/uquDbGI4NosItb4c7WVekHa2j6yzPf8XQMsSbYnBpzumCu2zgJVvjM7yIqDBpmoYGTzM2h9dPKfO5ph+o4dXNg2WqXCk0/CQiIsoQt+bB5+uOxcerPolHu+7Be8NvJJ0mHSFiTlOil6LaVYuBuKLjhkUdkS3oinSggdcSGROMD0mHpyPglqgQSbqxExEREREREY2JmXR6dCmC0ZL55CLnd6IXAz3As/+fvfsOc6Ja2AD+nsn2hS1soxepSlERuSoWELuIyrXfa0Gxo9jrp2LvXa5eK/aGXkVsiAURVLChUhaQKtv7bpYtyZzvj7DsbnLOZCab7Gbh/T0PD5uZM2dOksnJzGTOO6+0mnZg7RLby/sHo/XQBKOtiRusrSOlZR3xSTh8D9ur17rC+waGXaUORWurYaMH4u+hd+L2otvDUt8XKwMH43a2YDQAQLEvMcaAxHE1HztadGh335PSBZt5TF9QldXgZEMAWZrzosXq86hRQxdCYYRwNuus/QS6KH6jP+9AgX37N288p4wxkG1xHnnK0yaOftzEsFtNrMyL7mA5uxwFo9VFrh1O2ApGS1Z3CmVuwHTypNvBwlyJ4beZmPiIicvfkjjuKRN73mFiwsMmLnhV4rRnJQbdbGL2ktYf9m9yJTKvtJdOsOV+A0Ny1K9JbmH7vB75ler19Exz3oEPytL3+7kRDsuw2v6GdFc3ak1Bx25zLy02cd2c0Nrwdznw0hL1stUW4T+hBnIQkX1ezVdAOPaLp0/QV/K7IqhoZ+Z0t8HdEJl2EHV2ViGDQtHlDNbsu65pp33Xtli8TqLPdSYmP2Xi4AdNjL3HRF6Fs3bb7XsqagOn5bZh3/MWiyDdKDuMIiIiIiIiIiIionaU37C5Q9bbI67PjpsdElF06xs/sEPWKyFR2GD/R+y8emf9Wb2sQ41mwHpHKXAYQNc3oWPeGyKKvH4J6nEIPeP6hqX+/pr6ByUO5z4aERFFpW6xWbig1w24pNf/ITM2R1suO7YnEl1J7diy9tMnTPv/FZ7SsNRDarVmjeHAQ9YAACAASURBVHJ6OAJuiXZGDEajsBJCxAohxgshzhJCXC+EuFQIcaIQon9Ht42IiIiIaGclK0shX7kP5mNXwrxhCsz/3Aj52euQXm+b67YKRotRHFH2TA/+I9exI6P7hzBpmpBTdguYfmjtN0gy3bbq8A9G6+VRX3hR4UrX1pFiVjU/SEhC1wSBCw9p22t35iGJbVo+mB6X34Sbh6/G6ZVvtbmuVfmKYLQgAWBRqSRvx5+Tqz9ytOhuwheopws2A4Dv1gFnvah/YVwGtEFf0R6MZif8yq5e6QLPnimQ2uIjMHlP4KnTAyv75Zbgp8s2lADnv2JCWo3u7yScPIXKbZFrhxN2gmB0nxuvCZSof0PoEKYpMXW2iaIgn8cGD3DubAnjAi/2usOLM54zcejDwUPRkuKA16cJ9EoXGKa5qVFuAdplWy7VvO459m7Y2kp8rECfbup5hVWRfS5WfZPuNV6tzkcNm9X5EnfMMzH1JRMPzTdR7m5u5PwVEue93LbX5I6P1MvXWIQlVkdJf0G0MwvnvpK/fhlAYqx63qd/dv79HyecfkVa9Y1EuzLLYDTFtCGa69JyC9tn3zVUpilx8jNmq1DpP7YC17zrrM12n2KFYp8rUsc7DEYjIiIiIiIiIiLadRU3RPhHb41xaUd0yHqJyLn9Ug9FnFDcubQdFDfmOyjrvD+r9UbPxWZe6UFpY5Ht8qmudOzVZb8ItoiIOtJBaUfCgKvVtGSjK/bqun9Y6h+Xqt4XOyTt6LDUT0REFCkjuozB//V/AsdknIoYERMw/5D0YzqgVe3j4LSjwlKPlMHHqlBovNKDOlM92CKZwWhESoE9OXV6QoiZAG5rQxUvSynPcbjOLAC3AzgVgHJYohBiCYBHpJTvtaFtRERERETUgszbADltf6C6vHni4o8hAWDBW8CDc9t0Rx5d+AwAxLgCp/VKC17n4OyQmxNxUkrIW08HGgJHsyfIehxRswAfpBwftJ6ufsn9w+pzHbclpeVd5hJ8aU5Pnibw34WhjUQdUr8Gw3bX3/EiHERsHMTd7+CG79fgzZfaVpcqRMZqEK4RrdHvLYLRxtd+i67eKlS77KUApc+5F3LAUcjcR3/S/binrE82CyG2B0QFvnjF0XO9jpJVEF4oThtr4LDdJf7YCqQnA3v1UfeNPdMEjhwOfL7Cur7v1wO/bQH2Ds+N1TqMk8HtFbWRa4cTdoJgeqbql99aAWSHEMYVCT9uADY6vJnO738Dv/8d/I2bO93AfgOAzK6+F2ZodwFVX1BTD+RVAL30WZ1hUa7ZftJDvNlSVhdgk+K1i3TwnS6kwjCAoTnq17ioGih3S6Qnhz/F85tcieOeMuGub5721FcSP9xoILcAOOrxtnem5bW+fST/fcrqes0CAKrqmJxBFGm6fSVXGPaLXYbA+KHAp38Gzluybtf6fDsNAqptiEw7iDo7q4+S6rTVEM1+VXUdUFgFdLfY3+9Iv24BCqoCp7+1TOK18yQMm+mVdvueckV+f1WEAhoZjEZERERERERERLRrqjO3ocpbHrxgGHWP641xqUdgfNqx7bpeIgpdt9gsXNX3bswpehEb69bAIz3ttu6iBgfBaA7KNnF7o+cOtKWNxTAR/FqgeJGAgUl74LTsCxFndExgHRFFXu+EAbi8z0z8r/gVFNRvwYDEoZiSNRWpMeG5GHRc2uHwSg8WVnyKgoYt6BHXBxO7HY99Ug4MS/1ERESRFGfEY1Lm6Ribcgg+LX0Xf7p/QhdXKg5KO3KnPt8wossYnNvjGswvm4Ot9ZsgLa/c07Nz3EGhsQrfTjIYjEakwmA0ajMhxNEAZgMIFm9wAIADhBCvA7hQSqm4VJuIiIiIiJyQ/7mxdShaSz/OB76aA0w8OeT6PV79vBjFgPtgwWhxMUBGlJ6jkV4v5EPTgYUfaMtMjluGD2AnGK31hRADGjciVjagUcTZbk+K2WIkbbwvNSbGJfDBJQZO+I/zE4z/3PYRxIiLHC8XipH7D8GceImTngn9ROiaQqC2XiIpvnnQsNUgXFf4s2bCo7g5GC1eNmCi+2tb4XoAkN5QDPn0TUh+5WjkpPgGfzvRNN46S/OZq64D6holEmKj88XThl+1Iewjs6vAhGHBy43oJfD5iuA/AMz5WWLvvtH5+tnlZHB7fqUE0PHPV9dmV4uQgewUXzCMKuAzryJ6Au1yCyOTLnDbcQKTRrV+r4ZaZGOuLuh8wWiZmr4t0sFoVsF8w7rrl8stBPbbLfztufl/rUPRAGBzGTD+IRNrCsO3nvJaoFty62k1FqEbVeqbGBFRGNkJCm2Lw3YX+PTPwJV8nQtUbZNISWzffYJXvzcxe4lEXSMwaU+B648UtgOG2sLpN3UNgyGJHFMGo1n86rymMHqD0VT9ZpMyN5DZ1V49ujBefxWKfS4GoxEREREREREREVE4lTQo7m653e0DnkZGbPhv1GmIaL1DJhFZ6ZswCFf1vcd3g+IQB99beTH/YfxSvThgenGjg2A0TdmD047G95VfolEG3gmr1oyeO9BaPddHBr+JOOELQRMQbbqpNhF1HkOSRuL6fg8qb3waDgenH42D04+GKU3uoxERUaeUHdcTZ/eYEbHvymg0JuVAjEk5EKYMPqbvirWnwiMbA6YzGC1y3FbBaK4oHXRL1MF4JEJtIoQYD+ADtA5FkwB+BvAugC8AlPgt9i8AbwrBI2EiIiIioraQNZXA4nnWZea/0aZ1eCzOY7kUe/S9061PEvZMRfSeSHz3CWDei5ZFjv33QbaCBrr6XQgRAy8GN6xz1JxE2WJ0a0JzaszkvQROH6tuRGoisO5uAymu1gkp3T0FuPqgOojkFEdtaIspowW8/zXQeMyLKFjTB9Wru2FK1f8c1THy9tYboNUg3LaEZUWSLMlr9Xh4/Urby6aalcCm1RAFG3HkQOfZ4juC0SwGXpdGzzU7ASId9mHFKtyoJTvhadHOdPB7RV5F5NrhhK7NLfsBlyHQQxOWsLUiet63sgjcNiC7K3D5oYEflPRkgWxNfxCpgLYmpilRoQtGSw7tQ53ZRb1cJF7Tlqz6pp5pQBfNTVbXF4f3NfZ4JYqqJL5fr54fzlA0AMivDJxWbRG6UVQNSClR5paQdpM9iMgRVfgnEL59pRG99BVlX23CXd9+n+1nFpo4+yWJr3OB79cDN/9P4uLX22f9TvaVAMAdeJ08EcE66EvV22R2FQGhrE3WRHjftS3iLW5LV+zg+NtuCFlFbWDByggF1NrtD+sbJbaWcx+QiIiIiIiIiIhoZ6EL4XEhBt1is2EII+z/iKhzE0JEpG/Iju2pXF9xg4NgNE3Z7NgeSHapL6xye6uV0zuCrv1pMRlIMBJ3vFZRe502EUVMpD/33EcjIqLOblfcR7Z1rKWJGzKlt51bu+twW4Rv645LiXZ1PBrZNZwOYICDf9fYqVQI0RvA+wDiWkxeDGC4lHKMlPIUKeURAHoDmAGgZVzocQDuasNzIiIiIiKipV8AnsBU/laWfAJZG/qP8lbBaDGKI8qRvawH4vdKC7kpESU350LOusG6UEYPZB1xDPbsbV3MkF6keQPTg8Zs+9lRm1q9jPGJrebNPkfgjuMFurfIOZs0Clh1h4HdsgSW35WIc/qtx4HGnzjH+BxLDv0S6dNvcbT+cBBCwOg1AJneUiTKOkyutg7y87ehBNhQ0jyQ1jIYLVrPUfsFow1ryLW9aJrXl0IjT90dx300zfGqm0KiUhP1ZaxCbTpaRwajHTlcKMMf/f2yGfh2Tece7G13wD0AbI2SYDSvzW1D950TLc8DUIdNtUVOCrDsZkMbNqYL/Vutv8FzWFTX6be19CT19GAyNDfDKamOcMibpnohfN97fbup54frvc4tkNj/Xi/iLjbR/Zr2uxNTvuJzU1MfOK3Jynyg17UmMq800e8GE/N+79x9JVE00vVHdvZh7LAKim3wAF0vM3H6syZq6iL/+X5sQeA6Zi+RKK2J/LqdrsGqbyTalYXyaR2So54e7gDYcEqI1c8rqrJfj93jtHJF+HC1Jhht3ED761fRHYc1qWuUOPtFE92uMNHnehN9rzfxxo+8cygREREREREREVFnV9ygvqAgIzYbLuFq59YQ0a4sK079I3ZRY76tG7Y0mg0o95Ro6u6pHYBe642eu8/qwiqzYm3eCZaIiIiIiKgFXfipKXndV6TUasK3Y0QM4kR8O7eGqHNgMNquoUBKudHBP/VZvkC3A0hv8XgJgMOklKtaFpJS1kspnwBwit/yVwkh+oX+tIiIiIiIdg3SNCFXLIX84bNWIWfyO5shUwveCXndHouA/xjFdU3pyQIHD9Yv0zs9+tKrpJSQ/xoVtJx4ZiEAYPce1s+hm7cMLgSeAJxc87HtNu1ev6r1hITWqTGxMQL/d6yBvIdcMJ/1/Zs73YXuqb629csQePHmwfj2mT3x4jPHoP+/z+q4u1v0Hbrjz1Oq5uCA2iWOFv/g1xbBaBbnVaMxGE1KCSxb0GrasHonwWjNKTSH1yxAvOksxazpNUmxCEariuJgNN21Su3xXvdOF7jxaHsrGv+QCa+TdLEQbGuQ+OQPiW9yJRo84V2Xk6bnVURHsJGuL/DfNnqnq8tttHvmqx0UhDkYLe9BA3266bfdId3V89YURPa9VQU2NAk1GC1TE4z28+bQ6rMr2PbXPVU9P1gwmrte4ouVEq//aGJlnvr9qGuU2P1WEz9usNlYB2JdwD4WZ2rzKwPbVB0kDKlge/jH3+XACbP0z4uIQhPpENleaUDXBOsyb/8kcdFrkf1s19RJZQhSoxf436+R71ec7ua5GYxGpGQ1FkV3umJIjmbftTB69ykaPPp5xQ7GzNgYu+OrU3GNVJVmH22f/gKXTwz9S6I+yL0Zpr8p8eoPEtu2l9taAZz5osSitdH7fhEREREREREREVFwRY15yunZcT3buSVEtKvLiu2hnF5n1qLGG/wONSWNhZCa2/lkx/VAkqG+GKlGM2i9I+jCKrPi1K8NERERERGRFaGJGzIV4yIpPHTh20lG144b+0kU5RiMRiERQgwGcHaLSQ0AzpFSaodUSyk/APByi0nxAG6LTAuJiIiIiHYOsrwY8sqjIS86CPLa4yFPGQq55BPfzF8X2qvjwUual3HIG0IQ1Ql760/C7D8wpGZElHzh9qBlxJWPQXT3pYUMCXJjtUxvqXL64TULkOCySJpr4aiaz1tPSAgxNSYaZPcGEpMBAHFoxNebjsCzeRejf8NGpHvLcFXpo7il+G7t4gtWtQhGsxhLG23BaLK+DvL2s4CG1skII+pXIM1bbquONLM5RaeLdOP0Kmchh02vSXKcvkx1FAejmZqR4O31Xt9xvIG50+2dOrvk9cgN9F62UaL3dSYmPWni0IdNjLnLxIaS8K3PSdjH1orgZdqDLiTA5fd27ZYV/UEK64vD15YN9xpBfwgZpvkO+3ULYEYw4C8SwWgZmmC0wirgkS8i90NcsCCiHqnq98AqBG/5Fonht5k48jETZ74gMWKmiQtfNVvdzbaoSiLp0vA8r/12A2ZMFHjgJIFbJgncOklg5e0Glt2sv5v3ekWgYI2D8B9TAi8tiZ7PHtHOQHesFq59JcMQOGVM8Mre/VmiojZyn293g37e2qKIrXYHu+FETZz0jUS7EstgNM30wdnq6b9tQav9pGhidYxdVG2/zXZ3zfMU+5hV29RlUxOBR08RmHdZaJeI1FuEvjV6JOb8FNhoKYG3l0Xne0VERERERERERET2FDfkK6dnxQW5iI6IKMysAhmLG9V9lZ0yAga6xWQj2aW+GEk3aL0j6J6DLjSOiIiIiIjIiiHU15JJBqNFjNtUH2PqjkmJiMFoFLozALQcKfe+lHKtjeXu93t8ihAiIXzNIiIiIiLaucjHrgB++aZ5QmUp5PUnQn74HFCivhujsp7rT4Ssdp5o49Gcx4oxoA1fOX4v/eB5q3kdQa5dDrx8b/CCYw7d8efwHtbPIUMTjJb8z6k4bLg+cKTJuNrFmFl8V+uJ8Z03GE0IAfQduuOxCybOrXwZ6/7aA8VreuOBoptxW4k+GG1li+s4OlMwGj55GfgyMMgsFh4cVTPfVhWp3tYjnO8uuhX7bltmuwlNr4lhCHTVHHlXRXUwmnq60Y5nsyaNElh4rYGsrtblnlskUexgkLtdUkqc/IzZKlTqzzzg8jfD9yODkzyBMnfYVtsmum3D/2tpSI66XG5hdAQplLslvl9vXaZ3OvDd9QauPVJo+7mEWGD2VIF+GcE7wj0032HF1cDSjUEXD5lVMFpaiF9x3VP0z/eadyV+2RSZ9zhYMFr3VPX8/MrWC5a7JR6ab+L690zsfaeJzWWtyz+3SMJ1oYlr3jVR7pa4dW74ns+SG1x49FQD1xxh4PbJBmZONjAw2/cEJo1SLzN/ReD6nYZrPjy/4z93RDuT9thXuuuE4N8tjV5g/3tNXDvHxIKV4f+c11oEo1VVRT6FzOkug1V7iXZlVh8lXbbv7pp9181lwAr7p8TaVbVFt1Rcbb8eu11PfkVgyUpNMFpKgu8czTEjBf7zL+cnUeoa9fNKavTnF75cxX1AIiIiIiIiIiKizqy4sUA5nSE8RNTeurpSEa8ZgqgLcWxdRt2fdYvNRKwRi2SX+iJBt+ngR54IMqUXJQ2FynlZceyTiYiIiIjIOUMTN2RKBqNFii58O4nBaERaDEajUJ3o9/glOwtJKVcB+LHFpGQAR4SrUUREREREOxP5+2LgqznqeQ9Nd17flAGOl/F41dNdFkeT/TIEzt4/cIDlWfvbC21pL3L1z5Dnjg1ecM8DIVoEe40fav38M+MUo2CPPQfGjEewT7/gz/+bTYcjWfolyMR38jzpfsOCFvlwyxTl9E2lgLveN4jWMhgtys5wSEUoWpPRdb8GXT7JdCMOrUcd53iL8O3GiVi0cTxeypuGl47abFlHyxAlXTBadV30DlA2NefR2zsE76DBAmvuNPD8WdYrzrk6/Cf+V+YjICwJAD7+A9hSFp73zupz5a/CItyqPQULpmoyJEf9nlXUAuuKwtyoEIy9R7/NPHWGwPwrDKy+w8ABAwXu/6eBVXcYmH+F7//vbzDw8lSB9y82sP4eA2ftb68TPHAQEB+jnvfhb5HrD8o1oXpdE4AYV2gf6qFBbj495m4TjZ7wP6dg218PTTDa3+XNf68rktjrDhPXzZF48HPrNj7yhUTGlSae/TY8zyUnxXr+IUPU78cPG4ASvwDImsjnERGRBV1/FGK3qpSTIlA7K/h3TG6hL/zwiMdM3DkvvPtEbou+pnLhfMiS4Be4t4WTfSUA2MZgNCLHdMFoVudf5i6PzmPZKk0oGQAUORgzozse9penuAeCLqAsJbH577REdRkr9R79PKtQSDf7RSIiIiIiIiIiok6rwaxHhUd9k1CG8BBRexNCaPueokYbwWiaMk1Bj7pB6LpB6+2t3FMCL9Q/2GTFBrmQioiIiIiISEEbjAYGo0WK26u+kFAX1k1EDEajEAghugPYs8UkD4DFDqr4xu/x0W1tExERERHRzkg+eGl4K6yrhdy4ytEiHs15rBiX9XKPnCJwzgECQvgGuJ5zgMAjp0RHKJos+hvmnVMhzz8geOF/HAFx51utJmV0ETh4sH6RzH+MBcYd63sQGwecOgPiqicAAENzrFd3RuWbUL5KsfHB2xrFRL+hQcsMq8/Vzluz/SZ3lsFo0bF5NVv+nXbWUGNr0MWzPCXK6bHwYP9tS3Fm5Rs4s+xlXHm4/om3DItL0QajBW1Kh7EbftUeUpMEzj3QwMXjrVd+yesmpAzfAH3VIPcmdoIA/i6XmPqSieG3eXHAfV48PN+E1++FdRL2UVMPeLwdH0DgtRmaN7ynvo7nv2vf5+HxStz/mYne13lhXOD791exumyfdODiQwQO20MgKb75SQ3O8U0bsvUb7DvrOPzr1Yk4/o/7kRNvkb7gp0uCwERNVmVEg9Fq1XWnJ4Ve58Cs4GXmLg+9fh1t37S9z+3bTd1PbChp/vw8+LnElnJlsYg7d5x1P3bsSPV8KYHPV7Z+8tsalUUtRXMgJ1FnE6w/CpeEWIG1dxk4cJC98nfOkyisCt9n3TIYrSEG8tX7wrYuFafPpM4iOIhoV2Z1mKTbO+mWLDBuoHreJ39E5z5FjcUx9vIt9tts9zgtvzJwmi6cLbVFGFp6svMD6zqLfT+rYLQwHiITERERERERERFROytpLNDOawoSIiJqT9maYLTihuDBaEUNecrpTWFryYZ6ELpu0Hp7K26w6JMZVklERERERCEwhHqAqCkZjBYpuvDtJEMd1k1EDEaj0Izwe/y7lNLtYPklfo+Ht7E9REREREQ7HVlTCTgMMbPlh88dFdeFz8QEOZpMTxZ48RwDdbN8/148x0C3EAZdhpusKIGcui8w/42gZcXH+TAe+ggiPTB55fi99M8lK7srjPveh/i6BmJ+OYzpD0DE+YLNhvUIEkZS86l6hitIEl206xs8GK1/4ybEm+oRxKsLfKNoddsjEF3BaPLr9yzn737YfkHr6OlRX4TTyqK5yLI472m2eL26aoLRqjphMJrowPf6idOsV/7MQokb/yfDFo5mNbj8p43Wy1bWSoycaeLl7yVW5QM/rAeunSNx5TuhB6MB0bHN6Nrs8vtu6pYsMLa/uuxjCyRW5bffCP2LX5e48X1pGXbX5JhRAkKzoculX0BecRSw9AvgjyWQz90Gefd5geVME7LWd1GebPRtSLJ+G2ThFhy3m7oRqwuANYWReU0qNOEMbQlGi4sRGJxtXeaTP8P/fHQf76bvoSGaEFSPCWzcfiPtj2wEG0ZCelLwYLSh3YHdMtXzft7U+rFVOIbOt2ucL0NEanaDQsNhYLbAt9e5cNyo4GU9JvDlqvD1c1b7QxVGKvDVe5Bm5C7AcFp1gwcBQbREdkmPB7LefuhtZxLqp+K4PdWd2h/B88Y7hFUI7JK/gBqbIbF2X6+iaqDR01xaSolKzSaUktD8WqYlqstYqbcIfrQMRnO+KiIiIiIiIiIiIooSRZqgIQMGMmJt3M2MiCjMdKGMxRZBjsHKZG+vM8mlvhiz1lQPWm9vRY3qPjnFlYYEI4Qff4iIiIiIaJdnCPUAUQkGo0WKW3OMmaw5JiUiBqPtKi4UQiwQQmwVQtQJIaqFEBuFEAuFEHcLIQ5yWN8efo/XOVz+ryD1ERERERHR5sikRsiPZzsq7wkxGK1JbIxAbEwUJVbNfR6oKgtaTDw8DyKlm3b+lNECcTHqeYft7nu+IiYWIqZ1oRE9gd7p6uVS4704qma+eqZLs7LOYvd9ghZxwcSQhrXKeau3X49ilS8QVcFoj1+tn3nOzRhw0XRkBjlf2ctOMNr6FRhZ+5t2dssAqxRNMFp1FIRc6eje7458r12GwLfXWneAD3wmkTbDxDML2/5DgNWg+tU/roIsDkwDKK6W2O8eL9KvMJUD4p/6SuKnjc31Og37qKh1Vj4STM3Godo2poxWbzCNXmD6G2bYQux0TFPigldNvPCd/fWcOiawzXKbG+bd50FePSlwgW/eh/zwOV85KSFffwhycm/IIzNhHhQPeWhX3/+HpUGeNAiTHh6tXfeHv0Xm9SjX3FKhLcFoADDZIqgUAF5aHP7nE6xvGmRx7ffaQqBqm0RBVdibBQDoEg/00exnnDFW4NvrDAzMtn7NhBA4eIi6zDMLWz/5UILRPl/JaAyicLEbFBpOE4bZ2xH79wuyVVBPW7gtwnYKY3KAimJgrX6fuK10zyIpTr9MKP0j7dqk1wvziashj+sJeVQWzKsnQVaUdHSzwspqt9sq/Hp0X/XM6jrA442+/Yrqeuv5T35tr81OjtNa7lvWNerP5aW0GA+TFsJ+uFXfZhWMZhVyT0RERERERERERNFNFyKUEZsNl+jk17MRUaeUFacORitqyLO8DswjG1HWWGxZZ7Krq3K+2xsdwWjFmrBK3WtCREREREQUjKGJG/JKbzu3ZNdR661WTk/SHJMSEYPRdhWnAZgIoCeAeABdAPQDcDCAmwB8K4RYJoQ4zGZ9g/web3bYnk1+jzOEEJohe0REREREu6jNuaEtl9ULOPRk/fyNqyDLi2xXpxtkGsnB9pEkf1sUvNCUiyDGHm5ZpHe6wMzjAgfn/nM0cMgQ/XIxLoEH/ikCguWEAO4/tASppiYppZMHo4mcvsCgUUHLDW1QBwLOX+HbDq0GBkdLMJosyQNK1RegoGs6xLm3wOUyMGmUdYN7NrYIRuuSpi034fHxttrVVROMVqUIzooW0RiMBgAHDhbISLYuU10HXPK6xNSXTORVBB/4bpoSK/Ik3lxq4of1zUEiNRaD6nMbc2D+a1TABV0nP2Ni6Ubr9Y29pzkQzCpwUCUqgtF024biu+nCgwVyUtTlv84F3lwa2TCFl5ZIPL/I2TrGD229kcttbsjz/gF89pp2GfnQdMhtbuCTVyCfuRmoLNWW7eEpwNhtS5XzQnk9TFNi0VqJJX9JuOvVy5drtpv0IJ+lYK6YKLBbpnWZlkGA4aDb/poCPZLihTYEdU2RxFr7u2GOHDsSqHzCwKb7XTCfDfz32jQDw3va60AH56in1zUCm0tlq8dOrS2MvgATos5Kt28cyX2lY0bar3zATSb+u9DEyry2fe513y0AkBfTwxdc9tefbVqHFV2/nxyvX2abRUAQkYp8fibw7lNATSXgaQSWfgF5w5SOblZYWQajWSxnFeBVFYVB36pw6pbe/8Ven+ik58yraP7b6jVpGZieFcI1VA0e/TyrYDT2iURERERERERERJ2XPoSnZzu3hIjIJztWHQK2zXTDbaoHlwNAaWMRJNQ/smfFNgWjqe92W2fWwistfihpJ8WNmj45tns7t4SIiIiIiHYWQhM3ZGqOn6jtdOHbyYb6mJSIGIxGzcYAmC+EuFsIq/tyAwD8R2Q7Gs4nt3QxeQAAIABJREFUpawB4H9ZdqqTOoiIiIiIdnZyzW+hLZjSDWLmq8Do8foyc1+wXZ1Hcx4rxuWsWVFj2QLr+YP3hLjiMVtV3XC0gS+uNHDFYQIXjxd4Y5rAWxcYcAVJIjhtrIElNxi46RiBs/YXuOYIgUXXGTh/X33akOjkwWgAgIMmBy0ytF4djPbjBuCOeaZlgJMqEKkjyDvO0c/cdyKaDrlP2Mt6O+l9+ETgjKshZjwC8cEmYPd9leUSpEVyVgspier1VUfhQPImHRH2Yddf99jb4F7+XqL3dSae/kb/o4C7XmLK0yZGzjTxr+clDrjPxIEPmMivkJbvT4UrHRs8mZAn9Id0+0IV1xZKfLvW3nP4aXtsveNgtCgI0/M62DZSkwQePEm/0VzzrkRlbWSCmipqJc5/xVndWx9ovW3JX7+FPLE/sMXGG/vFm5DzXrS1nsnV85TTf9sCfPqH/TZvKpUYfZeJQx40ceD9Jva6w8QvmwKX1wXqpSW17QPdK13g11sNHGeRvfnfb8McjGZj+xuiCRZbWwisKwpvey48RODlqQIfXGog+Glde4Zk6+t56uuWwWjOn0vL4A4iahtNhnVE95WG5Aj00mf2tpJXAVz8usSImSamvWJa3p3birtIfdduAKgzElFppEKGGixug67ZSXH6ZbaFEBxJu7gv3w6ctuJHyL/XtX9bIsSqB7DahbEKRouG0GZ/ZW7r+T9v8h0nBOPkOC2vsvlvq2C21MTmv7slCwzKtr8OANhmse9nFYzmbkDI3wFERERERERERETUsYpb3tixBYbwEFFHyYpTB6MBQHFDgcU8daiYgEBmrO9CnyRDf2eZWs3A9fake35WrwkREREREZEVQ6jHRknJYLRI0R1fJmnCuomIwWg7u60AngNwPoADAewBYBiAcQAuA/C5X3kB4CYA9wSp179XDWVIrP8yIdyXOpAQIlsIMdzJPwADw7FuIiIiIqJwkVICi9WBJUFl9YQQAmLaTH39331kuzptMFonPJqU9cEToMSNzzkKFZm4u8AjpxiYdYaB08YGD0VrMqa/wF0nGJg91cADJxk4YKAAYi1G1u8EwWjCRjDanvW/a+fNnCux/G/9QNqEKHiJZN564NeF2vniikd3/H34HtZhCsMOGAHj4nsgTroUIj4B4uDjtWVf3XqOcvrY/s1/6waTF1VH7+BkXcuiIRgtJVFg3mX2O8JL35AYOdOLmAu9OORBLxava352T34lMXd56/LLNgK9rjNx/XvW789HXY4FygqA954GACz/23aT8NsWX91Ox6dHQ/iALiRAt2386x8ChwxRzyuoAm6dG5nPwVXv2K83MRZ49ZhNyHnvTpiPzoB8/SGYz8+EvPxwYHvwXTDywUuBP3+wVVYXjAYAxz5pwmszieGwR0z83mK7+6sYuPC1wPCbck34Q7pF0IVdXRMEXjhb/3lckRfmYDQb298gTbDY2kKJQntvpy21sww8/S8DZ+5vfx/Ejj376OfNXd4yGM153fmVwcsQkT0dFSJ78hjnK3jxO4lZX9vvj+WP82HOuh7115yIJ99WD7hpkhfTA9isDlgOB12/z2A0Chfp9QL5m9TzPnutnVsTOVbHHZbBaIn6edFwbOKv3EabttoIitX18Sp5Fc0vbpXFr/YpCa0fHx8ksN1fjcVptdoG/RvsNYF6j6NVERERERERERERUZRgCA8RRZsUVzriRYJyXlGD/rflokZ1MFpaTAZiDd+Pv8kWg9DdHRyMZkoTJY2aPjmWfTIREREREYXG0MQNmWAwWiSY0kStyWA0Iqc64VB2smEpgCMB9JFSXiClfF5KuVhKuUpKmSulXCKlfEpKeRSAfQGs9Vv+BiGEfsR1YDBa8HSBQP6XZYerp74EwJ8O/30YpnUTEREREYXH+hVA3oaQFhWjx/v+GLGfvtDqnyGLt9qqz7szBaPdebZ1gX0mAINGtU9jVGLj9fOMTviC+xs0Cujez7LIUTXzke4t085/eYl6oG1iLJAU3/FpWfLjl/Uzx0+BSM/e8TAxTuCS8eo2d08BjtjDb+Kkqdqqp1R/gMGJgSOrT923uf6eqeplt5brm9zRtOFDUfJxOGakwKcz7DdmRZ7vOS1aCxz0gIk75vk62LeXhR7atCjpQACA/NS37W2tsF/X6u3XSdnMv9qhQhNw1Z50bXZp3g4hBGadYWi/u2Z9LfHr5vA/ry9W2qvz3QsNrDv8A5z+2Ahg9t3A+89APnMz8PK9YW9Tk90bVmNQwzrt/CV/Ba/jmYUm/ioOnP7zJt/23lK5W11HOILRACCzq/47ILcAAUFtbWEnGG1IjrrMumKgVPNaNOkSD2y5P3jf8uNNBhJiI/Pdpwt2A4A1hcDqfN+LEEowWkkNUN/Y8f0I0c7A6fdhuFwxMbS+5/K3JIqqgn/+zadvgrzmONS//R/sX3QLlidYH6Ntie0NbM4NqU126L5CLIPRGiLTFtpJeSy+UGt2jURRq14lxSoYLZRbd0VQg0fCXR+8XEl18DJO9pbyWpwOqLL41b6L3xih6RME4h2EzFu93rVB+j07rwsRERERERERERFFl0azAeWeEuU8hvAQUUcRQiArrrtyXrEm/AwAihvU87JbBD0mu7pql3drBq63l0pPGRql+gcZhlUSEREREVGoDKEJRpMMRouEOrMWUnN1oNUxKdGuLkqGklI4SSk/kVLOlzZG/EkpfwKwH4A1frPuE0K47K7SaRtDXIaIiIiIaNewaG7oyx40GYDvx3/xxHx9ucUf26rO41VPj7F7tBAl5IJ3gIUf6AuMHg/xfy9BiA4M13JZjEa1mtdJCCGAg46zLJMkt+Guopna+b//rZ6eKSphXjwe5q1nQP66sA2tbKN5s/XzsnoFTLp9ssC0gwRiW3ye9u4DfH2NgbiY1tuiSMsETp6urDpeNuDdxuswtr/vcZd44PqjBK44rLmOXunqZm3Nr4H571EwrzsB8tvoyg03NefRjY7PwNvhyOECr08TyAwh7n3mXAnjAi+Wa7ZrO3Ljh/j++PsvVFfV4cq37Z9uyd0ebOQ0GK0mCga02wmm8rdHT4GrjlAXMCXw5FfhOVVVWStx/XsmRt/pxdbAvMJWztxPoPhBEyf+egdyHj4D8Gq+dCNAADihSv+Zn7vc+vWQUuLSN/Rl/tzael55rbpcerLlahz5aLr6VHd5LVBsI3zCLjvb34BM9baWVwGUWlwnuVsmMHe6gV7pAvOv0J+6f/4sgX37R7Yz/GOmfv1N28e2EILRAKCgKrTliKi1UL4Pw6FvhsDHl4X282L3a0xU1wU2XEqJF74zceg1f2HUD6djt0GrkTysAr8l7Bm0zr/iBgKbciG3h0t5vBK3fGjCuMAL4wIvsq/yYt7voX/P615ny2C0EPtH2kV5LTaYuihL/moDq0+h1akYlyHQNUE9r0Kzj9lRdPu8/optjJtxcpyW3yI/r0qzyXRN8L2WLfXLEPjfJQb6bD9fEOz7w+r1ZjAaERERERERERHRzqeksVA7UDObITxE1IF04YzFDQXaZYob1fNa1hUr4hAjYpXlar1hvPgoBFahb1mx6qA4IiIiIiKiYIQmbsgEg9Eiodarv3gw2QhhYBrRLoLBaAQpZRmA09H6mvRhACZoFvHvcS3u1a3lv0zH3jqBiIiIiCiKyFCD0Q6aDNF70I6HYu9DgAF7qNfx3UfWbajzjXb0aM5juUI4mpT122Ajvzns5E9fQt5+pr7A6PEwHv8cIrODL9iK04z0BYC+Q9qvHREktgf3WZlW8aJ2XqlbPT2zagPw5/fA1+9BXj0J8uevQ21iSOQ2N2TeBqBMf2GNGLZPwLTEOIFnzzRQ9YSBtXcZKH7EwM+3uDC0u3o0srj0AW39I1a8ge8vLkXNkwYKHzZw7xSjVdBfz1R1neWyC7Zt3gR8/ynkzadAfv6Gdh3traPCPpw6fazvNb9vSvs3bF3cQDQiBiYEjphZ5GjZv4p9/3fGYDRviKF5txwrdgz69/fV6rZ/P5mmxJGPmXjwc4nftujLPXqqQO0sAy+fayD9sfOAl+9p87pDcWXZk9p5P220fj02lgJWX+lr/DZHbTBakuVqHNm3v37eevVNrEOi7Zta7Bv1SlOXqfcA64rUFRw9Alh3jwvjh/o25MP2ELjs0MCN+snTBc49MPKn9Yf3FDhgoHpe0/ZRF2LwT16Q0EAisifU78NwOHqkQOMzBmqeNFD+mIFlN9vvlw57xERpTeu+8N5PJc5/ReKbqv5YGb8HNsf2tV3furjtndWcpwAAJz9j4u6Pm+svqQEmP2Xi5SUmtjU4/77Xfd9ZBqMFCQgiaqXRYoOpj7LkrzZoy+mgNM0v0RW10XUfrjLNOQt/U2cHv2jMyeuVX9lcuHKbesEUzSmno0YIbLzPwN8PGCh91Lovr7DI6QsWjBYNx5FERERERERERETkjC6ER8BAt5jsdm4NEVGzLE04Y3FjnnaZ4gZ1n9ayLiGEdiC622LwenvQhb4lu7oiycXB80REREREFBqXcCmnS8lgtEhwm/pjSx7bEekxGI0AAFLKXwDM95t8lKZ4NAej/QfACIf/jg/TuomIiIiI2kwWbgbW/BrSsmLGw4ETDzxOXfiXbyBrA+9gJj94FuaJAyCP6AbzooPhKS5ULh7j4GhSbv0L5iUTII/MgJyyG+Tbj9tfOAzkczMt54vJ09qnIUGIxGRg+D8CZ3RNB/Y9rP0bFAkjxwHZvS2LuGDi3zXvOKo2w9Mi8aaxAXLOrFBa55jM3whz+kTIo7MgTx1mXdjiPYyPFRiYLZDRxTrFQrhcELM0oW+mCfnYlUiKF0iMC6ynlyYMCgDyYpov7pGv3m/ZhvakCx8SURaMBvguirruKAP3/7N9G9co4rAhrj++TJ6AH2t6OVp26/ZgIqfBaO4oGNAeamhecrzA7cerCxVUoc3hndfMkVi6MXi5yyYIJMQKyL/+BBa83aZ1tkWOtwiXlan7y9x86x+yVutvQgoAWNniOkMppUUwWvg+M1ldgQT1TVuRXxm21cC0EUTUUxOMBgB/bFVP36Nn4Gvx4EkCj54qMLY/MG4g8Po0gYsPab9+ZsIw9brm/OL7XxeMdt6BAifvo29nON8Pol2Z7vswlBDrULgMgaR4gdQkgX36CSy+3sCRw4Mvt2wjkHWVid7XefHRcoknvzLxfx+E/h28Jm4wAEDOvge5BRIfLleXmzpbIm2GiWMe96Koyv76dCVdAoiPUc/bFmJwJO2iPBYbTN2uEYwWbO8mTROm+9Hy6ApG0+3z+nPXIyAg0p+T47SWobNVdeoyKRa/5gsh0DPN159bqajVHzMFC0ZzMzCSiIiIiIiIiIio09GF8HSLzUSsoflxnoioHWTFaoLRNP2WV3pQ2qi+6ah/Xcmurspytd7A663bky6sUvdaEBERERER2SE0cUMmvO3ckl2DW3NsKWAgwdBcKElEDEajVj7zezxKU85/6FqWk5UIIbogMBitQlXWKSllkZRyhZN/AP4Kx7qJiIiIiMKicAvQo7/jxcQNz0Lk9A2crgtGa2wAfmydjSy/fh/y4cuAkjzfiNUVP8Lzv+eUi9sNRpMN9ZCXHQ78sQTweoGSPMinroP87DV7FYRA1tVC/rYIctVPkH/+AKxcar3AhH9GrC1OiQvvBBJanMgSAuLieyBido6LyURMDMSMRwCXJkFgu+x6TWqMRqa3tPWE7z5y2jRHZN56yK/fgzxlKLD8O9+2beXsmyDSHR06643cH+g9SD3vqzmQeeuVs3qm6qssbHkX102rIStL9YXbUajhVx3p2iMN3D65fRuYGzcUixMPcLxcTT1QXSe1IU86HT2g3eOV+HGDep6dIJjdu6vfnwYPULkt9HblVUg8tiB4esHovoBhCEgpIZ+7NfQV9h4Y2nL7Hw0xZ92Oh8dWf6IsVlBtoKJW/3xWF1g/1y9WSni8vjI19YBXs52lh/G3GyEEemj6uvzK8IVm6Gpq2Td1T9GHOOpCwbolB06LixGYMdHADze5sOh6F04fa8Box05waI5+3n8XmtoAjH8MAN6+0MBAzVdfXkV0hZgQdVbRtq+0/0CBT2e48NkMeweLeRXA8bNMzHirbX3CjpDfulp8t8ZjWbbRC3y2AjjuKfs7QFZhvYlx6nnbGABETlgFo9W3YQc1ylh90oOFX2dqboT44XLgnZ9MNHiiY9+izG2/7E+brOeHHIym2WRSEuzXp9Po1fdvwYLRKnaejD8iIiIiIiIiIqJdBkN4iChaZcWp+yG3Wa0cZF7aWKwd1J8V173V4yRNMJrbrHHYyvAqbmCfTERERERE4WcITTCadDjQiGyp9aqPLZNcydr3gogYjEatbfR7rBu1vdbvcT+H6/EvXyalLHdYBxERERHRTkmMGgfx9mqI2T9DnHcbMGTv4AslJkMce7Z63rB9gAz1D9/y569aP/5kdkCZRxOmKpeNcQVvFgDg9++A4sCQK/nFWzYrcEb+tgjyjBGQlx0GecE4yIsPsSwvXlsOYUTPobHY+xCIZxdDnHsrcMbVEE99CXHcuR3drLASBx8P8d/vgH9dAxx8vLJMmleTGqMREIwWQeasGyBP3R3y1jNsL2NMuy1s6xdCAAdN1s6Xp+4OKQNHUCfHAwmafL1SV2brCZvXtKWJYRNtYR923TLJwFdXGxiz/ezHbpnW5dtqddwQ5MYPCWnZreW+HEwnaupDWlVY/F0uMeZuE9V16vl2to2cFP28wqrQ2gUAby+z90KOGyQgK0shLzsMWPyx8xXtOxHi2lkQs3+BmPGwo0XFebdB3Pc+RE4fiAvuBAAMbdB/3nPVN1EFAPy2xXpd5bXAou1nEMstAiLSFWFgbaELRpv7W/jCMqwCcprEuARy1NdJamWE+bUIh8HZ+g/Vxa9LbNR8/TZ93+jejzxnX/NEpKHdV+rgw5sjhgusuav9GlHqyvD94fVg5Tp7X+bLNgJ/brX33aDbVzIEkKjZv97WGB0hTdRJeCwSpZYtaL92RJjVcUewYLR9+ukLnPasxNBbTPy4vuM/d2Vu+2145Xvrsk6O00rdwLYG3wK6sOdU/1uWhahQfcPKoMFopTUd//4QERERERERERGRM0UNecrpukAiIqL2km0RBqYKENMFPQKBwWLJLvUde1SBa+1JG1bpF+xGRERERETkhKGJGzLBYLRI0B1bJhsOB58Q7WKiZ/Q3RQP/S6V1l0iv8ns8yOF6dvN7vNLh8kREREREOzUhBMTAERDn3ATjhR8grnzMuvyLS/XzDAPY7yj1zM/fgPnsrTCfug5y4QfAD5+3mv1TwmjkxfZULuqyeTQpX7hDPWPpF/YqcEDW1ULefZ4yiE1FXPU4RL9hYW9HW4kBe0BMvRnGxfdAjBrX0c2JCDF0bxgX3Q3j7neAA44JmJ9uVjiqr6cn8EI86VXf4a8tzKdvAt561NlCh54U9nYITaDcDh+9ELiMEMhUX7ODkqYwie3kkk9CbVpYmZrz6NEejAYA44cKLL3ZBfNZF9bd48KzZ0au0bnxQ5Ebpw9Ge/RU/brzKgGnw9PdNfWQ7z8Nc8puMC+ZAPn9p8owvkiY8ZaJ3//Wz7cTBJNt8XtBW4LRVuivn2tlcu8CyEk9geXfOV6HuPE5GI98AjF5GkR8AjDlEvvLXvU4xDk3NYeBnn4VMPEU9PLkIVlzR9PVD94P89x/wHzoUsiX7oJcuxwA4DUlPvkj+Hv+4XJfmfJafZn0JNtPwRZdENf8lYCpSxByyG7f1DvdWb290qKvcxvWHYi1G4bbQkKs77n01DynfGdf80Sk4Y3ifaVB2QIvnN0+DSlxZezYn6mvsP9lvmCVve8Fq0BMfTCa7WYQAR7rDUY2Bkmc2gkE6y0mjbIusakUOOclEw2ejg3fstrv9ffmUmm5f+p013V9ie//Kk2IdEqCvXpmTrZ+re/6WN2wbUE20xL1IQcRERERERERERFFseJG9d3UrAKJiIjaQ2pMN8SKOOU8VYCYKiwNANJiMhBnxLealqQJRqv1dtyPHVJKFDeo++SsWAajERERERFR6AyhCUaTDEaLhFrN2B3dsSgR+TAYjVrK9Htcoin3p9/jUUIIJ8MY/Uf2+9dHREREREQtTT4f2G24et7x0yB6W2cViz6a+XW1wKv3A28/Dvl/pwbM/qzLEdo6Y+weTdY5GBXaVt9/ChRsslf28NMgTrwosu0he7r3C5iU6q10VMUE98LAidvCeyGKfOsx4I2HHS8njj0nrO0AAAz/h+Vs+eClkOVFAdPtBqPhtQcgF38cauvCRjcQPBrCPpyadpCBzfcbePpfApdPFLjhaP2TeOoMgc9mGHj8NIFnp1TjmfxL8WDh9cjxFCrL/xm/B9bFDVTOu/d4EzMmGuiWrF7X5jKpDXnSqflxEeSjV/hCKP9YAnndCZAz/x3xcDR3vcTc5dZl7GwbSfECXeLV84racGPPvPLgz39k3R845Eb/+wXYI+ashTjmrNbTDANi9s/BF558XsB3noiJgbjtFbhmPIwhDeuUi60uBLD2N+DD5yFfvBPy/P0hP38DawqBUnfw1X63NngwWprutgwhyknRbwQ/2dxFCMZu3zS0u/3OKsYAxjm99UQ7SE0S6J8RvJy/pqAgXVBdfmXHhpYQ7Sx0/ZErSnaWTh0j0D0lfPWNrPtDOb3eSEDt9p+o8gvtH3/a/d7X7eIYAkjQBaPt/DlWFE4ej/X8XxXHu52Q1be/CNJtHWhjPym3EPiig2/FVWZjH7klq/1Tp4dXudvHwlRrgtG6Jtr7bjhptHW5d3+SymM/d711gxmMRkRERERERERE1Ll4ZCPKGouV87LiGIxGRB1LCIEsTUijKkBMFZYGqEPFkg31XTfd3jZcWNZGVd4K1Ev1j0Dsk4mIiIiIqC2EJm7IBIPRIsGtCd1OZjAakSUGo1FL/iOr81SFpJT5AH5vMSkGwIEO1jPe7/GnDpYlIiIiItrliJgYiDvfBHr0bz3j6LMgZjwavIKsXiGtt8iVrZ23d1+bg+0tRnLK78N7KCAfvtx2WXHS9LCum0In0vwzuoF6oUkt0hhTpwgGqg1+IYrM2wDzzqkwD4r3/TtvP5hn7wNzxpEwbzwJcsWPvnLffgg563pHbUKXNIhrnoIYe7iz5WwQQkC89JNlGTm5D6Tfa6ALRiuOCXwP5H9ugHSamBVmut7D6KRns3qnC1x4iIHHTjVwz4kG5l1moGda8/zEWOCuEwQuOljgiOEClx1q4LzdCzCt4iVcWfYk7iyaqaz3p8QxqDXUyWcHpPwNAOjXTd2mNYX6UBUdt8cVOPGrOcDiec4qcmhtEeANskm6bG4bOZqQlsKq0MOa8oLkOSaatXgh/0IYlpEQCnsd7AtFy+mrnC0GjoC47RUgu4+2CnHqDPV0IYATL8JQqU5kWBM3uPUErxfyrqnY8luurab/shk48wUTU55Wv3Fd4oHYmPCG9+zbXz/vle/DE8ZlNxhtSI79OscOANKSoiPIyN8PNzrvdJuCgnSftWgIxthQInH2iybG3efFFW+byKtgWBt1PrpdtSjJRUNSvMDHl7dtxy3e8OLqmqdRt6or3t76b225pqDf/LJG23U3BMmiaqLr94UAkjWHLbUMRiMnPEE2mE2r26cdEdaWHGXDEPjmmuD9Sbj290JlFQissqVMP8/pcVpuoW+Bylr1gikJ9urZo6fAR9P1r3VNve840l+wfi8a9v+IiIiIiIiIiIjIvtLGIkjNAFhdGBERUXvSBYIVNQYOhVSFpenqSNIMRnebHfdjR3GDOtgNYJ9MRERERERtYwjF+CAApvS2c0t2DbWa0O0kTUg3Efl00qGkFG5CiAQAU/wmf2OxyP/8Hk+1uZ5haB3A5gYw386yRERERES7MtF3KIx3ciE+K4aYsw7iyyoYNz0HERsXfOHM0H74bhD6us85wG4wmj7FRt4wBfLr95w2S13Xdx8BlSX2Cu9/NMQe+4ZlvRQGqRkBk4Y0rLG9+OWlT0K5NQYJRpN5GyCn7gvMf6N54ppfgfV/Ar98A3z3EeRFB0O++gDkzafYaou47mmI13+HeHsVxMf5EMefb/t5OCUGjQTGHWtZRk6fCOltPhmd2UX9uS11BQajYfMaYLO98KNIcRL2IRvqtfVYzetIx4wU2HK/gY33Gsi900DF4wZuOsaA0fIJlhXt+HOful8cryN9w1IAwLAe6vc+t0A6HnBfY6gv/pKfvuqsIocuejV4UJ/dIJhszW8GhVUOGuRng8VXkEt68ELehRhd91vwio76N8S3dRDvroH4OB/Gk19oQ9GaiMNOhXhrJcQNzwbO3O8oiL5D9cu6XBjSU/1jVm78EOX0/Fn3W7anpdd/lKjQBESkJ9muxrYpo/UbwX++kVi6oe1hGdqAHL/Qu2Hd7ScT9c+IkhQjhfRkgSdOc9a+pmC0DE0gZ6m7jY0KUXWdRF2jxJ9bJfa6w8SrP0h8vx544kuJiQ+bqNAEiQQjpYTptDMlCgOvzaDGjrR3X4E/Zjr7KfKJgiuxcsxLWH2ngcqnYvHAa5cg9u0VyHxziXaZ0pgM1Is4/CEH2F5PfpBQ0ya6MCcBIFlzyFwTnbufFK081oF+csvadmpIZFkFo9nptg4eIrC3PgsYALBwTcd+J5c73Mcpdevb6vRprNk+nqeqTj0/NdF+XceOErh9sv5d+XVzYOPcQYLRShmMRkRERERERERE1KnoQngEBDJjHdwljIgoQrI1wWiqELSihsCwNEAdKpbsUl9Yphu83h5KGtXBbglGErq4NHctJCIiIiIissHQxA3pAvOpbdxe9YV0Sa7kdm4JUefCYDRqcj2AXi0eewF8bFH+9e1lmkwRQgy2uZ6W3pFSai7RJiIiIiIifyI5BSKnD0RcvP2FMnuGtK4GEaucPiTHN8DdFl2y0fZ58u3HQ2hZM1lbA/P+iyHaf04KAAAgAElEQVRvPMneAidPh7jzzTatk8IsNTCUa4yDAKi7imeqZ7iDBKPNmRU0PA0A5LO32GvIvhMhjjsXou9QiJ67QRiRP+Ui7pljXWDtcsjnbt3xUBdQU6wKRtu+fEfSDQRvGfYhP54N85QhkIenwbz4EMiNq5rnff2eb95hqTDPPwBy9c8RbrFzQgj0zRAYnCMQGxPYr8qnb9rx9/D6lUg0NQlTGmm/zAMADNVck7q6wPmA+1pDk2b17YeQQUIdQlVQKbF0Y/BydoNgcjTXg4USjFZUJXHUY15Ua85uuaQHCzdOxCnV9oJAxakzIISA6N4PIqWb7XaI2DiIY8+GuPMtYJ8JwG4jgNOuhLjr7aDLDhutDpFZFzsQHgSGpuXHdLfdLiuDssNSTStdEwQOtjhDedvctv9Ap+2bHrwY5qReMP97C6TXizH97dfZK73NzYqoSycIPH+W/aSl+Bjf/xnJmkDOdg7G+GG9xKiZXqRebiLpUhOjbjcDPrO5hcCHvzkPUvl5k8SEh0zEXWyiz3VevL2MPwJT+3ESItuRhvcUWHJpJbp7Ai/WzvEU7vh3QO0SvFJyCS6dOhxDzz8PQ3IE4mIEhGFA9ByA9Myu2udW4srA94n/gFsT4KqSV2HvM2+1T9olQT3PzWA0ciLYPvTOEoxmMU/Y7Lcm7m5dsKgato4bIqXcIuhMxSos1ipITiW30LeALhgtxUEwGgDcMkl/TmNrReC0YP1eSQ1DZImIiIiIiIiIiDqTYk0IT1pMBmINGzdyJSKKMFWoGQAUN7YOdvRKL0obi5RlVeFqyS71b866wevtwf85NcmK7Q5h94c2IiIiIiIiBUOorxMzGYwWEbWm+thSF9JNRD4xHd0ACi8hxJkA5kspCx0scz6A2/wmz5ZSbtItI6VcK4R4GcC52yfFAZgthJioCzoTQhwP4JwWkxoA3G63nUREREREFKLs3iEt1iDUFzEdNNjBD+kyyImwFT86aFGLaqUEtqyBvGQCUFkafAGXC+LWVyAOtRmgRu0nNSNgUrxswEHuRViUfJDlov0bNiJJblPP3PoXMHxswGRZVgjk/gK8+2RIzVXqM9hW+FC4CcMA7nsP8oZ/6gu9/hDkyZdBZHRHluY86ZZYdR8h7zgb4vDTwtDS0OhCKMTKHyHjioDyIsiHpjfP+PMHyMuPAN5c4QuFu/WM5nmrf4a88mjgtd8hMsIT6hQOsrTAtz3WB55KkUu/AFYt2/E4Bl7sVbcc3yftb7v+9F/mQtZUYnDRHwACl9taLjFcfY0Y4mOAek/g9BqrwJEt64ABu9tun119r7f3o4rtYLRUAVU0w+YyZ4P1pZQ4/TkTX+fqy/yxfjSGNKyzV+EJF0AMGuWoDf7E+BMhxp/oaJmh+48Avgx87g1GPDbG9sOgxvWtpheEKRhtTP/IXJg3fqjAt2vV7+XnK4CKWom0pNDXrQ0iMhuByhLgtQcghcCAC+7AHj2AleprE1vplRZyc9qFEALnHihw0GCJcfebKAlyrWdG1XrI3wvQbT0A7Bcwv6YeqG+UiI+N3MWZ7nqJ5X8DK/IkLnzV3md72Ubg7APsr6OyVuL4WSbytoeDbK0ATn9OIrurxIRhAmVuiV82AUO7A3268UJUCj9daI4rym6JJNf9jrHPXIa/1/5gXfCUy2Fc9l/tbJchkJ6kDhIqc3XDNuEs9aeg0l45XQ8ihEBynLpEDYPRyInGBuv5W2zuS0Y5q6Avu+M1htnYDf3wN4n9duuY790yZznWKLMIRnMaYL1m+5UBVZpTJCmaIEcrh+0OLFgVOH1FHrBgpcTI3kBOiu+1rg2yGZc7fG2IiIiIiIiIiIioYxU3qH/oVoUIERF1hCxNf1TjrUKttwZJ2wPOyhtL4IXiIjiow9WSDfVFlttMN0zphSECbzIZacUN6rBK3WtARERERERklwFNMFqw8aAUklpN6HaSJqSbiHwYjLbzOQ/Af4UQ7wJ4B8A3UkrlZdVCiDEAbgLgP1pyK4D/s7Gu27Yvm7798QEAFgghpkkpV7dYTzyACwA87Lf8w1bha0REREREFB4iIQly4Ejgrz8cLdcoYpXTY538rm818rWpiNcL4bJfqWyoh7xnGvDlO/YWOO0KiAknQeyxr+11UDtKy1JOvrH0gaDBaCdVvaedJ+88B3BXQZx4YfO095+GfPJawNMYSkuVxCX3AsefD5HUMXdnEOMmQY7YD/jTImjih8+BY8/GIPVLjTVxg+GFAZfijh6yJB8is2MuoPFqzqOLBW9BvvuMemZ5EbB0AeS3HwTOq6kEFs8DJk8LXyPbQL7zBOR/bgS86guvVPat+9l2MFq8WYdEWQd5zzRkbu4CKJarrpPwmOrQgJREoLg6cLpbJOlXuml12IPRtpZLeGz+pmI3CGag5rOQq76GTOunTbAMRcvwlGBgw3p9gRbE7a8DEyxCDiNoaI46KA4AcuOHBASj5YcrGK1fZAIrTh4jcMc8/f7HmS+Y+Oiy0C9S1NVstPzx79NXIafNxN59BVbmB98X6pXWOUKzBucI/HqLgRcWS6zOB95aFvjcBjWsQ99LR0EC6Ba/B7DbT8q6St1AzwgFwi1YKXHWiyYKqpwt994vEk+dEbxck2cXyR2haC3N+trE2iKBS9+QO77LLh4v8PipAjGuzvFeU+egDZGNks1M1tZAXncCsHxR8ML7ToSY/kDQYhld1MFoJa7AsOVgVPWoaAMxBZCsCRoKFhBE1Io3yPFp4WbI+m0Q8c7C/6KN1R6R3W5raHf9fmuTucsl7p1it1XhVW6zX2lSahE2qzudlhwPuBXhi2VuoKRaolITjJaa6PzLoWea+vWevURi9hLf9JuPFbhjsoA7SL+3LXynYYiIiIiIiIiIiKgdFDWqg9FUIUJERB0h26I/Km4sQD/XoO1/6+9omBkXeA2U1WD0WtONLq4UB60MD/bJREREREQUKYZgMFp7cmuC0ZINBqMRWWEw2s4pEcBZ2/+ZQoi1ADYCqATgBZABYE8AOYplywAcJaUMOhRUSvm3EGIKgM8BxG2fPA7ASiHEzwDWA0gFMBqA/5DTeQBucfa0iIiIiIgoZAdOchyM1iDilNPjnBxJmt7gZTwNgMv+AF85+27boWjio60QaZm266YOkNVTOTnFa51mMq52Ma4te9SyjHzkcmCf8RB9h0Ku+x3y0StCbmaAjB4Q76+HMGwmMUWQuOddyMl9tPPl3+sgAAzTDCKvNxKwKbYvdmvcGLjwX38A7RSMVt8o8f6vEj9t8g0CX6m5JqmLaT3aXL71KLByqXreZ69DdHAwmly5DPLV+4Dv5jledp9tv9gum25uT+tZNBdpCXsDAxRtgYGK8m3wnUpqrUu8Ohit1ggSjBZms74JHirVxLA51n9ItvqzsKkM2NYgkRhnr6IPfrVu26SaT5WBg60LnQtx3X8gOjDFJileoG83YHNZ4LzcuCE4Fv/P3n2HR1Htfxx/n9n0QhKSUIKA0ouI2EWxYBd7vfZesKBe61WvXq+/a0WvDXvvHbH3ih0vYgEJiNIJSSC975zfH5uQsufszm42Db+v5+Fhd+a0bJmd2Z3zmXdbLVvrsyTLRWjbTWPSTJCxeYobDlVcOdP8/Lz1Mywr1gzKju4xtwYRtXxNFa2CylL6Z2R4arOjAsI6woAsxTUHBB67q6ZoDry+gD/9gddEpn89z6w8aUO4SU5DsbWd4orwf/faMs2seYHwsb3HKHYcGv45K6/RnPx45KFoACNN35aHcN0b5hfDq3Ph1Tbbh/s+1Ww1CE7buZskVokNXDcQYOfXgQAsvw6Es7b6F2aZG3EdHVw3wjZcDXOWml+D3WD3FAB981neQtEAdcvrnj4Lc9IgvyB4ebEvmyRdE9H41lUGngtfmB0I26e9UpBqPmSmstb7/osQnoK7V/wOQzfv+LF0Ea+7wmPzIM4hZHDygtWQX6AZ0bfzP3Nt4V9piVBhDDOzbyts+5yj+wUCmk0WFkCZZVPYK4pcvf4edmX/85Zmh81U2EBICYwUQgghhBBCCCGEEKJnKayzhPAkSAiPEKJ7yIjrTbxKoF4H/whRWLeawUnDNtw26eXLIskJ/gEl1We/QG6lv7zTg9G01hTWrTKu6yPbZCGEEEIIIUQ7OZgvOO/iYT6oiIjWmirXMEkLSAlxLCqEkGC0vwIHGNn4L5yPgJO11iu8Nq61/lQpdSjwOM3hZwrYpvGfyXPAGVpr+UQUQgghhBCik6iDz0A/cWNEdazBaObvvMxcD1cIaKiHRG8zNPXK3+Gpmz2VVVc8KKFoPYDKyEYPGQtLfm21PE3bw6/+ud0qrnxiP+JpCNu+fv95OPkq9CnbtnusLanjL+kWoWgAKqsPfFiK3tMya7nxSh0jQgS+5CcMNwejLV8E2+/d/kGGUVGj2f8ul9mLw5cdVhem0NoQX2ss+SWygcWYfuVe9J1/DyS/RWF0nffgsSz/+g23M/0l1nLr15ZiCkazBX1UOylowBQzoH/52rg8WlOfcXngs9gHo40MvtgnEHhafi+EzQd4a2fWj/axKTTT1t0Tsr665TXUjvt566yDjepnCUZL2yJwGYUWinzt/2zNToXB2e1uxuqK/Ry+WOTnHctb/qlvNFdNiTIYzbJr47QNwSspYkCWt2C03B76O9aY/jDvz+35lC2pU4nsXfEBqbpqw/refsOLqlFx6IxLFhVo9vqvu+F1ed0bmluPUFy8d+jP3lf+FwhS62gFZTrigI8zntQcsZUmIyWy157W2hi81Z5AraB1xjo6dPiXx35DjTN4LJqwY/WwrFW9MOU3Rr5ukL+nf/0WPn7ZU1n1+A+oOG8/V2anmpcX+7Jb7ft44WooqYLsMBdZs4UTOQpSE83rTAFIQlg1hD+uZcXiHh+MFuoQyOtmKzNFcdhWihfnhD5GmPWj5tJ9On9jaPtc6ZNu3i6sNZ/jBNi3Pf0zID0Jyg0BaHOXaesY0pPsfdkM8Bje+/hXLpVhtnsSjCaEEEIIIYQQQgghRM/h1w0U1681rsuNlxAeIUT34CiHnPh+rK5bFrSusH618XZLuQnmE8hSfPYfkKv8FRGOsv0q3XKq3Srjutx4y0lwQgghhBBCCOGRwnxuvtt2boRotzpdS4M2ny+aGuJYVAghwWgbozuBlcBOwGAP5SuB94EZWuuPoulQa/22Umpz4DrgaCDLUvQbYLrW+pVo+hFCCCGEEEJET+UOQE85Bd56zHOdOhVvXJ4QyZGk9vBFWH342ZG6aBX6qZvh1fs9datOvQb2O8FTWdEN7LhfUDDaiNpFZPhLKPW1nombngSXjs73FIoGwLzZ8O5TsRppwA77wiFnx7bNdlKJSehBI2BZfvBKfyCXPC1J0T8DVpcGF1kZH5wEpYGHfurNOwWB+udPdthjtHly+TdLNNPfc6msg303V0zdVZEQFyj7eb7mwc81v6zSaA3D+8C5uzvsPqq5rae+0Z5C0QBG1Rn+xpaKzFdIBCC7c04G0n4/vPs0+qYzmxdm9YH15hNHvRpRu8hz2Qx/8xOd6Rqe9EbrqjAmEdiCPgBqVSJJ2jDz/Zv30FXlqJT2pzw9/11koWgAXrMKh+SAzzEHFyxc4y0YLb9AM9983hwATw6dxfgFP5tX5g5A/eNB1LZ7ehtwJxjRT/H+/ODHO3+Lv0H5la1eu4Vx7Q9G230kKNWxYRWX7O3wzi/m/ZA35mmumuK9rfoGzRNfa16ao1lTZi7jtN3nKS2mf8ZQT+3bgn66K718EfrmqTDvC1KBKbxrLJdAPen+MsoNV8stCnOu6H/e1kFhfVe8qjl5oiY7zf7aef676IInAUqrvZd966fo+sm60GVITmTBX7ZgFCFsujq7V69agj57F09l1dWPoSIIewq8/4PfFMW+3iSY9k3CKKoIH4xmC3NSCtIs+0vhAoKEaMXDdyIUruz4cXSwKLOhgzxwvKK6TvPWz/bPyMtf0Vy6T2z6i4RtPAN7w5Ki4OWLCuxt2R4vR8HIvjBnafC6H0NkhNu2V6Fss6l5m9vWK/8L35YEowkhhBBCCCGEEEII0XOsqy/ExW9cZwsSEkKIrtAnob8xGG1t3Wrj7VZ14/OMyxNVEj7i8BvOT630h7jqTQcprFtjXZebIGGVQgghhBBCiPZxlPmkY+1lPqiISKhjylRf++dgCbExk2C0jYzWeiYwE0AplQmMBQYCfYEUwAFKgPXAAuAnrbX5V4vI+l0LTFVKXUBzKFs/AsFrK4G5Wus/2tuPEEIIIYQQInrq0hnoJT/DgjmeytfHIhjNS5JDQ+jZkbq0GH3WJFgbYoZnC+rlxai+Az2VFd2DGrJ50FTbBOo5c/3D3JpzSavlU3dTpNaVeJia2+jPBej3n4vFMAN23A/nltdi114sDRxuDkZzmw/7B2RagtHi8vDjUK2SSdOVAFzc52buWnMUNJ5b8/o8l0dPVhy7naKmPhBSp5TirZ80B97T/KX3e79q/rcUnjhV8cF8zQF3u9S3+Obh55Uw80eXN89z2G9cINzmTY8BM70bisnxF3sqa5SZG33dCOgH/wnP3tZ6YTtD0QDSdCUDkytZXh0+RSnLLdlwu2VIWlvrdFrEwWjVKtkcjAbo8/dCPfJN2PGFsq5Sc+zDkScnOJasJK01Sil0Qz0qLp74OMWQ5FIWVWYElV1YoGl6QJrqmcz60T6+ZTc75D35pXnlkLGox3/o8FCwSI2ynLv821oH9cJv6L17A+CiKPZlG8v+39pruLbPtfjxhexLKfjH/h2f2rPbSPu67/6ENaWafhnenoeLX9bc83Ho16TT9qpIpUUM7Bc+TMLnQEayp2F0C3r1n+hjIwgx8q8zBqMVVzS/10ye/Dr4cfO78NqPmtN2NterrtN8GiY7M5RIgtFenxd9uospGEWIWErqwl/+dHkJ+ujRnsqqadNR+xwbUfu2ELNiX29rEOx2mwa2+8Z6leH7DBVOZNtfqpBgNBGJhvqwRXTRqhCfmj1DqE/OSHaNM1IUs87zUVKlueldzS3vmlu++2OX8yd3blKkKXgZYFR/xWf5hlDHSigq1+SkBz8Atq/TlIKR/RRzlgYXWLDK/ignmb/iC2n7zSKvY1NVF/r4SgghhBBCCCGEEEII0X0U1ttDeHLiJRhNCNF95Mabg8EKW4ShFdabg9FsQY9KKVJ9aZT5S4LWVfrDXAWwA9jGn6AS6eXL6uTRCCGEEEIIITY2DuZz7Ny2cyNEu1WFOKZMccJc5VmIv7guvm686Eha6xKt9Zda6+e11ndqrW/UWv9Haz1Da/2s1npuLELR2vRZp7X+RGv9uNb6Jq313VrrVyUUTQghhBBCiK6nfD7Uza/BIWfCkM1hy11Q/30H9jZPRq9TCcblCaHzTlqzzSJvqT50MBrvPOktFG2nKain50koWk80aIRx8Q2F13BT2nNsORC23RRuOUJx46EKKuwhT0EcB+Z94b38VrvB+EnBywePhOMuQV3/vPe2OpvlSh20uFLHgExzkX/nXk3i6AoyRxUyeNginsw4jgeyzggqd+rjmqRzXDIvcPGd5eKc6W8VitbkqW80PyzV3PZ+61C0DUPScNVrzfXyC0L/aU22qpnrraBNtYf0i3bSBcuDQ9G8ik+AjOzmfwlJrVara59k5KbhQ9EAsvzrN9yOw0+a5eoilZYv0FPMHwEAVDshUpzy56I9BlnabH9DdD+i+Fq8BXTBctx/HoM7KRG9S1Lg/93TcCcl4j54DSPWmIPL8n8v4YP5GudM/4bXuHOmn49/a/15ZgtG234z2CQrxHZq2PhuGQYwsq95TIXlUNSQAjtNAWC9Lwu/Mifu7Fn5Me+5FzJ5FIwbEFg2MKs56MJRMHkUfHW5w4RBHf8YKKX44Wr7199eAxl/W62Z8Un4skHBaCXFbD0Y0kKEDAJkp4JjS/XrhvRD/4qofLZ/nXF5qDAiN0Sw7ofz7fU+XAB1wRfs9cxrMFp9g+aDEOMQoqvtNKzjtyn6py9xz5qEu0cG7rGbo+d8hF6/Fr1/X0/11RUPwBHnRdxvji0YLS6HSpViXDeqvyLZEghU5OGC3rZDWqXs2/hKCUYTkfCHD0ajyDzhoScJ9fVQNLvHmSmKE3ewV7QFpnUkWzDaGPOcHAB+s8wvtI3eUTDYnFPM74X2fqIJzVRKcfLE2HymaA217dhPE0IIIYQQQgghhBBCdJ6WgUItZcT1JtFJMq4TQoiukJtgCUZrDBNztZ8iS9ijLVQNIMVn/mG6yu2CYDTLNjk3oX+3PAdNCCGEEEII0bM4lnlorpZgtFirDHFMaTsOFUIEdOF144UQQgghhBBCdDaVlYu6+O7WC7feHV1fC5+80mpxvSUYLT6iYDQPX4Q1hJ4ErH8MH2qlHv4aNXIrr6MS3Y0lGE0BlxRO57Lbj2+1XFdGEIy2zmPiVlw86q3VqJR07213Nz7Lm9PfnEyWl6WwT7EOWBk/gFPzHmr3cK6Z5fJ+iOCYH5fDkkLNJlnwZ7G3NveveLd9g6oIvpJjzH0xK6pq6pJ7UAcHh9G1NarI5cMF4Sf5Z7W5amWmW0qFz/vrOzXB/lqpUWGSnr54HQ4/x3NfLX22UIec0B9KU7aUdl30dSfCz1+ZCz51MyP63MBb7B+06t25NTz5c/Bn1563u8y/zmFUf0VBmebrJeamD96ycRC2YLS0jHB/RpcYFeKizmc86TJz0kHoL9+iyGdJYQByGwrZZvET7P7QjG5z4t2EQYpR/cyBE2/+pDndkIPZ1hNfa085r07b90tpEQlxipsPV5z7rL0BW8hPd6TrauGD5yKq09tv3sCHCkYrCRFQlmQJNwKYOdf+OPscePN8h33GKt77VbPfncHv87Ia0FqHff2uKIFqDxk2QnSF3UfClHEd24deV4A+d3LzguWL0BcFf6baqOfnowYMjarvbEs+bLGvN1WOORgtJQGy02DF+uB1RRWawFGHXahwolRLkGyFBKOJSIQLiwcoXNnx4+hgoXanot1zHN0fBvWGZYYc1pUlUFKlyUzpvP1SW7ZrXoaiV5KmrCZ43dJ1mp0Nj4AtZE0pe+D52hBhj6H2oUIZGeI4IVIzPtFcvHf3OE4QQgghhBBCCCGEEELYNQUKtdUnRIiQEEJ0Bdt2qdxfSrW/imq3kgZtvnKLLVQNINVyjl2l5cKkHcm2Tc6Nj+GPOEIIIYQQQoi/LAfzPDS37UXjRbtVWY4pk5wUfCqSybpC/PVIMJoQQgghhBBC/MUppeBfT6PbBKPVYZ41mRDJkaTb/mA0luWHXr/VbhKK1sOplHT7JOk/F6CrylsFlulij2FnkdjtsJ4digZguVJHy4BC2wTqjvDOL+HLvPGTZt+xyjrpu6Vkt4ojy19t36BsYVUxomuq0HdeHFmlbfdAHX8ZaqvdPBUf2ddbs5ltgtEy/KWsiN/E87BSQmSfVavkkHX1z1+jogxGu+W96H9AqWrKlJjzkT0UrdHIukXG5Wvj7A/wjE81dx+j+GiBPSjrkHDBaOmd+CaMQF4mpCWag1xenwcNxx2ML+1yCv051jZy/UWgG+DzWbDrIR042sgcOF7x25rgJ+yD+VBdp0lOCB3O8OIcD6logNMmDFaXFKGAqbs5fP27y9PfmtvJ7knBaI/+O+I6OZZgtKI/VgHmbdIC8zmdACRaQj1WlWge/8r+XM25ymH8wMBznWHZhPndwHsgPcxFzos6/wLAoofyOY3/VIvbjf8cZV8XapljWZeaqNhlBBy3vQq7XWsvffCg6CrudhjqojtQvT3uzBhkp5mDW4t82VQ65tS01MRACKU5GC18n6EOaVMTzeOplGA0EYlw34kArFziKbyzOwsVNBvtn6WU4sDxihmfmBv/aAEcvnV0bUfDdlzrc2Bgb/h1VfC6lYZtU+i2FAMywweetxVtMFpeDHOd7/9Mc/HesWtPCCGEEEIIIYQQQgjRMdbWWUJ4QoQICSFEVwi1XSqsX021337VvlDBYrZgtCp/558wUlhnuBoksk0WQgghhBBCxIZjmYfman8nj2TjV2k5pkz19aAJJUJ0EQlGE0IIIYQQQgiBchz05CPh45c2LKtTCcayCZGE0GsPATf1ddZVurwElpvDa5qoY/8ewYBEd6X+/Sz6mmON6/R/L0Jd9XDzgu/ej23nQ8aizv5PbNvsCo7lzek2fyHdmcFoXlz0gmbw1PCz4BPcWu5ZcyH9G8wn+nhWWYp2XZRjCZFrB712BfrYzb1XcBzUuTejjpoWUT+j+nmbBJ/ltp5h39u/LqJ+UkMFozmhg9Goju4ksPIazUe/RVUVgN//KMW971Z49rawZYdbgtFCmb0o8LibAg0AhveBUf2bgtFKjGVUWgyTBWJIKcUWm8BXv5vXf1mQya6X3UfRf18xrk9xK0nR1QDoq4+GT6tQvu5x1ZoDt1Dc+l7we6a6Ht6fDwdvGZt+VNv35ao/Nty86XBlDUYbmtszAk50VQU8Mz3ietmWbU/x3B/RFenG98S5z9r3H5MtoR6HzLDXeWVqcygaBAKSbP4sgnFhMiSLOv8CwB1GqfDBXEFBXBEEeTnGdap10FcE4V/hlrWqp+x9GscZRUhZqMfHcXrGeztSes7HUdVT/3kRtcvB7e7f9v6tclIp9vU2rktJsNcrtp8Hv4Ftr8txAqGiJtX14Hc1vo30dSBizEswWsEy+HMBbDam48fTBdrzTrn5MHsw2pEPuLgPdt4+qWvZYPicwLG46ThilSVPOVTI2iZZkY8t2mC0AVmRh7DZ/F4Yk2aEEEIIIYQQQgghhBAdrLDeEowWLyE8QojuJTMumzgVT4MO/r2tsG41Va75B+E0XwbJPvOFtwBSHPMPzJX+zj9hRLbJQgghhBBCiI6ksASj4WE+qIiILWzbdgwqhGgmwWhCCCGEEEIIIQLaBJjUK/OsyYRIjiS1h8mT//sURgSnkujSYvQBeaHrjtwHVC0AACAASURBVNwKttkzggGJbmvH/ezr/vfJhpu6sgyW/Nr+/jJzUSdfCZsMhS13QSWGCXrqCWxhX27zF9J5GbGZ0BxLh91n/8L8v2suJtMtZVLVbDatX9b+zlw3EFjVyxycES09/3v0xVOgtjp0wUPPQg0aAcnpMG7HwO0IjbJfrLKVTH/rGfZ5DeaTpGxSzNmYAFSrpNCVi6MLsHv/V6hriKoqAP3euAWKb/dUdmRt5MFo81aA1pqFa8zvo202bRHpUGFJOEjrZumELRy7veKr381/26wfNbsdfRiFVbvCrOD1uQ1Fre7rG05H/fOxjhhmxHYcCtmp5vCbQ+91qbvPIc5nj+NY5yE0B0C1/fFv2cINN/MyFUdto3hxTvDje8x2PSQ053PDE++BLZSx2NcbPpsJU05utdx1NT+tsLdneoXW1GvmWeokxcPebTJkBveGeB/UGy5k9dsaD8FoFZF9lh6yZWD7kJkSLvhLeQrlsod/RR5SplQPef2JbkHX1qAvCrHPbrPN5JiEokFge26zIt785k358QNy+u+FaQtS5CHL1RZ0pAgdJFtVB+lhdpmEALwFowH8+HmPDkbz8vVQNFISFZvnwS+W8OL7P3M5e9fYB2ObhAozy8s0B4ytWm9+YKxtKRgQYTCaUoF9n2jkdc9cZyGEEEIIIYQQQgghRAdxtZ+iugLjutwECeERQnQvjnLIje/H6rrlQevW1q+m2m8+6adPmFCxVJ8lGM2N7mKh0aryV1DhLzOuk22yEEIIIYQQIhYcZQlG0xKMFmtVlmPKFMsxqBCimQSjCSGEEEIIIYQIcFrPkqxT5lSctsFoWmv46i30G49CYgpqjyObJ7674b8I0zMuR/3twsDtL99Ev/M0VJXD9x+Grjh6W9TVj6B8Uc7uFN2KSkpBJyRBXU3wyrUr0HW1qIREWL82Nv2deDnq8HNi0la34VjeCy3ehwN6+YGe8Z7Zq+IDzl9/X+wb/u4D2PPodjej/X54ZQb663dgzsdhy6vrnkFNPqLd/eZlQloiVNSGLpflL2l1v3+EwWiJcYEJ/KYJ+dVOmCDBZflorSMO3Hnjp/BpCQOzYPl687p9Kj7w3FdffwGD65ayNGGw5zoAa8thgSX3bWRjaJ3WGsotg0ztvskCZ++iOO9Z83PwxjzNf4+GIrIwBTrk+lsHo/H+s+jJh6N2OqADRmqmi1ah774UPn45sGDPo1HTbsOXlcuULRRPfm3+2xKmukwZB3uPVfRKgplzNWvLYevBiiv2VZSGyTts4rT98W/FYrTfv2E/5Z5jFBU1mrd/CazulQQ3HqbYa0z3DqbS5evRj/0fvHRPVPVtwWilvgz07DdRbYLRTAF2LVUatn2LCswhZwBbD4LUxNaPcXycYmhuIAStrYUFmkDckV24Mbb0zOmKY7brnDAWITrczPujqqaueTJmQ8gJ8dv/mjhzemzKnLfpvf/WQHCSULGHoENbmJNSgX0ym8paCUYT3ug1S72VW74ozCdU9xbq3dbenM7thyh+WWXu4ZxnNKfupEmI6/hHzxak6KjAcZzJKkuesm3b43MgNw0ykvG8n5oUF30YaqQhbEIIIYQQQgghhBBCiJ5tfUMRfsxXtMuN93glPyGE6ES5Cf2NwWiFdaupds0neIQLFUvxpRuXV/nLIx9gOxTV2y9OKttkIYQQQgghRCw4mM9z120vGi/ardJyTGkL5xZCNJNgNCGEEEIIIYQQAW1S/utUvLFYgq/NZMrXHkTfPm3DXf3xSzBtOurI88G1pFS0odevha/fRd94hrexjtkOdf/nUU/sFN3UUdPg6VvM6169D/52YSD0Jhb2PjY27XQnjiV4pWUwWloDPSUYbUTd4g5pV193IozfGZU7oH3t/OdU+OB5T2XVebfEJBQNAhPaR/WDOWHyEzLd1sFcAxpWRdaP1iTHmwPYalSYYLTqCiheDTl5EfX51e/m2f+nT1LMOEaxuhQG9oZZP8Jh97X+oWVi1VeMq/3Fc18KOGf9/Vze98aIxvjst5oFloy5UU3nm83/HirNV+sk3ZKI0A04juKxkxWnPB78PCwpgqJyTaHlwqfZ/uKgZfqKw+Gu91ETdo31UFv3U18HxavRR45oveLDF9DfvAcvLODALbKswWgAb/0Mb/3cev03SzQPfBY+MKeJ0/bHv/o6WPMnDBgKQE664s1pPoorNAVlgSA9n9O992N0VQX6lO2gYFlkFTNyAvuA5evJ9JvTPkp8mYH3ShsrSwyFW6iqC1620HzBcgBuPdL82TiqnzkYbUlh6P4BijxeAHhwNhw6oXs/x0JEQr/9RGQV0jJQry1DJcYuHax3auR1Ut1Kstf8BAR/Hnl5P4cKOkoNEYwWLsRWCGj8LmTWQ94KL1/UsYPpYLagL2h/MNq5uysemW3v4LN82GtM+/rwwhQqDYEwM1sw2hpLMJqtLccJ7LfvM1bx4hxv+6pJ5q/3PElPiu2+TDQB2kIIIYQQQgghhBBC/FXNLnmfd4tf6tQ+G7Q5FA3CBwkJIURXsAWE/VA+2zqRP1yoWKpjnpRe6fd4wkgI+VW/8PH611lZuxTd9iKMbdRrw0kyQJyKJzMuu91jEUIIIYQQQghHmc+1z6/6hat/9zjHs5PFqXiGJI9k3+yj6NNNv6/6ueJ7Pi95hzV1K9CNJ09W+M1zjFIcczi3EKKZBKMJIYQQQgghhAjwtQ5LqlMJxmLxLYrpyjL0/VcFldHP3AaHToUwP9xvUFKMfupmz0NVh02ViZQbIXXK1WhLMJqecTkcdDp89Xb7+7nkHlTGRnhiiGMJPGsRUNgroYE0fx0VlqsaRiojGQb1hhN2VIzoozjk3thdFWTLmnkxayvIu8/ACZdFVVUvW4g+ZzKUFnmuo46+IKq+bCYMUsxZGnoSfE5D66CqvAZLmpeFem46yVlnUUHwa6Xa8RBw8sf8iILRyms0i9ea1+0zRhEfpxjU+LY9ZALMPMfh9g9cVq6HfdT3XD/7cBy8h1gx+UgunvscN/ovo8SX5bnaxS/Z+9h6kEJrjT57krmAUjB0c+9j7AJ7jVFgeRz7XOySZgmAyW0wp0npaXvDY9+jhm0RoxG2aPvPBejp58Ev34DfcnJ2RQnMepi9j4wuVLMhgk1aUDAawNKFG4LRmmSnKbJ7ykV93nky8lA0QB0+FXY9FP3QtWQsNe9Pljq9YN0adEUpKi1jw/JVYYLRKmuDX5+/rbG/L3cYYt5fzMs0v9bXVYbfjoQKUtosB+oaYJcRiulHKJLiZX9V9Hx6+SL0pQfByiXeKw0Zi7rtzZiGogHE+RSZKVBS5b1OiltFzrLvIC66YDRbmJNSkGrexAFQKcFowov3n/Nedll+x42jE4QMRmtn21sOVEwZFwi7Nfnbgy7Fd8QuIFy/+Rj6iRuhohRGb4O6/D5U30H4QwQp9k4xryutNi+3teVrPA9tt5Hw4hxv421PMFqs1fshQc5QEUIIIYQQQgghhBDCkxq3inWW3+I7Wy9fJklOmIvoCSFEF8hNMJ+fZgsVC9QJPXE+xXJuZVU7g9Hyq37h7uX/wo89hNKL3Ph+1vACIYQQQgghhIiEwnxsUa/rus33UiZr61cxv/JHLht8C73jc7t6OK3MLf+Kh1fdivY4vynV11MmlwjRdeS0UyGEEEIIIYQQAU7rL7NswWitJjB+PguqyoMLFa+GFYtCz3xtqbQIViz2VnboONjzaG9lRY+iEhLRA4fD8kXG9fpvo0M3cOhZMPOB0GV2Owx1cPe8akW72U52cVuE9fgbGFy/gl99YyNq+tSSx3lw9TmoM6+H3AEwYAgMH49Kaj27+6O/O+xxe/vD0ZR22b/i3Xa3Y6Mf/CcMGQP9N4NNR6Mc+4lCuqEeFs6FkkIoKULfdKb3jtIyUfd/FoMRt3bgeMVDX4Tevmb717W6n1e/KqI+nJpKkmvWQ7whGE2FP9lVf/s+ats9Pff380r7ugmDgpcdNKqag+J+gvVr0Vce6bkffHGoa59C7X4YWmt+nrwpQ4cuoM6xJH55NLo/DO2j0M9Mtxfadk9UVp929dPR+mdAryQoqzGvr7CEvOT47UGB+pRt4e0CVHpmxOPRtdUw/3soWA6JyZDQ/DzpKw7z1sZ7T5N+wmVM3U1x36cRhOdFyDGFwS7Lh4n7d1if7aHr62DF74EQ283GBAXO6toa9It3Rd7wgCFw4GmonP6oG1+m9yINtwY/NtVOCrUqAf/vi5mXuhUj+kJuumJlSejnyPQazF9jLnvweHs7tnC6dZUhuweguMI8xtMnKR48QU48FRsP3dAAC/9nD/y06TMQ9fgPHRZk3Sc9wmA0XUV2wS8wIHhdsYfz1l3LMa2jIC1E7lul/Tx7ITbQL9zpvfCqP9CVZajUXh03oA5QVav5/k/48nf7Z3wsNhfPneHQa5r5WHR9Ffxzlstl+yjSk9rXmf7qbfTNZzcv+P5D9Pl7oZ+db/0KzOdARrI5lLWsBrTWQdtMv+WwuikYbZMse6BxW+0NRtthCHwTQTZmKDX1EowmhBBCCCGEEEIIIURPFC5ESAghukqf+Mi3T7lh6tgmpVe5FbjajTqU7OP1r7c7FA1kmyyEEEIIIYSIHZ+K3QVHO1uZfz0/lM9mr96HdvVQWvlg3WueQ9HAHs4thGgmp50KIYQQQgghhAhwWn+ZVa/MMycTWhTTX75pb69oFVSWeepaf/Oep3IA6qGvUL6e+8WbCGPH/azBaKxfG7Kq2vlAdIhgNHXpvTDl5HYMrpvz2YLR/M23/Q0cWPEWvyaZg9GG5MABNR/wx+pA8kyGv5Q9Kz/muLLngMZAsZb++zZqmz023J00HIbmwu+GC4OM7g/PnO6w1fXhg9P2q3iPvv7Qz3d76SsOD9wYtgXc9Cqq78DgMvO/R//jCFhnSd0JJSMb9fDXqH6D2znSYHuMgtREqLSEVAFk+4tb3c9rWB1RHw4uyW61cV2NCpEC0uS7DyLq7+cV5i/+05Ng0+zWy/Tns9D/dwpUe0gwarLrodBnE9TkI1Cb7wCAUor+Bx/G6bMf497eZ4dpILSDxgeCDPQ7T1rL9IRQRqUUo/rBd39GVi83RDAaAG8+Csf8PaI29eez0FcdFdlATJYuxL19GndP+y/3fdr+5mwcgrdtetlCOiYWqH30H/PR/zoBlvwSWDB+Elz3NCq7X2B9/o/o07b31JZ65Fv49Rv0gh9Qg0fCvsdvaAcgI0SO4oOZp3HFfeOobQzwnLaHIjNM7qJpu/fbGvP2Y2R/+6PfO9W8vNhTMJp5eY5crElsRPTqPwPb4EXzIq+83/EdFooGsO2mivwC7ycMpLqVxGnzyeWl1eZAopZsQUcKSIwLBKS5hjJLCjUTh3bHTwHRrRSGSAc2WTQPtowwrLALvTjH5aRHNbVh5nfEYpuRlqS47zjF1GfMb9r/vKW56yPNoyc5HL519P3ph64NXrj6T9yv3gbMgbiOgl6WfZx6P9Q2BIeX+U0bFsDXOPQBEWQOJ7czGO34HRTfLIlNwHBNvf2xEEIIIYQQQgghhBBCdF99EvK6eghCCGEU6fZJoegTJlgs1TIpXaOpcatIsQSnhbOkemFU9drqEy/bZCGEEEIIIURs2I5/eoqlNZb5h12kQdeztGZxRHUy43p30GiE2HhEF1EvhBBCCCGEEGLj0yJszI+DX5mztBMaF+v6OpjzsbU5/c7T3vt+5lZPxdTLi1DxCd7bFT2OOukf0VfeZg84zBBulJyKuvFl1EGnbdyherYrEeoWYT0N9VxcfAc7VX0ZVGxYVh3vXejw339uxcwVRzFzxVE8vvoMji97zhrsoy/aH/e+K9HFgeCwOJ/iob2WkhVX06rccfGf8dOf2zF+zgP8cOJi+idYUmUa3V5wacj16tIZOF/UwuY7hiznyeKf0LeeE7RYNzSgrz46ulA0QL22rENC0QCSExT7mrPtAOiVBPH7HdtqWd4++0TUh4NLsq4xrqt2PASjrf4TbUsSMVi2zrx88zxwnOZXoF5fiP7X8ZGFoo2biPN/z+NMm74hFK2JOv4yblp7FdtXfbthWZyu5+QSe8CZyUHlb6ILlsNSywlscfEwcUpEbXaVcZtEHhSRO2mXkOv1vf9A+/0hy7QqX7wmNqFoTWY+AMeO5tODf45dm22YgtFYlt9h/UVD19ag330afeKE5lA0gHlfoA8ZjDvjCvQz0z2HoqEUDB6FOvRsnCsfQh13SatQNCBk0NlF/W6j1m3+XL7rI82/3wy93WgbjKa1ZmGBuezIvvZ2sm3BaKE/ngAokmA08Regp58XXSjaFjuhIgzCjNQBW0RWPsWtJsMtNa5rcKG6LnR921bJcQJhTqmJ5vUnPhqbECEhWsmf29Uj8GxpseaYh8KHosXS0dsq4kKc/VBeA0c+4PLdH9G9P92Vf/DpqgxuyL6MF9MPp0o17+j4f7M/Nz4ncIxmU2rIo/Zb8sSb8tDzIghGaxu6FqlTJsYu5LGmPmZNCSGEEEIIIYQQQgghOtHW6Tt39RCEEMKod3wumyWN9Fx+dOqEsMFmqSHWV/jLPffVUrW/kgq/+XfrSG3dS7bJQgghhBBCiNgYkzqhq4fQLjWuec5TVymuX4s2zSux8BHH2NStOnBEQmwczLPchRBCCCGEEEL89TjNwRT1yj5rsikYjSW/QGWZvb33n43RwALUy4tRfQfGtE3R/aheveHvd6JvvyDyuo4DF94BB5wKC75Hr1mGGrU1jN4GlTugA0bbzdhC31qGEfkbyHJL+GDp/nydsj0/Jo7HVQ4j6hax6z/uoFefzYA+6BMuh6du9tbvs7ehn70NZnwCq/5gl5vO5Fey+Dh1N4p92WxV8z92qP4OBejbL2A88JOTyQEDZ/JtSnD4zur8QeT6i+z9JSbD7ocDoI79O/rKI72NM5TvPkCXFKEyc5qXzfsCCldG1Zx65FtUXMd+7XbQeMUr/zNP6C+rAefKh9CHnAmr/oBNhpI6amuyLvSzvspb+wpNkmuYoQ9UtwgAICER6mqDC9VUQVU5pPby1N9qy3lfm2S1mYT/2UyoD5Ng0oY63h60p3L6k3rOv/hixmQ+St2dYl82E2p+ZGD9Cp7IOB5tCxxsoV/DGrZ9+Cj0wyECFg46vcNfE7Fy8kTFI7MjC4vos8c+kHgBvHCntYw+cyd4YLanx0Ef0gGhgquXsvNN23PsxK94dv2WMW9emaJzulEwmi5ahb74AFjyq73Q8/+1BgAZ9RuMSgwdlJiZEkmD4ZW32dwUlAVCTkxG9bOHeGSnKkxxR+sqA2FrStnr2oLRbGFrQvQ0etUS+O4DT2XVtU9Bckpgf2PT0TBhtw7/vNtqkPn9a5OqK/G59nDOkmpIsYSbAbiW8xOathK2bRBAVa0mJTF2gUJi46JtL65QdRbOtYZWdzezftREkJMcE5kpiolD4fMwF4Hc4UaX2Zc7TBwa2aN50aMl3D34vQ33t67+H28vP4hs/zr8P3wGXGWs5yjICBEWW1YNfdscNoULRstNg3gf1HvIHm5vMFpyguKlsxyOfCDy12xbNZ0YlCeEEEIIIYQQQgghhIiNPbMOYVTK+K4ehhBCWB3X71zuXXE96xoKQ5brE5/H0X3OCNteipNuXVflLwf6RzpECuujuzhrWwfmHMegxKExaUsIIYQQQggh+iYM4Ni+U3mu4H50ZDMJuoVay5ynrrK2brXnsj7iODXv4rDh3UIICUYTQgghhBBCCNGkRfhLnUqwFov79CXc+56Gb96zlom5CbtKKNpfySFnQRTBaEAgyGT4eBg+vsdMGI8ZW4CTbjF52R+YhZxAPbtWzWbXqtnN1VOag9XUnkejvQajNXVz7u4bbvehkL+VvWQtm+WW8OnSvbi0703cl3UmfhXH+JqfeGD1OaFD0QA1/Q1Uelbgzs4HRjRGK61h7me482ZDwTLYdAz8uSDydlLSURf+FzUi9qFLbU3ZInwoiBqzLYzZdsP9AZl4DkbL9q8jRZsLVzot0n/6bAIrfjc3UrQqgmA089/SP7P5tq6qQN92vqf2WlIT9w9d4KhpODMuZ6/Kj1stHl63mPzEEWHbP6D8bZxwz8V5t4Rtp7vYaZjiwRMU057X1NR7q5ObDmrqjejli+Crt82F8ufCO0+iJ+6PnnEFfPBcYPkBp6LO/j9URjYA+pt3Y/BX2N3zzT7UTZnPy4uzY9qui2EbvH4t7jXHok64HDW8a08U1y/eHToULRpjtgtbJC0xEAbixuh30rVlrYPLVpbYyw7Nta/Ltvx+2OAGQo56WcJLtNbWYLSctL/cnofYCGmt0Vf/zXuFEVuiBoX/rIylTbMDwUC20KC2UtwqkrU9vWx1Kbw4x+Xj3zR9eymu3F+xWU7z+9m2+XI8vOWLKmBQiNA18Re3fm3kdfLnxn4cHWTpuq7pd+Y5DtkXhd9A7HxzoMxuI+De4xxG9Q/9pp67THP38i1aLfsheSvuzTqLfxbdiFtTDZb3u8+x71sAlBrOzQoXjOY4ioFZsCT04TPQ/mA0gBT714QR8Xp8IYQQQgghhBBCCCGEgDGpE0j12cN5OlqcimezpBHkJPTrsjEIIYQXeYmDuGaze/ijJp919ebf4HLj+zE4aTjxTvgfPZKcZBwcXIJ/sKl0LSeNhFFomRwfp+I4pu/UsPUTVCKbJY+kd3yIk2GEEEIIIYQQIgo7Z+7D+LQdWFz9KzXdLGisyYLKH5lT/kXQ8u423sJ687Ffui+DQ3JP3HA/xUljWMqYLv3uT4ieRILRhBBCCCGEEEIE+JpDkeqVfdZk/LM3QW2MgzXCUGf+u1P7E11LKYXedk/4/kPvlTbfoeMG1FM4PvNy1998uzEYzcjX/DWRGjIWvesh8NlrMRpcsHgauKPgEv5VeD1VTgp9GwrwGU4m2qDfYNQLv6Gc5vAhpRQ8+wv62M3bPR59zbHNd2a/GVFd9VI+VFXAoBGouBjMOvegd6qiby8oKAteN2WcuU5eJvyyylv7I2sXkuZWGtdVOSnNd/oMtAejFa+BwaM89bfKEm6UlxH4X9fXoc+c6KmtltRjc8KXcRy45B709PNaLT93/f1c0O/2sPUPrAjzehk0AhUfoySBTnL6JIeTJ2q2u8Hlx+Xhy+ekgfL54KZX0YcMhnUFxnL6udvhtvPA32K79Oaj6C9mwcuLUUkp6LefjG7QvfvCuInw2cyQxXq55Tz/xkDWv1XFH0Uax23g1Gfi+WlldN02SbH9qPbJK+hv3oM730ON3qZ9nURB19cFbnz0Ymwb9sWhDj8nbDHHUWQkew9lDKe6HsqqIaNxM2TbdsT7Aq9Lm96p9nWrS+3hJeU1gfA0k1D9CdFT6If/BYvmea+Qt1mHjcUmPk6xWQ4s9pgplepW0cs17DA12uM2P2U1TYFImhe+13zzD4cxeYFltmBH5SEYrSbErrcQ/Ppt5HWWLUTX1aISun/iXrHHOSGJMT5bIStV8chJitOe8JbK+mk+jLnW5bsrHcbmtV6XEAe+xhTEl34wt/d6+oH8s+hG/CuXwhBzHz4H0pPsYygzZDf6LcP3tcjiHd3fYzBaDB7jhBg9TxKMJoQQQgghhBBCCCGEd3mJg8lLHNzVwxBCiB4hwUlkZIrlpLkIKaVI8aVT4S8NWlflL4+qTdvk+Jz4fuyYsUdUbQohhBBCCCFErKTHZTAhPfL5Op3Fr/09IxjNEoqdlzhIjv2EaAcnfBEhhBBCCCGEEH8JLUKV6pQ9wCVB13XGaDZQ099ASejVX8+ICREVVwee1kED6UEcy9c8bosEl5ZhRG35Ws90Vlc/BkecG4OBhZbplpLXsDp0KNq+J6AenN0qFK2JGjgc9eCXHTjCMI48H9VvMGrI2E4LRWvyf4eYEzn2GmNenpfpIcGj0ci6RaRagtEqnBbpP0kp0Ku3uZG13pOmVgefRwZA/8ZgND56CZYu9NwegDrtWtQwjye87XRA0KJz198ftlp2QxF7VH4SutBmY7yNoZuJ8yku3NPbaya38UI1SinY7wR7weWLzNuh0mL0Xlnol2fAJ69EPtiDT0c9vwB1/XOo82/1VCVrSgpbnZTKlqdk8NXsPC5OmsWmWdEl2CS4tWxR+7O9QHUF+qW7o2o7WvqHT3BP3gY9OR09OR3Wrohd4xN2RU1/HTVuR0/F+/aKXdcAWRe6XDnTpbpOs7LEnBrSPyMQymYzINMeahQqbKkoRMiLBKOJrqJ/+hL33Mm4+/XBPW0H9Pzvo2unpgqev8N7hW0md/q+T5OtBnnfp0nRVSTpGuItx7HNoWgBFbUw/f3mbYu2hBOF2MRsUNW5h86ih9Ffvxt5JdeFlUtiP5gOUFzhLZhsR0uYWHucPDEQjpaZEr5sk+1ucEk9r/W/jGkuqef6yb3Iz03vmP+euUlbogF/vT3xy1GBgLU0S55dmeHcLL/l8NjXYtszsp+3bWFSDDbV8ZYc9khVy3ZRCCGEEEIIIYQQQgghhBA9QKrPfBJIpd/j1YHaKKxbY1yeG98/qvaEEEIIIYQQ4q8kyTFf9by2uwWj1cuxnxAdQYLRhBBCCCGEEEIEtAxGwz5rsjOD0dQDs1Hb791p/YnuQ+0cHFIU0q6HdMxAehLHMlPZbRFC5A8R+tMm2EIlpeBccDvq1ln20LVOoq58CJXVx75+9DZw3KWdOKJG2f1Rp1zV+f02OnmiYqehrZeN6gfHbmcLRvPWbi9/KTn+IlLdKuP6StUiYcAXBzl5xnJ63mxP/VXUaGvYUF6mQtdWo5+80VNbrRzkPTBR5fRHnXl90PL/LdmOdH+Ztd5Na68mSdeGbnvSwZ7H0d2M7h8+bCEhDjJa/M6kjvl71P3pOyOsqxTqqkdxLpmBSk5FKYU6ahqccHlEzSTVlHDz3GNYvGwCtx0RuuwRW/rxqdbBGNcV/ptkXRO64rzOC3DUS35FX7gv/B4irC0aY7dHfVqFc9f7C1GGMgAAIABJREFUqG28X7HI67YnEje9o7n2dc2SQvP6AWH6TE5QDMw0J47kF9iDXJats7cpwWiiK+jClejLDoGfvoSKUsifiz5rZ/SqKIKTfv8Z6sJsy5okp6JOuTryPmLkgC28l01xq1BApr/Ec52Pf2veDriWTUJTuOK+Y+3tVNXB2jLNzys06yq9hUSJv5BFP1pXqQtutx+DLc/voAG1X2295rs/NJ/na/4oCl8+KR6uOTD2x5pKKU7ZyWHdHT4u2dt7kGJbVXVQXQ/F5rzoDVbGDcANcdqFr3FVL/O5WZRWB28frMFoLboZ7fFcqaT46B+DJsPsh+MRqYkuh1gIIYQQQgghhBBCCCGEEKJTpTjmk0Cqog1Gq19tXJ6bIJPjhRBCCCGEECKcREswWk13C0ark2M/ITpCXFcPQAghhBBCCCFEN+FrDlVK0rX8rfQF6lQCdZn9qR+9A3VLFlJXbA/KiblhW8CorTunL9H9jNnOc1F1x7uo1F4dOJgewjZx3m0xozpUMJrP/DWR2mFfePR79Mz7YNbD7Rhg9JQKP5FbHX8p+plbO2E0wNBxMOkg1FHno9KzOqdPA5+j+ODvDk98pfn2DxiSCxfsoUhPMj9e4YKCmmxavxQFpLrmE7kqndQWg4iD0dvAkl+CC875yFN/+QX2dUNWfo6+5G9QFiKNyGT8zqjefSOqok64DEZOCIRzLQsETmxR+wvf/zGRB7NO47eEUejG1+Im9Ss5quwldq/6PHSjaZmw05TIxt6NjPTwEI7u1/o9qjKy4c1V6APMgXntctBpqJwB6EU/Qu8+qD2ORk3YJaiY2vd49HO3Q0N9ZO2v+J0L5p7HdUn3UGbIBkpwa7n3zfH8Y/I5PPJNApVOKoeVz2T/infDt71uDVprT9uz9tAL56JP3yH2DR94KurCO1A+SwhnCAMyFRD7QKDp79vbDBXGprWGx29g+PJtWZYWHPAWKhjttzXmddmpkJHSsc+tECb6melQGRzgqY8eDZ/XRLbNCRWKNnQc6vjL0N++D1m5qH2PRw0JkQjWwSYN97ZdSXKr8RHYF870l1IY5y3ZZ9k6KCrX5KQrtC0YrfH/KVso3v3VXOiKV1zmLIWaekhJgDv/pjhtZ7lmlWj8LFq20Lxyr2NQR5yLfvkeWGkIOVzWPYPRZi/SHP2gy+rS8GX3GAUTBimO2U4xYVDHfn7efLji11WadwyHK7HyW8IIxtfaA2mdxj8xIxlWGTIaTfudXoLRBvX2ti1MSQxbJKy8TMV2m8J3f7avnZoId8+FEEIIIYQQQgghhBBCCCG6Qqov3bi80i2Pqr3C+jXG5bnx/aJqTwghhBBCCCH+SpIswWgNuh6/bsCnuj42ya8bKK5fa1yXGy/BaEK0R9e/w4UQQgghhBBCdA9Oc9BFX/9anl51SuBOziScCz7EvetR+N/dnTYcdfn9KFvQk9joKcdBn3QlPHFD+MJb7dbh4+kRHEtYjetvvt0QeTAagBq6OeqSGXDJDHRDPXp38xURu5JKy0D3GwxrlnZcH1NvQB17cYe1H42keMVZuyrO2jV82TyP4URPrDoNgFRtDsKsaBOMpnbYF/3W48EFC5ahG+pRcfEh+7OFECXGaTa5/RgojzAULbs/atptkdVppLbbC/VMINRAz3wAffs0htUv4Za1V0XX3uX3o9IyoqrbHfRKVvRJh7UhzukzhVmojGz0UdPgxbtiOh516FTUsHGEi89Qg0bA1BvQ9/4jdCCkyZuP8v0+OWy+9ErqVUKrVY+vOp3e5cvoPesKIv7LGuqhtBgycyKtGZIuWg1fvxMINNp+744JRes/GOey+6Kv7jGUMZYGZYd4lXz5JvrRfzO0312Y4hvXLC8GzOFJC83nqTIyqxr9wiOQ3Q8mHYxKTIp4zEJESmsNr9xrL/D2kzDlJO8N1tdZV6lL70WN3Q6151ERjLDjDMyC5HioDhOwk9Ii1DvLXR9RH6c94TLrPB+uZdep6VD19J0V5z9nLjR7cfPtqjo48ynNpOGaEX0lSPEvr3AlVFcaV6nDpwZuDBxhDEbTy/LD7gt1tuo6zTEPeQtFe+4MxdHbdt53PUopXj/PYZ87XD7+rWP6WJg4knG1v1rXN4WZ9bLsHpQZLlppC0ZzWjz5XoOv02IQjAZw/wmBx7Gw8dggKwXev8hh/CZwyAyXtz2Ez9XUa+h2r2AhhBBCCCGEEEIIIYQQQojWrMFofvOFRkOpdWsobTCf/5abIJPjhRBCCCGEECIcWzAaQI1bbT2G60zr6gtx8RvX9ZFjPyHaRWaYCyGEEEIIIYQAQCnLIaJunI1ZFmEwTXtsviNq1Nad15/oltQBJ4cvtO0eKCWTaoHmdIa23BYzqkMFBIUIRmtJxcWjHvs+fLlbZ6GuewbSs+yF+g1G/f0u1FQPAXhe7Ht8bNoxOezsbheKFikvE+dT3YoNk/pTXXNYQ2WbYDQGDjc3pjWsKwjb5+JC8/JhSevxlReHrb9BYjLq+udRT/yAGrGl93o2ex4NifYfUMJRN76M2u3Q9o+ji/UJ8xvRVoPMy9UhZ3rerniy6WgYurnn4uqoaagn56KueDDiroa+dwvrF/blqZUnc2jZa9xacDlLFw3jqPJXIm6rlWJLqlaU9I9foE/eGn3LVPQdF6GPGRvT9puoR8Nv80PxGtoRS7sMt+8b6C/eACDHX2RcX7zaHp60yBLkOPKXF9H3XIa+7kT01F3QRasiGK0QUSpYFnK1vulMdHkEYWChgtHGbue9nU7gOIqRHi6c3TLkNa9+dUR9NIWaaUswWtNWJjFekZ1qLtOW1vDol+FDasVfwPJF9nWDRrT+P6hufuzH005v/KRZWeKtbE5a5x+/+xzFBxc5jOmgc4vyE4bjV5agcprDzGzBaKWmYDTLpsLX4rDf6z5WaoyC0bYcqJh/ncNLZzk8d4Yi//8cth6siPMp3jjf4cO/OzxwgmLeNQ4DLV8D1IQJtBRCCCGEEEIIIYQQQgghhOgOUn3mC8dW+kNcXdKiqN5+vlCfeJkcL4QQQgghhBDhJIYJRusO1oY4Tzkn3sNJz0IIKwlGE0IIIYQQQggR4LNM4nQb0+qLI5tI3i7JKZ3Xl+i++gwMXyYjp+PH0VM4tvdwi2C0UOEYtvoGatgWqCsfNq8cMAT18NeoHfZFTT4C9cZKezsnXoE69KyYBY6pEy6H/U+CprA823Ytmran3R6ztrrKyH7Nk/JttqyZt+F2mtdgtNw8e4OF4cOB1pm7YeCayMKY1J3voXY7FJWRHVE9a3vpmajpb4QvOOkgGDex+X5iMurSe1E7HxiTcXS1HPN5fhtsNdj8olIDh6OueQLSMto/iCGbo26eGXEQpho0AjXlJNj72Ii7TNK1HFP2Ii+tPJaL1t3NgAaPQVehXn8x3JfSWqPP3xNKIwgPDEFd+xT07tt6Ye9+qLs/RLXzORzUu/MDUPYaHWLlbz8AkNNgCUarsv9sYgt9GVK3pPnOonnol2eEG6IQ7bd2RfgyL9/rvT1bgG5aF6QbejCyb/htS4qv+W/Ka4hsG7y+CiprNa4lnKjlPlW6JezI5MP5EowmgPWWZOC0TFRjsLSyBaMty0fbEvu6yLu/eC+bHWbfsqMopZh9ucOBW8S+7d8SRuCGOO2iKcwsw3JuVllN8DK/G7ysZVsAvZIhJSH8+NJiFIwGkJ2mOHxrxdHbOmS3CLlTSjF5lOKMSQ7jNlEkxZvrSzCaEEIIIYQQQgghhBBCCCF6ghTH/KNWlb8i4rYK68zBaA4+suJzI25PCCGEEEIIIf5qkkIEo9V2k2C0wjrzecqZcdkkODE8iU+Iv6C4rh6AEEIIIYQQQohuwhaK5G8MRvMy8T5W1q3tvL5Et6UcBz1sC1j8k71QjAKQNgZKORinx+vAjGpdV4u+4jBzZcdBOZHl56v9ToDJRwSCftYXAgp6ZcEmw1qFFymfD+7/An32pNYNDB4F+x4fUZ9hx5SQiPrHg+jzb4UVi2HQCPRBA6G2fV90q8fmBP6OHi49STE2D362Z9UxqjZ/w+1Ur8Fo6VmQkAR1hhn9ReHDpEqqzMuz/CGC/NoauRWM2c57eY/UlpPgno/Q5+1hL3PAKaiJ+6OLVsP6tTB4FCph4/nhIlQwmlKwxYAQ6ycfAbscDH/+Fvw+jItHf/AcvHBnyP7VI9+iRmwZwYgNbZx8Jfr9Z9vVhqd+TrsWjrsEPTndXCAG+1La7wet0Xdc0O62WtntsMDztWwhVJZDajoMGhnxZ4PJyL7hy8TSweMhJTFEYFLj9jzHbw6VK9K90Fobg/hswWibNLTZsH72Gpz9H0/jFSJqxfarSjfRH7+EOuUqb+3V15mXx3tI3ekCIz1cPC110CBYmQEVpeR5DbhsIb8A8/41zTm84C2YqMn/lkU8DLExKjWHc5LZIvjbFoxWtg7+mA9DxsZ+XFGat9x7UFu40N2OlJmimHWej4IyzaoSiHOgqs2mz69h55stqWQW+Ykj8HsIRktPVpi2KmWGw1UvwWhKKQZkwqIwX6HFMhjNK2swmiWDUwghhBBCCCGEEEIIIYQQojtJ9ZnP/an0l0fcVmG9eXJ8dnwffKrnn5MohBBCCCGEEB0tVDBaTXcJRrMc++XGezjhWQgRkgSjCSGEEEIIIYQIsAVfuH50QwOs+sNed8hYGDcRZj0Um7HUmMN4xF+POuVq9FVH2ddn5FjX/eXYgruawg1/+DhE3ei+IlKJyZA3JPAvVLmx28H0N9CP/BtKCmHs9qizrkd1UNCGSsuAUVsDoA3BNp5tvgPqzH+jho2L0ci63ndXOiSfa5/oP7Ju4Ybb1mA0ldJ8x+eglELn5sHKJcGFC0OksDUqqTIHKWT6S8PWBWDf41HTbjOGGMWCGr8z/Ps59DXHBK/MyIatJwfK5fSHnP4dMoau1DvNHOAA0Ccd0pJCP+4qLh5s76ERW8KQzdE3nmGue94t7Q5FA1ADh8OMT9CXHAjVkV+51bNt90DFJ6BHbwML5gSt1t9/iDrglIia1LXV6KduhidubN/Y+g2GbfaANx8NXjdhV1Rc4+fApqPb14/BkNxAiIct4CPWjt42zLagoR6AbEswWrGThVu8Fl9O60S32npNkeXl07/tD5krFlvD1f6KtNaB/RG3xT+/5Xar+27jvwjrNN3WbsR19IZ+I+in5TrtWsYa5u9oNVZbG4b74fy5wPsT1cOC0UZ5OE8gN8OHevBL9N2XkrekLOI+fl2lcS3bLqfF29sWAGSiFFTWalJDBTiKjV/ZOvPylsFow7YIfE9jehF++Va3CkYrieC8ouzU8GU6Wt9eir697OtXT3e46JH1fPxzDaVOBgCb1i+lf8NqPk3dLaj88viBlPnsDTZtLzIs52aVVQfva1uD0dpsOjbLCR+MltqdgtHqO3ccQgghhBBCCCGEEEIIIYQQ0Ujxma/2U+VGft5RYZ1lcnzCxneemRBCCCGEEEJ0hHiVgMJBE3xiXbcJRqszX/Bajv2EaD8JRhNCCCGEEEIIEeBYQpVcPxQs3RAi0ZZ6bA5q2Di066K/eB3WFbR7KOqQs9rdhthITDoo9PpsuXLCBsoSbqhdtNboZ6bb60YZjBYJtf3eqO337vB+gvo97lL0I9dFXu/M61EnXNYBI+paifGKkycqHv/KHHQ1si5/w21bMFqF0+LEr6bXTo45GE3/OZ9wsR8lVeblGa49GE3dPBM1cf8wLceO2v0wuOJB9E1ntl5+3i2oxKROG0dXyDGf5wdApv3CO54opWD/E2HbPdAnToCKFs/5xP3hqGnt66BlX1tMRL0fHITl3n0pvHhXbDoZPCrw/ybDjMFofPwy+spHInrN6IeuhRfujH5MY7ZD3fcZqjEA183oDS0/DxKSUCf9I/r2PUiIUwzNhfz27yJ6ctQ2YbY6VYGTVHMswWiu8lGyeAnZbYLRVofIahzQsCp44fzv0CMmwKJ5UFFiCPyyBGBZA7Gay2pr+FbL+7ZwrxDLw42jVb8ext50X/QMDZZgtLgIUr860aj+9uDOJnmZCjVwOOqW1xj8m4bbI0to/GC+vYeWuYehtg9taR1o95AJEQ1FbGR0SZF5RUb2hpsqPQs9bieY90Vw/fy5YfexO1N5jbdyKQmQnNCdRt6ariyDxT/Rp66Gp1+dErR+SfymjBg231h3YcIIa7u+xkP1XpZdwDLD42cNRmtz2D+8r+L9+aG3hWldEMQowWhCCCGEEEIIIYQQQgghhOjJUn3pxuWV/gpc7eLYztU0KGx7sb1GufFy7qsQQgghhBBCeKGUIslJotoNnnxU212C0azHfhKMJkR7STCaEEIIIYQQQogAnyUYze+HFYvt9TYZCoByHPR+J7QO24hWF4Qnie5JKQWvLkEfNsRcYId9OndA3ZljOdlm+SL0sZuHfh9HcKJOjzNxfzAFox02FV69z15vzLYdN6YudtKO5mC0TFXJ5FOmoFIPQ990JqnaHIxW6yTRgI84/M3BaJm55s5mPfz/7N13eFvl3cbx+zmSLHkkTmI7w9khgwwCgbDCCJuwd6CMQmhLgQ7a0pc9CqVQKB28BUrZ0EIZYa9SRtn0BcreOwkhyxmOR7yk5/1DSWxZ50hHsuT5/VxXrljPOj8nWkc65z6yg0dKx50Zfzy3Y5ct0pqPayRnUnI90TWuS5qbX5OZsLnHb5c/Zr/jpZETZB+/TZKR2e94mc227/Q6OlvKYLSi3GzDVAyX7nhP9q4/SWuqZKZsLe1/out9JtfMj6+Q/fxd6c3nOrbQwMEyJaXxNUdO8I7qeeaeeBicD3b1cmn+1R0qy/z56Y2haJJkfniJNGEL2VefkPoPktn7GJlJ+U/n2XRo5wSjfXSxI8dJc79ZtlCSVOYRjCZJK75cpLLtEh/fi92fkiRJlS3JX2Tak3dOXQfQ3TR7BKOFCjq3Dp+m+DhOoHJA6887jM98G4+9Z7Wpx7HoTpbBaJL0xPtWB8/ovuFQ6ATVHq9BpeWJt7fYyTUYTc/dL7tskcyQkbmvLQu1jf7GlRXnt46OsPddK3v1GZ4XBZCk0c0LFY41qNFJTjj7MDzZc96G54v+HqHC1S7HZUU93ky2D0abNMR9XFvFXfA0HvE4CoVgNAAAAAAAAAAA0BMUOe4HTFnF1Bhbp8KA/y++VjQtdW2vKODkeAAAAADwK+wUugajNXSDYLSYjaqqyf1kCfb9gI7rxWe9AgAAAAAy4hWMZGNSlfsX8yobJhNpTUUxx54hTZ7ZsTJOvEBm7JQOrYHexVQMl/nl1VK7gBzzk9/JDB7RRVV1Q17BaGtXpQ5Fk6R1tbmvJ1MnnOveftipHVt3wubSsWcktm29ezwcaNKW7nNKBkib79ix7XZjsycZnbZ74uOpICj95fslKp57klQQliT1j9Z4rrEmsD5pZGMwWpnnWHvDhdLrTye3f/2R7OHjtaYl7DpvQCw5ZcQ8ubJLQtE2bn/6LDln/VXOWdf1iVA0SapwvwCqpNwFo0mSGTREzqmXyTnnBpmDT5IJds41PYwxMn94XNpx/+TOfgNl/vy0tNOB6Rcav1nrz2Oneg6zLz7suzZ779XxgNpsjJsm89BCmYLEx5cxRmb3I+Scd7Ocn17ZKaFokjRxSPYBQJ98PlWHrH0w7bhLDzGaNDT1duxLj2z8eXDLCs9xX36d/Pzz5Qr3hJLiWK36x9amrQ/oKvaTt2T9PJe0eASjBUK5LShHCoJGc2emfsxXtDlWvSBodPY+mT0XraqTXvnCva8j2Z0ffOsZn4m+orrKvb008T21GZ0cHryB/dWxuawoay1R6zvsKlXgbley7/9H9k8/TxmKJkkBxbRJ85eufYuDw73nrd9VL/UIRlvbkNwWjaVea4PJw9I/GZUk57jlXaFHGBvBaAAAAAAAAAAAoCcoCXgfMFUX9X+sZXOsSatb3L8brAhxcjwAAAAA+BVx3A/A6w7BaKtbqhRVi2vfYPb9gA7rnLPLAAAAAADdXyDg3h6LSmtXuvcNKE+4aUpKpWv+Lb32L+nrj6UhI6VvvpC96SLX6ebM66S9jpbefkFa/KU0fQeZTaZ15LdAL2UO+oE0Y7b05nPxsL4Zs2XGTO7qsroXx+Mx3EOYnQ+Sve1SySYGRZjZB3dsXWNkfvhr2V0Pkz74jzRivDRjl3jo0jXPyu4xIHnO3J/IBLtnCEiu/PFIR0dtbfXql1bFYWmPyUZjy9efVL8+6aM86hHYIGl5oELl0ZWtwWil5Z5jJck+fJPMNnu23n78dtnLfiBJWhModZ0zILom4bY59TKZom6aptCLVZYaSe4BLuFe8umyCQSkS+dL//239NnbUnOzVFEpbbOnTNlQqaEubaCZ2btNOMn2c7wHvv2CrLUyaRJ17OO3S3+7PJNfI27OsTI7HShtu5dM2CN9owtsOjT7uZs0f6W7Fh+re2sO07HDb0vqnz5Cuv1ER9NHpA8GsX+7YuPPRXadhjcv1uJQcpDJJwsbtG+7ts+Wu685oekLdSAfCcg7+/3tpKJ+stO2k9l8R2n6DtLkrWXC7ZJymj2C0UIe6TbdwC/2NLrnDe+QsTFliY/OSw42uut1q6/avcUpja5Rswmp3vF/Ve+2K08Y7P0c4eajJfL1WoBebJX7Hca0C0bTKO9gNL3/H9nl33R5WHhto/+xZd3wrbxtbpI9Zbbv8RUtKySXXOflwQrPOc76h3r/iPv76mqX47L8BqNtNy7+nrzR/ZgqSVJxFzyNR0Luv2tDijoBAAAAAAAAAAC6i6KA9xdbdbEalWuIr3WqmpfJehx3NbiAk+MBAAAAwC+vYLTGbhCMtrxpiWdfeUEHTqQAIIlgNAAAAADABl6hStGobPUq9772J+1KMqECaYf9438k2Y//K7kFo43YRNrvhPjJ4G3CcgAvZtREadTEri6j+3Kc9GO6MTNhc+m8W2Sv/LG0rlYqLJY55TKZGf5PUk+5/sQtpIlbJLaFC6W/viR76felBR/HA8HmHCcd8z852WZ3t+04o23HuQRymPh9qSJFMNqKYLnUpI3BaKb/II9DuNZ7/gE9cdGfdc+AI9VY0E/ff/B27SIpJqNqxz0YrTRWndiwyWaptoA8qUzODtyo3iNDpycyxkgzd4v/aW/bvWVOuVT2hgullubEvkBAOvqX0p5Hta4VLpRO/o3sdecmr1VbLa1cKpV7H9xoVy7dGByY0e9w9g0y+34343mdYdJQ74C9VO5fNFeSFFBMR629V0WxdZpXeb2qAwMUtM06f9wbOu+sHXyFC9k1VdKHryXW1fSJazDap6sKZNdUybQJAf50cZOk5NDM8U2fZ/hbAV2gvkZ67SnZ156K3w4VyG46U5o+S2b6DtJms5Kf3zboxsFo24w1uuooo9PuSn5+MUbaYmT7NqOnfu7ohFtiemn9Q3e/msd1w5JTdPKwq/VwvwN8bzvS5ulg3g5G5zzg/zludb20vEYa0t/3FPQiNhaTFn/h3lnW7v3B6Enxx6BXcOG3X0ldHIxW0+B/bOWA7hMGaKNR6aHrZf/4s4zmlUfdLxywPOAdjLYhzGxgkXt/9TqpJWoVDLT++3gGo7X7JywOG+22qfTE+56bV0nEuy9fIh45440eLzUAAAAAAAAAAADdScQpkpEjq+QvbeqiNb7XWdHsfnK8kaNBwcFZ1wcAAAAAfU3YIxitIZbBQYx5ssIjGK1/YKBnoBsA/whGAwAAAADEeQWjxaLSWvcTP9V/UNplzaZbyU7fQXr35cT2ky/1FWIBwCevx3APYvb6jrTb4dKiz6QR4+NBi/ne5pStpVv/Ky1fJIULZcq4GseGkL2IbVS/6FrVBJJTO6oC68OC1gejqbQ8aUxbfxl4kn6y+FRpcfz2XaOf1M3f/kBzav8la9xD/QZE2wWjjZns/3dAzqQKRqtr7Lw6upIxRjr6dOngk6Q1K6SySqlmlbTsG2nsFJkil6vE7neC5BaMJkkLP0kdjHbw6Mxr/MHF3TYUTZI2zfKpdXb9Cwm3D6x9VMs+HalPCiZqbPPXKqrcX8bs6G+xj99IrqvxUz1bnByG92VwdDxEbda+G9u+XlAtKfm5bnyTR7gNOkcgEH8P5ATir19Om9tt+wKp+gLxUNCE9va32/2cNM9JPc4JyLTtMyb92kk/O4m/Y5sx9q/nS++/6v/frblJeu8V6b1XZO+4Ml5PsUdKV7D7BqNJ0k92c9TYEtMZ8xODyQ6cLo0qS97fHFdh9Pz/OFqwUgo8cYuGX3+KJGla4wcZBaMVh1t/PmJKrc55oDijup/7xOrIrdkf7pOWL5IaPa5QOHpSwk0TKZI99BTp7qvcx69cmuPiMlebwfvBiUPyV0cmrLXxcOx/3el/0rAxMn97W+U31kjvJHcvT3HiirP+oV7ez6ueeGBiRZt+z2A0l12nAzY3euJ973DGkrBnV96EPY5CaSAYDQAAAAAAAAAA9ACOcVQUKHYNQauP1vpeZ0WT+/d5g0LlCjkeV5oBAAAAACTxChhrjHkcj9mJvEKxKwo4Pw3IBYLRAAAAAABxnsFoMWntKve+/gN9LW0uf0D26jOld16QggUyx/xS2vmgLAsF4MpxD5fqaUwwJI2d0snbDEqVYzt1m91am6CyimiVazDaikBFfOj6YLRH1k7SeWNf07LgYO1W95x+veJXGtf8tSSp0RToN+VnJa1xYuUNKcsY1byo9cbICVLF8Ex/E+RAv4h3aEt9UycW0g2Yon5S0frEinClVF7pPXZAuWxpmVTtEi779UfSlru4zrP/92Tmhe13gnTcGZnP60RlJUZlxdLKOv9ztlr3pkpja5Pag4pqatNH8RtV3/pfcMEnSU0jWr5xHboyUC4tfCkhGO3b5Q2SyzGpY5oX+K9Bit+H2od4tQ2+SheQlRDg5RHG5bpGu1AtjzkmaU6K7biu4XjU6nOOs36ej9Aw00ve++TEFQ/I7tuBL8+hRdvnAAAgAElEQVStlWqr3ftC3f9g7F/sYVRUIP3vM1ZG0l5TjS4/zPv1yxijMeWSPXae7IKXpCfv0MTGzzLaZnGbvLhxr/9NR1eX6s7S7/ie/50brE64JaqAEw86Crb/OyAFTOLPwUDiGNd5G/tMwjzH97zkGjZsN7kGk3pNz3lpamnzuztOLwyPc3k92mjUxKQmc8plsl7BaAs/zVFR2avJ4GKLk4Z07f+n/fRt2at+kRTcn1K/gdKWs2VO+4NMuFDlI8LSO8khZMtSBKNtCDMrd8nS3aCqNjEYLeaRc+b89VzZxpkyux62sW3/6Uan3uEdjDbUI/cynyIeLx0Nzd51AgAAAAAAAAAAdCfFTj/XYDS3Ni9Vze7BaBUh7wsqAgAAAACShT2C0Rq6RTAa+35APhGMBgAAAACI8woWiEWlaq9gtDJfS5uSUpmzrsuyMAC+eIUb+jFhi9zVgZ7PtAYWlEer9KXGJQ1ZESyP/+AE9NSHVgc/PUOKxJvuLp2rD8OT9dpXOyikFr0fnqqlwczCWgZGV2lwdPn6bTgy3/+VjOmFwRg9RDgoNbYkt5+0M/8nKY2aJL33SlKzff1pmUNPSW5vaZb95YGZbePQk+X83CMspZvZdKj08hfJ7UP6S0fMNLr62dagjJBt0vlVv0m/aAbBaHZRcnhMeYtLcJ2kqmCZ7MJP1Nhs9fYiacD7T2lJcLbr2GEtS6RDfig98Ne0NZgfXCzz3TN91wz4Vtgv/ZhsBQvSj+lijmN06i5Gp+6S2TxjjMx5NysmacrzH2Q0tyTc+hpon52vY6qLMgpGk9xfW3OnM8KH8r8NY7IJhcsk3E0KOmbjWKdDYXSptmtaf/5Acop3UzjWqC0a31X/2PoTJwYNlSlOTrAygYDsjNnSW88n9dmbL5aZd27O/92r660Wr5HGVUiRUOr3e7WN/ted3IXH+NiVS2W/t63/CUf9TM6PLk9q9go3q3eKPZdybExSQGXeQ1RVm3g7GnMfF6haJHvBH6Q/PCaz9R6SpBEDjWaMlN5alDz+yJmmSwIGvYPROrcOAAAAAAAAAACAbBUFSiSX7zbqY7XJjR5WNC1xbefkeAAAAADITKQ7B6N57fsVsO8H5ALBaAAAAACAOK9QpVhMWuseGmFKB+WxIAAZMR7hhn5s6R72gj6qTQBZRUuV65AVgYr4D4GArno6+az99yKb6R+lR+q71Xfok4KJGZcwqfFTGUna93iZOcfKzNg54zWQOz/f0+i3TySHn+w/nWC0lKZt5xqMpjeelW1pkQm2+3j+2flplzTn3iT70RvS2lUyOx8kzT4kR8Xm36FbGr38RfL96A9zjY7a2mjWOOmRJ79S/3ef0rHVd2j7da+lX7TqW1lr0wYn2sZ10kM3JrWXRz2C0QJluuXzkfrJz2LrAzx2lzw2MfyU02UO2EmavqPsb06UWlIkfkTcv5AFOsoEg/mLqAp6pNv0IuacGzVj4jXS0/7nFIfb3HjvFU0Kjcp5XZCslVqs1OIREpWjreRzcZdt7C6N2l2SFLTN+umqq3X58nNTf75S7n1wjP3ifZlNpuWkyljM6vInrc5/0CpmpWGl0h+PNJo703tfc6XP8z6mj+jiYLTDNslovFsomqSU4Waea73yqLT7QSosMCoOS3UuYXJJwWged8uAjUqS7M2XbAxGk6QTdzT6yT+SJ524Y9e8X/cKRltHMBoAAAAAAAAAAOghigPuV8ypi2YQjNbsdXJ8ZhcZBQAAAIC+zisYrbGLg9FiNqYVzUtd+wjFBnKjA2fMAgAAAAB6lYBXMFpUWrXcva+0PH/1AMiM12M4nYKIzPFn57YW9GxO60eGXqFBqwMD4j8EgnrmY/dlTqy8QQePuFeXlZ+RcQnTGj+UOfECOWdfTyhaN/CLPYy2HpPYduURRiMHEYyWitlhP/eOhnpp2YKkZvvCg6kXPPp0mTnHyvn5n+RceLvMrofJOD3nI/7v72S026aJbWfMiYeiGWN01DaO/r7j27pm6Wn+QtEkqalRqlmdftx917o2D/J4jqt3ivUDnbk+FC21ylnbyhgjs8dcOf+ulXmuXip0PzhWMwgiRR6NGO/dN2ELabs5Uklp5usOGpJ9TT2EcRwF5v5EN/f7i+85JeuD0ez6MMRRzYvUP1qdj/LQi7WYkP5Q9nPdWvpdKZIicWu4d6iXvf2ynNXzyLvSuQ/EQ9EkaUm1dNT1Vl9VeYfHPf1R+mC58hLpT0c6aYNMc822NMs+fY9i87aWoi3+Jg2okLnBJdh2vYp+mf8Ozt8u3fizV7BaVW3iv2PUIwwwoHgwmt5/VXbVso3tP9zZaO+piWNP2cVozyndKxjNz3srAAAAAAAAAACA7qA40M+1vT5a42t+1LZoZbP7sdecHA8AAAAAmQl7BKM1dHEw2pqWlWqx7gfGDS5g3w/IhWBXFwAAAAAA6CYcj1ClxnVS3Vr3vnI+oAG6DZNdOI55bIlMpCjHxaBHaxNYMCDqHji0OjBQkvRO/RA1psgYeLSfRzBUGsdW3yEVHpTVXOReeT+j537p6NmPpa+qrHaZZDRtOKFoaU2c4d238NOEkBPb2CA9nyIYbY8j5ZxyqXd/D9AvYvTETx09/ZH02XKrHcYbbTlKiSEpoYLMF/76I2n6DimH2Lv+5NruFf7oV8C2aPCgxJpNICC711HSQzcmDh49SRo/vUPbA1KafYh0x++S2wtLZP7yvEw4IhuNSl99IL3zkuy7L0vvvCytdL9C9QZmpwPyVHD3c/zu/XXafWtVE+ifdmzx+mA0LVsoSXJkNbv+RT3Sb/88Voje6qF+B2he4ULPfrPb4bK3/sa989n5spO3ljnqZx2u42+vuqdxbXJOTNG/JgebxWJWj77rHox20ObSgVsYFQSl3Tc1GlrayaFoa6pkf7Rr/D2XT+anV0p7HCkzcLDnmMos8iWdL97d+HN5ibRwVfKYqtrE257BaLZNx8uPSQecKEkKBowe/6mjf30oLVplNbXSaPtNuu79esTjKBSC0QAAAAAAAAAAQE9R5LgHo9VFa13b21vZvEIxuX/pU8HJ8QAAAACQkYhnMFp9J1eSaEXzUs++itDQTqwE6L0IRgMAAAAAxHkFo3mFoklS+fD81AIgc16P4VQOOJFQNCRrE7I3IFbtOmSNE08EOOrdPXO++cEty7TjulelyNE5XxvZKyww2m+6JBGI5pcpLJYdPFJavii5c9FnstvNkZ74m+w//y699XzqtQ45OU9Vdq5Q0GifzaR9vO5HobB7ewr2lcdlUgSj2Vcel1a7X4G3o8FoQ0uicpzk38Wccpns8sXSq0/EG0ZOkLnsvqRAGSCXzPcukP32S+nf9yW2X/mwTDgS/zkQiAf0jZ8uc9ipstZKS76S3nlZ9p2XpXdfkhZ9Fp8YLpSZd57Mtnt39q/SdbbfRz+86UZdWfaLtENLNjxd1bbuL9/+7YkaOMn9+WZk8yItCo3MRZXohRaHhkuFxZ79ZuwU2QlbSJ+97dpvrzlT2n6OzOhNE9pX1Vld+S+rW1+2WrpW2maMNLbc6JAt4wFVj70rVdXGg81GDjK6/y3vGgM/jOmEWUa7TJKO287IGKP/LpSWuO8u6JjtHB2+Vde87tmmRtkDMvu8yvzxCZmZu6UdN3xg5vU4islaK2OMykvcx/gNRnPanDxjX35UZn0wmhQPm917qtQd3q9HQu7tBKMBAAAAAAAAAICeojjg/sVOXbTG1/wVzd4XKSsPDcmqJgAAAADoq7yD0dZ1ciWJVjR969peEihVYcD7uFAA/hGMBgAAAACIc5z0Y9or56plQLeR6WO4sETm+LPzUwt6tjb3pYHR1a5DqgOlqjeF+qre/cqY2YrE1um9L7eK3wh6nE0P9CSjJrgGo9mFn0pX/UK679r0a0zYXNps+zwU1w0VZB6Mpvf/z7PL/usfsr8+wbN/YHS1jJGszXyzklQ5yD2U1BT3l7niQdmVS6XaNdKoSYSiIe9MqEDm4jtlVyyWFn8pDRoiDR0tk+JxZYyRKsdJleNk9jlOkmRXL5fWVEllQ2X6D+qs8rsFM7BCBw5eoCuj6ccWb/hnbWw9oKJfrFZ3fnOcjh7xt4Sxmze8q9e+mqXlwcH6LLSJonOOU2zOCYrGpJZYPACpJSpFrW3z8/q/24xJGB9L0ddufixhLes6NlfbbfEIc0Jq60xEiqQ+AMb86nbZY6Z79ttjN5deaNj4elNdb7X5RTEtXtM65rWvpde+trr7DdcV0tZ56ytWt74i/d9X0jVHGz38jvucgqDWB3R1Pmut7GmZBTqa616Qmbqtr7EDi6RwUGps8bm2jcVjyuprpOL+Ki8xcvu3Xuk7GK3NE9Trz8iuq5NJEarXVTyD0Xz+uwEAAAAAAAAAAHS1Iq9gtFita3t7K5rcg9EGBMtU4GRxfAwAAAAA9GFhj2C0xi4ORlvuse9XERrayZUAvRfBaAAAAACAuExDlSJFUklpfmoBkDnHPZzF1eY7yZx0kcyQUfmrBz1Xm/CeAdFq1yGrAwP1XNHOarYZ3O9SiMTWadt1r+mqZaerLLoqJ2sC3cLICdIbzya3P3SD7yXMn/7Zd0K1CiKZz1n0qWuzbWmRvTZ1AGhg1hxNCksfL818s5I0dFDqr1hM2VCpjC810blMxXCpYnj28wcOlgYOzmFFPcv2u22qkY8v0qLQyJTjigvW/9CUeEDFETX3ad23hbq87JdaESzXXrVP6/fLzlRAMQ1rWaphLUulB16WHjg5u3DyHiAmo6gCipqAWhRs93e8PaqAWkyw9W/jJI1tHeNsHBvd+HfrWhvnbehTQC3GfftuayVvI7nexLVb640l1evyuymwcXyjCavJ5SSHdaZQKnQ/sWKjkROlsVOkrz70HnPn76VjfilJuvQJmxCKlkvXv2B1xt5WD7/tHoy22ySpXyT3713sujrZmy6Snn9QkmT2O0H67lkybR5L9uZfS++/6m/BkRNkfnyF71A0KR4oWTlA+qrK3/jAhiCz6pVScX+Vefw3r6xN/LeMeuTUBWybYLSmBun1p6WdD/JXTCfyDEZr7tw6AAAAAAAAAAAAslUccL9gaH20xtf8Fc1eJ8dzQWoAAAAAyFTEIxitIdYga22XnW+xotn9RISKAvb9gFwhGA0AAAAAEJdJqJIkDRrSd0I6gJ7AZ7CC+d6FMieck+di0KOZ1vtSacw9GG2NU6q3I5tnvYmrlv5CP1p9nbT7XOmZe7JeB+juzKiJ8si18Df/krtl+g/KWT3dXiiLK+KuWiZbs1qm38DE9vdekVa6H2S6gfnu2drnQ6OPl2b3v1Q5gPfCQG/jHPh9XXHLPH1nxN9Tjive8HTVmBiMZiQdX/13HV+der4kKRbLrshuzpHkKCqPXKQ+7a7+R+jY4bclta9zIlJhUcq5xhjplEtlzzjYc4y97lxp/3l6a80g/e7JjrwDSS0ak659zuq9xe79B2yen9dH++sTpBcfbr1900VSc6PMDy6SjcWkD1+Tbv2Nr7XM+bfK7PWdrOoYnkkwmm0TjFY5VuUewWhVtYm3ox5PDxuD1tazLz8m0y2D0Yzk8i6YYDQAAHLPGDNW0haSKiWVSFoiaYGkV6y1vPoCAAAAAABkqdhx/2KnLlrr66T7FU1eJ8dzgT0AAAAAyFTYIxjNKqZm26QCk8V5CDmwosn9fIXBhGIDOdM7L0UOAAAAAMhcIMNgtOL++akDQHb8hhvO2Dm/daDnaxOyNyC6xnVIg1OodyObZbX8Vuve1Mmrr5e54DaZky7Oag2gxxg5sWPzt94jN3X0FNkEo0nSwk+TmuxLj6Ses+thMlO30TZjstukJFWWZj8XQPdkwhHNPe84PbVgTspxwcD6g9wbGzqhKvQWhTH3+8s6UyhFitPON9vvI3PxPzz7o3L0yz98qpm/yX/oXqrgtVwHo9lYTLHzjkoIRdvo4Ztkv3hfdt8hsqfM9rWe+emVWYeiSdL4wf5/P0fr/y+WLpSkjgej2cRgNL3yuGw06j64C0U8Ls9HMBoAALljjDncGPOKpC8l3S/pakm/lXSbpOckLTXGXGuMKe+6KgEAAAAAAHquokA/1/aYomq06b8nXtHsfnJ8BSfHAwAAAEDGIk7Es68hts6zL5+std77foRiAzlDMBoAAAAAIC7gcdail3BRfuoAkB3H58c8ozfNbx3oBVpP9B8Qq/Yc9Vrh1q7tR2zlHRQwrulL3b34aAX/9qbMnkdJFcOliMfrSV8LhELvNHpS9nNn7StT5JGe0VsVFGQ3b8EnkiTb0iz77/tkn7pLuud/vcdP2lLm51dJkoYPyD68ZZOKrKcC6MbMrH21a/0L2mrdm6794wPLWm80ds3BFOiZItb9/rLOKZQp9Peab3Y9VNouObjvrfDm2mX0U/rjkm06VGNHbTlKGjEwd8FotqVF9rwjpecfcB+wZoXsCVtJdWv9LTjvPJkjftKhmiYO8T92Q5CZvfR7kqTyEvd/m7bBaLGYd+hcQO1C0NaskD74j/+COkkk5N7e2BI/GAwAAGTPGFNijPmHpHslbZ9i6CBJp0h63xizd6cUBwAAAAAA0IsUewSjSVJdtCbl3JiNqqppmWtfRQHBaAAAAACQqYhT6NnXVcFo1dHVarZNrn0VocpOrgbovTI86x0AAAAA0GsFMwyiiHh/oASgC/gJRistkxlQnv9a0LO1uS8NjK7xHLYwNMq1fe+p0i0nOLr5mud1z5tGY5oWaEzzAk1r/EB71D2rgfPfkqkYLkkyoQLZWftKz85PXGTSljJDRnb8dwG62pBR0tDR0tIFGU81c3+ah4K6uVA4q2l24afSqmWyp8yWvv0q9eCdDpS54DaZ9aGMlQOy2qQkaf/puQt+AdC9mIe/0WHz/qD/Fm6Z1HfQ6vmyzSfLhAoIRkNGCj0OvmkxIbXIkUeWVBJz6b2yu7WeiPHr8rN1UcX5Oaiw4w7YPIehaNUrZX+8u/T1RzlZz/z5aZktdurwOpsONZL8hXs5isV/aKiXjcU8g9Gq10kNzVaRkNET73uvtyFoLcFbL0jTd/BVT2fxCkaT4uFoqfoBAIA3Y0xA0t2S9m3XtULSW5KqJW0iaYZar34xRNJDxpg9rLUvdVatAAAAAAAAPV1xwPvCRvXRWpWFBnv2r25ZqahaXPsqQkM7XBsAAAAA9DXhFMFojV0UjLaiaYln32BCsYGc8XHGLAAAAACgTwhlGoxWlJ86AGTH+PiYZ+zU/NeBnq/NfaksujLj6ZsOMyoKG/3otJ303Iz5unXpSfpV1SU6XM9p4B/u3hiKtnFzv7xG2rxNQMGYyTKX3JV1+UB3YoyRZu2T+cS9jpbZatfcF9TdFUSym7fgY9n//WX6UDRJ5hf/uzEUTZKGlWa3yW36LVX/QoLRgN7KDKzQL3aN6oQ1tye0H7b2fl387bnSW8/HG7yC0TbZTOaeT6Rp2+e5UvQkEdvo2Ve/vMr3OiZUIHPpvZKkqwb+KCehaA//2NGcqZLp4EvbQVu0LmCbGmXnX63YhccoduNFsssWxtvXVCl29RmK7RSO/7nuXNnP3lHs2rMVu/AY2Qevl21plr3hgtyFol33Qk5C0SRphns+tKuA2gSZrV2V8n3HFyuk+karE2+L+VtvPXvv1f4L6iSFKT5ibGjuvDoAAOiFfqvEULRmST+RNMJau7e1dq61ditJ0yS92mZcWNKDxhiOvAYAAAAAAPCp0CmSkfuXZ3XRmpRzU50cX8HJ8QAAAACQsUiKYLSGLgpGW970rWt7sdNPRSnCtgFkJtjVBQAAAAAAuolghsFoYYLRgG4lEEg7xGy7VycUgh6vTRpCoW3QoJaVWhUs8z190pD1ywQCMqf/Wfaki6UlC6Rx02SCyR9Hmn4DZK5+Oh6U0NggjZwQD5MCegkzaz/Z+6/LbM5pv89TNd1cQTi7ea8+LkWTg0KSBALSoCEJTYUFRoOKrFbVZ/a8c9KkhZKGpx0HoOcKnXqJbny4XJcvP0fvhadqcuMnGhJdHu/8/F1pmz2lJo+gq3ChzLAx0rX/lhZ9Gh/X2CCtq+20+tH9FFVFpPvd+xrHbp7RWmanA3XVxN/o9MDPfY1/6avZumbQKfpH6VFJfSVmnfbbrFj7Tw9oVZ3Vu9/E39Pf+ZrV/8y3vmvaZ5q0xcj466ltaZE961Dp9ac39tsnbpcuvVf2jEOkVUtbJ95xpewdV7aOe3a+9OoT0pvP+d62p0iRzBPLZYKhjq+13ugyo903lZ75OP1Yx7YJOVu5VONGlyngSFGX7LOPl0ifLZNWpDiPJmBdJlZXyT58k8yB30tfUCcZUybddZJRJGgUCSnhT0mWb/cAAOjrjDHjJJ3WrvkIa+1D7cdaaz80xuwu6RlJG9KayyRdKOnkvBYKAAAAAADQSzgmoEKnWPWx5O940wajNS91be8fGJDyZH4AAAAAgLugCSlogmqxLUl9XRWM5rXvV1EwtJMrAXo3gtEAAAAAAHGhDIPRIgSjAd2KcdKP2Wz79GMAJ/G+NLzlW9/BaOUlUllJYriQ6TdQ6jcw7VwzZJT/GoGeZMbszMaPmezrMdMrhVInZZjvXSh700XJHX5C0SSpf5mMk/x6ueVoo6c/8rfEBjtPIMAR6O1MqEB28tYqe+cl7VL/YkKf/cs50vb7yDZ6HEwRjh/MboyRRk3Kd6noIYqWW+l+l2ArSeum7pzRWmvXWV1Q8CPJx0vguo/6K6QWaZVcg9H2qP6X9NFIacrWGlRstMv6u+xpu8f/9hOONnem0V+PbfPa+M6LCaFokqTl38ieuqvU1JC+6FceTz/GB3Pi+TkNRdvgisMdbXWJ+/9lW4G2/0ErlyhUPkzjnEZ9FhuSNPaIv2a4Xhv2+guk/ee5vs/pCgOKjObO5L0SAAA5dqGktm9sbnULRdvAWrvOGHOCpPckbfgC8HvGmCustV/mr0wAAAAAAIDeozhQ4h6M5tLW1oqmJa7tFQXDclIXAAAAAPRFYadQLS5B1Y1dFYzmte8XYt8PyKXucWQsAAAAAKDrZXqiaJirlgHdSiCQfkxxaf7rQM/XLmSvssX9w3o3m3JhEyCJKQhLx53pf/zx58SDdPqiVO9HSwZIR/2sY+9BS91DHs/fP7OvSk5Yc7s22WRQ9nUA6DkC3teYsqfuKn3zuXtnOJKngtCTFaZ4mWsorcxorSfet6qNpg+4f2DREfFQNEnbNbyu49b8PaG/KFanM1b+XnrtqaS5wYDR6Xs5+u95qV8nT9nF6K6THJUWtb5/sXf9yX2wn1C0XBk+Tjr01LwsPWOU0TAfu9eO2oTKrVwq++sTNHH1f7PebsB6JOFVV0nfkm8CAEBvZYwplHR4u+bL082z1n4q6cE2TUFJR+ewNAAAAAAAgF6tKNDPtb3e5UT8tlY0e50cz8F1AAAAAJCtiON+HkFDVwWjee37EYoN5BTBaAAAAACAuFD6E2oTRIryUweA7BgfH/MUux+oAyRwEu9Lw1u+9T114tA+GuYEpOGcdLGvceaPj8vsMTfP1XRfxhhpuznufQ98JRMpkqZsk/0GSstdm3eaYLRz6EPXvln1r+ii5Rdpz9qndEDNo7p6yWm6fskpUnlmATYAeqhU4cO1a6Rn7nHvI0gcLgpTfOyyrtn/OtGY1XdusGnHTWn8UAfUPpbQdv2SU3XDtyfr4LUP6furb9YbX22vbRrekL3pIs91ZowyOnSG93auOdplX/Q//0xbX14d8ROZG/8jk8eQwsk+jl1qG2Rmn50v/d+/NLp5YdbbDMgjGE2SatZkvS4AAOj29pbU9ku5V621H/uce0u724fmpiQAAAAAAIDer9gpcW2vi9amnLeiiZPjAQAAACDXwsb92NzGLghGs9Z67/sRig3klPdlzgEAAAAAfUuGwWiGYDSge3FShDZsUEQwGvxIDDerbPYfjLYpn98DnsyNr8p+f3vv/isfkZm5eydW1D2Zn1wh++nb0qql8YZQgcw5N7W+9xw1QXrr+ewWH1Dm2XXv1Ee1+39iej8ybWPb0JalunbpTzWt8UNpZZvBxf1litwPfgXQy/h5j+2mgGA0JCsMefeta/K3xpsLrL57c8zX2H8uPCCpLaQWzau+XfOqb0/qs4s+kxk5wXWtm09wtGBVTP9d0NpWXiI99tPudR02c/6tMnt9p1O2NXGI0bMfpw6oSwgyWx8WN6zF/WAoP9oGrSWpq856XQAA0O21T5F/LoO5L0pqUetxojOMMUOstctyURgAAAAAAEBvVhRwPzakPkUwWszGtKJ5qWtfRYhgNAAAAADIVsRxPza3oQuC0Wqi1Wq0Da59gwu4ADuQSwSjAQAAAADigpkFoynMid5At+L4OCGdYDT40e6+VBGt8j110hCTfhDQR5lJWypldEY5X4BJkhk1Sbrtv/HwkPoaaatdZUZv2to/cmLqf8dUSr2D0crHjdSrd+2sh/odoA/DkzWmaYEOqH3M/TmwnANVgT4jkOVXqewvw0UkVTBac/r5Z90f0xX/9PcqeNO3J6kywwAue/Q06YUGGZP8nr5/odHLZzp68G2r9xdLIwdJB0w3Glrazd7/73Rgp21q4pD0YxybHGI3vMV/8HR7CUFr7dWuzXpdAADQ7U1rd/tVvxOttXXGmPckzWjTPFUSwWgAAAAAAABpFAfcj7esi9V4zlnbslrN1v2qSBUFHG8CAAAAANnqTsFoK5q8j88kFBvILYLRAAAAAABxoQyD0SJF+akDQHZMmmC0grBMpo9z9E3tgtHKMwhGm0quE5BaaZlUvdK9j+fojcyAcmnOse6d46Zmv+7YKd6dY6eq0DboqLX3pl9obPY1AOhhsg5Gi+S2DvQKxhhFQlKDSwjaOvdzIzZ69QvrOxTN2Jj2rHsmiwolu3NEdve5MlvOlvabJxMIbOwrCBrNnWk0d2ZWS+edOfUymcLiTttePBQ69f+JW5DZsNcqDQ0AACAASURBVAwD69qyShFEV1edOLbqW9m/nCv96854wwEnysw5Vmb6Dtlv/60XZJ+7T4rFZHY5VGarXbNeCwAAZGRyu9ufZzj/CyUGo02R9GyHKgIAAAAAAOgDPIPRot7BaMubU50cP7TDNQEAAABAXxX2CEZr7IJgtOXN7hdILXSKPPclAWSHYDQAAAAAQFwwwzCOMMFoQLfS5oR1V4V8sAq/Ek+2L2/xF4w2cYg0tjwf9QC9iJPiuZpgNH82myWFC6XGLL7A3OVQ777x06UBFdKaFWmXMQecmPm2AfRMqZ63UykgGA3uCr2C0Vza2rrtVX+haJK0f+3jquxA+JaeuUf2mXuk156WueSu7NfpbHOO69TNTRySfoxjY0ltwz0OiPIjZFPcUWpbg9Hst1/JHrlpYv8jN8s+dqt04d9kdjs8423bp+6SvWSeFIv/TvahG6Qz/yqz3/EZrwUAAPwzxgySNKhd88IMl2k/fkL2FQEAAAAAAPQdRYES1/blTd/q0ap/uPYtblzg2l4c6Oe5HgAAAAAgvYhHMFpDnoPRFjZ8rk/r30/YzufrPnQdWxEaJmNSXAAVQMYIRgMAAAAAxAVDmY2PEIwGdCvGSd1fxEE18MlJvC+VR1f6mrbXVMMH+EA6BKN1mIkUyc7aV/r3fZnN++39MuWV3v2BgOzsg6WHbki90OARMtvsmdG2AfRggSy/SiUYDR6KCqTV9cntdY1W7QOKN4jFrK5/IX0wWv+IdOiwr3XVe5d4DyoZIPPnp2XnzUxf7PMPKLZTWObE86XjzpIJpn482Leel73p19LK7IO/shYMSaVlnbrJMeXxf/O1Dd5jAoomtY1r/koFsUY1OeGMtje4ZZnGNn/t2W/XVG28B9m/nOM+KBaTvfAYaccDZAr8b99aK3vDhRtD0dY3yt74K2nf77IfCABAfg1od7veWluX4RrL290u7UA9AAAAAAAAfUax437MZU20Wo+vvDujtSpCw3JREgAAAAD0WeEuCEZ7tOofGe3/VRSw7wfkWpozZgEAAAAAfYUJBKRAirCO9sKc6A10K+kev0X9OqcO9Hwmu2C0ad55QwA2SBWwEyQYzS8z7/zMJ22/T/p1v3uWVNL+fOM2BlTI3Pxa5tsG0HNlso/chiHsEh5KPLKo6pq85xxwdcy7U1LQkZ76uaNVf3J089mbqN+dr8s8WyNz6mVJY81JF8uM30zaeg/fNdubfy17nUfQ1oYxX34g+/N9pXdelL75wvfaGakY7t1XNkzG6dxDHwKO0V5TUo+J2EbXtt3r/51y3hSXY6POrbpcjlIE5P39CkmSra+RXnw45fr2iAmyDS4JfV4WfSYt+Tq5vepb6dO3/K8DAACy0f7s22yO6G4/p8NfFhhjBhtjpmbyR9ImHd0uAAAAAABAZyoK5O6YS4LRAAAAAKBjIh7BaI15CkZb2vgNodhAN5DlZc4BAAAAAL1SsECK+vwwKOz+YRKALmLSnARe3L9z6kDPZ0zCzfJola9pk4eZ9IOAvi6Q4rm6wCMpBUnM2MnSbW/KHr+lvwl7HuUrLMUMHiHd8prsHVdKn78nFZVIq5ZJw8ZIg0fIHHuGTGlZx4oH0LOkCrRMJRjKbR3oNYo9Xu5rG9zbm1usnv/Ue72Dt5DOmONou3GJ78VNqED2qJ/LjJks+9itkozMAfNktt073n/lI7KzM/hc575rZb97lkz/Qa7d9oYLpWiL//UyVdRP6j9IWrHYvb+8aw4mOnym0fw3vcPKpjW879p+YM2jeqJkjue8Z0539MoX0r1/fUaNa6p19Nq7dUjNQ2nrsVXfSu+8nP7/YtUy2T0Hxu8jp1ya/n3S2lXefauXp60LAAB0SPtgNI93jim1/+Kv/ZrZOFXShTlYBwAAAAAAoNsqyWUwWsHQnK0FAAAAAH2RVzBaQ56C0T6oezPjOez7AblHMBoAAAAAoFWoQGr0+WFQQSS/tQDITLrQhqJcnOuEPqHdSfFh26RBLSu1Kpg6DGgKFzYB0nMC3n3Bgs6roxcw46ZKP7hY9oYLUg8cOlrmhHP9rzt0tMzpf+5gdQB6jWyD0UI8p8NdiUcwWl2Te/ui1VK9R9+2Y6X7T/V+b2GMkbbfR2b7fZL7HEe66knZsw+X6mvSlS21NMv+7kfS7IOlKVvLVI7b2GVr1kgvPZJ+DS9b7Sr999+px5QPSx0iO2hI9tvvgENnGE0fYfXuN+79+9c+7tl+iseac2caDelvdMgM6SDnN9LiV/wX9N6rsi+kD1Db6K4/yq6rkbaYLVWOlZmytfs46x3+1j5YGwAA5F2KF+aczgEAAAAAAOjzhofHKGwiarTZZNUnmlg0LQcVAQAAAEDfFXbcz2VtjHV8n81NTXRNxnMmFLLvB+Ramkv/AgAAAAD6lEwCOQhGA7qXYLpgtNxdvRC9nMuJ7bPW/SfllGmVUlkJJ8QDaaUMRgt1Xh29xXFnSMPHJbcPGipz8m9kzr1J5sZXZUZN7PzaAPQOTpZfpYZSBDihTyv2CkZrdG9fUu291qm7dOz9t9lyF5nb/itz2h+kfgPTT3juftmLvit7zHTZ+/8iSbKrl8vu27FQMrPzQdLgEakHlVemflwVl3aohmwFA0bXHO3IcfmvGNGvWfsft5PrvGEtS3Vk9T1J7UYx/f17bRaLtmRUj73gaOm5+zKao4dulL3oONkf7qjYeUfJxmKZzQcAAPlW2+62+yWwU2s/p/2aAAAAAAAAcFHghDWn7IgOr7Np0eacHA8AAAAAHRRx3L8ub4ity8v26qI+Ljrbxg6le6q8oGsu8gr0Zlle5hwAAAAA0CuFCEYDeqx0j9+i/p1TB3o+l2C0Q2oe0qP99vOccvAMQtEAX1IEo5lsw3f6MGOM9Kd/yl54rPTha/HGyTNlLrxdZvgmXVscgN4hkOVXqZnsW6NPKfa4a9RmEYx27HYdfw9uho6WDv+RtMXOsvNm+pvU0iz7x5/J/vFnHd6+JKliuMxv75c9cRvvMZtMk7760Lu/qCQ3tWRhh/FGd/7A6IRbrBqa423DSqV//DCsovE/kp0zV/bCY6S3nk+Y9/tlZ2pJcKheKN5ZkjS14QP9rfQaBQN/bR2UYTCaJKkjwWbPPyA9erN04PcT21PWwb4gAAB51l2D0a6VdG+GczaR9FAOtg0AAAAAANBp9i47TIMLhumd2v/T6uaVGc0tDBRpQuFUzR64b/wYFwAAAABA1sIewWiNeQpGq4+6f7U+IFimitCwjbdLAv01pXiGZpXukZc6gL6OYDQAAAAAQKtgyP/YgnD+6gCQuUCax28XniiOHsYkhzPtX/u4ArZFUeP+ceIhBKMB/mQbsANPZuho6boXpC/elwoKpMpxMpm8pwWAVFIEWqYUJBgN7koiRpJNaq/3DEZLHitJm1QopydPmPGbyW6+k/TOizlb07fySpkJm0tPV8v+dM/WsNMNAkGZOcfJ3vgr7zWK+uW1xHTmznR0wHSr17+WCoLSFiOlSCj+/2MGVkh/+qf0zWfSkgXS2CnSv+/T0KvP0DML5+jDgslqNiFNa/xAwVHtgl29Askcp2MBaCnYe/4s0z4YrdnjDiplF94GAAAy0T4qt8gYU2ytrctgjcHtbq/pYE2y1i6XtDyTOZz8CwAAAAAAeqoZ/WZpRr9ZXV0GAAAAAPRpEa9gNNugmI3JcTkXqiPqYu7BaNv230UHVRyX020B8JbbRzYAAAAAoGcLZXDydkEkf3UAyFy6EJguPlEcPYiT/JFhWXSVdq/7t+vw8YPjJ/4D8CGQZcAOUjLGyIzfTGbUJELRAORWtoGWmexbo08p8rhr1DW5B6AtbR+Dsd6w0hwV1Ia59B5pjyOl0vLcL55KRWV8++GIzFVPSof8UCoZIBkjTdhc5ooHZSZukTKg33SD/d3CAqOdJxptN85sDEXbwDhO/H3KtnvJDB4hVQyPt0ua2vSRtmh8V0FFpYWfJi7qFTq21W55+A3WW/Cx7JKvE9uaGrzHN6UITQMAAB1mrV0paXW75lEZLjO63e3Psq8IAAAAAAAAAAAAAIDO5xWMJkmNsRTHuGWpPlrj2l4U6PrjFYG+hGA0AAAAAECrIMFoQI+VJnzBFJV0UiHo8Yxxbb54xUUqiDUmDb38MEfGYw6AdhyC0QCgRyEYDTlW4vFRSq3HMTlLPILRhvbPTT1tmf6D5Fx4u5xHF8vc/XHuN+AmEJQGDmmtIVIk5xf/K/PYEpmn1si5+TWZbfaMdxZ4H9Sknra/Wz7Ms8u+9ULrDY9gNLPj/q6B1jnzyVuJt1OFnzW799loVHb1ctm6tTksDACAPuujdrfHZzh/XJr1AAAAAAAAAAAAAADo1sIpg9HW5Xx7ddFa1/biQA87XhHo4QhGAwAAAAC0yuTk7TDBaEC3Egyl7i/Ow5nz6J2M+0eGMxve1Ctfz9axa+7QzIY3dcRWRv/6maNDZhCKBvhGMBoA9CyBLJ+30703R59V7PGxS12Te/vSauvaPnRAft+Dm8qx0uCRuVls/HRp6rbufdvuJePyODOOI9P+c6eBFd7b6Gn7u+WVnl32L2e33vAIRlMoLHPn+zkuqo0F7YLxGlNcTbMpuc9+9Ibs97aVPXCk7P6Vil19hmw0muMiAQDoU9q/8G/vd6IxpljS9DTrAQAAAAAAAAAAAADQrUVSBKM15CEYrd4jGK3IIRgN6EwEowEAAAAAWoXC/scWEIwGdCuBNOELRf06pw70fI73R4ZbNL6rW5f8QP9ZdZDu/qGj3ScTigZkwhzxY/eOkRM6txAAgD+BYHbzMgkdR59S4vGxS22je/uSavf2YaW5qScVc+FtHV+kpFTmR7+Vuew+afSkxL5BQ2R+cLH/eiq8w8R63P5ueaVU4HFn+PID2Yb6+M9eYWKBoDR0TPbhjWnYBZ8kNriEn7X2NcrWrJF9dr7sf/4pW7Na9qQdpC/ei/e3NEt3XyV7zDTZ+VfnpV4AAPqAf7a7vUsGc3eS1HbH5i1r7bIOVwQAAAAAAAAAAAAAQCfqzGC05lizGq37cXPFgR52vCLQw2V5ND8AAAAAoFfye/K242R/gjiA/AimCUYr5IoU8Mn4uJZCpDj/dQC90Q77SeFCqTHxizez53e6qCAAQEpOlqFDmYSOo08p9gpGczl+piVq9c437uM7JRht+g6yu8+Vnrkns3l3vi+9/JgUjkiz9pUZMireccOr0rPzZb/+SGbkhHhf+TD/C5elGFvUs/Z3TUFYdtQk6fN3kzsb10kfvSHN2FmKtrgvEAjKBAKyZcOk5R53ko5Y9Gni7RTBaPbFh6XrL5Bq16Rec/GXsledLnO4R1AwAABI5UlJ6yRtOMp7e2PMptbaj33MPaHd7QdyWRgAAAAAAAAAAAAAAJ0h7EQ8+xpzHIxWH6v17CsO9KzjFYGejrPYAQAAAACt0gUrbVAQkTEmv7UAyIgJBGRTDSjiihTwyc/zeyHBaEA2TFE/6fIHZM85QqqviTfueph07P90bWEAAFcmEEz9HtuL39Bx9DmlHhcsXF2f3PbAW97rDO3fOZ/JmDP+IruuVnrlcX8TttkzHnp21M+S1yoslvY7XllXXpIiDc5PuHM3Y373sOwhY9w7Vy6J/50iGE2SNG5qfoLRqqsSbtqXH/Ue+/rTud8+AABIYK2tN8bMl3Rcm+YzJc1LNc8YM1HSIW2aWiTdmfsKAQAAAAAAAAAAAADIL8cEVGDCarKNSX0NuQ5Gi3oHoxUFOD8P6Ew97whhAAAAAED++D15u8A7YR9AN0UwGvxyfHxkSDAakDWz1a4yjyyWufY5mfmfy7n4ThkCdACgewpkeY2pIM/rcFde4h4LtrpeaokmxvDd/XrMc51hKTLCcskUlci5/AGZ29+Wuf5lmafXyNz3hcx5t7gMNjLzzstfMeWV3n3F/fO33Twx5cOkEePdO6tXxv9OE4xm9j8x/Ya+84vMi6up3vijveUS6Y1nM1/DjZ99TQAA4OVXkprb3D7BGHOg12BjTETSLZLa7pzcZK39Ij/lAQAAAAAAAAAAAACQXxHH/eq0uQ5Gq4vWePYVOZxPBXQmjjwFAAAAALQiGA3ovQqLuroC9BTGTzBaSf7rAHoxUxCW2Wx7mSEju7oUAEAq2Yb4EHgJD+Up3kavqku8ff9b3mM3HZqbevwyYyfLTJ4pEy6UGTxCZu+jZW58VZq2vRQulIaNkfnV32WmbZe/IsZNk8qGJbf3GyiN3zx/282n0jLXZrv8m/gPnsFoAUmSmX2wdOjJKTdhBpTH/+0yUbtGse9vr9hOYdmbf53ZXAAAkBfW2i8lXdWueb4x5sfGmIQdEGPMZEnPSJrVpnmlpIvyWyUAAAAAAAAAAAAAAPkT9ghGa8xxMFp9rNa1PWQKVOCEc7otAKkRjAYAAAAAaBX0G4zGBzhAjxN2//AXSGJM+jERgvYAAEAfEAhmNy8Yym0d6DVSBaNVtTmO5q2F1nPclGFSOOTjPXuemUlbyvnLc3KeXiPnnk9kdjs8v9sLBGSO/WVy+9GnywSzfKx2tf6D3Nvv/L3s1x9JtdXu/W2em8y881Nvo7BE5tj/8bef19Ynb2Y2HgAAdIazJD3R5nZI0p8lLTLGPGGMuccY84akD5QYitYk6RBr7ZLOKxUAAAAAAAAAAAAAgNyKeASjNeQ4GK0uWuPaXhzol9PtAEivhx4hDAAAAADIi5DfYLRIfusAkHsFBKPBJ+PjWgqFKRIdAAAAeotAILt5fvet0eeU+QxGO/v+mOe4W+f13WufmcN/LA0cIvvsvVJzk8xuR8jMOaary8peaZlnlz1uC+95bYPgSsvizznNTe5jC4tl9jxKKu4v+/ht0vMPZllsBwwaIg0cLDl9974LAEAuWGujxpi5km6UdGSbrsGS5nhMWy7peGvti/muDwAAAAAAAAAAAACAfAp7BKM12twGo9VHa13bixzOpQI6G8FoAAAAAIBWQYLRgF4rTDAafPJzsnoRH+YDAIA+IJDlV6kEo8FDJGRUEpZqG5P7NgSjNbVYvfql+3zHSJOG5q++nsDsfoTM7kd0dRm5UVud3bw2YdbGGNnyYdKSBe5j14dam1n7yszaV/aFh2TPnZvddrOx3zw5Z13XedsDAKCXs9bWSjrKGDNf0umStvMYukrS3ZIutNau6Kz6AAAAAAAAAAAAAADIl4hHMFpDLLfBaHUewWjFAc6lAjobwWgAAAAAgFahkL9xBKMBPQ/BaPDLmPRjBlTkvw4AAICulnUwWji3daBXKS9xD0ZbUWMlGb34mVTT4D53kwqpX8TH+3X0CGbiDNmXHsl8ohNIvF0+3DsYLVKUeDvb57UsmTOu7dTtAQDQV1hr50uab4wZK2lLSZWSiiUtlbRA0svW2qYuLBEAAAAAAAAAAAAAgJzqtGC0WI1re1GgX063AyA9gtEAAAAAAK2CBf7GhXyOA9BtmEAg/SBAkoyTfsiA8k4oBAAAoIu1Dx/yi31mpFBWIn29Mrl9zfrjch5913rOffJn6d+rowcZv1l285x294NBg73HFra7QuXkmfEwbOt9P8uJYWNkLr1Xpn2tAAAgp6y1X0n6qqvrAAAAAAAAAAAAAAAg38JOxLW9McfBaPXRWtf24kCJazuA/CEYDQAAAADQyu/J20F2JwGg1/Jz4vqAivzXAQAA0NUCWe77+g0dR580wP2ChVpTH//71S/cA6sO21IaU27yVBW6xHZzspvXPsy6vNJ7bGFx4tRBQ2S33Uv6z5PZbTtVWRfdITXUSyMnSBNnyITdD0IDAAAAAAAAAAAAAAAAACBTEcf9AMyGWENOt1MXrXFtL3IIRgM6G5fnBQAAAAC08huMFgjltw4AQNcxPsIWBpTnvw4AAICu5gSymxdknxneSr2C0dZJ1lp9uty9f88phKL1NiZUIHPJ3ZlP/H/27j3KsrOsE/DvO+dUneqq7nR3SOdCEuhcCQkYQJCrEklAgZEAIjoIGhGHhTdQRnGWo5AZlzoizBqdYXS8wQg6423AcURcusRRkFkjwvKGw02iokBUwO6qVHdSteePatJ1Oafq3HfVOc+z1l7p8+1vf/vtXbve6jrZ9attYdbl4iu6z51v7zzva96cPOUrknaXm7FfD7o+5Zc+lPKU56U842tSHv54oWgAAAAAAAAAAACMVLtLMNqZ9XtGep5uwWhLzSMjPQ+wtwF/zTkAAADTqLTmU/UyseXbSYCpVXr4XQrHLx5/HQAAdRvwe9/S8Lup6O7oYkk6vPvy2ZXk708nn1npfNyNlwlGm0blyc9O9bgvTd7zG30ctO1eeNjju889ujPUuixdkHLnm1Pdezb5hR9J9WPfvfc5r35YGm96b6r77k3OriZnzySHDgtAAwAAAAAAAAAAYCIWugSjrY44GG1l/XTH8aXm4ZGeB9ibp/IBAAA4b26+t3nNufHWAUB9egnyOLbzh+sBAKZOc4BgtMfcOvo6mCrHFjuPf2alygc/2f246y8ZTz3Ur/zAL/V5wLbv2W56bHLZg3fOu/qmlF2+dytz88lTnpe09n6frzzr6zf+25pLWTyScuwioWgAAAAAAAAAAABMzKSC0ZbXugWjHRnpeYC9CUYDAADgvB5+ELKveQAcQGXvKUcFowEAM6DR7PuQ8k0/NIZCmCbHOj+Xk8/ek3zwk1XHfUcPJSc8TzO1Smsu5a13JScf2tsB28KsS7OZ8s2vTebb5wfnF1K+9XV7n/uykykv/t7dJ13/yOTpL+qtNgAAAAAAAAAAABiDdpdgtDMjDEZbq+7L6vpKx32LgtFg4gb4NecAAABMrbn53uYJRgOYXo09fpfC0YtSNv/APQDAtGr2GYz2mFtTrnnYeGphahxb7Dz+mXuSD36y877rL0lK6SHAmAOrPODS5Cf/INWXnkjuu3ePyTu/ZytfdHvyk+9J/uDtyfp68uRnp1x5XW/nftF3Jp/3hFTveUfyjrckd398Y8fFV6a85NXJrc/3PSAAAAAAAAAAAAC1WugSjLY6wmC0lbXlrvuWGodHdh6gN4LRAAAAOK/VYzBa07eTAFOrww/Zb3HRZZOpAwCgbo3+gtHKi141pkKYJsc6P5eTz6wkH/pk1XHf9ZcIRZsFpX0o1YtelfzM9+0+sUuYdbnqxuSqGwc7981PSrn5SclL/+1AxwMAAAAAAAAAAMA4tbsEo91X3Zu16r40y/A/87qyfrrrvsWmYDSYtD1+yhEAAICZMtdjMFpLMBrA1Cp7hC6ceOBk6gAAqFs/oeAPuj65+QvHVwtT49hi539v330qeddHOh9z3SVjLIh9pRx9QA+TPOYBAAAAAAAAAADAbFnoEoyWJKvr94zkHMtrp7ruW2oeGck5gN55YhYAAIDzeg5GmxtvHQDUp7HHW4YPEIwGAMyIvYLRjl60MedRt6T8+7en7PXvKEjywGOdx+9bTz75T533PfzyPcKLmR5HL9p7jl4DAAAAAAAAAADAjJlMMNrpjuOt0sp8aY/kHEDv+vg15wAAAEy9Vo/BaHv9cDhQj6tuTP7yz3eOX3715GvhwCqlpNptwkWXTaoUAIB6ze/yAMMXPDXltb+a3Hs2pb0wuZo48B5ySX/z51vJrTeMpxb2oaMX7j2nCEYDAAAAAAAAAABgtrR3CUY7M6JgtJW1Ux3HFxtHUopfcguT5olZAAAAzpub621es8d5wESVF35n5/GXvGaidTAFGt3fNiyHL5hgIQAANXrQQ7rvO7SU0mgIRaNvhxdKrjje+/xbb0guOORhmplx9KK95+zy/RoAAAAAAAAAAABMo4VdgtFWRxSMtrx+uuP4UvPwSNYH+uOJWQAAAM5rzfc4TzAa7EtPfk7ymNu2jj3mtuQLn1VPPRxcu/0Wk/bi5OoAAKhROXZRcsW1nfc99DETroZpcsOlvc991s1C0WbKict3/34s2Xs/AAAAAAAAAAAATJn50k7pEpM0qmC0lbXOwWiLgtGgFoLRAAAAOG+ux2C0Zmu8dQADKe2FlB/45ZQ735K84JUpr3lzyg/+Skq7+2/EgI7KLm8bLghGAwBmR3nhd3Te8dinTbYQpspDLu092Orx1wjBmiXl+InkUbfsMck9AQAAAAAAAAAAwGwppaTdWOi478yIgtGW1051HF9qHhnJ+kB/BKMBAABwXru3sJvSmhtzIcCgSnsh5SnPS+Nl359y61ekzLfrLomDqCEYDQAgSfKlL0qe8bXnXzdbKS9/Xcq1n1dfTRx4N1za+9xrT4yvDvan8sof3X3Cbt+vAQAAAAAAAAAAwJRaaBzqOL46omC0lbXTHccXG4dHsj7Qn1bdBQAAALCPHL2wt3mC0QCmXOm+q935fyIAAEyj0mym/Kv/kuqff1vydx9Lbvj8lOMX110WB9wNl5Yk1Z7zrjyeLLZ3+bc5U6lced3ud0cRjAYAAAAAAAAAAMDsaY85GG15vXMw2lJTMBrUQTAaAAAA5x19QG/zms3x1gHA/rWwWHcFAAATV04+NDn50LrLYEo86kFJKUm1Rzba9ZdMph4OmIZgNAAAAAAAAAAAAGbPQpdgtDMjCkZbWTvVcXyxeWQk6wP98cQsAAAA5y0d7e2HK1tz468FgPrcd7b7vrZgNAAAGMbxpZJX3Fb2nHfdJXvPYQYVj3kAAAAAAAAAAAAwexYaCx3HV9dXR7L+8trpjuNLjcMjWR/ojydmAQAAuF9pNJIjx/eeKBgNYLqtr3fftyAYDQAAhvXDz9s79Oz6SyZQCAdPL7/UAAAAAAAAAAAAAKZMu3Go4/iZ9XtGsv5Kl2C0xeaRkawP9McTswAAAGx1wYV7z2kKRgOYWQud/ycCAADQu1JKvuSm3edcf8ne4WnMoOIxDwAAAAAAAAAAAGbPQpdgtNURBKOtV+tZWe8cjLbUPDz0+kD/PDELAADAVkcfsPecZmv8dQCwP7UX664AAACmwmVHuwefNUryuKsn6svn2QAAIABJREFUWAwHR8NjHgAAAAAAAAAAAMye9hiD0VbXV1Kl6rhPMBrUwxOzAAAAbLV4ZO85rbnx1wHA/rQgGA0AAEbhqou673vMyeTCpe7Bacyw4jEPAAAAAAAAAAAAZs9Cl2C0MyMIRlteO9V132Kjh5+5BUbOE7MAAABsNd/ee45gNIDZJRgNAABG4taHdg8+e84jhaLRRXFvAAAAAAAAAAAAMHu6BaOtjiQY7XTXfUvNw0OvD/RPMBoAAABbzfUQjNZsjb8OAPalIhwTAABG4nFXJZcf67zvWTcLv6KLhsc8AAAAAAAAAAAAmD3tLsFoZ0YQjLay3jkYrZFGFhqLQ68P9M8TswAAAGzVSzBaSzAaAAAAwDAajZIfet7OALQXP6nkhssEo9FF8ZgHAAAAAAAAAAAAs2ehSzDa6giC0ZbXTnUcX2weTime6YQ6+El2AAAAtuopGG1u/HUAAAAATLmvekzJ4nzJf/it9azelzz3USXf8sUeoGEXDcFoAAAAAAAAAAAAzJ5xBqOtrJ3uOL7YODz02sBgBKMBAACw1fz83nOavp0EAAAAGFYpJbc/Irn9Ec26S+GgKILRAAAAAAAAAAAAmD3tLsFoZ9bvSVVVKWXwX0y7vHaq4/hS88jAawLD8cQsAAAAW821957Tmht/HQAAAADAVg2PeQAAAAAAAAAAADB7FkrnYLT1rOfe6uxQa6+sn+44vtg8PNS6wOA8MQsAAMBWc/N7z2kKRgMAAACAiSse8wAAAAAAAAAAAGD2tBudg9GS5Mz6PUOtvbzWORhtSTAa1MYTswAAAGw11957TrM1/joA2H+WLqi7AgAAgNnW8JgHAAAAAAAAAAAAs2dhl2C01aGD0U51HF9sHBlqXWBwnpgFAABgi9JLMFprbvyFALD/XHC87goAAABmW/GYBwAAAAAAAAAAALNnnMFoK2unO44vNQ8PtS4wOE/MAgAAsNX8/N5zBKMBzKbH3FZ3BQAAALOt4TEPAAAAAAAAAAAAZk97l2C0M0MGoy2vdw5GWxSMBrXxxCwAAABbzbX3ntNqjb8OAOrzZS/uOFxe8MoJFwIAAMAWpdRdAQAAAAAAAAAAAEzcXGMuzXT+2dbVIYPRVtZOdRxfah4Zal1gcILRAAAA2KqXYLSmYDSAaVZe+B3Jicu3Dn75N6Zcfk09BQEAALCheMwDAAAAAAAAAACA2bTQONRxfHV9deA1q6rK8trpjvuWGocHXhcYjp9kBwAAYKv5HoLRWnPjrwOA2pQHXp38+O8lv/0LqT751ymPfHLyhc+quywAAAAagtEAAAAAAAAAAACYTe3GQpbXT+0YP7N+z8BrnqlWs561jvsWm0cGXhcYjmA0AAAAtpoTjAZAUk5cnnzVt6XUXQgAAAD3K8V3aQAAAAAAAAAAAMymhcahjuOrQwSjLa/tDFr7nKXm4YHXBYbjVwkDAACw1dz83nOacrYBAAAAAAAAAAAAAAAAAJiMdpdgtDNDBKOtrJ3uum9RMBrURjAaAAAAW/USjNaaG38dAAAAAAAAAAAAAAAAAACQ5FBjseP46hDBaMtrp7ruW2wsDbwuMBzBaAAAAGw11957TlMwGgAAAAAAAAAAAAAAAAAAk9FuHOo4Pkww2sr66Y7jhxpLaZTmwOsCwxGMBgAAwFbzvQSjtcZfBwAAAAAAAAAAAAAAAAAAJFnoEox2ZohgtOW1zsFoS83DA68JDE8wGgAAAFstXrD3nNbc+OsAAAAAAAAAAAAAAAAAAIAk7S7BaKtDBaOd6ji+2Dwy8JrA8ASjAQAAsNWDrk8OLXXfX0pKszm5egAAAAAAAAAAAAAAAAAAmGkLYwhGW1k73XF8qXF44DWB4QlGAwAAYIsy304e8UXdJ7TmJlcMAAAAAAAAAAAAAAAAAAAzr1sw2pkhgtGW1091HF9qHhl4TWB4gtEAAADY6YILu+9rtiZXBwAAAAAAAAAAAAAAAAAAM6/dWOg4vjpEMNrK2umO44LRoF6C0QAAANhprt19X2tucnUAAAAAAAAAAAAAAAAAADDzFhqHOo6fGSIYbblLMNpi8/DAawLDE4wGAADATvPz3fc1BaMBAAAAAAAAAAAAAAAAADA57S7BaKtDBKOtrJ3qOL7UEIwGdRKMBgAAwE6t3YLRWpOrAwAAAAAAAAAAAAAAAACAmbfQJRjtTLWa9Wp9oDWX1093HF9sHhloPWA0BKMBAACw01y7+77W3OTqAAAAAAAAAAAAAAAAAABg5nULRkuSs9WZgdZcWescjLbUPDzQesBoCEYDAABgp7n57vtarcnVAQAAAAAAAAAAAAAAAADAzGvvEoy2un5P3+udXT+Te6uzHfctNo/0vR4wOoLRAAAA2KHMtbvvbApGAwAAAAAAAAAAAAAAAABgchZ2CUY7M0Aw2sra6a77lhqH+14PGB3BaAAAAOw0P999X2tucnUAAAAAAAAAAAAAAAAAADDzdgtGWx0gGG15/VTXfUtNwWhQJ8FoAAAA7NQSjAYAAAAAAAAAAAAAAAAAwP7Qbix03TdQMNra6a77FgWjQa0EowEAALDTfLv7vmZrcnUAAAAAAAAAAAAAAAAAADDzGqWZ+dL551/PDBCMttIlGG2hcSjN4mdpoU6C0QAAANhpbpdgtNbc5OoAAAAAAAAAAAAAAAAAAIBshJZ1sjpAMNry2qmO44uNw32vBYyWYDQAAAB2mpvvvq8pGA0AAAAAAAAAAAAAAAAAgMlqjzAYbWX9dMfxpeaRvtcCRkswGgAAADvNtbvva7UmVwcAAAAAAAAAAAAAAAAAACRZ6BKMdmaAYLTltc7BaIvNw32vBYyWYDQAAAB2as1139cUjAYAAAAAAAAAAAAAAAAAwGS1uwSjrQ4QjLaydqrj+JJgNKidYDQAAAB2mm9337dbaBoAAAAAAAAAAAAAAAAAAIzBQpdgtDMDBKMtr53uOL7YONL3WsBoCUYDAABgp7ldgtHand80AgAAAAAAAAAAAAAAAACAcekWjLY6QDDayvqpjuNLzcN9rwWMlmA0AAAAdpqb775vUdI9AAAAAAAAAAAAAAAAAACT1W4sdBwfJBhtee10x/HFpp+jhboJRgMAAGCnuXb3fYuS7gEAAAAAAAAAAAAAAAAAmKyFxqGO42cGCEZb6RKMttT0c7RQN8FoAAAA7LRbMNohb+gAAAAAAAAAAAAAAAAAADBZ7S7BaKsDBKMtr53qOL7Y8HO0UDfBaAAAAOw0N9d1V1k8MsFCAAAAAAAAAAAAAAAAAAAgWegSjHamz2C0+6p7c6Za7bhvqennaKFugtEAAADYaW6++75DS5OrAwAAAAAAAAAAAAAAAAAA0j0YbbXPYLSVteWu+5aah/taCxg9wWgAAAD05/gldVcAAAAAAAAAAAAAAAAAAMCMaXcNRlvta53ltVNd9y02j/S1FjB6rboLAAAAYB86cUVy/OLk05/aOj7fTr7gtnpqAgAAAAAAAAAAAAAAAABgZi10CUZbXjuVH77ru3pe50zVPUhtsbHUd13AaAlGAwAAYIfSaKT6shcn//UHt+546gtSli6opygAAAAAAAAAAAAAAAAAAGZWu0swWpX1fHT1L4Zef67MZ77RHnodYDiC0QAAAOiovOQ1SXsx1W++JVlfT77o9pSX3Fl3WQAAAAAAAAAAAAAAAAAAzKCFLsFoo7LUPDLW9YHeCEYDAACgo1JK8jWvSvmaV9VdCgAAAADMjmfekfyvN+4cP7Q06UoAAAAAAAAAAABgXzncvGCs6x9pHh3r+kBvGnUXAAAAAAAAAADAhvLcl3Uef/H3TrgSAAAAAAAAAAAA2F8unDuRy+avHNv6Dzv8+WNbG+idYDQAAAAAAAAAgH2iXP+I5Ov+9dbBL3hq8pyX1lMQAAAAAAAAAAAA7CMvvPSbc6ixOPJ1r1p4SG49fvvI1wX616q7AAAAAAAAAAAAzmu8+HtSfdGzkz95d3LyocnDH5/Smqu7LAAAAAAAAAAAAKjdVYcekldf9YZ8YPn9+cf77h56vUYauXLh6lx36KbMNeZHUCEwLMFoAAAAAAAAAAD7TLn24cm1D6+7DAAAAAAAAAAAANh3Lmgdy2OP3lJ3GcCYNOouAAAAAAAAAAAAAAAAAAAAAAAAAEAwGgAAAAAAAAAAAAAAAAAAAAAAAFA7wWgAAAAAAAAAAAAAAAAAAAAAAABA7Vp1F8B0KaXMJXlikgcluSzJ6SR/m+R9VVV9rMbSAAAAAAAAAAAAAAAAAAAAAAAA2McEo82wUsp/S/KV24bvqqrq5ABrnUhy57n1Luwy591JXl9V1S/3uz4AAAAAAAAAAAAAAAAAAAAAAADTrVF3AdSjlPKs7AxFG3Stpyf50yQvS5dQtHOekOSXSilvLqUsjeLcAAAAAAAAAAAAAAAAAAAAAAAATIdW3QUweaWUY0n+84jWuiXJW5PMbxqukvxRko8mOZbkkUku2rT/q5NcUEp5dlVV66OoAwAAAAAAAAAAAAAAAAAAAAAAgIOtUXcB1OJ1SR547s+nBl2klHJFkl/J1lC0dyW5qaqqR1dV9fyqqp6W5IokL09y76Z5X5bk+wY9NwAAAAAAAAAAAAAAAAAAAAAAANNFMNqMKaXcluTF517el+R7h1juziTHN71+d5Lbqqr6wOZJVVWdqarqR5I8f9vx315KefAQ5wcAAAAAAAAAAAAAAAAAAAAAAGBKCEabIaWUpSQ/sWno9UneP+Ba1yX52k1DZ5PcUVXVardjqqp6a5I3bRpqJ3n1IOcHAAAAAAAAAAAAAAAAAAAAAABgughGmy0/kOTkuT9/NMlrhljrBUmam17/SlVVH+rhuH+37fXzSykLQ9QBAAAAAAAAAAAAAAAAAAAAAADAFBCMNiNKKU9I8k2bhl5aVdU9Qyz5nG2vf6aXg6qq+kCS/7NpaCnJ04aoAwAAAAAAAAAAAAAAAAAAAAAAgCkgGG0GlFLaSX465z/eb6qq6reGWO/SJDdvGrovybv6WOKd214/fdBaAAAAAAAAAAAAAAAAAAAAAAAAmA6C0WbDa5I85Nyf707yyiHXe9i2139cVdVyH8e/e9vrm4asBwAAAAAAAAAAAAAAAAAAAAAAgANOMNqUK6U8Ksm/3DT0iqqq/mHIZW/c9vrDfR7/kT3WAwAAAAAAAAAAAAAAAAAAAAAAYMYIRptipZRWkp9O0jo39BtVVf3cCJa+dtvrv+rz+Lu2vX5AKeX4EPUAAAAAAAAAAAAAAAAAAAAAAABwwLX2nsIB9l1Jbj735+UkLxvRuse2vf5UPwdXVXW6lLKaZGHT8NEknx62sFLKxUlO9HnYNcOeFwAAAAAAAAAAAAAAAAAAAAAAgOEIRptSpZQbk/zrTUPfU1XVx0a0/OFtr+8ZYI17sjUY7cjg5WzxjUlePaK1AAAAAAAAAAAAAAAAAAAAAAAAmJBG3QUweqWURpKfStI+N/TeJD8ywlNsD0ZbHWCN7WFq29cEAAAAAAAAAAAAAAAAAAAAAABghghGm04vT/K4c3++L8lLqqpaG+P5qgkdAwAAAAAAAAAAAAAAAAAAAAAAwJRq1V0Ao1VKuTrJ920aen1VVe8f8WlOb3t9aIA1th+zfc1BvSHJL/Z5zDVJ3jai8wMAAAAAAAAAAAAAAAAAAAAAADAAwWhTpJRSkvxEksVzQx9N8poxnGrfBqNVVfWpJJ/q55iNywYAAAAAAAAAAAAAAAAAAAAAAECdGnUXwEh9Q5KnbHr90qqq7hnDeT677fWJfg4upRzOzmC0zwxVEQAAAAAAAAAAAAAAAAAAAAAAAAdaq+4CGKk7N/3515N8uJRyco9jLt32utXhmL+tqursptcf2rb/wT3W123+P1ZV9ek+1wAAAAAAAAAAAAAAAAAAAAAAAGCKCEabLoc2/fkZSf5ygDUu73DcI5O8f9PrD2zbf22f57h62+s/7/N4AAAAAAAAAAAAAAAAAAAAAAAApkyj7gI4kP502+vPK6Us9nH8E/dYDwAAAAAAAAAAAAAAAAAAAAAAgBkjGI2+VVX1d0n+eNNQK8mT+ljilm2v3z5sTQAAAAAAAAAAAAAAAAAAAAAAABxsgtGmSFVVx6qqKv1sSb542zJ3dZj3/g6n+x/bXn9dLzWWUm5I8thNQ8tJfrPnvyQAAAAAAAAAAAAAAAAAAAAAAABTSTAag3pLkrVNr59bSrmuh+Nete31L1RVtTq6sgAAAAAAAAAAAAAAAAAAAAAAADiIBKMxkKqqPpTkTZuG5pO8sZSy0O2YUsrtSe7YNHQ2yZ1jKRAAAAAAAAAAAAAAAAAAAAAAAIADRTAaw3h1kk9vev2EJL9VSrlh86RSSruU8i1JfnHb8a+rququMdcIAAAAAAAAAAAAAAAAAAAAAADAAdCquwAOrqqq/qaU8twk70gyf274iUn+vJTy3iQfTXI0yaOSnNh2+K8l+Z5J1QoAAAAAAAAAAAAAAAAAAAAAAMD+JhiNoVRV9c5SynOSvDHnw89Kkkef2zr5+STfUFXV2vgrBAAAAAAAAAAAAAAAAAAAAAAA4CBo1F0AB19VVb+e5GFJfizJp3eZ+p4kz6uq6gVVVS1PpDgAAAAAAAAAAAAAAAAAAAAAAAAOhFbdBVCvqqremaSMYJ1PJXlZKeXlSZ6Y5MFJLk2ynOTjSd5XVdVfDnseAAAAAAAAAAAAAAAAAAAAAAAAppNgNEaqqqqzSX6n7joAAAAAAAAAAAAAAAAAAAAAAAA4WBp1FwAAAAAAAAAAAAAAAAAAAAAAAAAgGA0AAAAAAAAAAAAAAAAAAAAAAAConWA0AAAAAAAAAAAAAAAAAAAAAAAAoHaC0QAAAAAAAAAAAAAAAAAAAAAAAIDaCUYDAAAAAAAAAAAAAAAAAAAAAAAAaicYDQAAAAAAAAAAAAAAAAAAAAAAAKidYDQAAAAAAAAAAAAAAAAAAAAAAACgdoLRAAAAAAAAAAAAAAAAAAAAAAAAgNoJRgMAAAAAAAAAAAAAAAAAAAAAAABq16q7ANgH5je/+PCHP1xXHQAAAAAAAAAAQ+nw3MN8p3kAMEGe0QMAAAAAAAAADjzP501Oqaqq7hqgVqWUZyV5W911AAAAAAAAAACMwe1VVf1q3UUAMLs8owcAAAAAAAAATCnP541Jo+4CAAAAAAAAAAAAAAAAAAAAAAAAAASjAQAAAAAAAAAAAAAAAAAAAAAAALUrVVXVXQPUqpRyNMmTNw39dZKzQyx5TZK3bXp9e5KPDLEeQL/0IWA/0IuAuulDQN30IaBu+hCwH+hFQN1mtQ/NJ7ly0+vfrarqs3UVAwCe0QOmkD4E1E0fAuqmDwF104eA/UAvAuqmDwF1m9U+5Pm8CWnVXQDU7Vxz+dVRrVdK2T70kaqq/mxU6wPsRR8C9gO9CKibPgTUTR8C6qYPAfuBXgTUbcb70PvqLgAAPsczesC00YeAuulDQN30IaBu+hCwH+hFQN30IaBuM96HPJ83AY26CwAAAAAAAAAAAAAAAAAAAAAAAAAQjAYAAAAAAAAAAAAAAAAAAAAAAADUTjAaAAAAAAAAAAAAAAAAAAAAAAAAUDvBaAAAAAAAAAAAAAAAAAAAAAAAAEDtBKMBAAAAAAAAAAAAAAAAAAAAAAAAtROMBgAAAAAAAAAAAAAAAAAAAAAAANROMBoAAAAAAAAAAAAAAAAAAAAAAABQO8FoAAAAAAAAAAAAAAAAAAAAAAAAQO0EowEAAAAAAAAAAAAAAAAAAAAAAAC1E4wGAAAAAAAAAAAAAAAAAAAAAAAA1E4wGgAAAAAAAAAAAAAAAAAAAAAAAFC7Vt0FwBS6O8md214DTJI+BOwHehFQN30IqJs+BNRNHwL2A70IqJs+BADTydd4oG76EFA3fQiomz4E1E0fAvYDvQiomz4E1E0fYqxKVVV11wAAAAAAAAAAAAAAAAAAAAAAAADMuEbdBQAAAAAAAAAAAAAAAAAAAAAAAAAIRgMAAAAAAAAAAAAAAAAAAAAAAABqJxgNAAAAAAAAAAAAAAAAAAAAAAAAqJ1gNAAAAAAAAAAAAAAAAAAAAAAAAKB2gtEAAAAAAAAAAAAAAAAAAAAAAACA2glGAwAAAAAAAAAAAAAAAAAAAAAAAGonGA0AAAAAAAAAAAAAAAAAAAAAAAConWA0AAAAAAAAAAAAAAAAAAAAAAAAoHaC0QAAAAAAAAAAAAAAAAAAAAAAAIDaCUYDAAAAAAAAAAAAAAAAAAAAAAAAaicYDQAAAAAAAAAAAAAAAAAAAAAAAKidYDQAAAAAAAAAAAAAAAAAAAAAAACgdq26C2CnUkozybVJbkzywCRHk5xJ8ukkH0nyh1VVLY/4nHNJnpjkQUkuS3I6yd8meV9VVR8b5bkmpZRyU5JHJDmRpJ3kE0n+Jsm7qqparbO2SSqlHE9yU5LrklyYZCHJZ5LcneS9VVV9pMbydiilXJWNj9sDkxxO8ndJ7kry7qqq7q2ztlmiD42GPrRBH2JQetFo6EUb9KKu53F/7EIfGg332YaD1ofYH/Sh0dCHNuhDW5VSrszGtbgiyUVJDiU5m+SzSf4qG9fk7voq3B/0odHQhzboQwxKLxoNvWiDXsQg9KHR0Ic26EOduT+AOvgaPxp6+IaD9jXeszH7gz40GvrQBn2IQehDo6EPbdCHup7H/bELfWg03GcbDlofYn/Qh0ZDH9qgD23l+bze6UWjoRdt0IsYhD40GvrQBn2IQehDo6EPbdCHOjvQ90dVVbZ9sGWjYb4iya9l45v7apftviRvT/LMEZz3RJI3JPmHXc73riRfPuR5rk7ylUlem+SdSf5p2zk+NqLreCTJdyf5+C5/n39K8rNJrqnx4z2265FkLsmXJPmPSf50j3upOnet/k2SS2v+HHheknfvUuc/nLtXLxpg7b2uwV7byTqvzQQ/BvrQaK6jPqQPbV7z5Ah60Obtjjqv0YQ+DnrRaK6jXqQXHfj7o8aPgT40mut4IO4zfai2+2MpyZOSfFuStyT5YJL1bee6o67rUPemD+lD+tDYrsd1Sb4/ye9k439q7HU9qiR/lOSbkrTruiY1fRz0odFcR31IH+q0fi+9Z7ftZF3XpoaPhV40muuoF+lFm9c9OYI+tHm7o65rNKGPgz40muuoD+lDB/7+sNls07X5Gj9bPdzX+I51e0av5k0f0of0Ic/o1b3pQ/qQPuT5vLo3fUgfmuU+NMH7w/N5u18ffWg011Ef0oe2r+35vP6ul140muuoF+lFndbvpf/stp2s69pM+OOgD43mOupD+tDmdU+OoAdt3u6o6xpN6OOgD43mOupD+tCBvz/2/HvUXYCtSpKfG+IL2v9McsmA5316kk/2ca43J1nqY/1bkrxjjy8KI/vETPLYbKRw9vr3WU7ysgl+nMd+Pc5dg38c8F76dJIX1nD/H07y833U+YkkX9LnOQb9/PrcdnLS16WGj4M+pA/pQ2PoQxn9N7JfOenrM+GPhV6kF+lFY+hFB+n+qHvTh/ShWexDk7w/svHG8Z9k4w3pvc51x6SuwX7a9CF9SB8a3/2R5CVDfH79vySPndQ1qXPTh/QhfWi898cQn1+f205O6rrUuelFepFeNLbrcXIEfWjzNrXvV0cf0of0oZm/P2w223RuvsbPRg/3Nb5rzZ7R2webPqQP6UOe0at7iz6kD+lDns+redOH9KFZ7EOTvD/i+bxerpE+pA/pQ2O6P+L5vH6ulV6kF+lFY7w/hvj8+tx2clLXpa5NH9KH9KGxXY+TI+hBmzfvVetDvXwO6kP60IG8P/rZWmE/uL7L+MeTfCgbzbWVjdS/m5M0Ns35Z0n+dynlyVVVfaLXE5ZSbkny1iTzm4arbKSsfzTJsSSPTHLRpv1fneSCUsqzq6pa7+E0j0jytF5rGkYp5bZspIG2t+26K8kfZ+OT8IpsfPLOndu3mOQNpZRGVVX/aQJlTuJ6nEhyvMP42Wy8uf2JbCSmPiDJo8/993OOJfnZUsrFVVW9fsx1JklKKc0k/z3JM7btujvJ+87Vek027sVybt8lSd5WSrmtqqrfn0SdM0IfGpI+dD99aHxWspFoPc30oiHpRffTizqf5yDcH3XTh4Z0QO4zfWirid0fSV6Q5OiEznVQ6UND0ofupw/trcrGm/wfzsb/WFjJxm/MvSrJTTl/fyQbn5u/XUp5ZlVVvzvpQidMHxqSPnQ/fYhh6EVD0ovupxeNz7S/X60PDUkfup8+1MEBuT+A6eRr/JAOSA/3NX6bA/ZszLTTh4akD91PHxof73noQ7vSh+6nD3U+z0G4P+qmDw3pgNxn+tBWns/bX/ShIelD99OH9ub5vO70oiHpRffTixiUPjQkfeh++tD4eK9aH9qVPnQ/faiDA3J/9K7uZDZblSR/mPMpen+U5JuTXNNl7uVJfjw70/d+L0np8XxXZGfq4e8neei2ee0k35qNT/rNc7+/x/O8okOdVZLVbLyhMZLEwmykp25PRfxwkqd2mHs8yY9um7vWae4YPs5jvx7Z+EL+uTVOJfmpJLcmOdRhbknynGw0r+01jf16nKvhtdvOe/bc/T+/bd6NSd69be7fJ7msx/NsPu495+6ZfrbWJK5HnVv0IX1IHxpLH8rGN1579Zhu2+9vO98bJ3FN6tyiF+lFetHY/k10UO6Pujd9SB+axT40qfvj3Lk+0+Vcf9Nh3x3j/rvvx00f0of0obHeH1+f5C+y8W+vZyY5vsvcY0m+PRv/A2Tz+T+e5Oi4r0mdmz6kD+lDY//30Oa1vFfd/TrpRXqRXjSe6+H96t6vlT6kD+lDM35/2Gy26dx8jZ+NHu5rfMd6PaO3T7boQ/qQPjSWPhTvefTzsdCH9CF9aEz/Hjoo90fdmz6kD81iH5rU/XHuXJ7P2/sa6UP6kD40vvvD83m9Xyu9SC/Si8b7b6LNa3mvuvM10of0IX1oPNdaSfFZAAAgAElEQVTDe9W9Xyt9SB/Sh2b8/ujr71R3AbYqSf5vNtL2Ht3HMd/Y4Yb/qh6P/altx70rycIu85/d4RPrwT2c5xXnmv77kvxEkn+R5FHZSAy8ZYSfmD+/ba0PJbl4j2O+c9sxf5akOeaP89ivx7nG/cn8//buPFqatKDv+O8ZEBjWUZBBQBj2oLiAmAhqHA0YiEeQJS64MIL7cqLRHA9CTlATjYnrOfEoUQTEJRIEREEgiANuuJ1BQEcEdVCUQVZxhlnhyR99573d1ff27equ7qqu+nzO6T+q3q7l9vu837rvc+vUTb4jyW3W3OaOSf68cfzLs+Y3Alt8HvfO8jcFj13x/vOz/IPGn1rzWPPbXLrLr+tQXzqkQzq02w5tcG53S3Jj41ifvcvPYwgvLdIiLdpdiw5lfPT90iEdmmiH9jI+jo71gcx+08LLknzP0ed04dGfXdo41iW7/LqH+tIhHdKhnY6Pj9pgm09NclXjHL5rl59H3y8d0iEd2vn3Q/P7unSXX9chv7RIi7Roty3a4NwmN1+tQzqkQ8aHl5fXOF+u8dNouGv80nHdozeglw7pkA7ttkMbnJs5j/W20aHj4+jQ8TF06EDHR98vHdKhiXbI/XkDeumQDumQ+/OG8NIiLdIi9+j1/dIhHdIh9+f1/dIhHdIh46PV19T3CXjVJLlow+1e2BhcL1tjm/s1LozXJbnfGts9t3Gsn11jm48+7YLQYajundkTB+f39VlrbvuaxnZP2fHf8z4+j49dN9iN7T7lhM/x03f8eTyvcbznrLHN/Y/G7E3b3JDk3mtsN3+cS3f5dR3qS4d0SId226ENzu3pjXP7y11+FkN5aZEWadFuWnRI46Pvlw7p0EQ7tPPPY25/p/4G3bjx6qbP4aINt9MhHWruR4e6O7/vbZzD6/d9Dnv+ei/acDsd0qHmfnTo5P3N7+vSXX5dh/zSIi3Sot18Hluc2+Tmq3VIh3TI+PDy8hrnyzV+Gg13jV86pnv0BvTSIR3Sod12aINzM+ex/nY6pEPN/ejQgY6Pvl86pEMT7ZD78wb00iEd0qHdfB5bnt+k7s87+pov2nA7LdKi5n606OT9ze/r0l1+XYf60iEd0qHdfB5bnJu56vW30yEdau5Hhw50fLR5nRd6V2u9YsNNf6Kx/LlrbPOkJDebW35RrfWta2z3g43lLy6l3GrVBrXW99dar11j39v4gmRhHL++1vo7a277Q43lr+7mlE62j8+j1vruWuvVG2z3p0man9s642kjpZTzkzyxsbo5xpbUWv8yyUvmVt08szHNlnRoKzq0eAwd2lIppWR5LDy7y2MMlRZtRYsWj6FFiw5mfPRNh7ZyMONMh5aOuY/xcdOx3rmP4xwyHdqKDi0eQ4e68/LG8n17OYs90aGt6NDiMXSIjWnRVrRo8RhatKWpzlfr0FZ0aPEYOrToYMYHME6u8Vs5mIa7xh8b8r0xU6VDW9GhxWPo0JbMebSmQzrUPIYOLTqY8dE3HdrKwYwzHVo6pvvzBkSHtqJDi8fQoe5M6v68RIu2pEWLx9AiNqJDW9GhxWPo0JbMVbemQzrUPIYOLTqY8dGGB6Mdtssay+eXUi44Y5vHNZafs86Baq2XJ/mDuVW3SfL562y7Y/+6sfzKFtv+ZpLr55YfXkr5uO1P6WA1x9Ndd3isf5vk1nPLv19r/Ys1t22O2cd3c0psSId0qEs6NPM5Se4zt3xjZr+xjtNpkRZ1aYwtMj52T4eMsy7ts0OMhw7pUJd0aNH7Gsu36+Ushk+HdKhLOsSmtEiLuqRFM+ar29EhHerSGDtkfACHyjVew7s0xp9Hs3s6pENd0qEZcx7t6JAOdWmMHTI+dk+HjLMujXHuld3TIR3qkg4tcn/e+rRIi7qkRWxCh3SoSzo0Y666HR3SoS6NsUOjHB8ejHbYbjxh3S1Oe3Mp5S5JPqWx/e+2ON6ljeVHt9h2V+7eWH7zuhvWWq9L8ra5VedlGF9TX5rj6dSx1IFHNZYvbbHtb2fxXB9cSrlw6zNiUzqkQ13SoZmnNpZfVmu9ssP9j5EWaVGXxtgi42P3dMg469I+O8R46JAOdUmHFt2zsfwPvZzF8OmQDnVJh9iUFmlRl7Roxnx1OzqkQ10aY4eMD+BQucZreJfG+PNodk+HdKhLOjRjzqMdHdKhLo2xQ8bH7umQcdalMc69sns6pENd0qFF7s9bnxZpUZe0iE3okA51SYdmzFW3o0M61KUxdmiU48OD0Q7bfRvLNyZ5z4r3P6ix/MZa69Utjvd7jeVPbLHtrnxMY/kDLbdvvv+TtjiXQ9ccT+/c4bGaY/H3193waMy+qbF6CGNxqnRIh7o0+Q6VUu6Q5AmN1c/uYt8jp0Va1KUxtsj42D0dMs66tM8OMR46pENd0qFFX9VY/q1ezmL4dEiHuqRDbEqLtKhLk2+R+eqN6JAOdWmMHTI+gEPlGq/hXRrjz6PZPR3SoS5NvkPmPDaiQzrUpTF2yPjYPR0yzro0xrlXdk+HdKhLOrTI/Xnr0yIt6pIWsQkd0qEuTb5D5qo3okM61KUxdmiU48OD0Q7bExvLf1xr/ciK939CY/ltJ77rdH91xv76cH1j+ZYtt2++fwhf096VUm6f5JGN1X+4w0M+sLG8z7F4j1LKc0opf1ZKeX8p5fpSyruOln++lPJ1pZRm8DmdDulQJybWoVW+LMn5c8vvTPIbHe17zLRIizox4hYZH7unQ8ZZJ3roEOOhQzrUCR1aVEr55iRfMbfqxiQ/1tPpDJ0O6VAnJtYhc9Xd0yIt6sTEWrSK+er2dEiHOjHiDhkfwKFyjdfwToz459EnMe/RLR3SoU5MrEOrmPNoT4d0qBMj7pDxsXs6ZJx1YsRzr+yeDulQJ3RokfvzWtMiLerExFpkrrpbOqRDnZhYh1YxV92eDulQJ0bcoVGODw9GO1CllNsmeWpj9YvP2Kz5xMK/bXnYtzeW71hK+eiW++jaexvLH9dy++b7H7DFuRyyr09y67nlf8qOnq5/9J/E5n8U247F5vvv12LbeyW5JLMIX5Dko5Lc+Wj5y5M8K8nfllJ+9OjfGafQoXN0qBtT6tAqzX9Tz6u13tjRvkdJi87Rom6MtUXGxw7p0DnGWTf21iHGQ4fO0aFuTLpDpZTblFIeUEp5cinltUn+V+MtT6u1vrGPcxsyHTpHh7oxpQ6Zq+6QFp2jRd2YUotWMV/dgg6do0PdGGuHjA/g4LjGn6Ph3Rjrz6NPYt6jIzp0jg51Y0odWsWcRws6dI4OdWOsHTI+dkiHzjHOujHWuVd2SIfO0aFuTLpD7s/bnBado0XdmFKLzFV3RIfO0aFuTKlDq5irbkGHztGhboy1Q6McHx6Mdrh+IMld5pY/kORnztjmgsbyP7Y5YK31qiTXNlbfoc0+duDyxvJnrLthKeUeSe7aWN3317N3pZSLkvznxuofr7U2nwbZleY4/FCt9eqW+2iO3a7/3m6T5NuS/Ekp5RM73veY6NCMDm1Jh2ZKKZ+U5KGN1c/edr8ToEUzWrSlkbfI+NgtHZoxzrbUQ4cYDx2a0aEtTa1DpZQLSil1/pXkqiR/keS5Sf713NuvSvJ1tdYf6uFUD4EOzejQlqbWoTWZq16fFs1o0Za0aMZ89UZ0aEaHtjTyDhkfwCFyjZ/R8C2N/OfRmzLvsR4dmtGhLenQjDmPjejQjA5taeQdMj52S4dmjLMtjXzuld3SoRkd2tLUOuT+vM5p0YwWbWlqLVqTuer16NCMDm1Jh2bMVW9Eh2Z0aEsj79Aox4cHox2gUsrjknxLY/XTa63vO2PT5tOKr9ng8M1tbrfBPrr02sbyE0optz7xncu+6oR1fX89e1VKuUWSX87i131Fkv+xw8P2NQ5vTHJpkmckeUySh2T2W5senOSxSX4oy9/M3D/Jq0sp99zgHEdNhxbo0BYm1qGzNJ9U/dpa69s62O9oadECLdrCBFpkfOyIDi0wzrbQU4cYAR1aoENb0KFTvSvJ05Pcq9b6032fzBDp0AId2sLEOmSuumNatECLtjCxFp3FfHULOrRAh7YwgQ4ZH8BBcY1foOFbmMDPo+eZ9+iQDi3QoS1MrENnMefRgg4t0KEtTKBDxseO6NAC42wLE5h7ZUd0aIEObUGHTuX+vDVo0QIt2sLEWmSuukM6tECHtjCxDp3FXHULOrRAh7YwgQ6Ncnx4MNqBKaV8SpKfa6x+VZKfXGPzZribT6dcRzPczX3u28sye5rnTS5I8syzNiqlfHyS7zzhj25WSjm/m1M7CD+T5F/OLX84yZM3+G1IbfQxDp+R5G611s+ttf63Wuuv1Vovq7W+rdb6hlrrS2ut/ynJPZP89yR1btu7JHlRKaVscJ6jpENLdGg7U+nQSkffSH9FY7Wne6+gRUu0aDtjb5HxsQM6tMQ4204fHeLA6dASHdqODp3swiTfkOQbSym37/tkhkaHlujQdqbSIXPVHdOiJVq0nam0aCXz1e3o0BId2s7YO2R8AAfDNX6Jhm9n7D+Pvol5jw7p0BId2s5UOrSSOY92dGiJDm1n7B0yPnZAh5YYZ9sZ+9wrO6BDS3RoOzp0MvfnnUGLlmjRdqbSInPVHdKhJTq0nal0aCVz1e3o0BId2s7YOzTK8eHBaAeklHKPzAbifCzfnuQraq315K1W2tc2O1Nr/eckP95Y/Z2llP9w2jallLsneUWSO5y2245Ob9BKKd+X5Csbq59Wa33dnk9l5+Pw6D+vzad3n/S+a2utT0vyrY0/ekiSL2tzzLHSoWU6tLkpdWgNj01yx7nlf0rywo6PMRpatEyLNjeFFhkf3dOhZcbZ5gbUIQ6IDi3Toc1NuEMfTHKvudd9MpsDenySH03y7qP3fXyS703yplLKp/dwnoOkQ8t0aHNT6pC56m5p0TIt2tyUWrQG89Vr0qFlOrS5KXTI+AAOhWv8Mg3f3ICu8e7ROyA6tEyHNjelDq3BnMeadGiZDm1uCh0yPrqnQ8uMs80NqEMcEB1apkObm3CH3J+3JS1apkWbm1KLzFV3R4eW6dDmptShNZirXpMOLdOhzU2hQ2MdHzfv+wRYTynlzkn+X5K7za2+Mskja63vPnmrJVc1ljd5Ml9zm+Y++/D9SR6d4yczliQ/Vkp5YmZPR31DZk/ivOvR+74xxxe/dyS5+9y+rq21Lj3ps5Ry0bonU2u9otXZ96CU8m2ZPfV63o/UWv/nmttftO6xTvg8Bj8Oa60/UUr5/CSPmVv9TUl+scvjHBodWkmHWtKhJU9tLP9irbX5FGmiRWfQopYm1qKdj4+p0KGVdKilnjvEgdKhlXSopSl3qNb6kSRXnPBHlyV5cSnlGUl+MMm3HK2/R5JXl1I+s9b65v2c5TDp0Eo61NKUO7QOc9Wn06KVtKglLVpivnoNOrSSDrU0sQ6ZqwYGzTV+Jdf4lib28+jWzHucTIdW0qGWdGiJOY816NBKOtTSxDpkzqMjOrSSDrU0sblXOqJDK+lQS1PukPvztqNFK2lRS1Nu0TrMVZ9Mh1bSoZZ0aIm56jXo0Eo61NLEOjS6uWoPRjsApZSPSfLqJPefW/2eJI+otb61xa5GGe5a6/WllMcneXmST577o886ep3mvZl94/DKuXUfOOW9f9PilEqL9+5dKeVrk/xIY/VP1lq/o8Vutvk8DmUc/kAW/yP7GaWUC2qtp42RUdOh1XSoHR1aVEr5+CSPbKx+9qb7GzMtWk2L2plai/Y0PkZPh1bToXYG0CEOkA6tpkPt6NBqtdYPJfnWUsoNSb79aPXtk/xcKeXTNvwNQwdPh1bToXZ0aG3mqhu0aDUtakeLFpmvXo8OraZD7UytQ+aqgSFzjV/NNb6dAVzjD2UcmveYo0Or6VA7OrTInMd6dGg1HWpnah0y59ENHVpNh9oZQIc4QDq0mg61o0OruT/vdFq0mha1o0VrM1c9R4dW06F2dGiRuer16NBqOtTO1Do0xrnq8/o+AVYrpdwhyauSfNLc6vdn9iTLP2u5u39qLH9sy3O5bZbDPYiBXGv9+yQPT/KsJDessclvJXlokqsb66/s+NQGpZTylUl+KosxfU6Sb97jaTTH4a1LKbdpuY87N5Z3MQ7/MLN/aze5WZJP2MFxBk+H1qND69GhE12Sxe/J/rTW+idb7G+UtGg9WrSeqbbI+NiODq3HOFvPQDrEgdGh9ejQenSolacn+Ye55QcneURP59IrHVqPDq1Hh1oxVz1Hi9ajRevRohNdEvPVK+nQenRoPVPtkPEBDJFr/Ho0fD0DucYP7d6Y05j3OKJD69Gh9ejQiS6JOY+VdGg9OrSeqXbI+NiODq3HOFvPQDrEgdGh9ejQenSoFffnzdGi9WjRerSoFXPVR3RoPTq0Hh060SUxV72SDq1Hh9Yz1Q6NbXx4MNqAlVJul+QVST5tbvUHkzyq1vqGDXbZfPrlPVtu33z/+2qt7z/xnT2otV5da/2GJA/IbELkt5K8I8k1Sf45yeVJnpfZU1T/Ta31iiQPbOzmj/d2wntWSvnSzCI9/+/+F5J8zT6foF9rfW8W/4OYJPdouZvmWGzzZNe11Fo/kuRvG6tbfbMzBjrUjg6tpkPLSiklyVc3Vnu6d4MWtaNFq029RcbHZnSoHeNstaF0iMOiQ+3o0Go61E6t9ZokL2msflQf59InHWpHh1bToXbMVR/Tona0aDUtWma++mw61I4OrTb1DhkfwJC4xrej4asN5Ro/pHtjVjHvMaND7ejQajq0zJzH2XSoHR1abeodMj42o0PtGGerDaVDHBYdakeHVtOhdtyfd0yL2tGi1bSoHXPVMzrUjg6tpkPLzFWfTYfa0aHVpt6hMY2Pm/d9Apzs6LfRvDzJZ8ytvirJo2utf7jhbi9vLN+35fb3biz/+YbnsVO11r9J8v1Hr7M8rLH8B6fss5y0/lCUUp6Q5PmZPaX6Jv83yZOP/sPWSgefx+WZPWHyJvfN8vhcpTkW22zbxjWN5eYTXUdNhzanQ8t06FSfl+Rec8vXZfZNNUe0aHNatEyLju1ifIyVDm1Oh5YNsEMcAB3anA4t06GNvaWx3PbfzEHToc3p0DId2tik56oTLdqGFi3TolOZr15BhzanQ8t06Ji5aqBvrvGbc41fNsBr/FDujTnLpOc9dGhzOrRMh05lzmMFHdqcDi3ToWPmPNanQ5vToWUD7BAHQIc2p0PLdGhjk74/L9GibWjRMi3amLlqHdqIDi3ToVOZq15BhzanQ8t06NgY5qrPO/st7Fsp5fwkv57ks+ZWfyjJF9Raf2+LXb+5sfzJpZRbt9j+M8/Y30E5eqrq5zVWv7aPc9mlUspjkvxSFh+E+JIkT6q1frifs1oaO81Anurom5pPPmN/XblTY/k9OzrO4OjQfuiQDiV5SmP5RbXW9224r9HRov3QIi064ziTGB+n0aH9mMo4G2iHGDgd2g8d0qE13NBYvmUvZ9EDHdoPHdKhNUx2rjrRon3RIi2K+epT6dB+6JAOrTKV8QHsl2v8fkyl4QO9xg/+59FHJjvvoUP7oUM6FHMep9Kh/dAhHTrjOJMYH6fRof2YyjgbaIcYOB3aDx3SoTVM9v68RIv2RYu0aA3mqnVop3RIh2Ku+lQ6tB86pEOrDHl8eDDawJRSbpXkpUkunlt9bZLH1Fpft82+a63vTPLGuVU3z+LF4SwXN5Z/Y5vzGYDPS3LR3PJra61v7elcdqKU8u8ye3LlR82tflmSL6m13tjPWSVJXtFYvrjFtp+dxYvQZbXWd219Rg2llDtl+Smu/9D1cYZIh/ZKh/rTe4dKKRckeXxj9bPb7mestGivtKg/vbdoDaMfH6fRob0a/TgbcIcYMB3aKx3iLHdvLO/i+67B0aG90iFONeW56kSL9kyLJsx89el0aK90iFVGPz6A/XKN36vRN3zA1/jB/zx6yvMeOrRXOtSf3jtkzuN0OrRXOtSf3ju0htGPj9Po0F6NfpwNuEMMmA7tlQ5xlknen5do0Z5pEacyV61De6JDE2au+nQ6tFc6xCqDHR8ejDYgpZRbJHlRkkfMrb4uyRfVWn+zo8O8uLH81Wue279I8q/mVl2d5FUdnVNfvqux/KxezmJHSimPTPIrSW4xt/pVSZ5Qa72+n7M655VJrplbftjRGFvHJY3l5pjuypdmsZHvSnL5jo41GDq0dzrUnyF06MuT3Gpu+Yokr9lwX6OiRXunRf0ZQovOMurxcRod2rtRj7OBd4iB0qG90yHO8vmN5UFM7u+SDu2dDrHKJOeqEy3qgRZNm/nqE+jQ3ukQq4x6fAD75Rq/d6Nu+MCv8Yfw8+hJznvo0N7pUH+G0CFzHifQob3Tof4MoUNnGfX4OI0O7d2ox9nAO8RA6dDe6RBnmdz9eYkW9UCLWMVc9TEd2h0dmjZz1SfQob3TIVYZ7PjwYLSBKKXcPMkLkjx6bvUNSZ5Ya31lh4f6hSQfnlt+fCnlfmts1xzEL6i1Xtvdae1XKeXJSR45t+oNmT35cRRKKZ+T5Fez+A3SazL7JuC6fs7qWK31Q0le2FjdHGNLSin3T/K4uVU3JvnFDk/tpuNcmOQZjdW/VmutXR9rSHRov3SoXwPp0FMayz879s6sQ4v2S4v6NZAWrTrOqMfHaXRov8Y+zobeIYZJh/ZLhzhLKeULkjy0sfpX+ziXfdGh/dIhVpnqXHWiRfumRcR89RId2i8dYpWxjw9gv1zj92vsDR/6Nf4Afh49yXkPHdovHerXQDpkzqNBh/ZLh/o1kA6tOs6ox8dpdGi/xj7Oht4hhkmH9kuHOMsU789LtGjftIhVzFXr0D7oEDFXvUSH9kuHWGXo48OD0QaglHKzzIL62LnVNyb5klrrr3d5rFrrW5M8b27VLZI8t5Ryq1M2SSnlsVn8jTfXJ/meLs9rW0cXvnXf+/gkPz236sYkT6m13tj5ifWglPKwJL+e5Py51a9L8oW11mtO3qoXz8zsm5ObXFJKecxpbz4ao8/J4hM6n11r/asV2zyglPKFbU6qlHKXzD6/C+dWX5/kB9rs59Do0PZ06JgOna2U8qlJHjK36iNJntt2P2OjRdvTomNadOK2xscZdGh7xtmxA+oQA6JD29OhYzp0rJTy0FLK485+59J2n57k+Y3Vr6u1vqmbMxseHdqeDh3ToWPmqtvRou1p0TEtOpv56mU6tD0dOqZDy4wPoC+u8dvT8GMHdI1/ZtyjNxg6tD0dOqZDZzPnsUyHtqdDx3ToxG2NjzPo0PaMs2MH1CEGRIe2p0PHdOiY+/Pa0aLtadExLTpmrnp9OrQ9HTqmQ2czV71Mh7anQ8d0aNnYxsfaXww79bNJvrix7ruTXFZKuajlvq5c40mT/yWz32Dz0UfLD0/y6lLK19Ra/+KmN5VSbpnk65L8cGP7H661vn2dkyml3D0nj7O7NJZvvuJrvarW+p4zDvWmUsrLkvxKkj+otX7khHN5UJKnJXlS44++u9Z62Rn778SuP49SyoOT/EaS286tfkuSb05y51JKm9O9ttZ6ZZsN2qi1/nUp5ceTfOfc6heWUv5jkv9da73+ppWllAcm+ZnMxupN3puzv4H4uCQvLaW8KcnPJ3nx0TcvS0opt0vy5Mye7H1h44//a631r9f4sg6ZDumQDs103aHTPLWx/Mpa699tuK8x0SIt0qKZXbXoIMZHz3RIhybXoWR/46OUctskdzrlj5sTyndacax3DGlyrWM6pEM6tKir8XH3JC8qpbw5sx+gvSTJW2o9+bcslVI+IcnXJ/mmxnlde7RuzHRIh3RoUVfjw1x1O1qkRVq0qOvx0WS+epkO6ZAOLZrk+ABGyTV+Ig13jT/mHr3B0SEd0qEZ9+j1R4d0SIdm3J/XHx3Socl1KHF/3sDokA7p0CL35/VDi7RIixa5R2//dEiHdGiR+/P2T4d0SIcWTXJ8rK3W6tXzK0nt8HXxmse8OMl1jW0/kuSPkvxyklck+ccT9v9rSW7W4mu7ooOv6blrHOc9c+//5yS/l9k/0l9I8qoV5/F9e/673unnkdlvNOpqLF26h8/jZklefsKx35XZBegFSf74aGzO//l1ST57zXHe3PcHkvxOZhNsz0/y4qNj3HDK5/Csvhuxp7GpQzqkQzvo0CnHvGVmN0rM7+8JfTZgKK8Ox44WadEzOxxLl+7h89hLiw5lfPT56nDc6NDAx9muP48cXof2NT4u6egzuajvXuzw70KHdEiHdvN5fNEJ7//g0fh4aWY3QLwgyauTXHnK/j+U5BF9d2IPfxc6pEM6tJvP4+IT3m+u+vTPS4u0SIt2OD4axzRfffLnokM6pEPGh5eX1whfHTbZNX7gDd/155HDu8a7R28grw7HjQ7p0DM7HEuX7uHzcI/eQF4djhsd0qFndjiWLt3D5+H+vIG8Ohw3OjTwcbbrzyOH16F9jY9LOvpMLuq7Fzv8u9AhHdKh3Xwe7s9r9/ehRVqkRbv5PC4+4f3mqk/+rHRIh3Roh+OjcUxz1Sd/LjqkQzpkfKz9OulJckxArfXSUsrjkjw3yccerS5JHnr0OskvJfnaWuuHd3+GW7ltkoed8Z73J/mmWuv/2cP5cIpa64dLKV+c2W9W+pK5P7pzkkedstk/JnlyrfW3NzzsHZJ85hrvuzrJt9daf3rD43AGHdKhIeipQ49L8jFzy+/ObKKfHmiRFg1BTy0yPgZCh4wz6JsO6dCE3S5nj4+bvD7J19da37jD85ksHdKhCTNXPSBapEUTZr56IHRIhybM+ABGzTVew4fAPXrTpkM6NATu0Zs2HdKhIXB/3rTpkHEGfdMhHZow9+cNiBZp0YSZqx4IHdKhCTNXPRA6pEMTdvDj47y+T4D+1FpfnuRBSX4qs4F6mtcneWKt9Um11qv3cnLt/ViSyzJ7Kucqf5fke5PcZ6j/KKem1npVrfVLk/z7zMbaad6X5CeTPKjW+jbdgAcAAAUCSURBVIo1d395ku9P8rtJrllzm79M8t2Z/YYT/4ndMR3SoSHYcYdO8tTG8vNrrTdssT+2pEVaNAR7apHxMVA6ZJxB33RIhybgNZn9VtxfSvKONbf5UJIXJvnCJA9309Vu6ZAOTYC56gOgRVo0UearB0SHdGhCjA9gUlzjNXwI3KM3bTqkQ0PgHr1p0yEdGgL3502bDhln0Dcd0qEJcH/eAdAiLZoAc9UDp0M6NFHmqgdEh3RoQkY1Pkqtte9zYABKKbfI7KnH90xyl8yebvz3SS6rtf5Nn+fWRinl9kkenORemT2p81aZ/Qfm75P8aa31z3s8PdZQSrlXkockuWuS2yS5Msnbk/xurfX6LfZ7XpL7JblPkrsluSDH4+P9Sd6Z5I9qre/e6gtgYzrEUOyqQxwGLWIodtki42PYdAjomw4xBaWUC5M8MLNxfsckt05yQ5IPJnlvkjcnecsB/GafUdIhxs5c9WHQIqBvOsQUGB/AFLnGMxTu0ZsuHWIo3KM3XTrEULg/b7p0COibDjEF7s8bPi1i7MxVD58OAX3TIaZgLOPDg9EAAAAAAAAAAAAAAAAAAAAAAACA3p3X9wkAAAAAAAAAAAAAAAAAAAAAAAAAeDAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgdx6MBgAAAAAAAAAAAAAAAAAAAAAAAPTOg9EAAAAAAAAAAAAAAAAAAAAAAACA3nkwGgAAAAAAAAAAAAAAAAAAAAAAANA7D0YDAAAAAAAAAAAAAAAAAAAAAAAAeufBaAAAAAAAAAAAAAAAAAAAAAAAAEDvPBgNAAAAAAAAAAAAAAAAAAAAAAAA6J0HowEAAAAAAAAAAAAAAAAAAAAAAAC982A0AAAAAAAAAAAAAAAAAAAAAAAAoHcejAYAAAAAAAAAAAAAAAAAAAAAAAD0zoPRAAAAAAAAAAAAAAAAAAAAAAAAgN55MBoAAAAAAAAAAAAAAAAAAAAAAADQOw9GAwAAAAAAAAAAAAAAAAAAAAAAAHrnwWgAAAAAAAAAAAAAAAAAAAAAAABA7zwYDQAAAAAAAAAAAAAAAAAAAAAAAOidB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9M6D0QAAAAAAAAAAAAAAAAAAAAAAAIDeeTAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgdx6MBgAAAAAAAAAAAAAAAAAAAAAAAPTOg9EAAAAAAAAAAAAAAAAAAAAAAACA3nkwGgAAAAAAAAAAAAAAAAAAAAAAANA7D0YDAAAAAAAAAAAAAAAAAAAAAAAAeufBaAAAAAAAAAAAAAAAAAAAAAAAAEDvPBgNAAAAAAAAAAAAAAAAAAAAAAAA6N3/B89nvm568KCIAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor, Config\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 5), dpi=300)\n", + " configs = get_known_configs()\n", + " to_display = configs[\"Relative humidity\"], configs[\"Ambient temperature\"]\n", + " for i, config in enumerate(to_display, start=1):\n", + " plot = figure.add_subplot(1, 2, i)\n", + " coros.append(plot_sensor(config, plot, {}))\n", + " await asyncio.gather(*coros)\n", + "\n", + "display(figure)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAE0YAAAmZCAYAAAAwyqtnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdd5RkVbX48e8eZkiSGXIaJAoIKElRkiBREZAgQRyCOYvx93yK+MxZjKBkQRHBwEMMKPoQUBBEJKkIKEgecmZm//44NVJ9+1Z3pe7qnvl+1uoFd997ztlVdavWmu5d+0RmIkmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmDNGXQCUiSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJknoQEVn5OXrQOUmavPxMkSRJkiRJkiRJkiRJkqT5S0QcXa0dG8txgxIRM2pq5GbOL+tLkiRJkqT2TR10ApIkSZIkad4WEVOBDYDnAEs1fhYAHgEeBm4FbgZuzswnBpSmJEmSJEmSJEmSJEmSJEmSJEmSJEmSpAGzMZokSZIkSeq7iFgI2Bs4HHgxsEgbw56KiL8AlwG/AX6emfeMXZaSJEmSJEmSJEmSJEmSJGk0ETEDuKmDIU8ADwIPADcCVwKXAj/NzCf7nd9cEfES4IKaUz/LzF37tMb2wK9HuGSHzLywD+scCpw8wiVrZubNva4jSZIkSZIkTURTBp2AJEmSJEmat0TEnsDfgTOAl9JeUzSAacDzgNcB3wHujIgvj0mSktQnEXFzRGTTz0mDzkmSJEmSJEmSJEmSJEkasIWA5YC1gV2A9wM/BG6LiE9FxGJjtO4RLeIvjYjVx2jNqsMn2DySJEmSJEnSpGNjNEmSJEmS1BdRfA34EbBqH6acAoxXIZIkSZIkSZIkSZIkSZIkSRpb04H3An+JiBf2c+KIWArYp8XpKcDMfq43gldGxBK9TBARzwa27VM+kiRJkiRJ0qQzddAJSJIkSZKkecY3gNe1OPdP4FfANcDdwCPAYsDSwDrAZsAmlF0iJUmSJEmSJEmSJEmSJEnSxPYI8PcW5xYFlgGWbXF+DeD8iNguM//Up3wOBhYe4fxhEfHRzMw+rdfKosABwPE9zHE4EP1JR5IkSZIkSZp8bIwmSZIkSZJ6FhF7Ud8U7QrK7o6/Gq2YKCIWBXYF9m78PKvfeUrSRJeZFjRKkiRJkiRJkiRJkiRpMrg8M7cf6YKIWBV4OXAUsFbl9BLAWRHxnMx8qg/5HFE5ToY2F5sB7Aj8sg9rVd1H2Sh2rsPpsjFaREwBXlMJz6I0mtM8KjOPBo4ecBqSJEmSJEkTxpRBJyBJkiRJkia3iAjgCzWnzga2zswL2tlhMTMfzcyzM/PVwCrAO4G/9TdbSZIkSZIkSZIkSZIkSZI0HjLz1sz8OrAJpaawai3g9b2uExGbAs+rhL8APFmJHd7rWi18F5jddPyCiHhOl3PtAqzadHw/8NNuE5MkSZIkSZImIxujSZIkSZKkXm1N2Umx2W3AzMx8opsJM/OBzPxiZr6n1+QkSZIkSZIkSZIkSZIkSdLgZOYjwMHAdTWnX92HJY6sLgl8CTi3Et8nIpbuw3pV/wZ+Xol124StOu504PEu55IkSZIkSZImJRujSZIkSZKkXu1WEzspMx8a90wkSZIkSZIkSZIkSZIkSdKEk5mPA5+oObV5RCzT7bwRsTBwUCV8YWb+Ezi5El+I0qBtLJxQOX51REztZIKIWBbYc5R5JUmSJEmSpHleR79YkyRJkiRJqrFGTeyP455FCxGxPLA5sHzjZzZwF3AncGlmPjjA9IZo5Lo+sBawFPAs4CFgFnAb8IfMfHicclkK2KIplymNPH6ambeMUw6rA88HVgaWBh4GbgIuy8zbxymHRYAtgZUo989iwL3A3cBVmXnjOOSwJPACYB1gScrzcDdwRWZeP4brbgSsTXncywKPNta9mfIaPDVWazfWXwDYFNgAWAFYGHgE+HNmXtDm+GdT3lOrAEsACwD3NX6uB67OzDlj8gAmiIgI4LmU+2c5YBngAcrn4E2U+2jMn4NB3ceSJEmSJEmSJEmSJEmaUM6viU0B1gMu6XLOfSj1Zc1Oafz3PEqNynJN544AvtLlWiP5MXAPML1xvAKweyPerkOABZuO/5yZfywlQBPD/FiXFRGrUB7vDErt0yLAg5Sayn9S6ukeH1iCfRIRC1JqBtcHVqS8tlAe5yzK63rDOOUylVL7uyHlPTUHuJ1S83ZpZs4ejzzaNRFqTSVJkiRJmtfYGE2SJEmSJPVq+ZrYI+OeRZNGgcFbgAMojbVaVQU9HRGXACcBJ493oURELE7Z3XFnYHtg9VGGzI6IK4FvAqdk5pNdrHkS8Jqm0C2ZOaPp/G7Au4AdKMVKVYdRnq8x0Wji9BrgTZTGbHUyIn4HfCozz20aezNDG/WdnJkzu8hhCmVX0EOAbSkNuVpdexNwJvDZzLynw3VOYuTXYlPgg5R7ZFqLOW4BPgd8ox+NyiJiY+AdwC6UhnStPBwRv6S8Bpd2uMb2wK8r4R0y88LG+dWB91J2ca0WLAL8BqhtjBYR61AKHV8CvIjSXHAkD0TELyiv3+/bzH8GpbiqlddExGtGOA9AZtZ+LkVEVkIfycyj28mtMs+6lOdxd0qxVSv3RsTPKM/BlV2scxIT7D6WJEmSJEmSJEmSJEnSxJSZd0fEgzzTcGmu6XXXt+mIyvGjwFmN9Z6OiNOBtzed3zQintdNrcxIMvPJiPhOZa3D6awx2uGV4xN6TqwPxqMuq7HO1cBGTaG7gVV6qSmKiAOB0yvhN2fm10YYMx3YG9gJ2I7S5G4kT0bEpZSGez/opilcRBwNfLg51qrGrJ8a9V17UWpGtwIWGuX6u4FzKa/ttWOQzwrA+4GZlE1969wVEWcCx2Tm3f3OoV3jVWsqSZIkSdL8asqgE5AkSZIkSZNe3S53a9TExkVEHAD8Dfg0sBmtm6JBaRq/DfBt4KqI2HbsMywi4tPAXcBpwKGM3hQNSqOyzYHjgRsjYps+5rNYRJxF2SFzJ+qboo2pRsOp3wIn0ropGpTX9MXATyLiexGxaB9z2BW4mrJj6M6MUKjSsCbwPuAfEfH2Ua5tN4cpEfFR4HLglbRoJtWwBvBl4PcRUdeksN01V2oU5f2J0vxupKZoUHYz3Au4JCJ+GBHLdLt2JY8jgOuAN1PfFK3VuGUj4grgr8AnKa/daMV3UHbv3Be4NCJ+FBGtCqkmjYhYNCK+BlxDKfocqSkawLKUJnR/jIhTI6Lt532UPMb9PpYkSZIkSZIkSZIkSdKk8HBNrNoorS0RsSaloVOzszOzeY2Ta4ZWm6n1y7crx3u0Ww8TEZsDGzeFnqTUFw7MAOqyTqwcLwfs0W6+LcysHD8BnNHq4kYjvduB44D9Gb0pGsCClMZYZwJ/iYgNu8p0HEXE+hFxA3AlpSHbtozSFK1hOUqN4V8i4viIaGdMuzntDlxL2dx1pHtmecrmyddFxKv6tX4nJkKtqSRJkiRJ8zobo0mSJEmSpF7dURPbf9yzACLiv4HvAqt0MXxD4BcRcVB/s2ppS0YvhBjJqsAFEfHqXhOJiGcBF1CaFw1ERKxFaYr24g6H7g/8NCIW7EMO7wb+F9igi+GLA1+MiG9FxNQecphCKZT5IJ01p3se8NuIWKyLNTcB/kBpjtXNDpOvoBSwrdvF2OY83gN8C+im0d3ilOegF3sCf4iIVXucZ2AaO5X+CngjpfFjR8MpO1deFBHtNGocKY9xv48lSZIkSZIkSZIkSZI0adQ1PHqwy7kOZ3jN0ynNB5l5JaWBUbODI6KX+r1amXk18Mem0FSg3Rq/wyvHP87Me/uSWPfGuy7rNOCpSuywbhdurLlTJfzDzLxvhGFb03ntVbPnUOrpqutONCsCvdT8BXAkpd6rq8aGQyaLeDnwI6CTTVqXBU6PiNf1un4nJkKtqSRJkiRJ8wP/4SxJkiRJknp1MVAtKtgpIt6amceOVxKNpmjH1Jx6Gvg18EvgNsrvQ1YDdgdewNCiqAWB0yLi6cw8c2wzHiIphVdXA9cBd1MKvWZTiiCeDWxB2dlyWtO4acDxEXFNZl7Rw/rHURq1zfVv4Dzgz8BdlN0416AUKPVdRCxJaea0Ws3pfwA/pOw4eR9lt8HnUppxrdi4Zlvg8z3m8EnKbnxVs4BfUIrV7gIepRTmbQjsCqxXuf4I4H7g3V2m8jHg4Kbjf1EKaK4G7gEWoxROvZKyg2Cz9Si7cr6l3cUau4z+ujFvsznA/1He3zdRHtMilIZ82wE7MrTh1TrAeRGxWWY+0O76TXYG3t90/EQjrwspzRefbqy9VU2udR4GLqO8n/4GPAA8RHmPL00pSNqB8lw2Wwf4XkRsl5lPt5j7SeCqpuMNGPq+vA/4Zxs59lVELEJ5zjaqOX0PcA7PvKeX5Zn7aOXKtRtQmqNtmpmzukxnXO9jSZIkSZIkSZIkSZIkTQ6NDTTrNk78RxdzTQFmVsK3UTYJrToF+EzT8VLAPsDpna7bhhOAzZqODwc+N9KARpO2A2vmmWjGsi6LzLwrIs6j1AfOtXtELJ+Zd3WR76HAlEqsk+d1NnAFcA1wPXAvpbYzKHWV61DqUF9UWWcx4LsR8bzM/FcXeQ/CfTzz2t5IeZwPU+oGp1NqJncGqptubknZELWXDZXXBI7lme87J6V28Tzg1sbxasBulOe6ue43gG9ExL2Z+YMecmjLBKo1lSRJkiRpnmdjNEmSJEmS1KvzgMcoxQ/NvhwRLwU+nZkXjWUCEfEi4MM1py4CjsjMv9ac+5+IeCGlyGX95umA4yLi95l5S/+z/Y85wM8pBVc/z8y7RxsQEdOBD1EaBs0t7FgIOJnSLKwbqwIHNf7/MeADwNcys7rrIsAHx2KXTOALDC+WeYhS8HF8ZmZ1QES8DXgPcDTld1xvojSs6lhE7M3wQpX7KI26TsnMx1uMC2Av4BvA8k2njoqI32bmjztMZaWmPB4CjgJOyMzZNWv/P0ojwPdXTr0hIj6RmbeNtlhELA18n+GNxk4Ejs7MVs29Pt4oUPwqsEtTfC3K++mVo61d4708c0//AHhnq4KwEe7B+yk7hp4FXNziHq7OtTXwJWDzpvDWwDuAz9aNycx/A5s2zXEzpXHgXD/OzJmjrT0GvsDwpmizgU8BH627jyPincC7gI9SPkvmWo1SrLZPF3mM630sSZIkSZIkSZIkSZKkSaWutug+SjOmTu1CqX9rdlpmzqm59jTKZn3Nm0Eewdg0Rjud0ghtbp3TBhGxVWb+foQx+1CaKM11G6W+cCIYl7qsJicwtDHaVOAQuts8dWbl+FbKJrsjeRI4m/KYf9XORqERsQbwCYY2t1sW+DrwsnaTHYA7gJMom25e3uK98x+NmsndgC9SmsLNtV9E7JuZZ3WZx3t55v1yPTCzxfvl4xGxZSPn5uZ7AXw9In6Tmfd0mcOoJlCtqSRJkiRJ84Vqt3tJkiRJkqSONBp6faXF6ZcD/xcRt0bECRHx2ojYJCL61qy9UTDwbYYWLEFp2LZji6ZoAGTmJZTd466unFqS1o+pX/bOzF0y8zvtNEUDyMx7MvNtwGGVUxtFxM5d5jH3eXsE2DUzvzRS4VKrwo1uRcQLGP54Hm7kclxdU7RGHk9m5scoTd1mUwpbFqq7dpT1l6c0Amv2N2DjxvotH28W51CKt26tnP5E497sxIKUxzEL2CYzj69rJtVY+6nM/ABwfOXUAgx/Plv5KjCj6Xg2cEhmHj5CU7S5699IKXCqPnf7RMRWba7fbO59eCyw30i7ZLZ4Tf4NrJyZb83M37RTfNeY62JgG+D8yqm39fNzaqw1mkO+vhKeAxyWmf/V6j7OzNmZ+RlKYWX1Ods7Irppcjfe97EkSZIkSZIkSZIkSZImgYhYibJZZtUZozVkauGImtgpdRdm5h0MbzS2Q0Ss2cW6I8rM+ymNppqNVgtTfSwnt6q5GWeDqMs6D7izEpvZzrrNGjVV61TCJ7dxr22Rma/MzHPaaYoGkJm3ZOZBlI1em+0eEevXDJkI/gCslpkfyMw/tPMebNRMngdsBVxZOf2uHnKZ2xTtGuDFIzURzMw/UO6tayqnlqNsIjomJlitqSRJkiRJ8wUbo0mSJEmSpH74EHDJCOdXoRT2HAf8CXgoIn4fEV+OiH0jYoUe1t4DWK8S+yewf2Y+OdrgzJxF2V3wseq8EVGdt2/aLZhpMfZkyu6LzY7sLSPen5m/7XGObry5JvaeRmHUqDLz+5SdJbv1dkojvLkepTRlqxafjJTDv4BXVcIbAHt2mdNhmXlVm9e+H6gW1Owy2qDGvX1AJfxfmfmdNtel0bTu9QzfrfX97c5R8Qfgna2a4Y2Sy5OZWX0Ptzv2ceA1lNd+rtWAbpsNDsI7a2JfzMxT2xncKFb775pTR/WQ05jfx5IkSZIkSZIkSZIkSZocImItSpOs5SqnHgU+0cV80ykbtza7PDOvHWHYydVpGLvN+06oHL8qIhapuzAiZgA7VMLVBkwDMYi6rMx8GjitEn5uRGzWYQp1r+2oz2svtZ3AMcBlTccBHN7DfGMmMx9tPNfdjL0POLQSfmFEbNBDSk8C+2TmvW2sfy9lM9BqjfDBjc+GsTARa00lSZIkSZqn2RhNkiRJkiT1rFHAsjvwkzaHLAxsCbwV+D5we0RcGBGHR8TCIw8d5i01sXdn5iPtTpCZNzF8p7igvmnXRFHd2fLFPcx1I/DVHsZ3JSKWAvarhK+jNNDrxIeB+7tYfzHgTZXw5zLzH53OlZm/Ay6ohPfudB7gN5n54w7WnUXZIbPZphEx2u/93sPQ3w3eBHy23XWb1n8K+HglvFsX72MoDfEGsstpZt7F8N1Je3lPjZuIWAXYqxK+i9KwshOfp+xg2eyFEfH8LtIar/tYkiRJkiRJkiRJkiRJE1BELBwRq0TEHhFxHPBnYOOaS1/bSWOhJocCC1Zi1Zq6qh8B1aZXM8eoRuUC4Jam4yWBV7a49jBKveJcv83Mv49BTuOuh7qsamM5gJntrhsRiwL7V8K/zcwb252jG41NQaubWU6KOrROZeZfgCsq4V4e67GZ+dcO1v8rcGwlvBAd3CftmqC1ppIkSZIkzfP8YpkkSZIkSeqLzLwfeAWl4KjTopwAtgO+DdwQEQe3NShiwca4ZncA53S4PsA3gerudy/tYp7xUm1gtFJErN7lXCc2CnLG24sohSjVXOZ0MklmPgx8r4v1dwKWqsS+3cU8c/1v5bh6b7bj+C7G/KFyvBiwSquLIyIouyU2O6mHpmTVhlYLAVt1OMffMvO3Xa7fL9X31AsGkkXnXgIsUImd0klzSPhPk7u6+6+bz8Exv48lSZIkSZIkaaJrNAHYMSKOiIj3RcTbI2K/iNhk0LlJkiRJUp9sFxFZ9wM8BtwKnAu8Fli0MvZR4ODMPL3LtQ+vHD8FnDHSgMYGsGdWwqsBO3eZw0hrJXBSJVzNmUZTttdUwnVNwSazjuuyMvNahtcTHRQR1XrDVl4JLF6Jndjm2F5VH+/zI2LaOK093vpZc9dNzVndJry79ZBDKxOx1lSSJEmSpHne1EEnIEmSJEmS5h1zd7uLiDOAXYGDgD2AJTqYZnXgtIjYCXhDZj4xwrXPBxauxH6YmdUGZ6PKzDsi4iJg+6bwehGxbGbe2+l8nWoU7LwY2ATYCFiO8rwtxvCmRzB8t0soz90/u1j+112M6Ye6Iphqk612nQu8vsMx1WKS2zLzltor23NT5XhGRCzVaBrYrt90sW7dLpZLAv9qcf3GwNKV2MVdrAtAZs6KiAcaa871PDp7LBd2u34rEbEKsDXl8a5LyW8JYBGG7rA614qV424bDY63F9XEzupyrjOBT7cx/2jG4z6WJEmSJEmSNA+JiGcDWwCbN/77fIZ+gfmWzJwxgNQ6FhEbAR8CXs7wv2PNveZvlC9kfy4znxzH9CRJkiRp0B6ibIJ5TGZ2VRcSES8ANqyEz8vMe9oYfjKlUVuzw4Hzu8llFCdS/n04t1Zp+4hYMzOb68x2AtZoOn6I7mt/xsU41mWdCGzZdLwMsCfw/TbGHlY5frjNccNExGLAtpTHuwGwLOXxPguYUjNkscrxQsAKlEaBE1pErEWp69wYWIvyOJegPIa617b6WnZbc3d9Zt7Q6aDM/GtEXMPQz4MtImJKpxv0jmIi1ppKkiRJkjTPszGaJEmSJEnqu0ZjsnOBcyNiAWBTStOvzSlfZFmP+mZfzWZSCkf2H+Ga59fELu803yaXMbQxWlAaPP2yhzlHFBFrA+8H9mVoY6luVHeka0cCf+px3W49t3L8GHB9l3Nd2cWYasOnpSOil+eiWtAEMB1ot1jl8czspvjpgZrYSPdSXaOrYyNipCaEo6nu6Dq9w/FX9LD2EBGxL/AmSjFSXeFZu7p5Pw1C9XPwaeCqbibKzFsi4i5g+RHmH8143ceSJEmSJEmSJrmI2B74AOXvR8sMNpveRUQA/w0cTf2XhZutA3wcODAiDsrMv4xxepIkSZI0UVwOHNttU7SGI2pip7QzMDN/FxF/B9ZuCr8iIqa32VitbY1anF8BOzZCQamL/HDTZYdXhn0vMx/pZx79MoC6rDOAz1Mars01k1EanEXEGgytAwU4s9PnNSI2A95Daca2yCiXj2YpJmhjtIiYQnlPvZbSrL4X3dbc/bGHNa9gaGO0xSkN+7qtRa0z0WpNJUmSJEmaL9gYTZIkSZIkjanMnE0pWvhP4UJELApsBewA7Aes32L4fhHx1sw8tsX5uuZL1/WQ7rVtrtEXEfEh4P9RdtPrh26aCD2cmY/2af1OLVs5/lfjfulYZt4WEU8B0zoYtmrleFFgk27WH8GywN/bvHZWl2s8VRMb6XmoPm5o/R7sVvW1Hc1dvS4YESsDpwIv6XWuhsnSlKv6GXVTZj7ew3zXMbQxWqefgeN1H0uSJEmSJEma/DYFdh50En10PMO/nD+H8qX/m4EFgQ0oX86d67nABRHxwsz8x3gkKUmSJEl99Aj1tVHTgKWBlWrO7QBcFhEzM/OMTheMiGcBB1TCsygbubbrFOCYpuMFgUOAL3aaTxtO4JnGaAAzI+IjmTknIpYG9qq5fkIZVF1WZj4QEecABzWFd4mIlTLz9hGGzmR4w/IT200uIqYBXwDeSG8N4JpNyFq0iHgO8B3KBsL90O3jvKGHNesaoC3fIt6tiVZrKkmSJEnSfKFfv5iRJEmSJElqW2Y+mpm/zswPZeZzgF2Ba1pc/sFGI7U6S9fEetkx7b6a2DI9zNdSRHwV+Aj9a4oG3TURerCP63eq+vo90ON8nY4fk9e2opOdIusaQ42FTpuWdaPTHTJ7ug8jYhXgQvpXfAeTZ1OJ6vuo110jq5+DC43wGVxnvO5jSZIkSZIkSfOuJ4AbB51EJyLirQxvivZdYPXM3CozD8jMvTNzPWBL4Mqm65YHfhoRC49TupIkSZLUL5dn5qY1Pxtm5sqUOqWZDG9QtCBwakS8vIs19wcWr8S+m5lPdjDHKUBWYtV/0/XL2Qyt51mdZxqlHczQ+sHrM/OSMcqjKxOgLqva0GwB4NWtLo6IAA6thP+WmRe1s1ijKdr3gTfT3+/eTrgNIiNiI+A39K8pGnT/OHupHa0bu1QP89WZaLWmkiRJkiTNF2yMJkmSJEmSBi4zfwZsAfy05vTywJ4thlYLnKDsQtmturF1a/QkIg4B3lRzahbwbeBwYBtgBqXp0SKZGc0/wJp9SufpPs3TjWpTuE6K0+o80e6FjUZP/WxKN5nUNRQctF7vw5OAdWrifwI+AewNPB9YEVgCWLDmPfWRHnMYlOpnVC+fga3G9/1zUJIkSZIkSZIanqL8LvdbwOuBzSi/kzxykEl1IuCbghUAACAASURBVCKWBT5eCR+bmQdm5m3V6zPzMmBb4A9N4XWBd4xdlpIkSZI0/jJzVmaeDGxKaR7dbAHgtIiY0eG0dQ3MTukwr1soDaGabRQRW3aYSztrPQ6cUQkf1vjv4ZX4Cf1evw9OYrB1WRcAt1Rih9Vd2LAd8OxKrNpcbSTvA15RE78N+BpwCPBCYDVK862Fax7vDh2sNxCNBnBnAsvVnP4dcDTwMmATSg3v4sDUmsd6cp9SmrB1v/N5rakkSZIkSQPVSXd9SZIkSZKkMZOZj0XEq4AbgemV0zsyvDAK4KGa2LN6SKNubN0aXWsUlHy65tQngWMy87E2p5oXdoer7tTXazHKEh1c+zgwh6EbB/wwM/fuMYfJoO4eWzoz76+JT3gRsQewUyV8F3Boo+liuybre+ohhu5w2ctnYKvxff0clCRJkiRJkqSGk4FvNL4kPkREDCCdrr0VWKzp+DrgqJEGZObDEXEwcC0wrRH+QER8MzPvG5s0JUmSJGkwMvOJiHg1sAJDm0YtQdlIdMd25omI9YAX1Zy6tE//jjycoU2s++VE4I1Nx3tHxA7A85piTwOnjsHaXZsIdVmZmRFxMvChpvD6EfGCzLy0Zki1adps2mycFxHLAx+ohJ8G3gN8JTPb3fxzMtShvQ54TiV2I/CqzLy8g3n69Vgnct3v/FxrKkmSJEnSQE0Z/RJJkiRJkqTxkZkPUnYYrFqvxZC6L4YsVRNrV93YWT3MV2c7YKVK7NjM/EAHTdEAluljToNSff2W7XaiiFiQoV86GlFmzgGqjcDW7Hb9SeaemtiM8U6ijw6sHM8GXt5h8R1M3vdU9X3Uy2dg3fgnMvPRHueUJEmSJEmSpGEy8766pmiT0Msrx1/KzKdGG5SZfwd+2BRaAtinn4lJkiRJ0kTRaCp1KPBg5dRLIuKANqc5or9ZDXNgRCza70kz8zLg6qbQwsBplcvOy8w7+r12jyZKXdZJQFZiM6sXRcRiwCsr4Z9n5m1trrMnUH3935eZX+ygKRpMjjq06mv7ELBTh03RoH+Pdck+j+3bJrHzea2pJEmSJEkDZWM0SZIkSZI00dTtuDi9xbV318Squ9h1YoOaWF0TqV68tHI8B/hYF/M8uw+5DNq/KserRMTSXc71XKDTbT/vrByvGxELdbn+ZFJ93AAbj3sW/VN9T52fmd3s3DpZ31PVz8E1e7yPq5+D/f4MlCRJkiRJkqSBi4jFImKXiDgsIt4bEUdFxKsjYvOIaLu2NiIWBzathDv5gvj5leN9OxgrSZIkSZNKZt4KfKjm1McjYtpIYyNiKqWx2lhagrH7d9mJleOVK8cnjNG6vZgQdVmZeRNwYSX8qohYuBLbH3hWJVZ93kdSfbz3AV/pYPxcE7oOrdFA7oWV8CmZeXMX0/Xrsa7bw9i6jZfv6mG+OvNrrakkSZIkSQNlYzRJkiRJkjTRPFATa7Xb3hU1sc17WHuLynG2WKMXq1WO/5qZdY2qRlMtTJmM6oqkXtDlXN2Mq66/CLB9l+tPJnXP+27jnkUfRMSCwPKV8P91Mc8CwJZ9SWr8VT+jpjL8S3htiYjVGf58/rGbuSRJkiRJkiRpImo0Q/sVMIvSlOwE4FPAZ4FTgMuAOyPik21u5rIyQ2txH+nwi8RXV4539Iu1kiRJkuZxXwf+UYk9GzhilHEvA1aoxO4Arurxp2q0PLp1KvBki3N3Af87Rut2ZQLWZVUbnC0J7F2JzawczwJ+3MEa1drO32dmq9dsJBO9trP6uwzo7rVdnv41Rtusj2MfAv7aw3x15tdaU0mSJEmSBsrGaJIkSZIkaaKpFi/B8N3W5roCeLwS26tRTNORiFgB2KYSviEzZ3U61yimV447nr+xO+Ze/UlnoC6piR3U5VwHdzHmFzWxQ7pcfzK5GHikEtujzS94TTTV9xN08Z4CdgcW6zKHauPGjj9/enRxTazbnWv3a3N+SZIkSZIkSZpUImJ6RPyC0gxtB2DaCJdPB94H/C0ith1l6mUqx/d3mFr1+mnA+h3OIUmSJEmTRqPR1DE1p/5rlEbRdQ3LDsvMTXv5YXjDo20jYu1uH18rmXkPcG6L06dmZqvNYwdlItRlNfsB8GAldtjc/4mItRhe//mdzHyigzX6Uds5nfJ7h4msX6/tAb0m0uQ5EbFep4MiYl1gw0r4ssyc05+0/mN+rTWVJEmSJGmgbIwmSZIkSZImmpfUxG6suzAznwJ+XQmvSHdNw14HTK3Eft7FPKOpNqSqKzIZzUHASn3IZaAy8yrg+kp434hYs5N5IuLFdLfL4s8Y3ljvwG4KbCaTRnHh+ZXw4sBRA0inV9X3E3T3nnpXDzk8VDnuRyFfJy4AZldir46IZ3UySURMBV5bc2osPgclSZIkSZIkadw0vtD+e2CnyqmHgAuB7wFnAZcDzV+cXRb4RUTsMsL0T1aOR/oSf5266zfocA5JkiRJmmxOA/5aia1Kfe0KEbESsFslfCf1zYq6yaXq8D7MW+eEDuODNBHqsv4jMx+l/Pu92Y4RsVrj/2fWDDuxw2X6Udv5ZmDhLsaNp55f28bmvm/tTzr/cWQXY+o+M37aayI15staU0mSJEmSBs3GaJIkSZIkqScR8fJOG1mNMNdawP41p1rtlAjw1ZrYZyNi0Q7WXQN4fyWcLebu1e2V43UjYka7gyNiBeCz/UxowL5ROV4Y+EZELNDO4IhYrGaOtjR24TyuEl4AOD0iFulmzknkYzWx9zaazE0amfkA8GglvHMnc0TEkcD2PaRxX+X42T3M1bHM/DdwTiW8AvDhDqd6B1At1PpdZl7ZbW6SJEmSJEmSNGiNvxedw9Df3d4A7AssnZk7ZOarMnO/zNyC8kX845uuXRA4LSJWabHEvZXjpSOiky9A122E45dqJUmSJM3TMnM28NGaUx9o8W+qmZS6rmZnNObp1XeBpyux17Rbv9ah8yj/Dmz+WSEzrx2DtXoyQeqyqqqNzqYAh0bEFODQyrmruqh7qtZ2bt3J5pQRsSHwgQ7XHITq44QOX1tKbdo6fcil2Vsbze3b0ri22pztCeCkfiYF832tqSRJkiRJA2NjNEmSJEmS1Ks9gL9GxIkRsX63k0TEypQvplQbmt0N/HKEoecB11diMygFB1PbWHdp4Ec16/4kM6u7UvbD/9XEPtXOwIhYhtIkrpudCCeqE4BbK7GdgZMjYqGRBkbEUpTnY8Me1v8Ew3dAfD5wTuPe6FhErBERx0bERj3kNaYaRV8/qISnUR73tt3MGRELRcTrIuKdPSfYmYsqx9tHxO7tDIyIXYEv97j+1ZXjjZp2Ih0vX6iJHRURr2pncETsQn2zvM/1lJUkSZIkSZIkDd5ngObf1/8UeF5m/qDuC/SZeXtmvg44qik8nfov7EP5G8fDTccLAJt3kN8La2JLdjBekiRJkiar0xle97cy8Iaaaw+riZ3WjyQy827gZzV57NaP+StrZWbeUfm5q9/r9NGg67KGyMxLGH7PzAR2BFavxE/oYolqbeditLk5ZWNz3B8DI9Y8TgSNe65aG3twRGzSzviIOIyxaQC3EHB2O3WbjWvOZvjzfXqjidlYmC9rTSVJkiRJGiQbo0mSJEmSpH6YSikwuS4iLo2It0RE3Q73w0TEohHxBuBK4Lk1l7wnMx9vNT4zEzgCqH555RXAz0faQS4itqIU71QLOu5n+E5y/XI+8FAltn9EfGuk3QUjYmfgUp75Ms2DY5TfuMrMh4DX1Zw6GPhLRLw6IoZ8ASgiVoyIt1CKnLZrhG8C7uxi/TuA1wBZObUL8MeIOKTNBnvPiogDIuJs4O/AW4C63UsnktdTnrdm04ELIuIzEbFiO5NExFYR8TngZuCbwFp9zXJ0Z9bEvhcR+7YaEBELR8SHKE0R5+7Y2O176uLK8RTg+xHRyRffepKZFwNfr8nj1Ig4OiIWrBsXEQtExLuAHwLVa87JzHP6n60kSZIkSZIkjY/GpjxHNoVuBvbNzMdGG5uZn6dszjPXwXW/N8/Mp4HfVcKvbjO/AA6pObV4O+MlSZIkaTLLzDnAR2pOvT8i/rPJaURsB6xTueb6zPxjH9Opa7J2RB/nn6wGXZdV58TK8drAlyqxJ4HvdDH3D4A5ldh7IuKjI9UQRsSBwCXAsxuhyVDbWX1tpwHnR8T2rQZExFIR8SXg2zzzveR+Pda5NcLPBS6KiC1HyGMLShO7ar3x3cD7+pTPMPN5rakkSZIkSQMx6j+0JUmSJEmSOrRV4+fYiLgZ+D1wLXAPcC+lKGAJYA1gY8pufa0agp2ZmSePtmBmXhwRHwGOqZzaAbg2Ii4AfgXcBiwArAbsDmwNRHU64PWZ+c/R1u1GZt4XEV8APlQ5dQSwV0R8H7gCuA9YilIs8zKGFnHMBt7O8CKfSSkzfxoRHwP+q3JqbeAUYHZE3ElpWDcdWI6hr9uTwKEML1CrNstrtf4PGsVYH62cWhM4FfhsRFwIXE4pnnmEcg8v1chxc8q9POF3e2yWmfdGxJ6U5oDNzeemAu8G3hYRlwC/BW6l3JMLUR73SsDzKI99ufHMu8YplB0omxuyLUZpTnYF8BNKAdFTwPLAZpT31LJN11/buK6bwqgfAbOAZZpiWwGXRcRDwL95pnDrPzJz0y7WGslRwDZA8+6RUym7lr4xIs4B/kz5LF4a2ADYB1i1Zq5/MfTLgpIkSZIkSZI0Gb2BoZtCfCQzH+1g/Ocof0+iMc+uwEk1151G+RLsXIdFxNcz80+jzP9Whn+5H2yMJkmSJGn+cSbwQWDDptgKwJuAzzaO6xqUndrnPH5EafC0RFNsj4hYPjPv6vNak8mg67LqnAp8nFIHOtdzKtf8JDPv7XTizPxrRJxGqUVs9kFgZkScRam/ephSK7YesCdDn59HKY+1usnlRPMFSkOupZpiKwK/jojfAj+jNJif04hvDexGef3nuoBSk1t9vrrxaeBdjfk3AC6NiIuAn1Jq2aDU/e5KqZGrq/t9Y2be3YdcWppfa00lSZIkSRoUG6NJkiRJkqSxNKPx042T6WDXxcz8aEQEw3eRnEYphti1jWmeAg7LzLqdDvvpf4DtGj/NlqV8SWckSSn8urD/aQ1OZn4wIpJSRFS1ALBy46fqCeDgzLyoZre9tncjzMz/iYh/A19l+O57KwAHNH7mKZn5l8YOimcztKEWlC951d2nE0pmPhUR+1EavC1aOf38xs9IbgP2AGZ2uf7jEfFOymdW1eKUArgxl5mPRcRLgHOB6o6ZywOvb3Oq64BdM3NWP/OTJEmSJEmSpAF4adP/zwbO6nD8RcDTPFNruw31jdG+CxzNM1+Engb8JCJ2zcxr6iaOiAN45kv+VXM6zFOSJEmSJqXMnNPYELVar/feiPg6pW7sldVhwHf6nMdjEXE2Q+uHplEaPrX6t9s8b9B1WS1yuj0izm/M28oJPSzxNkrt1fqV+KrAO0YZ+xSwH6U52oSWmbMi4mDgxwxtMgewbeNnJH+hPNYv9Cmlm4CDKXWMC1Aan23T+BlNAm/IzB/0KZeRF5tPa00lSZIkSRqEKYNOQJIkSZIkTXqnUgqN7u/TfP8AXpGZMzNzdicDM/MY4EDg312sey3w0szsa9FUncx8CngFpYFRJ+4H9s/M4/qf1eBl5n8DOwN/a3PIn4AXNxW0LF05/0CH658AvBD4VSfjajxO+RLUP3ucZ1xk5t+ArYDPU3Yo7MXlwHk9J9WhzLwS2AW4vcOhlwIvyMybe1z/FOBI4KFe5ulVY8fLHYBvUL6s19Fw4HTgRZk5Ke5dSZIkSZIkSWolIhYGNmsK/QuYHhEz2v2hbNjS/PevtaiRmU9Tvrz7ZFN4VeCKiPhaROwSEetHxHMj4oCIOJfyd4RpjWtvrUzZr7+5SZIkSdJkcBbw50psOeCtwEEMb8h1UWbeMgZ5nFYTa3tj13nVoOuyWhip8dntwM+6nTgzHwB2ouTfiX8DO2XmuNfOdauR6350sAFtw7nANpl5X5/z+TGwF539XmQWZWPdca2pnV9rTSVJkiRJGm82RpMkSZIkST3JzN9l5iHA8sCOwDGUP/Y/3ME0d1Kaq+0BrNcocOg2n+8CawPvBa6gNPtp5WnKboZHAhtn5m+6XbdTjQKaPSlflKkWdlXdBXyG8tycNda5DVJm/gLYEHgZcCJwNXAPMJvS6Owq4DhKsdXzM/NygIhYnOFFcLO6WP9Pmbkj8ALgFIZ/GamV2ynFca8BVszMAzPzrk7XH5TMfDQzjwJmAEdTGpy105jwccr7/f8BG2bmFoMq7srMi4BNgE8zenHU5ZTX6kWZ2e5rPNr63wZWAQ6jNIy8kvLefawf83eQx6OZ+UZgI0oR4B2jDJkFnAFslpkH97tgTZIkSZIkSZIGZEWeaTwG5fffN3XxM71pjmVaLZaZvwcOofzefK4FgTcC5wPXUf4e9F3K38Pm+iFwUmU6G6NJkiRJmm9kZlLqlareDby+Jl7XwKwffg3cVomtHxFbj9F6k8ag67Jq/IRSU1jnlE435K3KzNuAbYG3UDb6HcktwH8D62fmb3tZdxAy8xxgY+CbjFznNge4kLLp8cszc0x+d5GZ5wIbAF9l5IZtdwNfoTzvZ4xFLqOZX2tNJUmSJEkaT1F+dyhJkiRJktRfERGUJkHrAKsDSwCLUxqVPQg8RPkD/9WZOVrjnl7yWAHYgtK4bTlKs6e7Kc2CLm00KBu4iFidsoPcCpTn6nHKLoLXAH9Of4kzooh4KfDzSnjHzOx1Rz4iYm1Ksc2yjZ8FKY3/HqB8Ker6ebEwJSKW5Jn3zrLAkpTip4co9+YNwD96LSQbCxGxALA5pcnedGAqJe+bgMvH8jNnoml8Fm9M+SxeHliK8hl8N888H3MGl6EkSZIkSZIkDRcR21O+lD7XLZk5o4Pxm1G+jN1PN2fmmqOsuznwNcrv10fyFPBx4GON649sOveOzPxSL4lKkiRJkjQW5se6rIhYF9iSUn/6LOARShOsP2fmDYPMrZ8iYiFgK2A9Sr3gFEojvBuByzKz441qe8xnGuX3Kxs28plDqTm+CbhkgtYtzpe1ppIkSZIkjRUbo0mSJEmSJGnSi4gvAm9vCs0Bls7MkXYNlCRJkiRJkiRJE1AfGqO9ELi4z2m1nUNjQ5c9gW2AlSmbVswCbgH+Fzg1M29qXHsR8KKm4S/OzN/1MW9JkiRJkiRJkiRJkqRJZeqgE5AkSZIkSZJ6ERHLAEdUwlfZFE2SJEmSJEmSpPnWPZXjn2fmLuO1eGb+AvjFaNdFxDRgs6bQ08AVY5WXJEmSJEmSJEmSJEnSZDBl0AlIkiRJkiRJ3YqIAE4GFqucOm4A6UiSJEmSJEmSpInhzsrxugPJYnQvAhZuOv59Zj42qGQkSZIkSZIkSZIkSZImAhujSZIkSZIkaeAi4tCI2KnDMUsAZwMvq5y6HzitX7lJkiRJkiRJkqTJJTMfBK5pCs2IiHUGlc8Ijqgcf2sgWUiSJEmSJEmSJEmSJE0gNkaTJEmSJEnSRLA18IuIuCEiPhkRO0TEMtWLImJaRGwREf8D3ATsVTPXWzLz4bFOWJIkSZIkSZIkTWg/qxy/diBZtBARawH7NoXuB743oHQkSZIkSZIkSZIkSZImjMjMQecgSZIkSZKk+VxEfAN4fc2peyhfBHoCWAqYDiw0wlTfzswj+5+hJEmSJEmSJEkaLxGxPfDrptAtmTmjwznWBq4DpjZCjwObZ+Y1/cixFxGxAHA+sFNT+N2Z+bkBpSRJkiRJkiRJkiRJkv4/e/cdZldd5w/8faaldxJCSEJIUSBIR5CiCLrYVkXFFdYCKIKr+0OxLbsqqCyru7rqrgW7riKyomJdsAUbKkgRUFqAkGAoIb3PJHN+f5wh0yczaTfl9Xqe88z99s+dmXufBE7el51GXa0LAAAAAIA+7JVkZpLZSfZN36FolyY5d0cUBQAAAAAA7NzKspyb5MsdugYn+XFRFAcNZJ+iKAYVRXHWZuY09DXeZW5jkq+lcyjajUk+PpC6AAAAAAAAAAB2V4LRAAAAANgZ/DbJvC1c+7MkzyrL8r1lWZbbriQAAAAAAGB7KopiclEU07peSSZ2mdrQ07y2a68+jrgwye0d2lOT/LEoin8timJKH3UNKYriOUVR/FeSBekcsNaT5xVF8ceiKP6ht33bAtZOa6vnjA5DS5O8tizLjZs5AwAAAAAAAABgj1D4t6IAAAAA7CyKojgkyYlJnp5kRqp/oDQ6yZAkG1L946DFSe5J8qskPyvL8i+1qRYAAAAAANgaRVHMS7LfVm7z1bIsz+rjjClJfpLkgB6GH0hyd5JlSRqSjEoyLcnMJPUdJ5ZlWfRxxouS/KBD18NJ/pJkSZLGJHsnOTzJsC5LFyd5YVmWf+htbwAAAAAAAACAPU1DrQsAAAAAgCeVZXl7ktuTfKrWtQAAAAAAALu+siwXFEVxdJLLk/x9l+HpbdfmLBvgsZPbrr78Nslry7J8YIB7AwAAAAAAAADs1upqXQAAAAAAAAAAAAAAbC9lWa4qy/LVSQ5N8vUkS/uxbGGSK5KcnmTiZub+OclXkzy6uVKS/KptzxOFogEAAAAAAAAAdFeUZVnrGgAAAAAAAAAAAABghyiKoi7JIUkOSjI2yegk65KsSDIvyV1lWS7Ywr2nJXlakilJRqX6EOMVSe5P8oeyLBdvXfUAAAAAAAAAALs3wWgAAAAAAAAAAAAAAAAAAAAAAABAzdXVugAAAAAAAAAAAAAAAAAAAAAAAAAAwWgAAAAAAAAAAAAAAAAAAAAAAABAzQlGAwAAAAAAAAAAAAAAAAAAAAAAAGpOMBoAAAAAAAAAAAAAAAAAAAAAAABQc4LRAAAAAAAAAAAAAAAAAAAAAAAAgJoTjAYAAAAAAAAAAAAAAAAAAAAAAADUnGA0AAAAAAAAAAAAAAAAAAAAAAAAoOYEowEAAAAAAAAAAAAAAAAAAAAAAAA1JxgNAAAAAAAAAAAAAAAAAAAAAAAAqLmGWhcAtVYUxagkz+rQtSBJc43KAQAAAAAAAADYGk1JpnRo/7Isy+W1KgYA3KMHAAAAAAAAAOwm3J+3gwhGg+qGq+/VuggAAAAAAAAAgO3gJUm+X+siANijuUcPAAAAAAAAANgduT9vO6mrdQEAAAAAAAAAAAAAAAAAAAAAAAAAgtEAAAAAAAAAAAAAAAAAAAAAAACAmmuodQGwE1jQsXHNNddk5syZtaoFAAAAAAAAAGCLzZ07Ny996Us7di3obS4A7CDu0QMAAAAAAAAAdnnuz9txBKNB0tyxMXPmzMyePbtWtQAAAAAAAAAAbEvNm58CANuVe/QAAAAAAAAAgN2R+/O2k7paFwAAAAAAAAAAAAAAAAAAAAAAAAAgGA0AAAAAAAAAAAAAAAAAAAAAAACoOcFoAAAAAAAAAAAAAAAAAAAAAAAAQM0JRgMAAAAAAAAAAAAAAAAAAAAAAABqTjAaAAAAAAAAAAAAAAAAAAAAAAAAUHOC0QAAAAAAAAAAAAAAAAAAAAAAAICaE4wGAAAAAAAAAAAAAAAAAAAAAAAA1JxgNAAAAAAAAAAAAAAAAAAAAAAAAKDmBKMBAAAAAAAAAAAAAAAAAAAAAAAANScYDQAAAAAAAAAAAAAAAAAAAAAAAKg5wWgAAAAAAAAAAAAAAAAAAAAAAABAzQlGAwAAAAAAAAAAAAAAAAAAAAAAAGpOMBoAAAAAAAAAAAAAAAAAAAAAAABQc4LRAAAAAAAAAAAAAAAAAAAAAAAAgJprqHUBAAAAAAAAAMDOoyzLtLa2pizLWpcCu42iKFJXV5eiKGpdCgAAAAAAAAAAAMBOTTAaAAAAAAAAAOzByrLMunXrsnLlyqxcuTLNzc21Lgl2W01NTRkxYkRGjBiRwYMHC0oDAAAAAAAAAAAA6EIwGgAAAAAAAADsodasWZOFCxempaWl1qXAHqG5uTmLFy/O4sWL09jYmEmTJmXo0KG1LgsAAAAAAAAAAABgp1FX6wIAAAAAAAAAgB1vzZo1mT9/vlA0qJGWlpbMnz8/a9asqXUpAAAAAAAAAAAAADsNwWgAAAAAAAAAsId5MhStLMtalwJ7tLIshaMBAAAAAAAAAAAAdNBQ6wIAAAAAAAAAgB2nLMssXLiwWyhaY2NjRo4cmeHDh6exsTFFUdSoQtj9lGWZlpaWrFq1KitWrEhLS0unsYULF2bGjBledwAAAAAAAAAAAMAeTzAaAAAAAAAAAOxB1q1b1ymUKUlGjBiRfffdVygTbEeNjY0ZOnRoxo8fn7/+9a9ZuXLlprGWlpasX78+gwcPrmGFAAAAAAAAAAAAALVXV+sCAAAAAAAAAIAdp2MYU1KFNQlFgx2nKIrsu+++aWxs7NS/YsWKGlUEAAAAAAAAAAAAsPMQjAYAAAAAAAAAe5CuwWgjR44UigY7WFEUGTlyZKe+rq9NAAAAAAAAAAAAgD2RYDQAAAAAAAAA2EOUZZnm5uZOfcOHD69RNbBn6/raa25uTlmWNaoGAAAAAAAAAAAAYOcgGA0AAAAAAAAA9hCtra3d+hobG2tQCdDQ0NCtr6fXKAAAAAAAAAAAAMCeRDAaAAAAAAAAAOwhyrLs1lcURQ0qAerqut+209NrFAAAAAAAAAAAAGBPIhgNAAAAAAAAAAAAAAAAAAAAAAAAqDnBaAAAAAAAAAAAAAAAAAAAAAAAAEDNCUYDAAAAAAAAAAAAAAAAAAAAAAAAak4wGgAAAAAAAAAAAAAAAAAAAAAAAFBzgtEAAAAAAAAAAAAAAAAAAAAAAACAmmuodQF0VhTFAUkOTTI5yZAk65I8nmRukj+VZbl6K/ZuTHJ8kqlJ9kmyKsnCJLeWZTlv6yrvdtb+SQ5LMinJ8CSPJHkoyQ1lWbZsy7MAAAAAAAAAAAAAAAAAAAAAAADY9QlG2wkURTE6yQVJzkkVWtabjUVRjXXTagAAIABJREFU3Jbk6rIsPzSA/ccneX+Sv0sytpc5NyT5z7Isv93vwnve5xVJLkzyjF6mLCmK4qok7yvL8omtOQsAAAAAAAAAAAAAAAAAAAAAAIDdR12tC9jTFUVxepK5SS5J36FoSVKf5Mgkbx3A/s9PcmeSN6WXULQ2xyW5uiiKrxdFMay/+3c4Z3hRFFcm+VZ6D0VLWw1vSnJnURSnDvQcAAAAAAAAAAAAAAAAAAAAAAAAdk+C0WqoKIqLk/xvknFdhuYn+VmSK5N8N8nvk6zegv1PSnJNkgkdusskN6cKMPtpkie6LPv7JFcWRdHv342iKOqTXJXkVV2GFiX5SdtZt7Sd/aS9k3yvKIoT+nsOAAAAAAAAAMBAzZ8/P+95z3ty4oknZu+9905TU1OKoth0feUrX6l1iQAAAAAAAAAAAAC0aah1AXuqoijenuSSLt1XJvm3sizv6GF+XZJnJHl5klP7sf/kJN9J0tSh+7dJzi3L8q4O8wYlOS/JR5I0tnX/bZJLk/xzP5/Oh5K8oEO7JcmFST5XlmVzh7MOSvKFtueRJIOSXFMUxdPKsnykn2cBAAAAAAAAADvAtGnT8tBDD21qz5kzJyeddFLtCtoCn//85/OP//iPWb9+fa1LAQAAAAAAAAAAAKAf6mpdwJ6oKIpDU4WJPaklyellWZ7ZUyhakpRl2VqW5W/LsrwwyaH9OOb9ScZ0aN+Q5DkdQ9Ha9l1fluV/JXlll/UXFkWxXz+ey/QkF3TpPr0sy092DEVrO+svSU5J8rsO3eOSXLy5cwAAAAAAAAAABuLHP/5xzjvvvH6Hol1//fUpimLTdckll2zfAgEAAAAAAAAAAADopqHWBexpiqJoSPKldP7en1eW5dX93aMsyw2bOWNWktd16GpOclZZluv62POaoii+2mHdoFSBZedsppyLkzR2aH+lLMvv9XHO2qIozkpyR5Kmtu7XF0Xx72VZPrCZswAAAAAAAAAA+uWiiy5KWZab2meeeWZe//rXZ8qUKWlsbL/VYa+99qpFeQAAAAAAAAAAAAD0QDDajnd6kiM6tH9eluWXt/EZZyap79D+TlmW9/Vj3YfTOVDtlUVR/ENvgWpFUQxJ8ooe9uhTWZb3FkVxTZJXtnU1tNV8aT9qBAAAAAAAAADo0z333JPbb799U/sFL3hBrrjiihpWBAAAAAAAAAAAAEB/1NW6gD3QeV3al22HM07r0u5X8FpZlncl+UOHrmFJ/qaPJacmGdqh/buyLO/uV4Xda3pZP9cBAOycWlYkC76T3PfZZNUDta4GAAAAAAD2aH/84x87tV/xiq6f+wYAsIdZdmdyxweSez+drF+SbFiblK21rgoAAAAAAAAAoJuGWhewJymKYmaSZ3XompdkzjY+Y2KSQzt0bUjy2wFscX2SYzq0n5/k+73MfV4Pa/vr16lqe/J38PCiKPYuy/KxAewBALBzWL0g+flJ7YFoRX1y/FXJ1JfXtCwAAAAAANhTPfZY59sPJk+eXKNKAABqbMV9ybWHJxtWt/f98c3tjye9MDnua0nTmB1fGwAAAAAAAABAD+pqXcAe5tld2j8vy7Lcxmcc3KV9e1mWq3uc2bMburRnD+Cs3/X3kLaa7hjAWQAAO69b39keipYk5cbkd69JNq6rXU0AAAAAALAHW7VqVad2Y2NjjSoBAKihJbck1x3dORStq4U/Sm56y46rCQAAAAAAAABgMxpqXcAe5uld2r9LkqIoiiSnJPn7JMck2TfVz+aJJPcl+VmSb5ZlOa8fZxzUpT13gDXev5n9OjpwG5x1eJezfjHAPQAAam/+Vd37Nq5NFnw3mXbGjq8HAAAAAAB2IWVZ5pZbbsndd9+dxx9/POvXr8/48eOz77775oQTTsjw4cMHvGdra+t2qBQAYBfSvDz59cuTluWbnzv/quTIjyeDx2//ugAAAAAAAAAANkMw2o51VJf2XUVRTEvyxSQn9zB/att1SpIPFEXx+STvLMtyTR9nzOzSnj/AGh/q0h5XFMWYsiyXduwsimJskrFbeVbX+bMGuB4AYOe26DeC0QAAAAAAoBdPPPFELrvssnz961/PokWLepzT1NSUk08+OZdcckmOOeaYXveaN29e9t9//17Hn/3sZ/fY/+Uvfzlnn312j2Pvf//78/73v7/XPefMmZOTTjqp13EAgJopy+SmNyWr5/Vz/sZk8R+SfV+0XcsCAAAAAAAAAOiPuloXsIfZp0t7aJKb0nMoWleNSf4hyW+Koui6T0eju7Qf7395SVmWq5Ks69I9qh/nrCnLcvVAzkr32no6BwBgF1bWugAAAAAAANgpXXPNNZk+fXo+9rGP9RqKliTNzc259tprc+yxx+a8887Lhg0bdmCVAAC7qAXfTh66cmBrfvm3ycb17e2NzckdH0x+eFDyf0cm9302KVu3bZ0AAAAAAAAAAD1oqHUBe5iuYWJfTrJX2+PVSS5P8n9JHk4yLMmhSc5JckKHNYcn+XZRFM8qy7KlhzOGd2mv3YI61yYZ3KE9Yjue01FP5wxIURQTkowf4LIZW3suAAAAAAAAANA/X/rSl3LuueemtbVzsMaMGTNy0EEHZejQoZk/f35uvPHGbNy4cdP45z73ucyfPz8/+MEP0tDglhcAgF5Nen4y49zk/s8PbN1Vg5PxJyQT/ya5432dx246P1l6azL5tGTQuGTMYUld25/JHvtl8vj1SdOYZOzRyYgZSfOyZOi+yaO/SFY/lOzzN8mIWUlRbJOnCAAAAAAAAADsvtwluoMURTEoyaAu3ZPbvv4lyfPKslzQZfyWJF8uiuLtST7Sof8ZSd6d5NIejuoaWLZuC8pdm2RMH3tuy3P62nNL/EOSi7fBPgAAAAAAAAB01bohWfNwravY/Q2d3B4ysZu57bbb8qY3valTKNphhx2WT33qUznuuOM6zV20aFHe+9735rOf/eymvmuvvTbve9/7ctlll3WaO3ny5Dz44IOb2h//+MfziU98YlP7yiuvzLHHHtutnr322isnnXRSkuT3v/99zjjjjE1jF1xwQd761rf2+lwmTpy4mWcLAFAjDcOSYz6X7HNqcuO5SfPS9rG6pqS1ufe1i35TXT2Z+9nq2lrjjk2W/SnZ2HYb6eSXVH2DxyeLb0we/VkydGoy6XnJ6EPbAteOSOoaq/mr5iWL/5AUdcm+L66e04bVSVFf9dUPStY+ksz/VjV/ysuqP2MPRMuqqr7B/fis3nWPV9+zsjXZ53lJ47a4HRYAAAAAAAAA9ly75120O6f6XvqXp+dQtE3KsvxoURT7Jnlbh+63FUXx8bIsV23m3HKAde7sawAAdh2lP+4AAAAAALuZNQ8n39+/1lXs/l78YDJ8Wq2r2C5e//rXp7m5PYjjhBNOyHXXXZehQ4d2mzt+/PhcfvnlmTlzZt75zndu6v/whz+cM844I0972tM29TU0NGTatGmb2qNHj+6018SJEzuNdzR8eBVcMW/evE79o0eP7nUNAMAuYerLk3FPT3736uSJ3yXPvSFZeV9yw5m1rWvx7zu3H/5edXW06oHk8eu3zXk3X5A0jkqmnJZsXFddQ6cm089Kxh5ezVl4bXLXR5Lld1RBZx01DKsC2B66snN/XWPS2tL9vNFPq0Lp6odWAW1No5Ipp1cBdWsXJkv+mBQNyYhZyV7HJOsXJy3LkwnPTJbcWs2bcEIybL9t8/wBAAAAAAAAYBcjGG0HKctyTVEUrUnqugz9Z1+haB28N8k5SUa1tccmeX6Sb3WZ1zUobchAa+1hTU/hazvqHAAAAAAAAABgNzBnzpzccsstm9ojR47MVVdd1WMoWkfveMc78stf/jI//OEPkyStra352Mc+li996UvbtV4AgN3CsCnJyb9IFt+YjDuqCu1qGJZsWF3rynasluXJA1/p3Hffp5Pjr6zC4v70z72v3bC6eyha0nMoWpIsu6O6OrrrIwMqN0kV5jb7X5Kppyet65MV9yarH0we+Umy4u5kw6pk3WPt8+sHJyOe0vYzHpEMm5pMeFYy9oikblBSFAOvAQAAAAAAAABqQDDajrU6yYguff/Tn4VlWa4uiuI7Sc7u0H1SBKN19el0/55szowk39vsLAAAAAAAAABgi331q1/t1H7zm9+cSZMm9Wvthz70oU3BaEly5ZVX5jOf+UwGDRq0TWsEANgt1dUn459RPa4flJwyJ7nu6bWtaWdQbkh+c3qtq+hdy/LktndVV39sXJcsu726enLEx5KnXiAgDQAAAAAAAICdXl2tC9jDLOvSfqwsy3kDWP/7Lu0De5izvEt7/AD2T1EUw9M9sKxr3T2dM7QoimEDOSvJhH6cMyBlWT5eluWfB3IluX9rzwUA6FlZ6wIAAAAAAGCn8Zvf/KZT+9WvfnW/186ePTtHHHHEpva6dety8803b7PaAAD2KOOOTl78QDK4622c7NZueVvyYL8+zxkAAAAAAAAAakow2o51b5f2IwNcv7BLe1wPc+7r0t5vgGd0nb+kLMulXSeVZbk4Sdf+qVt5VtfaAQAAAAAAAIDdwNKlS3P//e2fWzZ69OgceGBPnwfXu+OOO65T+6abbtomtQEA7JGG75+87LHk9OXJ0ZfXuhp2lJvfmmxYUz0uy+oCAAAAAAAAgJ1MQ60L2MP8OckpHdrrB7i+6/zBPcy5q0t75gDPmN6l/Zc+5t6VpONdxzN7OH8gZw1kLQAAAAAAAACwi1i0aFGn9qxZs1IUxYD2OOCAAzq1H3/88a2uCwBgj9c4Mpl1XnUlycZ1SYpk1f3V4+H7J0tuTn7x3L73GTolqRuUlC1Ja0sy7phk/PHJre/Y7k+BAWhZlvzvsJ7HBo1PGoYnG1YkE5+b1A9OBu+TNC9O1j6aHPL+ZNTsZPFNSV1TMubwpNyQ1A/asc8BAAAAAAAAgN2eYLQd6/Yu7dEDXN91/uIe5tzZpX1IURRDy7Jc088zjt/Mfl3HOgajPSPJD/pzSFEUw5IcMoCzAAB2QT5VFwAAAADYzQydnLz4wVpXsfsbOrnWFWxzS5cu7dQeNWrUgPfoumbJkiVbVRMAAD2ob/vM3lEHtfdNfE7v8yf+TXLydb2P9xaMVjcoedW65BsDC8vdZPShybI/9TzWMCyZ8Oxk4Q+3bO891fpF1ZUkD32z+/hfv9/72iGTkoPenaxZkCz9U/LoT5MJz6p+n8YckUw8uQrLWz2/ClprWZE8/L2kaKjGJr80qWts32/NwuSxOUlRJJOenzSN2bbPFQAAAAAAAICdmmC0Hev/UqVjPHkXx/SiKAaXZbmun+sP7tJ+uOuEsiwfKYri9rSHjjUkOSHJT/p5xkld2v/Xx9xrk7yxj7V9OTGdf/9uLcvysQGsBwAAAAAAAGBHq2tIhk+rdRXsgsqy84eJFMUWBmBs4z0AAOinyS+pgqy6mnVe3+umvDxZ8O3u/Yd9aPNn1g9ONvZwi21Rnzz318m3xyWtLd3HX/iXZNjUZOP6ZN43kiduSAaNS4btn9x0/ubP7csZrcnczyY3vann8ef8KhkxMxk8MVlwdfU9a16ejDks2e/vqnrvuKTvkLFd0dqFyc0XdO57/JfV10euS/7yb72vnXt5++P6ocnGXj4LeviMZNTsZMPKpGlsFa7W2pIsvbV6PPE51c95+jnJ+OOqgLzm5cn6J5KUybD9Ooev9aVsrepfeV8yYlYV8lbU9W8tAAAAAAAAAFtNMNoOVJblwqIofpfkuLauxiSnJPlRP7d4Xpf2r3uZ9920B6MlydnpRzBaURQHJDmmQ9fqzay7LsnaJEPa2s8oiuKAsizv3txZSc7q0v5uP9YAAAAAAAAAALugsWPHdmovX758wHt0XTNmzJitqgkAgAGYeX73YLShU5NJL+p73bRXdw9Gq2usQsKSZNILk4U93Ea735nJyKdUIWJdHXxx0jgimXxaMv9/O49NeFYVipYk9YOSGWdXV1KFZ93y1p7D1vpjn1OTokgmPb/n8bFHJxNObG9PPb26upr9L70Ho71kXjJ0SnJlfe91HPah5LZ/6nnsqE8l085IGkYk3+xnCNjOpLdQtCRZdX919ebRn1ZfH/pm73PqBiWt67estiSZ8Ya2B0Wy4q6keWkV1DdkUvKUtySD965C4oqG6uufLqqC2SY8Kxl5QDJ8ehW6NuVl1e/30tuSNQuTvY5NBnX4O9PG5iqIrc6t/gAAAAAAAMCeyf8t3fG+nPZgtCS5MP0IRiuK4sQkT+/Q1Zrkx71MvyLJe5I8eVfEy4qimFWW5X2bOebdXdr/W5Zlr3d/lGW5piiKq5O8psseZ/d1SFEUT0lyWoeuDUm+sZnaAAB2PWVZ6woAAAAAAGCnMH78+E7te++9d8B73HPPPZ3aEyZM2KqaAAAYgEnPS46/KvnLh5JVDyTjT0ye/pmkvqnvdVNemhz+H1XA2YbVVXDUcV9PhuxTjU89vedgtP1fk4x8anLXR5MNK9v7G0Yk019bPX765UnzsuTRts8AHndMcvyVvdfSODKZ9prk/s/3+2lvUtQlT31b9XjYfsm0v0/mXdF5fPZF/dtr7BHJ4InJukc79488oAqbK4pk5huTuZ/rvnbGG5ID35nc++lkzfzOY42jk+lnJw1tn3d85H8lN/+//tW0p9iaULQkuf8LPfcvuz155Nre1z3+y+p60p/6+buSJPVDqtC1Q/81WXxTsurBKmCtcXhSNCYjZiV1bbeMr16QrH4oGXNI9fsOAAAAAAAAsIsSjLbjfTlVGNqBbe2Ti6K4sCzL/+xtQVEUE9rWdfS/ZVn2+LFnZVneVxTFV5Oc09bVlOQrRVGc0lvQWVEUL0lyVoeu5iTv39yTSXJJklclefJj5c4qiuK7ZVn2+FF2RVEMbnsuHe+E+WJvzwUAAAAAAAAA2PWNGTMmM2bMyP33V7cHLFu2LHfddVcOPPDAzaxsd8MNN3RqH3300du0xqIotul+AAC7nf1eWV1lWYV39deB70ieekGy5q9VqFjHtfv9XTL/W53D0aa9Jpn43Crs6Tm/TG57V7L0T8mYQ6uQtWH7VfOaxiQnX5esezxpbUmG7rv5Wo7676R+cHLvf/c97/TlyW0XJY/9Ihk6JTngbcmkU9vHj/1KMvppycIfJ4P2SmacW4XH9UddQ3LYh5I/nJOUrW19TVXfk9+bqaf3HIy236uqELaD35vceG7nsdn/1B6KliSzzk9W3JXc95n+1cXOaePa5K7/qK6BGLJvsu+LqoC0Jbckj/2883jTmOq1NPm06jU0bGoVXDhsWjLmsKRpVPvc1o1JuaG61ixMhk5KGoZVY2WZpKx+LwEAAAAAAAC2EcFoO1hZlhuLorggybVJnvw/wB8timK/JJeUZbm04/yiKJ6T5DNJZnToXprknzdz1MVJTksypq19XJKfFUXxhrIs7+6w/6Akb0zy0S7rP1qW5UP9eD4PFEXxiSTv6NB9dVEUFyb5XFmWzR3OOjDJF9pqedLi9C+ADQAAAAAAAADYhZ1wwgmbgtGS5Iorrsill17ar7V33XVXbr755k3twYMH58gjj9ym9Q0aNKhTe/369dt0fwCA3caWBMrWNSbDp3Xvrx+cPPO7yaM/T5bdnow9Mtn75PYzxh6enPzTvvcePKH/ddQPSo76r2Taq5OfHNPznHFPr8Kkjv5U7/vUNSQHvbu6tsT01yUjZiYLvluFok19efXcn7T3KVX42Z0fbO+b/Z7qe5MkM9+QDJmYzPtGFVY15eVVyFynGhuToz+dHPiuZN7Xk9vfu2W1smta+9dk7md7H29eWl1Lb+t7n0F7Jeuf6HmscXTSsqzt8cgq0G/GG6vX5BM3tO1dJJNekIw/rgpgaxxVvX7qB3feqyyTjevaw/02Nle/wy3Lk3WPJSNmCV8DAAAAAACAPYhgtBooy/KnbeFoHT9u7v8leVNRFL9P8tckQ5IclmS/Lsubk5xRluWDmznj4aIoXpbkuiRNbd3HJ/lLURQ3J3kgyagkRyQZ32X5D5MM5O6Hf0oyO8nz29qNqZ7be4uiuCXJyiTT287qeDdMc5LTyrJ8ZABnAQDsQspaFwAAAAAAADuN1772tfnqV7+6qf3JT34yb3nLWzJx4sTNrr3ooos6tV/1qld1CzLbWqNHj+7UfuQRtzMAAOwQdY3JpOdV144y7qjex0Y8ZcfUMP746upJUSSHfCCZ+cZk6Z+S0Yckw6Z0nrPvi6prc4ZPSw5+TxVudc8ntrrsfusrUItdR18/wydD0ZKkZUVy/xerq6u7/r173/AZVahfw/Aq8GzVvGTDyr5raRyZjH9msvqBKmCttTlZcnPSNDYZPj1Z8sdq3pgjklnnJavnJ+sXJQ9fk6xfnJQbq/HpZ1evrVUPVO8/409MBu+dbFhVBRXWb9u/awIAAAAAAAADJxitRsqy/GRRFBuTfCTJ0LbuxiQn9rHssSQvK8vyhn6ecX1RFKcl+Uraw8+KJEe1XT25Msm5Zfnk//nt1zkbi6J4ZZIvJOn4cXMTkvR2l8rjSV5XluWv+3sOAAAAAAAAALDrOvnkk3PYYYfltttuS5IsX748Z5xxRn784x9nyJAhva772Mc+lu9973ub2kVR5G1ve9s2r2/69OlpampKc3NzkmTOnDlpaWlJY2PjNj8LAIAaK+qqsLFlt3cf2/+1O76e3gydXF3bwuTTeg5GK+qSsnXbnJEkIw9IXnRXe/vx3yR3XJI89vMq2OqkHycjD0zu+Xhy5wfb5zWMSA56V3L7QD7bmV3WqvsHvqZlRbLwh937m5ckS5a0t5fektx4Xu/7PPDl6toS445JhkxKRh1UfR00Llk5N3nom8mah5OppycjZlWvq5Vzk33/Nhl9cLL20WTYfknL8mTtI1XQYcPIpGlMUle/ZbUAAAAAAADAbkwwWg2VZfmZoih+kuSSJC9JMqKXqY8muTzJx8uyXD7AM35cFMXBSd6fKrRsTC9Tf5/kI2VZfnsg+3c4Z1WSVxVFcXWStyc5tpepS5JcleTisiwXbclZAAAAAAAAAMCO9+ijj2bevHlbtHbatGlJki9+8Yt5xjOesSl87Prrr8+JJ56YT33qUznmmGM6rXniiSdy8cUX59Of/nSn/ne961055JBDtqiOvjQ1NeX444/PnDlzkiTz58/Pi1/84px//vmZNWtWhg4d2mn+xIkTM3jw4G1eBwAAO8j0s5JbLuzcN2y/ZO+Ta1LOdjfhxGSfU5NHrmvvG7x3cvyVyc97ec4HvD25+6Pd+8cdmxRF8sTvuo8ddFGXc09ITvlZ93mHfKC6yrJqF0X1ddFvk0eu7T5//AnJc36VPPg/ybyvJxvXJlNflTzlzcmvXpr89fs9P4ckOfK/kmV3JPd/vvc50B+L/1B9ffi7PY93/R2be/nA9h8yKZnysmTFvVWQ4NqFSeOIZPW8ZPiMZOmtSf3QKoBw7JFVMNvkl1QBa/VDk41rkpZV1dqV9yStLcnYo5K6huq1tnFNFTBXNCSNo5LWddVcAAAAAAAA2MkIRquxsizvT/KaoiiGJDk+yeQkE5M0J1mU5E9lWfbwcXQDOuPxJG8qiuKCtjP2aztjdZK/Jrm1LMsHt+aMDmddneTqoij2T3JEkklJhqUKd3soyW/LsmzeFmcBAOz8yloXAAAAAAAA28wZZ5yxxWvLtrCDI444Ip/85Cdz/vnnp7W1NUly880359hjj83MmTMze/bsDB48OAsWLMiNN96YDRs2dNrnuc99bj74wQ9u+ZPYjAsvvHBTMFqSXHvttbn22h5CGZLMmTMnJ5100narBQCA7eypFyTrFiX3fjLZsDIZe3QVElZXX+vKto+iLnnm96ugpkW/SYbPTGadnwybmsw8v3uA09DJyaGXJvOvStY83Hls5huSDWu6B6PVD0kmv3iAdRWd25Nf0nMw2ow3VHOnv666utbam5N/lkw8JWndkDzwpaTc2H3O8d9Mbn1XsmZ+97HjrkimnVk9XvzHZN1j1XljDq36vlF0X7M5B7072dic3POxga9l97Z2YfWe1JMV97Q/XnV/svBH1eObL+jn5kV6vJ+tYUQy9fRk1dzk8V91Hpv5xmT/s5KxhydFfTL/6ur1OWTf6nU18ZTej2tZVe05aEIydFI/awQAAAAAAICKYLSdRFmWa5P08HFo2/SM5iRzNjtx25z1YJJtErYGAAAAAAAAAOw+zj333IwZMyZnn312Vq1atal/7ty5mTt3bq/rzjnnnFx++eVpbGzcbrW96EUvyqWXXpqLL744Gzf2EJgAAMDuo6hLDrssOeQDyYZVSdPoWle0/dU3JU/9f9XV0VH/XQWGPfDlpNyQjHxqcuJ3kvrBySnXJ79/XRWC1jQuOfAdyfRzqvkr7k7u+0ySMmkam5x49dZ/H6edmdz/hWTJze19445Jpr6y9zX7nJrc9+nu/XWNyZjD2h43JBOf2z10rX5otX7JLcld/959bNILO9RxVPcz9joueeKG7v1Hfzq56z+rYKiOZp6XHPah6nFvwWj1g5PTVyaP/iy57Z+qwLbmpclBFyV/+bee18Bm9fIhnxtWVqGBPZn7uerqScffxfHHJ0OnJGsWJCvuTdYv6jx3+PTqfWPNgqRxVJLWZMjkKghu5T3JsOnJhGcme5+UlK3JoLHJ+iVJ44ikaOgcoFiWXdqtVfBhfVPnM1tbqq912++/IQAAAAAAALD9CEYDAAAAAAAAAGCHesUrXpFnPvOZueyyy3LFFVfkiSee6HFeY2Njnv3sZ+fiiy/Occcdt0Nq+5d/+Zecdtpp+drXvpYbbrgh9957b5YvX561a9fukPMBANjB6hr2jFC0vtQ1JMd8Ljnio0nzsmTYlPaxETOS5/4m2bAmqR/SHkhUNCRHfyo59NJk9fxk1Oxqn63VODI55RfJA/+TLLstGX1YMvMNVVhYbyY9P9nned1Dz/Y/Kxk0rr19yAeTxTcSLAWJAAAgAElEQVQmzUva+w69tPr5z74oWXJT8ljbZ1DXD06O+1rSNKrvevd7VfdgtLrGZMorkvHPTH75t8nqts+a3ufU5NDLOtT3uuTBr3bf82mXVN/LSc+rro72eW7y85N7ruXwjyS3vqPnsVlvSo78RLL2keShq6pAqvWLkykvq4Lwhu2XLP1T8tM+/t41+SXJot9Wj1ubqzXL7uh9PnuOJ38verPqgeT29/Q9p7egwJ4Mn5Gsur9zX+PIZNyxyfI/J2v/2nnsmC9Vr6U1D1fz1j2WrH4omf+tZOV9SV1TMvm05ClvrkIzN6yuroe/mzz4P9X725RXVK/3jqFsSbJhbdKyPBkysf/1AwAAAAAAsFlFWfbyyT+whyiKYnaSO59s33nnnZk9e3YNKwIAdjnfKHrun35OcuwXd2wtAAAAAAB92LBhQ+67775OfbNmzUpDg89Vo3ZaW1tz88035+67786iRYuyfv367LXXXpk8eXJOOOGEjBgxotYlbhfb6/X45z//OQcffHDHroPLsvzzVm0KAFvBPXrADtHaktz98eSvP6gCjaaclhx0UVJX33neqnnJgquT5qVVmNqEEzvssbEKY1uzMNnrGcngvfp37o3nJw98qWrXD02O/0YVIpYkZWsV1NQ4Ohk6uXOo0qO/SH5xSuf9iobkxfcnw6b2fN7iPybXHd3z2HHfSG59exV+1tUL/5yMOmgzz2VD8s3G3sfP7OXfHfR279TmDNor2bg+2bCy7znrew7S3mTMEcnSW7asBtgSYw5PNq5LVtzVuf/Z1yUtK5ObL6jC0kYdnLQsTcY+vQppXPijZN2iKnxt9j8nk16YDNmncwDjivuqtaMPqeaVG9qDIdc+Ur1vNAxJxh7V+/sE7cqyCsQbMilJWYVRzv9W9XOYeW4y6/xaVwgAAAAAwC7G/Xk7jjubAQAAAAAAAACombq6uhx99NE5+uhe/nE/AADA5tQ1Jge9s7r6MnxacuA7etmjPhl7ZHUN5Nxjv5gcemmy6oEqpKthSPt4UZeMflrPayeenBzzheS2dyfrF1fBacd+pe+woxEz2sKSWruPjT8+mfGG5M4Pduk/YfOhaElS11CFMS27vfvYfmf0vm7cscni33fvP+YLVSDRHZf0vO4FdyZD9u49WG3YfslL5iXL/5L8qJdAzVNvTMa1/V2ybE1W3l+F3o07Klm/pAqiaxyVpKxC55b/ufo5NS9LBo1Nivrk/i8kC77T+/ODrpbe2nP/nFM7t598Xay4p/vcW99RXVvr4Pclrc3JyrnJ4huTEbOSfU6tgthGHZQ0jEiaRifNS6owsFUPJCmr94sNq5PV86v3xbFHJhvWJMvuqN7XRsxKHroqeeS6JK1V0OS4o5J1jydLbk4aRyZjj07qm7b+OWwP65ckd/9nMvezvYcr3vSm6nrZ48ng8Tu2PgAAAAAAYLMEowEAAAAAAAAAAAAAwJYask91DdSM1yfTz67ChgbvXQV59aVpTDLhpOSxX3TuH3t0Fah28MXJxvXJA1+sQo/2OTU55ov9r2fmG5M/vqVzX8OI3sPkkmS/v+sejFY3KJl8WhXC1FMwWsOI9iCip16Q3POJ7nMOaDtzxFOr0Lg1D3ceH7JPMuaw9nZRl4yc1d4evFf3PUcfXF0dTXp+++O7PpLc2ku43pll9fXnz0ke+3nPc05fmTQMTVbel9x4frLy3upnVjQkM85Jhs+sQqju/2Lbcy6SckP3fRpHJS3Lez4DOrrzA53ba+b3/vu5NXoLDzzxO8mkF1TvYSvursIVh+zdeU5Z9v3etn5xsmZBMvLApH7Q1tW5fkly98eq19eGlf1b85vTk+dcv3XnAgAAAAAA25xgNAAA2G7KWhcAAAAAAAAAAADszIq6ZMjE/s8/5ovJnL+pwreSZOjU5Bn/Uz2uq08O/3By2L8l5cakrnFgtcz6h2Tj2uSe/06aFyfjT0wO+3Ay5pDe1zzlzcnyO6uwr6QKPTvhqmTQ2KRpdDJsWrJ6Xuc1U19RPe+kCoeb+9lk47r28aaxybQz2p/TIf+a/P6stN+PVSSHXDrw57c5k17UczDafq9qfzz9rJ6Dp+qHJI3Dq8cjn5o8Z07v5xzx0eraXGBUa0vyxO+SuqYqBK5+cNK6MWldn5StyYKrk7/+KFn0m2SvY5OppyfL/5z8+bKe95vwzOr7tuDbPYfRwUD9+mUDXzP++Op9Yc2C5PFfdR5rGlO9py27PRl7ZBVutnFdMupp1XvC3icnrc3Joz+rvrZuSJ74bbL0tiqYbUs8/sukeVn1fgUAAAAAAOw0BKMBAAAAAAAAAAAAAMCuYPi05IV/SZb8sQrHGntkUj+o85yirj14bCCKIjnwHckBb6/2rqvf/Jq6xuSYL1ThZasfSsYc2l5PUZc885rk+hckaxdWfeNPTA7/SPv60U9Lnv3T5I73VaFeY45Mjvx4Mmhc+5zpr02G7ZfMvypJXTL15cnezx7489ucUQck089JHvhSe1/T2OSgf2pv73NqUjQk5YbOa6edOfDz+gpFS6rv7YRndumrT+qGVo+nn1VdHa1b1Hsw2gEXJhNOrK7D/yNZckuy9pFk4ilJ44hqTtmaLL6xOvuRnyR/+ufOexzx8apv45r+PEPobtFvq6snzUurK6ne4560+qFk4Q+3X02r5yVNh22//QEAAAAAgAETjAYAAAAA/H/27js8zurO2/g9Rb1LtmxLstwbtjHYmF4NobcACYGQTkJ62c2mbMiml01v+242bbPJBkgjpIcNSSiB0AnVNmCMe2+SrK6Z949jZTSaGVnFtlzuz3Wda+Y5v3POc55pBlvzlSRJkiRJkiRJkqRDRTQOY07cf+tHIhAZRChaX0XjQuuvagFctiqEcOVXQtmMzECw2lPh7D8PvP64M0Lb3074DtSeAZv+DMUNIXisbHqqXjg2BLs9+u5UX+l0mHvj/t/bYBSMgfLZ0LQsvT9WBLVnpo6jeTDmhMz5kWjqtVW9CCZeAZvvgqI6GH8OxAoh0QF/f3/28x/zOTjqX8L97jbYei889QnYfDdMegXM+ReoXhhqT9wIy76UfZ3iRigcB8ke2PFoZr32zHBN2+5PBWlJw7VrKVQZjCZJkiRJkiRJ0sHEYDRJkiRpv0mO9gYkSZIkSZIkSZIkSZIkaXRF4zDm+NHexeBEIjD11aHlMvtdUHsabPxTCAyrvxDyqw7cHgcSicC8f4P7Xknaz6/NeS/kVwx9vfJZofVVMjn3+OpjU/fjRSFMbfw5mePiRTDtDbmD0c5/CAprw/2eDtj4xxDWN/YUyCtPH5tMwu5V4X5+JbSth542+MNx2dcunQbHfQPuvCD3dZxyC9z7itz18jnQtDR3XYeW+66FydeM9i4kSZIkSZIkSVIfBqNJkiRJkiRJkiRJkiRJkiRJkiQNVvXC0A5Gk6+BgjGw8ofQ0woNl8PkV+679SecC9F8SHSm99ecALVnDn6d8jlQNgOan0vvH3tKKhQNIFYA9RfnXicSgdLJqeP8Smjfknv8/I9B3fnhPFvuzT5m0tW5g9GO/SLM+adw/6ZIjj3F4Zou2PEELP8q7HwyXNPs90DrWrj/tbn3p9HRthGKxo/2LiRJkiRJkiRJ0h7R0d6AJEmSJEmSJEmSJEmSJEmSJEmS9pEJL4GTfwCn/QymXBfCw/aV/Eo4+X9D+FevsafA6b+AaDz3vP4iETj+W5BXnuorHAeLvjbyPRaMgZJJWc4ZD48NwLQ3ZZ9bf2m4bbw6SzECjVemDuOl2deYfkO4rToaTvwunP8gnPkbGH82TH1N+mPX15iTYMkfs9cAzn0Aznswd724Ea5N5q4DnHPPwHWAhpfufczhpmXFaO9AkiRJkiRJkiT1YTCaJEmStL8k9/IDRpIkSZIkSZIkSZIkSZIkHWoaXwYv3QCn/hTOuRvOvguKJgx9nXFnwsXL4aQfwCm3wIVPQfXCke8vEoFZ78nsn/IqKKwN9ydeDnmVmWOmXR9u534QCmrSa7PelR641ju2v8mvHHh/M9+RvX/GW6B6EUTzMmvxEqicB6VTc69bc1y4PfoT2euTroHaU8N15FLcCKfclLs+5mSomJe7PljRgpGv0V9eJRz9SXjZLqhcMLS5Xc37fj+SJEmSJEmSJGnYhvDreCRJkiRlMPxMkiRJkiRJkiRJkiRJknSkKRwDjVeNfJ2i8SGwbF+b/a4QJrby+9C9G+ovg3k3pup55fCSu+H+18H2R0Ow2/yPQsMloV61AM57EFb+CNrWw/hzYOIV6eeY9U5Y8zNoXZvqa3gpjDlx4L3NuAFe+B507Ur1lU6HiVdBvAgaXwEv/jB9ztQ3QLw4tAnnwYbbM9edcH64nXQNPPkRSCbS69NeH27LZ+XeW+U8iBXmrk+8MgS3PfLO7PVrEiGYLtEDt+T4ylJxI8z/CDzwhuz1M38PpVNgy725x0w4D8aeCj0dkOyCuotCqFy8ONSP/gT89UpIdKXmNF4Nq3+cfb3uluz9kiRJkiRJkiRpVBiMJkmSJEmSJEmSJEmSJEmSJEmSpMPL9OtDy6VyPpz/MHS3QqwoBHr1VToV5n849/zSKXDu/fDC96HleRhzCkx9XeY6/ZXPgpfcA898DnY9A2NOgPkfD6FoACd8OwS3rfkpRPJg8rWw4NOp+Yu+Dve8FHY9neqrPSOMAyibBqfdBg+8Hjq2QqwYjv1cCHeDEMD2yHsg0ZG5t6l7wtMmXglrfp5ei8Rg0tWQ7IZH3gX0+8WyE69KXXs0FoLaNvwh8xxzPwBjT8v+2MSKYdwSiOXD7lXZxwAc8zmoOjp3veESeMm98OLN0NMGDZeG/eQKRlv5g1DPK8295sGkuw1aXoDdK8Prt3J+eL0mE+F5a98EdRdAfjU0LQ21kknQ0w6dO6FgDERzfKUs0QORaOq57OkIz0WiI5y3pxW6mqBtQzhvXnl4L8RLDtz1S5IkSZIkSZIOewajSZIkSftNcu9DJEmSJEmSJEmSJEmSJEnS6IkXD39ucT3M+9DQ51XOh5N/mL0WK4DF34Djvh6O+wetlc+A8x6Etb8MwWqV80PwV6wwNabhEqjfBLtfhOLG9BCswrGw5I9w37XQujbVv+hr0HhluD/vw7D5TujYlqrPeV+4XoBZ74TlX03V8qtg7r+m73PytZnBaNECmPgyKBwD1Ytg+yP95lwTQtEAao6HaD4kOtPH5FWEcLm9qVkcWl8VR4XHrL91v4afloX7jS+HCeeFELHVP4GmZTD+JSFobPw5sOF2WPrF8Dy1roGyWVA+M+yzqwnW3Jq+9rTroXgiNFwOFXMgmrf3vSeTsO5XsOonsOlP0NUM098UXqtPf3rv8wEee+/gxgFMegWsuiWzv+FyWP/77CF62VQvCo/dzLdD0QTo6QyvgaZl0Lk9hLmVzQghdOWzYcffQ2Dbzidg55N7HqdLobA2PP6RvBCyJ0mSJEmSJEk64hiMJkmSJI2I4WeSJEmSJEmSJEmSJEmSJGkf6x+I1le8OISIDTg/CqVTs9dqT4PLVodgtLxyyCsL43tVLQjhay/eDO2bQyBYwyWp+sIvw9hTYMMfQwDWlFdB2fT0c0y+Dpqfg2f+PYSGFdbCyTeHUDSA034B91wB2x8Oxw2Xw8KvpObnV8Kka2Dl/6SvO+0NIZRsOOKlex+z+ieh9fXi/4aWTduGECKXy4rvhNsnPxJuy+dA6TSY9jqoXgwlEzPnPPFhePpT6X3Lv5I5bl/JFooGsPa2oa2z/ZHQ9hbeNlD9wTemH0ficNrPQ6Bc9aLwOuqvuzWE7kVj4floehYiMSidAokuKBwH8aKhXYskSZIkSZIkaVQZjCZJkiRJkiRJkiRJkiRJkiRJkiQdSSKR7KFcvUqnwrwP5Z7b+LLQBlr/6I/DUR8MAWxl09LD10omwvkPhVq8BPKrMtc4/luhf/VPIZoPk6+F+R8b3PVlM5hgtP2taWlo638z2js5NCS74e7LDuw5y2ZC41XhtdfdBsu+AF1Nqfr8j8GU63IHD0qSJEmSJEmSRsxgNEmSJGl/SSZHeweSJEmSJEmSJEmSJEmSJEmjJ14E5TNy14sbctdi+bDoy7DwSyFobaQKx498DR3+mp+Fpz+du/7kR0IDGH8OFNVDrACqF0NPK6z/PWz4Q6hXL4LaM2HGm6FsOnTuhFgxJLugYxsUT9w3r21JkiRJkiRJOswYjCZJkiSNhOFnkiRJkiRJkiRJkiRJkiRJ+8++Co6a+FJYddO+WUsC2HhHn4NvZda3PxLasi/ufa3iBpj/Uag5HqKF0LQ0hPmVToa2DZBXDiWTQrha925Y+QPYfBdsvQ/KZkDJZJhwPhRNgPaN0NUM064P9zffBXmV4T0QzQs//2wgmyRJkiRJkqSDmMFokiRJkiRJkiRJkiQdISJZvuiU9BdASKMikUhk9GV7j0qSJEmSJGkfmXglTH09vPC90d6JlKl1LTxw/fDm7vh7aGtvS+9/7L2ZY/MqoacVEp3huOGyELRWcyJULYCieiABRXUhbA2gYytE4xArgqVfgA3/B+WzYdLLYexp4Xj3Kqg7H8qmQzIBkejwrqVXTyfE8ke2hiRJkiRJkqRDlsFokiRJ0n7jlwklSZIkSZIkHVyi0cwvInV1dZGXlzcKu5GObN3d3Rl92d6jkiRJkiRJ2kciETjhO1B7Oqz5eQii2vHYaO9q8IomQLwUYoUhlGr1T4c2v+ZEiBdDcQOs/MH+2aMOfl0704/X/jLcbrxjaOtsuQdWfDu975Es4wrHQfumcL98NjQ/D8l+fzcaK4Se9tznGnsKJHrCa3f82dBwORSNH9w+ezohmhfe/5IkSZIkSZIOGQajSZIkSSNi+JkkSZIkSZKkQ0ckEiE/P5/Ozs5/9LW0tFBcXDyKu5KOTC0tLWnH+fn5RPxyniRJkiRJ0v4VicDU14QG0NUEP63IPrZkCsy7ESKxEKLWtBy23Q+l00JQ0xMfzjFvElz2Yghy2ngHPPx2aHl++HuuPQPO/ktmsNOvZuRe96KlUD4LundDNB6Cp/o66X8gmYSWF0JIWncLTDgftvwVnvp49jVP/Rn89arM/uJGuHQF3DLAL+C4dAXsegb+/gHo3A6Vx0DZNCACz3499zwd+npD0QCalmUfM1AoGsCWe8PtNmDNz+Cht2SOqVwQAtC2P5xZK50aggW7W8NrvXt3eB32tENRHdRdBJEotG2AWAFMflUIdCuohq5dkOgK7+uC2rBeNBbe34lOiBelnyuZNIRNkiRJkiRJ2gcMRpMkSZIkSZIkSZIk6QhSVlbGtm3b/nHc1NTE2LFjDWSSDqBkMklTU1NaX1lZ2SjtRpIkSZIk6QiWV567NvcDMO31ueu5gtEaXx5uozGoOw8ufW7P+H+Dpz4xtP3N/xgc9f7sQUuz3x1C1/qb+XaomB3u55XmXjsSCeFkR38s1ZdfmT0YbdobYcJ5EC8JoVJ9TXlVCF/Lpf7SEExVOhXqL86sT3k13L44+9ySSbB7Ve61pV47H89da3khtGza1sOKb6f3rf7p4M8biUOye+/jiifCxKtgxyOw+e7sY07+EVTOh9Z1IYyxa1cIeysYA2NOgvbNUDY9BLVtvAOi+VB3YXif93TA2l/CM5+B5ufDZ9vY02Duv0LV0ennaV0H638LRGH8kvDe7JXoguYVUDYjfIb1Z/CbJEmSJEmSDhCD0SRJkqT9JjnaG5AkSZIkSZKkDP2D0bq6uli3bh319fWGo0kHQDKZZN26dXR1daX1l5cP8CVcSZIkSZIk7T+TroFVN6f3RaJQf8nA86a9MTNQCWDyddnHz/sIrP4JNC0feN1rB/nzp41Xh7C1zu2pvmg+TLt+cPOzqT4uhDet+Vmqr7AW5rw3hC+ddivccyV0t4Ra3UVw1PtS+1n948w1p71hL+dcCMWN0Lo6vX/CeXDWH+CmIf699bizYfF/wG9mD20eQOE4aN80tDmRGCR7hn4uHR4GE4oG0LoGln954DH3vXLk++nV3RLej73vyWyhhn01XAY7/p49iLDmRNh2f7hfMhmIwO6V4XjMSTDjLeFzLxKBRA+0PA9F9dC8HLbcC9GC8HlaMAZ2PQn5VelhbJIkSZIkSVIWBqNJkiRJI2L4mSRJkiRJkqRDS2FhIXl5eWmhTM3NzaxYsYLy8nJKS0uJx+NEo9FR3KV0eEkkEnR3d9PS0kJTU1NGKFpeXh4FBQWjtDtJkiRJkqQj3NwPwaa/QPvG9L6iCQPPm/1PsO5X6UFak6+DqqOzj4/G4Ow74aG3wtpfZB8z4y2D33fhGHjJvfDIu2D7Q1AxFxZ8CqoWDH6N/iIROOUWeOG/YfPdUDolBJuVNIb6hHPhik2w9X4oqoPymSFEDmDm22DNz9ODospnQd2FezlnFE78b7j7cuhuDn3FjbBwT4jUjLfCc/8vc16sEHraM/snvzLsbajGngLlR2UPu8uldBpcvAx6WqG7FTb8AWJFUHsmPPbP8OKPhr4PaX8YKBQNYO0vc9d6Q9EAdr+YXtv6t9D+9uqB13/ozQPX8yohryy02jOhcDy0rYeCaogWQtdOSHSFcLWJV0Ll3OzrJJPQsSWst/Nx6GqCinlQNG7g80uSJEmSJOmgYzCaJEmSJEmSJEmSJElHkEgkQl1dHatXryaZTP3yh66uLrZt28a2bdtGcXfSkaf3PRmJREZ7K5IkSZIkSUemyrlw/kOw+qchiGf8S0IA2N5UzIZz74eVPwhhQbVnwJRXDTynaDycfiss/wY88o7MeuPVQ9t7xWxYcvvQ5uxNNAbTrw8tm3gxjF+S2V97Gpz1e3jmc9DyAow9FY79AkQH8fW18Uvgkudg058hXhIey/yKUGu8Knsw2kk/DAFu63/XZw9nwqSrwx7HngJb7u03KQInfBceeH3mehOvguqF2YPRGi6D9X+AREd6f+NV4fqi5ZBXDlNfm6pVLgCGGIxWNAEmviy8nvIqYOzJUDIJnvn38Npsfi41duY7oGAsdO2CbQ9C8cTw+kp0wbNfz32OxpfD6p8MbV/S/ta1MzSAXc8MPPbJj8DY08JnzIbbYceje1+/oCa8Z8aeFoIwW56HLfdB57ZUaNyEC6B8NtSeGgIOi+pD4GQkCp3bQ9haNDay65QkSZIkSdKgRfr+kLN0JIpEInOBp3qPn3rqKebOzfFbIyRJkvpLdMEt+dlrk66FU/xNb5IkSZIkSZIOTq2trRnhaJIOrEgkQmNjI8XFxftszaeffpp58+b17ZqXTCaf3mcnkCRpiPwZPUmSJCmLrha4+9IQ0NNr6uvhhO+AAfrpkkl4/EPwzGdSfTPfDgu/AiRg7W2w/VGonB/CzWJ7fq5328Pw53NCcBhAtACO+xpMfxMs/SI89t7UenUXw6m3hDCkPy2BzXelavEyOOeuEKR033WQ6Az9tWfA6bdBfmX2fe9aCr89KrO/dFoI3nvuPzNrJ3wXpmUJbevV1RLOX1Cde0zHdvh5Tfba6b+EhkvT+5LJ8Bi1roP7roGdTwIRGHdWCFF76M25zyUdiWKFUDIFWtdC+UxIJqBlJZCEwnEhLDFWEgIaJ18HHZth8z2w4Q9hfsVcqLsQJl0DpZOBSFizY1uY37EFtv4NYsUhHDGvfBQvVpIkSZIk9efP5x04BqPpiOcPXUmSpBHp6YQfF2SvGYwmSZIkSZIk6SDX2trK+vXr6erqGu2tSEecvLw86urq9mkoGviDV5Kkg48/oydJkiTl0NMBG26HXU9DzfEwbomhaANpfh52PAaVR0PZzME9Vm0bYfXPgARMOD+EGP1jvRUhfKhsOlQvhmgs9He3wdLPw+a7oXQKzHwHVB0dau2bYctfoagBqheGAKSB3HFGWKevY78A48+G/zsJetpT/UX1cPEyyCvd+3Xtze+OgZ2Pp/fFS+ClGyCvbOC5XU0hkKn32v76Clj94+xjr+3zvcSu5nCOSDQcv3hLCFrL5pRboGpheMy3PgjJHmi4BNbcCve/LvucCx6HrffBQ2/JrJVOg5YVua+pqD48X1ULobsZln0p91jpYFQwFqJ5kFcBkT2fVXUXwJTXhPfP8q/A7lVhTP2lMOak8Bm5/OvQtBTat8C8G6H2tDA/vzoEsCWT0LQcttwD2x4IIW9l06HhpSG8zT+TJEmSJEnK4M/nHTgGo+mI5w9dSZKkETEYTZIkSZIkSdIhLplM0tHRQVNTE83NzXR2do72lqTDVn5+PmVlZZSXl1NQUEBkP3ypyB+8kiQdbPwZPUmSJElHrM5d8NBbYf3voKAapr8J5rwvhA1tuQ+e+mQILao5ARZ+AYob9s151/4S7rkKkt2pvgWfhrkfHPpa634Hd12U2T/+HFjyx9zzOrbBL+og0e/fHKoWwgWPZJ/T8iL8akpmfzQPrtoRgtcAEl3Q/ByUToVYYWrczidh+6NQOA5qz4B4Ufbz/KQ8BKRJGrqCMdCxNXstvxoKx4YxBWMgXgata2HznaFefwmUzwnhbD2tUD4rhIRGolAyCfJrINkFRXVQNiMVtNhXMhHmRPNDPde/syS6obslfEb0/ZyQJEmSJGmE/Pm8A2cvv5ZCkiRJ0vAZQixJkiRJkiTp4BeJRCgsLKSwsJDa2lqSySSJRAJ/0Zq070QiEaLR6H4JQpMkSZIkSZJ0kMqvCL9kOZnMDO8ZezKc9bv9c96Gy+Ccu+HFH0HPbqi/DCZePry1JpwbAshaXkjvn37DwPMKamD2e+CZf0/1ReIw/99yzymdHELitj2Q3l9/aSoUDUJQWsVRmfMr54e2N3M/AI9/KLN/zMmw9b69zx+MyvkhqC2Xy9dCcX24n0zAjsdg9yooHA9Vx8CLN8GDb8w+N5qfGTjXa/y5MOlqeOANuc+9t+ucfB3sXglb7s09RkeuXKFoAJ3bQ2N59vq6X4c2FEUTINkTgs5IQvfu9Nf/mJOgejGs/D50NYXwxYGUl8UAACAASURBVB2PZl9r/LlQvQialsGYE8J7r3I+7FoagtrKZkHlXOhqCe+B4onhMynZBbGiEMTWvhnW3gadO6H+4uyfRYkuIAJRv74tSZIkSdJI+H/WkiRJ0oj4xUBJkiRJkiRJh5dIJEIsFhvtbUiSJEmSJEmSdHgYjV+YMPak0EYqGg8haw/eAJvvhJJJMOdfoPGqvc9d8BkoPwrW/wbyymHKq6H29IHnnPpjuPMi2PV0OB57Ciz+5ogvI039ZdmD0SZdHQKNtj+UWcsadBaBeHEIaupv9j/Dyh/Cpj9l1qIFIQDtH8tEQ1hT9aJU35gTcu//kmfht/Ohuzm9P14Kp98KrWtzzz3uG1B3AfxqWvb69DfB8f8VAqNuzvFvRQs+BdOuhyc/Cmt/Be2bwuti7Cmw7SFoWpr7/NJQtW0YuL71b6H1yhWKBrDx/0IDWPuLke/t7+9P3a89M4TC7Xwi1Tf2NJh8DTRcEcLVIrEQ9DZciZ7weTHQnynJJJAM4yRJkiRJOsQZjCZJkiRJkiRJkiRJkiRJkiRJkiRJkjIV18OZvwmBO0MJeYtEYOqrQxuskklw4ZPQ/GwIECudPOTt7lXl3BDu1Tccre4imPYGyKuE+1+TPn7sKXD8t+FPS6B9Y6p/9nsgVgxPfzJ9fDQf6i8GktmD0eovguhefkFNxVwomQK7V6b315wYHqOZb4NnPptem/FmiJdAcWPYQ6Izc91xZ0PhAMFMZTPCbSQaxmbbf8PlUFgLi/9faNm0bwmBVuWzIZYPNw3wupnxNnjuP7LXJl0Lq27KPVc6WGy+M7Nvyz2hPfTW4a0ZKwaSkF8Nbesy66VToageelph+yOZ9VN/Ej4POrZCwVioOhq6miC/Jnw+xApHJ7hTkiRJkqRBMhhNkiRJ2m+So70BSZIkSZIkSZIkSZIkSZIkSRq5AxWgE4lA+az9e465/woTr4Qt90H5zBA4Fo2FELdkTwjqat8EE86DhV+CvHI470FYdUsIKBq3BOovge4W2Pq3VIBYNB9O/D4U1MDk62DXM7D086nzFjfCgs9m3VKaSBSO/ybccwV07w59BTWw6Kvh/oJPh7CkVbcACWi8Go56X6jFi0Iw25pb09esOgYqZof75bOhaVnmeRtemrp/1Pthy92Q6Er1TbwSKo7a+/4Lx4bWq/FlsPqnmeN6H6tcwWjHfn54wWjnPQg1i2H3anj8Rtj59/DY1yyG0mnQshKqFoSxOx4PYXPVC8NzXtwAd14ILS+krxnNS38spP2tpzXcZgtFg/Aa7f867euvLx/ceSrmhvdETyvES0MYZtsmaLwqhCBu+CNsfyjUzrkrfM6tuTV8VpbPgp522PU0FE+E6uMg0RHGjDk5fK42LYdtD0PJnnq8eGiPgyRJkiTpiBVJJg1r0JEtEonMBZ7qPX7qqaeYO3fuKO5IkiQdUnra4cdF2WuTXgGn3Hxg9yNJkiRJkiRJko5oTz/9NPPmzevbNS+ZTD49WvuRJMmf0ZMkSZIkHdYSPSF4a/fqEARUNC69vvPpEJ4WL4G6CyC/cvBr714FG24PIUMTzoei8YOb174Z7roEtj0YjkunwZm/TQXOPfef8NBb0+fUXQxn/jq9b/M98Nw3oX0jjH8JzHkvROOD33+v9bfDneen9xXUwKUvQrIbbh0fwpT6Kp0GlzwHf/8ALP1c5przPgIv/i+0rEjvLxwHl68JQWbD1dMRgp+6dsK4s0N4HsCtE8Jj0d+ir8Gsd4T7bRthwx+gcALUHBfWIgG3TRz+fqTDXXEDtK5NHY85GWKF0N0Ku18MQYYtL4SQxTEnQVEddGyFkikhhDGvPMzrboFoIZAI8yVJkiRpP/Dn8w6cYfwtlCRJkiRJkiRJkiRJkiRJkiRJkiRJ0hEuGoPqRaFlUzk3tOEomQTT3zT0eYW1cO790Pxs+EXgFfPCPnvNeAsQhee/BZ07oP4iOCZL+FjtaaGNVN15cPKP4KmPh3CjmhPghO9AXmmoz3wbLPtS+px5N0IkAlNeBcu/AonOVC1aAFNfEx7Xe68N4WoARGDBp0YWigYQK4DJ12S5jgvhhe+l90Wi0HBZ6rhoPEx9bebchpfC2l+MbF8A1yRgx2Ow8ofhsSyZDBMvh6pj4GfVueeddTtsfzQ8NvlV4Xnv3g0Vc6G4Hrqaw7XsegY23w1rfja8/dWeDrVnhtCqjq2w8wloWja8tXTk6BuKBrD1vvTjDXsCCZ/+9NDXnvVumP+RoYVSSpIkSZIOCgajSZIkSftLMjnaO5AkSZIkSZIkSZIkSZIkSZIkHWkiESiflbs+44bQDpTJ14aW6IZov6+1HvsFKJsOa24LYWlTXgMNl4Za5Tw487fw2L/Azqegcj4c9w0onRJaUUMI8Up0wcQrYNyZ++8a5n4QNt4Brav79N0IJY17nzvt9ZnBaPFSaHwZvPDfgzv/Ue8Pz2v1wtD6m/XuECLX38QrYMK5oe3N+LNh1jvgF/XQtj77mKpjQzhbNmf/JQSsZfPUp+CJG7PXZr4Tnv1a9tr0N0HtGSE8q2MbbH8INv0l+9h4CYxbEgLeWlZkH6Mjy/KvhPft2X8KoZGSJEmSpEOGwWiSJEnSSBh+JkmSJEmSJEmSJEmSJEmSJEnS3vUPRYMQ9jXjLaFlM/4cuOCx7KFqY08K7UAomw7nPwRrboXWdTB+CYw7a3Bz6y+Gxd+EJz8C7ZugYi6c9D8QLYBVN0NP+97XaLx64PrEl+YIRrtqcHvsa+6H4OG3ZfZXHQsz3wYPXJ9ZK5qQOxQNoO787MFoeZVQs3jgvfQPn+vpDIFyO58Ij+WkV0BBdebcnnaIxEOg2rYHoaAmhMr1tMGTn4C2tSFcb8K5UDoNWp6HOy/MvZdJr4BVt+Su6+C06ylY8d0QbihJkiRJOmQYjCZJkiRJkiRJkiRJkiRJkiRJkiRJkqSDV7ZQtQOtsBZmvHl4c2fcANPfBN3NkFee6l9yBzx+Ywhvqj4OFn4JXvgeLP3CngERWPhlqD524PXHngZz3ttnHjD5Oph45dD32nAZPPIOSCb69V8OdReFALT+tUnXDLxm1UIonwVNy9P7p1y3J2AuAvT7xfUFY6GoPnOtWH54PPcmVhhui8ZBwyXp/Yu+lDm+fEZ4jts3Z9ZO/hFMvjYE9K35WfbzXd0RHpvVPw3Pw45HIV4WnvOieujYAonOve9b+97GPxqMJkmSJEmHmIPgb4IkSZKkw1Vy70MkSZIkSZIkSZIkSZIkSZIkSdLhLxJJD0UDGHsKnPOX9L5jPw+z3gO7noaqY6FwzODWPvbzMOU1sP0RqDgqBK1FIkPfZ3E9HPf/4OG3pgLQxi2B2e8O+1/4FXjknanxVcfAnPftfX9n/AbuuhSaloa+iVfAMZ+FeAnUXwLrfpU+Z8abIRob+v5Hov5SWPGd9L5oAUw4P9yf+prswWhVC0NgG8Dka0IbSMe2EJ7WshJqjoNpb4T8ilT9pgGet4uXw29m5a6fcze0b4I1P4fVP4Nk98B7ORJ0bB3tHUiSJEmShshgNEmSJGlEDD+TJEmSJEmSJEmSJEmSJEmSJEn7UHFdaENVOS+0kZpxA0w4D7beByWToeZ4iO75SvKsd4SgtM13QnEjjF8Sws32pmw6XPQ0tLwAeRXpgW+n3BzC1tbeBvEymPpamPfhkV/HUM37N9jyV2haFo4jUTjua1BQHY7HvwQKa6F9c/q8qa8Z2nkKauCYz+SuT3sjrPh2Zv/cD0H5TJj5dnj2G5n1ya+C2tPC/car4NgvwK5noHAsVB4drmf3GvhlY/bzzv4naLgc7jg9997m3gid26CrGV7839zjDiadO0Z7B5IkSZKkITIYTZIkSZIkSZIkSZIkSZIkSZIkSZIkSVJK6eTQsqmcG9pQRSJQNi2zP14MJ3wHjv92GDNaSibCeQ/Cxj9C24YQAFcxJ1WPFcCSP8G9V4fAsVgRzHpnCCrbl6ZclyUYLQKTXxnuNrw0ezDapKvTj4vrQ+uraALEiqGnNXP+5FdC9UI46X/hb9dl1iecDws+kTrOFYxWvQhO/Rk8+RFY+YPsY16+G6L5IXAvmYTdL4bAvObngQSUTodYfhiz8c+w/KvQ/GwYByFcbsprQlBdsge2PwJrbs1+LoPRJEmSJOmQYzCaJEmStN8kR3sDkiRJkiRJkiRJkiRJkiRJkiRJh4bRDEXrlVcGE6/IXa+cBxc9DW0bIb86hHfta7Wnw/Hfgkf/GbqbIb8qBMf1hrSNOwuO+iA885nUnFnvDsFlexONQ+NVmYFlZTOg6thwv+GycM7+gWLT3pB+XLkAdj6eeY5Z7w6herP/OXswWtnMEIbXKxKB0inhfsHxmePrLwxtbzbdBX86M7O/ezfseBwqjoJo3t7XkSRJkiSNOoPRJEmSpBEx/EySJEmSJEmSJEmSJEmSJEmSJOmIUjR+/64//Y0w9XXQugZKJkEkmqpFInDMp8OY7Y9C5Xwonzn4tRd+GXa/CJvvDsfFE+G0W1PBdHmlcM5d8LdXw46/Q+E4mPfhEKjW18QrMoPRogVQf3G4Xzkfak6Ebfenj5nx1sHvdSjyq3LXfn9MuK27KDye2x6E4voQBldzIuRXQF55CLsrGAvRWGruqp/A8/8FXU3h2ub+KyQT0LYOihtD2NxgJLqBSPrayWTqcU90Q7IHYgVDumxJkiRJOhwZjCZJkiRJkiRJkiRJkiRJkiRJkiRJkiRJB5NoHEqn5K6XThm4nktBNZx9J7SsCGFflQvSw7oghJpd8Bh0NUO8NBXe1dec98L2h2Hdr8NxrBBOvhnyK8NxJAJn/Q4efDNs+AMUjIEZb4FZ7xz6ngdjoGC0Xut/m7q//WFY+8uhnWP7w/DkR9P78sqhYh5E88Nj0L0bonnhudn6AOx6au/rxsuguzm9b+Y7wmNVOi398U8m0oPyevsSXWEPXbugZSVUHJU7ZC1bSNvedLeF57qnFSZcAEXjBj9XkiRJkobIYDRJkiRpf0kmR3sHkiRJkiRJkiRJkiRJkiRJkiRJUrpIBMqm731cXlnuWrwYTv8lND8Lu1dBzQmQX5E+Jr8KTv1x9jCvfW0wwWj7Q1cTbL0vs3/TENboH4oG8OzXQxuJSDQ89gBFE6BqEbRvgqal0N0SQu9mvh3aN0PReGjbCKtugspjoP4iqL8ENt4BT308XGevaD7M/1hYs2kpxEpgzIlQOS/09T7fiZ5wG4nsCW/rhp62EBwXLx7ZtUmSJEk6rBmMJkmSJI2E4WeSJEmSJEmSJEmSJEmSJEmSJEk6EkUiUD4rtAHH7edQNIB4CeSVpwd4Hel6Q9EA2jZA22/S690t8MxnM+dtuz+0Jz6cfd1EJzz+wZHtrXwWVB8PhbXh9VF1LDRcDvGizLEHIlhPkiRJ0kHFYDRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0qErEoG6i2HVTaO9Ew1G0/LQ+iuZAoXjoLghhNz1tMHW+yDZA7FCqF4cbiecD+POgEQP5FeGllcBsYIDfy2SJEmS9jmD0SRJkqT9JjnaG5AkSZIkSZIkSZIkSZIkSZIkSZKODIu+DDseg6alo70TDdfulaFty1LraYct94T7G/+YfX6sEPIqIb9iz+2ewLT8ysH1x0tCyJ4kSZKkUWUwmiRJkjQihp9JkiRJkiRJkiRJkiRJkiRJkiRJo66wFi58ErbcDY/fCB1bofnZ0d6VDqSedujZCO0bhzc/EusTmDaEQLXe/rwKiMb27TVJkiRJRyCD0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJh75oDMadBefeG45bXoBfTcs+9pjPwriz4fbFudcrmQy7X9zXu9TBKtkDndtDG6542eCD1DL6KyBWuO+uR5IkSTpEGYwmSZIk7TfJ0d6AJEmSJEmSJEmSJEmSJEmSJEmSdOQqboT8KujckVmbdC2UTITF/wkPvSWzXjEXLnoKkkl44sOw7MvQ0wrVx8EJ34aqY8K4nk74cUH281ceDRc+njpe8T144A3Zx16xBbpbYPWP4e8fyKzXnAhta0NYW7wENtwOkSgkE6kxeeUhmKttXeb8vHLoasp+bu073c2hsXZ486MFITCtNzxtUIFqffrjpRCJ7NNLkiRJkg40g9EkSZKkETH8TJIkSZIkSZIkSZIkSZIkSZIkSTooReMw7XpY+vn0/rqLQygaQMNl8PDbIdmTPqbx6nAbicCCT8LcD0GyKwSP9Q2eiuWH0LJt92eef/Z70o/Hn5N9nyWToaAGCsfAUe8PbTB6Q9Ei0cxa5w7Ych+UToPyWdDyAvx6evZ1cu0foGohnP8wPPt1eORdg9uXhi/RAe2bQhuOSLRPoFqfwLS0oLUs/b1ha3nl4X0jSZIkjSL/i1SSJEmSJEmSJEmSJEmSJEmSJEmSJEmSdHha8GkgCS/8Twidqr8EFn8zVS+aEI4fuiEVNDb+HJj1zvR14kVAUfZzTHpFZrBYrBAaLk/vK2kMfWtvS++f9a70sLXByhaI1iu/CuovSh0X1eUeO+Mt0Lw8hKn1d/THwt5mvRPGvwS23hfC4RouD6FwK74LD1yfe+2r22DjHXDXJdnrp/4Edq+GFd+BpmW519HgJBPheezcAbuHuUa8NEtgWsXgg9Zihfv0kiRJknTkMRhNkiRJ2l+SydHegSRJkiRJkiRJkiRJkiRJkiRJknRki8bh2M/DMZ8LoVHRWOaY6ddD3fmw+a9QOhmqjwvzBmvm26DpGXj+W+E4rxJO+2kIiervlJvhsffDul+H+rTrQzDZ/hYvgqqFsOPR9P5oHtRdCJvvghe+l17Lq4RxZ6eOK+aE1lfdxbnPWTIphGTVngHxEujul9RVdyE0vizcL50C91yZfZ0574Oln8teW/hlGLcEunZC5649tzuha9ee2779fes7IdGVe+9Hsu6W0Fg7vPnR/MxAtVxBa/378ytC8N5wggIlSZJ02DAYTZIkSRoJw88kSZIkSZIkSZIkSZIkSZIkSZKkg18kApEsoWi9ihtg8iuGt3Y0Dsf/Fxz9KWhdDZXzQ+BYNrFCOO6roR1o8z4Ef305JHtSfTPfAYVjYMEnYfvDsPOJPfssghP/OwSqDaRoHCz4DDz+wcxa48vDbV4ZHPsFeOitwJ7vYxWMhQWfSo2tOTH7+tF8qJyX+/xVx0LV0QPvMZtkEnraBxmolqO/f9CbgkQntG8ObTgi0RCW1j8wLS9HkFq2+lCCDSVJknTQ8b/mJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEkaqcIxoR2sJl4BZ/0frPwf6GqC+oth6utDrWgCnPcAbP0btG+B2tNC32DM/UAIP3v47am++kth/kdTxzPeDNXHwYY/QH41NFwGxfWpenEdjD8HNt6Rvnbjy6DmhNznLps+uD32F4mE0Ld40eCvs79EV3gchxqo1tvftQuSieGd+3CWTEDnjtCGmz0XLxlkoFqO/lhheI1IkiRpVBiMJkmSJO03ydHegCRJkiRJkiRJkiRJkiRJkiRJkiSljF8SWjaxQhh31vDWnfk2mH4D7HgMCsdBSWPmmJrjQsvl5Jvh3lfApj+HUKr6y2Dxf0K8FMpmQPNz6eOrj0sPVzvQonlQUBPacCQT0N2SPUjtH+FpAwWt7YRE5769psNF9+7Q2tYNb340PwSmVR8HM24IQX4j1fIirL0NCmuh7qIQwiZJkqSsDEaTJEmSRsTwM0mSJEmSJEmSJEmSJEmSJEmSJEkiGoeaxcOfXzgGzr4DOraH0LG8slRt8Tfh7ktD2BVAfhUs+urI9jvaIlHIKw+NicNbo6d9gEC1QQStdbfs00s6bCQ6oWMLbPh9aH3N/yjEyyBeDPESiO25TTsuhtievlgRPP4hWPrvIQyv15iTofZ0mP5GaN8S+pI9UHVMmNereQV0N4f3xbpfQaI7vDd2PAYbbg9jSibBUe+HKa8Oe5AkSTrEGYwmSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIODgXVmX3jl8BFz8D634fQtAnnQXH9gd/bwSZWCEXjQxuORDd0NWUGpg0laK1v2NeR4MmP7pt1tt4X2jOfHflau1fBQ28NrXBcCN2LFYfnpuFyaLwKEh3Quh5e+C5s+gsU1UHZdFj8X1AxO6yz7WHY/jAUjof6SyAaG/neJEmShsFgNEmSJGm/SY72BiRJkiRJkiRJkiRJkiRJkiRJkiTp8FDSCDNuGO1dHF6i8RBEly2MbjCSSejePbxAtd77Pe379pqOdO2b0o+Xfzm0/trWh/bbOeE4mgeJrvQx5bMhVgSdO/Y8XztTtcJxMO4siJfBzieguxkmnA/z/g3yK1LjeoPzItFw27Q8tNKpUHFUqn+wOneE11zh+PD6lSRJhyX/lJckSZJGxPAzSZIkSZIkSZIkSZIkSZIkSZIkSdIRKBKBvNLQihuGt0ZPO3TuSoWnDRSo1hvO1be/u3nfXtORqn8oGkDTstzj2zfBqlvS+3Y9A8u+lH38hPOhYytsfzh7PZoPZTMh2QPF9SGQbfuj4Txl06GnbU8oWksqbA2g5gSoOhZiBSGkLb8ytLzKzPt5FYapSZJ0iPBPbEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJB14sUIoKoSiccObn+iB7qaBg9Q6d2UGqvUNYEv27NtrUqYNfxi4nuiEXU+F+01L02sDBbRteyC0wYqX9gtLyxKg1huiljGuAqJ5gz+XJEkaNoPRJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSdOiJxiC/KrThSCahpzUVmNayAu6+bN/uUQeP7pbQWDu8+fGS7GFqOQPWDFaTJGk4DEaTJEmSej33X7DyB+EvMRsuh7k3hr8UHUgyeWD2JkmSJEmSJEmSJEmSJEmSJEmSJEmS9q1IJIRdxUuguB4q58JVO2HZF2H1T6BpeeacvAoorIXu1vB9xO7dkOg88HvXgde9O7S2dcObnzNYrWIvoWp7xsTy9+31HG6SSWh+DlpXQ/FEKJ0G0Tj0dIZQukgk99zOXZBXPvAYSdIBYzCaJEmSBLDsy/DoP6WOd/wdWtfBCd8a/pqGpkmSJEmSJEmSJEmSJEmSJEmSJEmSdGjJr4CjPx5a7/cEe9og2QOxYojGMuckuveEpPUJS+vec/vns7Ofp+FyaH4edj01/L1G86DhClj94+GvoQNnpMFqseLcwWlHerBa63q4/7Ww8Y/Z63kVUD4b2jfB7hdzr1N7Znhv5leE7xlvuRealsHuldnHVx4NY06Cogmw/REoqAnvyfqLIBINYxLdsPRzsPluyK+GadfD+CV7al2h7X4RWteGevWiENCWTEDLCyHsrXs3tKwMz2XDZSGcUZIOYwajSZIkSQDP/kdm38rvw8IvQV7pAd+OJEmSJEmSJEmSJEmSJEmSJEmSJEkaZZFIuI0XDzwuGodoOeSVZ9YWfRUeeVe/daOw6GshdOm+a7KvedX2EGrV0wo/HwM97ZljprwaTvgOcAusuS18L7JtQwhrmvpaKJ0WQpfW/w5W3QLdLVA2E2pPD8eb74RoPpTPgaZnwlgdvHpaoa0V2tYPb36saHihar33D9Zgte5W+Mt5A4cMdu2CbQ/sfa3Nd4Y2WDufCK2vF74fbiNRiJdD1870+qqb975urDg839k8+CZYcgd0bINEB1TMC59RpdMh0QnNy6HpWahaAOWzBn8tq34Cj7wzhMcV1MDib0LjVSEgcstfQ3hbtAAq5kDZjPDZEYlCV3P4fMqvDJ8hLSuguDGEy/XqagGS4TWY7A6ffa1rofY0KJ06+D1KOmIYjCZJkiR1bAv/k91fogvW/gKmvGqAycn9ti1JkiRJkiRJkiRJkiRJkiRJkiRJknSIm/5m2Pq3EEQGEInD8d+CkokQOyccJ7vT55TPCkFUkQjES2DWu+GZz2auPfX1qfsTLw8tmxk3hNa/D0LoUW8AXDIBzSugoBq6mmDdr0P4Ud1FkFca9ppXFr6Xue7X0L0b8qth7S/D9zETnUN7bArGQMfWoc0ZSOXRIQCrc2e4VbqeNmhrC+F5wzGUYLW8isxarGDfXk+vNT8fOBRttCQTmaFog5UrFK3Xn88Z3Dolk2D+R8PzESuGwloonw3bH4I1t8LW+8Pz2j8MrmMb/PVlw9l5pnhJ+KwYyLglIbSxYysU1YXPkoIaGHsabL4rhNrFiqFwDBROgO2PhKC26uNgwaegdPK+2aukg4bBaJIkSVKiO3etu2UECxuaJkmSJEmSJEmSJEmSJEmSJEmSJEnSES2WDyffBPM/Ds3PQc1iKBwbaoVjYPob4bn/TJ9z1AdSYWUAR38SiMCyL0GiIwSUzf8ojDlp5Pvre55IFMpnhPsFNTDrndnnFNTA1Nemjidfk33cTZHs/TUnwHn3p47bNsKqm2H978K1LfoK/PGUEM6UMfd4OPdvsPPJEIiVVwGNLw9Bc30leqC7eU9I2s5wm+t+1j6D1TKMOFitcHCharn6cgWrbXtw+Nd0uNu9Cu5/3ejuYW+haACb/hzaUDU/C+t/A6f8GOrOH/p8SQctg9EkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZKk/SUSCYFjvaFjfR33DSidDut+BXnlIXBs4hXpY6IxOObTMPPt0LoaihtCO9iNW5I97Gjm29KPi8bD7PeE1mvam+CZz2TOnfGWEOBWtSC0XKKxVLDWcGQEq+0afKjaP4LVksM79+Gqpx16NkL7xuHNzwhWqwi32x7Yt/vUoaWrCe68INyPl0G8GNo3heNZ7w6fqQN9Vkg6KBmMJkmSJI1E0r+UkiRJkiRJkiRJkiRJkiRJkiRJkiRJwxSJwpx/Cm1viutCO1RMfX1mMFp+VWbwWzbT3wgrvgUd21J9pdOh8eX7do+5jDRYLZmAruYBgtP6BKjlqhmslm6kwWo6/HU3h9Zr+VdC+//s3XmUpGV9L/Dv09PD7AMM+zrs83+RdwAAIABJREFUIqIggqi4YBTFaFSMihqNGI9LjN6cmOS6JIbojcvNek2iSdRcJDcmUYlKFuOGmiCIYPS4gSKyqOwwIMwwCzM894/qoatrumvp7qrqmfp8zqnz9rP/CoZz6h3q/fb4quQZ30xWHTm82oCeCEYDAIB+/cWQ0DQAAAAAAAAAAAAAAAAAYFQd9pJk403Jle9OttyV7H588ri/T8ZXdF678vDkjEuTq/4w+dmVyZqTk4efm4wv73/d86GMJbvt3nitWNv7+vpAsnV9+1C1KQFrLX33/6yxB9AIS/vsKcnTL09WHTXsaoAuCEYDAIC2yrALAAAAAAAAAAAAAAAAAADY+ZSSHPfbyUN/sxHUtdueva1ffUxy6of6U9tCV8aSxasbrxWH9r6+1slgtV5D1bZfd/Zgtcd/LPnKC6cf2/dJyVO+1PgzmjTe69XvS37w5433fsDTk+PPTf7jhGTbxmn2/nhy6POT9dcl916TXPpLyebbpz9ryd7J5jumH1u8R3LUq5MDz0xu/lxy0380/r3VrcmipcmqY5LlhzTm/vD9vb1/ptpyV3LteckJ7xx2JUAXBKMBAEBbdY7jAAAAAAAAAAAAAAAAAAAjrIz1HorG3JSSLF7VeOWQ3td3Cla7/2edg9bqtnl/W10bX5Uc8Ixk5ZHJ+h/tOH7YSydD0ZLGn9GHvKHxanboC5Przp/at2h5csDTGj+vPLzxOvg5yY9mCPF7/MeSi35ux/7FuyfPXzdZx35PTk5898zv6VH/J7nu75Mfvq/x72fPE5NVRydb7002r2vUtHVDstseybd+J7n72zPvNZ2Hvz35zrkzj5/6t8mm25JvvaW3fZsd/7bku/9r9uvn6vZLhnc20BPBaAAA0DdC0wAAAAAAAAAAAAAAAAAA2MnMS7DahumD06YLUZvvYLVjfyNZvDI54V3JpS9O6gOTY/s9OTn8Zd3t84i3J3d8Nbn36ka7LEpOeV+yePXUeWvPnj4YbY8Tkn2emCw7KNl449Sxw395ajhbJ2OLkyNf0Xh1ctCzkjuvSO74WrJoSbJibbLx5uSyc6aff+J7kuPe1Pjn9N237zi+/JDkyF9pjM8UjLbi8OQJFySfedT04/s+MXnEO9oHox307OTGf5l+7HEfSfZ4RHL7xckVr5t5j3bWXze7dcDACUYDAID08JcGAAAAAAAAAAAAAAAAAADAzEppBJMtXpksP7j39bUm2+7rPVRt2YHJwc9JjpgID1v7wkbfdX+XpCb7PCE5/KVJGeuujhVrkzOvSG65KNl0WyNUbfUxO87b9/RGeNh9P5naf8QrkrFFyZP+JfnyM5NNtzT6939aIySsn/Y6pfHabut9ydd+ZWpI3Hb7/Vzjeshzpw9G2x4kV8aSVcdMBsU1O+mPkzUnNfa69Ys7jh/dKcysJA8/d/pgtDKeHPK8ZNHS5J7vd9injbmE7QEDJRgNAABSh7QWAAAAAAAAAAAAAAAAAACYopRkfEXjtfygue217+Mbr9lavDo55Kz2c8bGk6d8Kbnkxcm6KxprjvkfyUPe0Bhfc1Ly3J8kd30zWbJ3suKwxnscpPHlyQFnJjd9emr/8kOSNY9q/LzniclRr06u+cDk+O7HJce8frJ96AuS771z6h6LVzf2TpIjztkxGG3JXslBz54446Tkrm/sWN/Dz22cv+KwZMP1U8cOfk4jFC1JFu8+83t84qeSy16RbLlr+vGZ+oEFRzAaAAC0NZe/VBCaBgAAAAAAAAAAAAAAAAAAu7xVRyZnXp5suTsZX5WMLZo6Pjae7HXKcGrb7qQ/S3525WTw2PjK5DHnJWVscs4pf90IMbv9K8mqo5JDfjHZbY/J8Ye9Nbn7O8mN/9JoL949ecInGsFrSXLYS5ONtyRXvifZsq4RdvbY/5eML5sYf8n0wWiHvqBRx2n/lPznM5PNdzb6dz8+OelPJ+eNr5j5/S3ZJznmDcl33zH9+Lb7kus+kqz77+TWLyTbNifH/kYjGG7rfY33sPrYZPGqyTW1Jvd8v7H30r1nPhuYV4LRAAAAAAAAAAAAAAAAAAAAAABgrppDxBaa1cckP/+t5Nb/TLauT/b7uWTZflPnlJIc9MzGazrjy5MnXZisvy6578Zkr5OTRUunrj/ut5OH/mZy/73JbrtPXX/Ua5KbP5vc8vnJvoe/Pdn9uMbPe5+aPPv65PZLGgFlax6VLFoyOXfPE5JFy5JtG1vqWpns+chkyV4zB6MlyVdfOrV9xa9OP2/1Q5NlByS3fnFq/6l/myw7qBEut+nWRh1b1ycbfpysPCJZvDrZ/4zG+xhbPHMdc7HptmTpvv3ZGxYIwWgAADAXtQ67AgAAAAAAAAAAAAAAAAAAgM4Wr04O/oW577Py8MZrJmVsx1C0JFm8Mjn93xvBZ/f8INnncckeD99xzoFPn37f8RXJ4S9LrvnA1P4jXpGML0tWPyR59AeTy1/V2/tpdc9VjVerr72y89p2wWxJI1ht+cGN97L/U5IDn9UInLv3R42QtaX7JOOrki13Juuvb8xbdkAjEG3x7slXX5Yc9Kzk5L9ojMEuSDAaAAD0i9A0AAAAAAAAAAAAAAAAAACASWOLk/1Ob7xm4+T3NQLebvhoUsaTtWcnj/iDyfHDfmnuwWj9tPHGxitJbv1i8q3f6X2Pa89Lbrs4ecIFyZ4nzG99sACMDbsAAAAYPgFmAAAAAAAAAAAAAAAAAAAAC97YePLIP0qe++PkOdcmJ747GVs0OT6+LFlz8vDqG5T11ySfPTW5+v1J9bw8uxbBaAAAMCduEgEAAAAAAAAAAAAAAAAAABaMo14z7AoG44HNydd/Lbn2/w67EphXgtEAAKBvCdhC0wAAAAAAAAAAAAAAAAAAAAbqyF9JjnzlsKsYjD0fmRz20mFXAfNqfNgFAADA8AkwAwAAAAAAAAAAAAAAAAAA2CWUseTRH0wOeX5y+yXJirXJwc9O7r8nKYuSMp5svi3JWHLXN5P7703WX5Pc84PkjkuTrRuG/Q66M74yOe2jyaIlw64E5pVgNAAAmFMwmlA1AAAAAAAAAAAAAAAAAACABaWU5MAzG6/tlu47+fOKQxrXNY+cfv0dX0tu/WKy7IBkvycnFx42ixoWJXVb7+u69ei/SVYf3b/9YUgEowEAQO1XuJnQNAAAAAAAAAAAAAAAAAAAgJ3O3qc2XklSH5h53tL9kk237ti//JDkuT9Ott6XXPvh5L6fJnscn6x9UVLGkq0bkw3XJ5vvSNZfl6y/Ntnr5EYQ26IVyb8/dOYz15ycHPfm5NBfnMs7hAVLMBoAALQNMCsDqwIAAAAAAAAAAAAAAAAAAIAFpowle56U3PWNHccec37yX89JHtg8tX/t2Y3r+PLkmNftuG58WbL7RPjZvk+Y7tBM+xz8PqclZ3yll+phpzM27AIAAGD42gWjdVo6h7UAAAAAAAAAAAAAAAAAAAAsfEe9ese+PU9MDnha8tjzk7HFk/37nJYc9+a5nXfcm2ao47Vz2xd2AuPDLgAAAIauX+FmQtMAAAAAAAAAAAAAAAAAAAB2fke9Otm2Kbn6L5JNtyb7PzV59AeSUpK1Zyf7Pim5/eJk2YHJXo+eGpQ2q/Nelfzog8nmOyf7Vj8kOeSsue0LOwHBaAAA0JZwMwAAAAAAAAAAAAAAAAAAgJFWSnLsrzde9YGkjE0dX7Z/cugL5u+8lUckZ1yaXPVHyc++1whbO/5tyfiK+TsDFijBaAAAMKfwM8FpAAAAAAAAAAAAAAAAAAAAI6M1FK1fVh+TnPrBwZwFC8iA/gsDAICFrF24WenTvgAAAAAAAAAAAAAAAAAAAAA0E4wGAABVgBkAAAAAAAAAAAAAAAAAAADAsAlGAwCAzCUYTagaAAAAAAAAAAAAAAAAAAAAwHwQjAYAALVf4WZC0wAAAAAAAAAAAAAAAAAAAAC6JRgNAAAEmAEAAAAAAAAAAAAAAAAAAAAM3fiwCwAAgOFrE4xWSoelQtUAAAAAAAAAGKxSyniSk5I8LMk+SXZLsj7JjUmuTvK9WuvW4VUIAAAAAAAAAACzIxgNAAD6FW4mNA0AAAAAAABgp1FKOSLJKUlOnrielGRV05Qbaq2HDaG0B5VSjk7y20nOTrK6zdSNpZSvJPmrWusnB1IcAAAAAAAAAADMA8FoAADQjnAzAAAAAAAAgF1WKeX0JG9JIwxtzXCrmVkpZTzJ76VRazff/VyW5Iwk65IIRgMAAAAAAAAAYKchGA0AADKX8DPBaQAAAAAAAAA7sROTPG3YRbRTSlmW5IIkP98yVJN8L8mPk9ydZGWSI5IcG98PBQAAAAAAAABgJ+WLLwAA0LdwM6FpAAAAAAAAADupzUl+muTIYRZRSilJ/ilTQ9E2JfnDJB+otd44zZrlSc5I8qIkWwZRJwAAAAAAAAAAzBfBaAAAUNsEmJUyuDoAAAAAAAAAGIb7k3wvydeTXDFx/U6S05J8aYh1Jcnrkjy7qX1zkqfUWq+aaUGt9b4kFya5sJTie6IAAAAAAAAAAOxUfOEFAADSJhitr2sBAAAAAAAAGLLzk/x1rXVT60AZ8i/SKqUcmuQ9TV2bkjy1XShaq1rr1nkvDAAAAAAAAAAA+kgwGgAA9C3cTGgaAAAAAAAAwEJWa71r2DW08TtJVja131lrvXJYxQAAAAAAAAAAwCCMDbsAAAAYuirADAAAAAAAAICFo5SyKslLmro2JHnvkMoBAAAAAAAAAICBEYwGAACZQzCaUDUAAAAAAAAA5t/ZSVY2tf+51nrvsIoBAAAAAAAAAIBBEYwGAAAAAAAAAAAAsLA8uaX9+aFUAQAAAAAAAAAAAzY+7AIAAGD4ap+27dO+AAAAAAAAAOzqHt3S/mqSlFKWJTkryYuSPCzJgUk2J7kjyTfTCFD7x1rrvYMrFQAAAAAAAAAA5o9gNAAA6CXAbOPNyU8+mdz3k2T/M5KVh/evLgAAAAAAAABGTilljyRHNXVtSXJtKeVJSc5L0vo/qpcm2T3JkUmen+RdpZR31Fr/fBD1AgAAAAAAAADAfBKMBgAA6TIY7d4fJRedntz300b7yvckR5zTr6IAAAAAAAAAGE37t7RvSvK8JB9LMtbF+r2SvLeUckqSV9Rat85zfQAAAAAAAAAA0DeC0QAAoNtgtO+9czIUbbtrPzz3fQEAAAAAAABg0h4t7ZVJ/j6ToWg3JHlfkq8kuTPJmiSPT/JrSQ5rWvfSJLcm+a35KqyUsm+SfXpcduR8nQ8AAAAAAAAAwK5PMBoAANR2AWZl8sdrz+t7KQAAAAAAAACMvNZgtL2bfv54kpfXWje2zLmslPKXSf4uyQua+n+zlHJhrfXieartdUnOnae9AAAAAAAAAABgB2OdpwAAwK6uXTAaAAAAAAAAAAzUTN/tvCLJS6YJRUuS1Fo3JXnJxLxmvzuPtQEAAAAAAAAAQF8JRgMAgNqvYDSBawAAAAAAAAD0bP0M/b9Va93abuHE+Btbup9WStl3XioDAAAAAAAAAIA+Gx92AQAAMHztAsyEmwEAAAAAAAAwUNMFo91Qa/2vbhbXWr9SSrk2yRFN3U9K8vF5qO39s9jnyCQXzsPZAAAAAAAAAACMAMFoAAAAAAAAAAAAAAvH3dP0XdbjHl/L1GC0h86+nEm11tuS3NbLmlLKfBwNAAAAAAAAAMCIGBt2AQAAMHy1zdgcvqBd2+0LAAAAAAAAANO6Icnmlr6be9zjppb2XrMvBwAAAAAAAAAABkcwGgAACDADAAAAAAAAYIGotW5L8oOW7tagtE5a5y+dfUUAAAAAAAAAADA4gtEAACCC0QAAAAAAAABYUL7d0t6jx/Wt8++cQy0AAAAAAAAAADAwgtEAAKBvwWgC1wAAAAAAAACYlU+3tB/W4/rjW9o/nUMtAAAAAAAAAAAwMILRAACgCjADAAAAAAAAYEH5tySbm9qnlFLWdLOwlLJnkke3dF88X4UBAAAAAAAAAEA/CUYDAIC0C0YrA6sCAAAAAAAAAJKk1npvkguaupYkeX2Xy1+fZGlT+4Yk352n0gAAAAAAAAAAoK8EowEAQNtgtIW4LwAAAAAAAAA7k1JKbXmd3sWytyXZ0tR+aynlsR3OeWyS323pfnet1f/ABgAAAAAAAABgpzA+7AIYjFLK4iSnJTk0yQFJ1ie5Kck3a63Xz/NZhyc5McmBSVYmuTmN3zh5aa31/vk8CwCg/3w3HAAAAAAAAGBXVko5ONN/n3L/lvZ4KeWwGbZZX2u9Yz7rqrVeV0r5w0wGnS1J8rlSyv9M8qHm7+OVUsaTvDLJHyfZrWmby5OcN591AQAAAAAAAABAPwlGG6BSyu8nOXcOW5xfaz2nxzP3SfL2JGcnWTPDnEuT/Gmt9Z/nUFtKKc9P8sYkM/1GynWllI8m+b35/gIYAMCc+MXYAAAAAAAAAKPsK0nWdjHvoCTXzTB2fpJz5qugJr+X5CFJXjDRXpnk/UneVUq5LMm6NL4b+Jgke7SsvTHJL9Zat/ShLgAAAAAAAAAA6AvBaLuwUsozknw4yb4dpj4uyeNKKR9J8ppa64Yez1mZ5INJXtRh6pokv5rkeaWUl9daP9vLOQAA/dOnYDSBawAAAAAAAADMQa21llJelkYA2muahvZIcmabpZcnOavWelM/6wMAAAAAAAAAgPk2NuwC6I9SyulJPpWpoWg1yX8n+XiSzye5o2XZLyX5x1JK138uSimLknw0O4ai3Z7kcxNnfSNT00b2S3JhKeXx3Z4DANBfAswAAAAAAAAAWJhqrZtrra9N8tQ0vvu3rc307yY5J8njhKIBAAAAAAAAALAzGh92ASPuxUku62H++m4mlVIOTvKJJLs1dV+S5FW11qua5i1J4zdI/nGSxRPdv5DkD5K8tcua3pPk55va9yd5Y5IP1Fq3NJ11XJIPJXnsRNeSJJ8qpTy81npzl2cBAPRHbReMJjQNAAAAAAAAYFdWaz1sAGeUedjjoiQXlVL2SfKYJAck2TvJvUluTXJprfWncz0HAAAAAAAAAACGSTDacN1Sa72+D/u+PcmeTe1Lkzy11rqpeVKtdXOSPy+l/DjJJ5uG3lhK+Zta6w3tDimlHJHk11u6X1BrvbB1bq31ylLKU5JclMlwtL2SnJvktV28JwCAPmoTftY2NG0O+wIAAAAAAADALNRab0/yr8OuAwAAAAAAAAAA+mFs2AUwv0opRyd5eVPXliTntIaiNau1firJ+U1dS9IILOvk3CSLm9ofni4UremcjUnOmahpu1dOBKwBAAxRuwAz4WYAAAAAAAAAAAAAAAAAAAAAgyAYbdfzkiSLmtqfqLX+sIt1/7ul/cJSytKZJpdSliV5foc9dlBrvTrJp5q6xtOoGQBgeKrwMwAAAAAAAAAAAAAAAAAAAIBhE4y26zmrpX1eN4tqrVcl+VpT14okT2uz5OlJlje1v1pr/X5XFe5Y0/O6XAcAMARzCE0TuAYAAAAAAAAAAAAAAAAAAADQNcFou5BSyv5JTmjq2prkkh62+HJL+xlt5p7ZYW07F6dR23aPLKXs18N6AID5VR9oMybcDAAAAAAAAAAAAAAAAAAAAGAQBKPtWo5vaX+71rqhh/WXtrQf1sNZX+32kImavtPDWQAA/VMfSK54bbsJAysFAAAAAAAAAAAAAAAAAAAAYJQJRhuu15RSvlBKubGUsqmUcm8p5fpSyn+WUt5ZSnlCj/sd19K+psf1P+qwX7OHDvAsAID+ufFfkw3Xzzxe5xKMJlQNAAAAAAAAAAAAAAAAAAAAoFvjwy5gxL2opb0kycoka5M8MclbSylfT/KWWusXutjvqJb2j3us54aW9l6llD1rrXc1d5ZS1iRZM8ezWucf3eN6AID5cdWfDLsCAAAAAAAAAAAAAAAAAAAAAJKMDbsAOjo5yedKKe8spZQOc/doad/Wy0G11vVJNrV0797FOffVWjf0clZ2rG26cwAA+u/2iztMqAMpAwAAAAAAAAAAAAAAAAAAAGDUjQ+7gBF1Y5JPJ7k8yVVJ1iV5IMleSU5K8qwkT2+aX5K8NY0gu7e02XdlS3vjLGrbmGRpU3tVH89pNt05PSul7Jtknx6XHTkfZwMAu6q5BKMJVQMAAAAAAAAAAAAAAAAAAADolmC0wbo8jcCzz9daZ0rJuDTJX5ZSTk7yD0mObhp7cynlslrrhTOsbQ0s2zSLGjcm2bPNnvN5Trs9Z+t1Sc6dp70AAJIZP7YBAAAAAAAAAAAAAAAAAAAAMJ/Ghl3AKKm1frrW+rk2oWjNc7+e5DFJrm4Zek8pZVG3R/Za4wJfAwAwBD62AAAAAAAAAAAAAAAAAAAAAAyCYLQFrNa6LsmLMzWN49gkT55hyfqW9rJZHNu6pnXPQZ4DALBz65yHCwAAAAAAAAAAAAAAAAAAAMCE8WEXQHu11m+UUj6X5OlN3Wcm+cI00wWjJe9P8vEe1xyZ5MJ5Oh8A2OUINwMAAAAAAAAAAAAAAAAAAAAYBMFoO4fPZGow2iNmmPezlvY+vRxSSlmZHQPL7u7inOWllBW11g09HLdvF+f0rNZ6W5LbellTSpmPowGAXVUVjAYAAAAAAAAAAAAAAAAAAAAwCGPDLoCuXN/Sninw7Ict7bU9ntM6f12t9a7WSbXWO5O09h86x7NaawcAWCAmgtFmFZAmVA0AAAAAAAAAAAAAAAAAAACgW4LRdg4bW9rLZph3VUv7qB7POaKlfWWbufN9Vut+AAALRG25AgAAAAAAAAAAAAAAAAAAANAPgtF2Dnu3tO+YYd53W9qPKKUs7+Gc0zrs127ssd0eUkpZkeQRPZwFADB8VTAaAAAAAAAAAAAAAAAAAAAAQD8JRts5nNrSvmm6SbXWm5N8u6lrPMnjezjn9Jb2f7SZ+5kOa9t5Qhq1bffNWuutPawHABicBwPRZhOMJkwNAAAAAAAAAAAAAAAAAAAAoFuC0Ra4UsrSJM9r6f5ymyWfbGm/ostzjs3UALYNST7XZslnk2xsaj92Yo9unNPSbq0ZAGABEW4GAAAAAAAAAAAAAAAAAAAAMAiC0Ra+NyU5qKm9Lcm/t5n/kYk52z2vlHJ0l+c0+1itddNMk2ut9yW5oMMeOyilHJPkrKaurUn+oYv6AACGpLZcAQAAAAAAAAAAAAAAAAAAAOgHwWgDUkp5WSllvx7XvCrJuS3dH6613jDTmlrrD5Oc39S1W5IPl1KWtjnnOUnOaerakuTtXZT4+0nub2qfU0p5dptzliY5b6Km7f621vqjLs4CABiOWqdeZ7MWAACA2as1uefq5P57hl0JAAAAAAAAAAAAAAAA0GeC0QbnlUmuK6WcX0p5ZillxUwTSyknl1I+keQDSUrT0I1JfreLs85NcldT+3FJvlBKObblnCWllDck+XjL+j9pF762Xa312iTvbem+oJTy+lJKc/hZSikPTXLRRC3b3ZnuAtgAABYAIWcAAAADt+4byYVrk397SHLBmuTy1yYPbBt2VQAAAAAAAAAAAAAAAECfjA+7gBGzLMkvT7weKKX8MMn1SX6WZFuSvZKckGS/adauS3JmrfWWTofUWn9aSnleks8m2R5QdlqSK0sp/53k2iS7JzkpyT4ty/8tydt6eE9vTvKwJM+YaC9O8hdJ3lZK+UaSe5McMXFWc8jbliRn1Vpv7uEsAIAhqC1XAAAABmLrxuSLZyRb1jXadVtyzd8kKw9PjnvTcGsDAAAAAAAAAAAAAAAA+kIw2vCMJXnIxKuTi5KcU2v9abeb11q/XEo5K8mHMxl+VpKcPPGazj8meVWtdVsP52wrpbwwyYeSnN00tG+SM2dYdluSl9daL+72HACA4ZkIRKuzCUYTpgYAADBrt3x+MhSt2TUfEIwGAAAAAAAAAAAAAAAAu6ixYRcwQt6b5B+S3NDl/A1JPpnkqbXWp/YSirZdrfXTSY5P8tdJ7moz9bIkz6+1vqTWumEW56yvtb4oyQsm9prJuiR/leT4Wutnej0HAGAoHgxEE3IGAAAwUN//s+n711872DoAAAAAAAAAAAAAAACAgRkfdgGjotb6yTSCzlJK2SPJw5IckmS/JMvTCKm7O40As6uSfLvWum0ezr0tya+WUn49yWlJ1ibZP43gtRuTfLPWet1cz5k464IkF5RSDk9yUpIDk6xIcksagXCX1Fq3zMdZAACDIxgNAAAAAAAAAAAAAAAAAAAAYBAEow1BrfXuJJcM+MwtSb40oLOuSzIvYWsAAAtGnU0wmjA1AACA2XNPBQAAAAAAAAAAAAAAAKNmbNgFAADAgvZgIJoH8gEAAAAAAAAAAAAAAAAAAAD6STAaAAC0JRANAAAAAAAAAAAAAAAAAAAAYBAEowEAQFu15drLUqFqAAAAAAAAAAAAAAAAAAAAAN0SjAYAAO1sDzcTcgYAADBg7sMAAAAAAAAAAAAAAABg1AhGAwCArnggHwAAAAAAAAAAAAAAAAAAAKCfBKMBAEBbteU6m7UAAAAAAAAAAAAAAAAAAAAAdCIYDQAA2poIN6tCzgAAAAAAAAAAAAAAAAAAAAD6STAaAAC082AgmmA0AAAAAAAAAAAAAAAAAAAAgH4SjAYAAG1NBKLV2QSjCVMDAACYtVndhwEAAAAAAAAAAAAAAAA7M8FoAACMttLtR2IP5AMAAAAAAAAAAAAAAAAAAAD0k2A0AABGXKePxLXlCgAAwECUMuwKAAAAAAAAAAAAAAAAgAETjAYAwGgrHT4S1zr12ovZrAEAAKDBPRUAAAAAAAAAAAAAAACMHMFoAACMtk7BaPEgPgAAwIJz65eGXQEAAAAAAAAAAAAAAADQB4LRAAAYbWVRhwm15QoAAMDQfe9dw64AAAAAAAAAAAAAAAAA6APBaAAAjLhuPxLPJhhNmBoAAEBf3PKFYVcAAAAAAAAAAAAAAAAA9IFgNAAARlvp8JG41qlXAAAABsTZzKyOAAAgAElEQVR9GAAAAAAAAAAAAAAAAIwawWgAAIy2TsFoDz6I74F8AAAAAAAAAAAAAAAAAAAAgH4SjAYAwGgrizpMmEswmjA1AAAAAAAAAAAAAAAAAAAAgG4JRgMAYLSVDh+Ja516BQAAAAAAAAAAAAAAAAAAAKAvBKMBADDiuv1ILBgNAAAAAAAAAAAAAAAAAAAAoJ8EowEAMNpKp4/EteXagypMDQAAYPbcUwEAAAAAAAAAAAAAAMCoEYwGAMBo6xSMtj3cTMgZAAAAAAAAAAAAAAAAAAAAQF8JRgMAYMR1+kgsEA0AAAAAAAAAAAAAAAAAAABgEASjAQAw2kq3wWizCUgTqgYAAAAAAAAAAAAAAAAAAADQLcFoAACMtrKoy4lCzgAAAAAAAAAAAAAAAAAAAAD6STAaAACjrXT4SFzr1CsAAAAAAAAAAAAAAAAAAAAAfSEYDQCA0dYpGC215doLYWoAAAAAAAAAAAAAAAAAAAAA3RKMBgDAaCuLOkyYCDerQs4AAAAGyn0YAAAAAAAAAAAAAAAAjBzBaAAAjLgOH4kffBDfA/kAAAAAAAAAAAAAAAAAAAAA/SQYDQCA0VY6fSSeQzBaFaYGAAAAAAAAAAAAAAAAAAAA0C3BaAAAjLaOwWgThJwBAAAAAAAAAAAAAAAAAAAA9JVgNAAARltZ1GFCbbkCAAAAAAAAAAAAAAAAAAAA0A+C0QAAGHEdPhLXuQSiCVMDAACYPfdUAAAAAAAAAAAAAAAAMGoEowEAMNrGxjtMqC1XAAAAAAAAAAAAAAAAAAAAAPpBMBoAAKOtLOowYSIQrQpGAwAAAAAAAAAAAAAAAAAAAOgnwWgAAIy2jsFo2wlGAwAAAAAAAAAAAAAAAAAAAOgnwWgAAIy2Mt5+vG4PRBOMBgAAAAAAAAAAAAAAAAAAANBPgtEAABhtZVGHCROBaFUwGgAAwILiPg0AAAAAAAAAAAAAAAB2OYLRAAAYbd0Go8UD9wAAAAAAAAAAAAAAAAAAAAD9JBgNAIDRVjp8JK6C0QAAAIaiug8DAAAAAAAAAAAAAACAUSMYDQCAEdflg/YeyAcAAFhg3KcBAAAAAAAAAAAAAADArkYwGgAAtFVbrgAAAAAAAAAAAAAAAAAAAAD0g2A0AABoSzAaAAAAAAAAAAAAAAAAAAAAwCAIRgMAYLTVDoFnncYBAAAYDvdrAAAAAAAAAAAAAAAAsMsRjAYAAG1NPGjvgXsAAIABcx8GAAAAAAAAAAAAAAAAo0YwGgAAdMUD+QAAAAuL+zQAAAAAAAAAAAAAAADY1QhGAwBgxHV4kL7WqVcAAAAAAAAAAAAAAAAAAAAA+kIwGgAAtFVbrgAAAAAAAAAAAAAAAAAAAAD0g2A0AABGXKfAszkEo1VhagAAAP3jngsAAAAAAAAAAAAAAAB2NYLRAACgne3hZkLOAAAABsx9GAAAAAAAAAAAAAAAAIwawWgAANAVD+QDAAAAAAAAAAAAAAAAAAAA9JNgNAAARlvtFHhWW649bT6LNQAAAHSl4/0cAAAAAAAAAAAAAAAAsLMRjAYAAG1NPGjvgXsAAAAAAAAAAAAAAAAAAACAvhKMBgAA7QhEAwAAGI6O92Pu1wAAAAAAAAAAAAAAAGBXIxgNAIAR1+2D9rN54N5D+gAAAAAAAAAAAAAAAAAAAADdEowGAABdEXIGAAAwUKUMuwIAAAAAAAAAAAAAAABgwASjAQBAWxOBaFUwGgAAwEB1vA9znwYAAAAAAAAAAAAAAAC7GsFoAACMuA4P0j/4IP4sHrgXpgYAAAAAAAAAAAAAAAAAAADQNcFoAADQ1hyC0QAA+P/s3XuwpHld3/HPr89hZ4bdhAUEEQmsi4giQSVUqZALJpS38hIMojFFSWIMhff7pSICqdxMImXQqBWDQmlEAhJQg2i4WepiNLArGkCBheG27LrsCuzsmZk93b/8sWfc3p5+ntPdp5/znH769aqa2tPP9WvZ1XWeZn7vAeiOGDUAAAAAAAAAAAAAAAAMjjAaAAC0Olhob8E9AAAAAAAAAAAAAAAAAAAAQKeE0QAA2G4LB89WCaOJqQEAAKzOMxUAAAAAAAAAAAAAAABsG2E0AABo81fhNAvyAQAAThbPaQAAAAAAAAAAAAAAADA0wmgAANDqYKF9XWXBvUX6AAAAAAAAAAAAAAAAAAAAAIsSRgMAYMsdFi8TNwMAAAAAAAAAAAAAAAAAAAA4DsJoAADQpl4KowmkAQAAnCye0wAAAAAAAAAAAAAAAGBohNEAAKDNhb+4+791hQX3q5wDAADAAc9UAAAAAAAAAAAAAAAAsG2E0QAA2HKHLLS/9c3Jb3xWctsfHc84AAAALEaMGgAAAAAAAAAAAAAAAAZHGA0AAA7z8Xcmb3tO31MAAAAAAAAAAAAAAAAAAAAADJowGgAAdKb2PQAAAAAAAAAAAAAAAAAAAADAxhBGAwBgu1XxMgAAgM3keQ4AAAAAAAAAAAAAAACGRhgNAAAAAAAAAAAAAAAAAAAAAAAA6J0wGgAAdKb2PQAAAMCAeeYCAAAAAAAAAAAAAACAoRFGAwBgy1lIDwAAcCJVz2sAAAAAAAAAAAAAAACwbYTRAAAAAAAAAAAAAAAAAAAAAAAAgN4JowEAsOVqh5fu8NoAAADbzjMXAAAAAAAAAAAAAAAADI4wGgAAAAAA3ZmM+54AAAAAAAAAAAAAAAAAgA0hjAYAAAAAwPq9+78mv/4ZycuvSt74pcm5D/Q9EQAAAAAAAAAAAAAAAAAnnDAaAADbrdYuL97htQEA4AQ7+7LkD5+VfOJdyfh8ctNvJa9/cjK+2PdkbJTDnqk8cwEAAAAAAAAAAAAAAMDQCKMBAAAAALBe7/3Fy7fdcWNy65uPfxYAAAAAAAAAAAAAAAAANoYwGgAAdKb2PQAAAPTjw/9r/va3/cvjnYOB88wFAAAAAAAAAAAAAAAAQ7Pb9wAAANAvC+lZo3PvT25+Q/LxdyanH5J88hclVz8uKaXvyQAATobxhb4nAAAAAAAAAAAAAAAAAOAEE0YDAABYhw+8Mvndp+Wy2N6jvjV5wk+KowEAAAAAAAAAAAAAAAAAAMAhRn0PAAAAg1Xr4ccwDPt7yXXPyGVRtCR5139JPvK/j30kAAAYPM9cAAAAAAAAAAAAAAAAMDjCaAAAbDkL6VmDD/16Mr6zef/Nbzy+WQAAAAAAAAAAAAAAAAAAAGBDCaMBAAAc1U2/2b7/xhcfyxgAACdf6XsANoqQNQAAAAAAAAAAAAAAAGwbYTQAAOiMRfzb45DAx86Z4xkDAAC2imcuAAAAAAAAAAAAAAAAGBphNAAAtlu1kJ41uP369v1X/83jmQMAAIbE8xoAAAAAAAAAAAAAAABsHWE0AACAo9jfS26/of2YndPHMwsAAGwT4TQAAAAAAAAAAAAAAAAYHGE0AADojEX6W+HmNxx+zOSu7ucAAIChKaXvCQAAAAAAAAAAAAAAAIBjJowGAMCWEy/jiN7+Y4cfM7nQ/RwAADA01fMaAAAAAAAAAAAAAAAAbBthNAAAgKOY3HX4MR9+TVIn3c8CAABbRTgNAAAAAAAAAAAAAAAAhkYYDQAAulIt0t8Ko53FjvvAK7udAwBgE5TS9wQAAAAAAAAAAAAAAAAAnGDCaAAAbDfxMo5swbjHu36m2zEAAGDreJ4DAAAAAAAAAAAAAACAoRFGAwAAOIqy4GPVzW/odg4AAAAAAAAAAAAAAAAAAADYcMJoAADQmdr3AByHstP3BAAAMFCeqQAAAAAAAAAAAAAAAGDbCKMBALDlLLTnqDxWAQBAL6rnOQAAAAAAAAAAAAAAABgaK/gBAACOonisAgAAAAAAAAAAAAAAAAAAgHWwgh8AADpT+x6AY1H6HgAAAAAAAAAAAAAAAAAAAAAGYbfvAQAAoF/iZRzR5ELfEwAAnBx3fjC57a0tB4jKsozDntc8zwEAAAAAAAAAAAAAAMDQCKMBAEBXqkX6W2H/zr4nAADoX63JH/9w8vYf63sSAAAAAAAAAAAAAAAAADbYqO8BAACgV+JlHNX4XN8TAAD078OvEUWjA+WQ/Z7nAAAAAAAAAAAAAAAAYGiE0QAAAFZVa/Kxt/c9BQBA//78p/qegEESPgMAAAAAAAAAAAAAAIBtI4wGAACdsYh/8G5/a98TAACcDDe9dsEDS6djAAAAAAAAAAAAAAAAALDZhNEAANhy4mUcwUde3/cEAAAbxu/frFH1fgIAAAAAAAAAAAAAAIChEUYDAABY1cW/7HsCAAAAAAAAAAAAAAAAAAAAGAxhNAAA6EqtfU9A18Z7fU8AALBhSt8DsEkOfabyzAUAAAAAAAAAAAAAAABDI4wGAMCWs5CeIxjf2fcEAAAAAAAAAAAAAAAAAAAAMBjCaAAAAKva3+t7AgAAAAAAAAAAAAAAAAAAABgMYTQAAOhM7XsAujYWRgMAgP545gIAAAAAAAAAAAAAAIChEUYDAGC7VQvpOYLxnYsfe8UDupsDAGBTlNL3BAAAAAAAAAAAAAAAAACcYMJoAAAAqxrvLX5snXQ3BwDAphAmZineLwAAAAAAAAAAAAAAALBthNEAAKAzFvEP3v4yYbT97uYAAIBtJLQHAAAAAAAAAAAAAAAAgyOMBgDAlrOQniMY37n4sZO7upsDAGBTlNL3BGwU7xcAAAAAAAAAAAAAAADYNsJoAAAAqxrvLX5s3e9uDgAAGKTDQtZC1wAAAAAAAAAAAAAAADA0wmgAANCVapH+4C0VRht7TwAAAAAAAAAAAAAAAAAAAEALYTQAALacUBVHsH/ncsfXcTdzAAAAAAAAAAAAAAAAAAAAwAAIowEAAKxqvLfc8XW/mzkAADZG6XsABkXoGgAAAAAAAAAAAAAAAIZGGA0AADpjkf6g1bp8GG1yVzezAABsDL8jswzvFwAAAAAAAAAAAAAAANg2wmgAAGy3aqE9K5pcWP6cur/+OQAAAAAAAAAAAAAAAAAAAGAghNEAAKAzomuDNj6//DkTYTQAYNuVvgdgSISuAQAAAAAAAAAAAAAAYHCE0QAAAFYxvrD8OVUYDQAAAAAAAAAAAAAAAAAAAJoIowEAsOVq3wOwqSYrhNEmwmgAALA+nucAAAAAAAAAAAAAAABgaITRAACgK9Ui/UEbn1/+nCqMBgAAC/NMBQAAAAAAAAAAAAAAAFtnt+8BOB6llPskeVKShyf5lCR3JPlwkutrre9b870+LcnnJnlokquS3JTkbJLraq13rfNeAADQm8mFFc7x6zAAsOVK6XsCAAAAAAAAAAAAAAAAAE4wYbQTqJTyK0m+bmbz2VrrNStc60FJnn9wvQc0HHNdkhfUWn912evPXOdpSb4nyRc2HHJbKeVlSX601nrrUe4FALA+te8B2FRjYTQAAOiX5zkAAAAAAAAAAAAAAAAYmlHfA3BvpZSvyuVRtFWv9WVJ/jTJs9MQRTvwxCSvKKX8UinlyhXuc1Up5aVJXp7mKFoOZnh2kj8tpXzJsvcBANg8FukP2vj88udMVoipAQAAAAAAAAAAAAAAAAAAwJbY7XsA7lFKuTrJz6zpWk9O8qokV0xtrknemuTGJFcn+bwknzS1/58k+eullH9Ya50seJ+dJC9L8uUzu/4iyfVJPpbkkQf3Kgf7PjnJq0spT6m1/t4S/2cBAKxfFS9jRatEzlaJqQEAAPN5ngMAAAAAAAAAAAAAAIDBGfU9APfy40keevDzJ1a9SCnlYUlemXtH0X4/yWfXWp9Qa316rfWLkzwsyXcmuWvquK9M8q+XuN2/z72jaHcl+fYkD6u1fsnBvf5WkscmefPUcaeSvKqU8ilL3AsAAE6OcUMYbXSq5RxhNAAAAAAAAAAAAAAAAAAAAGgijHZClFKekuSfHbzcT/KjR7jc85Pcf+r1dUmeUmt9x/RBtdYLtdYXJnn6zPnfU0p5xGE3KaVcm7vDatO+ttb6U7XWizP3enuSf5B7x9EemOS5h90HAGBz1b4HoEuThjDazum7/8wz3utuHgAAAAAAAAAAAAAAAAAAANhwwmgnQCnlyiQ/N7XpBUluWPFaj0ryjVObLiZ5Zq31fNM5tdZXJXnJ1KZTWSxY9twk95l6/eJa66tb7rOX5JkHM13yTQeBNQCAnoiXsaJxw6/YO6eTUVMYrfHXcgAA4DKHPa95ngMAAAAAAAAAAAAAAIChEUY7Gf5dkmsOfr4xyfOOcK1vSLIz9fqVtdZ3LXDej828fnoppaHmkJRSziR52iHXuEyt9c+TvGpq027unhkAADbL5ML87aNTd8fR5hFGAwC2Xul7AAAAAAAAAAAAAAAAAABOMGG0npVSnpjkW6c2PavWuneESz515vUvLHJSrfUdSf7P1KYrk3xxyylfkuS+U6/fXGt950ITXj7T1yx4HgDAZqm17wno0rghjLZzKtk5M3/fRBgNAAAW55kKAAAAAAAAAAAAAAAAto0wWo9KKaeS/Hzu+f/DS2qtrzvC9R6S5HOmNu0n+f0lLvGmmddf1nLslx5ybpvfzd2zXfJ5pZRPXuJ8AIA1stCeFY0bImc7p+/+s8w5AADA8sSoAQAAAAAAAAAAAAAAYHCE0fr1vCSPPvj5L5J87xGv99iZ12+rtZ5b4vzrZl5/9hL3evOiNzmY6U+WuBcAAJw8kwvzt49OCaMBAMBalL4HAAAAAAAAAAAAAAAAAI6ZMFpPSimPT/J9U5u+q9b60SNe9jEzr9+95PnvOeR60z7rGO8FALChat8D0KUbf2H+9h1hNAAAWI/Dnqk8cwEAAAAAAAAAAAAAAMDQCKP1oJSym+Tnk+webHptrfWX13DpT595/f4lzz878/qBpZT7zx5USnlAkgcc8V6zxz9qyfMBANajWkjPij7+zvnb924WRgMAAAAAAAAAAAAAAAAAAIAV7B5+CB34oSSfc/DzuSTPXtN1r555fcsyJ9da7yilnE8yXXG4X5LbD7nPnbXWc8vca85s91vy/LlKKQ9O8qAlT3vkOu4NAHA50bXBOn9r8777XJWMGsJoE2E0AAAAAAAAAAAAAAAAAAAAaCKMdsxKKY9J8iNTm55Ta33fmi5/1czrvRWusZd7h9H+Wof3mTbvPqv4liTPXdO1AABgvvGdzftGVyQ7DWG0/VV+dQYAGJLS9wAMihg1AAAAAAAAAAAAAAAADM2o7wG2SSlllORFSU4dbHpLkheu8RazwbLzK1xjttQwe83jvA8AwDGwkJ4VjFt+BX7oVzSH0Sar/OoMAAAAAAAAAAAAAAAAAAAA20EY7Xh9Z5IvOPh5P8k/r7WOO7zfKpWPk3wOAFzurjuSOul7Cpiv+pVnsCYXmvdd+43Jzpn5+9qCagAAwL15pgIAAACOWSnl2lLK15VS/mMp5U2llI+XUurUn/f1PeOsUsp9SynvmZmzllJe3PdsAAAAAAAAAACwit2+B9gWpZRrk/zrqU0vqLXesObb3DHzuqHG0Gr2nNlrHud9VvHTSV6+5DmPTPLqNd0fgONyx43Jdc9IPvoHyalPSh793cljfjAppe/JgG0wbgmjXXF1snO64TxhNAAAWBvhNAAAAGANSilPTvLDSZ6Q5AH9TrOSf5Pk2r6HAAAAAAAAAACAdRFGOwallJLk55Lc92DTjUme18Gttj6MVmu9Jckty5xTBHQANs/4YvK6L0rufP/dr8/fkvzxDyenHph8+jf3OxsbyEJ6VjBpCaONTgmjAQAAAAAAwOb43CRf3PcQqyilfEGS7+h7DgAAAAAAAAAAWKdR3wNsiW9O8venXj+r1rrXwX0+NvP6QcucXEq5KpcHy/5ygfvct5Ry5TL3SvLgBe4DAPPd+uZ7omjTzr7s+GeBVqJrgzVuC6NdIYwGAADHwjMXAAAA0KkLSd7T9xBNSilXJHlR7vl7oJ/ocRwAAAAAAAAAAFib3b4H2BLPn/r5NUneXUq55pBzHjLzenfOOR+utV6cev2umf2PWHC+puNvq7XePntQrfWjpZTbk9x/avPDk7zjCPeanR0Amr3tR+Zvv/n1xzsHsL0mDWG00RVJKcmoIYw2EUYDAIDFCZ8BAAAAx+auJP8vyf9N8kcH//2TJE9K8sYe52rzo0kec/Dz2SQvT/J9/Y0DAAAAAAAAAADrIYx2PM5M/fzlSd67wjU+dc55n5fkhqnXs2GyT1/yHtfOvH57y7HvSPLEmXstE0abvdcy5wKw7eq47wkYkmqhPSsYN4XRTt39352GMNpYGA0A2HKl9D0BAAAAAMx6SZKfrbVe9j/mlRP6fVYp5XOS/ODUpmcn+fyexgEAAAAAAAAAgLUa9T0Aa/WnM68fV0q57xLnP+mQ67Xt+8JFb1JKuTLJ45a4FwDcm5AVG8N7dbAmDWG0ncPCaHvdzAMAAIN02MJjz1wAAADA0dVab58XRTupSim7SX4+9/zDuC+ttf5mjyMBAAAAAAAAAMBaCaMNSK31piRvm9q0m+RvL3GJJ8+8bvvLUq895Nw2fyf3/KWsJLm+1nrzEucDsPUsfAZ6Nm4Io40OC6NtzHoKAAA4ATz/AwAAAMzx/Ukef/DzbUm+q8dZAAAAAAAAAABg7YTRjkGt9epaa1nmT5IvmrnM2TnH3TDndv9z5vU/XWTGUspnJvn8qU3nkvx2yym/lWRv6vUXHlxjEc+ceT07MwC0q5O+J2BQLLRnBZOGMNrOpTDamfn7hdEAAGB9quc5AAAAYLuUUh6d5LlTm7631npLX/MAAAAAAAAAAEAXhNGG578nGU+9/ppSyqMWOO8HZ17/j1prY7Wh1npnklccco3LlFI+I8lTpzbtJ/nlBeYDgCkWPrMhLNIfrnFDGG10KYx2uuE8YTQAYNuVvgcAAAAAgI1UShkleVGSg/9RMm+otb64v4kAAAAAAAAAAKAbwmgDU2t9V5KXTG26IsmLSykNZYaklPLVSZ45telikucvcLvnJblr6vUzSylf1XKf00l+4WCmS15Ua33PAvcCgHvUSd8TANtu0hBG2xFGAwBoJx7Mgcl+cu6soDQAAADA4r4tyZMOft5L8qweZwEAAAAAAAAAgM4Iow3Tc5PcPvX6iUleV0r5zOmDSimnSinfnuTlM+f/eK317GE3qbXemOQ/z2x+RSnl20op0/GzlFI+K8nrD2a55KNZLMAGADMsmmaNLMJnFU1htNEhYbTJee85AAB4508kv/rA5NXXJK/6G8lHXj//uEN/d/a7NQAAALAdSinXJPm3U5ueX2t9dz/TAAAAAAAAAABAt3b7HoD1q7V+sJTyNUl+K8mlQNmTkry9lPKWJDcmuV+Sxyd50Mzpv5HkOUvc7oeSfHaSLzt4fZ8kP5nkOaWUtyb5RJJrD+5Vps67mOSptdablrgXANytTvqeABZkkf5gjRvCaJeCaKOGMFqdJHU/KffpZi4AgBOvHH4Iw/bBX0ve+t33vN77UPI7X5F8xZ8lVz68v7kAAAAATrafS3Llwc9/nOTH+xqklPLgXP73Dg/zyC5mAQAAAAAAAABgmITRBqrW+qZSylOTvDj3/CWkkuQJB3/meWmSb661jpe4z7iU8vQk/y3J103tenCSL2047ZYk31hr/d1F7wMA9yY2xTp5P7GC8fn520en7v7vTkMY7dK5I2E0AAC21Pt+6fJt4/PJB1+dPPrbj38egDbnziZ/9sLk9huSBzwhecwPJKce2PdUAADAlimlfFOSpxy8nOTuv+O33+NI35LkuT3eHwAAAAAAAACAgRv1PQDdqbW+Jsljk/xskttbDv2DJE+rtX5DrfXcCve5o9b69Um+9uBaTW5L8jNJHltrfe2y9wGAv1InfU8AbLvJhfnbdxYMowEAwLZ6/8vnb3/Ld6xwMaFroEN3fjh53d9L3vmC5OY3JO/4D8nr/m5y8WN9TwYAAGyRUspDk/ynqU0vrLX+UV/zAAAAAAAAAADAcdjtewDmq7W+KUlZw3VuSfLsUsp3JnlSkkckeUiSc0k+lOT6Wut7j3qfg3u9IskrSimfluTxSR6a5MokH0lyNsnv11ovruNeAGw7C5+Bno0bwmijRcJoe+ufBwAAAFivs7+cnDt7720fe3vyoV9LPu0Z/cwEAABso59OcvXBz2eT/EiPswAAAAAAAAAAwLEQRtsSB0GyNx7Tvd6bZC2xNQCYq076noBBEdpjBZOGMNrOpTDameZzx+fXPw8AwMY48r8FwVY55Hmtep4DOnT998/f/of/QhgNAAA4FqWUr0/y1VObnl1rPdfXPFN+OsnLlzznkUle3cEsAAAAAAAAAAAMkDAaALCBLHxmg9SaFPGHwRk3hNFGl8Jop1vOFUYDALaZ5zkANpznegAA4BiUUj4pyQunNr201vqbfc0zrdZ6S5Jbljmn+N/MAQAAAAAAAABYwqjvAQAAllYnfU8AbLtJQxhtRxgNAADWx4JZAAAAYGu9MMmDDn6+Lcl39TgLAAAAAAAAAAAcq92+BwAAWF7tewCGpHo/sYJxQxhtdOre/51nIowGAGwzoSuWcdjzmuc5AAAAYHhKKY9O8o+nNv1EkvuWUq455NSrZ15fNXPOpNb6/qPOBwAAAAAAAAAAXRNGAwA2T530PQEsoUb8YYAmDWG0nUthtN2k7CZ1//JjxsJoAAAAAAAAQKMzM6//1cGfZf2jgz+XfCyXx9MAAAAAAAAAAODEGfU9AADA8mrfAwDbrimMNjp1z887p+cfI4wGAABr4vsBAAAAAAAAAAAAAAAAGBphNABg89RJ3xMwKBbSs4JxQxhtRxgNAAAAAAAAAAAAAAAAAAAAViWMBgBsICErNkj1fh2kSUMYbbRIGG1v/fMAAPSuLHjYgsdBEs//wIl1y+/1PQEAADBgtdYbaq1l2T9Jnj9zqZfMHHN1H//3AAAAAAAAAADAsoTRAIDNUyd9TwBsu3FDGG06hrZzpuHc8+ufBwCgb4sGzy/lKC4AACAASURBVISDWSfvJ6AvH/6NvicAAAAAAAAAAAAAAIDBEkYDADaQhc+sk/cTK5g0hNFGp+75eTqSNk0YDQAYpAXDaACwKUZXNO97z4uObw4AAGAwSil15s+T+54JAAAAAAAAAABOot2+BwAAWFqd9D0BLEF4bZDGDWG0nakw2qghjDYRRgMAhmjBMFoRUANgQ4yuSCYX5++7cOvxzgIAAHSulPKwzP/7lA+Zeb1bSrmm4TJ31Fo9MAAAAAAAAAAAwBEJowEAG0hoCuhZU9xsNBVG22kIo42F0QCAASrFoxo98KYDOnTqQcn+HfP3Xf24450FAAA4Dr+X5BELHPepSd7bsO8lSZ65roEAAAAAAAAAAGBbjfoeAABgaXXS9wQMSbWQnhWML8zfviOMBgBsK1810wHPa0Cfrnx48777Peb45gAAAAAAAAAAAAAAgC1jtRoAsIEsjGaTeL8O0qQhjDYSRgMAtlQpfU/AVvK8BXTJZwwAAAAAAAAAAAAAAPRht+8BAACWVid9TwBsszpJJnfN37cjjAYAbKtFw2gCagBsiNoSRmvbBwAAbKRa6zXHcI9OvxyrtT4vyfO6vAcAAAAAAAAAAByHUd8DAAAsz8JD1sn7iSVNLjbvG02F0UZNYbS99c4DAHASFF81AzA0bf84g3+4AQAAAAAAAAAAAAAAumK1GgCweaqFh2yQKrw2OOMLzft2psJou2cazj+/3nkAAE6E0vcAbCPPW0CX2j5jfP4AAAAAAAAAAAAAAEBnhNEAgM1j4SHQp0lLGG00FUYbnW44XxgNABgiYTS64Pkf6FHrP87gH24AAAAAAAAAAAAAAICuCKMBABvIwkPWqeuF9hbyD854wTDaTkMYbSyMBgAMUBFGA2BoWr6D9A83AAAAAAAAAAAAAABAZ4TRAIDNU4XRgB5NWsJoO8JoAMC2EkajD8JEQIda42e+nwQAAAAAAAAAAAAAgK4IowEAG8jCZ6BH47Yw2un5P9/rfGE0AGCAiq+aARialvhZazQNAAAAAAAAAAAAAAA4CqvVAIDNU1sWJcKyOl/IaqHs4ExawmijU/f8LIwGAGyVsubjIDn0eUqYCOhS22eM7ycBAAAAAAAAAAAAAKAzwmgAwAay8Bno0bgljLazQBhtIowGAAxQETwDYGja4me+nwQAAAAAAAAAAAAAgK4IowEAm6e2LUqEZVnIypImLWG00RVTPzeE0cbCaADAEAmj0QXvK6BHteU7I99PAgAAAAAAAAAAAABAZ4TRAIANJGTFBmlbRMtmGjeE0Ub3ScrUI9bOmYbz99Y/EwBA7wSs6MJhz1Oet4AutcXPfP4AAAAAAAAAAAAAAEBXhNEAgM1T2xYlAnRscn7+9tGpe7/eOT3/uHHD+QAAm6z4qhmAgWn7DtL3kwAAAAAAAAAAAAAA0Bmr1QCADVT7HoBB8X5iSeML87fvCKMBANus9D0AW8nzHNClts8Ynz8AAAAAAAAAAAAAANAVYTQAYPPUSd8TwBIslB2cSUMYbbRgGG1y0ecYADA8RRgNgIFpe3b3XA8AAAAAAAAAAAAAAJ0RRgMAAFjG+IhhtLZrAABsrAW/ahZQA2BjtMXuhfABAAAAAAAAAAAAAKArwmgAAGy3aiErS5o0RM12lgijTc6vbx4AgJNA8IwuHPa85nkO6FKdrLYPAAAAAAAAAAAAAAA4EmE0AADolIX6gzNuCKONZsJoo5Yw2lgYDQAYGmE0AAamNX7m+x4AAAAAAAAAAAAAAOiKMBoAAMAyJg1htJ2ZMNqOMBoAsE2E0dgA++eS87f2PQWwMVriZ63RNAAAAAAAAAAAAAAA4CiE0QAA2HIti1xhnnFTGG0mhLZzpuUae+ubBwDgJCi+aqYPCz7PjS8m1z0jecX9k1c+KPntJyV7N3U7GrD5WuNnvk8CAAAAAAAAAAAAAICuWK0GAABdqhbKDs6kIYw2OnXv17OhtGnj8+ubBwAABmtNz1PXf2/yvl9KJnfd/frW65Lf+cr1XBsYsJbPoNZoGgAAAAAAAAAAAAAAcBTCaAAAAMsYC6MBAMDJsEA4rdbkvb94+fbb3pLc8d71jwQMR2v8TAgfAAAAAAAAAAAAAAC6IowGAMCWs5CVJU0awmg7M2G00RXN1xBGAwC2Vul7ADbKGt4vkwvJXR+bv+/srxz9+sCAtXxn1BpNAwAAAAAAAAAAAAAAjkIYDQAAOiW8NjhNYbTRTBitlGTn9PxjhdEAAGABXT9PCfUBLVrjZ77vAQAAAAAAAAAAAACArgijAQAALGPcEEbbOXX5tlFDGG0ijAYADI3AFD2oC4SJ2o4p3rdAi7YwWms0DQAAAAAAAAAAAAAAOAphNAAAttsiC+mPdoOOr8+xG+/N374zJ4I2b1uSjIXRAADgeLQ9kwmjAW3aPj983wMAAAAAAAAAAAAAAF0RRgMAAFjG/h3zt+9eefk2YTQAAOjQImEi8SJgRXWy2j4AAAAAAAAAAAAAAOBIhNEAAACWsX9u/vbdqy7ftnNm/rHCaAAAsIA1RM1q2zXK0a8PDFjb54foIgAAAAAAAAAAAAAAdEUYDQCALdfxQtbWRfhspMYw2pWXb9s5Pf/Y8d765gEAAFq0PJMVYTSgRZ2stg8AAAAAAAAAAAAAADgSYTQAAIBlrCWMdn598wAAbBQhKtZpkRB12zHej0CL1viZED4AAAAAAAAAAAAAAHRFGA0AAGAZTWG0HWE0AGCLFYEpTqjWsJH3LdCmJX5WhdEAAAAAAAAAAAAAAKArwmgAAGy5rheyWig7OPt3zN++OyeMNmoIo02E0QAA4Hi0PJMJ+gFtWsOKbfsAAAAAAAAAAAAAAICjEEYDAABYxv65+dt3r7p8205DGG0sjAYAAIeqh4SmD9t/6DHCaECbls+PRT5/AAAAAAAAAAAAAACAlQijAQAALGp8Man78/ftXnn5NmE0AABYXJ0kt9+Q7N203ms2EkYDWrR+frTtAwAAAAAAAAAAAAAAjmK37wEAAKBXtXZ9g46vz7Ean2veJ4wGAABH86qH3RNFe9hXJ5MLh5ywyPOWZzJgVS2fH51/nwQAAAAAAAAAAAAAANtLGA0AAGBR+8uG0c7MP1YYDQAALncpipYkH3z1eq5ZJ837SlnPPYBhavv8aNsHAAAAAAAAAAAAAAAcyajvAQAAoF+17wHYJEuH0U7PP3a8t555AAA2jRAVx67tmc/7EWjTFj/zfRIAAAAAAAAAAAAAAHRFGA0AALpULZQdlMnF5n2jU5dvawyjnV/PPAAAsNUWed4SRgNW1PadTm2LpgEAAAAAAAAAAAAAAEchjAYAALCoyX7zvtF95mxrCKNNhNEAgKERmOKEaosXFe9boE1b/EwIHwAAAAAAAAAAAAAAuiKMBgDAdqsWsrKE2hZG2718205DGG0sjAYAAMej7ZlPGA1o0fadUVt0EQAAAAAAAAAAAAAAOBJhNAAA6JTw2qBMWsJoRRgNAACO1SKh67ZjijAa0KDWtH+n4/seAAAAAAAAAAAAAADoijAaAADAoqowGgAAbJZJyz5hNKDJIeGz2vbZAgAAAAAAAAAAAAAAHIUwGgAAW+6Qha5HvnzH1+d4tYbR5jxeCaMBAECHFnje8kwGrOLQzw6fLQAAAAAAAAAAAAAA0BVhNABgWO64se8JgCGbNITRym5SyuXbd840XEcYDQDYVnN+Z4JOTVr2eT8CTdo+O5LUQ/YDAAAAAAAAAAAAAAArE0YDAIbl+h/oewJgyGpDGG20O3/7zun528fCaADA0AhMcULV2rxvXtwYIGn/7Lj7gGMZAwAAAAAAAAAAAAAAtpEwGgAwLB/41b4nYON0vZDVQtlBmTSE0cqyYbS9BRZZAwAA7Rb5nbrtGGE0oMmkfXc9ZD8AAAAAAAAAAAAAALAyYTQAYLMICQF9qkuG0UYNYbQ6ab4WAACwPq3xImE0oMGh30H6jhIAAAAAAAAAAAAAALoijAYAbJb9O/qeANhmTTGzUUMYbachjJYk4/NHnwcAALbZQvH0lmOKMBrQpC2qmEOiiwAAAAAAAAAAAAAAwFEIowEAm+XiX/Y9AUOz0EL6I92g4+tzrCYNYbQijAYAACdS6zOfMBrQ4NDwme97AAAAAAAAAAAAAACgK8JoAMBmuUsYDehRbQijjYTRAADgZGqLGwmjAU0OCZ8dGk4DAAAAAAAAAAAAAABWJYwGAGyWi8JoQI8mDWG0IowGALAYISrW6f+zd+9hsp11nei/v+4dsjck3OWqBoQoIIrgOMhFBVHQUUEYhfF2BJTjMKMw4hzHyyCCjOMI4x1UznhBOSpyFRkRPdwEQYEBQUJQIEBUIhEIhiR772R3vfNHV8+uVLqqV92ruj+f5+mnV631rvf97dR6Vq9VWe+3DgguSpI2pk05HoERDgw+63D+AQAAAAAAAAAAAAAApiIYDQDYLILRmLsFT2QdNwmfzdMmDUY7MbqvnmA0AABYvHHhRoLRgFEO+DznwOA0AAAAAAAAAAAAAABgWoLRAIDNcp1gNGCFRgWjbY0KRjs+uq8dwWgAwCFSAqZYU8KqgWkcGHzm3AIAAAAAAAAAAAAAAIsiGA0A2CzXCkYDVqg3IhitRgSjbZ07uq+dk7PXAwAAR1mn0LNxbQT6ASMcFIx2YHAaAAAAAAAAAAAAAAAwLcFoAMBmOfPpVVfAodNlIv06989StRHBaFujgtGOjQ5N2zk1n5oAADaK62OWbFx4UQlGA0Y56O+Vv2cAAAAAAAAAAAAAALAogtEAgM0ybkIzwKL1RgSjjQo/S5Lt4/uvF4wGAAAz6hJMNK6NYDRghIM+g/QZJQAAAAAAAAAAAAAALIxgNAAAgK6aYDQAgNl0CbKCeRKMBkzh1OUHNPD3DAAAAAAAAAAAAAAAFkUwGgCwWZpJh8zZwo8px+yh0hsRjLYlGA0AoBP3dCxb643eVoLRgBHe/5zx28edWwAAAAAAAAAAAAAAgJkIRgMANoxJ9MAKtRHBaDUmGG1rRDBaTzAaAHCYCJhiFTp8RjA2jM9xC4zwgecd0MBnlAAAAAAAAAAAAAAAsCiC0QAAOOJMZGUCo4LRtsYEox07sf/6HcFoAMBR5PqbZeuN2SYYDZhSG3duAQAAAAAAAAAAAAAAZiEYDQDYMCbRs2GaY/ZQ6Y0IRqsxwWhbx/dfLxgNAAAWzz0ZsCjOLwAAAAAAAAAAAAAAsBCC0QCAzdJlwqFJicCitCmC0bZHBaOdnL0eAICN436NOep0/z+mTdXcSgGOIn/TAAAAAAAAAAAAAABgEQSjAQBwxC16EqtJsodKb0Qw2tY0wWinZq8HAAAYr/XGbBSMBszAlzMAAAAAAAAAAAAAAMBCCEYDADZMlwmHJiUCC9JGBKOVYDQAgE6EyDBXM35GUILRgFmMC14EAAAAAAAAAAAAAACmJRgNAACgq1HBaFuC0QAAuhGMxrKNO+YEowEzEPYJAAAAAAAAAAAAAAALIRgNANgwHSYcmpTIJBZ+vDgeD5XeiGC0GhOMtjUiGK0nGA0AABau9cZsFIwGzGLc+QUAAAAAAAAAAAAAAJiWYDQAYLMIPQNWqY0IRtsaE4y2PSIYbUcwGgBwiFTXgCn3dMxTl+PJMQcsiM8pAQAAAAAAAAAAAABgIQSjAQCHkEmJwIL0RgSj1bhgtBP7rxeMBgAAi9d64zYurQzgMBp3fgEAAAAAAAAAAAAAAKYlGA0A2DAmLTNvCz6mmmP2UGnTBKMd33+9YDQA4Chyfcw8dTqeHHPAgvibBgAAAAAAAAAAAAAACzFm9v7mqqoLkzw8yZ2TnE5ycZKXtNauWGlhAMAcmPQMrNCoYLQtwWgAALCWxgYX+fwAmEVv1QUAAAAAAAAAAAAAAMChtPbBaFV1pyRfObDqBa21a0e0rSTPSvLkJFtDm3+mqp7UWvvNBZQJAKyTsZOeAWbQGxGMVtMEo52cvR4AgI3jfo0la4KLgAXxGSQAAAAAAAAAAAAAACzE2gejJfkPSb6vv/y/Wmu/PqbtTyZ5ysDrvRkJleS8JL9WVdVa+435lwkALIUJh8zdoo8px+yh0rtu//W1PXqfkcFop2avBwBg47g+Zp66HE9j2viMAZiJ4EUAAAAAAAAAAAAAAFiErVUX0MHXZTfYLElGBppV1ecm+X+yO8tpMBBtb9/WX/7FqrrjYkoFABZvxknPALPond5//fa5o/cZFYzWE4wGABwmdXATWAmfEQALIlwRAABmVlW3rqrzV10HAAAAAAAAAACwXtY6GK2qbp3kLgOr/mhM86fk+v+eVyb510kekeSl2Z2Z15KcSPKD860UAAA4EkYFo22NCUbbGhGMtiMYDQA4TDqGwwiRYdlab9zGpZUBHEJjzy8AAMAoVXVBVf1WVX0qyceSfKqq/r6qnllVJ1ZdHwAAAAAAAAAAsHprHYyW5PMHlv+ptfaR/RpV1XZ2Q9D2ZjH9SWvt4a21l7XW/rC19k1JXpDdcLRK8uiqqkUWDgAsSpdJyyY2M4GFBzM4Hg+VnRHBaNtjgtG2BaMBAMBi+IwAWCXnFwAASJKq+s6qurT/c1FVjfwfZ1X1hUneluTbktw0Z5/nu0OSH07ytv6XqQIAAAAAAAAAAEfYugejXdD/3ZJcPKbdv0hyq+w+JJUkz9ynzY/m7AyF2yS5+zwKBACWbOEhVgBj9EYEo22NCD9Lku0RX2wvGA0AOEw636u5p2PJWm/MNscjMINx5xcAADhaviXJZya5Y5LXt9b2/R9qVXUsyQuT3Dq7z/m1oZ9Kco8kL1lCzQAAAAAAAAAAwBpb92C0Ww0sf2JMuy8bWL6stfbnww1aa3+X64er3XPG2gCAdWViM7Aoo8LMtkd+8X2yPSI0TTAaAABHzbzv1zv15zMCYArHb9ehkfMLAABU1VaSBw6setmY5v9Xks/L2SC0JHlPkr8aWvfAqnrMnEsFAAAAAAAAAAA2yLoHo50YWL56TLv793+3JH8ypt3fDizfdtqiAIBVMuGQeVvwMSWo73DZ2fcL7pOtKYLReqcdHwDAEeT6hyUbe83teARG2D5xcJvWW3wdAACw/u6R5Mb95euSvGFM2+/q/64k/5zkfq21e7XWvjjJfZJ8LGdv1p+4gFoBAAAAAAAAAIANse7BaGcGlsfNQLj/wPKbxrS7amD5vKkqAgBWrMukZRObgQXpjQhG254iGC1Jdk7NVg8AwNpwH0YXqzhOBBcB0/AZJAAAdHSX/u+W5P2ttev2a1RVt0vypf12LckzW2tv3dveWnt3kidlNzStkjywqm6xyMIBAAAAAAAAAID1te7BaFcOLH/mfg2q6u5JbjOw6i1j+hsMV9uZoS4AYK2ZlAgsyM6oYLQx4WfjtvUEowEAR0xzv3akzf3979Df2DEdj8AIrUOoYpc2AABw+N1xYPlDY9p9ec6Gnp1J8uv7tHlZkn/uL1eSL5pHgQAAAAAAAAAAwOZZ92C0S/q/K8m9qmq/RIFHDCxf0Vq7eEx/txxY/vSsxQEAK2ASPXO36GPKMXuo9EYEo22dO3qfrTHBaDuC0QCAo8b18dG2ivdfcBEwjS7nK3/TAAAgyXkDy1eObJU8sP+7JXlLa+1Tww1aaztJ3jmw6q6zlwcAAAAAAAAAAGyidQ9G+6vsPgzVkhxP8vjBjVV1LMl391+2JG88oL+7DSz//ZxqBACWqsOEQ+FpwCK0NjrIbHtMMNq2YDQA4AhwH8ZKzPgZgeMWGKV1CFXs0gYAAA6/czq2u9/A8uvHtPvHgeWbTlwNAAAAAAAAAABwKKx1MFpr7fIkb+6/rCT/raq+o6puXFV3SvJ7ST5nYJcXj+qrqm6X5PYDq94/32oBAGA/JtofGu1MRr6fW4LRAAA6EUR1xK3i/XfMAdPocu5wfgEAgCRXDSzfYr8GVXWTJF80sOrPx/S3M7A85n/AAQAAAAAAAAAAh9laB6P1/Vx2Q9Fakpsk+c0kn07ywSSPzNlZB5dlTDBakq8ZWL4qyd/Mu1AAYAk6TaI3KZEJCGagq53To7eNDUY7MaZPwWgAABwhq7j/ar1xG5dWBrBpOpwfxp5fAADgyPj4wPLdR7T5qiTb/eWW5C/H9HfzgeVrZqgLAAAAAAAAAADYYGsfjNZae0mSl+ZsOFoN/GRg/Q+01sYkFeRRe10meWtrEjAAYDP5Ew6sSG/M7cb28em2CUYDAA6Nrvdq7umYI+HpwKJ0Cj1zfgEAgCTv6f+uJBdU1T33afNv+r9bkve01q4c098dB5Y/MYf6AAAAAAAAAACADbT2wWh935rk13I2DG1PJTmd5Ptbay8ctXNVfVaSr83ZGQqvXkSRAMC6MCmRSSz4eJHHe3jsjAtGO3f0tq0bjd7WE4wGAMBRsoL7o7H3ZO7XgFE6nB86hacBAMCh957sBpjtXUT/TFWds7exqh6Y5JsGtr9qVEdVdSzJPQZWfWi+pQIAAAAAAAAAAJvi2KoL6KK1dm2SJ1TVs5M8PMkF/U3vS/LS1tpHD+jia3P22ymT5A/nXyUAsBwmLQMrMi7EbGtMMFpVsn082dln//3WAQAcau7pjrZVvP+Ci4AJtV5y6vIuDRdeCgAArLvW2k5V/W6S783uRfJDkry7qv4wyW2yG4q2ld0vQG1JfntMd1+SZPAbhy5aSNEAAAAAAAAAAMDa24hgtD2ttb9J8qwp9ntekufNvyIAYC01kxKBBdg5PXrb9phgtCTZGhWMdnK2mgAA1kbH+zD3a0fb3N//Dv2NG9PxCOznb36hW7smeBEAAPqemeQ7kty0//rzknxuf3kvEK0leUlr7b1j+vnG/u+W5AOttSsWUCsAAAAAAAAAALABtlZdAADARDpNWjaxmXXieDw0emOC0bYOCEbbPr7/+v3C0gAAgDkSXARM6JLf6NZOMBoAACRJWmuXJ/nXSU7lbBDa/9ncX/fBJE8c1UdVbSV59MC+r19ErQAAAAAAAAAAwGYQjAYAbBghU8CK7IwJRhsVfHbQdsFoAMBh0SnEOnFPd9TN+/3v0N/YY9PxCOzjU+/u2FAwGgAA7GmtvTbJvZK8MMk12Q1DqySfSPJLSb60tfaJMV08PMkF/X2S5I8WVy0AAAAAAAAAALDujq26gINU1SX9xZbky1prH52ynzsmeeNeX621u8yjPgBgHZnYDCxAb0ww2ta54/cVjAYAAFnN/brPCIAF6Z1ZdQUAALBWWmsfSPItSVJVt+6v+3jH3T+U5JEDr1893+oAAAAAAAAAAIBNsvbBaEnu1P/dMlu9x4b6AgA2kj/jzFFbwvG0jDFYjt51IzZUsrU9ft/tE/uvF4wGABw5ro+PtFXcH7XeuI1LKwM4hJpgNAAAGGWCQLS99u9K8q4FlQMAAAAAAAAAAGyYrVUXAAAwkS6TqAVRAYvQdvZfXweEoiXJ9vH91/cEowEAh4X7MFag0/2/YxNYkJ5gNAAAAAAAAAAAAAAAWATBaAAAAF2MDEbrcFs1KhhtRzAaAHDECLI+4lbx/o8Z0/EIDJvkvNAEowEAAAAAAAAAAAAAwCIcW3UBS3TOwPJ1K6sCAJhRl8mJJjbT1TKOFcfjoTEyGG374H23BKMBAOxyfXy0reD9b73ljwlsrt7p7m0FowEAQGdVdfMk5yep1tqlq64HAAAAAAAAAABYb0cpGO22A8ufXlkVAMCMTKIHVmSWYLTtUcFoJ6evBwBgrbhXYxVmDU933AJDJgkw7wlGAwCAUarqG5M8PMmXJblTkq3+ppZ9nlmsqjsl+ez+y6tba/9r4UUCAAAAAAAAAABr6ygFoz2s/7sl+ftVFgIALFgzsRlYgNbbf/1MwWgTTLgGADgU3K8daau4Xx91HQ+wn0nu05tgNAAAGFZVD0vyC0nuureq4653SfKn2f3w6NqqukNr7YoFlAgAAAAAAAAAAGyAtQhGq6rPPrhVkuSOVV2flUqSnJvk9kkemuQHBtb/1SSdAABrpNMkahPt6Wgpk/Idj4dG29l/vWA0AADoaM73R13u6ca2cb8GDJnkPr0nGA0AAAZV1Y8l+bHshqFVrn/j3TImJK219pqqujjJ3ZPcKMljkvzK4qoFAAAAAAAAAADW2VoEoyX5cA6egVRJ3jTDGIMPVr10hn4AgJUyaRlYEcFoAACjdQ0dXko4MetrFe+/Yw6YwCT36U0wGgAA7KmqJyX58f7LvZvx00nemuTKJF/foZsXDvTxdRGMBgAAAAAAAAAAR9bWqgsYUvv8HLS9y09y9oGrtyR55cL+BQDAGjDpmTUi+OHwmCkY7cT+6wWjAQDAYrXemG3u14AhPcFoAAAwqaq6MMmzs/s/6lt2A9F+MMmtWmsPSvJ9Hbt6xV6XSb6sqoafHQQAAAAAAAAAAI6IdQtGW5S9h6RekuQbWjPbCQA2lz/jzJPjiQnMFIx2fP/1k0y4BgA4FFyDH2lz/2i+S3+OOWACkwSY9wSjAQBA3zOSHMvuM3qnkjyktfbs1trJCft5d3//JDk/yYXzKxEAAAAAAAAAANgkx1ZdQN/zx2z7zv7vluSlSa7q2Ofet09+KsnFSd7QWvvI1BUCAOuhyyRqGajAIswSjLY1IhhtkgnXAABrzX0YXaziOBk3puMWGDLJfXoTjAYAAFV1bpKH5+xN9n9urb1lmr5aa72qujjJvfur7pbkb2evEgAAAAAAAAAA2DRrEYzWWnvcqG1V9Z05++DUD7TWLl1OVQAAMA8m2h8aswSjbQtGAwDY5fr4SJt7kHmX8PTenMcEDrVJ7tN7gtEAACDJA5Kc6C9fneS5M/b30ZwNRrvDjH0BAAAAAAAAAAAbamvVBXRUqy4AAFgXXSZRm2hPV44VJrCQYLST09cDALBWOl5bzz0YCw4y7phzPAJDJglGu+i/JL0RnxUAAMDRcaf+75bkra210zP2d+XA8vkz9gUAAAAAAAAAAGyoY6suoIPHDSx/5askPgAAIABJREFUfGVVAABrwqRlYEVGBaNtzRKMNsGEawAA2HgruKdvveWPCWyuSe7Tr/pg8tYnJF/664urBwAA1t9nDCz/4xz62xqxDAAAAAAAAAAAHCFrH4zWWnv+qmsAADaN8DTWiePx0OiNCEYrwWgAAN25Pj7a5vz+ty79jWnTaX/gSOmdnqz9Jb+Z3PtZybm3Wkg5AACwAQYvos+dQ3+DF9dXzKE/AAAAAAAAAABgA619MFpV/djAy59rrV05ZT83S/LkvdettWfMWhsAsAJdJi2b2ExXjhUm0RYQjNYTjAYsWWtJ1aqrAA4j19asK8cmMIlJg9HSkkuen9z9KQspBwAANsA/DSx/5hz6u9eIvgEAAAAAAAAAgCNk7YPRkvx4kr2ZS7+ZZKpgtCQ3H+pLMBoAbCQTmoEVmSkY7cT+63cEowFLcuZk8o7vT/7hFck5N03u/NjkHv9JSBqwAu7pjrSVhJT1xmxzPAJDpjlPnf74/OsAAIDNcUn/dyX5oqq6SWvt6mk6qqr7JPmMgVXvmLU4AAAAAAAAAABgM22tuoCO5jlL14xfADj0TGxmjaxk4j8LMVMw2vH91wtGA5blzd+afOBXk5OXJVf+TfKuH07e+1OrrgqAI2fe90cd+nNPBkxkXJjiCF0+FwAAgMPrrdn9otOW5Jwkj5+hr6cMLH+ktfaRWQoDAAAAAAAAAAA216YEowEA9JnQzDw5npjEiMnRXSZAb40IRms7Se/M9CUBdHHq48nf/8EN17/rR5IzVy+/HuCQ6nhtLaTqiFvF+z9uTMcjMGSav1OC0QAAOMJaaztJ/md2v6y0kjy9qj5r0n6q6pFJvjW7N+stye/Os04AAAAAAAAAAGCzHFt1AUtUA8tTfN37fFXViSR3S3JBkjskOT+735p5ZZJPJHlPkotaa3NJSaiqc5I8IMlnJ7l9kquSfDTJO1trH57HGANj3TnJF2X333VeksuSfCTJm1tr181zLADYn4nNwAK0nf3Xd5kAvT0iGC1Jdk4lW+dNVxNAFx/53Yy8PnrTY5IHvXKp5QBHnfs15qnD8dRW/r8DgI0iGA0AAKbwE0kek93n826e5PVV9fDW2kVddq6qxyb55exekFeSk0l+fjGlAgAAAAAAAAAAm+AoBaPdbGD5mlUUUFWPS/KVSe6b5C5Jtg7Y5aqq+v0kv9ha+6spx/yMJE/P7sNntxzR5s1Jfqa19pJpxhjo55uSPCXJ/UY0+WRVvTDJj7XWPj7LWAAcYc0keuZpGceTY/bQ6I0KRjvosj4HB6OdIxgNWKCdU6O3ffR/JmeuSY7deHn1AHB0reSefsyYPmMAhk0TprglGA0AgKOttfa+qvrFJE/O7o34nZO8o6pekOT3k3xyeJ+q+qwkD03y3Un+Zc5+6WlL8rTW2uXLqB0AAAAAAAAAAFhPHWbwHxpf1P/dkqwqlOsnknx7kgvT7b/9eUken+TtVfWzVTVRkF1VfW2S9yR5YkaEovXdP8mLq+oFVXWTScboj3NeVf1ukhdldCha+jU8Mcl7quphk44DALs6TFo2sRlYhDYqGK3DBOixwWgnp6sHoKuDAhw/+fbl1AEccl3vw9yvHW0reP+nCTkCjrApzlNdPhcAAIDD7weS/Gl2A85aknOSPDbJHyX5iwxcbFfV1Uk+nOR5ORuKtrf9Za21Zy+raAAAAAAAAAAAYD1NFLS1qarqwiQ/NLDqvauqZcg1ST6Y5NIkV2Y3LO2WSb4gye0G2m0n+Q9J7lRV39TaqESGs6rqQUlenuRGA6tbknckuSTJzZPcO8mtB7Z/W5KbVtU3ttZttlhVbSd5YZJ/NbTpn5K8M8k/J7lLf6y9b/a8bZI/qKqvaq29qcs4AACwcgsLRjs1XT0AndX4zQd/zAAAczLnYLROwejj2gjqA4ZM84ULgtEAACCttV5VPSLJc7MbiLZ3cb33AXUbWHdicNeBdr+e5N8utlIAAAAAAAAAAGATrEUwWlW9tmPT36uqSVIDzk1y+yQXDK1/zQR9zNPVSV6R5FVJ3pzkPaMCyKrqS5M8M8lDBlZ/Y5KnJHnWuEGq6jOTvDTXD0X78yRPaK1dPNDu3CTfk+TZ2f2WziT5hv64P9Lx3/RTuX4o2nX9Gp/XWrt2YKx7JPkfSe7XX3VukpdX1Re01i7rOBYAzGHSMwyYZrLr5IMsYQyWYpZgtK0xwWg9wWjAgtXW+O2C0YBlWso1OAxwzAET6fS9QdcnGA0AAJIkrbVTSR5fVa9K8tQk9xzVtP+7+j8fTPJjrbXfXXyVAAAAAAAAAADAJliLYLQkD8rBiRGV5L5T9D34rZNJ8qkkL5iin3m4Z2vtui4NW2t/UVUPTfL8JN8+sOlHq+oXWmunx+z+9CS3GHj95iRf1X/4bHCM00l+oaouTfKygU1Pqapfba19ZFyNVfU5SZ48tPqbW2t/sM+/571V9ZDshtLthaPdKsnT4ps+AZiIYDRgRWYJRjt2YvS2HcFowIIdFIzWO7OcOoDDTfgUXcz9OOnS35iQI8ctMGya84JgNAAAuJ7W2ouSvKiqHpzkq5M8MMlnZfdZsRsl+XiSj2X3mbZXJ3lVa77BAwAAAAAAAAAAOOuAmbGHwuA3TH46ybe21j6+kkI6hqINtO8l+fdJrh5YfbMkDx61T1VdmOQ7B1Zdm+Sxw6FoQ+O8PLsBbHvOzW5g2UGeluScgde/uV8o2sA4J5M8tl/Tnu/qB6wBAMB6myUYbevc0dsEowELV+M3tzGBMQBzJ4jqaFvB+y/8DJiIYDQAAJiX1trrWms/0lr78tbanVtrN22tHW+tfWZr7Ytba9/XWnulUDQAAAAAAAAAAGDYOgWj1YifLm1G/Vyb5PIkr89uiNfdWmuvXvC/Y65aa1cmedPQ6ruO2eVbkwzOwHhpa+39HYb6b0OvH11Vx0c1rqoTSb7pgD5uoLX2t0lePrDqWHZrBoCOOkxONOmZzpZwrDgeD4+ZgtGOJXVs/22C0YBFqwM+/jHnDJiLjte9ro9ZunHHnOMRGCYYDQAAAAAAAAAAAAAAVm0tgtFaa1ujfvaa9H/uNK7tPj8nWmu3b619ZWvtJ1prl63wnzmLTw69Pn9M20cOvf6NLgO01i5O8pcDq26S5KFjdnlYkhsPvH5La+19Xcbap6ZHddwPAEyiB1ZnlmC0JNkekTssGA1YtAOD0c4spw4AmHsQWZfw9N6cxwQOtWnOGYLRAAAAAAAAAAAAAABgrtYiGK2DWnUBK3bB0OuP7teoqm6X5F4Dq84k+fMJxnn90OuvHdP2aw7Yd5w3Zre2PfeuqttOsD8AHEB4GuvE8XhoLCoYrScYDVi0g4LRRpzfABbC9fGRtpKw83FjOh6BYVOcFwSjAQBwxFXVa/s/r6mq28zQz20H+5pnjQAAAAAAAAAAwGY5tuoCOviznJ2FcOQSA6rqc5Pcd2BVS/KGEc3vOfT63a21qycY7s1Drz9/TNvhsd7SdZDW2tVV9ddJ7j001se69gHAUWbSMvPkeGICiwpGO3NyunoAuqoD8uYFowFz4dqaLlZwnLTe8scENtc0AY6C0QAA4EE5e9M/4n+IdXK831fiwyYAAAAAAAAAADjS1j4YrbX2oFXXsCpVdfskL0oyOKPixa21D4/Y5R5Drz8w4ZAfPKC/QXefw1iDwWj3SPLaCfsA4Ejq8vyzZ6SBBZg1GG1rxDyQ3pHLfwaWbmv85t6Z5ZQBkMT9GnPVKcBoTJtpApCAQ26KMEXBaAAAkCQVH/wAAAAAAAAAAABzsvbBaEdJVR1Lcovsho59fZLvSXLTgSaXJPneMV3cdej1pROW8JGh17eqqlu01q4YqvOWSW4541jD7S+ccH8AgA3h+f9Do42YHN11AvT2iGC0HcFowILVAcFoo4IfAWDuVnB/JPwMmMQ05wzBaAAAAAAAAAAAAAAAMFeC0Vaoqn4uyZM7Nn9dku9orV0+ps3Nh16Pa3sDrbWrqupUksHEhpsluWKo6fA417TWrp5krH1qu9mE+wNwVHWZnGjSM105VpjEqOCgzsFoJ/ZfLxgNWLgav7mdWU4ZwOHW9draNfjRNvf3v0t/IwKOO+8PHC2C0QAAYIUGn2X0wTUAAAAAAAAAABxhgtHW3yuSPKe19icd2p439PrkFOOdzPWD0c5f4DiD9htnYlV1mySfMeFud5nH2AAsS5fJiSY2AwswczDa8f3XC0YDFq22xm/vXbucOgBgFffrwviASbRxYYojHHS9DQAAdHXrgeVJv6QTAAAAAAAAAAA4RDY2GK2qbpXk7klukeRmSSaaddBa+61F1LUAX5tku6pOtdb+7IC2w4Fl0yQsnMzuf9NRfc5znHF9TuvfJXnanPoCAJidSfiHh2A0YGPV+M2965ZTBkASQdYs37hjzvEIDJvmvHDA9TYAANDVl/d/tyQfXWUhAAAAAAAAAADAam1UMFpV3Tq7wVffluSuM3a3DsFoz0jycwOvTyS5VZIvSvLIJF+Z5JwkX5fk66rqOUme3NqoRIYbmGb2xjrvAwDp9CdEEBWdOVaYgGA0YFPVAVnyvWuXUwdwyHW9tnYNfqTN/X69S3+OOWACU52nnGcAAGDARBfIVXVOktsneWiSHx3Y9NfzLAoAAAAAAAAAANgsGxOMVlWPSvLrSc7P9F+93vr7rsUMhdbaJ5N8cp9Nb0ryS1X1wCQvSHJBf/2/z2542neN6PKqodcnpihreJ/hPpc5DgDckNAzYFUWFYzWE4wGLJhgNADWxprd0/uMAbgBwWgAALCfquryRZ6V5MNV0z7ad71nAl8xbScAAAAAAAAAAMDm24hgtKr6tiS/lf0D0QZnGwxvH9429VNXq9Bae1NVPTjJ25Lcqr/68VX1itbaH+yzi2C05LlJXjThPndJst9/TwA2lsmIrBPH46ExMhjtgMChPVsjgtF2BKMBiyYYDViGjte9gqiOuBW8/445YBKtt+oKAABgXXV97m6W5/P2vvT0fUlePEM/AAAAAAAAAADAhlv7YLSqunOS52X3oae9h5/eneRlSU4m+al+05bkcUlumuQOSe6f5AHZnf3bklye5JlJPr3E8mfWWvtQVT0jyc8PrP7B7B/k9c9Drz9jkrGq6rzcMLDsUx3GuXFV3aS1dvUEw92mwzgTa61dnt33urMZvqUUgJUwoZl5cjwxgZHBaNvd9t8eFYx2crp6ALo6KMBRMBoAm6pT6Nm4Nu4JgWFTnBcEMAIAcHTsPbu3KJXk7Uke01q7boHjAAAAAAAAAAAAa27tg9GS/MfshnXtzSp4epJntNZaVV2Qs8Foaa09f3DHqrprkp9O8o3ZDQn7niQPba1dtozC5+j3cv1gtC+tqpu31obDxN4/9PqCCccZbv/J1toVw41aa5+oqiuS3GJg9WcnuXiGsYZrB4ARZp30DDClhQWjnZquHoCuDgoEF4wGLJX7tSNtJeFBjjlgEtOcM5xnAAA4Ev4soy9+v6L/uyV5a5Ku//OrJTmd3S/UvDjJ61prb5ylSAAAAAAAAAAA4HBY62C0qtpK8u05+1DVi1prT++6f2vtA0keVVVPT/LUJPdI8odVdb9N+lbJ1trlQ0FkW0nunOSdQ02Hg8nuOuFQnzP0+r1j2l6c5P5DY00SjDY81iT7AgBsEJNjD42Zg9FO7L9eMBqwcFvjN+8IRgPmYCWBV2yeeR8nHfobe2w6boEhrTfFPs4lAAAcfq21B43aVlW9nL3Jfkxr7dKlFAUAAAAAAAAAABxaB8yMXbkvTHJ+kuq/fsY0nbTWnpbk5f1+7p3kSXOpbrmGg9zO3afNe4Zef2FV3XiCMR5wQH/jtt2v6yBVdZPsvrddxwKAs7pMNDQZka4cK0xi5mC04/uvF4wGLFrV+O09wWjAMrkGZ9kcc8AknDMAAGBKB3wQDQAAAAAAAAAA0N26B6Pds/+7Jbm0tfbecY2rxs70/eGB5e+atbBlqqrjSW49tPpjw+1aa5cleffAqmNJHjjBUA8aev2qMW3/+IB9x/my7Na2552ttRv8ewBgeiYwAgsgGA3YWILRgDUinPiIW8X7P2ZMxyMwbKrzgnMJAABH3tP7P89I8qkV1wIAAAAAAAAAABwCxw5uslK3HFi+aJ/twzMNjic5uV9HrbW/qaqLk9w9yedV1ee31vbrcx09JNcPsbsmyT+MaPuyJF848PpxSf7koAGq6m5J7juw6uoD9nt1dv9bn+i/vl9V3a219r6Dxkry2KHXL+uwDwD0mWjIhjHR/vBovf3XzxqM1hOMBqxY77pVVwAcCq576WDu90cd+nNPBkxkxL3/WM4zAAAcba21p6+6BgAAAAAAAAAA4HDZOrjJSp0/sHzFPtuvHtN+P387sHz3qSpasqraSvLUodV/3Fq7dsQu/1+SnYHXj6qqCzsM9Z+GXv9+a21kQkNr7ZokLz6gjxuoqs9N8siBVWeS/E6H+gCgr8tEQ5MR6cqxwgTazv7rZw1G2xGMBizaAX/veqM+YgBYBNfgR9sq3v9xYzoegSHThCkKYAQA4IjrP98GAAAAAAAAAAAwN+v+UNJg8Nk5+2z/9NDrOx7Q31UDy7ebqqIpVdX3VdXtJ9znnCS/luS+Q5ueM2qf1tr7kzx/YNWNkvxmVY1IYUiq6hFJHjuw6tokXb7J88eTXDfw+rFV9fAx4xxP8hv9mvb8Wmvtgx3GAgDYUCbHHhqjgtG2OgajbQlGA1bkoKAGwWgAbCphRMDcOa8AAMAULq2qp1XVQc/uAQAAAAAAAAAAdLLuwWgfH1i+6fDG1tq1Q23ueUB/g8Fk581Q1zS+K8kHq+oFVfUNVXX+qIZVdaKqviXJO3P9wLIk+e3W2msPGOtpSa4YeH3/JP9/Vd1taJxzq+r7krxoaP//3lr7yAFjpLV2SZKfH1r94qr63qoaDD9LVd09yWv6tez5RLoFsAHAWV0mPZsYTWeOFSYwKhitOgajbY8KRjs5XT0AnR30987fQ2AOOt+HOeccbat4/8eN6XgEhkz1uaJzCQAAR94dkvxYkg9V1Uur6qGrLggAAAAAAAAAANhsx1ZdwAH+dmD5whFtLkryFf3lhyT57f0aVdVNkvzLgVVX7NduwU4k+bb+T6uqDyT5cJJPJbk2yflJLkhyjyTn7LP/K5M84aBBWmt/X1WPSvLqJHsBZQ9I8t6q+l9JLklysyT3SfIZ+4zx1An+TT+U5POTfG3/9TlJfjHJU6vqHUk+neRz+mPVwH7XJnlka+2yCcYCgJhoyMZpvVVXwLwsLBjt1HT1AHR2wPWTv1UALMsqgsyFpwMTmeba2HkGAAD6jiV5RJJHVNWHkvxqkt9orX18/G4AAAAAAAAAAADXt7XqAg7w3iQ72Q3UunNV3XifNm/s/64k31xVF4zo64eSnDfw+qK5VTmdym7Y21cn+ebshqU9PMm9csNQtJNJfjTJo1prp7t03lp7fZJHJvmnoTH/RZJHJ3lYbhiK9rtJ/k1roxIf9h1np9/fC4c23SbJ12T33/bFuX4o2uVJHtFae2MAYCFmnIx45prk/b+a/MXjk/f9XHL6k/Mpi6Ppop9cdQXMy86IS/Gtc7vtLxgNWJUDA2EEOQBLJKTqiJv3+9+lvzFtHI/AsGnOC84lAABwbXafDdu7OK7sfpHmTyX5u6p6QVU9cFXFAQAAAAAAAAAAm2etg9Faa1cleUf/ZSV5yD7N9gK5WpITSf6kqr58b2NV3ayqnpndYLG9h68+meQvF1L0aE9I8swkb0nSKdwsyfuSPDXJ57bWfrK1dt0kA7bW/ijJPZP8SpIrxjT9iyTf1Fr71tba1ZOM0R/nqtbav8luCNpfjGn6ySS/nOSerbU/nnQcAEiy+ImGO6eSNzw8edu/TS75jeQd35+85sHJ6U8sdlxWYxkTV//hFYsfg+XojQpGu1G3/bdPjO7XJGpgoQ44x7TecsoADrmu1zOue1g2xxwwCecMAACYwh2S/GCSD+Tsl2e2/vK5Sb4lyRuq6q+r6t9V1fmrKRMAAAAAAAAAANgUx1ZdQAevTvIl/eWHJ/nDwY2ttYuq6g+SPCK7D1RdmOR1VXV1kiuT3CbJdr/53jdT/tKkIWOzaq29Lcnbkjy1qs5JcvfsfjPmHZOcl+ScJFf1a/5wkne21saFmXUd9/IkT6yqJyd5QJILktwuydVJ/qE/zodmHac/1ouTvLiq7pzkPtl96O0mSf4xyUeS/Hlr7dp5jAXAUdZlcuIMExg/+sfJx15z/XWfenfyoRckd3vy9P0Cm6834lJ2+9xu+28fH9P36fHbAWZxUPiiYDQAlmYFgUNj/w4KQAKGTHVt7FwCAMDR1lr7ZJJnJ3l2VT0kyROz+5zfsZy9YK4kn5/kF5P8t6r6nSS/2lp7xz5dAgAAAAAAAAAAR9wmBKO9MMl/zu7DUd9SVf+xtfbPQ22enOS+SW6bs982eV7/Z8/e+rcn+clFFz1OP5Tt3f2fZY15bZLXLWmsDyWZS9gaACzdu354//Xv+A+C0eCo2zm9//qtOQSj7ZwSjAYs0EFBDYIcgHnoei5xzjnSDgrrnLzDObUB2DPNOcN5BgAA9rTWXpPkNVV12yRPSPLdST57b3N2n9+7SX/9d1fV25P8cpLfa62dWkHJAAAAAAAAAADAGtpadQEHaa1dlOSLk3xJkq9IsrNPm0uTPCTJe7L78NT/2ZTrf+vkq5I8tB9MBsAm2zmd/NUPJ6+6d/LahyWXvmTVFbE0HSYazjLR+sr3Tb8vG8jEVSbQGxWMdqNu+28dEIwGsCqtt+oKAGBxxn5G4J4QGDbFeWHuoY8AALD5Wmsfa609M8mdkzw8yR/l7AX34PN8X5Lk15J8tKp+tqrutvRiAQAAAAAAAACAtXNs1QV00Vp7Z4c2F1fVfZI8KskjklyY5OZJrkjyriQvbK29dqGFArA8f/6Y5O//4Ozrf/zT5AG/l1zw6NXVxHJ0mmhoMiKwADsjgtG2z+22/7ZgNGBVDro2EowGLJHwmCNuzu+/zwiAeVtEaPA1H01O/WNy83slW9vz7x8AANZYa60leWWSV1bVZyX5niSPS3L7vSbZDUi7eZInJXlSVf1ZkucmeVlr7czyqwYAAAAAAAAAAFZta9UFVNUrq+oHquo+VVWz9NVa22mtvai19u2ttfu21j6vtfalrbXvEYoGcIhcfen1Q9GSJC15/3NXUg4AR0Tv2v3Xb92o2/6C0YBVOSg0ZhHhD8DRI/CMTlZxnIwZ03EL3MAU54W/fHzSu+6G63dOJ2/818nL75j88RcnL79D8om3z14iAABsqNba37XW/nOSz07y6CSvGWpS/Z8vT/J7Sf6uqp5ZVRcst1IAAAAAAAAAAGDVVh6MluRfJfnpJG9L8omqenlVPamqvmDFdQGwrv72l/Zff/kbllsHK9JlcqKJzXRkEjxdtV4y6gvpt87t1sfYYLSTk9cE0NlBf+/8PQSWyTnnSHMPBqy7ac9TF/3XG67766clf/fSs69PXZ68/mv2D1EDAIAjpP/lpy9urX11ks9N8t+TfCK7Hxy1nA1Iu22SH07ygap6aVU9cFU1AwAAAAAAAAAAy7UOwWh7KsnNk3xDkp9N8ldV9U9V9aKq+ndVdbfVlgfA2jj98VVXwEqZRA2swM7p0du25xGMdmqyegAmcsD1U+stpwyAJO7pmK8Ox9PYkCPHIzBsyvPC+597w3Uf+u0brjv9ieSyP51uDAAAOJxumuRmSQb/R1ob+EmS7SSPSPKGqnpVVd1luSUCAAAAAAAAAADLtk7BaIMPM+196+OtkjwqyS8muaiqLquq36mqJ1TVXVdUJwArZ9IqBxg76RlgCr1rR2/bulG3PrbGBKj1BKMBC3TQtZFgNGAu3IfRxSqOE8cmMIFpr41PfeyG605+dP+2l/z6dGMAAMAhUVUnqurxVfWXSd6e5LuS3HiwSZIzSU72lwefKXxYkndV1dctsWQAAAAAAAAAAGDJ1iEY7T8leVWST+dsIFqyf1DabZM8JsmvJPmbqrq0qp5fVY+tqguWWzYAKyP06mjz/jNXjic66p0evW1c4NmgqmT7+P7bdgSjAYt00N87fw+BJXJPd7TN+/3v1N+YNo5H4AaWcF7oXbf4MQAAYA1V1T2q6heSfDTJ/5vkX+Tss4J7zwdeluTHk1yQ5A5JvjfJRTkbkNayG6L2+1V1l2XWDwAAAAAAAAAALM/Kg9Faa89qrX19klsmuW/OBqVdlYOD0j4zybcn+bUkl1TVJVX1P6rq26rqDkv8ZwAASzPjpGeAaeyMCUbb7hiMliRbgtGAVTjg2qj1llMGAKzifl34GTCRGc4ZXc83vWunHwMAADZMVd2o/yzfG5P8dZJ/n+RmOftMYPrLr0/y6CQXtNae0Vr7x9bala2157bWvjDJ1yW5eGC/40m+f1n/DgAAAAAAAAAAYLmOrbqAPa21XpK39X+eVVVb2f1WyAcleXCSByQ5b3CXgeW9B57ulORx/Z9U1QeSvC7Ja5O8vrV2+eL+BQAsjwmtACxZb0ww2taNuvezfTy5bp/1gtGARToooEEwGjAXXe/V3dOzbOOOOccjMGSWa+OdU8mxEx3GODP9GAAAsCGq6sIk35PkO7P7hanJ7jN+e1+OWtn94tTfTvKc1trF4/prrb2qql6X5E1J7tPf/6sXUz0AAAAAAAAAALBqaxOMNqwflPbW/s9PV9V2doPSHpzdsLQHJLnJ4C4Dy3tBaRcmuWuSJyRJVV2c3aC017XWXrrI+gFYoIOCHTjkurz/jhG6cqzQUe/a0du2zu3ez/bx/dcLRgNWSjAaAMsy73swnxEAczbLZ88713QLRuvtl5gOAACbr/983yOT/NvsPuOXnH2Orw28vijJLyf5rdbaVV37b62dqqr/muRF/VWfNXPRAAAAAAAAAADAWlrbYLRhrbWdJH/Z//mpqjqW5EuyG5L24CRX2fZoAAAgAElEQVT3T3LjwV0GlvcesLpH/+eJ2aB/OwDDTGg90rpMThSeB8zbzunR27bnEIzWE4wGLNIB10aunYBlcs452lbx/o8d0/EIDJvhvHDmmuTcWx3cTjAaAACHTFVdkOT/TvL4JLfZW53dC+zWX95J8vIkz2mtvWGG4d47sDzB/6QDAAAAAAAAAAA2ycaGg7XWziR5S//nv/aD0v5ldkPSHpTkftk/KK1yNigNgI1k0ioAS9YbE4y2daPu/YwKRjtzcrJ6ACZy0PVzbylVAIecwDPWlmMTmECb4dr4zNXd2vWunX4MAABYTx/M9Z/JG3xO77Ikz0vyvNbaZXMY65qhMQAAAAAAAAAAgENoY4PRhvWD0t7c//kvVXVOkvsm+eYkT4hviASAQ6LL882egaYj4Q10NW7S8tYEtxpbI4LReqcmqwdgEgf9vZsl/AFgYq7Bj7Z5v/8z9ueeELiBGc4LO9ecXR53fmlnph8DAADW01Z2L6Zbzgak/VmS5yR5Wf+5vnmr+KAJAAAAAAAAAAAOrUMTjLanqm6R5CuSPDjJg5J8fs5+GyUAh4FJqwAs287p/dfXdrK13b2fYydG9C8YDVgkwWjAMnS9V5/wnv66TydXvi+5+Rcm2777YvMt6DOdqz+SnHvr5NhNljcmcEjNcM44MxiMtjO6Xe+66ccAAID1VUmuSvLbSZ7b2v9m787DLMnq80B/J6sa6G5WsQq1gG6QtSC0IckbaECDtdmSNVibLVndNjOjsWfRWLN4bGvzjD22Rx7b8iNrNF4k2mgxFthIxrIshA1oYRGLhNqgBbpo9oaGpmmglsy8x39UZtetrBtxI27cLW6+7/PU05kRceOcIg4nTkTl78v6n1bRSK31rlwOYgMAAAAAAAAAAHbY6IPRSimPTPIVuRKE9ozMDkKb3qYSCgBGq8NtXHgesGyThmC0vQf1O8/eQ2ZvF4wGrNS8tZG1E7Cl7vgbyW//9aQeJGeuT778Hyc3f8eme8UQy35ev+/tycs/J/n47yZ71yW3/LnkS3/06vDi1jbdA4EThsxTh9PBaC3hw4LRAADYPW9P8qNJ/nmt9f5NdwYAAAAAAAAAABi/0QWjlVIenquD0L4wV4eelVyuZjoZhPbWJK8++vOadfQVgFVRtHqqCT1jqYwnOmoqWu4bjHamRzDaJ84l73v55cLqz/j65BGf168tgGPz1k9toQ0Ay9b1me69P5+89fuufH94PnntdyaP+sLkkc9YTd8Yn3f82JWvJ/vJO/5xcv1nJM/4/qmDPPcBfQxYGx9MB6MdtjRxafE2AABgC9Van77pPgAAAAAAAAAAALtl64PRSikPS/LsXAlC+6Ike9OHZHYQ2ltyJQjtV2qt966jvwCsgeAG5lL0DCxZU0FzOdPvPF2D0T782uRVX5Psf/zy97/1vcmzX5Lc9Cf7tQeQZP7ayPoaWIYlP4e945/MbuPci5Iv/n+W2xZrtIbn9Tt/vEcwmvcHwAlDfinDYcdgtHqweBsAAAAAAAAAAAAAAHAKbF0wWinlxlwdhPbFSabTBsqMj02SvDlXB6F9fLU9BQA2Q9EysAHrDkZ78/dcCUVLLhdNv+G7ks/4hqTMeiQCGGBI+ANAbx3nnPe/fPb2t/+QYLRRW8M955N3nWjSfQ7oY8CccfCJqdO0BKNN9hdvAwAAAAAAAAAAAAAAToGNB6OVUm5I8qxcCUJ7ZuYHoe0neWOuBKH9Wq31EzOOA2AnKWg93bpcf2OErowVOlp1MNpkKhjt4keTj7zu2mMu3J185PXJY/5QvzYB5t7vJmvpBQBsJqSspU2hacBJdcDa+GN3TH3Tch7BaAAAnFKllEcn+eYkfzDJ45OcT/LeJL+c5N/XWi9tsHsAAAAAAAAAAMAW2XgwWpKPZX4Q2qUkb8jVQWjn19A3AGCMFDbTxfm7k3e/dNO9YCyWFYy21xCMdjD1eHPxnubP3/9OwWhAf/PWRkPCHwCOdX4O87zGmnlHAPQyYM5478uSZ/5wUkoyaXiPkCQTWQ8AAIxfKeUxSb4gyWOTXExyZ5I7ar32hXMppST5K0n+apLrZ5zuf0hyVynlL9Zaf3F1vQYAAAAAAAAAAMZiG4LRzuZylcF0INqFJK/LlSC019VaL2ygbwBspZbitFovF56xuxQ0swznfjJ53a2CYOhuWcFoZxqC0SZTjzttBdJnHtyvPYAkc8Md3A+BdfJMd8pt4vq3tWk8AicNmBc+9Z7kvjuSRz6j+T1CktSDxdsAAIANK6V8UZIfSvKcJHsndn+olPIPkvzdWi8vio9C0W5P8u25+ucDjxffx9uekuTflFJuq7X+1Gp6DwAAAAAAAAAAjMU2BKNNq0l+OcnfSfKaWlUGADCDIupTrsv1N0Zocf7u5LXfGeOEXppCg8rJeo85zlw/e/vhdDDaxebP7z2oX3sASYf1s3siAOvingNsuaGhwR985fxgtMn+sDYAAGBDSinfluSfJzmTq0POjj0+yf+d5CtKKV9fa50k+e4k35HLLwWmw9COPz/9suBMkh8vpbyl1vq2FfwVAAAAAAAAAACAkehZxb9Sxz/k9Lwkr0hyXynll0sp31tKeXYp5boN9g2ArdJWRKvAFpjjzp+IuYLemgqay5l+59lryKaeTGVCH15q+bxgNGARc+57Q8MfAJJ0X2Nbi7Nu3iMBPQz9pRzn33f0Rcsauy00DQAAtlQp5cuSvCiXfxFrydVBZ5n6viT5miT/SynlYUl+MFcHon0gycuT/HSSX0xyb64OWbsuyQ+v6u8BAAAAAAAAAACMQ0NV/lq9Pcnn5NrfInl9kuce/UmSC6WU1yV5dZJXJXldrbUlMQCA3dVSnFbr7N9LzA7pUpyosJkWd/74pnvAGC0rGK00ZVNPFUy3jdEzD+7XHkASwWgAbI2hgUNjaRMYsYFzxnHwufAzAAB2z/+X5EyuDjm7N8k7jr5+apJH5Uo42l9Kcl+Shx9t+0iSF9Ra/830SUspe0lekOQfJHnI0We/spTy1FrrO1f8dwIAAAAAAAAAALbUxoPRaq1PL6U8JslzcjkE7TlJPvdo93S0zfVH+56T5AeSXCylvD5XgtJeW2u9uI4+A7BhrQWtil133soLmo9/uTU7a7K/6R4wRksLRms4/jiUqNbknf+0+fN7gtGABcxdP1n7AOtkzjndNnH95wTsA1xlaDDa0XsnwWgAAOyQUsofTPIluRJ69uEk35Xk52q9/HBdSilJviHJjyV5XJLHJ/meo1PsJ3lerfWtJ89da50k+SellLuTvCxXFuXfnORvr+rvNFallOtz+WcrPyfJY5M8NMknknw0yR1JfrvWerC5HgIAAAAAAAAAwHJsPBgtSWqt9yR5ydGflFIelyshaM/J5R/kSa4OSntIkq84+vN9SS6VUt6QyyFpr07y67XWCyvvPABbRkErGVbYXPYULu46PwfOIpYVjJa99vPf+5vtH+/dHkAyd418HM4IMIjncbrYsmA0gJOGro2P3ztNvF8EAGCn/Kmj/5ZcDjn7qlrrb00fcBSQ9nOllHNJfiOXfy7xD+Tyg/lPzgpFO/H5ny+l/Mdc/sWqNcmXLvev0F0p5ZYkX3bUhy/L5VC4h00dclet9Slr7M+XJPnGJF+Z5MuTXNdy+CdLKS9O8sPz/jcHAAAAAAAAAIBtthXBaCfVWj+U5F8e/Ukp5fG5EpL23Fz+oank6qC0Byd51tGf702yX0r5jVwOSntVLgelnV955wFYg5aC1iGBWIzEqq9xmX8I4zbZ33QPGKPGYLSGoLMmTccfF15fuHteR/q1B9CJYDRgjTy3s26tY854BE4aOC88EMhvjQ0AwE75kqP/1iT/8mQo2rRa61tLKf8iyZ+d2vzSju28NJd/NjBJnt67lwOUUp6T5K/kchjap62z7SallIck+U9JbunxsRuT/Pkkt5ZS/m6S76u1+gdyAAAAAAAAAABGZyuD0U6qtd6d5MVHf1JKeUKuhKQ9J8lnHR06nWTyoCR/5OjPX83loLQ3Jnl1klfVWl+xjr4DsG4KWndepyL6AeOg7BlGu04wGouoDQXN5Uy/8zQdfxy8dvbGOf0wQQGLmDN3NM1xAH10XqdYz5xqG1nPGnNAD0PnqeP3Tk0B6w8cd5DsjeKfaQEAILnyS0yT5OUdjv+FXB2M9taO7RwHrpUkj+74mWX5oiRfteY25zmb2aFoNcnvJnl3knuSPDTJ55849kySv5zks0op31rrAynOAAAAAAAAAAAwCqP8ifta6weT/IujPymlfHquhKQ9N8lTjw49GZT2h4/+/OWM9O8OQKKglfmGjJEy/xDGzc98s4imgubewWh7DTuOQonOXD+vI/3aA0g6hDuYWwBYl20LRnMPBE4aGBo8OXrvNC8Y7fBCsvfQYW0BAMD6PGLq69/tcPzJYz7SsZ17pr5+eMfPrNrFJO/NlZ9H3JTDJL+U5PYkr6y13nPygFLKM5P8vSRfMbX5+Ul+MMn3rqGPAAAAAAAAAACwNE1V+aNSa/1ArfWna63/ba31s5LclMu/dfLHk9x5fNjRf0skngCMW2uwg4LW3bfia9wYWsTOmOyvv825gTRsvaUFozUcX48Kr/fm5TcbS8Ai5swddWD4A0Av1jOn2iaejTyPAX0MnTNqx2C0ycVh7QAAwHpNp/re1+H4j09/U2u90LGd6eOu6/iZZdpP8ptJ/mmS70ryzCQPS/Jfb6Avxy4m+UdJnlJr/bpa64tnhaIlSa31TUm+MsnPnNj1v5VSnrzifgIAAAAAAAAAwFLNq7ofpVrr+0spb0vyuCSPT/LEJA/ebK8AWJ6W4jTFrqdAh2s8aBy05KfWmhT5qqO3iWC01MjmHbmlBaM1hC8en39eOJH7HLAQwWjAOlinMELW18A1Bs4Lx++d5q2xD7vmQgAAwFaY/ofOOSnAnY/ZNrcn+bFZIW5lcz8jcCHJ02qt7+36gVrrYSnlBUmeleQzjzY/KMm3JPmh5XcRAAAAAAAAAABWY2eC0UopX5jkOUmem+TZSR650Q4BsDqtRasKWhmo9YeahVvthHqw6R4wRo3BaA1BZ42agtEmV/+3uSM92wPI/NAXwWjAOgmiOuU2cf2NOaCHoWvj4/dOTe8RjglGAwCArVJrvXfTfTip1nqQpHMo2tTnzpdSfiLJ909tfm4EowEAAAAAAAAAMCKjDUYrpTwjV4LQviLJo6Z3T31dG7YDsJMUu+68TkX0Q8ZBS8hRPVwgBAmSvPOfJU/7bzbdC4ZoKowuZ/qdp+n444JpwWjASsybO8wtAKzLtgWjuQcCJw2cFyaC0QAAgK3wlhPfP3EjvQAAAAAAAAAAgAWNJhitlPL0XB2E9ujp3VNf11ypWihT+96b5D9O/QFgtFqK0zqFZjFuK77GpSVHdW5gETT43X8gGG3smgqaewejNYQrPjC/uI8BqzBnbrHGAZai6zrGeoc1864I6GXgnFH3j/47JxhtcnFYOwAAAO0OTnz/oI30AgAAAAAAAAAAFrS1wWillM/NlSC0/yLJY6Z3T33dFIT2gSSvylEQWq31nSvsLgBr1VacptiVZNg4aAgtSuYXNEKT+96WHF5Izjxk0z1hUUsLRms6/iiUaF44kVAHYCUEowGwJhtZz3qPBPQwdJ6aHGUPzHu+P/jUsHYAAADaPe3E9x/YSC8AAAAAAAAAAGBBWxOMVkr57FwdhPa46d1TXzcFoX04Vweh/e4KuwsAbMyKi5ZLad4nGI0hDi8KRhuzpQWjNYQvPnD+eeFEghuABcwLdxC6CKyVOYd1M+aAPgaGBtfjYLQ57xHf+r3J8141rC0AAFiv4wfsP1RKecqcY58w/U0p5dm5+uf/On2OQb7pxPdv2EgvAAAAAAAAAABgQRsPRiul/FQuB6JN/2BTlyC0jyZ5da4Eof2n1fYUgK3RGtyg2HXndQnuGBLu0RRalCR1YGEkp9vk4qZ7wBDLCkZLUzDa5Or/NnekZ3sAyfy5wxoHWIKuz2HCGE+5DVz/tjFnPAInDZ0XJh2D0T706mHtAADAZpQkP7PAZ17V4/iabiFqNCilfFmSP3pi87/eRF8AAAAAAAAAAGBRGw9GS/Knc/UPNDUFoX0syWtyJQjtrevsJADbREEr8wwZBy0/Yz2voBHaHApGG7WmwLK2MMVZ9hqC1I7nl3nBaO5zwELmzB3CXwFYm02sZ62hgT4Gzhl1/+i/1tgAAOykPqFl04vrPkFnHuQHKKVcl+T/P7H5V2qtb1hyO49L8tieH3vqMvsAAAAAAAAAAMBu24ZgtGPHPzh1/INQ9yf5lRwFoSV5S61SAABI2n8O1q1i9636GrcFoyloZIDD85vuAUM0BSOWhqCzRg1Bag/ML/PmGfc5YAHzXqdY4wBL0XWdYj3DunmPBPQwdG08OTg6T4dfsFBrUvrkQwAAwFZY5GHaA/j6/FCSL576fj/J/7SCdv5ikh9YwXkBAAAAAAAAACDJ9gSjlSSfTPJruRKE9sZaVeYCMENrsIOfpyUZNA5KQ2hR0q2gEZocXth0DxhiWcFoTccfP/rMzYJ2nwMWYW4BYEv43SfA1hs4T9U+wWiHSdmWf6oFAIBW744XyVuvlPLnk3z3ic0/WGv9zU30BwAAAAAAAAAAhtiGn7b/vlwOQntDrcfVAgCwIAW2p8Cqr3Fp2SezlQEEo43b0oLRGsIXHzj/nHnGfQ5YxLy5Qy49ALus7T5ofQ2cNHRemOwfnadDMNpkP9nbhn+qBQCAdrXWp2y6D7QrpXxNkh87sfnlSf7WBroDAAAAAAAAAACDbfyn7Wutf3PTfQBgbBStnmpdihOHFDA2hRYl3QoaoclEMNqorToY7TgQbW44kXsgsIh5c4e5BYB12cQ9x30O6GNgaPDx74DqEj5c95NcP6w9AADg1Cul/NEkL01y3dTmX03yrbWuLBX+R5P8bM/PPDXJz62gLwAAAAAAAAAA7KCNB6MBwHIpdmWo0rxLMBpDHApGG7Wmgua2MMWZxzcEqR3PL/MKp1dWuwDsto7BsqVlHQSwTOYc1ql1DW19DZww9Ll7chyM1uE94uGlq2MLAAAAeiqlPDPJv01yw9TmNyT547XWT62q3Vrrh5J8qM9niveBAAAAAAAAAAD00LOKHwC2QUtxmsCYU6DLNR4wDtpCjuYFFkEbwWjj1lTQ3BR01qhhjjmeX+bOM+5zwIpY5wBrZU1zem3i2htvQB8D54y6f/TfDsFox8cCAAAsoJTyBUl+Kckjpja/JclX11o/vpleAQAAAAAAAADAcghGA2B8WkMbFLvuvlVf45bfUtyloBGaCEYbt2UFozWFLx6f/+D+fucD6KJTeLBgNGAAIeV0tZGx0tamsQucNHBemBwcnabDe8SJYDQAAGAxpZTPS/LLST5tavMdSb6q1vqxzfQKAAAAAAAAAACWRzAaADtGQSsZVmhd2oLRBIYwgGC0cVtaMFrD8cfzy/kPzutIv/YAknSaO6xzgHUSpMY6GW9AH0PXxfU4GK3DeQSjAQAACyilfHaSVyZ57NTm30nyvFrrPZvpFQAAAAAAAAAALJdgNABGqKWgVbHr7ut0jYeMg5blUVMwEnQxEYw2aksLRmuaY+rl+e3C3XP64T4HLGLV6ycA6GoT9xvvkYA+Bs4Lx2FnXd4jCkYDAAB6KqU8Lcl/SPKEqc2/n+Qra61z/qERAAAAAAAAAADGQzAaAOPTWrSqoHX3rfgal9LS9GS1bbPbDgWjjVpjMFrPR6q2ILU6SS58cF5H+rUHkHQLfbHOAQbpu0axpmGdjDegh6GBifXg6L8dgtGqYDQAAKC7UsrNuRyK9sSpzXfmcijaBzbTKwAAAAAAAAAAWA3BaADADhpSwNiyPOpS0AhNBKONW1NgUFvQ2czj2x7BJsmFeb/IXagDsAjBaABsi21bz25bf4DNG7gunvQIRptcGtYWAABwapRSnpTLoWifObX5rlwORXvvZnoFAAAAAAAAAACrIxgNgBFqK1pV0Lr7VnyNS2lpWjAaAwhGG7em///3DUabF754/oNz+uE+Byyiy9whGA1YJ2saVmx63WwNDfQxdM6oB0fn6LC+nuwPawsAADgVSilPTPLKJE+Z2vy+XA5Fu2sjnQIAAAAAAAAAgBUTjAbACLUUpyl23X1drvGQcVDalkcCQ0Zvk3OEYLRxW1YwWtvxdZJcuHteR/q1B5Csfv0E0HcOMeecXhu59gL2gT6WMC/Uw26/YEEwGgAAnDqllHriz3PmHP+4XA5Fe9rU5g8keW6t9c4VdhUAAAAAAAAAADbq7KY7AAC9tRbRKmhlqNK8a9KhoJHtVg8217ZgtHFbWjBaS/jiR9+cnH/fvI70aw+gMwGwAKzDutazNVee762hgR7qEtbF9aDbe0TBaAAAsFVKKTdl9s9TPuHE92dLKU9pOM0naq33LKk/j0zyiiSfM7X5k0lekGS/pQ8z1VrftYx+AQAAAAAAAADAOghGA2CEBKOdbl2u8arGgfE1ehstODV+Rm1pwWgtx//yszv0wzgCFtFh7lhGAARwivVdo1jTsGK1TuWitYw362vgGkuYFyYHze8RrjpOMBoAAGyZX03y5A7HfUaScw37bk9y25L680VJvuDEthuT/MKC52v5LXEAAAAAAAAAALBd9jbdAQBYKgWtp8Amr7HxNXqC0VhUU2BQ6flI1ff4azsy8PPA6dQlGM38AsA6bOJ+4x4H9LCMdXHdT9IheLgKRgMAAAAAAAAAAAAAgFkEowEwQm3FaYpdSVY2DgSGjN/k0ubaNn7GrR7O3l7O9DvP4GA0gAV0ugd1CG4AWBprY1atNnzddhxAspR5YXLQ/B7hquM2+J4KAAAAAAAAAAAAAAC22NlNdwAAoJcuwR4rC6BSMD16k/1N94CxWlowWs/jr+3IwM8Dp1OX9ZNgNGAIaxQ6Wltg9FQ7QqqBPpaxLq5dg9G8pwIAgG1Sa33KGtooPY59VZLOxwMAAAAAAAAAwC7Z23QHAKC31oJWxa67b5PX2PgavbrJglPjZ9SWFYw29BFMqAOwEMFowJaxpmHVrhpj3iMBfSxhXpjsJ598d7fjAAAAAAAAAAAAAACAawhGA2CEWorTFFeTZGWFzcbX+B1e2nQPGKtlBaP1DlK7piMDPw+cSp3WMOYXANZhE/cb9zigjyXMGfUg+dhvzT9OMBoAAAAAAAAAAAAAAMwkGA2A8WkNdlDsuvNWHk5mfO20usmCU+Nn1Opk9vbS85Gq7/HXdmTg54HTqcPc0TTPAXTR+znNmubUWlvgeMd2BKADJy1jXTzZTz722x3aEowGAAAAAAAAAAAAAACzCEYDYIQEV51uXa7xqsaB8TV6kw0WnCq4H7d6OHt7OdPvPEOD0YwjYBGd5g7BaMA6WdOwalNjzBoa6GUJc8bh+WT/4/OP2+R7KgAAAAAAAAAAAAAA2GKC0QDYLYpdWaUqMGT0Jpc23QPGamnBaD2Pv7YjAz8P0MA6GoC12MT9RsA+0MMy1sWHF7od5z0VAAAAAAAAAAAAAADMJBgNgBFStHq6dbj+Kwv2MPZGb7K/wcaNn1FbWjDawEcwwUXAQrrMHQJggSF6rlGsaVi1q8aY8Qb0sYR1cedgtE2+pwIAAAAAAAAAAAAAgO0lGA2A8WktoFbsykBt40vx/vgJRmNRSwtG63n8tR0Z+HngdOoSLCsYDYB1WNd6dqod75GAPpbx/u/wYrfjBKMBAAAAAAAAAAAAAMBMgtEA2C2Cq3Zfp2s8ZBwomN5pk0ub7gFj1RiM1veRaugjmHkIWECX9ZNgNGCtrGlYJ+MN6GMJc8bkQsfjBKMBAAAAAAAAAAAAAMAsgtEAGCHBVafbioPRWoNDjK/R22TBqeDGcWsKDCpn+p2nd5AawDKsOlgWwBxCR2t7Lppqp61Nz2nANZYwLxx2DEa7eM/wtgAAAAAAAAAAAAAAYAepygdghARXsUoKpnda3WAwGuNWD2ZvL2f7nadvkNo1/TAPAYvoMHc0BUACrIQ1zem1pmt/1brZeAN6WMa6+PBit+Pe85Jk0vC+AQAAAAAAAAAAAAAATjHBaACMT1sojMCYU6BLsMeAcdBa/Gh8jd7k0gYbN35GrR7O3t436KwMfQQzjoAFdFkbCUYDhuj7DObZnbUSsA/00TAvPPHrup9i0jEY7cLdyQd+qft5AQAAAAAAAAAAAADglBCMBsAIKWg91VZeQC94b6dN9jfYuPEzavVg9vZytt95+gapXduRgZ8HTqcuc4dgNADWYV3rWetmYEFN7/9u+fPdz3F4ofux527vfiwAAAAAAAAAAAAAAJwSgtEAgB00pABa8N5O22gwGqNWD2dv3+sbjDbwEUxAI7Aq5hdgrcw5rNrUGGu9xxmLwAm1ITC4lOQzn9/tHJOL3dt778uSS/d2Px4AAAAAAAAAAAAAAE4BwWgAjJCC1tNtxddYwfRum1zaXNsCZ8ZtcjB7eznT80RDH8GMI2ARXeaOhgAIgE6sUehoI89FxifQR9OcUbqf4rBHMNrkUnLXi7sfDwAAAAAAAAAAAAAAp4BgNAB2i+ChU6DLNR4yDlo+a3yN32R/g40bP6NWm4LRzvY7T+8gtWs6MvDzwKnUZQ1TBaMB62RNw4pdde/znA/00RaM1jEc7fBCvybvfGG/4wEAAAAAAAAAAAAAYMcJRgNgfFqLVhW0MpTxtdM2GozGqNXD2dv3+gajDXwEE9wALEQwGgDbYl3r2al2rKGBPprWxeVMOgejTXoGo33k9cl9v9PvMwAAAAAAAAAAAAAAsMMEowEwQm2hDYpdd16XguYhRc+C93bb5NIGGzd+Rm1yMHt7OdPvPEOD0YwjYCFd5g7zCzBEzzlEUNUptolr7zkf6KExGG0vKR2D0Q4v9m/33O39PwMAAAAAAAAAAAAAADtKMBoAu0Vx9Smw6mCPluA944AeVzUAACAASURBVGv86v6me8BY1cPZ28vZfucRjAZswqqDZQF6M+ewarXha4B5WoLROp+iJRjtEU+fvf3ci5JJw7sHAAAAAAAAAAAAAAA4ZQSjATA+QhtYpdbxZeyN3mSDwWjmrvGqNakHs/eVM+vvC0Bvqw6WBYCO1rWenW7Hcz7QR236pQl7SUq3cxxeaN731BfM3n7+fcndr+x2fgAAAAAAAAAAAAAA2HGC0QAYIQWtp1uHazyo0Lrls42FkYzG5NIGGzc/jVbb//f3zq6vHwALE4wGrFjfZzBhr6yV8Qb0UA9nby99gtEuNu978p9O9h48e9+dt3c7PwAAAAAAAAAAAAAA7DjBaADsGMWuO2/lBfSC93baZH/TPWCMmoqik6SsOxjNPAQsoMv6SQAsAGuxrvVsx3aE9AEnNa2Ly15SOgajTVqC0R786OSmb5y9773/Krl0X7c2AAAAAAAAAAAAAABghwlGA2CEWopWFbSSZFChdesYMr5Gb6PBaMbPaNWD5n3lzPr6kcQ4AlbH/AKskzmHFbvq2d54AzqqNY1zRp/n/8MLzfvKmeSWW5s/9+6f7d4OAAAAAAAAAAAAAADsKMFoAIyP4KpTbtXXWPDeTptc2lzbxs941cPmfXtn19ePxDgCFtRh7jC/AIOYQ+hqA2PFeySgs5Y5oewlKd1OM7nYdJLL53nCH0uu//TZh5x7Ybc2AAAAAAAAAAAAAABghwlGA2CEFLSebl2u8ZBxYHzttMn+pnvAGNWD5n3lTP/zPfrLF++LeQhYyKrXTwB9mXNOrbUFcdaGrwFa1EnLzh7BaIcXZm8/foewdzZ5ynfMPubDv5bc/45u7QAAAAAAAAAAAAAAwI4SjAbACLUUtK6twJad1VoAaXyNXt1kMJrxM1qTtmC0s/3P9/S/tnhfjCNgEV3WyK1rIIB5rFHYNh2D0bxHAqa1rYnLXlKWFIyWJDff2vz5c/+8WzsAAAAAAAAAAAAAALCjBKMBAOPSKdhjQGFz22cVTI/f4aVN94AxqofN+xYJRnvi1w7oi3kIWESXucP8AqyRNc0ptoFrb7wBnc0JRut8mosN55gKRnvk05NP+9LZx915u+BiAAAAAAAAAAAAAABONcFoAIxPa0GrYtfdt+pgD+Nrp9X9DbZt/IxWPWjeN13U3NUiYWoPMI6ABXS6B5lfgHUy57BiV937POcDHbWGke0lKd3Oc9ghGC1Jbrlt9nGfenfyoVd3awsAAAAAAAAAAAAAAHaQYDQAdovgIQZrGUPG1/hNNhiMpuB+vOph8769BULOSsdC6pl9MY6ARXSYO8wvwBDmEDpb11jpGowGMKUtGK30CUa70HCOE8FoT/62ZO+62cfe+cJubQEAAAAAAAAAAAAAwA4SjAbACLUVtCp23X1drvGAcdBa0G98jd7k0qZ7wBhNDpr3nSxqXjnzELCILnNHSwgEwNJZ05xamwjR85wPdDYvGK3raS7O3r534h3Cgx+dfMY3zD72PS9N9j/RvU0AAAAAAAAAAAAAANghgtEAGJ/aFtqgoJWhFEzvtMn+Bhs3fkartgWjnV1fP05qC2wDmNYlhObgk6vvBwCsjecvYAFt753LXlJKt/McNgSjzXqHcPOts489+GTynpd0a49xuvCh5EO/mnzsjuUEhx58MrnnDcnBp4afCwAAAAAAAAAAAABgwwSjATAuh5eST7yzef8yCojYbl2u8aBx0PJZ42v8NhqMxmjVw+Z9e+sORqvJB1+Z/LtnJi9+SPILX5h86FfW3AdgJ73mG5MPvGLTvQBGq+ezkmerU2xN1/6qMeY5H+io9Rdy7CXpGIx2cP/s7eXMtdue+DXJQx43+/g7b+/WHuPzOz+c/NyTk19+dvILz0j+/Zcn97f8u0eX873kUckv/cHkJZ+W/P6PLa+vAAAAAAAAAAAAAAAbIBgNgHF56/fOOUBB6+5b8TVuLYA0vkZvcmlzbSu4H6/JQfO+WUXNq3Tf25JXf31y75svB7Z97K3Jf3he8vHfX28/gJHpeA96zZ9M9htCHABgrDyLAV21vRcse0npGIzWeI4Z7xD2rkue/O2zj//Qq5JPnBvWJtvnI7+RvPkvJYcXrmz76Bsvh1Uvcs+6+z8mb/6fr/xCiMnF5Df+QvLh1y6nvwAAAAAAAAAAAAAAGyAYDYBxufOFm+4BozCk6Lnts4qpR++4QHAjjJ/RqofN+8rZ9fUjSd7zkuTw/NXbJpeSd71ovf0ARqbjPejwfPLen19tVwCSWBufZuu69rXh67bjAOYEow3VFK5+y23NnznneX/nvP/fZeb95747kvsXCL5/5z+bvf3dP9v/XAAAAAAAAAAAAAAAW0IwGgDjcvHDcw5Q0Lrz6oqvcdv5V902q1c3GYzGaNWD5n1NRc2rcvEjs7ff8X+ttx/AuPRZw5x74cq6Aeyyvs9Knq1Yta7BaABT2oLRs5ekDDt/0zuER31B8qgvmr3v3O3eSe6aC3c37zv//v7ne9dPzd7+u3+//7kAAAAAAAAAAAAAALaEYDQAdosisVOgyzUeMg7aPjsZcF62wuTSBhs3P43WpCUYbe/sYue87pGLfQ5gIT3uQesOfATgdNnEe5vWNj2nAVNqy7u/ssJgtCS5+dbZ2z9xZ/LhXx3WLttlcrF5X1s4PwAAAAAAAAAAAADAKSIYDYAdo6CVDCy0bvms4L3xm+xvrm3jZ7zqYfO+smAw2md/92KfA1hIn3uQV0XAAvquda2NT7E1XfurxpjxBnQ0LxitrDAY7Sl/pvkdw7nbh7XLdjm80LyvLZwfAAAAAAAAAAAAAOAUUe0KwI5R7Lr7VnyNWwv0ja/R22QwGuNVW4pS24qa23ze/5484XlT59lLnv7Xksd/ZfLgxyx2TuMbaNIngGjReQ0AtkrHYDQhfcBV2oLRlrBO3msJV3/I45Inft3sfXf9y+TgU8PbZzscXmze590OAAAAAAAAAAAAAECSpOUn8AFghBS07r5O13jIOBCMttMmlzbYuPEzWvVw9vayl5Sy2DnP3pA85xeTe9+cfOJc8thnJTc88cr+X/zS5KNv6nfO8x9MbvzMxfoD7Lge96A9wWjAOlgbn1qbeG/jXRHQVW0LRttLsuA7gAfOMWetfcttyft+/trtB/cn7/nXyc3fPqx9tsPhheZ9beH8AAAAAAAAAAAAAACnyN6mOwAAsFXaCiAVU4/fZH/TPWCMJg1FqfMKmufZO5M8+suSJ3/L1aFol0/e/3yX7h3WH4Bk+NwGnFKeldg2XceksQtMaXsvmDUEoz3xjycPfvTsfedeOKxttsdEMBoAAAAAAAAAAAAAwDyC0QDYMQpad1+XazxkHLR91vgavY0Goxk/o9VUlFrOrrDRRYqt2wq4gdOtzz3IqyJgHayNT681Xfurgs2NN6CjtmC0speUFQejnXlQ8uQ/M3vfB1+ZfPI9w9pnOxxebN7XFM4PAAAAAAAAAAAAAHDKqHYFYMcodt19m7zGxtfoTS5tru1q/IxWPZy9faXBaAtoK+AGTrc+96B5YQ0Ay2BtzFoJQAe6mhOMNlSXtfYttzbsqMm7XjS8D2ze4YXmfU3h/AAAAAAAAAAAAAAAp4xgNADGo0vhtOJqksXHwbzPGV/jV/c33QPGqKkodZXhQaX0/0xTgBtAn9CXZQQ+AKePZyU6W9dYmWrH+AS6ag0c30uywLP6tC7vER71JckjPn/2vjtvN6ftgsnFln2C0QAAAAAAAAAAAAAAEsFoAIxKl6IvhWE7b6XFf/PObXyNWq3JZJPBaMbPaDUVpe6dXWGjiwSjtRVwA6dbn2C0FYY+AjzA2vjUWlugT234+uRhxiIwpe25uuxl8P2ry1q7lOSWW2fvu//3knteN6wPbN7hheZ9TeH8AAAAAAAAAAAAAACnjGA0AMajU7Gqgtbdt8JxMHeMGV+jtvHCQuNntOrh7O0rDQ8SjAYsUZ/Ql+JVEQA74OD8la8nlzbXD2Bk5gSjDX3uLh0D1p/y7c3vHM7dPqwPbN7agtEWeLcEAAAAAAAAAAAAALAlVLsCMCIdCs/6hD7ANeaMH+Nr3Cb7m+4BY9VUlNq1oHkRZZHiVcFoQJM+wWirDH0EdlffZyXPVqfXmq79m//S5f/e8/o5BxqLwJS24LOlBKN1XGtf/+nJp3/17H13/Yurwx8Zn8nFln1LfH+596DlnQsAAAAAAAAAAAAAYM0EowEwHkKpSNKtaLnhmFqT+9+ZHHyyYf+84kZjcNSawq3W1r7xM1r1cPb2lYYHLRCMNrRAG9hdfe5BxasiAHbAB19x+f73npdsuifAmLQ+V+9lcCB5n/cIN986e/v+fcn7fn5YP9iswwvN+yY931+2PevtXdfvXAAAAAAAAAAAAAAAW+TspjsAAN0NCMRid3QJ9ph1zEfflLzm+cmn3p3sPSh52n+XPOJzkzt/Irn0seQzvj55xg8Mb5vt5fqxqE0Eo5VFgtEa+gnQZ4280tBHgCPW5qfYOq99Td7+d+cfA/CAluCzsjf8/tVnrX3TNyTXPTLZ/9i1++68PXnytw7rC5szudi8r+73PFfL8YLRAAAAAAAAAAAAAIARE4wGwHjUlsK0B45R0MoMB59KXvm8K4WEk0vJ7/3Dq4/5nf83uf/355zI+Bq3TV+/TbfPwpruPysND1okGK3DfRJgrr1NdwAYpb5rXWtj1sA7IqCvtufqsjc8kHyvx3uEMw9JnvxtyTt+7Np9H/z3yafen9zwxGH9Yf1qTQ4vNO//zf/j8v7P//5uofltIWt7D+rfPwAAAAAAAAAAAACALaHaFYAR6VLQquh19y0wDj7wi1dC0dq87+eX0Dbba9PXb9Pts7CmwueyysepBYLRIhgNaNLjHrTS0EcATr21hpUJ2Ad6ag0+2xseSN53rX3LbbO310nyrp8a1hc2Y3Jp/jG//YPJ2/5Ot/MdtgWjXdftHAAAAAAAAAAAAAAAW0gwGgAjIhiNZKFrfMffXFLTQodGrW/B+5nrV9MPxqfp//urDA8qCwSjmaOAJn3ugSsNfQR2Vt+1tjCqU2yN1976GOirbd4oexk8h1338H7HP/rLk4d/9ux9517ofjpGk5Ygs2nvetHw8xXBaAAAAAAAAAAAAADAeKl2BWA8uhS0KgYjyTVFil0Lzvqel5Hpef2ef3fyrJckX/X65BGft4TmjZ/Rqoezt680PEgwGrBMfYLRVhj6CABrJWAf6Kk1GO3M8Ofu6x7V7/hSkptvm73vvrclH33TsP6wfocXuh1339u6Hdf23vvMg7qdAwAAAAAAAAAAAABgCwlGA2BEFLSSxcKlDpcUjCbYatz6Xr/rHpY86U8lj/nyZO/Bq+kT49BU+Lxt4UFNAW4AgtGArePZ6vRa47UXHAz01haMtte+v4sHPbL/Z27+jjSGp9/5wiG9YRMml7of2+U+1vbeu1zXvS0AAAAAAAAAAAAAgC0jGA2A8RBKRVcnx8pkScFoivdHbsj1ayhAXVv7bFRT4FhZ5ePUAmNO8APQpM86WjAasBBrXbaRgH2gp9bn6jL8ufu6h/X/zA03JU/4Y7P33fUzy/uFEGyfLgH4be+99wSjAQAAAAAAAAAAAADjJRgNgBHpUnimoHX3LXCNDy9srm22yIDrV5YQjCbcccQa7j+rDA9aaMwJRgOa9AlG86oIWAdr41Nrnc9FgoOBvhrnjXL5OX3ovHL2xsU+d8uts7df+mjyvpcv3h/Wr899cHLQ4Zj95n2C0QAAAAAAAAAAAACAEVPtCsB4dCkaEjx0CnS5xieOmVxaUtPG16j1Kl49GUq1hGA0xqseNuxY5ePUAmNO8APQqE8w2gpDHwFgnbqsjz3nA1dpCkY/fv4fOGecfehin7vpG5PrHj5737nbF+8P260ODEbzYwAAAAAAAAAAAAAAwIj5iWgAxqNT4IuCVnJtYfPk4rJOvKTzsBkDrl9ZxrLZ+BmtpvvPSsODBKMBG7KUex5w+vRc6wqjOsXWee2NM6Cnxuf/vfb9XZ29ccHP3ZA86Vtm73v/LyTn7168T6xZj3tTl2C0tmP2znZvCwAAAAAAAAAAAABgy6h2BWBEuhQNKXrdeYsU0B9eWFbjSzoPG9Fn7JSToVQLhFRd24ElnIONqIezt68yPOiaMdhBUz8BBBABW8e8dHqt8doL2Af6apw3lhSMdsNNi3/2lttmb6+HyV0/vfh52V6TDsFok/2Wnct4nwkAAAAAAAAAAAAAsBmC0QAYkQ7FqkIfToENBuQZXyPX5/qtIhiN0WoqfC5nVtjoIsFoAwu0gR3W4x5oLgFgV9QOgTIA0xqf/4//OXXgWvlRX7z4Zx/zR5KHPm32vjtvX/y8rFmfZ7OhwWie7QAAAAAAAAAAAACA8RKMBsB4CGlg4wSjjduA61eWEIwmWG+86uHs7WWVj1OLjDn3SaBJn3uQ+xWwgN5rXXPNqbXO56LD8/OP8ZwGXGVOMNqQOeNz/9dh7xFKSW7+ztn7PvZbyb2/ufi52U6TgcFo/j0FAAAAAAAAAAAAABgxwWgAjEiXwjMFrSSrGwfG16j1Kl49GUq1hGA0xqupkLScWV2bi4TxKXgFmvS5B5pLgG0grIplOPjUpnsAjE3jWvg4GK0hOL2LW16w+GcfOEdDMFqS3Hn78POzXWqHYLS2Y6ynAAAAAAAAAAAAAIARE4wGwHh0KuRR7LPTNl3Mten2GWjA9VskpOqke9+UvO7PJa94VvKbfzXZv3/4OVmPpsLnssrHKcFowDL1uQda7wBrMPfZyly0u9Z4bQ/PdzjIWAOmNAajHz//D3ju3ju7+GeP3fjk5PHPnb3vXT+VTPaHt8Fq9Xm/POkQjNZ6zb0nAgAAAAAAAAAAAADGSzAaACPSoZBHcBXJCseB8TVuPa7fNUFoS1g2X/hQcucLkw//WvK2v5W86usUrI5GU2H0mfV2Y56mADeAPvdAIYvAQjwrsYUOPrXpHgCjMycYbcg7x7KEYLQkufm22dsvfjh5/79bThtsh9rhvWHbu0XPdgAAAAAAAAAAAADAiAlGA2A8OhWeKcbebRu+voL3xm1Q8erJoLQl+PCvJve8bvnnZfkaA8dW+Ti1yJhT8Ao06HUPtN4B1mHOXOPZa4et8doenu9wkLEGTGl6/j8ORhvy3L23pGC0z3x+cvbG2fvufOFy2mCFetx3JgcdTtd2jHscAAAAAAAAAAAAADBegtEAGBHBaKde5+L4VY0D42vc+ly/k6FUKwhGS5Lf/sHVnJflqg2Fz+XM6tpcJIyvqZ8Afe6B5hJgIX2fleYd79lrZ60z9O7wwvraAnZD41p4b87+DsqSgtGue2jypG+eve/9L08u3LOcdti81tCzI5P9ls97tgMAAAAAAAAAAAAAxkswGgDj0aWQZ50FtmyxFY0DxWQjt4XBaPf/3mrOy3LVw9nbyyofpwSjARtiPQ1sBXMRy+A9EtDTvGD0QcFoSwxXv/nW2dsn+8ldP7O8dliBHvedSYdgtNoSjGY9BQAAAAAAAAAAAACMmGA0AEZEIQ+bHgObbp9BhhS8lxUFoy2zKJbVmVcYvRKLjDnBaECTPvdAcwmwBvPW5sKqdtgar21TwDFAk8bn/+N/Th2wVt47u/hnT3rcVyQ3PmX2vnO3L68dNqt2CEabtASjCdAHAAAAAAAAAAAAAEZsiT+FTx+llDNJnpbk85I8MckjklxMcm+SdyZ5Y631k0tu87okfzTJk5J8epJPJHl/krfUWt+15LZuTvJFufx3e2iSDyS5K8mv19r668sBmnUq5FE8vds6Xt+VFdEbX+PW4/pdE4S2omA0OcXj0BSoUFZ4/RYJ45sIfgAa9FkbCSMCFmHuYBt5jwT0NicYbVDo/hL/SbbsJTd/Z3LH/3ntvo++KfnYHckjP3957bE8vZ7NugSjtRwjGA0AAAAAAAAAAAAAGDHBaGtUSnlSkucneV6SZyd5eMvhh6WUVyT5kVrrvx3Y7mOT/PUk35rk0xqO+fUkf6/W+tKBbX1Tku9J8ocbDvloKeXFSb6/1nrPkLaA06hD0ZBibFbJ+Bq3QcWrKwrAKmdWc16Wq6mQdKXXb5EwPgWvQJM+90BzCbAO8+Ylz147a53P1QJhgL4a5429Ofs7WGYwWtIcjJYk525PvviHltse69cWenas9XdRWU8BAAAAAAAAAAAAAOO1ooQHTiql/HSSu5L8/SR/PO2haElyJsnXJHl5KeXflFIev2C7X5vkjiR/IQ2haEf+SJKXlFJ+spRy4wLtPLSU8jNJfjbNoWg56sNfSHJHKeWr+7YDnHKdimcV++y0zgXUqxoHxte49bl+J0OpFgmp6tKM5fgo1MPZ21d5/coCY07wA9CkTwiNIFhgK5iLWIKmdfzVB628G8CINAajHz//D3ju3ltyMNrDnpo89tmz9537yW6hWmxAn2ezDtdw0hKM5j0RAAAAAAAAAAAAADBikhjW5w80bH9fklcleXGSlyZ5S66trPgTSV5TSnlCnwZLKc9J8rIkj5vaXJO8KZcDzF6R5J4TH/v2JD9TSveUh1LKmaP+f9uJXR9O8ktHbb05V/+0/+OT/Fwp5Vld2wHoVnimoHW3bbqYy/gatyHXTzDa6dZUGH1mhW0KRgOWqc890FwCLKLvWnvO8UIad9gar631MdDbnGC0ReeVcjbZu26xz7a55bbZ2y98MPnALy2/PdarS7hd6zHugwAAAAAAAAAAAADAeEli2Iy3JPkfkzyt1npTrfW5tdZvq7V+U631S5I8Kck/PvGZP5DkZ0spnRISSik3JflXSR40tfnXkjy91vqltdZvqbV+VZKbknx3kulfKf71Sf5Gj7/P307ydVPf7x/9/W6qtX71UVvPTPL5SV47ddyDk7yslPLpPdoCTrMuhdGKp3db5+LDFY0D42vcel2/E0uubkuw/lYarMXS1MOGHat8nFpkzCl4BRocXuh+rPUOsA5z5xpz0e5a57XtsD523wOmNb57HBiMdvaGxT43z5O+KTlz/ex9525fTZusT+0QjFb3W/a5xwEAAAAAAAAAAAAA4yUYbX1qkn+b5MtqrV9Sa/2RWus7Zx5Y6/tqrd+V5L8/setZSb61Y3t/Pcmjpr7/9STPq7W+/URbF2ut/zDJt5z4/PeUUp48r5FSyi25HKw27ZuP/n6XTrT1tiT/Za4OR3t0kh+Y1w7AZV0KeRT77LRFiw+X14ENt88wPa7fNUFoqwpGsxwfhaa5Z2/Lgu0aA9yAU2/SIxhNyCIAu2Lj7xCA0WmaNx54f7NoMNqNi31unusennzm82fve+/Lkkv3rqZdFtcnrKxLMNqkLRjNfRAAAAAAAAAAAAAAGC9JDOvzzbXWP1FrfWPXD9RafzTJS09s/rPzPldK+awkt05tupTktlprYyV0rfVlSaZ/ffyD0y2w7AeSXDf1/QtrrT/X0s75JLcd9enYC44C1gDaKeSha/FhnwKzXgSjjduQ67eiYDTL8XFoDBxb4fW7JpyvA/dJoMnB+e7HrmwdBey2vnPHvOPNRTtrnfeZTsHBxhowbU4w2qLP3WdWFIyWJLfcNnv75FJy14tX1y6r1xZ61ukY74kAAAAAAAAAAAAAgPGSxLAmtdZ3LfjRf3Ti++d2+MyfSXJm6vt/VWv9/Q6f+zsnvv+WUspDmg4upVyf5JvmnOMatdbfS/KyqU1nc7nPAHN0KVZV0LrTOhcfTo2DZRZdCwoZt17X70Qo1SIhVZ2aOTP/GDavae5Z6fUTjAYs0WGPYDTF88A28OzFMnRaHxtrwJTG5//jf05dcM44e8Nin+vicc9Nbrhp9r47X7i6dllQjzE0OehwupZjrKcAAAAAAAAAAAAAgBETjLb93nLi++tLKY+c85n/6sT3P9GloVrr25O8fmrTjUm+quUjX51kuprjtbXW3+nS1ow+Pb/j54BTrUMhj2Kf3bZQ6M8yx4TxNW5Drt+Kls3FcnwU6uHs7Su9foLRgCU6vND9WOtpYC3mzTXmot21zmtrfQz01PhcvTdn/xxnb1zsc13snUlu/s7Z+z7y+uS+rv9sx9ZpCz07Ntlv27m0rgAAAAAAAAAAAAAArJskhu0366feH9R0cCnlCUm+8MTnf61He6868f3Xthz7NXM+2+ZXcvXf7YtLKY/v8XngNOpUeKZ4eqc1hRNde+DUl8ssADO+xq3P9TsRSlUWCKnq1MyZ1ZyX5WqaR1Z5/RYacwpegQaH53scbC4BFrD0UEXPXixBl3cIAkGBaY3P/wOD0c7cMP+YIZqC0ZLk3O2rbZueetx3hgajuccBAAAAAAAAAAAAACMmGG37Pe3E9wdJ7mk5/vNPfP/WWusne7T36ye+f3qPtl7btZGjPv12j7YA0q1oSLHPTluk+HCZwWiKycZt0PVbVTCa5fgoNAUqrPT6LTDmOodHAqfK5KBbQf0x6x1gHcw1p9gar/1Sg9KBU2Hu8/+C88rZGxf7XFcP/+zkMX949r5zL0om3heM0qTDc1zrs577IAAAAAAAAAAAAAAwXpIYtt83nfj+jbW2VnR93onv39GzvXfOOd+0z11jW8Bpd/87kt/7kfnHKa7ecR2Lua4aB8ssADO+xq3H9Sul/ftlEYw2Eg3zSDmzwjYXCUZT8ArMcHih3/HmEmAhS35W8my/u9Z5bTvd04w1YFrTvHH0/mbRtfLZGxb7XB833zp7+/n3JXe/cvXt002f+2CXgOvJfsvnPdsBAAAAAPxn9u49WpezrhP8r/Y+J3cSAiSQgEnOISAqOgrYNiiIDghoNzdpURBPutsZp132co3jmqvdtmt6pp1erbO6HXW6l445It6gBWy8gEIj0ly0EW0VlcA5uXAJCSSE5Jycy95vzR9nn/Ced7/PW5e3qt6n3vfzWSuL7Kq3qh5StZ9L7f37bgAAAAAAYLwkMWSsKIorIuIfzmx+c8VhN898fWfDy94xpDgpEQAAIABJREFU8/Vji6K4ek7bHhMRj1nyWrOff0rD44FNcdebI37ryyM+/vOrbgmr1qaYq8sCMMX5I9fk/s2GUvUVjNZnsBadSfYjPS6n2oTxKXgF5tl9uOEB5jvAEKr6Gn0RHSh3V90CYGxS6+rz72/avhs8cHm745q48dURWxfP33fsaP/Xp3uTJYPRzKcAAAAAAAAAAAAAgBETjJa3fxERT5j6+vMR8XMVxzx65ut7mlywLMuHIuLUzOaralznZFmWJ5pcK/a3bd51gE032Yn4wD+oKPCZpthnrdUO/Zl6DjoNChI6NGpLBdv1FIxmOj4OqUCFrT6D7do8c/ooYI7d2SV+FfNpYACVc3N90foa8N7Weh/gWQOmJIPRzr+/abnu3h4gGO2iR0c86eXz933iNyLOPNB/G6ihwbhT1ghGKxf83ESAPgAAAAAAAAAAAAAwYgdW3QDmK4riFRHxAzOb/7eyLO+rOPSKma8fbnH5hyPikqmvH9XjdabNu04jRVFcGxHXNDzsycteF+jR3b8XcfbzDQ5Q0LreWhRzpQKN2lgqWIvVa3L/ZkKpip4CzIo+g7XoTLKQtM9guxbBaApegXl2Gy7X9SVAK9ZK5MiYBjRVEYzWdq584LJ2xzV1+JaIO39t//bdUxF3vjHi5u8dph10o04w2mTBZ6ztAAAAAAAAAAAAAIARE4yWoaIo/quI+MWZze+IiJ+tcfhsYNmpFk14OCKuXnDOLq+z6JxtfH9E/GgH5wFy8bk/avZ5wVXrrXYx1/Rz0GUBmOdr3Ja5fy1Cqmqdts9gLTqTCljsM9iuaBOM1mEQJLA+jv1CwwPMd4AhVPQ11vZrbMB7W+cdgmcNmJbsN4qK/RUOXN7uuKae8MKIS6+LePjT+/cdPyoYbWwWhZ498pmzC3Ya4wAAAAAAAAAAAACA8ZLEkJmiKG6IiN+KC0PC7oiI7y7LVlVa63YMQAVdy1qrW3w4PWS2LVicf+IOz8XgmkylZkOp2oRU1bqO6fgopPqR3O5fp/0dsBaOvyHiIz/e7Bh9CZAFay86IDgYaKpy/d9yrnzJ49sd19TWdsRNr5u/7973Rjz4sWHawQIN5jhljWC0ckEwmrUdAAAAAAAAAAAAADBimVXyb7aiKK6NiN+LiCdObb47Il5YluW9NU/z0MzXl7Zoyuwxs+cc8jrApmucCal4eq21KebqsgCsVUYp+Vjm/vUVjLbdz3npVipQodf71+KZU/AKzLrtZ1ocZL4DtND12t3aa30NeW9rBaN51oBpqT5hb43edt39uGe3O66Nw0fS+47/4nDtYHl/+X9Uf2ayIDzNeyIAAAAAAAAAAAAAYMQOrLoBnFMUxWMi4vcj4qlTmz8bES8oy/K2Bqfa9GC0n4mINzY85skR8dYOrg3kQPH0mqtbzDX1HHRaAOb5GrVG/cNsKFVPwWhyikci0Y/kFoxWu48ENsZn39f8GMXzQBasvdbXkMFoxjSgodS7o2Lv/U2bfuXAFRFXfXn7NjV11ZdHPOZZEff95/37jh2N+Mp/9sX/PwyvyfvJydmIe98fcc2CYL3JmUUXq38tAAAAAAAAAAAAAIDMCEbLQFEUV0XEOyLiK6c23x8RLyzL8i8bnu6Bma+vadiWK2J/YNnna1znsqIoLi/L8kSDy11b4zqNlGV5T0Tc0+SYougr6ATohuIdppS7LQ4SjMZ5De7f7Pygr/nCVp/BWnQm1ff0WUjc5pkT/AB0wnwHGIBQc4ZQa37sWQSmpfqN82v0Fn3GwauGDyI7fMv8YLSTd0bc8wcRj/+mYdtDe7e/fnEw2u7D6X3eEwEAAAAAAAAAAAAAI+ZPgq9YURSPiojfjYhnTm3+QkS8uCzLP21xyttmvr6x4fGzn7+vLMv7Zz9UluXn4lx427QblrzWbNsBWlDQutbqFnNNF9l3WQCmeH/klrl/fU2bTcdHIdWPFH0G2wlGA1ZEXwK00nSuXfV5a6/1NeS9NaYBDaXe/S0TmL91sP2xbd34nenrHrt10KYwq+E4eNvPLt6/KBjNfAoAAAAAAAAAAAAAGDFJDCtUFMXlEfHbEfG3pzY/FBEvKcvyj1qe9q9mvr654fGHZ77+yIDXmj0fQAuKfdZam6COTsM9PF+j1ijYbqbgdZkC2IWXMR0fhXJ3/vY+71+bZy7VToBGzHeADAilpgt15seeNeACqfeIe+v/Z/1U81NuXdS6Na1d/NiIJ750/r67/n3E2YeGbQ/9WRSMJvQaAAAAAAAAAAAAABgxSQwrUhTFpRHxtoj4hqnNJyPi28qyfN8Sp/6Lma+/qiiKyxoc//UV51u079l1L7IXCvdVDa4FUI+C1jVXt5hr+jkQjMZ5y9y/voLRtvs5L91KFZL2ev/aPHMKXoEOKJ4H2mi8Fq/6vLXX2hryvY0xDWgq1UedDy9//H8dcdHVzc65imC0iIhDR+Zv3zkRcdebhm0LUzoeBxcFo3lPBAAAAAAAAAAAAACMmGC0FSiK4pKI+M2IeP7U5lMR8dKyLN+zzLnLsvx0RPyXqU0H4sLwtSrPn/n6dxZ89ncrjl3kuXGubed9uCzLzzQ4HtgUjYtYFU+vtTZFzV0WQgveG7km9282lEow2kYrdxM7+lxOtXjmBD8AXTDfAbKgL6IDtebHnjVgWqpP2Fv/X/yYiG9+Z8RVT69/ylUFo13/4ohLrp2/79jRYdtCf3YWBKNZ2wEAAAAAAAAAAAAAIyYYbWBFUVwUEb8RES+Y2nw6Il5eluU7O7rMm2e+/vs12/a0iPi6qU0nIuIdCw55e0RM/8b9s/fOUcctM1/PthngnMnpZp9X7LPeaof+TD0HnQYFeb5GbZn+oRCMttFS/Uif96/NMycYDeiEvgQYgLX7Bhvw3icDjgESkuv/qTX6Y74m4tv+POJV90U87y3V59w62E3bmto6GHHja+fvu+fdEQ8dH7Q57OlyDlSWEbsLgtGs7QAAAAAAAAAAAACAEROMNqCiKA5ExK9HxEumNp+NiFeVZfn2Di/1hoiYrvp6ZVEUT6lx3P808/Wvl2V5KvXhsixPRsSbKs6xT1EUT42IV0xt2omIX67RPmAT7TYMRhNctd7qhv6UgtGYp8H92xdK1VMwWm/npVOpQIWiz+WUYDRgRYQVAa103Hfoi9bYkMFodebHnjVgWqpPmLNGv+jqeoHpWxct1aKlHL4lve/46wdrBj2ZnImF45j3RAAAAAAAAAAAAADAiAlGG0hRFNtxLrDsZVObdyLi1WVZvq3La5VleVtEHJ3adFFE3FoUxSUL2veyiLhlatOZiPixGpf7Z3Eu3O28W4qieOmC61wSEb+w16bzfr4sy4/XuBawiSbJfEY2Uptirg4LwBTnj1yT+zdT8NprABb5S/QjdQqgh5QKcANoRPE8MISqubm1F10wpgFNJcaf5HuhGqHmqwxGu/qrIq7+6vn7jh/1rnMlOvxvvvvwcNcCAAAAAAAAAAAAABiYhIfh/H8R8R0z2/7XiPhwURQ3NfwnGXA25Ucj4v6pr58TEb9fFMXTpj9UFMXFRVH844h448zxP1GW5R1VFynL8lhE/OuZzW8qiuIHiqK4oNqjKIovi4h37rXlvM9FvQA2YFPtnm54gGKftVbWLWqeeg5qH9PwvIzPUsWeNQpdW/FMjUIqcKzXwLw2z5zgB6ADwhGAQQhG21hDjjN1goONe8C05HvE1Bq9TjDawbat6cahW+Zvf+hYxL3vHbQpdKwqGK3T9+IAAAAAAAAAAAAAAMM6sOoGbJDvmbPtX+7909Q3RcS7F32gLMtPFEXxyoh4e0ScDyj7+oj4SFEUH4qIYxFxVUQ8IyKumTn8bRHxTxq053+OiK+IiJfsfX0wIn4qIv5JURR/EhEPRsThvWtNV4mciYhXlGX56QbXAjbN7qlmn1fQut7aFHMJRuMRTe7fTGFr0VMwmgLFcUjdp2K7v2u2eeY8T0An9CVAGx2vlazt6YL5MdBUcvxJrNHrBKZvXVT9mT7d9JqID/9wRLmzf9/xoxHXPnf4NtGNqmC0iHPPdF/vNQEAAAAAAAAAAAAAelTjN/YZq7Is3x0Rr4iIe6c2FxHxrIj4joh4UewPRfuViPjOsix3G1xnd+98vzaz69qIeHFE/L2IeGZcWDlyT0S8rCzLP6x7HWBDTU43PEDx9HqrW9Q8/Rx0WAitqHrcdk4ucXBfBYT6rFFITY3rFEC3JhgNWFLbUCFhRMAQ9DUbbMB7X2t+7FkEpiX6hOT6v8bafdXBaJdcE3H9t87fd8evL/m+jOY6HHd2agSjGecAAAAAAAAAAAAAgJESjLbmyrL87Yh4ekT8vxFx/4KPfiAiXlWW5WvKsjzR4joPlWX5nXEuBO0DCz56X0T8bEQ8vSzL3216HWAD7Z5qeIBCn7VWP7dz6pgug9E8X6P2x99X/7PFbGFrT8FogqzGIXWfiu0eL9rmmfM8AdPazlv0JUAOrL3ogjENaCi5/k+s0VPbp606GC0i4vAt87fvPBhx15sHbQoNFQfS+3ZrBKN59wgAAAAAAAAAAAAAjNSC36amS2VZ9pSmUeva90TEPyqK4gcj4usj4saIeEJEnIiIT0bEh8uyPN7Rtd4UEW8qiuJQRDwjIq6PiMsj4u6IuCMi/lNZlme6uBawIZoGowmuWm91C7mmn4NOi788X6M1ORtx8hPtj69T6NqK4sRRSIYy9pgz3eaZaxMeCayXT/9exG0/HfHwpyOue1G7c5hPA2007juqPq8vWltDjjMf+3fVnzHuARdI9QmpYLQa7wW2DrZuTWeu/7aIix8bcfpz+/cdvzXi0GsHb9LGajrubC0ZjGZOBQAAAAAAAAAAAACMlGC0DbIXSPYfB7rW8YjoJGwN2HCT06tuATlpFXImGI2IePBjDQ+YLXjtKRhNEf44pALHFhWnLq1NMJqgPdhon3xbxHte9sW+4HN/1PJE+hIgA+bJayy3e5tbe4DVSvQJyQC0Gmv3rYtat6Yz2xdF3PiaiI/+1P59d78z4sRdEZd/yfDtolqxZDCad0UAAAAAAAAAAAAAwEjV+FPmALBCkzMND1DQutZqF3JNfa7L4i/F+SPWNGRq5vPJAthlKU4chXJn/vZFxalLE4wGNPRXP9FNP2C+AwxCX0MuPIvAlOR8OrVGH0kwWkTE4SOJHWXE7a8ftCmbreG4U2yn9wlGAwAAAAAAAAAAAADWmGA0APJW7jY9oJdmkIuahVzTgR6dFn95vkaraBEydeEJOmnGPsJnxmGSCEbb6jEYrc0zq9gVNldZRtzz7o5Opi8B2uh6XmuevL4yu7fm0MAFUn1UYo1eJ0g/l2C0q58RcdXT5+87dtQ7qlwtevdU64/KuK8AAAAAAAAAAAAAwDgJRgMgb6kwmhQFXOutdsGyYDRmNQyZ2hdK1VMwmvCZcSgTY1HRYzBaq2fO8wQb6/S93Z3LfBpoo+m6q7Kv0RcxFM8aMCU1PiUD0Gqs3bcOtm5Op4oi4vCR+fse/GjEZz8wbHs2VsNxZ9G7pzo/OxEACgAAAAAAAAAAAACMlGA0APJW7jY9oJdmkIk2wWhdBgUJChmxJYPN9gWldURx4jikCk1zC0ZrPGYCa+PEnd2dy9gEtNK076hYW1l7ra/c7q1xD7hAqk9IrNGTgWlTti5q3ZrO3fTaiGJ7/r7jR4dtC8tLBflfwDgHAAAAAAAAAAAAAIyTYDQA8laruOeCA3ppBrmoWcg1XdjcaZGz52u0GgebzX6+r2A0z9QopMairT6D0VrwPMHmOtlhMJr5DtBG5+FS+iIGIhgNmJZaVyffK9V4X5RTMNql10Vc96L5++741YjdU8O2ZxM1fXeTCrKLSAf5L3M9AAAAAAAAAAAAAIBMCEYDIG/lbsPPK2hda7Xv71TBl2A0ImL5YLOegtHqhv2xWqlgtKLHYLTGYX4R+ijYYCfu6u5c5tNAG437DvOWzZXbvc+tPcBqpcazxI9T66zdtzMKRouIOHzL/O1nH4j4xFsHbQo1HLwyva/WH5WxvgMAAAAAAAAAAAAAxkkwGgB5m9Qp7pnSNEiNcalbbF9OFzZ3WPxVKpgercYhUzOfL3qaNnum8ldO0n3PVo/BaK3C+DxPsLF2T3Z4Mn0J0EbHoRvmyWsss3srEBSYlhp/ku+VarwvKrZbN6cXT/y7EQcfPX/fsaPDtoVqi37eUScYzTgHAAAAAAAAAAAAAIyUYDQA8lanuOeCzwtGW2t17+90wVenxV+ZFXDTQMOQqX0Fr21CqupQnJi9Rf1OkVkwmgAR2GAdfv8rnAfaaNp3VM5bzGsYimcNmJbqExI/Tq0TxH/q3tat6cX2JRE3fdf8fXe/PeLkp4Ztz8ZpOO4s+sMxdf6ojHdFAAAAAAAAAAAAAMBICUYDIG9Ng84Eo6232sX2UwVfgtHoRE/3XvhM/hYVmfYZjFanuHoffRRsrE6L3fUlQAudz2v1RWsrt4AWazJgWqpPSK7Ra6zdT97Zujm9OXRk/vZyEnH7G4ZtC4st+sMxtf6ojHEOAAAAAAAAAAAAABgnwWgA5K1Wcc/05wWjrbcVB6PlVsBNfUXTae9MYWtvfYtnKnuLxqGtHoPR6hRXA5zX6XxH4TzQQuO+o2IebO3FYIx7wLTU+JNYo9d533TtN7ZuTW8e+7cirvzS+fuO32oc7lPT/7aL3kkuCvNvez0AAAAAAAAAAAAAgEwIRgMgb5OGYUSC0dZb3WL7Cz7XZZGzQrLxWjJkqq++RfhM/hYFoxU9BqMVbZ5ZfRRsri6///UlQBsN57VCOjZYZvfeswhMS/UJyQC0Gmv3676ldXN6UxQRh26Zv++Bj0Tc96FBm8MCi95L1fqjMt49AgAAAAAAAAAAAADjJBgNgLzVKu6Z/rxgtLVWO0Rqqoixy+ApIVYj1rTYfaawtbe+RRF+9iYLxqGtHoPR2oT5CXWADdbh97/5DtBG532HeQ0DMe4BF0j1CYk1elWo+VP+UcQVh5dqUW8OfXck/38du3XIlmyYhnOcRe+lFu175HLGOQAAAAAAAAAAAABgnASjAZC3psFoE8Fo661mIVfZUzCa4vzxWjYwqq9gNMWJ+Vs0DhWZBaPpo2Bzme8Aq9a4H6rqa/RF6yu3e5tbe4CVSr0/SgagVfyY9Vn/z1LN6dVlT4p4wgvn77vjVyJ2Tw/bHuZb9E6y1s9OjHMAAAAAAAAAAAAAwDgJRgMgb43DiIQMrbXaxfaTxL8ve32FZOPV8N7NFrwKRttckwVFpls9BqMli64X0UfB5urw+9/YBLTScd9h7bW+cru3xj3gAqk+KvHj1EVr9xteHVFk/mPYw0fmbz9zX8Qn3zZsWzZGw3FwUfhZnWA04xwAAAAAAAAAAAAAMFKZ/0Y+ABtvUSDNPB/9qYj3vCLiP/9gxAN/3U+bWJ26hVzThdadFn9lVsBNjwYKRvNM5a88m95X9BiM1kZuIRPAcDr9/teXAC00XndV9TX6IoYiMAaYkhrPkgFoC4LRiu2lm9O7J7084uCV8/cdPzpsW5hv0c9H6vzsRDAaAAAAAAAAAAAAADBSgtEAyFc5icbF0OUk4hNvifjov4l4x9dF3PfhXprGqtQt5BKMxqwl713TkMa6FCfmb9G97zUYbUFxdZI+CjZXh+OJsQloQ99BbZnNWYULAxdI9QmJNXqx4MesYwhGO3BZxA3fMX/fp3474uHPDNueTdB03Fn0xxrKOu8rjXMAAAAAAAAAAAAAwDgJRgMgX4uKfuo4+4WIv/6JbtpCHuoW21/wuS6DQhSSjVbjezdT8Lpsf5QiQCJ/i4pMtzILRtNHwebq9PtfXwK00HReW9lv6YsYijUZMC0x/iQD0Bas3Xt9Z9Chw7fM317uRtzxy4M2hTnKnfS8qc4fcvDuEQAAAAAAAAAAAAAYKcFoAOSriyCi29+w/DnIR+1CrqlisU6LvxTnj9eS925RONZyJ+7pvHRmUZFp0WORc7LoehHPE2yuDr//Fc4DrTTtOyr6LYGvayyze2vcA6Yl+4REANqitXuxvXRzBvG450RccfP8fceODtsW5ks9l3XeVxrnAAAAAAAAAAAAAICREowGQL4WhdE0sXu6m/OwerXD8gSjMaNpsEIxU/DaVxGh4sT8LSoy3RKMBmSiy/Hk7Be6OxewOTqf1wpOYyieJWBaqk9IBKMlt8d4gtGKIuLwkfn7Pv9nEff/6bDtWXstxp3UO/Faf8jBOAcAAAAAAAAAAAAAjJNgNADyVauwp4YTd3ZzHlavbrH99Oe6LNAXYrW56oTyPf2ftjlxi2MY1KKQzqLHYLQ2SzUBIbDBOvz+P31vxKRuGC3AnsZrpWX7LfOe0cptzmqdD0xL9VHJ8PJFwWh9vjPo2KHXpfcdOzpcO5gv9XOSOn9YxjgHAAAAAAAAAAAAAIyUYDQA8lUniKiOE7d3cx4yULeQa7qIUTAaEc2DE2YKWxcFNT7z30R8659HfNWPNW6VZ2oEFt37Pouck0XXi2QWMgEMp+vx5L4PdXs+YAN0Pa81r1lfud3b3NoDrFZqPEsEoC1auxfbS7dmMJffGPH4b56/7/Y3REzODtuetdZi3Hnwo4lT1fnDMsY5AAAAAAAAAAAAAGCcBKMBkK9JncKeGk7c0c15WL26oR/lVMFXl0EhXYX1sQINiwCL2WC0Bff+5u+LePTTmzcpIroPkKBzi4pMt3ILRgM2V8fF7vcLRgMaarruKiv6rWX3Q13CqoFpqfFl9j3RF3ekz9XnO4M+HDoyf/vpeyM+9TvDtoULve+187fX+fmJcQ4AAAAAAAAAAAAAGCnV9gDkq6sQqp0T3ZyH1asdjDaZ/+9LX18w2mgtG5ywqNBwmUJXgQ75S977ot/wslbn9jzBxup6PHnw492eD1h/nYduVPVr5j3jldm9ExgDTEv2CYk1ejIwLSKK7aWbM6gveWXEgcvn7zt266BNWWtt1m4PfCTi9H1zzlXnD8sY5wAAAAAAAAAAAACAcRKMBkC+ahX21LD7cDfnIQN1C7mmC8wEoxHRvPh+prB10b1fKhxLcWL2UmPRMoF4tbR4rgTtwQbreDy5+HHdng/YAE37oWWDz8x76IpnCZiW6BNSAWiL3gmNLRjt4BURN/y9+fs+9baIU58dtj1c6NQ9+7fV+fmJd0UAAAAAAAAAAAAAwEgJRgMgX4LRmFW2CEarfUyX12ft9BWKpzgxf5PEWFT0HIzWKnDP8wQbq+vxZHK62/MB689aibpyWwN5doELpILRUmv0RGBaRP/vDfpw6Mj87ZOzEXf8yrBtWVsLxsHHfl163+7J/dsmZ2tczzgHAAAAAAAAAAAAAIyTYDQA8jXpKIhIMNr6qFuwPP25ToPRegrHYgBNi+9nClt7u/eKE7OXCukUjAZkpePv/13BaEBDjcOuKj5fdb7cwrVoILd7l1t7gJVKvkdMBaAtCEbbGmEw2rXPi7j8pvn7jh8dtCkb6XlvTe+b9zOOVJj/NAGgAAAAAAAAAAAAAMBICUYDIF+pMJqmBKOtj9qFXNOFzYLRiOWDE/q694oT85cai3ovcG6xVBMQApur6Xjy7F+KuPpr0vsngtGAphr2Q5XzlmX3Q03WZMAFUuNLIgBtUah5sb10awZXbEUc+p75++77UMTn/2LY9qylBXOYix+XfqZ2Ts45VZ2fn5gzAQAAAAAAAAAAAADjJBgNgHx1FUQkGG2N1CxYni6y77LIWTDaiDUsAixmCl67CmrcR3Fi9iaJe1/0HIy2qLg6yfMEm6vh9/81Xx/xkj+JuO5F8/fvCkYDGuo6XGrp4DTyldm9E4wGTEuNP8k1eiIwLWKcwWgR6WC0iIjjR4drxyYqiojty+bv220ZjGacAwAAAAAAAAAAAABGSjAaAPnqKohoRzDa2qgdTDZV8CUYjYhoXnw/G4zW071XnJi/1Fi0JRgNyEnLANCLHjN//0QwGtBQ43mt4DNy4VkDpqXGs0QA2myw/gX7RhqM9qgnR1zz3Pn7jv9SOkCebmxfOn/7vJ9x1LkX3j0CAAAAAAAAAAAAACMlGA2AfHUVRLQrGG1t1C3kKqcKmwWj0YXegtEU4WcvVWRa9ByM1map5nmCzdV4vrMX4LB98fzdu4LRgKYGDt0w7xmv3O6dwBhgWqqPSgagLVi7jzUYLSLi8C3zt5+6O+LT7xi0KWunahw8cNn87bsn55yrTkhdZuMuAAAAAAAAAAAAAEBNgtEAyFcqjKYpwWjro3bB8nTBV5dFzgqmR6tx8f1MwWtX/dE+nqnspYpM+w5GK9os1RS7wuZqOc5tJYLRJoLRgIYah0tV9VvL7oe6PEvAtFSfkFijJwPTYoBA9R7d8KqI7Uvn7zt+dNi2bJQi/d993s846ryvFAAKAAAAAAAAAAAAAIyUYDQA8pUKo2lKMNoaqVnINV3w1WXx12S3u3MxsCWL3cue7r3ixPylxqItwWhARpoGgBaC0YCOdT2vrezXzHvGK7N7Z00GTEv1CckAtEXBaNtLN2dlDl4Z8SXfPn/fJ94Sceb+YduzVirGwe3L5m/fOTnnVHV+fpLZuAsAAAAAAAAAAAAAUJNgNADy1VUQkWC09VG7YHmq4KvLIue+wrEYQMvAmEcO7+veK07M3iRRZFpkGIzWNBgJWCNN5zt749x2IhhtVzAa0FTDfkjw2ebKbs4qGA2YluqjUgFoC/q0vgPV+3b4yPztkzMRd/zasG3ZFEURcSARjLbbMhhNACgAAAAAAAAAAAAAMFKC0QDIVyqMpqndU92ch9WrW8j1ibdEPPBXe18IRiOWL76/+qu7accsxYn5SxWZFts9X9hSDWig8Ti3F+ywlQhGmwhGAxpqPK9dMhgtu3AtRsuzBFwg0SekwssXvSvs/b1Bz679pojLnjR/37FbB23KeqkYd7Yvnb993h9/qfPzE+8eAQAAAAAAAAAAAICRUm0PQL66CqHj4sQhAAAgAElEQVSaVzTEODUp5Prtr4y4/Ze7Lf4SjLZBigu//LL/cf7HnvL9S15HEX72Ut/3fRc4p4quF/I8weZqON8p9sa57Uvm7xcsDDQ1eOiGec945XbvcmsPsFLJ8ayYv3lRMNXYg9G2tiMOfc/8fZ/7YMQDfz1sezbFgcvmb985uX9bKsz/wg8t1RwAAAAAAAAAAAAAgFURjAZAvmoV9tQgGG2NNCi2L3cj/ui/nV801pZgtBFrWgQ4U/D6mGdGXP93Ltx28WOXD0YbPECCxlL3qFVwWQOC0YAmypbj3PbF83fvnl6qOcAGajyvrei3GvdrsATPG/CIVH+QCEbbvjR9qkuesHRrVi4VjBYRcfzocO1YJ1VjTuqZmvczjkXBfI9cz7tHAAAAAAAAAAAAAGCcBKMBkK86hT11CEZbH02DyXZORHzyrau7PhlZstB9azviuW+KeMZPRjzxpRFP+6GIF7w34tFfsWSzFCdmL/V9X2z3fOEWSzWBDrDBWgajbSWC0SaC0YCmup7XVvVr5j3jleG9sy4Dzkutq1Ph5Zc+PuLKp+3ffvCqiOu+pbt2rcqVXxrxuGfP33f89RET70q7cz68+rL5ux/82P5ttdZtxjgAAAAAAAAAAAAAYJwEowGQr65CqHYEo62N3VPNj/n8n3fYAIVko9U0MKoo9m/bvjjiaf99xDe+NeIZPxFx1ZzC1+YN6+Ac9GpVwWipouuFPE+wsZoGupwf57YTwWi7gtGAhpr2Q5Xz84r9AmHplLU+sCc1ns17T3Te0/9pPBJq9ci2H4nYOtBZs1bq0JH52x/+ZMRn3jlsW9ZCxRxm+9L52+95d8QHv/fCMLo678rNmQAAAAAAAAAAAACAkRKMBkC+yp2OTqTAdW3srjjkbtJRWB8rkGkRYNMACYaXLIrueSnV5vyKXWGDNf3+3wtu2EoEo00EowENdT2vXTY4jXzlOGfNsU3AiqT6gwVr9Ju+K+Kb3h5x+B9E3PiaiG94Y8SX/XAvrVuJG1+dXjccOzpsW9bZ+fC9rYvSn/n4z0d87N9+8etawWjePQIAAAAAAAAAAAAA47Qmf64cgLVUdhRCpfhnfeycXO31u3omGYFioOsowM9e6vu+2O75wm2C1zxPsLEaB7pUBKPtnDh3zmKo8RAYv6br7qp+yzp+feU4Z/W8AXuS4egV8+LrXnjun3V00aMjnvTyiDt/bf++T7w54swDERddNXy71tVWxY/uj90a8dTvP/fvkxrBaMY4AAAAAAAAAAAAAGCk2lTbA8AwJjvdnEcw2vrYfXi11xeMNl6NA2MGon/KX7IouudgtEIwGtBEw/HkfLDDRVfP33/mvogHb1uuScBmaTqvrZqfV57PvIcO5bpeBFYg1R9seGDw4Vvmb999OOLONw7alPGrGHO2Di7ef98fn/vfyU69+ZcxDgAAAAAAAAAAAAAYKcFoAOSr7CgYrWlQBPkSjEZrTYsAByp4FYyWv9T3favgsgbanF+xK2yuxt//e+PcY58VyTHv3j9cpkXApul8XlsVnGbeM1453jvrMuC8RB/V9zuA3D3hhRGXXjd/3/Gjw7Zlbe2ty4oD9T6+e6rmeY1xAAAAAAAAAAAAAMA4bfhv8gOQta5CqAQPrQ/BaLTWsPi+GCgYLctQAC6QDEbb7ve6rYquPU+wuVqOcxc/NuLRT5//mdP3LdckYMM0XXdXBZ9Vnc+8hw55bwScl+wPhnpPlKmt7YibXjd/373vjXjwY8O2Z8yqwl27DkYTJgsAAAAAAAAAAAAAjJRgNADyVe50eC4FQGth5+SKG6BYerRy7QMU4I9A6h71vZQSjAY00Hg8mQp22L4scU6BsEADXc9rzZPXV5ZrsxzbBKxGqj/Y8GC0iIjDR9L7jv/icO1YW3vP2NbBeh+f1AxG8z4bAAAAAAAAAAAAABgpwWgA5KvLMAZF1eth9+HVXr+cZFrETfeGKnj1PGUvNRYV2/1et8359U+wwZp+/0+Nc1sHEqfsMKQYWH+N19wV/VbV+cx76JJ3RsB5qfGl8OPUuOrLIx7ztfP3HTuqL62tYg6TWp/N2j1d83LuCwAAAAAAAAAAAAAwTn6TH4B8TboMY1AAtBZWHYwWoZhstDINTvA85S91j3oPRrNUA5poOM4VU8FoRaLwvtO5OLD2Op/XVvVrmc7vqSHHe5djm4DVSI1nQwXoZ+7wkfnbT94Zcc8fDNuWdXN+jVYcrPf53VM1T2yMAwAAAAAAAAAAAADGSbU9APkqdzs8l/ChtZBFMFqHzyUDaloEOFTBq74pe6nv+b6Dy1qdX7ErbKzGc93pYLRE0GMpGA1oomE/VFbMWyr7NfOe8crw3nlnBJyXGp8KwWgREXHjd0ZsJYK7jt06aFNGq2oOtJUIrp41qRmMZowDAAAAAAAAAAAAAEZKMBoA+eoyjEEB0HrYObnqFghGG6uqosNVybVdfFEyGC0RJNQZwWhAE0sEgBaJwntzHqCJztfc1vAMyDsj4BGpebUfp0ZExMWPjXjiS+fvu+vfR5x9aNj2rJW9NVpqfTZrVzAaAAAAAAAAAAAAALDe/CY/APmadBiMpqh6/MpJxOT0qlshJGS0GgbGFEX1Zzqhb8peqoC072C0osVSTdAebK6m3//T49xWKhity7k4sPYah25U9FtV5zPvGa8s712ObQJWIvkOYKj3RCNw6Mj87TsnIu5607BtGaWKMWfrYL3T7NZ9T26MAwAAAAAAAAAAAADGSTAaAPnqMoBKmNX47Z5adQvO8SzRpSxDAbhA6nu+TXBZE63O73mCjdU4kGgq2KFIBKN1GlIMrL+Bg9HMe+hS43EUWF+p8UUw2iOuf3HEJdfO33fs6LBtWSt7z1hqfTar7rtyYxwAAAAAAAAAAAAAMFKC0QDIV9lhGIMCoPHbObnqFuzxLI1T0+CEgQpeBe3lLxmMtt3vdQWjAY0sMc6l+rMu5+LA+ut8zV3Vr5n3jFeO9y7HNgGrkegP+g5HH5OtgxE3vnb+vnveHfHQ7UO2Zv1sHaz3uYlgNAAAAAAAAAAAAABgvflNfgDy1WVgkAKg8dt9eNUtOGciyGqUykyD0RTg5y81fvReFN3i/I2fc2BtNJ3rFlPj3NaB+Z/ZOdG+PcDmadoPVc1bqs5n3kOXvDMCzkv2B0O9JxqJw7ek9x3/xcGaMU4Vc5jU+mzWbs1gNO8eAQAAAAAAAAAAAICREowGQL4mO92dS5Hr+JUdPg/L6DKwjwFlXASof8pb6nu+2O73uq2C1zJ+zoHuTc5G3POeiOOvjzh5Z8ODp4IdikTh/bFfiHjoeOvmARum6zltZTCaddl4ZThntSYDzksFbxaC0S5w9VdFXP3V8/cdPyrAtI3zz1hqfTatLCN2T9c7rzEOAAAAAAAAAAAAABgpwWgA5KvTICwFQOOXSUGdAvyRavj8tC14ffI/bH6MZypvqQJSwWjAKp39QsTvf+O5f97/PREP/GXDE0wHoy3ozz7YYlwDNlTTNXfVvEUw2trKMiwnxzYBq5Eaf/w4dZ9Dt8zf/tCxiHvfO2hTRqVqHNw6WOMcOxGTU3UvWPNzAAAAAAAAAAAAAAB58Zv8AOSry0LnVLAN45HLPbzvQ6tuATk7dKT5MUId8pa6P62Cy5pocf4sQyaAXvzF/x7x2fe3P346AHTrQPpzn/mPETsn218H2Bxdr9cqz5fJ+pD1kMv7BmD1UuvqtgH66+ym10QUibXE8aPDtmUt7D1jqf+m0yZnI3ZrBqMZ4wAAAAAAAAAAAACAkRKMBkA+dk5EPHTsiwVok53uzq0AaPxyCfx5z0vPFZ8xLo2fn5YFr9c+N+Lm/67ZMfqnvCWD0bb7vW6r4LVM+kmgf3/1r5Y8wdQ4V1V4f/bBJa8FbIam85Cqz1fsnwgXHq8c56w5tglYjVR/4Mep+1xyTcQTv23+vjt+XcByUsWYs3Wwxil26gejCZMFAAAAAAAAAAAAAEbKb/IDsHrlJOKPfyDiTVdH/OaTI/7DzRH3/1k6jKYVBUDjl1Gh8mc/sOoW0NiAz8/1L272+U77OrqXGj96XkoJRgN61SAYbXKm36YA66Fp2G9VcHHV+cyh6ZKwauC8VH9QtAzQX3eHjszfvvNgxF1vHrYto7f3jFWtzyLO/UGZusFoufyxEQAAAAAAAAAAAACAhgSjAbB6f/WvIm776YjJ2XNfP3Qs4l0viNg90d01FLmOX0738GP/dtUtoLGGRYBLFbw2PFaoQ95S96fY7ve6rYLRAGqaHueq+rPybL9tAdZD1+u1yvNltD6koQwDWnJ63wCsWKqPEow21/XfFnHxY+fvO37roE0Zj4pxcKtOMNrZiMnpmtczxgEAAAAAAAAAAAAA46TaHoDVO/76/dtOfzbi0+/o7hqKXNdARsXTWxevugU0VTZ9foYMRtM/ZS11f/oORmuzVGv8nAOba2qsqiq83z3Tb1OANdF0Tls1b6k4n3BhOmUeDZyX6A+El8+3fVHEja+Zv+/ud0acuGvY9ozZ+fDq4mD1Z8udiN1T9c7rvSMAAAAAAAAAAAAAMFJ+kx+A1XvgL+Zvf/hTHV5EAdDo5VTEtS0YjQ4Jdchb6v70XRTd6vwCHYCaiqlgtKIiGK08229bgPXQ9XqtKvDVHHq8cgzzzel9A7Bayf5gmQD9NXf4SGJHGXH7nD+IsumqxsGq4OqIiMnZ+sFo3hUBAAAAAAAAAAAAACMlGA2AzaDIdQ1kVMS1JRhtfJo+P0sUvBYNjxXqkLdkMNp2v9dtE4yWY8gEkL+q/mxyZph2AOPWeM1dNW+pOJ81/ojlOGf1PAHnpfoowWhJVz8j4qqnz9937Kh3FbXtPWNVwdUREeVO/WA0cyYAAAAAAAAAAAAAYKQEowGwGQQPjV9ORVzbgtFGJ+cizJyebfZL3Z++g9FaLdUyfs6BjMyEOmxVFN5PzvbXFGCNdDynrZojW+PTpZzXi8CwUv1Bm/DyTVEUEYePzN/34EcjPvfBYdszdlsHqz8z2YmYnK53Pu8dAQAAAAAAAAAAAICR8pv8AGwGBUBrIKNC5S3BaOPT8PkpiurPpA9u9nGhDnlL3Z++i6JbnT+jfhLI1+wYVwhGAzrQdM1dFUQlGG19ZRlC5p0RcF6qP1jmPdEGuOm16QD5Y7cO2pT8VYyDVeuziIjybMTuqW6uBwAAAAAAAAAAAACQKcFoAGwGwWhrIKMirm3BaOMz5PMjGG2tJIPREgW/XWkTjJZlyASQn6bBaGf6awqwPhqvuZcNRrPGp0Pm0cB5qf5gqQD9DXDpdRHXvWj+vjt+tUGI1ybbe8a2DlZ/dLJT/7+pORMAAAAAAAAAAAAAMFKC0QDYEAqARi+nIq4twWjrb8iC14yebfZL9T1tgssaaXN+gQ5AHTNj3FZF0OPkbH9NAdZH5+u1quA04cLjleOc1ZoMOC8VjObHqZUO3zJ/+9kHIj7x1kGbkreKcXCrIrg64twarXbYXI7jLgAAAAAAAAAAAABAtRq/XQ0AayCnUC1ayqiIa+vgqltAU2XT52eJYLSi4bEToQ5ZS4VuFBVBQstqVXSdUT8J5Gt2nCoqXg1NzvTXFmCNNF1zVwWfVZxPMBpd8s4IOC/ZHwwZoD9ST/y7EQcfHXH28/v3HTsaceOrh2/TmJxfp1WtzyIiyp2Iyel65zXGAQCstaIonhERT4mIJ+5t+mREfLQsyw+vrlUAAAAAAAAAANANwWgAbAYFQOOX0z1UhD9CGQdGeZ4yl+h7cgxGaxwACGym2VCHipCHydneWgKskc7Xa1XBaBmtD2koxzlrjm0CViPVHwhGq7R9ScRN3xVx28/u33f32yNOfirisuuHb1duqt7d1PmDHOVOxO6pmtczZwIAaKMoisMR8bUR8ay9/31GRDxq6iN3lGV50wqaFkVRHIyI/yEivjcinpz4zMci4uci4ifLsvSSHwAAAAAAAACAUWpRbQ8AY6QAaPRyCvwRZDVCDZ+fYpmC16bH6p+yNkl8v7cJLmui1fkz6ieBjM2OUxXjkGA0oI6moRtV67uq81mTjVdOa/vzhMYA56X6qL7fAayLQ0fmby8nEbe/Ydi2jM7eOq2o8TfNJmfqB6N5VwQAUFtRFM8viuLtRVF8LiI+HhG/GhE/HBHfGBeGoq1MURRPiYgPRMS/iEQo2p6bI+LHI+L9RVHcPETbAAAAAAAAAACga36TH4DNoMh1DWR0DxXhj8+gxfcNg9E8T3lL3Z9iu+cLC0Zjxs7JiLvfGfHAR/IMFGE4y97/2fDPqnny5Mxy1wM2Q7nT8fkEozEgcyvgEanxZ5kA/Q3y2L8VceXT5u87fqv+NiIq393Ued/0X360fjCan4sAADTx1RHxLRHxmFU3ZJ6iKJ4QEb8XEc+Y2fWxiHhrRPxmnAt0m/bMiHhHURTX9t9CAAAAAAAAAADolmA0ADaDAqDxy6lwThH+Bhiw4NXzlLnU+NHzUqqwVGPK3e+K+I1rI971gojf+opz/7tzYtWtYlWWntc2DEYrzy55PWAj1A3neETV+q5ivzX+iGW0tn+E5wnYk3r/OBsuzHxFEXHoyPx9D3wk4r4PDdueUdl7xrYvqf7oZ98XcerTNc9rjAMA6MDp2B84NqiiKLYi4i0RcePU5k9HxIvKsnxKWZYvL8vyZWVZ3hwRL4mIu6c+dygi3lwUFjYAAAAAAAAAAIyLansANoOi6TWQUfH0RJDV+Az4/DT9nXL9U95SwXXFdr/XbROMllOAJN3ZPRXxnpddGIT2mXdF/NmPrK5NrNbSgZoNg9EmZ5a8HrARug5GqwxttCajQ9ZkwCNWFI6+Tg69Lv1O49itgzYlTxVzoK0DEdf/nerT1J17eVcEANDU2Yj404j4uYj4voh4ZkQ8KiK+d5WNiojXRsTXTX19X0Q8pyzLd8x+sCzL342I50TE/VObnxMRr+61hQAAAAAAAAAA0DG/yQ/AhlDkOno5FSorwh+hpkWAy/zB7KbBaJ6nrKX6nr6D0Vot1RS7rqVP/oeInYf2b7/tp4dvC3lYdtyYDfCsOt/k7HLXAzZD42C0KoLR1leOc9Yc2wSsRCpEqmkI/ia77IkRj3/B/H13/ErE7ulh2zMW08/Y1/50xBVP7ua8Ob1TBwDI39GIuLIsy68py/K/Kcvy35Vl+SdlWa70JXlRFNsR8WMzm3+oLMvbU8eUZXk8In5oZvM/L4o2f5kJAAAAAAAAAABWwy+7ALAZFACtgYwKlRXhj0+qsDVlyIJXz1PeUven77qBVufPqJ+kO7e/Yf52YVWba+lxY3aMq5gnT84seT1gI0waBqNVzc+r1vDm0HTJOyPgEanxyY9TGzl8ZP72M/dFfPJtw7ZljC6/IeJb/7yjk3lXBABQV1mW95dl2XX6fxe+ISIOTX39yYj4pRrHvX7vs+c9OSKe02G7AAAAAAAAAACgV36TH4DNoGh6/HIqVPY8jdCARYBNQ9VyerbZLxmMtt3vddsEozUNAGQcJsYcZi07bsyMU1XjkBA+oI7djmtGK+c15tCjleWcNcc2ASuRmhsPGaC/Dp708oiDV87fd/zosG3JTXIcnHnGDlwa8ew6WRdV1zNnAgBYA6+Y+foXy7L6Fxb2PjM7qXxlZ60CAAAAAAAAAICeCUYDYLWGKohVALQGMipUFoy2AQYsePU85S1ZFJ1hMFpO/STd0Ucwa9lnYjbUQTAa0IXGwWhLBp8JDh2xDOes3hkBj6gZWsViBy6LuOE75u/71G9HPPyZYdszVode28FJjHEAAGvgxTNfv7vBsbOffclSLQEAAAAAAAAAgAEJRgNgtQYrPlUANHo5FSoLqRmhIYvvGxbLep7ylro/rYLLmhCMxp5yZ9UtIDdLhwHNBqNVnO/kXUteD9gIjYPRKlSt/8yh6VJO7xuAFUusq3t/B7CGDt8yf3u5G3HHLw/alLw0fHfzpJcveTnvigAAxqwoiosj4uaZzR9ocIr3zXz9lKIoLlquVQAAAAAAAAAAMAy/yQ/Aig1UfKrIdQ1kVMSlCH98GhcBNgw3W+ZY/VPeksFo2/1et03RtWLX9WTMYdbSz8TsOFUxDn3855a8HrARmgajVc1bKufI5tDjleOcNcc2ASuRHH+WeU+0oR73nIgrZvMb9hw7OmxbxqBIPGPblyx5YnMmAICR+9KImP6h5D1lWX6h7sF7n/3s1KbtiHhqR20DAAAAAAAAAIBeCUYDYLWGCgQSPDR+Od1DITUjlHGhu+cpb6m+p01wWROtzp/xc0575c6qW0Bulh03Zgvuty+tPubMA8tdE1h/k4bBaNUnXLzbHJou5fS+AVixxLo6FVpFWlFEHD4yf9/n/yzi/j8dtj3ZaPjuZuviJS9njAMAGLnZtOE7W5xj9pintGwLAAAAAAAAAAAMSjAaAKslGI3aMgr8UYQ/Qg2fn2UKXpse63nKW+r+FNvzt3fGUo09+gj2WXZeOzNOHf771YecumfJawJrrSwjdpsGo1XMz8uq/cbH0aq6tyuRY5uAlUj2UdborRx6XXrfsaPDtWMUEu8Tty9Z8rzGOACAkXv0zNdtXtbPHnNVy7YAAAAAAAAAAMCgDqy6AQBsuqECywSjjV5OxdOK8DfAEsFoTY8V3Ji5xP3pOxit7fnLcrlgP/IzWTDmuN+badl5yOwzc8WhiGufF3HPe9LHTJoGHgEbZXKmxUFV67uKObI5NF3yPAGPSIxP1l3tXH5jxOO/OeIz79q/7/Y3RHzNv4zYOjh8u1ap6TvuZYPRjHEAAGN3xczXD7c4x+wxj2rZlgsURXFtRFzT8LAnd3FtAAAAAAAAAAA2g2A0AFZrqMIcBUBrIKN7KBhtfHIK1pvlecpb8v5s9XvdoufzMx6L+ohy0n9IH/lZetyYE+rwvN+MeNOj04fsCkYDFuijj6haw5tDj1iGazPvjICIindHgtFaO3RkfjDa6XsjPvU7EU966fBtylLiGdu6eLnTGuMAAMZuNhitzYu42WC02XO29f0R8aMdnQsAAAAAAAAAAPZRbQ/AaglGo66cgq0U4Y9Q0+dnmYLXhsd6nvKWuj9bPYdRtQ5Gy6ivpBsLg9H0Hxtp0kMw2kVXRbzyM+lDBKMBi7TpI6rWd4LR1liO89Uc2wQMb0FfILy8vRu+PeJAInfh2K2DNiUPDcec7UuGvR4AALlrM8EzKQQAAAAAAAAAYJT8Jj8AKzZUYJlgtPHL6B4qwh+fnIL19sno2Wa/ZChH30upluF8WT/rtCIYjX2WHDeKRP9yybULLnl6uWsC62334e7PWRmMZg5NhzxPQERFX7BMgP6GO3B5xA2vmr/vU2+LOPXZYduTq9Q6bdlgNGMcAMDYPTTz9aUtzjF7zOw5AQAAAAAAAAAgSwdW3QAANtzuqWGuowBo/HIK+xFEM0INn59UMWIfx3qe8pa6P8V2v9ctijhXeN2078uor6QbgtGYtfR9XzBObV8WsXty//ah5uzAOLXqI6rmLBX7jYHjldPa/hE5tgkY3qK+QDDaUg4diTh26/7tk7MRd/xKxJf+48GbNBrLBqMZ4wAAxi7nYLSfiYg3NjzmyRHx1o6uDwAAAAAAAADAmhOMBsDqTM5GvOeVw1xLMNoayOgeKsJnoYbFshPPU9ZS40ffwWgREcVWi/5GwevaKXcW7NN/bKReg9EuEYwGNDfpoY+oWsMbA+mSd0ZAxOLgxmJruHaso2ufF3H5TREnbt+/7/jRzQpGSz5niXXa1sVLXs8YBwAwcg/MfH1Ni3NcO/P151u25QJlWd4TEfc0OaZY5o+TAQAAAAAAAACwcfwmPwCrc88fRHzuA8NcS9H0+C0qThya52mEmj4/Q/5StgLFrKW+34coim5zjZz6SrqxcMzRf2ykZechiwqPti+Zv10wGrBIqz6ias5SFYxmDByvHOernicgYnFfoHh/KcVWxKHvmb/vvg9FfP4vhm3PmKTWaHWZMwEAjN1tM1/f2OIcs8fMnhMAAAAAAAAAALIkGA2A1fnI/zXctRQArYGMiqcFo41P47CoZQpeGx7recpbavwYIhit1XIto76SbizqIyb6j4209Lx2wTi1dfH87ZPTS14TWGuTnebHVM3Pq/o6c2i65HkCIhaPPcX2cO1YV6lgtIiI40eHa8fKNXxvs2wwmvdEAABj9zcRMf3i4tqiKB5V9+CiKK6MiMdNbdoNwWgAAAAAAAAAAIyEYDQAVufu3x/wYoLRRi+ncDtF0yOUcRGg5ylzqWC0AYqitw60OCjjZ512FoXN6D8209L3fUEwWqrofvfUktcE1lrZIhit+qQVu42B45XhfFXYLBBREYzmx6lLe9STI6557vx9x3+pXdDqWkms05YNRsvpnToAAI2VZXk6Ij4+s/nZDU7xnJmvb9s7JwAAAAAAAAAAZM9v8gOwGRQArYEVFE+nih4VTY9Qw+enWBAa0/Wx+qe8pUI3hiiKLloEo5UZBk2wnEXBL0JhNtOy933ROCUYDWijVTBaVfBZxRzZHHq8cpyvmlMBEbHwD2sIRuvG4Vvmbz91d8Sn3zFoU1an4Ti4dfGS1zNnAgBYA7878/XzGxw7+9nfWaolAAAAAAAAAAAwIL/JD8DqtAl8aUvR9Pit4h6mCs8UTbNQ02A0z1PWkn3PAEuprTbjZIZBEyxHMBqzlr7vgtGAjk3aBKNVqAxGMwbSIc8TELG4LxCM1o0bXhWxfen8fcePDtuW3KQCrFNrtLpyDCQFAKCpN898/bqiKLarDtr7zHdXnAsAAAAAAAAAALLlN/kBWJ2tg+2PveJwwwMEo43fCoq4BKOtj8ZFgA3DzZbhecrXoudmiKLoVgGiCl7XjmA0ZvUZjJaa+0xOL3lNYK2ViWC07csirn5G6qCKkwpGW18Zzlc9T0DE4lDO6swB6jh4ZcSXfPv8fZ94S8SZ+4dtzyo0fUe5bDCan4sAAKyDP4yI4/Q6OiYAACAASURBVFNfPyn2B57N890R8cSprz8eEf+pw3YBAAAAAAAAAECvBKMBsDqtAl8i4ut/NeJb3t/smEWFbYzDKu7htmC09TFk8X3DUDX9U74WFkVnGozWOASQ7AlGY9ay40axYJxKFd3vnlrumsB6mySC0bYOLO5zFqnq64yBdMnzBERUjD1+nNqZw0fmb5+cibjj14ZtS1YSc6ZUeHVd3jsCAGSnKIpy5p/nL/p8WZa7EfGjM5t/siiKmxZc46aI+L9nNv9IWZogAgAAAAAAAAAwHn6TH4DV2TrY7rjLbwzBQ5toBWE/qcIzRdMj1PD5aRvg0OZYz1PGVlwUvdUyQJT1UibCZiL0H5tq6fsuGA3oWGqsWhTyWhnmWrXfGn+8MgzyNacCIlYfjr4prv2miMu+ZP6+Y7cO2pTVaDgOptZofV0PAGDDFUXxpKIobpr9JyKeMPPRA/M+t/fP43po2hsi4oNTXz8mIt5XFMW3zPn/8KKIeH9EXD21+X0RsclJxAAAAAAAAAAAjJBKewBWp20wWrEdjYPRFE2PX2XhfA+2BaOtjcbPzxLBaE15nvK1sCh6u//rLwoTSVLwunYW9RGCXzeTYDQgN5NEMNrWgUj3ORVzlqoxzhyaLnmegIjFfYFgtO5sbUccel3EX/6f+/d97oMRD/x1xFVPG75dK5eYMy0bjOa9AQBAU++NiBtrfO6JEXE8se9oRNzSVYMiIsqynBRF8YqI+EBE3LC3+bqIeHtRFLdFxF/GuUnlV0TEzTOH3x4RryzLVfzCBQAAAAAAAAAAtOc3+QFYnVaBL3EujKZoGFr0hb9pdy0ysoIiri3BaLTRsH9SoJivhcFoAyyltgSjERXBaMajjbTsfV80j07NfQSjAYuUiWC0tmv+iOo58sQYOFo51uCaUwERsfDd4xDh6Jvk0JH0vuNHh2vHSjQcB5cORstw3AUAoJWyLD8dES+MiA/P7HpKRLw8Il4W+0PR/iQiXliW5Wf6byEAAAAAAAAAAHRLMBoAq9Mq8CX2CtEaBg/9zb9udy3ysYoirm3BaOuj6fPTsI9ZhucpYysORmsTJqLgdf0sCobRf2ympQM1F/RfBy6bv333xJLXBNbawmC01Ly6Ys5S2dcJFx6vDOer5lRAxOrD0TfJlU+NeNyz5+87/vrNDEBNBVinwqtrM2cCAFgnZVl+NCK+LiL+l4g4tuCjH9/7zN8uy/JjQ7QNAAAAAAAAAAC61jKRBgA6UBxsedx2ulBokcnZiK2W1yQDKyjiShWeKZoeoSGL7xv2T56nfK26KLpNMFqOQRMsRzAas5a974vm0QeumL/97IPLXRNYb5NEMNrWgXZr93MnXbzbGEiXPE9AREUop2C0zh06EvHZ9+/f/vAnIz7zrojrXjh8m3K0fclyxy8drA0AsFnKsrxpgGss9Re6yrI8GxE/HhE/XhTFMyPiqRFx/d7uT0XER8uy/NByrQQAAAAAAAAAgNUTjAbA6rQNKSu2o3HwUIRgtLErVxD2s3XR/O2Kpsen6fPTOsChzbEKFLO16qLoLcFoRCy8p8ajzbT0fV8UjPao+dsFowGLlIlgtEUhr1Xz88r9xsDRWsXavornCYhY3BcMEY6+aW58dcSHfjBicnr/vmO3rm8wWtNxcNlgNO+JAADW2l4AmhA0AAAAAAAAAADWkt/kB2B1WgW+xF4hWovQIoWuI7eC8Kjti+dv9yyNUMZFgBPPU74W9DtDFEUvChNJyTFoguUsCugzHv3/7N15nB11ne//d50+3emEbE0WCGFJmsVABJFlDCEoRFCEi6AyUURJ1JlRYO7AOIA63gDKHRnc8OfAT9QLphkUETEgLsAV2VFAFgmGRbISMHtCtt5yTt0/Omm6T9e3Tu3beT0fjzyg9m84RdW3vqc+79OYwn7ubgGezYZgtJ0EowFwUTUEo5XKCvTs3rdT98WuAbaAT/SpAEju9xarKbl2NIqWsdK+ZzkvW7VQ6nkz2fakztBnssrhxqDoMwEAAAAAAAAAAAAAAAAAAADIKYLRAADpsZoDbtfkHuhgQhFQvqUR9lMiGK1xBQ1wCLAt51N2uRZFJ/AoFShAlGC04nH5TLl+NKbQn3uAYLRegtEAuDBdl1xDXg33N7sqbX1VqnQHOyZyIIP9Vc4nAJJSD0dvRO3znOdXOqWVtyfalOT4vA9alnmM2tPh+E4EAAAAAAAAAAAAAAAAAAAAQD7xJj8AID2lEMFoQUKLKHTNuRSKp5sIRisOv+dPiGA038GNFChmlmvxaAKPUq5hIgZphEgiPRQ4N6bQn7vLfapsCEbbSTAaABf2Tuf5Vlm++tWr7pZ+MVG6+2Dp9V/WOSbPZLlUrUgbnki7FUNxPgGQ0h8DaER7nyINn+S8bFlHsm1JnUufqak1xH4ZJwIAAAAAAAAAAAAAAAAAAACQT7zJDwBITylA4IsUIhiN8JBcS+PzKxGMVhhZDovifMout+uOldFgNApei6XevY/rR2MK+7m7BXg2m4LRtoU7JoBiMwWjuT7z1/RZtrwiPfJhqXuDx2PyfJ9Lf/la2i1wRp8KgOR+LUhiDKARlZqkKZ90XrbuUWnrq8m2JxEBxm3CBKPRZwIAAAAAAAAAAAAAAAAAAACQU7zJDwBIj9UccLsm90AHEwpdcy6FsJ8mgtGKw+f5E+Qa89bG/lbnfMqwlIPRAgWIEoxWKFVD0MxuXD8aU+jP3eU+VTYEo1V7pe6NIY8LoLBM9yurbO5X1wYXr7jNHLDmuD33wFxatTDtFjjjfAIgpR+O3qja55qXLbs5uXakzW0s0vTjHZ4QjAYAAAAAAAAAAAAAAAAAAAAgn3iTHwCQnkCBL+oLRvMbPCSJIqCccytOjEup1Xk+RdM5lOGwqDTObXjj+tkk8ChlBbhP1oaMIN/s3jrLuR81pDiD0ZoNwWiSdMd46fVfhzw2gEIyBZqVyrue3522qelnLbo8mmMi2zY9m3YLnNGnAiDJPRzdcD9DeGMOk/Y81nnZ0o7ijZsFGbdpMoxRx3U8AAAAAAAAAAAAAAAAAAAAAMgAgtEAAOkJEvgiSVZJgYLRKHTNuRSKuJpHOs+vdCfbDqQgSPhiwG25NmWXW/GtlcCjVNAAURRHtU7oC9ePxhQ2GMAKGIwmW3rsY1LX+nDHB1A8pvuVVTY/94cNNqv2hNseGIg+FQAp/TGARtY+13n+jpXS2oeSbUtqXJ7TQgWjFSxYDgAAAAAAAAAAAAAAAAAAAEDD4E1+AECKAgZdWU3ugQ7Gw1HommtpFHGVTcFoncm2A+HZCQbr+b0+cW3KsJSLogMFiKYQIon4VHvdl3P9aEyhP3eX+1TZLRhN0s5tDRRMAMAzU8iZVTYHvYYORqtzjwT8qNKnAqA6/Wy+To3VAR+TSi3Oy5YuSLQp8QswblMKEYzGOBEAAAAAAAAAAAAAAAAAAACAnOJNfgBAeoKGOlhNcg10MB4vhWAtRCiFIi5jMFpXsu1ABPyePwGuMUFxbcout8+GYDQkoV5oDMFojSnWYLQ96m/etSbk8QEUjul+VSqb+zNVgtGQIfSpAEjpjwE0smHjpMlnOC977Q6pd1uy7UmFy3Na07AQ+2WcCAAAAAAAAAAAAAAAAAAAAEA+8SY/ACA9QcOAAgejUeiaa3YKRVzNo5znV7vTaQ+C8/t5WWGC0Xxuy7Upu1zvUwk8SpUCBKNxbSqWeqEvXD8aU9jP3e0e19Raf/tqT7jjAygeU8iZ5RKMVi/8s+4xCUZDhOhTAZDqBKM1JdeORtU+z3n+zu194WiNzMtzmgk/yAAAAAAAAAAAAAAAAAAAAAAgpwhGAwCkJ2jhqdUULLSIIqCcS+HzK480L6t0JdcORCDDYVEU4WeXa1F0Ao9SpiARVxk+1+FfvdAY+jaNKfR9w6UfbZWkUov75tXukMcHUDim+1WpbA56NYWpeT4mwWiIEM9kACS5jj0mMQbQ6Ca9X2qd6Lxs6YJEmxKvAOM2YYLRGCcCAAAAAAAAAAAAAAAAAAAAkFO8yQ8ASE+YYDS3QIeoj4dssFMo4iqPMi+rEoxWbAGuMUG35dqUYSkXRZuCRFxR8Foo1TqhL1w/GlPoQLw696mm4e7LKwSjAahhCjmzyuag13rhn3WPSTAaIkSfCoBU51rA16mxKzVLB5zrvGztg9K25Um2JnluPwRTChGMlsaYOgAAAAAAAAAAAAAAAAAAAABEgDf5AQDpSTwYLWyIBNKVwufXPNK8rEIwWr4kWAToVsjohGtTdrl+Ngk8SpmCRNxQ8Fos9UJjCPFoTGE/93r3qXrBaNWecMcHUDym+5VVNge9EoyGLKFPBUByHwNIIhwdUvs887JlNyfWjFgFGbdpGhbmgCG2BQAAAAAAAAAAAAAAAAAAAID08CY/ACA9QcOArJL/4CGJQte8SyPsp+wWjNaZXDsQnu/zJ8A1JiiuTdmVdlF0kGA0Cl6LpV7oC9ePxhT6c68XjNbqvrzaHfL4AArHFHJWKpv7M1WC0ZAh9KkASC5jAFawsWj413aE1Hak87JlHQUPg3c5x+o9o7kq8n8zAAAAAAAAAAAAAAAAAAAAAEVGMBoAID1BC0+tkoKFFgUMYkNGpPD5lUeZl1W6kmsHIpBkEaDP6xNF+BmWcjBaiWC0hkcwGpzEHow23H15hWA0ADVMIWdW2dyfMYWpeWUTjIYI0acCIMk4BpDE8z/eMnWe8/xtS6V1jybalHgEGLcphQhGK3SYHAAAAAAAAAAAAAAAAAAAAIAi421+AEB6ghSeWk27/hkgGI1C13xLo4ireaR5WaUzuXYgAj7PnyDXmLc29re6TWhjZrl9NkkURlsBgtEoeC2WeqEx9G0aU9j7Rr17XL1gtGpPuOMDKB7T/apUNvdnTGFqXtULDwX8oE8FQJKqhmsBwWjJmvJxc/9hWUeybUmUy3NaoOD83Rh3BAAAAAAAAAAAAAAAAAAAAJBPvM0PAEhPkFCH3cFoQZiK25ATKYT9lEeZl1W6kmsHUhAmGM0nivCzy/U+lcCjVKDCV4LRCqVe6AvXj8YU+nOvF4zW6r682h3y+AAKxxRyZrkEo9UL/6x7TILRcifLAb70qQBIMgdI8VVqolonSJNPd1624mfSzh3JtidyAe6HYe6hWb7/AgAAAAAAAAAAAAAAAAAAAIAL3uYHAKQnSOFpmGA0Y3EbciFIkF5YTcNlDA8hGC1fkiwCtHyGqlGEn2Eu1x0rgUcpU5CIKwpeC6VeaAzXj8YUezDacPflFYLRANQw3a+ssjnolWC0xpPGM71X9KkASObrVKjxaAQyda7z/J1bpdcWJtuWpPgdT/SMcSIAAAAAAAAAAAAAAAAAAAAA+UQwGgAgPUkHo1HomnMpFHGVmqSmVudllc5k24KQ/J4/cRUjOslwQECjcwtvyGwwGgqlXuhLlgNGEJ+wfdp6Bfemvs9u1Z5wxwdQPFVDyFmpbO7PmLbxyiYYLX8y3G9hvAiA5BKMxlepidvndGnYOOdlyxYk2pTIBfrxhjDj4gSjAQAAAAAAAAAAAAAAAAAAAMgn3uYHAKQoQFFsmEI0wkPyLa3Pr2m48/xKV7LtQEhJFgH6DFWjCD+7XK87CTxKlQIEowUqsEVm1QuN4frRoML2ieoFoxn6PrtVukMeH0Dh2Ib7lVU292cGbhPkWa9eeCiyJ8tjMvSpAEjmawHBaMlrapEO+LjzstX3S9tfS7Y9iXB7Tgsx1sM4EQAAAAAAAAAAAAAAAAAAAICc4m1+AEB6qgEKT62m4Mej0DXnUiriamp1nv+HuRTj54nfIkDLZ7jZ4I39rR7kWohkuIU3JFEYbQUIRkvrWol42HXuM/RtGlPYz73ePa5eMFqVYDQANUzBaKWyuT8zMPyz2uP/mDyL5Q/BaAAyz3Sd4qvUVLTPMyywpeX/nWRL0hcq3IxxIgAAAAAAAAAAAAAAAAAAAAD5xNv8AID0BCk8DRWMluEiXNSX1udnCkar7JCe+bdk24KC4tqUXSkHo5UCBKOFKpZF5lQNQTO7EeLRmEIHatYLRjP0ffqPHyDACECxme5Xlksw2sAwtUpXgGMSjJY/GX7uoU8FQDKPPZZCjEcjuLZ3SmPe7rxsaUeOxz8SbjffiQAAAAAAAAAAAAAAAAAAAADIKYLRAAApClCUEyoYjULXfEu4aGxke98/S8PM66z4KcVlueH3/KkTGuO6qc9tuTZll+tnk8CjlClIxFVeC4PhqF7oC9ePxvPaL6SXrw25k3rBaMPdl1e6Qx4fQOHYLsFopqDXsMFoNsFouZPlZ2f6VAAkl+sUX6WmwrKk9rnOy7a+Im14Itn2xM11PDHMWA/jRAAAAAAAAAAAAAAAAAAAAADyibf5AQDpCVJ4GioYLcNFuKjPTriIa7+z+/7pds51r5O61ibTHoTk8/zxG242iM8uNkX42eV237ASeJQadUiAjSh4LZTNz7kv5/rRWDY+Kz06J/x+6t3jynWC0aoEowGoUTUEo5XK5qDXathgtCrP+HmT5c+LPhUAyXwtSOL5H86mnGsem126INGmRCfAuE3rxBCHY5wIAAAAAAAAAAAAAAAAAAAAQD4ZKtNQNJZlNUs6XtL+kiZJ2ibpDUnP2ra9POJjTZV0pKR9JI2U9DdJKyQ9btt2b5THApBziQejUeiab0kVUVvS/nOkI67aNVnnnMtycTfekmQRoN+CWc6h7HINRgsTnufR3rP9b0PBa7EsvsZ9OX2bxrLqzog+8zrXr2ET3JdXeyJoA4BCsQ3BaFZZsgz9KTtkMJokVXulpmHBtkUKMvzcQ58KgGQeAyAYLT3DJ0mT3i+98Zuhy1b8VDr6O1JTa/LtioXLc1r7POn5+QH3yzgRAAAAGptt26pWq7L5DhVAwizLUqlUkpXEuyUAAAAAAAAAAAAAUFAEo6XEsqx2ScdKOmbXP4+SNGrAKits254SwXEmSPqKpI9K2tOwzuOSvm3b9h0hj3W2pM9LOs6wykbLsm6TdLlt2+vDHAtAQQQJA7JC3LoodM23OF9UnTBLOvG3Uufr0rDx0rBxby2rG8bHC7T54PdzCvFiot8AR65NGZZyUXRTq9Q8Rup908dGXJMKo+rh2sD1o7G88NWIdlTnHrf3Ke7LK90RtQNAYZiC0Upl83N/dcA2VYLRGkKWA6HpUwGQZB4DCPFDHQivfZ5zMFrvm9Kqu6QDPpp4k0IJMsY9Yt8wBwyxLQAAAJA/tm2rq6tLW7du1datW9XTw4+9AEhXS0uLRo0apVGjRqm1tZWgNAAAAAAAAAAAAADwgZ85T5BlWSdalnWvZVkbJC2R9FNJl0h6jwaHokV1vA9IekHS+TKEou0yU9LPLcu6xbKsPQIcZ6RlWbdKul3mUDTtasP5kl6wLOv9fo8DoICCFJ6WwmR6ZrgIFx5E/PkNn9RXWHfM9X2haM0jpdFvGxyKJtUPQKKAGrUIRisOU3hDkkXRY6b73ICC18KoegifynLACLKrXohQ2xHSO79lXu7l3ATQWKqGYDSrbA43HximFjRw0e4Nth3SkeV+i5dAWgDFZ7xO8VVqqiafITWPdV62tCPZtsSqTlH0u24Ktts4f2wEAAAAyJgdO3ZoyZIlWr58uTZs2EAoGoBM6Onp0YYNG7R8+XItWbJEO3bsSLtJAAAAAAAAAAAAAJAbvM2frCMlvU/uIWWRsCzrREl3Spo4YLYt6Wn1BZj9X0nrazY7V9KtllUvAWbQcZok3SbpYzWL1km6b9exntHghIa9JN1lWdYsr8cBUFBBwoBMRdVxHQ/ZEXUR1yH/U5rxI+mQC/pC0UzqBSBVKcbPB7/nT4hfaPUdjJbhgIBGl4Wi6Kbh/tan4LU4bEPIzKB16NsggKbW+usc+nlzOFqVQiIANUz3rFLZHG4+KBitK9hxeRbLlyw/99CnAiCZrwXevzJDHJpapSnnOC9bfa+0441k2xNawHGb5qC/r5Xh+y8AAAAQoR07dmjlypXq7WXMEEB29fb2auXKlYSjAQAAAAAAAAAAAIBHvM2fDd2SlkS1M8uy9pX0C0ktA2Y/Jmm6bdvH2LY9x7bt90naV9JFkga+EXSGpP/t43D/Kem0AdO9kv6npH1t237/rmMdLentkv4wYL1hku60LGuSj2MBKJpAwWg+A4cGHY8ioHyL+vPzGHxFMFr+dW+QNj6b3PH8FsxShJ9dpvtGkkXRXgKMBiEYrTCqBKMhJiWP15WRU5znV7ojawqAgjDds6yyOdy8SjBa48nwmEzn62m3AEAWZGEMAM6mznWeb1el5T9Oti1xseqMVZeag+2XAH0AAAA0gN2haDb9XwA5YNs24WgAAAAAAAAAAAAA4JGhMg0x6pX0F0l/kvTUrn8uknS8pAciOsZXJLUNmH5c0sm2bQ+qMrRtu1vSdy3LWilp4YBFn7cs6/u2ba9wO4hlWe3qC1Yb6O9t276rdl3bthdblvVeSfdLOm7X7HGSrpD0OQ9/JwBFFCSoLEwhGuEh+Rb1S6z1is3616tzztkU42dWtSI99VlpyU3yHRbl9fxw3NZngCPXpgzLQFG078JXXvgvDJtgNMTEa+BiaZjz/CrBaABqmO5ZVlmyDP2pgdtUCUZrCFkOq+98o+/5sRQijB9AAZjGALg2pG7c30mjp0lbXhq6bNkC6dBLwo3lJSnoGLcVMBiNcSIAAAAUnG3beuONN4aEojU3N2v06NEaOXKkmpubZeXlmQFAYdi2rd7eXm3btk1btmxRb2/voGVvvPGGDjzwQK5PAAAAAAAAAAAAAOCCYLRkdUi6oTagTFJkX25blnWwpIE/nd4jaZ7TMXezbftOy7I6Bmw3TH2BZZ+uc7grJA18E3+BUyjagON0WpY1T31BcC27Zn/Gsqyv27a9tM6xABRRkDCPUMFoGS7ChQdRF3F5DUarU/xIMX52vfQtacmNATdOMhiNa1NmGT+bBIPR0LiqBKMhJp6D0Vqc51d7omsLgGIwBaOVyub+1MD7XIVgtIaQ9eeeTc9K445JuxUA0mS6TiUZjg5nliVNnSv9+UtDl725WNr4dAGu4XXGIn0H5+9GMBoAAACKraura1DYkCSNGjVKkydPJmwIQOqam5s1YsQITZgwQa+//rq2bt3av6y3t1fd3d1qbfX43S0AAAAAAAAAAAAANCDe5k+Qbdub3ALKIvJxSQPTOH5h2/ZfPWx3Tc30HMuyjN+4W5Y1XNLZdfYxhG3br0i6c8CssvraDKARBQrzCPHiIuEh+ZZWETXBaPn11++lc1y/BbNcm7Irj0XRNgWvhWF7uL9w/UAQXoPRmoY5z7crUpVzD8AApjBPq9z3x4kdQTCaKZANGZXxYLQtL6fdAgBpMz5fZXgMoJFM/aR5PGbpgkSbkoqgwWiMEwEAAKDgBoYMSX0hRISiAcgay7I0efJkNTcPfr7fsmVLSi0CAAAAAAAAAAAAgHzgbf7i+VDN9I+8bGTb9ouSnhgwaw9J73PZ5P2SRgyY/oNt2y95auHQNn3Y43YAiiZI0FWYMJq0grUQkaiLuDy+CFvvnCMYLbu2Lw+xcYgXpeuF6dUi2CjDchiMFvm1EqkxhcwMxPUDQXgNRisZgtEkqdodTVsAFIMpoKzULJU8BKMFvabwjJ8vmf+8st4+ALHLYzh6IxkxWdrrZOdlK26VKnl5RjGN29QZiwwajMY4EQAAAAquNhht9OjRhKIByCTLsjR69OhB82qvYQAAAAAAAAAAAACAwXibv0Asy9pb0jsGzNop6TEfu3iwZvoDLuueWmdbN4+or227vdOyrL18bA+gKAKFeYR4gZHwkHyLuoja68uw9UKubILRUMNvMBoF+NmVy6JoCl4LwxQyM2gdrh8IoGm4t/VKLeZl1Z5o2gKgGExhnla570+9bSpdwY7LM36+ZL3fwvkEwDgG4HecB7Fpn+c8v2ej9MavE21K4kbsF2y7rN9/AQAAgBBs21ZPz+DvK0aOHJlSawCgvtprVE9Pj2ybdzwAAAAAAAAAAAAAwCTLFf3w7+0108/btr3dx/aP10xP93GsP3g9yK42LfJxLABFZNsKFN4SJoyGIteci/pFsIiC0aoEoxVSmF+R9nud4tqUXcbi0Qw/RvHSbHGYQmYG4vqBIJpaPa43zLys0h1NWwAUgynMs1Tu+1Nvm6DBaAQM50vWg1my3j4ACchjOHqD2fcsqXm087KlCxJtSnABx2322D/Z4wEAAAA5UK0OfY5rbm5OoSUA4E25PPQ7E6drGQAAAAAAAAAAAACgD2/zF8thNdOv+tx+SZ39DXRogscCUESBC05DhBVRNJ1vkRcpez2X6nSXCEZDrXpherWqBBtllum6k+miaApeC8MUMjNoHa4fCKDkMRit1GJeViUYDcAApnuWVe7746QaQTAaQVY5k/HPi/MJQB7D0RtNebi0/xznZW/8Rupck2x7ouTlRxr2/VCAHTNOBAAAgOKyHX4wygrzA2gAELNSaeg4k9O1DAAAAAAAAAAAAADQh7f5i+WgmumVPrdfUTM9zrKsttqVLMvaU9KeIY9Vu/7BPrcHkHeBgzxCvMRIeEjORfwimNcXYkt1Qq4IRiuoENcav8FoWQ8IaGgEoyFFXu4v9G0QRJPXYLRh5mXVnmjaAiD/ejaZg81KLsFolR3StuW7/j1oMBr3wVzJevAY5xMA03Ug02MADah9nvN8uyKt+EmiTQkkTLHz2MOTPR4AAAAAAAAAAAAAAAAAAAAApIi3+YtlbM30Wj8b27a9TVJtJeIYD8fZYdv2dj/H0tC2OR0HQJEFLTgN8+uuWS/ChbvIi7g8nkv1Qq5sgtGKKUwwms8uNgX42WW8b2T4MYqC1+Kwd3pYh+sHAvAajNbkEoxW6Y6mLQDybftK6bdHm5db5b5wNJNfvU1647chgtF4xs+VzH9eWW8fgNhtes55vu8AfMRq/ExpZO3vRO2ytCPZYh4TLwAAIABJREFUtkTKw1hkc5CvUhknAgAAAAAAAAAAAAAAAAAAAJBPLpVpyKGRNdOdAfbRKWlglfSoGI8zkNNxfLMsa6KkCT43OzCKYwPwK2DBqd/AoYEID8m5tIqU65xzVYLREBLXpuwyhTeEuRfFjoLXwqgSjIaYeA1GK7WYl1UJRgMg6c9flrYvMy+3ynIN+aj2SE98Rpp8ZrDjcx/MmYwHj1U5n4CGt+JWw4IQ4fmInmVJ7XOl5+cPXbb5z30Bd21HJt8uz0KM27QQjAYAAAAAAAAAAAAAAAAAAACgcWS5oh/+1QaWdQXYR21gWe0+kzxOEBdIesHnn7siOjYAP3ZuD7hhiEK01xYG3xbps6Mu4vJ4LllN7ssJRkNYpvAtZEAGgtH8FvNGfq1EamyC0RATz8Fow8zLqj3RtAVAvi2/xX15qdz3x03n36RNzwQ7Pv3ofMn855X19gGIVfdG87ItLyXXDngz9ZPmZUs7kmtHpDyMVTcHCEbL/P0XAAAAAAAAAAAAAAAAAAAAAJwRjFZsQVIRsrwNgCJZ/0Sw7cKE0ax9UNr0XPDtkbKIi7gsgtHgwk7wcyXYKLuMxaMJPkYd+A8+N6CbXRgEoyEuJa/BaC3mZZXuaNoCoNissjz1mzr/FvAABH3kStaDWbLePgDx6lpjXta7Obl2wJs9DpD2mu28bPmPMz5eG2Lcpnl0gMMxTgQAAAAAAAAAAAAAAAAAAAAgnwhGK5ZtNdPDA+yjdpvafSZ5HABFtu7RgBt6DLMyee3OcNsjPZEXcXkNRqvTXUoyQAvJSTLwhWCj7DKFI4QJ6fRrxGTp4AsGzys1u2xAwWtheCnkJsADQTR5DUZrMgfEVglGA+BBqVw/aFqSegIGztCPzpmM91s4n4DG5uV+hWyZOtd5fvc66Y3fJtuWKHj5EY/mMQF2zDgRAAAAAAAAAAAAAAAAAAAAgHwiGK1YCEaT/n9Jb/f558yIjg3Aj54NwbYLG0bzwlfCbY8UGYqoJ8ySWtoC7M9rMFqdwkgvwTXInyQDXwg2yrAMBKNJ0jHXSTM6pCnnSodeKp3yeLLHRzqqO+uvQ4AHgvAajCZJpWHO86s90bQFQLFZ5b6QxXp2bg22f/rR+ZL1zyvr7QMQL4J/82f/j0jlkc7Lli5ItCmJaRlrXjZ6mmEBwWgAAAAAAAAAAAAAAAAAAAAA8qmcdgMQqTdrpif42diyrJEaGli22cNxRliWtYdt29t9HG6ih+P4Ztv2Wklr/WxjefkVdgDRCxzkwf+zDcs2FHGNbJeO+S/p+SukTc9Kex4j2Tul1+9235/X6z/BaI2pkmQwGsFGmWUKR0g6GM2ypPbz+v5IUqXLvK7pWon8sQlGQ0yG7+N93aZhUmXH0PlJ3icB5JdVlhTj8xL3wXzJevAY5xPQ2Nyes5FN5T2k/c92DkF741dS9wZp2LjEm1WXcdzGw1j1yIOk1r2krjWD5zeNkA78B+nZS3wcDwAAAAAAAAAAAAAAAAAAAACyLeGKfsTsrzXTB/jcvnb9jbZtb6pdybbtDZJq5+8f8li1bQdQdFWC0eCXoYjLKkltR0rvuUs6a6X07l9IYw+P7rAEozWmKsFokEt4Q9qPUW73QgpeC4NgNMSh7Uhpj/28r19qcZ6f5H0SQH6VyvWfp8LIetAWBsv855X19gGIFcFo+TR1nvP8aq+0/NZEm5KIUpN02BeHzj/2eqllT8NG3N8AAAAAQJKmTJkiy7L6/zz44INpNwkAAAAAAAAAAAAAANSRdkU/ovVizfRBPrdvr5lenOCxavcHoOiCBnlYBKM1LGMRtdM54aWL4/Fcsursi2C0YqokGYxGgWJmmT6beteF2BGM1hCqBKMhAntMeevfRx4onXCHv+1Lw5znV3sCNwlAA7EIRsNAGf+8OJ+AxkYwWj5NPGHwM89AyxYk2RIfQo7bTLtYmvVzaconpP0+LL37l1L7PPP3JjbjRAAAAAAAAAAAAAAAAAAAAADyqZx2AxCpF2qmj7Asa4Rt2zs8bn98nf3VLps5YPo4SXd7OYhlWXtIOsLHsQAUUtCC07TDaJAeQxGXU0CRl9AiryF79Qr5d7zmbT/Il2qSwWgEG2VXRoPR3K5fFLwWh5fgTa4fqOe059/qq4ye5v/61WQIRksyQBRAfpXK8fabuA/mS9aDxzifgMZGMFo+WSVp6lzpha8MXbbxaWnzC9LYtyffrkB8/CDM/h/p++Npe8aJAAAAAAAAAAAAAAAAAAAAAOQT6TIFYtv23yQ9P2BWWdIsH7s4sWb6ty7r3lNnWzcnaHAo37O2ba/xsT2AIghacJp2GA3SYyyidij68nSeRBSMtuSHUvcGb/tCfiQZ+EIBfnYZrztp34vcrl8UvBaGvdPDOlw/UI8ljTms70+QfnSpxXl+kgGiAPLLKtd/ngol40FbGCzzwWgZbx+AeFU6024Bgmo/z7xsWUdy7fAsrnEbgtEAAAAAAAAAAAAAAAAAAAAAFEvaFf2I3sKa6U952ciyrGmS3jVg1nZJ97lscq+kgZUix+3ahxfzaqZr2wygEQQO8vAYZoUCMhRxOYZ8RBmM5mFfK3/ubV/Ij0QDXyjAzyxTOELqIZ0EozUEgtEQBStk37k0zHl+tSfcfgHkn+2hzxF3MBr3wZzJ+HMP5xPQ2CpdabcAQY1slyac4Lxs2S1S1cOzdRaEfXYzbe+lzwYAAAAAAAAAAAAAAAAAAAAAGZR2RT+i92NJA6u4PmxZ1sEetvtCzfTPbNs2VoLYtr1DUm0KTO0+hrAs6xBJHxowa6ekn3hoH4CiCVpwGrZACPllCihyCgjyElrk9VzyUsj/l//tbV/Ij0qCwWh2lSLFzMpoMJrb9YtzqTi8FG+vffitf7dt6a83SL87UbpvpvTydzkfoNDDPk2GYLQk75MAssn4fDZAKe5gtIwHbWGwrH9eWW8fgHhVXYLRxr3LvAzZ0D7PeX7Xaulvbr8BlYLYntNNY0WMCwAAAAAAAAAAAAAAAAAAAADIJ4LRCsa27b9K6hgwq0XSAsuyWk3bWJZ1pqR5A2b1SPqKh8NdKal3wPQ8y7I+6HKcVkk/2tWm3W60bXuJh2MBKJrABafcuhqXqYgrYDCaV14K+Xesiu54yIZqwoEvFOFnk/FzSfte5BbsSMFrYdgegtEkacsrff/8y39IT50vrX1IWv8H6emLpOfnx9c+5EPYUOFSs/P8aq/zfAANxEP/1SrHGyhLHzpfMv95Zb19AGJVcQlGO+ifkmsHgtn/bKlpuPOyZR3O8zMn5LObqc+V+fsvAAAAAAAAAAAAAAAAAAAAADgrp92ARmNZ1r5y/u++d8102bKsKYbdbLNte73LYa6Q9CFJbbumZ0r6nWVZ/2Db9ksD2jJM0j9J+lbN9t+ybXuFy/4lSbZtL7Us6/+TdMmA2T+3LOvzkn5g23bPgGMdKun/7GrLbhvkLYANQBHZlWDbhQ13QH6Ziricir48Fd97PJfiLORHdiUdjKaqJA8hfEiWn+tOklzvhQSjFYbX4KkVP5Wm/7v08neHLnvlOunwK6USj/6NK+T1yjKcO0H78gCKw0vIRqnsLWg6cBu4FuVK1oNZOJ+AxuYWjDblE8m1A8E0j5b2+4i0/Jahy1bdKfVsklrahi5LRVzjNqaxIsaJAAAAACBJtm3rmWee0UsvvaS1a9equ7tbEyZM0OTJkzVr1iyNHDky7SYG9tprr+mpp57SqlWr1NnZqfHjx+vwww/XMccco1Ip3HeSa9eu1SOPPKI33nhDnZ2d2meffdTe3q4ZM2aE3reTxYsXa9GiRVq3bp22bNmiPffcU5MmTdKsWbM0bty4yI8HAAAAAAAAAAAAAAiG6ujkPSrpAA/rTZa0zLCsQ9I804a2ba+yLOvDku6V1LJr9vGSFluW9bSkpZLGSDpK0oSazX8lab6H9u32RUnTJX1g13SzpP+SNN+yrGckbZXUvutYA9/K75H0Idu2/+bjWACKJHDBKcFoDcve6Ty/1Ow008MOvQajEVbVkCoJB6PZFfV1o5AtGQ1Gc2NT8FoYpvterUVXSJNOlbrXDV3W+6a06Tlp3DHRtg35ETZU2NQP8np+AiguLyFXVtzBaBkP2kKNjH9enE9AYzMFo417l9TU4rwM2dI+1zkYrdojrbhNOvhzybfJl7DfexCMBgAAAABpWr9+vb72ta/plltu0bp1Dt/bSmppadHs2bN15ZVX6l3vepen/c6bN08dHR3908uWLdOUKVM8bfvggw/qpJNO6p++4oordOWVVxrXtwZ8r/ie97xHDz74oCTp8ccf1xVXXKHf//73qlaHjqPutdde+vKXv6wLL7zQd4jZs88+q0svvVQPPPCA47733Xdfffazn9UXv/hFlctlXXnllfrKV976LeYHHnhAJ554oqdjbdiwQd/4xjd0yy236PXXX3dcp1QqaebMmbriiit08skn+/q7AAAAAAAAAAAAAACil+GKfoRh2/aDkj4kaeBbFpakYyTNkfR+DQ1Fu1XSx2zbe1rRrnXnSLqtZtFESadK+ntJR2vwG/lrJZ1p2/YjXo8DoICCBqOFDXdAflUNARyWQ86rl9Air+cSwWj5FDYcqppGMBoyp2r4XLIQjGZsAwWvhWG67znpWm1exvWlwYUNRjPk6ROMBsDL/cVqirnfRJBVrmQ9eIw+E9DYTMFozaOSbQeCm3iSNGI/52VLFyTalFSYxroJ0AcAAACA2N15551qb2/XtddeawxFk6Senh7dc889mjFjhj772c9q587sf9/2ta99Te9+97v1u9/9zjG4TJLWrFmjf/mXf9HZZ5+tnp4ez/v+9re/rWOPPVb333+/cd+rVq3S/Pnz9Z73vEdr1qwJ9HeQpJtvvlnt7e265pprjKFoklStVvXoo4/qlFNO0Sc/+Ulffx8AAAAAAAAAAAAAQPQyUNGPuNi2/RtJb5d0g6RNLqv+UdLZtm1/3Lbt7QGOs8227Y+pLwTtjy6rbpT0PUlvt237Hr/HAVAwgQtiuXU1LFMAh1Nwmafie69BIR72VRrmcV9ITsiiv0rSwWgZDwloWKbPJQv3IlPBK+dSYfgJnurZbF7WNDx8W5BfYQOJTAGxpuBIAA2kTp/DauoL6IgzaJogq3zJej816+0DEC9TMBrPU/lRapKmftJ52YYnpC0vJ9seI8OYZegfhDFtTzAaAAAAAMTppptu0kc+8hFt3bp10PwDDzxQZ5xxhj760Y/quOOOU1PT4LHyH/zgBzrjjDMyHY72zW9+U1/+8pdVqfSNxb/tbW/TBz/4QZ1zzjk68cQT1draOmj9hQsXav78+Z72/a1vfUv/9m//1r/v3Q477DCdeeaZmjNnjmbMmNH/3+3xxx/XnDlzhqzvxeWXX665c+dqy5Yt/fMsy9K0adN0xhln6OMf/7g+8IEPaMKEwb8zfcstt+i0007L9GcEAAAAAAAAAAAAAEVXTrsBjca27SkJH2+tpPMty7pI0vGSDpC0t6Ttkl6X9Kxt28siOtbPJf3csqypko6StI+kPSStlrRC0mO2bfMTagD6BC1gDhvuIEmvXC8dcmH4/SBZpnOm5NSdiTAYzUshf3mEt30hOXbYor+EiwYJdcgmUzhCFPeisKyS4byh4LUwqn6C0VxysDc8KbUdEb49SFfg+1rI4nrHfpb8BfcBKKZ6IVLWrutHrMFoBFnlS8Y/L57JgMZWNQWjtTrPRzZNnSv95WvOy5Z2SEcalhWBMViNcSIAAAAAiMtzzz2n888/X9XqW2OfRx55pK6//nrNnDlz0Lrr1q3T/Pnz9f3vf79/3j333KPLL79cX/ta9p5XFy1apEceeUSSdNZZZ+nqq6/WtGnTBq2zadMmff7zn9eCBQv6533rW9/S+eefrylTphj3/fTTT+uLX/zioHknnniirrvuOk2fPn3Q/HXr1unyyy/XDTfcoIcffliLFy/29ffo6OjQVVdd1T9dKpV04YUX6pJLLtH+++8/aF3btnXXXXfpoosu0sqVKyVJ999/v+bPn6+rr77a13EBAAAAAAAAAAAAANEgGK1B7AokeyChYy2TFEnYGoACC1xwGjLcQZL+9M9S60Rp/78Pvy8kxxQQYzl0Z6IMLSp5KOQvNUd3PEQk40X3tSjCz6YsB6OZ7ocEhBSH3et93d7N5mVP/qO04qfSCbdLLW3h24V0BP1/21gc73V7Qz+I+xaAusFou64fcfabuBblS9b7qVlvH4B4VQzBaKVhybYD4Yw+RBp/nLT+D0OXLbtZOuIqb2O9cQr9Yw4mhj4X9zcAAADAkb1zp7RuVdrNaAwT9pVVLuZryp/5zGfU0/PW7wTPmjVL9957r0aMGPrjihMmTNANN9yggw46SJdeemn//GuuuUbnnHOODj/88ETa7NXGjRslSZdddpmuueYax3Xa2tr0ox/9SJs2bdJdd90lSapUKrrxxhsHhZHVuvDCC7Vz51vvgH34wx/WbbfdprLDeTJhwgR973vfU3t7uy677DKtX7/e899hxYoVOv/88/unhw0bpjvvvFOnnnqq4/qWZemss87SzJkzdfzxx+vVV1+VJH3jG9/QP/3TP2nq1Kmejw0AAAAAAAAAAAAAiEYx3zgAAGRf0ALmsOEOuy2/lWC0vLH9BKN5KHDzfC55KOQfdbDHfSExeSv6y1t7G4bpc8lAMJoxZCSuAlskzhQI6qTHJRhNktbcL/3qMOl9f5BGTgnVLKQkUN85gn6zUz9LMvfLADSOev3XMdP7/unl2SyuNiBbMv95Zb19AGJVNQRTNxGMljvt85yD0Tpfl9b8Xpp0SuJN8iZsqLUpQJ9xIgAAAMDRulWy57wt7VY0BOtnL0uTpqTdjMg98MADeuaZZ/qnR48erdtuu80xFG2gSy65RA899JB+9atfSZKq1aquvfZa3XTTTbG2N4hZs2bp6quvrrvef/zHf/QHo0nS73//e2Mw2lNPPaUnnniif3rSpEm66aabHEPRBrr00kv1u9/9Tvfdd5/H1vcFmnV2dvZPX3vttcZQtIEmTpyon/zkJ/q7v/s7SX1hb9dee62++93vej42AAAAAAAAAAAAACAaGajoBwA0pMAFsRHdulYtjGY/SI4pIKbkUGhvDAwatJK343oKWSNrNnPCFt0fnfQLjRQpZpIpiCjOgA/PTAWvBDoUhp/gqd46wWiS1LVaev5/BW8P0hUkiCyKQOGSKRgtYMgxgAKp0+c48NN9/4y130S/J18y/nlxbwMam58fZEC27T9HKhkC7ZYuSLQpzuIaAzQ9/zHmCAAAAABx6OjoGDR94YUXap999vG07X/+538Omr711lvV3d0dWdui8uUvf1mlUv33r6ZPn64pU6b0Tz/33HPGdW+99dZB0//8z/+sMWPGeGrP/PnzPa0nSdu3bx8UNtfe3q7Pfvaznrc/9thjdcIJJ/RP//KXv/S8LQAAAAAAAAAAAAAgOgSjAQDSEbTg9JALo20H8sMYUORQoJh0MBoF1BkUsuhv8unRNMMrwqyyyfS5ZCEYzXido+C1MEyBoE4qHl+UX/7jYG1B+gL1NSIIRjNd7/ycnwCKya3/evAF0sGf2zUR4/BzleewXMn6M0/W2wcgXqb+LcFo+dMyVtrvQ87LVi2Uet5Mtj2ehX1+IxgNAAAAAJL06KOPDpr+xCc+4Xnb6dOn66ijjuqf7urq0tNPPx1Z26IwfPhwzZ492/P6hx56aP+/79ixQ9u2bXNc7/HHHx80PWfOHM/HmDVrlufwuUcffVSdnZ3902effbankLeBTjrppP5/X7FihVauXOlrewAAAAAAAAAAAABAeASjAQDSESTcYfg+0vjjom8L8sH2U6DooYtjeQ1G87AvwkGyJ2xR+8j2aNrhGUWKmWQMZMzCY5ThGkagQ3GY7nuO6/K5F16QvnMU1ypTEISf8xNAMbldl9520Vv/HmugLPe/XMlCf+Wk+6Qpn3ReRuA50NhM/dsSwWi5NHWu8/xKp7Ty9mTbMkRMY4CmsW6bMUcAAAAAiNqmTZu0ZMmS/umxY8cOCgbzYubMmYOmn3rqqUjaFpUDDzxQLS0tntdva2sbNP3mm87B5H/+85/7/33s2LE66KCDfLXrmGOO8bRebXDdPvvso+XLl/v6U/v3X7p0qa+2AgAAAAAAAAAAAADC441+AEA6ghSczr6fYrRG5qdA0VMQiNdgNA+F/BRQZ1CIovsx06NrhldZCAnAUMZgtDgDPjwyXucoeC2Maq/3df2EVFUrUikD5zD8CdTX8NjXcd2F4Vyh7wPArf86sJ8SZ6As16J8SfuZZ2S7NOkUacWtzsvTbh+AdJl+9MAUFIxs2/sUafgkqfNvQ5ct65AO+ofk21SP1x/xMGKcCAAAAACSsm7dukHTBx98sCyfz3XTpk0bNL127drQ7YpSbdBZPc3NzYOme3uHfte9fft2dXV19U/vv//+vtvldZvXXntt0PTFF1+siy++2PfxBtq4cWOo7QEAAAAAAAAAAAAA/sVYmQYAgAu/BafNY6Qx0+qvh+LyU6CYeDCaj0AaJMMOUfQXZ3iDCUX42WT6XLIQjGa6hnEuFYefe4uvYLRu/21B+tIKRjOFEpv6ZQAaiFsw2oC+kmUpkuuRE/o9OZP257XrOc8Y+pl2+wCkys8PMiD7Sk3SlE86L1v3qLT11WTbM1CYMUs3pgJ87m8AAAAAELlNmzYNmh4zZozvfdRuk7XQrVIp+vdmNm/ePGh61KhRvvcxevRoT+tt2LDB977r2bp1a+T7BAAAAAAAAAAAAAC4441+AEA6fIc7xFRIjfwwnTOORc0RvqDnJSSLYLQMClP0l0Z2cExFkQjHeN3JQL60sQ2cS4XhJ3jKz7qVTqk8wn97kK4gwWhRXKucAmilgEFtAArFLWSj9vpjNcXzzETQR76k/XntDowx3R+5twGNzXSfMvWHkX3tc6UXv+68bNnN0hFfTbY9dYX9/sO0PeNEAAAAgKMJ+8r62ctpt6IxTNg37RZEzq4JvbZMYdU+RLGPrBs2bNig6Z6eHt/78LpNkH3XU/u5AwAAAAAAAAAAAADixxv9AIB0+C04bYAXwFCHqUCx5NCd8RIE4vWccgxeq0EBdfaEKbpPI/Qq7ZAAOPMVyJg0wzWMc6k4/ATI+Fm30uW/LUhfoL5GBP1n0/WOUFgArn2OpILReA7LldT7qbuD0Ux9+bTbByBVprBpgtHya8xh0p7HShufGrpsaYd0+JXZCL6PDMFoAAAAgB9WuSxNmpJ2M5BTe+6556DpN9980/c+ardpa2sL1SYnlUq2xtBr/46bNm3yvY+NGzd6Wm/8+PGDph9//HEdd9xxvo8HAAAAAAAAAAAAAEhXkd74BgDkie8CZoLRGp6fAkVPRW1ezykPxWOmtiE9eQtGo0gxm7IcjGY8TzmXCsNPgIyf+1Cl039bkL4gfY0o7mdOAbQSfR8A7v3t2utPbP1rgqzyJeXPqz8c3XA+ErQHNDY/P8iA/Gif6zx/x0pp7UPJtqWfYdwm7A/DmLa3GScCAAAAgKhNmDBh0PQrr7ziex8vv/zyoOmJEyc6rlcuDx6b2LnT+3d0QYLH4tTU1KTJkyf3Ty9dulQ7duzwtY9FixZ5Wm+vvfYaNB3kMwIAAAAAAAAAAAAApI9gNABAOvyGFoUtDEL+mQoUnYLRPHVxPJ5T1d7661BAnUFhiv5S6CKHCXJDfEyfSyrhebVMBa+cS4XhJ3jKT4hapct/W5C+QH2NCPrPpiBI+j4A3K4DQ4LRYgqVrXItypXU+6m77oumvnzq7QOQKj8/yID8OOBjUqnFednSBYk2JX6m5z+C0QAAAAAgam1tbTrwwAP7pzdv3qwXX3zR1z4ef/zxQdPHHnus43qjR48eNL1582bPx/jLX/7iq01JmDFjRv+/V6tVPfSQ9+DyjRs36s9//rOndWfOnDlo+r777vN8HAAAAAAAAAAAAABAdmShoh8A0Ih8hykQjNbwTOeMU5G9l9Air2F7noLRfATSIBlhitrTCL2iCD+b/Fx3kmYMdKDgtTC83H92617vfd1Kp/+2IH1BgsiiCBY2BUHQ9wEgt/5rQsForm1A5qT+zLM7GM0U+pl2+wCkytS/LRGMlmvDxkmTz3Be9todUu+2ZNsjxTduYxzPZJwIAAAAAOIwa9asQdM//vGPPW/74osv6umnn+6fbm1t1dFHH+247sSJEwdNL1682PNxfvOb33heNyknn3zyoOkf/vCHnrft6OhQT0+Pp3Xf+973qqnprbHgX/7yl1q7dq3nYwEAAAAAAAAAAAAAsoFgNABAOghGg19+ChQ9BVt5DUbz8FJdlXCQzMlbMBpFitmU5WA04zWMQIfC8BM89aaPX/uudPlvC9IXJBgtiiEfYzBakPYAKBS3/nZtXymu/jVBVjmT8ue1OzDUGDDMvQ1oaKbnL1N/GPnRPs95/s7tfeFomRH2+w/D9vSXAAAAACAW55133qDp6667TqtXr/a07Ze+9KVB0x/72Mc0bNgwx3WPOuqoQdN33323p2Pce++9evLJJz2tm6Rzzz1Xo0aN6p9euHCh7r333rrbvf766/rqV7/q+ThtbW0699xz+6e3bdumSy65xF9jAQAAAAAAAAAAAACpIxgNAJAOvwWnFsFoDc8UPuZUoBhl4b2XYDQKqDMoZ8FoFClmk+lzyUIwmjHQgZC9wvATjOZHpTOe/SJeQfoaUfSfTde7uM5PAPnhGoxW00+Jq+/Ec1i+pP7Ms+u8NN7b0m4fgFT5GXdEvkx6v9Q60XnZ0gWJNqVPTOM2xuc/xokAAAAAIA6zZ8/WkUce2T/95ptv6pxzzlFnp/t3sddee63uuuuu/mnLsvSv//qvxvWPO+44jRgxon964cKF+tOf/uR6jL/+9a+aO3duvb9CKkaNGqWLLrpo0Lw5c+bogQceMG6zfPlgP5p6AAAgAElEQVRynXLKKdq8ebOvY1155ZWDAuf++7//W1/4whdUqfj7bmHx4sV6+OGHfW0DAAAAAAAAAAAAAIgGwWgAgJT4LTiNIRiNotd8MQVwlJwKFD10cbyGhVR7669DOEj2hAqHSqOLTJFiJpnCNtIIzxvCdA3j3lYYpsL8sAhGy6dA/dYI+s+O/SzFd34CyJEsBKPR78mVtD+v3WMAxoBhgvaAhuZr3BG5UmqWpnzCednaB6Vty5NsjYuwz2+G7QnQBwAAAABHq1ev1vLlywP92e3GG29US0tL//SDDz6oE044QU888cSQ461fv14XXnihPv/5zw+af9lll+mII44wtnPUqFH66Ec/2j9dqVR0+umn67777huybk9Pj374wx9qxowZWrNmjdra2vz8J0nM/Pnzdfjhh/dPb9myRe9973s1Z84c/fznP9fzzz+vl156Sffdd58uvvhiTZ8+XS+++KJaW1t15plnej7O1KlT9YMf/GDQvK9//euaNWuW7r77bu3caf6+c/ny5br++us1e/ZsTZ8+Xb///e/9/0UBAAAAAAAAAAAAAKHxRj8AIB2+C05jCEar7pSaWuqvh2wwBXBYDt0ZT6FFXoPReuqvQwF1BoUouk8j9CrtkAA4MwajxRTu4Ycx0IGC18KIK3Sz0hXPfhGzAPeJKO5npusdfR8Abv3XIcFoMfWvuRblS+rPPLvHAAznY++bibUEQAb5GXdE/kydK730bedly26WDr88wcbENW5jGutmnAgAAAAAnJxzzjmBt7V3fSd/1FFH6brrrtPnPvc5Vat9459PP/20ZsyYoYMOOkjTp09Xa2urXnvtNT355JNDgrhOOeUUXXXVVXWPd9VVV2nhwoXavHmzJGnt2rV6//vfr4MOOkhHHHGEhg0bpjVr1uiJJ57Q9u3bJUl77723rrnmGs2dOzfw3zMuLS0t+vWvf63Zs2fr1VdfldT33/T222/X7bff7riNZVm6/vrrtXLlSt11112D5rs577zztHr1an3pS1/q/4z++Mc/6oMf/KBGjBihd77zndprr700fPhwbd26VevXr9fixYv7/1sDAAAAAAAAAAAAANLFG/0AgHRUfRYw13mRKRB7pySC0XKj2u083ymwI+lgNFPxJNITpug+jWC0MEFuiJHhc8lCMJrxGsa5VBjV3nj2W+mMZ7+IV6D7WgT9Z1MQRFzBfQDyw/W6VBuMFlffiX5PvqT9ee26L5rOxw1P9J3XqTwPAkidqX9b4mvUQmg7Qmo7Utr03NBlyzqkt8+P5/sHP8IeP+32AwAAAECD+sd//Ee1tbXpU5/6lLZt29Y//9VXX+0P/XLy6U9/WjfccIOam5vrHmPy5Mm64447dNZZZ2nr1q11jzF16lT9+te/1po1a3z+bZKz33776ZFHHtEFF1yghQsXuq47btw4dXR06PTTT9cXvvCFQctGjRpV91iXXXaZjjjiCH3qU5/S6tWr++fv2LFDjz32mKf2trW1eVoPAAAAAAAAAAAAABAtqnwAAOmwfQajRRHsMKQNBDrkxpuLzcucChS9FN57LRbzEkzDuZRBdohtU+gi22Hai9gY71UZeIwyBTZwLhVHXPeWSlc8+0W8ggSjRVEYbwqC8N2XB1A4bteB2n5KXMFoYcKQkby0P6/d90W34LP1TyTTFgDZY3r+MgUFI3+mznOev22ptO7R5NoR27iNy/2NsSIAAAAAiNXZZ5+tJUuW6KKLLtL48eON6zU3N+t973ufHnvsMd14442eQtF2mz17tp588kmdeeaZsgzfAU6YMEGXXnqpnnvuOR166KG+/x5J23vvvfWLX/yiPyDtsMMO09ixY9Xa2qr29nadfPLJ+v73v68lS5bo9NNPlyRt3rx50D7GjBnj6Vinnnqqli1bpuuvv15HHnmk8b/hbs3NzZo5c6auvPJKvfLKK7rooouC/SUBAAAAAAAAAAAAAKHwRj8AICV+C2JjCEarEmaVG0s7zMscCxS9hBZ5PKf2/aD0yn+5r0M4SPaEKbp3K5SPDaEOmVQ1/L8dV7iHL6ZrGOdSYcTVT6l0xrNfxCxIIXsE9zPT9W7zIun5K6XJ/0Mad0z44wDIH7f+9pD+dEz9a57D8iX1YLSmwf908tK3pQm3J9MeANliev4iGK04pnxcevYS5xC8ZR3SxBOSb9MgIb//cCvotqsZGcsCAAAAgPQsX7481v1PnDhR3/nOd/Ttb39bTz/9tF566SWtW7dO3d3dGj9+vPbdd1/NmjVLo0aNCnyMadOm6c4779T69ev10EMPadWqVdqxY4f22msvTZ06VSeccILK5bfGMk488UTZPsKy/axba8GCBVqwYEGgbWfNmqVZs2Z5Wnfx4rd+WNOyLE2cONHzcVpbW3XBBRfoggsu0MaNG/XHP/5Rf/vb37Rx40b19vZq5MiRmjhxog455BBNmzZNI0aM8P13AQAAAAAAAAAAAABEizf6AQDp8FvAXOeXGoO1gWC03Hjx6+ZlTgWKUQZbTXyP1NIm9Wwyr8O5lD1pB6Mde4P01Oe8rx/iBVPEyXAelTJQTGo6TzmXiiOue0ulK579Il5B7mtR9J/dgiBe+Ir0wleld90oHfip8McCkDNuwWhN7tNRSTtoCz6l/Hk1tfb90+15b+vLybQFQPaYnr9KfI1aGK0TpMmnS6vuGrpsxc+ko78rlfNc8Oz2/MdYEQAAAAAkpVQq6dhjj9Wxxx4b2zHGjx+vj3zkI7HtP6u2b9+uZ555pn/6kEMOCRw0t+eee+q0006LqmkAAAAAAAAAAAAAgJhEmBoCAIAPfoPRXAt7AqoSZlUITkX2noKtPJ5TpWbp3XdJ5ZHmdewqYURZEyokIYIu8n4fkvaYMnhe82iXDQh1yCTjvSoLj1GmaxjnUmHE1U+pdMazX8Qr0H0timC0emFGtvTMxVKlJ/yxAOSL63Wppq8UV6is73EFpCrtILuSh2C0OMaeAOSD6fnLLSgY+TN1rvP8nVul1xYm1AjTGHLYexDBaAAAAACAYuvo6NCOHTv6p4877rgUWwMAAAAAAAAAAAAASEIWKvoBAI3IbwGzp6Arv23ojX6fSF7JoUDRy/li+Sg2m3iC9OHV0vR/N69DUX7GhCj4i+J60zpROvkh6aDPSXseLR34j9LJD5vXTzskAM5M/1/XDQpKgOk8JaSxOOLqp1S64tkvYhbgPhHF/cypn1Wrd4u0+v+GPxaAfHHrvw65/sQ0BE0fOl/S/ryadgWjuQbHEIwGNCzbEIzmpT+M/NjndGnYOOdlyxYk2pTIuY11M1YEAAAAAMi5VatWaf78+YPmnXfeeSm1BgAAAAAAAAAAAACQFILRAADp8F0QG0NxatVQ8IZ8sZwKFL10cXyeU+U9pH3+h3k5wWjZEqboPqogxj32l/7ue9Kpf5Le9QNp1MHmdSlQzCbTeZSJYDTTNYyAkMKIq59S6Yxnv4hXoPtaBP1nx36Wg82Lwh8LQM64BaPVXH9i6zvR78mVrASjVbrTbQeAbDIFo3ntDyMfmlqkAz7uvGz1/dL21xJoRFxjgG7Pf4w7AgAAAACy5Y477tC///u/a926dXXXffbZZ/Xud79bGzdu7J/3jne8QyeddFKcTQQAAAAAAAAAAAAAZABv9AMAkpdWsEMtU8Eb8qXk0J3xFGwV4JxyK+i3d0oa5n+fiEkGgtGG7thlGaEOmWQKPIztHPHD0AZC9oojrn5KpSue/SJeqQWjeQwzcuqPASg2Y4CsQx8lrmA0wqlzJivBaITEAnBgCqamn1s87fOkV/7LYYEtLb9Fmv6lpFvUxxiA73V7t7EqxooAAAAAANmydetWXX311frmN7+pU089Ve9973v1jne8QxMnTlS5XNbGjRu1aNEi/epXv9Ldd98te8B7EC0tLero6Eix9QAAAAAAAAAAAACApPBGPwAgeUGKl8MWBjkxFbwhX6yAwWhBzim3YkjOp2wJFCCzW0yhV27nJWFW2WQMRosp3MMP0zUs1LmPTIktGI0wkHwK8P92FCGOXoMgnPpjAIrN+FzvFIwWU/+afk++pP15eQlGi2PsCUD22bb5+Yt+bvG0vVMa83bpzReGLlu6QDrsi/HeD2IbA3Rpc9r3YAAAAAAADHp7e3X33Xfr7rvv9rT+8OHDdfPNN+sd73hHzC0DAAAAAAAAAAAAAGRBTFVpAAC4CBKM5lbYE1RcgSNIlmNAUVzBVi7FkIHOa8QnRJFhXMENrvulQDGTshyMZrzOEbJXGHEFbla64tkv4hWoeD6C/rPX6x2BEUDjMQVsOF034uo7EfKRL2l/XiUPwWhxjD0ByD636xP93OKxLKl9nvOyra9IG55ItDlvCXsPctuesSIAAAAAQLaMHTtWTU3+vjs4/vjj9fDDD+vss8+OqVUAAAAAAAAAAAAAgKzhjX4AQPICFcMSjAaDkkN3xlOwVYBzyq2gn/MpW8IU3ccVjOZ2zqUdEgBnfgI/kmYZzifOpeKo9sazX9cwEGRXgP+3o7ifeQ2CMF2TABSXsZ/kcO2JLRiNcOp8Sbmf2rQrGG3nDpeVuJ8BDcltTM9p3BH5N+Vc6bkvOPclli6Qxs+I8eAxhZS5PZMFCtoGAAAAACA+Z511ltasWaN77rlHjz32mBYtWqQVK1Zo48aN6urq0vDhw7XnnnvqgAMO0AknnKDTTjtNxx9/fNrNBgAAAAAAAAAAAAAkjDf6AQDJC1K8HEfYQpUgq0JwCuyIKxjNrRiSovxsCRUOFVMwmut5SYFiJpn+v44tPM8PUxs4lwojrsDNSlc8+0W80goW9hpmVOkOfywAOeMnGC2mvhOBsPmS9ue1Oxit4hKMZscUTAsg29yevbwGBSNfhu8tTTpVeuPXQ5et+Kl09Hfeum8kJuzzm9v2jBUBAAAAALJn3LhxOvfcc3Xuueem3RQAAAAAAAAAAAAAQEZloaIfANBoAgVIxRCMFlfgCJIVNBgtSNieWzgIQXsZE6LgL7bQK5dzLu2QADgzBqN5DAqKk+kaxrlUHLEFo3XGs1/EK8j/21EEC3sNguC8AhqP8brkFIwWU9+JcOp8Sbuf2h+M5nLP2rk9mbYAyBa3MT23H0lAvrXPdZ7f+6a06q4YDxxTSJnr8x/BaAAAAAAAAAAAAAAAAAAAAADyh2A0AEDyghQvRxHsUIsgq4JwKq720sUJEozmUgxp9/rfH+ITpug+rmA0ChTzx3QeZSEYzXid41wqBLsaX3hIpSue/SJegYLRIrifeQ2CIBgNaDzGfhLBaDDJSDBa03DzOgSjAY3JLZTaa1Aw8mfyGVLzWOdlSzuSbYsUwfcfLs9/aYeTAgAAAAAAAAAAAAAAAAAAAEAABKMBAJIXqBAnhmA0t6I35IdTUbOnIJAA51R5hHlZ7xb/+0N8QgWjxRh6ZTo3KVDMJlPYRlzheX6YCmY5l4ohzqAXAqxyKqX+s9d7IucV0Hj89JPi6jv1bIxnv4hH2v3U0q5gtGn/al6nSuA50JDcfjyDYLTiamqVppzjvGz1vdKON5JtT1j8IAMAAAAAAAAAAAAAAAAAAACAgslART8AoOEECvuIIRjNregN2dI82rysZezQeV4K712LxUzHGifjudi11v/+EKMwwWhxdpEJs8oVY+BHjOF5npnOU4pdCyHOUI5KV3z7RnzSChZ26mc5IRgNaECG65JjMFpMfaeu1fHsF/FI+5mnaVcw2rgZ5nXSbiOAdLj9eEaJYLRCmzrXeb5dlZb/OJ5j2qZxm7DPby7bG48J/D/27jxejqrO//+7+y5JLiEJkIUlkIWwRnYYFtkRdBgEv1+ZEXAUZpRBdBzUUb8wuMCMgqM/BxzRr8go4AiI4yiRr05QJICIgIQlskbMiiRkD1lu7tb1++Nyk7vUOV3bqTrV/Xo+Hnk86KquqqN1uuqc6vt5NwAAAAAAAAAAAAAAAAAAAOAvgtEAAPlLEoyWJMSqbjscho4gW6bi5AM+Hr7cVeF9tUUaNTF8HcFofklV8OdwiGwMXaNA0U+mwA8PgtFM90XCHBqDrTA/LQKsSirBfSKLoM/xs6O9j8A9oPmYxhxh4yRXY6fOFW72CzeKHqcOBKO1tEtH/bvhTczLgKZkm39VCEZraLv9mTTuwPB1i28rWaCY7fuTMv3vAAAAAAAAAAAAAAAAAAAAAIB+BKMBAPKXJBjNWtiTUM1h6AiyVTOE2O3+NsMGUYY4CfvU6MnhywlG80yKovssgmTMOw9fXHRIAMLVDPcrp30kKkL2GlYQSEvudLd/gtHKKdF9IoPxc7VNat+1/vvoV+Xy2n3SEx+S5n9MWv1o/fe/Okd67APS/I9La55w3z6Ug/G6FDZGcTR26l4v9XW52Tcc8CQYTZJ2mh7+HuZlQHOyPSOuEozW0CoVacbF4es2viCtm+/goKbnNinnb7YflilVwBsAAAAAAAAAAAAAAAAAAAAA9POhoh8A0GyKCnYYLiAYrTRM56raFr48SmiRrVjMxhSM1kUwmlfSFLS7DL0y7psCRS+ZgjwrLfm2I7QNhOw1rGf/Sfrd5e7237fN3b7hTpLPdtKxznB7vL3+ewhGK4+F35QefIf0ys3Sy1+T7j9FWn6P+f0v/Kv08LukRd+VXr5R+sWx0qv35tde+Mt0XQob77ocO21b6W7fyFbR49TBwWjGeyRjaaAp2Z4RVwhGa3gz3md+Xrf49nzbkopt/sdzRwAAAAAAAAAAAAAAAAAAAADlQzAaACB/pqAZm6yCHQar9WS/T2QvCMx9Jk0wWtKwvVGTwpdvIxjNL2kK/lwOkQ37LjokAAamwA8fgtEI2WtIXWulF7/s9hi1bqmWYCyGgiW5T2R0P6u2139PL8FopVDrlRZ8ZuiyoFf6/efC39+3Tfr9tSOXP3yutPHF7NuHkokRjFZ1GYy22t2+ka2i5zzVUYNfhL+n6DYCKIbtGbEP83+41bGXNOVt4euW3Cn1dWV8QEfPbWzPw7m/AQAAAAAAAAAAAAAAAAAAACghgtEAAPlLEoyWNMTKhmC0crAWJ7YalrsMRpsYvrx7fbL9wY00BX+R+k/SfRv6HQWKfjLdr7wojKYvNaTF38/nHNa2uT8GspWkX2QVLNwyqv576FPlsOrh8DHrht9LnStHLv/TvVKfIfTu0Yv6A4zRvIzXpZCxtGnelgXm9SVSdDDaoKBP05yPsTTQnGqW4KuW0fm1A8WZeUn48u510ms/y6cNqedvtu0ZtwMAAAAAAAAAAAAAAAAAAAAoH4LRAAD5S1RoGlLY85bPpmsHAQ7lEPSa11XbTCvq7zdpsVnVEA5Ss7QT+fM1GM3YNylQ9JIxyNODaZSxn9KXSm3jc/kch3tW+WQ1fk5icJCMSa8hPAt+6fyTeV3PGyOXbVlmfv/6Z6TVv0nfJpSXMUA252C0osO2EF3RoWPVQf2QsTSAwfosz4gJRmsOU98ltY0LX7fotmyP5SxcmGA0AAAAAAAAAAAAAAAAAAAAAI3Fg4p+AEDzSVAMGxZiNe0iqW18+Punv6/+Pm1Fb/BHrce8zhSMVmlx0xZpaDH1YLYAN+QvVdG9wyGyKZCv6JAAhDOdF5fXmMjoS0iBe1b5JPlsZxX0GSUYrY9gtFKwhVOFhVzVu9+9/LV07UG5GcdJIdce0xwqk3aYgmzhnaLHqZUIwWhFtxFAMUzPiCtVx+Ge8EbrGGmf94Sve+3nUufrOTQiZbC17UdAnIWxAQAAAAAAAAAAAAAAAAAAAIA7BKMBAPKXqNA0pLBn/IHS6fdLU9+1Y1nrTtLsz0jHfbf+LglGKwdbeIupODFSEEjCYjNTGBshM55JUfCXVZBMKNO+KVD0kiloo+pBMJqxn9KXyi1lIXRUNe5Z5ZPks51RfyIYrXHYgs5Cg9HqBIFsfiVde1ByMQJkXYbKEIxWIgWHjg0J6DONpQlGA5qS6RlxdbQ9bAqNZebF4cuDPmnpnRkeyNVzG1tf5VkRAAAAAAAAAAAAAAAAAAAAgPLhp84BAPnLKhhNknY7Wjr5J8naQTBaOdR6zOtMIWW20Icdb0rUHGNRPyEzfkl0nXmTy2A0077TtBfuGIM2fMiXNlzD6EuIgjDP8kny2c7qflYdVf89BKOVg22MXOsaucw01h4QELDQ1EzXpbBrT9VlMBpjn9Io+lwNnsubgo6KbiOAYpieEbeMzrcdKNbEE6Sxs8LDfxfdLh34cccNSBvCRzAaAAAAAAAAAAAAAAAAAAAAgMbiQ0U/AKDpJAl2SFsYFNaMkOJ/+McWjGYKKYsSjJa0T5mOSciMZ3wNRjP1OwrwvWQKRosUvuiYsZ9S7FpqLsY7YbhnlVCGwcJxtbTXfw+Bw+Vgu3+FncN6YVY+3A9RHGOAVMgYxTSHyqQdpiBbeKfo0LEh/dAy5yP0EWg+BKNB6p+Pz7w4fN2GZ6X1z2R0IEf3GdvzzKLvwQAAAAAAAAAAAAAAAAAAAACQAMFoAID8JSpcdhAUQoBDOdjCW6pt4csjhTQk7FOmgIgaITNeSVXw53KIbNg3xfd+MvUjL4JgDNcwil0RBfes8kn02c5o/FyNEozWmc2x4JYtfDFsblQvzMplmCz8ZxwnEYwGg6LHqYPn8oTHABisRjAa3jTjfeZ1i253e+y0QenW7XnuCAAAAAAAAAAAAAAAAAAAAKB8qGAEAOSvyGCHwQhGK4daj3mdMRgtyhAnYZ8yFfXbAtxQgBQFfy5DPkxFihTf+8kUtOFDEIyxDRS7IgLbvRV+SnKfyOpaFTUYjZBP/9lCEZMEo7mYo6E84oyTTOHSmbSDcXR5FHyuKhGD0RhPA83H9IyYYLTms9M0acrp4euW3OH5XNoyNmeuBgAAAAAAAAAAAAAAAAAAAKCEPKjoBwA0nUTBDgSjNS1bwZkprKHS4qYtkrmon2A0v6QJSHAaekWYVakYAz8cXmMiI2QPKXDPKqECx8/VUdHeV+vK5nhwxzauDpsb1Q2z4p7T3EznP2S8WzdkLwXTeA3+KXqcOuSaZpnzFd1OAPkzPSOuEozWlGZcHL68a7X02v+k378xpCzt/M22Pc8dAQAAAAAAAAAAAAAAAAAAAJQPwWgAgPwlKjIlGK1p2cJbqm3hy6OEFiUNCzEV9dcImfFKqmJ2h0NkU+gaxfd+Mp0XH4LRjAF+FLuWm4PxThiC0cqnyPFztT3a+/o6szke3AliBqPVC4u1Ba2h8cUZJ9UN2UvTDoLRSqPoOc/gubz1eQBzM6DpmJ4RtxCM1pT2ebfUOjZ83eLb821LHNZ7G8+KAAAAAAAAAAAAAAAAAAAAAJSPw6o0AABMPAlGqxGMVgq2wIU0wWhJ+5SpqN8WNIECpCj4qxcCkoqp31F87yVT0IYPwWimvlR04ATiqfVJ6+ZL65+Wxh0g9W7O6bgEo5VPgvtaVvezyMFojK29Z/vsh82N6t1TCFlsbsZxUsi1xxQunUk7GPuUh0fBaLYwbPoU0HwIRsNgrTtJ+5wvLbpt5Lo/3St1rZVG7ZbiAK5CyizPugOC0RrS8nukZXdLLR3StPdIe5xVdIsAAAAAAAAAAAAAAAAAAACATBGMBgDIX5Ii04qDYDTCG8rBFoxmKrCPFASSsE+ZjknIjF/SFLO7DEYz7ZsCRf8EgYzFqk7D8yKiL5Vf7xbp1+dLK+bmf2zCjMon0X0to/FzS9RgtM5sjgd3bEG+YXMjU/DVAMa/zW3TK+HLQ4PRHIbK1uun8EfRgWODQ85t4/mi2wkgf6YfzyAYrXnNuCQ8GK3WIy25Szrg7x0cNOX8jXtbc3npa9JTH9vxetGt0nHflWZeUliTAAAAAAAAAAAAAAAAAAAAgKx5UNEPAGg6RQY7DNbXlf0+kT1beEu1LXx5lML7pGF7pmA0Qmb8kqrgz+UQ2dTvKFD0jq0PuQz3iIy+VHoLbyomFE0izKiMihw/VyMGo/USjOY9W+BwWLBd3WA0y/7Q+Fb/Onx5+64jlxGMBqn4UJZKxGA0UzgygMZl+vEMgtGa1+STpJ2mh69bfFu6fTsLtLfN/7i3NZRan/TctcMWBtLv/7n48RYAAAAAAAAAAAAAAAAAAACQIYLRAAAFSFCckTTEytoMQ9Eb/FLrNq8zFdhbi5zfNO7AZO2pGoLRCJnxTIoisCj9J+t9OyuKRGK2kA0fgtHoS+W39AfFHZswz/JJUtyc2f0s4jg8LFgLfrEGo4XMjer1O64lzatns/TGS+HrJp80chnBaJCKD+qoRgxGK7qdAPJnCkarjsq3HfBHpSrNuDh83br50obnHBwz7fcfBKM1jY2/l7rXj1y+ZbG08cX82wMAAAAgV8uWLdNnPvMZnXTSSZoyZYra29tVqVS2/7vtttuKbiIAAAAAAAAAAAAAAJkhGA0AkL9ERaYOgtFMRW/wS19X+PKW0ckLxqZdKLVPSLZtxRCMFlaMhOKkCYcqIhgtTZAb3LAGo/kwjTJd/+hLpbH+meKOTZhRCRU4fo46dicYzX+xg9HqBE5xLWlem18xr5v6rpHLXI6dCLEqkYLP1ZC5vO0eSZ8Cmo7pGXHL6HzbAb/MfL953eLbU+zYUUiZ7Tk5IfqNpWezed3mRfm1AwAAACiZ6dOnDwkQe/DBB4tuUmy33HKL9t9/f33xi1/UI488olWrVqmnx/LdDwAAAAAAAAAAAAAAJedDRT8AoNkkKVx2UUhNMFo51AznqToq+T6Puy35ttW28OV9W6Wudcn3i4ylKGZ3GnplKFIk0MFDlnNSacmvGcY2GPopxa7lYCtizcO2VcUeH/ElGj9nFSwc8brC2Np/QcbBaLagNTS2TX8IX15tl3Y+YORyp8Fodfop/FH0nGdwMJqtTxbdTgD5IxgNYcbOlCafHL5u8felWtYhwWnnb7bteVbUUFo7zOs6X5O2/kl68grplydKT35U2rIsv7YBAAAAcObnP/+5LrvsMnV1GX5ccpgHH3XGYEIAACAASURBVHxwSBDcNddc47aBAAAAAAAAAAAAAAA4QDAaACB/iYpMswp2GITwhnLoM/xRX5rixJb25NsOLqYe7g/fTL5fZCtVMbuD6832XZuG3xQoescWsuFDMJqxnxLkUApblro/xr4flFp3Cl/36HvdHx/ZSnRfy+qRT9RgtM6MjgdnbEFmocFodfpd5mEQKI1NfwxfPnamVA0ZJ7kcOxGMVh5FB44NmYsRjAZgENMz4irBaE1vxsXhy7etlFb8IuFOXT0DJBitadjGvxt+L91/irTw36XVv5EW3iTdf7LUuTK/9gEAAABw4qqrrlIw6EfSLrroIv3qV7/SwoULtXjx4u3/zj///AJbCQAAAAAAAAAAAABAtghGAwDkL1HhcoLinWP+r309wWjlYDpPaYLR0qhagtEWfDa/dsAuTTG709ArQ5Eixff+sQajeTCNMrUhoNi1FPIIRmsZI9W6zeu7N7pvAzKU4LNdySjoM+p1hWA0/9mC0WphwWh15m0BwWhNq3dz+PIxexo2cDl2YhxdHkUHow26L1rH84yngaYTNg6Sinv2CH/s85dSS0f4usW3Z3ustPM3272N546NxRZQ/YdvSJuHhRhvWSot+6HbNgEAAABw6uWXX9aCBQu2vz777LN1xx136PTTT9d+++2n6dOnb/83duzYAlsKAAAAAAAAAAAAAEC2PKjoBwA0nwSFOOufib/NXu+U2saZ1weWYAD4w1ScWB2VbzsGVCzBaPBHogDGN7kMvTLum+J779iKRp2G50VlKpil2LUUet5Itt2U06K/t2WMPQRp7ePJ2oBiJCpkzygYbcKh0d7X15XN8eCOLcgsLIy43njKdo1BYzP1pWpb+HLb2Gm3P0vZlhTjfuTLp1AWwmMADObbjzLAH207S3v/7/B1r94jda/Ptz1Wtvkfzx0bSpKA6vlXZN8OAAAAALl58sknh7w+//zzC2oJAAAAAAAAAAAAAAD5IhgNAJC/JEWmvVvib9Oxl3T6/eb1tQQFJMifKWSjqOLEKsFopZAqGM1h6JWpAJ/ie//Y+pAPwWjGvkSxayn0dSbbbqqhIDtMS50AUYI+SybBfSKrczxuP2ncQfXfVyMYzXu2ILMkwWhJCvLRGExzadN1xxZCdfRN0pE3SlNOl8bOTNAWgtFKw6s5jyU8xqt2AsgFwWiwmXlx+PJat7T07vj7Mz63SRlsXbHd23hW1FAIBgYAAACazuuvvz7k9dSpUwtqCQAAAAAAAAAAAAAA+SIYDQCQv0RFpgkLg3Y7Rjr5HkM7KOQvBVNxYrVO4IsrBMmUg6/BaKZrGcX3/rH2IR+mUab7In2pFGqGe5vNmb+Rdt43+vsrbfb1BH2WS5L7RJbn+IQ7pPZd7e8xjdngD2swWkhgY71+F/QRstCsTHNp03XHFoxWaZEOvEI641fSyT9N0BjGPuXh0bmy9Umf2gkgHwSjwWbyaVLH3uHrFt2Wa1PsbN+fMGZvKHyvBQAAADSdzZs3D3nd1lbne2AAAAAAAAAAAAAAABoEldAAgAIkKDKtJAxGk8xBVjUKSErBt+JEgtHKIU3QmLVIPiXjvilQ9I4tGM1peF5Epr5EQE05xA2QOuEOadIJ0opfRN+mWucP4rmflUuS+1qW53jXI6RzF0mrHpQeflf4e2pd2R0PbliD0UKuS1GCZoM+rifNyDSXNvUF29hp8JgmyTg8TSAy8uVTGLStr/nUTgD58O3ZI/xSbZFmvE96/rqR69Y+Lr3xsjTugBg7dPTcxvr9Cc+KGgrfawEAAABeC4JATz31lF566SWtWrVKXV1dmjRpkvbaay+deOKJGjt2bOx91mo8swQAAAAAAAAAAAAANCcqFwEA+UtSZJqm2NlUnB1QQFIKppCNoooTqwyfSiHVNcNl6JWhSJHie//YzknVg2A0U19KEj6K/MUNRhsYy8QJjKl3v3IZAonsJblPZD1maR8vTT1Pmni8tOa3I9f3EYzmvcBBMFqth/FxMzLNpY3BaLZ7zqAxDcFojc2rOQ/BaAAGqRnmZ1WC0fCmGReHB6NJ0qLbpcMN62JJ8cMwkuz3NoLRGgrfawEAAABeWrNmja677jp9//vf1+rVq0Pf097ertNPP13XXHONjj32WOO+lixZohkzZhjXn3baaaHLb731Vv3N3/xN6Lprr71W1157rXGf8+bN06mnnmpcDwAAAAAAAAAAAABAEaiEBgDkL1EwWorCVFOhPgUk5WAKj6mOyrcdA0zF/vCLr8FoprAHiu/9Y+tDTsPzIjL2JYpdS6GvM977B8YycfpevftVjXFQuSS4T7gas5jGYHED/5C/WsxgtCj9jjlVczKdd2NInuUR9JAxTZJgNMbRpeHTubKG8DGeBpqOaRxb1I8ywD/j9u8PiA6z+HtSLc5zSEf3mYotWM2jezDSIxgYAAAA8M4999yjmTNn6oYbbjCGoklSd3e35s6dq+OOO06XXXaZenv5jgUAAAAAAAAAAAAAABuSPQAA+cu7GNYUChHU+v9ZC2JRuFpX+PKiihONxf5vCoI6hWjIRaoCMZfXBNO+Kb73jrUPeXDfMF1nfAqcgFncAKntY5kYfa9eKBZhRuWSJPSw3pglKdMYzDRmgz9swWi1kOtSlIAHriXNyRSuabr3WIM9B93bkszNCYYoEZ/GqZY5O+NpoPn0efbsEX6aeYm05rcjl3f+SXr9AWmPM9PtP/XzZNu9jeeODYWgewAAgGzUeqWtrxbdiubQMdXdd1Ye+O53v6tLL71UtdrQ54r77ruvDj74YHV0dGjZsmV64okn1Ne343n2t7/9bS1btkz33nuvWlsb9/8fAAAAAAAAAAAAAADS4Bt1AEABci4ytf2BXdBHMJrvTOExRRUnRgmaqbTl0xaYpQlIsAY3pESYVXnYzonLPhIZIXulljQYLU7fq9a5FxFmVDIJ7hP1xixJtYwKX24KlIA/bMFoYdelKOMp2z7RuEz3ENPc2zbnHjw+Jhitsfk057H1NZ/aCSAfYQGxEsFoGGqfv5Ke/IfwQOhFt0UPRnMWUmYLVuNZUUPheQ4AAEA2tr4q/XRG0a1oDuculsZOL7oVTjzzzDO6/PLLh4SiHX744frGN76hE044Ych7V69erc9+9rO6+eabty+bO3euPve5z+m6664b8t6pU6dq8eLF21/feOON+trXvrb99V133aXjjjtuRHsmTpyoU089VZL02GOP6cILL9y+7oorrtDHPvYx4/+W3Xffvc7/WgAAAAAAAAAAAAAA8kcwGgAgf3kXmdpCIWq99YNDUCxjMJohlMO1eiEjfdvoU15IcZ1xGnpFmFVp2EI2fAhGI2Sv3Po6471/IGgmTmBMvV9er1FIWypJPtuuxiNVwxgsLCAAfrEV0IeOuSP0O64lzcl03k1zJevYadC9LVEwGmOf0vDpXFn7mkftBOBerc8c9EowGgZrnyDt/b+kpT8Yue7Vn0jdG6X28SkOYAs2i7K5ZXtnYWwoBMHAAAAAgDc+8IEPqLu7e/vrE088Uffdd586OjpGvHfSpEn61re+pVmzZulTn/rU9uX/+q//qgsvvFCHHHLI9mWtra2aPn369tcTJkwYsq/dd999yPrBxo4dK0lasmTJkOUTJkwwbgMAAAAAAAAAAAAAgK8SVJsBAJBS3sWwtmAQWzgA/GAK2agWVJxYL2TEFOSGfNVSFIglCWSIvG/CrErDGozmwzSKkL1Si3uvqBfKmWQbxkDlkuQ+kaTfRGEKRmMM5D9T6IcUfv6iFNxzLWlOpvNuDEaLOnZKEoxGMER5+DTnsfQ15mYok84V0jP/JN13vDT3z6SXv04AUly2cN+inj3CXzMuDl/e1ykt+6+IO3H1GbUFq3FdaCiEUwMAAABemDdvnp566qntr8eNG6e77747NBRtsE9+8pM655xztr+u1Wq64YYbnLUTAAAAAAAAAAAAAIAy86GiHwDQbPIuXLaFQlDI7z9TyEaLIZTDNVvQnkQoiC/SXGcqLdm1YwTT8Jvie+/YAhGc9pGICNkrt7j3ioFQzjjb1QvFopC2ZDwKRmsxBETYQiXgB2swWufIZVHGU7Z9onGZ5tHGuZLtEfSg61uS8FmC0crDp3Gqta8RHoMS2LxYeuJyac4M6YXrpbWPSet+J83/B+n5LxbdunKxzbFM4140r93PlMbsGb5u8e0pd24LNouyOfe2psF3WgAAAIAXbr996DzwIx/5iPbc0zBnHOZLX/rSkNd33XWXurr4ng0AAAAAAAAAAAAAgOEIRgMAFCDnYlhbKASF/P4zBqMVVJxYL2SEYDQ/+BqMZipSDChQ9I6tD/kQjGacytGXSiHuvWLg3hMWXGQyEKZmQiFtuSQJk6kX5pqUKZy2j4IN7wW2YLRtI8cjUcZTXEuakylc0zRXqlrGTkHaYDSPwrZg59W5soTPeNVOYJiNL0iPvl+6dz/plW+FB9Mu/DrPGOIgGA1xVFuk6X8dvm71I9KmV/JtzxDc25pG0ufe9AMAAAAgU4888siQ13/914b5YojZs2fryCOP3P5627Ztmj9/fmZtAwAAAAAAAAAAAACgURCMBgDIX94FGLZQCFNBN/wRVuQpSVVDKIdr9YLRagSj+SHFdcZpMJqhSJHCNP9Yg9E8mEbRl8otTsCZtGMsEysYrd79ijFQqST5bNcbsyRlGoMRDus/ayh0MHJ9lH7HtaQ5mQLxjPcey9hpyJgrSTBaikBk5MyjcaptPM94Gj5aN1/69buln71FWvKf9mvftlXStpX5ta3sbM/xCEZDmJkXm9ct/l6EHRiCC03PeSKzbU9YYkNJGk5NmDkAAACQmfXr1+uPf/zj9tcTJkzQQQcdFGsfJ5xwwpDXv/vd7zJpGwAAAAAAAAAAAAAAjcRRlSwAABZ5F5naQiGSFpEgP6YAh2p7vu3Yftw6wydCQfyQJiDBaeiVad8UKHrHdq9yGZ4XGX2p1OKGaA6MZcbF+IP6eqFYjIFKJsFnu96YJSlTQIQpzBb+sAajqf/a1DJojB1lPBXU2ScakykQz3TvsY2dBo+5kozDCUYrD58Cx6x9zaN2Aqselp6/TlpxX7ztfPq8+c72HI9gNIQZf7C06zHSupCC9UW3S4dcU0ygvi1YLeBZUUNJGk5d2yZpTKZNAQAAKLWOqdK5i4tuRXPomFp0CzK3evXqIa/3228/VWIGXh944IFDXq9atSp1uwAAAAAAAAAAAAAAaDQEowEACpBzcZ4tFIJQEP+ZCt2LCiaqFzRDMJofUgWjOexbpj+GpWjZP7Y+5EMwGn2p3OLeKwbGMuMPlnaaJm1ZGmGbNvt6xkDlkuSzXanTB5KqjgpfTjCa/+oFo/Vtk9rG7XgdZTyVtCgf5Wa6hxiD0SzhIIP7WaJgNMY+peHTubL2SY/aieYUBNKKuf2BaKsfSbgP+nFkq35tXkcwGkxmXhwejLZ1mbTqIWnKaeZtnYWU2QrwCUZrKL2bEm7XKbXvkm1bAAAAyqzaKo2dXnQrUFLr168f8nr8+PGx9zF8m3Xr1qVqEwAAAAAAAAAAAAAAjaiAn6wGADS9vIvzbEFWFPL7z7tgtDrHJRjNDzVPg9GMw2+Klr3jezCasS9R7FoKfZ3x3j8wlqlUpONuj7eNCWOgckkyfraFA6fRYghG6yMYzXtBhGC0Ie+P0O8IWWxOpvNuuu5EDaFKFIyWYtyPfHkV1EQwGjxU65OW/Uiae5T04NnJQ9H6d5ZZsxreyzea11UJRoPBtAukanv4ukUR5+wj2ILN0m7Ps6KG8uzVybar8b0FAAAAkJVgWOh1xfSjZjFksQ8AAAAAAAAAAAAAABoNwWgAgPz5FIxGIb//TMEtrsI+6qm22dcTjOaHNAEJSQIZ0u47oEDRP5Z7lcs+EpXpD6MJciiHuPeKwfeeKaf0F2HX3abOfZIxUMkk+GzXC8dLqmoKRmMM5L1a3GC0COOpevtEYzLN0UzXnV0ON+9r530HvSAYrbF5NE61FhkyN0POaj39QUo/f4v0yF9K659Ov0/mhdH1bDKvq/cMEM1r1G7SXu8MX7f8R1LPZsvGju4zUYNoUW7b1iTfljk7AAAAkJldd911yOuNGzfG3sfwbXbZZZdUbQIAAAAAAAAAAAAAoBF5UNEPAGg6SQpxJr01+fFswSCmgm74w1ToXmnJtx0DWkZJE08wr69RYOSHFAV/TvuWqQCfAkXv2EI2fAhGM07lCHIohbhBQsODZsbuG/6+4dsc9sXs2oBiJRk/uwqRbRkdvrzW5eZ4yE69uU+SYDRCFpuT6bybrjsdU6Vdjx65fNKJ/cEiAxKNsRhHl0aRoSxHfGXYAsJj4IHeTmnhN6V795Meu0R646Xo2044VDriq+b19OPo2nY2r7OGKKLpzbwkfHnvFmn5fyfYYcr+VqmYn2nWutPtG/74073JtyUYDQAAAMjMpEmThrxeuHBh7H28/PLLQ15Pnjw5VZsAAAAAAAAAAAAAAGhEPlT0AwCaToLivFkfSn644WEig1HI7z/TObKdV9cOu868jgIjP0QJ8jBxGYxmCnsICLPyjm+hjMOZCrQpgC+HuOOP4UEzpmCqIdu0Sfu8J7s2oFhJPtuuxkoto8KX9xGM5r2gTiBikmA0gqabk+m82647J9wpdey94/VO06Xj/3PY9gkeVacZ9yNfRY5TZ/7N0Ne2vsZ4Gq71bJJe+LL00xnSkx+RtiyNvu1ux0mn3Cv9+TPStL+yvJFnDJGZnuPN+rt824Hy2ePt0mhD0fqi2ywbOvx8towJX97X6e6YyFeac8ncDQAAAMjMLrvson333fFDVhs2bNCLL74Yax+PPvrokNfHHHNMJm0bUCHwHQAAAAAAAAAAAADQAAhGAwDkz1RkOuFQadoFI5dP/2tp2oXJjzc8TGQwikH852M40ZRTzOsIRvNDqmA0l0Nk0x+fUnzvnZrp2uPJFMrYDgrgSyHu+GN40EyUYLRKq7TzvuaQGsZAJZPgPmEbA6dRNQSj1RgDea9WLxhtWJF9lHAgQhabU5Lw6nH7Se98RXrbw9KZj0jvXCiNnT7sTQSjNbYC5zyjdhv62jqmZ24GR7rWSgs+L82ZJj3zf6Rtr0ffdve3SWc8IJ31qLTXOW8GZRPwlwnTc7zJp+baDJRQta3/e4swqx6UNi+Jt78sCtZNwWi9BKM1jDT9hLkbAAAAkKkTTzxxyOs77rgj8rYvvvii5s+fv/316NGjddRRR2XWNkkaNWro93ldXfzAEQAAAAAAAAAAAACgfDyp6gcANBVTcV61XTrhDumsx6UDruj/946npONvl6opQrBsxdkUg/jPFNziKuwjqvGzw5cTjOaHVMFoDkP3TAX4FC17yHBOigxlHMJQCElfKoe4448RwWiGYufBBu6Tuxr+iJ4xULkk+WzbxsBptHaEL6fY3n91g9GGjWOjjKfq7RONyXQPqTdHa2mXJp8kTXprf5jIcEkCaAlGKw+vxqkESiFHnSukpz7ZH4j23D9L3eujbzv1POmsx6TTfylNOW1oII7tmkk/js70HC9KGDUw42LzusXfC18eOAy0N83Vhgcgo8RS/GkHz4EAAACATL3//e8f8vqmm27SypUrI2171VVXDXl9wQUXjAgyS2vChAlDXq9YsSLT/QMAAAAAAAAAAAAAkAeC0QAA+TMVLleq/f8m/pl01I39/3Y9Illx9JD9EoxWasb+UnA4kalAkmA0P5QtGE0OiyKRjK/XngH0pXIzhX6aDA+aiVKkPzD+MYXUxG0DCpbgsx0WOpQFUzBf31Y3x0N26oWY1RIEozGfak6me0jaQMZEwWiE/5SGT+eqYggZlsR4GpnZvFh64nJpzgzppa9KvVuibVepStMuks5eIJ18jzTxWPP7jDz6vPlu+PhnAMFoiGKXQ6Vdjghft/j2mCFotntTRMzVGp91DFMHz4EAAACATJ1++uk6/PDDt7/euHGjLrzwQnV22sOpb7jhBs2ZM2f760qloo9//OOZt2/mzJlqb2/f/nrevHnq6eHHbgAAAAAAAAAAAAAA5ZKyWg0AUlj3tNS9tv+/BxeI7DRdGrdfIU1CXkzFeY7yOm2FghSD+M/XcCKC0fyWqujeZXawoXjNp5AA9DOGwfiSLU1fKrW4QULDg2ZMxc6DDYRiVQzhWIQZlUuSz3bagCKTlo7w5UFff/CWq0A2pBfUKXgZPo6N0u+YTzUn0z3EFMYZWZJgtBSByMiZT+NUS6gI42mktfEF6fkvSUvvjHeNqrZJMy6RDv60tPOsKBuYV9GPowkC83M8gtEQ1YyLpfVPj1y+eZG0+hFp8kn5tcUYjGYvykeT4DkQAAAAMMTKlSu1ZMmSRNtOnz5dkvSd73xHxx9/vLq7uyVJDz74oE466SR94xvf0LHHDg27X7NmjT7/+c/rm9/85pDln/70p3XooYcmaodNe3u73vrWt2revHmSpGXLluncc8/Vhz70Ie23337q6Bj6fd/uu++u0aN5HgIAAAAAAAAAAAAA8AvBaACK88yV0spfjFx+8JXS4dfn3x7kx1ScV3UUdFWp9AdDhBV+UAziP9M5chX2EVXV8AeBNYLRvJAmIMHVtUgyBzUODgiFH0z3qqJDGQcYQz/pS6UQd/wxPGgqSpH+wH3SFFLDGKhcfApGazUEo0lS71apfbyb4yK9WtxgtAjjqXr7RGMyBeKlve7YQs1NCEYrD5+CmioV9YejhYydfWonymXdfOn566TlP1GseVnLGGnWZdJB/yh1TI2+XYWAv9Rq3eZ1pud+wHDTL5Ke/mT4HHvx7SHBaKbrg+UzHZUpGK2XYLSGkSaYmlBrAAAAYIgLL7ww8bbBm3/fceSRR+qmm27Shz70IdVq/c9j5s+fr+OOO06zZs3S7NmzNXr0aC1fvlxPPPGEenuHjsvPPPNM/cu//Evy/xF1fOITn9gejCZJc+fO1dy5c0PfO2/ePJ166qnO2gIAAAAAAAAAAAAAQBIJqs0AAEjJWJzn8LY0PFBkAMUg/jMVuhcdTmQKpRkeKIFipAlIcNq3TEWOFC17x9SHXAbnxWLoSxTAl0Pc8cfwoJkoRfoDgWimkBrGQOWS5LNtCsVLy1RsL0l9W90cE9lwEYxGyGJzchVebQv5MbaFsU9p+HaujEF8nrUT/lv1sDTvHdLco6XlP1bkULS28dLsq6XzlkpH3RAvFE2qEyZJP47E9gwvShg1IEmjJ0l7/UX4uqU/7A+PzotprtZHMFrDSPPdA3M3AAAAwIlLL71Ud999t8aOHTtk+SuvvKI5c+bo7rvv1qOPPjoiFO1v//Zv9bOf/UxtbYa/Z8vAOeecoy984QtqafHlbxwAAAAAAAAAAAAAAIiHYDQAQP5MxbDWgr6UTAXaFIP4zxTc4irsIyqC0fyWJhjN5RDZdJ3zLSQA/oYyDjDeMyMW4aM4QU2xz9Pw891qCabavk2dYDTGQCWT4D6RNqDIpLXDvC7Pon/EE+XaM2IcG6HfcS1pTqbzXsQcLdW4H7nybc7D3AxpBIH02v9IvzxJuv8UacV90bcdNUk67Lr+QLTDvtAfqpSI5dkF/TgagtGQlRkXhy/v3SQt/8mwhQ6f2xCM1vhqKb57qBeUDQAAACCx888/X3/84x91xRVXaOLEicb3tbW16ayzztJvfvMbfec733Eaijbg6quv1oIFC3TllVfq5JNP1u67764xYyJ81wwAAAAAAAAAAAAAgAcKThQBgDAEejS+AoLRTAXaFPL7z9dwIoLR/JamCNhl3yLMqjyMfciXbOlK+GIK4P1nCvw0qbRKlWHnuxqhSL/65h/Sm8ZAcduBYiX5bLsKKGqxBKNRcO+vKEXww4vsaxECpyiub06me4irQEYbgtFKxLdxqmk8zdwMFrU+6dWfSM9fJ61/Ot62HVOlgz4l7ftBe9BsVLbnqMwLo7EFDBGMhjj2/Atp1G5S19qR6xbfLs14b/19DJ/3J2G6tjBPaxxpvnvguzAAAAA0uSVLljjd/+TJk3XjjTfq3/7t3zR//ny99NJLWr16tbq6ujRx4kRNnTpVJ554onbeeefY+77mmmt0zTXXJG7bwQcfrOuvvz7x9gAAAAAAAAAAAAAAFIVgNADFyaLQA+VURNiMqUCbUBD/mQp2iii6H4xgNL+lCUhwGrpHmFVp+BrKOICQvfKKW4gaFm4VpUh/4D5pul9SEFsuSe4TrsZKtiCP3q1ujon0ogSY9Q4LTIgynmI+1ZxM9xBXgYw2jKPLw7dzZRxPe9ZO+KHWIy25U3rhS9IbL8XbduwsafaV0vT3SS3t2bWJYLT0bM/wCEZDHC3t0rSLpIVfH7lu5f3SluXSTnv3v3YZwNkyJnw5wWjlEgTSxuekLUulSW+V2nfZsS7Ndw/M3QAAAIBcVKtVHXPMMTrmmGOKbgoAAAAAAAAAAAAAAKVHMBoAPwWB9OL/Jy3+Xn8AyT7nSwdfJVU9CSNBOqbiPFtBX1qmAm1CQfznazhR1VAgWSMYzQupgtFchjQSZlUavl57tiNkr7Tijj3Cwq1Mxc6DDYx9TGOgKCFJ8EiC+0S1LftmSPb+10cwmreCCJ/54ePYKOMp5lPNqXdL+PIiwqvTjPuRL+/GqYa5mXftRKF6O6VFt0ovfrk/oCaOCYdKs/9J2vt8R8+0bc8ueMYQCcFoyNLMS8KD0RRIS74vzb6qzg4y+CEh01yNAOvy6O2UHj5PWvnL/tfVNum426SeTdLax6RFtyXfN3M3AAAAAAAAAAAAAAAAAAAAlAzBaAD8EwTSgs9Jz39hx7INz0obfi+99QdSJYMCERSsgGA0U4F2jWIQrwWBudDdFPSSl1ZDoZmtqBL5SRWM5jL4ijCr0igixDMOQvbKK+7YIyzcKkqR/sDYxzQGoiC2XJLcJ1wFFFWqUnWUVOsauY6Ce39FCUMcMY6N0O8IWWw+G18wrytijkYw4LiqPwAAIABJREFUWol4NucxjaeZm0HqD6D5w7ekl74qbXs93ra7HSe95Wppz79w+xzbNjelH0fT12leZ/pBBMBklyOk8W+RNj43ct2i26SDr3zzmuDwuY0pGM3W1+GX57+4IxRN6p9vPfrebPbNcyAAAAAAAAAAAAAAAAAAAACUjCdV/QCakykcpk965f+OXL7sh9JL/+a2SciHsTivgGA0ikH8ZivkdBpeFYGpQJJgND/4GoxmKlxeMVfavNjdcRGfqQ8Vfe3ZjpC90oo79ggbw5iKnQcbCFQzhdQQDlsyCT7bLgOKWjvCl1Nw768kwWhRxlPMp5rPq/eY17kKZLRZMVda8Hlp5QP9wdrwl2/jVGOolGftRL661vZfU+ZMk575dLxQtClnSGc8IJ31qLTXOe5/3MMa2k0/jsT2DK9lVH7tQGOoVKSZl4Sv27RQWvt4vR2kb4PxhzyYp5XGwpvc7ZvnQAAAAAAAAAAAAAAAAAAAACgZgtEA+Gfbyv4itDBPf1Lq2Zxve5A9UzGstaAvJVMwBIX8frOFMRQdTtRCMJrX0hTdu7wWmYbfW5ZKP50p/ea90YJL4J7vwWimfupb4ARGiluIGjaGMd2DBhvoq4TDNoYkn22XAUWmcL6+re6OiXSSBKP1bIqwX64lTWfZf5nXFRGMJknP/bP0wBnS7y5nLOQz784NQcMYpHOF9NQn+wPRnvtnqXt99G2nnied9Zh0xv3SlNPcB6JtZ3l2QT+OpmtN+PJqu+NnQ2hY099rfm606LY3/8NhkKtxnkYwWmn0bHS375e+KnU73D8AAAAAAACA1Hr7Av36D4F+8Tw/CgYAAAAAAAAAgEQwGgAf1QsVeuPFfNoBd4xhMw5vS6YCbQr5/WYLbSmq6H4AwWh+s4Xq1eMy+KpegfTSO6WF33B3fMRQQIhnHMb7GsF63osbSBZ2riMFo1XN20vS0rvitQPFSvLZNgUDZ6GlI3x5L8Fo3oobjBYE0ron629DyGLz2bDAvK5W8FzolZulNb8ttg2w8CyoyTiup8igqWxeLD1xuTRnRn9gTO+WaNtVqtK0i6SzF0gn3yNNPNZtO01tMCEYLZqnPx2+PMp8CwgzZndpj3eEr1v6A/tz4yxCFY3Pq7vS7xvlt+kP0o8mSIu/X3RLAAAAAAAAAAyyaVug/54f6JJba9rjkzWd8pWarvox3/UAAAAAAAAAACARjAagUIZCj3qhQlEL1OAvU3Gey7AZUzAEhfx+s4VbuQyvisJUaFZ0GAD6+RqMFmX4/fLXHB4fkdVMIZ4FX3sGtIwKX16j2NV7WQSjVdujb28LxyLEqjySfLZdhsi2GoLR+uhT3opy7Rk8jt20MNp+CeRsPrsebV43aqK747buFO19K+931wYkFwT+BTWZnkH51k64sfFF6dH3S/fuJ73yrehjrWqbtO+l0jkvS2+9Q5pwiNt22lhDlOjHkfRuCl9OMBrSmHlx+PKejdKrc9weu8qzIkTw2/dJmxcV3QoAAAAAAAAAku55OtCkT9T0lzfX9L3fBlr7ZonE08ul5ev4QScAAAAAAAAAAAhGA+CfekUa9YLTUAKmYDSHYTOmYAgK+f1mC3CwBb1I0uFfDl9+0KeSt2cwU5Ek1yg/pApGczhEbokQZrRlibvjIzpTH/ImGM10DaLY1Xtxxx7VtpHLKpXo16q2ceZ1656M1xYUJ8lnO6zvZMVYcN/t7phIJ8q1Z/A4dv0z0fZL0HTzGTvLvG787PT7n3pe+PIDroi2fffG9G1A9lzfHw65NsFGBKM1pXXzpV+/W/rZbGnJf0Z/dtAyRjrgY9K5i6Rjvy3tbLkW5soQjkY/jsY0p9q2Kt92oLHs9U6pfZfwdYtu7w8LDWULO4yI59WIatmPim4BAAAAAAAAAElH7CN1G/7s4h/u4vseAAAAAAAAAAAIRgPgn3pF/xRxlJ+xOM/hbckUjEYhv99qlgLVeuFEU88dGdpRaZH2fnf6dklSlUIzr6UKRnMYfGXqN/CPMRjNkymUMZSIYDTv1WKOPVrGhC+f8X7zNnu8Y8d/736m+X29W+K1BcVJ8tkeNTn7dgwwBdTG7d/ITxAlGK1z0H9HHNNyzpuPbZydRSDjwVdKrWOHLtv/o1LHPtG2rzEf81KW8+Th/aw6Ktk83zSuJ1CqMa16WJr3Dmnu0dLyH0syBRMN0zZemn21dN5S6agbpI6pTpsZG/04HdO1afZn8m0HGkvLaGnaBeHrVt4ndb7m7tg8K0JUCz5XdAsAAAAAAAAASJq2W0WHGb5+mvOsVP27Ph16TZ8+cHtNP1sQqFaL+B0XAAAAAAAAAAANwpOqfgBNqVIJX16vWJLQofIzFee5DJshvKGcbEX3prC7AeMOkE65V9p5v/7XO02T3voDaeKx2bSthWA0r6UpAnYZjNZqCDiCh0z3Kof9Iw5TsSvXIP/FDWU13W+O+Ko08YTwdQdfueO/J51k3jf9pTzqhUeHGT0x+3YMIHS4fGpRgtG2hf+3TZTANTQW0+d8vw9ns/+Jx0ln/kY66JPS9PdKx39POuprUoth7DMc9zY/ZXVe2neVTvzRjnn+uAOlU/+fNP7gBDszPJc0zQNQPkEgvfY/0i9Pku4/RVpxX/RtR02SDruuPxDtsC9Ioye5a2caBKOlY7o2TXprvu1A45lxSfjyoCa9/qvwdabvy+IwjZcYH2E4X374AQAAAAAAAIDeeZj9+fBzr0m3/ibQO2+q6Yq7AwUB4WgAAAAAAAAAgOZRJ1EEAApQ79fr+XX7BlBAMBrhDeVkOz9Rwon2OFN650Kpe4PUNj6bArMBBKP5zRaqV4/La1ELwWilYepDvgSjmYpdGSf5L6tgtFG7Smc+Ir3+gPTs1dK6J6V9PyjNulTa9agd76u2SKMnS9tWjdwH96zyqHXHe/++H3TTjgHVtvDlhA77K3YwWmfE/XLOm47pPlYvuDqOXQ6VdvnK0GWmUNjhkgRJwr1aRmOOSlWaem7/v55NUtvO6fYVhkKC8gtq0vIfS89fJ61/Ot62HVOlgz7VP5Zq7XDTvkyZnl/Qj+sKauYxtmkOBkS12zH94Z1vvDRyncvgQuPzasZHGC7D70kAAAAAAAAApHLuYRV94WfRvtv5xrxAHzm1ogP3cNwoAAAAAAAAAAA8QTAaAP/UC/QgwKH8jMU/DsOIqoZbHoX8frOFW8UJJ2qfkL4tw5kKzWrb+gupswxhQ3ypgtEcBl9RXFse3gejUexaWnHHHrbrRqUi7X5G/z/rPgyhjFGDj1C8uKGHO89y044BhA6XT+xgtIjzbs5586kVNEYyhcIOl1UAF7KV1bO8wWFmaULRhu9rCIeBNXCr1iMtuVN64UvhYUQ2Y2dJs6+Upr9Paml30z4XjAF/9OO6bHNnnt0grUpFmnGx9OxV+R7XFCRLiD6G47sLAAAAAAAAwBtHTZMOmCK9/Hq09z+0MNCBe/CMDwAAAAAAAADQHBwm0ABAQvWKJQlGKz9TcZ6xKDUDhDeUk+38mMLu8mIqkgxq9CsfeBuMZggngn+KuFfFYSt2DaL9giQKEvcekcV1wxikx7i6NOKGHlYdhzmYxmGMgfzlKhgtyn7RWEyfc9fzM9PYZzjubX7K7LxkORYnUKph9HZKC78p3buf9Ngl8ULRJhwinXCXdM5L0r4fKFcomkTAXxq2IE2C0ZCFGe+L+QwpgyI24w95dHN/wzAUTQIAAAAAAAC+qFQq+p8roj9PXrvFYWMAAAAAAAAAAPCMJ1X9AJqT4Q/v6xVL2oqWUBIEoyGimiXcymV4VRS2IkmK8YuXptjPh2A0W99HPkzhekVfewa0WMJBCKnxWy1uMFoGRfmmkCzuV+VRixmM1uo4iNM0tub6468gwrkZPNeOOu9mPtV8jGMkx8FotrHPYNzb/JTVeclyLG56BkVwTHn0bJJe+Ir00xnSkx+RtiyNvu1ux0mn3Cv9+bPS9AukqifzvNjox4nZrkuuQ4bRHDr2kqa8Ld9j2oJka935tQP+8+WHHwAAAAAAAABIkqZPrOj1r1Y1fbf6712/1X17AAAAAAAAAADwheOKNQBIoK9O0T9FruVnKs5zWYxRNYU3UMjvNVvQguvC+3psRZJ926S2nfNrC0YyBTZE4vBaFDXgqNYlVTvctQP1+R6MZi123Sa1tOfXFsQTN0Qoi2A00z4IHC6PenOk4VyHOTC2Lp8o52bwXDvqvJtz3nxM9zHXYyTb2Gcwnhn5KbNgtCznaoYfbDCF+cMfXWull78uLfx3qXt9vG2nnCG95Wpp8qlSxdQHSoSAv+Rs16Us5mCAJM28RFr5i4hvzuCaZAuS7euib2OQBrgHAgAAAAAAAA1m0s4VLbq+RUvWBHpllfSub9a0NeQ3LzYQjAYAAAAAAAAAaCIEowHwT88G+3qKXMvPWJznMIzIFKIVN5wE+bKFWxUdTmQrJOM6Vbw0wWguQxpbxkR7X982qZVgtEIVca+Kw3oN6pLa8msKYoobIhT1upFkH72d6feNfNRiBqO5LnhnbF0+QU/99wwJRot4fYiyXzQW033MFJiYFYLRys3HYDQCpcqnc4X04lelV74l9W6Jt+3U86SDr5ImHuumbUUxfibox3URjIY8TH2X1DZO6nkjn+PVfV49Pp92oAQIRgMAAAAAAAB8NX1iRdMnSn99XEXffjgYsX7D1pHLAAAAAAAAAABoVASjAShQwj+8p8i1/EyBRS7DiExF2nHDSZAvW7iG68L7eghG81uqYDSHhWFxgtFQLOO9quBQxgG2cJC4AUrIV9zgqGoGRfmme1aNa00p1Pri39cIRsNwtQgBZrXu/v5WbYk+FmE+1XyMYyTH87OW9mjv497mp8zOSw7BaKKQwDubF0svfFladGu8uU6lKu1zgTT7SmnCIe7aVyjD8wsC/uojGA15aB0j7fMe6Y+31H9vFs8jeVaEqFx+FwcAAAAAAAAgExMMv6u7fmu+7QAAAAAAAAAAoEgEowEoHwo4ys9UnOeyGIPwhnKyhYAUHU5kK5KkGL94aYLRXIpaXEsfKp7vwWgtlmLXPsZKXos79siiKN+0D0IYy6HWHX8b12EOhA6XT5RgNKl/vl3tiH59YD7VfEzn3PUYyRb0MRj3Nj9ldV6yfG5k2heBUv7Y+KL0/PXS0jvjzfGrbdKMS6SDPy3tPMtZ87xAP06OYDTkZebF0YLRsmB9VsQYCYO4/GEQAAAAAAAAAJnYxRCMtoFgNAAAAAAAAABAEyEYDUD5UMDRAEzBaA4LqQlGK6eaLRit4GGMrUiS61TxfC0CbhkT7X30oeIVEeIZhy0chBBZv8UNjiIYDUk+067DHBhbl0/UYLS+bVJrjGC0qPtF4zDdx0yBiVmxBX0Mxr3NT5kFo2X53IhAKW+tmy89f520/CeSgujbtYyRZl0mHfSPUsdUZ83zCsFoydkC6aOGcQJRTDxBGjtL2vxKnTdmEFRVtf2QB8+KvBfEuOel5snzTQAAAAAAAABGpmC09QSjAQAAAAAAAACaCMFoAIqT9BfJKXItP2NxnsNijGpb+PI+CoK8ZgvXcBmkF4WtSJLrVPECS6hekaIG1dCHimfqQ0VfewYQzlhecYOjogYqJtlHX2f6fcO9JONV12EOpgAk+pS/ghjBaFL0c0kYXvMxjpEcP2aOel3rfM1tO5BMZsFoGT43Mj2XJFCqOKse7g9EW3FfvO3axkv7/710wBXS6Elu2uYt02ciz3CdklrzePjy6qjk31sAYSoVaebF0oLPuj+WLUiW70H8l+fzbK5zAAAAAAAAgPd26ago7DuftZulIAhU4TkfAAAAAAAAAKAJ8HPAAMqHsI/yMxWZZlngOpwpvGHpXVLN0wAl2IuBig4nqraai/+5ThXP22C0iAFH9KHieR+MRrFradXiBqNFDFRMsg+uNeVQSxKM1p59OwYzjYGW/1iqRQzgQr6inpfaQDBaxOtD3Gsays8Uhud6jBQn8HHjS+7agWR8DEYzfjVCMFqugkB67X+kX54k3X9KvFC0UZOkw66TzlsqHfaFJgxFk/kzQcCf3bY10rNXha+zzbWBpGa8X1K9ArUMCtgI0S+3XK/dFEwCAAAAAAAAvpsyLnz5G9ukVZvybQsAAAAAAAAAAEUhGA1A+fR1Ft0CpFZAMJopvEGS1j7h7rhIx1R0L/kRTkTQjL8IRkNaxhBPD649kj30aNvr+bUD8W14Nt77swhGqxr2sfy/pV7G1t574+X427gORqu2mdetesjtsZFM1GC0vpjBaFuWjly29TVp4TekJ/9Beu6L0hrmWw3FNEczhZFnJU5Qzas/cdcOJFPLan6T4XMj0zOo136e3TFgFtSkZT+S5h4lPXi2tPqR6Nt2TJWO+pp03hJp9lVS+3hnzfSe8VkqwWhWtgC+njfyaweax077SFNOc3+cSquMgVdJAreRsxyv3bVu6ZVbpF+eLP3XBOmZq7j+AQAAAAAAAJ45aA/zuhdey68dAAAAAAAAAAAUiWA0AOWzZXHRLUBam03nsKBgtJe+6u64SGfFL8KXV6pSxVDklSdTWE1mRd9IzNdgtDGWv1YZjBDQ4pn6kMsQzzgqVXMw0a//l/TGwnzbg2jWPim9+JV420QNVLTuwxKu9tA5Us3TayakjS9K886Kv12cAKEkbGPr5693e2wkEzcYLep4dusy6f7TpO4N/a9X/1b6f/tLT/69tPDr0oLPSL88Xvrjd+O3GX4y3TNch8dWY1zXTPNIFCer4Ocs+5lpXL/iPstzK6RW65EW3S79bLb0yF9K65+Ovu3YWdKx/yG984/SAf8gtXa4a2dpGPqxKegb/Tb9oegWoBnNuNj9MSoV81yQH2HwX57Ps7vXS0/8nbT611LPRumFL0n/NV56g+sjAAAAAAAA4ItJO1c0aefwdc+/FuTbGAAAAAAAAAAACuJJVT+A5pQw1OiNl/v/aB/lVOuRNiwIX+cybKZqCW947efujot0Xrk5fLktjCNPpqAZCs2K52swWtTCbYLRimcMRnMc+hGHLSBk/hX5tQPR/e7y+NvYQs0i78MSrvb6A9Lax9MfA268+OVk28UJEEq0f8tY7PUH3B4byQS90d43MI6NM55d9aD0+Af7//uJv5N6tww7dk166uNSX3f0fcJfpr7keo5mCoQNs+Y37tqBZDILRsvwuZGtz756T3bHQb/eTmnhN6V795Meu0R646Xo2044RDrhLumcl6R9PyC1tDtrZumYPhMEo9n5+swIjW2fd0utY83rs/oRkKrphzy6stk/3PHh2v3kR4puAQAAAAAAAIBB9p8cvnzlG/m2AwAAAAAAAACAohCMBqCc1v6u6BYgqQ3Pmde1jXN3XFvBqy8hWxipfdfw5TVPQhVMhWYEoxUvavjHcLuflW07wuz/9/XfU+tx3w7YGYPRPLpnmK6RkrT6kfzagWh6t0jr5sffbswe6Y9db4z1/PXpjwE3Ft2WbLs2S8F9Fny6FiKaqGOL7cFoMUNa//RTaetr0kbDfK/njWTXQPinqDFSnLCQKae7aweSyWp+k1cw2lOfyO44za5nk/TCV6SfzugPW9myNPq2ux0nnXKv9OfPStMvkKoehVT7wviZ8CBcx2e2Z0aTT86vHWgurTtJ+5zv/jgthpDsPoLRvOdDMNrKX0q9W4tuBQAAAAAAAIA37WR45NvrweNEAAAAAAAAAADyQDAagHJa83jRLUBS3evM6/b8c3fHrVoKXm3rUCxT8XSLIZAsb6Z2EIxWPFNgg02lKu3/4ezbMpwtzGpA0mA3ZMd0Dny6Z0w5zbyud7MUBPm1BfX1bJYU85yMntwfCJHWpBPs69c/lf4YKEZrSADaLkdK7bu4PS7BaOUTNZRo4P4Xdzxb65E2LLC/p29LvH3CT6YxUiWHwKKx+0Z7X8sYt+1AfJnNbzL8OsOncX0j6lorLbhGmjNNeubT0rbXo2875QzpjAeksx6V9jonXjBi0zF8JnwI1/GZ7ZnRnn+RXzvQfGZcYlmZ0bWuagpG43m195I8z3ahZ2PRLQAAAAAAAADwpjbD1/C9njxOBAAAAAAAAADANYLRABQnTVHbWoLRSstWkL/bMe6OawtvyKOAG8nUDAVbR30933aYEIzmr1rEwvsDPyFNOETa4x3SST+Wpp7ntl1StGC/qO2HO6Zz4FMY0BFftq+nGN4vpnvagNadhr4ePVk65WdSNYNxyq5H13kDYROltOc50qFfGLqs2iYdco37YxMmUz5BxGC0WsJgNKl+8BHjm8ZgOo95XBfe8rlo7+vrctsOxJfV57+S4dcZPo3rG0nnCunpT/UHoj13rdS9Pvq2e50rnfWYdMb9/SHQBKLVZ/r/iLmgne2adOAn8msHms/kk6Sdpoevq7ZncwzTc8ca4yPv+XLtZt4GAAAAAAAAeKPV8PVoD8FoAAAAAAAAAIAmQfUPgHJa+7gUBBTIlZGpWH54GEjWrMFo3A69ZQpkGDUx33aYEIzmr3rBHAOO/KrbdoSpjqr/nqjthzumc+BTGNDoydLbHpLuPyV8fdArifBPb/R2mte9a7nUvqu09AfSpoXSTtOkff5KGrVbNseuVKQJh0kbns1mf/DDPu+WZl4i7TxLevUeqXWsNO090sTj3B+b8XP52AKqBwtSBKPVC6NifNMYAsNfWOdxXWgdE+19BH/4J6vPf5bB9j6N6xvB5sXSC1+WFt0a7zNYqUr7XCDNvrI/tBzxGMMCPQnX8ZXpmjT1XVwb4FalKu37QWnBZ0auy+pHY1oMzx0JjvWfaZwtSQdfKb3wpXj7O+DjUuefpGU/jLcdY2kAAEaoVCozJB0uaU9JYyWtkLRU0qNBEPUXKZy0a1dJR0uaIWmC+n8FZ6OkVyX9LgiClUW1DQAAAEA2Wg1fj/byVRAAAAAAAAAAoEnwF/4AyqlrjbRlsTR2ZtEtQVymX5t3XURtK2qj4M1fpkCGlogF8a4Zg9Es4TdwL/D8rz5MBYqDERxSPNM58C0MqKXDvC7olRShvyEfNUvIUOtOUmuHtO/fuju+9d4ZuDsu3Km+OQ7Z6y/6/+V6bM+uhagvTjBarTfZWKR3S502ML5pCMYxUg5hrFXD/Gs4whz8k1kwmikEKsm+CBDOxMYXpeevl5beaQ90Ga7aJs24RDr40/0hr0jI8Jnw/blI0YoM+QQO+sf+oKoNC3Ysm3yytM97stm/abxkeyYBT1iu3XucFT8Ybe93SWNnxQ9G47sNAAC2q1Qq50v6hKTjDW9ZV6lU7pb0uSAI1uTUpoqk90j6iKQT67z3aUnfkvTdIODLZwAAAKCMWqsVhf1dV2+Mr+UAAAAAAAAAACgz/sofQIEq6TZf8zjBaGVk+nvLapvb49oK2yh681NQk2rd4etMgWR5MxWamQLdkA/fQzei9F/f/zc0g6KCPOOyBTrQj/xiuzdEDXpJw5d7J7JT5Dn17VqI+qIGo9V6k49lezfb11N71xhM44s8AhOjXveYj/knq3FppsFo3MtSWTdfev46aflPFCtkt2WMNOuy/mCgjqnOmtc0TJ+JgOBjqyJDPoGW0dLbH5de+Q9p8yvShEOkaRdJLe0Z7d8QkN9HcKz3bKGWSZ4bVUcle27AWBoAAFUqlbGSbpF0QZ237irpckn/u1KpXBwEwX2O27W7pDslnRZxkyMk3Szp7yqVygVBELzirHFAA9i6daueeuop/eEPf9CaNWu0bds2jRkzRlOmTNH++++vI444Qu3t2czdli1bpm9/+9t66KGHtHDhQq1fv149PTu+x7n11lt1ySWXhG77xBNP6NZbb9Wjjz6q5cuXa+PGjarVdswnFi9erOnTp0uSTj31VD300EPb1wU8MwIAoHTaDF9d9PIbOQAAAAAAAACAJkH1DwC/veVz0rL/kt54ceS6tU9I0y/Mv01Ix1SQ77og1VbYRtGbn2zFWr6Eu5jaUaN4qFCB5z+HVzUUKA5GcEjxjEGenk2hbO2hH/mlr9O8Lo/7WtX2h/opA4tRjJYxxR2bMJnyCSIGowUOg9EI7GwMprF2HvPqyMFoBH94J7NxaYbBaL6N68ti1a+l578orYhZ6902Ttr/o9IBV0ijJ7lpWzMyhgVSDWNlupdxXUBeWkZLB/y9m32bnjsSduU/2zPt1gTz/5bRBKMBAJBApVJpkXS3pLOHrVot6WlJGyXtq/7QsYEvV6ZImlOpVN4WBMEjjto1SdI8SQcOW9XzZruWqn8yOFXSUZIGDwSOkjSvUqmcGATBUhftA8qqr69PP/zhD3Xrrbdq3rx56u01P8ccPXq03v72t+uDH/ygzjnnnMTHvOWWW/TRj35UXV3xnmP39vbqwx/+sG655ZbExwYAAOXTagpG8/xPZAEAAAAAAAAAyAp/5Q/Abx17SROPNQejoXwKC5qxFARS9OanogNkojC1g+KhYvkeBtUSIRiN4JDimc6Bb2FAtvbQj/xiujdUR0mVHILJ8jgG8lXkeIjxc/lEvSfUepOH/PZssq/3fYyGaEznMY8xUtTrXo1gNO9kNS7NMoDPt3G9z4JAWjFXev46aXXM+u5Rk6QDPy7t92Gpfbyb9jU1QzBaQDCalXG+z49noAEYf8iD8ZH3bNfuKD+0EbZNku1s38sAANAcvqShoWg9kj4h6dtBEHQPLKxUKgdL+g9Jx7+5aJSkeyqVyiFBEKxw0K4bNTIU7VuSPh8EwarBCyuVygRJ/0fSp7Vj4jhV0s2S3uGgbUApPfDAA7r88su1cOHCSO/ftm2b5syZozlz5ujoo4/WzTffrCOPPDLWMX/+85/rsssuUxAEsdt79dVXE4oGAEATajF8FdTLV0EAAAAAAAAAgCZB9Q8Av43ZS9r1GGnRbSPXbV2We3OQgaKCZmxFuBTD+skWLkYwGmx8D92oRui/vv9vaAaFBXnGZLuH0Y/8Yro3eHFPi//H98hBvUCLIvsOoRHerce7AAAgAElEQVTlU+uJ9r6gN/lYtrdOMFrUNsBfQSAFhp+ezmOMFPW610fwh3eyGpdWDH/5n2hfno3rfRTUpOU/7g9EW/90vG07pkoHfUra94NSa4eb9sH8mSAYza7IkE/ANdMPMjA+8p9pnC0lm/+3jJKqLVK1Ld5cjO82AABNrFKpzJR0xbDFfxkEwZzh7w2C4IVKpXKGpF9pRzjabpI+L+lDGbdruqSLhi2+PgiCfwp7fxAEGyRdValU/iTp64NWvb1SqRwbBMHjWbYPKKNrr71W11577YiAskqlooMOOkhTp07VbrvtptWrV2vZsmUjwtOefPJJHX/88brpppt06aWXRj7uVVddNeSYF110kT7wgQ9o7733Vltb2/blEydOHLLd66+/rhtvvHH76/b2dl155ZU6++yzNWnSJFWrO54RTZ06NXJ7AACA/9oMf57Ta3mcCAAAAAAAAABAI+Gv/AEUqFL/LWP2lHoMxdW17vDl8FtRhWe2ohKK3vxUIxgNCdU8/6sPU4HiYLYwR+TDeL/yLAzIFkJCMJpf+jrDl7eMybcdKI9694Ii+w5hG+UTxAlGM1yv6undXH/fKDfbZz+PMVKUgGHJPpdEMYxj62q8e0qmwWiejet9UuuRltwpvfAl6Y2X4m07dpY0+0pp+vv0/7N35mGyVPXBfk9Vr9OzL3fnLqz3sgUVRcBEEIOiohE3EpKoMaJGE4ggBpMP8YoGUZOg0cQVEp+AfqhB9CPKoiiCiBiQ5V7gwl2469zZZ7qn16rz/XG6Z+mZ6mWmp7t67u99nn6661TVqV8tfc6p5byFHVqa+IRpPP8T0lYrSSMln4Kw1Hi1l6R95H9KtYmsBdSphXsXdrRKMdoCzwcFQRAEYXnwcSA4Y/jm+aRoBbTWSaXUu4AngEKF/R6l1A1a6501jOvCouF+4BMVzPcl4L3AqUV5iRhNOKK5/PLLufHGG2eltbW1cfXVV3PJJZewfv36OfM899xz3HzzzXzuc58jnTbi6Uwmw6WXXkoikeDyyy8vu9xnnnmGxx9/fGr4da97Hf/1X/9VUcy33347mcz0c5LXXXcdH/nIRyqaVxAEQRCE5ibgcUsz68hLMAVBEARBEARBEARBEARBEIQjgxr2JBIEQVgComvM28zno5oH+QX/4LXfvPZzrSglRpNOb/6klFys0g7xS42I0fyJ36UblYj9/L4ORwJeQiK/yTRLxSOCPX/hVTf4QvZZgbBYqD/l6oJGHjul2taCP6n0/NnNLbwtmxUx2rKn1D6sRxup0nLPSS9tHEL1eLVLqz63r+HtDLkWNJdcEp79MvzwOHjoXdVJ0TpPgbNuhTc8Dce8R6RodcPjPyES29J4nu+LMFFYBni9kEHaR01AKQnxAtpAVv5YqPbagdzbEARBEI5QlFJR4K1FyZ8pN5/W+lng9hlJAeBPahgawNFFw3dprcs28LTWGvhhUfJxNYtKEJqQ//iP/5gjRXvFK17Btm3buPrqq+eVogEce+yxXHfddTz++OOcfPLJs8ZdccUV3HfffWWX/cgjj8wafutbi4uc2s973333obWe+giCIAiC0HwEPC4N5uRWkCAIgiAIgiAIgiAIgiAIgnCEIGI0QRD8iwpApE/EaMsNr47US90htdEduIXqKdUBxxcSGbw7cbvSeaih+F3WYnl0UJyJiEMaT6Pqq2opFY8cR/7C12I0wZeIGE2oJZWeP+tFiNFyZcRoIuxsfkr99/0kRnNF/OE7vOq0auuyhUhBPPPyWbu+kWQnYNtn4Y5N8MgHIbGn8nl7zoA/uAMu+B1svBgsEUvVFa//hIjRSuNVJkm5ICwHvK47iuzK/5Rsay+gfi1I8qoV0cqxIgiCIBy5vAZomTH8K611pcbwm4qGL6pNSFPEiob3VTHv3qLhrkXGIghNy7PPPsuHPvShWWlnnXUW//M//8O6desqyuP444/n3nvvZcuWLVNpruvyp3/6pwwODpact7+/f9Zwpctc7LyCIAiCIDQ3XmK0/SOQc0R8KgiCIAiCIAiCIAiCIAiCICx/RIwmCELjUKr0+Ohq07lLxGjLC6/O8Evd8axUpxK/SW4EQ0kxWrR+cZTCqxO3dB5qLH6XQdkViNFEHNJ4GlVfVUupeOQ48hdOcv70utVpZdregv8o9x8WMZpQDZWeP7uLEaNNlB7v9zaaUJ5S+7AeMqRKyz0nDVoeAvcVXnVa1WK0Gh5nci0I0kPw+LXwgw3w2FWQ6i87yxQrz4Pzfgrn/wrWXVj+Oq+wRHhtdxGjlcSrLVvLMkYQGoVX3SriWP9TUmq5gEc6CpK8attbXtevBEEQBGH589qi4fuqmPd+YObFjxcppVYuOqJpDhUNV1PBF087vMhYBKFpufLKK4nHp1/w0tnZyfe+9z1aW1urymfFihV897vfJRQKTaXt37+fT37ykyXnm7lsgGDQ43nIGs8rCIIgCEJzE/S4dfHoXgh9wOWln3L45Q65Ny4IgiAIgiAIgiAIgiAIgiAsX6T3jyAI/iW6xnx7idG0iNGaEq+O1EstmikllvCb5EYweAoZlHe5UG9EjOZP/C5rsSp4Vl3EIY2nUfVVtZQSOshx5C+86oa6ya3kIbimo5zIqpGiWL/XtcJcKj1/1rmFd4TPxkuPP3QPbP7bheUt+INGn1dXXGdqcywrn5w3Ct7t0qrFaDV8z4vf2vX1JHkQnv4n2PFvkEtUN+/aN8JJH4PeM5YmNqE6vP4TJeU6gmd9JsJEYTng9UIGR8RovqfUefZC2kCFMq3aawdyb0MQBEE4cjm5aPhXlc6otU4opZ4AXjQj+SSgCgN5Se4vGn5xFfO+pGj4N4uMRRCakqeffpof/ehHs9Kuv/56Vq1ataD8TjzxRK688ko+/elPT6V94xvf4Nprr6Wrq2veeVx34ddrFjNvLdi2bRtPPPEEQ0NDjIyMEIlE6OvrY8uWLZx66qmEwxW8HHAecrkcDz/8MDt37mRgYIB0Ok1fXx8bN27k7LPPJhJp4EuiBEEQBMEnBMq80+W3e+C1N7o8ea3Fxl55kZEgCIIgCIIgCIIgCIIgCIKw/JCn/AVB8C8FMZpXR1btmk8tO0UKS4+X4GGpRVclO5WUuXMsNIZSAhnlkxv4IkbzJ6WEDX7Aq4PiTPy+DkcCXvIGv3WULiV0EDGav2i4GK0Eyf2NjkCYj3L/4UYeO+XEaHu+A+vf7p82m1BetFfgmRvhhMsXtoyR/y09/sCd8Pg1cOrWheUvNJ6S59V1aCNVs4zhR6H3ZUsXi1AdnmK0KkUdIkZbHPFdsO0G2HkTuFUIcpQF698BJ10NnacsXXxC9XiK0USKXBKv+uxILBeE5Yflcd3RlevVvqeU1HIx97CqvXawUFG2IAiCIDQ/W4qGn6ty/ueZLUY7EfjpoiKa5l7gGeCE/PDvK6VO1Vo/XmompdRa4C0zkrLArTWKSRCaihtvvBE943pJb28v7373uxeV5+WXX85nP/tZsllz/yWRSPC1r32Nq666CoDdu3ezadMmz/nPPffcedNvuukmgJLxKY/7b7t27WLjxo1Tw+eccw4///nPp4Z1FdeM9u7dyw033MBtt91Gf7+35zEajXLuuefyzne+k7e85S3Ydvnzl+3bt3Pdddfxox/9iPHxcc983/jGN7J161aOP/74iuMWBEEQhOVGJdX3ZAaO/pjL3/6hIhqE1vxlYqWgJWSGlYJkBnIudERhPAnpHGQcCNmwrgtetVnR1ybP+QiCIAiCIAiCIAiCIAiCIAj+Qp7yFwShgZS5eday1nyXEma52coEM4J/aJRopmQHbpHr+RKvzlp+EMgUEDGaP/G7DKqSY9jv63Ak4CWn81tH6VLxDP4auotfBC80DK+OpdUKQRZMmbb3vjtg3RvrE4pQGeXqgkaWR+XEaA9cDKOPw+99qj7xCOWpVLqaPACPXbV0cTz5STjmLyG2fumWISwdpcqlegjHq5Et3nUGvOFpaD+h/LTC0uNVBlV9fl9LMVqZY9bN+U+KvFDGtsNT/wh7bilfh8/ECsKmd8GJV0HbsUsWnrAIPK9plpDrCN71mbw8Q1gOeF6vrkKIKTSIUmK0RbSBqm1vPfcVOPUTC1+eIAiCIDQhSqluoLso+YUqsyme/riFRzQbrbWrlPoLjGgtjLlA8l2l1Pla693zzaOUWgncDrTMSL5Oa32gVnEJQjPx4x//eNbwn//5nxMKhRaVZ19fHxdeeCHf//73Zy2nIEZrVrTWfOpTn+KTn/wkmUym7PTJZJI777yTO++8c46YrRjHcbjyyiv5whe+gOuWvn6VTCb5zne+w/e+9z0+97nPcdlll1W7KoIgCIKwLHhiX+Vi03++e3Evzulq0Xz/AxavPEHkaIIgCIIgCIIgCIIgCIIgCIJ/WCY9ewRBWJZE15hvEaMtLxolmuk+3XtcNZ1ChfrhJRfzkxjN8ojFS+om1Ae//6etCuotEaM1nkaJPKulVDyPfAiO/6v6xSKUxu/12mNXiRjNb5QTWVUjCKo1ldS12z4DW66CUMfSxyOUR2cbHcE0z30Nfu+TjY5CWAhuiePIb20kgOe/Di/6bKOjEMC7bV1tO6iW0qJyx6yTAqu1dstrBMO/hac+DXv/G6iiI4QdhWPfB1uugJZ1SxaeUAs8RDlaxGgl8RSj+bAuE4Rq8ZKvJ/fXNw6hetxSL/dZRBuo2vZWqt/UI/JCIUEQBOHIorNoeFJrnagyj8NFwzW9MK61flAp9QbgFqAPI157XCn1DeDHwB7Myf864DzgUqBnRhZfAeSi7AxyjmbfSKOjODJY1wUBu3H3tPbt28fu3btnpZ1//vk1yfv888+fJUZ76KGHyGazBIMlnnX0Mblcjosvvpjvfe97c8atWrWKU045hd7eXtLpNP39/fzud78jHo9XlHcymeSP/uiPuOuuu2alB4NBTjvtNNatW0c4HObQoUM8/PDDTE5OTsV0+eWXMzIywrXXXrvodRQEQRCEZuMlGxU/+N3ihGeVMjIJ7/2Wy/atFrbl3X5zXI2lQDXyuSVBEARBKCKZ0RwYhawDjgbXBVfDxh7oaFlYnZXKalwXoiH/13ta65Ixam22zwvDkMrC6g5zzeaFYbN+azogaIOVbwMk0prJDIRsaI/OXv9EWjM6Cd0xiAQhnYPBOPSPQyxk8g7aZj9obZaXc8HJ7xPHhUPj0BqGgGUuauYcyDhm2tFJaI/AizeArSCVg4NjMDgBqzshmYGJlIn70BhYCk5ZB2s7a7efMjlNOmfi2jNstsO6LhP/gVHzrTWsaDfrEQvPXW4mpwnaJqZsTjOegrH8O9Yd16x3LAQB22yH9ggEA2pqf2Uds/yADaGAv48/QRAEQRAEQRCEpUae8hcEwb9UJEYr/2ZCwWc0quPZUW+GX3mMKyedEBqDk5w/3UtG1gi8OhV5yW+E+lDpf3r925c2Di8qEXpKudR4GiXyrJaSHSM1ZMZESuQXvKSZ9arX1r4BDv7Ye/z4M5AahEhvfeIRyuNnSWbn75WfRjsw8iisPGfJwxEqwE/nzofuEjFas+KkvcdVIv+tBa3HQvy5yqYd/PXSxiJUjlfbutp2UC3FaOXyclIQbFIx2uH74alPwcGfVDdfsB2O/2s44TKI9C1NbEJt8ZLWiBitNF6S31qWMYLQKFqPmT99ch8kXoDY+vrGI1RBibJbWXD8h+DZf60+24UI+Seeh/bjqp9PEARBEJqX4gsAHg8qlKR4nrYFxuKJ1voepdQW4HLgEmBT/vflJWZ7GrhGa31breNRSq3ASNqqwaPBWn/2jcDRH5Pz53qw89MWGxt4+/GBBx6Yk3b66SVerlkFL3nJS2YNJ5NJHnvsMV760peybt06du3aNTXuX/7lX7jxxhunhm+99VZe/vKXz8mzt9dsrHPOOWcq7eKLL+bXv56+3j0z35msW7e4lxxcccUVc6Ror3vd67j22mt56UtfOmd613V56KGH+Pa3v83NN99cMu8PfvCDs6RoHR0dXHvttbznPe+hrW12kZlMJvnyl7/MP/zDP5BKmXvsW7du5YwzzuCCCy5Y4NoJgiAIQnNy+gZFVS9AWiTPHYbg+11OXQfpLDzTP/90loKWkHmno86H19sKtmWEJlkHwgEjRUnljChlfTd0RI0IJJGGgbiRffS2mumzDrRFjFwknjbzn3G04oa3KHpbIZmFyYwRr7RFYF2XQmtNKmukboNxM6+rzXiATM7E0BMzsVmWmSfnGEFLJGhiGU7AUMKsz6p2IyZ5YRj2j0IsbGLOOia9JWTkLLZl4pxIaXpbFas7oLPF5DeaNNuoIHtxXCNUCQfNekWCZl0Oj5v8bMtIT9rCZvp42myzeAo6WmDzKuiOiRBFEARhPh58XnPtHS73bC893dnHwNouRdYxgk/bUqSymkNjpg5J5Ux5nXNMORwKGPlWgaBtPq42ZXpvq6nXNKYu1Jh6J5GeFn31T8AJK0391NkCazsVsXxdNZaE/nEj7g9Ypi4IBUz9YCsYT00LxUYn4fiVZtzopKmTlJqWjOXc6fq4JWTyiwTNZzxlYspW8C7kcnS1QCJj1rOAlY/DL7SG4eKXKSxl4g3aRriWyeU/+d+WAssyAr2sY7ZjPK3Z0W/q/3iJxyTnY0UbrGw3++zgmMkzvcBHwCNBk89M1nVBX6tp44QD5ng9pk8xmX8seGOv2e/94zA6qUlmpsV0WQcOT5h13DVotsExfWacq818sbykLuuYbRgNwVAcJtJwxiZF0DbjtqyGaNAc2zp//A1MmPbQZAZWdShWtBmZ3lDcLCsaNNMVhIXpnDl+V3eYZR6egAOjmo29inDA/Bdslf+e+ck3hQ5PmGMeoNA6Umr6XeOWMulK5X/P+FbMTVvacWr+6a355ys5Tk2vW/E01Y6bE2uNxvldICk0H66rp87hCseX1hrHNeWCHHOCIAiCcGThs179giAIMyiI0VQpMVrWe5zgT7z2mbXEVVKgBWIbILFn7jg/SyeOZLzkYgvpyLNUiBjNn3h1cC3m+A8tbRxeVCKNkHKp8TRK5FktXh3hC2RHRYzmF3Ie/WgC0fosf8MfwyNlyr1cHBAxmm8oJclcVZs32S+Y1a+BQGv+mClBLlGfeITy+Kl9qn30JIxQHW6JJ34qkf/WgrUXwjP/XNm0XrJtof54ta2rPb+v6fWAMg9FeElt/YrWRoL71Kdh4JfVzRvug81/C8f9lZw7NBue54PSsbsknrJGn53vC8JC6D3Te9zAAyJG8zOlrmkrGzZ/GPb9ACb3Tqf3ngmD87wRaP07pn/bC7ju5Mi5vCAIgnDEUSxGW8hFgeILUUtlWy+cuFTSNe9B4FrgniWK5a+Ajy9R3oJQM/bt2zdreOXKlfT09NQk75NPPnne5b30pS8lEAiwcePGqfTOzs5Z061atWrW+GJaW6eLkUhk9nXRUvMtlLvuuosvfOELs9Kuv/56PvrRj3rOY1kWZ511FmeddRZbt26dE2eB2267jZtuumlqeMOGDdx3332e6xGNRrniiis488wzOe+880ilUmit+Zu/+RueeeYZLKvMMxKCIAiCsIz4g+PgpDXw1IH6LvfxfaXHu3quMKScQGTX4Pzpe0emfw8VXZp8pl/zn7/yfsZkppitEgpSj9qztM/BBCz44h8r3vdKaQcJgiDMZNeg5g1fdBmdLD/tA8/D7PK6dNldLLUqSDzBSKvGK7yC+PShmUMLry9m5+NNQZRVaXzVMDLPdvaTFA1Me+Tr99c/qMMT5lMLiqVoYF7ysG9kdtr9Oxa+ns8drmbaapazmG3vs4OpJizHdSpNpUK1+URySzFuqWR44ykjuJzMmLZ6d8xIDR13WlpZ7vtgXsxZ4HNvU6RzJt/WMHRGjQRxJGHmsZSph8ZT5rwmnRc+FtY9aBvJYSEOMBLPgQl45pAmkTGi54EJk09vK8TCakoUaSsjHUykNas6FBt7jUB62wFN1oFNvYpjVxjZZkfULKd/3IgSbWVEiCMJzYFRI/rMOuZcLZeXRIcC05LRcMDUKenctIQ6k8t/O2YZxWVqa14inZhx3rm2E/raTB7pnCk/07np34X5WsPTEu6p3xEjK52THoa2iJo7XwRiISPbFgRBEAShMchT/sKSoJTaBJwGrME87HUQ2AM8qLUWk5WQp8yJQMta822FvKeRw6n58OoMa5UQ4NWK4z4Aj/3d3PRKJUpCfWl2MZrW06+dEOpLpVKxvrOXNg4vrIDpzFaq7CklwxHqg2d91WSnUFo6xPsGL7mGVad6LdwNL/sKPPw+72n8JE4SStdnp36yfnHMhx2Cl34ZfvXnpaeTY8o/LHZfdL8Ejnkv/Ob9NQjmyLvZv2woKUarU3128t/D8MNG7FEOKYP8gy/FaGVoluNHu7D3+0aINvJodfO2rIMtH4Fj/tK8UEBoQjw6P8h5YGm8rsf4TYQuCAsh0gvtm2H86bnjBh6AjX9c/5iEyihZdlvQugnOfwj2fBviO2HlOXDURXDf640ctYAdmf1CkIW0n7zk/oIgCIJw5LCQC5hLftFTKfVe4J+BWIWznAXcBTyplHq/1rqCC2qCsPwYHh6eNdzV1VWzvCORCOFwmHR6+tp58fKaha1bt84afv/7319SilZMsfitgNZ6Vt6BQIA77rijIrlbQbh21VVXAfDcc89x++23c9FFF1UclyAIgiA0Oy1hxY8vs/g/P9D89GnNUV3w8QstbnlYc/OD8uxFte/lWxop2tKTc+ED/6U58xjNqetq/1y662osS5HJaYK2ESB0RMlLEipbntaanANPHYTdgxBPa9ojivaoETQMxY2wYEW7ESfYFrRHze9kFlZ3QHvUxLB3GLpiRhSxe9Dst64YrGo3wpt4Gjb1QEvIyCJSWSOkGIibY2I8CcOTMJHS9LUqzjoGOlpKr0cyoxlOmFiDtslDKSO7CNpGuBAOgFIKrTWuBrdIcFHJb8eFJ/eb70jQbOdUFjpbzIWFTF5w0RYxy48EjRRjNAk5x+QxGIeJFKxsNxKOVNaIIyIBM5+jzT4M2bCuy+xHjRlO5mURXS1mnJJ+DsIi0Fo3/Bj6xA91RVI0QRAEoT5obdoigLzXs0quvK0R53dey5wvvbHnn/OJuPePmk8pUtnZArppSq2P97jYHIlaQaymaJ1HstYagbYZ44rniwSlTS4IgiAIlSJP+Qs1RSn1VuDDgNcryYeVUt8BrtFae7z3RRDyRNeY71LCLFfEaE2Hl+ynHh3PvJYhAiJ/0sxiNLQpn+wSYkdh6ahEdrj6AlANfHuaHYFcwnt8pXI3YeloZH1VS5xKXhgv1AU/1GvHXgodJ8Hdr5h/vJe8TWgMpeqCji31i8OLTX8Gu74Fh+72nqZZpDJHAovZF+0nwKt/YaQ5yoaH31u7uITmolS7wgrXJ4ZwD7zqXhj6DUzsgI4TYejX8NvL5k4rZZB/8GpbN1SMVuZBDb8fP24Wdt8C266fX35TitZj4aS/g41/Jtctmh2v6xoiRiuNVztb2fWNQxCWir6z568bBsWD4WtKld2F8r5lDWz58Oxxf3A7bPsM9N8LLRvguPdD31nT4xci5JfrQ4IgCMKRR3GXiOgC8iieZ95uFgtFKfX3wHVFyY8AXwbuBw5guhmtAl4OXAqcm5/uZODnSqn3aK3/o5ZxCUIzUCwq8xJ4LZTOzk76+/unhoeGhmqafz14/PHHeeCB6XPGtrY2PvOZz9Qk75/97Gc8+eSTU8OXXHIJp556asXzf/CDH+Saa64hlTLnKXfccYeI0QRBEIQlQY+bNoNq725wJHNZ26X45rtmd5Q+bwu89mS44zF4+pCRNAVtI3GKhcyd0KE4jCWNPEopI1JK5yAUgHjKyLaE5uK0rS6v3mL2YzIDARtWtpljZCgOP3tGY1tGhLWhx8gD9o1MS7k25A/vnGs+WcdIuA6Ne0vmWkLTcq9MzhxLazrMuPGUyXsy4xWxH+R9JoZoEE5YBaOTRkKQSMOBMbN+YERilaBU9UI+P/OqzXBMnyKZAatwKyJkyolo0IjU2iJw+gZFNGj2dThgypuJNChgOKEJ2EZOt2sQoiEjfEvnzPQHx4xELhQwx4vjGmFKOAB9rWYPzRTNacxvR5v95LjmmG6LTM+rMMtQysQ5ljTLS+W7liWzZj+lsuZz3EozfTIzXfYl85KMglCut9UI8MBMl8yafFe0wYvXK1683iwjnjYiukKpfGjcbI+sY7adbUE6L6Cb/miSGfOfcbWJbWW7Wa+gbfJ3XHhivxH6jadMmT0yaY5ZxzXyvn2jZrktITO+IMzb0GO2Qzhotlkya7ahxixLY7ZDW8TkN5Y08a7pNLEOxk15ErLNfrItk98je6aPlZPzXfsKZUf/OGQcs91sZdKtvOiwI3+VrLCNCq4PpUy8kxmzXdoiZntEAmY+pfJCRmX+ky0hIwuxlNnug3EjA9zYY2SKL1qv+M9fLaM/pCAIgiAIvieRNp/+8eIxCxOt2da0TG2OUC2iiM2Sr80Wsc2WrzElXwsFRLQmCIIgLE+arFe/4FeUUq3A14CLy0zaDXwAuEgp9U6t9U+WPDihObGjEMzfNREx2vLCs+NZPcRoHp3bKpEoCfXHUyCzkOeQl4hSnbLdlHQwbhSVyA4b/b+3woCI0XyN1z6wmuwUykk2OgKhgNe+qHe91vVi73F+F4AcaZQ61/GLpLH3zNJiNOlM7R8W8/8+6m1GigZw7F9CYjc89alFBCMPJDUtpY4jq47nPnYYVrzCfADGn5l/OimD/INX27qhYrQy+LVd5KTg+W/C9hsgsaf89DPpPAVO/BisfxtYIoBaFngK36UnS0m8rhs12/m+IHjRezY8/4256aOPQ3YCgm31j0koj+f1ajXdY2Q+7DCcco35zDt+Ae0nv7aDBEEQBGHp8LUYTSn1KuCTRcnXAlu1ntMde3f+822l1KXAv3wJIP4AACAASURBVGP6odrAN5RSz2mta2XM/TJwW5XzHAP8oEbLFwRfoEq115uEe++9d9bwn/zJn9De3l6TvO++e/Z9xHe84x1Vzd/S0sLLXvYyfvGLXwBw//331yQuQRAEQQDQrguP/QL931+B+74Pb/pL1JVfanRYFaGU4u2nK95++sLzePQFzUuuk3tKzcY92+dLnfsczv7RuVM9eaD65RVLz7SeP2+/k8zCY3vnpqeq7Iq0nKRoAD99Gn76dCUrtcxWvGqWev0Xl//OwYXNd3Cs8mm9yo8D85QHlYoGx8o83h6f5/2dw4np/P/fE0f6cSkIgiAIQrPjuKZNNH+7aGGytVCgWKI2W6jWOo9QzXyreeeLhcG2mv8+iCAIgtD8yFP+wqJRStnAd4DXFY0aAB4FxjAPNr2Iaen/SuAHSqlXa61/Wa9YBZ9R6sGg6Nrp8SJGW1547bN6dDzzEkiIgMifeHVir2dH6HJYJWJxUhCszYOCQpVU8p9utBjNDpceX4ncTVhavPaBX2RElSIdGf2Dp/CzzvVaqfJHRHr+olRd4BdpQ7njV8ogf6D14gRRgaI+fX4SFQv1xZ3niTMwUrRGdv7yKoukDPIPnhKiKttB1U6/GPx2/GQnYMe/w9Ofh1R/dfP2nAEn/T2sfUNj/6vCEuCxP7V0YimJ1zWhZjvfFwQv+s6eP127MPgQrP7D+sYjVIhH2e0pwayQBYnR5PqQIAiCcMRR3A20RSkV01pX2I0TgBVFw7XsJv4pZp8A/ofW+hPlZtJaf1UpdRTwD/kkG7gRWIQ6YVb+h4HD1cyzHARSQvPR3d09a3hsrIqe3xUwOjr77168vGbgwQcfnDV8zjnn1CzvX/5y9qPB3d3d7N69u6o8Zkradu/ejeu6WNYiz5UEQRCEIxo9dAj+51voH30T9u+cHvGDr+NOJlAf+xoqUKLvQpOjXReGDnJabzuffFOMa+7Qy072JAiCIAiCIAiCIAhHIpkcDOe8ZLULk61FgzOEafMI1WLzithmiNZmzNMahpaQ3DMUBEEQqkee8hdqwfXMlqJlgQ8DX9VaT70jRCl1IvB14Mx8Uhi4XSl1itb6YL2CFZqEljXTv0uJ0bSI0ZoOL2FRPTqeeQkkRIzmT/wikClFqVj81on6SKIS6Vmj//flOvQ3Oj7Bu43RbB2lpSOjf/BLvaYsI7BxM3PHSd3lL0rVBX4pi0SM1hzo3OIEKcXtFj+1x4X64niI0Rp9TIgYzf94ta2rPXbqeawtRihZS9JD8MwX4dkvQGakunlXngcn/z2sOEeEaMsVL1mO9F4pjef1abu+cQjCUtF2HIT7ID0wd9zAAyJG8yuul7RxkWXTQsTW0o4WBEEQjjC01kNKqRGga0byemB7FdlsKBresejAAKXUWuDlRcllpWgzuB64Aig0Cl6ilDpVa/14LeJrZtZ1wc5Pi1ipHqzrKj/NUlIsKhsZqfIaWwlSqRSp1Oz2c09PT83yrxcHD85+dPekk06qWd579+6dNfzylxcXadXhui6jo6NNKaATBEEQfMTPvof+yj/MP+7uW9F334p+218DGoYPm/su0RiMDpjfXStQr/wj1JkX1CwkrTU8+yg89WuYjKOHD6G6VqJTCVQoAoGgiSHaCvFRaGmHzl7IpGBi1KS1dprrjLF2sAPgupBKwNgQemwIDuyEvTvgwC5ITQJwdWsHb1PreaTvVWRPOpvoOa9nMmcxGIeABeMpeHyvJhI0HZ1ftB5cDavaFbZlNodSpuP1QFwTtCESAEfDRApCNhyegMkMhAMQtCEWNt/7RkyH6FgY2iOQysFIvuP2//lBc9zrspTZHoIgCIJ/+MA5imsvVAzG4Z/u1uwd1gQs6IopgrYRcWjAcU0ZHrBgfTes7YSDYzAQN9OcsBLWdiqCARhPQjwNg3FNOgepLNiWeZOBUqY+UMrkFQtDOgs/f9bUk7YFqazm0Dj0tZphS4FtKQI2rGiHFW0m/3QWAjb0tprYfvQ7TTQEK9sVHVH4zW5NNAhvOk2xvluRdUz9e2jM5NvXZmIIWGbYcaE9qmiLmLo3HIDVHeb3YNzUz1lnOibHhXQOBiY0QVsRDZnfh8ZNjB1RRSxk1jEcgIwDyYzZXp0t0BOD4UmIp0z8hW0TC0/HpLUZt6INklkTQ9A2bYGgDaGAme7J/TAwYeZtCUE0ZPIfnYSca6bV2sR/y8Oae7ZrhuJm31oKOqMmn3DA5BkKmHZJKKBwXIinNcmM2baRINi2mW9jDxzTB7GworfVLKM7ZrZLIm2W3R4x+6uw3caTsHdEM5wwca3uMHkentBkcmYZfW2m3dOef/QtYJvjJ5k1271/HJ46oIkEzfZZ3aEIBczynzus2T9qYvjWrzRDCThuBXS1wIYehaWgf1xj5dd3XZci50LOKRwDcFQ3xEJmOVnHHAdtEbMPhxNmfTqiZhtNpOCxvZqHd8GhcRO3paCn1eSRccyx7GpIZOD4FdAZUwzHNWNJk3/OnW7/hQMm/6EErGjVtEYUEymz3FQODoyabfmqE6b/m1MfPXu4sP27Wqb1PVoX/c4fY5oZv4u/fTJOM//0giAIfiOZNZ/DE/ON9Sq4vAs0pYolarOFarE58rXCeOU5XyggsjVBEITljk960grNilLqaOCyouS3aa1/UDyt1nqbUuo84F6m5Wg9wMeB9y9poELzEZ0hRlMlxGiuiNGaDtej41kpAV6t8OpA4tXhRGgsXp1vygml6omI0fyJVzkzk0aLx+xw6fGVrIOwtHjWV012CiViNP/gtS8W0kF1sdhREaM1A6WEDX65aF/u+JUyyB8s9r8dKNrPixUTiayleXE9xGhWmbbtUuNVFkm95h+82tZVi9HqeKw1+vhJHoSn/wl2/Bvk5n11mzdr3wgnfQx6z1ia2AT/4CVGYxFC1COB5XK+LwheKAV9Z8G+ObdqYfCB+scjVIhH2e1Z1lfIQs7f5FxeEARBODLZDpw1Y/hYqhOjHT1PfrXgtKLhnVrrXZXOrLVOKKUeAs6dkXwGcMSL0QK2YmNvo6MQ6sHatWtnDR86dIihoaGaCMyeeuqpsstrBoaGhmYNd3XVzmZXnHctmJiYEDGaIAiCsDjO/2P4t6sh43H/G+C2L5bMQv+/m+FDN6DeUdyNpnp0Love+k742fdmpxd9LwnxMY7lCY6deAJ23giJt6I++hWIxirqUKxzORgfgmTcXJseGTDStY5e82x+Mg72CCQmIBSGjh4jcItEIZeDbGZK3kZyHCYGIZ3i6hMP82x2Jb9yNnOo92RWbd7EsSstOqNGsnFo3Ag0osFpWUosZKQdGiNp0Ri5x/5RIynJ5IxcI5R/7OrgmBGiHLtCsaLNSGgcDU8fhH2jmjUdipcfbZY3OmmEL4NxiATNtCHbSE3AiD0mMzCWNJ2yO6Jm+em88KUrZjx1BZnOSF7qclSXkYU42kw3lJfx/N9HNFt/JM/WCIIgVEuQLFfv/Dg9n9hGz/gIXwmGIBiCYBjiYzA5bn5n0+YZxnDUDA/sh5Y2kx6JmZfQFuyfw/0mcztg2g7hKERbIBQ14zt6INICI4chFMkvL8R7O3pNHsk4tLShNm6BjZtNXZnLwuggenwYUhr6C5YkDUz//nAgb0kayhnLVcCGkSH4wbCpZ7U2FQz572jMxHlgF/SugeFD0N5jrF9ODlYcZUSpuSxrXdesZ3s3tHWCZUMyYerrcBQS4zB0CBJjZl27VsDgAdj3nNker/wjs6zU5PQ2CrewEqC1HeLjRirrZDEKMMz2KnxCUTrau8w2beuEWIcRwSbjkE1zSiBk5k+Mm/bCxAhkUnTlsmZd27uNINbJcW0wzLWtHWYdQxGzXq5jpnNn/nbAcaAlBl0roWcVjMyIDUweKLOP4qP5/DTseMxsg2NOgfFh80mMm22glBHTKpV/ebll8rAsE3sgaI6LwjEUyBvPHCcfm8Nm1+GVuZzJN5UwMtxkHCyb82NtsO5YOOp4Pn/GOujsM/vIyZlPLgt9SdPeau+GFWvNcTYxYtZbKZjIx5PLoUcHYdew2eeZtFmP8WHoWwtdfSafkX7zUtEV7SZ+yzax2gEIKBgahtFBM3wwf8yOHDbrm0mb/R4Mm+PDts12SSXM+EiL+b+5rjlWUklIJ2Gvmt6GSpll9qwyyz3rdai+tWZ9Xcd8a40eGYDBg9CzEtW7xvwfC8dboRWti75n/Z4nrdrpZj0PXSKPUtPNM712NS7K/M0BjcJ1NRplhGpuPq0gVMuna62mZGxT06DQ+XnzJQauzuetFVrr6em0NmkwvXw9+/f08hQaPZ1XPs0sd/Z00zI4NXvczHjzy52afuZ3fvkzpyuOc/Z8am6ezIhz5jrM2H5m+ul8CmlMza/QloUVsAkph925XhI5m82hfgKWNsJES2FbCluBbSssy8gwrfzHthVXbPN+rrM7mKLLThEOaCzbJulYrAoniagsGRXG0ZBzNBuicaIB1+wzRzOSDTGci5JIQzAArrKxlSZsa1ZEUnQF0uQIEM1N0J4bIaMDZCbTuOkUTjCKG4zgpNOMpgOM2e1MEiHkpFin+2kJwZ7QBgZ1B0kVoT/XSjpnDqZowEEDm9rSqEAAhSadcWmxsqyMpNnUMk5YZwjbmmwmSzYYI6kihFSOaEDjBCL0xjSR9lYCTopQNm72w1A/dmqC5+Jt7E628mJnG2sy+4mPJ9keO4XDsY1sWhWkw0oRJkPYSRAeOUCEDOEghMMBtLJIBDuJuyHiToi4EyTuhJjIBc1v1/xOuCEmcoXxQSacEGktzxEuJVobEedEyohpi8aWmtNzTACHVjtDm5Wm1crQapvvoHIYcyKMu1GUbdETyrCqzWFdKM6G4DDtgTSJlhXE3TCZeJJuZ4icCmJForwwbrM5OkRrSLNvRHMwtJZwOEDOVeS0heO4ONrCsYM4KoDjanKOecFLKylaoxYHnQ72JyK0B7O84eVtvPsPgthWZX3BdGLc1IeFdkogBKOHzW87aOroQN7JkBg3v13H1LV2ABWOorWeur6jXdfU+WODpv4NRaC9y7SpEuOm3s5lYfVG094Y6YfJuKmb9z4Lh/aYunzL6Wb8yqNQsfbK1kVrM28wBJSX2OlczrQhtEZZFtpxYOgg9O81bYpA0GyDjm5YdxzKlpciC8KRgNTOwmL5ODDTZnTzfFK0AlrrpFLqXcATQCif/B6l1A1a651LF6bgT0o0XmaK0UoJs0SM1nx4Ch7qUCV5LaPRgiRhfrw6IS9WxFBLRIzmT3QFssNGCxHLySOkXGosunDJfx7qUV/VEimL/IOf6jU7Atk5V5DlePEbXsIGP5VD5Y5fOab8wWL3Q7F0yk/tcaG+OB4PhtdTVjXv8j2OSZ0zZamIbhqP1/lNteWJFSo/Ta1olBAkvgu2fxae/6a3jHA+lAXr3wEnXQ2dpyxdfILP8JDlaBGjlcTrupHXSzUEoRnpPXt+MdrEc/WPRagMz7K7EWI0OZcXBEEQjkieZLYY7Uzgh5XMqJSKAafOk18t6CwaPrSAPIrnER2YcERx1llnzUl75JFHeM1rXrPovB955JFZw9FolNNOK/YZNh+VSFAqJZOZ52Vdi0TLC3gEQRCERaLau9GvfDPc/e1F5aP/9Sr0w3cbCVgwBLE2I3XIZKCzx8gbCvKVvBRDx8dMR07LguHDRsTy9G9rtGY14KffRf/0uwDojl5YvQGOOj4vwQgaQcnooOlEOzpohBtLxPH5zxSBoOmgC/Cqt5mOvsm4EYeEIzA+Mi0dKUhCLJvjV61Hnfgy6F1txtkB07n2qDWolrap7LXW4ORYsTFnOgUnEzBuE0nG6c5mIBOm+7knzDqv2QSbTjQxpJN0h1voDmZZlxyGXbvMfu9eaeJKTcJY2khCsvlPtNUITYbywp10EhLjbOzqgw2bOS0EsG7Jtm29CFguOXeR17gFQRCq4NP9/8Ca7aXlpo2i7mey++a7L/zQwvPb8/Ts4Z/fvvC8asHggdnDowOVzzs2CAf3VL/M+Bjs3VH9fAthbIZofuQw7HseHvpJ/Y+jpSA1aT5Qfr8NHTTfzz1edt2XxbYpotCKkqeZlh/f2XgfD0dfNid9XXYfu7cfP88cQr3JEiBhxZiwWonnPxNWK4n8t0mLMWG1Ebdi86YnrNjUfBNWG46f+gAtQ3LYjDpRRh2Pl60XSABLdymjJHfshEtvcQnoLO06TpsbJ6aTREgzqaIcsvr4/czDdOpxAtkkvzf5v1wy9m263NEFLW9K7znzekqN0a2dRs6rLMhljCw2l4WDu6cnCoWnX06Qv2aj27rMdZ7C9ZvCd0H+O3MZeZkaWe/7TXrDZtQ7r0b94cVzxjmuZjIDbREjGR1PGel9MgPtUSPSH09BT8y8WGs+UlmNAkKBuffQhhMarY0MvyVkhPm2ZfLP5FenJWTSXA2hQF5UpzUTKYjlu+EcHoeV7UawKQjC/EhNKiwYpVQUeGtR8mfKzae1flYpdTvw9nxSAPgT4LraRig0NdEZb08UMdrywmuf1aOjstcyREDkT/wkkPFCxGj+pJL/dKP/9+WOY6nfGouXjAiaT6zRKKGDMBc/1Wtey5S6y1941VV+KocsEaM1BbUWo5Xb72VZjo8gHCF4SZrKSX+XmnLnZVZr/WIR5serfV21GK3ENcKqKVMW1bsOG9sOT/0j7LmlMtl3ASsIm94FJ14FbccuWXiCT1EiRlsQjXxxhyDUi9ZN86dnFvaglFAHlkraKGI0QRAEQaiUHwOXzhg+p4p5f5/Zz2A+qrXur0VQQHEDLraAPIovjsUXGIsgNCXr169n/fr1vPDCC1Npd911V03EaHffffes4TPOOINQqI4vd6gRvb2zfYnDw8OsXbvWY+rq8z5wwHRWjkQiTE5O1lS8JgiCIAgLRb3h3ehFitEAePhuz1FN/2TEWF6A5hdx28xOvD+9rapZvfaFDkXMfTUnB65/7q/1Rs+AjT/zHP++ka+RUC08FTmJntwgMT1JRoUYsHtZn92LjUPYTbMh+wIbs3uYtFoYsrtpcycI6BwBHAI6R1BnyakAe4LrWZnrp88ZZFK18HzoaE7IPEubGyeoM1jaRaOIW61kVRBH2bhYdDmj2OQYszrYFdqIRvGa+N2cnH6KoM4SIEeOAJNWCxkVosMZI6NCOMomo0IcCqxkd3AD98ZehYNNtzPMutx+2t1x1mQPENYZVuUOkVVBFJq41UpEp+h0xngudDRJFSWkM9g4pFSEVbl+VuX6sXFod8e5s/W13B89mwm7nZgbpzfq0umMMKDbcRzNsG4j6k5yWvpxOp1RYm4CR9mEdIZ2ZwJXWUTdJAcDqxgK9BJz41jaxd5wHFasFdvNYY0exhrYi51NYeFiawcL10xH0W/tYuNCIMjqwBjJRIaArXEjbWQDLdihEKHDO7FwGbU7Cegcw3YXw3Y3q3L9tLiTWLiEdIZgKMBgoBflOqBderKDOChSVhS7s4eIypHRNvvUCrI5TXtmiEzWJUmY29rfwuPhU0hYLbS4SVr0JBE3RX9gJQOBPlblDqG05s62C6o6bm2dw8UipDP0usPEnDgtOkmbM06rTuBiYWtnarsM2j2kVRiFxtIuFi6qoxsrGMTKplHZFNFcHEtBVgVIOTbKdQi6GSatKINWj1keWWztgOswYncR1mna3DgOFk9GTkZply5nhHZ3gg53nDZ3HJSF0i5t7gRB5TJutzOouhm0u7G0S1QnCeosI3YXhwKrFvQ/DpAjrHKELdd8qxwdKkHAzZLOap5Ux3jOe3J6G63uBG0kCekMVsAiSYS4asFysvRkB4joFONWO+lgjKy26Qyk6F6/mhUtDrHMKFZmEmXbWJaFApI6iKvBSifIpjKEQhYDVg/doTRHtyXJpTJsy61lx2Q7q9Uo4YBmV6qDDivJCmucdePPEHGTBNZuIKA0oWyCqJVh8vAQWlkETjubiZWbyWVztGRGUW4OtEbnP7ianAOj4xnCbopw2CblBnCwSLs20SC0tEdp7Wgh58BkBsbTCjfn8Mg+m10TUU7uGOfn/T10hh1yLsQzFrGJAwR1lqMzu/irkX/n/MQ9C9pfgiAIglBP7t3zWto2D89Jv2Ts1gZEI8xHkByd7hid7lhN8tNAWoXnCNXM8PTvmSK2uNVKXMWYsNuIq7nytbjVivZ6flTwNTkVZFh1MWx1zRn3w8gfmh9RoP1PuXzVPwGwJb2duNVKtzNCxE2ywhlgwO5ld2gjSms6XHO+vTN09FReR2X3YmsHR9nsDR4FwOnJRwjpDA42WilyBBmz23GwcZTN2ux+1mf3EtUpwjptzke0Q1aFmLRaGLPacZRNSoUZsbuJWzGyKkirmyCjgoR0FgLwwvHrUFozHOgB4NzEz3CwmbRiuFhopViffYHe3BDrsy9g4xDSGRSaiE4zZHezJ7iBcasNWzvsD67hsL2CDdk9HJXbTw6bnAqYDwFyTgDnmza5Bw7htPeRcyHnwKFxeL4Kf27QhlXt5n0GrgtjSSNNK54mGgSlIOdCoop3oAP0tkLAgsG4mb+Y1jC89iQjVTs0Zs6NbMtI2QrLSmRMHK5rfp+yFo5ZoTg0qtk1BPtH4NDnLWyRrAnLDHnKX1gMrwFaZgz/Smv9tNfERdzEtBgN4CJEjCbMJLpm+reyzGe+Dl1axDFNRyM7nnl1IKmmw6lQP7xkPn4So5USALjSeahhVCRGa/D/3i4jj2i0uO1Ip9T2b7aO0tKR0T941mtl3kixFHjVpVJ3+QsviYyfyqFy7TIpg/zBosVoRfs5sNhyq+kf/z1y8ZR8+lyMFhQxWsPxlH1WeX6vailGK0O96rDh38JTn4a9/01V5aMdhWPfB1uugJbmf1u4sEA8H2zxT8cNX+IpH/JRO1sQFkuwY/703Li51yYPxvkPL6nlYvfVQsTW8qIFQRAE4cjkJ0AS85g5wJlKqc0VPgf3rqLh/65hXAeKhk9QSrVorSeryOPFRcOHFhmTIDQdr33ta/nqV786Nfytb32L66+/nmBw4dcbBwYGuOOOO+YspxlZvXr1rOFt27Zxyimn1CTvlStXTonRUqkUL7zwAhs2bKhJ3oIgCIKwKF70Sjj1bHj8gUZHIjSSjD+fa1qV83Zt/37ifr506LI6RrM4guTocMenhkM6O3VbvM8Z5JT0U1wYv7PqfFcky/dsfn38x7w+/uOq8y7m2OzO2Qnb71tchvnHJ1oLv+NzT/F7nSEAOt0xjs7unptHGlanJ2YlBYGIk4SB4anhE3huzqynDDxVcahpFWJ3cAO2dtiY3YONYwR1booAOeJWKy3upBG+LVMG7R6eDJ9IjgCtbpyITk9JByJuiqhO0erGieokCRUzYkKdxqrg+Y9nQsdxd+w8RuwuVucOcW7iPo7J7lp4sDsWPmvFeB0+v6vDsgVBEARhmRDVKe7ffQ5vXncbg4E+AN48fjsfG/xMgyMTlgoFRHSaiJOeausvFhdFUkVnCdUK34ki+dqE1UqiaJppMdt0WtJqKb9goSFsD28BmBKcFXOQ1XPS5pv2kejpJZezN3gUD/HyBURYmp/Fzp2T9mjktKrz2RE+rvQEB5h7d70Ksg7sHSk/TXYR3dIHy7zCLJ6G7/5vdXn2j8M922efg+4fgfU9VQYnCD5HnvIXFkPxkxz3VTHv/ZjLuIVj8EVKqZU1fGOm0AzkEt7jWtbMHlZB0POoU10RozUdXoIHqw6dW706t3nFJDQWz073fhKjBcxxNV8nbxGBNA63grPLRovHynVIk3KpsZQ6PqwmO4WSjoz+wU/1mlcZJHWXv/CUyPioHCp3/Ipszx8sdj8UCxwX0rFeWB64Hq+0afQxUWr5Ug75A686rdp2UD2uHRVY6nbR4fvhqU/BwZ9UN1+wHY7/azjhMoj0LU1sQhPhIcvxkusIBs92tsdLNQShGfESo2kXcnFTnwj+wlPauMiyaSFia7k+JAiCIByBaK0nlVLfBf5sRvJHgXeXmk8pdTzw5hlJOeCWGob2ODACFF4ZHsnH+JVKZlZKvQFYW5T8y5pFJwhNwmWXXcbXvvY1tDadAgYGBrjpppu49NJLF5znjTfeSDY7/dxiLBbjve9976JjbQRnn302t91229Twfffdxzve8Y6a5H3WWWfx6KOPTg3fddddTbudBEEQhOWFUgq23oJ+x2ZIy/N1gr/YlN3Nxsxudoc2zhl3YqYSf7cg1IawznBCZrZtq82Nz/t7udLrDHHO5P0VTduqS/SPm4cTMjvmbF9BEARBEI4Mzkw+zL4dR/O7yKmszB1mXW5/o0MSmgwLTUxPEnMmWekcrkmeDtaULC1eJFcrlqiZ9NnytbjVSkLFmLDbiOe/sypUk9gEQaiOXYMiRhOWHz7qTSs0IScXDf+q0hm11gml1BPAi2YknwSIGO1IIllCvRotei7PCs7fAVfEaM2HV8czL2lZLfGSSDRakCTMj1cH9kZ3ui/GjpjOZMVI56HGUcl/utHiMTtceryUS42l1PFRj/qqlkhZ5A+09pbJNEKMViw5KiAiPX/hVRb5qRwqd/zm5JjyBYutC4rLjMWWW7r8GzEFn+J41WVl2rZLTaljUtpCjUe73pKmqsVodbxBvhTHjtZGhPbUp2Cgyj7I4T7Y/Ldw3F9ByEN2Ixx5KBGjLYhmaGcLwmIJdXqPy4yJGM2XeJTdXmV9pZS8n6KAec7PpA0tCIIgHLlcC1wMFMzs71JK/bfW+o75JlZKRYCbgJkXLL6htX6+1EKUUsUV8Lla6/vmm1Zr7eSFbTMtQtcrpR7QWj9ZZjnrgX8vSn5Aa32w1HyCsBw58cQTueCCC7jzzjun0j760Y/ypje9iZUrV1ad37Zt2/jsZz87K+3d73433d3di461Ebz61a+eNXzLLbdwww030NbWtui8X/Oa1/ClL31pavjrX/+6iNEEQRAE36B6VqHuGUVvfwR9963QxJW0ZAAAIABJREFUv3f2S3lzOdj/PHT2wbZfg1PBC3trybGnglIwOQGTccikjMQtGIZIC8RHIZuZnj7SAqlJM0+0FSIxsCywA9DaAUefhDrqOFh3LDg5OLwf/bVr6rtOQkUo4IuHLufC9bfPGXfJWC1d3IIgCIIgCIIgNIoADi9JPVp+QkGoEzYuHe44He54zfLMECwSqpnfiXnka4X0cvI1d7EvmRSEI4Cdg5pXnqAaHYYg1BR5yl9YDFuKhp+rcv7nmS1GOxH46aIiEpqLkmK01bOHreD804kYrfnw2mde0rJa4nXSo+t8s1qoDK/ONwEPmUujEDGa/6jkP93o/70lYjRfU2r7N1tHaRFd+YNSdYKXpGwp8ZKQSN3lL7RHu9lP5VA5oY2X6FaoL74To0k7p2nxknyWa9suNSJG8zelzr2qFqN5XB9cCmp57GgX9n4fnvo0jFT5IEvLOtjyETjmLyHQUruYhOWBpyxHxGgl8SqX5IEZYTkRLCHRzI4BR9UtFKFCvKSWixajlRDLhrogMzw3Xa4nCoIgCEcoWuudSqkbgStnJH9XKfVh4Kta6ynjgFJqC/B14KwZ0w4Bn1iC0LYCfwoULtR2Ag8qpT4GfFNrPTlzYqVUCPhj4HNAb1FeVy9BfILQFHz+85/nvvvuY3LS/GVGR0e56KKL+MlPfkJra2vF+QwMDPDWt76VTGZaQrJ69WquuaZ5pSInnXQSr3zlK/n5z38OwPj4OFdffTX/+q//uui8L7jgAo455hief944Ix9++GG++c1v8hd/8ReLzlsQBEEQaoXacjpqy+klp9Gui77yQvjNPfWJaeutqHMvKjuddhywLJQyHR11OgmhyNRwWVZvQP/TZUayttRYFrge10EjLRCOQs8qCEXg6d8ufTw+54LEXXx/79u5dPWXGAz00ZMb5LOHr+as5K8bHZogCIK/CUfhlDONSLRvjRGFatfUQeEoKhID24aWNpicQMfHjBg1lwXXQXWtABQ6k0K1dhi5qOtCIGjEo5mUkZamk6A1enQAsmlAmTpMKUjGYegQvPAM7HlmdnwdvRDOPy/V2QfdK8z9QKVMXYkyvwsflIk/k4JwC7R2QlcfKhSenk8p9NgQjI9AcgLiY0aMatkmFq1h7w7zu2cV7N9ptsEr3ggbN8PEKKCNcDWVNL9bWs16B8NmGU7OtINiHSaPzj4IhSGdgvgIdOfF845jpm3tgFgHqrXdbDet8y/U1fntNmiEruPDkMjLV4JhiLbA2LDZJx29qHXHmG3f0Wu2T/9ek38wZPZ1IGjSM2mTlsua9bZts31m/rZtGB00y06MTb/gd+rbNdsuFDHxR1vNsgYOwOB+GD4MG7fAinVm3Q/vN3nG2lGF9dfabDftguugJ0Zh6CC0dUIgZGS33SshYPaPsuzpGC3LxJlMQCQK7T3mWOnfi37+CXj2MXNcoc3+LXyUBYf3zj7OAkFYedS82x5lQXu32cfjI5BKmG2/Yq2JLxwxx1qkxaz/6ICJKdpqtkswbGJuaTX/o0zKbM+OXlRvvi/w2JCZPhCA7lVmmaGQOT7Ghsx+yqSm91t7t5m+EKPron/4Ddj+iDkWIjHIZcz/rqXNbMNQJL/dbBNfenK2NJgZ7eFC23hmG1lVOp2aPd1842a1vRc4XalllptuqfKteF2K56tDbEu9zvNNp5Q51iZGTPkVjppjMhw1//FC+ec607+nhnNFn/w0EyOmbA4ETfp8Lx4PhU0ZOD5slgfm/5mvh4jGTJk8ctjE1bsGYm1wcI/5nxWItZv/YvcK6Flt/p+TcfOfPLQHNmw2/8fEuPmvbzzRlAfBEBzeBz+fK22uiEJ9FgxPxz9zXCUvWw9FTJk2eNBsrwLRVujoMdsvGDLbpVBv9e81ZYvt0e+m1Dmz17iS59kLmGdB42ocd6XXDhaxnBDQrRRzXyszmf8MVpWf1pBSYSZ0lDgR4joy/ZsW4npmWpSEjpDNaXpSB7BzaYacGM+oDfxv5EVopYi5k7TqSRIqyoTVyqjdNWeZvbkBbFzGrHZiboIXZZ8kqDPY2iHgmm9bO9jKxVIwrDoYsToJkOP54DEcDK6eZ00EYWnZ5fHXEoRmxke9aYVmQinVDXPaIi9UmU3x9MctPCKhKUn1e48r7ujn1fFx580w9FDNQhLqwMSO+dPrIXjwWkZuEh79yNIvX6iOxJ75061FihhqjVdH7p03w/Bv6hqKkGf0ifLTNFrIUU4AMLlfyqVGkp1HdligHiLPWnLgTshNNDoKwfEQycDiBUMLwWuZB34snV/9xOiT86f7qRwqd/yOPCb1mR/waldXSvF+Xmy5Je2c5uXwL+ZPt30sRtt2A0RX1i8WYS5uiXOvRorRyj1QceBOyNXgrWfaNXmNP13dfK3Hwkl/Bxv/DOwSQhPhCMdDljP4a6lrS+F1zuMnAbEgLJZQCTHaU/8ILWvqF4tQGWPb509frLSx1EOMwbb5xWgD9y9tPfJ715sH1AVBEATBn/wdcBJwQX44CHwR+D9Kqf8FJoCjgRczu/dBBniz1vpgrQPSWu9TSl0C3AYUKtG2fFw3KKV+CxzAWLJXAacD81me/l5rfX+t4xOEZmHz5s188Ytf5D3vec9U2oMPPsgFF1zArbfeyrp168rmsWPHDt7ylrewfft0+92yLL71rW/R19e3JHHXi2uuuYbzzjtvavhLX/oSmzZt4oorrqho/rGxMcLhMJHI7Gu+gUCArVu3cskll0ylfeADH6Czs5OLLiove5nJPffcw9FHH83RRx9d1XyCIAiCUAuUZcENP4D/+U/0U3kxVTRm5AsFscP4MCQmTOfxsSHTsT0xAQP7zL3JQNBMGwgamUNHD+z43ewF2QHUp/4v6uzXVxaXPfs6mwpX94JO9YcXw9mvh0MvwM4nTcdxrc26ZFLoHb+D/c+bDvMdPSburhWozl7TOb8z/4m1mw7/yjK/hw9DZw+0dZltFGlBKYXO5YyELZMyHdaDIQiGUeG59431ru3w65+gD+9Dda9E73wKxgaNPCASM1KWaMzElkkZmYgdADtovlMJsx92PGYkJ37GDpjO/snZz62+Mf4jLtzxIw4E1rA6dxCL/D3uQNBIQQJB87ED5tgaHSgSgsygs89IS5Q1LWSolIJoINZhvgNBc413T5X3wAvMFCCEwmafFdJdxwgdCkRaoKXd7OOO7rxQKGr2aVsn9K01x2syAYMHpiUrrmOO533PLSwuQRCakze/D+vDX6hqlgVoR6qaThfqVdeFjh7TplgCFqA1aSiNjLeey67VsirJR7uukQ7lMhBtQwWa+xkY9eq3NzoEQagLOjUJgRAqEEAPHjRt0oJsMZkw51Iz6g6t9fS5lVJzzglnTsfAftN271pRuTy7VKwD++HALiN6jMbybfU206ZPjJtzkYK4UlkmXVlG5lnII5c1UriZYsvEGIwOmnPJjh6zDUIRc46TGIfWzqkyTWcz8Nzj0N4Fa46uyXoJzUcs/1ko2nWnxKAq2DcrfTKjsSwLSwHZDKGQBfQaAWe0BXT0/7N35+GWpXV96L/vqTo1dA1d1d3V88xMM2iDE6IQwAkjoBghqKHVaKIxN0aMEUwuiT5ouKKJCRi5EUGJKFeUSeMQEFAwDtgo0LTQDT0ATTc9VHfX0F3je/9Yp6rO2Wfa++xh7eHzeZ71VK111vDutd/zXfu8e+3fTtl05r2UenyhAOL8ljNF648eaQqj7rs0eehADt7xqfz+Xx3KnQc356qdhzM/dyIHj2/OgWOb88DR+Vy//+z87f492VxO5nidyyce3N3Ho4PGLV88kVXvMYcJNdl/4dCmPR3zh2uth3rcxxc75te4S5+ZV1b54OMdv9dMTL5RFHhY7cNt9Xhy42uGf3wGo40CMmtZrVDbF/6gmRhPa304fxTWKx5x9D65NK4m7YPS9/5lMzG+2ij4udq19L6/VtRzEqz2t1Eb1vuA9sHPuJ5Ng03b157v1bH79YtpMzfGhdFuffPo2kHvei6MNsICYff+RTtfxrDnicnjX5Fc/o8UDGF9q93Y88DHm4nejFMBYujXpm3NdfPkCh+Auu0to28PfRjiDUqrvRa7/2PdffnIRj35Z3KmpgsAjJda64lSynck+ZUkL1r0o/OTfOMqm30xyUuHWXSs1vr2Usrzk7whyeJvAdie5OnrbH4oyU/UWl87rPbBpPje7/3eXH/99Xnd6153etkHP/jBPP7xj88rXvGKfOd3fmcuu+yyZdvdfPPNedOb3pTXvOY1OXJk6RdivfrVr15SUGxSPetZz8rLXvay/PzP//zpZT/2Yz+WD3zgA3nlK1+ZpzzlKcu2OXnyZP7yL/8yv/Vbv5U3vvGN+ehHP5orr7xy2XoveclL8t73vje/+qu/miQ5evRoXvjCF+YlL3lJfvRHf3TFfSfJiRMn8tGPfjTvete78ta3vjU33nhj3ve+9ymMBkBryubNybd8b8q3fG9P29Xjx5JaU+ab9zpPfZD91P+bok4Hk/MuaaWARTlrV3L1Nc3U+bON7vTsc8/8f/OZ+5zK5s1NIbVu2nXV45KrHne6Df183L0eeehMMbDjx5MH701u+2TzgfyzdpwppnZq2jzfFLirtfmg/4H9TaGR7TubfTx8uPlQ9LGjpwvdZOv2pkDA7r3N/++7qzn4qUIBW7Y1xeCOH03uuDXZtr05zu5zUrZub/rC/Xcn93yhOfZFVyWHHkw5fjSX1toUBNi6vTnW9p0rFgA4XSRhoTjaqT63bL0TJ5p+d3iheMHe85vHfargwuGDTRu2bG8+3L1GEZ96YH9y+6eaPrzj7KYfbVk4d8eONudr83xy9OGUnWefbmdqTU4cX9bGWmuy/4vJ4QNNu87a1Vexg3rnbcnffaj5QrNjR5u2bdnWPCdbtyVbz0r2XZycd3FzDo481JznA/ubIg0njjUFGT7656m3f6p53stc817+pk1NoYcdu5PHf1my94Jm/VP97NS2Bx9oigRu2doUbjvyUHLk4abQxalibAf3JwcfTPbuS65+QtPegw8kB+5vttt9TvP8nDje9LmjDzdtmJtbaM/Cv4cPNNvVk822u/Y0heW2NEUIc86Fzf4euLcpZpE0+9u2PTlxMjl2pCleePJEctGVzT5Lac7JFz/X7P/Y0eYxPHy4KSZw+EBy1eObgoWb55u+cOhA8/NzL0h27mnO81xJjh1r9n3q92v/F1N/6780bT52pDne7nOaYiD7Lk45+9zUAwvFFE+cSDlrZ1Pk79wLlz7RRx9uzul5FzaP98F7m/mzFurGL/Sl3PXZpr0H7m+Kdmw768zzvlB4JOdf2pzbv/rjpiDj9e9vHtupfnj8WNM/6snmsaQkF13RFO3bu+9Mcb3tO5tz9eB9zbG2bGv2v21H87v38OFm+YkTzeM/+9zkysel7N2X+tmbkh27Uy5e+Nvn5ImmnQ/c0/zs7z6YPPFpTbvf89Yz56GU5rGee1Ezv3nzmd/HUzbPNwUFHz7cFCF56FBTdHLX3iZnjh5p+vauvc05S5rnfv8Xz+z//Eub/dz8sabgw1rmFvpQmTtz/k5lZq1N/6snm3Y8tMaXmq9UuHDnnqaPHTuanH9ZU1T0Rf9q7fa0oJSy9LoIQ1Lm5hayvZ9SMcColW1nnfn/eRct/eFZy78D59Rr4/X+diylNNfsASr7LmleR6zk1OuG9fZxqrjzKVu3NdM5K3wB9vyWZX8/lvktyeOe2m2TYUVlbm7FPlvm5rJj8a1U84s+H7F55WJlze/i0t/HsmVr8/dUkuzam12P2ZsXP6b79h07XvORzyYf+FTNHfcnO7Ym+3Yl9xxMDjyc3H0g2b092b0tufq8ZNt8ctt9yYdvrfnTTyXPflxy1Xklj74geeCh5Of/uOboieTYieTyc5LnPblk17ZmP3c92Gz/mAuTHVuS2+9L7j2UHD+RHDmeHD1ec/xksnVzsm2+ZPf2ZMvCLV/n7EjuPpjcek/NFeeWXLC72W7/4eTSvclr/6Tms/uTay5OHrkvOXdXySV7kpM1+fz+5PP7ax4+3vwpeuJkcuhIUpM8dDQ5d2eyb2dyyd6SLz5Yc+u9TbvO2ZE87sKSreVoNv/v38jmeryZcjybTv//xOnlZ9XD2VKPZf+mPXn0kZtSUnOyzOXiY3ekpGb/pnOS1Jx18nAOze3MgbmdOVq2ZC4nU1JTUnOo7EgtJVcdvSXb6sM5Urbm0NyOnMimbMqJfHHT+dleH8rFx+/I9pMP5ViZT03JWScPZ0uO5XDZnrs3n58Tmcu2+nAOzu3MiWzKyTKXvSf2p6Tm187+7nx4+1Oy7/g9ueD4XTmrHs6ukwdz9on7s60eycNla847cW/u3HxhDs3tyI6Th/K5zZfkZJnLkbI1O04eyomyKXtOPJCrjt2Sq47emid93/+d5BHddzyYAO7yZ6M6X1U/tIF9dG7T3avfNZRSzk/S69fvSfZJMDdGH/5nOEZR4MEHSqfDuBVGG7f20J16ot3jt1EIicHwQWkGrY3rSL9FjWiXHGLUlhVG8zqGDm33ibK5uYGunmy3HfSu17+Lpnl88NyvSK75yeSSf7h6sSvoVHyb10CtV/QXJs2WPcnDnd9RxcQZZjYZHwKAFdVaDyZ5cSnlbUleluQrV1n1viRvTfLKWuvdI2jX75dSHp/knyX5vqx/v9tdSd6c5LW11tuG3T6YFK997Wuzd+/evOpVr2qKLiQ5cOBAXv7yl+cVr3hFHv/4x+eyyy7L3r17c++99+a2227LJz/5yWX7mZ+fzy/+4i/mB3/wB0f9EIbm1a9+dW6//fb89m//9ull7373u/Pud787F198cZ74xCfm3HPPzZEjR3LnnXfmox/9aA4cONDVvn/5l385+/fvz9vf/vbTy97ylrfkLW95S/bt25cnP/nJOffcczM3N5cHH3wwd9xxR2688cY8/PDDA3+cADBqZfPS9zgXF3k6XSxFwZShKls7xkL37kuueGz3O7hgefHcdS0UAVtm0/bkqsctW1xOFRzae/6ZhYuLAKxWgKBzH1m9INrp9TZtas7B3lU+dtVlUYMkKbv2Jtd8xUqNaQocnLJl66IflebnK3wxWimlKYqwUmGEDSgXXpFceEX3G5wqTLH7nKXLL3lEX8X5psKAnpMlrnxcypc+Y81VBnreL3tU9+te8+WtPedrHXfZz17566n339MUSTvngnV//zfq1N/PnYUKa63JPXckn/l481mt8y5JzruoKey2RlHFFY9x+EBy9+ebInC79i4UVCtNsbuF/5dSmmOePNlkGQAATJn5zSVfflXy5VcN5i+Sf/MNA9nNWB231q2pv/WjTZHsKfDNB/9w4PssR74tyucwbXyalo3qLIy2katHZ2G05SWMe/dDSV45gP0wCnuvTfZfv3z5Sh+o3XzW8mVMl1F8kFohoumwecy+wWLc2kN39q33xdlDpt9MLtcSBm3zIP4M6vWYMmiitV2AaLH5PW23gFHozAwZQqe2x2xKSTbtSI539wEsxsj87jS3bdb11mxsXeP7MDbvSI4fWr58tevmrh5ueB2mC56dXPOK5IJ/oCAavZvbuv46dG+cXmfDIGzZqzDaNNjUZ9ZvO3/1n+24Itn/t/3tHwCmWK31bUneVkq5Ksm1SS5OsiPJnUluS/KhWuvRDex3wwMAtdb7kvxskp8tpVya5ClJLkqyJ80gywNJ7k7ykVrrzRs9Dky7n/7pn84znvGM/NAP/VBuuumm08trrbnhhhtyww03rLn9tddem9e//vV56lOfOuymjtSmTZvy1re+Nddcc01e9apX5dixY6d/dscdd+SOO+7Y8L7n5+fzO7/zO/m5n/u5vPKVr1xS8Ozuu+/Oe97znq72sWOH96gAAAAWK4uLKA7rGKvcz1JKaQo3dlG8cd1jnLWrq6KVpZREUTQAAJhZpZTUCy9Pbv9U200ZX5+9af11YML4OnkGpctPr/W9DdPkEd+38vIv/3+XLzvvq4fbFtq3bwTP8TnX+sDgNDjvaW23YKm2C2yxMY97WbvH128m085HJNuH8K1n/XqCusATa/djkm3DvylhGRk02cbpb6MdlzX9mOm154nJlo5vsd12frLr0e20h/E0DteV87+m7RbQq63nJXuekJz7Zd2tv/PqZPcaN0A+9bW9Lb/iRcnc/Mo/G4VLnpd8/V8kz35PcuGzFEVjY8ZtjGySbdrWfJELTJN9X9t2CxiEfrN+z5OT7St8GGXHlcnVq7xPCwAsUWu9pdb6O7XW/1Zr/U+11jfVWt+3kaJoA27X52qt76y1/vJCu3621vpLtdbfVhQN1vec5zwnn/jEJ/Ibv/Ebefazn53Nm9f+jumtW7fmW77lW/LOd74zH/7wh6euKNoppZS88pWvzCc/+cl8//d/f84555w119+5c2de8IIX5B3veEcuv/zydff94z/+47nlllvyEz/xE7niiivWbc+uXbvy3Oc+N6973evyhS98IV/2ZV2OJwMAAAAAADCdvvYFbbdgrFVF45hCpVa1qehdKeVJSf5u0aJ7a609faK/lPIvk/zXRYt+t9b6wj7b9R+S9FUZ4uMf/3iuueaafnZBt47en7znmcn9i7rSOU9NnvP+ZHPHt/s9cGPy3mf6dvtpdfmLkq9+S1JGUK/zhv+U/N3Lh38chuMx/zp5yi+03YqlDt6SvOdrk8Ofa7sldOuyb0+e/tbRZM5qTjycvP+bk7v+pL020JsylzztLU0BhXFz+PPJH3xJcuSetltCL8qm5Kt/M7n8H43+2MceTN77nOS+vx79senPtguT53wg2T1GRaluf1vyoRcl9WTbLaEX83uSbfuSA2t8E0jZnHzN25JLn7/8Z7f9f8mHXhw178k5T0me9d7lBfRG7e4/T973Dcnxg+22g+59+euTR/5AcscfJn/6/OTkGp8lLnPJV/3P5Mp/vPo6K72+Wa9/fuynko+NsMhwmWvGwK55eVN4Evp17EDyJ1+X3PuXbbdk8j35Z5NrfqLtVsBgeV9t8m09N3n2+/p/3fCZX0v+4nty+u+3Mpd81ZuTy16YvP+5ox+jfvHRdgvUzpAbbrghT3jCExYvekKt9Ya22gMApZRrknz81Hy/9+gdP348N920dIz7UY961LoFrmAlhw4dyt/8zd/k5ptvzt13352jR49m69atueCCC/LoRz861157bbZunb0v4zx58mSuv/76/P3f/33uueeeHDx4MDt27Mj555+fxz72sXnSk56U+fmNv76/5ZZbcv311+fuu+/O/v37Mzc3l127duXiiy/OYx/72DzqUY/Kpk2bBviI2iW3AAAAAAAA+lMPH0z99y9O/up/977x1u3Jlm3J9p3JvV9IThxvls/NNV90fuoz58ePDa7Bo7JzT3L5o1Oe9tyUl6qjMQruzxsdhdHYkFLK1Uk+vWjR4VrrjtXWX2UfP57k1YsW/Xqt9aV9tuv8JPt63OwRSd55akZhtBE7cm9zQ/7+65O9X5I86oeSzWetvO7BzyS3vDm598NJfOh+KszvSS58VnLVS5O5Ed7g87l3JZ9/d/LQHaM7Jv3Zui+56BubgkSltN2a5Q59NvnMm5oPYNcTbbeGxcqmZNsFSWpy4mhy/tcmV790PD54dfyh5NNvSL74geSO30vmtiX7ntZ2q1jJzkcml397cv7XtN2S1R2+I/nUf00+sfDy+oJnJ5tm78bsibHzkU1BtPOf3l4bjj3YZNDdH0pOPNReO+hO2dQUkb7qu5OdV7XdmuXu/lBy61uST/+P5jX+ub6tfXzNNX97n+pLn/m15It/2hQs37rvzLVj16OTy78j2fdVq+/qix9MbvvN5KZfaubPeWqy7fyFw8wnB25OHlg0nrvrUc3EdNi0Ldn39OTq70m27Gm7NY37P5bc+hvJ/R+Pon1j7KzLk8u+Lbno684su/evk9vemjx4Y5MjFz832XpeU3yzbO7+tfjRB5LPvDG578NNUbSrr0u27F17m8++vbmGfe4dyY7Lk92P7evhrWhuPtnzJclV35XseuTg989sO/pAMyZ19595Xb8R2y9OLnlecum3tN0SGI6Dn0k+8+vJfX8T76tNkrnknGuTK78r2T2gv6Huel9y++80769c9u3JBc9olp8ao777T5PjhwZzrPV87TtH+57gDHPjFQDjRmE0YNbJLQAAAAAAgP7VkyeT2z6ZfObjydnnJBdcnuy7JNm8JTn6cLJpc/Pv8aPJ/NZkx+7k5MmklJS5pvjZqTpLZYWaBfXwweSu25Pd5yR7z2/uu/vczcntn0wuuKIppPbgfcmhB5PU5OCDTTu27UgOH2imTfPJpk1NWzbPn2nTg/uTXXuSPfuSkyeST/xV6ic/khx6IJnf0rR385Zkfr6Z37I95aydTXtrTdl2VnL2ucm+i5vjbTsrOf+yZM95Kz4Whsf9eaOjMBobUko5N8k9HYt31lq7vmO6lPKaJC9btOi/1lr/1SDa14tB33QFAAAAAAAAANAWN14BMG4URgNmndwCAAAAAACA6eD+vNGZa7sBTKZa671J9ncsvrzH3VzRMX/TimsBAAAAAAAAAAAAAAAAAAAAAAAw9RRGox83dsw/ssftr15nfwAAAAAAAAAAAAAAAAAAAAAAAMwIhdHox8c75r+q2w1LKTuSPGmd/QEAAAAAAAAAAAAAAAAAAAAAADAjFEajH3/YMf/MHrb9miSbF81/pNZ6V98tAgAAAAAAAAAAAAAAAAAAAAAAYCIpjEY//ijJQ4vmv6qU8tgut72uY/7tA2kRAAAAAAAAAAAAAAAAAAAAAAAAE0lhNDas1no4yds6Fv/b9bYrpTw6ybcuWnQ8yVsG2DQAAAAAAAAAAAAAAAAAAAAAAAAmjMJo9Os/JDm2aP66UsrzVlu5lLItyRuTbFm0+A211k8Pp3kAAAAAAAAAAAAAAAAAAAAAAABMAoWi+bsXAAAgAElEQVTR6Eut9TNJfrFj8dtKKT9cSllc/CyllMcleW+Spy1afG+S/zjcVgIAAAAAAAAAAAAAAAAAAAAAADDuNrfdAKbCTyS5Jsk3LczPJ/lvSf59KeX6JAeSXJ3k2iRl0XZHk3xrrfULI2wrAAAAAAAAAAAAAAAAAAAAAAAAY0hhNPpWaz1RSvmOJL+S5EWLfnR+km9cZbMvJnlprfXPht0+AAAAAAAAAAAAAAAAAAAAAAAAxt9c2w1gOtRaD9ZaX5zkHyX5izVWvS/Jf0/yhFrrH46kcQAAAAAAAAAAAAAAAAAAAAAAAIy9zW03gOlSa31bkreVUq5Kcm2Si5PsSHJnktuSfKjWerTFJgIAAAAAAAAAAAAAAAAAAAAAADCGFEZjKGqttyS5pe12AAAAAAAAAAAAAAAAAAAAAAAAMBnm2m4AAAAAAAAAAAAAAHSjlLJsWa21hZYAdGeljFopywAAAAAAAABoKIwGAAAAAAAAAAAAwESYm1t+6+uJEydaaAlAd1bKqJWyDAAAAAAAAICGd1QBAAAAAAAAAAAAmAillGzatGnJsoceeqil1gCs7/Dhw0vmN23alFJKS60BAAAAAAAAGH8KowEAAAAAAAAAAAAwMXbs2LFk/sCBAy21BGB9Bw8eXDK/c+fOlloCAAAAAAAAMBkURgMAAAAAAAAAAABgYuzatWvJ/OHDh3P06NGWWgOwuqNHj+bw4cNLlimMBgAAAAAAALA2hdEAAAAAAAAAAAAAmBg7duxYMl9rzWc/+9kcP368pRYBLHf8+PF89rOfTa11yfLODAMAAAAAAABgqc1tNwAAAAAAAAAAAAAAurVp06bs2rUrBw4cOL3s6NGj+fSnP53du3dn9+7dmZ+fz9yc7w8GRuvkyZM5duxYHnzwwTz44IM5efLkkp/v2rUrmzZtaql1AAAAAAAAAJNBYTQAAAAAAAAAAAAAJspFF12Uo0eP5siRI6eXnTx5Mvfff3/uv//+FlsGsLKtW7fmoosuarsZAAAAAAAAAGPPV+EBAAAAAAAAAAAAMFE2bdqUyy67LJs3+45gYPzNz8/nsssuy6ZNm9puCgAAAAAAAMDYUxgNAAAAAAAAAAAAgIkzPz+fyy+/PDt27Gi7KQCr2rFjRy677LLMz8+33RQAAAAAAACAieBr8gAAAAAAAAAAAACYSFu3bs3ll1+eY8eO5YEHHsgDDzyQY8eOpdbadtOAGVVKyfz8fM4+++ycffbZCqIBAAAAAAAA9EhhNAAAAAAAAAAAAAAm2vz8fM4777ycd955qbWm1pqTJ0+23SxgxszNzaWUklJK200BAAAAAAAAmFgKowEAAAAAAAAAAAAwNU4VJZqbm2u7KQAAAAAAAAAA9MgdHwAAAAAAAAAAAAAAAAAAAAAAAEDrFEYDAAAAAAAAAAAAAAAAAAAAAAAAWqcwGgAAAAAAAAAAAAAAAAAAAAAAANA6hdEAAAAAAAAAAAAAAAAAAAAAAACA1imMBgAAAAAAAAAAAAAAAAAAAAAAALROYTQAAAAAAAAAAAAAAAAAAAAAAACgdQqjAQAAAAAAAAAAAAAAAAAAAAAAAK1TGA0AAAAAAAAAAAAAAAAAAAAAAABoncJoAAAAAAAAAAAAAAAAAAAAAAAAQOsURgMAAAAAAAAAAAAAAAAAAAAAAABapzAaAAAAAAAAAAAAAAAAAAAAAAAA0DqF0QAAAAAAAAAAAAAAAAAAAAAAAIDWKYwGAAAAAAAAAAAAAAAAAAAAAAAAtE5hNAAAAAAAAAAAAAAAAAAAAAAAAKB1m9tuAIyBLYtnbr755rbaAQAAAAAAAADQlxXue9iy0noAMELu0QMAAAAAAAAAJp7780an1FrbbgO0qpTyvCTvbLsdAAAAAAAAAABD8Pxa67vabgQAs8s9egAAAAAAAADAlHJ/3pDMtd0AAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgNaVWmvbbYBWlVLOTvKMRYs+m+ToBnb1iCTvXDT//CSf7qNpAL2SQ8A4kEXAOJBFQNvkEDAOZBHQNjkEjINZzaItSS5bNP+BWusDbTUGAAZ4j94ps3qNB8aHHALaJoeAtskhoG1yCBgHsghomxwC2jarOeT+vBHZ3HYDoG0L4fKufvdTSulc9Ola6w397hegW3IIGAeyCBgHsghomxwCxoEsAtomh4BxMONZ9JG2GwAApwzqHr1TZvwaD4wBOQS0TQ4BbZNDQNvkEDAOZBHQNjkEtG3Gc8j9eSMw13YDAAAAAAAAAAAAAAAAAAAAAAAAABRGAwAAAAAAAAAAAAAAAAAAAAAAAFqnMBoAAAAAAAAAAAAAAAAAAAAAAADQOoXRAAAAAAAAAAAAAAAAAAAAAAAAgNYpjAYAAAAAAAAAAAAAAAAAAAAAAAC0TmE0AAAAAAAAAAAAAAAAAAAAAAAAoHUKowEAAAAAAAAAAAAAAAAAAAAAAACtUxgNAAAAAAAAAAAAAAAAAAAAAAAAaJ3CaAAAAAAAAAAAAAAAAAAAAAAAAEDrFEYDAAAAAAAAAAAAAAAAAAAAAAAAWqcwGgAAAAAAAAAAAAAAAAAAAAAAANC6zW03AKbI3Un+Y8c8wCjJIWAcyCJgHMgioG1yCBgHsghomxwCxoEsAoDp5BoPtE0OAW2TQ0Db5BDQNjkEjANZBLRNDgFtk0MMVam1tt0GAAAAAAAAAAAAAAAAAAAAAAAAYMbNtd0AAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgNYpjAYAAAAAAAAAAAAAAAAAAAAAAAC0TmE0AAAAAAAAAAAAAAAAAAAAAAAAoHUKowEAAAAAAAAAAAAAAAAAAAAAAACtUxgNAAAAAAAAAAAAAAAAAAAAAAAAaJ3CaAAAAAAAAAAAAAAAAAAAAAAAAEDrFEYDAAAAAAAAAAAAAAAAAAAAAAAAWqcwGgAAAAAAAAAAAAAAAAAAAAAAANA6hdEAAAAAAAAAAAAAAAAAAAAAAACA1imMBgAAAAAAAAAAAAAAAAAAAAAAALROYTQAAAAAAAAAAAAAAAAAAAAAAACgdZvbbgBnlFI2JXlkkscnuTjJ2UmOJNmf5NNJPlxrPTTgY84n+eoklye5KMnBJHck+Uit9dZBHmtUSinXJPmSJPuSbE1yZ5LPJflQrfXhNts2SqWUvUmuSfKoJOck2Zbk/iR3J/mbWuunW2zeMqWUq9I8bxcn2ZnkC0luS/LntdZjbbZtlsihwZBDDTnERsmiwZBFDVm06nH0j3XIosHQ1xqTlkWMBzk0GHKoIYeWKqVcluZcXJrkvCTbkxxN8kCS29Ock7vba+H4kEWDIYsasoiNkEODIYcacoiNkkWDIYsasmhl+gfQBtf4wZDhjUm7xrtHZjzIocGQQw05xEbIocGQQw05tOpx9I81yKHB0M8ak5ZDjAc5NBhyqCGHlnKPXvdk0WDIooYsYiPk0GDIoYYcYiPk0GDIoYYcWtlE949aq6nFKU1Q/kiS30vzR31dYzqe5A+SfPMAjrsvyS8luXeN430oyQv7PM7VSV6U5OeSvD/Jgx3HuHVA53FXkp9M8vk1Hs+DSd6c5BEtPt9DOx9J5pN8Q5LXJvn4On2pLpyrn0pyYcu/A9+e5M/XaOe9C331vA3se71zsN50ZZvnZoTPgRwazHmUQ3Jo8T6vHEAGLZ6ua/Mcjeh5kEWDOY+ySBZNfP9o+XmQRYM5jxPR12RRa/1jR5KnJ/nXSX4jyaeSnOw41nVtnYe2Jzkkh+TQ0M7Ho5L8TJL3pXlDY73zUZNcn+RfJNna1jlp8bmQRYM5j7JIFq20/27yZ63pyrbOzYifBzk0mPMoh+TQ4v1eOYAMWjxd19Y5GuFzIYsGcx5lkSya+P5hMpmma3KNn60Md41fsd3u1Wt5kkNySA65V6/tSQ7JITnkPr22Jzkkh2Y5h0bYP9yjt/b5kUODOY9ySA517ts9er2dL1k0mPMoi2TRSvvvJn/Wmq5s69yM+HmQQ4M5j3JIDi3e75UDyKDF03VtnaMRPQ9yaDDnUQ7JoYnvH+s+jrYbMMtTkrf0cSF7d5ILNnjcb0pyVw/H+p9JdvSw/2cm+aN1LgYD+4VM8hVpqm92+3gOJfnBET7PQz8fC+fgvg32pf1JvquF/r8zyW/20M47k3xDj8fY6O/XqenKUZ+XFp4HOSSH5NAQciiD/wP2RaM+PyN+LmSRLJJFQ8iiSeof4zDJIlk0i1k0yv6RZtD4Y2kGo9c71nWjOgfjNMkhOSSHhtc/kvzTPn6/PpnkK0Z1TtqeZJEskkXD7R99/H6dmq4c1Xlpa5JDckgODe18XDmADFo8GbOWRd0cTxbJoontHyaTaTon1/jZyHDX+FXb7F69MZjkkBySQ+7Va3uKHJJDcsh9ei1PckgOzWIOjbJ/xD163ZwjOSSH5NCQ+kfco9fLuZJFskgWDbF/9PH7dWq6clTnpa1JDskhOTS083HlADJo8WSsWg518zsoh+TQRPaPXqbNoU2PXmX555PclCZUN6ep9vfkJHOL1vmHSf60lPKMWuud3R6wlPLMJO9IsmXR4pqmuvpnkuxJ8qVJzlv08+9MsruU8oJa68kuDvMlSb6+2zb1o5TynDRVQLd2/Oi2JB9N88t3aZpf2vmFn52V5JdKKXO11teNoJmjOB/7kuxdYfnRNIPad6aplHpukqcu/HvKniRvLqWcX2v9hSG3M0lSStmU5K1Jntvxo7uTfGShrY9I0xfLws8uSPLOUspzaq0fHEU7Z4Qc6pMcOk0ODc/hNJWsp5ks6pMsOk0WrXycSegf40AW9WlC+posWmpk/SPJS5KcPaJjTSo51Cc5dJocWl9NM8B/c5o3FQ6n+bbcq5JckzP9I2l+N99bSvnmWusHRt3QFsiiPsmi02QRGyWH+iSHTpNDw2PMWhatSxadJotWMCH9A5hOrvF9mpAMd43vMGH3yEw7OdQnOXSaHBqeaR/3kEN9kkOnyaGVjzMJ/aNtcqhPE9LP5NBS7tEbL3KoT3LoNDm0PvforU4W9UkWnSaL2Cg51Cc5dJocGh5j1XJoTXLoNDm0ggnpH91ruzLbLE9JPpwz1fOuT/LDSR6xyrqXJHl9llfd+7MkpcvjXZrl1Q4/mORxHettTfJ/pfllX7zuz3R5nB9ZoZ01ycNpBjIGUqkwTdXUzmqINyf5uhXW3Zvkv3Wse2KldYfwPA/9fKS5gJ/ax4Ekb0jy7CTbV1i3JPnWNKHV2aahn4+FNvxcx3GPLvT/LR3rPT7Jn3ese0+Si7o8zuLt/mKhz/QybR7F+WhzihySQ3JoKDmU5g+u9TJmtemDHcd70yjOSZtTZJEskkVDe000Kf1jHCZZJItmMYtG1T8WjnX/Ksf63Ao/u27Yj30cJzkkh+TQUPvH9yX5+zSvv745yd411t2T5EfTvPmx+PifT3L2sM9J25MskkWyaOiviRbvy5j1yudIDskhOTSc82HMurfzJYtkkSya8f5hMpmmc3KNn40Md41fsb3u1RuTKXJIDsmhoeRQjHv08lzIITkkh4b0emhS+kfbkxySQ7OYQ6PqHwvHco/e+udIDskhOTS8/uEeve7PlSySRbJouK+JFu/LWPXK50gOySE5NJzzYay6+3Mlh+SQHJrx/tHTY2q7AbM8JfnrNFX2ntrDNj+0Qkd/cZfbvqFjuw8l2bbG+i9Y4Rfqii6O8yMLYf+RJP8jyQ8kuTZNpcBnDvAX8jc79nVTkvPX2ebHO7a5IcmmIT/PQz8fC4F9V5KXJdnR5TbnJvlEx/FvTJcvAPo4H1dn+YuB56+x/vYsf4Pxl7s81uJt3j/MxzWpkxySQ3JouDm0gbZdkuR4x7G+ZpjnYxwmWSSLZNHwsmhS+sc4TLJIFs1oFo2kfywc6/4037Lw+0n+48J5umDhZ+/vONZ1w3zc4zrJITkkh4baP+Y3sM2XJDnY0YZ/O8zzMQ6TLJJFsmjor4kW7+v9w3xckzrJITkkh4abQxtomzHr7reRRWeOI4vOHEMWTWj/MJlM0zm5xs9GhrvGLzuue/XGaJJDckgODTeHNtC2mRv3kENySA4NL4cmpX+0PckhOTSjOeQevTGa5JAckkPu0RuHSRbJIlnkHr22Jzkkh+SQe/TanuSQHJJD+kdPj6ntBszylOTKDW73to5O9ftdbPOojgvikSSP6mK7N3Uc61e72GbvaheCAQbU1WkqDS7e19O73PZPOrb73iE/z6M4H/u6DeqO7Z68wnn8siGfj1/rON4bu9jm0Qt99tQ2x5Jc3cV2i4/z/mE+rkmd5JAckkPDzaENtO0nO9r2qWGei3GZZJEskkXDyaJJ6h/jMMkiWTSjWTT087Fof6t+e27cdHXqPFy5we3kkBzq3I8cGlz7fqqjDX8x6ja08Jiv3OB2skgWde5HFq28v8X7ev8wH9ekTnJIDsmh4ZyPPtpmzLq37WSRLOrcjyya0P5hMpmmc3KNn40Md41fdkz36o3RJIfkkBwabg5toG0zN+4hh+SQHBpODk1S/2h7kkNyaEZzyD16YzTJITkkh4ZzPvpsn3v0ut9OFsmizv3IopX3t3hf7x/m45rUSQ7JITk0nPPRR9uMVXe/nRySQ537kUMT2j96meZCa2qtt25w09d1zP+DLrZ5SZJNi+Z/t9Z6Uxfbvbpj/jtKKdvW2qDWur/W+nAX++7HNydL+u9f1Fo/2OW2r+mY/57BNGllozgftda7a62HNrDd3yXpPG/d9KcNKaVsT/LtHYs7+9gytdZPJXnHokWb0/Rp+iSH+iKHlh5DDvWplFKyvC+8YZDHGFeyqC+yaOkxZNFSE9M/xoEs6svE9DVZtOyYo+gfp471hVEcZ5LJob7IoaXHkEOD87865h/ZSitGSBb1RRYtPYYsYkPkUF/k0NJjyKE+GbPeEFkkizqPIYuWmpj+AUwn1/i+TEyGu8afMc73yMwqOdQXObT0GHKoT7M67iGH+iKHlh5DDi01Mf2jbXKoLxPTz+TQsmO6R2+MyKG+yKGlx5BDg+Meve7JIlnUeQxZxIbIob7IoaXHkEN9MlbdMzkkhzqPIYeWmpj+0QuF0SbTRzrmt5dS9qyzzbd2zL+xmwPVWm9M8peLFu1I8vXdbDtkX9sx/0c9bPveJEcXzT+tlHJR/02aWJ396eIhHusbkpy1aP7/1Fr/vsttO/vstw2mSWyQHJJDgySHGs9I8ohF88fTfFMdq5NFsmiQpjGL9I/RkEX62iCNMouYHnJIDg2SHFrqvo75Xa20YjLIIlk0SLKIjZBDcmiQ5FDDmHXvZJEsGqRpzCL9A5hUrvEyfJCm8X1phk8OyaFBkkMN4x69kUNyaJCmMYf0j+GTQ/rZIE3j2CvDJ4fk0CDJoaXco9c9WSSLBkkWsRFySA4NkhxqGKvujRySQ4M0jTk0lf1DYbTJdHyFZVtWW7mUcmGSJ3ds/6Eejvf+jvlv6mHbYbm0Y/7j3W5Yaz2S5OZFi+YyHo+pLZ39adW+NADf2DH//h62/bMsbeuXllIu6LtFbJQckkODJIca39cx//u11jsHuP9pJItk0SBNYxbpH6Mhi/S1QRplFjE95JAcGiQ5tNQVHfN3tNKKySCLZNEgySI2Qg7JoUGSQw1j1r2TRbJokKYxi/QPYFK5xsvwQZrG96UZPjkkhwZJDjWMe/RGDsmhQZrGHNI/hk8O6WeDNI1jrwyfHJJDgySHlnKPXvdkkSwaJFnERsghOTRIcqhhrLo3ckgODdI05tBU9g+F0SbTIzvmjye5Z431n9Ax/9Fa66EejvfnHfPX9LDtsJzTMX9/j9t3rv/EPtoy6Tr70xeGeKzOvvh/ut1woc9+rGPxOPTFWSWH5NAgzXwOlVLOTvLCjsVvGMS+p5wskkWDNI1ZpH+MhizS1wZplFnE9JBDcmiQ5NBS/6Rj/n2ttGIyyCJZNEiyiI2QQ3JokGY+h4xZb5gskkWDNI1ZpH8Ak8o1XoYP0jS+L83wySE5NEgzn0PGPTZEDsmhQZrGHNI/hk8O6WeDNI1jrwyfHJJDgySHlnKPXvdkkSwaJFnERsghOTRIM59Dxqo3RA7JoUGaxhyayv6hMNpk+vaO+Q/XWk+usf7jO+ZvXnGt1X16nf214WjH/NYet+9cfxwe08iVUnYn+bqOxX81xEM+rmN+lH3x8lLKG0spN5RS9pdSjpZS7lqY/5+llB8opXQGPauTQ3JoIGYsh9byj5NsXzT/hSR/MKB9TzNZJIsGYoqzSP8YDVmkrw1EC1nE9JBDcmgg5NBSpZR/keS7Fi06nuS/tNScSSCLZNFAzFgWGbMeLDkkhwZixnJoLcasN0YWyaKBmOIs0j+ASeUaL8MHYorfl16JcY/BkkNyaCBmLIfWYtyjd3JIDg3EFOeQ/jF8ckg/G4gpHntl+OSQHBoIObSUe/R6Jotk0UDMWBYZqx4sOSSHBmLGcmgtxqp7J4fk0EBMcQ5NZf9QGG3ClFJ2Jvm+jsVvX2ezzkqFt/d42Ns65s8tpeztcR+Ddm/H/EU9bt+5/mP6aMsk+2dJzlo0/0CGVFV/4Y/Dzj8Qe+2Lnes/qodtr0pyXZrw3ZNkPsn5C/PfmeT1SW4vpfznhd8zViGHTpNDgzFLObSWzt+pX6u1Hh/QvqeSLDpNFg3GtGaR/jFksug0fW0wRpZFTA85dJocGoyZzqFSyo5SymNKKS8tpXwgyWs7Vnl5rfWjbbRt3Mmi02TRYMxSFhmzHhA5dJocGoxZyqG1GLPukSw6TRYNxrRmkf4BTBzX+NNk+GBM6/vSKzHuMSBy6DQ5NBizlENrMe7RAzl0mhwajGnNIf1jiOTQafrZYEzr2CtDJIdOk0ODMdM55B69jZNFp8miwZilLDJWPSBy6DQ5NBizlENrMVbdAzl0mhwajGnNoansHwqjTZ6fTXLhovn7k/zKOtvs6Zj/Yi8HrLUeTPJwx+Kze9nHENzYMf+V3W5YSrk8ycUdi9t+PCNXSrkyyb/vWPyLtdbOKpCD0tkPD9daD/W4j86+O+jnbUeSH0nyN6WUawa872kihxpyqE9yqFFKeWKSp3YsfkO/+50Bsqghi/o05VmkfwyfLGroa31qIYuYHnKoIYf6NGs5VErZU0qpi6ckB5P8fZI3JfnaRasfTPIDtdbXtNDUSSGLGrKoT7OWRV0yZt0dOdSQQ32SQw1j1hsmixqyqE9TnkX6BzCJXOMbMrxPU/6+9EYZ9+iOHGrIoT7JoYZxjw2RQw051KcpzyH9Y7jkUEM/69OUj70yXHKoIYf6NGs55B69gZNFDVnUp1nLoi4Zq+6OHGrIoT7JoYax6g2RQw051Kcpz6Gp7B8Ko02QUsq3JvnhjsU/WWu9b51NO6sUP7SBw3dus2sD+xikD3TMv7CUctaKay73T1ZY1vbjGalSypYkb83Sx31rkv9niIdtqx8eT/L+JP8uyfOSXJvm25q+NMnzk7wmy1/EPDrJe0opV2ygjVNNDi0hh/owYzm0ns4K1R+otd48gP1OLVm0hCzqwwxkkf4xRLJoCX2tDy1lEVNADi0hh/ogh1Z1V5KfTHJVrfV/tN2YcSWLlpBFfZixLDJmPUByaAk51IcZy6H1GLPukSxaQhb1YQaySP8AJopr/BIyvA8z8L70YsY9BkgOLSGH+jBjObQe4x49kENLyKE+zEAO6R9DIoeW0M/6MANjrwyJHFpCDvVBDq3KPXpdkEVLyKI+zFgWGaseIDm0hBzqw4zl0HqMVfdADi0hh/owAzk0lf1DYbQJUUp5cpJf71j8x0n+exebdwZ2Z1XKbnQGduc+R+3301TxPGVPkv+w3kallMuS/NgKP9pUStk+mKZNhF9J8uWL5k8keekGvgWpF230w3+X5JJa6z+otb6q1vruWutHaq0311r/ttb6rlrrv0lyRZL/lKQu2vbCJL9bSikbaOdUkkPLyKH+zEoOrWnhBfR3dSxW1XsNsmgZWdSfac8i/WNIZNEy+lp/2sgiJpwcWkYO9UcOreyCJP88yQ+WUna33ZhxJIuWkUX9mZUsMmY9QHJoGTnUn1nJoTUZs+6dLFpGFvVn2rNI/wAmhmv8MjK8P9P+vvQpxj0GSA4tI4f6Mys5tCbjHr2RQ8vIof5Mew7pH0Mgh5bRz/oz7WOvDIEcWkYO9UcOrcw9euuQRcvIov7MShYZqx4gObSMHOrPrOTQmoxV90YOLSOH+jPtOTSV/UNhtAlQSrk8TQdcHJK3JfmuWmtdeas1jWqboam1Hkjyix2Lf6yU8q9W26aUcmmSP0xy9mq7HVDzxlop5aeTfHfH4pfXWv90xE0Zej9c+KO1s2r3Sus9XGt9eZJ/2fGja5P8416OOa3k0HJyaONmKYe68Pwk5y6afyDJ2wZ8jKkhi5aTRRs3C1mkfwyHLFpOX9u4McoiJogcWk4ObdwM59CDSa5aND0izTjQtyX5z0nuXljvsiQ/leRjpZQva6GdY0sWLSeLNm6WssiY9eDIoeXk0MbNUg51wZh1D2TRcrJo42Yhi/QPYFK4xi8nwzdujK7x7tWbIHJoOTm0cbOUQ10w7tElObScHNq4Wcgh/WPw5NBy+tnGjVEOMUHk0HJyaONmOIfco9cnWbScLNq4WcoiY9WDI4eWk0MbN0s51AVj1V2SQ8vJoY2bhRya1v6xue0GsLZSyvlJ/neSSxYtvjPJ19Va7155q2UOdsxvpCJf5zad+2zDzyT5ppypyFiS/JdSyrenqYr6t2kqcF68sN4P5sxF73NJLl20r4drrcsqfJZSruy2MbXWW3tqfQtKKT+Sptr1Yr9Qa/25Lre/sttjrXA+xr4f1lpfV0r5+iTPW7T4h5K8ZZDHmTRyaE1yqEdyaJnv65h/S621s3o0kUXrkEU9mrEsGnr/mCWyaE2yqEctZ1QVJ7cAACAASURBVBETSg6tSQ71aJZzqNZ6MsmtK/zoI0neXkr5d0leneSHF5ZfnuQ9pZSvrrV+fDStHF+yaE2yqEeznEXdMGa9Mjm0JjnUIzm0jDHrLsmiNcmiHs1YFhmzBsaaa/yaXON7NGPvS/fMuMfK5NCa5FCP5NAyxj26IIfWJId6NGM5ZMxjQOTQmuRQj2Zs7JUBkUNrkkM9muUcco9ef2TRmmRRj2Y5i7phrHplcmhNcqhHcmgZY9VdkENrkkM9mrEcmrqxaoXRxlgp5Zwk70ny6EWL70nynFrrTT3saioDu9Z6tJTybUn+V5InLfrR0xem1dyb5gXDHy1adv8q697SQ5NKD+uOXCnl+5P8Qsfi/15rfVkPu+nnfExKP/zZLP0D9itLKXtqrav1kakmh9Ymh3ojh5YqpVyW5Os6Fr9ho/ubZrJobbKoN7OWRSPqHzNBFq1NFvVmDLKICSSH1iaHeiOH1lZrPZzkX5ZSjiX51wuLdyf59VLKUzb47UJTQRatTRb1RhZ1zZj1InJobXKoN3JoKWPW3ZNFa5NFvZm1LDJmDYwz1/i1ucb3Zgyu8ZPSD417LCKH1iaHeiOHljLu0R05tDY51JtZyyFjHoMhh9Ymh3ozBjnEBJJDa5NDvZFDa3OP3upk0dpkUW9kUdeMVS8ih9Ymh3ojh5YyVt0dObQ2OdSbWcuhaRyrnmu7AayslHJ2kj9O8sRFi/enqWB5Q4+7e6Bjfl+PbdmZ5YE9Fh241vr5JE9L8vokx7rY5H1JnprkUMfyOwfctLFSSvnuJL+cpSH6xiT/YoTN6OyHZ5VSdvS4j/M75ofRD/8qze/aKZuSPH4Ixxl7cqg7cqg7cmhF12Xpa7G/q7X+TR/7m0qyqDuyqDuzmkX6R/9kUXf0te6MSRYxYeRQd+RQd+RQT34yyR2L5r80yXNaakvrZFF3ZFF3ZFFPjFkvkEPdkUPdkUMrui7GrNcli7oji7ozq1mkfwDjyDW+OzK8O2NyjR+3e2RWY9xjgRzqjhzqjhxa0XUx7rEmOdQdOdSdWc0h/aM/cqg7+ll3xiSHmDByqDtyqDtyqCfu0VtEFnVHFnVHFvXEWPUCOdQdOdQdObSi62Ksek1yqDtyqDuzmkPT1j8URhtDpZRdSf4wyVMWLX4wyTfWWv92A7vsrHp5RY/bd65/X611/4prtqDWeqjW+s+TPCbNQMj7knwuyUNJDiS5Mcmvpame+uxa661JHtexmw+PrMEjVkp5cZpwXvz7/htJ/ukoK+fXWu/N0j8Mk+TyHnfT2Rd7qejalVrrySS3dyzu6UXONJBDvZFDa5NDy5VSSpLv6VisqncHWdQbWbS2Wc8i/WPjZFFv9LW1jUsWMVnkUG/k0NrkUG9qrQ8leUfH4m9soy1tk0W9kUVrk0W9MWbdkEO9kUNrk0PLGbPujizqjSxa26xnkf4BjBPX+N7I8LWNyzV+nO6RWYtxj4Yc6o0cWpscWs64x/rkUG/k0NpmPYf0j42RQ73Rz9Y2LjnEZJFDvZFDa5NDvXGP3hmyqDeyaG2yqDfGqhtyqDdyaG1yaDlj1euTQ72RQ2ub9Ryapv6xue0GsNTCt9D8ryRfuWjxwSTfVGv9qw3u9saO+Uf2uP3VHfOf2GA7hqrWekuSn1mY1vNVHfN/uco+y0rLJ0Up5YVJ3pymOvUpv53kpQt/qPVkAOfjxjSVJU95ZJb3z7V09sVetu3FQx3znZVcp5oc2jg5tJwcWtWzkly1aP5ImhfTLJBFGyeLlpNFZwyjf0wzWbRxsmi5McwiJoAc2jg5tJwc2rBPdsz3+jsz8WTRxsmi5WTRhhmzlkMbIoeWk0OrMma9Dlm0cbJoOVl0hjFroG2u8RvnGr/cGF7jx+UemfUY95BDGyKHlpNDqzLusQY5tHFyaDk5dIYxj+7JoY2TQ8uNYQ4xAeTQxsmh5eTQhrlHTxZtmCxaThZtmLFqObQhcmg5ObQqY9VrkEMbJ4eWk0NnTMNY9dz6qzAqpZTtSX4vydMXLT6c5JtrrX/ex64/3jH/pFLKWT1s/9Xr7G+iLFRTfVbH4g+00ZZhKqU8L8lvZmkBxHckeUmt9UQ7rVrWdzqDcVULL2aetM7+BuW8jvl7hnScsSOHRkMOyaEk39sx/7u11vs2uK+pI4tGQxbJonWOMxP9Yy2yaDRmpa+NaRYx5uTQaMghOdSFYx3zW1tpRUtk0WjIIlnUBWPWcmio5JAcijHrNcmi0ZBFsmgts9I/gNFyjR+NWcnwMb3Gj/370guMe8ihoZJDcijGPVYlh0ZDDsmhdY4zE/1jNXJoNGaln41pDjHm5NBoyCE51AX36MmioZNFsqgLxqrl0FDJITkUY9WrkkOjIYfk0FrGuX8ojDYmSinbkrwryTMXLX44yfNqrX/az75rrV9I8tFFizZn6UVhPc/smP+DftozBp6V5MpF8x+otd7UUluGopTy3DQVK+cXLf79JC+qtR5vp1VJkj/smH9mD9t+TZZefD5Sa72r7xZ1KKWcl+XVW+8Y9HHGkRwaKTnUntZzqJSyJ8m3dSx+Q6/7mVayaKRkUXtaz6IuTH3/WIssGqmp72tjnEWMMTk0UnKI9VzaMT+M115jSRaNlCxiVcas5dCIyKEZZsx6bbJopGQRa5n6/gGMlmv8SE19ho/xNX7s35c27iGHRkQOtaf1HDLusTo5NFJyqD2t51AXpr5/rEYOjdTU97MxziHGmBwaKTnEetyjJ4tGQRaxKmPVcmhE5NAMM1a9Ojk0UnKItYxt/1AYbQyUUrYk+d0kz1m0+EiSF9Ra3zugw7y9Y/57umzbY5N8xaJFh5L88YDa1JZ/2zH/+lZaMSSllK9L8jtJtixa/MdJXlhrPdpOq077oyQPLZr/qoU+1o3rOuY7+/SgvDhLs/GuJDcO6VhjQw6NnBxqzzjk0Hcm2bZo/tYkf7LBfU0VWTRysuj/Z+/Ow2S7ynrxf98QCEMgYQqjJMyDyhiUgJiDgAIKGFBAZAjkyiDOIALXIaAXLj9F8YqCoJAwKoMEZFTEwxAIMo+KTIkQmQmEEDKv3x+7jqfO7urumrqquvvzeZ5+yF6119qrqtZ+O+x+867lWYVYtJkdvT42IhYt3I5eaysei1hR4tDCiUNs5id7xyvxYH+riUULJxaxEc+s9xOHto44tLt5Zr0OsWjhxCI2sqPXB7BYfscv3I6O4Sv+O347/F3ac4/9xKGtIw4tzyrEIc89RhCHFk4cWp5ViEOb2dHrYz3i0MLt6HW24nGIFSUOLZw4xGbk6O0nFm0dsYiNeFa9nzi0dcSh3c2z6hHEoYUTh9jIyq4PhdGWrKoOTvLKJPccar4wyc+11t46x0u9LMnFQ8f3q6obj9Gvv3hf2Vo7b37TWqyqeniSuw81fSRdxccdoaqOTfK6HPgvRm9P98v//OXMar/W2rlJXt1r7q+xNarqJkmOG2q6KMnL5zi1fde5RpLf7TX/Y2utzftaq0QcWixxaLlWJA49snf8wp0eZ8YhFi2WWLRcKxKLNrrOjl4fGxGLFmunr7VVj0WsJnFoscQhNlNVP53k6F7z65Yxl0USixZLLGIjnlmLQ4sgDhHPrEcSixZLLGIjO319AIvld/xi7fQYvuq/47fB36U999hPHNoi4tByrUgc8tyjRxxaLHFouVYkDm10nR29PtYjDi3WTl9nqx6HWE3i0GKJQ2xGjp5YtAhiERvxrFocWgRxiHhWvYY4tFjiEBtZ9fWhMNoSVdWl0gXS+w41X5Tkga21N8zzWq21zyQ5eajpMklOqqrLrtMlVXXfHLjTzQVJnjrPec1q8Atv3HPvl+QFQ00XJXlka+2iuU9sCarqmCRvSHK5oeZ3Jrl3a+37o3stxYnp/qVkn+Or6j7rnTxYoy/KgZU5/7a19rkN+ty0qu49yaSq6prpPr9rDDVfkOQZk4yz3YhDsxOH9hOHNldVt05y26GmS5KcNOk4O41YNDuxaD+xaGRf62MMYtHsrLX9tlEsYoWIQ7MTh/YTh/arqqOr6rjNz1zT7/ZJXtJrfmdr7ePzmdlqEotmJxbtJxbt55n1+MSh2YlD+4lDm/PMejSxaHZi0X5i0VrWB7AsfsfPTgzfbxv9jj8xcvVWhjg0O3FoP3Foc557rCUOzU4c2k8cGtnX+tiEODQ762y/bRSHWCHi0OzEof3Eof3k6E1GLJqdWLSfWLSfZ9XjE4dmJw7tJw5tzrPqtcSh2YlD+4lDa+209TH2m2FLvDDJA3ptT0ny4ao6asKxvjJGhck/SLdzzZUHx3dM8raq+l+ttf/Yd1JVHZLkUUme1ev/rNbaGeNMpqqum9Hr65q944M3eK/ntNa+scmlPl5Vb0zymiTva61dMmIuP5TkyUke3HvpKa21D28y/lxs9edRVbdJ8uYkhw41fzrJ45IcUVWTTPe81tpXJukwidba56vqz5M8Yaj51VX1W0me31q7YF9jVd08yd+kW6v7fDOb/4vDtZK8vqo+nuSlSV47+JeWNarqikkenq6i9zV6L/9Ra+3zY7yt7UwcEofEoc6849B6Tugdv7W19sUpx9pJxCKxSCzqbFUs2hbrYwWIRWLRrotFyeLWR1UdmuRq67zcf5h8tQ2u9aVVerA2Z+KQOCQOHWhe6+O6Sf6hqj6R7o9npyT5dGujd1iqqlskeXSSX+7N67xB204nFolFYtGB5rU+PLMenzgkDolDB5r3+ujzzHo0sUgsEosOtCvXB7Aj+R2/S2K43/H7ydVbOeKQOCQOdeTqLY84JA6JQx15essjDolDuy4OJXL0Vow4JA6JQweSo7ccYpFYJBYdSI7e4olD4pA4dCA5eosnDolD4tCBduX6GFtrzc+SfpK0Of7sGfOae5Kc3+t7SZL3J/n7JG9J8rUR4/9jkktN8N5On8N7OmmM63xj6PzvJnlPupvzZUn+aYN5/OGCv+st/TzS7WQ0r7W0dwGfx6WSvGnEtb+a7hfPK5N8YLA2h18/P8mdx1zn/bG/neTd6R6svSTJawfXuHCdz+Gvlx0jFrQ2xSFxSBzagji0zjUPSZcgMTze/ZcZA1blZ45rRywSi06c41rau4DPYyGxaLusj2X/zHHtiEUrvta2+vPI9otFi1ofx8/pMzlq2fFiC78LcUgcEoe25vP42RHnnz1YH69Pl/zwyiRvS/KVdcY/N8ndlh0nFrQ+xSKxSCzams9jz4jzPbMe/VmJQ+KQOLSF66N3Tc+s1/9sxCKxSCyyPvz48bMDf+YYk/2OX/EYvtWfR7bf73i5eivyM8d1Iw6JQyfOcS3tXcDnIVdvRX7muG7EIXHoxDmupb0L+Dzk6a3IzxzXjTi04utsqz+PbL84tKj1cfycPpOjlh0vtvC7EIfEIXFoaz4POXqTfR9ikVgkFm3N57FnxPmeVY/+rMQhcUgc2sL10bumZ9WjPxdxSBwSh6yPsX9GVZJjB2ut7a2q45KclOTqg+ZKcvTgZ5RXJPml1trFWz/DmRya5JhNzjkryS+31v5uAfNhHa21i6vqAel2VHrg0EtHJLnHOt2+luThrbV3TXnZw5LcaYzzvpfkN1trL5jyOmxCHBKHVsGS4tBxSa4ydPz1dA/4WQKxSCxaBUuKRdbHChGLrDVYNnFIHNrFrpjN18c+pyV5dGvtY1s4n11NLBKLdjHPrFeEOCQO7WKeWa8QsUgs2sWsD2BH8zteDF8FcvV2N3FIHFoFcvV2N3FIHFoF8vR2N3HIOoNlE4fEoV1Mjt4KEYvEol3Ms+oVIQ6JQ7uYZ9UrQhwSh3axbb8+Dlr2BFi81tqbkvxQkuelW6DrOS3Jz7XWHtxa+95CJje5Zyf5cLpqnBv5YpKnJbnhqt6Mu01r7ZzW2oOS/Hy6tbaebyV5bpIfaq29Zczh/z3J05OcmuT7Y/b5zyRPSbezif/zusXEIXFoFWxxHBrlhN7xS1prF84wHjMSi8SiVbCgWGR9rDCxyFqDZROHxKFd4O3pdsR9RZIvjdnn3CSvTnLvJHeUcLX1xCKxaBfwzHrFiUPi0C7lmfWKEYvEol3E+gB2Fb/jxfBVIFdvdxOHxKFVIFdvdxOHxKFVIE9vdxOHrDNYNnFIHNoF5OhtA2KRWLQLeFa94sQhcWiX8qx6hYhD4tAusqPWR7XWlj0HlqiqLpOu2vGRSa6ZrqrxmUk+3Fr7wjLnNomqulKS2yS5froKnZdN939czkzy0dbap5Y4PcZQVddPctsk105yhSRfSXJGklNbaxfMMO5BSW6c5IZJrpPk8OxfH2cl+XKS97fWvj7TG2Bq4hCrYqviENuDWMSq2MpYZH2sPrEIWDZxiN2gqq6R5Obp1vlVk1w+yYVJzk7yzSSfSPLpbbCrz44lFrHTeWa9+sQhYBWIRewG1gewG/kdz6qQq7d7iUOsCrl6u5c4xKqQp7d7iUPAsolD7AZy9FafWMRO51n16hOHgGUTh9gNdsr6UBgNAAAAAAAAAAAAAAAAAAAAAAAAWLqDlj0BAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAHqq6qiqar2f45c9r0Wqqr2997932XPaiXzO21tVndiPFdvh+tYdAAAAAAAAAMDutl3zXgAAAACA3UFhNAAAAAAAAAAAAAAAAAAAAAAAAGDpDl72BAAAAIDVVFVHJfnCBF3OT3J2ku8k+VySDyc5LcmbW2sXzHt+AAAAAAAAAAAAMKyqKl3e25G9ly5OcmRr7czFzwoAAAAAgEkctOwJAAAAADvGIUmunuRGSX4qyZOSnJLkzKp6ZlUduszJ7XRVdVJVtaGf05c9J2BnqarTe3HmpGXPCQAAAAAAAACg525ZWxQtSS6V5PjFTgXmo6r29PJ2WlXtWeJ85CvCHLmnAAAAYC2F0QAAAICtdrUkT0zyiao6ZtmTAQAAAAAAAAAAYMc6YYPXHllVtbCZAAAAAAAwlYOXPQEAAABgW/leks+u89rlk1wlyVXXef3IJG+pqmNbax/ZiskBAAAAAAAAAACwO1XVVZL87Aan3CDJniT/upAJAQAAAAAwFYXRAAAAgEl8oLW2Z6MTquq6Se6d5PFJbth7+UpJXl1VN2+tXbg1U2QeNvuegaS1dmKSE5c8jYm5vwEAAAAAAACAHeohSQ7ptbUkNXR8QhRGW7rtmncDAAAAACzGQcueAAAAALCztNa+1Fp7bpJbJfmHEafcMMmjFzsrAAAAAAAAAAAAdrhH9o4/k7U5bPerqsMWNB8AAAAAAKagMBoAAACwJVpr30vyi0n+fcTLD13wdAAAAAAAAAAAANihqurodJt5DntxkpN7bZdL8uCFTAoAAAAAgKkojAYAAABsmdbaeUmeMeKlo6vqKoueDwAAAAAAAAAAADvSCb3jluQlSd6c5GubnAsAAAAAwAo5eNkTAAAAAHa8t4xoOyjJTZO8d9pBq+qgJLdJclSSqye5SpKzk3w9yWeTfLi1dsm0489TVV0nyc3SzfWwdLuOnp3kW0n+K8n7B0Xk2AJVdbkkP5LkWkmOSHJokm+mWysfba19bonTG0tVXT3JHZLcIN38v5MuYfN9rbUzljm3rVZVh6V77zdOd/+cl+TMJO+d5L1X1bWT3D7dfXhouvvvS0ne0Vo7e87TnkpVHZLkTkmul+SaSS5O8tUkH0/ykdZaW+L0AAAAAAAAAABW0iA/6Bd6ze/cl1tSVS9P8htDr92uqm7VWvvoFs/r0unylm6R5KqD5q8m+dAk166qK6XLe7lpksOTfC/JV5Kc2lr70lwnvfbaV03yo0lumORK6fKW/jsrmndVVddNcqt0OYVXT1cg7+tJvpzktEXkCVXVjZPcLsl1khySLlftv5O8u7V21lZffyeqqh9KcqN0+X9XTXJuuu/19HT5lxdu8fXdy9Nfd1XuyVsluW663MELkny5tfaSMfvLAd4CVXWZJEenux+uli5enp0uL/Z9E4xzo3T35r41dn6Sb6TLDz2ttfb9OU8dAACABVEYDQAAANhSrbWvV9XZ6RIphl1tmvGq6s5JHpfk7umKoa3nW1X1piTPaK19apprTauqrpbkuCR3S3Jskmts0uWCqjotyXOSvGbcgm5VdXqSI9d5+ciqGqeI0l1aa3tHjL033dz3eUdrbc868/h4kh8aavp6kuvMkmxUVb+Q5OW95se11v5qzP4HJfnFJA9J8uNJLrvBuV9I8sokf9Ja+8Z0M94aVbUnyVOS3DVdQcFR53wqydOTvHySwllVdXySF/War99aO32Kefav+9TW2omb9DkxyR8Mt7XWauj12yf53ST3yjrPMavqHUme1Fo7bYPr3DvJ7yS5Y5IaccoFVfXaJE9srf3XRnOe9D1MMM5RSU5MFzf6sXKfr1TV85I8q7V2zqTX6F1vb8a4vwfz+sIGQz28qh6+2fX2fSaDxL4z0yWX7bO3tXaXTSe9gar68yS/1mu+9VYnLwMAAAAAAAAAK+Pn0hWrGXZy759/o/f6I5P8+jQXG+T0/Guv+X/ysAYb+P3vJA9NcsV1xvjPJH+0UWGeqrpluvyZ+6QrecPL+wAAIABJREFUGDPqnPcm+e3W2qmTvYuNVdWx2Z+3dKl1zvlQkucm+dtJN/ybV97NYKwjkvxmknsn+cENTr2oqt6X5C+T/P2kG69ulCM1yFd7eJLfyoG5dMMuHuTt/O5G+U5D1zsxvc+o51+rNv3ITm6tHb/ZSePYynzFda53y3T37U8lufYGp55TVW9L8sxxPtfeNfZkm9/LY+Thbem9vM54q3BPXiHJryb5pXQb0o4y8jvb7jnAm63rSYyY46YxZbPc1Kr6wSRPTHL/JFcYMcTJSTYsjFZV108Xb++V9b/fJDmvqt6V5M9aa2/eaEwAAABWz8j/mBIAAABgzkYV8Vmv+M9IVXWTQaGzdyZ5YDYuipbB6w9J8vGq+puqWrcw1jwNdhf9cpLnJ3lANk+ISJLLpCve9coknxj80X876ScwXD3JT8845vG94/OTvGKcjlV1jyQfT/LiJD+ZDYqiDVw/XeGsz1fVVMmO81ZVh1TVC9Ilp9w9Gz/Hu0WSlyZ5yyCZZ1urzh8mOS1dIthGmzscm+Q9VfWEEeMcVlWvSfL6JHfK6KJoSXf/PTDJp6rqbjNNfgqDNffJdImRG8XFa6YrnvbJqrrdAqY2d4PdPV/aa95TVTefdszBjs8P6zW/V1E0AAAAAAAAANhVTugdn5vk1fsOWmsfSfKx3jkPqaqRBYpmUVX3S/KpJL+cdQopDdwkyYur6pX9eQzyZ34/yYeS/HzWKaQ0cEySd1XVU2ab+f9c+1JV9Zwke9PlXo0spDRw2yQvSPLOQZGahaqqy1TV05J8PsmTsnEBpqTLQ7pTug07PzooVjWPeVw3ybuTvDDrF0VLus/yrkneW1X/Zx7X3omq6lpV9bIkH0nyiGxcFC3pNmn82XSf6ylVtVlu6bjzcC9Pfs1VuSd/NN1394xsXDRrVN/dmAO8MFX1u+nu7YdldFG0zfpfabCuP53kV7L593vZdDm4b6qqd1XV9Sa9JgAAAMujMBoAAACwCIePaDt73M5Vddd0u3/dc4prH5Qu8e0dVTVOgsKs7piNCzlt5uZJTltGgaYZvDTJhb22R0w72CBRrP/+T2mtnTVG3yckeWO6YmGTumKSZw8K6c3yHc5kUMTvzUn+14RdfzJd8sZGCUzbwfPS7Y457rPLSvLHVfWo/2moOjzJvyS53wTXvUKS11fV7SfoM5NBguOzk1x+gm7XSxfPtmVxtHS7YvY9ZobxfiFrf8c8d4bxAAAAAAAAAIBtpKpulK4gzbBTWmvf7bWd3Du+SrpiSvOcy0PSFWQ7bIJuP5+uoNa+MSpdgaKnZuNCRgdcOsn/qapfmeC6awfprv3SJI+bsOuPpctnmagA0SwGxa/+KcnvZYriOukKmJ1aVfeecR43SLcB5DETdn1KVf3RLNfeiarqVkn+LcmDs/5GmBu5b7r8y5vMOA/38uTXXJV78sfTFYObtgDWbswBXohBQbM/zJSfb1UdmeTUdOv60lMM8WNJ/q2q7jDN9QEAAFi8pf0HngAAAMDuUFU3zOiiP58fs/+9k7wma/+IfUGSt6crmPbFJN9Jt/PfUUl+Ismde+f/SJJTqurHW2v9Il5b5eJ0O/19Msl/JPlmuoJwleRKSW6c5A7pdrwbLgJ1aJK/q6rbtNa+uMH4n0ry7cE/Xy/JlYdeu3Dw+mbOGeOcDbXWvlZVb0qXVLTPvarqiNba16YY8mFZWxTrhaNOHFZV/zfJ74x46VtJ/jnJB5N8Ld2OsIen243wHklu2jv/hHSf6xMmmvX8vDDJXYaOP52uUNp/pHsvhyW5TZL7Z+1uhD+e5DeT/MnWT3P+qurXkzxqqOmMJP+Y5BPp3vvhSX40XRLZlXrdn11Vb00XD/4uyXDhsA8meUuSLyT5brrP7SeS3CcHrrXLJXlBVR3dWrtoTm9rpKr6rSSjdvc8fzDXdyb573RJYtdPd3/t21H2CklOydDOxlvkgiQfHTq+RQ6MxWcl+a9JBmytfbKq9ibZM9T8sKp6cmvt3Cnm+Nje8TeTvGqKcQAAAAAAAACA7emRWVtAqV8ELUleluT/y4EFik5I8vdzmsfRSZ4+NJdvJ3lTuqJZX0uXl3LzJA9Il+M27MFVdUpr7VXp8klOGHrtjCRvSJc/8810+TM/Mhinnz/zzKp6Q2vt9Cnfw+OTPGjo+LtJXpfk/Um+Orj2zdLlLf1Ar+8PJHl7Vd26tfbtbKHBpomnDubS94kk70iXs7dvHkekK1x2r3SbZ+5zaJJXVdWdWmsfnGIqV0yX13WdwXFL8p4kb0uXU3NOkqunyw88Lslle/2fXFX/2Fp73zrjfyX7c3cOTXLD3uufy+b5fxPl9mxiS/MVq+roJP+a7r0OuyTJu9J9tl8YzOFySa6b5Ngkd82B9/WN020wervW2nfGmFOfe3nCe3mF7slrJvmHHHiv/Vu6gm1npPscrpUuD+7nxxhvV+QAL8gv5cBCfeeky+s9Nd2aPCjdPX2XdJ/7AQZF0d6XtTmzSfcdn5ou1/asJJdJ9z3fMd2G3IcMnXuNJG+sqtu21s6Y7S0BAACw1aq1tuw5AAAAACuoqo5Kl0Qy7B2ttT0TjvPEJM/sNZ+V5GqttUs26Xv9dEkFhw81X5Tkz5L8cWvt6xv0vXWSv8mBxZGS5E9ba4/f5LpHZe17f0Rr7aSN+g36/meSj6fbbe/t4yTWDP5g/4wkv9B76Y2ttZ/ZrP9gjJOSPHyo6YzW2lHj9F1nvL3pkob22fC7r6r7pEucGfb41tqfTnHt/0yXMLLPl5IcudF6qarj0iW0DDsryZOSvLi1dt46/Srdzq/PS5dsM+y+rbXXTzj9iYz4nM/L/qScryT51dbayOJXVXVokr9MV0hu2LeTXLu19v1Nrn18khf1mq8/TTJVVfUfMj61tXbiJn1OTPIHvebz0yWhnJsuOesFrbVRSS7XSFcw8U69l56fLrnlWYPjzyd5VGvtX9aZw9FJ3pi13/2DW2uv2Gj+672H1tqmO5VW1U2TfCRrkx3fPJjvl9bpd1yS52Z/cs/30yXaTXr9vZng/h7qd3qSI4eaTm6tHb9ZvxHj3D9ri7qd0FrbtABib5zbJflAr/lPWmu/PemcAAAAAAAAAIDtp6oula7w07WHmv87yQ+MyjWqqjemK8SzzyVJbjBpcZSq2pOugNOwfXkvSfIXSX5/VFGhqjokXW7L43ovfTpdHtB70xWI2Sx/5prp8mfu2Hvp+a21R4/xHk7M2tyd4dylFyX5rXXew0HpNm/8o6zNfzmptfaIaa4/Tt7LoO9r0+V8DXvPYL7rFRnbV7zp99LNffhapye5ZWvtu5tct58jNfx5vS/JL7fWPrRO36PSfV+37b301tbaPTa67qD/nqxdc3dpre3drO9W2IJ8xSunyxXtj/GiJCe21tYt8DbYvPcvk/xU76V/aK3df5Pr7ol7eaZ7eTDOqtyTF2d/kbyPJXlMa+296/S97Ki80p2QAzzPeDFNzuA6uanD383zkvxua+2b6/Q/4LupqsskeXeS2/dOfUOSJ7bW/n2DuVwzyR8neUjvpfcnOWbUPQkAAMDqOGjzUwAAAACmU1XXSvKEES+9YrOiaAMvy4FF0c5N8lOttSduVBQtSVprH0mXKPLPvZd+tar6O9zN0+1ba/dvrb123N0GW2tntNYenOTE3kv3qqpRO+itojel27Vt2PGTDlJVd8qBRdGSLpFio6JoR2RtEsVn0iXGPH+9omhJ0jqvTbfLY78Y1TMGhdMWaV9y0eeT3GG9omhJ0lo7J91n/NbeS4en28lxO9pXFO1urbXnrZd00lr7apKfSbcD57CHJHna4J8/mS5xZWRRtME4H8joz2qshK4ZPDdrE8lemeRn1iuKliSDtXps9r/vy6137oo7JWvvt8dOMU6/T0vy11PNCAAAAAAAAADYju6ZA4uiJclLN8g1Orl3fFCmyHFax75CSr/eWvu1UUWIkqS1dn5r7VeyNufnpkn+cTCnc5L8xCb5M19Jlz/Tz6N7UFVNm1OyL5/l/7bWHrnBe7iktfasJD+fbqPTYcdX1Y9Pef1NVdWjsrYA018l+bGNCjAlSWvt24NNVU/ovXRUkl+eYjr7Pq83JNmzXlG0wbVPT3L3rM2xu3tVXW+Ka+80f5kDi6JdnOQhg3W4blG0JGmtfS5dLOjnEN6vqn50irm4lztj3csrdk/uK7x1apI7r1cUbXDt9fJKd2sO8Fbb9908vrX22PWKoiUjv5sTs7Yo2pNaa/feqCjaYKyvtNYemuSpvZdun+TnNp82AAAAy6QwGgAAALAlBrvwvSXJ1XsvnZtuZ7TN+t89yTG95ke21t4+7hxaaxekS9j4xlDzpZP81rhjTGrcRIh1PC3dLmT7VJJHzjajxWitXZRuh7xhP1xVt5twqFEFqfoJS32/nuSwoeNzk9xjowJTfa21LyZ5UK/5FknuM+4Yc3RhkgeMsxNta61l9Hru7365nfzGRglJ+wyStf6k13z5JFdIt+PlA1pr/cJpo8Z5d7pYNewuVdUvXDYXVfXDSe7Sa/5skoeNUzCytbZvR9Fta5Dk1y9gdnRVHT3uGFV1WNbusPnPrbXPzjo/AAAAAAAAAGDb6BfTSZIXb3D+65L0CwQ9oqrm9d/Yvby19v/GPPf3RrQdMfjfX9+soFCStNbOSvKsXvOV0m0oOq29rbUnj3Nia+0NSf5oxEu/NsP111VVByd5Sq/5La21xw3yqMbSWntRkr/pNf9mVR0y6vxNnJ6ugNe6m3cOXfdbWVuc56B0BdN2raq6aZIH9pr/d2vtZeOOMfj+H52kXyTpSVNOy73c2fBeXtF78jtJHthaO3uKvrs2B3hBXtNa+9NJOlTVlZP8aq/5ea21Z04yTmvtxKzdaHva+AAAAMCCKIwGAAAAzEVVXbaqrlNVP11Vz0/ysSS3HHHqL41ZsOp3esfvaq39/aTzGiQp/Hmv+bhJx1mEQSLIS3rNP7aMuUzphSPajh+3c1VdPskDes3vHOzouF6fQ7N2Z8BntdY+P+5192mtnZrkX3rNy1grL2+tfXDck1trn0rS32100oJ0q+I/szbBaSOvWaf9JYPPZVyv7h0fnOSHJ+g/iceMaHt8a+38cQdorb013a6i29nzk1zQa3vsBP0fnq4Q3rDnzTQjAAAAAAAAAGDbqKojkvx0r/lDrbVPrtdnkJ/Rz0E7Msld5zCli7O2QNC6WmvvT/JfI176dDbfSHJYP+8lSW47Qf++SYuaPTNJPx/wvlV1rRnmsJ4Hpfu+9mlZWzBnXE8b9N/nGlm7kes4njphIaW/S7dWhm3XXK95+e0c+N+5fiFrN8zcVGvtwiRP7zXfc4oNMt3L+212L6/iPfmnrbUzp5zDTHZADvBWuiTJE6bo97gkhw4dn5O1+eXjelrv+NZVddSUYwEAALAACqMBAAAAkzi2qtqonyTfT5cU8YYkv5S1BWvOTfKLrbWXb3aRqrpKkp/oNU9SLKnvjb3jI6vqyJFnLt9nese3rapLL2UmExoUovq3XvODJ9i17/5Jrthr2ywx6G5JDu+1/e2Y1xulv1aOnWGsab1gij79z/0m85jIErxowp0iP59uh8e+SdfAh0e03XTCMcZ1z97xl7N23Y3jr+cwl6VprX0tyat6zQ+qqv79vJ5H947PzPYvFgcAAAAAAAAAjO/hSfp5VSeP0e/FI9pOmH06eVtr7YwJ+3xkRNuk+TOfS3J2r3navJfTWmsfn6RDa+28rC0EdHC6vK55+7ne8d7W2menGai19sUk/fc6aa7Y95Jsmg/Zu+5ZWZsjuFV5SiuvqirJ/XrNJ7XW+sXjxvWm3vEhSX50wjHcy/ttdi+v2j3ZMnqD30XatjnAW+ztrbXTp+jXX2Ovaq3175NxvSfJt3tty8gRBgAAYEwKowEAAABb7bvpiprdbJyiaAN3TlK9tvfMMIcvjGi7zQzjja2qDq2qe1XVk6rqxVX1xqp6V1V9qKo+0v9J8pzeEIek2/luu+gXMrtKkvuM2fcRveNzsrZwUl8/KeHMKZKShvXXylETFGqah+9nbZGzcXyud3ypqjp05Jmr7Z1T9Onvtnlukg9OOMbpI9rm/r0Pdiq+fq/5dVMm8r01XXLldtaPd5dP8rDNOlXVsUlu0Wt+QWvtonlNDAAAAAAAAABYeY/sHV+U5BWbdWqtvSdrC9f87GAzz1lMk/cyKs/pXXMYZ9q8l1Om7PcPI9ruMOVYIw0KaN251zxLTmGyNlds0pzC01prF0xx3X6u12FTjLFT3DLJlXttU3+vrbVvZe1Gm5N+r+7lA428l1f0nvxsa+1LM87hALswB3ir/OukHarqykl+uNc8S3y4JGvvsYXkkgMAADCdg5c9AQAAAGDH+0CSvxjs5jauO41oe01Vjb173hiuNsex1qiq2yX57XRFwS4343CHJ5lrssYWekWSP82B7/n4bFLgrKqOTLKn1/zK1tpmhZ/6a+XKg+SSaY0qJna1rN0lbquc0Vq7cIp+/WSupEuYO2fG+SzaNLtFfrd3fMYUBbL6YyRbk3B4uxFtkxZxS5K01i6qqo8lOWa2KS1Pa+20qvpgDvxcHpPk/23S9bG944vSFeAEAAAAAAAAAHaBqrpTkpv1mt/cWvv6mEO8OMkfDh0fkuQXk/zFDNOaR97LvMaZNu9lqjyWJB9PcmGSSw+1jcqTmcXN023SOezhVfUzM4x5vd7xpDmF/QJ74+rneu3mwmijckX/oqrOn2HMy/eOJ/1e3cvj3cureE9+aIZrH2AX5wBvlWm+m2OSHNRre3JV/coM87hR73hLc8kBAACYjcJoAAAAwCS+l9HJGpdOt2vftUa8dpck76+q41trm+7IOXDdEW23HLPvuK465/GSJFV16SR/lq5wT/8P8tPaNolPrbXvVNVrkzx4qPmnquparbUvb9D1+CTVa3vRGJfsr5XLJ7nVGP0mcdVMl6Q0jW9N2W9UMbVLj2hbdWdN0af/3iceo7V2YbeB5QG24vM7YkTbp2cY7z+yjQujDTwnB97rN6+qPa21vaNOrqojkhzXa359a+3MLZofAAAAAAAAALB6ThjRdvIE/V+S5Gk5MF/phMxWGG0eeS/zGmfavJep8lhaa+dX1elJbjzUPCpPZhajcgqvu077tCbNKZxXrtd2zPOal1HfX7/o4awm/V7dy+Pdy6t4T35t1gvu9hzgLTTNdzNqLd1g1on0bEkuOQAAAPMxr/9jDgAAAOwOH2it3XrEzw+21q6d7g/Ex6cr1jPsMkleUlX3HvM6i/hD86w7uK0xSIh4VZLHZb7PXbZb4lO/oNmlkjx0vZOrq0j1sF7zZ1pr7x7jWv0dB7fC3NfKBkYlSO0arbV5vP9V/gwPH9HW3wF2ErP0XRV/l+SbvbbHbHD+Cel+pwx77lxnBAAAAAAAAACsrKo6NMkDes1nJXnDuGO01s5IsrfXfKuqut0MU5tLzsqc8memNc88llF5MrNYxZzCVc5T2i527Pe6C+7lVfzuzp7lYnKAt9Q0380qrjEAAAAWSGE0AAAAYG5aa99qrZ2c5Nbpit0Mu1SSl1bVUWMMdeU5T21RfifJfUe0n5nkr5I8JMkxSX4gXbLIZVtrNfyT5C4Lm+3W+ZckZ/TaHrHB+cdm7S5u/eJqa1TV5ZMcMtnUYKmuOKLtezOMN0vfldBaOy/J3/aa71dV1+ifW1UHJXlUr/kz6WIOAAAAAAAAALA7PCjJFXptf99aO3/CcU4e0XbCdFPaMeaZxzIqT2YW2zWnkI35XrfGIu7lVfzuLpqxvxzgrTPNd7OKawwAAIAFOnjZEwAAAAB2ntba+VX10CTXyIF/5L9SugI4d91kiO/3jr/dWlvpP3BX1RFJntxrvijJbyd5Tmtt3D/qb/vdx1prrapOTvL7Q803q6o7tNZOG9GlXzTt4iQvHuNS5yW5JAcW/z+ltXbcRBOGxfnuiLZ+ou4kZum7Sv4qyROy/16+dLpE46f3zrtnkqN6bX/dWmtbOjsAAAAAAAAAYJWMKl72mKp6zBzG/oWqenxrrZ+/tltcIcnZM/QdNipPZhajvpOfba29bs7XYbFGfa9Xbq19e+Ez2VkWcS/vqHtSDvBKGrXGbt1a++jCZwIAAMBSHLT5KQAAAACTGyQBPCxrkyt+oqoeuEn3b/SOD6+qw+c2ua1xnySX77X9Tmvt2RMkRCTJVeY4p2U6KUm/WNHx/ZOq6tAk9+81/1Nr7czNLtBauyRJPwHq+uNPkXmoqksvew7byKiEvcNmGG+WviujtXZGkjf0mh9VVf3n14/tHZ+XLtYAAAAAAAAAALtAVd0iyR228BKHJ7nfFo6/6uaZxzLvwlb9nMJErthOMOp7PWrRk9iBFnEv77R7Ug7waMvMD91pawwAAIAJKYwGAAAAbJnW2peS/P6Il56+STGlr45ou+V8ZrVl7t47PivJc6YY5wZzmMvStda+kGRvr/lBVXXZXtsDsnaHwRdNcKn+WrlJVR0yQf/d7MIRbdMksVx11onsIl8b0XbTGca72Qx9V00/Xh6Z5J77DqrqgOOBV7bWvrnVEwMAAAAAAAAAVsYJO+Qaq+om03SqqstkbTGrUXkys9iOOYVszve6NRZxL++0724n5QDPKzc0WW6ht522xgAAAJiQwmgAAADAVntuks/32m6QjRPI/m1EW78gzqr5gd7x+1prF0wxzjHzmMyK6Bc4OyzJcb2243vH30ry+gmu0V8rl0uyZ4L+u9nZI9quNMU4N5p1IrvIB0e03W6agarq4OysJJ+3Jfl0r+2xQ//8qKx9nv3cLZ0RAAAAAAAAALAyBhtxPrTXfEGSj874863emHuqahUK2yzDVHks6XJY+kV3RuXJzOJj/z97dx4maVnei//79KwsAwwwIEsUWdxQYxRUEEVwTfQkaAyuiRijHIInag4aDWFRE40/RJKjxiWK4kE9xBhAcwx4RIgiKuBKxAVcGDZlhGGYYXqmZ6af3x/VM3RXV3VXddd09XR/Ptc1F7zPuzx3VXf1VE3f7/dJsqFp7Lk9noOZtyP2iu4IZuK1PNdek3OpB7gnvaGllAOTNC+GPJO+1WLMzwcAAIB5RDAaAAAAsF2NNAa8vcWu00spS9qc9v9ajL14JAhottq7abu5YW5SpZS9kxw3xfk3N20vmOJ1eulzGd9g8aqt/1NKOSTJU5v2f6rWurGLOVp9r7yii/Pns3tbjE2lqfPY6RYyX9Ra70ryi6bh3y+lTOXfaZ+TZJfpV9WV7fZzptZak/xT0/DvllIeMtLY3Bym+b1a6zd7NT8AAAAAAAAAMOv9fpIVTWMX11ofN50/Sf6m6Zolo3qc5pkTpnjeC1uM9bSvo9a6IcnVTcP7lVKe0ct5ZrHmvp2kvz2CveojuibJ/U1jzyulLJ/i9WjY7q/lOfianEs9wHOiN7TWekuSm5uGn1hKeVg/6gEAAGDmCUYDAAAAZsKFSX7aNHZgkte0OrjWenvGrzL30CQn9byy3mluzmlukujEqZn66mprm7Z3neJ1eqbWuj7JRU3DzyilbF1Z76QWp328y2kuz/hVB19aSnl4l9eZj37SYuyJ3VyglLIgyZ/2ppx54z+atvdP8rwpXKflz8/tbHv/nPlEknWjtgeSvDbJC5Ls23TsB3s8NwAAAAAAAAAwuzUvqpY0+tKm66IkQ01jJ01xobsd3VGllMO7OWFkcdQ/bhrenOTLPavqAZe2GDt7O8wzGzX37ST97RHsSR/RyMK7lzUNL0vyP6dyPbaZqdfyXHpNzqUe4Nsztg8v6bI3dMRrp1FDrzR/jw0kObMfhQAAADDz5uM/0AIAAAAzrNa6Jck7Wux6aymlXRPA37UYe88sXunrzqbto0spu3R68kgTylunMf/qpu09Zsmqic1BZwNJ/mSkcfBPmvZ9v9b63W4uXmv9TZKPNA0vSPLpUspOXVU6z9Ra70pyW9PwiSNhZ506NVNbSXA++1CLsfeUUhZ3eoFSyjOT/EHvSupY88+Znn7ta633JfnfTcOvTvI/msbuS/LpXs4NAAAAAAAAAMxepZQDkjy7aXhVxgcqda3Wek/GL3R3YJLnTPfaO6h/7PL4N6fxfI12aa21uZ+uFz6W5FdNY8eUUv5qO8w12zT37ST97dvqZb9iq17RN5dSjpni9WiYidfyXHpNzpke4FrrcJLvNQ0/r5Sye6fXKKX8fpKnTWX+Hjs34xdPfnkp5cX9KAYAAICZJRgNAAAAmCmfTvLjprH9k/z3VgfXWi9Ocn3T8O5J/qPbley2KqUsK6W8qZTyiqmcP4mvNW3vmuSsTk4spRyU5PNJlkxj/htajP3eNK7XE7XWb2T81/2kJM9I8uCm8fOnOM27Mn61vscnuXiqjSGllIeUUt5XSnn0FGvaUTQ3dT44yRs6ObGU8owk/1/PK5rjaq03JLmyafhhST7eyUrDpZTDMj48bKY0/5x5dCnlt3o8x/ubtvdN0tzkeGGttXlFSwAAAAAAAABg7npVGosljnZRrXVzj65/YYuxV/fo2juaZ5RS/raTA0spv5vkjBa7/ldvS2qotQ6mdYjWO0spr5vqdUspzy2l/NPUK5sRtyZZ0zTWz/7AnvUrjiym+rmm4UVp9P9NKZiplLKklPLaUsobp3L+HLHdX8tz7DU513qAm3tDd0rS6ffDYzN+UeS+GAnm+0CLXeeXUv5wKtcspSwopby4lNLqexcAAIBZRDAaAAAAMCNGViB7W4tdbyml7NzmtJcmuadp7OAk3yqlnN7J6mWllIFSynGllA8lWZlGkNODuii9U59LMtw09qZSyjtKKQsnqO+lSb6RB1ZvvG+K83+zxfznllL+oJSyaIrX7JXmBolDM341wqEkn5rKxWutv0ryyiS1addzkny7lPKKib4GW5VSdhlpdvi3JDcneV2SpVOpaQfy0RZj7y6lnFxKKa1OKKVaAjpkAAAgAElEQVQsHVnR8T/SaORpXo2Pyf15xj9vL0vy+ZEVjlsqpZyQ5Kt54GfY4PYpr61rmrYHkny2lHJEryaotd6Y8cFxzT7Uq/kAAAAAAAAAgNltpIflVS12tQozm6ovZHzo1O+XUlb0cI4dwdZ+ltNLKf/crj9vpCfvDUn+LY0Aq9E+UWv96nas8QNJLm0aG0jyvlLKxaWU3+7kIqWUh5ZS/qqU8oM0+qCmFMA1U2qtNY0+w9GeWUp5Vyllnz6U1Ot+xZOT/KJpbO8kV5RSzimldNTzWUp5Uinl3CS/TPLhJIdMoZa5YCZfy3PlNTnXeoA/kWRL09jrSilva/d4RgLDXp3k6iR7ptGTOzSFuXvtb5Jc2zS2c5J/LaV8tJTS0eu8lPLoUsrbk/w0yf9J0tH3JgAAAP0z6Q2hAAAAAD30L2n8gvrwUWP7phES9J7mg2utN5dSTkzyxSSLR+3aJY2Vy95aSrk6ydeT3Jnk3jR+2b1Hkt9K8viRP3v0/JGMr/WnpZQLk/xJ066/SXJSKeVfk/wgybo0GgYenuT3M7bxZn2Sv0rywSnMf2cp5bKMXSFu3ySXJBkqpdya5P6MDw/7s1rr9d3O16X/neSdGbtq6yObjvlCrfXuqU5Qa/1cKeXMJO9o2vXQkfnfU0q5Ksn1SVal8Vzslsb3xqFJjkjy2Exvxb4dTq312lLKpUn+YNTwgjSCp04tpVycRkjcUJIVSZ6QxvfY6Ga6N0RQVVdqrT8upZye5NymXc9LcnMp5T/SWIHyzjRWajw4ja/RY0Yde3uSz6bx/M+US9MIq9xz1NiTklxXSlmb5I60CMqrtT6uy3k+kOS4NvuurrW2Wh0TAAAAAAAAAJibjssDgTNb3VRr/VavJqi1biylfDbJn40aXpTkFUnO69U8O4Az01h4NGk8FyeWUi5Jcl2Su9LotXpEkj9M8uAW59+S5I3bs8Baay2lvCKN4J7mUJsTkpxQSvl+kquS3JRka0/aHmkEbT02jR6o5u+pHcH5SZ7bNPaWNBanvTONvp7NTfs/X2s9s9eF9LpfsdZ6dynl99P4uo4O8VqY5LQkf1FK+UYai0relmR1Gr1+eyTZL8nvpNEDON/CDNuZsdfyXHlNzrUe4FrrHaWU92V8f+GZSV5eSvlckh+N1LxXGr2Jz8vY74d3p7HA9UO6fTy9VGvdUEp5QRrhcb/VtPvVaXx9rk/yn2mEIt6TRh/sHmn0uj4ujZ8PbRetBQAAYHYSjAYAAADMmFrrcCnlbWkEpI325lLKB2ut97c454pSylOT/GvG/0J7lyTPGfkzG/xFkiem0TAy2oGZPLxoU5I/SqPJYKrelOTYNJ6X0Ran/cqHu05jvo6Math43gSHnd+Def62lHJHGqFKS5t275vkxSN/GOu/Jzkyyf5N44/J2CCuVs6ptX64lCIYrUu11veWUvZO8tamXUuTvGDkTzv3p9E09vztVF5LIw1Gb0xyQYvdy9Jo9uqFS5LcmvE/85MpNI0BAAAAAAAAADu0V7cYu3A7zHNhxgajbZ17PgWjvSeN8JgTR7Z3SyMkqDkoqJXbkhxfa713O9W2Ta113UhP4cfTCHZq9tsZH9A0F3wuyRVJntFi334jf5p9bzvW09N+xVrrf5VSjkzyb0ke3eKax478YXIz+lqeQ6/JudYDfHqSZ2b86+mQJG+epJaLRs5/6STHzYiRoLcnplHX05p2L0hjgdcnzXhhAAAAbFcD/S4AAAAAmHe2rpo22ook/6PdCbXWa5M8Po2miU3TmLumserc16ZxjfYXr3VNGk0E3+zy1DuSPLPW+sVpzn9jkmcluXk619lOJgo+uzPJ5b2YpNZ6fpKjknxlmpfakOT/JFk57aJmuVrrr5Ick+6+b4aSnFZrnaw5hgnUWv86jZU1u2mGui3Jca1WeZwJtdZPptEEvHY7zrElyYdb7FqVRoMnAAAAAAAAADAPlFL2SPLCFrs+tR2m+2rG9wodXkqZN0Ertdaa5OVJul0k8etJjq21/rz3VbVWa11ba31RklOS3D7Ny61MozdxVqu1Did5UZJP97uWZPv0K9Zab0oj3Oi9aSweOR3XJ5lWT+aOqh+v5bnwmpxrPcC11vVJnp7k2m5OSyNY72UjP3NmjZFe12ck+Zsk90zzcj/K+EW+AQAAmGUEowEAAAAzaqTh4uwWu04rpSyb4Lzf1Fr/NMmhafzS/Ydp/AJ+MmuT/N80woceWms9rtb6ra4L71Ct9fY0ViN7XZLJmkNuSXJGkkfUWr/ao/m/kcZqdb+X5J+SXJ1G08W6JP1sUvhCkt+02ffJkSCknqi1fq/W+owkT07yyTSCpDpxZxorv74yyYNqrS+ttd7Vq7pms1rrL5I8Nslfp/E8tDOUxop7v1NrPXcmapvraq3/kOTwJBckuW+CQ+9K8rdJDq+1XjcTtbVTa/1YkgOSvCrJ/07y3TTqG+zhNK2C386vtW7s4RwAAAAAAAAAwOz28iRLm8a+UWv9Wa8nGulraxW49upezzWb1Vo311pPSSMc6CuZuOfsu0lek+SpMxmKNlqt9UNJDh6p48vpbIHC4TRqPyfJcUkO2lF6oWqt99ZaX55Gj+DZSf49yc+SrM70Fp2daj0971esta6vtf7PJAel8RivT9JJf+GGNL5n/zqNHqsjpxtUtSPr12t5R39NzrUe4Frr3UmekkZg3UR/d25J8h9JnlJrfdNsC0XbauT7+u+SPCTJ/0zj+Rnq4NTNSa5J8vYkT6y1PmpkkVgAAABmsdL4N1sAAACAHU8pZUWSJyRZkWSvJLumsUrg2jTCsH6c5Jbax38AKaU8LMkTR2rcZaS+25L8oNb6k37VNd+UUg5N8qg0vk/2SrI4jUaRNUl+keTH8yUErROllMcm+e0keyfZOY3n6SdpNJau62dtc1kpZUmSY5I8OMmD0mhk+nWSHyT53mxtNtoeSimfTvLSUUM1yaH9aqIFAAAAAAAAAJiPSil7p7FA5SFp9Ofdl8bCi9/dHgF101VKWZxGT+GBafQ+LU8jEGdtGgt7/jTJT2utvVwAkO2slLJ7kiOT7JNG/9/uaSziuDaN0KifJPl5Lxdo3VGUUs5OctbosVpraXFcX17LO/prcq71AI88niek8VpalsbX4WdJrqm13tPP2qaqlLJzkiOS7J/Gz4c9kmxM47HdlcbPh5trrZ0EqAEAADCLCEYDAAAAAGDWGAm9vDXJklHDl9Vaf7dPJQEAAAAAAAAAAMw6nQajAQAAAOxoBvpdAAAAAAAAjPKajA1FS5IP9KMQAAAAAAAAAAAAAAAAAGaWYDQAAAAAAGaFUsouSV7fNHxzki/2oRwAAAAAAAAAAAAAAAAAZphgNAAAAAAAZou3J9mnaewfaq3D/SgGAAAAAAAAAAAAAAAAgJklGA0AAAAAgL4qpexZSnlPkr9s2nVLkn/uQ0kAAAAAAAAAAAAAAAAA9MHCfhcAAAAAAMD8Ukr5aJIjRjb3TrJ/ktLi0DfVWodmrDAAAAAAAAAAAAAAAAAA+kowGgAAAAAAM+3QJL89yTGfrLV+diaKAQAAAAAAAAAAAAAAAGB2GOh3AQAAAAAA0OTCJH/W7yIAAAAAAAAAAAAAAAAAmFkL+10AAAAAAADz3mCS25N8I8n5tdar+lsOAAAAAAAAAAAAAAAAAP1Qaq39rgEAAAAAAAAAAAAAAAAAAAAAAACY5wb6XQAAAAAAAAAAAAAAAAAAAAAAAACAYDQAAAAAAAAAAAAAAAAAAAAAAACg7wSjAQAAAAAAAAAAAAAAAAAAAAAAAH0nGA0AAAAAAAAAAAAAAAAAAAAAAADoO8FoAAAAAAAAAAAAAAAAAAAAAAAAQN8JRgMAAAAAAAAAAAAAAAAAAAAAAAD6TjAaAAAAAAAAAAAAAAAAAAAAAAAA0HeC0QAAAAAAAAAAAAAAAAAAAAAAAIC+E4wGAAAAAAAAAAAAAAAAAAAAAAAA9J1gNAAAAAAAAAAAAAAAAAAAAAAAAKDvBKMBAAAAAAAAAAAAAAAAAAAAAAAAfScYDQAAAAAAAAAAAAAAAAAAAAAAAOi7hf0uAPqtlLJ7kmNHDd2aZKhP5QAAAAAAAAAATMfiJL81avs/a61r+lUMAOjRAwAAAAAAAADmCP15M0QwGjQari7tdxEAAAAAAAAAANvBHyT5fL+LAGBe06MHAAAAAAAAAMxF+vO2k4F+FwAAAAAAAAAAAAAAAAAAAAAAAAAgGA0AAAAAAAAAAAAAAAAAAAAAAADou4X9LgBmgVtHb1xyySU59NBD+1ULAAAAAAAAAMCU3XzzzTnhhBNGD93a7lgAmCF69AAAAAAAAACAHZ7+vJkjGA2SodEbhx56aA4//PB+1QIAAAAAAAAA0EtDkx8CANuVHj0AAAAAAAAAYC7Sn7edDPS7AAAAAAAAAAAAAAAAAAAAAAAAAADBaAAAAAAAAAAAAAAAAAAAAAAAAEDfCUYDAAAAAAAAAAAAAAAAAAAAAAAA+k4wGgAAAAAAAAAAAAAAAAAAAAAAANB3gtEAAAAAAAAAAAAAAAAAAAAAAACAvhOMBgAAAAAAAAAAAAAAAAAAAAAAAPSdYDQAAAAAAAAAAAAAAAAAAAAAAACg7wSjAQAAAAAAAAAAAAAAAAAAAAAAAH0nGA0AAAAAAAAAAAAAAAAAAAAAAADoO8FoAAAAAAAAAAAAAAAAAAAAAAAAQN8JRgMAAAAAAAAAAAAAAAAAAAAAAAD6TjAaAAAAAAAAAAAAAAAAAAAAAAAA0HeC0QAAAAAAAAAAAAAAAAAAAAAAAIC+E4wGAAAAAAAAAAAAAAAAAAAAAAAA9N3CfhcA81GtNcPDw6m19rsUgHFKKRkYGEgppd+lAAAAAAAAAABA1/ToAbOV/jwAAAAAAACAyQlGgxlQa82GDRuydu3arF27NkNDQ/0uCWBSixcvzrJly7Js2bIsXbpUIxYAAAAAAAAAALOSHj1gR6M/DwAAAAAAAKA9wWiwna1fvz533HFHNm3a1O9SALoyNDSUu+++O3fffXcWLVqU/fffPzvvvHO/ywIAAAAAAAAAgG306AE7Iv15AAAAAAAAAO0N9LsAmMvWr1+flStXargCdnibNm3KypUrs379+n6XAgAAAAAAAAAASfToAXOD/jwAAAAAAACAsQSjwXayteGq1trvUgB6otaq+QoAAAAAAAAAgFlBjx4wl+jPAwAAAAAAAHjAwn4XAHNRrTV33HHHuIarRYsWZbfddsuuu+6aRYsWpZTSpwoB2qu1ZtOmTVm3bl3uu+++MSvqbv35dsghh/gZBgAAAAAAAABAX+jRA3ZU+vMAAAAAAAAAJicYDbaDDRs2jGlUSJJly5blgAMO0KgA7BAWLVqUnXfeOStWrMjtt9+etWvXbtu3adOmbNy4MUuXLu1jhQAAAAAAAAAAzFd69IAdmf48AAAAAAAAgIkN9LsAmItGNygkjQYGDVfAjqiUkgMOOCCLFi0aM37ffff1qSIAAAAAAAAAAOY7PXrAXKA/DwAAAAAAAKA1wWiwHTQ3Xe22224aroAdViklu+2225ix5p9zAAAAAAAAAAAwU/ToAXOF/jwAAAAAAACA8QSjQY/VWjM0NDRmbNddd+1TNQC90fxzbGhoKLXWPlUDAAAAAAAAAMB8pUcPmGv05wEAAAAAAACMJRgNemx4eHjc2KJFi/pQCUDvLFy4cNxYq593AAAAAAAAAACwPenRA+Ya/XkAAAAAAAAAYwlGgx5rtUJbKaUPlQD0zsDA+LcMVqQEAAAAAAAAAGCm6dED5hr9eQAAAAAAAABjCUYDAAAAAAAAAAAAAAAAAAAAAAAA+m5hvwtgZpRSFiV5SpIHJ9kvybokdyT5bq31lz2e66FJHpdk/yS7JrkzyS1Jrqm1burlXAAAAAAAAAAAAAAAAAAAAAAAAMwNgtH6pJRycJIjkxwx8t/HJ1k26pBbaq0H9WCeFUneluTFSfZsc8w1Sd5ba/3cNOd6UZK/THJUm0PuKaVclOTMWutvpjMXAAAAAAAAAAAAAAAAAAAAAAAAc4tgtBlUSnl6kremEYbWMqSsx/P9bpJPJNlnkkOPTnJ0KeVTSU6utd7f5Ty7JvnnJC+Z5NA9k5yS5IWllFfWWi/vZh4AAAAAAAAAAAAAAAAAAAAAAADmLsFoM+txSZ49ExONhLBdkmTxqOGa5DtJfp5kjyS/k2TvUftfnmS3UsoJtdbhDudZkOSiJL/XtGtVku8mWZPkkJG5ysi+fZNcWkp5Zq316i4eFgAAAAAAAAAAAAAAAAAAAAAAAHPUQL8LIEmyMcnPenWxUsqBSf4tY0PRvp7k8FrrEbXWE2utz05yYJLXJ9k06rj/luRvu5ju7zM2FG1Tkv+R5MBa63NG5npCkkcn+cao45YkuaSUsl8XcwEAAAAAAAAAAAAAAAAAAAAAADBHCUabeZuSfC/JR5OcnOQJSZYl+bMezvG2JMtHbV+T5Jm11h+NPqjWurHW+r+SnNh0/l+WUh4y2SSllIPTCFYb7Y9qre+vtQ41zXVjkmdkbDjaXknOmmweAAAAAAAAAAAAAAAAAAAAAAAA5j7BaDPrgiS71Vp/p9b6mlrrR2qt36m1burVBKWUw5K8ctTQUJKTaq0b2p1Ta71kpLatlqSzwLKzkiwatf2JWuulE8wzmOSkkZq2evVIwBoAAAAAAAAAAAAAAAAAAAAAAADzmGC0GVRrXT1RQFmPvCzJglHb/1ZrvamD897dtH1iKWVpu4NLKTsledEk1xin1vrTJJeMGlqYRs0AAAAAAAAAAAAAAAAAAAAAAADMY4LR5p4XNG1/vJOTaq0/SvKtUUO7JHn2BKc8J8nOo7a/UWv9cUcVjq/phR2eB3PSQQcdlFLKtj9XXXVVv0sCAAAAAAAAAACAHZ7+PAAAAAAAAADY8QhGm0NKKQ9K8tujhjYn+XoXl7iqaft3Jzj2uZOcO5GvpVHbVr9TStm3i/MBAAAAAAAAAAAAAAAAAAAAAACYYwSjzS2Pbtr+Qa31/i7Ov6Zp+/Au5vpGp5OM1HRDF3MBAAAAAAAAAAAAAAAAAAAAAAAwxwlGm1se1bR9c5fn/2yS6432yBmcCwAAAAAAAAAAAAAAAAAAAAAAgDluYb8LoKcObdpe2eX5tzRt71VKWV5rXT16sJSyZ5I9pzlX8/GHdXk+AAAAACM2100ZrsNdnbOoLE4ppaNjh+twNtdNUyltzhkoA1lYFm23628a3pSa8V/LBWVBFpTZ/8+5w3U4A8V6HAAA3ai1dvzefL4aGt7YcnxhWZiBsmC7zdur97db6uZsqVt6UNH2181nxS11S7bUzRMeU1KyaGBxL0oDAAAAgDmr1prUmjLg9+0AAAAAAJAIRptr9mjavqubk2ut60opG5IsHTW8e5LVTYc2z7O+1np/N3O1qG33Ls8HAAAAmPdWbvhZPnvXR/OLwZ9mON3dZL/bguU5Yren5gUrXpkFbYIENg5vyEW//nB+sO66rB9e14uSd3gDWZCH7vSw/NE+f5YHLz2kZ9f9yfobcsmqT2blhp+1DkbLwjx0p4flxfu+NgcsOahn8/bKms2r8+lf/VN+uv6G7L5wzxy3/Pk5dvnv9bssAIBZ7cf3fz///pvP5NaNP88BSx6SF+97ch6ytHktrPnt6/f+v1yx+tL8aui2lvuXDuyUR+78uLzsQX+eXRYs69m83117Tb5497/krqE7ctDSh+VlDzol+y4+oOvr3Lnx1vyfX38oPx/8SbZk4gCx2WKPhXvlybsdn+fv/dK2oXCj3/9vrBsmvN5BSw/Lmx9yzvYoFQAAAAB2eHXD+tR/eGNy9b8nCxakPvcVKa99R8qC7bcgBAAAAAAA7AgEo80tuzZtD07hGoMZG4zWqnu8V/OM1pMu9VLKPklWdHla7+5gBQAAAJgh92xalX+89YwMDq+f0vn3bVmdr6z+fLbUzXnxvq9teczH7nhP/uv+66dT5pwznC352eCP8g+3npEzD3pf9li017SvecfGW/KB296ezXVT22O2ZHNuHrwx/7DyjJz50Pdl2cLmtQv6Z7gO5x9vPWNbWMVdm+7IRXd9JEsGlubJux/f5+oAAGanOzauzIdvf9e2UKlfbrgp5608PWc89H9lr0X79rm62eH6+67Op379gQmP2TA8mO+u+0buvm1V/urB56SUMu15f7L+hnz0jvdsCyy+afC/8t6Vf52zHvqB7Lyg+Vfl7a3bcl/ee+tf5/4ta6dd00y6d/Pdueyez6aU5L/t/fJx+5vf/wMAAAAAU1ffcVLy1UsfGPj0ualJyinv7FNFAAAAAAAwOwhGm1uau7AnXpq5tcEkyye4Zi/nmeiaU/XnSc7q0bVgTqm15jvf+U5+/OMf56677srGjRuzYsWKHHDAATnmmGOy6669ehnOvFtvvTXXXXddbrvttgwODmbvvffOYx7zmBxxxBEZGGi9kn2n7rrrrnzta1/LHXfckcHBwey///45+OCD8+QnP3na127lxhtvzA033JBVq1blvvvuy5577pn99tsvxxxzTPbaa/o32wMAAHPHD9ZdO+VQtNGuve+q/OE+r8rCsmjM+H2b780P7//2tK8/V20YXp/vrvtGjlv+/Glf6/r7rp4wFG20+4fX5gfrrstT9njWtOftlV9u+GnLUIRr1lwhGA0AoI3P/+bCbaFoWw3Vjfn2fV/Ps/d6YZ+qml2uve+qjo9dueHm3DF0Sw5YctC05/3Wmq9sC0Xbau2WNfmv+7+dJ+52bMfXuWHddTtcKNpo31jzlTx/r5eNC5v7xeBPhKIBAEAL+vOmRn8eAPNZ/c0dydVfGL/jsgtT//vf9WQhCAAAAAAA2FEJRpvb6hw7B5iC3/zmN3nnO9+ZCy+8MKtWrWp5zOLFi3P88cfn7LPPzpOe9KSOrnvSSSflggsu2Lb9i1/8IgcddFBH51511VU57rjjtm2fddZZOfvss9seP/qXuscee2yuuuqqJMk111yTs846K1/5ylcyPDw87rx99903p59+ek499dSum6S++93v5k1velOuvPLKltc+8MADc/LJJ+ctb3lLFi5cmLPPPjtve9vbtu2/8sor8/SnP72jue6+++6cc845ufDCC3P77be3PGZgYCBHH310zjrrrDzzmc/s6rEAAABz051Dt/bkOoPD67Nm8+rstWifMeO/Grot1T/hTOhXG3sTBnDn0Mouj+/N175X7tzYup5fzbI6AQBmizs33pofrLu25b47unxvOJf9usvwrTs33taTYLQ728zb7n1v+3p27PfD926+OxuG12enBbuMGZ9tn0cAAKDf9OfpzwOAKfvyRUmLvwdzz6+TdWuSZXvMfE0AAAAAADBL9H4pLfppXdP2TlO4RvM5zdecyXmAabrkkkty8MEH57zzzmvbdJUkQ0NDueyyy/LkJz85J598cjZv3jyDVU7NO9/5zjztaU/Ll7/85ZaNUUny61//On/xF3+RF73oRRkaGur42u9973tz5JFH5oorrmh77dtuuy1nnHFGjj322Pz617+e0mNIkk9+8pM5+OCD8+53v7tt01WSDA8P5+qrr86znvWs/PEf/3FXjwcAAJibNtdNPbvWxuHBjsYYa0OPnqNurzPbvjbt6u/V8wMAMNdcsfrStvtm23u9fhruMqi5V89du/ex3V5/w/D6XpTTV62eC9+jAADwAP15+vMAYDrqrTdNsLP135EAAAAAADBfLOx3AfSUYLTkn5J8tstzDknS/u4D2EGdf/75ec1rXjOuceiQQw7Jox71qOy8885ZuXJlrr322mzZsmXb/o985CNZuXJlvvCFL2Thwtn518R73vOenH766du2H/7wh+fhD394dtlll9x555355je/mQ0bNmzbf/HFF+eMM87Iu9/97kmvfe655+a0004bN/6oRz0qhx12WJYsWZKVK1fmuuuuy5YtW3LNNdfkxBNPzNOe9rSuH8eZZ56Zd7zjHWPGSil5+MMfnsMOOyzLli3L6tWrc/31149pnLvwwgtz55135rLLLpu1XyMAAGD72zzcu5tmBlvc2D4XbuLf3nr1HHUbLDA4y7427erfXDdlc92UhWXRDFcEADB73bv5nlx731Vt9wuXHa27YLRevT9vd51urz8XvpatHsNs+zwCAAD9oj9Pfx4ATNuvVrbfN+r9AwAAAAAAzEd+Wzu3rGnaXtHNyaWUXTM+sOzeDubZuZSyS631/i6m26eDebpWa70ryV3dnFNK6cXUPVM3b05W3dbvMua+FQemzOGGle9973s55ZRTxjRdPe5xj8sHPvCBHH300WOOXbVqVc4444x8+MMf3jZ22WWX5cwzz8w73/nOGau5UzfccEO+9rWvJUlOOOGEvOtd78ojHvGIMcesXr06f/mXf5lPfOIT28bOPffcnHLKKTnooIPaXvvb3/523vKWt4wZe/rTn573v//9Ofzww8eMr1q1KmeeeWY+9KEP5atf/WpuvPHGrh7HBRdcMKbpamBgIKeeempOO+20PPjBDx5zbK01l156aV7/+tdn5crGL8CvuOKKnHHGGXnXu97V1bwAAMDcsbm2Xqn+d3Y9Ks/a8wUt971n5VsznPHNs61u8G8VlpYkyxfundfs/+YuKt3xXb3mS7lmzZfHjfcqeKHdc72oLM6mFl/n2RawMFEwwobhwey6QDAaAMBWV63+92yu7UOOZ9t7vX6qtdtgtN48d+2Cf7u9/uBw61+fH7ns2By3/Hld17W9bKqbct6tp7fc1+oxt3t+Dl76iLxonz8dN754YOn0CgQA6DH9eTNoDvfo6c/TnwcAPfHrW9vvGxaMBgAAAADA/DY3Ow7mr5uath/S5fnNx99Ta13dfFCt9e5Syuoky0cNPzjJj6YxV3Pt89eq21JPfHi/q5jzyr/8JNnvoH6Xsd28+tWvztDQAzdOH1vQ57oAACAASURBVHPMMbn88suz8847jzt2xYoV+dCHPpRDDz00b3rTm7aNv/vd785LX/rSPOYxj5mRmjt1zz33JEne/OY3t11hcvny5fn4xz+e1atX59JLL02SbNmyJR/72MfGrQA52qmnnprNmx+4GemFL3xhLrrooparPq5YsSIf/OAHc/DBB+fNb35zfvOb33T8GG655Zaccsop27aXLFmSSy65JM997nNbHl9KyQknnJCjjz46T3nKU3LzzTcnSc4555y89rWvzUMf+tCO5wYAAOaOTXVTy/Hli1bkoJ0e1nLfTgM75/7htePGW93YvmFL67CrXRfs1vb6c9VNgz9sOb69gxf2WLhnVm36VcfH98tE9WzYMphdF+w2g9UAAMxeg1vW52v3XjbhMYLRpq4XwcXDdbjt16DrYLQ2n6n2Xbz/rPpMVWtNSUnN+CC6Vs9pu+dh+aK9Z9XjAgBoS3/ejJnLPXr68/TnAUBPrLm7/T7BaAAAAAAAzHMD/S6AnmoOJju0y/MPbtqeaHm1Xs/VTagaMIErr7wy3/nOd7Zt77bbbrnoootaNl2Ndtppp+X5z3/+tu3h4eGcd955263O6TjmmGM6Wonx7/7u78Zsf+UrX2l77HXXXZdvfetb27b322+/nH/++S2brkZ705velGc/+9mT1jLaOeeck8HBB24aOe+889o2XY22zz775NOf/vS27S1btszarxEAALD9bW4TjLawLGp7ztIFO7Ucb3XD/sba+mb3pQMTf76ci9o95l6FVrQLcNh94V4tx9sFLPTLRM+DYA8AgAd8fc2XMjhJeFcvwr3milZBXRPpxXvPjcMbenb9dl/rpQtm12eqUkqWDLT+rNjq+7Ht42pzDQAAmGv05z1Afx4ATNPa1e33DQ/PXB0AAAAAADALCUabW/6rafuxpZRuuqqfMsn1Jtp3VKeTlFJ2SfLYLuYCunDBBReM2T711FOz//77d3Tu3//934/Z/sxnPpONGzf2rLZeOf300zMwMPlfYYcffngOOuigbdvf+9732h77mc98Zsz26173uuy+++4d1XPGGWd0dFyS3H///Tn//PO3bR988ME5+eSTOz7/yCOPzFOf+tRt25///Oc7PhcAAJhb2gWjLZogGG1JaX2j+sYWN/gPbml90/9Os+wm/pnQ7gb/XoRWDNfhtuELeyzcc7vN20sTB6PNrloBAPplc92Ur6z+wqTHtXpvPl+1C0ZrFwbdm2C03r23HRy+v+X4TrMwbLr9Z57xz0e750gwGgAA84X+vAfozwOAadqyuf2+4S0zVwcAAAAAAMxCgtHmkFrrnUl+MGpoYZJjurjE05u2/2OCYy+b5NyJPDWN2rb6bq31112cD0zg6quvHrP9ile8ouNzDz/88Dz+8Y/ftr1hw4Z8+9vf7lltvbDTTjvl+OOP7/j4Rz7ykdv+f/369Vm3bl3L46655pox2yeeeGLHcxxzzDEdN7ddffXVY1ajfNGLXtRRE9loxx133Lb/v+WWW7Jy5cquzgcAAOaGdsFo7UICkvahZq1udm9303+7cLW5rJuQgG4N1Y1tAx/2WLhXy/F2QWr9MlFAhGAPAICG6++7OvduvnvS4zYMD2a4Ds9ARbNfu/fJ7YLFevH+fHCC97bdXr/d8TsN7NLVdWZCN89pu8e1dBYGvgEAwPagP28s/XkAMDV1yyTBZ4LRAAAAAACY5xZOfgg7mIuTPHbU9quSfGmyk0opj0jypFFD909y3uVJBpNsvSv0qFLKI2qtP+6gxpOati/u4BygA6tXr87Pfvazbdt77LHHmMajThx99NH5zne+s237uuuuy9FHH92zGqfrkEMOyeLFizs+fvny5WO216xZk1133XXccd///ve3/f8ee+yRQw89tKu6jjjiiI5Wh2xujNt///3zy1/+squ5mh//z3/+8zz4wQ/u6hoAAMCOb9MUgtGWtAn4anXzf7uwq6UL5mMwWusb/DfVoWyumyZ8ziczUbjCHgv3bDk+OLw+tdaUUqY8by9N9BgGBaMBAKTWmi/f0/mvRIfqxiydh4HE49TWwWhLB3bO2i1rxo1PFNjbqYmCfbsJRhuuw22v1S54uZ/afVbsLhht9j0uAADoNf154+nPA4ApWnfvxPsnC04DAAAAAIA5TjDa3POpJH+TZMHI9gtLKYfVWm+a5Ly/atr+l1rrhnYH11rXl1L+NckfN13jVRNNUkp5WJIXjBranOTTk9QGdGjVqlVjtg877LCub5J+xCMeMWb7rrvumnZdvdTcSDWZRYvG3py+adP44ID7778/GzY88CNvKk1MnZ5z6623jtl+wxvekDe84Q1dzzfaPffcM63zAQCAHdPmNsFoiyYI6Wp3o3qrG/bb3ey+U5uQsLlsohv8NwwPZtcFUw9Gmyh4YY9Fe7UcH86WbKpDWVyWTHneXproMUy0DwBgvrjx/u/kjqGVHR+/YXhQyFSS1rFoyU4LdklafBzqxXvPicLPNg4PdhxQvHF4MLXNI9hpwS5Trm97aff91ipsrm2I9jz8rAgAwPyjP288/XkAMEW3/GTi/cOC0QAAAAAAmN8Eo80xtdabSikXJPnTkaHFST5RSnlGu6CzUsofJDlp1NBQkrd1MN3ZSV6SZGtXw0mllItrrS2XZCulLE3y8ZGatvpYrfVnrY6ft1YcmPIvk/ySi+lbcWC/K9guVq9ePWZ799137/oazefMtqaegYGBnl/z3nvHrri1bNmyrq+x2267dXTc3Xff3fW1J7N27dqeXxMAAJj9Ng0PtRxfONA+pKtdqFmrm//bBQLMx4CGicLgNg4PZtcFnX0mbGVwS+tQgSTZfWHrYLSt8y4emB3BaIMThEe0C00AAJhPvnTPxV0dv2HL+mThntupmh1Jm2CxNu/PJ3pf2qmJgtFqajbWDVlaJv9MNDjB++DZGDbdPhitxWfFLa2foyXz8LMiALCD0p83c+Zgj57+vKnRnwcA49UP/83EBwwPz0whAAAAAAAwSwlGm2GllAPT+nl/UNP2wlLKQW0us67W+psJpjkryQuSbF227egkXy6l/Fmt9cejalmS5LVJzm06/9xa6y0TXD9JUmv9eSnlH5OcNmr4X0spf5nkI7XWbXfnllIemeSjI7VsdXc6C2CbV8rChcl+B/W7DHZQtY69QaTb1Shb6cU1ZrslS8beSD401DpcYCKdnjOVa0+m+esOAADMD5vr5pbji0r7YLR2N6q3umm/XaDVfLzZfekEwQWDWwYfWDZgCjZOELywx8LlbfcNDg9mWfaY+sQ9NNFjmChYAgBgPvjl4E25afC/ujrHe6iG2iYYrd37816E8k52jQ3Dgx2FRQ8O39923+wMRmvznDaFoNVa235/7jQPPysCADsm/XlMh/68qdGfBwAt3PLjifcPb5mZOgAAAAAAYJYSjDbzrk7ykA6OOyDJL9rsuyDJSe1OrLXeVkp5YZLLkyweGX5KkhtLKd9O8vMkuyd5fJIVTaf/e5IzOqhvq7ckOTzJ745sL0ryviRnlFK+k2RtkoNH5hrdvTGU5AW11ju7mAuYxJ577jlme82aNV1fo/mc5cvb34Q9VVu2zK5f1DY/xuaVPTvR6cqde++995jta665JkcddVTX8wEAAGyum1qOL5wgGK3dDfytgq3a3+w++27i394mCoObbvhCq1C6JFlSlmangV2227y9sqVuzqba/iaj2VInAEC/fHn1xV2f4z1UQ7tgtHafSSYK7O1Uu/fn3c7RHCg22tIJ3uf3S6dhc5vrpmxJ65DuiQKlAQBgrtCfNzX68wBgrLplS7JukvcRw8MzUwwAAAAAAMxSA/0ugO2j1npVkhckWTVquCQ5IsmJSZ6T8aFon0nyklprxx0RI8eemOSipl37JHlukj9K8oSMDUW7K8kf1Fq/1uk8QGdWrBj7sv7pT3/a9TV+8pOfjNneZ599Wh63cOHYbM3Nm1vfBNHKVBqbtqcFCxbkgAMO2Lb985//POvXd3fT0Q033NDRcfvuu++Y7al8jQAAAJK0DaOaKBitXYBAq+CFdmEM8/Fm90UDi7KwtF5jYrqhFe2CFZYO7DRJINv0Qx96YbI6ZkudAAD9sGroznx37Tdb7jt0p8OzpCxtuc97qIZ2wWjtPpNsrpuzabh1gHSnJgs+G9zS2fv/weH7W44vLIuyaKD9Z7Z+aRei3fy9ONH35kSfXwAAYK7Qnzc1+vMAoMldtyZbJvm7fXh2BZ0CAAAAAMBME4w2h9Vav5jk0Uk+lGSiLodvJnlRrfVltdbWHdoTz7Ou1vqSNELQWnf2N9yT5INJHl1rvazbeYDJLV++PIcccsi27XvvvTc/+tGPurrGNddcM2b7yCOPbHncbrvtNmb73nvv7XiOH/7wh13VNBOe/OQnb/v/4eHh/Od//mfH595zzz35/ve/39GxRx999JjtL33pSx3PAwAAsFWtNZtr6ybZRWVx2/Pa3ajefHP7cB3OxuENLY9td8P8XNcufGFDm+epU+2CBZYu2DkLyoIsLkvanDe9QLZemawOoR4AwHx2xerPp2a45b5n7XlCx2FU81brXLTstKB9WPNkwWaTmey57/T6gztY0HT778X1E26PttOC+flZEQCA+UV/3tTpzwOAUe74xeTHbBGMBgAAAADA/CYYbYbVWg+qtZZp/jmpi/nuqrWekuRBSY5P8qokb03yF0n+MMnBtdajaq2f68Fj+9da61FJDk7yopE53joy5/FJ9qu1/nmtddV05wLaO+aYY8Zsf+pTn+r43B/96Ef59re/vW176dKlecITntDy2OaVKm+88caO5/niF7/Y8bEz5ZnPfOaY7X/+53/u+NwLLrggQ0NDHR37jGc8IwsWLNi2/fnPfz533XVXx3MBAAAkyXC2tA1YWFgWtj2vfbjX2Jv7h+rG1DYpBPM3GK2zoIButQte2BpiN9vDMiarY7bUCQAw09ZuXpNvrLmi5b79Fv9WDt/lCVnaJuBruuFec0W7zyQ7TRAutr3en2/VLvCs0+Mmqr2f2n3uaA7Mnuj5aRfEDQAAc43+vKnRnwcAo6y6Y/JjhgWjAQAAAAAwvwlGmydqrUO11itrrZ+otf59rfV9tdZ/q7V2sNRM13P9otb6uZE5/n5kzitrrZ11JQDT8id/8idjtt///vfnV7/6VUfnvvWtbx2z/ZKXvCRLlixpeezjH//4Mdtf+MIXOprj8ssvz7XXXtvRsTPp5S9/eZYtW7Zt++KLL87ll18+6Xm333573v72t3c8z/Lly/Pyl7982/a6dety2mmndVcsAAAw722qm9ruW1gWt923dGBpy/Hm8IANW9rf7N8uXG2um+lgtJ22BaN1FmbXLxuaghLG75/e8wMAsKP6z3u/mE1tfj36zD1PyEAZaBsk1Wn41lzXPhhtl7bnTPd98mTvXzsNrWv3mWrWBqO1Cekb91lxgsc/X0O0AQCYf/TnTY3+PAAYZaiDf2cUjAYAAAAAtLBhU83f/t/hPPu8LTnqXQ/8ufyHrXsuYUcmGA1gjjn++OPzuMc9btv2mjVr8tKXvjSDgxP/AvW8887LpZdeum27lJI3vvGNbY8/6qijsvPOD9wkcfHFF+f666+fcI6bbropr3zlKyd7CH2xbNmyvP71rx8zduKJJ+bKK69se87/z96dh0lSFXi//53IzKrM3rt6VRqGpUGWEZARQWiYpllGQQFHXhWdYUa9jo6+iuMdF1zxOtdtZoSZC47ggOAyyAVZbNEWkIaWRkAaEBQa6JamAemNql4rMysz47x/FFVdWRUnMqJyz/x+nofHjjgnIk5GllXnZJ7ziw0bNuj000/X9u3bY13r4osvLpvQ9oMf/ECf/vSnVSrF+wL7iSee0KpVq2IdAwAAAKAzFP2wYLSUs8wVslW0RRXGnDMsiMG1YL7T1SugzBW80DsajOYIZAsJr2ukSsERrRLgBgAA0EhDfl73bP95YNnMZJ9eP/1kSXvDcMeLGr7V6VzBaGEBXPUKLo5aPiLr7wncn2nR8ZTrno4fG7rub8r0hI5FAQAAgE7C/LzJYX4eAABj5AlGAwAAAAAAABCf71u96VJfX7zV6s4npQee3fvfy7sJRkPnIRgNAFrMpk2btGHDhkn9N+Kqq65ST0/P6Pbdd9+tk046SQ888MCE623btk0f+chH9IlPfKJs/6c+9SkdeeSRznZOnz5d73znO0e3S6WSzjrrLN1+++0T6g4NDem73/2ujj/+eG3evFmzZ8+Oc0sa5gtf+IJe+9rXjm7v3LlTp556qt7xjnfoxhtv1GOPPaa1a9fq9ttv18c//nEdccQRevLJJ5VOp3XOOedEvs4BBxygK6+8smzfN7/5TS1ZskTLly9XsVh0HrthwwZdfvnlWrZsmY444gjddddd8V8oAAAAgLZXtO5gtJQXPxhNKg9fCAtiCAsh6GTuYLTqghdc93rker2uYLQWCcuoFNrRKu0EAABopN/s+JX2lHYFli2b/dbRPnur9/WaL3iSTtKknCFc1QcXhx8fFiId5Txpb2rsNjWCa5xXsEMq2b0LMF2vy/WzDAAAALQi5uc1D/PzAAB4xVC+cp2YgZ4AAAAAAAAAOt9da6VVzzS7FUDjJJvdAABAufPPP3/Sx1o7vEDkmGOO0WWXXaYPfehD8n1fkrRmzRodf/zxWrx4sY444gil02k9//zzevDBBydM9Dn99NP1la98peL1vvKVr+jmm28efSLjli1b9Fd/9VdavHixjjzySPX29mrz5s164IEHtGfPHknSwoUL9Y1vfKMln0zZ09Oj2267TcuWLdO6deskDd/TG264QTfccEPgMcYYXX755dq4ceOEJ3qGueCCC7Rp0yZddNFFo+/R/fffr7PPPltTpkzR6173Oi1YsECZTEa7du3Stm3b9MQTT8R++iUAAACAzhQWjOYKCJDCQ81y/qCmacYr/w5e7G5k1GvSEVvZWVz3rtrghawzMGH4epmEK5CtNcIysqXwYIhqg+MAAADaTcmWdOfArYFlaS+jJTPPGLPd2n29Zhv53ms8Y4zSXka7SxPHRVUHo1Xo31YKBh6R9fcE7s+0aIBYpRDtKYlpktz3t1VfFwAAABCE+XnNw/w8AACG2XyEzxmtX/+GAAAAAAAAAGgr9zwTPK8S6FQEowFAh/rABz6g2bNn673vfa927949un/dunWjk4qCvO9979N3vvMdpVLuhfQj9tlnH/3kJz/Rueeeq127dlW8xgEHHKDbbrtNmzdvjvlqGmfffffVr3/9a334wx/WzTffHFp3zpw5uvbaa3XWWWfp05/+dFnZ9OnTK15r5Kmf733ve7Vp06bR/YODg1q9enWk9rbq0z0BAAAA1FdhssFoibBgtL0Tb7OOMKteL1NxoUmncgejVRf85QpWGAkmqNd1a6VSMETU4AgAAIBO8eiu3+jlQvD3IEtm/pUyiamj2/UK3+10RiPBaDsnlFXbT65076O+N64A4bQ3NXB/s4WHaI8NRnOPFQEAAIBuw/y8yWF+HgAAkqIEo/ml+rcDAAAAAAAAQFtZ17pfAwJ14TW7AQCA+jnvvPO0fv16XXjhhZo7d66zXiqV0hlnnKHVq1frqquuijTpasSyZcv04IMP6pxzznEujp83b54++clP6tFHH9Vhhx0W+3U02sKFC3XTTTeNTsA6/PDDNWvWLKXTaR144IE67bTTdMUVV2j9+vU666yzJGnCkyJnzpwZ6VpvetOb9Oyzz+ryyy/X0UcfXTFgIJVK6YQTTtDFF1+sp59+WhdeeOHkXiQAAACAtlYMCUZLhQWjhS52Hwz8d9TjO91IUNl4uVJ1oRXue52W5A4YaJVgtErBEEVbVMF3/7wCAAB0Emut7ugPXtSdUFLLZr+1bJ+zj9kifb1ms3I92dDULVSuZsFojvcwkwh+z5vN9bMojR8rhgc7AwAAAN2G+XmTw/w8AEDXG8pVrlMiGA0AAAAAAABAuXVbXfMqgc6UbHYDAKDbbdiwoa7nnz9/vi699FJ961vf0po1a7R27Vpt3bpV+Xxec+fO1aJFi7RkyZJIT1B0OfTQQ3XLLbdo27Ztuueee/TCCy9ocHBQCxYs0AEHHKCTTjpJyeTePzlLly6VtdE7XXHqjnfNNdfommuumdSxS5Ys0ZIlSyLVfeKJJ0b/bYzR/PnzI18nnU7rwx/+sD784Q+rv79f999/v1566SX19/erUCho2rRpmj9/vg455BAdeuihmjKFxSUAAABAtyvYIWdZMiQYLWlSSppUYLDa2AXursXumS5e7O4KXnAFHkTlutcjgWiue15t4EOtRGlH3s8q5UVf5AUAANCunh58XBvz6wPLjp1xsmal5pTtGwnDHS/fIn29ZnMFoxmFhcpVd+8q3fuooXU5f0/g/lYdU4WHaI8dKxKiDQAAgPbD/LzKmJ/H/DwAQIPlI3yO6ROMBgAAAAAAAGAva63WbQkue80C6ah9wx8QBLQjgtEAoEt4nqdjjz1Wxx57bN2uMXfuXL397W+v2/lb1Z49e/Twww+Pbh9yyCGTnsjW19enM888s1ZNAwAAANChgoLNRoQFo0nDAQK7Szsm7I8SjNbbxYvd04ngRTDVhlZUCqFzBQy0UzBazh/UNM1oQGsAAACa646BW5xlp/WdO2Gfq3+dbZG+XrO5g9GM895V00/2bUl5mwutE/X8rvcw402N3a5GSJkeefLky59QFmWsSDAaAAAAwPy8emJ+HgCg4wzlK9fxJ35WBwAAAAAAAKB7bdst7XBMYfzuBZ6OeDXBaOg8XrMbAABAu7v22ms1ODg4uv3GN76xia0BAAAA0A2Kthi4P6GkPBP+kV/aSwfuz/mDgf8uP7Z7F7vXK6CsUgidO/Ah+D1qtCjtaJUQNwAAgHp6IbdBT+x5OLDsz6e+Xq/u3W/C/pEw3PGqDd/tHMHBaDLGee+q6SdHC/2N9t7kSsHtyDgCl5vNGKN0hHuaK7mC0VrzdQEAAADoDMzPAwB0nHyEzxlLpfq3AwAAAAAAAEDbWLfFXXbwgsa1A2gkgtEAAKjCCy+8oC984Qtl+y644IImtQYAAABAtyj4Q4H7kyZZ8Vj3Yve9E29di91d4QPdwHXfslUEL1hrnaEXI/faHfjQGmEZ0cIjWiPEDQAAoJ7uHLjFWXZ639sC97tDcFujr9ds1pWLJqNeZ+Dz5O9drYLRrLXK+nsCy1o5QCxKGDQh2gAAAAAajfl5AICONJSrXMcnGA0AAAAAAADAXs9sCZ5UOa1Xmj+9wY0BGoRgNAAAxvjJT36iz372s9q6dWvFuo888ohOPvlk9ff3j+476qijdMopp9SziQAAAACgoi0E7k95PRWPjRSM5ljs38qL+OstLCTAuhIbKsjbnKyCjx0JyYjyfjVTrcIjAAAA2ll/Yase2vnrwLL90wdrcebwwDJXCG6+ij5mJ3H1lY1MXfrJtQr9HbJ5+fIDy1o5bNo55intfc3usSLBaAAAAACiYX4eAACS8hE+x7TBnzECAAAAAAAA6E7rtgTvXzxfMsY0tjFAgySb3QAAAFrJrl279LWvfU3/9m//pje96U069dRTddRRR2n+/PlKJpPq7+/X448/rp/97Gdavnx52cKknp4eXXvttU1sPQAAAIBuUXAEoyVNquKx7oCvwcB/j9XbxYvdXQEGVr4Kdkg9pjf2OfMhwQvp0WC04Hs+EpbR7C8vwl7DCILRAABAp1s5sFy+SoFlp/e9zdlnc/WvrazyNqe06d7+txQejBYWKjdZkfq2pcrBaNmQ8LRWDpuuKkQ70bqvCwAAAEBrYX4eAACShvKV65SCP3MGAAAAAAAA0J3WO547dPB8QtHQuQhGAwAgQKFQ0PLly7V8+fJI9TOZjL7//e/rqKOOqnPLAAAAAEAqOoLRUlUFo41d7B68kD+T6N5ghrAAg6w/qB4vfjBaWGBYpWC0VgnLcP2slNchGA0AAHSuwdJu3bv99sCyealX6ahpxzmPdfX1pOE+VFh5dwgORpPcoXLZCMFlLmGBZiPyNiff+vKM5z5PaY+zLJOYOqm2NUKUsaIrPI6fVQAAAABxMT8PANDV8hG+Q/cJRgMAAAAAAACw1zObg+dUHjS/wQ0BGsg9WxcAgC40a9YsJRKJWMeceOKJWrVqlc4777w6tQoAAAAAyrmC0ZKRgtGCA77GBly5gqzCwsE6Xa+XdpZFCQcLPi5KMJr7nrdC4FiUNkz2/gAAALSDVdtXKG9zgWWn9p0jz7i/cwgLk3IFUHUT6whGMzLOe5e3k79vUfvXeT/4/Y5ynkwLj6nSjiDssf15V3hcN48VAQAAAMTD/DwAAEQwGgAAAAAAAIBYrLV6Zktw2eJ5jW0L0EjJZjcAAIBWcu6552rz5s1asWKFVq9erccff1zPPfec+vv7lcvllMlk1NfXpz/7sz/TSSedpDPPPFMnnnhis5sNAAAAoMsUqgpGcy12z435N8Fo44UFGEw2oCxXcgeGjQSxhYVl5EqDUrJvUteulWjBaIR6AACAzlTwh3T3wG2BZdMSM3X8jFNCjw/rX2dD+ordzhh3MFquNPm+Z9QwuryfVSYR8t75ewL3e/LUY3on1bZGcIdoD98Xa23IWNE9bgEAAACAsZifBwCApKHwhy9IkkoEowEAAAAAAAAYNjAo7XBMcTx4gWlsY4AGIhgNAIBx5syZo/e85z16z3ve0+ymAAAAAECgYj2C0cYEL+T84BCG9CthXd2oN+S1hwWchXGFCvSatDyTkCSlQwIXmh04VrIlFexQxXrNbicAAEC9PLjzHu0sDQSWLZ11pnq88BCssD5m1JCuTmWtDSk1zn5y1h+UtVbGxJ/ok3WMg4LqzdIcZ7l7PDVlUu1qFHeI9vDPYsEOycqPdSwAAAAABGF+HgCg6+UjBKP5BKMBAAAAAAAAGLZ1l7tsv77GtQNoNK/ZzqQG5QAAIABJREFUDQAAAAAAAAAQT9ERRhUpGM0RIDB28b4ryCrtuUO6Op1nEuo1wcEVkw3+ct/nvaECPaZXRsHhCa7AhUaJGtbR7aEeAACgM/nW150DtwSW9ZhenTz7zRXP4RnP2ceMGtLVqazcwWhGRmkTHMTlq+QMkq6kVv3brCM4ORMSetwKXOO9kXFL2M9kN48VAQAAAAAAgNiGCEYDAAAAAAAAEF3/HnfZnKmNawfQaASjAQAAAAAAAG2m4Acv9E95PRWPHRu6NdbIYveSLargCF7r9sXu7ns3udAK13G9Y67jGU+9Xm0D2WolalhHt4d6AACAzvT47t9q89CLgWUnzDxN0xIzIp3H1cfs9nDZ8GA0KZ0Ivm/S5PvnrkCzieevEIzmB89AyrT4eKq3wngn7GfS9XMMAAAAAAAAIMBQhM9/fb/+7QAAAAAAAADQFlzBaD1JaWpvY9sCNBLBaAAAAAAAAECbKdrgYLSkSVY81hVuNrK4P2yRf7cvdk8nwu9dXHk/+CnQ469T6T1rlqhhHc1uJwAAQD3c0X9z4H5Pnk7tOzvyedxhVN3eh3IHo0kmdGxS6/553PO7ytNeaz+WMVMhpC8scK7bx4oAAAAAAABAVNZaaShfuaJfqn9jAAAAAAAAALSF/j3Bcyr7pkjGmAa3BmgcgtEAAAAAAACANuMKRkuZnorHuhas5/xBWWtZ7B7CFVCWDblnYVzHjb/PYe9ZM2UjBk5EDVADAABoF+sHn9Qfc2sDy46ZfqLmpBZEPletw3c7hQ0JRjMyzr65NPl7F7V/Xale1g9+NGOrj6fc451s2f8GH9varw0AAAAAAABoGUPRHtBAMBoAAAAAAACAEf2OaYt9rf28VqBqBKMBAAAAAAAAbcYVjJY0qYrHuhas+/JVsEPKlsIWu7vDB7qB695NNvjLdVy7BKNFfd3ZUnPbCQAAUGt3DNzsLDut79xY53L39bo8GM2diyZjTGgQ12TvXdTA40r1XP3fjNfaM5B6K4w7XP3/HtMrzyTq1i4AAAAAAACgo+Qjfn5ZIhgNAAAAAAAAwLD+4Oe1EoyGjkcwGgAAAAAAANBmCs5gtGTFY8PCzXJ+NjRsi2C02oZWuO71xGC04Pue8yM+SbpOor7uvO3uUA8AANBZNuVf0OO7fxtYduiUo7Rf+qBY52vVENzmcyejGRklTFIp0xNYPtl7FzX4t1I9V3BaJtHa46mM42exaAsq2oIz8K3bx4kAAAAAAABALEMRv+f3/fq2AwAAAAAAAEDbeHl38H6C0dDpCEYDAAAAAAAA2kzREYzmCgYYyxW8IA0HCLhCBJImqZSXitbADuVa8O8KPqjEFSzWOyEYrTXDMqJeP1ciGA0AAHSOXw3cKusI7Tqt79zY53P19aKGdHUq1z0eZiTVI7g42nGV6uX84EczZlo8QGz8OGSsnJ91/kyGjTEBAAAAAAAAjJOP+PmlX6pvOwAAAAAAAAC0jQHH8p2+qaaxDQEajGA0AAAAAAAAoM0UHMFoSVM5uCw8GC2rnB/8dOKwRfLdotYBZa5AhfGBCa0bjBY9OMLasGALAACA9rCjOKAHdq4MLFvUu78Om3J07HO6w3cJRnMZmcbTqsFo2VJwPz3jtfajGcOC2/J+1vm6CUYDAAAAAAAAYhjKR6tHMBoAAAAAAACAV/TvCZ5T2dfa0xKBqhGMBgAAAAAAALSZoiMYLeVVG4w26AzbcgU2dBPXPah18ML4ELpaX7dWco7Ah/FKKjp/ZgEAANrJ3QM/U9EWA8tO63ubjIn/5D1X/zxPMFpI6fB9rn3/PFr/tlI9Z4BYorXHVGFjvmwpq6xrrNjirwsAAAAAAABoKflon19a369zQwAAAAAAAAC0i/49wfsJRkOnIxgNAAAAAAAAaDNFPzhkKmkqB6N5JqEe0xtYlvOzzkX+mZBAtW6RqXHwgivsYnw4RssGo8W4frPbCgAAUK2cn9Wq7b8ILOtLztNfTD9xUucdH4o79noI5r0SQOe+d9ECziYeF+2eV6qX9YNnILX6mMp1P6Xhexp1/AIAAAAAAAAgxFAuWj2/VN92AAAAAAAAAGgbBKOhWxGMBgAAAAAAALSZgh0K3B8lGE0KD9pyLfJ3HdNNer104P5caXLBC1lHYMPEYDRH4MMkr1sr8YLRmttWAACAaq3efoez/7as72wlTHJS53X29bq8/2StDSkdDkar5b0r2aJznDXx/JWC0Vz9/NaegZTyUko6fo7zISHaBKMBAAAAAAAAMeQjfs9eIhgNAAAAAAAAwDCC0dCtCEYDAAAAAAAA2kzRFgP3Rw9GcwdtuRb597LYPTRQbjLyEUPo3IEPk7turbjaH6TZbQUAAKhGyRZ118BPA8umeNN0wszTJn3uVu3rNZuV7ywzFYPR4t+7WKG/IQHFBb+goi0ElmXaIGzaNe7L+lllGSsCAAAAAAAA1RvKRavnE4wGAAAAAAAAQCr5VtsdUxznTDWNbQzQYASjAQAAAAAAAG2maIcC96eqDUbzs8r5wYv822ERf71lEq5gNHcwgou1Vjk/eMLz+Pcn7bxuc8MyYoVHdHmwBwAAaG8P7bxXA8VtgWUnz3qzs38dRa3Dd7uJ896V6hyMFlI35zseyyj3eKKVuO5p3s86g5EZKwIAAAAAAAAx5AlGAwAAAAAAABDd9kHJ2uCyvqmNbQvQaASjAQAAAAAAAG2mYAuB+5OmJ9LxYUFbrpCvasIeOoXrHgzZvHwbb1LykM3Lyo90HXeQXfxAtlqKc32CPQAAQLuy1uqO/psDy5ImpaWzz6rq/K6+Xt7PyrpmsnQBK/drNxp+wmHYvYurVn3bbEhZxmv9GUiZkLEHY0UAAAAAAACgBvIRP78kGA0AAAAAAACApH7381oJRkPHIxgNAAAAAAAAaDNFZzBaKtLxYUFbuVLwJNy0Fxym1k3CFvzHDf4Kqz/+XtcykK2W4rzmZoe4AQAATNYTg4/oT0PPBZYdP+MUzUjOqur8rn62lVXe5qo6dzsLDUYz4cFo2Un0PXN+9HsdFryW890zkNohQKzXOVbMOvv/rmMAAAAAAAAABCjko9UrEYwGAAAAAAAAQHpxu7tsDsFo6HAEowEAAAAAAABtxhWMlqo6GM292L0dFvHXW1g4XPxgNHdYQ6+Xrtt1aynOtcPCIwAAAFrZnf03B+43Mjq175yqzx/Wz+7qPpQ7F01GrwSjJYL7yZO5b3GCfPM25wwozpbc52mHMZVr7JHzB539/wwh2gAAAAAAAEB0pWJt6wEAAAAAAADoaOu2BE+onDNVmpY2DW4N0FgEowEAAAAAAABtxhWMlvSiBqOFLXYPXsjfDov46y08oCx6kIIUHtYwPlgg7N43MxgtTuBEtptDPQAAQNvamFunpwYfDyw7ctpxWtCzT9XXaNW+XrPZsGS0kWC0kMDnuHIhgWZB8n4ucH82ZDzlmUTsdjVaeIh28GvrZawIAAAAAAAARBc5GC344QwAAAAAAAAAusv6rcH7D5rX2HYAzUAwGgAAAAAAANBGfOuraIMnyiZN1GC0sMXuwSEC6YQ7FKxb1DK0IiworNdLj7tuWCBb88IyXKEPQeKEqAEAALSKO/pvcZad0fe2mlyDYLRgYcFoZjQYzRX4PIlgtNj9+eC+cNbfE7g/rE/fSlw/j1l/jzMMbnywMwAAAAAAAIAQxeAH4U0QNUANAAAAAAAAQEf7oyMYbfF809iGAE1AMBoAAAAAAADQRkqOUDRJStUgGM21wL9dFvLXU8r0yHN8pBo3SMEVFNZr0vJMomxfeFhG9HCyWirZkgp2KHL9ZrUTAABgsrYNbdLDu+4LLDsoc5gOyLymJtcZH4o7FsFo4dzjmkFZW/n48mPi9ueDQ8Jc58l4U2Odv1lc476dxe3O9yRsvAIAAAAAAABgnFIpYj2C0QAAAAAAAABI67YEz907cF6DGwI0AcFoAAAAAAAAQBsJC6NKRg5GC17snvMHnYFdLHaXjDGh9y6ObCm4fm/Afa5lIFutuH5OXFyBewAAAK3qVwM/lZUfWHZ639tqdh3PJNRrgsPRco4+Y3dwB5t5Zrhv7Bqj+PJjhfhK8fu3rv5/trQncH+mTYKmXfd0e/Fl5zFBYxgAAAAAAAAADlEDzwhGAwAAAAAAALqetVaPPB9cdhDBaOgCBKMBAGpi48aN+vznP6+TTjpJCxYsUE9Pj4wxo/9dc801zW4iAAAAAHSEonVPfk2ZnkjncC1231XcId8R/kAw2jDXfXAFnbnECaALD2RrTjBa3OvGDZoAAABopt3Fnbpvx52BZQt6FunPp76+ptdzBUs1q6/XCtyxaHuFjVHi3ru4Qb6u+q796US7BKMFt3N7sd95TLuEvgEAAADtjvl5AAB0CILRAAAAAAAAAET0nXvcsykXzzcNbAnQHMlmNwAAut3++++v5557bnR75cqVWrp0afMaNAnf/e539dGPflT5fL7ZTQEAAACAjle0BWdZ0kT7uM+12H2Pvyv2Md2mVgFlrvqucIe0l9GgvzvgPPECHGol9ustdW+oBwAAaD/3bP+5CnYosOz0vnPlmdo+fyztZbSzNDBhf7P6ei3BuifzGA1P5gkbo+T8Qc3QrMiXi3uvXcG/rvO0S3iYazwSNg51BfsBAAAArYL5eQAAoJXYovuztjIEowEAAAAAAABd7/u/cc+lPGheAxsCNEltZ2wDALrOz3/+c33wgx+MPOnq7rvvLntS5cUXX1zfBgIAAABAh3EFNEhS0qQincO12L3Wx3Qi131wBSO4uILFXKECruvmSs0KRot33bhBagAAAM0y5Od1z/afB5bNTMzWsdP/subXdPcxczW/Vrvw5YeUjgSjuccocfufce+16/xZf0/g/nYPRgvT66Xr0BIAAAAAI5ifBwBAh4kaeEYwGgAAAAAAAND1BkKW7iyY0bh2AM2SbHYDAADt7aKLLpK1e5Nm3/3ud+v973+/9t13X6VSexfkz507txnNAwAAAICOU7TupwenTE+kcxCMNnnpRHCgQbZGQWEZx/nTjiCFZgWOxb1u3CA1AACAZvnNjl9pd2lnYNkps9+qlBctjDiOWvUxu4V55X9docJS/P5nrfrzWUdwsas/32pcP4vO+l5GnuF5fAAAAEA9MT8PAIAOQzAaAAAAAAAAgAhyBaunNweX7TtbMsYEFwIdhGA0AMCkPfXUU3rsscdGt88880z96Ec/amKLAAAAAKDzFXx3MFoyYkjDZBblE4w2zHUf4gYvuOr3muDzuwIK2icYrTntBAAAiMO3Jf1q4NbAsrSX0ZJZZ9Tluq4+Zr6L+1BW1llmXolGS5iEekyvhmx+Qp24/c+499rVn3cHIE+Ndf5mSTvGIy5h4XQAAAAAqsf8PAAAOlDRPeejDMFoAAAAAAAAQFf7+i/c8ygvfw8PNEV34CcdADBpDz30UNn2eeed16SWAAAAAED3KFr3JNmUiRqMFnOxu0nLM4lYx3SqjCNUrlbBC+mEIxjNSzuuGy+QrVbiB0d0b6gHAABoH4/uvl/bCsGP1ztx5hmakphWl+u6wnG7uw8VEow25imH7uDi2gSduesHnz/r7wnc3y5B067xiLP+JEK3AQAAAETH/DwAADpQ1MCzUqm+7QAAAAAAAADQ0q5Y5Z5HuWBGAxsCNFGy2Q0AALSvzZvLFwctWrSoSS0BAAAAgO7hCkYzMvIULbwsnYi3eL1dFvE3Qq2CF7KO4AXX+V2BA80Ky4gfNJGVtbYsxAIAAKCVWGt1R/8tgWWeElo2+611u7YrjKpZIbitwLrn80gaG4w2RTtL2yfUmEx/NVb9kisYLfg9y3hTY52/WeKO/RgrAgAAAPXF/DwAADpQ5GC0iPUAAAAAAAAAdJS1L1mtesZq8053nT6eaYouQTAaAGDSdu/eXbadSqWa1BIAAAAA6B4FRzBa0qQih071mF4ZGVmFpg2M6mWx+yjXvYgbWpH3c4H7XQForReMFvx6jTxZ+RP2+yqpYIfUY3rr3TQAAIBJeSb7ez2Xeyaw7NgZJ2t2am7drl2r8N1OEtSnHGHGBKP1eunAOrlSvP65616nTI8Kdihyfdd1M47+fKtxjTvc9RkrAgAAAPXE/DwAADpQqRSxHsFoAAAAAAAAQDex1uozN1n96y8rr/Xqa49ntQJVIxgNALqEtVYPP/yw1q5dqy1btiifz2vevHnaZ599tGTJEk2bNi32OX3fvSgFAAAAAFAfxZBgtKg846nXS0cOWkgn2mMRfyO4Ag3ihla46ruCBdxhGfECH2rF1f4ZiZnaURoILMv7WfV4BKMBAIDWdEf/zc6y0/rOqeu1Wy0EtxVEi3B237u8jds/D+5Xz0rO0dbCS5Hql2xJeRscgJxpkzFV3KCzuEFqAAAAQCdjfh4AAIikGDznYwKC0QAAAAAAAICucu86RQpFk6SZPNMUXYJgNADocNu2bdNXv/pV/fCHP9TWrVsD6/T09GjZsmW6+OKLddxxxznPtWHDBh1wwAHO8lNOOSVw//e+9z29973vDSz78pe/rC9/+cvOc65cuVJLly51lgMAAABAtynaocD9qRjBaNLwAvaoQQuZmIvjO5k7tCJeQJmrfvxgtOaEZeRKwdedmZrjDEbL+llN16x6NgsAAGBSXsxv0B/2PBxYdsTUv9A+vfvX9fquvl6+i4PRwqLRjMzov12BY1lHfzVIwS+oaIMXGc5K9kUORgt7vzJeezyeMWGSSpkeFRzjzvHiBqkBAAAAnYj5eQAAIJaogWcEowEAAAAAAABd5YY1UR8pK3meqVwJ6ABesxsAAKifW265RQceeKAuueQS56QrSRoaGtKKFSt0/PHH64Mf/KCKRb5IBQAAAIBW5Vqwn4wZjNYbYwG7KwysGzkDymIEL0juQDN3MFptAtlqxdX+Wck+5zHdHewBAABa2Z39tzrLTu87t+7Xd/UBs03q67UCGxaMZvZOc+g1rgDh6PcurJ86KznHcf6Jx2T9Pc7zZNpoTBUn7IxgNAAAAHQ75ucBAIDYCEYDAAAAAAAAMM6a56wuuytaMNqb/7zOjQFaSLLZDQAA1MfVV1+tD3zgA/J9v2z/QQcdpMMPP1xTpkzRxo0b9eCDD6pUKo2WX3nlldq4caOWL1+uZJI/EwAAAADQagr+UOD+uMFomRgL2OOEqHU6ZzCan5W1VsZUfuqKtdYZLOa612HXbQZX0IQrOELq7mAPAADQugYK2/TbnasCy/4sfbAOztR/Bomrr0ewbLCxPe50ovp7F9annpWKEYxWcvd32ylsOu1ltKu0I3JdAAAAoFsxPw8AAExKsRCtHsFoAAAAAAAAQFf4r7t9feR/ooWiSdLHT/MqVwI6BN+oA63GL0qDLzS7FZ1vyiLJ69xfgY8++qj+8R//sWzS1dFHH63LL79cJ5xwQlndrVu36gtf+IKuuOKK0X0rVqzQF7/4RX31q18tq7to0SI9++yzo9uXXnqp/uM//mN0+7rrrtPxxx8/oT1z587V0qVLJUn333+/zj///NGyCy+8UB//+Medr2XhwoUVXi0AAAAAdJeiDZ4km/J6Yp0nzsL8TBst4q83130rqaiiLShlKr8PBTskKz+wzHWvWy8YLfi6U7xpSpkeFezEAD+CPQAAQCu6a2C5fJUCy07vOzdS8G21XH3MnJ+LHL7baXwb3F8etvd+uPrJcUJ5XaG/kjv4N6hvG3bNTKJ9xlRxxortFPgGAAAwivl5jdPBc/SYnwcAACYtauAZwWgAAAAAAABAx9sxaPWxH0cLRdt/jnT133ta+prum1OK7tWZMw6Adjb4gvTTA5rdis539rPStP2b3Yq6ef/736+hob0LkJcsWaJf/vKXmjJl4uKEefPm6Tvf+Y4WL16sT37yk6P7v/GNb+j888/Xa1/72tF9yWRS+++//+j2rFmzys61cOHCsvKxpk2bJknasGFD2f5Zs2Y5jwEAAAAATFS0wZNfkyYV6zy9jgCBIK6wgW6UTrjvRc4fjBRQFxaY4HpfXIEDRVtQwS8o5cV7/6vlCjlLexmlvYwKpYnBaGGBEwAAAM0wWNqte7f/MrBsbmqBjp42cbF5Pbj621a+hmxevSbdkHa0C1MWjBbcT877ucjnC+unzkz2Be4P6tNn/T2BdVOmRwnTPlMz4oz/GCsCAIC2xPy8xungOXrMzwMAAJNGMBoAAAAAAACAV6x8SiqFPUdW0u8v9nT4qwlDQ3fymt0AAEBtrVy5Ug8//PDo9owZM3T99dcHTroa65//+Z/1lre8ZXTb931dcskldWsnAAAAAGByCnZi4JQkJWMutM/EWuwePqbsJmH3IusICxvPFSo2fH5XMJr7/Qo7X73kQoPRgu9RLkY4BQAAQCPcu/125W1wH+XU2efIM4mGtCMstNjV7+p0Vu4nII6d3uPqJ8cJ5XXd46RJalpiemBZwQ6pZEtl+7Kl4GtmvKmR29IKCNEGAAAAwjE/DwAAVCVyMFqpch0AAAAAAAAAbSk7ZPXvt/v66/8KT0VbNFt6zcIGNQpoQQSjAUCHufbaa8u2P/KRj+jVr351pGO//vWvl21fd911yufzNWsbAAAAAKB6RVsI3J8yPbHOEyfsjMXue9UioCwspMEdjOZ+v5oRluG6Zq+XqUk4BQAAQL0V/ILuGlgeWDYtMUNvnHlqw9oS1sfs3j5UWDDa3mkO7r5n9D6yO/R3Smg/fHz/3/VeZRLtFTSdiTVWbK/XBgAAANQC8/MAAEBVihGD0aLWAwAAAAAAANBWhopWp37L1ydvdM+THPH/nmuU8EzFekCnIhgNADrMvffeW7b9N3/zN5GPPeKII3TMMceMbudyOa1Zs6ZmbQMAAAAAVK/gCEZLmlSs8/TGCDsjGG2vsHuRjRhaERbS4Hpf0onWCssIC30gGA0AALSD3+66RztLA4FlS2edpR6vt2FtqUX4bqexIcFoGjPHpxZ9T3cwmjv0N+g413ig3cLDGCsCAAAA4ZifBwAAqlKKGHgWtR4AAAAAAACAtnLLo1b3/zFa3b99I7FQ6G78PwAAOsjAwIDWr18/uj1r1iwddthhsc5xwgknlG3/9re/rUnbAAAAAAC1UXQEo6ViBqNlYizOb7eF/PWUMEmlTE9gWdTwBVfwQo/pVcIkAsvCAxkaGzjm25KGbD6wrNfLOIMUwgLhAAAAGsm3vu7ovyWwLGV6dPKsNze0PeHhu93Zh7KhuWh7k9FcY5Wcn5MNO0lZXVegWSZ0LDT+OGd4cJuNp+KEnaUT7fXaAAAAgGoxPw8AAFSNYDQAAAAAAACgq/3qyWj1PvNmU7kS0OEIRgOADrJ169ay7YMPPljGxOvwHHrooWXbW7ZsqbpdAAAAAIDacQWjJWMGo7HYffJcwQZRg79c9cLek6RJOd/jRgeOhV0v42Xc96fUnaEeAACg9fx+z0PaPPRCYNkJM0/TtOSMhrbHMwn1mN7Asny3BqPJd5ZFCUaz8p1hvuO5++dTYoXWZUudEYyWiTH+izOuBAAAADoB8/MAAEDVCEYDAHSRP261eu/3fHn/UBr9711X+npoQ7QHHAEAAABAJ1q3JdqY6OyjCEYDks1uAIBxpiySzn622a3ofFMWNbsFdTEwMFC2PXPmzNjnGH9Mf39/VW0CAAAAANRWwa9NMFpvnGA0FruXSXtTtLO0fcL+6oPRwgMI0t4U7S7tmPR1ayXser1exvmz1eh2AgAAuNzRf3PgfiNPp84+p8GtGZb2pmioNDHIyxW2hWFhY5Wcn1Wvl654Dlc/tdfLKGV65MmTHxDUNj60LuvvCW5jmwVNM1YEAAAdj/l5jdOBc/SYnwcAAKpWDJ7zMUEpYj0AAFrUn7ZbvfHrvrbuKt///z9k9bPHrH79KU+v249F/gAAAAC6z7oIz036h5ONjjug/m0BWh3BaECr8ZLStP2b3Qq0KWvL02HjPo0ySC3OAQAAAAConaJ1BKN58YLRMjEW57PYvZwrXCEXMbTCVa9SaEPaSzuC0RoblpH3c86ytDfF+fPS6HYCAAAE+WN2rdZnnwwsO2b6CZrbs6DBLRqW9jLaWRqYsH98+Fa3sHI/EdFo73dX4cFog5qp2RWv5eqnZrwpMsYo7U3RoL+74nGugLWMN7ViG1pJpkJg81iVwp0BAABaEvPzUAXm5wEAgKqVirWtBwBAi7p6tZ0QijZicEj6/+6yuvrvGRMDAAAA6C65gtUL293lbzlS+vhpnk55Dd8jAhLBaADQUfr6+sq2d+yYuFi6kvHHzJ5decEIAAAAAKBxCnYocH/KxAtG640RdsZi93Ku++EKQhgvb4PrVbrP1V63VsICztJeJiQYrTtDPQAAQGu5o/8WZ9npfec2sCXl6EONFxKMZrzRf4cHo0W7d656I8HFaS/jCEYrPy7r7wk8T7sFTUcdKxp56jG9dW4NAADtwRiTkLRY0uGSXi1ppqS8pAFJ6yU9ZK0N7ixM/popSSdK2k/SqyTtlvQnSY9YazfU8loA9mJ+HgAAqFrkYLSSrLUsfmwi7j8AVGfF793f90nSD++3uvrv9277/nB9Y1j8j3L8TQYAAEAn2bRDso7h0hNf9nToq+j7AmMRjAYAHWTevHll208//XTsczz11FNl2/Pnz6+qTQAAAACA2iraQuD+pOmJdZ5MjMX5GYLRymQSroAyd2DYWNmSKxgt/D1pnWC04OuNBCOknfenW0M9AABAq9g89KIe2/1AYNlrprxW+6UXN7hFe7nCqLq1DxW+TGKvkfCyINUGo430v52hdaXy/n+2FDweyHhTI7WjVUQNckt7aRYgAAC6mjFmP0l/Lek0SSdJmhFSvWSMuUPSZdba26q87jxJX5b0Tkl9jjr3SfqWtfYn1VwLwETMzwMAAFUrBs/5CFQqSUmWfTXas9usPvIjX6vXSwfPl774Fk9nH81noQAQ15MvhZcXfalYsvoizKhjAAAgAElEQVT6CqtrVlv9cdvw/hlp6dTDpG+/x9OCGfz+7Wbrt1j97+t83ffK3+SLz/b0liP5mQAAAOEefd7q0zf6euBZ6dCF0r/+L08nHUwfAq2jP+SRavPDZh0AXcqrXAUA0C5mz56tgw46aHR7+/btevLJJ2Od47777ivbPvbYY2vSthEskAAAAACA6hRt8NODkybeZFhXyNZ4Rp5SMUPXOp0zGCFiMFreGbxQKRituuvWiut6I8EIrna6XjcAAECj/Kr/VllH5NbpfX/d4NaUc/f1urMPZa3vLDPa+12TZxLqNcHhaOODy1xc/dSRgOiooXWufrIrWLlVRQ3GjjqmBACgExlj/kfSc5IukXSWwkPRJCkh6U2SfmaMWW6MWTDJ675Z0u8l/aMcoWivOEHSjcaYHxpj2iulFWhxzM8DAABVK5Vi1A2eH4L62ZO3OvHrvlb8QdqVkx7eKL3tv3zd/VTUx3kAAKThwLOBCF/VfehHVl+8dW8omiTtzEk3PyKd8m++fJ/fv91qd87qxG/4+uWYv8nnXu7r18/wMwEAANz+tN3qjEt83fHkcL/ywQ3Sqf/u6/EX6EOgdbiC0YyRZkZ7pinQVQhGA4AOs2TJkrLtH/3oR5GPffLJJ7VmzZrR7XQ6rb/4i7+oWdskqbe3t2w7n8/X9PwAAAAA0OmKdihwf9KkYp3Htbh/vLSXYRHNOFGDEVxc9SoFC7RKWIbreiP3xfU6sg0OcAMAABhrR3FA9+9cGVi2T+/+OmzK0Q1uUTlXH6rRIbitImwq2thgNKn6fnLWEaA20r91BYWNP3/WD56xFDVorFXEGSsCANDFDnHsf1HS3ZKul/QTSY9IGp/4+hZJq4wxC+Nc0BizVNItkuaP2W0lrZF0g6Q7JG0bd9h7JF1njGGeKFBDzM8DAABViRN2RjBaw930sNWmneX7rJWuuIcF1AAQx3MvR6t39b3u369rN0m/WlujBqHt3Piw1ZZd5ft8K32Hv8kAACDET39ntW13+b6iL12xij4EWkf/YPDP46yMlPBYuwWMx4QXAOgwF1xwQdn2ZZddpk2bNkU69qKLLirbfte73jVholS1Zs2aVbb90ksv1fT8AAAAANDpirYQuD9lemKdJ+ri/HZbxN8IUYMRXFzhFr1eOvS4VgnLcL3OkfviCkjI+1lZy5eKAACgOe4euM3Zlz5t9rlNDwMO60N1p+j9RndwcbR+sqveyHsSJRjZt35IP3lqpHa0iqiBZ5WCnQEA6CKPSPqopMXW2kXW2lOste+y1p5nrT1G0n6Srhx3zCGSbjARO6HGmEWSbpI09kPg1ZKOsNa+3lr7DmvtGZIWSbpQ0tiO71sl/cukXhmAQMzPAwAAVSEYraX9tyOg5/qHJu7fusvqT9srf5adL1g9tclq7UtWuUJ5/a27rIaKVtsHrZ7dZvV8/3DdzTutNmyzemm7le8zzwJAfWzeOfx7pi7n3lW5ThRrnuN3YD0US1bPbB7+27Qn35r3+KpfB7frugfL92eHrNZtsSrx9xIAAMgdvPvtu4f7DGtfGv5vhyOYCmiEl3cH7+9rr2mGQMMkm90AAEBtLVu2TEcffbQeffRRSdKOHTt0/vnn6+c//7kyGfdChksuuUS33nrr6LYxRv/0T/9U8/YdeOCB6unp0dDQkCRp5cqVKhQKSqVSNb8WAAAAAHSigiPMIWnifdSXMj3y5MmXH1ov6qL4buK6J9GDFxyBCYnwYAHndUuNDctwtX8kMMLVTl++CnZIPaa2i7wAAAAqyflZrdr+i8Cy2cm5ev2MJQ1u0UTpRHAfKtvgENxWYUOC0cy457+lE1PKoz9ekfdzka7lqjfSr3W9N2P7/0M272xzuwWIRR0DVgp2BgCgw1lJt0m62Fr7UGhFa1+U9EFjzO8kXT6maImkd0r6cYTrfVnS7DHb90k6zVpb1pGx1uYl/acxZqOkm8cUfcIYc4W19rkI1wJQAfPzAABAVWz4HI0yBKM13K+fcZetfcnq0FcZrdti9c4rfD3y/PD+g+dLP/q/PL1+//Ls65Jv9c83WF2xyir3ymfYvUnp704w+shSo7+92tdjL0Rr1w/eb/Se47zKFQEggif+ZHX+d309/uLw9qELpf/5gKej963dg6QG9tTmPOu21uY8GGat1TdWWH3tF1a7XvlkMelJbz/G6L//zmhqb3MfJjbW6vXusmLJquRL//gjqx89YFUoSbOmSJ870+j/PoO/lwAAdLNHn3eXHfL5vZ/JGCOdfpj0w/d7mju9dfpA6A79jvHSHILRgEAEowFAi9m0aZM2bNgwqWP3339/SdJVV12lN77xjaOTm+6++26ddNJJuvzyy3XccceVHbNt2zZ96Utf0re//e2y/Z/61Kd05JFHTqodYXp6enTiiSdq5cqVkqSNGzfq7LPP1oc+9CEdfPDBmjKlfHHIwoULlU6zsAIAAAAARhQdwWgpryfWeYwx6vUyyvrhs5B6CUabwBVskHUEho1XKVjMfV1XIENjg9HyjuuNBkeEBD/k/Kx6PILRAABAY923/Q5nv3fZ7LOViBkyXA+uvl7UcK9OE/ZMTjNuLlrGce+ihMpZa5310q8EF0fph2dL7nFVpQDkVhM1GC3TZoFvAADU2P+y1m6Ic4C19tvGmGWS3j5m99+qQjCaMeZgSX83ZteQpL8fH4o27lq3GGOuHXNcr6QvSXpfnDYDnYr5eczPAwCgqUqlGHUJRmukFwbCPpmWDv+Sr9y3PZ1xia8NL+/d/8wW6bRv+Xr+m56mp/d+gP3NX1r9x6/Kz5kvSleusrpyVfi1xvvbq6wOmmd1/IEs1gZQnaGi1Wnf8rVp5959azcN/x7b+HVPU2oUjNW/J97vOZd1m2tzHgz7nwetPntz+T0t+tL1D1lleqSr/749/s48PyD956+srrlv72vZPih98karfft8veP1hKMBANCt9uuT/ritcj1rpdufkN79375u/6dE/RsGjNHvmNbYRzAaEKj5M7wBAGXOP//8SR9r7fAHesccc4wuu+wyfehDH5LvDycYr1mzRscff7wWL16sI444Qul0Ws8//7wefPBBFYvlX5qefvrp+spXvjL5F1HBJz7xidGJV5K0YsUKrVixIrDuypUrtXTp0rq1BQAAAADaTcEPDkZLmlTsc2W8KRWD0VjsPpE7tCJaQJmrXqV7nXYEKuQiBD7UkjM4YjQYzR2kkPMHNUOz6tIuAACAICVb1F0DywPLMt4UnTjr9Aa3KJgrXLbRfb1WYa3vLDMqn5DvChiO0j8v2oJ8BS9ETJvw4N+yYLSQ9yksOLgVeSahXpNW3p21Iqn9XhcAALUUNxRtjMtVHox2SoRj3i1p7Gz8m6y1z0Q47hsqD1R7hzHmw2GBakC3YH5eOebnAQDQYH6MYLRi8PwQ1MdND1cO37l4uS0LRRuxMzd8/N+dsPfz6++trm2YzzX3EYwGoHq//IPKQtFG9O+Rbv2d1flvqM3vmYEafcW5bmttzoNh14T8bfrxb60uf7dVpqf5f2sKxfC/oU9vlr7/m+A61z1g9Y7X16NVAACgHUQNRhtx55PS8/1W+/Y1vw+E7vHy7uD9fVP5OQSCEH0NAB3qAx/4gK6//npNmzatbP+6det066236vrrr9d99903YdLV+973Pt12221KpeIvqI/qLW95i/7lX/5FiQQpygAAAAAQV9EGT3xNTSIYzRUgMFY6UblOt6k2tMIVmlDp/XAFjuUiBrLViitgIlowWmPbCgAAsGbXavUXg2fMnzzrzaF9l0Zqlb5e6wib7F4+Aaia/nlYnZGxUJTzhwWjtWPYdJSxYpQ6AABggkfGbWeMMZWeIvC2cdvfi3Iha+2Tkh4Ys2uqpDOiHAsgGubnAQCASQl5KMQEJXcw2p681d1PWS3/ndW6LXY0wBWTFyV85+u/cN/n372w99+Deat1W2rQqDGuXMV7DKB6j7/o/l1y1b22YiBVVP3hz2qN7E/bh//moTYef9FdlitI61skiG5jf3j5zY9YZ/jefX+sfXsAAED7mDOtcp3x/vCn2rcDCLNhW/AYZ970BjcEaBMEowFABzvvvPO0fv16XXjhhZo7d66zXiqV0hlnnKHVq1frqquuquukqxGf+9zn9Nhjj+kzn/mMTj75ZC1cuFCZDAsoAAAAAKASVzBachLBaFFCIFwhAN0sLLTCrzCJ2VpbMVjMfV1XIENjwzJc1xtpX1hAQtTwOAAAgFqw1urO/psDy5ImqaWz39LgFrkRjFYueixadfcuG1JnpH/rOv/Yfn2uFLy6I6GkUqanYjtaTZSxYoYQbQAAJqMYsM/ZWTDGLJR01LjjV8e43t3jtt8c41gAETA/DwAAxFYqRa+bzwfuvvkRq/mf8LXs332dc7mvQz7v683/4WtnluCYavTvru74S++0emFg+D24/9kaNAgA6uBff+n+W3HXWunAz/p69Pnq/564Qqsmo1XCutrdzqzVll3hdd5xhS/fb35/olJYaVhY6O5cjRsDAADaSjHGxy4j1m1pfv8H3eUZR5j+4vmNbQfQLpLNbgAAdLsNGzbU9fzz58/XpZdeqm9961tas2aN1q5dq61btyqfz2vu3LlatGiRlixZounT48fIXnzxxbr44osn3bbDDz9cX/va1yZ9PAAAAAB0o0INg9EyEULPoiyI7zZhYXF5P6dMwl1esEPyFRyeVjkYzRX4MChrrYwZHxFRH66AiZFAtIRJqMf0ashOnKTdrcEeAACgOZ4cfFQv5DcElh034xTNTM5ubINCuMJlc362oX29VmFDotHMuOe/VRMg7AotHj5vpux/xxsbquYKWMskprTlexdlHNhrGCsCADAJi8dtFyVtC6n/5+O2H7PWBieyBrtv3PYRMY4FOgbz85ifBwBAS6nwsLUyhYnfuW/ZafWuK30Vxi30vf0J6Us/tbrkne33eWSr6N9T/ULoD/3A188+ltDZl8V4n2MY2GM1eyrvMYDJ2bTDakeFr89e3D4cjrX2//HkeZP/fbO9hsFoz2yWjlxUu/N1q3WO8IWx1m6Sfvo76dzX1b89YaoJJ/GtuvL7dQAAMGxoEsFoBPGikXbnrF7aEVy2eD59WCAIwWgA0CU8z9Oxxx6rY489ttlNAQAAAABMUsmWZB2hWqlJBKO5whfGCgsB61ZhwWd5PxtaHhbOMNlgNF++CnZIPaY39PhayZWCZ66NDdpLexkNlQhGAwAAzXVH/82B+42MTus7t8GtCefq69kG9/VaR0gw2rhJ7GkvHVgv51decZENqVMpGG1sqFrOD84nadeg6XTImCZOHQAAMMF547YfsjY0FeHwcdvrYl5vfYXzAagh5ucBAIBI/BgrdAOC0X7ysJ0QijbiugetLnnnJNsF9ceJoXZY8Yfh8LrBoerPFeSZLdIbDqjPuQF0vhvXRAubWrdFeui56n7fbNtdfdjkaHu2WkkEBFRr+D5Wdt2DVue+rrn3O0qIm0u+KGWHpCnd9vU6AACQJA0V4x+zPmI/CaiFDS+7yw6e37h2AO2EYDQAAAAAAACgTRSse+ZkchLBaOlElGC09lzIX09hgXJZf1CzNMdZHh6MFh4sEFae87Pq8RoUjOZ4Db1jAinS3hTtLG2feKwjVA0AAKDWNubW66nBxwLLXjvtWC3o2afBLQoX1tfL+oMN6+u1ijjTzVz3Lkoob95RJ2V6lDDJ0PMX7JBKtqiESToD1jLe1IptaEVRxoEZxooAAMRijJkm6f3jdgcn+e61eNz2xpiXfW7c9hxjzGxr7UDM8wAAAACoFT8sG3mcoYnBaL8ZH388xpZdUv8eq76phMdMxss1CEbzrfTf99ZvQfUzW6zecEC093fLTqtfrbV6erPUk5RSCWlWRlr6GqPF84fPkS9YrXpGevxFK99Ki+cZnfIaaeYUfoaATvTES3HqDv++efIlq1VPW+0a8yfpNQuMlr5Gmp4e/l0xVLRavU569Hmr0iu/An/x+9q1+5kqQrK6zfj36/BXGf3lIVLJly69M9rfpxvWWC34sa/9+vbuGxyS1r4kLZwpvXrW3v0HzDFadqg0u8Z9j2rDSfoHCUYDAKBbDcXIox9RTSgrENeOkCmNY/vaAPYiGA0AAAAAAABoE0VbcJYlTU/s82UqBHFJlcO6ulFYSECl8IWcIzCh0nkrX3dQM9SYb0Jc4RFjf1bGhqSNFSWcAgAAoBbu7L/FWXZ63183sCXRhPX1hvtfsxvXmBZgbfDiQBPwNHjXvYvS93T1z8ees1L/f2piurKOAOB2HU9FCUYLC4wGAACBviZp4Zjt7ZL+u8Ix4z/wizUt31q72xiTkzT2w7qZkghGAwAAAJrAWivZGEEfQ7myzd89b/XDB8KPX7dFesMBk2kd+msQjCZJn7+lfsFoX/mZ1XuOq1zvnqeszv22H7jY1jNWl7/b6O3HGL31Ml8PPDu21Gq/PukXF3o67FWEowGdZt2W6L+fnt4sfWOFr4tuCjrG6uD5w78r5kyV3vZtX3c/Xbt2jnf1vVbf/VsrY/i9FObrv/D12ZvHv19WPUmpWBoO74zqsruiVrZ61Uzp5x/zdNS+tXt/qg0neXqztKi7vl4HAACvGCrGP+aP26SSb5Xw6G+i/nZPfA6CJCnhSb2kPwGB+L8GAAAAAAAA0CaK1v1NTcpLxT5flIXsURbEd5tek5aRkdXECUBhwWfD5e5whkrvR6VgtEZxvYby8IjgAAiC0QAAQCNsG9qsh3etDiw7KHOYDsoc2uAWVdYqfb3WFxSMNvm+Z87PBe6PHow2OByM5gevmMsk2jUYjRBtAABqyRjzNkn/e9zuz1lr+yscOm3c9mQ+XMuqPBht+iTOUcYYM1/SvJiHHVTtdQEAAIC2VyrFq18oXyn5sR8HP1BirGe2WL3hABbyxlXyrbaHjLimj3s2XK4gFWK+nZI0e4pUfOVt3BX88XSopzdLu3JW09Pu99j3rT7wg+BQNGk4GOdjP7Z64FmNC0UbtrFf+ucbfN32sUT8BgJoac/ECJv6+eNWj70Qfq6LbrJ67SLVNRRtxG/+KJ3Ap0tOT2+2AaFowyYTDhLHSzukj17na9WnavN3o+Rb/XFbdee46CZfD3yWv2MAAHSjsL5PKhE8lh8qSi8OSPvNqV+7gBF7HMFo03pFGDTgQDAaAAAAAAAA0CaK/pCzLGnif9QXbbE7wWjjGWOU9jLKBgRUVA5GCy5PmR4lTPhknPBAhsYEjvm2pLydfHgEwWgAAKAR7hr4qXwFLxA7bfa5DW5NNGEhud3YhwoKIZaCYtHcfc+8n5W14U+Pd/XPx46VwsZN2VJWSrnfo4w31XlsK4syDmSsCABANMaYoyR9f9zu2yX9V4TDxwejTWLZvLKSZoecczI+LOlLNTgPAAAA0F1s5WCzMoW9c0Q277T69TOVD3m2yiCRbrVtt2SDP5bWQ5/zdMyfTfyc+R3fKenGh6NfY9mh0p2fiBbS8pmbfH1zRXCD7nhC+utj3Mc+/qK0rkL4UaEkXXOf4wVLWvEHaXfOalpIABuA9pIrWG2sFNE/Rlgo2ohbf2e1dtPk2zTeoQvlPN9tj1mdcBC/k1xuetj9O70R7l0nbdlpNX9G9e/Rph3Vh7k98VLVzQAAAG1qyBFi/p/vMrrgjUazLgz+bGbdVoLR0Bi788F996m9DW4I0EYIRgMAAAAAAADaRMEWnGVJ0xP7fNEWu1cOT+tGvc5gtPDQirwzMKHyffZMQr0mHRhM1qiwjLzvXnuZTlQOj6gUHAcAAFCt3aWdum/HnYFlC3r20WunHdvgFkWTMAn1mF4N2YmPBCQYbS8jb8I+17jGyipvc0qbsNA5VzBa5dBfaW//PuvvCSyP0s9vRYwVAQCoDWPMfpJuU3kY2XOS/sZa15L7UI06BgAAAEA9+OWrc6+c9X5tTO2rPd5U7fGmareZqt3eNL2quEnT/Z3a/ZvXSi/4SnjSrogfE/cHf1SJMX67wepnj1k9/JzVSzukN/250bzp7vr7zA7ef9IhRjfGCKI5aF70sJi/PNg4g9FWPmX1hgOkG9dYPfnS3kGftdKK31u9uD3yZZysldZvlY7at/pzAWgN67e6AyAna6g4HMZYK5843egffhDcyJd21O46neinv2v+R4CHfdHX8o96VQfYvVyDvkx2SMoXrHpThOkBANBtXAGrPUlpRsZo/nRpy66J5Rdc7evhz3s1CXoFJOnOJ6zueNJqYFA6bKH09mOM9ptjtGfi9FBJ0jSC0QAngtEAAAAAAACANlEMCUZLmVTs87HYffIy3hRt18sT9lcKrcg5gsV6I7wXI/XypYnnyJYaEzgW9vqihEe4guEAAABqZdXALwLDxSTptNnnyjMTg7VaRdr7P+zdd3gcxcEG8Hf2Tro7FduSLbnJVZKNjQGbGGyDHQwGU0MnkFBCSyGBQBKSEJJQEkIgdEJIIQQICUn4ANObMbbpBoMpxk2Se5UsyVa705Wd749zke5m9qquvr/n4cE3szc72tvbm72bfdcFb4DBaFaEYu6Z1TmLx3Rbnvfotm3P8bldFMAGOwIInzm3N1hNNx7P1vOpaPrtivIchoiIKF8JISoBzAcwvEfxdgDHSSmbomymI+RxPB/Aoc8JbZOIiIiIiFLFNHs9/FvZ5fjUeYh++fUA1scWdNLKYDRL/3jHxHcelzB7bNZPNuq3cakTqNSEpl0wTeC+NyTW7oxu3bWDo+/n3AP1dX9aKPGnhX0fgHPX6xL/vIwXhBPlirod6e6BtckjgItm6IPRWjrTH/yVqV5dLvHB2nT3AmjtAmbebuLecwV+OCf+3+STEfJqSmB9MzB+SOJtERERUXbxBtTlhXtSdWoq1cFoW3cBQ641seYWAzWVPBemxPxynonfv9L7HOb3r0i8do2BDk0wWnFhCjpGlKUyd9Y3ERERERERERER9WIVjGaPKxgt8sXu0YSn5SPdttsbjKCjq492O6c7cCzqYDSbup/uCNuHiIiIKBFesxuLdr2srOtnK8Ph/Y5KcY9iox9j5l8wmpSmpiZ84pnVWDrSONkTUNe7erwWQgjtOva+NrpxvsuWrcFokc9Pog13JiIiykdCiHIAbwAY16N4J4BjpZR1MTSVqcFoDwKYFON/pyVhvURERERE2c3sfXVusZn83GIGx+i5vRI/fap3KFokNRXB74hVyooF3v9F9Jfl1VREf2G1zRC45Mj0Xoj9ryUSZiwbi4gyWl2j+v1coQl/TNTwAcBXRlkvc/ho4Ku1wPUnCSz+qYFCu8CvTlYf+5IRlpWLpJT46VO631Wj8+JVyb3E/Nr/k9jdFf/nR7Je6/rG5LRDRERE2cUbft9LAEChLfj/6gjn5re/yvNgSsyGZonbFPvRzg7gpudNdGqC0UqcfdwxoixmT3cHiIiIiIiIiIiIKDq+pAejRb6OThdwle90284diBSMpg5eiDoYzVYEKHaDVIVlWK2nZzCCPsDNk/Q+EREREe31QdtCdAR2K+tml52MAiOzb6vnMNSzWzwRxpi5SEI9yUyogtEswsfiHZ+Hhn45bS50muG3C937fLepnqHviiKMOhNFCtE2YEOByOz3ExERUboIIfoDeB3AQT2KWwEcJ6X8MsbmQge3FTH2pQThwWi7YuxDGCllI4CYLi3UBQkQEREREeWVsGC05H/328zgGK0P1gKtMW7y2sHW5zIVpQJ3nC3w06ciXzhdUxnbug8aHtvyfWH1DmDC0HT3goiSYc0OdflXRgKfbgK2tyVvXa4CYOPtBoQQML4T0C73wfW2sLKBJeplGYymtrEF+HJr/M/v5wROOkjguAnA/JXJ6ZPfBN5cDZwxJb7nNycp5LW+SUJ10y0iIiLKbd26YDR7cFxQHeHc/MmlEg9dlOROUV55dbmE1AxpX/0SGKv5xb+YU/GItBiMRkRERERERERElCX8mmA0AzYYIvY790UVjBZlYFe+iTf4y6OZ2BwavBDret19MGFapVsTHCEg4BD7gzx0QQq6v5+IiIgoUaYMYEHLs8o6h3DiqwNOSHGPYqcdY8rUhOBmklimuxcKh7Yu0vhTVx/6WjiE+rXZH4yma6fYcv2ZKtJ5oMsoYrgJERGRghCiFMCrAL7So7gNwAlSyk/jaLIu5PGoGJ8funyLlLI1jn4QEREREVEymGavhyVmR9JXweAYvWBASmyqo4inPv7AyMFoI8piDxibO1Egtm/Lk6+OwWgxkVLivx9JPP8pUOIELpohMKs29u/SPT6J+xdIvN8gUTNY4AezBUYPyszv5KWUePwDiZc+Bxrbg/troQ04bIzANXMEBpVmZr+z3aYWiQcWSnyyQcK/56OlslTg5IOBC6cLCCHg9krc/6bEO3USzgLg6U/UbdUMFujyyqQGox1/YPwh+eWae/cw+DNcQ6PE1/9qRl7QwoUz+uY9etafTRw1Lvhvhx34yigBRwEw7xOJzzbvX276WGBUucDODolCO9DlBRavSU4fEgmMIyLqqaFR4qF3JP7wanCsU1MJPPANA3MP5DiHKBN5dcFoezJ5j58ocNPz+nPtdg/Q2S1R7OB7nKK3fqfEnxZJLNso8eYq/XK+ALBym3r/K9FPgSTKewxGIyIiIiIiIiIiyhK6YLQCURBXey5NeNX+dgthj7PtXBdv8JdHEywW6bXYv15dIFtqwjJ0gQ8Ow9VrQpuun7q/n4iIiChRn3UsQZNvu7Ju5oC5KLJpbi+eQXRjTHcgH8dQ6glABsIDoQ1hwGm4lGPNSONP7fjcVmT5eP/zuyClhEfzGumel+kiBaM5DKdlPRERUT4SQhQDeBnA9B7FHQBOlFJ+GGezK0Me18T4/LEhj1fE2Q8iIiIiIkoGM9DrYbGZ/JQXBqPp1e2I/Tm1gyMvM2m4wGUzBR5+R/29ts0AbjtLwGbEdlH1xGEC3zxc4IkP0xeOFgyT48Xg0bpBxuAAACAASURBVLrheYnfvbT/9XrsPYn/fdfAGVOi34YBU+KEe028tS8qXeLx9yXe/bmB6srMey1+9rTEXa+H76PzV0o8uVTi/esMDCzJvH5ns43NEkfcbmLrrtAaif/7GPhiC3DbmcDce0y82xC5vXGVgNsr8FZd8o41vz4l9hu87hXcX8L70tIZDOLjjXuCVm2TmPUHM6HAuBFlwI+Pi7w9Dx8NfLh+/+OBxcHPtsZ26+f1DDh7fYV6//pgLfDB2vj3vTkHACMHCjzybngbf39b4i/nSxgxfv4SEfW0ZofEUXeY2NEjQLS+ETjhPhP/uFjg4iPi/8wjor7hDajLC/ek6hw+Bpg4FFixTd9GfSNwyIjk941yU0OjxJG3mxHHx3st26QuZxgfkR6D0YiIiIiIiIiIiLKEz/Qqy+1GfOFljogXu1vX5zOnTb1tdMFhe+kCE6Ld1vEGsiWLLoAtNDhBH4yWmn4SERFRfpFS4vWWeco6AzYcXfa1FPcoPukOwc0kUhOMpuNIcjBa6PhcN173mG74pBcBqG83qhu/Z7pI/c7Wv4uIiKivCCFcAF4EMLNHcReAk6WU7yXQ9PKQxwcLIYqklNF+yXZkhPaIiIiIiCiVTLPXw+Koh/bRY3CMXkNT7MErNRXRbce/XSgwd6LAwtUSu3t87TyiHDhzisDhY+J7PR6/LHnBaD87QaDLCzR39C43BPDvJep11DUmZdV5obUzPCDMbwI3v2DijCm2qNt5YyV6hKIFNbYDf1woce+5mfW+bmyTuH+Bfv+sbwQee19GFbxE0XtwsVSEou13/wKJA4chqlA0AKgdLOD2JS8U7duzBKaMjP81Ly9Wl/sCQEc3UMp79wAA7l0gEwpFA4Al1xsY0j/ya/XUFQbeqZN4ux6orgDOnyZQ4gBKrzIjPjeZShzAxUcKNHcAzgLgiGrgwukC97+p338XrgbmTEhhJ4ko5/x5kewVitbTTc9LXDhdxhyATER9R0oJr3oK175gNCEE3rvOwICr9WMZBqNRLP64UEYdigYATZplix3J6Q9RLmIwGhERERERERERUZbwS5+yvEAUxtVepIvZXQxG09IHlFkHL0QbLKZfry6QLTVhGbrgt9B+6YMjPJyETURERElX5/4SGzx1yrqp/WahvKAixT2KT7pDcDOJlOoJ7LpxpNMowm60hJVHCpXTbVtXyGthFfxrFY4c2k62iHR+Eu35CxERUT4QQjgBPA9gdo9iD4BTpZRvJdK2lHKbEOJzAAfvKbIjGL72epRNzA55/Eoi/SEiIiIiogSZgV4Pi80OzYLx85vBCywr+yW96axXtyP259QOjm45IQTOmQqcMzW5cyGEEJhVC7yt/gkkaneeI/Dj4wxtfanTxF8Wh38v39CYvLCkXLdwNeBRTOv6fDPQ0ilRXhzdvvHkUvU2f+gtiXvPTaSHyfdOfTCsysqi1RI/Pi41/ckXC1dZvy99AeB3L0X/3q2tBLp9AojxpkU6cycmdhwcqAlGA4AtrcABQxNqPmc89HZir9dphyCqUDQgGEh23uEGzju8d/nPTxC4/dXUfU5cfKTA/eeFf5bVVgK6/XfRGok5EzhPkYji93ad/ji3sQVoaALGRXnOQER9z29xflLYI6+6n0ugshTaMKu6RgmAYwiKzqLVyRkTlzAEmkiLwWhERERERERERERZwqcJRrOL+L7mKzAKYBd2+KX61jiRgtPymVUwghVdcFr0wWjq1yRS4EOyRBvspguAkDDhld1wCP5yQ0RERMnzRsuz2rpjy05PYU8S4zDUY6RI4bu5SGovvlBPOtOFOluFlgH6bRsa9Ksb33pMt+U5QNYGo9ms+x2pnoiIKF8IIQoBPAPg2B7F3QBOl1IuSNJq5mF/MBoAXIIogtGEEAcAmNajqDOa5xERERERUR8yzV4Pi/vophgNTQxGC2WaEg1NsT9vcL/0Xwh9+mRhGcgQjVMneGE+eDPw4XxgwCCIM6+A+OppkN5uyH/8BjUflgH2H4U9r64xodXmjTa3xNl/MbX19Y3BG8Lc9oqJTzYGAwz3GjYAOG2ywC9OFDAE8Mi76tfa7QOa2iWunyfx1hqJju79deMHA5fNEjh/Wnhg0N/fNvHP9yU2tgBfGQXccIqBQ0ao92uvX+I3L0q89LncFxCwbff++opSwN5jFT3rdF78PPIy1NvOdolfzJN4u06i3RMscxUAR9YITB0NfLQ+chvRHu8KbMDIcqCyFCh1Yt/64lVUCBw3MbE2RpQDQgCqeyjVN+VvMJqUEn97S+JfH0isaVRvn56OqAbea9DXn3hQ9J9vxZp79p4xJbXBaCceqO7znAP0z2ng5xgRJag+wnFkLYPRMsbmVonrn5F4r0HCrb7cgvKA1RjJUdD78WmThTZstj6O7w8o/+w9d/t8c3LaG1WenHaIchGD0YiIiIiIiIiIiLKEXxOMViA0s0+i4DBc8AfUt7uJNqwrH8UbUKYLTYg2WCDeQLZk0Qe7FVk+Dm1DF/pBREREFKut3RuxvHOpsm5i8aGoco5ObYcS4NKMCfMxGE1HN0U/NMhsL6vxuZQy6uBiXfse0w13oFO7DpfN4rb2GaxQOCAgtAF1PFckIiIChBB2AE8COLFHsQ/A2VLK15K4qn8D+BWAvfcxP1MIUSulrIvwvJ+HPH5SSpng5a1ERERERJQQM9DrYYnZkVBzJQ70Ckfaq65RYkZ1+gO9Msm23Yj54vi7zsmMbXj5LIEXP5dYuFpdf0Q1cOsZBmbfqQ7m+u1pAmPvOxf44NV9ZfLjhcBvnoB89V/Aey+juuQkYER4MNrGFqDbJ+EoyIxtkYlMU+LYu/WhaADw1McSf1qoDmjYthv4eEMwuCzSRdCDf6Jez7bdwKI1Em6victn7U8uu+t1Ez99av/3/BtbgPkrTHz0SwPjh4S/phf83cRTn+jX36SeXhbRh+skDh/DfSgaXr/ErD+YWL0jvG7tTonHP0ju+qorALtNoMQGPPANgcsek72C+1TOmALMWxZebjOAP35DoJ8rsdfaWSAwoiy4v4aqb5TQ/1qY2/7wmsQvnok+hOz5Kw2c+1cTC1aF1504CbhgWvTbscCuXvaw0cAP5wjcv6Dvw9GqK4C5B6rrSpwCVWXA5tbwuuA+Q0QUv8p+QJvFLytrd+bvZ1Mm2d0lMeP3JrbsSndPKJMV2no//tXJ+mC0Bo4hKAKrc7d4ja3g5wmRDoPRiIiIiIiIiIiIsoQuGM0uCpTl0XAaRejUBKPpLv4nfRCAO2IwWnTBC8leb7Lo+h+6r1gFn3nMLvRHWVL7RURERPnrjZZntXXHlZ2ewp4kzip8K9/oArkEDGW5LpjXatv5pBcS6qs7QsfdVgHFunUIGHCI7AwENoQBh+FM+PyFiIgoVwkhbAgGlp3Wo9gP4Fwp5YvJXJeUsk4I8RiAS/cUFQJ4VAgxRxd0JoQ4DcDFPYq8AG5OZr+IiIiIiCgOIcFoxQncAG1WLdDhAZZtCq+rb4y72ZxVF8c2uWB6ZlyQWuoUeOVqAwtWAh9vlPDv2Y1sBjBlpMCxE4JBQo13GXjqE4knlkg0tgNHHyDw7ZkCU8yVkLe9GtauvP17QGcbAKDWW69ct5TA2p3AhKF99udlvUVrgKUbrJe58/XIF9X/XXNBfizueE3i8lnBfwdMibvnh7fZ0Q38ZbHEPef23r/XNknLULRE/PZFEy9cZYu8IOH5z5DUC+sjqa3c/+8LZxiYNlZi/gqJq/6j3x+f/K6BhauAjzZIdO+ZyjioBDh2gsABQ5Nz3Kyt1AWjJaX5rOMPSNyjeD/rnDEFKC8WePmHBhasApZuCH52FNiAaWMEjhqnDzuLhRAC954rcO5UiT8vktjRJvGV0QKFtmAg4qtfJryKfRZda8Bm6Pt886nBYL9QDU3J6wMR5SdfwLo+Xz+bMs1/PpIMRaOICkNSdUaUC/zuDIFfzgsfQ8TzHQLllxf64NytuiK57RHlEgajERERERERERERZQlfnwSj6S9od2nCBcgqeMF64nLiwWjq9XanORjNFdJ/q30nVX0lIiKi3LfL14yP2t5S1o10VGNc0UEp7lFidGPC/Bw/6YLR1BPe9cFl+m3nthi7h467rV4bt9mp7ZMQmXHhXDycRpHF+QvPFYmIKO/9A8DXQ8quB7BMCDE6xra26wLOergRwBnAvrsNHAHgDSHE5VLKVXsXEkI4AHwHwF0hz79LShnhMm0iIiIiIupzZu8bNZSYHXE3ddlMgZc+B5ZtCv8ulRfnh6tvjC10qrw4GPSTKQrtAiceBJx4kP4750GlAt87SuB7R/Uul/98Qf2EPaFoADDGtx6GDMAU4eFV9Y0MRrPyfkPigWbJUtcINHdIDCwRaGgCtu1WL7dw9f4+SynR2Q0sWNV3fwePSdF7f21q96fxQ3ofU8YNFhg3WKCx3cRvXwzvy5lTAJshcOxE4NiJffcbWHWlUO6TsR7Lc8W6nUCj+r63ShP2BNQV2AVOmAScMCnya3X5LAPzV4bfUKqyNPL6ZlQLzKjuvY7mDomKH6tvUBWrUicwbID1MtUVAqrfl1u7gJZOifLi7P3NlojSq1s9bX+ftU35+dmULp3dEnLPJrfbggHRALBkbRo7RVlDdY5/6Ej1GGLrruD+VuzgGILUkn3uVmgHRpYntUminMJgNCIiIiIiIiIioizhT3EwGi921wsNAtvLL33wS5/yNZFSJhwsoA98iP9O0rHQrccR0i+H4dS24c7LYA8iIiLqC2+2voAA/Mq648rPyLpQKt2Y0CrAK1dppw5pXtJ4xslWdaHt6V8bt/b1yfag6dAxfk/RBjsTERHlsIsUZX/Y81+sjgawyGoBKeVmIcSZAF4DULin+EgAK4QQHwNYC6A/gEMBhN5L+kUAv46jX0RERERElGxmoNfDYhn5u98fzhG4f0Hvb0xdBcCphwis2q7+JvW/H0k88e34u5mL6mIMZjr3MJF1vzGoyIblkA/dEHE5h/RipG8T1heODqura5TQfjlPeO7TzArDuPF5ifU7Tby8XL/M55uBgClx/TyJf74vsaNNv2wyrN0J+AMSdhv3o0gefz+1+9M3Dle/JucdJpTBaF87JDWvYW2lujxfQ/Zi/bvPnRr763TSQcHxhTtkeuq3jojvNR9YInDsBOCNlXE9vZevT438mVyj2WcAoKEpGHhKRBSPbvWUpH3y9bMplaSUuP9NiXvfkNjQvL9cCGByFXDveQYeS/EYirLPYaOBitLw8URN6K+qPcxbJnHBdJ7DkNoTS5J73DlzikChnfsbkY6R7g4QERERERERERFRdHymV1lekFAwmv5ifaeNF7vrWIUE6MLPfNILEwFlnVV7PekDH9wwZXLusmilWxvs1rtfhrDBIdThaJ5A/gV7EBERUfK5A514Z/dryrqBBYMxuXRGinuUON1Yr9t0Q8r8msQnNWNbobn4ymqcrKMb26ras3pt3JrxbbYHTevCoAEGoxEREaWDlHIRgDMANPUoFgCmAvg6gOMRHor2HwDnSSnVX0oSEREREVFqmb2/5y02OywXH4RduOU0gZMm7S9zFQD/utzAgCJheQHvZ5vy6zvlSBoao98eR1YDvzk1+y9GlW0tkFceE/XyNd56ZTnDHvR2dUks3ZDuXvT24CJpGYq215hfmLjjtb4PRQMAXwDY2NL368l2G5oldlp/LCTVH84WmDJSfaybMFTgvvMEjB7V354lcGGKgiFqKtXrWd8MeP359/lW3xT933z31wUOqor9dSp2CMz7voGiwv1lx00Abjgl/tf8LxcYGDc47qcDAKaPBW49I3IfhvYPjpFU6mMYAxARhYoUjLZ2J2CaPM70pYffkfjR/3qHogGAlMCyTcBRd/T93HnKbiPLgScuV0fqjBoI2DVpOxf9Q6K5g+9vCrepRWJ7Es+lK0qBO8/J/u+hiPqSPd0dICIiIiIiIiIiouj4pfoXVruRSDAaL3aPh8si5MATcKPE1i+s3Cp4wSp0oCercAWv7IZT9O1r5tYGo4X3y2G40B3whJVbhVMQERERRevtXa9pxxXHlp0Gm7CluEeJ042/TZjwSS8KhSPFPUof/bQyXTCaepxsNfbUjW2D7UUXjOYxu+A2O5V1Llt2B6NZhmhneegbERFRtpJSviyEmATgZgDnAijTLPoBgDullE+nrHNERERERBSZ2TuzuFjz3eJe1eZGlDgH4vkrDazaDmxqBaaNAQYUBb8nDQbHqL9N/dMiib9dyIsq96pvUpf/+hSBM6YIrNgqIUQwDOig4YDNyIFtt+BJoGN31IvX+NbiDUU5A2X0/vtR9m6bza3xP/dfl4W/P/q5BA4eDoz+hTqYoq4RGGsR5kjAo+/Ftz9tut3AX96S+N1L+uf//kyBEXu+RSoqFJg2Bhg6wPo4d9UxBs75isQnG4GJQ4HRg1J3XKypVJebMhiOlmjYVraxCqh86CKBdg8waqDAEdXA4H7xv05zDxTYfqeB99cCVWXAAUMAIeJvb2yFwOc3GvhkI7B2T7ibwy7g8QdDGb9aKzCoBPh4A9Dtl6gqExg/BFi2EWjplJgwVODgqug+k4UQqK4Alm8Nr2PAJxElIlIwmscHbN0dPG5S3/jL4vjH3N+aIXDcxCR2hrLO6EECh40CCuzq8YTdJjBmUPB8ReU/H0pceUwOfD9ASfXY+/rj0s9OELj5awKfbgLcPuDXz5p4t8G6vc23G9p9lIiCGIxGRERERERERESUJfzSpyy3i74KRuPF7jpW28ZjdmnK9cELjiiD0azCFTyBrj4Ps9OFu6nW6zRcaAuEz6TUbR8iIiKiaPlMHxbuelFZV2wrxYz+c1Lco+SwGst5TDcKjfwJRtNdzGdog9H0wWU6urFtoXDACAnW07Xvl350BNS3gHQZxdp1ZwOrcxSGaBMRUb6TUqZtZrKUshHAFUKIqwEcCWAUgCEAOgFsAbBMSrkuXf0jIiIiIiILsndg0CjfJsvFJ/lWA5gCwxCYOAyYOKx3/YSh+ueu2pa9gU19oaldXT52EDB5hMDkEblxAaqUEti2DvD7IF96LKbn1njrleUMlFHz+CQeeTf/3mdzJwLfnGZo64f2B7Yp8vjqdkgcf2BuvM+SodsnsWo7EDCBkeXAoFKBZRvj258GlgBH1Qr8TvPbWrED+PGxIq4L7Yf0FzjpoLi6tc9tZwpc90x43y6dqe9PdQUgBCAVf1J9Y/4FozVoAiovmylw2Uz9+zEeJc7kBsgU2gWmjwWmj+35evd+7UcP6l12wqTwZaJRU6kORlurCUclIookYEoE1JmvvTQ0xhaMFjAltu8G7LbEAi1zkZQS65sB0wyG6voDwOeb42/vt6cLVJVxG5O1ScP1wWgfb0htX+K1s11ie1sw2NZuC+7zHp/E6j3nHDWVwTBrSg6rc7cLpgk4CgSmjQ0+PmyMwLsN+uWnWgT3EdF+DEYjIiIiIiIiIiLKEn7pVZYnFoymD9rixe56ViEB8QSjuaIMobNar9vswgAMjKqdeHkC6r9NF4ym0m16ktonIiIiyj9L29/Cbn+Lsu6oASdlbYCYdfiuG/0wIIW9SS+puXhDNwleH4ymH4O7tWPb8NfB6rXZ5W9Wlkc7xs9ULgajERERZTQppRfAwnT3g4iIiIiIYhAI9Ho43L8V07s+wAdF05WLX9D+PwDnaZurKNVfOPlOffCiciF4cSUAdHSry3PpwmC5bDHkD+fG/fxq71pl+caWYIiToyB3tlUiTFPi189J3DVfwutPd29S74Lp1vtBbaUmGI0BewCCx+VbX5b43csSnh73Rz1uAvD5ltjbcxUAzgKB2eMlqsqAzeH3r8Q3Do8vFC1ZTpss8KtnJfwhwTLnfEXfJ2eBQNUAYJPi76lvlIgnNCub6d4/NZWp7UemG1shoLr5Vr0mWI6IKJJu9b3MwyyukzhqvP6zSUqJNTuABask3lwpsXA10LpnusqZU4DHLjVQ7MivzzaVzzZJnPNXc18w84gy4HdniLAxRCwYikbRuHC6gXnL1DvaY+9LzB5v4ltHJDeMNlmaOyS+8ZCJN1YGH5c6gTvPEdjYAtz5mkT3nnNWQwTPCx66SMDJc/uE1e3Q1x0YclODi2YI3PuGfjx64Qy+HkTRyMyjMBEREREREREREYXxS/WMuoKEgtGsLnbP7gv5+1KBUQC7UN93Qhe+YBXKYBV41pPV69Vt0X6y6P4GVf+dNvX+49YExxERERFFw5Qm3mh5VllXIApx1ICTUtyj5LEa6+nCd3OXekKQbiqQ7txFF+wL6LepOvRXf27U6tsZU5+yhdU5CoPRiIiIiIiIiIiI4mAGwoqe2vwNTOta0qus2OzAn7ddiVm734zY5L8v119A+eh7DAIBgkEEumC0kuy8z0oYuWsn5NXHJ9RGrbdeWW5KYJ36a/C89Mh7Er9/JfFQtB8cndkXPw8fANxyusDgfsHHDjtwwykC50+z7nfNYHU9g4mCnlwaDNbzhAStzF8J7GiLvT3fno8Vu03glasN1PYIyhICOGMKcPc56d3Xxg8ReOp7BgaVBB+XOoH7zxM4/sAI+5Im9CvfQvb8Aak9BtdUZPZxJNV0+0xDU2r7QUS5wxt++qZ00/Ph45zNrRKPvWfiW/8wMfLnJibcYOLKJySeWbY/FA0AnlkGXP0/jpO6fRJz790figYEA1Iv+kf82+axS/g5SdE5bTJQVaavv+RRiQ/XZeb79NJH94eiAUC7B/ju4xK/e2l/KBoQPK//9xKJXz6bmX9HNjFNqR1f3nqGCLtBweQRAo9fJlCouOzoR8cJfH82j1VE0VBfuUdEREREREREREQZxye9ynJ7QsFo+ov1ebG7NadRhI5A+Kw0fTCaOnihQBTCJmxRrdMhnBAQkIqgCKvgtWQwpYlu6VHWuRT7kW7/SUWAGxEREeWuLzs/xjbvJmXdjP5zUGrvn+IeJY9VEFVfj/UyjSk1E7GEejKQduwpPTClCUOE3zOu21SPbdXBaPrXptXfrCx3aYKCs4X1uWJ2/21ERERERERERERpYZphRUMCO/DuhqOxzT4EW+zDUCi9mNC9CgUIXsEq/X4Iu/7Sr+ljBXQ3mnjkXYlLjkxKz7NalxfQfeVc6kxtX/rMwqf1f2QIcekNwIwTehe6OzDm6lNgyABMxfyVukbggKHJ6Gj2e/z9yNv5m4cLPPGh9XJ3nSPwp4XqZb4yCnj8UgNjK4C364Dj7gk/dgDAvecKXJPEII1iB7DwJwb6u4IBQ0IIXHdCMJRpeBngLIh8wXatJpioPs/CrHT+GcX+E+rVqw2ccJ96H6go3f/vA4cJrPqtgQ3NwM4OoLoCKCvOjIvsT50ssP1gA+t2AqMGBoPcIqmpFFi4Onx7rW3KrzCHTa2AX/3ya4PA8lV1hXpMtL0N6PBIlDgz4/1ARNmjO4Yg3A/WSmxuBRaskli4SmLNjuifO+8Tib9dIGEY+Xuceu1LoKk9uW3OrM3f7UmxEULgz+cb+NoDmkEXguP4w8dk1j61s13ipS9ie84/35O482wZFt5F0du6G3D71HVzJqi36/nTDJw7VWLVdqDAFvyeavxgoMjB14EoWgxGIyIiIiIioqznNbux1r1Ke2F0shSIQox1HYChhSP4RWAf8ZlerPOsRpt/N8YXTUKpfUC6u0Q5wmd6sda9Clu9G9PdlV5swo4xznEY7hitvFA/lF+qv0UvEIVx98HqAn9e7G7Nabg0wWjqADRdmEUsAXRCCDgMl3IdH7e/s++zUEBgmGMkxjgPQIFhHZy3w7sFDe6V2mCIvfxS/yu/KsRD93et99RhYeuL+x73t5djXNEklNj6Wa6/M9CONV3LsUsTPOE0XKhxTURFofVsXK/ZjQb3Smz3brZcLtUKhSM4znCMiLuNNv8urOlajvbArqifYxcF+45DyR7feEw3Gtwr4TW7Mb7oIBTZSpLa/t6/1ye7Ue2aiMoIrz0Rxc7qM8IuCjDWNR7DCkfx/IhSan7LPGW5gIE5ZaemuDfJZRM2FIhCZSDy0ra3saV7veXzDRgY5hiFMa5xCYUn96WuQAfWdC1Hq19za/M9NnjqleUCmmA0ixCyBa3Pwy7Cp0as6VLPDlO1ZRVa1xHYrW4ny8+nVOHHe2X730ZERERERERERJQWZkBbNdS/HUP928Mr3B1AqX7+1Mhy/eo2t8bSudzV0a2vK3Gkrh99ST7z5+gXPvECiCGjej/fNOEoMDDStwnrC0eHPaW+UQKa7+fzzVt1kZeZNNy6fvIIoNAuMGMs8P7a8PpbTjdwwNDg9p42RsJZAHhCpowV2ICvTxX49XMS7dbTfaJ2+UyBqaN7v86GIVAdQ/hSbaU6mGjdTsAfkFEFYuWyL7bE/pwZ1cDwAcAWxVSgWSGBH0IIjB4EjB4UZwf7UKz70qiB6vJkh6ZkOqu/V7eN8pVVUFxDE3BI/FPyiChPdWuCb1SOuE0fqBRJa1cwhM0V/6UAWe/LbckNPi2wWZ8rE4U6ZETwXp26vPEHF0nMrAm+zwvtAoeNBkaUp/fcZvUOwIzxrdPcCexoA4Zk731n067OIviypkJfZ7eJiN8VEJEeg9GIiIiIiIgoq7X4mnD/phvR6NuasnUeXXYKzqq4NKoQI4pem38XHth8EzbvudDbLuz4zrDrMKlkalr7Rdlvl78Ff9x0E7ZlWChaT4eVfhUXDf0hbIqL9XvyaYLREgk9sA5Giz6wKx/pwgDcmgC0ZASj7V1eFYz27u75YWVVjjG4qupGZdCklBIvN/8PLzX/N6b16/oUShcesd6zBus9a8Ke/73hv8S4oknK59R3rcCDW27Rhs71dGbFxTi2/HRlXTrGDbGaW34mTht0YcwhQ190fISHtv5BG6AYyRH9j8U3B18BQ3H353g0erfi/k03osXfBCAYrHFV1U0Y7RqXlPaXdyzFQ1v/0Cs45vRBF2HuDjrRNAAAIABJREFUwDOT0j4RAa80P4kXdj4Rcbnp/Y7BBUN+kLTjB5GVde7VqHevUNZNKZ0eMSA1GzgNF3yB8GC0d3a/FnUb1a4JuGL4L5MeSpqo9e41eGDzb9BldiS9basx9bymRxNuq8AogF3YLcOCQ1kFi2UDh+HU1vFckYiIiIiIiIiIKA4yjovlIwSj2QyBiUOBFdvC6za2AF6/RKE9v4OIOixCo3IlGA3rV0a33PTjw0LRAEAYBuTwsaj2NiiD0eoaE+xfjmjpjHzVud0Axg9Rh4Pt9d2vBt+T3z1K4P21vZerrgCOnbD/cYlT4PxpAg+/03u58w4TGNJf4OIjBP74pn5dE4cC1xwr8J3HrftuN4DLZiZ+rKjVBBP5TWB9s3VwUa7r6pYxB1YO6QeUOgW+e5TADc+Fv4bfmpG7x/eBxeryls7U9iPdWjVT5WwG0J8/1/Uyoix4LPMrhlsMRiOieHRHPz0kYbowpnyxtim57Y0dFDxXJopWVZnAyQcBL36uX+abf9/7Rg3+/0fHCdxxloCRpn1t3rL4DhwXP2LilasN3gw5TvVN6u0+sBgoK+Y2JeorvIKbiIiIiIiIstpTjQ+nPNxkYeuLWNn1aUrXmQ+e2/n4vlA0APBLPx7eeid8ZnwBL0R7Pdv0WEaHogHAR+1v4cO2xRGX82veDwVGAsFoNv3F+tl+IX9f04UB6MK79MFosW3nWF6Xzd3r8PzOfyvrNnjqkxKKBqj3o1j66THdeGTrXTAVE8GllHh02z1RhaIBwDNNj2J792Zl3dON/8joUDQAeL3lGdS5l8f0HJ/pwyPb7o47FA0A3tv9Bj7t+CDu54f6746/7gtFAwC32YVHtt0NmYQZHH4Z/Ht7hqIBwLM7/4ktPcYSRBS/zZ51UYWiAcAHbW9iafs7fdwjoqD5LfO0dceWnZHCnvSdWMeGKg3ulZjf8mwSepM8wTHdvQmHohmaKQ7JDOrStRXzuN2muWIjS1j9vboQZCIiIiIiIiIiIrIQCMT+HHfk71Sf+Lb6e1NTAhuaY19lruno1teV6u8PkTVkvcWV23sVlQLHnQdxs3r+CACgqga1vgZlVd32OPbdHNQQRWDDmEFAaYTAve/sCUa7aIaB+88TGD0QcNiBuROBhdcaYSEOf/qmwBWzBcqLgbIi4PJZAn+9MLjMnWcL/HCOwKCQe+U4C4CTJgFv/NjAZTMF7jlXYNRAdX8OGg68/EMDk4YnfhF3dYW+rm5Hws1ntWj2n1C1g4P/v/5EgV+fIjCkX/DxAUOAxy8TOPGg3L3wvlwTKtAS3fSxnKELZCwrAsMsQthtAmMGqevqG/M8cYiI4pLKYDQzzw9T63YmdwPsHUMRxeKJy42w8yor98yXeCGK0/G+IKXE3fPje9+8vgJ4uy7JHcojuvNaHneI+pY93R0gIiIiIiIiipcpTazoXJaWdS/vWIoDiw9Ny7pz1ZcdH4eVdUsP1npWYXzRQWnoEeWK5Yp9KxMt71iKGf3nWC6jCz2yiwSC0Xixe9x0204fjKYuj3U7xxrIsLxjqbq8U10eD1V4RKzhFLsDrdjcvQ4jndW9yrd6N/QK2IrG8s6lGOKo6lVmShNfdn4SUzvpsrzjY4yL4bOvwb1CG7wX63oPLT0y4Xa6TQ/WdH0RVt7k246dvu2oKByaUPtr3avg1ryflnd8jOGO0Qm1T0SIOShxdefnOLzfUX3UG6KgRu9WfNaxRFlX65qE0a7aFPeobyQr4OvTjvdxWsUFSWkrGZp825MSUGsIXTBa8kKddW05DRc6Am0xtJPd51MuTYi2XRQkFM5NRERERERERESUt8w4wqU62yMuUlupr2to4sWZ7R59XUmEAKtsIN940nqBc6+GuOL3EDab9XJVNaj+Uh2M1rDZA4DfC0cTrFNbCbgK9fXfPUr0CjO68hgDVx4D+AMSdps65KjQLvCnbwr88bzg+o0ewWkFdoF7zxW45+uy177uKgjW7XX1HIGr5wDtHome97MrsAGuwuSFKxU5BKrKgM2t4XV1jRInIn+DnOIJRqupDG4vwxC4+VSBm74m0eUFih25vx3LNfcf2tUFBEwZFiCYq1o61eW67ZPvqiuAusbw8nUMiiWiOKQyGC3Pc9Gwfmdy29s7hiKKRYlT4P3rDNT+Kvwm7zr//VDitMmp399WbEvs+f/5SOKr4/g+iUdDk/qIXVPB7UnUlxiMRkRERERERFnLK7vhlRa3dOxD7YFdaVlvrjJlAG2abdoZw0XHRKF8pg9dZuS752YC3XugJ18fBKNVOUajQBTCJ729yocWjtBeCE9BLk1ggjugDmzSleva0RntqsU6z+qol28L7IaUMuwukW3+5HyWDS0cqQx9GOMcH3Nb7Yo+xdNP1XO6TU/axg2xiuZ4kMjy2nb8ipmpcegI7IYJ9Q/DHYF2VCCxYDSrfYJjNKLk2OnbHtPyXaZmNi5REr3R8hykZirg3PIzUtybvjPaNQ6butcm3E6zbwdMaWqDxFItWeOMkc4aZbnDcGJo4Uhs825MeB1jnOM05eOx06e57WMIAYHRmnayxShnDQRE2Psu2/8uIiIiIiIiIiKitJEWF9cKgV5pRXt1qH//lJ4uYOkCYO0KOEeOw/D+p2DL7vDvg4MXbObfxZmrt0u8uUpicD8Bv6n+bcFuAIW5cFXdh69bVosTLogcigZAHDgNNS88pqxb31mEbp+EoyD/9qWe6hVhO6GmjRVwWkzj0m1BXShaT4ZFEJQQAv2iuF9LqTP5r6H0eYFPFgFrPgUCftTaL8ZmhCcyqsKK8klzZ+yRJ6HBl0IIFOdAoGM0rIK/WjuBQaWp60s6MRgtSDYsB5YtgqxfDjRuAgYMAiqrIJy9N0TVzuMBTA57/s72fI8cIiIr3b5gwGx7dzBUee9/yzYlfuyYOBQ4ZoLAnAME+jmBOXerzwnN6HOYslqHR2L+SmBHm8RXawUmDguOTdcmORht+tjktkf5Y/QgYEg/YHuUl7B9viW5Y4w2t8T8FcDqHRKThgkcOyEYPh1qVYLBaGu2c2wUrzrN1MGaPL8pAVFfy4WvcImIclpXVxc++eQT1NXVYefOnfB4PHC5XBg8eDDGjRuHKVOmoLDQ4pYyZGn27NlYvHjxvsdS9YNyEixatAhHH330vsc33ngjbrrppj5ZFxERUT7xaAJmUqErwAv/k8ljurV1PtOrrSOKxJNFIR3uKI4rfk0wWkECwWgOw4mjBpyEN1qf7VV+XA6FS/QVpyY4zm1qgtE0+6PLFttMpZn9j8eS3YuiDv2TMNEtPXCK3jMgdf2JlW5fqSk6EGOc42MKcVMF68TTT9VzkvX3pkI0x4NEltdJVpCk1TgpNIQxrvYtXkuO0YiSo9kX66x0TpSgvtXm34UP2t5U1g0rHImJxYemuEd9Z1b/E7C07S3tmDJafulHe2AX+tvLk9SzxCRjLFYgCjF7wMna+rnlZ+Cx7fcltI7BhVU4uORwZd3sspPxWceSqMJ2Z/Sfg372AQn1Jd3628sxrd/Rvd57BgwcW35aGntFRERERJR8nJ/Xtzg/j4iIqIdAQF1uLwCKSoG2lvC6tvCbTsjm7ZA/PRWo+2xf2djat7DFPjVs2YamuHubtR5+x8T3/iURMAGr37BKnAi7wVy2ke++1Gs/CDP1GIiag6Nr7MiTUeO9QVt96t2dePVnxVm/zRIR6f1UVgRccqRAm34qZM79qiq7OiCvPxv4eOG+spohg7Cw7LKwZesbc+2vj01rHD/91Vbm7/ttoMV0upYuBqOV59H9buV/74H803XqupDH5RUGMCg8GE23HYkoO3n9cl94WUdImFl7t+z1uKMb6PAA7Z7w8LO9z/VpTtPiMWogcMwBAsccABwzXmDogP2f5Z9aBK1pspxzytZdEsfdY2LlnkAnmyHxp28KzB4f+3inrEg/tqqpBE6fnL9jKEqMzRD40XECP386ujflym3A7i6J/kWJ73Prd0ocf6/ZI1BaYsoI4OWrDQzu17v9YAh+/KIJ/aZwpim13wvUVKS2L0T5hsFoREQZKBAI4Mknn8QjjzyChQsXwu/3a5d1Op04/vjjcfnll+OUU05JYS+JiIiI0s8qTGtwYRVsCL8LZqw6Am1oC4TfeTPRC5SpN+sAFXUQFFE0rMJzknWciFWX2Yld/mZleSS6QCF7AsFoAHBGxbdQUTgUn3UsgUM4cHi/2TikdFpCbeYDl6GegaUL5NOFQRRp2tEZ6hiBH4+8FYtaX8R6Tx1MGfxV3i/9aPRtVa870Amn4QorUymx9UM/W+QQh8GFwzGt/9Ha4AibsOGqETfh9eZnsKbrC3h6fHY2+rbCL8O/71D1SfcZYYMdTsOFTrM9vB3Ftrb6rBlSWAUjDceD9sButAd2h5XHGhyiO34UiEJUFAwJK+80O7DbHz6pPlmhYp2B8NdkL13AYyysguCyKQCPKJPpgtEEDEiE36JS5twUfso0i3e9pP0MObb8jJy6CKfKORo/GnErFu96CRs8dTCl9W1hJSS2eTcp61p8TRkUjKb+HsWADUMKh1s+VwgDIxxjMXPAXIx1HaBdblr/o+GyFWPJ7kXY4d0cU/8KDQeqXRMwt/wsbXDxGNd4XDPiFry16xVs6l4LqXhtSu0DMKl4Ko4uy43f7C4Y8gMMd4zGl50fo8TWD0f0PxYHFB+S7m4RERERESWM8/OIiIgoLXTf9xoG0K9MHYzWHl4mn7grLAyrumMF3h6gCEbLsyCi1k6Jq/6zNxTNWqmj7/vTl6TfD3n79/QLlA+BuO2ZqNsT9gKM/erhEJtNSBE+f2J+gwtL1gHTx8bT29xgFex11qHALacbqCoTWBfIo/fdS4/0CkUDgBpvvXLRuh2p6FDmao1jOkvt4OT3I1uUWwWj5dHUIF3oS3lx7vw+bkU2bob88/VRLz8woBhLAWjOo32GKBP5Az3CykKDzDyyd7hZSJBZePAZ4NV/lZsy35oh8E69hJTA1NHBILQ5BwiMrdCHL1sdufNh9HjzC3JfKBoABEzg6v9KHDQ8tr9++ABgyfUGrviXiRc+319eXQHMqhW4/SyBQnt+fE5S37h2rkCpE/jXB/tDsHa06Ze/+UWJu7+e+D530wuyRyha0LJNwB2vSdx5TmgwWmLr2tQKuL0SrkK+V2KxdTfg1lwGUTuY25KoLzEYjYgow7z55pu44oorsGbNmqiW93g8eO655/Dcc89h6tSp+Otf/4pDDz20j3sZu9GjR2PDhg0AgFGjRmH9+vXp7RARERHlBI9FONnPR90RFgATj8WtL+N/jX8LK7cK5KDYWYWY6IKgiKJh9V5N1nEiVp+2f4C/bb0trDya44oqSAoA7KIwoT4JITBrwPGYNeD4hNrJNy5DfetFd0D9+aQLndIFL1gZ5hiJbw75fq+yNv8uXNdwsbpPZifKMKh3fzTH3qPLvoYTB54Tc59UnIYLp1acH1Z++4afYoOnLqxc1SddiMZQxwhMKJ6M+S3zwp+jeA2sPmuuH31PwgGD8VjQ8hyebnokrDzWgDLd8aPWdSCuHHFjWPlHbYvxyLZ7wtdrdsS0Xh2roMekBKNZtJ+scDeifOYzfcrwRACoLByKHd4tKe4R5TuP6cbi1leUdQPsAzG138wU96jvVTlH4/whP4hqWSklflR3HryyO6yu2deEMa7xye5eXHTjlYrCIfjVmPuTtp6DSw7XBvcmw2hXLUa7avus/UxjCBvmlJ+KOeWnprsrRERERERJw/l5RERElDaBgLrcsAGl5QAawuvaWsPL3n4urGisd62y6UQvls02r6+Q8ET5k3Sps2/70udWLQVa1Tc7AgBx5/MQjtjmRTknHYqR6zZhQ+EoZf28ZRLTx+bvxb71ms395/MFvnvU/jA5l8X0k1zbevLtF8LKar2KYxmADS2AaUoYRq5thejoAq6s1FQkvx/ZotgBFNgAn+Kj0yqYItc0tqnDYgbEPt0wO737EmBGkXa6hzYYLTlT4ojyRsCUIeFlPQPKZFi4WUdImFlofXcGBJklUz8n8Mglsd+I2WoIFMOhLmu9ujz8M63bDyzdEFs7NZXAsAECz11pS1LPiHoTQuB7Rwl876j9ZU3tEoN/on6jvrUm8WhDKSXmLVO38+wyiTtDLutoaEp8net2AhOHJdxMXtF9JwDk97kbUSowGI2IKIPcfPPNuPnmmyFl70GpEAITJkxAVVUVBg4ciKamJmzcuDFsctbSpUsxY8YMPPDAA/j2t7+dyq4TERERpYXHdCvLBQQcIjkzl4o0YTVWgR8Uu74OUKH8pdu3BIykHSdipTuudEsPAtIPm9B/Zad7P9gtnkN9RxuMptnvdOVFRnJmKun6A8QWFJas/liJZdvpQjRcRjFcmr4q29H8vYXCkZZQNEAfimcV/BXL8rr2i4wSZXlXoANSSu0d66LVFdDPJvOZiQeeWoWfxbrtiChcq78JUnMfyoEFgxmMRin3/u4F2vDOY8q+lrbP8UwhhEB5QQW2ezeH1bX4LGbjpJju3MxqDEtERERERJRsnJ9HREREaSU1V7sbNqB/ufopbS0QAOSS1yGXvA40bga2hV85Xu1TB6Ot2JZfQUQ3PR/9xcFH1mT5Ntlcr68bUAGMnhB7m1OOQs3T9dpgtDtek7j9rNibzXZd3RIPLpZobFfX11T23pecFj9dJX75et+S7buA15+AXL0MCOxJMSkfDHHESRBTvtp72W3rgWWLw9oY5t+qbDtgArvdQFm+BDqF2BVjMNq0MUCRI8uPUyHk9g3AG09CvvQI0NEGFDqAsZMAXzdQVQNRfRBw/PkQRSUQQqCqLBjYECoYBJFb20Zn2SZ1edWA1PYjXeSm6ELt99IGo3E6GeW4gCnR0TO8rFcwmQwJNgvW9woyC6l389INS9PHxvc8wyJLzcz0QWKCpJTYpMj8jsfwAfkxBqDMMkg97R4A8MlG9Jp77w9I/HuJxHsNgNsbPP85/kCBkw5S77td3RJ3zg8ej1XW7gQ8Pglnwf7nf7Q+un4fNwF4c3XwXCxUfSOD0WJV16iZV10MlBXz2ETUl3jFJBFRhrjmmmtw33339SorLS3FL37xC5x//vkYOXJk2HPq6+vx6KOP4s4770R3dzcAwOv14jvf+Q46OztxzTXXpKTvREREROniNtUzBRyGK+FAj710gSseszMpwSEUpAu9AZIToEL5S7dvFRnFaXv/6o4rQDC8qsTeT1vvl+r3Q0Geh0Gkiz7USv35pA340rQTqwKjEHZRoAzQUwVR9HV/rOgCAlV90od+FWmDNFTBWfqAtfSFccQS7GZFFxSma7/Ipv6F1oSJbumBU8R21+jw/lgEoyUh8NRq+zAYjShxzRZBSgPtlcry0IuJiZIlIANY0PKcss5lFOHI/nNT3KPMNLCgUhmM1uzPnGA0q7BbIiIiIiKiVOD8PCIiIko7UxeMZgCl6mA0tLVCPnIL5D9+a9n0WO86bd38lcDxB0bbyez1foPE6h3RL3/VMdk970/e/j1tnbj4eoiCwpjbFGMPRJVzdSLdyjkdHolj7zbx4Xr9MjUhP6G6snQal2xthLzqOGDDqvC6/94DXH03xNk/CD6u+wzyB0cr2xkYaNauo7kzf4PRWrui/029wAb86mSL9JQsJOu/gLzmBGB3SNJZ457fOD9eGAwOfOEfwP2vQ5T0R02FOhitPnN+Au1TO9okdrSp68ZWZPdnWDSklMD/PRDTc8o1xx+PLxg6kmthg5S9TFOi09szvKxnOJlUhJthT/CZ7BVutvffXbzUImUcduC6E+P7jLY6AuX6zLtk7qP5Opak9BJC4PuzBR5cpH63Xv0/ifvPE/AHJE59wMSrX/au/+ObEj8/QeD3Z/Y+frR7JI6LcL4JADN+b+KTXxsQQmBDsz5EraeRzg48dFE/HHOXibWKMXUw5Itjo1jozkNqB6e2H0T5iMFoREQZ4LHHHgubdDVz5kz85z//QVVVlfZ5NTU1uOWWW3DRRRfhrLPOwvLly/fV/eQnP8HkyZMxe/bsvup2Tli0aFG6u0BEREQJ6DbdynKnkViYR08uTXCIX/rhk14UCkfS1pXPrEJMkhGgQvnLKlApXXSBUEAwvKoE6mA0KSX80q+ssxuxT2akxOkCtdyBLmV4piqcLNhO8n6ldRlFaA/sDu+TYt2p6I+Obh2qPulCv4qMYn3AWix/bwqC4HSKtAGsbpgyAEPYompHd6zTbR9dMBoQDDVLdCyl29aAPuAxFlaBqrr9hYiipwtG62cbgELNmEPm/PQsSpdP2t9Fi79JWTdrwAlpHddnknJNaGGLT73t0kF/bsYZi0RERERE1Pc4Py99OD+PiIioh0BAXW7YgH5l6roNqyDn/ydi0zXeBm3d9/9touHW6H57zmY3Pq8JnlO4/iSBScOz9wJgubsZ8Gvm1NkLIM76ftxt26bOBj7V15umhGFk77aL1b+XSMuL1AvtQFVZeFlWeu7vylC0veRDNwInfQuiqATy0d8BbvVvPwMDLdo2mjvCg+TyRatmOsuNXxMYUAQsWCmxqwsYP0Tg4iMEjqzJrfeZfOzW8FA0lbpPgVcfB86+EtWVAvNXhs9FqG/Mj/kJN7+g/zvHDkphR9Ll83djfkp5oFVb19IFFHHKP8VJSonO7p7hZT3DyaQi3Cwk5CykvqM73X8RRWIzgFInUOrY838ncMgIgUuPFDh8THyf0VZDaF2Gdq5oSeK03nJOM6I0+cWJ+mC0B96UOGNyMPQyNBRtrztek/j+bIkR5fsPBv/50Pp8c6/PNgPv1gMza4HrntaPEad1LYFLujHDvQSXe5/CiJJ3UVNZqAxGq8+caYVZQ3ceUpMHocVE6ZatX7UREeWMNWvW4Morr+xVdsQRR+CVV15BSYn+ItWexo0bhwULFmD27NlYuXIlAMA0TVxwwQX49NNPMWhQPnzjSURERPnIbXYpy3VBNfGwasttdqLQ4K+kyWAVYpKMABXKX7p9KxXBTzpW67YKCfRbhATaRZbeajTL6V7LAMLDM00ZgEfzuaULx4q3T8pgtJD3gs/0avepZPZHR7ftPIHwbWQVoqFrRzVG0IVppfV4YBHm4jHdlgFmPcUacmf1GncFOlBeUBHVeq3a0ElG4KlV8JrH7IIpTRgit+6cS5RKzb4dyvKBBYPBO8RRKkkpMb9lnrLOLuyYXXZKinuUuXSf3ZkVjNb33+EQERERERGpcH4eERERZQypudpdGEC/cnXdyo+iarrM3IWyQAtabeHttHRCeXO3XOL1S7ypz3MKc8rBWb4tPlmsr/v6DxNq+uRJwD8sgtGaOoDB6ns+5qRXl1sHMI0ZCNhCUi6s3muHjUpKt/qEXPK69QJd7cCXH0B+5RjAYtlSsx126YNfMZ+tOY/vdbejXV1eUQp8f7aBq+ektj+pJKUEFj0T/fILn4E4+0rUakL06tX3ess5X2zWH3/G5MHXEPKD16JeVvxvFbBrJwZ9/3TtMtt2hwdZUu6SUsLt3RtcFvqf3B9u1qO+w7M/yCy0vqMbkPmRyZi1DLE/wGxvoFnJvmAzEfy3sl70Lt/zn8NuPaaLh1Vzub57JTMYbSCD0ShNhvYHXAWAWzMN/vp5Jg4dpX+jmxKYv0Li0pn7l3nty+jf/a8sl5hZK1BnERL8xsYT4ZKe/QUrPkJ15UxgRfhzGvIkbDiZ6tRTq1EzOLX9IMpHDEYjIkqza6+9Fh0d+y8WHTBgAJ5++umoJ13tVVlZiaeeegpTpkyB1xsMjtiyZQt++9vfht3tkoiIiChXeEy3stxhuJK2DuvgkE70t2smpVFMrMKgkhGgQvlLt28V2dL3q5jTKIKAgFT8jKkLbgKsg9EKGIyWFlahVm6zq1d4pu4zK9hO8vbHIlsxoNhVQt8LVsFSyexPrOtQ9UsbjGYUw6UJDvNLH3ymFwVGYY92NMF0aTweWIWydQU6ow5G04a+af42q3a7TH2oWbSs2vCZiQeeWo0bJCS6TXdK9mOiXNXsU88iHliQp7fuprRZ1fUZNnevU9Yd3m82BvB8fB99MFpjxlzslokhtURERERElB84P4+IiIgyhhlQl9tsEJVVCV8MP1ATjLbbDTR3AINKE1xBBlvfHLzIOFo1id0rrM/JBf8HufBpYOtaoO6zYOHkr0JcfRdEzcHABn0KnJh+QkLrPnqS9Y1iWzvzKxitPsI9aE7ShOydPhl4NiRgrtAOnDM1/b/ZaG1piLiIvPdHEHe/BHTr50EJAOWBFjTaw68Ob+6QyMebcXn9Epta1HUjyvJge7TGmGT2+bswb/02qif9GMC4sOr1zUC3T8JRkFvbzu2VuPN1ifcbJNw+4F2Lt2RZcW797UpRHJMAACPHAUNHA5VVGBhohtN0w6O4jqChUeKw0Xmw3XLYu/USD78j0dQucfyBAt+fLfDC58B/P5RoaOoRdrYnyCyWsSGlnhCh4WU9/xP7ysPrhTL8zFWY/CCzZDMsupfr+2syg9HKOc2I0sQwBE6cBDyzTF2/ZB2wZJ31m/nyf0r87a0AbAZwyAiBeZq2VH7/isQbKwP4ZKN+mV6haACwdS1qKmYql82XsOFkebdeYvlWdV2mf8dElAsYjEZElEarVq3Ciy++2Kvstttuw5AhQ+Jqb+LEibj22mtx66237it7+OGHcdNNN6GsLLdua1BfX4/PP/8cW7ZsQXt7O4QQKCoqwuDBgzFmzBgcdNBBKCrSX6CeLN3d3Vi8eDHWrVuHlpYWVFZWoqqqCrNmzeqT9W/btg1LlixBY2MjmpubUVJSgsrKShx22GEYO3Zs0tdHRESU6bo1ITPOJAajWYVqWIVyUGy6LMKgfDLxABXKX7rwp3RefG8IA07DpQxpsgqrsgpGszMYLS2s9iN3oBP97fvPxa0+M6xCOGPlNNTnoqH7m1UIXzL7E+s6VNvJKkTDpfl7geD7qX+vYLTMOx4hVep3AAAgAElEQVQka5yhDYHU/G02YYdDONEd+gMorD+To9UV0AejWR3LomW1/wLB157BaETx0wWjlRdUwpTqC3ZUga9EiZrfMk9bN6fstBT2JPPpggu7pQedZjtKbOm/Qkk7FuNnNhERERER9SHOz4sf5+dxfh4REfUB01SXGzZgeOKfMw9uuwpzR72irKtrzO1gtLURwqt66ucEBsaWkZtS8om7IP98fXjFp29BXnIY8NB7kA/frG9g8qyE1t9/gAu/bboBv65Qr6NVfU+6nGSaEg0W+1ZNJXDNHHXCxU2nGnin3sTOHtMnbj9LoNSZmYEdsrMtuvCqjWsgz66NuNhAXTBank653diiDzypzoOL6OW/7oj9Sa/8EzWLPwZGfaSs/tvbElcdk5nvp3gETInj7zXxTn3kZX95cu783ZY2RxGMVuiE+P5twTAkewGMybMwtm0dVjgmhi1qdTynzPfqconT/mTCt2fa0ktfSPzwv5yrlGoloQFmex6XOEV43b56dV1RFgSZJZtlMJrmVDFXJPMcojwfwkEpY93wNQPPLEvsDfvh+uD/318b++fYR+v1dbfv+EVYmdyyFjXTBKCY37uxJTfDhvvCGysk5t6rf91rB3MbEvU1BqMREaXRfffdByn3DygHDRqESy65JKE2r7nmGtxxxx3w+YIXmXZ2duKhhx7Cz372s7BlL774Yjz22GP7Hq9btw6jR4+Oaj2LFi3C0Ucfve/xjTfeiJtuusmy/b02bNhg+cXFt771LTz66KNh5d3d3bj//vvx0EMPoa6uzrJ/NpsNkydPxumnn44f//jH2klQs2fPxuLFi/c97vl6WNm9ezduuOEGPProo2hrawurLy0txbnnnoubb74Zw4YNi6pNHZ/Ph4cffhgPPvggvvjiC+1ytbW1uPbaa3HppZfCbudHPBER5QdVqBAAy5CUWBUKBwzYYCI8AEC3fopdl2kRoGImHqBC+UsbqJTmi+9dRrHyGGIV9uNjMFrGsQ616v36WoVNOW3J+9wq0vQpdN+yCt1KxftDtw7Ve0D3eVtkK7YMcQsLp7MIWEsXq3VbBSX2JKXU7l9Wr6XLVoxuvyIYzeIzOVpWwWjJCDyNtG3cgU6Ah0WiuOmC0QYVVKLRu03zLE42pOTa5FmLVV2fKesOLjkcQx0jUtyjzFauCUYDgBZfU4YEo2nGdGkcixERERERUe7j/Dw1zs/rjfPziIgoZUz1DWhgGMCwMbG3d8zZwJtP7Xt4dNdi7aJ1jRIzqnP3Qs2Gpuh/qxo1MHNDGGS3B/Lfd1ovc/OF+sqzf5Dw3yYMA9d1/pnBaAC27AI8mulalxwp8IezBAaWqLf3wVUCS39p4JllEk3twImTBGbWZuZ+BwDYsjapzZUHWpTl+RqMZhXINGZQ6vqRNv/3x7ieNsZdBwETEkZY3S/nSVx1TKIdyxyL1yCqUDQAuOzIDD6WJImUEthiEYxWVglx5hXAUadDjNkfgiYu/RXG/kETjLbVC8DZB72lVPj9K/tD0Sh6xY4e4WW9wskESkLDzRz760LDzUqcQHEhYFgle1FEVsP0XJ9519IZ219oNwC/JoPIHj4sIEqZg6sENtxmYNR1mZdmeMHu/2fvzOOjKPL+/6memUzukxAh4UrCLcopcnqAgoiKJ4L7eK27rLrq7uO6ruu5uu4jK+oPb2VXdF3XY5FLWA9QkUMRYQHlEJJwGK4k5M7kmpmu3x9DQiZT1dMz03Pm+369eJHpqq6q7umjpvtb73rXc+HRAyiUhBWqHDhUCQz0bx6hLsVTn2h/34VdQHZNEOGG3soSBEGEkU8++cTt84033oi4uLiAyszOzsZll12GpUuXutUjCryKJkpLSzFt2jTs3btXV36n04lt27Zh27ZtuP7661FYWGhYW3bu3IkZM2bg2LFj0jz19fX429/+hqVLl2LlypV+17Vt2zZcd911OHDA+4umoqIizJs3D6+88gpWrVqF3Nxcv+slCIIgiGih2dkkXG5VEgyrgzGGRFMSGpyewdZaAiPCN7RlUIELVIiui0z+FO7B94mmZFQ5PCOetGQ/Dg0xmoXEaGHByuLBoIDD82VH52NPU0Rm4PEoK8tD1CZpjwIT4pjVsPbIkLVT1C7ZvktQknyT08nKCaMo0cRMsLJ4tHBPQZnefkYrbxEKXAHta12ikowaVHos15Ka6UVLrqYledSDXW3VvB666qc+GkH4S6vagjpntTAtU1OMRhDGsrZquTRtasasELYkOkg1pcPMzHBwh0dalb0CveMLwtAqdyJVWk0QBEEQBEEQRGxD8Xn6ofg8is8jCIIgQoAqGUipmIBuuUBcPNDq+e5YBPv9K2CX3Qp+/2vg07JcywAMb96JHfFne+QvEs+LEzMcq9Gfd0iPCBY6HNwN1ImFUu0ckYtiWO+BhjSDJSSju6MM5eYcj7TqRg7X0Rb7HK+Vpy24hiEjSXs/9M5i+M3UKNlXWgIiP+jm9IxHAYCj4lfRMc+xGrEMpEcakBAXJceIn/B6Hy7QnbDyVpzhKMNxcw+PtBYH4FQ5TDEi6dlYrE8YE28BemUGuTGRQE0F0FgvTGIvrwMbNk68Xm4B8luXCJMOHG8BidGiE7uDY4O2vz9mSIzrLDBrE5e5RGYeafFAivW0yKxjepIVMXONjBW0vg41xs1oR33sDvx8EsNrX4l3ygDPnygEEVJ6ZTLseETBiCdU6JwHJuikOmvR3Sl48HO0BPndXGJGUVuLy0mM5g2nqt0P6ZYMr88GCIIIHBKjEQRBhIkjR47g0KFDbssuvvhiQ8q++OKL3QKvNm/eDLvdDoslOgfKt7a2Yvr06R5BV5mZmRg2bBhycnJgsVhQX1+P48ePY8+ePbDZgjMAds+ePZgyZQoqK91f1OTk5GDEiBFIT09HWVkZNm/ejKamJlRVVWHmzJl4+umnfa5r1apVmD17Nhob3Qdy9+jRA2effTYyMzNhs9mwZ88etxk6d+zYgbFjx2Lz5s3Iy8vzb0MJgiAIIkpoVsXTD8Yr4tmo/SVBSRSK0Ui6YRxawqBABSpE16ZRNvg+zGI0qbzKT0mgmcRoYYExhnglQXgN63yPkh2LVhYPEzMZ1ia9x5bsWEs0JYVkZmSZsMvB7bCrrbAoroFpTu5EsyoWoSYoiYhjVigwCcVgnnI6cb8h3KLEBFMSWhwCMZrOfobWdUPrWpdoShYulx2rvqBVRqDCU9n36JaH5LUE4TfVjpPStCxLd+k9IkLiO4gYodJejm31G4Vp/eIHoiBhcIhbFPkoTEGGuRsq7Cc80qrskTHaTXYPTzD4GQ5BEARBEARBEEQbFJ+nH4rPo/g8giAIIkSo4gmvwBiYyQQ+8TLgi397L8dkBiZc6lo1MdntPU3/1iKhGK24zI/2RhHV3l8jt3PlyOC1wx/4wT3grz0E7N0KVAX4RU2caUyjEpOQ4awRi9G60Ov4eomnkDEgzbi5eyMCvm+7oeX1aT0sXF5c3jXfLFdJzpvslNC2IyysXxHQ6oNb9grFaHanS7TXOyug4iOGkzrnsZw1nHUN0VFpsTwtT2NSsG49UaCWCpPWH0nGV/s4zhvYBfZfjHFI7NqMCOItHeVlHeVkLpGZu9ysLZ0J5GZAcjyJzCIdzjnw7rPga98Hjov7OpqYcoGe30nKDrBxEc6XP/q2gcPzgHPzgc2d5rIYdAbQtxudJ0T4OSuP4cKBwOc/Gl/22H7AkWrfhIJX1a8Q68v3/RdWC0PvTOCw4H5aXNF1xOf+cqTa9dtDxlUjaf8RRCggMRpBRBhO7kSNxsAjwhjSzd0MHXTsD5s2bfJYNnr0aEPKHjVqlNvnpqYm7NixA2PGjDGkfL0sWLAAjz32GABg4sSJOHr0KAAgNzcXGzeKBzUBQHKy+8DcxYsXY8+ePe2f+/bti5deegnTp0+Hoige63POsW3bNqxatQp///vfDdgSF3a7HTfccINb0FWPHj2wcOFCXH311W5taWhowDPPPIMnn3wSNTU1Ps8IumfPHlx//fVuQVfTp0/Hn/70J5xzzjke+bdv34577rkHGzZsAAAcPXoUc+bMwbp162AyhfdYJwiCIIhgIhWlmIyNOvFHYET4hpZAxRGgQIXo2sjEQgmm8IqQEiX1a4mQHNwhTWuTSBGhJ0FJFH5vna9roToWE0xisURnEYVM7hkqaaDWdjeqNqSdOqZlEtS2MhhjSDAlwub0nCHS4zuQ3GviJfssVCQoSaiB59tGvf0MLVGr1n6WXYcaVZ2RdhJUrmpfy9TAhKd6hHF6pXIEQXhy0i4fbJFp7g4mC4KI9egsIqR8Ub0SKlRh2kWZV4ZE4hqNZFqyhWK0Skf4xWh2tVUqRw23tJogCIIgCILoelB8XugId4wexedRfJ4WFJ9HEARBhAWZGO3UvYTNexx8/3+BIyXyMhQF7J5nwTJPC6vY/a+Cz/8VAKCwVbxuUYzLiPTKuuacw3Dl8Mh5z8DLSsFvPw+weU7a6g8sO9eQcpCQjPRW8SjsKh8kdNFOQ4t4eVIcoMSQuIRzDrzju2jYg/7DgaIdrj/t4mtRcfhfW4UFmRgtM8bnD+LHD4E/9cuAynjl+F0YWLhbmFZSETtitFod11bGgD/Pip1rjxb8kbnihMQUID1buh5TFOSniscWAMAFz6j45g8KxuZ3jf0YK9z5L3H8iD9YzR3lZZ3FZKyT3KztH3MTm3VMN5voWOpK8EWPAm/P93t9ZpbHx6gx/HOtppFjfZH3fB3JTGJ4/nqGy15UUXbqp1JaAvDGzZ7PqgkiXAw4g+FzH6V/enj5BgVldcC1r6mwSX6TdmRIyx48WvGENJ2vX4HC7JliMVoX/X3mC799X94P6ZMFPHwp9QUIIhSQGI0gIowax0k8fGBeuJsR8zyR/xqyLJ6z14SSI0eOuH3OyclBVpYxT2TPPPNMYX2hDrzq1q0bunXrBgAwm0/fcsxmM/r27au7nBUrTs8QYjabsWbNGhQWFkrzM8YwevRojB49Gg8//DBU1ZgHYC+88AJ27NjR/rlHjx7YuHEj8vPzPfImJyfj0UcfxZlnnonrrrsO1dXVuutRVRWzZ892m1Xzsccew6OPPipdZ8SIEfjiiy8we/bs9tlIN27ciHfeeQc33nij7roJgiAIItqQyVLiFWOjBWRSEZJuGIfWvrQHKFAhujYysVBimAffywb/a0kC7apcEmhm9JgvXCSaklDlqPBY3llEFqpjUXpsqfokYaGSBmptd5PThjRzxqm/5VFfbWUkKklCMVrne4vsXhPu64FcUKavn6ElUNPatkQlWbi80RmYGK1ZbQSH/EWvTIqiF63rZHse6qMRhN9U2sWRDmnmTFgUC2Szw2md9wThCw3OOmyqWSNM627pibOSPQcmEy4yLd2Fy6vsnn3VUNO5b9wRmdiXIAiCIAiCIIIFxeeFjnDH6FF8Xl/d5VB8HsXnEQRBECFCds9krsHdrGc+8Pdvgf+uAw7v88yXkg6MOA+sV3/35eNntP/Zv7VYWEVRuUt+FKuTj1Q3it9V3TiOYdpQoKwOOKcfw7n9IktoxVe/aZwU7S4DxFZtJCQjs1ncv6puUAF0DSFBQ4v4uEq2hrghweaHbwIvo89AYODIdjFaoeRadKIOqG/mSImPnPMwFFRLXpVlxvj8QXz1W9oZJlwKmC1A1hlAzUngiyUeWQrsB5FssqPBafFIO3CS4wLZ5G5RRpXNe8xFxbMKMpNiY3u14C1NQOVxcWJugde+TEGOAojdngCAl9dxEqNFEZxzrN3r2zpLfqVI5WcWM333hH/wlmZg2asBlaFoxNfFshhtxQ7fNy4zCRjdl+GHRxV8tR9ocXBcPIShWwqdw0TkUCB3tQIA/vlzhn7dGHYd46iyAXVNwP99rH0+XDkCGNHbdZz/+LiCz3/kOF4ryNhkA958EoNbf8QFtq+QxOWxefzt+Sg47zKhxK0kxiX6gcI5x/Id8vRdjylIstJ1iSBCAY2YJAiCCBNVVVVunzMyMgwrOz4+HlarFS0tp3XAneuLJg4fPtz+99lnn60ZdNUZk8lkyIyMqqrihRdecFv2+uuvC4OuOnL11VfjjjvuwIsvvqi7rqVLl2LXrl3tn6+77jrNoKs2zGYz3nrrLWzcuBHl5a4BjAsWLKDAK4IgCCKmaVbFszpZlQRD65FJRbRkLYRvaIrRAhSoEF0bmRwnVPInGTIRkta54OBiSSADg4ke84WNeMk9ornTdxmqYzFBIgftLM8KtyRMa7s7ijO0zom2MmQyuI7bzDmXCrXCfT2Qtl+n3Et2bJmZBRYlTrpeokkiRgtQKuZNXGaXXMv0ome/aMniCILQpkoiRssyi4VLBGE0G2o+QSsXT3U4NXMWFNY1Btr4g+w8jQwxmkafLsySWoIgCIIgCIIgYheKz9MPxedRfB5BEAQRIlSneLly+l7KElOAiZe5/ukl4/TzYZmMqL4ZKK8HclL1FxtNyKRDA3KAOecE590C5xyorwYSkgHFBOZjn4hzDnzzsXEN6jPQuLJSM5BVUSlMKj1mA5BmXF0RiMPJwbnrvBGRHB/a9gQT7nSCf/0feYZh44EfvvZeUO+BYHkF7bqP/NaD0qxldS5BTSzDOUdlA8ABxFuAasmrsvRYl1zt2SJPO/8qKE+867ZILT8K7PIU9Q22nsB3jb08lpeE/zWoYVR5CXUq7I4uIUUDIJbDttGzn9fV++alwFrVjBZFfKH59iAJQKKJYxqSOxG3TGC4amQXOVeI0HKkGGgQ2Yn0w7TEaC0tAGKzg7S91Pd1sk6FN3dLYbh6FCCbzJUgwsnAHAZIzusHL2WYO9b1LGJcwenj961vnJr3tvEd8uZmMNw4TjKR8Xffglc9p6+hVeUolIT/FsdQfzoYlNfL087Og89SNG6rA1QnWIpx7ysJoqtAkeMEQRBhonMgVHp6uqHldy6vslL8YiraaAsoCjXr16/HoUOH2j+PGTMGM2fO1LXuI488AovFc3YSGc8//3z734wxPPXUU7rXTU5Oxrx5p2e1/eGHH9zaTRAEQRCxRotEjJZgsBhNJkzRKywhtHFyp1RyB8hlUAThDbtql4r1QiV/kuGPCEl2LpiZJWZn9I0G5CIy96hb2XdrtAhC7z1LKgkL0bkRx6xQJI+nO7ZVS9IVf2rf69lmO2+FCnGQecReD3TKvfyV3MnSG50NuuqV0ahqr+8IUHjqTbwGUB+NIALhpL1MuDzLkgNAHmLENQK3CEIvrWoL1lWvFqalmtIxNvX80DYoysi0iKehjAgxmsb9WyZrJQiCIAiCIAiCCBSKz/MPis/ThuLzCIIgiIBQVfHyACWjjDGgu0sY07+1RJrv/62N3fc5MjFahjikI2D4ikXgl/Zw/bswBfz8RKjzbwdvFU/+4rYu5+Bv/xX8it7Aj9uMaVBGd2DkBcaUBYBNvBz97IeEaSXlkuM4Bmi2c9z2DxVZv1WR+VsVd7wjPmdSrCFuWBDgDjvU//db8Jk9gXeeluZjf1wEWL3H47JpNwB5pwXL2c6T0ryVgYWlRDSccyz4TEXufSq636si514VaXereH+r+FjKDNI1KmL4bq00iU2d7bkwr0CYt8D5k3D5km2xc1/zJkabe07XiQ/lbz4pTWPT5npd39qrL66sXyFNP3jSJcAkooMfjvqWv0AcNkEQgVO0M+AiFC7vR6tq7F6XZIJYLfK7Gd8OgjCaqYOBboKwN7MC3CwRml0/Rt6nUxhw7Sidfb493+nLBwDlpShIF8fuHzwJ2B2xe/0JlCJxODUA4PLh+vvnfNuXUH92Fvj0bPAZZ0C9bgD42vcNaCFBdB1IjEYQBBGjxNKg+EGDBrX/XVpaigULFoS8DRs3bnT7PGfOHN3rZmdn4+KLL9aV12azYfPmze2fx4wZg379vM9o0ZELLnB/qblhwwaf1icIgiCIaKJJFUc0xUskNf4ik95oyVoI/TRLvsc2ZGIrgvBGs8Y5KhMphQpZ/VrCH7tUjGY2pE2EfySYJGK0Ttc2mQwi0eBjUSbZsvNWN7meVKYVonODMabrPJDtNyuLh4m5gsP13Kf1CNbChWyfy/o5Hvlkkjsv36VMQhKwGM3L+rJrmV70SM/0yNMIghBTZRcPfM2ytE0ZFzvPnYnI49u6dah3imdXPT/jUliUuBC3KLqQidFsar2mjDwUyPo1DAqsLDZnvCUIgiAIgiAIIvah+Dxjofg8giAIokugiifzAgt8aBd7/F8AgG7Ok0hz1gjzzP+EY/tPsTngVSaUCYYYja9bBr7g10B9tXvCqjfAF/7WewHLXwN//WGg2iAhbVoW2J/fB7MY+B5lxo0olEj2imsTwHlsHkd3vMPxxkaO+mbApuG4S46BVxv8lT8CH74MNIivFwCAzDPA8gpd15cEL/FEky53E6OlqPUwS+JDvAmgopk3NnH8fgnHiTp9+TPDG8IYVPi2L+WJvQe4jplOsFyxGC3f9qNweXE5cKI2Nq5HVRphYleNAH53cew8g9CCb/sS2LBSnmHiZd4LySvAs2W/R7zkHbndCZRWC5OICGTG874JWQu7e89DEP7An7w14DIUyI/nWO1fA0CVzbdt654CpCZ0jfseEd1YLQwf3q64PXewmoHXb2Qo6C4+hh+ZyTB9qOfyODPw1q0MvbP0Hfv8b4/51NZCiE2jThU4XCVMIgAUV8ivXw/O0Pld/bQf/N6ZwOF9pxcePwz+pxu1fzMRBOEGjZokCIIIE5mZmW6fa2vFg338pabG/QVF5/qiiblz52Lp0qXtn++77z4sX74ct9xyC2bMmIEePXoEvQ1bt251+zx27Fif1h87dixWr17tNd/mzZtht59+AZSfn+/zjJJqp9nESkrkM38RBEEQRDTj5A6pMMuqeJ+hzhdkkhmZiITwDW/7MVCBCtF10ZIKyc7rUJEou65oCH8cknPBwkgQEU6k94hO36VMzGX0sahVXpOzESnmtFN/h6Y9WiQqSbA56z2Wd9x3snOio/RLJgBrdp6+Bmjda0Ilg5Mh2+d65V7+HltSMVqA4tdG1YsYTQ1MeKqn/6VHnkYQhJhKr2I0MRyxG5xFhAaVO/F5lXjWZiuLx+T0S0LcouhD6zytspejp7VPCFvjjrRPpyTGlEiAIAiCIAiCIIjIguLz9EPxeYd8qovi8wiCIAi/USUD4RVT4GUPGA4oCpiqon9rCbYmjBJme2MTxwu9Y+u5rKpy1EhChDKSjN9W/tHf5Ymf/gv8rgVg8XIjG1/xN691sJ8/CgweBQweA9ScBPZuBSxxgNninjEtCxg0GsxqrKmLMYbCfqmA4PW+zWnBiVqgR7qhVYad+maOd7foe+eZbA1yY4IMd9iB/7zlNR+b4xL9sfEzgJVHwC/KEGc0mcAUBTw3//S6ADKdVSg353hkr2rkiNUJuRat9+29eUyL0T58WZrG/vwBmCKQguZJxGhVOwDJq9Bl2zluPz+6jyfOuVQY+NJchl+dx7rMO1X+0RvyxPEz9O2H3AJ0d1bgeFEfZAwUx8AUlwP9uvnZSCJk1DX5HotUkN01zhUitHAvQmP25Ae6ylEOHgM2idM6P2+MJXyV4vYnwSERRUzqz3D0aQXfHQKaWoExfbWfQ6QmMKy+W0FxObD7GMABpFiBsflASrxO0dahvT63M//7fwO4T5hWVEZiURlFZeLlo/oAcWad39fHbwNOhzjtozfARl0gTCMIwh0SoxEEQYSJzoFQ1dXGTTfQ3NyM5uZmt2VZWVmGlR9qrrrqKlx11VVuwVebNm3Cpk2uJwGFhYUYP348JkyYgEmTJmHw4MGGt6GszL0H279/f5/WHzBggK58paWlbp/fe+89vPfeez7V1ZmqKlI2EwRBELFJs2QmJ8A1sNZIZMKVQMUhhAtv+zFQgQrRddGSCoVbjOaPcFEmRjMzi3A5ERr0fpdNTnEUrtFSLq3ymlQbUuASo0llWiGUhOnZd7JzoqNcUCYa7LiNWveasF8PTOJ+i165l5595Et6o7MBnHO/A+oandpiNNm1THf5OvaLXqkcQRDutKjNqHeKBwi3CZdYjAaoE+FnZ8MWlNuPCdMmpF8kFXoSp0k3Z4FBARfMMFtprwirGE12bw5l35MgCIIgCIIgiK4Hxefph+LzKD6PIAiCCBGSgZAwBS5GY5Y48JzewPFDGNaySypG21kae5PdHKsFVMlmZRv8eoE7ncCWNfIMLU3A4X3AwBHu69nqgIN7gNZmoOQH7UqsCcCc34JZT00Om5oJ9NbX1zGSvj0SgMPitPL62BOjfX8EaJGcop1JtkbnO1OuqsBP+1yivQYd4uj8oe1/svhE8EtvAVYv9sz3s/tP5+meB5QfAQBkOquFYrRK7bCSqEVVOXYe8W2djMToPJZ0cUJyAQGAnv3Ey3PFYrShth3Son484UujIpP6ZsAp8eGM6hP9UjTusAM/7Qdy80/f2zrnOXkMOPET8LmGXCj/TH0Vdu8FmMxIcTbgDMcJnDCf4ZGluJzjoiHRvV9jlbI6DlsLkJEIvPWNb/1Wi4mESkSQOLBbnjb7HrDJV+gqRkn9XkOMFlu/01SVY1+ZS4q2TyIWkjE0l67PRHQRb2GY5MPrDMYY+ucA/T1/KmnCHQ7g4G7wVYLfZF5I+OCvyD3rf3G0zvP5U0lF7IqrfaG0iqOsDhiWC1gtrv1RLPFi9u/uub8450BpkUtu35Glr8gr3b/d3+YSRJeDxGgEEWGkm7vhifzXwt2MmCfdHH6tf25urtvnEydOoLKy0pAAqd27PX9sd64vmmCM4f3338ejjz6KZ5991iOorLi4GMXFxfjHP/4BwBWI9bOf/Qx33XWXYTNxdg6MS01N9Wn9tLQ0XfkqKyt9KlcP9fX1hpdJEARBEJGAlhgtXhG/OPUXmTikmaQbhqAlggIAOycxGuEfMqkQgwKrYuxMqb4iEwC08GY4uQMm5vnYzmzxXYIAACAASURBVE5itIhELrVq7PRZIoMwWMqlJQft2CZZe7zJtIxEj3hUj8BNj2BNds82wQwLi/Pa1mAibb9eMZqfkjuZYEaFE628BVbm33XSm5QsUDGat34DoH/fEQThTpW9QprWLkaTxj/EVnAWEVo451hTtUyYpkDBhRmXh7hF0YmJmZFuzkS146RHWpVde/baYNO5b9yG0WJ7giAIgiAIgtADxeeFjnDH6FF8nn4oPi8wKD6PIAiC0I1MjGY2KO4jrwA4fgg31ryNxek3CbPIBnVGMyUa25SfbVw9fPMn4A9e5z3fbecC/9gO1m8IuNMJ/uJ9roGwqsR605mps6XimFDSrXd3qRit0hZ7A6c3Fut/35lkDWJDggT/cRv4g7OB8lLvmQGXWGjkBW6L2Iz/Ae8sRlMUsGlzT3/OK2wXo2U4xXLq//6ku9lRxdEa/XK9NjJjdA4hzjlw7KA40WwBs0pikvLEYrTRzdukdVXHQIhQlcY2RPsxwr9YAv7UPKCpwdXfue0xYO697bI3XlcF/vAc4L/rvJbFpt+gq05mNoP36AMcKUFBa4lYjCYPjyHCRF0Tx9xFKv6zy/8yrh7JkJoQW/0TIjLgmz+VprEZ4t9dIhST/PjkMSRG23qI46pXVBzxc56Sm8bReUwQneEbPwJ/8ufeBdeX3Qp89Ibn8iYbCuwHcBSeBreu3i86Uctx9Ssqvjng+hxvAZ67jmHeeQqKysXX5oJOIlZ+YDf4H68Bjh7wrfLSIvAdG8CGT/Kj5QTRtSAxGkFEGCZmQpbFR80rEZWMHz/eY9nWrVsxbdq0gMveunWr2+eEhAQMHz484HLDidlsxpNPPom7774b//znP7FixQps2bIFLS0tHnmLi4vx2GOP4bnnnsNrr72G2bNnh6HF/tHaarz0g/PYeTBCEARBEB1plgyqBYB4gwfW6hG3EP7jbT86uB2c86if9YwIPXIRVSIUpoS4Ne5oyaeanI1INnsO9pDJhEiMFl5kModwidGsSgIYGLhAUNNRKCWTS3mTaRmJ7DxwE5pJJRodxGiSNjfpFKyF+/6SKOtn6BSwyvJ5O7YSFfnU2I3OBr8Fko2q9tS+gQpP9UjPSIxGEP5RaRdPz8jAkGHp1v5JBD2BJAKhpGkPDjXvF6aNSpmETIuBo5ZinExLtlCMVhluMZqf/RWCIAiCIAiCCAYUn9d1oPg836D4PP+h+DyCIAhCNzIxmsmgoV15hcB3n2NS09e4vvZ9vJfmeY8+UQc0NHMkx8dOHFZJhfhenJEIpCcas5288gT4A9cADn0TgfH7ZwHv/QiseB1Y8pL+ii68BuyeZ/1spbGY8/KR6qxFnclTQFu1fTswaFQYWhU8Hliqv0+XEt75OH2Gt7aA/+5yoNbzHZKQgmFgj78DZna/NrGzJgAPLAJ/8fdAfTWQmQP2+1fAenUYXJ9X0C44ynJWCYv/xzcci2+OvXjQIj9ex0W79EpKbSVgqxMmsb8ul67GUjLAUzOBOvdjhwGY1eMnLD/e22OdKlv0/x6LVTEaLy0Cf7SDzMxhB3/1QbD8ocC4S1x5FvxalxQNNz8I1meQ/sp79AOOlKCw9QA2JU7wSC4ui/7jJtb47Qc8ICnarOHAqz+LrfsKERlwzoH3npOms/yhusvS6vuoMSJGa7FzzHhexUntMGIAwPVjGD7dzVF9Kkw8M8klIxpXQOcyQXSEl5W6JO3eZOsJyWC3/wV83TLX77VOFJ74GuvTPMVoJRL5V1fh5sWnpWgA0GwHbn+HY1gel/7G699BjMadTvDfzwLK/DOA87umAp9WgiXKx3UQBAGEdwQoQRBEF6Z3797o3dv9oexnn31mSNlr1qxx+zx27FjExcUZUnYbTqfT0PL0kpOTg3vvvRfr169HbW0tvv76ayxYsABXXHEFkpPdO361tbWYM2cOli+XPzjXS0ZGhtvnujrxQ3oZtbVeTMyn6NbNfabUv/zlL+CcB/TvzTff9KmtBEEQBBEtNDubpGnxirEzJsoG6tp5K+yqvmAnQk6jU/vNBweHEz5OpUcQ0JAFhVD8JEOrDTKBk0NyvTErJEYLJ/GSe0Sz013oFarjUWGK9D7YURbVWdzW3h6D5aJa6BKa6ZBoyO7THbdRJuPQkhSGCln7m9VGqNz7jNEyCZhMuHY6XUOM5kVupoW3+7pdInnUix7pmV6pHEEQ7sjESenmLBKxEkHls6pl0rSLMmeFsCXRT6a5u3B5lSO8UztKJcGm0PU9CYIgCIIgCILoelB8nn9QfB7F5xEEQRDBg8ukWgaJ0VhuQfvfT1Q8Js1XEt5HxoZzsFK8vMDIeVe++LduKRoA4Phh4PtN4J/+S/cq7NNKKH96Bywh/HEMAIDcfGQ6PQdTA0DV1u9C3JjgckAi15ORbA1SQ4LFd2v0SdHSs8GWH4by5law3gOFWdiMG8FWHQNbegBs+WGwCZe6p+cVtv+dKRGjAcCe4/qaHk0U+yEUyIjVV2XHD8nT8s/UXrfDvawjw1mJcHmVfI7tqEEmRmMMSDM2HD6k8DXviZefujfyxgZgw0pdZbHrf+Nb5T37AQAKW4uFycUx1heKduwOjve/038NvWoEcGKBgtL5Cn54TEHNQgVL7zAhNYFkSkQQ2L9DnjbtBnmaAEWRKz14jIjRPt0NXVI0APjNVIaKZxXse8L1r/wZBf8zjrQnBOHB5x94l6IBwMybwVIywG56QJhc2FIkXF4c3vlWw0pZHcdne8Rpz36mwuY5bxAAoH/3Dn2O7zf5LUVrZ9OqwNYniC6AQdOKEARBEP4wffp0vP766+2f3377bTz11FOwWPwfZFZRUYGVK90fDE6fPl2Y19xpBheHQ79sorpa/JIrlFitVowbNw7jxo3Dvffei9bWVixbtgyPPPII9u/fD8BlZb/77rtx+eWXaz488EZOjvtMsUVFRcjO1v+2tK09vtajdz2CIAiC6Io0S4QuJpgNH7QvE5a42mGDRUk3tL6uhh7BiV21w2wiGQPhG1JZUASIkLTaIGu3QyITspCoJKzI5FNNqg2cu2Y3VbkqvW8F43hMUJKE4rM2WZRdbYWdt0rXDRUyCZu7wM27REP6HXSQY8mEgxEhSpTscw6OFrXZqzBEum1evkstcVogYjFvUjWZ5FF3+Tra1qw2QeUqFEZBEgThCzIxWpbltGiJQRxEyHlsBGcRoed4Syl22bYK0wYnDkdefL8Qtyi66Xi+dqTKHplitEj4bUYQBEEQBEEQRGxD8XmBQfF5BEEQBGEwTklfwCAxGvJOy2R62Y/AwlthZ57y1uJy4OxexlQZCcgG3udliJf7Az8oGSmrtc7LfwD2it+BeDDpcrBE+eRmYaH3AGQ69+AQ+nokVVaLY06ilQM+vkYZ0jM47WiDt7YAP24FSsVCHyGWOGDwaLBe/T3L2/ypvjImXgaWdYbXbExRgOxccWIHMdrQFvl5s+sox9CesSWw8UcokBmrr8rqJb9nFQXIzBGntZHTC9jrKV/MbBWfqDKpWDRR1SiOt0hPAEyK9nnCG2qB79YCh/a69q351H0/LRPIHwoc+hGo9vEix5hr3cKzwcy+91E458DhH4HFfxZn+PwD8DFTwYt36pOO5hWAJaX61AY2YAQ4gMJWsVBv3wnAqXKv+7cr4VQ5dpYCPxzlSLIyjC8AeqaHZv8crgIafehajOjN0D3V1bZcA/t7BCFE43cAGzDcp6IYk59TaoyI0XYf178d3VMARWHo76VrQBCxCq+vBr7/GqjpILE2W4DBo4BeA9qvGfzgXl3lsf6nrklX/gr48GUPWbGsX7S/vOv2i37UEHYv3S5P65N1+m++7YuA28G/+QTsout9X8/e6nruVNpJejd8otvkCQQRC5AYjSAIIozcc889WLRoUfugsYqKCixevBi//OUv/S5z4cKFsNtPPxhMSkrCL37xC2He1FT3B4M1NTW669m9e7dP7dL64W4UcXFxmD17NqZNm4YzzzwTR48eBQCUlpZi27ZtGDNmjN9ljx49GitWrGj/vHnzZowfP173+t9++62ufOPGjQNjrP2YWLNmTftAeoIgCIIg3GlWm4TL400Jht87NcUhqg0pIDFaIOgRozl4K4BYnR6PCBYyeU4kiJCsSgIYGDg8XwA2SdotE1kZLYMkfEMm91KhooU3I54loEVtEn7XQHCOxwRTEuDwDGhqu96KpGltaN3zjEYm7up47sra2nHdeMl30MKb4eQOmJhZKqaTfX+hRGufN6k2r2I02TXD27FlZhbEMStaued0Ro1OnVO2CfAmLpNdy/Sip9/AoeqSyhEE4Y5MjJYpES25ExvBWUToWVu1XJp2UeaVIWxJbJBpEQ8YD7cYLZJ/mxEEQRAEQRAEEdtQfJ6xUHweQRAEQQSITP5hNijuo4OQyAwn+rUewn7rAI9sReUckEyGE41US14hZyYbs42cc+CjN3xfUa8UDQCb5X//NFiw+ERksjphWlVtC3iTDSwhNp7zy6REIs5IBS4dFrzzh5eVgv/+CuCAb78H2te/5k6wXz8NZjK5Pv/zaWD5617WcsHyDBg43UHMdl3dEtyf83/CbHMWccwYxpESHzvXopIK39+Zp8QHoSGRQKMk7igxxftvr7RM4eKs1jLh8pgQo8nuY14usXz7evC7LzK+QW0Mnwz85QOwFP3mKe6wg//1DuDjf2jne0r/fY/Nmqc7bzsXXgM8fQcK7AeEySoHtv8EjO7re9GxSF0TxzWvqljb7l3hUBjwwhyG288P/sSkH+3Uf/1MjANuHBc79w4i8uFHxSIhAMBFc3wqS9GQDqkxMinpg8v0bUecGeglvuUTRJeAf7cW/KHrgcZ6cYYrbgN+sxAwmYBP3vZeYEZ34DxXrCWLs4KfMxVY8Te3LAWt4n4R58DWQ8DYfF+2IDbw5zccAGSd6qfzZa8Bb4l/8/rEmnfBC84Eu+F3ulfh5UfA77sCOLDLI4098hZAYjQixgj+rxKCIAhCypAhQ3DJJZe4Lbv//vtRViZ+YOuNPXv24Omnn3ZbdssttyAzU/wrsXt39wFte/bon8noP//5j09ts1qt7X+3tHgOuDWS9PR0XHXVVW7LDh48GFCZEydOdPv87rvv6l63oqICn332ma682dnZGDFiRPvno0eP4uOPP9ZdF0EQBEF0JaRitCAITmTiFgBocsrlMoQ+vAlUAMDOdcwKRhCdkMlztM7pUKEwRXq9apS02yE5DyyC2X2J0KF132k+dY+QfadAcI5HWZltkjEtsVQozw+ZCKNj+2TSr44ysUQd92mpjCMCrgdacjY990jZ96m1X9rzmMQzTjeq/ovRbE7JS9pT2Lm9fcCZP8iOCY98OgRqBEG4U2kXP5fuZjk9LSOTDJKJjdAsItTUOKqwpe4rYVovaz4GJp4V4hZFPzIxWp2zGnY1MDlpIMglteHvixEEQRAEQRAEEdtQfF5woPg8giAIgvATp0O83GQ2pvwe/YAOwhmZDKQ4vHNpGE61TfymKtOoMMIdGwwqqBOMAQXDwB5/F+ycIIptAiBz2FDh8mpTJvgbj4e4NcFDr1jposHAV/cpSE8Mohjtpfv9lqIBAJa8BGx29W/5vu3grz2kf90OckW/yS0AFNdw1V6Oo+hhPy7N+vznsfWWuciPn5kxK2iWCR4SU7yvmyL+fZ3RdEK4vMoGqGp0H0v+iNG4wwH++E3BaVAbO9aDv/1X39ZZ+75XKZovsDv+D7jubt/XS04DLHFSAQgA3PA3NZCmxRRPf8Y7SNFcqBy4818cB08G//y699/66phQ4LoP98qM0WsnEZnIxGh9BoJliGN0ZCgaRg8e5fcyADhSrX8b8rsBJg1RHEHEMry1BfxPN8n7zIBLarZhhffnEdYEYPSFYC9/CZZ4ekwA6+lpOdPqF81Z1DX7RSV+PB9LsgJWCwM/dhD8Wd/7qTL4qw+CF+3Un//lB4RSNIKIVUiMRhAEEWaeeeYZJCaefutWU1ODq666Cg0Nvg1AraiowDXXXIPW1tMDW3r06IFHHnlEus7IkSPdPn/00Ue66vr000+xZcsWn9qXnp7e/vfJkyfdZs0MBmaz+wvijoFf/jB58mT07du3/fPWrVuxatUqXes+/vjjPm3vr3/9a7fPv/vd73w+HgiCIAiiKyAbVBuvJBhel1WJB5P8hCbpRuDo2Yd2Hr4B3ET0IhUqRcjg+0SZFErSbgcXB8iamUEBsoRfyOReQAcRmYbIKRjHo0y01dYOLdmW1vYYjWzbO+4vmVSuo0RD+zuwuf3v0YYQbq+MeC2xm5d7JOdcLn3TsW2y70CPkE2GlggQADhUqHAGrfz2fAFsA0F0VSod5cLlWZbuwuUEEShfVn8EJ8R93Isyr4zdgQBBROt8rXKEb6RbJEtqCYIgCIIgCIKIfSg+LzhQfB5BEARB+IFDcr8yWwwpnsVZgZze7Z/7txYL85WUR/+g+45USeY11RLK+AL/4t/SNPb0CrDbHvOtQGsC2Bf1YF80QHlzK9gFV3lfJ0xkdhNLjMpN2cCWtSFuTfDQI0YbkAN8+lsT+ucEUYpmbwU2rAy8nC8+dP2/bqlvK+YWBFw3s8QBPfq2f766fpk07wdbY+tadLDSt/y56d7zRC1Nkt9XCeIJHDvC0sRitMzGI8LlKgeqo3x+a3/EaNi9GTh5LCjtcePLD33Kzr9YYljV7PevgM35X//jBoaMRZpah2xJLMzBkwhocs9Y4t8a1+Ml24K7j07Uei+/ewpgf1XBhvtNGNWH4kiIEHP8kHj5xMt9LoqZ5EoPVY1+KdGy7fqvF4UUjkh0ZXasB2pPes3GP/+39vOIBSvBPquC8tzHYJ0l14LfdsnchjMcYtnw4aqu2S/6qcr3dbLa+uje+sk3PQD2ZYP7v0ff1lyF6+x7c4cdWL9cV16CiBVIjEYQBBFmBg0ahBdeeMFt2ddff41LLrkER46IH9x2pqioCFOmTMHevaf1/Iqi4O2330Z2ttw8Pm7cOLegr2XLlmHr1q1e67rpJt9nlRg8eHD73w6HA19++aWu9RobG/HCCy+gvl7DftyJhoYGLF3q/hKnY/3+oCiKR0DUvHnzvM50uXTpUrz88ss+1XXjjTdi0KBB7Z/37t2LK6+8EtXV1T6VU1FR4bEfCIIgCCKWaFabhMuDIUZTmCItl8RogaNHXGJXgxu4T8QmUqFSBIiQALkEQNZumSDQzIwJkCX8Q0ts1naP0BI5JZiMmqK4Y5kS4VibqE3SHgUKrCze8PbIkLWz4/6SSeU6yt/0fAfycsJ/PbAoFlhYnDDNWz+jlbdIJWN6pHuJJnHAYaPq/wCwRqf3de3cv/u6XbXrlqVSH40gfKNZbYLNKX4Gm9lBtMQgCzDsekERRGA0ORuxoeZTYVqWpTtGpIwPcYtigwxzN2lalT18YjSZ3D4YfWGCIAiCIAiCIIjOUHyeNhSfR/F5BEEQRAhxiicLgcnACfGGjWv/s6D1gDBLsdgPErXIhDIZRj2C/mm/PG3gKLd9rovhk8AscWDmyJ8IsWe2OIZkVcqlQLm+vnQ0UKkjvGDK4NPvSfm+7eDvPgu+5j3w+hrjGnK0RC5Q9IXP/gV13iTgn3/1bb3c/MDrBtwEjeOaNkuz/XAUUNXYeM/cbOewtfi2zgUDQy/34U4n+OZPoL7xBNRFj4J/uRS8KQjxNY2S2KFEsWzRjRSxGK1nvVj2CQB7j+tpVOQiF6PJjxH+zcdBak0nThwGX/IieFmpq97iH6AuuBPqL8aD/+sZ8JOunc+//xrqQ9cDRrVLUYBzLgqsjNQMAEC2UywecahAhf5HITGL3cFRohFK8KPYn2IY+3SUP7k/YFJIiEaEiVqx+ZRl9/S5KK3DOBa6RL5cL87Np3Oa6MLs/lZfvq+WActfl6cPHgOmSFRBkt923SXCWM6Bsjp9zYol6pp8v/i2yYv5ljWa+djwSWBmi9s/nDkW0JL+vj0f6qsPgf/zafDd7pMn8T3fuZb/6xngX88Cdn3jKQgiViAxGkEQRARw66234s4773RbtnHjRgwZMgRPPfUUSktLhesVFxfjoYcewrBhw/DDDz+4pc2fPx9TpkzRrDclJQWzZ89u/+x0OnHppZfis88+88jb2tqKRYsW4dxzz0VZWRkyMjL0bh4A4IILLnD7fMstt+Dll1/Gtm3bcODAARw6dKj938mTpx86tra24u6770ZeXh5uvfVWfPTRR5pBWFu2bMGUKVNw+PDh9mXnnnsuBgwY4FN7Rdx99904++yz2z8fO3YMEyZMwJIlSzys7DabDY8//jiuv/56qKrq0/4ymUxYsmQJUlNT25etXbsWZ511Fl555RXN7a+qqsL777+POXPmoFevXnj++ed92EKCIAiCiC5kg2rjleAMqk2UyVt0SL0IbfSISxw6JSgE0RGZCEmPLCgUyIRMsnY7JCIhmVCJCA0WFgcFJmFa23cp+06tLB4mZnygq+wYbxe1ySRhpiT/Z1j0A1k77bwVdtUOznm7zK0zHaVqViVBKupp21Z5OZEh45DtC2/9DNmxBeiTvknFaDrkZiJUrkr7aB2xq/7d15t9kJ2RGI0gfKPSXiZN62bxPkUjJzEa4SMbaz+T3jMuzLgcJibuXxHaxClWpJrE08uHU4wmlVZHyG8zgiAIgiAIgiBiH4rPo/i8jlB8HkEQBBE2HBIxmtm4CfHYNadFowWtJcI8R2uAxpbYebdTLXlFrSWU8YkjchkPy8gGhk8GhpyjryyTGWz2Pca0KwQUarwmfNkyG7zeN7FspFLtJbwg2Qrceb7reOLvPQd+27ngLz8A/vhN4PMmgpf9FHAbuL0V/Fadx5Ee9mzxnqcTLMGY9zbs1ofb/76i/iPNvHMWxca1SOsY+uMMz2tRvAX41fmhFYJwhx38kTng910BLP4z8I+nXJ/vmgpeIxZH+V1Xo+Q3VaI4TsmNNLEYrUfNj0iyileZ/LQa1fe1apu47ZqCzyb/J730Fb7wXvCbR0P9863gt4wGVvwN+HEb+Ct/BL+yL9T/nQF+5wUueYdRXDwXLKdXYGWkuJ4TPFzxF2mW97dG73FjFIcqAacqT1+8iQdVYllcoV12nBm4ZyppEIgwUifp76aK71daSAVGALjWiRgllJTru1Z0TwFuGU9iNKJrwo+WgL/xhCFlMa3rUM9+wsWPVjwpXSXWJPp6qG/2fZ2sJIBv/Rz47zp5pkGjgJEXeCxmZ/QBLpqjXcE7T4O/9hD4ryaBL/4zAIAvftL17OG1h1x98EWP+N5wgohyIn96CYIgiC7Ciy++iIyMDDz55JPg3PUjsL6+Hg888AD++Mc/YsiQIejVqxcyMjJQWVmJw4cPY9++fR7lWCwWLFy4ELfffruuep944gksW7YMNTWumWrKy8sxbdo0FBYW4qyzzoLVakVZWRm+/fZb2Gyup/VnnHEG5s+f79PMlNdeey0efPDB9lk2jx075hFs1sZNN92EN998021ZXV0dFi9ejMWLF4MxhsLCQuTn5yM9PR1msxmVlZXYtWuXxyyeiYmJeP11DSuyD1gsFrzzzjs477zzUFnpsr0fP34c1157LXJycjBq1CikpaWhrKwM33zzDZqamgAAaWlpmD9/Pn75y1/qrmvo0KH48MMPcc0116C2thYAcOTIEdxxxx246667MGzYMPTu3RupqalobGxETU0N9u/fr3sWU4IgCIKIBZrVJuHyeCUhKPVJBUYk3QgYLalLG3aJEIogtJCdnwkS0WGokQkXZe22q+LzwMyMC5AlfIcxhgRTImxOz4CuNhlXqI9FmeyrXdQmaU+opYFa29+s2mBRrOAQv+zv2FaFKYhXEoTys3YZXITLOBJMSah1egZQeOtnyLarrUxv+Ctkk9GsNuqSI9n9FJ5qba9HXpLXEoRPVNrFUQ0KFKSbu4W4NUSs4+B2fFktHgSRpKRgfNrUELcotsi0ZKPOWeOxvEoy42OwUblTKsGLFGk1QRAEQRAEQRBdA4rPOw3F51F8HkEQBBEmnCEQow0ZAz7nf4F3n0WhRIwGAAdOAmfmGlZt2HCqHDVSMVrg5fPmRqBcfP9nTy11/a8owHMfg7/xOLDtS8BWK8isAPlngl1zJ9goz8GxkUr/HAZIYgDuPuM5zC35AZnDfRP6RiJVEikRAFw/huH+6QxDejLwk8fBX33IPUNpEfjb88F+91JgjfhqOWDXiKXo0cdz2fHDnssiAHb2xPajJp63YH/xEAwo3CPM++9tHA8e4TgrL7rlGJUaISp3ns8wug/Dog0q9pcBI3sz3D2FYXxBiLd5w0fA+hWey/f9F/zDl8F+buDgeqkYLcX7uhLBA2tpwoBsFduPiKUy737H8fOJ0XkcVflzH6s84V9lomsJALS0AFUaZTbUAJ++I0777nP99Z/RB8L5T9uuZ2ndwK67C7jhPv1lykh13Z+uqV8KmX7invc47row8KqiGT0SlC/3AVMGh77+q0YAv5mqYEJhdJ7bRPTDOQcaJGK0FPGkhVooivxYDqJ/MGRonc99swCrGRibz/DoZQw90um8Jrom/E25sNUX2P8t0U5PTAHP6A5Uu5+YlzfIxdXFFRwT+3etc7Ohxfd1MpMA/txv5BnMFrCFn0plmOyBReC7NwNHD3iti7/xBHDWBNfzJr306APEaxmWCSI6ITEaQRBEBPHEE0/gvPPOwx133IGioqL25Zxz7N69G7t379Zcf+TIkXjttdcwevRo3XXm5ubiww8/xKxZs9xmOiwuLkZxsefsRv369cPq1atRVlamuw4ASEhIwLJlyzBr1iwcPXrUp3U7wzlHUVGR2z4SkZubi6VLl2LYsGEB1deRoUOHYu3atZgxYwaOHz/evrysrAz/+c9/PPKnp6dj5cqVcDqdPtc1depUbN26FXPmzMHWrVvblzudTuzYsQM7duzwWoavM4cSBEEQRDQhkp8AZw13OQAAIABJREFUYRCjOSVvpAnd6JGc+CtQIbo2ES9C8lFI5JAIAi0KidHCTYLiTYwmvlcE61j0JvOUCSlDfW5o1deo2mDRkGJ2ln4lKEkSMdqp7yBCtlmGvJ+hfY/UStcjGkk0iWdibVT9m1W00alvPdn1zBt6ZKrteUleSxA+IROjpZuzYGKm9s+Mda3AByI4bK3bgBpHpTBtcsYlsCrxIW5RbJFpycahZs/3J7LzPNjIxPaAXOhLEARBEARBEAQRLCg+Tx8Un0fxeQRBEESQcEjek5pM4uV+wi6eC/7us+hj/wkm7oCTeQ4dKy6PDTGaTIoGABlGPILWGqjae0D7nywxGezXfzWgwsiif3ft9A+32PGL4aFpSzCpkoQXPDyT4U+XdxjM/O2nYsHhhlVAgGI0vmmVPPHsSVBeXOu5TtlP4Nf0D6jedvqfbUw5bYy6wCUKBJBvP4RsRzkqzOIDasWO6BejyY4hwDVwftYIhlkjjL3W+wrfKJcgYMNKwFAxmiR+KEEcp+RGiliMBgD905ux/Yj44v7RTo6fT9TTuMhDdvxoitGOyOWnUm55CMqtD0uT1asLpDLQQGGfVYElhDZOj6VkgMPlYRvevBM74sXXufpmjpT46L4GBUJxhXcb0/IdHFMGB2cf/VQlXj7nHIZ3bhMLRQgiZDQ1ALJnjim+PxNUJJIcAOCqeBLpaIFzLj2fl96uYNaIrnudJYg2OOeAVp/cF3rp+B2Ym+8hRmMARjX9F9sSRnpk1yNLjTX8EaNloRb4ab80nc1fBqYhhGZmM/DAIvBfT9FVH18gngBJyMjzoSz8VH9+gogiSIxGEAQRYUydOhV79uzBBx98gDfeeANfffUVHA7J7FAArFYrLr74Ytx222247LLL/BqYduGFF2LLli34wx/+gJUrV7bPiNmR7Oxs3HzzzXjooYeQmprqc+AVAIwePRp79uzBu+++i08++QS7du1CeXk5bDabNDApLS0NX331FVavXo3PP/8cO3fu1NwfADBw4EDcdNNNuOeee5CYaPygmuHDh2Pv3r14+OGH8eabb7oFrLWRnJyMa665Bo8//jh69eqFdevW+VVXYWEhtmzZgtWrV2PhwoXYsGEDWlq0e9uDBw/G1KlTcd1112HChAl+1UsQBEEQ0UCLZGBtvBKcQbWJJm3JDOE/eiQn/gpUiK6N7NiSnc+hxtfrikwQaGYkRgs33qRWcilXcO5Z3qR7UmlgiM8NLSlZk7MRTkX++7/zuommJFQ5KgTlnPoOJNscKdcD2b731s+QfZdmZoFFifNab6IiEaPpFJx5tkffev4KT/XIVNvwRaJGEIRcmJRl6RycLn7+LHqmTBAiOOdYU7VcmGZhcTg/fUaIWxR7ZEoGlVTZPftKoUCrPxMpklqCIAiCIAiCILoWFJ/nDsXnUXweQRAEEUJEQiUAMBsc95GbDwCwwIG+9sMoiSvwyFJU3qYKiW6qNcRomkIZvRzxFNkCcMnsevQ1oILIJjWBITEOaJS84n+vqBt+EdomBYVKnVIivvLv4oxVJ8Ab6zUHP4vgqgp89i/wF+4D6iQmCQBs1PnihO69gLxC+XHqA2zuvQGX4caZ49rFaABwoW0d3k+7Tpi1JDyvsAxFJrZKsgJWS4Rca49qiLRKfgDn3LiJ0po8f8MBABJ1iNG6y62dF2aU4gMMFKat3AnYWjiSrBGyv33AVzEaLy0CSn7wuR424jztDCMvAD552+dyvTJ0bMilaADcpEWDWn6UitFKKoDhvULVqMhDjwSlpDx4MUFVNnHZPdL0rc9bW4DVi8F3fQu00GT3hMG0NMvT/BCjMUV+j1KjPPSurglwSNxuuTSvBNHF4ZtWg3/zMXBoL9BQG3iB3fOAPB1itMKzgF2bPRYXtJYIxWi7jkb5hcgP6jUu8zImH/5Anmi2AEPO8V7IwJFAUipgq/Oe1wchMht5vu68BBFtkBitC8EYSwEwEUAegG4A6gEcA7CLcy5XU/pejwXABAC9AfQA0HCqnu2c80NG1UMQsYzZbMbcuXMxd+5c2Gw2bNu2DcXFxaioqEBrayusVitycnIwYMAAjBw5ElarNeA6Bw0ahOXLl+PkyZP46quvcOTIETQ2NiInJwf9+vXDpEmTYDafvm2cf/75fg12S01Nxbx58zBv3jxd+RljmDx5MiZPngwAaGpqwu7du1FSUoITJ07AZrOBMYbU1FT07t0bZ511Fvr06aO7Pf4GRKWlpeH555/H008/jXXr1uHgwYOorq5GdnY28vLyMGnSJCQlnX5w6+/+Alz7YObMmZg5cyaam5vx7bff4vDhw6isrITNZkNSUhIyMjJQWFiIwYMHIysry696CIIgCCLaaJaI0cIlmSH8w8mdaOHenybaVf8EKkTXxcHtaOXiQQuRMvheKtOSiAMcXBwgS2K08ONNahVqEZm8Pa7AD6k0MMTnhlWJB4MCDs+34U2qTVOK2fl+Hy+7T6s22FW7VMQVrH6Dr8j2vTcRmFT4pvO7lB0rvgjI3NbT2S+yq/4JT32Rnfm7DQTRVZGL0XLcPsvCszi6XlAE4R+7bdtwvPUnYdq5aRcixZwe4hbFHp5CQxdhE6M55cHHkfLbjCAIgiAIgiCIrgfF552G4vMoPo8gCIIIIU7Je1KTsUO7WEISeLeewMljKGwtEYrR9EgwogGZTAYwRozG/0+i/erRF8xooV2EYlbkaV/W9g5dQ4KI7DjK6nwMcYntAQCOHgD6i6U7MvifbwXWvOs942U/Fy5mjAG3PQb+xE2ARITsQXI6kJENlBadXjZoFDB5lr71dcKuvh38rb+0f76v8lm5GC2Iwp1QIRP7ZEZGWJILbwPqv1sLnHORMXU1ysRo3uWBLCkVPKM7UO15o5qTsBm/kojRAOD8BSrW/U6JKjka51zjGuS5HXzfdvDbzvW9onOnAcMnaWZhc34L/vVqTVGjz8RZwW592LjyfCE1s/3Pxyv+hPfSZguzPbFKxYe3m0LVqohDzzW4OIihBr6KATvCHXbwe2cCO9Yb2yiC0IMfYjQoChhXwZlnB1uNcjNalZawOpL6QwQRYvjiJ8HfeNy4AhkD+/mjYCbvfRf2P/eDL3/dY3mB/YAw/8qdQLOdIz5SxM4hoEF7jhwPzkn4CTM3/kGazm5+ECzZu92VxScCN/8R/CV5WT7Tsx9w2a3GlUcQEQaJ0boAjLEJAB4GMAWS75wxthPAqwBe435GBjDGsgH8CcBsAJmSPF8DeJZz/qE/dRBEVyQpKckt8CjYdOvWDVdffXVI6vKHhIQEjB49GqNHjw53UwC4ZgSdNm1ayOqLj4/Heed5maWDIAiCILoIsoG1ViUhKPUlmMRP5GVCEkIfegUndg05DkGIiIbB91IhkeS8kEmiSIwWfmRyrXCJyGTtaVYboXJVeu8KlqhNhsIUJCiJaFQbPNKaVBscTHzMW1gcLEqc27JEmQzOaUOzxr061NssQypK9HKflKXr3a5ERTwTa5PT8zvRg80pCWzshEMiqvNG2zmlKy/JawnCJ6qkYjSxYIkg/GVN1TLhcgaGKRlXhLg1sUmmJVu4vMZRCSd3wsRCG9StJSuVPWshCIIgCIIgCIIIJRSf5w7F51F8HkEQBBFEHOIJ8WAKQtxHbkG7GO1TQXJJRXQPvG9DJtMwKUBKfGBl8/pqwFYnTswrDKzwKIJ5GRO9f8dBDBjeLzSNCQJaUqLMzlIiu0asw5ESn8RofN92XVI09qd3wLr1kKdPuRbIOgP8rqm66mVPvAvkDwVWLQYv2QU2YDhw9R1gcYHLoN3qyegO3mcQcPhHAMDwlu9xd+ULeD7rLo+8wRTuhAqZDMQIQaMR8IZaoPakdp6F/wv2zg/GVNgojjtiOsRoAFzXWIEYLalsH9b8VsFFz4klhdsOA+9/x3HrxOiROTS1Ai2S7oHo+OFvP6VZHltSBGxZC771C6C+GkhMARsxGbjiFy6Zota6+UOB1zaAr1oMvLNA7yZol/nSl2CDRhlSls+knJ6ULd9+CMnOejSYPI/BZdsBp8phUqLnuDESPdfgQycBu4PDYjZ+H8nuwRl6Qgm+/g9J0YjwkeLPxI8MClQ44SlG83fCh0gh2MJqgohGeG2l175bG2xJEfg1/bUzXf5zsAuvBRt1gb4yu+eBZ+YAVWVuy/u3FkvXWfpfjrlju0afiHMuFaOlJwLn9D39OTEOGJ9Ti18+PxqJvElaJrvpAd31s+t/C/TqD75+JVBx1CWqDgD26nqwDIr3JmIXEqPFMIwxC4AXAOiZ9u1sAK8AmMMY+xnnvNTHui4B8CYAb1fM8QDGM8beATCPc06j0wiCIAiCIAiC8ItmiRgjPlhiNJmwhMRoAaE1QLoj/gpUiK6L1rkpEyiFGpkUS9Z22XlgITFa2JGK0U4J+mTXumBJuWT3LA6OFrVZ3p4wSAMTTElCMVqj0waLRIwm2t/y+3SjtowjwkWJ3voZgX6XiSaxGK1RbQDn3GtAnN72dMbBJRF9XvCl36W3LQRBuDhpLxMu9xSjdY2gByI4HGraj6Km3cK04cnj0D1OPqiD0I9MjKZCRY3jJLIsOSFtj0xWamXxMDEKVyAIgiAIgiAIgiAIgiAIogvhlEwMaQrCs9K8AmDnBhS0lgiTi8Vz5kQd1Y1igUBGInx+3+3B95vkaSRGa2ftutKoFqPZWgC7U5zWUeLAOQeOH5IXdPKoT/XyDSv1ZRw61msWNnwS8KsnwV990Ht5eQVgmTnAjX8I/pvfM89tF6MBwCW2T4VitLI6oKGZIzk+et9FH6sRL48YEcjRA97z1FYZV1+jZGLFRHGckge5BcAPX3suP1KM4b20V/1sD3DrRH3VRALHa+VpncVQnHPgu8/lKySnA917gV12K9hlt/rVHpZXCParJ6GWHwHWvOdXGe1lPfbP8EnRACA10+3jpKZN+Dh5ujDr/jJgcBcMV3A4OQ5qOxNd+VTgcBVQGATXRnUAYkm+ZY2xjSEIvSSng5n9iN1XFDCIf7+oztgUozEGpAVneBdBRD47N2rLtdvofzaQnQfEJwLN4hsj+81zYFff4XsbzpoArFvqtkj2nAgA1uwB5nr/CRoTNNsBp9i3jNV3KRhX4P77lK/+CFww5qWdWb/0uQ1swkywCTNd5a9fAf7gdT6XAQC49i6SohExD0UaxyiMMTOAjwB0nibNDuBbAEcAJMElROvdIX0ygDWMsQmc80qddZ0PYDmAuA6LOYD/AjgAIB3ACADdOqTfACCVMTaLcy65bRAEQRAEQRAEQchpUZuFyxNMeqYI8h2ZwKhRMsCX0IdewYmdSwIDCUKC1rkZMSIkmchJ0na7RCRkJjFa2In3IrmTXeuCdSxq3QubVJv0GAuHNDBRSYLoIWSTaoOTiY95kURMKqfT2F7XepFxPZCKEp2SyJ/2dMl3GaAYzcEdsPNWxDHfZgRudGq88OuA3U/hqS/9LpLXEoR+Gp0N0nOms0CJScLjuSRoiyA6sqZquTTtosxZIWxJbJNplge5VNorQi9Gk4ntg/T8hiAIgiAIgiAIgiAIgiAIwhv8y6Xgb/759IKak0CVYBKZoWOB0VPA/ud+MGt84BU7JfYlfwbVe4HlFoADKLCLZTg/VQHNdo54S/SKiAD5AHyZTIMf2A3+/kKgaAfQMx9s+g1gEy8TZ9YQCbEJl/rY0ujF2xGy80h0vyes1AgtcDuOPnwZsNXJMzv0xzfympPAW3/xnrHwLKB7nr5CJ1wKeBOj5Z8J5PTWzmMgbPwM8NVvtn8uaJWfUxuLgelnhqBRQaKkXHwe9MkK/jWWf/sp+EeLgdL9rgXJ6cCoC8B6DwD//N/AsQPAAfHkVW7UngQvLQLr1d/3NhTtBP/geaD4e0B1AqVF4oyJKbrKY70KxREIG1chs3Qbzs0fgc2Sw+mDrRwPXcpxZm503N+KNESlvTM7LaipkEvnAGD8jMCloKdg42eAByhGw5gphrTFb1LS3T5e3LBGKkYrqeiaYrTSarkctDPF5caL0VSVS8VoGYnMJQNcsQh8/Qqg8rhnJj3XNoIIBudM9W89xqBwVdjB5jy6+9RVNrmwWlGi455MEEbCm2zgj8zRl3n8DDBFAR93CfDlh+I848R9GK/kFngsGtO0TZq9WPK7JlrhnOPldRwrd3DUNAHn5jM8dClDdgpDQ4t8vWTB8Am+6g3NugJ+TjTyfMCaALQ0+bwqGz8jsLoJIgogMVrsMh+eUrTnATzGOa/uuJAxdjGAVwDkn1o0EMBSxtj53EtvmjGWB2Ap3KVomwD8gnO+t0M+K4B5ABYAaHtrcxmAPwP4ow/bRRAEQRAEQRAEAc65dGCtVQnOlCIiCQtA0o1A0ZLVdMSu+idQIbousnOTQYFVMSBY1QBk15UW3gwnd8DE3B/dOSQiIRKjhR+ZiKz51L0q1CIyLSlWk2pDY4hFbVrIzoNGpw0ORSJGE7RTqxzZ9kbD9cBbP0Mq3dN5bGkdK43OBsQpPorRtGZC6oC/wlNf+l16+xgEQQBV9gppWpZFb1RjbAVEEMZT3nocOxq+Eab1TxiKvgkDQtyi2CXBlIhEJVl4X9Y634OF7P6tV+RKEARBEARBEARBEARBEARhOPXV+kQKu78Fdn8L/v0mYOGngctGJOIkZgrC0K68QgBAYWuJNMtLX3Lce3F0D1L3RYzGD+4Bv+P803Krop3gXy0DHnwDbPoNnvmPyvcdRl7ge2OjFG+H/aK6iXjJ7oTZYgpNgwxGdgwBQOapcCD+wfPgL9ynXZBDHOPSGd7YAH77ZO8ZE5LA7pyv+7rD+g4Gn30P8P5CeXl3/dUwaZIuxrsPDO9tL4WZ2+EQxLrNeF5F+TMKuqVE5zWpWPIKzmiJUGf4F0vAH/sZ0Hn45/eb/HqDz+eeCXxcDpacpn+d/TvAf30h0KQjTkenGE0kcGiv79cXYv793+C8A4OkeSbOV/H1HxQM6Rn5x9P1r6vC5bnpQKLVvf38H0/JC4qLB7vpAeMaNnkWMPZi/H/27jvOjeL8H/hnVtJVt7tz99nYvjPG9GIIzaETOtiUHzgkAUIgJkCAQPgmQAiBFGoghJJAgNA7JmAwmGLAuFKMbTC2z/3cfcXldEXSPr8/dLZ10jyjXZ3q6Xm/XveytTu7O5JGuyvtzGcx6/2EFldX3wPVIzrZLc2itn9x49O4tv+92qLhEJDsby/Jdsck53uKVLxGW1tid187lJcC9OhNwPP690yIjOk9EOrimxNbVllQzBHatnO7753bwGohujKybdA1J/Hh+JGG7w01bgIAQF18C2j+DGDz2o5lfnIj1MDhmoXjU5VVMXudAgQwpnUGPis8LKY8970mV133MuGBD3e9AnNWEN6ZT/jqFgtzVvDLdYsaXkIzJwMLZvILHDUWOPiETtVVdesJTPgL6IHr+BMknWPPDYeqCdHFSTBaF6SUGgXgmqjJvyGi+3Tlieh9pdQRCAea7Tgy/hDA/wMQL9r9NgBlEY+nAzieiFqittEK4B9KqVUA3oiYdZ1S6l9EtDLOdoQQQgghhBBipwC1wYb+R8IiSx9O01lcWIyEbnQOF1YTLZhggIrIX1x4YrFVAktZaa6NnjG8KuRHN2+PDtOCtv5z4LMKtNNF+nDvpb/9GJHuILIiY9tqYo9dGQlGY47bzXYTQqTvNKp7vbn3oMVu2hlQp9t2tuwPuNch3nHS38n30hTO57e3oxcqHK1nV30cBqMlGHjq5rzL6TmGEALYHNignW7Bg17ejh1FVR52BBXJ8WHDmyCmc9/x5WPTXJuur9zXB/5WXTCa4ZbjKcIdv1P1+40QQgghhBBCCCGEEEIk3defAPNnAPse3rn1hJjgJG8KbohXGQ6VGda2AhaFYKvY0Ko/vkX4zYnJ33Q6Nei7A6BM8xM0vfrPXaFokdNfuE8bjIY1y/QrP/0SKCs7+hqkg5Org5Nf/xKn/b9DUl6XVDAFo5WVAhQMgJ67J/6KmODDGB+9AtQaQvfaqSdmQ7UHHDplXXkX6NCTQM/cCSz/LrzP6T0Q6uQLgSNOgxo8wtX6Okt5vaBjzw0/ZwBehDA0sBI1Bfrn9d8ZuRnWaNuEZZkKRnvmTneD5p2Y8gIw9pfO6/DKP52FogFASTdn5Sr5YDS0teKIaX/G05c8i58+oX/uW1uABz8mPPLj7G5P21oIW1v087Rt59WH2HWpV5dAlSWvwamCQuBvbwCf/Q/03Wygrb2izU3A7ClA3Tpg6CjgwKMAKKB+QzgsYo8DoS68EWqvLDgmlPYMp3u2f0a6UROO8H+Oz0uOiClak/7L6Fnhyc9dBKOlICjFeAxW24DXHk5sxf13Aw4/JbFlheAoBTV8r/A5VUX/hNdhQR+ImeO5aHwwmnQNEvlozgfAd7PNZc69Emr3A4AxZ0CVhscMqWGjgMdnhM+/ViwEuvWEOugYqAOOSrwuTODwTevvwEm7TYqZvmFr+By1e1F2n0c7Ubed8MgnsTvXpZuAF+cQnp3J73i7R91Xnp4zBLUO3wvqT88n5XcidfYVwJ6HALPeBzVoTlBXLwmf31ZWA0UlUPscBhx+al79RiXylwSjdU03Aojcg33AhaLtQETrlVKXAJgaMfkvSqlXiEibNqCUGgHgZxGT2gBcFB2KFrWdiUqp/0YsVwjgVgCXmOonhBBCCCGEEJFa7WZ2XrFVnJJtFjPBIa3UghCF4NF0HhPxOQ04CVBiASoif7HBT57sucLG7VeAcKBPN0QFozEhUV7NXTRFenGhDjsCubj2aAql6gyf5YNPFWj3nc22H81MYFSq6mPCB4/6EbL0bb5I8znmPk/+UBMfHpaB58vh6tIcagIRsXfs7ex7WWLxHQ6dhpx1XCa1gaduws4kvFYI57igpHJfb1gOv+fkeN8skWLbgo2YueUj7bwBBUOwV+mBaa5R11fu64Pa1uUx0+uD6b+tYzadewohhBBCCCGEEEIIIUTC5k/vfDAaF5zkSUG/s0HDAQAFCKB/cAPW+gbGFGkLAsEQwevJ3QGvaxr00ytKNc9p6hv6wssWgFr8UEVRfRHW6MOr3IZV5bobT1b47avmq4HTFvhx2v9LU4WSbHWD/rmVlQAeS4FW1YQDf+KgUMBRiBzNmx63jPr94wm3MzX6WKjRxya0bErsNrLDwxFtNWww2rQluRnWWNsAtDK5l1V9Urd/Jf82oGZe8tc7bzqUi2A0zJvmvGwvh8FdldUdAq1itzkdJ16vYOqpMG1J9vdimLuan1fVt2PbIU2w507D9kxqKNoOyusFjhkHdcy4pK87HZRlgcr7h0Pc2u3VupAJRsv+9pJsrQF3z3lpCl4jLuAWAMrWfAO08uNFTNS9b0ENGRm/oBDppiw2GI1yPBmtnvk8l0vXIJGHaL75O5+69n6ocRP08yr6A2ddlrzbFzOBw9UBPqx76SZg/8HJqkDmzF4e/t1LZ9oSoM4wTKJHxLBUCoWABTPYsuqC3yQ1mEyNGg2MGi23sBYiisT/dTEqPELu1KjJDm5NARDRJwDmREwaBuBowyLjAURegXmdiJY42NSdUY/PU0oVOamjEEIIIYQQQgBAsyEYjQun6awSJrgF4Af5ivicBpwEEgxQEfmLa1tcCFMmuN2vcAGBXiX3Psg0NtTKboJNNppt/RXfVLZHbt1bg41sW8rE54MLxGi2m/gQDU09i5njv2k93DKZwO0PbNho5e9D0el9nc8qgE8VuFq3id92FqaWaOCpm7CzZtsPm/SdSIQQHdUF9cFoFb7YjrNcUCNJNJowmNr4DrvvP6H8LFhKLlknW7lX3/G9jglCTKVc+G4mhBBCCCGEEEIIIYQQ8dDcTzu/khAzItOb/BviqZLuQHk/AMDerd9qywRCwKr6pG86ZWybcMckG6NuCaH7VSEcfXcIr3ypv0Y1tHfHx2TbwFbDk23ueK2bgkFg3Up92TwLRjvnwPjDce/aMAahHA1zqGEunQzb0YaWL3S2Ii74MNrU1+OXOfwUZ+vKAeqosR0ej9s6kS375jeprk1q1BjuS1TdJzXbpGAAdNN5qVn5By+5qgc2rHJWuLw/MGI/R0VVaQ/g4OP5AnXr0Mfnx5gRfJFv1wIbt2b3fumxT/n6nXdQ1L63toZf0f5jklSjLujwkzs8rGrTh4C8/x3gb83u9pJsH37vrvySFHQ1qGe6AioF9Hjd0ZD4WMP3BgbvnnilhEglpaCY0M8cPZXeqYH5PJfrAquj0LoVsH93NuxT+sM+rifsCUeBPnZwzixEGtG3s2BffSLsEytgH9s9/HdcT9iXjwF9Ev6OQ8Eg7EdvAv77V35FHg8w5ow01RpAxQCgsDhm8uBALXwqpF3k27U5vkNq9/Vq/nk8M5Pw3Tp2Ngq8EfuujavN3/ejzjeFEKkhvcy7nj0BRP6E3wZgqovlJ0c9PsdQdmzU4yedbICIFgKYFTGpFEAO3tNBCCGEEEIIkSktTMAMABRZsT/aJYNpwK6bkA7RkdPXLtEAFZG/uLaVTYPvC61iKOZeHrr6B5mAQC7USKQPF7DVYjejxfaDmDt8pTQYzaOvUz0TfgPwIWWpxL0GzXYT/NznWFNPbj0tdjOaQvqwrmzaHyR6nsHu61y8l1wom5953UycLpNo4KmbMFqCjVabD5UTQuzCBSWVa4LRWNydmkXea7Vb8GnDu9p5vbwVGN1DOmmnQoVPP8qiPmAYmZEiLaH0hwQLIYQQQgghhBBCCCFE0s18D+Tf1rl1cAMpPSm6Id6gKgDAo+t+xRa57JncudnUzW8S/vAmYdEGoKkV+HQJX7Y6+jLXaw+ZVx4VjIaNq/ggu4HD49a1KxnaW+Gf4xWY+yftdP0ruXm9kAtGG9E3/ITpDxc4W5GDYDRauzy2rUVRN/0HqmeFs23mAFW1d4fH47e+aCz/1crca0c1G/V17tMd6FkSPwwkEXTnBOCLj1KybgCg5d85K7hqUcrpAAAgAElEQVR+JRDSByp0UNId6rZnoSznQ5nVr+81F1izFA+NN69v95vtrA1tnLmM8Owsvm7Hj+r4mP74E7asuuz2ZFWry1G/uK3D4xFMMBoAjH04d86JOmvFZsJpD7p7vss3A8FQcj9P9U369fXyBWDNih7m7kCvPlA3Psre9FGIjLMsWEx/crJzex/EfZ7L4nQNIv920ISjgWlvA9sagLYWYMFM0K3jQZ9PSn5FhUgArfwedPWJwNefhL/PBdrCf20twHezQbecD5rxLujeq4DnzMGe6pr7ofoMSlPNET7/HhT7G4YHNoa36IN3f/Kf7Dx/duvmiYk9jxcv63geQfddzZZV1/0Dqkd5QtsRQrgjwWhdT2XU4yVE1Opi+flRj0/VFVJK9QcQGdMfBPC5i+1MjXoscZhCCCGEEEIIx0zBaIUpCkYzhcU0G+ojzJwGnATtxAJURP7i2lYmgp84lrJQxARq+aPqH6IQbOZiqFcl/87Bwh0u1IFAaAzWsculsj1ydaozhGFkIpyCC/Dyh5rY46suiI57LcPvwWbtvGzaH5iCzEznGey+zsV7WeLppp2eUDCa7WyZYIKBp9H7xnjcBKkJkc+4YLTevn6aqdJ5ULgzfcsHaLL1A8WOKTtdzmVThAs2bAhugk3p7UzJHb/dBLkKIYQQQgghhBBCCCFEUu19KNSv7wPGnOFuuS8/7tx2uaAtb4p+K6+sBgAMCdaigrlu/tH3AOXADXDagoRHP3Fezx2hVjvQS/8wL+CP+i27lg9O0Q0q7uquONrC0j9bOKnfWrbM49MI/tbsb0vRlmzQ17m6H0B1652vyEkw2ltP8DMPOQHq1Rqoky50vs1ccf61O/9bSG2YvvyHbNF7p+ReG+LC9ar19zHqNGrcDEx5odPrUXdN5LfxyoPOVrKG31eqq++B+vV9ULe/CPXyIqj93d0wSw0ZCfXOBr5A7VLsPUhhxV/54dFbW4APF7rabNqYjmnnHAhY1q7jGAXagFp9cAUqq6G69Ux29boMVdYXOPbcnY+rDMFoUxYCS5mgw67mic/dP89ACFjdkNx6NDDdIsuZ89Yd1K/vi/3788tQz8+H2vPg5FZSiGRSig1Gy9IcT8fqma665fG6Bk19HahbFzudCPT2k52ulxDJQG89EQ5BYwsQ6Om/Ae89a17RxTdDnXVZcivnRHtofrSqtmXsImsbc3un9M3qxOt//KiI83AiYOZ7bFk19vKEtyOEcCdFtxURGRQdK9nocvno8oOVUj2JaEvU9L2jHs8jIjejzKZHPd7LxbJCCCGEEEKIPNdiN2unF6hCeJQnJdssMgSuNYckdCNRfoevXSDBABWRv7i2lYngJ5MST6k2uCd6vxIkvvOcT8IkMq7Yow+4A+IFkfHLdRa37nom/AbITDgFF+DVbDchRPpO4brPsemzzQX+ZNP+wNQWuPMMIuL3dS7eSzYYLYFQMadhaoEEA0/dnnP5Q00o96Wop6kQXQQRsfvJcm9ssBIXi0bI7Y4QIjVCFMJHDf/TziuySnBkzxPTXKP8UcEc/4IUxLZQI3p603enQu74ncpzYSGEEEIIIYQQQgghhDBRw/cChu8FHHceaNpbgNNgsGXfug9Ta0dEwIbV+pkpCkZTlVU7r+AMC6xEnbe3tty6LcDAXimpQtIs3QQ0urh3aXXEZS4iArbyN7UDAPijbvKyhhkgXN4fqjh7+hqk09DeCrcf24jJLwzUzm9qBRZtAA4YkuaKdQIRYYkp1GrJXOcrcxCMhsVfs7PU9f+E6jfY+fZySOS+CABGti1myy5mguqy2bJN+jpX9XF20zFq2AgUd4MqcnjtrOYbPmjTqYHDgD1G8/NnTA6HcREBWzYDBUWA1wdV2qNjOW5f2Xsg1LlXda6OAFT3XqDBI4DVS2JntoeyDalQ6N8DWL9Vv45pNYQT98q+G8DNWcG39ZEDouq7lg+tyMewTtcq+u/87/DAchTYrWizCrVFv1oFVOnvQdZlhGzCHZMS29eu3wIM059OJoQLUipr5fu4qstuhzrnV8mrhBDppCwo6I/hdo4mo9k2Ye0WYJP+nplxg9Ho+y/4mUvnJ14xIZJpoaGd7rBgZtwi6tCTklCZBAwdBXwW24dzj7bv8Q5O1i4yd3X2/05kYjrXNlEKKC+NOBevNwQ1j9gvoW0IIRLDR6KLXBU9Ulz/LZ2nK7+ng2lM7DwrOl5dtw0hhBBCCCGE0OKC0YpSOKjWUh42HC2R4BARpguE0gkYQqGE0OHaVkkGgp9MuGCm6P2KKRjNK8FoGWcK2DIFkRWlMJiLC8aqZ4LaLFgoVEUpqw+He+2aQ02uPscJBaMZAu3SzacK4FX6+5hw5xlt1AobIe08LnBOh90POQw528GmEJptZz3REwk8DVIAbdTqahmn5xlC5DO/vR0tzGe3wqcLRsu+DsMie329bTp7HB7T60dZdSzuanTBhjtw70mqcOcHmQjlFUIIIYQQQgghhBBCiEiqrA9wyAmOy9OcDxPaDn3wEmjsMKCtRV/Ao79W3GmDqnb+99ytr7LFlvL3e8saN0+0HZftWQz0jrw/2MZaoDnOtePmjtfHaU30kKd2lVX66XnigAMGYvdWPtTq61W5FeiwcRuwnemGMKKfAmqZdqATdBBUZQg3UgOGOt9WrhnU8XPT02YSrAB8ubI9zDCH1DD70HjhSjTnA9jnjQSdMRh0cl/Yvz0LtK3BvMyqRaBrT0mwphFOuCB8DORsXgs6tjvouB6gccNBpw0EndQH9pXHgSJCPmnGu/rlByVxX8msix69CdT+uRv/A74fwx2TCD9+3EZTa/a0K9smLFzHz7/g4Kjns8gQqnjShUmqVdeleuy6aVgxtWDstjfZslMXZ087STYiwh//Z6P3teZzqkG9gALm1JQLMkvE2kbCzRP1r7cpGA3HnZu8SgiRbkrBIv1nMMdOf0BEuGOSjd7X2Rhyo41FTHZQebyuYW/8i5/X4iIZW4gUobXLgXmfd35FlVXAKEMwcQqpE87XTh+/5SV2mZnLcmynFGXSvMTqf0B0VnnNN2xZdfS4hLYhhEiMBKN1PdG3MRngcnld+ZGaadVRj1e53M7KqMcVSqkyl+sQQgghhBBC5KmWkP5Hbi64LFnY8BYJ3UiY82A09wEqIr9xbcsUnpQJTgOJTOGAEoyWecWGYM76oL73m08VwGel7r3j6tQQ1N8FudhTCqXSH3bDBWK0UguamGAu3efGFKyyJVjveD2ZopRyfZ7RHOKPoW6eW4mnm3a633YXjOY0FA0whz2y62fO/4zLyDmaEHGZApJ6+/qlsSaiqyEiTKl/QzvPAy+OKTs9zTXKL6We7ihQ+vtncUG5qcKG3WbRuZgQQgghhBBCCCGEECJ/qRsfBXY/wFnhbz4LD4p1gebPAN32U6DOkIDiTVHfgYgQr2vqH2SLLd2U3QNeP1xIeIPPhIlR3Rcd+j/QHx2ExkQHp61hAqySGfaTg6xeFXi14TJ2/qVPZ3dbiraECXAAgBF9Aaqtcb6ykLkfBAWDwLrooXRh6ld3Ot9OLhocPQQReLn2Arb4Qx/nTjsiItQwl9yrDcFotGYp6IYzgXUrwhOCAWDGu6Cb9aEFAEBtraCrTky4rjsdczbUT34LAFA3PeFu2W+mgX5zKogIFGgDZr6nL5fMEElN+9mBnvozAOCPp5v7vL0wm/DLZ7OnXf3lXb4uVx6rsOfAjs+Hbr+IX9lx5yWnUl1Zj45Dlh/Y8Bu26CNTCbadPW0lmR6eSvjT24Qt+nvT79SrhA8yqm9KzmtDRDjtQT6grSzUqJ2uLrsdauCwpNRBiIxQFhT0n6Nc2/f8+1PCH94kNMbp1lteyh+j455rN7vrwyxEslEoBPrF4Z1fUf/doP78SkbGaQCAGrandvr+rfPYZe6YlFv7pEitAcKbfJ6Z0fO/6Bi9RNefwRcef31iGxFCJESC0bqe76MeD1JKVbpY/jDNtJ6aab2iHru6tTgRbQcQfbsb3XaEEEIIIYQQIkaLrb8ql7FgNEMwiTCLDn/iBGwJRhPu+JnPJRfClCklTH2iwwOCNt95LpXhWsIZn1UAr9LfJo8Lnkh1EAR3zCLoO5RkKpjCFCpnI8QsE1tXj/KiUBVpyxPTkSDbwjjcnmf4DaFfbvZ1JRYTjOby/MbpMR1ILPDUTfDaDm6fgxD5iAtG88CLHl7d/Wz0nTO4fa3IX4v887C6VT9o6JAeR6GXt1w7TySHUgrlPv1d3tMZjEZEbLip6TxQCCGEEEIIIYQQQggh0kX1GQT1+Ayo5+ZBPTMX6qNtQEl3tjy9+4yr9dPbT8Yv5NH3N+i0iBAvD2wc1PyVthgX6pMtnvjc3XWoEX0jQtGIgAUz4y8UPeh+zVJtMTVouKu6dEV79rdxwvYp7PwNW3PnuuGSjfq69iwGencD4CoYLWiev3E1X2b0sc63k4v6VAIFHW/oc4R/Blv8P9Nypw2t3wL4mS4w1X0MQSCTn9O3h6+mgurW6xeaORmoZ+Y5oK66G+qN5bD+9DxUYXtf6wN+6H5FKxeF96szJ/PbGpi8faUyBVK+/SSICN2KFP453hw08cqXhK3N2dG2np7B1+P2M6JC0bj2AAAHHZOxgI2c0qNj34TeoTpcUf8oW3y6/hQg5z3hcN9aUgCUM10P691339P6ehUwdzU/v9xu0M+44LrkVECITFEKFtOHO9eC0Zx+R+P2JwBAk581L9ziB9l8iKIQKff1J8BW/c3ZHRs8AurFhVDD90pOnRI1boJ28kWNT7OLfLc2t/ZLO0yan9hyxb5wQPoOtE0f1AoA2OMgKG+KfssTQmjJJ66LIaL1SqlFAEZGTP4JgL/GW1YpVQpgnGaW7qpO9Gi5OFnhWs0AIkcr8lePHFJK9QWg7+XPy+9btgghhBBCCJGD2GA0T2oH1fIBRkm60peHTKEukYJkvqOiENGig8V2yNUgJFOIkFdJMFo2KLZKsS20JWY6FzyR6pA+t+vn2mKqccdWE+65FXtK0RqMvheD+/VkSomnFNAc7rhjpSmY1c2+jnsP3ASdAc6P6QAQMIQ9crj9OgD09JZjSzD24rNpGSFEWF1Afxv0cl8fWCr2/kqGrttJq5PoGqbUv8HOO778rDTWJH9V+PpifVttzPS6YPpGuAWoDSHoB/lk27mYEEIIIYQQQgghhBAifymlgCG7huDQqNHAlx/rCz/1Z+Dnf3C0XtqwGnjnv/ELpigYTXXrCerVB2gM91sYHliGL4sPjCm3LH3300jIN6vdXYeqihjIirp1zhaKCEYj2wbWLteXMwX05IvKauz9zbeY0u0E7ewFa4B+PdJcpwRs8RMbwFXdN7xfICYgTysYpx/EWv0NhQAAA4c5304OUpYFGjAMWPn9zml9Q/z1qg1b01GrzmkLEuauBibN5/dP1X3ZWcD3X/Dz1q0AKvrHTl8aZ4T/2MuBN/6ln2dZwAkXQJVFDbnsMygcGuUy8IFeegBoMFxzrNrb1fqMqvfl59WtA7bUAb16Y99BCqZ+C21B4IXZhJ8fCXg9mQsTIyLUMplPANCzJKpuy7/jCw/bMzmV6up6xQ413qd1AVv8m1rCkSO6VuBcyCYsWOus7P6DFRau03+W6pPQFa+5jfDIJ+Zzu+o2TTDpiP0kgETkPsuCxRyriHKn751tE+ascFa2jyk1It65DQC0+IES/c2fI5FtAysWOv/+J/JH/92AyurEwmRr5nV68+rE8VAeT6fX0+l6VO+r3fvsbTgnmr+GsOfA3Dsnmleb2P50x+8AO0V8f40xePeEtiGESJx8E+iangVwe8Tj3yqlniaiNXGWux1AT810J8Fozkcc7tIMoMywzkRcAeDWJKxHCCGEEEIIkcVamCCyIqs4pdvlQmP8hmASYWYKdYlkCoUSQodrW5kKf+KwgURRYT6mcECfKkhqnURiuGC0uoC+E1iq26LbEMDiFIeLsttN4HXgnluxVYJG1KV026nkNChxBy6IzKt88FnO9wslHv3Psn7bZTCaiyC1YALHde51UFAo8/bWB6PJOZoQcXHHqQqfqZd2rNzpmiXSobZlORb652rn7V06GgMKB6e5Rvmp3Kv/HNczn/tUMAWnZtu5mBBCCCGEEEIIIYQQQuxkdW7QKvm3gW69EJg52dkCqRwkW1m1KxitTR/29eIcwvO/SF0VOsO2CUtdBreNiPx5/Ls5zhZqjvg9u24d0Kq/cSsGDXdXma5oUBUu/uRp/L3iGu3s178mHDcqewdPExFue4tw+yQClz8xoq8CNTcBtUkMRlvDBKOV9YUqMSVGdBGDqzsMLFcARjd/iS+KD4opun4r0Ogn9IoOiMoSkxcQLnjMxhZmNwEAPYuBctOlsHUr+XkBfZ8aeukBfpmCIqiLbwYt+xb4Zlrs/CNPjw1FQ3to3Sk/A178u6GyGp/wN8kCAPzgRHfrM9nncKC0B9CkT8yj+66G+tPzOLwKGNkPWKS/NxwAYMJzhD++RZh4hYUfDM9M+3pqOqGF2V2cqMk5I8O5hDr14iTVqovTHLvP3foaJgz4p7b4VS8QfnoYoXtRdu6DErG6HgiEnJUdf4jC3z9ITTDa87NsXPgfcw+jIrsZ47ZOjJmuTr2ocxsXIisoKOYE1LZzp/edKeAzkscCdivXzyMiYNrb8VfS0hQ3GI1Wfg/6v3Huzt1FfqneF7j7f1C9BzhehPzbQA/d2LnterzAiRd0bh3JcszZwF0TYiZfsOVlXN/vLu0iFzxGGHsAocCbW+dEbn9D2mFgr6gJtZqg1nZq7OWJbUQIkbDYW72LruCfACJHYfYC8K5SahC3gFLqOgD6X6UB28E2Eznrzp0zdSGEEEIIIURWyVgwGhMa02wY6Ct4QQqgjVodlQ0YQqGEiBaiIFpJn+FezASRZYrTICRTMJpX+ZJaJ5GYIuYYsTWkvwLMheIli9u2nqlgiiKrBAruLphxr7Xb55B1+wOX5xncdLeheCUWE4zmMlSsyUUwWiLHdS5YpcgqQSkT7ibnaELE5zoYLZE754m8M6U+tpPqDieWj01jTfJbuS92cAMA1AcS7P2TAFNIabadiwkhhBBCCCGEEEIIIcROlnmoFdnmITb0r1uch6IBwFaHI8sTMahq53+r2phgJgDTlmTn8J7aBqA16G6Z6r67rmfRTec5Wob823Y94AKsgHDQXJ5TldXYs+17dv4jUymrgx3e+gb409t8KBoAVPcF6MHr3a04TjAace0qX8L2BsV+dv679hK2+HUvZ2cbqm8ijHvEHIoGhNuQYq6tk20D61bwCwdjg9GofgMbDAYA6v7JUGV9oW5/ETj4+F2Bm14fcNRZUL9/nF/2sj8BZ/4CKExS/+sxZ0B5k9efUVkW1FNf8AU+fg009zNYlsJ711g4Is5uesNW4IyHbLQF09/GNmwl/Py//Hb/87OO5x9EBBgC8VT1PkmrW5fWd3D4sxChl70F+7XMYxe55c3s3AclqsbBvdPKSoCnL1E4aqRCeal+/9XQia54NRspbigaALyz6gwMCdbGzhgXG+YiRM6xLFhMXIPp3DTbLHF4P8ahFYCPC1Sa9Z6zlTSb+yUTEegP4yUUTZjVzAPd9lNXi9Bjt5oL/PiGcHgvZ8BQqHvegho4zNV2U0V16wl1f+zvVP1CG1EWir0x+Q4PfJhDO6d2NRv1dTYGVwPwRv0USKZgtH0Oc1stIUQnSTBaF0REjQCifx3cB8BCpdRdSqljlFIjlVL7K6UuUkp9BuBeYOcIxOhvjo2azUSfTSby61f0Ms5HzgkhhBBCCCHyWout71VQZOkDRZKFDTCS0I2ENIf0AXc6QdLfBU8IHVPbchsYlGpcGED0fsUUIuRV3qTWSSSm2OUxKNVBZK7rk6FgCktZroJNLVgoVEXaeW6fQ9btD1yeZ3BBI65fB6a833b3c62b8oEEjuvc8y3xlLKvHRemJoTYxW0wGhdmSbnUO0ukVF1gI77c9pl23tCi3VFVrLnNtUgJUzBauj6zpt9Lsu1cTAghhBBCCCGEEEIIIXZScYZa1a1jZxERMOVFd9vzFbor74KKDEYL8IPFn56Zndd6ahK410d1+8/j1BonuShS5ID7Nczr1L0MqnuZ+wp1Ne3hcD9tfIYtMmt5uirj3vOz47f1EX0BzHrf3YrjBKNhLfOiDMyPYDRVWR0zbXjbcnhIn3z44cLs3Ce98TWhxcG9AKv7GG44tmkN0Ka/6SsAIKDpU/Pxa2xxdcPDOwfmq7I+sO6bBPXOBqiXvod6dyOsO16CMoQ2KF8BrOv/CfXuRqBvJV8vh9ShJ3V6HTHr7L8bMGI/dj5NeQEAMKRC4bMbPTh2D/P6Nm0DPliYzBo688oXfLsuLQQG9oqauMJQyZMuTE6l8oDyeABNKMl5W19hl3luJnWpfjBLN/HPpeF+C6vutLD57xYuPDR8DlzGXMqvb0r8NXnBwfH395v/hh82fx4zXf32ETZsUoicohQU9J8FO4f2OUuY0KFo1cx9WQGA3uW/S3TQHGe80dIFwLJvna1L5Ld500DbdHEpseL9rqOuvAvWL++AmrQe6uVF4fPuyL+JK2G9vAhq9LHJqn1SqIOOAXr2jpn+ky3Ps8s4OX5nGy4Q9m/jFFoe5n/v229w1LnGaiYY7dhzEqyZEKIzJBitiyKi1wH8GugQH9wdwA0APgLwPYCvATwJ4MiIMv8A8GHU6nIpGO1hAHu7/DszCdsVQgghhBBCpFGmgtHY4BAmqEOYuQmUC9gOepMI0c4UhJOp8CcOFwYQ/RyCTDCaBQ8s5Ul6vYR7boMdUt0W3QavZTKYwk1diz2lbCcX9+F0qT1vcIsN92LOM7h9nfv3vpt2epACaLNbHa/HH3L+8y63TzOu3/B82ZBJOUcTwoiIUM8Go/Vzu7bOV0h0CR83vAWbubvpCeVjpbNqGnEBh63UgiZ7W1rq0GzrOyha8MCnCtJSByGEEEIIIYQQQgghhHDNE6cfxppl/LxVi4BtDe62t/8Yd+XdqNwVjLZPCz9gfPH67LzWU+Nw0P0Ou1UAfbq3PzC9T9EiQoqIWy7itcxrw8I3wRnd8hVb5Lt12dmeAGeBWwcNJmBjrbsVh/QBXzutZdrVoPwIRsMeB8VM8iEILxOMtnk7YNvZ146+43MxO6gyBIFg9WLzwpqQPVr5PV9e89qqku5QA4dBFTnvG6V8BcDR4xyXZ40a3fl16Gie504rF3V4eOwe8a9Jv/dt+tuXqf2M3g2x19JX8O+7GnlgkmqVJwbFHsMPauaPY3VN4f1QV8E9l4OHAj1LFCrLFJRSoFAI9O1slK+coy1f34mueAsd7D9Hc++JtHfRVSgLFtOnqimQO3EfS5jQoWijhxqOx6uXOFtJc5ydcc03ztYjhG0DDQ4bb8NGYEsdP7/9vFR5PFADhobPuyP/KvonocIp0is2GO3A5q/Z4vNrCXaLIdQ5yzQ0EeqY85XqvgoFXoUDBuvnjzsgap+1apG+oCb0WwiRerlzpiRcI6J/ADgZALPn7WA7gF8BuAbAoKh56zXlt0Q91t9ynKGU6obYYDRnUasGRLSRiL518weAv+2NEEIIIYQQIiu1MANri6yilG6XCxppcRHwJXZxEygXIM1d8IRgmEL3Mhn+pMPtV6LDfLgQIZ/yJb1OIjFFHnchW6lui8Uu6+M2TCuZuOBRbVlDPd2GzWVdUCIX7sWc93ChX27bVolHH4wGmIMmY8q6CEYLJBCMxj3fYquUfc5uQliFyEdNoW1oJX2nBS5QiZN9XdJFJvhD2/F54xTtvL6+gdiv2yFprlF+Kzd8jusDm9JSB/Z8xRB2K4QQQgghhBBCCCGEEBmn4gy1WqMfgkKLvgJduJ+7bR1+ClTvAe6WcSNiwGa5zQe21aTnZ2PXuEH3hw4HTtk7dvpVx6pdvz/X1jjfUGvETcOY9xcD8yTAKg5VEk6eu2DLS2yZP72VnVcPX/2SHyS9w/GjgFH1s9yvXBNmtQMRsUF9Kl/aFRNq8/PGp7TTmwPAuuiRi1ng71Octe1q5jIdtfhB155iXjig6Stbyw99VLvv76hOTqjTLwEKOtEPe78joUa4PA46pM78BT/zm2mgiM/gzw5T6B7naTz4EeHfn+rDaVJlqSHs88pjYs896PVH+JWdeEEyqpQ/NOGmx/qnordhOPPYh+3w/rsLqNd3P0RFRJc7am4C/e5s0C/HoOyTZ1ytxwknYbcnb58cO3GPg5K6nxMio5SCRfpjz5WfDMequtzY59RsiF/PkgLgkiP0/YKoxQ8scRho1sKfvNOWOtCff+5sPUIAcNLLlWwbdMOZfIG+lcC+RySxTumlLrg2Ztq4bRPZ8iFSmP/Ln4LqdFEz2Wep4betHd/Rrjw2dt90RBVwwJBdj6nFD9TM065HSTCaEBkhwWhdHBG9D2AvAGcD+A+AhQDqAQQArAEwDcD1AEYQ0cMU/ra+R9RqvtCsOjqOdzeXVYsuX09ELm+LI4QQQgghhMhXzXazdnqR5S4Exi0uNMZNwJfYxU1YCRcKJYQON/heQaHQis5pzywumKmNWju0e+4z4LUkGC1buA0WS3UQmev6ZDAkrMhFXU3HereBYKk+b3DLaVDizunMcdTte2kMRnMRdubquG67Dzzl1l/iKZVzNCEStDmwgZ3HBaMpSJCR4H3a+C4btndc+ZmwlCfNNcpvPTy94FVe7by6gMM7YHYSF7JanGXnYUIIIYQQQgghhBBCCNGBZR5qRZqAGiIC3flLd9s54+dQtz3nbhm3ooJA3lw9TltsbSPQ1Jp9A/G5EJnd+ym8fLmFXx2jUFkG7DMIuP//KVx7fMS1LDfBaIHIYDR9gJUuVCVfqb+9hjK7EaObdcPNgNUNQENTdrWn7S2E8/5lDkG6dIzC6xMs0G0/4Qtd+Fv9dEMwGho3A/5t+nmD8iMYTSkFdcktMdNv2/QndhkuGLlJDh0AACAASURBVDFT5q523qar+zDX1d/6T/yFdcFoXGDjxTc7rpMTaugoqAfeA/b/IVDEXM/zeGP/yvsDp/wM6s43klqfDnUbeSAw/jd8gfdf2PnfQWUK035r4YRR5nX+6nnC2sb07au4ENLRuwFnH9SxzVBbKzD3U/0Cg4ZD9ShPcu26NjUo9hhugTC/7kfsMtOXAp8sTmWt0qeB6UJXXhrR7v73ODDj3fD0UL22fH2CXfGIKO4+ffmSEfAhGDNd3a8JSxMiVykFZQhmumlidp0/c0yf59JC4JiRwCc3WBjWmwlGe+4e5xtrNgSjxVuP7pxF/vLgz9A/0Ung6ZwPgMVfs7PVk3Ny+2agp/wsZlIJNWP28sPZRX4ZvAb0yO9TWauk4YJYi3zAwJ7h/198hIV//0Rhv0pgQE/gosMVJl1tdXhf6dm7+Y1IMJoQGeHNdAVE6hFRCMDr7X9GSqnBACojJq0hojWaogujHrvdi0f/cvudy+WFEEIIIYQQeaw1Q8FoJUzQiJsgELGLm9ctQG0gotz+EVmkDTf4vsgqgRXvrr5pZgpyag750d0b/gU+wIQIeZUEo2ULt+EOqQ4icxuM5jZULJm446vbsm6ec5FVDE+WhbO4Pc/gQr+S+d67CUZzUzaQQOCp6fnKOZoQiakP6nsp+VQBenjKtPP4YLTc6JglUidgt2FqwyTtvO6envhBj6PTWyEBS1ko8/bGpkDsHRvrA4bbIyZRS0h/y+hUhwQLIYQQQgghhBBCCCFEp8TrW6ILqFm7DFjyDb/M7gfA+s/MztUrAap7GahHObA1HHAxqvV7tuzSTcC+lezsjOAG3Vf1AUoKFR68QOHBC/RliAsS0mkPRiMiNoBIF6qStwaPAACctP19fFE8Wltk0nzChYdmT1+/KdGj4KI03G+hZ4kKhxzWrdMXKu8H1b2X/sqoKRhtLRO2B+RNMBoAYPf9YyaV2Y2oCNahzlsRM69mI+HokdnThl790vk18ao++un0cdyhnUCwYz9BCgaADau0RdWI/RzXySm196FQD05J+nqTQZ16Eej5e7Xz6NOJUKf8dOfjfSoV3rvWg7sm2/i/1/XvXcgGJs4lXHF06ttZW5Cwsk4/7+ZTNecdXCgaAPzgxORUKp8w4aZ9Ns7H/vvamLtGf+736pfZtR9KVD0TVloWcdmepu7aP5XZDdryDX7AtgmW5e41qW8CtuiHfuw0OKgZwn7AUVClPVxtS4hsppSCl2IDAHd47SvCUxcTPC4/Y+lERFjBHM9evEzhvNEOxmnMet/5Bv2GfslTX+PnnX8trF/9zfl2RJdB9RtAZw5hZsY/n6ephqDf3Q/I+XBapRSoel+gZl6H6Qe0zEUPTwu2hopilllaMBx47zng5ifSVc2ELWf2T1V90OH85dIxFi4dY1jRFx/y8yQYTYiMyK6RoCIbHBf1eCpTbkHU432VUm5Gfx4RZ31CCCGEEEIIwWqx9QNri6zilG6XG7jbYjfDJvPdBEUsLuCEEzRcCBIiUjPTttyEL6VLiacbOy8y0Idr/z4JRssaroPRUhwGUWgVQbn4+TfVQW3Gbbt4LUxl3TyHVIepJqKIeW7NdlO487Vmuo7bfV2BVciGLLoJFvPbboLR9GGPJqbny7WLZiaMRQgRVhfQjyQp9/VxHUhMEoyW92ZtnYqtoUbtvKPLTkWBVZjmGgkg/HnW4YIRk40Lrc7kuacQQgghhBBCCCGEEELE5Ylzk61aTXDWoq/Ny+x7eOL16ayIgbtDAqvhZW5kNXd1dl3vsW3CUuY+HyP6OljBsu+cb6ytJfzv1npg+xZ9mXwKsIpnYDhg5kj/52yRj/gMvox4fhbfv9PnAXqWtF8f3bwWCIX0Bcv7AV6mr5YpGG0NE4xWXAqUOWnMXQQTLlgV0IcRZlsbenues31kVR+gf09m5nez468gENWnZv1Kvk3m26D8gYb98Hp9eNwR1ea+D1O+Tc+xb0UdYDObqtbtBlYvYdel9sngOUWuMoSbHtGPOe4DWLIhu86NElXPdAEsj7xsH9HmykP6YDSi+AFnOlzQ7Q4XNj6nn5HJ82chUmR061fsvJYAsLo+jZVx4auVhL+8Y+O+KYQW5rS3ssxhf8OFc5xvuD3AOhq1tgDrVrKLKdl/5C9Tv1cnh/XP3uTndZV2pTkvUgBKqUVbfLO3D5pVEYj7TpJF6pihDIN66afTwi9A//0r7Aeug/3oTaDP324Ppl7Nb6RX785XVAjhmgSjiWg/j3r8uK4QEa0DEBkH6gVwpIvtHB31+F0XywohhBBCCCHymE02Wmz9VbWUB6MxA3cJxIa1CZ6bsBUACCYQoiLyEzv4PsVBVIkw1SkyPDDIdErlwoxE+rkNd0h1UJ+lLFfHxZIMfj5cBaMZXjc368nk8+VwdQpSUBsklsx9XYmlD2n0h5yHnbkJPOX2aSbceUORVcK2Cz8TKieECNsc2KCdXuHNo873IilssvFB/UTtvAJViB/2OjnNNRI7lPv0n+f6ADOSLMm447fbUGEhhBBCCCGEEEIIIYRIKxVnqNWapR2uQ1LDJtCtP+bLd+sFNfbyJFXOPXXpH3f+34sQhrct15a76EnC5m3Zc3117Rawg+6r+5oH3ZN/G7BghvONtbUPuNeF3u1gCFXJN8rrBfb/IY71T2XLPDWd8MWK7GlPr/EZFLAim5OhDahf3MYHo4UMN33lgtEGDnd9w6qcNmCYNqhgRFuNtviLcwizlmVHG3pnPmFerbOyvztZad9XWvatuZ3sEIzqI7TGsF8aOMxZpboI5fUCexykn7l2ubaP0OFVwNG78+t88xvg85rUt7N/f6rfhlLAcM29ruj+a/mVjTkzSbXKI/13Y4NvJ9Q/zC5Wk57L6ikXLxiNtjUAW+p2TQ/xyUzfrnW//ZqN/GesxG7C1Q0Pxc7o1Qfq9Oih7kLkvgmNjxnn16TnPoeu/PtTG4f8xcbNEwk3vMp/nsscdAWyH73Z3caZYDRjeFVRCXDYKe62I7oQ0/cr8zkfffxah+NhzJrH/jLBOmWZSv1vG7fY/2EXebP76UCLu/F/mcCd81R003w/e/Uh0OVHgh7/I/DqQ8Bz94D+72zQ/40LB6brnHB+fn2HFyKLSDCa2EkpdSQ6hpstIqKphkXeiHp8scPt7AHgBxGTmgC872RZIYQQQgghhGgj5sdthIMxUskUNNIswWiuuQlbAYBAAiEqIj81M+E82RiMVmgVQTE/0UWGCOhCkQAJRssmbttXOtqjm/A1t8FuyeSqnobXLVeeL8dUJ12oCLuvS+C5ca8dF76m0xTa5rhswHYfdso93xKrlA2VI9hoZe5gJYQA6gP6nlQVvn7sMorpOJId3dFFpszbPhsbA/rOIIf3PAGlnu5prpHYgQs6rGM+/8mWzPMVIYQQQgghhBBCCCGESBsrzlAr/zagcVdSBr3+iLG4emQq1JCRyahZYo49p8PDqgAT0gTgUSa4JROW6O/xAwCojnefnzfNgQMxAu3XsLkAouJSoJy/hpaP1DV/hwXCNXUPsGVuesNOY414yzaZ27Un8iNfqw/pAgB1+CmGYDS+byOtZT5zg4Yb69XVqMIioE9lzPSqNn6f9H+vZ74NERGueclcjz0HAGfuB7w2wcIlR+qPIXTvVc422BbVR5oL6+szCKowtTeTzkbq6nv1M5q3Aw2x10CVUph0tQWfPhMLAHDja6ltZ0SE+6bo90ODy4AiX8d+GNRgSOM66qzwZ0m4orw+YMBQ7bw93v0z/jpW3xdmZR3QFsyec6NEscFoO4ZdRAV4loca2HX94U33nxdT0NPUlSfgwJa5MdPVvz6F6jfY9baEyHaHt87BtOVHsfNr4py3ptv2FsL1rxBsB9WKF4xGm9cCz93trgLR50U71nXHJewi6tWacJiqyE+m0CrDjbYpFALdNYFf7ZV3QQ0xpO3mEMWEvl+0VhNU2u6SAf8On29nuYYm/XscvX+ibQ2gR36vbxOz+MgbdcktnameEKITJBhNAACUUiUAHo2afFOcxZ4DEIp4PE4pNcLB5m6MevwykYxOE0IIIYQQQjjTEuIDyIo9qQ1G40I3AH6wr+C5CVsB+GAoIaLpAoSA1O8jEmEpC8VMqGPk8wgywYA+VZCSegn3uPeR4ybEK1FuwtcyGRzoZtumY3GuPF+O6bn5NecZ3L7OtB5+292Y7Tq/iOnmuJ5I2Cm3/mJPqTFcxW0QqxD5hAtGqvAZRpKwHUeyq1OWSB8iwpT66HsphVmwcFz56WmukYhU7tPcXhxAfSA9t7Zmv5tl4bmYEEIIIYQQQgghhBBC7GQZ0lN2iAyqmf4OX+7Ui6GGjup0lTpDKQVU7bPzcXUbE7ID4O1vsueaDxcK0Lsb0KvEMNgZAM350N3GAu0D7tcwAU0Dh4dfR7FLe6jXAS3fsEU++B5obst8m3pnvrkOE47e9d4SF4w26uDwvx4mGC0Y5DdgaFd5pzJ2EL5pn/TJYmBrc2bb0OIN5lCfaTdaWHCbB2/8yoOxBxj2E5tqnW0w2LFPDXGBjUygQZdnChSc8a52cnGBwvOX8sOopy8F6pkQhWRY08jPq9Jdzv2CP4apkQd1vkL5yvCZOb3/au10m4AVdamqUHoQEeqZoRflpe37rKgAxh72VviYPvtLErgH26p6/fSxWydqQ9Fw1mVQ+XiMFPlBKRzaMgeH+6drZyfyGUulTxYD2/XZZDHiBaOZwoZYgdh9EQUDADEhjQOGQvWscL8d0XUkGIyGpfOB7Vv4+YedlHidso3mOxkAFGxZj+GF+nDUkPIguD37++Pz5zxRE76cCrS5jLbxeID+uyVSLSFEEkgwWhellHIcZ6uU6gZgEoC9Iia/RkSvmZYjoiUA/hsxqQDAU0opNnZeKXUmgIsiJrUBuM1pXYUQQgghhBCi2eaD0Qqt1N79zBSq5DbkS7gPk+OCoYSIlsywoHTgAn0ig5C4ECGv85+ARIq5Dd5LRxiEm7C2Eo8+GCsd3ITEmQKw3DzfbAzjMD23lqjzHyLShqXFWw+He//9trOLmDaFYupoLI8QQhSKXzACd95QbJWaw2vlHE0ILSJig9HKTcFohvWJ/LS0eSGWtyzSzjuo+5Go8PVLc41EJC4YzW9vR4vdnPLtNzPh9tn63UwIIYQQQgghhBBCCCEAAMrBUKv2oCOybWDx1/yqDjk+WbXqnIiBr8c38YErs1cA17xk48uVmb/2s2SDfnq1k0tZa5kgKk77gFg+gEjCOaKpohKgbyWO9n/KliECvlyZxkoxFqw1zz/nwIjB80uYoLfK6vC/Xi4YzdC3kQlGU/nYrjRBN6Y2BABfr0pVZZwxhaJ1KwQOHBJ/HRQMABudBaNRdAAIF6yXr8FoZX2BvpXaWfS3y2E/fhtI81r/cHfzau+bkrrj3uc1/LoPGaYJ76jlwwKRLecVOUjtewQ7b5h/MZujYtoH5AJ/G9DGZHfuDAlZvbjDdAUgwNy0edN2IGS7+7xwwYODgvoDtDpY2rnowtq/a45ggmEf/yzz38MiTZzrrD7FPqDQFye8eqW+f5lRUBPSuG4FYPPBaCLPJRqM1mA44PcbAlSOSLxO2aZiADur0qdP9A0pL1Zv1IempsOGrYTb3rJx5j9DOOWBjn8/ftzGk5/bsG1CPTNkICYYbfUS95XoNwSK+z1ACJFyEozWdV2ulPpIKXWRUkrb410p1U0p9TMA3wM4OmLWCgBXONzOrQAi4z8PB/CBUmqPqG0VKqWuAvBK1PL3ElEW/MwthBBCCCGEyBWmgbtFKQ5G8ygvClShdp7bkC/hPqgkYGfuh1SRW5IZFpQOXChA5GeECwb0MZ0PRPoVuQx3cBPilSinbV7BQiF/r4OUK3IVaMaXdfMZdxPGli4FqhAW9Hcejw5gbaNW2NAHiyUSNMK9Htz+NKZcAuFjbgJPQxRCK+nvzFTiKTV+/uQcTQi9baEtCDB3d+1tCEZTMHdgEvnng4aJ7Lzjy89KY02EToXh81zPhCMmE/e9P1u/mwkhhBBCCCGEEEIIIQQAwIo/1GpHgBZdfzpfSCngSMP8dNoR6gTgpO3vw2u4XvuPDwlH3mnj/W8zOyh/6Sb99kf0jTPgPhgA1rscptTWGv5XAojcGVSFQcG1uLruQbbID++22UCUdAjZhH9/ym//3IMUDhkW/j+1NgNzPtCWU4MTC0aj5iagfr1+mYHD2Hp1Vaoy9rM0MLgO19X9nV3mmHttbPFnrg3VMPsiAPjb2QpFcUJAAAAbVgEhhzcQjA4AYQIbda9lPlBKAceeyxf4719Al48BrVvRYXKf7go3ncq/V395h/DXd5mQlU5Y10i44DG+DV13Qmyd6Ik/seXVyAOTUq+8dNZl7Kyi9UswuEw/76oXkt8u0okLCAF2hYTQE7fHzLtv/fXaZdqCwJoG7SzXdSgLMSs6/BR3GxAil7SHNlUxwWjbWoCnZ2TPfuc/05ydg5XF6QZERMAL9/EFivU3d6Yd39Mi1dawq1FX3WOuiOj6jMFohs/WNn0gGACoy2+HcvA7Uc7oUc7Ouq8v3xf0runMyVKKrWskHP43G7e9RXhrHjD5245/L8wm/Py/hEufdh6MRv++xX1F8jHYXIgs0oX2wiKKAnAMgCcBbFBKLVVKvaOUek4p9YZSagaAOgBPARgUsdxyACcQkaOe8ERUC2AcgMhf3Y4A8J1Sao5S6iWl1GQAqwH8A0DkL8BvA0jgyCGEEEIIIYTIZ61MMJqCSkuoCzd4123Il3AetrJDwEWAishv7OD7BMKC0oHbr0R+RgK2vv17LbnrSLZwE0blUwXwWakPtXPa5kus0nCnsQxx89qZnlOy1pMpSikUe/TBb9HhXqawr0SeW4ml71TgD213tLzbYzoANpBJx3SeVWyVwmf52KDIRELbhMgHdYZAJFOQksSiiUjrWldj3vbZ2nl7lOyHwUXSGSTTenkroJguAab9QLI0237t9HSEBAshhBBCCCGEEEIIIUTCLP0NrTpYsxS07Fs2RAkA1CuLoQr0N+FMNxUR7OWBje+X7mMs3xoE/vhWZgfk1zA/Y1fxl7LC1q3gA4jOv1Y/PdB+/VoCiNxpf13u3XijsdhT0zMXavXet/y8kf2A53+hdvWZ+ehVvnBlYsFoWLucX2c+DqxmQgbv3HiTcbFnZmauDS3dxM+74miHQ3NN7SBaYFd/GgqF+GXzsf20Uyf/xFxg81rQaw/HTL79TPP79Zd3CNtaktvW/mUIZty9XziwLRKtWsyv7NyrklWtvKR6lAPV+2rn0ZqlqGbOL5ZvBprbMhsW2xl1cYLRaPFc7byfbXmWXa7GsF/UYUNKQvWxE48aC8Uda4XoCtrDlaqZYDQAuHkiIWRnfr+zss55HcridQNaMJOfd8zZwP5j9PMCLoPRqs3fc0U+MAWjGdr0Nj71U51wfifqk4W69WJn7R/gv0D/+7v+4ZDDNHtsGmH55vjlnppOWLdFP6+8dFe7oGWGHwlMJDBfiIySYLT8oAAMB3AygPEAzgJwKIDokWL/A/ADIuLPCjWIaCqAsQAiv9IqAKMBnAfgRwD6RC32AoDzicjh7Q6EEEIIIYQQIowbVFtkFacl1IULXeHqJXhuw+TcBKiI/MYFBrkJTUonLsQo8jMSZIIBvcqbkjoJ97hAK23ZNLVFp9txU/dU4MIB3Zb1WQXwKmedYtxsM524/VR0uJcp7CuR51biYYLRbKfBaM7KRQoygY86piC4kvbny56jJRDaJkQ+qAts0E4vUIXo5ulpWFL/nYuQ+c5YIv0+bHiTnXdC+dg01kRwPMqLXl79XR7rAy57KyeAOw5nY0itEEIIIYQQQgghhBBC7GQ56INWuxT48iN+fmkPoO/g5NWps6KCvXYLrEJJnL5bM5cBTa2ZuQZk28QGo1VHj06KxoSbAYAauod+RlsLKBgEGpiNDhwWZ6P5SbWHhSkAP9r+Plvu4+8zdy3xQ8O2/zzWgifi805fTeVXtDMYjemrFWL6QHDt0eMB+g3ht9dVMSGDCsCPCr5hF/sog21o6Ub9ti8d46K/8pplzssGI/rJbqrtEJTWQR4PzFfD9wJG7G8u9OXH2sljD+AXaWoF5qxIvF46prZ7yFBNGzLsh9Tg6iTUKM+NPEg/fXUNqvrwn+m5q1NUnzTgQsmA9iAj5ny2p70VvYP6PgVLN7nbJ/PBaJoQmmF7ulq3ELknvK8Z0cbHONQ28CHR6fTpYuef9fJ43YC+4L87q8NPBbhAcU0wGtUy59cHHh2nEiIvmMYUJhKMNurgztUnCymvF+jG9BFu2IjD/DPYZdczwWOp9NHCzn8X7LCPMv2WZ6DyOJhaiGwgwWhd1zQArwDgI0rDggDeBXACEZ1JRAn1gCeidwDsDeDRONucCeAcIhpPRDIiTQgH/H4/pk2bhieffBJ33303br/9dtxzzz145plnMGvWLLS1JS8cYtWqVbj55psxZswY9OvXDwUFBVBK7fx76qmn2GVnz56NCRMmYL/99kN5eTk8Hk+HZVesWLGz7NFHH91hnhBCCCGEGy1MAFmhVZyW7bMBRhK64Zrb14wLhhIiGhcYlGtBSJGfET4YLTr3XmSKR3nhc/h+pKstOg08y3QwhZvQwnhliy2nzzmzYXAcp+cZxqCwBN5PNpDN4bHaaYBaJDeBp6Yw1R2vGfe5MoXICZHP6gL63lMVvr4J/mYrwWj5ZkuwHrO3TtXOqywchj1K9ktvhQSr3KcfIcbtB5IlREG0Uot2XrZ+NxNCCCGEEELkJ+mfJ4QQQogYysFQq4VzQN9M4+cfeXp2HYejAnQUgNO3TYq72Effp6g+cazbAjQzXcVG9IvzutYyIQN9K4HuZfp5gVagxXBtubv+JiR578jTdv73jG1vs8WWZDDYoWYDfx3z+FFRE7i2A+wKYfIyN+wLMg12LROI1W8IFLeurmz43uys05vfY+e9yWempdy7C/TTq+KFNLajxs2ge69yvsHIIDQu+AMA8nxgvjrzUnOBmnmg5tj9+un7mY8h5/3LRksgef0fphl2K7q6kClE77CTk1Cj/MaGy82cjNP34d/3Cx6z0ZrEdpFOXChZjyLA61EgQ6BsVZu+PboJbCIi1DP3ni/TBKOpiHMLIbokK/xdc9/W+egb1N/YFABe/iLz+5w6F11vh5Sbj6+mfQ1+cCLgZfrf636b587ZmQBekWcs0+85/OeKuGC07r06V59sxf020rgJY/z8b12T5qd/37Rsc+fXsVvETzq0eG5iK8njYGohsgFzmwKR64hoLoDzVPhKyu4A9gRQCaAHwkfuRgCLAcwiom1J2uZGABOUUr8GcASA3QD0B9AEYA2Ar4loeTK2JURXFwqF8PLLL+PJJ5/Exx9/jGAwyJYtKirCj370I1x66aU47bTEf/x57LHHcNVVV6G1NTZF2yQYDOKKK67AY489lvC2hRBCCCHcaLGbtdPTFXAioRvJ4/Y1C9jJG3QgujYuMCjT4U8cJ/sVLhjNp/Kwg1wWK7ZKEQjF31clElyVCKfbKclwMIWbYIx4YW/FVim2heLfjijTz5nDvRbRwWDcMdSrfPBZ7gMTSzzdtNOdBp75Q/pyCgrEXEgOuAg85QLaFBSK2s8BJbxWCHe4QKRyX1/jcgpZNIBHZNTHDZMQJP21ixPKz8quwV55rtzbF0uxMGZ6PXN352RpZoLtgewNqRVCCCGEEELkD+mfJ4QQQggj40DaCJ9MZGepi36fpMokSe+BQGEx0Lqr792tm+/AjJJDsco3hF3szIdsrL3bQv+e6f3d/6aJ/GDb6jhhRMQFCVVWAz5uwH0r0Gy4Pl6cnX0MMk0NGbmzR8CFW57Hrwb8Q1tu2SYgGCJ4Pem/frSYyZsYWgH0KI6qD9d2Dj0Jyts+BNPDDMVkgtHYkKM8DbVSlgU67jzgw5dj5l1Y+zCu3O232uWIgEXrCSP7p7cNza817Yvi14Vam0ETjnK30UBEW+KC9cr6QpX2cLferua0S8LH4TkfsEXokoOB57/tcO36/IMVXp5DmPytfpn6JuCsh2xMvsbT6SpOXcS3n9JC4Mz9NTMMwTGq/26drlPeMwRa/OjNSwE8rp23qh44+xEbb1/d+XaRbvVN+nZYvuPUxhDAWBVYhln4Qcz0ZZuch6L424A25me38lB9zDQ18kDH6xYiJ7Ufkzyw8e91V+Cswa9pi936P8KZ+xP2rcxc/ysuWFFnWO84Bbjjm8cLVdYH5CvUzw9q+uQz61KVTPilyDOGzwwZjl/bGvXTuQCxXNejHFi3InZ642bcWHcv7up9g3axy54hHD+KMLR3evZNLQHCGuatcarIBwzoGf4/hULA5GcTW5EEowmRUQ5/rRe5isIWEdEbRPQgEf2ZiP5CRA8T0QfJCkWL2mYbEX1MRE8R0d/at/u6hKIJ4cxHH32EPffcE+PHj8eUKVOMna4AoKWlBW+++SZOP/10HHzwwfjqq69cb/Odd97B5Zdf7rrTFQDcdNNN0ulKCCGEEGnFBaMVpSsYjdmOhG64E7ADCJC7oDM3ASoif4UohFZq0c7L1iAkLrwqcr/CtX+vBKNlFacBX+kKgnB6bMx0aKCbY3i8ujr9nGf6OXP4/UHHYJHooLR4y8fdLheMxgSeOS3XzcN3wgy6OA/gnm+hVQyr/W7t3HvPLStEvqsL6EcAVMQJRuNwIYiia2oO+fFZ47vaeeXePjiw+xFprpEw4T7X9YEUB6MZfifJ1u9mQgghhBBCiPwg/fOEEEIIEZfVydCLH1+fdYOylWXFBDHt3laD2cuPwJNrLzUu++T09F4HIiI8PUO/zYpSoKw0zgDc2hr99EHDAW7AfaAV8BuGV5Xor6kLQF36RwBAKfkxc/mR2jJBOxwqk27BEGHZZv28u87pOKSStm8BGvXXTtT51+x64GH6ahGFB1lH44LRBuZnMBoAqHOv1E7vi0A0PwAAIABJREFU5t+Iz37ZwC535+T0X5O+YxK/zSonl9Y/mcjvkzgRASBs0GOeButFUh4P1D1vQf32Eb5Q7VJg/vQOk4p8Cv+70kIvQ3e1978Dvl7V+fZ26/9sdt7Xt1go8GqOZ8w+Q13yh07XRwCo5AMtPB88j9P30Pc9BoB3FgDzDGGJ2YoLNtoZjMYdpwBUtenn1ejvxehq+wBQbkft88dNcL5iIXKV2nUOetr2dzEksIot+s+PM7vPcROMNjxOeDUXwqiuvT/8nwJDgHUECgaA9Sv1ZSW0SAA7wwe1TMFoW+r007v36lx9slUPJvCtYSN62luxd8sCdtHHPkvfvmnZJvPb5sTw3oBltbeLLz5MfEUDh3WuIkKITpFgNCGEyCK33XYbjj/+eCxevLjDdKUU9txzT5x44om44IILcPzxx2P33XePWf6LL77AYYcd5roj1O9+9ztQxNnh+PHj8eGHH2Lx4sVYvnz5zr9zzjmnw3IbNmzA/fffv/NxQUEB/vCHP2DmzJlYunRph2UrKytd1UkIIYQQgtNi+7XTC62itGyfC73xS+iGKy0JvF5uAlRE/jIF4GRrEBK3X4l8Llz7l2C07OI08MxpgFpnOQ4Jy3AwhUd5UGQVxy2noOKGqDkPg0tPOJ1bTvYHAB80kuh7yQWqBagNATt+MKnf1gej9fTyd8oKkHmwYYf1M883st7cPl7O0YTQqwvoeylW+PoltL7c6/opOuPzLe+jmfluflz5mfAob5prJEzKffreh/XMfiBZuDYCZO93MyGEEEIIIUTXJ/3zhBBCCOGI1bmhVmqvHySpIknWf7eYSb1DdfjJludx6gj+uurMpem9EmQagF/JX4LeZQ0z6H5QFVDA9DEkArY18usskt+1WREBBKNav2eLLUntZQmtlXVAQJNVBgAjokOtmHYDoGOQjtfQVyuk6QdRt15bVA0Yyq+nqzMER+4VXMLO+359+q9KL95gCEaLFwACgBbMcL/RQEQ/wc3r9GUGyKB8oD3087SLgR7lfKH5se+B16Nw/YnmkM3pSTj21fI5fxhaETuNiIC1TEiVIdBLuDBwuPE8bw+r1rj4G1/nXu8Yrh1WlALU1gps4EOZ2GC0TejwO5eJMRgt1LFyareRjtYpRE6LCm06ZftktuiMNH8Pi9bAd/uJMaIvf1w1BRDv/C5hCrDuUKmNgC6MOHJdIr8lEIxGRMD3X+qX6dk7CZXKQj00J6MAEAyPGdi3dT67aDr3TVMXd35b1RHf/WnBzMRW0nsgVFF2jj0RIl9Ir3QhhMgS11xzDR544IEO07p3747f/e53+PGPf4whQ4bELFNTU4OnnnoK99xzz867Sba1teGyyy5DU1MTrrnmmphloi1atAjz5s3b+fiUU07Bc88956jOEydORFvbrh/d77jjDtxwww2OlhVCCCGESFRLqFk7PV0BJ1xwSCJBX/nMFFLiUwUIaEKgAhQ/mEUILiwIcB4SlW5OwnyCTPv3KeYOSSIjHAejpSkIwul2uGNbOhVZJWix9cf4HQqtYljK3AE9V8LgOFwbij5ucsfRRNtWiYe/u7Xf3o6elrl3ORdc1t3TCwoKpIlMCtrOA0+50MvI95ENlTMcF4TIVzbZqA/qOxtV+My3tVamjiMiLwQpgI8a3tLOK7G64bCex6W5RiIeLhhta6gRAbsNPis13ylMx2AnobhCCCGEEEIIkWzSP08IIYQQjsW5Lh3XISckpx5Jpo45GzT9He28c/svxaQl+2rnvTUPeHG2jfMP6eTr4lCNIUDrR3ubr1VRMACsW6mfOXgEUMAMuAeArfX8PAlG40WE9ZSSHwMC67DONyCm2MkP2Nhwr4U+3dN3vXHBWn5edfRl0VomGK2gEOgTEUJsCkYLBmLb2DYmkabMfF22S+tRDnTrBWyPDSPsuepLAIdoF5vJ5EWlChHhG0NGUvciB235w1fcbzgY0Z9ma52+TJmDVLY8oZQCHXM28KY+wJwevQkY/5uYvg7nHKRw80Q+aOGqFwhXHE0J95FoCxJWMm9f96JwOFuMuvVAC5NCM3B4QvUQHamSbqBDTwKY86Gz6SPcDT688blZhFtPT1XtUmPpJn07H+rZBDprfzYkBkqhKqA/Nja1Ahu3Af16xN++KRitVyjqOPDDM+OvUIhcF/Vd85ytr+HRssu0Rb9dC6xtJAzslZn+enNXOw8kOtR0mPrwZX5epctgtK2G1FE5PxJAQsFo+G4OsFn/5VGNPCAJlcpCcYK6z9n6/9k77/g4irv/f2bvTrrTqctykWRjS7JxwUCwTTEYDDY9ENoTCCEklOQHcRqBhzwQQhzTTBJInAAPIYUaAw8x3RQXsAEXjLGNbVzlLldZvZyku9v5/aHiK/Od25PuTifp+369/LJ2Z3Z37m52dnb3O+95A3OzvqNMW7INqG6UyHHHv236cGP3xWjF+QHlXLWwazth8SLD9DiJeSrNMAzDaHn++efDgq7OOussbNq0Cffcc48y6AoASktL8eCDD2L9+vU44YQTgtLuvPNOLFmyJOKxV69eHbQcOutkPLZdsmQJpJSd/xiGYRiGYaKBkqY4EyRGIwVGLN2ICt33lWlXy1dUsjSGCYWS5wCJk1FFCyVyChQJ+KRiRlEAdsHzHiQTLpu1a1GiJH1W5V/JcG5YkbNZydObZHAqqPKHikUo0UhXP1eaoRGj+Rsibt9kqvOk2dJhF+qg4Giu6x5THfQX+H1Rn113XWCY/kqdv4aUrkYUo4EKZuDnvP2F1XWfocanjuA+J+diFl4lIbrzmpIkxgJK5Oo00mAIW9yOyzAMwzAMwzAMo4Lj8xiGYRiGiQqjG88wx50GkZqkz8qnX0cmXZeyHG6NM+z6f0jMX5+YfgUl8ACA+y+NMPD20B7Ar46xQWEJPeAeoMVoKU4IO8fnkIQMEC5tLSOznv8nM6H90yufMpXrC7MBd2pIXSonyl1QDGEEDL/UidH8inewVL3K1E9Q15cRQgQJ9QKRc+7E0zfQ5/lb6xJXf575hD7WS7dElgDIw3v1wsVCwiDiDRSjqeUfIisv4vH7E+KW+/UZnn8kbNWoQQJ/vlb/Oz6+sOv1bXclYBKb/+c2Ykj3AY39j6ovTNSInz9Gpk14XS/ALzvSJr3rTVDC2ZKlT9DyTiGASdNR2krXSZ3INhBKjJblr4Ed/uDDDiiwtlOG6c2ESJvOafoU5zfQop6Rvzbhpy4ocaTZK7H5oLW8354oYDPU11R5cDfkH3+i3tCRckxATAmsW0PFaJq+VUb/7V8zgej6d+pzSd42RZ3dMIBvnNP9IiUhgrgf6+DShvdQ0krIwwFMfzz+9/YtXomPtqrTzj3e+n5K2p2Jsqke2LSqa4XhvjjD9DgsRmMYhulhtm3bhp/8JPjmbvLkyXj//fdRVFREbBXMqFGjsHjxYowZM6ZznWmauOGGG3D06FHttocPHw5atnrM7m7LMAzDMAzTVZoJMYbTlpiAMlJgxNKNqKC+LwED6Tb1FFI+Uy1vYJhAKOmegEiYQDFaKBFSq2zplJZ4TbVAiBIOMT2DVSlXokRklsuTIFFbd8tgKY/Fz+xMVjEa8RlDxSLUdbSrv2WaTSNGs9DHoeRpaYZOjGb9uk6K4AI+L8trGcY6lV46OjGSGI2CB9j2D6SUWFT1hjLNLhw4J/vSBJeIsUKOfQCZVuWNnxiNen7jStL7MoZhGIZhGIZh+i4cn8cwDMMwTNQYXR9qJf7rpzEsSGwRdjtwylRlmv3Adiy9S/+5n16qlkzFmh3Eo+txBUBaqMwqlP30wF0UFtMD7gGghujXuej36QwgMrKBrGPvIkZ66d9gfTnwGe1NiylH6uj3lyMVr0RlOVHuotLgZZ0YzRccByFbPECLeiJgZObS++kPFNID8c/P3kWmPbYgMe0QAPzlI7oOXTA2shgN771IJolfPU3LKgPrUZ16wioWfwQjcgZCzJhNpss3/gZphtedn00zcPtU+rd8aknX4yB00qgpI4mE/YSEyp0JsAwvZoiCYuCS76vTAJyQR7Tb7by3IQ6FihNen8Ruohkp9RCmEQAYNAwYMRYD/EeR4a9TZtGJbAOpalLny/WHSNmmXmVpfwzT6wm51xQAXt5/I5nd4wUWbY5zmRQs+Np63msm0NdS+T7dH0JBMYStTUouKIG1N2T8BCV0dKVDOFJ0xWT6C0LTT1f0B+VOTWUfPREiPSsGhUpCNPdjAGCDiXf2XUmmr90HrNsX60IFs2wH0NiiTrvuVAv3Y+2U5Lfn/Xhel8siInxfDMPEHxajMQzD9DB33XUXGhqODR7Nzs7GvHnzkJ4e3Qu0gQMH4j//+Q9SUo7dwO3fvx8PPPCAdrvAYwOAw2F9UH13tmUYhmEYhukqpBjNSIwYjRKpePzqcjFqKElJmuGGQ6hfSrRK4qkmwwRAyYKchguGSM5HYTqRU0fb4iMEQg6DX+IlE8kmIrMqnUhLAkmYle/OUh4L361DpMBhJOczDOq3CBWDUdfRrkr3HCIFdqGe4ZqSngXlIdreNBt9XfdJtfAxmv0Hfl6W1zKMdaq8h5XrU4UTbiMjwaVhehObGtfgQOteZdrpmech056d4BIxVkgxUpFpU/82OlFid4l1f4VhGIZhGIZhGKarcHwewzAMwzBR0534kuFjIufpSYqIwZzlZRg1CHDY6E2/3BOfIoVCidFUMqsw9hHWrfxCCGca4KTjKGSV+h0a0vi5dkTyCzr/HNuySZt1zd7ETLj0VTmdNqZAMYi6nKg7oeeMTR1bASBMjIa6KjpvPxejiRFjybShh1aTaftr4lEaNUfULiAAQJ6F20m5bQ2dePIUWt4RKACpI+Qf/bz+KCk9kU6rOgQcPaBM0knudh0Fqhq71maVHVFvNzQHcDrUx5SU3LOwBEIn+WCiRow8iUz78RDNuQvgywRdx2LBzqOAn/BJlrRqZLKDhkEMHwMBoNSrFvbp5H+BVBGhe2FitAyON2H6C+HtebZZiwInLWX890qJOk9i256NB6wf77QRmsStmjY18N6Z6hf5QuKMqf41942YDnR9JtXkv7o6OuHc7pcnWQkVgCsY0bobLmL8JgB8uSe+7dIHG9X7z3IBF58QjRit7X+5bW3XC1NY3PVtGYaJCck5GpRhGKafsGXLFrz77rtB62bPno3Bgwd3aX9jx47FXXfdFbTun//8J6qriYfhaJu5sqt0Z9tYsGnTJrz66qt46qmn8NBDD+Gxxx7DCy+8gC+++AItLV2XZvh8PixfvhwvvfQS/vSnP2H27Nn45z//icWLF6O5uTmGn4BhGIZhmK7QbKof+jstyl+6i066IVUPShkllKTEZUuDQ6gD+ikxFMME0hsH31PtCnDsXPES9d9OnC9Mz+CyJZeIzGp5EiVq06E7DzqwInqz8t0mc3tA/Rah103qOmrle1QhhCC/F0tiNCJPmi2dlNBR7ZqKUDFcB4FlpsrP8lqGCecoIULKcwyMGEwrFMFZTP9hQdUbyvUCAtNzv5Xg0jDRkOvIV66v8hKjy2KA7r6fYRiGYRiGYRgmUXB8Xvfg+DyGYRim32LT2MF0lIwHisfFtiwxRlCDX1ctRLpT4Mpv0O+CDtUBjS3xj4/bQchkivMjv6eSi19TJxS2y610A+YP71Ovd0Un1O2PiGnf7vz723XzYNfEA9zxqoTXF/96tJ2oRwBw4+mKukQIiURhiBjNronVChOj0fcJ/V7ecP61ZJLxwI0Y7PYp03YdBT7fGf/6U90oUUnIfCYcB2uSqs/eJZNEUSkt2TP9AADp9wMNhAkuq5/XHxUnnwO46LgpeXUJZHV4rMRFES7b6zWSRR1lxGvYUp3kc79aQMUihjhw3jVk0jU7/6rd9KH5Ek0J6A91Bykl/rTQxJj76edKxa276B24M4BzrmzPp66XOy2GGlBitBx/iNyov18Xmf6DodZ63HDcbnKTlz6XyP2Ficv+6kdNU2Lan2qLYbdTRwFDcwnhZ+UhYPl75Lbigu8cW6DEaK0hz6BJMVqOrphMf0LbTw8/fyTV/wIgvnlTDAqUpOQN1orjAcABH75dN49Mf3d9fNujD79W73/6GCDf4mMaQwDH5QHS0wi8/nTXC0NNMsAwTMLQTFPAMAzDxJs5c+YEyTMGDBiAm27qXmf5F7/4Bf7whz/A6217qdLY2Ii///3vuPvuuwEAu3fvxogRtIb73HPVFuNnn30WALTlox7u79q1C8OHD+9cnjp1KpYuXdq5HI1AZN++ffj973+P1157DYcPE7MyAXC5XDj33HPx/e9/H1dffTVsFl5Qb968GQ8++CDeffdd1NWpp3dxuVy4/PLLMWvWLIwaNcpyuRmGYRiGiR09LUajpBsmTLTIZjiFKyHl6O3oBCcOQ/1iwytblesZJpBYy4ISgU7S1CF6o8SAlEiQ6RmsXosSJSKzCwccIiVi+5koUZsOK7IyK99brPL0FNRv4ZWt8JreTslYEyUa6cZvmWZLR72/Nmx9k9kNMZqRDrsgruum9eu6lbZdJ5WTUvLMqQwTQBUpRhtkYWsikEkRNML0LXZ7tmO7Z6My7aT00zAwpSDBJWKiIdeRj93N28PWV/ksTuPcBUgxWhL0PRmGYRiGYRiG6T9wfF4bHJ/HMAzDMFEi1IPVI2720KvJ/14yVPIUgFw2H09efwk+3yWxp1KdZ0cFcGJRnMoWcAwVWpkMANnUAGxcoU5sF8KJVBdkihNoVchYj7AYrct855fA3+4DABT4DuI/5dfhiqH0AOqH3pOYeXl8z5UyzSuQ04qDjy0b6wCFMAlAZ93pJCoxGiFuAICM/i1vEAXF2jfM8/ZcjTMHvKVMO2O2ifq/GnCnxq8OUVIrAJh7a+RrhFy9mEwTtz/c9gd1D+Vvl8LVVwPUvVwGC4RCEXY78NQSyJsmkXnkb2+A+MuCoHWpDoGV9xg4/RG1QOrSv5hofDJ6YSol+SwZqKm3lJijgMVosUbkDoLMGahs+3O/fBsfPtGKC58kJD0Afv6qxN9vTN4+35vrgDtfo1vZAu8BuKXGeuR0Q2RkQwIoaVWLQ8s0AtJAKDFarj9YHir6+XWR6UcQ94v3j96I328dQ25mSmD+BuCmZ028MaOLIu8osCJGm3gc8OItdL9I3vtf9MalJwJTLj+27EhV5/MGi9EkJR7mNoTpRHN9VvWtCUE2AIgC+j1Pb0cIAVlYAuzYoM33+OH/xvPZ31Omvf0V4PVJOOyx7xPtr5bYsF+dduE4gVSHgMsBeCLM0T4sF0ixC5iP/rx7BeL+OMP0OF17Ws8wDMPEhA8++CBo+cYbb0RKCv3gzAr5+fm47LLLtMfpjUgp8eCDD6K0tBRPPPGENugKADweD9577z1ce+212LePeEnZjt/vxx133IETTjgBc+fOJYOuOvb76quvYty4cZgzZ06XPgvDMAzDMN2j2VQ/ZXcazoQcXydXomRfTDiU0CXN5oadED15zQhPLRkGvXPwfarhhCAe03V8HkqMRp0vTM9gtZ4lUkRm5VjOJDg/rMgLrXwWK79BMojgKHS/RXNA+0YKRrshfUsz1MHcVvo3lDwtzZZOChypdk25f41QVfV3IB3yWoZhjlFJitEijCbRwGK0vs+i6jfItPNzr0pgSZiukGtXn99VXovTOHcBqg+RzNJqhmEYhmEYhmH6HhyfZx2Oz2MYhmGYAIwuDLVyZ0JopGNJQ6jkKQD51t+Rly6w/UH681PSsljR0CxxiOgqlORHGGz7iVqiBACiKOC3ySSEQoeJPo0zMRO29maEzQYcf0rn8jcb3sfMillk/ueWx//dIiVs+cFkRT0qpwfDoyjkvNaK0XzBy7WEYdCVDuHo3n1Jn+A7vySTTjr6CYTmHfTbX8W3DlH1x+UASvIjby/f+gedOOG8tv9tdnV6hxitjqg/AJDFYjQVovREYAwtRsPapZAHd4etPnWEwNgh6k08XsDTGn19o+SMpbr6c0AtRhOh7RATE8TVPybTph99F898j+53vLxKotmbvHEyzy1Ti/46oGRnnXRIYc/6Jkq8u5RZdALJQKob1d9TrhkiN6L6ZwzT1yAk3C6bD09cH1ku9M564Gh9/NufGuLc/X/nCOx91MDOhw2s+rUNhTnEJKt7twGbVpH7F/f8PVgqnmJNjEb2r7kNYTrQPc9RitEIMe13/zs25UlmLPQxs8w6/KbiITJ9waZYFugYn5XR7dyF49rajhwLIYgl+YBsbgI+eq3rhcnMhcjI7vr2DMPEBOIJCsMwDBNvysvLsXv37qB1F1xwQUz2fcEFF+D111/vXF65ciW8Xi8cjt45YN7n8+G6667DvHnhswYNHjwY48ePx4ABA9DS0oLDhw/jq6++QkODekBuKB6PB1dccQUWLAie9cPhcODkk09GUVERUlNTcejQIaxatQpNTU2dZfrFL36B6upqzJw5s9ufkWEYhmEY6zSbHuV6p5GYACSdcMVjNiIHAxJSjt4OKXQx3HAIddCPT7bGs0hMH4GU5yTx4HtDGHAZaUqxUIcYzctitF6BVclDIkV9TpsbtX5ihqx2kkFOYeU7sXIeuyz0B6zk6Sl0v0WT2YgMtL1YoySQ3ZG+UcempGcd+KWf7J+1idHU13VvFNd18vMGlDmSvNZpuCwfj2H6OpVe9aBWK2K05J3vloknFa0HsbZ+pTKt1DUWI1yjElwiJlqo85sSJcYCDyG2T2ZpNcMwDMMwDMMwfQuOz7MOx+cxDMMwTDDCsNE6ntxBQFX4uxZx3R1xLVPM0MnbDu8FANhtAiX5agnam2slvnUSYBjxeWu08yidFklGJHdupBNLTzz2d2YOcPRAeJ6K/eptXepJxpgQSk8Ctq7pXJzgWUNm3VsF1DZJZKXF7+3jdsLzO3KQYuV+QhCTkgoMHBq8TidG84fEdx3arc6XY8Gs1Q8QpSeSba1TtmCM6yg2edTf1Yb9wHfiVzRSalWSb7H9o+oUAAwd2fZ/JDHaob30PrK5DpEMGwVs/oJOX/cpMGR42OrifGDTQfUmWw8DJw9Vp6nw+SV2Edez0oGEQKa+hpa9FBZbPzhjncC+QQhyxwZMuOgagGilmlqBXUeBMYRQr6fZqOjmBHJSywZ9Bld7fGVGLilRq2psk57luPVtYh0xn2mmvzZ4BV8bmf6CIM4Z08TJQwWodqczm2y7Lg3IiH3RAqki5lPOSQOKCBlaELs0tqQU57H+UAdOIpaosT54+aBa1shtCNMJdY4BhBhNfZ3rF2Jai3L/k5vXk2mf75K49MTY39cfrFWvLx0IDM1tO97ADOBAjX4/JQMFsHcb0NqNCdYHFnV9W4ZhYgaL0RgmyfD5Jcr1Y1WZGFCU0/bCridZtmxZ2LqJEyfGZN8TJkwIWvZ4PFi3bh0mTZqEoqIi7Np17Abwz3/+c9DMii+//DJOP/30sH0OGNAm+Jg6dWrnuuuuuw6ff/5553LgfgMpKupex+/OO+8MC7q65JJLMHPmTEyaFD6bh2maWLlyJV555RU899xz2n3PmDEjKOgqKysLM2fOxC233IKMjOAnBB6PB0899RTuu+8+NDe3dYRnzZqF0047DRdffHEXPx3DMAzDMNHglz5SopE4MRp9HErIxIRDC07SYUA9SwclhmKYQOIhC0oELptbKR/qaFd8RP13sBgtqbB6LXLZEifmslL3k0FOYUmMZuH7tSJ5S2ZRolbA2t4eSCnjIoFMM9TB3E1+/eA2Snbatk83KXCM5rpOte2B5xzLaxnGGqb0o8qrjsDNc6hGAYTCarT+yOLqtyGhnlH4/NwrE1wapivkOtQBgDW+KvilDzYR+7ABsr+SBH1PhmEYhmEYpn/D8XmJo6dj9Dg+zzocn8cwDMMwIRjq2CUAwGU3Ay/MDh5Q60gBLvpu/MsVA0SqEzI9G2hQjB49sAtSSgghUDpQLUZ7caXEJ9slPrvbQKGVAfFRojomANgNYFhuhI0P7KTTJpx37O+MSDsKgcVolhCX3QQ5/9nO5fMbF0NIE1Koz6ftR4CJw+NTFr8pScleab6i3paXqTMPGQER2h5QMisA8AXHQUhqvxYHoPd5zv4WkJVHyqBuTv0Id3muVabNfl/i4Ti+pqTEaEqxXghSSqCcEKM5UiDS2tsUqi511KMDhPgjdzCEM3knhexpxFW3Q374bzqDQm4KAD89z8C769XvxE95wMTa3xg4aai1697eKsCn3hVKqfnqdNewAhajxYXTNPL8Fx/FyT/8HcYXtokYVSzYJDFmSPLF0LT6JPYQjj0AMKQfP6h5Qb+TDkFRZg5KWxeT2XZUABMjvP5vaFGvTw+NByws1e+IYfoKlGC1qQ5nFANjh9Cizg52VEicWRrf9qdaPRcicix2QeRHr9GJ538HwhXSeGTmqPPWV0Oa5rE++X719VJw/5ppRwih0QsGp8j6GqCuSp21H4hpRWFJBBVjGxc3fECmPThfYtQgEzecrnmO1gUoOeOQrGN/l+QD6/bp91MiDkHeclr3CuPO7N72DMPEBBajMUySUV4NFN9LPP1iYsbOhw0M7+GxkOXl5UHLgwYNQl5eXkz2fcIJJyiPN2nSJNjtdgwfPrxzfXZ2dlC+wYMHB6WHkp5+7MWe0+kMStNt11UWLFiAv/zlL0HrZs+ejV/96lfkNoZhYPLkyZg8eTJmzZoVVs4OXnvtNTz77LGXb8cddxyWLFlCfg6Xy4U777wTZ5xxBqZNm4bm5mZIKfGzn/0MW7duhaF7Cc4wDMMwTExoNj1kmtNwJaQMDiMFduFQSoooaQcTThPxXbkMN/zSr0yjpHgME0g8ZEGJIM1wQxWL4DEbIaUkxWiUcIjpGayIu9ryJa4+RiqTgIFUQ33fnEisnKPW5Gm9QwRHkWo4IWAo5TMd185W2QIT6mtldySQaTZCjBahf6OSOgbu02GkKNO8prXrul/6yT5g4OdleS3DWKOR2A7JAAAgAElEQVTWVw0/fMq0PAcVgXsMQcyoJy2FSDC9kXpfLVbUqgNdB6cUYZx7gjKNSS4oMZqEiRpfpUUxYnQ0m+ooyURKghmGYRiGYRhGBcfnJY6ejtHj+DxrcHwewzAMwyggRE4AIEZPAB5+DfKJu9sGZQ8fA3HXExCDj0tgAbuHmD0P8ifTwhOam9qEMXmDUZwvEDpouIM9lcCMuSbenGGLednKjqiPOXyABekuJSK65PsQ9oDhc9Sge4q05I0xSCbEuNMgr/gR8OYzAAA7/Ni64wSMKt2kzL/tsMTE4fEROuytArzqsAql2EpSdWeoQtJi18Rq+UPew1L7LWJxA4A2udcTiyG/d7Iy/ee1T+MuqMVoALCzQra3VbGHaotKrByv+gjgUcfSiD++c2yBEqO11yNJidH6gaShO4ixk7TRC/LIPuV0cOeP1f+23/6biS0PGGTMRCCUWA9oEzgoIUQvSEkF8gsjHpOJHmF3QJ5/HbDwFXWGg7uw8I4RGHyX+jniHa9K/FzRneppdlcCpuYkeL382zi5Zb12H6JdCisy81DgOwCn6UGzYpxG2ZHI1/JGUowW0E4KARSM0O6HYfoOROzdcw/DuOYnWHCHgR88a2LpNro/u5OQSceS7ojRpN8PfPQfMl3c8efwlZmEvFpKoLEWyMiBbGkGDu9V5ytiuSJjARlygdSJafuDbM/ifWkKvLigYSEWpJ+vTL/xXxJnFEuUDIzdvRklRssLeDxTOpB+btVB8YePatPFA69A/uY6fWFCRY4Mw/QI/IaYYRimh6iqCjYJ5+RE+YJNg9PpRGpqqvZ4vYVZs2YFLd92223aoKtQsrOzlYFXUsqgfdvtdrz99tuWgsc6Aro6KCsrw5tvvmm5TAzDMAzDdB1qUC2QODEaQEtHPJry9RV2ebbi5UNP46nyB5X/Xjg4B+vqV0bcj4cQlKTZ3HAY6uAhn6kWQzFMIOTg+yQWIQG0FKrJ3wifVMtLAMBOCIeYnsFKPbMLOxwicb9bJOGYy0iDoQnqThRWhF5pVuRpFvJY2U9PYQiDFHx1tG/UNRToXltHfS9Nflp8Fik9zUiHgxA4UsLHUHT9v8Df22GkkOcWy2sZ5hiVXvXsx4A1MRpJaNAI02dYWvMeKak+P/fKpOhHMJHJtdPnd6U3PhGTOiE6wzAMwzAMwzBMIuD4PGtwfB7DMAzDKNDJOA0bxFmXwXhlM8SiGhgvroM46azElS0WHDeaTmsXs5RS4pZ23lkP1Hli/35oB/HImhTJtCOlJAc1i1OmBq+gBt1TuNSTjDHhiO/eFbRc7N2N8c0blHm3a8RB3SVqKVF5mTqzajC8TSNG84XEQRBiNMHihk7E8DEQ//2UOm1/GZ6/iR5c/8oX8XtHXUa0RaVWXqlTQjwAGDHu2N+kGK3dgnJwtzqd5UGRGTiUTtP8PheMpTfbfgT4co+1w5dVqOvmkCzAnUrUaapcQ0ZAsCQ8bohJ0+nExf/BwEyB6WPoLPuqki9WZu1eukwNmI5vNrwfeSeu9vjFzBwYkChpVfexqLYy6JikGC0gniC/CCK15yf3ZZiEYCPk0rVt06sXZAssuMOGmjkGpoxUZ423GE1KiUoi5DYnzYL4aMNyOu2KH6nP9wzNs/u69ufuh/fQMYosHmYCoUS2ofWH6n+lpAIDCmJbpmQkCvnb+Y2LtOlvrottn4iUM7qP/bZW7s2KDyyjEyeeB+RamEyWnwkxTFLAd8UMwzA9RGggVOjMkN0ldH+VlZUx3X8iWL9+PZYtO9bxzMjIwKOP6g29Vvn444+xcePGzuXvfve7OPHEEy1vP2PGjKCArrfffjsm5WIYhmEYRo/H7yHTnIREJB5Q0hWdqKQvsK5+Jf649x58WvsBNjauVv5bWfcxnjkwG/OPEjNotaMbIE1JTajB+AwTSBNxHib74HuqfB6zET5N3XcIIkCK6RFctsjXIpfhtjRzZKyIVPetiMQSgZVyWDmPU4UTRoTH3onsM3QFnSgRoK+hum2tkGaoX9xFFKMR5TFgwGm4un1d1/WvQoV6VB2hrg0M0x+p9KpHAbiMNKTZIr/Ap65gyRfqycSCVrMFS2veU6Zl2XMxMePsBJeI6SouWxp5ra+KkxhNJ0RnGIZhGIZhGIZJBByfFxmOz2MYhmEYAq0Y7ViaSE3cRJ4xJSsPSMtQpx3YBQA4dYQ+rkFKYBs9H0+X2UnIZIrzI8RZVB0GPMR74dBB8rpB9yp4EKx1FDKi0lb1YPPfvSPjJpTZfkS938GZQIZTUZf2RyEwo2QWQJAYTbY0A0f2qfNFMQC9XzCUEMXVVmLSwHpys2Vl8ak/tU0SFcRhSwdaiPmiRHvuTCB7wLFlUozWPolqLXGPmV8YuQz9HHHVbXTi7i1k0qQI175bXzDxzlcS9c36ukfJGXXyBknIPVFYrD0W003GTiKT5J62unLyULpefPh18kXLfPi1en1JPuAs32xtJx19n5Ent23rJcRoFiSnlBjNLQP6bSw0YvoTjlQySTYdi9V1pQicXqxuf176XMLnj1/7U1EPNBLn7uAsCzvYQ19rxegJ6oSsPHp/ddVt/9donr8PGmahYEy/waoYbT/R/yoo7h9i2ijuKyZ5VmvT1+7tbmGCqWxQt3G5AWGHp0XouwPAqNbtdOKYSYBDPcYhCH4mxDBJQT9olRmGYfoniRxkHS8WL14ctHz99dcjMzMzJvteuHBh0PK1114b1fZpaWk49dRTO5c//fTTmJSLYRiGYRg9LWaSiNEo6YZGVNLb8Us//u/I3yFhWsr/fuVr2sHV1ABpl+GGXahnVfRKr3I9wwTiIc7DZB98Hyr36cDjb4RPU/fthHCI6RmsXIsSLemLJGuj6l6isfK9WJF+CSEi7itZPjOFi6hHHe1bNKKwaKCESJH6N41+dTSoy9YmAezudT0aERwpr+3DfTSGiRZKjJbnsDK1NUCr0Zi+yIraxWQ7f272N+Ew1G08k5zkOvKV66uIdqE7SCnhMdVTNya7pJZhGIZhGIZhGMYqHJ+nh+PzGIZhmF6N0InRNFKkXoIQAigYoUyTL/0eADC5BBgZ4fXR8ytiPxh/BxFuVqp+xH0MakAzABQES2VEZm5UZRKu5I4xSCaEYQDfOCdo3UjNQOTjf2PizbWxr0f//Zp6nyMHha+TjXVtYj0VClGLEAKwE+/IAsRoOLArfOB9B5QIrL+iEcUdv/1dMu39jcAXuxPXDgGR20UAkC88ok4oLAm+j+yiGE1kRdeG9UsuuoFOO7IPslr9I99ypkCGU5kEAFhfDnzrSROTHjKx6yhd93YQcsYSQvIppQTmP6feGYsU44o4bjSd+OG/IU0Tt51DP//50YsScz+3FlefCKSUpKxtWkkLUF9tbUfO9r5PuziuhJCcvrBCwjT17XBDs3q9OzCejwWATD9CXPn/6MQvFgUtFg8g8qHtetTYEh85Wrf7QuXqNgMAcO7V6vVpGbSAuK59ApT6KnV6ihPCybFITACkGC34mi0JQXZ/uS4JwwDGnho5I4AzPSsw0fMlmT53lcTKnbFrk6qIsP9AMdoJhfp3dAWOergk0RFxpUN88wcWxWj8TIhhkgEWozEMw/QQubnBD6Nra2tjuv+amhrt8XoDy5cvD1qeOnVqzPb92WefBS3n5uZi9+7dUf0LDALbvXs3TDN5HmYyDMMwTF+lmRhUaxf2hA7I1gmM+iqbGtegxmd9lnMTfnxet4RMbzIblOvTbG44CNGTT7ZaPj7Tf6HkN4mWUUULJfNpMhu18iBKOMT0DDZhQ6rQREch8ZK+SHXfimwsEVgRelk9jyPJ4JLlM1OQAtb2fgYlCrMLBxxG12WJ9HHV1+xI6W6jbYbx7l7XKakKEC5WIftoLEZjmE4oMVquRTGaIMVoyTcLLtM9/NKPRdVvKdOchgtTsi9McImY7kKJ0Sp9sRejtchmUqye7JJahmEYhmEYhmH6DhyfFxmOz2MYhmEYAkMnRusjw7Cogb57tkB6GiGEwKp79Z/1yY9lm8wlRrT6JPYQ4WmUTKYTakCzOxPIDjEKZOZEVzAnP9eOBnH3U0HLIwmZCgA0e4FbXzDR7I1dPTpcJ+EhQq2U9Ugn1aOERFbEaPvL1HkMAxiiFhP2WwYUAKkuZZJ86Gb8+Vr6/J/x79jfI2wnpFapdqAwW7+tbGqg61RRiBAvkhiNEhhl5ukLwUDkDYZ44BUyXT5xt3L98AECn94d+Tq/7TDwmzfpdquMknxSYRlffUYkAKKfiDl6EvHTP9CJaz5Gcb5Aeiqd5baXJOqbkyNmZsN+4CDx+OvCAeXWd+Rqi8kTQgDX/UJ7Lf94K70bv0lfk9MDxhEIFgAy/YnLf0gmyd99L2hZdw/0/kbg2WXxaXvKiL5QhhPIz7CwA+re7JSpEGnqHQghgAzi+XpHn6iO6hv1vufyTLyhxGghdZvqt/ej65L45V+s5QPw4d5LtXluf8mM2TMiUowWMkTkl+fT7eQruU+SaeLJjyAKigGbhbFYLvXE8wzDJBbiCQrDMAwTb0IDoaqrLVr3LdDc3Izm5mCTbV5e73v4ffDgwaDlcePGxWzf+/btC1o+/fTTu7U/0zRRU1PTKwPcGIZhGKY34TE9yvWphjooIl44CeFKX5ZuLK9dFDlTCCtrP8JFudeEzZbuNVvhI0RPLsMNByF60smhGAZokzc0E+1EsouQdMJF6nwB2sSQTHLhsrnR4iNml0HiJX0uI4IkLEnEFJFkZoB1iUZEGVyE76SnoeR5Hf0Mqr/RXclImk394q5VtsAnvaSIkRK1dXwOSl7rNa1d1ynxrNNwwSaCZ4gjJZN9WF7LMNFCCZAGOBTTo0eBZDFan2Nd/QpUeg8r087KujDp+9dMOLl2daR9lVcz1WsX0Ynjue4wDMMwDMMwDJMoOD4vMhyfxzAMwzAEho1OE31EjKYTM61eDEy5HFlpAplOoI4OgcCmg8C4gtgUaU8lYBKvnEoizPEjqQHNBcVhsWtRD5znQbDRMXh4m/CpXe40snW7NntVI/DJNuCCGHVF311Pv7ccqXolWk4IzBwpwMCh6jRKjNYhtAKAQ3vVeQYNhXB0fdK7vogwDMjCYmDn18r0E/JbAKi/s9V7gL2VEsPyIsgTo6CMmFOoJB8wjAjHWb2YTisKESzYiGtNRz2qq1KnRyt37K+crpnoa8tqMunEIoG7LxL4/Qf6GIg31kqYpgyrE6YpsTNKMZr85E36QCxGiz/FJ5BJcumbEBOn4epTBJ5foa4TDS3Awk3AVafEq4DW+XyXuox2AzjPvt76jgL6PuL4U1Dy9r/IrPPWSEwbo24bmzTzproDJ0sdOtJ62RimlyNsNshho4C928ITva2Qfj9Eex+hWD3/YSevr5H4yXmxL+NuUlaN8HsrFYQYTXzjHP12mTlAjeIi2tEn4r4RYxWqnoaJ0Yi62p/6X1F81iyzDr8dvxW/23C8Mv2rcmDX0chtlxWqiTnVc0LCDieXCDy+UN3/GVWxUr2T6++EGHlS29+OyGI0wc+EGCYp4JGTDJNkFOUAOx/uIy/LkpiiJLjXKSwsDFo+dOgQKisrYxIg9fXX4S8EQo/XG6isDL6LzsmJ3Q8Xuu9YUF9fz4FXDMMwDBNnWgjhkTPBghNKPNJXpRt1vhpsaKADASgqvAex07MFJWljgtZTAhWgTaLiMNRBLF5T84aUYQA0m8QTcHRfGBRvKDmAx9SL0RyCA+WSDZeRhhrQ95yJFkFQkq3O9CQ5N2zCjhSRilbZQuaxIk9ryxdBjEYIwJIFSuzWIRihRCPdrVtpBv29NPkbkWlXT3vb5G9Qru/Yn51op3RtWyCUCE71PZGSyT4sr2WYaKn0qqO4cx0RRpN0EruAciZ5kVJiYdUbyjQb7Dg355sJLhETC/Ic6qijuIjRNNfeZBHzMgzDMAzDMP0Xjs9LHD0do8fxeZHh+DyGYRiGIdAN9tZJ03oR4uSzIF/5kzoxYHDwj84W+OMCWg7z9FKJv34nNu+PdmgeVxcPiLAxMaBZOcg3I8o+T1pyxxgkG8JuD5pU6RvNXyHDX4d6Wya5zfYjEheMi0092qae9wcAcPZIxTHKibpTMKJTShGGjRg87QuIg2iqV+fJ6d6EVX2WolJSjDbBsRuGGEWKE1fvAYbF0FNNtUWU1CoIleSkHXHimcErbMSwXr8PssUDtKjjpZHZ+6TcPYFwptHTu+3dBnP2bYAQEIOGAmddBlE6vjP57JGRxWgeL7CnChgRcn3aXwO0+NTblOYT7dw+QtAIAGMmacvBxIDRE+i0dnnmlJHA8yvobJ9ul7jqlJ6Pp9lOXANPGQZkHt5ibcpDuwM4PsDyVliCic1ryOzry+m9NmjkuulmQMxhYQmdkWH6IvmFdJ/h8F6goE1ifVweMDQH2EfM97GCcEN3l6PqkGBLz/ulaQKUtDpUEhsKJbCua/sCZD3xRWTw82ImBIN6B3jsmiWbm4CjB9TZ+tF1SaRnRTUlcq6s0aa/sEJi5uXd6xNJKVFP9CGyXMH7nno8kGoP73+PHgzkfbxAuQ8R+PtS0vNA0jjWkWGSARajMUySYbcJDI/00obpE0yePDls3erVq3HhhZpZKSyyenWwtMLlcuHkk0/u9n57GktGcYu0tsZeqiFDjdEMwzAMw8QcSnrkMlwJLYdOYNQX+bxuCUz4lWlnZE1DmuHGx9XvwoQZlr6y7qMwMRoldAHaBkjbhfrholWBCtN/iVS3khmqfE1mI7yauk+dL0zPEamuJVpE5oxwvESL2nS4bG60+tRitBSRCpuw9jg72X6DaKFkdp72fhAlGO1uO6eT6DX5G2gxmkmI0doFdA6indK1bcHHtv55I0nlGKa/45d+VBMCpDy7NTEa9YSWn4z2LbZ5NmJvi3oQyKTMKchx8Ius3gglQKz2VcCUJgwROzGEThzvSrDcnmEYhmEYhmFC4fi8/gPH50UPx+cxDMMwjAXIAba9jNMuIpPkk/8Dcd0dAIDbpwo8vlCSQqInP5bIzzBx/ze7/72UHVEfpDAbcKVE6KdQg+9VA5qpAfcUruSOMUhGxM2/hfz7/QAAt2zCnVV/xsz8+8n8P31ZYsa5sTk2VY8AYLKiOkhKqldUSh+EGjwdIEaTHuJdCdcnJeLWmZCfvKVMy6zYhnsuOR4PzVf/ttc8beLQHw0MzIzN/QxVh0oGRt6//Nt9dOKk6cHLdlqMhroqej+ZPWwh703ccDfw0u/VafOfBdAe6/DCI8DMlyDO/hYA4MJxwGkjgM936Xc/+jcm6v9qIMV+rG788zO6DSpRz2NFyz0BiCwW4cUbkZ4F6UwDmhVjFNp/m2sntYlitxxS72POYonbzpE4fnDPydGklKTMdtQgAfmvB6zt6JoZEO4AmWlRCbLMOrjMJngU7/qX7wDqmyUynOGfvVHzaChIjNYugWKY/oL44SzIL6co0+Sbz0D8+BEAgM0Q+PWlAre9pD63W3zAloMSo4fEtu2pJrqxuW4Lx6k8SMtdI8mmCIG1rKtqi1mk+kfcN2LCIOpq4PuFA5qOnkqw3pf51q3AW/+wlDXbp7lPATDrXYlBmSZun9r1Z0StPsAXPjQRAJCeGryc6xb42TSBP3x47LcVAvj1hH0QHxMHCJQ0UrLqQFwZkfMwDBN3+sgTeYZhmN7HsGHDMGzYsKB1CxaoDbTRsnDhwqDl0047DSkpKTHZdyIZMCA4CrGqSt9p7uq+nU4nTNOElLJb/4YPHx6z8jEMwzAMo8ZDiNFSEy1Go6QbRPl6M1JKLK9dpEzLdwzBDYN+gqsH3oxxbvWMWV/Wf4ZWM1hyoxPIuWxuOIS67+qVsQ+eZ/oWlCwI0At/kgFShORvhM+k5UEOg8VoyYbLphc9JFpEFkkClkySMF1ZovneIn2mZJLBqaD7GW1tHCX56u5v2SEyU0HJzwCNuKz9e6au6z6L13Wq36BqN6nfVnd9YJj+RI2vUikzBoA8R3dnJudBqX2JhVVvkGnTc69IYEmYWJLnUEfa+6QPdX79bI7RQj0fsQsHHEbve1/FMAzDMAzDMEzvhOPzIsPxeQzDMAzTBQxbT5cgJgi7HbjoBjJdHj0AABgxQGDbg/qhZw+8K3Gwpvvvinao5/ehRTKBEFIZUaQSo0U5cN5Fv0tnCK78UdDifUdn44X9N2k3OVwXm/eN2w+r199zsVCLgMvL1BvoxA0WxGjwEHEWLEZTIkaMpRMP7MSsy/Uijv9dGrv31duPqNePjDDXmNy7lU781q0QoWJNahC+3wfU6sRoUcod+zHi2z+zltHbCvnE3ZBmWzyFzRBY/EsD939T4NzjNZv5gbfWBa+b9a66LuZnAFlp4fVY+nzAwd3KbcQDr1gpPRMDxMwX1QmH90G2tsCdKvDZr/T9odnv92zczJq9dFqJg+hkdXDSFODMSyHu/l+IH88OShIZOUBmLubu/z65+fPL1Z+9QT1HLgAgvSOeb0ABBF8bmX6GGHcqnfjy40GTQ/zobAN//C+6H/SzVwh7UDeoalSf0zlW5kEsp2WfUN2bBUL1cTqEaHXV0W3H9F+oCWACxWiUmNZmAwYfF/syJTHihrst5/V6miPm+Z/XJRpbut4v0vYfUsPXzb5K4O83Clx+EnD9qQLv/czAdz6g+y1B9/pWxGhp/EyIYZIBFqMxDMP0IBddFDzT0osvvgivlx7wboWKigq8/fbb2uP0FoYMGRK0vGnTppjte9CgYwP9mpubsXev5gkgwzAMwzBJQ7Opnj3EqZiBKJ5Q4hFKVNKb2dW8FYdby5VpZ2RN6wwWOj3rPGWeZtODdQ0rg9ZRchIDBlKFEw6hDhzyyu71lZm+j+4cdCZYoBgtlAipVbagWRIzJwGwwcLDeCahUL+l1fRYk2yiNh2678YVxbU+4mdOcL8hWqjydQjIKFFYd3/LVOGEAXUQf5NfJ0ZTp6UZbS8C7ULdTlm9rlPiNVX/rz/10RimK1R6iQhu0MKkUJSDBQBIFqP1Gcqbd2NT4xpl2gnuiShI7V+BP32JXDs9WqNK0z50BVJsmkRSXoZhGIZhGIZh+gccn6eH4/MYhmEYhkBq3nuEim16MaJ4HJ246thEmsX5AjPOpQfj+01gwabuvyvaWaHeR8lAvRBJ1lcfGywfSmFx+LpoB847+dl2tIiMHCA9O2jd9XWvYtaRmeQ2izbH5n3jXqIqjCsgNiDkDaKolD6InYjXChSjNROT7LJoj2bSdOVqWb4DQgj8YDLdFry3ITb1p8UrcbhOnVaSr2+LsPojMkmUjA9fSYrR/EBdJX0cln9YJ3uA9XPu4G4gQG6Xliow83IDi++04XTFpaSD9zceq3v1zXQ9LMomEo7sC247gjbStENMbKG+a9MEDu4CAOS6BeZcp2mHNvZs3IzuOlpcuZpME3c9AeOJRTBmvw5x2c3quKDCEpS2EiJRAJ9sI8RoGneKuyOmQNVXY5j+wIln0mmVh4IWf3qugI24Dd11NIZlaqeK6MbmWrktomRTmblt9wg6KIF1pxiN6OhH2i/T/7AiRjuiHiOHQcMgKBF2X2XgUMBhbeKf4307I+apbwaW0d2GiEQrRhNC4JazDLw5w4aXbjVw4ThB/74pqUB+4bFlK781C1wZJinoO0/kGYZheiE///nPgx4YVVRU4Nlnn+3WPufMmRMUvOV2u/HDH/6wW/vsKc48M/gGf8mSJTHb9+TJk4OWYzUbKMMwDMMw8aWFEKMlWnBCCVco4VdvZnntIuV6AQOnZ57buTw+fSLctgxl3pW1wQEflJwkzZYOIQTshvqhqk96g2bAYZhQqHPQaaTBEMk9Y69OCFXvq1GutwsHKSdheo5Iss6EX7OSTNSmQyf2iqacurwGbEgRirdiSQT1PXQIRihRWHd/SyEE0mzqYEBdH8djEmK09n1R13Wv2WqpXKRYRfE9RfruGKa/U+lVT4+eZqRHIVfkvkdfZ1H1m2Ta9NwrElgSJta4bRlkP6jKG2GG6Cih7vsTLbZnGIZhGIZhGIbh+Dw9HJ/HMAzDMF3ASO74k6g47UIySX7wUtDyReP074huek6SUgyrlBGPqksize+zXzMwt7AkfJ0rnRYSqXAm92SMSYti8PAFjepYRADYfLD7h/T6JOoICcuQrPA6LJvqgapDitwAihR1pwNq8LQ/QG7kISag40HVNJQcZ9MXAIALNS7HL3YDD8030eztXjtUTYhAAGBIln5bWaMxk5x6fvg6XTtUTTSIaRn9T9TQDYQQ6u+egpC5XKi5Bj63XOIfn5qQUuIoPe8kxhcp2qBDeyDv/S96IxZGJY4hI2iJylfLOv+8YCxdFyrqgdqmnotxr6in06Y1f0InElLKIIpKcHzrNjK5kgjNo8QmDtmKFLRfM/MGRz4+w/RFxkyk0zatClp02Om2Z0cF0NgS27anijinrYjR5O7N6gTVfVkIIoOQvx5tv1Gor1Zvx9JYJhQrYrQ6dX1C7iD1+j6MMAzLz0gmtn6FHAvhfxfNMfH5zq61TVoxmjPy9rLFQ4vR7Cltn7cDK5+b5YsMkxSwGI1hGKYHGTt2LC6++OKgdb/61a9w+LB6gFokNm3ahD/84Q9B62666Sbk5vbOm7vp04Mfrs2dOxf19ZondVFw4YXBL3L/8Y9/xGS/DMMwDMPEF4+pjjpwGokNPqLEIx5/Y58SdzWbHnxZ95kybZz7FGQ78jqX7cKBSRlnK/NubVofNMiakqt0fK8OQQdu+GT3ZnBn+jakPCeJxE8UKsFPB3WEGE13rjA9ByXP7ED3W8eDSKKbRJdHh+5cjaacus+cZnMnvVBQ188AohOFRQv1GzT56ci9RiLN3S5Go9oqq9d06vOqvifqu+uL8lqG6QqV3iPK9XmOgZb3Qbagfec2qF9T5a3A6rpPlWnDnSMx0qUZbcAkPUII8nyn2oeuEs/+CsMwDMMwDMMwTDRwfHkdzi0AACAASURBVJ4ejs9jGIZhmC5g9J1hWKJY89x/7VLIZfM7Fy86AbgowmuCaY+beH1N114amabEzliL0VJSgQEFYauFEEA0g+dTWYzWFcQv/hS2bkLzGjL/w+/Jbsde6qRWeap54nRSvaJSOo0aPO33HfvbQ8QpOPldCYWghBnb10HWV+OKkwXpOACA37wlccGfTPjNrtcjSu4DWJCB1FWRScrPphWjEe/usnrnvWdPIn5wL5A1wFJeOesHyvW3naOPNfvRixIz5kpSJAMA/3NR8D7kgZ2Q/28KsGODeoO8IRAsUkwYIiUVGDRMmSb/8GPIdinP8YMFvnkivZ8nl/Rc8Iyu/g0+tI5MEwUjIu+8sAQGJCZ5vojq2I2E2CQ9cCJWlo0w/RTx3f8m0+Svvw1ZWxm07n+/S1+LTphpwuxG/yeUrorRpJTAq3PUiTrpcAeZRHuwfR2k30/3tajtmH4Mdb4cO09kPVGf+ul1Sdz5V0v5HA1H8ejV1sZhnPNHEws3Rd82NRCycwBIV88JG8yB3WRS2Oe0IkZj+SLDJAV954k8wzBML+Wxxx5DWtqxQdM1NTW46qqr0NCgmSpCQUVFBa655hq0trZ2rhsyZAjuv//+mJU10YwbNw7nnHNO53JdXR3uueeemOz74osvRknJsRvqVatW4V//+ldM9s0wDMMwTPxoNj3K9amJFqPZVFEygB8+eGWrMq03srZ+OVqk+qniGVnTwtadnnWeMq+ExOd1SzqXO8QuoXSIbBwihSxTX/p+mdgTqW4lM5TMBwDq/OoZaewsRktKdL+llfRYkyqcEJrHwIkujw7duRpNOXWCtWT6vBSUMKRFNsMvfREFo907trqPoxOjUWlpRocYTX1dt3pNbyLadtX3RH13fU1eyzBdpSoGYjQKyWa0PsHH1e/AhF+ZNj33yqSXizKRyXWoR48FysxjAXX97g19MYZhGIZhGIZh+h4cn0fD8XkMwzAM0wVEHxuGdeP/kEny+Yc7/7YZAm/NMFCQTe/KbwKz3jW7VIwDtUCLT51WOjDC+4n9O9TrC4ohKJFdNIPnWYzWNSZfErZKALiz8nFykxUaT5kVdFIYpcihvEyd2ZECDBxK78xGxGz5AiaIo8RoLnVcBgOgsJhOm/8cUh0CZQ/p2+DPyoAPv+56EaKuQ4HUqWP8cNEN6vWaQfiyhnh3l8GD8qNFlJ4I8fdlED96ADj/O8D519GZm+ohG2rDVg/KFHjlR/pr0TOfSHy1j46bGDUoeFm+/jRQpZG2WxHIMLFF1wa988/OP9/4Md0O3fdmz8XOVDeqj/3jqYIUgYqf/kG5Pixfu9zxR9X/VKZTbWdDi7pMbjPAZMqyEaafInLygSHD6QzvPR+0+J1T6evQnkpgybbYlMs0adFnrjvCfdlXn9FplAA3EF178MVCuq/F7QgTChXjGBhHXl+jztNPxWg492pr+eqqcOsUA5/ebeCn5+nbhFYf8OD86J8RNRBiVSEAl5XhU/uJ+3wg/HPaLewwK8/CQRmGiTd97Ik8wzBM72P06NH461+DLbPLly/HxRdfjPLyckv72L59O6ZNm4bNmzd3rjMMAy+++CLy8yNNkZTchAaOPfnkk3jssccsb19bW4vm5nCZh91ux6xZs4LW3X777Xj99dejLuOiRYuwc2c338IxDMMwDGOJZr96Sj+XkaZcHy90whUPISvpjSyvXaRcn27Lwvj0iWHrh6YWoyDlOOU2K2s/6hSSUN9Rx/eqF6N5yTSGiacsKN6kGrS8qs6nfvGiO1eYniPSNYmSa8YLIUSvEYXpvrtoyunU7iexfYauoPusHrMprhJISoxGXbv90kdKVDskZZTE0eo1nTq26nuivjsTJllOhulPHI2JGE0dzMBitN5Pk78Bn9UsUKblOwbj5PTTElwiJh7k2tXne5WPmHW+izSbxPMbW/L3xRiGYRiGYRiG6XtwfJ4ejs9jGIZhGBWa9x6GLXHFSABi6Eg6cfNqyAC5k8Mu8OAV+oGv68uBKkLMoaNM85i6JEJ3S5YTYjSdVCYauRCL0bqEsDuUkpnjW7aT2yzZ2r13jpU6qZXqFQVVdwpGQNg05zo1eNoXYPdrVhdGuJInTifpKKLbI/nVMgDA8DzAnarfzWuru16PKBFIWgrgdESQgdRXqddTsg7dIHxKmBWN1JHpRAwZDvG9u2Hc/xyM+58HrvgRnXnLauXqScP1v78pgXe+Ute9XDdgGCHbr1mq3Z8lgQwTW4pKySS59pPOv22GwEgizEYIoNnbM/EzVepX9Mh1+oAj+9SJms8cnK+tPuYSkzxTx6bEJunmsckKBLdrTH/m+FPIpMB2BwDcqQKFGkl1d/vRHTS2tl3TVGRHui0KKXMgwkp7k0PHMMovPwYaWGTFWIQSo5kBkq56QrSXoTnR+jAi1QUMKIicsV1QeGapwJzrDDx0pb6PvKwMaPVF1z5R/Qd3iqJPrYISoA8ZDuEIGX8V6RmfYQDp/bNOMEyywWI0hmGYJODmm2/GjBkzgtZ99tlnGDt2LGbPno19+9QPoMrKynDfffdh/Pjx2LBhQ1Dao48+imnTpsWtzInivPPOw5133hm07q677sLll1+OL7/8UrmNaZpYsWIFfv7zn2Po0KE4dOiQMt/111+Pm2++uXO5tbUVV199Nb773e+S+wYAv9+PtWvX4ne/+x3Gjh2L888/H3v37u3Cp2MYhmEYJlqaTY9yvdNIbPCRTjzSRMhKehuHW/djh2ezMu20zHOUkhMhBM7IOk+5TYX3IHZ6tgCgv6MOmYnDoAM+fLKVTGMYShaUFgNZULwxhEEKm+r96hd5lGyI6Vkiyal0krJ44dQIKJLp/NAJwaKRfuk+UyzkYfFGV36PvzGiYLRbxyb2QV27df2eNKNNsuYw1BJHq9d0UgSnKGuk745h+jtVpBhtkHK9CkGI0Zjezyc1H5ASyWm5V8AQfWugV38l16EePVblJWad7yK9WVrNMAzDMAzDMEzfhOPzaDg+j2EYhmGixOhjw7BOv0ifvj9YHHXJCQKOCK8MbnrWhJ8aTU+wo4KWyWSnRXg/dYAQqBaES7k6iUbCkeK0npcJ5qzLwlZd0vABmf2+NyV2EnXBCpTUKtUOOL31MB//GcwbToT5reNgfus4yGd+o94gkpCIFKMFTBDnaVDnYTEazfDRdNpn70D6fBBC4IqT9W3C8ytk5yS+0UKJHXOt/Gx1armCoMRoNju9r2ri3V1mnoWCMJEQUy4n0+SvrgySgnYw1MJl41PCwRBaf2RTPbB9nXZf4my6jEx80NWLUMHG+EJ1NimBXUdjWKgooK6Bub7KtoKp0ElkA2m/Lub41QLIxhagRSGEayTFaAGFjUZWyzB9DG27s+J9yJbgOK5vafpAD86XuPp//Vhf3j1BWoNm/uGMCLdFcj8hHQaA0y+MfPDxk+m0LWvoNKqvxfRfKDFaIPUs2gujYETkPCEy6Ej3ZqYEdldGV4yGFnU7FqkN6kBuXKlOUPR7hGHon/Nl5LTlYRimx9E8QWEYhmESyRNPPIGcnBw89NBDnQ/h6+vrcc899+Dee+/F2LFjMXToUOTk5KCyshJ79uzB1q1bw/bjcDgwZ84c3H777Yn+CHHj0Ucfxd69e/Haa691rnvnnXfwzjvvoKCgAOPHj0deXh5aWlpw6NAhrF+/HvX19Zb2/fTTT6O6uhpvvPFG57q5c+di7ty5yM/Px0knnYS8vDwYhoG6ujocOHAAmzdvVs5yyTAMwzBM/Gk21VMK6YQv8YCSFwEgZSW9jeW1i8i0yVnnk2mTMs/BGxXPw4QZlray7iOUpI1Bk6kO+umQmdiFWqACAF7TS6YxTG8ffO+yuZXnR52PEqPxo71kRHeNAHpGzJVmuEG9U0qm80MntYpG+qX7TD0hposWXfmbzEZaMBqDupVmSyeOq752U+sD9+UgJI4+6YMpTRhC/8KQFMEpPq/uu/OYjcjBAO2xGKYv45c+VPvUV4M8Bz3bonV6ZsZbJjZ4zVYsqZ6vTEu3ZeH0zHMTXCImXujEaFJKCCuBYRaIRmzKMAzDMAzDMAyTKDg+j4bj8xiGYRgmFM2z0j42IFJkDwB+8SfIP9+hTJcP3wrxr1WdywMzBR7/tsBPX6bfDb2zHrj93xLPfM/6M+cdhAOoVP1YO5hy9QB8oZN9WB08n+KM2bPz/oj4zi8h1ywBtn/VuW6w/zDs0gsfEUtwxmwTG35rYGBm9N87JbXKcwO44yJgCy3nDaKLYjTp8x5rPTzqWFc4+V0JhRAC8vJbgLf/qUyXD98Kcf9z+N3lAv/+XP9++tdvSjx8ZVfqkHq9NTGaWhhEihhtGstktXrSs6ikjgzNRI3kvLUF8u4rgL8sCGr/7bbI9YmsPwHhhFJKyFtO0+/oguuB0yKIS5nYM2k6MKAAOHogPK1iP2RzE4Sz7cecc52B19eGx8kDwIx/m/jorsRPPEfVv5xPX1InGAYweLi1nWcPANyZyPWpBZAAUN0EDM4KXtdAiNHSAuMBuV1j+jNTrwIe+AGZLO+9BuKxdzuX771E4KkldB/ojbXAos0mvvi1gVGDunYP06iZ7zg9NcLGlBjNnQmRFVnuKlKdkMeNBvZsCU/csprekNsRJgyi/geKQom+u8jIjkN5egkFI4D1y/R5PI2QrS0QKW0NwpghAvddKvDgfLpt+ulcEx/eYb1vRAkaI7ZBAGRrC7D0TXUidZ9vdwCtRKfFQtvFMExi6FtP5BmGYXo5DzzwABYsWICRI0cGrZdS4uuvv8YHH3yAl19+GQsWLFAGXZ1yyilYvnx5nwq6AgCbzYZXX30VM2fOhMMR/BLpwIED+PDDDzF37lzMmzcPy5Ytsxx0BbQFqs2bNw+PPvoonM5gZXBFRQUWLVqEV199FS+//DLmz5+PtWvXhgVdORwOuN38gophGIZhEkGz6VGudxquhJYjRaTCgPrBHDX4tzfhlz58XvuxMm2E83gMSR1Kbptpz8ZY9ynKtC/rl6HVbIk4QJoSqACAV2retjD9nt4++J4SNtX5CTGaQUsEmZ4jkhitJ8RcTqJMAgZSjeSZ2Vh3rkYj/dIJ1npCTBctun5Nra8KJvzKtFjUrTSDEKP5CTGapt9zTIxGt1U+qReemtIk+3+q+qI7/3RlZZj+QLX3KKRCXgzERozGWrTezaq6pajzqwNYp2ZfghTDQlQJ0yugzvcW2YxGv/V3K5HwEGL73tAXYxiGYRiGYRimb8PxeWo4Po9hGIZhQtG8+ehjYjQAEFf/mE7c/hWkNzhea8a5BjbM1H8Pzy+XqKi3/gZpB+EAKhmoH9AvPY1A5UF1YkExvWGGxcHzqYmNS+xriLzBEE+GxyH++dBd5DYV9cDzK7r29rGSkhLZGq1L0QCIoaX6DHZiMktfQAyEh5hozqWOy2DaEJffSicufBmyYj+K8wWuVoeodvLUxxJNLdHXI7IOWZm7mRSjEYPpbZpJUSkxGg/MjwnCMICLbqAzrPskqjYjEkFivQ0rSKEnAIhZcyHu+xcE1c4wcUMYBsRfF9IZAn63whyBQZnqbEu2AX4zsVE0UkpajFZGCE4GDe2UmkRCCAEUliDPT7RzULeflBgtPUiMZlFWyzB9EJGSCvHPz+kMqxZC7t7cuViQLfDna/X3R/XNwDOfdL0Nos5bAEiPFG5OCat/PNvy8cUNd6sTmgnpMMDtCBMO9dwmUIxWrx6fY/lZQR9EFIywljHkvmfWtwx88Wv6GdHCzYAZRd+onuo/WOm2LHuXTBKUGE13X0bdyzEMk3D4DplhGCbJmD59OjZt2oT/+7//w7/+9S8sXboUPp+PzJ+amooLLrgAt956Ky677LI+OyOREAK//e1vceONN+KRRx7BvHnzUFVFP1BLT0/H9OnT8YMf/ADDhg2LuO+7774bN954I+bMmYOXX34Ze/bs0W6TkZGBKVOm4NJLL8W1116LvDzu4DIMwzBMvJFSasRoVqIOYocQAmk2Nxr8dWFp1OBfADjcuh+f1XyIvc07lVICp5GGkWknYGr2pXAYtBwscD+DUgpxeta5KHaN7tJnWVO/DOvqV6LGV9m5rtVsIUVMZ2RpZkrrzHMeNjaGz8rSbDbhj3t/haPew8rtOgZId0eg0sEOzxZ8XvsxDrXus5S/g0x7Nsa7J+HUzKnavnWr2YKlNe9je9NGNGt+81AMYcOw1BJMyb4Q+SlDyHx+6cPSmvextXE9PGY0IheBotThOCNrGoY6NcF9UdJserCk+l2UeTaj1Uze2dn3t+xWrtdJkpIJShJACQp0EkGm54gke9C1cfGCOgdcRhoMkTxB27rvLpJwLjhvbPbTUxjCBqeRpry+vH7kOXK7WEggqbqyt3kHHt97b9h6SjZmwECqaIuCsGvaKp/0IgX0m8pmswmSGHSgKqvDSIFDpChFqq8cfrpT1hYtNmHHcOconJNzCbLtHETB9E4qvUTgNIDcKMRogppNT4OUEp/XLcHGxi9Q5yMCSoijDUkdijMyp2G4a2Tk7FHwdeMafFn3KXlvMjClABMzpmC0+6SYHjcZMaWJRdXqWfJSRCrOzrk4wSVi4onufH+i/Hcxk+AdaFG/Y+kJSTDDMAzDMAzDMEwoHJ+nhuPzGIZhGMYihnoyzV7PpOnAF4vUaQd2AscFx6aNKxD4rwkCr32pfp/r9QNr9wIXjLN2+B0V6v0U50fY8MAuOq2IGPQKQGTmWpv4h8Vo3Ua43JCX3gTMf7Zz3fGt4RLiQFbu7JrMoVw9DxAG+CvVCRRDR+nTHcT7lNaAuLoWIqbQyXVKS1Fpm8jAVE/6hS1fAvmFuPlMA/PWEHkA1DUDmw8BE46L7vDlxC3QgAjhJtLTSIvRsog4E60YrUK5WvRjUUOsEceN1l8HNq0CxkwMWnXH+QJ/Whh9+5SXHvAcYZNGgJOeDUy9qs8+d+gVDB7edm76Fc+JysuA0vGdi8cPAg6HDyNoy1oNHJfAxxhHG4AW4tFWHnUNHEhPkq4kvwC5278mk8urgXEFwesaSTFagDyUhUZMf2foSMBmA/zqCZOx6Qtg+JjOxYnDBSJNYbqsrBtiNM0wEbcm/F021AI16v6L7r4sjMIox78IweJhJhyqL9UuRpM+L1Ctjhvt19elSPfBHVTsBwYEj4WbcJzAmSXAMsL/e6AWKLJ4K0O1QxHljADk15q+9nHHq9fr7ssysiMflGGYhMBiNIZhmCTEbrfj+uuvx/XXX4/GxkZ8+eWXKCsrQ0VFBVpbW5GamopBgwZh1KhROOWUU5Ca2vWBKjNnzsTMmTO7tO2SJUsSuh0AjBgxAs888wyefvpprFmzBlu2bMHRo0fR0NAAt9uNgQMHYvTo0TjxxBPDZq+MxODBg/HII4/gkUcewa5du7BmzRpUVFSguroahmEgIyMDBQUFGD16NEaOHAmbrY++2GYYhmGYJMUrW2FC/cDfaSQ+WMRlqMVoTYTE6mDLPjy+715ScNTBxsbV2Ny4Fj8puh+GCO9vhO5nu2cjVtYtxm2Fv8ZY9zei+gwfVL6Gt4/+23L+FJGKCRlnRcx3gnsS3EYGGs3wz1pOiKuAYwOkdQIVlegklK8bvsTT+x+BH/QABh1r6pfjYOs+XJF/ozLdL3342/5HsLlpXZf2v61pA1bVLcEvhz2MgSkFYelSSvz9wO+xvmFVl/Zf5vkaK2oX42dDf4cRLuLhbRR4zVb8dd9M7GrWB6QlM7GQBSWCaMupO1eYniPS79gTgUuUDCySxC3R6EQZ0ZRV1y/oLe1BmuFWitGOeA+Q28Ti96TEYS2yGWWeTVHsJ6OzrutkgJGu6zo5qJP4LV2GG15/+H4PtO7VHisSW5vWY3X9p7hr2CPIYjka0wup9KnFaOm2zKjup+jrGB1Q9UbF86R4KxJlnq+xsvYjzCj6DUaljY+8gQVW1C7Gi4f+GuG4m7Ci9iPcNOQOTMycEpPjJisbGr7A4db9yrTJWdORbiOmOWZ6JZm2bNiFHT4Zfr+8t4WemTxWJFpszzAMwzAMwzAMQ8HxeTQcn8cwDMMwETCSZ/KxWCKmXwtJiNHkK3MgfvW/YeuvnUSL0QBg1rsmLhgX+XoupcQOYgx9aSQx2n7i2bbNBgzSyFszLY7IZYlVTBDTvw0ZIEab0rQMQ7wHcdChnlj0jbVAdaNEjju6GJsdR9T1cUTtBus7cbmBkyO8H6TkC81tMQ5SSqCVsMFQUjUGACDcmZBnXAwsm69MlxtXQky5HOeNBvLcQKVmztk5iyReuCW6OlRGSBpH5EfYz/6ddFrBCPV63QB8T4N6fRYLo2PGuVcBf7uPTJarFkJc/eOgdddO7JoYbcSAgP2u+IDOOO0alqL1MMJuhxwyvE2CFoL8zXXALb8Fvn8PhBC4eoLAJ9vV9WHj/sSK0crouRJR3LpbuV6cdVlUxxDTr0Xqsvko9O7HfkehogwSF44Lrr+kGE0GNN4sfGT6OcLlhjzzm8AnbynT5dqlEJccG9Ny2ghgWC6wl57PAp/vAi79ix//uNHAkOzoriuNREiv3QBSdEYSXV+oMI5itBQnXzsZBRFiXA/toUXMVN+9PzD54rb7YY/mJgtoew4TIhAGgCu+IbBsh7pvdMYjJjbNMpDhjHy+NlD9Byu30tQzIgCYcJ56ve6+LC3DwkEZhkkELEZjGIZJctxuN84++2ycffbZPV2UpMIwDEycOBETJ4Z3oGPBiBEjMGJEP76JYRiGYZgkpNn0kGk9IkazuQFv+HqPX/0QcGnNexGlaB1safoKOz1bUZo2NixtSc38sP34pA8fVs6LSozWarbgw8p5lvMDwCkZk+GyRR7E7DAcmJg5BUtr3otq/x1CFyEE7MIBnwz/gr1mZDHaB1X/6bIUrYPFVW/jwtyrlZKZnZ6tXZaidVDnr8GnNR/i6oE3haWVt+zqshStgxbZjEVVb+GHhXd3az8AsLlpXa+WogFAWpLJnyh0UigVLEZLTigJWU9CCbOirXPxRif2iqashrDBaaQpxWLJJoOjcNncgI+I/CaIxe+ZZsRm5rTAsjgMjfDUVHSmAmgi+lWhxwjEZXOjzk9MA91NKr2H/z979x0eR3WvD/w9s7vSFnW5W66SKwYXwDRjeu+QS8cJkIQQkpAAISGFhNSbC5cEAiGBkHDzIwkhkIQWeu8ldDC4AcY2YGzZliWtpN2d8/tDWlnaPd8zs6vVqvj9PA8P0pyZM8fSaObMzpn34Pktj+Hg2uP7pX6i/rQxYZ7hriY0qiD1a20e0NCaasYjm+7qU90J3YEHG/9VkGA0rTXu2XCLv3Xh4t6Ntw77YDQptE7Bwf7VRxe5NdTfHOWgOjgCnyY+HpD9D5V7MyIiIiIi2r5wfJ4Zx+cREREJnGEa3HnwqcDPv2Auu/sP0Icvgdpxj16Lj5kHnH+AwlUPm58TPbMSuPt1jSN3sr/4urEZ2CIMDaz3DCMSXnodMwkqaBlXU+FzMqwSBqMVxM779fo2iBT+uvZ07Dv5YXGTY6518cTFuf29LReCYerXP++7DnX5nfZjB5CD0dIvkCctYyFKwr7bsr1S3/gVtBCMhr/8L/SXforSkMLfznFw4JVCoAGAm5/XOG8/jd2m+g/LWG5+rI4Gr8fqYkhjEBglhDTaXsCXMECoYNT4euCbv4G+/MvmFZ75N3R7G1Tptr/ZXScDPz9e4ZJ/5BaOlj5+dFsr8PJjcps+f1lO9VI/qWswBqMBgL7xMqhQCXDaRfjSYoXzbzEfC0dd48K9vnh9xuVCMGhZIIFRKeHi+JnzctvJ/v8FXLYE9R0rjcFopmtwc7u5XTGXwWhEPanzr4QWgtFw383Q3/odVLCz3xBwFG75ooOjr3GxQchRBYB73wQOuNLFmz904Dj++0LNbeblsVKPicGF8yZKSoGR2ecMUfUof8FM3fWzb00G0rGaHuO67j1527GTC96coUJFy4Ef3gz9g9OAtux3MLqtMd/7fG1/hW/eZr72r90MnHqDi7u+6t0/koPRfJzLPhTORTvvB1UiJKsFLPf/0r0/ERXd8JyqhIiIiIiIiIYdU7hJWngAQmikMI5W1/yEYWV8aU71S+tLgVnL42+KYQQma9s/QLsWnlwI9qw80Pe6e1QKsylYlAcqu78OCYFPCUNYWk+udrEq3vcQrxSSeL9tubHsvQLUDwAr428bl68Qlheq/lytaC1MPQOpLFAx0E3wpTxYldP6hQowosIqdSJwYH5oMzk8rcit6dTz/NrTYPvbkNoJ5N5WqS7bPgaTXNtZqsIIOSV932+O5yFJRY96gkpuV0LbA0+twbgB8wD0/v4dF+o6TVRsGxPmgY4jChSMJnm/bTlcpPpcT6H6tk2pTWjMIXjyo44PreeioW5l61Lx3nPn8r0womR0kVtExVAbGrjf61DpixERERERERERERGJ1PB8DUsFg8Au8ngvfeeNWcsCjsIvT3Kwz3S53uufkEOL0lZaHt3Uj7Rvq6UwovH19g39hnCUMhitEJRSneF7PSyKP4uHPzhY3OapFcDb6/yPh0y5Gqs2mMsaOoTjJGvFnaDmLvJeLyJMBNPaNeFtQniTG+gMhyArNXoicPTZ8gpvPgcA2H+mQtPVDmxZH79/yv8xtKlFY6OQwdHgFdIohYGMndwdZJIln2A0v6GO5Is6+mzg5K/LKzzVexI4pRS+daiDdZc72H2q//00jOo6fh43T1oGAOrLP4eqGuG/Uuo/ExqsxfqOGwAAoaDCnpbuxqaW3AL0+kLqSzWUbIDx7DVrF+8Q0AzKcYCaMWhIrDK3wRDOJgWbdAejhaO9wgeJtldqVB1w2kXyCi880Ovb3acqvP9zBzd+1t4/eedj4PFlubWlpUMIWvTqwkr3ZeOmdp4/fFJKAeNyuMiG2Lcmg3yD0WrHQoWL/27iYKL2PBzqXx9AXXGXeO+q3zOP5Q0FFXazzIVzzxvAwquqIQAAIABJREFUBxu9+0ctUv/B489dp1LAOnM/RR39eXlD6X4NACLb9/FANJgMz0/kiYiIiIiIaNixBmM4xR+AFBGC0eIpc4Bba8oyJYupHtc8wmJLslHcJpcX9ptTTTm1Z1zJJNRHZvtef0JpPSblEABUqsKoj8zq/j4khKh4B6i0QsN7QJ0f0u8gVYBgBwBoTZnrjwvLc65faH+upJ/DUBFSJZgWnTPQzfBldmx+TuvPjO3UTy2hvnCUgzllOxvLdizbtcit6TQ7tsC4fAdh+UCJBsowOZw9YnpUaBxGhMbkVJfp78mBg5mxuXm3r5hyPR/sUFaY3+XkcANiTnmf6+l5zElhpwCQ9Ag8la77DhwEhXpz/dnlaqhfF2n7JQWj1QRzC0ZT5iGTolzvgyRtbhwpnexzPR2u5SUEgasL0/8fjB7c9E+x7MCaY4vYEiqmuWW7Dch+ywIVmBD2eBGNiIiIiIiIiIiIaLDL4aXuIWfKDnLZ8lfFokPnyM+P7n4d2Nxqf/F15afm8mgJMCZjvg2dTEKvegv63Zeh168B1ppfesV4j5fp/YYLMRitYNTU7ONrfttrCFnGAz6x3H+ozJpNQIfwOLG+QzhOMjX4HFMSFSazjHeNJ+iwPJNkeIMvato8ubDH+agsrPCtQ+Vz0Cur/R9DtpDGaR7zDuk1QhhIneXZWD7BaJUMRis0NW+xWKaFa9+YSoVvHuK/PzC5tqu+Za/IK9Xv6Ls+6l/K1h8CgI/eh966GQAwY4x8/nn7owI2ysNGYWjOxNRac0GdPfxNVFGNeiFsdIVhWJIUbFKWnoSeYY9E3ZStH7ri9axF0VKFJXsolHtkC77yYW4hjWKgodCF1W2t0Mtfg14m3C/a+kKSXLZh6DCZeAWjbTKPpcWYif3TniFGxSqgdjsY+MxXzCv851Fo1/zO3pzx9vHFr37ovf/mNiGgUTjfpc9DWP0ukBA+X7CF5wcCcllEuPcnoqIbxp/IExERERER0XDS5poDx4CBCUaLBoRgNCEsI25pv4kUmmXdxvUfOtCSQzBaLFCO08ec1zkDi09KKZw6+lxUBKo813UQwGljvoISZ9uDCSnsxCtApZBhJdLvQOv+DV4rVKBZUieQcO1Bcn4M5QAYBw5OHX3ugJwj8tEQmY19qg73te78sj2wa4U8KIcG1vEjP4eaYO9pi+sjs7Bv1RED0p4JpVNxSM0JvZbNjM7FXlXyzLsD5eTR56AsUNH9fdiJ4LQcr0EAcFjtiRhfOrn7ewWFkzLqHswWVR2CGVF/A95qQ6Nx7IglBdlvQAVxxtivitdhPxoiO/Q6l0lhp4D3dV0qt9W5T9XhaIh4DFDrg0IFmBIVmxSMVhvKLRgNQjCahnkwQq73QTb53CNlSnicd0zcAgUvDzYft6/BG80vGstmRHfCRAZYDVu7V+6P2dH+DRLNFFQhnDHmqwgoy0AiIiIiIiIiIiIioqHAGb6fc6pDTpMLV74hvvh6yq725/k1X3dx0u9ctLabnyetEMKI6kei11gBfd/N0EeMgf7sAujP7wF9Qj3w0iPGbZXtpVcAqKi2l6eVeiQNkH8HnpS1qMLdimO33ilu8uU/a5x1k4uOpHeggymQJa0+4S8YTU3wFxSjpJej413jNzva5I1D8ngH6mG/E8Qi/cBfe31/+u7yOejl1cAba/wFgixfb14vHALGVRqLtlkrBaNZjql8gtHKGSJUcAsPkstuu1YsOmwOUGseRp5lRBmgt24Cbr1aXmnBfv4qo/637/He66zrvK6cvUg+/3ztr8UbayIFkFXEhYtj3sFoNWgQgtFWbQBSbu/zqBiwlB6XXu6zP0a0PVh0pFik77zRuDzgKJy2m/1e7KancwtGEwMNM/LHdCoF9+oLoQ8dCX3WQuBxYXJOr/syk3EeIdc9MRiNjKS/i86/B93UaC6urO2f5gxRau4ic8GWDcCDtxiLluxhPycd9xsXb661n5ek/oPxPHTNxdCHjYI+ayH0Est4SFt4fkB+Z0KFfXb4iajf5fEJChEREREREVHxtblx4/ISVQpnAF6sjThCMJrhZX1Xp8Rgt7JAJZpTW7LrMYRRpXTK2qbWVLPvYIOW1Fbj8opAFRZXHdb9fXVoBObEdkZ50DvgLNOE8FR8b/LVeLPlJTQmzCPYyoKVmBWdi5ElY3stDznmAUBeQV/xlBy8cEjNCcYglSe33I8tyewPt3MNBKsJjsSelQdmLV+f+AgvND1mrF9rnRX2IwWujC+djPlle2Qtb0414bHN9xi3aXVbUCn8LP2SAigaIrMxM+pzlswBUBaowMzYXIwqGTfQTfHNUQ5OHPUFLKzYFyvibyPhZn+qH1BBTI3MxNTITIYKDGKjSsbhO5N/iXdaX8f6jrWYGG7AtMgO4rmtvymlcMzIMzC/fA+sjL+DsSUT0BCd3afwq/4yMVyP70++Gu+0voakTmJWbD6qgrkP6qsIVuGiif+NZa1vYFNiA6ZHd8SY0rp+aHH/CDsRnFd3KVa0vo3325bBFUI5x5ZOwIzoTogGCjcj0U5lC/GDKddgactraEpu8r2dUg4mhRswLTIHIWfbsWU7zhKWmZ8B+bofdOQ6I4Eovlr3QyyPv4kP2lbkHWi6pv09vNr8XNbyQgWYEhVTwk0Y+7sAMCLkMbW1T2IwmtCXrArWYlFldkBn3G3Fw5vuMG7T6jajHF4jzu2SHucdo9zGhw0ZD2+6Q/y9HVRzXJFbQ8VU6oRxbt13say181rpenzW0FeVwRrMjM3NI4iRiIiIiIiIiIiIaIBoy8MBxyleO4pMzZgPfcKXgdt/Y17hT/8NfO47WYsn1ipcdbLC+bfIP7e//0djZDlwzanZL8musgSjpel3/gP907Ot7e/F9tIrAFT4HIdQOjQmYxwK1OgJ0KURoL33ONDrPvoq/l7xGXG7m57RGFcF/ORY+wvWK4RQq1HJT1DhmsdKZhk72d96EeHl6HQwWkJ4kxtgeINPqrIWevxUYK0h1O6t56Fbm6GinWNlZo1VOP8AhaseNh8Du/zURfOvHYSCXseQeXn9SMBxPCZ0FILRrCGNeQWjMUSo0FSoBHrRUcBTd2UXtsehP/kQavSErKJwSOH+rzvY5af2cUllpUBJUMG94ivySgedDBXka96DhSqvAn7xT+hvWcZNrFkJzFiAPevlc8MrHwL3valx6JzcJoTNR7MQPlvW8rFxuWeArKSiGvUd5rDRRAr4sBGYPKJnu8zVlKXH3/ntjxFtB1Q4Cj13EfDaU9mFn6yG3vQpVPXIrKIrPqOwsbnzfsvkzXXA5laNqqi/c5HfQCLcdg3w92s868vnfKPGT/U/XC/EvjUZSJOxp8Pem4Sx8bwu9TZ/n85g70T2mFv9kzM7+7AZn5HtPU3hd2conPP/5L/iQ69y8f7PHQQD5t+T7/PQP38L/O0q6z8BAFA1EqrMMu7Ydl8m3fsTUdHxjpmIiIiIiIiGBCkYLexEi9ySTpGA+QMuU1iG1HYAGF86Ee+2vpG13BQg4BXUJYWdmTSnmozLR5eMx+EjsmdnzFdZsAK7V+6f83YhIUQloRPW7WxhJUeOOAUBlf1RyLL4m8agCCkQzIV5IENtaJTxZ7cy/o4xGC2pk0joDpSo3p/QSv+G+sgsY/2bk41iMFo81YLKYN8Gw8SFUL/ZsQU4tFYelEb5UUphSmQ6pkSmD3RTqI+igTIsKN9zoJvRy8RwAyaG85ztr4jKg1XYtWKfPtdT6oSxY9muBWjRwAiqEGbG5mJmrPghlLWh0VhUlR1YlA+lFIIqhKThGu51XZfKTUGnvcqdEGbH5mN2zDL7k4dXtz5nDEaTQp6IBrNNyQ1iAFZNjkFFuQ7XlPq2o0vGGfu28ZQlGK0Af38J137eMdFC/38o25LchOebHjWW1ZVOxqzovCK3iIotoIKYFZuHWTH+romIiIiIiIiIiIhy4gzvSezUWd+HFoLR9MO3QhmC0QDg3H0ULrhVI2V5rHLzcxpXnawRyAgYWvWp+TlW/aht6+n7bvZoeYbxHmMjYpWdL0vbQvAABqMV2vHnAn+9steiKncLLtrwv7hixIXiZn96VuMnx9qrXiEF7AkBLkYjx/tbLyJMXhfvep7ZYZmsqSTsvz3bOXXEmdDXf99c+OSdwCGndn/77cPkYLRECnhoKXDYjvb9SSGN0zweqev2NmD9GnNhXQGD0coqGZ7VT9Q+x0GbgtEA4KG/AaddZCxaMEnh+jMUvmgJfqiJAbp1K/CEeRwEAKhFR+XUXup/as/D7aE8PcIQT9xF4daXzGv/6dliBaOZl8cSm80FdXmOIS2vQX3iMbF4xfrewWgtYjBaV5BoBcMeiXpSB5wIbQpGA4BHb+vsS2eIlir87RyFmXe6+PHd5nPR7S9rnL2ob8FosYxAIt/3Z7a+kMQr5Lonhg6TiRSMlr7/bzJPMswQ4t5UJNYZ2PjSI+YVXnsKmL84a/EX9nbw4vsufv+k+Zy0bnPn/dmhc8zV+g1G0/f/WWp6b17nIWswWuEmrieivhm+U5UQERERERHRsNKWMoczhZ2BGXwUdczBaKbwMtsL/FIQgSlAwCuIozX9oNAHKUQtFij3XUd/CgqBJwltGTQE+WdUqsLGUDQAiOTwu7Qzf4AuHSuA+ffcmjL/HqV22uv3f0xIpJ+pbb9EREQ9BaXAU9d+XTeFqQFygGohRYUQ3HbdhpRO9fv+iQppY+ITsaw252C03AZsSn1JqW8bdiJwhMeXhejbet1PmPiegXIIeWzT3UjqpLHswJrjoKTBQURERERERERERERE27th/hm6qqiRC1e/KxYFAwpz6+x1N7UBazZlL/9UmAt0Ys+mrHrLXnmmcZOtxcpxgGofz8n4YnRBqenmCVsWtL1q3W7NJmBLq/2p3cr15vKGjpXG5VnCUWDGAn/rRoUxlq1dzzMTwpvcABBieINvwvECAPq9t3t9P6ocGFclV/Xou95PfT/dal5nYm2PkMZkAvqtF6AfvR163SporYGmjXKloyfJZU6Or/XGKnNbn/ybIU+8qJ+917rp5Fp7v6AmBmD1MiBpmcStYSdrHTRAdj1QLNJrtl1b5k2Qq/jHK7rzPNHPmtvMy8ukcfD5BBUBQM0olLvNGJ00j0NakRF2KwWbRHXXOyFl7GcR9TLdcj1a/rp10/1myNej3z2u0Z7wdy4SAw1Le/aHksAKe3u6jc/jfDMuh2A09q3JROpnp6/JzebgUOvnIdsptfuhcuH7b4tFCyfb6318mXxO8hOMprUG3vmPfSdp0zwmqA9a3kmI8J05osGCwWhEREREREQ0JLS5cePygQpGiwhhGaYX/20BW7VBIRjNEI7lFdTVIgRqmdc1jygrC1T4rqM/SYEnUkBKmvQzkn5fgCXkTghx0DBPbeoIAx9t+87leJECWkKqBAGYQ9+8wvT8MIW3AfZ/FxERUU/5XtelACMpQLWQpNAmIJ/wVKKBtTGx3ri8IlCFEqcwg4O0EB+Wa/9cKSWWSQHCuUh4nHdMpH/bUNXmxvHEZvPg7ergCOxcvleRW0RERERERERERERENIQM82A0AMDCg8zLXRf6jhvEzb60j/fP5oTrXLhu72cvjeb5UlHb9chIJ5PAK4971t1tVB1UqY8xhT5e0lf5BoeQ2d5HAzWjsxYf3Xw3xiQ/tm76qJzLBwBYYX4kivrEKn9tO+Q0KL8vPUvrxZs7X9C2BaOVMLzBt10OkMv+fHmvb5VSOGexfA664gGNXz9iHveZ5nku+vgD6DN3hf7S3tCXngp90izoy78MNAoHHwBUyuEKSikgYB73aRQt878u5URNmS0XvvYU3KsugE6ZJ1Gs9jht1EY19AVHyCvM3wdq4nQfraRiU8d+US6890/dgWdL9pDPPR1J4L9+6yLe0b/jTsQAEdMEhOXVUJW1ee1HdYUV1Quho1c+uO3fmUxptAlDdLrbVcFgNKJeZu8ql939B+hPPhSLF0+TN33pA2D691y8udb7XCQFo8V6BhL9/oee9QDoDBsaZUmPlIya4L+PxL41GUnX5q6/gaZGczGvS9mO+JxYpG/9tVh24i4K1VG52l/cp3HjU+b7MzHwNdzjmzUr5MozqCPPsq9gO98wGI1o0GAwGhEREREREQ0Jcdc86iAcsHxa1o+ksIxWtzlrdidbeEZNyByMZtqm1SPkKpeggOZUk3F5LCDMZlhkISHwRApISRNDvCzhJmLwglCXPHmX+QN0KXhN2ocYHiHUYw2P6GNwi9ZaDFez/buIiIh6yve6LgWnSUFrhSQFkgKFCR4lKiYpGE26F7ESX/bJLRjN1peMOuYB3YUIRkt6nHdMhlsw2tObHxTvrw+oPhoBlcPgeyIiIiIiIiIiIiIiGnbUN68Vy/QVX4Fu/MRYdvYihStPVJhkydp4eTVw31s96tMajcLj15pY13Opf9/k0eIMPgLPfK/nty7yRZVGoK59JGt5WLfj8fcPwOKWJ8Rtj79ODrVyXY2Vn5rLpnVkvzCtLv0/4KizgLIqoGokcMKXoc6/0vsfkBYRAqpSSaCjHegQ3uQGgBDDG/xSgQBwxJliuV69rNf33z3cHs54/i0ab62Tn/3K56Ku/V15PvD+0t6Fd/0B+p+/lXda7hGukFMw2uAY2ztcqS/9VC687VrgyTuNRTUew2irW9YAWzfJ+/3Z3/00jwaAWnwMMMsSUvTGswCAcVUKvz5FPv/84xXg2scGKhjNcGLrS+jrhAYAwDQhGG3FemBLa+e/VQpX6tkuVSGHRxJtj5RSwGnfFMv1VReIZY6j8JX95XPRh5uAz/3RHhILAC3t5vNVOhhNr12ZFVArGjcFKpj7ODQVDAJjJ/lbmX1rMpHGuKZfBGsS+mZeffftkCqrBGbtYi5cswK6dauxqCKi8OTF9hijL/4/jfc2ZJ9zxH5N6bbfq778PGvd3Y79ItT0efZ1bBMghPnOHNFgwWA0IiIiIiIiGhLa3bhxedjxMbtjP5Be5E/qZFbIhxRoVqrCKBOCyOJuS04BawDQkjJ/qJjLuoMlGC3omANPEq4wfVQXMcTLEm4i/S6lujTMD4WUEIwWUiUIwPxQJ24Id5COl0L+G/xK6A6kkDSWSWFsREREmYJCkFlCCD7rLnfNAUYhxxy0Vki2UFUpUIhosNqYML+cUptHMJrU55VIfVvb31g0IASj9TH0F/A+7xjJychDTkon8cgm84DtqFOGPasOKnKLiIiIiIiIiIiIiIgGoVilXKa2g9ewRtYBIcsz2cf/ZVyslMLXD3Tw3s8DmFsnb37LC9uevWxtA1LC+/ndYUQP5xgaM26qr9VUV7iHVZ2PdSgnqq4B6gd/ylpen3gPj6w+FNPCjeK2UlDDR1uAuPAYsL5jVfbCWbvAufg6qLvXQd35IZyv/xLKdsxnkoLRACDe3BmOZhIIQjnbwTmkgNT8xXLho7f3+tZxFH55kv159q0vyc9+NwrzdNXEAN3SBDx/v3mFe24yL4+Wex9XuQSjRThes19JgQ9d9MO3GpdXe8ztXfPpUrlw0VGdYRM0aKkvXiaW9TwmTlnoce55caCC0Qwntr70bboCY+uFYDQAuOv1rmA0y7yF3e2qYAANUSY1Zze58Jl7oOPy+Lm9G+znopdXA8s+sZ+P5ECiri8e/Yd1+176EjLt854OJQxGIwNLMJrWGtgq3HPyumSk9j5GLnxOuEcCMHucwv/+l3xe0hr4e8b9WSKp0W5+fQ2xnrdWK9+Q29SDOvYc75USljRX3oMRDRr8NI2IiIiIiIiGhDYhgCLseDxV7ie2UKjMADMp0CwSiCEivPSfS8Bad7npAaZACkYrC1T4rqM/hZR5QEhSW56UwvKztgQvSL9LqS7pcZAUEqGU8r0PV7visZ7Pv6Gv4RG27W3tISIi6kkKMksKwWdpUoCRFLRWSLbw3b4GjxIV28bEeuPy2tDogu1Dyg6z3QtJpNDfVkOocK6kwEUbLd4BDD0vNT2FTckNxrK9qw4dsOBxIiIiIiIiIiIiIqJBZd/jzGE1E6dvFwEmKhAAZsoBMXr1u5517D9Lfvn15uc1bn3JxeZWjUbLo9d0MBpefsxzfz2pOp8v4O9gCR0AgKqRwLgpOe2bfJq9q1g0q+MdseyqhzXaEtnP7laYH4cCMASjVY8CxkwG0HmsK+mleZuoZdxcvFl+sboknPu+tnc7LBSL9AfZx8oeU+2/zx/frXHNIy6WftT7OHJdjU3CHHm1MQWsWQG4QoqjpKLGe51cwjxsgXzUd9Pm2kNBn7rLuLgiLGdvAMCYphVimZotH980SEybJ5f94zroriDMmpjCNMvchC+vRtZk6YUkB6Nld7T6dNyNGAcA2C3+grjKu5/Y2wQAsfQ4+XIf50mi7c3MneWyVApYawj97bJwiv2aBAD/esV+LmoR/nZjXV0WvXqZfQc9KK/7Ldu2c3b3tyL712Qi/R1oDbRu7fxbMuF1ycxyTwaPc8LuHvdn3/6HxoNvayRTnecm6Z4MAKq6Xh3VHe1Akxyo3q2syl8gbKv53crOOob/Z4BEQwWD0YiIiIiIiGhIiLtx4/KBenE7KgSaAdkBZlJ4RsSJiS/9A/4D1tJafAYFaK3RLASjxQLlvurobyEh8EQKSEmTwuOsoWJS8IIYjGYe4KIsM8LK4Q6999HuxsXgBdsxFxECAr2OGS+24JeoJcyCiIiop3yv61IgqhSgWkiOCogBvH0NHiUqtkYxGM0yKjNHUh82nkfor9TvzSUIWpLMI3BxuASjaa3xYOM/jWVBFcK+1UcUuUVERERERERERERERIOTipYDR3w2e/kJXx6A1gwMdfLX5cLbrvUM9zhnsf3l15Ov19j1py5efF9epzYG6FuvttZjNH6qv/Xm7wPMWCAWqxO/BhXs/0m7tkdqnPw7+s7Ki8Wy7/1L48ArXWxq6X38LV9vPh5rkxtQ7W7uve+TzocKGoIPc2ELqIq3AAlhsqZcQrAIAKBsL7I/eAt0RqjBrpOBxdPsdX7tFo2dLnPx+ye3jQNtagNc4bRWEwP0PTf5a3BP5dXe6+QS5sFgtH6lyquBI8+UV0gmoO/5v6zFjqNQaRnGPm3Tf+TCw87IoYU0EFRlrbVcf+Mw6K2d15mLDpH7Pq4G3lhb0KZtq9vVcpCRaZzNwafkvS/lOMDCg7Bf6+PiOj+9p/Nk2twm11OWbleFj/Mk0XZGjRgHHHSyWK7/fZNYNqlW4cSdvUOIbnhSDnsVgxZLuwIe7/2Ttf5uFTXA4Uv8rWtyePb9uFGI/WsyEZPR7IFavC6ZzVssFukbL7NuuvtUYC+P7PpDfuXi+OtcxDt8hue/8IC9wrTPnAdV6uN+q8USjOYn7JqIioLBaERERERERDQktAkv1EuBFf0tl0AzKTwjGoghYgmXygpYE34G29b3FxTQrtuQQtJYNliC0YJC4ElCCEhJk4LAbCFeUpkUCiYN7LM9RhL34fNYAfILj7AFm/lhC1aztYeIiKinfK/rUnCaFLRWaFJ/r6/Bo0TF1OG2Y0tqk7Esn2A0ZRs0YiD1R639c0cIRutj3xaQzzu2wMXhEoy2tPVVrOv4wFi2W8W+qAxyYA8RERERERERERERUZq64NdQX7gMmLkzsGBfqEtugDr+3IFuVtGoxccAc3aXV3j7Bev200crXH2y/aX8lZ8CX/2rNEElUNH2KfSvv+nZ1izjPd66Te/DcaCuuh847hxg0gygZkznf3P2gLrgauD0PPZNvqkLzKF3u7S9bN3umZXAtY/1fn634lPzuvWJVdkLT73QV/usrMFozUCHkCjB4Ia8qAuukgszXopXSuGerzmo9hhWnHI7A9LSIXu2F/Croxr45+/8NnebSh8v0ecSlhdlMFp/U+f/Elh0lFiu//uL0C1NWcvjluFPDfFl5n395G9QI8bm3EYqPvXTW+XC158G7rgBAPCFvR384gS573PO/5ODiPqi1XL8lWWOcZuxAKqPAR/q67+EA43zGq8T13npfY0WS7ti6XYxbITISH3nRrnw79dYQ6r/dJbCd4+w34ede7POChpOE4MWSwG8+qS1XtSMAcZMAvY7Aeq6x6FGjrevb6FGT4C6NDuQNEuo/ydZpiFICX8DWgNN5rG0AHhdEijHAY6QA4T1R+/L2yqFe893EPBINLr7deCWFzUaLa9MpoPR9I8swYnl1cAOu0Gd/79QZ33fvtO01uz+fbeyKn91EFG/YzAaERERERERDQntbty4POxYptrqRyFVggDMMwdmvvwvhWdEnFhOAWteIVetppmdDJqT8gd3ZYEKX3X0t5BjDjxJCgEpaVJYgi3ESyrr0O3G/cnBCPJDJGkfme21hdvZjhWpzO8xIZGOuQCC1vAIIiKinqQgM6/ruhRgJAWtFZoUYNvX4FGiYtqU3CCWFTYYLVtSJ9ChzaOlbAHXUmia3yBoGylwscSxDTgfHsFoDzb+w7hcQeHAmmOL3BoiIiIiIiIiIiIiosFNBQJQS74N54Zn4Fx1P9ThSwa6SUWnTvq6WKafvNNz+xMWeD9XWr/VvLw6CjjP3+e5vdH4qb5XVbEKOBdcDefm1+Hc8UHnf9c9BnXcOVDSy9RUGJNniUWHNdt/93e82vv53QfCI9H6jt7BaOqcnxTm91oaARzhlcx4M9DRZi5jcEN+LMeKfiL7XBQrVbjrq96vzLYlgAfe7jyWPrG8C1/dZJ58ylO5j4mpSsL+67MF8lFBqEAA6pLr7Su9+HDWolmWfLOGjpXmgoUH5dAyGlATp1uL9RN3dH990cEKEWG+z/fk4Tt90iyEGAE9AsjSFuzb9x2OmQQEAljQ9oq4yl9f1GgWLoUlbjtC6cndyxk2QmSigkFg90PkFdYK1xYAoaDCj49x8MXFcp/X1cD9b5nHw0nnlLJS+z2g+p9/dd5L/X0ZnB/9Bcrj3OnLnod7r5NLyCxtP6R7PtcFtjZU/IhmAAAgAElEQVTK28Qq+69NQ5yaPlcufPpu67ZlYYW7fdyf/esVLQZWlwSBaAmgUymg3fxuKcZOgvPvj+H89gmoz3zF/72/FGyOrlA4IhoUzG9wExEREREREVn8ft3/4JOOdUXd5ycda43LI5YX6vuTUgqRQAzNqS1ZZa1ZgWbmaQsiTgwhVYKgCiKpk1nlmaEbmfVmakkJI8Uy13Pl9WKBcl919DcpdCvhWqaQgiWETghXAOyhafFUK8qDmR9wmx8E2UIixGCVzGPF8juOBORjXapfCorzSzrmIoEYB/8REZFvIUe4rgvBZ2lJ1xxgJAWoFprUR4i7limpiAaZjYn1YllNcGTB9mPqIUv3QYBH6K9wTxLvY+gvACSF806JJXDRNsvmULG6bQXebX3DWLZT2W4YXZL/DJ1ERERERERERERERDRM7bSnXPbnK6BPvxiqTH5xeEwlMGM08O4nue+6JgboD5fnvuH0+VCxwTExKHmYsQAIR4G27GeK+7Y8jnvLDhU3/c8HwLsfa8wY0zl+bWOL+XneuGTGGNe6hvzb24NSCjpSBrQY0rRam4GE8GI1gxvyM2OBXLbS/Ax0Xh1QGQG2CO/Mpy3rOj+t/NR8DMVKgaoNeZyLAGBUnfc6OQSjKQajFYWqqIGu31E8tvSffg4sPqZXSMK+MxRe/TD7GNqpfCOq3c3ZldSOhYrIYyZokBk7pTMsRRo7svTF7i+VUoiVAnHDkLf1W4GX3tfYZXJhx16b9pUW073HgKu6+j7vT4VKoEdPxOJPnxTXue9Njd2nmP+dZT3H/lTU9Lk9RMOV2nFP6OfuNxeuXenZr91vBnD9E3L5n57VOHlh9nI5GE2J10YAwA67WduTDxWrgK4eBWySxz/mFDJL2w/xPScNNG0yF5VVQQUC/dakIW/+PmKRvu47wNFfgLLc7+42BQiHOsOpJc+uAk7Y2dzfqol23Yev/7Az4M5kBMfAEg1njCkkIiIiIiKinK3vWIe17e8X9b+kNn8CVupEivyv30Z6mT8z0EwKu4p2hUtJoRvZAWv2kKvWlL+gAClATcGxhoQVU1CZA08SwnGQJgWV2IMXLMFoht+dziMYTdp/ZnCZFGRWqsIIKDnfvr+CW6RjzvbzJCIiyiRe14Xgs+5yIcBIClAtNKmP0NfgUaJi2pAwv2lSGagWQwvzk91HtvVFbcHFfvvO+ZDOO7bzitT/H0oebPyXWHZQzbFFbAkREREREREREREREQ0Vqma0tVyftx/0lo3y9krhB0cpOHnkf9RE0fnCfy4CQagzv5v7zmhAqGgZ1BnfNpZ9dsvNmNqxyrr9rEtdPL2i8zleo/AYsTbV2HtBAQJhukkhVfEWoEMKRmNwQz5UtByoHmUuXPoitCGgLlqq8J3DvU8+P7iz8xhaLuRtNIwEcP33/Da1FzXex/GWyzERZTBasaizvi8XLn8N+qdn95pg7dx9FEZnZHIGHODSpeeZ6yjkuYj6nSoNA6MmWNfRbz7X/fUvTpDPPQt/5uKRdwo7BiVumZc07GZcj/ycl/wYX48piQ/g6JSxeOlHwNsfmf+dZemwtkBQvpYSEXD058UifeOPPTc/dp69H3TfW9nLXFejVTinRNEGvPyYWJ/qr6BDr2DjEIOHyUQ4/rUGmhrNZeVV/decYUBNmS0XdrRDX3gktHQfDKAqqnDhwfbz0oZm4LU15rLari6D/sd1chu//HNr/UQ0tDEYjajAlCFJVkuJ8EREQ4RrSFE2ne+IiIgGQngAg9Gkl/kzA82kF/jDTrSznj4GrKV16HbPgBEAaE4ZZioEEAuUwVGD46MCKZggKQSkpElBXpFAVNzGFgZn+t2JwWiW/pF0rGT+TqXfsS04AvAf0perzGPZb3uIiIh6yve6LgWiBi1hoYWU7qtl8uqTEQ0mjQnzCO7akP1FFokUBmzqI9v+VuzBxeaBj62uvyBoGylwscSRB0kN9WC0DR0f4+WtzxjL6iOzMDUys8gtIiIiIiIi6juO0SOi4Ybj84iIaLBS379JLlz1FnD3H63bn7zQwYPfcHDmXrld12piANasMBfuegDUH18Ejj8XmLcYmLs3cNRZUFfdD7XoqJz2QwNLLfmWcfmI1EY8/f6+OLv6Bev2l97R2YeSgtFqUpt6LyhUIAwARITnna1bgYQwFoLBDXlT3/qtXHjPTcbF3zzEwW1fcnDqQvv55401GiulYLQRLrD8NZ+tzOAn/Kokh2OCAUJFoxYfA0ybK6/wwF+Ad1/u/nbaaIWnLnbwzUMU9p8JnL1I4aEzN+DYrXeatx83tcAtpn433v4707/6RvfXp+9mP+d871/Z9/990WZ5bSCi470XFCqUr6ue91bMEFf55yvmz2pj6bFEFTX83IPIQlWNACZONxcufRE6aX9nqDTk/ff1xpref6dSKBoAlL16n1imfvQXz33lzaP/rti/JhNHeCdOa2DrZnNZf4X7DSPqnJ/Iha8+ATwp9H27/OhohZvPVphuGbr8ywfN/YeaWNdz4Ft+Jbdvzu7W/RPR0DY43nYmGkYcQ4cpkfAOJiAiGsySyWTWMtP5joiIaCCUBwduZoaIz7AMKRAg2hUuFRUD1nq/+C8FrNm2MWlJbTUujwXKPbctlpAKGZdLASkA4GoXcbfVWGYLPyt1wlDCRySm3530Yo0UEmHbf2bwmBRkZguOAPyH9OVKDGoTjn0iIiKTfK7rgBycFhSC1gpNDB5lMBoNIRvFYDRhRm0vOQxKlPq2CgqlloBrKRitzY0jJcw261dSOO9IAY7A0A9Ge3jTndAwD6w9qOa4IreGiIiIiIioMDhGj4iGG47PIyKiQauuwVqsn3/As4r9Zirc+FkHi+xV9VJtCUZTB58G1bATnG/8Cs6vH4RzzUNwLr4Oau4i/zugweMz5xkXj0xtwG/XnoPysLzpY8uAtoS2BKM1bvumdiyUFGaWDymkKt4MnWg3lzG4IX+WUCL9n0fFsuMXKNz8eQfXnSY/577vLY3VjeZnwvXOR/7bmMnj/AkAKLEc4JkKefySJ3X4Z+0rZFz/6kcp/OIEBw9dEMANSxws3mAJkClUOBUVj0cwGho/6f4yFFSoHymv+twqYEtr4cahxC0fiYZ127ZvSkqBkXUF2afqCioan1yHndpeN67z+hrzttuC0aoL0haiYW32bnLZyjc8N//eEfZxfve91ftc1GIJRosufUou9NPnyZOa4FF3LiGztP2QxrhqDd3UaC4r53XJkxTW2EU/d7+1XCmFU3dz8OJ3c3/uURMFsElIswaAvoSizd/HvLx2bP51ElHB8YkpUYEppVBS0vsFmuZm72ACIqLBLPM8VlJSwpkZiIhoUIg55ZgcnjZg+xcDzVK9r51yuFSs1/+z6/EXsGbbt4kUjFYWqPDctliCjjmYIOHKT1za3TbxhX9bMJqjHN8hd4AcjGALRpPCHTLDIqQgMyn4rLt+Kbgl1SIGufkRT+UeNEdERJRJCjKTAorSEq4UYGQOWis0MXjUR1gt0WCxMfGJcXlNvsFoOZD6tmEnAkfJjyhtocBS2JpfCSFwMeQMz0FSzckmPLPlIWPZ6JI6zIntUuQWERERERERFQbH6BHRcMPxeURENGhNnwfUjJHLX3kc2hDwaXLYjv6vbTWBOBAXngsxUGZYUbsfKpd98C4O38E8HhAAtAYOv8pFU5u5vDq1ads3Iwr8UrMQjKbjLUCHEIxWUpxJ4IaliTPksuftL+ADwKFz5PPPivUQw/XGrHvJs26jYAgYNcF7vVyC0UrlyceoH+x2sLVYewTS6LUr5cI9DsunRTSAlNfv7NO10M1bur/16vOs2lCIVnVqE4bfKe2ipOcYmbFToAoVwN6jL7ZH/PmcNi1LTwBfXlOYthANY2r3Q+TCde95bn/MPPu56Fu3a/ztxW197WahTw0AZa8/LBdOnePZlrxZ7hUAAKN99LdoOyQd+xrYuslcVMHrkqf5i+33L+tW+aqmPJz7c4/qmALWWPrXs3bNuc40dfTZ5uXn/izvOomo8BiMRtQPysvLe33f1NTUpxfRiYgGktYaTU1NvZZlnueIiIgGQokqxVnjLkRABQasDVI4VGaYlhQulQ5Wk0I3surxEYwmhZ711JxqMi6PBQbPNV4KPLEFqNh+PlKIXVouwSd5BaP5PVY8QvTE+oXgtRSSYviDH1J7vH6eREREPYUc83U94RWMJgYYFWewsN/rN9FgtjFhniVtRGh0XvXZhiRkPgeRQszy7dsCQKvbt5fcpcDFEiHAEQBcLb9sMdg9sfle8Vx6YPUx1oA6IiIiIiKiwY5j9IhouOD4PCIiGsxUMAT1lV9Y19HfP9lXXV/cO4dgtOVPyIV1Db7roSFg1wOB0RPF4u8+eypqLY8XH1sml9WmGru/Vhddk0/rZBGhUfFmoENIlQgNz8maikE5DnCQcK5JpaA/eMe6/aRaWzCaxkZhGEjNf+7028Texk2BCvgY25xLMFoJj59iUhOmASedL6/w6O3QScu4J0swmpo2tw8towGxx+Ge4Tx6yfzuzyYvPEhhcq287qV3FG4cSlw4DMO6rfcYn0IGy/boizV0rMhp07L0uLuK6sK1h2i4WnyMWKR/9FnPzXeepHDmXvZ7sFNu0Ljigc5zUovllZOyVvPkrFh0lL8+T57U9Hn2FXhvSCbShCNaA02N5jJelzyp8mqoL1wmr2ALLsvwixNyC0eriQH6ivPEcrXk2znV18vexwALD+q9bOf9gH2Ozb9OIiq44EA3gGg4Ki8vx8aNG7u/TyQSWLt2LcaPH88Z3IhoSNFaY+3atUgken9SWlFRMUAtIiKiweLAmuPEcK1iqAhUY0Z0DsqDVQPWBkB+Yb9nmJarXcRdczBaOhDAT+hGSqfQ5sY92+QnKEAKTxtcwWjmQRy2kC9TiFmaZ/iCE8NGw3JT8IkYjGa535OD15qhte7eVvo3eAa7Wf59ralmlDj5DYrJN8yCiIiop5AQOJRw7eGdUiBqUAhQLTQxvNbS5yAaTDrcdmxNbTGW1YZG5Vmr/2cc+YbsRh1LMFqqj8FoUuCicP8xlHW47Xhs8z3GsopANRZW7FvcBhERERERERUYx+gR0XDA8XlERDQUqINOBpwA9A9PN6/w1F3QH7wDNWmmtZ7aMoV/nOvg+Ou8w0Bq3nzAXFBWBVRakkZoyFGOA9z4HPSR44zls1feiVf/9w1M+P2OOdddk9q0bT8zd867jUZRYaxlvBlwhHCIXEKwKIs6+RvQD95iLNN/+DHUZX+2bv/LkxS+8bfssZ+vfAhsNg/xRU1KCE7Y5zioeXtDX3WBuXy8zwCiXI4JBusVnfOV/4H7wbvAc/eZV3j6HjkwQQqG6EtoAw0YFQwCP78deOAv0D//gnmlT9cCrz8NzF2ESbUKL3zHwagLzX2ee94AXFfDcfr+GWabJRitF7/nJT/GTukMndEaDR2rcto0lh5LVM4AGiIvKlQCvesBwIsPZxcmE9AtTVAx+2eIv1+i8N6n2hom/It7Nb66n0Zzu7xOTBgHqE6/2Lr/gliwL/DyY+ayQp7baPiwBqNtMpdV1PRfe4YRdfLXoZu3AP/3s+zCxo+hW5uhovL437TP7anwrdv9T3ZVE04C771tLqxrgKoa4buuTKo0DPzsNuDpu6GXvgTVsBOw3wlQDKYmGlQYjEbUD8LhMEKhUK+BClu3bsXKlStRUVGBsrIyBINBOI4zgK0kIjJzXRfJZBLNzc1oamrKGnQVCoVQWspOPRHR9m5hxT4D3YRBQQqH6hmE1u62QcP8YDPiRDv/L4ZmbXuA0CaEq2WSQs96kkLtYs5gCkYzB54khIAUQA5eAIBIIGrdn5/fQVp6Rq9s8gNqKfzOhYt23YawigCQ/w1eQWRS+wGg1W1BFfIbENgqtccjzIKIiKgnKchMCj5LkwOMzEFrhZbuq2Wy9TmIBpONifViWU2ewWjK0ufV0L3K8+3bhp0IHDhwDfdRUv/UL+m8U+LI5xUpGHmwe3bLw+K93/7VRyHkFCdkkoiIiIiIqL9wjB4RDVUcn0dEREPSPscCgSCQSprLX3sK8AhGA4AFE/3trmegVS9jJjIIeRhSlbXQlbXAFtPUpsC4lY/g0B12xH1v5VZvd6jV7IV9bKFBTBhr2fgJUCm8lM1gq76pswRfrLakfXSZPkoBhme/UigaYAlGmzzLflxNmObZHgBALv1+BusNCHXCudBCMJp+7SkoQzCa1hpYaw5GU3UNBW0fFY8KBoHDl0D/4cfAJ6vNK732FDB3EQBgRLnCgbOAh5aaV127GZhQgAyWeId5TEvE7R2Mpmzn0BypklLo2rHAhnWo7xBCAAVl6XE/FQxGI/Jl0kxzMBoAvPtyZ2iYhVIKFx7s4LFlcjj1xhbg7Y+A5jZzeQAplGohNa2A5xaJOmwJtCkYbcQ4XwFMtB2yBaNtNffvVVlVPzZoeFGHL4E2BaMBwLpVQMNOnnWMKAOqovZ7sZ6q4x/JhdPm+qvEQpWGgf0/A7X/Z/pcFxH1DwajEfUDpRTGjRuH1atX93phPpFIYOPGjb1mqiQiGkrS5zc+UCYiIuokhV3Fe4Rp2cO6Orf3E7AWNwR0mZiCvDJJ4WllgcEz63RICCZICgEpgPyzLlGlYiBLmvw7MNVpfojsQH6xxhb+EE+1IOx0BqNJv7+oRxCZdCym68+X9DO17Y+IiCiTFGQmBZ+lJbV5UL0UoFpo0vW7zY3D1S4cxZdqaXDbmPjEuFxBoSaU/wxpst79ZKlv6xWyq5RCJBAz3rf4CYK2kQMX5QHnUtD1YObqFB7edIexrFSFsajq4CK3iIiIiIiIqPA4Ro+IhiOOzyMiosFKBUPQex0BPGF+/qDffgnq6M971jOxVmGXScBLH9jXq5aC0eYv9twHDVGLjwHu+oOxSP/mEhx30Sm47y3/kz+F3TiiOt75zfjCBzaoMZPMowg/XAFEhNC0Egaj9YWKlstTWq14HbqpEapCThnaexoQLQFa7UNVeqlxzecite9xwJQdgFETgPUfZpfvc5y/HeQSdsZgtIEx3zKRuBB+hs0bgBbzJGb9cT6iIlt8DPD3XxuL9CuPQy35dvf3h81ReGip+cx1+o0uHrnQQcDp2/1/m5BZG9YZCUeFPvYmTgc2rMPUxHtQ2oX2OY4u5jYDAFR5AVLhiLYDavGx0LddayzTt10L5RGMBgD7z/QOILrxKY0DZpnPR7FUsziVqqqs9dx/n+1xaGc/uiMjnM0QTkrUSTpiNdAkfNZguY+gDKMmAMEQkMyepFjfdzPUV/7HswqlFI6br/DHp/1NWlzTnH3P1V2X33svIhrS+NYOUT+JRqOYOJGz0RDR8KGUwsSJExGNRge6KURERIOG9EJ/a48wKVtQWTpcyk/AWqslYK33vr2DAqQwgVhAGJAzAKQgs6ROwtXmYIJ8gxcAf7+DNC0PrxHZ2tAzfEwKIrMFqwGdQXLSz8zvsWNsWx9+pkRERGlBZZ6jJaGzH4r2LhcCjIQA1UKTgkk1NNpcn9NUEQ2gjYn1xuWVwRrP4GCJ7YlHZi85374tAEQd82yOralmz21tpPNOieW8onPv/g+4V5ufwwYhGG9R1SGIBjhbJhERERERDQ8co0dEwwnH5xER0WCnzv2ZXHjPH6FTKV/1XHuag5Eew9RqUo3mNpx1qa990NCjzvyetfy06/fA0bPbrev0VNMzXK+uH4KIpICZdauAdmE8Qag4Yx2GM/Xt34ll+ox50K486VVZWOH8A3L7/KDGFNJ44ElQDTtBBQJQ3/4tEMl49nri14Ad9/C3g9KI/8YwWG9AqNIIMHNnc6EUjCYtB/rnfERFpc64WC586RHo+LaxMufuK59znlwOnPeXvg9IiQthjxE33ntBgY89dfFvAABh3Y4JyTW+t4vprmtkRXVB20M0bM3bWy578k7olx72rCJSonDDGQ5KzcN4AQC/eUzj0XfN56QyYQygOv9Kz30XgqqshbrgaiAQ2LZw2jyoM75VlP3TECQ9M3RdoMn8WQOvS/6pYBAYO9lc+LeroJe/5quey45W2GGcv31W/+0nciFDEom2CwxGI+pH6YFXoVB+LxgREQ0WoVCIg66IiIgMbGFa6ZnppTAAAAing9GEl9J7BlpJAVWZWnwEBTSnzDORDaZgtJCSBwElhTAD6Wct/Z568hNylyYFoynLxyy2NvQMdJN+z36CC8TjsQ/BaFKomp8wCyIiojQpyCwpBJ91l7vma36+gU65sl3v+nJ9JSoWKRitNuR/JvVs/geKx1PmAf++gtF83CPlI+mazzslSh5EriEPnh+MtNZ4sPFfxjIHAexXfWSRW0RERERERNS/OEaPiIYDjs8jIqKhQNU1ACd/XV7h5Ud91bPrZIW3fmh/na3GNYQRTZoBVVbpax809KiR46G+8COxPNz0EW4b+Vv85jR/zyt7huspKcSsL+oazMsTHcDaVeayEIOt+mwvy7POxk+Alx+zbv7twxTGVPjfXbUhGE199w/bvt71QKi/vAn1/ZugvvErqBufh/PVy30HuKuSsP/GMBhtwKhTLzIXrHvPHAq6RghGi5QB1X0Zr0GDgaoeBfWV/5FXePT27i/DIYWFk+VVb3pGY1NL38LR2oR5ScO6R5hoIAiMmtin/WRS4+uBWOcJtb7DEgaYocztes+hoqag7SEarpRSwMGniuX69t/4queEnRXe/bH9HuyaR6RgNOH9pCKGEakjPgf15zegvn091BV3Ql33GFTtmKLtn4YYqS/e3gZ0tJnLeF3KjeUeW99xva8q6qoVnrvEwV+/4H3vZPyMCAD2PBwqyOfDRNsDBqMR9bNoNIr6+npMmTIFtbW1KCnhDB9ENDSUlJSgtrYWU6ZMQX19PQddERERGUhhWikkkegK+pBCM0KqBCEnZK2nZ8Ca3wCAVo9gtA63vbttmcoCOYz46GchS+CJ1H4pVMxX8IIl5C5T+neSyTaWJeSUiGFvPY+RvgSR2Y6jfCTcDjGELuKwb0hERP5J1/WEEHzWXS5c820BqoUkXVsBOfCJaDCRg9FG99Mee/eTxeBiy99W9zpC/9frfsdLQujfSgGOQ9Hy+Jv4oG25sWzXisWoCY0scouIiIiIiIj6H8foEdFQxPF5REQ0FKnZC+XCpf/xXc+IcoWJlveOawxhRGIQFQ0fM+Zbi52lL2DJ7gpBH29D9gxGQ10/BKNNsByP771lXp5LCBaZVdYClSPk8qUvWTcvDyv87Hif4XrJjQhkTqJVVw8VDPZapEaMhTr4FKjjz4WaPs9X3d1yCTtjsN7Akc4hiQ7gw2VZi/VaISSqrt53aB4Ncpa/db30xV7f7zBe/p13JIHX1/StKXExGC2+7Zuxk7POXQUxZQcAwKz2d31vUuFu7fqiuvDtIRqm1KSZcuHb9r5PTxNrFS46OPfrUEwLY2Vrx+ZcV1+o8fVQR3wWardDoEojRd03DTFCf0s3b5a3Kavqp8YMU5Mt56UcPhuKlSqctKuDPT1u2UckN5gLJs7wvS8iGtr64W6GiDIppRAOhxEOhzFq1ChoreG6rvgyPRHRQFJKwXEcfuBORETkgy2sqtVtQYlTKoZS9XzRX3rpP4UkOnQ7SlVYDBXI2q9HUEBLaqtYFguU+9pHMdiCCaQwA+lnZAs18VrHVKeGEIzmkT8fcWJIpLIDXlq7jhFXp9Dmmh8cScdIZv0mfkP1MsWFtgD+wiyIiIjSgkKQmRR8BgApnYKbOcC0iy1AtZC8+npEg93GpBSMlv8MxAryZ4aZ/eTWvgQXB8qMy1ulGSh9yidwUer/D1YPNv5TLDuw5pgitoSIiIiIiKi4OEaPiIYKjs8jIqIhbfdDxSJ9w6XAqRf6Dt6wddWrUtkvLKtDTvdVLw1hO+8H1IwGGj8xlz/+T0QW/gHHzPscbn/ZXlWvcL3xhQ9GU9FyaKmtrnmsQ04hWGSklII+6CTgtmuN5fr67wOnfAMqKI8rWbK7wu8e13j+Pfu+pibez15Y6IDGXMLyGKw3cMZPFYv0GfOgdz0A6rt/gKod07nwkb8L9fRDSCMNjB33ksv+dT30woOg9j4aAHDyrgp/fFru9Dz3nsY+M/L/fEAMRnPbtn3THwGh6XrffBYnNv0dv6n5kq9NJne83/lFuSUhl4h6O/C/gBsuNZc1fgzduhUq6u89oFMWKlzxQG7PTGKm8Xqj6qAcH2nFRANBCcdmq/wuHSJ8PyoX6sCToG/5lblw2SvQ69dAjarzXd9OdQrPrDSfm0IqhfHJdeZ2HHyK730Q0dDGYDSiAaCUQiAQGOhmEBERERFRH9nCoeKpFlQFa8TQjHCPbW3BAPFUC0qdsBiwlqnFIyigOdUklpUNomC0oCXwJOmawwykn3XE8Z5ZO7dQMSkYzWMfgRiaDLOZpsMdbEFkfsLdxPAIj7A8iS2Mz0+YBRERUZoUZJYUwk4Be2iaFLRWaAEVQKkKo123ZZX57ZsRDaTGROGD0aTZ9ICul1d6FMvBxd7986gj9W379rcnnXdKHPklhKEUjLa2/X281WJ+C2SH2AKML51c3AYRERERERENII7RIyIiIiIqPBWJQU/dAVj1lrFc33Ap1Lk/6/N+gkhlL9zn2D7XS4ObCoaAn/wN+sv7iuvoy7+Mqy+twwcbD8RLH8h11bhd4/TKKoHK2sI2NG18vRziZqBCDEYrBHX2D6CFYDQA0Nd9B+qrl4vljqNwx3kODr3Kxasfyvtp6FiRvbDQwVYMRhsSrEGIAPDiw9AXHgn88UWgqRFYvcy8HoPRhg0VDELv/19iCJ7+7onA9U9DzdwZB84CLjta4Qd3mseeXPIPjW/JubOe2oThd5Ge49366dhT4+uhAewVfxb//cl3cMmon0BLYTRdpia6UikrqvulTUTDkRo3FfrM7wF//ImxXF91IdQl1/uqa/5Ehc/tqXDTM/7Hww03m6sAACAASURBVMUM77ioH/3V9/ZERSeNcY1bxp5GzONVyUzNWAC97/HAY/8wlusv7An8833fAYoNliHNU0saERAmWlfT5vqqn4iGPsaxEhEREREREeXJFg6VDqOSQjOiPba1hV6lg7mk0K/s/VpmsQDQYimPDqJgtJAl8CQhhBlIP2t/oWLmdUx1umIwmv1jlqhwvKT3YQtYkbb1Vb/PYyeTLXTCz8+UiIgoTbquJ3QHtDANeNKVQ9NCjhygWmjSNS/f6ytRsbS5cTEUuTY0Ou96c5mjVgr+9ROyK/XP8w39TUsIIcu2+w/pPDUYPdR4h1h2UM1xRWwJERERERERERERERENV+qos+XCe26Cds0vrGYamctQtYUH+X6hloY2teMeUL9+yLrO6Id+i+cucXDuvvLTy+pUY+cX4+uhLJM/9UldQ27rh4ozCdxwp8oqob7xK3mFf/8fdDJprWNUhcJ/vufg9N3kY6O+Y1X2vusGMhiNwXoDyitYauUbwNKXgIdvFVcp+PFDA0oddJJcqDX0PTd1rqcUvn+kg4Nny6u/tS7/cSlxYe7RcI9gtH479rrqVQAuavwVPlk2AXu3PCmurrSLSYnVnd+UMxiNKBdqySVyoRDSKPnlibn1jcvcjPF6jgNMn5dTHURFJd3/tVretWMwWs7U166QCxs/AV5/2ndd00bJ56WpWGsuOPhU3/UT0dDHT4WJiIiIiIiI8lTilCKozMEc6SAzKTSjZ8iGLfTKT2hWTy0eQQHNQjBaxIkhoAK+9lEMIeHnCnSGqJhIP2s/oWJSOEOHbkcyK4hNeADt8YzIK1jFFn7nJ4hM+jf4PXakdmVy4KBUcfZBIiLyL+jIg3uT2jwYVbreA/YAo0KTrq9+Q2uJBkpjYr1YVhu0TK/WJ9v6ya5OoU0IRvMV+hswDzSJZw60ypEUsmw/rwyNYLRNiQ14sekJY9nEcAOmReYUuUVERERERERERERERDQsTd1BLtuyEfhUeGk1w8WHmgdbHdT8YPbC8VN91UnDRP2OQCAoly97FY6jcPKu8oC9hnSo1chxBW7cNqo+x+dvDLYqnPod5bLmLcB/HvacAEsphf/aRT6Gdmp/I3vh1AI/c/UbjOY49r8J6n+2a1/aK49DL3/dUgef2Q8rXsfEit7nkP1myuebV1bnPy5la5t5eaznmB2vYL98ZdRb427CuZuuF1cfl/wIYd3e+U1ZVf+0iWiYUsEgUC2M+etog+5o911XZVRhQg7ZhOWZ4/XGTIJi4C8NZlIwWlwYe+o4vFfLR+1Ye9DpCku/OMOc8XLZjnHDfRkAjJviu34iGvoYjEZERERERETUB9JL/fHuYDTvMICQU+IZsOY3fCPutsDV8qybLakm4/KyQIWv+oslaAkmkMIMWoUAMCnQxO868VTv36E0YEZ5JKNJx0p3iJ4lwCziRK11A3J4Wr7BLeLPMxDrv1k0iYhoWLIFniaFADTpeg9A7Df1h6gUbJpn8ChRsWwUgtEUHFSHavOu19bn1T0CxNrcuLien9DfqGMORpP6qH6kdAouUsayEkce2KKHSDDaI5vuEv99B9ccxz48EREREREREREREREVxty9gYoaufyNZ3xVc/gchcpI9vJTmm7NWqbGMRhte6LKq4B9jpVX2LAO+pl/Y696YJohHyLituLorXd31nX05/uplQAOPCm39f2GYJG3HfcERsihd/qio6FP3wl69bvWag7ZARhjGDpbm9yAI5rvzS6Yu3euLbXzG8AQKuXz3gGmDlviuY7+7XeBu/8grzBrlwK2iAaaGjcVmLdYXuHNZ3uNNz91ofw3vOQPGs+vym9sSmOLebua1MZt3/RXMFpddr1TE++Jq4d1V4pbWRVUYPBM5k40ZCw+xrzcdYFVb+ZU1ef28t+vqE419l5Q15DTvoiKTzi+W4VgtEgZ+9p5UI4DHHq6WK6vugC6zfw+ZaYpIxT2mW7YhwLOeO9K8/4ZjEa0XWEwGhEREREREVEfSC/1p8MypNCMzCAuz4A1nwEAGhptQhgbALSkthqXxwLlvuovlqCSZ7dLuuYAlbgQACYFmvhdJ7NeKRjBKxhNCl9L/26lALOwE4WjvB8Ai8dQnuER4s/TR9AcERFRT6E8Ak+lwDSv+gpNvH5b+ltEg8GGxCfG5dXBWgQsfW1v/gaA2ALM/IT+Sv3z1swZKHOQtAQulljOK0MhGK011YyntzxgLBsRGo15ZbsXuUVERERERERERERERDRcqUAA6ndPiuX6Mu/wGAAoCys8cqGDGaM7v68Ia/x4w2U4Y8ufs1cez2C07Y26+Dpg8iyxXH/rOKiWzbj3fAc7127pXj6l4z3ct/pIjE51TSS1+6H918baMcCoOv8bhHyGYJEn5ThQ1z5sX2n1MuhLPiNOhAsAJUGFhy5wMKdHxtqs9qV4YPURCOv23isffXbhg3z8huUxVG/AqR0WQn3/JqAyz4noTv46AzeGIfUjQ5+lp0dv7/5yQo1CueVP+fCrXcQ7ch+f0igMz6lJber8wnGAsZNzrtcPVV6d9TdR37FKXF+nxxxVVPdLe4iGO/XVy8Uy/d0Tc6rre4crnLuvv+tSdWpz7wWGUESiQUXqc8WFsadhvh+VL/Wln1rL9Y2X+a7rb190sP/Mbb++0RXA7fPuw6wOIeyawWhE2xUGoxERERERERH1gRSWkQ65ksKuIoFoxvceAWtCPSZS+BkANA+RYDSllBh6khCCUuIpc0CJ9Dvyu05mqEO+wWhSuEN3+F0fg8jEYyiHY6fXdkKYRdhHkAUREVFPIRUSy6TruhSYBgAhp5jBaObrXr7Bo0TF0phYb1xeGzJMmZ4Dv8N0bX1Qqd/aU9QpMy5vc+NI6ZTPVvQmnW8AoMSRX0KwDZQfLJ7a/ADa3Lix7IDqY3wFLRMREREREREREREREfml6hqAOfLELHrzBl/1zJ+osPTHAXx0hYNPL3ofl3z6C/PzqPF8+X57o2IVUH980b7SY//E1JEKL+zzb3y0bCLeXz4Ny1fugL3iz3WW14zp9yAideSZ/lcuYTBaIalxU4G5e9tXWr0MePdl6yqzxym8/sMA1l3u4MO5V+KNVTtjbvsb2fvb7ZC+NNeMwWhDijr4FKg71wAH5BY+AwBq5/36oUU00FT1KKhb3hbL9b1/6vX9OYvla9KmVuDeN3Nvg2cw2uiJUKF+HGuX0UerdjcLKwK7xV/o/KKcwWhE+VClEWDMJHPh+jXQKf9j6kJBhWtPdfD/zvbuK3efT9Lt4L0ZDXbSPWCrEIwWYTBavlRJqT0c7f6/+B5/O6pC4aELAthwpYOVP3Ow7nIHR7/2C3kDBqMRbVcYjEZERERERETUB1JoVXegmRCakRnE5RmwlkP4RktK+MAWcmhaWaDCd/3FEhRCVExBKVprSwid9wfVpU4YSviYJDPUQQ5Gs3/MIv6OvY4VH+231p9vMJoU1OazPURERGlBS5BZUghAS7hygFFQBfvcJr+k63C+11eiYtnYT8FoNj37ydZgNB/Bv9GAORgNyD+YMOlaAheVJRhN6P8PFgk3gUc23WUsKwtUYI/KA4rcIiIiIiIiIiIiIiIi2i5MmiWXrX43p6pGVygEP1olr8AXXrdLKhgCps0Ty/Xffw3d2gw0NWJkagPqkmt7r1BZ088tRG6hff0ZTLO9mrnAe52XHvFV1ZhKhbFrX5BXmDbXZ6NyUOo3GI3HzmChHAdqvxNy35AhMsPX6Ily2XP39woq2lnIM0p75+Pcx6c0mucUR02qsfOLun4+9gzH9oHNDxlXPbnp1s4v3PwmRCQiACPGymUb1splgj3rvYPRqt3ewWiYPj/n/RAVlRiMZn6XjsFofTTDck7YtB5oasypuuqYwpQRqjPk/NN18oq1lvMhEQ07DEYjIiIiIiIi6gMpLCMdBCAFAmRuJ7343x2wlkP4RqtrC0ZrMi6PBcp9118sIWUezJHU2UEp7boNGq5xfSm8ridHOYg4UWNZVjCaNGOFx3MhKVCsO/xO+L35CY6w1R9PtfieZcPUrnzbQ0RElBYSwk6BzkAfEykwTUEhgCIGo0khuAxGo0FODkYb3cea5U5vzwAxKdi5VIURUAHPvdjCeG33OzYJw31EmnTv0WlwB6P9f/buPE6Sur7/+Ptb3T1Hz7E7M8suyy7I5cEGEBGQQwE5lUMFb7zQmBhj1BhjPBOPBHMfaqJREzXRmOQXFcRbUBHxVjyIGg88OVxgZ6+Znt3t7vr+/pjt3Z6e76e6qs85Xs/Hgwc79a2u+k7PTHVNT/Wrv77789rV8M6cNeesvUQDEe88DwAAAAAAAAAAOs894QXmmH/BefJl+28zwdvc8F/hgamNckPh67qw8rnHP98e/Nn35a86Xv7Wm8Lj4z0Io20+Nv26Bf5u12nu0mc3Dc75t79G/qPvTrfBO2+397XxyAwzS2kgbRgt5XrojTMvSY5hNcrlpEObFLGwbLl8IfHr619xxXzEU9JjT3LatNbe1jUfy3Z9SjX22tEsjNbtKF8gvPb87e9ctOzofT/VxTM3zH8ws6O7cwJWMPeUl5hj/o+fmvk1I0etczpxc/I6E43XpT344Zn2AfRe1jCa/Sa+SOHkR0qja8xh//pntPR6Nr93TrrnV+HBLafJRWSSgNWEn3gAAAAAANpgxTJKB4Jm4b84Nsa6rHhX7UX/mcJoVTsUMBOHn8wdXYphtCgcUSkHQilJn7MVr0u73uKoQ/hJ2ajJ0yxmWGX/9q14RFIUYsF6xvZjxdrr96TaRmhejdLenwAA1CQFh0LBU8kOGOVdYf5doHokKTwKLGV2GG19W9tN+/OXNhBtKUb2xSZJ5/5JQr9H1CTFw+IlHEaLfawbpq8LjhXcgM5Ze0mPZwQAAAAAAAAAAFYLd+wJyStYobMAH8fSp/4jPBgIbmD1cJdeLa0/3F5h293SFz8WHhub6MqcFsjy/UncquPcUcfJ/f0npC2nJa7n/+YF8vfembxOHEt3hMNo7uX/3PIcEw2kjOUR1VtSXGFA7p8+K518brobbDhCrknAD8ube9377MGvfEr64FslSUMFp1tebl9rPleW7tud/hoVK4omSZP7Q0auy2E0t35xUemxMx/Rv935HJ2w5zaNV3fq8t0f1U2/uFB5VedX2E0YDWiVO+dx9uAPviF96/OZt/mR30t+DcxkfRjtSS/q6fW7QEusYFa1El4+zOuj2uGiSO5937VX+PpnpNu+lH3Dd/3c3uer/yX79gAsa4TRAAAAAABogxnLiGflvTdjV41BgKRoVtVXtSeeSz2n2arxThYJYyO58dTb75W8EVEpx4tDKXuMAJ1kB8PSrtcYdWg1jGBFIObikmIf2/GIlPNPiky0Eo+w5pP2/gQAoCbv8uaYFSqylidF1rrBPEfLEK0Fem2uOnsgsNxoss0wWpY5hKQ9tx2MhuWMP2OWWvz5s0KMUrNjy9INo/3v7De0dd8dwbEz11yg0fzS+z0PAAAAAAAAAACsIOc90Rzyn/tg+u38+Dv22GFHZ5gQViL3e3/Z2g3HJzs7kQA3Ppk+wEYYrSvcgx+u6O1fkJ72MnulalX6fPgNpw647y5pn/EGtMee2PoEk6T9niCMtuS4DYcretOnpMkNzVfucpgKS8AR908crj8nut+U05ueYkeFrv9O+mtUtieE0Sbi/SGjbgdmN4XP056267/0rZ89TNt+tFHX3vEkHVa5++DgqRd0d07ASnf8GeaQ/+wHMm9uQ5PLyybqwmjuNx6WeftAz2WN9w3x+qh2ualDpWPseH4rxybd+ZPw8iiSNh6VfXsAljXCaAAAAAAAtMF6YX8pntU+v1dx7d2NGjTGpayoVSmeTYx+hW9jR7Bmq7uCy0dyY5n20QsFVwgurwRCKVaATpKG2gyLLd52+I/OVrihxgqKecXaG+8xPwcrvpd2+1Jr8RYz6kcYDQCQUeRyyikcRysboaJQCFWyzw+6xYzgVrOdnwG9tK18jzm2rpDiotwESZeMeH/wPHnO+B0m7blt5CLz/LaV6K8kleNwcFGSCpF9bFm6WTTphulrg8udIp0/8ZgezwYAAAAAAAAAAKw27gT7Rfn6yifTb+hXP7L3cfzpGWaEFWnLadlf3C5J6zZ2fi4hST8HNc5JR23p/lxWMXfimYnj/pufS97AnbfbY0b4p21pw2gDhNGWrBOSv++kJo+VWBHc2IR0vwfZK9zx4wXX1Jx5jP2YdovRAAnZbbQcJWlN7fUCh2xKv8FWPOiUxGNZ6DN1Fz6le/MBVoOk348+/E75PdmubR3IJ59nT9aF0bp2TgR0VMbfHQeHuzON1SbpnPeDb5X/6feybe8O4/ezDUfIFXr7JusA+o8wGgAAAAAAbbBiWnPVGc0lxrqKCz62XvQ/V51N3E7IrBEKqPiy9sRzwbHRJRlGCz9ZGQqoWOGvghtIjBzUs4Jfjdv2VhityfPn1vdKbR/W55A2RJYUgMv6PVSbU3A+KWMWAADUsx6PQ8HTpOX5qLd/zGw8Z6spxbMLLlgDlhIrjBYppzX5dt8VPTGNduBf7Z7bSnZEreUwmhFidHLKKW+Gjr2PW9pft/107v90+9wPgmMPGTtD6wYO7fGMAAAAAAAAAADAqnPxVYnD/v1/m247d/7UHrvgSRkmhJXIbThcuij5ey14u83HdmE2gf08+cXNV7ry+XLF0e5PZjU77SLp2BPt8Vs+Iv/dL9njvzJqRGum5qNH3ZA2wpALvxkh+s896UVSUphhzTrp0qt7Nh/0j3vaH9qDc7PS9NYDH558hL3qe77k9Z1fpbsmbWavPTZae5P18XavE0rmhkekNI+D9U67sDuTAVYJ99jnJo77F14gv3Nbx/a3Jt558IPDCKNhGcga1Say1RHuyucnjvvnnCr/ifem3p63wtWbj8kyLQArBGE0AAAAAADaUIzCF6uU4lmVjBiAtPhF/mZgrcl2gvuu7g4ut4JpkjSyBMNoeRcOqJQDoZSSEf7KFF5IiNPVsyIoVkjh4PbtC5tKCQE8a16NClHBjMll/R6S7JhalvsUAICavBU8jcOhIiuMVjDOD7rFehz2irXXJ7ztJtBH2yrhMNpEYZ1yLtfWtl3Kd9PrxPn5cM76XavVMJoRXHQFOZf2M1s6bpi+zhy7cPKKHs4EAAAAAAAAAACsVm5sQu6vP2yO+7e9Sn57+G9XC9azwmjHnSpXXHrXtaH33CveIfdbb8h2o029ecG0O/lcubfcmLzOi1JGAtEyl883/Tr4f/wje8x84X0XA3uFwZTrEWtYqtyJZ8r9wyelc6+cjzQcdtT8f/d7oPSop8u9/Wa59Zv7PU30gHv0M+Re+hZ7hbpzHeecXnqRfZXKq69N9wZ+M8ala4PxHhVUmf+gy2E0SXK/9fr0Kx9zglzaKCSAILf5WLkX/IW9wv99U7r27R3bX1R7s9Q1U3Jjazu2XaBrCKP1hTtqi9xz/theoVqVf9MfyM+lfG2b9ftZj37PB7C0EEYDAAAAAKANjYGzmrmE0JW0OAhgBQJKcfJ2rNuEzFZ3mbcZyY1n2kcvFKL0AZU543O2gnNZ1m28P72sMFqz7RfNsaQAXpbPIW3cLY25uBTeR4b5AABQk3fhd6+1QkVlHw6mWRHQbkl6HC4lRGeBftpW3hpcvq6wvqv7rT9Pts/P7XPiRta5rRVda6bS5LhihY5jpbvgtJe27rtT3535anDsgcUTdL+hLl6cDwAAAAAAAAAAUO/EhyePf/XTzbdxlxFGO+GM7PPBiuTyeblnvly65Fnpb3R47/5m5k56hHTUlvDgwy+Ti3gJZy+40TVy1/w/e4UffF1+26/DY7/+RXj5YUe3PzGDy+WkfIo3CEyzDvrGnXiWoj/9T0X/+X1F//1/8/+977uKXv2vcoQbVpfH/pZkBV0bznW2bLQ388nvSXvL4WvV683sDS8frb3hYC5nz6eDnHPSlc9Pt/Ihh3V3MsBqcealicP+lo90fp9dPCcCOipzGC1lrBjNnXtl8vjsLunbN6fb1h3hMBrn18DqxLNqAAAAAAC0wQqaxYq1o7ItOJZ3+UVRj6TAWinOFt2Yre4OLp8xlkvSSLT03lmz4MIXc1QCARUrvGDFFLKs2xgVs8NoyU+z5F1BAy78pHmpOmPGy6zvseC6KeNuzVR8Wft8+C/mWeYDAECNFTSzQkVWMC1vnB90S9K5hHX+AfTbtvI9weWTXQ6j1bMiu1nOJYu50eDyrL8f1VjHldrvHVmvh+mnz0x/2Py95ILJK3o8GwAAAAAAAAAAsJq54qi05TRz3L/tVfKVSvJG7gyH0dwmXnyPhdxDH5luxeKYtPaQ7k6mgbvoqvDy857Y03mseieelTz+vfAbUGnXdHh5tyM+A0PN1yGMBiwLzjnJOHfx//yaBedDj3ygfZFK7KUfGA3HejN7w9eNjNauaRubnJ9TD6R+fB4c7u5EgNVi0zHShiPs8R/eKu+bBxYz2UyMCCvUAGG0jjn8AdIhm5LXuTMcPKvny/ukrb8MD3IsAlYlwmgAAAAAALTBCppJdpBgOBpZ9IfG5MCaccGFoVQNhwJmq7uCywfdkArR0rtwwgqolAMBlZIVFUv4+qRdtzF6YgUI2tnHTHWX9vo9wbGk77FF60bheIQVXbPMVcMhC4kwGgCgNVbw1AoVWcG0QhQ+P+iWoaQwWsLjJdBP08bvIVP59sNoTukumLTOPztxbmv9vtNMOQ4fV/IHjivhz62d8/9u2FXZoa/s+lxw7LCB+2lL8SE9nhEAAAAAAAAAAFjt3HNeYw9Ob5V/1RPk4zg47PfOSffdFb4tYTQ0Oudx0nGnNF9v87E9i8EccOnVi1+kfdyp0tmP6+08Vjm3dp30jJeb4/7VT5LfFigO7doe3t74ZKemFpYqjNbba2UAtOEw49xl293yr37igVDRkeucrj7Tfpw6+U9jlYzwWc1M+P2vNVp7w8E1XT5+1TvzknRhmQHCaEAnuFxO7rmvTV7pti91dqfW8Q1YarL+HlggjNYpLp+X+83XJn4NvBHGX+Dun0vGc0jafGxLcwOwvBFGAwAAAACgDUmRqG0VO4zWqJXAmmXWDKPtDi4fzY9n2n6v5DMEVBrjZTXFDBEv62tZaty28e45kWv+NIs1n2nje2X+NuEgRIgVXlv0OTRh3Z9StpgFAAA1eSNoZoWKynE4mGYF1rqlEBXMWGvS4yXQL9573WeF0QoburvvuoCYdf6ZJbI7kjPCaC3+7FWMEGPtuGJF37w3LrDok5u2f8z8XC6cfFzvX+ABAAAAAAAAAABWPfewi6VTL7BX+PInpO98ITx218/s2/HiezRwg8Nyb/q03HNfl7xiH14s7SYOkXvbzfMvBD/viXK/++dyb/603GCK8BU6KvrtNySvcP2/Ll62y3gD47GJ9ieUJFUYbem98TEAQ1LU9Usfl75984EP//VZydd3fODW1sJoI37/dTVjvQujuXxB7r9/2HzFQcJoQKe4Rz1d7rX/bo77t7yss/trDAADS1XG6ycdYbSOcpc+S+7vP2GvcMftzTdyp7GOc9LGo1qbGIBljTAaAAAAAABtGI6K5ti0ESQIxauSAl5Zw2ilePeBd5SqN2OE0UaisUzb7xUrQlLxiwMqc9X2wwtW8Ktx27GsMELzJ9Ct+SR9ja3YWYj1fWTdP5ZSwvpZ7lMAAGqsoJkV9ykHHu8lKW+cH3STGU/N+PgK9MJcPKs9cSk4NlVY34E9JLyTW10YzTr/zBLZLVphNCME3Yx1XKn93mGG0VraW3fsief0+R0fD45N5NfplPFH9HhGAAAAAAAAAAAA89wFT04c91+7MTxgveA1l5MOvV+bs8JK5IZH5J71SmnDEfZKfQo3uLXr5K5+laLXv0/uqX8gN2RfX4ouO/9J5pD/euB4ZIXR1kx1aEKGgRQhBsJowLLhNiU//tSfDznndPb97XVv/H7yvmb2hJePxvuvqxnvctixgVu3URpdk7wSsVCgs85/kh0c3H5v6s2cYvzadc7s5w9+cBgxIiwTWd9YdqD316WvdO6hj5R73p+FB+/6afMNbP1VePkhmwmPA6sUYTQAAAAAANpQiAbMgJcVuwrF1IYSw2hbg8tHc+PB5RVfCb7of7a6K7j+SG6JhtGi8MUc5XhxQKUUG2G0DOEFK3qyz+81oy310jx9bs0nKYyWFM1Lu33r/rHMGes7OQ1GPJEMAMjOOl+yQkXWY68VWOsm6/HVerwE+inpvLITYbTEa0b2F8S895oz4mxDCWHpRsWo02G08HElv/+4YoXRllIa7Us7bjCPPedNXK6cy/d4RgAAAAAAAAAAAPuddqGUS/hbxfv+Krz8TuNFsesPlyvwAmUkOOsSc8ideWkPJ4KlyJ2V8D1w25fkKwf/fuwrZakUfuPhroeFhsN/F1+AMBqwfJx+sRQlvGz/+19b8OGlJ9oX4rzvq1633WFfszKzN7x8tHZdyaEJAdFuaRaTtAJOAFrinJMGjNd2bP2l/O4dqbbzO+eEj0UvmX7zwQ8mOvGmrEAPuIz5nEKKUDGy23R0ePkvfxQOVdfbtT28fGpDe3MCsGwRRgMAAAAAoE1WUGu6HH6XlWIgrlGICpkDa1MF+0m92eriizRCyyQ7sNZv+QwBFSu8kCkqlrDuXPXg9r3i4DouxdMsVtzB+hrPh8jS/xHY+hyyhlus9YeioqKsfygAAEAHw0ONrFCRFUyzzpe6yTqfIIyGpeg+I6qcU15r8pNtb9+Ohx201+8xz5mznJ+Hfm+Sskd/ayrWcSWaP644o/rml0gYreor+uz2jwTHhqOizlp7UY9nBAAAAAAAAAAAcJBbt1Huua9LXMf/198vXnaXEUazXkQL7Oeueqm0+djFA5c9R9pyau8nhKXlnCsS3/nLv/IJBz/YbbzwXpLG2v87e6Jiijc2JowGLBtu/Wa5q19jr3Dr9MQnewAAIABJREFUTfJ7Dl6T/tyHJ1+H8+A3xPreXeHrVuww2vwbDrpNxyRPtgvcy/85eQXCaEDHJf3c+adukY/D1/HVe8qpThcct3DZ43d9SBfP3HBwwXiXz4mATkl8998AwmjdkXAe4v/gUvkvftQe3z0dHhjrcrQawJLFK1kBAAAAAGjTsPGC/X0+/BdHK16VNbqxLjGMNrNo2YwRRhvJpbiwog8GjPBJJRBQmauG7yPraxNihRekhV8DK4uQ5vlzax87K+EnbrOGyKztW/ePpT4El2b7AAA0YwXNrABaOQ4H0/JR7y/2tM4nrMdLoJ+mjeDuZOGQrgduawGxUuB3kZpM5+dGVHhPXFLsq9kmJ/u4UjgQbjTCaH5phNG+ufuLmq6E49tnr320hjIElQEAAAAAAAAAALrBPf1l81Eqg3//38lXGv5mcydhNLTGbThC7u1fkHvFO6QnvlB6xsvl/uZ6uT96q/mmSFg93MCg3L9/y17hK5+U//kP5v+9c5u93niXX3xfDP9dfIFC799EEEDr3LNfLV1unw/ppg8d+OfEiNNHfi/5ep63fDZ83cqsGUbbf814H8JoevAjEocdYTSg8x6W8GaaO7dJ3/xs000UB52u/71IH7joe/rje6/Rtb96gt5/5zNVUOXgSqNrOzBZoAey/i44QBitK5o8p+P/42/twV1GuJpAI7BqEUYDAAAAAKBNVtDMYoXRskQCJGkqIYxWihdH0GaNMNpobjzTfnsl78Lhk3IojGbE44ajYur9WV8XSSrVhcW8D79rjkvxNIu1D2/k1rKGyKztl2I7ThFe37o/CaMBAFpTMIJmFSNUZAXTrMBaN2WN1wL9tM0Io00V1ndoD0kXjcyf0yb9bGT53amYsy8At85Xk1jHlfz+44qzwmhmGrl3vPe6cfra4Fje5XXuxKU9nhEAAAAAAAAAAECYe/TT7cHt90i/+snCZffdHd7OxqM6OCusVG58Uu7SZyl60d8o+u03yD3sYqJoOGjTMVI+4Q34bvvy/P+tF95L3X/xfTHFGxvnev8mggDa4y692hzzt31pwccnHZ68rXfcHL5uZedcePlI7Zrxw3ofmXVRJB15nL3C2nW9mwywSrihorR+sznuv/slc6zeUMHpiqmf6LX3XaPLZz6unOpeMzO6Ri6Xa3eqQI9k/H2wQBitG9zIuDRpv+ZR3//q4nB+za7p8PJuR6sBLFmE0QAAAAAAaFPmeJWxftbo1FhuXENR+J2T6kNeNVYYbSSX4sKKPihE4fBJOV4YNPDeBz9fKVtsbjAaMuNm9XGHdrIIWeN3Wb8nrO9F6/6xzFn3J2E0AECLrKBZJRA8TVpeMMKp3TRkhFazPr4CvXBfeWtweafCaFY8TDp4nmydS0rSUKYwWrpwcVrNjitLOYz2g9K3dcfenwfHHjb+SK3J8054AAAAAAAAAABgidjyMGlNQvTi599f+PFuI0i09pDOzQnAquQKA9JZl5nj/q+er/jFF0vf/Fx4hYGh+dhINxXtNww7ICnuBmBpetAp9tj1/6r4EYMH/tv4lmc33VwcL752Zbtx6cxEdcf8P/oVITv3Snvs1At6Nw9gNTnnCnvsPdfI/+jb6bZj/W42tjb7nIB+yRrKLvT+DbtXjXMTjk3VqvTVT4XHzGMR18kCqxVhNAAAAAAA2pQ5XmWs30pgrRiFL4oIRdBmqruC6y7ZMJoRPin7hWG0fX6vYlWD61r3dUjkIg0b4ZOFYbQ4uE6U4mmWLPORpGIuxUUvC7YfXn9PXFLsw/MOqf98F86HMBoAoDX5lI/rzZZb2+km6/HPerwE+mm6fE9weafCaGnMxaXg8oIbUCFK/zNsndtKUqk6k3le1nGlFm60o2/9D6PdMH2tOXb+xGN7OBMAAAAAAAAAAIBkLp+Xe917zXH/J1ctXLBzW3jFNbzgFUD73Av+InmFW2+Sf9cbwmPjPTgOFZtfv+uINQDLjsvlpIdfnm7lG/5Tf1Z9W+Iqb785EEYLX56jyer+mEifQkbuSS+SHnJOw0In90dvk1u/uS9zAlY698xXJI773ztP/te/aL4hYkRYCbKG0QYGuzMPyF39aumoLea4f8Xj5bffu3jAeJ7IjU90amoAlhnCaAAAAAAAtGm4haBZcHnGaNZwNGKGs0rxwlBA7KtmvGM0N55pv72Sd+GLORqDBnNVO0qS+T41vjalhH10Yvvm+h2av5fX3ngu9XaszzfrfAAAqCmYj+vlTMut7XST9fhXIoyGJcZ7r219DKP5/QGxTp1LDkbDcsafMht/30mjHIePK/n9sTZnXBDj+xxG++We2/XD0neDYyeOnqZDB7loFAAAAAAAAAAALC3ulPOkBzzEHPfbfj3//71z0l7jmqZeBIkArHhu45HSVS9t7ca9eOF9ijCa8r1/E0EA7XOXPiv1ulf+PDmM9g83Lr52Zdq4dG0i3i4Nj8r16djhxtbK/d3H5N56k9wfvFnuNe+W+8BP5C5/Tl/mA6wGbu06uZe+xV5hblb+4//edDveCqMRI8JykjWMlidC3C1uYr3cv3wleaVPv3/xsl3WsYjniYDVijAaAAAAAABtKrYQNAsuzxjNKkYjGjHCaLPVhaGAUnXWfEH/SC7FhRV9UHDhP8hWGkIpSVGSVu7TkPqonPfh+9G55k+zZP1e6dT3lpQt3mJF9IZzxUzzAQCgphBZj+v7wsvj8PK8sZ1uss4nkuKsQD/MVndrr98THJsqbOjIPpySLhqZP0+2zyWzndtGLjLPh0vVFsJoxvHmYHDRCKMZ5/+9cuP0debYhZNX9nAmAAAAAAAAAAAAGZz0CHvs5uvkZ3ZK995przPGC14BdIZ70ENbu2EPjkNuOMXf0XP5rs8DQBcc8cDUqx657xcaiirm+I/vke7a4VXaO38NSxx7bS+F152obpfG+hsxcvmC3AlnyF3xPLmLr5Jbz5v+AV13/wcnj//g6823sWs6vLzPxxQgk6xhtIHB7swDkiQ3MCidcp457n9468KP9+6Rtm8Nr7xmqpNTA7CMEEYDAAAAAKBNSTGqEOvF/ZkjWLkRFaNw1KxU3b3g45nqLnM7SzaMFoXfeaPcEEpJipK0cp+GlOr2YQXm0jx9XswYg+hU2E3KFm8xYxYZ708AAGryznpcL4eX+/DygrGdbrLDqcbVZUCfbKvcY45NFdZ3ZB8uxUUj1rlk1nNzyT5/biWM1hhYrqkFma3PrJ9ZtPv2bdWtu78YHDt66EE6ZvhBPZ4RAAAAAAAAAABAOu6ip5pj/u9eLP/o9fJP/Q17A+O8+B5Ah5z+KGlkPPvt1vQg0FhMcf1uoffXygBonzviAanXHVBZT1j3o8R1Nv9RrNEXxnr826q6c4cUGxe0TFR3SGNrs0wVwEpw3KnSpqPt8a98Sv4D/5i8jd07wsv53QzLSsYwWoEwWre5C+3nh3TDf8nf+N8HP777Z5L1ZsZJxzgAKxphNAAAAAAA2tSp2FUxN5ptv9GIRozblOKFoYDZhlBavdFcCxd89EB+f6CgUWMopWSEF/KuYMbVLFb4qz7uYIfRmj/N0qmInrn9XNEcs+6nECui1krMAgAA6WB4qFHZ78u03NpON1nnbnPVWXnrj69AH2wrh8NoeVfQWK77FzzWfhrmquFo4HBkn6tahlP+vpOGfVyZ/53BOp/3ijPvq1M+u/16xcb+L5y8osezAQAAAAAAAAAASM898OT2NjDGi+8BdIYbHpH7iw9Ja6ay3XBsiYTR8r2/VgZAZ7jnvi71un+34TodmuKS/mu/JT3mH+1rWSaq2zmPAlYhF0Vy1/xP4jr+TS+Vv+lae4Vd0+HloxxTsIxEGfM5hNG67+KnScP2a9H8658pf9uX5z+48/bwSlEkHXpk5+cGYFkgjAYAAAAAQJuyxq6sIEDm7eRGzJjabLUhjBaHw2gFN6CBaGk+kVsLFDSKVVXVVw98PGcEv1qJeFm3qQ+F2WG05u8sYoVVOrV+zuU16IaCY6Vq+niEFVHLOh8AAGqsx/VKQ/C02fK8sZ1uss7dqqqYoSWgH7aVtwaXTxXWK3I9+JPg/lCgdX7eyrmkdX5eMkK+SRoDyzW1ILN9Nt+fAOJMdZe+tPPG4NiGgU06YfTUHs8IAAAAAAAAAAAgo8uf09rthkfkBpbmNW0Alid30iPkrvul3Mv/Of2NxnsQASmmeEPlfO+vlQHQIQ85J/Wqk3N36Vd/le76nu/ckbCd6nZprPtvoAhg6XHHHC/3r19NXMd/7N324O7t4e324pwI6BTX/HVdCwxwrt1tLpeTe+MHEtfxH//3+X/c+dPwChsO53kiYBUjjAYAAAAAQJs6FbsqZtzOUFRUMQpfFNEYwZqp7gquN5JL8W5zfVJw9rvc1cdS5owoQivhBes29aEwM4yW4gn0rPG7VuJu1udgBSqC61r3aQvzAQBAOhgeamSFxawwWtL5QbckPf5ZMVGgH7aV7wkun8qv79g+kmLAtfNkK1rWyrmkFYIuxemjvzWVOHy8KUTzF7Y4Ix7XnyyadPP2T2if3xscu2Dicb2J3QEAAAAAAAAAALTB3f/Brd1w7SGdnQgASHL5vHTBk6WB8JvPLlp/fLLLM5I0sqb5OvneXysDoEOOOV4qpAyu7N6hXOR08hHt7XJNvFNau669jQBYvo54QPK5zlc+Jb93Ljy2e0d4+RhhNCwnGcNoRIh746gtydG6j75LvrxPfjp8HbQOPbIr0wKwPHDFPAAAAAAAbbLiZCGRIg268B8asoQChqJh5VzODJvNVncnflwzuoTDaHlnP8FcH1Gxgl8thReM29SHwryPjVs3fwI953Lm1z+klbhbms8hSdVXtdfvCW+7hfkAACAlhdHCAbRybITRot7/ATrp8S/t4yvQC1YYbbLQuTBamnNe6/y8lXPJtCHoNKzjTbPgon3+3z374r26acfHg2PjubU6bTz9OwoDAAAAAAAAAAD0zXlPlIaK2W+3+ZjOzwUAJLmh4nwcLY3xHkRA1kw1X4cwGrBsuZFx6dzHp1v589dKkp59VsagS5211e3KKZbbxLkUsFq5oaJ04VMS1/EXrJX/zP8sHtg1Hb5BL2KxQKckxbdCONfuCTd1qHTGoxPX8Y85XLrpg+HBNL83AVixCKMBAAAAANCmLC/wH86NyBlPtGYJedXWLeaMUEBDjGCmuiu43khuPPU+e60Q2U8wV+piKSUjSDIcZb+ozgqRWXGHelHKdxbJEjuzImetbL/xe8KS9Lm2EpsDAECyg2aVQAAt9lVVVQmubwXWuinp8S/NOQLQK9vKW4PL1xU29GT/Xl6SNBeXguNDLZyfp/19J436uHK9WpDZGefzPvOe2veVXZ/TTHVncOzcicv6EokEAAAAAAAAAADIyq2ZknvTp6X7PSjbDYl5AOgi9wdvkk46u/mK4z148f1Yivhagb8PA8uZe9k/zQcZBwaT4yvey8/u0u+e6/Tay1uLo01Ud8z/Y/OxLd0ewMrgXvIP0vFnJK7jX/8M+V//4uDHlbJU2h1eeWxtJ6cHdFfWMFou3515YBH3x+9JDpzN7JDu/Gl4rBfRagBLFmE0AAAAAADalCUWlRS6yhRY27+dESMUsCcuqeoPBkVmq+E/UozkxlLvs9cKzr6Yoz5qYAVJsgTIDtzG+PqUqjMH/u0VG7dO9wR6lthZJz+HtOGWOSM0l7RtAACaKRhBs1CoqOLDUbT57fT+Ys+CG1Dehf/wnfS4CfSS917byvcExyYL6zu2nzRnvNbPRSvRX+s29efnaVX84hCjdPD4ZIfRrPP/7oh9VZ+Zvi44NuiGdPbaR/V0PgAAAAAAAAAAAO1wW05V9L7vyH3kzvS3IeYBoIvc4LDcmz7VPJrQixffj082X4dYA7CsueERRa/9d7lP3Cv3yXvnQ2mWL35Mzjm99vJIH31h9pf/T1a3z/+DyCywqrnBYbm33JC8kvfSZ/7n4Me7d9jrpjlfAZYKwmhLlhtdI/eeb7R24zGOQ8BqRhgNAAAAAIA2DeeKqdcdiux1MwXW9gezilE4jCZJpbogwfIMo9nvilWuixpYwa+WwgtGiKxUtw9v3NalfAK9aMTsQloJkVmfQ9pwS1JALUu8DwCAelbQrOzL8t43LFscSzu4nYR3zewS55yGrDhTyvAo0G0z1Z3mz85UR8No9jmv33+mbP1ctBL9tc6dWwmjlePw/VOI5o9Pac/nu+07M1/VveVfB8fOWntRpt8nAAAAAAAAAAAAlgq3dp101UvTrfygh3Z3MgBWPRdF0sia5JV6EAFxA4PScJO/ped7f60MgM5zA4Nyg8PSMSea6/h3/In8T78nSTrzGGkwY6tlbS2MtmFzq9MEsEK4fKHp71X+PdfI/+S78jf+P+nz19orjvUgFgt0DGG0JW1qo7TusMw3c72IVgNYsgijAQAAAADQprwraMANplo3KSyVJbBWC2YlvSi+FB+MBcxUdwXXGc2Np95nr+WNgIokVeqiDyUj+NVKeMEKkZX9PpXj+Rib93FwnaRIRJp9hLQSPbC2nzbcMlctmWND0XDm+QAAIM2fL4V4xYpVXbCsPoDaqBYw6jUruJo2PAp0233le8yxdR0MozXjvTd/LloLFxthtBaihNax5eDxKXw+7800cud573XDdPgis0g5nTdxec/mAgAAACA959zRzrknO+f+2jl3k3Nul3PO1/338za27dv878iOfaIAAAAA0CZ32bObr3T/k6QTz+r+ZADgyt9JHu9VBGR8Knm80J9rZQB0yZZT7bGtv5R/1smK3/xSrRnyeuYZ2eIuk/F2ybnm4UcAq4J7/AuSV9hTkn/2qfKvf4b8377QXo8wGpaTrG+QS4S4p5xzck9ocmwK6UG0GsDSRRgNAAAAAIAOSBvhSopiZQms1fY3khsz15mt7g7+u17S7futENlPMNciZZI0F4dDXlkCZGlus2d/fKHdLELa75VIkQbdUObtW/E9KyC3aD0jMjEUFRW5XOb5AAAgJQfNGmNFlXifsaYdWOs26/G7lTgT0A3bjDBawQ1oNNfJix2TLhrxKvt9qqoSHG0lXGzF1PbEJcW+GhwLqfrqoghjTe24EllhNN+7MNpP5r6vn+/5cXDslPGHa7JwSM/mAgAAACCZc+5c59ynnHPbJN0u6b8k/aGkcyQt3T++AAAAAEAfucPvL/eOL0qHbFo4UBiQJg+VLn6a3Js+KZf1hcwA0AL3tJclr9CrF9+PN4mNEGsAVhTnnPTY30pe6X/+Ubr1Jv3TVU6veHT686KJ6g5pbEIuIh0AQHKPeprcK9/Z3kbyBWk4+3V/QN9kfT4hl+/OPGC76qVyL/jLbLchjAasahypAQAAAADogGI0op2abrpesxjAcG5E+yp7U+1PkgbcoPIur4pfHB8oVWcO/NsKo43mxpvuq19yysvJyQdSZGV/MJgyZwS/rIhCEisqJs2HT8a0Vl5xcDxK2Z9PO6/h3EhLF/lZcbe5lOEWa71W7k8AAGoKCUGzcrxPQ9HwwY8bQmkLt9Ofd8EdjorB5WkfX4FumzbCaFOF9R194UjSprxP/ploJVxczI2aY6V4NvXvM5VUxxUjjNZ2Gjm9G6avNccumLiiZ/MAAAAAkMpJki7q9yQAAAAAYLlxx50i96Gf9nsaACBXHE3+a/BQ+FqRjmv2Iv8cYTRgpXEPPLnp1Sj+pg8pf8p5euMVTq96tNf4i8LXr9ebqG6XxtZ2ZpIAVgR3yTOl9ZvkX3JJaxsYmyBcjeWFMNqS55yTnvL70pop+Tc+N92NxprEpAGsaGSfAQAAAADogLQv8m8WlypG9gv/F+xvf8DLOWfeZnZ/GM17b4bRRnJjqfbXD8455Y2ISn0wpWTEF5pF6IK3Sfj61AJs7WYR0s6r1RCZGUYzAnJp12vl/gQAoCafEDSrD56GPq6XFFjrJiueOlct9XgmQNh95a3B5VOFDR3eU/JFI6WEc85WzieTfj9K2lej5DDa/HHFmZ9bb8Jod+39pf539hvBsS3Fh2jz0JE9mQcAAACAtu2VdHuXtv1VSUdl/O+OLs0FAAAAAABg+TvHeIOqk87uXQSkWRhtmGs3gRXnhDOar/Phdx745+hQuuPRRHV782MKgNXngSdLA0Ot3XacGBGWGZchn+OcXC7XvbkgWZrzoZp1G7s3DwBLHmE0AAAAAAA6IO2L/JsF1KzoxqL16rZTzIVjAaV4Pow2F88qVvhdokaipRtGk6SCEVGp7A+meO/NkFcrYbHBaEjOeLqkFmDzPnxfupRPoKedV9rY3qLtm98P6cIRZmiuxfkAACAlB80qvrLg43JCwCgpsNZNZng05eMr0G3T5XuCy6cK63s4C5/4M9HK+XnS70el/SHoNJKOK4Vo/rhiXdQe9yiMduP0debYhZPGxfgAAAAA+q0s6duS/kXS8yQ9VNKYpJRvbZ3ZHu/9zzP+V2m+WQAAAAAAgNXJPfnFi0MhuZzcU36/d5MgjAasOu7I4zLf5iUXNo+jTcQ7pNG1LcwIwErmxiakK5/f2o3HCKNhmckSN87luzcPNOU2Hytd8OTmK+Zy0sYjuz4fAEsXYTQAAAAAADogdeyqSfgsbXyqfjsjuXDcbLa6W5I0s///IaO58VT76xcrolILG5T9PlUVfk1P2lhdvchFGo6KwTErwFbjlO4J9NQRvRbmL9nfi3vikmJfbXp76/O07hcAANKwYqfSweDpgY/jfcaaUt7154/QZhityfkB0CvbKr0JoyWd83rZ0eKc8onHActQVDT3WQtBp5F8XKn9zmF8br77YbQd5W36+q6bg2NHDB6jBxRP6PocAAAAAGT2b5LGvfcP8d7/lvf+Hd77W71PKDMDAAAAAABgSXEnnCH3lhuli58mHXuidP6T5P7mo3JnXdq7STQNo4XfLBfA8uZe8BdN1/F79xz49ysf1fw69cnq9ubHFACrkvvdP5d76Vuy35AwGpYbwmjLinv1u+R+55rklSYPlcvbb9AOYOXjaA0AAAAAQAcUc+kuPGgWPksdRqtbrxiF912qzocCZhPCaFZUbanIRwNSoOVV3h82mIvtGEna+3LR7XIjwchCbV9ecfB2acNo1tdr8Xqtz9+yJ55r+r1aMu7TVkNtAABIUj6y/yBZbni9cNmHA0Z5V5DL8gfrDrIeB63HTaCXYh9rW9kKo23o2Ty8pLm4FBwbzhVb+vmdDxeHz89LGcKEjceZerVgW2Scz3t1P4z22e0fMYPPF0xe0bdjHwAAAACb9357v+cAAAAAAACA9rktp8ptObV/+x+fTP6rdHFpX+cLoEX3e1Dzde7+mXTkcZKkqVFpzbC0c85efW11uzSWYrsAVh3nnPS435b/9S+l//jr9DckjIZlJ8O1lsS2+s7l89LT/lB6xGPkn2a8gfCRnNsAq13U7wkAAAAAALASpI1wFZvEpZqNH1ivbn8jRuiqFg+Yre4KjkfKaSgaTrW/fim48BPNlf1hg6QYQtr7ctHtjK9lbV9WGCFtGC1tYKzVEFlSUC1NPGLOWKfVUBsAANLB8FBILXh64GMjYGSdF/SC9TiYFGkFemV3dceB8+NGU4X1Hd1Xs3NeM7LbxrmkdV4fiqVZrOCiVH9s6U8Yba46q1t2fio4NlXYoIeMndHV/QMAAAAAAAAAAAAA+mh80h7L5aWCfc0NgGXshDOlweTr+P0zTlL8j38k/7PvyzmnNU0u+5+sbidiBCCRO+2CbDcY55iCZSbLm9Dm8t2bB7LZfKy08X7BIXfahT2eDIClhjAaAAAAAAAdkDp21SQIkDYYUL+/ohFGm63OhwJmqruD46O58fl3flnCrIhKLWyQFCNpNb5gfS1r+zLDaCnvy7SBsU7PX0oXj5iLS5m3CwBAMzmXU2T8SaIx6FQxAkZJcbVuM88PquHHTaCXtpXvMcem8p0NoyXzZmS3nXPJYmSEoKtZwmjhcJwk5fcfW6yz+W6H0b6w41PaE4ffzvf8icco53Jd3T8AAAAAAAAAAAAAoI/WJITRhkeW/HW+AFrjRtfIXf3q5iv+95vkf+ds+e99TW9+SnISYKK6XY6IEYAkJ50tnXlJ6tVdUsAVWIoIoy1LLorknneNlGu4XvaoLdIlz+rPpAAsGRytAQAAAADogE7FrtIGA+r31ywUMGuE0UZyY6n21U95Vwgur4UNrPBCTvmW4ynW16hUC6N5I4xmphTSbb+RFbxrZigqmmPW/bVgHSM2l/Z7HAAAS8ENaK/fs2h5uSGEZgWMrPOCXrAev5MirUCvbCtvDS4fdEMdP+dPOuf18l05l7TOi7OE0SpxOLgoSXk3/+dS58IXj3YzjFaOy/rcjo8Gx0ZyYzpjzfld2zcAAAAAAAAAAAAAYAkYSwiORLyRFrCSuae/TDr2BPmXPTZ5xdJu+ff+hS574wcTV5usbpfGCKMBsLkokq75H+mT75X/zi3SHbdL//tl+wZja3s3OaATsoTR8v27Lh2LufOfKG04XP6mD0n33S33oJOlS58tx3EIWPUIowEAAAAA0AFpg2bDOTtaJWUIrNXtz4od1IJoM9VdwfHRZRBGK0ThuFllf0ClZIQXhnOtv0ue9TWoRcWsMELaMFqxhfhdFjmX01A0rD3x3KIx6/6qZ8XT0n6PAwBgyUcF7a2GwmgLQ2hlI2BknRf0wrARHi37fSrH+/o6N2Bb+Z7g8qnC+s6/c3ST7c1VS8HlaePAIdb5c5YwYWOAsabgBg7cR+ZnZoSRO+Ebu2/Wzsp0cOyctZdoMBrq2r4BAAAALEtHOOfeLek0SYdJGpG0XdJ9kr4l6WZJH/Deh3/RAAAAAAAAwNKzJiGMNhu+/hfAyuFOf5T8Fc+Trn178oq33iTnpAdskH4UeA/F4bikET9LGA1AUy6fly57ttxlz5Ykxa96ovSF68MrJwVcgSUpwzWzOVI7S407/nS540/v9zQALDGcPEZOAAAgAElEQVThtz4HAAAAAACZpI1YNVsvbXxqqC7OUcyNBtepRbBqgbRGVlBtKSm48DtwlOP5gIoV8Wo1KibZX4NaeMEKo6V9An0oGm5rHqlua8XdUsQjzNicEYQBACCtggvHwxpDaBVfMW7fv3fmSgqbzsXhEBTQK1YYbbKwvsczsc83mwWikxSj8O8tpepM6m00Bhhr8guOK+Hz+W5l0WIf68bp64JjBTegc9Ze0qU9AwAAAFjGjpJ0taQtktZKKkhav//jp0l6u6RfOuf+3jkX/uMRAAAAAAAAlpYNR9hj1fA1NABWFnfWZc1XmpuVbr9NV54cvr7l4pkb5q98IYwGIKuNR9pjY2t7Ng2gI7K8mXAu1715AAA6howlAAAAAAAdkCZi5eQ02CSKlSboNRQNK+cOPgFrBc5K1d3y3i/zMJoRUPHzARUz4tVGVMz6GpSqyWE0lzKMFrmchqKi9jSJqFhxszSKuVFtr9y3aLkVkquJfdWcVzvzAQBAkvIu/CeJSkOwqPY4v/j24fOCXkh6HJyLZzUuLv5A/1hhtHWFDR3fV9IZr/c+IbLb3rltSClOH0arGMeV+t83rPN5rzj1frL43uw3dfe+XwXHzlhzvsbya7qyXwAAAAAr3oik35d0iXPuSu/99zq9A+fcekmHZLzZMZ2eBwAAAAAAwErghopde8MuAMvEqRdIF10lffr9iav5Z5+qF39wWp/8dl7fvvvgtXibynfqz+597fwH45PdnCmAFchNHWqfi3BMwXKToYumHKkdAFgOOFoDAAAAANABaV7oPxQVFbkocZ1iiqDXUFRceBtj37Fi7YnnNFPdFRwfzY033Ve/WWG0WkBlzgwvFIPL07Ciagf25Y0wWoZ3FilGI03DaGkieRbr+9EKVdTsiefs+bQRmwMAQGoePK1pDKUdvH2h43NKKym6WmoSHgW6zQqjTRXWd2Fv9jmvlzdDvO2cSzYLF6dRto4r0cHjih1G644bpq8LLneKdP7EY7q0VwAAAADLVEXSLZJulPRdSXdI2i1pVNIRkh4h6ZmS6n8RfICkG51zp3vvf9Hh+fyupNd2eJsAAAAAAAAAsCq5KJJe8y7p0U+XbvuK/LveYK67/usf0M1PP12fePGf6NtDD9YD9/5IF8/eoEOq+99Qe4w3+ASQ0diEPTYcflNTYMmKkl+zt0C+f9elAwDSI4wGAAAAAEAHpIlYpYkBpAmsNe6rmBsz1y3FuzVb3R0cG0m43VKRj8JPNO+L5wMqvQwv1PbljTSCFVII7iM3ounKvYnrJAVY0mw/xLq/apLiEmm+NwEASJI3wmaNwaLGUFqNFVbrhUE3pEiRYsWLxqxQK9ALsY81XQ6fV052IYzW7JzXDhe3c24bvriqFM+k3kY5Dh9X8nXHFWdErL1f/HPfrp/N/VA/mftecOwhY6frkIGNHd8nAAAAgGXrNZLe6b0PV7Glb0u63jn3x5qPlb1cB6vWh0r6kHPuFO+Nd30BAAAAAABA/110lfTp9y9efvlzej8XAH3hnJNOOV865Xz5L39C+sHXg+v5b39BI5uO1uN3X6fH7w68KV9S4AgAQh5ydni5c9L6zb2dC9C29K/rUo7UDgAsBxmSlwAAAAAAwJImYpUmBpBqOw3rjBihAEmarc5oNg6H0UZz40331W9WAKWyP5hS6kJ4wfoa1PbViTBaqgBewte11e03i0ckhV3aCbUBACA1f1yvKcfl4HpWMLUXnHPmY2Gz8CjQTTsr06qqEhxbV9jQ49nYPw/DUbHlbZphtGr6MFrFh48rhbpgY4bLYdp2w/S15tgFE1f0cCYAAAAAljrv/TUJUbT69fZ4718p6YUNQydLempXJgcAAAAAAICOcI/5zfDy0x/V45kAWArceY+3Bz/5XvkXXhAeKwxIQ61fowNgdXKbj5UeePLigRPPkhtb2/sJAe1whNEAYKUhjAYAAAAAQAfkXE6DbihxnTQxgFTxtIZ1hqOiGeXaVdmu2equ4NhIbqzpvvqtPlRQr7w/bGCHF1qPeBWN25b9PpXjspFFyxhGSxEZs+aRavtWGK1JuCUxjNbGfAAAkKSCETZrDKE1htIO3N4Iq/WKdS6X9PgJdNu2sv3a+KnC+o7vL+mM18vb4eI2IrvWefFcXFLsq6m2UU51XAl/dlYYuVX37LtL35n5anDs/sPH68jh+3d0fwAAAABWF+/9P0m6vmHx73Z4N2+VdHzG/x7b4TkAAAAAAACsHCeeJT3rlQuXPeEF0iMe05/5AOivxz2vtduNTchlCcIAwH7uFW+X1m8+uGDDEXKvfEf/JgS0KsvjYL5/b9gNAEiPjCUAAAAAAB0ynBvR3sqexPFmaoG1vd7eTrFhO5HLaTgaUSmeWbTuW+/8M3M7yyGMljcCKLWwwVxcCo433kdZJH2d9sSz8oqDY1n+kNwsepZTvq34i/X5Nwu3WOG0QTeknMu1PB8AAKTmj+sHPy4H17OCqb3SangU6CYrjDYUFbsUtrXPeSu+bAbI2on+FnOj5thcXEr1e411XMnXHVes0LF1/t+qG6c/bMbWLpq8oqP7AgAAALBq/bmk+lfNnu6cW+u939GJjXvv75Fkl7oDeDEeAAAAAACAzTkn99zXyV/yTOknt0nHniB32NH9nhaAPnFDRelvrpf/w4xxxLGJ7kwIwIrnjj1Reu93pP/7huS9dOJZcoX+vpkx0JIsf5PMkdoBgOWAozUAAAAAAB1SjEa0Q9sSx9NoGlgLbKeYC4fRkozmxjOt3w9WAKWyP2xghb7aiUAk3bYUz8poGCgpErFoH03CbcO5kbZeJGR9DnNNwi3m/dlGaA4AgJpmj+s1VljJCqv1SqvhUaCbtpW3BpevK6zv+YvOrWix1N75ZDGyw2iz1Zl0YbQ4fFwpRAePK3YYrXN2VXboK7s+Gxw7bOAIbRk5uYN7AwAAALCKfU3Sdkm1V8HlJG2R9KW+zQgAAAAAAABNucOOlgiiAZCko34j+20IowFogyuOSief2+9pAG0ijAYAK03U7wkAAAAAALBSpIldpdEsoBaKchRTxAAapQkI9Ft9qKBeLWxghb7aCi/k7PDCXHVWseLgmBVSCGkWbksb0TNvb3z+pSbhFvP+bHM+AABIUsEImzWG0Ro/PnD7KBxW6xUzPJoQgwK6bVvlnuDyycL6ruwv6Zy3VLVDze2cT1rnts32Wc88rtQFG+2QXOfSaJ/f8TFzLhdMXtHzmB0AAACAlcl7H0v6ZcPiQ/oxFwAAAAAAAABAdm795uyBonHCaACAVS7LNZiE0QBgWSCMBgAAAABAhzR7sX/aGEDTwFpgO+sKG1Jtu6YYjS6L2FXehQMo5f0xASv01c7nNuiG5IynTOb3Fw4jZAmjJcXXpPbCblJCuMUIn9VY92dSjAIAgLTyRtis7Pct/DjeF1zPCqv1ivX43OzxFeim6XI4jDbVpTBa0ilvt8JoQ1HRPNcuxenCaI3HmZr644q1D+87E0bbE8/p89s/ERxbm5/SKeMP78h+AAAAAGC/uYaPh/syCwAAAAAAAABAS9wfv1s67tT0NxgjjAYAWOUIowHAikMYDQAAAACADmkWj0odRmshsPbQsbNSbbvm5LEzFbml/7SAFUCp+H0qx/tU2R9Ia1RsI7zgnDNvP1edle9EGK3p17iYelvB7Rvfi3v9HlV91bzdXBdCcwAA1FiP6+V44eN52Xh8t4KpvWI9HlphUaAX7jPDaNnCyWklnfNaPwtOkQajoZb3GbnI/vlLGSZMd1wxwmjG+X9WX975GTPkdt7E5X0/xgEAAABYcdY1fHxfX2YBAAAAAAAAAGiJW3eYonfcIveBH8u9+YbmNxgnjAYAWOWyhNHyhNEAYDlY+q+ABgAAAABgmWgWj2oWTku7Xmj8pNEz9Nh1zzCDIzVOTg8ePV1PWP+bqebSbwUjDlD25cQIyXDK+9q+fThMNhfPynsjjJbhCfTm3yujqbeVdftzCfGIuWop8/YAAEjLflzft+DjSsPHB2+ffJ7TbUnhVKAfqr6q7eXw69qn8ut7PBv7Z2E4KrYdZbZ+R7JCY43SHFes6FsnwmhVX9Vnpj8cHBuKijprzUVt7wMAAAAAapxz6yQd3bD4rn7MBQAAAAAAAADQHrfhCLmHnC1tPiZ5vbWH9GhGAAAsUQPD6dfNEUYDgOWAozUAAAAAAB3SLGiWNi5VjJKjWKHtOOd08dTjdd7EY3T3vl+o6uPgbdcPbNRIbizVPJaCQhQOoJT9vsQIiRUuScv6WpWqs2YYwQopBLffLH7X5vyTvhdL8axGNR4cmzNic2mjfgAAJMkbYbOKLy/4uNzw8cHbh8NqvWI9fluPn0C37axMK1Y1ODZV6E4YLemc1/pZaDdaLNV+R9q6aHmpmi6MVo7Dx5VCdPC4YoWOOxFGu3X3FzVduTc4dvbaR5lhZgAAAABo0VO08E1zt0r6QZ/mAgAAAAAAAADohE3HSHfcnjwOAMAq5sYn0l/xmevvdekAgHQIowEAAAAA0CFNg2YpgwBNo1kJ44WooCOGjk21n+XACqBU4nJihKTd+IJ1H8/FdhhNGcJozcJn7c4/KcKXdL+VjNhc2qgfAABJCsbjetnvW/hxvC+4nnX7XjHDqYTR0Cf3lReHwmq6FUZLYkXKhqP2o1/FXPh3rdRhNB8+rtQHG+2z+fbCaN573TB9rbH/vM6duKyt7QMAAABAPefcBkmvaVj8Ee99+9VnAAAAAAAAAED/NAufbV45ryEAAKAl45Pp182R2gGA5SBqvgoAAAAAAEijadAsZVyqaTRrFUWqCnWhgnplv8+MkETKacANtrXfpPCJFUaLMoTRmn2vtPs1HoqKcsZ85oz4mWRH04Zz7ccsAAAoRNbjennBx5WGj5vdvlescOqeaqnHMwHmTZfvCS4vRqNth3Yt1jmmZEcCO/H7S1K4OA3zuFIXXHTGn03jNtsBPyx9V3fs/Vlw7NTxc7Q2n+FCHAAAAACrhnPugc65yzPe5lBJH5W0oW7xPkl/3sm5AQAAAAAAAAB6zx3eJHy26ejeTAQAgKWKMBoArDgcrQEAAAAA6JBmL/hPGwRoGs3qUuRgKaoPFdSLFWumsis4VsyNyLn0kbIQ6z6ej4oZYYQM+2wWv0sb0bNELtJQNKy5eHGoxQpWSAlhtFUU4wMAdE/eeFyvxPsWfFz2+4LrWbfvFevxcK/fo6qvKOf4kwt6a5sRRpsqrO/xTOZZAV4rapZFMRoNLi9VZ1LdvjHAWGOFmBdqL4z26ekPmWMXTDyurW0DAAAA6C/n3GaFr8E8tOHjvHPuSGMzM977+wLLN0q63jl3m6T3SbrWe/9jYx5jkp4l6TVaGEWTpD/z3v/U2DcAAAAAAAAAYLk47lR77IgHyI2u6d1cAABYirKE0Yq8TgoAlgNepQMAAAAAQIc0i1kN54qpttOpwNpKkE8IFeyu7ggu78T9Y30t5+JZxT4cRnBKH0YbjIbl5OSNyEIn4nfF3GgwjGYFKySp1MWYBQAAVoCoMVjUXsCoe4Yj+1xurlrSaH68h7MBpG3lrcHl3Q2j2ee8pTgcKevI+XnOCKMZ+2xUjo3gYnQwuGidz7eTRfvVnp/q/0rfCY6dMHKqNg4e3sbWAQAAACwBt0i6X4r1Nkn6mTH2b5KuTrjtCZL+UtJfOud2SvpfSfdJ2i1pVNLhkh6s8LWg7/De/2mK+QEAAAAAAAAAlrotp0nHny7971cWDbknv7gPEwIAYInJEkYbn+rePAAAHUMYDQAAAACADmkWsxpKiGnUSwqsDboh5Vwu07yWs0JdqKDRrooRRutAxMuKN8yHw9oPo0Uu0nA0YoYcrPBDFubnEIfjZ7GPtScQUkvaFgAAWeRd+HG97BcGiypmGM0+L+iFpHOMUjyrURFGQ29tK98TXN7NMJpzCWE0I7KbNhCdpBgZYbSE6G89+7hyMLjoXBRcxytOtY+QG6evM8cunLyi5e0CAAAAWLXWSDorxXqzkl7ivX9nl+cDAAAAAAAAAOgR55z0tx+Vf+srpK/dKO3eLt3vQXKX/6bcpc/q9/QAAOi/8YnUq7oM6wIA+ocwGgAAAAAAHZIUNBuKhlMHzZKiG52Ifi0n9aGCRruq24PLh1MG6JJY9/NcPCvfgTBabR9mGK0DITI77hbe5954j/m5EUYDAHSCFTarDxZ5782AUT6yzwt6Ienxec4IjwLdZIXRJrsYRkti/Rx04lyyaJyfW+fTjRoDjDX1xyXrbN778DlyM9vK9+ibu28Jjh019EAdM3xcS9sFAAAAsGr8QNIbJZ0j6WRJwylu8yNJ75H0Tu/9fd2bGgAAAAAAAACgH1xxTO4P/6nf0wAAYGkam+zOugCAviGMBgAAAABAhyQGzTLEAJKiG50IZi0neSOgIkm7KjuCyztxH1nbmKt2LoxWjEa0zRjrZjzCClYkBV2sbQEAkEXBCJuV44PBIiuKJtlhtV4ZjIbl5ILnAnNVwmjoraqvaHslfDa5rrChx7OZZ8XHOnJ+nhsNLreiv43KVnCxLsTsFAXXsc7/m/ns9usVKw6OXTh5xfy7+AIAAABY1rz3R3Zx21slvVqSnHORpPtLOkbSJklrJQ1JmpO0XdLdkr7uvb+3W/MBAAAAAAAAAAAAgKXMDQ7Jr5mSdlqv1qozPtH9CQEA2kYYDQAAAACADhmKiuZYltBVYmBtlQWqCi4cUJGkXZXtweWduI+sbZQS4mFZwwbd/jpb33NWuKWUEHTpRKgNAAAreFofLLLCSlLyeUEvRC7SUFQMxkSTAqNAN2wvb5M3oltThfVd22/WGLDUmXPbYhQOo83FJcW+qsjlEm9fMY4t6YKL2cNos9Xd+uKOG4Jj6wuH6cTRUzNvEwAAAMDq5b2PJf1w/38AAAAAAAAAAAAAgJBNx6QLo62Z6v5cAABtI4wGAAAAAECH5FxOQ9Gw9sRzi8aGc3Y0rVGnAmsrQSGyAyg7q0YYrQP3UdHYRlKsRRkjEUnztPafRdEIUOyq7tCuyo5Fy7eVt5rbyvL9CwCAxQqbxaqq6qvKudyCSFojK6zWS8NGGG26fF/w8RXoljv2/swcm1xqYbQunttK0r3lXx/Yx3A0okK0+FhRjsPHlvrfN6zPbW+8J/PP9+d3fFz7/N7g2AWTj20acgMAAAAAAAAAAAAAAAAAAEBGm46Rvv+15uuNre3+XAAAbSOMBgAAAABABw1HI+EwWoYYQFJgLSkIsBIVEgIos9XdweWduI+GW9hG1kiEFT/Lu0JiEC4t63vuh6Xv6hW3X516OwU3sCRCNACA5S/pcb3iy8q5nCoJEVIrrNZLxdyIpiv3Llr+wXvfpQ/e+64+zAhYaDQ3rqFouN/TWKCVc+tGxWjUHHv9z15w4N8FN6DjRk7SMw99kYq5+dvEvqqqKsHb1p/nOhc+n79l56d1y85PtzLtRcZya/Sw8Ud2ZFsAAAAAAAAAAAAAAAAAAAA4yB1+rHyaFdes6/ZUAAAdEPV7AgAAAAAArCS1F98vXp4tBmC98D9LYG0liJSTy/j0RSfuo1a2kTWMZgUirGBaVtb3YubtrLLvOQBA9+QTwmbl/UG0clw21ylE/Q91rrZzMSw/k4X1/Z7CIp04n0x7blv2+/Tdma/pn+9844FlFR+OokkLg4tZz+dbce7EZR2JIAMAAAAAAAAAAAAAAAAAAKDBaRc1X+fYE+XWTHV/LgCAthFGAwAAAACgg6xYRtaIhhnNyhhYW+6ccyq4bBGUTgRLWomKZQ0pWIGI4Q4FzToVbrG+FwEAyCopbFbZH0SrBdKCt08Iq/UKj4tY6qby3Q2jtRIP68R56VBUzLTvn8x9X/ft2yqp2XGl/rjU3TDaoBvS2Wsf1dV9AAAAAAAAAAAAAAAAAAAArFpbTpUufEriKu53runRZAAA7cr3ewLoHefcsKSTJB0naULSkKRdku6RdKukn3jvfQf2U5B0lqQjJG2UNCPpLknf8t7/vN3tAwAAAMBSdsjAofrJ3PcWLy8cmm07hUN1596fL1q+LuN2VoJ1hQ26a98vU69/yED799GgG9JYbo12V3emvs1UIVuE4pCBjeHlHfoaW9vPajV+zwEAumPQDZlje/0eSVLFl8118hljqd3QqcdpoFs2Dh7e1e3nXUHjuQntqm5PtX7BDWg8v7bt/UYu0rrCobq3fHfq29xTvkvrBjaonHBcKUQHg4tZz+ezOmvthRrJjXV1HwAAAAAAAAAAAAAAAAAAAKuVc056zbulsy6T/9bnpS9+TLrvrvnB858k94yXyx1zfH8nCQBILer3BNB9zrkznHP/LWmHpP/P3n2HR37V9+J/n5G0u9JWr73r3gsG22DjRjU2mGJCL+b+CDUECJAfJJcQSiB0AgnhXgiQBLihtwAGYxIw1TYxNhAb27Exwb33trvaova9f2h9V9bOjEZazai9Xs8zz+p7zuec89mir0bSzlu/SPJ/knw4yfuSfCzJ15L8PskNpZR3l1JWT/GcNaWUTya5NcnPknw+yQeTfDzJaUmuKaWcW0p57o7+ngAAAGarY5Y/drux7tKTI5c/cnL7rDhhu7HFZUmOWHbslHubqx6+/NEt1+7cs2v2W3LIDp9ZSskxK7b/u2xk/yUPyqqenSd1xuFLj86SWt9248dO4tzmPR0yLeEOx9b5twgAU9HbtbTh3Mbh/iTJYDXQsGY2BKMdvfwxKSkz3QbUVUstx604sa1nlFJy1CQ+tzly2SOyqLZ4Ws6e7PPS++8rQyOt3VeOXPaItr1/99b68oSdntmWvQEAAAAAAAAAAAAYVWq1lCc8P7W/+Hhq374mtZ9vGX2864tC0QDmGMFo81gppbuU8vEk5yY5NcmiCZbsmeSvk/y2lPKUSZ51SpJLk7wmSbNgtUcl+WYp5UullMavggMAAJijHrz0yLxw19dmadfyJMnq7jV53Z7vyOqeNZPa5+HLH5Xnrnl5emujnzqt6dktr9/73VnWtWLae57tnrLz83PiqqdlUWkeqLDP4gPzhr3ek1qZni93PHvNS/OIFY9vGsJSUsshfUfkT/Z826T37+1amj/b+z1Z27PH6HWtL8/a5SU5dsXjptzzWLVSyxv2ek/2WXzglNZv60cwGgDTY1FZnFqDb0tsGrk/GG2w7nx36Z62j/E7Yr/eQ/Ly3d+YFV2rZroVeICVXTvlT/Z8W9Yu2r3tZz137ctz/IqTmj5PrqUrRy17VF6422un7dyn7nxqHrfqqekpE327a9RE95UkD9jroL6H5CW7vSErunbasUbHWd29Jq/a863ZqWeXad0XAAAAAAAAAAAAAADmq1JV1Uz3QBuUUkqSf03yvDrTv0tyeZJNSdYkOSbJ+Fd5DCR5ZlVVP2jhrBOTnJkHBq9VSS5McnWSVUmOSjL+FR9nJHlWVVUjE53RTqWUwzIa6pYkufTSS3PYYYfNYEcAAMB8MFKNZP3wfVnRtSqjn6JNdZ/hbBhenxXdwjeGqsHcOXBbqmz/tYxlXSuyvHtlW84dGNmSuwZvrzu3snun9HUt2+Ez1g3dm2Vdy1MrXTu8Vz3rh+7LhuF1LdfXSi1renZrWz8ALFxvuvLF6R9ev934H+3+FzlmxWNy0frz86mbP7jd/JJaXz5y8Fc60WJLqqrKXYO3NQ1cgk5ZVFuU1d1rd+jzjqlo9jx5p55dsqTW25ZzB0cGc9fgts8LPnPz3+WWgeu3q3vWLi/Jk3Z+Tq7ffFU+eN0b6+719wd9Ob1dD/w5PtP5/r2otjiru9d0/O8GAC677LIcfvgDfsLt4VVVXTZT/QCA/6MHAAAAAAAAAMwH/n9e53TPdAO0zR9n+1C0c5K8rqqqS8cOllK6k7w4yf9Kcv+ryBcl+Xwp5ZCqqu5rdEgpZa8kp+WBoWjnJnllVVWXj6lbnOTVST6cpGfr8NOTvC/J2yb3WwMAAJj9aqWWld3jM6insk+XULStuktPdlu8V8fPXVRbnN0X793WM9r9d7y8e2XbguMAYDL6akvrBqNtGulPMhqEWk936ak7PlNKKdll0W4z3QbMqE48T66np/bAzwtWdK+qG4y2cet9pVnAWXdZtN2Y928AAAAAAAAAAAAAAJhZtZlugLYZHzZ2TpKTx4eiJUlVVUNVVX02yclJtoyZWpvkTyY4591Jxr7S/xdbz7l8bFFVVVuqqvpYklPHrf+fpZR9JzgDAAAAAIB5oLe2tO74puH7A4wG6s73zLJgNGD26Gt0X7k/cHGk/n0lSbqLnyEFAAAAAAAAAAAAAACzjWC0eaiUckSS/cYNv76qqsFm66qq+s8knx43/PQm5xyc5KVjhgaSvKyqqs1NzvhOks+PGVqc5J3N+gIAAAAAYH7o7aofYLRx5P5gtPpfxu4pi9rWEzC3NbqvTBy4uCillLb1BQAAAAAAAAAAAAAATI1gtPnpgHHXN1RVdXGLa08fd31wk9oXJukac31aVVVXtHDGh8Zdn1pKWdJKcwAAAAAAzF19teYBRkMj9QOMuktP23oC5rbeWl/d8U0TBC66rwAAAAAAAAAAAAAAwOwkGG1+Gv/KshsnsfaGcdc7Nal99rjrz7ZyQFVVlyf55ZihpUme1MpaAAAAAADmrt6uBsFoWwOMhqqhuvM9tUVt6wmY23obBC5uvD9wsaofuNhT3FcAAAAAAAAAAAAAAGA2Eow2P9067nrJJNaOr727XlEpZbckDxszNJTk3Emcc9a461MmsRYAAAAAgDmoYYDR1mC0wYYBRj1t6wmY2yYKXBysBuvO99TcVwAAAAAAAAAAAAAAYDYSjDY//TrJljHXDy6l9La49ug6e9Vz+LjrS6qq6m/xjCT5xbjrwyaxFgAAAACAOaivUYDRcPMAo27BaEADfQ0CF//ffWWkfuBid1nUtp4AAAAAAAAAAAAAAICpE4w2D1VVtT7JF8YMLUnyionWlVK6kohUJLMAACAASURBVPzpuOHPNyh/yLjrK1tucNRVE+wHAAAAAMA809sgwGjjyGiA0VBVP8CoR4AR0EBvg8DFbfeV+oGLPQIXAQAAAAAAAAAAAABgVhKMNn+9Jcm1Y67/tpRycqPiUkpPkk8lOWrM8E+TfKvBkoPGXV8/yf6uG3e9cyllp0nuAQAAAADAHNIoGG3T8GiA0eBIgwCjmgAjoL6+BveVwWoggyODGRS4CAAAAAAAAAAAAAAAc0r3TDdAe1RVdXcp5aQkp2U07Kw3yZmllG8m+WaS3yXZlGSXJI9M8uokDxqzxa+SPK+qqqrBEavGXd8+yf42lFI2J1kyZnhlknsmsw8AAAAAAHNHX1eDYLSRrcFoDQKMugUYAQ30NrivJMnmkf4MVvUDF7uLwEUAAAAAAAAAAAAAAJiNBKPNY1VVXVtKOT7Jy5K8KsnRSU7d+mjkriQfSfJ3VdXglSKjlo273jSFFjflgcFoy6ewxwOUUtYmWTPJZQfu6LkAAAAAAEyst1Y/wGiwGsjgyECGGnxZukeAEdBAo/tKkmwa2ZjBkfqBiz01gYsAAAAAAAAAAAAAADAbCUab/7q2PrYkqZKUJrU3JPnrJF+bIBQt2T4YbfMUetuUZKcme07Fa5O8cxr2AQAAAABgmvV1TRBgVDUIMCoCjID6+roaf3tp43C/wEUAAAAAAAAAAAAAAJhjajPdAO1TSnl0ksuT/GOSR2fiv++9k3w2yfWllD+e5HHV5Duc0hoAAAAAAOao3lqzYLT+DDYIMOoWYAQ0sLgsSWnwLbDR+4rARQAAAAAAAAAAAAAAmEsEo81TpZQnJPlxkv3GDN+U5C1JjkqyKsmiJLsleUqSzycZ2lq3JsmnSymfKqWUBkdsGHfdO4U2x68ZvycAAAAAAPNIb1fjYLSNw/0ZHGkQYFQTYATUV0pJb62v7pzARQAAAAAAAAAAAAAAmHu6Z7oBpl8pZU2SryZZMmb4jCQvqqpq3bjy25KcmeTMUso/Jflekp23zr0yyVVJPlTnmNkajPbJJN+Y5JoDk5w+DWcDAAAAANDE4rIktdQykpHt5jaN9GeoQYBRjwAjoInerqXZOLL9t5k2DvdnqGoQuFgELgIAAAAAAAAAAAAAwGwkGG1++p9J1oy5/l2SU6uq2txsUVVV55dSXpDkx2OG31lK+WxVVbePK79v3PWaTEIpZVm2D0a7dzJ71LO1z/G9TtTLjh4LAAAAAEALSinp7Vqa/uH1281tGu7PoAAjYAr6aktzV53xTSP9GRxpELhYE7gIAAAAAAAAAAAAAACzUW2mG6Atnj/u+kMThaLdr6qqnyT5+Zih3iT/o07pFeOu9229vbr1d1dVdc8k9wAAAAAAYI7pqy2tO75ppD+DVf0Ao+4iwAhorLer/n1lY5PARfcVAAAAAAAAAAAAAACYnbpnugGmVyllaZIDxw3/ZJLb/DjJY8dcH1+n5vJx1wdN8owDxl3/dpLrAQAAAACYg3obBKNtHO7PkAAjYAoa3Vc2jfRnSOAiAAAAwKi7L0yu/2bSf+32c9VQMjKYLN032f2UZI8nd7w9AAAAAAAAALifYLT5Z1WdsVsnucf4+l3q1Fw67vqhpZS+qqo2tnjGoyfYDwAAAACAeai3q3GA0eBI/QCjntqidrYEzHF9jYLRhvsz2CAYrae4rwAAAAALyA3fTs59wWj42UT++6PJQ9+XHP5X7e8LAAAAAAAAAOqozXQDTLt764zVfzVIY8vGXW8YX1BV1S1JLhkz1J3kMZM448Rx19+fxFoAAAAAAOaoRgFGG0f6M1gN1J3rKT3tbAmY4xoHLm7M4Ij7CgAAALDAVVVy0ZtbC0W736XvSbbc1b6eAAAAAAAAAKAJwWjzTFVV/UnWjRs+apLbHD3u+tYGdd8ed/3yVjYvpRya5PgxQ/1JfthaawAAAAAAzGVLuvrqjm8a7s9QVf+Fed1lUTtbAua4RoGLm0aa3Fdq7isAAADAAtF/TbL+ismtGRlIbvlRe/oBAAAAAAAAgAkIRpufzhp3/apWF5ZSdkvyjHHDP29Q/uUkw2Oun1NKObiFY9487vpfq6ra3GKLAAAAAADMYY0CjDY2CTDqKT3tbAmY43q7GtxXhvszWA3UnXNfAQAAABaMW86c2rqb/216+wAAAAAAAACAFglGm5++Pu76BaWUF020qJSyOMkXkywbM7whSd3/EVFV1RVJPj9maFGSz5VSljQ545lJXjZmaCDJuyfqDQAAAACA+aG3QTDahqH7UqWqO9dTFrWzJWCO66311R3fNNKfwYaBi+4rAAAAwAKw/qrk16+d2tprvzS9vQAAAAAAAABAiwSjzU9fS3LxmOuS5AullI+WUnavt6CUclKS85OcPG7qQ1VV3dPkrHcmGTv/qCQ/LqUcOm7/xaWU/z/JN8at//uqqq5rsj8AAAAAAPNIb1f9YLR1w/c2XNNT62lXO8A80ChwcdNwf4aqgbpz3cV9BQAAAFgArvjkjq1fd8X09AEAAAAAAAAAk9A90w0w/aqqGimlPC/JuUnWbh0uSV6f5E9LKZckuTrJpiSrkxyVZLc6W/17kg9NcNaNpZTnJDkzyaKtw49O8ttSygVbz1mZ5OFJ1oxb/r0k75jc7w4AAAAAgLmsr0GA0bqhxsFo3WVRwzmARoGLW6rNKVX9nxPVU3NfAQAAABaA28/ZsfV3/DxZcfD09AIAAAAAAAAALRKMNk9VVXVlKeVxSb6Y5JgxU7UkR259NFye5NNJ/qyqqsEWzjqrlPLsJJ/LtvCzsvXcYxos+2qSV1ZVNTzR/gAAAAAAzB+NAoxG0vjLxT2lp13tAPNAo8DFJKkyUnfcfQUAAACYd4YHkkventx4erLpliRVMrShcf0hf5r8/uPN9/zlK0YfSdK9PBlav21u9dHJ8f+S7PTQHW4dAAAAAAAAAMaq/yPSmReqqvpdkkcmeWmS8zIaeNbMpiRfTvKoqqpeXVXVpkmc9e9JDk/yT0nuaVJ6fpLnVVX1wqqq+lvdHwAAAACA+aFZgFEjPWVRGzoB5otGgYvNuK8AAAAA8875L0su/7tk/e9HA8yahaKtfEjy8I8kB/5x6/uPDUVLkrsvSH74iGT9VVNqFwAAAAAAAAAa6Z7pBmivqqqGknwhyRdKKSuTHJNk/ySrkixOsj6jQWaXJvmvrfVTPev2JK8ppbwhyaOT7JtktyT9SW5K8puqqq7Zgd8OAAAAAABz3FQCjLprPW3oBJgvphK42F3cVwAAAIB5ZOPNyfVfb73+8T9Jaj3JcZ9KDnpV8rMnJwPNfi5yA8Obkgv/PHncdye/FgAAAAAAAAAaEIy2gFRVdV+Sn3TgnIEkP2v3OQAAAAAAzD29Uwgw6imL2tAJMF8srvWmpKRK1fIa9xUAAABg3hgZTm7+t6Qaaa2+Z1WyZNfRt0tJdj42OeYTyS9eOLXzbzojuebLyX7/X1JqU9sDAAAAAAAAAMbw3WcAAAAAAKBj+rqWTXpNd+lpQyfAfFErtSyp9U1qTU/NfQUAAACY40aGkgvfmHxrl+RXr2p93X4vHA1EG2vPpyXdk/+hFv/PeS9Kvrk6ufgdrQe0AQAAAAAAAEADgtEAAAAAAICOWVyWpEzi2xO1dKWrdLWxI2A+6Oua3At3u8uiNnUCAAAA0CH/9e7kdx9JBu9tfc2uT0ge9v7tx3uWJ489LelZMfV+Bu9LLntfcvnfT30PAAAAAAAAAIhgNAAAAAAAoINKKemrtR5g1FN62tgNMF/01vomVe/eAgAAAMxpVZVc9emJ6/r2Sk44ffTxtN8nj/9RsmhV/drdn5Q857bkqA/vWG+t9AUAAAAAAAAATXTPdAMAAAAAAMDC0tvVl/6R9S3V9tQWtbkbYD7onUTgYpL0FPcWAAAAYIpGhpP7LksG70tSTfPmJSm1pHtZUlucbLm9ftmmW5PNt0283WF/lez1jNaP71qSHPjHycVvTUYGW1831vorki13JYt3ntp6AAAAAAAAABY8wWgAAAAAAEBHTSbAqLv0tLETYL7o7ZpcMJp7CwAAADAlt52V/OSkme6iNV19yT6nTn7dopXJ3s9Nrvva1M/+1i7J0R9NHvT6qe8BAAAAAAAAwIJVm+kGAAAAAACAhaVvEgFGPcKLgBb0TTJwsZTSxm4AAACAeWlwXfLTJ8x0F61ZdkDy+B8ni1dPbf1xn0r2enZSuraNrXhwsvKwJC1+XeWCNyS3nzO18wEAAAAAAABY0LpnugEAAAAAAGBh6Z1UgNGiNnYCzBe9AhcBAACAdrvhO0k1MtNdNNe9LHna75K+PXdsn57lyQmnJYMbko03JkvWbgtZG7g3qfUk3UuTr/cmw5sb73PNF5O1J+xYLwAAAAAAAAAsOILRAAAAAACAjhJgBEy3yQQu9ghcBAAAYCEaHkhuPysptWT1scmilTPd0ey28abkjv9IBtdvG/vVK2eun1bt94c7Hoo2Vs+yZOWhDxxbtGrb23v8QXLDtxqvv+ozyc7Hj77dvTTp3SPZdHMy1J+Ukqw8LFl99GjQGgAAAAAAAABsJRgNAAAAAADoqL7JBBjVBBgBE5vMfaVb4CIAAAALzYZrkh8/Ltl4w+h1757JCd9Odj52Zvuara78VPLr1ybV8Ex3MjmlOznoVZ098+DXJjeclqRqXDNRoNwuj0pOOD1Zssu0tgYAAAAAAADA3FWb6QYAAAAAAICFpVeAETDNersELgIAAEBD579sWyhakmy6KfnVq5KqSZjVQtV/ffLr18ytULTSlex8XHLSD5LVD+/s2bs9Pnnst3Zsjzt/kVz2vunpBwAAAAAAAIB5oXumGwAAAAAAABaWSQUYFQFGwMQmE7jYI3ARAACAhWSoP7nj3O3H77koufs/k52P7XxPs9kNpyXVyOTXHfa25KHvndqZ1UjytQm+XvHgNyVHfrDxfJnBn5W997OTZ16bnL7f1Pe4/l+To//3dHUEAAAAAAAAwBw3g98FBwAAAAAAFqI+AUbANOubROBit8BFAAAAFpKBe5NquP7cjd/pbC+z2b2XJpd/OLnwz6e2fp/nj4aTTeVR6052Pan5/mse03yPmda39+hjqjbdkgzcN339AAAAAAAAADCnzYLvhAMAAAAAAAtJrwAjYJr1ClwEAACA+hqFoiXJZR9IRoY618tsdfXnk+8fmfzmTVNbv/tTkp2O3LEeHvympHTVn1v10GSPp+7Y/u1WaslD3rxje/zw+GSkyb9XAAAAAAAAABYMwWgAAAAAAEBHTSrAqCbACJjY5ILRBC4CAACwgIwMNp+/5czO9DFbDW1MLnh98wC5+y07cPQx1kPenJzwnR3vY49TkhO//8AAtBUPTg55fXLyOUmte8fPaLdDXpc88kvJ7k+u/2c1kXX/ndz6w/b0BgAAAAAAAMCcMge+Sw4AAAAAAMwnAoyA6dbX1fp9pVvgIgAAAAvJ8Mbm8zd9N9nzDzrTy2x0+9nJ4LqJ6x53RrLn09rby+5PHH3MZfv/4ejjfnf8IvnRo1tff+N3R0PiAAAAAAAAAFjQBKMBAAAAAAAdNakAoyLACJjYklpvy7UCFwEAAFhQ+q9rPr/+qs70MVsM3Jtc+enkik8m/de2tqa2ONnlUW1ta97a6ahk0U7JwD2t1a+/or39AAAAAAAAADAn1Ga6AQAAAAAAYGHprbUejCbACGhFrXRlSa2vpdoegYsAAAAsJBuunWD+6o60MSsM3JP86DHJRX/ZeihakjzkLcni1W1ra17r7k2OeFfr9RuubFsrAAAAAAAAAMwd3TPdAAAAAAAAsLAsri1JSS1VRias7akJMAJa01dbms0jGyes6xa4CAAAwEIyUQDYxuuTkcFkIXwd7uovJPdd1nr9AS9L9nx6svdz2tbSgvCg1yfLD05uOC3ZeFPSt1ey5fbkxtO3r+2/PhneknQt7nyfAAAAAAAAAMwagtEAAAAAAICOqpVaemt92TiyYcJaAUZAq3q7liZDd0xYJ3ARAACABaX/mubz1fBoGNXyAzvTz0y65czWa4/82+Qhb2pfLwvNHqeMPu533+/qB6OlSjZck6w8tGOtAQAAAAAAADD71Ga6AQAAAAAAYOHp7VraUl1PEWAEtKa31up9ReAiAAAAC8CNZyTfe0hyw2kT1264qv39zKQ7zkt+8aLklu+3vmbPp7WvH5Jl+yelwX9jX39FZ3sBAAAAAAAAYNYRjAYAAAAAAHRcnwAjYJr1tRi42C1wEQAAgIVgcF2y7vLWas9/eXt7mUl3nJv89PHJtV9ufc2hb0xWPrh9PZF0LU769qk/t+HKzvYCAAAAAAAAwKzTPdMNAAAAAAAAC0+vACNgmi2p9bVUJ3ARAAAAxtl0czK0KenunelOpt9/fywZ3txa7eHvSHY9afRB+y0/KOm/dvvx9YLRAAAAAAAAABa62kw3AAAAAAAALDy9tdaC0XpqgtGA1vS1el8RuAgAAADbW/fbme6gPe76ZWt1+zw/eeh7hKJ10rKD6o8LRgMAAAAAAABY8ASjAQAAAAAAHddqgFG3ACOgRb1dLd5Xaova3AkAAADMQfMtjOru3yQ/Pinpv661+r2f195+2N7yBsFot/4w+f5RyTVf7Gw/AACzRVUll/998r2HJF9bkpz5iOSmf5vprgAAAAAAOkowGgAAAAAA0HGtBhj1FAFGQGtaDVzsEbgIAAAA29tw1Ux3MH023pj89OTk9rNaqz/g5cnez2lrS9TRKBgtSe65KDnvJcl1X+9cPwAAs8Xlf5f85i+SdZcnI1uSu36ZnPOM5LazZ7ozAAAAAICO6Z7pBgAAAAAAgIVHgBEw3QQuAgAAwBg7H5sc84kHji3ddzRk4fY6gQrrr+xMX51w6XuTgbub1xz4imTn45Kdj09WPTQppTO9sc2yJsFo9/v9PyT7vqD9vQAAzBZVNfocaLvxkeSKTya7Pq7zPQEAAAAAzADBaAAAAAAAQMe1GmDULcAIaFFvi4GL3QIXAQAAWAhWHDL6GO/WH9cPRttwVft76oT+65OrPztx3RHvTvr2bH8/NLb8wIlr7r5gNASk1NrfD0yXkcFk4w3bjy/ZNRnekqRKUpKelUmtq9PdATDbbb4t2Xhj/bnbftrZXgAAAAAAZpBgNAAAAAAAoONaDTDqqQkwAlrT1/J9ReAiAABMt1JKSfKmJEvGDH+hqqprd3Df/ZO8eMzQxqqqPrwje8KCt/yg+uPr50kw2m8/NBpKNJFFq9vfC811LUlqPc3/voY3J/3XJcv271xfMFUjQ8mFb0yu+kwyvLG1NYf/dXLEu5JS2toaAHPIZR9oPLflztHg2NVHd64fAAAAAIAZIhgNAAAAAADouL6uFgOMigAjoDW9Ld9XBC4CAEAbvDDJB5NUW69P29FQtCSpquqaUsoRSZ5z/1gp5eqqqk7b0b1hwVp2YP3xTTclQxuT7r7O9jOdNt40GkjUiu7e9vZCa0789+SnT2xe84sXJU86tzP9wI649H3J7z82yTXvSZbsmhzy2vb0BMDccssPk9//Q/OaHxyTnLoh6W7t+2IAAAAAAHNVbaYbAAAAAAAAFp7eWmv/UbtbgBHQor4W7ysCFwEAYHqVUmpJ3nP/ZZIrkrx0Go94WZKrtu5dkrx/GveGhWf5QY3nrvli5/poh9/+bTIyMNNdMBk7Hz9xzZ2/SKpq4jqYaVf/y9TWXfV/prcPAOam4YHkP/+0tdobvt3eXgAAAAAAZoHumW4AAAAAAABYeFoNRhNgBLSqt0vgIgAAzJCTk+yf5P7UmrdWVbVxujavqqq/lPKWJN/cOnRIKeXxVVX9dLrOgAVl6b5J99JkqH/7uUvenuz7gmTRqs73tSOqKrnz/OT3H2utfu3j2tsPretZniw7INlwdfO6a76YrDg0WX1UUvO1HWaB4YHknguTgXtHrwfuSTbeMLW97rkwuenfkq4lyepjkuGNSf8NyU5HJl0Nvkey5e7krl8n1dBoIGRtcVJqyaKdktUP934CMNdUVXLB65P1V7RWf+8l7e0HAAAAAGAWEIwGAAAAAAB0XF+LAUY9NcFoQGuW1PpaqhO4CAAA0+5FY96+oKqqb0/3AVVVnVZKuSDJ0VuH/jCJYDSYilpPss/zk6s/t/3cljuT/3pPcvRHOt7WlA3cm/zH85Nbf9z6mv1f0r5+mLwD/zi5+G3Na85/6eivi3dJTvhOsubR7e8LGrnlh8l/nJoM3jd9e579tO3HelYlj/1GstvJ28aqkeTitye//ZvGey1anZzw7WTtCdPXHwDts/mO5IePSjZc2fqaVgPUAAAAAADmsNpMNwAAAAAAACw8vbUWg9FKT5s7AeaLrtKVxWXJhHU9NfcVAACYZk8Z8/b/aeM59+9dkjy1jefA/HfEu5OuBp9D//4fknX/3dl+dsRFb5k4FG3VEUnKaKjWw/4mOeDlHWmNFj34L0cfPSsmrt1yZ3L2M5Lhze3vC+oZuC8551nTG4rWyOC9ydnPTAbXbRu74bTmoWhJMnD36PvJ0Mb29gfA9Ljg9ZMLRUuS9ZOsBwAAAACYgwSjAQAAAAAAHbe4tiRlgm9TlNRSS1eHOgLmg96uiUMXu8uiDnQCAAALQyll3yS7jBn6XhuPG7v32lLK3m08C+a3pfskD35T/blqKLnwjZ3tZ6qqkeS6rzavefj/Tp56SfL8dclzbksOe0tSSmf6ozW1ruSoDyXPvTtZfvDE9QN3J7ec2f6+oJ6bvpsMb+rcecMbkxvP2HZ97VdaWzd4X3Lz99vTEwDTZ2jTaOjlZG24cvS5MAAAAADAPNY90w0AAAAAAAALT63UsqTWm00j/Q1rekpPihcpApPQV1uae3NX05qe0tOhbgAAYEF42NZfqyRXVVV1U7sOqqrqxlLKlUkO2jp0ZJIb2nUezHsPeXNy1b8km+q82978b8nNZyZ7PLnzfbVq8+3JNV9KBtc1rlmyNjnolaNv9yzrTF9MXa0r2fXxyforJq797YeStScmi1a2vS3mgM13JreflVTDo9elNvrvY8ma0estdye3n51snIanDRf/1Y7vMVnnvSgZ2Po1zxu/3fq6G7+T7PPc9vQEwPS48xfJyEDj+X1ekFz/9e3HhzcnG29KlsoLBwAAAADmL8FoAAAAAADAjOjrWjpBMNqiDnYDzAe9XUsnrHFvAQCAabVmzNs3d+C8m7MtGG1tB86D+at7aXLkB5PzXlx//sI/T3a7OKnNwoDxW3+cnPOcZGh987ojP5R093WmJ6bHQa9Orv5s84CQJLnzvOTfDktO+n6y6ojO9MbsdNvZyTnPTAbve+B4z8rkhO8kXb3J2U9LttzZ+d5Kd/K47yXn/WGypfkPc5jQBW+Y/Jprv5QsPyg54p07djYA7XHzD5KzTmk8v/ro5JiP1Q9GS5IbTksOncLHBwAAAACAOaI20w0AAAAAAAALU2+teYBR92x80SUwq010X0mS7uLeAgAA02inMW/f2oHzxp6xqgPnwfy23wuTnY+vP7fu8uSKf+xsP60YGUrOf/nEoWjHfybZ/6Wd6Ynps/qo5PE/StaemHQva1676abk16/rSFvMUtVIcv7Ltg9FS0bHzn9Z8stXdC4UrbZ49NG9NFl7QnLSmckeT06edH6yx9OarGvj1yv/613JPRe3b38ApmZkcPTjVDNP+GmyZG2yeJf68xf+2bS3BQAAAAAwm3TPdAMAAAAAAMDCNFGAUY/wImCS+romCFwsPSmldKgbAABYEBaNebsTP6h17BmLO3AezG+llhz90eSHj6g//1/vSvb7w2Txzh1tq6m7fpVsvLF5zc6PSA58RWf6YfqtPSE5+Wejb//+k8l/Ngk/u+Pnyabbkt5dO9Mbs8vdFyb91zae77+uY63k+M80vu8sPyg58YzGawc3JN/cKamG2tPb9d9MdnpYe/YGYGruODfZfFvj+d1PSXpWjL69/ODGIZ+eBwEAAAAA85hgNAAAAAAAYEZMFGDUUxY1nQcYT+AiAAB03MYxb6/pwHljz9jYsApo3S7HJ/u9KLn2S9vPDdyTXPLO5NiPd76v8fpvSG78TnLxWyeuXfvY9vdDZ7Tyd3ndV5ND/6z9vdA+g+uTG05L7vp1cs+FSe/uyZLdJ153xSfa31urdnn01Nf2LEuO/UTyq1dPXz9jrbu8PfsCMDUbb0wueH3zmrHPgXY6MrnzvPp19/wm6X1K4336r0tu/G4y1J/s+QfJqiMm3y8AAAAAwAwRjAYAAAAAAMyIiQKMugUYAZMkcBEAADru1jFv79uB88aecVsHzoOF4cgPjoYSDdfJG7zyn5KDX5OsOqzzfd3v7guSnz052XLXxLWLd04O/pP290RnrDoi2euZyY2nN6658M+T7r7koFd1ri+mz+Y7k589MbnnopnuZOr2fl6y8tAd2+OAP0pu+E5yy/enp6exbvhWMjyQdPnaKMCMu+ei5KdPSrbc0bimd4/Rjwv3e/Cbkiv+sX7tWackz70rWbx6+7m7fj161uC9o9eXvD151JeTfV8w9f4BAAAAADqoNtMNAAAAAAAAC9NEAUaC0YDJWiJwEQAAOu2qrb+WJPuWUg5q10GllAOT7FfnbGBH9e2ZPOQt9eeq4dHgqarqbE9jXfxXrYWiHfSq5InnJcsOaH9PdM5jvpE87P3Nay78i2SovzP9ML2u+MeZCUVbdcSOP9aemDzsb5JHf3XH+6l1J4/9ZnLEuyfuc+Xh268/4OVJafLSkJu+u+M9ArDjLn5781C0JHnyL5PeXbddL9s/6VnVuP7Kf64//pu/2BaKlow+r//1a5OR4db7BQAAAACYQd0z3QAAAAAAALAw9U4QYNRTW9ShToD5os99BQAAOu3iJANJ7k8hfkaSj7TprGeNeXswyQykqMA89uC/SK76TLLx+u3nbv1RctMZyV7P6Hxfw1tGz5/IYW9PHvbe9vdD59V6ksPeLnWOnAAAIABJREFUltx7WXLdV+rXDK1Pbv95ssdTOtsbO+7m73X+zINenRz3T50/dyLdfckRfz36mIoD/ij58WPrz930vWSf5029NwB23MhgcsuZzWsOf2fSt9f243s8Jbnua/XX3PS95LC3PnBsaFNy+znb1w7cndz2k2T3J7XWMwAAAADADGryY4EAAAAAAADap7drggCj0tN0HmC8ie4r3e4rAAAwraqqGkhydpKy9fGXpZTmT8ynYOueb0pSbX2cs/VsYLp09yZH/W3j+XOemWy5q3P9JMn130h+9JikGpm4VrjD/DfR3/FZpyS//bvRIBBmp4F7k0vfl5z19OSnTxp93PWrzvex+5M7f2YnrD668dw1n+9cHwDUd89FSTXUvKbR851mH7vu/MX2Y8NNng/d99vmPQAAAAAAzBKC0QAAAAAAgBnRV5sowGhRhzoB5ouJ7isCFwEAoC2+uvXXKsmaJE2Slabsg0nWZjR8LUm+0oYzgH1OTdY8pvH8t3ZJhvo708sl70r+49Tk7v+cuHavZzXvm/lhn1OTnY9vXnPRXyY/fUIyMtiZnmjd4LrRoMNL3pHc/L3k1h+NPjpt7YnJnk/r/Lmd0N2brDy88fxlH+xcLwA80MB9yZnHNa/Z+znJLo+sP7fPqc3X3nPx1PoCAAAAAJjFume6AQAAAAAAYGHqFWAETLPeLoGLAAAwA76S5P1JdstocNmflFJuqqrqA9OxeSnlLUlel9HgtZLktghGg/YoJTn6o8kPjsnou1wd1309OfCP2tvHwD3J5R+auO6AlyVrTkj2f8lo78xv3b3JE36W/Gtf87o7z0tuOmM0XITZ49qvJPddNvl1i1Ynu57UvGZw3fYha7s9MelZse26qy9Z86jkgJcntXn8vYeHfyT52ZPqz13y9uSQ1yU9yzvbEwDJtV9qPv+Izyb7vbjxc9ruvuSplyT//tD68xe9OTnpB9uuq6Gp9QkAAAAAMIsIRgMAAAAAAGbERAFGPQKMgEkSuAgAAJ1XVdVAKeWtST6XbeFl7y2lPDTJa6qqumcq+5ZSViX5ZJIXjNm3SvK2qqoGpqN3oI7VDx8NDrr6X+rP3/az9gej3XFeMry5ec1uJ48GSLCwdPcmR34wuegtzetu/algtNnm1p9Mbd0pFyVL957eXuaz5Qc3nquGk7v/c+KgOQCmX7OPg7ueNBr4O5EVh2bbp8Xj9F//wOsRwWgAAAAAwNxXm+kGAAAAAACAhalvggCj7poAI2ByJrqv9NQELgIAQDtUVfWFJKdn26u0S5LnJ7milPK3pZQmKR0PVEo5qJTyt0muyGgoWrn/mCRnVFX1uensHajjYe9vPHftl5KL/yoZ3jK9Z/Zfl5z30uR7hyZn/8HE9Xs9a3rPZ+7Y8xkT11zxieQrJTnjQcndF7a/Jx5o7Pvz6fuNPm745uT32enhQtEma+m+yaqHNp4/51nJ0MbO9QOw0N3yw+Sspyc3frtxTavPa2s9qRuKliTrLk+u+9dt11WzYLQGewAAAAAAzDLdM90AAAAAAACwMPV2TRBgVAQYAZPT29XXdL67CFwEAIA2enGSnyY5JtvC0VYneWOSN5ZSbknyqySXJ7l36yNJViZZleTBSY5LssfW8bGBaCXJBUle1PbfBZD07pbsc2py/b/Wn7/sA8k9lyQnnjE9522+MznzEcnmW1ur3/Xxyf4vnZ6zmXtWPjg54I+Sq/9l4tr1v09+cHTy1EuSVUe0vzcm//7cSM+q5OiPTk9PC0kpydEfS35yYv35wXXJz56SnHz2aC0A7XPzD5Kzn5ZUw83rDnh563s+8ovJeS+uP3fuC5KRgWT/FyUjg63vCQAAAAAwSwlGAwAAAAAAZkRfbaJgNAFGwOR0le4sLkuypdpcd17gIgAAtE9VVRtKKU9I8rkkz85ooFmyLeBsjyTP3PpoZGxCx9j1pyd5aVVVG6atYaC5g1/TOBgtSW7+XnLvZcmqw3b8rGu+0HqI0gnfTXZ/ctLlc/wF7fjPtBaMdr/ffzw57p/b1w/bTOb9OUnWnpjs8sikGkr6r0+WrElWPTTZ45Skb6+2tTmv7fq40T/X28+qP3/Hz5M7z0/WPLKTXQEsPJd/eOJQtJN/nvQsb33PvZ7RfP6/PzYajFYNtb4nAAAAAMAsJRgNAAAAAACYEYtrvSkpqf7f65wfSIARMBW9XUuzZahRMJrARQAAaKeqqtYneW4p5c+TvDdJX7LdJ/5lu4Vbl4+rLUk2JXlnVVUfnu5egQmseNDENXeeNz3BaHee21rdUR9O9nr6jp/H3FdKsvro5O4LWqu/8lOC0Trlzl9Mrv4x30iW7NKeXhay3Z/YOBgtGb1/C0YDaI9q66e1E35MLJN/Lt2zIundPdl0S/35ey4c/XVEMBoAAAAAMPfVZroBAAAAAABgYaqVWpbU+hrOdwswAqagt+l9ReAiAAB0QlVV/yvJvknen+TejIac3f+oGjzG1ty7de2+QtFghvTunqx5bPOaX70yuegtycjw1M4YuC859w+TG05robgk+zxvaucwP+1z6uTqN97Ynj7Y5vpvJDd8q/X6XZ8gFK1d9n5+8/nfvDG55K+TaqQz/QAsBAP3Jb94UfKtnZOv1pLhTc3rd39ysminyZ+zzwsaz1Vbn5dXg01q6v/QMgAAAACA2UYwGgAAAAAAMGP6upY2nOupCTACJq+31uy+InARAAA6paqqu6qqekeS3ZKckOQdSX6Q5NIkNyfZsvVxy9axM5P8dZLHJdm9qqp3VFV150z0Dmx13KeSpfs1r/nth5KL3jy1/c95ZnLdVyauK13Jcf+cLN13aucwPx3yp8mez2i9/rsHJSND7etnobvlh8l/TCKsbtmBybH/2L5+FroVBydH/0Pzmkvfm1zyzs70A7AQnPOM5NovJwP3TFy7/JDkmI9P7ZzD39F8vqo85wEAAAAA5oXumW4AAAAAAABYuJoGGBUBRsDk9TYLXCwCFwEAoNOqqhpM8h9bH8BcsvLQ5A9+m5x1SnL72Y3rrvp08rD3J12LW9/73sua75kkB/1JstvJyZpHJb27t743C0N3X3LCt5P7LkvuvTTpvy65+K2N60e2JLecmez5B53rcSG54p+azx/06mSXR4y+veyAZOfjkq4l7e9rIXvQnyYbrkz++6ONa678p+SIdyW1ro61BTAvrft9cvs5rdWefE6y87FT/zi4eHXyhJ8lPzmp/nw1kowMTm1vAAAAAIBZRDAaAAAAAAAwY5oFo3ULMAKmoK/pfUXgIgAAAExKd29yyOuah5gNrktu/E6y8rBk2YGja+43PJBsuTPp22M0pGHjjcnIQHLNF5qfW7qSIz+QLNppen4fzE+llqw6YvQxMpxc9oFkaH3j+uu+nuxxSjK8Odlwdf2anpWj/6ZTjV737Z0sWjntrc8bg+uS/uuTG7/duKZ0JUf+jffnmbDrE5oHo225M+m/Jll+UOd6ApiPrvtaa3VrHpusfeyOn1dr9n30kaQa2vEzAAAAAABmmGA0AAAAAABgxvR1NQ4w6hFgBExBb9P7isBFAAAAmLQ9njZxzbn/Y/TXWk9ywMuTo/8hufTdye/+VzK8afJn7vl0IUpMTq0r2e+FyZX/3Ljm2i+OPiaj1EbfBx71xaRnxY71OJ8Mrk/Oe0ly03dHQw+b2fNp3p9nyu5PShavSbbc0bjmjIOTo/4+OfTPk1I61xvAfLL5ttbq9n/x9JxXao3nfvy45EFvaLK4mp4eAAAAAADarMlXQgEAAAAAANqrt9YkwKjpT7oGqK/pfUXgIgAAAExed2/ypPNaqx0ZTK78VHL63sllH5haKNraxyXHfXry6+CoDye7PWl696xGRsO/fvXq6d13rvv1a5IbvzNxKNriNclxn+lMT2yva3Fy0veTvr2b1/3mjaP/zgFon+7lyYGvmKbNmrwc8M7ztoUW11MNTVMPAAAAAADtJRgNAAAAAACYMb1dfQ3nugUYAVPQ1yVwEQAAAKbdLo+YXP3m26d2zv4vSU4+K1myy9TWs7D1LEsef2by0PdO/943fCsZXDf9+85FQ/3J9d9orfaZ13l/nmmrjx79e1i8c/O6qz/XkXYAFqwTvp2UaXoZ347sMzI4PT0AAAAAALRZ90w3AAAAAAAALFy9tcYBRoLRgKlwXwEAAIA22f8lyTVfaO8Zezy1vfuzMOz2xOSSd0zvniODyUVvS9Y8KhkZSEp30t3gB3/UFiWrj016d53eHmbawH3JXb9Mbv/56J/BRJYfknT3tr8vJlZKss//SK74ROOaG09Pqmq0FoDJmfDjYklWHt7ydvcN3Z3rN1+VoWpou7me0pMDqi1p/OPHJjCy/Z4AAAAAALORYDQAAAAAAGDG9DUJMOopizrYCTBf9HW5rwAAAEBbHPjK9gajLVmb7PmM9u3PwrHzccmqhyX3Xjy9+17xiebBUuMd/s7kiHfOj6Cpq7+Q/OqPRwPiWnXQq9rXD5N34CuSK/8xqUYaFFTJ2c9IHvP1xqF/ANQ3cHfz+b2f01Jg6kg1ktPv/GJ+dPe3m9aVJM9ee2BOvv2qSTS5VTWJj+UAAAAAADOoNtMNAAAAAAAAC1dv0wCjng52AswXS2qNX7TnvgIAAAA7YO1jksd8Y/r3LV3JLo9KTv550t07/fuz8JSSnHRmsvspM9vHpe9ObvvJzPYwHTZcm5z/stZD0ZasTY54V3Lo/2xjU0za6qOSE85oXnPz95LL/64z/QDMJ/+XvfuOk7uq9z/+OrM7m2TT66YHAqGEFjqEIh0RRRQVudeuV8Verlgv9nrVawWx+1NRwQIoKCJdOtISWgokIWUT0nu2nd8f3113Q+Y7OzM7M7ubvJ6PxzzmO+dzvud8Astk2f1+37Ojm2C0439R0DJztzzYbSgaQAT+OOVgFgweVdC6Oykm5FSSJEmSJEmSepHBaJIkSZIkSZIkqdcMyuQJRsvUVbETSbuL+jzvK7W+r0iSJEmS1DNTXwX/EeHC7fDqDfDK56GuhECGDideBa/eCGfdBcP2K1+f0qAGOPUGOOfR/PMGNsC4F1Wuj0VXVm7tallyNUkESzfGHA8XrIZXNMIhn04C6tS3THoJvGZL/jmLf1edXiRpd7Lj+fRa/VSoTf/dVVf3b7y9qG3njBhf1HwA2lqKP0eSJEmSJEmSekFtbzdQjBDCLe2HEbgoxriqxHUagN90rBVjPL0c/UmSJEmSJEmSpOLU1+QJMArZKnYiaXcxKM/7Stb3FUmSJEmSyqNmQPLIAhPPhUW/LH6NzACY8GKorS97e9K/DT8QBoyBHatz1yeeA5POg1XFBZEU7JmfwdAcoX+DxsP4M6B+cmX2LadC/9lMfAkMGF3ZXtRztfUw4hBYPyd3ffMCaGuFTE11+5Kk/iq2weZn0uuHfKbgpVbsWFLU1huzA4qaD0BsLv4cSZIkSZIkSeoF/SoYDTiFzo+bGtiDdQa2rwUFfXyVJEmSJEmSJEmqhEGZ9ACjulBXxU4k7S7q87yvZH1fkSRJkiSp/PZ7Nyz5HbQ1FXfejIshO7QyPUkdMlnY730w59IctTqY8S4YOQuGzoBN8yvTw6Mfzz1eUw8nXg2TXlKZfcvh+Xtg+fXdz8uOgOlvrnw/Ko8DPgT3pvz7amuGbUth8LTq9iRJ/dW25dC6Lb0+7TUFLdMaW1nVtKKorZtDCSGWbS3FnyNJkiRJkiRJvSDT2w2UIPR2A5IkSZIkSZIkqTzG101hYKZ+l/FRtWMZUjO8FzqS1N8NqRnOmGzDLuMDwkDG103phY4kSZIkSdrNjTkWTrsJJpwNA8ZC3cjkkckTUH7oF+CIb1SvR+3ZDv4UHPF/MOqo5GtzwNjk6/W0f8Doo5PwtDPvgr3fAEOmw/gz4ejLYPL5le2rdSvc/7YkiKovihEeuDj/nEETkn9OZ90D9ZOq05d6bvqb4Kjvp9c3P1O1ViSp31s/N732krlQm/6BPl2tbm6kldyhZTXU5hxvyZRwW2Dso993SJIkSZIkSdIL5P7JqCRJkiRJkiRJUhVkM1lOH3ke16/57U7jZ416JSH4WSmSihdC4KxRr+TKlZfvNH7aqJeRzWR7qStJkiRJknZz405OHlJfFAIc8IHkkWbgWDj+FzuPzbgYHv8SPPrJ/OtfsBpatsK1U4vvbdsKWH0fjDux+HMrbcuzsP7R9PqpN8KEs6rXj8prv3fBnEthx5pda5ufgYZTq9+TJPU3McLjX8hdGzAaRhxU8FIrdjyXczwQOGnE2dy2/vpdas2hpuD1/60td/iaJEmSJEmSJPU1e2owWtc/tz/RlSRJkiRJkiSpF71k9IWMzI7hkU33kgkZjhn2Io4YekJvtyWpHztxxNkMrhnKAxvvoCk2cfiQ45k9/IzebkuSJEmSJEn9zeTz8wejDZ8JdaOgbiQMmZ4EShXrqW/A2BOSALe+ZOO8PMUAo4+uWiuqkCH75A5Ge/xLsPebIFNC4I4k7UmWXAXP35W7Nvq4opZqbFqae5nsOOprhuSsNWcyRe0BQFtz8edIkiRJkiRJUi/YU4PRxnQ53tJrXUiSJEmSJEmSJEIIzB5+hqFFksrq8KGzOXzo7N5uQ5IkSZIkSf3Z8Jkw9TVJ8MkLhQwcfGl7oFlIju99U/F7LL0GHnwPHP39nnZbXpsWpNdmfiwJg1P/NmQ6rLl/1/HNz8Bdr4ETr06+ziVJu2rZBg9fkl7f791FLbeyaVnO8fF1U6gN2dwtlBJgGVuKP0eSJEmSJEmSesGeGox2cvtzBJb3ZiOSJEmSJEmSJEmSJEmSJEmSpD5q9pUw5nhovAka/wEDG2DcKbD362HCmZ3zpr8RBo6DRb/OHSq25r70PeZflgSoDJ9Z9vZLtml+eu2wL1avD1XOkOnptef+CCtvhfGnV68fSepPnvsjbF2SuzbhbJjw4qKWa2xamnN8fN1ksqEuZ62llPDKtubiz5EkSZIkSZKkXtCfg9FiMZNDCFlgAnAW8MkupTnlbEqSJEmSJEmSJEmSJEmSJEmStJvI1MABH0ge3Zl4TvLI5bFLYe7n089d/te+FYy2OUe4G8A+b4UQqtuLKiNfMBrA8hsMRpOkNCtvyT0eauDwbxT1d2WMkZVpwWgDJtOSEmbWnCkhGC22FH+OJEmSJEmSJPWCEn4CWlkhhNa0R9dpwKJ8c3Ocux14FrgCGNZlreuq+MeTJEmSJEmSJEmSJEmSJEndCCEcGUJ4VQjhZSGEfXu7H0mSemxCSmBah4f/G/5xCjz0YdiyuCot5bXixtzjQ2dUtw9VzvgzSW7NSPHUN6vWiiT1O6vuyD2+1+tgxEFFLbW+ZQ3b27blrDXUTSabqctZaw41Re0DQErImiRJkiRJkiT1NX0uGI3kN2tpj0LndfeI7Ws8Bfy+cn8USZIkSZIkSZIkSZIkSZL2XCGEgSGE6V0eee/cDiGcF0JYBNwP/A64Bng6hPDPEMLMKrQsSVJljDkOpr02/5xVtydhVDceB5sXVaWtnDY8BbE1d22IeaW7jcFT4cCP5J/z1Leq04sk9SfbGmHzgty10UcXvVxj09LU2oS6ydSGbM5aS6aE2wJjS/HnSJIkSZIkSVIv6IvBaNAZXFYpAXgQeGmM0Y+6kCRJkiRJkiRJkiRJkiSpMj4MzG9/3Aq0pU0MIbwG+CMwhV0/EHU2cF8I4chKNyxJUkWEALN/DaOP7X7u9kaYf3nle0rz2P+k14bOqF4fqrzDvwp7vyG9/vgXoHVH9fqRpP5g3nfTayX8PZkWjDasZgT1NUPIhrqc9eb8ueO5tXkbnSRJkiRJkqT+oba3G8jhDtKD0V7U/hxJPg1ye4FrRmAHsB54Erg1xnhnT5qUJEmSJEmSJEmSJEmSJEndOp8k2CwCP4kx5rw+MIQwEriC5ANfY/sjtJc7zhkM/DGEsH+MsdDrByVJ6jtCBg7+FNz+su7nrrqt4u2k2vR0em3oPtXrQ9Wx//vh2f+Xu7ZjDWx4HEYdUd2eJKkvW31vem3ofkUvlxaM1lA3GYBsyOasN2cyRe9F09riz5EkSZIkSZKkXtDngtFijKek1UIIbXRe4HRhjHFJVZqSJEmSJEmSJEmSJEmSJElFCSEMAmbRed3fX/JMfy8wnM5AtGXAH4EW4JXAtPZ5k4H3AV+rQMuSJFVew6mQHQbNG/PPW3M/3PlqOPoyGDi2Or0BxDZYPye9Xju4er2oOkbOgvopsPW53PXNCw1Gk6QOLVth5S3p9cHT0mspGnfkDkYbPyAJRqvN1OVuJVOzU6J4QdbPgRghFHWWJEmSJEmSJFVdCR8N0ev8yaskSZIkSZIkSZIkSZIkSX3fIUANyXV/W2KMD+WZ+zo6Q9GeBg6OMb4/xvjh9nUeaJ8XgDdVrGNJkiqtdjAc/QPIZLuf+9zv4aYTobWp8n11eOZn6bVjf1q9PlQ9IQPH/ji9vmlh9XqRpL7u1rPTawd9oqTAsZVNKcFode3BaCH9e4aWkOPWwEkvy79hvr/rJUmSJEmSJKmP6G/BaJ9tf3wOWN/LvUiSJEmSJEmSJEmSJEmSpHR7tz9H4Im0SSGEA4B9u8y9NMa4oaMeY9wMvLfLKfuHEKaUuVdJkqpnr4vg3CeTgLR935l/7qZ5sPwv1ekL4PEvpdemnF+9PlRdE86CEYfmrm02GE2SAFj3GDz/z/T63m8oesmtrZvZ2Jr7FrmOYLRsnmC05kyOWwNP+hOceHX6po98rKgeJUmSJEmSJKk31PZ2A8WIMX62t3uQJEmSJEmSJEmSJEmSJEkFaehyvCLPvJPanwOwCfjTCyfEGO8PISwFJrcPHQo8V44mJUnqFUP3SR4xwuIroXlj+tz5P4DJr0jm1AyAUANtzdDWBLVDoGULSbboCwXIDoMQuu8ntkHzBtj8TO56pg7qRhbyJ1N/Ne5FsP6xXcc3Pg1N6yEzAGoHlXfPtmYItYV9jUpSb1tzb3otUweD906vp2hsWppa6wxGq0ud0xxqgJYX9FIDU18FA8fB9lW7nrRjNWx/HgaOLbpfSZIkSZIkSaqWfhWMJkmSJEmSJEmSJEmSJEmS+o36Lseb8sw7of05AjfHGFtS5s2lMxhtag97kySpbwgBpl4IC3+UPqfxJvhNprT16yfD/h+EAz6YO3yqdQf86/2w+HfQvD59nRGHlLa/+o8h++Qef/5O+P3IJJBv1NFw7I9gxME922vbCrj3LbDyVhgwGvZ/Hxx4iQFpkvq2lben16ZcADXpAWZp0oLRBmYGMaJ2NADZkE09vyWT5/uDcS+CJVfnKER48utw+FeLaVWSJEmSJEmSqqrE345KkiRJkiRJkiRJkiRJkiTl1TXZIv1Obpjd5fjOPPPWdDkeVlJHkiT1RYd9qXJrb10KD38Ynvlp7voDF8OCK/KHogEc/8vy96a+ZWhKMFqH2Apr7oWbToSmbr5e8q4T4ZYzYMXfoG0HbFsOj3wM5l9e+pqSVGltrbD4yvT6Ed8oadnGHbmD0RrqJhPawyJrM+mBa82hJn3xY65Irz35NdixtqAeJUmSJEmSJKk3GIwmSZIkSZIkSZIkSZIkSZIqYVOX44ZcE0II44F9uwzdnWe92q6n9qAvSZL6loFjYPpbKrvH/B/sOta8ERblCXnpUFMPww4of0/qW4Z0E4zWoXkDLLmq9H2e/ydseGLX8QV5AnwkqbetvDm9dtAnYNCEkpZtbEoLRpv07+NsSM8Zb87kuTWwbiTMeHd6ffFvuu1PkiRJkiRJknpLbfdT+q4QwqnAacDhwDhgOPk/VTKXGGMs8Dd4kiRJkiRJkiRJkiRJkiSpQMvanwNwSMqcl3Q53gE8lGe9EV2Ot/SgL0mS+p5pF8IzP63c+msfhOfvgVDTObbmPmjb0f25Iw6BYCbpbm/IdKgZBK3bup+79uHS91ny+9zj6x+D1iaoqSt9bUmqlHV53vdGHFryso1Nz+UcH183+d/H2ZD+vtiSqUmtATDpXJj//dy1dY90258kSZIkSZIk9ZZ+GYwWQjgb+A47f0pkqb9pjT3vSJIkSZIkSZIkSZIkSZIkvcBjXY5HhRDOjjHe+II5b25/jsD9McbmPOtN73LcWI4GJUnqMxpOg/rJsHVp5fa4aXZp501/U1nbUB9VMwCmvRae+Vn3cxf8AI65vLR9NjyeXtuyCIbtV9q6klQpLVvgkY+l1ye9rKRlm9uaWNO8KmetazBabUi//a85ZPJvMv7M9NrCH8OxP8p/viRJkiRJkiT1km5++tn3hBA+AtxAEorWNQwtlvCQJEmSJEmSJEmSJEmSJEkVEGNcCMwnuV4vAJeFEPbuqIcQPgyc0OWUa9PWCiEMYecPU11Y3m4lSeplmVo49UaoHdLbnXTKDICZH4V9397bnahajvwOTHkldBe0A7DhiRI3aUsvbVpQ4pqSVEEPX5JeG3M81NaXtOzKpuXElNvbJgyY8u/jTKihhtzhaM2ZmvybZGphxsXp9XWPdNunJEmSJEmSJPWG9I+M6INCCGcDX21/2RFu1hGOthVYD+T7tEhJkiRJkiRJkiRJkiRJklQ9Pya57i8CewNPhRAeBcYBU+i8DnA78Ks865xC5/WCLcDjFepXkqTeM3wmvGYTbF0KW5fD348tfo1zHoa/Ht6zPoZMh5P+BMP2g5qBPVtL/Ut2CJz0B2jaAFuehaV/hjmX5p777C9h1peL32Pr0vTaZoPRJPUxba2wKM//qk59TclLNzblfj+soZYx2YadxrKZLK1tLbvMbSkkyHLSeTD/8ty1Z34BR87qfg1JkiRJkiRJqrICfvrZp3yl/bnjQqilwHuAvWKMQ2KMk2OMexf76LU/jSRJkiRJkiRJkiRJkiRJu7dvA0+1H0cgCxwJTKUz6CwC34wxPp9nnVd0mftojHFHBXqVJKlvqJ8Mo4+G+inFnTf55TByFkx4cc/2n/5mGHmooWh7srr+2Xo0AAAgAElEQVThydfS9Delz3niK7D+cYhtnWNtzfD8PbDydmjN8e1aWwtsyhN+tvDH0LKt5LYlqey2PgfNG9PrI0sPI21sei7n+Ni68dSE2p3GakNdzrnNmQJuDRx5WHrt6W8lYZiSJEmSJEmS1Mf0m2C0EMI+wGEkFzUB3AccHGO8LMa4pPc6kyRJkiRJkiRJkiRJkiRJucQYm4CzScLROoLQAp3XAgbgj8Cn09YIIQwBLuhyzs0VaVaSpL4kBJjxruLO2fedyfOMi0vft2YQ7P3G0s/X7mVwN+F8NxwMd5wPLVtgyxK4/mC4aTbcfApcNz0JTutq7b/o/JYuh/Vz4M8zYN1jPe1cknqurRVue0l6vX4qjDup5OUbm5bmHB9fN3mXsWzI5pzbEmq632jQhPz1a6bA8hu7X0eSJEmSJEmSqqjfBKMBx7c/d1wQ9YYY46Ze7EeSJEmSJEmSJEmSJEmSJHUjxvgcMAu4GPgr8ATwJEkg2qtijK+OMbblWeJNwDCS6wcDcH1FG5Ykqa+Y+VE49PNQv2tAyr+FGhh2IMy+Eia+OBmbfB4c9wsYtn/he4UaGH0MnH5b92FY2rMc+5P89WV/hqe/A/e/HTbN6xzfthzuvmjnuf98Tff7bVsG97wBYp4ANUmqhmXXwsYn0+tn3w+h9FvzVjYtyzk+vm7Xv4ezoS7n3OZMgfvP/k16rWVT8n7dsq2wtSRJkiRJkiSpCmp7u4EijGt/jsDDMcb5vdmMJEmSJEmSJEmSJEmSJEkqTIyxGbii/VGsnwC/7LLWhnL1JUlSnxYCHPwpOOiT0LYDagbCv7NEQ1KPbblDWaa/IXm0bu9yTr69aqEmd+iK9nAjZ3U/Z+GPYfMzu46vnwObn4UheydBZ1uXFLbn+keTkLViwv0kqdwW/za9NvYkGNRQ8tJtsTU9GG3AroGotSGbc25zpqawDUcemr/etA4ab0rCVSVJkiRJkiSpD+hPwWihy/GCXutCkiRJkiRJkiRJkiRJkiRVTYxxG7Ctt/uQJKnXhJCEosGuIWi5QtG66jhPKtWwAyE7HJrzZNPmCkXr8MhHYfjBUDOouH3XPZI7GK1lG6y4EbY8mwQTjT6quHUlqRDNm2DJ1en1Mcf3aPk1zatoic05a+Prdg1Gy2Zyh5e2dPd9QIch+8KA0bBjTfqcjU8BBqNJkiRJkiRJ6hsK/Olnn9D1YzAK/DgLSZIkSZIkSZIkSZIkSZIkSZIklaR2EOz33tLPX3I1zPk0PHJJcefd9dpdA3y2r4Z/vAjufAU89CG48Wh47DOl9yZJuWxdCjcem3/Ovm/v0RaNTUtTaw11k3YZy4ZszrnNmQJvsaupg/0/mH/OIx8tbC1JkiRJkiRJqoL+FIz2eJfjKb3WhSRJkiRJkiRJkiRJkiRJkiRJ0p7i0M/Bkd+B4TOru+/T39359bzvwNoHdh6b+1nYOK96PUna/T3+Zdj4ZHr92J/C0H16tEVaMNqo2rEMyAzcZbw2LRgtFHFr4EGfgKMvzz9n87OFrydJkiRJkiRJFdRvgtFijHOAuUAAjgwhjOzlliRJkiRJkiRJkiRJkiRJUolCCJNDCCeHEM4PIbw+hPCG3u5JkiRJOYQA+78Xzn0cBoyu3r5L//SC19ekzLu28r1I2nOkvdd0mHJ+j7dIC0YbXzc553g21OUcb8nUFL5pCDDjnUnQZRrfTyVJkiRJkiT1Ef0mGK3dN9qfa4AP92YjkiRJkiRJkiRJkiRJkiSpOCGEaSGEb4UQngEWA7cCfwB+Dvws5ZyTQgiXtj/eW71uJUmStItxp1Zvr/WPwWOfhvWPw4Ifw/o5uec9/oXq9SRp99a8EbYtT6+POAzqRvZ4m8YdKcFoA3IHo9WGbM7x5kwJtwY25Hkf3zS/+PUkSZIkSZIkqQL6VTBajPEXJBdABeCSEMI5vdySJEmSJEmSJEmSJEmSJEnqRgghE0L4IjAfeC+wF8m1gF0faVYDnwE+DXwrhLBPRZuVJElSupkfLe96p9+Svz73c3DDwXD/f6XPad4Iba3l7UvSnidG+OsR+ecc8pkybBNpbEoJRqvLHYyWzaQEo4Wa4hsYcXB6bdOC4teTJEmSJEmSpAroV8Fo7d4IXAfUAteGED4XQhjRyz1JkiRJkiRJkiRJkiRJkqQcQghZ4G/Ax0iu/XuhmO/8GOOTwK10hqf9R1kblCRJUuFGHwUvmVPG9Y6Bly/p+TqNf+/5GpL2bM/fBZsXptfPuB2mnN/jbTa2rmdb25actYa0YLRQl3O8JVPirYGzvpp7fP2j0Lq9tDUlSZIkSZIkqYxyXWDUZ4UQLm0/fBSYDYwBPgl8KIRwD/AEsA5oK2bdGOPnytmnJEmSJEmSJEmSJEmSJEn6t58AZ5AEoEWSgLM7ScLOmoAvFLDGH4BT24/PAj5f/jYlSZJUkBEHw7D9YePTPVsnk4Waeqivh+wwaN5Y+lrL/wYTz+lZP5L2bCtuTK8NOwDGnVyWbRqblqbWxqcEo9WGbM7x5lBTWhPD9s89vn0lPP0dmHlJaetKkiRJkiRJUpn0q2A04DPs/MmQHRdI1QOntT9KYTCaJEmSJEmSJEmSJEmSJEllFkI4HXgdndf7LQD+I8b4YHt9GoUFo10PfK99jaNDCANjjNsr07UkSZK6NfHcngej1Y2EEJLj7IieBaPN+07yGDmL5FtGIFMHo4+GAy+BwVN61quk3d/T306vTTw376mLts3njvU3sGzH4m632dK6Kef44JqhDK0dnrOWDXU5x5szmW73y2nsSRBqIbbsWnvko9CyBQ75NIQS15ckSZIkSZKkHupvwWi5xO6npAo9PF+SJEmSJEmSJEmSJEmSJKX7dPtzABYDs2OMq4tdJMa4OISwHhgBZIEDgEfK1qUkSZKKc8AHYdlfYNO80teoG9l5fMwP4bYX97yvdS/4FnHNffDcH+HsB6B+Ys/Xl7R7euYX0JI7sAxI3vNSLNz2FN957lKaY1OPWhhfNzm1ls1kc46XHIw2YBTs81ZYcEXu+tzPwY7n4ejLSltfkiRJkiRJknqoP35sQyjjQ5IkSZIkSZIkSZIkSZIkVUAIYRQwm+QDTCPw/lJC0bp4osvxfj3pTZIkST1UPxnOuicJNJv+FqgZVMIiXW5pGX9G2VrbxbblsPAnlVtfUv8WI8z9fHp91tegflJq+aa1f+xxKBrkD0arDXU5x1tCTekbHvo5yA5Lry/4IWxbUfr6kiRJkiRJktQDtb3dQJFO7e0GJEmSJEmSJEmSJEmSJElSQU6kM+1iVYzxuh6u1zVUbVwP15IkSVJPDRgF+/5X8jjmCrhqMLQVEQ40bP/O40wNDJ0Bm+aXv0+A5++szLqS+r9ty2HzwvT66GNSSzFG5m+dW5Y2xtdNSa1lQzbneHMmk3O8IAPHwUGfgkcuyV2PrbD6HpjyytL3kCRJkiRJkqQS9atgtBjj7b3dgyRJkiRJkiRJkiRJkiRJKsiE9ucIPFiG9TZ1OR5ShvUkSZJULplamPxyWHL1zuMDxsKQfWDNvbueM+mlO7+un1q5YLTGm+Cq9m8ha4fAuBfBEf8H9RMrs5+k/mPj0+m1TBbGzk4tb2rdwLa2rT1uIZBh1tDjUuvZUJdzvCXU9Gzj/d8HC65ID4a78wKoGwWjj4XDvwojDunZfpIkSZIkSZJUoB58LIQkSZIkSZIkSZIkSZIkSVKqUV2O15VhvUFdjpvLsJ4kSZLKadZXYOiMztc19XDcT+GYK2DQpJ3nTnkV7PW6nccy2cr217IleWxfCUuugptmQ+v2yu4pqe+7/aXptZOuyfve1Ni0tMfbBwIXjH0To7PjUufUhtw9NGd6eGtgzQA45fr8c5rWwoq/wk0nwpYlPdtPkiRJkiRJkgpU29sNSJIkSZIkSZIkSZIkSZKk3dLGLsdDy7BeQ5fjtWVYT5IkSeU0ZDq8+CFYdQc0rYOGU6F+YlI7dy6svA22Pgejj4VRR0KmZufzB4xJX3vmR2Hzs9C8CcadBOPPgBuP6Vm/WxbDc9fAXq/t2TqS+q/mjdC6LXetfgpMekne01c2Lcs5PjBTz7mjL+x2+4GZevatn0lD3aS887KZupzjLaEm53hRhu0P098Mz/ws/7zmjcmcQz7d8z0lSZIkSZIkqRsGo0mSJEmSJEmSJEmSJEmSpEp4vsvxjJ4sFEKoAQ7vMrSiJ+tJkiSpQrJDcgcJ1Y2AKefnP3faa2HRr3Ydr58Cs76y6/iR34Z/vb+0Pjssvx6mXQghQMtWaFrfWcvUwoCxSU3S7mn93PTauBd1e/rKpqU5xyfWTeX0US8vtatdZEM253hzJlOeDUYf030wGsCa+8uznwoTI7RuTf5+qhsBmSy0bIGa+uTvptbtEGqTv68kSZIkSZKk3Yw/9ZIk9Q3P3w3zvpd82tLUVycXNoQy/ZJOkiRJkiRJkiRJkiRJvWFO+3MA9g8hTI4x5r5rvHvnAPXtxxG4t6fNSZIkqY8ZfwYMGA071uw8Pu2i3POnvhoe+hDE1tL3XPQrWPxbiC1JuExs2bk+aBIc9gWY/qbS95DUdz1/Z3pt79d3e/rKpmU5xxsGTCq1o5xqQ13O8bIFo025AP71Pmhrzj9v+Q0w7zLY713l2VfpFvwQ7n9H7lqmDtqakufMAJj+Rjjim0lwmiRJkiRJkrSb6PeJMyGEbAjh5BDCJ0MIPw0hXBNCuDmEcHNv9yZJKtCyv8BNJ8Di38DSa+Du/4RHP9HbXUmSJEmSJEmSJEmSJKkHYoxPAh13iQfgw6WsE0LIAB0Xk0Tg0Rjj+p53KEmSpD6lZgCcdE0SjtZh4kvh4P/JPX/QBDjhd1AzqHNs37fD+c/BqKMK37cjDO2FoWgA25bBvW+G5TcWvp6k/iFGeORj6fXxZ3a7RGNKMNr4usmldpVTNuQOvGoJNcRybDBwLJx4NdTUdz/3wXfDkj+UY1elWXpteigaJKFoHc8tm2De9+CRj1enN0mSJEmSJKlKanu7gVKFEAYDHwTeA4x9YRly/1w3hHAR8MX2l2uBo2OMZfkZsCSpBLENHnzvruNP/m9yYcKQ6dXvSZIkSZIkSZIkSZIkSeXya+ASkuv63hNCuCHGeFORa3wJOK7L6x+VqzlJkiT1MeNOhPOXw7qHYWADDJ4GIaTPn3oBTDwnmT9kehKWBnD2/bDxKdi8MHm9+Hew6Fel97XwxzDx7NLPl9T3rHskvTbtovzvPUBT2w7WNq/KWWuom9STznaRDXU5x2MItIZAbTlujZv8crhgNax9AFbdCY99Kn3uwh8n77+qjAUl/Nhj4U9g1lchU1P+fiRJkiRJkqRe0C+D0UIIhwJXATNILpaClCC0HP4M/AAYCkwDzgT+Xu4eJUkFev4u2LJo1/HYBot+Awd/suotSZIkSZIkSZIkSZIkqWy+BryT5Jq9GuDaEMIHYow/7O7EEMIY4OvA60muEQxAI/DTyrUrSZKkXldTB2OOLXx+bT2MPWHnsRBg+IHJA5LQtJ4Eo617uPRz1f+1NcO6R6Flc/I6ZCBGct7KlBkAIw+F2sFVbVElWPHX9NqIQ7s9fVXTCmLK7WxlD0bLZFNrzaGG2thSno1qB8G4k2HUUfD4F6B1e+55jcXmne/BdqyBDY8n98gUavn1xe/TvB6e/QUM2QdCDQzbDwaOK34dSXu2pvWwfi4MOwAGjoEtz3Xe91c/BbY+B0NnwKDxha23dWnyd8mQfboNHJUkSZIk6YX6XTBaCGEmcDswjOQip46LnQoKSIsxbg4hXA28pX3oAgxGk6Tes+LG9NqiXxuMJkmSJEmSJEmSJEmS1I/FGNeGEN4H/Jzk+r6BwOUhhI8AvweWd50fQjgG2B84CzgPGELn9YGtwJtjjE3V6V6SJEm7jeEzYfSxsOa+0s7fvDD5QOgXBrBp97f0Orj7ddCyqfBzMnVw5LdgxsWV60ula94Id10Ey29In7P367pdZlXzspzjNdQyJttQanc51Ya61FpLJgNFZG4VtmE9TL0wCdrKJbbCbefCiVcnc7WrtmZ44GJY+JPq7XnfW3d+PfXVcNwvksA7ScqnrRUe+iDM+x7d3KKdmPxyOP5XkB2Su960Hu54Bay6LXk9/GA45XoYPLVcHUuSJEmS9gCZ3m6gGCGEgcBfgOFdhucAbwWmAwfSeQFUPtd2OT69bA1Kkoq3fk56beOTyadMSJIkSZIkSZIkSZIkqd+KMf4/4Avs/GGo+wCXAN/qMjUA95CEqP0HMLRjifbnj8cY/SBUSZIklebka2DcKaWff9OJ0Lq9bO2oH9i6HO58ZXGhaABtTfDAu2DNg5XpSz3z8Efyh6INHAf1k7tdpnHH0pzjY+vGUxNqS+0up2zIptaaQ01Z9/q3o78Po45Mry+/AeZ8pjJ77w6e+lZ1Q9FyWXI1PP7F3u1BUv+w8Icw77sUFIoGsPRaePQT6fX739kZigawYS7c+aqedChJkiRJ2gP1q2A04H3AXnT+3/V3gCNijD+LMS4CCv0N0610Xly1dwhhXJn7lCQVakM3wWeLf1OdPiRJkiRJkiRJkiRJklQxMcZLgTfTeZ1fx3WAHWFpHY9A5wekdrxuAt4YY/x61RqWJEnS7mfQeDjjVjjvmdLXWHFj+fpR37f4txBbSz9//uXl60Xl0dYKi67MP2ffdxS01MqmZTnHG+q6D1UrVm2+YLRMhW4PrB0MZ96df86iX1Vm791BX/ln01f6kNS3PVvCe8WiX0PMEaTWugOWXbfr+NoHYMvi4veRJEmSJO2x+lsw2nvpvBjqmhjjB2KMbcUuEmPcDCzqMnRgGXqTJBWrZQts7ubCgqU5fhAqSZIkSZIkSZIkSZKkfifG+AuS6/UuIwlI6whAC+wciNYx1gb8P+DAGOMvq9iqJEmSdmdD9obBe5d27r8+AAt+CMv/Cs2bytuXdtW8CZZdD6vugNam6uy5bSUs+X3y7/nhD/dsrWd+CjvWlKcvlce2pdCyOf+cUUcVtFRj09Kc4w11k4rtqlvZUJdaa87UlH2/f6upg5Gz0uvbVkDTusrt31+1tcL6x3q7i8SWxfD0d2Hdo1D8bZiSdnet22HlbbC6myDMXJrWwtwvJN8zLfwJrP1X8j6zbRm0bst9TuMtPWpXkiRJkrRnqe3tBgoVQpgJdPxkOAIf6eGSC4GO32RNB27v4XqSVB7Nm+CJr8Lzd8HQfeHA/4Zh+/d2V5VRyKc8bHwq+SV2Tfov8iRJkiRJkiRJkiRJktQ/xBiXAO8JIVwCnNj+mAKMBuqA1cBK4G7g5hjj+t7qVZIkSbux/d5TWujVlkVw/zuS40ET4JQb8ocGqXRrHoBbzoLm9v8lGLofnH4L1Jc/dOrflvwe7n4dtO0o35p/GAOn/A0mnl2+NVW6TfO7nzPxnG6nxBhZ1bQ8Z218BYLRajPZ1FpLyJR9v53s9x64723p9TsvgNNuhhDS5+xpHrmktzvY2b/elzxPey0c93OoGdCr7UjqI7YsgdvOgQ1PlL7GnEt3fj3pZTDzY+nzY0vpe0mSJEmS9jj9JhgN6PhNUQTmxhif6eF6XS+WGt7DtSSpPNqa4ebTYO2DyetVt8HCH8NJf4LJ50Glf2FVbVuWdD8ntsDmBTB8ZuX7kSRJkiRJkiRJkiRJUlXEGLcCf29/SJIkSdV1wAeT54U/hI1PJ8fZ4dBwGhz9fbhmCsTW/GtsWwH3vhXO+Vdle90TxQh3vqozFA1g0zx44GJ40XWV2bN5I9zzxvKGonW453Vw/jI/LLwv2LQgf33vN0CeELIO61vWsCNuz1lrqJtcSmd5ZUP6105zpqbs++1kn7dCWxM88K7c9ZW3wqrboeGUyvbRX2xaAE99s7e7yG3xb6HhdNg3T9CdpD3Hw//ds1C0XJb9GWJbngmxvPtJkiRJknZr/SkYbWyX4wI+nqNbXX9TUV+G9SSp51bc2BmK1tWdr4CB4+GE30LDi6rfV6Vsfa6weeseNRhNkiRJkiRJkiRJkiRJkiRJUnmEAAd+KHnkcuS34cH3dL/Ouodg8zMwZHp5+9vTrXsItub4EO5lf4bWpsoEjC27AVq3lnbuec/CvW+EVXfkru9YnQRHTTiz9P5UHt0Fo407uaBlVjYtS6011E0spqOC1IQaMmRoY9ewmeaQ6XxRqfeiGRfD/Mth/Zzc9SVXG4zW4bk/pNcGNsArG8u/Z4zwm0z38wCW/M5gNEnJ91NLr6nM2suvT681b6zMnpIkSZKk3VJ/CkYb2OW4HB+/MrzL8aYyrCdJPbfsz+m17Y1w8ykw9dUw9mTY581QO7hqrVXElhy/rM5l6Z9gr4sq24skSZIkSZIkSZIkSZIkSZIkAYw9ofC51+0Lww+EvV4H098EgyZ01jY8CfO+B6tugxGHJtd/r74Xhh8MB3wQxhxb7s53D6v+mV5r2Qw1o8q315YlyXX8hQTh5VI/GQZPhUnnpQejAdzxcpjxruR44FiY8GIYeVhpe6p0G5/MXx8zu6BlGpuW5hwfVjOC+pohxXZVkGyoY0fcvst4S6am88UR/1eRvQEYc0J6MNr8y+Dwr0PtoMrt3x+0NcMTX0uvF/j1VbQQYMLZsOLG7uc2/gMe+zSMOwkaTk/OlbTnaNkCy/4CS65K3rOq7YmvwfS3QNNaWHY9bH0uGd+8AGqHwIRzYPLLIDus+r1JkiRJkvqc/hSMtrrL8ZgyrNf1IzDWlGE9Seq5Z37e/ZwlVyeP+d+Hs+/r3z/o25b7l4G7WHFj8gk2/sJFkiRJkiRJkiRJkiRJkiRJUqWNnJUEV634WwGTI2x4Ah79RPI45+Hk/MVXwV0Xdk7b8ESX48dhye/gsC/BQR8ve/v9XsjkKcby7bPqn3D7S6F5Q+lrzPxY0u++74CnvwVbU66Rb90GT32j8/Wjn4CjfwD7/lfpe6s4rdth+Q3p9cnnJyGHBVjZtCzneEPdpFI6K0htJsuO1l2D0Zoz7f+9jDgMxp9esf3Z7z2w4Afp9ZtPg1P/CnUjKtdDX9ayDe58RRL2k+aAD1Vu/wP/u7BgNIC5n0ue9/kvOOYK79WR9hQ71sCtZ8Paf/ViD8/DH0an1xf9GoYfBKfdtHPYsCRJkiRpj5TvNwV9TWP7cwAO78lCIYTRQNefVC/oyXqSVDbZ4YXP3fhU/k+S6Q+aCvwFcvNG2Lqksr1IkiRJkiRJkiRJkiSpKkII2RDCySGET4YQfhpCuCaEcHMI4ebe7k2SJEn6t5OvgYM+BaOPhaEzCj/vkU9AaxM8+O7u5z76CdiaO2Bpz5YnpCe2lm+bhz5YWCja0Bkw7mQ44ptwxLdg3Ckw4RyYfSXs1/7vOTsEzn6g8L1jW/v+m0pqXSVYfFV6bdiBcGKe+gukB6NNLrargmVDXc7xlqEzYP8PwOk3Q+3giu3PiIPg0M+n19fcCwt+VLn9+7olV+UPJpv2Whh3YuX2H38GnH4rDNmn8HMW/ghW31u5niT1LfMuKywUbcorYa//hNHHpM8ZOgNqh5avt642PA5PfbMya0uSJEmS+pXa3m6gCHcDbSRhbqNDCKfFGG8pca230Plbki3Ag2XoT5J6rmZAcfOf+Aoc+rluPhGrD2vdVvjc9XNh8LTK9SJJkiRJkiRJkiRJkqSKCiEMBj4IvAcY+8IyEFPOuwj4YvvLtcDRMcaccyVJkqSyqRkAh30+eQDc80Z49v91f17jjfD8HbBjdWH7LP8r7Pu20vvcHYU8wWhtLeXZY9sKWFvA7URHfa8z/KzDAe/PPXfQeDjkszDn04X10LIFVt4Kk88rbL56Ztl16bXZv4RMtuClGpuW5hwfXzep2K4Klg25+2s++BMw4qyK7buTyefDY/+TXl92Hcz8SHV66WvyfX0B7PX6yvfQcAqctyA5bm2CqwYlIYz5LPszjD2+4q1J6gO6e58CGHsCnPSHwtaLEa4emnw/U25Lr4PD/7f860qSJEmS+pV+E4wWY1wXQngAOLZ96PMhhFuLvbgphDAJ+BidF1DdFGN3P+GTpCpoa4XtK4s7J7bCIx+Dw79WmZ4qrXVr4XM3zIVJ51auF0mSJEmSJEmSJEmSJFVMCOFQ4CpgBp0fbFro9X9/Bn4ADAWmAWcCfy93j5IkSVJe488oLBgttsEtZxa+7v3/lQRVhBoYeUQSkjZoQvH9Lb0Olv0F6kbCXv8BIw8rfo0+I08wWmwubcllf0n+GWWHwV4XwbzLCjuv4fTi9hl/RuHBaAB3vBymXghjjk2+BlbfCy2bYcBoGH82TLswf1CcCrf67vTa8EMKXmZ72zbWt6zJWWuoYDBabajLOd4cmyq25y6GHQCDJsK25bnrz/8T5v8A9nkbZPrNbYs9FyM898f0es3A6oeP1dTBuBcl4Yv5PPFl2PgkbJoHgyYnoaBN65L3o2EHwtQLkvc1qVp2rE2+33r+LmjbUd61l/05eR66H0x4MUx77e4bDLj0z8mfd3tj8jrGwgJhG4r47z2E5PukQgLXirVpHlzZ/v1P7WBoOC1PHxkYMQv2eSsMnlL+XiRJkiRJvaa//YTx28CV7cfHkVzo9I5CTw4hNADXASPbhyLwzXI2KEkl27II2kr4Je2T/wv7vh2G7lv2liqupYhgtOV/g5kfrVwvkiRJkiRJkiRJkiRJqogQwkzgdmAYScJBbH8uKCAtxrg5hHA18Jb2oQswGE2SJEnVNuUCePq7sPaB8q/dEdSx9BpY+CM4804YPK3w8+d8HuZc2vl63vfglOuh4ZSytlk1+YLA2lqKX+/xL8Ojn+h8/dQ3Cjtv+pth+AHF7TXmeJh8fvLvslBLfpc8XuiZn8Pqu+Co7xbXg3a1dRlsW5G7NvbEJESqQKuaUkLBgIa6ycV2VrBsyOYcbyk1LLAUmVo49PNw31vT5zxwcRJCeMr1e06o3yPd3Osy8xNJaGW1HfxpWH0ftHZz707H+9WGJ3YeX1BVi9cAACAASURBVHU7LPgBHPU92O/dlelR6qppHdxyOqx7pLL7bJqXPOZfBif8Bqa+qrL7VdvjX4JHP1n8eYP3Tu5RLMZBn4RVt0HzxuL3K1TLls7vldMsvRYWXAFn3AHDZlSuF0mSJElSVWV6u4FixBh/C3T8VCMAbwsh3BlCOCnfeSGEwSGEd7afO4vkIqoI/D3GeFcle5akgr3wFwjF+POM5JPF+pvWbYXPXXVb8qkfkiRJkiRJkiRJkiRJ6jdCCAOBvwDDuwzPAd4KTAcOpDMgLZ9ruxyfXrYGJUmSpELV1sMZt8LhX09C0ipl63NJAFuhmjfC41/Yeax1K8z9XHn7qqp8wWhFhkA1bYC5X+h+Xld7vQ6O+zkc+5PizoMkCOrE38MxV8C0i2DiucmjVPO+D5sXlX6+EnM/n147/H+LWmpl09Kc49lQx6jsmKLWKkY2kzu8rbmtqWJ75rTPW7r/b2PFX2HlrdXpp7dtWwFP5vkamvlxOOR/qtdPVw0vgrPugQM/0rN1HrsUWreXpycpn4cvqXwoWlexJQkQi3k/s6F/KeX7ntHHJqGXZ98L9ROLO3fMMXDWvTDzYzDxpZ3f90w8F8afUdxaPbW9EZ76ZnX3lCRJkiRVVG1vN1CCVwH3AqPbX58A3BZCaAQWdJ0YQrgc2A84HhjAzp80uQx4fZV6lqTubXyyZ+c3/gMmnFWeXqqlpZtPnXmhJ78Os75UmV4kSZIkSZIkSZIkSZJUCe8D9iK5dg/gO8CHYkw+BTCEMK3AdW6l8/q/vUMI42KMq8rca58XQsiSXDc5FZgAbAaWAw/HGBf1YmuSJEl7htrBcOCHk+MbZsH6RyuzT+M/Cp+79FrIFYy08tbkw7dDpnx9VU2eYLTYUtxSq25PguIKNe0imP3L4vZ4oUwN7Pv25NHhqf+Dhz5UwmIRVt4CQ97Ss572dOseTq8NnVHUUo1Ny3KOj6ubSCbUFLVWMWpDNud4cywyLLAc9n4jPHBx7veeDo3/gPGnVa+n3tJdANyB/12dPtKMPBRGfg0mvwJuml3aGk1rYc0DMO6k8vYmdbXuUVhYQiBpT22al4TSDp5a/b0rYfXd0Lqt8Pm1Q5IAxVDI51akGH4gzPpyen3Bj+D+t6fXy6mY76ElSZIkSX1evwtGizE+E0J4KfAnkot6Oi50mgCM7zI1AG/vckyXuUuBl8YYV1elaUnKZfMiWPRr2L4yCTTb8ETP1rv7P+EVyyGT+5ddfVIxv2AGWHwlHPbFnv2wVZIkSZIkSZIkSZIkSdX0XjpD0a6JMX6glEVijJtDCIuAvduHDgR6PRgthDAdOBo4qv35CGBolymLY4x7lWGfscBngQuBUSlz7ga+GWP8Q0/3kyRJUgEmvbRywWjrH4Xbzk2C2Fq2wOaFsPHpzvqw/ZPnrmO5NG+AupGV6bGS8l0v3tYMMcK878LSa2Db8vxrdffP6IUmnVfc/EJNfGmJwWjAfW+FJ78Gww5MwtYmnlPe3vYEa+5Prw0YXdRSK5uW5hxvqJtY1DrFyoa6nOMtMU84WaVkamDiubD0T+lznvgybFmchEmOOqJ6vVXLtkaY+zmYf3n6nLEnwICc/wtffaOPgoHjYXtjaef/42QYfQw0nAoH/0/y95PUU9tXw9zPwvN35Q+wrLRrp3V+bwUweC/Y63Ww9+t6raWiLbse5n0fVvy1uPMmvbTy9+lNOg9q3l9cYFupNi+AthbI9Ltb5yVJkiRJOfTL/7uLMd4fQjgC+CnQ8dP8+ILnnU4hCUQLwE3AG2OMJf4UT5LKYN0jcMsZsGNN8nred9PnHvDh5JMTnvoWbJibPm/H6mTN025JfsnUH7QUGYy2ZTGsuQ/GHFeZfiRJkiRJkiRJkiRJklQ2IYSZwKT2lxH4SA+XXEhnMNp04PYerleSEMIpwMdJwtAqfodzCOEc4OfAuG6mzgZmhxB+Dbwjxril0r1JkiTt0fZ/Hyz+DWx+pjLrL78hvVZo2NeOtf0zGI08AR2xBf71AZj3nfJvO/FcmPKK8q8LMGwGzPx4EhZVio1PJ4+l18KJV8HUV5W3v93ZsuvTa4d9sejlVjblDuNrqJtc9FrFyIZszvHm2FzRfVMd+vnk/o584YSLr4Rl18IZd8Kow6vXW6U1bYC/H5fc45LPrP+tTj+FyGThqO/C3f8JbSWG6a25P3msugPO/CeETHl71J6lZSvcNBs2ze/tThJdv7fa+DSsuBG2r4IDSww1rabFv4O7LiL3rdV51E+BQz5TiY52NqgBZn0N/vU+iu6xFAt/AjPeUfl9JEmSJEkV1y+D0QBijCuBc0MIRwLvB04HJqRM3wDcDHw3xtgrF0JJ0k7mfLYzFK07w2fCPm+Bfd4K8y6DB9+dPnfVHbDolzD9TWVps+LSPulhv/emh8Ut+b3BaJIkSZIkSZIkSZIkSf3DrPbnCMyNMfY0MWJ9l+PhPVyrJ2YBZ1Vjo/YQtmuAui7DEXgIeAYYARwOjOlS/09gWAjh/BhjWzX6lCRJ2iMNHAfnPAJLroanvw2ZATD2xJ3ntDXBqluhbhTM/CjUDoGn/g82zYMxs6GtObn+u1Ka1gL7VG79iskTjLatERb8oPxb7vM2OPpyyFTwVqtZX4KJL4aVtyahHVufK2GRCE98xWC0Yjz2qfTa3m8saqm22MqqlGC08XWTco6XS22oyzneHEsMueqpEQfBix+Cu16T3MuSpmVLcn/IcT+tXm+VtujX3YeiTXstjD2+Ov0UauqrknuUlt8A6x6FRb8qbZ3V98Cq26Hh1P/P3n2Gx1Hdbx//HvXiIhfJlnsvuGFMs2kGbHpvCSShJUAgCSGElCeBEJL8CQmBhJCeECCd3nuzwVSDDTZuYBvj3qtkWVpJ53kxEpLlndnZ3dnZXen+XNde0sxpPxftrmZn7gm2PulYVj7gLxRt8IVQ0COJhSws+U1iQxf9EkZ+wwkWzGQLfo6vwLGR33K+GuM8F/Q9DYrKU1pay9pfd64HXPdcyzWVeSXO++GKI2DJb2H1I7D1vRjzNP0ZGqph6V+i95l/o4LRRERERERE2omsDUZrZq19D7gQwBgzBOgP9MA5CWgzsAFYoJN7RCRjNDbAumf99+8yuuX7EVdBwx6Y+233/p/8IzuC0Rojzt26ohlwrnMgc/Mb+7Ztn5faukREREREREREREREREREREQkKK2vrPNxpWNMta2+LwlgvqDVAqsJKHnCGNMPeJi9Q9FeBy6z1i5q1a8QuAL4FdB8peapwM+AHwRRi4iIiIi4yO/cdBPsS/2P6TW15XtrYe1TTQFmKVCbonlTzXgEo215ywmcC9r4n6U2FK1ZxZHOo98Z8Mz+sftHs/U9qK+BvOJga2uvatZF329yoLhPXFNtjWx2DSLrVdAv3sriku8SzFPfGEnpup6Ke8HEX8FzB3v32/R6OPWEZdOs2H16T0t9HYnoup/zsBbWPAmR7bHHRLPpdQWjSXL8/BxVHAWH3uP9vsDXWq/D1tnxj9uzAaqWQ5eRya2fSpEq2P5B7H4Tb4XR16W+Hi89DnQe0Yz9ofN46xJYfk/0Pn1OgUm3t2yvfDD6e+jITuc5Ltn/NyIiIiIiIpJ2WR+M1lrT3SSTvaOkJMkYkw8cBgwAKoEqYC0w11q7Io2liWSG6k+ccDM/Csuh+6S99w29FObdAA27o4/ZMMP54K64MqkyU67epX5w7vjQ99TowWip+tBfRERERERERERERERERERERIJW1Or7Wtde/nVt9f2uAOZLRgRYALwLzG76Oh/n3LlXAlrjJqBbq+03gGnW2r1OPrLW1gK/NcasBB5p1XStMebP1tpPA6pHRERERIJmjHNT6aV/Ts38M0501rCNLfu6TYQjHoROQ1KzZhCsdW/bsci9LVG9pzkBT2EqGw+dh8OuBDOk7y9xgr0ASofA4C/B2Otb9okjstMJtommuE/coSkb6la7tlUUxBeyFq98UxB1v1tQW2i6T4LSQVC9wr3Pro/gvhIoPxwm3QFdR4dVXWp8+l/v9pwC6HtaOLUkyhgYcA4s+1ti4+fd4DzaKujmBK9NuAUqDk+uRmmf6qvhvWti/98zOXDAbcGEWw04J7FgNICXp8EpS5xr3TKR3/cR/c9KbR1B6X+uezDagHP33u4yKvq1hw01MOdaOOB2haOJiIhIsJb+BT76HexYCHgcuzJ5zu/K43+SuaHZIiJZQke72yFjzD3GGBvQY0Uc65YbY/4ArMc5sete4Bbgdzh3rfzEGPO6MebsVPy5RbLGjJP99x19HeS2+fCqoAz2/7nHIOvc8SDTNdS4t+WWQGH36G3ZetcyERERERERERERERERERERkY5nc6vvewYwX+vkhi0BzJeoe4Eu1tqJ1trLrLV/sdbOsdZGglrAGDMcuKjVrjrg4rahaK1Zax9tqq1ZIXBjUDWJiIiISIqMu2nfm2kHxu4digawbS48dzBEqlK0ZgBsg3vbzoCD0UoHw6TfBjunH8bAofdCYY/E57CNzqNqKcy/MXpIUUc35zr3tsPui3u6DXVrou4vy+tBUU5x3PPFI8/kRd0fCe5X0cSYHJh8rxOI5aWhBta/AM9PgT2bvftmsu0LvNtNHhz8VygqD6eeZIz/qROWGaS6bbDpdSdMasfCYOeW9uG1c/2Fok3+Z3Dvj4ZfBX1OSmzs7tXw6pn7vp/KFG+cH7vPpN9mdiBua31OgBHf2Hf/wPNh4Of33nfo3e7zLPkNLPplsLWJiIhIx7bs7/DOFbB9vnPcqvmYTLRHYx1sfhNeORE2v5PuykVEslr0I6IiLTySi1oYY04E7gEqYnSdAkwxxvwbuMJaW51ceSJZZvGvnTvd+NHjEBh1bfS2kVc7B3dfcLl7ytI/QfkU6Dpu32C1dKhZBzsWQMMe6DwSugyHht3u/fNKoMAlGK1OwWgiIiIiIiIiIiIiIiIiIiIiWWJ901cDJHWlrTGmBzC61a6lycyXDGvtthCWuQDIbbX9sLX2Yx/jfsHegWrnGWOu8gpUExEREZE0K+4F09+ALW/Di0eGs2btFlh5Pwy9NJz14mXr3dt2Lo6+v+JIJzTDfVKoWgG5hVDcx9lVOhjKD4P8TolWmpzyyXDqUtj4GtQ0BW4V9YbOw53z7+u2wuwr/c/38R9h3I8hJz8l5WalZX91b+txSNzTrXcJRutd0C/uueKVZ6JfG1Jv61K+dkwVR8Jpy2DNU/Dml7z7RrbDin/BqGvCqS1oH93p3jb8KhjzAyjpG149ySjuDce9CVvecULMCsogvwxqVjvPl7Ye1j4D2z+If+7GWlj6F5j0m8DLliy2aymse8a7z5CLYf9fQFGsy1TjkN8JjnzcCYetWgb5XZ1r3RprW/p4vd6ufx5W/BsGx3h+C1tjBHYu8e7T42AYGSVoLFOZHJh0Bwz/Kqx62Pkz9j8LysY7obKtdRkBeZ2g3iXsd8mdMPq7+44TERERSYTX74JubD0s/TP0PDj4ekREOggFo0ksD8XqYIyZCjwKtD7CboE5wHKgDOekttZ3/PwC0MUYc4a1mRqXLxIwa2Hx7f765hY5d8zJ8XiaLj/M+cBkwc37tu1YCM8eCHmlMOU/0O+0xGpOVmPEOTC87K699/c4GCbe6j4ut9j9bkGRHdDYADm50dtFREREREREREREREREREREJFO8ATQCOUAPY8wx1tqXE5zrUpyANYBq4N0A6stkZ7bZvtvPIGvtImPM20DzFf6lwHHA4wHWJiIiIiJByy2AiiNg8EXwyb3hrLnoVqg4CkwulA5wgigyhW2If0zliU6IRrYpKIN+p+67v2yM83XtM7DG59v5um1QtRy6jAyuvmwW2eXeVtI/oWsSNtStjrq/V0Hqg7DyTfTAu0hjJOVr+1LQDQZ/Ed7/fkvQn5sts8OpKRV2fOjeNu7GYMOcwpBb6Lz+VBwRvb3PSYmHdi65Q8Fosre1z8buM+7Hqfk5ysmFHgc6j2h2LPQOu3jzQug5BToPDb62RG2dG7vPfv8v9XUEzRjoup/ziKXbBNj0evS2mjWwZ4MTAikiIiKSiMYG2L0SGvbAtvcTm2PlfTD+p1BcqcBWEZEEZNCnFrEZY8YaY15uerxkjIn7CIcxplfT2OZ5RqSi1jS7DhicwOPcNvNY4O9eCxlj+gEPs3co2uvAGGvtgdba86y1xwH9gG8CrY+2nwr8LIE/n0h2qlkHu6N/CLaP3tP9fRjZbX/v9vpqeO0sZ+10+Oj3+4aigXM3mRePch+XVwoF3d3b68K46a6IiIiIiIiIiIiIiIiIiIiIJMNauw1ofbXzT42J/4xvY0xf4Ps457RZ4IX2fENOY0xvYEKrXfU45+X5NaPN9onJ1iQiIiIiIRn0hfDW2rkYnhgGjw+GB3vAotudm4FngkSC0ToPC76OTDD4i/H1f3IULPldamrJNts9Aqz6Rgmj82FDXfTAr1CC0XIKou6P2LqUrx2XQRfE7vPpf+CjP6S+lqBZ6x7AA9kXiuZHzylQOijx8U+Ogi3tPdteYtr2Pjw1Ft77hne/8iOgdGA4NbXl5z3YE8PgscGw4ZXU1+OlagU8PwWeP8S7X0F36HNCKCWlTax/twX/F04dIiIi0r5YC/N/Ag91h8eHwFM+Alvd1FfDo33hsYH+goJFRGQvWRWMBlwBTAWOAuqstRvjncBauwEnnKt5nssCrC8jWGs3W2tXxPsAprWZ6hVr7fIYy90EdGu1/QYwzVq7qE1Ntdba3wLntRl/rTEmTUerREIW2em/b/lh/vp1HRu7j22AlQ/5Xzso1sKS38Y/LqcAckug0CMY7c04P9wVERERERERERERERERERERkXS5o9X3hwJ/imewMaYX8DjOeWrNoWq3B1Naxmp7UtA8a211HOPfaLM9Jsl6RERERCQsvafB/r8Ek+vdb8B5MOXfzg2pgxDZDnO/DSsfCGa+ZDXWxz+mvQaj9T8HxlwPJo5LwN77Bqx+LHU1ZYtXPcLPDrgt7ul2N1Sxs2F71LbeBf3ini9eeSY/6v56G0n52nEZ92Pof3bsfu9+DVY/kfJyArX8bve2yf8Mr44w5eTCUY8nHla1cwm8dDTU7Qi2Lske9dXw0jGwY4F3v7IJMOVf4dQUTc9D4CAfgY3VK+CV42H36pSXFJVthBknwOY3vfsVVcDUpyC3KJy60mXoZTDi6+7tH/0Otsx2bxcRERGJZtlfYf6N8WVDxLJ7Fcw8WeFoIiJxyrZgtNNbfX9vEvM0jzXAmUnM024YY4qBz7fZfVeMMcOBi1rtqgMuttbucRtjrX2Uvf/tCoEb46tWJEvF8+a3p89gNL93XVn0C/9rB2XLbKj+JP5xBd3BGOerm3XPOXe3EBEREREREREREREREREREZGMZq39H/B+06YBvmKMec0Yc4TXOGNMqTHmq01j9wds0+N5a+3rqaw5A7S97fjSOMcvizGfiIiIiGQqY2C/78A522Haq3DMizDtNTivCs7aCMe+Ameuh8Pvg0EXwNlb4IT34JytcOL7cOzLcMxLzrhjXoQeh8a3/vK/p+bPFS/bEP+YTkODryMTGAMTfgpnb4VjZ7T828ayLEP+LdOlMQK1W6K3dd0voaCYDXVrXdt6FfSNe7545ZuCqPszLhgtrwSOeBDOXAtjb/DumynPOX4t/Yt7W4XnYY7sVjYOTlsOJ83z/xzUWn1V5gRvSvhWPQp127z7VJ4AJ86F0gHh1ORm+JVwXjV0P8i7X2MEVvw7nJra2vSGEzjopaA7nLEWesb5PjAb5eTBgXdC6WD3Pl6hliIiIiLRxHNMpfl3pMPvj93XNsKs82D7h4nXJiLSweSluwC/jDFDgObbZzQCTyYx3RNAA5ALDDbGDLDWrkyyxGx3DtC11fY24OEYYy7A+Tts9rC19mMfa/2CvQPVzjPGXOUVqCbSLtTHEYzWfZK/fn4/jNuzwf/aQfn0f4mNK2wKRMvr5Pz5GlyeGjbOhE6DEltDRERERERERERERERERERERMJ0DvAW0KNp+zBghjFmPW1Cv4wxfwRGAJNxbrxpcALRDLAG+FJINafTsDbb8Z7f+Gmb7R7GmG7W2hhXoYqIiIhIxsjvtG/ITl4pFE3de19uIXQ/wPm+oFuUebrAcwf7X3fdc7D2mb33FfSA7hMhJ9//PMmy9fGPye8cfB2ZpKAr9DqqZXvkNbDkN+791zwO9budkKqOqLrtr0WtlCQWvLOhbnXU/YWmiLK8HlHbgpRvov8MRjItGK1ZcSWM+AYsuNk97HD1o1BfA3nF4daWqN2r3NuK+7m3tQcmxwlIa9bnZFj7lP/xC2+BsvHhv55I+m16LXaf/mc7QaCZIK8Ejn4WnhjmHei2YQbs973QyvrM9nmx+wz+EuTkxu7XnvQ6GpZ/Er1t2/vR94uIiEh2amyAxlonf6D5a0MtNDZ9bd5f0h+6jPL/PnP3GtixACK7YMvb/sZUngC9j23ZLukHu6MfO/hM/S6YeQpMutMJeXVT1Mv5s5SNd44TNuxx3teUDobiXv7qExFpB7ImGA0Y2/TVAkustVWJTmStrTLGLKHlLojjiP/Eofbmy222/+0jqOzMNtu+otOttYuMMW8DhzTtKgWOAx73M14ka9Xt8Nev3xn+P9QxBnIKnTfoXhojYG14B4ltI6z0kWwcTfMH8sZA7+mw5ono/SI+/z5FREREREREREREREREREREJK2stcuNMacAjwCVtASdVQK9W3U1wOWtvqdV39XAKdbazaEUnV5lbbY3xjO46RzJPUDruy52xblhqoiIiIh0JN0PdC6g9BOi0WzGSfvuKyyHIx+F8inB1ebFLUTJTd9TU1NHJhtyCXz0W+fcfTcPlsGUf8OAc8OrKxNYC29d6t4+4usJTfvq9mei7q8o6IMJ4VqN/JyCqPsjti7layesqNy5RmbVQ+59HuwGh/0P+p8RXl2JqN0CNWujt3Ud2/FCiIZ+Jb5gtKpl8PwhUFQBRz4GPQ9NXW2SGax1AjyX/tm7X36XzHudKuwOE2+Ft7/i3mfds/DBD2H8z8INddu11Lvd5DjvETqaoV+G5X+P3rb5Tdi+AMrGhFuTiIhIe9McSNY6jKxhz76BZG0Dy9z2N+5xDzXzCj2LJ0y/y0g4+jkoHejex1qY8y1Yckf8fydDv7Lv9vwfxx5X/Sm8epr/dSpPhE2vQn21sz3scjjw997BaiIi7UQ2PdO1frVZFsB8y2gJRkvsVh/thDFmKHBkm913xRjTG5jQalc98Hocy86gJRgN4EQUjCbtXWRn7D5FvZ0DovHILY4djAawbW7L3cBSbdMbULMmsbEF3Vu+H/8zj2C0XYnNLyIiIiIiIiIiIiIiIiIiIiKhs9a+Y4w5APg7zvli4ISetf661xCcQDQDvABcZK1dn/JCM0OnNts1CcxRw97BaJ0TL6eFMaYCKI9z2NAg1hYRERGRBBgDU5+BmafCtjmJz1O7yblg84w1kFsYXH1uGuO4yBXg4L+mpo5M1m28Ey400yMUrjECr58PPadASd/waku39S/Aptfc2/ueHPeUexprWLHn46htvQv6xT1fIvJMftT99Y2RUNZP2KF3w46FsHNR9PbGWph1LpyxGop7hVtbPN65wr3t8AfCqyNT9D8DDvoDzL4qvnF7NsKrZ8AZqyAn+v9paSc2vwFzrvXuUzYeJt8LBV3DqSkeQ7/sBE+89033Pgtuhu6ToP9Z4dVV5RGMVjoQJt0J3Sa492mvyqc4QSTL/ha9fcYJcPrKcEPsREREguIaSNY2QCyeQDKPsUEEkmWKnUtg1nlw/NvufT75R/yhaEUVMOYGGHD23vvHXA/1VbD0L/5yJfxa1yaofelfoGwCjIjz9zERkSyUTcForU/K2RHAfK1fSboEMF82u5SWu2sCzLHWvh9jzNg22/OstdVxrPlGm23FrUv75/UGduyPnDfB/c+J/4OcvGKIbI/db/VjIQajzUp8bOsP5bqNhy6jo38AVl+V+BoiIiIiIiIiIiIiIiIiIiIiEjpr7QbgZGPMJOCbwLFApUv3HcBLwJ3W2pkhlZgp2gaj7Ulgjhqgm8eciboKuDGguUREREQkDCV94MT3nHCPp8dD1fLE5qnd4gRO9T0l2PqisQ3x9S+qSE0dma7vKXBeFdzv8XbfNsDK+2HUt8KrK91W/Me9rfyIhKacXzXbta1XQTihc/mmIOr+iK0LZf2E5Xd2LkJ/wOPyPVsPqx6EEV8Lr654bXw1+n6TB52HhVtLphh+JQz7KtTvcl5jGuudUMI3vuA9bs8GWP8y9Dk+nDolPbyei8EJ8Br59XBqSdTIq53wtpeOdu+z4j/hBqPtcglGG/lNmPSb8OrIRGN+6B6Mtns1bHsfuk8MtyYREcluvgPJ2gSIxRNItk97OwkkyyRb3oGa9VDce982a2HRrf7nOn0lmFworoweuJqTCxNvhQm3QM1a55jMa2cnd7MCN5/+R8FoItIhZFMwWus7HgYRZNY6aC3OT0zaD2NMLnBRm913+Ri6X5ttj6j5qJbFmE+k/Ym4ZDr2nALjb0p83txif/2qP018jXjtWBh9f+Xxzt1+HunjPrbtLxZdRkYPRovsSrw+EREREREREREREREREREREUkba+17wIUAxpghQH+gB1AAbAY2AAustY1pKzKz2JDGiIiIiEh7llcKo74N7yYRPDT7SudG2L2mQkG3mN0TFk8wWu9p0S9G7SjySqHrfu7n8APMuRbIgYKuUHEkdBoSWnlpsf5F97buByY2Zd0q17ZBxSMSmjNe+SY/6v5GGmmwDeSa3FDqSEh+Z+gyCnYudu/zyb9g+FWZ9/NsLWx9F2o3RW/PLYKcbLpEM2DGQH4X5wFgjgQMMQ9LzLkGSu6HsnGprlBSbfdqWPmA8zrUaWjLdW4f/8F7XOX01NcWhLLxkFMAjS4hlKsect4b5UR/jg6UDq4q4AAAIABJREFUbYx+jR041yd2dCX9oaiXE74Yzcd/hAPvhNzCcOsSEZHUsha2fwCb324JEdsnyCyOULPW7Y2RdP/pJCg16/bNL2iohYW3wI4F/uaoPAFK+/vrm5Pb0nf6q/DCEbBtrv96/dj0Oiy+Y9/9jbVNNTS958krdt4rlo0Ndn0RkZBk01G3za2+HxjAfANafb8lgPmy1QlA61uT1AAx4vgBaHsri5Vxrts2oamHMaabtXZbnPOIZI/Izuj785PMevQbjOZ24DNokSpY8c/obWXjnQOMXrq2+VAjr3P0fvUKRhMRERERERERERERERERERHJZMaYzsDgVruWWWurW/ex1i4HlodaWOararPt8wQhzzFt5xQRERGRjmjQ+TD/RqjdHLtvNLtXw2tnQVEFHPUU9EgsZComW++/74irU1NDNhlxNcz+qnefOdc4X00OHPg7GH5l6utKh1WPQM0a9/ZhlyU07aa69a5to0omJDRnvPJMgWtbxNaRaxL51TFEI6+G2Ve5t295C965DA76U+YEjTU2wLtfh6V/cu8z4hvh1ZMNSvrBgHOcoCwvOxfD0+OdwM6Jt2ZeIJ74s/IBmHVe/OMqT4AuI4OvJxUKu8PgC2HZ39z7vDwdjnzMCSBNpQ9+6N7Wue3lvh1QTq7znDzv+ujty/4K296HqU9BUXm4tYmISGrYRuf9+sd/THclkuka9uy9vWejE1a26yOfE5jEf/fLK4WjnoDnDvE+XpGI5mM9foz+Duz/C/3uJSJZJyfdBcShOXjLAOOMMT0Snahp7PhWuwJ+Bckql7bZfshau93HuLI22xvjWdRaWwW0eQdB0kd+jDEVxpgx8TyAocmuK+JLyoLRivz12/IO1Nckt1Ys9dXwzET39q77OR+kehlw9t7b+W7BaDpXU0RERERERERERERERERERCTDnQ/MbXq8AxSmt5yskcnBaH8Axsb5OD2gtUVEREQkWQXd4Li3oO+pUNS7ZX9usXNeevMjlj0bYwdxJcM2+Ot3+APQ79TU1ZEthl8BB//ZX1/bCO9+A3avTW1N6VC/2wnuc7P/L6Hr6ISm3lgX/e/r8K7HkxPrGomA5Ofku7bVN0ZCqSEpw690Qs+8LLsL1j4VTj1+rHvOOxQNYKxLAE9HNvmfMPIaKB0cu+/i22DTrNTXJMGLVMGbF8U/rnQQHPFQ4OWk1EF/hN7HubdvnAlLfpvaGnavgYW3uLd30iWyAIz5gXf71tmw4OZwahERkdRb97xC0cSfxtq9tz/8mf9QtJ6TnfevfU9KfP2SvnDCbBhwHhSW730MrvmRk+KP0RfdCpvfTO0aIiIpkCG3T/DlLaAWKMAJR/sa8JME57qKllC4euD1pKvLQsaYcqDtJ0B3+Rzeqc12ImlLNUDrT8xc0o/ichVwYwDziAQvsiP6/vwkMwGN+4db+5h1jnNXg1RZ+QBULXVvL2vKpKw8EdY9s2/7wM9D6cC99+W1fbppEtmVWI0iIiIiIiIiIiIiIiIiIiIiEpaeOOf7Acy21m5NZzFZpO2JRuXxDDbGdGLfYDQ/N0yNyVq7kThvpGp053ERERGRzNJ5KBz1uHefxXfAnGu8+2x9D6pWQKdBQVXWorE+dp9eR8OAc4JfO1sNu9wJRXl5Wuy+tgHWPOYEVbUnG172bh/0hYSmtdayMbIuatvg4hEJzZmIfFPg2haxdaHVkZThV0BhD5h1rnuflQ9CvwzJ1171oHd7UW/IKwmnlmySWwiTfu08Ft0Oc7/t3X/VQ1BxRDi1SXDWvwgNCVxSevRz2fdzk5MHh98HD3Zz77PqQRh3Q+pqWP2Ye1thORQkeX1ie2GME8y45DfufVY96Dw/iYhI9ov1fl3CZ/Kc3weag75ah37tta8Qcor27btPu58+rfY/3AtslGNKDW2C0Vb5DOrtdgAc90byfy8AxZXOe0ovT42DHR8Gs140Kx+E8impm19EJAWyJhjNWltrjHkNaD5Cf50x5hFr7fx45jHGjAW+A9imXa9ba6sDLDWbXAi0TlRaBsz0ObZtUtGeBNavAVofDXJJPxJpJyI7o+/P75LcvI1x/PitfRrm3wSjv5Oag8jrX3RvK+kP3fZ3vh9+Jax7lpanYqCoAqb8e99x+S6ZifVB3cRWRERERERERERERERERERERFKkOeDLAqvTWUiW+bjN9sCovdy17b/VWrstiXpEREREpKPxG1Az6zyY+AsnpCxItiF2n24HBLtme9B9EuQW+wuqWfBzGHo55OSmvq5Us42w+nGYdbZ7n05DnYuQE1DVsIM9jbujtpXnJzZnIvJMvmtbxEZCqyNpPSeDyXH+3aJZ8S8o6ec8r/Se7oTchK1mHax6BJbf7d2v/PBw6slmfl5PltwBZeOg/9lQUJb6miQ5jQ2w+lGYlUA4aXEldBoSfE1hKChz/p9ud7mcefs853nN5AS/9o5F8O7X3Nv1XLS38sO9g9F2r3b+HcvGhVeTiIikxpZ3011B5ogWSLZPkFg8gWQe4WZec6T7GENuUfT8geYshl1LYcV/oWatv/mGXhpcbX70np7aYLQlv4aBn4eeB6duDRGRgGVNMFqTX+EEo1mcEK1njDHnWGvf8jPYGHMw8CBQinMXSts0Z0d1SZvtv1trbdSesSUyLtG1RLJTqoLR4r27xvwfOx/6Hf0sFMV1M9kYddTCiijBZs0GX9RycLffqXD4/bD411CzBiqOggN+Hf3gb55LMNrmN5OvWURERERERERERERERERERERSaV2r7wvSVkX2WdRme1ic49teYbowiVpEREREpCPqfgD0Ocm5MbeXrbPhpWNgzA9hws+CW9/Wx+4z8pvBrddeFJTByKth4S9i9929ygkSO/xByMm2y8tasY3w+vmw8n7vfmOvTzhga2PdOte2ioI+Cc2ZiHzj/mt1va0LrY6klfSFIV+GZX9177PwFucx8hqY9OvwagPYsRBenuaEo3nJLYbR3w6npmzW/UCoPAHWPevd7+2vwKJfwTEvQUl4P1cSp8YGJxBt9aOJjd/vB9n9mjPmh/D6593bN82CiiODXXPNkzDrXO8+o68Lds1s1/dUKJsA2z9w7/P0eDh2BvQ6KrSyREQkYLVbvZ/rw+IrkMwjZMxP2Nhec2RoIFmmyC2MHozWUAsbXoGZp0Vvj6Z0MAz6QrD1xTLiKljxD6jdkro1nj8UDvo9DL8ydWuIiAQoq44iWGufN8bMAKbihGr1AV41xvwT+DMwu22wlzHGAAcCVwBfAvKbxlrgNWttjE9p2idjzKHAmFa7GoB74pii7St+cQJltB3j812Epz8AD8Q5ZijwWABri3hzDUbrmty89XEGowFsmwOvHA8nzklu7c9qqIaHe3v32e97e28POMd5xJLfyb1t11LoHO95nyIiIiIiIiIiIiIiIiIiIiISkta3tB6ctiqyT9tbgY83xpRYa3f7HH9YjPlERERERGI74hFYdCusfxE2zvDuu+BmGPoV6DQomLVtg3d7UW8o7R/MWu3NhJ9Dp6Gw6mGoWQvb57n3Xf2YE1bU95Tw6gvahpdjh6KV9IchFye8xMbI2qj7i3KK6Zyb5PUgccjPcQ9Gi9hIaHUE4uA/Qd1WWPWQd78lv4Fhl0HX/cKpC2D+T2KHopX0c54jexwYTk3ZzBg48jFY9EuYd4N3352LYckdMNFHuKOkx7pn/YeilY1v+b7TEBh0AQyIEfCV6QZ+zgnkfOOC6O1vXgynLw9uPdsI730LGva49+l/NpRPCW7N9iC3AKa/6jyfL77Nvd/c78AJ74RXl4iIBGvhLd7tFVO9Q8ZyiuIMJHMJN1MgWWbJKYy+v7HWee33E4rWZTT0ng5jf+gE0Iep8zCY/iYs/hUs/UvL/rLxex/f6ToWTE7Lttexn31YmPtdGPRFyO+cdMkiIqmWVcFoTT4PzAEqccLN8oCLmx7VxpglwLamtu7ACKA5Vcc07TfAKuC8EOvONF9us/2MtTb6kfroMjIYzVq7EdgYzxiT4B1fROIW2RF9f36X5OZt9Di46WXbXFh0u3OnrGi/eO1eDVtmQ+0mKCyHvFIwuc4b5dqtTp+cfOi2v5MO7PXLwJT/egecefEKjlv/ooLRRERERNKlvsa542txX+g8NN3ViIiIiIiIiIiIiIhIBrLWfmSMmQeMxwn36mutXZPuujKdtXZdq783cM6TPBx43ucUU9tsPxNQaSIiIiLSkeQWOBeBjv0hvHUpLL/bo7N1wlKGfzWYtWMFo/U+Nph12iNjnCCpYZc52ysfhFkeQTRrnszuYLQ1T8XuM+rapJbYVLc+6v7y/MpQr0nKN/mubZHGutDqCITJgQPvjB2MBs6/cVjBaNbC2idj95v+OpQOSH097UVuAYy9HvqdDk+P9+679kkFo2WyNT5+PgBGXwcTb01tLeky6Hx49+tOuGNbe9ZDQ53zfz4IOz+CqqXefQZ+Ppi12pv8LnDAr5wQWLe/w62zYc9GKKoItzYREQnGptfd285YAyV9wqtFMkduUfT91Z/C1vf8zXHyAufYSrp0GQ4H/9l5+LXoNph7nf/+9VWw8VXoe3L89YmIhCzrgtGstRuNMScAjwODcILOwAk76wRMarPvs6G0hKItBU5vCtHqcIwxpcDn2uy+K85p2iY8lcdZQyf2DUbbHmcNItklsjP6/mSD0eprEh8799vw6X+du6+0/iVv/k9h/o+Sq6u1ZMLLenrctaJuW+LzioiIiEji1r8Ir57ZEo7b9zQ4/D73A8giIiIiIiIiIiIiItKR3Qn8FefcvZ+w7009JbpHaAlGA7gEH8FoxphRwCGtdlX7GSciIiIi4qn3cTGC0YDZV0J9NQz9MhSUJbdeY713e+Xxyc3fkVQcBTkF4BactfTP0OsYGHheuHUFYc9mWPKb2P0qj0tqmY2RtVH3VxSEe6F9DrkYDPazy+Za1NtIqLUEoqg3lI2D7fO9+73/Xeg6OvUBfnXb4YMfOM9jXrqMgpL+qa2lveoy2rkZb41HZv6OhTDjVCifDCOuhvxO4dUnsS39k79+/c9JbR3pVjYeNs7Yd39DDXz8Bxh1TTDrLLjZuz2nACqmBrNWe1V5PHzsES733CEw4WYnYC6dASgiIhKfrXNg8xvu7cWV4dUimSWnMPr+eTf4Gz/g3Ox8T1B5HMyNc8zMU6D3NCjp57x/V0iaiGSonHQXkAhr7Yc4AWj/oyXszLZ6fNaVvQPRGoF/AAdZaxeFWXOGORfo3Gp7A+Azrv8zH7fZHhjn+Lb9t1prlXAk7Ze17sFoBV2Tm7txT3Ljt74Lzx3Usr3+pWBD0QA6DU58rFcqd0OSf3YRERERiV99Ncw8vSUUDWDN4/Dh/6WvJhERERERERERERERyVjW2ruAp3DO4bvYGPPdNJeULf4NNLTaPssYM9zHuO+12b7fWquTbEREREQkOf3PhPLDY/ebex28ciJEqmL39WIb3Nt6Tm7/gStBKiqHMT/w7vP65+ADnxcJZ4o9m+H5ybH7Df0KdN0vqaU21a2Lur88P9yL7Y0x5Jn8qG0R6xJ8l8mMgQk/d4J9Ypl5Kiz2EYKXqLod8PwU+PiP3v1y8p2as/FC+UyQkwf73wImxiWta5+ED34ILx4J9TXh1Cax+f0ZHHAe9Dg4tbWk2wG3ubfN+ZZzbV6y5v0IVvzTu8+YH0BRz+TXas9GfcsJZHRTvQLeuMAJxhQRkeyw4RV4dpJ7+8hr9H69I8t1CUbzK9bxk0xVNg6GXBr/uPUvwvJ7nJC0JXcGXpaISBCyMhgNwFq7zVp7AbAf8Gug+fYQps0D4APgV8BIa+3F1todYdebYdrecfMf1toYt9PZR9tguWFxjh/SZnthnONFskt9FUS5Kw8AeV2Sm7vrOPe2aTOh1EduYc1aWPQr2L0W3vtmcvW01W1/KOyR3Bxud/Rq0AccIiIiIqFb+ww07N53/5rHw69FRERERERERERERESyxfnAIzjn9P3cGPOcMeboNNeU0ay1HwP3ttpVANxjjClyG2OMOR24uNWuOuCmlBQoIiIiIh1LbiEc8wIcFCM0CGDLW7DgZ8mt53WJyzEvQV5xcvN3NONuhOFXevdZdCvUbg2nniAsvxuqlrq353WCKf+Fg/+S1DLWWjbWrY3aVlEQbjAaQL6JHiIWsZGQKwlI35PhuLdgv+/H7vvhT1IXkrXiX7Cz7aVybYz+Lkx/A/qfkZoaOorBX4Rps2DIxbH7bpsLKx9IeUniQ8MemBcjQDOvMxx6Lxz23/YfRtL9AOg61r39w58mN3/tVlj4S+8+Rz3pvL6Lt85D4fh3YvdbfDvs2ZT6ekREJHkfxjjeMOqacOqQzJTj+jGqt2GXw2nLnEyEbHXI32DKf5yA+KGXwWH3wfRZ/sd/eBM01KauPhGRBOWlu4BkWWs/Ar4NYIzpBPQCmhN4NgMbrLXVaSov4xhjRgBtb9NzVwJTfdhme7wxpsRaG+Xq+KgOizGfSPsS2enelp9kMNqY78Os8/bdP/xrUHEknL4CXpwKG2d6zzP3O84jaEc8lPwcuS4fXDfoZrYiIiIioVvicse37fPCrUNERERERERERERERLKCMebvTd/uBHYBnYFpwDRjzC6cG59ubGrzy1pr294gNFTGmH5EPwezd5vtPGPMIJdpqqy1mz2WuRE4E+jWtD0FeNEY8xVr7eJWtRQClwO3tRl/m7X2U4/5RURERET8yy2C4V91gk/e/KJ33yV3OOezl/ZPbC3bEH3/iG8oFC1RI6+Bjz2C7RprYfObTlBVNtjwknf7sS9Dj4OSXmZnw3ZqbfTrFsoL+iQ9f7zyTX7U/ZHGupArCVD3ic6j4kiYcZJ7v7ptsP0D6Hlo8DVseNm7vcfBMPEXwa/bUZVPdv4dVz0Kke3efTe8DEMuDKcucbftfaivcm8/ZTF0GRlePZlg2GXw3jejt216DRrqIDd6mGVMm990Xpdd174ie16vM0FJHxjwOVh5n3ufxjrY/Ab0Oz28ukREJH6NEe9r5XMKoSTB4xDSPuQWxte//9lwxIOpqSVsxsCg851HaxN/BXOviz2+dgtsnw89DkxNfSIiCcqaYDRjTG/g4Fa7Zllr97oVibW2CqgCloVZW5a5tM32LGvtkngnsdauM8bMA8Y37crDCVx73ucUU9tsPxNvDSJZJeJx3maywWiVx0OnoVDV6qkvtxiGtjr3c/R3YgejpcKkO6DTkOTnyXVJaFYwmoiIiEh4ts+Hdc/BptfTXYmIiIiIiIiIiIiIiGSXiwHbatsCpun7Lux7o89YTNMcaQ1GA2YBA3306wt84tJ2L87fT1TW2tXGmLOA54DmKykPAxYaY94DlgNdgQOA8jbDnwRu8FGfiIiIiEh8Ko+HnHzngmQ3DXvgmf0hr5Oznd/ZCT2a8H9Q0M193GfjXcJATNZcBpV5Og+HLqNh5yL3PjNPgWFfdf6dCruHV1s8Irtg3g3OuWxuSvpBtwMCWW5T3TrXtor8ykDWiEdeTgFEyQ2stx4/j9mi4ijI7wqRHe59np8MJQOc63B2fNiyv6gCJv8LKqfHt+bqx53AwHXPevfrd0Z880psxkC/0+CTf3j3++ReJ5Sr8jgYd5PCMcOyZzPMu94J6Kr+1PvnsstI6DwivNoyRb8z3YPRbCPcVwilg6BsHIz6FvQ62t+86190Xo8919ZzUtz6ne4djAbw6hnOa0zpABhwrhPIa4z3GBERCdfG19yD1MF5f2lywqtHMk9OnMFoHSEUte+p/oLRAN66CE78AHJ0/E1EMkc2vbKfBTzS9Pg34BF5LtEYY3KBtrdIuCuJKR9ps32JzzpGAYe02lWN/0A1kezUsNu9La80ubnzu8C0mTD4Qicgrc8pcMxLzh1zmvU9GabG+KAmaAf8GkZeHcxcuS4fXDTUBDO/iIiIiHhbdjc8MxHmfse7X2N9OPWIiIiIiIiIiIiIiEi2s60e4sFaOwM4E9jUarcBDgTOA45n31C0/wKft9br6hARERERkQQV9YSJt9OSd+yibivsXuk8dixwwodeONw7UK3Zumei78/JjbtcaWIMHPg7yOvs3W/pn/z/O4XNNsJLx8KSO7z7HfTHwP6vbIpED0YrzimhU26XQNaIR77Jj7q/XQSj5ZU4/0djBSDuXrl3KBrAno3wynGw1iMwr62VDzkhOLFC0XpOhuFf9T+v+DfuRuc6qFi2fwCLbnXCoqwOJaVcQy28cBgs/TNsn+cdigZw4O87ZnhUaX+Y8HPvPtUrYM0T8PJxsOGV2HOuex5eOcG7z6AvQe84QyAF+p/lL/hk90rYNMsJvfvgB6mvS0RE/KvdAi8f695eWA7jfxpePZKZcov89+1zihOG2t51GQFjf+Sv746F8Ha6700mIrK3bApGK8P51MQAs6211WmuJxudBLS+Hcku4IEk5vs3e99n5CxjzHAf477XZvt+a+2eJOoQyXz1XsFoJcnPX9IXJt8Lpy2FqU9A+eR9+/Q5Hi6wMOzy5NeL5YDfwKhrgpvP7ReRBj11iIiIiKRcZBfMucb7rirN6qtSX4+IiIiIiIiIiIiIiGQjE+Cjw7HWPg2MBf4EbPPo+hZwjrX2Ap1jKSIiIiIpNfLrcOJcmHgbFHTzP27HQljzlHef3Wvd22IFJom33sfAyR/G7rdzkRPkkmk2zICts737HPkY9D0lsCU31kX//1he0AeThiCgfFMQdX/E1oVcSYoM/iKcND/x8Ytv89930a3EzGsf8wM49uX4nufEv05D4ITZMOU/0OOQ2P03vAxb30t9XR3d6sdg10f++nabCL09AkrauzHf99fP1sOi22P3W3y79/nanYY61w8qKDZ+uYVw+EMwNUYYZmsf/d4JChQRkczwyb+8209ZBF1GhlOLZK7cwth9Rl8HU5+GIx+JL0gtm42/CY57G/b/hfN7rpcV/4Lda8KpS0TEh2z6RGBr01cLRL/dhsTSNp7zf8mc/GSt/dgYcy9wadOuAuAeY8yxbkFnxpjTgYtb7aoDbkq0BpGs0eASjGbyICf6HXtSZvjXYOlfUjf/2Bth1DeDnTNHwWgiIiIiaVH9KSy+AyI7/fWvr4KCstTWJCIiIiIiIiIiIiIi2WZwugtIBWvtoJDX2whcaYz5JnAYMBDoDVQDa4C51tpPwqxJRERERDq4bhOcx8hvwJP7QdVSf+M2zoB+p4HJAWuhbbiUV/BVYc+Ey5UmpQPggNthzrXe/TbMgD4nAwZyo4dxhW7jq97tJhd6Tw92ybrol7BV5FcGuo5feSb69ScRGwm5khTqOgrGXA8Lfhb/2PUvNF1nEiO0rrEOtrwdYzIDo7/TcS6UT5eCbjDofKg4Ah7tH7v/5jegx4Gpr6sjW363/74dORStWe9psP7F2P02ztw7ZMvkNYWgNQc0Wue118vwq/Z93yT+5eRCn+Nh0h3wno9rH+t3wa6PoWxs6msTERHn+EBjhM9eG00u5LSKQtn8uvvYXsdCYY+UlidZIidGMFpxH5h4azi1ZJqeBzsPcN6HLvxF9H62ETa+BoM+H15tIiIesikYrfWR5NK0VZGljDG9gJPb7P5bAFPfCJwJNN/6YgrwojHmK9baxa3WLwQuB9reeuM2a+2nAdQhktnqXYLR8krCrQOg23g48lF49YzYfTsNhaFfhg880n97TnE+WCjoBhN+DsMuD67WZnnF0fc31AS/loiIiIg4Hygs+D+Yf6NzQNOvyK7U1SQiIiIiIiIiIiIiIllJ54cFy1pbB7yS7jpERERERD6Tkw8TfwmvneWv/5I7YMlvcS52NlA6EIZdAft9zwn72PWx+9jK44KoWPqfDXO+TUsYSxQf3ek8ADoNg5FXw4ivpyeQZd0L8P73YNtc7359T3O/9iBBmyJro+4vL0hPMFp+TvSQunpbF3IlKTbwvMSC0QDuC+j/QOXxulFsmEr6tVyf5OW9b8Lu1TDh5r2DMiR59bth9pWw7ln/YwZ8LnX1ZIsB5/kLRqvfBfclE7RoYMA5SYyXz/Q/G+Z8y9858k+Pg8n/gMFfSn1dIiIdkbXO8YE51+zblpMPPQ6F8T+BhbfAuufc5xmo9yTSJFawtd6/OgZ8zj0YDeCN853jMEO/AmOvVziviKRVTroLiMNcWo64j0hnIVnqIvYOwvvQWvtOspNaa1cDZwGtj6AfBiw0xsw2xtxnjHkWWAX8Fmh9a5IngRuSrUEkKzS4BKPlpiEYDaDf6XCBhaOfj97e/yw4ayOcthT6nuo+T5fRMH0WfK4GztkKw69IzZvbHJdfRBr3BL+WiASv+lOY+x2YeTosvNU9LFJERDLH5jdg3g3xhaIB1Felph4REREREREREREREREREREREclc/c90brLtm235Wr0CPvh/sPg2Z9eupe7DysYlWKDspXQAHPJXMLn++lcthfeuhmV3pbauaLbOgRknxg5F6zoGJv0m0KWttWyqWx+1rSI/TcFoJj/q/khjJORKUqxsHEy8DUjTxdedR8CBv0vP2h3ZIX9zwjJjWXSrc32CBOvNL8En//Dff8LN0H1S6urJFoMvgkEhhGYd8lfn9VuSV9IXDrkLjM9wxTcvhNWPpbYmEZGOaulfooeiATRGYNNr8NLR3qFoAIMvDL42yU45hd7tY68Pp45M130i7O8RjAaweyXM/xEsuDmcmkREXGRNMJq1diXwFs4RzZHGGIWjxeeSNtuBfRphrZ0BnAlsarXbAAcC5wHHA+Vthv0X+Ly1tiGoOkQymlsIUF6agtGaVU6HkxdC5QnOdnElHP4AHP4gFDX92HrWaJ0gtFgJyslym79BwWgiGW/XMnjuEFj0K1jzOLz/XZh5inNgSkREMteK/yQ2TsFoIiIiIiIiIiICzuejkZ3O3X1FRERERERERKRjGPN9OHM9HH4/HHoP9J4e3/iP/+h8dQtGG/61pMqTNoZ+Gc5YAwPO9T/+PHKwAAAgAElEQVTm4z+krh43S/8KsS49GvQlOGFO4IExOxu2UWujX7NQUdAn0LX8yjMFUfdHbF3IlYRg9LVwxirnGpdD7wlv3WmvwUnzoPPQ8NYUR9fRcPIiOPYV6DLau++yu3RNUZB2r4VVD/vvf/pKGPP/nGvKOrrcAph8r/N/d/K/4JC/B7/Gmeud120JzpCL4cw1cMTDzmtMTvTg0c98lIb3QCIiHUEQv2NOnwW5McKwpOPw+r9w8J+hsHt4tWS6/b4L/c6I3e/jP+r8LxFJq6wJRmtyq8v34sEYcxgwqtWuOuBfQa5hrX0aGAv8Cdjm0fUt4Bxr7QXW2uogaxDJaA0uwWi5xeHWEU3X0XD0M3CBhTPXwoBz9j4wnRsjGC0Mbn9PDTXhrC8iifv4D7Bnw977NrwCG2empx4REfFnwyuJjYvsCrYOERERERERERHJPgt/CY/0hQe6whMjYNOb6a5IRERERERERETCUtzLCdoachFM/GV8Y6uWQ8062DQrenvnYcnXJ3sr7gVjrvfff9tc2DoHts9veVQtT90FsvXV8Mm9sfsNu8wJpgnYxrp1rm3lBZWBr+dHvoke3FJv2+lNq0v6Ote4DLkIRl6T+vUqT4SKwxWskE55xdBrauzXkPpdsPpxhaMFZd0z/vv2nAyl/VNXSzYyBrqOgsFfgKGXQLeJwc3d4xDn9VqCV1QB/c90XmMaY7yOrn8e6naEU5eIdAw1653fp3Z+BFUroPpTaIwRCN3eNNTC9nnJzWFyoMuo2P2k4yjxCEwvGx9eHdmi8vjYfWrWQO2m1NciIuIiq4LRrLWPAn8HDHCKMeb3xpi8NJeV8ay1r1trTatHobV2cwrW2WitvRLoDRwDXAL8P+Bq4GxgiLV2srX2oaDXFsl49W7BaF6hYxnCK7zNNoZUQ1H0/foAQyTzLb49+v4V/w63DhER8a+hFnYuSmxsfVWwtYiIxKt6FSy5Exb8HLZ9kO5qREREREREOp5VD8P734PIdme7ainMOEmB+iIiIiIiIiIiHVHZBCgbF9+YR/pAY230NgWjpUbZOOffyq9nJ8HT41sejw+FR/snfjPOaBpq4a1L4IGy2DdTLx0M5YcFt3YrG+vWRt1fnFNKaU7nlKwZS76JHgAXsXUhV5IGg78YwhoXpn4N8af3cU5okZfXP+c8T8z5dscLEglKQx28fRm8/RX/YwZ/KXX1tBdBPpfo7ztzPFgGM0+HyM50VyIi2azqE3jmAHik0vl96smR8PhgeGwQ/C8Plv413RWG56PfJT9Hn5OhsEfy80j70fcUyIkSKN55uBM4K3sbcC7k+AgG//Cnqa9FRMRFVgWjNbkCuAMnHO2rwPvGmEuMMXrXkiGstXXW2lestfdYa2+x1t5prX3YWvtJumsTSZsGl2C0vCwIRsuEGhWMJtL+rHky3RWIiEg0tVucD1cSpQtcRSSdNr8Dz+wP710NH/wAnj0Qlv8j3VWJiIiIiIh0LPN/su++yHZY8Z/waxERERERERERkfQyBo58NP5wNDedFIyWEsbAkQ9DWRLnjdWsgVdOgJoNwdQ073pYfg/Yeu9+nUfA1KfApObyuE2RdVH3VxT0wRiTkjVjyYt2gTcQaYyEXEkadJ8Eh94NuSm4xiUnH8beCAM/F/zckpjcApj6LJQO8u7XWOvczH3JHaGU1e58eBMs+5u/viYXRn4Lhl6e2pragxFfdx4mN/E5mv++h301uLokeWseh3f0byIiCbKN8PI02DbXvc87l8OGmeHVlC5Vy2HudcnPc8hdyc8h7UvnoXDEw1DQvWVfl1Fw1BPO8Q/ZW2EP57hKYbl3v49+B1s9nrtERFIoL90FxMMY83KrzV1AZ2A/4G9N7auBjU1tfllr7bGBFSkiEo3bXYpS8YFM0Fw+OAPA2nBqyC2Ovr9mLexYCF33C6cOEYlP9Sr3toJu4dUhIiL+LbkTdn2U+Pj6quBqERHxY+0zMO9G2Dp73zZbD3O+5dzFJs/l90oREREREREJztpnYfsH0du2vAPDrwi3HhERyRjGmAsDnM7inB+4A1gPLLY2rBNYREREREQkbp2GwIkfQPUKePNC2DQrwYkMdBocZGXSWqchcNIHULUCaprCwF6YEt8cjXXw6X9h1DXJ1WKtE4oWy7RXofzwlF7YvLFubdT9FfmVKVszlnxTEHV/xNaFXEmaDLkYBn0Btn8IDXtazglqqHWCJhKRkwddx0BeFlzf09F0nwinLYfHBsDu1d59P7kXRl8bTl3tiZ/nW4Dj3nJ+TvI7pbScdiMnDw68Eybc7Fz31vz89O5VsO396GOmvQqm6XJvk6O/70y26iGIVOnfR0Tit+19JxAslk/ugV5HpbyctPrkn8nP0eNQKIoR5iQdU99T4OxNsGMB5JVC6WCFonnpfSyctR52LIKnx7r3++Re53c0EZGQZVUwGjAV58SmZhYwTQ+A/k0Pvyc6mTj6iogkrn539P1Z/8FJSE+hXn9PT42BM9dDca9wahERfxob4AmPO/MpGE1EJHPU18Cm15wP0T+8Kcm5FIwmIiHa+CrMPMX7pMa6rc5J1ZXTw6tLRERERESkI6rfDW9/2b193bPh1SIiIpnoHlJ3kkm1MWY2cC9wn7W2NkXriIiIiIhIokxTqNnwKxMPRsvJh9zCYOuSfXUa5DwA+p4Ka56Ib/z8m6CkPzTWQt02yCmA4sqmC9Z7+ptj2/tQu9m7T1FFykPRADZF1kfdX16QzmC06De+r7eRkCtJo5x8XYzdkRgD/c+FJb/27rd9HuzZ7P+5pqOpXgm7PoZuE6H6Uyesq2at84hl7A3Q85DU19ge5Xfe++/ugNvhpWP27ddtf6g4Iry6JDmNdc7Pk16LRCRe1Sv89Vt+D/Q5BToPh7KxzrU+7c32D5OfY9hlyc8h7ZfJgbJx6a4ie5gcKBsDQy6B5XdH77PkDqg40gnw7TxCYXMiEppsC0aLRsFmIpL51j4dfX9ulgejJXpHnXh13c+7fdnfYOwPw6lFRPxZ/7xzsN+NgtFERDLD9vnw8nTYs8H/mKJezokR0S5mjewKrjYRkViW3Onv99J1zykYTUREREREJNU+/a/3xTORnc7vcO3xhF0REYlHKs6O7oRzw9WpwM+NMZdYa59PwToiIiIiIpKsfmdCYTnUbop/7MDzg69HvA27PP5gtMh2mHVO9LaJv4JR17pfOGsb4f3vw6JbY68z9PKUX4BrrWVT3bqobRUFfVK6tpd8UxB1f8R6nLctku2GXgIf/RZsg3e/h8th/1/Cft8Jp65s0BiB2VfCsrsSn2PwRcHV09FVHOWESOz6aO/9w65ITz2SuJknw+mrICc33ZWISDZpjCPMuPn3qu4HwVFPQHGv1NSUDtbCqgeTmyO/Cww4N5h6RKTF0Mvcg9EAXjvb+Vp5PBx+v/OzKCKSYtl4xqkJ8CEiknqN9e5J3nlZHowWltKBUDbBvX3e9eHVIiL+LLnDuz2sYEUREfH2xhfiC0XrNBRO/MC5g1k09VXB1CUi4offD0TrtqW2DhEREREREYFP/+fdXl8F1Z+GU4uIiGSq1ufr2VYPL9ZH3+b9BqgEnjHGfC2JOkVEREREJFXyimH6a1B+WPxjJ/0m+HrEW99T4NC7oXRQMPPNvQ62zHZvX/1Y7FC0wh4w+rsw7sfB1ORhR/1W6mxt1Lby/MqUr+8mz+RH3R+xcYQsiGSbsnFw1FPQZXTsvu9/F1YmGbTRniy/J7lQtGkzofPQwMrp8EwOHPsy9J4OOQVQXOmE+SkYLfvUrEs+1EdEOp54gtGabZ0Nc64NvpZ0Wv+Cd/v+t8CgL0Fep+jtxZUw/Q3365pEJHHlk2HIpbH7rXsOPvy/1NcjIgLkpbuAeFhrszHITUQ6uk2z3NtyszwYrauPDxWCUjYWtn8Q3noikrjVjzm/2HpRcI6ISPpVrYDt8/33n/BzGHaZc3KZ2wcMen4XkbBEdvrvu+FlqK+GvNJ92+q2tVyYX9AdSgcEU5+IiIiIiEhHsmej87tXLNvnQ6fBqa9HREQy0SVNXzsDPwJ64ASZNQJvAbOBlcBOoADoDowDjgB6N421wH3As0AxUAbs19RnIHsHpP3aGLPIWuvjBUpERERERELVZSRMnwXL/v7/2bvv6Diqu43j36tqybZcZbl3sHHDdIxppvceWmgJCakvCQkpJCSkUtITEkJIAQKh946BgKk2BmwD7r1b7pKtutLO+8dIUZuZnS0zuys9n3P2aHfunTs/GbE7O+W5MOdqf+sU9IWC3sHWJc5GX2U/6neD1diyfPPL9qSc8Vr7IPQ/1KUtxuQL3UfCWSvtUJkQbI1scm0bUJDGYLQc52C0hmh9yJWIhGzwyTB4EUT2wOP9wetvft53YMiZkFsYXn2Zau2D8a9TMg5O/RhyC1Jfj0DxEDhuJjTWQ04+GBN7HQleYT+o2xHfOmsfhBEXBVOPiHROie6zr38covfYnxudwer73dtOfNcOZgKINkCkoqUtrzuQo30UkaDt9x1Y9a/Y/dY+CAfcFnw9ItLlZVUwmohIVlr7sHtbv4PDqyMZo66E1fd2XD7h++HVUFjq3V651D74LiLp98lPY/dpqAq+DhER8bb5Jf99z98BhX1bXue5zKwS2ZNcTSIiflUs8d+3ag080gNGXAqH3AEFvaC+At69DDY917Zvz33hqMftcG4RERERERHxZ/3jYEW9+3QfBY214dQjIiIZx7Kse40x+wDPYIeiAfwd+IVlWevd1jPG5ABnA78BRgGfARZblvWzdv1OA/4IjMEOSMsDfgsckOJfRUREREREUmXwaWBy24ZtuennEqQl4WkfTDfwRDB5YDXEN87SP0D1eiidDrlF9iT0jbXQZyqse8R73cGnhRaKBrC1frPj8u45Peme63L9XAjyjXMIQMSKhFyJSJrk97TfDzY85d6nag08ORjKjrPDjkZ/zv4s6awBVLs+hu3vQPEI+3fc/Sns/BCIQvnr8Y9XdrwCR8Kgf+PMMuUXMPcrHZd77e9seBoW3mJfdzrweAX5ikhs0QT32aN19ntUz32hzwEw4Jjs/RxprIM197m3t76GPyfP3pcTkXD1HOMvNLZ6PSy4sSm0ECjoY38HK9k3+BpFpEtRMJqISJCiEVhxp3v74NPDqyUZ+3zZPtHYWNOyrN+h0H9aeDV0G+Dd/uJUuKjGu4+IBK9uB+yaF7tfw97gaxERkY4ql9oXg9RssS8y8+PoZ9qGogHk93Duq/d3EQlL9br411n7ANRth+Nehrlf7RiKBrBnGbwwGS6shs0vwo73oddEGHZeywkbERERERERactroqiT3rO/V+Wn70ZBERFJP2NMMfAUMA6IAJdblhXjjnewLCsKPGmMmQm8CBwJ3GSMWWdZ1j2t+r1gjHkLeAOY2rR4ijHmRMuyXknpLyMiIiIiIqlRNBBGfhZW/9u7n8mBcd8Ipybxr1spjL4SVv4z/nXXP24/2i/zklsE+ziElQRoW8Q5GK20YFCodbSXb/IdlzcoGE26knHXwsZnvcM163fC+sfs5yv+Bvt8DQ6+vfOFo33yc/jkx6kbLw3vtyIZYei58OnPoWZTy7L8XnD00/Dase7rLfiB/bP7SJjxEpSMC7JKEcl2iQajQdvvXmUz4OinIL8k+ZrCVLcTZp3h3p5brGtLRDJBTj7s+w1/3zMW/rLta5MLh/wVxn4xmNpEpEsKb6oMEZGuaOub7m3DLoCCXuHVkoz+h8Nxr8LwC6HvQTD+W3DcK3bidlhi3YDeWAt7VoZTi4i4q1jor5+Cc0REwrfpZXjxQJj/fX+haH0OgGNfhKFndmzLUzCaiKRZ3bbE1tsy075hf/2j3v0eKYa3zodFt8F7V8BrJ0B9RWLbFBERERER6cyqN7mfE534Q/s8oy5cFRER+BmwH2ABt/kJRWvNsqwq4DxgJ2CAPxtjStv12QNcADQ0bQfgpCTrFhERERGRIB32D/sYUm6Rc3vZcXYYxeBTwq1L/DnkTpj0Y+g1CQr6BndTfkEfOP4N6D0pmPFdbK13DkYbkOZgtDxT4Lg8omA06UrKZtjXtw48wf86y//ifY9XNqpcmtpQtMGnp+X9ViQjFJXBCW/CiIuhx2g7KO2EWVB2DEx/KPb6VWvsa/RFRLykap+9/HVYfmdqxgrT0j/C9vfc2495OrxaRMTbpBvhwD9A34PjO95jNcIHX4e6HcHVJiJdToiJNiIiXUzlcvivx0H2IQ4BE5ms9Aj7kS6WFbvPlpnQUzOTiKRNZC/M8vneFlFwjohIqCwL5n0bGqv99R97DRz6N/f2PJebWSN74q9NRCQRtdsTX/edi+NfZ8dse5bqcf+X+HZFREREREQ6k9pt8MlPYPkd7n1GXBRaOSIikrmMMXnAFU0v64DbEhnHsqztxpi/ATcARcClwB/b9VltjHm0qc0Cpidat4iIiIiIhCAnH/b/hf2Q7JOTB1N+aj+aPWBSv53TF9thJSHbVr/JcfmA/MEhV9JWvsl3XN5g1YdciUiaDTrRftRsgWf38Tex7/on7JCjzmLDU6kba+ptMOG7qRtPJBv1HAPTH+y4fPDp/tbf+Cw01kOuc4ipiAhRl2C0vgfDKXPt568cBdvejj3W+iey77N7w5Pe7T33DacOEYnNGBj/DfsB8Mw+sHeFv3Wj9bDpBRh1eXD1iUiXkpPuAkREOqX6Cnj1SO8+wy8Ip5bOwteMIwGcSBUJS9VaWPcobJ8DVjTd1STmvSsgUumvb2O1+8E8ERFJvaq1ULHQf/8JN3i35/dwXu7nwhIRkVSo2xb+Npf/NfxtioiIiIiIZCLLgtlXeYeilewHvfyc3xMRkS7gSKA/dlDZ+5ZlVSUx1sxWz89x6fNy008DDE1iWyIiIiIiIhKvMVendryScdBtQGrH9CFqRdkW2eLYVlowMORq2srPcQ5biei6bOmqigbCfj5DQZb9CWZ/Dj641g4Tsaxga0tWQxWs+DvMuQZeORoezIPnJ9q/w+zPwfzvp25bQ89O3VginU1+D+h7UOx+ViPsWRp8PSKSvaIuYcat9/EH+Axx3TGnZZ9gwY2wY27y9QUhGoFV98ATg2D3J+79eoyGYp3WE8lYZcfG1/+9K2DOF2HZX+zvNSIiSchLdwHJMsZMBc4CjgLGAH2BnoBlWVaH388Y0xsoaXpZZ1lWeVi1ikgXsv4JqN3q3l48DPKKw6unMyg9Cgr6QP0u9z553cOrRySVVtwFc78GVoP9uux4OObp7PqbXv7X2Kn97dXtsE9EiohI8CrjPMnaY6R3e55LMFpkT3zbERFJVDqC0SoXh79NERERERGRTLT1TXtmTy8jLrJnDxUREYHhrZ5vSnKsza2ej3Dp0/pAXp8ktyciIiIiIiLxGPdNWPnPFA1mYNKP03KccXfDDiKWc2hBaf7gkKtpK8/kOy5vpIGo1UiOyQ25IpEMsN/1UP6qff4illX32D+X3Q6jPweH/yvQ0hJWXwH/PQF2ftB2ecUi+5FKIy6xgyhFxN2kH8Fb59vhZ15emAIXVkNeUTh1iUh2cQszzmm1jz/2Glj1L6jZ7Ny3teb9GoBFt8Lhd8Ooy5MqMaUa6+GN06D8tdh9J/0YTE7wNYlIYsZ9E9Y9BpHd/tdZ+Q/75/K/wknvQn6Jd38RERdZu4dgjJlsjHkV+BC4CTgOGIkdemaaHk5mAKubHsuNMUomEpHUW/uQd3v/w8OpozPJLYCpt3r3aawLpxaRVKre2DYUDeyDPYt/k76a4tVQBXO/Gv966QizEBHpqqrX+u+7/y9j93E7GNlQCVbU/7ZERBJVq31JERERERGRtFn+l9h9hl8UfB0iIpItBrV6nuzsYM3X+hnAbRau1jPuFSa5PREREREREYlH70lw+iIYdEriY/Q7HEZeDjNegpGXpq62OGyrdw8hGFAwyLUtDPmmwLWtofX16CJdSV4RHPMc7H9zfOutuht2fhhMTclafW/HULSUMJDXdIiu32Fw0B9h2n0BbEekkxl6Nhz3Goy+yt5X8bLukVBKEpEs5CcYrftwOGk2jLsOSo+C4mH+xrYaYd533LeRDhuf8ReKNu3fMPrK4OsRkcT1nggnvQf7fh1Kp9v7Q7H2iZpVLISlfwq2PhHp1PLSXUAijDFXAX8BumFf5GS1arZwD0UDeBpYhz1jZHfgfEBHb0QktbbM9G4v6BtOHZ3N2Gvg/S+5t7//RRj7hfDqEUmFdY+2DUVrtvE5mHxT+PVYUaheDzndoKjMu2/1RjuJf92jiW1LYRYiIuHZs9J/36Hnxe7jtj9rRSFSCQW9/W9PRCQR9TvSs91dH0OfKenZtoiIiIiISCaINsY+L9B7f+g1Ppx6REQkG1S2ej4hybEmtnq+16VPt1bPa5LcnoiIiIiIiMSr134w48W2y54cCjUbY697/OtQdmwgZcVjW8Q5GK1HbgnFuT1CrqatfJPv2hax6ilQRrh0Vfk9YeIN0GcqvHGa//U2vQh9DwqurkRtejF2n3icOs/+txGRxJUdYz8AXjseyv/r3G/TCwr4ERFnlktoWft9/O7D4aDfNa0ThUd6QKOPU1615bBzHvQ/NLk6U2X9E7H75PWAkZcFX4uIJK/XeDj49rbLVt4Ncz4fe911j8GkG4OpS0Q6vawLRjPGnA/8k7aBaAY77Gwn4HmExrKsqDHmYeC7TYvOQsFoIpJq+SV2IISbgj7h1dLV7FkJPcekuwoR/z66znl5ILP7xLD7E3jvStg1z3498rNw6F2QV9y2X91OePsCKH89ue3VKRhNRCQ0e30Go429xt9Nq4UeQb/1OxWMJiLBi+xJz3aX/A6m3ZOebYuIiIiIiGSCpb+P3WfERcHXISIi2WRD008DjDbGHGZZ1pwEx7q86afVatz2Brbqo5PSIiIiIiIimWDYebDsdu8+hf2g/+Hh1BPDprr1jstL8weFXElH+TkFrm0Rt6AFka6k9CjILYbGan/9P/4R1O2AcddCj1HB1mZZsOIu2Pxix0nmC/pC6TRoqIbts6H8tdRtt3gY9JqcuvFEBAad4h6Mtu4R2Hsb9BgZakkikgWiLvvrOe7hx5gc+z1nw5P+tjHzMBjzBfvR/7D4a0zWrgWw4m/2farb3o7df/CpYEzwdYlIMAadaL9PWVHvfrsXwMwjAAO5RdB/Gux3PRT0CqXMTqVuByz+DeyYA411Hdsn3gBDzgi/LpEAZVUwmjFmEHBv08vmULQ7gN9alrXaGDMSWOVjqKexg9EMcEyKyxQR8f4iCmCy6u03s4y7zvuGi9X3wpSfhVePSDKq1nq3W1bwB3b2rIB1j8LuT2HtA23b1vwHigbBAb9uu3zO55MPRQOo3Zr8GCIi4s2yYNPzsP7x2H37HACH3Olv3AKPYLS6ndBjtL9xREQS1bA3dp8LdsKz+0Ld9tRtd/W9CkYTEREREZGupbEWVt0L1evsYz7zvhN7HQWjiYhIW7OACPa1iga4wxhzlGVZPu9OtRljLgJOouW6wVdcuh7Y6vma+EoVERERERGRQIz/Fqy62/t6j6m3QW638GpyYVkWb+x+zrGttCD9wWh5xv1elYZofYiViGSo/B5wwK/gg6/7X2fpH+x7KU56L9jrX+d+FVZ4XKe7yfm9Jykmz74fJCc39WOLdGVjrob533Vvn3l403tKwIGLIpJd3PbXPcKPAZj8Y9j2lv9r4lf+A1bfB8c+DwOPj6/GZGyfA/89Hhqq/PUvLIVJPwq2JhEJVvFQmHADLPxl7L7b32t5Xv4abHgKTp4DecXB1dfZ1O+GmdNgz3L3PrpvXzqhnHQXEKcfA8XYF0hFgQsty/q6ZVmrm9ot1zXbmot9sRVAP2OMvl2KSOo01Nhpq166jwinls5o2Hne7Ts/CqcOyX6W392GAG14xrt9zhcSH7v59/P6Pbe9Cy8dBAt+0DEUrdmyP0Nkb8uMBJE9sOkF/3Uc8lfof4RzW50m5xYRCdxH34ZZZ/rre+I7/gM580uwv5o7qN/lbwwRkWT4CUYr6AMDT0z9tiN7Uj+miIiIiIhIJmqosc8jzP0yLLzZ33mLsuMUmi8iIm1YllUJPId9YsECpgIvG2OG+R3DGPMF7AlVrVbj3O/S/eRWzxckUrOIiIiIiIikWI+RcNZKmPwzyCm0J+YsPRK6j7RD00581w4YyQDLaj51bRuQn/5gtHzjHpoQsSKubSJdyr5fgxPegoEnAAb6HR57ndqtsPTPwdVUtR5W3pXaMUddYT/KZgDGfk8ddQWMuNT+OfFGOHm2JrQRCUJhXzjW496q2nJY/tfw6hGR7BB12V/PcQ8/BqDPVDjlA5j6Kxh1pf05H3NbdbDwlvhrTMbiX8cRitbP/p16Tw62JhEJ3v6/gGNfhHHX+Xt/albxKax7NLi6OqM1//EORRPppPLSXYBfxphc4BJaws9usyzr8UTGsiyrwRizBGjeWxoPrPZYRUTEv8rFsfv0nhJ8HZ1V6XTvdreDAyLNKhbD3K/Ajveh5772l64hZ6Snlqo13u2r/mWn3vcY6X/M+t3277f2oZZlpUfCIXd0PFC04AcQqfQer7EWHu1pPy8aAiM/6+//s+KhcPZaMDmw+WXnPrUKRhMRCYwVhfeuhDVu9wS1M+wCyCvyP77JsQOH6nd2bHNaJiKSSlbU/0nTkvGp3/7ml2D4Z1I/roiIiIiISKZZdAtULPLfv/tIOPgvgZUjIiJZ7XrgVKCw6fV0YJEx5n7gUeCDpgC1/zHG7AvMAL4AHEjLjC0W8E/Lsj5pv5GmsLVjabnG8K3U/hoiIiIiIiKSsG4DYPKP7EcGW17tEYxWMCTESpzlG/fQhIhVH2IlIhluwJFw3Cstr7f8F/57vPc6W2cFV8+2t+zr3lKlbAZMuzd144lI/Poc6N0e5HuKiGSnRIPRALqPgAnfaXldNAgW3ea9zra3INoIObn+a92C23wAACAASURBVEzG1jf89z3meeg+PLBSRCRkg0+xHwD5vWHZn/ytt3UWjL4yuLo6m/I30l2BSFpkTTAacDhQ0vS8HvhVkuNtoCUYzffskyIiMe12PxEG2MFE/Q4Jp5bOyBjoexDs/NC53WoItx7JLvW74JUjWwJbdi+AN8+2ZwMqPSL8eiJ7YveZeRiMvhqGnWe/f2x/F2o2w4BjoLjdyfU9K+HZsR3H2PY2vDAFRlwMg04Gcux/g3gPstdshMU+d8Em3miH5gAUljr3qVMwmoiIo8he2DEH6rbD4NMhv0f8Y3x8k/9QNICxX4x/GwV9FYwmIunRUO2/78hL7ZO+jT7WGXEJrH0wdr+3L4SL6/2dhBYREREREckWlgW7P4Zd86HvgdBrIqy62//6Rz5in4PIL4ndV0REuhzLslYbYz4P3AfkYAeXdQeuaXpgjKkE9gAFQK+mn9A2EM0Ac4BvuWzq+03jA9QCr7j0ExEREREREXG0pX6Da9uE7lNDrMRZnilwbYtYmmRexFXpkfZ9DV73MOz6CB7vz/8OR0Xr205EX9i/5bnJgd5TYPy3YPCpbcdpqIHlf4HV90FeD9jnK/Y5mFQaem5qxxOR+BWVQf8j7Pu8nOx4H+Z+DabeCvk9w61NRDJTMsFo7Q09L3YwWrQeHsqz70ua9CPof1j823HTWAsLfgibXoDKJfGtWzwU+h6culpEJLOMusx/MNqqu2HbOzDoJHufKa97sLVlotX3wYq77PsxB58OU34OteUw/3uw9qGWfvm9IbI7fXWKpFE2BaM1p3xYwNz2M0QmoPX6ujJXRFKnYqF729Bz4bC/2+FekrjGWve28v+GV4dkn3WPdgxrsaKw8h/pCUZr2Bu7T+1WWHSL/WgtJx+m3Q8jLrRfL/8bzP2y91hrH2r7RSgoB/ymbcBONwWjiYj4tnc1zDqzZZ8yvxcc9QQMPM7/GNFG+7PNj5LxsP8t9gHEeBX2BaePsrod8Y8lIhKPhir/fXuOhWNfgLlfgcrF7v1GXWHPoDn6KvjoOqhY5D3uxudh2Dn+6xAREREREclk0Ub48P9g+V9blpUeBdXuNwC2MehkGP6ZYGoTEZFOw7Ksh4wxUeAu7Ov1rKam5otoejU9Oqzaqt/LwMWWZbkdJLwPeKTp+V6PfiIiIiIiIiKOyus3Oi7vndeP4twEJjlNsTzjfitgQ7Q+xEpEskxuARz6N3j3Uu97kryuga3b3vb1llfte5iOfbHtdbjzvwvL/tzy2i00KVEDT4LRn0vtmCKSmIP/BC95hPssv8OemOrEt3U/qYiAW5Bxjnv4sat+h/jvu+l5KH8NTpoDfabEvy0nb11gj5uIQ++CnNzU1CEimaffITDhe7HDG5vtWWY/dn8Cx7/etfaZVv4T5nyh5XXFItg1z76vtGZz274KRZMuLJuC0VonaqxPwXjRVs+z6d9BRDJd1Wrn5SM/C0fcH24tnZXXSQiAJ4fC5JtgzBe61g6wxLbkD87LV90Nh/8r3FoAInsSXzcagXcugrJj7RNssULRwjJjJgw6se2ywgHOfWu3Bl+PiEi2mX9D26DdSAXMvhJOXwz5Pi+qqtsGtVv89T3DIyQolnyXjPF4AotERBLhJ2C4tbJj4PSFsO1tWHUPrHuk7RjdBsLEH9jPB51k9y2fBa8d6z7mwpsVjCYiIiIiItmtbid8fGPbMLTWtr3lf6z+01NTk4iIdHqWZT1ijHkX+A1wHi3X7VkO3U2rn6uBX1qW5Xli37Ks2amqVURERERERLqeqBVla/0mx7ZzSq8IuRpnxhjyTQERq2MImtMyEWll2Ln29bhrH4QFP0jNmFYUlv6xJRht72o7CClVymbA2C9BQV87LKBkPAw4GnLyU7cNEUlc34Pg5LnwskdA0fZ3YftsKJ0WXl0ikpmiLsFoJoHPdWOgoA/U7/LXv7HW3kc59M74t9VexZL4QtHGfRP2roT+R9j32XcflnwNIpLZpt4Kw86Hbe/Y9xlueiF2YPTWWbDzQ+jnETrb2Sz+TcdlW16Nf5zBp0P/pn3NvgcmV5NIBsqmQLDWFz+lIga2b6vnikcUkdSpWue8vPuIcOvozKJ13u01G+H9a+xZ7Kf8NJyaJDtUJhH+EoR4Ax2cPFGW/Bip0nuyfeKtvW6lHZeBHdwjIiItrChsfLbj8uoNdojPmM/7Gyes4MmcQufljTH21UREkpXIfrQxMOAo+3HQH2HD07B7ART2t0+wFg9p27/sGCgZB5VLncfbOdd+v8t1eS8UERERERHJZA018OoxUPFpasYrHpqacUREpEuwLGsDcLExZhBwAXAEsD/QH+gN1AG7gLXAbOBVYKZlWU7haSIiIiIiIiIps6thm2u42MCCIY7L0yHP5LsEo7kELYhIix4jYcL3YfGv/QeJxLL55ZaxVt1tXw+cKtPua7m2rf0E9iKSGfocALlF0Fjj3mf7e9kVjBZpuk7X78TuIuJP1CXIONHAUxNnTMjml9z3f/J729fbg70vE6nwHscvkwsH/d5/fxHpPPodYj8ARl4Cz4yJvc7ml+xgL5MTbG3pYllN768W1FdA5ZLUjDvtXijsl5qxRDJQNgWjtU7OGJyC8Sa1er4jBeOJiMDeNbBjjnNb8fBQS+nUGmv99Vvye9jvOzoIJ/401EBeUcjb3BPu9oI2/WHIcdi9LHQLRttp//+c2y3YukREskXDXmisdm77+Ef+g9HqQgpGcwsDcjtZIyKSKskGDOf3gFGfBT7r3a94mHswGtghAifPTq4WERERERGRdNj0QupC0QBKj0jdWCIi0mVYlrUZuL3pISIiIiIiIpJ2W+o3urYNyKBgtHxTQA1VHZY3uIS6iUg7xsCIS2D5HakZz2qEx/qmZqzWBhzdccJPEck8Obkw/DOw+t/ufeZ9G2o2wdRbne+7yhSbXoKPvgWVi+3XJePhgN/CkNPSW5dIZxF1CTJOOBjNxNe/aq37Pku3MhhztX2/59qHILI7sZraG3BMasYRkezWYzT0PRh2fuDd7+MfweLfwshL4cDfQ25BOPUFzbJg0a2w7Hao2Zz68RWKJp1cNkUlrmv6aYADjDEJ7uWBMWZfoPVRoY+TKUxE5H/eucS9rXhYeHV0dhNu8NevYU/snWTpOmIF6lWvD6eO1pINdAjCkY/AyMviX2/fr0Ov/Zzbiga5rGTZB81FRMQW8QjMrNkE9T5PLNT6DEab8nN//dzkuBxcVDCaiAQtEtJ+dKzvEDvmwPqnwqlFREREREQkUTs/ggU/hPk3wPY59kWsb1+QuvGHnQ8l41I3noiIiIiIiIiIiEialNdtcFzeO68f3XJCnoDbQ75LcELEcglaEJGOpvzcDh5Lp4K+cOyLkNejY1vPfeCwf4Zfk4gk5oDfQL/DvPss+S18fGM49SRi1wKYdUZLKBpA5RJ480z7nLOIJC/VwWjEGYzmpbYcFt4MK+5MXSgawPhvpW4sEclu0+6D7iNj94vstkOsP/xG4CWFZtmfYcEPgglFG3VF6scUyTDZFIz2HlADWEAR4JE+FNO1rZ6XW5a1NJnCREQAqFwOO2a7t3cfHl4tnd3Qs/33nf354OqQ7FFfAS/HOMC8Z0U4tbTmFYCTDmeusGcp2efL8a/r9f9lyTgo6OPctvXN+LclItJZxQrM3OAzfMdvMNrQc/31c+MajFaX3LgiIrE0dpzxNhAl42P3mfslO1RARERERETiZ1n2Q4Kz4WmYebh98eqiW+3nj6dwhsj9b4HpD6ZuPBEREREREREREZE0Kq/f5Li8rGBIyJV4yzPOwQkNbkELItJRYV84/nU47VN7cvn2jzDs920YfAqcuxmOe7Vl2yfNgdMXQs+x4dQhIsnrVgonvRs7mGLlPyDaGE5N8Vr5L7AcarOisFJBjSIp4RZk7HZvTmeQX5LuCkQkU/QaD2cug5Pegz4HxO6/+t/QUBN8XWFY8bfgxu6h743S+eWluwC/LMuqM8a8BpzRtOiXxphnLMuKK3bWGDMd+BJ2wBrAEyksU0S6quqN8Ny+3n26DQinlq6g5xg45A6Y+9XYfatWQ/1uKOgdfF2SudY9Crs/9u4z63R7do6D/gT9Dw2nrlgBOGEpGgLHPGv/vwXQ/wiY8H37Jik/9rseyo53b8/Jh0GnwFqHm6Nqy+OvV0Sks4oVmLn2YRh9VYwx9sJH18Xe1tTboPdE36U5yil0Xh6tT25cEZFYwjq5MfKz9kUoXmq3wtI/wZSfhFKSiIiIiEinsOMDeP+LULkUek2E/X8Jg05Kd1Wd0/zvuc84nIzuI+DIx6DfwakfW0RERERERERERCRNttRvcFyeacFo+S7BaBG3oAURcWZy7Gtpna6nLZsB5a8Hu/1ek+yf+T1goMf9GCKSHUwOjLjEDvFwU7cDajZC9+Hh1eWmepN9T1eviZBbANvfde+7/jE4+M9gTHj1+RGNQMUiaKxNdyUi/tTvcl6e47x/3ymYrIkyEZEw5ORD/8Nh8k/hzbO8+zZWw5r/QO/JLct6jLYDaTNBtAH2rIAeoyC33T2WVhQql9j3ijbWQsXC4OrozJ8hIk2ybW/il9jBaBYwBJhpjDnDsqytflY2xswAHgNyAAM0AL8JqFYR6SqsKPzXxwHovJ7B19KV7PMVGHIWvH8NbHrBu+/cr8KhdypdvCvbMtNfvx1z7P+fT18Y/EFmywo+GG3fr0NuEfQ50P5yU/46FA+G3GJ7Fo+8YigeBqVHQUGvlvWMgam32OE7z413H//Qu2DA0VAyLnYt3cqcl0cq4vqVREQ6tVifC5tfgsrlULJPx7ZoA2x8Dt461339HmNhys+g/2H2gcBkuc1Ko2A0EQlaNKQLGEqPgpLx9gkJL2vuh8k3Zd4FHyIiIiIimahqHbxyJETr7Nc7P4A3z4XTFmjW+1SrWmuHz6XawBPgqMd13k1ERFLCGJMPHAqMAfoCPQFjWdbP0lqYiIiIiIiIdEnl9Rsdl2daMFqecb52L2Lp2j2RlBl1VcdgtLzuMP7b8GkKDl0VlsKgk5MfR0Qyy8DjoWiIHX7m5ukRcO4WKHK5zypoNeXw9vmw7R37dW6Rfc9ZpNJ9ndqt8MwoOOoJ6HtgOHXGsvo++57RoO/NEwmDS/BxUgafDpueT/248VJgj4g4GXSyfc95bbl3v/e/6LDuqTD9wbb3xIdt3WMw52p7/ymnEKbeCuO+Yd9TtOW/8O4l9v5TGHKyLTJKJH5Z9VduWdYcY8xDwMXY4WgHA0uMMb8HHgE6HME1xuQCxwJfBD6DHYhG0/p/tCxrTfCVi4gvjXX2QZ9ugyCvKN3V+Ff+X383FeR2C76WrqZ4CBzxgH1A0Ctcae2DsPEZOHW+bqrpqtY/4b9vw167//hvBlcPQGONHawYhMJ+cObKjl/shp8f3zgl42DM1bDyn+0aDJyzDoqH+h8r3+VLpoLRRERaRPbE7vPcvnDqPOgztWVZ7XZ4ZTrsWea97tgvwMhLkquxNbdgtMa61G1DRMRJWDO75eTC8W/AB1+DDU+D1eDcb+9K2Pkh9Ds4nLpERERERLLZmv+0hKI1a6yGT34GR3jMnC3xq9sezLgTvqdQNBERSZox5kjgeuAkoNChS4e7S40xpwAXNr3caVnW9cFVKCIiIiIiIl1NTWMVlY27HNsGFsRxzXQI8l2CExqsSMiViHRioy6HqtWw6Fb7erXi4TD9Ieh3qH3z+/I7Ep9IuOe+cOSjkOt0WExEslpOPhw3E966ACoXu/d77zI47pXw6mqz7StaQtHAvr+tsSb2elVr4fVT4Jz16X//2jXf/j1EOosgwsP2vxm6ldohglZj6sf3S4E9IuIkt8DeF3r7M/FP/Ln5Rfjg63DEfcHUFkvlcnj7Quy4IuxrIT+6DnpNgL4Hw6zTw7vnCcDofVY6v2z8K78aGAccgP1u0Rv4SdOjzdEkY8xiYBTQvEdomtYxwLvA98MoWEQcRBtg/vfsWeGr19k/a7fYbSe+DaXT01tfPDbP9NfPmNh9JH4FveDA38Ocz3v3a6iC+d+Hox7z7heNwKLbYMMz9kG90iNh8k/SNwuDpEZuN/tvwC+vg8+p0lDt3nbqAigZD4/3S2zmitM+TV3a9YQb7Pe56vUtyyb+ML5QNHC/ScprRhERka6mwUcwGsCca+DkOS37lx99M3YoGsCwOAMyY3E7oZnohR4iIn6FGcBYVGZ/j7QsO1TgyUHOJ4fXPaxgNBERERERP3Z/7Lx8zX1w2D/si54kNaIBXNha2A8GHJP6cUVEpMswxnQH7sKeGBVaJjltzXJZfSFwOZDTNNZ9lmUtSHmRIiIiIiIi0iWV1290bSsrGBJiJbHlG+dj6RFL1+6JpIwxMPkm+36K2i1QPKzlut2Dfg9Tb4HKZbgfygK6j4SaTW2vqy3oA92HB1m5iKRbrwlwxiJ4cjDUbHbus+VVu61oULi11WyGLT7vhXVStw02vwxDz0pdTYlYnaYgFJGgBBGMltcdDr8bDrrdngTcyYtTY4/TbQDM8HjfyO8Fz4xyb3cJdRYRofdkOGMJVK2HmYe57zc5WfcoHHoX5BUFV5+bNffj+D1w1b2wd3V8oWinzrd/mjzIKbAnmG2taAg0VsG878K6R5zHCOIzRCTDZF0wmmVZNcaYk4GHgONoedcw2LNHNgefGewAtf+t2qptJnChZaUz4lakizO5sOLvzuEPVeuyJxitsR4W/zrdVciYz0HvSfDyod79Njxt30DvNSvBu5e13Tms+NQ+2Hjqh+7BTpnOikLFQsjrCT1Gprua9CgeBpVL/PePJBBGFq+ox5eb3CL75q/hF8Cqe+Ifu1sKg/x6joGT58L6x6FmI5TNgIEnxD+OW1BbpCK5+kREOpOPb/LXb+dcWPUvGHiiPSvCmv/4W6/n2MRrc5LjcqOygtFEJGhe+9JBMcaeNWvgCfZFHe2Vzwq/JhERERGRbLT2Ife2ysXQZ//wauns/Ibwx2O/7+hiKhERSZgxpgR4C5hEywSnrTVf2+fIsqz1xpgXgDOb+l4MKBhNREREREREUmKLSzBagSmkd16/kKvxludynDYSjYRciUgXkFvgHGSW2w36TIm9fqomvBeR7DPkTFhxl3v7ir9D3wPte9jyiqDf4fZkvkGo2QzbZ8PG55If682zYdq/of806DGmJTQyDFYUKhbBkt+Ft02RMJTsl/oxc5oiRPJ7uF+LM+JSWPuA9zijrkruWp6crIsyEZGwdR8Goz8HC2/2v060Dj75CfSaCLXl9mSfg09NTeisZdnXMe6aD05xRJ/+zHm9tQ/Apjj2tYZd4PP9tb+dOeDG6H1WOr+s/Cu3LGu7MeZE4PqmR2lzU7ufzZqD0nYDvwZ+pVA0kTQzxj4wXLGwY1v1+vDrSUT1Jngqs2b+6dL6HQIzXobXT3bvYzXAnmV2irCTZX9xTszduwI2PAOjLktNrWGqWAKzToe9q+zXZTPgqCegoHd66wpbvAEtDSEEo3mlPud2s38e/Geor4CNT9sHb/0oHpr6g8pFZbDvV5Mbwy1YsF7BaCIiAEQj9j6HX3O+EFwtfrkFozXWhVuHiHQ96XyfGXquczBaxUJ7n93khF+TiIiIiEi2+OSn3u01WxSMlkqpPtcx9BwY/+3UjikiIl3NY8BkWq7tqwceAV4HosA9PsZ4EjsYDeBE4IbUligiIiIiIiJdVblLMFpZwRByMux6kHzjfO1eg6VJTUVERDLGmC/Cyn86B2oAfOIwqfohf4V9vpzaOpb/FT74P/c6EvHeFfbPsV+Gg28PJ/iooQreuQQ2Phv8tkTC1GMslB6R4Moe95D6CcrZ50uw9kE6xnI0ySmAMZ9PqLKWMTT5noj4MPpzsPi3duCZX4t/1XHZgX+A8d9IvI6GGns/Z/1jia0fqfTfN559Pq99LQVQSheQWUdm42DZfg2MAK4GHgI20jJzZOswtOeBa4FRlmXdolA0kQxR7DBjBkDVunDrSERDlULRMtHAE+wDAV52f+q8vH43fPB19/V2vJ94XeliWfDWuS2haADlr8NH16WvpnSJ9+afjc+kZhaM9vausm/8ev9LsPrf7v2ag9HyusPRT8D52+HcLXCMj5oGn5GaWlMt32Wmo8hu+29VRKSra/15HYRxAXz+5xY6L483kFREJF5eIcPNxl4TzLb7HOC8vLEaqtYGs00RERERkc5gw9P2LI1e6raGUkqXEdmTurFGXApHP6kLqUREJGHGmAuAE2i5s+I9YB/Lsq60LOseYJbPoV5qHhLY3xjTI6WFioiIiIiISJdVXr/BcXlZQebdN5JvnMMFIlYk5EpERETEVb+D/d0H1trcr8CelamrYc8KmPu11IaitbbiTlj/eDBjt7f0TwpFk84lr7t9H+gJs4IJD/Mz5oCj4ajHoffktstNDvQ9CI57FUrGJVeHn4A2EZGeY+H416DvwWByEx/no29CxeLE11/xt8RD0fzqNRGOfAQGHu9/HZfjQDHbRDqJrN+bsCyrFri76YExxgB9gAJgh2XpqK5Ixuo+zHl5dYYHo9VXwBNl6a5CnJgcOP0TeLjIvc+2t2DkJR2Xr33Qe+z6XcnVlg67F0Dlko7L1z0Kh/69a9280lAV/zqzzoQpP4dJN6amht2fwGszoG5H7L7NwWjNCvrYP/0cSBp9VdylhSK/xL2teh10HxFeLSIimSjocGCn/Z9k5TjPOqlgNBEJnJ9gtNGfC2bbvSa4t5W/AT1GBbNdEREREZFs5+cC5fe/DKMuD76WrqIhRcFoQ8+GI+5PzVgiItKV/aDV80+BEy3Lqo53EMuythhjtgIDsCeF3Q+Ym5oSRUREREREpCsrr9/ouDwTg9HyjPO1exFL1+6JiIhklMGnwIiLYe1D/tdZ9yhM/H5qtr/2IVrmKwnI2odgxEXBbqN5O7GcPNcOGxHJBjn5wd7f6zeQbNi59qOxDqxo07q5kOtyv1C8ggh9E5HOqXQ6nDIXGuvbhrq+cQpsfdP/OOsegck3JVbD2ocTWy+W6Q/BkLPsHIzcwvjX9/q86EpZEdJlZfxfuTFmf+AkYALQv2nxdmAx8IplWfNa97csywJ2hlqkiCSmeLjz8qq14dYRr9eOg2hduqsQN7ndYPDpsOl55/b1T8JBt0NOu8TgWAfH6rPwo2XTS87LG6qgdgsUDw23nnSxookFowF8/CMYeAL0Pzz5Ohbd5i8UDToGozXrMdp7vUk/hv6HxVdXWPJ7ubctvR0O/E14tYiIZKLq9cGO3++Q1I/pGoymfWURCVis95n9b07NPryT/B7Qcx/Ys7xj27qHYUxAgWwiIiIiItluh4+8ksZqqFwOJfsEX09XsOaB5MfILYZp94MxyY8lIiJdljFmEDC11aL/SyQUrZUl2MFoAPugYDQRERERERFJUqPVyLbIZse2soLMu+Y+3yVcoMGKhFyJiIiIxNTv8PiC0RbcAL0nw6CTkg8U2jUvdp9kbXrBYbsfQ/nrUDTIDofLL0l8/OpN9jZ2f+zdr7Af9J6SujAnkWwXb1BOIkE9fvgNaBMRadb+s3zAjPiC0T75CUQbml5EoWo9FA+BgcdD2XF2OFlrVeth80t2vsmO2clU7szkwoCjIa8oiTE89gn1PitdQMb+lRtjDgR+Dxzp0e0WY8w7wLcsy/ognMpEJGW6uwSjVSyCyB7I7xluPX58cC3s+ijdVUgs477hHoxWuwW2vwsDjmpZVr0Btr7lPWZdFgajNex1b9v5YdcJRmtI5npqYOY0uKgu+QOja/7jr5/Jcf8iYnKg32GwY07HtqFnw5SfJl5f0Ar7ubdteErBaCIiVeuCG3vSj4IZN8flxEdjbTDbExFp5vY+k9cTzlhsn7QI0pCzYMlvOy7f8irUboNupcFuX0REREQkG8W6SLnZ2odgckDHMrqSrW/DtreTH2f0VXZAtIiISHKmNf20gPWWZcVx1bKj1hdweJyIFhEREREREfFnR2QrDVaDY1tZweCQq4kt3zhf1x6J1odciYiIiMQ06jJYfBvUOIewOpp1Bgw8AY5+CvK6J77tXfMTX9evaD3Ubodu/e3XS/8MH16LfUoAKBkHM2a630vsZdt79r9FvY/7Osd9U6Fo0vV4TXLnFaITpmQDHkVExlwNy273tz/QbOEvOi5bdCuMuBim3dcSHln+Brx5NkQqU1Kqo1FX2mGxyfAKu9T7rHQBObG7hM8YczbwFnYommn1+F+XVo8jgTeNMeeEXaeIJKnPVOflVgNsnRVuLX7M+5694ySZb9CJ9o6pmy2vtn29eSb/O9jmZsdssKJJlxaqyB73tjfP6fjv0Fl5BcT59aLL+1UQcgq9D0oNPct5+fhvB1NPqnQb4N62dyWs9vh/VkSkK6heH9zYQ84MZtwclxOH1esh2hjMNkVEwD0YbeQlwYeigX0yxInVCOsfD377IiIiIiLZqHS6v35r7g+2jq5ijc9j7rkeM1FOuAEO+lNq6hERka5uYKvnC1IwXuuLAJTgKSIiIiIiIkkrr9/g2lZWEMK1KHHKcwk5iFiRkCsRERGRmAr7wUmzYdDJ8a235VVYdW/i262vgL2rEl9/v+thwDH++i74gf2zdhvM+xZt7tOsXAoLb06shg+/ETsEpdckOOQOmPjDxLYh0ll5heiEyWRIHSKSvboPg5Pes+/j6TEGiocmPtbah2DTC/Zzy4IPvuYvFM3k2tttfngpGmT36XsITPkFHHpX4vU28wo/0/usdAEZF4xmjBkPPAgUYQefWbR8C2odkGa1enQDHjDG7BdutSKSlF6ToFuZc9vqDLvp4aPrYfGvYvcbdp7z8sk/S209Etuoy2Dwac5t7WdY2LPc35gbnk6uprCt/Id3++zPuwcKdCapCEarXAy7krg+u7HOf9/cbt7tY78MfQ5su2zUFVB6ZPx1hW3wGe5t718DkRT8txIRyVa1W5yXJ/v+PuZq6Htwqo8CRwAAIABJREFUcmO48ZpRaeMzwWxTRLqmHXNh1lnw3ASY80WocbkYNacwnHr6HmSfUHEy9yvh1CAiIiIikm3cAtbb27MMKhYHW0tXULEwdp9TF8AJbzq39RgNU2+GnNzU1iUiIl1Vr1bPUzHVcuswtC5w0YOIiIiIiIgErbx+o+PyvnmlFIR1PUoc8o3zMfcGqz7kSkRERMSX7sPh2Bchr3t86214KvFt7v448XUBhl8IJ7wBl1oxu7Jjjv1z80sQdQhqTeSezJrNsHOud5/CfnD6J7DPV8AY774iXY3JkOs9vMJ8RET8KtkXpj8IZ62Ac9bD4UmExzbvX+1dCRWLYvfPLYaLI/Z2mx/7Xuvc1+TBuZvsPqe8D5N+mJrr77zCzzIlCFMkQBkXjAbciR101hx6ZoAG4D3gEeDRpucR2oakdQP+FnaxIpIEY2DgCc5t6x6GnR+GW4+bpbfDkt/G7jfoFBh/PS1vTU1MnntgmgSraJDz8sjutq+r1/sbb80DydUTpo3PQ2O1d5/q9bDppXDqSaeGqtSM88HXoHZrYuvW7/LfN1YwWmFfOPEtmPZvmHgjHPMcHH5PdhzAHXq2e1tjLWx6PrxaREQyjdtnTO8p8Y/V7zCYeisc8zwc+vfgPiO8Lvja/HIw2xSRrmfXfHjlKNj4rB1YvPIfsO0d576x9qVTxRgYcZF7+7zvhFOHiIiIiEg2sRr99133aHB1dBVu35ua9TkQ+kyxg59LxndsH3FJMHWJiEhX1fqEeS/XXv4NbvV8ZwrGExERERERkS7OLRitrGBIyJX4k2+cwwUilkMQiYiIiGQGY6DsuPjW2fIKzJwOC26E3Z/Et+6u+fH1by+ecNjdH8PbF8J7Vzi3126BBww8tx+881lY/FuoXAaLf2e/fvM8u/0BA2+eY//OL0yOvd0BM/zXKNLVmAyJEPEK8xERSdSgkxNfd9XdsPRPsO1tf/0L+3e8N3P4Z5z7jv5c4nV58QqZ1PusdAEZsldjM8ZMAo6mJRAN4LfAQMuypluWdbFlWRdZljUdGAj8ut0Q040xCdw1LiJpM/h097a1j4RXh5uqtfChS2pre0fcD6XTYNp9UFhqLysaBEc9Dr0nBlejuMvr4bx83aNtU3zX/MffeOsfS76msCz+lb9+G58Nto5M0BAjIM6vbe/AE2Ww5A/xr1u/O3afZjk+whzyimHU5bD/z2HI6dkRigZQEOMa90RmABER6SzcgtH67A89Rsc31thrYML3YMhpwX5G5DjPOgnACuWWi0iKLPkDROv89Q0rGA1gxMXubavuhmgcoQ8iIiIiIl1BPMFoycx6LbbcIu/2o5v+jY2BGS9B30Ps1zmFMPZLMPkngZYnIiJdzrZWz5O6gMYYUwhMbbVoQzLjiYiIiIiIiABsqXf+ellWMDTkSvzJc7l2LxKtD7kSERERicuEGyCve3zrbH8XFv4SXj4Mtrzqf71kg9HivSbXzwRolUtg7QMw73p4bhzM+7b9esOTLX02PG3/znU7vMfKL7HvmRDp0rLgntKc3HRXICKdUVEZjP924ut/+A2Y7TPELM/hOrzS6TD4tLbLCvvD+OsSr8mLV/iZV2iaSCeRUcFowPlNPw12ONq1lmV9x7KsXe07Wpa127Ks7wFfa9Uf4LxQKhWR1Bh2HuT3dm7b+WG4tTh547TYfQCOfhoK+9nPR30WztsC52yAczbC0LOCq0+8uQWjAbxzKVhW/H9nqQrZClK0EXa8769v+WvB1pIJGmvc2077OP7xProOHsiBdy+DVffaf0deGqrgk5v8jx9mmEPY8kpidMiCg3EiIkGwLKhzCUbrVgaTfhzfePk9k6/JD69gNBGRVFl9r/++8cxOl6xek6DHGOe2uh1QtSa8WkREREREskG0wX/fXfMgsie4WroCr+M2n6mA7sNaXncfAae8D+dtgwt2waF3Qo5mkhQRkZT6qOmnAUYaY8YnMdb5QPMHXQMwO5nCRERERERERADK6zc5Lh9YMCTkSvzJN843vTZYkZArERERkbiUToMT34Vx34DiOANYG2tgwQ/99/cKRis7DsZ+2Xv93BCvyY3XuOvsf8d+B6e7EhEREUmXA34N0+5ruSc/r6e9j1N2XGq34zRBqTH2xKQH/RGGXQD7fQdOmg299kvttltvz7VN1/lJ55dpwWhN0xBjAbMty/pLrBUsy7oTeIeWJI1DA6pNRIKQWwhDz3Zus+K4QSIIFYvsh5dh58PJ73cMPzM5UDzEe0dDgucVjLZ7AVR8CsvuiG/MPcuTqykMe1dBY62/vlVroWJJsPWkW6NLmF1uEfSeDAOOTmBQC9b8B2ZfBe9f496toQZeOwHWPeJ/6M4cjFbQK90ViIhkpoa97p/dhQNg9JVw7Esw4mJ/43ntA6WSZhQQkaDFG4QQ5r60MTD2S+7tq+8DKxpePZ1NQ7UdnNFYp39HERERkc7Caoyv/1PD4wtT68yiDfY+coPHRDCtWVGIVDq3TX/YnjnbSbf+zjNcioiIJMmyrNXAilaLbkhkHGNMIdB815cFzLUsqyrJ8kRERERERKSL29tYyd7GCse2sowNRnOeHEPBaCIiIlmgzxQ46A9wznq41LIfF9XQcou8hx3vQ/3u2P2iEfu+SSeH3wPHvwaH/hX6THUfo/Vkxf0Oi73NsIy4BA76HfSemO5KREREJJ2MgVGX2ftRl1pwYaW9j3P8a1A6PXXbcQpGA/u+ynHXwlGPwgG/gp5jUrfNeGgCVOkCMi0YrXUE4r1xrPfvVs+TmVFSRNKhxyjn5TvmhltHe+se926fMROOegz6HeLdT9InVijI5ldg1b/iG7N+V+L1hMXtwKWbpX8Mpo5M0ehyo1Dzl5FD/wElrXYfeu4b3/gr/wGVS53bNjwNO+KcoLozB6O53WzVbO+qcOoQEck0tVvd27oNsH8OPhmmP9hy8vOYZ93XCSsYLRv2i0QkezXWwZsuQepuwt6XHn+de9unP4VHS2DJ78Gywqsp2zVUwdsXw2O94aF8eLgbPJgLr5/i/XkpIiIiIpkv3gmRIrvtY+xdmRWF+d+3940f6Q6PFMMDBj7+iXeAcMNe7KwYB91HBFGpiIiIH3c3/TTAZcaYK+NZ2RiTA/ydttcXxpx0VURERERERCSW8vpNrm1lhUNDrMS/POM8qWnEqg+5EhEREUmJ3G4w8AR/fR/rY583bn48MQg2vdi2T8ViiLrsF7QJQ/OIGMhtFYy279f91RaGIWekuwIRERHJdINTuL+Q6ff85zgfIxLpTDItGK13q+cfxbFec1/TbgwRyQYm13l5YzXU7Qy3ltZW/9u9re9BMOjE8GqRxOTHCAWZ9+34x4xUJlZLmKrXx9d/xZ3B1JEpGmIEo5XsA6d8BKd8CCfMgjMWQ984Aw9fmAJL/wTvXg7vfxnePBdePBDevST+ejP9S1Iy8nt5t++YDdE4b44TEekM6na4txX2d2nwmBHKhJT033Mf7/aGqnDqkM6voRo2PAsf3wQLboQVf4fqjemuSoK26DYofz2+dWLtb6ZaTh4MPs29vaEKPvoWvHwIrHnQnoFPvL13Fax7uOO/1eaX4Q2Hk1ON9bD6P7D0z7D7k1BKbGPXfFjyB1j7cHYcLxARERFJJ6sx/nU2v5z6OrLJotvsR3uf/hQW/8Z9vTX/cW8L+3uTiIhIiz8CW7HTOw3wT2PMzcaY4lgrGmMmADOBzzatbwErgIeCK1dERERERES6iq31ztchdcspoldun5Cr8SffNRhN16aIiIhkrf1/mdh6tVvgjdPs61SbzTrTuW9OPpS0mn/EeEQM5LS6v23Y+TAwA+6lHXgCDDsv3VWIiIhIpht7DfQ5IEWDZUIkUwbcRyqSRpn2V976KlyPO8M72NXqec8U1SIiYXELRgNY+xDs+9Xwamm2+j7Yu8K9few14dUiicuLEYzmJbfYDudrLxtudG50CQLrqtz+PZqD0QDyiqDvgS2vh38Gds71v41oPXz4jcTqa8/lRHWnkF8Su8/Lh9hBdcbji5qISGfj9dnttj/jlebvtX+dSiXjvdtfORJmzIRupeHUI51T/W54/RTYMaft8oI+cPQzMODI9NQlwbKisOz2+NcrOzblpcTe5vGw6QXvPjs/hHcvhU9/Die9CwWa18FRZA9sfNq9fedc2L0Qek+0X9duh5nTWh2/MXDAr2G/BELQE7HkD3bwHZb9umQczHgFug8LZ/siIiIi2cZtUoz8EvdzLyv/Dof8FXJCOtaRaVbf69H2b5jwXee2T3/uvl6BgtFERCQ9LMuqNsZcCTyHfeVwDvA94GvGmBeAda37G2MuAvYFTgKmYV/p23wSuRa4xLIsK6TyRUREREREpBPbUr/BcfmAgiGYDL2eOS+nwHF5gxXBsqyMrVtEREQ89DsEzlwOz8aYvNzNwl/CyEvs8+/V65z79JoIua32I7yC0XILW57nFcExz8KGp2HXPCgaZE+Otmc5OB2qr99hT45ctz2x38XJEQ/A8Au876MQERERASjsCye8CesftycZ3b3Avj8tWh//WJl+jEXBaNIFZNpfeetvUfFMGd26byZELopIPBrr3NsqPg2vjmbVG+C9K7z7jLw8nFokOYkGo426wg5eqFzasS0rgtFqE1invu2Bzc7EKeAOIM9j4umx17R82QlbXvfwtxkWP/9P7poPuz+BPlOCr0dEJFO4BaPl5Lvf+Nv/cLs92m6Gx9wi6D0ptfW5MQZGXwWr7nFu3zUflvwOpt4STj3SOS39Y8dQNID6XfDhtXDKh5l/kDmb7JoPn/4CKpfYM8Id+Lv0hDztXR3/xRD73wLFQ4Opx8s+X7G/O+z6KHbfysXwWB8o7AdFQ2HERTDhe94XlnQle5Z3/Fxrr+JTO4hu8a8c/kYsmHe9/Rh6Lky9DUoSvEAolpotMP+7/C8UDexjCAt/CYfeGcw2RURERLKd5XL6f/z18MmP3df78Fo45C/B1JTJoo3O56maVSy0LzBv/53YsqBms/t6+QpGExGR9LEs62VjzFeBO2i5xq8ncGG7rgZ4oN3r5gMxDcDVlmX5OCAnIiIiIiIiElt5/UbH5QMLhoRciX/5HhNxN1gR8k0nvS9ARESks+s5FnqMbTVhbBwqFtrXV+/62L1P7/3bLfC4frX9ta25hTDiQvvh11sX2IEkyTr8Hjv0TUTa0X0UIiKu8nvA6CvtR7NZZ8HGZ9NXUxAUGitdgO66E5H0K+jj3rbb40BMECwLnopx0/cZy+yUe8l8LjMhxTT+25BX4tzWWYPRUjkDQ6ZxC5vJ9fj/uKAXnPIBTPs3FJYGU5cbr8C2bGcM9PQRTLDh6eBrERHJJIl8VuWXwOAzOi4fek64nyXDzvduX/9EOHVI57XlNfe2XfPcZzST+NVshteOty9AqFgI6x+Dlw60L5II24Yn/fWbcAPsfzOc/D5M/H6wNbnJK4LjZkKfA/yvU7fDDmFe8AOYdWZwtWUbP7PvvHOxHUgW6zvshidh5mFQU56a2jqM/7RziNuKvwW3TRGRMEUbYevbsPTPsPVNe1IFEZFkWQ3Oy4sGwbEvuq+3/A6oWBxMTZmsfkfsPg17Oy6rcb6B73+8jjeJiIiEwLKsvwMnA1tpG3hG0/Pmh2m33ADbgZMty3ownGpFRERERESkK9hSt8FxeVlBGibo88kr+Cxi6dyeiIhIVht+QeLr7lnpfT/uiIvbvg56cuphSfwuzXIKYPDpyY8jIiIiMvVWMHlxrpThIZQ58f4+ItlHwWgikn4DjnRva6gOrw6Aco+b7gF6jIaeY8KpRZLn56ZqJ32mQH5P57ZOG4y2NfV1ZIqGBMJmwP4yMOpyOK/cnm0jLP2PCG9b6bD/LbH7fPJjqFobfC0iIpkikWA0gGn3wtBz7WT/nAIY/hk47B+pr89LXg/v9j3LwqlDOq9YoVy7Pw2njq7gk59C/c62y+q2w+r7w6uhsQ7euRTmfce7X7/D4cK9MPVm/p+9+46Tor7/OP6a3WvcHRz96BwdpEgTsCGCotiNBdQYjTFqNFFjfkl+xlRTTaIx0V+a0TRjb9gbYEeqovQicCDSOeDuuLY7vz/Gy7WZ2dnd2Xb3fj4e94Cb73e+3w/H3d7M7Hzfw8hbocsxyanPSW4XmDGv5Q0jXux40XrqjF3IVltTV+HveDUH4JP7/R2z3rrfObc93QNW/cIK3xcRyUSHN8Jj+fD6ibDsG/D6SfBoHhz4MNWViUimM0P2240gdJ/qvu/6//O/nnRX5eF9G7tzZrfz5C6TE39ju4iIiAemac4HBgPfAbZh3Unc/INGf98H3A4MMk1zQdILFhERERERkVYrZNaxt9b+AWjFOb2TXI13WUa2Y1utqXtQREREMtqI/4l9bdmiq2HZjc7tPU9r+rmR4IiBfhdAyWWx728E4Zg/QV5X/2oSERGRtqvoKDj+4cQfA/nO5Z6/qIPeRDKPvstFJPU6jXNuq9yWvDoAPvyee/uYn2XgwU4b5va95eSoW60/szvYt7fWYLTlt8DUuc6BcJks1rCZeoYBY34KCy8DM+xfXacvhXnTm35PFY2MLUwhk/T9gvWkjh0vuPdbcgNMez45NYmIpFqsv6uy28PUpz4PkglAlsffbX7KKojcJ1ynpw9I7MLV7u0HV0FvPQUsbuE62PgX+7Z9i4BvJKeO9f8HWx9279P3Qjjx8eTUE42cTtYbJAOugDdmRbfvp8/BCyPhzNVt+/Wy9rD/Y664DUZGuNYTi5qDkedd+XMYdDUMu1Eh+yKSWd6dY/PACRNeanSttftUyO9vXcfqfUZSyxORDBaus98eyIKsfBh8rfN5yd73EldXuvIajFbQr+m28k+c+x/9i/hqEhER8ZFpmhXAb4HfGoYxFDgB6At0AXKAvcAu4D1guWkqhV5ERERERET8t6dmJ2HsH+zRI42D0bKNHMe2OjPGh8uLiIhIesjtAjPmW++TV5RCMM+6n8eLshXObSWX2TxIK8HrZAPZcOy/YeiNcHAldBhhraM7tLqhT4cR0HEM7F8KNWXWPQRVuyGnI3Q/CQoHJLZGERERaVv6XQjdtsPOeVC9x9qWVwzvOYW5pvmDSAPO4fkirUU6rrSrv4lpimEYJR736dH4E8MwTiSKVxjTNN/y2ldEEsAIwLSX4Y3TW7ZV77VCnoJ5ia9j15uwf4lze5fJUHJJ4usQ/7Qrhi6TYN9i7/uUXGr96RiMdtC6qJjX3fq+rN5nLYCvPQw5RfHX7IdwDMFouxZYIV2nvGktQGpNQpX226P5d5bMgXY9YetDUHcEtvw7vprO3WotVjpvG6y7Bw58CJ3HW4vmczvHN3a6Mww48Ql4NEJ4z44XoHwLFJYkoyoRkdRyCjX1egzsJZwsUbzMXb3POi4TiUWLUI5myj5OTh2t3aE1zm1bH4bjHkxOHaWPubfn94MTHk1OLbHqdbp1XvX6SdHtd3gDLJgJx/3HOvdoi+rKEzPuxz+F0T/wd0yn88zmfdb/AT75O5y2CIpG+FuDiEgiVO2G/csi99v9+dtqW/4NE+6BYV9PbF0i0jqY9gvLMILWn5P+7ByMdmgNhEMQCCamtnTkNRitsboKOLTWvm92B+gxPf66REREEsA0zfXA+lTXISIiIiIiIm3PzprtttsNAnTLTt/7N7JdFr3WhmuTWImIiIgkRDAXik9u+LxiK3z43fjG7DC85bZhN8Get1tubz80vrkaMwzoOsn6qNfrtJb98s/xb06RtmLUbbDk+pbbO45Jfi0iIpmkXU8Y8MWGz8N1zsFoLYJl04yRjpFRIv5K1+9yA3g4jn3fiKK/Sfp+HUTaDrfgm8pPof2gxNfw8Y/d20d9P/E1iP+OfxhemWyF7EUy4R7oOMr6u1Mw2pYHrQ87XabAhN83vVCXCk7hKpHsXwrbn2kIh2stQkfstwcjBHM1V3yS9QFAGLb8J7Z6htxghaKB9X026rbYxslkwTzrSSORvobbnoIRtySnJhGRVPLrd1UqeAlGq9qlYDSJXajavX3Lg9DlGBj6dSt0W2Jz5DPntrwk/fyGqmHfIvc+E+/NjP/n7lPh/B3w9oXWE/u82rUAnu4FBf1h8gNtL7Sg7nBixv34hzD4Gv9+F5mm8+9uO3WH4aPvw4lP+jO/iEgiVe2Jfp+PboOBV0J2oe/liEgrY9bZb298Y87xj8K7s1v2CVXB4fVtK2y2amfkPtuehuJpcGQXLLwcdr7m3LfXWb6VJiIiIiIiIiIiItJa7K7ZYbu9S3Y3sgM5Sa7Gu2zDubZaM8KDKEVERCTz9J8dfzBa/zktt/U6HbIKWz7YtsQhGERE0kufL8Cym1s+jH7QV1JTj4hIpgqkedyQWzhbutcu4oN0XUloYgWcRfNhNvqIdl8RSbX8Ps5tVbuSU8P+Zc5thYOg1xnJqUP8VTgQzveweOTMNTDs6w2fZxdFP9e+9+GdC6GmLPp9/eQUjJbVPvK+nz7nby3poHqf/fZ4wmaG3gguT9pyFMyHo+K8EN1a9L0gcp/9SxJfh4hIOqjL5GA0D8cXK25NfB3SeoUjBKMBLLvJClSV2LmFoFTvs4KgEu3D/43cp9PRia/DL+16wqnvwKwP4Zg/w3EPQW43b/tWbIX5M6BiW9PtVXth3T2w5i6rT2tTWx65T6w+nevfWLUHIdqnK3/6AtQmKPhNRMRPzW+Q8qL2ELwwEj74Dmy63/pcRCI78CGsvgM2PwjV+6Pbt/aQtd8H34UPvg0rvg/bn03OcXs8zJD9diPY8PfeLuFdXs4ZWpNdCyL3Wf8HOLwRnu7hHooGDQ9sEREREREREREREZH/2lmz3XZ7cY7L+pY0kGU438deZ0Z5T4OIiIikv4L+1n2o8Wg/uOW2rAKY9iJkd2zY1n8OjNT9/yIZoV0xTH3GCjisN+irMOSG1NUkIiLJZSgYTVq/dP4uj+fOba/7KhRNJF0E88EIgBlu2VZXkfj5645AncsC1dOXWPVJZgoEod9FUPq4fXvfC6FoeNNt+b1jm6tym7UAcMS3YtvfD07BaEOugzW/cd936yMw5R8QzPW9rJSo3ucc9paVH/u4XSfB9Nfh49th17ymbUYQRvwP9DkfPv4RHFhhpTF3GgdjfwUFfWOftzXpMSNyn7KVia9DRCQdhDI4GC2nU+Q+O19PfB3SeoU8BKMBrL8X+l2Y2Fpas2qXYLRwjdWe1z1x89cdgXV3u/fpNA7yM+xY2jCsMLf6QLd2vWDeNO/7z+0Hl4Ss6xF7F8OCUxvCZlZ8D054FPqc63vZKeN2XSZen70Cg6/xZ6yq3dHvE66GPe9Br9P8qUFEJFFiCUYDqCxtuO648udw6tuxX18VaQvW3QvLvtHweeEgmP4aFA6IvG/lpzD/VDi0pmVbn/PhxCfdnw6YSk7BaI2fWJiVD52PsX9oxqfPWq8xo25LTH3pxDRh9xve+j43xFu/gv4xlyMiIiIiIiIiIiLSWu2q+dR2e4+c9H6vyy0YrdaM8T0/ERERSW8ll0Cfc2DvIqgrh3fnOK9DaG7Et53bup8IF+yG/R9Afh/I7+VPvSKSHL1mwQX74MBy6x6kPI8P8vaTkQVmXfLnFRFJhmBeqisA3DJO0vR+UREfpVswWinxBaKJSKYyDAgW2C+CTUYwmtsi8BlveAt8kPQ25ufWhb/K0qbb8/vAxHta9s/vF/tcH/wP9DilYfF7sjkFowXzoO8FsO1J9/13vAh9z/evnt1vwYrbrJCrQBC6TIZxv4Gio5z3CVXBh7c2DUfIKrAukhSNhDE/sb7GkTw/zLktr9j7v8FO96kwI0LQy8kvxzdHa5bdwfq/PLjKuc/hdRCuhYDzm/ciIq1CJgejeVls3fjpM36q2ArLvwX7FkHRKBj1feh2fGLmyhShauu469NnIbsIBn3FCsfNZGGPwWj7FlkLx9M1ACDdVe91b685mNhgtJ2vRu4z+ieZ///bfar1c7npfu/7vHsplG+C/Uubbg9Xw+JrrfOirAJ/60yV2vLEje1n6HIswWhgBQYpGE1E0l2swWiNVWyGZ/rAJeHM/90tkgjV+2H5TU23lW+CVb+Ayfe571u+BZ51CU/b/jRsfRRK5sRdZkKEHW6ANIJNP+93kX0wGsBH37faOwz1t7Z0E65tCEX2S+Egf8cTERGJgWEYAWAUcDTQD+gGtMO6X/AIsBvr/sEVwCrTNHUfoYiIiIiIiCSMaZqOwWjFaR6MFjACZBlZ1NmED9SatSmoSERERJIiqwB6TLf+PvBK2PAnb/t1HO3eHsiGrpPiKk1EUiiYA12npG7+SX+FRVe13F5yefJrERGJVZfJ1tq05oZ9M/m1NNd/NnzwrZbb83q0nvVEIi7SKhjNNM2SVNcgIimUlcJgNLdFrZEu/Ehm6DAEZn0An70Mu9+2gkY6jbUOBoO5LfsXxBGMBvDSWJj8NyuQomo3ZOVDj5nJeWqCWzBadlHk/Usfjz8YLVwL+5bC9mdgza+btu140fo4cw0UDbff/91LrUVcjdW/Fux9D+afChPugaE32C+wDNfB8m9C9T7nGr0Eq0liDb4Wlt3o3B6uhcMb3EP0RERaA6dgtKwMCEYDGHgVfPKAc3tdAoJuasrg1ePgyA7r88rtVhjrzPdSF06bDhZebh3L1du/1Pp9OuwbqaspHuEQmCFvfUNVVghH4cDE1tRauYWFQ2J+jusdXAsf3+7eZ/A10OfsxNWQLIZhnSeWXAalT8KG/4u8T+mjzm1Vu2DRNTD+TmjXw786UyWR32eH11u/K/L7xD9WpJ8XJ7vmwdbHoP/F8dcgIpIofgSj1XvlGDj6l9YNV9nt/RtXJNPteBHMcMvtm/5mBaOFQ3DwYziy03poT/lm67yorhyWeAi+XnoD5HW19u00Dgy3JwUmmdP5ndHsloX+F8OH33EeZ+Xt0H+O9R6PH8d36cjvRWtGlsLkRUQkpQzDmApjNpKcAAAgAElEQVRcC8wCPNy0AMABwzBeAO4zTfOdhBUnIiIiIiIibVZ56CCVYft7FYpz0v/6c5aRYx+M5ud7fiIiIpK+BlzpLRgtuwj6xLlOUETETa9ZkNW+ZT6A7pkWkUzSf07LYLT8Pulx311+b+h6nJWv0Fi/i/UQa2kT0uhOaBFp85wSSUNJCEY78IH9diMLcjomfn5JjtzOUHIpTPoTTLgLBn7JPhQNID/OYDSARVfDOxdZC5He/zI80xs++jEk+qHGYYdgtIDHYLStD8Oe9yL3c1K5A149Fl47rmUoWmMvjIBdC1puL/+kZSianWXfgFentAxPrCiFF46C9fc675vXAzpPjDyHJJaXoJODqxJfh4hIqjkFowUzJBit91nu7eEaCPl8s9X2ZxpC0eqFKmHzv/2dJ5NU7YbSJ1pu3/DH5Nfil3B1dP2fHQRVMQYWtXWRvm6JCCwP18Lia63zggPL3ftOzODvYzvFJ8PEe/wZa+tDMLcENt3vz3ipZBeWDzDoKzDaITzv2H/B+Tuhx6ktAzWae6YvbPNwrhmJW7h+JGvvjH9+EZFEclsk0SvCcX9z+5fBgpnw3FDYszC+ukRak89edm6r3gfzT4GXxsEbs6zr3+9dAgu/6C0UDaBmv/VgkZcnWn/Gc+ziN5vFWQAYwaafF/SH7lOdx9nyH3jzbOv47sP/Tfx7LqkQdvhaxWrAF60H+IiIiCSZYRhHGYaxAFgAzAE6AobHj87AF4E3DcN43TCMocn/F4iIiIiIiEhrtrPmU8e2Hjm9k1hJbLKNbNvtdX4/fENERETSU9dJcNzDkNfduU+HETBjAWQXJq8uEWl72vWA6a9Ch2HW53nd4Zg/Rl5rJCKSTobdBCO/B9kdrM87T7COowIR1qkky9S5n6+bCVprTgdeBeN/m+qqRJIiTX4KRURwDkartX8Kj68WX2O/Pa8bGMqQbJNyiuxTyuO18ifQ/UToMcPfcRsLOQSjBfOcg+Cae+NMOGs1tOvprb9pWkEknz4H22wCOZzMmw4XHW56gfWzV7zvv28xLDgNTm30gOhFX4HDG9z3m/RnpSCnA6eFcI2VrYJ+FyW+FhGRVHL83Z0pwWjnQLcTYc/bzn1CFRDM8W/OZTfbb197Z9u9qFf6BGCzGPzQWghVez8OTCfRBqMBvH6SdRwr0Snf5N7++onWRf1Jf4XO42Ofp+agFZ686hfe9zlrPQSCkftlGsOwnhyz5934xwpXw5KvQfeToP3g+MdLlbpK++3BAhjyNfjkfqjY2rC9+zQoucy6bjP9VSvAzwjC4x2s4D07b38BjvoujPqB83UoO4c2wMY/W+ea8fyf7Vucua/JItI2OAWjZbWHac9ZQT2lj8F7X8T22NNO1U7rAQqzq/T6JwKQ7fIwnmU3w+43/Jtr13xY+XOY+Hv/xoyVaTo/KKN5MBrAuN/CK5Mij7v6Dus4uNes+OpLN07Hs7E6+pf+jiciIuKBYRgXAw8A7bCCzsD+RMJL23RgmWEYV5qm+aSvhYqIiIiIiEibtbtmh+32doECCoMeHkaeYtmG/f14tabPDzEVERGR9FUyB/rPhsrSlg8yz+4A7YpTU5eItD1dp8BZa6FqL+R20dpdEck8hgFH/xxG/8TKlsjplOqKmsrraq2bqT0EgVzdky1titJ+RCR9OC1IratI7LxOQRQAuS6J+dL65XVLzLjr74l9X9O0fiZqDkL1fvvFMW7BaHUegwZry2DZTd7r+vB/4f0rogtFq/d4ewg3WhC15Pro9t/zLmyfa/299jDsWuDev8tk6HNudHNIYnh5jT20NvF1iIgkU6gajuxqtu2Ifd9MCUYLBGH6azD06859/A47rj3o73itQc1+5zavx4DpJhRDMNqhNbD1Mf9rac3CdXBoXeR++5fByxNgz3uxzVNXaQXXRROKNukv0GFIbPNlgkFX+zdWuBY2PeDfeKngFIYYzLPexDnjIxj9Y+vJNsf8GU5+uWmYfVaB1bf9UPd5Vt8B80+Fyu3WOTY0nGebdgGT6+G142HtXVYYuNvrrReH18e3v4hIIjkFo9WHHAeyoORSOOUtGHwd9DrD+9gvjIq/PpHWwO1mmS0P+j/f+j9YN8KYJtQccH9PLJHMsHOb3RMVuxwDM97wNnb9+wOtiZeHing1+QHrybwiIiJJZBjGRcBDQD5WuJn5+YdBQ9jZHmA98D6wGNgA7G3Up/F+AAXAw4ZhnJ+cf4WIiIiIiIi0dodD9vegdc0uxsiARfxZRrbt9lrT54dviIiISHozDCjob91v2/hDoWgikgp5XRWKJiKZLZCVfqFojWV3UCiatDkKRhOR9JFVaL89lOBgtL3vO7cVliR2bklvAfunKMVt+1x4cSwc2hDdfuVbYN40eKwQnugIT3aBp3vD5maLpdyC0WoPeZ+v9HE48lnkfjUHYN3vvI9r55Es2PESVGyLbf+3zrP+bVW7wQy5953+amxziP96nwVG0L1Pzb7k1CIikmimCR/eCk90hqd7wPPD4cAKq80xGC0vefXFK5gLI29zbt/+TPJqaavcfqe+PLFlIF8mcArmiGTZTfbhRmKvfLNzIJWdRVfH9vXd/gyUrfDe3whC77OjnyeT9L8Uhn7Dv/FW/9I6P8tUjueyn79pk90BRv8IptwPQ651fjOnaGTkufYuhGf6wuMd4NnB1rn1Ex3huSEtrxOt/z+o3uP93xFJ2Ur/xhIR8VvzJ8fWa36dtPsJMOlPMO0FmO1wPtNc+UYrbFKkrcspSv6cjxfBwwHrmsTcEth4X/JrcLtu73Q+W3xS5NBbgI1/aX2vL3YPxYnVwCv8G0tERMQDwzCGAX/Hui+xcSDaIeBu4Eygq2maPUzTHGGa5nGmaU4xTXO4aZrFQDfgbOAPwGGaBqRlAf80DKMVP01BREREREREkqUiZH9ffftgCq7lxyDbYa1DnYLRREREREREREREpJVQMJqIpI+sAvvtdQkORpt3snPbUf+b2Lml7SpbAQtOhbDDYqBwHWx9FFb+HN77EnzwbXh2AOx+q2m/6j3w/pfhwIcN29yC0fpeEF2de95zbzdNWPULfxbpvHEGvHlW7Pu/Mwdq7Z/c9V8zF1qL6SU95HaGAV9y71O9Pzm1iIgk2oY/wupfQajS+vzQOph/qvV7+8gO+32cjo/TlVPQMcCyG6Hy0+TV0hYZWc5tFVvgnYuSVopvQi5hXYUDnduqdsKB5f7X01pVeQhDbuzQmui/vmUr4b3Lotun74XQrmd0+2SaYA5M/AOcWwqnLbb+jNebGRwm5/QzH4jyaTZFR3nvW1cO5ZsaziXLN1nnprXlDX3W/yG6+SOp3O7veCIifnIKpnV7gEQwD2Z5DD99fhh88B3rgQxmOPr6RFqFFD8RtWoXLL4W9ryb3HnNOuc2t/PZifd4G/+di6z3VVoLt69XNPpfAoZuCRERkaS7F8inIRDNBH4C9DVN8xbTNF8yTdMx3d80zX2mab5gmubNQF/gp5+PUa8Q8HiQICIiIiIiIuKsPHTYdntBMDPuNc82sm231/n58A0RERERERERERGRFNJdsCKSPlIRjFbjeK+lpeuUxM0tUrEV9rzTcnu4Fl47Ad6dAx99H7b8G9b81nkcsw5W/erzv5sNgSvNBfKgeJr7QsbmKre5ty//pntt0Sr7KPZ9d71uhX44mT5PP9PpaNJ9MOanzu2RXqdFRDLF5n+33Fa9xwoEOLTOfp/CwYmtyW9Z+e7tm/+VnDraKiPo3r7nbSj/JDm1+CXsEow2/TX3fXe87G8trZlTAIqbnfO99934V3hxdHTj53SGCb+Pbp9MVtAXuhxj/XnuFve+gWwIurze7nkPjuzytbykcfqZD+ZFN063E+Oro+YAbH04vjHcOJ2zi4ikg1iC0QA6jYGZi6DXGZHnWPMbeOdiePMchaNJ2xTL8Xe9YF7T0Nj8fjEO9PkDT5LJdHhIDLifz/ac6W38so9g5+vR1ZTO/Fq0NvDL/owjIiLikWEYxwMzaAhFOwycZprmT0zTLHfd2YZpmodN0/wRcDpQQUNA2qmGYRznU9kiIiIiIiLSRpWHDtluL8xqn+RKYpNl2L+HV2vG8V6EiIiIiIiIiIiISBpRMJqIpI9UBKOVrXRuK/li4uYVqTdvmhUUALDp7/DSeHgkB/Ytim6c0ketxdsVm50XVuV0guwOMPlvYHg8BFh7pxW2tv6P8OIYeLo3LL7O+rksWwXrkhhWUHIZtOvp3B6utQ+dASs4oMf0xNQl8QkEYdT34YTH7Ntr9ie3HhERv5kmrLvX+Xf7wi85Lw7uGGWQUKoZAedjeoANf/RnHtOM3KdN8vB12fpI4svwk1swWk4XuLDMub3sY//raa1iWXD/4Xesc5fN/7E+rymDhVfAUz3hIaPpx+Jrox9/wOXQrjj6/VqDgv5w3nboNK5hm5EFkx+AS02YUwOzK6CHU0CEaQVsZyKnn/nG4R9edJ8Kud3iq2Xlz+DFsdb3cCzcfoeHjsQ2pohIMsQajAbQdRJMe8H6feXFjhfg4aB1LfTxTlZQWvkWz6WKZKxYA68KSmD2EZhTZf2cXWrCuZsht0ts4+14MbkPpTDrnNsCWe779v2CtznemAUVER72kincvl5eDbwKepwS/zgiIiLRuf7zPw2si9bXmqY5L95BTdN8Hbi20bgAX4t3XBEREREREWnbKpyC0YIdklxJbLIM++vrtaZPD98QERERERERERERSTEFo4lI+gimIBjt4GrntmE3Jm5eyQx9zk3OPIuvhddPgkVXwYEPYh/nic7w7CDn9qKjrD8HXA5nrYMhN0Qes3I7vHEGLL3BCpc4sgM2/gXevgA+e8l7bQOvhBlvwJS/e9+nsY5j4LgH4dyt0P8S5347X7ffnlMU27ySPDmd7bfXHoSwQ2CQiEgmWPs7WPaN6PcLZEOHof7Xk0qV2/0Zp+6wP+O0NqGqyH0qdyS+Dj+FXILRgrnWMd6Ib9u3b3u8IUTv0AYrwGvHS1B7CKr2wva5sPXRzPuaJIJTAEokBz6AhV+E0sdh/kzY/C+o2hl/PVntYfi34h8nk+X3hlPfhpOeg2P+DOdugUFfbtpn5K3O+2/6W2YGyzi9jgWjDEYLZMGoH8ZXS2UplK2Ibd+sQjjlLWjv8Hu8rjL2ukREEi2eYLTGzo/iGCtcC7Vl8Olz1kMk9DoprV2sx99Drmu5zQjA4DjyQN48F3bO93Y+GS+3a7xG0H3fQdd4n+fZEvdzyUwRS4DesQ/CSc/DhN9bx6OT/wZGjEG/IiIiMTAMIxc4Gyu4zASeNE3Tt6d1mKb5MPAkVjiaAZxjGEaUJysiIiIiIiIiDcodgtEKMiQYLdvhtLjOjPG9CBEREREREREREZE0o2A0EUkfWU7BaOWJm/PAcue2Lsckbl7JDAOuSN5cu99K7Pj5fZuGg7UfDEc5hEg099nLNttegV1veJ9/wj1QfJIVkNbnPO/71et9jvVnIBuOf8ha8GXH6fUiW8FoaS+nk3PbtieTV4eIiJ8Ob4IPYgz36TzR+r2XcSIsuPVjcXKk4OT6MKy2JnQkch8/QquSKezy/VIfztFpvH27GYZ3Z8PSm+D5oVaA1xtnwONF8FQ3eOs8eHcOPNMb1t7tf+2ZJJYF9429dznsX+JPLQAnzYWCvv6Nl6myCqD3WTDkWisorbniaZDfx3n/Nb9OWGkJ4/Q7IpgX/VhDr4+vllh1ngAzF0JOR+vvdtbfk9yaRESi4VcwWrue0PO06Oev2Aqf/CP6/UQySbTH37ldYdQPnEOhR/8o9lr2vA3zZ8DLExIfrGvWObcZWe779joNpvzT4zxhePVY73WlK7evl5MBl0HvM60HP3U/UaFoIiKSClOAQhreKLgrAXPc2ejvhUAr+MUvIiIiIiIiqVIesn9AZ2GmBKM53F9YG++9QCIiIiIiIiIiIiJpQsFoIpI+HIPRIgQfxCocgu3P2LcNujoxc0pmKRoBA7+c6ir80Wlsy215xbEtMK+34wVv/fqcC9mFDZ8Puzn6udoPbvr56Nuj21/BaOkvp7Nz27uz4w/sEBFJhXcujn3ffrP9qyOZOk90b6/aFf8ckQLAdr8R/xyZyFMwmg9f/2RyCkkKZDcE5XYc7bx/6eOw/g+R51n+TTiwIvr6Wot4j7PcAuyikdsN5tRC8cn+jNcWnPiUc1vpExCOIUwhlZy+lwK50Y9lBODkV+OrJ1pHfRdOXwodR1mfZ+U7993vEtQvIpJKfgWjAYz9NWS1j36/pTfAS+PgIcP6ePcS2OdjCKtIqjn9nNkpGglf2A1jbnd+WEggC058Or6aDq6GZwfEN0YkZsi5zQhG3n/gl+Bij+8XHvgADm3w1jddRXueNjzGYH4RERF/1YeUmcAa0zTf93uCz8dcbTOniIiIiIiISFTqzFqqwpW2bYXBGN7jSoEsw/49vFozivciRERERERERERERNKYgtFEJH1kFdpvT1Qw2qG1ULXbvq14RmLmlMwz+W9w7IPQ++xUVxKfAV9quS2YBz1nJX7u4bc0/bzbCVBQ4n3/QC70OafptoJ+0dWQnRlP7mrTcjq5t+9+Ozl1iIj4pWoPHIgj9GTAF/2rJZn6nOfeXr45/jnq7G9I+69502HXgvjnyTSRvi7gfP6TrhyDORqFJBWNgHY945+r9In4x8hU6RJAO/xmK9RBvOs80TnsunpP5r0WOoUhBmMIRgPofhLkdom9nmgFmwX+B12C0bbPTWwtIiKx8jMYrdMYOGMFHHUr9P1CdPse+LDh71sfgVePhR0vRV+DSDqK5vh7+C1gGJH79TzNn4eDrLjNua2uAiq2gmnGNrZbMJrX84CsfOtBLF6UPuatX7qKNuQ42tdZERGRxBjZ6O/vJnCedxzmFBEREREREfGsInTYsa0wmBn3nWcb2bbb68w0uRdIREREREREREREJE4KRhOR9JFVYL89UcFoO1+1325kQe+zEjOnZB4jAAMug5OehfF3pbqa2Dktipl8H3RN4EOUx90J3ac23RYIwtSnIb9v5P2zi+Ck51qGZnnZt/k4kt4ihdcd3pCcOkRE4mWa8NEP4anusY8x6kfJDXLx09Cvw6CvOrfPmwYffi/2hdTgLQBszZ2xj5+pQkci9wk7hA6lK6fAgECjm/qMAPSbHf9cq34GK34Q3/dmpkqHmyFLLocR3051FZnHMGDmQuf20keTV4sfwlX22wMxBqMFc+CkF2OvJ1pZ7ZrN386+H8DK2xNbi4hIrPwMRgMoHABjfwEnPglnb4COY2IbxwzBx3rtlFbC6efMzoArvPXLagfTXoDcrg3b+l8CY35qnTN5teoXVvhZY+FaWHIDPF4Ec0vguaFwYIX3MeuZLkFfRtD7OJP+Bl2mRO738Y+9j5mO3M7Txt9tvZcJ1uvzxHuh23HJqUtERMTdoEZ/X5TAeRqPPcixl4iIiIiIiIiL8tAhx7aCjAlGs38Pr9aM4r0IERERERERERERkTTm8fHLIiJJ4BSMFkpQMNryW+y3tx8C2YWJmVMyW7/ZsOa3cGRHqiuJzoz5zoufcrvAzPfg8EbYOQ+WXOfPnIEcOG8b5DmEwnQaC+dshoMfQ05nyO9j1VCxpaFPdhF0GmctZm+uoH909eR0jK6/JJ9hwMCr4JMH7Ntry5Jbj4hIrLb8B1b+NPb9i2fAmB/7Vk7SBYIw+a+w+Z/Oi71X/9IKSBjsEqDmJuQhGG3PO7GNncm8BKNVbIVPX4Res6zfvenOaeG80exy1lHfhXV3xz/fqp9BbmcY/s34x8ok0QQz+OGUt63j/9yuULHZCsiN9vheGnQaC/0ugtLHW7Ztewom/tH+nMovB9dA6RNwZLv1s9lpLPSfHTn4uDkz7ByGGMyLvb6uk+D0pfDyxNjH8Kp5EFpWfuLnFBHxm5dg2li1HwynL4dDaxqury44zfv++96HZbdYD7HoPCH+ekRSxWsw8ZmrrHNsr7odD+d/BmUfQbte0K6HtX3YjbB/OSy7yWqLZG4JzKlp+Llfcyds+GNDe/lGeGkszK6O7jgzHHJua36O5yavK5y2EA5tAMLw/HD7fmYdlK2EjqO8j51Owi7nw8NvgsFXQ9kq6DjS+f1VERGR5Ctu9Petjr3i13jsHgmcR0RERERERFqx8tBhx7bCYPskVhK7LMP+PbzadHhIooiIiIiIiIiIiIgPonhEtIhIgjnduF+XgGC0Rdc4txUd5f980jrk94JT3oJBV0PBgNTUMHVudP3bD4FuJ3roNxiGXAvHPxpbXY0N/TpcuN85FK1eIGgtmi/oZwW3dRgKPWc2fHSd7LywqqAE8qK4x7n9EO99JXUGu7w2V+1JXh0iIvFYe2fkPn3OhROegD7nN2zLKoSR34NpzyeutmTqMMK93S7AxysvAWC1ByHUxp58WechMA7gzTNh4eWJrcUvTgvBmwdztOsB01/zZ87lt0D5Zn/GyhROASiJ0v0EKCyxAsk7jlYomh/6X2q/veYA7F+WuHk/fRFeGgcf/xA2/tUKzFh8Dbx6XPTH724BfYHc+OrsNC6688dYNQ9wC7oEowUSGFYnIhIPp9djv163AkErpKj++t/4KMNt1/0OXpkMn/zTn3pEUsHtXLXTeOg/xwoRjOW9qkAWdB7fEIoGVmBt8TQ4/hHvAWTr7gHTtD423W/f57kor7k7BV8DGFEEwNXrMAQ6DIPJDvUBvDgaQtUN/5ZM4hhU+fn/YVaBFQKsUDQREUkvXRr9PZFPvaof2wA6J3AeERERERERacUqQodst7cL5BOM5oEeKZTt8B5ebbIfkigiIiIiIiIiIiKSIApGE5H04XTzfqjK/Uny0ao5CJvuc27vPNG/uaT1aT8IJt8H534CU/5hBXrV6zQeLtgLvc5MzNwDr4x+7Ml/a1go40Xf8yP3cTN1Lky8J/GLcQwD+l3kvX/H0YmrRfzTdbJzW9Xu5NUhIhKrJTfAgQ/d+wz6Ckx9BvpdAFOfgktN6+Piw3D0z1uGqmSqSAGpO+MIsfIaAFa9N/Y5MpGXwLh6W/4Dn76QuFr84vT0UrubD4unQ25Xf+Z9dmDmLZqPRzKD0XrMTN5cbUmv062ATTvxvN66CYdg6Q0Qrm7ZdnAVPNUd1v/R+3ghm3HqBeMMRjMCcNyDEGwX3ziRNB/fbb5E1yIiEqtEB6M1N/R66Hl6dPuYIXj/SqjcnpCSRBLO6TxnyNdg1jI4/mHoPM7/eYtGwNg7vIWQffAteDhgfZRvtO9TWWqF43plurzPF0swWr2ux7m3P5pn/TseK4QFp8Nhh39PunEKkjOy7beLiIikh8YXcRIZjHaw0d9byZsqIiIiIiIikmzldfbBaIXBDkmuJHbZDteM65zeixARERERERERERHJMApGE5H04RakFKrwb55d893bB17h31zSug28As7eAJMfgJNfhZnvQm4XGHyNff+jfwHTXoQep3obf/zv4LiHYcLvYeZCa55AFAuEzlwN3ad67w8QyIbsouj2qXfeNuhzTmz7xqL/HO99i0Ylrg7x17Cb7bdXJzEYLVwHexdB6eNwZFfy5hWRzLbuXtjgIQCm99mJryUdRApGi0fIazDansTVkI7CVdH1/+SBxNThp7DDQnC74F8jAEOu92/uNb/xb6x0l8xgNKdzJYlPMA86jrFv+/hH/obN11t7J1Rsce+z9AbY+Dfn9rKVsO0ZKFtlheI7CcQZjAbQYwacsxmm/DNxgfgtws7CUfQVEUkTIYdgtGCCgtEC2TDtBZj+Ooy7Ewr6e9/3mb6wa0Fyj2VE/JDsAMLGRtwCZ66CY/8F4++Of7zF11o/h144BX1BdA93aa5ouLd+oUr47BV4bgisvdu6/pvOgdhOr23xfK1EREQSr/FFnEQeqDc+sFBqqIiIiIiIiMSkPGQfjFaQUcFo9u8t1JoO70WIiIiIiIiIiIiIZBgFo4lI+nALRqvzMRjt8Hrntna9oV1P/+aS1q9wIAz6MvQ81VqMDlY42JR/QPsh1uK+4ulWgNrIW6HXLBh6g7exh98MJXNg2I3QdQoYhrf9ukyCWR9A0YiY/knkdo1+n/N3Qn6f2OaLVdcp1tc4kqJRya9NYucUpFOVpICy2sMwbzq8OgXeuRie6Q1bH0vO3CKS2byETOV1h56nJb6WdNDB48LkWNR5DEarSmKoZjpwCrFwsu0p6/deOnNaOG84LAQf9UMY+T1/5t54nz/jZIJEhYnMWGCdCwVyoHAQTLoP+l2QmLkEikY6t+143r95zDC8fRF8+F1v/Tf8yWYME5b/D7w4Gt4+H14cBQu/6DxG/bl2vNoVw8AvwWmLYdQPoF0vyGoP/S6Csb+y36frsVA8w9v4zcPO3MLesvK9jSkikmypCGwyAlaA5YhbrOMHI4q3LudNh9dOhOp9iatPxG+OgVdJyvToMAwGXA7Db4JjH4x/vHnTYckNkcN4S59wbjOieCCMnfO2Rdd/+Tcbrv86BXKnmtP5cLK+T0RERERERERERERaufKQ/X1ThRkUjJZl2F8zrjX1YCERERERERERERFpHfRIYRFJH1mFzm1+BqNVlDq3DbvJv3mkbRt4hfURroNAs1+3XoJC+pzv3Db+Llh+i33bWeuhg4ewMDe5XaB8k/f+PU6xFpgnmxGAiffCgggBM2Pv8B4qJ6mX18N++4EPoaYMcjomdv6VP4M9bzd8bobgvUut7/PczomdW0Qy28FV7u1GACb+0b9wl3TX9djIfXa8DL1Oj37skMdgtOo90Y+dyWK5oe2NWXDK2+l7rOS0QL358fV/twfh6J/DmJ9Z3ydGNoQ/DybKKrR+DtfdC8u+EXnu8o0wbwYc+8/WH7LrFIASj2E3QfE068PunEj812msc9uSr0Gfc/2ZZ+N9sM0l1KK5A8uh5iDkFFmfmya8fyVs/lfTfjtfdx4jmBt1ma4MA8bcDqN/YgW9Be6uLKkAACAASURBVIJQdwS2PgoHPmjo1+1EK6AnELTCNufPhLIVzuPm9236uVswWvMQNRGRdBGutt+eyGC0xgoHwLCbYe1d3vfZtwg+/jFMvCdhZYn4KhUBhE4GXGY9kOKDb8U3zoY/Wg+F6XUmbLoftj1pHcP1+QIcWg3bnnZ/aJFT+LVX+X2s4NuVP41uv21PwKbpMORr8c2fCE4BevF+rUREREREREREREQEgIrQIdvthcH2Sa4kdtkO7y3UmQm4F0hEREREREREREQkBaJ47LqISIJlFTi3+RWMZprWAg0nA77kzzwi9ewCADoMgy6T3Pcb+GXntj7nghFsuX3ivfGHogHkdImuv9sC/ETrORN6ugSqzPoQep+RvHokfkUjnNtePNp5QZhf1vy65TYzBKWPJ3ZeEcl8bq9PA6+CWSug3wXJqyfVIh3rALxxRmyvr6Ej3vpV741+7EwWy+/IPe86B+6mA9MhGM3haacN7YZ1fhnMgewO1ofx+SUwt/PO5nbNh+eHQ80B7/uks3AtlG+BqmY/G34+JXbI9XDi0zD+dw3bFIqWHP0udm478hmURhFm5mbDn6Lf5/nhDa9RH/2wZShaJAGfg9HqGYYVegaQ1Q5mvg8T7oHht8DkB2DGvIb2vO5wypsw5Ab7sdoPgaKjmm5zC1VsK0GpIpJ5nEIdk/m6Nf5OmPosDL7GeoBDQf/I+2y637n2ugrrGKjWfnGLSNI5Bl5FOM9JlGHfaHkcE4stD8OyG2HxV+Gzl2H7XHj/Clh9h3soGvgT9jXmdsjtGv1+S66HPe/BviVQuT3+OhoLVcO+pVD5afT7Op0PB1L0fSIiIiIiIiIiIiLSypQ7BKMVBDskuZLYZTu8t1Cb6HutRURERERERERERJJEKxNFJH0kIxht+Ted24pGQbtif+YRieS4h+Cdi+HA8qbbjQCM+Sn0Pst538KBcMLjsPAKqDtsLYQZ+QMrhMAP0S4e6jTen3ljNfI2a6FVc73Phk5HJ78eiY/bIrzKUtjzDhSfnLx66m15EIZcm/x5RSQzhEOAad826gfW4ty2JtvLkzNNWP0b6HdRdGPXVXrr5zVArbWI9Ya2dXfDyFut0J9047gQPI7LWdmF0fWvq4CVP4fxv419znSw601YdDWUb7RClgdfBxN+b4U+OX3v9DrDCnba+Ff79mA76+cspxOMvwsGXpmw8sWDvK5WoNfau+zbV/0c+l0Y3xwVpVC2Ivr9qnbCjpegeJpzfW6SFcYTzIFhX3duzymCY+6FrpNh8XUQ+vz3UfuhMO0FK2itsT7nwqKv2I9lhvypWUTEb+Fq++2JCql00uds62PSX6zPX58Gu9907h86Aku/AZPva7p987+t9wSq90FWoXXddfjNCStbxJNwjf32YE5y66gXyLYeujJvenzjbH0oxvlz/fu3z1oB7862riFH47XjG/7e+RiY/irkdIyvltV3wMc/abg2UTwDjn/I+7m3Y4Cebu8QEZG0V/9myRTDMEoSNEePBI0rIiIiIiIibYhTMFphBgWjZRn219drTYf3IkREREREREREREQyjO6cFZH0Eci1bui3W/xeezD+8Y/sgnW/d24fdlP8c4h41X4QnLYYqnaBWQt5PeHQGmg/2D0ksF7f863wtINrrLG87ONVbhfvfQM5VmBCKnU73grK2rWgYVsgB0Z8O3U1SeyyO1jfg9X77Nv3LU1NMJoRSP6cIunoyGew9RGo3A7dT7JCKJuHgLRFpksgVc/Tk1dHuhl8HWz8s3uf/Uvgs9fgs1es1//+c6BwgPs+XoPRDnzkrV9rEc+TPrfPhcFf9a8WvyRiIXgwhuPmtXfCztdhzE+g9zmZ9bpnhq3z4OW3NNoWgg3/ZwUgTPid89c5kGOFkQRyYP29TduO+SP0mw3Ve6FdD+sYTlJv7B2w8S/24fJlH0GoGoI2wTZmGEqfsIK783parwdZ+S377V8We2173rECaUIeX8MbC7aLfd5EGHA59L0Qyj62AjPaD7F/XXA7tw45BA+JiKSa0+tTsoPRmjv5VXjhKCjf5Nxn09+sYOqCftbnZSutgMr6Y526ciskbfk34ehfwMCr9KAUSQ3H85zs5NbRWPHJ1vF96aP27Se/Yp2HvXWe9bAWPw38sn9j5feCU96Cii1WqC/Aoqug/BPvY+xfAk90gkFfta5R9IghMG7J161zrsZ2zYOniq3Xn2E32R9vN+YYFJ7C7xMRERHvDODhBM9hfj6PiIiIiIiISEwqQvbXuzMpGC3b4b2FOrf7GUVEREREREREREQyiBIeRCR9GIbzotGqPfGPH+lp9b3Pjn8OkWgEgtZCnYL+EMyBTkdHF3AWyIZOY/wNRQPI7eq9b8llkFPk7/zRMgw46QUYeRt0Pc5awDXjDeh+Ymrrktj1dAnbK0tVyI3uqxfh8CZ4ZZIVrrP2LnjrXFimYFkAdrzk3NaWF6wOuspbvwUzreCpFd+DlydYIZhuvIbqbH0Ids731rc1iOeGtr0L/avDT2GnheBxBKPFGmpWtsIKAVichgFyTswwLDi9aShaY+vutn7ewg5Pia1//ZrwBzjmT1A8wwqGO/5RGPI1yO0MHYYqFC2dBLKgxyn2bWYYDq9vui0csn7O3rkY3p0Nq++A5TfDc0Oh5gCYJoSqPv+ogQMrYq+t/BM4uCr6/bpMie9nPlGy2kHXSdbPgNvryqS/2m8PVSWmLhGReDm9PgXzkltHi/lz4PQlkR9usrHR6+7au5wDqFZ8D14c3fbClCU9OB5/5yS3jubG/9b+vYZ+F0PPmVZA2EVl/s87+Bp/xzMMK3C9+CTr46x1MPbX0O2E6MbZdB/MnwGrfx3dfqt+2TIUrbEV34One0PtIfdxEhEULiIikjz1oWWJ/BARERERERGJS3nI/jptQbB9kiuJXbZh/95CnVmLaZpJrkZERERERERERETEfwpGE5H0ktvNfnu1D8Fo610WIvQ5D9oVxz+HSGvgFFDYXMcxMO43ia3Fq6x2cPTPYOa7cMIj0O3YVFck8eg/27ktr3vy6hCRptb8Giq3N922/h44tC419aQLM+welNSWg9G6HAMlX4xun5oD8PGP3Ps4LSK3s+LW6ObPZE6Lpr2o2uVfHX4yHYLR4lkIboZi3xdg0/2w+634xkiWT5+Dna+591n0FefvnfpgBsOAIdfBjNfhpLnQ/2J/6xR/TX7Aua3s82CyIzvhrS/AI1nwSDZse7JpvyOfwhOd4eEAPNru849cWPkT57GH3uhe17YnYVmEPnaOfzj6fdJJMN9+e1jBaCKSpsLV9tuDucmtw05OJ5hwt/WABCerfg51lVbw55YID0qp3gMrb7f+vul+mDsAHu9oheGWf+Jf3SLNOR5/p/j6QX4fmPpM0yDEDsNh7C8bPjcCcNx//Jtz7K+g8zj/xrMTyIKjvg2nvg0Tfh/9/h9+1zo2Prg2ct/qfZGvaQDUlsHjRbDuD1YYsR3HoPA2fJ1JREQyjZngDxEREREREZGY1YSrqTHt3xcrDGbOAwKzHB66YmISwuE6s4iIiIiIiIiIiEgG0SOFRSS95HWDgzbb4w1GqyiF8k3O7Sc8Ed/4Iq1JbtfIfUb/GEZ+HwLBhJcjbVCvWc5tdZXWn+WfwOYHobIU+nwBesyIf5Gu29PRDOUJi7DjJfvtWx6GMT9OailpZdcCa+GrE6ONL1gdfxdseTC6fT57FUI1ELS/cSuqYLR9i6Fqd9sI1owrGG23f3X4KRHBaPn9nNuyi6DW7oS0mc3/gu5TY68hGcwwrPhe5H5lH0FWoX2bFtxnptzO0H4oHF7fsm3Vz6BmPyy9wd85R/yPFZpdNByWXO/fuAOvgsIS/8ZLhcbBIo0d+cw6n8nvA91OsAI7RETSQcgpGM3h9SwVep7m3v5ERzh9uXPIW2PbnoTXToA97zZs2z7Xuu502lLncxKReDid0zosXkqqHqfAedut8/KcztD9BMgqaNqn1xnxzTHgS9BhGPS9EDoMjW+saA38Mqy+A47siG6/mgPwxulw5mrIcgi+Bdj9ZnTn5stuAiMIQ22Oz02HceI5HxYREUm8UhRaJiIiIiIiIhmgPHTIsS2TgtGyXe5NrA3XkhXUvT8iIiIiIiIiIiKS2XTnrIikF6dApuq98Y279i7ntrG/VriTSGO5Xdzb84ph1A8UFCWJYwSgx6mw87WWbXXlsOHPsORrDds23Q8FJXDaoviCb8yQW1GxjyvSGphhqNxm37bxz207GG37M+7tbT1YKNgu+n3MOji8ATqOtG+PNgDs4Kq2EYzmFCLmRboGo4Ud/k3x/Fx1HA35fVu+phWNhJnvwwsjreBVN5vuh8l/i72GRAtVw8LL4eBqb/33vme/va0HO2aybsfbB6MdXOV/KBpAt8+DAod8Dfa+b4UH+mHQ1f6Mk0puQUILL7f+7HocnPwyZLdPTk0iIm7CVfbbA3GG0fspEIRZK+Clo+3bw7Xw4mjv4zUORatX9jGUPgoDLo+tRhE3Tue06XL9ILcLlFzi3J7T0Qp23fNO9GMfdSuM/UXstcUruz1MnwdLr7d+9qMJXq/YCp/83T7E7L99IpxL2ln6dStsrnBA0+2JOB8WERFJMNM0S1Jdg4iIiIiIiIgXFaHDjm2ZFIyW5XJvT51ZA7g87ENEREREREREREQkAyjRRETSS243++1Ve2Ifc/9yWPd75/Zes2IfW6Q1Khzo3j7+dwpFk8RrP8R+++ENTUPR6lVsgZU/i2/OcLVzm77npa1zC6mtdX56YptwcI17e1tfsBpLMBpYQQROog1GK1sVWw2ZJtqvS2PVu8E0/avFL05hb0YcOf+G8fnxbKMxArlWYHZ2IZy1GoIebgqsijO8OxFC1fDRD+HRPCh9PP7x2vrrVybre2Fy5+txSsPfR97mz5iDr4Nux/ozViq5BaPV2/serPpl4msREfEi5HBtJJ2C0QA6jbFC9RNp62NNPz+0Ht7/CrwyBZbemL7hwpL+ag/ab8/KoMVJY26Pfp+CEhjl07FiPIqGw4z5cHElXLgfCgd533fro+7tTg8ViGTxtS23OQbo6bl3IiIiIiIiIiIiIvEqD9nf82hgkB8sSHI1sct2CUarNeO4l0xEREREREREREQkTejOWRFJL07BaEc+jW28/cvg5YnufYpGxja2SGtV0B+6TIZ9i1q2TboPSi5Jfk3S9mQV2m+3+76st/0ZmPiH2OcM17g0GrGPK9IaVG53bgsdscLRsjPnSYm+OqRgNFeBYGz77XwVSubYt0UbAHZwZWw1ZJp4gtFCVVBXDtnt/avHD4laCN7vAihcDNvnWmP1ORc6jrbasgpg8LWw7nfuYxxcBXknxVeHn0wT3jgDds33b8y2/vqVyZIZKNbvYshqFILZYWj0Y4z4jvUaVLndukbT7TjodaZ/NaaSl2A0sH7v8YuEliIi4olTaLzX17NkGv5N2Pla4sbf8bx1jGUYUP4JvHZ8Q2j4vkXW3KctarvnwhKbULVzMFpu9+TWEo/ik+HsjfDcYOc+2R0AA4ygFZ479Pr0ei0JBCGnE5y5Cj55AJZcH3mfPW/Dzteh4xio/LTh/zJUBbld4cCK2GrZ/aZ1/tv4HMwxKFznaSIiIiIiIiIiIiLxcgpGyw8WEjBivN8tBbKNHMe2WtPtnmgRERERERERERGRzKBgNBFJLwX97bcfWgtmGIyA97F2vQnzprn3OeMja2GTiDR14lPw1nmwf4n1eXYHOOZPUHJpauuStiMrhieuVW6DUA0End/odxVSMJqII7dgNLDChQZcnpxa0knNATiyw72PodPumGx7yjr2COa2bIv2aZZtIRjNNJ0XTXtVtTv9gtEcF4L78HPVeZz1YWfM7dbPdumjzvsfWA7FaRSMtnehv6FooGC0TJbTCfKKoWpX4ufqP7vltgl/gGU3etu/YACMu8PfmtKJ1/CP/csSW4eIiFehKvvtdsflqdZrlhWsX1eeuDnW/AaO+g5s+ntDKFq9Q2th+3Mw4LLEzS+tT/Ue57a8DApGA2g/CGZXwZKvwSf/AEwoGgVT/g5dIjywKJ0Ec2HI16DfbFj8Vet6hJv5p/pfQ7gGDm+EohGNtiUoKFxEREREREREREREHIPRCoOZ9UCcLJd7e2rjecimiIiIiIiIiIiISJrQnbMikl6KjrLfXlcBFaVQWALhEJRvhLKPrKev15RB4QBr4UJWvtW/tjxyKFqf86DjaD+rF2k98nvB6YutIJzqfVA0UgtuJLliCUYDK8SksCS2fcPVzm3RBHOKtEbV+9zbtz7WNoPRKkoj91GwEBQOto7fo1F7ED57Bfqc07ItHOXTLMtWWsFhrTkQ2WsoWn4f56DDt8+HITfAwCvTJ/gi7PDvSvRxaXYhnPAIVN0Lc/vaB4Qsv8U6n+xxSmJr8Wrn6/6PGYgxbFbSQ9HIxAejdT8J+pzfcnuvM7wHo/X9gr81pZtgFOc12+dC77N17iEiqWOazsfagTQ5PmzuvO3wRMfEjf/hd6H3ObDqZ/bta+9UMFprUx86Ha6BULX1Z/1H88/D1daDFhp//t++DtuqdjrPnWnBaGCdO055AMb+CkJHoF0fCARTXVVscjvDiU/Ckc/gzXMbHhrjpy6TYd8i+7b3r4TprzcEltdV2PdL19djERERERERERERkQxSETpsuz3TgtGyDed7e+rMKO+xExEREREREREREUlDSjgRkfTiFIwGsPgaqDkAB1faL0zf+Bc4fbm1iH37M5HnGnxN7HWKtBX5fawPkWSLNRitclscwWhuNwG04jAdES/cggMBdr5iHafldEpOPemianfkPgpGg56nwYYog9EAdr3hEIwW5dMsaw9aC5vze0VfQ6bw+jWZ9SE82dW+rexjWHIdbH0ITn4NgmkQiuUU+GYk6XJWXlcY8V1Y+RP79vmnwvi7YfhNyanHiWnCxz+K3G/MT2HkbfDSOChbEbm/odevjNZ/NuyaH/v+xTOsMIauU6D4ZNj8T9i/DCq2Qo9TodsJMOJb9qGThQOh80TYv9R9DiMIg66KvcZMEM25yVvnwcAvW+EiIiKp4HZdJJiXvDqikVMEU/4O73/ZW//60GYjy3u4cOmjzm0HPvA2Rr1wXdt++IRpWucuruFijcLE7MLFPAWWRRli1rx/KhjBzL6mkomhbk7a9YRT34Kne1nXuvw09Ouw0CEYbd9ieHYQnLnaes11CjnO6+ZvTSIiIiIiIiIiIiJtUHnokO32gmD7JFcSnyyXe3tqzSjvsRMRERERERERERFJQ2347nsRSUvZ7SG/H1SWtmzb+Zr7voc3wOo74OifRl7kPewm6DUr9jpFRCSxsgpj269yW+xzui18LI8h0EekNbELpW0sXAvb58LAK5NSTtrwEoymYCE4+mewb1HkgJzmqj6z3x5tMBpA1U4FowHkdoGC/lawkZPdb8H2p61QpVQLO4RVJDNwsP9s52A0gOU3W+F7o35gHxCVDLsWRO7TrqcVimYYMPNdeLI7hCrd98nv7U99khoDvgQ750HpYy3b8nrA1Lnw6mTn/We83vRzu6BKJ4YBk/4Kb54FR3Y49AnCuN+6B+S3BtEGCX3ydxhwuRVGJyKSbG7nfcHc5NURrY6jvfU7+pcw8n8bPt/0d1jkIaDz4x/HVFYTh9bDoqth70LI72sdOw7yGObmVYvQsUjhYrEEjvkQYib2cruBEUh1FVIvmAcz34fnh/k7biAH+s+BrY/Yt1fvgaciBJ/ltqIQOhEREREREREREZEUcQpGKwx2SHIl8QkaQQIECRNq0VZr6n0ZERERERERERERyXwKRhOR9FN0lH0wmhdb/g1jbod9S5z79DwdJtwd2/giIpIcWQWx7RdPMFqo2rnt8Aaoq4i9rnRlhmHfUjjwAXSeYH2kKtRF0lvY5eej3tq720YwWl0lbH8W6g7But9H7p/MAKd0ldPRWlD8SJSXIGoO2G+PKRjNQ4hdJvPyNSkosf7M7e4ejAaw46X0CEYzHYLRjCRezioaAb3OgB0vOvf5+EfW13fgl5JWVhOfvRy5z4hvN/yOzyqwQq6cFuPX6zkz/tokdYJ5cPzDcNT/wv5lDT9P7XpB96nWa3PP0+CzV1ruWzw9/vk7j4Oz1sDud6xwyk5jrRDBQ+ut78Fux0HhwPjnyQROX2cnn/xTwWgikhpu532BKIMekyk3QohQfZ8h1zXdVnIJfHQbHHEIZPZLxbam4UoVm61AtnV3W+9VxBIu5rRNMle7HqmuQJrrMBTyuvt7PSGQDb3Pjnwu5ibPw2ueiIiIiIiIiIiIiLiqaCXBaADZRjbVZstgtDozhnvsRERERERERERERNKMgtFEJP0UjfS2sNtOxVb49DnY/aZzn3G/jm1sERFJnlgDyCriCEaLtIB0+3NQMif28dNNOASLr4ZP/tGwbfA1cMyfwAikrCxJU27BgfXKVsDWx6D/xYmvJ1XKVsGCmXBkh/d9jGDi6skkgSDkFUPVLu/7VO+33x7LTVutPRjNy9dk1A+tP/O6R+67+Z9w7D/iKskXToFvgSRfzjrmT/DiaKi1vykSgPevgB6nQH6v5NVV7+Bq9/YJ98DQG5pu6z/HfTF+j1OhoH/8tUlqGQEroKzzOPv2wdfYB3aVXOrP/NkdoPcZTbe1xcCvfrOjC0ZLl9dgEWl73M77grnJqyNakYLROo6G4x+1QkEbC+bBzIWw5Hr3EFxXEcLl9y2FV46xbyv7yPoQAeihUOK0dNZaeKKzf+MFcqzzxpxOzmHwkeR6OKcXEREREREREREREVflocO22wsyMRgtkEN1qKrF9lo9VEdERERERERERERaAQWjiUj66eSwYNert851bgvmWwuhREQkvWUVxrZfZTzBaBGCn1bc2rqC0bY/0zQUDWDjX6HXWdDn7JSUJGnM5sYZW+/Ohn4Xts5wvcOb4MVR0e9nRFgo35YE86Lrv3+JFc7QPITBKSzLTTSBbJko0tekeDr0n239PS9CcES9x4tg+Ldg5K0QyI6tri0PW79bdr/RsK3jaOh+Mhz9Uys0yY1ZZ7/dSPLlrIJ+cNzD8OaZ7v2e6Q2XmsmpqTGnYLTcLnDBXvu2nqdDdhHUHrRvn/QXf2qT9NbrLOh1RtMwmO4nWUFe4p+SS2HRVdHts/7/2bvP8LjuOm/j95lRsyT33uM4sR2nOE53qtNJIz2B0GGBZemwLGF3gST0Tlg6+wCBZcMSCJAQ0nvvxenNiXuvkmWVmfO8ODGWpTmj6Wr357rmss6//iRLU6RzvvMj2PNffB4xEKy8GZ7/Lmx5AeiFxwgpH9meUyb6cDBa1ZDs/ac8Ef8atWE6LLwOnroEnr40/717Cox75MPZ+yWAYbNh9sd7uwplUjMSjroa7rkg/vVpPhLVUD0UDvwB3P+OwtbIJexckiRJkiRJkpRVUyrzmyM2JodWuJLiVQWZz+tqL+TNRyVJkiRJkiSpjzEYTVLfM/UceGwstK4t/doLrij9mpKk0qtqKGxeUcFoPbw7WvNrha/dF73wvcztL//MYDR111NwYGdPfBbmfyu/9VPbofl1CJIwdI/85lZCy2q4tg/W1d8UEqbw6CfgkJ/s2lbIu1m2rsl/Tn+SLcRi/2/CrI/sDIxI5fjz3L4FFn0RVt4IJ92beUwYwuZnIExD24Zo7ZoR0c/ys9+ApX/sPmfTouj24g9g4d+BN0IqaobDiHm7Bluk+0gwGsDkU+HYm+D2k7KPe/5ymFPBUIN0e/xzlEN/GT8vWQt7fQae+s/ufeeuh9pRJSlPfVyyBo7+Kyz9E2x8PPoZnHJWzwEzyk+yNgrqT23Lfc4jH4GWlTDvy+WrS+URpqPHxm0rosfQuNddUn+Tb8hxpY05HNbd1729cffcgrsLDaLM9hqnZSWsf6iwddVPBNHjfKIm+l5I1ES3ZJfjRE2ncZ2Pa2HUQdHfxHz+3XdNPRtOeRz+HvOmS/t8Hp7+Um5rJWqif2e8HYbPhRsOzL8eg9EkSZIkSZIkqShhGNIcG4zWw5s89kHVQU3G9o6wgHPsJEmSJEmSJKmPMRhNUt9TNQSO+Rvc9zZoejlqqx0dXaA7Yr/oNnI/uOdCaHolv7XHHF76eiVJpdcbwWipQXYSwNqYkJsV11W2DvUPqe25j33u27D/N3K7+Bxg/cNw70U7n/dNPgOO+D1U1edfZ7k8/+3ermBgSBYQjPbyT2H2R6MLhnfIFgIWp2V1/nP6kzAmQAxgt7ftGnKU68/mDuvug5uPguNu2fX/sHkJ3H0ubHgkv/U6u+PUXY9rR8OC38Gkk6PjuM8r0Uu/zpp4IhxzHdx5WvyYpy+LgugSycrU1LoeCDP3NeyWfe7cz8K2ZfDq/4t+rkbOh8P/x1CGwSZRBdMvjG4qn+F7w4aH85vzwg+in9Pq/veO1IPWlhfgzjNg60u9XYlUeoU8l6+kuRfDXW/u3j7+2BwXKDAYLVtoc9Nrha2pNwQ7w8N2CRTLNXSs0/GO8cma7iFmOc2PW7NCz/nV+0bsAxdsg4feD69fGQWhBskobHrfS2DOp+HBf8ocDt5Zonrnx6MOgPM25TZvh5qRMGyvgj8NSZIkSZIkSRK0htvpiDknqX8Go1VnbG8PCzjHTpIkSZIkSZL6GIPRJPVNYw6BM16Atk3RBdp14yDocnFSw/T8gtH2+CDUTyptnZKk8qhqLGxe67o3LkzLM/QFIN1a2J6qvDANr/4aVt8Br/8vhCmYeg7se2l0oaJKL9+fj3UPwNgcAmnTHXDjIbu2Lb8W/tAAFzT3jXC0MIQlV/V2FQNDoq6wea9dCfO+tPO4kGC07SsL27u/yPY1SXQ5+W3KWfDa7/Jbf+098Px3osCJ138Pa+6Cl3+Wf509aV0P970VTn8R6sZkCUbLfEJfRUw+FY6/DW49LnN/2wb4fRWM2Bc2LYraZn0EZrwTRh9c/P5b+BFGAgAAIABJREFUXooCA1Mt0WNf3fj4sXVjs6+VqIJDfgL7fzU6rh7R/XW3pNIYe3j+wWgdW2HRpdC+aWcI4rK/Rn2zPgb7XQo1I0peqgoUhvC3Ob1dhVQeyfro1pdNPh0mvxmWX7OzrXpYdH+Z0/zTYNEX89831RI9F8/0/HTDo/mvVzFxoWM5BIwlMwSOFRM6FhdiZuiY+pqqIVGQ9ME/joIPh+6x8/dWNcPhqKugdQPc/y5Y8bfMayRqdj3eMa9tI9xwyM43DYgz9+LoZ02SJEmSJEmSVLCmji2xfQ39MBitquvvnt/QYTCaJEmSJEmSpAHAYDRJfVeQgNpR8f1143Jfq2G36GIFSVL/UNVQ+NxUS2Hz022F7znQdDQX939QiHRHFNDSk1Qb3P8OWPKHXduXXh3dTrgbxh1ZnhoHs1SewWiv/1/mYLSOFkjWRWF2iSq4bm78Gn/fD057JrpIupJSrVE4b6IKakbB6tuh+fXK1jBQFfp/ufL6XYPRCjlpa8vzhe3dX+QTjDbxpChsIN/Awxd/GIU7LL06//ry0bYxCm6b8/HosSGToJd/nTX+WJh0evzF7rAzFA2ir91LP4Ejr4KpZxe+79r74JZjdgbGvfSTKIAtTu2Y3NatGVl4TZJyM+0CeOHy/Oc9/53M7S/+AF78Lzh7JQzJEpCoyrn3Lb1dgVQ+E0/K7fV6bwoCOOJKeOWXsPJGqJ8Me30Ghs7Mbf7I+VA/FbYtzX/vts1RqG9n25bDox/tee6oA2HIpBxDx/INGDN0TCqL6mEwcr/MfbWjYNT8LMFoMSHfNSPh9Gfhue/Ak5/LPOaI38P0C/OvV5IkSZIkSZK0i6ZUfDBaY3JoBSspjeog8++e79p0A882PwZAMqhmRt0sjh5xCkOrhleyPEmSJEmSJEkqSh+/kkGSsqjNIxjt+NujoDVJUv+QrC98bnuTwWjF+kMjjD0SDvt17hcRF+qVX8GT/w7bV+1sGzYHDrw8uvh6h1W3wEMfgqaXs6/39GVw3E3lqXUwS23Pb/zSq+DA70cXpwM0vQYPvBvW3LlzTLIu+7pNr8Btx8OJ9+S398v/DQ+9f9e2XALztq+Dh/8Zll+TPWRKlbfhUbh+Piz4TRQCVcj/z7ZlcPPR0RqNu5W8xF6XTzBa9bDoguq78wzoallZ/lC0HR77BOz5QdjyXOb+3g5GAzjyD/CHPJ6vhCl49GMw+YzCgkXCMLqPCruExXUOYOusekT8RfeSKm/MAtj3Ulh0CRCWaNEQnvkqHFRA4JpKq21T9+BmaaAYtlf/ecORqnqY/ZHolq8gET2/u2lB/nNTzUCXYLQXftDzvGOuhcmn57+fpD4uiO9K1GTpq4a9L4bRB8N9F8H2NVH7yPmw8HrDcCVJkiRJkiSpRJpjgtESJBiSqPAbCpdAdZD5d8/r21ezvn31P46fbX6MR7bezaenfo3GqmGVKk+SJEmSJEmSitIHriSVpALV5RiMNvqwgRl+IEkDWSIJySGQasl/bkcTkOVCsY1PwIbHoG48TDplZ3BmLnulU1Ftg8Hae+DWY+HNr5Q+WKV1A6y4Dp77Dmx6snv/lufh9pPh6L9C8+uw9l5Y8n+5rb3q5ig8JshyEaLyl27N3F47GlrXd29vWQmrb4MJx0O6A249DpoX7zoml7C1tffCdXvDuGMhWQvVw6FhGkw8GYZM3DmufQu88kt47JOZ17nlKNjzw92fPza/Bg27wZjD4IXLYcXfe66ps8N+DcPnwo2H5DdvsKrLct889ZzsoVsbn4CbDoezlhQeZLn2brjlmDfu1wbIr0OaX4cVN2T/3s30rqBTz4LzNsCau+GuM8tXXzFuOwm2r87c1xf+/6qGwJFXwT3n5z5n2zJ48Ucw5+P577fxifgQtExqx/Q8RlLlBAHs+wWY8Xa4poTBw0uvMhitL1hzV+5jp50PE08pXy1SKQ2bA6MPGjxhq2MOg/O3wh+HQ5jOfV57U/e25dfGj0/UwLnroHpo/jVK6t8yvT7vasLxcMbL0e/EkkNg3FG+8ZMkSZIkSZIklVBTTDBaY3IYQT8877Qql989v2F123Ie3noXx470zXskSZIkSZIk9Q994EpSSSpQ/eTcxs18X3nrkCSVR1VDEcFoMZ79FjzxWSCMjkcdCCfcHYWbtG/tee10GySG5F9Tf7VtKay4Hqa8uXRrbnoGbj8JWlb0PLbQsJ4dgVwqnVRMMNrU8+Dln2Xuu+0EOOyKKMCsayhaPjY/G906qxkJx1wLY4+AjU/C9fv3vM5LPyq8hkwOuwJ2f2dp1xzoxh8LS//UvX34PlHA1BMXw3Pfip/f0RSFp6XbM/c3zoy+17KFGGxbAqtvh4kn5ld7X7T8b3DPhZDaln1cXIhYzcjo/n3GO2Hxb0pfX7HW3h3f11cuCp90Wv5Bro99Igotm/G2/PZ6/ff5ja8bm994SZXRuDvs/h549VelWa9lJbSsgiETSrOeCtP0Sm7jhu8NR/6hvLVIKk51I+zzBVh0Se5zuv4eKt0BW56LH7/flwxFkwa0LBfNJWtyW6J6KEx6U2nKkSRJkiRJkiTtoimV+VzhhuSwCldSGvXJxrzGv7TtaYPRJEmSJEmSJPUbfeRKUkkqQP3UnsdMOBFmvrf8tUiSSq+qobB51+8Pd5wB6x7c2RaG8NQX4Yl/4x+haAAbHt15sesrv+h57XRbYTX1ZxseKX6NjhZ47ttw/QHw931yC0Urxn1vL+/6g1F6e+b2uvFQPyV+3gPvioLwSq1tIzzyEdj8fG6haKU2cn/Y7a2V37e/m/EuGHf0rm1VDXDg96Kgq/nfhPpp2dfY9AyEqcx9h/43vKUdqkdkXyNbSEF/0boB7jyj51C0INFziFhdmcN09vhnuCiEUx4v3Zotq0u3VjGqhsCUs/Of98hHoG1Tz+NW3QK3Hgf/G8Bz38xvj6Gz8q9LUmXs84XSBjxeMyN6nn33+dFzI1VW6wZ47FM9jxsxD05+uPz1SCpedZ4XvXQNRtv6UvbxI/bNb31JA0dQ3dsVSJIkSZIkSdKg15TakrG9Mdk/39hmTv1+eY2PC4aTJEmSJEmSpL6oqrcLkKSC9RSMduRVMPWc0l5sKkmqnERt4XNX/C26Hf0XmHJmFMr19GWZxz73TRi6B2x5oed10+2F19Rfrc/z4v0wDRsfh0QNDJsLiSQ8+vHcgudKZfsqaF0PtaMrt+dAl2rN3J6sg+F7w7Zlla0HYOMTcN1eld83WQcLfgMJL2bNW3UjLLwBVvwd1j8AQybB5DOi++Adhs6EbUvi11h9a3xfojp67j/j7fDiD+PHLb8Wpp4H9ZPy/xx6S7oj+p5vehWCAO65ILd5uVx0PaTMwWgNb7xuG7k/jDkc1t1X/Jqdv2d629x/gyV/gLAj9zntm+Dxf4M5n4Rhc2DzM9CxDaqHwpbnIbU9eizLJWgnzm4XFT5XUnk17gZnr4bFv4bHP1P8eqnt0fPvjY/D0j/COWugbmzx66pn6Xa45ZjsY+Z8GkbsF4Xq+vxR6h+qh+c3vmsw2uans48fvk9+60saOBI1vV2BJEmSJEmSJA16zbHBaHm+eU4fceDQo3iy6UGebHqw58HEf/6SJEmSJEmS1BcZjCap/8oWjDbz/TDtvMrVIkkqvUQJnqredRZMOAnW3pV93EMfyG29dFvxNfU3K2+Ara9EYUU9aXoVbn8TbH0pOh6xH0w5q7KhaDvccRqcdH8UIKTipbZnbk/UwvjjYeWNla2nNx13C4zYt7er6L+qhsC0c6NbJo0zYfXt8fPrxsX37bjAeP63oH0LLP5N5nGrboG/ToN9Pg/7fKHv309segbuPAOaF+c/N5cAltosX9NSGNcpMOaIK+GBd0f/x4lqmPHu6Ov/8s/zW3PUQaWssDgj50VhiQ99EDryeEfVV35RvsfHIZNh4knlWVtSadSNgb3+NQrWevLfS7v21ePgLR1RQLHKa+VN2QOQRh8KB3y7cvVIKo3qPC96ae8SjPbM1+LHDp0F9VPyr0lS/5HtdwyGpEqSJEmSJElSr2uKCQZr6KfBaNWJav5p0r/x0ranWbz9BTrC6A2gV7Qu5cmmB7qNj/v8JUmSJEmSJKkvMhhNUv9VNQSGTISWld37DEWTpP5vR8BNsVbdVJp1YOAEo6Xb8xv/+Kfh6L/0PO7et+0MRQPY9FR06w3rH4SlV8eHLyk/6dbM7clamP5WePmnUTBeUQLY91JY9IUi1ymTCSfCcSW8P1Fmjbtn79/yQnzfjguMk3Ww4AoggMVXZB4bpmDRJTD2KJhwXCGVVkYYwv1vLywUDbIHye1Q3VjY2rmYeDKMOXznccM0OP426GiBsD0KnWhanF8w2uQ3w6gDS19rMXZ7K0w9F1LN0fH2tdA4A1pWwF93q2wt9VPhtCwhPZL6lslv7jkY7aT7YfsauOvM3Ndd+keYfmFxtalniy7N3j/jHZWpQ1JpVQ/Pb/yO54AArRtg4+PxY/e7rO8HM0sqn1L9vluSJEmSJEmSVLCmVOY3Pmzsp8FoAMkgyZyGecxpmPePtmeaH8sYjNac2koYhgT+zUqSJEmSJElSP5Do7QIkqSjTLujeVj0Mxh1T+VokSaVVNbS3K+huoASjpVryG7/sGmhZnX3MtmWwvvtJFL3qhct7u4KBIxUXjFYHtaPgpAdhWhHhGyPnw5tfhn0/D8fdUvg6mSSHROFXO275GHtUFFhy8I/h2Bvixw2ZWFyN2qmnYLRtS7s1pcIEzal6CKp37WjYref9Xvnv3GvrDZufho1PFD5/4ik9j6kdW/j6mSTrYNLpMP/bcPQ1mYMfqoZEr9sgChA7c0luax/wPTji95BIlq7eUknWQM3I6DZsVhTU1zAdTn6ofHvu/w2Y/QkYfyyMPx72+jc45fGdX1tJfd/wuTBiXua+2R+HM1+HMYfBlDdHAbK58nlw+S3/G2x4OPuY+qmVqUVSaeUbjNbetPPjpX+KHzduoaGV0mBQMzK+L1Ed3ydJkiRJkiRJqojm1JaM7Y3JPnjOchHigt7SpGlJN2fskyRJkiRJkqS+xmA0Sf3bvpdEFxTtUNUIR/8FkrW9VZEkqVT6YqjHQAlG69iW54QQ/jwB2jbGD1mRJTSqHOrGwR4fyD5m7d3w6CchDCtT00CW3p65PfHGc666MXDk7+HQX+a/9ryvwSmP7QzEmnA8jDq4sDp3mHI2vDUNF4Vw4TY48a6dt7emYfYne17j7JXR+GP+Cnt+CIIsL58P+H7m9lkfK6z+waxxZs5DO9JJPvLi5Yy6Zx2j7lnH6b+cyvqmTj/vdeN6XuT1K2HLiwUUWgFhGu4+r/D5QRXs/7Wex406IP/whzhzPwcXNMPCa2GvT0dhYblomBoFLA6Z1L2vbjyccHf08zznE1GoWn8y+mCY9ZHSr5uoju6bDvweHH8bHH8LzP8G1I4u/V6SyicIYMGvoX7azrZhs+GspXDg96GhU/ue/5z7uuvuh+v2hfU9BHepMOl2eOiDPY8zGE3qn/L9fdRrv9v58aan4sft8x+F1SOpf5n+ViBDQPjwuZCoqng5kiRJkiRJkqRdNcUEozXEBIn1V9mC3ppSWytYiSRJkiRJkiQVzmA0Sf1bzQg4/lY49Sk49iY4ZxWMP7a3q5IklUK2C1EX/HbXYMxKSbdXfs9yaM98YkeP4i7+3/gUPPT+wuspxJ4f6TkYDeCF78Nr/1v+ega6uFDArmG0M98DC6/Pfd39vw57X9y9PVsIWU+mvwWOvjoKGskkCODA78Kpi2L6E1Gw05AJue858WRomLFrW3II7P7O3NdQZEdAXg4ufvVr/HjFh9maGkZ7WMPfn2/g7B+ndw4YMjG3hW5/E6T6UPBlGMLa++Dv+8HWIkLbzt8M1Tm8k2myLrf7056cuQT2/2rhP79jDoHTX4DjboHDfxfdjr0JzngJxh1ZfH29af+v5/W9nZP9vpTb/6+kvm/k/nD6c3DiPXDifXDqM1A/pfu4unFQOyb3dTc/DTceAs98FZqXlq5ewapboWVFz+MMRpP6p5o8Q4M3Pgav/x88cTG8+MP4ceOPK64uSf1D3ViYdn739j0+VPlaJEmSJEmSJEm7SIdpmmNCwRqrBlYwWragt+aYcDhJkiRJkiRJ6msMRpPU/wUJGLEvTDwRqhp6uxpJUqlkC0abdEp0q7S4cKj+5oXvFzZv6Z+gZeWubU9/Ga6fV1w9DTNg7BEw51M9jx2xHxzwXdjnP2HUgXD8HVFIRDZPXxoFDalwcaFRQXX3tklvguNuhbFZgoyG7x0FHM79bMy6BbxUrR0DB3wPFvwmt/Ej9omCnKaeB3UTou/DPT8E52+Bqvr89q4ZDifcGYWyNUyHiafAsTdG36PKT83InIalw4D/XfPWbu33vAzLNr7x855r8EDzYlj+11wrLK8whPvfCTcfAZufKW6tfL6P9/86zPsqjJgX/Xzu9yXY78u5z9/zX6ChBOEv1Y0w4XjY7aLoNvHEgRH+VdUAh/6ydOtNfwvM+XTp1pPU+6rqo+fDYxdAIhk/bspZ+a/95H/A3/eB1XcWXp92tfrWHAYFUDu67KVIKoNsv4+Kc+9b4NlvxPfve0lxAeCS+pcFv4W9PgPDZsPoQ+GQn8Hsj/R2VZIkSZIkSZI06G1PbyNNOmNfY5Ygsf6oNqijKtP5nUCTwWiSJEmSJEmS+omq3i5AkiRJyijbhaiJ2ijAaNlfYN39latpIASjtW2EV39d2NwwDX+eBMdcB5NPhY1PwVOfL7yWiSdHa+0IfwhDeP678ePPXgFDJu7aNv4YOGc1PHVJFICWydaXYOMTMGp+4bUOdmFH5vZE5hNnmHBcdCtYkOOwquji0pnvLWybhqlw1FWFzc201hFXlmatwSwIYOxRsPburMM2dYxgVdvEjH1/XxTygaODKLAuV6//Hqadn0+lpZdOwQ3zYdOi4tea/pb8xgcJ2Ptz0W2Hto2w5CrY9GT2ucNmx4ccaqfxx0RhiRseLW6d2R+HAwsMOJXU/+3zn7D6Dmh6Ob957Vvg1oVw4XZI1pajssFlWQ6BqqMOjJ7XSOp/kvVRePb2VaVbc9zRpVtLUt+XrIH534xukiRJkiRJkqQ+I1sgWGNyALx5YydBENCYHMamjvXd+gxGkyRJkiRJktRfGIwmSZKkvmn4PvF9ydookOm4W+HqsdDRXJmaBkIw2sanINVS3Bp3ngYHXg5b8wxkANjr36L/u1EHwpQzozCeHYIAgiSEqcxza0bGrzv9wvhgNIhCjwxGK1y6PXN7XDBasTp/X3R19ipYcV308zjmcBi5X3lqUO+Z+d4eg9G2dMSHZ+6SQTL7E/BCDiFSS6+Gxb+F8cdD/aQcCy2xh/85/1C0fS+DZ77c/fFp5vuLr6dmJJx0Hyy7Bl74HlQNhTmfhEmnwIbHYPWtUD8VJp0KNSOK328w2PcSuPOM+P5Jp0dhR1VDYcxhUNUIw/eKHhfbNkaPnYZqSINbw3R408Ow/FrY9DQQwsu/gPZNuc2/8WA49amyllg2HS2w6Y3aRx/Se6Fjza9Hwcs9mfm+8tciqTyCAHa7KHtwe76y/Y5LkiRJkiRJkiRJFZEtEKwhmeXNnPupxuTQmGC0rb1QjSRJkiRJkiTlz2A0SZIk9U1Tz4lCYrqGeI0+ZGcYU9UQOOTncN/bKlPTQAhGKzYUbYdHP57f+NGHwYIrYNis7OMS1ZCKCUZL1sXPG75XFBiz4dHM/Sv+BvO/kVut2lUYQtiRua9cwWhkCbqoGxsFZ2ngmvEuaFkFT34udsimjvggrsbaTgc1o3Lf9/53Rv/u/R+w35cqG7jSuh5e+e/85w2fA8feCA+8F5oXQ+0Y2P+bMOG40tRVVQ+7vSW6dTb6oOim/Ew+PQoW7foYOvU8OPTn2QNAJWmHmhEw4x07j+d9JbpfeeknPc/dtCgK9mqYXr76ymHD43DvhTsDyUYdCEdf0zthpk9+vucx874Ge3yg/LVIKp/9v17aYLS6saVbS5IkSZIkSZIkSQWJC0arCqqpDbKcn9pPxYW9NWcJiJMkSZIkSZKkviTR2wVIkiRJGVU3wt7/vmtbohr2+eKubVPOhFFdwlkady9PTen28qxbSXEBV+XQMANOfwHO2wAn399zKBpAUETQ1kE/iu/b/GwU8KX8ZfueKeb/K5sgy0vVbH0aGIIA9r4Y9okPHtnYER8g1VjbKdCskKCpZ74Cq2/Nf14xNj5R4MQEjF8IZ74K566Dc9bAzPeUsjKV2uyPwYXbo9uZS+CCZjjqKkPRJBUuUQ0H/xgubIWp5/Y8/q6zIEyXv65SCdPw4Pt2hqJBFIb8yL9Uvo4Xfgiv/Tb7uPM2Rs9jfM4q9W+Japj85tKsNeGE0qwjSZIkSZIkSZKkojSntmZsb0wOI6jkm2hWSGNMMFpcQJwkSZIkSZIk9TVenSNJkqS+a5//hKP+BLu/B2Z9BE64CyafuuuYqgY47hbY/5sw9bwoSOfkh8tTT7qtPOtWUrqCwWinPxeFoeUT9jL6kML3G3MoHPbr+P7FVxS+9mCWLRAwUVWePYfuUZ511b8kh8R2beoYntsahX6PLu4h9KTUmpcUNq/z/Wvt6ChUTn1fsja6NUyFqvrerkbSQJGsgSOvggX/A7Vj4sdtfAIe/Xjl6irW+kdg4+Pd25f9FZperVwd914Ej340+5j9vw41IypTj6TyK1Vw7e7vK806kiRJkiRJkiRJKkpcIFhjcmiFK6kMg9EkSZIkSZIk9XcGo0mSJKlvm3oOHPZLOOi/YMxhmcfUDIe5n4GjroL9LoPaUTD3s6WvZSAEo4UVCkY74c4o9CVfe306c/tu78ht/rij4/se/lD+9aiHYLTq8uy554czt086NXO7BqZE/H3Ixo74kIKOdKeDMFXY3ot/U9i8Qq25I/85VQ0wZkHJS5Ek9WNBADPeBueuhWRd/LgXfwhLrqpcXcVYd19839K/lH//VCvcdiIs+b+exzbuXv56JFVOzaji15j1MZh2XvHrSJIkSZIkSZIkqWhxgWANMQFi/V1DTOBbc2prhSuRJEmSJEmSpMIYjCZJkqSBaca7S7/mQAhGS+cQjDbxlOL2GH0ojD2qsLkTToDhc3dtS9TAnh/MbX7t2Pi+1HbYvrawugazbMFoQZmC0UbuD2OP7LJXAvY03G5QyRLosqljRGxfR+cstNGHFL7/4v8pfG4+0h2FBbHN/ABUDSl9PZKkgeG0Z7L333MBpPrB65t198f3bX66vHs3LYarJ8CqW3IbXz28vPVIqqzaIoPRJp0GB10OiarS1CNJkiRJkiRJkqSixAWjNQ7QYLS4zyvu6yBJkiRJkiRJfY3BaJIkSRqYhs8p/ZoDIRgt7CEYbcR+sPBvsP/XoaaAi4AnnADH3QRBUFh9iWo44S6Y+T4YOgsmnQrH3gBjj8htflVD9v7NzxZW12AWZglGS5QpGC0IYOH1MOsjMGwvmHAiHPUXmHx6efZT35Ssje3a2DEyti+VDncejDoQhkwqbP/73wHbVhQ2Nx8rb8jeP+pA2Otfo/vl0YdGx/O+Bgd8u/y1SZL6r8bdo8eMbFZeX5lairHuvvi+7WvKt+/q2+HaPaB9U+5zqgfmyfLSoFUT/5ojJ3t9ujR1SJIkSZIkSZIkqSSaU1szthuMJkmSJEmSJEl9k29TLkmSJOUqNcCD0apHwEH/BUEC5n4WZn0U/tBD0FhXR/8VquqLq7F2NBz634XN7SmQ7daF0b/jj4W9/z0KclN26SzfM+UKRgOoboy+HzV4JeKD0ban62L7OtKdDoIEHPILuOdcSG2P2urGwfS3wguX91zDXybDOaujOeXy+h/i+w76Icz68M7juZ8tXx2SpIFn+kWw4dH4/rvOgrNXwpAJlaupJ02vwiMfhy3PQVUjbFsWP7ZcwWhhCI9+HMJ0z2M7Sxb5OkhS3zJsduFzZ/4TjDumdLVIkiRJkiRJkiSpaE0dmQPBGpJDK1xJZcQFo21LNZEOUySCZIUrkiRJkiRJkqT8GIwmSZKkgWvIJGhZUbr1Us2lW6u3ZAu5Om0R1E/ZeVxIwFmxoWilMHwubH42+5jVt8Pae2Dh34EAkkNg1EGQrKlIif1K2B7fV85gNCkZH36WCuNPyurommEy+VQ47TlYeWN0HzXhJBgyHvb4Z3j1V/DcN7PXccOBcMYr5bt/WP9gfN+088uzpyRpcJj5Pnj6MmjfHD/mzxPhmL/B+IVQlWcocqk1vQrXzMx9fGuZgtGaX4NNi/KfVzO85KVI6kXjjoH6abBtya7te3wQRh8CYQoe+kD3eVPOgkN+3nNwuyRJkiRJkiRJkiqqKZU5GC0uQKy/iwt8CwnZlmqmsWpgft6SJEmSJEmSBo5EbxcgSZIklc2+l5R2vScuhk1Pl3bNSgtjgtGGzd41FG2HyW8ubz3lMOm03Mal2+G2E+G2E+DmI+CGA6DptbKW1i+lswSjBQajqYwStbFdqZqxsX0dqQyNjbvBnh+EGe+IQtEAhs+B+d+AC1uy17FtGay5o8dyCxKG3YMWdpjzaagbV559JUmDQ81wOO6WnsfdeTr8bS/Y8Hj5a4qz9t78QtEAtq+JHktLrZDXfI17RAFKkgaORDWccAeMPQKCBNSOhXlfg4N/AjPfC3u8H858DcYeFfVXj4B9Pg9H/clQNEmSJEmSJEmSpD6oObU1Y/tADUbL9nnFhcRJkiRJkiRJUl9iMJokSZIGrmkXwMj5pV3z3gtLu16lpWOC0YKqzO17fw6qMr9rXDdTziqsplKb9eHC5m1+Bh77RGlrGQiyBaMlDEZTGSWzBKMlGmP7OtL57lMHx92afczGJ/JctActK+H+d8GVCUhtzzxm2gWl3VOSNDiNPgiO+L+ex21bGgUFh/k+kJZAqhXue0cB81rggffApkXF17DxCXjoQ3DXOXD/2/OfP+/LBiFJA1G/5G7VAAAgAElEQVTjDDjxHjh/C5yzGva+eNef9YbpcOJdUf9562G/y6KQNEmSJEmSJEmSJPUpqTDFtnRTxr6BGozWkIw/99dgNEmSJEmSJEn9gWfnS5IkaeCqGQ7H3wbzvwNTz4Fhs2HKmbDvpXDYrzPPGTEv+5qbn4U195S81IoJ44LRkpnbxxwGJz8Acz8Hu78nClU44yUgw0X/084vWZlFaZgOJ9xd2Nxlf4V1D+4MKkp3wPa1EIalq6+/yRqMFhOoJ5VCsi62K5VoiO3rSBWw14TjYOq58f3tmd8ttCDb18K1e8Li32Qf1zC1dHtKkga3yadB9fDcxt755vLWksnKG6F5cWFzF18BNx0B6x8pfP9Vt8JNC+Dln8KyP0N7nieAj5gH0/t5gLak7KoasocfVjUYiCZJkiRJkiRJktSHbUs1EZL5PNBsAWL9WU2iltog8zl4BqNJkiRJkiRJ6g+8il2SJEkDW80I2OtTwKd2bQ9D2PoiPPPV6DhRCwdeDnt+EG47GVbdFL/mLUdB4x5wxJUw+qCylV4WscFoWV4aDJ8L+39117bDfgUPfQDSbdHxnE/B9LeUpsZSGHtE4XNvOiz6t2G3KBSsZTnUjonC9CafVorq+pdswWhBdeXq0OCTqI3tSsWcsAWQKjTHcMFvYemfMve9fiXM+1KBC3ex6IvQ0Zx9TKIa6saXZj9Jkqoa4Kir4bbjex674rooELS6gid+L/tLcfM7tsLz34Uj/rew+c99e2cwciEmnVr4XEmSJEmSJEmSJElS2WULAmtMDqtgJZXVkBxKa0f3v4c3p0r4RqGSJEmSJEmSVCa+fbkkSZIGpyCAeV+Bs1fBCXfDuWujUDSAZHzgzj80vQy3nQBtm8tbZ6mFqcztiTwzk3d/F5y7Dk68B85ZAwd8B4I+9PIiCGDqucWt0fxaFIoG0LoO7jwDNj1TdGn9TpglGC1hMJrKKJktGG1IbF9HzN1cj6qGxAc8Nr0CTa8VuHAnqTZ46Sc9j6ub0LfuUyVJ/d+E42C3t+c2dsMjpd9/+1p46afw1Bdh9Z279m1+tvj1X7+ysHlhCKtvL27vurHFzZckSZIkSZIkSZIklVVzlmC0hmQF3ziswuJC37IFxUmSJEmSJElSX+FVtpIkSRrchoyHcUdCdacTG2rH5Da3fTOsuqk8dZVLuiNze5BnMBpEX7OxR/TdIIBcgx9yFsKSq0q8Zj+QNhhNvSQRH1KZDuJD0zrSRexZleUktxe+X8TCb7j5iNzGjTum+L0kSeqqblxu40odBrz1ZbjhIHj4Q/D0ZXDrQlh06c7+7WtKs8/Gp/Kf07EV0q09j5v3FahqzNw38ZT895UkSZIkSZIkSZIkVUxTamvG9tqgjppE/Llo/Z3BaJIkSZIkSZL6M4PRJEmSpK7yCfp6+svlq6McwphgtEQBwWh93ZQzYeis0q65ucQhEf1B3PdMkIhuUrkEydiuVBAfmtaRKmLP6mzBaJfDvRfBnyfBldVw7azoMSDMMYlt3QOw4ZHcxk5/a27jJEnKR3XmE5672fx0afd95iuwbcmubYsugRsPi0LYWksUjPbwh/Kfk1MoWwCzPgaH/KJ7MPC+l8HwOfnvK0mSJEmSJEmSJEmqmLggsIZklvPFBoCGmGC0ZoPRJEmSJEmSJPUDAzD9QJIkSSpS7bjcx6a2l6+OckjHhVwNwJcGQQALr4Nr9yzdmsv+Urq1+ot0e+b2oDpzu1QqVQ2xXamq4bF9HTnmlGXeszF7/+tX7vx460vw1Odh4+Nw1J+yz0t3wE0Lcqth7BEw8eTcxkqSlI/q+MfPXTS9CusfgbX3QstyGHskTDo1e5hy81JYdx90NEXHVUNh3NFQNx6WX5t5zvoH4e/75Pc5ZLPuPkinIPFGuGpHM6y5K3qtM/7YzPXnEoxWPRyqG2G3t8Dog2H1rdHrwHELYeR+patfkiRJkiRJkiRJklQWccFojTHBYQNFY1Xm4Lem1NYKVyJJkiRJkiRJ+RuA6QeSJElSkeryCEZL1JSvjnIIB1EwGkD1iNKuF3bAhkdh1IGlXbcviwtGSxiMpjKrnwRDZ8HWF3dtHzKRdM3Y2GmpYoLRqgt4B9ClV8ODH4CDfxT/c5FrqOK4Y2DBb3cGukiSVErVOZ7Qverm6LbDc9+CIAlnvgb1U7qPf+mn8OjHMjxvDGDfS6F1faEV52/dfTDuKFh7H9xzHrSsjNqHzYaFN0DjbruOzyUYraZToNzQmdFNkiRJkiRJkiRJktRvNA/WYLSYzy8uKE6SJEmSJEmS+pJEbxcgSZIk9TlVjbmPHSjBaIkBGoxWMxJi3vGuYHefC2FY2jX7MoPR1Jvmf3PX4MYgAfO+ljX8rKOYYLSgwO/rV34Bv6+BRV+CVGv3/rX3ZZ9/URjdTrgDGqYWVoMkST1JZ3iMylWYioJAu9ryUkwoGkAIi75Q+J6FuOVouPetcPMRO0PRALa8ANfM6D6+NYdgtFwD5SRJkiRJkiRJkiRJfVJTamvG9oYBHowW9/nFBcVJkiRJkiRJUl9iMJokSZLUVe2Y3Mf2t2C0dEwwWjBAg9ESSZhyZua+428rbM3m12Hri4XX1N+kWjK3D9TvGfUtU86Ek+6DOZ+Gvf4Vjr8Tdn8XqSzZhB2pIvaL+37P1aIvwG0ndg9PXH5N/JwDf1DcnpIk5WrIpOLmr7x+1wC0jm3wzFfig3RLbeIpuY17/ffxfQ99aNfjbct7Xq96eG77SpIkSZIkSZIkSZL6pKaYILDGUr/xbh/TGBOMFvf1kCRJkiRJkqS+xGA0SZIkqavRB0GuJzsk+1kwWhgTjJYYwCFXB/0Qxi3ceTx0Fpz2DIw/tvA119xVdFn9wiu/gvvfkbkvUV3ZWjR4jT4YDvg2zP8WjDsSgFQ6fnhHlr4eFRuMBrD2blh9a5d1t8WPL+a+SJKkfIw5AoIi/yTQ0RT9+9JP4K/TYPEVxdeVqyETYPShxa3x8k+joOMdNj/b8xyf90qSJEmSJEmSJElSv9YcF4wWExw2UDQmM58L3ZLeRirufGJJkiRJkiRJ6iMMRpMkSZK6StbB7I/mNjbRz4LR0jEnMgQDOBitZjiccDuc8TKc/jyc9iwMnxv17f7uAtccUbLy+qx1D8GD743vNyBCvahswWgTTihicie3nQh3nwu/r4E/joaWlZnHJethxD6l2VOSpJ7UjYHd31PcGh3bYM098PCHoXV9aerKVaIW5l4MBMWt89fdYNUt0cebn+55fLvvlC1JkiRJkiRJkiRJ/VlTTDBawwAPRmuICUYDaEptrWAlkiRJkiRJkpQ/g9EkSZKkTPb7Mkw8uedxQT8Lh4p7h7eBHIy2w9CZMGw2JJI726ZdWNhayYbS1NSXvfqr7P397XtfA0rWYLRUEQuPWQA1o4pYoJOlV0O6Hdo2xI85/dnS7CVJUq4O/hns/3UYfVhhrwE6tsGzXwPCkpfWo0QNTD0LFv4dJp9R3Fq3nQiPfRq2vtTz2LbNxe0lSZIkSZIkSZIkSepVcSFgjQM8GC3b59ccExYnSZIkSZIkSX3FIEg/UCZBEMwB5gFTgCHAdmAN8DLwZBiGzUWsXQ0cAUwDJgJNwArg8TAMXyuuckmSpAoJAtjni7DyxuzjwvbK1LPD5mfhyf+ENXdC/VSY/y2YeGLu8+OC0RKD9KXBhBNhj3+Gl3+a37x0W3nq6Ut6+pokDEZT78kWjJatr0eJKjj8d3D32ZDaXsRCOagZCfXTyruHJEldJZIw97PRbc09cMtR+c3/26zy1JWLZE3076Q3RbdrZ8PWFwtf7/nv5jau3WA0SZIkSZIkSZIkSeqvOsJ2tqe3ZexrTA6tcDWV1ZDl82syGE2SJEmSJElSHzdI0w8GpyAIRgAfB95LFFoWJxUEwRPAH8Mw/Hoe648FLgUuBEbFjLkP+G4Yhn/KuXBJkqTeUjeu5zGplvLXsUN7E9x5BjS9Gh23bYDbT4YT74Gxh+e2RjomGC0YpC8NEkk4+Mewxz/BY/8Ka+7IbV66taxlldzGJ6FpMQzfC4bN7nl8mEOylMFo6kWpML6vo5hgNIiCVt78Kqy6BWpGwcj5sP6B6Gdo2zIYdQCk2+GF78OmRYXvM3yfKIRTkqTeUtXQ2xXkJ1Gz63H91OKC0XI1453l30OSJEmSJEmSJEmSVBbNqa2xfY3JYRWspPKqgmrqEvUZg+GasnxdJEmSJEmSJKkvGKTpB4NPEATnAz8BRucwPAkcCEwBcgpGC4LgFODXQE/pIYcDhwdB8Dvgg2EYNueyviRJUq/IKRhte/nr2OHln+4MRfuHEF78Ue7BaGFMMFpiEL80CAIYdSAc/jv4yxQgS+LSDum2spdVEmEI974VlvzfGw0BzPsq7H1x/JxUK9xwUM9rG4ymXpTKEn6WrS9nQybCjHfsPK4/p/uY3d8Niy6Fpy8rbI9JpxQ2T5KkUunvwWjD5sDqW8u/77Tzy7+HJEmSJEmSJEmSJCkvYRiypn1F1uAzgHXtq2P7GgZ4MBpAY3JoTDDalm5tqbCDFa1LaA+7nyObDKqYVDON6q5/u5ekCujpPn9E1WhGVY+tcFX9W1u6lfXtaxhXM4lkkCx4nVSYYk3bCkZXj6MmUVvCCiVJkiRJMhhtUAiC4IvAJRm6lgAvAmuBOmAisC+Q1xVxQRAsBP4CdP7tdgg8BrwKjADmA2M69b8NGBYEwVlhGJbisnVJkqTSq2qE6mHQ3v2P//+QaqlcPU/+R+b2DY/kvkY6Jhgt8KUB9ZNg7mfh2RyygVOt5a+nFF75RadQNIAQnvwcTD4DRuzdffza++HmHEP26qeUpESpENnCzzpSFSoiSMB+l0LNCHjsU/nP3+MDpa9JkqR89HYwWtVQGDoTNj6R2/iuJ87NeAe89KPS19XZ9Itg9MHl3UOSJEmSJEmSJEmSlJcl21/h58u/zoaOtUWt05gcWqKK+q7G5LCM4XDNXYLRHtlyN79b9SNaw/g3jK4KqjlrzDs4duQZBEFQ8lolKZNl21/j5yu+ljXoEmC3ull8YPLFjKgaVaHK+qcwDLlxw5+4bt3vSdHBkEQ975zwceYNPTTvtZ5qeogrVl5OS7qZJFWcNuZCTh51no8RkiRJkqSSSfR2ASqvIAg+TfdQtCuB/cIwnB6G4YlhGF4UhuE5YRguAIYBRwLfA9bnsP4U4Gp2DUW7F9g7DMODwjC8IAzDk4ApwMeB9k7jzgC+XOCnJkmSVH5BAOMWZh/TUaFgtHQHpLu/AxsAW1+EdI5JQKHBaFnN+yoccy1MPSf7uHQ/CUZ7/vuZ21+4fNfvmebX4alLcg9FA5h8ZlGlScXIGoxW6ejtOZ+E426F2Z+MwlMmntLznIXXQ+3o8tcmSVI2vRmMtu9l8KaH4U2PwVFXw6yPwv7fzP442vVdp0cfAuOPLX1tiRrY88Nw+JWw4DdRGKokSZIkSZIkSZIkqU9oT7fzo2WXFR2KNiRRT3IQnDvbkByWsb2pUzDaytal/HLld7KGogF0hO38ce0veX7bkyWtUZLipMIUP17+pR5D0QBe2/4iV6z8XgWq6t+eanqIa9b9Dymi60pa0tv4+YpvsL59TV7rbGhfy8+Wf52WdDMAKTq4Zt3veLLpwZLXLEmSJEkavAb+b3AHsSAI5gFf79TUDlwUhuEf4+aEYZgmCja7Nwhy+g3/pcDITsf3ASeE4a6/DQ/DsBX4QRAES4A/d+r6VBAEPwvD8PUc9pIkSaq8cUfB8mvi+1MVCEYLQ3jum9nHtCyHhmk5rBUToJbwpQEQheFNPh0mnQp/ngTbY/6ImuoHwWiLfwtbnsvc98ovYOUNcNgv4YnPwYZHcl83UQ1zPg27v7skZUqFyBqMlgorV8gOE46Lbjusvh0eeB80L951XKIG5n8HJr2psvVJkpRJbwWjzfoo7Pv5ncdTz45uEAX2xukajBYEcNiv4PaTYcsLpatv/rdh9kdLt54kSZIkSZIkSZIkqWSe2/Y4W1Obi16nMSYwbKCJ+zybOrb+4+MHt9yR15oPbrmdvRr2L6YsScrJC9ueYlPH+jzGL2JD+1pGVY8tY1X924Nbbu/WFpLm4S138qbR5+e8zsNb7iKk+wndD265nf2HHlZUjZIkSZIk7WD6wQD1RqjZL9n1//iD2ULRugrDsKOHPfYE3tWpqQ14d9dQtC5r/iUIgis6zasFvgi8N9e6JEmSKqq2hz+KbV8F6RQkkuWrYe298OR/ZB/T9EpuwWjpmKd4g+Bd7/ISJGDuZ+GxT2XuT7dVtp58pVrh/ndmH7NtKdx2Yn7rjj0Cjr2x90I0pDdkyz7LFppWMeOPhdOfj8JdqhuhfQu0bYIR+/jzI0nqOxLVvbPvnv8S35eszdJX072tYXr0mLv1FXjpJ/D8d4qvr35q8WtIkiRJkiRJkiRJkspieetrJVlnYm0O59wOAI3JoRnbm1Nb/vFxvl/TFa1Z3vRMkkpoeQH3NytblxiMlkXc13RF65I813ktZh0fIyRJkiRJpZPo7QJUNucDB3Q6vjUMw1+VeI+LgM4JIFeHYfhSDvO+0eX4giAI6kpXliRJUgnlEmBz2wnQ3hQFpJXDq/+v5zFbX8ltrbjs24TBaN3M+WR839NfqlwdhVh1a3nWPfgnhjqpT8gWftbRF4LRIApvGbYnDJkIw2bDmEP9+ZEk9T3TLuzeVjsGqvN8Z+wZ74JDc3jdMvEUGD4nvj+Z5dfEiSyhaUNnwt7/XprA5waD0SRJkiRJkiRJkiSpr1rVurwk6xw+/ISSrNPXNSQz//2/qVMw2uq2ZXmtubptBemwr5yoJ2kgW9OW/33+6gLmDBbt6XbWt6/O2Jfv1y1u/Lr2NbSn2/OuTZIkSZKkTAxGG7g+2OX4q2XY4+wuxzkFr4Vh+BzwYKemBuCkUhUlSZJUUrmE2Ky5A64aGt3ufDNsK/Ef0179dc9j1t7d85imV2HVzZn7ShEgMBCNPz5ze2obtG2ubC35aMoxKC8f+14CI/Yt/bpSAfpFMJokSf3BAd+NAjx3qGqABf8D7Vvi53RVPw0W/Bomndrz2PHHZO+vGR3fl6jJPrd2FBz2awg6/dljzOEw93O7tmWTrIehs3IbK0mSJEmSJEmSJEmquHxDvLqaVDONd0/8JPs1HlKiivq2xh6C0drTbaxvX5vXmu1hGxs71hVdmyT1ZFUB9/mr21aUoZKBYV37KtJkPtF6TdsKwjDMaZ0wDFkT83UOSbOufVXBNUqSJEmS1JnpBwNQEAR7AJ2vMHsNuL3Ee0wA5nVq6gDuzWOJO4BDOx2fAlxTfGWSJEkllksw2g6pFlh+bXS7oCm/uXHSHbmNW/wbOPT/QSLmKX5qO9x8ZPx8g9EyS9bG9y37K+z+zvj+MITNT8P6R2DkfjByfu6BDMXavqY068z9LAzfJ6p9xN6lWVMqgazBaKnK1SFJUr9XPwlOeQLW3gNtG2Hs0TBkfGFrDZmQw5gp2fuHz43vS23ref0Zb4Pxx8Lq26F+chSMlqyB3d8Nm5+BMA3pVlh9G6y7HzY/22X+O6F6aM/7SJIkSZIkSZIkSZIqLgxDVrdlfvPit43/MIcMW5h1fhBAVVBdhsr6rrhgtObUVgDWtq8kjAnJ+cy0b/CtJZ/N2Le6bTmjq8eVpkhJihF3n3/BuPezsm0pd2+6oVtfIWFqg0Xc1xOgNdzOpo71jKwe0+M6mzs20Bpuz7rPxNqpBdUoSZIkSVJnph8MTMd2Ob41zDWuPXf7dDl+KgzD5jzm39fl2JQFSZLUNxUabvaHRjhnNdQV+Uf/psW5j11zJ0w4PnPf0j9Dy8r4uYlkfnUJNjwaH4wWhvD4Z+D57+xs2+0dcNgv48PrSqk1v3fv62b6W+HgH0PNiNLUI5VY1mC0LH2SJCmDZB1MOKE0ax35B7jngvj++p6C0bL8mjjVmlsN9ZOigLTOhs2KbjvsdhF0tMAzX4FXfgHJeph2Acz7cm57SJIkSZIkSZIkSZIqblPH+tgglkm106hODK7Qs1w0JjO/OVhruJ32dBurYkJyEiSZVjeT4VWj2NyxoVv/6rblzG2YX9JaJamzpo4tNKW2ZOybVDuNkMyXy67JEv412PUUGre6bXlOwWjZAtZy6ZckSZIkKVeJ3i5AZXFIl+P7AYLICUEQ/CoIgmeDINgcBEFzEASvB0FwSxAEFwdBsFuOe8ztcvxynjW+0sN6kiRJfUOywGA0gEWXFr//9tW5j33+e/F9K67PPrdlVe77DCYd2+L7qurj+9bcsWsoGsBrv4UlfyhJWd2k2mDRZXDjArh2Nrz8s8LX2vdSOOJ/DUVTn5bKEv2dLTRNkiTlaM9/KWzemAXZ+4fumb2/fgrUji5s7XxVDYmC0M5ZDWcuhvnfAE+SlyRJkiRJkiRJkqQ+K1vQyviayRWspP9oSA6L7WtObWV1TEjO2JqJJIMqJsR8XXsK15GkYmW/z58Se7+/ObWRllSWawAGsZ5C43INNDMYTZIkSZJUKQajDUwHdTl+7o3As1uAm4F3A3sBw4B6YBpwPPA14MUgCH4UBEGWlAcA9uhyvCTPGl/vcjw6CIKRea4hSZJUftnCr3qy/NrC5jUthqbXoo/bN+c+b8V18OoV0LIS1twNbW/M7dgWhXJl07h7QaUOeB3N8X3JLN8br/wyc/urvy6qnFj3XgiLvgjrH4CtLxa+TpCA3d9VurqkMskWftbWUbk6JEkasKaek/vYsUfs/Lh+Ckw4KfO4cQuhflL2tYIAdn9f9/bG3WHkvNxrkiRJkiRJkiRJkiQNOHFhXMOSI6hPNla4mv6hMUswWlNqC6taM4fX7AhEGxcTPNRTuI4kFSvuPn9Iop5hyRFZAzHXtK8oV1n92uq27F+Xnvr/Ma7dYDRJkiRJUmVU9XYBKouJXY7rgYeBMTnMrQb+BVgQBMFpYRiujBk3osvxmnwKDMOwKQiC7UBdp+bhwMZ81pEkSSq7qobC57asgDAdhU3lNH4V3Hk6bHg0Oh59KOz2tvz2fODdOz8OEjD7kzByfs/zchkzGKWyBKNlC8177X8yt6+6ubh6Mnn2m7DsL6VZ66iroWF6adaSyihbMNq2tsrVIUnSgDXheDjoh/Dkv0P7luxjZ3141+MFV8A958Hae3e2jVkAR1yZ2977fjEKe94R7jx8bzjqz7m/rpIkSZIkSZIkSZIkDUhxQSvZwnEGu/pkIwEBIWG3vqbUFlbHBA+Nr5kCwIQ3/u1qlaE3ksos/j5/CkEQMLJqDNVBDe1h9xOHV7ctZ3rdHuUusV8JwzA2bG6HXEMvewpQW5NjwJokSZIkST0xGG1g6hpa9it2hqI1Az8FrgeWAQ3APOC9wJGd5swH/hQEwTFhGLZn2KPrW6m0FFBnC7sGow0tYI1dBEEwDhib57SZxe4rSZIGsGKC0cIUtG2E2tG5jb/vbTtD0QDWPxjdCt4/Dc9/B5JDso8btxDGHl74PgNZR5ZgtKZXK1dHnPYt8MRni1+nbjyctQwSvkRU/5AtGO1p/5YuSVJpzPowzPwnaH49el1z02Hdx4xbGIWedTZkApx4D2xbAduWQf0UqJ+U+75V9XD4b+DgH0LremicUdSnIUmSJEmSJEmSJEkaGOICXcbHhHcJkkGS+kQjzemt3fqiYLTMITgT3gibiwud29yxge3pFuoSPZyjLEkFirvP33H/lAgSjK+ZxLLW17qNiQt9HMyaUptpSWe5NgL+P3v3HSbJVd/7/3Oq0+Sd3Z2ZnrC7ykI5gIRAIAzYGOk6EJzANjYY44BzIjj8CNe+Nk6P8c/GXCcMBmNjDAZsIRDJgBICIUArIVZC0oaZ7pndyalTnfvHaKXZmTrdVTOd+/16nn12+5xT53ynt7u6e7rqU8oWwgajlR+34i9pubiovvhA6PoAAAAAAAjCWe9txhiTkpTa0nz6N/z3S7rRWntsS/89kt5ljPkNSX+6qf2Zkl4v6fcDltoajLa+g3LXJO0tM+dOvFbSm6owDwAAwAZv61uriNanwwWj5U5J2c/sbi2XUpkM28t+T7roNyQvUZu1W125YLQj75DOf42096ot7e+sbU2bHftwtPE9B6WuUalrWFqbkhL9Uvr50iWvJxQNLaVcMJok3T9pdcm4qU8xAAC0s1hKGrhw498vvFu666ek+W9s3L7sTRvvI40XvG3PeLRAtK0SAxt/AAAAAAAAAAAAAACQO4hl1BHehQ29sf7AYLTjuUeVs8Gng50Om3MFo0kb/x9ndZ1fnSIBYAvXPn9zGOZIcsIRjBYu4KuTZELcJ7OFGeX9nJJlzqEp+HnNFqYrzpXNnyAYDQAAAACwa5z53n5ijvYFBYeiPcFa+2fGmAlJv7ap+deMMX9hrV2usK6NWOdOtwEAAKgvs8tgnfVpac/FlcedvHN36+zE8LOkK95a/3VbSXG1fP833io950NP3i7lpXvfUH4ba3f/uDrtkXeHH2vi0vc9JMWS1VkbaKBShU+Tf/wJq396FcFoAABU1f5rpP/19UZXAQAAAAAAAAAAAADoQOv+muaLpwL70qkDge3Y0Bcb0HRhclv7w2v3O7dJJzcuhLY3PqSESapg89vGZHLHCUYDUBMFv6CThWxg3+bARld4Yza/fZ/X6cKExVlZzRSmNJE62zlmujApG+K04Ez+uM7rCXEeDQAAAAAAZXiNLgDVZa1dleQHdP15uVC0TX5PGyFqp+2TdFPAuK1Bad3hKiy7TaXwNQAAgNaz8li4cTboLVyNnfvq+q/Zas55Rfn+zK1n3p67VyosBI897QsvkXLBB+dEkp+Tsp8NP77nIKFoaBulCrvM99xBDjcAAAAAAAAAAAAAAAAAtItygS6jjmAcbOiLDwS2P7Z+JLB9ILZXPbE+SZJnvCdC0raaLlQO2QGAnZgpTMkGniIbLhhtOj8pvxHnZzSxMMFoG+PKh8qFDZ0Lux4AAMqodT0AACAASURBVAAAAOUQjNaeVgLa3hNmQ2vtiqQPbWl+bsDQZg1Ge4ekyyL+eVEV1gUAAO3s3FcGtz/lV6SeQ1L/he5t7/xJaf5wiEUa8MVb78H6r9lqzvnJ8v3FLW9h83OV5zz+EenmK6Xs53ZcliTpob+PNn7vFbtbD2gilYLRAAAAAAAAAAAAAAAAAADtI5M7HtieMEntjQ/XuZrW0hvrD2wv2mJg+9agoRFH8FAmR+gNgNrI5oP3+Z48DSdHn7jtCsYs2LzmiidrUlurCh+MVn5c2HmmC+EC1AAAAAAAKCfe6AJQE/OSNv/WOmutfTTC9ndKetWm2xcHjFnYcjvStwjGmD5tD0abjzJHEGvttKTpiLXsdlkAANDuLv0dKfNpafXYk21X/qF06Rukp/3Fxu1PXCed+lLw9nf8uHTgxdKJ/5ZSQ9L5r5EOvuTMMbZUm9rL6Tu3/mu2mqHroo0vbH2b7LB2Qvr086Xh66XEXmltUko/V7r8LVKir/L21kr3vi5abRe8Ntp4oIkRjAYAAAAAAAAAAAAAAAAAncMVxJJOTsgzXp2raS19sYFI47cGo40mDwSOCxuOAwBRufYvQ4lRxU3iiduu4MbTc+xPjFS9tlZV72A0XiMAAAAAANVAMFp7+pakg5tuT0Xcfmsc+/6AMUe23D4r4hpbx89aa+cizgEAAFAf/edLL7xbOvERafW4NPoCaeSGM8ck9ri3n7t3489pUx+XznuNdOFrpT2XS15MKq7WpnaXvnOl3nPqu2YrMp501sulx97vHuMXJe/xj1aFxQiTW2nmtidvzt0jnbxDesEXN9YNsj4tLT0s3fXqCOtIGnqmlP7OaNsATSxMMNq/3OXrR6/jgDcAAAAAAAAAAAAAAAAAaHXZ/PHAdldoF54UNRhtdEvQUDo5HjhuujAp35bkmdiOawOAIBlHqNZo6sx9fpfXrT3xfVoozm4bm82f0CW9V9ekvlZT8As6WciGGlsp0Gw6ZODZTD6jki0qZjiFHQAAAACwc5wh3J4Ob7mdi7j91vFdAWMe2HL7/IhrnLvl9v0RtwcAAKiv7rR0/s9IV7x1eyiaVD4YLcjDfyd9/GrpYxdI84el4kp16gxr4kWSMfVds1XFusv3l9af/HdhYXdrnbxj489Wfkm662ekD6WlW6+XFre+Hd/khv+QzvvpJ2+nnyc98583AviANlGylcf87/8KMQgAAAAAAAAAAAAAAAAA0PRcITnpLSFe2C5qMFp6S/BQ2hE+V7QFzRZO7rguAHBxhXMF7fNdrwOVAr46yclCRlYhrkqtjfvN2uBjsK21oe9XX6XQYWwAAAAAALgQjNaevr7l9mDE7beOPxUw5r4tt68wxvREWONZFeYDAABoLYloBw08YeUR6ebLpLt/Ltp2z3iXdPAHdramJO29aufbdhovWb7f35QrXFjc/XoP/8P2tiPv2AjTq2TftdLBl0rX/Z30w6vSSzLSd35G6j9v93UBTcQP8d38g1mpUCQcDQAAAAAAAAAAAAAAAABaWcmWNFOYDOxzhXbhSb2x/kjjR7eEDI0kx51js/njO6oJAFw2wreC9y2jAfv8dIJgtEqi3Bfr/qoWS/OBfUulBa35qzVZFwAAAACAIASjtaePS9p89ve5xpiuCNtftuX2tt8kWWundGYAW1zSsyOs8dwttz8eYVsAAIDmk9hT3/W6J6SJ79v59oNb3/LByV8v31/a1F9Y2P16p+7a3nbsg+G2vWBTwF68W+pO774eoAmVQuadZaqQVQgAAAAAAAAAAAAAAAAAaJxThWkVbTGwb2uIF7bri4W/+HPCJLU3PnxGW5fXrcH4/sDxhN4AqLaF0pzW/bXAvnTAPj+dIhitkkzEEEvXfRf1Ps3mg0NNAQAAAAAIi2C0NmStnZR0x6amhKTvjDDFjVtuf8Ex7sNbbr8qzOTGmIskXbepaUXSJ8OVBgAA0KQS4Q8aqIquEensH5e6x6JvG++XBi6ufk3tqljhqkZ+7sl/F6qQwrRwv5T59Jlt058Pt+25r9z9+kCTs9bKhgxGOz5X21oAAAAAAAAAAAAAAAAAALWVdQS6GBmNJMfrXE3riRKMlk6OyzPbTzcMCiOSpAzBQwCqLJtzh3gFBqM59k/zxVPOgLVOMx1xX+0aHzUYLeq6AAAAAABsRTBa+3rXltu/HmYjY8wNkp6+qcmXdLNj+PsklTbdfqkx5oIQy7x+y+0PWGvXw9QHAADQtJJ76rtealjyYtL174u+7QU/L8W7q19Tu6oUjFba9Fa2sFB+7NmvkF58rPKan7tJmv+GNHmL9M23Vx4vSS8+IQUcjAK0m5IffizBaAAAAAAAAAAAAAAAAADQ2lzhW/sSw0p6qTpX03qiBaMdCGwfdbRHDckBgEoyjjDM/tge9cb6t7WnE8HBaJI0nZ+sWl2tLBvxfnDt26Pu83mNAAAAAADsFmfNt693SXpg0+3nG2PKhqMZY0a0PVDtA9bah4PGW2uPSHr3pqakpH8yxnSVWeNFkl65qSkv6S3l6gIAAGgJsZ76rpcaenzd3ujbXvWH1a2l3ZUqBaPlnvx3ft497uLfkp7xD1LPAam7whUK/YJ08xUbAWn3/GrlGm+6V+rhqofoDNGC0WztCgEAAAAAAAAAAAAAAAAA1FzWEZLjCvHCmbq8HnkhTyFMJ4MDhkaSwceoEnoDoNpc+xXX/mlfYkhxk4g0Vyex1jrD5tz3W3CQmuv+jCke2O4KNgUAAAAAICyC0dqUtbYk6VckbT5l/M+MMW83xuzdOt4Y812SbpN03qbmOUm/XWGpNz0+7rTrJX3KGHPRlvlTxphfkvTvW7b/M2vtYxXWAAAAaH6FhfquF0tu/B2PGMiWGpIMHwMiKVYKRluXvv0e6VPfIWU/Ezzm6j+Rrv5jyXv8y0MvWb36rvpjae+V1ZsPaHKRgtHKZBUCAAAAAAAAAAAAAAAAAJqfK4hl1BGSgzN5xlNvrD/U2FFH2JyrfbE0p7XSyo5rA4CtXCFermA0z8Q0kiC80WW5tKA1P3g/fVFP8DkIrvvN1X5Bz6XOtVdLyyGqBAAAAAAgGIkIbcxae6s2wtE2+2VJWWPM540x7zfG/Kcx5lFJt0o6f9O4vKSXW2sfqbDGcUkvfXz8ac+SdL8x5m5jzL8ZY26RdEzSX0raHCP/X5J+bwc/GgAAQPMZeEpj1o33Rht/4MW1qaOdDV1Xvv/Bt0t3/qQ0/Xn3mIGLz7w98b27r+u0se+u3lxACyjZ8GNPzFUeAwAAAAAAAAAAAAAAAABoXu6QnOCwLmzXFxsINc4VPORqlwgeAlBd7jBM9z7ftY9i/yRlytwHV/RdG9h+qpBV0RbOaCvagk4Vso55nu5cg/8DAAAAAMBuEIzW5qy1fyXptZJWNzUnJN0g6WWSXiTprC2bZSU9z1r7iZBrfE7SSyTNbGo2kq6R9MOSXihpeMtm75f0MmttKdQPAgAA0OxGvkMy8fqs5aWe/HdqKNq2Z/9YdWvpBOe9unz/0X+rPMfgZWfePvendl7PZnsukQavqM5cQIso+eHHHp+LkKIGAAAAAAAAAAAAAAAAAGgqy8VFrZSWAvvKhXXhTL27DEYbjO9X0qQC+wi9AVAt6/6a5oonA/vK7fMJRnNz3Qc9Xp/O674ksM+Xr5l85oy2mXxGvoIP4r6w5zKlTFek9QEAAAAACINgtA5grf0bSVdIeq+k4G8DNmQkvVnSU6y1t0dc42ZJl0l6p6S5MkPvlPSD1toftdauRFkDAACgqSUHpYt/oz5rXf0nT/470R9+u9HvkoZvqH497W7PZdLBH9z59vF+qefQmW17r5IOvGR3dUnSte+UjNn9PEALiRaMVrs6AAAAAAAAAAAAAAAAAAC1lckfd/aNJg/UsZLW1herfLzxvviwkl5w+JlnPI0kxwP7MoTeAKiS6fyks6/cPj/t2D9N5yfl2wgHHrchVzBZOjmhocSojOMU863bueYx8jScGHe+RhCMBgAAAADYjXijC0B9WGsflvQKY0y3pGdJOiBpVFJe0oykr1lrv77LNaYl/bwx5lceX+Osx9dYkXRC0lettY/sZg0AAICmduUfSnsul+56teTnarNGrEs662Xhx1/8W9LSkY1AtAtfK3mx2tTVzoyRnvUv0r9+cGfbp5+7PbzMGOnZH5CO/I30lV/e2bzd49IIQXfoPFGC0U7MS9ZaGQIEAQAAAAAAAABACzLGvFnSm3Yxxbutta+sTjUAAAAAUH+uQJVur1f9sT11rqZ19cUGKo5JJyfK9o8mD+h4bvtpYdOE3gCoEtc+P24S2pcYdm7n2n/lbU7zxVNlt2135YLREl5CQ4kRzRQy2/q3htS5Quv2J4aV8BJKJyd0LPft0OsDAAAAABAGwWgdxlq7JulTNV4jL+mztVwDAACgKRkjnfNjUt+50q3XV3/+WLf0jHdJXRG+mLv6j6tfRyfyElLPQWn1WPRtD7zIMWdcesovSee/Rvrgfqm0Gm3ep/9d9FqANuDb8GNLvrRekLqTtasHAAAAAAAAAAAAAAAAAFAbmfzxwPbR5AEumBlBb6hgtANl+0eS44HtGUJvAFSJK0RrJDEuz7gvEF8u2HE6P0kwWoDT99lIciIwGG3rdu55Dpwx3/Z5ggPVAAAAAAAIw2t0AQAAAEDb6RrZ3faxHuk5H5Ve9Kj0o1b63gel598qvfiYdNaPbB8/9sLgeQ68ZHd14EyFhZ1t139B+f5YlzQcMUhv9AXS+E07qwdocVGC0SRprVCbOgAAAAAAAAAAAAAAAAAAtVUp0AXh9IUIRhutcJ+OOoLTZgqT8m1pR3UBwGbOMMxU+f1Td6xXA7G9kebsBAW/oJOFbGDf6ddRd6BZ2GC08vPMFKZ4jQAAAAAA7Fi80QUAAAAAbSdMMNr5Pyc99M7gvu//ttSdfvL2wIUbf1wu+Hlp6hPb2w/9YOU6EF6sRyosRt+u52DlMc/7hPR+91WsntB7lnTwB6RL3ihxpUN0KBsxGG01L+3rrU0tAAAAAAAAAAAAdfZySXdGGL9cq0IAAAAAoB6yrpAcR0gXgvXG+iuOSafK36eu0JuiLepUYVrDybEd1QYAp7nDtyrv89PJcS2uzYWesxOcLGRk5Qf2VQxGK5woezvsPEVb0GxhRkPJ0VA1AwAAAACwmdfoAgAAAIC2E++Tuit8uX/tX0tX/dGZbXuvll584sxQtDDG/5d06IfObJv4/o0ALVTP0HU72647xFUJjSdd+jvlxyT2SC96VHrqn0ldQzurBWgD/g6C0QAAAAAAAAAAANpExlr7aIQ/JxtdMAAAAADsVMHP62RhOrDPFcCCYH0hgtFGK9ynI8lxZ1+mg4OHAFSHb0uazk8G9oXZ5zsDvjp4/+T62T15Gn48qCzt2LevlJa0XNy4qPxyaVErpaXAcae3L/ca0cn/BwAAAACA3SEYDQAAAKg2Y6SzX1FhjCdd8nrpe+6Xrv5T6fr3Sy/4otTj/kLIyUtIz/pX6bkfl678Pxt/3/BBKZbaWf0Iduhl0bfpHpNiyXBjz6owf2o4+vpAG4oajLZGMBoAAAAAAAAAAAAAAAAAtJyZwpSs/MC+0dSBOlfT2vpiA2X7u7weDcT2lh2T8rq0Nx58Yd9pQm8A7NJs4aQKNvig30rBjZI7GM0VttYJMvnjge1DiVHFTUJS+dC504Fm2TL34entU16XBuP7y84DAAAAAEBU8UYXAAAAALSlK/9Amv+aNPWJ7X2bA7D2XLzxZ7eMJ43fuPEHtXH2y6T1jHTPr4XfZvS7w48dvEyKdUulteD+5J7wcwFtLGow2irBaAAAAAAAAAAAAAAAAADQcjKOIBVPMQ0l0nWuprVVCkYbTU7IGFNxnnRyQnPFk9vaXeE7ABBWtsx+ZGQXwWizxRnl/HWlvK4d19aqXKGVI8nxJ/49ENurLq9b6/72cxiyhRM6Txc7/2+6vO4zQjXTyQnNF09tG+d6PQcAAAAAoBKv0QUAAAAAbcmLS8+7RTr7x89sTwxKF/9mY2rC7l30q+HHJvdKF/16tPmf+W53X/8F0eYC2pQlGA0AAAAAgJb1kXutXvkuXz/zz74+882IH/IBAAAAAAAAAB3FFcQynBxTzMTrXE1r660QjJZOHgg1jyt4KJufjFwTAGzmCs8ajO9Xl9ddcXvX/kmSpjt0H+W6TzffV8YYZ/Bc9vHts86AtTNDNd2vEQSjAQAAAAB2ht8CAwAAALX0zHdL6edLmU9JPQekc18p7bm40VWhlsZukgYvlS78Ran3rGjbHvqhjcfJasDBPAdfWp36gBbnE4wGAAAAAEBL+otP+fr1Dzz5wf4fv2j1z682evnTuZ4bAAAAAAAAAGC7TC44SGW0TPgNgnV53YoprpKKgf3lAoU2G3UEqLlC7AAgLNd+xLXf2Wp/YkRxE1fRbt/PZfOTOth17q7qazXWWmcg2db7NJ2Y0NH1h7aNqxSMlk6c+drhei2ZJhgNAAAAALBDHGEMAAAA1JLxpPNeJT3rfdLVbyMUrR1c8gZ33/c+KD3vZunqP4keinbaC74oDV55ZtvFvyUd/MGdzQe0majBaGuFiBsAAAAAAICqKxSt/vd/nfkZ3bfSWz/G53YAAAAAAAAAQDBXSE46ZEgOnmSMUV+s39kfNnjIFXqzVFrQaml5R7UBgCRlXOFbIYMbPRPTcGIssK8Tg7mWSwta81cC+9LJ8TNuj6aC7+NsfvKMvyvN4/q/WijNaa20WrZeAAAAAACCxBtdAAAAAAC0lHNfKR15h1RYPLP9B05JqX27n7/3LOnGL0vz35DWTkj7rpW607ufF2gTvh9t/Gq+NnU0q3zR6iP3Sg/NWH3HhUbPPHfjoDYAAAAAABrpCw9JcwHHuj+YlU7MWU3s5bMrAABASD9rjPldSRdL2i+pIOmUpMckfVHSLdbaLzSwPgAAAACoCmutso4gm9GQITk4U29sQAulucC+sMFD5ca988Qfqsvr3lFtLgmT1Pk9l+iZe76z6nPX2vH1R3XX4medj+PB+H5d3f9MXdx7VZ0rAxrvq0t36L7lL2uptPBE29H1hwLHhg1ulDb2UVP5Y9vaXc/DdnFk9bC+svRFzRZmnmhzhaJJ2wNGXfv2mfyk3nH89zXjDEabKHt7s3ee+AOlqrwfj5mYDnWdpxsGb1RfbKCqcwMAzrRWWtHn52/RY+tHVLTFbf1JL6lzui7ScwZvVMJLNqBCAADQrghGAwAAAIAoBp4ifefnpMO/vxFetu8a6ao/qk4o2mleXNp3taSrqzcn0CZsxPGdFIy2sGr10r/x9dkHT7dYveYGo//7Ck4uBwAAAAA01ok59yf65VwdCwEAAGh9L9tyOyWpT9JZkp4j6beNMV+W9EZr7adqUYAxZkTScMTNzqtFLQAAAADa13zxlHJ2PbBva6ALwumLD0gBx9N58jScHA01x2B8v1KmK/D/5qG1w7stMdBXl2/XVxa/qF86+GalvK6arFFt31q9T399/K0q2PIHMH5x4RN62cjP6jl7b6pTZUDjfezkv+jjpz4QenzY4MZyYzP546HnaDVfWvwfvXvq7bIKd+XpHq9vW4jYSCL4fvPl676VLzvn2vp6vDc+pIRJBu77jtToNeJry3fpzoXP6DcPvU398T01WQMAOt1aaUV/evSNmsofLTvunqXb9dWl2/Vrh35fMUOECQAAqA6v0QUAAAAAQMvZd7V0w39I3/ct6Vn/IvUeanRFQMfwIyajdVIw2nvvsptC0Tb83ResbrkvapwcAAAAAADVVe6TaX77hWQBAACwO9dI+qQx5g+MMbW4esprJd0X8c9HalAHAAAAgDaWzZ9w9qWT43WspH30xfoD24cSo4qbRKg5jDEaacD9/+31b+oby3fXfd2d+u+T/1oxFO20/zr1fhX8Qo0rAprDUnFBt85+KNI2oxHCMF3BaNP5SVnbfsfS+rakj868N3QomrRxH239leFIckxG0X6NaGQ0khw7o80zXkNeI2YKGX1x4ZN1XxcAOsWdi5+tGIp22rfXv6mvLd9V44oAAEAnIRgNAAAAAAC0DD/8d/eSpLUOCkb75OHggzZ+64MR7zQAAAAAAKqs3HkGy7n61QEAANDCTkj6O0mvkfRsSZdIukjSsyT9kqRPbBlvJP22pP9TxxoBAAAAoGrmiicD2/tje9QT66tzNe1hILY3sN0VJOQSJaSomh5ee6Ah60ZV8PN6aO3+0OOXS4s6kXukhhUBzePI2mEVbfirJqVMl/bE94Ue79qf5ey6FoqzoedpFTOFjGaLM5G2CQoXTXop7UsMR5pnb3xISS8VMH+015Rq+ebKvQ1ZFwA6wTdXvlbT8QAAAOUQjAYAAAAAAFqGH/GCbSsdFIx2833B7YcnpVLUOw4AAAAAgCoqlsnsJhgNAACgrC9JeqGkg9ban7HW/r219jZr7QPW2gettbdba//KWnujpGslHdmy/RuMMS+qe9UAAAAAsEtr/mpge19sT50raR8X914V2H5V/zMizXN539OrUU5kRVtoyLpRzRSmZBXtYqbZ/IkaVQM0l0zuWKTxV/RdJ2NM6PHlQrna8Xm2k5/pir7rAtsv7422b3fNc0WDXiOm8scbsi4AdIKorzft+JoLAAAah2A0AAAAAADQMqLGey2s1aSMplQqcyzVzFL96gAAAAAAYKuVMuFnBKMBAAC4WWtvttZ+0lpb8SsSa+2XJT1D0re2dP2RMSZWxbLeIemyiH8IZwMAAAAQSc4PPvCry+uucyXt45Lep+qa/hvOaLuo50o9rf/Zkea5qv86Xd57bTVLC8W30cLGGiWzgyCIbH6yBpUAzWcyfzT02H3xYX3P0I9Emr8n1qd+R4Bmpg2Ds6IGz1zV9wxd3he8//7ufS9ROnkg1Dzp5AG9YN+LA/uu7rtel/Y+LVJd1bBcWtBScaHu6wJAuyvagk4WMpG2IRgNAABUU7zRBQAAAAAAAITlRzy2aWYxapRa69rbI80FXyhVC2vSKBdLBQAAAAA0SLnws5WclRT+Su8AAABws9bOGmNeLunLevJN1kWSnifpU1VaY1rSdJRtjOH9HgAAAIBo1h3BaCmvq86VtI+YiemVY7+qZ+x5vh5bP6Kx5CFd3netYhGztOMmoZ+deIPuW/mKHl07ooLNV7XO+1e+qqmA8KSSSlVdp1ZcQRB9sT0aiO0JDIbKtmFgExBkKncssP387kt0VtcFkiQjo7HUQV3ee6364gOR10gnJ7S0tj0gqx0DCF37m+HEmK7oe/oTtxMmqXO6L9SlvU+TZ7zAbQYT+/W6Q2/T15fv1onco7IBl7I2MppIna0r+q5Vd6w3cJ6El9DPTfy27lv+sh5dP6KiLezgJ3Mr2aI+N//fgX1T+WPqj3OwNABU08l8Vr6CT+K5tPdpOrzylW3ti6V5rZaW1RPrq3V5AACgAxCMBgAAAAAAWoYfMedseqk2dTSjVJnf8iyu168OAAAAAAC2WirzubRcaBoAAACis9beY4z5pKQXbmq+UVUKRgMAAACAenAFo3V53XWupL14JqZLeq/WJb1X73qeK/qefkbwTrWsZ1YDg9F82yrBaMEhZ+d2P0UHUudo8lRQMFpwuBHQTkq2qGlHONlzBm/SNQM3VGWddHJCD63dv619ug2fZ659x6W9T9MPjLwq8nzdsV5dt+e5u6xqI4jzyv7rdGX/dbueaytrre5e/LxW/O0HiGdyx3Rhz2VVXxMAOlnG8d7WyNMPjfy0Dj+yPRhN2ggkPaf7wlqWBgAAOkRwvDcAAAAAAEATihqMll2sTR3NKF7mwp0Lq/WrAwAAAACArcqFnxGMBgAAUBO3bLl9RUOqAAAAAIAdyhGM1rE8BR8I58uvcyU7k3EEFaWTE0onJwL7pgtTLRP8BuzUdH5KJRUD+8ZSB6u2zojjeZYtdE4w2qjjPmgHxhiNpg4E9k3lj9W5GgBof65Q0/2JYQ0nRpUyXYH9rrBgAACAqAhGAwAAAAAALcNGDEab3n5BsLaVDz5eRJK0EHycIAAAAAAAdbFSLhhtvX51AAAAdJBHt9webkQRAAAAALBT645gtBTBaG3PM8GnO7ZCcJi1VtlccAjEaPKARpPBYT5FW9BsYaaWpQENN5U/GtjuydNIonpBXq5QsNnCjPJ++1yxaaW0pOVS8NWjXSGM7WIsGRykRzAaAFRfxhFwlk4ekDFGI8lxx3btF0gKAAAag2A0AAAAAADQMvyIwWgLa1KuEHGjFpUrG4zWGfcBAAAAAKA5La27P5eu5OtYCAAAQOfYmiBAcgAAAACAluIKRusiGK3tOYPR5Ne5kugWirPK2eArwqSTE87gCEnKEh6BNjeZCw5GG06OK+ElqraOKxTMymo6P1W1dRqt3D6j7YPRUocC2zM5gtEAoNpcrzenX2tcwb+8twUAANVCMBoAAAAAAGgZUYPRJGlmufp1NKP1grtvIfg4QQAAAAAA6mKlzMXXl9vnwuwAAADNZGjL7ZMNqQIAAAAAdsgdjNZT50pQb55ige2+bf5gtEz+uLMvnZxQyuvSYHy/Y1vCI9DephyhVWOOQJWd2p9IK6Z4YN90oX2eZ67AmZTp0p74vjpXU19jyYOB7YuleS2XFutcDQC0L2ut8/Vm9PFgNFcYZ7bM+2IAAIAoCEYDAAAAAAAtYyfBaHMr1a+j2VhrlSu6+wlGAwAAAAA0UrnP88VS/eoAAADoINdtuT3ZkCoAAAAAYIdyzmC07jpXgnrzTPDpjr5t/i8UXMER/bE96o31S5JGHSFQrm2BdjGVPxrYPpY6VNV1YiamoeRoYF87Pc+y+eBf940kx2WMqXM19TWaCg5Gk6SMI4APABDdcmlRq/5yYF/68fe0rmC0mXxGpRZ4/w4AAJofwWgAAAAAAKBl+Du46ONsBwSj5cuEokkEowEAAAAAGssSjAYAAFA3xpgumyZUuwAAIABJREFUSS/d0vy5BpQCAAAAADu27ghGSxGM1vY8xQLbS2r+LxRcoUvpTWForvCIbP54TWoCmkHRFjSdnwrsG0tWNxhNktLJ8cD29gpGC95nuMIX28me2F51e72BfVPsSwGgasq9Pz39njbteN0pqahThWxN6gIAAJ2FYDQAAAAAANAyypxHrd5UcPvcak1KaSrrhfL9i+v1qQMAAAAAgCDlPs8XdxCCDgAAgLJeL2nzWdYlSf/doFoAAAAAYEdyjmC0LoLR2l7MBAej+bb5v1DIOIOKnvyY7g5Gm6xJTUAzmM5PyXeEG46nDlZ9PVc4WDs9z9xBjMH7mHZijNFYMvhxM5U7VudqAKB9uV43u71e9cf2SJJGkmMyMoHjXO+NAQAAoiAYDQAAAAAAtAzfcSa1MdK+nuC+2ZVyp1+3h1yxfP9avj51AAAAAAAQxJb5aF4MPgcCAACg4xljXmGMSUfc5jWS3rSl+Z+stY9VrzIAAAAAqC1rrXJ+8JUgCUZrf57jdEdXqFIzcQcVHdj07+DQosXSnNZKKzWpC2i0qdzRwHZPMY0kx6u+njuA8LhsuS8uW0TJljSTzwT2jXRAMJokjTkC9abywY81AEB0rmCzdHJCxmyEoSW9lPYlhgPHud4bAwAAREEwGgAAAAAAaBm+46KPRtK+3uC+2dWaldM01gvl+9fyrX8gBwAAAACgdZX7VFoo8ZkVAADA4dWSHjHGvNsY8z3GGMc3IZIx5hpjzIck/a02vjY57YSk361xnQAAAABQVTm7Luv4zXKKYLS25xlHMJp1HDzYJNb9Nc0VTwb2jW4KKnIFNkmER6B9TeWPBbaPJMcUN4mqr+cKB1v317RYmqv6evV2qjCtkoKvqJyuQdBcMxpLBgejZXLBjzUAQHSu96ajW15nN4cAh9keAAAginijCwAAAAAAAAjLd5wr7Rlpb09w31wHXERxPfj4hiesVQhOAwAAAACglspdeL3Y3OcxAQAANFq3pJ94/I9vjDki6VFJC5JKkvZLulJSOmDbWUk3Wmsz9SkVAAAAAKoj5685+7oIRmt7nmKB7b6a+wuF6fyks29zGNpgfL+SJqW8zW0bl82f0NndF9akPqCRpnJHA9vHkodqsl65cLBs/oT2xPfVZN16KRc0Uy58sZ2MpoKD0RZKc1otLasn1lfnigCg/bheb7YGkI4mJ3T/yj2htwcAAIgi+BIKAAAAAAAATch1HrXnSft6g/tmV2tWTtPIVQg+IxgNAAAAANBI5YLRbn+4fnUAAAC0OE/SUyS9UNIPS3q5pO9WcCjapyVdaa29r37lAQAAAEB1rJcJRkt5XXWsBI3gmeDTHX1bqnMl0WTzxwPb4yahfYnhJ257xtOII7QpQ3gE2tRk/lhg+5gj3Gq3+mID6o31B/Zly4QYtgrX/mZffFhJL1XnahpjLOl+7Ezlgh9vAIDwCn5BpwrZwL7R5IEzbm8NSjuNYDQAAFANBKMBAAAAAICW4Tsu+ugZabDXBPbNrdSwoCaxXizfv5avTx0AAAAAAER1cll6eLpMchoAAEDnerukf5H0WMjxK5I+LOm7rLXfZa0NPkMSAAAAAJpcrkwwWpfXXcdK0AieiQW2l5o8GM0VajaSGN/2M6Ud4RHThEegDRX8gmYcYWTjqUM1W3draMtprlCxVuIKmnGFLrajwfh+dXk9gX1TjiA+AEB4JwsZ+Qo+eWfre9lRx3vb5dKilouLVa8NAAB0lnijCwAAAAAAAAjLd5wnbSQNOo55W1xr/5Or1wu76wcAAAAAoJYqfTL/wFes3nhTcOA5AABAp7LWflgbQWcyxgxKulTSQUlpST3auDDuvKQ5SQ9I+rq1TX6WOAAAAACEsFYmGC1FMFrbiyk4GM06ghmahStsaTS1PSjCFYzmCjsCWtl04YQzWGU0ebBm644kx/Xw2gPb2tvheZZ1BM259i3tyBijseRBPbL+4La+DMFoALBrrtdLT56GEqNntKUdYaSn5+mLD1S1NgAA0FkIRgMAAAAAAC3DFYzmedKA45i3Bfdxcm2jUOE0pzWC0QAAAAAADWQrJKP9zoet3nhTfWoBAABoRdbaeUm3NboOAAAAAKiHnCMYLWGSipng0Cy0D2O8wPZSk2eBu4OKtgdFuMKLpgtT8m1JHo9ztJGpXHBooKeYRpJjNVs3nWjfAMJpx8/QScFokjSaOhAYjDaZO9qAagCgvWQcob/7E2klvMQZbQOxQXV5PVr3V7eNzxZO6DxdXJMaAQBAZwj+TSEAAAAAAEATcp1I7RlpjyMYbXG9dvU0i1KFi2ESjAYAAAAAaKQKuWgAAAAAAAAAADxh3RGM1u311LkSNEJMwaFgvpo3GM23JU07gtFGA4KKRgPC0iSpaAuaLcxUtTag0abywSFV6eS44iYR2FcNrpCwU4UZFfzWPah2tbSsxdJ8YJ9r39KuxpOHAttdYT4AgPCihHAaYwLf80pSxhGQCgAAEBbBaAAAAAAAoGX4OwhGWwg+Tq6tVAxGy9enDgAAAAAAgriCzgEAAAAAAAAA2MoVjJbyHAeIoa14Jvh0R99WOEiugWYLJ1WwwQfppQOCikaS4865CPRBu5nKBQejjaUO1nTd0VRwSJiVr5nCVE3XrqWsI4RRKr9vaUejjsfQfPGU1korda4GANpLJkIwmiSNONqzjnkAAADCije6AAAAAAAAgLBcwWjGSHu6jaTtAwhGk9Za9+J2kqSFVav33Gn11aMb/9fXnCX91LOMUgnT6NIAAAAAACEQjAYAAAAAAAAACCvnCEbrIhitI3hyBKOpeYPRsmXCzIKCilJelwbj+zVfPBUw16Quq2p1QGNN5Y8Fto8lD9V03aFEWp5i8lXa1pfNH9d4qrbr14orYCZpUhqM769zNY01lnSH603lj+nc7ovqWA0AtA9rrfP1ZjQg9HejnWA0AABQGwSjAQAAAACAluEKRvOMNNAV3Le0Lvm+lee1b4hWpWC09cLGF1TGtN59MLNk9dw/9fXApgv0ves26d23W33+dZ6S8db7mQAAAACg05CLBgAAAAAAAAAIa90RjJYiGK0jeCYW2O7b7eFGzSLjCHzYGx9yBvqNJg84gtEIj0D7KPgFzeSnAvvGahxMFjNxDSXSmi5Mbutr5eeZq/aR5Lg8Exws2a72xoeUMl3K2fVtfVM5gtEAYKeWSgta81cC+9IBob8b7cGBaScLGRVtQXGTqFp9AACgs3TWJ10AAAAAANDSbJlgtD1ljntb2v6dd1txBcZttl6ofR218I7P2TNC0U770qPS336eU+sBAAAAoBW4Ps8DAAAAAAAAALBVzhGM5gqYQnuJuYLRVOHqoQ2UzR8PbE8nJ5zbuPpccwGtKJs/4XzujiUP1nx99/Nse1haq5h2BKOV29+0K2OMxlLBj6NM/lidqwGA9lEuQNQVgOZ6HfLlayafqUpdAACgMxGMBgAAAAAAWobvOJO6UjDaQvCxcm2jFOKYr7UWDUa75T732fP/fCdn1gMAAABAK+DTGwAAAAAAAAAgrHWC0TqacZzuWLKlOlcSXmYHQUXtGNgEbDWVPxrYHlNcI8mxmq/vfp65A1+anav2TgxGk6Sx5KHA9qkcwWgAsFOuoN4er099sYHAvuHEmPN9fCu/7gIAgMYjGA0AAAAAALQM33EmdccHozkC4zZbb8FgNGutDpc5zuvuR6WHpzm9HgAAAACaXYiPrQAAAAAAAAAASHIHo6W8rjpXgkaImVhgu9/EwWjTjrCH0eQB5zauEKPF0pzWSitVqQtoNFc4VTo5rpiJ13z9csFotgW/wPRtSdOFqcC+Tg1GG00dDGyfyhOMBgA7VS6E0xgT2JfwEhpKpCPNBwAAEAbBaAAAAACAUP7nQauX/HVJN7ytpDd+yNfyeut9IYzW5wpGM0Ya7HFvl1msTT3NouRXHrOWr30d1XZ0VlrOlR/z719hXwQAAAAAza4FzysAAAAAAAAAADRIzhGM1uWVuXIm2obnON3RV4iD5BpgtbSsxdJ8YF+5oKJyfYRHoF1M5Y8Gto+lDtVlfdfzbM1f0VJpoS41VNNsYUZFG3yV5E4NRhtzBFDOFU9qrbRa52oAoD1kygSjleMOJD2+65oAAEDnIhgNAAAAAFDR579l9cK3+/rI16TbHpbedovV9/2V35JXy0Jrcz3kPCMl40bpgeD+Y7Pt/VgNFYwWfCxEU3t4pvKYz3+rvf9vAQAAAKAdhPnkVijy+Q4AAAAAAAAAIK07gtFSBKN1BM/EAtt925zBaOVCzEYdgT2SNBjfr6RJRZ4TaCVTuWOB7WPJg3VZv90CCMvVPJIcr2MlzaNcyF6GIB4A2JFpx+tNufe2UrlgtMld1wQAADoXwWgAAAAAgIr+8tO+8sUz2/7nW9LN32hMPehcfplgNEk6uDe4/+hsbeppFmGC0XLFymOazWq+8pjDfE8GAAAAAE0vTLb+SojPgAAAAAAAAACA9pdzBKN1EYzWETzH6Y6+SnWuJBxX8E7KdGlPfJ9zO894ziCjTAsGNgFbFfy8ZgqZwL6xVH2C0fpiA+rx+gL72ikYbTC+v2NfI/fGh5QyXYF9mXxwMB8AwK3gF3SyMB3YVymE0xWclskflw1z4BAAAEAAgtEAAAAAABV91fG94K9/oDmvwIf25QxGe/w3HAcdxxEdm6tNPc3Cdb9s1orBaIUQx7Idm5MWVvmiDAAAAACaWZhPbSu5mpcBAAAAAAAAAGgBawSjdTTPxALbrax823zHrLqCitKpAzLGlN3WFR4x3YKBTcBW2fwJWQU/Z8eSh+pSgzFG6eREYF9rBqMFX0nY9TN2As94SqeC96VTOYLRACCqmcKU8/Xb9d71tLQjOG3NX9FyaWHXtQEAgM5EMBoAAAAAoKJHTga3Hwm+EAhQM77juKbThw8d3Bd8INHx2fYOziqFON4rV6h9HdVWKIX7f/tm8EUFAQAAAABNIsyFX1fyta8DAAAAAAAAAND8co5gtBTBaB3BK3O6oyukoZEy+eOB7aMhgopGHOERmRYMbAK2msofDWyPm7iGk2N1q6OdgtFc+5tODkaTpPHkwcB212MQAOCWdbzWePI0lEyX3TZdJjiN97cAAGCnCEYDAAAAAOxKMWRwEVANrkeb93geWnoguH8++Fi5thEmGC1fqn0d1VYIWfPR2drWAQAAAACovcU2/+wOAAAAAAAAAAhn3RGM1uX11LkSNELMxJx9Jdt8B8G5wpXKBUM8OSY4zGimMCW/CX9WIIrJ3LHA9pHERNnnebW1UzDatHN/09nBaKOuYDTHYxAA4OZ6fRxKjCpuEmW37YsNqNfrd8wbHLgGAABQCcFoAAAAAIBdyS42ugJ0Et+RjOY9/huOPY6Lgrb7ydVh8glzhdrXUW1hg9GOzRHQCAAAAADNzIb42Da/Wvs6AAAAAAAAAADNrWSLKtrgA526PMfBYWgrXpnAJF8hriBaRyVb1Ew+E9gXJqho1BGeVrQFzRZmdlUb0GhT+aOB7eOpQ3Wtw/VcPFXIOl9vmtFaaVULpbnAvk4PRhtLBQejzRZnnGGrAIBgmV2EcBpjNJIcD+xrxUBSAADQHAhGAwAAAACUVSiWP3P1ePB3rEBN+I7jmjyz8fdAV3D/4npt6mkWpRDHe+WKta+j2vIhaz46W9s6AAAAAAC7EybOeoFj0gEAAAAAAACg45ULMCEYrTN4ZU539G3IK23WyclCVr6CaxoNER7hCo6QpEz++I7rAprBVO5YYLsrxKpWXEEuvnxnsGEzmi5MOvvSZfYlnWAs6Q7by+TYlwJAFNO7CEaT3MG/rsA1AACASghGAwAAAACUtZov339ivj51AJLkO86kfjwXTf1dJrC/3YPRXPfLZrkKIYfNqBDyOLbjs633swEAAABAJ7EhPrbNr/HZDgAAAAAAAAA6XblgtBTBaB3BM+WC0UJcQbSOXIE7Rp6GE2MVt095XdobHwrsy+bdIUhAs8v7OZ0sBIeOlQuxqoWhxKgzcDHbQiEtrloTJqm98eE6V9Nc9iWGlTDJwL5MPjigDwCwnbXWGWAWNhjNNS5L6C8AANiheKMLAAAAAAA0t7VC+f7JeasnY6mA2nKdIu09fszCQFdw/0pOKvlWMa89H6ulEMd75Yu1r6PawgajHZurbR0AAAAAgN0JE3k2v1rzMgAAAAAAAAAATS5XJhiti2C0juAp5uw7nntEvcX+Hc07GN+v/vienZYlSVorrZ4R9nRk7XDguKHEiBJecEjPVunkhOaKJ7e1P7L+oI6tf3tnhUrq9nq0P5GWMe15zCQao2SLyuZPqGTLH9w5U8jIOr4hHEsdrEVpTgkvof2JtGYKU9v6Hlo7rP2JkbrWs1MPrz4Q2D6SHC8bKNkJPONpNHlAx3Lb95lH1g5rInX2jufujfVrX6I1g+fCPl8364n1tcxzAqiXki1poTirpJdSX2ygrmv7tqRsflJFW+GkrhDC7M8WS/Na94MP3hlNHgi1jisY7VRhRo+tP+QMK90pI0/p5IQSXqKq8wJAo3116Q5l8sc1mpxQOjmh4cRY6N8zAO2GYDQAAAAAQFmr+fL98+7jkICq8x0BYKfzzgbKHPu2tC4N9lS/pmYQJhgt187BaLO1rQMAAAAAsDs2RDLaAr9jAgAAAAAAAICOt04wWscrF/Dzl8fftKu5L+i+VK8e/y0NxAcjbZf3c3pf5h368tIXZFX5YL10yOCIjbET+ubq17a137N0m+5Zui1SnVvtjQ/pp8Z/U+d1X7SreQBrrT479zF99OT7lLe5Hc8TN3ENJUarWFk46eREYDDaZ+Y+ps/Mfazu9VRTOjne6BKawljqUGAw2h0Ln9YdC5/e1dzp5AG9Zvx1Gk8d2tU89WKt1a2zH9bHT31AObseefuRxLh+evx1OtB1dvWLA1pA0Rb02PrDOrJ6nx5au1/fXntA6/6aPHl6+sBz9WOjr1XM1D6e446FT+s/pt+lVX+5anOOJg/oNeOvd4aUZvPHndu6As+2rZEKfh9s5ettj/1mqDmiSpikru6/Xt839KOEOwJoG19Z+oLuWbr9idtGnvYnhnX9nhfoxv0/2MDKgPrr7ChwAAAAAEBFFYPRgi8IAtSE7ziR+olgtC73tottfIJ1pwejZZekfDHEWfYAAAAAgIYIE4xG+D4AAAAAAAAAwBWMZuQpYZJ1rgaNEFOsZnMfWTusd039eeTtPnryvbp76X9ChaJJ4YMjoo6Naq54Un917M1aK3GgL3bnvpWv6IMz/7irUDRpI2AqZmr3HHev277hYbXch7SSsWRwyE81ZPPH9VfH36KSDXlQc4N9dfl2/efJ9+woFE2SpguTevvx31PBL1S5MqA5Ffy8vrV6n24++W96+7H/T79x5Mf0Z0ffoI+efK/uX7nnic8nvnzdufgZfSD79zWv6aHVw/rnzP9f1VA0ScpU2J9l85OB7b2xfvXFB0KtMZRIy6vh+/kgBZvXlxY/p7c88gv6z5n3aK20Utf1AaAWMrkTZ9y28nWykFXBVjjRF2hDtY+kBQAAAAC0tErBaAuctIo6cgWjmdPBaGUuCnrvMenQ/urX1AzaNRgtH7Jma6UT89I5Q7WtBwAAAACwM2GirBc4JwcAAAAAAAAAOl7OEYzW5XXJnD5IDG3Nq3Fo0oOrX9dsYUb7EsOhxvvW1x0Ln4m0xmjyQOixtQ41ytl1fXX5dl2/57tqug7a250RnwMutQyvKqedw8NGEu37s0UxlqrtY2u+eErfXP2aLu19ak3XqYa7F7+w6zlWSkv65urXdHnfNVWoCGguOX9dj6w9qCNrh3Vk9bAeXf+WijZ8EOAXFm7RtQPP0fk9l9SsxnuX76rZ3HPFk3pw9eu6pPfqbX3Z/PHAbaK8t42ZuIaTo8rmT1QeXGVFW9AnZz+k2xc+pZv2/7CeM3ijYoYoFQCtx7e+ZgpTgX3t/NkGcOHVHAAAAABQ1lqlYLTVMKe2AtVhHQ8373QwWpd72z+6xdf3X1X/K83VQynE07AVg9EKES6udvQUwWgAAAAA0Kxcn+c3W1jjd0wAAAAAAAAA0OnWHcFoKa/MFTPRVgbig+ryup2PhWo4kXssdDDaXPGk1vyVSPMf7Do39NgDqbPlyZOvEFdH3aETuUdrNjc6Q7UeQ2d1XVCVeaI61HVeQ9ath3b+2aI4mDpXRkY21CW7dubE+qMtEYw2kw8O0Yg8jyOMA2g16/6aHl57QEdWD+vI6n16bP0h+YpwkkKA92f/Rm88+88VN4kqVXmm2cJ0TeY97UTuscBgtKncscDxI8nxSPMfSp3XkGC005ZLi/r36b/X/8zdrBcP/4Su7LuOkG0ALWWuOKOCDT6hl2A0dCKC0QAAAAAAZa1WCkar3bEnwDZ+hWC0rjLfLbXzY9UPcUxUvs2D0U7MW0l8YQUAAAAAzSjM4efzqzUvAwAAAAAAAADQ5FxhWF0Eo3WMuEnoaf3P1m0Lt9ZsjWz+uC7XNaHGZvLHI819dtcFOpgKH4zWHx/UVf3P1D1Lt0VaJ4psrnHBFGh9JVvUyUJ21/OkTJeuG3ju7gvagYOp83RW1wV6bP1IQ9avlfO7L9VY6mCjy2gKexNDurzvWn19+Us1W6ORIT9RrPhL1ZmnVJ15gHpbLS3robX7N4LQ1g7r2Pq3ZascQDuVP6ZbZ/9TN+3/oarOe1otA3OljffCQabywcFo48lDkeZ/9uALdffS5yPXVW3ThUn97eQf6bzui/XS4VfpnO4LG10SAISSKfO+k2A0dCKC0QAAAAAAZVUKRptv47ApNJ9KwWjlruRS6bHcykohzjDPtXkw2sxy7eoAAAAAAOyODfG5tZ0DzQEAAAAAAAAA4RCMBkl6Wfpn5ZmY7lm6rSbBLFHCbbK5cMFoCZPUxb1X6cfTv1j2OMYgPzH6y0qalO5dvlPrfvWvJJMttEaYD5rTTD4jXxEO5tzCyNPBrnP1o+mfV198oIqVRajBGL124nf1vuxf64GVe1WwrX1AcdKkdGnvU/Vjo7/Q6FKayivHfk3/mv2/+vryXc73E7sRNSizEay1WiktVmWu5SrNA9TacnFRR9YO68jqYT20dp9O5B6TDXX5vt35+KkP6Gn9z9JIcrzqc/u21sFo298brpVWNF88FTh+NGII5wU9l+qnx1+nj868V9OFyR3VWE0Prz2gPzn6Oj2t/9l60dArNJRMN7okACjL9TuLPfF9/H4MHYlgNAAAAABAWWuF8l8KcNIq6skVjLb5OKI3f7/Rmz+6feDsSo2KagKlEN99tX0wGhcmAwAAAICmFSYYjfB9AAAAAAAAAEDOGYzWU+dK0EgxE9fL0z+nHxn5mV0FhX1k5r36wsIt29qjhNtkHCckX9B9qX524o1P3E55XYqZnZ2qmfRS+omxX9aP21/YVZjPAyv36h+m/nRb+2xhRnk/p6SX2vHc6Fyuk/KNjP7wvHcpXuFxHzeJpnjs9cf36OcmflslW1TOX290Obuym/1NO+vyuvXKsV9VyZac7yfCuHPxs/rg9D9sa8/mT8haGzn8sp5ydl1FG3zA+C8deLPO6jp/W/u/T/+D7lr87Lb2agWsAdW2UJx7PARtIwxtKn+0JuukTJfO675YObuuh9ce2NZftAW9P/s3+uUDb636fsG3wSdRPHfwe/W9Qy8LPc8dC5/Rf8z847b2oNf2cu+Px5LRgtEk6an91+up/ddr3V9z/jzVcM/Sbfqvk+/XYmm+4tivLH1RX1u+U98x+D26af8PqSfWV7O6AGA3srngz2CjyYk6VwI0Bz79AgAAAADKWq1wUaz56l+cDnBynUjtbfou6YbzjRRwlZ+ldalQtErEm/cL6Z0KFYxWqH0d1ZaP8B3YNMFoAAAAANC0wlyLl98xAQAAAAAAAABcoVApr7vOlaAZeMbbVWDBROqswHZX0FMQV0jEeOqsqocpeCa2qzkPdp0b2G5lNZ2f1IGuc3Y8NzqX6/myLzGigfhgnavZvZiJE4TS5mK73JceSAXvK1f9ZS2XFtUf37PjuWutXJjZ/kQ68H7ZE98XOH65xIHZaA6zhRk9tHa/jqzepyOrhzVdmKzJOt1ej87rvkQX9FyqC7ov1cGu8xQzMS0V5/WWR35Rq/7ytm0eXP2GvrT4OV2353lVrcVX8MkhKS8Vaf/meu+3XFrUcmlRfbGBJ9qm8seC1zRd2hsfCr3mVl01/hz37MEX6pqB5+jW2Q/rU7P/qYItfwJc0Rb16bmP6I6FT+um/T+s5wzepISXqGmNABBVthD8GWyEYDR0KILRAAAAAABlVQpcWtj5BZWAyPwQwWj7et3bz69Jw/3VrakZhAlGK9TuQjs1U4xQ88ximNPsAQAAAACN8P/Yu/M4R+oC///vqtzp+0y6p+eCaY7pAeELKKCCoCwKioAiC4uI51fddVdd15/ren69VndlxQtW3eVQEUFALkGRGx0YUI6ZnhnoYRimj+mk73Tuoz6/P4aZ6Zl8PpVKd5KuJO/n4+HjIakcn0lXKpWkPq9Shc4XiiQBwxDQ9doLmhMRERERERERERGRNaowWrkn1FNtCnj6pJdHcxFEsxE0OpulyxcKKcJoQbf8vpdThysAB5zIIZu3bDw9yjAaLYpqUn6Ak/KpRplt30PpEVuH0cxiZo0O+QH0DYrLYwyj0TIQQmAqE8ZQYm8EbSgxiKlMqCyP1aA3YZ1/Pfp9A+j3b8AKz2romiPvek3OVlzQ9T78MvQj6f3cOnEtBhpOsLRfaVVOyCdRyMZnJmjyXh1Kj6HRtyCMltotvV6PZyU0zd7H8Xh1H97ReSne2HI27pq6EU/MPQhR4BSOcSOKWyf+F4/M3oPzuy7H8Y2n2v7fSUT1I5SSfw/Bz2BUrxhGIyIiIiIiIlOqENU+qSyQzAh4XfwSmMpvqWG06Vj9htFS+cc62V4xMbcwf38nIiIiIiKyLStxy7uEAAAgAElEQVQpayGA+STQ4i/7cIiIiIiIiIiIiIjIplIMo1EJmccgRgsGLGK5eczn5qTL7Dgh2aE50O3uwZ70cN6ycFoetyIqJJwek14ecPdWeCREldHkaIFPb0DCiOUtC6XHsM4/sAyjsiaai0gv16HDq8t/iFcF01T3RVRKQgiEM2N7I2jxQQwltmA2O1WWx2pytKDfP4B+3wb0+wcQdK+ErumWbntqy1vwZORh7EgM5i2L5iK4beI6XN7zjyUbq4B8cogDxYXRmh1t8Op+JI143rJQegSH+47a/997lDHglUU95nJqdXXgvcFP4IzWd+D2ieuwLf5swdtMZkL42dh/YK33SFzYdQUO9x9dgZESEaklcnHM5Waky+wYaCeqBIbRiIiIiIiIyJSV4NJcAvC6yj+WepBI750q7HMzNCejCqNpRYTRalGhgCEApDJWpqHbC8NoRERERERE9WU2wTAaERERERERERERUT1LKsJoHobRaBHMYhDj6ZGC4YNxk5hY0GPPSETAvUIaRhtXxC6ICgkpXgcBl/3igESloGkagu4+vJx8IW+Z3bel0aw8ZtbgaFIGoBod8khoLBeBEAKaxjkNVDpCCOxJD2MovgVDiUHsiG9FRBF/WapWZwf6fQN7Y2j+Deh29S56fdY0DZcEPopv7voUcsg/W/0TkQdxcssZOMJ/zFKHDQDICfkkCs1iyO3A9TUE3CvwSnIob9l4auSQ/87ffwSAHs+qoh7TDvq8a/CJlV/B1tgzuC18HcbSrxS8zcvJF/Dd4X/F8Y2n4J1dl6Pb3VOBkRIR5Qtn5GFqgHFqql8MoxEREREREZEpK8Gl2TgQMD9xHhUQSQh88HoDdz63N/J1/nEafnq5hiYvf0xcSCjWR33B0+R3Ay6HPKo1k398U02wEjBM5f8GZ3vprPWYG8NoRERERERE9qX6PH+oOfl8NyIiIiIiIiIiIiKqEylFGM2reys8EqoF++I2u5Iv5i1TxZ4Ovo48gOPVfWhxtC15fOUQcMtjVVb+vUSHiuXmEc3JQ0uqdY2oFgTcvdIwmt23pTFDfjC1Kn5mtiwrskiJJLwa47S0eIYwMJrahaHEIIbig3gpsVX5vrJUHa7uV0NoG7DOtx6drmBJw349npU4u+Nd+N3Ur6XLbxy/Gv+25ntw6e4lP5YB+eQQBxxF35cqjLYwvJM0EpjOTkhv3+PuK/ox7WJ9w/E4as2xeCLyEO6a+CXmLET4noluxHPRTTit9W04p+M9aHRyohwRVdah4cp9XJobbc6uCo+GyB4YRiMiIiIiIiJTVsNotDQfut7ArX898N83Py3g0IFffohhtIVU6+PCMJqmaehoAMYlv5m9MiUA1N5zmrPwOo2nyz+OUpPF7VTmk0AyI+B11d7fl4iIiIiIqNpZDaPxOyYiIiIiIiIiIiKi+pZUhNE8OqMctDhB9wppGG1cET076DqKCckBd19JQxulFFDEK0LpURjCgK7pFR4RVTOzCBTDaFTL1NvSwu8dyymmCE41OJqUtzFbFstF4OU+GBUhJ3IYTu7EUGIQO+KD2JHYioQRK8tjdbt60e8fwDrfevT7N6DdVf5YzNnt78LTkccOiortE86M4ffTt+LtnZcs+XEMIZ9EsZj9uKDi/Xrhfu54alh5+x7PyqIf0050zYFTW96CE5regAem78D907cjJZKmtzGQw8Ozd+PJyIN4a8dFeFPruSUJ3hERWRHOyD+Ddbt7+Xme6hbDaERERERERGQqJz/ZyEHm5McikUXhiMBtz+RffsvTAj+4RKC9wZ4H0CwHZRjtkO/21nXLw2hb8n+DqglWXqczVTi5vJgwGgBMzAMr28szFiIiIiIiIlo8i100fsdEREREREREREREVOdUYTRGOWixlhK3UcXTgor7tANV/CItUpjNTlUkGkK1QxVG82hetDh5sCbVLlX4bzITRsbIwKW7Kjwia6LZeenlDY5m5W0aTZZFc/PocAWWPC6qXVmRwSvJl7AjPoihxCB2JrYp9+eXqse9Eut8A3tjaP4BtC7D+5BLd+OS4Mdw1fAXpcv/MH0rTmx6I4Kepe0rGpBPDtFRfBBHvT0bR1Zk4NRc2JOWh9E8mhdtztrYd/ToXpzTeTFe3/o3uGfyV/jT3B8hFM/zPgkjjtsnrscjM7/DO7suwwlNb2SUiIjKbjwl/wwWcPdWeCRE9sEwGhEREREREZlShagWmk0IAIx3LdamXfLnOWsAz+wG3nx0xYdkW4bit4dD176BFRoe35H/pA6OWp2KXV0YRtsrzDBa3Xlou8DX7zEwMQ8cv0rDdy/S0NnE9yMiIiIiIrsRFj+Oz8b5HRMRERERERERERFRPUsxjEYlZh63ScOlu5W3VUWhVPdpB2ZjC6VHGUajooTS8rMRd7t7oWn8TY9qlyqAKWBgIrMHvZ5VFR6RNTFDclZxAI2OJuVtvLofOnRpiCmak98f1a+Mkcau5BCG4lswlBjEy4kXkBapkj+OBg29ntXo3xdC861Hk7O15I+zGEf6j8HJzWfiiciDecuyIosbQ1fjkyu/tqSAliEUYTTNUfR9qSLBBgxMpkMIevqwJyUPowU8fTUXAmtxtuHS4Mfxpra347cTN2BL7OmCt5nOTuDaPf+FB2buwoVdV+AI/4YKjJSI6pX6ewj7BtqJyo1hNCIiIiIiIjJlJYw2V56TutSNF0PqJ3n7uMCbj+bBA/uonin9kKfoGMWxPdvHSzoc21AF4xaajpV/HKVWdBiNv7/XlWeHBc7+noHsq+v/ljGB258RmP6eDqeD200iIiIiIjuxmimf5XdMRERERERERERERHVLCIGkkZQu8zCMRotUOG6zWro8Y6QxmQkVdZ924HM0oNnRhkhuJm9ZKD2KoxuOW4ZRUbWqxjggUSl0ugPKWFgoPWLbMFo0Ny+9vMHRrLyNrulocDRhPjeXf39ZHphd79JGCjsT2zGUGMRQfBC7ki8iKzIlfxwNOlZ61qLfP4B+/wYc7jsaDSZBv+V2YdcV2Bx7CjHJa25HYhBPRB7EqS1vWfT9G5BPotBRfKSsy9UDDTqEZHs2nh7ZG0ZLy8NoPe6VRT9etej1rMLH+76A7bHncNvEdRhJvVzwNruTO/C94S/g2MbX4vzOyxH02PczARFVJ0PkMJHZI13Gz2BUzxhGIyIiIiIiIlNWgkuz8fKPo5ZtlX9nBQDYIj/ZWt1Shfr0Q37j6e/WIJt2HZ4HUhkBj6u2oklWAobzSSCTFXA5q+ffns4Wd/3QvABQPf8+Wpp/ve1AFG2faAo49/sGfv+p4s+IRURERERE5SMsltEY3yciIiIiIiIiIiKqXxmRlk7YBwAvw2i0SF3uIHQ4pIGJ8fSoMow2kdmjXB/tHEYD9k6YjiTkYTSiYoQZRqM65dRc6HQFEc7kH8g/buNtqSpk1lggMKUKo8UMeWiNalfSSOClxDYMxQcxFN+C3cmXkEORB/RboMOB1d51e0NovgEc5jsKPkdDyR+nXBqdzXhX1wdww/hV0uW3ha/DMQ0nosnZuqj7N4R8H1TXij8+3qW70OnqxkRmPG/Zvn3D8ToMo+1zVMNr8Dn/d/FU5BHcMfkLzGanCt7m+egmbIk+jTe0no1zOy5e9N+ZiOhQ05lJZERauizIz2BUxxhGIyIiIiIiIlM5CxNXI/KTNJJFk/PqJ3lw1OLM4TqhCvXph7SwVrap72NkBji8u3RjsoOchYAhAMwmgC77njwpT0Z+siOlqWh5xkH2Mx0T+P2gfNn924ChkEB/gJE8IiIiIiK7sBpGY3yfiIiIiIiIiIiIqH4lDPWXxAyj0WI5NCe63EFpFCyUHlHeblyxTIcDXe5gycZXDgH3CgwltuRdrvo3EckYIoeJjPzMzwGbxwGJSiHo6ZOG0ewcmYzlVGG0ZtPbqZar7o9qRzwXxY7EVgzFB7EjsRXDyZdgKMKwS+HUnFjjPQL9/gGsezWE5tG9JX+cSnpd85vwZORBvBDfnLcsbkRx68S1uKLnU4u6b1nQFwAciwijAXvft+VhtBEkjQSmMmHp7Xo8tR9GAwBd0/G6ljNwfNOpeHDmLvxh+lYkDfMzOxow8OjsvdgUeRh/034hzmw7D27dU6ERE1GtCmXU+5ndDKNRHWMYjYiIiIiIiEypQlQLRRlGWxKz+NOWMUAIAU1j4AcADMVE6kOfnZXt6vvYPV2/YbSZeG2H0aZj5RkH2c9fXzFffuMmgS+/g9tNIiIiIiK7sJp9nzU/rpCIiIiIiIiIiIiIaljKZPK5V/dXcCRUawLuFdKQzXhKPel4PCWPiHW5e+DQ7D0lM6iYMG3nmA/Zz1QmjKzISpcF3L0VHg1R5XW75Ou5XbelQgjEjHnpsoYCYTTV8mhWfn9UvaLZCIYSg6+G0AYxmtoFYfmIDutcmhuH+Y7EOt8A+v0DWOM9ouaiUZqm4ZLAx/D1Xf+ErMjkLd8UeQSvaz4DRzccV/R954R8EoUGvej7Ava+b2+RzLMIpcdMt2k97voIo+3j1j14a8e78fqWt+B3Uzfjsdn7CoYCk0YCd07+Eo/O3ofzOi/Da5tPh64t7u9ERBRSfA/R4mznCQOortn7WzgiIiIiIiJadqoQ1ULzqfKPo5aZxZ9m48DYLLCirXLjsTPV+qgf8ttBg0dDe4M8lLV7WiA/pVbdclZeqKi+cFixYbSpKvv30eIViiU8vav0P9ITEREREdHiCYu76JE49+WJiIiIiIiIiIiI6lXSNIzGCaC0eEF3H57HprzLQ2n5pOO9y+SRCFV0zE4Cnj7p5bPZKSSNBF9PZIlZKKWbYTSqA0HFtjSUHrHlSc9TIqmMGTY6zM+qrVoezUWWPC5aXnPZGeyID+6Poe1J7y7L43g0Lw7zHYV+/wD6fRuw2rcOTs1Vlseyk253L97WcRHumrxRuvym0DX4tzVXFR2FE0Ie43IsMrgVcMu3Z+PpEexJydcJl+ZGu6t7UY9X7Zqcrbg48BG8qe1c3D5xPZ6P5n+OONRsdgo3jF+FB2fuxIVdV+CohtdUYKREVGtC6THp5dXwPQRROTGMRkRERERERKZy5ie4AABEk+UfRy0rFH96aYJhtH1UE6l1yW/Lq9rlIbAXQ6Udkx3kLM4bnysQk7Ib1WtD0+TrwgzDaHUjlTVf6QflvwcQEREREdEysZo7KxRBJiIiIiIiIiIiIqLaZRZG8zDkREsQVMQgQulRZdxmXBFNU4Ul7CTgUk+aDqdHscq7roKjoWqlCqO1OTvh0b0VHg1R5am290kjgUhuBi3O9gqPyFw0q46YNTiaTW+rWh4z5pc0Jqq8mczkqxG0LRiKDyKcKc8B1V7dj3W+9a+G0Aaw0nsYHFp9JivOar8AT0Uele47TmTGce/ULXhn12VF3WcO8klcGhyLGqMqqJMwYngxvkVxmz7oiwyx1YqAewU+uuLzGIoP4raJ6/BKcqjgbUZSL+P7I1/GQMMJuKDrfej1rKrASImoVoQy8s9g3QyjUZ2rz71MIiIiIiIissywMHM1mrQ6vZVkCoXRdk8LAPY6q9RyUa2PsjDakQENzw7n32DLaO2tr1YChgCQzJR3HKWWVrw2gs3Anrn8y6ditfe3JblUgXVZtk0gIiIiIqLlowqdH2omXt5xEBEREREREREREZF9pRRhNJfmhkNbXASACFDHbVIiiZnsJNpdXQddbghDGYVSRdbspN3VCZfmRkak85aNM4xGFqleAwFOyqc6EXD3KpeNp0dtF0Yzi5g1OppMb6tabhZbo+UnhMBUJoyhxN4I2lBiEFOZ8pxBvkFvwjr/evT7BtDv34AVntXQuX8OAHBqLlwa+DiuHP68dPn907fjpOY3otez2vJ9CiGfHOJYZKjM7L17c/Qp6eU9npWLeqxa1O8fwL+s+jb+Mv847pj4OaazEwVvMxj7C7bGnsGpLW/G2zsvsd17BhHZUyglD7RXw/cQROXEMBoRERERERGZshJGm0+Vfxy1rFAYbXimMuOoBqr1UXLCRmxYAfz66fzLN8uP1ahqVl6nAJDMVFdkT/XaUIXRpmPlHQ/ZRyprvnxkFjAMAZ2FNCIiIiqBTFbg334rcMezAi4HcPkpGv7lbE165ngikrMaRhuXfNYjIiIiIiIiIiIiovqQVITRPLqvwiOhWmMWtwmlR/PCaLPZKaSF/MDYYBVEoXTNgW53L0ZTu/KWqWJXRIdiGI3qXaOjGY2OZkRz+XGwUGoER/qPWYZRqcnGCQA6dPj0BtPbNjqapZfHFPdJy0MIgXBmbG8ELT6IHYlBzGQny/JYTY4W9PsH0O/bgHX+9ehxr4K+yChXPVjnX4/Xt5yFP83dn7fMQA43jl+NT6/6puXnMAf5JAodi4vRNTpa4NcbETeiectUUcWgm2G0hXRNx0nNp+G4xpPx8OzvcN/UzUgY5md/FDDwp7n78XTkMZzVfgHe3P5OeHRvhUZMRNUmkYtjLiefQMrPYFTvGEYjIiIiIiIiUzn5yUYOEk2Wfxy1LFsgjLZ7ujLjqAaqAJisfXTMCg1A/g12TQHzSYEmb+1EDKy8TgEgmSnvOEpNGUZrATCcf/lU/m91VKMKhdHSWWBkBljVUZnxUOkJIfD4jr0BjWP7gFZ/7WyziYio+nzk5wLXbzzw2eJztwnMJYBvXMD3JyKrLHbRsGcOyOYEnA6+voiIiIiIiIiIiIjqTUoRRvNy8jgtkd/RiGZHGyKSScbj6REc3XBc3mUqAXdfycdXDgH3CkUYTf1vI1oolB6TXt5tEhokqjUB9wpEE/lxsHEbRiajWXnErMHRVPDEfw2KMFo0Nw8hBE8cuEyEENiTHsZQfAuGEoPYEd8q3ZcphVZnB/p9A1jnH0C/bwAB9wr+3Yt0Qdf78Hx0E+Zz+WcE3Jncjj/N3Y83tp5t6b4MoQijLTJOp2kaAu4VeDn5guXb9HpWLeqxap1Ld+Os9vNxSsuZuHfqZjw6cx9yMJ/YkBJJ3D31Kzw2ex/e3nkpTmk5E7q2uMgdEdUus4g5w2hU7xhGIyIiIiIiIlOqENVC8/IT45FFqvjTPsNTVqcP1z6hDKPl//B2rMnxR1tGgVMOL9GgbKDewmiBZnn0btr8pDtUQwqF0QBgcIxhtGo1MS/w1u8ZeObVAGJvK3Djh3ScdgQPsiAiosqbigrcuCl/3/Nb9wq892SBo3r4/kRkherz/KEMsTeOtrK9vOMhIiIiIiIiIiIiIvtJKsNovgqPhGpRwL0CkUR+TEQ2+VgVRmtxtsPn8Jd8bOWgmjg9nrJfzIfsJ5GLK+M7nJRP9STo7sNLiW15l4dtGEaL5eRhtEZF9Ozg6zRJL88hi5RIwqtxX6wSDGFgNLULOxJbMRTfgh2JrYgq/q5L1e7sQr9/A/pfDaF1uoIMoS2R39GId3d/ENfuuVK6/LcT1+PYxpPQ4ix8QIwB+eSQpcS0ig2jBd0rF/1Y9aDR0YyLuj+E01vPxR0TP8cz0T8XvM1cbga/DP0ID83chQu734/1DcdXYKREVC1UYTSX5kabs7PCoyGyF4bRiIiIiIiIyJSVMFo0Wf5x1LJCYbTx8vyeVZVU66Mu+R1udQfQ5AXmJevn5lGBUw6vnR/vLIfRLMSk7EQdRpNfHksBqYyAx1U7f1uSsxRG2yPwtmO4LlSjT/xK7I+iAcDYLPDB6w1s/5oOh2yDT0REVEa/HxTK/dJzvm9g57d49kaiUhueYRiNiIiIiIiIiIiIqB6pwmgehtGoBILuPgwltuRdHpJE0MZT8jBasIqCUKqxTmT2wBC5JYU1qPapJuUDDKNRfVFGJhUBzeUUM+allzdYCKOZXSeajcDr5r5YOeREDsPJndiRGMRQfBA7EluRMGJleawuV8/+CNo6/wA6XN1leZx6d2LTG/HE3IPYFn82b1nCiOM34f/FB3s/U/B+DCE/WM2Bxe+/Bd19lq/r0tzo5DpiSbe7Bx9e8Vm8lNiO28LXWorPjaV344cjX8VR/tfgwq4r0OddW4GREpHdhTPyz2Dd7l7oml7h0RDZC8NoREREREREZMpKcGk+Vf5x1LJCYbSw/HfKuqQKo8lOUKRpGjb0Aht35i/bPl7acS03y2G0THnHUWppRfwq2KK+zXQM6Gktz3jIPlIW1uUXQ+UfB5Xe2KzALX/J39i/NAE8PgScfuQyDIqIiOra7mn1sl1TQDgi0N3McCdRIRa6+/uNzAgAfF0BwExs7zPX1sDng4iIiIiIiIiIiGpfShFG8zKMRiUQ8KjiNvmTj2WxNAAIuleWdEzlFFDELzIijenMJDrdgQqPiKqJKozm0txoc3ZWeDREy0cVRpvOTiBtpODWPRUekVo0qwqjNRW8baPJdaK5CDrB94xSyIoMdidfwlB8EEOJQexMbFOGgZcq6O5Dv28D+v17Q2itTp6drhI0TcMlgY/ia7v+ERmRzlv+l/nHcXL0DAw0nqC8DyEEDMgnh2hLCOMUEzYNuFcwolukw31H4TOr/h3PRDfitxPXYzJTeCLD9vhz+NYrn8bJzWfiHZ2XotXVUYGREpFdjafkn8EYpiZiGI2IiIiIiIgKUIWoFoqlAMMQ0HVO0lwMK2E0IQQ0Wf2rzqjWR9Wqt65bw8ad+TeaqLHYXM7iDPNqCqMZhlD+vYMmJy+bYhitLqQU0byFZmPFpBfILm75i4BQ/OmeHRE4/Ui+FxIRUWXF8o9RO8jzI8Bb1ldmLETVTLWPJzMyU75xVItURuAD1wvc8rRA1gBOOQy46SM6VrZzf5iIiIiIiIiIiIhqlyoM4WEYjUogqAiFzWWnkcjF4XP491+mikJV04TkbnevclkoPcIwGpkKZ+SvgW53L/QlRFmIqo0qMgkA4fQY+rxrKzgac9FcRHq5WfRsH5/eAB26NMYUU9wvFZYx0tiVHMJQfAuGEoN4OfEC0iJVlsda4VmDft/eCFq/bz2anDyYfrl0uoM4t+Nv8dvJG6TLfxW6Bl/0/wAe3StdLhRRNABwoDJhtJ4qigHbiaZp+D9Np+LYxpPw6My9uHfqFsQM84lLAgIbIw/g6fnH8Jb2d+Ks9gsZBieqU7XwPQRRuTCMRkRERERERKashNGAvZPFm+TfzVMBWfVvFwCAdBaY2z2Klqd+CxGZgXbK26AdfWJlBmczqonUqjBap+K33In52gomGQXWoX2qKYxmFgwMNGsA5H/D6Vh5xkP2YiWMNleek6hRmd38lHr7vH28ggMhIiJ61WTUfHmh0DUR7VVMGG14unzjqBafvkXgV5sOPGkbdwIXXWPgic/zjLxERERERERERERUu1JGUno5J4ZTKZhNJg6lR7HG1w8AiOeiiORmpddTxdXsyKv70OrswGx2Km9ZKD2KAZywDKOiaqGelK8O7hHVog5XN5yaE1mRf9DqeHrUVmE0VXyn0WFyNupXaZqGBkcT5nNzecuiuRo7G3kZpY0Udia2YygxiKH4IHYlX0RWlP7gfQ06VnrWot8/gHW+Aazzr0eDhQAeVc6b28/DpsgjGEu/krdsOjuBeyZvwoXdV0hvKwsU7qNpiz9mpMsdhA4HDBQ+2C3oYRhtKZyaC2e2n4eTW87EfVO/wcOzd0vfRxbKiDTunboFj8/+Aed2XoLXt5wFxxL+3kRUXQyRQzgzJl0WZBiNiGE0IiIiIiIiMpezGFyaTzKMtlhWJtKH/vE9aJ7+CwBAXPt14DM/hPbOD5d5ZPajDKMpTn7T1Si/fKLGfqPNWZxgXithtAbP3v/FJCfNYhitPqQthNEi8mNlycaiSYEnXlYv//OO2opaEhFRdRidMX//mYoJAIpSMxHtV8yeXKHXXa0TQuC2v+Y/B5t2Ac8NC7xmJbc5REREREREREREVJsSRlx6OcNoVAptzk64NQ/SIv+gs1B6ZH8YbTw9oryPagqjAXvHKwujjSuiV0T7hNLySflmgUGiWuTQHOhy9WBPejhvWcjk/WI5RLMR6eVWg1mNjmZpGC2Wk98vAUkjgZcS2zAUH8SO+CBeSe5ADhYOcC6SDgdWe9dhnX89+n0DONx3NHyOhpI/DpWOQ3Pi0uDH8N3d/wohOWLmwZk7cVLzaVjpPSxvmSHUE7gcUEyasTimTldAGd5ZqMfNMFop+B2NuLD7CpzW+jbcOfkLPD3/WMHbzOfmcFPoGjw8czcu6HofNjScCE3jcUJEtW46M6mMqfIzGBHDaERERERERFSAYXEualQSKCJrrITRwgkX+hf8t/jR/wec/XfQvP6yjcuOVOujrviuv0vxW+4z+b9PVzWrAcNk6X9rLZu0yevC5QA6GuRhNIYp6oOVMNpcovzjoNJ6ZVodwASAzaPAoy8KnHbE8r/G//sRA1c/IhCOAGcPaLjqbzU0+5Z/XEREVHrzBWKrtRZdJioXs/28Qw3PlG8c1SCTA0KKY8uvfkTgmsu430lERERERERERES1KWXID/bw6vV1jByVh67pCLhXYDi1M2/ZwhiaKozm1X1ocbaXbXzlEHCvwPb4c3mX2y3mQ/ZiCANhRRit28VJ+VR/Au4VijCavSKTqoBZo6PZ0u0bFNeL5nhgzD7xXBQ7EluxI74VQ4lBDCdfggGLB/EXwak5sdrbj37fBvT7B7DWdyRDwVXoMN9ReEPr2Xhs9r68ZQYM/Cp0NT6z6t+ha46DluWEehLFodctVtDTZy2M5mEYrZQ63QF8oPefcWbiHbht4jrsSGwteJvx9AiuHv0GjvAfgwu7rsAq7+EVGCkRLZdQRr1f2c0wGhHDaERERERERGTOsPhbTaHJ4qRmJYwWcgYOviARA7Y8AZx4ZnkGZVNW18d9uho1QHKWHQB4KSxweHdtTCa2GkZLyU8gYUtmrwu3A2hvAHZP5y+bipZvTGQfKQthtAjfl6rO7vwT1OZ5038ayFyjw6EqYlbA/z5u4GO/PPDecv1GgZcmBB797NIOOCAiInsqFGSd4P4nkSVFdHAyMRcAACAASURBVNHw0kTZhlEVzCJyL4wX80wSERERERERERERVZekIozmYQiCSkQdRjswCXk8JY+GBdx90LTqOt4woJhAbbeYD9nLTHYSGZGWLlOtU0S1LODuk15up22pEEIZMFMFzw7V6JCfjTyqCK7Vg2g2gh2JrRhKbMFQfBCjqV0QRR39YI1Lc2Ot70j0+wbQ7x/AGu8RcOuekj8OVd75ne/F8/NPYi6Xf4bAXckhPDp7H97Udu5BlwuT2J4OfUnjsfI+7tSc6HQFl/Q4JLfGdwQ+tfIbeC76JH47cYOlSN2L8c3491f+Ga9tPh3ndV6GdldXBUZKRJUWUnwP0ersYByVCAyjERERERERUQGGxd9uogzQLFrWQtRq2Cn5UXXrpvoLoynWR13xG0+X/DdaAMBX7xK44YPVdaCSitXXabJGwmguB9DZKF/GMEV9SGULr/Rz8mNlycaGZ6xtzP64DTh7oMyDMfE/j+eP8/EdwNYxgfW9tfG+QkREB6QLhKwneGJcIkvMYl+HmowC4YhAd3N97luZfcZ/Ybxy4yAiIiIiIiIiIiKqtJQijMZJoFQqQWXcZmTB/5eHbqoxCKX690Zys4jnovA7FAfhUV0ziz1V4+uAaKmCJpFJQxjQtaWFikohJZLIQX7mv0aLYbQGRRgtpgiu1aK57Ax2xAcxlBjEUHwQe9K7y/I4Hs2Lw3xHod8/gH7fBqzyroNLd5XlsWh5+RwNuCjwYfxs7DvS5XdO/gLHNZ6MVlfH/styQn2wmq4t7QTOVt7HA+4+OJb4OKSmaRqOazoZxzSeiMdn/4B7pm6yFKDcFHkEf53/M85sOw9nt18In6OhAqMlokoJpeWhxIC7t8IjIbInhtGIiIiIiIjIlGEh2gUA86nyjqOWmQWg9tntWpl/obv+zgSkmhzsUMyVXtMhvxwA7tkskM0JOFU3riLWw2ilP0tVuRQKo3U1aYDkrFtTDKMtSs4QuPWvAj/fKNDi0/C+UzWctd6+r42UhchfLIWaeY3Xi+H8E6JJPbFT4OyB5fu7bsw/cTAA4EcPC/zoUq5vRES1ptB+x2y8evaxiZZTMWE0ABgcA7qtHZ9dc8w+40/yMy8RERERERERERHVsKQyjOat8EioVqliEBPpceREFg7NifEFkbSFVGEcOzOLX4TSY1jrO6KCo6FqoQqjNTva4HP4KzwaouWn2pamRQqz2Sm0u7oqPKJ80aw6qqMKnh1KFVCzEuypVjOZyVcjaFswFB9EOCOPkiyVV/djnW89+v0DWOcbwCrvYXBozDvUi+MbT8GGhhOxJfZ03rKkkcDN4Z/iIys+t/8yA+oJXDqWFmIMKKK5C/W4JfOWqOQcmhOnt52D1zafjt9P34aHZu5CRqRNb5MVGfxh+lb8ee5+nNNxMd7Yeja3JUQ1QvU9hJXtNlE94LsdERERERERmbIaXJpPCgDFx0BiKYFQBFjbuffsF/UmZwhLk4NHXPlfZonZqUU849VNtT7qit94elo1NHuBSDJ/2Uwc2D4ObKi+45XyWA0YJi3EpOyiUBitQ3Gyyol5hikW41v3Cnzpjn3PncCvnhK4/v0aLjt5+c9kJ5OSn9guz3wSaOMJkarGK5PWrre1PMeeLFlojtsfIqJalC4Qso7I5+cQ0SGK3VN6MSRwxlH19q3HXmbfxWUtfv4nIiIiIiIiIiIiqkaqMJpH91V4JFSrVJOKc8hiMhNCu7Mbk5mQ9DrBKoxEtDo74NG8SIn8AyhD6RGG0UgqnJYfnBVw91Z4JET2YBaZHE+P2COMZhIva1xiGC1WI2E0IQSmMmEMJfZG0IYSg5hSvOcvVYPehHX+9VjnG0C/fwB9njXQNUdZHovsT9M0XBz4CF58eTPSIpW3/NnoE3g+ugnHNr4WAGAI9cFqS12PrLyXBxnhqSifowHnd70Xp7W+FXdO/hKbIg8XvE00F8HN4Z/i4Zl7cH7X5XhN4+vqci4eUS0JK+LUZvuhRPWEYTQiIiIiIiIylbM44TKa/x19gfsV+OdbBH78kEDWAFZ3AL/5qI4TVtfXF7Jm8aeFhiVhNMxOlHYwVSCnmB2sm6w2T39BxxFfkK/Ie+ZqI4yWszjDvJrCaGmT8JXLAXQpw2jlGU8tG50R+NrdB69EQgDfuU/g714nbPlDmdUw2lyCYbRqMjhmbWO2xeL1ykGY1EytrpdERFRdzPZLAXmEmYjyWYnCL1TPr61inysiIiIiIiIiIiKiWpATOWREWrrMyzAalUi3uwcaNAjJKV1C6VHkRA4C8mMNq3FCsqZp6Hb3Yji1M29ZSDHxmki1blTja4CoFHyOBrQ42jCXm8lbFkqPYn3D8cswqoOp4mU6dPh0awfRNijCaNFcdR6YLYRAODOGofggdiQGMRQfxEzW4tl7i9TkaNkfQev3D6DHvQq6Zs8TU9Py6HB14+2dl+C2ieuky28K/TeO8B8Dr+6DAfUEI8cS16tGRzMaHc2mMcUez6olPQYtTrurC1f0fBJntr0Dt01chxfjmwveJpwZw0/G/h2H+47Gu7rejzWMHhNVpUQuLt3PBPgZjGgfhtGIiIiIiIjIlKJDlWe+yAmrP3hQ4PsPHLjzV6aAs/7LwOh3dPjc9ovwlIvVMFrIEci/cCZc2sFUAdX66DD5jWddt4b2BmA6lr8sPC8AVP/6ZlgMGCarKNpj9tpwO4EuxQnMJqLlGU8t++ljQvp8bxkDZuJAuw3DYlYDVBNRYE1necdCpZEzBLaNW7vuzom9B60sR7Qva7JtYhiNiKg2Fdq+13O8iagYxba+iv2eqZZY/S6OiIiIiIiIiIiIqJakjIRyGcNoVCpu3YN2VzemMqG8ZeOpEWSF/MdBHQ50u3vKPbyyCLr7pGG0cYbRSGE8PSK9nJPyqZ4FPH2Yi8vDaHagipc1OpotH2fZ4JAfmB3NRZbteM1iCCGwJz2MHfFBDL0aQosoIiNL1eJsR79vAP3+Dej3DSDgXmH754eW3xlt78BTkUel+2Wz2SncPXkj3t39QRhCPTFEw9KDewH3CkQTJmE098olPwYt3irv4finvv+HLbG/4PaJ65T7ZQu9lNiG7+z+LE5seiPO67wMnW7J3DMisi2z/Ul+BiPai2E0IiIiIiIiMmUIa7Mxo6ni7vdXm/LvdzYO/GEr8M7jiruvamYWWFkoIvuxsR7DaIrfefQCvyUGmhVhNPVvOlXF6qTphPykqrZkFkZzOYDORg2yqfUT1XlismV17xb1CjQxX91htOFp4KQ1ZR0KlcjOCSCZsXbdVHbvutktP0FhWaUZRiMiqjvpQmE09RwdIlrA4tdL+xX7PVMtYRiNiIiIiIiIiIiI6lHSJIzmYRiNSijoXiENo4XSo8hB/uNglzsIh1ad0zBVE6lDFiILVH9SRhKz2Snpsm5Oyqc6FnCtwIvYnHe5XbalsZz8gHhV7Eym0SE/INNADkkjAZ/Dv6ixlYshDIylXnk1grYFOxJbEVU8D0vV7uzaG0HzD6DfN4BOV5AhNCqaQ3Pg0uDH8Z1XPguB/EkxD83cg9c2n2762cehOZY8jqC7Dy8ltsnvH050uYNLfgxaGk3TcEzjiVjfcDz+PPdH3D15I+ZzcwVv9/T8Y3g2uhGnt56Lt3VcBL+jsQKjJaKlUoXRXJobbc7OCo+GyJ6q8xs5IiIiIiIiqpic+oQjB5lPFne/T+2SX/6TRw2887ilf2FfLcziTwtF9GYIAAf9hBa2x1mmKimnmBxcMIzWBGzbk3/5lrGlj8kOrL5O4zUURgsogkjRFBBJCDT7+INzKUzMA0fa8PfNQoGSfYZn8racZFODRW6Ph2eWKYxmsu6lLIbdiIiouhQKX0aK/CxMVK9UYbRmr/x1VOz3TLVEFYXfJ2cIOAp9EUJERERERERERERUZVKG+othL8NoVEJBdx8GY3/Nu3xL7Gm4E17pbVRxsWqgGns4vQc/Hf32ou/XoTmx2rsOp7a8BT6HDc+8SfvNZaexce4BjKR2QQjzH6LMtsXV/DogWqqAR77+70oMLWlbWqxWVweObzwF6/wDB10ezcnPKt2giJ3JNJpE1GK5yEFhNEMYeHr+MbwQfx7JXNzyY5RKSqTwcuIFJAzJWdNLoMvVsz+Cts4/gA5Xd1keh+rPau86nN56Dh6evTtvmYCBn459B12uHuXtdehLHoNZ6DTg7q3aGHAtcmgOvLH1bJzUfBrun74df5z+LTLCfEJQVmTxwMwd2Dj3AM7peA9Oa3sbnJqrQiOuLoYw8FTkUbyY2Lws72Wl5NTcWOPrx+tbzoJb9yz3cKhIqjBawN0LXVv6dp+oFnDvhIiIiIiIiEwZiomrh5pTn7AxTyKtvtPp8vw+ZVtWw2g5zYmY1oBGseAJmh6HyKShudzlGZwNqSYHF5oP3N2sAchf7679k8BP3yugV/mEYquv01gNhdH62tTLR2eBZh4PWRJh+bESy65QoGSf3dPlHQeVzpYxixuyVw1PAyesLtNgTJite1bXSyIiqi7pAp/Z5pOAYVT/ZwqiclPt7TUpwmixVFmHY2uF9ozj6b3PGxEREREREREREVEtSRrqAxA9DKNRCQXcfdLL53NzQG5OuizoXlnOIZWV6t9rIIdnohuXdN9Pzz+GP8/9EZ9e9U00mAR1aPlMpkO4cvjzmM1OLel+HHAyDER1LajYlqZEcsnb0mI9PPM7XBb8e5zS8ub9l8UUYTSz2Fn+ddURtWgugk4cOMvyz8d/gCcjD1m+b7sLuvvQ79uAdf716PcNoNXVsdxDohp2Xtff4dnoRul781QmjKlMWHlbXXMs+fGDJmG0oKd693lrmVf34R2dl+KNLWfjrqkb8cTcgxAFji6KG1H8ZuJ/8fDsPTi/63Ic33gqNI3HNy50w/hV2BR5ZLmHUTJPzT+CpyKP4pMrv8Y4WpVRhdHMQpZE9YaJQCIiIiIiIjJlNbg0EbEeNNkjP3YEAOCos0+qVsNoABA59AdHIYAJ+RdgtUq1PhZab7pMftd9YPvix2MXlsNoVTSxPK0IDDl0QNM09LaobzsyU54x1aqESTAvPF9crKpSrAaoRhhGqxrb9hR3/eGZ5Vk3VdsmgGE0IqJaJIQw3fbvE62i/Wwiu1EFvuaT9vwsUgmFPuNHJSE5IiIiIiIiIiIiomqXUoTRNGjwaDxbBJWOWQyilLexi253DzSUL4KwJz2MP889ULb7p6V5YOaOJUfRAKDLHYSjBDEWomoVcPcu9xD2EzBwx8QvkBWZ/ZdFcxHpdYuJVnp1P3TIX+cL7384ubPqo2i97tU4vfUcfKj3s/j24dfhS2t/iEuCH8VJzacxikZl59V9eE/3hxd1W9VrtBgBk/3aniqOAdeDVlcH3hv8BP519ZU42n+cpdtMZkL42dh/4D93fw4vJWpg4lSJDCd31lQUbZ9dyRfx1/k/LfcwqEiqMJrZ9pqo3jiXewBERERERERkbznD2vXC8hMNSTGMdkAxYbQ5vRm9OKQcEx4BeteWdlA2ppocrBc4bufwLvWys79nYOZ7Olr81XsGlFoMo6leG+5Xf8/zuDR0N8m3PSMzAijjwVy1JpFRL5soYtteSSmTMS8UKiLaSctrKlrc32oqWqaBFJA2ed9mGI2IqPZY/bwWSQLNvvKOhajaCcXuXrNiLls9BweNAt/F1fNzQ0RERERERERERLUrYcSll3t0HzSNxwFR6QTcfRW5jV24dQ/aXV2YyoTL9hjbYs/grPbzy3b/tHjbYs+W5H44KZ/qXZuzCy7NjYwwORNxBUVyMxhLvYJV3nUA1GG0xkNPym5C0zQ0OpoQyc3mLYvlDhxMXKrtSqVo0NHnWYN+/wb0+wawzr++qGAcUTkc13QyXtP4OjwXfdLybXTocGquJT92hysAp+ZEVuQf9NzjYRitGvR51+ITK7+CrbFncFv4OoylXyl4m5eTL+C7uz+H4xtPwTu7Lke3u6cCI7WvrbFnlnsIZbM19gxObjlzuYdBRZjOyj+r8zMY0QF1Nt2ciIiIiIiIimU1uFSqMFrCHr8XVkzWYngO2BtGy7NnV6mGUhVUob5CYbQLjze/wluvMpCzurLbkNWAYdYA0tnq+HeqIhSuBSc66muTX2c0/zd5MmEWRitm215JVgNUE8sUz6LiJS3G7vaZk58ouuzSJuseAxVERLXHbLu/UGSZ3peIqonqk2iTIow2nyzbUGyv0NcT3O8kIiIiIiIiIiKiWpQy5D+4eHWenYZKq8nZgjXeIyxfv8XZjlXew8o4ovI7puGkst5/KD1a1vunxcmKDCYz4yW5r2May7sOEdmdrunY0HDicg/jIHtSw/v/f6wEYTQAaFBcP7ogjGb3bb4OHWu8R+Cs9gvw8RVfwH+u+zn+dc2VeHf3B/Captcxika28Z7uD8OjKQ6akVjrOxIufelhNIfmwPqG/5N3uUtz40j/sUu+f6qc9Q3H4/NrrsRlwX9Ai0MxseYQz0Q34msvfwK3hH+mjGrWA7u/ly1FLf/balFWZJBUfB/W6myv8GiI7IthNCIiIiIiIjJlWAwuhYr4TnTPnHqG59gcIER1hJtKQRV/kplztORdJl7ZXsLR2J9qcrBe4BuOVR0a3neKOo725MvATU9V73pXTNMtViUTqFX/JseCv3VQ8Xu9XWNedhU3CVJO2vS5tBpGm2QYrWoUG0aLLFMow2zdm5gH7ny2et9LiIgoX9ri57VYnQW+iRZD9VVPs2I+Wz3HvxhGIyIiIiIiIiIionqkmgjqYRiNyuDCrvfBq/sLXs8BJ97d9QE4NGcFRlU+b2k/H12unrLd/0x2Eimjjs96Y1MT6XEYKOLszQpH+I/BiU1vLMGIiKrbuZ1/azk8Uwl70gvDaPKDfVWhM5VGRTRsYTxnPD1S1H2Wm1Nz4nDf0Xhr+0X4h74v4z/7f4nPrv4OLuh6HzY0ngifo2G5h0gk1ebqxAd6PwOnVjh25tP9eFfX+0v22O/ovBTNjtb9/61Bw/ldlzMcWIV0zYFTW96Crxx2Nd7ecYml2F4OWTw0cze+vPOjuH/6dmSM+jv4sZbjYeH0WF3Nyax2qn04oPjALVEtq+5v5YiIiIiIiKjscha/D4umgHhKwO9Rx6f2GZ9TLxubBTaPAsf2WRygTaUyAv/zJ4GndwGtfuDC4zW8oT//uSkmjDavS35o2LVt8YOsQspYVuHVDv92robrN6pX6F8/JfB3r1vkwJZZUWG0NNBWBb/xKiN4C/7W3c0agPwr2jXmZVcJk9+ywvP2+1HEMITlbedUdO/1dd3CRoKWVdJi7G6fSGJ51s10gXFe/r8GNn9Fx8p2rnNERLUgZTHcGWekiKgg1fFWTV7557r5Op47U+jYtGgdPzdERERERERERERUu1RhNC/DaFQG6/wD+PzqK/FcdBMmM+PS67Q423FM44lY4VlT2cGVQburC59d/R08O/8ERlO7ICS/zViRNlLYGHlAuiycHsNK72FLGSaVmCr4oEHHaa1vLXh7p+bEam8/jms62VK0hajW9XpW4XNrvovn5p88KEpWbi/Gt2BPenfe5XtSe8cghEBUGUYrLnKkun7s1TCaEEK5bTnK/xoE3CuKerylaHa24TDfUVjrPQJu3VOxxyUqpWMaT8TnV/8XNseewnRmQnqdgHsFjmk8ER2uQMked4VnDT635ko8N/8EYrl5HN1wHNb6jizZ/VPleXQvzum8GK9v/RvcM/kr/GnujxAFArkJI47bJ67HIzO/wzu73osTmt4AXdMrNOLlFU6PSS+v9HvZUsRy83h6/rG8y1MiibncDFqd7cswKirWwvjsoRirJDqAYTQiIiIiIiIyZRRxsrDwPLDGwu9Ke0zCaABw4yaBY/uqNyiSzgqc9A0DWxZ8V3rVAwJX/52Gj5x28BfFxYTRZheclWW/V7YvcpTVSRnLsvD9+2GdgM8FJBRxg7ufr96AUq6I12msSqINhmIm+MK/dZfie147xrzsyjAEUiahp7ANI3PpIrabhgCmY0AnfxOwvaRi29ziA+Ykxz5H5MdDl12h9S+SBH78sMC3Lqy+9xIiIspndb8jVn8nTSQqmupTWpPiRKWROo5/FYqfx7nNISIiIiIiIiIiohqUUobRFF8kEy1RpzuIN7eft9zDqJgGRxNe33rWku7DEDk8Nf8osiL/QJ/x9AjDaDajihd1ugK4OPCRCo+GqDa0ONtxWtvbKvqY903dgjsnf5l3+b5YWtJIIAf5gcCNjuaiHkt1/dir4bVoLoK4EZVe520d70G/f6CoxyMiIOjpQ9DTV/HHbXW24/S2cyr+uFReLc42XBr8ON7U9nbcPnE9BmN/KXib6ewErt1zJR6YuRMXdl2BI/wbKjDS5RPNRhAz5JNk3tpxUdX8+1VhNGDv5wCG0apDTBG3BRhGI1qoPrKdREREREREtGiFJmMuNG9x0uqD283v9Dv3CVz2MwPTseqLG92w0YD34wdH0QBACOBffiMwFz/435QtIvAz5uzJvzA8CqEISNUiVQDMSstM1zW8dq35dXZOFj8mOyjmdVotYTQrf+tuxfe8EzaMedmVKka1jx2fy1SBMR9qQn4MBtmMal1Uvc6XK5SRNgkJ7vPt++rnfZmIqNZZ2e4DjBQRWaH66qKjQX55LAXMJ+tzv6rQZ/xYuj6fFyIiIiIiIiIiIqptSUUYzaP7KjwSIlLRNQe6XZLjWKGOcNHyCaVHpJcH3CsqPBIiWooe9yrp5VOZMNJGyjSo0VhkUKNBEUaL5iIA1NsVAAhy20JEZBu9nlX4+74v4h/7voo+T4FJVK/andyB7w1/AdeMfrOm9+3N/m3VtJ/c4GhSBk1r+e9Xa6KK/Tiv7odTc1V4NET2xTAaERERERERmVLFiWSiBYJLQgjc87zA7unC93XjJoHOTxkYClXPZM+7nhO44lr1eOeTwG+fPXh5pogw2ohLciaYdBKIWHhCa4RqcrCVMBoA/MMZ5l+FvPuaIlZ4GzFK+Dq1Cyt/6y7F7/VhG8a87CpRIDI2GQWMYsp7FZCyGCjZ5/Ed9ho/HWzbHoGfbzSU+waqMNqc/HjosrMayKnXiAcRUa2xut8RZ6SIqCDVq2SVyckph+vn646DFAyjVcnneiIiIiIiIiIiIqJipBRhNC/DaES2EnBLjmMFJ9/b0bjib1JNwQciAno88jCagMB4emR/tEymocgwmiqwsi/aEUqPSZf79AY0OlqKeiwiIiq/oxpeg8+t/i4uD/4TWp0dlm7zfHQTvvbyJ3BT6L8xn50t8wgrL5SR7yN7dT+aHa0VHs3SdLt6pZeHFe/XZD+q/bhi9+GIah3DaERERERERGSqmB6OWXApmRG45KcC7/hhceGpI79o4CePVkes6uqHC4/z7ucXH0YbdioORpionwNKVAEwh8VvON51gobr3q+uqD0/AmRz1Rc1KOZ1Wi0TqFV/64VhtO4m+d9yYh7I2SzmZVfxtPlyQwDTscqMxap0EdtNALh/kOuCXX3zdwYGvmzgfSZR0W75cTaIJMs0qAKsBnLqNeJBRFRrrAYxq2Ufm2g5CcUu34o2DZriY7qVsH4tUj1X+8QKfI4jIiIiIiIiIiIiqkZJRRjNwzAaka0EPfLjWEPpkQqPhMwIIZSxuqAibkdE9tTp6oZLc0uX7UntRkwR1NChw6c3FPVYqgjHvscYV2zrg+4+aKof/omIaFnpmo6TW87AV9b+GOd1XmYpPm7AwKOz9+LLL38M9039Bmmjdg6QVO0jB9wrqu69TBU8ZrS6eqj241SxWqJ6xTAaERERERERmSqmLXT29wz89DEDQjKD8+anBW5+enFxmo/+QuDaP9k7jiaEwKZdha/3/CG/BxYTRhtxKQ5GCNfPASWq9VEv4vvny0/R8eaj1Mt3hIsbU7mkMgJfusPAKd/K4fwf5XD/VvXrJ1fEy6NaJlBb+Vv3KE4uZgjgpYnSj6kWJTKFrxOeL/84ipGyMOaFRmrvREU14ZndAl+6o/B+QXezfAM/Jz8euuzSFuOZwzNlHggREVWE1SBmodgsEam5HUBQcRzP8Ex9Ro4LfRfHbQ4RERERERERERHVIlUYzcqkbSKqnG6XavL9GAxh7+N868l8bg4JQ35GVFVAgYjsSdccytftnvQIoiZBjWIDL42KMFo0N28aXAy4e4t6HCIiqjy37sFbO96Nr669Gqe3ngPdQmYmaSRw5+Qv8JWXP44n5h6qif39WnovU+0fhBlGqxqxnHyylmqfjKheMYxGREREREREpooJLgHA//25wDd+lz+D85ZFRtH2+eD1Ar/bXPkJsUIIbBkV2DMrpMG3fcbngGn5MQQH2TEBJNIH7qeYMNqwsw/SEUzUz5eWqvWxmDAaAHzgDeobbLbJ0/me/zbw9XsEnnwZuPO5veHBu5+Xr4PFBAyjqeqYWK76NzkWfJt1RED9tx8cK/2YalHCwoR624XRLAZK9oksU0CLzP3kMWFp29Wt+E0nlgLm4pXfnqUtrn/D09WxrSUiInNWt/vVEh8mWi5m36doGrCyTb5stE5js4X2k2O1cxJWIiIiIiIiIiIiov1SRlJ6OcNoRPYS9MhP8JsRacxkJys8GlIZT6tPuMwwGlH16XGvlF6+J7VbGdRocCjOUGaiUXEbAzkkjbhJTEZx8nciIrKdJmcrLg58BF9c+wMc2/haS7eZzU7hhvGr8O1XPoPtsefKPMLyCqXlE42qcR+5WxFzm8yEkRWZCo+GFkMVuG1gGI3oIAyjERERERERkaligkv7XHm/OCj+BQD3bF76WD59s2E6mbbUNo8IHPf/DBz7VQMrPmvgwh8bygiL1QiTEMC2PQf+O1tEeC7qaMKc3pJ/n3UURlOtj8WG0f72JPUNLv7J8p/FZNsegbuez7/8vB8amJWsg8W8TqslEmXlb+1zazi8S369zaOMElmRsPB7x0SVh9HmqmSdrydCCFz/Z2uvIQYzYAAAIABJREFU0aOD6mVP7SrNeIphOYxWpxEPIqJaY3U/O84wGpEps69yNAABxfHY0/GyDMf2GEYjIiIiIiIiIiKiepQ05Ad4eBhGI7IVs2CAKphDlaf6WzToTcrwERHZV49HHkYbTw8jqgyjFR/UMLvNbHYak5mQdFk1xmSIiOpdwL0CH13xeXxq5TewyrvO0m2GUzvx/ZEv40cjX8NYaneZR1h6OZHDZHpcuqzbJY+M2Znq/VfAwITi30n2otqP42c2ooMxjEZERERERESmFhNGm40Dmxf8pm4lZnbL/y38EfXFEHDVA5WJHaWzApf9j3HQv+OO54DP/1b++DsnrY9rZEEsJZMr7t8z4pJ8cRmun4NJVOujo8hvODRNw0UnqONoP354eeNovx9Urxf/dFP+slwRw43IT65qO8ow2iF/6wHF7w8vT5R2PLUqZSGMFp63V2Su2DBatazz9WQuASQtnoToyKCGzkb5sk27Kr9uWl3/huTH/xARUZWx+nmYkSIic2YvJU0D2hrkn89nYuUZj90V+hqNMUYiIiIiIiIiIiKqRSlFGM3LMBqRrXh1H1qc7dJlDKPZh+pvEXCvgKYVeSZiIlp2Qbc8jDaZCWEmOyld1riIMJpZhGNX8kUIyA9YZxiNiKh69fsH8NlV38H7ez6NdmeXpdsMxv6Cb+z6JG4c/zHmstVzNvGpTBg5yCcDVON7WacrCE2RC+Jns+oQUwZuGUYjWohhNCIiIiIiIjJVTHBpoc2jB2ZxPjtsft113cAFxwMXn1j4x/ZP3yxw21/LH0K5b8vBcbd9btokpKG33dPW73smfuD2mVxx4xp29uVfGC7wBNcQ1fqoL+I4jQ0m31v/w40COyeWLwb15E71sp8/IZA9JKhXTMBwTn4Moe0YFv/Wazrlf/zhGXvFvOzKyrozIf+ufdlYibktNJ8EcoupfFLZDBfxnulzAa9bK1+26eXK/13TFt+3t4xynSOiyslk5Z9RaOmsPq2MFBGZM3staRrQ5pcvm4nV57at0McXbnOIiIiIiIiIiIioFiWMuPRyr674EpmIlk1QEQ0YT49UeCSkElL8LQKe6gs+EBHQ61klvVxA4KXEVukys8iZilf3Q4dDuuylxDbp5Tp0dLmDRT8WERHZh67pOKn5NHx57Y9wQdcV8Fn4HC5g4PG5P+ArOz+G303+GinD/mezN4uFdbt7KziS0nDpLnS6uqXLwumxCo+GFiOai0gvX8x+HFEtYxiNiIiIiIiITC22JbMwKva5W83ratdeoUPXNfzXxRpeI+l+Herd1xi4YaOBezcLrP9SDu6P5rDhyzn8YbB0E2a/do98zDNxeVhqpIiTXMwuuH2xYbQRl+QJCtVPGE21PuqL+IbjmBXmNbVv37d8E7B9bvPlMwuOAyw2glE1YTTV3/qQP9vKNvn1igkv1TMr2/iw3cJo8pP0mIra/3e2ujJcxHum1wW8dq18e/3ky8VvA5cqbXH9eyG0N1RERFRO8ZTA+6810PZJA+2fNPDxXxpIZrjtKSWrn4fjqfKOg6jamYbRALQ1yJfNyOfA1bxC255Yitt6IiIiIiIiIiIiqi1CCKQM+UFNXt1X4dEQUSHdijBa2CQ0QJU1rvhbBFwMoxFVo05XAE7NJV02mQlJL29wNBX9OJqmKUMcqjBapyuoHBsREVUXl+7GWe3n46uHXYMz2t6ujGUulBJJ3D31K3xl58fw57k/whBFTpKrINXnlXZnF9y6p8KjKQ1V0C2U4WezahBThNEWsx9HVMsYRiMiIiIiIiJTiw2jDYUO3DBkEtWZuFLH69ftDZ4EWzQ8/QUd/3K2ebAKAK64VuDcHxjYPg5kDWDrHuCtVxn45K8NXPWAgWd2L22S6M4J9TJZJGh42vrjzcQO/P9skd/5DsvCaCM7IEK7i7ujJRJjOyHu/BnEY3dCZBdRKVok1froKLzK5Dm2QITvjmeXb6JxOGL+2FPRA/+/2NdopMbCaKva5X/84ZnKB5OqkZX1Z+H6ZgeLCaNVSxCwXhTznul1Aa9ThNFCEWC2wrEMq2G0TA4YCpd3LEREH7xe4PqNAvH03ve6ax4R+OSvuf9TSlb3taOMFBEtmqYBbYqTjE7H5JfXOsP8/AKIMcZIRERERERERERENSYj0jAg/3LUwzAake0E3fKDL1UxLqqsjJHGdEZ+4FLQY+Hs1URkO7rmQFARpVRRBc4KUYU4QqrgYpHjIiIi+2t0NOOi7g/hS2t/iOMbT7V0m7ncDH4x/kN8c9ensTX2TJlHuDiq9zJVXKwaqN6Hw+mxCo+EipUVGSQVJwloZBiN6CAMoxEREREREZGpXIHJmCrD0wf+v9lE1o7Gg2MnDl3Dt9+l46aPLKJ0BeD7Dwh86tcCJ3zdwNfvWeTgAZhNaw9Lgvy7p/MvU5ld8L1Vpsgw2ohT8ePhQ7cVd0dLIH7zQ4hLN0D8x99DfP4iiI+/CWLGpCRXQspY1iK+4VjbCRy3Ur08PA9s37M8gYNC69PUgtdUsa/RuUR1RBushtFWtsuvl8zYL+hlR1ZiH3ZbZxYTRoskSz8OWrzhGevX9bqAo3vUy0eKuK9SKCZGuWXMXq8dIqotsZTAbc/kb2du2Cgwn+T2p1SsdnZnKhzqJKo2Zi8lTQPaG+TL6vW1VWjTE0tXZBhEREREREREREREFZNSTAQFAK/ureBIiMgK1eT7uew0Erk6/YHHRsKZMQjFL04MGBFVrx73qqKu37DIMFqxIQ5uV4iIale3uwcfXvFZ/POqf8da75GWbjOWfgU/HPkqfjD8FYwkd5V3gEWqxchnt2Lsqn8r2UcsN69cttjALVGtYhiNiIiIiIiITKkCIBt6905eVVkYdlJNZP3i29V38J4TdUz919I+tn7pDgH9Izmc+PUcvnGPgWzO2qx2IQSiJhGd8CHfPSXSAi9PWh/X7ILno9gw2p9azpBeLh66tbg7WiTx7GMQV/0zkFsw8G1PQdzyg4o8vioCdmgsywpN0/Af7zZfx9Z/2cBPHjUgrBYRSiCbE3hRfrK+/RYGv4qJ9ADAnPo4QluxGsFb2aa+j2LiS/XKsBDWm7XZsWqqbXmLyQmCq2W9rxfFxMw8TiDYrN7O2zqMxt8TiaiMXgzJP0skM8BD2ys/nlpldbtvFgMnIvPIoAagzS/f2ZuOoaKfx+2i0LYnzjAaERERERERERER1ZikaRjN5IAQIloWZuGA8P/P3n2Hx1EcbAB/Z+9O3VaxrWbZBtPcgNCrqYbQQseU0D8CoQQcSIAAARNqaAFCDxCSEAjNGNMCxpQYDBhjDO69SJYlWb2f7m7n++Ms6yTN7O1e00l6f8/jx7rd2d2529253b2dd33lCawJqehCEAy4MNxTkODaEFGsFKZaPA1cwWnAWdd0zoI4ClNLIloOERH1Hzulj8PvRt+Py4pvtH08ubx1Ee7b+Fv8a8tfUe+riXMN7ansUJ+r9OdgNF3dmwONlsFb1PeaA43acZkRHscRDVQMRiMiIiIiIiJLutCc66YIzLvJwNHj1OMb24GGVgmfX6LFqy5z1G7WaVa5mQKf/y76U9eFm4A/viORc52J/8w38eb3Ep8sk6huUvc0rW8F/BZhQVU9pltR4Swopa6lq7DTYLS1ogR1Rk7vEcvmQ1ZsdDYzG6RpQq5fDjnvA8jP3oL8zRR1wU/+E/Nlq2jDsiIIRgOAo8cLrL3Xehv79csS932YuI7Ya6qADr91mZqQbchOsFWo/hIQpXtfPdd1wVDA41KXDQ1oJDU7bVd9km0zujpnpgIpbvW4HzYNvjCFZFZaa399pLoBj1ugMFs9vqw+sevWyff92q3xqwcRke74BwCWbuH3XqzY/SR1YeBEFGS1LwkB5GWqx/lNoDHJzkcSIdx5vu46GxEREREREREREVF/ZRWMlspgNKKkk+seDo9IUY6r8JYluDbUky4YbURKEVxCc4MdESW9ohRnwWiZDgPOIp2uwNN/w2SIiMg+IQT2HnIw/rjDEzhzxKXIMLLCTiMh8XXjHNyx/kq8W/2K5bl/vLUFWtEYUD+RvV8Ho3mKteOqNEFwlByaLYLrGIxG1B2D0YiIiIiIiMiSVRDVAWMFXrhIf2q5qdY6UCcnI/zyD9tV4O8XR5h61UNrB3De8xJTnzVx7KMmin5v4sGPevc2DRemVNkjlH+hw8Cd0E7zToPRAOCxvGvUI758z/nMLMi6Kshrj4G88GeQN50Geft5+sJbNkK2xv9pErrOwa4ornDsOFxoA/463TZTYlFpYgImlti49lzT0vV3wGG1+kunct376hmMZhgCIxVZgYCz8KXByk7IU7KF6QUsQvPGFarHzVzEbSGZlKp/U+wl3RPcxwFgVK5mXgkOQHQSjFbfyu2OiOLHqj1aznsZYsZuCHFtCyAl230iHavdQwAotLivuqw+5tVJeuGOOVs6ElMPIiIiIiIiIiIiokTxWnSOTmMwGlHSMYSBghR1B3xdKBclToVXvQ4K+3HgAxEBRanOgtGyIgzUcBrEUZDKtoWIaDDxGB4clXcy/jT2GRydewrcNoJ3fbIDH9a8junrrsTc+o8QkBF0pIuS1XlKfw5Gy3bnIVWkKcfx3Cy5tWiC0dKMDLiFJ8G1IUpuDEYjIiIiIiIiS1YBNABQnNM7qKhTaV33ELCecm0EowHARQcbePuq2J/CBkzgprck8qYF4L4iAOPyAHa5NYC97rLu/b5ua/fXMxY66wAfGqzm1ywq02zWTv/q8AuhWqJc/aOjeujI+mqYL/wJ8uRRwI9f2p9w/bKYLN+KVVBfNKafHH77mvyAmZCwg3Vbwy+jJmTzsBvW0Km6uX+ENujel2pdj8pTl7UbvjSY6dr4UPUW7Xhf0LUDLgM45WfqxuCHTf1ju4+Xz1dK/PplE9NeM/Hl6r79HKSUKLO5bw4J+Y2uRBOMZndeseKkze0vQZRE1D9ZheaUNwze77xYsxuI6QsEg7iJSM0yGE0AI3OC/6skOgg3GYRrelq8CakGERERERERERERUcK0a4LR3MLNzqBESaogpUQ5nJ3v+15lR5lyeH8OfCAiYLin0NFxUZbL4gllMZou0zUk4uUQEVH/luHKwhn5l+D2HZ7EvkMm25qmMVCPVyufxj0brsPi5gUJ7d+hO0/xiBTkuIclrB6xJoRAPkOr+6XmQKNyuNOQWqLBgMFoREREREREZMkqgAYA3C6B4hx1mU21El+t0V+ozM20X49Tfibw5q/jcxpb39r1PtdutS4LAEvLu96TlBL/W60uN9oirKnzAq5P86CL/doWaJe/VpRgs1txg8L6pdpprPj8wbpIvw9y/TLIi/cFXrrH+YzWLolo+U6EC+qL1CE7C5yxt3WZFi/w3YbI5t/hl+jw27tobyfMq6al62+7YQ2dvP7+EdbjJARvVK56A0h0YFJ/ZGf78fqBdl/yBKxYtQNHj1NvC3WtwJaGOFYqib00z8RRD5t47n8Sj8+ROOIhE//+1mGiYgxVNgLtPntls1K7/h6p2c831yV223TS5jb0g7aWiPovq3DTGn3GMjnk5FumtiV8GaLBKty+5HELFGrulS5N8PFeMggXxtvaMbiDn4mIiIiIiIiIiGjgaTfblcNTjfQE14SI7NKFbOlCuSgxpJTaAAQGoxH1by7hsr0fG3AhzbD5BPseshyEcRRqQjKJiGjwGJ5SgEuLb8CNox/AzukTbE1T0VGGpzffjcfKbsem9rVxrmFQlU93jFwMQ/TvyB39uRmD0ZJZiyYYjaGzRL3171aaiIiIiIiI4s5OOJEuAGxTLXDHLPUMXEb3wBM7Tt9b4K0rDcfTxdryLYC57YNpbAsGZqlcfaQ6xKXd1xVWoAtGS5E+vF16prYOZW7FEx3WL4P020ybAbC1SeLCF0ykXx1A5hVtmHbe39B60UFAzRbb8wglIwxmc8JJWJZT/7zUwIm7W5c58D4Tt79jImAzGafFK3HBCyZyrgv+O/95E83t1tOW1oafd21zVxmnwWgAUNnkfJpE065rxdWsUZo26NX50tbnOZjZ3X6SKeDJKrBzovphNwCAJYPwdx3TlLhlRvcPzJTAbTOl7XYs1pY5+IrJDPm+H5WrLmMnTDKWnHxsjer7tomIYsKqPaphQFfMhAsnClXXGr96EPV3VhleYtv5vPZ4rzb29Ul2do452zriXw8iIiIiIiIiIiKiRPGa6htT0hiMRpS0dJ3vq3xbYErNjbEUdw3+Wnil+qYlBhgR9X9FKaNslctyDYEQkd1c7ySMg4GLRETUaYf0XfHbUffg8uKbke+x6NQRYlXrYty/8Qa8tOVR1Pq2xrV+upCw/AHwXZafov68qzrKE1wTcqIloO7Y5ySklmiwYDAaERERERERWQpoOoJ3D0ZT/3BWWqvv/JrmQUQ/uJ22l8Daew28c7WBf1wi8OVNBpr+amDujcHXt58Ug4SsMNp8wPrq4N9WAVOH7qyvy6ZtHXt1wWge6cNJzR9op69yF/Qe2N4KfP+pvkIhpJQ47AETL38rYUqBNpmCv+ZcgdtGTLc1vdK6vgtGc8UgGS09RWDWNQZmXGl9ueTu9yUuetFeMs4V/5L497cS7b5gIN4r8yWueNl62vnrw883NOxCt49aqVQ/WCKpOAnB0wWjAcCYm0089bmJz1dKSEWDtGSzxJOfmXh1vgmff/CFqJlWCQUhkikYzep7aViWQKHmnowNNYNv/a7dClQo9veNNcDCTYmvDwAsLY9sPZRYBKOp9u14cRKMlkz7DRENPFbHgNXNiavHQOfkG6Y/HGMT9RWrfanzFE93XsdgNLUWBqMRERERERERERHRANKuCUZLFQxGI0pWupAtv/TFPdSA9Co6yrTjGGBE1P8VpdoLRst0EG7We1r7YRxsV4iIKJQQAj8bciD+uOPjmJr/K9thm/MbP8f09Vdh5tZ/oS0QnycDV2pCwgbCdxlDq/un5oD6puNojuOIBioGoxEREREREZElO0FUus6rm2ol6jWhINHEWI0YIvCLPQUuOMjAwTsJZKYKHLJz8PX0kw3Mu9nAkbsBET7oyJZlW4L/V1l0ft99JOBxqceFC0Zzww8BYJSvVDm+Ml39w6ac96G+QiGue01iZWXv4S/kXIJ2kWprHr2sXAjpi2/PXDtBfdEQQuDUvQSuOcp6hq/Ml7jpLetEstoWidcX9N6BXl8gUdOs3rHmrpbKEKOeakLCLpyE9HTqD6EN+ran97BRudbr65pXJI562MS5f+sejvbgRyb2/JOJ37wq8cvnJfa400Rty+AKzzJtBuvVt8a3Hk6EC80bqQnQqo3Pb2RJrcbiPf+wqW+29aUOHjzkD9k+SzT7eYs3sdunkza3sT2xoW1ENLhYtUftPgzKwNd4sBsiCwCltfzMiXSsdqXOaze6473SusG3b9lpelq88a8HERERERERERERUaJ4NcFo6a6MBNeEiOzKTynWjrMK56L4quzYrBw+xJWNDFdWgmtDRLFWlDLaVrksB+Fmvae1H8YxEMJkiIgo9lzCjSNyT8SdOz6NY/POgFt4wk7jlz58XPsW7lh/Jb6o+wAB6Y9ZfUxpomoQBqMFQ6urE1wbsqs50KQcHs1xHNFAxWA0IiIiIiIishQugAYARmlCaFZU6Dtq/vXc+KWWHThWYM4NLgSedWHzAwZKNPWLxtLy4AdTpb4OhcxUICtNaD+blZXB6f2aUCKP9AEACvxVyvGVYw9VT7h2iXp46LIrJJ74VL1im11DsDJlV/WEE/aH+KQBr1+7EEeN/i9G7rIeR4z5GB9k/jw4vqURmD877PKjod0eY3yF466Tw2+fD34ksdMtASwqVVfq+43q9Rswge82qOd50Yv2UqpCw44iC0ZL/o7lusAuVQieLpyxp9cXSLw6P/jeP18pcdNbsluH85WVwG632UwKGyDsbj/JFIymC0jsDM3L09wTOxiD0Tosfg9c30e/cTkJjfGHhIeOGaYvt6Iiigo5ZDdMEAgGWjQzsIKI4kT3fdhp5qLE1GOgc9Lul9bFrx5E/Z1lMNq2/3XndaW1Ma9O0rNzntYa31x6IiIiIiIiIiIiooRqM9U3pqQa6QmuCRHZlWqkIdc9XDmuUhM6QPGnC0YrSClJcE2IKB6KUtUPVu8pM4pAjUwHwWiFbFuIiMhCuisTp464ANN3fAr7Dz3C1jTNgUa8VvUc7lp/LRY1fROTh5TX+avhk+qbrfI9+sDn/sIqtLrKx3OzZNWiCUZzcixGNFgwGI2IiIiIiIgs6TrchwZRjc5Th0ht1YSGAcBBO8UvGC1UUY7Aij8ZeOZ8gUsPFThnP4Frjxa47USBaVMEdi1QT3fe/gL3nCZQnKMev6oy+H9Vk/oia8G23xPHF6mnX74l+L8voB7fGYyWrwlGq8rRhJetWGB54TdgSoy/3bp3/7LU8b2Gidv/AfHkp3hlUQrOmz0O/8s8DJXuAnyZcShOHv02po78N+alHwD/J29azjtadoL6YiE7w94M11cDe99l4r9LZK/PfWWFfj10BuOFqmiQ2FBjr361Ldi+PKtQjALN9dCKRnvL6UtO1rUugFDl+bkSbR0SRz2s/uBqWoB/zBs84Wh2g9Ea1A/m7RPhto28TPX+W5tE4W6JYhXKtUrRDiXC5nr7ZUPDJUfmAEPS1OWWlCfuvQQcLqoxifYdIhpYwgV2nf2ciR81Ab5kn5NPcNMgDG8isstqXxLbDt9115ZK6xCTG9z6EzvnaS1RBqNVNEh8tkKiqX1wfbZERERERERERESUnLym+sf1NENzowARJYWClJHK4ZUdZQmuCXWq0Hz2hZp1RUT9y3BPIdzCHbZcVhSBGmlGOlwIvwwX3Bjm0XTEICIiCpHnGYGLi6bh5jEPYdeM3W1NU+Urx3Pl9+MvpbdiQ9uqqJavCw8G9Oc0/UmakY5st/qppFbvnfpWc0DdsS+a4ziigYrBaERERERERGRJ1xnTFdJfdfQw5/PNj/xBRI5lpApcfpiB5y808MqvDDx6toE/nWLgkakGVtzlwl/OFsjJCJYdVwh8eoOBly8z8IfjDZy1j7pj7ua64AdTqQmYyt92HWpckXr6ZdtCXPxhgtEKAupgtFJDk7jmbQM+flU9DsA7f/9cO67T0tQJ3V6L2XUQx5wD4fbgL7PVG8SMoafhsB0+w4jSR7BiU/xSYLTbYxyucOw0wn7ZEx43cfITJppDOhQvsXiwxsKNvYctcXC92esHWrd1grbqMF2crR6u226TiZNgtLxM+/P9fBXw3Fzrjt93zOoddDdQ2Q1Gq29Lns9DFwbY2Q7karaHupbkeQ+J0mIRjOakzYmlzXX2y4Z+RwohMFHzMKOlCXyQUbggop6SKVSQiAYWO0GNt7w9eMJe48XusRIAlNYOvmMNIrusTq86g9F0gdftPqC6OfZ1Sma2gtEsjvUt521KTHvNRPHvTRz9iIlh00y8NIjCwYmIiIiIiIiIiCg5tWuC0VKN9ATXhIic0IUIVLDzfZ/RBR8MhMAHIgJcwoWClJKw5TKjCNQQQiDTFb6jx4iUQriEK+LlEBHR4DM6bWdcV/InXDnyNhTa+D4DgDVty/DAphvxYvnDqO6ojGi5VR3qzgZDXblId2VENM9kow+t5rlZsmrRBKPZOQ4jGmwYjEZERERERESWdAE0RsgZ5Wj1gwW0PC4gO4nuWbruaAMVDxloeNzA4ukGjtitK3mpRNMxt6w++P8adW4ZCrZdh9pN8yCk8m3T+7TBaH4AQLFPfQF2zuZctAr1hyjvvgTS7+s9fNMq/GdOjXqBIe4ffuP2v8Xf5kGkBS/01rZILNxkPW2jMRSXPtMct1Ap7faozp+LylVHOJvp+4uBodea+Hxl8L2X1+s/g1k/SnT4u49fUu7sM6vZ1jHcqsN0kSYYraox+UMbnASjCSFwzVH219ctM6zf/6ZahN3WBwq7YR/JFO4UbtvQBeXVtsSnPsms2atfwWu2Am0diW0L2jokahysB3+PNn9CsXo/31CduPfhJCAHANZXx6ceRER2ghpnLwsew1PknJzWVDXFrx5E/Z3VrtR5hGd1bWlVZPe09Vt22p5Ig9FemS/x+JyuBfhN4NKXJFZs4fcFERERERERERER9R1dMFoag9GIkpouzKCKne/7hNdsR51ffbMSg9GIBo6ilFFhy2RFGahhZ3o7AW1EREQ9CSGwe9a+uHWHx3BuwZUY4tJ0euphQdNc/GnD1ZhR9RJaA86esqkPD9Y8tb0fKvAwGK0/8Uuf9lpYtMdxRAMRg9GIiIiIiIjIUs9Qkk6ekAf85GYAman25zliSPBiZjJJcQsMSRNw9UhdGrlqtrJ8WW2ww+iSzeqOo7sVBeczvG61cnxdQ7AHq18TjOZGMBjt0LavlONbfQLf7nKOemIA+P7TXoPMt5/DZ2mT9dOEuOfQNyD++QPEuH0ABMNshv/WRvoCgG+q8/Dt+t7DA6bExhoJnz/yzrZOwrKiNXVfAXcEV06OetjEy9+YqLMI/2lo6x28tdjh9ebOcCGrUIyiHPUHU6l+sERS0a5rzTq56nD7G0Fb79zAXv7z3eDoFG4nVAUA6lvjWw8ndNuGa9u2wWC0Ls0WYQlSJj5g4qcyZ+UnFHV/vcMwdbnS2sjqEwmnwWhLHYZeEhHZFbDRvPhN4J1FbIei4aTdtzr+JxrsrIK+Oi8PFWYDQ9PUZc5+zuaJywBhp+1psRlybJoSm2ok1ldLtHolXv5GPd07P/L7goiIiIiIiIiIiPqOl8FoRP2SLmyrMVDvOKyAolfVoX4QM6APsSOi/qcoNXwwWqZraFTLsDM9AxeJiCgaLuHC5Jyf486xz+D4YVPhESlhp/FLPz6pm4k71l2JT2tnwS9tdAyCVTDawPkuy9eEvFmdI1DfaQnon8ScFeVxHNFAxGA0IiIiIiIisqQN7go5oxRCYFSu/Xnm95PweultR/HmMR5cAAAgAElEQVScJ5XjmrwCNZsqsKJCPe2kbdcUsz//p3J8G1LR/vpT8GkSDTzbLtAe2fIFcgPqxJd3R1+mr/yaxd1eyg//hbXvvI8a93D9NCHurj8R9fnjAQCrKiUyr3HWCfng+7vKm6bE3e+byLnOxI5/MJE7zcS1/zEjCkjThTjFIxhtZK7A3y8RSHE7n/bCFyW+Wmtdpmeo3t+/cvZ51Gy7b8gqFKNI8/CUfhGM5nBdjysSOGPv2C3/4Y8lapoHfsdwu2EfDer7T/tEIMy2wWC0LlbBaEDi24JZDsMWbji2++Vr3bFGaV2kNXLOeTBafOpBRGQ33PTtHwb+8Uw8OWn3a5MoSJYo2VgGo3X+LwQmae41K68HyusHT3tmp+0JF14tpcTjc0wM+62JHf5gYqdbTGRfZ+LjZeryf5gxeD5fIiIiIiIiIiIiSj7tmmC0VMFgNKJkZhUkUMkO+AlX0aF+aqVbeJDnGZHg2hBRvBSmhA9Gy3JF11nDTiBH4QAKkyEior6TZqTjF8PPw507Po2Dhh4NgfCdw1rMJry59UXctf43WNg0D9Lq5jTow8EGUjBagSYYrc5fDa/ZnuDaUDjNAX1Hnswoj+OIBiIGoxEREREREZGWaUptZ0x3jzPK0Xn259tfgtGwehFKGpZrR3905e/g9avHTRopIE0TuSs+005f99R96OhQJ8+5twWjuRHAnu0/Kcs8vnkv+OHCpxmH4/HcqzBjyCkIbDvVl+uWbi8nv/8MSx96CON2XqKtS0++AHD0Iyauf93EuD86C0Xr9PS71ZBvP4u//OUr3P6ORMu2gJ7WDuCJTyXuel9i4UaJB/5r4u73TcxdHb4Trm57dMXpCscvDzCw5UEDH00z8LPwvyM7siTk2rqd995TTUtwGqtQjOIc9fCKRoS9+N/XdOvaKgTvgTNjuyFMeSSybb8/sR2MlkRBH+HagWGZ6o2kohFo9yX3dh9rS9QPN9quqimxn8fizerlDU1DrxDK8UXAkbt1HzYqT71uq5uBxrbEvBenwWgbagbXNkdEiWMVjhvquw3O5rt8i8Qjs03c9JaJ298x8f5PEqbTxm8AcXLI3OIFOiIIfyYa7ETIId6EYv0J3xvfD579y074Zbjg5/d+Aqa9JruFXOtCpomIiIiIiIiIiIj6mq6TbprBYDSiZJbjHoZUkaYcV6kJ6aL4qexQ3yyW7ymCIVwJrg0RxUtx6uiwZewEm1mxE8hRkFIS1TKIiIhC5XiG4YKi3+APYx7BuIw9bU2z1VeB58sfwEObbsa6thXKMh2mF7X+rcpx+QMqGE3/XnTBcNR3mgNN2nEMRiPqzR2+CBEREREREQ1WfosOk+4ev5EHw0rsdVLNHxL+CQ5JYd1SjPKVIc1sQ7viJqvXhp6lnMwQwLhCAFvWI7etQjv7OlcOfPM/BbKO6TXOsy0YDQAmeZfh88wjlPPYY9IqrAoUbX+9X9t3+GLDFKQs3vbUi+YGvHL7i7hgp4XaeugsKgUWlUbe8fjqd3Ox88YZ+P2Yy5Tj735f4p4PZEjYgMRvjxF4+Cx1uJWU+qA+q7CsaOVmChwzAThiVwPT35W478PYdMZeGhIQ9MKXkQSjBf+3yqkoylbvl+0+oKkdGJrE9w7qOmxbresxeUC6B2jz6cs48WMZUFortWFMA4HtYLQEhU7ZEW7b2CVfP93KCmDPGIccJqvXF5h4dX6Ypx/pf0+Ji9Ja9fDf/Vzg4J0EHvzIxJoqYPIuAvefLpDq6b7vleTq533X+xIPnhn/fdVOSEWo6ub41IOIyG57VNkIVDdJDLdxDvaf+SYu+ruEr1t2s8QpewKvX2HA4x64x0Q6TjPh6lqBgujuLSUakKx2pdBgtNN+JvD8XHXp2Uslrjs6tvVKVnbannDBaA9+xBQ0IiIiIiIiIiIi6j/azTbl8FQGoxElNSEE8lOKUepd12tchSaki+JHF4zG8CKigWW4pxBu4YZfap7ujugDNewEqxWkFEe1DCIiIpWStB1x7ag7sazlB8yo+jvKOzaFnWZ9+0o8tOlm7JV1ME4ZcQHyU7r62FmFglmFifU3wzz5cMGNAHofH1R2lGNU2tg+qBXptGiC0dKMDLiFJ8G1IUp+DEYjIiIiIiIiLX9AP87dI7tqdJ79+Y7oJx3F5fqlcMHE+I6V+CHtZ73GvzvkJOV0O48A0jwC8uv/IjdQr51/nSsHPs0FK0/Ixci923/QziM0FA0AvkvfDw8MvwG3bbkf8rA0lHuKcMHOa7XTx9vPx3xgOV726Oz7l9kSFx8ksXtJ79CFnmVDxTMYrZPHLXDPaQL3nAb8/k0TD38cXVDUkpDr6+u26uc1oQhYtqX38JptYTu6kCgAKM7Rj6tsTO5gtEhC8AxDYK/RwLwYbvJv/yBx7dEDNwTEbthHvfr+0z6hq7Nr2/fSzvlAihvoUNzzsaRcYs9RA3d9diqvlzjnufArN+HBaHXq4aPzgKPGCRw1zvrJpGPygMxUoMXbe9yzX0jcfpLEkLT4rl/dd5HHhR5BQkFbE/wZE9HgEXBwKJp/g4mh6od0b9faoQ/GfudHYOYi4Kx97S9zoLA6B1Gpa2EwGpGK1b4UevT284n6cmvVD+4ckOw0PbWt+nEVDRJfOTwvTsR1FSIiIiIiIiIiIiIdryYYLY3BaERJrzClRBmMpgvpovip7ChTDh9IgQ9EBLiEC/mekSjv2KgtYyfYzEpWmGC1oa4cZLiyoloGERGRlQmZe2HcDnvg64ZP8V71K2gIaDoihPiheR5+ap6Pw3KPw/HDpiLLNVR7XuKCG8M8+bGudp8xhAsjUgpRoTgnqOK5WdJpDjQqh4c7BiMarIzwRYiIiIiIiGiw0nWMB4IBIKGcBKPl95frNOuXAQAmeJc5mmxC22LI1mbIx65HpmyBS/NEpnojB36hzix3h0xzRuPbjpb/Qs4lMCHgFSkYbSMULd0TXcBXrL23WF0fqwAnV4KvcDx4poGvbjJw72kCY4ZFNo/KRmBrU/BN6cKCAGjnX9MS/N/qcynKtl5+MtMGo4VZ15dNjm1v7liGrCUj06KdD1Vv0ek+0XRhgJ0d+d0ugXGF6jKrK+NTp2RTcqO9FVuVwHag1StR26IeNyrX3n6b6hGYuq+6bLMX+GJVpLWzT9c26UJwaluAgN0EQiIiB+x+h3dqbLf+Z3XuBwAzFw3OtsxpE24VVEQ0mFntSiLk8M4wBF79lfp4r7QOkE7TCvspO218XYv+s/hmnfNgx9DrKgFT4rsNEl+tkfD5B8dnTkRERERERERERH3HlCa8sl05jsFoRMlPF7qlC+mi+DClicqOcuU4BqMRDTzFqaO14wy4kGZkRDX/zDDBavlsV4iIKAEM4cIhOcdg+tincdKwc5EqwjwhGEAAfnxW9x7uWPdrzK6dic1edZDoiJRCuIT1Q937G/25mfo8gfpOiyYYLdwxGNFgxWA0IiIiIiIi0rLqHO/uFYxmP4yovwWj7de2wNFkJaXzgJnPAgAEgFzNkynqXTnwwaMc55G+7X9nylaMzlaHq6mUekZhYdpeuHP4rWHL5mQAM6+O7GJuRgrw/B5zMXfDERFNr7OxRj1cF4YEhA/LioeDdhK4+XgD6+9z4Y0rIqvAgg2AaUps1gSjvXKZwLBM9b5V2xz83yqsYUgqkJWqHtdvg9HCNDUXHSRw3+kCudH9pr/d6wskzAEcamT3rTWoH8zbJ+xsGztoAgW3Nse+PsnmznftJ+WU1SVu27YKgBzlIFz17lP0jcDS8vi/H932pzu2MSVQpwmEIyKKRiDB4UCvzpfwBwbuMZGO08NAtvlEak6aLN31pdYOoG6QhA/aaXt0ocMAsHiz8/bave2yxuY6id2nmzjgXhOTHzCx060mVlYMvvafiIiIiIiIiIiIEsdrqkPRACCVwWhESU/X+X5rRwUCMpDg2gxedf5q+GSHclxhakmCa0NE8VaYot+vs1xDIER0D5nOcll39ihkMBoRESVQqpGGE4afjeljn8Kh2cdC2IjIaTNb8fbWl/Df2jeU4wdieLA2GM23OcE1oXBaAk3K4eGOwYgGK3dfV4CIiIiIiIiSl9/ingR3j+uITkJNCoZG92NbIsi6rUBtJQDg5Kb3MK3wEdvTDvXXQT79p+2vhwVqUe0e0atcpTsfbZqbt1Klt9vro3b246Xv7Z/GH7jjl2HLjMoFFt1uIMdhgNTJewJP/dJAUTaAwCGoeWO1sxmEUVqr7nBr1TE4XFhWvJ2xj8DH0wwc+6j9QCIAeOsHib1GC20I4a4FAt+uV7/x6ubgcMvPxQAKhgLNW3uPq2iUCEb3JSd9+JV1nYUQuOk4gd8fK1HeADz3P4m73w/fifuWEwTu/UBd7sa3JB46K3k/q2jYDfuoT6IAAl1Ioivke2n4EAGg95urVv9+0O81tUs8+JHE7GUS3663P90Xq4D6VomcjPhv36W1+nElufbnU5QjcOwE4ONlvcctTcBvdrp9psDi4TzVzcDwJP6NasEGiSc/k/D6gTP3EThtLzi6MerL1RL//EaixQucsDtw3v4i6huriCg809lhZ0y8Ol/igoMG1/7tNH+uoS25j7GJ+orVvtRzj7G6vlRaC+RlxqRKSc200fhYBaMtjeAhn50PQLjsnyZWVHQNL6sDzn7OxKLbB9YTUomIiIiIiIiIiMg5KSVqfFXwhzzwMxaaAg3acemuGD0ZkYjipkATzhOAH6taFyPXPTzmy8zxDENalMGJrYFmNPrrlePyPCOQYmieSJskTBlAta8K5rbwufXtK7VlB2LoA9FgV5Q6Wjsu02VxM6NN4eaha/uJiIjiKdudh/MKr8IRuSfh7a3/wNKW7yOe10A8Rta9p6qOzajwloWdfqg7BxmurFhXixSaA43K4bE4jiMaiBiMRkRERERERFq6sCagq8NkJyehJuOLIqtPQm3oSlwZ7S/DKF8pSj2jbE2a3eNmrWJ/OVam7tarXJl7JBqMbOU8cnrMY0R2bDugnrOfwBPnCeRmBrsgb37AwMgb9Sv8uIlAdrrA0eOBSw8RMDqTyNwe5D35DvB47Oq2SROek8zBaAAwZYLAglsNvPiVxFOf20tQmLFQ4iKLcImSXCBfc12zalvAky4kCgBcIhjWs1YRjFapvo6aNHRhH3bXtWEIlOQCP5+IsMFoY4YF9wldMNojsyV+NVlit8Ik2NBizG4wWpMXME3Zte/3IX1oXtffIzS/x3QGCg4kXp/EwfebEYUf+ALAvLXBMKt4K61Tf/YjhgBpHmfb1Z6jBD5e1nt+S8vjv351bVO+JowPAMobgHFJcuzT4g3W0RDB47yv1gAnPN71pv7zncQtJwj8dkowdCRcwNl7P0mc/pS5/Zjx1fnBII57T+v7toJooAv0wVdaMBgt8cvtS3aPlTo1tcenHkT9ndWu1PNwoyg7GHqsOtfdUAPsae/STL9mJ5TRKhhtyWbnXxJuA2hul/hoae9xP5UB67ZKjB3BYzwiIiIiIiIiIqLBakHjl3i96m9otggxi4fUKIOPiCj+8lOKICAgFb8I/bVselyWacDA7ln74cLC6xwHKDb5G/D3LY9gZetPyjoDgFu4sVfWITi/8Gp4jJRYVDmmvqj7ALOqX0abGf5pp9nuvKhD5Igo+RSl6H84z3JF/xTXrLDBaMVRL4OIiChSxamjcXXJH7Gi5UfM2PoSyrwOniy/zUAMRsv3qL+f2802/GnDNWGnFzCwc/p4/F/x7zHUnRPr6lGI5kCTcngsjuOIBiKjrytAREREREREycsf0I9z9zijTPMIFNgIps9MBcbkRVevhFjXvSfoOO8K25MONbtfoCrxbVaWK3cXo0Hzw2G22SMYLcdje/nhPLLPUrzyKwN5mV0dWotyBN69xkBOj3tEJu8CVDxk4IPrXHj1cgOXTTZ6BSOJifvjcP/8mNVvYw0QUCQQWIUSuJLkCsfeYwSeOM+A7xkDlxwSvsNwfSvw6CfqlJ3MVGB4FpCvua7ZGWxmGRhnQLtfJn0wmi78yuG6PmgskB3mvp6PpxnYrQAYkqYv84cZFgl0/ZjdsA8pgcYkCfrQhQGGtgPDNcFoW9W/H/Rrz82VEYWidYokNCESpXXq4aMcBKt2mqS5p2Z5hfr7I5Z0s89IBYZlqsct39L3gXxSStwxy8SQ3wT/ZV5jIvtas1soWqd7P5AYcb2Jfe42MW+tdd3ved/sFaT7l9kSdS19/56JBjqrcNw8TXsUrZWV8ZlvMrMTThSqyRufehD1d1b7Us9gNJchtNeNkuG4KhHsHNLqgtG8PhlRe+0ygM31+vFfrxscnz0RERERERERERH1tql9LV7c8lDCQ9EAMMyHqB9IMVKR5xmR0GWaMPFj87f4d+WTjqd9YctDWNH6ozYUDQD80o/vmr7Am1UvRlPNuFjcvACvVT1nKxQNAAoHYOADEQEjUorggls5LlyomR1Zbut5FKaURL0MIiKiaI3L3BM3j3kYFxZehxz3MEfT6kLE+rNow94kTKxuW4qnN98ToxqRTosmGC0zBsdxRAOR+syHKEJCCA+AQwCMBlAEoBlAOYAfpJQb+rBqREREREQUAZ+DYDQAGJ0XPmxpQhF6BWslI/nTV91ej/euwOysY2xNm93jJrBi/xZluU2eUWgwssPPIzUdxbkCsLgRw67ncT8u+dUflONO3ENg4/0Gvt8INLQBY4cDE4qDnZKtCCEw7UiJL+ZGXT0AQLMXmLsaOGK37sOtwh+SbZNyGQIvXCRw6xGNWPLrCzHKV4YjxsxGk+Ii5ds/qOcxcdu+EgxG673uq5qCQTeWwWgCKBiq3naqGpO7U7PufbkcrmvDELhsssDDH6tn+MhUgV0KgjM9Zz+Bv81Vl5u5CLjrPRPpKcAv9xcoykmyjS5CpoO8t4Y29ApP7Ava0LyQVTJCEyi4tTn29YmFn8okPl0hMWOhxME7C4wdDnj9wNqtwNA04MjdBI4c13ub+7FU4rr/2NuX9ywBfizrPXyZ+isq5kpr1cMjCUabWKxu19p9wLqtwC4Fzudply54zRDAxGLgf6t7j1sSRXBdrFzxssTzmvZNZ1EpMPVZE4vvMJCb2Xv78wckvlU8YMvrB95aKHHZ5IHRThIlK9334eg8YMn04DF9fVtk8z7tKfUBwoYaoNUrkZE6ePZvp3mbzUkSJEuUbKx2JVWLMqEYWFfde/jyBB27RuunMokPFkvkZAC/2ENgZK6zdtNO29PmA9o6JNJTus97ZaX19ROd6mbgznf1C3Zy7khEREREREREREQDy9cNc/ps2Skitc+WTUT2FaSUoMZXlfDlLmr6Bq2BZmS4NE/R7KG6oxKrWhfbnv+CprmYWvAruIQr0irG3NcNnzgqX8DwIqIBySVcKEgpRnnHpl7jMl2aG2gdSBUWT5oGEh6ISUREpGMIAwdmH4m9hxyMT+vexce1b6HdDH/zbLQhYskoyz0UmcYQtJjq0C27NravRo2vCsM8+TGqGfXUHFB3vo1FwC3RQMRgtAFICDEdwB1RzOIfUsqLHS5zBIA7AZwNQPkMbyHEPACPSCnfiqJuRERERESUQH6LTo8exe/8o/OA7zZYz/PQXZK/E70sXwd8+ma3YYe2zcPj+I2t6Yf0uIhY4t+sLLc8dRykUCTMAcg2Qy5ypWXi2AnRB6NdUP8yLnnhaghDvUwAGJImegWS2XHKBQfj7Q+vwBmZf4UZg5tA/rtU4ojdum8r4QLAktGOgVLs0PwhAODUpln4V875tqedODL4pgo01zV9gWBQVbjAON30ldFd6447qQu/0m++WpccLPDYJ7JXm5adDkyb0jXDZ87XB6MBwB2zguP+OFPiw+uMXttof+Qk7KO+FRjj7EE6caENzQvZNkZkqdvM6mbANGVSBXT+Y56Jy/4pt+/LX67pXe+735e4+XiBe0/repP//NrExX+3twK/+L2BWT9K/FjWu/ySzYkJSdxcp15OSZ7zdTG+CBBC3U4s2xLfYDSrYL6JIwX+t7p3gWXlfRtEefMM03EoWqfyeuDFryRuOLb3emqyCP/5fhNwWURLJCK7dMeALgPIShM4PIJj+k4r7zKw2x97L0BKYMFG4LBdI593f+M0GK3JG596EPV3uvM7IHhc19P4IoH3flIcV21J7oBvAHj5m+Bxemf7cccsiQ+vNbD3GPvHvXbbnrpWID2l+7Bojj3/851FMFryf/REREREREREREQUJ2VexROzEiDfUwxDc28dESWXUak7YlnLwoQv10QAW7yl2CljvK3yTtuzNrMFzYFGZLsjePJjnDh9D6NSx8apJkTU10an7awMRotFIKIQAiNTd8Bm74Ze43ZI2wVGEgVGEhERAUCKkYrjhp2JQ7Kn4P2a1/Bl/Ucwob7RNtc9HFnugRlAVZK2I1a2/hT1fBiMFl8tmmC0WATcEg1EvEJMURNCHA9gCYAroQlF2+ZgAG8KIV4WQmQmpHJERERERIOAnPMGzEv2gzk5Nfjv6KEwbz4dcv3yqOdtFYzmVvyeVZIbvpPnGXsnTxiNiqwshTy7900SP2+ejQyzxdY8ss2Gbq9H+3r/6AgADa4c7TxyAvVdL9IzMXyIwLETbC1e63c/NyCG6JcZrZP/9iA6fAdjasMbUc9rsSK8xwwTAJaUKrvW/VmNznLCdy37DNI0kW9xXXPaaxKHP6j/YFyGPhitokE9PFlYhQ85NaFY4O5TRbcO9xOLgQ33db80JoTA4unhL5d5/cD//cOEP9D/e4ZbBev11BD+wTkJoatz6Lah2+4DJlCVRKGAXp/E796QttbD/R9KGJcHtv+zG4p2z2kCk3cRmFSsHr98CxBIQMrB1mb18OIIvpbSUwTGaK5CbmmI73uxDEbTfMZLNgPSKg0kClJK/GW2id2nB5B1TQD73xPAB4vl9nEX/93EA/+NbtnT31VP32gRjNaYJO0F0UBmJyg0UmNHABkp6nEzF/X/4x8nnDbfVqGRRIOZZTCaYtiEInXZ5VuCQcfJqsMvcc0rslsbvbUJuHWmgxMv2G97ahWXqXTH3dFK4o+diIiIiIiIiIiI4qyyo7xPlrv/0MP7ZLlE5NxB2UfDQN+E5FR0lNkuW9mhfsixFV2H9b7gMztQ49tqu3y6kYG9hxwSxxoRUV+anHNcr2EpIhV7DTkoJvM/cOhRyuGHZB8bk/kTERHFwxB3Ds4puAK37fA49sjaX1nm0JyfJ7hWiXNojL6npXR2vxvZ55c+tJvqzhZZDEYjUmIwGkVFCHEEgJkAQiM/JYDvAbwBYDaA6h6T/RLAq0Lw0S1ERERERNGSX70POf18YE1Imn+HF/jqfcjrT4BsqtdPbIM/oB/nVhzRj7aKSt5G17k1GcjWJsgzd1aOy5StOKnpA1vzye5xI8RE7zLHdck2Q+aRlgEAeO83kZ9GTWpfgkn77RTx9HaIzKEQz3+DW84dHvW8vlzTe5hVJ9xYBEDERVXXTTdTWj5FbqDW9qTDvn4N8m93WAaj/fNr657JQggUDFUniVU2xi+oJxZ0QXgiwhC8G48z8OPtBp7+pcBrlxv44Y8GsjN6z2xiscDhu4af3/pq4LOVkdUlmTjp3F4dpw72TumDYLrW5yiL76NN9nfDuPtqLVBjL3PTsYfPElhwq4E/HB9sICcWq3eeNl9we463Gs32MyzCxyfowu/iHXynDUYzgEmaz7iuNX5hlA9+JHHDGxJLy4HWDmDBRuCkv5qYu1riz/+VYb8n7GjxqsPzrMLPGlqT9/uFaKCwExQaKZchMEXzQO0ZC/tm//YHJL5aIzFnuURTe+Lq4DQIqMUbn3oQ9XdWu5LqHG+C5riqtSO5jud7+t8qdXjsR0sBn99+g2K37VEFo9W32l6MI05CtYmIiIiIiIiIiGjgaA40ojmQ2KcvZrqG4Ni8M3DcsLMSulwiilx+SjGuKbkd+R7NUwXjyEnYWSTBaM1JFIy21bcFEuF/tBEQGJU6Fr8ddS/SXRkJqBkR9YUd03fFr4pvQp57BACgOGUMrim5A3meETGZ/1G5v8CJw85BlisbAJDlysZpIy7CwdlTYjJ/IiKieCpMLcGvR96CaaPuxm4Ze8AFNzKMLBybdwZ+nnd6X1cvbvYZeijOzr8c2a7cqOYTgEWHUopKS0Df4SXLpekkQzTIufu6ApQQ5wL4xkF5W91chRAlAGYASAkZ/BWAX0kpl4eUSwVwBYCHAHi2Df4FgLsB3OKgXkREREREFEJKCfnMrfoC1eWQb/wV4tI/RrwMv8Xv527Fw91G5wlYdXfNSgWy0yOuTlzJ0tWQ502yLHNW9o94HeFvuBpqdr8RYrSvFFmBJjQ7SO7PNkNuKEsPpsa4XQJzrjdw9CPOe6Ne4J0J7HaT4+mcEm439jh1CmaMkTj96ch7zTa1A29+L3HmPl2doa064cYiACIeZGXp9r9T4MNxzR/j1exzbE2ba9YDb7+N9Itvxc75Hqypcrbszs+kUHNdtM0HNHuBIWnO5pso2vChKNb1pJECk0aGn8HkXQS+WBW+J/or30ocMyFJNz6bnIR9lNVJAH3/fu0EwQzPAtI8QLuvd7nSWmD/HeNTN6fWbY1PsMsjUwWmTemeGDneIph0aTmwc75+fCyoQhsAYFhmZNuULjRya7yD0Sy2v4kW93YuKQeKcmJbFyklHpuj3oYOfzC2yRVVjb3rrwr96FQXp0AOIuqiDwqNzfxP2F1g1o+9F7KpFnhpnomLD05cMvGWeokpfzGxfEvw9YghwKyrDRwwNv7HJU6/qRMZ2kbUn1hlcquC0cYV6ssv2wLsEH0ee1x8u17/RquagJE27zeLJhitwSK8NhpOgyKJiIiIiIiIiIhoYKjsKNeOu2XMoxjizo75Moe4smGIZH1KJhHpjMvcE9PHPoXWQDN8UnHTVpTerHoB3zd92Wt4RUeZorSaLhhtcs5x+K7xC7SbvX9oaQzq7jUAACAASURBVLbotJ5ouvobcOGusc/CEMEbu1NEKgPRiAaJvYYchL2GHIQO04sUIzWm8xZC4MTh5+CEYWejOdCILNdQiEifbk1ERNRHds2YhF0zJqHD9MIjUgbFd9nhuSfgsJzj0RxogBnmLtg/rrscfsX5m5R8ima8WIVvZzrod0o0mPBK8eBQIaXc4OBftc353gkg9PbteQCmhIaiAYCU0iulfBzA1B7TXy+EGBP52yIiIiIiGuTWLwM2LLcu88lrkFa9T8PwWwT8uxVnlDuG6Zg6Kg9JeRFRShk2FA0Ajr92KrJs/GaYY3Z/SqYBiQkdYdZVD6myo+tFWub2P48cJ3DLCerP8GejgLpHDew6pHve9R7tP+E3U0dCpCYuAevUvQTM51wInP4qtq4sRvOKXFxa/5KjeUx91oTX17X9WnXCNZL1CkdV95tu9mhfbHvS3EAt0NIIOSUbp1S96njRnSFRuvAgAKixFY3eN+IRjGbXniX2FvKPr2W3bbQ/ctK5vbQufvVwwk4QjBACozShA5tqk2edVcbhgaJ7lAC/Prz3NpyZKjBW8z29ZHN8PxOfX2pDtIZlRTbPEUPV+2ncg9Es2qZhWULb5m6sic1nHDAlHptj4uxnTRz7FxNbEvRg7s31vYc1WQSjfbcB+N0bJo57NIAb3zRR3ZQ8+x3RQGEnKDQau1uEyV76ksRB9wUw84fE7NtX/bsrFA0ItvW/fN6M6lzXLl0gpo5V20g0mFntrarWZkiawOg8dfllW5L3uCI9RT/OybG//WC03gXr+zAY7YPFEhe8YOLwBwP4/ZsmSpPo3IuIiIiIiIiIiIgiU6kJHEoz0jEydQyy3bkx/8dQNKL+LcOVFZe2oSRV/SRMXVhYT1JKbYjaqNSxyHKpn0Br1Wk90So073VESiFyPcO3f1YMRSMafGIdihZKCIEh7uyk7ANCRERkV4qROqi+y4Lf3zlhz7NccCmnD8CiQylFxSp8m8FoRGq8WkwREULsAuCikEEdAC6WUmq7fEgpZwL4R8igVAB3xKeGREREREQDi/S2QVaXd+v4LT97K/yEpauBVT9EvFyfxXUsj+La1+4jgbzM3sM76UJq+pr87fHhC514CTIm7YX91fdWbJdmtiHL7J02dXTLZ7brU+Cv7DHT7jcp3H2qgbeuNHDu/l0XZe87XeDrmw1kZwj8cN9QPDS5FFfkfY0H89/BvKsbkXbGZbaXH1M7jEeuWY806cX/1f3d8eQfLe362zIYLVmvT29e1+3lRO8y25PmBbpSqM5a/6TjRXeGRGWn68vogoqSgTbsIwFXs07Y3botCzXhjsQ8CaW5XaKmOfadyp0Eo5XVxnzxEbEbBDNKE6SwoSa29YlGmSJsKhq/miww7yYDaR51ozixWD3dsi3q4bFS26ofZ3df60kXQFbREN/whXChjWOGqceX2QgW3NoksaxcwufXv4dTnjDx29ck3vheYs6K8POMFVX9G9v19fSbwCOzJT5eBjz0scSB95loaGUwBlEs2QkKjYbuO6PTt+uB05828eRn8T0W8geCbUlP66qB+evjumgAzo6VAKDZG596EPV3VjmGuvvNJhSphy8rj74+8aJ6iECnCgd9ZuzmPlYrws51x1zn7CeQ5rFfh56srhECwEvzTJz0VxP//lZi7mrg4Y8lJj9goqyOx4BERERERERERET9mS5wqCClZFB1KCaivleQMlI5vNpXCZ/pCzt9U6ABbWaLclxhykhkaoLRWpIoGE3fJqs/GyIiIiIiIiu6cHpTJqaf1GDUoglGSzMy4BZR3OBHNIAxGI0idR7QLQJ0hpRytY3p/tzj9VQhRFrsqkVERERENLBIbzvMx38HOSUH8rQdIX99GOSaxcGRc2fZm8dlB3VN45Df4jqWqsO9xy1wxt76G57GFSXfzVDy6w+B78OHlonrHwMATCy2fg/5ga1QlTi78Q3bdTqw7dvuA9J7p8actpfAvy8zYD7ngvmcCzcdZyB1WxBOeorA9RfsgKfvPxQ33H06Mg443PayY26H8dt7OR/Q/h0eqrzR0eRvLezqQKsLQwJiFwARK1JKyJcfBJZ83W343u2LbM8jNyQYbZ/2hdipY62jOnSG9Ay1CEZraHM0y4QyNT3BExGCl54iMONKexvV+mrg5W/id9G/okHi8AcDGHqtiaLfmTj/eROt3th1LDcdVH1TbXJ0aNeFBPRsB3Ycrt5YVmxJjvcBAKU1savLKXsCz15gICNVv5NMHKket6g0vp9JrfqeQgDAsAiD0UZkqYf/bzXwweL4vZ9wwWgjc9TjN1uE4FU0SBzzSAAFN5iYNN1E7jQTT33efef0+iQOuDeAD5ZEUGkbDtgRePFi/baj2v8bHXyHrKsGXvo6efY9ooHAblBopIamC+xZEr7cXe9JdFgEOkarsR1o09zD/l4c2/tOTpfQlMTBw0TJStdsjddcf/mpLHmPKazCESsb7dfbbiij6hizXhNKPGYYMOtqwzI83Uq7RX8iKSXu/aB3pTfVAv/6JnnXFxEREREREREREYXHEB4iShaFKeofsCVMbPWFfypkRUeZdlxBSgmyXOqnNDYzGI2IiIiIiAYoo1tcTBcJBqPFi+4cU3dOSkQMRqPIndbj9d/tTCSlXA4gtId/JoBjY1UpIiIiIqKBRj57K/DGX7sGLJsPecm+kJ/NADYstz+fS/aF9Drvoe0PqIe7DGif+Hju/vqe+KfsmVzBaHLzWsgbTw1bTjw+GyIlFQAwKcz9A/n+rcrhk7zLMKkg/FPpAODXdc91H5AWYWpMEhBpGcDIsdtfT6t9AhWrRuHTDcfgzbJz8O36Q7Bl1Wjt9N9v7OpAa9UxOBFhWY58/jbks7f1GlwYqMSBrd/YmkVeSDCaAHB31R2OqmBsu+qT4hZI0zw0IrmD0dTDE7WuD9tVwPuUgUnF4cte+KJESwzDykKd+YyJudui6P0m8Mp8iZtmxDAYzcGsKpLkHi9dEEzPr6XxRepyy8LfB5cQ7T5pK+RqpxHhy4wrBN60Eean256XbwFWVcYvsKCmWT8uL8KvuAL1Q1oBACf91cSG6vi8H23btO3jH5mrbqQ213WfsLFN4olPTdwxy8Qed5qYs6JrXGsHcM0rEsblAdz+jomGVol7PpD4bkMM3gCAL35v4MubDLQ8YeCnO4L/5t1s4OKDDRw0Vj3N7GWKYDSHh5Zvfc9QDKJY0rVHsQwMvum48AdeVU3AUQ+buG2miS9Xx34/b7EIGapr6Ij58npyEiILWIciEQ1munBjoPdxfKcJmuP5hZuAsrrkPK6wOsd2cj5l9zxN9Tno6pCdDkyZIFD1sIELDnR+Ym0VjFbTDKypUo9778fkXFdERERERERERERkT4VXHSRUyBAeIkqw4SkFMDRdYSstQs+6yqhDxTKNIchyDUWmS30zUrO/yX4l40hKyWA0IiIiIiKKKSHU51gByWC0eGnRBKPpzkmJiMFoFAEhRCGAPUMG+QF85WAWn/d4fXy0dSIiIiIiGojk0m+BN55Qj7v9XCDgdza/cyc4roNfcx3LbXE2OXkXdRjNuELgsF0dVyFu5OofIc+x8ZkMKwJ2P2j7y8N2se48OiKgDkYT/1mGY/dICbu4zzZMwTEtn3YfmJYRvp7JbMeJ3V4OD9TgsLavcGrTLOzT/gNGBKpxf+UtyklXVQJeX7ATbX8KRpPv6/PDj235JOz0KaYXGbK127CzmmbgrdKzcXTzHIzp2Igx2dZBe6GfSXa6ukxDW/J2UNaFUCRyXXvcAt/fZuCuU8IvtPj3sb/wv6lGYt7a3sOf+UJia1Ns1p2TYLS61vBlEiFcMFWnCUWagKr65AhSOOwB623mwLHAI1MFlkw3sOpuA788QOCAHYHcjGBY2g7DgkFnvzlK4OubDbhs7ByH7qwv8/qCOAajtaiHp3uA9JTIdupdCqynG3uLCX8g9u8pXNtUkqseX9qVdYn11RI/+5OJa/8jcdd7EtUWwXF3vy+RO83E3e/H7r1M3kXg4J0E0lMEJo0M/usMvD1Es43MXh4McwvV5DAY7cs1EVWXiDR0QaGxPFY6Z38Dz5wffobz1gL3fiBx2IMmHvhvbI+JrILG6j/9CLJOk8QTI05b37b4Z7UR9UtW+5IuGG2yxfWXN5M0cNUqOLbSSTCazaa0rK73sHpNMFrOtktLHrfAMc4vEaLN4hJEk0VbXaqoIxEREREREREREfUPfulDta9COY4hPESUaG7hwXBPoXJchSYwLJRVqJgQAlmaTui6TuuJ1hioQ7upvoGvIKUkwbUhIiIiIqKBwKWJG5IIJLgmg0dLQB2+neUakuCaEPUfDEajSEzq8fonKaWme6PSvB6vJypLERERERENcvKha2I7w62bITetdDSJNhjNpZ/GZQi8eJGBYZldw4ZlAi9ebC+0Jd7kyh9gXnUk5KX7hy+clgHx+ych3J7tg3YrFNjD4h6C/D0mdg8yKxgN8doKiJE7Yfcw94Od0jQLk9t6njIBSEkLX9dkNrbnaWRvxzd/pBzuN4PhaED/CUaTUgLffqwdv7s//H44PFAD1Vs6pfldfFT6C6xdOx5rxz+Ia4/Wv3FXyFUffTBa2Kr0GW34VYLXtcctcOuJBsznXEh168s1tQMnPBaAzx+7Dvpr1DmLCJjAWwvDL2fhRonDHwwg/aoACm8I4Kp/m2jxdp/OSTBafSsQcDJBnOiCYFw9tg2rNveR2Yl9H03tElf8y4RxeWD7vwUb1WVzMwDvUwbm3ezCtCkGUj0CO+cL/Ov/DMy72UD1US9h5bo9sGbZWCxKvRKPHlOF7Ax7O8boYQIHjlWPe/27+H0mtS3qeQ/LinyeExQhrD29+1Pk89fR7QKdbe7oPPX4NVVd+88DH0lsqIl93ey48gjrbeW0vdTjO/zAh0u6v/kWiwAMneb2vm9DiAaKcO1RrFx+mIGXLhHwWJwDhrp9lkRVY+z2dctgNK8L8qV7Y7YsFaeHPq0MRiNSkhE0C7sWCO0x/ds/JOcxRaPFOfaHi+3X2W7J0trew+o1gdY5IdcF8jKdn1i3WwSjWR0XRrLuiYiIiIiIiIiIKDlUd1TChPomDYbwEFFfKExVtz2VHWVhp9WV6Qx61HVCbzbVndYTzSr8rSClOIE1ISIiIiKigUII9U3HARnbhyRTl2ZN+HamJqybiBiMNlhcIYT4RAixWQjRLoRoEkJsEEJ8IYS4Rwgx2eH8ej5Deo3D6deGmR8RERER0aAnm+qBNXFI85j3gaPifk3AvzvM2eQBYwXW3GPgn5cK/PPS4N8Hju375CpZuQnyysOAxYrwsR7E1X+GePkniENO7DXu7P307yV/l9EQry6D+MPfIKa/DPHvxRDFOwIAJo20/gxObPpQPcJlkcbUD4ix4fOwd+1YDY9Upwgs3hzsRasLQwJiHwARlZnPWY6euM+YsLMY5SsNv5zXH0e+RaiQL2T/HarJ1uuXwWh9uK63PmK98P8uBUbdZOLbdTIYkBclq07136xo146rbpJ49gsT+95jYu5qwOsHqpqAZ76QOPXJ7juS07CPZNhm7G4bI3MFJmnu+XpsjsRXaxLTQz9gSoz9g4m/zbW3vJP3FPC4e39fyPZWyDsvhHzwKqBsDVBbAXzwD8grD4M0u9ar9Pshl3wD+dlbkKWrIefOgvzfO5CfzYB852+YmvaNcrlLyoFl5fH5TGo0j1TIy1QPtyMzVWDscOsy7/4Y+/cTLrRxXKH6u97rB9ZXB/9+20awYTy4DODig62PRQ7YESjOUY/7dn33120W4Rg6nyx3Pg0RqemOjeMRInvhQQaW3mnvIKzDD7zvIPwnHKuwnVpXLjDndUi/P2bL68l0eG+H158cQbLU/0i/D/KH/0F+9R5koyLtqp+z2iusmq0z91GPXWTjlLkvNLbp3+nqKtgOjrTbjFQ2AR0h4dxSSn0wWkiYciTH4ZEGo7FJJCIiIiIiIiIi6r8qNCFCAgZGeGw8zYyIKMY6Q8x6sgoNC1emKxhN3Qm9RdNpPdEqNfXPcg3V1p2IiIiIiMiKS6ifmiw1QfkUveaAOnxbF9ZNRAxGGyzOAXA0gGIAqQCyAIwBcBiAWwD8TwjxnRBiis357dzj9SaH9dnY4/UwIUSuw3kQEREREQ1s65fFZbbyyZsdlfdrrmN51Ne9usnOEDj/QAPnH2ggO6PvQ9EAQM54BvCpw7dCiesfhzhnGkTBKOX4c/cT2nC4KeMFxPAiiBMuhDj6LIjUrkSqPUYCRdnq6TI9AZzaNEs90t2/g9EwYb+wRTzwY5x3pXLc4m33c1h1po1HAESk5PPT9SMPPQm73HQHhoXphDzab6OXd0sj9lj+in50SMfk7HR1mWQIudIJFz7UF7LSgmGPVqqagIPuN3Hqk2a3DuqRaGrXT7/06xWQC+b0Gv7ZCon8G0xc+W/1tHNWAI9+0tW4Ow37qNUEXCWSqdk4XIpVc87+6vUlJXDpSyZavfHtpd/QKjHielMbDKZyrqLOct1SyOOGA3Ne7z3Blo2Qt50dLNdUD3nDiZBXHg55+3mQ502CvOUsyFunQt5+LuRD1+CMd86H0DzB57UFcQpGa1YPD9cWhnPSntb740vzJPyB2L6ncG3TbgWA0FRrWTlQ2yJR1QcPkt1xODDjSgP77WD9mRmGwLET1GUe/aT7m48kGO3DJUzGIIoVXXsUr8DgnfMFHplq70Ds//4hUWkz/CecZouwnS3uIqChBlg2PybLUtG9i8xU/TRt4U85ibqRNRWQF+8Lee0xkDefATl1N8hFc/u6WjFllRutO3YCgMm7qEc2tQO+KM+34iHcOfZDH9sMRrN5niYlUF7f9bqtQ38tL/S6QMyD0SzaPauQeyIiIiIiIiIiIkpuuhCe4Z4CeAxPgmtDRAQUppQoh1d6yywfZNphelHrq1LPMzU4z0xNuFizP1mC0dRhlbqwOCIiIiIionAMTdxQQAYSXJPBo1kTvq07JyUiBqNRl30BfCyEuEcIq9vPAQA5PV6rrwxqSCmbAbT3GKyJBiAiIiIiGqQ2RBiMlj8KmHyyZRG5cqHt2fk0YSK6ULCkt9RGh/mTLoU47QrLIjsMF7j1xN6nTiftARy5m346j1vg/tOFMtjpz0dVI8+sU04nXP07GE0UjgHG7xu23ESverv/838lmtulZcfgZAlGk0vnA4216pE5IyDufROu9DScvrd1hUt86ptYejp61pW2yjEYLXbOP9BAbkb4cu/+BKRdZeLGN000tll3fl9UKnHpSyb2uyeAs54JYM7yYPkmiyCQZe5d4P/tSZDLF2wfZpoSF74Yvtf59a9LtPuCy7AKHFSpa3VWPh50OVeG4rvpqiMECjW/D6yuAm6dGd8whV88YaLe4Wd2zISuv6XfD/nui5AX7Q0ELH5cmjsLcvNayNceBRZ+bjn/kf5yHNI2Tznurvek5U2CPUkp8dFSidOeDODMpwN45VtTOb0uUC/aYLTrpwiUhHncwsxF0S2jJ12wQ2fblJEqsMMwdZnlFRLLt8S2Pp2O3A3wP2PAfM6FwLPB/xseN+B/xoD3KQNr73XhF2GC5DpNKNaP+2Jl1/ptjyD4Z+3W5AswIeqvwrVH8XDKz+zPvOh3JozLAzjp8QA2VEe+7zdbBMVu9hTDhADW/hTx/MPRHStlpuinaWUwGjkkH7se2Liia0BLI+Qd50NaHf/1M5bBaBbTWQV4JcO5SU/h6vTG9/aOt52cp5WFXEqqtzjHzwk5j9WdI1mxDEazOHdlm0hERERERERERNR/MYSHiJKNrv3xynY0+DX3bQKo6tgCqXksVuc8szSd0L2yHT6z73/wqOwoVw5nm0xERET/z959x0dR538cf31n0xNKAiQBBAuidAtYaPZ21rOe3tl7OT3b/WznefaznOU8G+odp6fn2bGDDWxYALHQpLcACSQhvezO9/fHgiTZ73d2ZrMp6Of5ePAgmW+Zb7bMzszO9z1CCJEoR4WMy13kbphtpTpSaVxuOyYVQkgw2s/dauAJ4DxgHDAEGASMBS4FJreor4DrgTvi9JvT4vdEplG3bNMlgT5iKKXylVJDg/wDBiRj3UIIIYQQQiSTnvFhYg2790Td+jzsvp+97zee8t1d2DIHN8V83qvz+/YT7/JBI1H/94ivrm46yuHNSx0u3Fdx5hjFU2coXr7QISXkHRZw2miHj//P4cqDFSeNUvz+AMWHVzlcNLplfnQToa3/DpvqgBPj1hlWP8datvttLrUek3BNgUjtTbsu+sLx9gr7HcvmLPKT9/B+nWx74H5w/MWoi+5ATSmFUQcY66XrBnaq/9FY1qdJrHnXTPP6yi1hRZ2BLQgv1Ame61V3+x/EvVM03f/g8vlizfTFmmXrNZEms9xnLNOMu8tl4ueamcvh5Vlw8P0u//rM5XvzjXcBqHWy+Dxzb/T5Y6OBfMCXS2F1ub9xfbgpdyFoMJot4Ko9WV8bhpd59yzF46fZn6+/f6j5ZGHbBDVNmaP5dFGwNsXXrYFF36Eb6tHl69G3nYW+218Aon72Xvj3nb7qnlTxsrXs2Ef8f4n13FeaXz3oMulbeOUbOPUpzc1vmILRzI9xbnbr0nv691B8d5PD0bvY6zz/VXK/lPMT2ji40Fxn/hpYWJzc19sZoxWPnaqYfLmDs2kQmz9rumQoHEeRmhLscR5caK8/4ZMt469tDP63rDJnwAohEmDbHrXlvtL2PRW79w/W5u0fYIfrXYrKAwRvui56+Xz0snmsnjLFWi+sUikO5aOXJhgs7oNtvyM73d7G67hFiJa01vCRYd+sdC18M7Xdx9NWvLYAXrfs8gql7ozBaBuqvMuXb4A1G+P3E2Qva2XZltpeoczdmwSmd81U7NYvwEqAmgb7qKrr7WVV9dEQbyGEEEIIIYQQQgghxNZHQniEEJ2N1/ZnrSXMEaC40XwhXogUeqYWAN6T0G0T19uTPaxym3YeiRBCCCGEEOLnwrHEDbn653NT186mOlJhXJ4dSkrcjhA/SykdPQDRJr4CDgXe0/ZbTn8O/EMpNQp4DhjYpOxapdQXWutJlrYtg9E8Zu9b1QK5Hn0m6mLgpiT1JYQQQgghRIfQNZXw+duJNe6/EyoUgqv/gf7tMHOdqa+hL38QlRL/kDBsmQSe0gmCiYLSX7/vXcFxULe/8FOYiB+HD1ccPjx4qMuYAYoxA5q308Vp9gahrTWJrokDToCHr/GsMrbmc2vZomJ4aaZ9Im0Xj2CCdjP1Fc9idfFff/p5n52gb3d7iNXow3fH2W7klgUHnWwNTPzH2j9wyLbvxCwf0eQaoHzLNTuryjrv5GQ/4UMdJTNN8eX1Dnvd4T9wadxdzet+cZ3Dntsr/jZFU2O4oeQ5/47/3Lza9deMr/0c/ew9qDteZME6/8/nD6s1hw9XCQSjaaLZ+h0nYnttWD6bjtpFcfpoxdPTYxtqDWdPdJn9Z4fs9OT+Xbe86f/1UZAT4ZnKK8k7/YlAIQjNvPFP31WPq3iNywvuxTXc4ef1b6G4QpPf1fvxWFOuOe2p2NHe957mioM03bK2tLcFRPRIwhnB7lmK5851yLnU/HjPXdP6dTRl3TY1ef0N6q14+4fYinPXaAb3Tt7rLPzYljC0ZNpze3vZ699qauo1WemK2gRuhruqLBoAE2R/SwhhFrF8zLT1vtJJoxSzVgT/tNrm/1xf2y393efoW86AdSt4MPcS/lh4j2f9lanbULik7YLRbH9ptsfhm2nfTgirSNhapL+cghp1YDsOpu1Yv7HGOxgtL9te1tmC0bTWrI8TjAawdmPzIHMTWyijSdPg2XKP25l1bxEyd8peim9W+t+eb/TouzrOdq+mAXIyfK9KCCGEEEIIIYQQQgjRCWitrSFDhRLCI4ToINmhLnQJdaMyEnsnmnUNqxmUbb674tp68/asZ1ohIRW9ljrHYxJ6VaSC7qk9EhhxcjS49ZQ2lhjLCtL6tPNohBBCCCGEED8XyhaMRnJvTi+iwrqROtd8IZ7XMakQv3Rb4VR2EY/W+m2t9RSPULSmdWcAewM/tij6q1KGmZGWboKOMcE2QgghhBBC/DJ89hbUe8w29KDGHx39v99ASLPMONy4HmZ95Ks/azDaVpbTpdetQF95hHel4y9B5XfgRVupHsleoa0/11zlbwO7jPOsM672c3arm20tf/1b86FkXnojoQnXo1/6B3q9+U6l7UF/8IK98LBTUZlbZnSHHMWdx5lnfx8wCEZt22Lhob+1dr1/zTSOyPyu2bKQA1cevOW0T/88c9uVqypw77oI/czd6FWL7OPvAJ05GA1gj+0Uq+5O/NTa3ne6/OZxl//NSPwUycyM3aI/fPI6ruvy+DT/fc3Z9FYJGoxW3gnCB2whASGP18b9Jylr+MDiEnj4o+ScqtJa8/pszTUvu3y+OH79I4bD18fPYunXeRww/4mkjMGPwsg69qn5xFr+8qz4j8f4u81PRFU9zFjefFmp5XXTwyPoIoisdMUIy0f4wmKob0zeqUjb66/ptmlwb3OdJSXEDcsYVAi1D8fftqy5t21C0QB6dVHWv6G6Ht76PvpzbWPwvmsaOl+IiRBbK9tneKiNv/n7/f7Kum8Zz8kTXGxfXX27UnPjU6u58NYfuDlyGgf2f4er4oSiASxO2wG+/aRZvx/M05z0WIS0CyPc8KrLkpLEPwdsj7NXwI8Eo4lAwh4fqLXV7TeONub1LvTao8lKg1TLOajSTvbwVNbZz6M1VVwZv06Q47SVTYLRNlr2s1JDkJHafNlF+yq2CzB/x+vxrq73bluZyG3WhBBCCCGEEEIIIYQQHaoyspFa13xisCCtr3G5EEK0hwJLOKMtzBGioWkmhU22Z1lxgtE6UnHDGrTlGzcJqxRCCCGEEEIkKmSJk9FagtHaQnXEfvFgTqhrO45EiK2LBKMJtNalwCk0vyZ9ELC/8qRE5AAAIABJREFUpUnL6XuZCay2ZRsf988WQgghhBDil8EzXMlLtx4w5vCfflVv2L/k1x++5D2GTZPKwxFzeUoCR5M+spvbhF6xAH3CQM866rJ7Ub+/u51GZBHySJvL+nmk/qsDT/QuB54outBa/uM68/L8isXw3/vQD16FPn8ceuXCVowyOO266Po6+HiStY4aNDJm2al7O7x8kcNhQ2GnAthre7juV4o3L3VQqvnUcJWSinrsY3PfwH9/PIabDo+w705w1AiYfLnDQUO29NEv1zzVfHVdFpE3J6In3Ig+dzT6++k+/uL20dmD0QD6dFcsvsPhtL0TG9SLM1u3XZyTPuSnkzkX3buML5cGaFsUbWkLebKpijPhvT1EbK8Nj8+m3GzF46faK7zQioC6ps59WvPrR1zumezd36794D/nKF7LvZ/dbhtHGgkkTLXSeeX/tJa9N9d7/GXVmuWl9vIfipq332A585eXpGA0gOfONT+/Edf++ZEIP9um7XqYtwkbqmGlx+N2yf6KT69xSE9VlD9of70uvM2hoGvbbgy/udG+/imbXh+1CQb/rCqLX0cIEV/ER1BjW8hKV3xxncNJo4Kv6KVZcNnzmnCLD/PXvtHsfmuE278s5Incc7i11w1My97XV5/z0gZFf/j6fQBuedPl4PtdXpoVDSi68x3Njje4fLZIJ3RMamuSnWZvI8FoIpBGjxfMzykYzePtpzw2J0op6z5jWU3nug/XBp9P193vxj8ICxKMtrpsS+XyWnPD7lnEnGfITldMv87h/H0Uu2wD+3ifOvMORouz3esMx5FCCCGEEEIIIYQQQohgvAKGJBhNCNGRCi3bIFv4Gdi3aU1D1kIqRJaTY6xX5TF5vT2ss4w/RAo9UgvaeTRCCCGEEEKInwulLHMwtGVCqWgVr9DtbAlGE8JKgtEEAFrrWcCUFosPs1TvzMFojwDDAv47JknrFkIIIYQQotV0ZRl82XLX3B910R2ojKwtv2d1gYN+Y6788SS0YfKt/uBF3DN2Rx/aA/eaYwmXmdM7Uj0yvGL6XF+Ee+1x6MN6Rft+5xn/jZNAP3q9d4XTr0WdeCnKK1GnPXTJhZ59Ypc7Dow/uv3H0xb2O847AA7Ytf47MnVtoG57hUu2/FKyGv3svYmMLjC9YS3udSegD+uFPqibd+XBexgXH7ub4u0/hJh/a4jp14W4/ViHjFTzrHA1dC/YzRwQkVW1jhvX3sxHV4eY9PsQBwxq3ke/PPOwIiqFtSmF0V+qK9AT/uz9d7Qja/hQJzubtX1Pxb/Pdlh2Z/sPrDyUy5qU3nybPpwnFm0bqO2KTZv3IBPuASrrgtVvC7Ywt1CcfJYjRijOHGOutLC4lYMCHv7I5V+fxX9Al97pMOvGEKdsX4T6582tX3GCTqqwh6R+v8o7rOH71fZAns3lTdlCFHpkJy+9Z2C+PQxoZRKDuPwEo9m2uQCzV5o7+P0BiodOccjb9Jh0zVS8f6VD7pZdO/rnwbxbHAbkt31CZFqK4tzx5vU89emmYLQE8/wkGE2I5LBtj0LtsEtS2E3x/PkO7oQQ7oQQlQ85cQN1Nnv4I03aRS673RJh2gLNizM0xz3qokls2zY/fWcA9F0XUVyh+cvr5gdm/N0ueZe7nPqky8YAYUq2xzktxR4YLsFoIpCwxwumvqb9xtHGPIPR4rRtuj/U1IfzEx5Om1jv89vuqT9CbYP3dihIjmPT4N1yy0umu+Xb/IKuisdOdfjmzyGm/tH7fE2Zx8uxOk7wWWc4jhRCCCGEEEIIIYQQQgRTbAkYyna6kCMTNYUQHahpmFlTtmA0rTXFDUXGspYha7btW7XH5PX2YPvbeqUVElIBLugWQgghhBBCiCZCmI8nXOLf/FME5xW6nR0yB3ULISQYTTT3bovfR1jqbWzxe68gK1FK5RAbjFYepA8brXWx1npOkH/A4mSsWwghhBBCiKT4cgqEE0iZ2GU8HH5GzGK1//Hm+pVlMOODZov09HfQfzkVlsyB2mr4/G0aXplgbG6bAN6SDjeiLz0YPnsLaiphyRz0HeeiP3rFXwcJ0OXr0R+9jP7sLfT0d+DTNz3rq+MvbrOxBKGUgl+dFlsw5ghUbqDDrk5L5ebD0efGrXde6ZOB+s2PlDRf8NbEQO2D0nO/Rj//APrX28Knb0BtnNnPOwyFwaOSsm517xv2wmfvRa9baSzq7xHSsyqlycU9sz9G13Ts3Q03s4Uu2YKPOlr/HoqKv7f/qbYf0ofwdo4t295ufVV0Mn7QYLSqOBPe21plnea9eeYyP6F5Z401v4Aq66C6PuCD0URJpebS/8Zvv10P2LaHQofD6NvPAUNIaVtTN06M/g+8vNIcoLpkvaLG4/H4ocj7b333B4276cVV26CtAVo9kvjdTWqKotCSUbm6PPHntiU/wWjbdLe3X7DOvLyX4bE4YJBi0e0Oz52rePECh/m3Ouxc2H4bwZH97WX3THatARePnar4/Fr7G3JlafKeDyF+yTrTvlJ2uuKDqxzeu8IhO91fm29Xwf5/c/nNhNZdPLE0dfvoD+UlTP7Bu6+NtfDcV5pjH/G/Tq/tflaauUyC0UQgXvuDtZZ02a2Q16e/irPd6pFtXv6vzzSPTg0WdtiWNgS4DdiXS73LgxynNQ2d3WjJme+WyG3OWqhpgLpG88DiBaPZxiWEEEIIIYQQQgghhOi81lpCeArS+kavcxNCiA7SMsxss7Lweurc2C8lysMbqNfmi1xahqxlh7oY61V10mC0AstjIYQQQgghhBB+OMp8zb+rI+08kl+GakswWoaTRYpKbefRCLH1kGA00dSyFr/bZt4vbPH7tgHX07J+qda6zFhTCCGEEEKIX5oDT0I9+QWcciUUeKRRtKAeeNd8wdFeh0KW+Yt6/UXzbGT9evMwKg3ckH65sW2K3xuMfT8dVi2KXffk//jsIBj92Vvokwej//xb9LXHof/v15711SV3ofIK2mQsiVDn/gVOvxbyt4FuPeCIM1E3Pd3Rw0oqdcldcOKl0b/PIs8NdoiYHy6JXykJtNa4t56FvmAc+uFrfLdTD05J2gWBKi0djjjTWq5P2BEdiT0BnZsFqZb3bUlKz+YLllpSp9qZn/ChziYnQ7HyLofDh7XfOuekD2Fu+uCE2q4qAx0wQ8AWhNQeFqzV7HqLPcjEz2ujtyU4C2BNy1sBBPC/r/09kPvspNDr16DPHAmzpia2sp13Rz0yNRq6GEQohHpyOuqQU6DvDgAMrZ9jrKpRzFtr7+rrOEEOReXw6aaP/w0eeR55lpCLRNkCyf79eTsEozU5056VrqwBHja9zLtr5GYrTt7T4fiRiozU9t0ADuljX981L2uWbTCXZabC3jso9t7BXL4qKbfIEELYtkehDvrmL+QoDhysKLnP4ZrD2m979dO+bEMd8xf7+zCf+iPMX+Pvs8G2r+QVjFbb0DlCmsRWIuwRjPbVe+03jjbmddwR73B5+Db2Cpc8p9nhepcP5nX8+25Dtf8x3P+ed0BjkGC0dZVQvymwrNwSQNY9y39/XlZbTtdUxwmELKnq+OdHCCGEEEIIIYQQQggRzLqGVcblBekSwiOE6Fgtw8yaKm4oillmCxWL9tWn2e85oa7Gep03GM3+WAghhBBCCCFEPI4lbsildTc9Fma2Y8scS0i3ECJKgtFEUy0vlbbdO7rlDOkdA66n5ZS4uQHbCyGEEEII8bOllELtvBvOxXeiXlgQDT7Jzfduc99bqJQUc1l6Bow90tzwlcdwL94f99zRuA9eCZ++2az488y9aXDSjU1TfB5N6om3mws+e8tfBwHoqo3ouy6Eap8XIBx2Kupkc/BbR1GOg3PezaiXFqFeX4Vz7eOojCTNXu0kVHomzmX3ot5YjXq/HHbfL6ZObiRYYkrfcOxFH6ZwsNbQ4Ub0abvClOeCNRx3FKp7z/j1AlAHneRZrh+IfV0rpci3nCctCTXPRddP3pTw2JLJtZxH78zBaAB9cxVvXhbCnRAi/JhD9T8cTh/ddoOekz6UOelDrOUnjrSve2VZsAn3AFXF63EvOQB3fHr03wNXoEvXBeskQVe+4LJ0vb3cTxBMofnaNaB1wWizzdcDxzg+8j762O1g+fzgKznqbNSHlThPTkcNH4167BP/bX91Os7UGtTOuwOgnvoS+u/E9o3LyHRrjE2+v+Sc6HN8TH/cyw5Bv/wI2nVpDGsmfRv/hfPCjGidUo9gtKDhYfH0zTUv/3wxhCPJCWPwu23a1p7/adSnW+fbuA3tk9g2NzMt2sgWVGcL1BBCBBPppPtKGamKO49zeOiU9hlIcagXm7fwG0v8f5h/uMDf54JtX0kpyLQEo9XECQgSoplG7xeMrjPvq21tvN5x8bYWx+zqXaOsBs6a6FJd37HhW+ur/Nd94zvv/dMgx2law8Li6M/llpdLd9u3/i3EC7a8/lXzwGrqvfst7ti5QkIIIYQQQgghhBBCiASstYXwpEowmhCiY+Wl9iRVmb+sNYU6rrUEPXYNdScrlNNsmS0YrTpSGXCUyaO19ghG62NcLoQQQgghhBB+OMoSjKYlGK0tVFuC0bItx6JCiCgJRhNNtZypbZtq+kOL30copYLM1B8bpz8hhBBCCCEE0ZAsNXw06sWFsO0gc6VdxqP2OMi7nx2H2wu//xwWzIKXHo4pmpJ9sLVZmjmHLVZFqc+KSTDtVSgr9le393ao659s2/G0glIK5fy8D9mVUqj0TNg+NtCpe8BgtP2rp8UurPF3IYquLEevWIBeNg9dvArdUI9e8SN6ffM7B+qrjkwoyEgdfnrgNnHttp93+WsT0AtmxSy2BaOtS2kRvjjjQ/Sz9yY2tiSyTQTv6LCPIBxHkZmm+NeZikmXOAzpHV2+U4G9ze/2Ulx/uGKXbWDvfo2cUPEy/RtXWOvPytiVH9MGGsuOGeHy/PnKGj61dL22hqrYVM78Cr77bMuClx9BX3E4uiHOTPhW2lijeSfOGSQ/r42cDEWOOfOTNRsTD1JYVRq/7c71Czjk38cm1L+67X+oPz6CSt1yUZ/KzEY98G78xiPGoq6b0Ly/7K6oJ6YT2u/XDK5fYGw2J31w9IfSdfDNNPQDV6DvPJ/5a+2BC009MlVT36hZ4bErkJf0YDT7i2D6kuSsw++2aXBv/xurFAfGBr31RDvIy1YM9M7nNcpMjf5vez5WlXVsaMlmFbWaxcWahnDnGI8QQdm2R6FOsrN06l6Krhltv556J4MqJ3qx+uoi/xejL9/gr5722O5nWYLRqiUYTQQRDnuXz/ywfcbRgVSczdaBllNiTa0qgze/69jP9A0BgtEAvvDYPw0aYD2nKNpgo2U/vVuWv8+Gk0Z515v0rcY1DK4qTihdccfNFRJCCCGEEEIIIYQQQiSgwa2ntNF8HV5h+jbtPBohhGjOUSHyLYFgplBHe6hYbNBjdsh8kWWVZfJ6e9gYLqVe1xnLCtNkmyyEEEIIIYRInEPIuNxFgtHagu3YMsdyLCqEiPp5z7IWQe3V4vciUyWt9RrguyaLUoBxAdazX4vf3wnQVgghhBBCiF8clZ6B+ssz0DWvecHeh6LumRS/g4L+Ca23NJRnLdtjO5+T7V37iTD3+hPR9bVBh2Wk62rQf73Ad311+wuoeDNvRbtQubGJK67ljhM2e9Z9HbuwxvtCFO266Kf/ij68AP27EejTdkUfPwB9YFf074ajj90e97az0TVVuGfvCbOmBhoTKamo82+FcUcFa+eDCoVQj3/qWUefOxr96RvNluVbbiBRHOoV237i7Ul7fybKGj60FZ7NUkpx1C6KH24O4U4IMf/WEP85R9Elo2kd+MOBiolnKW77tcM3fw7x2alLeH71aSxZNIh/Fp1n7Pu7jBHUOZnGsqsHL0IpxYDYpxiAOUXBJ9xXOYYkqyU/wKQJscuT6P158euEfL42enczL1+z0f94WlpZ5l2e6dbwz6LzSSVO8EVLOwxFPTMbte+vjZ9bauT+qCsfhC651i7UDU+Z22bloG5+lqFqqbHdnPShsQvffYblD9/ne/iZl7gc/Q/zvkDXDEgJJfezeOwAe9m+97g0JiEAy28w2pAAN2QdMwB65HTO/ZKpfwy+0c3cFBRke6+VdIJgjLvfdel3jcvAP7n0vMLllVkSjia2PrZw006Si0a3LMUbl7Z+x+2simeomp/L/EXDrHVKQtH7/iwv9f/H1zX6q2fb7iuFNWy1ynxNuhBm4ThJesuCB3R3RraQQYB479yUkGLy5fG3J09+0sHBaNXB6q8ut4/X6/Eymbsm+v/GWnPDbuZDxhi79Vc8c479GWkIw4zlscur4+RkSzCaEEIIIYQQQgghhBBbl5LGNWjM5xtNQUJCCNHebNuidQ2rYpatNSyL9hEbKpYTMl9k2ZHBaLbxg2yThRBCCCGEEK3jWObvuTrSziP5ZaiOmC+ky7YciwoholI6egCic1BKZQDHtVg81aPJq8CIJr+fBUzxsZ5BNA9gq/bTTgghhBBCiF86teMIeLMIipZAfR30KER16+GvcX5idwSrdyyzvIGzx/qccK497hDwyevoh69BXfn3gCNrsYoF36DP3dt/g4NPRg3cpVXrFEmUG5vYNKLue9/Nby++0TyJuqoCCjwaTn8b/cRN3p1PfhY9+VnfY1GX3QuDRkFKajTMKN3nzOMEqCF7oI85FyY9aa2jrzsBXliA6r0dAPldFBguWixJMaRm1dXA0rkwaGSSRhycn/AhXVYM7z2PXr0Ytct42O841KbkNF1dAW9NRK9ciBq6Nxx4Iio1rR1G7s9v93I4fnfN3DVQH4ZBhdA9q8WrefGW98Lomi8CryPvh8lw4GCG9lV8tSz2AZ2zWpOXHSw9pcox34lEv/gP1ImXBh6jXyc+Hv+OM36DYHp3g4WGGxsXlQcc1CYfzdfMW2MvT3PreW716exlCnFs6cCTUNc8Bit+hOwu0HdA3CBPdeyFcOjvYPJz6Psua1548MmoPtvb2zoOQ7bNgHWxZXPTBxvbFP2wEHrH/Uvi6tUGN7U5ehfzdm6zf3ykueLg1iUGWQNyPnoRvWQJ7H88qv9ODOvjPZamdujVSVKMDAq6RgMbz/yX/3SOzNTo/7bnuKQqCQMLIBzR/Hu65qWZmslzYsur6uGEx1wW3e4Efi5cV/PabPh4oaZvd7hwX0WXjM77fIqfF9v2yG9QaHsYP1Ax/1aHQTf6v3Pc3euuZfThI3EO+g07F0JuysmwZBgFWQVwu7lNcagXWW4t34YG+V7PylJ/2zWvfVJrMFqcgCAhmmn0DkbTy+bFDQ7bGgQN+mrp4CGK8QPhk4X2Op8ugopaTdfMjnnENgTcx1nvUT9ogPXcomiDcku+efcs/339bi+HjbUuv3/OPIi5azR7bt/8MY633SuplBBaIYQQQgghhBBCCCG2JusaVhuXh0ihZ6rXBVlCCNE+Cg2hZgBr62O3X7ZtWqEhVCw7ZL7YpSOD0Wzj7xLqRlYop51HI4QQQgghhPg5UViC0fB/3a/wr8oSjJZjORYVQkR1oukRooNdAzQ9oxcB3vKo/+ymOpsdp5Qa6HM9Tb2gta7zN0QhhBBCCCF+2ZRSqL4DUDsM9R+KBgkHozWQaly+53YwqLfPSaZunBNhk58LNqgW9OTnAoWiqQtvR13/VKvWKZKse2wo1/D6H3w3v2rDA+aC6o3WNrqhHv3q477X4ctJl6FOvBQ1fDRq8Kg2DUXbTF31j7h19Ek7o8NhwB5QU5RiTjjSD1+b8NiSwRpCgUbX16LXrURfuA/6oT/CK4+hb/od+s7z0Fqjy0rQF4yLlr02AX372eg///anx6KzSE9V7FrYwF6FVXSjCl1TueXf6sXom0//qe6OjYvpFTakeXnIm/4/tNYMzS41ls9bG3zCfaVjuZhqzTJ0hXk9rXX1i/6+VPEbBNO7m/kzLJFgtAfedznwPvv4tmtYxsyle3NU1dvxO0vLQF10ByozG7XzbqhtdowbiraZyuqCOvYC1IOT4aDfwMj9o33d8M+4bYeOH25cviK1PxWGILxVKcm50+iIxHZPPGWmKY7f3V7+0Ica3cpUDuu26asp6Cf/gj5vDHrWVMbuCCk+X5P981o1pDZ3+miHSZf4/yohc1MGZU/L5qKkklY/D365rubg+13Oe9ocitbU/2YEH9Np/9Sc8JjL3z/QXPOyZrdbXNZVbOknEnQjK0QAtkMtv0Gh7WWnAsXc039gbM1nzZb3aSxieN33P/37dcUk3tZXctXloxl7wcmMHqDIy1ao9AzU4FF07b8NaZbbPZWk9GJ61t5oy53rTFaW+atn21w5StElw1xWKd96iSDiBKOxbF77jKONeX0i+tzl5aDB3hXrwzBpdsd99m6oCrbuEvM1TkACwWibgprLa8zl3QOeorh4P/v2dEVp7D5OvGC04o6bKySEEEIIIYQQQgghhEjA2vpVxuU90woJKcsXNkII0Y4KDKFmAMWNRbh6y3THOreW8vAGcx/psRcv5YS6GutWRyrb7VqXlmzBaLbHQAghhBBCCCH8CqmQcbmrJRitLdhCt7Mtx6JCiCgJRvuZUUqdppQKdAsWpdR5wE0tFk/UWi+3tdFaLwT+3WRRGjBRKWWZBgJKqWOAM5ssagBuDjJWIYQQQgghRAJ69oHM7MDNGlSacfku/QLMtI93IqwmsYsF9FsTcY/dHn3bWf4a9OqLeupL1O+uRqXIxVmdSm5+zCIHzVUb7ovbdEzN56Q0y+zeQl9yAHpx84A1vWAW7vlj0Qd3hy+nJDZekwNPQl1yV/L680kphXrOR4jct58AsE2uuXhB+s7mgtkfoxvizG5uQ7awD/XQVeiDuqNP2BGKljYvfPc/8ONseG0CLF/QvOzTN2D2tLYZbAL0nK9wz9kbfXB39KE9Y/+dPKRZfQWMrv0y0DpyV38LH7zAgOkTjOUlGyPW0B5b0EeVLRgNYLH/UEO/GsKa+97z9znhNwimnyWEav7aYJ9HxRWa61/1bvP5sn0Z3LDAsw4ASqGu/DuqoF+gMcR0s/t+ODc9jfPAu6jfXoUKmb+oamr4yG2tZXPTBsUsK0rt06oxbjZ6QNsk9xw8xN7vsg3w9PRWBqNZtk2hzRdV1lSiJ95BXrZi35389dnZg9EAjtpFUfaAw5gB3vUy3Fp2+F0P3PHp9Lx6H2OdxghsrG2DQW6yslTzm8ddnPMjpFzoMu1Hf+1mLQ/22nj7e81/v2reZsn6aADfd6s0Y/4aIfNilyF/jvDqNxKQJpLPFprjNyi0rWmt0c/fjzs+nZ2u25Npyw8mPC/rp38rFu3IN0v3+unfy2fXc9gTD6L2P87Yn1KKXrbAxVAv1ocChIfjP6TH9jgrBTnp5s+c6o7bhRZbo3CcYLTl89HxQue3Al6nfvwGow3tE7/iCwkEnSbL+qpg9Us86gd9yheuix47WYPRsoL1B3DMLublf3ldk3mxy263RPhgXvTxjrfdq5TtohBCCCGEEEIIIYQQWxVbCE+hhPAIIToJWyhYWDdS2ljy0+/Flu0ZQEFqbB+2YLRG3UCD7pgvPNY2mMMqJRhNCCGEEEII0VqOJW7ItczVE61THTHfTdV2LCqEiJLZ4D8/5wCPK6VeBF4Apmqtq00VlVKjgOuBY1sUrQb+5GNdN21qu3lq9RjgfaXUuVrr+U3Wkw6cD/ytRfu/eYWvCSGEEEIIIZJDhULoPQ+Gaa8FalfvpBuXp6cG6MTPTM5wI6SaQ9hM9NRX0X+9wF/lgbuizv4T7LoPKqeb73WIdpQXG4wGcETlO/ytx5WeTX9f+qhnuT5zJLxZhOrWA11Wgj53dMLDNDr9WtTYI2HwKJTfmdxJpvoNhD/ch37Q47H67jMYuf+mSeSxk8TXphSyPtSDnhHDnRF//AaG7Z28AXtwXc30JTBjuUZr+KHIXM8WhreZfvcZeMX82tAzp6JGHdjaobaKXrMM3vsf+ok/B247pmY6r3c5ylfdbpFyUoigbz6dvMy9YbtrYurUuyGqasKYThF2y4TKuth+Kz2D0b6H3cxBSIn6zxf+gw38BsEMseR6zVsTfR06PhPWXpqlqWu0l+9R+zX5kRJ7hU3U2X+GX52KKrQHlLWl/nmQkw5Vhmv35mQMZe+6r5stK0rpnZT1jmmjYLST91Bc/Ky2BtmcNVFzwkhNtiXMJp6IpV+HJvs830xD19UwsCCDD+bHfw33z+uYz5CgumUppl7t8MlCWLBOc/MbmnUtgoV+U/ESOZtOR+dHiq19lVTGD+ioqdd8sgiKyjUHDFJs2yP+4xRxNSdPcJm+JG7VGLNXBqv/78/Nz+3T0zUPfah/2obOXwvHP+oy7Y8O4wduHc+1iIZ6RdxoKFbExf6zjh7yRLRHnYT60XHbzi0yvwY7aLc01osPoR++1ldVdceLqPFHx62X3wVWl8cuL0npSZqOEy7VQnFl9HmOtx9vC3NyFORYgmQr6yQMUQTQGOe1W1sNxSuhg/YVk8XrXeF3szXMx9yOKXOhrFqTm93+G8Ogwa8bPILRbI/Xdj2iYb8thV34cZ19DN0ygz8e2+SZzyFsXt+3q+CIh1y+ut4xHks0JYGRQgghhBBCCCGEEEJsXWzBaAVp27TzSIQQwiw/zX5jx7UNq+iZVrjpZ/P2LFWlkZfaM2Z5Top9MnpVpIJ0x/IlcRsqbjBfSFko22QhhBBCCCFEKzkqZFzu6q3/Zq6dUXXEfFfnnFCXdh6JEFsXCUb7ecoETt/0z1VKLQSWARuBCNAD2AUoMLQtBQ7TWq+NtxKt9Sql1HHAZGBzisFYYK5SaiawBOgG7A70atH8TeDGYH+WEEIIIYQQIlHqV6ehAwajNShzWFma+ZyXmZ8TYY31voPR9Ia16BtP9r169dQXHRZYJXwq3A5yukNV84SDHHPG90+eKjqfkypfjt//5GfRJ16KPjrJF4GMPxrnvJsxewduAAAgAElEQVST22eijr8YKkrhX7cZi3V9LQoYZr8WiDnpg9m35tPYguXz2yUYrSGsOfVJl5dmxa/brzFOcs3UV+2hjP+9Dy64NfgAk0R/9DL6trOhwZA45sPIOh8P0CY9IqU//ZwXKbPWKy3agOkUUY45G5NaJxONObxAz/0KxSW+xxjPbW+5/HmS/2ARn3lmDOltnuBf0wDLS2H72GvejP73tffYzij/T9w+1N/fQyU5TC4opRRD+8CXS2PL5qQNjllWHDIHWga1e/+kdBOja6Zi3i0OO99o3wd55gvNhfsmtn9g27w0C0YDKCumX56/P7J394SG0iFSQor9B8H+gxTnjHW586wHeSrlWDLcOo6oeps7i7ec8u0VXm/tp6QKBprOTm+ydqPmVw+6fLvpprchR/P02YpT9vROQHznBxIKRYNo0IhfVXWaF2eatwGrLJvcfe9xqXnYISPV32tPxwvGarNArs11dMJtE1l/bFsf60/W42FoawvD2hr4DQptS3rFj+iH/uiv8pjDfYWiAfSyfO9fEupJN9d8sYBNfTgaCtolznXrtqBNpez7S/ECgoRoJuyRtLvZsnlbfzCax3bV72mbgfkwvC98b56/AkBjBF79RnP2uPY/FxS27Cf27gZrNsYuL66wPyi2bc/OhdF9DdO6Zq/U1FpeTvECaU365cav0xCGZ7/UEowmhBBCCCGEEEIIIcTPiNbaGoxWmObjDhZCCNEOMpxMclN6Uma4NmVdw2qGMWrTz6uM7fPT+hgDALI9JqNXRyrpkZqc66b8qnfrKA2bb8yZL9tkIYQQQgghRCs5mC86dom080h+/sK6kTrXfOdTr2NRIYQEo/0SOMDOm/7F8wFwptbafNbPQGs9VSl1LDCRLeFnChi16Z/Jf4HztNbyiSiEEEIIIUR7GXNE4Cb1tmC0IEeStvSQphob4lbRa5ejn7oV3n3G33oLt0U9/omEom0FVCiEHn80vPN0s+U7NCwlpMNEVOwLrujUz8m/IX7gEIBe+B3qIx8BagGpS+9Jep+JUkqhzr4R1xKMRiR6+F3YLToZurwmtsqK1NjwnggOf/8qj3cWRNv/fn+HX+9mfk+9P1fzt/dcqurgsGGKKw5SZKVH606eo3l0qsucouhk+IEF0b6OGLGlr/99rX2FogEMr/vBu0KpR9Z7r/a5GEg3NsCkCegHr9qy0BAAGNSw+rm+6+Y1CUbLjdjXu77SvJ22BX1EVAqNpJKGYcb9e8+j/+9RVEYCs+5beHGGDhSKBv6DYAb3tpfNKfIXjLaqTPPJQnv5uC4rOWfev+wVDjwJddPTneZzakgfxZdLYx/vObudCZOvabZsXUrrL/AbMwDf4VCJGFigmHiW4sx/mV9DL83UXLiv//5qGzSPf6x5cYZmrSV3x2kZBlu+nn65/oLReuX4H0tnoBd9h775dELL5vEn4E9ca6yXravJcGupczJjykoqvddxy5v6p1A0iIZVnTVRc+QITZcM+2snXmChl3Lz94xGb36X2HqyLnEp7OovzEuIRPkNCm0resUC9O9G+Ks8YDjq9hd9992riznctCSlFymNYd/9bFZckXgwmqPsbSsTy8AVv1R+gtHWrmj7cbQxz2A0n30opbjreIcTH3c9g7bOfVpz9rhAw0sK2+d33+7mYLQfi+192U6npadEj6nnrYkt+2qZvb942zqTQYXmbW5L90yOX6c6/qk/IYQQQgghhBBCCCFEJ1Ee3kC9Nn/ZUSAhPEKITqQgra8xGG1tkzA0W9CjbXuW5WSjcNAtb5AIVEWC3awrGYobiqxlElYphBBCCCGEaC1TYDSA23JuhGi16oh9AkVOqGs7jkSIrU8nuG+8SLIHgeeA5T7rVwOvAgdprQ8KEoq2mdb6bWAY8BhQ5lH1C+AErfVvtdbVQdcjhBBCCCGESJxSCvWm/QtykwZLMFp6kGA0r5mvm8UJRtNlxejzx/kPRTvkt6h/fY3KK/BXX3Q4NWJMzLLu7kYOrXovZvkxu0BBxHwHPKNpr6Bff7I1w4uh3ixC9d4uqX0mxZjDzcs3nZBWSrFdD3OVd7IP5bUuRzM1azylTi4AlxY+wB/XHMGH8+HD+XDcoy5nT3SZNFszeY5mZammrFpzw6suhzzgMnkOfLYYbpykOWti9L3/5neaIx9yef1bWFwCS9bD5Dlw1D9cXvtmy/bhpZn+AmZyIpX0D6/0ruQVyNij0Nd6Wks/el3zUDRodSgaQK/IevJT4qQJbZIX2XKKJte1n67ZEMk2LrcFowHUGkKONtMXtD6BoLhC85sJwb9IaRkEo8ON6CVz0PNmoL+fjp7xAbqilC4Ziv4Z5sdxblH0tbihSvPZIs20BZoNVbGvzxdm2F+zVx+ieK//I6RiDmhRtzzXqULRAIb1MS+fU94F9a8ZP/2ugeKUXsa6J230H2xz+UFtf1r6hN3tj+/UBdHXmV9/+J/myhc005fY6zgtL4gsK6ZfbvznWCnosRUFo+mVC9Fn7QHL5sWtq4hut0xKKr0f/8emxZY3hGHKHHub2gbdumA0Q3Cojdc2IJ61FVBcCRuqo+usqIPqeqhrjP6NEoomWivVfI1C0unqCvTiH9AbN2xZtmGt/1C07K6op75Epfg/wOxluSFaSagX1U7wjWmxj90q2yGto+z7S1UegU1CxPATFl8c+OvbTsfrkzPIbvFhwxTf3+Rwx7Hejf42pf0/UG2f4cP6msdaVA5l1eZHxiuUcYgl6Hn2CvujnJlqLbI6dGjwNjbV9aD9nCMUQgghhBBCCCGEEEJ0OFuIEEgwmhCicylM28a4vOl2bG29eZtma+uoENkh83fP1R0QjGbbJqeoFHqktv7mlkIIIYQQQohfNscSN+QSaeeR/Px5hW1nSzCaEJ6CTGcXWwGt9atEg85QSnUHhgL9gAIgi2gYXjnRALN5wHda61Z/Mmmti4GLlFJ/AMYC2wKFRIPXVgPfaK2XtnY9QgghhBBCiMSpbj3goffRd18EKxdCahocfga88ww0xN7l0RaMlhbkSNIroGizxjizxt+cCGXF8fvJzEb94T7UEWf6GZnoTLY3z7adWHQuJw+bzIeNwwA4aDBMON2BqQECptIy4JtpyRgl7DgC9Zdnou+lzsixpGC4Ww77++XCbEOu2AvdTuSFbif+9PslpY/yz+5nxNSb+Llm4ufxJzO/OFNz2SLN/e+51snh17/qcsyuDkop5q6J2yUAu9XNplVRUg1tn1KhVy+GF//RNp0fcALDcrL4cGH8qj0iW0JK0nUDWW41NU5sCFql5QR6Toa97xoni26u5aT8kjnooqWoPtvHH6SB1prCqxMLMWgajKbnfIm+7SxYtTh2HSPGMqTsalbkHBpTNue71dwf6stVLzZ/nd91vOLqQ9RPYWa28KVhfeDuExzc20vNgzz4FNT+x/v8i9rP0D4KU1zF2gpY0nUY24/cH2Z+RJmTS6Nl/+CK0r+zY9dqHsw4k2rLWy0tBW44XHHcbkkcvEVWuuKpMxTn/Dv273I1vPKN5sJ9429Rvl2pefKT+Nu92GC0EkbuHn+cPXMg1DLVrxPTj98YqH6v8HpWpvaLWV5SZW/j2pJAiH6+HD/S/Hi98wOEW5GBUuYzGK0hrHnXI6BNiI62V2IfwYHoN/6JfuS6aPBrSiqccxPseTD6nL38dXDACaj/exQVCpbiZg1GS+lFQXidsey0vRUvzNDUG/JKWxOMphR0sewvVcYeXgthF44fjMa6OOHQWwGvTKygecHb9VRc+yvFQYM1e95h/vB/6EPNVYcE67e1bMe+I8zzagCYUwTjBsYutz1cjoKBBeZ99x/Nm0EgsWC09FTFuB3h00XB27bk6mg4mtdxphBCCCGEEEIIIYQQonOwhfB0DXUnyxIWJIQQHcEW1rh203bM1RGKG803lC5Is9xFkuiEdNOE9aqIvxuaJpNtm9wrtQ+Oaqe7pgkhhBBCCCF+thxlCUbTcqfvZPM6prQFdAshoiQY7WdMa10OfNbO62wAPmrPdQohhBBCCCH8U7uOh6e/gfISyMhG5XRDX/UQ+ozdYencZnUbVLqxj/QgR5J+ToQ1ek8C1t99GrcLddm9cOyFqJQEZnqKjrf9YOPiPLeMKfPHU/zKRtJSIC87OltaV5b573vjhvh1AJRC/ec76NkHMrNh7XKorojO3nYj0L0n5Pf7KRSpU7IFS0SaBKPlmSdQt/Rw3kWtHs74u73f//PXwverYWC+Zsl6f30eXfVm6wZVFeC1kyD93/sTazjuSNSZNxgKFGRmQbeeqG49GPK8y4cL4z+HeZGymN9NwWg22Wn210qNyvRu/PEkOPly3+tq6tkv4/9tNqFN38nouhr0zafDmmXmit99xuD8I3jXEIz2zKI+PLModgzXvKzZewfF+IGwpETztaXr3+yxaRtRaQlG69Ld82/oKMM8bup8zMMu3x9wInrmR6xLsd9ptCC8jlvmX8zV75xJo3bIy4Z1FbChCgb0gtIayM2C7PT2246eOUZx5zuaRYZ81Zdmai7cN34fT37q7zXptHy/lJeQk6H485GKW96099FrK/oOS1dXwLRXA7XpFSkxLi+usD8mpdX2/rLMuXxANHDTy+3HKs4YrXhvruasibHrL6+JhjPG+6xfWQp1jZ5VhOgww/vCUSPadjur534dDdveLNyIfvxP8PiffLVXD7yLGrl/QuvOtwWjhXpSbdnPycmItltp2A0sqdQQJ3bXK5wox3zITFXbZ/GKn5M450QAKF7V9uNoY157VIlutUZuC327w2pDdvqK0uh7vFeX9tv3tGW79s9TdM3QVBhCE5es14wbGDtGW8iao6B/nrnMK+wx02MfysuRIxSfGo6PEnHDa5oHT+7E51SEEEIIIYQQQgghhBAArG0wn5O2BRAJIURHKUwz352mKrKRqkgFdZEawtp8gUeBpS1ATqgLpvvRmMLS2potGM0r2E0IIYQQQggh/HIwz0NzW940XrRateWYMsPJIkXJfFghvEgwmhBCCCGEEEL8wqiU1Gj40+bflYInpqMP6tasXoPlpEpakJuMNQlksgrHSZZYMse7fPAo1ImX+h+T6HRUVhf7JOmGegrWfoPaefefFulVi5I/iEN+i+q/05bfe2+X/HW0Ncfy5nS3vA9tE6g7ygszNCeOVGgf86yz3SpO2fhC61ZY0bbBaHrZPJj0RLBG2+6MOvUaOPS3voL3hvm8pikv0jyYKzdSxqpU+wVdLWVn2MtqnCzPtvqHLxION/j7B4lPui+rAR2JwPv/s4eibTK0fl7g/id8rBk/UPH+PPsYtwSjGdIZALp2sjfhJr27QfesaDBUS3PXQMXo4+nS7UbWNdqD0fI3BWB1ffACnBueBKBP9+g/gCxLeExbUkpx0ijFHW/HPmdTF0TDufK7er9aX5/tMxitRRis3rAGBfzlaIcvlkSYMtfczhby0xnpM0cFbtMrbA5GK/l6JvxmT2PZizPtj3mG5Tu/l2dqfjRdlbrJO39wOHRo9Lke3BtM8Syujm5H8uJkSJZUeZcL4Zejov9CTvRf3J8VOJv+b1knOx322UnxhwMU3bLaLnRGN9SjLxiXWOM+26PueAk1YFjC6++VYw5uLQn1pNIxJ01mp0F+V3MwmleI0Gaux7UdXTLM46k0hB8JYRX2EYy2+Ht0uHGrDoP3OuZLNH9cKcVv9lDc956587++q/nbie0XxGULMws5sH1P+NYwl3ClJU/Z3peiv8/A86YyE3zp9Evi4ct/v9I8eHLy+hNCCCGEEEIIIYQQQrQNewiPBKMJITqXgnT7tXDrGoqojdgv8Mj3CBbLCXU1Lu9cwWj+rwMUQgghhBBCCBtHOcblrvYxH1QEUhUxX7ScE9qKJpQI0UEkGE0IIYQQQgghBCo9A33gSfDBltChBpVmrJseZDKl9nGHgFrzxQdaa3jub1BsvgvlZurSewMMSHRW6p5J6D8eYyzT91+Oeuzj6M9awydvJHflO+2GuvD25PbZESwnpJu+D5M5qTkZ7nhbs3xD/HqZbg2Pr7mEwohH6o0f1RXocBiVktxTYrq+Dv34DfDiP/w3SklFXX4/6pjzAq1rWF9/k+BbBqP1ipjDiWxyPEKsalWmd+PqjYHWtdmSEs2M5Qk1BWDRlE/Qtx7iq+7g+vmB+588J/q4f2++3oxd+8GO+ZuCFyrMCQeqS/fA620PSin23A5reNcbi7vyu+smUHzvq8bybpFyMnR99Jd3n0GfcgVqh6FtM9iAThxpDkZzNZz3tMuk3wdJfLVTLe+KtGzLa+y/5zkUXu3SaPh+cES/9gvraA29fD6sDf4G7RlZb1xeUlSKXjLH+Dq57PngwWhXvWjf55xyucNBQ7Y8zr27Wasyfy2MGWAvByhu/+tc24xjCNgKGsiVeFsVU9/x2U9yxhK7/mQElPlt6yh8BaJ2NvqqIxNqp+5/GzXqwFavv5flu/96J4N1KQXGspzaEvK79DSW+QpGs2ySHMe+v1QfhsawJjVl63uORQdo9BGMVlkG30yDPQ5q+/G0Ec9gtFb0e8ex9mC0+9/T3HC4Ji+7fd6LEdv2QkWPxY3BaJbsbq+QtX65wcdm24eKp19u8BA2m/USLiuEEEIIIYQQQgghxFZhbYP5Wj0J4RFCdDbdQrlkOJnUubUxZesaVlEbMdwhEshN6UmGY7/+zRaMVt3OwWiudiWsUgghhBBCCNGmrMFoLedGiFazHVNmW45BhRBbSDCaEEIIIYQQQogop3kwSL0yz/JOM+SH6OoKmPoqZGTBbvug8jZNSvea+bq57b2/R/3r6+jPGzfAV+9BQz16/gx4bYJ343FHwrC9465DbAVGeUzwXvjtlp9L10F5sIAno+2HoH5zOfTdAYbuhUo1BwFuVUKWcJ8mM6r7dU/OhOZkevZL+5gmFF1Ed7ec0bVf0ju8NjkrLFkFvbdLSld6xY8w80P0fX/wVV9dcBt07wmZOTBsL1RB/8DrHNrbX70eLYLR+jVa0rwssj3eEjUeF4YBULQ00Lo2e2FG616fB859xHfdIQ3zAve/vgoawpo5q83jHLVdk8CFynJzJ107WTphE5cd6DBlrvkLrBdmaE79/ZEUl+0Dr8eWF4SLm/2uz9gdJm9AZeW0xVCNtNbR9+OHL0E4jDrkFBi5PyO2gYH5sLA4ts0b38GfJ7n0z4P9d1ZkpsF7czXrKqLP5/47Q4nPAAen5Zd/S7ekzOVmKy49IDa0Iz0FzhzT+UNz9OxP0H+7NKG2vSzBaBtCPdFT/ou68LZmy+sbtTUIBKAhHLusuEKzwpxFSH4X2G/n5su2yYUuGVBZF1t/TpFmzADv56S4Mti26qL9FEP7RLerzYPIVIcEcm1uq7bSYC7RcfTcr2H2x8EbHn1OUkLRIPqetlmaup1xedbkp+i139VA7L5yiY9gNNs73lHRbYlNVT3kyrewwg8/wWgA82Zu3cFoHmWt+ThKS1GM3gGmLzGX732ny4+3JScINx6vMLNtLAFjq0rNj4xXX/0DHlKkOJASSuxB7mzh6kIIIYQQQgghhBBCiLZV59ZSHjbf4bBQQniEEJ2MUoqCtG1YXrcwpmxt/SrqXHMwWrxQMduk9KqIjy+Yk6g8vIGGzTeqbEG2yUIIIYQQQohkcLAEo2kJRku2KkswWk7I4+JoIQQgwWhCCCGEEEIIITZrEarUoMypOGktjiT1vBnoKw+Hqo3RBXkFcNv/UMNHgxuJv95F36HDjbBsPvqqI6HUZ/jR8Rejzr5RAh1+JlRKCjp/Gyg23HW0oQ4992vUkD3go5eSs74LbkWNPTIpfXUajmWyd5P3Yf+ujUBq+4ynlU6oeJmzN/476f3qs/aA11eh0szhj777efc/6LsuhHCjr/rqn1+hBu7SqnUCdMtS9MuFlWXe9XIjzSts02i+o69NaggyUqHO8OfVqCzvxmuWoetqUBlx6rXw9vf2uISR28LyDTB+IGyshQ/nx9YZU/uF73V1cavYp/pjPs7eJ9AYv1wK36w0lw3rE/1flxVDuSGFC6BL90Dra0+HD1dskwurDK+t9+ZGQ+HWNeZgCnTIj8T+vfrQHvDKElSvtr8QT7su+voT4LO3tix752nY7zjUX/7DiaMUd7xtfn3d9tbm5S3LNYcNNb8HTJyWX/6tL0JXlqG65AJw57GK7HT4zxeatRthr+3hL0c77Nqv8+7HaK3Rd5wL7/4n4T7yIuaNVVmoO3zxLrQIRjO9/pqqNlzvOafIXv/w4SomCESpaFDZF4YAFa++NisOcJ3r9Gsd9tqh8z7HQgShn7s3eKNdxqOueDBpY+jl8d1/peXi9JyNq+hVOh8YGlNW4iPo0LVc26HwEYyWHbd78Qunw43oJ27yV3fZPLbmTxSv3PzWntY5chfF9CXmFSwqhsXFmgH5bf/oeYWZ2QLGbMd1Xn11y1LsVAA/rvM3rsxW5MD36ZZ4WyGEEEIIIYQQQgghROv8UDWDGZWftOs669xaa1lB2jbtOBIhhPCnIK2vMRhtVuVnRDBfvxwvGM02Kb0qbJ7EHsTGcClfVXxMUf1ydMubMAZYX7y/QQghhBBCCCH8cJR5HtrKusVMXHN/O4/GnxSVyvYZOzOq63jSHY8LeTvQ+oa1zKj8hLUNq9k8T2Vp7QJjXVs4txBiCwlGE0IIIYQQQggR1SJUqd4SjJaesmUyqY5E0LefvSUUDaB0HfqhP6ImfGqfRd5S0RL0Q1f7D0U76TKcS+/xV1dsNdSf/om+7BBjmb5gHHxch37wquSsbO9fJaefzsRHMFrv7DAhrYiozn9KaEj9vLbpuLoCPnsT9j8+oea6ohR998Uw7VXfbdS/Z6F2iA3jSNTwvvGD0XpESpv93i8cLBhNvf0vskInU0fsFwW1TqZ3Y61h2TwYNNL3+sIRzawV5rK/Hqf4v8O23IlmcbHm4PtdljW5SfHtxTfSO+zzM2STO4tvZOz20wK1Of9pl42W64CH941+PuqrjoKIJRg0v1+g9bW35893GHdX7Gd3fRiG3uSSZwl4KQibg+D0cTvApBWovIJkDjPa98YN6Ak3wuxPYMWP5kpTX4Fpr3LiyOOtwWhe3p3jv65julhx6VwYMRaA1BTFzUcrbj468DA6zhfvJhaKtu+xUFcNX04hr8W2aLPSUC4snodubEClbtnnjLdtq6yLfR5/KLI/t3870RyCsnOB4gtDgMrajYbKLZT4DEY7e5ySUDTxs6Ary9EPXgnTXgvW8Mizca55NKlj6ZIRDepuCPtvk+NW0Wvl15iC0fwEHdq2MI4DOR45u5V1voYnfuk+ecN/3WVtdHzUCbT20/LCfRQ3vGrfH7j6RZdXL7EcLydAf/Mx+tl7oufChuyJOu9mVGa2PcxM2QPGNlSbl3sFowGcMNIe/NtSZiuy0VNTkrsvE3E1IUf2j4QQQgghhBBCCCGE8GNtwyq+qgh2TUNbSVGp5KX27OhhCCFEjEJLQFhpuMSjjXfQY45lUnp1pHXBaMUNa3hg5Z8oD2+IX9lD11AumSG5S5cQQgghhBCi9Rwc4/KNkbJOc17K5PON7zN94wf8vt9NZMSb39TOVtQt4u8r/0KNW+Wrvi2cWwixReefBSuEEEIIIYQQon20CFVqsASjpTU9kvxmGiw3JNbP+xq9bgX2aeQtVFXArKn+6gLquAt91xVbD7Xbvp6vGH3jKd4djD0CPnsr/npeX4kKJW9SdKfhmE9INw0oTKGRvuESVqT2D9z9/62/h+IRR9I9SzG1vB977JRBWnoK/fPguN0UPXLg4PtdZi5P9A9o7tCq95LTkYG+7SxIS4fC7WD7ISjbYwfoxgb4cTaUl0DVxmjbIM64PqmhaACHDFW8/YP39rUgvK7Z79s0BgtGc9YuJzN3A6TGXjxWq3x8cfDVe4GC0eatgZoGc9kBg5pPnB+Qr/j6qjpeen8tRRsdDnn5dEbXfuV7Xex/POqQU9h70fc88vKlXNz7Id9NF6wzL++aAaMHgH7/f7BwtrlSr76wwzD/4+wAo7aFFAfChiCGxSXRfyb5HhcT6jNGwkuLUOnB78aj62th7tewbgWkZ0Lapj5SUtFXH+Wvj+f+xognjqdrBlS0YUhNvGC0zkY31MPqxdHPiB2GolTz95mur0M/fmNCfatfnQZ7HgyfvUX3mRvBsKu4MdSdSMSlfsliZjuDGFgABV0VK0u9t21V9bHL5hSZ6+65HeRmm4M38i03ViqpjL/vagtG2zEfTt5D0RiB8QMVv+rcb3ch4tLhMCz+Dn3u6MBt1c3PJhxC69mvUuR3gVVxQhSbynZryF/+BRSeGVNW7OO6ddc1bxcU0aA2G9P2SoiW9Cev+6+8bC66oR6V5pHI1wnV1Gu+XgafGwJJkyU3WzHlcodDHjCniU36Fh78wOWsMYquma0L5dLzZqCvOGxLEPKcL9Fzv4JHp2HZXBByIDdLYTpHVl5jbhMvGG2E93ydZjLNp/c6RG0D5HTOm3QKIYQQQgghhBBCCCE85Kf2wVE/w2uthBBbvYI4IWfmNuYwtc2yLcFoVZFKtNYx19j49V7pK60ORQMoSOvT6j6EEEIIIYQQAtiqz/csqZvPrMrPGNPtoI4eSjNvrn/edyga2I9BhRBbSDCaEEIIIYQQQoioUPNgIFswWnqTI0n9xj/t/a1ZDlUbfa1af/62r3oA6q8vo/oO8F1fbGX2PRamvWousy3fRI09Eu0VjJbTHXXHi6jc/FYMsBOzBqNFtvwcDjO+5lOe7fZbazcKF93krh871y/g30XnMKpuFnxw05aKn4C6/x3UqAN+WvTuHxz6XeNS12juOyfdX0jEgIbF7Fn3dfyKiWqoR1+7KaxjwHC46xVUQWxYnJ7zFfr6E6DUkoYVz++uRp31p1YM1OzEkYorXtBoj2yBXpH1zX7vFzQYDZcs1zxLv8bJittef/oG6vRrfdiUhNIAACAASURBVK9v5grzH5MaguEtrkXTH08i97azOK+22nf/QPQ9MvZI1DWPobK7wrijOG/WoTxd+gVfZO0drK8Wfr2bIiNV4b7wd2sddfzFnT6UMS1FsXOhPWjKJj9SbC8sL4F3noZfnx+oT/3xJPQNJwUbiMmCWej7LmPmDQ8wMLGcL18cHZteoZfMoXXRG21DL52L/supsGROdMGIsXDrf1F5BdHyH2ejz9nLX2f7HgtzvoT1RdAlF3X2n1Bjj4iW7ff/7N13eBtVugbw9xs1y73EJY6dnpBeSAiEFEgIEFoKJIHQy3KpCT0ssMCyF7gsnSV0WOrSwtJZem8LJNRU0km105zYjps05/6huGqONJLl/v6eJ0+kc86c+WxLo5E08850dOqpgJutkz0eSTsXV93TCxX7AjznTBRkhrngUbFFuN2STdbbj5Hd9b993Xq22/gOslATnjZ1mOBvU/VBm0RtidqyLrANXvlL5Asfejxk4oyY11RtYG6kwWglcFT5LPt2aQKJ6tIFHRkCxIcIG1q9TWFUj9b4KkCtyocv2B9bVQms+hUYcEDT1RNjLy80ceaTSvv+sFqU547UM2mAoH/nQOCylcteUrjhDYUnzjAwY0T0K1Tz59WGolVb8h3MHz8HMM5yGYcBpGreQu2tBCp9Cm5n/Zp8mo1P9Ud3XdOtg9asxDXyiJB5kwW3vxebYLuyKgajERERERERERERtUXhQoSIiFpKThMEoyVqTkr3w4dyswxeR/hj56wsKf0xquUa4jaZiIiIiIhixSNt+2CuFaW/tqpgNFP5sXzvzxEtk+RIaaJqiNoPnqVDREREREREAUZtWIsJgU9clsPc+4YpXxXww0fa6dSTN9tf99O32homd70NGXOs/XmpzZEzrol+4YkzgO79rfsmnwZ5axNk+Pjo52/tDE3gUt1gNH8VLt1xP5L9waGFTkPhtQsN7LrgZ/y8ZiR+XjMSa1f2weI1wwOhaBbUZUfBPPdgqBU/AQAyEgU3DFpuObbg9zwUdToLjwz9JuyPckfBNSHDhOScGyFvbgCS08POFdbq36DuvDioWfl8UNefFHUomvx7NYzzb2mSIKzOqYJD+uj7E9wK8ZkZ9dryMyL7GNCAiXhVZtm31/CGn2D9iojWt3qbdfugXMDjqn00qF3boG46DYgkFK1bP8g7WyD/KYBx64JAKNo+xp9uxMNbL7Z8TkRixuYnoJZ8ByxbaD3AMIApf2rUOprL4C6RB0Vkdw79ZYy6aw7U3mLb86mt62MTilbt9UfRY0Y8/rfvotjN2YABi/CvdcuabH3RUNu3wHz4L1CnD68NRQOAX7+GmtoV5rxpMG85x34oGgC55lHIq2sgr62FvLkRMqP+9jQtxLGgc3PuQYVZu428/5NAYEkoDcM1lVJYoglAGRTiONDMROv2bTYepoWaMVlhQt2I2hJ1x4XRhaJ5EyB/ujH8uEaYOiyy16kEVYo0v3WSWoUPKKsMvd3R9RoGYBiCRI91/ymPxyZEiKiepd+3dAW2/bFDYfZj4UPRAEBikYwG4N25od/zFJcDsx4x8cqi6J6flZv/wEMbBuL03Cfw105/wSZnbk2f/2f9+1xD9MFoALDb4m2X3zpXFs6aYDQ7FQd4Q4Q42nHe+NiFPJZVxmwqIiIiIiIiIiIiakaDE0e2dAlERJay3V2Q4cq2PT7P0x2pzoyQYxId+gNASv17bK+rrnKzDEW+HVEt29AgbpOJiIiIiChGescPaOkSGmWvaeOq6M1oR1UhfMr6Ys46/eKHNlE1RO0Hg9GIiIiIiIgooE6oUqXoz5p0OwFVVho4Ub7Y+gRzAMCPn8WwOEBufgky6vCYzkmtj/QZGgg4i2bZhGTIA58AZ1wLZHQONB54BOQvT0KufQzidMaw0lbI0HzM468TjOarwvCKX/DF+sNw0c6HMHbvVzh47zc4q+hpfHRGAaYOEyQPPwCDhuVhUMVS5Ps2hQwoAwAsXwT1p4OgPn8d5oPXYN7z++OFjafi+D2v4dDSz3DZjnux9fd8ZPh3Ah+9hHNenIS3/5iqnW7BxtmYUvK2fn0OB3D06ZC0rNgFb/z3/UDgllJQfj+UUsDPnwPbNkU1nVz3BCQr8qtRRuLEA/R/mdJKgfzze+CUK4FDjwdOuxopT3yM5Agu5iJQ8Jp7reeXhNo7Ls3rxd5iqFL7B4Jt0ryc9Mps0PDpK0BlheVYHZk1B5KcXi8QraZvyMEYNG4wvlo3AeftegzH73kNtxf8GYUr7F9ZM82/E5Peuwzq/BDBiwcfA0lKjajuljJ7VBTBaGddBHgTQo5RM/oE9h8AKNMMhA/6fFBm/dQHZZpQM/tGXIMd17wxDgkob5K5LYPRfvwssD1pBdT65VBnjgD+dYd+0LfvAu89Z3/S7K6B114RSKdcy9fZ9NAPi4jtafDnK9gDFFlvqjAwV/9Y7pRo3be9BGH/ZoWaTVsmg9GonVB/rAB++Nje4NmXA0edDgwdB0w9F/LEd5Bu/Zq0vkP6RvY6lWiWIl0TjAYAO0sDz/tKn/Vz39SEE1VX0TCwsa69Fa3jNYBaJ1X3fZrdZdpQMNprPys0925Q1wzB8Pzw42Y9YuLlhSaqfAqmaa9IpRSm/aMKc3LuxfMps3Fz5rUY3f0LrHN1BQD4fvxSu6zDAFJDZEtHEozm2Pe2Pzu5NiQtHK/1dQ9s69FJcPes2ISjldkIyiMiIiIiIiIiIqLWpbd3IPZPGtPSZRARWTLEwAmZZ8Ep4Y8NdYsH0zLPCHvRnkRH8DFm1UqiDEYrrIzuOMSGBiWMxKCEETGZi4iIiIiIqHtcXxyUPLGly4hauWlx8F0L2hrhe79JadPQyW0/7Juoo2rnZwQTERERERGRbY7at4ihgtFc914E9dtT9cOWmtqQMZBDpjXf+qhFyfVPQX3ySnTLJqcHwrJiFZjVltQJN6zHrPNc9QeuPDGoYinuK7ii3jDpubL29vm3QH33QUSrV385seb2zOJXMbP4Ve3YyaUfYteKLByf9xI+TZgAAEj37cATW87HcSXvhFyPXPVQbejYlHOBuy+JqE4dde+lwOL/AoUbgbzewMZV0U106jzI5FNjUlMoJ+wvuOBf1ifxOw1AUjIg599Sr71ruh+LN9ubv5NvBxLMUsu+UiO+9k5ON2DDSstxKNwE9NAfKFbXxl3WP0uXtNoD0dQvX0Hdc6mt+eo57pyQ3TLvIQz4KB0PbK3/WOpXsRzLPeHDXaYXvwk3Qp/hL9c/Gb7OVuKYwcClkwT3fmQ/ySIn3QV5axPUqUOBreutBxXvAl55ACqvN9QNs+v33fYqZMwxgdvvPhtl5fYsXTkI04Z9hZ9Kc2I6r2iSP9T4OOCCW4HZl4c9sLIpqefvBnbH5sqzNQYeGHZIUlwgwEMX7hGprbsDwSTVv8s/durH7hfiO0JdiJnPDISTpMZb95umwnbNhaWyklru70sUK6q4COqUIbbHy7FnQbo2TZilTu/MwL6Oz+Z2JdEsgdfUh2J+vFzh8S8VvloVCHO8dbrg3HFSs53RvRoaNp7y20qAbh57dVIHtGNL5Mss+S72dTSRddvtjYv17tErFxjodW34DcRJjypUP8P/foLgyiMk5L7aJ8uB93Z2r9e22ZWL+9Ln4J6Cq+DfvRPQ7D84DCAlRDCaVchruGA0hyHo3glYVaift5pX/xGfbX2zBfoton3lDEYjIiIiIiIiIiKyLdfTDaNTDmux9TvFhR5xfTEiaRxcRiOvwEBE1ISGJR2Eea478WvJd9jhs/7yJNOVg6GJB6GzJ/xVduKMeBhwwETwMdLRBqPpTo53ihMHJB8Sdnm3eNDT2w/7J42BIZrjRImIiIiIiCJkiIFTcy7G0MQD8XvZb60uaKza1oqNWFu+Iqi9zK+5wnoL0YVie414DEsaXXM/3khEv4ShGBA/vLlKI2rTGIxGREREREREAXVClSpEf/a2e9m3zRuKBgSF+1D7Jk4X1OijgG/ftb/Q4Sc1XUFthS4YTdU5o9oX4ixkR+1BjNJ7CNT4qcAXb8SouGBJZgk++OMYLIwbgd1GMkaW/4hUc3fIZeTNDZC0rNr7Dgfw/GKokwc1vqC6YXwRhqLJdf8EPHHAfsMhuT0bX4sNnZIEo7oD368L7jtuqPUy+emwHYw2oGIpEpUuGC2x9k5WXuD3ZRUKtW0j0KO/rfVt3GXdnpcW+F9t3wJ12VG25qpLnlwYNoxKvAnA1Q9D/f38eu0X7noEc3PuCbuOmXvCBDl27QuJ16QwtUKGIbh7lmDORIWhN5koqQi/THYyIB4v8PKKQBCYhnr0euv2Px8P/OmvwOzLoZ64KbrCAVuhhl18m/H1wv2wsM+JWOvqjp15w3HZhsgfWw3pni8AoB66NrDtOuq0Rq/HLmWagdfRlb9A/fIlsPCT2K7A4YDMuCjsMBFBWjy0YWKRqvABt/5H4aIJQGq8YIMmGC3OpQ8/A0L3/bFTH4xWVKYPY8pqO09zameUUsCvXwOrfg1sB0cdHnUQY92g27DcHqBLr6jW0xgup6BPNrDMZqZUgrkXKSH2Mc98snYfZmcpcP5zCllJgmn7jjUwNTlAdn7Feyvt1UgdVIRB1ACAzWuh9ha3iX1Lu6/9iTEOD+zRSfDgKYILNSHSVq7+t8KjXyicNKr+EzvVC0zsF9jfmPag9Q7AW4nHBILRNq8DelvP7zACYbEi1m+brILRdPsb1cFoADAo12YwWgzOV3TH6PyaMgajERERERERERER2TYgYTgGJPDkSCIiO/LiuiMvrntM5hIRJDqSsMdfFNRX4i+Oas4CzcnxWa4uOC1nTlRzEhERERERxYIhBoYmHYihSeEvmt5Svi760DIYrdxsXcFoWys3WrZ3j+vL935EjWCEH0JEREREREQdgqP2LMdKcWuHeUwbCSkxJHe8ARk8OvxAaldkUGR/cxk3tYkqaUMcmjOV6wYZhgo1dNTPz5e/PAnMvDgGhekJgAPKF2HS3k9Dh6IdfUZQKFrNHPl9II9/23RFhiHn3AiZfApkwgnNFopWbd5k64/2pgy1TurIS7MfkjKgcjmSNAdyFdcNRouLB9KyrSdZv9zWupRS2BAmGA1vPwlURZYuIhfdBuk92N7gQ6YFAl7quHDXI2EX61a5HhNKPw89aMhYezW0Mj06CZ44w97Hx9nJgf9FBHLezVGtTz3+V6jDkoFt1gcChjT1XMj7OyDPL4bMuSPscDeqcPDK53DK0psx54MTULw8HZfvuBc9vNFd1TXRX4zB5YtDjlHvPB3V3NFQPh/UvKlQfz4+EDQX61C0YeMhd75le/8sNzW2q7/+DYWuV5v4YZ3Chl3WoSd5aQgZDJWfBrg0L5vLtuiDVLaGeKliMBq1BKUU1E2nQ118GNS9l0FdeRzUjadAhQrD1c21fQvw42f2Fzj4mEBIbQsY3cv+Pk2iWQKPqkS8qQ+wbGj+p7WJRKYmnMiwUUJp8751pjZGhQoCN0Lsg62zt4/d0gr32AsmG6cJE2uM88YLHjtdkJNsf5nV24Bb3lH1/l31isKIm01tKBoArHN3R4W4Yfr1P6/DCIQPp3it+4ssLrLp16zSWeehMbCLvW1hXAyC0bz6jwkjUsbASCIiIiIiIiIiIiIiagMSHNZfNJX6ozu2qEBzcnyOp0tU8xEREREREXUkXof1Vc/LWlkwmi4UO9vN935EjcFgNCIiIiIiIgowak9qrwgRjOZWzXcWo7y0HHLQ5GZbH7UiE0+IbPzYY5umjrZENB/zmHXC0EKFZDjrny0t3gQYc+8KhI4lpsSgwOgZ1zxqGYpWTfbbH3L1w81Y0T79RgAnX9H8691n+nDglAPrnwx/5EBg5gjrE+Tz0+3Nm+IvQrJZjCSzxLK/2KiT/uN0Abk9LMepr962tb7NRfrgkPy4Eph3XBgId4qEyw1MOdf2cElKg1wdHIS2dmUf9Khca7lMvFmKB7fOgRMhAgcByCFtN7hxkI3vX1K8QIKnzmNu5sVAVn7TFVWXNwFyz7swrpwPiU8MBLPNmguZe2dk06hy3F54LVb+mIM3p68JOfaGlLeQ5qndlooy8diWC+CCL/RK1i2LqKZoqYpyqKn5wHcfxH7yw2dDviiHcf+HkJGH2V4sPy38mEiVVACzHzVx+cvWISTh1ulY9TP6YINl37It+uVWFFi3iwBZEYSvEMXMxy8H/tX16b+hHv9r5HNtDr39qycrD3LODZGvI0Z0+zoNiTLhVYHEoTSLq3nrfLI8EDoHALqoo+pgtNMO0tfy1SqF6Q/4MfQmP2Y/amKTJsyROqjVv2m75NZXAgHEVtYubaKCGqe0QuHSl0z0u96P7n/240Mbuz5ZScCdM2N/uIKI4JyxBjbf6cADJ9sPUozW7+4+8Is+KLJ6e5GqC0bbG7xt0AWjOeoGo3W2V1+8u/G/g+H5sQlYK4s8t5OIiIiIiIiIiIiIiKjZJTqsr45XEnUw2mbLdp4cT0REREREFF6cYX08ZblZVnO8b2uwlcFoRE3C2dIFEBERERERUStRJxgt1b8bNxXehEpxoyKnN6oOnYXKRV+iYt0qJJvFzVPP4bMhmrAdav8kr7c2hCBo7CurIC59mF+HYWhOxK4bjOYPEdzjsP6YSPbbH3hxGfDhi1A/fQ588UYjimxCk08F/n5+069n2Hhgv+GQfiOACTMgDv0J8E1NRPDM2cC54wT/XaPQK1MwbTjgMDTBaDbDiaYVvwUASNAEo5UYCbV3HE5g5ERg8bfBA5cthFIKIqFPxF8aIoRov/tnAcs+DVtzkMNnQ+ITI1pEjpgNDDgA6tWHgFceAJRCvm8TFq4djVeTpmGZZz8oBH6WLr7NOK74HfSqsg5Nq9F/JHDA4ZHX30r0zgTcTqAyxKZjRLf698XjBV5aBjUhst+/HXLjM4DhgPr9Z0h6FjD2OOt9haNOB164B9hm/cVSKEffOgizjt+Kl5cFp1wNK/8F1y47GRc6UvFS8kzsFS+mF7+B3lU2woR2b4eqKId44iKuKRTlqwqErlWUAf0PgDpvLLBnZ0zXAQDyt+eBQ48P+3y2kpcu0EcLRW/Ndn1ffrq+TvXHCqhLjkD/1AexNDk4xG/lH3sBWD9+l2y2/jl6Zih4ln4NlZEDdOkV1e+JKBrq9cesO/51J9SkkyC9B9ufrFKTUgoAh82CzL4cWPgxkJIBjDkWkpYZWbExdJDNt4kJZimqn43p/p3Y5LJ/YMH8TxXmTBSYms1X9dP85AMFz/7XelDd8MbfNil8ukJh1S0GEuO4jejoVFkpsNl6P1Iuug0y5hio7v2B5YuCl123FK3tEaSUwoyHTby/JPzYFC9w2eGC3BRgylBBVnLT/jQXHGoAMHHR80138NNST39k+wq1/dVhZqnxAHYE9+8uC27za8qtG4zWLcPePlZiDHY/4z2C6cMFL3wfvL6DewHfrLY3T1nzXWuBiIiIiIiIiIiIiIgoaokO66vjlfojP37aVCYKtcFoeRHPR0RERERE1NF4NcFoCiYqVQU8EttzNKJR6i9GiX+3ZV8O3/sRNQqD0YiIiIiIiAgAIA5HzemU6eYuXLfj74E7XcbCOPEkmBteBr59vPnqufTuZlsXtU5y51tQVx4Xflx2cKhJh6QL6DLN2tu+Kv3yTpe2S1IygBkXQWZcFJjy1KHA+uXRVNlkxOmCOuAw4IePm24dj/8Xst/wJps/GiKC8X2B8X3DBwrk2wwnenDrHABAkiYYrdioc0VMhxNywCSop24JHlhWApQUAUmhE9mWbrGuqbO3HGk/RhiK5nQBE06AXHpPZMvtI3m9IXPvAubeBfXT51Bzj0CKuQdn7X4muvlufKZFw/May+UU5KcBq7fpx4zqEfzYE6cLmPcQ1O0XxK4Ytwc48AhIUhpk4oyQQyUxBbj5Jag7LwZW/hzxqp54rTuSsu/CE2ln1bT1rFyD5zedBif86OTfgYt2PRzxvNixGcjtGflyGmrTaqgbTwVW/BizOa3Ihf8HmXBC1MvbDWWMpcEhso/Ue/8CSvega8Iflv3b1m0B0Meyb6n1caoYuPEDqIunB+4cPhu46gGIN8F6MFGMqJLdwC9f6vvPGgl8ttf+65BPn1Yjl98HSU4HWsl+UEp84PVpw67Q4xJVac3tbF8BfoP9oLjb3lWYMxHQXUiuOof2yIH2Q50Ki4EnvwkErlEHt26Zvm/clMD/mmC0kMu2kG/XwFYoGgA8e46BY4c073PggkMNxLtNnPVU04SjLfYMxPi9X2n7Hft+3FSvdX+RRTCazx/cVncuAMhPt1dfUoyO+XrsNIHPD7zxi4JSwDGDgafPNpAUJ/jnVyZuekthwy6gZyd9gG1ZlQJaXbQfERERERERERERERFRfQmaYLQS/56I59rl24YqZf19fLbb/sW9iIiIiIiIOqo4TTAaAJSZe+ExWj4YraByk7Yv28NgNKLGMMIPISIiIiIiog7B0Jww7993NuY2TRJEUxh1eODEe+rYho4NP2b81Kavo63QPYfrBqPtDXHFQof9/Hx57BsgM8RBOaOPgnxRDvlwF+SWl/XjTrkS8vp6yAs2z6IPV9eZ1wEezdnmjZ37+cWtLhQtUr0zw48ZXP4bPPsOxErUBKOVGnXCfhxOIKerfsKCDWHXubnIur3vnsgCreSaxyDvbYdxw9MxCSSS4YcAh0yLbuFOuZAPdkK69Gp0HS0tKyl0/4EWwWgAgKNOA/bbP3aFnHQZJEzIXl0y4ADI499C3t8B9BkW0aq8qhyPbL0IxcvTUfB7HnYv74QVqwehb+WqSKuuL8b7Uuq0YbELRcvtYd0++ijgpMsaNXXXFtilmz48RODGL4HgkiyfdeLftj2mZTsArN1uHajSv+TX2jsfvgC8/kj4Iokaa6ONbdIbj9qfr7LCuj0huVW+NxuYG35MglkbjJbv0x9wYGV7CVDlUzA1OUpSZzOTF0EA5NeNfCmhdqJwo3W72wN0DrwmS/f+1mPWtr5gtFcW2Q8cy0xswkJCOONgA29e3DSHRizxDIAf+hBKx77VpuiC0fYGt/k1uyOOOj9C55T693WSPOHH2BHvEbx0noFd9xrYcY+BVy90ICkusDE8e6yB1bcaKL7fwKpbHejZyXqOshBZ7URERERERERERERERK1FojYYLcTxlxpbQ50cz2A0IiIiIiKisLwhgtHK/RYH4LUAXTCaR+KQ4miBK80TtSMMRiMiIiIiIqIAbTCaL/D/1j+ar5Zdhc23Lmq1JC4eMMJ8dJFmI+mpgxDd78oMhBsqXxXUlcdpFhaIQ38id9BwbwLkuV+B2ZfXNu63P3DIdMjVD0NuexUiAomLh4yfCkw/L3gSjxcy5RxIRg4kr7ftdYesa8gYyEOfAydcCBxwGDBrbkzmxZnXQfL7xGauFtQ1Q5AQ5qT4gRVLa24naYLRio06SVkOF5DRGdA9fmwEo+3SfA+RVaYJjLDiTQQmnADxxPZKL/LXfwF5ocPN5KoHIbe9Chx1OnDQkcAZ10Ke+Skm4WytQfhgNOt2cbog8z+GnHtTIFxr/0Nr/0UiNRNy47OQP/01suUQ2C5KfCLk5MvDD7bgVeXI8O9EgtqLEDFbtY45C3Lh/+n7G7EvpSrKoSrKoLZvgdq8FuaD1wBV1leTjYY8uRAy905g3JTA32jcFMgld0FufQUitn56rX45jVs+Ugd0B3pmhlhnSSCNMctvHYxW6Nc/6Dfssm7vXrW+3n31wQshayQKRSkF5fdDVVUGnvdlpVCle6CKd0Ht3gG1qxBq+xZg9eLwc331tv0V67Yprhgl6sTYwC7hty2JnbNrbudVRbBfAaDKD6wshDYYzaiz+gS3/XlfXmg/QIrasSLr1yBk5NS+r+sxwHpMwR9Qm9c0TV1R+na1/cd1lvU5JM3i2CGCH64zMLpn/fZD+wIT+wX+Degc+bxLPf3hD3HYRXV4WWq89XZrt1UwmuZX6qzztsthiK1gxsQYXwzT6xYkxgX/LE6HIMEj+8ZYL1vOYDQiIiIiIiIiIiIiImoDEh3Wx46U+vdEPJfu5PgUZzrijKa5CCwREREREVF7EucIEYxmto5gtK2V1scpZ3vyGn0+BlFH52zpAoiIiIiIiKiVCBGqpPx+YOPK5qtlb+RXVaP2SS65G+qeS/UDUrOar5jWThtuGAhGw6JP9cs6Iv+ISOITAwFAoUKAqsdecg9UaTHwwfOBhoRkyKX3QnJ7hl4wCtJnKOTSe2rum288BlSURT/hlHMgZ/0lBpW1Dl9cZWDEzaa2f0DFsprbiZpgtBKjTuCX0wFxOKA6dQEKLEKfCm0Eo5Van/Wf7tckEDXk9kBufrFJgsjE6QSe/SUQKmj1HHK6gEOmQVIyIGOOifn6W4NOSQLA+m+UkQDkpOi/pJG4eOD0P2tDxVRxEdT1J+m3T937w3j258gKtnLYLGDJd8ArDzR+rhDksBmQAyZBvf88sPq3oH71/nOQI0+OaE5VvAvq3strt59NoecgSHwiMHMOZOacmE/fvzMgAqhmygI68YBwXxwG+jN91qE024x0+HduhyO9U732Kp/Clt3WMwYFLq36FUqpNvslplIqsP+gzEDAqtVtvz9wv+5t06zzf/Vtf/jbNfOb9tcVtN7adSvb6zVD/4wxq9HU/J40t2P5ZPnhI/tjtcFoEaR+NaOBueHHZGQmQi65C2r+1ciPMBgNAH7eoLR/jrrBaPER/or2VijEe9rm9oFiZJcmGK3u+9s+Q/XLf/YacPIVsa2pEbZF8BFOZmLT1WHHiG6Cr/8cOhT834sUzv5nJYqr7L1PXu3qiRJD/4NVB6OlaI7NKioL3tD4NW/ZHA02HT0ygPU7QteX1AL5lnEu6/ay2OX6EhERERERERERERERNZkEh/XVfkqiCUarsA5Gy3F3iXguIiIiIiKijsgtHggEyuK8lrJWEoymC8Xmez+igfUG1wAAIABJREFUxmMwGhEREREREQXogpFMP7BlLVBZYdktVz0I9B8JdO8PNbUrUGwzyCYEmfKnRs9B7cSxZwMhgtEkI6cZi2nldMFoyoRavxzqqin6ZZ2as5ZjRBwOyPVPQp1+NbB7B9CtHyQlo0nXWWP25cBTt0S+XL8RkL8+C+nSK/Y1taDhXQXHDwde/cm6f6CNYLRio84VMatfO7LyLIPR1IL5wJRzIQ59+MDOnWUAgq9+meov0i6DscdCpp4LeLxAv5FNEopWTZwuyL3vwbx+NvDZq/U7T7u6+R7LLSTL+gKoAICMRgZbSFIqcPd/gPeeg/q/c+t3pmZC/vl941ZQvR6RQNDmzIuBpT8ApXuAynKgx0Coh64Fftc8ISLVd3jg/279LIPR8MPHUCW7IYkptqdU913R6FA0ueddwB0H9BsBdeMpwFdv1e+fFfswtLoSPIIeGcCa7U26mhrnjw8TNlQS2LZk+q0L8okLRSt+R8bo+sFom3fr86ryfcGBS+rJm4EeA4E/VkCVFEUfzBUUvKXChJJZ3TbtBXJV326uFDtqXaqs3+819X5itAbl6oM7q3VNF8iMi4EJM9Dtk3XAh5Gt461fAFOzirq5h1sjPPb97d8UZo1kMFpHpnYVWnekZdbclMwuUP1GAMsXBS//0cuQVhSMVqzZfDTkdQEJLRDSZYcyTeDrt6FW/Ijpe0tw6OJn8YN3BPYYgZNeulX9gQSzFEN6/Ri8rBhY6umvnbs6SDE1+C0PAGC3RY63z2891tHgmgb9cwWf/R56W5gU1/zbG68uGK2qeesgIiIiIiIiIiIiIiKKRqLTOhit1F8MU5kwRHMhagsFVdYnx2fx5HgiIiIiIiJbDDEQZ3gtQ9DKW3kwWrY7r5krIWp/GIxGREREREREAbrQGr8fWL9Cv9zhJ9UE0qjJpwAL5je+llFHNH4OahfE7QEe/Rrqf8ZYDzjoyOYtqDUzNAfbLPkO6syRrSLkRLr1a/51jj4KyioY7ZgzgXee0i933s3tLhSt2v+MN/DqT2ZQe5IqwcSDsyF9b4eaP08bjFZhxKEKTrjgqw1GS8+2XtmGlVCXTgbufAviiQvqVt+9j50rsgHP4KC+dP9Oyyll3kPAMWdCdI/5JiI3PA0MHg31n2cC9489E5h2XrPW0BKyrI/zAwCkxyCPTgwDOPp0oHP3QJBU0TZgwIGQc66HuNyNX0HddeX2BHJ71m+c/zHU0dmAr5EpDRmda0LypHs/fVTPe88CMy62NaXavBZ4/1+NKkv+vRqSVefLtJv+BfXYDcC37wEpGZDjzoFMPqVR67BjUJfmCUb74FID8R59+IeqqgQKAyFmWT5NKA2ArSvXI2P0wfXa/rDeJAEA8quCg9Hw5M1hIpuIWhlfpXW7u3WmGA3JA5LigOJy/Zi8tMD/kpGDcdOygQ+D939CeetXhQGdrfuMOpuaLbsjmhbvLQZmjYxsGWpnirZZt6dl1b9/4JGWwWhY+TPUt+9CRh8V+9qisMci2MtKZlIgsLa1UaYJde0M4Ot3atrSABxR+nG9cX4YiDPLUG4EJ5z9FjdIO391mFlqvHV/kcVxWX7NTkTDYDTdNqquxBbYjDMYjYiIiIiIiIiIiIiI2rJEh/UBUyZMlJt7Ee+wfzXJggqLY0oA5PDkeCIiIiIiItvijHhNMJrNAxibkF/5sK1yq2VfNkOxiRqtec8eJCIiIiIiotbL0ASjmX5gZ4F1X2aXmlA0AJCz/gL0HNi4Ok6+AuilP6GUOh7pPxJy8e3B7efeBOncvfkLaq1ChUSFC/wpb/krZMi5f7PumH154ybuPxI44cL6bUPGQObcAfQeYr1MaiYwbHzj1tuKHTFQcM7Y+oEETgO476wkpFz/QE3IWaqpT/nY7uwUuOHYd8Z7WqZ+hT9/Abz7TL0mVVYK8+65UFdOwU4j1XKxdP+uoDZ5bxvkuLObPRQNAMTlhsyaC+OphTCeWgiZcTHEqTnjvx3JTtL3pWnCHaIhw8fD+McHMJ75CcafH4ZkNs8XQOJNgHy4CxgxIbjTmwi5+x1g4szwE+03vPZ232HaYerTV23VpYqLoE5sRJhkXm/Ia2vrh6IhEDhqXPR3GM/9AuOBT5olFA0ABuRGH4KyfNUgHFnyQdhx1x0jmDQgzHpeuKfmZra/EKKsQ5JWrC4ObttqnVCS4i9CirknbH1ELcW88VSoBfdDLfkOqrJCP1DX54xtSGWsuJ2CqUNDP+dz6+xixLkE8yZHti3aWwksXG/d15hsp182MDaxw9ulCUZLrb9PLSE+G1F3XATVCsKvK6oUKnz2xmaF2K9sSWr+VfVC0XQcMNGncpVl3yanft81qmA0TY6js8HboMFdwm+MkoLzqZucV/PSUabJ4CQiIiIiIiIiIiIiImpNEh36L7ZK/PaPESnz78Vui2PgAJ4cT0REREREFIk4w/oAvDJ/aTNXEmxb5VaY8Fv25fC9H1GjOVu6ACIiIiIiImolQgWjFW237kvLqndXktKAR78BvnwDat3yQBhH0Xaox26wXFz+/EggbOT7D4FNq4GhY4EBoyCNOcuc2iU58RJg/0OBRZ8Apgnsfyik34iWLqt10T2H24pDpwNP3QxU1TlT2uGATJzRqGlFBLjkbmDiDGDxf4G83sDooyAuN/DYN1ATgq/eKKdfDXG274/NHj1NMHuU4NvVCgke4PABgoHVwUUSONs+21eoXb7AkYXOvq2AY9/vqcHrQUPqrjko3+8g/OIcgErlwMF3Toax7HsAwC6bwWhyyd2QBOurcVLTyU8XANahG0Y7ebkWpwu46x3gm3egVv4C+KognToDBx8NyekGeOKhPlkQeo4p59TeOfBI/cCl30P5qkKG6imloK45IdIfI+CIkyEHTALGT4XE2786bVMbmBvdcglmCXpXrcHrG2bgxZRZOCv38aAx+2UDT55l4KCeoR+QSimofz9Qcz9OVaBX1RqscvcOGrtkTQmmK1Vvn3TpFut5+1WssPnTELWQTxbUbsNcbqjeQ4EBB0AGjAIGjgJyewYe67ogXben+WqN0NVHCZ77Th8M1T2j/nbh/6YL3vxZYXmDi7J1rtqCCnFjpzPD9rrrvgaeOFLw0kL7AVVLtwA+v4LT0U5eSClyhRssmyW1U/2GHgP0c2zbBKxbDvToH8PCIldcbn9sZisLRlO7dwAfvgAsmG97mWxfAX7D4KD2Lc4c7TLVT/VUr/V+9c4IgtEcDYLRDuwBpHiB3SEuetkiwWgu65+1LExmOxERERERERERERERUWuQ4NAfo1bi34Ms2DsQpqByk7aPwWhERERERET2eTXBaOVmiIPnmonuvZ/AQKarczNXQ9T+tO8zPImIiIiIiMg+hz4YTRVts+5reNIuAPHEAZNORPUp3mrreuCfNwH+Bsn3Q8dBjjkzcPuQaVGVTB2L9BkK9Bna0mW0XrrncBshXfsCt78OdddcYOMqoEtPyIW3xSQAT0SAIWMC/+q2O13Av36DunsusOhTIC4eOPES4ISLGr3O1k5EMLEfMLGfRSCHETjbvpN/OwzlhynBj60CZxZQAWBfgJykZWqiswKWuPvjpNsMLPMIABP9Kh7G664Z6Fq1ASWaK2ymmg2ulskwxBaRn6bvK6lovjqamjgcwLgpkHFTgvuGHAzc+AzUP64EdjUIDEzLgpx9PWTMsbXjnS7gb89D3XBy8Ip8VYFtXHd9iIl6+Drgl68i/xnu+Q9k5GERL9ccBuXqA/ZCeX/9MQAAF3w4bffz6F25Cud2fhjLPf2Q49uKm7t9ibNvPMneZGuWADsL6jUNqFhmHYxWmQus/g3oPaSmbdmq3QCCD3ztX8lgNGpDqiqBZT8Ay36A+veDgbaUTlD9RwKlmqtaO93NV1+EBuYK/n2BgRMeCk4QSvAAB/eq3yYi+OxKA5e+pPDiDwoO5cM5RU/h9oJrMDfnbjyTeprtdSfU+bVM7A+8tNB+3RU+YPFmYFi+/WWo/VBlpcDmtdaduT3q38/vC2R0BnZo0jkLN7R4MNqeCILRundqPWGA6ss3oW4+G9hbHNFymX7rCwdsdWZrl6kOM8vQZNaWVgB7KxTiPbW/H5/NYDSPSzB1mOCZb/X7WS0SjKZ56SivtG4nIiIiIiIiIiIiIiJqTTwSB6e44FPBV30p8Wu+W7egOzneJW6kOYOPvyYiIiIiIiJrcQ7rYLQy0+LKpM1M996vkysLLqP1HodN1FYwGI2IiIiIiIgCDE2okt8PFFmf+InUzLDTSk43qOMvABbMr210uSGX3xdFkUSkpXsOtyEy8jDIC0ug9hZD4q3DsmK+zq59gXveDWzrRALhSB2dBM62d8BEpn87CixO8q9uE0fg48U/XN1wZ/Zd2OLMwaTST3DG7mfhUbVnvc/JuQfLPLWhDcs9/dCv92IMLF+iLaOTb0ftHcMAeg5s1I9F0clN1feVtqNgtHBk0omQSSdCVVYALncg4Gz3DiAjJxC+2NCYYwOBlQ2DYQFg7VJtMJrasxN4/q7I62vFoWgAsF9O5MvEmWUYUf5TvbbRZd9j8Zr9scdIQpJZDMmYDMBmMNrKX4Ka+lcsx5tJxwW1b3LlBsbXCUZb/8ceWAWj7VfBYLSoGEZg36Xm/3C3Q4x3OAKvXfVuG9btjn3LWt42bNcjoWqzrMeqBqm9XW9+Oz+nUX+uz16FeuDP0f0tdm8H/vuevt/Vur+Qnz5c8OU8A+Nur58i9OfJgmRv8PY5K1nw/LmCp89SwI9fw3HFXADA4IrFEa03sU7Q0EzHlzgPYyNafv//NXF4/8Cfst4/ARyGBLcHjQn8c4bptxxTr1+Cx0jwnKHnsBhj0W8IrF8zO5r1ywGlCbFqsL8rDgdw/i1Qt5xtPb5wY4yLi1xxBMFog3Kbrg47VMluqBfuBp65LfKFDz0exv++gKxnSgGL/NpQwWjGvod9Voi3uNtKgG6e2vt+TTCa8f6zUD3GQXJ71rTNGBE6GC0jQb/ephLnsm4vr4o8KJeIiIiIiIiIiIiIiKi5iQgSHckoqnv82j6lfvsX3tGdHJ/tzoUhhmUfERERERERBYszvJbt5a0gGG1rpfWxnFnuLs1cCVH7xGA0IiIiIiIiCtCFKplm4GR5K6n2rlgmc+4EBh4E9fMXgDsOMuMiSOfu0dVJRNba0YEyzRWKVrM+EcDJj8lqGLWPpWxfgXUwmiMrcMPhwrItCqPfm4g96UcAAF5Nno4PEiZhwabZEABrXd3wRcJ4y1UtibMOO3MoH3pXra5tGD+t2R8XFOB06ANMhnfteOEm4t6XWOFyA506hxyn8noD64NDs9SPn0EmnBDcrhTUMfo5tev6x4eQ4dbPsdYiziXYLxtYUWB/mZP2LIALPsu+ZHPfQaYRBMKotcFBjLm+LZZjtzkyodb8B1AKa7cDqVsXY4OvK2DxUtut6g/bNQAADpnWBoK57NyWCNdVf70MR4otNf0CINpgtHBaeTAaAIzpLVhyk4GHPg8E7hwxQHDskNCPMZdTgFEToe59D+rSyRhYsTSidSbVCTBK/uJ53Lf1VVySc3dEc3y4TNfTnMFBzRtSFCo4zSGA09G4foexb4xFwJxhOSbcHHZD6cReaJ0BGL9ug+EZDI+qQO/K1XBiX4iqxwt07hH0O5PJp2iD0dTtF0CO04SmNYJSCjtKgPQEwDBCP5f2RBKM1qXltv2qohzqf8YAG1baX+jAI4CEZMj+hwLHBn7PWZleWD1vCkMEozn27T+EDEYrBrpl1N7XBaM5Fn0MdfolwD+/D4R8Azi8P5DiBXaXBY8f3AVIiW/+37suGK2sqnnrICIiIiIiIiIiIiIiilaiI8kyGK3Ev8f2HLpgNJ4cT0REREREFBmvEW/ZXtYKgtF07/1y+N6PKCZ4xicREREREREF6ILR/D6gyDoYTVJsBqOJAIfNhBw2M9rqiCgch+Y5bMehx8euDmr76oTVZPkKLYcUOKuD0Ry4432FPZX1P2Z8PXkq3is6AkeVfoBfPUMiLqFv5Up4VGXgTr8RkEvuingOip3jhwOv/hTcfupBDDYKqc8wy2A0fPEG1OX/CA6GWvhxZPNn5UOue7zVh6JVG9NHsKIgOEhk1kjBvCMFUx8wsalo39i9X+O2wuvCT2ozGE35qoDng7cjmb5t1tM6M/HmCi/Ov9JEYTEADLAMRQOALvmpkAs+gpozKWwdcs6NkDOvtVUzUUTcnvBjotUGgtEAoH9nwT9Oivx1SUZMAO58EyPnnRHRcklxddb1zlMY6xkc8bo7Ir+pD3yKvdYaMHc40PNwAECqfxeu3f53XL7zH0B2PkT3nm78VOCLN6zXXLABkp0fYb3WlFJ4/CuFy19WKK0A+ncG7j3RwOED9M+tIpvHFCV6gGGxKTMqkYaiyVOLIL0GBbWHCjfTMZZ8C4w4GKnxgcA8n8VzoLC4/n3d88SpfEBFGdTD10FuXQAA8LgE04cLnvom+HF40qiW2V/3MhiNiIiIiIiIiIiIiIjauARHsmV7ZMFo1se15LjzoqqJiIiIiIioo4rTBKOVmxZXFG1GSils1bz3y+Z7P6KY0JzKQ0RERERERB2O7gRc0w/s2Grdl2ovGI2ImoEu3NAGmfY/MSyE2rw6YU3ZfutgtG3OzMANhxMv/mAdBHFc19cxoOfPuKjzfRGXMLBiKZDXC/LMT5BHvoJ0yo14DoqdORMNOBt8kjyyG3Bwr5app62QcVOsO3YWWAZ6qQ9eCD1hfh/IR7shLy6FPPxl4P/9D218oc1k7kRBXIOQjF6ZwPzZgv27CdbcauDbSZ9i8eph+Gz94ejkD77qbpCSIqi9JeHHvfWEZXOm3zoYrciRhuPL/xIUUmIl/+q/QYaNC/xt5n8MuTzENm/YuPATEkVBRICktKaZPCGlaeZtReTAI5Hx7iocVfKe7WUS92XRKTOQXtSvcgUcytcU5VE7VuRIw7zs2/BK0nQgPkTiVojgM/WPK2JWz4dLgfOeDYSiAcCyLcCR95rYsFMf/PbpCnuhcBdNkPqBgs1AlZVCvfYwzCn5wJrFtpeTc/9mGYoGAFlJkf8MxoLAvoGIIMv6/BkUFtf/PVqFpwGAA/7AjS/fhCreVdP+1+MECQ0yMrtnAHMmtFAwmiZTs6yyeesgIiIiIiIiIiIiIiKKVmIjg9FM5Udh1RbLvmw3j4UjIiIiIiKKhFcXjOa3eXXXJlLi340ys9SyL8fdpZmrIWqfGIxGREREREREAQ6ndXtlBbDD+st5ZPEDGqJWI8pgNLnt35ARE2JcDLVpRu1Hhhn+nZZDdhmB8JVFe3NQXqWf6ndPX2x15kRcwgl7XoMcdw6kxwCIwY8wW9oh+wnev9TAsUOAgbmBYIsPLzPgMFomaKHNOGCSvm/dsnp3VUU58N5zIaeTf3wA8cRBuvSCDBwFcWkSJ1qpIXmCL64ycNwQoH9n4Kwxgq+uNtBpX8CIyykY1Xkv+lX+jogeWTaCTtRzd1q2Z/msg9HsEmWiS9eMwG1PHGToWMj084ExxwQPTukEDDywUesjCumwmdoueW0t5MmFkKseBI45E+gxoF4QaigydGyMCmzdJD4Rrx+7yvb4pLh9Nwr+AAB4VCUOKvuuCSqjjuCl5JmAN1HbL2OO1S/8xRswH78pJnU8+bV1yFm3P5vwm8F9pqnwyiJ9MNqBPYCxvYH7Zwtund7MoWjbN0OdPAjq7kuAXdZhz0GS0yFX3A+cNk87pEtq5LU4vn6z5naWJv+usMH5M35tMFqdji/fqrnZNUPw9dUGpg0D9u8KnDFa8OmVBhKbOYyumtdl3V4W4r0jERERERERERERERFRa6ILRiv127jKHoCdVdvgU9ZfjmS786Kui4iIiIiIqCOKM7yW7WVmywajba3cpO3jez+i2NCc9U5EREREREQdji5UqaRIv0xWftPUQkSRiyY8atKJoU+yp45Jah9Laf5dlkN2OgLBaDN/mdwkJUwrfhOIZ2BfazKhn2BCv+gCGDsqSUqF6pQLbN8c3Ll2KdTg0VDz5wFv/TP8XHe9DenU9q8WO7K74I2LQzyO3HH6Pg31+euQQQdZ9/l8UE/cBBRusOzP8jcuGC0nvhIuZ3Dyh5x3C9TKX2vX63JD5j3Y5sLsqG2RU+dB/fd9YOv6+u2X3BXYfnTKBXoPhkw5BwCgSvcAyxcBS76HWvY9sPQHYGdB/UkPmgwcdXpz/QgtznnYdFz46sN4MP38sGNrgtGKa98vP7zlYgzu9VMTVUft2Tp3dyBeH4yG4YeEnuDpW6EGHQg5qP6++derFK551cRXdTL/8tKAw/oJfCbwyXKFHfsuVNglFVi7Xb8K1/kmemcBE/YT3DFDkOwV/HctsNH67QKePFNwxsEtE3CsNq6Cmj0womXk/Fsgp1wZdlx+euT1GDChlIKIIFPzZy5scP6MNhhN+Wtuq08WQI6u3UYPyRO8emHr2F/3anZ5yiqbtw4iIiIiIiIiIiIiIqJoJTisr3hT4ttj2d5QQYiT47Pcbf8YICIiIiIioubkdSRYtpe3cDBaQeVGy/Z4I1EbuE1EkWEwGhEREREREQVEE6qUxeR6olZDF26o4/ZAzrimaWqhts0IH4y2y5GGHY50bCy3/nKhMdau7AMXfIBF2BBRm9Ojv2Uwmlq3DDihd+gA2mp5vYCRhzVBca1QFMFoWPyttks9+b/Ac7dr+9P9O2EIYKrIVwsA+Z2sv2KRHv2BJ78Hfvg48Dc+YBIkt0d0KyGySbLzgad/BH74COqNRyHDDgHGHgvpaR0OJAnJwIgJwIgJEABKqUCo2tIfgN3bgS69gFGHQ0Sa9wdpQZLdFbM6LcWDmkCiuhI9+26U1x5Q0b9yBe7dejkuzbm73tg+FSvx3bqxeDfxSKx094YfDphjpsCnBH7Lf0bNbcsxqO33mwI/IlzexhgTLRNo1VHtFS/g1QejiWEAz/wMdfow7Rh11VTgoyKIJ3BVxFWFCoffY6K8wUXoN+4Cnv42+IUvVChatVWFgXlXFih8cqUDLy+0fgF1O4Gpw5pm26F8VcCiT4GkNKDXoJqft6a/rDTyULSLb4eceImtsZ0SgTgXgn6v2rmVCQGA0j1AYgqykgVA8O9tm+1gNF/tnYWfQO3eAUnJsFdMM/Jq3sqV+6zbiYiIKHoi0gPAMAC5ABIBbAGwHsA3Simbey1ERERERERERNSQNhjNby8YbasmGC3VmYE4w2vZR0RERERERNZ076NaOhhN994v292lQx2DTdSUGIxGREREREREAY4IQ5XikyCJKU1TCxFFLpJgtG79IOffDOnev8nKoTZMaoMw0jXBaDsdafgoYSL8KnahGQMqlmL+lkuQ79NfLZOozenePxCO1dA7T9meQu59LxCI0hFEE4y2dimUUkFfHKrSPcCL94Zc1HHIVAxyA79aX6gprC6aYDQAkOR04LCZ0U1MFCWJTwQOmQY5ZFrky4oAnbsH/nVgY44YjJ5vrsEad8+Q45KqN1cV9Q+ouGjXw6gQD+7JuAS7jWSMLvsvntp8LpLNYpy455XagW/cEuPKY0sBMGHADwd84oRfHPDDEfw/jLD9ftk3R4N+s+a+Ydnvt91fO8aMYZ1166tus65D32+Kvfdoe414IF4fjAYEQjdVn6HAyl/0f7eTBkBeWwsAOPXx4FC0WPnsd+CHdQqvLLIORjtyAJAaH/sDetTKX6Cung5s2/d+oecg4PbXINlda8dM7apZ2oLbA7liPuTo020vIiLISwuExNnhgD9wY1chkJiCTOvzZ1BYXP936dMFo1XPBwB+H/DFG8BxZ9srphnpgtHKKpu3DiIiovZMRGYAuBzAaM2QnSLyEoAblFI2YnCJiIiIiIiIiKiuREeyZXupv9iyvaGCECfHExERERERUWTijHjL9nKzDKYyYUjLnG+he++X485r5kqI2i8GoxEREREREVFAJKFKAJCR0zR1EFF0bIYbykV/B2bN7TghOxS5Oo+NNE0w2i5HGn72DIl6FQ9smYsTil9DwqRpKP7oTcSpciSb9g4aI2pLpPsAWEeG2Fz+7nfqhX20e54ogtFK9wCFG4Hs/PrtX70NVJaHXFTOvA7Tlgp+3RjdXykvjVdxImpvjOPOxj2PzcTxeS/DL/qvUePd+26U1w9GEwBX7LwPl+ycDwf8aKtbCQEQiAYz4VZVaNSLWQdWN2DOLw68knw8zsp9PGhcmcQB8ZrErDpkzh1Qc4/QD9i+GSs+X4SpHw3D7wWNKNyGA2/VJHcBmDmyCULR1i+HOntU/cY1i6HuuRS49RXgg+ehbjnH9nxy6wLIuClR1dItPYJgNLUvyKxoO5DfB1m6YLQ99e/7dcFoyl/vvvpkAaQVBqPFuQRWG46yJgrrIyIi6khEJBHAYwBOCjM0HcAFAI4XkTOUUu83eXFERERERERERO2ILhhtr1kCU/lhhLlIUkGl9VX6eHI8ERERERFR5LyaYDQFhUpVgTjxNnNFAbr3fgzFJoodngFLREREREREAZEGo9k4aZeImpHdq1vsfyhD0Sg0qQ0ySNcEo/nEhe+8oyz7wplS/Bb+p+hxZN72T8Sf/xdk+bdZh6KlZEQ1P1Gr0r1/9MumZgLDD41ZKW2C2xPdcmuX1NxUe3ZCFRdBfbIg9DKnzoP0Hoz9u0Yf3pKfHvWiRNRKicuNY++/Gd+sOyTkOMPYt+2oKLPsd7bhUDSKneqAOTeq4FXlSPUXWY7ba8QD3sTw8w0/BPLQ55Z9CsA33gPR/19NH4oWiscJTBka20e/WvET1KlDrTt/+Ajq9gsiC0X7v1eiDkUDgH6d7f98DgSCzNTrjwKAPhitztshpRRMTRhh9Xw1fvwMatc22/U0F6/bur2ssnnrICIiam9ExAHgJQSHom0D8AGABQB+RP2E0mwAb4jI2GYpkoiIiIiIiIiondAFoyko7PWXhl2+oHKzZXuWO7cKlCbWAAAgAElEQVRRdREREREREXVEcZpgNAAo9+/V9jWlKrMSO6qsr7LKYDSi2OFZsERERERERBTg0py1qBOX0DR1EFF07ISdORxAt35NXwu1bXVC9tJM62A0APgy3vpcumuOEhza13qZY4vfwbPbzofxzhbIQZOBjM5A5+7BAz1e4IBJkVRN1Dr1GhTY9kZj4gkQpzO29bR27rjolluzBMpXBfOOC6GmdYM6Ohv45j/68cedDTnnBgCNCzc7sAdjj4jaI+k9GCMOyMeU4rcs+w/1/1B7RxOMRmQl3rQ++GavkQB49Aft1CWDDoJcdm+9ti+8Y5DXZy3Gd/+00TU21uSBQLI3Nq+Pyu+H+Y8roP50kH5QZQXwzlO255RbF0DGHteougZFcK6KQ+0LMvvgeQBAZpL176awOBCIBgBrt+vncypf/QbTBL5+235BzcTrsm73mYDPr0l9IyIiIjtuA3B0nftVAOYAyFNKHamUmqWUGgFgEIBv64zzAHhdRDo3X6lERERERERERG1bgkN/8egS/56Qy5b5S7FHc0HSHHdeo+oiIiIiIiLqiOIc+mMsyzTHZja1wqrNULA+Hi7Hw/d+RLHCYDQiIiIiIiIKcEYYjOa1d9IuETUTO8E7XXpBPFGGzlDHUSdkL8O/UztMifVHiwf1FHxypQPLT/0Zr285CW9sOB7/+eM4rFvZB6/v/h8kvr8JkhxIIhIRyImXBE8y9VxIHF9nqO2ThGRg2Pjolj3j2hhX0wZEGYym1i4FnrsDePMJoKoy5Fi55WUY8x6COAOJHflpUa0SADC2d/TLElHrJv/7Ii7e+SBcqv42xVB+zNl8J9SaJYGG8hAHUww8sAkrpLYoXukfL2W7Q588UZccfwGQFHgB+yx+HCZ2/xAFzuxG1xcLM0fWBn8ppaC+fhvmw9dBvfM0VMnuQHtFOdTbT8Kc3gPmCb2g3n0Walch1GuPBMZ+/2EgJOzfDwAL5semsKx8yAc7IeOmNHqqQV3sB78ZMGtuq7JSZCdbj6vyA5uKANNUOPUJ03oQAAf8QW3qgxds19NcvCE+Yiyrar46iIiI2hMR6Qmg4QepM5VS85Wq/8ZFKbUUwGGoH46WAeDGpq2SiIiIiIiIiKj9SHRovthB+GC0gspN2r5sd5eoayIiIiIiIuqovIb+/KLyFgpGK6jcbNluwIFOrtZxTCdRe+Bs6QKIiIiIiIiolXB7Ihsfl9A0dRBRdAwbwWhDxzZ9HdT21Qk8S/fvRJxZhnLDa3vxQfuO3eo7fgT6pF4GteB+YPNaYPgMyNnXQxqE+MkJFwIJKVAfPA9UlgfCCmbNjcmPQtQayIQToBZ9Gtky970PSe+AX4ZFGYyGRZ9CffGGvbGjj6p3NyMRiHMqlPvsh5wAwN/2+xEiB0S0DBG1HeJw4LBH7sN/zpuCB9IuwG9xgzCgYhnO3fUEji59H/j5MKDnQH0wWr8RkAc+Bd57FurFe4F1ywLtWfmAg9et6qjiK/VpUeUJmYjkUxZ5dQ1eOv5PODnv2UbX5YAfu+934Y1fFF7+QWHxZmC/bOA/iyObJzMJmDI08HqqlIL6+/nAO08F7gPAK/OBWxdA3XAysHxRzXLq1j/Vm0f9605g5sXAx6804qeq48zrIKdcGbPg5VHdgc4pwJbd4cc6VJ0gs22b0Cerj3bsks3Amm3Af9eEms8iNO2nz6G+fgcy5pjwBTWTeDeQ4AG8LiDOFfjf6w7879fnvhEREVFoNwJw1bn/lFJK+2GIUqpMRM4E8BuA6h3Rc0TkdqVUiD0OIiIiIiIiIiICALfhgVs8qFQVQX3hgtG2aoLR3OJBqjMjJvURERERERF1JG7xQGBAIfgAtLIWC0bbaNme6e4MhzDKiShW+GwiIiIiIiKiABeD0YjaNCN8wIKMm9IMhVCbV+exJAC6Vm3A756+thaNdwPd0mvvy5CDIUMODrucTD4FMvmUSCslahvGTwXunguYNlMgUjKAoeOatqbWKlww2tjjgK/eCm7fpr/Sbj1JaRBX/VAaEcGQPMH36+xNUe2Q3v7wg4ioTZPu/TEhvwQTVswO6lP3XAoMGg1VUWa9sCc+EAZ7zJmQY85s0jqp7UgoUMD11vsDewcegkhOgSgTL+Z2ewiw8XL09h9TMbn0Q7yYPBOndnk6qH9Y2S/wbk7A7FEDMHtUbfuqQoVJd5v4Y6e9mh49zUBi3L6g0WULa0LRaif8FeriSUDhhvCTLZhvb6XhTD8Pxjk3xGaufVxOwXXHCC5+XoUd66j7B9q+GalJqcg1BJvN9KCxR90Xfl/RofmDq4euAQ4+GiKRBb02lYG5guL7bYS3ExERkS0i4gUwo0Hz38Mtp5T6XUReBzBrX5MTwMkAbo5thURERERERERE7VOiIxk7fduC2kv9xSGXK9AEo2W5c2EIL6RFREREREQUKRFBnOFFmVka1FfeQsFoWyus3/tlu3ObuRKi9o2fpBAREREREVGAyxV+TF3e+Kapg4iiY9g46bgTP1wlGxocfJVfZSO4YJ+BuYBhtI6T8YlaC0nLAgaPsb/AUacHwnQ6ogahZQ3JFffbCgLVSu1k2XzKQZFtt4aU/4oxg5Ojr4OI2o4E/XP9/9m78zg587pO4J9fVd9HJgmZZDKTORjmDoxz4XA43AgoDKcjwq4ggopcHii4glyKuoKK4LGisCgil4DHgqICLgvIrhwLyLVyDMcMMzBXkk53ju5n/8gwSbqfqq6qrj7S/X6/Xnml6/f7Pd/fdyaVTlX183ye6lkPSq79Qv3kyOgyNcSJbKzNP3P7d+3uqtbffbrKd2YnFl33rJt/Pw+d+sckyWP3vDOXznyydk0+uDB49JztJZ9/WSM/cNfF+/nqrzfyyEuO/ntaveuP6xd2EorWR+UJP78sdZ9+35KBDl6SNI+9O+WN30j1kh/N7j0f63nfZtUiCe/aLyTfurbnugDAmveQJMf+UO4jVVV9vsNjXz/v8WP60xIAAADA+jfenKwd3ze7p+1xNxz8Ru34KUO7ltwTAADARjXaqL+WdXp2dYLRvPeDlSEYDQAAgCMGh7tbPzK+PH0AvekkGK1NsAPcYV7o0BmH6z+sr7P7VKFoUKe84m86W/j4n0n5qV9b3mbWsFJKcul96+fe8PGUbTuTi67sfYMt22uHn3n/1t+7mtXhXLn/o2lUsxmZm84P7n133vO1q1N2+IElbAjtgir3703e97b6uRFB4izULhht+lDnr6OnDlR5/B9XHa39rRuef8fXgzmcN3/jiXn0nndlaO5ATjv0zfzh9c/ME/f8ZarX/krt8SODJX/7rPanFNz6qkbOuNO8/t/zZx31t5zKq/4h5ZQzl6d2Kbn3OYuvOzbIrPr7NyYfe3/ucugrPe87kMOtJ2+7qee6AMCa99B5jz/QxbEfTI57EXFpKWXHkjsCAAAA2AAmmvXnWy4ejHZd7fj2ITe2BQAA6NVIi2C0mbnpFe4kqaoqNxz8Zu3cjqHTVrgbWN8EowEAAHDEYJsrdGuUUcFosKYIRqNvjg812HWom2C0fvcC60MZGUt55d+1X/PSN6XxjN9MaRfCswGUp70kmfc6szzjN1PO3n3kwV129158y8n1e5aSr1z8O9lx+Ibjxkfn9uefrn1oPnTt/bPnC9tyyxd25K+/8bjsGJlJ8W8qbAydvMauMywYjYXaBqMdXPz42/ZXee7b5jL5rLmO9vvsly7OQGaPG7vLoa/kbd98Qqa+sCXX/se5edqtr7vj1X/1gXfW1iml5FuvaGTXluPHBxrJe57TyKbRtROOXH75T9P44IE0Pngg5bL7LeteF3UQCt089v//x96fpLv3VwvqVbOtJ/fe0nNdAGDNu+u8xx/p9MCqqqaSfHre8BI+XAEAAADYOFoFo021CUabq2bz7UP1wWinDLkJHwAAQK9Gm62C0favcCfJbYdvzoFqpnbOez/or4HVbgAAAIA1YnC4u/UjLvSGNaXRQf69EBc6Me+5tOPwjR0furuDcADYqMr3PjhVuwVnXrBSraxp5W73TF774VT//LZkel/Kld+fcsUDj87feXf7/4/tbN7WcuqMC07PJ97+vXnt5qfkC8Pn5cxDX8sTb/vLXHDwi0mSkerA0cXb/bASNoxmjz9KHR7pbx+sC8MDSSlJVfMP2f5FgtEOHa5yn9+ay6frbzC4wGuv+6mcd/A/Ws7XvWqvXvj45BV/m2w/PTnz/JRj3hds31TyyV9p5I//Z5V/vy7ZtSV5wveW3G3XGnv9f99Hr9hWF+1cfE2jWhhid/pSgtHSLhjt1gVD1W03Jd+5Ptm/N9l5Zsq2pSdZVzffkMzNpWzr4H8AANAvF8573PqFXr0vJbn0mMcXJXnfkjoCAAAA2ADGWwSj7Zvd2/KYmw7dmMPV4dq5HUOn9aUvAACAjWikUX8t6/QqBKN962Dr8wC994P+EowGAADAEV0Ho40vTx9AbxrN9vMjYykDgyvTCye2ecFo22c7D0a79Ix+NwPrzEnbktu+Uz83OLSyvaxh5cwLUp7ywvrJ8y/rve7ue7SePO/SbJ/9dn75pt9cvFC7OsD60mswmiBxapRSMjpYH4K2WDDan/1r1XEo2tDcgTxq799032CS6rmPOPLF1lOSl7wx5ZKr7pjbOl7y/IetsSC0Y5TnviZldOU+q7poZ0kWiWutCzLbdbj3YLS5tAlE33vLHV9Wc3OpXvMLydtec9yS6ooHpPzKG1K2bO9672rvLale8Pjk4x848vjie6f82ltT2gTPAgBLV0rZmmTrvOGvdVlm/vpze+8IAAAAYOOYaE7Wjt92+ObcdKj+nLovTX+uZb3tQ0u/iQ0AAMBGNdoiGG1mBYLRpmb3ZmZu+o7HX5n5Yu26yeZJGWtOLHs/sJEIRgMAAOCIbsM4VvBiU6ADiwWjjZ+0Mn1w4ivHX2x/8uFvd3TYve6S7Ni0doMSYE1oF7Az1GVI7UZ14d2PhLXc/K3uj73q6tZzp5+bnHlBcu3nFy1THvvT3e8NnJh6DUYbGu1vH6wbY0P1IWhTB6okrV9Lv+Bd7QO4jvVTt742W+Zu7aG7Y9z8rVTPelCqxzw95eE/lnLu9yx6SDWzP3n3G1Ld1MO/0f3w4Mev6Ha7O7hupVktDEY781C3OSZHnTzbImA3SfbddvTrv/7jBaFoSZJ/e1+qZzwg5U2f6Xrv6uVPvSMULUnyqQ+leumTUn77f3RdCwDoyuZ5j/dXVTXVZY35V+n6YQEAAABAByaam2rHv37gy3nhl3+iq1pbB07OcGOkH20BAABsSCON+nNzlzMY7eszX84brn9Vrjt4bUfrdwztWrZeYKNqc0thAAAANpSBwe7WjwhGgzWlscjHPOP1dy+EBeY9l3bM1t/dcr4HXyQUDRbVbBNiOSgYrROl2Uwe/uTuj3vzZ1MmWl/3W0pJecRTFi/0mJ9KOeduXe8PnKB6DkbzPZ16Ey2eGvsOtD7mzz4ylxv2LF77fuclv/uA6/LKCz+anHl+/aJzLk55782LF/uud/xhqqfdK9W/vKvtsmr/3lRPvjzV7/xM8me/0Xn9bgy1uVBk4qSUsZV9z7t9U8m529uvaaY+GO3UQ9d1vd/FM5/KttmbWs5Xf/nbR36fm0v1F69sXejr/y/V22tC09qopqeSj7534cTH359q7xJD+ACAxcy/lfR07ar25h+z5BdOpZTtpZTd3fxKcpel7gsAAACwkiYG6oPRerF9qIO77gAAANDSSGOsdnx6dnmC0aZnp/K7X39Bx6FoSXLK0GnL0gtsZILRAAAASHIkDCKDQ50fMFKfsg+skkabsJ0kGW8dBgPHKcd/ZLj98Lc7OuziXYLRYFHtAnYEo3WsPPEXklPv3PkBZ16QcloH194+5unJPR/Wev7+j015zu90vi9w4usxGK34nk4Lky2yvfbO1I9XVZWfe2vVtuZdT02+/puNvO+5zTz78aen+bI3pfHGT6W89sPJ1h1HF95pZ8rz/zhldDzlRX/eedOzh1P9zs+kOnSw5ZLqdS9Lvvnlzmt2qzmQ7Dyz9fz21bnL4mMua/8eaOfh6xeMlSSP2/uOtse9/NElp24++njL7M3579c9tX0zt92UamZ/8pl/TW74Wtul1at+PnOPvzDVezp8Hnzp00ndn//sbPLv/9pZDQCgV/OD0Vq8cmxrfjDa/Jq9+Okkn+ny11/3YV8AAACAFTPe7F8w2ilDq/PzLAAAgPVitFkfjDYz18v9xRb3qX3/J9Nz3YWu7RCMBn3X423OAQAAWJcGh+svdKwzLBgN1pTmIsFoE/07SYd1rnF8MNpJc7dlaO5ADjbaB3zczef3sLhGm3uVdBNQu8GVsYnkTf+e6n71P9xcsP6xT+9s3eBQ8pvvTP7v/zoSALLt1GTztuQ71yfbd6Xc7Z5LaRs4EfUYjOZ7Oq20Ckbbd6B+/PrbkpunWtf7u2c18oALkpHBhQFd5YLLk7/8bPLRfzgSfnzl96eMjh+Ze9A1qT7wjuRf3tlZ4zddn+o1v5Bc/H3JRXdP2XnWHVPVgenkLa/qrE6vtp2ajIy3nl+lYLSfvE/J7/5TlQOH6+cfNPW+2vEf2vP2/N7WZ7as+4sPKfmJ+5R88Lm/nIPXfikP2fePmajaPBG+6/9+MNWH/kcnrSff/HKqlz81ueHryennJrvOSTn/0vq1VZtwviIgGwBWWPvU3P4dAwAAALDhbR/c2bdapw2f1bdaAAAAG9FIo1UwWnfhZZ268dA3uz5m13AXN38HOiIYDQAAgKMGh5Ps7WztkGA0WFMGBtvPjwlGo1NlwaNLZz6Zj45d2fKI7ZPJ2duWuS1YDxptQiwH24cPcrzSbCbvviHVD+yoXzA8mtzplJTHPD151E92XreU5JKrjvwC6DUYbcj3dOpNtHhq7J2pH//GLa1rPesBJT9wt/ahVGVsIrn/Y+vnXvj6VNt3Je/9y+S277StkyR5xx+lescfHQn+e/YrUx71E6lu/U6qRywtIbn8+ItS/elL2i9aLPhs052W1EOvztpW8uKrS37pHQuzRgZzOD984N21x91j+n/nggOfz+eHL1gw99mXNNJolGwdTx5R/a9k70c77qd67tXJ6ETn/wHJcf/vqwc8LuXFbzzyeui4RbJUAGAV7Zv3uJcfzs0/Zn5NAAAAAGpsGdyW88fuli/s//SS6ow0xnLZ5L371BUAAMDGNNKo/3H59DIFo+073OE1trc7eXBnzh2767L0AhtZY7UbAAAAYA0ZHOp87bBgNFhTFvv7O3HSyvTBia+xMFzhcXvf0faQx15e0qg5Dpin2ToYrbSZo16Z3JzyW3+dHBveMTSc8rI3p7z35jTe8vmUH37OwnAPgE71+r1Z2CUtTI7Uj+89UD/+zVtb1/q1Ry3t37cyPJrGs1+R8rffSHnl33V+4KGDqV75rMxdNbzkULQkyZkXpDzzv7Zfc/q57QMHxyeX3kePfv7BJddcsfDP4kWPGsxZ/+MTKa/+pwVhZSXJH17/zAzPHZ+I99qhV+WCncfUmj3cfUPTS8g5ed/bk7/5k4Xj1Vybg7zOAoBltlaD0f4gyV27/PXIPuwLAAAAsKKeeuovZvf45Wmkt58d7xw6Iz97+q9mtDnW584AAAA2ltHGeO34zHIFo83u6WhdScmdR87Ps09/cRpFhBP0W4+3OQcAAGBd6iYYrd0FqcDKG1jk7+/4ppXpgxNfzQfx1+z5q/zi9l9P1eJD+h+5u4vhoSNNH8n3W7nHQ5M3fSbVe/48ZXA4uc8jU87evdptAetFr9+3u3lvzYYyOVKSVAvGp2YWrk2Sb96ycG2SnLIpmRjpz2vwUkqqKx6YnHVh8tXP9aVmV3acnnL/xyTnXZrq2Q+uXVIe/PhUb/291jXGVy8IfKBZ8hdPTR5zWfI/v5gMDSQ/cNeSB110+5/PJVclr/to8k9vTfWta1POuiDVvtty1Rt+PZ/90vfkdZufnENlINfs+atcsmMmyc8dLX740Ir/91Rve01y9VOPD5Y92OIJmvQW3gYAdOO2eY/HSinjVVVNdVFj+7zHbeJ3O1NV1Y1JbuzmGMH1AAAAwIlovDmZZ+x6YQ7MzWTv4fkf1bQ30hjNxIDzNgEAAPphpFF/H7GZuenMVXN9DyVrFYx2n80Py4O2POqOx2PN8Yw1J2rXAkvnKiwAAACO6ubi7eFebkoPLJvF/v4KRqNTjYU/DDjt8HW5//4P5H3jD1gwd9adknvdZSUag3VAMNqyKLvOSXnaS1a7DWA96jkYTZA49cZbPDX2ztQHoH2jRWTFuTv61NDtSqORvPRNqV7yo8mXPt3f4ovZvutID5feJ3nHl1O9+D8nn/rQkbmhkZSn/1rKFQ9I9a4/blmirPL73Waj5JorSq65on6+7DonefJ/yR1RIO97e6okZx7+el7ynZcdXfi1pJqbO/LnkbQOHbv8/snH3t+n7ue59vNHfp114dGxA9Ot1x88sDx9AABJkqqqbiql3JJkyzHDZyTpJtH2zHmP/9+SGwMAAADYYIYbIxkeGlntNgAAADaskcZYy7kDc9MZbY73db+p2b214ycPnpJtQ30+iRNoqb+RhwAAAJzYurl4WzAarC2LBKOt9oXinEBqgtGS5OU3/koGq4MLxv/r4xppNErNEcACjeZqdwBAN3oORusidJwNZbLFtRL7WmRLXXdL/fhpm/v/+rvc+aKUP/1oyruuTXnth/tev9bwaLL16AlC5eTTUl7zzylv/4+UP/lIyntuTHncM49MjrQ+qemECwLfcXrrub/6/aNfHz5Uu6RcdXXL92198YVPHP/4wEzrtTWhaVVVpfrwuzP36l9I9fpfTXXLjX1uEAA2nPkhaOd0efzZi9QDAAAAAAAAgDVttNn6HMLpuf19329qdk/t+Hhzsu97Aa0JRgMAAOCoIcFocMIaWCR8YeKklemDE1+p/8jwipmP50NfvV9++La35pIDn8qjL03e85xGHne5UDTo2FZ3BgI4ofQajNbNe2s2lFbBaHtb5E5989aqdvzUzX1qaJ7SbKbc6ZSUCy5Pzr2kP0W/56rk7g+sn7vq6pR5AV+llJQdp6ecf1nKsX+Xtu1svceJFoy2fVfLqeptrzn6YPZw/aKhkZS3fL7PTR3Tw5c/c/zAwTbBaDVz1e8/L9XzHp289fdSve5lqa4+PdUXP5lq32197hQANox5/zjnnp0eWEoZT3LxIvUAAAAAAAAAYE0babQORpuZW3iDz6Woqir7ZvfWzo03T7DzFeEE1+PZ/AAAAKxLiwUrHWuoxdW8wOoYXOTv75gPXulQo/W9FC6b+WT+4ronJ1t3pPH0r61cT7BOlP/0C6k+8p6FE/d46Mo3A8DiBnr8UWo3763ZUCZaZObtO1A//v4v1I+ftkzBaMcqL/2LVD+ye2lFTr1zynNemew6J9UvPTb52PuPzt35opSnv7zzfrbvSn1MXE68YLStpySbT05u/fbCueu/mur6r6bsPCuZna0/fmAw2XFGMjKWzPT/TpeZH4x2oPVJY9UNX0v18qcl//zWI38Om7Ym1y4Mbat+/Mqk0Uj5l/6egAYAG8TfJ/mJYx7fr4tjr8rx54h+oqqqG/rRFAAAAAAAAACslNG2wWj9PY9uZm46s6m/semEYDRYUYLRAAAAOGqxYKXvGhhMaTaXtxegO81FPuaZ8MErnSqLLxmbWP42YD3afY/krAuTr37uuOHyA09apYYAaKc0B1oHMbUz1CL9ig1vskXG/K01WVGfva71s++0LX1qqI2y65zk51+d6pXP6vygrTtS3vL55GPvOxKov/vKlLHJI3O//e7kMx858jro9HOTi65MGe4idH/rKa3nRsc7r7MGlGYz1b1+IHn3G+oXfOnTyc6zksOH6uebAymlpNpxenJti/S8pbj+q8c9rL755dZr3/DrR78+OJPccmPrtXNzS2oLADawf0gynWT09sf3LKVcUFXVwjTShZ487/E7+9kYAAAAAAAAAKyEwTKURpqZy8Ibjk73ORhtanZPy7mJ5mRf9wLaa6x2AwAAAKwhnQajDY8uvgZYUaUsEmY1ftLKNMKJr9HBR4ajPsiHXpRmM+X33pvc/7HJSXdKzr0k5Zdfl3L/x6x2awDUWSx8uJVBwWjU2zZR/77t23uTqjo+CO3V728djLZrSwdhxv3wyKel/Pyrk9POTrZsPxLW1c5D/1PKyFjKvR+ecvcHHQ1FS1IajZSL751y9VNTLr1vd6FoSbKpTRrcYu+H16DyvD9qPXnLt4/8Plt/x8kMDB75/R4PXXyjU87srrEk2XPLHV9W7/+r5M2/032NOifgnxMArAVVVe1P8vZ5w89b7LhSynlJHn3M0OEkb+pjawAAAAAAAACwIkopGW2M1c7NzPY3GG1f22C0TX3dC2ivx7P5AQAAWJc6vXhbMBqceEYnVrsDThSlg2C0Mc8n6FXZsj3lpW9KVVWLh1oCsLoEo9Fn21vkCx+aTW6bTjYfc87On3+kdTDaOSf3ubEWSinJo34i5VE/sWBu7qVPSv7xzUcHzjgv5Un/ZfmaOf+yI4Fghw8dP95oJHe52/Ltu0xKo5HqvEuTL35i4eR3rjvy+/z/1u+6/XtTuebZqd7yqvb7POLHU73ld5M9N3fe3C03Zu45D0mu+0ryrWs7P24xXvsCwFK8OMnjk9yekJonl1LeWVXV39QtLqWMJHl9kmPviPSnVVV9aVm7BAAAAAAAAIBlMtIczdTc3gXjM3PTfd1nanbhHknSSDMjLcLZgOXRwVWOAAAAbBhDnQajjSxvH0D/jfrglQ41OvjIUNAeLJlQNIATQLPZ23GDg4uvYUNqFYyWJDcecx7N566vsv9gmzqbVv91RHnhf095+duSH3tBynNfk/L6f0tZxgDlMr4puffDF05c8cCUTVuXbd9ltXlb7XD1upel+rf3JfturT/u9u9NZcLK1l8AACAASURBVPuulNf/W/s9xieT+z+m+94+/oH+hqIBAEtSVdWXk8xPRH17KeWZpZRjw89SSrkwyT8nudcxwzclecnydgkAAAAAAAAAy2e0RSjZ9NxUX/fZN7undnyiOek6EFhhPd7mHAAAgHVpYGjxNUkyNLq8fQD9NywYjQ6VDoLRxtokOgAArBfNHn+UOthh6DgbzsntgtH2JOftOPL1L759ruW6d/702rj3WSkluerqlKuuXrk9n/dHqQ7sT/71H44MXHa/lBf92Yrt33cn1QejJUn1sw9rfdzAMeGLd77oyPeq2cP1a0cnUp71ilR7bkn+57uS2dkemwUA1oDnJ9md5LsvFAaTvDrJC0spH0+yN8nZSS5LcuyZ2AeTPLqqqutXsFcAAAAAAAAA6KuRFsFoM3PTfd1n3+ze2vHx5qa+7gMsTjAaAAAAR3V68fbQyPL2AfTfsEBDOtQQjAYAkKT3YLQhwWjUGx8uGR9Opg4snLvx9vNopg9W+cAX648vJbnvecvX31pXJjen/NbfpNp7a3L4YMqW7avd0tIcnOntuEbzji9Ls5lq26nJDV+rXzs2mTI8mvLSN6Xac3PygXek+q1n9LZvj8qffnRF9wOA9aqqqtlSyjVJ/iTJDx8ztT3JQ1scdmOSJ1VV9cHl7g8AAAAAAAAAllPrYLT9fd1n3+ye2vGJpmupYKWtjdtJAwAAsDYMDXW2TsASnHj8vaVTpSy+ZusJHkAAANCJXoPROg0dZ0Pa3uK8mBv3VkmSf/j3+uC0JLnglGTzWAev19e5Mrn5xA9FS1LOu7S3A48JRkuSbN/Veu3o+NH9Nm1NTjmztz17VN6/L+W8S+74BQAsTVVV+6qqenySH0ryr22W3pzkD5Pctaqqv1+R5gAAAAAAAABgGY22CEabnu1vMNpUy2C0TX3dB1hcj2fzAwAAsC4NdBiMNuQibzjRlGZz8UWQJGXxeymshxACAIBF9RyM1uF7azakbRPJV76zcPzmqSO///Unq5bHvuPp7nu2rpzfY1BYY97zYNvO1mvH5iXxXXB50mwms7O97d2praekvPytKQODy7sPAGxQVVW9PcnbSyl3TnJZklOTjCf5VpJrk3yoqqqDq9giAAAAAAAAAPTVSItgtJm5fgej7a0dH2+2uDMusGwEowEAAHBUp4FnvV4cDsDaN/8i+zpbdyx/HwAAq63nYDRh4rS2dbx+/LvBaP/nq/XBaE/43pLzTynL1BWr4vIH9nbc/DDrHWe0XjsvGK1s2prq/o9L/uktve3drq2f/vVkbi45e3dyt3ulTJzU9z0AgONVVfWVJF9Z7T4AAAAAAAAAYLmNNEdrx6f7HIy2b3ZP7fh4c1Nf9wEW50p2AAAAjhoY6nDd4PL2AcDqmX+RfZ0t25e/DwCA1dZrMJr3zLSxZawkWRh+dsv+5NDhKl+8of64h1+8vH2x8srAQPK6/53qKd/b3YHzwqzLaWfXPKNuN7LwRLDyS69NtWV78i/vSm78euf7jk4k0/sWjt/7B1P+y5+kbNraeS0AAAAAAAAAAADowkhjrHZ8pu/BaHtrxycEo8GK6+AqRwAAADaKMjTc2cLBDgPUADjxNDr4yHCrYDQAYAPoJRht+66UUvrfC+vG5vrzcnLLVJX/+HZyeK5+fvepnlfrUTn3e1Ke+uIuD5r3nu3eP5jUfd8ZGkm2nbrw8KHhNJ79ijT+6j9SXvTnne35kCem8d6b0vjggYW/fuMdQtEAAAAAAAAAAABYVqMtgtGm56b7us/U7J7a8YnmZF/3ARYnGA0AAICjOg08Gxhc3j4AWD3zL7Kvs3XH8vcBALDaeglGe8AP9b8P1pWt4/Xjt+xPPnd9/VyjJOd5Cb5ulSf9UvK4Z3R+wLww63Lyack9H7Zw3fc9ImV4tH2t+zwyOe3sxXt8+I913h8AAAAAAAAAAAD02UiLYLSZuf1926Oqquyb3Vs7N9Hc1Ld9gM4IRgMAAOCoToPRmoLRANatxiIfGQ6PJhObV6YXAIDV1Gx2fUj5yZctQyOsJ1vqz8vJzVPJZ6+vaufO2Z4MD5Zl7IrVVp71ipRn/EaHixe+Zyu/9Nrkyu9PSjnyveuqq1Oe90eLlxoaTnn525NzLm695vn/LeWSqzrrDQAAAAAAAAAAAJbBSKP+RqEzs/0LRpuZ25+5zNbOjQtGgxXXw23OAQAAWLcGhztbNyAYDWDdKosELmzflbLYGgCA9aDZ3Y9Sy0v/MsX7ZRaxdbx+/Jb9yeeur5+7aOfy9cPaUBqN5PE/m+rW7yR/8Yr2i2tCG8vmbSmv+NtU+/cls4dSJrd0vvfZu1Ne/39Sfef6ZP/eZOKkpKqSudnkTjuP9AYAAAAAAAAAAACraLRZfwLmgWomc9VsGqX7GyLPt292T8u5iebkkusD3RGMBgAAwFEDQx2u83YSYN0qi1z0vuP0lekDAGC1dROMNrkluedDl68X1o0tYyVJtWD8xr3Jv3xx4XiSXLhTMPFGUe50Ss2zY/6i1u/ZythE73tv25lECh8AAAAAAAAAAABrz2hjtOXczNx0xpq9nz/3Xftm97acG29uWnJ9oDtu7QsAAMBRQ8OdrRsYXN4+AFg9jUU+MtwuGA0A2CA6DUYb35TyK/89ZWRsefthXThtS/34wcPJdbfWz128a/n6YY3Zsn3xNYu9ZwMAAAAAAAAAAIB1ZqTR+jzdmbnpvuyxb3ZP7XgzAxlpE8wGLI8ubnMOAADAujfYaTDa0PL2AfRm95XJv3904fg5F698L5ywSimp2i04+bSVagUAYHUNtzmB4eJ7p/zsq5JbbkguuCJlcvPK9cUJ7cJTuls/NJA8ZHdZnmZYezafvPiaIhgNAAAAAAAAAACAjWW0TTDa9NxUkg7Ov1vEVItgtInmZEpxLiesNGfMAgAAcNTgYGfrBjpcB6yocs2z68d/9JdWuBNOeI3WHxuWiU0r2AgAwCo668LWc+ddknLO3VLu/iChaHRlYqTkzts6X//Q3cnmMSfTbBidBKO1eb8GAAAAAAAAAAAA69FIm2C0mdnpvuyxr0Uw2njTtVSwGpwxCwAAwFGDw52tE4wGa9N9Hpnc91HHj9330cn3PXx1+uHEVdp8bDgyvnJ9AACsojK5Obn8/vVzZ5y/wt2wntz11M7X/tAVQtE2lFPPSoYW+Xyu3fs1AAAAAAAAAAAAWIcGymCaGaidm5nb35c9pmb31o6PNyf7Uh/oTv3feAAAADYmwWhwQisDg8mL35h87P3JFz6RnH9JcvkDUwZ8BESXGo1ktsWcYDQAYAMp/+kXUn3s/ccPjk4k93rY6jTEurD7tJK//VTV0dp7ni0YbSMpY5Op7vvo5B/f3HpRw3MCAAAAAAAAAACAjaWUktHmWPbN7lkwN92nYLS62kky0dzUl/pAd9xKGAAAgKMmN3e0rAhGgzWrDAymXPn9KT/6vJQrHyIUjd6UNhfajwpGAwA2jnLFA1Oe+5pk4qQjA2ecl/Lyt6XsOGN1G+OEtvvUztaNDiZn3ml5e2HtKc/9/UUWOM0DAAAAAAAAAACAjWekMVo7PtO3YLS9teOC0WB1uDIWAACAozZv62ydYDSAda5NMNrI2Mq1AQCwBpRHPi15xI8n+25NJrektAuRhQ5cfFpJUi267vxTkmbD822jKWMT7Z8dDcFoAAAAAAAAAAAAbDwjjfprmqbnpvtSf2p2T+34xMBkX+oD3XHGLAAAAEedJBgNgCSzh1vPjY6vXB8AAGtEaTRSNm0VikZf3PW05OJdi6+7aKfnGzUEowEAAAAAAAAAALABjbYIRpuZm+pL/X0tgtHGm5v6Uh/ojjNmAQAAuEMZHEomTlp8oWA0gPWtXTDaiGA0AABYilJK/vwpi/+o/sKdK9AMJ57iNA8AAAAAAAAAAAA2npEWwWjTs9N9qT81u7d2fLwx2Zf6QHecMQsAAMDxNm9bfI1gNICNa6T+hwgAAEDn7rar5PvOab/mwp1lZZrhxNJornYHAAAAAAAAAAAAsOJaBaPNzO1fcu25aq5lMNrEwKYl1we6JxgNAACA453UQTBaUzAawIY1Or7aHQAAwLpwzvb2wWf3PHuFGuHE0nCaBwAAAAAAAAAAABvPaHP5gtFm5vZnLnO1cxNNwWiwGpwxCwAAwPEmNy++ZkAwGsCGNSIYDQAA+uHsk1vPXXnnZOfm9sFpbFDFaR4AAAAAAAAAAABsPCON+mC06T4Eo+2b3dNybqI5ueT6QPecMQsAAMDxBoc7WDO0/H0AsDaNCkYDAIB+eOju1sFn11whFI0WGk7zAAAAAAAAAAAAYOMZaYzWjs/MTS+5drtgtPHmpiXXB7rnjFkAAACONzSy+JqBweXvA4A1qfg3AAAA+uLyM5OLdi4cHxpIHne5YDRaKE7zAAAAAAAAAAAAYOMZbYzVjs/M7V9y7anZvbXjA2Uww6WDa26BvnPGLAAAAMcbHF58TXNg+fsAAAAAWMdKKfmDJzbSmJeB9oIfLDl9q2A0Wmg4zQMAAAAAAAAAAICNZ6RFMNr07NKD0fbN7qkdH29OphTndMJqcCU7AAAAxxvuIBhtYHD5+wAAAABY5+5zXsmnX9zIH3ygysyh5LGXlTz0rk6goQ3BaAAAAAAAAAAAAGxAo836YLSZuX4Eo+2tHZ9oblpybaA3gtEAAAA43qBgNAAAAICVcuHOklf/iDA0OlQEowEAAAAAAAAAALDxjDRGa8cPVgcyW82mWZo9156a3VM7PtGc7LkmsDTOmAUAAOB4QyOLrxkcWv4+AAAAAIDjNZzmAQAAAAAAAAAAwMYz2hhvOTczt39Jtfe1CEYbb25aUl2gd86YBQAA4HiDw4uvaQ4ufx8ArD3D9XdWAQAAYIUUp3kAAAAAAAAAAACw8Yw0Wl/XtNRgtKnZvbXjE4LRYNU4YxYAAIDjlKGRxRcNCEYD2JBO2rbaHQAAAGxsDad5AAAAAAAAAAAAsPGMNMZazk3PTi+p9r7ZPbXj483JJdUFeueMWQAAAI43NLT4GsFoABvT3R+42h0AAABsbMVpHgAAAAAAAAAAAGw87YLRZuamllR73+ze2vGJ5qYl1QV654xZAAAAjjc0sviagYHl7wOA1fODP1Y7XJ743BVuBAAAgOM0mqvdAQAAAAAAAAAAAKy4wcZgBspg7dz03PSSak/N7qkdn2hOLqku0DvBaAAAABxvcHjxNQP1Hx4BsD6UJ/xcsnXH8YOPeErK6eeuTkMAAAAc0XCaBwAAAAAAAAAAABvTSGOsdnxmbn/PNeeq2UzN7qudG29u6rkusDQDq90AAAAAa8zQyOJrBoaWvw8AVk0547zkv30wee+bU934tZRL7pM88JrVbgsAAIBSVrsDAAAAAAAAAAAAWBWjjbHsm71twfjM3HTPNffPTaXKXO3chGA0WDWC0QAAADje0PDiawYGl78PAFZVOeXM5EefF5fcAwAArB1FMBoAAAAAAAAAAAAb1EhjtHZ8enaq55pTs3tbzo03J3uuCyxNY7UbAAAAYI0RjAYAAAAAAAAAAAAAAAAAwBoy0hirHZ+Zm+655r42wWgTzU091wWWRjAaAAAAxxsUjAYAAAAAAAAAAAAAAAAAwNox2mwVjLa/55pTs3tqxwfLUIZKB9fbAstCMBoAAADHGxpZfI1gNAAAAAAAAAAAAAAAAAAAVshIoz4YbXoJwWj7WgSjjTcnU0rpuS6wNILRAAAAON5I/QdDxxkYWv4+AAAAAAAAAAAAAAAAAAAgyWiLYLSZpQSjHa4PRptobuq5JrB0gtEAAAA43hnnJc2B1vOlpDSbK9cPAAAAAAAAAAAAAAAAAAAb2sgyBKNNze2tHReMBqtLMBoAAADHKWOTye4rWy8YGFy5ZgAAAAAAAAAAAAAAAAAA2PBGWwSjTc/2Hoy2b3ZP7fh4c7LnmsDSCUYDAABgoZ1ntZ4TjAYAAAAAAAAAAAAAAAAAwAoaaYzWjs/MTfdcc2p2b+34RHNTzzWBpROMBgAAwEJDw63nmoLRAAAAAAAAAAAAAAAAAABYOaPNsdrxmbn9Pdfcd3hP7fh4c7LnmsDSCUYDAABgocE2wWgDgtEAAAAAAAAAAAAAAAAAAFg5I436YLTppQSjzdYHo000N/VcE1g6wWgAAAAsNNQmGG1waOX6AAAAAAAAAAAAAAAAAABgw2sVjHaoOpjD1aGeak7N7a0dF4wGq0swGgAAAAsNjbSeGxhYuT4AAAAAAAAAAAAAAAAAANjwRhqjLedm5qa7rjdXzWb/7L7aufHmZNf1gP4RjAYAAMACZXC49WRzcOUaAQAAAAAAAAAAAAAAAABgwxttjLecm5ntPhht/+xUqlS1cxPNTV3XA/pHMBoAAAALDQ61nhsQjAYAAAAAAAAAAAAAAAAAwMoZaY62nJuem+q63r7ZPS3nxpuTXdcD+kcwGgAAAAsNj7SeE4wGAAAAAAAAAAAAAAAAAMAKGm2MtZybmZvuul67YLSJ5qau6wH9IxgNAACAhQaH28wNrVwfAAAAAAAAAAAAAAAAAABseM0ykMFSf43rzNz+ruu1CkYbKsMZarS5zhZYdoLRAAAAWKhdMFpzcOX6AAAAAAAAAAAAAAAAAACAJKONsdrx6R6C0aZm99aOjzcnu64F9JdgNAAAABYaahOMNiAYDQAAAAAAAAAAAAAAAACAlTXSIhhtZrZ/wWgTzU1d1wL6SzAaAAAACw2NtJ4bGFi5PgAAAAAAAAAAAAAAAAAAIMlIs0Uw2tx017X2ze6pHR9vTnZdC+gvwWgAAAAsNDjUem5gcOX6AAAAAAAAAAAAAAAAAACAJKON0drx6bmprmu1CkabaG7quhbQX4LRAAAAWGhwuPXcQJvQNAAAAAAAAAAAAAAAAAAAWAYjjbHa8Zm56a5rCUaDtUswGgAAAAsNjbSeG5tcuT4AAAAAAAAAAAAAAAAAACDJaItgtOm5/V3XmprdWzsuGA1Wn2A0AAAAFhoabj03LhgNAAAAAAAAAAAAAAAAAICVNdIiGG2mj8Fo403X0cJqE4wGAADAQoNtgtHGfKADAAAAAAAAAAAAAAAAAMDKahWMNj3bfTDavtk9tePjzU1d1wL6SzAaAAAACw0OtZwqgtEAAAAAAAAAAAAAAAAAAFhho836YLSZue6C0War2eyf21c7N9F0HS2sNsFoAAAALDQ03HpOMBoAAAAAAAAAAAAAAAAAACtspNEqGG26qzr7Z/e2nJtobuqqFtB/A6vdAAAAAGtQaZOjfadTVq4PAAAAAAAAAAAAAAAAAABIMtIYrR3fP7cvew7f2nGdGw9e13JOMBqsPsFoAAAALHTyacmW7cktNx4/PjSc3P1Bq9MTAAAAAAAAAAAAAAAAAAAb1mhjrHZ8anZvnv+lJ/dlj/HmZF/qAL1rrHYDAAAArD2l0Uiu/vGFEw/+kZSJk1a+IQAAAAAAAAAAAAAAAAAANrSRFsFo/TJcRjLYGFrWPYDFDax2AwAAAKxN5cdflAyPpfqHNyZzc8l9Hpny1JesdlsAAAAAAAAAAAAAAAAAAGxAyx2MNt6cXNb6QGcEowEAAFCrlJL8519M+c+/uNqtAAAAAMCGUZ7/31L9xk8unHjwj6x8MwAAAAAAAAAAALCGbB3clkaamcvsstTfPnTqstQFutNY7QYAAAAAAAAAALjdlQ9JRicWDJf7P2YVmgEAAAAAAAAAAIC1Y6w5kd3jly1b/btvus+y1QY6JxgNAAAAAAAAAGCNKNt2przib5PTzj4ycNKdUn7md1Kuunp1GwMAAAAAAAAAAIA14Mk7fyZ3Hb8ijT5GJ400RvOIbU/IPTY9oG81gd4NrHYDAAAAAAAAAAAcVS6+V8qbP5fq5huSzSenNNz3DgAAAAAAAAAAAJJktDmen971gkzP7s+th29acr1GaWTb4ClplmYfugP6QTAaAAAAAAAAAMAaVLbuWO0WAAAAAAAAAAAAYE0abY5ltDm22m0Ay0AwGn1VShlMcu8kZyTZmWRfkuuSfKKqqq+uYmsAAAAAAAAAAAAAAAAAAAAAAACsYYLRNrBSypuT/PC84Wurqjqrh1onJ3nJ7fW2tljz4SS/XVXVX3VbHwAAAAAAAAAAAAAAAAAAAAAAgPWtsdoNsDpKKVdnYShar7UeluQzSZ6eFqFot7tXkreXUt5YShnvx94AAAAAAAAAAAAAAAAAAAAAAACsDwOr3QArr5SyOckf9qnW/ZK8K8nQMcNVko8n+XKSzUkuTbLtmPknJtlUSnlUVVVz/egDAAAAAAAAAAAAAAAAAAAAAACAE1tjtRtgVbwyyam3f7231yKllF1J3pHjQ9E+lGR3VVVXVFV1TVVV359kV5LnJDl0zLpHJPnVXvcGAAAAAAAAAAAAAAAAAAAAAABgfRGMtsGUUh6U5Cm3Pzyc5FeWUO4lSbYc8/jDSR5UVdXnjl1UVdWBqqp+L8k1847/uVLKmUvYHwAAAAAAAAAAAAAAAAAAAAAAgHVCMNoGUkoZT/LaY4Z+O8kne6x1bpInHTN0MMmTq6qaaXVMVVXvSvKGY4aGk7yol/0BAAAAAAAAAAAAAAAAAAAAAABYXwSjbSy/nuSs27/+cpIXL6HWE5I0j3n8jqqq/l8Hx/3mvMfXlFJGltAHAAAAAAAAAAAAAAAAAAAAAAAA64BgtA2ilHKvJM84Zugnq6qaXkLJR897/PpODqqq6nNJPnrM0HiS719CHwAAAAAAAAAAAAAAAAAAAAAAAKwDgtE2gFLKcJLX5eif9xuqqvqnJdQ7Jcn3HDN0OMmHuijxgXmPH9ZrLwAAAAAAAAAAAAAAAAAAAAAAAKwPgtE2hhcnOf/2r7+d5OeXWO+u8x5/qqqqqS6O//C8x7uX2A8AAAAAAAAAAAAAAAAAAAAAAAAnOMFo61wp5bIkzz1m6GeqqrppiWUvmvf4P7o8/kuL1AMAAAAAAAAAAAAAAAAAAAAAAGCDEYy2jpVSBpK8LsnA7UN/X1XVm/pQ+px5j7/W5fHXznt8p1LKliX0AwAAAAAAAAAAAAAAAAAAAAAAwAlOMNr69vwk33P711NJnt6nupvnPb6xm4OrqtqXZGbe8ElL6ggAAAAAAAAAAAAAAAAAAAAAAIAT2sBqN8DyKKVclOQFxwy9sKqqr/ap/MS8x9M91JhOMnLM48ne2zmqlLI9ycldHnaXfuwNAAAAAAAAAAAAAAAAAAAAAABA7wSjrUOllEaSP00yfPvQx5L8Xh+3mB+MNtNDjekkW9rU7NVPJ3lRn2oBAAAAAAAAAAAAAAAAAAAAAACwQhqr3QDL4jlJ7nH714eTPLWqqtll3K9aoWMAAAAAAAAAAAAAAAAAAAAAAABYpwSjrTOllLOT/OoxQ79dVdUn+7zNvnmPR3uoMf+Y+TUBAAAAAAAAAAAAAAAAAAAAAADYQAZWuwH6p5RSkrw2ydjtQ19O8uJl2GotB6P9QZK3dXnMXZL8dZ/2BwAAAAAAAAAAAAAAAAAAAAAAoAeC0daXpyV5wDGPf7Kqqull2Oe2eY9P7ubgUspEFgaj3bqkjm5XVdWNSW7ssp9+bA0AAAAAAAAAAAAA/P/27jxaurSg7/3vaZqGZupGhmbmZVQGBwheFTC2BlTkCjJcMWhCKw5xSjDxxqWYFTC5eHMdouvGKFeRJohcCWGSOSgNAkHFNAKCSCOgDI0NNGA3NE3Dkz/qvO+ps6tOndpVu2rvqv35rLUX7HprD2ef53zr9PPutV8AAAAAAAAAWIMHo+2Xp079/5cnuayUcuqEbW7TWD97zjYfrrVeO7X+nsaf33nJ8zvu/Z+otV7Zch8AAAAAAAAAAAAAAAAAAAAAAADsEQ9G2y/nTv3/b0vyvhX2cfs5290vyVun1t/V+PO7tzzGXRvr72y5PQAAAAAAAAAAAAAAAAAAAAAAAHvmrL5PgJ30jsb6V5RSbtRi+wedsD8AAAAAAAAAAAAAAAAAAAAAAABGxoPRaK3W+pEkb5t66ewkD26xiwsb669Y95wAAAAAAAAAAAAAAAAAAAAAAADYbR6MtkdqrefXWkubJck3NnbzgTnve+ucw72wsf69y5xjKeXLknzN1EtXJ3n10l8kAAAAAAAAAAAAAAAAAAAAAAAAe8mD0VjVc5J8YWr90aWUeyyx3U811p9Xa72mu9MCAAAAAAAAAAAAAAAAAAAAAABgF3kwGiuptb4nybOmXjonycWllBset00p5ZFJLpp66dokT93ICQIAAAAAAAAAAAAAAAAAAAAAALBTPBiNdfzbJFdOrT8wyWtKKV82/aZSyg1KKT+e5L82tv+lWusHNnyOAAAAAAAAAAAAAAAAAAAAAAAA7ICz+z4Bdlet9YOllEcneVWScw5eflCSd5ZS/izJXyc5L8n9k9yqsflLk/ybbZ0rAAAAAAAAAAAAAAAAAAAAAAAAw+bBaKyl1npJKeVRSS7O4cPPSpIHHCzzPDfJD9Rav7D5MwQAAAAAAAAAAAAAAAAAAAAAAGAXnNX3CbD7aq0vT3LfJL+R5MoFb31zksfWWh9fa716KycHAAAAAAAAAAAAAAAAAAAAAADATji77xOgX7XWS5KUDvbzd0l+uJTyL5I8KMmdk9wmydVJPpTk0lrr+9Y9DgAAAAAAAAAAAAAAAAAAAAAAAPvJg9HoVK312iSv7fs8AAAAAAAAAAAAAAAAAAAAAAAA2C1n9X0CAAAAAAAAAAAAAAAAAAAAAAAAAB6MBgAAAAAAAAAAAAAAAAAAAAAAAPTOg9EAAAAAAAAAAAAAAAAAAAAAAACA3nkwGgAAAAAAAAAAAAAAAAAAAAAAANA7D0YDAAAAAAAAAAAAAAAAAAAAAAAAeufBaAAAAAAAAAAAAAAAAAAAAAAAAEDvPBgNAAAAAAAAAAAAAAAAAAAAAAAA6N3ZfZ8ADMA50yuXXXZZX+cBAAAAAAAAALCWOfc9mwCVcQAAIABJREFUnDPvfQCwRe7RAwAAAAAAAAB2nvvztqfUWvs+B+hVKeURSV7c93kAAAAAAAAAAGzAI2utL+n7JAAYL/foAQAAAAAAAAB7yv15G3JW3ycAAAAAAAAAAAAAAAAAAAAAAAAA4MFoAAAAAAAAAAAAAAAAAAAAAAAAQO9KrbXvc4BelVLOS/INUy/9bZJr19jl3ZK8eGr9kUneu8b+ANrSIWAItAjomw4BfdMhoG86BAyBFgF9G2uHzklyx6n119VaP9XXyQCAe/SAPaRDQN90COibDgF90yFgCLQI6JsOAX0ba4fcn7clZ/d9AtC3g7i8pKv9lVKaL7231voXXe0f4CQ6BAyBFgF90yGgbzoE9E2HgCHQIqBvI+/QpX2fAACc5h49YN/oENA3HQL6pkNA33QIGAItAvqmQ0DfRt4h9+dtwVl9nwAAAAAAAAAAAAAAAAAAAAAAAACAB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9M6D0QAAAAAAAAAAAAAAAAAAAAAAAIDeeTAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgd2f3fQKwh65I8tTGOsA26RAwBFoE9E2HgL7pENA3HQKGQIuAvukQAOwnn/FA33QI6JsOAX3TIaBvOgQMgRYBfdMhoG86xEaVWmvf5wAAAAAAAAAAAAAAAAAAAAAAAACM3Fl9nwAAAAAAAAAAAAAAAAAAAAAAAACAB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9M6D0QAAAAAAAAAAAAAAAAAAAAAAAIDeeTAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgdx6MBgAAAAAAAAAAAAAAAAAAAAAAAPTu7L5PgFmllOsluXuSeye5XZLzknwuyZVJ3pvkLbXWqzs+5vWTPCjJnZLcNslVST6c5NJa6/u7PNa2lFLuk+SrktwqyQ2SXJ7kg0neWGu9ps9z26ZSys2T3CfJPZJ8SZIbJvlkkiuS/Fmt9b09nt6MUspdMvm+3S7JTZJ8JMkHkryp1vr5Ps9tTHSoGzo0oUOsSou6oUUTWnTscYyPBXSoG8bZxK51iGHQoW7o0IQOHVVKuWMm1+IOSW6Z5Nwk1yb5VJK/yeSaXNHfGQ6DDnVDhyZ0iFVpUTe0aEKLWIUOdUOHJnRoPuMD6IPP+G5o+MSufca7N2YYdKgbOjShQ6xCh7qhQxM6dOxxjI8FdKgbxtnErnWIYdChbujQhA4d5f685WlRN7RoQotYhQ51Q4cmdIhV6FA3dGhCh+bb6fFRa7UMYMkkmE9K8tJM/uO+LliuS/KKJA/v4Li3SvKfk3x8wfHemOQxax7nrkkel+QXklyS5NONY7y/o+t40yRPTvKhBV/Pp5M8O8ndevx+b+x6JLl+km9J8p+SvOOEsVQPrtXPJblNzz8Dj03ypgXn+fGDsXrLFfZ90jU4aTnV57XZ4vdAh7q5jjqkQ9P7PNVBg6aXi/q8Rlv6PmhRN9dRi7Ro58dHj98DHermOu7EONOh3sbHjZM8OMlPJHlOkr9K8sXGsS7q6zr0veiQDunQxq7HPZI8LclrM/lLjZOuR03yP5P8aJIb9HVNevo+6FA311GHdGje/pdpz6LlVF/XpofvhRZ1cx21SIum93uqgw5NLxf1dY229H3QoW6uow7p0M6PD4vFsl+Lz/hxNdxn/Nzzdo9ez4sO6ZAOuUev70WHdEiH3J/X96JDOjTmDm1xfLg/b/H10aFurqMO6VBz3+7Pa3e9tKib66hFWjRv/8v0Z9Fyqq9rs+Xvgw51cx11SIem93uqgwZNLxf1dY229H3QoW6uow7p0M6PjxO/jr5PwFKT5HfX+ED7/SQXrHjchyX5aItj/U6SG7fY/4VJXnXCh0JnP5hJviaTp3Au+/VcneSHt/h93vj1OLgGn1hxLF2Z5Ht6GP83SfLcFud5eZJvaXmMVX++Ti+ntn1devg+6JAO6dAGOpTu/0P2cdu+Plv+XmiRFmnRBlq0S+Oj70WHdGiMHdrm+Mhk4vjtmUxIn3Ssi7Z1DYa06JAO6dDmxkeS71/j5+vdSb5mW9ekz0WHdEiHNjs+1vj5Or2c2tZ16XPRIi3Soo1dj1MddGh62dv56uiQDunQ6MeHxWLZz8Vn/Dga7jP+2HN2j94AFh3SIR1yj17fS3RIh3TI/Xk9LzqkQ2Ps0DbHR9yft8w10iEd0qENjY+4P6/NtdIiLdKiDY6PNX6+Ti+ntnVd+lp0SId0aGPX41QHDZpezFXr0DI/gzqkQzs5PtosZ4chuOcxr38oyXsyievZmTz17yuTnDX1nv89yetLKd9Qa7182QOWUi5M8qIk50y9XDN5yvpfJzk/yf2S3HLqz787yc1KKd9Ra/3iEof5qiTfvOw5raOU8pBMngZ6g8YffSDJ2zL5IbxDJj+81z/4sxsl+c+llLNqrb+2hdPcxvW4VZKbz3n92kwmty/P5Impt0jygIP/Pe38JM8updy61vrLGz7PJEkp5XpJfi/JtzX+6Ioklx6c690yGYvl4M8uSPLiUspDaq1v2MZ5joQOrUmHztChzflMJk+03mdatCYtOkOL5h9nF8ZH33RoTTsyznToqK2NjySPT3Lelo61q3RoTTp0hg6drGYyyX9ZJn+x8JlM/sXcuyS5Tw7HRzL52fyDUsrDa62v2/aJbpkOrUmHztAh1qFFa9KiM7Roc/Z9vlqH1qRDZ+jQHDsyPoD95DN+TTvScJ/xDTt2b8y+06E16dAZOrQ55jx0aCEdOkOH5h9nF8ZH33RoTTsyznToKPfnDYsOrUmHztChk7k/73hatCYtOkOLWJUOrUmHztChzTFXrUML6dAZOjTHjoyP5fX9ZDZLTZK35PApev8zyY8ludsx7719kqdn9ul7f5SkLHm8O2T2qYdvSHKvxvtukOSfZ/JDP/3epy15nCfNOc+a5JpMJjQ6eWJhJk9PbT4V8bIkD53z3psn+X8b7/3CvPdu4Pu88euRyQf56X38fZJnJPlHSc6d896S5FGZxKt5Thu/Hgfn8AuN4157MP7Pabzv3kne1Hjvx5LcdsnjTG/35oMx02Y5exvXo88lOqRDOrSRDmXyH14nNea45Q2N4128jWvS5xIt0iIt2tjvRLsyPvpedEiHxtihbY2Pg2N98phjfXDOn1206a99iIsO6ZAObXR8PDHJX2byu9fDk9x8wXvPT/IvM/kLkOnjfyjJeZu+Jn0uOqRDOrTx34em92Wu+vjrpEVapEWbuR7mq5e/VjqkQzo08vFhsVj2c/EZP46G+4yfe77u0RvIEh3SIR3aSIdizqPN90KHdEiHNvT70K6Mj74XHdKhMXZoW+Pj4Fjuzzv5GumQDunQ5saH+/OWv1ZapEVatNnfiab3Za56/jXSIR3Soc1cD3PVy18rHdIhHRr5+Gj1NfV9ApaaJH+aydP2HtBimx+ZM+C/a8ltn9HY7o1Jbrjg/d8x5wfrzksc50kH0b80yW8m+cEk98/kiYEXdviD+dzGvt6T5NYnbPOvG9v8RZLrbfj7vPHrcRDujyb5V0luvOQ2t0jyzsbx35UlfxFY43rcNbO/FDxywfvPzexfNP7Gksea3uaSTX5du7rokA7p0GY7tMK53T7JdY1jff0mr8cQFi3SIi3aXIt2ZXz0veiQDo20Q1sZHwfH+mQm/9LCy5I89eA6XXDwZ5c0jnXRJr/uoS46pEM6tNHxcf0VtvmqJFc1zuGnNnk9+l50SId0aOO/D03v65JNfl27vGiRFmnRZlu0wrmNbr5ah3RIh4wPi8Wyn4vP+HE03Gf8zHHdozegRYd0SIc226EVzs2cx3Lb6NDhcXTo8Bg6tKPjo+9Fh3RopB1yf96AFh3SIR1yf94QFi3SIi1yj17fiw7pkA65P6/vRYd0SIeMj1ZfU98nYKlJcmrF7Z7fGFwvW2KbezQ+GD+X5B5LbHdx41i/vcQ2Nz/uA6HDUN01kycOTu/rwUtu+4eN7b5vw9/nbVyPWy0b7MZ2XznnOn71hq/HsxrHe+YS29zzYMye3ubzSe66xHbTx7lkk1/Xri46pEM6tNkOrXBuT26c219t8loMZdEiLdKizbRol8ZH34sO6dBIO7Tx6zG1v2P/Bd248er0dTi14nY6pEPN/ehQd+f3c41zePO2z2HLX++pFbfTIR1q7keH5u9vel+XbPLr2uVFi7RIizZzPdY4t9HNV+uQDumQ8WGxWPZz8Rk/job7jJ85pnv0BrTokA7p0GY7tMK5mfNYfjsd0qHmfnRoR8dH34sO6dBIO+T+vAEtOqRDOrSZ67Hm+Y3q/ryDr/nUittpkRY196NF8/c3va9LNvl17eqiQzqkQ5u5Hmucm7nq5bfTIR1q7keHdnR8tFnOCr2rtb5/xU1/rbH+jUts8/gk15taf0Gt9T1LbPcfGuvfWUq54aINaq1X1lqvWWLf63h4cmQcv7nW+oYlt/3Fxvr3dnNK823jetRar6i1Xr3Cdn+epHndlhlPKymlnJvksY2Xm2NsRq31r5K8aOqlszMZ06xJh9aiQ0ePoUNrKqWUzI6FZ3R5jKHSorVo0dFjaNFROzM++qZDa9mZcaZDM8fcxvg4fayPbOM4u0yH1qJDR4+hQ915eWP97r2cxZbo0Fp06OgxdIiVadFatOjoMbRoTWOdr9ahtejQ0WPo0FE7Mz6A/eQzfi0703Cf8YeGfG/MWOnQWnTo6DF0aE3mPFrTIR1qHkOHjtqZ8dE3HVrLzowzHZo5pvvzBkSH1qJDR4+hQ90Z1f15iRatSYuOHkOLWIkOrUWHjh5Dh9Zkrro1HdKh5jF06KidGR9teDDabru0sX5uKeX8E7Z5VGP9mcscqNb6riR/PPXSjZN88zLbbtg/bKy/qsW2f5Dk2qn1B5ZSbrv+Ke2s5ni63QaP9S1JbjS1/j9qrX+55LbNMfvobk6JFemQDnVJhya+Icndptavy+RfrON4WqRFXdrHFhkfm6dDxlmXttkh9ocO6VCXdOioTzTWb9rLWQyfDulQl3SIVWmRFnVJiybMV7ejQzrUpX3skPEB7Cqf8RrepX38+2g2T4d0qEs6NGHOox0d0qEu7WOHjI/N0yHjrEv7OPfK5umQDnVJh45yf97ytEiLuqRFrEKHdKhLOjRhrrodHdKhLu1jh/ZyfHgw2m67bs5r5xz35lLKbZJ8ZWP7N7Y43iWN9Ye12HZT7tBYf8eyG9ZaP5fksqmXzsowvqa+NMfTsWOpA9/aWL+kxbZ/lKPner9SygVrnxGr0iEd6pIOTTyxsf6yWuvlHe5/H2mRFnVpH1tkfGyeDhlnXdpmh9gfOqRDXdKho+7cWP9wL2cxfDqkQ13SIValRVrUJS2aMF/djg7pUJf2sUPGB7CrfMZreJf28e+j2Twd0qEu6dCEOY92dEiHurSPHTI+Nk+HjLMu7ePcK5unQzrUJR06yv15y9MiLeqSFrEKHdKhLunQhLnqdnRIh7q0jx3ay/HhwWi77e6N9euSfGzB++/bWH9brfXqFsd7U2P9Pi223ZQvaax/suX2zfd/+Rrnsuua4+kjGzxWcyz+j2U3PBizb2+8PISxOFY6pENdGn2HSinnJXlM4+VndLHvPadFWtSlfWyR8bF5OmScdWmbHWJ/6JAOdUmHjvqnjfXX9nIWw6dDOtQlHWJVWqRFXRp9i8xXr0SHdKhL+9gh4wPYVT7jNbxL+/j30WyeDulQl0bfIXMeK9EhHerSPnbI+Ng8HTLOurSPc69sng7pUJd06Cj35y1Pi7SoS1rEKnRIh7o0+g6Zq16JDulQl/axQ3s5PjwYbbc9trH+llrrFxe8/96N9cvmvut47z1hf324trF+g5bbN98/hK9p60opN0vy0MbLf7LBQ96rsb7NsXinUsozSyl/UUq5spRybSnlowfrv1NK+cFSSjP4HE+HdKgTI+vQIv84yblT6x9J8oqO9r3PtEiLOrHHLTI+Nk+HjLNO9NAh9ocO6VAndOioUsqPJvmeqZeuS/IrPZ3O0OmQDnViZB0yV909LdKiToysRYuYr25Ph3SoE3vcIeMD2FU+4zW8E3v899HzmPfolg7pUCdG1qFFzHm0p0M61Ik97pDxsXk6ZJx1Yo/nXtk8HdKhTujQUe7Pa02LtKgTI2uRuepu6ZAOdWJkHVrEXHV7OqRDndjjDu3l+PBgtB1VSrlJkic2Xn7hCZs1n1j4Ny0P+4HG+i1KKTdvuY+ufbyxftuW2zff/6VrnMsu+6EkN5pa/1Q29HT9g/9IbP6HYtux2Hz/PVpse5ckF2US4fOTXD/JrQ/WvzvJ05P8TSnlPx78nHEMHTpDh7oxpg4t0vyZelat9bqO9r2XtOgMLerGvrbI+NggHTrDOOvG1jrE/tChM3SoG6PuUCnlxqWULy2lPKGU8rok/6nxlp+utb6tj3MbMh06Q4e6MaYOmavukBadoUXdGFOLFjFf3YIOnaFD3djXDhkfwM7xGX+GhndjX/8+eh7zHh3RoTN0qBtj6tAi5jxa0KEzdKgb+9oh42ODdOgM46wb+zr3ygbp0Bk61I1Rd8j9eavTojO0qBtjapG56o7o0Bk61I0xdWgRc9Ut6NAZOtSNfe3QXo4PD0bbXT+f5DZT659M8lsnbHN+Y/3v2hyw1npVkmsaL5/XZh8b8K7G+tcuu2Ep5U5Jbtd4ue+vZ+tKKaeS/JvGy79aa20+DbIrzXH4mVrr1S330Ry7XX/fbpzkSUn+rJRyn473vU90aEKH1qRDE6WUL0/ygMbLz1h3vyOgRRNatKY9b5HxsVk6NGGcramHDrE/dGhCh9Y0tg6VUs4vpdTpJclVSf4yycVJ/uHU269K8oO11l/s4VR3gQ5N6NCaxtahJZmrXp4WTWjRmrRownz1SnRoQofWtOcdMj6AXeQzfkLD17Tnfx+9KvMey9GhCR1akw5NmPNYiQ5N6NCa9rxDxsdm6dCEcbamPZ97ZbN0aEKH1jS2Drk/r3NaNKFFaxpbi5Zkrno5OjShQ2vSoQlz1SvRoQkdWtOed2gvx4cHo+2gUsqjkvxY4+Un11o/ccKmzacVf3aFwze3uekK++jS6xrrjyml3GjuO2f90zmv9f31bFUp5Zwkv5ejX/f7k/w/GzxsX+PwuiSXJPnZJI9Icv9M/tWm+yV5ZJJfzOwvM/dM8ppSyp1XOMe9pkNH6NAaRtahkzSfVP26WutlHex3b2nREVq0hhG0yPjYEB06wjhbQ08dYg/o0BE6tAYdOtZHkzw5yV1qrb/Z98kMkQ4doUNrGFmHzFV3TIuO0KI1jKxFJzFf3YIOHaFDaxhBh4wPYKf4jD9Cw9cwgr+Pnmbeo0M6dIQOrWFkHTqJOY8WdOgIHVrDCDpkfGyIDh1hnK1hBHOvbIgOHaFDa9ChY7k/bwladIQWrWFkLTJX3SEdOkKH1jCyDp3EXHULOnSEDq1hBB3ay/HhwWg7ppTylUn+S+PlVyf59SU2b4a7+XTKZTTD3dzntr0sk6d5nnZ+kqectFEp5Y5JfnLOH12vlHJuN6e2E34ryf82tf6FJE9Y4V9DaqOPcfizSW5fa/3GWuv/VWv9/VrrpbXWy2qtb621vqTW+n8muXOS/ztJndr2NkleUEopK5znXtKhGTq0nrF0aKGDX6S/p/Gyp3svoEUztGg9+94i42MDdGiGcbaePjrEjtOhGTq0Hh2a74Ik/yzJD5dSbtb3yQyNDs3QofWMpUPmqjumRTO0aD1jadFC5qvb0aEZOrSefe+Q8QHsDJ/xMzR8Pfv+99GnmffokA7N0KH1jKVDC5nzaEeHZujQeva9Q8bHBujQDONsPfs+98oG6NAMHVqPDs3n/rwTaNEMLVrPWFpkrrpDOjRDh9Yzlg4tZK66HR2aoUPr2fcO7eX48GC0HVJKuVMmA3E6lh9I8j211jp/q4W2tc3G1Fr/PsmvNl7+yVLKvzhum1LKHZK8Msl5x+22o9MbtFLKv0vyTxov/3St9fVbPpWNj8OD/3htPr173vuuqbX+dJIfb/zR/ZP84zbH3Fc6NEuHVjemDi3hkUluMbX+qSTP7/gYe0OLZmnR6sbQIuOjezo0yzhb3YA6xA7RoVk6tLoRd+jTSe4ytdwtkzmgRyf5j0muOHjfHZP8XJK3l1K+uofzHCQdmqVDqxtTh8xVd0uLZmnR6sbUoiWYr16SDs3SodWNoUPGB7ArfMbP0vDVDegz3j16O0SHZunQ6sbUoSWY81iSDs3SodWNoUPGR/d0aJZxtroBdYgdokOzdGh1I+6Q+/PWpEWztGh1Y2qRueru6NAsHVrdmDq0BHPVS9KhWTq0ujF0aF/Hx9l9nwDLKaXcOsl/T3L7qZcvT/LQWusV87eacVVjfZUn8zW3ae6zD09L8rAcPpmxJPmVUspjM3k66lszeRLn7Q7e98M5/PD7YJI7TO3rmlrrzJM+Symnlj2ZWuv7W519D0opT8rkqdfTfrnW+gtLbn9q2WPNuR6DH4e11l8rpXxzkkdMvfwjSX63y+PsGh1aSIda0qEZT2ys/26ttfkUaaJFJ9CilkbWoo2Pj7HQoYV0qKWeO8SO0qGFdKilMXeo1vrFJO+f80eXJnlhKeVnk/yHJD928PqdkrymlPKgWus7tnOWw6RDC+lQS2Pu0DLMVR9PixbSopa0aIb56iXo0EI61NLIOmSuGhg0n/EL+YxvaWR/H92aeY/5dGghHWpJh2aY81iCDi2kQy2NrEPmPDqiQwvpUEsjm3ulIzq0kA61NOYOuT9vPVq0kBa1NOYWLcNc9Xw6tJAOtaRDM8xVL0GHFtKhlkbWob2bq/ZgtB1QSvmSJK9Jcs+plz+W5CG11ve02NVehrvWem0p5dFJXp7kK6b+6MEHy3E+nskvDq+aeu2Tx7z3fS1OqbR479aVUn4gyS83Xv71Wuu/arGbda7HrozDn8/R/5D92lLK+bXW48bIXtOhxXSoHR06qpRyxyQPbbz8jFX3t8+0aDEtamdsLdrS+Nh7OrSYDrUzgA6xg3RoMR1qR4cWq7V+JsmPl1I+n+QnDl6+WZL/Ukr5Byv+C0M7T4cW06F2dGhp5qobtGgxLWpHi44yX70cHVpMh9oZW4fMVQND5jN+MZ/x7QzgM35XxqF5jyk6tJgOtaNDR5nzWI4OLaZD7YytQ+Y8uqFDi+lQOwPoEDtIhxbToXZ0aDH35x1PixbTona0aGnmqqfo0GI61I4OHWWuejk6tJgOtTO2Du3jXPVZfZ8Ai5VSzkvy6iRfPvXylZk8yfIvWu7uU431W7U8l5tkNtyDGMi11g8leWCSpyf5/BKbvDbJA5Jc3Xj98o5PbVBKKf8kyW/kaEyfmeRHt3gazXF4o1LKjVvu49aN9U2Mwz/J5GfttOslufcGjjN4OrQcHVqODs11UY7+TvbntdY/W2N/e0mLlqNFyxlri4yP9ejQcoyz5QykQ+wYHVqODi1Hh1p5cpIPT63fL8lDejqXXunQcnRoOTrUirnqKVq0HC1ajhbNdVHMVy+kQ8vRoeWMtUPGBzBEPuOXo+HLGchn/NDujTmOeY8DOrQcHVqODs11Ucx5LKRDy9Gh5Yy1Q8bHenRoOcbZcgbSIXaMDi1Hh5ajQ624P2+KFi1Hi5ajRa2Yqz6gQ8vRoeXo0FwXxVz1Qjq0HB1azlg7tG/jw4PRBqyUctMkr0zyD6Ze/nSSb621vnWFXTaffnnnlts33/+JWuuVc9/Zg1rr1bXWf5bkSzOZEHltkg8m+WySv0/yriTPyuQpqv+o1vr+JPdq7OYtWzvhLSulfFcmkZ7+uX9Oku/f5hP0a60fz9H/QEySO7XcTXMstnmy61JqrV9M8jeNl1v9srMPdKgdHVpMh2aVUkqS72287OneDVrUjhYtNvYWGR+r0aF2jLPFhtIhdosOtaNDi+lQO7XWzyZ5UePlb+3jXPqkQ+3o0GI61I656kNa1I4WLaZFs8xXn0yH2tGhxcbeIeMDGBKf8e1o+GJD+Ywf0r0xi5j3mNChdnRoMR2aZc7jZDrUjg4tNvYOGR+r0aF2jLPFhtIhdosOtaNDi+lQO+7PO6RF7WjRYlrUjrnqCR1qR4cW06FZ5qpPpkPt6NBiY+/QPo2Ps/s+AeY7+NdoXp7ka6devirJw2qtf7Libt/VWL97y+3v2lh/54rnsVG11vcledrBcpKva6z/8TH7LPNe3xWllMckeXYmT6k+7b8mecLBf7C10sH1eFcmT5g87e6ZHZ+LNMdim23b+GxjvflE172mQ6vToVk6dKxvSnKXqfXPZfJLNQe0aHVaNEuLDm1ifOwrHVqdDs0aYIfYATq0Oh2apUMre3djve3PzE7TodXp0CwdWtmo56oTLVqHFs3SomOZr15Ah1anQ7N06JC5aqBvPuNX5zN+1gA/44dyb8xJRj3voUOr06FZOnQscx4L6NDqdGiWDh0y57E8HVqdDs0aYIfYATq0Oh2apUMrG/X9eYkWrUOLZmnRysxV69BKdGiWDh3LXPUCOrQ6HZqlQ4f2Ya76rJPfwraVUs5N8tIkD556+TNJHl6Dc7dAAAAPuklEQVRrfdMau35HY/0rSik3arH9g07Y3045eKrqNzVefl0f57JJpZRHJHlujj4I8UVJHl9r/UI/ZzUzdpqBPNbBLzVfccL+unLLxvrHNnScwdGh7dAhHUryfY31F9RaP7HivvaOFm2HFmnRCccZxfg4jg5tx1jG2UA7xMDp0HbokA4t4fON9Rv0chY90KHt0CEdWsJo56oTLdoWLdKimK8+lg5thw7p0CJjGR/AdvmM346xNHygn/GD//voA6Od99Ch7dAhHYo5j2Pp0HbokA6dcJxRjI/j6NB2jGWcDbRDDJwObYcO6dASRnt/XqJF26JFWrQEc9U6tFE6pEMxV30sHdoOHdKhRYY8PjwYbWBKKTdM8pIkF069fE2SR9RaX7/OvmutH0nytqmXzs7RD4eTXNhYf8U65zMA35Tk1NT662qt7+npXDailPJtmTy58vpTL78syeNqrdf1c1ZJklc21i9sse3X5+iH0KW11o+ufUYNpZRbZvYprh/u+jhDpENbpUP96b1DpZTzkzy68fIz2u5nX2nRVmlRf3pv0RL2fnwcR4e2au/H2YA7xIDp0FbpECe5Q2N9E793DY4ObZUOcawxz1UnWrRlWjRi5quPp0NbpUMssvfjA9gun/FbtfcNH/Bn/OD/PnrM8x46tFU61J/eO2TO43g6tFU61J/eO7SEvR8fx9Ghrdr7cTbgDjFgOrRVOsRJRnl/XqJFW6ZFHMtctQ5tiQ6NmLnq4+nQVukQiwx2fHgw2oCUUs5J8oIkD5l6+XNJvqPW+gcdHeaFjfXvXfLcvizJ10y9dHWSV3d0Tn35qcb603s5iw0ppTw0yX9Lcs7Uy69O8pha67X9nNUZr0ry2an1rzsYY8u4qLHeHNNd+a4cbeRHk7xrQ8caDB3aOh3qzxA69N1Jbji1/v4kf7jivvaKFm2dFvVnCC06yV6Pj+Po0Nbt9TgbeIcYKB3aOh3iJN/cWB/E5P4m6dDW6RCLjHKuOtGiHmjRuJmvnkOHtk6HWGSvxwewXT7jt26vGz7wz/hd+PvoUc576NDW6VB/htAhcx5z6NDW6VB/htChk+z1+DiODm3dXo+zgXeIgdKhrdMhTjK6+/MSLeqBFrGIuepDOrQ5OjRu5qrn0KGt0yEWGez48GC0gSilnJ3keUkeNvXy55M8ttb6qg4P9ZwkX5haf3Qp5R5LbNccxM+rtV7T3WltVynlCUkeOvXSWzN58uNeKKV8Q5IX5+gvSH+YyS8Bn+vnrA7VWj+T5PmNl5tjbEYp5Z5JHjX10nVJfrfDUzt9nAuS/Gzj5d+vtdaujzUkOrRdOtSvgXTo+xrrv73vnVmGFm2XFvVrIC1adJy9Hh/H0aHt2vdxNvQOMUw6tF06xElKKQ9P8oDGyy/u41y2RYe2S4dYZKxz1YkWbZsWEfPVM3Rou3SIRfZ9fADb5TN+u/a94UP/jN+Bv48e5byHDm2XDvVrIB0y59GgQ9ulQ/0aSIcWHWevx8dxdGi79n2cDb1DDJMObZcOcZIx3p+XaNG2aRGLmKvWoW3QIWKueoYObZcOscjQx4cHow1AKeV6mQT1kVMvX5fkcbXWl3Z5rFrre5I8a+qlc5JcXEq54TGbpJTyyBz9F2+uTfLULs9rXQcffMu+99FJfnPqpeuSfF+t9brOT6wHpZSvS/LSJOdOvfz6JN9ea/3s/K168ZRMfjk57aJSyiOOe/PBGH1mjj6h8xm11vcu2OZLSynf3uakSim3yeT6XTD18rVJfr7NfnaNDq1Phw7p0MlKKV+V5P5TL30xycVt97NvtGh9WnRIi+Zua3ycQIfWZ5wd2qEOMSA6tD4dOqRDh0opDyilPOrkd85s99VJnt14+fW11rd3c2bDo0Pr06FDOnTIXHU7WrQ+LTqkRSczXz1Lh9anQ4d0aJbxAfTFZ/z6NPzQDn3GPyXu0RsMHVqfDh3SoZOZ85ilQ+vToUM6NHdb4+MEOrQ+4+zQDnWIAdGh9enQIR065P68drRofVp0SIsOmateng6tT4cO6dDJzFXP0qH16dAhHZq1b+Nj6S+GjfrtJN/ZeO1nklxaSjnVcl+XL/GkyX+byb9gc/OD9QcmeU0p5ftrrX95+k2llBsk+cEkv9TY/pdqrR9Y5mRKKXfI/HF2m8b62Qu+1qtqrR874VBvL6W8LMl/S/LHtdYvzjmX+yb56SSPb/zRz9RaLz1h/53Y9PUopdwvySuS3GTq5Xcn+dEkty6ltDnda2qtl7fZoI1a61+XUn41yU9Ovfz8Usq/TPL/1VqvPf1iKeVeSX4rk7F62sdz8i8Qt03yklLK25P8TpIXHvzyMqOUctMkT8jkyd4XNP7439da/3qJL2uX6ZAO6dBE1x06zhMb66+qtf7tivvaJ1qkRVo0sakW7cT46JkO6dDoOpRsb3yUUm6S5JbH/HFzQvmWC471wSFNrnVMh3RIh47qanzcIckLSinvyOQv0F6U5N21zv9Xlkop907yQ0l+pHFe1xy8ts90SId06Kiuxoe56na0SIu06Kiux0eT+epZOqRDOnTUKMcHsJd8xo+k4T7jD7lHb3B0SId0aMI9ev3RIR3SoQn35/VHh3RodB1K3J83MDqkQzp0lPvz+qFFWqRFR7lHb/t0SId06Cj3522fDumQDh01yvGxtFqrpeclSe1wuXDJY16Y5HONbb+Y5E+T/F6SVyb5uzn7//0k12vxtb2/g6/p4iWO87Gp9/99kjdl8kP6nCSvXnAe/27L3+uNXo9M/kWjrsbSJVu4HtdL8vI5x/5oJh9Az0vyloOxOf3nn0vy9UuO8+a+P5nkDZlMsD07yQsPjvH5Y67D0/tuxJbGpg7pkA5toEPHHPMGmdwoMb2/x/TZgKEsHY4dLdKip3Q4li7ZwvXYSot2ZXz0uXQ4bnRo4ONs09cju9ehbY2Pizq6Jqf67sUGvxc6pEM6tJnr8R1z3v/pg/HxkkxugHhektckufyY/X8myUP67sQWvhc6pEM6tJnrceGc95urPv56aZEWadEGx0fjmOar518XHdIhHTI+LBbLHi4dNtln/MAbvunrkd37jHeP3kCWDseNDunQUzocS5ds4Xq4R28gS4fjRod06CkdjqVLtnA93J83kKXDcaNDAx9nm74e2b0ObWt8XNTRNTnVdy82+L3QIR3Soc1cD/fntft+aJEWadFmrseFc95vrnr+tdIhHdKhDY6PxjHNVc+/LjqkQzpkfCy9zHuSHCNQa72klPKoJBcnudXByyXJAw6WeZ6b5AdqrV/Y/Bmu5SZJvu6E91yZ5Edqrf//Fs6HY9Rav1BK+c5M/mWlx0390a2TfOsxm/1dkifUWv9oxcOel+RBS7zv6iQ/UWv9zRWPwwl0SIeGoKcOPSrJl0ytX5HJRD890CItGoKeWmR8DIQOGWfQNx3SoRG7aU4eH6e9OckP1VrftsHzGS0d0qERM1c9IFqkRSNmvnogdEiHRsz4APaaz3gNHwL36I2bDunQELhHb9x0SIeGwP1546ZDxhn0TYd0aMTcnzcgWqRFI2aueiB0SIdGzFz1QOiQDo3Yzo+Ps/o+AfpTa315kvsm+Y1MBupx3pzksbXWx9dar97KybX3K0kuzeSpnIv8bZKfS3K3of5Qjk2t9apa63cl+T8yGWvH+USSX09y31rrK5fc/buSPC3JG5N8dslt/irJz2TyL5z4j9gN0yEdGoINd2ieJzbWn11r/fwa+2NNWqRFQ7ClFhkfA6VDxhn0TYd0aAT+MJN/Ffe5ST645DafSfL8JN+e5IFuutosHdKhETBXvQO0SItGynz1gOiQDo2I8QGMis94DR8C9+iNmw7p0BC4R2/cdEiHhsD9eeOmQ8YZ9E2HdGgE3J+3A7RIi0bAXPXA6ZAOjZS56gHRIR0akb0aH6XW2vc5MACllHMyeerxnZPcJpOnG38oyaW11vf1eW5tlFJuluR+Se6SyZM6b5jJf8B8KMmf11rf2ePpsYRSyl2S3D/J7ZLcOMnlST6Q5I211mvX2O9ZSe6R5G5Jbp/k/ByOjyuTfCTJn9Zar1jrC2BlOsRQbKpD7AYtYig22SLjY9h0COibDjEGpZQLktwrk3F+iyQ3SvL5JJ9O8vEk70jy7h34l332kg6x78xV7wYtAvqmQ4yB8QGMkc94hsI9euOlQwyFe/TGS4cYCvfnjZcOAX3TIcbA/XnDp0XsO3PVw6dDQN90iDHYl/HhwWgAAAAAAAAAAAAAAAAAAAAAAABA787q+wQAAAAAAAAAAAAAAAAAAAAAAAAAPBgNAAAAAAAAAAAAAAAAAAAAAAAA6J0HowEAAAAAAAAAAAAAAAAAAAAAAAC982A0AAAAAAAAAAAAAAAAAAAAAAAAoHcejAYAAAAAAAAAAAAAAAAAAAAAAAD0zoPRAAAAAAAAAAAAAAAAAAAAAAAAgN55MBoAAAAAAAAAAAAAAAAAAAAAAADQOw9GAwAAAAAAAAAAAAAAAAAAAAAAAHrnwWgAAAAAAAAAAAAAAAAAAAAAAABA7zwYDQAAAAAAAAAAAAAAAAAAAAAAAOidB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9M6D0QAAAAAAAAAAAAAAAAAAAAAAAIDeeTAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgdx6MBgAAAAAAAAAAAAAAAAAAAAAAAPTOg9EAAAAAAAAAAAAAAAAAAAAAAACA3nkwGgAAAAAAAAAAAAAAAAAAAAAAANA7D0YDAAAAAAAAAAAAAAAAAAAAAAAAeufBaAAAAAAAAAAAAAAAAAAAAAAAAEDvPBgNAAAAAAAAAAAAAAAAAAAAAAAA6J0HowEAAAAAAAAAAAAAAAAAAAAAAAC982A0AAAAAAAAAAAAAAAAAAAAAAAAoHcejAYAAAAAAAAAAAAAAAAAAAAAAAD0zoPRAAAAAAAAAAAAAAAAAAAAAAAAgN55MBoAAAAAAAAAAAAAAAAAAAAAAADQOw9GAwAAAAAAAAAAAAAAAAAAAAAAAHrnwWgAAAAAAAAAAAAAAAAAAAAAAABA7zwYDQAAAAAAAAAAAAAAAAAAAAAAAOidB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9O5/AXpnFOxFOo7tAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "from uuid import UUID\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor\n", + "\n", + "\n", + "location_names = {\n", + " UUID('53998a51-60de-48ae-b71a-5c37cd1455f2'): \"Loft\",\n", + " UUID('1bc63cda-e223-48bc-93c2-c1f651779d69'): \"Living Room\",\n", + " UUID('ea0683de-6772-4678-bfe7-6014f54ffc8e'): \"Office\",\n", + " UUID('5aaa901a-7564-41fb-8eba-50cdd6fe9f80'): \"Outside\",\n", + "}\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 10), dpi=300)\n", + " configs = get_known_configs().values()\n", + " for i, config in enumerate(configs, start=1):\n", + " plot = figure.add_subplot(2, 2, i)\n", + " coros.append(plot_sensor(config, plot, location_names))\n", + " await asyncio.gather(*coros)\n", + "\n", + "display(figure)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9f576f5bb8e34cb8ab1d3c09f770d027", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(DatePicker(value=None, description='Start date'), DatePicker(value=None, description='En…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "from uuid import UUID\n", + "import functools\n", + "from concurrent.futures import ThreadPoolExecutor\n", + "\n", + "import ipywidgets as widgets\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor\n", + "\n", + "\n", + "def wrap_coroutine(f):\n", + " @functools.wraps(f)\n", + " def run_in_thread(*args, **kwargs):\n", + " loop = asyncio.new_event_loop()\n", + " wrapped = f(*args, **kwargs)\n", + " with ThreadPoolExecutor(max_workers=1) as pool:\n", + " task = pool.submit(loop.run_until_complete, wrapped)\n", + " return task.result()\n", + " return run_in_thread\n", + "\n", + "@wrap_coroutine\n", + "async def plot(*args, **kwargs):\n", + " location_names = {\n", + " UUID('53998a51-60de-48ae-b71a-5c37cd1455f2'): \"Loft\",\n", + " UUID('1bc63cda-e223-48bc-93c2-c1f651779d69'): \"Living Room\",\n", + " UUID('ea0683de-6772-4678-bfe7-6014f54ffc8e'): \"Office\",\n", + " UUID('5aaa901a-7564-41fb-8eba-50cdd6fe9f80'): \"Outside\",\n", + " }\n", + "\n", + " with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 10), dpi=300)\n", + " configs = get_known_configs().values()\n", + " for i, config in enumerate(configs, start=1):\n", + " plot = figure.add_subplot(2, 2, i)\n", + " coros.append(plot_sensor(config, plot, location_names, *args, **kwargs))\n", + " await asyncio.gather(*coros)\n", + " return figure\n", + "\n", + "\n", + "start = widgets.DatePicker(\n", + " description='Start date',\n", + ")\n", + "end = widgets.DatePicker(\n", + " description='End date',\n", + ")\n", + "out = widgets.interactive(plot, collected_after=start, collected_before=end)\n", + "display(out)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "60091fa7d9ea415985ec53937e422b4a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(DatePicker(value=None, description='Start date'), DatePicker(value=None, description='En…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from uuid import UUID\n", + "import ipywidgets as widgets\n", + "from apd.aggregation.analysis import interactable_plot_multiple_charts, configs\n", + "\n", + "location_names = {\n", + " UUID('53998a51-60de-48ae-b71a-5c37cd1455f2'): \"Loft\",\n", + " UUID('1bc63cda-e223-48bc-93c2-c1f651779d69'): \"Living Room\",\n", + " UUID('ea0683de-6772-4678-bfe7-6014f54ffc8e'): \"Office\",\n", + " UUID('5aaa901a-7564-41fb-8eba-50cdd6fe9f80'): \"Outside\",\n", + "}\n", + "\n", + "start = widgets.DatePicker(\n", + " description='Start date',\n", + ")\n", + "end = widgets.DatePicker(\n", + " description='End date',\n", + ")\n", + "\n", + "plot = interactable_plot_multiple_charts(location_names=location_names)\n", + "out = widgets.interactive(plot, collected_after=start, collected_before=end)\n", + "display(out)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "08a4d937037b45bda2298879df7f80b6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(DatePicker(value=None, description='Start date'), DatePicker(value=None, description='En…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import datetime\n", + "import uuid\n", + "import ipywidgets as widgets\n", + "from apd.aggregation.analysis import Config, configs, interactable_plot_multiple_charts, draw_map, get_map_cleaner_for\n", + "from apd.aggregation.database import DataPoint\n", + "from apd.aggregation.utils import merc_x, merc_y\n", + "\n", + "start = widgets.DatePicker(description='Start date')\n", + "end = widgets.DatePicker(description='End date')\n", + "\n", + "def get_literal_data():\n", + " # Get manually entered temperature data, as our particular deployment\n", + " # does not contain data of this shape\n", + " raw_data = {(53.8667, -1.3333): -1, (53.35, -2.2833): 1, (52.45, -1.7333): 3, (51.5, -0.1333): 6, (51.55, -2.5667): 5, (54.9667, -1.6167): -1, (55.9667, -3.2167): -1, (54.7667, -1.5833): 0, (53.7667, -0.3): 1, (53.7667, -3.0167): 0, (51.4833, -3.1833): 4, (53.2667, -3.5167): 2, (52.0833, -2.8): 2, (52.0167, -0.6): 2, (52.6667, 1.2667): 5, (50.4333, -4.9833): 9, (50.35, -4.1167): 10, (50.5167, -2.45): 9, (50.8333, -1.1667): 9, (56.45, -5.4333): 4, (57.5333, -4.05): -2, (54.5167, -3.6167): 3, (53.0833, 0.2667): 4, (51.35, 1.3333): 7, (50.8833, 0.3167): 8, (58.45, -3.1): 3, (50.1, -5.6667): 9, (58.2167, -6.3333): 4, (55.6833, -6.25): 7}\n", + " now = datetime.datetime.now()\n", + " async def points():\n", + " for (coord, temp) in raw_data.items():\n", + " deployment_id = uuid.uuid4()\n", + " yield DataPoint(sensor_name=\"Location\", deployment_id=deployment_id, collected_at=now, data=coord)\n", + " yield DataPoint(sensor_name=\"Temperature\", deployment_id=deployment_id, collected_at=now, data=temp)\n", + " async def deployments(*args, **kwargs):\n", + " yield None, points()\n", + " return deployments\n", + "\n", + "def draw_map_with_gb(plot, x, y, colour):\n", + " # Draw the map and add an explicit coastline\n", + " gb_boundary = [(-2.6653539699999556, 51.617254950000074), (-2.6937556629999335, 51.59617747600004), (-2.71312415299991, 51.58661530200004), (-2.760487433999913, 51.579779364000046), (-2.7980850899999155, 51.56350332200009), (-2.816395636999914, 51.555568752000056), (-2.8587133449999556, 51.546128648000035), (-2.943348761999914, 51.54254791900007), (-2.9562882149999155, 51.54572174700007), (-2.9641007149999155, 51.552801825000074), (-2.969471808999913, 51.559881903000075), (-2.9746801419999542, 51.56297435100004), (-2.984038865999935, 51.55853913000004), (-3.0102432929999168, 51.53803131700005), (-3.0156957669999542, 51.53164297100005), (-3.0737198559999115, 51.50836823100008), (-3.0764867829999503, 51.50775788000004), (-3.088937954999949, 51.505072333000044), (-3.105620897999927, 51.49721914300005), (-3.1317032539999445, 51.48041413000004), (-3.1350805329999503, 51.47630442900004), (-3.1409399079999503, 51.46478913000004), (-3.1453751289999445, 51.45994700700004), (-3.1524145169999542, 51.45718008000006), (-3.1666560539999296, 51.45600006700005), (-3.1723933579999084, 51.45327383000006), (-3.1727188789999445, 51.453111070000034), (-3.160064256999931, 51.43183014500005), (-3.167144334999932, 51.41046784100007), (-3.1848038399999155, 51.39760976800005), (-3.204009568999936, 51.401597398000035), (-3.218861456999946, 51.402777411000045), (-3.289418097999942, 51.38422272300005), (-3.539173956999946, 51.398504950000074), (-3.557443813999953, 51.40509674700007), (-3.5753067699999406, 51.420436916000085), (-3.6047257149999155, 51.44570547100005), (-3.6631973949999406, 51.476223049000055), (-3.6769913399999155, 51.47703685100004), (-3.695423956999946, 51.47150299700007), (-3.717925584999932, 51.478583075000074), (-3.7376195949999556, 51.49087148600006), (-3.748036261999914, 51.50092194200005), (-3.7494197259999282, 51.50535716400009), (-3.747670050999943, 51.507025458000044), (-3.7445369129999335, 51.50763580900008), (-3.741851365999935, 51.50836823100008), (-3.7493383449999556, 51.52806224200003), (-3.7519018219999225, 51.53306712400007), (-3.758941209999932, 51.54677969000005), (-3.770130988999938, 51.56329987200007), (-3.782215949999909, 51.57664622600004), (-3.7902725899999155, 51.58197663000004), (-3.8077286449999406, 51.589178778000075), (-3.8169652989999463, 51.59650299700007), (-3.8326716789999296, 51.61554596600007), (-3.8416235019999476, 51.621527411000045), (-3.8548884759999282, 51.62384674700007), (-3.8867895169999542, 51.62140534100007), (-3.9623917309999115, 51.61562734600005), (-3.9766332669999542, 51.61188385600008), (-3.989979620999918, 51.60651276200008), (-3.998768683999913, 51.60028717700004), (-3.999908006999931, 51.59088776200008), (-3.9922582669999542, 51.58112213700008), (-3.9818009109999366, 51.571600653000075), (-3.974598761999914, 51.56297435100004), (-4.016184048999946, 51.56297435100004), (-4.016102667999917, 51.56037018400008), (-4.0208227199999556, 51.555853583000044), (-4.026519334999932, 51.554022528000075), (-4.029204881999931, 51.55927155200004), (-4.031971808999913, 51.56313711100006), (-4.0385636059999115, 51.56622955900008), (-4.046457485999952, 51.568426825000074), (-4.0531306629999335, 51.569240627000056), (-4.056304490999935, 51.56704336100006), (-4.065581834999932, 51.55756256700005), (-4.070220506999931, 51.555568752000056), (-4.0768123039999296, 51.55695221600007), (-4.087269660999937, 51.56191640800006), (-4.112131313999953, 51.565619208000044), (-4.121652798999946, 51.56598541900007), (-4.132191535999937, 51.56297435100004), (-4.142730272999927, 51.55695221600007), (-4.156809048999946, 51.54629140800006), (-4.1664119129999335, 51.54254791900007), (-4.176503058999913, 51.544256903000075), (-4.18773352799991, 51.54877350500004), (-4.1967667309999115, 51.54938385600008), (-4.200550910999937, 51.538763739000046), (-4.213368292999917, 51.539129950000074), (-4.272450324999909, 51.554754950000074), (-4.2899063789999445, 51.555568752000056), (-4.293324347999942, 51.55914948100008), (-4.29515540299991, 51.56195709800005), (-4.297352667999917, 51.569240627000056), (-4.278309699999909, 51.578192450000074), (-4.280832485999952, 51.58881256700005), (-4.2897029289999296, 51.601548570000034), (-4.2899063789999445, 51.61701080900008), (-4.255767381999931, 51.62384674700007), (-4.252023891999954, 51.62710195500006), (-4.241281704999949, 51.63934967700004), (-4.234730597999942, 51.644964911000045), (-4.228505011999914, 51.63743724200003), (-4.234730597999942, 51.63743724200003), (-4.234730597999942, 51.631293036000045), (-4.2278539699999556, 51.628119208000044), (-4.22101803299995, 51.62384674700007), (-4.1900935539999296, 51.63027578300006), (-4.139027472999942, 51.63231028900009), (-4.0912979809999115, 51.639878648000035), (-4.070220506999931, 51.66229889500005), (-4.0698136059999115, 51.66893138200004), (-4.070383266999954, 51.67430247600004), (-4.07054602799991, 51.67597077000005), (-4.0754288399999155, 51.677801825000074), (-4.087269660999937, 51.668850002000056), (-4.095448370999918, 51.66510651200008), (-4.106841600999928, 51.66425202000005), (-4.146351691999939, 51.66705963700008), (-4.200550910999937, 51.68585846600007), (-4.214955206999946, 51.679673570000034), (-4.293690558999913, 51.67226797100005), (-4.3152970039999445, 51.67747630400004), (-4.342355923999946, 51.69086334800005), (-4.3664444649999155, 51.70848216400009), (-4.379261847999942, 51.72687409100007), (-4.338042772999927, 51.72333405200004), (-4.319976365999935, 51.72483958500004), (-4.310454881999931, 51.733710028000075), (-4.328724738999938, 51.73297760600008), (-4.3471573559999115, 51.73578522300005), (-4.3625382149999155, 51.74286530200004), (-4.371815558999913, 51.754787502000056), (-4.368763800999943, 51.75698476800005), (-4.362904425999943, 51.76386139500005), (-4.358021613999938, 51.773138739000046), (-4.358225063999953, 51.782131252000056), (-4.365101691999939, 51.789048570000034), (-4.3714900379999335, 51.78595612200007), (-4.379261847999942, 51.77529531500005), (-4.384917772999927, 51.77187734600005), (-4.3929744129999335, 51.763739325000074), (-4.399159308999913, 51.76162344000005), (-4.409331834999932, 51.76316966400009), (-4.417876756999931, 51.76788971600007), (-4.426503058999913, 51.77529531500005), (-4.445790167999917, 51.77326080900008), (-4.449330206999946, 51.76630280200004), (-4.441395636999914, 51.75678131700005), (-4.426503058999913, 51.747300523000035), (-4.460764126999948, 51.73578522300005), (-4.4988907539999445, 51.73484935100004), (-4.574208136999914, 51.74115631700005), (-4.603423631999931, 51.73924388200004), (-4.639230923999946, 51.73318105700008), (-4.6453751289999445, 51.732123114000046), (-4.678212042999917, 51.71743398600006), (-4.680287238999938, 51.692694403000075), (-4.689442511999914, 51.69159577000005), (-4.69163977799991, 51.689886786000045), (-4.69163977799991, 51.685980536000045), (-4.693959113999938, 51.67841217700004), (-4.712310350999928, 51.650091864000046), (-4.721424933999913, 51.652044989000046), (-4.734934048999946, 51.65924713700008), (-4.741851365999935, 51.65607330900008), (-4.759185350999928, 51.644964911000045), (-4.8482966789999296, 51.64630768400008), (-4.86351477799991, 51.64411041900007), (-4.878977016999954, 51.63743724200003), (-4.887806769999941, 51.62995026200008), (-4.8957413399999155, 51.621079820000034), (-4.904774542999917, 51.61383698100008), (-4.923695441999939, 51.608628648000035), (-4.931996222999942, 51.59902578300006), (-4.941029425999943, 51.59650299700007), (-4.946034308999913, 51.59760163000004), (-4.956450975999928, 51.602769273000035), (-5.021595831999946, 51.61603424700007), (-5.0457657539999445, 51.62689850500004), (-5.0366104809999115, 51.63743724200003), (-5.0511775379999335, 51.65692780200004), (-5.100493943999936, 51.66469961100006), (-5.119740363999938, 51.67841217700004), (-5.113433397999927, 51.68528880400004), (-5.0366104809999115, 51.67841217700004), (-5.038726365999935, 51.68183014500005), (-5.04133053299995, 51.68939850500004), (-5.043446417999917, 51.692694403000075), (-5.028675910999937, 51.69293854400007), (-5.002552863999938, 51.68740469000005), (-4.988189256999931, 51.68585846600007), (-4.974598761999914, 51.687933661000045), (-4.941029425999943, 51.70014069200005), (-4.892648891999954, 51.706366278000075), (-4.868275519999941, 51.716782945000034), (-4.8580623039999296, 51.71832916900007), (-4.844838019999941, 51.71381256700005), (-4.844838019999941, 51.720038153000075), (-4.873402472999942, 51.73773834800005), (-4.879017706999946, 51.76203034100007), (-4.8625382149999155, 51.78237539300005), (-4.824330206999946, 51.788275458000044), (-4.824330206999946, 51.79572174700007), (-4.836008266999954, 51.790716864000046), (-4.864979620999918, 51.783270575000074), (-4.921294725999928, 51.78001536700003), (-4.933583136999914, 51.77529531500005), (-4.9172257149999155, 51.77533600500004), (-4.905181443999936, 51.771185614000046), (-4.900542772999927, 51.76211172100005), (-4.906239386999914, 51.747300523000035), (-4.8920792309999115, 51.73940664300005), (-4.895659959999932, 51.728176174000055), (-4.9105525379999335, 51.71820709800005), (-4.988189256999931, 51.70685455900008), (-5.009917772999927, 51.706366278000075), (-5.149240688999953, 51.718085028000075), (-5.166900193999936, 51.71381256700005), (-5.156971808999913, 51.69757721600007), (-5.1686091789999296, 51.68891022300005), (-5.1828507149999155, 51.68927643400008), (-5.180653449999909, 51.70014069200005), (-5.180653449999909, 51.706366278000075), (-5.230132615999935, 51.73004791900007), (-5.2495011059999115, 51.733710028000075), (-5.228138800999943, 51.73395416900007), (-5.213937954999949, 51.73574453300006), (-5.202870245999918, 51.74079010600008), (-5.191151495999918, 51.75104401200008), (-5.176828579999949, 51.75967031500005), (-5.1432185539999296, 51.76386139500005), (-5.125965949999909, 51.76850006700005), (-5.110259568999936, 51.778509833000044), (-5.107085740999935, 51.78807200700004), (-5.112294074999909, 51.81317780200004), (-5.113392706999946, 51.82880280200004), (-5.11750240799995, 51.84369538000004), (-5.125884568999936, 51.85602448100008), (-5.139637824999909, 51.86399974200003), (-5.146473761999914, 51.85716380400004), (-5.16437740799995, 51.86676666900007), (-5.2037654289999296, 51.87018463700008), (-5.221587693999936, 51.87767161700003), (-5.2358292309999115, 51.87103913000004), (-5.2914119129999335, 51.86399974200003), (-5.3109431629999335, 51.86399974200003), (-5.304269985999952, 51.867621161000045), (-5.297352667999917, 51.87018463700008), (-5.297352667999917, 51.87767161700003), (-5.300689256999931, 51.882025458000044), (-5.302561001999948, 51.88523997600004), (-5.300160285999937, 51.888332424000055), (-5.2905167309999115, 51.89199453300006), (-5.2905167309999115, 51.898138739000046), (-5.2983292309999115, 51.91095612200007), (-5.288929816999939, 51.91693756700005), (-5.252837693999936, 51.91864655200004), (-5.234201626999948, 51.923041083000044), (-5.204172329999949, 51.942287502000056), (-5.191151495999918, 51.946600653000075), (-5.16038977799991, 51.94944896000004), (-5.1195369129999335, 51.95892975500004), (-5.088042772999927, 51.97601959800005), (-5.085031704999949, 52.00185781500005), (-5.070790167999917, 52.00185781500005), (-5.070790167999917, 52.00804271000004), (-5.082753058999913, 52.01447174700007), (-5.081206834999932, 52.021185614000046), (-5.070220506999931, 52.02635325700004), (-5.053700324999909, 52.028509833000044), (-5.0266007149999155, 52.027411200000074), (-5.015044725999928, 52.02533600500004), (-4.961740688999953, 52.007513739000046), (-4.942534959999932, 52.007473049000055), (-4.913685675999943, 52.014837958000044), (-4.920521613999938, 52.028509833000044), (-4.9016007149999155, 52.02643463700008), (-4.863189256999931, 52.01699453300006), (-4.841420050999943, 52.014837958000044), (-4.83226477799991, 52.01898834800005), (-4.833851691999939, 52.02875397300005), (-4.8382869129999335, 52.04010651200008), (-4.838002081999946, 52.04901764500005), (-4.83039303299995, 52.05292389500005), (-4.796986456999946, 52.05646393400008), (-4.77757727799991, 52.064886786000045), (-4.7631729809999115, 52.075873114000046), (-4.7386775379999335, 52.100816148000035), (-4.720285610999952, 52.113348700000074), (-4.7065323559999115, 52.11347077000005), (-4.673451300999943, 52.09739817900004), (-4.675689256999931, 52.126939195000034), (-4.637521938999953, 52.13849518400008), (-4.513824022999927, 52.13568756700005), (-4.50226803299995, 52.138373114000046), (-4.495757615999935, 52.14350006700005), (-4.490956183999913, 52.150376695000034), (-4.484283006999931, 52.156317450000074), (-4.454701300999943, 52.16205475500004), (-4.4348038399999155, 52.170355536000045), (-4.415394660999937, 52.18154531500005), (-4.385568813999953, 52.20343659100007), (-4.371245897999927, 52.20929596600007), (-4.3547257149999155, 52.212103583000044), (-4.334339972999942, 52.21283600500004), (-4.315825975999928, 52.21629466400003), (-4.197132941999939, 52.279282945000034), (-4.1390681629999335, 52.33022695500006), (-4.10960852799991, 52.365301825000074), (-4.096262173999946, 52.387884833000044), (-4.0873917309999115, 52.430121161000045), (-4.0789688789999445, 52.45302969000005), (-4.067941860999952, 52.47361888200004), (-4.056548631999931, 52.48786041900007), (-4.0618383449999556, 52.49705638200004), (-4.064035610999952, 52.50918203300006), (-4.062570766999954, 52.52098216400003), (-4.056548631999931, 52.52944570500006), (-4.048491990999935, 52.530462958000044), (-4.0266007149999155, 52.52338288000004), (-4.016184048999946, 52.52195872600004), (-3.998768683999913, 52.52594635600008), (-3.9473363919999542, 52.549261786000045), (-3.9473363919999542, 52.556708075000074), (-3.9744766919999392, 52.55654531500005), (-4.025868292999917, 52.545355536000045), (-4.0531306629999335, 52.54242584800005), (-4.068470831999946, 52.550116278000075), (-4.1141251289999445, 52.58860911700003), (-4.125477667999917, 52.60390859600005), (-4.122222459999932, 52.62872955900008), (-4.105946417999917, 52.653509833000044), (-4.0848282539999445, 52.67267487200007), (-4.067128058999913, 52.68024323100008), (-4.063547329999949, 52.68309153900003), (-4.05882727799991, 52.696600653000075), (-4.056548631999931, 52.70066966400003), (-4.052723761999914, 52.70221588700008), (-4.041981574999909, 52.70465729400007), (-4.001088019999941, 52.72410716400003), (-3.988270636999914, 52.73427969000005), (-4.014719204999949, 52.73232656500005), (-4.031971808999913, 52.723944403000075), (-4.048817511999914, 52.721584377000056), (-4.125152147999927, 52.77830638200004), (-4.144357876999948, 52.802801825000074), (-4.149037238999938, 52.81207916900007), (-4.146229620999918, 52.82021719000005), (-4.128895636999914, 52.82363515800006), (-4.117339647999927, 52.83075592700004), (-4.1197810539999296, 52.84625885600008), (-4.127756313999953, 52.86172109600005), (-4.132191535999937, 52.86831289300005), (-4.131988084999932, 52.882473049000055), (-4.129872199999909, 52.88922760600008), (-4.123605923999946, 52.89325592700004), (-4.064035610999952, 52.919175523000035), (-4.071400519999941, 52.921087958000044), (-4.074574347999942, 52.92279694200005), (-4.0776261059999115, 52.926662502000056), (-4.0891007149999155, 52.918850002000056), (-4.100493943999936, 52.914129950000074), (-4.1105850899999155, 52.915676174000055), (-4.118560350999928, 52.926662502000056), (-4.144398566999939, 52.91478099200003), (-4.171620245999918, 52.91347890800006), (-4.228505011999914, 52.919175523000035), (-4.300689256999931, 52.905585028000075), (-4.317290818999936, 52.89935944200005), (-4.337310350999928, 52.89203522300005), (-4.406605597999942, 52.89252350500004), (-4.4272354809999115, 52.885972398000035), (-4.446197068999936, 52.87592194200005), (-4.4816788399999155, 52.850897528000075), (-4.477935350999928, 52.84833405200004), (-4.475493943999936, 52.84414297100005), (-4.491363084999932, 52.83820221600007), (-4.500965949999909, 52.82680898600006), (-4.501332160999937, 52.81391022300005), (-4.4891251289999445, 52.803168036000045), (-4.501942511999914, 52.794989325000074), (-4.509185350999928, 52.791449286000045), (-4.5164688789999445, 52.789496161000045), (-4.5285538399999155, 52.79047272300005), (-4.5424698559999115, 52.80068594000005), (-4.5639542309999115, 52.80524323100008), (-4.583078579999949, 52.81464264500005), (-4.594634568999936, 52.81679922100005), (-4.606516079999949, 52.81509023600006), (-4.61351477799991, 52.81110260600008), (-4.619211391999954, 52.80654531500005), (-4.626332160999937, 52.803168036000045), (-4.648589647999927, 52.79962799700007), (-4.704497850999928, 52.803168036000045), (-4.719309048999946, 52.79751211100006), (-4.733225063999953, 52.78750234600005), (-4.747425910999937, 52.78343333500004), (-4.762847459999932, 52.789496161000045), (-4.752512173999946, 52.79877350500004), (-4.7514542309999115, 52.80320872600004), (-4.755441860999952, 52.80931224200003), (-4.7492569649999155, 52.81427643400008), (-4.734934048999946, 52.83047109600005), (-4.596058722999942, 52.92841217700004), (-4.580962693999936, 52.93349844000005), (-4.562082485999952, 52.93451569200005), (-4.543527798999946, 52.937933661000045), (-4.523996548999946, 52.944240627000056), (-4.443430141999954, 52.98216380400004), (-4.423695441999939, 53.00263092700004), (-4.358225063999953, 53.02846914300005), (-4.349964972999942, 53.04148997600004), (-4.345692511999914, 53.059475002000056), (-4.343861456999946, 53.10106028900003), (-4.340891079999949, 53.11273834800005), (-4.334339972999942, 53.11676666900007), (-4.3276261059999115, 53.11469147300005), (-4.324696417999917, 53.10789622600004), (-4.320668097999942, 53.10150788000004), (-4.312245245999918, 53.109442450000074), (-4.304758266999954, 53.12099844000005), (-4.303618943999936, 53.12531159100007), (-4.263539191999939, 53.15452708500004), (-4.2523494129999335, 53.159409898000035), (-4.234527147999927, 53.16400788000004), (-4.221302863999938, 53.175034898000035), (-4.200550910999937, 53.20099518400008), (-4.17796790299991, 53.21759674700007), (-4.151519334999932, 53.22809479400007), (-4.122222459999932, 53.23346588700008), (-4.0906876289999445, 53.23517487200007), (-4.08234615799995, 53.23354726800005), (-4.074330206999946, 53.23065827000005), (-4.066883917999917, 53.22907135600008), (-4.054107225999928, 53.234361070000034), (-4.032297329999949, 53.24070872600004), (-4.008900519999941, 53.24445221600007), (-3.974598761999914, 53.261786200000074), (-3.8653051419999542, 53.289129950000074), (-3.8312882149999155, 53.289129950000074), (-3.841420050999943, 53.30744049700007), (-3.870757615999935, 53.32562897300005), (-3.8784073559999115, 53.337591864000046), (-3.859974738999938, 53.33633047100005), (-3.840565558999913, 53.33283112200007), (-3.822987433999913, 53.32656484600005), (-3.8101293609999516, 53.31708405200004), (-3.7905167309999115, 53.323431708000044), (-3.7688695949999556, 53.31915924700007), (-3.748199022999927, 53.307806708000044), (-3.7319229809999115, 53.29287344000005), (-3.7162979809999115, 53.28693268400008), (-3.6022029289999296, 53.28888580900008), (-3.5623266269999476, 53.29441966400003), (-3.372059699999909, 53.350897528000075), (-3.33031165299991, 53.35179271000004), (-3.2923884759999282, 53.34052155200004), (-3.2713110019999476, 53.33055247600004), (-3.262074347999942, 53.32050202000005), (-3.250803188999953, 53.312567450000074), (-3.122222459999932, 53.26227448100008), (-3.107533331999946, 53.25189850500004), (-3.0951228509999282, 53.23932526200008), (-3.0877579419999392, 53.23468659100007), (-3.0845434239999463, 53.23859284100007), (-3.0845434239999463, 53.25857168200008), (-3.0845434239999463, 53.275458075000074), (-3.09593665299991, 53.28713613500008), (-3.1111954419999392, 53.302801825000074), (-3.1354060539999296, 53.33380768400008), (-3.171538865999935, 53.36225006700005), (-3.185210740999935, 53.37726471600007), (-3.186350063999953, 53.39276764500005), (-3.175526495999918, 53.40273672100005), (-3.157297329999949, 53.40875885600008), (-3.1146541009999282, 53.41266510600008), (-3.0942276679999168, 53.41738515800006), (-3.058257615999935, 53.434759833000044), (-3.0355525379999335, 53.43374258000006), (-3.0121964179999168, 53.41669342700004), (-2.9529516269999476, 53.323919989000046), (-2.9351293609999516, 53.309475002000056), (-2.9105525379999335, 53.29633209800005), (-2.8814998039999296, 53.288397528000075), (-2.850575324999909, 53.289129950000074), (-2.849598761999914, 53.29120514500005), (-2.848378058999913, 53.29555898600006), (-2.8449600899999155, 53.300116278000075), (-2.837554490999935, 53.302801825000074), (-2.8286026679999168, 53.302435614000046), (-2.813384568999936, 53.297756252000056), (-2.8061417309999115, 53.296576239000046), (-2.789784308999913, 53.29743073100008), (-2.775502081999946, 53.29987213700008), (-2.7481176419999542, 53.30963776200008), (-2.753651495999918, 53.32245514500005), (-2.750884568999936, 53.33161041900007), (-2.743153449999909, 53.33852773600006), (-2.734486456999946, 53.34442780200004), (-2.7261449859999516, 53.34198639500005), (-2.7174373039999296, 53.34271881700005), (-2.708607550999943, 53.346136786000045), (-2.6997777989999463, 53.35179271000004), (-2.7141007149999155, 53.35236237200007), (-2.764393683999913, 53.34516022300005), (-2.775380011999914, 53.341009833000044), (-2.782378709999932, 53.32636139500005), (-2.799794074999909, 53.32103099200003), (-2.810332811999956, 53.32172272300005), (-2.843658006999931, 53.323919989000046), (-2.886463995999918, 53.33356354400007), (-2.924956834999932, 53.35000234600005), (-2.956939256999931, 53.37055084800005), (-2.980824347999942, 53.39276764500005), (-3.096587693999936, 53.54433828300006), (-3.101918097999942, 53.55805084800005), (-3.0994766919999392, 53.57200755400004), (-3.087635870999918, 53.58771393400008), (-3.021839972999942, 53.65281810100004), (-2.968658006999931, 53.69403717700004), (-2.9603572259999282, 53.69757721600007), (-2.9517309239999463, 53.70807526200008), (-2.9114477199999556, 53.725043036000045), (-2.899037238999938, 53.73541901200008), (-2.9848526679999168, 53.73607005400004), (-3.021473761999914, 53.745794989000046), (-3.049183722999942, 53.769517320000034), (-3.056385870999918, 53.80304596600007), (-3.044911261999914, 53.87848541900007), (-3.056630011999914, 53.90615469000005), (-3.040679490999935, 53.923529364000046), (-3.017567511999914, 53.93195221600007), (-2.925689256999931, 53.95270416900007), (-2.909250454999949, 53.95384349200003), (-2.896107550999943, 53.94773997600004), (-2.8885391919999392, 53.94603099200003), (-2.885365363999938, 53.950506903000075), (-2.881988084999932, 53.95652903900003), (-2.874175584999932, 53.96165599200003), (-2.865142381999931, 53.96548086100006), (-2.8579809239999463, 53.96759674700007), (-2.869252081999946, 53.97882721600007), (-2.8344620429999168, 53.99982330900008), (-2.830067511999914, 54.01601797100005), (-2.8475235669999392, 54.00836823100008), (-2.864857550999943, 54.00429922100005), (-2.895497199999909, 54.00234609600005), (-2.900298631999931, 54.00495026200008), (-2.9160863919999542, 54.026556708000044), (-2.91820227799991, 54.03432851800005), (-2.911284959999932, 54.03998444200005), (-2.9007869129999335, 54.044907945000034), (-2.8920792309999115, 54.050116278000075), (-2.872670050999943, 54.071600653000075), (-2.8588761059999115, 54.08100006700005), (-2.826771613999938, 54.08881256700005), (-2.815174933999913, 54.09878164300005), (-2.795969204999949, 54.12518952000005), (-2.8128149079999503, 54.139878648000035), (-2.8364151679999168, 54.16758860900006), (-2.8509415359999366, 54.18463776200008), (-2.854237433999913, 54.19407786700003), (-2.8328751289999445, 54.19904205900008), (-2.810292120999918, 54.21190013200004), (-2.7952367829999503, 54.22947825700004), (-2.795969204999949, 54.24872467700004), (-2.8028051419999542, 54.24872467700004), (-2.806630011999914, 54.233710028000075), (-2.8208715489999463, 54.22174713700008), (-2.850575324999909, 54.20774974200003), (-2.886382615999935, 54.19627513200004), (-2.904652472999942, 54.18764883000006), (-2.9126684239999463, 54.176988023000035), (-2.9203995429999168, 54.16205475500004), (-2.939198370999918, 54.15509674700007), (-2.9842016269999476, 54.15314362200007), (-2.997710740999935, 54.15957265800006), (-3.011341925999943, 54.17413971600007), (-3.017323370999918, 54.19009023600006), (-3.008168097999942, 54.20034414300005), (-3.015370245999918, 54.21190013200004), (-3.024484829999949, 54.221584377000056), (-3.035755988999938, 54.22597890800006), (-3.049183722999942, 54.22207265800006), (-3.044667120999918, 54.208319403000075), (-3.047840949999909, 54.19432200700004), (-3.053537563999953, 54.181301174000055), (-3.056630011999914, 54.17023346600007), (-3.0610245429999168, 54.16193268400008), (-3.090728318999936, 54.13947174700007), (-3.10765540299991, 54.11855703300006), (-3.117909308999913, 54.10883209800005), (-3.145253058999913, 54.100043036000045), (-3.147450324999909, 54.08869049700007), (-3.1443985669999392, 54.07514069200005), (-3.1453751289999445, 54.063788153000075), (-3.1805313789999445, 54.09284088700008), (-3.1897680329999503, 54.09788646000004), (-3.2057185539999296, 54.098537502000056), (-3.219553188999953, 54.100775458000044), (-3.2311091789999296, 54.105129299000055), (-3.240956183999913, 54.11212799700007), (-3.2381078769999476, 54.12759023600006), (-3.232533331999946, 54.14468008000006), (-3.233143683999913, 54.15916575700004), (-3.248402472999942, 54.16681549700007), (-3.248402472999942, 54.17365143400008), (-3.215199347999942, 54.17983633000006), (-3.206776495999918, 54.20892975500004), (-3.2090551419999542, 54.24274323100008), (-3.207386847999942, 54.263006903000075), (-3.2231339179999168, 54.25763580900008), (-3.231353318999936, 54.24721914300005), (-3.240956183999913, 54.22207265800006), (-3.232167120999918, 54.20254140800006), (-3.247141079999949, 54.19794342700004), (-3.270130988999938, 54.19912344000005), (-3.2860001289999445, 54.19721100500004), (-3.306792772999927, 54.19188060100004), (-3.3285212879999335, 54.204738674000055), (-3.3644913399999155, 54.24249909100007), (-3.394195115999935, 54.26439036700003), (-3.407378709999932, 54.27773672100005), (-3.412912563999953, 54.29376862200007), (-3.41038977799991, 54.30145905200004), (-3.405995245999918, 54.30963776200008), (-3.4041235019999476, 54.31854889500005), (-3.4114477199999556, 54.33274974200003), (-3.4134415359999366, 54.342962958000044), (-3.4163305329999503, 54.344916083000044), (-3.440174933999913, 54.35175202000005), (-3.474273240999935, 54.39350006700005), (-3.497710740999935, 54.40582916900007), (-3.5918676419999542, 54.48309967700004), (-3.608143683999913, 54.488267320000034), (-3.613189256999931, 54.49164459800005), (-3.6236873039999296, 54.50608958500004), (-3.6341853509999282, 54.512884833000044), (-3.6268204419999392, 54.520412502000056), (-3.616200324999909, 54.52757396000004), (-3.61156165299991, 54.52993398600006), (-3.5903214179999168, 54.56464264500005), (-3.5638321609999366, 54.64276764500005), (-3.5301407539999445, 54.68805573100008), (-3.5160212879999335, 54.712876695000034), (-3.5091853509999282, 54.72166575700004), (-3.500721808999913, 54.72597890800006), (-3.478871222999942, 54.730902411000045), (-3.4681290359999366, 54.73529694200005), (-3.455433722999942, 54.745021877000056), (-3.439564581999946, 54.76146067900004), (-3.4309789699999556, 54.780462958000044), (-3.440174933999913, 54.79743073100008), (-3.4075414699999556, 54.85602448100008), (-3.3879288399999155, 54.88336823100008), (-3.3644913399999155, 54.89980703300006), (-3.3449600899999155, 54.90253327000005), (-3.3333634109999366, 54.89728424700007), (-3.3227432929999168, 54.889878648000035), (-3.3064672519999476, 54.88617584800005), (-3.295725063999953, 54.88690827000005), (-3.254628058999913, 54.89980703300006), (-3.267323370999918, 54.905503648000035), (-3.317290818999936, 54.92031484600005), (-3.2914932929999168, 54.93667226800005), (-3.276519334999932, 54.943426825000074), (-3.213612433999913, 54.954413153000075), (-3.2010391919999392, 54.95221588700008), (-3.1936742829999503, 54.94863515800006), (-3.1879776679999168, 54.94448476800005), (-3.1801651679999168, 54.94082265800006), (-3.14281165299991, 54.93353913000004), (-3.122792120999918, 54.93268463700008), (-3.0395401679999168, 54.94717031500005), (-3.021839972999942, 54.954413153000075), (-3.090728318999936, 54.954413153000075), (-3.090728318999936, 54.96124909100007), (-3.0715225899999155, 54.96312083500004), (-3.0562231109999516, 54.968817450000074), (-3.040923631999931, 54.97247955900008), (-3.021839972999942, 54.968085028000075), (-3.021839972999942, 54.97553131700005), (-3.0462947259999282, 54.982123114000046), (-3.0502913779999403, 54.981510325000045), (-3.1354060539999296, 54.968085028000075), (-3.453846808999913, 54.981756903000075), (-3.470692511999914, 54.984442450000074), (-3.486236131999931, 54.989488023000035), (-3.501047329999949, 54.99249909100007), (-3.515288865999935, 54.98920319200005), (-3.5123591789999296, 54.98712799700007), (-3.511463995999918, 54.98688385600008), (-3.510894334999932, 54.985988674000055), (-3.5091853509999282, 54.981756903000075), (-3.5260310539999296, 54.97711823100008), (-3.5418595039999445, 54.98065827000005), (-3.57054602799991, 54.995428778000075), (-3.583607550999943, 54.968085028000075), (-3.5756729809999115, 54.95734284100007), (-3.5706274079999503, 54.937567450000074), (-3.5687556629999335, 54.916001695000034), (-3.57054602799991, 54.89980703300006), (-3.581695115999935, 54.88361237200007), (-3.598378058999913, 54.87799713700008), (-3.691761847999942, 54.88320547100005), (-3.7176407539999445, 54.880845445000034), (-3.739247199999909, 54.859808661000045), (-3.8101293609999516, 54.86627838700008), (-3.8078507149999155, 54.86107005400004), (-3.806792772999927, 54.86090729400007), (-3.803334113999938, 54.85887278900003), (-3.8123673169999392, 54.855169989000046), (-3.8198136059999115, 54.855902411000045), (-3.826079881999931, 54.85993073100008), (-3.8312882149999155, 54.86627838700008), (-3.819976365999935, 54.878566799000055), (-3.815052863999938, 54.87714264500005), (-3.8101293609999516, 54.87250397300005), (-3.8116348949999406, 54.88003164300005), (-3.813221808999913, 54.88312409100007), (-3.8169652989999463, 54.88617584800005), (-3.828846808999913, 54.874986070000034), (-3.8443090489999463, 54.86627838700008), (-3.839751756999931, 54.855902411000045), (-3.8374731109999516, 54.851996161000045), (-3.844105597999942, 54.85097890800006), (-3.8578995429999168, 54.84454987200007), (-3.823841925999943, 54.82469310100004), (-3.833607550999943, 54.82005442900004), (-3.885731574999909, 54.80646393400008), (-3.9641820949999556, 54.771918036000045), (-4.011708136999914, 54.76821523600006), (-4.042876756999931, 54.76947663000004), (-4.042876756999931, 54.77692291900007), (-4.046783006999931, 54.77802155200004), (-4.050200975999928, 54.778550523000035), (-4.053334113999938, 54.77997467700004), (-4.055775519999941, 54.782538153000075), (-4.05296790299991, 54.78546784100007), (-4.050160285999937, 54.78900788000004), (-4.049712693999936, 54.78998444200005), (-4.051747199999909, 54.800034898000035), (-4.0477188789999445, 54.81305573100008), (-4.049956834999932, 54.82322825700004), (-4.063588019999941, 54.82684967700004), (-4.064035610999952, 54.83152903900003), (-4.078602667999917, 54.82412344000005), (-4.09007727799991, 54.809759833000044), (-4.093495245999918, 54.792669989000046), (-4.083851691999939, 54.77692291900007), (-4.122954881999931, 54.77301666900007), (-4.173939581999946, 54.792303778000075), (-4.209136522999927, 54.826239325000074), (-4.200550910999937, 54.86627838700008), (-4.215402798999946, 54.861029364000046), (-4.2397354809999115, 54.843003648000035), (-4.255767381999931, 54.838324286000045), (-4.2707413399999155, 54.83942291900007), (-4.345285610999952, 54.86017487200007), (-4.3569229809999115, 54.86554596600007), (-4.3656306629999335, 54.87250397300005), (-4.375152147999927, 54.88690827000005), (-4.379872199999909, 54.89789459800005), (-4.386789516999954, 54.90477122600004), (-4.402902798999946, 54.90729401200008), (-4.409006313999953, 54.90302155200004), (-4.416818813999953, 54.89280833500004), (-4.423573370999918, 54.88035716400003), (-4.426503058999913, 54.86945221600007), (-4.4172257149999155, 54.84593333500004), (-4.4094132149999155, 54.831244208000044), (-4.402902798999946, 54.82469310100004), (-4.386708136999914, 54.82416413000004), (-4.372425910999937, 54.82184479400007), (-4.35960852799991, 54.81663646000004), (-4.347645636999914, 54.80731842700004), (-4.344471808999913, 54.79450104400007), (-4.353179490999935, 54.78310781500005), (-4.358143683999913, 54.77098216400003), (-4.343861456999946, 54.75641510600008), (-4.356516079999949, 54.741888739000046), (-4.353260870999918, 54.72089264500005), (-4.348133917999917, 54.70197174700007), (-4.3547257149999155, 54.693793036000045), (-4.360340949999909, 54.69159577000005), (-4.365305141999954, 54.68695709800005), (-4.371896938999953, 54.68227773600006), (-4.382394985999952, 54.68008047100005), (-4.405262824999909, 54.682074286000045), (-4.426503058999913, 54.687567450000074), (-4.4518123039999296, 54.69879791900007), (-4.46117102799991, 54.701239325000074), (-4.4967341789999296, 54.70062897300005), (-4.505604620999918, 54.70465729400007), (-4.563628709999932, 54.75641510600008), (-4.596669074999909, 54.77529531500005), (-4.714466925999943, 54.81785716400003), (-4.759592251999948, 54.82534414300005), (-4.781076626999948, 54.83307526200008), (-4.799631313999953, 54.86127350500004), (-4.821034308999913, 54.86664459800005), (-4.859120245999918, 54.86627838700008), (-4.88304602799991, 54.86009349200003), (-4.905873175999943, 54.84979889500005), (-4.925770636999914, 54.83738841400003), (-4.941029425999943, 54.82469310100004), (-4.9496150379999335, 54.81582265800006), (-4.953684048999946, 54.81000397300005), (-4.954823370999918, 54.804754950000074), (-4.954701300999943, 54.79743073100008), (-4.952870245999918, 54.78896719000005), (-4.9479060539999296, 54.777329820000034), (-4.940256313999953, 54.76703522300005), (-4.930165167999917, 54.76264069200005), (-4.923247850999928, 54.75185781500005), (-4.911936001999948, 54.728216864000046), (-4.8959854809999115, 54.70453522300005), (-4.867258266999954, 54.69013092700004), (-4.866932745999918, 54.68146393400008), (-4.872141079999949, 54.663316148000035), (-4.872425910999937, 54.65403880400004), (-4.872059699999909, 54.64923737200007), (-4.859120245999918, 54.63296133000006), (-4.880604620999918, 54.63621653900003), (-4.923491990999935, 54.649725653000075), (-4.944081183999913, 54.652777411000045), (-4.953684048999946, 54.65973541900007), (-4.959868943999936, 54.67552317900004), (-4.958973761999914, 54.69196198100008), (-4.947255011999914, 54.701239325000074), (-4.954823370999918, 54.707464911000045), (-4.958892381999931, 54.714056708000044), (-4.959055141999954, 54.72093333500004), (-4.954701300999943, 54.728501695000034), (-4.973378058999913, 54.729722398000035), (-4.981556769999941, 54.731634833000044), (-4.988189256999931, 54.73529694200005), (-4.992665167999917, 54.74433014500005), (-4.997059699999909, 54.75836823100008), (-5.003285285999937, 54.77130768400008), (-5.0130102199999556, 54.77692291900007), (-5.033192511999914, 54.782416083000044), (-5.1282445949999556, 54.848944403000075), (-5.157134568999936, 54.87909577000005), (-5.175526495999918, 54.91461823100008), (-5.180653449999909, 54.954413153000075), (-5.177601691999939, 54.99054596600007), (-5.170806443999936, 55.008693752000056), (-5.156727667999917, 55.01654694200005), (-5.1356095039999445, 55.01585521000004), (-5.124582485999952, 55.016791083000044), (-5.119740363999938, 55.01992422100005), (-5.115142381999931, 55.03156159100007), (-5.105213995999918, 55.02619049700007), (-5.095529751999948, 55.01508209800005), (-5.091867641999954, 55.00971100500004), (-5.076893683999913, 54.99555084800005), (-5.069488084999932, 54.986029364000046), (-5.064564581999946, 54.97553131700005), (-5.0637914699999556, 54.96458567900004), (-5.065256313999953, 54.940334377000056), (-5.06086178299995, 54.93113841400003), (-5.0475154289999296, 54.92031484600005), (-5.030995245999918, 54.911322333000044), (-5.013091600999928, 54.90961334800005), (-4.9955948559999115, 54.92031484600005), (-4.992298956999946, 54.924261786000045), (-4.988189256999931, 54.927720445000034), (-4.988189256999931, 54.93455638200004), (-5.0240779289999296, 54.97638580900008), (-5.029774542999917, 54.98550039300005), (-5.032500779999907, 54.99371979400007), (-5.033029751999948, 54.99526601800005), (-5.047027147999927, 55.01508209800005), (-5.0502823559999115, 55.02680084800005), (-5.0496720039999445, 55.04897695500006), (-5.047596808999913, 55.05573151200008), (-5.043446417999917, 55.06427643400008), (-5.0257869129999335, 55.08869049700007), (-5.018950975999928, 55.10224030200004), (-5.016184048999946, 55.12262604400007), (-5.007801886999914, 55.14118073100008), (-4.988270636999914, 55.15265534100007), (-4.947255011999914, 55.16791413000004), (-4.882394985999952, 55.21857330900008), (-4.877552863999938, 55.22089264500005), (-4.867258266999954, 55.22247955900008), (-4.865305141999954, 55.22565338700008), (-4.865589972999942, 55.236314195000034), (-4.864816860999952, 55.24135976800005), (-4.841949022999927, 55.275091864000046), (-4.838002081999946, 55.28400299700007), (-4.8372289699999556, 55.293850002000056), (-4.839751756999931, 55.31557851800005), (-4.838002081999946, 55.32501862200007), (-4.832508917999917, 55.33112213700008), (-4.7992244129999335, 55.354722398000035), (-4.781076626999948, 55.36351146000004), (-4.773101365999935, 55.36937083500004), (-4.767160610999952, 55.37905508000006), (-4.758778449999909, 55.40228913000004), (-4.7492569649999155, 55.413763739000046), (-4.71703040299991, 55.43048737200007), (-4.650502081999946, 55.448472398000035), (-4.626332160999937, 55.468410549000055), (-4.617787238999938, 55.49559153900003), (-4.626779751999948, 55.51972077000005), (-4.6507869129999335, 55.53705475500004), (-4.687163865999935, 55.544134833000044), (-4.66624915299991, 55.562201239000046), (-4.666493292999917, 55.56329987200007), (-4.6711319649999155, 55.584418036000045), (-4.692738410999937, 55.60521067900004), (-4.7219945949999556, 55.619208075000074), (-4.776519334999932, 55.632879950000074), (-4.808745897999927, 55.63361237200007), (-4.818104620999918, 55.63719310100004), (-4.810617641999954, 55.646551825000074), (-4.810617641999954, 55.653998114000046), (-4.868560350999928, 55.67560455900008), (-4.900990363999938, 55.69232819200005), (-4.920521613999938, 55.70856354400007), (-4.876332160999937, 55.735256252000056), (-4.861073370999918, 55.756740627000056), (-4.865305141999954, 55.79047272300005), (-4.8717341789999296, 55.802435614000046), (-4.8777970039999445, 55.81102122600004), (-4.882720506999931, 55.82135651200008), (-4.888661261999914, 55.864528713000084), (-4.888824022999927, 55.865301825000074), (-4.892648891999954, 55.89288971600007), (-4.886463995999918, 55.91966380400004), (-4.872141079999949, 55.937201239000046), (-4.849354620999918, 55.94822825700004), (-4.818104620999918, 55.95563385600008), (-4.799387173999946, 55.957912502000056), (-4.7857966789999296, 55.95697663000004), (-4.722320115999935, 55.94009023600006), (-4.705433722999942, 55.93846263200004), (-4.693959113999938, 55.94135163000004), (-4.6725154289999296, 55.93378327000005), (-4.505970831999946, 55.91909414300005), (-4.4816788399999155, 55.92829010600008), (-4.590606248999961, 55.941514390000066), (-4.630034959999932, 55.94627513200004), (-4.673451300999943, 55.96185944200005), (-4.724517381999931, 55.99835846600007), (-4.765044725999928, 56.007066148000035), (-4.78343665299991, 56.017645575000074), (-4.7992244129999335, 56.030951239000046), (-4.810617641999954, 56.04376862200007), (-4.8237198559999115, 56.07367584800005), (-4.824330206999946, 56.07851797100005), (-4.8391820949999556, 56.08063385600008), (-4.844309048999946, 56.07298411700003), (-4.843739386999914, 56.06297435100004), (-4.837554490999935, 56.05060455900008), (-4.790150519999941, 56.010199286000045), (-4.778920050999943, 55.99209219000005), (-4.785308397999927, 55.984035549000055), (-4.803618943999936, 55.982082424000055), (-4.828033006999931, 55.98232656500005), (-4.851551886999914, 55.98802317900004), (-4.862294074999909, 56.00214264500005), (-4.865386522999927, 56.02020905200004), (-4.866851365999935, 56.05833567900004), (-4.865386522999927, 56.06671784100007), (-4.826324022999927, 56.124212958000044), (-4.755441860999952, 56.188381252000056), (-4.750884568999936, 56.20270416900007), (-4.755523240999935, 56.20652903900003), (-4.7662654289999296, 56.20209381700005), (-4.7799373039999296, 56.191473700000074), (-4.837269660999937, 56.12441640800006), (-4.851673956999946, 56.112616278000075), (-4.873117641999954, 56.11200592700004), (-4.880604620999918, 56.11985911700003), (-4.878977016999954, 56.15053945500006), (-4.883168097999942, 56.16400788000004), (-4.893544074999909, 56.174261786000045), (-4.9070938789999445, 56.177069403000075), (-4.920521613999938, 56.16791413000004), (-4.909087693999936, 56.14996979400007), (-4.895253058999913, 56.11473216400003), (-4.8862198559999115, 56.08038971600007), (-4.889149542999917, 56.06484609600005), (-4.901926235999952, 56.06191640800006), (-4.904367641999954, 56.054348049000055), (-4.900054490999935, 56.03412506700005), (-4.900054490999935, 56.01459381700005), (-4.898019985999952, 56.001166083000044), (-4.892648891999954, 55.98973216400003), (-4.906402147999927, 55.98574453300006), (-4.921457485999952, 55.98867422100005), (-4.937489386999914, 55.993841864000046), (-4.954701300999943, 55.99656810100004), (-4.954701300999943, 55.98973216400003), (-4.942005988999938, 55.986314195000034), (-4.928863084999932, 55.98114655200004), (-4.918446417999917, 55.97333405200004), (-4.913685675999943, 55.96185944200005), (-4.917388475999928, 55.94745514500005), (-4.9272354809999115, 55.93768952000005), (-4.9387100899999155, 55.92963288000004), (-4.947255011999914, 55.92084381700005), (-4.952137824999909, 55.90912506700005), (-4.954986131999931, 55.89935944200005), (-4.95921790299991, 55.89012278900003), (-4.96898352799991, 55.87986888200004), (-4.983143683999913, 55.87103913000004), (-4.994740363999938, 55.86981842700004), (-5.026356574999909, 55.87372467700004), (-5.0424698559999115, 55.884751695000034), (-5.056752081999946, 55.91030508000006), (-5.0668025379999335, 55.938788153000075), (-5.070790167999917, 55.958685614000046), (-5.1108292309999115, 55.98895905200004), (-5.116037563999953, 56.00169505400004), (-5.123605923999946, 56.00991445500006), (-5.139637824999909, 56.00275299700007), (-5.123768683999913, 55.986314195000034), (-5.085682745999918, 55.93187083500004), (-5.078236456999946, 55.91095612200007), (-5.086537238999938, 55.901271877000056), (-5.105620897999927, 55.90497467700004), (-5.171538865999935, 55.935532945000034), (-5.180653449999909, 55.948431708000044), (-5.180653449999909, 55.96930573100008), (-5.190825975999928, 55.96173737200007), (-5.1996150379999335, 55.948553778000075), (-5.2057185539999296, 55.93451569200005), (-5.207915818999936, 55.92462799700007), (-5.212635870999918, 55.91714101800005), (-5.242054816999939, 55.89288971600007), (-5.218129035999937, 55.86469147300005), (-5.208159959999932, 55.849269924000055), (-5.201079881999931, 55.83148834800005), (-5.2193904289999296, 55.83144765800006), (-5.2631729809999115, 55.845770575000074), (-5.296701626999948, 55.85268789300005), (-5.307118292999917, 55.86041901200008), (-5.313384568999936, 55.88544342700004), (-5.319325324999909, 55.889105536000045), (-5.327219204999949, 55.89154694200005), (-5.3348282539999445, 55.89667389500005), (-5.3382869129999335, 55.90375397300005), (-5.3391007149999155, 55.91303131700005), (-5.3382869129999335, 55.93138255400004), (-5.336089647999927, 55.93919505400004), (-5.326161261999914, 55.95026276200008), (-5.323963995999918, 55.958685614000046), (-5.325754360999952, 55.967230536000045), (-5.3382869129999335, 55.99656810100004), (-5.313628709999932, 56.01235586100006), (-5.204497850999928, 56.11945221600007), (-5.146473761999914, 56.13312409100007), (-5.104603644999941, 56.15151601800005), (-5.0949600899999155, 56.15737539300005), (-5.0594376289999445, 56.203111070000034), (-5.043446417999917, 56.21629466400003), (-5.013295050999943, 56.22760651200008), (-4.974964972999942, 56.23700592700004), (-4.9400935539999296, 56.25141022300005), (-4.920521613999938, 56.277777411000045), (-4.938099738999938, 56.27098216400003), (-4.975087042999917, 56.24799225500004), (-4.991932745999918, 56.24298737200007), (-5.0327042309999115, 56.24115631700005), (-5.049549933999913, 56.23704661700003), (-5.064564581999946, 56.22931549700007), (-5.0754288399999155, 56.21698639500005), (-5.099436001999948, 56.18195221600007), (-5.1088761059999115, 56.174709377000056), (-5.228138800999943, 56.12921784100007), (-5.3109431629999335, 56.05805084800005), (-5.319935675999943, 56.05491771000004), (-5.338042772999927, 56.05410390800006), (-5.345692511999914, 56.051214911000045), (-5.345285610999952, 56.046128648000035), (-5.350209113999938, 56.03192780200004), (-5.356353318999936, 56.01976146000004), (-5.359364386999914, 56.020738023000035), (-5.3686417309999115, 56.009426174000055), (-5.390288865999935, 56.00568268400008), (-5.415028449999909, 56.00690338700008), (-5.43382727799991, 56.010199286000045), (-5.434559699999909, 56.014960028000075), (-5.434722459999932, 56.02362702000005), (-5.437123175999943, 56.03001536700003), (-5.444406704999949, 56.02757396000004), (-5.4479060539999296, 56.02228424700007), (-5.448231574999909, 56.016058661000045), (-5.447621222999942, 56.009426174000055), (-5.454986131999931, 55.95563385600008), (-5.45140540299991, 55.95343659100007), (-5.436431443999936, 55.94896067900004), (-5.430775519999941, 55.94818756700005), (-5.420806443999936, 55.92829010600008), (-5.416737433999913, 55.91681549700007), (-5.416005011999914, 55.907416083000044), (-5.4125056629999335, 55.899603583000044), (-5.400380011999914, 55.89288971600007), (-5.400380011999914, 55.886704820000034), (-5.407215949999909, 55.886704820000034), (-5.407215949999909, 55.87986888200004), (-5.402943488999938, 55.87872955900008), (-5.39289303299995, 55.87372467700004), (-5.3976944649999155, 55.87156810100004), (-5.402495897999927, 55.868353583000044), (-5.407215949999909, 55.86627838700008), (-5.35179602799991, 55.83242422100005), (-5.326771613999938, 55.808579820000034), (-5.317779100999928, 55.78302643400008), (-5.324574347999942, 55.769232489000046), (-5.3385310539999296, 55.76264069200005), (-5.372425910999937, 55.75641510600008), (-5.3875626289999445, 55.75031159100007), (-5.433461066999939, 55.72101471600007), (-5.4445694649999155, 55.71161530200004), (-5.4539688789999445, 55.70058828300006), (-5.46117102799991, 55.68813711100006), (-5.463612433999913, 55.67983633000006), (-5.466175910999937, 55.662176825000074), (-5.468617316999939, 55.653998114000046), (-5.490101691999939, 55.644598700000074), (-5.488270636999914, 55.640326239000046), (-5.484283006999931, 55.63572825700004), (-5.482289191999939, 55.632879950000074), (-5.4838761059999115, 55.61005280200004), (-5.474761522999927, 55.603949286000045), (-5.462635870999918, 55.60203685100004), (-5.454986131999931, 55.59194570500006), (-5.461089647999927, 55.57880280200004), (-5.476918097999942, 55.57489655200004), (-5.488758917999917, 55.56907786700003), (-5.482289191999939, 55.55027903900003), (-5.503529425999943, 55.52651601800005), (-5.509632941999939, 55.516791083000044), (-5.5106095039999445, 55.51146067900004), (-5.509632941999939, 55.49258047100005), (-5.5109757149999155, 55.484442450000074), (-5.514271613999938, 55.48387278900003), (-5.5187882149999155, 55.48517487200007), (-5.523264126999948, 55.48265208500004), (-5.545521613999938, 55.44916413000004), (-5.561512824999909, 55.435532945000034), (-5.5846248039999296, 55.427435614000046), (-5.5846248039999296, 55.421210028000075), (-5.572132941999939, 55.422308661000045), (-5.562082485999952, 55.41986725500004), (-5.553089972999942, 55.41453685100004), (-5.543690558999913, 55.40692780200004), (-5.527455206999946, 55.38434479400007), (-5.5266820949999556, 55.38027578300006), (-5.5149633449999556, 55.37368398600006), (-5.525054490999935, 55.358628648000035), (-5.557972785999937, 55.33185455900008), (-5.574370897999927, 55.32200755400004), (-5.594105597999942, 55.31313711100006), (-5.616281704999949, 55.30658600500004), (-5.6399633449999556, 55.303900458000044), (-5.649525519999941, 55.30516185100004), (-5.669097459999932, 55.31085846600007), (-5.6808975899999155, 55.31134674700007), (-5.691395636999914, 55.308579820000034), (-5.714019334999932, 55.29913971600007), (-5.725575324999909, 55.29706452000005), (-5.7545466789999296, 55.29734935100004), (-5.772287563999953, 55.30125560100004), (-5.782866990999935, 55.31354401200008), (-5.794667120999918, 55.35639069200005), (-5.796701626999948, 55.37909577000005), (-5.7914119129999335, 55.39862702000005), (-5.763417120999918, 55.41205475500004), (-5.725412563999953, 55.437567450000074), (-5.715646938999953, 55.44790273600006), (-5.7152400379999335, 55.46889883000006), (-5.720122850999928, 55.491522528000075), (-5.7219132149999155, 55.51386139500005), (-5.707753058999913, 55.54336172100005), (-5.712066209999932, 55.55072663000004), (-5.718861456999946, 55.55731842700004), (-5.721831834999932, 55.56460195500006), (-5.718129035999937, 55.57575104400007), (-5.694488084999932, 55.605536200000074), (-5.6733292309999115, 55.640611070000034), (-5.6694229809999115, 55.66071198100008), (-5.6808975899999155, 55.67446523600006), (-5.626535610999952, 55.70062897300005), (-5.61945553299995, 55.71198151200008), (-5.613189256999931, 55.725775458000044), (-5.5982966789999296, 55.74298737200007), (-5.581206834999932, 55.75763580900008), (-5.5678604809999115, 55.76386139500005), (-5.539173956999946, 55.77094147300005), (-5.504628058999913, 55.78937409100007), (-5.4735001289999445, 55.815659898000035), (-5.454986131999931, 55.845770575000074), (-5.551747199999909, 55.783636786000045), (-5.587473110999952, 55.76715729400007), (-5.599436001999948, 55.76422760600008), (-5.6126195949999556, 55.76386139500005), (-5.60578365799995, 55.77684153900003), (-5.6332087879999335, 55.78278229400007), (-5.64671790299991, 55.78750234600005), (-5.66038977799991, 55.79734935100004), (-5.667958136999914, 55.81102122600004), (-5.669016079999949, 55.83783600500004), (-5.67406165299991, 55.845770575000074), (-5.631988084999932, 55.88178131700005), (-5.625599738999938, 55.889837958000044), (-5.61937415299991, 55.90314362200007), (-5.6043595039999445, 55.91364166900007), (-5.586293097999942, 55.92332591400003), (-5.571034308999913, 55.93451569200005), (-5.593495245999918, 55.92796458500004), (-5.6275935539999296, 55.90534088700008), (-5.6537979809999115, 55.89760976800005), (-5.671701626999948, 55.88690827000005), (-5.6808975899999155, 55.886704820000034), (-5.687977667999917, 55.89337799700007), (-5.694162563999953, 55.90497467700004), (-5.696400519999941, 55.91596100500004), (-5.586822068999936, 56.01203034100007), (-5.57843990799995, 56.02448151200008), (-5.5826716789999296, 56.028957424000055), (-5.576649542999917, 56.032538153000075), (-5.571034308999913, 56.037543036000045), (-5.583892381999931, 56.040716864000046), (-5.596424933999913, 56.036810614000046), (-5.609852667999917, 56.03001536700003), (-5.625599738999938, 56.02448151200008), (-5.6317032539999445, 56.005926825000074), (-5.674875454999949, 55.977728583000044), (-5.67406165299991, 55.95563385600008), (-5.690785285999937, 55.93764883000006), (-5.694488084999932, 55.93451569200005), (-5.704497850999928, 55.936753648000035), (-5.707508917999917, 55.942572333000044), (-5.705881313999953, 55.949652411000045), (-5.701975063999953, 55.95563385600008), (-5.696441209999932, 55.98216380400004), (-5.659901495999918, 56.02326080900008), (-5.5846248039999296, 56.08466217700004), (-5.5815323559999115, 56.08828359600005), (-5.580067511999914, 56.09292226800005), (-5.5774633449999556, 56.096991278000075), (-5.571034308999913, 56.09902578300006), (-5.564605272999927, 56.098089911000045), (-5.556548631999931, 56.09589264500005), (-5.550689256999931, 56.09349192900004), (-5.550526495999918, 56.09218984600005), (-5.547840949999909, 56.09003327000005), (-5.5394587879999335, 56.08685944200005), (-5.531605597999942, 56.08633047100005), (-5.530100063999953, 56.09218984600005), (-5.534738735999952, 56.098537502000056), (-5.5414119129999335, 56.10248444200005), (-5.5475154289999296, 56.10488515800006), (-5.550526495999918, 56.10643138200004), (-5.55695553299995, 56.12221914300005), (-5.558705206999946, 56.13080475500004), (-5.554676886999914, 56.13739655200004), (-5.522531704999949, 56.16575755400004), (-5.515736456999946, 56.174709377000056), (-5.509632941999939, 56.188381252000056), (-5.5399063789999445, 56.18341705900008), (-5.562489386999914, 56.16791413000004), (-5.5826716789999296, 56.15058014500005), (-5.60578365799995, 56.139960028000075), (-5.599354620999918, 56.160589911000045), (-5.586415167999917, 56.18113841400003), (-5.569406704999949, 56.20026276200008), (-5.550526495999918, 56.21629466400003), (-5.5594376289999445, 56.22955963700008), (-5.547230597999942, 56.24017975500004), (-5.52562415299991, 56.247259833000044), (-5.50617428299995, 56.24982330900008), (-5.494740363999938, 56.253119208000044), (-5.4928279289999296, 56.26040273600006), (-5.4992569649999155, 56.267645575000074), (-5.512684699999909, 56.27094147300005), (-5.554269985999952, 56.26349518400008), (-5.5631404289999296, 56.26032135600008), (-5.572621222999942, 56.25385163000004), (-5.58234615799995, 56.24876536700003), (-5.592152472999942, 56.24982330900008), (-5.5980525379999335, 56.25861237200007), (-5.595570441999939, 56.26992422100005), (-5.5846248039999296, 56.29075755400004), (-5.57258053299995, 56.32807038000004), (-5.56273352799991, 56.341050523000035), (-5.543690558999913, 56.352850653000075), (-5.525217251999948, 56.34662506700005), (-5.498199022999927, 56.34833405200004), (-5.4481095039999445, 56.35968659100007), (-5.4481095039999445, 56.36591217700004), (-5.4721573559999115, 56.364935614000046), (-5.515370245999918, 56.35683828300006), (-5.5375056629999335, 56.35968659100007), (-5.517323370999918, 56.39276764500005), (-5.509632941999939, 56.40062083500004), (-5.498931443999936, 56.404730536000045), (-5.486073370999918, 56.40810781500005), (-5.4780167309999115, 56.41290924700007), (-5.482289191999939, 56.421128648000035), (-5.457020636999914, 56.44086334800005), (-5.423573370999918, 56.45001862200007), (-5.322865363999938, 56.45498281500005), (-5.242054816999939, 56.44220612200007), (-5.208729620999918, 56.44684479400007), (-5.18187415299991, 56.45966217700004), (-5.118519660999937, 56.50775788000004), (-5.085682745999918, 56.54877350500004), (-5.064564581999946, 56.56513092700004), (-5.086537238999938, 56.55849844000005), (-5.099598761999914, 56.54364655200004), (-5.1105850899999155, 56.52586497600004), (-5.125965949999909, 56.51048411700003), (-5.166900193999936, 56.49005768400008), (-5.190174933999913, 56.46865469000005), (-5.201079881999931, 56.462103583000044), (-5.243763800999943, 56.45921458500004), (-5.350168423999946, 56.47296784100007), (-5.378081834999932, 56.458970445000034), (-5.394276495999918, 56.46548086100006), (-5.4105525379999335, 56.50364817900004), (-5.42414303299995, 56.500067450000074), (-5.4359431629999335, 56.49115631700005), (-5.454986131999931, 56.46954987200007), (-5.468617316999939, 56.47573476800005), (-5.433338995999918, 56.52362702000005), (-5.427642381999931, 56.53782786700003), (-5.4037979809999115, 56.524603583000044), (-5.379261847999942, 56.519191799000055), (-5.3566788399999155, 56.51968008000006), (-5.3382869129999335, 56.52415599200003), (-5.2905167309999115, 56.54466380400004), (-5.265044725999928, 56.551214911000045), (-5.252552863999938, 56.556341864000046), (-5.242054816999939, 56.56513092700004), (-5.27562415299991, 56.553615627000056), (-5.286773240999935, 56.552069403000075), (-5.306792772999927, 56.552801825000074), (-5.3109431629999335, 56.552069403000075), (-5.327707485999952, 56.54466380400004), (-5.338693813999953, 56.542303778000075), (-5.360340949999909, 56.53221263200004), (-5.372425910999937, 56.53034088700008), (-5.384348110999952, 56.53343333500004), (-5.400502081999946, 56.54364655200004), (-5.413929816999939, 56.54466380400004), (-5.410878058999913, 56.552069403000075), (-5.407297329999949, 56.55532461100006), (-5.402699347999942, 56.55744049700007), (-5.396636522999927, 56.561712958000044), (-5.392689581999946, 56.566473700000074), (-5.3893123039999296, 56.57489655200004), (-5.386626756999931, 56.57880280200004), (-5.360707160999937, 56.60626862200007), (-5.351918097999942, 56.612941799000055), (-5.31086178299995, 56.63361237200007), (-5.304514126999948, 56.64016347900008), (-5.298451300999943, 56.64642975500004), (-5.317779100999928, 56.65387604400007), (-5.317779100999928, 56.661322333000044), (-5.309071417999917, 56.66425202000005), (-5.286773240999935, 56.674994208000044), (-5.261463995999918, 56.67332591400003), (-5.248199022999927, 56.67405833500004), (-5.218902147999927, 56.688666083000044), (-5.196441209999932, 56.688666083000044), (-5.153309699999909, 56.68121979400007), (-5.132639126999948, 56.68451569200005), (-5.093373175999943, 56.69904205900008), (-5.012806769999941, 56.70929596600007), (-4.9955948559999115, 56.71596914300005), (-5.1605525379999335, 56.69586823100008), (-5.238270636999914, 56.71662018400008), (-5.23851477799991, 56.72256094000005), (-5.228423631999931, 56.73647695500006), (-5.222075975999928, 56.741522528000075), (-5.154652472999942, 56.78229401200008), (-5.136382615999935, 56.79877350500004), (-5.119740363999938, 56.818426825000074), (-5.179066535999937, 56.78925202000005), (-5.187489386999914, 56.78115469000005), (-5.191761847999942, 56.774644273000035), (-5.202259894999941, 56.76911041900007), (-5.214670376999948, 56.76520416900007), (-5.224964972999942, 56.763739325000074), (-5.233469204999949, 56.76068756700005), (-5.237049933999913, 56.75336334800005), (-5.2389216789999296, 56.74445221600007), (-5.242054816999939, 56.73647695500006), (-5.255238410999937, 56.721584377000056), (-5.268462693999936, 56.71308014500005), (-5.283355272999927, 56.70937734600005), (-5.30101477799991, 56.70856354400007), (-5.3098038399999155, 56.70648834800005), (-5.319162563999953, 56.69749583500004), (-5.34015865799995, 56.693060614000046), (-5.348378058999913, 56.687201239000046), (-5.359364386999914, 56.674994208000044), (-5.388050910999937, 56.65521881700005), (-5.403879360999952, 56.64923737200007), (-5.4242244129999335, 56.64704010600008), (-5.434396938999953, 56.64288971600007), (-5.4487198559999115, 56.62457916900007), (-5.458119269999941, 56.620347398000035), (-5.470773891999954, 56.618394273000035), (-5.482574022999927, 56.613267320000034), (-5.493316209999932, 56.60639069200005), (-5.53343665299991, 56.57290273600006), (-5.599598761999914, 56.52903880400004), (-5.667388475999928, 56.498480536000045), (-5.67406165299991, 56.49689362200007), (-5.683013475999928, 56.50063711100006), (-5.694691535999937, 56.51386139500005), (-5.70539303299995, 56.51666901200008), (-5.721791144999941, 56.51850006700005), (-5.740834113999938, 56.52326080900008), (-5.7582087879999335, 56.52997467700004), (-5.770253058999913, 56.53782786700003), (-5.7551977199999556, 56.554022528000075), (-5.751047329999949, 56.56199778900003), (-5.749134894999941, 56.571966864000046), (-5.756662563999953, 56.571966864000046), (-5.793853318999936, 56.54328034100007), (-5.8543595039999445, 56.550482489000046), (-6.0034073559999115, 56.61871979400007), (-6.009836391999954, 56.62653229400007), (-6.008168097999942, 56.642279364000046), (-5.998036261999914, 56.64988841400003), (-5.983509894999941, 56.65281810100004), (-5.933583136999914, 56.654730536000045), (-5.899037238999938, 56.650824286000045), (-5.866851365999935, 56.64154694200005), (-5.8391820949999556, 56.62653229400007), (-5.831695115999935, 56.633978583000044), (-5.855620897999927, 56.64472077000005), (-5.865589972999942, 56.65143463700008), (-5.865834113999938, 56.661322333000044), (-5.75999915299991, 56.70075104400007), (-5.735503709999932, 56.702337958000044), (-5.672596808999913, 56.68414948100008), (-5.647368943999936, 56.68121979400007), (-5.5941462879999335, 56.68333567900004), (-5.564808722999942, 56.68764883000006), (-5.543690558999913, 56.69546133000006), (-5.636545376999948, 56.688666083000044), (-5.658558722999942, 56.690741278000075), (-5.708851691999939, 56.70856354400007), (-5.749989386999914, 56.714544989000046), (-5.859038865999935, 56.68121979400007), (-5.89679928299995, 56.675116278000075), (-5.907378709999932, 56.674994208000044), (-5.9203181629999335, 56.67796458500004), (-5.942738410999937, 56.686753648000035), (-5.955555792999917, 56.688666083000044), (-6.0248917309999115, 56.68569570500006), (-6.098622199999909, 56.696966864000046), (-6.123850063999953, 56.69562409100007), (-6.143544074999909, 56.684881903000075), (-6.161732550999943, 56.67820872600004), (-6.186594204999949, 56.68109772300005), (-6.2096248039999296, 56.68846263200004), (-6.222767706999946, 56.69546133000006), (-6.228179490999935, 56.70107656500005), (-6.232533331999946, 56.70652903900003), (-6.235340949999909, 56.71238841400003), (-6.236398891999954, 56.71906159100007), (-6.234486456999946, 56.728583075000074), (-6.229562954999949, 56.72907135600008), (-6.222767706999946, 56.72719961100006), (-6.215321417999917, 56.72964101800005), (-6.193470831999946, 56.74852122600004), (-6.1805313789999445, 56.75462474200003), (-6.026966925999943, 56.763739325000074), (-6.0148819649999155, 56.76703522300005), (-5.979888475999928, 56.78156159100007), (-5.965199347999942, 56.784857489000046), (-5.948231574999909, 56.782538153000075), (-5.937977667999917, 56.77692291900007), (-5.928537563999953, 56.769964911000045), (-5.913644985999952, 56.763739325000074), (-5.860910610999952, 56.75079987200007), (-5.8522029289999296, 56.746975002000056), (-5.853342251999948, 56.757879950000074), (-5.858143683999913, 56.768459377000056), (-5.8683975899999155, 56.77586497600004), (-5.886341925999943, 56.777411200000074), (-5.886341925999943, 56.784857489000046), (-5.874012824999909, 56.78571198100008), (-5.861805792999917, 56.78510163000004), (-5.850087042999917, 56.782456773000035), (-5.8391820949999556, 56.777411200000074), (-5.8246150379999335, 56.78758372600004), (-5.8020727199999556, 56.79181549700007), (-5.7766007149999155, 56.787990627000056), (-5.756662563999953, 56.784857489000046), (-5.831695115999935, 56.80536530200004), (-5.8508194649999155, 56.818019924000055), (-5.851185675999943, 56.82892487200007), (-5.837473110999952, 56.83661530200004), (-5.7338761059999115, 56.84479401200008), (-5.692738410999937, 56.85492584800005), (-5.66038977799991, 56.87299225500004), (-5.673573370999918, 56.87653229400007), (-5.692005988999938, 56.87531159100007), (-5.7084854809999115, 56.87055084800005), (-5.724354620999918, 56.85382721600007), (-5.744496222999942, 56.85415273600006), (-5.783924933999913, 56.85993073100008), (-5.775380011999914, 56.86994049700007), (-5.735503709999932, 56.89411041900007), (-5.7805883449999556, 56.89874909100007), (-5.874867316999939, 56.887152411000045), (-5.9211319649999155, 56.89411041900007), (-5.8875626289999445, 56.89911530200004), (-5.8522029289999296, 56.90033600500004), (-5.8522029289999296, 56.90770091400003), (-5.859852667999917, 56.91054922100005), (-5.8801163399999155, 56.92202383000006), (-5.8625382149999155, 56.93374258000006), (-5.851429816999939, 56.95425039300005), (-5.842518683999913, 56.977443752000056), (-5.831695115999935, 56.99713776200008), (-5.814116990999935, 57.00950755400004), (-5.786040818999936, 57.02057526200008), (-5.755238410999937, 57.026556708000044), (-5.729318813999953, 57.02383047100005), (-5.719878709999932, 57.017564195000034), (-5.699940558999913, 56.998114325000074), (-5.688303188999953, 56.98969147300005), (-5.67406165299991, 56.983587958000044), (-5.658558722999942, 56.97947825700004), (-5.625599738999938, 56.976629950000074), (-5.571278449999909, 56.98383209800005), (-5.523264126999948, 56.99713776200008), (-5.523264126999948, 57.003973700000074), (-5.540435350999928, 57.001166083000044), (-5.556507941999939, 56.996079820000034), (-5.571278449999909, 56.99331289300005), (-5.5846248039999296, 56.99713776200008), (-5.607085740999935, 56.98851146000004), (-5.628814256999931, 56.991888739000046), (-5.6498917309999115, 56.999660549000055), (-5.6703181629999335, 57.003973700000074), (-5.685536261999914, 57.00958893400008), (-5.681711391999954, 57.02240631700005), (-5.680043097999942, 57.03620026200008), (-5.701975063999953, 57.044907945000034), (-5.710926886999914, 57.044175523000035), (-5.731353318999936, 57.03900788000004), (-5.742339647999927, 57.03807200700004), (-5.752552863999938, 57.04059479400007), (-5.769602016999954, 57.04975006700005), (-5.780181443999936, 57.05174388200004), (-5.791127081999946, 57.05927155200004), (-5.776193813999953, 57.075832424000055), (-5.734486456999946, 57.10541413000004), (-5.722645636999914, 57.116441148000035), (-5.715646938999953, 57.12006256700005), (-5.703277147999927, 57.120754299000055), (-5.673695441999939, 57.11904531500005), (-5.663482225999928, 57.12372467700004), (-5.645863410999937, 57.12946198100008), (-5.620838995999918, 57.12409088700008), (-5.57843990799995, 57.10639069200005), (-5.558257615999935, 57.10040924700007), (-5.4598282539999445, 57.09979889500005), (-5.454986131999931, 57.10297272300005), (-5.447417772999927, 57.11017487200007), (-5.430775519999941, 57.11074453300006), (-5.41429602799991, 57.10822174700007), (-5.407215949999909, 57.10639069200005), (-5.400380011999914, 57.10639069200005), (-5.400380011999914, 57.11383698100008), (-5.420033331999946, 57.12067291900007), (-5.503895636999914, 57.11269765800006), (-5.527414516999954, 57.107489325000074), (-5.540638800999943, 57.10639069200005), (-5.5477188789999445, 57.11009349200003), (-5.573312954999949, 57.12787506700005), (-5.5846248039999296, 57.133693752000056), (-5.668446417999917, 57.147650458000044), (-5.6808975899999155, 57.157904364000046), (-5.673817511999914, 57.174994208000044), (-5.638824022999927, 57.202378648000035), (-5.625599738999938, 57.21625397300005), (-5.644154425999943, 57.23322174700007), (-5.620106574999909, 57.25214264500005), (-5.578236456999946, 57.26675039300005), (-5.543690558999913, 57.27090078300006), (-5.511586066999939, 57.25763580900008), (-5.480091925999943, 57.23700592700004), (-5.446278449999909, 57.22304922100005), (-5.407215949999909, 57.22992584800005), (-5.407215949999909, 57.23672109600005), (-5.448841925999943, 57.24209219000005), (-5.458119269999941, 57.24664948100008), (-5.47288977799991, 57.26121653900003), (-5.482899542999917, 57.268011786000045), (-5.49250240799995, 57.27090078300006), (-5.501942511999914, 57.27765534100007), (-5.4889216789999296, 57.29242584800005), (-5.464833136999914, 57.306626695000034), (-5.4406632149999155, 57.311835028000075), (-5.4406632149999155, 57.31928131700005), (-5.464995897999927, 57.32493724200003), (-5.4817602199999556, 57.31671784100007), (-5.494292772999927, 57.30442942900004), (-5.50617428299995, 57.298163153000075), (-5.523426886999914, 57.29515208500004), (-5.558461066999939, 57.28143952000005), (-5.57843990799995, 57.27765534100007), (-5.599436001999948, 57.27924225500004), (-5.637440558999913, 57.28900788000004), (-5.656971808999913, 57.29132721600007), (-5.7000626289999445, 57.28359609600005), (-5.720570441999939, 57.284491278000075), (-5.729318813999953, 57.298163153000075), (-5.7252498039999296, 57.30158112200007), (-5.701975063999953, 57.33234284100007), (-5.6937556629999335, 57.337103583000044), (-5.671986456999946, 57.34442780200004), (-5.663482225999928, 57.349676825000074), (-5.654367641999954, 57.353949286000045), (-5.647206183999913, 57.34992096600007), (-5.6414688789999445, 57.34320709800005), (-5.636545376999948, 57.33978913000004), (-5.613189256999931, 57.34198639500005), (-5.5012914699999556, 57.37099844000005), (-5.456654425999943, 57.39354075700004), (-5.4481095039999445, 57.42169830900008), (-5.46507727799991, 57.423895575000074), (-5.492054816999939, 57.40875885600008), (-5.5375056629999335, 57.373928127000056), (-5.563465949999909, 57.36310455900008), (-5.586659308999913, 57.36505768400008), (-5.610910610999952, 57.37140534100007), (-5.6399633449999556, 57.373928127000056), (-5.615589972999942, 57.382473049000055), (-5.607085740999935, 57.389105536000045), (-5.609201626999948, 57.397772528000075), (-5.617746548999946, 57.41010163000004), (-5.619618292999917, 57.41669342700004), (-5.624012824999909, 57.41640859600005), (-5.6399633449999556, 57.40802643400008), (-5.707183397999927, 57.35976797100005), (-5.732411261999914, 57.352769273000035), (-5.784575975999928, 57.34857819200005), (-5.807769334999932, 57.35492584800005), (-5.8248591789999296, 57.39435455900008), (-5.822255011999914, 57.39350006700005), (-5.817372199999909, 57.39520905200004), (-5.812855597999942, 57.398098049000055), (-5.8111873039999296, 57.40119049700007), (-5.813872850999928, 57.40452708500004), (-5.8231095039999445, 57.41233958500004), (-5.8248591789999296, 57.41547272300005), (-5.825266079999949, 57.428900458000044), (-5.821888800999943, 57.435532945000034), (-5.8111873039999296, 57.44220612200007), (-5.8215225899999155, 57.44546133000006), (-5.852528449999909, 57.450384833000044), (-5.859038865999935, 57.45270416900007), (-5.861195441999939, 57.46344635600008), (-5.870513475999928, 57.48078034100007), (-5.872670050999943, 57.49371979400007), (-5.869699673999946, 57.500881252000056), (-5.856068488999938, 57.51780833500004), (-5.8522029289999296, 57.52411530200004), (-5.8510636059999115, 57.538397528000075), (-5.851470506999931, 57.55109284100007), (-5.847075975999928, 57.55890534100007), (-5.831695115999935, 57.55882396000004), (-5.833851691999939, 57.563381252000056), (-5.837025519999941, 57.57477448100008), (-5.8391820949999556, 57.579291083000044), (-5.821400519999941, 57.583197333000044), (-5.803618943999936, 57.581366278000075), (-5.7863663399999155, 57.57518138200004), (-5.732574022999927, 57.54523346600007), (-5.715646938999953, 57.538397528000075), (-5.707020636999914, 57.542303778000075), (-5.68976803299995, 57.52789948100008), (-5.6808975899999155, 57.52411530200004), (-5.650868292999917, 57.51264069200005), (-5.6399633449999556, 57.511053778000075), (-5.645334438999953, 57.51666901200008), (-5.648304816999939, 57.52187734600005), (-5.650542772999927, 57.52680084800005), (-5.6535538399999155, 57.53156159100007), (-5.5815323559999115, 57.538397528000075), (-5.5402725899999155, 57.534491278000075), (-5.5168350899999155, 57.534857489000046), (-5.512684699999909, 57.54148997600004), (-5.543120897999927, 57.55536530200004), (-5.588368292999917, 57.56102122600004), (-5.632720506999931, 57.55768463700008), (-5.66038977799991, 57.544582424000055), (-5.694488084999932, 57.56631094000005), (-5.689198370999918, 57.56940338700008), (-5.6808975899999155, 57.579291083000044), (-5.714222785999937, 57.58270905200004), (-5.7316788399999155, 57.59829336100006), (-5.744252081999946, 57.61798737200007), (-5.762806769999941, 57.633978583000044), (-5.778146938999953, 57.63743724200003), (-5.7936091789999296, 57.63857656500005), (-5.8058975899999155, 57.642645575000074), (-5.8111873039999296, 57.65509674700007), (-5.805409308999913, 57.667181708000044), (-5.785023566999939, 57.67951080900008), (-5.790760870999918, 57.68854401200008), (-5.790760870999918, 57.69599030200004), (-5.753570115999935, 57.707464911000045), (-5.734486456999946, 57.70795319200005), (-5.704986131999931, 57.69013092700004), (-5.692494269999941, 57.691066799000055), (-5.68195553299995, 57.69871653900003), (-5.67406165299991, 57.70966217700004), (-5.685170050999943, 57.71141185100004), (-5.692290818999936, 57.716498114000046), (-5.698841925999943, 57.723089911000045), (-5.708851691999939, 57.72955963700008), (-5.720529751999948, 57.73338450700004), (-5.803822394999941, 57.743841864000046), (-5.80695553299995, 57.75462474200003), (-5.8020727199999556, 57.780585028000075), (-5.803822394999941, 57.792222398000035), (-5.801258917999917, 57.800441799000055), (-5.809925910999937, 57.82062409100007), (-5.8111873039999296, 57.833197333000044), (-5.807362433999913, 57.84393952000005), (-5.799956834999932, 57.85370514500005), (-5.789540167999917, 57.86200592700004), (-5.776519334999932, 57.86790599200003), (-5.751128709999932, 57.87335846600007), (-5.724761522999927, 57.87352122600004), (-5.698638475999928, 57.86908600500004), (-5.67406165299991, 57.86050039300005), (-5.677886522999927, 57.846909898000035), (-5.674794074999909, 57.82709381700005), (-5.667958136999914, 57.80695221600007), (-5.66038977799991, 57.792222398000035), (-5.650542772999927, 57.78180573100008), (-5.6373591789999296, 57.77423737200007), (-5.622141079999949, 57.77020905200004), (-5.60578365799995, 57.77049388200004), (-5.613270636999914, 57.77521393400008), (-5.617909308999913, 57.78021881700005), (-5.625599738999938, 57.792222398000035), (-5.613026495999918, 57.792629299000055), (-5.603260870999918, 57.791083075000074), (-5.5846248039999296, 57.784816799000055), (-5.591175910999937, 57.80442942900004), (-5.587025519999941, 57.81858958500004), (-5.5852758449999556, 57.83144765800006), (-5.598988410999937, 57.846869208000044), (-5.6375626289999445, 57.86635976800005), (-5.650380011999914, 57.87775299700007), (-5.6399633449999556, 57.88784414300005), (-5.6476944649999155, 57.88898346600007), (-5.6507869129999335, 57.89081452000005), (-5.6535538399999155, 57.89468008000006), (-5.643950975999928, 57.90420156500005), (-5.620757615999935, 57.92088450700004), (-5.6126195949999556, 57.92877838700008), (-5.598215298999946, 57.91901276200008), (-5.587310350999928, 57.91510651200008), (-5.550526495999918, 57.91510651200008), (-5.556263800999943, 57.88776276200008), (-5.527902798999946, 57.86758047100005), (-5.487049933999913, 57.85586172100005), (-5.454986131999931, 57.85370514500005), (-5.46117102799991, 57.86050039300005), (-5.449045376999948, 57.869126695000034), (-5.437123175999943, 57.897650458000044), (-5.427642381999931, 57.908270575000074), (-5.4149063789999445, 57.90814850500004), (-5.369496222999942, 57.89752838700008), (-5.355620897999927, 57.89126211100006), (-5.327504035999937, 57.87327708500004), (-5.293853318999936, 57.86204661700003), (-5.221587693999936, 57.846869208000044), (-5.236317511999914, 57.86078522300005), (-5.2475479809999115, 57.86701080900008), (-5.276763475999928, 57.87417226800005), (-5.320668097999942, 57.898504950000074), (-5.384917772999927, 57.914129950000074), (-5.39289303299995, 57.91819896000004), (-5.394398566999939, 57.923895575000074), (-5.396839972999942, 57.926214911000045), (-5.3973282539999445, 57.928900458000044), (-5.39289303299995, 57.935614325000074), (-5.386545376999948, 57.936428127000056), (-5.378977016999954, 57.93183014500005), (-5.3717341789999296, 57.93105703300006), (-5.366200324999909, 57.943060614000046), (-5.3471573559999115, 57.936712958000044), (-5.319162563999953, 57.91474030200004), (-5.297352667999917, 57.908270575000074), (-5.2860001289999445, 57.90875885600008), (-5.266957160999937, 57.91400788000004), (-5.2562556629999335, 57.91510651200008), (-5.2436417309999115, 57.91290924700007), (-5.22101803299995, 57.90403880400004), (-5.211293097999942, 57.90208567900004), (-5.198801235999952, 57.897772528000075), (-5.162261522999927, 57.87848541900007), (-5.1199845039999445, 57.86798737200007), (-5.0911352199999556, 57.84031810100004), (-5.070790167999917, 57.833197333000044), (-5.07648678299995, 57.83852773600006), (-5.083404100999928, 57.84756094000005), (-5.0893448559999115, 57.85724518400008), (-5.091867641999954, 57.86420319200005), (-5.0971573559999115, 57.87091705900008), (-5.197255011999914, 57.91787344000005), (-5.221587693999936, 57.92133209800005), (-5.221587693999936, 57.92877838700008), (-5.201893683999913, 57.92865631700005), (-5.193959113999938, 57.935980536000045), (-5.19554602799991, 57.94765859600005), (-5.204497850999928, 57.960150458000044), (-5.216704881999931, 57.96588776200008), (-5.2488907539999445, 57.96938711100006), (-5.2631729809999115, 57.976548570000034), (-5.292632615999935, 57.98061758000006), (-5.333892381999931, 58.00853099200003), (-5.359364386999914, 58.011379299000055), (-5.357167120999918, 58.01406484600005), (-5.3566788399999155, 58.014878648000035), (-5.351918097999942, 58.01752350500004), (-5.366932745999918, 58.02887604400007), (-5.386586066999939, 58.032538153000075), (-5.427642381999931, 58.03119538000004), (-5.424305792999917, 58.03554922100005), (-5.422352667999917, 58.03896719000005), (-5.419585740999935, 58.04205963700008), (-5.413929816999939, 58.04547760600008), (-5.413929816999939, 58.05231354400007), (-5.447010870999918, 58.08437734600005), (-5.428089972999942, 58.09796784100007), (-5.390044725999928, 58.09218984600005), (-5.366200324999909, 58.06598541900007), (-5.344309048999946, 58.075506903000075), (-5.322865363999938, 58.07172272300005), (-5.300770636999914, 58.07013580900008), (-5.276763475999928, 58.08641185100004), (-5.283070441999939, 58.08641185100004), (-5.278065558999913, 58.09625885600008), (-5.2787979809999115, 58.10537344000005), (-5.283558722999942, 58.11347077000005), (-5.2905167309999115, 58.12055084800005), (-5.276763475999928, 58.12055084800005), (-5.276763475999928, 58.127386786000045), (-5.297352667999917, 58.134833075000074), (-5.284087693999936, 58.14008209800005), (-5.255523240999935, 58.143784898000035), (-5.242054816999939, 58.14789459800005), (-5.242054816999939, 58.15534088700008), (-5.275054490999935, 58.15452708500004), (-5.290842251999948, 58.156317450000074), (-5.304798956999946, 58.162095445000034), (-5.297352667999917, 58.168402411000045), (-5.304798956999946, 58.17332591400003), (-5.313059048999946, 58.17731354400007), (-5.321888800999943, 58.18024323100008), (-5.331450975999928, 58.18203359600005), (-5.3293350899999155, 58.186712958000044), (-5.326161261999914, 58.198431708000044), (-5.323963995999918, 58.203111070000034), (-5.336822068999936, 58.203192450000074), (-5.346791144999941, 58.20685455900008), (-5.39289303299995, 58.24469635600008), (-5.3920792309999115, 58.261379299000055), (-5.375884568999936, 58.26422760600008), (-5.352894660999937, 58.25893789300005), (-5.31078040299991, 58.243394273000035), (-5.293853318999936, 58.24091217700004), (-5.276966925999943, 58.243394273000035), (-5.237294074999909, 58.25763580900008), (-5.2160538399999155, 58.261419989000046), (-5.194325324999909, 58.25999583500004), (-5.173207160999937, 58.25092194200005), (-5.165638800999943, 58.258246161000045), (-5.152251756999931, 58.264837958000044), (-5.138335740999935, 58.269598700000074), (-5.129383917999917, 58.27138906500005), (-5.11156165299991, 58.26825592700004), (-5.0812882149999155, 58.25409577000005), (-5.0676977199999556, 58.25092194200005), (-5.017730272999927, 58.253241278000075), (-5.002430792999917, 58.25092194200005), (-4.933583136999914, 58.22304922100005), (-4.943430141999954, 58.233587958000044), (-4.954823370999918, 58.23981354400007), (-4.982004360999952, 58.25092194200005), (-4.968861456999946, 58.25678131700005), (-4.940337693999936, 58.259466864000046), (-4.926747199999909, 58.26459381700005), (-4.990223761999914, 58.27142975500004), (-5.009917772999927, 58.27138906500005), (-5.018055792999917, 58.26862213700008), (-5.029367641999954, 58.25971100500004), (-5.040028449999909, 58.25775788000004), (-5.0501195949999556, 58.25991445500006), (-5.0707087879999335, 58.269232489000046), (-5.081654425999943, 58.27138906500005), (-5.096424933999913, 58.27676015800006), (-5.125965949999909, 58.30019765800006), (-5.1362198559999115, 58.305568752000056), (-5.137440558999913, 58.30927155200004), (-5.156361456999946, 58.32461172100005), (-5.160145636999914, 58.326605536000045), (-5.167795376999948, 58.33926015800006), (-5.171009894999941, 58.34666575700004), (-5.173207160999937, 58.353949286000045), (-5.153309699999909, 58.353949286000045), (-5.1634008449999556, 58.364569403000075), (-5.162912563999953, 58.37449778900003), (-5.155913865999935, 58.384466864000046), (-5.146473761999914, 58.394964911000045), (-5.145497199999909, 58.400051174000055), (-5.14671790299991, 58.40664297100005), (-5.146839972999942, 58.41242096600007), (-5.143055792999917, 58.41478099200003), (-5.135487433999913, 58.413763739000046), (-5.122222459999932, 58.40957265800006), (-5.116037563999953, 58.40859609600005), (-5.057972785999937, 58.38727448100008), (-5.016184048999946, 58.38812897300005), (-5.043934699999909, 58.400091864000046), (-5.0533748039999296, 58.40664297100005), (-5.0502823559999115, 58.41478099200003), (-5.0570369129999335, 58.42218659100007), (-5.066151495999918, 58.41714101800005), (-5.076161261999914, 58.414496161000045), (-5.086822068999936, 58.41388580900008), (-5.0980525379999335, 58.41478099200003), (-5.0980525379999335, 58.42218659100007), (-5.08812415299991, 58.421942450000074), (-5.085031704999949, 58.42218659100007), (-5.085031704999949, 58.429022528000075), (-5.091786261999914, 58.429754950000074), (-5.09601803299995, 58.43146393400008), (-5.105539516999954, 58.43650950700004), (-5.0501195949999556, 58.45380280200004), (-5.025542772999927, 58.447699286000045), (-4.9955948559999115, 58.43650950700004), (-5.105539516999954, 58.48737213700008), (-5.105620897999927, 58.505560614000046), (-5.103667772999927, 58.51422760600008), (-5.095855272999927, 58.518866278000075), (-5.042795376999948, 58.53546784100007), (-5.0279841789999296, 58.54409414300005), (-5.016184048999946, 58.55939362200007), (-5.0229386059999115, 58.55939362200007), (-5.015207485999952, 58.580064195000034), (-5.011586066999939, 58.60057200700004), (-5.004953579999949, 58.61774323100008), (-4.988189256999931, 58.62832265800006), (-4.859486456999946, 58.61322663000004), (-4.835926886999914, 58.60504791900007), (-4.818104620999918, 58.59292226800005), (-4.817941860999952, 58.587591864000046), (-4.81281490799995, 58.571966864000046), (-4.806752081999946, 58.55841705900008), (-4.803822394999941, 58.55939362200007), (-4.804595506999931, 58.54832591400003), (-4.807240363999938, 58.53961823100008), (-4.811634894999941, 58.53204987200007), (-4.818104620999918, 58.524644273000035), (-4.799794074999909, 58.532456773000035), (-4.791818813999953, 58.54165273600006), (-4.7899063789999445, 58.55174388200004), (-4.790150519999941, 58.562486070000034), (-4.785755988999938, 58.577053127000056), (-4.777088995999918, 58.583319403000075), (-4.771595831999946, 58.59039948100008), (-4.776519334999932, 58.60716380400004), (-4.758859829999949, 58.59910716400003), (-4.7280167309999115, 58.577460028000075), (-4.7113337879999335, 58.57306549700007), (-4.683257615999935, 58.56150950700004), (-4.670399542999917, 58.55939362200007), (-4.660023566999939, 58.555853583000044), (-4.659291144999941, 58.54755280200004), (-4.663238084999932, 58.538397528000075), (-4.6673070949999556, 58.53204987200007), (-4.6790258449999556, 58.52391185100004), (-4.714466925999943, 58.50560130400004), (-4.732411261999914, 58.480454820000034), (-4.751535610999952, 58.46161530200004), (-4.7609757149999155, 58.44798411700003), (-4.74242102799991, 58.44953034100007), (-4.682972785999937, 58.48456452000005), (-4.673451300999943, 58.48737213700008), (-4.6668595039999445, 58.50291575700004), (-4.650502081999946, 58.50995514500005), (-4.630441860999952, 58.514960028000075), (-4.612131313999953, 58.524644273000035), (-4.6010636059999115, 58.54193756700005), (-4.595122850999928, 58.56000397300005), (-4.584950324999909, 58.57416413000004), (-4.560536261999914, 58.57990143400008), (-4.517486131999931, 58.575506903000075), (-4.475493943999936, 58.565619208000044), (-4.426503058999913, 58.54637278900003), (-4.426503058999913, 58.53888580900008), (-4.427886522999927, 58.53530508000006), (-4.428700324999909, 58.53473541900007), (-4.426503058999913, 58.524644273000035), (-4.449940558999913, 58.510199286000045), (-4.464751756999931, 58.49201080900008), (-4.477650519999941, 58.47134023600006), (-4.4953507149999155, 58.44953034100007), (-4.478098110999952, 58.453558661000045), (-4.46117102799991, 58.46246979400007), (-4.43390865799995, 58.483628648000035), (-4.432728644999941, 58.487616278000075), (-4.4339900379999335, 58.49237702000005), (-4.4342341789999296, 58.49628327000005), (-4.430165167999917, 58.49799225500004), (-4.425933397999927, 58.49909088700008), (-4.385365363999938, 58.52240631700005), (-4.382394985999952, 58.524644273000035), (-4.343861456999946, 58.53888580900008), (-4.317005988999938, 58.54572174700007), (-4.306996222999942, 58.54637278900003), (-4.287180141999954, 58.54291413000004), (-4.2573136059999115, 58.52798086100006), (-4.234730597999942, 58.524644273000035), (-4.248931443999936, 58.53204987200007), (-4.238189256999931, 58.536444403000075), (-4.232248501999948, 58.54242584800005), (-4.227691209999932, 58.548163153000075), (-4.22101803299995, 58.551947333000044), (-4.209706183999913, 58.55292389500005), (-4.190785285999937, 58.54783763200004), (-4.1769913399999155, 58.54637278900003), (-4.16820227799991, 58.54938385600008), (-4.1605525379999335, 58.562567450000074), (-4.149322068999936, 58.565619208000044), (-4.111195441999939, 58.565619208000044), (-4.0902400379999335, 58.56207916900007), (-4.081450975999928, 58.561835028000075), (-4.070220506999931, 58.565619208000044), (-4.061512824999909, 58.57282135600008), (-4.048817511999914, 58.58958567900004), (-4.039784308999913, 58.59292226800005), (-4.030629035999937, 58.59406159100007), (-4.029042120999918, 58.59516022300005), (-4.027821417999917, 58.59271881700005), (-4.0092667309999115, 58.57330963700008), (-4.003773566999939, 58.57062409100007), (-3.981434699999909, 58.57306549700007), (-3.8957413399999155, 58.565619208000044), (-3.8101293609999516, 58.57306549700007), (-3.7669571609999366, 58.58372630400004), (-3.6983536449999406, 58.61115143400008), (-3.659901495999918, 58.62083567900004), (-3.597564256999931, 58.62714264500005), (-3.565500454999949, 58.626613674000055), (-3.542591925999943, 58.62083567900004), (-3.552479620999918, 58.61546458500004), (-3.556263800999943, 58.61399974200003), (-3.532053188999953, 58.60211823100008), (-3.504017706999946, 58.60333893400008), (-3.447010870999918, 58.61399974200003), (-3.3914688789999445, 58.60065338700008), (-3.364084438999953, 58.600816148000035), (-3.3508194649999155, 58.62083567900004), (-3.3677465489999463, 58.624701239000046), (-3.3860570949999556, 58.631740627000056), (-3.402251756999931, 58.64203522300005), (-3.412912563999953, 58.655585028000075), (-3.3900447259999282, 58.67177969000005), (-3.3748673169999392, 58.677069403000075), (-3.3582657539999445, 58.675482489000046), (-3.3543595039999445, 58.67015208500004), (-3.35179602799991, 58.66083405200004), (-3.34788977799991, 58.652044989000046), (-3.340565558999913, 58.648138739000046), (-3.3098852199999556, 58.648138739000046), (-3.244252081999946, 58.65900299700007), (-3.204090949999909, 58.66111888200004), (-3.1519262359999516, 58.64126211100006), (-3.118763800999943, 58.64109935100004), (-3.052886522999927, 58.648138739000046), (-3.0191137359999516, 58.640326239000046), (-3.025380011999914, 58.62213776200008), (-3.0444229809999115, 58.601629950000074), (-3.049183722999942, 58.58673737200007), (-3.060454881999931, 58.57843659100007), (-3.0754288399999155, 58.56037018400008), (-3.0845434239999463, 58.551947333000044), (-3.1107478509999282, 58.53864166900007), (-3.1180313789999445, 58.53204987200007), (-3.129261847999942, 58.51264069200005), (-3.1293025379999335, 58.49640534100007), (-3.1187231109999516, 58.484442450000074), (-3.0975235669999392, 58.47748444200005), (-3.0850723949999406, 58.47825755400004), (-3.073963995999918, 58.481675523000035), (-3.064442511999914, 58.48297760600008), (-3.056630011999914, 58.47748444200005), (-3.053334113999938, 58.46576569200005), (-3.0577286449999406, 58.45685455900008), (-3.066761847999942, 58.451157945000034), (-3.077056443999936, 58.44953034100007), (-3.0863337879999335, 58.41421133000006), (-3.129790818999936, 58.36928945500006), (-3.182769334999932, 58.32843659100007), (-3.2205297519999476, 58.305568752000056), (-3.2622777989999463, 58.292629299000055), (-3.34984290299991, 58.27610911700003), (-3.38499915299991, 58.26459381700005), (-3.438099738999938, 58.236029364000046), (-3.447010870999918, 58.22675202000005), (-3.454741990999935, 58.210150458000044), (-3.473459438999953, 58.193426825000074), (-3.515288865999935, 58.168402411000045), (-3.7350154289999296, 58.07217031500005), (-3.809193488999938, 58.05190664300005), (-3.8275040359999366, 58.04205963700008), (-3.8362524079999503, 58.03143952000005), (-3.8460994129999335, 58.01117584800005), (-3.851714647999927, 58.003892320000034), (-3.8605850899999155, 57.998928127000056), (-3.8856095039999445, 57.991400458000044), (-3.9173070949999556, 57.98745351800005), (-3.981434699999909, 57.96356842700004), (-3.990956183999913, 57.96039459800005), (-3.997670050999943, 57.954413153000075), (-4.001372850999928, 57.94611237200007), (-4.001942511999914, 57.935614325000074), (-4.018299933999913, 57.940619208000044), (-4.023060675999943, 57.943060614000046), (-4.016184048999946, 57.949286200000074), (-4.0301407539999445, 57.953192450000074), (-4.055775519999941, 57.95498281500005), (-4.0843806629999335, 57.964178778000075), (-4.0891007149999155, 57.960150458000044), (-4.0863337879999335, 57.95189036700003), (-4.0776261059999115, 57.943060614000046), (-4.062652147999927, 57.93695709800005), (-4.03148352799991, 57.93618398600006), (-4.016184048999946, 57.93219635600008), (-4.009429490999935, 57.92767975500004), (-3.988270636999914, 57.908270575000074), (-4.008941209999932, 57.88959381700005), (-4.013824022999927, 57.879339911000045), (-4.009348110999952, 57.86790599200003), (-4.025135870999918, 57.868068752000056), (-4.054839647999927, 57.874335028000075), (-4.070220506999931, 57.87417226800005), (-4.0793350899999155, 57.87026601800005), (-4.0969132149999155, 57.85736725500004), (-4.1049698559999115, 57.85370514500005), (-4.132923956999946, 57.85415273600006), (-4.190419074999909, 57.87006256700005), (-4.218169725999928, 57.87417226800005), (-4.298898891999954, 57.86277903900003), (-4.3209529289999296, 57.87103913000004), (-4.353179490999935, 57.89520905200004), (-4.3723038399999155, 57.90448639500005), (-4.392404751999948, 57.908270575000074), (-4.339588995999918, 57.86570872600004), (-4.307728644999941, 57.85146719000005), (-4.269398566999939, 57.846869208000044), (-4.229074673999946, 57.85724518400008), (-4.2082413399999155, 57.85919830900008), (-4.190581834999932, 57.85028717700004), (-4.173451300999943, 57.83901601800005), (-4.1497289699999556, 57.82982005400004), (-4.1334529289999296, 57.830145575000074), (-4.1390681629999335, 57.846869208000044), (-4.0750626289999445, 57.82318756700005), (-4.0399063789999445, 57.81818268400008), (-3.9835098949999406, 57.84235260600008), (-3.9514867829999503, 57.838324286000045), (-3.933705206999946, 57.82566966400003), (-3.9473363919999542, 57.81268952000005), (-3.914784308999913, 57.80768463700008), (-3.877674933999913, 57.81671784100007), (-3.8418676419999542, 57.83490631700005), (-3.813547329999949, 57.857123114000046), (-3.798451300999943, 57.866522528000075), (-3.786040818999936, 57.86542389500005), (-3.779449022999927, 57.85565827000005), (-3.782215949999909, 57.83942291900007), (-3.790028449999909, 57.83071523600006), (-3.92601477799991, 57.734808661000045), (-3.948841925999943, 57.72492096600007), (-3.975209113999938, 57.70327383000006), (-3.988270636999914, 57.69599030200004), (-4.00804602799991, 57.693793036000045), (-4.02367102799991, 57.69782135600008), (-4.0286352199999556, 57.70770905200004), (-4.016184048999946, 57.72333405200004), (-4.042958136999914, 57.73729075700004), (-4.077951626999948, 57.73029205900008), (-4.155344204999949, 57.692572333000044), (-4.168568488999938, 57.689439195000034), (-4.1939998039999296, 57.68854401200008), (-4.2592667309999115, 57.67869700700004), (-4.277821417999917, 57.68060944200005), (-4.294789191999939, 57.68016185100004), (-4.302154100999928, 57.66860586100006), (-4.30882727799991, 57.65485260600008), (-4.324045376999948, 57.64826080900008), (-4.33820553299995, 57.64508698100008), (-4.4031876289999445, 57.60952383000006), (-4.412180141999954, 57.60297272300005), (-4.4203181629999335, 57.592962958000044), (-4.428456183999913, 57.57754140800006), (-4.423451300999943, 57.57680898600006), (-4.409901495999918, 57.582464911000045), (-4.379872199999909, 57.58934153900003), (-4.365101691999939, 57.59723541900007), (-4.3510636059999115, 57.60736725500004), (-4.340809699999909, 57.617173570000034), (-4.328724738999938, 57.626288153000075), (-4.283111131999931, 57.64142487200007), (-4.2445369129999335, 57.66303131700005), (-4.201893683999913, 57.674994208000044), (-4.1937556629999335, 57.67552317900004), (-4.182240363999938, 57.67279694200005), (-4.169016079999949, 57.663763739000046), (-4.118723110999952, 57.65770091400003), (-4.096791144999941, 57.65810781500005), (-4.0807185539999296, 57.66498444200005), (-4.068104620999918, 57.672308661000045), (-4.0246475899999155, 57.687201239000046), (-4.009348110999952, 57.68854401200008), (-4.004505988999938, 57.67597077000005), (-4.025257941999939, 57.65521881700005), (-4.0541886059999115, 57.63572825700004), (-4.083404100999928, 57.62335846600007), (-4.118560350999928, 57.592962958000044), (-4.11546790299991, 57.58783600500004), (-4.112294074999909, 57.58413320500006), (-4.1088761059999115, 57.58144765800006), (-4.1049698559999115, 57.579291083000044), (-4.151356574999909, 57.57684967700004), (-4.170643683999913, 57.570746161000045), (-4.187489386999914, 57.55882396000004), (-4.178089972999942, 57.54954661700003), (-4.184925910999937, 57.548163153000075), (-4.207997199999909, 57.552069403000075), (-4.262603318999936, 57.552069403000075), (-4.262603318999936, 57.544582424000055), (-4.233957485999952, 57.54511139500005), (-4.220285610999952, 57.543402411000045), (-4.207997199999909, 57.538397528000075), (-4.226307745999918, 57.51544830900008), (-4.237456834999932, 57.50531647300005), (-4.248931443999936, 57.49746328300006), (-4.212798631999931, 57.492173570000034), (-4.1948136059999115, 57.49160390800006), (-4.173898891999954, 57.49746328300006), (-4.157622850999928, 57.50849030200004), (-4.150054490999935, 57.51504140800006), (-4.149322068999936, 57.51788971600007), (-4.126779751999948, 57.518866278000075), (-4.116200324999909, 57.52179596600007), (-4.097523566999939, 57.53668854400007), (-4.082997199999909, 57.54441966400003), (-4.067290818999936, 57.54995351800005), (-4.0531306629999335, 57.552069403000075), (-4.034982876999948, 57.55687083500004), (-4.046457485999952, 57.56785716400003), (-4.083851691999939, 57.58612702000005), (-4.056019660999937, 57.585150458000044), (-3.9643448559999115, 57.592962958000044), (-3.8682755199999406, 57.587876695000034), (-3.8374731109999516, 57.592962958000044), (-3.6848038399999155, 57.65444570500006), (-3.625152147999927, 57.66193268400008), (-3.632557745999918, 57.65094635600008), (-3.637684699999909, 57.64622630400004), (-3.6456192699999406, 57.64142487200007), (-3.632476365999935, 57.635646877000056), (-3.6196182929999168, 57.63621653900003), (-3.606068488999938, 57.63947174700007), (-3.590972459999932, 57.64142487200007), (-3.61156165299991, 57.66811758000006), (-3.5747777989999463, 57.66111888200004), (-3.55492102799991, 57.659857489000046), (-3.535755988999938, 57.66193268400008), (-3.521473761999914, 57.66779205900008), (-3.5054418609999516, 57.67865631700005), (-3.4959610669999392, 57.69135163000004), (-3.501698370999918, 57.702826239000046), (-3.491851365999935, 57.71312083500004), (-3.4828181629999335, 57.71401601800005), (-3.4730525379999335, 57.711004950000074), (-3.460682745999918, 57.70966217700004), (-3.447865363999938, 57.71246979400007), (-3.4212540359999366, 57.72138092700004), (-3.409169074999909, 57.72333405200004), (-3.2847387359999516, 57.72044505400004), (-3.2100723949999406, 57.69399648600006), (-3.0786840489999463, 57.66941966400003), (-3.034901495999918, 57.66860586100006), (-2.994496222999942, 57.67552317900004), (-2.932687954999949, 57.69961172100005), (-2.9160863919999542, 57.702826239000046), (-2.75804602799991, 57.702826239000046), (-2.7512100899999155, 57.70062897300005), (-2.741118943999936, 57.69086334800005), (-2.731068488999938, 57.68854401200008), (-2.719878709999932, 57.690619208000044), (-2.711537238999938, 57.69399648600006), (-2.7035212879999335, 57.69472890800006), (-2.6929418609999516, 57.68854401200008), (-2.658924933999913, 57.69745514500005), (-2.573394334999932, 57.68146393400008), (-2.541981574999909, 57.68235911700003), (-2.526112433999913, 57.66860586100006), (-2.5181371739999463, 57.67011139500005), (-2.5110570949999556, 57.677801825000074), (-2.497954881999931, 57.68235911700003), (-2.4800512359999516, 57.68121979400007), (-2.4328507149999155, 57.66811758000006), (-2.425526495999918, 57.67572663000004), (-2.4177953769999476, 57.674261786000045), (-2.4087621739999463, 57.669623114000046), (-2.398060675999943, 57.66811758000006), (-2.3865860669999392, 57.671576239000046), (-2.369496222999942, 57.680568752000056), (-2.360503709999932, 57.68235911700003), (-2.3410538399999155, 57.675848700000074), (-2.3289688789999445, 57.67405833500004), (-2.3235977859999366, 57.678941148000035), (-2.32054602799991, 57.68455638200004), (-2.313384568999936, 57.68992747600004), (-2.3040665359999366, 57.69399648600006), (-2.295643683999913, 57.69599030200004), (-2.274322068999936, 57.69383372600004), (-2.230132615999935, 57.67914459800005), (-2.209950324999909, 57.67552317900004), (-2.1840714179999168, 57.67845286700003), (-2.1243383449999556, 57.702826239000046), (-2.108143683999913, 57.70498281500005), (-1.9976700509999432, 57.702826239000046), (-1.9969376289999445, 57.69904205900008), (-1.990834113999938, 57.69037506700005), (-1.982167120999918, 57.68109772300005), (-1.9735001289999445, 57.67552317900004), (-1.961293097999942, 57.674709377000056), (-1.9447322259999282, 57.68256256700005), (-1.9324845039999445, 57.68235911700003), (-1.9256892569999309, 57.678168036000045), (-1.914214647999927, 57.66474030200004), (-1.8294571609999366, 57.61347077000005), (-1.820464647999927, 57.59634023600006), (-1.817005988999938, 57.578192450000074), (-1.8113907539999445, 57.56049225500004), (-1.7960098949999406, 57.544582424000055), (-1.7960098949999406, 57.538397528000075), (-1.8000382149999155, 57.52586497600004), (-1.7895401679999168, 57.514837958000044), (-1.7611384759999282, 57.49746328300006), (-1.7753800119999141, 57.496527411000045), (-1.7821345689999362, 57.48899974200003), (-1.7812393869999141, 57.48041413000004), (-1.7717179029999102, 57.476263739000046), (-1.7593481109999516, 57.47357819200005), (-1.7659399079999503, 57.46743398600006), (-1.7891739569999459, 57.45644765800006), (-1.8301488919999542, 57.42617422100005), (-1.8474828769999476, 57.40814850500004), (-1.849964972999942, 57.39435455900008), (-1.9544978509999282, 57.341131903000075), (-1.9802953769999476, 57.31928131700005), (-2.044667120999918, 57.22650788000004), (-2.068511522999927, 57.17462799700007), (-2.074126756999931, 57.15420156500005), (-2.0714005199999406, 57.13556549700007), (-2.052357550999943, 57.12742747600004), (-2.0493057929999168, 57.118841864000046), (-2.065256313999953, 57.10053131700005), (-2.0658259759999282, 57.09983958500004), (-2.156158006999931, 57.020697333000044), (-2.1869197259999282, 56.98468659100007), (-2.200103318999936, 56.94871653900003), (-2.1971329419999392, 56.94025299700007), (-2.1912328769999476, 56.93414948100008), (-2.186268683999913, 56.92674388200004), (-2.1863907539999445, 56.91453685100004), (-2.191314256999931, 56.90892161700003), (-2.209706183999913, 56.895819403000075), (-2.213693813999953, 56.890692450000074), (-2.219878709999932, 56.87262604400007), (-2.23460852799991, 56.861395575000074), (-2.2689509759999282, 56.84634023600006), (-2.295806443999936, 56.82526276200008), (-2.3198136059999115, 56.80158112200007), (-2.336089647999927, 56.79083893400008), (-2.3918350899999155, 56.771185614000046), (-2.4086807929999168, 56.762925523000035), (-2.4264216789999296, 56.751288153000075), (-2.4359431629999335, 56.74038320500006), (-2.4407445949999556, 56.73484935100004), (-2.4516495429999168, 56.69098541900007), (-2.4637345039999445, 56.67877838700008), (-2.4774063789999445, 56.66868724200003), (-2.487456834999932, 56.65387604400007), (-2.4875382149999155, 56.64606354400007), (-2.481271938999953, 56.63239166900007), (-2.480620897999927, 56.62653229400007), (-2.4861954419999392, 56.619574286000045), (-2.504058397999927, 56.60883209800005), (-2.514556443999936, 56.591498114000046), (-2.530018683999913, 56.58075592700004), (-2.623768683999913, 56.543402411000045), (-2.6409399079999503, 56.522365627000056), (-2.6613663399999155, 56.51422760600008), (-2.6997777989999463, 56.50364817900004), (-2.708729620999918, 56.49599844000005), (-2.7276505199999406, 56.46954987200007), (-2.737294074999909, 56.46702708500004), (-2.74437415299991, 56.46954987200007), (-2.752308722999942, 56.47361888200004), (-2.764800584999932, 56.47573476800005), (-2.819325324999909, 56.47129954600007), (-3.055653449999909, 56.45213450700004), (-3.0606176419999542, 56.45172760600008), (-3.099273240999935, 56.44188060100004), (-3.1339005199999406, 56.426947333000044), (-3.238189256999931, 56.36774323100008), (-3.280181443999936, 56.35789622600004), (-3.3234757149999155, 56.36591217700004), (-3.311512824999909, 56.35651276200008), (-3.294016079999949, 56.352769273000035), (-3.2515356109999516, 56.352850653000075), (-3.230620897999927, 56.35602448100008), (-3.188384568999936, 56.37018463700008), (-3.149566209999932, 56.37555573100008), (-2.950266079999949, 56.43187083500004), (-2.9399307929999168, 56.43854401200008), (-2.930653449999909, 56.44806549700007), (-2.909087693999936, 56.45571523600006), (-2.88499915299991, 56.45799388200004), (-2.867909308999913, 56.45184967700004), (-2.8500870429999168, 56.44204336100006), (-2.8147680329999503, 56.44041575700004), (-2.8028051419999542, 56.42796458500004), (-2.800892706999946, 56.40892161700003), (-2.808257615999935, 56.391058661000045), (-2.8216039699999556, 56.376166083000044), (-2.837554490999935, 56.36591217700004), (-2.8129776679999168, 56.36591217700004), (-2.809193488999938, 56.36286041900007), (-2.8047582669999542, 56.34910716400003), (-2.8028051419999542, 56.345404364000046), (-2.7914932929999168, 56.34247467700004), (-2.7826228509999282, 56.34162018400008), (-2.7752579419999392, 56.33942291900007), (-2.768625454999949, 56.33234284100007), (-2.6771541009999282, 56.32843659100007), (-2.655262824999909, 56.32217031500005), (-2.621205206999946, 56.30442942900004), (-2.613189256999931, 56.30190664300005), (-2.5768123039999296, 56.28392161700003), (-2.5768123039999296, 56.277777411000045), (-2.6301163399999155, 56.24852122600004), (-2.648345506999931, 56.22870514500005), (-2.672027147999927, 56.22239817900004), (-2.7202042309999115, 56.21629466400003), (-2.7835994129999335, 56.19196198100008), (-2.8061417309999115, 56.188381252000056), (-2.8307185539999296, 56.190741278000075), (-2.8920792309999115, 56.20888906500005), (-2.940052863999938, 56.209418036000045), (-2.9643448559999115, 56.20563385600008), (-2.9746801419999542, 56.19830963700008), (-2.982411261999914, 56.189113674000055), (-3.0355525379999335, 56.16791413000004), (-3.0910538399999155, 56.13226959800005), (-3.107533331999946, 56.12689850500004), (-3.127552863999938, 56.12287018400008), (-3.138295050999943, 56.112209377000056), (-3.152251756999931, 56.07851797100005), (-3.1635636059999115, 56.06386953300006), (-3.1783748039999296, 56.05809153900003), (-3.2484431629999335, 56.055975653000075), (-3.268381313999953, 56.05093008000006), (-3.3030492829999503, 56.037543036000045), (-3.342681443999936, 56.02716705900008), (-3.381825324999909, 56.02338288000004), (-3.420969204999949, 56.02488841400003), (-3.5825902989999463, 56.05174388200004), (-3.671498175999943, 56.050848700000074), (-3.710031704999949, 56.05809153900003), (-3.7454320949999556, 56.07221100500004), (-3.7464900379999335, 56.072780666000085), (-3.782215949999909, 56.09218984600005), (-3.8031306629999335, 56.107123114000046), (-3.817005988999938, 56.11225006700005), (-3.8374731109999516, 56.112616278000075), (-3.8374731109999516, 56.10643138200004), (-3.777699347999942, 56.08283112200007), (-3.769154425999943, 56.07514069200005), (-3.7608536449999406, 56.07245514500005), (-3.7264298169999392, 56.03803131700005), (-3.721424933999913, 56.03070709800005), (-3.712635870999918, 56.028998114000046), (-3.693470831999946, 56.03115469000005), (-3.6866348949999406, 56.03070709800005), (-3.6795548169999392, 56.025458075000074), (-3.674794074999909, 56.01870351800005), (-3.6682836579999503, 56.01276276200008), (-3.656239386999914, 56.010199286000045), (-3.599720831999946, 56.017238674000055), (-3.5773819649999155, 56.01703522300005), (-3.405425584999932, 55.98973216400003), (-3.3582657539999445, 55.98973216400003), (-3.340891079999949, 55.99445221600007), (-3.331044074999909, 55.99408600500004), (-3.320423956999946, 55.986029364000046), (-3.303456183999913, 55.97760651200008), (-3.121815558999913, 55.96930573100008), (-3.1147354809999115, 55.966131903000075), (-3.096831834999932, 55.95197174700007), (-3.090728318999936, 55.94818756700005), (-3.078236456999946, 55.94684479400007), (-3.0156957669999542, 55.950506903000075), (-2.9399307929999168, 55.96930573100008), (-2.9166560539999296, 55.98061758000006), (-2.900054490999935, 55.996161200000074), (-2.8828832669999542, 56.00849030200004), (-2.8579809239999463, 56.010199286000045), (-2.863636847999942, 56.02228424700007), (-2.8663223949999406, 56.02676015800006), (-2.8709610669999392, 56.03070709800005), (-2.8527725899999155, 56.03978099200003), (-2.823150193999936, 56.059759833000044), (-2.8028051419999542, 56.06484609600005), (-2.635121222999942, 56.05805084800005), (-2.615956183999913, 56.053168036000045), (-2.587554490999935, 56.030951239000046), (-2.569406704999949, 56.02448151200008), (-2.57835852799991, 56.00800202000005), (-2.583648240999935, 56.00275299700007), (-2.5695694649999155, 55.99994538000004), (-2.5440567699999406, 56.00267161700003), (-2.528960740999935, 55.99656810100004), (-2.5248103509999282, 56.00055573100008), (-2.514556443999936, 56.00576406500005), (-2.507923956999946, 56.010199286000045), (-2.4932755199999406, 56.00153229400007), (-2.4525040359999366, 55.985256252000056), (-2.4143774079999503, 55.97833893400008), (-2.3509415359999366, 55.94818756700005), (-2.307769334999932, 55.93500397300005), (-2.146839972999942, 55.917303778000075), (-2.1380102199999556, 55.91461823100008), (-2.132557745999918, 55.90643952000005), (-2.13109290299991, 55.89720286700003), (-2.1287735669999392, 55.88979726800005), (-2.1209610669999392, 55.886704820000034), (-2.0994766919999392, 55.88178131700005), (-2.080189581999946, 55.86937083500004), (-2.0228572259999282, 55.80548737200007), (-2.009673631999931, 55.79083893400008), (-1.8778376939999362, 55.69489166900007), (-1.8631892569999309, 55.67161692900004), (-1.8530981109999516, 55.65932851800005), (-1.8315323559999115, 55.65070221600007), (-1.8260798819999309, 55.64362213700008), (-1.8216853509999282, 55.636419989000046), (-1.8164770169999542, 55.632879950000074), (-1.8071182929999168, 55.63450755400004), (-1.8007706369999141, 55.63922760600008), (-1.7962947259999282, 55.644232489000046), (-1.7925919259999432, 55.646551825000074), (-1.781402147999927, 55.64565664300005), (-1.768625454999949, 55.641913153000075), (-1.7564998039999296, 55.63361237200007), (-1.7476700509999432, 55.619208075000074), (-1.7679744129999335, 55.619208075000074), (-1.7679744129999335, 55.612982489000046), (-1.7559708319999459, 55.60887278900003), (-1.720855272999927, 55.614569403000075), (-1.6991267569999309, 55.612982489000046), (-1.6308487619999141, 55.58510976800005), (-1.6308487619999141, 55.57827383000006), (-1.6363419259999432, 55.57168203300006), (-1.6346736319999309, 55.56439850500004), (-1.6276749339999128, 55.55711497600004), (-1.6171768869999141, 55.55027903900003), (-1.6308487619999141, 55.544134833000044), (-1.6308487619999141, 55.53729889500005), (-1.6222224599999322, 55.534084377000056), (-1.6029353509999282, 55.52362702000005), (-1.6029353509999282, 55.516791083000044), (-1.6113175119999141, 55.50804271000004), (-1.6063533189999362, 55.503241278000075), (-1.5963435539999296, 55.49990469000005), (-1.5893448559999115, 55.49567291900007), (-1.5849503249999088, 55.483710028000075), (-1.5813695949999556, 55.41665273600006), (-1.5831192699999406, 55.40692780200004), (-1.5882869129999335, 55.39057038000004), (-1.5891007149999155, 55.385199286000045), (-1.5893448559999115, 55.37653229400007), (-1.5833227199999556, 55.354722398000035), (-1.5585831369999141, 55.32892487200007), (-1.5558162099999322, 55.31134674700007), (-1.5570369129999335, 55.306626695000034), (-1.5589900379999335, 55.302069403000075), (-1.5619197259999282, 55.29779694200005), (-1.5657445949999556, 55.29364655200004), (-1.570057745999918, 55.28620026200008), (-1.5682266919999392, 55.27960846600007), (-1.5642797519999476, 55.27326080900008), (-1.5620824859999516, 55.26666901200008), (-1.5564672519999476, 55.25503164300005), (-1.5439346999999088, 55.24388255400004), (-1.5209854809999115, 55.229396877000056), (-1.5291641919999392, 55.21625397300005), (-1.5240779289999296, 55.21010976800005), (-1.514271613999938, 55.204779364000046), (-1.507964647999927, 55.194647528000075), (-1.510812954999949, 55.184759833000044), (-1.5175675119999141, 55.176214911000045), (-1.5221248039999296, 55.16746653900003), (-1.517933722999942, 55.157131252000056), (-1.5007218089999128, 55.141791083000044), (-1.4959610669999392, 55.13458893400008), (-1.492543097999942, 55.112982489000046), (-1.4837540359999366, 55.09170156500005), (-1.4800919259999432, 55.08539459800005), (-1.4762263659999348, 55.083644924000055), (-1.4632869129999335, 55.08030833500004), (-1.459584113999938, 55.07859935100004), (-1.458078579999949, 55.07575104400007), (-1.4547013009999432, 55.067572333000044), (-1.438303188999953, 55.042303778000075), (-1.4291886059999115, 55.033270575000074), (-1.4240616529999102, 55.02435944200005), (-1.4195043609999516, 55.011704820000034), (-1.412912563999953, 55.00031159100007), (-1.4015193349999322, 54.995428778000075), (-1.398182745999918, 54.992621161000045), (-1.3702286449999406, 54.97553131700005), (-1.3626602859999366, 54.96478913000004), (-1.3617244129999335, 54.958685614000046), (-1.3635147779999102, 54.95425039300005), (-1.3640030589999128, 54.94818756700005), (-1.3628637359999516, 54.92593008000006), (-1.3603409499999088, 54.91705963700008), (-1.3531388009999432, 54.91351959800005), (-1.355824347999942, 54.904282945000034), (-1.2967830069999309, 54.77993398600006), (-1.2754613919999542, 54.74843984600005), (-1.2404679029999102, 54.72166575700004), (-1.2250870429999168, 54.71503327000005), (-1.172230597999942, 54.701239325000074), (-1.172230597999942, 54.693793036000045), (-1.1926163399999155, 54.693793036000045), (-1.192453579999949, 54.68927643400008), (-1.1907852859999366, 54.68618398600006), (-1.1851700509999432, 54.68008047100005), (-1.1827286449999406, 54.67206452000005), (-1.1788223949999406, 54.66474030200004), (-1.172922329999949, 54.65835195500006), (-1.1647029289999296, 54.652777411000045), (-1.172922329999949, 54.644191799000055), (-1.1824845039999445, 54.63922760600008), (-1.2062882149999155, 54.63296133000006), (-1.203724738999938, 54.62571849200003), (-1.1988419259999432, 54.62156810100004), (-1.1918025379999335, 54.61977773600006), (-1.1821182929999168, 54.61928945500006), (-1.1793513659999348, 54.62091705900008), (-1.1784561839999128, 54.624212958000044), (-1.1769913399999155, 54.62677643400008), (-1.172230597999942, 54.62612539300005), (-1.1695857409999348, 54.62360260600008), (-1.1654353509999282, 54.61871979400007), (-1.1629532539999445, 54.61395905200004), (-1.1647029289999296, 54.61180247600004), (-1.1526586579999503, 54.61318594000005), (-1.1467179029999102, 54.618475653000075), (-1.1380509109999366, 54.646551825000074), (-1.1205948559999115, 54.63300202000005), (-1.1036270819999459, 54.624660549000055), (-1.0842179029999102, 54.620428778000075), (-1.042062954999949, 54.61709219000005), (-0.9934789699999556, 54.59813060100004), (-0.7879125639999529, 54.56077708500004), (-0.5629776679999168, 54.47736237200007), (-0.5346573559999115, 54.461004950000074), (-0.5228572259999282, 54.44708893400008), (-0.5217992829999503, 54.43805573100008), (-0.5235896479999269, 54.43024323100008), (-0.5204158189999362, 54.42007070500006), (-0.5099991529999102, 54.41156647300005), (-0.47679602799991017, 54.39720286700003), (-0.46275794199993925, 54.38898346600007), (-0.4477432929999168, 54.37319570500006), (-0.43057206899993616, 54.349310614000046), (-0.4184464179999168, 54.32404205900008), (-0.41803951699995423, 54.303941148000035), (-0.4145401679999168, 54.297308661000045), (-0.4090063139999529, 54.29075755400004), (-0.4011938139999529, 54.28563060100004), (-0.39073645699994586, 54.28351471600007), (-0.3948868479999419, 54.273138739000046), (-0.39757239499994057, 54.269191799000055), (-0.3892716139999379, 54.26406484600005), (-0.3704727859999366, 54.247707424000055), (-0.3627823559999115, 54.24249909100007), (-0.3220108709999181, 54.23607005400004), (-0.31191972599992823, 54.231634833000044), (-0.30011959499995555, 54.224676825000074), (-0.2770889959999181, 54.21775950700004), (-0.26960201699995423, 54.20766836100006), (-0.26256262899994454, 54.18109772300005), (-0.2603653639999379, 54.176988023000035), (-0.2338761059999115, 54.16046784100007), (-0.11143958199994586, 54.13157786700003), (-0.07551021999995555, 54.11212799700007), (-0.16392981699993925, 54.08340078300006), (-0.1946915359999366, 54.06232330900008), (-0.2194718089999128, 54.022772528000075), (-0.1974177729999269, 53.99481842700004), (-0.1686905589999128, 53.929348049000055), (-0.1511124339999128, 53.899318752000056), (-0.045155402999910166, 53.801214911000045), (0.13347415500004445, 53.642645575000074), (0.1492619150000678, 53.60960521000004), (0.13689212300005238, 53.57713450700004), (0.13119550900006516, 53.573431708000044), (0.1096297540000819, 53.56289297100005), (0.1313582690000885, 53.59369538000004), (0.1359969410000872, 53.610663153000075), (0.12020918100006384, 53.61810944200005), (0.09945722700007309, 53.622300523000035), (0.056162957000083225, 53.64126211100006), (0.034515821000070446, 53.64606354400007), (0.014821811000047092, 53.64325592700004), (-0.023915167999916775, 53.62885163000004), (-0.04503333199994586, 53.62555573100008), (-0.06940670499994894, 53.626939195000034), (-0.09227454299991678, 53.63104889500005), (-0.11261959499995555, 53.63751862200007), (-0.1300349599999322, 53.64606354400007), (-0.2253311839999128, 53.719916083000044), (-0.2603653639999379, 53.73541901200008), (-0.2956436839999128, 53.738796291000085), (-0.3051651679999168, 53.73969147300005), (-0.4311417309999115, 53.71430084800005), (-0.4496964179999168, 53.71430084800005), (-0.5104874339999128, 53.71430084800005), (-0.5444229809999115, 53.70945872600004), (-0.5515030589999128, 53.71116771000004), (-0.5762426419999542, 53.72565338700008), (-0.5791723299999489, 53.72797272300005), (-0.6370336579999503, 53.73200104400007), (-0.6583552729999269, 53.72797272300005), (-0.7264705069999309, 53.70062897300005), (-0.7173559239999463, 53.69867584800005), (-0.7085668609999516, 53.695746161000045), (-0.7001846999999088, 53.691839911000045), (-0.6924535799999489, 53.68699778900003), (-0.6774796209999181, 53.702826239000046), (-0.6498103509999282, 53.710598049000055), (-0.6195369129999335, 53.71185944200005), (-0.5961807929999168, 53.70807526200008), (-0.5554906889999529, 53.69049713700008), (-0.5447485019999476, 53.683579820000034), (-0.5299373039999296, 53.67767975500004), (-0.5140274729999419, 53.681301174000055), (-0.48631751199991413, 53.69448476800005), (-0.3072403639999379, 53.71426015800006), (-0.27936764199995423, 53.707098700000074), (-0.2603653639999379, 53.68699778900003), (-0.1886287099999322, 53.620428778000075), (-0.1440323559999115, 53.606634833000044), (-0.11318925699993088, 53.58462148600006), (-0.09593665299991017, 53.57713450700004), (-0.06094316299993352, 53.57396067900004), (-0.0466202459999181, 53.570379950000074), (9.199300006912381e-05, 53.53534577000005), (0.0959578790000819, 53.488348700000074), (0.11508222700007309, 53.48322174700007), (0.1340438160000872, 53.48061758000006), (0.15186608200008322, 53.475816148000035), (0.1678166020000731, 53.464504299000055), (0.17090905000009116, 53.457017320000034), (0.1731063160000872, 53.44676341400003), (0.17579186300008587, 53.43768952000005), (0.1814884770000731, 53.43374258000006), (0.1906030610000471, 53.43187083500004), (0.21949303500008455, 53.41950104400007), (0.21192467500009116, 53.41266510600008), (0.2293400400000678, 53.40477122600004), (0.24488366000008455, 53.39093659100007), (0.2561141290000819, 53.375067450000074), (0.26042728000004445, 53.36147695500006), (0.34213300900006516, 53.22630442900004), (0.35621178500008455, 53.18854401200008), (0.3566186860000471, 53.145738023000035), (0.3357853520000731, 53.093451239000046), (0.32984459700008983, 53.08649323100008), (0.31869550900006516, 53.083685614000046), (0.29883873800008587, 53.08120351800005), (0.2824813160000872, 53.07485586100006), (0.19304446700004974, 53.02008698100008), (0.17448978000004445, 53.01544830900008), (0.16081790500004445, 53.008978583000044), (0.08212324300006912, 52.938666083000044), (0.061167839000063395, 52.924994208000044), (0.03760826900008851, 52.919175523000035), (0.022146030000044448, 52.91258372600004), (0.008555535000084546, 52.89862702000005), (0.010264519000088512, 52.88646067900004), (0.04066002700005811, 52.88507721600007), (0.09253991000008455, 52.89252350500004), (0.10564212300005238, 52.88934967700004), (0.13347415500004445, 52.87518952000005), (0.14714603000004445, 52.87201569200005), (0.17090905000009116, 52.86212799700007), (0.22242272200008983, 52.813666083000044), (0.24675540500004445, 52.79572174700007), (0.2644962900000678, 52.80369700700004), (0.2856551440000885, 52.805568752000056), (0.32553144600007045, 52.803168036000045), (0.34180748800008587, 52.79743073100008), (0.36988366000008455, 52.77301666900007), (0.38453209700008983, 52.76837799700007), (0.38453209700008983, 52.77521393400008), (0.37924238400006516, 52.79083893400008), (0.39942467500009116, 52.80951569200005), (0.42554772200008983, 52.827378648000035), (0.4386499360000471, 52.840725002000056), (0.44402103000004445, 52.86505768400008), (0.45671634200004974, 52.89199453300006), (0.47234134200004974, 52.916449286000045), (0.48568769600007045, 52.93349844000005), (0.5202742850000845, 52.95526764500005), (0.5695906910000872, 52.96930573100008), (0.6233830090000652, 52.97565338700008), (0.6718856130000859, 52.97443268400008), (0.6643986340000652, 52.98187897300005), (0.6847436860000471, 52.986395575000074), (0.7067977220000898, 52.98322174700007), (0.7291772800000444, 52.97748444200005), (0.7504988940000885, 52.97443268400008), (0.8357039720000898, 52.97443268400008), (0.8754988940000885, 52.96816640800006), (0.9210718110000471, 52.95465729400007), (0.9684350920000497, 52.94749583500004), (1.013926629000082, 52.960150458000044), (1.0034285820000832, 52.96474844000005), (0.9915470710000704, 52.96747467700004), (0.9790145190000885, 52.968410549000055), (0.9660750660000872, 52.96759674700007), (0.9660750660000872, 52.97443268400008), (1.2746688160000872, 52.92918528900003), (1.3960067070000832, 52.89142487200007), (1.6442163420000497, 52.775824286000045), (1.6733504570000832, 52.75568268400008), (1.6970320970000898, 52.73102448100008), (1.7158309250000912, 52.68374258000006), (1.7341414720000898, 52.65460846600007), (1.747243686000047, 52.62518952000005), (1.7407332690000885, 52.60390859600005), (1.7468367850000845, 52.58852773600006), (1.7487085300000444, 52.568793036000045), (1.7475692070000832, 52.53278229400007), (1.7711694670000497, 52.48590729400007), (1.7671004570000832, 52.47695547100005), (1.7544051440000885, 52.46735260600008), (1.7292586600000845, 52.41559479400007), (1.7301538420000497, 52.405910549000055), (1.7278751960000704, 52.39630768400008), (1.6836043630000859, 52.32453034100007), (1.6518660820000832, 52.289129950000074), (1.6411238940000885, 52.28180573100008), (1.6305444670000497, 52.27045319200005), (1.6282658210000704, 52.24481842700004), (1.6308699880000859, 52.19977448100008), (1.6254988940000885, 52.18036530200004), (1.6074324880000859, 52.14594147300005), (1.6035262380000859, 52.127834377000056), (1.5892033210000704, 52.100816148000035), (1.5875757170000497, 52.08698151200008), (1.582286004000082, 52.08148834800005), (1.5036727220000898, 52.060980536000045), (1.4868270190000885, 52.04901764500005), (1.4720158210000704, 52.05621979400007), (1.4668074880000859, 52.04800039300005), (1.4638778000000912, 52.035142320000034), (1.4558211600000845, 52.028509833000044), (1.4489852220000898, 52.02496979400007), (1.4248153000000912, 52.00185781500005), (1.3548283210000704, 51.95404694200005), (1.3435164720000898, 51.94285716400009), (1.332286004000082, 51.94009023600006), (1.2644149100000845, 51.99437083500004), (1.2348738940000885, 52.00031159100007), (1.1852319670000497, 52.025091864000046), (1.1578882170000497, 52.028509833000044), (1.1578882170000497, 52.02167389500005), (1.1935327480000524, 52.00079987200007), (1.2143660820000832, 51.991441148000035), (1.2602645190000885, 51.984808661000045), (1.2707625660000872, 51.98151276200008), (1.2751570970000898, 51.976996161000045), (1.2744246750000912, 51.96088288000004), (1.2710067070000832, 51.95644765800006), (1.2507430350000845, 51.95962148600006), (1.2389429050000444, 51.958644924000055), (1.2176212900000678, 51.954331773000035), (1.2057397800000444, 51.95343659100007), (1.193207227000073, 51.955511786000045), (1.1652938160000872, 51.96702708500004), (1.1430770190000885, 51.966050523000035), (1.0944930350000845, 51.955959377000056), (1.0691024100000845, 51.95343659100007), (1.0954695970000898, 51.945746161000045), (1.2620548840000652, 51.939154364000046), (1.2819930350000845, 51.946600653000075), (1.278493686000047, 51.92792389500005), (1.1995548840000652, 51.87767161700003), (1.2122501960000704, 51.87164948100008), (1.2278751960000704, 51.86737702000005), (1.2644149100000845, 51.86399974200003), (1.2747501960000704, 51.870306708000044), (1.2822371750000912, 51.880560614000046), (1.2866317070000832, 51.88165924700007), (1.288259311000047, 51.860581773000035), (1.2763778000000912, 51.84479401200008), (1.2192488940000885, 51.811835028000075), (1.167816602000073, 51.790228583000044), (1.1354272800000444, 51.78172435100004), (1.0654403000000912, 51.77529531500005), (1.0466414720000898, 51.777044989000046), (1.0372827480000524, 51.78217194200005), (1.021332227000073, 51.80255768400008), (0.9887801440000885, 51.83026764500005), (0.9798283210000704, 51.84357330900008), (0.9770613940000885, 51.82461172100005), (0.9620874360000471, 51.813788153000075), (0.9251408210000704, 51.80255768400008), (0.8942977220000898, 51.78461334800005), (0.8869735040000819, 51.782131252000056), (0.8864038420000497, 51.776678778000075), (0.8834741550000444, 51.76471588700008), (0.8789168630000859, 51.75275299700007), (0.8737085300000444, 51.747300523000035), (0.8619897800000444, 51.74555084800005), (0.8459578790000819, 51.736761786000045), (0.8357039720000898, 51.733710028000075), (0.8234969410000872, 51.73383209800005), (0.8014429050000444, 51.73969147300005), (0.7917586600000845, 51.74115631700005), (0.7671004570000832, 51.739447333000044), (0.7208764980000524, 51.728176174000055), (0.6985783210000704, 51.720038153000075), (0.7142033210000704, 51.715277411000045), (0.7324324880000859, 51.713771877000056), (0.7492781910000872, 51.70848216400009), (0.7607528000000912, 51.692694403000075), (0.7890731130000859, 51.710150458000044), (0.8530379570000832, 51.71889883000006), (0.8835555350000845, 51.72687409100007), (0.9123641290000819, 51.741522528000075), (0.9300236340000652, 51.74359772300005), (0.9455672540000819, 51.733710028000075), (0.9474389980000524, 51.72524648600006), (0.9445906910000872, 51.71548086100006), (0.9404403000000912, 51.70799388200004), (0.9381616550000444, 51.706366278000075), (0.9401961600000845, 51.698431708000044), (0.9440210300000444, 51.69057851800005), (0.9518335300000444, 51.67841217700004), (0.9417423840000652, 51.673041083000044), (0.9379988940000885, 51.664496161000045), (0.9381616550000444, 51.64126211100006), (0.9347436860000471, 51.63589101800005), (0.9267684250000912, 51.630926825000074), (0.9114689460000704, 51.62384674700007), (0.9384871750000912, 51.624986070000034), (0.9480900400000678, 51.621527411000045), (0.9518335300000444, 51.61701080900008), (0.9244897800000444, 51.588324286000045), (0.8733016290000819, 51.559475002000056), (0.8282983730000524, 51.541856187000064), (0.8162541020000731, 51.537176825000074), (0.7712508470000898, 51.52826569200005), (0.6920679050000444, 51.536322333000044), (0.6643986340000652, 51.53506094000005), (0.6637475920000497, 51.53554922100005), (0.6505639980000524, 51.53579336100006), (0.6466577480000524, 51.53534577000005), (0.6440535820000832, 51.53506094000005), (0.6427514980000524, 51.53351471600007), (0.6233830090000652, 51.52204010600008), (0.6086531910000872, 51.51898834800005), (0.5952254570000832, 51.51862213700008), (0.5822860040000819, 51.51654694200005), (0.5688582690000885, 51.50836823100008), (0.5527449880000859, 51.51797109600005), (0.5472111340000652, 51.51772695500006), (0.5254012380000859, 51.516913153000075), (0.45606530000009116, 51.505560614000046), (0.45085696700004974, 51.49827708500004), (0.44800866000008455, 51.48822663000004), (0.4416610040000819, 51.47703685100004), (0.42847741000008455, 51.46710846600007), (0.41407311300008587, 51.46190013200004), (0.39918053500008455, 51.45840078300006), (0.38453209700008983, 51.453111070000034), (0.4484155610000471, 51.45994700700004), (0.45679772200008983, 51.46312083500004), (0.4614363940000885, 51.47016022300005), (0.46485436300008587, 51.47724030200004), (0.4695744150000678, 51.48041413000004), (0.5348413420000497, 51.49168528900009), (0.6948348320000832, 51.47703685100004), (0.7094832690000885, 51.47052643400008), (0.7219344410000872, 51.456284898000035), (0.7231551440000885, 51.44672272300005), (0.7131453790000819, 51.44122955900008), (0.6923934250000912, 51.439520575000074), (0.6565047540000819, 51.444525458000044), (0.6409611340000652, 51.44415924700007), (0.6093856130000859, 51.425116278000075), (0.5727645190000885, 51.419582424000055), (0.5545353520000731, 51.412176825000074), (0.5622664720000898, 51.40656159100007), (0.5691024100000845, 51.399603583000044), (0.5765080090000652, 51.39362213700008), (0.5859481130000859, 51.391058661000045), (0.6718856130000859, 51.391058661000045), (0.7129012380000859, 51.38422272300005), (0.7049259770000731, 51.39598216400009), (0.7003686860000471, 51.409816799000055), (0.7053328790000819, 51.41950104400007), (0.7264103520000731, 51.41901276200008), (0.7283634770000731, 51.406236070000034), (0.7392684250000912, 51.387925523000035), (0.7534285820000832, 51.371527411000045), (0.7644149100000845, 51.36440664300005), (0.9772241550000444, 51.34918854400007), (1.1009220710000704, 51.37323639500005), (1.4238387380000859, 51.39207591400009), (1.4482528000000912, 51.382879950000074), (1.4391382170000497, 51.35008372600004), (1.4355574880000859, 51.343736070000034), (1.430837436000047, 51.33779531500005), (1.4251408210000704, 51.33295319200005), (1.4186304050000444, 51.32965729400007), (1.3829858730000524, 51.329779364000046), (1.3776147800000444, 51.326239325000074), (1.3806258470000898, 51.304754950000074), (1.387868686000047, 51.28790924700007), (1.4043074880000859, 51.261379299000055), (1.4130965500000912, 51.22174713700008), (1.4047957690000885, 51.18353913000004), (1.3844507170000497, 51.151678778000075), (1.3571883470000898, 51.13100820500006), (1.2903751960000704, 51.116522528000075), (1.2629500660000872, 51.10325755400004), (1.2516382170000497, 51.10252513200004), (1.2299910820000832, 51.10370514500005), (1.2181095710000704, 51.10097890800006), (1.2082625660000872, 51.09467194200005), (1.1997176440000885, 51.087591864000046), (1.1920679050000444, 51.08258698100008), (1.1722111340000652, 51.077378648000035), (1.1067000660000872, 51.07636139500005), (1.0871688160000872, 51.07298411700003), (1.0669051440000885, 51.06439850500004), (1.027598504000082, 51.04165273600006), (0.9764103520000731, 50.99445221600007), (0.9664819670000497, 50.98273346600007), (0.9690861340000652, 50.95685455900008), (0.9798283210000704, 50.91815827000005), (0.9451603520000731, 50.909369208000044), (0.8698022800000444, 50.925116278000075), (0.8022567070000832, 50.93919505400004), (0.7624617850000845, 50.930894273000035), (0.6643986340000652, 50.870306708000044), (0.6241968110000471, 50.858710028000075), (0.4074813160000872, 50.829331773000035), (0.3702905610000471, 50.818793036000045), (0.36524498800008587, 50.81899648600006), (0.35425866000008455, 50.80963776200008), (0.34441165500004445, 50.79905833500004), (0.3422957690000885, 50.79515208500004), (0.3081160820000832, 50.780951239000046), (0.2710067070000832, 50.747381903000075), (0.23389733200008322, 50.74701569200005), (0.2141219410000872, 50.748928127000056), (0.16830488400006516, 50.759833075000074), (0.1573999360000471, 50.761053778000075), (0.12208092500009116, 50.76080963700008), (0.11304772200008983, 50.76414622600004), (0.09555097700007309, 50.775051174000055), (0.07703698000005943, 50.778998114000046), (0.034515821000070446, 50.780951239000046), (0.01754804800009424, 50.784857489000046), (-0.17316646999995555, 50.829006252000056), (-0.20612545499994894, 50.83104075700004), (-0.20889238199993088, 50.83010488500008), (-0.2331436839999128, 50.821926174000055), (-0.2696833979999269, 50.831284898000035), (-0.39757239499994057, 50.802069403000075), (-0.5689591139999379, 50.802069403000075), (-0.7327367829999503, 50.767279364000046), (-0.7415665359999366, 50.769232489000046), (-0.7498673169999392, 50.773871161000045), (-0.7582087879999335, 50.77708567900004), (-0.7675675119999141, 50.774725653000075), (-0.7731013659999348, 50.76601797100005), (-0.7662654289999296, 50.74713776200008), (-0.7709854809999115, 50.73688385600008), (-0.7899470689999362, 50.73004791900007), (-0.8128149079999503, 50.73476797100005), (-0.9041235019999476, 50.77187734600005), (-0.9114884109999366, 50.77781810100004), (-0.9058731759999432, 50.78803131700005), (-0.8924861319999309, 50.794623114000046), (-0.8636368479999419, 50.802069403000075), (-0.8636368479999419, 50.808254299000055), (-0.8736059239999463, 50.812933661000045), (-0.8931371739999463, 50.82534414300005), (-0.9046931629999335, 50.829331773000035), (-0.9095352859999366, 50.82599518400008), (-0.9217016269999476, 50.821600653000075), (-0.9289444649999155, 50.82282135600008), (-0.9190160799999489, 50.83616771000004), (-0.9297989569999459, 50.83999258000006), (-0.9391983709999181, 50.84324778900009), (-0.9707738919999542, 50.846991278000075), (-0.9948624339999128, 50.84707265800006), (-1.0018611319999309, 50.84711334800005), (-1.0207413399999155, 50.84365469000005), (-1.033558722999942, 50.82591380400004), (-1.0426326159999348, 50.80190664300005), (-1.0562231109999516, 50.78302643400008), (-1.0827530589999128, 50.780951239000046), (-1.1030167309999115, 50.79547760600008), (-1.0936173169999392, 50.812933661000045), (-1.0753067699999406, 50.83002350500004), (-1.069162563999953, 50.84365469000005), (-1.0873103509999282, 50.84979889500005), (-1.0881241529999102, 50.84975820500006), (-1.1498103509999282, 50.84666575700004), (-1.1647029289999296, 50.84365469000005), (-1.129709438999953, 50.825100002000056), (-1.1237686839999128, 50.818793036000045), (-1.1212052069999459, 50.79938385600008), (-1.1249080069999309, 50.788723049000055), (-1.1380509109999366, 50.780951239000046), (-1.1511124339999128, 50.78139883000006), (-1.1693416009999282, 50.78587474200003), (-1.1856176419999542, 50.79242584800005), (-1.1926163399999155, 50.79865143400008), (-1.1992895169999542, 50.807928778000075), (-1.231516079999949, 50.81891510600008), (-1.2551977199999556, 50.83193594000005), (-1.288156704999949, 50.839178778000075), (-1.3014216789999296, 50.84365469000005), (-1.3185929029999102, 50.85691966400009), (-1.338937954999949, 50.872707424000055), (-1.4492895169999542, 50.91205475500004), (-1.4664200509999432, 50.91815827000005), (-1.4664200509999432, 50.91193268400008), (-1.4564509759999282, 50.90875885600008), (-1.4379776679999168, 50.90131256700005), (-1.4256078769999476, 50.900091864000046), (-1.4011124339999128, 50.88117096600007), (-1.323068813999953, 50.82575104400007), (-1.3142797519999476, 50.812160549000055), (-1.3172908189999362, 50.80023834800005), (-1.3398331369999141, 50.79515208500004), (-1.4039607409999348, 50.79157135600008), (-1.4186905589999128, 50.788397528000075), (-1.4113663399999155, 50.78489817900004), (-1.4049373039999296, 50.780951239000046), (-1.4049373039999296, 50.774725653000075), (-1.4505102199999556, 50.76935455900008), (-1.4762263659999348, 50.76341380400004), (-1.4875382149999155, 50.75771719000005), (-1.491932745999918, 50.75726959800005), (-1.5247289699999556, 50.761053778000075), (-1.5571996739999463, 50.72329336100006), (-1.559396938999953, 50.71922435100004), (-1.5611873039999296, 50.71898021000004), (-1.5807185539999296, 50.722642320000034), (-1.6021215489999463, 50.731756903000075), (-1.6706436839999128, 50.74005768400008), (-1.672922329999949, 50.74005768400008), (-1.6930232409999348, 50.739935614000046), (-1.7150772779999102, 50.73578522300005), (-1.7535294259999432, 50.72284577000005), (-1.7717179029999102, 50.72011953300006), (-1.7974340489999463, 50.723171291000085), (-1.8350723949999406, 50.72768789300005), (-1.8574112619999141, 50.72695547100005), (-1.8773494129999335, 50.72284577000005), (-1.8963516919999392, 50.71629466400009), (-1.8968806629999335, 50.716050523000035), (-1.9138891269999476, 50.70742422100005), (-1.9291072259999282, 50.69586823100008), (-1.9400121739999463, 50.69082265800006), (-1.9443253249999088, 50.69765859600005), (-1.946115688999953, 50.707912502000056), (-1.9492895169999542, 50.713324286000045), (-1.9877009759999282, 50.72011953300006), (-2.01390540299991, 50.71893952000005), (-2.0219620429999168, 50.72011953300006), (-2.0254613919999542, 50.723863023000035), (-2.026193813999953, 50.72508372600004), (-2.0338435539999296, 50.73712799700007), (-2.038970506999931, 50.739935614000046), (-2.0480850899999155, 50.734808661000045), (-2.0826716789999296, 50.69896067900004), (-2.0695694649999155, 50.700100002000056), (-2.0577286449999406, 50.702826239000046), (-2.046620245999918, 50.70726146000004), (-2.0356339179999168, 50.713324286000045), (-2.0141495429999168, 50.688788153000075), (-2.0025121739999463, 50.681301174000055), (-1.984120245999918, 50.67853424700007), (-1.9674373039999296, 50.67865631700005), (-1.9527888659999348, 50.67658112200007), (-1.9458715489999463, 50.668850002000056), (-1.9529516269999476, 50.65184153900009), (-1.9382218089999128, 50.645819403000075), (-1.9324845039999445, 50.64443594000005), (-1.9672745429999168, 50.61709219000005), (-1.965199347999942, 50.60219961100006), (-1.9837133449999556, 50.59662506700005), (-2.065174933999913, 50.59552643400008), (-2.082183397999927, 50.59784577000005), (-2.1573380199999406, 50.62051015800006), (-2.3426407539999445, 50.63377513200004), (-2.377064581999946, 50.64752838700008), (-2.398345506999931, 50.64557526200008), (-2.435902472999942, 50.63751862200007), (-2.447621222999942, 50.62787506700005), (-2.4600723949999406, 50.60651276200008), (-2.465646938999953, 50.585150458000044), (-2.4564509759999282, 50.575506903000075), (-2.4312231109999516, 50.57025788000004), (-2.428700324999909, 50.55756256700005), (-2.4392797519999476, 50.54181549700007), (-2.45335852799991, 50.52765534100007), (-2.4595434239999463, 50.52765534100007), (-2.4603572259999282, 50.56549713700008), (-2.4835098949999406, 50.59039948100008), (-2.6929418609999516, 50.69281647300005), (-2.8648168609999516, 50.73379140800006), (-2.887318488999938, 50.734361070000034), (-2.94554602799991, 50.725816148000035), (-2.9627579419999392, 50.72329336100006), (-2.998199022999927, 50.708238023000035), (-3.021839972999942, 50.70648834800005), (-3.059722459999932, 50.713324286000045), (-3.071359829999949, 50.711004950000074), (-3.0941462879999335, 50.69896067900004), (-3.099232550999943, 50.69708893400008), (-3.115834113999938, 50.68797435100004), (-3.1254776679999168, 50.68528880400004), (-3.135894334999932, 50.68593984600005), (-3.1551407539999445, 50.69135163000004), (-3.1664932929999168, 50.69281647300005), (-3.1856176419999542, 50.690741278000075), (-3.2191462879999335, 50.68081289300005), (-3.2598363919999542, 50.67454661700003), (-3.271392381999931, 50.664496161000045), (-3.280425584999932, 50.65119049700007), (-3.2955623039999296, 50.63751862200007), (-3.368153449999909, 50.61709219000005), (-3.390736456999946, 50.61782461100006), (-3.4075414699999556, 50.62128327000005), (-3.420969204999949, 50.62946198100008), (-3.433338995999918, 50.64443594000005), (-3.446359829999949, 50.66828034100007), (-3.4504288399999155, 50.672308661000045), (-3.453277147999927, 50.67328522300005), (-3.455433722999942, 50.675441799000055), (-3.458607550999943, 50.67755768400008), (-3.4644262359999516, 50.67853424700007), (-3.467762824999909, 50.67641836100006), (-3.468902147999927, 50.67169830900008), (-3.467844204999949, 50.66697825700004), (-3.45531165299991, 50.657904364000046), (-3.4420466789999296, 50.62352122600004), (-3.433338995999918, 50.610256252000056), (-3.451161261999914, 50.59943268400008), (-3.4672745429999168, 50.585598049000055), (-3.4817602199999556, 50.56854889500005), (-3.494862433999913, 50.548163153000075), (-3.505970831999946, 50.520819403000075), (-3.505034959999932, 50.501206773000035), (-3.487456834999932, 50.459418036000045), (-3.509755011999914, 50.45848216400009), (-3.532134568999936, 50.454779364000046), (-3.549427863999938, 50.446519273000035), (-3.556263800999943, 50.43211497600004), (-3.5493057929999168, 50.41559479400007), (-3.531971808999913, 50.410223700000074), (-3.487456834999932, 50.41156647300005), (-3.487456834999932, 50.40477122600004), (-3.4974666009999282, 50.38735586100006), (-3.49828040299991, 50.383693752000056), (-3.5073136059999115, 50.382798570000034), (-3.5149633449999556, 50.37995026200008), (-3.520130988999938, 50.37482330900008), (-3.5269262359999516, 50.34979889500005), (-3.5388891269999476, 50.34442780200004), (-3.5545141269999476, 50.347642320000034), (-3.57054602799991, 50.35639069200005), (-3.577788865999935, 50.334051825000074), (-3.5991104809999115, 50.325832424000055), (-3.6215714179999168, 50.321926174000055), (-3.631988084999932, 50.31232330900008), (-3.6373591789999296, 50.29539622600004), (-3.6475723949999406, 50.27456289300005), (-3.653309699999909, 50.25104401200008), (-3.6456192699999406, 50.22601959800005), (-3.6606339179999168, 50.22101471600007), (-3.700917120999918, 50.21352773600006), (-3.7180069649999155, 50.21238841400009), (-3.740386522999927, 50.21588776200008), (-3.758615688999953, 50.22174713700008), (-3.774240688999953, 50.22296784100007), (-3.788970506999931, 50.21238841400009), (-3.826324022999927, 50.23419830900008), (-3.8841853509999282, 50.280462958000044), (-3.949940558999913, 50.31899648600006), (-3.9610082669999542, 50.322251695000034), (-3.9702042309999115, 50.320746161000045), (-3.995757615999935, 50.311428127000056), (-4.005604620999918, 50.30923086100006), (-4.011341925999943, 50.30695221600007), (-4.024769660999937, 50.29718659100007), (-4.032948370999918, 50.294907945000034), (-4.044056769999941, 50.29645416900007), (-4.054351365999935, 50.30036041900007), (-4.070220506999931, 50.30923086100006), (-4.067941860999952, 50.31281159100007), (-4.064035610999952, 50.322251695000034), (-4.086008266999954, 50.326239325000074), (-4.1082657539999445, 50.33661530200004), (-4.118723110999952, 50.35187409100007), (-4.1049698559999115, 50.37067291900007), (-4.141753709999932, 50.36904531500005), (-4.1527400379999335, 50.37067291900007), (-4.1655167309999115, 50.37636953300006), (-4.171457485999952, 50.382798570000034), (-4.175770636999914, 50.39085521000004), (-4.18382727799991, 50.40106842700004), (-4.191477016999954, 50.417629299000055), (-4.18390865799995, 50.431708075000074), (-4.1703181629999335, 50.44513580900008), (-4.159535285999937, 50.459418036000045), (-4.179432745999918, 50.45307038000004), (-4.189564581999946, 50.45368073100008), (-4.200550910999937, 50.459418036000045), (-4.203684048999946, 50.45140208500004), (-4.204741990999935, 50.44867584800005), (-4.2123917309999115, 50.441473700000074), (-4.222523566999939, 50.43797435100004), (-4.234730597999942, 50.43829987200007), (-4.234730597999942, 50.43211497600004), (-4.2202042309999115, 50.425848700000074), (-4.2161352199999556, 50.415716864000046), (-4.219715949999909, 50.40509674700007), (-4.228505011999914, 50.397365627000056), (-4.2414444649999155, 50.39468008000006), (-4.2899063789999445, 50.397365627000056), (-4.273019985999952, 50.38190338700008), (-4.216175910999937, 50.38776276200008), (-4.1937556629999335, 50.37689850500004), (-4.228505011999914, 50.37067291900007), (-4.228505011999914, 50.36383698100008), (-4.220122850999928, 50.365301825000074), (-4.200550910999937, 50.36383698100008), (-4.207997199999909, 50.35639069200005), (-4.180043097999942, 50.35639069200005), (-4.180043097999942, 50.35016510600008), (-4.191314256999931, 50.34756094000005), (-4.197987433999913, 50.342230536000045), (-4.199126756999931, 50.33539459800005), (-4.1937556629999335, 50.32843659100007), (-4.1937556629999335, 50.322251695000034), (-4.214995897999927, 50.323146877000056), (-4.225697394999941, 50.33539459800005), (-4.235096808999913, 50.34955475500004), (-4.2523494129999335, 50.35639069200005), (-4.337717251999948, 50.37067291900007), (-4.383697068999936, 50.36749909100007), (-4.456206834999932, 50.33820221600007), (-4.4953507149999155, 50.32843659100007), (-4.659820115999935, 50.322251695000034), (-4.659575975999928, 50.32062409100007), (-4.662709113999938, 50.31777578300006), (-4.667795376999948, 50.315334377000056), (-4.673451300999943, 50.31541575700004), (-4.687163865999935, 50.34271881700005), (-4.694325324999909, 50.343451239000046), (-4.700184699999909, 50.34088776200008), (-4.705555792999917, 50.337551174000055), (-4.7113337879999335, 50.33588288000004), (-4.731556769999941, 50.33466217700004), (-4.752105272999927, 50.33030833500004), (-4.763295050999943, 50.32208893400008), (-4.755441860999952, 50.30923086100006), (-4.755441860999952, 50.30174388200004), (-4.7623591789999296, 50.298041083000044), (-4.771636522999927, 50.29157135600008), (-4.779855923999946, 50.28432851800005), (-4.783355272999927, 50.27789948100008), (-4.7818904289999296, 50.27179596600007), (-4.776519334999932, 50.26508209800005), (-4.776519334999932, 50.26080963700008), (-4.788441535999937, 50.24209219000005), (-4.790150519999941, 50.23655833500004), (-4.800160285999937, 50.22955963700008), (-4.849720831999946, 50.23456452000005), (-4.868723110999952, 50.22943756700005), (-4.887318488999938, 50.21499258000006), (-4.904774542999917, 50.20844147300005), (-4.947255011999914, 50.19936758000006), (-4.960682745999918, 50.19049713700008), (-5.002430792999917, 50.14411041900007), (-5.014556443999936, 50.15656159100007), (-5.0203751289999445, 50.19196198100008), (-5.033192511999914, 50.19936758000006), (-5.05296790299991, 50.19578685100004), (-5.053618943999936, 50.18691640800006), (-5.051869269999941, 50.17552317900004), (-5.064564581999946, 50.16461823100008), (-5.064564581999946, 50.15839264500005), (-5.058501756999931, 50.155462958000044), (-5.043446417999917, 50.14411041900007), (-5.051869269999941, 50.144598700000074), (-5.058461066999939, 50.14272695500006), (-5.070790167999917, 50.13727448100008), (-5.08031165299991, 50.13271719000005), (-5.081613735999952, 50.12539297100005), (-5.080962693999936, 50.117173570000034), (-5.085031704999949, 50.10993073100008), (-5.093902147999927, 50.105536200000074), (-5.125965949999909, 50.09634023600006), (-5.114654100999928, 50.09662506700005), (-5.106068488999938, 50.09511953300006), (-5.091867641999954, 50.089504299000055), (-5.086903449999909, 50.089056708000044), (-5.075347459999932, 50.09048086100006), (-5.070790167999917, 50.089504299000055), (-5.068470831999946, 50.085150458000044), (-5.064930792999917, 50.07184479400007), (-5.06086178299995, 50.06903717700004), (-5.056507941999939, 50.060614325000074), (-5.069488084999932, 50.042181708000044), (-5.0980525379999335, 50.01439036700003), (-5.107289191999939, 50.013006903000075), (-5.127430792999917, 50.01544830900008), (-5.139637824999909, 50.01439036700003), (-5.146473761999914, 50.01056549700007), (-5.176136847999942, 49.987941799000055), (-5.18773352799991, 49.964504299000055), (-5.191151495999918, 49.95913320500006), (-5.200103318999936, 49.961371161000045), (-5.210357225999928, 49.96674225500004), (-5.240386522999927, 49.988348700000074), (-5.245228644999941, 49.99310944200005), (-5.2495011059999115, 50.000067450000074), (-5.253041144999941, 50.01264069200005), (-5.25226803299995, 50.020697333000044), (-5.252674933999913, 50.027777411000045), (-5.259755011999914, 50.03766510600008), (-5.2884008449999556, 50.067694403000075), (-5.304351365999935, 50.08026764500005), (-5.323963995999918, 50.089504299000055), (-5.384185350999928, 50.10797760600008), (-5.424712693999936, 50.11273834800005), (-5.458119269999941, 50.125881252000056), (-5.47484290299991, 50.13043854400007), (-5.495676235999952, 50.12962474200003), (-5.521839972999942, 50.12372467700004), (-5.540923631999931, 50.11347077000005), (-5.540638800999943, 50.09975820500006), (-5.5346573559999115, 50.08234284100007), (-5.5455623039999296, 50.06891510600008), (-5.563465949999909, 50.05963776200008), (-5.57843990799995, 50.054754950000074), (-5.61945553299995, 50.046210028000075), (-5.667388475999928, 50.04287344000005), (-5.705148891999954, 50.05231354400007), (-5.715646938999953, 50.08270905200004), (-5.705962693999936, 50.08348216400009), (-5.698801235999952, 50.08539459800005), (-5.694488084999932, 50.089504299000055), (-5.694406704999949, 50.095770575000074), (-5.697092251999948, 50.10053131700005), (-5.700306769999941, 50.103216864000046), (-5.701975063999953, 50.103176174000055), (-5.707386847999942, 50.12201569200005), (-5.70921790299991, 50.13263580900008), (-5.70539303299995, 50.13727448100008), (-5.7035212879999335, 50.140611070000034), (-5.684641079999949, 50.16152578300006), (-5.676747199999909, 50.16502513200004), (-5.647368943999936, 50.17206452000005), (-5.583607550999943, 50.19586823100008), (-5.549427863999938, 50.20351797100005), (-5.5109757149999155, 50.21946849200003), (-5.4891251289999445, 50.21979401200008), (-5.458119269999941, 50.20075104400007), (-5.437977667999917, 50.19432200700004), (-5.417388475999928, 50.202460028000075), (-5.402943488999938, 50.21735260600008), (-5.395863410999937, 50.22724030200004), (-5.39289303299995, 50.23655833500004), (-5.3875626289999445, 50.240301825000074), (-5.351918097999942, 50.240301825000074), (-5.3148494129999335, 50.253607489000046), (-5.200306769999941, 50.33075592700004), (-5.1635636059999115, 50.34723541900007), (-5.1498917309999115, 50.35016510600008), (-5.146473761999914, 50.35529205900008), (-5.145659959999932, 50.366888739000046), (-5.147043423999946, 50.37938060100004), (-5.153675910999937, 50.39948151200008), (-5.142404751999948, 50.40448639500005), (-5.12726803299995, 50.40521881700005), (-5.119740363999938, 50.40477122600004), (-5.0502823559999115, 50.42869700700004), (-5.0481664699999556, 50.43439362200007), (-5.038726365999935, 50.44790273600006), (-5.029774542999917, 50.486761786000045), (-5.0286352199999556, 50.507025458000044), (-5.025257941999939, 50.52423737200007), (-5.015614386999914, 50.53803131700005), (-4.9955948559999115, 50.548163153000075), (-4.975168423999946, 50.548163153000075), (-4.967844204999949, 50.55158112200007), (-4.954823370999918, 50.56122467700004), (-4.947255011999914, 50.56244538000004), (-4.941477016999954, 50.55695221600007), (-4.937123175999943, 50.54531484600005), (-4.9344376289999445, 50.53164297100005), (-4.933583136999914, 50.52024974200003), (-4.926869269999941, 50.52289459800005), (-4.924305792999917, 50.52448151200008), (-4.920521613999938, 50.52765534100007), (-4.902414516999954, 50.52057526200008), (-4.860951300999943, 50.519191799000055), (-4.844838019999941, 50.51406484600005), (-4.855824347999942, 50.527411200000074), (-4.87328040299991, 50.534084377000056), (-4.906239386999914, 50.54197825700004), (-4.921864386999914, 50.55487702000005), (-4.92023678299995, 50.564154364000046), (-4.915191209999932, 50.57249583500004), (-4.920521613999938, 50.58295319200005), (-4.920521613999938, 50.589178778000075), (-4.895659959999932, 50.585923570000034), (-4.821197068999936, 50.589178778000075), (-4.7924698559999115, 50.59520091400009), (-4.7766007149999155, 50.60984935100004), (-4.765044725999928, 50.62799713700008), (-4.7492569649999155, 50.64443594000005), (-4.755441860999952, 50.659369208000044), (-4.751942511999914, 50.67007070500006), (-4.741932745999918, 50.67487213700008), (-4.728138800999943, 50.672308661000045), (-4.657297329999949, 50.71112702000005), (-4.645578579999949, 50.723537502000056), (-4.637806769999941, 50.74115631700005), (-4.619007941999939, 50.754787502000056), (-4.577259894999941, 50.774725653000075), (-4.5501195949999556, 50.80955638200004), (-4.55492102799991, 50.897772528000075), (-4.543771938999953, 50.93919505400004), (-4.536854620999918, 50.94757721600007), (-4.5226944649999155, 50.972723700000074), (-4.5266820949999556, 50.98037344000005), (-4.530425584999932, 50.99469635600008), (-4.531320766999954, 51.008693752000056), (-4.526437954999949, 51.014960028000075), (-4.437326626999948, 51.014960028000075), (-4.4264216789999296, 51.01268138200004), (-4.4057511059999115, 51.00287506700005), (-4.3957413399999155, 51.00067780200004), (-4.337717251999948, 50.99664948100008), (-4.317290818999936, 51.00067780200004), (-4.302316860999952, 51.007513739000046), (-4.234730597999942, 51.05532461100006), (-4.2291560539999296, 51.06110260600008), (-4.224680141999954, 51.06708405200004), (-4.218495245999918, 51.07245514500005), (-4.207997199999909, 51.07636139500005), (-4.214263475999928, 51.086004950000074), (-4.226307745999918, 51.11322663000004), (-4.228505011999914, 51.120428778000075), (-4.2319229809999115, 51.12669505400004), (-4.249012824999909, 51.14288971600007), (-4.255767381999931, 51.15151601800005), (-4.222320115999935, 51.149725653000075), (-4.214833136999914, 51.15151601800005), (-4.208363410999937, 51.16229889500005), (-4.2098282539999445, 51.17283763200004), (-4.217274542999917, 51.18138255400004), (-4.228505011999914, 51.18622467700004), (-4.228505011999914, 51.19245026200008), (-4.152333136999914, 51.21161530200004), (-3.969471808999913, 51.22239817900004), (-3.931996222999942, 51.231350002000056), (-3.9131973949999406, 51.23338450700004), (-3.840891079999949, 51.23338450700004), (-3.818959113999938, 51.23607005400004), (-3.787098761999914, 51.24677155200004), (-3.769154425999943, 51.247707424000055), (-3.6397598949999406, 51.22638580900008), (-3.559315558999913, 51.22809479400007), (-3.434193488999938, 51.20978424700007), (-3.4043676419999542, 51.19204336100006), (-3.38499915299991, 51.18622467700004), (-3.2707413399999155, 51.18939850500004), (-3.198882615999935, 51.203558661000045), (-3.1627498039999296, 51.206732489000046), (-3.096750454999949, 51.20453522300005), (-3.057525193999936, 51.20815664300005), (-3.029286261999914, 51.220404364000046), (-3.021839972999942, 51.21356842700004), (-3.0355525379999335, 51.199286200000074), (-3.021839972999942, 51.19245026200008), (-3.004790818999936, 51.21312083500004), (-3.0013321609999366, 51.220404364000046), (-2.9995824859999516, 51.23322174700007), (-3.0015356109999516, 51.23969147300005), (-3.0049942699999406, 51.24506256700005), (-3.008168097999942, 51.25454336100006), (-3.0076391269999476, 51.29197825700004), (-3.0106095039999445, 51.310980536000045), (-3.021839972999942, 51.32282135600008), (-3.0024307929999168, 51.31907786700003), (-2.992176886999914, 51.321926174000055), (-2.992095506999931, 51.32204824400009), (-2.988392706999946, 51.33112213700008), (-2.9877823559999115, 51.34666575700004), (-2.9798884759999282, 51.35586172100005), (-2.965972459999932, 51.364935614000046), (-2.959584113999938, 51.374253648000035), (-2.9746801419999542, 51.38422272300005), (-2.9529516269999476, 51.398504950000074), (-2.9210098949999406, 51.39443594000005), (-2.8841853509999282, 51.41697825700004), (-2.816395636999914, 51.47361888200004), (-2.798573370999918, 51.48261139500005), (-2.780873175999943, 51.48908112200007), (-2.7612198559999115, 51.49286530200004), (-2.7376195949999556, 51.49408600500004), (-2.716420050999943, 51.49957916900007), (-2.6961563789999445, 51.51264069200005), (-2.6078181629999335, 51.60736725500004), (-2.599598761999914, 51.611395575000074), (-2.5892227859999366, 51.61424388200004), (-2.580433722999942, 51.61863841400009), (-2.5768123039999296, 51.62750885600008), (-2.57445227799991, 51.63572825700004), (-2.568959113999938, 51.644964911000045), (-2.562245245999918, 51.65338776200008), (-2.556385870999918, 51.65924713700008), (-2.499175584999932, 51.69676341400009), (-2.464995897999927, 51.725897528000075), (-2.4477432929999168, 51.73187897300005), (-2.404896613999938, 51.74115631700005), (-2.3885391919999392, 51.750433661000045), (-2.380767381999931, 51.76190827000005), (-2.3833715489999463, 51.77326080900008), (-2.398060675999943, 51.782131252000056), (-2.4024145169999542, 51.76357656500005), (-2.4203995429999168, 51.753119208000044), (-2.4434301419999542, 51.74843984600005), (-2.4632869129999335, 51.747300523000035), (-2.482085740999935, 51.74286530200004), (-2.495838995999918, 51.73200104400007), (-2.507964647999927, 51.71857330900008), (-2.5221248039999296, 51.706366278000075), (-2.581695115999935, 51.681708075000074), (-2.5911352199999556, 51.67536041900007), (-2.600209113999938, 51.66559479400007), (-2.6653539699999556, 51.617254950000074)]\n", + " draw_map(plot, x, y, colour)\n", + " plot.plot(\n", + " [merc_x(coord[0]) for coord in gb_boundary],\n", + " [merc_y(coord[1]) for coord in gb_boundary],\n", + " \"k-\",\n", + " )\n", + "\n", + "country = Config(\n", + " get_data=get_literal_data(),\n", + " clean=get_map_cleaner_for(\"Temperature\"),\n", + " title=\"Country wide temperature\",\n", + " ylabel=\"\",\n", + " draw=draw_map_with_gb,\n", + ")\n", + "\n", + "out = widgets.interactive(interactable_plot_multiple_charts(configs=configs + (country, )), collected_after=start, collected_before=end)\n", + "display(out)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "apd.aggregation", + "language": "python", + "name": "apd.aggregation" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Ch09/chapter09-database.ipynb b/Ch09/chapter09-database.ipynb new file mode 100644 index 0000000..98a74f0 --- /dev/null +++ b/Ch09/chapter09-database.ipynb @@ -0,0 +1,577 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "53635\n" + ] + } + ], + "source": [ + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.database import datapoint_table\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " print(session.query(datapoint_table).count())" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "53635\n" + ] + } + ], + "source": [ + "from apd.aggregation.query import with_database, get_data\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " count = 0\n", + " async for datapoint in get_data():\n", + " count += 1\n", + " print(count)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nO2df5RV5Xnvv88czuAZIhnGAMWJk1FK8cYMMOmk4KXXaiwlkahHIyFW1vKu5uptb1dbSjvtULnFZEEgkhC6bu+695L+olcWRQ0dTTASitqueoUuzIDERIpGRUcKNDhRYYRheO4fZ+9hz56999m/z95zvp+1Zp05++wfz373u9/nfd/neZ9HVBWEEEKIGw21FoAQQki2oaIghBDiCRUFIYQQT6goCCGEeEJFQQghxJMJtRYAAD7ykY9oe3t7rcUghJBc8cILL/y7qk5N+jqZUBTt7e04cOBArcUghJBcISJvpHEdTj0RQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+qej2JyF8B+ByAk6r6CWNbC4AdANoBvA7gC6r6jvHbKgBfAjAM4HdVdXcikhOSIr19/XjwiZcwMDgU6TxNxUrf7OzQRQDAlKYi1tx6HcqdrSPX2bj7CN4eGMSVzSV0L5498htJjiDlbq8LU5qKWDJnBp55+RTeHhjEh0tFnL8wPPKM/WCvB1lDqkWPFZEbALwP4G8tiuIhAKdVdYOI9ACYoqp/LCIfB7AdwC8BuBLAPwD4BVUd9rpGV1eX0j2WZJXevn50P3oIQxeTibRcLAg23jUXALBq52EMDl16XUrFAtbf2ZHZBmQ80NvX77vck6wLZj0I8qxF5AVV7YpdGBtVp55U9Z8AnLZtvh3AVuP/rQDKlu1/p6rnVPU1AK+gojQIyS0bdx9JTEkAwNCwYuPuI9i4+8ioxgoABoeGsXH3kcSuTRCo3JOsC2Y9yCJhF9xNV9XjAKCqx0VkmrG9FcA+y35vGdvGICL3A7gfANra2kKKQUjyvD0wWNNrpHH9esatfJ22J/0ssvqs4zZmi8M2R/WrqltUtUtVu6ZOTXwFOiGhubK5lMo13K6TxvXrmSDlnvSzyOqzDqsoTojIDAAwPk8a298CcJVlv48CeDu8eITUnu7Fs1FscOoDxUOxIOhePBvdi2ejVCyM+q1ULKB78ezErk0QqNyTrAtmPcgiYRXFEwDuNf6/F8Djlu1fFJGJInI1gFkA/iWaiITUlnJnKzYunYvmUjHyuZqKDSOeT0DF28U0YJY7W7H+zg60NpcgAFqbSzRkp0CQcneqC1Oaili+oG3k+OZScdQz9oO1HmQRP15P2wHcCOAjAE4AWAOgF8AjANoAHAOwVFVPG/s/AOA3AFwAsEJVv1dNCHo9EUJIcNLyeqpqzFbVu11+utll/3UA1kURihBCSHbgymxCCCGeUFEQQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhCRUEIIcQTKgpCCCGeUFEQQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhSNR8FIWHp7evHg0+8hIHBoTG/TWosYN0d/rO39fb1Y+PuI3h7YBBXNpfQvXh2bNnAvOQ0mdJUxJpbr0O5szWwLOb+/QODKIhgWBXNpSLOXxjG2aGLsdwDUElYXywIzg9fSkY2pamIJXNm4JmXT43I235FCft+8g6GVVEQwd3zr8LackdscvjFXu7WMq4FTvXA/tyr1RMrbveTZF1OiqoZ7tKAGe7GH719/eh+9BCGLrrXr0KD4BtLq6d/7O3rx6qdhzE4NDyyrVQsxJIm1I+cJsWCYNmnrsK3X+j3LYuT7Flk+YK2VJWFW7kXC1KTlKBe9cB87jv+5U1f9cR+rPV+4q7LaWW449QTSYSNu49UfamGLyo27j7i61z2hnZwaNjXsX7O7fflHxpWbN//ZiBZnGTPItv3v5nq9dzKfWjYX51ISx7g0nMPqiTMY633k2RdThIqCpIIbw8Mxraf2z5+rxH1+laGXUbgScqYBm73lRRe5VKLMqt2zSjlYz13XusJFQVJhCubS7Ht57aP32tEvb6Vgkig88QhYxq43VdSeJVLLcqs2jWjlI/13HmtJ1QUJBG6F89GscH75So0CLoXz/Z1rlKxMGpbqVjwdayfc1eT06RYqBh+g8jiJHsWuXv+Valez63ciwV/dSIteYBLz91vPbEfa72fJOtyklBRkEQod7Zi49K5aC4VHX+f1FjwZcg2z7X+zg60NpcgAFqbS7EYsv3IaTKlqYiNd83F2nJHIFmssgOXeqbNpSKaivG+fgKgsTC6MZvSVMTyBW2j5F04s2VEjoJI6oZswLnczTKuhQeQWz2wPnc/9cTpWOv9JFmXk4ReT4QQklPo9UQIISQTUFEQQgjxJJKiEJHfE5EfishLIrLC2NYiIntE5KjxOSUeUQkhhNSC0IpCRD4B4D4AvwRgLoDPicgsAD0A9qrqLAB7je+EEEJySpQRxX8AsE9Vz6rqBQD/COAOALcD2GrssxVAOZqIhBBCakkURfFDADeIyBUi0gTgFgBXAZiuqscBwPic5nSwiNwvIgdE5MCpU6ciiEEIISRJQisKVf0xgK8B2APgKQCHAFwIcPwWVe1S1a6pU6eGFYMQQkjCRDJmq+pfquonVfUGAKcBHAVwQkRmAIDxeTK6mIQQQmpFVK+nacZnG4A7AWwH8ASAe41d7gXweJRrEEIIqS1RExd9W0SuADAE4LdV9R0R2QDgERH5EoBjAJZGFZLUH1lLakNIPRNJUajqf3LY9lMAN0c5L6lvnJLIvHN2CN2PHQIAKgtCUoYrs0nmyFpSG0LqHebMJqlizR8tAOzqwGmblf6BQXz8v38vUK7pKU1FfHzG5Xju1dO+9rVOccU1Bba69zC2739zTJ5qr/zJ1t8+XCpCBBg4O+S436qdL2LQKJMGAa6/pgUvvf3emPzPZv5st/JvEODX56cfTdYtX/WSOTPw3UPHazIFubr3MLbtO+ZYH1tzkus6Lhg9lqRGXvJHm3mOAcSS13l172E8vO/YmO0LZ7bgB8d+5pg/GYBnWVn3W7njIPyrTX+kGXo8SN5yIJ282m7PzEpcedujkFb0WCoKkhoLNzyN/oynfDQx80e4ydvaXMJzPZ/2da6Zq54MlEqz2rWD7heGggheXX9L7Od1Iky9CFL+YfD7zJKWoxppKQpOPZFYqPQKD8JpRmhSYwHr7ujIfF5gK9VkDXIvQfMtx5lvPCxp5tAOcx9J1yW/95+nOh0FGrNJZHr7+rFih7OSAIAz54fxB48eQnOT/+xgtebK5lJseZ2D5luudu2g+4UhzRzaYe4h6RzTfu8/67mu44KKgkTGjyfS8EWFKnKRP9rMcxxXXme3fNQLZ7a45k+ulmvbul8SL3GaObSD5C0H0smr7ef+85DrOi6oKEhk/A6/fzY4NCp/tFPTYM/73FRsGJVb2v7dD1Oailg4s8X3vqahNK68zmvLHVi+oG1Mnupt913vmj/Znlu5uVTElKai436bls1DyVImDVJRQk75n8382YBz+TdIuoZswDtf9fIFbTXJq20+Mzf1lZdc13FBYzaJjF9jZK0Nf4SMN5gzm+QGP8PvQkPy0wWEkGSgoiCRKXe2YvOyeXCbEZrUWMA3liY/XUAISQa6x5JYMOfLCSHjD44oCCGEeEJFQQghxBMqCkIIIZ5QURBCCPGEioIQQognVBSEEEI8oXssyQT2JDFmxFm63BJSe6goSM1xShJjRpwFmCObkFrDqSdSc7bvf9Nx+/BF5sgmJAtwREFSx54L2itJjDUyrT3v9IJrpozKC91UbMDEYmEkr/RN104dlW8ZSDfncpbwys1t/h5HbvCgctifkVOebDNasD1Per0+y1rA6LEkVYLmzTYjzvrJYeyXNHIuZwmnMrfme3bLWR13OSWRM73enqUdRo8l45KNu4/4biisEWfdpqfCMDRcX1NaTmU+ODQ8UgYbdx8ZoySA+MspyLP3S709y1oRSVGIyO+LyEsi8kMR2S4il4lIi4jsEZGjxueUuIQl+cdvkiN7xNm4czjXS65jwP1eze1eZRFnOSVV5vX0LGtFaEUhIq0AfhdAl6p+AkABwBcB9ADYq6qzAOw1vhMCwF+O4dbmEl76ymdGTSfEncO5XnIdA+73am6PKzd4WDmyel5yiahTTxMAlERkAoAmAG8DuB3AVuP3rQDKEa9BxhF+c0HbiTOHcxo5l7OEU5lbyzmu3OBh5IhKvT3LWhFaUahqP4CvAzgG4DiAn6nq9wFMV9Xjxj7HAUyLQ1AyPvCbC9qOU95pe17opmLDqHPZ8y0D6eVczhL2MreXc1y5wcPI4ZQT277NLU96PT7LWhHa68mwPXwbwDIAAwAeBfAYgD9X1WbLfu+o6hg7hYjcD+B+AGhra/vFN954I5QchBBSr+TB6+lXAbymqqdUdQjATgD/EcAJEZkBAMbnSaeDVXWLqnapatfUqVMjiEEIISRJoiiKYwAWiEiTiAiAmwH8GMATAO419rkXwOPRRCSEEFJLQq/MVtX9IvIYgB8AuACgD8AWAB8C8IiIfAkVZbI0DkEJIYTUhkghPFR1DYA1ts3nUBldEEIIGQdwZTYhhBBPqCgIIYR4QkVBCCHEEyoKQgghnlBREEII8YSKghBCiCdUFIQQQjyhoiCEEOIJc2YTUidUy5udNfIm73iGioKQOsCer7p/YBCrdh4GgEw2vnmTd7zDqSdC6oBqebOzRt7kHe9QURBSB1TLm5018ibveIeKgpA6oFre7KyRN3nHO1QUhNQB1fJmZ428yTveoTGbkDrANADnxYsob/KOd0LnzI6Trq4uPXDgQK3FIISQXJGHnNmEEELqACoKQgghntBGYeGebz2P5149PfJ94cwWbLvv+hpKRAghtYcjCgO7kgCA5149jUWbnq2NQIQQkhHqZkRxdc8uWM32AuC1DUtGvtuVhMnRk2fQ29dPbwtCSN1SFyOKdpuSAAA1tvth1c4XY5eJEELywrhXFPd863nP3+ev21P1HINDF+MShxBCcse4VhS9ff2uU0omJ947n5I0hBCST8a1ovjjb/ubMpqz5qmEJSGEkPwSWlGIyGwROWj5e1dEVohIi4jsEZGjxueUOAUOwrkL/qaM3j03XH0nQgipU0IrClU9oqrzVHUegF8EcBbA3wPoAbBXVWcB2Gt8J4QQklPimnq6GcCrqvoGgNsBbDW2bwVQjukaNaW3r7/WItQVvX39WLjhaVzdswsLNzzN8iekhsSlKL4IYLvx/3RVPQ4Axuc0pwNE5H4ROSAiB06dOhWTGKOZNW1SbOdiZq30WLTpWazYcRD9A4NQVNJgrthxkMqCkBoRecGdiDQCuA3AqiDHqeoWAFuASvTYqHI4cfZ8fG6tWcisVQ/J5u/51vM4evKM428rHzmYi/uth+dEorO69zC2738Tw6ooiODu+Vdhbbmj1mI5EsfK7M8C+IGqnjC+nxCRGap6XERmADgZwzVCEWfj/uFSMbZzhWHOmqdGGd3Ha7J5L3fmi7WPiF+VRZueHaXozNEQML6eE4mGvZ4Mq+LhfccAIJPKIo6pp7txadoJAJ4AcK/x/70AHo/hGqFonBCf9++7g0OxnSso89ftcfTMGm/J5q994MlaixAJr9HQih0Hcc2qXZw+I1jde9i1npjKImtEGlGISBOARQD+q2XzBgCPiMiXABwDsDTKNcLS29fv2z3WD0mvzXaKXLu0qw0bdx/xXBTYn4EpsThY3XsYHwznYMjgQbXFnRcVHF2QzCoDLyIpClU9C+AK27afouIFVVO6Hz1YaxEccZq/fvTAMcfItdUaHqAS3DCvWMsi3yoiGH/02CEqijplde/hWosQinEbPbZaeKZJjQWcOZ/uQrvevn78/o6DI41i/8DgqO9hyGsD29vXj1U7D2NwqP4WO57P+ciJBKe3r39kNOlFVjt+uVYUUbxL1t3RMaahKhULng1Xe8+uSN4Jf/TYIccotvXIxt1HAiuJgmT1NQrO6t7DmTRaEm/CeCr5VRIAcM+CtjjEjJ3cKorevn50P3oIQ4YrTP/AILofPQQAOPCG95RNqdgwolDsiqbaA3XyTvCrsNiTvEQY28qwjp/ye3jfMSqKnBHWU+nBJ17yfY2s1oncKooHn3hpREmYDF1UPPjESxio4qG0/s45ACoGRXuD7lfzbzNedHtvge6Q/hAEH021NpeSEIWQqlTzVPJq4Ku1RyaTJxZCyZYGuVUUboXv56F4NeClYoOv/BNmI+emWFbsGL04jG6RowkzNmi/Il5FYe8hzpo2CXtW3hjqXEk8X7sn3MQJDfja5yudHC7oS5ft+98MdVy1fDhWXvzyZ0JdIw1yqyiSYv2dc3yPKqphTaGa5HqHepnvfu7V07GlpbUrCaCS9nbRpmerKguneeowLo/tPbuwfEGb47NzyuF+7sLFMXXTHMH+ae/hTDc0Tlz7wJNjXKInTyxk8j6qTXs6vYNOdcyNUjHbGR9EMzDv29XVpQcOHAh0jN80pnYmNAhe+eotnvvMXv09X2swFs5s8eXCmgavW/J/54Gwz880Z1frSVezG3ld36ssV/ceTsQP3q4wwpTPZQXBy+u863ZWcFISVtKsz15u2hMEeGX9Esxc9WRVZWGVOYgBGwA2L5sXqgMkIi+oalfgAwOSbTWWAF9fOrfqPubwvhppKYnNy+alcp08oMafGcLEacrHdL21BhX8/R0HY/FhT2qx1MP7jkWW74NhzY2ffrXFlVeH7EgExV5X7FzQitJecE2wtDpf/o5/A/bCmS2ZnzqsK0WxfEGbrweSlYfW2lwK3dPIMkHmbb1wC2Hi5HqrqDTGfmwJ7T27atLgxqGE8rjq1wlF+FFnEPy6afvpFFqV2ztn/Rmwly9ow7b7rve1by3JraJoLAT3qc/TPP5lBcFzPZ8eURILZ7bUWKJ4WN17uOpL1xDg0Tq52XoFg/TrqhhHDz8M7T27Umkg80LSSjvOwKGK4Cuv89Im5VZRTJoYzA4fdPomzlwWYbDPNVfrdeQl0Y+fHu+mLwR7VvZ79YoF6ddVEYindz5r2iQsz+giqlpyWYCOXpJK+8qYXa7NOtPsI9q0n32yQm4Vhd+hnUnQ6Zs9K2+sibKYPLEQypC38pHRiX7c5u+TIG4lFfRZ2UcJ1bybg8j386su9e4XbXo2iFgAKvVobbmDdiYbG+6qbiu08vC+Y7i6J/7ou92LZ8d6PqAyCvLTIXnwtutiv3ZS5NY9tiCS+ErdPStvxMINTyceoTUODw97rgZz/j5p+0aQBYdJ9QqDjBKAimJpbS75eq4XtGJTeeXk+55RfJ2YfnnjyP9mWcTlep13wriLKyrl94ePHsLXl87Nte1u1rRJuZI/tyOKtMI5JNHjsBIkflFTQF9r+/xrEtNTKz0WHNrZ5mMqx2xcJ8aYS8TOwOBQoOf63KunAysJANj/wKJR38udramMLPLg+RTFNnDhomLFjoNo79mF2au/F6ke1yKfS5SFnbUit4oiCFHmiMudrYnOMd89/yrf+371Tn9uuybWrHxOLqNxTE95zfK0WxRSb19/1dXY0y9vHGlc/booO+FnyjDpnr3bKLHc2Zr4GoGwtpVrH3hyxJje3rMr0URScdkGzl24iJWPhM+nXot8LnlTEkCdKIqongXmHHPcsYYWzmwJJFvQoap1sOLkBjg4NDzSM3P6i6Nnak5FVWuYly9oG9UDjzIs//f3g/f+42LWtEmZWPw4f92eQPtf3bNrzNqGD4Y1MWVx07VTYzvXRQ0/MhhPEYmTJLeKIu0HXO5sxXM9n8brG5Zg+YK2Mdf3WoK/edm8EUUjuLQ+Imn/aavBP0zPKU0X0ajK3JRzde/hwI4OcbF52TzfvcVJjcEDwF1WkJH6V40T750fZYj3YnXvYdfRXlJZB595+ZTj9rChLMJOZXlNYdMB4RK5NWb7ja+TxLTR2nKHY8O2uvcwtu07NvLSTWosYN0dHSO947SNV0HWI7hRLTLm9MsbQ83f24kaw+nhfcfQ9bGWmi04a7KErvfDujs6Ak9/mS7Ta8sdvu7zglZGCq9VGeHUoszcGvYPfATkdCLsVJabU0Nrc2kkuvScNU855qw3FUk9OCjkVlGsLXfgtVPvV128leaCFjcFUivsnlBh8WrEJxTiCY0ch4dWrV5YQXD7URAvKKvtxqSp2ICzPqMcz1+3Z+R4p4CGteBKlwb6yuYSbrp2amDlFdbppHvxbMcEZtbzVQtSeOCN0+NmRbwbuVUUQGURGlexJs+qnS+6NuJxrWx1Ok+YnBVpM6WpiDW3XhdKyZk91jCZGr8aIMqxOeL7+VW7cMFSoNbEO2nj1UCb924qND+E7WS4JTALcj6zc+inLPM6nZVrRQEAxQb3BVb1viI2rsjFg0MXMWfNU449K7eeYVCcpg7uWdCWekM2QTCqMfVi8sQC+v701yJf0ymBlp9j/vDRQ7jgc9gYtkOVVMNWrYE2R+dpdATDlL+dteUOPPPyKdd3oTXneUNya8w22bjUuSIH9SjKC1Oa/C/7H7oYX0Kdd88NY86ap8Zs7148G6VitOkn+1DfZG25I1VlP3liAa+sX+I7wX2t8yZ8fencWOxQXiTZsJkOIq9tWDIqrpkVPz4rWekQOr0LpWIBm5fNc72/vJB7RWEuYkrbo6hWrLn1OhQDxMl58ImXsHDD07Fc+91zw2MUT7mzFXoxuAFyQoOMPK/1d3a4vkRryx2hAkAGZfrljSMN/2sbloxaVW0nbJiVuCl3tmLTF+J3284S98yvrgSy0iEsd7Zi/Z0do9oir7qdJ3KbuKie6e3r95UbPAlam0t4rufTgbJ3AZWeVdiX5uqeXZFtFW6Z5LywZ5lbOLMl0x2QuKdpzGdda7ySHGU1I15apJW4iIoixzilywzLpMYCzpyvHpcf8O8S29pciiWvc9R4W+Mxp4cTQbOqVSNL5TZ/3Z4xda7elQSQE0UhIs0A/gLAJ1BxUPkNAEcA7ADQDuB1AF9Q1Xe8zkNFEZ6oqTmtaz06v/L9WBerxTU909vXj+5HD2EohL+vmcqyXohrVJH10ROpkJdUqH8G4ClVvRbAXAA/BtADYK+qzgKw1/hOEiLq/GxzU+NIr3HNrdclbhwNQ7mzFR+6LJyDXj0piTihkiBWQisKEZkM4AYAfwkAqnpeVQcA3A5gq7HbVgDlqEISb6I07tb1C6ZxNA4mT4xnIZ7JQIiRTpDkOOOFOAzbWfEiItkhyojiGgCnAPy1iPSJyF+IyCQA01X1OAAYn9OcDhaR+0XkgIgcOHXKOe4L8UeUFdj29QtxhcKOe+74wwGzgV1WkDFZAuuB7sWzfbv3OiHIjhcRyQ5RFtxNAPBJAL+jqvtF5M8QYJpJVbcA2AJUbBQR5Kh7/CbhccJp/UK5szWSUTQJ19GhYW8X3Cy4q2aBcmdr6JAS9apcSXWiKIq3ALylqvuN74+hoihOiMgMVT0uIjMAnIwqJPGme/Hs0A173F4tSTXYfj2ySGVE0PWxFnQ/etA1akHeVwrXgjChVsYLoRWFqv6biLwpIrNV9QiAmwH8yPi7F8AG4/PxWCQlrmQlzWaW4tg4Bb+rpymVOMJSkEuYib/M2FRm4i8g/ajQtSCq19PvANgmIi8CmAfgq6goiEUichTAIuM7SZhyZ6uvcAdW4ooFBSTvc98cwEZhugybAeXM4Hd5SBFKsolb4q9apFKtBZGaClU9qKpdqjpHVcuq+o6q/lRVb1bVWcZnPCvCSFX8hDuw4hYnKyiTJxYS71U9eNt1rr/ZkwBt3/+m435u2wmphluU5FqkUq0FuY/1RC6xttzhK180UHGB9Grcg3iWprE61ktWu/3CLTS135DVhNhp9gjGGVfgzSxDRTHO2LPyRixf0DbKRbKxIJjSVBwVNLHafP03fK6nSNPn3k131d9qCZI2Xn2Meph+yn0+CjKWODLtmT14a/DBYgMwrJV1G7UwELu9q2HHCfbAhrOmTfKd85rUFz/zCMBZD9NPVBTEFb+eM1nzMCqIOE4zWUceTtFvj548g0WbnqWyIGPwStBVCOpFkkM49UQikUUPIzdbhOLSfLJbiPQgodNJ/eCVk7sebF9UFCQS21xWALttTwOveEf1MJ9M4qfc2eoaU40jCkKqELfdICxWzxOv3p+bmyMh1XCLqcYRBSEJ0tvXj4UbnsbVPbuwcMPTVd0MvaLkWkcK5c5W19zi9iCIhJDq0JhNakJvXz9WPnJwpJfWPzCIlY9UQpC4GdC9ouTaDY1L5sxwDIx307VTfckWdgFh3tKnEuIHjihIYniNEP5k54tjGv6LWtnuhpftwT7YeOZl59D15na3EQdQcQkOg1Nq2udePY17vvV8qPMRkhU4oiCRcHNFBSrTQW4987MuYU3dtgPeUXLtEri5Mprb19x6neu5Bjx85r1wy18eNq951tyOawnLorZQUZBI3D3/KtfcB2EXIkWZ+jFpEOepKtNDJWrOjaAEvSd7LnTT7RgAuj7WUlfhrr3KIk1lIXB20nAznY0n5capJxKJteUOzxAafozUdpymn8wwz37o7etP1ENlde9hzFz1JNp7dmHmqid9rRkJ6pbrpnwf3ncMq3YeRv/AIBSXwl2P53hDXmWRJkE8/LK4vigKVBQkMl5Nr1tDZo/4asVp+skpzLMbXo1ykHDlToRtAOIM81DP4a7zwniLYExFQSJTrfF1asjW3RFsCB5k/YPXvlHXRnk1ACWPBB9JL8mqh3hDeWK8RTCmoiCROX+hek/f2pDNWfNUVfuAvYfuZ/3Dok3PVt134GzFUB12qsarAfjAwxCfRvMwnqef8obXau08PicqChIZL08lK6t7D6O9ZxfePVddsdhDgHQvno1S0X26CqjEabrnW8979q4/bIx+kpiqiWsxX9h57LBuvVlngstKS7ftWeDu+Ve5/pbHaUJ6PZHUCGJ8VADtPbtGvi+c2YL1d3ZUHYlUc0U1O3pJhPLwct8NQlgjbVi33jQJ4wl0wcUzwW17Flhb7nB9jnkMI0NFQXKBqQAmNRbGZLQLwjGz98wAAA/USURBVDvG1JNX2Og06e3rH+PqOl7JiptrEji5PzeXio7K+8MRHSpqAaeeSG547tXTgY3gdsy542oNcnvPrsBTQEGnFHr7+rFyx8FRrq4rU1zbkTZJeAKlOd8fdDW/m5liYHAolNt4LaGiIJFIu7JHndoxjdF+FqgF9XsPOqWwaueLsFt3/Fl78omXI0B7zy7MX7fH8fckwq2EYc2t17n+5jRyMEevTuRt/QsVBYlE3gxzQc2fQewFQY3Zgz6dAIJijco778vfR+dXvu87Qm8tOfHeeUdlEbSBToqgq9+r5akYHBrOjQMCbRQkMFaDZN6IKrFXmlU/xuw5a57y5fUVFqsDADC6Ie0fGET3o4cABG/00uLEe+fHbEs73EoUrDYnP3VtYHAolpA1SUNFQQLhFCE1r7jFg7Jz7QNP4orLL/N8+f00CkkrCT8MXVSs2vliphsmJwO/27PKkoesGWbGbwQBkxU7DuLAG6czbdCPNPUkIq+LyGEROSgiB4xtLSKyR0SOGp9T4hGV1Jrevv5xoyQA4Nfnt/na74NhHTE4e1FtGqHWSsJkcOhipqegVtgM/Ct2HHRV6HF5yAZNouVEkDAzdrIeByoOG8VNqjpPVbuM7z0A9qrqLAB7je9kHJCX4b9f4u7B5WEdg8kfPJL+s5w4IX6TaBz5qs2RQNRAi1HdrbMcByoJY/btALYa/28FUE7gGiRlstwDDYo1kdDyBf5GFX7x8tDJEsM1MC997fNzYp8qisNO5jQSCBNoMeq9ZdnmF9VGoQC+LyIK4P+o6hYA01X1OACo6nERmRZVSFJ78ubd5IU5fbZo07M4evJMrOf2conMGnbDt5VJjQWsu6MjVluGea6Nu4/EttgxajRgoHqSK79keKF4ZKKOKBaq6icBfBbAb4vIDX4PFJH7ReSAiBw4dco5bSXJDmmHHZg80TuuU1Tae3bFriTGE2fOD2PFjoOZH0nGMPMUCK/w+HGQ1fKOpChU9W3j8ySAvwfwSwBOiMgMADA+T7ocu0VVu1S1a+rU6gnvSW2JK+BdNVqbS3h9wxK8+OXPpHI94k2cdimrLSAukh7B2RvuqJEBqpHVdRWhFYWITBKRy83/AfwagB8CeALAvcZu9wJ4PKqQpPakEYOoVCyMuk7c9gNSW6J4BbkRhzHbi1WWbIs/v2pX4g4dWXWIiDKimA7gn0XkEIB/AbBLVZ8CsAHAIhE5CmCR8Z3knHJnKxbObIntfJuXzcPmZfPQ2lyCoDKSWH/n6DnxLPuVk+AkMX2ZtAHYXD3f3rMLF8axDaIaoY3ZqvoTAHMdtv8UwM1RhCLZZNt918eyKnvhzJYRhVDNWOqW0J7kj8YJDTh3If6wJUmvbM7y+oa0YKwnEoi15Q68uv4WvL5hSajjZ02bhG33Xe97/3sCTj8tX9CG1zcswfTLG4OKVhM2L5tXaxE8mRDjzE4SSgJIfk1I2PwgYfBKp1tLsikVyQVBlYUA2LPyxkDH+J1+EkMec/9F1/1coOvUiiyH0sgLUdaEZM3L6LIqWRxrBRUFSY3XQo5CqjF5YmHMudPsBY5n8jIvH7bBz5qX0UBG1+FQUZDQBHk5Gwvh5zCqhX5I2pV28sRCrIZ8k1nTJgHI/vRTHvjyd8I1+FnzMspq9jsqChKaIKu1H7prjN+Db772+TmuvyXtQrtwZgte/PJnsO2+62NVFtMvbxyZhit3tkZSpOMJQfCcIUC+VsR7kfYCQr9QUZDQ+HV3XL6gLdJcfLmzFZuXzRtl6GuQynnDuNCWig2jXHObS0XHF2H5grZRhvcwysLJDXjzsnnY/8CiUfs9dNdc11hB5jFhlGJrc2lk5JIHrmwu4Zt1PMLK6tQT81GQ0FzZXPJcZdtq5BKIw2Bb7mz1fZ5qU2Lr75wT6HxWtt13vWeMJDt+3YCtcZCseRisx5U7W0cUox8ZrM4GQWS2Eue02PIFbZ62I3PBZZiYUHHEfMoCaUVACAoVBQnNTddO9Xzxn+v5dIrSXKLalFhankZBG9kgymtSYwFnzruvcraPfESAoEtfNi+bF2tZmUrOXIcjAJoaCzh7fniMYjTLwm+irAdvc0+Xmiduujab4YyoKEhonnnZPZhjaw17RmkHMLQzpamINbdel6hCWndHh2c4CftalXvme/fmnUhC/rXljkDThX5GcFEUmt8sh2mxff+xTEYkoI2ChMarQa5lz8hr+J50bCAA6PvTX0t81OJ1fqc7XFvuCGTjSDp6b5xEKessKQmgNnlC/EBFQULj1SB7jTaSxiuAYdKxgdI0HLuN2tyey9pyh6/psMkTC3UTvbeWI988QUVBQuM1aqj19I8bcTQMXpnMgq48j0L34tko2Vby2iPw2jE9yOxeWK9vWDLyVy9KAog3KvKUpuK4jXhMGwUJjdeooZbeG27GbEE8DUNWpiv8eEq5HcfQIRXKna2xhA4vFmTELrVt/7HAjgMmWXVlpqIgofFyXUwjf4UbbqMZxfiLrVTvjX4aUyJOMc16+/pdFXQYxwFg9CLMrEFFQUJTEHGd869l4+W2viOu+Wi30OcZXVSbe7zq2aaEF+e5TSV5Kei15Y5AimJCg+DrS+dmWuFTUZDQeBmGk84R4EX34tlYtfPwqGxq1ebug+B21xmZkRp33D3/KseG15rXJCnCuqq6LS4MG02g1tCYTULj1UMPEgcqbsqdrVh/Z4dn9rwouLnYpuF6W4+Yrr1m+RZExoRXyRpuMudRSQAcUZAIdC+e7WoI9Bt6ISmSnLt3G0kl7XpbzwRdqBeEhTNbHFd/Rw0CmaTMacMRBQlNludUk8RtJEWf/HziFOxx4cyWTI9Y0oYjCkICkrQNhKQPlYI3VBQkEvXoARR2/QIheYWKgkSicUIDzl246Lh9PFPv6xdIdbzWWuQNKgoSCScl4bWdkHqgt69/1PRk/8AgVu08DCCftr3x3e0jhJAasHH3kVE2LAAYHBquqdt4FKgoSCTcMouNl4xjhITBLYxMVoNlViOyohCRgoj0ich3je8tIrJHRI4an1Oii0myyoO3XYeiLZxqsUHGTcYxQsLgFhQzq6lOqxHHiOL3APzY8r0HwF5VnQVgr/GdjFPKna3YuHTuqFXQGzMet4aQpAkTAj7LRDJmi8hHASwBsA7ASmPz7QBuNP7fCuBZAH8c5Tok29ADiJDRjDcX6qheT5sB/BGAyy3bpqvqcQBQ1eMiMs3pQBG5H8D9ANDWNj6TfRBC6pfx1IEKPfUkIp8DcFJVXwhzvKpuUdUuVe2aOrV2+ZUJIYR4E2VEsRDAbSJyC4DLAEwWkYcBnBCRGcZoYgaAk3EISgghpDaEHlGo6ipV/aiqtgP4IoCnVXU5gCcA3Gvsdi+AxyNLSQghpGYksY5iA4BFInIUwCLjOyGEkJwSSwgPVX0WFe8mqOpPAdwcx3kJIYTUHtEMJFsRkVMA3jC+fgTAv9dQnLBQ7nSh3OlCudPFr9wfU9XEvYEyoSisiMgBVe2qtRxBodzpQrnThXKnS9bkZqwnQgghnlBREEII8SSLimJLrQUICeVOF8qdLpQ7XTIld+ZsFIQQQrJFFkcUhBBCMgQVBSGEEG9U1fMPwFUAnkEl58RLAH7P2N4CYA+Ao8bnFGP7Fcb+7wP4c9u5lgF40TjPQx7XXAfgTQDv27avBPAj4xx7UfEhdjp+IiqhRM4CGATwrxa5hwG8B+AcKnGoMi83gJsAHLbIPQzgnqzLbfz2Z4Zs54zzZKm8bzDK9SKAtzC6fu8FMATgDLJXvx3lBvAxAAct9eTHeZA7B++lW3ln/b28AcAPAFwAcJftt68B+KHxt8xNhpH9q+4AzADwSeP/y1FpBD4O4CEAPcb2HgBfM/6fBOCXAfymtYCMgjsGYKrxfSuAm12uucC4rr2AbgLQZPz/WwB2uBz/3wD8LYBPohKH6tsWuc/nVO6HDHlbUGmQv5EDuX8TwOsA/sSQ8y0A38yQ3O0APg3guwDuwuj6/XcA/sb4LWv1xE3uuQC+Ycj7IQDvAPifOZA76++ll9xZfi/bAcxB5d28y7J9CSqdnwmGnAcATHY6h/lXdepJVY+r6g+M/99DpZfSikqCoq3GblsBlI19zqjqPwP4wHaqawD8q6qeMr7/A4DPu1xznxo5LWzbn1HVs8bXfQA+6iL27QD+lyH3YwB+xSL3hJzKbZb3XQC+B+BzOZD7k6hUxL9W1TMA/gmV3lQm5FbV11X1aRgrYG31uxOVURKQsXriIfc0VOrFVlRGeWcALM6B3Jl+L6vIndn30pD7RVRGQlY+DuAfVfWC8V4eAvAZp3OYBLJRiEg7Ki/QftgSFKFSSb14BcC1ItIuIhNQqQhXBbm+jS+h8mCcaEVlyAZVvYDKC/OLhtwC4Dsisg/A/BzJbZb3FwH8dU7kfhLAFAA/E5GPoNJDas6Q3KOw128Ap4FM1u9R2OT+OQC7UXke61HpwXqRFbmz/F6OwqUdzOJ76cYhAJ8VkSbjvbypmgy+gwKKyIdQmVJYoarvikggyVT1HRH5LQA7UNFw/w8V7RoYEVkOoAuVnqvjLja5fw7AfYbc76pql4hcA+BpVFGWGZIbRn6PDlQaAk8yIneviAwZ1z4F4HkAd2RIbiuXIT/124pdblXVOSJyJYBeWJ5NxuXO8nvpJXeW30s3Gb4vIp/C6PfygtcxvkYUIlJEpXC2qepOY/MJo4DMgqqaoEhVv6Oq81X1egBHABwVkYKIHDT+vuJDll8F8ACA21T1nLFtnXkOY7e3AFxlyL0TFaPk/zV++zcjsdJPUOkRvJ8TuU8A+C8A/h6VgGF5Ke9jAD6rqosAlGD00jMi98juAP4QtvqNyrxzFuu3p9xG/X4bwE9QGd3lQe4sv5decmf5vfSSYZ2qzjPeS0HFKcnzAM8/4yR/C2CzbftGjDY+PWT7/T9jrLV/mvE5BRXvjF+ocm27EacTwKsAZlU57rcB/G9D7icBPGK57iZDXjM6419mXW5LeR9DZZiYl/IuAPgfhrxzAPwbgI1ZkdtSv18B8F2H+r0Fl4zZmSlvN7lRmav+piHvFFR6i3+VA7kz/V76qCeZfC8t+/8NRhuzCwCuMP6fg4rn0wTPc/i4yC8DUFRcsQ4af7egMve5FxVNtBdAi+WY11HpOb6PSm/z48b27ai4df0IwBc9rvmQcZzpjvagsf0fUNHgphxPuBx/GSrDV0XFE+FHxv5/YPxvurP9KCdy3wJgHiqGsTyV9+2o9JjOoOI2uz9jcn8KlR6gojL0HrSU9/OoeOJcNMr9rhzI/QAqLpdW99g8lHfW30uvepLl9/JTxnFnAPwUwEuW99W8/j4A87x0gKoyhAchhBBvuDKbEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhCRUEIIcQTKgpCCCGe/H9DmsqiQBIg1AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from apd.aggregation.query import with_database, get_data\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "async def plot():\n", + " points = [(dp.collected_at, dp.data) async for dp in get_data() if dp.sensor_name==\"RelativeHumidity\"]\n", + " x, y = zip(*points)\n", + " plt.plot_date(x, y, \"o\", xdate=True)\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " await plot()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nO2df5RV5Xnvv88czuAZIhnGAMWJk1FK8cYMMOmk4KXXaiwlkahHIyFW1vKu5uptb1dbSjvtULnFZEEgkhC6bu+695L+olcWRQ0dTTASitqueoUuzIDERIpGRUcKNDhRYYRheO4fZ+9hz56999m/z95zvp+1Zp05++wfz373u9/nfd/neZ9HVBWEEEKIGw21FoAQQki2oaIghBDiCRUFIYQQT6goCCGEeEJFQQghxJMJtRYAAD7ykY9oe3t7rcUghJBc8cILL/y7qk5N+jqZUBTt7e04cOBArcUghJBcISJvpHEdTj0RQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+qej2JyF8B+ByAk6r6CWNbC4AdANoBvA7gC6r6jvHbKgBfAjAM4HdVdXcikhOSIr19/XjwiZcwMDgU6TxNxUrf7OzQRQDAlKYi1tx6HcqdrSPX2bj7CN4eGMSVzSV0L5498htJjiDlbq8LU5qKWDJnBp55+RTeHhjEh0tFnL8wPPKM/WCvB1lDqkWPFZEbALwP4G8tiuIhAKdVdYOI9ACYoqp/LCIfB7AdwC8BuBLAPwD4BVUd9rpGV1eX0j2WZJXevn50P3oIQxeTibRcLAg23jUXALBq52EMDl16XUrFAtbf2ZHZBmQ80NvX77vck6wLZj0I8qxF5AVV7YpdGBtVp55U9Z8AnLZtvh3AVuP/rQDKlu1/p6rnVPU1AK+gojQIyS0bdx9JTEkAwNCwYuPuI9i4+8ioxgoABoeGsXH3kcSuTRCo3JOsC2Y9yCJhF9xNV9XjAKCqx0VkmrG9FcA+y35vGdvGICL3A7gfANra2kKKQUjyvD0wWNNrpHH9esatfJ22J/0ssvqs4zZmi8M2R/WrqltUtUtVu6ZOTXwFOiGhubK5lMo13K6TxvXrmSDlnvSzyOqzDqsoTojIDAAwPk8a298CcJVlv48CeDu8eITUnu7Fs1FscOoDxUOxIOhePBvdi2ejVCyM+q1ULKB78ezErk0QqNyTrAtmPcgiYRXFEwDuNf6/F8Djlu1fFJGJInI1gFkA/iWaiITUlnJnKzYunYvmUjHyuZqKDSOeT0DF28U0YJY7W7H+zg60NpcgAFqbSzRkp0CQcneqC1Oaili+oG3k+OZScdQz9oO1HmQRP15P2wHcCOAjAE4AWAOgF8AjANoAHAOwVFVPG/s/AOA3AFwAsEJVv1dNCHo9EUJIcNLyeqpqzFbVu11+utll/3UA1kURihBCSHbgymxCCCGeUFEQQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhCRUEIIcQTKgpCCCGeUFEQQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhSNR8FIWHp7evHg0+8hIHBoTG/TWosYN0d/rO39fb1Y+PuI3h7YBBXNpfQvXh2bNnAvOQ0mdJUxJpbr0O5szWwLOb+/QODKIhgWBXNpSLOXxjG2aGLsdwDUElYXywIzg9fSkY2pamIJXNm4JmXT43I235FCft+8g6GVVEQwd3zr8LackdscvjFXu7WMq4FTvXA/tyr1RMrbveTZF1OiqoZ7tKAGe7GH719/eh+9BCGLrrXr0KD4BtLq6d/7O3rx6qdhzE4NDyyrVQsxJIm1I+cJsWCYNmnrsK3X+j3LYuT7Flk+YK2VJWFW7kXC1KTlKBe9cB87jv+5U1f9cR+rPV+4q7LaWW449QTSYSNu49UfamGLyo27j7i61z2hnZwaNjXsX7O7fflHxpWbN//ZiBZnGTPItv3v5nq9dzKfWjYX51ISx7g0nMPqiTMY633k2RdThIqCpIIbw8Mxraf2z5+rxH1+laGXUbgScqYBm73lRRe5VKLMqt2zSjlYz13XusJFQVJhCubS7Ht57aP32tEvb6Vgkig88QhYxq43VdSeJVLLcqs2jWjlI/13HmtJ1QUJBG6F89GscH75So0CLoXz/Z1rlKxMGpbqVjwdayfc1eT06RYqBh+g8jiJHsWuXv+Valez63ciwV/dSIteYBLz91vPbEfa72fJOtyklBRkEQod7Zi49K5aC4VHX+f1FjwZcg2z7X+zg60NpcgAFqbS7EYsv3IaTKlqYiNd83F2nJHIFmssgOXeqbNpSKaivG+fgKgsTC6MZvSVMTyBW2j5F04s2VEjoJI6oZswLnczTKuhQeQWz2wPnc/9cTpWOv9JFmXk4ReT4QQklPo9UQIISQTUFEQQgjxJJKiEJHfE5EfishLIrLC2NYiIntE5KjxOSUeUQkhhNSC0IpCRD4B4D4AvwRgLoDPicgsAD0A9qrqLAB7je+EEEJySpQRxX8AsE9Vz6rqBQD/COAOALcD2GrssxVAOZqIhBBCakkURfFDADeIyBUi0gTgFgBXAZiuqscBwPic5nSwiNwvIgdE5MCpU6ciiEEIISRJQisKVf0xgK8B2APgKQCHAFwIcPwWVe1S1a6pU6eGFYMQQkjCRDJmq+pfquonVfUGAKcBHAVwQkRmAIDxeTK6mIQQQmpFVK+nacZnG4A7AWwH8ASAe41d7gXweJRrEEIIqS1RExd9W0SuADAE4LdV9R0R2QDgERH5EoBjAJZGFZLUH1lLakNIPRNJUajqf3LY9lMAN0c5L6lvnJLIvHN2CN2PHQIAKgtCUoYrs0nmyFpSG0LqHebMJqlizR8tAOzqwGmblf6BQXz8v38vUK7pKU1FfHzG5Xju1dO+9rVOccU1Bba69zC2739zTJ5qr/zJ1t8+XCpCBBg4O+S436qdL2LQKJMGAa6/pgUvvf3emPzPZv5st/JvEODX56cfTdYtX/WSOTPw3UPHazIFubr3MLbtO+ZYH1tzkus6Lhg9lqRGXvJHm3mOAcSS13l172E8vO/YmO0LZ7bgB8d+5pg/GYBnWVn3W7njIPyrTX+kGXo8SN5yIJ282m7PzEpcedujkFb0WCoKkhoLNzyN/oynfDQx80e4ydvaXMJzPZ/2da6Zq54MlEqz2rWD7heGggheXX9L7Od1Iky9CFL+YfD7zJKWoxppKQpOPZFYqPQKD8JpRmhSYwHr7ujIfF5gK9VkDXIvQfMtx5lvPCxp5tAOcx9J1yW/95+nOh0FGrNJZHr7+rFih7OSAIAz54fxB48eQnOT/+xgtebK5lJseZ2D5luudu2g+4UhzRzaYe4h6RzTfu8/67mu44KKgkTGjyfS8EWFKnKRP9rMcxxXXme3fNQLZ7a45k+ulmvbul8SL3GaObSD5C0H0smr7ef+85DrOi6oKEhk/A6/fzY4NCp/tFPTYM/73FRsGJVb2v7dD1Oailg4s8X3vqahNK68zmvLHVi+oG1Mnupt913vmj/Znlu5uVTElKai436bls1DyVImDVJRQk75n8382YBz+TdIuoZswDtf9fIFbTXJq20+Mzf1lZdc13FBYzaJjF9jZK0Nf4SMN5gzm+QGP8PvQkPy0wWEkGSgoiCRKXe2YvOyeXCbEZrUWMA3liY/XUAISQa6x5JYMOfLCSHjD44oCCGEeEJFQQghxBMqCkIIIZ5QURBCCPGEioIQQognVBSEEEI8oXssyQT2JDFmxFm63BJSe6goSM1xShJjRpwFmCObkFrDqSdSc7bvf9Nx+/BF5sgmJAtwREFSx54L2itJjDUyrT3v9IJrpozKC91UbMDEYmEkr/RN104dlW8ZSDfncpbwys1t/h5HbvCgctifkVOebDNasD1Per0+y1rA6LEkVYLmzTYjzvrJYeyXNHIuZwmnMrfme3bLWR13OSWRM73enqUdRo8l45KNu4/4biisEWfdpqfCMDRcX1NaTmU+ODQ8UgYbdx8ZoySA+MspyLP3S709y1oRSVGIyO+LyEsi8kMR2S4il4lIi4jsEZGjxueUuIQl+cdvkiN7xNm4czjXS65jwP1eze1eZRFnOSVV5vX0LGtFaEUhIq0AfhdAl6p+AkABwBcB9ADYq6qzAOw1vhMCwF+O4dbmEl76ymdGTSfEncO5XnIdA+73am6PKzd4WDmyel5yiahTTxMAlERkAoAmAG8DuB3AVuP3rQDKEa9BxhF+c0HbiTOHcxo5l7OEU5lbyzmu3OBh5IhKvT3LWhFaUahqP4CvAzgG4DiAn6nq9wFMV9Xjxj7HAUyLQ1AyPvCbC9qOU95pe17opmLDqHPZ8y0D6eVczhL2MreXc1y5wcPI4ZQT277NLU96PT7LWhHa68mwPXwbwDIAAwAeBfAYgD9X1WbLfu+o6hg7hYjcD+B+AGhra/vFN954I5QchBBSr+TB6+lXAbymqqdUdQjATgD/EcAJEZkBAMbnSaeDVXWLqnapatfUqVMjiEEIISRJoiiKYwAWiEiTiAiAmwH8GMATAO419rkXwOPRRCSEEFJLQq/MVtX9IvIYgB8AuACgD8AWAB8C8IiIfAkVZbI0DkEJIYTUhkghPFR1DYA1ts3nUBldEEIIGQdwZTYhhBBPqCgIIYR4QkVBCCHEEyoKQgghnlBREEII8YSKghBCiCdUFIQQQjyhoiCEEOIJc2YTUidUy5udNfIm73iGioKQOsCer7p/YBCrdh4GgEw2vnmTd7zDqSdC6oBqebOzRt7kHe9QURBSB1TLm5018ibveIeKgpA6oFre7KyRN3nHO1QUhNQB1fJmZ428yTveoTGbkDrANADnxYsob/KOd0LnzI6Trq4uPXDgQK3FIISQXJGHnNmEEELqACoKQgghntBGYeGebz2P5149PfJ94cwWbLvv+hpKRAghtYcjCgO7kgCA5149jUWbnq2NQIQQkhHqZkRxdc8uWM32AuC1DUtGvtuVhMnRk2fQ29dPbwtCSN1SFyOKdpuSAAA1tvth1c4XY5eJEELywrhXFPd863nP3+ev21P1HINDF+MShxBCcse4VhS9ff2uU0omJ947n5I0hBCST8a1ovjjb/ubMpqz5qmEJSGEkPwSWlGIyGwROWj5e1dEVohIi4jsEZGjxueUOAUOwrkL/qaM3j03XH0nQgipU0IrClU9oqrzVHUegF8EcBbA3wPoAbBXVWcB2Gt8J4QQklPimnq6GcCrqvoGgNsBbDW2bwVQjukaNaW3r7/WItQVvX39WLjhaVzdswsLNzzN8iekhsSlKL4IYLvx/3RVPQ4Axuc0pwNE5H4ROSAiB06dOhWTGKOZNW1SbOdiZq30WLTpWazYcRD9A4NQVNJgrthxkMqCkBoRecGdiDQCuA3AqiDHqeoWAFuASvTYqHI4cfZ8fG6tWcisVQ/J5u/51vM4evKM428rHzmYi/uth+dEorO69zC2738Tw6ooiODu+Vdhbbmj1mI5EsfK7M8C+IGqnjC+nxCRGap6XERmADgZwzVCEWfj/uFSMbZzhWHOmqdGGd3Ha7J5L3fmi7WPiF+VRZueHaXozNEQML6eE4mGvZ4Mq+LhfccAIJPKIo6pp7txadoJAJ4AcK/x/70AHo/hGqFonBCf9++7g0OxnSso89ftcfTMGm/J5q994MlaixAJr9HQih0Hcc2qXZw+I1jde9i1npjKImtEGlGISBOARQD+q2XzBgCPiMiXABwDsDTKNcLS29fv2z3WD0mvzXaKXLu0qw0bdx/xXBTYn4EpsThY3XsYHwznYMjgQbXFnRcVHF2QzCoDLyIpClU9C+AK27afouIFVVO6Hz1YaxEccZq/fvTAMcfItdUaHqAS3DCvWMsi3yoiGH/02CEqijplde/hWosQinEbPbZaeKZJjQWcOZ/uQrvevn78/o6DI41i/8DgqO9hyGsD29vXj1U7D2NwqP4WO57P+ciJBKe3r39kNOlFVjt+uVYUUbxL1t3RMaahKhULng1Xe8+uSN4Jf/TYIccotvXIxt1HAiuJgmT1NQrO6t7DmTRaEm/CeCr5VRIAcM+CtjjEjJ3cKorevn50P3oIQ4YrTP/AILofPQQAOPCG95RNqdgwolDsiqbaA3XyTvCrsNiTvEQY28qwjp/ye3jfMSqKnBHWU+nBJ17yfY2s1oncKooHn3hpREmYDF1UPPjESxio4qG0/s45ACoGRXuD7lfzbzNedHtvge6Q/hAEH021NpeSEIWQqlTzVPJq4Ku1RyaTJxZCyZYGuVUUboXv56F4NeClYoOv/BNmI+emWFbsGL04jG6RowkzNmi/Il5FYe8hzpo2CXtW3hjqXEk8X7sn3MQJDfja5yudHC7oS5ft+98MdVy1fDhWXvzyZ0JdIw1yqyiSYv2dc3yPKqphTaGa5HqHepnvfu7V07GlpbUrCaCS9nbRpmerKguneeowLo/tPbuwfEGb47NzyuF+7sLFMXXTHMH+ae/hTDc0Tlz7wJNjXKInTyxk8j6qTXs6vYNOdcyNUjHbGR9EMzDv29XVpQcOHAh0jN80pnYmNAhe+eotnvvMXv09X2swFs5s8eXCmgavW/J/54Gwz880Z1frSVezG3ld36ssV/ceTsQP3q4wwpTPZQXBy+u863ZWcFISVtKsz15u2hMEeGX9Esxc9WRVZWGVOYgBGwA2L5sXqgMkIi+oalfgAwOSbTWWAF9fOrfqPubwvhppKYnNy+alcp08oMafGcLEacrHdL21BhX8/R0HY/FhT2qx1MP7jkWW74NhzY2ffrXFlVeH7EgExV5X7FzQitJecE2wtDpf/o5/A/bCmS2ZnzqsK0WxfEGbrweSlYfW2lwK3dPIMkHmbb1wC2Hi5HqrqDTGfmwJ7T27atLgxqGE8rjq1wlF+FFnEPy6afvpFFqV2ztn/Rmwly9ow7b7rve1by3JraJoLAT3qc/TPP5lBcFzPZ8eURILZ7bUWKJ4WN17uOpL1xDg0Tq52XoFg/TrqhhHDz8M7T27Umkg80LSSjvOwKGK4Cuv89Im5VZRTJoYzA4fdPomzlwWYbDPNVfrdeQl0Y+fHu+mLwR7VvZ79YoF6ddVEYindz5r2iQsz+giqlpyWYCOXpJK+8qYXa7NOtPsI9q0n32yQm4Vhd+hnUnQ6Zs9K2+sibKYPLEQypC38pHRiX7c5u+TIG4lFfRZ2UcJ1bybg8j386su9e4XbXo2iFgAKvVobbmDdiYbG+6qbiu08vC+Y7i6J/7ou92LZ8d6PqAyCvLTIXnwtutiv3ZS5NY9tiCS+ErdPStvxMINTyceoTUODw97rgZz/j5p+0aQBYdJ9QqDjBKAimJpbS75eq4XtGJTeeXk+55RfJ2YfnnjyP9mWcTlep13wriLKyrl94ePHsLXl87Nte1u1rRJuZI/tyOKtMI5JNHjsBIkflFTQF9r+/xrEtNTKz0WHNrZ5mMqx2xcJ8aYS8TOwOBQoOf63KunAysJANj/wKJR38udramMLPLg+RTFNnDhomLFjoNo79mF2au/F6ke1yKfS5SFnbUit4oiCFHmiMudrYnOMd89/yrf+371Tn9uuybWrHxOLqNxTE95zfK0WxRSb19/1dXY0y9vHGlc/booO+FnyjDpnr3bKLHc2Zr4GoGwtpVrH3hyxJje3rMr0URScdkGzl24iJWPhM+nXot8LnlTEkCdKIqongXmHHPcsYYWzmwJJFvQoap1sOLkBjg4NDzSM3P6i6Nnak5FVWuYly9oG9UDjzIs//f3g/f+42LWtEmZWPw4f92eQPtf3bNrzNqGD4Y1MWVx07VTYzvXRQ0/MhhPEYmTJLeKIu0HXO5sxXM9n8brG5Zg+YK2Mdf3WoK/edm8EUUjuLQ+Imn/aavBP0zPKU0X0ajK3JRzde/hwI4OcbF52TzfvcVJjcEDwF1WkJH6V40T750fZYj3YnXvYdfRXlJZB595+ZTj9rChLMJOZXlNYdMB4RK5NWb7ja+TxLTR2nKHY8O2uvcwtu07NvLSTWosYN0dHSO947SNV0HWI7hRLTLm9MsbQ83f24kaw+nhfcfQ9bGWmi04a7KErvfDujs6Ak9/mS7Ta8sdvu7zglZGCq9VGeHUoszcGvYPfATkdCLsVJabU0Nrc2kkuvScNU855qw3FUk9OCjkVlGsLXfgtVPvV128leaCFjcFUivsnlBh8WrEJxTiCY0ch4dWrV5YQXD7URAvKKvtxqSp2ICzPqMcz1+3Z+R4p4CGteBKlwb6yuYSbrp2amDlFdbppHvxbMcEZtbzVQtSeOCN0+NmRbwbuVUUQGURGlexJs+qnS+6NuJxrWx1Ok+YnBVpM6WpiDW3XhdKyZk91jCZGr8aIMqxOeL7+VW7cMFSoNbEO2nj1UCb924qND+E7WS4JTALcj6zc+inLPM6nZVrRQEAxQb3BVb1viI2rsjFg0MXMWfNU449K7eeYVCcpg7uWdCWekM2QTCqMfVi8sQC+v701yJf0ymBlp9j/vDRQ7jgc9gYtkOVVMNWrYE2R+dpdATDlL+dteUOPPPyKdd3oTXneUNya8w22bjUuSIH9SjKC1Oa/C/7H7oYX0Kdd88NY86ap8Zs7148G6VitOkn+1DfZG25I1VlP3liAa+sX+I7wX2t8yZ8fencWOxQXiTZsJkOIq9tWDIqrpkVPz4rWekQOr0LpWIBm5fNc72/vJB7RWEuYkrbo6hWrLn1OhQDxMl58ImXsHDD07Fc+91zw2MUT7mzFXoxuAFyQoOMPK/1d3a4vkRryx2hAkAGZfrljSMN/2sbloxaVW0nbJiVuCl3tmLTF+J3284S98yvrgSy0iEsd7Zi/Z0do9oir7qdJ3KbuKie6e3r95UbPAlam0t4rufTgbJ3AZWeVdiX5uqeXZFtFW6Z5LywZ5lbOLMl0x2QuKdpzGdda7ySHGU1I15apJW4iIoixzilywzLpMYCzpyvHpcf8O8S29pciiWvc9R4W+Mxp4cTQbOqVSNL5TZ/3Z4xda7elQSQE0UhIs0A/gLAJ1BxUPkNAEcA7ADQDuB1AF9Q1Xe8zkNFEZ6oqTmtaz06v/L9WBerxTU909vXj+5HD2EohL+vmcqyXohrVJH10ROpkJdUqH8G4ClVvRbAXAA/BtADYK+qzgKw1/hOEiLq/GxzU+NIr3HNrdclbhwNQ7mzFR+6LJyDXj0piTihkiBWQisKEZkM4AYAfwkAqnpeVQcA3A5gq7HbVgDlqEISb6I07tb1C6ZxNA4mT4xnIZ7JQIiRTpDkOOOFOAzbWfEiItkhyojiGgCnAPy1iPSJyF+IyCQA01X1OAAYn9OcDhaR+0XkgIgcOHXKOe4L8UeUFdj29QtxhcKOe+74wwGzgV1WkDFZAuuB7sWzfbv3OiHIjhcRyQ5RFtxNAPBJAL+jqvtF5M8QYJpJVbcA2AJUbBQR5Kh7/CbhccJp/UK5szWSUTQJ19GhYW8X3Cy4q2aBcmdr6JAS9apcSXWiKIq3ALylqvuN74+hoihOiMgMVT0uIjMAnIwqJPGme/Hs0A173F4tSTXYfj2ySGVE0PWxFnQ/etA1akHeVwrXgjChVsYLoRWFqv6biLwpIrNV9QiAmwH8yPi7F8AG4/PxWCQlrmQlzWaW4tg4Bb+rpymVOMJSkEuYib/M2FRm4i8g/ajQtSCq19PvANgmIi8CmAfgq6goiEUichTAIuM7SZhyZ6uvcAdW4ooFBSTvc98cwEZhugybAeXM4Hd5SBFKsolb4q9apFKtBZGaClU9qKpdqjpHVcuq+o6q/lRVb1bVWcZnPCvCSFX8hDuw4hYnKyiTJxYS71U9eNt1rr/ZkwBt3/+m435u2wmphluU5FqkUq0FuY/1RC6xttzhK180UHGB9Grcg3iWprE61ktWu/3CLTS135DVhNhp9gjGGVfgzSxDRTHO2LPyRixf0DbKRbKxIJjSVBwVNLHafP03fK6nSNPn3k131d9qCZI2Xn2Meph+yn0+CjKWODLtmT14a/DBYgMwrJV1G7UwELu9q2HHCfbAhrOmTfKd85rUFz/zCMBZD9NPVBTEFb+eM1nzMCqIOE4zWUceTtFvj548g0WbnqWyIGPwStBVCOpFkkM49UQikUUPIzdbhOLSfLJbiPQgodNJ/eCVk7sebF9UFCQS21xWALttTwOveEf1MJ9M4qfc2eoaU40jCkKqELfdICxWzxOv3p+bmyMh1XCLqcYRBSEJ0tvXj4UbnsbVPbuwcMPTVd0MvaLkWkcK5c5W19zi9iCIhJDq0JhNakJvXz9WPnJwpJfWPzCIlY9UQpC4GdC9ouTaDY1L5sxwDIx307VTfckWdgFh3tKnEuIHjihIYniNEP5k54tjGv6LWtnuhpftwT7YeOZl59D15na3EQdQcQkOg1Nq2udePY17vvV8qPMRkhU4oiCRcHNFBSrTQW4987MuYU3dtgPeUXLtEri5Mprb19x6neu5Bjx85r1wy18eNq951tyOawnLorZQUZBI3D3/KtfcB2EXIkWZ+jFpEOepKtNDJWrOjaAEvSd7LnTT7RgAuj7WUlfhrr3KIk1lIXB20nAznY0n5capJxKJteUOzxAafozUdpymn8wwz37o7etP1ENlde9hzFz1JNp7dmHmqid9rRkJ6pbrpnwf3ncMq3YeRv/AIBSXwl2P53hDXmWRJkE8/LK4vigKVBQkMl5Nr1tDZo/4asVp+skpzLMbXo1ykHDlToRtAOIM81DP4a7zwniLYExFQSJTrfF1asjW3RFsCB5k/YPXvlHXRnk1ACWPBB9JL8mqh3hDeWK8RTCmoiCROX+hek/f2pDNWfNUVfuAvYfuZ/3Dok3PVt134GzFUB12qsarAfjAwxCfRvMwnqef8obXau08PicqChIZL08lK6t7D6O9ZxfePVddsdhDgHQvno1S0X26CqjEabrnW8979q4/bIx+kpiqiWsxX9h57LBuvVlngstKS7ftWeDu+Ve5/pbHaUJ6PZHUCGJ8VADtPbtGvi+c2YL1d3ZUHYlUc0U1O3pJhPLwct8NQlgjbVi33jQJ4wl0wcUzwW17Flhb7nB9jnkMI0NFQXKBqQAmNRbGZLQLwjGz98wAAA/USURBVDvG1JNX2Og06e3rH+PqOl7JiptrEji5PzeXio7K+8MRHSpqAaeeSG547tXTgY3gdsy542oNcnvPrsBTQEGnFHr7+rFyx8FRrq4rU1zbkTZJeAKlOd8fdDW/m5liYHAolNt4LaGiIJFIu7JHndoxjdF+FqgF9XsPOqWwaueLsFt3/Fl78omXI0B7zy7MX7fH8fckwq2EYc2t17n+5jRyMEevTuRt/QsVBYlE3gxzQc2fQewFQY3Zgz6dAIJijco778vfR+dXvu87Qm8tOfHeeUdlEbSBToqgq9+r5akYHBrOjQMCbRQkMFaDZN6IKrFXmlU/xuw5a57y5fUVFqsDADC6Ie0fGET3o4cABG/00uLEe+fHbEs73EoUrDYnP3VtYHAolpA1SUNFQQLhFCE1r7jFg7Jz7QNP4orLL/N8+f00CkkrCT8MXVSs2vliphsmJwO/27PKkoesGWbGbwQBkxU7DuLAG6czbdCPNPUkIq+LyGEROSgiB4xtLSKyR0SOGp9T4hGV1Jrevv5xoyQA4Nfnt/na74NhHTE4e1FtGqHWSsJkcOhipqegVtgM/Ct2HHRV6HF5yAZNouVEkDAzdrIeByoOG8VNqjpPVbuM7z0A9qrqLAB7je9kHJCX4b9f4u7B5WEdg8kfPJL+s5w4IX6TaBz5qs2RQNRAi1HdrbMcByoJY/btALYa/28FUE7gGiRlstwDDYo1kdDyBf5GFX7x8tDJEsM1MC997fNzYp8qisNO5jQSCBNoMeq9ZdnmF9VGoQC+LyIK4P+o6hYA01X1OACo6nERmRZVSFJ78ubd5IU5fbZo07M4evJMrOf2conMGnbDt5VJjQWsu6MjVluGea6Nu4/EttgxajRgoHqSK79keKF4ZKKOKBaq6icBfBbAb4vIDX4PFJH7ReSAiBw4dco5bSXJDmmHHZg80TuuU1Tae3bFriTGE2fOD2PFjoOZH0nGMPMUCK/w+HGQ1fKOpChU9W3j8ySAvwfwSwBOiMgMADA+T7ocu0VVu1S1a+rU6gnvSW2JK+BdNVqbS3h9wxK8+OXPpHI94k2cdimrLSAukh7B2RvuqJEBqpHVdRWhFYWITBKRy83/AfwagB8CeALAvcZu9wJ4PKqQpPakEYOoVCyMuk7c9gNSW6J4BbkRhzHbi1WWbIs/v2pX4g4dWXWIiDKimA7gn0XkEIB/AbBLVZ8CsAHAIhE5CmCR8Z3knHJnKxbObIntfJuXzcPmZfPQ2lyCoDKSWH/n6DnxLPuVk+AkMX2ZtAHYXD3f3rMLF8axDaIaoY3ZqvoTAHMdtv8UwM1RhCLZZNt918eyKnvhzJYRhVDNWOqW0J7kj8YJDTh3If6wJUmvbM7y+oa0YKwnEoi15Q68uv4WvL5hSajjZ02bhG33Xe97/3sCTj8tX9CG1zcswfTLG4OKVhM2L5tXaxE8mRDjzE4SSgJIfk1I2PwgYfBKp1tLsikVyQVBlYUA2LPyxkDH+J1+EkMec/9F1/1coOvUiiyH0sgLUdaEZM3L6LIqWRxrBRUFSY3XQo5CqjF5YmHMudPsBY5n8jIvH7bBz5qX0UBG1+FQUZDQBHk5Gwvh5zCqhX5I2pV28sRCrIZ8k1nTJgHI/vRTHvjyd8I1+FnzMspq9jsqChKaIKu1H7prjN+Db772+TmuvyXtQrtwZgte/PJnsO2+62NVFtMvbxyZhit3tkZSpOMJQfCcIUC+VsR7kfYCQr9QUZDQ+HV3XL6gLdJcfLmzFZuXzRtl6GuQynnDuNCWig2jXHObS0XHF2H5grZRhvcwysLJDXjzsnnY/8CiUfs9dNdc11hB5jFhlGJrc2lk5JIHrmwu4Zt1PMLK6tQT81GQ0FzZXPJcZdtq5BKIw2Bb7mz1fZ5qU2Lr75wT6HxWtt13vWeMJDt+3YCtcZCseRisx5U7W0cUox8ZrM4GQWS2Eue02PIFbZ62I3PBZZiYUHHEfMoCaUVACAoVBQnNTddO9Xzxn+v5dIrSXKLalFhankZBG9kgymtSYwFnzruvcraPfESAoEtfNi+bF2tZmUrOXIcjAJoaCzh7fniMYjTLwm+irAdvc0+Xmiduujab4YyoKEhonnnZPZhjaw17RmkHMLQzpamINbdel6hCWndHh2c4CftalXvme/fmnUhC/rXljkDThX5GcFEUmt8sh2mxff+xTEYkoI2ChMarQa5lz8hr+J50bCAA6PvTX0t81OJ1fqc7XFvuCGTjSDp6b5xEKessKQmgNnlC/EBFQULj1SB7jTaSxiuAYdKxgdI0HLuN2tyey9pyh6/psMkTC3UTvbeWI988QUVBQuM1aqj19I8bcTQMXpnMgq48j0L34tko2Vby2iPw2jE9yOxeWK9vWDLyVy9KAog3KvKUpuK4jXhMGwUJjdeooZbeG27GbEE8DUNWpiv8eEq5HcfQIRXKna2xhA4vFmTELrVt/7HAjgMmWXVlpqIgofFyXUwjf4UbbqMZxfiLrVTvjX4aUyJOMc16+/pdFXQYxwFg9CLMrEFFQUJTEHGd869l4+W2viOu+Wi30OcZXVSbe7zq2aaEF+e5TSV5Kei15Y5AimJCg+DrS+dmWuFTUZDQeBmGk84R4EX34tlYtfPwqGxq1ebug+B21xmZkRp33D3/KseG15rXJCnCuqq6LS4MG02g1tCYTULj1UMPEgcqbsqdrVh/Z4dn9rwouLnYpuF6W4+Yrr1m+RZExoRXyRpuMudRSQAcUZAIdC+e7WoI9Bt6ISmSnLt3G0kl7XpbzwRdqBeEhTNbHFd/Rw0CmaTMacMRBQlNludUk8RtJEWf/HziFOxx4cyWTI9Y0oYjCkICkrQNhKQPlYI3VBQkEvXoARR2/QIheYWKgkSicUIDzl246Lh9PFPv6xdIdbzWWuQNKgoSCScl4bWdkHqgt69/1PRk/8AgVu08DCCftr3x3e0jhJAasHH3kVE2LAAYHBquqdt4FKgoSCTcMouNl4xjhITBLYxMVoNlViOyohCRgoj0ich3je8tIrJHRI4an1Oii0myyoO3XYeiLZxqsUHGTcYxQsLgFhQzq6lOqxHHiOL3APzY8r0HwF5VnQVgr/GdjFPKna3YuHTuqFXQGzMet4aQpAkTAj7LRDJmi8hHASwBsA7ASmPz7QBuNP7fCuBZAH8c5Tok29ADiJDRjDcX6qheT5sB/BGAyy3bpqvqcQBQ1eMiMs3pQBG5H8D9ANDWNj6TfRBC6pfx1IEKPfUkIp8DcFJVXwhzvKpuUdUuVe2aOrV2+ZUJIYR4E2VEsRDAbSJyC4DLAEwWkYcBnBCRGcZoYgaAk3EISgghpDaEHlGo6ipV/aiqtgP4IoCnVXU5gCcA3Gvsdi+AxyNLSQghpGYksY5iA4BFInIUwCLjOyGEkJwSSwgPVX0WFe8mqOpPAdwcx3kJIYTUHtEMJFsRkVMA3jC+fgTAv9dQnLBQ7nSh3OlCudPFr9wfU9XEvYEyoSisiMgBVe2qtRxBodzpQrnThXKnS9bkZqwnQgghnlBREEII8SSLimJLrQUICeVOF8qdLpQ7XTIld+ZsFIQQQrJFFkcUhBBCMgQVBSGEEG9U1fMPwFUAnkEl58RLAH7P2N4CYA+Ao8bnFGP7Fcb+7wP4c9u5lgF40TjPQx7XXAfgTQDv27avBPAj4xx7UfEhdjp+IiqhRM4CGATwrxa5hwG8B+AcKnGoMi83gJsAHLbIPQzgnqzLbfz2Z4Zs54zzZKm8bzDK9SKAtzC6fu8FMATgDLJXvx3lBvAxAAct9eTHeZA7B++lW3ln/b28AcAPAFwAcJftt68B+KHxt8xNhpH9q+4AzADwSeP/y1FpBD4O4CEAPcb2HgBfM/6fBOCXAfymtYCMgjsGYKrxfSuAm12uucC4rr2AbgLQZPz/WwB2uBz/3wD8LYBPohKH6tsWuc/nVO6HDHlbUGmQv5EDuX8TwOsA/sSQ8y0A38yQ3O0APg3guwDuwuj6/XcA/sb4LWv1xE3uuQC+Ycj7IQDvAPifOZA76++ll9xZfi/bAcxB5d28y7J9CSqdnwmGnAcATHY6h/lXdepJVY+r6g+M/99DpZfSikqCoq3GblsBlI19zqjqPwP4wHaqawD8q6qeMr7/A4DPu1xznxo5LWzbn1HVs8bXfQA+6iL27QD+lyH3YwB+xSL3hJzKbZb3XQC+B+BzOZD7k6hUxL9W1TMA/gmV3lQm5FbV11X1aRgrYG31uxOVURKQsXriIfc0VOrFVlRGeWcALM6B3Jl+L6vIndn30pD7RVRGQlY+DuAfVfWC8V4eAvAZp3OYBLJRiEg7Ki/QftgSFKFSSb14BcC1ItIuIhNQqQhXBbm+jS+h8mCcaEVlyAZVvYDKC/OLhtwC4Dsisg/A/BzJbZb3FwH8dU7kfhLAFAA/E5GPoNJDas6Q3KOw128Ap4FM1u9R2OT+OQC7UXke61HpwXqRFbmz/F6OwqUdzOJ76cYhAJ8VkSbjvbypmgy+gwKKyIdQmVJYoarvikggyVT1HRH5LQA7UNFw/w8V7RoYEVkOoAuVnqvjLja5fw7AfYbc76pql4hcA+BpVFGWGZIbRn6PDlQaAk8yIneviAwZ1z4F4HkAd2RIbiuXIT/124pdblXVOSJyJYBeWJ5NxuXO8nvpJXeW30s3Gb4vIp/C6PfygtcxvkYUIlJEpXC2qepOY/MJo4DMgqqaoEhVv6Oq81X1egBHABwVkYKIHDT+vuJDll8F8ACA21T1nLFtnXkOY7e3AFxlyL0TFaPk/zV++zcjsdJPUOkRvJ8TuU8A+C8A/h6VgGF5Ke9jAD6rqosAlGD00jMi98juAP4QtvqNyrxzFuu3p9xG/X4bwE9QGd3lQe4sv5decmf5vfSSYZ2qzjPeS0HFKcnzAM8/4yR/C2CzbftGjDY+PWT7/T9jrLV/mvE5BRXvjF+ocm27EacTwKsAZlU57rcB/G9D7icBPGK57iZDXjM6419mXW5LeR9DZZiYl/IuAPgfhrxzAPwbgI1ZkdtSv18B8F2H+r0Fl4zZmSlvN7lRmav+piHvFFR6i3+VA7kz/V76qCeZfC8t+/8NRhuzCwCuMP6fg4rn0wTPc/i4yC8DUFRcsQ4af7egMve5FxVNtBdAi+WY11HpOb6PSm/z48b27ai4df0IwBc9rvmQcZzpjvagsf0fUNHgphxPuBx/GSrDV0XFE+FHxv5/YPxvurP9KCdy3wJgHiqGsTyV9+2o9JjOoOI2uz9jcn8KlR6gojL0HrSU9/OoeOJcNMr9rhzI/QAqLpdW99g8lHfW30uvepLl9/JTxnFnAPwUwEuW99W8/j4A87x0gKoyhAchhBBvuDKbEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhCRUEIIcQTKgpCCCGe/H9DmsqiQBIg1AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from apd.aggregation.query import with_database, get_data\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "async def plot():\n", + " points = [(dp.collected_at, dp.data) async for dp in get_data(sensor_name=\"RelativeHumidity\")]\n", + " x, y = zip(*points)\n", + " plt.plot_date(x, y, \"o\", xdate=True)\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " await plot()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nO2de5wU1ZX4v3eaAQbUGZHXgOBoQsQX8pgoRFeTEDUKyMQH6C/+Vo0/XROzwbg+cEUZIsTnGtk1a1Y3UbLJqmgMChOTuGRN1kTMAhpMJEZFfM3wiDqjwgDzuL8/qmqmu6equp7dVdPn+/n0p7tv1+P0rap77j333HOU1hpBEARBcKKi1AIIgiAIyUYUhSAIguCKKApBEATBFVEUgiAIgiuiKARBEARXBpRaAIDhw4frurq6UoshCIKQKjZs2PBXrfWIuM+TCEVRV1fH+vXrSy2GIAhCqlBKvVmM84jpSRAEQXBFFIUgCILgiigKQRAEwRVRFIIgCIIroigEQRAEVwp6PSmlfgDMBnZorY82y4YBjwB1wFZgntb6A/O364FLgC7gG1rrX8QiuSAUkaYtTdzy/C207WsLdZyqTBUA7V3tANQMqmHhcQuZddisnvMs37icbbu2MXroaBZMXdDzmxAffuo9/16oGVTDaXWn8Zt3fsO2Xds4YOAB7Ova13ONvZB/HyQNVSh6rFLqJOBj4IdZiuJ24H2t9a1KqYXAgVrr65RSRwIPAccBY4D/Aj6lte5yO0d9fb0W91ghqTRtaWLRs4vo1J2xHL+yopKbT7gZgMbfNbKna0/Pb4Mzg2n8TGNiG5D+QNOWJs/1Hue9YN0Hfq61UmqD1ro+cmHyKGh60lr/Bng/r3gusML8vAJoyCp/WGu9V2v9BvAahtIQhNSyfOPy2JQEQEd3B8s3Lmf5xuU5jRXAnq49LN+4PLZzC/iq9zjvBes+SCJBF9yN0lq3AGitW5RSI83yscC6rO3eMcv6oJS6DLgMYPz48QHFEIT42bZrW0nPUYzzlzNO9WtXHve1SOq1jnoyW9mU2dq2tNb3aa3rtdb1I0bEvgJdEAIzeujoopzD6TzFOH8546fe474WSb3WQRXFdqVULYD5vsMsfwcYl7XdwUBzcPEEofQsmLqAASq+aDeVFZUsmLqABVMXMDgzOOe3wZnBLJi6ILZzC/iq9zjvBes+SCJB//GTwIXAreb7E1nl/6mUugtjMnsC8PuwQgpCKbEmF4vh9QSI11ORserXS73b3Qvi9QQopR4CPgsMB7YDi4FVwEpgPPAWcK7W+n1z+xuArwCdwJVa66cKCSFeT4IgCP4pltdTwRGF1vp8h59mOmy/DFgWRihBEAQhOcjKbEEQBMEVURSCIAiCK6IoBEEQBFdEUQiCIAiuiKIQBEEQXBFFIQiCILgiikIQBEFwRRSFIAiC4IooCkEQBMEVURSCIAiCK6IoBEEQBFdEUQiCIAiuiKIQBEEQXBFFIQiCILgiikIQBEFwJb78jkLZ07SlyTEr3JABQ7hpxk2eM3o1bWmKLfObm5wW2RnI/Mpibd+yq4UKVUG37qZ6YLXvLGheqFSVdOiOHLmzs6+NHjqaQ/Y/hN9v/z3dupsKVcG5nzqXRdMXRSqHF/LrvdRZ3uzug/zr7ifLodP/ifNejouCGe6KgWS46380bWli0bOL6NSdjttkVIZlJy4r+JA0bWmi8XeN7Ona01M2ODOYxs80hn7AvMhpUVlRyVkTzuKJ157wLIud7Elk/uHzi6osnOq9sqKSm0+4uegNp9t9YF33n/zlJ57uk/x9s/9P1PdysTLciaIQYuHUx06lZVdLwe1qh9byy3N+GehYXvYthFc5LawRgVdZ/B6/VFSoCv7wt38o2vnc6iWK6xqlPOB83b2Q/X+ivpeLpShkjkKIhW27tkW2ndM2Xs8R9vzZODUWccpYDII2gkFxq5dS1Fmhc4apn+xjp/U+EUUhxMLooaMj285pG6/nCHv+bCqU/SMTp4zFwOl/xYVbvZSizgqdM0z9ZB87rfeJKAohFhZMXcAA5e4rkVEZFkxd4OlYgzODc8oGZwZ72tfLsQvJaVFZUcm5nzrXlyx2sieRcz91blHP51TvlRWVkVzXqOSB3uvu9T7J3zf7/8R5L8eJeD0JsWBNzEXh9WRtE4enSCE5LbI9WKaMnOJZlmzZxeupF7t6L6XXk9N9kH/dw3o9xXkvx4lMZguCIKQUmcwWBEEQEoEoCkEQBMGVUIpCKbVAKfVHpdSflFJXmmXDlFJPK6VeNd8PjEZUQRAEoRQEVhRKqaOBS4HjgGOB2UqpCcBCYK3WegKw1vwuCIIgpJQwI4ojgHVa691a607g18CXgLnACnObFUBDOBEFQRCEUhJGUfwROEkpdZBSaghwBjAOGKW1bgEw30fa7ayUukwptV4ptX7nzp0hxBAEQRDiJLCi0FpvBm4DngZ+DvwB8BwxS2t9n9a6XmtdP2LEiKBiCIIgCDETajJba/19rfVUrfVJwPvAq8B2pVQtgPm+I7yYgiAIQqkI6/U00nwfD5wFPAQ8CVxobnIh8ESYcwiCIAilJWwIj58opQ4COoArtNYfKKVuBVYqpS4B3gKKG0RG6BckLamNIJQzoRSF1vpvbMreA2aGOa5Q3tglkWnd28qNv70RQJSFIBQZWZktJI7lG5fbZhLr6O5g+cblJZBIEMobiR4rFJXs/NFBaNnVwnE/Os5X1NWaQTVMPHAi67at87RttokrKhPY0nVLefQvj/aJ2OqWPzn7twMGHoBSira9bbbbLfndkp46USiOH308m9/f3CcSqhVJ1qn+FYp5h88rejRZp3zVp9Wdxs/f+HlJTJBL1y3lkVcesf2tdmhtKqK+RoVEjxWKRlryR1t5joFI8jo7NTjTR0/nxZ0v2uZPBlzrKnu76//nejTRPsfFzKHtJ285FCevtpuSsIgqb3sYJGe20O9IS/5oMHqMQCR5nY/94bG+UmkWOrff7YJQzBzaQe6LuPNqe71mpcjvnU2xFIWYnoRIaNrSxI3P3piTNMfCSlKU9LzA2RSS1c9/8ZtvOcp840EpZg7tIP8j7nvJ6/9P0z0dBpnMFkLTtKWJhf+z0FZJAOzu3M0Nz95A9aDqIksWnNFDR0eW19lvvuVC5/a7XRCKmUM7yH+IO8e01/+f9FzXUSGKQgiNF0+kLt2F1joV+aOtPMdR5XV2ykc9ffR0x/zJhXJtZ2+nUJ5l8Uoxc2j7yVsOxcmr7eX/pyHXdVSIohBC43X4/eG+D2n8TGOPbd2JSlXZ87kqU0VVpsrxuxdqBtUwffR0z9taE6WzDpvF0hOXUj2w2vZ3ryyavoj5h8/v6aVWqArmHz6f+0+7v6c+FIraobU9k6OzDpuV81v1wGpqBtXYbnfL39ySUycKxfTR03PktmSff/h81/pXqKJOZAO29Qy98oat/yBY18yJ7GtQDshkthAar5ORpZ74E4T+huTMFlKDl+F3RmXKZpguCP0NURRCaGYdNotb/+bWHJNRNkMGDGHZicvKZpguCP0NcY8VIsGylwuC0P+QEYUgCILgiigKQRAEwRVRFIIgCIIroigEQRAEV0RRCIIgCK6IohAEQRBcEfdYIRHkx/+3Is6Ky60glB4ZUQglxy5JjBVxtmlLU4mkEgTBQhSFUHIe/cujtuVduktyZAtCAhDTk1B08nNBuyWJyY5Mm593+rhRx+Xkha7KVDFowKCevNInHXxSTr5lKG7O5SThlpvb+j2K3OB+5ci/RnZ5sq3IuPl50sv1WpYCiR4rFBW/ebOtiLNechh7pRg5l5OEXZ1n53t2ylkddT3FkTO93K5lPhI9VuiXLN+43HNDkR1x1sk8FYSO7o6yMmnZ1fmerj09dbB84/I+SgKiryc/194r5XYtS0UoRaGU+qZS6k9KqT8qpR5SSg1WSg1TSj2tlHrVfD8wKmGF9OM1yVF+xNmocziXS65jcP6vVrlbXURZT3HVeTldy1IRWFEopcYC3wDqtdZHAxngPGAhsFZrPQFYa34XBMBbjuHaobU8/+Xnc8wJUedwLpdcx+D8X63yqHKDB5UjqccVegn79A0AqpRSA4AhQDMwF1hh/r4CaAh5DqEf4TUXdD5R5nAuRs7lJGFX59n1HFVu8CByhKXcrmWpCKwotNbvAncCbwEtQJvW+pfAKK11i7lNCzAyCkGF/oHXXND52OWdzs8LXZWpyjlWfr5lKF7O5SSRX+f59RxVbvAgctjlxM4vc8qTXo7XslQE9noy5x5+AswHWoFHgceAe7TWNVnbfaC17jNPoZS6DLgMYPz48dPefPPNQHIIgiCUK2nwevoC8IbWeqfWugN4HPgMsF0pVQtgvu+w21lrfZ/Wul5rXT9ixIgQYgiCIAhxEkZRvAVMV0oNUUopYCawGXgSuNDc5kLgiXAiCoIgCKUk8MpsrfXzSqnHgI1AJ/ACcB+wH7BSKXUJhjKJbhZSEARBKDqhQnhorRcDi/OK92KMLgRBEIR+gKzMFgRBEFwRRSEIgiC4IopCEARBcEUUhSAIguCKKApBEATBFVEUgiAIgiuiKARBEARXRFEIgiAIroiiEIQyoWlLE6c+diqTVkzi1MdOpWlLU6lFciVt8vZnQq3MFgQhHeTnq27Z1ULj7xoBEhmmO23y9ndkRCEIZUChvNlJI23y9ndEUQhCGVAob3bSSJu8/R1RFIJQBhTKm5000iZvf0cUhSCUAYXyZieNtMnb35HJbEEoA6wJ4OUbl7Nt1zZGDx3NgqkLEjsxnDZ5+zuBc2ZHSX19vV6/fn2pxRAEQUgVaciZLQiCIJQBoigEQRAEV2SOIpsVZ8Ibv+79fujJcOGTpZNHEAQhAciIwiJfSYDx/Z7jSyOPIAhCQiifEUXjgUB3VkEFNH7Q+zVfSVj89c+waSVMmhendIIgCImlPEYUjdXkKgmM743V3vZffWXUEgmCIKSG/q8oVpzp/vudEwsfo2NXNLIIgiCkkP6tKDatdDYpWXzcUhxZBEEQUkr/VhRPfN3bdreMj1cOQRCEFBNYUSilDldKvZj1+lApdaVSaphS6mml1Kvm+4FRCuyLrr3ettvbFq8cgiAIKSawotBav6K1nqy1ngxMA3YDPwUWAmu11hOAteZ3QRAEIaVEZXqaCbyutX4TmAusMMtXAA0RnaO0bFpZagnKi00r4TtHQ2ON8S71LwglIypFcR7wkPl5lNa6BcB8H2m3g1LqMqXUeqXU+p07d0YkRh7DPXg0eWXtt6I7luDOPcfD45dC29uANt4fv1SUhSCUiNCKQik1EDgTeNTPflrr+7TW9Vrr+hEjRoQVw54o3Vrb3onuWEEph172ijONRY52/PTviitLUMrhOgnhWXMVLBlmrOdaMsz4nlCiWJl9OrBRa73d/L5dKVWrtW5RStUCOyI4RzCibNyrSjcnDxieWdmT7m1vw+pvGJ/706pxN3dmnb9oMoHcc3yuorNGQ9C/rpMQjvz7RHfB+u8bn2ffVRqZXIjC9HQ+vWYngCeBC83PFwJPRHCOYGQGRnes9hJ6Rt050d4zq6O9f5nEbk55mku30dDjl8KSA2V0IRgjB6f7xFIWCSPUiEIpNQQ4Bci2CdwKrFRKXQK8BZwb5hyB2bTSu3usJ7oiPJYNdpFrp1xgKAK3RYFtb8crV7FYcxV0tZdainAUWtypu2V0ISRWGbgRSlForXcDB+WVvYfhBVVaVl1Ragns2bTSaPzb3oHqg2HmTfDCj+wj1xZqeABQsYhZFLLrgtJnWiwaT1whiqJcSfA8hBv9N3ps9z733wcOhX1FjuG0aSU8fhk9jWLb27nfA5HSBnbTSmOOpSPlo4ggdBW4N4X+R/6z70gyO37pDuERxrtk9t1QWZVblv89n7DeCU9cQd8bJaUNfVjWfsu/klCZeGQpBSntWZY9QTyVNq00TY4envX6r4QWMQ7Sqyg2rYRVX8v1tV/1NaO80MWrHGoM/ef8M1SPA5TxPuefC5/X8k7IPodXhSU9yV6CzK3omOeJikkK7dRlzz3HG9fNug/t2gI7nrrO+zkS6PEEaTY9PXUddHfklnV3GOXt77vvO+du433SvL62YmuysRDrf2Bc1J7egom4Q3pE4Xs0VT0uFkkEoSCFPJXcGvhC7ZHFII/5cUpAehWFU+V7uShuDXjlUI8L9cxGzkmxPH5p7nnELTKPACa3YYdFK0K+L/vwifD154MdK47rm+8JlxkEc+8xPuc7REinJF42PBhsv0L5cLK5/q1g5ygC6TU9xYU12oiC7MYjzvUO5WLvfuPX0TXI+UoCjO9ecqTb2am9jkSzaax2vnZ2Ody79hrnsQtvksZQ+TePNuog+5XU/1HI7Gl3He853qPnIkYHNcEorUs/mVpfX6/Xr1/vbyevaUzzqRgAN73nvs3NI72twTj0ZO83Qtw0pixUetDrZ3mFFOpJ27khZ2/rdn63ulxzVTzzC/WX5JovgtRPpgpu3BadTHFy82j3dTPFvJ/d3LRVJSz+q9EhKKQssmXON0kX4qz7A40KlVIbtNb1vnf0SfmNKBruLbyNNbwvRLGUxFn3F+c8qUDT05Ne/Q37EYblepvT674smpFXXJPQXiZFC9HVnp7RZaHFlY1FCpmTf6/kozsMpV13or/j+pnAPvTkxJsOy0tR1F/i7YIk5aJVjwvc00g0fuy2bjiFMLF1vdVGY+zFdOVmEoqTKJRQv/Gm6g4x6vSBVzdtL53CbOXmdQK7/hK48Elv25aQ9CqKIHGcEup6ZkumCr75x14lcejJpZUnKtZcVfih87News7N1i0YpNeeXhQ9/CBYtnrBIG6lHWlU6G7/sqakTUqvohi4n7/t/ZpvosxlEYR8W3OhXkdaQlt76fF+6Xv+jpn/Xysqnbf12tODaHrnwycavUYhl0yBxa3ZxKm0qw+O9njWPVM1rPC2XrZJCOlVFH4eePBvvvn686VRFoOqg03k/fTvcm3yTvb7OIhaSfm9VvmjhELhW/zIt2R472cvHlH5fP15o9co80y5zPWwuDWb9d837q+o7+mZN0V7PDBGQV7ap9Nvi/7cMZHedRQqE/9K3a8/bzR8cUdojcLDIz9Xg2W/j3t+w8+Cw7h6hX47DU9dZ8z/eLmuusOYU9n5F/covnbsV9v72aqLIG60/ZFA7uLaqL9VXzWcUtI8dzd8YqrkT++IoljhHOLocWTjxx7v19c63/4ah3nq8csdym0axPU/KHw8q3HNDAouUyHa3/d3Xd/4tX8lAXB13jqNSfOKM7JIg+dTmLmB7k7j/mqsNlzZw9zHpcjnEmZhZ4lIr6LwQxgb8aR58dqYp13kfVu/iwGzs/LZuYxGYp5yUdiN1b0KadNKCq7G3q+2t3H16qJshxeTYdw9e6dR4qR58a8RCDq3kr8ALs5EUlHNDXTtNcyuQe/jUuRzSZmSgHJRFGE9Cywbc9Sxhg492Z9sYYaqdm6AHe29PTO7VxQ9U8sUVahhrr8ktwce5r/uKl32XYZPTMbixzt9zq81Hth3bUNXe3zKYsKp0R1LdwcfGfSniMQxkl5FUewLPGme4a7a2GY0avnndzMLnXV/lqJRvesj4vafzrbdB+k5FdNFNKwyt+Rcc5X/OYuoOOt+773FgQFCNmSqeu+/QnzckjsR78aaqwCHfORxZR189Zf25UFDWQQ1ZbmZsMUBoYf0TmZPu8jbEDsOs9Hsu+wbtjVXmXZ408QycKiR98LqHRd78kpF0A8oFBlzv9pg9vt8Nq0sWD9tW6vYsWl/OndnGDCki5GTPqK6rr1XzvHTS7fgzApd75XZd/s3f1ku07Pv8vY/dYcxUmj8wH27UtSZU8PesTvY8YKaspycGqrH9UaXvmW8fc56S5GUgYNCehXF7LvgvdcKL94q5oIWJwVSKvI9oYLi1ohnIrqFCnhotW2touX3NehuI9ZT5+4BtPy+BqBXWZTsgVX+54/8eEFlz91YeI5y3G2Yoaz911xlRELVXcao2M8cWZRUH+zQQB9smKX8Kq+gTiczb+qbabGyKvd4haK6vrWuH62Itye9pidIxdL3fsHqK51/i2plq+1xetNCbt94QI+SsNDdiu0bD4jm/EGpGgZn3RdstGhNbNuZJRvbel/5SgL8KSZrxLdkuH3inVIw8yb7DJMzbzI6W3bmXTeCjtadEpj5Gh3e5d1ykVJzVnpHFBYVA50XWJX7itiKAGFO7OjYZQy/7XpWTj1Dv9iZDuq/0tOQde2z79M4lQdGVRomGy8Mqobr3gh/TrsEWl72WfVVw1XUC0HDgsTVsFn/1ynCrzU6L0Y4kyD1n8/su4x5F6dnoXpcqvOGpHtEAdDwXWwTkvv1KEoLfpb9d++LbiXr3jb7XAF2PUO/5A/1Lfz01KJgULURUtrrY1HqRDMN90YzD+VGnA1bj4NIa25cs2y8/L+kdAidRkln3e/8/1JC+hXFpHnG0L/YHkWl4vTb/AVEfOo6Yy1DFOxt66t4Js1zdJhxpWIAnob6s++CzEBUpf1JnMp9s19tb8Pf+EHuqup8goZZiZpJ8+BL/9a/U8ROu7jwNknpEEZhxkoo6U1cVM5sWuktN3gcVI8zekd2GeLcqKwK/tA01tC2dTDNz1eDzurbqG7GHN/WO5ntRn5iIC/kZ5k79ORkd0CiNtNY17rUuCU5GlRd+pFdCSlW4iJRFGnGLl1mUAYOhX1evGjw7hJbPS6avM5mvK2W/z2A1i1DDe9jBTWH7aL20x8W3r8/5vSww29WtUIkqd7unNj3nitzJQEpURRKqRrg34GjMR7frwCvAI8AdcBWYJ7W2tWRWxRFCMKm5sxe63HbodGOUqIyz2xaSdvyf6Bl3RB0V7a1VFPziQLKwkplWS5ENapI+uhJANKTCnU58HOt9UTgWGAzsBBYq7WeAKw1vwtxEdY+WzWst9d4+m3JDGkwaR47XhmbpyQAFK2vD6Vtq8tkejkpiSgRJSFkEVhRKKUOAE4Cvg+gtd6ntW4F5gIrzM1WAA1hhRQKEMbzJXv9wqR5/pMGOTEoWnt553tOowZFywaHtRR+kuP0F6KY2E6KF5GQGMKMKA4DdgIPKKVeUEr9u1JqKDBKa90CYL6PtNtZKXWZUmq9Umr9zp07Q4ghhFqBnb9+IapQ2BHbjlW1s+LRHTa3caaqb5bAcmDmTdi6i3umIjleREJiCLPgbgAwFfh7rfXzSqnl+DAzaa3vA+4DY44ihByC1yQ8dtitX5g0L9ykaByuo/vcstapZLirJoFJ84KHlChX5SoUJMyI4h3gHa21FS7zMQzFsV0pVQtgvpcw5nOZECa5UtReLTE12Hp3wGBx5YgVFt9tZb5dqBBREq60rV7Nq5+fyeYjjuTVz8+kbfXqUotUNAKPKLTW25RSbyulDtdavwLMBF42XxcCt5rvT0QiqeBMUtJsJiiOTcuSJbSufBS6uiCToWbeudQuXlxqsYpHFGEphB7aVq+m5cab0Hv2ANDZ3EzLjUYHrXrOnFKKVhTCej39PfBjpdQmYDLwbQwFcYpS6lXgFPO7EDeT5vmf1I4qFhTE7nOvamo8b9uyZAmtDz1sKAmAri5aH3qYliVLYpJO6O/s+M7dPUrCQu/Zw47v+IwanFJCKQqt9Yta63qt9SStdYPW+gOt9Xta65la6wnme4myyJQhXsIdZNPw3WjOO6g69t5r7Q3/6PibGjIk53vrykdtt3MqF4RCdLbYLzDtbG4usiSlIf2xnoReZt/lLV80GC6Qbo27n/UURVgd6za87zN/YY0k8nEqF4QCZFy87sphrkIURX/j68+bfvBZLpKZgWbU2aygiYVcIL2upyimz71ycPt0KheEiHBzQC8H81P681EIfYki05412sgOPlgxEHSnsW7Dyo5WTJ97p3AzAcPQvDZ7Nh2vvd7zvfKTn+CTa9YEOpbQv9Ftzt585WB+EkUhOOPRcyZxHkaZjL2ZKWvkka8kADpee53XZs8WZSH0YUBtrbNCyCQw7E3EiOlJCEUiPYyc5iK07rEn5ysJC6dyobwZ+U2XdMBlMPclikIIRevDj/gqLwYDxoxx/K0c7MlC9FTPmeM8FyYjCkEoQMTzBkHJ9jxx6/05uTkKQkGc7mkZUQhCfPgOieDi3ZQ9UqieM4eMwwK9AbUuKU4FQbBFFIVQEtpWr6b5uoXGBKHWdDY303zdQndl4TJKyZ9o3P/0L9put9/JJ3mSLShbL76YzROP6HltvdjnIkhBSCCiKITYcGtwW25aDN153und3Ua5A25zD/mjjY9//RvbzaxypxEHQMuybzufx4WtF19M+3Prcsran1snykJIPaIohHC4TOS5TRzr9nZf5VDA8yRvtOHkymiVj3IJCaJbW53P40K+kihUXoiWJUvYfNTRxujkqKPLOlaV1EVpEUUhhKJm3rmOvwVZiKSJKCRCAQ+VYkf89Puf3NyOyy3cdWJcsH1GBuhPyk0UhRCK2sWLXSeZ/TZkCnhryc19yq0wz15oW706Vg+VIA2AX7fc1ocedixvufGmnLmdlhtv6tfKwq0uiooPD7/EKLeIEEUhhKfAJLNdQ5Yf8TWbzMcf9SmzC/PshFuj7CdcuR1BG4AowzyUc7jrtNDfIhiLohBCU6jxtWvIapc04melhZ/1D27bhr3hXRuAqirnHWMOXFgO8YZSRT+LYCyKQgjP3r0FN8luyDZ/+jiar7nWdftFq17K+e5l/cNrs2cX3LbLDO4W2FTj1gC4jXiKsACxP5ufUoeLk0car5MoCiE0bp5K2bQsWcLmiUfAR4ZpyamPrYEfr8vNcTHym1eiBg92PX7Ha6+z9eKLXXvXyswrEIepJqrFfEHt2EHdehPPAIfYpU7lCcDNySONZkJRFELR8Dr5qDCURd3Cpp7X17YNp/bmbxXct5ArqnXDxxHKw9V91wdBJ2mDuvUWk0CeQJ2d/soTgFv05DSGkRFFISSSplVX8+AvlvLZtzcA8NvX3+dr24a7ToJ7octsTJMSyqOcXF37mydQNnbXzWnuTrlky0sqoiiExKEwbsxR7a1cu+EhfrbqappWXU3lM09Tu6Qx3MFN23Gh3v/miUf4bsD8mhTaVq+m+drrchv9cwIAABT/SURBVMOYXHudr2OkiTg8gYqpWP2u5ndqXHVra+o6BaIohFDEfbMrehXHtRseKjgJXhCzN+tlwZ3f3q5fk0LzTYv7TnIXOepuUXFxBNg88QheOelk25/jCLcSBL+r+btcTIFpW/8iikIIRTEn5iJxMPXppupnvsC3OcujE4Bfss1Zf54+g79Mn5EK01b3jh22yiKOcCtB8L2av0CeCr1nT2ocEJLrNiAklkWrXuKh59+mS2uampvT1dsI22N3SbM68ptXFhzxbP70cT1eX3GweeIROd91ayuWtJ3NzTRfbzS6xQ5h4pXuHTv6lFXPmRN+JFkk2lavZsd37jZGlx7uNd3aStvq1Ym9HhaiKARffPn+5/jt6+/3fN9ZVcOo9uR729iilKeHefOxkxlw0EHuD7+X48SsJDzR2UnzTYsT3TBlN7YDamuN+SSnaxXzQkY/WGFmvEYQsGi+5lp2b9xY2jzzBQjVGVRKbVVKvaSUelEptd4sG6aUelop9ar5fmA0ogqlZtUL7+YoCYAHjzydPZlK1/20+YqSKI5Xc958b+fau7dnwtmNgmaEUisJi/b2RJug3r3m2pwJ/reuvT72TIqrXniXE279FYcubOKEW3/Fqhfe9X0MP2Fm8km691cUVoPPaa0na63rze8LgbVa6wnAWvO70A+48pEX+5Q9M24ayyef49hwa+CMhjtpzwyMVBYFdONfYWRv77UH57XPmoZ1DBbN1xX/sVQDvd0D+fU9QHc5X+cI8lWveuFdrn/8Jd5tbUcD77a2c/3jL/lWFmHDqCQ5DlQc5uW5wArz8wqgIYZzCEXG7aH5wpv/W3D/f5l8duSjigrgw8oq3wrj/sX/2vO55vzzIpNH4+6hkyjyk0YVgdplS6EiWJPjqKwjiJ10xy9eob0j9zjtHV3c8YtX/B0orBkswXGgwioKDfxSKbVBKXWZWTZKa90CYL6PDHkOIQE4PTRLn/0eU//6WsFe9zPjpvk6n1dz1QEd7cxquNPzcRUw4cn/AODbV93FK6t+3qNowioyDXQWaVQRhdLNTtma//rz1GmRm6eq58xhzG23umcq9EnYaMBgjCD8lDvSj12bwyqKE7TWU4HTgSuUUoUTEpsopS5TSq1XSq3fuXNnSDGEuGl2eGjclIQGNg7/ZM53N3TWq+PAg7h92vmBzEuFGNneyssTj6DhZ/czqr2VCnrDhoQ5l7XmIw0UvBa7d9N8zbWJnsuA4vv3h40MUIik1neoetZaN5vvO4CfAscB25VStQDme19/N2Of+7TW9Vrr+hEjRoQRQygCY2pcQmjbYCmJRSde3lO2pm6G61zGh5lBXHrRdznyz5s59rlneWbcNM+jhR2D9vfcyCvsG/WwjU4QJRFUMRU6V6HjepU1SrdUyyso25YfthPgtqgtCvJNrqEjAxQgqesqAj8bSqmhSqn9rc/AqcAfgSeBC83NLgSeCCukUHquOe1w3/tkKwmAeyefzeq6GXQplTN6sJTKxWfdmnOeC6aP93yui05f3KMssl9+icNDy+1caTpuWOy8gqyRXGAimMx24/rHN/V83nzU0bGv50iqQ0SYdRSjgJ8qYwJnAPCfWuufK6X+F1iplLoEeAtwjrcrpIaGKWN5dP1bfdxj39hvJId+vCOnh6rNcjvunXw2904+m7vnTwaMuY/m1nbG1FRxy2mH0zBlbM+2SxuO4Ud54cbzyW5kLjo914vpZ6uuLvi/8tlZVcODR57ONRseSpUpKZ8uIEOy5HcKcWJdw0CyxjwB3N5hTPrnL2QsNwIrCq31FuBYm/L3gJlhhBKSyY8vnZGzKhtgaNe+Pg+4MsudOOETw3oUQrZisENhr4zAaGDW1M3w9R/c0BjrQp4ZN41nxk3rmai35IgSaxT1yQ+bqd63u+C2fs7/YWUV5826mTWrru6Zf0kCrfsNo+aj9/qU76yqYf89H1GljUbfr7xxr2xO8vqGYpGq6AtC6VnacAyv33IGW2+dBcAIh1XZTuUTRg7lx5d6b9y/PH08V3zhWt7Yb2Qfs9LquhncO/nsnO0vmD6erbfOYtT+/tdtaHK9sxadeDln+PCo8suiEy/niGWNBWXyQzfwvUmGR/rskLJriNS082+fOrXP4sw9mUoePPJ0zp57W+C6jntNSND8IIFwS6dbQiSEhxCYrbfO4plfLLUN4bGzqq/bogKevuqzvs5hmZ+u+IK7bVgBb5jKC+CUo0azY9D+jNz7kaceqgbumHa+L9miwEsco43DP1nQBVkDnaqCu6bOz1F2Hw4cUnDE4sacM2/jtcB752LJddHLTzGivbXHzJctr0ah/KrHEGtCVr3wLp99e4OjTEuf/V7gYwchM2hQUc/nFRlRCKGwC+Fh9RLzyW7Io+SAQZk+x/7RurccJ7jzmyFrdOK01mPj8E9GOjHuNodjx6ITL3edZLeOd+bc2/v8h+8dMzfwZHG3UnRGPDP+zLhpXHTaImY13MlFpy3qI++auumBVtsHdSv9zb/+BwtefKzHTXpUeyvXmDlQfrbq6h7TY7GwcronDVEUQmBWvfBuTwiP7VU1dAPbq2pYPvmcPg3AwExwS/mgAe636aYlX3T87aLTF3NGw505r9unnZ8j7+3Tzu9jwsrm9plXMGTG9ECyf5gZ1EdJvbHfSK74wrVMGDkUgDF33F7wOLMa7rRdU2K5FTuNuPwudMw+btMhwf5zGO6dfLbvOQoFvHlbMLPVmeufYHBXR06ZNa9TyJkhDg+5pGa/E9OTEBhrtbY1+evG7ef08XvwzG1nT7KNMwX+XGgtvMhrccInhplzKl9k68UXs/u5db4asvPmLLMtH7X/wB4zXPWcOTT/4w3Q0dFnu/as0drshjv56os/Ydab66jQmm6laDpkuquSC0Ncx3VDgeeovtkM+Kvtcq2COM2lecUyb4K/SXgnB4Wk9tyTKpeQApxWa+dzwfTxBb2b3GiYMpa750+mqrL3dq1QxnGXNhzj+3hVlRXcPX8yY2uqUEBNVaXtg3DB9PE5E+91DzzAkBn+TCN3z5+cc66xNVXcPX8yz99wSs52Y769rE8cpE4U90w+p2efC6aP597JZzN77h2c0XAns+feUbAxH1tTxa6jpzqawJLGmJoqxtx+m+/9dtjMiXnho8rgk8ea3hGr3/2cSKrpSUYUQmDG1FS5xsMZW1PFNXlrI4LSMGWs5+MUivp5y1mTfB0vm7oHHuBlDz71GvjroP09uwFb7p3ZeRjGfPNKHshy+2yYMrZHMdYtbCoow9aeeZvP86MT5+TY2/dVDGBgd2fBY1jrXaLggunjXdfFVFVmuOa0w6k262rHd+5mX3NzQRNQF4on6+fy2SBCBQzkl++a7XUS3jI9Du3aZ+sE4jtLYpEQRSEE5nMTR7g++L9d+PkiStNLoaifUSguJ6ymYseg/Wl98Ke+9q2eM8fzeoChAzPs2ue82OyETwzL+X7j31zex5pTaEHi3fMnR1pXlpKz1uEoYMjADLv3dTEmr1Nh1cWX73+Oa/7pEgai+yzqBEPh3T3lXBq+9n8DybR/CI+w7NHcmrrpzNn6nCfz0xVfuJbPvr2BBS8+ljM/sidTyftfupAJgSWKD1EUQmD++8/OwRzH+owNFSVeTWJx8eX/s5zFc46KVSEt+9IxjvM2QJ+1Kl8+vm9v3sl92PICuy4G+Zc2HOPLXPjjS2dQ9/odrnMzYRSaqqjw7V6rMeoum3snn82crc952hecXYX/p/kgXvclTXEQRSEExq1B/tzE0gV6dDOJZSJIndmtFBmHyVYFvHDTqaHPUYiGKWMdFYXdP7Qa52xlcdHpi3nwqSU9k7EWq+tm8OPj53FdZNKGxwr9YkcYhawKKAm7q7xj0P59wsVY2xbykspeq2PrVJHEiSNEUQghcGuQ3UYbcXPNaYc7NqJdEeQMaDrE3syggYGf/ETo43tlrEP9O0X6XdpwDPWHDMupG7sG74BBGVeX4/7EgDFjCmam8zpZvaZuhqP5qdBanaQjikIIjNscRanNP05EYRL7tylGz3Z2XqPwxn4jmbVmTejje+Wa0w7n+sdfysnOZk0IO2H1vrODMUblcJBGRn7zysgiwj78mfP42xmH8N7Dj1CR1SHZYbMCPW2IohAC4zZq8Ju/IkqcJrMVwcKl59OtnU0h8aw9tydoox/U46s/4iWEihcqM4rFc46idsqpfGZPfeBkd9YizKQhikIIjJtrbBQNclCcRjOaeD2eSkG5N/pxLwRTZLsZ97LqhXcdFbSd44AXshdhJg1RFEJgMko52vxL2Xg5zZ1E5YnllGwnKeG8+xtu99ldEa7zsKPm/PNsy90UtJc8KtkMqFDcee6xiVb4oiiEwLhNDK964d2S3fhBbPd+cAvOJ0TP+cePs214s/OaxEXt4r6T/V5wWlwYNJpAqZEQHkJg3HrohRa9xUnDlLHcctYxOWEzbjnrmMgaFScX2yhcb4W+LG04hgumj++p34xSfcKrJA0nmdOoJACUjsBdMCz19fV6/fr1pRZD8MmqF951XfRlZ9vtD7iFz+iv/7k/s/Xii2l/bl2f8qoZ06l74IESSOQdpdQGrXV93OeREYUQmCTbVOPEaSRVytXoQnDqHniAqrww8mlQEsVE5igEwSdxz4EIxUeUgjuiKIRQlKMHkCxaE8oNURRCKAYOqGBvZ994OQMLZKVLO+W+fkEojNtai7QhikIIhZ2ScCsXhHJg1Qvv5pgn321t5/rHXwLSObfXv7t9giAIJeCOX7ySM4cF0N7RVVK38TCIohBCUVNV6atcEMoBpzAySQ2WWYjQikIplVFKvaCUWmN+H6aUelop9ar5fmB4MYWk0njmUVRW5E5dV1YoGs88qkQSCULpcQqKWcpgmWGIYkSxANic9X0hsFZrPQFYa34X+ikNU8Zyx7nH5qyCviPhcWsEIW6uOe1wqiozOWVpdqEONZmtlDoYI7LyMuAqs3gu9OQ5XwE8A4lKliVEjHgACUIu/c2FOqzX093AtUB2AtlRWusWAK11i1JqpN2OSqnLgMsAxo8fH1IMQRCEZNGfOlCBTU9KqdnADq31hiD7a63v01rXa63rR4woXX5lQRAEwZ0wI4oTgDOVUmcAg4EDlFI/ArYrpWrN0UQtsCMKQQVBEITSEHhEobW+Xmt9sNa6DjgP+JXW+gLgSeBCc7MLgSdCSykIgiCUjDjWUdwKnKKUehU4xfwuCIIgpJRIQnhorZ/B8G5Ca/0eMDOK4wqCIAilJxGJi5RSO4E3za/Dgb+WUJygiNzFReQuLiJ3cfEq9yFa69i9gRKhKLJRSq0vRsamqBG5i4vIXVxE7uKSNLkl1pMgCILgiigKQRAEwZUkKor7Si1AQETu4iJyFxeRu7gkSu7EzVEIgiAIySKJIwpBEAQhQYiiEARBENzRWru+gHHAf2PknPgTsMAsHwY8Dbxqvh9olh9kbv8xcE/eseYDm8zj3O5yzmXA28DHeeVXAS+bx1iL4UNst/8gjFAiu4F24C9ZcncBHwF7MeJQJV5u4HPAS1lydwFfTrrc5m/LTdn2msdJUn2fZNZrN/AOuff3WqAD2EXy7m9buYFDgBez7pPNaZA7Bc+lU30n/bk8CdgIdALn5P12G/BH8zXfSYae7QtuALXAVPPz/hiNwJHA7cBCs3whcJv5eShwInB5dgWZFfcWMML8vgKY6XDO6eZ58yvoc8AQ8/NXgUcc9v8a8ENgKkYcqp9kyb0vpXLfbso7DKNB/qcUyH05sBX4R1POd4DvJEjuOuDzwBrgHHLv74eBB83fknafOMl9LPBPprz7AR8A302B3El/Lt3kTvJzWQdMwng2z8kqn4XR+RlgyrkeOMDuGNaroOlJa92itd5ofv4Io5cyFiNB0QpzsxVAg7nNLq31s8CevEMdBvxFa73T/P5fwNkO51ynzZwWeeX/rbXebX5dBxzsIPZc4F5T7seAk7PkHpBSua36Pgd4CpidArmnYtyID2itdwG/wehNJUJurfVWrfWvMFfA5t3fUzBGSZCw+8RF7pEY98UKjFHeLuC0FMid6OeygNyJfS5NuTdhjISyORL4tda603wu/wB80e4YFr7mKJRSdRgP0PPkJSjCuEndeA2YqJSqU0oNwLgRxvk5fx6XYFwYO8ZiDNnQWndiPDDTTLkVsFoptQ44PkVyW/V9HvBASuT+GXAg0KaUGo7RQ6pJkNw55N/fwPuQyPs7hzy5RwO/wLget2D0YN1IitxJfi5zcGgHk/hcOvEH4HSl1BDzufxcIRk8BwVUSu2HYVK4Umv9oVLKl2Ra6w+UUl8FHsHQcL/D0K6+UUpdANRj9FxtN8mTezRwqSn3h1rreqXUYcCvKKAsEyQ3Zn6PYzAaAlcSIvcqpVSHee6dwHPAlxIkdzaDSc/9nU2+3FprPUkpNQZYRda1SbjcSX4u3eRO8nPpJMMvlVKfJve57HTbx9OIQilViVE5P9ZaP24WbzcryKqoggmKtNartdbHa61nAK8AryqlMkqpF83XtzzI8gXgBuBMrfVes2yZdQxzs3eAcabcj2NMSv6H+ds2M7HSFowewccpkXs78P+An2IEDEtLfb8FnK61PgWowuylJ0Tuns2Bq8m7vzHszkm8v13lNu/vZmALxuguDXIn+bl0kzvJz6WbDMu01pPN51JhOCW57uD6Mg/yQ+DuvPI7yJ18uj3v94voO9s/0nw/EMM741MFzp0/iTMFeB2YUGC/K4DvmXL/DFiZdd67THmt6IzfT7rcWfX9FsYwMS31nQH+xZR3ErANuCMpcmfd368Ba2zu7/voncxOTH07yY1hq/6OKe+BGL3FH6RA7kQ/lx7uk0Q+l1nbP0juZHYGOMj8PAnD82mA6zE8nOREQGO4Yr1ovs7AsH2uxdBEa4FhWftsxeg5fozR2zzSLH8Iw63rZeA8l3Pebu5nuaM1muX/haHBLTmedNh/MMbwVWN4Irxsbv8P5mfLne3llMh9BjAZY2IsTfU9F6PHtAvDbfb5hMn9aYweoMYYerdn1fdzGJ443Wa9n5MCuW/AcLnMdo9NQ30n/bl0u0+S/Fx+2txvF/Ae8Kes59U6/zpgspsO0FpLCA9BEATBHVmZLQiCILgiikIQBEFwRRSFIAiC4IooCkEQBMEVURSCIAiCK6IoBEEQBFdEUQiCIAiu/H8KgxuCBe2ajgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import collections\n", + "\n", + "from apd.aggregation.query import with_database, get_data\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "async def plot():\n", + " legends = collections.defaultdict(list)\n", + " async for dp in get_data(sensor_name=\"RelativeHumidity\"):\n", + " legends[dp.deployment_id].append((dp.collected_at, dp.data))\n", + "\n", + " for deployment_id, points in legends.items():\n", + " x, y = zip(*points)\n", + " plt.plot_date(x, y, \"o\", xdate=True)\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " await plot()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nO2de5hU1ZXof6u7C+juIA3ysJuHRHQQFVDTRtQEJ2HUSQAlGRW8yTfEyeBkXtHkXhJUFFBUlEnUezPf3Gsmk5A7+QxqDLEhGXVIJsmMaXPxBWpLUIOK3QpRQYVG+rHvH+dUU1V9zqnzrDrVtX7f11917TqPVfucOmvvtdZeS4wxKIqiKIobNeUWQFEURUk3qigURVEUT1RRKIqiKJ6oolAURVE8UUWhKIqieFJXbgEAxo4da6ZOnVpuMRRFUSqKJ5544g/GmHFJnycVimLq1Kls27at3GIoiqJUFCLySinOo6YnRVEUxRNVFIqiKIonqigURVEUT1RRKIqiKJ6oolAURVE8KRr1JCL/AiwA9hpjTrPbxgAbganAbuByY8w79mfXAl8E+oAvG2MeTkRyRSkhm556ndUPPcf+7p5Ix2nIWGOzQz39AIxuyLBq4aksOmPiwHnWP7yTzv3dtDTVs/yi6QOfKckRpN8L74XRDRnmz2rmFy/so3N/N6PqMxzp7Ru4xn4ovA/ShhTLHisic4H3ge/nKIo7gLeNMetEZAUw2hjzdRE5BbgX+CjQAvw78EfGmD6vc7S2thoNj1XSyqanXmf5/c/Q059MpuVMrbD+0tkAXPvgDrp7jv5c6jO13PbZmal9gAwFNj31uu9+T/JeyN4HQa61iDxhjGmNXZgCipqejDG/At4uaL4E2GD/vwFYlNP+Q2PMB8aY3wMvYikNRalY1j+8MzElAdDTZ1j/8E7WP7wz72EF0N3Tx/qHdyZ2boVA/Z7kvZC9D9JI2AV3E4wxXQDGmC4RGW+3TwTac7bbY7cNQkSuAq4CmDJlSkgxFCV5Ovd3l/UcpTh/NePWv07tSV+LtF7ruJ3Z4tDmqH6NMfcYY1qNMa3jxiW+Al1RQtPSVF+Sc7idpxTnr2aC9HvS1yKt1zqsonhTRJoB7Ne9dvseYHLOdpOAzvDiKUr5WX7RdDI1TmOgeMjUCssvms7yi6ZTn6nN+6w+U8vyi6Yndm6FQP2e5L2QvQ/SSFhF8RCw1P5/KfCTnPYlIjJcRD4MnAT8NpqIilJeFp0xkfWXzaapPhP5WA2ZmoHIJ7CiXbIOzEVnTOS2z85kYlM9AkxsqldHdgkI0u9O98LohgyfnzNlYP+m+kzeNfZD7n2QRvxEPd0L/DEwFngTWAVsAu4DpgCvApcZY962t78e+AugF7jGGPOzYkJo1JOiKEpwShX1VNSZbYy5wuWjeS7b3wLcEkUoRVEUJT3oymxFURTFE1UUiqIoiieqKBRFURRPVFEoiqIonqiiUBRFUTxRRaEoiqJ4oopCURRF8UQVhaIoiuKJKgpFURTFE1UUiqIoiieqKBRFURRPVFEoiqIonqiiUBRFUTxRRaEoiqJ4oopCURRF8aRoPQpFCcump15n9UPPsb+7Z9BnjcNqueUz/qu3bXrqddY/vJPO/d20NNWz/KLpsVUD85Izy+iGDKsWnsqiMyYGliW7/ev7u6kVoc8YmuozHOnt41BPfyzfAayC9Zla4Ujf0WJkoxsyzJ/VzC9e2Dcg79Rj62l/+R36jKFWhCvOnszaRTNjk8Mvhf2e28flwOk+KLzuxe6TXNy+T5L3clIUrXBXCrTC3dBj01Ovs/z+Z+jpd7+/amuEb1xWvPzjpqde59oHd9Dd0zfQVp+pjaVMqB85s2RqhcVnTeZHT7zuWxYn2dPI5+dMKamycOv3TK2UpSSo132Qve4bf/uar/ukcN/c7xP3vVyqCndqelISYf3DO4v+qPr6Desf3unrWIUP2u6ePl/7+jm23x9/T5/h3sdfCySLk+xp5N7HXyvp+dz6vafP3z1RKnng6HUPqiSy++Z+nyTv5SRRRaEkQuf+7ti2c9vG7zminj+XPpcZeJIylgK375UUXv1Sjj4rds4o/ZN77Eq9T1RRKInQ0lQf23Zu2/g9R9Tz51IrEug4cchYCty+V1J49Us5+qzYOaP0T+6xK/U+UUWhJMLyi6aTqfH+cdXWCMsvmu7rWPWZ2ry2+kytr339HLuYnFkytZbjN4gsTrKnkSvOnlzS87n1e6bW3z1RKnng6HX3e58U7pv7fZK8l5NEFYWSCIvOmMj6y2bTVJ9x/LxxWK0vR3b2WLd9diYTm+oRYGJTfSyObD9yZhndkGH9pbNZu2hmIFlyZYejI9Om+gwNmXh/fgIMq81/mI1uyPD5OVPy5D1v2pgBOWpFSu7IBud+z/ZxOSKA3O6D3Ovu5z5x2jf3+yR5LyeJRj0piqJUKBr1pCiKoqQCVRSKoiiKJ5EUhYhcLSLPishzInKN3TZGRB4VkV326+h4RFUURVHKQWhFISKnAcuAjwKzgQUichKwAthqjDkJ2Gq/VxRFUSqUKDOKGUC7MeaQMaYX+CXwGeASYIO9zQZgUTQRFUVRlHISRVE8C8wVkWNFpAH4NDAZmGCM6QKwX8c77SwiV4nINhHZtm/fvghiKIqiKEkSWlEYYzqA24FHgX8DngF6A+x/jzGm1RjTOm7cuLBiKIqiKAkTyZltjPmOMeZMY8xc4G1gF/CmiDQD2K97o4upKIqilIuoUU/j7dcpwGeBe4GHgKX2JkuBn0Q5h6IoilJeohYu+pGIHAv0AH9rjHlHRNYB94nIF4FXgcuiCqlUH2kraqMo1UwkRWGM+bhD21vAvCjHVaobpyIy7xzqYfkDzwCoslCUEqMrs5XUkbaiNopS7WjNbKWk5NaPFqBQHTi15fL6/m5OueFngWpNj27IcErzSP7rpbd9bZtr4orLBLZy0w7uffy1QXWqveon5342qj6DCOw/1OO43bUPbqfb7pMagXNOGMNzne8Nqv+crZ/t1v81Av/t7NJnk3WrVz1/VjObn+kqiwly5aYd/KD9Vcf7cWKF1LqOC80eq5SMSqkfna1zDMRS13nlph38a/urg9rPmzaGJ1894Fg/GfDsq9ztvrrxafyrTX+UMvV4kLrlUJq62m7XLJe46rZHoVTZY1VRKCXjvHU/5/WUl3zMkq0f4SbvxKZ6/mvFJ30da9q1Pw1USrPYuYNuF4ZaEV667dOxH9eJMPdFkP4Pg99rlrQcxSiVolDTkxIL1qjwaZwsQo3DarnlMzNTXxc4l2KyBvkuQestx1lvPCylrKEd5nskfS/5/f6VdE9HQZ3ZSmQ2PfU612x0VhIAB4/08d/vf4amBv/VwcpNS1N9bHWdg9ZbLnbuoNuFoZQ1tMN8h6RrTPv9/mmvdR0XqiiUyPiJROrrNxhDRdSPztY5jquus1s96vOmjXGtn1ys1nbudkn8iEtZQztI3XIoTV1tP9+/Empdx4UqCiUyfqffB7p78upHOz0aCus+N2Rq8mpLF773w+iGDOdNG+N726yjNK66zmsXzeTzc6YMqlP9g2XnuNZPLqyt3FSfYXRDxnG7by4+nfqcPqkRSwk51X/O1s8G5/6vkdI6ssG7XvXn50wpS13t7DVzU1+VUus6LtSZrUTGrzOy3I4/RRlqaM1spWLwM/2urUneXKAoSjKoolAis+iMidy1+HTcLEKNw2r5xmXJmwsURUkGDY9VYiFrL1cUZeihMwpFURTFE1UUiqIoiieqKBRFURRPVFEoiqIonqiiUBRFUTxRRaEoiqJ4ouGxSiooLBKTzTirIbeKUn5UUShlx6lITDbjLGiNbEUpN2p6UsrOvY+/5tje1681shUlDeiMQik5hbWgvYrE5GamLaw7PeeE0Xl1oRsyNQzP1A7Ulf7EyePy6i1DaWsupwmv2tzZz+OoDR5UjsJr5FQnO5stuLBOerVey3Kg2WOVkhK0bnY246yfGsZ+KUXN5TTh1Oe59Z7dalbH3U9J1EyvtmtZiGaPVYYk6x/e6ftBkZtx1s08FYaevuoyaTn1eXdP30AfrH945yAlAfH3U5Br75dqu5blIpKiEJGviMhzIvKsiNwrIiNEZIyIPCoiu+zX0XEJq1Q+foscFWacjbuGc7XUOgb375pt9+qLOPspqT6vpmtZLkIrChGZCHwZaDXGnAbUAkuAFcBWY8xJwFb7vaIA/moMT2yq57mb/jTPnBB3DedqqXUM7t812x5XbfCwcqT1uMpRopqe6oB6EakDGoBO4BJgg/35BmBRxHMoQwi/taALibOGcylqLqcJpz7P7ee4aoOHkSMq1XYty0VoRWGMeR34B+BVoAs4YIx5BJhgjOmyt+kCxschqDI08FsLuhCnutOFdaEbMjV5xyqstwylq7mcJgr7vLCf46oNHkYOp5rYhW1uddKr8VqWi9BRT7bv4UfAYmA/cD/wAPAtY0xTznbvGGMG+SlE5CrgKoApU6Z85JVXXgklh6IoSrVSCVFPfwL83hizzxjTAzwInAu8KSLNAPbrXqedjTH3GGNajTGt48aNiyCGoiiKkiRRFMWrwBwRaRARAeYBHcBDwFJ7m6XAT6KJqCiKopST0CuzjTGPi8gDwJNAL/AUcA/wIeA+EfkiljK5LA5BFUVRlPIQKYWHMWYVsKqg+QOs2YWiKIoyBNCV2YqiKIonqigURVEUT1RRKIqiKJ6oolAURVE8UUWhKIqieKKKQlEURfFEFYWiKIriiSoKRVEUxROtma0oVUKxutlpo9LkHcqoolCUKqCwXvXr+7u59sEdAKl8+FaavEMdNT0pShVQrG522qg0eYc6qigUpQooVjc7bVSavEMdVRSKUgUUq5udNipN3qGOKgpFqQKK1c1OG5Um71BHndmKUgVkHcCVEkVUafIOdULXzI6T1tZWs23btnKLoSiKUlFUQs1sRVEUpQpQRaEoiqJ4oj6KHHZfeSXdv2kfeF9/zhymfve7ZZRIURSl/OiMwqZQSQB0/6adFxcsKJNEiqIo6aBqZhQdM06BXMe9CDM6nh94W6gksvS8+BIH2toYtXBh0iIqiqKkkqqYUXScPCNfSQAYY7X7oPPGVQlIpSiKUhkMeUWx+8orPT/fOff84gfp1rQBiqJUL0NaURxoa3M1KWXp37u3RNIoiqJUJkNaUXRdv9LXdh1nfTRhSRRFUSqX0IpCRKaLyNM5f++KyDUiMkZEHhWRXfbr6DgFDoI5csTfhu+9l6wgiqIoFUxoRWGM2WmMOd0YczrwEeAQ8GNgBbDVGHMSsNV+ryiKolQocZme5gEvGWNeAS4BNtjtG4BFMZ2jrBxoayu3CFXFgbY2dn1yHh0zTmHXJ+dp/ytKGYlLUSwB7rX/n2CM6QKwX8c77SAiV4nINhHZtm/fvpjEyCdz4rTYjrX3zrtiO5bizYsLFtC5/Gv0dnaCMfR2dtK5/GuqLBSlTERWFCIyDLgYuD/IfsaYe4wxrcaY1nHjxkUVw/kch+ILa+3t6ortWGGphlH27iuvpOfFlxw/6/x6ZVgxq+E6KdHpWrOGjlNPo+PkGXScehpda9aUWyRX4liZ/SngSWPMm/b7N0Wk2RjTJSLNQNniT+N8uMuoUbEdKwwdZ300z+ne29lJ1w03AgypVeOe4cz9/aUTJCQvLliQp+iysyEYWtdJiUbhfUJfH/vv/SEAzavSt8A3DtPTFRw1OwE8BCy1/18K/CSGc4RCMpnYjmXefTe2YwVl59zzHSOzzOHDQ8ok1jH79HKLEAnP2dDyr9Fxyqk6u1DoWrPG9T7JKou0EWlGISINwAXAX+U0rwPuE5EvAq8Cl0U5R1gOtLX5D4/1Q8KjWafMtaM/+1n23nmX56LA3s7OROUqFV1r1sAHH5RbjEgUW9xJf7/OLpTUKgMvIikKY8wh4NiCtrewoqDKSud115dbBEcOtLWx98676O3qoq65mfFfuYZ3HnzQMXNt0QcPgEhCkiZPbl8MysU1hOm87npVFFVKmv0QXgzd7LE9PZ4fS0MD5tChEgljcaCtjc6vfX3godjb2Zn3PhQV+oA90NZG1w03Yg4fLrcopafIvakMPQ60tQ3MJj1J6cCvolN4RIkuaV6zGhkxIq+t8H0hUaMTOq+73jGLbTWy9867giuJ2tpkhCkDlTqyrHbCRCr5VhJA05LFUUVMhIpVFAfa2ui89rr8WPtrr7NGqsUuXn09oxYupPnmm6hraQER6lpaaL75puIntqMTcs/hW2HpSHKAUL6Vvr74BSkTlWinrnZeXLDAum7Z+9DhWeBE1y23+j5HGiOeoIIVRdctt0Jvb35jby9dt9xa9EfYcpN1YUctXMhJP9/KjI7nOennWwPZjff/cCNwdLSgi8MCEmKKXdfSkoAgilKcKJFKZv9+fycZOTKoWCWjYn0Ubp3v56J4KoT6en/1J2yTkduUsnP51/LOo4qjgBAmt8zxU2IVoTCWPXPiNE7cvDnUsZK4voWRcDJsGM23rAUYFBChzvFk2X9foPXEAxSrh5PLjP/321DnKAUVO6NIiuxsIw5yHx5JrneoFnt392/aY3sgD1rwhFX21k+NdCc7tV8bdC4dJ89wvXZONdzNkSN0Lv+a4wy2ElPld8w+3erD3L+0fo8iZk+n6/jiggX+IhfBGqCmGDEpcKa2traabdu2BdrHbxnTQdTVMePZHZ6bvDBrtq81GPXnzPF/IyTMjBc6yi1CIEJfP9tkVWwk7RSGnLut1/m9+rJrzZpE/AtNVyzJs0+H6p/hw5nxzNMxSpUcHbNP91w3U8r72TNMu7aWGc89S8eppxVVFrkyB3FgA7SsvyPUrFBEnjDGtAbeMSBVN6Noua24Yyk7vS9GqZREy/o7SnKeisCYgZF01w03Os4wsqG3haPuOGZeSTmh/ThFi/LBB5UzuyyyuLJjxiklEaPwXhlEXx8dJ8+g/qNnBTrumwEc2PXnzEm96bCqFEXTFUt8XZC0XLS6lpbQI400E8Ru64VbChO30Nv99/7Ql+nKyySUJHEooSETTWVM+FlnAPyGafsZFOYqtz6fDuymK5Yw9bvf9bVtOalcRREij1NaQ88cGT48LxKr/pw5ZRYoHrrWrCn+o6vxf1s6hdl6JYP0G6oYywg/BFlbvWKRtNKONSu0MYFlrZRnUsUqitrGxkDbBzXfxFnLIgyFtuZio45KSW3tZ8Tbcvu6QMcc9F3r3IP5fIcqEs/oPHPiNJquWBL5OEOO4cN9b5qk0q5rbo71eNl7Rpqaim7rZ5u0ULGKwu/ULktQ882JmzeXR1mMHBnKkdf59RV5Nnk3+30SxK2kgl6rQbOEIgsbg8jXceppA//7iYgq5MTNm2letUr9TAW0rL050Pb77/0hHTNOif2eHv+Va2I9HlizID8Dkubrr4v93ElRsYqiFOkcTty8uSSLvGa80HH0L2wsdUF221KlIA+y4DCpUWGQWQJYisX3de3rY/eVV7Jz7vmuC67cqBl/tLjjqIULVVnkEOreNMYKBT5tZmpnzH7JnDitonyPlasoSpTOIYkRRx4BFJ4EjLUutL8mYZ5yqzrnFBqYXc3uRfbhKsOGRRPMA7N/f6Dr2v2bds9U725M/9Uv896XSllUQuRTJN9Ab6+lME6ewQuzZke6j8tRzyXKws5yUbmKIgBRbMSjFi5M1MbcdLn/ch3NARcD5lblcwoZjcU85VGno+PkGQMK6UBbW9HV2DXjxw88XP2GKDvhx2QYZoFcENzMh6MWLkx8jUBY38qgBXAJFpKKyzdgjhyh8+srQt/H5ajnUmlKAqpEUUSNLMjamOM2Q9WfMyeQbEGnqrkX1ykM0Bw+PDAyc/qLY2SaNUUVezA3XbEkbwQeZVre/4e3Qu8blcyJ01Kx+HHn3PMDbd8x45TBaxs++CAxZfGh8+fGd7D+/vAzgyGUkThJKldRlPgCDyQQfKHDmmEUnt/DLNSy/o6jisbOVNuy/o7E46dzHf5hRk6lDBGNqsyzcnatWRM40CEuWtbf4Xu0KA0NwU8wfPjR+68I/Xv35jnivehas8Z9tpdQ1cH3f/kr5w9CprIIbcryMGGrT+koFaso/JpskjAbNa9axYznns13Qj/1pHWunKyo0tAwsGAuSqba0MRQBKWYGSPXYRuFqCaw7GK6ci04Ezt1vV+a16wOfI5syLRvpdrX52uFczn6zPXBHrKQVVhTlpuVoK6l5aiZ0CWra3YAWA1UbPbY5lWr+GD37qKLt0q5oKV51ap0LaCJKY/XgbY214dgTV0dcVQT33vnXZGVZ9J+B1dEAvuPst/Vj8y5vpuBU9bXY3xmOd459/yB/bvWrLEyofb1QW1tIB9ZnNQ1NzvOcuuam/nQ+XMDK6+wQSfjv3LNoEqLMmJE3vGKRSIeevLJobMi3oWKnVFA8UVoSjx03uiu/OJa2ep4nJSWhcyltqmJljtuD6XksiNWJ7Nk7my1UElAsMCGbMRWx6mnORbeKQfjv3KNY4XJ8V+5huZVq5zNux6EHWS4FTALNDvMyuuDSp2BVGz22CwdM2e5LrAqzMg5FAiU3iGTYcaO7cH3c2LkSMeR1a5PzoslcqSupYWTfr41ry2pTK2e1Nb6D7126ZNS0XHazMHFu2ImyVxjxTL8gv/7Ng0BBF6/hbqWlkTqhmj2WJ+03HqLY3vQiKJKoTbIsv+envgWJr33nmOtAKeRYVAKp/pZgozUYmHkSGY896zvmUy5C8203HZroLxYYUjSl+bLb+fjWqQlRYrbLKll/R2l80smRMUriuwiplJHFJWLCddfhwRIiNh1y63s+uS8eE7+3nuDFM+ohQsJNSutq/M11W9etSpUAsig1IwfP/Dgn9HxvLeTPmSalbgZtXAhLbevG9IlYpuWLC66TVoGhHGYsdJKxZueqpEDbW103XJr4NQVcZA1ETlViPNCRowI/aPpmHFKZMd8GDNkYZW5+nPmpHoAEnfWWSdzYDnwLHJUZvNfuSmV6UkVRQXjVC4zLNLQgDl0yNe2NePH+0ppUdfSEktd56h+kKFY08OJoFXVipGmfts59/zB91yVKwmoEEUhIk3APwOnAQb4C2AnsBGYCuwGLjfGvON1HFUU4Ynq8JWGBprXrGbUwoX8bs45sS5Wi8s8c6Ctja7rr8ccyQ1aMIAPX4JdyrJaiGtWkfbZk2JRKc7su4F/M8acDMwGOoAVwFZjzEnAVvu9khBR7bO1TU0Do8YJ11+XuHM0DKMWLqT5Y73UNfQCZuDV+vOmmpREnKiSUHIJveBORI4B5gJfADDGHAGOiMglwB/bm20A/gP4ehQhlSKIhLbh565fCLIIrCguq1nDMmp8J6Muzv+OHT88zv7PZWYRoDjOUKGupSVyuHJaooiU9BBl+HgCsA/4rog8JSL/LCKNwARjTBeA/eoYPiIiV4nINhHZtm/fvghiKFEcvYWpD+JKhR277bh+9OBzLHmDpmkHcZxZDB8+qEpgNRA5Lb5IaqKIlPQQRVHUAWcC/2SMOQM4SAAzkzHmHmNMqzGmddy4cRHEUKKERzo9WKI6MBMJHe1zjnppPutdZizpys+79UJHVSoJiJgWf/hwZnQ8H69AypAgiqLYA+wxxjxuv38AS3G8KSLNAPZr8IovSiCijCLjjmpJbH3BkYPJHHcIMlB61WP9iVOqkGpVrr7Zfh/ceRqsbrJet99XbolKRmgfhTHmDRF5TUSmG2N2AvOA5+2/pcA6+/UnsUiquBKrbyECqcpjs/mr8MT3wPSB1MJHvgALvlluqUpGNmOxEhPb74O2L0OPnYjxwGvWe4BZl5dPrhIRNcTl74EfiMh24HTgViwFcYGI7AIusN8rCTNq4cLgSfRiXPGceMx9/Rj/227+Kmz7jqUkwHrd9h2rXVHCsPWmo0oiS0+31V4FRFIUxpinbT/DLGPMImPMO8aYt4wx84wxJ9mvb8clrOKNn3QHubjlyQrMyJHJj14/dbv7Z8Ma898/8T3n7dzaFaUYB/a4tL9WWjnKRPqC5pXQNK9a5ateNFghkJ4P9wApnkuyOtZrel/ovzAu2V/d2hWlGA5RdwNUga9CFcUQ48TNmwdV2iOTsbLO5iRNLBYC2bLuNl/nK23MvZtpLf11K5QhTBWYnyq2wp3iThyV9rKzjbzkg5mMVf/AmIHqaKWNuXdbLxJyHcm3zoY/vHD0/diT4e8ed99eqV66PbIQVYH5SRWF4orvyJm0RRhJrYuZKWfmUagkwHr/rbNVWSiDGTXJXSGIfzNtpaKmJyUaaYwwcvVFmKP25EIlkcWtXalu5t3o/lkV+L5UUSjR2PYvwdpLwajJ7p9VgT1ZSYBZl4O4PC51RqEoxYjZbxCW3MgTr9GfW5ijohTD9Lu064xCUZIjaEoEtxEd5M8UZl3uvkBv1KTgcipKlaOKQikP2++DH3/JdhAa6/XHX/JWFm4jOhjsaDz1M87bnXShP9nCsuFiWD3q6N+Gi8MfS1FSgioKJTm8Hrht1wyesps+q90NL99D4VqKXY84b5Zt90oJ8rOQ5VM2XAy//2V+2+9/qcpCqXhUUSjR8HLkeTmOe1yywbq1g7fvodAn4hbKmG33SgnSHTLrTKGSKNZejM1fhTVjrJnJmjHVnatK+6KsqKJQovGRL7h/5mMh0pbGBi6c1MKsqZO5cFILWxob4kmJUCxCpdQZP4N+J6+w42pLd52aEOyAmQGGkHJTRaFEY8E38Uyh4fEg29LYwLXjjqUrU4cRoStTx7XjjmXLL64fvHE2zbMftt+XbIRKmAdA0LDcbd9xb2/7cr5vp+3LQ1tZePVFSQkQ4Zca5RYPqiiUGPAIhXV7kA1r5IaxYzAFqdGNCDccM2zwcZzSPLvh9VAOkq7cibAPgDjTPFRxuuuKYYhlMFZFoUSn2MPX6UG24C56XOpnOLYHWf+Q5FoJrwdAptH5MyDxxIVVkG+oohhiGYxVUSjR6XWuZ51H7oPstinw4DLPzde2r81v8LP+4VtnF982m9wtrKnG6wHQc8hrx3DnC8JQNj9VGl5BHhV4nVRRKNHxilTKZfNXLbv+Bwe8txNh486N+W3zboRMvfd+f3jBCkX1Gl1n6wokYaqJazFfWDt22HXEKREAABUoSURBVLDetFPjkrvUrT0NeAV5VKCZUBWFUjoCOh9nbpg58Les61FY+D+L7+Q3FDUJ85Rn+G4Awjppw4b1lpIwgQD9vcHa04BX9uQKTCOjikJJJybfVNP+RrulLArLngYl+zBNSyqPagp1HWKRQHk4XTc3351XtbyUoopCSScODu32N9phwV0Rj2vbjouN/lePCv4AC2pS2H4fPPhX+aGuD/5VsGNUEklEApVSsca1mr/77YobFKiiUKIR4GY/d3ILM6dOHvgLjDFFneDFj2GPZv0suAs62g1qUmi7Bihc7+GRz6rS8QoEWD0K/uFk58+TSLcShqCr+b1MgRW2/kUVhRINn6Pocye38F5trTVTyP0LyOnHO5uMHFd4OxLwnEH8BUHNWX6DAIKSa866/cPWXyWYtt7vclYWSaRbCUPQ1fzF6lT0dFdMAIIqCiUwa9vXMvv7s5m5YSazR8PaMU1F9xlQElEQoU+ERS0T8pq3NDawomCF94pxxzJz6mSWTRhbcJCIYaquP37x58y+bcrRzLJJsHqUNevKmrO637YfprZpa9PfpF9ZFFLqdCtRyFXSftZMdL+d7uthk+L4MiWNLHt4meUrsOkXYeMxI/lpYwOPvdbpuI/76D4EIrw0LH/l9oqxYwYrIft9e3098yY1s3WPwwNIarxTl2e5+Tj40FjbtBShUNNtU4qHBidNf49l8krzw3f7fdZM9cAea5Y270b3a+VVo6TUZNPM+M0gkOXBZfBqe3nrzBchUi+LyG4R2SEiT4vINrttjIg8KiK77NfKc/Erjmx5eUuekhhAhPdqaweN9LOsGHds9NlEoSy5ysfr2CLsratznvV85Epf51o7ajizR8PMqZOYPXWy+wyqmBkhR0kU+muyf26mtVjpOZjqUeyi9pXMtPt75mhY1H6DR+6ueHw6W17ewoUPXMisDbO48IEL2fLyluAHCZJmppCUR3/FoY4/YYw53RjTar9fAWw1xpwEbLXfK0OAFb/2uJQOI32AeZOaY1cSiLBi3LFcOKnFl9kLe9Yz6CHvYwS3dkwTG48ZSb/tU8nOoOZNah68sQ97+bxJzcycOtnZX2Ob1maWQln8+EvJn6OQ2uFFN5l5/CTrPsrpk5eGZVwHIXHUq97y8hZWP7aaroNdGAxdB7tY/djq4MoiahqVFOeBSmLedgmwwf5/A7AogXMoJcbvj+bs4yflOZT31kWwbhoPc47ti9h4zEh/iijnIb928xeOtrd+0XM3x+Pbs5R5k5qZbc8EBpSQR4TOzOMnWf3h5ci3P0tcWZQj59Al3/I0Fc08fpJz37gMQoBYvsfdT97N4b7DeW2H+w5z95N3BztQVDNYivNARfVRGOARETHA/zHG3ANMMMZ0ARhjukRkfFQhlfLj60cjwiH7R551KIfGS0kUnDMQImz8wzZWAsseWEj7+7+HnFDdpv5+Vrz1DvMPHnJwhOcfZ+ChjxXUuvGYkcB7rHSwPpw7ucV/pJe9zazjJ7H9FeeQ27Vjmrj/mJH0Y432Lnv3PVa+vX/QdssmjKW9Pj/1ybQjR9jU+aa3Q31Yo7VmJU5fRvZYW28aNPp2VRI5bGlsYP7BgnxaUbMBA10HHfxXHu2uxGQGSyNRZxTnGWPOBD4F/K2IzPW7o4hcJSLbRGTbvn37IoqhJM0bB98IvlOYEFhjaO7pZd17ffGbrHKY988nW0qiwPSzv7aW68cdy8zjJ1kP2CL+j8L3G48ZyZbGBs48flKe7yFw1JcIRsRRWbmZwwrNcOdObjn6HfJMOcPcTTlZjhy0nKwJ+zK2NDb4UhKIcMPY6EohMlEzAxQjpb6jSIrCGNNpv+4Ffgx8FHhTRJoB7Ne9LvveY4xpNca0jhs3LooYSgk4rvG4eA/oMmNo/lALj/xlB/P/viPe8+VSMBsopC/COg+wnPc9NTWR14wgQnt9PWvHNOWZuNzMYdaMxmLZhLHuysnLlFNI1AWOuWSjguzZRDasmWxfFcEx/XzC6ygGmVyjZgYoRkrXVYRWFCLSKCIjs/8DFwLPAg8BS+3NlgI/iSqkUn6uPvPqeA9oDCP686fqI2pH5J1n8fTF8Z4zl2IPpiizmZhnQoWzh2K0TplYfDZEzGHLfiiICoolGi4GZ7YXax5bk/NmrKfiXNQyIW8WWXTW5kRKEztGmVFMAP5TRJ4BfgtsMcb8G7AOuEBEdgEX2O+VCmf+CfOZc9yc2I637vw7WH3+HTQ3NiMIzY3NrD53NfNPmD+wzco5K2M7X8Xi4tx1Y+bxk/jAzwhdhBVjx0R/sAXhwB6WTRgbPoULDivzE3YAd/fZim31KDA9rtvNm9TsEK3lw8RXIYR2ZhtjXgZmO7S/BcyLIpSSTr590bdZ276W+393P/0RHHdzjpszoBByFYMTgmBKUfQnLkL4ZELv63Z+v8cp2PalYcMGHuAj+/pcF1CGZdnESbRnCP89RejDGrlv6nzzaPv2+5JdQFhkfcNAdF+QaK0KI0XLGpVKYOWclTzz58+wY+kOq8FvdJLNtGOm8e2Lvu17+8unB3sALJ6+mB1LdzB+xHhLtoDylZodZ97Ijt0xlTEN6gtxmqnYf+/V1tpO5kw8sgHtw8L7fQawH755+bySXhNSJN9XMRNaIBOfZznd8qGKQgnNgLLwiSBs+symQPv4NT8Jwo6lOwa2/8Txn7A/iMlfkJTSsUfC6/a9lS6lZiuM06eWoW5Hsb7Oyee1bMLYSOanUCuwcyi63sVeHJo1t3mGXAPUFV+UWA5UUSjRCPAg3r50eyIijKwbOejYG3dujNWpXGsMtYnNUIT5Bw8xsq8vdcqijzIsAguwhqa9vt56+IYMK727/baisjitws86rn3N4nJmagPyupGt6Z4yVFEooQkyGstEMGEMq/G28z72ucdCH9sPI+tG8nTNNJ5+ZU/wB7nH9tOOmWb989l7ACyfQAWYy5Jmxyt7GN7f768f7Ifvll+Hq0PddWTwIsXC4++tq2PW8ZPY0tjAbHt9TJ7jOgi2vK6ktPqdKgolNEFSHNz8sZtDn+em89wfAomG0GI53h/73GOw9CH48Pms+8PbwR7kLg+S8SPGHzXDzbocai1luCOrjOJUFhWkfAQBhG2vvh5gJ+Hu4eFmPr4e8/bixxXjjqU/d31MBD5SkOom7aiiUELjd7X24umLi0Y3eTH/hPms+/g66muPjsQEYfH0xaFCaOtr61n38XUDobmjho2ixuGnsHj64nzH+9KHmD/+LBr8PnSNYd3H1+Wdq7mxmXUfX8fWxVvzt73kHwfWBOx4ZQ/r9r1Fc28vAgP7hFGKzY3NrJPKWdB6XONxAzOsOd3dvhXcG3Xh1lP4Vp8xKIfcYx2pqRmonbJ67JijyiKlpietR6GE5rjG4zzz4TQ3NnP1mVdHUhJZ5p8w3/dxipnEVp27KtDx8lj6EIe+d5qvTTMG32HA+XmQ9jC/7ljmn3VjXtjn/BPmDyjGmRtmFj1/brDBCh/bO7Hu4/Etg1o8fbHlO3JhYMGl3Vff3noTMz2sNLkcN8xHFuGUcrimhuvsvGjz6yLkR0sQVRRKaOZOmuv5w3/k0kdKKM1RipnE4lBcxagxhpvP9yjh6cSsy32vB2ioa+BQ7yHXzwsXRwZej2IM6+beHmtfZZVc7jqchroGunu7Oa7xuPxBhd0Xcx5eRnvXb4qO5q+ec20omZr6+9lfG+PqbmNCzTz6bdMWUz9D8ndncNT0pITmV3t+5fpZc6NDvYYSESqBYRzYvoCm4U3cGvNDtpAbz/Euu1q4ViXoehREEpE/dx3OjqU7ePxzj7N96XYeufQRx/N9+6JvF33wrvv4utCyrnj7AJm4/DdRjyPCda88FI8sMaOKQgmN1wN57iTfiYRjxyuBYU3CpTN37H6NXy/5deKzFq/ji4OLduWclYF8HCPrRhbfKCVE8n+9/z4373uL5p5exBjwG22VEP2kM1W5KgolNF4PZK/ZRtJ4JTCMknpkAK8R7tiTox/fJ26zNrfrsnLOSl8+h5F1IxMPOU4NoyYz/+AhHtnTyfbdr7HjlT1MO3IkXKSYCIvffa9iIsyCoIpCCY3XrKFs5p8ixGEScxqxD7T/3eORj++Xq8+8mhG1I/LaCjPwFpKNICuMwsqagnYs3VE9SgJg3mAT3qbON9mx+zXG9/YGeug3DW9i5Ql/Fqd0qUGd2UpovGYNsdevCICXMzuOdOluTmGTXJ0lR7Iml7ufvJs3Dr4x2CHssV8pHPoVwazLXVOHb93TxaKWCbw0vHhajUxNhhUfXQEnzEc2zAqdyHJgEWbKUEWhhMYrNDb2+hUB8JrNDLUHZLU/9J3Wv8SJVTL2wKD2LS9vcVXQl0+/3DMa0I28RZgpQxWFEpoaqXG1+Zfz4eW2vqOckVhKeLzus1s/fmuyJ2/9omOzl4JeOWdlIEVRJ3Ws/djaVCt89VEoofFyDEfNyhmFMLZ7Jb1c9keXObbn1jVJjAXfDLWbW4RZNg1+7t9Tf/5UqpUEqKJQIuA1Qg+SBypu5p8wn9XnrvasnhcFtxDbpENvq5VsaG+2f2ukZnB6lZThJnOlVm0Uk4JQrtbWVrNt27Zyi6EEZMvLW1jx6xWunwetV1EpeKXPGKrfeUiz4WL4/S8Ht3/4fCsZZIoRkSeMMa1Jn0eHQEpo0j5dTgq3mZT6QCoUOzNwHhWgJEqJOrMVJSBXn3k1qx9bzeG+wwNt6gOpcFQpeKKKQlECEnb9gqJUKqoolEgMqxnGkf4jju1DmWpfv6AUx2utRaWhikKJhJOS8GpXlGpgy8tb8syTXQe7WP3YaqAyfXvqzFYURYmZu5+8O8+HBXC473BZw8ajoIpCicSoYaMCtStKNeCWRiatyTKLEVlRiEitiDwlIpvt92NE5FER2WW/jo4uppJWrj37Wuok34JZJ3Vce3a4imOKMhRwS4pZzmSZUYhjRnE10JHzfgWw1RhzErDVfq8MUeafMJ+1H1ubtwo67XlrFCVphloamUjObBGZBMwHbgG+ajdfAvyx/f8G4D+Ar0c5j5JuNAJIUfIZaiHUUaOe7gK+BuTWTZxgjOkCMMZ0ich4px1F5CrgKoApU6ZEFENRFCVdDKUBVGjTk4gsAPYaY54Is78x5h5jTKsxpnXcuHFhxVAURVESJsqM4jzgYhH5NDACOEZE/hV4U0Sa7dlEM7A3DkEVRVGU8hB6RmGMudYYM8kYMxVYAvzcGPN54CFgqb3ZUuAnkaVUFEVRykYS6yjWAReIyC7gAvu9oiiKUqHEksLDGPMfWNFNGGPeAubFcVxFURSl/KSicJGI7ANesd+OBf5QRnHConKXFpW7tKjcpcWv3McbYxKPBkqFoshFRLaVomJT3KjcpUXlLi0qd2lJm9ya60lRFEXxRBWFoiiK4kkaFcU95RYgJCp3aVG5S4vKXVpSJXfqfBSKoihKukjjjEJRFEVJEaooFEVRFG+MMZ5/wGTgF1g1J54DrrbbxwCPArvs19F2+7H29u8D3yo41mJgu32cOzzOeQvwGvB+QftXgeftY2zFiiF22n84ViqRQ0A38LscufuA94APsPJQpV5u4BPAjhy5+4DPpV1u+7O7bdk+sI+Tpv6ea/drP7CH/Pt7K9ADHCR997ej3MDxwNM590lHJchdAb9Lt/5O++9yLvAk0AtcWvDZ7cCz9t9iNxkGti+6ATQDZ9r/j8R6CJwC3AGssNtXALfb/zcCHwO+lNtBdse9Coyz328A5rmcc4593sIO+gTQYP//18BGl/3/Bvg+cCZWHqof5ch9pELlvsOWdwzWA/kbFSD3l4DdwHW2nHuAO1Mk91Tgk8Bm4FLy7+8fAt+zP0vbfeIm92zgG7a8HwLeAf6xAuRO++/SS+40/y6nArOwfpuX5rTPxxr81NlybgOOcTpG9q+o6ckY02WMedL+/z2sUcpErAJFG+zNNgCL7G0OGmP+EzhccKgTgN8ZY/bZ7/8d+DOXc7Ybu6ZFQfsvjDGH7LftwCQXsS8B/smW+wHg/By56ypU7mx/Xwr8DFhQAXKfiXUjftcYcxD4FdZoKhVyG2N2G2N+jr0CtuD+PgNrlgQpu0885B6PdV9swJrlHQQuqgC5U/27LCJ3an+XttzbsWZCuZwC/NIY02v/Lp8B/tTpGFkC+ShEZCrWD+hxCgoUYd2kXrwInCwiU0WkDutGmBzk/AV8EevCODERa8qGMaYX6wfzEVtuAdpEpB04u4Lkzvb3EuC7FSL3T4HRwAERGYs1QmpKkdx5FN7fwNuQyvs7jwK5jwMexroet2GNYL1Ii9xp/l3m4fIcTOPv0o1ngE+JSIP9u/xEMRl8JwUUkQ9hmRSuMca8KyKBJDPGvCMifw1sxNJwj2Fp18CIyOeBVqyRq+MmBXIfByyz5X7XGNMqIicAP6eIskyR3Nj1PWZiPQg8SYncm0Skxz73PuA3wGdSJHcuI6ic+zuXQrmNMWaWiLQAm8i5NimXO82/Sy+50/y7dJPhERE5i/zfZa/XPr5mFCKSweqcHxhjHrSb37Q7KNtRRQsUGWPajDFnG2POAXYCu0SkVkSetv9u8iHLnwDXAxcbYz6w227JHsPebA8w2Zb7QSyn5P+1P3vDLqz0MtaI4P0KkftN4C+BH2MlDKuU/n4V+JQx5gKgHnuUnhK5BzYH/gcF9zeW3TmN97en3Pb93Qm8jDW7qwS50/y79JI7zb9LLxluMcacbv8uBSsoyXMHzz/7IN8H7ipoX0++8+mOgs+/wGBv/3j7dTRWdMYfFTl3oRPnDOAl4KQi+/0t8L9tuX8K3Jdz3m/a8mazM34n7XLn9PerWNPESunvWuB/2fLOAt4A1qdF7pz7+0Vgs8P9fQ9Hndmp6W83ubFs1Xfa8o7GGi3+SwXInerfpY/7JJW/y5ztv0e+M7sWONb+fxZW5FOd5zF8nORjgMEKxXra/vs0lu1zK5Ym2gqMydlnN9bI8X2s0eYpdvu9WGFdzwNLPM55h71fNhxttd3+71gaPCvHQy77j8CavhqsSITn7e3/u/1/Npzt+QqR+9PA6ViOsUrq70uwRkwHscJmH0+Z3GdhjQAN1tS7O6e/f4MVidNv9/ulFSD39Vghl7nhsZXQ32n/XXrdJ2n+XZ5l73cQeAt4Luf3mj1/O3C6lw4wxmgKD0VRFMUbXZmtKIqieKKKQlEURfFEFYWiKIriiSoKRVEUxRNVFIqiKIonqigURVEUT1RRKIqiKJ78f6S57F/6hNcgAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import collections\n", + "\n", + "from apd.aggregation.query import with_database, get_data, get_deployment_ids\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "async def plot(deployment_id):\n", + " points = []\n", + " async for dp in get_data(sensor_name=\"RelativeHumidity\", deployment_id=deployment_id):\n", + " points.append((dp.collected_at, dp.data))\n", + "\n", + " if points:\n", + " x, y = zip(*points)\n", + " plt.plot_date(x, y, \"o\", xdate=True)\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " deployment_ids = await get_deployment_ids()\n", + " for deployment in deployment_ids:\n", + " await plot(deployment)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAE0YAAAUsCAYAAAC9bUPVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdd7x0Z1Uv8N9KBwIJEAJSQ+9NihSBBJAqIL2HkCCCXq5cURD13ovYr6BwQakGCKFKByHIRQOitCAogjSBCKEESEIPIWTdP/a8Zt79zilzzpwzb/l+P5/5kL32fp5nzZk5w+eds/Z6qrsDAAAAAAAAAAAAAAAAAAAAAAAAsEz7LTsBAAAAAAAAAAAAAAAAAAAAAAAAAI3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAEaq6qiq6tHjuGXntZ2q6tTR8z912Tntjfyc92xV9bTxZ8WesL73HQAAAAAAAAAAwO5jE7VgS61hm9ey63OXvT4AAACwfhqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMRoAAAAw0wq7oq32OLeqzqyqz1bVKVX1R1V1n6o6aNnPBQAAAAAAAAAAANiYPaWesKruuEI+pyxwjaPXeO5HL2idY9dY56hFrAMAAAAAuyON0QAAAIBFOTjJZZJcI8ldk/xmkjclOaOq/qSqDl1mcnu7qnrpqOjpi8vOCdi7VNUXR58zL112TgAAAAAAAAAA7JaWVU94wgrxn6uqK2/RmmPH72bzAAAAAMAeR2M0AAAAYKsdkeTJSf6tqm697GQAAAAAAAAAAACApdiyesKqOjzJ/VY4vV+S4xa53iruX1WX2MwEVXW1JLdfUD4AAAAAsMc5YNkJAAAAAHuU7yf53ArnLprkUkkuvcL5qyQ5paru0N0f24rkAAAAAAAAAAAAgG2xu9UTPjzJIaucf3RV/V5394LWW8lFkzw4yYs2McfxSWox6QAAAADAnkdjNAAAAGAep3X30atdUFVXTHKvJE9KcvXR6UskeV1VXbe7f7w1KbIIa73OQNLdT0vytCWnMTe/3wAAAAAAAAAALMDuVk94wui4s3NzsaOS3CnJ/1vAWmNnJ7nk1PHx2WBjtKraL8mjRuGzMjSaYy+1p9aiAQAAAGyV/ZadAAAAALB36e4vd/fzktw4yRtmXHL1JL+0vVkBAAAAAAAAAAAA22m76gmr6iZJbjoK/3mS80ax4ze71gpeneQnU8e3qqrrbnCuuya54tTxOUnesdHEAAAAAGBPpDEaAAAAsCW6+/tJHp7k32ecfuQ2pwMAAAAAAAAAAAAswTbUEz5mvGSSZyd52yh+v6q65ALWG/tKkr8dxTbahG087pVJzt3gXAAAAACwR9IYDQAAANgy3X1ukj+acermVXWp7c4HAAAAAAAAAAAA2H5bVU9YVYckedgofGp3/2eSl43iB2do0LYVThwdP7KqDphngqq6dJJ7rzEvAAAAAOz15vpiDQAAAGADTpkR2y/JtZO8f6OTVtV+SW6a5Kgkl0lyqSTfSfKNJJ9L8tHuvmCj8y9SVV0hyXUy5HpYkotkyPWsJP+Z5MOToi+2QFVdJMktk/xUkiOTHJrkWxneK//S3f+xxPTWpaouk+RWSa6WIf9vJzkzyQe7+/Rl5rbVquqwDM/9mhl+f85NckaS98/z3Kvq8klukeH38NAMv39fTvKe7v7OgtPekKo6OMltk1w5yeWS/CTJ15N8PMnHuruXmB4AAAAAAAAAAGzWVtQT3i/JJUexkyb/+/YMdWKXmTp3QpLnbnCt1bwlyTeTHDE5vmySe0zi6/WIJAdNHf9rd3+kqhaT4QJU1f4Z6tiuk+QKSS6RZP8kZ08en0ry8d2lfnMR9pUa0Ko6KMk1MjzXy2V4bZPheZ6V4XX99DblckCSmye5fobfqQuSfDXJF5J8oLt/sh15rNfeUKcKAAAAuxuN0QAAAIAt1d3fqKrv5MICiR2OmHX9Wqrqdkl+JcnPZWiGtpKzqurtSf6ouz+5kbU2qqqOSHLfJHdOcocMBU6rOa+qPpCh2Or16y0IqqovJrnKCqevUlXraaJ0THefOmPuUzPkvsN7uvvoFfL4eJIbTIW+keQK3f3jdaw/U1U9NMkrR+Ff6e6/XOf4/TLs7PmIJLdPcsgq134hyWuTPKO7v7mxjLdGVR2d5LeS3ClDAeCsaz6Z5A+TvHKexllVdVySl4zCV+3uL24gz/G6v9vdT1tjzNOS/O/pWHfX1PlbJPmdDMWBM7/HrKr3JPnN7v7AKuvcK8lTktwmyawKwfOq6o1JnjzZJXbd1noOc8xzVJKnZfjcGH9W7vC1qnp+kmd29/fmXWO03qlZx+/3JK8vrDLVo6rqUWutt+NnUlWXyNDU7tCp06d29zFrJr2Kqnp2kv8+Ct+ku/9lM/MCAAAAAAAAALBYi64nnDhhdPyDJK+brHd+Vb0yya9Onb9JVd20uz+6iTV30d3nVdUrRmsdn/kaox0/Oj5x04ktQFVdM0MDujtm2PjxYmsM+XZVvStDTd4H51hnt6hF3K4a0NGaT8sCatE2sO5NkvxCkmOS/EySg9e4/htJ3pbhtV14bW5VXTbJbyY5LsnhK1x2ZlW9NsnTu/sbi85hvfaWOlUAAADYXc28mRIAAABgwWY18Vmp+c9MVXWtSaOz9yZ5cFZvipbJ+Uck+XhVvbiqViw4WKRJEdVXk7wwyYOydkFMMuzwePsMRQ//VlXX37oMt8S4udZlktxzk3MeNzr+UZJXrWdgVd0tyccz7Pp5l6xSbDJx1QyNsz5fVb+6xrXboqoOrqoXJfn7DE0AV/se73pJTk5ySlWtVXC226vB7yX5QJJ7Z/XNHe6Q5J+q6tdnzHNYVb0+Q2HhbTO7KVoy/P49OMknq+rOm0p+AybvuU8keVRW/1y8XIbmaZ+oqpttQ2oL193fyfBenXZ0VV13o3NOdto8dhR+v6ZoAAAAAAAAAAC7rU3XE+5QVVfN0NBp2htGGw++bMbQcTO1Rfmr0fE9q+rI9QysqpsnudFU6LzsWmuzrarq0lX1z0k+k+SPM9TjradG7bAkD0jygap6c1Wt1OBqbOm1iPtKDWhVXaeqPp3koxkast0+azRFm7hMkkdneJ4vqqr1jFlvTvdI8skkT8zKTdGS5Mgk/y3Jv1fVQxa1/jz2hjpVAAAA2N1pjAYAAABsh1kFCt9Z7+CqulOSDya5+wbW3i9DEdN7JjvJbbXbZPVGTmu5boZioG1v0LQJJycZ78j46I1OVlVXzLDT4rQ3dffZ6xj760n+JkOzsHldPMmzJo30NvMabsqkid87kjxmzqF3SfL2qtp/8Vltq+cn+Z2s/7vLSvKnVfXY/woMhXTvzrBL6XpdLMlbquoWc4zZlKr6gyTPSnLROYZdOcPn2R7ZHC3Drqhjj9vEfA/Nrv8f87xNzAcAAAAAAAAAwNbaVD3hyPHZdcPEk6YPuvujGRoYTXv4Vmy22t0fT/KRqdABSR65zuHHj47f0t3fWkhiG3fxJDfd5Bz3TvKhSV3gWnaHWsR9pQb0ckmutYnxlaHG8b1VtaHGhjtNVnWvJG/O2psmT7t0kldO1w5uh72hThUAAAD2BP7hDAAAAGypqrp6Zjf9+fw6x98ryeuTHDg6dV6Sv8vQMO1LSb6d5NAkRyW5Y5Lbja6/ZZI3VdXtu3tcOLNVfpLkn5N8IsmnknwrQwFXZdjh8ppJbpXkttm5CdShSV5dVTft7i+tMv8nk5wz+e8rJ7nk1LkfT86vZdbum3Pp7jOr6u1J7jMVvkdVHdndZ25gymOza1OsE9caVFV/nGFHvbGzkrwrQ8HZmUl+kKG47vpJ7pbk2qPrT8jwc/31ubJenBOz8y6mn87QKO1TGZ7LYRmKze6fXXejvH2S/5HkGVuf5uJNdkKcLlI6Pclbk/xbhud+eJKfSfLA7LpL7LOq6p0ZPg9enWS6cdhHkpyS5AtJvpvh53bHDEV30++1iyR5UVXdvLvPX9DTmqmqfi3Jb8049aNJru9N8pUMDduumuH36waTay6W5E1JXreVOWb4nP2XqePrZefP4rOT/Oc8E3b3J6rq1CRHT4WPraqndvcPNpDj40fH30ry1xuYBwAAAAAAAACALbbZesLRXPslOW4UPiPDhopjJyX506njwzNsuvjKedddhxOzc+3S8UmeudqASZO2h86YZ3fzvSQfTvLvST6boW7zu0kOylC/eL0MtW/XHY27ZpLXVNUdVqvL2l1qEadsdQ3o7uTsXPja/keG5/m9DDV1R2Sot7xLhlrVabdM8uIkD9rE2ldN8pxceL9zJ/mnJG9P8uXJ8ZUybK582+zcDLGSPL+qvtXdr99EDuuyF9WpAgAAwG5PYzQAAABgq91/RuzsDMUTq6qqq2YoSJpuxHN+kj9P8qfd/Y0Vhj6tqm6SodhiusDoVkn+OMmT1pH3Rp2X5A0Zdi78u+7+9loDquoqSf4oOxc2XTrJ85L8/ErjuvseU3O8NMmjpk5/pbtvMlfmm3Nidi5GOiDJI5L82QbmOm50/OUk/2+1AVV13+xabHJ2kt9MclJ3n7vCuEryC0men+TIqVNPqqr3dvdb5sh7EX4myY6dSL+W5AndPbP5VVU9JclfZCjemvbbVfUX3f3DrUtzy/zJ5H9/kOH39EXd/ZPRNS+qqt/O0DDxtlPxi2RoNPbpJHedxD6f5LHdPavY8TlVdfMMOzdOv/Y3ztB47VWbeSKrqaprJ/mDGafekSHfL8849zuT9/nzMjR2u2KSX9qqHJOku7+S5L8+R6rqi0muMnXJW7r7uA1M/dzs3Bjt8CQPyZzFnFV1syQ3H4VfstLvOwAAAAAAAAAAS7fhesIZ7pqhhmbayd19wYxrT85QO7j/VOyEbE1jtFdmaIS2ow7selX1M939wVXG3C9DDc0OZyT52y3IbSPOyfDze12Sf1rPxrRVdZskz87OtT23SfLErL3p51JrEbONNaC7ga8leWmSNyY5bYXfnf8yqbe8e5JnZWgKt8MDq+oBK9U6rsOTc+Hvy6eSHLfC78sfVtUtJzlPN9+rJM+rqvd09zc3mMOa9qI6VQAAANgjjLvdAwAAACxMVf1UZu9m9qq1CigmXpGdi31+kOSu3f3kVZqiJUm6+2MZCmneNTr1hKq60jrW3qhbdPf9u/uN6ymISZLuPr27H5bkaaNT96iq6yw8w63x9iRfH8WOm3eSqrptdi6YSZKXrfZ+qaojk7xkFP5skht19wtXa5LUgzdmKMAaN6P6o0lBynbaUdzz+SS3Wq1QqLu/l+Fn/M7RqcMzu4BwT3Bwht/zO3f382c0RUuSdPfXMxSMjXcBfUSSp0/++xNJbr1CU7Qd85yW2T+rR8+b+Jyelwtf6x1em+TnV2iKliSZvFfvkAuf90W2Jr0t96bs+vv2+A3MMx7TSV6woYwAAAAAAAAAANhSC6gnHDthRuykWRd299eya6OxYyabty5Ud5+TodHUtLXqkcbP5WUr1U5ts68kuXx3P6G737OepmhJ0t3/lOR2SU4ZnfrvVXXAGsOXVos4sa/UgH4oyZW6+6nd/aH1/A5O6i3fnmED2I+OTv/aJnLZUUv3iSQ/u1oTwe7+UIb31idGpy6TCzdmXbi9rE4VAAAA9ggaowEAAABboqqunqGo5TKjUz/IsDPeWuN/LsmtR+Hju/vv1ptDd5+X5IFJpneAOzCbK8BYa811FcKs4OlJPjx1XEmO31xG26O7z8+wQ+K0G1bVzeacalYB2LiYZOxXkxw2dfyDJHdbrcHUWHd/KclDRuHrJbn3eudYoB8neVB3n77Whd3dmf1+vuvCs9o+T+zu96910aSAcLx76EWTXCzJuRl+huPGabPmeV92LcA7pqrGjcsWoqpumOSYUfhzSY5dZ3HZp5McuxW5bZdJ0ea4gdnNq+rms66fpaoOy847rCbJu7r7c5vNDwAAAAAAAACAxdpsPeGM+Y5Icq9R+LTu/uQqw142niZbt4HiiaPjh1TVzE0Qq+qo7FpPtFbN3Lbo7vO6+4cbHHtukkdleI13uFKSu6wxbpm1iPtMDWh3/2Dys97I2LOzaw3bravqeptI6bwk9+vub61j/W8lud9kzLSHTz4btsLeVqcKAAAAuz2N0QAAAICFqKpDquoKVXXPqnphkn9NcqMZl/7iOgsBnjI6/ofufs28eU2KVJ49Ct933nm2w6TJ1ctH4Z9dRi4bNC7mSubYqbGqLprkQaPwe7v7P1YZc2iSXx6Fn9ndn1/vujt09z8mefcovIz3yiu7+yPrvXhSzPfPo/C8RWC7i88kefEc179+hfjL1yhyHHvd6PiAJDecY/w8Hjcj9qTu/tF6J+judyZ56+JSWooXZtfCtMfPMf5RGRrhTXv+pjICAAAAAAAAAGAhtqCecOzYJAeNYietMebNScZNr46rqq24x/LdSaY3xjwsyf1XuPbRGRpo7fDevWVzwMnGluNNK9dTE7nttYiLsBfUgK5bd/9bdq1b3MxzfU53f2aO9T+T5Dmj8MGZ432yXntpnSoAAADs9jRGAwAAAOZxh6rqWY8kP0zy5SRvS/KL2bVhzQ+SPLy7X7nWIlV1qSR3HIXnaZY09jej46tU1VU2Md9W+uzo+Ker6sClZDKnSSOqD43CD6uqg9c5xf2TXHwUW2uHxjsnOXwU+6t1rjfL+L1yh03MtVEv2sCY8c/9WotIZAleMikOW5dJYdGsHTrnfQ98dEbs2nPOsV53Hx1/Nbu+79bjBQvIZWkmRY9/PQo/pKrGv88r+aXR8RnZ85vFAQAAAAB7kUkTgDtV1QlV9ZSq+tWqemBV3XjZuQEAACzIttQTruD40fGPk7xqtQHdfW6S147CV0pylw3msNpaneSlo/A450yasj1qFJ7VFGxPNq6JvNVaA5ZUi7goe2wN6AbM/dquYiN1ky+cERvX5y3C3linCgAAALu9A5adAAAAALDX+26S1yR5end/aZ1jbpedd0BMkn/aRA5fmBG7aXbekXFLTHaKu32G3S6vl+TSSS6R5GKZ3bT+0NHxwUkum6FIbE/wkiS3nDq+VJJ7Z9cGSLM8enT8vXWMGxeEnNHdm3ldx++Vo6rq8O4+ZxNzzuOH2bWgaz3GO1nuX1WHdvf3FpDTdnrvBsb8Z5IbTh3/IMlH5pzjizNi623QtW5VdWSSq47Cb+7un2xguncm+X6Gz5I91XOTPHzq+KIZdvP9v6sNqqo7ZPg8nfai7j5/sekBAAAAANulqq6W5BZJbj7535/Ozjcwn97dRy0htblV1Q2S/K8k90pyyArXfDbD31Se2d3nbWN6AAAAy7aResKdVNWtklx/FH57d39zHcNflqFR27Tjk5yykVzW8JIM/z7cUQt5dFVdtbuna9TunGR6k9fvJnndFuSyMFV1hSS3yVATea0kh2WoibxIdq37TJLLjY6vvM6ltrsWcaZ9qQa0qq6eobnZjZJcPcPzvESG5zDrtR2/lut9bcc+1d2fnndQd3+mqj6RnT8PblFV+3X3BRvMZZa9rU4VAAAA9ggaowEAAABb7bQkz5mziOm2M2Kvn+wkuShHLHCuXVTVzZL8RoZCnItscrrDswcUxUy8KsmfZefnfFzWKCqqqqskOXoUfm13f3+N9cbvlUtW1cfWTnNF46KkZHivbFfByend/eMNjPv2jNhhGQq69iSf28CY746OT99Ag6zxHMnw81u0m82IzdvELUnS3edX1b8mufXmUlqe7v5AVX0kO/9cHpc1GqMlefzo+PwkL15kbgAAAADA1quqo5M8NUMztEstN5vNq6pK8j+TPC2zbxaeds0kf5jkoVX1sO7+ty1ODwAAYHexkXrCsRNmxE5az8Du/seq+lySa0yF71NVR6yzsdq6dffpVfV3Se40CVWGWrr/PXXZ8aNhr1lHzdxSVNUDkvxyhiZRsxqCrdd6N6zc7lrE8Tz7RA1oVe2X4XfqFzM0q9+MjW5GuqEauol/zs6N0S6eoWHfpzYx59jeVqcKAAAAewSN0QAAAIB5fD+zGxcdmOSSSX5qxrljkny4qo7r7letc50rzojdaJ1j1+vSC54vSVJVByb58wyNezZT/DNtKxo0bYnu/nZVvTHJw6bCd62qn+rur64y9LjsepPQS9ax5Pi9ctEkN17HuHlcOhtr2LURZ21w3KxmagduJpElOXsDY8bPfe45uvvHw/1qO9mKn9+RM2Jz73Q55VPZgxujTTw3O/+uX7eqju7uU2ddXFVHJrnvKPyW7j5ji/IDAAAAALbOTZLcZdlJLNCLsuvN+RdkuOn/i0kOSnK9DDfn7nDDJO+uqlt39+e3I0kAAIAF2q56wv9SVRdL8uBR+Kwkb5tjmpOSPH3q+KAkj0jyrHnzWYcTc2FjtCQ5rqp+t7svqKpLJvmFGdfvVqrq8klenuSOC5pyXfWQS6hFTLJv1YBW1XWTvCLJTRc05Uaf52Zr6MaOXCG+UXtbnSoAAADsERb1xQwAAACwbzitu28y43H97r58hj/MH5ddCwoOSvLyqrrXOtfZkqZlI5vdwW8Xk4KYv07yK1ns9y57WoOrcRHR/kkeudLFNXSkOnYU/mx3v28da11qztw2YuHvlVXManC2z+juRTz/3flnOGtHzG9vYr7NjN1dvDrJt0axx61y/QkZ/j9l2vMWmhEAAAAAsGw/SvIfy05iHlX1hOzaFO3VSa7c3T/T3Q/u7vt297WT3DLJR6euOzLJO6rqkG1KFwAAYFG2q55w2oOSXHwUe3V3nzfHHCcl6VFs/G+6RXlDknOmjq+cCxulPTzJwVPnPtXd79+iPDakqq6Q5NQsrilakhwwx7XbWYu4T9WAVtUNkrwni2uKlmz8eS66hm5Wnd5m7G11qgAAALBH0BgNAAAAWJjuPqu7X5bkJhlu9pi2f5KTq+qodUx1yQWntl2ekuQ+M+JnJPnLDLtK3jrJlTIUXhzS3TX9yLAj5p7u3UlOH8Uevcr1d0hytVFszR0aq+qi2bkwDHZ346LMZNg5d6M2M3a30N3nJvmrUfh+VXXZ8bVVtV+Sx47Cn83wmQMAAAAA7Jl+nORjSV6c5JeS3CzDd6mPWWZS86iqSyf5w1H4Od390O4+Y3x9d384ye2TfGgqfK0kT9y6LAEAALbfAusJp81qYHbSnHmdnqEh1LQbVNUt58xlPWudm+RVo/COWrrjR/ETF73+Arw0yTVnxD+W5I+S3DfJTye5XJJLJDloRk3k725i/W2pRZyyT9SAThrAvTbJZWac/sckT0vy80lunKGh+8WTHDDjub5sQSktuoZuVp3ehqhTBQAAgOWZp7s+AAAAwLp094+q6pFJLpudizwukaEBzp1mDrzQD0fH53T3bt0sraqOTPLUUfj8JL+R5Lndff46p9rjd33r7q6qlyX5X1Ph61TVrbr7AzOGjAuVfpL1Faudm+SC7Nz8/03dfd+5Eobt890ZsYttYr7NjN2d/GWSX8+Fv8sHZihiHd9IePckR41iL+ju8Q6+AAAAAMCe4WVJnj+5SXwnVbWEdDbsCUkOnTr+9yRPWm1Ad3+vqh6e5JMZvhNNkqdW1Qu6++ytSRMAAGA5FlBPmCSpqmsnue2MUx9Y0L8jj8/OTawX5SVJHj91fN+qOibJTadi5yd5+RasvWFVdc8kdx6Fz0xybHe/c46pNlwTuY21iPtaDehjk1x3FPuPJA/p7tPmmGdRz3XRNXSz6vQ2Sp0qAAAALMl+a18CAAAAML9JEcixSb4zOnXHqnrwGsO/OTo+vKoOX1hyW+PeSS46ij2lu581R0FMklxqgTkt00uTjJsVHTe+qKoOTXL/Ufhvu/uMtRbo7guSnDMKX3X9KbIIk90jWZ/x+zVJDtvEfJsZu9uY7ML7tlH4sVU1/v768aPjczN81gAAAAAAe6DuPntWU7Q90L1Gx8/u7h+vNai7P5fkTVOhSyS53yITAwAA2F1ssp5whxMWm9UuHlpV4xrATevuDyf5+FTokCQnjy57e3d/bdFrb9JDR8c/SXKvOZuiJZuviXxptrgWcWJfqgEdv7bfTXLnOZuiJYt7rouuoZtVp7ch6lQBAABgeTRGAwAAALZMd385O+/Ut8MfrtFM6eszYjdaTFZb5udGx2cnee4G5rnaAnJZuu7+QpJTR+GHVNUho9iDsuuOfS+ZY6nxe+VaVXXwHOP3ZbNuytpIk7NLbzaRfciZM2LX3sR819nE2N3N+PPyKknuvuOgqnY6nnhtd39rqxMDAAAAAPY+VXVoVd21qh5dVU+uqidV1SOr6uYzNm1YbZ6LJ2JdggYAACAASURBVLnJKDzPDeKnjI4fMMdYAACAPcom6glTVQdkaKy2lS6Rrft32bgm7vKj4xO3aN3NGNdEntLdH9rAPJuqidzGWsR9ogZ00kDu1qPwSd39xQ1Mt6jneq1NjJ1VfzerTm8z1KkCAADAEmiMBgAAAGy15yX5/Ch2tay+e+Os4plxQ5zdzZVGxx/s7vM2MM+44GRPNi4qOizJfUex40bHZyV5yxxrjN8rF0ly9Bzj92Xj3VeTobhvXtfYbCL7kI/MiN1sIxNNij1394aR8/h/ST49ij1+6r8fm12/z37elmYEAAAAAOx1Js3Q/i7D3yNOyXDj+Z8keUaSk5J8OMnXq+qPq+qS65jy8tn5u8vvz3kj8cdHx3dyYy0AALCX20g9YZL8fJLLjmJfS/Ivm3yMrZXHRr08yUr1hGcm+ZstWndDquqgJEeOwv+wgXn2T3LLBaS0HbWI+0oN6Pi7jGRjr+2RWVxjtA3V0K0w9rtJPrOJ+WZRpwoAAABLoDEaAAAAsKUmhSFPn3Hqt1e5seNdM2IPnjQC2l0dMTo+a94JquqIJMdscP3zR8f7b3CeRXp9dm2+9egd/1FVV09yu9H5V3T3j+ZYY9Z75RFzjN+XnTMjtpFCpTtsNpF9RXefmeQLo/C9q2oj39PeNbvucLrVtuxzprs7yV+OwnevqqtMdgQeF51+rLs/sKj1AQAAAIC9W1UdUVXvytAM7ZgkB65y+RFJnpLks1V1+zWmvtToeNZ376sZX39gkuvMOQcAAMAeY4P1hMnshmWP7u6bbOaRXRse3b6qFr5RZHd/M8nbVjj98u4e1+Us27geMtlATWSSeyQ5dJO5JNtTi7jsGtDtsqjX9sGbTWTKdavq2vMOqqprJbn+KPzh7r5gMWn9F3WqAAAAsAQaowEAAADb4eTsugPbFZP84qyLu/uMJB8Zha+aXXf02518f3Q8q3hkLb+S5JANrv/d0fEiiok2pbt/kOQ1o/CdqmrHzorHzRg23tlxLe9Mcu4o9tCNFMnsgz49IzbX7pyTHT2PX0w6+4x3jI4vn+SeG5hn5ufnFtvqz5mXJvne1PF+SR6bYXfX8Y6/z1vw2gAAAADAXmpyQ/sHk9x5dOq7SU7N8LeM1yU5Lcn0jbOXTvKuqrrrKtOfNzpe7Sb+WWZdf7055wAAANjTzFVPWFU/leTuo/DXM7tZ0UZyGduqeqgT54wv07geMtlYTeSvbTaRZNtqEZddA7pdNv3aTja6fMJi0vkvj9nAmFmfGeP6vEVQpwoAAABLoDEaAAAAsOW6+ydJfm/GqadW1UpFIH8wI/aMyQ5vu6Ovjo5vU1UXW+/gqrp+kqduYv2zR8eHV9UlNzHfooyLi/ZLcmxV7Zfk2NG5f+nuj84z+WQnzReOwvsneWVVXWSuTPcx3X1mki+Pwg+aNDtbr19JcrXFZbVPeP6M2DOq6qD1TlBVd05yn8WltG7jz5mFvvbd/Z0kLx+FT8iuRXTfSfLKRa4NAAAAAOydquqiSd6Ynb/P/HSSByS5ZHcf090P6e4HdvctMtyI/6Kpaw9KcnJVXWGFJb41Or7kKn/7muWnZsTcVAsAAOzVNlBPeFyGmrBpr5rMs1mvTnL+KPaoOWuo1uvtGf4dOP24bHd/cgvW2pTu/naSH4zCd5lnjqp6TJKjF5VTtrgWMcuvAd0u4+eZzPnaJvnfSa65gFymPWHS3H5dJteO68p+lGFzzoVSpwoAAADLoTEaAAAAsF1emeRTo9jlkzxu1sXd/cYkp43ChyV5x6SAZG5VdfGq+o2qesRGxq/hH0bHh2Yo/lhTVR2V5C1JDt7E+h+fEbvHJuZbiO5+f3Z93Y9LcqckVx7FN7rz5R9l110MfzrJGzfaHK6qrlJVz6mqG2wwpz3FeHfEKyd54noGVtWdkvyfhWe0l+vujyf5+1H4WkleMinSW1VVXTO7Ng/bLuPPmRtM7bq6KM8dHV82yc+OYid39/cWvC4AAAAAsHf60yTT3/W/I8lNu/v1s26g7+6vdvdjkzxpKnxEZt+wnwwbkEx/X7l/kpvPkd+tZ8QOm2M8AADAnmqeesJHz4idvIgkuvsbSd45I4+7L2L+0Vrd3V8bPc5c9DoL9L7R8dFVta6axKq6W5L/u8hktqEWcdk1oNti8p77zCj88Kq68XrGV9WjszUN4A5O8ob11HxOrnlDdv15v3LSxGwrqFMFAACAbaYxGgAAALAtuvuCJL8749RvVtVFVxj20CRnjWJXS/LBqvrtqlrzxpCq2q+qjqmq5yf5zwyNnC43R+rr9fokF4xiv1FVv1dVB6yS30OTvD/D80qS72xw/Q/MWP+ZVXWfqjpwg3MuyninxmskefYodl6SV2xk8u7+WpJHJenRqbsm+UhVPWK112CHqrpYVT24qt6Q5HNJ/luSWTuQ7k1ePCP2J1X1S1VVswZU1SFV9ZQMN48dnOTcrUxwL/XL2fXn9rAkb6mqK6w0qKp+Icl7c+Fn2A+3Jr0V/dPoeL8kf11V89zkt6rJDrjjxnFjz1/UegAAAADA3quqLp/kMVOhLyZ5QHev+d1qd/9ZkrdPhR5eVbv8fam7z0/yj6PwI9eZXyWZtZnPxdczHgAAYE+23nrCqrpDkmuOrvlUd39kgenMarJ2wgLn31O9dkbsNVX1gJUGTGrL/leSNye5yCS80ZrIWbayFnHZNaDbafzaHpjklKo6eqUBVXV4VT07yV/lwvuSF/Vcd9TS3TDJ+6rqlqvkcYsMTexuODr1jSRPWVA+u1CnCgAAANtvzX9oAwAAACzQa5P8TpLrT8Uum6FJ0DPGF3f356rqQRluPDlo6tTFkvx+kqdW1fsy3HDy1STnJLloksOTXCnDbmw/PTneUt39mao6Ocmxo1O/k+S4qnpdkn9N8r0kl0py7ST3TnL1qWt/kKEw43kbWP+rVXVKkukdGS+b5E1JzquqL2XYrW5clPGY7j5t3vXm9PIkf5hk/6nYdUfXvLW7v7XRBbr79ZOCqt8bnbrqZP1nVNWpSU7LUADz/SSXyPDeuEaSmye5UfaAHRsXqbs/VFVvTnKfqfD+GRpP/UpVvTFD8c15SS6T5GYZ3mNHTl3/xGhUNZfu/lRV/XaSZ45O3TPJ56rqHRmKt76aoUDwahleo+lirjOS/HWGn/92eXOGZpWXmor9TJIPV9V3k3wlMxrldfdN5lznL5Ics8K593X3x+ecDwAAAADYNz0uO/996Xe7+wdzjH9mLvy7y0FJ7pbkpTOuOznDTbA7PLqqntfdH1tj/idk15v7E43RAACAfcd66glnNSh7+YLzeHOGBk+XmIrds6qO7O4zF7zWnuSkJE/NzjWOh2bYSPGfk7w1Q23ZjzPUk90syc8nufTU9Z+cXLeohlVbVou47BrQbfbnGRpyTdfWXi7J31fVe5O8M0OD+Qsm8dskuXuG13+Hd2eoYRv/vDbi/yT5tcn810vygUlt8DuSfGlyzZUyfDdzuyTjTV87yeO7+xsLyGVF6lQBAABge2mMBgAAAGyb7r6gqn43u+429+TJDSLfnzHm3VV1uySvy1DYMO1iGW40uet43JL89yS3THKdUfyKWbt50Y+TPDBDYcxG/UaSO2T4uUw7KDsX30w7dIX4wkw1bbvnKpeduIB1fr+qvpKhqdJ4B73LJnnw5MHOHpfkFkkuP4rfMLvuqjj2p939gqrSGG1O3f1nVXVEhuLBaYckue/ksZLvJ/mFDIWE26a7z62q/5HkZTNOXzxDsd8ivClDQdv4Mz/Z/YsGAQAAAIDdx89N/fdPMvytaR7vS3J+Lqy1vV1mN0Z7dZKn5cK/xRyY5K1Vdbfu/sSsiavqwZmxadDEBXPmCQAAsEdaq54wQ/Or+4+HJXnFgvP4YVW9IclxU+EDMzR8Wunfbnu97v5xVT0ww7+PLzo6vWPT2tWckaFm8LgF5rTVtYjLrgHdFt19VlU9PMlbsnOTuSS5/eSxmn/L8Fz/fEEpfSHJw5O8YZJPZfge5nbrGNtJHtfdr19QLqsvpk4VAAAAts1+y04AAAAA2Ofs2DVv2mWSPGGlAd39oQxFNC/JUDyyUZ3k1CT/sIk5Vp68+9tJ7pzkA3MO/UqSO3f32ze5/icz3OTzuc3Ms0VWKzb6aoYdBjetu09Mcuskf7fJqc7NcCPTf246qd1cd38tyc9mvvfNeUl+vbufvDVZ7Ru6+7eS/I/MVwz35STHdPdpW5PV6rr7pCSPSfLdLVzjJ0leMOPUN5JsSwEbAAAAALBnq6pDktxsKvSlJEdU1VHrfWTYUOScqTlmbkLT3ednuHn3vKnwFZP8c1X9ZVXdtaquU1U3rKoHV9XbMvwN4sDJtV8eTXlOAAAA9h2r1RM+LLs25Hpfd5++BXmcPCN2whass0fp7o9m2Lj2q3MO/UCSW3X3Fxee1BbWIi67BnQ7TXJ9YJLvzDn0bUlu191nLzift2TYLHSe70XOSvLw7n7hInNZizpVAAAA2B4aowEAAADbqrs7ydNmnPr1qrr4KuO+2d3HJ7lGhl0YP5Gh0dlavpvkbzI0H7pqdx/T3R+cO/F16u4zMuyW99+SfH6Ny09P8j+TXKe737ug9d+fYbfCeyT5ywy7NX4lyfeSXLCINTborUm+ucK5kyaNkBaiuz/W3XdKcqskJ2XXG4pW8tUMBW6PSnK57n5od5+5qLx2Z939hSQ3SvJbWb2I7bwkr0ly0+5+5nbktrfr7mcluX6Sl2X1IrMzk/x+kut394e3I7eVdPdfJblCkkcneXmSj2bI74cLXGZW47cTu/tHC1wDAAAAANh7XS4XNh5LkqOSfGEDjyOm5rjUSotN/vb0iAw3tO5wUJLHJzklyb9nuNH/1UnuOXXNm5K8dDSdxmgAAMA+Y7V6wiS/NCM+q4HZIvx9kjNGsetU1W22aL09Rne/L8mNk/yfrP1v1tMy1N/dtrvXW7c3ry2tRVx2Deh26u43ZqgbfEFWr/26IMOmxPfp7nt195Z8d9Hdb0tyvSR/kdVr6b6R5LkZfu6v2opc1qJOFQAAALZeDd8dAgAAAOx5quoySW6WYYfISyc5NMn3MzRD+3KSTyU5vZf4BUhVXSvJLSc5XmyS35eT/Gt3f3pZee1rquoaGQpmLj15HJShWdy3M9zY9CnFJReqqhtlKGY7IsOuq99O8ukk7+/u7y0zt71ZVR2c5GeTXDnDTXsXJPl6hpvlPtbdy2xuuK2q6pVJHjoV6iTX6O61ig0BAAAAgL1AVR2d4ab0HU7v7qPmGH+zzN6AYTO+2N1XXWPdm2fYuOYWa8z14yR/mOQPJtc/ZurcE7v72ZtJFAAAALZCVe2f5OYZNoI8IskBGeo1v5DktO7+2hLT2xL7Sg3opHbtZ5JcO0ON5X4ZGuH9R5IPd/dZ25zPgRm+X7n+JJ8LMjQV+0KGOsaFbca7KOpUAQAAYLE0RgMAAAAAYLcxaXr5pSQHT4VP6e67LyklAAAAAGCbLaAx2q2T/NOC01p3DlX1c0nuneR2SS6f5PAkZyU5PcnfJHl5d39hcu37ktx2avjPdvc/LjBvAAAAAAAAAIA9ygHLTgAAAAAAAKb8YnZuipYkf7GMRAAAAACAPdY3R8d/29133a7Fu/tdSd611nVVdWCSm02Fzk/yz1uVFwAAAAAAAADAnmC/ZScAAAAAAABJUlUXS/Kro/Dnkrx9CekAAAAAAHuur4+Or7WULNZ22ySHTB1/sLt/uKxkAAAAAAAAAAB2BxqjAQAAAACwu3h6kiNHsWd19wXLSAYAAAAA2DN193eSfGIqdFRVXXNZ+azihNHxi5eSBQAAAAAAAADAbkRjNAAAAAAAlqqqLlVVz0jya6NTpyd50RJSAgAAAAD2fO8cHf/iUrJYQVVdPckDpkLnJHnNktIBAAAAAAAAANhtaIwGAAAAAMC2qqoXV9XHJo8vJ/lmkifNuPQ3uvu8bU4PAAAAANg7PC/J+VPHT6iq6y8rmWlVtX+S5yc5ZCr8+939wyWlBAAAAAAAAACw29AYDQAAAACA7XaNJDeePK6QpGZcc1J3//W2ZgUAAAAA7DW6+3NJXjIVOiTJ26vqevPMU1UHV9Vxa1xzwBzzHZjk5UnuPBX+UJJnzZMXAAAAAAAAAMDeSmM0AAAAAAB2NycnecyykwAAAAAAtlZVXbGqjho/klxudOkBs66bPI5YZYlfS/KvU8dXTnJaVf1BVV1plbwuUlV3rqr/m+RL2bnB2ix3q6rTquqXV5p30mDtvpN8Hjp16uwkx3b3T9ZYAwAAAAAAAABgn1DdvewcAAAAAADYh1TVqUnuMBX6YZIzkrw/yYndfeoS0gIAAAAAtllVfTHJVTY5zcu6+7hV1rhSkr9Ncp0Zpz+f5FNJzklyQJLDkhyV5BpJ9p++sLtrlTV+Pslbp0JfTvLJJGclOTDJZZPcNMnFRkO/leSe3f3BleYGAAAAAAAAANjXHLDsBAAAAAAA2Ld099HLzgEAAAAA2Dd095eq6hZJnp/k4aPTV5s81nLOnMtecfJYzT8mOba7Pz/n3AAAAAAAAAAAe7X9lp0AAAAAAAAAAAAAAGyV7v5edz8iyY2TnJzk7HUM+0qSVyR5YJLLrXHtJ5K8LMnX1kolyXsnc95OUzQAAAAAAAAAgF1Vdy87BwAAAAAAAAAAAADYFlW1X5IbJblekkslOTzJuUm+k+SLSf69u7+0wbmPSnLDJFdKcliGTYy/k+Q/knywu7+1uewBAAAAAAAAAPZuGqMBAAAAAAAAAAAAAAAAAAAAAAAAS7ffshMAAAAAAAAAAAAAAAAAAAAAAAAA0BgNAAAAAAAAAAAAAAAAAAAAAAAAWDqN0QAAAAAAAAAAAAAAAAAAAAAAAICl0xgNAAAAAAAAAAAAAAAAAAAAAAAAWDqN0QAAAAAAAAAAAAAAAAAAAAAAAICl0xgNAAAAAAAAAAAAAAAAAAAAAAAAWDqN0QAAAAAAAAAAAAAAAPj/7N15fFT1vf/x93cykw0SCJCwIzsoihtUQVzAurfWqkWtrbWLWpeuV722FtFqtdaqvfdqa7Uu1K3WqiAu2F8VFMUFQZQWUVH2NZAEsicz8/39cSBkJufMQiaZYfJ6Ph55JN/v+S6fcxLwjMx5BwAAAAAAAAAAAEg7gtEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApJ0/3QUA6WaM6SHp+FZd6yU1pakcAAAAAAAAAAAAAACA9siVNLhV+3Vr7c50FQMAAO/RAwAAAAAAAAAAAAAAWYL353USgtEA5w1Xc9JdBAAAAAAAAAAAAAAAQAf4mqTn010EAKBL4z16AAAAAAAAAAAAAAAgG/H+vA7iS3cBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAwGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIC086e7ACADrG/dmD17tkaOHJmuWgAAAAAAAAAAAAAAAPbZqlWrdNZZZ7XuWu81FgCATsJ79AAAAAAAAAAAAAAAwH6P9+d1HoLRAKmpdWPkyJEaN25cumoBAAAAAAAAAAAAAABIpab4QwAA6FC8Rw8AAAAAAAAAAAAAAGQj3p/XQXzpLgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACEYDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkHYEowEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIO4LRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKQdwWgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0o5gNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABpRzAaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgLQjGA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA2hGMBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACDtCEYDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkHYEowEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIO4LRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKQdwWgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0o5gNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABp5093AUBXZK1VOByWtTbdpQBAG8YY+Xw+GWPSXQoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACALoRgNKATWGvV0NCg6upqVVdXq6mpKd0lAUBcubm5KioqUlFRkfLz8wlKAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANChCEYDOlhdXZ02bdqk5ubmdJcCAElpamrSjh07tGPHDgUCAQ0YMECFhYXpLgsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAlvKluwAgm9XV1WndunWEogHY7zU3N2vdunWqq6tLdykAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAshTBaEAH2ROKZq1NdykAkBLWWsLRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHQYf7oLALKRtVabNm1qE4oWCARUXFys7t27KxAIyBiTpgoBwJu1Vs3NzaqpqdGuXbvU3NwccWzTpk0aMWIEf4cBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASCmC0YAO0NDQEBEkJElFRUUaOHAgQUIA9guBQECFhYUqLS3Vxo0bVV1d3XKsublZjY2Nys/PT2OFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALKNL90FANmodYCQ5AQMEYoGYH9kjNHAgQMVCAQi+nft2pWmigAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkK4LRgA4QHYxWXFxMKBqA/ZYxRsXFxRF90X/PAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEB7EYwGpJi1Vk1NTRF93bt3T1M1AJAa0X+PNTU1yVqbpmoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZCOC0YAUC4fDbfoCgUAaKgGA1PH7/W363P6+AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB9RTAakGLW2jZ9xpg0VAIAqePztb1lcPv7DgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2FcFoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANKOYDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaUcwGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIC0IxgNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQNoRjAYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg7QhGAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJB2/nQXgM5hjAlIOkbSEEn9JdVI2iTpA2vtmhTvNUzSYZIGSOouabOktZIWWWubU7kXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsgPBaGlijBkuaaKkCbs/HyGpqNWQtdbaoSnYp1TSTZLOk9TLY8wiSXdZa59p517nSvq5pEkeQyqMMU9JusFau709ewEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACC7EIzWiYwxJ0j6hZwwNNeQshTvd5qkRySVxRk6WdJkY8zjki6z1tYmuU93SQ9IOj/O0F6SLpd0tjHmO9baV5LZBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANnLl+4CupjDJJ2szglFO0HSbEWGollJSyQ9Len/SdoeNe1CSU8aYxL+uTDG5Eh6Sm1D0col/XP3Xkt3771HX0lzjDFTEt0HyGZDhw6VMablY8GCBekuCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACATkcwWmZolPR5qhYzxgyS9Kyk3Fbdb0kaZ62dYK2dbq09WdIgST+R1Nxq3Fcl3ZLEdr+VdHqrdrOkH0kaZK09ZfdeR0o6WNLbrcblSZptjOmfxF4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIUgSjdb5mScsk/UXSZZKOlFQk6Qcp3OMmSSWt2oskfdla+3HrQdbaRmvt/0qaHjX/58aYA+JtYowZLidYrbVvWGvvsdY2Re21QtKJigxH6y1pZrx9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkP0IRutcsyQVW2sPt9ZeYq2931q71FrbnKoNjDGjJH2nVVeTpIuttQ1ec6y1s3fXtkeeEgssmykp0Kr9iLV2Tox96iVdvLumPb6/O2ANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXRjBaJ3IWlsZK6AsRb4pKadV+1lr7WcJzLs9qj3dGJPvNdgYUyDp3DhrtGGt/VTS7FZdfjk1AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoAsjGC37fD2q/XAik6y1H0t6t1VXN0knx5hyiqTCVu23rbUrE6qwbU1nJzgPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWYpgtCxijOkn6dBWXUFJbyWxxIKo9mkxxp4aZ24sC+XUtsfhxpi+ScwHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAlvGnuwCk1MFR7Y+stbVJzF8U1R6XxF5vJ7qJtbbWGLNc0uFRe21NdA0AybPWaunSpVq5cqW2bdumxsZGlZaWauDAgZoyZYq6d++e7hL32fr167V48WJt2LBB9fX16tOnjw455BBNmDBBPl/7MkC3bdumhQsXatOmTaqvr9eAAQM0fPhwHX300e1e282KFSu0fPlylZeXa9euXerVq5f69++vKVOmqHfv3infDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyBcFo01ZDSQAAIABJREFU2eWgqPaqJOd/Hme91g5MwV6tg9EOkvRakmsASMD27dt166236rHHHlN5ebnrmNzcXE2bNk033nijjjrqqITWvfjiizVr1qyW9urVqzV06NCE5i5YsEBTp05tac+cOVM33nij53hjTMvXxx9/vBYsWCBJWrRokWbOnKnXXntN4XC4zby+ffvq+uuv15VXXpl0iNkHH3yga665RvPnz3dde9CgQbrssst03XXXye/368Ybb9RNN93Ucnz+/Pk64YQTEtprx44duuOOO/TYY49p48aNrmN8Pp8mT56smTNn6stf/nJS5wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+wOC0bLLyKj2uiTnr41q9zbGlFhrK1t3GmN6SerVzr2ix49Kcj6ABMyePVsXXXSRqqurY45ramrSvHnzNG/ePF166aW699575fdn9n8ibr31Vt1www0KhUKeY7Zu3aof//jHmj9/vv72t78pNzc3obXvuusuXXvttTHX3rBhg2bMmKGXX35Zzz77bNL17/HXv/5VP/rRj7Rr166Y48LhsN58802ddNJJ+ta3vqUHH3ww4fMBAAAAkN3qQ3Va3fCJmsKNSc3rE+inAXlD5DOxg6RDNqT1DZ+rKljRnjKzRq4vT8PyR6sgp1vK164J7dLa+s/UbJvbHMvz5WtYwRjl+wpSvm+qNIebtbbhM5UEeqt3oG+6ywEAANgv1IR2aUvjevXLG6zuOcXpLicjVTSXa0PjaoVt219kU5TTQwcUjJTfBFK+785gpbY2bdSQ/BHtug9vCNdrTf2nagjXp7C6jtM3d6D65Q6K+MVFbpz7/09VE4r975CFOd01uvDgVJYIAACAfRUOSrtWSsFaqfdEKc6/DwAAAAAAAAAAAAAAAKRLZqfeIFk9o9rbkplsra0xxjRIym/V3UNSZdTQ6H3qrLW1yezlUluPJOcDiOOhhx7SJZdconA48iGRESNG6KCDDlJhYaHWrVun9957LyIA7P7779e6des0d+7cjA1H+/3vf6/rr7++pT1mzBiNGTNG3bp10+bNm/XOO++ooaGh5fhzzz2nGTNm6Pbbb4+79p133qmrr766Tf9BBx2kUaNGKS8vT+vWrdPixYsVCoW0aNEiTZ8+Xccdd1zS53HDDTfo5ptvjugzxmjMmDEaNWqUioqKVFlZqffff1/l5eUtYx577DFt3rxZ8+bNy9jvEQAAAIDO8XrlS3p6218UVtuAgEQMyB2iqwbfqJ7+6Ax8x+bG9fq/DTeqKrijHVVmH598ml52iY4rOS0l61lr9fKOv+vFHX+TlY2xb44u7HeFJvU4MSX7ptKndct138bb1BCukySN7/4lfb//1Qr4CPUGAADw8tL2pzSv4mkFbVBGRueWfV9TS76S7rIyRsgG9fDmu7W0+q2Y47r5inTFoF9pWMGYlOwbtmE9te1+LayaJ0nKkV8X9f+xJhYn/29B7+5coMe23KOQgimprbMckD9KVw6a4RnW90ndcv15460Jhb0NzR+law+4I9UlAgAAIBnBOum9S6U1j7sfP/Q30kHXEZQGAAAAAAAAAAAAAAAyBmkq2aV7VHtffuV0vSKD0Yo6cJ/W3PZJmjGmTFJpktNGpGLvVLHBoFS+Id1lZL/SQTJZHCi1bNkyXX755RGhaIcddpjuvfdeTZ48OWJseXm5ZsyYoT//+c8tffPmzdMNN9ygW2+9tdNqTtTy5cu1cOFCSdJZZ52l2267TWPHjo0YU1lZqZ///Od65JFHWvruvPNOXX755Ro6dKjn2kuWLNF1110X0XfCCSfonnvu0bhx4yL6y8vLdcMNN+i+++7TG2+8oRUrViR1HrNmzYoIRfP5fLryyit19dVXa8iQIRFjrbWaM2eOfvKTn2jdunWSpFdffVUzZszQbbfdltS+AAAAALLHuoZVemrb/e1aY1PTOj26+X/1o8E3tjlmrdWfN95GKJqLsML627Y/a1jBGA3OH97u9VbUfaAXdjyZwL4hPbrl/zQ0f7T65w1u976p0hRu1J82/EaNdm9I+Uc17+nlHU/rzNIL01gZAABA5lpeszjiHtDK6ultf9HQ/FEpC/ja3/2z4tm4oWiSVBuu1h833qLfjnhYOab9//739s5XW0LRJCmkoB7ZfLeG5Y9Rn9y+Ca+zrWmTZm35Q7vrSYe1DZ/pqa336/sD2v4yocZwg+6Luv8HAABABmuqlF47Wap433vMh9dLDdulI+/qvLoAAAAAAAAAAAAAAABiyN5UoK4pOrBsX96JXC+pJMaaqdwn1pr76gpJM1O0VnqUb5CdzsMOHc38/ROp/9B0l9Fhvv/976upqamlPWXKFL3yyisqLCxsM7a0tFT33XefRo4cqWuuuaal//bbb9cFF1ygQw45pFNqTlRFRYUk6dprr9Xtt9/uOqakpEQPP/ywKisrNWfOHElSKBTSgw8+GBFGFu3KK69UMBhsaZ999tl66qmn5HcJ0SstLdWf/vQnDR8+XNdee622b9+e8DmsXbtWl19+eUs7Ly9Ps2fP1qmnnuo63hijs846S5MnT9YxxxyjVatWSZLuuOMOXXrppRo2bFjCewMAAADIHv+uWZKSdT6pW66GcL3yfQUR/duaN2lb86aU7JGtPqp5LyXBaB9Vv5fU+OU1izMqGO2TuuWuoQgf1bxLMBoAAICHl3c87dq/rOYdgtF2S+Y1T22oWp/Xr9TowoPbve/y2sVt+qysltcu1tTcryS+Tk3bdfYn/655XyEbUo7Jiej/1OP+HwAAABnIWmnRRbFD0fZY9Wdp/K+lQKreygkAAAAAAAAAAAAAALDvfOkuAB3KZtkcAAmYP3++li5d2tIuLi7WU0895RqK1trVV1+tr3xl78Mc4XBYd999d4fV2R5TpkzRbbfdFnfcb37zm4j2a6+95jl28eLFevfdd1va/fv310MPPeQaitbaNddco5NPPjluLa3dcccdqq/fmw959913e4aitVZWVqYnnniipR0KhTL2ewQAAACg4+0MVqZknbBCqgnuatNf1bwjJetns53BipSsUxVM7lrvDKVm31TZ6VF/qn5GAQAAss26hlVa0/Cp67Gq5sy610un6lBVUuNTdn/u8Voo2fvbZO/zM02jbVBjOPr3nUlVKbrOAAAA6ARrnpA2vZDY2FCdtHNFx9YDAAAAAAAAAAAAAACQIILRsktNVLtgH9aInhO9ZmfuA2AfzJo1K6J95ZVXasCAAQnN/e1vfxvRfvLJJ9XY2Jiy2lLl+uuvl88X/z9h48aN09ChQ1vay5Yt8xz75JNPRrSvuuoq9ejRI6F6ZsyYkdA4SaqtrdVDDz3U0h4+fLguu+yyhOdPnDhRxx57bEv7+eefT3guAAAAgOwStM0pW6vRtn3YvcHlAXhEStU1arQNadk3VRrD7vW7/VwBAABAer3qZc9j3EPtlexv2vK6L02W1/25W0hYLJl2374v3M4h2esAAACANKnfKi35cXJzPr6jbZ8NSxVLndA0G05NbQAAAAAAAAAAAAAAAHH4010AUopgNOmPkp5Ocs4ISXNStD+Qdm+++WZE+1vf+lbCc8eNG6cjjjhCS5culSQ1NDRoyZIlmjx5ckprbI+CggJNmzYt4fEHHnig1qxZI0mqq6tTTU2Nunfv3mbcokWLItrTp09PeI8pU6ZowIAB2rRpU9yxb775purr9z4wcu655yYU8tba1KlTtXDhQknS2rVrtW7dOg0ZMiSpNQAAAADs/7yC0XLkV64vt02/ldQQrnOd0+ASIBArrKvAV5hYkVmi2TYpaINt+lMWvJDkOqnaN1W86gnaoIK2WX4T6OSKAAAAMldtqFrv71roeTzT7vXSK7lotFQFdnkFmqUqGM3rNVu6WNkY59z259FrrE8+5fny2/S79QEAAKAT7NqHILP1/5Cq/i31PHj3Gp9Kb3xN2rXSaZceKx3zpFQ4MLW1AgAAAAAAAAAAAAAARCEYLbvsjGqXJjPZGNNdbQPLqhLYp9AY081aW5vEdmUJ7JM0a+02SduSmWOMScXWQEaorKzU559/3tLu2bOnDjzwwKTWmDx5ckswmiQtXrw4o4LRRowYodzcxB8WKSkpiWjv3LnTNRjtww8/bPm6Z8+eGjlyZFJ1TZgwQc8//3zccdHBdQMGDGgJbktU9Pl/8cUXBKMBAAAAXZBbUJckTe75ZV3Q94dt+q21+tGn5yistg9CuT3g7/Wwe2mgv24a/qckq92/PV/+uOZVtM3i97pGyfIKWPAbf4cGsqVKrOvQGG6QP4dgNAAAgD3e3vmqmm2T5/FUhXtlA2uTDUbr2ODiZNf3CqY+oeR0nVP2vaTr6igN4Xr9/LMLXI+5/Tx6XYcDux2mKwfdkNLaAAAA0A59p0pfWSEtvkLaMDvxeS8d4nzuNkyqXR15rHyhNHuQNPa/pG5DpZ6HSH0mSbLSJ3+Qts6XcntLPcdJRWMkhSVfrlT+llS/WSo5TBp6oVTQz1nPWon3bwIAAAAAAAAAAAAAABcEo2WXz6LaByQ5P3p8hbW2MnqQtXaHMaZSUuu0oSGSPm7HXtG1A9gH5eXlEe1Ro0YlHf43duzYiPa2bUllDXa46KCzeAKByIevm5ub24ypra1VQ8Pehzj2JWQs0Tnr16+PaP/0pz/VT3/606T3a62ioqJd8wEAAADsn4K27esbSQoY9xAqY4zyfAWqD7fNtk/mYfd8X3SufvbzOudGm5rgBa9gseKcElUEy9v0Z1pYRqyAiMZwg7rlFHViNQAAAJkrbMNaWDUv5phMC8Hdn6QiuNham8JgNPd68jLsNVWuyZORkVXbIDq3c/Z6PZJp5wUAAABJBf2lY5+V1j0tvX+V1FguHTxTskHpP7+JPTc6FK21lXfGnrvWo3/NY9IHV7sf8+VJg8+RAt2ljXOdIDVJ6n+qNPhsKbdE6neSlNvD6d/+rrTxBcnkSMMvds5110opv0wyfim/VKr8SFr9V0nWCWTrdUTsuqPVbZCaq6XiMZLxeY+zVqr+VNr8T8mGnPPoNji5vQAAAAAAAAAAAAAAQASC0bJLdDDZyCTnD49qr4iz1+SovZIJRoveK5m52a10kMzfP0l3FdmvdFC6K+gQlZWRWYY9evRIeo3oOZkWuuXzxXiT2T6qqqqKaBcVJf/AdnFxcULjduzYkfTa8VRXV6d8TQAAAACZzysYLcd4/y+/PF++RzBaMg+75ydYYfbwOudUBZR5BSz08PfyCEbLrLCMRut9HTKtVgAAgHT6uPYDlTdviTmG+6e93IK6YknFtWu2TbIKux5LNnjNa3yBrzDpujqSz/iUa/Jcg5/dzsHrOnfF14oAAAD7BWOkA6ZLfadJK38vjfultGtF/GC0zhZulNY+0bZ/8zznI5Z/3xR//ZV3OZ8Hny2FGpwws8IB0ohLpD5HSTYsrX1KWnadVLfOfY0BX5E2vRB/r6U/k3IKpeHfkXIKpKYKKdBDGvZtqaFcqt8obX/bOdZ9pFQ2xelv3imVHSfteN/5uvQYqfuw+PsBAAAAAAAAAAAAAJCFCEbLLv+Oao83xhRaa+sSnH9MnPWij7UORpskaW4imxhjukkan8ReXYrx+6X+Q9NdBvZT1kY+IGKMafeaqVgj0+Xl5UW0m5qakl4j0Tn7snY80d93AAAAAF2DVzCa3wQ85+T5Clz7kwtGc18jmyVz3ZJlrfVcp9hf4tqfbCBDR4t1HTKtVgAAgHR6verluGMIRtvLKxjNJ5/CLuFlsQJ7ExUr/NgtOCwWr3vhTHxNlecrUGPI5XWhyzl7XYc8k3nnBQAAgFby+0iH/db5uuQwaeCZ0sbn01tTOqx/NrL9xcPS5CekiqXSx7+LPTeRULQ9QnXSZ3+K7PvkfxKfv0fJ4dLYn0sDv+q0a1ZJ9ZulDXOkHYudALXaNXvH9zhIKj1WChRLvlyp21Cp71SpaETyewMAAAAAAAAAAAAAkEYEo2URa+1mY8xH2hs65pc0RdI/E1zihKh2rHfmz5N0aYy5sRyryJ+9D6y1W5OYD8BDr169Ito7d+5Meo3oOSUl7g9ht0coFEr5mu0RfY6VlZVJr1FRUZHQuD59+kS0Fy1apEmTJiW9HwAAAAAEbdC1P1YwWr7HA/huD+x7P8Sfn0B12cXrnFMR+hW0QYXl/jq52N/TtT/TwjJi1RMrWAIAAKAr2d60Vf+pXRJ3XCrCvbJdnq9A9eHaNv2puE9O5b1tQ9j995fl+wqTWqcz5PsKtCvU9t/Hknmt6PV6EwAAABlq8qPS0z3SXUX62bD01vnprsJb5QfS299OfPzOFc6Hm27DpCPulAZ/PTW1AQAAAAAAAAAAAADQgXzpLgAp91xU+7uJTDLGjJV0VKuuWsUOVHtFUut3PE/avUYiLo5qR9cMYB+VlpZGtD/99NOk1/jkk08i2mVlZa7j/P7IbM1g0P2BfDf7EjzWkXJycjRw4MCW9hdffKG6OveHVbwsX748oXF9+/aNaO/L9wgAAAAAJClom137YwWjeQV8uT387xUI0BUfdvc658Zwg6y17Vo7VvBFjxz3sPJMCxuLFRCXaSFuAAAA6fJG1cuyin/vGLRBz3v9rsbreiUT+JysWGs0JHlv63Xfnp+BYdOpeK3YFUO0AQAA9muBYumbVjr2WalodLqrQWeoXS0tPFvaMDfdlQAAAAAAAAAAAAAAEBfBaNnncUmhVu2zjTGjEpj331Htv1trPd/Zba2tk/SPOGu0YYwZLan1r5sLSnoigfoAJKCkpEQjRoxoaVdVVenjjz9Oao1FixZFtCdOnOg6rri4OKJdVVWV8B7/+c9/kqqpMxx99NEtX4fDYb3++usJz62oqNCHH36Y0NjJkydHtP/5z1gZlAAAAADgLWjdA6r9xu/aLyUXIOAVCNAVH3b3OmersJptU7vWjhVy1sPfy32ObVDYhtu1byrFCj9LRTgFAADA/q4p3Ki3d76a8HjCZXfzCCGOFVzcXrHWSCaguDnc7PmaLd9XmHRdHc07GK3tOXtdh674WhEAACArDP669NVPpNOWSQPPlHwByd8t3VWhI33yh3RXAAAAAAAAAAAAAABAXN5PSWK/ZK39zBgzS9L3dnflSnrEGHOiV9CZMeZrki5u1dUk6aYEtrtR0vmSArvbFxtjnrPWPu+xT76kh3fXtMeD1trPE9gLQIKmTJmizz/f+8fq8ccf1y233JLQ3I8//lhLlixpaefn5+vII490HVtWVhbRXrFihSZMmJDQPi+99FJC4zrTl7/8ZT3zzDMt7QceeECnnXZaQnNnzZqlpqbEHoQ/8cQTlZOTo1DIybB8/vnntW3btjbXEwAAAADiCXkGowVc+yUpz3g87G7dHnZ3DwTwCiHIZrHOuSFcr1xf3j6vHSt4odjf0/NYk21UvsmM70WsgIhG79+9AAAA0GUsrX5LteHqhMc3hhvULaeoAyvaP7jHonkHi6UkGC3G/WuzbVLYhuQzOfHXiXGPnImvqfI8w+YSD9HOxPMCAABAEkoOlY6fE9lnw1K4WcrJk2rXS3OGxF6j/ylSbolUu06yIWnIuVLP8dL8UzqubiRv62vSwnOl5l1SToFU0E/K7S11Gyw1bJdkpQGnS4Fi5+uCAc7nQHGchQEAAAAAAAAAAAAASB1fugvoaowxg4wxQ6M/JPWLGup3G7f7o0+cbWZKqmzVnizpX8aYsVG15BljfiTp6aj5d1pr18Y7F2vtF5L+J6r7H8aYq4wxrcPPZIw5UNKru2vZY4cSC2ADkISLLrooon3PPfdoy5YtCc39xS9+EdE+//zzlZfn/nD3EUccEdGeO3duQnu88soreu+99xIa25kuvPBCFRXtfcjoueee0yuvvBJ33saNG/XrX/864X1KSkp04YUXtrRramp09dVXJ1csAAAAAEgK2mbXfr/x/l0IeT6PYDSXAAGvB/nzMiSMqzN5XTcpduBBImKFN/Twl3TYvqkUKzwiFeEUAAAA+7vXq15Oajz3UA6rsGu/9+ua9t8je4V+7d0jse9NrHW8gt3SKbnXiu7XINbrJgAAAOynjM8JRZOc0Cwv3YZJ37TS1HnSMU9KJ78lnfKOdODVUv+TY+/xTa9I5ASUneB9zN9NGnzOvq+d7dY/I235f9LG56VV90srbpMWXyEtv0FaPlN6ZaL0whjphbHS08XS0z2kJ4zzsegi6dUT97bfvlja+IIU3v0LfUKNUuMOKdQg1a6Vdn4shWL80tEQr4EBAAAAAAAAAAAAAG15PyWJjvKmpAMSGDdQ0mqPY7MkXew10Vq7wRhztqRXJO0JKDtG0gpjzBJJX0jqIekISaVR01+QNCOB+va4TtI4Saftbgck/Z+kGcaYpZKqJQ3fvZdpNa9J0tettZuT2AtAAqZNm6bDDjtMy5YtkyTt3LlTF1xwgV566SUVFHg/vH733Xdrzpy9v/XTGKOf/exnnuMnTZqkwsJC1dXVSXKCxN5//31NmDDBc85nn32m73znO8meUqcoKirST37yE91yyy0tfdOnT9fs2bM1depU1zlr1qzR6aefrqqqqqT2uvHGG/XUU0+psbFRkvToo4+qf//+uvXWW5WTk5PwOitWrND27dt13HHHJbU/AAAAgOzgHYwW8JyT53N/XegWIOAVdtUVH3b3um5S/OCEeLxCBYyMuuf0SHpeOsSqJZMC3AAAANJhTf1nWtvwWVJz2nuPmS284hHyPV/XtP8eOd79a2O4QQU53eKu0xCu8zzmVX86JRqMZq31DtHOwPMCAABAipVOkcrfbNs/7rrY83ofLe14p23/2J+3r55jnpSe6+9+7KS3pJJDpeZq6fO/OHXnlUr5/aR/t/P3+V4Qkj78pbTidvfjx78g9TxYKhwsrXpA2jBbatwulRwmjbhEUlj68FfS1lfbV0e6rHk0sr16lvMRS6Cnc/6VyyRfQCo7Xlr/j8gxg8+RRv3QGRusltY/J1UskYyRhl4ojbzMCetrzVop3LQ3wC8clHy8NR4AAAAAAAAAAAAAsgH/+pulrLULjDFfl/SI9oafGUkTdn+4eVLSJdbaUBL7hIwx0yX9RdJ5rQ6VSTrVY9o2Sd+x1i5MdB+gK9myZYvWrFmzT3OHDh0qSXrwwQc1adIkNTU5v2lxwYIFOvbYY3XvvffqqKOOipizfft2zZw5U3/84x8j+q+99lqNHz/ec6+ioiKdd955evjhhyVJoVBIZ5xxhh599FGdfHLkb/psamrSrFmzdN1116miokIlJSWqrKzcp3PsSDNmzNCcOXO0fPlySdKuXbt04okn6txzz9X06dM1evRo5ebmat26dXrppZf0wAMPqK6uTvn5+TrllFMiguViGTZsmO6///6IkLjf/e53euONN/TLX/5Sp512mvx+9/9Er1mzRi+++KKeeeYZzZ8/XzNnziQYDQAAAOiimj2D0bz/l1+iD7tL3mEMXfFh9zzjfc7tDV/wvs75MQMTMiUsI2SDniF9EsFoAAAAb1S9lPQc7qH2cI9Gy/cVuvY32vZft3j32V4B0smsk4mvqbxee0SfR9A2K6yw69hMPC8AAACk2OBz2gajGb806Oux5w35hnsw2gEXxJ6XUygN+5a06v62x0b+UCroJ/WaKFUsjjzW7QCp5yHO14EiaezPnA9Jql3bvmC0HuOccK6BX3UPRsvvKw08Y2971GXOR7TRV3kHo522zDmHf5R41zHkPGndU+7Heh8lfel+qXCg9Ewf7zU6U3OVtG3B3nZ0KJokrX/G+XBT/pa0+IrE9ys7Xhr/a+f7tXW+1LBVsmGp15FSQX/n5za/zAlUa65xAtv8hVK3oVJuiRPGVr5IWvJTyeQ434+Rl0h9pznHWmuscMYEitse26Opyvl5zsl1Pw4AAAAAAAAAAAAAaINgtCxmrX3JGHOwpJvkhJZ5vUviHUm/t9Z6vKMg7j41ks43xvxD0n9JOtpjaIWkpyTNtNaW78teQFdwwQVx3vAVg7XOAyJHHHGE7rnnHv3whz9UOOw8nLBkyRIdffTRGjlypMaNG6f8/HytX79e7733noLBYMQ6J510km6++ea4+91888167rnnVFVVJUnatm2bTjnlFI0cOVLjx49XXl6etm7dqnfffVe1tbWSpH79+un222+PCAXLFLm5uXrxxRc1bdo0rVq1SpJzTZ9++mk9/fTTrnOMMbr33nu1bt26iGA04/Ump90uuugibdmyRb/4xS9avkfvvPOOzjzzTBUWFurwww9X3759VVBQoOrqam3fvl0rVqxoudYAAAAAELJB136/CXjOSfRhd8k78CtWWFe2CvgCypFfIbW95u0NrfCan+cr8Ayyc+a1L5AtVeLVkSl1AgAApENNcJfer37T9djYwkO1uv4T16At7qEcNslgtODu0N5Yr4niiX9/m9j9f0O4zrXfb/wK+Pa9vo7iFQYd/fMZ6/rkGe/XLwAAAMgSo6+UKpZKax512jkF0uQnpPzS2PNG/kDa+Ly07fW9fWN+4oRUSdJBv5BW3NZ23vibpR4HuQejDTnH+Xzk3dKCrzjBW5KUky9NuMcJL3PT7QD3MLVEHXC+87nPJCdEq3ZN5PGh30psndLJTo02Kng4p0AqGuWEdBUOkuo2tJ2bWyId9YATIub2b0VT/i51G+J8PeIH0ud/SaymbLLtdelfx6duvR3veAfRtTb0207gmr9Qat4lrX9WqlsfOabvNOfntP9p0ojvSatnSQ3bpb5TpdJjnHC1UINU/ZnzvS4YIMl4h64BAAAAAAAAAAAAQJYiGK2TWWuHdvJ+2yRdboz5iaRjJB0gqZ+kWkkbJX1grV2dor3+Iekfxphhko6QNEBSN0lbJK2V9Ja1tikVewGI75JLLlFJSYm++93vqqampqV/1apVLaFfbr73ve/pvvvuUyAQ/6GMgQMH6plnntFZZ52l6urquHsMGzZML76U+kb1AAAgAElEQVT4orZu3Zrk2XSewYMHa+HChbriiiv03HPPxRzbu3dvzZo1S2eccYb++7//O+JYUVFR3L2uvfZajR8/Xt/97ne1ZcuWlv66ujq99dZbCdVbUhLjN4MCAAAAyGpB2+zaHysEIM8j1Cz64XZrrecD77HCurJZvq9AteHqNv1uQRbJ8LzOJl85xi+/Cbh+r93C7NIhXh2EegAAgK5s0c5/ed63H9fzNG1qXKfGkEswWjvvMbOGey5azLDmxnCD/DkdF4yW6H14g+frqcwMmva6ptHXI9b5d8UQbQAAgC7HF5Am/1U69DdS7Won2MzfLf68QLE09RVpy7+kXSudULHSyXuPD/u29On/SsHavX25JdLQC6T8ftKB10gf37H32EHXSX1PdL4uPUY6/SNp04tSuMkJmyoeFbueCf8nvfE1qSHOe9iOnyu99U0puPvfBgafK439L+dr45NOeMlZp/ozp2/IeU6YWyLyy6T+p0ubXojsP+A8J1RLkkZfJS27ru3cA6+RAkXSwDOkDXMij5UeszcUbc/YjXPjnytSY09oYCxbX3M+b3pJWvKjvf3L48zrNVE67llp+7tS5QdS4WAnNC1Q7PxZDHR3xlUslWq+kHp/KfJnAQAAAAAAAAAAAAD2MwSjdRG7A8nmd9JeqyWlJGwNQPuce+65Ou6443Trrbfq8ccf1/bt213HBQIBTZ06VTNnztTkyZNdx3iZNm2a3nvvPV133XV6/vnnZW3bp1RKS0t18cUX61e/+pWKi4szOhhNkvr166dnn31Wb775pp588kktWLBAmzZtUkNDgwYMGKDhw4frG9/4hs477zz16NFDklRVVRWxxp7+eE499VStXr1aDz30kB544AF9+OGHrtdwj0AgoIkTJ+rkk0/WN7/5TY0aFeeNfAAAAACyUtiGFFbY9VjsYDT3ULPoh92bbZOsx/pd9WH3PF++azBaewPKvEIv9nyv8n0Fqgm1DdPIlMCxVAVHAAAAZJuwDWnhznmux0r8fXRI94l6rnyWFGp7PFPu9dLNeiSjxQtG65YT/5fXeM9PTfBvQ7jOtT/fV5h0TZ3B67Vi9P18o/W+Pl01RBsAAKBL6jbY+UhGTp4T5DXwjLbHehwoTfuX9OGvpKoPnZCnI+6SCvo7xw//nTTqcqlymVRyqNR9eNt6Rv0w8Vr6HCWdtkx653vS5pfdxxSPlQZ+RTpnm7Tj/d3nfEDbur/yiVS9SsrrLeX1SrwGSZr8mPTOxU6om3zS4HOkCX/ce3zot6WP75Qay/f25fWRhl/sfP2lB6T6rdKOd5x2z0OkyU9Encdo6ZTF0vtXSRufT64+ZJaKxdLsJP/cSc7PUW5P589P+cK2x7uPdAL56jdKhQc4P8s9D94dtla8d5y1kg1Ltlmq3+z8+cxp9Tow1CD58iRjkq8RAAAAAAAAAAAAAFwQjAYAabZmzZoOXb+srEx/+MMfdNddd2nJkiVauXKlysvL1djYqD59+mjQoEGaMmWKior2/SGRsWPHavbs2dq+fbtef/11bdiwQXV1derbt6+GDRumY489Vn7/3v/knHDCCTHDv6IlMzbaI488okceeWSf5k6ZMkVTpkxJaOyKFStavjbGqKysLOF98vPzdcUVV+iKK65QRUWF3nnnHW3evFkVFRVqbm5W9+7dVVZWptGjR2vs2LEqLMzMh2YAAAAAdJ6gDXoe8xvv/+XnFSAQ/fB/rDCrrvqwe57ntWtfaIXX/D375fnyVRPa5TIvMwLH4p2/V/AbAABAtvtP7VLtaN7memxKz1OUY3ISDqPqqvY1GK094t7fJri+1/16pgZNe4doRwWjxTj/rvpaEQAAACnS52jpxH95H+8+zPlIlYJ+0uRHpWf6uB/P3R1ylpMvlcV4/5gxUvE+/mLL3B7Scc9JwTrJ+CJDpiSpcIB08iLpo5lS1TKp56HS+Jv3Bsbll0qnvC3VrJbCzVLRKPdQqm6DpePnOMFWf/M74VboOtY8Gvt4zSrpP7+JPab7SKn2i7Y/O7m9nJ/DXZ/sbpdIQ86Txv1Cyu8r7fyPVP6mFKqXBn5VKj5QsiHJl+TjC6EGKRyUAt2TmwcAAAAAAAAAAABgv0YwGgB0ET6fTxMnTtTEiRM7bI8+ffronHPO6bD1M1Vtba2WLl3a0h49evQ+B8316tVLp59+eqpKAwAAAJClgrbZ85jfBDyP5RmPh91tg8I2LJ/xOe2YwWiZ+SB/R+uo0Aqva71nvzyTWJhdusSro73BFAAAAPur16tedu3PkV/H9DhJUuLBxV2XezBarNck7b4/t7HnJ7p+fbjOtT9zg9ESC4L2On+ffAqY3JTXBQAAAHSoPeFnbnoc1Hl1+GP8ksyikdIxj8een2hgnDHSuOulf9+ceG3tMeQ8qe/xUvMuadl1nbMnOkbNKvf+pgrno6VdKa26z/mI5vYz0PdEJzQtv0ySdUL+6tY763jp/SVp0NelwoFS+VtSU5VU+YHU6wgnmK3yQ+fP9shLpV6HS43bpZovpK0LpGC1tOU1qfcEadjF0sAznD2DtVLxWCmH17UAAAAAAAAAAABAJiEYDQCAdpo1a5bq6vY+4DJp0qQ0VgMAAACgKwjaoOexmMFoMR7Cb7KNyt8dwhXrYX+vgLBs5x1a0b7gL69rvWc/r+vdaDMjcCxeHe0NpgAAANgflTdt1orapa7HjiiarGJ/T0kx7vUIl5XkFYvmXDcjI+syor2hcg1xrn2i3xuvOjI3GM3rZ7Fe1loZY3a33c8/z5ffMgYAAADYbxgj9ZooVSxue2zYtzu/ns4w8Ez3YLS83lLjjtTtU3KYNOVve9sjL5PW/k3auULqfZR0wPmSL0cKNUn/uUXa+KITVlU2Veo5TnppfOpqQeba+mryc3a853xEq/40sr3pBe816tZJ65+Ns5GRDrpWql7lhPvZkFR2nBQOOu1ug6URP3BC1XJ7OWvuXOEEuxUOkvpMkkyOZPxSTn7sAEQAAAAAAAAAAAAArghGAwCgHTZs2KAZM2ZE9F100UVpqgYAAABAVxG0zZ7Hcoz3//KLFWrWGK5veUg/1sP+mfogf0eLFRTQHrGCBWLtmymBY/HOv73XBwAAYH/0RtU8z2PHlZze8jXBaPG4R6MZGeX58l3vidt77VJ1f+sdgJyZD0J7hWiHFVbQNitgciXFev3SNV8nAgAAIAuM/IH0XlQwWvGBUumU9NTT0XodKQ3/nvTFQ3v7ig+Ujn5E+ufRcn0dNvbn0sq72vb3Ptr5vOOdtsfG/DSyndtTGvXDtuNycqXxv3Y+Itb+knv4VY+DpTOWS5XLpHXPSKE6acg3pD5HS6+fKW2c23aOJA38qjThXql8obToQvcx8XQfKdWs2re52A9ZacXtkV1bX4tsf3DNvi/vy5XCTVJ+mTTgDCmnUPL5ndC1vic6IWzGSPVbnIC1hi1SyRFS7Rpp10qpaLQTQGiDzkduyb7XAgAAAAAAAAAAAGQogtEAAGjlmWee0ZIlS/Szn/1MpaWlMcd+8MEHOuecc1RRUdHSd+ihh2rq1KkdXSYAAACALi5WMJp/n4PRGlp97f4Qf4788ptAAhVmH68H/Ts6GM0riC5TwjLi1ZEpdQIAAHSWpnCj3t75quuxQXnDNDx/TEs7z2T2vV66WesRjGaM8ky+GtT2Xry9AcLxrn2i63sHo2VmgFh+nNeKAd+eYDT38yIYDQAAAPutEZdIwVpp5R+kxnKp71TpqAcl40t3ZR3DGOmov0iDviaVvykVjZSGTN8bXPbZnyLHFwyUxt8irf2bVL8p8tiI7znXLjoYzZcnDTqzfXUO/ZZ7MNqYHzufSw5zPiJq7e+93uirpG6DpYJveAejTfyT9O9fS/Wb2x47+mFp+MXO1407pGCNlN9Pyslz+p4wMU/H1Zf+LIWbpfevSn4u9n/hJudzwzbpi4cjj0W3E+XLlWSlkiOlgn7ShtlOf06B1Hea1HO8ZJulpkopWO8EvTVskfqfJo28ROp/irR1vlS7VtrxrtTjIKnHOGnA6W3/TmyqlIxfChTtW60AAAAAAAAAAABAAghGAwCglerqat122236/e9/r1NPPVUnnniiDj30UJWVlcnv96uiokLLly/XCy+8oLlz50Y8lJObm6tZs2alsXoAAAAAXUXQBj2PBWIEl8V6CL/1g/uN1j0MIFMf4u8MXqFy7Q5e8LjWe0IyvAIG2rtvqsSrozHcIGutjNmHh4IAAAD2Q+9XL1RduMb12PE9T4+4L/IM37WZca+XyfJ8BVKosk2/1/11ouIFHye6/v4WjOYV0ic559JdxZLiBzsDAAAA+x1jpLE/k8b8VLIhydcF3lZtjBNcFh1eduT/OEFnax53rkX34dJxcyR/gfTl16VFu8PKckukA6+WRvxAskFp57+lzx901ggUS8f83RnTHkO/KX32R2nXyr19PQ6WDrjAe06fY6RV97sfKz7Q+ewLSH0mSdvfjjxucqSBZ0qVH0qr7os65neCo/bI6+18RKw/NrLWPcbf7JxHdNjaAedLIy91vo4VjHZB2Kn1oxukyqVSqEE6/PfS+1d6z0HXtSdsLTqsMFQvbXrR+XCz+WXnI5Z+Jzl/rk2OtPbJvf09xjmhgf1Pcf6MGiOFQ87Pa7BG+vwhqWGrVDRKOvC/nL9XJCkcdNbi3w8BAAAAAAAAAAAQQxf4F3wAAJLX3NysuXPnau7cuQmNLygo0F//+lcdeuihHVwZAAAAAEhB2+x5zB8jGM0reEGKfMDd6yH+rvywu1eAgVcwQKLiXeuO2jdV4tURVkhB26yAye2kigAAANLHWqvXK19yPVbgK9TE4uMi+rzur+OFc3UVYYVd+41MjGvX3mC02PMTXb8hXOfaH+s1WTrFeq3XOqjP8/WL6bqvFQEAAJAljHECsLoyX0D6/+zdd3wc5YH/8c9s0aoXq1hWsS33btwwNrYxxWBMTSCUQAIJBFIuR5IjdwdJCKRwyd3lF3IJKZBASMhBOpcQSiAB23SI6QkYjLtxl9ykXWm18/vjsZBWO88WWbJW0vf9es1rd59nnjKzK2lmV/PdBXfB7G9DWxMUNHSGFhWNg9OegbYDECgAx2fKnSDM/zHMvBkOboCyY8DfC58HhMrhlNUmVKzxJdPvpM9AsNDepv598I9vwr6/x5dXnwoF9Z2Pp34BVp1rQt06jP8E5NfA1Oth5+PxIWez/gvyhiefb/158PrXE8tHXgCVi2DVOdC235SVTodjvtG5Ts0Z3oFVkz5n9n/lQjj50fi6wjHw+OmJbQCmfRleu8m7rvw4WLbKPFfrfgzh7dCy3QTRlU6Hoglm+1eeZd/WslnQ+GLn41AlRHbZ15fBYfsj3uX7XocXP2+WVO3f+n7qcQIFJmhw5IVwcB3sfcEEshVNhBGngi8H8kbAgbehYJRZcGDnY9C6D8rnmt8XAM1bYcdj4A+Z3wM5Jd5jxtqg6VXzO7Bkaufvt65cd+iEZ4qIiIiIiIiIiIiIiGQRfTojIiLSRWlpKX6/n/b29rTbHH/88dxyyy3MnTu3D2cmIiIiIiLSKVkwmj/JhTt+x0/QyaHNbU2o63qBu+1i/2y9iP9osF3obwsGSJdtX3cEomV7WEY6wRCRWJigT8FoIiIiMvhtCK9lc+Qdz7oFJSeT4wvFlfVVuNfg51jPTY70ODl1MFp6/dvWy/PlZzyno8EWyAzx+6RrSFq67UVEREREZIAJDTOLl2CRd3lulVl6U24FTL8h/fWDRXDKKvjbZ2DrHyHWCjWnw/w74terPQNO/iu8cye0NkLNChh7pakrqIfTnoVtD0LLNhh+YmfIUjITr4FtD8QHhk29HoonmOWcjbBzJQRLoWI++Lu8H1B3rncwWv159vFyyux1hWNMwFPM47PEmV8zdcXjYdY3vdtXLbX3DXD6GnPb3mqCojq25R6PMCmRTEUPwd6/maWr7Y/CW7ceWd8l06BiAQQKYc8zsPvpxHVC5VBzJpROg2izCf1b+73O+rpzYe53ze+XgtEmRC3aYgIFw7tgxDIT3JZM2wE48JYJnAwWH9k2iYiIiIiIiIiIiIiIDHIKRhMREeni3HPPZceOHTz00EM8+eSTvPrqq2zcuJG9e/cSDofJy8tj2LBhjBo1isWLF7NixQqOP/74/p62iIiIiIgMMcmC0QJOMGnbkC+XtvbEYLSuF7vbwr5swQ1Dge1C/yMNrbAFJnTsa3vgQ3aEZaQVjOa2UIj+sV9EREQGv5VND1jrlpSenlCmYLTkXFzPch9OnwQIx9wYETdVMFp6z02L9Tg/OwPEAk4QHz5ixBLq0gvRHrrniiIiIiIikkVC5bDw5xCLghsDv+VLW6oWm8VLsBhGXZjZuLmVsGy1CVQ7+A5ULobKBZ31OaVQd45324ZLTZDb1j90lk38jAlwsgmW2Ovy62DE6fH9AYQqoHJR6m0JFpoAt7amxLqyWZ33bfu2u7FXQKgK/v4f3vVnHQ6I+l/H3scHXdixEv6y1Lt+8e+h/lxzv+VdE1K390UonmRCqtpbTIBVfp3Zd2/fZgKvgsWwczWUTIUtv09ve2Tg2veaWZKJ7IH1d9nrt9xnlmQqFpqgxncfTm9e026AwrFQs9wETLZHYMv/Qds+GH6SCWHDgZJJ4Lrw7p/Na9xtN+GN9e8zr2+xa3kX9rwApdNNmONL/wbrf2bqSqbAsqcgJ8nvVRERERERERERERER6TcKRhMREemmvLycSy65hEsuuaS/pyIiIiIiIuIp6kY9y3348aX4x+eQL5eD7fsTyiNpXOxuCwcbCqwBZW7PgxcgdbBAXwQ+9KZ0tt8WtCciIiIymByINrHmwJOedZPzj6Eqpyah3HZ8reOnDt7BaDjJgtF6HirX6kZSrpNu/7bj9Ww9p3IO79OWWHNCnUK0RURERERkwPH1w7/HBwpg5PmZt/PnwuLfwq4nYd/rUH4slM9N3qZovAlQCu/sNociqDgO8muh8UVo3mzKfSGY90Pwh9KbU+0ZsOEXieWjk/w/5egPwYafJ5Y3XGa2yyZvhLmtXAS7nvDuF0x4EQ6e7xVUzI/vb+wVMNY+JPNu9S53XRMIt/o82PGY9zonPQJls+HBWdC8yXudJfdBtNmEL3U8B12N/AD4crz3sQx8u5/KbP3XvtLzsd46/FquXmYC1JpegdZGUzbmcvM7Ia/G/F7w50L0IOx/E8K7gJgJcYtF4NBmKBgJtWeaELEdj0GgEIonwLqfwObfmfJjf2h+Jve/AXueMeGC1ctM+GM22v8WvHwdbP6tfZ19f4fflMKKV0xwmoiIiIiIiIiIiIiIZBUFo4mIiIiIiIiIiAwwUbfNszzoBFO2DTmWgK+4YDRd7N6dNRjtCIIXXNdNEoxmxgs53vs8W8Iy0pnHkewjERERkYHiyX2PWgOMTyhb4VneF8eYg4lry0XD6ZNQuXTCh9PtP+wRMAbZG4wG5vXoHYymEG0REREREZE+5QvA8BPMktb6fph4Dbz8hfjyCZ+EQD4UT4QVL8O7f4a2/VB9MhSOSX8+026Anavjg7/GfMSMaTPpGtjyO4ge6iyrOsEEnhWOgec/SUKoWdEEEygHMPJC72C0hkvNbW6l2Y7tj8bXDz+pM1ztSDkO5JTBmCu8g9EKx0H1KeZ++bH2YLSaM8xzOvpiaA+b7coZBiXTwJ/Tud6Cn0PTyyYUz58L/nzAgUAehKqgZRs4Ptj9DLz7sAmpKptl9ltbkwnA2vaACZ7rGpLnFZrXXd4IE3Qlg8P2RxLL3vlp74/zzEfM0t38O6D+/RA9APv+AWXHmJ/ZTLQ2waGNUDw5/uekJ8K7TeDcWz8Ay/u1CVaeBedsOLJxRURERERERERERESk1ykYTUREREREREREZICxBS74ndRv99nCzSJu5wXu9mC0oXuxu22/HUnwQtRtI0a7ZTyzr20BA12fr/6UTmiHgj1ERERksIu57TzR9LBn3bBAJdMK5njWWY/NdfwEgNv9guku+mLfpRf6m3qdtlib9ZwtmwPE0gnqSxXsLCIiIiIiIkfJlOtM2NaG/wViUH9+fHBZThmMurBnfRdPgOUvwNb7IbzdhIGVz0veZtgcOGU1rP0eHFoPlUtg6r+bsLH8Wqg/Dzb/Jr5N1/mO+TBsuteEhHUYeQEMP7nz8XE/hZVnQuNL5nHpDDjuzp5tYzK1Z5igsvZu58Bd92fDhxO3B0x4mq/L57X+3M4wte4cxwRIlR2TfD7174NZ3/Sum3ytuW3eCsEiCBabx02vwwPTvNvM/DpMvR7cGLz2Vdj0K2g7CJXHmyC7muWw6v0mtE0kHc9+1Cw2TiA+oMyfBxULoGQKHNwA2+6PXz9UDgWjoe0AlM+H9hY4tAGKxsG4q6DieHDbYPtfIbIbgoWw/S+w7zXY8xzEvL9kLqlDG6FlB+QNz7ytiIiIiIiIiIiIiIj0GQWjiYiIiIiIiIiIDDBR1/ufeQNOMGVb24X4XUMAbIEAtvCBocC236JuG+1uNK1Quu6ShTaEHLOv7YEPPQ9k603pBE8cSXiciIiIyEDw2qG/sTe6y7NucelyfI7fs67jmK+7dqJE3ba0ju8HN+9gNAeHkNP7AcJphf6m0X+yY/VcX35Gczqa0gmbs4doD91zRRERERERkX7hODD+42bpC7mVMPYjmbUZNguO+4l33cK74ZXRsPWPECyFsVfAuI911geL4cRHYMv/wb7XoXwu1J4Fjq9znfxaWL4G9r9hyosmmP3Q23JKYcHd8NQlEIuYsuplMOVfO9cZscxsR1tTfNtRF/T+fNKRX5v8cVdlhwP8HR9M/7JZulvxUuf9/Wvh6Q+ZwKlgqQljm3o9vPh5eONb9nFGXQzbH4WI93tmMoR0/wKB9hbY8VezeInsMQvAgbWd5XtfgI339s0cAVq2KBhNRERERERERERERCTLKBhNRERERERERERkgGnv/s/DhwXSCOdK72J374v9beFgQ0GyC/0jsTD5/sKM+4y4yQITcg/f2gLZsiMsI63wiDTWERERERnIVjY+4FkecAIsLDnF2i7VMWbAP7SD0bxj0UwwWjqBz5lK79g2df/J5pDN51Tp7FPbPgpl8XaJiIiIiIhIFvCHYNZ/mcUmkAejL0rej+NAyeTenZuXkefB8KWw6ynIr4PSGeDrEnzvz4UT/gCrzoXWvaas7n0w9Yt9P7d05JTCsLkmSKqrYCkMPyGzvoonwGnPQtt+CBR2htXlVdvbzPpvmPwvnY9dF5o3wY7HTWhb5SKzDwHeuQueudy7n1NWQ9lMaN4Mr9wAm39rykPlMOV68AXBnwfEYOv9sO8fcPDtzLZPpEPLu/09AxERERERERERERER6UbBaCIiIiIiIiIiIgNMm9vmWZ5OSJbtgvWuF7jbLuQPOfbghsEuWYBBONbSs2C0JMELHSEZyQIGWmORfg/LSCcYIp11RERERAaqHa1b+UfzS551s4sWURQosbZNdYxZ4C864vkNbLZotPQCnzOVTqhaOgHF4ViztS7Xl9+juR0NtvO9roHOOlcUERERERGRISNUDnVn2eurFsP7t8PeNZBXAwX1R29u6Zj5dVh1DrSH48v8PTyHDxbHP85Psr1lM+MfOw4UjIIxlyWuO2yOvZ+icRAsgpIpsPg30NpkgtD8ocR1x12VWLb3RXhotnff026AGTfBr8ugrcl7nfMb4Tdl9vmN/hA0roF9r9vXkYHjiQvgQvv7eiIiIiIiIiIiIiIicvQpGE1ERERERERERGSAiVqD0VK/3WcLX+h6gbstTCBZcMNgZwtegJ6HLyQPRstLOW5PA9l6UzrbfiThFCIiIiLZbnXTQ9a6E0pXJG2bLARXx1DgWoLRHJwkwWg9D+VNd5+nCihOFrCW7Dnvb7bzva77xbZ/h/K5ooiIiIiIiAxhviBUzO/vWXgbcSqc+ixs+hVEm6HubBi+tPf6r15mtj/W7XPr8uOg6sT0+ymZAgUNcGh9fPmweZBXHV+WU5rZHLu3j6sbcbjPEnswWrLxpl5vguZcF+7xea/jC8FFYWjeCut+AgfXmSC40ZdAeAf8aaq9/1AlRHbZ66X3tbdA20EI9u/n7yIiIiIiIiIiIiIi0snyKYyIiIiIiIiIiIhkq3Y36lkecOwX53dIJ0Ag4npf7J7NF/H3teShFT0LX7AFJjj4CDo5aYzb/2EZttdKpuuIiIiIDESRWJin9/3Fs64+NIbRueOTtu+L8N0hwXGsx8lHFoyWXttkwWemvtmzPOAECPpSn7P1F9vrsWN7Y26MVjeSUVsRERERERER6UdlM2Dm12DO/+vdUDSA0DCY/xNwulyOMmweLP4N+Pzp9+P4YN73wZ/fWZZTBnNu6YU5VkGo3LtuxHJzO+la7/qqpfHrdTfqInPrOPbxqxab2/xamH4DLLgLJv6zmVPJFHu7QAHMv91ef8pKWPaEvb5gNHzQ+wsH3rPileT1ACMvSL3OYNP0an/PQEREREREREREREREulAwmoiIiIiIiIiIyAATdds8y9MLRrMFCIQ976fTdijIcULWulTBCDb2/ZyLc/if6JMFDPR03N4SdduIWkL6ulKoh4iIiAxWz+9fRYslBOuEshXvHdPZBJ0cHLzXOZKAr8HAde0XbzokC3wOJ22bTLr7PNXxbXiAnk8l26cArW4EF+99m+3bJiIiIiIiIiJ9oOFDcPYGOO6ncOKfYdlqEwKWqZrlcMZrMPdWOPZ2E9pVufDI5+fzw+gPJZYPPwkKR5v79efGh7t1GHWhuZ38L9A96L7mTCid3mXdi7zHH/+J5PMbfYl3+fSboGy2pZEDJVMhL8l+Lhpnbid9zrt++Mlm/uOutvcRqkgezlZ+rJlHtprwaXj/DsgbkVm79kN9Mx8REREREREREREREekRBaOJiIiIiIiIiIgMMNZgtO7/lO3BfrF7ZwiALXArWUjXYDn/xKEAACAASURBVOdzfIQc7+3veTBa6v2c44SyNiyjNRZJaz0Fo4mIiMhg5Louq5oe8KzL9xUyt2hxyj58js8awNvfIbj9zRbAZTjWIK4YMev5UioRN73j1lTH4bb6XF9+xnM6mlKFaCc7rs9VMJqIiIiIiIjI0FRQD2MugxHLwG//oqmUChtgwidh3JWQX9d785v1nyagLFAEvhyoPRsW/6azPr8OFt4Dvi5zH/sxGHuluV99Cpz4CIy8ACoXm9Cyxb+NH2Pcx8Hxd9ueMSZALZmGDyeW+XJg1MVmvw6bl1g/4lQIlUPBKCgc591v+bHmttYy/qgLzG1ejX1uBaPMPrMpGt85jpeL2uCCZnj/Lvs6ODD7Fnv1pM/BnP8xz0cyoy6CqqVQdgwc+yM4ZxPM/R/IrYLxn/QYNsklVFEFo4mIiIiIiIiIiIiIZJNAf09AREREREREREREMtMWswSjpfF2ny3cqyMEoN2NWoMEhvrF7iFfHpH2xDCAngZ/2dp1fY46wjK8Qhr6Oywj3fH7e54iIiIifeGdljfYEtngWbeg5GRyfOldCJrby8eYg0WyYDQfDrlJQpvDsRaCvpyMx0x3n6c6vg3Hmj3Ls/18yh6M1nL41r5/hnKItoiIiIiIiIhkMV8Q5n0f5nwH3Hbwe7yHMeoCqD0D9rwAReMgvza+fvgJZrEZfgKccD/8/T/gwDqoPB7m3AL+FO9PjTjVBHm9fD1E9kD+SFhwF+QfDixbeDc8dhoc2mAel0yBeT809x0HZnwVnr7UbFeHYDE0XG7uV51gAt7W/bizvvpUGH3p4fGXw6tf9p5bzZlmjNIZ0PRKYv3YK8GNwjt3JtaVTANfwCyBJO+Hjb4EiifZ66dcB7kVsOFeWHe79zqnrIaqRfY+pn7BPOfv/BTaW6D2HJhxI/y6xHt9BaOJiIiIiIiIiIiIiGQVBaOJiIiIiIiIiIgMMO1EPcsDvmDKtraL8cO62D2lXF8e+9sbE8ojPQz+8go7g8T9nK1hGemO39/zFBEREekLq5oe9Cx3cFhSujztfkK+PPA6xrQcKw4d9mA0cAg59osqI7EwRVgubkwi3UDfVMe3tn6yPxjNEqJ9eHuTnfcM9XNFEREREREREclyviCQ5LP0QEHy8LNUapabJVPjrjIhY+FdkDc8vq54Apz1Fux9AXw5JqTM1+Xyn9EXmRC3f/yXCS8rnQHTb4Ti8abe8cGxt5kgtL3PQ/FkGHFaZx/l82DM5SY0rKthc2Hip839hg/Bi5+Pry8cB1VLwI1Bfj00b46vH3NZ/OOJ18Cb30nc9rFXmDn486G92xcNlM6AUPnh/TAxsW2HgpH2OjDhbpOvNUtXeTXQsi1x/Ve+BMPmQdFYs/96gxvrvb66a9kO+16Hg+9A234TSld2jKl75yemvvoUs5+aXjP7snwetOyAyE4oGA3BosR+Y20mrC+nDPyHvwCk7QDseBxatoAThOhBs7SHoWAUFI4xQXfdgwVFRERERERERERERI6AgtFEREREREREREQGmGjMEozmpH67L9XF7snCALL9Qv6+Zt13PQytSDcwIVvDMtINhOtpcJyIiIhIttofbWLNgac866YUzKIyZ0TafaU6Ph+q3CTBaA5O0iCuiNvD4OJ0g39THIeHY82e5dl+PmWbX+S9EG0Fo4mIiIiIiIiI9DrHlxiK1sEXgIrj7G2rFpvF2rdjAt+8Qt8cB+bfAbXnwD/+0wRrTfosjLoYAvlmnUn/ApG98Nb3IXoAKhbAwl+YOTs+OOkv8OSF0PiiCTib8CmY9Ln4ccZ/CjbeC+EdnWXVp5hwNccH074AL3+hy7wCJuDNcczjspmQVwstW+P7LZ1ugtl6ImeYdzDawXfg/gmdcxx5oQn/Wv8z2P8G1J5p9lfN6bDhbnjjFvDnmHalx0DJZBMq1vIu7Hw8vu+RH4C8Oqg9A4afmF5YmhuDt38EW/4Ptj9iHo+7Gvx58OYt6W3r2u+mtx5A7dmw9Q+J5cPmwN6/pd9PXg2MWA5T/s0E/LVHYNuDsP8f0NoEB9aaELXqU6B0JjS9DIUNsOcFE/SWVw117zc/F+2t5uegr8LlRERERERERERERCSrKRhNRERERERERERkgIm6bZ7lASfJt1wfZrvYPeq20e5Gk4YBDPWL3UOWfZcsTC4Z277uPo49LKN/A8fSDo4Y4qEeIiIiMvg8ue8R2vEOK15SuiKjvrL1WK+/ufZcNHCcpCFj4R4ef6Z7XJ9qPVu97XwiW4Qc79di+L1gNO/9GnACaZ2LioiIiIiIiIhIlnEcqD/XLLb6Y26GGV+B9jAEC+Pri8fD6WsgvBtySsDn8R5R8Xg49Wl4+3YTiFV5vAlL6wi6mnq9Ccna/HsIFsHoS8w6783BB3O+DU9+ENzD78n68+CY/+oMT8tUoCD1OtsfNUtXm35tFi97nzeLTUe7N79tbstmQ+UiGHEaVC2CYHFimxf+Cd76QXzZ2z9KPfee8gpFg8xC0cCEzr1zh1mS+fs37HXPfzL+ccEoOPFhaG+Bkqner7Wu2iNwaBP4/JA/EnBN6F5PXzMiIiIiIiIiIiIi0i8UjCYiIiIiIiIiIjLA2ILR/E7qt/uSXYwfiYWTBjBk+4X8fc0WvtDT4C/bvu4ejmHb7/0dOBZx0xu/p8FxIiIiItmo3W1nddNDnnXlweFMLZiVUX/2Y72hfgxlT0ZzMKHQPnzEiCXU93Tfpdsu1XG47fg3z5ef8ZyOJltIX6sbIebG7IFvztA+TxQRERERERERGfR8AfAV2utzK5K3L2wwAWs29e83i83ID0DReNjyB/DlQN05UDI5+ZjJBJJsy9HSuMYsa/+nv2cyMBzaCPdP6nxcPBH2v9n52J8HbjvEWlP3lVsF4Z3J1ymbBSXTTFBf8QTY9zps/KW5bXwRChpMYF/NitQhbSIiIiIiIiIiIiLSYwpGExERERERERERGWCiHd+E3E3ASf0Pl7aL3cFcwJ8sxCrHCaWe3CBm23c9D17wDlRIDEbzHre/A8fSHT/dADURERGRgeDVg8/TFN3jWbekdDk+x59Rf/ZjzKF9DOUmDUZzcByHkC+XllhzQn3Pg4vTa5fq+N8aIJblQdO2IGgXlza31Xpcn+wcU0REREREREREpFeUHWOW3pA3onf6kf7TNRQNoD2D/51IFYoGJvys8UXY8HPv+kPrYdW5nY8X3A1lMyBYDE4QcsrgnTth2wPQsg0mfRaqToCCkenPU0REREREREREREQUjCYiIiIiIiIiIjLQRN02z/JgWsFo9ovxI7GwPazLycXn+NKb4CBlCwro7eCF7sEC9nH7Nxgt/eCIoR3qISIiIoPLyqYHPMsDTpAFJSdn3J+C0XrCAcy5Te8Go6UZ/Jui/7DHnMB+XJ8tkp0rJgvRzvbANxERERERERERkTijLoQNd/f3LGQwefrSFPUf7rxfOh1CFRA9BIEiCL8L+CBYBKUzoO59MOJUcJz0xj60GZo3mwC2QxuheBLUrDDtY+3gtoH/8OcQrfsgUAA+XUooIiIiIiIiIiIiA4PezRQRERERERERERlgbMFofif123224AUwQQC62N3Otu9s+ywVW7vugQnZGpaRSXCE67o46f7jroiIiEiW2h7ZwpvNr3jWzS1aRKG/OOM+Q44lBNcd2sFoLq61ruOo0naO0tMA4XT3ear+bfXZH4yW7FwxSYh2knYiIiIiIiIiIiJZp+YMmPBPsPZ7/T0TGYqaXrXX7X4a3v6Rue/PhfbD78nm15vwMwBfEEJVMGw2bP1j5uMHCqByCdScDi1bIX8kFI6F4olQONqEqfn8qftxXdj/pumvoD7zeYiIiIiIiIiIiIikQcFoIiIiIiIiIiIiA4wtGC3gBFO2zXFCODieQQORWNgaBpDtF/EfDUcreKF7OIZt3/c0kK23pBvM5hKjzW0lxwn18YxERERE+taqpgetdUtKV/Soz94O3x0skgWjdUSj9XaAcLrtUq3XYg1Gy894TkdTsnO+SKzFut06VxQRERERERERkQHFcWDud6FiAWz+vQmH2v10f88qfTnDIFQBgXwoPxbevi2z9mWzoXiC6UPhcNmrvcv7sR2haACxNvOa3bq1Z/1GD8G7D5ollfyRMGwOVC6C3U+BP88sW/8I4e3x6467Gnb81cw1VGmC1/LqoGAUDJsF4Z0Q3gFFE0zZwXfg4DoIlpoQuGGzzLZFdpvAtZxh5n7Ty2ZflEyFkilQdowJhxMREREREREREZEhQcFoIiIiIiIiIiIiA0zUjXqWpxOM5nN85Dghz1CucKzFGvJlCx0YSkJO74ZW2IIFuu/r3g586C2ZjB+JtZDjUzCaiIiIDFzhWAvP7H/Ms25U7nhG543vUb+2UKn+PtbLZo5zOBjNcnwecXt2fJ7ucb0t4Pi9emswWnYHiCU754voXFFERERERERERAab0R80C0DLDvh9tfd6+XUw6Vpw26HxRWjeBDtXmZCm6tPgzW97tysYBedsgFgUNv4Snv0oxFp7Pt+8WtOfr9tlYMmC0U5/CUpnQNt+EyYV6PblDXO/C64LTa/Cuh9D9CDUrIB37oJt93v3Oe+H8PzHvesuOAS/KrDP58y1sP5n8Nat0NoIReOhcCyEymHDL+ztpH80bzLLlt+nXvftH3VptznzwL6eqFgIs79tXkst20xoWm4V4Jjb6AETvLbjL3BwPQyba15zzVuAGOQOh8heyBsOweLOft0YOL6+n7+IiIiIiIiIiIikpGA0ERERERERERGRASbqtnmWpxOMBhDy5RFpT7yYP+KGk4R1ZfdF/EdDb4dWpBssEHJs4/Ys8KG3ZBIIF461UERpH85GREREpG89t38l4VizZ90Jpaf3uF97CG7/Huv1N9d1rXXO4Vvb8XlPgovb3aj1PCvT/m2vk2wPRvM7AQJO0HM/RGLhJOcv2b1dIiIiIiIiIiIiKeVW2utqz4JJ19jrbcFo+fXm1heAhkvMEovCX5fBzsczm1/1Mljw88RQNICp18PrNyeW170Pymaa+zkl9r4dB8pmwNz/iS/3CkarXgYjTvPuZ+SFicFrXQVLoHg8zPwqzPjK4dCqLmFUde+DJ863txfpbvdT8Of5vdtnoACih8z9ykWQVwP7/m7Ky2aCEzBhiWXHQMk0EwIX3mley4ECwAF/jglr84XAHzLhg3k1JojN5+8cy3Wh5V0TWrj/H6a+eGLvbUtrE7Rsh6Jx3r87REREREREREREBgC9syUiIiIiIiIiIjLARN2oZ3nASe/tvlxfHvvbGxPKw7EW60X+tsCGoaS3QyvSDaGzjuv2LJCtt2QSCNfT8DgRERGRbOC6LqsaH/SsK/AXMadoUY/7th9jDvXjJ3swWkc0Wm/uu946to26bdbztWwPRgOzT6PticFo4VhLkvMXnSuKiIiIiIiIiMgA5/igbBY0vphYN+qi5G2rlsDOVYnlEz3C1HwBWPQruK8WYim+qOHi2OG5OcnXq3ufdzBa/XnJ2yVTe6YJaQrviC8fdzUUjoYJ/wxruwSphcpNQBtA+bGw57nEPqff2HnfceJD0QCGLzUBUd33S/5IOGc93OMnYyc9Cn89JfN2oUqI7Mq8nQx8HaFoALueiK/b8+zRmUPVEhM02NoIhzZCy1bw55twtWAh5NVC8SSIRWDz700428R/horjoHUfvHw9bLynsz9fCKbfAFOu6/x94rqw7U+w+bfQvAVqzjB9OD7zM7hztSkvm2FC4LpqbQTHb36GY+1AzPzsioiIiIiIiIiI9AEFo4mISK/YtGkTt912GytXrmTt2rU0NjbS1tb5weSdd97J5Zdf3n8TFBERERERGUSirvc/yAac9P7RLFmAgC3kayBcxN/XugeWdehJQJnrutZ93f35sY1rC7E7WiJu+uMr2ENEREQGsnUtf2db60bPuoUlpxD05fS4b+sx5hA/fnKTBKM5fRCMlsmxdbJg5GT95PryM5pTfwg5uRziQEJ5xA3bQ7QdBaOJiIiIiIiIiMggMPZKeOFT8WVF46EyxRdjjL40MRgtpwxqVnivn1sJx94Oz14Jli9ZACd1IFqHYXNgxtfglS92lo35CIy6IL32Xvy5cMpqePajsPtpE8Q07Qsw8nDY2pxbTHjT9j+buoYPQWGDqas71yMYzYH69yUfM1QODZfDutvjyyd9zoQ1+UImCCpdEz4NxRPTX78rpwchbEsfhIPrTJhU44sQKITqk+HVGyG8s2fzkKFp5yrvsMVk3n3IXheLwMtfMIvN9kdhzWfN767WxC/aTClQCBM/A9O+BP4caDtofg7y66DpFdj6J/NzPP6TUFBvgtdClVA+14SquW7877zuj0VEREREREREZMhSMJqISD8bPXo0Gzd2Xkzz2GOPsXTp0v6bUA/cfvvtfPrTnyYSyeDDRhEREREREemxdss/xwac9N7uswcItFhDBGxthhJbOFwkFsZ1XZwM/ikv6rYRI+ZZ1z0cI9m4/SmT8XsSHiciIiKSLVY2PehZ7uCwuGT5EfVtO84Ox1oyPsYcTNIJRrMdJ/ckQDiTY9tk/YfbkwWjZX/YdLJzD9s+GgjbJSIiIiIiIiIiktL4T0DbPnjzOxDZY4K/FtxlwnySGXulCcN641sQPWTCuI7/JQSSfFHCmMtMaNYfxkKsNbF+5s3pz9txTGjZ6Etg7/NQMhWKJx95qFDxeFi2GtpbTdBR9zFHntcZlNbVhE/Djsdg+yMdK8Oc70DBqNRjzvuBWW/LfWb/NXwYxl5h6qZ9EV75UmKbmjNMKJTbHl/e8GHIHW4Cm6IHE9vl15nnrbv680wY3prPpp5vh8pFUGP5rKDpdXjr1vT7EulPPQlFA/Mz9vrXzJLM2z9K3VegCIJFULHA/D5t3moCJX05Zn7tERPe2HAZVBxr76e10fTV+BJED0DJNNOPiIiIiIiIiIgMKApGExGRI/LAAw9w9dVX47r2C1S6evzxxznxxBPfe/zlL3+ZG2+8sY9mJyIiIiIiMjhF3TbP8oATTKt99+CtDpFYi/Uif13sbt9vLi6tboSQk354XLLghe792IPsMg9k6029FR4hIiIiks32Rffy4oGnPeumFsyhImf4EfWf63gfY8ZoJ+pGCaZ5jD/YJAtG43Awmv28JvNQ3oxCf5Osm+y4N9eX5ELILGHbp+Ek54q2NiIiIiIiIiIiIgOK48DU62DKv0PscPBOuu1m3GSCuyJ7IK86vXb5dbDk/+Dx07v154fRF2c2d4DC0Wbpbd1D0VIJFsLSB2DP83BwHVQuhMIx6bX1+U3I27QvJNY1fAhe/w9ob+6yfg7M+k8YdxU8/3FoeRdyq2DOd6F8rlmn/jxYf1d8X/l1cMpqeGgOtO6Nrxt7JRRP8A5Gm/pF2PQrOLA2vnzc1fZtKpthrwuWQltTYnnNGbD4N3BwPYTKzTZ1aHzFbE97BEZdBFWLOutcF8I7IVRh5vinKd7jTv0izPwq7H8TGl+G3c+YAMBD62Hz7+zzFTkaogfMsvm3ydd76/sw4nTzM/Duw7BzFebzoySfL+UMg1n/DcNPhO2Pwr7XoOk1aNkG+/9h6qtPgeplUDrd/B3Iq4Xcit7cQhERERERERERyYCC0URE5Ihcd911caFoH/zgB7niiiuor68nGOy8WKeiQh8GiIiIiIiI9JY2azBaem/3JQvailgvdk8/9GuwSrYPwrGWjPZRxE0WmJBeMJpLjDa3lRwnlPa4vcn2WjnSdUVERESyyZNNjxCj3bPuhLIVR9x/smPIiNtCkKEZjJbsupWOXGD7eU3mx56ZHdvaA4rDsWaPFsZACBBLeq7oegfC6VxRREREREREREQGFcdJPxStK18w/VC0DjXLYc534OUvQPSgCbRa8DMoGJX5+NnEF4DKBWbpLQWj4OTH4G//DI0vmdCiWf8NJVPMUnuWCQXLrep8Exlg3q0mfGzLHwAXyo+D439hQuSWrYZnr4Q9z5n+p99onhOAmf8BL1/X2U/5cTDpszDhk/DsVbDjr5BfC5M+Bw2X2uddcyaeYU3D5sGI0+D1ryW2GXe1eQ2WTE6sK5sBZd/yHstxIO/wl7nk19nnNHypuS2eaJZRF3TWRZvh7dth52OQOwImX2uC7e6rM+FRXurfb9rl15twurzhUNAA5cfCc1ebwDWRvvDug2Z5T7Iv3cEEIT770eT1m35lllTKZpvfAfkjTUhjyxbYvxaCxeZn5uA6KDvG/K6qOgECRbDtftjzgqkrbIDKxSb00fEl9u+6cGij+bnOr/deR0RERERERERkCFAwmoiI9Nibb77JK6+88t7jFStW8Itf/KIfZyQiIiIiIjI0tLtRz/KAk15oQq7lgvxwrIVIzHKxu5P9F/H3Ndt+A6z7rSfrdw9MSD5uCzm+/gpGS3+bM90/IiIiItmg3Y2yet/DnnWVwWom5x9zxGMkDUaLhSn0Fx/xGAORm+TiFQdzUZstaKwnx5620C8vMdqJum0EnRyPsb0D1vwECPqyP+TOvk/t54rJzldEREREREREREQkhYn/DOM/Ac1bTDiXwm/sKo6F054BN5a4n7qGgnUVKIAl95nQNBwTPtcRnFYyBU59Ctpbwd/t/d6p/w41K2DnKhNyNPxECBx+L3TpH73n4CW/BsZcDu/c2WWuPpjyr1A+H9b/DJo3ddZVLoKa01P3m0qwCCqPh11PxpeHys0YNoF8mHSNWbqqXGQPi1r8W3t/x/wHPHmRd90FB83zAxBrh1ir2cfrfwFPW8LmVrwCudXw4udh/V2mLFgKE/4Jqk+G7Y/C2u9B277ONgUNJrytcIwZr3weRA/Bw8fa5y2SSuMas3jZtfrw7RP29juAdT+BZy5Pb7z682HYHDjwJuAzr+WcUvP3I2+EWWfnE7DzcROMWHs2hIaZ8i1/MIGSuVUw6iLTrruOn8FDG2D3UxAsMeGNwaL05iciIiIiIiIi0kcUjCYiIj32wgsvxD0+//zz+2kmIiIiIiIiQ0vUbfMsTzcYzRa+EImFCVsu5E8W2DBUJA+t8N5vNrb97DVOsnHDsRaK8PiHtaMgk8CJZNsrIiIikq1ePvgc+6J7PesWly7H1wsXqNmCqCDzY8zBxR6MRkcwmmM7r8l8v2XaJhILE/QlBqO1WPrJ9Q+M8DD7uWKLdR/pXFFEREREREREROQI+YJQ2NDfsxg4evLefG6Vva57KFqHshlmOdI5HHu7CWHb+icTTDb2is7ws1Ofgrd/BPv+ARXzTcCXr5cu9Zv5DVh5BrTtPzxnP8z6Fvh78OV7Yz7iHYxWfUrydiNOBV8IYpH48vJjO0PRAHx+6Pi8pPJ47758QRNyFiyEBT81S3fDl8L0L0PLdrOvA/lJJueQ/LOIo2T0pbDh7sTyQIEJcBMB2Pwbs3T32lcz6+f5T2Q+dv355vfHvteheAJE9prgyNY9EG2GfX83v+NireDPM7e5VRCq7Lxta4I9z0P0IFQtgRHLzXoH10PpNGhtAlyzbkd4pYiIiIiIiIgICkYTEZEjsGPHjrjHdXV1/TQTERERERGRoSPmthMj5lmXdjCa431RfsQNE3G9w65ykwQ2DBW9GYxmCxVz8BF04v/pNnlYRvrhZL0t4qa/zf05TxEREZGeWtn4gGd50MlhQcnJvTJGsuPsoXwMlTwW7XAwmi3Ey3JOk0w4w30dcVsopDix3BaMNkDOp2z7tDl2iDa3NaM2IiIiIiIiIiIiIoIJ/Zp8rVm6y6+FGV/pm3GrFsHyNbDlPhOwVXsGDJvTs76qTzahZIfWx5ePuzp5u5wys92vf72zzBeEaV+ytykcDcPmwt4X4strVphQtFR8QSioT73e1Ovg9ZsTy3OrILwzdft0lEw1YVI252yEgpGw8OfmcdsBaN4CeSMgpxTW3QHPXuHd1uv56HDMN6F0Jjy+3D72yAth0y/t9Sf80Yy/5ff2dWRo6BrItu81c7vz8fh1dvwl/f7e/I69LlAE0QPmfv5IqFgAw2YDDrjtEGszgWrRQ3DwbTjwlglZG3UxVBwLbQdNefMWaNkGG+81ZXtfMKGU9edBjeXnwnUPh7tlEB4Zi/ZemKWIiIiIiIiIeNKZt4iI9NjBgwfjHgeD6V2ALyIiIiIiIj0XdaPWuoCT3tt9tovyw7EW64X8ycK5hoqAEyTgBDyfg3AvBaOFfLk43b750hZk15Nxe0vUbUv6WuxuKId6iIiIyMC0LbKJt1pe86ybW7yYAn9Rr4wTdHJwcHA9osCG8jGU1/7oznZeE4mFcV034bg6mUyDjm3H4eFYs2d5ri8/o/77i22fHojuy7iNiIiIiIiIiIiIiPSzorEw+V+OvB9fEJatgueuhh2PmzCvyZ+Hkeenbjvjq1AyDbb+EXJKYPSHoHJB8jbH3wuPn25Cj8AEpc370RFvRpzas7yD0cb/E2y4Gw6sTawLlkJbU/pjjLwQNt0L+/7uUemYALS4/ougZHLn48Kx9r6X/A4ePtYERcV1G4CxV0LLu/a2s75lgvJswWjjroLaM03g1L2Wa4TGfRxm3ASvfsWEp0X2QNE4qDwe9rwAjWvs44vYdISiATRvgk2bkgf4Aex/A968JXXf635sllRyq81teHt8efUy8zM57ipYfxds+AVEdpu6k/4CFfPNz+PB9eA4sHMVtIehaglUHJd6XBERERERERHxpGA0EZEhwnVd1qxZwxtvvMHOnTuJRCJUVlZSW1vLokWLKCxM49tzuonFYn0wUxEREREREUkm6rZZ6wJOeoHVIV+uZ3kk1mINX9DF7kbIl0e0/UBCeaahFfYAusTnJugL4idAO4lBZBG3f8Iyemt7RURERLLV6qaHrHUnlK7otXEcxyHky/UM2uqvENzsYA9GczCBZ7bwZheXVjdCyPE+7/GS+fGt9/q252ygnE/Z9tm+6F57mwGybSIiIiIiIiIiIiJyBPLrYOmf2bgopgAAIABJREFUwI2B40u/nePA6IvMkq6isXDmG9D0GvhDUDTB9NObyudDw2Um4KhD6QwY/3Fz/9Ub4tcvGAXH3QWPLzdhRx1qz4a8anj7tsQxRn8QfAF4+frEusrjTeBcMhXzvcPYChrMXOvPg433xtfVnQuhYcn7HTYbcofb632hw7cBKJ0OTa8mrjPqQsitgnnfM4uXlneheYvpw58L/5vkORx3NbxtCb+rOgF2rrS3FelN3QPROmx/BHgE3v5hYt1fT07db+ViyK+H4klQNvPwz7/PBEYWTYCcMmjZZoLV/LnmZzyyG1obIb8G2iMmPHHbA4f7W2TCFWNR87N6aBPgQttB2Pu8uR15vvn9JCIiIiIiIjKAKRhNRGSQ2717NzfffDN33303u3bt8lwnJyeHk046iRtvvJH58+db+9qwYQMNDQ3W+hNPPNGz/M477+QjH/mIZ91NN93ETTfdZO3zscceY+nSpdZ6ERERERGRoSbqJoZjdUg/GM37wvUD0X24lgACW5jaUBNycjlEYjBapqEVmQbQhXy5NMcOevTTP2EZGQdHuEM51ENEREQGmnCshWf3P+ZZ15A7kZG5Y3t1vJCTS5jE46VMj7kGE3ssmgmTg+TnKJFYOKNzmN46ng/Hmj3LB0wwmmWe+9sb7W0yCKATERERERERERERkQEuk1C0Ix2nbEYf9u/AcXeYcLHdT5lgopHnm+ChqddBeAes+zHEIlA6Exb9GorHw8mPw1s/gJatMPwkmHwtHNpowoqat3T2P/EaE/A2/uOw7UHYtbqzzpcDU7+Yeo7+XJh6Pbz0r10nDtNvMPvn2NvBdWHL701V3Tkw/w5zPzQMhs2FvS/E9xmqNKFsTgCCJdC2L3HckR/ovD/mCljzmfj6wnFQtST1/PNGmKVD5eL4/dBh+k0mZM1m3g/hT5NTj9fdol+b53TnE/DCJ03AW6jChFMNmwsH3oSK46G92Tx3oXLzOBYx+/fZKzMfU8TG67Xf1/72afN7pOEywDGv//J50NpkAtOiB83vgmFzTfhaV64bH0gZPQSO3/QnIiIiIiIichQpGE1EZBC77777+PCHP8yBA4kXbHfV2trKQw89xEMPPcRVV13FrbfeSiCgPxEiIiIiIiLZKOq2WesCTnrncraAAK/grc42A+NC/r5mCzSIuJmFVtiCF2yhAvZgtP4Jy8g4GG0Ih3qIiIjIwPPsvsesx2tLSk/v9fFCvjzwCJ7qrxDcrOAmi0YzkgWfhWMtFFOa9nCZHq/aXh/W4/wBcj5lO99JFtA9ULZNRERERERERERERCSO44O6s8zSlS8A874Hs/8bWvdB3vDOuor5ZumqaByc+ixs+pUJSRt+ItQe7jOnDE56BN65E3auMmFkYy6DiuPSm+OUz0NhA2z+nQlUG3Ux1Jxm6oKFsOheaA+bz1UC3d6vP+YbsPJsE/zVsb2z/hN8h794s+5cWH9XfJu8EVCxoPPxxH+G1kZY+10TolZ5PCz4ec8C8mrP8g6HGnkBuO3ebXw5ZvtrzoRt9yfWVy2B3c9ArDW+3PGZIDaAqkWw4hWIHR7D509vvhUL4I1bzPbXnA6jLzX77h7Ltte9D5b8zozz9o9gz3OQO9wEseWNgMaX4PWvpTe2SG9pD5vXY28ac7l5ne9/w/xeyBthAtZ2PWF+VvJHmqA1X44JWswph433mt83FcdBw+VQMikxfM11TQBboCC+XERERERERIY0pd6IZJtYNP5bQqRv5NeZDysGsTvuuIOPfexjxGKxuPKxY8cyZcoU8vPz2bRpE8899xzt7Z0fItx2221s2rSJP/7xjwpHExERERERyULJgtH8RxiM1tttBiPbRf+ZhlbYgtRs+9kWUGALXuhrGW+vgtFERERkgHBdl1VND3rWFfpLmF10fK+PaTsGzDR8dzBxsQejOZh/hLcdI0PfH6/a1rcdn+f58jPqv7/07Fwx1AczERERERERERERERHpZ/5cyEvzffP8Gpj0GUs/IRj/cbP0xMjzzWLjt8yx+mRY/gJs+g3EwiaYrGsg26z/gn2vw94XzOOcMlj06/hrrRwHZtwI028wAUuBI/i8Y/wn4N2HYcdfOstmfLUzIKl4kgla6qr+/Wb/jfyAdzDaxM9A3m9g4//Gl49YHh9oB+kHonUomQLzb0ssL5sNjWsSy8d+tHOcCZ8EPhlfP/I8eOv70Lo3s3l4Of0l+Ns1sHNlZ1mwBGpWwMZ7Mu/P8ZtwupKp5rb789ATBQ0Q2Q3RA0fel2SXd34a//jA2s77W+6Lr1vzufjHO1fC37/Zs3Fzh0N4Bww/CUZdCIFCE4pY0AD5taa+PWJec74cwIG86p4FOYqIiIiIiEjWUOKNSLZp3gJ/aOjvWQx+Z6+HwtH9PYs+89JLL/GJT3wiLhTtmGOO4dZbb2XhwoVx6+7atYsvfelL/OhHnd8A8dBDD3HDDTdw8803x61bV1fH+vXr33t8yy238J3vfOe9x/fccw/HHZf4zTUVFRUsXboUgGeeeYaLL774vbprrrmGz3zG8gEQUF1dnWJrRUREREREhpaoG7XWBZ1gWn0kCxDozTaDkS0oINOAMluQgi14zRqW0U/BaJlub38FuImIiIhk6q2W13i3dbNn3fElpxD0pXfMnQl7+K6C0bx0BKMlC/HKOOjMzfR43nt923Gv7TnONpkGowWdHHxOhhcSiYiIiIiIiIiIiIjI0VEyGaZ/ybsutxJOfQaaXoLWRig/DoKF3us6viMLRQPT94kPwq4nTZBSxQIonX64fwcW/xYeWw7Nhz+nK58Ps28x90d+ADb8Arb/ubO/unOg9kyoXmaC37b8H+BC9Wmw8O4jm2syDR9ODEbLq4ERp6VuO+ZyeOP/Hdn4/lwomwmnPG4etzZCsNTsQ4BNvzLhZl4+aP/8LUHbAfh1sb2+ZKoJ1vNyfiPklJr70RYTkObPhUABrH6/CcjriWFz4cDb0NbUs/YysIV3mNsdfzVLJsZeATNvhtyq3p+XiIiIiIiI9CkFo4mIDEJXXHEFra2t7z1etGgRDz/8MPn5iR9EVFZW8sMf/pBx48bx+c9//r3yb37zm1x88cVMnz79vbJAIMDo0aPfe1xaWhrXV3V1dVx9V4WF5gOSDRs2xJWXlpZa24iIiIiIiEiiqNtmrQukGYyW6cXuPW0zGPVWaIUtSMEWQJdtYRmZb+/QDfUQERGRgWVl44Oe5Q4+FpWmcUFDD2RbCG626whGCzhB/ARoJzE8OtN9l/n63se3mR7nZ5tMA9wGynaJiIiIiIiIiIiIiIgHnx+GzTmK4wVh+FKzdFcyBc5+B/augWARFE80gWwAgTw44Q+w7QFofAnKZkHtWWb+vqAJVYseglgUckr6dhsmftoENK39HzNm6Qw4/pdmHqlM+BRsvAda3u0sG34i1KyAFz9vb9fV9JviH+eUxT+e9iV49cbEdmM+ml7/HYJF5jnZ93fv+pxS73KAYJfnIJAHgfrOxyNOtwejTbsBXvuKd92pT0PFcfFl79wFL3waogc6yyZfC2M+YuYe3mnGanwZdj4Oe//WuZ4vxwTIdQ+Ry683z2+sFRlE1v0Edq42gYJ5I/p7NiIiIiIiIpIBBaOJiAwyjz32GGvWdH77SHFxMb/85S89Q9G6uvbaa1m5ciX3338/ALFYjG9/+9vccccdfTpfERERERERyUxvBKNlevF6wAmk3fdgZ9t34V4KUrCFYtjKMx23t0RcBaOJiIjI4NPUtoeXDz7jWTe9cC7lwb75BulsO9bLBi6xJLXOe/dyfXkcih1IWKOvj1cjrvdzE441e5YPlACx3AwDsRWgLSIiIiIiIiIiIiIivcYXgIpjvev8Iah/n1m8BAr6bl5dOT445maYcRO07oPcivTbFo4xAV9v3wYH3oKKBTD+UybY652fwr7XO9f150N7t8+d/Pkw+oPJxxh1sQkXc7t91tbw4fTn2WHyv8IzlyeWVyw08971ZGJdyTRwnMTyDjWnw5rPJJbn10PJVHu7glGJZWMuM9t7aKOp9+fE1+dWQcOHzGLjutC8CXDMHBwH2iPwS8tnYKFyOOF+eOajsP8f9n4l+xxYC2/fDtNv6O+ZiIiIiIiISAYUjCYiMsjcddddcY8/9alPUVNTk1bbb3zjG+8FowHcc889/OAHPyAUCvXqHEVERERERKTnkgWj+Z303u4LOZldlJ/p+oOZ7cL/TIMUbCEXtv5tQQr9FTiWcXDEEA71EBERkYHjiX1/JmYJ5FpSenqfjZttx3rZwHXtdV2vpQj5cr2D0Xrp+NzG1r+tn1xf8i8wyhahDAPcBkrgm4iIiIiIiIiIiIiISK/yBTMLRetQMApmfj2+zF8Oy1bDujth32swbC6M/ShsfxRe+jfY/waUzoR5P4T8uuT9F0+Axb+HZ6+EyC4IFsOsb8HwEzKfa93Z4M+F9m6fi428AGpWgC8EsUh8Xf15qedXdQLsXBlfPu4qGH4iOH5w2+Pr8usht9q7P38OFI9PvS02jpMYuuYPQV4NtGxLXH/u96HiOCieaA9Guzhm+o3sgT3PwY7HIVQBvhzIKYNDGyBQCLEwvPyFxPb158Pm30DZbGhc0/Ntk0Q7HlMwmoiIiIiIyACjYDQRkUHmiSeeiHt86aWXpt126tSpzJ49mzVrzBun4XCYv/3tbyxcuLBX5ygiIiIiIiI9F3WjnuU+/PgcX1p92MK3emv9wcweWtE7QQq2fW0Lp+uvwLGMt9cNE3Njab9GRURERI62qNvGE01/9qyrCtYwKX9mn43dW+G7g0uSZDQ6k9Fs+663gs5sbP3bg9EGRoBYpsFoma4vIiIiIiIiIiIiIiIiHnLKYPLn4stqzzRLrM0EsaWr7myo3Q7NmyGvDnz+ns9pyR/giQ9A2z5TNu5qmPBPps9Fv4YnL+gMTqs5E6b8a+p+l9wHz10N2x4wwW1jPwZTrwfHB6MvgfU/i19/0mfjvznpaKg7B976QXyZPw9GnGbuj70CttyX2K5sdudcQ+VQc7pZbKZcB1vvh0PrTSBeZbfr9/43yXZ/0E1ef2GLeW62PwprPmdeDx1GXwIb700MoRvsWhv7ewYiIiIiIiKSIQWjiYgMIo2Njaxbt+69x6WlpUyePDmjPhYuXPheMBrA888/r2A0ERERERGRLBJ12zzLg076//wUcIL48BMjvX9s0cXunWz7ItMghYhrCUazBKBlW1iGLfAh4AStr9FWN0KuZftERERE+tvLB55lf7v3P0IvKV3epwGv1hBcyzHjUOAmCUZz4oLR+ja4uMBXxKHYgbTXtx0nD5RzqpCTYYh2huuLiIiIiIiIiIiIiIhIhjIJRevg+KBg1JGPPWIZnLcLml6B/FGQW9FZV3cWvH8n7H4GCkZC0YT0AsxySmHRLyHWbubZtc38n0D+SBM6FiyChstg/NVHvh2ZmnYD7H4aGl8yj31BOPY2yCkxj6uXQagCIrvj2zVcmtk4jmP2o03DZbD+rsTyydea27FXwLqfJNZXnwr+XLOMPB9qz4bILhPW5j/8+d6Mr8IfxniPO/ULMOMr8Ms8iLV6r3Pac7BzlQkbe/3r9m1IV+5wCO848n6SaWvq2/5FRERERESk1ykYTSTb5NfB2ev7exaDX35df8+gT+zatSvu8fjx43Ey/FaMSZMmxT3euXPnEc9LREREREREek/UjXqW+5303+pzHIeQL5eW2KG01s8dIBfxHw22gDJbAIKNLUjB1r/tOeivsAzb/EsCZexp834vIRIL67UkIiIiWWtl04Oe5TlOiONKTurTsbMtBDcb2GPR4vXGvnNd13o8Xxwo5VBresFoUbfNGhKcN0COg0O+UIbrD4ztEhERERERERERERERkR7yBWHYHO+6YJEJT+tRv36PsgDM/KpZ+lNeNSx7CnathpbtULUECkd31vtDcNJf4Inz4cBb4MuB8Z+Cidf07jxGnu8djDbyAnNbc6Z3MNqYy+Mf+3Mgvza+LK/GPm71ySa0bs534PlPJNZXHg/l88ziuvZgtJIpZj8+dxVs+pX3OufvhZyyzsdt+8GfB4c2mr4LG8zrItYOe56Dtd+FPc9C82aItZlrRCd+1gTVOQ7seQHW/9T0013rPvs2i4iIiIiISFZSMJpItvEF4t8oE8lAY2Nj3OOSkpKM++jeZu/evUc0JxEREREREeldtgvtA05m3wyZ68tLOxjNFjYwFFkDyjIORvNe3xYs0FuBbL3FFjRR7E8WjNYClHnWiYiIiPSnrZENvN3yumfdvOIl5PsL+3T8bDvWyw72aDSHzi8F6o1gtKgbJUa7Z11xoIx3Wzd79J/43CR7vgZKgJjP8ZPjhGh1I2mtr3NFERERERERERERERERGZQCeTDiVHt92Qw4ay0c2mxCuQJ98HlgzRkw9Yvw+tfMY8cHs79tAsmA/8/encfHUR72H//O7C3r9CFfMsjGF+bwgc0NxpyOCwRCEiAHOZq7JKGE8kubNnZ+ISRpaBNISEgoDTQl9JcmpKQOkNJgm9MhmBsbbIMNvvAtWedqj/n9MdjSaueZ3ZVWK630eb9e85LmeeZ55pnZtfyMtPMdTf4LNyStZ+jY5EukKe/L3XcgIk1cKu16OLM8MkYae4b7fcN7pWf/SnLSmdtM+UD395Ylo4bLpHCNNP2z3sFo4dFSqDazLFTtfq2anlluB6Rxp7mLn6kflSZfLK3yeO0Sze6xWLZ/HwAAAACAIYMrOAAYRhwn8yYRy++Xi3kqRh8AAAAAgOJJOUnP8qBV2DMQCrmBvVxu4i+FiNX/4AV3e1Mwmnf/pteg0EC2YjEGowVrPcv92gAAAAy2xw4+bKxbXLtswPdfrPDd4cTJMxjNdO4KCZXzO881Qe9gX6/+O1PmfmJ2Rd7jGWyFXSsSjAYAAAAAAAAAAIARbNSUgQlFk9zQsbnflN63RzrvUemKfdKsL3XX2yHp9F9KS/4gzfuOtPj30lm/dUPP8jHvu1J0QmZ/C38sBcLuemyidPp9kh3u3qbxo9KMz2f2M+2T3v03ftT9Wn+WFBmXXX/UB/2D1foqbPoMoyO9tFzavabvfae6pMShvrcHAAAAABSksLslAQBD2ujRozPWm5ubC+6jd5u6Ou8bPgAAAAAAgyPhJDzLg1aooH4KCTvjZvduxtAKJ//gBcdxjCFh5mA07/LOQQobMx1vtSE4QhrZwR4AAGDo6ki16ZlDqz3rjokdq4bo1AEfg2muR7CsQY8Px0csU6hc/ufOby5fHfCe33r17xfGVk5h01E7ppZUfn9jNF0fAQAAAAAAAAAAACiS6DgpusS7zg5IEy90l0LVnSi95wVp10Nu2NfEi6TqWZnbHP1BadJ7pP3PSFXTpVFHZ/dz7FeknSulzj3dZdM+KdXMfneMIems+6U1l0iJJrds3FnS3G8VPuZ8hMwPd9WrN7lLxvY10ugFkh11g+5qTpAsW5pwgRQZLXXulcJ10ssrpC13S6m4G/Z22r+5561lszTmZKlicu6xpbqk9relQ6+721fNcvfVsVMa1ej+Lbz5NSnVJlVOl0JVbj0AAAAAjFAEowHAMDJuXObTEzZu3FhwH6+//nrGen19fb/GBAAAAAAorqQxGK2wX/VFCwg7Ixitm+lcJJ2kkk4ir4C6pJNQWmlD/97BAuawjMEJGzPtt8KuVNAKeb5P/YIiAAAABsvaQ6sUd7xDtM6uXVqSMZjmgPF0pxzHkTUQT8ke4hzHMdb1PBvGebLhNfXc1idErcYQ/OvVf2e63dhP1K7IezyDrZDrP64VAQAAAAAAAAAAgDIWGy9N+7j/NqEqacJ55vqaOdKFa6Utv3BDv+qXSI0fytym/kzp8p3S/rVSZJzbZqACv8I1hW2faJZ2ryqszZ7HpAcazfUVDVKqQ4rvdwPOWjcX1n9P486S5nzVfQ3ssJTukgIRKdEqBSskWZKTlKyg5KSk1jek2EQ3qK51izT6JDfgzUuixW0fqsx/PJ173Nc61SE1XC7VHtf3YwMAAACAHAhGA4BhpK6uTsccc4zeeOMNSVJTU5M2bNigY489Nu8+nnrqqYz1RYsWFXWMI/HmHQAAAAAopmTaFIyWO5CrJ1P4gpdoAdsOd37nLZ7uVDCQ+3XwC14wBdaZXoOE06WUk1LACuTcbzGZjiFiRxWxo0qmst+nfscNAAAwGBzH0WNND3vWVQVqNK/y9JKMI2J5zwHTSinpJBSywiUZx1DiyC8YrfsD8qZ5ciEBwn4BvtWmYDSPNqZ9BhRUyC7sem0wFXKtWMi2AAAAAAAAAAAAAIapyqnSCV/33yYYk8YvGfixhAoMRhsI7du7v+9PKJok7X1cWvN4//robfwSqe0td3FSbtnML0pdTVK03g0/2/oLqW6eNOkvpMkXSzv+W3r15sx+XvoHaeaXpOpZUstGKZ2UGi5120XrJceRvO4ldRwp1S5ZASnAw7gAAAAAmBGMBgDDzJlnnnkkGE2S7r33Xt100015td2wYYPWrVt3ZD0ajeqkk04q6vgikUjGejweL2r/AAAAADDcpZT0LC84GM0q4GZ3Q1DDSOR3439nukOjAlU5+4g75uAF0+vit9+udKdigVE591tMfsFoUTumtlRLdhuHYDQAADC0vN7+knZ3bfesO6PmwpKFWeUK3w3ZIy8YzU/Pj01HDMHChQSjmea2lmxVBqqNbRzHyXggUIdhn9FAeYWHEaINAAAAAAAAAAAAoGwFIlLFUVL724M9kqFr96rsso0/zC47+IK7vPotc18bb8tc33R7YWMZc7I0+VLJDrqBaWMWSvWLpTJ6+BgAAACAgUMwGgAMM9dcc43uueeeI+s/+tGPdO2112rChAk52/7t3/5txvpVV12VFWTWX7W1tRnru3btKmr/AAAAADDcJZ2EZ3mwwA8BmAIEvHCzeze/c2EKVOit0yekwfS65NrvUAlGi9oxY5Ce33EDAAAMhjVND3mWW7J1Zu2FJRtH1GduHnc6VCnvcK7hzJHjU9sdRmYORss/lDdX6K9pfAmnS2Gr++9opjC2crueKiQYu5DrSgAAAAAAAAAAAAAoiakfkV69ebBHgXzsf8Zdept8qRSulWqOk0LV0oFn3UC39m3SpL+QImOlQExqeK9Uf45kWZJll3z4AAAAAAYWwWgAMMyce+65mjdvnl544QVJUnNzs66++mo9+OCDisXMN158//vf1wMPPHBk3bIs/fVf/3XRxzdt2jSFw2F1dXVJklatWqVEIqFQiBR/AAAAAMhHIm0IRivwV32F3MAeKbMb+QeS33kzBSFkb2cOaTD17xdOMBiBY6Z9Ruyo8f1SSDgFAADAQDuY2KeXWj0+XCvpxMqTNTo0rmRj8Z9jjtQ5lDkYzcojGK2QObJp26gd870W6kx3KGxHMta9+6nIeyxDQUHXigWEqAEAAAAAAAAAAABASZzwf6VEq7TxtsEeCfpqx+/Mddv/q/v7jT/s/j5UK4XrpMho92vG0rusx3qo2g1WAwAAADDkEIwGAEPMO++8o61bt/apbWNjoyTprrvu0mmnnXYkfGz16tU666yzdPvtt+uUU07JaLNv3z4tX75cP/7xjzPKb7zxRp144ol9GoefcDisM844Q6tWrZIkvf3227r00kv1uc99TjNmzFBFRebNIRMmTFA0yk0VAAAAAHBYSknP8qBdWOB0tICwM4LRuoWtiCxZcjyCGvINrTBtZ8lWyAp71vm9BnGn9GEZpmOI2DFjkMLIDfUAAABD0RPNf5CjtGfd4tr3lHQsvnO9ETqHSjvmYLQeuWhFCeU1BRy7ob+5gpFrj6x3pts9tyvk2mso4FoRAAAAAAAAAAAAQFmzA9LCW6UFt0g7Vkr7nnbDtFo2DfbIMJASTe7StqWwdpb9bqiaR6BaVshar/VgJaFqAAAAwAAiGA0Ahpirr766z22dd28SWbBggX70ox/pc5/7nNJp96aedevW6dRTT9X06dN13HHHKRqNatu2bXrmmWeUTGbeVH/BBRfom9/8Zt8PIofrr7/+SDCaJD388MN6+OGHPbddtWqVzjnnnAEbCwAAAACUm2TaEIxmFfarPr8b/Puz7XBnWZYidlSdHuEJXmVeTCENUTsqy/ABiYgdMfaX736LJekkjAF9ESvqE05R2nECAACYJJ2Enmx6xLNufLhBsyqK/+AYPyErLEu2Z1Bbqed6Q4c5GM3qkYxmmnt2OXGlnZRsK5BzT8bQXytXMFpmO9NrVW7BaFwrAgAAAAAAAAAAABgW7JA05XJ3OeZT0spZ3tud9ENp+mek302TOnZ4bzN+idS6RWrbOmDDxSBx0lLXAXcplBXMDlPLK2CtTgpUEKoGAAAA5EAwGgAMU5/+9KdVV1enT3ziE2ptbT1SvnnzZm3evNnY7pOf/KTuuOMOhUKhARvbxRdfrJtuuknLly9XKpUasP0AAAAAwHCUdBKe5UGrsOu4Qm7OL7cb+QdaxI55hh7kG/xl2s4U6iBJthVQyAor4XT1eb/FYgqOkNxgBFM4AsFoAABgqHi+5WkdSjV51p1du9QYVjtQusN327Pq/OZew5mTbzCa5RdcFlcsUJFzX3HHPD/3uxbqfU3g9fod7qecFBaMVl7HBgAAAAAAAAAAAGCEGnWUZEekdDy7bsJ5UiAszfyC9OLXvNuf96jkONILX5U23ialOqW6+dIp/yKNXtC93S8NnzeITZQu39m9vv4fpRf+j/e2l213A7feus/dX88xh+uksadJHTul8BgpEJV2/t7d3unxwNvq2W5Z8yvZ/QdiUorPcxaFk5Tie92lUHY4d6CaKWQtwEPMAAAAMDIQjAYAw9j73/9+nX322br55pt17733at++fZ7bhUIhLVmyRMuXL9fpp59ekrF97Wtf0+WXX65f/OIXeuqpp7Rx40Y1Nzero4NfqgEAAACAH1MwWsAq7Fd9hd3szh+o44m2AAAgAElEQVTQezKFL3iFpRWyXa7zHLVjSqSGejBazCcYbWSGegAAgKHnsaaHPMsjVlSnVi8p8Wje3bcxGI2/m/jxCy6LO52KKY9gNMM8NWJHFbRCCiiolJJZ9XEns52pn5idewxDSSFhZ4RoAwAAAAAAAAAAACgLgag05X1u2FhPdfPcEDFJmnSxdzDajM+7Xy1Lmv9d6YSvS+kuKVQjWXbmtpGxUtzjHs5jPpO5PuECSR7BaMEqN0TNsqXZ17lLPtIp96sdyK7r3CPteUyqminVHi81b5AePN67n+rZ0qHXvOtq5kjLXpGeu156/Qf5jQtm6S6pc7e7FCoQLTBQrcd6IFz8YwEAAAAGCMFoADDItm7dOqD919fX6wc/+IH++Z//WevWrdNrr72mvXv3Kh6Pa+zYsWpoaNCZZ56pqqqqgvtesWKFVqxY0eexzZkzR9/+9rf73B4AAAAARqKkk31DviQFrVBB/XCze9+Zzke+wV/G4AVD4NqRejuqllRzn/dbLH4BcBE72u/zAwAAMJC2d27RGx0bPOtOrj5HscCoEo/IZZoLjtQ5lCPHWGep+wnbfuHC+YbKmc7x4XltxI6qPd2as12HR7Cd2768rqcKuf4jRBsAAAAAAAAAAABA2Vj4I6ljp7RnjbtePUs68z/dwDNJqjtRmvYJ6c2fd7eJTZZmfyWzn+AoSYbPFjR+xDs0rPHqzPW6eVLVDKllU2b50Vdlh63lwysQ7bBovXTU+7vXYxPM2055n/Tqzd51jR91z9VJ33eD3faskZykNOtL0qijpWc+L22+w9z3pW9KO/5bWvdl7/rj/s4Nldv8M3MfcKU6pY5d7lKoQIUbkBbpFZ4W8ijLCFirlezCPqsOAAAA9BfBaAAwQti2rUWLFmnRokWDPRQAAAAAQD8knYRneWgAg9G42T2T6XzEnTyDFxxDMFqO12SoBI757S9qx4yhHn6BagAAAKWypulBY93ZdUtLOJJM5jnmyAxGk08wmoocjGaapx7uO2rHDMFoHb7rh5Vb0HS+14qWLIWtyACPBgAAAAAAAAAAAACKJDJaOn+11LpVSnVI1bO7Q9EOO+UuaeJF0u7VUmWjGwZWMSn/fcy+XtqxUmrd3F026zo3hK0ny5LO/p205mKp9Q23bOJSacEthR9XocJ1UqhGSmQ/qFdT3iftXiXtezq7rme42uRl7tLT1I/4B6ONapQmnO9dV3GUNPdb7vdjT5fWftx7u6kfk7bc41034QJ3jPEDUtfBXkuPMq/jHklS7VJHu9Sxo/C2wcpeYWl5BqyFav3D+wAAAAADgtEAAAAAAACAMmIKRgsWGoxmCK/y3LbMbuQfaKbzkW9AmWm7XAF0pv2WOnDMFPhgyVLICpvPz4gN9QAAAENFe6pVfz70mGfd9NgcTY40lnZAPZjCs0ZquKxvLJrVMxjNfK3S2e/5eezdr/kF/3am2z23K79gtPyuFSN2NOO1AAAAAAAAAAAAAICyUNlorrMs6egr3aUvRk2RLlorbfuN1LpFql/sBq15qZktXbJJOrTBDSqrmNy3fRbKst0AsTfuyiyvminVLZBmf0V64gPK+Mv9lCukqun+/Y49XQpWScmW7Lrx57nntmaONO4sae/jmfUzr+3+flSjeR+1J5jrZn9FmmQ41z2lU1KiyT887fDSO2TN69hGkmSru7S/XXjbUE1mWFrvgDWvkLXwaClU7b5nAQAAMCIRjAYAAAAAAACUEVMwWsAq7Fd9hdycH7YiBfU93PU3tMIULJbrNelvIFuxmPYXtiKyLdt4HKbjBgAAKJW1zY+qy4l71p1du8yzvFSGylxvqHAcv2i0bgEroJAVVsLpyqrLP7jYf35uCgrr3b/peqDsgtHyDNEuJGwbAAAAAAAAAAAAAEaMyBhp+mfy2/ZwWFipLfi+1LZNeud/3PXKadLZD7jjOeoK9/vNP5Xie6WJS6Xj/z53n5YlvXeL9JuxmeV2SDr2b7rXF/9O+vPnpR2/d4Owpn9WOvaG7vqxp7ghWonmzH4qjpKqZpj3H6rKPUZJsgPuaxQZk9/2PaUTUlfvUDWPQLXeZfEDUsr7YWsjRqLZXdq2FtjQksK1PoFqPgFrwSr3fQkAAICyRTAaAAAAAAAAUEaSTtKzPGiFCurHdHN/1nZWVDZP2sqQbzCCiWm7XK+JKXgg30C2Yok7pvEXFhwBAABQSmknrceaHvasqw7UaV7VKSUeUSbzHGqkhsuag9FsZV6fROyoEimvYLT8zp1pPn34NTGH1mW2MwejVeQ1jqEi3yA303kBAAAAAAAAAAAAAAxxoSrp3D+44WiJQ1LNsVLPzwo3XOIuhYqMka5KSK/9k7TrD1J0ohsSN35x9zbhWumM+yQnnbnPwwJRac6N0otfyyw//mvSmJO992sFpJrjCh9voeyQFB3nLoVKdeUIVPMJWEuN5M/fOt3no1BWwH2/hXqEpfkFqvUsC44iVA0AAGAIIBgNAAAAAAAAKCNJJ+FZPmDBaNzsnsV0TvINKMsVvGDe79AIHMsdHDE0AtwAAAB6er39Je1J7PSsO7P2woLn08U2VOZ6Q4U5Fi1bxI6pNXUoq7zfwcWW//y2dzvzPLm8rqnyv1bMbzsAAAAAAAAAAAAAwBA1akrx+7SD0pz/4y5+/B7afNzfSaMapbd/LQUi0tFXSw2XunXjzpL2Pp65/cSLpHBNv4Y94AJhKTbeXQqV6nSDweI+4WmmsnT2g+ZGDCclxfe7S2uBbe2QFKp1A9VCdVLNbGn656WxhnC+QqTi0r6npMhYN9CPB5gDAAAYEYwGAAAAAAAAlJGkk/QsD1qF/aov35vzo2V2E38pmM5JPM/gL2PwQo5zbdyvU9rAMdP4D4/PFJCQcLqUdlKyrcCAjQ0AAMBkTdODnuW2bJ1Zc2GJR5ONcNnezNFoljKfyHs4wKy3vOfnjv/8PGKZ5v/d7ZJOwhhiHSuza6p8rxXLLfANAAAAAAAAAAAAAFBGGj/kLr2d8Utp9TKp6WV3ffQi6ZR/Le3YSi0QlWIT3aUQjiOlOrzD07JC1jy2MXxmfURIJ6T4XneRpP1rpTfvdt9v486QxpwiVc+UAjEpOEoKVrpf7bBkWeZ+3/qV9Nx1Useu7rKTbpUmXCDVHJvf2BIt0p7H3PC2qunS3qeldFxqfUOKTpQmLXXLAQAAhgGC0QAAAAAAAIAyYrrZPmiFCuonYAUUssJKOP5PAjMFNIxkpnNiCgzL2s4UvGAIdMi931IHo3nv7/D4/ML04um4YoGKARkXAACAyYHEXr3c+qxn3dzKU1UbGlPiEWUzh+/mN8ccbhyfYDT1DkbrZ6hcX+e3Pfv321e5BYjlG45NiDYAAAAAAAAAAAAAoOQqGqT3vCgdet0Nhqqc5h9ENZJZlhSscJeKhsLaOo6UbM0OS+sdoNY7YC1xOFQtPTDHNNgO/NldTKxgZlDaka+jpP3PuOevt3VfNvcXGSPFGqT4HindJcX35x7jOkkTzpfmfls6sE5q3ybVnihN/gt3HJL7+qbj0rb/csPfxp4qjVmU2U/63XsW7MLuUQAAACgmgtEAAAAAAACAMpIyPH0raBX+q76IHVMilSsYjZvdezOdk/yDFwzBaDlC6Ez7LXVYRq7x+71n4ukOgtEAAEDJPd70sBx5f+Bycd17SjwabxHLMNczhOoOd45jDkbr/XlmY6hcHufOcRzj/PZwv8aA4h79d6bM1wIxu7zmvyErLEtWjnA6QrQBAAAAAAAAAAAAAIPEsqSa2YM9iuHNsqRQlbuMOqqwtk5aSrSYw9RMZfEDUqJZyvF5hSHNSbrHkGguTn/x/fmFofX2zv+6S2+BmBQZJ7W/7d3uwrXS/j9Lr39fan3TLas5Tjr2b6SjPuAGEsqRaua43zdvkNKdUuUxbvjaroelZJtUv1iqOqbwcQMAAPRCMBoAAAAAAABQRpJOwrM8aBX+NKaIHVVryv8Pr9zsni1iGYIR8gwoixsC1HKF0Jlei3wD2YrFPP53g9EM50caucEeAABg8CTSCT3Z7PFBP0kTw1M0I3Z8iUfkzRi+VeIQ3KHCL5TLUmYyWn/OXcLpMu4rkisYrce82G9OXm5h05ZlKWJHc15ncK0IAAAAAAAAAAAAAACyWLYUrnEXNRbW1km7oWKHg9JyBqr1WE8cGoijGV5SHeZQNEn6n1Ozy5pfldZ+3F0KMXqhVDFZsoLue6JqphSuk2Z8QerYKb34Nent/+duG6yUjvs7KTrBfS2j46TJl0qpTskKSJExUvN6qe0tafQCKdUubf6Z+5pH6qX6s6Sxp0nBCslxsp+6CAAAyhbBaAAAAAAAAEAZSRiD0Qr/VZ9fgNVh0TK7ib8UTOfEFBiW73a5ggXM+y1tWIZpf93BEeb3TL7nCAAAoFiea3nSGAZ8du17ZA2RD8LlE741svg9/bd3MJr3/DOfAGH/QDP3Ncln/u/3OkXtipzjGGoidizn+eNaEQAAAAAAAAAAAAAAFJVlu+FZ4TqpclphbdNJN1Std6Bawitkrdd6snVgjmckO/Csu/T2/A3ZZclW6cW/K96+Q7Xueygy+t33U6+vkdHeZYEKQtUAABhiCEYDAAAAAAAAykjSGIwWKrivfG5kzxXWNRIZgxGcTqWdtGzLNrZ1HMcYLJbr9ehP4EMxxR1DMJp1OBgtYmxb6rECAAA81vSQZ3nEiurk6nNKOxgfBKNlyj8Wze/c5Q4Q9ju/h/vNp//OdLvnNgEFFbILv1YbbPmEaHOtCAAAAAAAAAAAAAAAhgw7KEXGuEuh0olewWkHpd2rpA3fK/44MfASTe7StqWwdnaoV2Da6DwD1mrdtgAAoOgIRgMAAAAAAADKSMpJepb3JRgtnxvZ8wlPG2n8zluXE1fUMp+zpJNQWumC+/Wrj6c75TiOrBI9ocoUHnF4fLYVUMgKK+F0ebTNHU4BAABQLG93vqEtna971p1Ss0SxQEWJR2RmCsEt9VxvqHAKiEYzBhfnESrnNz893G9+wWje+4oGyvN6Kp9rxYjPdQ8AAAAAAAAAAAAAAEDZsENStN5dDpv0HqnhMmndddKBPw/e2FA66YTUudtdChWsMoeo+QWrBaukEfa5MAAACkEwGgAAAAAAAFAm0k7KGKrVl2C0fELP8rkhfqQxhVZIbviC33n1C17Ida5NgWtppZR0EgpZYd/2xWI6hp7jj9oxJVIEowEAgMG1pulBY93Zte8p4UhyM80x00qXdK43dJiD0axewWj5BJeZmALNevbrF1qXq59yDZrmWhEAAAAAAAAAAAAAAIx4406Xlj4jtWyW9r/71Q5LkbFSxRSp7kQp2SYlW92viVYp1eZdlmiVNt8x2EeEgZJscZf2twtrZwXMoWm5AtYCkYE5luEgnZT2PSUdeF6qmSONPVUKVkrxvVKoJvvcOWnJst1/px27pIpJUnCUuW/73ZiedEpS2g1XBAAMCILRAAAAAAAAgDKRdJLGuqBV+K/68rmRPWII4xrJ/M5bZ7pDNT5tfYMXcpxrv/3G050K2aUJyzAdQ8/xReyoWlLNWdsQjAYAAEqlPdWqZw897lk3I3a8JkWOKvGI/EWsoTHXGyrMsWiS1espqaZzF/eZex/ZxvGenwYUPBI+bQxGczqVdtKyLds8Ry7T6ym/MOhCtgEAAAAAAAAAAAAAACh7VdPdpb+6Dkpv/7/s8tN/KbVskl5e7t1u4e3SqKPcMKxHzvTeZuJF0mm/kLY/ID3z6ez6iilS7Vxp58q+jx/F56Sk+D53KVSgwiNEzSdY7XB5qMYNARuuWt6QnvigdPA573orIMUmSe3b/PupniUd8xk3IK1jl/TO/0iHXpe6DnhvHxkjTVwqVU6T9j/rBihOeZ/UcGn3+U51Sa98Q9rzuBSulWZ8Xpr07gNe0ynJSbj76Njlth+9wG3rOFLbFrcuFZcOrXdfz4bLpNjEvp0nACgTBKMBAAAAAAAAZSLpJIx1h2/aL0R+N7vnDk8baaI+5y1X8Ffc8QlGy3GufffrdKhS1b7ti8V0jD3HZ3pv+QXDAQAAFNPTzX9UwunyrFtct6zEo8ktmiN8t1RzvSHD8Y5Gs2RllfkFl+ViCk/LmNv6hNZ1OXFFrZg60+2e9bFARc4xDEV+1x6FbAMAAAAAAAAAAAAAAIB3Tf+MtO0/JSfdXRabLE25XNq92txu2selYIXbLjbRDU3qrfZEKTpOmv4p6ZhPukFrbW9LdXOlaH33do4jHXjWDeSqOV4KVUrxA9LeJ92wpdp50thTpa33SnvWuPvc9uvMfY09TQpWuWFxiWZp1x+kZJuU4nPiJZVqlzrapY4dBTa03FAur9C0XAFrgZhkZX9+a8hItEqrlkqtm83bOKncoWiSG0L2/Ffy33d8v/vvpqetv3C/BiulUFX2v90d/52739gkqWOnd91LX5fOfkByklKyQxp3hiTH3ZfjSJ17pJaNUvVs9+dDvnY+JL349264XN0CaeFt7/YtN3iu/W0pOkGKTXDfFyZdze5YTEF8Tto9z21vuT9XwjX5jxHAiEEwGgAAAAAAAFAmkk7SWDdQwWjc7J7N77zlCv7yC07Lda79gtNKGThmOoZIHuERpuAJAACAYko7aT3W9JBnXU1wtOZWnlziEeXmN8f0C9cdrhx5B6OpkGC0HKHFftv0nHv7ByN3KGrHjPPxfK65hqJ8ArIJ0QYAAAAAAAAAAAAAACjAhHOls34rvfotqWWzGzS08EdSICrVL3bDxpItmW3GneWGokluuNCiO6THL88MV7PD0tSPda9btlQ9y116syxpzKLMsshoqeESSZd0l838grscluqS7KA54OiwfWul3Y9KrVul2uOlUVOldFx64gPmNstelg6+KMX3SVv+zQ1j6qtQrXTsV6TIOKnrgNR1sPtrvOf6ATfMbURy3j0PBwtvakd6BKb1Ck3zC1gL17rvn4H29q/8Q9EGS7LVXfrCFIomuf9mHjnDu86yM39OTL7E/fkRqpLsd+89CkSldEra+4S072k38Gzbb6XOd7rbHXxOeuTMvo29p+pjpeh4ac9q8zbRCdLs66TwGCkQkYKjpPadUmSMNP5cN4Rx/5/c91X92W7g3Fv3Sa1bpNEnSXP+xm0DYFghGA0AAAAAAAAoE0knYawLWoX/qi+/m93L80b+gRSwAgpZYSWcrqy6XOELpnpbds5wO9+wjDxCH4qlP+ERcad04wQAACPXhvYXtDfxjmfdWTUXKdCHufNA85ubl3KuN9R5PW/UdO7yCQ82B5pFPb/3al8jqTPd7llfrkHTBKMBAAAAAAAAAAAAAAAMgIZL3aW3YEya/13pzz3CyIKV0tybstsv+YP07JekQ6+54WPzvifVHjew4w6E89tu7Knukq/Ri9xjqD3eXZ/9ZTcIqWWjG6QUGy/9Z62UaM5uO+YU6aK17ved+6R0l1QxKf99p7q6A8Jyhaj1rvN54P2wlo67oVmd3p/N8xWqNoSo+QWr1bn/DiyvT415OPh84eMarnqGoknSjv92l8FyaIO7+Ol8R3rhq/n192qv9Z0rpTf/VTr3Ee9QSABla+h94hsAAAAAAACAJ79gtL6EO+RzI3u53sg/0CJ2VImUVzCaf/iCX6iYleMPdiErLEu2HKWz6vIJfSiGpJNQSt5/yI1YucMjSjVOAAAwsq05+KBnua2Azqi9oMSjyY/fXG8kBqM5cgw12XNm0zVL0kko5SR9r5VM8/eeocT5hNaZXqNyvZ7KJyC7XI8NAAAAAAAAAAAAAABgSJrxeanmeDe8KFQtHfUB74CfCedLF6+X0knJLpO4kPHnSrsfzS6f9cXssopJmQFnM6+VXv1W9nYzPt/9fXRs4WMKhN3gtdj4wto5jpRsywxMix/IL2AtcajwcQ4XiUPu0ra1sHZWMDsszRSm1vTSgAwdZaJ9m7RytjT1Y1JwlBsON+4MafRJUrhWik7IP2QPwJBRJjMdAAAAAAAAAEmfJwuFrFDB/eVzI3s+4WkjUcSOqTWV/YfJXKEVpmCwfIIHLMtSxI6qM91e8H6LxS/YrOd7xfS+GYmhHgAAoLT2de3Wq23rPOvmVZ2qmuDoEo8oP0NhrjeUmILRLI9gtFzBZRWBSt96L5lzW/Nc/XD7Do/XTZKidoWx7VDWM/TYuA3XigAAAAAAAAAAAAAAAMVVf5a75KNcQtEkN6iodzBaqEZquDx322M+Jb1xp9S5p7usepYbHDcYLEsKVbrLqKMKa5tOSl1NPiFqPgFr6fjAHM9Q5yTd177n6w/42XJP9/eb78isO+dBaeJSAtKAMlJGsx0AAAAAAABgZEs6CWNdsA/BaPnd7J47sGskMp07v+AwSYr3IxhNcsPsvMMy/PdbLH6hHD2D9kzHMxJDPQAAQGk93vywMVRrce2yEo+mMKZgtFxzzJHE6/NIfgFdnemOfgejBayAQlZYCafLs3+3H+/XKJ8w6qEon9CziFWexwYAAAAAAAAAAAAAAIASm/pRqWO7tP67UuKQG2x2+i/dcLFcKhulC56UNtwiNb8qjV4kHf/3UrAMH1hoB6XoWHcpVLIjMzAt7hOidmT9gBvEZvg8HTDirF4mHfOX0sIfS4HwYI8GQB4IRgMAAAAAAADKRLGD0fK5ST+fG+JHItO5yxVQlk/wgh/TdqUKHPPbTySvYDRCPQAAwMBJpLv0VPP/etZNCh+l6bE5JR5RYaJ2TM0e5SNxDuU4aUNNdjKa33VNrnmyKXSud58RO6pEKjsY7XD/XoF2ucY2lOV3rViexwYAAAAAAAAAAAAAAIASsyzpuL+Tjr3RDe2KjiusfdV06eQ7BmZs5SIYk4KTpYrJhbVz0lKi2SM0LY+AtZT3Z6LKzqKfSH/+vHdd9SzpL9ZLlu2upxPSyyuk12+VUh1S/RJp3nekPyzybj/3ZmnOV6WWTdKh16Snr3HPd19M/ZjUcJm0c6W080E3RDDZJgWiUt0CKVwrJVqkvY/3rX+43rjLfV2nfniwRwIgDwSjAQAAAAAAAGXCLxgtYBX+q758wrjK9Ub+gWY6d6ZghcPijiEYzco3GM0UODYUgtGint/n2x4AAKC/1rU8obZUi2fd2XXLZFnZoVpDiWlOOBLnUI7hKaWWRzCaX0BXrnNnDC62egejxdSaOuTR3p3/5xuwVi5yhZ7ZCijYh2tQAAAAAAAAAAAAAAAAjGB2sPBQNPSPZUvhOnepnFZY21Q8OyzNFKLWu8xJDczx9MXEC6VgpZRsza6bfEl3KJok2SFp7rekE2+SUp1uIJ0k1S+W9qzJbj/l/W7wX/VMdxmzSHrH++GuOuUu6U9/6V13ZYcbgCZJUy7zP57OPdJz10tb73XXq2dLoVp37O3bpcar3fJEq7TxNv++vDRcLm3/rbl+yvukjl3SvqcL7/sw0/ksle33E4wGlAk+qQoAAAAAAACUiaST9Cy3FZDd848xecp1s7u7TX6BXSONKeDAFHx2pN4QmJDveTaFZeQKZCsW0/gtWQpbkSPr5mC00owTAACMTI81PeRZHrUrdHL14hKPpnDGOVSOOeZw5B2L5q3nPLS3XPNPY3Bxr9fCHFp3OBjNu5+oXeG7/6Eq1/VJxI4O+aBBAAAAAAAAAAAAAAAAAP0QiEixCe5SCMeRki3mMDW/gLWk94NR+2z8uW4g3NSPSpt+klkXqJBm/JV3O8vqDkWTpGNvkPY+kRn4NuX9UvWMzHaTLzUHo02+WLIC2aFx9Wd3h6LlI1ovnf7v7uI47lhN5n9X2ni7G2LWsVMK1UgtG6XWN723P365dOIK6eGF0oF13tuc9Rsp2SH9yuezcSfdJq37kmH8E6TzVkn3+dwDFaqREs3edXULpOmfkbb9RnrnEXMffkzHD2DIIRgNAAAAAAAAKBNJJ+FZHrJCfeovVzBa0Aoq2Me+h7u+Bn/FjYEJuUPqfPfrlCZwzBTA1jsYoa/BcQAAAH31Vudmbe3c5Fl3avWSvOdbg8k0Px+Z4bLe0WiWsj/EZVu2IlbUc67Z1+Di3u+XXKF1nel2z/p8wqiHolz/Xsrh3xMAAAAAAAAAAAAAAACAQWBZUqjaXUYdXVjbdELqasoMSzOFqGWUHXDb9jT2dOn0e93vF/xActLS1n+X0klp3BnSop9IlY35jWvyxdKSh6VNP5U6d0sTL5Lm3Ji9XcNl0rovK+vzb0d/yA00m329tOF73eWBqBtG1le5Hm4ZiErHfiWzrH2n9F+TvbcfNcX9OvNaae0nsusnLnW/Bn0+Pzbjr6RZXzQHox31fv9xW7Z00q3S2o9715+zUopNdI+tr8Fo8X19aweg5AhGAwAAAAAAAMpE0kl6lvc1vMx0c/+Reoub3U3MoRW5ghe863O9FoeZAghMgWXFZhy/FfVdP6xU4wQAACPPmoMPGuvOrn1PCUfSd8Zw2RxzzOHIKSAYTXLn0/GURzBazuBic/BvT36vTdJJGEOsY2UaIJbzWjHP6xcAAAAAAAAAAAAAAAAAyJsdkqLj3KUQjiOl2rtD02ITM/sIhKWT75BOuk2yg274VqEmnO8ufkZNcYPINtzSXRatl477qvv9vO9KdfOlnb+XIuOkqddIo+cXPpb+iI6XImOk+P7susPH13CZFLxWSrZl1k/9WPf345dIu1dl9zH1o+7XY/5SeuMuj/pr/McXHi1NOE+SpayAuegEd/yHtzM5+U7pmU+b63uH6AEYsvrw0xoAAAAAAADAYDDdbB+w+vb8A9PN/Ydxs7uZKRgtV/CXqd7UX/Z23q9JqcIy4o4p2C3Wa31wxwkAAEaW1tQhrWt5wrNuVsWJmhBpKPGI+oY5VN+Zzl1nn4OL85vfdqY7fK8B8p3nDzW5g9HK87gAAAAAAAAAAAAAAAAADEOWJQVHSRUNUt2J5mC1QLhvoWiFmPeP0tkPSDOvleZ+W7roGan2hO5xNl4tnf7v0knfL30omkVmrdIAACAASURBVCTZgcyAs8PGnyuNOtr9PlwrnfuoVDndXQ9Vu8d19JXd28+8NruPMadKY052v591XXZ42eRLpdEL3e8b3us9vhO/6b6Oky/Orpvxue7XL1jh3V5yg/GqZ5vru5rMdQCGlL7dMQkAAAAAAACg5FJO0rM82MdgtJAVliVLTu+nqLyLm93Non0MrTAHL+QXQmcKs4vnCGQrlnzHbxpn0kko5ST7HOYHAADg5enmPyrhdHnWLa5dVuLR9J1f+NZI4zje1yiW4UNp5lC5vgYXR3utm+bhnb77yBVGPVTluhY0XQ8BAAAAAAAAAAAAAAAAwIhmWVLDpe4yVM37rpTukrb8m5SKS5PeI53688xtxp4sXbpJ6tgtRca6gWo9TXmfdOavpNdvk9p3SBPOlxbc4h6/JNUeL134tPTGnVLrFql+sTTj8931R10pbX8gs087JDVc5n5/xn9I677kbhOqlqZ+XDr+a93bBqvMxxetl475tPT8V7zr03GpdavU9LK0f60UHiNNvUaKjpWctOQ42ccLYFBw9xkAAAAAAABQJhJOwrM8aIX61J9t2QpbEcUd77Crcr2JvxTMwQj+wQum+oiVX7CAXyBDKRjHn2dwhNtHpyoClUUdFwAAGLnSTkqPNT3sWVcbHKMTKheVeER9Zw73Ks1cbygxhTdbhu37Ok/ub/BvPN2hjpRfMJrPUymHsIjlfy1IiDYAAAAAAAAAAAAAAAAAlCk7KC38obTgB5KTlAIR87ax8ea6oz7gLibVM6X53/OuO/oqqWWT9OrNblBZZKx0xn1SbIJbH6yQTvkX6eQ7u8PUeqqb6wamJQ5llodHS7VzpYoGczCaJP1uauZ6723Do6WKKVL92e6+Nv5Yan7FDZSb9WVpwffdcXXuk+L7pMho6dBGN5Qt1S4l26TRC/3PLYCcCEYDAAAAAAAAykTSGIzW91/zRe2Y4qn8wgDQzRyMkCN4wRBCl++5HuywDHMwWqzXuvl4OtMdBKMBAICiebXtee1P7PasO6v2IgWs8nlqnymMKlf47sjiHY1mCurq9Dl3aSelLifuWdd7vm+a33amO3xfn3INmw5aQdkKKK2UZ32+wc4AAAAAAAAAAAAAAAAAgCHKDkgapM9YWpZ0wtelOTdKbW9JVTMky/bezksgIs34grT+O5nlM6+VAmEpNlE69xHp0Qv6Nr6uA+7S9GJ23eu3uku+Kqa4gWqxiVKkXho1RWr8iNS6xQ2Fa3ivW1eIdEJ69ovSsX8jVR1TWFugjBCMBgBDXHt7u5577jlt2rRJ+/btU2dnp2KxmMaPH6+ZM2dq/vz5CofDgz3MsnXOOedozZo1R9YdxxmQ/axevVpLliw5sr58+XKtWLFiQPYFAAAAYPhKpk3BaKE+9xmxY1LqoLkOnvyCEfyYAszyDUzoS+BDMZnG3/t8+L13ShXiBgAARobHmh70LA8oqDNqLizxaPrHGIJrCNcdzhx5/73GMgWjGYK6/Oae8bR3KJqUf/BvPN2pznS7Z11AwX5dqw0my7IUtWNqT7d61nOtCAAAAAAAAAAAAAAAAADot0BUqp7Vt7Zzb5Yi46S3/kOyQ9LRV0ozv9hdP/a04oyxv9q3uV87ezwE+I27ur//8+f73vfmn0on3SbN/CvvYDmgzBGMBgBDUCqV0q9+9Sv9/Oc/16pVq5RMJo3bRqNRXXTRRfrUpz6liy++uISjBAAAAACUWkre14f9C0bzvsE/V91I5xdQ5jiOLMNTaeKGALN8gwX6EvhQTPkHo5nfOwSjAQCAYtnbtUvr2573rJtfdZqqg7UlHlH/mOaEI3P+VFgwmilo2DcYzSdwrve8228ebgopjtox43VBOYjYUZ9gNK4VAQAAAAAAAAAAAAAAAACDyLKkY693Fy+BCqlymtT6ZmnHVWrrviRt+4106r+6xwsMI8T9AcAQ8+ijj2rOnDn60Ic+pEceecQ3FE2SOjs79cADD+iSSy7RokWL9Nxzz5VopIVpbGyUZVmyLEuNjY2DPRwAAAAAKEtJJ+FZHrT7E4xmDuQyhQvAHIyQVkpJx/ta3nGcvIPFTMyBD95hDMVmCo+IWJnjClsRcx8lGisAABj+Hm/6gxxDgNbi2mUlHk3/meaEI3H+5P2qSoZcNPO5c8znzu+89p53G0PrnA5zMFqgvK+n/K4HuVYEAAAAAAAAAAAAAAAAAAxpliU1fmSwR1Eae9ZIvz9B2vHgYI8EKCqC0QBgCPnGN76h888/Xxs3bswotyxLc+bM0YUXXqirr75a559/vmbOnJnV/tlnn9Vpp52mO++8s1RDBgAAAACUUCJtCEZTsM99+gVy5RvWNRL5BQGYAhYSTpfSSnvW5XuuzYEPnUo73n0Xkyn0ofe4bMs2hseZwtUAAAAK0ZWO6+nmP3rWNUQaNS02u8Qj6j/TXK8z3SnHMUaFDVPex2sZktH6EirnV9e7P2MwWrrTPEe2yjs8jGtFAAAAAAAAAAAAAAAAAEBZm3OjVLdgsEdRGoGINHr+YI8CKKq+3zEJACiq6667TrfeemtGWVVVlf72b/9WH/7wh3XUUUdltdm8ebPuvvtu3XLLLYrH45Kkrq4ufeYzn1FbW5uuu+66kowdAAAAAFAaSSfpWR60Q33u0y/gy69upPMLAog7HapUdXZ52hwIlm+wgN9r0uXEFR3g8AXTMXiNK2LHFE9lb+8XQAEAAJCvdS1PqC3d4ll3du0yWZZ3gNZQZprrOUor4XQpbEVKPKLBkzYGwZmC0czBZSadPnXhrGA0U/BapzrT7Z51sUCFsf9y4B+MxrUiAAAAAAAAAAAAAAAAAGCIC46SzntUWv9tac/jUmySVL9YClVL8X1S1wGp9U0pXCvtXi2lu6TWNwZ71H1z0g+l2MTBHgVQVASjAcAQcM8992SFop155pm677771NDQYGw3ffp03XTTTbrmmmt0xRVX6JVXXjlS95WvfEXz5s3TOeecM1DDHhZWr1492EMAAAAAgLylTMFoVt9/zed7s7uVX1jXSOQXUNZpCP7yC2XIN4TOL4Agnu4Y8DA7U6iZ1/soYkelVPa2fgEUAAAA+XAcR2sOPuhZF7MrtKj67BKPqDh8w3fTnQrbIycYTfIORjPF3ZnOnWluLpnn5yErrIAVyCgzzbMTTpfa062GMZV3eJjf+KN5BjsDAAAAAAAAAAAAAAAAADCowjXSvO8U3s5xpPZt0tpPSodekyJjpOh46Z1Hij/G/mp4r9T4ocEeBVB09mAPAABGuo0bN+raa6/NKDv99NP10EMP+Yai9TRz5kz98Y9/1LHHHnukLJ1O6yMf+Yj27dtX1PECAAAAAAZP0kl4lgetUJ/79AvSKvcb+QeSf0CZd8BC3DGHMkSsfIPR/MMyBpppH8ZgNM8+zOcBAAAgH1s7N+ntuPcT+U6rOc93zjSU+c0JSzHXG0ocYzCadzSa6brG77yZQ3+z+/J7TzUnDxY0pnLh937kWhEAAAAAAAAAAAAAAAAAMKxZljTqKOm8/5Uu3y4te1E669d96+uiP0tzvy1V9MgPmfVl6dxHpOP+XrIjUqg6u11kTO6+Ry+STvlXd7zAMBMc7AEAwEh3ww03qLW1+0nytbW1+s1vfqPKysqC+qmvr9evf/1rzZ8/X11dXZKkHTt26Jvf/KZuvfXWoo4ZAAAAADA4TMFoAavvv+bzu8Gfm93NQlZYlmw5SmfVdRoCFvxCGfIN7/ALVzDtt5jMwWjZ4+pLOAUAAEA+1jQ9aKw7q3ZpCUdSXL4huD4hu8OTdzCaDMFopmsX/2C0/of+SlJz8oBnedkHo/ldK1rlGT4IAAAAAAAAAAAAAAAAAECfBavMdWNPl/Y9lV1eO1cas9Bdjvtqdv2E86W53zT3+0ufwLPFv5cmnCcFIuZtgDJGMBoADKLXXntNK1euzCj7zne+owkTJvSpvzlz5uiGG27QzTfffKTsrrvu0ooVK1RXV9evsQ41mzdv1ksvvaQdO3aopaVFlmWpoqJC48eP19SpU3XCCSeooqJiwMcRj8e1Zs0abdmyRQcOHFB9fb0aGhp01llnDcj+d+3apT/96U/as2eP9u/fr8rKStXX12vRokWaNm1a0fcHAAAAYGgxBaMFrVCf+4xY5pv1o3mGdY1ElmUpakfVkW7PqjMFLJiCy2zZeb+GvmEZAxw45jiO8RgKCY8oRYAbAAAYvlqSzXqu5QnPutkVczU+PLnEIyoev7le5wgLlzXGohmeaOg393Qcx7Nd3DAv9Qo08ws5MwejDfzfqQaS3zETog0AAAAAAAAAAAAAAAAAGHEsSxp/nrT7j9l1J/9MWnWh1LEzs3zaJ/q3z/Boqcvjc4oTl0qTl/Wvb2CIIxgNAAbRrbfeKsfpvrVj7Nix+sQn+jexue666/S9731PiYR7s3xbW5vuvPNO3XjjjVnbfvzjH9c999xzZH3Lli1qbGzMaz+rV6/WkiVLjqwvX75cK1as8O3/sLfeest444okfexjH9Pdd9+dVR6Px3Xbbbfpzjvv1KZNm3zHFwgENG/ePF122WW6/vrrjSFl55xzjtasWXNkvefr4ae5uVlf//rXdffdd+vQoUNZ9VVVVbryyiv1jW98Q5MmTcqrT5NEIqG77rpLP/7xj/Xyyy8bt5sxY4ZuuOEGffKTn1QwyH/xAAAAwHCUdJKe5aH+BKP5hC9ws7u/iB0zBKN5ByyYgssidsz3OrmngBVU0Ap5huQNdOBY0kkqrZRnXdQjYM/03hroADcAADC8PdX8v8Z58eLa8v6AR8gKy5attNJZdaY55nBl+nuNJUMwmuU990wrpaST9LxmMob+evTld23UnDzoWe4XLFYO/K8VCdEGAAAAAAAAAAAAAAAAAIxAs6+X9qyWnB731zRcLtUeJ537R+nJq6SmF6VAhTTrS9KsL/Zzf38tvfQP2eXTP9O/foEyQGoKAAyihx9+OGP9mmuuUTgc7lef48aN0yWXXKL7778/Yz9ewWjlZNu2bbrooou0YcOGvLZPpVJat26d1q1bp6uuukrTp08v2lhefPFFLVu2TDt37jRu09LSon/5l3/R/fffr9/97nd93te6dev0wQ9+UG+++WbObTdt2qTPfvaz+slPfqKVK1dq8uTJfd4vAADlpjl5UK+2rdM78e0Dup+QHda02GzNrpirgBUY0H2NVK3JQ3q1bZ0OpZo1Z9Q8TY40DvaQMEy0JJv0Sts67YpvG+yhZAhYQTVGZ2jOqPkK2bmvB73CsCQp2K9gNPPN+uV+I/9AM507U/CXORitsFCBiB1VMpX9Xniy+X+0qf0VSZJlWZoUPkrHVZ6kykC1sS/HcfR6+0t6o2NDzsAy0/vv8Jiyy7zPzxsd63X/nruPrNcER2vOqPmaGJniu//dXTv0aus6NSU9nnQj9/06veI4zYgd5xs0V6p5Q6HCduTIPMO27D71sb1zqza0P6+WZHPebYJWSFNjszRn1DwFrOL+yeBgYp/Wtz2vuNOp40ctVH14YlH73xHfqvVtLyiRjmt6xRzNiB2fd8gggNxy/R8RtEKaFpulWRVzFbL7PhcBCpF2Unq86WHPutHBcTqhcmGJR1RclmUpYkc9w3cfb3pYr7W96NvetmxNjhyt40ctVCwwaqCG2S97unbp1bZ1OpjY57vdrq7Crt38rl1+u/duz2umzR3rPbf3mtuGrYix/4TTZeinvK+nCEYDAAAAAAAAAAAAAAAAAKCXycukJQ9Lm34qdb4jTbhQOu6rbl3NbGnZC1LnXilcJ9lFuEfjmL+U3vy51Nojb2Ls6dKk8n6YMJAPgtGAISblpNSU9L8RAP1XGxw76EEW27dv19atWzPKLrzwwqL0feGFF2YEo61du1aJREKhUHnenNbV1aWlS5dmhaKNHj1aJ5xwgsaPH69QKKSWlhbt2rVL69evV1tb24CMZf369TrvvPO0f//+jPLx48dr/vz5qq2t1e7du7V27Vp1dHTowIEDuvjii/W9732v4H2tXLlSV155pdrbM2+AmjhxoubOnavRo0erra1N69ev16ZNm47Uv/DCCzrllFO0du1aNTQ09O1AAQAoIzvjb+m2bct1KNVUsn0uqDpdn5h4fdHDQ0a6PV07ddu25TqQ3CtJ+q+9lj484a90es35gzwylLt34tt12/blakruz73xIJlVcYI+N/lrOW8uNwVT9efnkV+AADe7+zOdn850h2d53FBeaGBC1I6pLdWSVf5S6zNZZaOD4/TlKf9X4zwCqdJOWr/c/WM91fy/Be3fi2cwmuV9XLu6tmUFXfx2b0CfnHS9FlSd4dnmhZa1umvnLUop6T+Q/dKSuov1/nF/6RmQNRjzhkItqlqsayZ+qeDfXT3Z9Ih+ufvHcuT0ab/Hj1qoT0+6Ma+Qxnxs7dio27d/U21p9736X9Y9+sykr+r4IgXWPN38R/37O7fLUdot2C8trl2mD9Z/mnA0oAgcx9F9u+/QE81/yLntnFEL9NlJXy3azw/Azytt645cM/Z2Zu1FsodBiHnEjnkGo73Y+qe8+5gQbtCXGr6h2tCYYg6t315pfVZ37vxHY5BYPix5/z/vd+2yuun3Be3D6xrJtmxFrKjijn+YcE+xMg9G87tWJEQbAAAAAAAAAAAAAAAAADBiTTjfXUyi44q3r9hE6YKnpM0/lZpflcacLM34ghQwP/AVGC64gxsYYpqS+/QPb352sIcx7H1z2k81JjR+UMfw5JNPZpUtXFicG0NPOumkjPWOjg698MILWrRoUVH6z9ctt9yiFStWSJLOPPNM7dixQ5I0efJkPfHEE8Z2lZWVGes///nPtX79+iPrjY2Nuv3227V06VLZtp3V3nEcrVu3TitXrtRdd91VhCNxJRIJffjDH84IRZs4caJuvfVWXXHFFRljaW1t1T/90z/pW9/6lpqamnTjjTcWtK/169frqquuyghFW7p0qb7xjW/o5JNPztr++eef15e//GU9/vjjkqQdO3bo6quv1urVqxUIlP+NYAAA+Pnt3ntKHm7yXMtTWlh1tuZVnVrS/Q53K/fdl3GDuyNH/7H7Di2oOoMbbtEvv9v370M6FE2SXm9/WX9qXqWz697ju13S8Q6FClp9D8L2CxAoNLBrpDH9bIqnvcMSTOWFBtBFrPy3P5Dcq5X7/kOfmPTXWXWbO9YXJRRN8n6vFHJcaaV03zt3aG7lqVmBYGknpV/u/knuULR3rTq4UqdWn6sp0WlZdb/d+29DOhRNkv7cskYn1yzWcaMW5N2mM92hX+25s8+haJL0StuzWtfypE6tWdLnPnr6zd6fHwlFk9yfX/e+c7tuPuZf+x1c1pWO6z92/7Q7FO1da5oe1CnVS9QYm9Gv/gFIWzpfzysUTZLWtz2nZw6t0Rm1FwzwqADpsYMPeZYHraDOqBke78FihBO/07Vdjxz8rT5Q/6kijKg4HMfRL3f/pF+haJJfMFrxrl1Mr0HEjiqeyj8Yrdyvp/yvFQnRBgAAAAAAAAAAAAAAAACgJGLjpRO+PtijAEouO00GAFAS27dvz1gfP368xowZU5S+jz/++Jz7K4WxY8eqsbFRjY2NCga7sziDweCRcq9l7NixGf088MADGW0feeQRLVu2zDMUTZIsy9LChQu1YsUKbd26VUcffXRRjueHP/yhXnjhhSPrEydO1BNPPKEPfOADWWOprKzU8uXLdd9998m2bR08eDDv/aTTaV155ZVqa2s7UrZixQo99NBDnqFokjR//nw9+uijet/73nek7IknntC9996b934BAChHaSel19tfGpR9b2h7IfdGKMiG9uxzmnSSerPjtUEYDYaTcvn3ur79+ZzbJJ2EZ3l/gtFidoWxjlBCf6aAss50h2d53PEuLyToTJJigVEFbe/181WSXmt7saB+/Hi9V/zeW17a0i16u/ONrPId8bfUmmouqK/1bdn/ntx5Q/GOeSBt8Bi/nzc6NvQ7ZKQv+zXpTHfojY4NWeXNqYPa3bWj3/37He+GPH6WAsjt5dZnC9p+U8crAzQSoNuerp3GOfOCqjNUFawp8YgGRqFzKJNXCvx3PNDe6dpelMDqgOX97LdiXrtEDa+BqdykWK/lYIna3tcdIStsfB0AAAAAAAAAAAAAAAAAAACAYiAYDQAGyYEDBzLW6+rqitZ3NBpVJBLx3V85eeutt458P3fuXE2fPj3vtoFAQKFQ3wMCDkun0/rhD3+YUfazn/1M06ZN8213xRVX6Atf+EJB+7r//vv1yivdNxJ+8IMf1PLly3O2CwaDuueee1RfX3+k7JZbbilo3wDw/9m79zA56/r+/6/PHHZmctzNgUAJMWCMBAQRQQUMAaFgUBRRi1C/IlrlVxWlFbXW1hNopdJ+C/qzVdofWmurVRBPUMEDQUSI0SIIKIST4RSSzW4OuzOzc/j8/lg22Z293/fe95x39/m4Lq4rc99z3/dnDvchS+7nAtNNsVpU2Zc7su2h6q6ObHemqvqKhiq7A+cVqsNtHg1mklJ1REVf6PQwIrH2gfGsY16qgZvSD8wcHBgRWJF5rjKJeMGu2cYKIxSNMFq+Ejw9l4wXTFiVOyzW84cqu+W9nzQ9bmzMsiK7Sj2JzKTpq+bEG6ckDVUmn1/3BEybej2T96ditdCx64a49kQ4Hkx4frk5n2U973WQoM9xTL4J5/Ww726zXgMw2+0obYv1/GK12KKRAPvcOvg/5rx1vWe0cSSt9dyY13qWgfJ2VX21KetqhrDrgzgOyR0aOL0nkdFzss9ryjZWzTncmB79s0koaY51ujgk93wlAv5JyfPmTP4FTQAAAAAAAAAAAAAAAAAAAEAzEUYDgA6pDZX19vY2df216+vv72/q+jvlmWee6ch2b731Vj366KN7Hx977LF69atfHWnZj370o7HibFddddXePzvn9JnPfCbysvPmzdOFF1649/E999wzYdwAAMw0VnimHfIVYl3NVKza4apStdTGkWCmmU5hvSjHlbIP3h9Srv4gdDqR1qsWv6lmfSm9asm5da9ztsgmJwflJPt7V6gOBa/HCKxZXt57uhallkZ+vldVI35ysKbQhPNoyqUmfX/GrMyu1pHzXhJrfUHRrHpCWvmA97oZQa52iXvsasZnKTXvPRquBH/XJfs4Fkc+5PUWjAAhgHgGyvHCaNLkACfQTCPVon6x88eB8w7KHKKV2dVtHlHrrOtdr97U4obXU/blpsXImiHs/B3V3OR8nbroteb8Vy0+p6FotCQ9N7dGL5j74sB5r+h7jeYlF0Raz2mLztac5LyGxtJpc5Pz9ceLXjdhWsZl9cpFr+/QiAAAAAAAAAAAAAAAAAAAADBbNPavggEAXcs51+khNM2hhx6q++67T5K0ZcsWXXHFFbrkkkvaOobbbrttwuNzz40eCFi6dKlOO+00/eAHP5jyuUNDQ7rjjjv2Pj722GN18MEHRx+opJNPPlmXXnrp3sc/+9nPtHLlyljrAABguih6O6b1/DlHNBQKGrNt5Gk9U3py0vRmBUgwKizE0oyACmavsO/W6jlHKN2E40Rcg+UdeqL46KTpUUJIFV8OnN7ozf+nLHqt9us5UHfvuVOZRFYvnr9WB+dmTlyiVXJG0Mz63lkxCGs9lsXp/fT+FX+nX+z8sR4rbFZVFUlSsVrU5vy9gcsUqsPKJLI14wmOVy1OL9P+PQdOOY5lPQeGflcSLqF3/NEHdfvOH+uB4XsmfMc3D98XeB4POr9a+0ba9WhecoEGytsbWo8kPX/OkQ3vR/V4ZuQpbSs9NWl63ACr9VnmEnN1SO75k6bvKG3XUyN/iLyeuMKOvSU/0vD6CyHvT7NeAzDbBR1bJckpIa/qpOmeMBpa7Je7bjWP8ev6zphR/09kSc/+umTFZ3THzp/o0cKDgfvceBVf0e+GfxM4b6Dcr/mp5v5innpZ12Ipl9Lz5xwZuqxTQgdlD9FLFqzTspDr1BfMO0Z/edCntWn3bdo68nis8fW4jJ6bW6MTek9TTyIT+Jw/yqzQJSsu1527fqothYcDP5v5yV69YN4xetG842Jtv1u9ZsmbdVD2EN2759eam5yvlyw4ScuzKzs9LAAAAAAAAAAAAAAAAAAAAMxwhNEAoEMWLVo04fHOnTubuv7BwcHQ7U0n5513nq677rq9jz/wgQ/o+uuv1wUXXKAzzjhDBxxwQMvHsGnTpgmPX/rSl8Za/qUvfWmkMNodd9yhUmlf+OOQQw7Ro48+Gmtb1erEG3EeeuihWMsDADCdFEPiZO/8o79SLjm34W38dOD7+uYz/zppepSAEaILi5gQRkMjwvbVd/7RhzQnOa+Noxn1692361+f/PtJ08NCQmOs/aEZIcgj5h2jI+Yd0/B6ZpNMIhc43YpnFoxjXTZmGE2S+tJLdMaScyZMGyzv0F8/9DZzTAsjjvO4Ba+YtO56JV1Ka3tP19re0ydM/7tH/1Jbig9Pen6+Mvk9siJYS9MHaM3cF+rHA9+dvEzA/mSF6STpzw/8iBnAaKWbd3xb3972lUnT415nWJ/lc7Kr9O7lH500/c6dP9VXnr5y0vS4QTZL0Oc4phnn9bDjJfFaoHFVX9FgaUfgvL7UYu0ob2vziDDbee+1YfCGwHlzEvN0zPy1bR5R6y1KL418PVb1Vb3vgT9RRZMjygOl7VqRfW6zh1cX6/zdl1oaeL1Sr5W51VrZwsjzfj0H6Mwl57Vs/d3GOaej55+go+ef0OmhAAAAAAAAAAAAAAAAAAAAYBYhjAZ0md7UEl16yBc7PYwZrze1pNNDmBQqGxgYaNq6C4WCCoXChGmLFy9u2vrb7eyzz9bZZ589IY7285//XD//+c8lSatWrdLxxx+vE044QWvXrtWaNWuaPoatW7dOePy85z0v1vKrV0e7CWfLli0THn/961/X17/+9VjbqrVjR/BNjAAAzARh4YtMItuUbeSMWE2U/1AGSQAAIABJREFUgBGiK1Tsz5IwGhoRFvnJGlGrVrO2W6jm5b2Xc85cttTCMBrisz/L4O+dFeayzjXNGo8UHKqy4lXt2DesGFzQud063+eSc2KuJ/hzSSiptOuxhtpS9vjjXWdYxzrrs7TisWGh0ljjCRl/2U+OtsQV9v5wjQY0bldlZ2BgSRqNNRFGQ7s9XPi9Hi8+EjjvuIWv6EjctJskXEK96UXqLz0zad5gub8DIwpmxW479fcyAAAAAAAAAAAAAAAAAAAAAN2LMBrQZZIuqcXpZZ0eBtrgwAMPnPD46aefVn9/f1MCZvfee++U25tOnHP6xje+oY997GP6x3/8x0nRt82bN2vz5s3693//d0mjobQ3v/nNuuiiiyYF6OpVG65bsGBBrOUXLlwY6Xn9/c2/SWn37t1NXycAAN2iWC0ETk+7HiVcsinbaFawBOHCQiwlP9LGkWCmsQI5GZdt2nEirlwiOEjkVVXRF5R1dhjACgWmHD/m6wQraGaFvFodg8i4rJycvHykMdnBseDvaDPlktHPr9Y5IpvImefp4BBc8PufS8wJDRK2kvXZWxE9i3VdYh1vrOklP6KyLzUcWww7rzcjeBoWP+MaDWjcQGm7OW9ReqkUcIjyfvK5B2iWWwduMOet7V3fxpF0r97U4sAw2kA3hdGM6xvreg4AAAAAAAAAAAAAAAAAAADA7JXo9AAAYLY6/vjjJ03btGlTU9Zdu55cLqejjjqqKevulFQqpU996lN69NFHdcUVV2jt2rXKZDKBz928ebM+/vGP65BDDtE3vvGNNo+0MSMjzY9+cFMiAGAms2+qbU5gRgqP3lR9pWnbme3CAidlX27jSDDTWIGcrBFlaoewY5QVzhpTMfaHRiNGqI8dzzTCaFa8qknfR+dcSGgrXnCs1cygWcA4zYBbYm5IYC0oBNd9xwP7OsMOiwWxzqPZZPBnaYXRJDsgF2s8AWG6Mc0Io4XFz5oxfmC2GyhvC5yedj2al4z3CyOARu0qD+rXu28PnHfY3KO1X88BbR5Rd+pLLQmcHhY6bLdWXwsDAAAAAAAAAAAAAAAAAAAAmDkIowFAh6xYsUIrVqyYMO2mm25qyrpvvvnmCY9f+tKXqqenpynrHlOpdCYCsmzZMr3//e/Xrbfeqp07d+r222/XFVdcode+9rWaN2/ehOfu3LlT5557rq6//vqGt9vX1zfh8a5du2Itv3PnzkjPW7Jk4s1Ln/70p+W9b+i/L3/5y7HGCgDAdFKsFgKnZxLZpm0jLJZibR/xWdEbqTkBFcxeVizIihG1Qy4ZEiQKif1UfUVVVQPnEUbrDCsgVqzmVfWTPyszXtXE76Mda5u4be99aHCs1ewgWFDAzXrfcjEDa9bxoPUhOIs1/rIvq1SNfv6zX1vwZxkWILGCeXGEraNUbTwKHxY/C4umAYjGCimNhpdc4DwvfjkDWuP2nTerouA48Lre9W0eTffqTS0OnD5Y7v4wWjuivAAAADOVcy7lnHuJc+4C59wHnXN/45y72Dn3RufcC51zqU6PEQAAAAAAAAAAAAAAAKgHYTQA6KBXvvKVEx5/9atfVanUWPRh27Zt+u53vxu6nTGp1MR//1guB99cFGRgYCD+4Josk8nouOOO0/vf/35df/316u/v19e//nWtXr1673O893rve9+rajU4HhDVsmXLJjx+8MEHYy3/wAMP1LWdqMsBADBbFY2gS6aJN9WGxZPCAkaIJ18JCaj4xgMqmL3sm+87GEYL2XZY0Kfs7b+zpbi/rSOs75GX14gvTphW9iXzeNbMUJ8dRpt4ziz6ghmxaUecIlbQzIhgZRNzzLEWqnl5P/H1tSNMF1dYoKwQI1AWFo8LMickfteM65vhkLGHHcuiCjtWjviiKk3YBjCbDRghpb70YiOLBrRGxVf0s8EfBs5bnN5Ph889us0j6l596SWB0639uRPyxs9wOnktBgAAEMQ5d4hz7hzn3Gedc7c453Y55/y4/x7tgjE+zzn3JUn9ku6U9P9JulzSpZL+r6T/lnSXpF3OuZucc6/r2GABAAAAAAAAAAAAAACAOhBGA4AOet/73ifn9t1Ktm3bNl1zzTUNrfPKK6+cEFebO3eu3vGOdwQ+d8GCBRMeDw4ORt7OvffeG2tc419nq/T09Oicc87RnXfeqQMPPHDv9C1btuhXv/pVQ+s+5phjJjy+4447Yi1/5513RnrecccdN+G9uvnmmyfdyA0AAPYpVguB05sZdAm7QTcsyoF4aoM945WrxE1Qv7wRVGpmiCquHpdRwvixXFiQqOztkHbKpRseF+ILO9/UxrwKFfs418wYhB0Kqx2P/V3LJe1oVrNY+2DQuMKiXzkj8OVVVdFPvE7oxlBi2LateEjgc43AqPX+ZBI5OSNvFBYrjSrs+xV2LIu8/imuwcKuKwBMbUdpW+D0vtRSiTQa2uiePb80w15rF75SCZds84i6V18qOIw2WO7vmv/HYEVfO/l3MwAAgDHOuZOccz90zvVLekjS1yVdImmdpPkdHdw4zrmUc+6Tku6T9A5JC6ZYJCfpjyWd0+qxAQAAAAAAAAAAAAAAAM1EGA0AOuiwww7T+vXrJ0z70Ic+pK1bt9a1vvvuu0+f/exnJ0y74IILtGjRosDn77fffpOWj+qGG26INbZMJrP3z8ViMdaycfX29urss8+eMO2RRx5paJ0vf/nLJzz+r//6r8jLbtu2TTfddFOk5y5dulQvetGL9j5+4okndOONN0beFgAAs40Vvci4bNO2ERa9iRMsQbi8cYO01JyACmavbgwhOefM7YfFfsrejgQSRuuMbDIsalUTIgv5bHMh64nLiprVRgLDInzNDIya2zBec9C4rPN9Ljk3PE5Xs5wVp+tkjCNs23ECrNZ7ZL0/CZdQxpgXdk6OarjF5/WprsGsKCaAaAbK/YHT+9LB4SVJ8uqO8BJmllsHg382nnJpHb/w1DaPprv1phYHTi/7svZUdrV5NMGs83cn/24GAAAwzlGSTpMU/A9suoBzLifpO5L+VlJq3Cwv6beSbpD0n5K+++xjfusMAAAAAAAAAAAAAAAApi3CaADQYf/wD/+gOXP23fQxODios88+W3v27Im1nm3btukNb3iDRkZG9k474IAD9NGPftRc5uijj57w+Hvf+16kbf3whz/Uxo0bY42vt7d375+3b9+uUqm1cYtUKjXh8fgwWz1OPPFErVy5cu/jTZs26fvf/36kZT/5yU/Ger3vec97Jjy+5JJLYn8fAACYLYrVQuB0K/RRj7TrUVKpwHlxgiUIFxboKfkRcx4wFTuo1Nmb761YUVjMJywmlHLBxym0VpwoV3iIrHnfR2tMtees0FBbIjiu1ky5iOO0pkmjrzU0LDYpBhcc6+pkjCM8wBrtOsN7b75HVihPkuYYn/NwpfEwWtjYmxFGK0wRb+MaDWjMQGl74PRFqaVycsZShNHQXFtHntDvhn8TOO+Y+S/XvNSCNo+ou4WFCwfKwft0u9Vem41pR5QXAACgAUVJD3V6EM45J+nrks4YN7kg6ZOSDvLeH+G9f5X3/k+996/13h8haaGks55drrW/wRAAAAAAAAAAAAAAAABoMsJoANBhhx56qD73uc9NmHb77bdr/fr1evzxxyOt48EHH9Qpp5yi+++/f++0RCKhr371q1q6dKm53HHHHTchyvbtb39bmzZtmnJb559/fqRxjbdmzZq9fy6Xy/rpT38aabnh4WF97nOf0+7duyNva8+ePbruuuvM7dcjkUhMCpZdeOGFeuSRR0KXu+666/SFL3wh1rbe8pa36NBDD937+P7779frXvc6DQwMxFrPtm3bJr0PAADMNFbwKJPINm0bzjllk/EDRognLGDSjIAKZq9uDCFJdqzIGq8Uvi8kCaN1RMZlzUBMsUNhNCsUFjXUllBCadfTtPFYrNccdG63xppNzFE2JHJYu5x13WCd59sh4ZLKuODrFiseUmvEF1VVNXBeWDjO/gwav77Jh8TVSg2e10vVksq+HL59wmhA3UrVknZVgn8OGRZeApptw8CN5rwTe9e3cSTTw/zkQjPqPljub/NogpnXYh3+uxkAAMA4JUl3SfpXSRdKerGk+ZL+rJODeta7JL1m3OOnJB3tvf+Y9/6JoAW898Pe++9478+V9PZ2DBIAAAAAAAAAAAAAAABoFsJoANAF3va2t+nd7373hGm33XabDjvsMH3mM5/Rli1bApfbvHmz/uZv/kZHHHGE7rnnngnzLr/8cp1yyimh250/f77OOeecvY8rlYpe9apX6aabbpr03JGREV199dV62ctepq1bt6qvry/qy5MknXzyyRMeX3DBBfrCF76gX/3qV3r44Yf16KOP7v1v+/btE7b73ve+V8uXL9fb3vY2fe973wuNpG3cuFGnnHKKHnvssb3TXvayl2n16tWxxhvkve99r174whfuffzkk0/qhBNO0Le+9S1VqxNvQB4aGtInP/lJvelNb1K1Wo31fiWTSX3rW9/SggUL9k770Y9+pCOPPFL//M//HPr6d+zYoW984xs699xzddBBB+mqq66K8QoBAJh+it66qba5gZNWhkMwKiwyN1X8BAhj3XwfFgtqB+s4ZY1XCg+jpV264TEhPuec+VlOjnIFH+d6XEZJl2zamBodTy4xV84Fx96aydoHS35kwne96quTInPj1xEWp6t9jfZr7vDxwIi7Rb3OqDe6N8cMNDYhjNbC4GmU94VrNKB+O0MCSn0pO4zmWzEYzFqFal537PpJ4LwV2VVamWv85/0zTcIl1JteFDhvoLQ9cHq7mddiIaFbAACANvqKpAXe+xd579/hvf+S9/7X3nf+N7c451ZI+sy4SQVJp3rv7zcWmcR7/kcLAAAAAAAAAAAAAAAAppfgXxsNAGi7z3/+8+rr69OnPvUpeT96G9nu3bv14Q9/WH/913+tww47TAcddJD6+vrU39+vxx57TL///e8nrSedTuvKK6/Un//5n0fa7qWXXqpvf/vbGhwclCQ988wzOv3007Vq1SodeeSRymQy2rp1q+68804NDQ1Jkvbff39dfvnlOv/88yO/vje+8Y36yEc+oscff1zSaFSsNgY35vzzz9eXv/zlCdN27dqla665Rtdcc42cc1q1apUOOeQQ9fb2KpVKqb+/X7/97W/3rn/MnDlz9KUvfSnyOMOk02l97Wtf07p169TfP3qD4FNPPaU3vvGNWrZsmV784hdr4cKF2rp1q37xi18onx+9cXvhwoW6/PLL9c53vjPytg4//HBde+21esMb3qCdO3dKkh5//HG9613v0kUXXaQjjjhCK1as0IIFCzQ8PKzBwUE98MADk14/AAAznRVKySSyTd2OFUxpRjgEo8ICJo0GVDC75StDgdPDYkHtkEtYQaLg8UrhkcAUYbSOySbmBJ4Pao9rVgCy2VGuqDFPazzZZHPjopawfbBQyWteavQ7PeKL8kZuJ5uYszdOF+kzMM41nT4eZBNztFM7Jk2Pep1RCImLhn2/rNc9bBw3o/Lem8deqfHzepT3hWs0oH47ytvMeX3pJXY805NGQ/P8ctet5t8R1/Wub/Nopo/e1GL1l56ZNH0gJHjYLhVf1ogvBs7r9LUYAACAJHnvBzo9hhAfkTRv3ONPee/v69RgAAAAAAAAAAAAAAAAgHYgjAYAXeTSSy/VunXr9K53vUsPPvjg3unee91777269957Q5c/+uij9cUvflHHHHNM5G0eeOCBuvbaa3XWWWdp9+7de6dv3rxZmzdvnvT8gw8+WD/4wQ+0devWyNuQpFwup29/+9s666yz9MQTT8Ratpb3Xg8++OCE9yjIgQceqOuuu05HHHFEQ9sb7/DDD9ePfvQjnXHGGXrqqaf2Tt+6datuuOGGSc/v7e3Vd7/7XVUqldjbOvXUU7Vp0yade+652rRp097plUpFd911l+66664p19HX1xd7uwAATCfFaiFweibR3KhL1MgM6hf2Xpb8SBtHgpmmYAQUc8lOh9GM40oleLxSeEyIMFrnZI1zTu13zzrOZZv8XbTPWdHG0+xQmyVsH8xXhzRPC0b/HBLYGluHFaernWYFxDod48iZ36Fo1xlhEbCw75cVaCyEBBqjKPkRVWSHHBsNo0V5X8JicQDCDZS2B07PJeYqm8jJyQijAU3ivdeGgck/a5ekuYn5evH8l7d5RNNHX2pJ4PTBcvB+3U7W38uk9l1/AgAATEfOufmSzhs3aUjSlR0aDgAAAAAAAAAAAAAAANA2iU4PAAAw0amnnqr77rtPX/va13TKKacolQpvWGYyGZ155pn6zne+o02bNsWKoo15xSteoY0bN+q1r32tnAu+sW3p0qX6wAc+oLvuuktr1qyJvQ1JOuaYY3TffffpX/7lX3TWWWdp1apVWrBggZLJpLnMwoULtWHDBn3wgx/Ui1/84infD0l6/vOfr09/+tN64IEH9JKXvKSusYY56qijdP/99+uiiy7S/PnzA58zb948vfWtb9Xdd9+ttWvX1r2tVatWaePGjfre976nU089VZlMZspl1qxZo4suukg/+9nPdN1119W9bQAApgPrxtpMItvU7djRG6IbzRIWdSl7O64CTCVvBH46HUKytm+NVwqPCSUdv/+gU6LGM63jXLNDEFHPWdZ42rVvhG1n/Pk9LKIx9lrt0GBNGM0KJXbt8SDadYZ1PeLklHH2NdGcZHAYbbjBMFrYcUySStXGwmhR3peo7x2AyQaMgNKi9NLQ5bx8K4aDWeih/P16cuSxwHnHLTxFPYmpf0Y+W/WmFgdOt4KH7RT28xPr+hUAAACSpHMkzRv3+Frv/W7ryQAAAAAAAAAAAAAAAMBMwR2TANCFUqmUzjvvPJ133nkaGhrSr371K23evFnbtm3TyMiIMpmMli1bptWrV+voo4+OFMuayqGHHqrrr79e27dv14YNG/T4449reHhYy5Yt08EHH6y1a9dOiJKddNJJ8j7+zW4LFizQhRdeqAsvvDDS851zOvHEE3XiiSdKkvL5vO6991499NBDevrppzU0NCTnnBYsWKAVK1boyCOP1HOe85zI47nllltivwZpNNh21VVX6bOf/axuueUWPfLIIxoYGNDSpUu1fPlyrV27VnPn7rvBuN73Sxp9D1796lfr1a9+tQqFgu6880499thj6u/v19DQkObOnau+vj6tWrVKa9as0eLFwTc/AQAwExWrhcDpzb6pNpcIDofkK0Q3miXsJumwGBQQxnvftSGkXNKKadkRKCsSmFBSCcfvP+gU65xTe46wPttmh8hyRuxq8ni6N4w2PmoVdn4YOz/bcbp973nFV1T0xnWDsT+2ix12s48H49mRu5wZwB+dbwTZGry+Ga6Eh9EaPa/XBu8Cn0MYDajbDiOg1Jda8uyfgo8rhNHQLLcO3hg43cnpxN71bR7N9NKXXhI4fbDc3+aRTJYPua7pdLQaAACgy51c8/jmjowCAAAAAAAAAAAAAAAAaDPCaADQ5ebOnTshDNZqS5Ys0etf//q2bKseuVxOxxxzjI455phOD0WSlMlkdPrpp7dte9lsVuvWrWvb9gAA6HZWZCbT5DBaNhm8PqIbzVGqjpjBp7H5QD2KvmBGOjp9870Z06ojEph26aaMCfWxvku18c58NTgW1eyYp7W+QnVY3vu9oSwrftWuaGDSJdXjMhrxxUnzxp9frX0ioYTSrkeSHTYbv2wxJDqYa/JnEJc1/qjXGdbzrLDrmDlGRK/R65uplm80jBZ2nIzzHADBBsrhYTQ7twg0bmd5QP+7+xeB8w6f+2It6VnW5hFNL72p4F+aMlDun3Ad2Alh1wed/rsZAABAl3tJzeNfSJJzLifpdZLeJOlwSX8kqShpu6T/1WhA7b+897vbN1QAAAAAAAAAAAAAAACgeRKdHgAAAAAAAPXw3k+KzoxpdmTGCotYYTbEM1W8pNGACmavghF+ktoXf7K3Hz9IZAUEU4TROipqPLNQCT5nTBWvisv6bldVVcnvC01a3zUr0tUKVgRjfLTNHGdizt64h/WaowTWRtfV3M8gLmv8UeNeVuRuqusha7vDRsQvqqmWb/S8HiXcRrwWqN9AaVvg9L70kjaPBLPRzwdvUkXB17zrete3eTTTz1jAsFbZl7SnsqvNo5nIOjenXErpBH+fAQAACOKc65W0atykEUkPO+fWSbpX0tcknSnpEElZSQslPVfSGyR9UdIjzrn3tnXQAAAAAAAAAAAAAAAAQJMQRgMAAAAATEtlX1ZVlcB5GZdt6rassEjUYAnCTRUvsWJQwFRCQ0htjD8Fbj9CEKqWFRNKulRTxoT6RI1a5Y1YlBVWq5f13aodk7V/tDMamDP2wwlBM2OfGL9slPN02Lkm1+SgalzWZxY17mU9L5cMD76ZgcaQ41AU+cpUYbTGzutRrr/CjqUAwg2UtwdO3xdccoHzvXyLRoTZouIrum3nTYHzlqSXac3cF7V5RNNPX3qxOW+w3N/GkUxmnb87HagFAADocvvXPH5S0tmSfiLp4AjLL5Z0pXPuq87xQ2QAAAAAAAAAAAAAAABML/yDFwAAAADAtFSs5s15mSYHTqxITNRgCcJNFTgp+ZE2jQQzTXgIqbNhNCsIZcWzJKlixIRS3NPWUdY5p1Bznqp9PMaKU9XLioSNjmFYC9W398/By7dv3zADgROCZsHv2/hl7bDYvmXDQlntfM1Bosb1LHZoJPx6yAqn5atD8t7LueD4Ub3jGdPoeT3K9RfxWqA++cqwuf/0pUfDaM4IowGNunvPnWa8a23veiUcv+9rKvOTvUooGRiRHyhv10E6pAOjGmVfC3c2UAsAANDlemsez5P0H9r3y3Afk/T/SrpNUr+kRZJeLundklaOW+7NkrZKuqRZA3PO7SdpaczFntus7QMAAAAAAAAAAAAAAGDm465JAAAAAMC0VPR2GC2byDZ1W2ZwJSSygujyFTsEJUllX2rTSDDTWGGPhBLqcZk2j2Yi67hS8iOq+LKSAbGzkrEvpFy6qWNDPHaUa7jmcfCxbqp4VbPGMzqGcaEwY/9oZzQwSnjUigWOf9/MsNi484sV00q5lNKJninH2kpRv0MW63lTRfes962qqoq+oKyr77vZ6vN6WORuDPFaoD4D5e3mvEWpqe53980dDGadDYM3Bk5Pux4dv/CUNo9mekq4hHpTi7SjvG3SvIGSvX+3QzdEeQEAAKah2jDaknF//qak872f9D/L7nDOfV7Sv0t647jp73fOfcd7/7Mmje1dkj7WpHUBAAAAAAAAAAAAAAAAk/CrtQEAAAAA09L4uEutTJMjM7mkEVwhutEUYZ+lJJV9Wd4TWkB8YTffO+faPJqJwuJT1rHFigkRRuusnHHOqf3+5Y1j3VTxqrgyIXHQ8UFPK+7ZzjiFFYUbvw9Y54jx71vWOE+PX9ZaTzfEOKz3oVAJPz+OsUJhU0X3wr57U8XNQsdjxOzGNBpGixI94xoNqI8VRnNy6k0vGv2zcQnF1Toa8VRxix4Yvidw3jHz12pucn6bRzR99aWXBE4fKPe3eSQT2X83a+7PbwAAAGYY6992/lLSeQFRNEmS974g6bxnnzfe3zRxbAAAAAAAAAAAAAAAAEBLEUYDAAAAAExLxWrBnBcWhamHdaPuiC+q4itN3dZsNFVAxauqqnifEV+9saB2CAujWTGkctUKo6WaMibUxwprFWrOU+2KQSRcIlJwzApHWTHQVjDfu8r4oNnU75u1PxUivN6uOB4kgwNl+epQpDCodR6dKvoW9lk3EhYbnjKMVq573dLUQdXR5xBGA+oxUNoWOH1BsndciLWzcVnMTLcO3mjOW9e3vo0jmf76UsFhtEEjfNgueePvON0QqQUAAOhie4zpl3gf/gOWZ+f/Zc3k05xz+zVlZAAAAAAAAAAAAAAAAECLcdckAAAAAGBasqIYTgmlXU9Tt5VLBAdLRscxrLnJ+U3d3mwTJXBS8iUliT8hJiuMY0WI2iksAGBFjioKvtdtX6gEnWCFtcZ//7z3ZqivFd/HbGJO4LF1bEwVX9GIL5rLtosV5hq/D9iBwzmBfx5v/GdgHg9CzvHtYn2Hqqqq5EfU4zKhy1vn0am+W2GvvZEwWsH4zMaUfXDkMaqpgqrS6PfGey/nCDgBcQwY4aS+dHBoabwoIUcgSKGa1527fho4b2V2tVZkV7V5RNNbb2px4PSBUn+bRzKRHbsljAYAABAiKIz2mPf+1igLe+9vc849LOmQcZPXSfpmE8b2hTrW81xJ32nCtgEAAAAAAAAAAAAAADALcEcxAAAAAGBaKlYLgdOziWzTIxhWsEQijNYM+crUgZPRiIr9OQBBrLBP2D7dLlYQSrIjR1ZMKJUgjNZJVsyh7EsqVUtKJ9Iq+RFVVTGWb/73MZeYo0FNjl+M7RNWmGJs2Xaxg2b5cX+eej+2xlyo5lX1VSVcItJ6OiU8UDaknkR4GK3eY13a9SipVGB0MV8Juu82muEpwmWl6kjd65aiBVWrqkSKygGYaKBkhNFS+8JoTtbftQijoT4bd95iHtvX9a5v82imPytkOGiED9vFul4J+3sRAAAANBgw7Y6Y67hTE8Noa+ofzj7e+2ckPRNnGQL2AAAAAAAAAAAAAAAAiCPR6QEAAAAAAFCPonHjdKYlgZmQYEll6jgHwlk3SI9XrgYHoYAwVggpbJ9ul6RLKe16AufljahQydgPUo4wWieFxafGzlVhx7lWfB+nCo51SxjNDpoNjftz8Hk2l9z3vlmfgZfXiC9KkvIVKx7W+RhHeIB16uuMeo91zrkJ7+N4Uc7NlqmCp2U/OcTWzPXvfV4DrwGYrXYY4aS+9NI2jwSzhfdeGwZvDJw3L7lAR88/oc0jmv56U4sDpw+U++V95wKGdqS289diAAAAXewxScWaaU/FXMeTNY+DLxgBAAAAAADVtCxFAAAgAElEQVQAAAAAAACALkMYDQAAAAAwLRWrhcDprQijha2zYASMEF1YoGdM2RNGQ3x2CKn5x4l6WFEoa9xWTCjlUk0bE+ILizmMHd/CjnOt+D5a6xwbh/UdG122fXEKa1v5cTEwO6KRG/fnkM+gEv4ZdEOMI2wMYZ/VmEIDxzr7OFT/9c1UQbKKyqr6at3rjxKLG30eYTQgroGSEUZLLZly2c7lljCdPZi/V0+N/CFw3vEL/1jpRHBIGLY+I4xW9iXtqexq82j2sc7f3fJ3MwAAgG7kva9I+n3N5NpQ2lRqn5+tf0QAAAAAAAAAAAAAAABA+xBGAwAAAABMS9ZNtZlE8+/pSCfSSrl04Lx8xDgHbFMFVCSpRBgNdbCiOLnE3DaPJJgVQ7LGXSGM1pWyybB45ug5IixulUs2//tofrcqz44nLNQW8nqazYpyjd8HrLGOXzaXDAmLjcXgjPN12LLtkklk5eQC500V96r6ioo+OBYb5btlhtEaiIrlI0RjrePZVLz3kYNnUaJyAPbx3mugHBxGW5TeF0azjlek0VCPWwdvCJzulNDa3tPbPJqZoS9thwwHy/1tHMlE9t/NOn8tBgAA0OXurnncG3P52ud37qIQAAAAAAAAAAAAAAAAiIEwGgAAAABgWipWgyMg2URrgi5R4i2oTyFCuKRMGA11sMI+7Qw/hckaQSZr3NZ+YIUb0R5h552xc4R1rnBy6nGZ5o/J+I6PBaus8aRdT1u/T+Y+UBmW96OBHWus4+NvVghu/PIFI9YVtmy7JFxCGeN7NFWgzArFSlIuwjWRFU+LEjez5CtTL1vyI3Wte8QXVVU10nO5RgPi2VPZaV5r9KWihNGAeAbLO3TX7jsD5x0x7xgtTu/X5hHNDPOTC5VQMnCeFT9sB+vv/a36GQ4AAMAMUlsTPjzm8i+oefx4A2MBAAAAAAAAAAAAAAAA2oYwGgAAAABgWrJCIBmXbcn2rHDKVMESTC3Ke0gYDfWwojhW6LDd7OBi8PHN2g+SLtW0MSG+lEsr7XoC5+Wf/Syt41wmkVPCNf9HtFN9t6zxtHvfsM6tVVVU8iOq+qq5P4wfa4/LKGH8qHvsteaN9XRLjKPeAGvYOTSbCI6eRdluPkK0NEjFV1T0wfHa8cq+XNf641x3cY0GxBMWTOpLLzHnjfHyzRwOZoHbBn+oqiqB807sXd/m0cwcCZdUb2pR4LyBUgfDaNY1nRFpBQAAwF7fl1Qc9/hY51zwBV8N51yfpJfUTP5ZswYGAAAAAAAAAAAAAAAAtBJhNAAAAADAtFT07Q2cWOst1BkOwT5TRV8kqUQYDXWwojhWjKnd7ODiUOB0K4yWcummjQn1Mc8Rz34H2x3ps75be8djnLvavW+Evf58dVhFI6AhSdnkvmWdcyGveXQd1mvullBivQHWsIBZLsI1kRUjsY5DU4m6XL3B0zjXXVGuLwDss8MIJiWV0vxkb5tHg5mu4sv6+eBNgfOWpg/QoXNe2OYRzSxWzHCw3N/mkYwKC6d2S6QWAACgW3nvd0v61rhJGUnvibj4eySN/21Cj0n6bZOGBgAAAAAAAAAAAAAAALQUYTQAAAAAwLRkxVIyiWzg9EbZ4RCiG42K8h7WG1DB7NbtISRrHIVK8PGt7MuB09OE0TrODqONfpbtjvSZ361nx2GOJ9nefSMshFGoDoeeH2qXtdaVrww9uz4rqNodx4N6A6xh8a9sIvjaZbyc8Zx6w2hRw2X1ntfjXHdxjQbEM1AODqP1phcr4fb970TnXLuGhBnsrt13aGdlIHDeib3rJ3znEF9vanHg9IEOhdFCY7ddci0GAADQLs45X/PfSREW+1tJI+Me/7Vz7rgptnOcpL+pmfx33nsfb8QAAAAAAAAAAAAAAABAZ6Q6PQAAAAAAAOpRrBYCp2dCIiuNsKM3RDcaFeU9JIyGerQ7RhVXzohQWUEiaz9IEUbrOOs7NXZ8a3ekzxpP/tkohXXczbXoHGqxolzSaMis4iqRl7U/g7E4XfB+Ze2H7VZvgNWan3IppRNTHxvmWGG0iIGzWsMRg2r1ntfjXHdFjbQBGDVQCg6jLUotibQ899Yjjg2DNwZOT7seHbfwFW0ezczTZ+y31n7eauGx2+64FgMAAJAk59xyBf97yv1rHqeccyuN1ezx3jf1wst7/4hz7u+1L3SWkXSTc+6Dkv7V+30/aHHOpSS9XdIVknrGrWajpGuaOS4AAAAAAAAAAAAAAACglQijAQAAAACmpbHQSa1MItuS7VnxFmsciKbqK5HeQ8JoiKviKxrxxcB53RJCmiqmVcvaD5KOH/F1mh3PHItyGZG+Fn0Xp4p52tFAO1TWCplEVk5OXpNjOvnKkCqJsrls7Wu09utCdVgVX1bJjxjr6ZbjQX0BVmt+1M/S+g5aIbmpTBVyG1Oq87wedf1xnwtA2lHeFji9L10bWHKBzws6lgNBniw+ps35ewPnvWTBOs1JzmvziGae3vTiwOmD5f42j2RU2PVMu8O8AAAAU7hN0nMiPO9ASY8Y874i6a3NGtA4H5X0fElvfPbxPElfkPRp59wdknZIWiTpZZJ6a5Z9QtLrvTd+QAYAAAAAAAAAAAAAAAB0Ie6aBAAAAABMS8VqIXC6FRZplLXeesMhGGV9jrVKVcJoiCfs5vtuCSHlYofRgiNRKZdu2phQn6kid9Znan0HGh6PFQmr5OW9DxlPe8MUCZdQJpELHE+hmldFleDllFTa9UyYZn0G+epwaICzVZ9BXPbxIDweasW/on6W1nbrjYrlK9Gui8p1ntenCsXV+1wA0kBpe+D0vlRtGA1ozIbBG815J/aub+NIZq6+lB1G897LueDAYasUKvb1TLf83QwAAKDbee+9c+7/aDSAduG4Wb2SXhmy6EZJr/PeP9nK8QEAAAAAAAAAAAAAAADNRhhtFnHOzZf0cknLJS2RtFvSk5J+671/oInbSUs6QdIKSQdI2vPsdv7Xe/9os7YDAAAAYHazglqZloXR6guWIFzU8ErZE0ZDPGFBnG4JIYWFnIJY+wFhtM4zzxHPRiCsz7R1Mc/g8VRUVsmPKF+xxjO3JeMJkzXCaPnqkCpGDDCXnDMp6BEWGrRe79j2u0Hc48GYgvlZRjvO5YzPPGrgbNJyEYOx9Z7XrdcbPBbCaEAcA2UjjJZeOuFxe3NKmGnylWFt3HlL4LxDsofqoOwh7R3QDGUFDUt+REOV3ZqXWtDW8VjXBymXUjrREzgPAAAAk3nvi5L+H+fcNyV9SNIrJCWNp/9W0hWS/sN7H/zbBwAAAAAAAAAAAAAAAIAuRhhtFnDOnSDpbyWdIuMzd879RtK/SPqi997XuZ2lkj4h6RxJi4zn3C7pH73319azDQAAAAAYUzSCZNlEtiXbM4MrMQIdmKzVARXMXuEhpO4Io9nHleDjW9mIRKUcP+LrtGwyOK41FvyyIppWlKpRuZDYV6GaN8OBOeN1tFIuMUeD6p80vVDNq+qqgcsE7cN2wHR4ilBi+2NwQeq9zrDiX7lktNdlPa/oC6r4ipLOurfWGE/EoFq95/U4sTPitUB0FV/RzvJA4LzJgaXgNJpXXf9rCbPMnbt+qqIPjpyv61vf5tHMXL3p4DCaNBpBbHcYzTond8vfywAAAMZ471e2YRsN96a99z+W9ONn/63eyzT6i0vHfknqVkm3e+8fb3Q7AAAAAAAAAAAAAAAAQCdx1+QM5pxLS/qcpAsjPP2Fkv5Z0rnOuTd777fE3NZ6SV+WtN8UTz1e0vHOua9JutB7H+1OOQAAAACoUawG30ydCYnBNCKbDL5hN06gA5NZAahahNEQV1gIqVtuwLePK0Py3su5iffIWftByqWbPjbEkzXOPWPnCCtuZS3X+Hjs73ihOmyeu7IdiIRZY81XhlRJBMcAg8Jv5mdQCQ+jteq6Ia56rzOs1xb1uzUn5DMvVIc1Nzk/0nrGDEcMnpbqPK+HfZa1okbaAEg7yzvkFRyjXBQSWALi8N7r1sEbA+fNTy7UUfOOb/OIZq4FyYVKKKmqKpPmDZS36yAd0tbxNHq9AgAAgGDe+22SvtfpcQAAAAAAAAAAAAAAAACtQBhthnLOpTT6D59Or5lVknSnpMclzdVoEG3FuPknSrrZOXeC974/4rZOknS9pJ5xk72kX0t6WFKvpBdp9DdTjvlTSQucc2d574PvtgEAAAAAQ9VXVfTtDaMFRVikeIEOTJaPHFAZafFIMNNYMaGUSyud6I6QWM4IQlVVVcmPqMdlJkyv+OBIVMrxI75Os+Jehepo/NH6PuaSrQmRWd+t0THZobCw5VrF2mahmlfViPQEBdxyRlisUM1P6+PBVNcZ5ncrYuQu7DPPV4Zih9GiXhfVGzyNE6Qd2/8ATG1HaZs5ry81MYzm5Ixn+iaOCDPRA8P36OmRxwPnHb/wj7vmnDwTJFxSvalF2lGevG8PliL979+myhvn5G4JVgMAAAAAAAAAAAAAAAAAAADoPolODwAtc7kmR9GukrTMe7/We3+u9/413vvnPPu8h8c97/mSrnPOWXe37OWcWy7pOk2Mov1c0uHe+2O893/ivT9N0nJJ79NomG3MmZIui/vCAAAAAGDEF815GZdtyTaDIiwS0Y1GRX3/ykYQCrB0U/jJEhYuCooGWiGhlCMi0WlZI55ZfPYYZ30freUalUnY58J8SCisE3GKrBk0swNuQe+bHafrrhCcJWz8YRr9boXF+eJEyMYMV6IFT+sNo8UJ0kaNrwKQBsrbA6dnXHbS9YoVRiOLhqlsGLwhcLpTQmt7a/+XJhrVm1ocON3a31vJvl7pnmsxAAAAAAAAAAAAAAAAAAAAAN2FMNoM5JxbI+nimsnv996/z3s/UPt87/1Nkk7QxDjaiZLOibC5T0jqG/f4dkmneu/vr9lG0Xt/laQ/qVn+L51zz4mwHQAAAADYKyymFRaDaUTOCIyU/EjdcQ9Ej67wHiOufKX7b74PCxcFjb9EGK1rWYGtsWOcdawLi+M1IuGSZig0XxlSoRJ8Hs0ZkbJWCnvvrP04aJnQ9RjXDd10PLDGX6jmVfVVczn7PYr23Qp7D4brCIu1+rxuvd4gxGuB6AZKwaGkRemlivA7dIApDZS26+49GwPnHTnvWC1KL23ziGa+vvSSwOkD5f42j6T9kWAAAAAAAAAAAAAAAAAAAAAA0x9htJnpQ5r42f7Ie/+PYQt475+W9LaayZ92ziWtZZxzz5N0/rhJI5Le6r0vhGzneklfGTcpI+ljYWMDAAAAgFrFkNBFq26szYYERqzADKaWr0SLrhBGQ1xWEMeKD3VCLhlyXAmIB1j7QcqlmjYm1MeKS41FrazzVitjEFkjcranslMVlY3xtH//sN6DQnU4JKIxeZz2ZzCsghlK7J4YhzUWL68RXzSXazQ0kpwiohdXPmJMzQo9TiVO7Kw4RVQOwD4D5eAwWl8qOKwUxMs3aziYgW7b+UNVFXxMXtd7RptHMzv0phYHTh/sQBit0ZArAAAAAAAAAAAAAAAAAAAAgNmHMNoM45xzkl5VM/mKKMt67zdI+uW4SQdLOilkkfMkjQ+nXee9fzDCpi6vefwnzhl33wEAAABAgLAwWibRmr9e5JJ2YCRqBASTRQ2clKqE0RCPtV9asahO6HEZObnAefmA2FHFB8esUi7d1HEhPitCVazmVazmzVhMK0Nk1rqt+I3UmXCgFcTIV4YD9wNJygXsx3ZgLa9h63gwTUKJYYEyK4wWtr6oz63n+qbVwdM4Y/LyKlbN3+EBYBwzjJaeHEYb/d9QATxhNAQr+5J+Pnhz4LxlPQfq+XOObPOIZoc+I4w2ULKvBVvFDLmG/JwFAAAAAAAAAAAAAAAAAAAAwOxGGG3mOUzS+DtVRiTdEmP5/6l5/IaQ576u5vE1UTbgvb9f0p3jJs2VdFqUZQEAAABAkgohkYuMEUZpVFg8JWrcC5NFDZzUG1DB7GXtl50IP1kSLhESc5oYD6j6iqqqBj6XMFrnWZ+jl9dgeYe5XFDgq1lyxpjCYhjW62ilsH3A2o+DlgkLge00PoNWvv9xhb33YdcZVjwuzmdpHRetdYdp9Xk97jUX8Vogmh2lbYHT+1KTw2hAXHftvkO7KoOB807sXW/H9tCQoLChJA2W++XbHDKcDn83AwAAAAAAAAAAAAAAAAAAANBdUp0eAJpuec3jB733xRjL31Pz+FVBT3LO7S/pheMmlSX9PMZ2bpH00nGP10v6bozlgVljeHhYv/71r/Xggw9q+/btKhQKyuVyWrZsmVavXq0XvehF6unpacq2/vCHP+hLX/qSNmzYoAceeEADAwMqlfbdqHrNNdforW99a+CyGzdu1DXXXKPbb79dW7Zs0c6dO1Wt7rtp/5FHHtHKlSslSSeddJI2bNiwd167b8IBAADTX9G4qTbtepR0yZZsMyyMVk84BKOivneE0RCXFcMJ25c7IZeYG7gf1E4r+7K5DsJonRf2vRos99e1XKOsdQ+EjCeXsONirWIFzQrVvCpGDDDotYWFwAbKwTG4bjoehAdY7XOlNS9OaMT63AuVOsJoEZep97yer8QLnRGvBaKxjpPBYaXgiJUXP+NFsA2DNwROz7isXrbg5DaPZvboNcKGJT+iocpuzUstaNtYrOuVTkR5AQAAAAAAAAAAAAAAAAAAAEwPhNFmnkU1j4N/Bbut9vkHOecWeu931kx/Qc3ju733ce5Ku73m8eExlgVmvEqlov/+7//WNddco5/+9Kcql+0b4LPZrE4//XT92Z/9mV796lfXvc2rr75aF110kYrFOC1FqVwu613vepeuvvrqurcNAAAQV7FaCJyeaeFNtUmXVI/LaCSgPR0WLEG4qO9dyY+0eCSYaawYTpxYUDtYMYDaIFFYRCjl+BFfp2WT9YXRWvl9tNY9UAqO3zg5ZRLZlo3HYu0D+eqQKqoEzgt6bWFhMes1d9PxoMdllFBC1YAYnBURLVVHzGhinOhbzvj+DhuBSYv33oxS1ipV44fRqr6iog++BrQQrwWmNlItaqiyO3DeotTSSdOCs2hAsMcLj+qh/P2B845dsM4MpKJxwWHDUQPl7W0No+WNv5t1U6QWAAAAAAAAAAAAAAAAAAAAQHdJdHoAaLraO8UzMZcPev5hEaZtjrmdhyJsA5iVfvKTn+iwww7Teeedp5tvvjk0iiZJhUJB3/nOd3TmmWfq2GOP1a9//evY27zhhht04YUXxo6iSdJHPvIRomgAAKDtrOBRq4Mu1k27+QrRjXpFfe+s8AtgyVeC4zzddvO9FYOojfmE7QMpl27qmBCfFfeS7ChXQkmlXU+rhmR+1wfKwePJJHJKuPb/uDiXCN4HCtX8pEDgmKDXFhY5s+J03XQ8cM6Z47EiomFxUSt2Fvhc4zOIGjkbU/SFwLBbkHrO61YYNwzxWmBq1nlBCg8rAVHcOniDOe/E3vVtHMnssyC5UAnjnwKEhXtbwTofd1OkFgAAAAAAAAAAAAAAAAAAAEB3SXV6AGi62n/JfkDM5YOe/3xJv6iZtqrm8R9ibuexmseLnXN93vuBmOsBZpRPfOIT+sQnPiHv/YTpzjmtWbNGy5cv1+LFi7Vt2zb94Q9/0AMPPDDheZs2bdJxxx2nz3/+83rHO94Rebsf/vCHJ2zzvPPO09vf/nYddNBBSqf33WC/ZMnEG+G2bt2qf/qnf9r7uKenR3/1V3+lM844Q0uXLlUise+mm+XLl0ceDwAAwFSsMEZYmKYZcsk52lWZ/NcWohv1i/relX2pxSPBTGMFFOPEgtrBOm7V7hth+0DK8SO+Tsu4rJycvPykeVZwJpecI+dcy8aUTQZ/t0q+9vcqPPv8Fp9DLdZ2vbyK3jjfB+zHadejhJKqqjJpnvWauy3GkUvO0XB1z6TpVkS0NqA4XpzomxlGMwKTFitkF6RsfCZhwl6vuQzxWmBKVsBTknpTiydNcwo+dwWdAzG7DVf2aOOuDYHznptbo+XZle0d0CyTcEktTC0KvBYN2+9bIU7sFgAAAAAAAAAAAAAAAAAAAAAkwmgz0e9qHh/onFvuvX884vLHBUxbGDCtt+bxMxHXL0ny3u9xzhUkZWu201AYzTm3n6SlMRd7biPbBJrl4osv1pVXXjlh2vz58/XhD39Yf/qnf6oVK1ZMWmbz5s368pe/rCuuuELFYlGSNDIyone+850aGhrSxRdfPOV2f//73+vuu+/e+/iMM87Q1772tUhjvv766zUysu9G1ssuu0wf+MAHIi0LAADQiKIRPMq4bOD0ZrFu2q0n1IFRUcNoVtQGsOSrwUGfbrv53gwSxQqjpc15aA/nnLKJXOD5YKBc+3sMRrX6uxh3/dZ3sdXqeR9yATE155xyiTkaqu6Ose3OxOAs1nthnSvDrj/iRN+sYGTc65th47gbpJ7gadg1Q4/LaMQXA5aJF3cDZqMd5W2B0+clF6onkQmY07qoJ2aWO3b9NPDYLEnres9o82hmp77UkuAwmnF92gpVX4kVuwUAAAAAAAAAAAAAAAAAAAAASUp0egBoLu/905J+XzP5/0RZ1jk3V9LZAbPmB0ybV/M4uEoQrnaZoO3E9S5Jv43533easF2gIV/5ylcmRdFe/vKX67777tOHP/zhwCiaJK1atUqXXXaZ7r77br3gBS+YMO/973+/brnllim3vWnTpgmP3/CGN0Qed73L3nLLLfLe7/0PAAAgroIRRmt14MRavzUeTC1qdKXsyy0eCWYaa7+MEwtqB+u4kq/ECaPxuw+6Qcb4LAdLk2MUUuu/i3GDY52KhFlRrjBZI+IWN65Rz7ZbyTweGOfKQsU+h8b5PM1AYyVeVCzO8+s5r9ceF8frSwf/row812jAlAaM81RfanHMNfFzXuxT9VXdOnBj4LwFyV4dNf9lbR7R7NSbDt6Pg2JprRL285Kg2C0AAAAAAAAAAAAAAAAAAAAASITRZqr/qHn8QefcgRGWu1TSwoDpUcJowb/qO1ztv4SvXScwKzzwwAN6z3veM2Ha8ccfrxtvvFHLly+PtI7Vq1frxz/+sdasWbN3WrVa1Zvf/GZt3x5+g8vWrVsnPI66zUaXBQAAaESxGvxXkEwi29LtWhGbfDVeOAT7FCKH0ewoFFDLe28GdDoVf7JY8arafSMsIpRy6aaOCfWxzhED5f7A6XHDZXHFDU3kksFxrFar532wXlvc19zqzyAuK1BmnSutYFrGZZVwyRjbta5vop2j9z0/+vVQqY7zuvU+JJXS/GTQj7WlAtdowJSsQNIiIzjojPWQRcN4vx++W8+Ungycd0LvaVy/tklfakng9EHj+rQVwsJo3XYtBgAAAAAAAAAAAAAAAAAAAKB7EEabmT4vaee4x72SbgyLoznn/lLSxcbsaoRt1nPPC/fJAJIuueQS7dmzZ+/j3t5eXXvttZo3L14rcL/99tO3vvUt9fT07J32xBNP6NJLLw1dbvy2JSmdjn5DUiPLAgAANKLog2+szbQ4eGQGjCr2jb6wlaojobGn2ucCUZV9SRUFf7es8FCnWDGq2iBRWByQsER3sM4RVizKilE1S9zQRKeigT0uo0TMH1Nbry3+a+6uGIf1GViBMisUFjdyF/U4NJU4YbR6gqfWeLLJnB134xoNmNKO0rbA6VZQSc5KowH73Dp4Y+D0hBJau/D0No9m9upLLQ6cPlhqZxjNvp7otmsxAAAAAAAAAAAAAAAAAAAAAN0j1ekBoPm894POubdJunbc5CMk3e+c+xdJN0p6UlJO0lGS3i7p5eOe+7ik5eMeDwZsZk/N43runKxdpnad9fiCpG/GXOa5kr7ThG0Dsf3ud7/T97///QnTPvOZz2j//feva32HHXaYLrnkEn3605/eO+3f/u3f9PGPf1x9fX2By1SrUdqHwRpZthnuu+8+3XPPPerv79fAwICy2ayWLl2qNWvW6Mgjj1Qmk6lrveVyWRs3btTDDz+sbdu2qVgsaunSpVq5cqVOOOEEZbPZJr8SAAAQV7FaCJyeSbT2PJ1LGmG0mOEQjIoTXKknoILZK+y7lU12Jv5ksUJItceVsH0g6fgRXzeIGxZrdQgibnit1aE2i3NO2cQcDVej/Wgw5VJKJ3oC58V9Tzv1mi1WuLFQCT6mmaGwmN9FOyo2JO+9XMQIUt4YZ5Cyjx88NUNwiTkh12jRY23AbDVQDg4k9aWNMJrBe34XDkbtKG3T3Xt+GTjvhfNeqt50cKwLzddr7McD5e2xzvGNCLs+6LZrMQAAAAAAAAAAAAAAAAAAAADdg7smZyjv/XXOufdJ+r+SEs9Oni/pA8/+Z7lK0kJJ54+bNm3CaN77ZyQ9E2eZdvyjf8By5ZVXTrhhbMmSJbrgggsaWufFF1+sz372syqVRm+aHxoa0tVXX60PfvCDkqRHH31UBx98sLn8ySefHDj9mmuukaTQ8Vn70yOPPKKVK1fufXzSSSdpw4YNex/HuWluy5Yt+vu//3t985vf1NatW83n5XI5nXzyyTr//PP1+te/Xslkcsp133///brsssv0/e9/X7t27TLX+5rXvEaf/OQntXr16sjjBgAAzVWo5gOnxw2BxGUFV+IEvrBPnKBc2ZdbOBLMNGHfLSs81CnWeGqPK9Y+kFBSCZcInIf2ih3lMkJOzRJ3PK0OtYXJJaOH0cLGGTeu0cnXHMQKN1rXGXYoLN5xLpecFzi9orJKfkQ9Llp4fjhGhKye87odgpsTco0WfM0IYJT3XgOlbYHz+lJLA6c7Wf9PhTAaRv1s8IfyCv6lKif2ndHm0cxufangMFrJj2ioulvzkgtaPgbreiWplFIu3fLtAwAAAAAAAAAAAAAAAAAAAJieuGtyBvPeXyVpvaTfR3j6HknvlnSxpANr5j0d8PydNY+D75AxOOfmaXIYLSjABsxo//M//zPh8Vve8hb19PQ0tM6lS5fqzDPPDN3OdOS915tUPcUAACAASURBVGWXXaZVq1bp85//fGgUTZLy+bxuuOEGnXPOOdqyZUvocyuViv7iL/5CL3jBC/Sf//mfZhRtbL3f+MY3dPjhh+vKK6+s67UAAIDGFauFwOmZRLal27WiG3ECX9gnTlCu7EstHAlmmrDvVqsDinFZ4ylUasNowftAmphA17CiVubzWxzlijueuFGxZorzXoTtw7FjcDHfo1azrzOC4175ihUKa95nn48RO4tzPVSq47xuh+DmmK+hEGP8wGw0XN2jEV8MnNeXDg4qAWFK1ZJ+vvPmwHkH9Byk1bkXtHlEs1tfarE5b7DU35YxWJHSbDLHL68CAAAAAAAAAAAAAAAAAAAAYEp1egBoLe/9Tc65wyW9VtIZko6XtEzSfEnPSHpE0vWSvua9f1qSnHOH1qxmU8CqH6x5/JyYQ6t9/g7v/UDMdQDT2uOPP65HH310wrTTTjutKes+7bTTdN111+19fMcdd6hUKimdnp43zJfLZb3pTW/StddeO2ne/vvvryOOOEJLlixRsVjU1q1b9Zvf/EZ79uyJtO58Pq+zzjpLN91004Tp6XRaRx11lJYvX65MJqOnn35aGzdu1PDw8N4xXXzxxRoYGNDHP/7xhl8jAACIp2jcWJtpcfDIjm4QRqtHbfgpTMmPtHAkmGnCvlvdFkbLJecGTi/6gqq+ooRLSpLKvhz4vBRhtK4R97vV6u9i/EhYJ8No0d+LXCJ4n5GkXMzX0MkYXBBrPFbs0QyFNfF9yFeGtTC1KNJ6hivRI2Tlavwwmh2Cm2N+360YC4BRA6Xt5rxFqXhhNN/oYDAj/O+e27WnUvu7lUad2LueEFabLUj1KqGEqqpOmjdQ3q7lOrjlY7CuV1odCQYAAAAAAAAAAAAAAAAAAAAwvRFGmwW89xX9/+zdfZQkdX34+09VVz/OzM70zC4Py7LsCioBAYVFYIHFCIjL+cXEh9zk4rm/E0n8/WLIifeGXP3pzxuQHHz4eTw3JOolud5o4g1Jfh4fovcnETHyrCgPigIiyOOygLOzPTtP3T3dXd/7xzLLTPf3U13VD9XVM+/XORy3q7qrvtVdXVUza71X5Ksv/xfIcZzjRWTbqknPG2Oetzz10abHJ0Uc1quaHj8S8fXrVr1hZB+JuL7bVhTxUoO9Aefuu+9umbZr166eLPuss85a87hcLsuPf/xjOfvss2Xbtm3y1FNPHZn3l3/5l3LDDTccefxP//RPcu6557Ysc/PmwzfCvelNbzoy7Xd/93fl3nvvPfJ49XJX27Ztm3V6WFdffXVLFO3yyy+Xa6+9Vs4+++yW5/u+Lz/4wQ/kn//5n+WLX/xi4LKvuuqqNVG08fFxufbaa+X3f//3ZWxsbM1zy+WyfO5zn5OPfOQjUqlURETkuuuuk3POOUf27t3b4dYBAIBOVP2KdfqgIjNasATBorxvWhQKsNH2rayTOxIaS4p8wHGr4pelkBoVEZG6sUeEUg6/3kuKqHGHfke5oi5/kJGwoNhZs6BzfZTrgLSTSdz3R9uHtKCIdqyLvC8qgcagddifGyGMphzTggSF4NR4bYQIK7ARHaxPW6e74sq4V7TOc0T7vTppNIjcXvqWdXrWyckbN70p3sFAXCcl496klOqtEcRSfSaWMajn74QFqwEAAAAAAAAAAAAAAAAAAAAkS7Lu/EISXNz0+DbleT9reny64zgFY0zYO83Ob7O8DWtfSeRVH279l9vRW09+zJUdmwc7hn379q15fPTRR8vU1FRPlv26173Our6zzz5bPM+THTt2HJk+MTGx5nnHHHPMmvnNRkdHj/w5l8utmRf0uk7dcsst8ld/9Vdrpn3iE5+QD37wg+prXNeV3bt3y+7du+W6665rGeeKL3/5y/KFL3zhyOMTTjhBbrvtNnU78vm8XH311XLeeefJxRdfLJVKRYwx8id/8ify2GOPieu60TcQAAB0pOKXrdOzrv283yvajbuVRlmMMeI4g43vDpsoARUjvjRMQ1IJi1ohmfR4Tvj4UlxyAUGosr/UNozmJSzstJFFjVFFfX5U2YixiX6PJ3jd4ccaNM4o2zDIEJwmatxLD41E27askxNXXPGl9XeSUc7V0YKn0cNoZeX6L+cWJJeKFpUDcFip1hpLEhEZ9ybVmKweRsNG91zlSXmq8ph13hvH3yR55ViN/prwpuxhNOX732va728Gee0JAAAAAAAAAAAAAAAAAAAAIPkouKDZ7zc9/rztScaYF0TkoVWTPBG5IMJ63tT0+OYIrwXWhYMHD655XCwWe7bsXC4n2Ww2cH3D4rrrrlvz+A//8A8Do2jNJiYmrGE0Y8yaZXueJ9/4xjdCxd1WgmsrnnjiCfn6178eekwAAKB7Vb9inR41AhNVTokqNaTeUeBjo9NukNbUzHKfRoL1RovzRIkvxSUoYFReFUOqm7r1OZ6T7vmY0Bktnqk+v89xkJSTkoyTbf/Elw0yFJYPCAQ2C4poRNmGJMY4tLhX1VTEN42W6WUlmBZ12xzHUT+DciNCGC3Cczu5bqookba8W1A/+yixNmAjssWSREQm01siL8uI6XY4GHK3z35LnXfRxOUxjgSrFdP2fyVotj4Ty/q1yGoSr8UAAAAAAAAAAAAAAAAAAAAAJAdhNBzhOM4FsjZu9pgx5raAl3yt6fF7Qq7nZBE5Z9WkRRG5JcxrgfWkOVQ2MTHR0+U3L29mJp6bXHrpoYcekrvvvvvI47GxMfnkJz/Zk2V/73vfk5/97GdHHr/73e+W008/PfTrr7rqqjXBtW984xs9GRcAAGiv5tekIfZAUNZpDaL2UlD0hvBGdFECKiKdRVSwMVWU72OU+FJcgoIAq7dD2/8JoyVH1LhDHDGIYQmF5VLho3JBQbko26BFyAYp6DrDFhPVj3XRt017P7SYSbfPrXVwTi8rQdWcW1A/+5pZ5voBCFCq2cNoRc8eUgpCFm1jW2osyI/m7rDOe3X+VNma3R7ziLCi6E1Zp88qYcReqzTs5+9BRnkBAAAAAAAAAAAAAAAAAAAAJB9hNIiIiOM4BRG5sWnyf23zsn8Ukcaqx+9wHOfVIVb3wabH/90YUwnxOgAROI4z6CF07bvf/e6ax1dccYVs2rSpJ8v+zne+s+bx7/zO70R6faFQkDe+8Y1HHt955509GRcAAGivauw31YqI5AKCIr0QNmCEcKLG5OrGHsQDmpUb9n2r38eITqTdtBo3W/0dqftaGM3ry7gQXdT9K44YRJT4V1BwrN8iBc0CnhtpexN4PMgFxBtt50ztPNpJ9K2grDvKuTpK8LSTWFkl4Nge9H3SgiwAREpKGKmY1sNojgz/753Re98/9F2pmWXrvIuKl8c8Gqw2oYQOS7V4/jEd7Xclg4zyAgAAAAAAAAAAAAAAAAAAAEg+7pxcpxzH8YwJd8e44zijIvJNETl11eSvGGO+EvQ6Y8zjjuP8vYhc+fKkjIh80XGci7XQmeM4vykiv7dq0rKIfDTMOIH1ZnJycs3jQ4cO9XT5s7OzgesbBvfcc8+ax29605t6tuy77rprzePJyUl5+umnIy1jdaTt6aefFt/3xXVpjgIA0G9VX49bZN1cX9cdFN2IGvlC9Jhc3bffaA800/atQYafguTcgiw0Wn8mXL0dDbH/mkeLqiF+iQyj9Sg41m9R3oug9zlK7CyJMY6g8duOa9q1Ryf7lvZ+LEWInS350cJoxphIYX/92D7SNl47Kr0J7QPrzcHatHV6UQkpBTPdDQZDyze+3DH7b9Z5496knDF6Tswjwmpa6LBUPxD5XNwJPeSavEgtAAAAAAAAAAAAAAAAAAAAgOQgjLZ+/WfHcd4pIv8gIv/DGNNyd8vLQbR3isj1InLcqllPi8gfhVzPNSLydhEpvvx4t4jc6jjOHxhjfr5qXVkR+U8i8umm13/aGPNMyHUB60pzqKxUKvVs2ZVKRSqVtX3Cqampni0/Li+88MKax6eeeqryzOiee+65NY/PPffcrpbn+77Mzs4OZYAOAIBhU/WtHWYRiR6liSoovFZpEEaLKmpMrmZqfRoJ1puKElBMYghJ5HDEyBZGW/0dqSv7v+cSRkuKqPtXLoZQX5TzYhyhNk2U9y5onDl3pCfLGZSg8Vcaa49rvvHVWGw+wvtw5DXK/hg2Ylo3NamZ8AFTI0Z8aUgqwl9RqGEVNx8YviReC9j5piGz9YPWeYFhNCWiZAxhtI3q50s/kenaC9Z5F4y/RVIOfx09SEXP/ndDNbMsi/68jKb6Gw8dtp/NAAAAAAAAAAAAAAAAAAAAACQD/0/09csRkV9/+T/jOM5TIvKYiJREpCAix4jImSKSaXrdUyLyFmPMr8KsxBizz3Gcd4jIt1ct63wRecRxnPtF5EkRGX95XVuaXv7/icj/EXG71r1tRZEnP+YOehjr3rZi++f023HHHbfm8YsvvigzMzM9CZg9/PDDbdc3DGZmZtY8LhZ798E1L7sX5ufnCaMBABAD7aZaEZFsn8NorpOSnJu3joHoRnRBn6WNFoYCmpX9Rev0JIaQRPR41ergYs1XwmgOYbSkiBp3iGN/DDsmV1KSdpp/TRifKO9F0DblI1wHJDHGkXbT4jme1E29ZV7zca3qV8SIPULUSSi2oMTUtONpy/M6CMTWTC10LCcovJZ3RwK3mWs0wG6ucUh8aVjnTaab/zrnFY7Yw2jYuG4vfcs63ZWUXDDxlphHg2YTShhNRGS2NhNDGM1+Hk7qz2YAAAAAAAAAAAAAAAAAAAAAkoEw2sbgiMirXv4vyDdE5A+MMdNRFm6Muc1xnLeLyBfllfiZIyK7Xv7P5p9E5L3GGPtdNxuYl3Jkx+ZBjwJx2L17d8u0++67Ty677LKul33fffeteZzP5+X1r39918sdNMfp3U13y8v2m2m7YYz9hmQAANBbVb9ine6IG0vUJecWrEEv7WZf6MqNcLGVFYTREJYW3UtiCElEJJ/SgkSvHFdsoSQRES9kVAj9l0uFj1GlnUzoIFQ3wobC8qlCT3/mjiqXCv/dzAc8N8p3PKnHg5xbkIXGXMv05uNa0HWHdkwJXq/9NUshz9WdxMcOn9fD7aOVhh5Tzbl5STmeZJysLJtq62u5RgOsSjX9r4KKHn9JgXBmai/Jzxbvs857/di5Mu7xD4kM2rhXFFdc8cVvmVeqz8g22dnX9WvXCEm9FgMAAAAAAAAAAAAAAAAAAACQDO6gB4C+uUtEviwipTbPq4vIzSJyqTHmN6NG0VYYY74lIq8TkRvbrPMHIvIuY8wVxphod8AD68z27dtl+/bta6bdcsstPVn2d77znTWPzznnHMlk+h8J6bXNm9fegHfw4MG+LDuXy4nv+2KM6eq/HTt29Gx8AABApwWPsm4ulqhLTonMdBIE2eiihkpqhNEQkhbdyyf05nttXKu/Iw3CaImnnR9s4toXwwYnBh2miPJ+BL3PaTcT+jsRFFgbJO29aL7OCLruiLIvrigoMbWw5+qyH/1XvVrwMeo48i9H3bT9uNzgGg2wKdUPWKennYyMpMbU12k/cRnhH43YiO6c/bb62V80cXnMo4GN66Rkk1e0ztOOA71UUc7DnVyvAAAAAAAAAAAAAAAAAAAAANg4CKOtU8aYHxtj/icRmRKRk0XkHSLyJyLyERH5ryJylYhcKiKTxpjLjTG39mCdvzLGvE9EjhGRN4vIe0TkQy+v950i8ipjzHnGmK90uy5gvXjrW9+65vGXvvQlqdW6iz1MT0/LN77xjcD1DItjjz12zeNHHnmkZ8s++uijj/y5UqnIs88+27NlAwCA/qr6Fev0uG6qXYlvNNOCbdBFjcnVCaMhJO37mEtoCEmN+az6jmj7v+ek+zImROc5aUk74aLkcYXIwsa/Bh0NjPJ+aOfhqMsadAxOo42rOQwWJhQWhbYPLCmhyWZakDJI3V8O/dzAEFzq8DWgtr9HDbECG8XBmv3fySl6m9sEp/sfo8ZwqPnLcveh71jnHZvZLiflT4l5RNAUvc3W6bO1mb6u1zcNqRr773AGff0JAAAAAAAAAAAAAAAAAAAAINkIo61z5rDHjDFfM8b8tTHmemPMx4wxnzPG3GqMme/DOpeNMd8zxnzRGPOJl9f7VWPMU71eFzDs3v/+96+5yWx6elq+8IUvdLXMG264YU1cbWRkRN773vd2tcxBOf/889c8vu2223q27N27d695fMstt/Rs2QAAoL+qSvAo6+ZiWb8WYOskCLLRRQ2VEEZDWGXf/n1M6s332rgqhNGGTjZkpDOuSN+wRMLyEeKm7UKoYUOpcQVVo9LG1XzO1EJhrrihA31r19tdVEw77gapRTivB4XRVo6hYSKTAF5Rqh+wTi+m7QGl9kzng8FQun/+blls2P+a8aKJvW0Ce4hTMT1lna4dB3pFC9uLJDdaDQAAAAAAAAAAAAAAAAAAACAZCKMBwACdcsopsnfv3jXTPvjBD8pLL73U0fIeeeQR+dSnPrVm2nve8x6ZnJzseIyDdMkll6x5fNNNN8n8fG96jpdddtmax5///Od7slwAANB/2o21YWM03corN+9WlGAb7HzTiPyeEUZDGMYYdd8adPxJo8Z8Gu3DaCnH68uY0Jmwga8oIbBuhN3nBx0NzLkjEZ4bPNZ8yGUNeps1+ZR9/KuPByIilYY99pV3RzoK0RSU9S6FDJ4tKYHYoM8rynldC7SlncyR42CYyCSAV5Rq9iDSpLcl8HWO2I8xhjDahnPH7Les03NuXt44/qZ4B4NAE549eDjb5zBaUJw0qZFaAAAAAAAAAAAAAAAAAAAAAMlAGA0ABuzTn/60FAqv3Lg5Ozsr73jHO2RhYSHScqanp+Vd73qXLC8vH5l27LHHyp//+Z/3bKxxO/XUU+Wiiy468nhubk4+9KEP9WTZe/fulRNPPPHI4x/+8Ifyd3/3dz1ZNgAA6K+qsQePsk4ulvVrgQ+iG9FogbsgNZ8wGtqrmooa5khuCKn9caVu6tbnpJ10X8aEzoQNkUUJgXUjbHBi0NHAtJsWL2Tkr91Yh2WbNdr4m68ztNBILtVZZEQLylX9svjGb/t67TpoLDWuvkY7rtk0h+FWrB639t4FRVmAjeygEkQqpu0BJWC1ZypPyNOVx63zztn060SvEqaohNFKtZm+rjfo9yRhY7YAAAAAAAAAAAAAAAAAAAAANibCaAAwYCeffLL89V//9Zpp99xzj+zdu1f27dsXahmPP/64XHzxxfLoo48emea6rnzpS1+SLVu29HS8cWsOu332s5+VT3/606Fff+jQIalUWqMbnufJddddt2ba+973PvnqV78aeYy33nqrPPnkk5FfBwAAOlPx7WG0uG681kIqRDei6eT9qhvCaGivosRzRJIbQtKCbWV/8ciftf3fI4yWKGHPRfkBn7OaaXG+OIWJxXlOWtJu8D4fPk43+G220SIhzedNLTTSaQAyn7Kv14iRqnLttdrSquPVapu8CfU1NbOszmumbe/q75z23gWdF4CNbLamhNGUgFI79iwt1qs7Sjer8/ZM7I1xJAijmJ6yTi/VD4gx/fv2lgOuIYjnAQAAAAAAAAAAAAAAAAAAAAhCGA0AEuDKK6+Uq666as20u+66S0455RT5xCc+Ic8995z1dU888YR85CMfkdNOO01++tOfrpn3yU9+Ui6++OK+jTkub37zm+Xqq69eM+3P/uzP5G1ve5vcf//91tf4vi/f//735f3vf78cf/zx8uKLL1qfd8UVV8iVV1555PHy8rK8853vlHe/+93qskVEGo2GPPjgg/LRj35UTjnlFLn00kvl2Wef7WDrAABAJ6p+a/RURCTr5mJZvxYc0YIdsAt6v0bcMet0wmgIIyi6l4T4k40WaFodgiSMNhzCR7naR8B6IWyALQmRsDBjDTPOsN/z5B4P7O9D83lTO9Z1+lkGBdW06Nma8SjxsYI7Kq7y1xBRzuva9q4OuuVS9veOeC3QqubXZK4xa51XTAeH0RzHUeaQRtsoFhpzct/8ndZ5ry2cJsdmj495RGhHCx7WzLIs+Qt9W6/2c78rKUk7mb6tFwAAAAAAAAAAAAAAAAAAAMDw8wY9AADAYZ/5zGekWCzK9ddfL8Ycvolsfn5ePvShD8mHP/xhOeWUU+T444+XYrEoMzMz8swzz8hjjz3Wspx0Oi033HCDvO9974t7E/rmk5/8pDz77LPy5S9/+ci0b37zm/LNb35Ttm7dKqeddppMTU1JtVqVF198UR566CGZn58Ptewbb7xRSqWSfO1rXzsy7aabbpKbbrpJtmzZImeccYZMTU2J67oyNzcn+/fvl0cffVQqFXuQBQAA9N/qUNBqWkik17TgiBYEgV3Q+zXqjcvicuv1HGE0hBEU3UtC/MlGCxKVG0tijBHHcaRu6tbnpBx+vZckYfexvBJw6rXQ40nAdyNU9CzEc4Zpm23U64ym6x/tWNd5GE2P9ZUbSyJtGoxlJZ6WT41I2slI1bT+HiXKeT3M9Z+2DcRrgVaz9QPqPC2gtMIRLYyGjeL7h/5dambZOm/PxOUxjwZhTHhT6rxS7YCMpOxx8m5VlJ/7824hILIIAAAAAAAAAAAAAAAAAAAAAITRACBR/uIv/kIuuugi+aM/+iN5/PHHj0w3xsjDDz8sDz/8cODrzzzzTPmbv/kb2bVrV7+HGqtUKiX/8i//Iqeeeqpcf/31Uqu9cuPs/v37Zf/+/R0vO51Oy1e+8hX51Kc+Jddcc82a4Nn09LTceuutoZYxMqLfQAwAAHqr6tsDpVk3F8v6tQAb0Y1otIBKSjw1VlMjjIYQysp30RVXMk425tGEo4WMGlKXuqlJ2smoASHPaVMrQqzCRjpzARGqXgobyYorLho8hjDRs/bjDLvN2QRss412DmwOi2iB0U6Db/mU/jrtnB3mOXm3IJ6TVsJo9uBjlOWv/ry5RgPCKwWF0dLBYTTNyj/2gfXNN77cOXuzdd6ENyWnj74x5hEhjE1eURxxxYjfMq9Un5FtsrMv61XDpjFFggEAAAAAAAAAAAAAAAAAAAAML3fQAwAArHXJJZfII488Iv/4j/8oF198sXhecMMym83Kb/zGb8i//uu/yn333bfuomgrHMeRa665Rh577DF573vfK5OTk4HPHx0dld/6rd+Sr3/967J9+/a2y/7ABz4gTz31lPyX//Jf5IQTTmg7nrGxMbn88svls5/9rLzwwgty9tlnR9oeAADQuapyY21cgZN8yh6z0W74hZ32fuVTBUkroSctDAWspgVwcm5BHMeJeTThBAeJDm+PFhDyHP7dgyQJG3nIx3bOChfJ0s5tcQoz1jDRszBhsKyTk5STCjWuuOWU96H52KYe60J+5s08Jy1pJ2OdFyqM1rA/p5AaUY9TUc7rlYZy3bDq884rwUEtmAlsZAdr9jBawR1NRCwTyfXI4gNyoPaSdd6FE5cl9vy60aWclIx7Reu82fpM39Yb9LMZAAAAAAAAAAAAAAAAAAAAAAThzkkASCDP8+SKK66QK664QhYXF+X++++XJ554Qqanp2V5eVmy2awcffTR8prXvEbOPPNMyWazHa/r2muvlWuvvbaj1952222xvk5EZOfOnfK3f/u3cuONN8oDDzwgP//5z+XAgQOysLAgIyMjctRRR8nJJ58sp59+uqTT9qCG5phjjpGPf/zj8vGPf1yeeuopeeCBB2R6elpKpZK4ritjY2OydetWOfnkk+XVr361pFLc5AUAwCBU/Yp1elxhNC0UUPGXxBiT2PBS0miRkrxbEI8wGrpQbij7VoexoDgEhQEq/pJskgl1/9e+LxiMsJGHnBJw6rWwcZskRHBCRc9CxdPab0sStlejhd2az5tB59HO1z0itcZy67qV6Nna8difk3dHxHPTIo3WeTW/dV1Rl796v1Gv0ZSoGrCRler2MNpkenPb1zrCzzsb2e2zN1unp8ST3eOXxjwaRFH0NlsjaCUllNgL/bheAQAAAAAAAAAAAAAAAAAAALAxEEYDgIQbGRmRPXv2yJ49ewY9lERxXVd27dolu3bt6svyd+7cKTt37uzLsgEAQHcqvj1ukXVzsaw/r8RsfPFl2VQl68QzjmGnRVZyhNHQpYpy833YYNUgBIUBVmICehiNX+8lSdjgVj6mMFfK8STtZKRmggNU2rktTmECGWG+x6GeM4ShxJpZloapS+rl77wWGunmWJdPFWSuUWqZrq0rzHPy7oh4TsY6L8p5Xbv+Wx3Ly6fs+3HZXyReCzQp1aat0ye89mE0jRHT8WsxHA4svyiPLD5gnfeGsfNk3CvGPCJEMeFNWafPKqHEXhjGn80AAAAAAAAAAAAAAAAAAAAAJIM76AEAAAAAABBF1a9Yp4eN0XQraD3aTb9opQVOgsJoNZ8wGtrT4zzJvfk+G3RcaRzenoapW+dr3xcMRtj9LKcEnPohXHAsnnNo8BjajzPMtuRDRM+SHOMI+ixWH99Wjg3NujnWaYG8MGG0JSV4mk+NSFoJONaV45pNxdeDqq/82f7ercRrAbyipISQiukwYTR7ZJAw2vp3x+y/qZ/znom9MY8GUWnfb+140At6yHXw154AAAAAAAAAAAAAAAAAAAAAko0wGgAAAABgqFSVoFbWycWy/qDgSFmJlKBVWQmc5FMFSbv20FPdEEZDe1qgMMkhJNdx1TjASkygpuz/hNGSJex+lo8xBhEuOBZfqE0fQ28Cbr0KrA1K0GexOobWj2Od9r6UlejZCt/4avA0HxA8jXJeLwcs/5U/B7x3xGuBNUo1ewhp0tvS9rX2LBrWu2W/Kt8/9F3rvOOyO+TE/K/FPCJEVfSmrNNLtZm+rbPS0IPoAAAAAAAAAAAAAAAAAAAAABCEMBoAAAAAYGj4xpeqqVjnhYml9EIupd/AS3QjPC2gkutRQAUblxYoTHIISUSPA6xEBLX933O8vo0J0YU9F8UZgwgVE0vFvHdLFwAAIABJREFUF2pTxxBinGECbr0KrA1K0GdRXnWdUVauOfIB1ynt5FP291eLma6o+hUx4tuX6Y705LxeUY7tq79LQZ8r8VpgrYN1exitmN4c80gwLO6fv0sW/XnrvIsm9orjkMxLOu37PVufEWNMX9aph1yTey0GAAAAAAAAAAAAAAAAAAAAIBkIowEAAAAAhsayqarzsm4uljFknZw4Yr/pW4uUoJUWWckTRkOX9Jvvkx1G02JOKxHBuqlb52vfFwxG2MhDnKG+oKDniiSEA8MEvUJF3kI9Z/Dbqwn6LFaOBw1Tl5pZtj6nm23T1t0ujBY0P5/Sz+u1kOd1Y0yoEJwWdhMhXgusVm4sqd+JohcmjGb/WchIf8JKSIbbZ2+2Ts+7BTl700UxjwadmPCmrNOXTVWW/IW+rFMLogedswEAAAAAAAAAAAAAAAAAAABAhDAaAAAAAGCIVJWbakVEsiFjNN1yHEeNrhDdCK/cUAIn7oikuwyoYGMLE89JIi1mVG4sim8aYsS3zieMlixho1RxxTxF2kfP0k5GUo4X02h0Yd67cJG39qGNJB8PUo4naSdjnbcSIAsKsXYTudPeO+2c3Twum4I70nXwtGaWxZeGdd7q/SbjZInXAiGU6gfUeZPp9mE0x7F/z7B+PV3+hTxbecI679zxN8d6XYPOaWE0EZFSbaYv69SuEcLGhAEAAAAAAAAAAAAAAAAAAABsXIO/4w0AAAAAgJAqgWG0OCMzI9bARtD41osfzd0h3z/0XTWoMJraJKePvlHeXHybpJyUuhwtIpdz82J8ewAqbEAFG1vQvpVkWsyo4pelburq6wijJUuYcFfOzYsbcHzstXbBsTAhsTiECXqF+R6HCaWGDdgNSt4tSK2x3DJ95TqjEhAq6yqMllLCaAHhM5HDAUdNLiB4Gva8HjYE5zqu5Ny8co1GGA1YUapNW6c74gSGk9oypvPXItFun71ZnbdnYm+MI0E3xr1JccS1Bpdn6wdkm+zo+Tq135F0c70CAAAAAAAAAAAAAAAAAAAAYGMgjAYAAAAAGBpVv6LOizN6pK0rKAyyHtxRuln++Vd/E/icl+R5+WX5UfnV8n559zFXqc/TAiX51IjUTGsMRoQwGsLRAjpJiT9ptKBW2V8M3Pc9h1/vJUmYc1HcUa52Y0pKNDDM+xLme5x20+I56cDvTdLDaDm3IHON2ZbpK9cZQaGwMHE+jRYpCVpf0Py0kznyediEPa8HRc2a99+cW7COp902ABuJFjje5BUlFeK6wlGmk0Vbnxbqc3L//F3WeScXzpCjM8fFPCJ0KuWkZNwrymx9pmVeyTKtF/RodbKvxQAAAAAAAAAAAAAAAAAAAAAMnjvoAQAAAAAAEFbFL6vzsrGG0ew38QaNb9jV/Jp888BNoZ9/96HvyEvLz6vztUBJzs1L2snYx0AYDSFUGvq+lWRakKjil6Vu6urrtOAQBiPr5MRRkzGHaZ91v7QLT+RTyYgG5kMEvcJ+j9u9x3F/BlFpcbOV64ygyFc326aF58rKcXXFkhKGXVmedpyq+eHO60Hrb95e9VjaZhuAjeRgzR5GK3qbQy4h+DyH9eWeQ7eqIcs9E3tjHg26pX3PZ5VgYjd846u/I0n6z2YAAAAAAAAAAAAAAAAAAAAABo8wGgAAAABgaFT9inV62slIyknFNg4t3hIUKhl2jyw+IIv+fKTX3D93lzqvorxXebcgnuNZ52k35AOrad/DpMSfNFq8quwvBe772vcFg+E4TttQZ7tQWa+1C2UlJUwR5n0JG/1qt6y4P4Oo9FDi0pr/bXb4eqjzY4J+fWMPn7Wbv7I8z7WH0cKe17XtFWkN4wYdSwEcVlICSOHDaBrT5euRNL5pyB2zN1vnFb3Nctro2TGPCN2a8Kas00tKMLEb2u9vRJJ/LQYAAAAAAAAAAAAAAAAAAABg8AijAQAAAACGhnZjbdbNxToO7SbeoHDHsPvR/B2RX3P/vD2MVvOXpW7q1nl5d0Q8p7uACjauhmnIsqla5yUl/qTRQkjlxmKbMJr9+4LBabevhY179UrSxqMJ8x3NKeGuqMvKJ/x40C7uVW7ocdFuFFx7QLJmlqXm68chNUj58vLSXZ7XteXn3Ly4ztq/4tDibuv5Gg2ISgujTabDhdEccazTDWG0dedni/fLwfq0dd6FE5fFGidHbxTTShitPtPzdQWFVbXzNQAAAAAAAAAAAAAAAAAAAACsIIwGAAAAABgaVb9snZ6NOXCiBozWaXSj4pflpws/ivy6F5afk/3VZyzL09+nXCovaTdjnVfzlyOPARtL0L6VV4I/SaEFnyp+uU0YzevXkNChdnGqXCrec1a7mJgW4YpbyvEk42QDnxM2cJhPBX/fc23mD5oWbls5xmnHum4/y1zAcbISEDcpN+zzVkJr3QZPo2xvu6gcAJFSzR66KnrhwmiihNGw/txRutk63XM8OX/80phHg17QvuezfQijVZTf34gk5/oTAAAAAAAAAAAAAAAAAAAAQHIRRgMAAAAADA01jObkYh2HdhNvpbE+oxs/mb9XasYeJbts8p3y20f9gThKIOG+ubtapgXFSfLuiBp6qpt6iNFiIwuM7sUcUIxKDy4uBu77WnAIg9Mu9BB3pK9dqC3fJpwWp6D3Lu1kQu/v7b7vWngsKbRAWfnl6wztPNougtdO0L4QdO4uK9G0lfF0G0bT1m3bt7X9Pej8AGwkvvGlpASQiuktXS3bdPVqJM2vlvfLI0sPWue9YfR8GfMmYh4RemHCm7JOL9UOiDG9/RYHR6uTc/0JAAAAAAAAAAAAAAAAAAAAIJkIowEAAAAAhkZFCaPFHTzS1hcUDRlm983faZ2+KTUhv7H5Cvn14n+QE/OnWJ9z//xdLTdYB4fRCl0HVLBxlQPihHHHqKJSg4t+OXDfJ4yWPO3OSfGfs4LDE+3mxykozBXlfRumbbbJp+zbuhIY0UIj3UZGCgHHyaWGPX4moofRVpanBU9rIc/rWnjW9jlqn23Q+QHYSBYac+p1RdHbHGoZ9hyyCGm09eXO2X9T511U3BvjSNBLE2n793zZVNXzeae039+44krayfR0XQAAAAAAAAAAAAAAAAAAAADWH8JoAAAAAIChUTUV6/Ssm4t1HPmUPRyi3fg7zObrh+TRxQet884cu0BcJyUiIrvGLrA+Z7r2gjxXfXLNNC1wInL4s9RCTzWzHGbI2MC0WJCISE4JDSWFFjSq+mWp+fq+n1KCQxicdtGtuCN97YJi3ca0einovYvyvrXbpiRts01QKFFED4x2u11ZNy+OkjwKOr5q0bGV7dDiJ2GDp1G2V4vrrcdrNKATpfoBdV5RCSZh41n2q3LPoe9a5x2ffZXszL025hGhV4relDrvYE0/PnRCu3bIuQVxHD2xCAAAAAAAAAAAAAAAAAAAAAAihNEAAAAAAENEi1rEHUbTIjNlfzHWccThwfl7xBffOu/sTXuO/PkNY+eJo/ya4f75u9Y81gInOTcvrpMKCKjUwwwZG5i2b6WdjBrcSwotuGjEyKI/b53nSkpch1/vJU27EFm7+b3WLpbVLuQWp6CxRnnf2m1T3NcNUWnvw8p1hhYY7fazdB23o2scbV7h5eOadvwNG0ZTwyqWCJr2HqzHazSgEyUlfOQ5noylxkMtQwsaGTEdjwvJ8qO5O9Tj5p6JvUSthti4N6n+3D4bEE7shB5OTXawGgAAAAAAAAAAAAAAAAAAAEAycOck0GO2G0KM4YYgAMPN91tjKNwABwAYhKpfsU6P+8ZaLbqhhduG2X3zd1qnb04fLTtyrz7yeMybkNcWTrM+9/65u9b8XKTdZL/yvnqOZ51vxJeGaYQaNzYmNZ4zBDffB41xvn7IOj2d8NjbRpVLtQmjWWJO/dQultUunBanoO9BlPctaJuyTk5cJxVpXHFrd52hRSDzPdi38q490rjU0MNi2ryVZXUfRrNfX9k+Z+2zX4/XaEAnDtanrdMnvKkIsVXld4L8Nci6YIyRO2Zvts7LuyNr4tgYPiknJeNe0Tpvtj7T03VpP5tpQWgAAAAAAAAAAAAAAAAAAAAAWI0wGtBjrtv6tarVwt3kBwBJVa/XW6bZjncAAPRbVYlaZGOOHmnRjapfFt+0BkWH1cHatDxRfsQ6b9fYnpZQ6lljF9iXU5+Wpyu/OPK4XeBEC6iIhI+oYGMqN5Sb75XQT5IEjXGhMWedHvRdweAkLUTW7hwZd6gtSNB7F+V961VgbVC0bS03lsQYExCB7EEYTYmVaOsMmreyLC14Wjetv2uw0UJwtu3V3oNyQNgN2EhKtQPW6UVvS8wjQVI9VXlMnqs+aZ133vjFknGzMY8IvTbhTVmnl+r240On9PN38qPVAAAAAAAAAAAAAAAAAAAAAAaPognQY47jSCaTWTNtYWFhQKMBgN5oPo5lMpmWEAoAAHGo+hXr9LjDaFp0w4hRxziM7p+/S523a9OFLdNeP3auuJJquywtTpI7EkbLWOeLiNTMsjoP0KJ7w3DzfdAY5xuHrNO12BAGq12cqhfxqijSbjowohd3qC1IPiBaFuV9C1pOkrZXo21rQ+pSNzU9RNaLMJqyjCVfD4tp81aCj9r+F/acXlGjl61jVeO1piK+aYRaH7CeaeGjYnpz6GVovxE0YjoYEZLm9tLN6rw9E2+NcSTol6IWRqvN9HQ9+s9myb8WAwAAAAAAAAAAAAAAAAAAADB4hNGAPhgbG1vzeG5uTozhpiAAw8kYI3Nzc2umNR/nAACIi3ZjbdbNxTqOoOCKFisZRj+au8M6/bjsDtma3d4yfSQ1Jr828nrrax6Yv0d844uI/jmuxEzSrh7wqZt64JixsZW1OE/AdzYp0k5GUmIPnS0oYbQUYbREyrcJ8Q0izBW0ziTFKYLGEiVwGLyc5GyvJpfSt7XiL0lZudboxbZpyygrcbKavyx1U7POe+W8bg+e1n3761rWrW2v5dhum7ZCu/4ANpJSTQmjeeHDaFoajTDa8Juvz8qDC3db551SeIMcldka84jQD1oIUQsndqqfIVcAAAAAAAAAAAAAAAAAAAAA6x9hNKAPmoNBtVpNnn/+eeJoAIaOMUaef/55qdXW3qy8adOmAY0IALDRVf2KdXqUWEovBIVH1kt044Xqc7Kv+pR13tlje9TXnTV2gXX6bH1Gniw/KiJ6vGolZuIFxJ7CRlSwMWnfv2EIITmOowbc5utz1umeo0cEMTjt9rdB7I9B60xSnCJoLHl3JPRyehVYG5SgbS37S1JpBAdGu1FI2dddUc7dWrRs9bK0Y1XY2GmUsErQe7BertGAbmjho8n0lphHgiS6+9B31GPznuLemEeDfpnwpqzTZ+szPV2Pdv4ehmsxAAAAAAAAAAAAAAAAAAAAAIOn32kMoGO5XE7S6fSakND8/Lz88pe/lE2bNsno6Kh4nieuS5sQQPL4vi/1el0WFhZkbm6uJYqWTqclm80OaHQAgI2uqgQtsm4u1nEERTe06NewuW/+TnXeWZvs8TMRkTNG3yie41lvqL9//m45qXCqGlFZeV89J6Muv2aW1XmA9v1LUvgpSM7Ny0KjNYJmmyZCGC2psm1iD1oAr5+CAhR5JYQ1CL0KmvUqsDYoQdta9pfaBka7ob0/S2oYTb/uybnBwdOG1MU3vrhO8O9ItesG2/sUtA8dHivxJ2xcDVOXQ/WD1nlFJZRk44ijzOEfhhlmDdOQO2e/bZ036W2R142cFfOI0C9Fb7N1+mxtRowx4jjadzwaLeQ6DNFqAAAAAAAAAAAAAAAAAAAAAINHGA3oA8dxZOvWrfLss8+KMa/cDFSr1WRmZkZmZnr7r64DQFxWjm+9ujkKAICoqn7FOj1KLKUX0k5GXEmJL42WeRUl3jZMjDFy39wd1nkn5n9NptJHqa/Np0bklJEz5aGFH7bMe2D+bnnXUb+vvkcrN0inA2JPdVNT5wHt9q2k04JE841D1ulabAiDlW9zThrE/qit0xFHMk5ywteBYbQI0a/g5cR7zdCJoOuaufqs+OJb5/UiAqkdh8oNe5ys3NDDaIXUqIgERxzrpha4D/rGV8O4trEGvQdaoAXYKGbrB8Uo8bLJdPfRQLJow+1nC/dJqX7AOm/PxF5xnVTMI0K/TKTtYbSqqUjZXzxy/u6WGkQfQCQYAAAAAAAAAAAAAAAAAAAAwPDh7kmgTwqFgmzfvr0ljgYAw8pxHNm+fbsUCty4BAAYHC16lHVysY7DcRzJuwVZ9Odb5gUFQkREDtUPyrOVJ8VYoiY5Ny87cq+RjNs+UjNbPyjPVZ6UozPHyZb0MR2HS33TkH3Vp2S2fvDItFLtgEzXXrQ+f9fYhW2XuWvsQmsYbb5xSP699E05WPuV9XUrMZPggEq97fpFDsfdpmsvyIvL+0I9f8Wm1IQcnztRUiFu/F/2q/J05ReRYniuuLI9d5Js8ibaPrfmL8vTlcel7AfvU82Oy+4IjNd1quKX5enyL2TZVHu+7F45sPySdfqw3HyvxZAWG63HGpHg7woGp134bBAhMu07kHPz4jpuzKPRBX1X2wXnVguKn/UiHtZvrpOSrJOTqmkNwj6y+ID6ul5E97TPoFSftp7b91Wesj7fEffI9Vnayajrq5uaZET/TlT9ihpysh0z025GPMezXi88uvRj67VbGCnHkxNyJ8loalNHrweSoFSzR69ERIqePZTUSw3TkOcqv5S5xmyk123NnCCbM0f3fDzGGHlh+Vk5ULNfPx6V3ipHZ47bMP9AxO2z37JO95y07B6/JObRoJ+K3pQ670dzd0hRCadFdWjV7xhWG5ZoNQAAAAAAAAAAAAAAAAAAAIDBIowG9NFKHG3//v1Sq9UGPRwA6Fg6nZatW7cSRQMADFTd1KQh9ihWNkIspVdyqbw1rqFFshqmITe99Dn5/qHvBi437WTkPcf+qbx+7Fx9OS9+Tr4/98pyXls4Tf7zcR9Wo0qal5afl8/s+6jMKKGyZq64cubY7rbPe93oLkk7GamZ5ZZ5X5v+ovq6fGpEREQ8R/91hW2ZzcqNRbnx+Y/J4+WH2z7XZjxVlKu2XSPbcjvU5zw4f4988YW/DDUemwsn3iq/c9R/UoNEDy/cL5/f/ylrFCeMM0bPkSuPvVrSrh6jieIHh/5d/vHFz6nfwaQblpvvV74DzWwhRRERzyWMlkTt9rdBBFa080PSvhtB48m59u+HTVD8LGnbrMmlClKtt54DtHCNSG+ib3nlfT5Qe0lufP5jEZZTOLKvdxM8rfhL+jqUY2bOLchCY65l+rdm/iVwXWG8dfK35Tc2X7FhQklYX0r1aev0nJtXv082jmj7v/4PxOyrPCWf2XedzDVKodez2qkjZ8ofbP2AZN3eBLEP1Q/KXz/3Udm//Ezg87ZnT5Q/3naNjHrrO4r40vLz8vOln1jnnTV2wbrf/o1m3CuKI671Z4x/+dXf9n39UX9vAQAAAAAAAAAAAAAAAAAAAGBjst99C6BnCoWCnHjiibJz506ZmpqSTKY3N6UDQL9lMhmZmpqSnTt3yoknnkgUDQAwcFpwTER6doN8FFp8RAt43DF7c9somsjh8Nfn9/83OVQ/qC9nbu1yHlv6qXz1V19su+xm//fz/y10FE1E5OSR18uYN9H2eTk3L6eN7oo8npUbpF0nJa6krM+pm/bR6a9Of7HjKJqIyKFGSW58/noxxh53OFiblv9n/6c7jqKJiNw5+29yz6FbrfOWGgvyN/s/3nEUTUTkJwv3ys0zX+749au9WN0n//DiXw1tFE2kN7GgOESNBATFhjA4uVTyYg9aDCxp342g8eQjfD9Sjidpx/47uKRts6aTcfYi+tar92d1ZCkoeNruvF4OCKNpx8x+fsb/dvDL8pOFe/u2fKCfSrUZ6/SityXScqKGAX3jy//1/PUdR9FERB5efEC+eeCmjl/f7O9fuKFtFE1E5NnqL+X/fekzPVtvUt0xe7M676KJvTGOBHFIOZ5sCvFzfb8MS6QWAAAAAAAAAAAAAAAAAAAAwGDpdyQB6BnHcSSXy0kul5OjjjpKjDHi+756kz0ADJLjOOK6buSbHAEA6Leqr0eiosaEekG7mVcLeDwUIaLhiy8/W7hfzp+4tGWeFuN4aOFeuULeF3od08svhIoBrLZr7MLQzz1r7AJ5YP6eSMvPu69EVNJOWqqm0fKcMGG0XgRLDtanZV/1KTk+96qWeY8u/lh8aR1bVA8t/FAumHhLy/SHFx+Quuk+QvaThXvlbVve3fVyHlr4YdfLGLRhufl+9XcgjKDYEAYn6Jw0qCiX9h1I2ncj6L2LOta8W5BaozVgmbRt1kQdpyNOT0Kxq4NmXS1n1fiDIo7tzutacFZkcPv1Qws/lNePndvXdQD9cLA+bZ1eTG/uyfK1v+/YV31SSvUDXS//Jws/kHcddWXXy6n4ZfnF0s9CP//niz+RhqlLap1ed1X9ivzg0L9b523PnSQ78q+JeUSIQ9GbUmPs/TYskVoAAAAAAAAAAAAAAAAAAAAAg7U+/1/8QMI5jiOpVGrQwwAAAACGSlAYLZugMJoW8CjVZiItX4sH/GLpp9bpc41ZqZtaYHwkzPI1aScjZ4yeE/r5p46cJTk3LxW/HPo127I7j/zZc9JSNa2febuASs2vyUJjLvQ6g8zWZ+R4aQ2jzTVme7R8+2cwW4+2r0RdfvTl9GY8g7R630qyqOMclu3aaDwnLcdmjpcXlp9rmXd6hONoL2n7yrZcsvahCW9SRlPjstA4tGZ62snIUZmtkZa1LbtTHll6sHV6wrZZsy27U56u/CLS813H7Xq9x2V3iCOOGOnuH3RoPqdraqY1Xrdmvq/PzzhZdd3PVZ9sM8LOrYfzIjamUs1+bTjp9SaMpq+3N9+ZUm1GjDFd/2MOi435SJHjZVOVql+RQmq0q/Um1Y/mblfj3hdN7I15NIjL9txJ8nTl8djX64gjW7MnxL5eAAAAAAAAAAAAAAAAAAAAAMOn+zulAAAAAACIQTUgsJUbQBgtr4TRyg37TeVRAmGHn29fThBt3TaLjYVIy7508u2ST9m32SbjZuWyyXeFfv4pI2fK5szRRx57rj2iUvODw2gVfzH0OtvRAgHSZSym3fKjfI5BKn5ZfOP3YDm9Gc+gvLZwmhyT3TboYYRyxug5Mu5Nhnpuzi3IrrEL+zwidGqPJSSSEk/OH79kAKMRed3oWTKVPmrNtLSTkfPGLx7IeDSuk5ILJy5rmb57/BLJuPYIlubCibeKI2vjOTtyr5Ht2RO7GmNcdo9fHDp2KmLf5zox7hXl9aPndbUMz/Hk/PFLjzxOuxn1uXVTD1yWFkT1HE+NI+2euFQ8p3//JsywnxexcWlh5GI6Whit+djaTq++M740ZNlUu15Ou9CyTbexyKQyxsjtszdb5424Y3LW2AUxjwhxuWD8LZJ29PNzv7xhbLds8iZiXy8AAAAAAAAAAAAAAAAAAACA4dO/u4MAAAAAAOihql+xTnfEHcgNvTklElZWwlzadE0ncayyvyhjMh7quUtKGM0RR7Ju7sjjordFzh3/dbm4+LbI47l08u2SdtJyz6HvysH6r6zPGUuNy6kju+S3tvwva6ZrMZh2IYNyQIAu6+SsEZWqX7HGDirKZ2CMPYzgiCtZS7inYRpSM8utY1WWr+0rrrjWMJBvfGskwoiRql+JFLSzj8c+zpR4klYCdkkwmtokp46cJb+15T8OeiihjXqb5OrjPyZfm/4H+WX5EevnmnI8eVXuZLl88+8MTfBtI7qoeLmknJTcc+i78qvl/bI9d6JcOvl2Oalw6kDGk3Pz8qfHf0y+Nv338mT553JM9nh56+Q75YTcSQMZT5D/MPU/S87Ny31zd0rd1OXMsd2yd+q3Iy/njLFz5A+2/u9yW+l/SKl+QF5bOF3eseU9akwraXbkXyN/vO0auWXmK/J05XHxpWF93rGZ7XLBxFt6Grl7z9b/Taamj5KHFn4oc41S6Nc54soJuZPkLZPvkBMLv3ZkelCkrN4meFpTw2j6td+J+ZPlquP+XL598CvyTOUJMdJZJLRu6tbrDj2cCiRbqaaE0bxoYTSNFg/TvjPNP3ccWY4xUjX2n/3K/pL1NVG0Cy3brNcw2i/Lj8rz1aet884bvzhylBTDY1tup/zJto/KzTP/XZ6pPCENCQ6Vdmvcm5TTRs6Wt215d1/XAwAAAAAAAAAAAAAAAAAAAGD9IIwGAAAAABgKFSV4lXXtsat+y7v22JRtnA1Tt4axRESOyWyTF5f3WZbTGhBoFwVbaoSPry359jDacdkd8uEd/2fo5QRxHVfePPk2efNk9Khap2E02/u24voTPy+F1GjL9E8882fybOWJlulaxEELI5yYP1n+dPvHWqY/svigfGbfR61jNca07L/avr5r0x75vWP/15bpLy0/Lx996irrayr+UtdhNO09vWTyN+U3m4J26N7mzDHy3uM+MOhhoAcumLhMLpi4bNDDOKKY3ixXbr160MNoy3EcuXTy7XLp5Nu7XtYbxnbLG8Z292BUg/GawuvkNYXXxb5ez0nLO476PXnHUb/Xk+WlAv4aot15vW7soRbtOmHFa0dOl9eOnN5+cAHuPfQ9+fsXb2iZroVTgSSr+hVZ9Oet84rpLRGXZv/ZS7tG1q4lT8idJB844VMt02frB+XDv7zS+ppyY1EmvMmQ47Rrd9yx0cLIw+6O2Zut0x1xZM/EW2MeDeJ2YuHX5I8L1wx6GAAAAAAAAAAAAAAAAAAAAABg5Q56AAAAAAAAhFENCKMNQk4Jo9liWlpgS0Sk6G0OvZxKw/4evPKa8GG0xYY9jDZiCYcNQrrDMFrQe51z89bpWuQuahhNi0Roy/fFl2VTtazX/jlqy9H2xcPL6j7eUlYCMHl3pOtlAwDWP8dxOg6e1pWwrOf0/998yafs57lenFuBuJVqB9R52s+qBbXHAAAgAElEQVQjmqhJai36q13Date8ItF+3tF0EkYT9fp/eB2ql+TB+e9b550ycqZszhwT84gAAAAAAAAAAAAAAAAAAAAAAHgFYTQAAAAAwFDQbqjPOoMJo6kxrUbrzfpBQbNiOnwYrV0IYEmJndmfO2+dXnCTEUbTAiq1NiGDihLxyjo5cZ2UdZ4WZahEDJ84SiYiargsaogsOB7RfbxFj1nYQ3MAADTTgqftzutawEhbXi9p57llU5WGafR9/UAvlepBYbSpvq5bv7a1X8NmnKy4Yr9ut/2sFVUnYbT1l0UTuefQd6Qhdeu8iyb2xjwaAAAAAAAAAAAAAAAAAAAAAADWIowGAAAAABgKVb9inT6oOJMe02qNSAUFtoqePYxme40WqFrRLpy22pJvj6gVUskOo7ULGWghsFxKj4fpkTv7soz41umOYw+jBYbLbCE9bRuUfT3tZNR4RNS4m422X+UD3lMAAFbr9LyuhdO05fVSUNi02uaaDEgaLYw2lhqXtJuJtCwtBmyUfJh+bWv/jjmOo15n9iL62y7IaKNt27BqmIbcOftt67zN6aPllJEzYx4RAAAAAAAAAAAAAAAAAAAAAABrEUYDAAAAAAyFqrEHKLJuLuaRHKbfrN8akQq6gb+YtofRbFGuduGzJUtkS7PYsIfRRlJjoZfRT+kOAypRwwtB87RlGaWLYE9EBEfZooT08qkR+3qD4hFK3C0KLcgX9J4CALBap2G0uqlHWl4vBYZNI8RogSQ4WJu2TtcizYGUGLBG+1koKLJbcO3XvUs9+O61O+7YrLcw2kMLP5TZ+ox13oUTe8V1+OtjAAAAAAAAAAAAAAAAAAAAAMBg8f9sBwAAAAAMhapfsU7PuvmYR3JYXrlZv2aWpdEU8dBCV2knI6OpTdZ5ttdogaoVUSIdS0oYreCOhl5GP3UaUFHDCwFxEz1yp4TRlDCCo/yaJevk1HlRQnqB26DG3bqLR9RNTWpm2TqPMBoAIKzOw2j2c1AcYbSg81y5EXxNBiRNqX7AOr2Y3tLDtdivkXsaLu5B9Fc7rgTSyshD6o7Zb1mnp52MnDf+5phHAwAAAAAAAAAAAAAAAAAAAABAK8JoAAAAAIChoEXBcgMKowWttzlspcUA8m5BXc6yqbYE1sqN4MjVUpQwmq+E0VLJDqPV2gRU9PCC/nnpUbFoYTSN4zjq+pvXYYyRshJ8CNoGLR5RbhPTa6cSEH4JCrUBALBap+d1LZw26DBat+FRIG6lmhJG8zZHXpYjjnW61g7r5Pq8kLJHqKP8vKOpN/2MFUbU6/8ke6H6nDy29FPrvLPGLlDD3QAAAAAAAAAAAAAAAAAAAAAAxIkwGgAAAABgKFT9inV61s3FPJLD8q79Zn0RkUpT2EoPXRUCl9McWGt+3PL8NuG01RYbyQ6jpV178KTuBwdUtPc66H3Wo2La+20PI2iRiMPrV9bRNN66qUlD7LGGoG3Q427dxSO0kIVIcDAGAIDV0krITAufragp531teb2UdtNqgK3b8CgQt1JdCaOlo4fRotK+L8HX5/Z55R6E0bQgoxvwV6brKYx2x+zN6ryLipfHOBIAAAAAAAAAAAAAAAAAAAAAAHSE0QAAAAAAQ6Gi3FCfdfMxj+SwfEqPQjUHtbSx59y85ALGX2msfV1QpEpEZClkKKBhGuqyRtxkhNG0EEm7gIq2XbmU/j7rUTH7snzjW6c7jv5rlnzKHndoXkdQ/C5on9OWr4Xiwup0PAAArNbpeb1u7LFQTwmo9poWAW13TQYkiTFGSjV7GG3S610YTYuHNUejVwT9HFTQwmgRQtAa7biTdjLqa9ZLGK3il+Xeue9Z5+3IvVpOyJ0U84gAAAAAAAAAAAAAAAAAAAAAALAjjAYAAAAAGApVv2KdHnRDfT8Frbc5JlVWgmX5VEHyyk3/ttcFRapEwocCgp5XSA13GE17j4Le55wS+Co3lsSY8BEEJ2Cetr+E3VcOL0MPkWnL7zbcErTPDeq7BwAYPlrIrH0YzT5fu07oNS2e2u6aDEiSRX9elk3VOq+Yjh5Gc9Sr3tbrZmOM+n3RrsFF9ABvL757dV8Jo7l6GM22bcPoh4duU6PdeyYuj3k0AAAAAAAAAAAAAAAAAAAAAADoCKMBAAAAAIZCVbmBO+vmYh7JYSnHk4yTtc5rjlFpN5/n3ILkUuEDa5WGfTkrlgKiWqst+vPqvKSH0WptAipaCCwo4qVFT3xpSM0st0w3ahhBT6NpYbaw+8rhZQTEI5TldxuP0N7PtJORlON1tWwAwMahnteVQNGKuuU8HLS8XlPDow3CaBgepdoBdd6ktyXy8vQwWquaWRZfGtZ5HV3bhgxBB+kkuBihlZxYxhi5Y/Zm67zR1CY5a+z8mEcEAAAAAAAAAAAAAAAAAAAAAICOO1gBAAAAAJH9wws3yHTtxVjX+eLyPuv0bEDwqt/ybkGWG9WW6eWmWIYWp8q5BfGctKSdjDXA1RylKrcJn4UNBSwFPG8kNRZqGf2WVsIEWshgRfN7vyIovJALmFf2lyTjrg3gaWG0oEiEtv6WfUX5bBxxAvd1bRu6DaPp76c9VgEAgI2nxDTbndfrpm6drl0n9Fo+pYVNg2O1QJKU6vYwmisp2eRN9Gw9tivkoGvRoGtw9dq5y2tbET20rEWvDxv+MtoT5Udk//Kz1nm7xy+RtJuJeUQAAAAAAAAAAAAAAAAAAAAAAOgIowEAAAAAIttXfUr2VZ8e9DBERCTr5Aa27lyqIIcapZbpzUGz5scrVm74z7sFqTVaw2jNUap2EY524bQVS41563RXUgN9P1fzOgyjae91J+GFleWNS7FpavQwmh4uW2x6bB9/1s2L67jq8rVtqChhs7D093NwQUIAwPBJO/bgTrvzuhYw0q4Tek0734W95gKSoFSzh9EmvElxnVQP19R6jaxdS4oEX09qUcJefPe0405QGMxfB2G022e/ZZ3uiCMXTlwW82gAAAAAAAAAAAAAAAAAAAAAAAim31ELAAAAAMAQGGSgSYtRtcSulDjVSixLi2Y1hwTahQBqZllqfmtgrdmSv2CdXkiNiuPoca84dR5Gs8fj8ik9fhYUTbN9dkYLowW8d9r6m8fbaYgspyxfC62Fpb1ei1UAAGDT6Xldmx9fGC3c+RtIslLdHkYrpjd3tLygGHCzoO9K3tWvJ7V55UYfw2iBx5XhDqMdqh+UH8//wDrvdSO7ZCp9dMwjAgAAAAAAAAAAAAAAAAAAAAAgGGE0AAAAAMBQG0mNDWzdYWMZWuxqJZYVNmoVJsKx1CaeJiKy2LCH0UZSo21fGxctTFALCKgYYwLCYnr8LOvm1MCDbXnGKGG0gEiEtv7mz1gNkQWEIw7P708YTdvnBhkkBAAMH8/xrNPrph74ukGH0cJGcIEkO1ibtk4vep2F0TS2eHBQyCzr5tR5WoS3airSMI3og1tFP65k1NdoYeRhcdfsLeKL/X27qHh5zKMBAAAAAAAAAAAAAAAAAAAAAKA9wmgAAAAAgKGVdwuyM/+aga7fptxoDpoFx7q05TS/LigsEOU5S0oYreAmJ4ymBU+0kIGIyLKpii++dZ72HouIuI6rhr5sYTE9jKCH0fR9Ze3nVWloYTR9/CJBkb7uwmha+KXdeAAAWE07rwcFT0X0874WUO21sBFcIMlK9QPW6ZPpLZ0t0NGveZsFRXZdR/8ryqBrzW6vb7XjTiYgjDbMGqYud81+2zpvS/pYOblwRswjAgAAAAAAAAAAAAAAAAAAAACgPcJoAAAAAICh5Dme/Mdj3i8pxxvYGHIpJXbVFJMqBwQBRAKiWX5zYK19hEMLWa225CthtFSCwmhu9DCaLWK2QgubtJsfJbwQlIgIG1bRtkHb11Zo+1Dd1KTmB0dnglQa2r5LGA0AEF5aCQ7VzXLg67SAkRZa6zU1XquETIEkKtXsYbSit7mj5YXPorUPRGsK7og6rzlCHZUaXHT1MJpv7PHlYfCThXvlUKNknbdn4q2BgToAAAAAAAAAAAAAAAAAAAAAAAZlcHePAwAAAACG1p6Jy2W+MTuw9W9KFeXkkTNkKn3UwMYgEhDLaIpdVZRY2crr1WjWqpv+jTGhIl1LIcJoiw17GG0kQWG0tBI8CYp8BUVKtM9q9XxbLsAWKvPFHkZwAvrz+ZARPe0zbjv+gHBaxV+UtDsR+Hr9tZ3FLAAAWE0LmQUFT0VE6sp534spjKtHcAmjYTj4piGz9RnrvGK6szBaEGOMOM4r6TTtu9Lu2jYoChwmBB1EDaMpAcdhd3vpW9bpaScj541fHPNoAAAAAAAAAAAAAAAAAAAAAAAIhzAaAAAAACCyCybeMughJIIWh1p9s37Nr0nd1ANfr0ezXgkJLJuqGuRa85pG+1DAkhJGK7jJCaN1ElAJipQExRVEwsXpjjD2ZaxqQIRefs0sS8PUJfVy4EULPbSNRwTML/tlGZPOwmhqzKLN+wkAwGpayEy7RnplvhJGc+MJGOXdvHV6mFgtkARz9Vn1Z4ii12kYTb/oNWLEWTW/08hu3h1R53UdRlODi/afP0QOb9cw2l99Rh4vP2ydd/amPVJIUBgbAAAAAAAAAAAAAAAAAAAAAIDV3EEPAAAAAACAYaXdsP//s3evQZKlaWHfn5OXqszq7umunu7dZXeBXeEFA+Ky2l2WhWUGDCzM2FgXK5AEtqyLwxC6IFsKhxwmwjYKO8L2B4fsT3bYDiFHOPzFJqQIxw7Cus0uC5JASIAkECIwIUBcZnaqZ3q6srrzcvyhJ6ezqt/n5MlLZVX3/H5ftuu855aXOufNGvLPyWy08O88nDGPS+X7ebRtU/Rr0XGLUMDxLAmjXaIvxq8TRsue6yo6sV8NGo+Xx+kefz7zMEIeiWgKmy2+tifTUXGd5fGIfPxkg3jEujELAFiU3dfHDff1iPy+328IGG3TIJmjtZ2XwUV7bfJKOnbYXy+MVjXMec8alSLDsTz626266fz9uEUIukl23ek3BhefzDDay3deSseev/HiDs8EAAAAAAAAAAAAAABWI4wGAAAAaxp0hsXlo4Uv6zeFM+ZxqXQ/p4JZ7QIcoxahgHvTu8XlV7rXWh1jF/pVOUzQFFDJnutBZxhV1RxwyEJfi5G7uTpmxXU7DX9myeJ3Eadf2+wxZOG2uew9FJEHKdpIz0cYDYAV9DpJ8HT2oHG7LIzWq3obn1Mbw+T+OqnHMZ41R93gMjgav1pcvlftx5XOecz9TwfE0shuN5+7zg27y+PR68iuK3vJ54+IiFn95IXRRtPj+Aev/93i2AcHXxZfOPhduz0hAAAAAAAAAAAAAABYgTAaAAAArCn7sv6poFnDF/fncaksmrW4bVNgbdHx7M3l6yTxtIOGeNeuZcGTOmYxrafFsey5bhPxytYZzZaH5tpoij+MTr3O5eNl4ba5TtWN/WqwdP+rSmMWwmgArCALnk7qSeN2WRC1V5VDa9s2aJgb3S/EU+GyOZqUw2iH/VtLw8GZpq3O5sNKkeGIdnPJbH5+vOH8PA8u5mG0xx/Z5fcP3vi7cb8+KY49f/jijs8GAAAAAAAAAAAAAABWI4wGAAAAa8q+rH8yG0VdP/zyfFOUatAZnvrfs0bTdoG109s0hwLquo7j2d3i2EH3Wqtj7EJT8CSLGSw+X4vahBeydU6mj8cc6iSMUDVkIpribKdDeuV4RKu4WxLqa/veOauu6/Q5HXaF0QBoLwueZvf0ZePNAaPtGTaGTbcTT4Xz9No4CaP1bm2w1/ZBteyzUJu5bT4/Xz/6G5FfV/Y6+XUlm/9fVnVdx8t3Pl0cu9q9Hh+++g07PiMAAAAAAAAAAAAAAFiNMBoAAACsKfuyfh2zuF+fRET+xf39ahCdqhsRzUGrNoG1RcdLIh0P6vsxqSfFsYPu1VbH2IWmMNq4flBcngXA2kS8snVKz/v8NTmrqvJIRLfqxV61XxxbPO8sbNcm7pYFJtq+d84a1w9iFtO1zwcA5rL7elMYra7rdM7Sb5gnbFPT/S6LmcJlcjRJwmj9TcJoTU7Pk7P5eZu55EHyGWnZ551lLjq4uAu/NPon8VsPfr049o3Xvz36nd1cQwEAAAAAAAAAAAAAYF3CaAAAALCmLEQV8SiIlscAhkv3M4tZPKjvR0QezDpr2XrH0zfTsSudyxNG63fyMEEWSckCYG3CC9k6pdevjnIYLSIPozUdY/6azerp20G9s7J4Xpv9Z+/BZZqCL8OF9y8ALJOF0cYNYbRZTKOOWbK/3lbOa5mmOcRowzgT7EIaRuutH0arGua8Z+fJoyQS3fQ56tE65fnvpr972XVnryGMll2LLqvPHH26uLyKTnzTje/Y8dkAAAAAAAAAAAAAAMDqhNEAAABgTcNuUyzj+NT/njVYCF01RzfmgbU8UnV6/eZQwL2mMFr38oTRmoInk1k5ZpAFwNqFF5JoWXGf5TBaUyQiIn+/tHmN24TI0seQBCmWaXovtYnNAcBcPwmjTRrCaE3RtCy0tm3dqht71X5xrO3cDC7S0fiV4vKb/dvr77RqnvMuSiPRDZ+j5tIwWstgdCa77jRdV7Is8mV0NH41fvbNv18c+6qrH93stQcAAAAAAAAAAAAAgB0RRgMAAIA1NcWhTt6OXWWxruHCvxvCaG998X9Z8GzueEko4HiWh9EOLlUYLQ8TjOsHxeVpeKFFVCx7LUv7nK0bRltyjCyi9/D8ymGIU+uk4bX14hHNoTZhNADay+7rk3ocdV2+rzZF03YVRovI5wjrhkdhV8azB3F3+npx7LB361yOefbXOY1EtwkXL4kKryu7tux19tJtsuvUZfTjr/9YzGJWHHv+xos7PhsAAAAAAAAAAAAAAFiPMBoAAACsaa/aj07y0Xr0dhitHJdajAFkQavF7ZsiVYuOl0SwjqflMNp+NYhu1Wt1jF3oV3mYIIsZZIGSVuGFNFo2ilk9PbN0vTBaGlaZh9EaAittQmRNj2Edo4bI3n6L2BwAzGUhszrqmMXZ++xDk3qS7q/fEDDatizOlAVZ4bI4mnw+HdskjNY84300T67rOp2HtpvblsPATXPUNrLPEr2Gzx/Z/P+ymdTj+NydHyuOvav/3viyg6/e8RkBAAAAAAAAAAAAAMB6hNEAAABgTVVVpV/YP1kSu1qMAexXg6jSwNq9U/+7zGh6L+o6/+L+vend4vKD7tVW+9+VLKASkYdS0vBCQ3iuzTpn95s+vc2ViDQAMX+PnDS8xm3ibsvCa6vKo37D6FT+pARAe0339XESKZrMHjTsb3cx123fX2FXjiavpmOH/U3CaEsmvW+5X59EHbPi2Cbh4k1+92b1LP0ssdcQRqufkDDaP7779+KN6Z3i2HOHL5jDAwAAAAAAAAAAAADwxPB/AQ8AAAAbGHSHxeWPYlflL+4vxgCqqopBp7yf+fYn03Kk6qxpTGJc5yGR4yS+deXShdHy4MkkCahk8bhNomIRhTBaEnjoLPkzyyCJr70d0UtCZL2qH/1OHpSZy8Nr7aJ6j223wfMJAIuag6fl+3oWTFu2v23L7q/ZHA8ui6NxOYx2pXMt9juDcznmYkAsi+xGRPrZZ9GwWw5Qtw1Gl0yTKFpERK/z5IfRPnPnpeLyvWo/vv6Zb9nx2QAAAAAAAAAAAAAAwPqE0QAAAGADaYzqrS/sj5JoxvBMJCuPWs2jWe0DAFn8LCLieHq3uPyge631/nehU3WjE93iWBZ+y+IL2XPbdp1N4gunj5HFHeYRvfJx2px/RFN4rV1Ur+12bc8HAOaaAp+TWTmAlgXTInYbRssCTtkcDy6Lo8krxeWH/Vsb7rlqtdbJNP8dyaJnp9Zp+HxU1+uFypquK3tVUxjt8vuN+78avzz6Z8Wxr3vm+Ti4ZCFsAAAAAAAAAAAAAABoIowGAAAAGxgkX9ifR6VOkmjG2e3y/cyjWe3jVqNpHvK6N32zuPwgiXZdpH4SPcmCBtnjzp7btuucTE8/93WSRqiW/JklC6vMX+NREo/IgmqPr9cc6VtV2/cuACzTFDLL7uuTepJu028IGG1bOkebrhcehV05Gr9aXH7Y2yyM1i6L1hwPzObFi4ZJyGsakzSUvMzawcU1Q2y79PLRS+nYczde3OGZAAAAAAAAAAAAAADA5oTRAAAAYANZLGMeo8rjUqdjAMNutp/jU//bxnFDCOt4Vg6jXelea73/XcniBKVQyqyexv36pLh+Fgxb1O/sRa/qFcfOhsXqmBXXq5ZkIrLA2TyIlsXv2oQjmvafvQeXyUNtwmgArKYpODROw2hNAaPyPfs85HO09cKjsCuvTZIwWn+zMFqTxYBwNgetohP71WDpvprmnOv+/mXXm4iIvc5+OpbN/y+L0fRe/NQbLxfHvmT45fH+wQd2e0IAAAAAAAAAAAAAALAhYTQAAADYQBqjmj6MXGVBs7PbLYtarRK3Op6W42dNYwfdq633vyu9TjmiMp49eGxZFhWLyIMmZ2WRu7P7ruviarGki5aex8nb8bty4KH9+ZcDaiezUczq1WMOadSv2y7UBgBz/YYwWhZAG9eP3+8jIjrRiU7V3cp5tdF2fgCXzdG4HEa72bu94Z7zSW+bMNqgM4yqWjJxjoiD5PNRRMTxdL0wWnNwMb9OZdP/y+LvvfF30kj08zde3PHZAAAAAAAAAAAAAADA5oTRAAAAYANZJGoeuZoH0h7b7kzEKotajaZvhdGm7cNoWWAroiGM1rmEYbQkTlAKGjTFSbKgyVnDZL3H43blNEJnyZ9ZsvOYv15ZRG/QEIVYNOzm691fI97SNuoHAMs0BYeyUFG2vGlf5yGbH6wSrYWLcDQph9EO+89utN82UbOIprlky+hvQxx43d+/pjDaXrWXjtWXOI1W13V85s5LxbFnujfia699/Y7PCAAAAAAAAAAAAAAANieMBgAAABvIIlGj2XHUdZ1Gys5GrLL9nMyOY1ZP43590vqcRtM8jHZvVg6jXek+2WG0phhc6/hCy/DJbM0wQh5WGUVd12ngYZhE89ruPyIPUzTJzieL+AFApilmNk7DaJOV93Ue8rCpMBqX12h6L53LHfZu7eQcsrBz27nkfjVIw8PHDXP/Jk1htF5DGC0LI18G//z45+K3H/xGcewbb3z7zq+ZAAAAAAAAAAAAAACwDcJoAAAAsIGm2NW4fhCzmBXHzwYBht08unEyG610Tk2hgOPp3eLyg0sYRutXveLyUtDgZJo/R1nQpO16o8eiDuUwQhVV4/6z90odddyvTwrHmZ9XOZr3+Hr548zCGE2y913b5xMA5jpVJzrRLY5loaJsef+ShNHWubfCrhxNXk3HDvu3N9p304y3rh/Nk7O55NlAdHqcqsoj1Mm8eZnxrCmMll9bFh/XZfPynU8Xl3eiE5+8/h07PhsAAAAAAAAAAAAAANgOYTQAAADYwNnA2dxoei9GDcGMs5GNdD+z48b9ZMcumdXTdF8HncsXRutVe8Xl41IYLXlcvaoX/U55P2flcbrTz2edhdGq5jBaU1Cs6f2Snddj6zXuf/V4RPY+ajoOAGSyoFkWQBvPHhSX9zq7DaOl84Pp8aWOJfHO9tr4leLyKqq40bu54d6b57xzZ+fQc9nnnpK28/O2sutNxMPPDVnoOJv/X7TXxq/Ez735U8Wxr776dXHYv7XjMwIAAAAAAAAAAAAAgO0QRgMAAIANDLtXistPZsdprCvi8bjUsJPvZ9WoVRYKOG4ICFzpXlvpGLvQWyGgkkXFmmJkbdc9mY1O/ZxFULKQwlxT4OxkNkrfL20fQ7+zF72qVxxbJx5x9nG/fT4tQ20AsCi/r0+S5eWAUbaf85Ldh2cxjXFdjrfBRTuafL64/HrvZnST+eJ2PJonp3PJFebn2WekLOC7TNN15WHkuF307bL48Ts/FnXMimPP33hxx2cDAAAAAAAAAAAAAADbI4wGAAAAGzgbOJsbLQmanQ0CDDrD8n6mzYG1kuPpmystj4g4SAJvFymLfJWCBtlzlL0+q6x7NipWRzmMtiykkIUd5sfI4m6rPIa2cbc2spjaKucDAHO9TjloNp6V42JZMG3XYbSm+94691fYhaPxq8Xlh71bG++7KQa8OE/extw2i1CvE/2NiBgvCS5mjy2f/1+c8Wwcn3v9x4pj79l7f3zpwVft+IwAAAAAAAAAAAAAAGB7hNEAAABgA1mIalw/iHuzu8WxKqrY7wxOLcu+9H8yO06jApnjJBTQGEbrXFvpGLvQr/aKy0thtOw5yl6fVdZtGz1pikREPHw8neRPMaPZcZwkIb3txN1Wew/VdZ0+7lWeUwCYy4Jmpft60/Jdh9GyeG3E+nEmOG+vTV4pLj/sP7uzc8jmtqvMJbc1t51bdl15ksJo//jNn4i709eLY8/deCGqqvmzCQAAAAAAAAAAAAAAXGbCaAAAALCBpmjV0fjV4vL9zjA61emP5Fkg4EF9P+5Ny4G1zGhajnTcm5XDaJ3oNEY/LkoWPhkXggYnWwijpeGFM89nHbPiesvCaFVVxbBTDuCNpnkAb9DdPO6WvScy9+uTNACxSqgNAOa2FUbr7ziM1nTfaxtPhV3LPocc9m7v7BzycHH7zx353Hm9KOGy60rWEruMYbSXj14qLt+vBvHxZ75lx2cDAAAAAAAAAAAAAADbJYwGAAAAGxg2RKuOJuUgQSkG0BhYS/aTGc3KoYDjaTmMdtC9GlVWAbhAqwRURtNyeKHp9TkrC5CdjZ5skkXIjnF3eidmMS2OrRIiy8Joq4ZbTpLns+kYANCkX/WKyyf1pLi8FEKNyOcH52W/IeK0bpwJztud5PPDYf/WxvtuigEvBsSy+eewW46dlddNor9JdG2ZLIz26LqSldEuVxjt105+JX7l5BeLY193/ZtX+gwEAAAAAAAAAAAAAACXkTAaAAAAbKApEnU0LgcJhp3HYwCNYbRkP5njVcNonasr7X9X+jPjmQsAACAASURBVJ0kjDZ7PGhwksQRShG6TPYaPBZeSMIInWr5n1mGyfm8Nn6lYZttxCNWC7c0xSayuBsANFkleNq0fNdhtE7VSecTq4ZHYRdm9SwNK9/s3d7ZeWTzz9Xm5+V58Kpz27llwcUs+lZvlEbevs/ceSkde/7GCzs8EwAAAAAAAAAAAAAAOB/CaAAAALCBxjDapBy7KsUAmmJTWdggM5rei7oQ77o3vVtc/6B7OcNoqwRUspDXKlGx7LU8G12bxSzZQzmkcPoY5fNpeo23E4/IQ2clWWju4TGE0QBYXa/aKy4f1w+Ky/MwWm9r59RW2zkCXAZvTt+IST0pjh32b23hCPmcdzEgloUDmz4/nZXObafrhdGWXVeehDDa8fTN+AdvvFwc+9eGXxnv3f/iHZ8RAAAAAAAAAAAAAABsnzAaAAAAbKBbdWOv2i+OHY0/X1xeCks1xaaOxuVo1vXuYXH5LGZxvz55bPnxrBwQuPKEhdHGhaBBFiZZLSpWfg0m9TjGs3JEYdHyLFp+jOw1jogYdleJu5Uf76rhliyk1olO+n4HgCZZ0CwLOGUBo34SWDtP2f171fAo7MJr43KcOSLisLd5GK1qmvS+1Q+b1bO4n4TRVonsHiTz4HV/95ZdV56EMNpPvv6306Dk8zde2PHZAAAAAAAAAAAAAADA+RBGAwAAgA2lsatJOXY16D6+frfqpaGPbD+H/dvpOR1P3ywsu1tc96BzLd3PReonYbRS0GA0LccRhp1VomJ5pOFkISqXhRGqFn9myY6RvcZVVLFfDZbudy57vNnzk8lDcwdRNdYwAKAsC55moaJsebaf85Tdv1cNj8IuZPPKXtWPq91ndnIO92cn6Zy5ac7ddt1REnxeJr2udHZ/XVnHrJ7FZ+68VBy73j2Mr7329Ts+IwAAAAAAAAAAAAAAOB/CaAAAALChQbccoxrXD4rLs5BaGrVKvvh/syGMVtrmXiGWFhFxkJz/RVsloHIyGxXXHXSGrY83LATr5kYL+0/DaC16YdkxXp+8Vlw+6AxXCpFl+1813JKF1FZ5PgFg0SrB04iI8ezyhNGyuduq4VHYhTSq3Hs2OtXm/1mwinxuOp8nN809m+bcZx0kn49OZqOY1dPW+5lbdl2pkuenrsvz/137xeOfjVfGv1kc+8Ybn4pu1dvxGQEAAAAAAAAAAAAAwPkQRgMAAIANDVeMRQ2SuMaq0ambvYYw2vTxMNrxrBxGu9K9ttJxd2WVMFoWj1slvJBFTyIiThb2n4cRlgfMsmNksbUslpfJ3lurhtHy0Fz75xMAFvWqveLyLCSbBdN6nd2Hfwbd8hxt1fsr7MLR+JXi8sOGqPJqmua88zBaeS4Zsdp8smku33SMTHpdeSsolj2ybK6+a5+581JxeSe68ckb37HjswEAAAAAAAAAAAAAgPMjjAYAAAAbWjUWlcWxht3VIljXetejn0RGjguhsONpOYx20L260nF3JQujjQtBg22EvJrCdKOF/WdhhKpFGG3V98q23lujFcMt2wjNAcCiLGg2mU3Ky9OAUXl+cJ7y8OjqYSY4b0eTV4vLD3u3dnYO2VwyojlG/Pi6+eejpmNksuvKo89U5fn8ZQijfX78O/Hzb/50cexrr308bvRu7viMAAAAAAAAAAAAAADg/AijAQAAwIaavrBfkgW4VokEPNzPQRwkxx5NVwijdS5nGK2fhE/OBg0m9TjG9YPiuqs8p52qG/vVoDh2+vlcP4y26mu8aogsDaNNj6Ou2wcdthGaA4BFWdAsCxUtDxjtTh4eXT3MBOfttfH5htGa5rzz2WY2l+xEZ6Xf4abPWceFzzvLLAsu5o/t4sNon73zN6KOWXHsuRsv7vhsAAAAAAAAAAAAAADgfAmjAQAAwIYG3XLoLDPslr/gnwXT0v10DtJ9HZ8JddR1Hfdm5TDale7lDKP1Ou0CKifTcnghYvWQ1yAJkS3GHepNwmgrhs5WPv9k/WlM0hBESRZ6WTXsBgBzbYOnc+M0YNTb2jm1ld1fs/gTXKSjSTmMdrO/nTBaGyez4+LyYedKVNXyOfPb6zfMnUfJMZosu65k53bRWbTx7EH8xOv/b3HsC/a+KD40/ModnxEAAAAAAAAAAAAAAJwvYTQAAADY0LBTjpNlsgDaOvvJthlNT4etxvWDNDxy0LmkYbQkoDKenQmjNUQRVg2RZeGvxVBYXSdhtBaRh1VDZ6uGyLYVj8hic6uePwDMZff1bH6SLc/2c57S+cG0HBKFizKtJ/HG5Kg4dtg7/zDaPCA8mpbnnasGpbtVL/aq/eLYOr9/y64rWei4rmcrH2ubfubu5+LN6RvFsedufOdKsTkAAAAAAAAAAAAAAHgSCKMBAADAhlaNV2VxqdUjXlfioFsOox3PTocCjqdvpvs56F7OMFq/ZUClKfi1asgrW/9k9igUNg8+PG55kGDl0NnKsbymMFr7eES27qrvUQCYS4OnT0AYbZDc/xbnB3AZ3Jl8Pp2rHvZvb+UYWTzsoYfHzsLF60R2h8nnnVWiv3PZdaVf7b31rySMtvKRtuvlOy8Vlw86w/j49W/Z8dkAAAAAAAAAAAAAAMD5E0YDAACADa36Bf8sjrVyxKs7TMNZo+npsNW92d10P1e611Y67q5k4ZPzDKNlr83Z57NkeRYtYrBq6Kw7XGn9pvDaKvGWbN11YhYAENH+vr5s+aOA0e5k9791wkxwno7Gr6Zjh71bWzlGVS2f9Wa/G6tGgpu2WSX6O7csuNhJZ/QXl0b7lye/HL968kvFsY8/8y0x6Kz2eQEAAAAAAAAAAAAAAJ4EwmgAAACwoWF3xaBZ8uX+VUMBw86VGHbLoa3jM6GA44aw10Gyj4vWNqBykoQX9qr96FbdlY6ZvTaLx6hjVlynavFnluEWQ2cl+51hVEnQoU3cbS57ToUXAFhXf+Uw2qS4vFf1tnZObWX345PZKOr64oJJcNbRpBxGG3QOVv7Mso75b0M+l1wnjNYuBN3GeJaF0ebXlfI8ur7AMNrLRy+lY8/deGGHZwIAAAAAAAAAAAAAALsjjAYAAAAbWjlolkQJVg0FDDrDOOhcLY6NzoTR7k3vFtfbrwZpgOyiZQGVWcxiWk/f/nk0LYcXVn1dIvLX5mQ2evvfWRYhC5KdPqfVInSrrt+pOrGfxMtGSaBilXVXPR8AmGsbPJ0b1w9W2s95yuZodczifn2y47OB3GvjchjtZu/Wbk7grVBgNpdcJ7KbhaDPft5pI7vezK8r2Wz+osJob07fiJ+++9ni2JcefFV8wf4X7viMAAAAAAAAAAAAAABgN4TRAAAAYEOrB83K62dRrnw/wzjIQgHT06GA49mbyTEvb+iqKXyyGDU4ycILKz6fEXlMbTG8sEkYYdUYxDrxiGyb7HkqrpvE5tY5HwCIWD2MNpk1B4x2qSm2uhhPhYt2NCmH0Q772wujtYkBn0zLvxfrRHbz+Xn7ue1cdr3pd/Ye/qMqP7a6vpgw2t97/W+nkcjnb7yw47MBAAAAAAAAAAAAAIDdEUYDAACADTXFMs7qRCf2qv3i2CqBtf1qEJ2qm8YFzobQjqflMNqV7rXWx9y1tmG0LIqwyusyl70Gi9GTup4V16mq5X9m6VTd2K8Grc9nnXBd9p5oG4+Y1dO4X59s7XwAICK/r4+zMFo9Ke+ns/swWlNs9WyMFi7Sa+NXissPe7d3cvx5QHgxKrxo0F09spvObdf43UuvK29dn/Lo2+7DaLN6Fp+986PFsRu9Z+Orr358x2cEAAAAAAAAAAAAAAC7I4wGAAAAG1olaDboHERVlb9wv0rIax6oOkhCVcdnQgH3kjDaQedq62PuWr+zl44tRlROkuDXKq/LXPYatAkvZBmFs5riKo+tu8XHcDJtF0ZbjMA9vu/VYxYAEBHRT4Jmk0IYbVbPYhrlgFG/IZx6XgYN97+m+ybs2p3Jq8Xlh/1bWzxKPuudh9Gy34t1wsXDZO7cNvq7aFw/KC7vVb2IyMNou8+iRfzCvX8Ur4x/qzj2yeufim7V3fEZAQAAAAAAAAAAAADA7gijAQAAwIayL+uXNIU1VgusPdzPsFMOo53MjmNWz97++TgLo3UvbxhtHigomcweRVSyKELTc53JomWLcYc6SSNkIYWzVgrgrRGPyB5D23hE03qD5P0GAMv0kqDZ4j397WWFWNqy/Zyn/WoQVfKfU0az5fFU2JWj8eeLyw972wujtZnx5vPzdaK/SQh6jd+97Noyv67kYbRZcfl5evnOS8XlnejGN9741I7PBgAAAAAAAAAAAAAAdksYDQAAADaUfVm/uG43X7dpLDtmduw66ri/EPM6npXDaFcudRgtD58sRg1OpuXwwiqvy6NtsqjYo/DCpmG0VYIQ64TRsm1OWobRmtYbrhGbA4CIhjBaPSksu1xhtKqq0uDqYjwVLtL92Uncm90tjt3sby+M1kY2n1wvjJbMbZPPAE2ya0u/2lt5X+fp1Qe/Hf/03j8sjn342ifieu9wx2cEAAAAAAAAAAAAAAC7JYwGAAAAG+pXe9Fp+RE7i2osG8vWPWgImx0vxLzuTcuRhIPOkxlGG9cP3v73KAsvdFePeGWxhpPZKOr6YRBt/r+PqdqF0VaJnQ2624tHLMbdmpxM88DLOjELAIjI7+vTmMSsnp1aVoqlLdvPeds0PArn7Wj8ajp22NteGK0pBjwPCOfh4tXnkgdJPPq45dx2UXZt6VW9iIioqvJnuiyMfF4+c+el9JjP33hhp+cCAAAAAAAAAAAAAAAXQRgNAAAANlRVVQw75S/sn9UUltqvBq0Da8O3glkHDccdTR/FArJwQFNY7aL1q710bDFqcDIrh7zaviantym/PnXUcb8+efunkqZIxKljrBA7WycekcbdGoJni7KAWq/qRb+TvyYA0KTfEDSb1OPGn9vu5zxl99dREoCCXXtt8ko6dmOLYbRYMued1dOFefNp60R/B8mc/mR2Lw8WF9R1fSquvGgeXMwe2SrH2dSD2f34ydf/VnHsvXtfHF8y/IqdnQsAAAAAAAAAAAAAAFwUYTQAAADYgrZf8m8KXVVV1RhOO3W8t9Zrimwdz9589O/p3eI6V7rXWh3vIvSqXjq2GEw5SUJeg85w5WM2Pf/z0Fy9YRit7Wvcr/ai2/AcZLL3xGjWLtyShebanjcAlPS2FEZr2s95yu6vJy3vr3DejsavFpc/070R/c6ufm/qdC4ZETFcY36ehaAn9SQNnZVMY5KOzYPM2Xw+m/+fh39498fj3qz82e35wxejqtp95gAAAAAAAAAAAAAAgCeZMBoAAABsQdsv+S+LS7WNec0Da92qF/vVoLjO8fRRMOze9M3iOllo4DLoVN3oJH+6WIwgjJL4wnCNx9YUmptHHjYNozXF8U6vt95rk73HRklA7vH1yoGXtucNACXNYbTTwaKm2NFFhdHy+6swGpfD0aQcRrvRv7XV4zR1ueo6j+xGRAy2PD9f5ffv7HVmUe/tcFz24HYXRnv5zkvF5YPOQXzsmed2dh4AAAAAAAAAAAAAAHCRhNEAAABgC9p+yX9Z+GzYbbufR4GAbJt5CGtWT+MkiQZc6V5rdbyL0q/2issn9fjtf59My4+tbWTu9DZN4YWHz+emWYS2wbN1zv/h/suPoSlScXq97PkURgNgff3GMNr4zM8NAaMLCqPl91dhNC6Ho3E5jHazt90wWh4Pe6gpxts2Jn16m3zuPJq2C/9GRExm43SsV/UiIg8d7yqL9qujfxH/8uSXi2Nf/8y/sfbnAwAAAAAAAAAAAAAAeNIIowEAAMAWZLGMx9ZbEj5rvZ/FMFoSC5iHAkaz46iTr/MfdK+2Ot5FyeIn82BKXdcxSoIkbSNzi/aq/egkfy6Zh8XqelYcr6p2f2YZdLfzXkn3n7yH2oYj8jCaEAMA62sKmo3rB6d+bg4YXUwYLbsPCqNxWRxNymG0w/62w2hN6jiZ5jHedUK7TXPi7HNAydnrzKL5daWqsjDabtJon7nz6XTs+cMXdnIOAAAAAAAAAAAAAABwGQijAQAAwBa0/ZL/srhU6/0sxLUOkljA8exhCOve9M10Pwedyx5G6xWXT+qHwZRx/SBmMS2us07Iq6qqpaG5dNsohxTOWid+t4osHnG/PolZXX6uFo2m2wvNAcBcU9Bsfl/Pfj69n/Lc4Lzl4VFhNC6H18avFJcf9rYbRmua89ZRp7HAXtWLfmdv5ePtV4Ookv+cOZq1C/9GNF9X+tX8vJIwWhJG3qY3J2/ET9/98eLYv37wNfHuvfed+zkAAAAAAAAAAAAAAMBlIYwGAAAAWzDsto1dNcel1olmpSGvt0IBxw1htCvdSx5GS+IJ49mDiIgYJeGFiOXPdWbQLQfVTmajiHgYfChpl0XbXkQvM2zYbv4YmmQxi3XPBwAiInqdpjDa5NTP4/pBeR9VP6qq7R13u7K5Xpt7K5y3uq7jaPJqcexm//ZOzyWbn7edA5/1MFychQlXCaNN0rF5uPFiri4P/cTrfzONtz1344Udnw0AAAAAAAAAAAAAAFwsYTQAAADYgrZBs2VxqbbBgMXo10G3HAA7fisUcDwrh9E60Vk7ULAr80jBWfNoQBbxitgkLJaEF94KzdUxK45XLf/M0j5+t2bYrWG7ppDcsnXWPR8AiIjoVb10bDI7HQPKAkbZvGAXsjnTfH4AF+ne7G4aFDzs3drZedRxPpHdYfJ5Z5Xfvyw6FvHo+pTN57Mw8rbM6ml89vUfLY4d9m7FV1392LkeHwAAAAAAAAAAAAAALhthNAAAANiC9kGz5vWG3dUDa1mwah4KOJ6Ww2jD7pWoqqrV8S5KP4mozIMpo2ke+soCCstkr+XJbBQRsXEWofV7peV74bHtGvbf9HzNnUfMAgC60YsqyvOOs8GiLGB0kWG07P46nx/ARToav5qOHfZvb/VY2e/xQ3WMkt+JTSK7ebh4+dx2LgvHRTy6tmSP7LzDaP/03s/E58e/Uxz75I3viG7VPdfjAwAAAAAAAAAAAADAZSOMBgAAAFuwLHj29npLYlfto1mPwgIHSQDsePowjHZverc4fqVzrdWxLlKv2isun4cNsohXFVXsVftrHTN7DeahuSyN1qna/ZmlffxuvTBa03bZ87Uoi6dtErMAgKqq0rDZ2WBRHkYrB1N3IQ+ntg8zwXk5mpTDaJ3oxjPd61s9VnMYLeLk7TnzaZtEdrN56PzzThvZdSViMbpYfmznHUZ7+c5LxeXd6MU3Xv/2cz02AAAAAAAAAAAAAABcRsJoAAAAsAWDLcWu2gbWFsMCWShgHvI6nr1ZHM+CapdJFlCZhw1GSYxk0Bm2DpWdlb0G82BYXW8WRmgbGGv7Xjir3+mnz1v2fC06mY2KyzeJWQBARB42m9STMz+XA0b9JJi6C9l9+WQ2ilk93fHZwGlH43IY7UbvZnSq7s7Oo446RtNsLrne3DYiDwuvEiY8e52Z60bv7c8NVZVE3zac/zf5nQe/Gf/s3s8Ux37PtW+IZ3o3zu3YAAAAAAAAAAAAAABwWQmjAQAAwBa0jVgtW69tMGAxrpWG0aZvhdGmWRjtWqtjXaRlAZUshrBJeCGL3M2PVUc5jFBFElI4u/+WgbGN4hFpvOXe0m3T57Rl/A8AMsuCp3PjJIyWbb8LTffB+7OTHZ4JPO61ySvF5Tf7t7d/sCwe9pZsLpnFzdo4WBKCbmM8e1Bcvvh5I5vPn18WLeKzd15Kx547fPEcjwwAAAAAAAAAAAAAAJeXMBoAAABsQdsw2rLYVZtgQCc60a/23v75oHu1uN7xW6GAe0kY7UqnvN1lkgdUHoYNRucQRstey9GWwmj9ai+6UQ6+nTqPbjkA0Ub2+Eez0dJts+e07XscADJtw2hnf360/fL753lpug9m907YlaPxq8Xlh71bWz/WshnveczPB0kY7XjaPoyWXlc6j65LeRht1vo4q3gwux8/+frfLo69f/+D8bsGX3YuxwUAAAAAAAAAAAAAgMtOGA0AAAC2oM0X/bvRS4Mgq+xn2LkSVfXoS/sHSSjgZHYcs3oax7NyGC0Lql0miwG4ReO3wgYn0+1HvLLX4OStqFgWRlueiXhrrapqFcAbdIat9leSPf7s+Zqb1OMYvxWde/x8hNEA2Myy+/pcHkZrnkedp6b74IkwGhfsaJKE0fq3d3oedV2nvw+bzCUPkmDwKr972XUluy4tymb/m/rpu59NP6s9f+PFU5/5AAAAAAAAAAAAAADgnUQYDQAAALagTehq2D1Y+uX2NkGvQfd0MGuYhAIiIkaz4ziePrlhtCyAMg8bjLLwQovXI5O9BqPpvYf/qMtphFXCBW2iZ8MkeNdq/8njH83uNW53Mh01nI8wGgCb6VW94vKzwaI0YNRZHjA6L0337tEsv3/CLhyNkzBa79lzOFo+562jfjsmfNYmc8ls2+Np89x20aSeFJcvXpeq9LFtP41W13W8fPTp4tiwcyU+9sxzWz8mAAAAAAAAAAAAAAA8KYTRAAAAYAvaRKy2FcM6GwY4aNhmNL0X95Iw2pXOExBG6yQBldnDYMpJEkbbJLwwSLadRx6yLEIeUnjcOq/zKrJts1DFo/Hy8xmRPy8A0Nay4OnceFYOo2Xb70K/2otulOclJyvEmWDbZvU07kw+Xxw77N/a+vGWzXlHye9Dm89CmSwE3TR3PWtcPyguX7yuVFX5P5vWSRh5E7968kvxa/d/pTj2ievfGnud/a0fEwAAAAAAAAAAAAAAnhTCaAAAALAF+y2+6N8mLDXorr6fLBQQEXE8uxfHs3IY7aB7+cNo/WqvuHweUBklMYTNwgvl12k0exh5qGNWHF8ljNbuvbD9MNr8MWSy5zMif14AoK22YbSzPz/avhwm24WqqtJ52mhJeBTO0+uTo5gl89Obvds7Pps8xLtJZDeb2x4vmdsuyq8rC2G0ZNs6TSOv7+U7n07HnrvxnVs/HgAAAAAAAAAAAAAAPEmE0QAAAGALulU39qtB4zrZF/pXXeexMFrDNqPpvTiePrlhtCygMn4rbJCFF4adPBa3TBZtGNcPYlpPGrII7cNobSJjbd4LmewxjKZ5+CyiOYy2SWwOACIi+p1Nw2jl7XcluzefNNw/4bwdTV5Nxw77t7Z+vKYZbx11+vuwSWQ3m9vfn41iVpejcGdl15XTIebyo9t2GO3u5E78zN3PFce+/OBr4117793q8QAAAAAAAAAAAAAA4EkjjAYAAABbMljyZf8sVrWoW/Vir9pvXOdslKNTddN9/+hr/1eM6wfFsYPOkxtGm4cNRtN7xfFNIl6NobnZcUQSRuhU7cNoy94LnegsfR80ycITy8It2Xi/2otu1Vv7fAAgoiF4OnsywmhpeFQYjQv02rgcRtuvBuc038/nvNN6Eg/q+8WxNp+FMsNuOYzWFGI7a1JPist7C3PcKn1s2w2jfe71v5mez/OHL271WAAAAAAAAAAAAAAA8CQSRgMAAIAtWfZl/yxWtep+SgG2g045FvDPj38u3c+V7rVW53OR+kvCaCezUXE8iye00RRGO5keR11nYYT2YbSmY0Q8fA9UK4TWHt++/PiXhVtG0/L4MNkfAKxiWfD00c/lYFA2L9iVbI7WNswE5+FoUg6j3ejf2mg+uY5sbh6xfP7bpGku2jZMmMWiF69LWRhtm1m0WT2NH7/zN4pjN3u343df+cgWjwYAAAAAAAAAAAAAAE8mYTQAAADYkjaxq1b7WRJQKx1nnRDYQffqytvs2rKAymh2rzg+6AzXPmYpPDc3mh1HnaQRVslObCuil26fPP5l4Ygs7LLJ8wkAc23DaG0CRhchm+tlYVHYhaNxOYx22Hv2XI6XxcMi8rl5xKZhtIb5+TQ/5qKz15m5U2G0JCRX17NWx2jj59/86Xht8kpx7JtufGd0qu7WjgUAAAAAAAAAAAAAAE8qYTQAAADYkq2F0dbYz5XutVb7nquiioPOkx9GO5mNiuPDzuqhuEfbrhtGa/9nlmWv8SbhiIiIQfL4s/DZXBZOWye8BwBntQ2jtQkYXYRsLrfs/grn6SiJbN3s3z6fAzbUgJsigW0/C5U0RYOXhX/nJrNJcXm/s9vryst3Pl1c3qt68Q3Xv22n5wIAAAAAAAAAAAAAAJeVMBoAAABsybIv+7eNXa2zny87+OpW+577kuFX7DwCsI5+EkAZ1+OY1bO4n4TRBp3h2sfsVr3oV3vFsZOGMNoqloXGNglHPNx/efvR9DjqOj//LDS3yfMJAHPZfX1ST878fDnDaNn9VRiNi3Q0frW4/LB3a8dn0vy7MOiuP5/sVf10fj6a3Wu1jzbXlSqpvm1j/h8R8dsPfiN+8fhni2O/59on41rv+laOAwAAAAAAAAAAAAAATzphNAAAANiSLJYx1zYutSygVopmffL6t8cX7H1Rq/3vV4P4rlvf02rdi9ZL4m2Tehz3ZydppGBZeGyZ7DUYTY8jkmNmIYWSZe+FTcNo2fazmMa4fpBul8UsNj0fAIjIw2Zn701nQ2lzWVhtV7L74UgYjQv02qQcRrvZv30ux2ua82aRsn61t3HYcNgpz+9H03ZhtGwOvMsw2mfv/Gg69vyNF7dyDAAAAAAAAAAAAAAAeBr0LvoEAAAA4GmxLB7VNi61bL1SgO1a70b8+S/6r+MfvvHj8asnvxTTelbc9j3774sPX/2GeM/++1udy0XLAgqT2TiNeEW0j9Dl2x/EG9M7jy0/mR1HXSdhtKp9GG1Z/C4LP2xj/6PZcex19stj0/Jzuux8AaCN9L5ej0/9PD7z87LtdyWbX5zMRjs+E3hoPHsQb05fL44d9m6dyzGbw2hZZHezuXnEw/DxG9Ojx5YfJzG2s85eZ+ZOX1fOL4x2f3YSP/n63yqOfdH+l8QHBh/a+BgAAAAAAAAAAAAAAPC0EEYDAACALVkauyoEzdZZLwunXeleorFgUAAAIABJREFUi+cOX4jn4oVWx3kSZAGUcT1OwwsRm4fFBt2DiEI7YTQ7TsMITZGIs5ad36C7WTyi6b14MjuO63GYjhXPRxgNgC1oG0abzB6Ut+9cbBgtu7+Opu3CTLBtR5PPp2OH/fMJozXJIrvbmEtmv39NseRFk3pSXN5fuC7loePNw2g/9cZn0s8vzx++uFJkGQAAAAAAAAAAAAAAnnadiz4BAAAAeFosC6O1DQIsW2/ZcZ4m/YaASlMEYdA5n7DYSUMYLVYIoy0Ln20cdmt4jzTFW7JYQ9uoHwA06Sdhs7PBoixglIXVdiW7v57MRjs+E3joaPxKOnbY230YLZufb+Pzy0EyPz5uGSY8G2CcW7yupFm0DbtodV3HZ+58ujh20LkaH7n2yc0OAAAAAAAAAAAAAAAATxlhNAAAANiSwZJ4VNsgwLL13klhtCyAMqnHacSrG73oV3sbHTd7jkcNYbTOCmG0ZeGzTV/j/c4gquR8muItWcyibdQPAJpk9/XxmWBRFjDKgqm7koVCm2KtcJ6OJq8Wl1/pXou9zv65HDObY0ZEjGblSNmyz0ltZPto+/s3rh8Ul58Oo5X/s2keRm7nV0a/GL9+/1eLY5+4/q3n9loBAAAAAAAAAAAAAMCTShgNAAAAtmRbQbNlEap3UqQqC6jMYhbH07vFsUF3GFXVPlJW3EfyHJ9MjyOyMMIKxzzv+F2n6sSgMyyOZcGKh2PlsMQ7KcYHwPlJg6ez08GiLIyWbb8r2fzgQX0/pvVkx2cDeRjtZu/2js/kodE0i+yW56WrOEjCwsfTfG67aJL8jra5rmwaRnv5zqeLy6uo4rkb37nRvgEAAAAAAAAAAAAA4GkkjAYAAABbMky+rD/XNmg27C7ZT3fzsMCTot8QKrg7faO4fBvhuGG3vI/R7DjqrIsW7cNo+51B4/ggOf4qsuchi59FRJwkY++kGB8A5ycNo50JFo3rB8X1LjqM1hQKPZmNdngm8NBr41eKyw/7t87xqPmcN4/sNn++aSOf27YNo5WDi4ufN/L5/PphtDcmd+If3f3J4thXXPlw3N77grX3DQAAAAAAAAAAAAAATythNAAAANiSQac5WNY2aNa0n361d+FRkF1qeqx3J68XlzdFS9rKwgsns+OoY1YcWyWM1qm6ja/zNh5Dto+TaTlYUdd1nEzLUZfhkvc2ALTRq3rF5WeDRWdDaY+2v7xhtFFyf4XzdDT5fHH5Ye/8wmhV1RRGK0fKln1OauMgiUc3RX8XZWG0XoswWr1BGO1zr/9YTKN8TXvuxotr7xcAAAAAAAAAAAAAAJ5mwmgAAACwJcPky/oRqwXNhp18P9sIZj1Jmp6zN6flMFoWNVtFGhWbHadZhFXCaBHN57mVMNqK8Yhx/SCNNgwa3tsA0Fa/2isuXwwW1XWdBoz6FxxGa7p3n7SMM8E2HY1fKS4/zzBak+z3oOnzTVvZPkbTcoztrPHsQXF5r7MQRkuib3W9XhhtWk/js3f+RnHs2f674yuvfHit/QIAAAAAAAAAAAAAwNNOGA0AAAC2ZFuhq6Z1txH9epL0O3kA5W4SRttGVCx7nh9GxdYLI5x13q/zoDMsLs/CaCezUbqvYbIvAFhFFjwd14+CRbOYRp3ca9tGZs/LoJvfD4XRuAhHk1eLyw/7FxVGK88ns3npKvLob7sw2qQuB4BPX1eSMNqa8/+ff/On4s7k88Wx5258Z3Sq7lr7BQAAAAAAAAAAAACAp50wGgAAAGzJtkJXg27DfhrGnkZNAZS7k3IYbRtRsey1PJmO0jBCVa32Z5bGkN4WXudhpxyPyMItTVGJd1qQD4Dz0at6xeWLwaJxPW7Y/mLDaL2qH/1qrziWhUfhvIym99IQ2WHvYsJomW18hsnm521/9ybJtaW/cF2pkjDaumHkl+98OjnmXnzi+reutU8AAAAAAAAAAAAAAHgnEEYDAACALelXe9GJbnFs0Bm23k9TYK1p7GnUFEB5c1oOo20jKpbFG5riYVlGITPslsNlEXnUbBVZzGw0LccjsrDGw/N5Z73vADgf2X19Uo+jrh+GhyazyxtGi8jndFl4FM7La5NX0rGb/dvndtw8Hpbbxlwymx9P6nGMZw+Wbj+uy+u0ua6sk0X7rfu/Hv/8+OeKYx+59sm42n1mjb0CAAAAAAAAAAAAAMA7Q++iTwAAAACeFlVVxbB7EPemdx8bWyXWtVftRyc6MYvZY2NZ7Opp1a/20rE3JneKy7fxHGXxhtJr8shqkYimWN7+CiG9Vfd/b3a3+B69M/58w/kMNj4fAMgCRHXUMYtpdKMXkzoPo/U7Fx9GG3auxN1CnPX1yVHx/grn5bfu/3pxeRWduN67eW7HXSeMtpX5ecPnqdcmr7wdGht0htGtHv/Pn5N6Utx28brUqcr//6TGswcr/37/nTv/Tzr23I0XVtoXAAAAAAAAAAAAAAC80wijAQAAwBYNOuUw2ioxgKqqYtA5iOPZm4+NZcGup1WvEDWYu1+fFJdv4zkadq6svE1nxUhEdp771SC6VXfl4z+2/275MfzS8c/Hf/LL/17r/Qw6w+hs4XwAoN/Jg6fjehzdqjmM1jQv2JUsPPojr/xw/MgrP7zbk4GC673Drcwlt2m4hehv0/z8h/6/P/32v/erQXzFlQ/H977nT8dB92pEREzradRJ4DgLNi767Os/Gp99/UdXPOOyLx58KD4w/NBW9gUAAAAAAAAAAAAAAE+r8v/rcwAAAGAtWexqlTBaRMSwu539POk6VTc6K/75IguWnP8+Vg2jleMOg+S1X9W2InrvtPccAOenKWw2mT0Moo0bw2h5WG1XtnWfhvNy2Lt10afwmMEa0eGz2oaL79cn8Y/e/Mn4n3/jv3l7WVNwsb8QRqtWnM+v4/kbL5z7MQAAAAAAAAAAAAAA4EknjAYAAABblEWkVo1Upft5B8Y4eguxgjaG3S2EF9bYx6ohhSy+tq0Q2bb2s63AGgA03dPn4aK2AaOL4r7IZXfYP98w2jrxsGF383DxfmcQ1Qr/WfNfjP5JfH78OxERMa4fpOudvi6dbxjtSvdafOTaJ8/1GAAAAAAAAAAAAAAA8DQQRgMAAIAtut1/T3H5s/13r7SfW8l+bq24n6fBqs/dquuX7FeDuNq9vtI2N/u3V1r/9t75vsbZe3FV23g+ASAiYq/aT8fu1ycR0RxGWzWWeh7eiXMxnizv2Xv/ue6/V/Xj2grz5H61F9e6NzY+bqfqrPz799sPfiMiIib1JF1n8bry7Irz+VV9w/Vvi35n71yPAQAAAAAAAAAAAAAATwNhNAAAANiijzzzyceW9apefO21j6+2n2uP72ev2o/ffeWja5/bk+rD1z7Ret2bvdvxwcGXbnzMqqriI9e+sfX6Hxh8KA77t1Y6xlde+UjsV4PHlpde+3V8cPilcbO3edzho8980xbOBgAiBp2DdGw0PY6IiHFjGK239XNa1e+59o1RRXXRpwFFVXTiY888d77HqKr42qvt5+dfc/XjsdfJo4irWHWefDJ7eF2ZzNoFF7/m6tef2+/3oHMQ33Lj3zqXfQMAAAAAAAAAAAAAwNNGGO0dpKqqYVVVn6iq6k9UVfUXqqr6waqq/mxVVX+oqqoPVVW1lW97VFXVr6rqm6uq+qNVVf3Fqqr+dFVVv7+qqg9sY/8AAACX2Vdc+XD84Xd9Xww7VyIi4nr3ML7/fT8Yz/bfvdJ+PvrMJ+P33fqjMegMI+Jh8OvPvv+/jGu961s/58vuxWe/O77pxneeihaUvG//A/EDX/iXolNt588df+D2H4+PXXs+OtFtXO9Lhl8e3/++H1x5/wfdq/EDX/iX3n5v7FeD+K5b3xMff+ab1zndx3SqbvzAF/5QvG//A2ttv18N4t++9b3xsWvnG9cA4J1jvzNIo0NvB4ySMFonOtGpmu/Ju/DB4ZfFH33Pn4sr3WsXfSpwytXu9fi+9/2n8e699537sf7gu/5kfPTaN0U38lhhFZ346qtfF9/znj+1teP+m7f+cHzy+qdaRxLnwcXsuhIR0e88+ozxoYOvjH/3PX8mrnaf2exEz7jRezb+w/f+xbjRf3ar+wUAAAAAAAAAAAAAgKdVu28O8ESrquoTEfEfRcTvi4i9hlV/o6qq/y0i/oe6rl9b4zi3I+KHIuIPRcTNZJ2fiIj/vq7r/3vV/QMAADwpnjt8IT5541NxZ/JaHPZuxbod6k89+wfiW2/+3nhjchQ3es+uvZ8nXafqxh959/fHv3P7j8cr49+Mun58nau9Z+JGr/hRdG39Tj/++Hv/4/gjs++PVx/8dnGd673DjWJ1Hxx+afylD/5PcWfy+XimdyO6LSMPbb1r773xgx/4y3Fn8lq8OXmj9XadqhPv3nvv1s8HgHe2TtWJ/c7w7QjaotGSMFq/avrT9m59/Po3x8eeeS5eGf9mjGd5cAl2Za+zF7f7X7Czzwv9Tj/+xHv/QpzMRuk8+dn+7Rh2r2z1uN2qG9/znj8Vf/Bdf/LU54L/9V/9d/E743/12Prza824fpDu82x8+RPXvzU+/sy3bO33e7+zH8/23721eDMAAAAAAAAAAAAAALwT+HbrU6yqql5E/OWI+FMR0ebbMO+LiP88Ir6vqqo/Vtf1j65wrBci4ocj4l1LVv2GiPiGqqr+j4j4vrqu77U9BgAAwJOkU3XjZv/2xvvpVt047N/awhk9+fY6+/G+/Q/s/LiDzjDePzi/41ZVde6v8Y3eza2H4wBgHcPOQTGMdrIkjHY2XnTRHkZE33fRpwEX6rznyZmznwuu9a4Xw2iPgouTdF+la4vfbwAAAAAAAAAAAAAAuFjCaE+pqqqqiPg/I+IPFoZ/MSJ+ISJGEXE7Ij4aEYcL4++OiL9eVdXvbRNHq6rqmyPir0XE3sLiOiJ+JiJ+JSJuRMSHI2LxW97fGxHPVFX1++q6nrV8WAAAAAAAPMEGnYPi8nnAaDzLwmj+cwZQNuxcKS5fFlyMuHzRRQAAAAAAAAAAAAAAIKJz0SfAufkP4vEo2mci4qvquv7yuq7/QF3X31vX9aci4l0R8Sci4vWFdfci4q9WVXW96SBVVb0/In4kTkfRPhcRX1nX9Ufruv7ut47x/oj4cxGx+O2T74qI/2qNxwYAAAAAwBNomITRTqbNAaNeR7wIKBt0hsXloyVhtE50olt1z+28AAAAAAAAAAAAAACA9QijPb3+szM/fyYivq2u639ydsW6rid1Xf+ViPi2iLi/MPSuiPj+Jcf5oYg4XPj5J946zi+cOcb9uq7/x4j47jPb//mqqr54yTEAAAAAAHgKDLrlMNqygFGv2isuBxh2rhSXz4OL4/pBcbxXCS4CAAAAAAAAAAAAAMBlJIz2FKqq6qsi4gNnFv9AXSffKHtLXdc/HRH/y5nF39VwnA9FxL+/sOhBRPyxuq5PGo7x1yLiry4s2o+I/6LpvAAAAAAAeDoMO+Uw2snbYbRJcbxf9c7tnIAn26A7LC4fLbmuCKMBAAAAAAAAAAAAAMDlJIz2dPpdZ37+tbquf7bltn/9zM8falj3eyKiu/Dzj9R1/S9aHOO/PfPzd1dVNWhzcgAAAAAAPLkGneaA0bh+UBwXMAIyeXBxFBERk+T/b1DfdQUAAAAAAAAAAAAAAC4lYbSn05UzP//6Ctv+2pmfDxvW/f1nfv4rbQ5Q1/UvRMTfX1h0JSI+1WZbAAAAAACeXMPO2T9fP7QsYCSMBmQGSRhtHlxMrysd1xUAAAAAAAAAAAAAALiMhNGeTr915ufBCtueXfe10kpVVb0nIr5mYdEkIj63wnH+7pmfX1hhWwAAAAAAnkCDzrC4fDS9FxERk3pSHBdGAzJZGO3krTDaePagOO66AgAAAAAAAAAAAAAAl5Mw2tPppyLi/sLPX15VVfnbZo/7SGFfJb/7zM8/V9f1vZbHiIj4iTM/f+UK2wIAAAAA8AQadq8Ul5/MRhERManHxXEBIyAzzMJo04dhNMFFAAAAAAAAAAAAAAB4sgijPYXqur4bEf/7wqJBRPzJZdtVVdWNiD/z/7N370G2ZXV9wL+/3af7njN3YAaZGWAQGRkUmBJ5WoIgD8dIElO+5ZEyajQ+sICglq8KAYZoKkS0EsoiRKPySAoJQQQJhDg8FA1ItBBmBJIBh3dgiscwj3vvzNzbK390X+6hp0/3OX37nN2n7+dT1XX2Xnvtdb63qFpVQ+/+7i3DL58w/Yot5x+eOuCGj+yyHgAAAAAAh8yw2/4dHsfXN967cUe7fdvrqwqMgAmGK9sXo93WTmS9nZpYuGhfAQAAAAAAAAAAAACAg0kx2uH1y0k+Onb+b6vq2ydNrqrVJL+d5GFjw29L8toJt9x/y/nHZ8z3sS3nd6+qu824BgAAAAAAS2TUHd12/MT68SSZWGA0UGAETDDqti9GSzb2FvsKAAAAAAAAAAAAAAAsF8Voh1Rr7QtJnpjkvZtDoyRvqapXV9UPVtWDq+r+VfWoqvrZJNck+bGxJd6T5Adaa23CV1y45fyGGfPdkuTEluELZlkDAAAAAIDlMuxG247ftn486209J9dPbntdgREwyXCHYrTj68dyh2I0AABgBlV1v6p6SlX9elW9o6puqqo29vPRvjNuVVXnVdVHtuRsVfWyvrMBAAAAAAAAAMBeDPoOwPy01j5aVd+c5EeT/GSSRyR58ubPJJ9P8ptJfr21CX8psuH8LefH9xDxeJLh2Pld9rDGV6iqS5JcPONtl5/t9wIAAAAAsLvRytFtx1tabls/kZOTCow6BUbA9kY7FKOdWD82eV9RjAYAAGyqqick+ZUkj0zyVf2m2ZNfS3K/vkMAAAAAAAAAAMB+UYx2+K1s/tyWpCWpHeZ+Islzk/zBLqVoyZ2L0U7sIdvxJHfbYc29+Jkkz9uHdQAAAAAA2GfDbjTx2vH1WycWGK0qMAImGO5QjHb81ORiNPsKAAAw5qFJvqPvEHtRVY9K8qy+cwAAAAAAAAAAwH7q+g7A/FTVY5J8MMl/SPKY7P6/932S/H6Sj1fVP5vx69rsCfd0DwAAAAAAS2rUHZ147cT68dzRbt/22kCBETDBarc6cY84sX7MvgIAAJyN25J8pO8Qk1TVWpLfzZnnAm/uMQ4AAAAAAAAAAOwbxWiHVFVdmeTqJJeNDX8qyS8neViSC5OsJblnkr+f5OVJTm7OuzjJ71TVb1dVTfiKW7acj/YQc+s9W9cEAAAAAOAQGXaT/6/k4+vHcrKd3PaaAiNgJ8PuvG3Hj68fy8l1+woAADCVO5L8TZL/lOSnkjwiyV2SzPqC0UV6bpIrNo8/luQ/9pgFAAAAAAAAAAD2zaDvAOy/qro4yauSDMeG/zjJD7XWbtoy/bNJ3pLkLVX10iRvTHL3zWs/kY03Xr5wm685qMVoL0nymhnvuTzJ6/fhuwEAAAAA2MFqrWUlg5zKnYuKTqwfy8l2x7b3DcqvM4DJRt0ot5z60p3GT6wf32FfUYwGAAB82cuTvLS1dmLrhcnvFe1XVT0kyS+NDT09yTf3FAcAAAAAAAAAAPaVvyQ6nH4uycVj5x9K8uTtHtwa11p7d1U9JcnVY8PPq6rfb63dsGX61r8uuTgzqKrzc+ditBtnWWM7mzm3Zt0ty9l+LQAAAAAAU6iqDFdGufXUzXe6dvzU5GK01VqbdzRgiQ2787YdP37q1sn7SqcYDQAA2NBa+2LfGWZRVYMkv5czz3++qrX25qpSjAYAAAAAAAAAwKHQ9R2AufjBLecv3K0U7bTW2luTvHNsaJTkqdtMvW7L+X2nj7ft/C8s2wNmAAAAAADMbjShwOjE+rHcMaHAaFAKjIDJJhWjnVg/njva7dtes68AAABL7BeSPHzz+AtJnt1jFgAAAAAAAAAA2HeK0Q6Zqjqa5PItw2+dcZmrt5xv9ybJD245v/+M33G/LecfmPF+AAAAAACW0KQCo+Prx3JSMRqwB6OVyYWLJ9vJba/ZVwAAgGVUVQ9I8ryxoZ9vrd3QVx4AAAAAAAAAAJgHxWiHz4XbjH1mxjW2zr9omznXbjn/xqra/q9OtveYXdYDAAAAAOAQGk0oRjuxYzHaYJ6RgCW3t8JF+woAALBcqqpL8rtJjmwOva219rL+EgEAAAAAAAAAwHwoRjt8btxm7OiMa5y/5fyWrRNaa/8vyfvHhgZJHjvDdzxhy/mbZ7gXAAAAAIAlNbHA6NTkAqPVbm2ekYAlt5fCxdWyrwAAAEvnGTnzQtLjSX6qxywAAAAAAAAAADA3itEOmdbarUlu2jL8sBmXecSW889MmPe6Lef/dJrFq+qBSb55bOjWJP9zumgAAAAAACyz0coOBUbr2xcYDWp1npGAJTexcHH9WO6YUIxmXwEAAJZJVV2W5F+PDV3VWvtwP2kAAAAAAAAAAGC+Bn0HYC7ekeS7xs5/Msnbp7mxqu655d4keeeE6f8lyXOSrGyef19VfV1r7bpdvuaXtpz/19baiWnyAQAAAACw3BQYAfttNGFfOXHqWE7aVwAAgMPhd5Ic3Tx+X5Lf6CtIVV2S5OIZb7t8HlkAAAAAAAAAADicFKMdTq/OV5abPaWq/ntr7T/vdFNVHUnyyiTnjw3fkuQt281vrV1XVS9P8mObQ2tJXlZVV04qOquq707yo2NDtye5aqdcAAAAAAAcHpMKjI6v35r1nNr22qD8OgOYbLgyuXBxcjGafQUAAFgOVfXjSb5983Q9yU+01k72GOlnkjyvx+8HAAAAAAAAAOCQ6/oOwFz8QTbeCnlaJXlFVf37qrrXdjdU1ROTvDtnHqA67YWttS/u8F3PSzJ+/VuSXF1VD9yy/pGqemaS12y5/zdaax/bYX0AAAAAAA6R4YRitFtOfmniPYNanVcc4BAYdaNtx0/sUIy22q3NMxIAAMC+qKpLk7xobOjFrbX/3VceAAAAAAAAAABYBK9CP4Raa+tV9QNJ/iLJJZvDleRZSZ5RVe9P8ndJjif5qiQPS3LPbZZ6U5IX7vJdn6yq70vyliSn/4LkMUk+UFV/vfk9FyR5eJKLt9z+xiT/crZ/HQAAAAAAy2w0oRjt5lOTi9FWS4ERMNmwO7rt+In14+kmvCdK4SIAALAkXpLkws3jjyV5To9ZAAAAAAAAAABgIRSjHVKttQ9X1eOTvDLJI8cudUkeuvkz8fYkv5Pk2a21O6b4rndU1fcmeVnOlJ/V5vc+csJtr0ryE621U7utDwAAAADA4TFc2b4Y7ZZTN0+8R4ERsJNRN9p2/I52eyq17TX7CgAAcNBV1VOTfPfY0NNba7f2lWfMS5K8ZsZ7Lk/y+jlkAQAAAAAAAADgEFKMdoi11j5UVY9O8o+T/HSSRyUT/vpjw/Ekf5jkt1pr757xu95UVd+Q5KokT0lytwlT353kRa21186yPgAAAAAAh8Oo274YrWV94j2D8usMYLJhd3TitZa27bh9BQAAOMiq6qIkLx4belVr7c195RnXWrshyQ2z3FO102OLAAAAAAAAAADwlTzxf8i11k4meUWSV1TVBUkemeRrk1yY5EiSm5N8Mcm1Sa7ZnL/X77ohydOr6p8neUyS+ya5Z5Jbk3wqyXtba9efxT8HAAAAAIAlN5xQjLaTQa3OIQlwWIxWRjPfs1prc0gCAACwb16c5OLN4y8keXaPWQAAAAAAAAAAYKEUo51DWmtfSvLWBXzP7UnePu/vAQAAAABg+YwUowH7bNQdnfke+woAAHBQVdUDkjxtbOjfJTmvqi7b5dYLt5yfv+We9dbax882HwAAAAAAAAAAzJtiNAAAAAAAYGGGeyhGW+3W5pAEOCyOdKOZ71GMBgAAHGBb/yPnBZs/s/r+zZ/TvpQ7l6cBAAAAAAAAAMCB0/UdAAAAAAAAOHeMVmYvRhuU97wAk63UStbqyEz32FcAAAAAAAAAAAAAAOBgUowGAAAAAAAszLAbzXzPShQYATsbdbOVLq7W2pySAAAAAAAAAAAAAAAAZ0MxGgAAAAAAsDArNchaHZl6/qBWU1VzTAQcBsOV2YrRBrU6pyQAAABnp7X2N621mvUnyVVblnr5ljkX9vHvAQAAAAAAAACAWSlGAwAAAAAAFmrYTV9gtKq8CJjCaIZ9JUkGnb0FAAAAAAAAAAAAAAAOIsVoAAAAAADAQo1Wpi8wGihGA6YwS+FikgxqMKckAAAA26uqtuXnCX1nAgAAAAAAAACAg8gT/wAAAAAAwELNUmCkGA2YxmiGfaVSWfFrUgAAYExVfXW2f57ynlvOB1V12YRlbmmtfW4/cwEAAAAAAAAAwLnIE/8AAAAAAMBCzVJgpBgNmMashYtVNcc0AADAEvrzJPedYt69k1w/4drLk/zofgUCAAAAAAAAAIBzVdd3AAAAAAAA4Nwy7EZTz1WMBkxjtDJLMZp3RwEAAAAAAAAAAAAAwEGlGA0AAAAAAFioUXd06rmritGAKQy7WYrR7CsAAAAAAAAAAAAAAHBQeR06AAAAAACwUMOV0dRzFRgB0xh20+8rq7U2xyQAAMAyaq1dtoDvqDmv//wkz5/ndwAAAAAAAAAAwCJ0fQcAAAAAAADOLaPu6NRzB51iNGB3M+0rChcBAAAAAAAAAAAAAODAUowGAAAAAAAs1LAbTT1XgREwjdn2lcEckwAAAAAAAAAAAAAAAGdDMRoAAAAAALBQo+7o1HNXFaMBUxitTL+vKFwEAAAAAAAAAAAAAICDSzEaAAAAAACwUMNuNPVcBUbANGbZV1a7tTkmAQAAAAAAAAAAAAAAzoZiNAAAAAAAYKFGK0ennqsYDZjGqJtlXxnMMQkAAAAAAAAAAAAAAHA2FKMBAAAAAAALNexGU89VYARMY7Z9ReEiAAAAAAAAAAAAAAAcVIrRAAAAAACAhRp1R6eeq8AImMawO2/qufYVAAAAAAAAAAAAAAA4uBSjAQAAAAAACzXsRlPPXa21OSYBDosYiZDCAAAgAElEQVQj3TCVmmqufQUAAAAAAAAAAAAAAA4uxWgAAAAAAMBCjVaOTj13UKtzTAIcFl11OTJl6eKgBnNOAwAAAAAAAAAAAAAA7JViNAAAAAAAYKHW6kgqNdVcBUbAtEbdeVPNU7gIAAAAAAAAAAAAAAAHl2I0AAAAAABgobrqMuxGU81VYARMazh1MdranJMAAAAAAAAAAAAAAAB7pRgNAAAAAABYuGkLjFY7BUbAdEZTF6MN5pwEAAAAAAAAAAAAAADYK8VoAAAAAADAwk1bjDao1TknAQ6L4cq0hYv2FQAAAAAAAAAAAAAAOKgUowEAAAAAAAs3mroYbTDnJMBhMf2+ohgNAAAAAAAAAAAAAAAOKsVoAAAAAADAwg1XFBgB+2vYjaaaN6i1OScBAAAAAAAAAAAAAAD2SjEaAAAAAACwcKNOMRqwv4ZT7yuDOScBAAAAAAAAAAAAAAD2SjEaAAAAAACwcMNuNNW8VcVowJSmLVy0rwAAAAAAAAAAAAAAwMGlGA0AAAAAAFi4UXd0qnkDBUbAlIYr0xWj2VcAAAAAAAAAAAAAAODgUowGAAAAAAAs3LAbTTVPgREwrVE3bTHa2pyTAAAAAAAAAAAAAAAAe6UYDQAAAAAAWLjRytGp5ilGA6Y1nLoYbTDnJAAAAAAAAAAAAAAAwF4pRgMAAAAAABZu2I2mmqcYDZjWaMpitFX7CgAAAAAAAAAAAAAAHFiK0QAAAAAAgIUbdUenmrfaKTACpjOcshhN4SIAAAAAAAAAAAAAABxcitEAAAAAAICFG3ajqeYpMAKmNVqZshitW5tzEgAAAAAAAAAAAAAAYK8UowEAAAAAAAs3Wjk61TzFaMC0ht10xWirNZhzEgAAAAAAAAAAAAAAYK8UowEAAAAAAAs37EZTzVtVjAZMaTRlMZrCRQAAAAAAAAAAAAAAOLgUowEAAAAAAAs36o5ONU+BETCt1VpLl5Vd59lXAAAAAAAAAAAAAADg4FKMBgAAAAAALNywG001T4ERMK2qyqg7b9d59hUAAAAAAAAAAAAAADi4FKMBAAAAAAALt1prWclgxzldVtKVX2UA0xuu7F6MtqoYDQAAAAAAAAAAAAAADix/TQQAAAAAACxcVWW4MtpxjvIiYFajbud9JUkG9hYAAAAAAAAAAAAAADiwFKMBAAAAAAC9GHXn7XhdeREwq2F3dNc59hYAAAAAAAAAAAAAADi4FKMBAAAAAAC9GO5WjNYpLwJmM+xGu85RjAYAAAAAAAAAAAAAAAeXYjQAAAAAAKAXo92K0ZQXATPafV8ZpKoWlAYAAAAAAAAAAAAAAJiVYjQAAAAAAKAXQ8VowD4brthXAAAAAAAAAAAAAABgmSlGAwAAAAAAejHapcBotQYLSgIcFiOFiwAAAAAAAAAAAAAAsNQUowEAAAAAAL0Y7lpgtLagJMBhsfu+ohgNAAAAAAAAAAAAAAAOMsVoAAAAAABAL0YKjIB9ttu+smpfAQAAAAAAAAAAAACAA00xGgAAAAAA0IvhrsVogwUlAQ6L3fcVxWgAAAAAAAAAAAAAAHCQKUYDAAAAAAB6MVJgBOyz0Yp9BQAAAAAAAAAAAAAAlpliNAAAAAAAoBfDXQqMVhUYATMaKlwEAAAAAAAAAAAAAIClphgNAAAAAADoxWjXAqO1BSUBDovd9xXFaAAAAAAAAAAAAAAAcJApRgMAAAAAAHox3K3AqBssKAlwWAy70Y7XVxWjAQAAAAAAAAAAAADAgaYYDQAAAAAA6MVot2I0BUbAjEbd0R2vDzr7CgAAAAAAAAAAAAAAHGSK0QAAAAAAgF4MdylGW1WMBsxouDLa8brCRQAAAAAAAAAAAAAAONgUowEAAAAAAL0YrexcjDaotQUlAQ6LQa1mdYe9QzEaAAAAAAAAAAAAAAAcbIrRAAAAAACAXgy70Y7XBzVYUBLgMNlpb1lVjAYAAAAAAAAAAAAAAAeaYjQAAAAAAKAXKzXIWh2ZeH2gwAjYg1F3dOI1+woAAAAAAAAAAAAAABxsitEAAAAAAIDeDLvzJl5bVWAE7MGwG028phgNAAAAAAAAAAAAAAAONsVoAAAAAABAb0Yrk4vRFBgBe2FfAQAAAAAAAAAAAACA5aUYDQAAAAAA6M2wU2AE7K+d9pVV+woAAAAAAAAAAAAAABxoitEAAAAAAIDejBSjAftM4SIAAAAAAAAAAAAAACwvxWgAAAAAAEBvht1o4rXVToERMLsdCxftKwAAAAAAAAAAAAAAcKApRgMAAAAAAHoz6o5OvDYoBUbA7IY7FaPZVwAAAAAAAAAAAAAA4EBTjAYAAAAAAPRmuDKaeE2BEbAXo5XJxWir9hUAAAAAAAAAAAAAADjQFKMBAAAAAAC9GXVHJ15TjAbsxbCbXIxmXwEAAAAAAAAAAAAAgINNMRoAAAAAANCbYTeaeG1VgRGwByPFaAAAAAAAAAAAAAAAsLQUowEAAAAAAL0ZdUcnXlNgBOzFToWL9hUAAAAAAAAAAAAAADjYFKMBAAAAAAC9UWAE7Ldhd97Ea6v2FQAAAAAAAAAAAAAAONAUowEAAAAAAL0ZrRydeE2BEbAXo5XJxWgKFwEAAAAAAAAAAAAA4GBTjAYAAAAAAPRm2I0mXlNgBOzFsFOMBgAAAAAAAAAAAAAAy0oxGgAAAAAA0JsLBnfbdrxLl+HK5HIjgEnOX7lrugm/Bj1/5a4LTgMAAAAAAAAAAAAAAMxCMRoAAAAAANCbu6/eI/dau8+dxi8fPSjDbtRDImDZHemG+frzHnyn8UtWL81Fa/foIREAAAAAAAAAAAAAADAtxWgAAAAAAECvfuRez875Kxd8+fxug4vyQ/d8Ro+JgGX31Hv8dO6+esmXz8/rzs+PXfrzPSYCAAAAAAAAAAAAAACmMeg7AAAAAAAAcG77muHlueprX5KPHP9gulrJ/UdXZK070ncsYIldsnavPOeyF+f64/8nt7fb8vXnPTjDbtR3LAAAAAAAAAAAAAAAYBeK0QAAAAAAgN6NVo7mG85/ZN8xgEPkSDfMA48+pO8YAAAAAAAAAAAAAADADLq+AwAAAAAAAAAAAAAAAAAAAAAAAAAM+g4wi6p62+ZhS/K01toNe1znHkledXqt1tqV+5EPAAAAAAAAAAAAAAAAAAAAAAAA2JulKkZL8oRslKIlyfAs1hlurpWx9QAAAAAAAAAAAAAAAAAAAAAAAICedH0H2IPqOwAAAAAAAAAAAAAAAAAAAAAAAACwv5axGA0AAAAAAAAAAAAAAAAAAAAAAAA4ZM7VYrTB2PHJ3lIAAAAAAAAAAAAAAAAAAAAAAAAASc7dYrSLxo5v7S0FAAAAAAAAAAAAAAAAAAAAAAAAkOTcLUZ73OZnS/LpPoMAAAAAAAAAAAAAAAAAAAAAAAAAyaDvAGehzTK5qlaT3CvJdyT5F2OXrtnPUAAAAAAAAAAAAAAAAAAAAAAAAMDsDlwxWlWdmmZako9W1Z6/Zuz4DXtdBAAAAAAAAAAAAAAAAAAAAAAAANgfB64YLV9ZWrYf87bTNu//UJL/dhbrAAAAAAAAAAAAAAAAAAAAAAAAAPug6zvABG3O61eSv0ryj1prd8z5uwAAAAAAAAAAAAAAAAAAAAAAAIBdDPoOsI0/y+RitMdvfrYk70lyYso1W5LbktyY5INJ3t5ae+fZhAQAAAAAAAAAAAAAAAAAAAAAAAD2z4ErRmutPWHStapaz5nStKe01j6+kFAAAAAAAAAAAAAAAAAAAAAAAADAXHV9B9iD6jsAAAAAAAAAAAAAAAAAAAAAAAAAsL8GfQeY0VVjxzf2lgIAAAAAAAAAAAAAAAAAAAAAAADYV0tVjNZau2r3WQAAAAAAAAAAAAAAAAAAAAAAAMCy6foOAAAAAAAAAAAAAAAAAAAAAAAAAKAYDQAAAAAAAAAAAAAAAAAAAAAAAOidYjQAAAAAAAAAAAAAAAAAAAAAAACgd4O+A5yNqnpikm9L8rAklyS5IMnqjMu01trl+50NAAAAAAAAAAAAAAAAAAAAAAAAmN5SFqNV1ZOSvDjJ/ceH97hcO/tEAAAAAAAAAAAAwLSq6qIkt7XWbu47CwAAAAAAAAAAcHB0fQeYVVX9QpI3ZaMUbbwMre3hBwAAAAAAAAAAAFiAqrpvVb2iqm5M8tkkN1bVJ6vqV6tq1Hc+AAAAAAAAAACgf4O+A8yiqp6U5IWbp6fLzU6Xox1LcmOSO3qIBgAAAAAAAAAAAOeUqvqRJP9q8/TmJA9vrd02Ye43Jrk6yd3zlS9FvTTJryT5nqp6Qmvtc3OMDAAAAAAAAAAAHHBLVYyW5N9sfp4uRPtENorS3tha+3hvqQAAAAAAAAAAAODc87QkX52NZ/peukMp2iDJq5NctDnUtk5JckWS1yZ5/HyiAgAAAAAAAAAAy2BpitGq6vIkD8mZB6L+Msl3tNZu7i8VAAAAAAAAAAAAnHuqqkvy2LGh1+0w/YeTPCBfWYh2bZKT2XguMNkoR3tsVT2ltfbq/cwKAAAAAAAAAAAsj67vADN49OZnZePhqB9WigYAAAAAAAAAAAC9uCLJeZvHdyT50x3m/vjmZyX5UpJHt9Ye0lp7RJKHJ/lszpSmPX0OWQEAAAAAAAAAgCWxTMVol2x+tiTvba1d12cYAAAAAAAAAAAAOIddvvnZklzXWrtju0lVdc8kj9qc15L8amvtPaevt9ben+RZ2ShNqySPraq7zTM4AAAAAAAAAABwcC1TMVqNHX+4txQAAAAAAAAAAADAvceOr99h3uNypvTsZJLf22bO65J8afO4kjx0PwICAAAAAAAAAADLZ5mK0T41drzSWwoAAAAAAAAAAADg/LHjm3aY99jNz5bkXa21G7dOaK2dSvLesaH7n308AAAAAAAAAABgGS1TMdrfjh3fp7cUAAAAAAAAAAAAwOqU8x49dvyOHeZ9Zuz4rjOnAQAAAAAAAAAADoWlKUZrrV2T5NokleQRVXW3niMBAAAAAAAAAADAueqWseNtn+erqqNJHjo29Bc7rHdq7PjIWeQCAAAAAAAAAACW2NIUo236jc3PlSQ/32cQAAAAAAAAAAAAOId9buz4QRPmfHs2nvdLkpbkL3dY78Kx42NnkQsAAAAAAAAAAFhiS1WM1lp7eZLXJqkkv1hV/6DnSAAAAAAAAAAAAHAuunbzs5Lct6q+YZs5T938bEmuba3dtMN69x47/vw+5AMAAAAAAAAAAJbQUhWjbfqRJG9IMkjy+qp6QVVduMs9AAAAAAAAAAAAwP65NhsFZm3z/DeravX0xap6bJIfGLv+5kkLVdUgyRVjQ9fvb1QAAAAAAAAAAGBZDPoOMIuqeu7m4fuSfEuSi5L8iyQ/V1XvSvKBJF9Msj7Luq21F+xnTgAAAAAAAAAAADjMWmunqupVSZ6RjfKzK5O8v6r+OMkl2ShF65LU5vVX7rDcNyVZGzv/27mEBgAAAAAAAAAADrylKkZL8vyceXtkNo8ryXlJvm3zZy8UowEAAAAAAAAAAMBsfjXJP0ly183zByT5+s3j04VoLclrW2sf2GGd79n8bEk+3Fr74hyyAgAAAAAAAAAAS6DrO8A+OP3g1F7UfgYBAAAAAAAAAACAc0Vr7YYk35/kRM4UoX358ubYR5I8fdIaVdUlefLYve+YR1YAAAAAAAAAAGA5LGMxWu3jDwAAAAAAAAAAALBHrbW3JXlIklcnOZYzz+d9PslvJXlUa+3zOyzxXUnumzPP9L1pfmkBAAAAAAAAAICDbtB3gBk9se8AAAAAAAAAAAAAwBmttQ8neVqSVNVFm2Ofm/L265N879j5W/Y3HQAAAAAAAAAAsEyWqhittfanfWcAAAAAAAAAAAAAtjdDIdrp+e9L8r45xQEAAAAAAAAAAJbMUhWjAXCI3XhN8n9/Kzl1IvmaH0wu/c6kqu9UAAAAAAAAAAAAAAAAAAAAAAAsiGI0APr3mauTtz8paesb59e/InnwVcmDn9tvLgAAAAAAAAAAAAAAAAAAAAAAFqbrOwAA57jWkr965plStNP+9teSY5/sJxMAAAAAAAAAAPuiqi6sqvtU1df0nQUAAAAAAAAAADj4FKMB0K8b35fc9KE7j6/fnnziDxefBwAAAAAAAACAPauq76mq36uq66rqjiSfT/LRJH83Yf5lVfW4zZ9HLDIrAAAAAAAAAABw8Az6DnC2qmo1yaOTfGuSy5N8VZK7JElr7coeowEwjU//j8nXPv6a5AHPWlwWAAAAAAAAAAD2pKqelOTFSe5/emjKWy9P8idJWpLbq+rS1toX5xARAAAAAAAAAABYAktbjFZVR5P8bJJnJLl46+VsPCS13X1PS/Jrm6dfSPJNrbVt5wKwADdeM/na596V3Pb55MjdF5cHAAAAAAAAAICZVNVzkzw3G8/ubX1+r2WHkrTW2lur6oNJHpRkLclTkrx0fmkBAAAAAAAAAICDrOs7wF5U1Tcm+eskVyW5JNO/WTJJ/jjJ3ZNcluRhSf7efucDYAY3fWjytXYq+dQbF5cFAAAAAAAAAICZVNWzkjw/X/k84m1J/izJGzPd832vHjv+zn0LBwAAAAAAAAAALJ2lK0arqiuS/GmSr8tXvlny9Jsmd9RauyXJa8aGvn+/MwIwpba+czFaknzyjxaTBQAAAAAAAACAmVTV1yV5UTae42vZKET7xSR3b609Ickzp1zqDaeXTPKtVTXLy1IBAAAAAAAAAIBDZKmK0apqmI03SF4wNnxNkh9Pcr8kD8p0b5d8/djxlfsWEIDZHP9McurYznM+978WkwUAAAAAAAAAgFm9IMkgG8/tnUhyZWvtRa214zOu8/7N+5PkLtl4cSoAAAAAAAAAAHAOWqpitCTPSnJZNt4smSQvTvLw1trvt9Y+mjMPRu3m7ZtrVJKvrapL9jknwN7d+onkz5+cvO7eydWPTz7ztr4Tzc/xT+0+58QNye03zj8LAAAAAAAAAABTq6ojSb4rG8/itSTPaa29ay9rtdbWk3xwbOiBZ58QAAAAAAAAAABYRstWjPbMnClF+6PW2rM3H4iaSWvtliQfHRt60D5kAzh7J48lf/LY5OOvSY5/Ornhz5K3XZlc/8qktd3vXzbHpihGS5Kbr5tvDgAAAAAAAAAAZvWYJKNsvKD0WJKXnOV6nx47vvQs1wIAAAAAAAAAAJbU0hSjVdUVSe6djYeokuQXznLJj4wd3+8s1wLYH598Q3Ls43cef9cPJ3/01ckN71x8pnk6PmUx2o3XzDcHAAAAAAAAAACzumzzsyV5T2vttrNc76ax47uc5VoAAAAAAAAAAMCSWppitCQP3fxsSa5trf3dWa5349jxBWe5FsD++NirJl87/unk6scl17wg+ezbk7a+uFzzcmzKYrRPvXG+OQAAAAAAAAAAmNXFY8ef2Yf1ugnHAAAAAAAAAADAOWTQd4AZjD9Edd0+rDf+dsrz9mE9gLP3mT/Zfc41z9v4vPQfJt/6umRlbb6Z5un4/2fvvsPsLOv8j7/vaUlIIYUSCL1X6cIKCAKCggIWUHRXEVzLFt1V17KuhdV1159tXde2gmVVRBGkCdKb9F4iUhISkgAJ6ckkmUz5/v44MztnJqefM+fMmbxf13Wu8zz3/b3v5zuUk0nyzOd5sbS6xbdABKQ0sv1IkiRJkiRJkiRJkiSpVNn34I2rwX4zso5X1GA/SZIkSZIkSZIkSZIkSU2omZ6qOD7ruCtvVem2zDpeU4P9JKl67VNKr33xWnjuhyPXSz30lPjx270K1r80sr1IkiRJkiRJkiRJkiSpHK9kHe9Qg/0OyrO3JEmSJEmSJEmSJEmSpM1IMwWjLc063qoG++2WdbysBvtJUvVaxxevyTb3JyPTR730rC+9dvWfR64PSZIkSZIkSZIkSZIklWtu/3sCDk4pTax0o5TSocDWWUMPV9OYJEmSJEmSJEmSJEmSpObVTMFoL/e/J+CQajZKKc0A9s0aeq6a/SSpJiKga2nxumwrHoEVj41MP/XQazCaJEmSJEmSJEmSJElSk7ofWA0E0A6cV8VeH8s6nh8R86tpTJIkSZIkSZIkSZIkSVLzaqZgtLuBvv7jGSmlE6rY6zwyAWsAncCD1TQmSTXRtQx6Ostfd93BmVC1ZtS7ofRag9EkSZIkSZIkSZIkSZJGjYjoBX5P5l68BFyQUtqx3H1SSm8B3kUmYC2AX9WyT0mSJEmSJEmSJEmSJEnNpWmC0SJiBfBA1tCXUkopX30+KaVZwKcZvInqxojoK7xKkupgzTOVr33igtr1UU+960uvfeY7I9eHJEmSJEmSJEmSJEmSKvElMg88DWAqcFtKaf9SF6eUzgUu7l+fgA3At2vfpiRJkiRJkiRJkiRJkqRm0TTBaP2yb3g6CvhBOYtTStsCVwHTyNxEBfDN2rQmSVVa82zla5+8ALpX166XeiknGA1g2YMj04ckSZIkSZIkSZIkSZLKFhF/Br5D5n68AHYFHk4pXZRSOgXYZvialNKOKaXzU0r3ABcB47LWfyEiltTtC5AkSZIkSZIkSZIkSZI06jRVMFpEXAI82n+agPenlO5MKR1baF1KaWJK6UP9aw8mcwNVADdExF0j2bMklWzNM9Wtf+Gy2vRRT+UGoz39nyPThyRJkiRJkiRJkiRJkir1ceBGBsPN2oFzgWuBe/vHAEgpdQLzgP8BXp21BuB3EfH1ejUtSZIkSZIkSZIkSZIkaXRqa3QDFXg7mZulZvSfHw3cllJ6GXguuzCl9H1gL+AvGPpUyQQsAv6qTj1L0qZWPwPP/y9sWALbnZw5z2XaIdC9CtbOLbzffefDLu+C1nG173WklBuMtuj30NcNLe0j048kSZIkSZIkSZIkSZLKEhF9KaUzgO+RCUQbCDpLAyVZYxOyl2bV/Rj40Mh2KkmSJEmSJEmSJEmSJKkZtDS6gXJFxFzgTcDLDA062w44Jqs0AR8AjgfGD6tdCJwWEUvr1rgkZVv2IFz/apj9bzDnR/DHs2DBb3PXznozvOlpeP1dRTYNuOl46Oupdbcjp9xgtO6VsOSOkelFkiRJkiRJkiRJkiRJFYmIDRFxHvAOYDaDoWiblDI0EG0O8O6IeH9ENNFNL5IkSZIkSZIkSZIkSZJGStMFowFExP3AocB1DH2q5MB79s1T2XMJuBF4dUQ8XodWJSm3J78E3atKq528F7S0wdavgTc/W7h22b3w/M+r769eejfkHj/6kvxrFl09Mr1IkiRJkiRJkiRJkiSpKhFxaUS8CjgR+A/gj8ALQCfQDbwEPAp8Fzgd2CciftWgdiVJkiRJkiRJkiRJkiSNQm2NbqBSEbEYOC2ldBjwUTI3Um2Xp3wVcDPwnYi4vU4tSlJu0QeLriq9fvKeWcd7wHFXw+1vzl8//xLY/X2V91cvfd0QvbnnJsyCnc6GF36z6dyq2SPblyRJkiRJkiRJkiRJkqoSEbcCtza6D0mSJEmSJEmSJEmSJEnNp2mD0QZExEPAewBSSrsBOwIzgA5gKbAYmB0RfQ1rUpKydb5Qeu24rWD6IUPHtjkO2iZBz9rcaxbfAhtXQsfUynush971+efaJsC0Q3IHo21cMXI9SZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIapumD0bJFxFxgbqP7kKSCFt9Seu0+H4eW9qFj7ZPh0G/A/R/MvSZ64MXrYJdzKu+xHnoKBKO1jM8f7LZx5cj0I0mSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJElqqDEVjKbRIaXUDhwN7ARsB6wFXgQeiYh5DWxNarzVz8B955dWu+V+sM/Hcs/t8QGYfhj84fDc8y/fNPqD0XoLBKO1TYD2PMFo3QajSZIkSZIkSZIkSZIkjQYppYEnBAZwTkQsqXCfbYFfDewVESfWoj9JkiRJkiRJkiRJkiRJzcdgtDEopfRT4L012m5+ROxS4nW3Bi4A3gFMz1NzN/DNiLisRv1JzeX+D5Ree/j3oLUj//z0w2DPD8Oz3990bu6PoXs1zHoz7PJuaGktv9daWf8yPPc/MOciWPcCzDodDv0m9G3Mv6Z1AnTkCUbbuBIiIKWR6VeSJEmSJEmSJEmSJEmlOp5MKBrA+Cr2Gd+/F1n7SZIkSZIkSZIkSZIkSdoMGYymYtaXUpRSeiPwU2CbIqWvAV6TUvol8MGI6KyuPamJdK+BV+4srXbGq2Hb44rXTTsk/9yC32Zei66CYy5tTJDY2nlww5GwIethwIuuyrwO/Vb+da0ToGNa7rnohZ5OaJ9U01YlSZIkSZIkSZIkSZJUkYRhZpIkSZIkSZIkSZIkSZJqpKXRDZQjpXRASumW/tfNKaViIVy59ti2f+3APnuNRK9jyGXFClJKxwNXMDQULYCHgEuBG4Glw5a9G/hVSqmp/huUqtK1DKKvtNoZR5ZWN2Wf4jULLoOl95S2X6098cWhoWjZHv7H/OvaJkHH1Pzz6xZW1ZYkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkafRptlCqDwLHA8cBGyMiT9pOfhGxGOjO2ueva9jfaPEJYNcKXmcN2yeAHxe6UEppB+ByoCNr+C5g/4g4PCLOjoiTgR2Aj5L5Zz/gzcCXK/j6pObUs6b02hlHlFY3ucRsx+d/Xvq1a6W3KxPKVq62ydDSBu0FgtFuOArCBw1LkiRJkiRJkiRJkiSNEW1Zxz0N60KSJEmSJEmSJEmSJElSwzVbMNoZWcc/q2KfgbUJeEsV+4xKEbE0IuaV+wJOGrbVrRExt8jlLgCmZZ3fDZwUEU8N66krIv4LOHvY+o+llHau4MuUmk93GcFo00sMRuuYVrwGYG7BjMORsfgW6Flb/rqO/kC0ji3z13SvghWPVNaXJEmSJEmSJEmSJEmSRputso47G9aFJEmSJEmSJEmSJEmSpIZrmmC0lNJuwA79p33ANVVsdxzVuxAAACAASURBVDXQ23+8a0ppp2p6GwtSShOAdw4bvqjImj2B92YNbQTOjYgN+dZExBUMDbUbB3yhvG6lJlVqMFr7FJiyV2m1Le1kMh6LKaWmxhZeUdm6gWC01vEwbqv8dcsfrmx/SZIkSZIkSZIkSZIkjTav7X8P4MVGNiJJkiRJkiRJkiRJkiSpsZomGA04oP89gKcjYm2lG/WvfTpr6MBqGhsj3g5smXW+Ari8yJp3Aa1Z55dHxLMlXOurw87PTimNL2Gd1Nx6SgxG2/VcSCV+PKeUCRArpq+rtP1qJfpg4VWVre2YNng86/T8dT0+HFiSJEmSJEmSJEmSJGkUiXKKU0rtKaWdUkrvBz6bNfVEbduSJEmSJEmSJEmSJEmS1EyaKRht56zjOTXYL3uPnWqwX7M7f9j5LyNiQ5E1bxl2/pNSLhQRTwH3ZQ1NBE4uZa3U1LpLCEbb9gQ48PPl7VtKMBrAytnl7VuNZffDhpcrW9s+dfD40K/nr+upOB9TkiRJkiRJkiRJkiRJJUop9eZ7ZZcB8wrV5li7AXge+CEwJWuvCp/GJ0mSJEmSJEmSJEmSJGksaKZgtMlZx6tqsN/qrOMpeas2Ayml3YHXDhu+qMiamcBBWUM9wF1lXPa2YedvLGOt1Jx68gSjTdwVTrgJTn0cXncDjJtR3r6lBqMtvKK8favxSjkfB8Ok1sHjjmmZsLhcejorv4YkSZIkSZIkSZIkSZJKlQq8Sq0r9or+Pf4M/HbkvhRJkiRJkiRJkiRJkiRJo10zBaOtzzquRZBZdtBab96qzcN5DL1J7eGIeLTImgOGnT8eEeWkFN097Hz/MtZKzak7TzDa+G1g5okw9UBoac1dU0hLicFonfPK37tSa57JPb7tiXDmosJrezcMPW+fnLuuZ235fUmSJEmSJEmSJEmSJKkSUbykKgl4EHhTRHSP8LUkSZIkSZIkSZIkSZIkjWJtjW6gDEuzjneuwX47ZR0vq8F+TSml1Aq8d9jwRSUs3W/Y+XNlXnpOkf2ksacnTzBavuCvUrWWGIy2rkggWS2tfjr3+Jb7ZYLgCtnqL4aet07MXddTThajJEmSJEmSJEmSJEmSKnQH+YPRjut/D+B+YEOeuuEC6AJWAk8Bt0bEndU0KUmSJEmSJEmSJEmSJGlsaKZgtBf63xNwYEppRkRUFGiWUpoBvCprqI5pQaPOG4BZWefrgYtLWLfHsPMXclblN3/Y+YyU0rSIWFHmPlLz6M4TjNZWp2C0l66r7jqlWng1LLk999zkvaClyC89s04det4+KXddz9rye5MkSZIkSZIkSZIkSVJZIuL4fHMppT4GQ9PeERHl3kcmSZIkSZIkSZIkSZIkSUM0UzDavWSeENlBJhztb4F/rXCvvwFa+o97gLuq7q55nTfs/LKIWFnCuqnDzpeUc9GIWJtS2gBkJzptCVQVjJZS2gbYusxlu1dzTalk+YLR2qsMRmsZV3rt6mdgyl7VXa+QlbPhjtPzz0/ZO/M+9VWw8vEcBQmmHTp0qHVi7r16OitqUZIkSZIkSZIkSZIkSTWVGAxHkyRJkiRJkiRJkiRJkqSqNE0wWkR0pZTuBE7qH/pESul3EfFEOfuklA4A/onBG7HuiojNMl0npbQ18OZhwxeVuHzSsPP1FbSwnqHBaFWmQwGZ0Lsv1GAfqfZ68gSjtVX5n370ll57zd5wTh+kVN0185l/cf65lnaY8erM8azTcwejvX3Zpr21D/+46deztrIeJUmSJEmSJEmSJEmSVCsXZB2X8kBOSZIkSZIkSZIkSZIkSSqopdENlOnr/e9BJpjrupTSUaUuTim9GrgWmEjmKZXZe26O3gO0Z53PAW4vce3wpKINFVx/eJhanvQjaYzozhOM1l5lMFpfmf/73XQcbFhS3TXzWfFo/rltjoeOLTPH+38GtnvD4FzrFnDsZdAxbdN1bRNz72cwmiRJkiRJkiRJkiRJUkNFxAVZr9WN7keSJEmSJEmSJEmSJElS82uqYLSIuAG4jUyoWQDbA3eklC5KKb06pZSGr0kZR6SULgTuBHYY2A64MyKurU/3o9L7hp3/OCKiwr0qWVfptaTm1DNCwWi9ZQajvXInXH8kdM6v7rrDda+BFwt8pO73ycHjti3g+Gvh1CfhddfDmQtgx7fmXteWJzNx+UNQ8UeWJEmSJEmSJEmSJEmSqpVSaqp7ECVJkiRJkiRJkiRJkiSNfm2NbqAC7wQeBrYjE6zVBpzb/+pMKT0NrOifmw7sBQyk6gwEqiVgAXB2HfseVVJKRwH7Zw31Aj8tY4u1w84nVNDG8DXD96zE94BLy1yzO3BlDa4tFdadJxitrc7BaACd8+COt8AbH67u2tk9XL5t/vnpR8DMk4aOpQRT98+8CmmbmH9u1ZMw9cDS+5QkSZIkSZIkSZIkSVItvZBS+hFwYUQsanQzkiRJkiRJkiRJkiRJkppf0wWjRcSSlNIbgKuAXcgEnUEm7GwScNiwsf9bymAo2nPAGRGxpB49j1LnDzu/LiJeLGP9qAxG6/93Wta/15RS8SKpFnryBKO1NyAYDWDFI/DyLTDzhNzzfb0QPbBxOfT1wLitgIDoha5lmZqWdpiwPdx+OvSuz3+tAz9fWY8A7VPzzy2+zWA0SZKkRupeDa0ToaW10Z1IkiRJkiRJkqTG2B74PPDZlNI1wA8i4oYG9yRJkiRJkiRJkiRJkiSpiTVdMBpARDyZUjoM+C5wNtDCYBjakNKs4wT0Ar8EPhoRq0a80VEqpTQReMew4YvK3Gb4P7+ty+xhEpsGo60sswepuXTnCUZra1AwGsAtJ8Lu74fD/xtaxw2OL7gC7nxLdX1lm7B95Wu3OTb/XE/VeYqSJEmqxJo5cPe7YNkD0DEN9v4oHPA5MHhakiRJkiRJkqTNVRtwBnBGSul54IfATyJiaWPbkiRJkiRJkiRJkiRJktRsWhrdQKUiYkVEvAvYD/gW8ET/VBr2AngM+Dqwd0ScuzmHovU7C8hOYloMXFPmHs8OO9+5zPXD65dHxIoy95CaRwT05AlGa68yGK2vimA0gDkXwsP/OHi+6s+1DUUDmFjuR0SWcTPyz1UTCidJkqTK9HXDzcfDsvuBgI3L4YkvwLPfb3RnkiRJkiRJkiSp/jaSuU9v4CGmCdgN+A9gQUrpFymlYxrVnCRJkiRJkiRJkiRJkqTm07TBaAMi4pmI+HhEHAxsCewJHNX/2gOYEhGHRsQnI2JuI3sdRc4fdv6/EdFT5h5PDTvfo8z1uw07/1OZ66Xm0rseoi/3XFuVwWgd0/LPvelp2Oms4ns8+31Y8Vjm+KmvVdfPcFP2LRxuVoqZJ+ce7+uqbl9JkiSVb8kdsG7hpuPzL65/L5IkSZIkSZIkqdG2Bz4JPMfgg0yj/3gccA5we0rpiZTS36SUqrxRRpIkSZIkSZIkSZIkSdJY1zTBaCmlmSml07Ne04fXRMTaiJgTEff3v+ZGRGcj+h2tUkp7AcOfwHlRBVs9Oez8VSmlLcpYf3SR/aSxpXtN/rn2Ku/3POgrucd3+SuYshcc8xuYelDxfa47GC5OMPfH1fUz3LGXV79H6/jc470bqt9bkiRJ5Xnq67nHX7mrvn1IkiRJkiRJkqSGi4jlEfH1iNgbeD1wOdA7MN3/noD9ge8AL6aUfphSOrT+3UqSJEmSJEmSJEmSJElqBk0TjAa8Ffhd/+uXQFdj22la5w07/2NEPF3uJhHxEvB41lAbmwauFXL8sPPryu1Baio9IxiMtv2p0JZjj13ePXi8199Wd41K7fMx2HKf6vfJG4zmLwWSJEl1t3F5ozuQJEmSJEmSJEmjUETcHBFvB3YEPg8sIBOKBpmQtARMBN4PPJBSui+ldG5KKc+NIZIkSZIkSZIkSZIkSZI2R80UjDaVzI1RCXggIjob3E/TSSm1Au8ZNnxRFVv+btj5+0rsYx/gyKyhTuCGKvqQRr+edfnnWidWt/eE7eCEG2DL/QfPj7wItj9lsGa38+Cgr1R3nXJtc3ztrtkyLvd434ba7C9JkqTC+nrgyS/D9X8By+7PXxdRv54kSZIkSZIkSdKoFBGLI+LLwK7A6cC1ZILRyHpPwBFk7l97MaX0rf77yiRJkiRJkiRJkiRJkiRt5popGG15/3sALzWykSZ2KrBd1vka4NIq9vsl0Jt1/taU0p4lrPvUsPPfRITpRhrbetfnn2ubUP3+Wx0Fpz0Jb18BZy6C3c8bOt/SCvt/Bt4VsM1x1V+vmJmvh5NuhdY8gWblas3zYOBePzokSZLq4t73weOfg2X3Fq4r9H2vJEmSJEmSJEnarETGNRHxJjIhaV8BXiYTigaZewETmYemfgSYnVK6NaV0VkqprSFNS5IkSZIkSZIkSZIkSWq4ZgpGyw5Dm9iwLprb+cPOL4mIzko3i4hngZ9lDXUAP00p5UkwgpTSGcC5WUMbgQsq7UFqGoUCIlprEIw2oGMqpFS4Zud31u56+Rx3VW33yxew1ttV2+tIkiRpU53zYd4vS6vtqfi3mJIkSZIkSZIkaQyLiAUR8S/ATsDZwM3DSlL/67XAJcCClNKXU0o717dTSZIkSZIkSZIkSZIkSY3WTMFoj5B5QiTAXo1spBmllLYFThs2fGENtv4CsCLr/DXATSmlfYZdf1xK6e+BS4et/0ZEzK9BH9Loli8YraUDUp0/ind9D0x9Ven1bWVkUU7aDc5cAK158xErk2+/3g21vY4kSZKGWjsPHvkUg78dL8JgNEmSJEmSJEmSVEBE9EbEbyPi9WTuA/wGsIzMX0YEgwFp2wKfAZ5LKV2eUjqmUT1LkiRJkiRJkiRJkiRJqq+mCUaLiBeAe8nc9LR3SslwtPK8F2jLOn8yIu6vdtOIWAi8FdiYNXw08KeU0gMppV+nlP4ALAD+C2jPqrsG+Fy1PUhNIV8wWuuE+vYB0LYFnPIAHPqfhet2OhuO+gmcMPwBvVm23A+Ovw72/Sc45Bvwxkdgix1q2y9Ay7jc431dtb+WJEmSIAKe+BJcvTu88OvS1xmMJkmSJEmSJEmSSjcF2BLIfmJeZL0AWoEzgNtTStellHavb4uSJEmSJEmSJEmSJEmS6q2teMmo8jXg8qzjMxrYS7N537Dzi2q1cUTcllJ6C/BTYOv+4QQc3v/K5VfAX0dEb636kEa1nlEUjAbQ2gH7fBR2OgtuPBo65w2df+2VsMPpmeOVs/PvEwHbvyHzGkmt43OP924Y2etKqo3u1TD/N7DmGdj6WJh1GqSmyeeVpM3T0nvgic+Xv65nbe17kSRJkiRJkiRJY0ZKaQJwDvBBct9bloDu/tcWDAakJeAU4LGU0jsi4vd1aFeSJEmSJEmSJEmSJElSAzRVIkVEXAH8mMxNTm9KKX03pdRs4W51l1I6Gtgna2gj8ItaXiMirgUOAH4ArChQei/w9oh4V0R01rIHaVTrHWXBaAO22B7e/ByccDPs9xk4+tfwtmWDoWgAbYV6jAJzNWQwmtS8NiyBG4+B+/8anvoa3HE63Pd+iL5GdyZJKmTexZWt6/G3eZIkSZIkSZIkaVMppf1SSv8FvAj8iEwoWhqY7n+9BHwR2BnYHvg7YHb/XPS/tgB+k1LavZ79S5IkSZIkSZIkSZIkSaqfZgwV+yCwBvgo8CHguJTSN4CrImJZQzsbpSLiLgZvIhvJ6ywBPpxS+ihwNJkb1GYCncAi4JGIeH6k+5BGpXzBaAVDx+qkpRVmnpB55VIwvK1OwWgt43KP93XV5/qSKvfsD2HlE0PH5v4E9vgAbHVUY3qSJBX34rWVrTMYTZIkSZIkSSseh9lfga6lMP0QOPCL0Dax0V1JkhogpdQBnEXmPr/XDAz3v0fW+W3A94DfRURv1hbfA76XUnoj8DVgv/7x8cA/kglOkyRJkiRJkiRJkiRJkjTGNFUwWkrplqzTNcBkMjc7Xdg/vxBY0j9XqoiIE2vWpIiIjcCtje5DGlXyBaMVDB0bJUZDj63jc4/3bqhvH5LK98Tnc4+/8FuD0SRpNOusMNPaYDRJo0FfL0QPtOYJ2ZYkSZIkjZzVz8INRw7+Pd7im2HxrXDK/ZBaGtubJKluUkp7knkA6nuB6QPDZMLQov94LfBz4LsR8VSh/SLiupTSrcAfgUP7179+ZLqXJEmSJEmSJEmSJEmS1GhNFYwGHM/gkyJh8CapgadI7tj/CkozcLOVJI2ssRqMFnX6CG3J88PsfV31ub6k2ptzERz69UZ3IUkaLgKe/3nl63sNRpPUQH3d8PAn4PmfZn4Af7tT4KifwLgZje5MkiRJkjYfj35q04cbLX8IXroetn9jY3qSJNVFSqkVeAvwIeB1A8P975F1Phv4PvC/EbG21P0jYkNK6d+BS/uHdqy6aUmSJEmSJEmSJEmSJEmjUrMFo+VisJmk0a+Zg9FaOgpM1ukjuHV87vF1C+tzfUmVib78cx1T69eHJKl0L90A97638vXdJf/8kiTVRgSsnQOrn4FHPwmrZg/OLboa7nwbnHRbw9qTJEmSpM3KxlWw8He55xbfZjCaJI1RKaWdgQ8A5wHbDAyTualk4MGnvcAVwHcj4vYqLvenrOM8T9mTJEmSJEmSJEmSJEmS1OyaMRgtFS+RpFGmp4mD0VKBj91CoUe1lC8YDeCJL8EB/1K4T0mN8dz/5J8zGE2SRqdnvlPd+t7O2vQhSaXo7YL73g/zfpG/ZsntmdC0KXvVry9JkiRJ2lw9/vn8cwsuh0O+Wr9eJEn1NIfMPX0DN24MPGUvAS8B/wP8T0S8VINrrRt2DUmSJEmSJEmSJEmSJEljUFMFo0VES6N7kKSK9DZxMFpBdbrPdNzW+eee+Dxs93rY6qj69CKpNF3L4YEP559v37J+vUiSCls5GxZeARuWwIu/L23N9MNg+UObjvcYjCapjuZcWDgUbcBLNxiMJkmSJEkjbc1z8Ox/Fyio0wOXJEmN0ELmBpJgMCDtDuC7wO8iomcErpkwHE2SJEmSJEmSJEmSJEkas5oqGE2SmtacH+Ueb9uivn3UWtTpHtPph0DbxPxBG8//wmA0abRZeGXh+baJ9elDklTYgivgrrOhr7v0Ncf/AZ79LmAwmqQGm3dxaXWd80a0DUmSJEkSmd+jRYHws8550NsFrePq1pIkqa4SsBb4OfC9iJg9EheJiPlkgtgkSZIkSZIkSZIkSZIkjWHeJCRJI617bf651gn162NE1CkYrXU8bH1s/vlnv1ufPiSV7tnvFZ7v3VCfPiRJ+UUfPPT3ZYSiJTji+7D9KfkDLg1Gk1RPS+8urW79opHtQ5IkSZJU/IEp0Qdrnq1PL5KkensK+HtgVkT87UiFokmSJEmSJEmSJEmSJEnafLQ1ugFJGvNeuTP/XPvk+vUxEmaeVL9rTZhZv2tJqs7838DyBwvXGJwjSY23+mlYt7C02ld9Gfb/DKT+fPW2SbnregqEAktSLXUtK7121VP55/p6YeOKzHH7pEwwtyRJkiSpPJ0LYMXDxetWPwVTDxj5fiRJdRUR+ze6B0mSJEmSJEmSJEmSJEljS0ujG5CkMW/xLfnntn5t/fqoxt4fzTP+kfr10DGj8HznC/XpQ1Jxs79SvMZgNElqvGX3lV67/z8PhqIBtE3MXefnu6R6Wf1M6bUrH4NLp8Kjn4bejZmx3o1w/4fhsulw+daZ16VT4OYTMz/QL0mSJEkq3cIr88+1tMOs02HfT8LkPevXkyRJkiRJkiRJkiRJkiRJkppWW6MbkKQxLfrgqa/nn595Uv16qcbeH4UFv4N1WeFju50LW9bxie7jtio8f/2R8NaX6tOLpPw2rsgETxTTu27ke5EkbaqvN/M53dcN976veH3HdDjhJkhp6LjBaJIabf2i8uq7V8GfvpoJRDvsm/DwP8BzPxha09edCTe//nA480XoWQPLH4It94cJM2vXuyRJkiSNNYvyBKNN2Rve9Of69iJJkiRJkiRJkiRJkiRJkqSm1/TBaCmlg4HTgWOB3YHpwGQgImKTry+lNBWY0n/aFRGL69WrpM3Q0nvzz+3+19DaUb9eqjFpVzj5Hpj/K1jzHGxzHOx89qYBGSMpX/jGgA0vw7qFsMUO9elHUm6rny6tzuAcSaq/zvlw22mwanZp9ft8DPb6W5i026ZzbZNyr/HzXVK9dC2rbN3T34Ldz4e5P8tfs2EJXNKe+T1v9GXG9vk4HPK1+v4+WJIkSZKawcaVsPi23HM7nV3XViRJo1tKaQZwFnAksC2wHlgI3ARcHxEbG9ieJEmSJEmSJEmSJEmSpFGkaYPRUkoHAt8CXpc9XMLS1wG/7T/uTCnNjIh1te5PkoiAP38r//yMI+rXSy1ssT3s+/EGNlDCR/yL18Eefz3yrUjK78U/lFZncI4k1d99Hyg9FG2398Gh38g/ny+0tmdt+X1JUiU2VhiMBnDtASUUReb39QP+/A3Y6kjY6azKrytJkiRJY82qp+CPZ0P05J7f4cz69iNJqpuU0lbAq4CtgS5gLvBkxMCTBobUJuAzwD8DE3Js93fA/JTS30REiX/hLEmSJEmSJEmSJEmSJGksa2l0A5VIKZ0L3Esm5Gx4Uk5ssmCoK4EX+tdNBN5W6/4kiQi473xY8Nv8NT4hvTwTti1e0+fDg6WGWngVPHlBabU9nUODJiRJI6trObx8Y+n1+/5T4fm8wWgGX0qqk64qgtEqtfDK+l9TkiRJkkarZ38Iv98fVj2Ze36LHWHaIfXtSZI04lJKB6eUbgReAm4ELgYuAx4BFqWUPpVSas2qT8DPgC8BW5C5Zy/7fr+B812Aq1NK767H1yFJkiRJkiRJkiRJkiRpdGu6YLSU0tuAixj69MgELAAeZdOgtCH6n0r566yh02vdoySx9B6Y+5P88y3t0LFl/foZC2aelPnnVkjrFvXpRaq13g3w+Bfg5hPg3vfB8oca3VH5etbBHWeUsSCge9WItSNJGmbVnyieI55ly30Lz7cajCapwTYur/815/2y/teUJEmSpNFo/cvwyCco+OdNs06HVPD2DUlSk0kpvRO4HzgBaGUw1GzgtS3wFeCqlNLAfYkfBf6y/zgY/MVjYE1kvVqBH6eU9hvxL0aSJEmSJEmSJEmSJEnSqNZUwWgppe3IPEESBm+S+h6we0TsAry1xK2uHNgSOK5mDUrSgBevKzy/3Rvr08dY0jENdn1P4ZpiwWnSaBQBt54CT/4rLL4V5v4UbjoOlj3Y6M7Kc80+5a/pWlb7PiRJuW14qfTaPT5YvKZ9Uu7xnjWlX0eSquH3kpIkSZLUOAsuh561hWt2KOdhKpKk0S6ldATwc6CNoYFmAwbOE/AG4OMppcnAFxkahvYScA1wMfAHYAVDH4TaDnx7pL4OSZIkSZIkSZIkSZIkSc2hqYLRgM8DW5C5GaoPODsi/i4inu+fL/A44iEeALr7j2eklHatbZuSNnuzv1x4vmNqffoYa474QeH5znl1aUOqqSW3w5I7ho71dMIz/92YfiqxZg6sW1D+OsMsJKl+1j5fvGbA9qcVr2nfMvd47wbo7Sr9WpJUKb+XlCRJkqTGmf2VwvPtU2Abn1EnSWPM94FWhgagrSRzH96D/ccpa+4fgXOAKf3rlwFnRMQOEXF6RPxlRJwKbAN8ENjA4L1/J6SUdq/LVyVJkiRJkiRJkiRJkiRpVGqaYLSUUiuZm6UGbq76akRcVsleEdED/DlraJ/qO5SkLK3jC8+3G4xWkZa2wvOPfw6i1IxMaZR45ju5x5//WX37GNC7AZbeDyufKPz/U/TB8kdg+cPwxBcru1bX0srWSZLKV06A7HYnF68pFPTbvar0a0lSpbpXNua6i65pzHUlSZIkabToXgvrFxWu2f5UaO2oTz+SpBGXUjoSOJTB0LOlwFuBrSLiyIh4NbAV8BZgSX/dtsDH+rfoBk6KiKuH7x0RfRHxIzL3BQ4EqwGcNXJfkSRJkiRJkiRJkiRJkqTRrmmC0YCjyDxBMpG5Wer/VbnfwqzjHavcS5KGaptceL5QkISqs+yBRncglWfB5Y3uYNArd8E1+8INR8K1r4JbT4aNKzatW7coM/+HQ+EPh8G8X1R2vY3LqutXklS6tfNKqzt9DrSOK17XMS3/XK5fOySp1no6i9cc+K+1v+4z36v9npIkSZLUTB75p+I1O5w58n1Ikurpbf3vA/ftnRwRV0QMPmkrMq4ETgF6+of3IhN09ouIeLzQBSLiKuDW/msAHF7D/iVJkiRJkiRJkiRJkiQ1mWYKRtuj/z2AByJidZX7Za+fUuVekjRUX3fh+egpPK/8Dvr3wvNzLqxPH1ItrH6m8Hz0jXwP616EZ38A938YbjwGOucNzr18Ezz6z5uuuee9sGp2afuPm5F/rstgNEmqi1fugpeuK153+H/DpN1K27O9QNDvxpWl7SFJ1ehZV7zmwM/Bdm+o7XVL+TyVJEmSpLGkrxfm/wae+kbm/bkfFK5vaa/978UkSY12aP97AL+JiMfyFfYHoF3CYMAZwGUlXie7bv+yOpQkSZIkSZIkSZIkSZI0pjRTMNrWWccLarBfdtJIWw32k6SM7rXQXSQMYtIeheeV345vLTy//sX69CHVwqJrCs8//ImRvf7yR+C6g+GBD+f/Qaa5P4buNYPnG1fCkltL2//Af4U3PQ3bvDb3fNfS8vqVJJXviQsywZfFpDbY629L37dtIqTW3HMGo0mqh57O0urGbVX7a/s5J0mSJGlz0bsx82dLd70DHvlE5r2Y3c6Dji1HvjdJUj3tlXVc5C+5Abh22PnjJV5nIHAtAQWewCVJkiRJkiRJkiRJkiRprGumYLTIOs7z09dlmZ517E8zSqqdNc8Ur5lx+Mj3MVZN2avwfPTUpw81r+7V8Nhn4eYT4YG/gzXPNa6X9YsKzz/9LVhXpGa46IOnvwPX7AMXp8zr0U/DxlWb1j72z9D1SuH9+jbCpVMyU3VtCgAAIABJREFU+9z3flh4VeYaxUzeCw74Fxg3Azry3LPetaz4PpKkys25CJ74Ymm1O59T3t4pQcfU3HMbV5S3lySVK/qgd11ptTNeXfvrryz15zglSZIkqck9/Z+w7N7S63d8Oxz81ZHrR5LUKNmJl0+XUD+8ptS/GM5+staUEtdIkiRJkiRJkiRJkiRJGoPaGt1AGbJTO7avwX4HZB2byiGpdlYXuQd062Nh6oH16WWsmn44LH8w91xfd317UXPp7YKbjocVj2TOF98CL/wGTr4HJu9e/3561havWXQN7PGBTADNgL5eaMmTE3v/h2DOj4aO/emr8MKlcNpsaB0PfT2ZIImXri+v3zkXZV6lOPCLgz2P2yp3zUa/BZOkvCKGfvaX6/lfZAItS5HaYM8Pln+N9mm5Qy67zR6XNMJ615deu/M5mZDIjcsL142fCa/5BdxyUvE9bzoOzumr7nNakiRJkkar7L+DmPuT0te9bRmMm168TpLUjCZlHed4ItcmVmefRMSGEq+TXdde4prNSkppArAvsA+wNZl/N2uB5cCTwBMRPlFQkiRJkiRJkiRJkiRJza+ZgtFe6H9PwCEppfaIqCj9JqW0FzAra+jxapuTpP+z+s/55/b8Gzjka/XrZazq68o/t2p2/fpQ83nx2sFQtAFdr8BzP4RD/l/9++npLF7zwIcyL4CdzoJlD8KGxTDzRDjyQhi/TWau8wW47dT8/w+snQu/nlCbvov5i1/ALucMno+bkbuua2nucUnanEUfPP65zK9NvRth1pvhsP+E8VuXsUdkQjFLsc3xcNCXYeujy++1Y2ru8Y0Go0kaYaV8Hz1g/Fbwhofg3vfCkjvy1237usz32G94EB77bPEQ4aV3V/bZKUmSJEmj1ZI74eGPwcrHYOrBsNffFf57z2w7vMVQNEka27KfENBbQn0pNaNWSmk34Ajg8P73Q4HJWSXzI2KXOvZzKHAmcALwagqHxnWmlH4NfDsivCdSkiRJkiRJkiRJkiRJTaul0Q2U4R5gPRDABOCcwuUFfSTreHFEPF1NY5I0ROe83OM7vg2O+C60bVHXdsak3gLBaBsWwyv3ZEJFpOGe+2Hu8acaFFhYTqADwAuXQufz0LsOFl0NNx6bCb/p64HrDh4dwYDH/BZ2fffQsbzBaMtGvh9JajZPXACzv5L5jOxZA/Mvhnvek/m8L9XGFbDqydJqT7q18mCf9im5x7tXV7afJJWqZ1159ZN2gZNuhzc8DLu/H1qHBQZ3TIP9Pp05nn4YvO4PcMJNhfec+9PyepAkSZKk0ahnHbx8Czz1TbjptbD8QejrhuUPZAKmS7Xl/iPXoyRJdZBSOj6ldH1KaRkwB7gE+ARwHEND0erZ0/iU0hzgIeBzwNEUDkUDmAicBzycUvqPlFKxekmSJEmSJEmSJEmSJGlUamt0A6WKiK6U0s3Am/qH/i2ldFVErCxnn5TS0cAHyQSsAVxewzYlCdYtyj0+cef69jGW9RUIRgO48TUwZW847vcweff69KTm8NL1je5gqJ611a1f80wmPGfFw5kQnEYbvy1s/4ZNx8dtlbveYDRJGioC5v540/GX/pD5odQZR5S2T9fS2vaVT8u43OPRXZ/rS9p8lRswPGD6IXDkj+CQr8H8X8GyBzPfw+72Ppiy59DamSfChO1h/Yu595pzYWYvSZIkSWpWz/8S7vnL2uw1Ybva7CNJUuMcDJzc6CaGaQN2yzEewNPAC8BSYBJwwLDaVuBTwJ4ppXdERM8I9ypJkiRJkiRJkiRJkiTVVEujGyjTv/W/BzALuCGltE2pi1NKrwOuIvN1J6AX+Hqtm5S0mVtyW+7xCdvXtY0xrbdIMBrA6qfLe5K9FH31v2algQ7ZHv8XWDBKcl6PvBDaJm463jEjd33X0kwIkCQpo3cDrFuYe272v+Uez6VewWitHbnHezfW5/qSNl/Vfh/dMRX2/DAcdREc/JVNQ9EGTD2o8D6r/lRdH5IkSZLUKGueq10oGsDkPL+vkiSp+XUBcxrdBJn7HK8D3glsExH7RsQpEfHuiDgjInYHDgfuGLburcAX69uqJEmSJEmSJEmSJEmSVL2mCkaLiPuAS8iEmgWZm3n+nFL6XEppb3J8PSml1pTSiSmlS4CbgGlZ678dEfPq1b+kzcDCqyF6c89NmFXfXsayUn+44pW7YO28EW1FY0jXsvpfsxbBaLW23SmVrdvmeJj1ptxz4/IEo/V15Q8AkqTNUc/a/HMLryx9n1KD0aYfUfqeubTkCUbrMxhN0gjrrdP30X1FQrl/vz/0ddenF0mSJEmqpQW/q91e42fCtq+r3X6SJDVON/AocCHwQeAwYDLw/gb21AV8F9glIk6NiF9HRM6/CIqIh4ATgF8Nm/qnlNLOI9ynJEmSJEmSJEmSJEmSVFNtjW6gAucDewOHkAk3m0rmqYZfBIb89HVK6SlgV6B9YKh/TQLuBj5dj4YlbSb6euG+8/LPb7F9/XoZ6/b7JNx+Z2m1y+6HSbuMaDtqEp3zC8+vXwTjt65PLwMKBeA0wgFfgAO/AE9/Gx7+x/LWzjot/9ykXfPPvXgN7Pnh8q4lSWNVscDMNXNg8u7F9yk1GG3vj5RWl0++YLQwJEjSCOtZV5/r9G4oXvPUN2B//4hRkiRJ0ii28EqY9yugD3Z8O0w/DB79ZG32Hr8tnHATtDTjrSeSpDJF//tRKaVditTOzD5JKR1L5n69YmYWLxkxPwN+EBGb/KFgSqW0PiI2AHtERMlPG4uI3pTS+cAxwI79wx3A2cDXat+iJEmSJEmSJEmSJEmSNDKa7u7UiFifUjoFuITMEw4HbrpKwDgGg88SmQC1/1uaNXcDcHZE9Narb0mbgVf+WDiEYoLBaDWz7QkweU9Y82zx2rveATufPfI9aXRb/xJce1DhmnULYdrB9elnQLEAnHra6+/hVV/MHO/6VzD7y9C1rLS1HdNh53fmn5+wHUw9EFY+sencikfLblWSxqxivy4svBL2/VjxfbpeKV4zYRbscGZpfeXT0p57vHdj7nFJqpXeOgWjbXcyLL27cM2T/wq7vAsm7lSfniRJkiSpHM/+EB740OD5C5fWbu8dzoRjL4fGhcVIkuovAb+qYM1tZdQP3N9XVxGxot7XLCYieoCSQ9Gy1q1PKf0E+HzW8OswGE2SJEmSJEmSJEmSJElNpKXRDVQiIpYCrwc+BSxl8GaoyHrPftFfswr4LHBaRKyuW8OSxr71L8PNxxeu6ZhWl1Y2C21bwIm3wc7nlFa/fvGItqMmMPen0L2qcM3tb4Ybj4XlD9elJQB61tbvWvlM2RsOvAAO/ebg2LgZ8Pp7YNbpxddv90Z4/Z2wxQ6F62YcmXt848rSe5Wksa7YrwsLryhhj3Xw6Kfzz0+YBTu+DU6+B9onldffcC0ducf7DEaTNMJ6N9TnOju9o3hN73p4+r9GvhdJkiRpLFnxGFx/FFw6DW54DSy+tdEdjU0RMPvfRmbvg/4djvmtoWiStPnJfmBpsVf2vXulrvEXltp5ZNi5T3OUJEmSJEmSJEmSJElSU2lrdAOViogAvpZS+g5wDpmgtGPI3MSTHfi2ArgbuB74eUQUSUWRpDJFH9xyYvG61i1GvpfNyRbbw9EXwy7vygRaFTL/Ytj7H/zhjM3ZsgdKq3vlj3DzCXDqEzBxx5HtKSITXjNS9vs0HPzvla+fsiccdyVcsTOse2HT+SMvhN3PL32/9im5x7vXVNafJI1FPZ2F51+5EzYsgfHb5J5fOxduOy3/+l3eDa/5ReX9DWcwmqRG6e2qz3W23Ad2OzcTtFzIgsvgkK/5e05JkiSpFOsWwQ1/kQkZBlh6T+bveU59Eibt0tDWxpw1z8K6BbXf99BvwT7/UPt9JUnNIoqX1GSNqtMz7DzPX+pIkiRJkiRJkiRJkiRJo1PTBqMNiIgNwE/6X6SUEjCNzM08yyKiu4HtSdocLLkdVv2peF3r+JHvZXM08ySYMAvWL8pf8/DHYMHlcNzV0DG1fr1p9Fj4u9Jru1dl6vf+yMj1A/0/9JXn/u9tjoONK2HlY5XtvddHqgtFy7bjW+Dpbw8da2mHHc4sb5+2ybnHe1ZX1pckjUU9a4vXXL4tnLkQtpg1ONa7Ae7+K1jw28Jrpx9eXX/DGYwmqVH66hSMBnDkRZnvz1++GeblCZfsnAcrH4dpB9WvL0mSJKlZzfvlYCjagJ5OmP3lzAM5VDul/FlTJWYcMTL7SpJGsxcw3KzZ7DHs/KWGdCFJkiRJkiRJkiRJkiRVaNQHo6WUDgJOBvYDtuofXgo8BdwYEY9k10dEAMvr2qSk8kXAK3dlwqzWLcw8HX59/+uw78D0QxrdYemWPVhaXUoj28fmqnU8HPkj+OPZhX/A45U/wqOfhlf/oPieq/4EL/4h84M5Wx8D27zWf3/Nrn0KdJcRwFVK2GG1etblnzvsv2DKPnDZ9MwPhJVr/09X3tcme30WltwJKx7OnKdWOOL7/H/27js8ivNe+/h3dlWQRG+miI7pxQ2DjSvYuANuiUuKE6cnTk+cN8mJneqT3k5OihM7iePesA1umGLjgjumY3rvIARqSLvz/jHmSEgzszO7M7O70v25Ll1in/pDoN3ZlZ57Ke7mb53Cjvbt9Yczq09EpDXxep//1pfgnCahn8t/nDoUDaB8enp1OYkV2rcnlU8uIiFLRBiMZsRg8E3Wx6m/h8d6gploOW7r4wpGExERERHx4uAS+/b1/4AJf4VYPNp6WjO75y6ZKu4O3SYFv66IiOQ00zQHZrsG8e2aZrffyEoVIiIiIiIiIiIiIiIiIiIiIiJpytlgNMMwTgF+C5zlMuwOwzBeAb5umqbHZCIRyRkLprV8R3iAI+vzKxhtybezXYH0uQQuXwXPnAR1+53HbboXJvyvdbDdyYZ/w+s3g9nQ2Db0M1YQlNs8yW0lff0Fo6UTRuZX0iXMIV4M8SIovwo23eN/7Xa90q+rxVo9YNorsPtFqNkGPc+FDs3fXNqDwg727QpGExFptPNZb+O2zbKChUv7WuFAa/7obV7ZoPRrsxMrsm9PHg12HxGR5tyupcNU3NW6Ht49v2XfnoWRlyMiIiIikpc23+/cd3gtdBoRXS2tXRg/6xjxDYXXiYiI5DjDMCYAk5s1P243VkREREREREREREREREREREQkV+VkMJphGDOA+4B2gNGkyzw2pEnbWcBLhmHcYJrmrIhKFJFMGYYVVHRkXcu+6u3R15Ou5T/NdgVyTGm5FV728oecxzQcgaot0H6gfX/tPlj88Zbt6/4GA26AE84NpNRImSZsvAe2PwmFHWHQR+GE87NdVfSaBt150XAknDqacg1Ga2d9nvAnOLofdjztb23DSD3Gj3g76HNRZmsUOASjNSgYTUTk/2z8t/exs8qtYDI/IWRBPz4oGE1EsiWRpWA0gL6X2wejVa6KvhYRERERkXxTtcW9v3aXgtGCFPTPOnqeByO+HuyaIiIiEijDMAqBvzZrXmSa5hsB79MT6OFz2pAgaxARERERERERERERERERERGR1i3ngtEMwxgB3I8VigbHh6HZhaTxwdj7DMM41TRNnUIUyRelDsFoNXkSjLbhX7D0+9muQprqOz31mMrVzsFoj7n8zubO5/IzGO2978HKOxpvb/w3TH4Q+l+dvZqyoaHK5/iQg9FM0z3MIVZsfS7sAOfNgdq9VpDavtfh5Wvc1x5wQ3B1BqnQIRitXsFoIiIAVO/wP8dPAFn5TP/rp6JgNBHJFreQ4WM6DAtn787j7Ntr90DdASjuGs6+IiIiIiL5rmYnzD3bfUzdvmhqaSv8/mzETdcJcMGC4NYTERGRsPwSOLnJ7XrgyyHs8wXgthDWFREREREREREREREREREREREBIJbtAmz8BSvozPzgwwAagNeAh4CHP/hzPY1BaeYHc5q/26GI5LLScvv26jwIRtu9EBbflO0qpLl4MczY7D7m0Ar79n0p3hy3bm96NWXT0QpY/Zvj28wErPhJdurJpoZqf+N3vQCvfgzqK4OtY92dMGc0PNIVXrzceVy8+Pjb7XpY95ll/VPv0fuizGoMi1MwWrIOEgrQERGheku46/f/UPBrxgrt25P1we8lItKUW8jwMeN/Fs7eHUc49x1aGc6eIiIiIiKtwfq7Ur/+4fQzHElPUG8CU9QVLlgYzFoiIiISGsMwPgl8pVnz7aZpLslGPSIiIiIiIiIiIiIiIiIiIiIimcipYDTDMMYA59AYiAbwa6CXaZqTTdO8zjTND5umORnohfUOh01NNgxjXHQVi0hGSvrat9fkeDDaoVUw7/xsVyFOyvpDpzHO/bvm2bdvech93aMV6deULTuft0Knmju4BOoPR19PNiWq/M/ZdA8svCy4Gjb+B974jBWWUF8BRzY4j40V27e7hTAAdBwJA65Lv8YwFXZ07tu7KLo6RERyVc2OcNfvd1Xwa8aK7NuTCrwUkZDZPc9pqsdk6HNJOHuX9IECh9Dfnc+Fs6eIiIiISGtw4O3UY5bdDqYZeiltRn1AwWgXvgIFpcGsJSIiIqEwDONirDekbWo2cEcWyhERERERERERERERERERERERyVhOBaMBV3/w2cAKR/uyaZrfMk3zYPOBpmlWmKZ5K/DFJuMBQjjtLSKhKHUIRqvaHG0dfphJmDMq21VIKm7BH7vnQ0OzkCzThG2z3Nesz8NgtEPLnfvCDl/JJcl66yMde1+GtX8Npo71//A+1ikYrdAhgOGYS96BuENITbY5hUcArP97dHWIiOSq6hDDgftOh7jDY0smFIwmItniFox28q/gvGfCO7RvGND9DPu+VM8rRURERETasm2Pexu358Vw62grTBPe+Wrm63QeC51SvGmLiIiIZJVhGJOBR4HCJs0vAx82zdBSZ/8XGOPzY0ZItYiIiIiIiIiIiIiIiIiIiIhIK5RrwWgTPvhsAotN0/xTqgmmaf4FeAUrHA3g9JBqE5Gglfa3b6/aBDW7Ii3Fs5euzHYF4sXwr4Dh8BCXrINdLxzfdmgFHFnvvubRFhmduc/t91sPvBNdHdnWPAjPrzc/B/WHM69jz0Jv44wCiMWd+/tcZt9+0n9DvJ3vsiJT0su5b9/i6OoQEclVNSEGo/WaGs66TsFoiZpw9hMROSbhEMA4+CYY+Y3UgcKZKnc4v3doORxeF+7eIiIiIiL5ql1Pb+O2PRFuHW3FlocyXyNeAhP+kvk6IiIiEhrDME4F5gBN3yniDeAy0zSrw9rXNM09pmmu8PMBpPjFHBERERERERERERERERERERGRRrkWjDayyZ//5WPev5v8WW9XLJIvuk1w7tu7KLo6vHrzi7D9yWxXIV4Ud4VrXYKs9r12/O09L6Ve88DbkExkVlfUjh5w7nv1BtjxXHS1ZFNDAL/rOzvDyws/b8IcL3bvH/zxlm1GHAbc4K+mqBWUOfdVbYL1d0dWiohITqreYd/u9dCwEyMO/T+U2RpOYoX27TU7INkQzp4iImAFXtuJpbiWDkr5dOc+hTiIiIiIiNjrPM7buM0P+HtNXextfTz1mME3WW825GT6BuhxZmAliYiISLAMwxgHPA90atL8LnCRaZqV2alKRERERERERERERERERERERCQYuRaM1rnJn9/xMe/YWKPZGiKSy0r7Qvsh9n07no62llTW/A+s/d/U44bdYt9+yu+CrUdSKyiFftfY99XtP/521WZva27PswPuO59173/jM5CojaaWbGqoynyNmh1w8L305/v5OqcKc+h3DYy9HYwC63ZhJzj7USjrl3Z5kRnzX859b34e6l0CDUVEWru6vfbtncamv2ZRFzh3NpT0Sn8NN7Ei575ts8LZU0TapqrN8M434MUZsPIXUH/IflxUwWil5dDVIez93W9GU4OIiIiISL4xPb75TO0uOLQi3Fragj0LUo8Zcxuc+AX7vs7jw3tNSURERDJmGMYo4AWga5Pm5cA00zQrslOViIiIiIiIiIiIiIiIiIiIiEhwci0Yrem7F+53HNXSwSZ/7hBQLSIShZ7n2rdvvAcOrYq2FidbHoa3HQLPmjrxC9ZHQdnx7UVdod9V4dQm7oo62bc3D8qq2eFtvc0PZFZPlPYthiMb3MdUb4Fd86KpJ5sS1cGss+k/6c91Cm6wE08R5mAYMPY2uLYCLl0GV++D8hnp1xal0v7Ofck62PZkdLWIiOSaun327Z1G+V9r7A9hxma4ajf0uTizuty4BqPpPl1EAnJ4PTw7AVb/BrY/CUtuhZ3P2Y9NdS0dpH4znfvW/CG6OkRERERE8oXXYDSwrv0lM7V73Pv7XAbtB0LHYXDClJb9J342lLJEREQkc4ZhDAfmAT2aNK8GLjBN0+EHTiIiIiIiIiIiIiIiIiIiIiIi+SXXgtGa1uPjN6OPG5trfycRcdN7mn27mYBN90Vbi51EHbz8IW9jT/kNdBoBU16AE6ZCcTfofRFMXQBl/cKtU+zFy+zbN98PidrG2zuf9bbeloczrykqS2/zNm777HDryAWJmmDWWfUreOFcOPC2/7l+gtFi7byNKyiDzmMgVuC/nmwp7Ojev2NONHWIiOQip2C0zmOg/VB/a5WWQ1l/iBVmXpcbt2C0TfeEu7eItB1rfg91e72NjUUYjFbuEoy29DYwzehqERERERHJB76C0drAzy7CVuDyfnKFneCsJj/zOucJGHIzlPSBzmPhtD/BiZ8Pv0YRERHxzTCMocB8oFeT5rXAFNM0d2enKhERERERERERERERERERERGR4OVRkoaItErlM6G4h/0h5/1vRF9Pc2/dknqMUQDnzIL4Bwewu0+CqS+EW5d4U+AQjAbw2sfhrAehdp9zEImdZEPuB1GZJux/3dvYw++HW0suaBqC19zMrTDLR3Dhnpfg2dOsA0MdhkGn0RCLp55X6zHIARrvS1qjQpeDWCIibZ3T9UhxDxj3Q3j1I4DHkB23a6AguQWjiYgE5f0/eh8b5bV0x5FQNhCqNrXsq6+Amh1Q2je6ekREREREcl2ywfvY/W+AmQRD74mWNrfA/JlboaCk8XZhe5j49/BrEhERkYwYhjEIKxStT5PmDVihaDuzU5WIiIiIiIiIiIiIiIiIiIiISDj0m8Qikl3xYuh7mX1f8mi0tTR39CCsv9N9TL+r4eI3nf8Okl1uoSBbH4GanbD2T/7WPLIhs5qiULsb6g95G7t7PiQT4daTbYka+/ZYMZSWQ8fh/td8+Vp4ZjzMKoe9r7mP3XgPvHC297VjrTgYrUDBaCIithK10HDEvq+4Gwy8AabMhUEfs9pSHQqOLBjN5YCtiEgQ/AQnQLTX0oZhvSbgpC2EUIuIiIiI+GH6+FmEmYBVvwqvltbONKG+0r7vzPv1JiYiIiJ5yDCM/lihaE3f+W0zVijatuxUJSIiIiIiIiIiIiIiIiIiIiISHgWjiUj2lQ106EhGWUVL2+e490/6F5z9CHQ5KZp6xD+3UBAzCQfehTW/97dm7Z7MaopC5Sp/49f+OZw6ckWi1r493s76PPFuiJc2tvsJ76rdBS9eDg0O4WsVy+C1j3lfD6zAyNYq5WErI5IyRERyTt1+577i7tbnXlPhjH/BDSZcn4Bzn3KeU9A+2PqcOIWPiogEpWKpv/FRX0uP+5Fz37wpsPVxSGQ59D0f1eyG9f+A9XfB6t/Cxnvh8LpsVyUiIiIimfITjAaw5FZdB4IVcLblYVh6O7z9det5Rv1h9znJOjAdgqbL+tm3i4iISM4yDKMPMA8Y2KR5O1Yo2uasFCUiIiIiIiIiIiIiIiIiIiIiErKCbBdgw/zg8yTDMAZ6nNOr6Q3DMM7GR7KGaZoveR0rImFwyGjck+VvzT0LnfsKOsBgn2FHEj23YDSAd74KRw/6W7PhSPr1RMXvQaGtD8PwL4VTSy5wCm05FozW4wyYsQm2zYJYEfS+CJ6bCNVbvK1/9ADsfAb6XdWyb8vD/uuNteFgtM33weR7o6lFRCSX1O1z7jsWjNaCS855ZI8lLk+7DeWwi0iGDq2GZ0/1Nyfqa+mCUuh2Oux/w75/0VXQ9TSYMheKOkdbW77a+yosuKjlc+94iRUQ2v/a7NQlIiIiIpnzG4wGsOleGHtb8LXki6rNMG8qHFnf2Lbmt9BpFJw7G9oPcpjn8vONwo7B1igiIiK+GIZhNms63zTNhS7je2KFog1t0rzzg3kbgq9QRERERERERERERERERERERCQ35GIwGlinq+/PYO5CH+NNcvfrINI2xOLOfQffgy7jo6vlGNOE9f9w7h/00ehqkfSlCkY7vNb/mg2H06slSvWV/sZnO4QwbIla+/Z4SeOf2/WAoZ9uvN3zHNj0H+97LLoaupwEB5ekV+NxdbXLfI1cVZAiGA2gaiuU9Qu/FhGRXNJQ5dyXzmFVw3NOeGa6T3LuM5NQ+T50HBZNLdK6HdlgPT/b/6Z1kL5sIAy4DnpfmO3KJExL/8v/nE6jg68jla6nOgejARx4Cx7pAsNugZHfhLL+0dWWj16/2T6QPFEDb34e+s6AeFFj+5GNsOrXUF8BJ5wPg25yf50pSGYS1t0Ju+dDSW8YcjN0HhvN3iIiIiL5KJ1gtD2Lgq8jnyz57vGhaMccWgnLfwKTHH6WufLnzmt6eZ1eRESkjTIMoxz73yPs1ex2gcsbvh4xTdPlHXF81dMZmAuMaNJcBdwM1Pt401kATNPcFERdIiIiIiIiIiIiIiIiIiIiIiJRyNVAMBMr4MzvnGMiOgUuIoFINjj3bX0sO8FoS2517x/2xWjqkMykCkZz0uVkqNsP1Vta9tXnQTBasi7bFeQWx2A0lwCy4V/2F4wGwYSiAcdf0rQyXsJ9nugP19VDLFcvU0VEQuD0WAUQK7Zvb9fDeU5h58zq8aowxUHauWfC1IXQeUwk5UgrVbkWXjgHancd377hbph0Fwy+KStlSci9gnImAAAgAElEQVQStbDtcX9zOo1yD2wMy5BPwbq/pQ55eP+PVsDfpe9Bh6HR1JZvqrdD5Wrn/rr9sPdl6DXFun1oFTxzcuNz4E33wu6FcOY9oZcKwOJPwMZ/N95efxdMeQG6nx7N/iIiIiL5xumauXwmbJtl37d7HtQfgcL24dWVy3Y+49y3/Unnvg13OfelE8IvIiLSdrwMDPAwri+w0aHvX8BNAdVzEjCuWVsZ8HSa6+l3KkVEREREREREREREREREREQkb8SyXYAL0+dHOnNFJBeYSee+Qyuiq+OYimWw6pfO/ePvsA5cS+5LNxit/4ecgz7yIRjNLVzFSUN18HXkikSNfXu8xHlOtwkwZV449aRS2Ck7+0Yh7hDu09zeV8KtQ0Qk17iFeBoOZ1S6nALterZsL+0PHYcHV1sqZ97n3Fe3H9b8IbpapHVa+78tQ9EAMGHpDyCZIoxK/Nn7Ksy7AGb1h/kXQuX72amjck3qoLFjjALofy1MXZCdcN2up8CEv3gbm6iGp06E+wvgiYHw7rchWR9qeXmlelvqMUfWwXvfh/sMmDOqZTD4pv9YffOmBBhebePQquND0QAaDru/niQiIiLS1jld4/e+GPpd4zxv0VXh1JPrErVw9KBzf90+++fEqZ4npwq6FxERERERERERERERERERERERERERyQFZOC3oagsKLBNpe0r7OPfV7IyuDgDThKebv9lqM4M/EU0tEoA08z+HfQm2zbLvaziSfjlRSdSlHtNc3T4o6B98LbnALWzGTa8pcIMJtfvgsR7B1+WkqHN0e2VD/w/Blofcx2y6B044N5p6RERyQdLhsSrm8lgVi8OYH8BbXzq+fewPnMPUwlDUxb1//Z0w8W/R1CKtk1tgavVWOLIeOg6Lrp7WrGoLLLio8TlP9VZ49jSYvh7aRXg9DLBvceoxZz0C/a+2nsdHeb9nZ+inoL4C3v2Wt/FmAqo2WyFa1Vth8v3h1pcv3ILzj3njs97W2r0A5p4Fl62Csn6Z1WVn07327VsfgcRRiBcFv6eISNSObICa3VDSC8oGZv/xVkTyX7LBvt2Iw+jvWtdSdnbNtUJvu5wUXm25qG5/6jENlS1fm6na5D4nVph2SSIiIiIiIiIiIiIiIiIiIiIiIiIiIlHJqWA00zQHZrsGEcmCXhc490UdQrVrrnt/9zOg5IRoapHMJev9zzlhKhS2h8IO9v0NhzOrKQrJNIPRylprMFqNfXu8xNv8dt2hx2T3UI4gnTA1mn2yZeS3Ugejrf8HjL8j+gAOEZFsSTfEc9gXobQfbHnECkrrdy30vTT4+twUlEa7n7Q9Ttdyx1SuVjBaUJb/pOVz8IbDsOk/MOJr0dRgJq1wsdW/cR939uPQb6b151wJaRn5Teg8HhZM8zdv8wNQ0AFO/wsYaYZ7txZBvwbUUAUb7oKxtwW7LsDWR537HiqF0++EIQrWF5E8VbML5p4NR9Y1tpUNhClzocPQrJUlIq2AmbBvjxVAl/Huc9f+xbpmbku8BKMdPdQyGK1ytfP4XhdmVpOIiEgrF8XvLpqm6fkFTdM0FwI58gKoiIiIiIiIiIiIiIiIiIiIiEi02vhpOxHJCe0HQ8eR9n01O6KtZeN/3PtP+V00dUgwup6K798R7THZ+lzgEIxWnwfBaIk0gtG2zwHTDL6WXJBu2ExTp/wWirsHUw9AcTe45gAM/Ojx7f2vhf7XBLdPLup2Goz+bupxb381/FpERHJFJo9V5dPhzH/DpLujD0UDiHsIRks2hF+HtF7Jo+79bge+xbtkAtbfad934O3o6lh3Z+pQtFP/0BiKlmt6XwhXrEs9rrn1d8KSW4OvJ980VAW/pluAWSbcXhswE/D6J+HlD8O2J9N7ji4ikk2vXHd8KBpA1SZ46kRYcAm8ciOs+Bls+CfU7MxGhSKSr5yC0Yy4FRJ8+l+d5+5/M5yaclndvtRj6g+1bKva7Dy+rYXLiYiIiIiIiIiIiIiIiIiIiIiIiIhI3lIwmojkhtP+YN9ety+6A6TV22DTPc79Az8C3U+PphYJRrvu0OMsf3MG3mh9LszjYLSkQ7iKm2U/gLe+CGYy+HqyzTFspsT7Gt0mwKXLrNCZCX/OvKaZ26GoC5zxT5i6EE7+NUydD2feB7HCzNfPdeN/Ct0muY/Z8gDU7o2mHhGRbAvisSpbCjwEox09GH4d0nolUzwfVDBaMA6/79y36d7o6th8n3t//2th+C3R1JKuDkPgqjSuY1f9yvpoy8IIRqtYBttnB7+ul1q3PAQvzYC5k6HuQPA1iIiEoe4A7HnRuX/ns9bj9Xvfg8WfgNmjYLfLeBGRptyC0QCGfsZ57uE1rffNXZx4CUY7WtGyrWa7/djOY603qxIREREREREREREREREREREREREREckDCkYTkdxQ0se5r3ZXNDW8+QX3/vKZ0dQhwZr8AJQN8Db2jHug4zDrzwXt7cdsugcWXg6vfwpeuQGenQD3GfDC+fD+nyDZEEzdmUg3THDtn2H3wkBLyQmJGvv2eDt/65T0gsE3wYmfg37XpF/PkE9DvNj6sxGDE86FkV+HE86HWEH66+abY99rTsxkOAEGIiK5yDEYzedjVTbEPQSjeTnIK+IkedS9f8PdUBPRc8bWrGaHc19pv+jq2POSe/+A66OpI1PtusM1FVA+w9+8d78Fc8bAyl9Ag8PzmNas4Ug46y6+Kfivp59A8gNvw4qfBbu/iEhYanb6G19fAW98GpIOYUciIk2lCkYDOOsR+zENVdYbHLUlXl5Pafoz1K2zYPEnna89O44Kpi4REREREREREREREREREREREREREZEIKBhNRHKDWzBaze5oajjwlnNfURf/B5olN5T2gekbU4+7fDUM+kjj7cIOzmN3zIH1/4DN9zf+v9mzEN76Eiy6Ckwzo5IzlkwzGA1g+1PB1ZErwgibOfHzgOF/nlEAI7+Z/r6tSddTU4/Z92r4dYiI5AKncJV8CEYr8BCMtuOZ8OuQ1itVMBrA02Ogcm34tbRmRw8499UfiqaGnc+nHtNpdPh1BKWoE5z9OMzcBuc/B+c/D6XlqecdWgFLboV550PCw///1qShKpx16/bD7nnBrddQ7fw808mme6zwZxGRXGfW+59zeC3sfz34WkSk9fESjNZrqvP8vYuCrSfXHVqeeswr11lvlrPiDlh0pRUe7qS0b3C1iYiIiIiIiIiIiIiIiIiIiIiIiIiIhEzBaCKSGwo7OvclQjoY21QyAbUuAWyXLoVYQfh1SDgMA3qe69zfbSJ0HH58W3HP9Pba/hTsmpve3KA4HdAe8fXUc9f8LthacsGWh+zb4yXpr9lrCpz9KLQfat8/6ONw9mPQ5SQwYtbBri6nwJQXoOOw9PdtTfpdlXpM5Zrw6xARyQVhhHhGpahb6jFLvx9+HdJ6eQmGqtsPq38Tfi2tWd1+5776Sqg/En4Ni1JcH5b0hvZDwq8jSIZhhQ/0nga9L4STfu597v7XYdkPGm8nG2D17+Cp4fDkEFj6g/CCxLIlzL9PkCGddfv8z6ndAweXBFeDiEhYkmkEowHMnQwPlsAzJ8OmB4KtSaQ1OloBi2+Gx8vhuYmw8V5/87c8as17sBQeaAcPd4b5F0KFhyCtbPISjFbUGcoG2Y979Uao3Rt8Xblqx7Pexr3xWXjvu6nHlSgYTURERERERERERERERERERERERERE8odSfkQkNxgxK6QoUdOyr6E6/P3rK8BM2vdN/DuUlodfg4Rr1Hdg36stD/cZMTjtjy3Hl2ZwQOSdr8FlK9Kfn6lEnX17rBj6ToftT7rPP7weOgQcONBQBZWrrQNOnUZDrDD1HNOEqs0QK4K6Pdbfy4hDxxFQ2N7bvrsXgNlg31fgcQ0n/a60Pkzzg3o/uA8xYlYAwrExyQbAgFjcdpk2y8v9auXq8OsQEckFTsFosTwIRvPy+FbYIbz9kwk4sg7KBkK8OLx98k3VFuvrXtQl25VkLulwbdvcTo8HxsWeWzAaWEFQXq/B01H5fupQrGG35P81df9rYcUdcMhjYMXKn8Pwr0BBB1h8E2x9tLFv+Y+tsK3T/xJKqVnREGIAX5ChZOkEowEcWgVdTwmuDhGRMCQ9hNI6SdRa97evXm+FPPebGVxdIq2JacLCS2Hfa9btmu3w2kes174HXpd6/rYn4eVrjm9L1sGuF6yQwivWQrs03/glbE6v1RvNrvP7Xgbv/4/92HnnwSVL8/+5QSrJBqja6G3sxn95G6efdYqIiIiIiIiIiIiIiIiIiIiIiIiISB6JZbsAEZH/U1Bq357qcHQQ3A619poW/v4Svj4Xw9QFMOTmxrZBH4dLlkC3CS3Hl2QQjHZoJay/O/35mXIKj4i38xZMsum+4GoxTVj2I3i4Ezx7GjxzMjzSBTakOKhzeD08PQ6eHASz+lrznp8Ez02ARzrBe99zDjM8JlEL86Y493ce5//vY8cwrI9Y3Po4Fop2TKyg9R/SStcpv3Pvr9sLdQeiqUVEJJucgtHieRCMBlbAsZuwgo63z4bHesDsEfBIV1j163D2ySdVm+Hpk+CJAfBIN1h0DTTYhE/nC9P0Hs5RtSm//67ZlioYLRFyYPnO5937O46EEd8It4YoxArhotdhzH95n/N4H3i4w/GhaMes+ysc2RBcfdkW5us/h9cEt1aq7xcnr30EEhkEDomIRKH5m0qka9GVUB9i4KVIPju0vDEUram1/5t67rYn4KUZzv31lbDG5o1gcoWZsG83mr2XW7lLsOKhlbBjTnA15SqnELlMdDst+DVFRERERERERERERERERERERERERERCUpB6iIhIROKlgM3h0rAPYIN7MFpxt/D3l2j0mGx9TPx76rGl5Znt9fonYdfz0OFEqN4KBe1h0Meg62ktg7OClnAKRiuGAg/BaLueh7E+Durbqa+0wg1W/Qr2v358X0MVLL4JijpDuc0hLtOEl2ZaB8TsmElY8TOoWA5nP2YfOnb0oBXE5sQogD6XeP7rSEi8fC9UroEeZ4Rfi4hINuV7MNqoW2HZ7c79DVXW43uQ10BHNlrXC8cOVSeq4d1vQodhUH5FcPvkE9OEhZc3uYYyrSCldj1hgocD9rnI70Hwg0t03ZCuoymCnsIKrDJN2D0flnzbfdzZj0G8KJwaolZQCuN+BKO+Aw+VZb7egovh7Eeh89jM18q2hMP/s4Efsf4Pbnu8Zd+wL0O3063nmG73GXX7Ye9rwdxHuL2GlMrKn2f+fFtEJExuobSxQn/BaQ93gEl3Q68LMn+tVaQ12XiPffveRdbnhmrYvQCqt4ERs15rNxNQtQXW/in1+it+Ah2GQlEX6D0tt15bcAxGa/Yaf89zoLAz1FfYj3/rFqjZCV1OtsK+jFb4XnDJgIPROo2B9oODXVNERERERERERERERERERERERERERCRErfC3hEUkbxWU2rc3RBCMtvcV+/Z4iXNd0rqV9Ml8jc0PwPIfw4Z/wvv/A8+dDm98FpIOh3+CknQIV4kVQ2HH1PP3vgzb56S//+F18PRJ8PK1LUPRmnppJmx9rGX7wXecQ9Ga2v4kzCq3Drg3VbEMnhoORzY4z+15thXMJtnldBCuqcNrwq9DRCTb8j0YbeCNKQaYzn/HdG191P5xZJvNtUVbcXit/TXUlkes8Kl85BT462TumVC1OZxaWrtUQU9hPC9vqIYXr4D5F0Cixnnc+J9BpxHB759tBaXBBLEfXgtPj4cVd2S+VrY5BfAVlMGQT7ZsjxXDsC/CoBvh0qVwyu/gpP92Xn/umbD2r5nXmUkw2sZ/Zb6/iEiYnILP4iVw2Uo49Q/+1lv8CZg9ErY/nXltIq2F27XEkU3w/CR48XJ483PwxmesEPAlt3oLRTtm8U3w0gzrZxJHNmVYcICcXg9u/uYnsUIY+hnndaq3WF+f5yda9zNBh4jlAr9B4amM+Fqw64mIiIiIiIiIiIiIiIiIiIiIiIiIiIRMwWgikjviDgFkiQiC0Zbcat9e3D38vSU3xYuCOaTe3Po7Yeczwa/blFOARLwYDI8P/S9/CKq2+tt36yxYfDM8dSJUbfQ2Z9HVUF95fNuOZ73vWbsLFl5+fNsbn4O6ve7zJj/ofQ8Jj5cDa5Wrw69DRCTbnEJN8yUYrcNQOOMe9zFOYTfpevdb9u0b/hnsPvlky8P27XV7gw+mi0ryqP85Cy4Jvo624Mh69/5558GCi+HQysz2aaiGlb+E+wx4qAx2eAhkHvGNzPbMZT3OCWghE5Z+Hyo8BEznMseg0BLocymMvR2MD0IzirrC6X+BjsOs251GwoivwMhvQ0F75z3e/Bwsvd3//WLVVlj2Q3j1I7D61/7mNnVkffCPiSIiQXIKRosVWtf9w2+BGVug6wTvazYcgRcvgwaXIFSRtsTtzUve/or1xh9BqVgGK34S3HqZME0wk/Z9Rrxl25jve1t3479h2xPp15WrnO6P0zX4pmDXExERERERERERERERERERERERERERCZmC0UQkdxSU2bc3hByM5ra+gtHatqIQgtEA1v0tnHWPSToEo8XaQf1hb2skqp0DR+ws+zEsuhI23OV9zjGP9z3+9lKPB56O2b+4MUztaAXse819/Cm/hXY9/O0h4Sjrn3rMkQ3h1yEikm1O4SyxPAlGAxj0Ebh0qXN/QiEwWZWvITzpBKNVrmqdh+LDlGyAwymC0QB2PgdzRsPuF9PbJ1EL8y+EJd/2Pue8Z6zQ6tZq+C3BrWUmYWOKkMpclyrke+xtcOUOuOQ9mLHRPtzBMKDjcPd9lv8QXrzCe9jEkY0w90xYdjtsuheqNnub56Ty/czmi4iEyen6K1bY+OeyfnDRYrhspfVYPejj3tZ+fmLm9Ym0BoWdnPu2Pxn8fpvudw4ki5JbDXbBaIUd4FqPP8/Y8XR6NeUy08Obinh1yRLvb5ojIiIiIiIiIiIiIiIiIiIiIiIiIiKSI/QbsCKSO+Kl9u2JkIPRKtc497UfEu7ekttiBeGsu/0peOOz3kPKjknUwrvfhgdL4D7D+nhxOhx4p+U4O/FiaPCx55YHoWZ36nH1lbDip97Xba7hCDzaEyrXetvPzsJLrINVdfsB033s8K+kt4cEr89lEEsRdHH0YDS1iIhEYetj8PxkmDUAXvs41B2w2hM19uPjeRSMBlDsEjxasSK6Otoqu4Pkx7z1Je8BQLkknWA0gDc+F2wdrV3VJn+H7t/5Wnr7bJ8N+171Pj5WCN0mpLdXvjjhfDjnCSvIK9V1sRerfpEboRfpcgz5Lm78c7ue0GUcFHZ0XqfDsNR77XoBHiiCF86HJd+BuWfB7JHwyo1Qu/f4se//Caq3pV7Tq8rVwa0lIhI0p2vG5o9TRgw6jYQ+F8Oku72tXbEs83BJkdbA7TomDIlquD9u/TzhqeEwfxrsez3aGgDMhHOf0/PZwvbQeVzqtTfcBfVH0qsrVyUDDEbrMj64tURERERERERERERERERERERERERERCKiYDQRyR0FDsFoDSEHo70007lv7A/C3VvarnV/gxcvB9MlxKuhCmp2QaLOChOZMxpW/fL44LPtT8H8C44PFEu4HCbvc5m/Or0EF+xb7HyA3au6vTB7GGx/Mv013v5K6uC3S5eDYaS/hwSrsD2MSBGscbQimlpERMK27SlYdI312Fq9BTb+G+adbwXYNA9gOSZeEm2NmSooc+578TL/obDij1sw2pYHYfHN0dUSFKfrWoBupzv31e6CyveDr6e1qtnhb/zBd/1/fU0T1v7F35yBN0JxN39z8lH5dLh8NVxXBx+uzTwg7dUbg6krG5zCEP1+TToO9z52z0JY+XPY+4oVWLb5Ppg7GZJNgjtW/9rf/qnUbA92PRGRIDndFxuFznMMA6avh4IOqdd/73vW65xBBv6IiHeH34ddc2H+1OiDCt3CmA2XN6mZ4PF5xCvX+asn1/kJr3bT5/Jg1hEREREREREREREREREREREREREREYmYgtFEJHfEHYLREiEGozXUWMEUdow4dB4b3t4ie16CimX2fWv+CLP6w+O94cF28PQYOLLBfuzRg7DiZ423nULK4u2g9zT3Q0bNpQpJ2PsKLLjI+3qpvPGZ9Oeu+yvU7XPuv2QJdB6d/voSjvF3wMS7nPsVjCYircXaPwHNAlErlsKuF+DwGvs57QeGXVWwnK7nj9l8fzR1tFVuwWhgff2dQvhylVMwB8DZj7vP3fFMsLW0Zsl6/3N2Pu997KGV8FhP2D3P3x4n/cLf+NYgXgxX7XIf0/0M6Hqqc/+Wh8MPmA+LUxhivNjfOt0mZlbH4bWZhXan0lAT3toiIpkyHa4LUoVUth8Ml7wLQz7tPm7TvdbrnI92g033pVejSL5L5/r7mLKBx//cqvsZ6a3TUAXLbk+/jnSYCec+t+ezPTz+HXfMgQPv+KsplwUVIHni54JZR0REREREREREREREREREREREREREJGIKRhOR3FHgEKQQ5oHeytXOfX31LuoSgbdvafw/3lBjBQwsuhre/jIcPeB9nff/AKYJdQcg4XDIuqA9FHWG0/7gfd3qrdbn+iNWuMTGe6Dmg4P6Rytg/jTva2Wq9yXW38FJsh62PWXfFyuGLuPDqUsyYxgw5BNwpsNh2PpD0dYjIhKGhirY+Zx934KLIFFr39dxZHg1hSEWt4JYnWz4Z2SltEmG4d5vNsDWR6KpJShuwWgFpXC1SyjuoeXB19NapRPM8O43YOfc4++/qrbAhn/Bqt/Ae/8FS38Ai66FOaPdA4ztDP4ktOvhv67WoKgLTN8Ipf2bNBpw8q/hBhOmvQoXvwXdJtnPNxOwe0EkpQbO6Xs+VRhPcyec7/7c0Yt9r0HFcnj32+nNL+7m3Of0nF1EJBc4XRfEClPP7TAEJv4Nrk+mHltfCa/eCK9/yrp2WPtXqFjhr1aRfJVuMFpxd5i+AS5dal0X3mDCBS9CvCS99Tb8M7jwLS/SDUYD6HWBtz1W3OG9nlxnBvBv0/9a6H1x5uuIiIiIiIiIiIiIiIiIiIiIiIiIiIhkQUG2CxAR+T9xh2C0RIjBaIffd+4bdFN4+0p+KBsEh1aGu8eel+C502HS3dZBwIql6a/1/p+sQBInHYZan0/8PHQ/A1b+EjY7hFEds/LnMOB6eOW6xiDBWBGc/TjU7fX+/dn7Ihj6OTi8BpZ8x9ucpkp6w/lPW8ELz57q/O+y/Un79sIO/veUaBV1tm+vr7BC/1KFvYiI5KojG2G+xwO8zXUcEWwtUYiXOAe97XstmD0aFChjyy1E7JgjG8KvI0huf6dYkRWONuRTsP7vLfvdQrDleOkEMySPwoJp0HUCnDcbdr0Ar308mMP7RgyGfSnzdfJZ+4Fw6RLY+pgVSN3zHOg24fgxJ34e9i+2n//i5XB9wvpa5pNknX17rNjfOvFi6+uz6pfp17Lql5nNv/hd67lr3d6WfQpGE5FcFkRIpWFYwU1Pj0s9dv0/mk6E8T+B0d/1vpdIPjLTDEYbcEPL10hjhdbr9xvuSm/Nfa9Bz7PTm+tXJsFoA2+0nnOksvURWPVrGPkNf7XlonSeW53yWyjqar3hTZeToc8lel1dRERERERERERERERERERERERERETyVp6djhORVq3AIRitIcxgtLXOfeXTw9tX8kNUh/EPrbDC0TIJRQN4+xZ48wv2fQUdoKRP4+0uJ8G4H3lb95mTjg+WSB6FV2+AQ8u91zbx79BvJoy6Fdr18j7vmP7XWZ/j7eCS95zHVW2yby/s6H9PiVahQzBasl7BASKS3+ZNSS+MqmwQFLYPvp6wHT3o3m+ame/RcCTzNVojL4FxtTYBPbnMKSQJGoOSup5i37/3Zag7APWHYdWv4OUPwRufg13zYevjsPhmeOUGWPsXSLjs0xZkEmZ24E1477uw+BPBhKIBnPJ76HpyMGvls6IuMORmK9SheSgawKCPuM/f8nA4dYXJ6Xsx7jMYDWDsbZnVkq54KZz1EJT1g57n2o9J9VgpIpJNToGpsUJ/63QaA+2H+tzchPe+DwczfI1UJNelE0zc+yIY/2P7vpN/kX4tL5wDb38VDryT/hpeZRSM9lHvP69595tQ4eNnF7kqmcbzqxFfhcEfgzHfg76XKhRNRERERERERERERERERERERERERETymoLRRCR3FJTZtzdUhbfn3pft28tngqG7yDbvhClQNiDbVQSj44iWh2Ccvue8qD8EWx/zNrbTKCgtb7w9/qf+9yvp3fjnWAGM/La/+QUd/O8p0SpyCEYDeCuikEIRkaBtvNc5tDOVPpcEWkpkOpzo3h9EGEyi1r0/ncPDrUEyxdcFoHZP+HUEKXnUvt2IQeyDg/MdRzjPf7QbzBkF737LCola91eYPxUWXQUb7oLN98Obn4cXp0PCYa+2IJ1ghqbW/8P538qvS5fDcF37eWLE4Mz7nPvX3xVdLUFx+n8UK/K/VkEZnPY/mdXjV69pcOUO6H+tdTteYj9u478UyCgiucvxvthnMJphwOjvpFGAad1PirRmfq+/p6+H855xfvOP4m4w+nvp17Pm9/D8JNjxTPpreJFJMFosDqf9ES72GOD29Fgwk95ry0V+g6ebvjGOiIiIiIiIiIiIiIiIiIiIiIiIiIhIK6DUHxHJHfFS+/ZEdTj7NVTB7vn2fZ3HhbOn5Jd4EVzwknW4Od/1PKdlW7sToP2Q9Nc8ssHbuH7XHn+79zT/wYM9zjr+dmlff/MLFYyW89yC0TbcHUyQjohI1N79evpzB3w4uDqi1ONs9/66fZnvkahx72+rQQoNKb4uAHV7w68jSE5hZU1DkjqPAwz7cQDV21Lvs+t55+eGbUGmwWhBOWEKdB6d7SryS5+Lnfv2LICjh6KrJQhJh7CwWHF660UdMtp9IhR1arxd4BCMBrBrXvj1iIikw+m6IJ2QysGfhFN+AyU+X8db/Ru4z0BjXxoAACAASURBVGj8mD0SNj/kf3+RXOXn+nvoZ6H94JZvetLcwBsyr2nhpZB0CS/LlFuIeapgtGO6nARlA72N3b3A27hc5Tf0fcwPwqlDREREREREREREREREREREREREREQkSxSMJiK5o8AhGK0hpGC0ihXOB1D6Xh7OnpJ/yvrDlOfguobUQR+5bNgXW7YZBoz+f+HuW1oOI7/Rsm3Ip7yvccIU6D7p+Da/ByoLO/obL9ErdAlGA9j9YjR1iIgEpXob1O5Jf36+XncM+5L7gebqrZnvkSoY7fVPtc3ghGRt6jH5FjSadAhGMwob/1zcreW1Yjp2Pp/5GvnKzIFgNCMOJ/8q21Xkn6Iu0PcK+75kPex8Ntp6MuX0PR9PMxit/WAYcH369fgVb9fstksw2prfh1uLiEi6nO6LY4X27W4MA0Z8Da7cBtcehlFpvg5ZuRpe+TBs+Gd680VyjZ/r7+Ff9jau0ygovzK9epp6+RrnvoZqqN6e/tqmS+harMDbGoYBo7/nbeyuud7G5SrTJRittP/xt9sPhf4u/3YiIiIiIiIiIiIiIiIiIiIiIiIiIiJ5SMFoIpI74g7BaImQgtH2OLxbfEEZdD01nD0lf8XicOLns11FegZ/EtoPsu8bcjOcMwv6XR38vn0uh4vfhsIOLfsm/BlO/SP0vhgG3ADDv2Id3OpycuPHCefDuB/DeXOsA09NlfTxV0uBTQ2SWwpKoKirc3/VpshKERHJiGnCsh/BrH7przF9fcvHvnzR9WTr8d/J/Avgve9bX6d0pQpGA1j7p/TXz1cNHr4uTsHQucrpIHjzYI5BH818rzW/haW3g5nMfK18k3Q5cB+WE6ZCt0nQ5zLr+cDF71j3H+LfOU84921z6ctFiTr79lhR+mue8W/ockr68/2I+QhG29WGwxhFJLc5XS9mcl8MUNgexv8UzviP9Zphl5OtN0/wY5VCVKWV8Pq8bPBNVuCZV2c9CCf9HHpdaM2d9hrM3A7DbrGuvb3YNguObGxWbwO89WV4pDPMKofZI6Fiufe6jnELRnMLWG9u6Kfg7Meh31WAy2snK3/ufc1c5Pb/ZNprMPxr1s9QRn4TLlxkhYaLiIiIiIiIiIiIiIiIiIiIiIiIiIi0Ih7ffllEJAIFDsFoDSEFoy35jn17hxPBUG6k2Oh3FfS9ArY/lb0aSvpCzXZ/c4bf4t5fPsP6qN6WWYhLU6NuhZP+27nfiMHwL1kf6Sjr7298Uef09pFoDfmk8yHXRG20tYiIpGvzA7DstvTnn/wraD84uHqyoct4K+Sgept9/4qfQtlA6zBzOrwEox14N72181nSw2Nl9RY4vB46DAm/niA4BXbFmr2cNeRT8OYXMt9v+Q+tQOHBH898rXxiRhyYd119y39DSZ9hWCHea//csm/HHEgchXiGYTZujlbA7gVQvRWMAivoptvpVri4H2bSJQyxOP36YgVw5r0wZ2T6a3gVbx6M1s5+nIhILnMMRiu0b/fDMGDQjdbHMXPPgb2LvM0/tALW3Wm9jtmuZ+b1iGSLl2C0bqfDKb/1t26sEEZ92/po6rQ/WJ9X3AHvfTf1Ok8OhusaGq/nVv8a3v9jY3/lanh6LFx31N99Q1DBaAD9ZlofAI/1gtrd9uMOr4MOQ/2tnSucro2NAijtA6f+Jtp6REREREREREREREREREREREREREREIqbkHxHJHXGHYLRECMFoK3/h3NdhWPD7SesQL4azHoFzn4KR33YY4/D/OCiT7/c3vvsZ0Hm8t7Gl5TB9o/+amps63z0ULQglfaxAFa/0fZ0fhn7Wua9uX3R1iIhkYrWHg8sT74IPHYFzZ8MJU63HqbG3w7TFMPIboZcYieLu7v1bHkp/7QYPwWgNh60woLbEy9cFYPZwWP7TcGsJitPBeaNZqFasEKavD2bPxTdB3YFg1soXXoIZgqRQtOCVz7Rvr6+EA2+Ht+/BJTBnNCy6Ct7+Crz1RZh7Jrw003/IfdLlPjuWYbBbx+HRPCdsEYxW4jw2iIAhEZEwON0fGyHdb534eX/j3/gMzB4Bu+aHU49IFJyuv0v6wtgfwuQHrNfYg36zj0Efh4IO3sZu/Ffjnzf8037Mwsv97R9kMFpTbgFyT50Ippn+2tnkNShcRERERERERERERERERERERERERESklVIwmojkjgKnYLRaMJPB7ZOogyW3Ovd3OTm4vaT1iRdB38vh5J/D1AVQ2LGxr/xKuOYA9PF5IMir8XdAj7P8zZn4DzAM7+NL+/pbvykjBhe/Ayecn/4anvcynA//2+k4IrxaJDgdhjr3KRhNRPLBrhfgwJvuYwZ/EoZ8AgrKoO9lMPUFuGINjL0Nuk+Mps4opApG2zU3/bUTHgPAju5Pf498lKz1Ns5MwLIfwP63wq0nCKbDQfDmwWhgheYW9whm30VXBrNOvogyGK3XtOj2akt6nmc9rtipXBXOnqYJr38Gana07NsxGx7vA5Xve18vUefcFy/2X19ThgHnPG6FjYTJTzCaW5+ISDaZDtcFmYZUOhnwYRj2ZX9zjh6E+VPbXhCytB5O32fl02HsD6zvC6dru0yU9oFJd0Fxt9RjX78ZXpwBCy6FytX2Y3Y9DxUrvO8fVjBaqp/p3R+DRVfDax+HdX+HpEsducTx+bACdkVEREREREREREREREREREREREREpG1QMJqI5I64QzAaeA8/8GL3Avf+QR8Lbi9p3U44D67aAxe+DDM2wTmPWQe2h9xsP37KPJixBU78vLf1J90NF78N5z0DV++D0d/xF3I2czt0Gul9PECsEAo6+JsDUNofPlwLXSMMFvQTjOb36yDZ43QYVsFoIpLr9r0O8y9MPa7PxeHXkguCCqiy4/W5QV0bC0ZLeAxGAyt4ev3fw6slKI4HwW0OzRsxOPFzwey75yXY83Iwa+UDp69zGIZ+Krq92pJ4EXQcZd/3usPz00wdWuEeBlp/CJ473XsIY9Il3CaWYTAaQKdRMGMzTFsMA67LfD07zYPRXMcqGE1EcpRT2FgspCAeIwan/d56zfTc2f7ecOHFK8KpSSRsTsHEUQRe9b8GrlgH0163fu7gZvuTsDPFmKfHeH9jo7CC0Tp5eFOUrY/Bxn/DG5+Gl6+xQn5zndPztJhNULiIiIiIiIiIiIiIiIiIiIiIiIiIiEgrpGA0EckdBWXOfQ3Vwe1zaKV7f2mf4PaS1i9eDD0mQ9mAxrZ+M2HiXdB+CBgF0PNcuPx96DUFyvpZt70YfBN0PcUKUCnu5r2mrqdagWrp/l8u7up/zoUvh3dA0kmPydDuhNTjSvsd/+8jua24u317lMFo22fD/GkwewS8+QWor4xubxHJX8t+mHpMQXvo3UaC0coGhre2gtHsuYUK2Vn3V+8H2LMl6fMg+JjbYNStwez9zteDWScfOAUzZOqcWdDzPOt5QtkgOP2v0P/acPYS6OgSCFGxIti99r8FT49NPa7+EKz4qX3fkU2w6Gp4ehwsugYOvOO8TqworTJbrhOH7hPhzHth9Pes55MFZdDvauf7jo7Drf/HntZvFozmFlipYDQRyVWmw3VBUPfFTsr6Qd/L4JTfeZ+z63l4ajhseyK8ukTC4HT9HdXr60Wdofvp1s8dTr8z8/Xuj0Pl2tTjjh5w7sskGA3gCg/7H7NtFtwfg/kXeQ/xzQan58OGgtFERERERERERERERERERERERERERKRt0G/OikjuKCh17ksEGIx29KBz36j/F9w+0rYN+YT1kaxveaDJS0hXpzHOfQM/Cpvuse+b9hp0n+S9TjtFXaBqs/fx3SZahxejFiuA8T+D1292Hzfm+2AoCzZvtHMIRqveGs3+O56Fl2aCmbBuV66Bg0us8D/9PxIRN3tfTj1m3I+hsEP4teSCbqeFt7Zb0ExTR9taMJrDoWk3+9+yDsTnKtPnQfBYHE76bxh/BzQchlhx43PJwk7WY/nq38E7X0u994E3oaHKPcC7tQgjGK3PZdB3OpTPsH9OJMHr5BKMtuUh6OwhwNOLw+vguQnex2+b1bKt7gA8OajxdsUy2Pqo8xrxYu/7eWHEYPxPrMdlM2E9t6w7ABv+CbW7G8e1HwoXvwsFJdbfe+5Zx/c3V9jx+NvJOuexCkYTkVzlFLYb1WN5l3HWNcT2J72NP/y+9TrOuU9B38vDrU0kKNkORmtq6Kfg0HJY8/vM1pk9DGZsafw5Qd0B6+9T2AFME6q3wLwpzvOdwq+96jDUCqLf+az3Obuehz0L4JKl7tfS2eL0fDjTr5WIiIiIiIiIiIiIiIiIiIiIiIiIiEieULqDiOSOuEswWkNVcPtsf8K5r//Vwe0jAvaHmbqeBiW93ecNcQn7Gvpp+/aBH808FA2gqKu/8Z1dQtzCNuST7v2TH4Chn4mmFglG2SD79podsOO58Pdf95fGULRj9r0GB98Nf28RyW9uQb5lA+Dsx2D4V6KrJ9u6eghGW/yJ9AKZEjXextW1sWA0M42v5fMToXp78LUEpflj8jGpDoIbhhVQFC+2Qn+LujQGnLoFcjf3UHvY8C/v4/NVkMFoPc+BcT+x7vMMw2pTKFo0+riEwSz/UXD/zsvSCFjb8Uzjn2v3wqPd/M2PFfnf0wvDaLw/Ke4Kly6FoZ+zQjVGfAOmvWqFooEVtnHhK1Babr9WQRl0axYY5xQuBApGE5HclXAKRgs4pNLN2Y9aQbcdh3ufs+z20MoRCZzTc7dsXTeP/n7LgNd0bLgLanbDvKnW9d4jXeDRHvBod3hioPtcI575/ufN8T8nWQ8rfpb53mFwCj93CgoXERERERERERERERERERERERERERFpZRSMJiK5w+2AeoNL0IQf9YehYplzf9dTg9lHxE2sAE7+tfOBwm6T3AO/ekyGwTcd39b9DDjtD8HU5zcYreOIYPZN16S77ds7joQBH462Fsmc2/+nhRdD7b5w99/mEJ658hfh7isi+c00nQOcup8BMzZBvysbQ4LagtJ+qcds+Ce8e6v/tb0Go9VX+l87nzkdmk5l0VXB1hGkMA6CuwVy21l8Exx4O/39ckn1dtj6OOxeYN1vHWM6fJ27nAQF7b2tXX4lXJ+EC16EMd+DeEhBVuKsy7jGAEA7b34x8z2SDbD9Kf/zFl5qBaIBvHK9//nxiMJ42vWE0/8M5z8Dp/wK2vU4vr/DEJixBfpfe3y7EYPT/tSyzvIrnfdy+7cSEcmmZJ19e5SP7bECGP0duHw13GBa1xipHHgbqrfZ9x1aaV0DHXgn2DpF0uUUWGtkKRitXXcYlcZz8+b2vgqzymH3fOu2mYC6fXD0QOq5QQThGjGY8oIVWOvHpntg6W3w5hdg84OQqM28FgAzCQffg3V3wvbZ1s8nfc1XMJqIiIiIiIiIiIiIiIiIiIiIiIiIiLRt+s1ZEckd8RLnvoaqYPZ49jTnvvF3BLOHiBcDr4fOY61DQsmjUNwTDq+FjsOh/zUQb+c814jBxH9A/w/Bvteg4ygov8L/gR8nRV38je9xTjD7pqt8JsS/0DIkZeAN2alHMlPW3/r/73QAbddc6/snajU7o99TRPKHUygawEltNFjRMKxriqMH3cdteQhO/Y2/tb0GoyWP+ls33zkdrk9l/xtQsRw6jwm2niA4HgSPp79mOtfMK38OZz2U/p65YP3d8NYXG79/ekyG856FwvbO/3dK+8HU+fCITXByn0thwA1QvQU6jYK+09tW+GOumr4Jnuhv37fzuczXr1gK9YfSm7vlYeh7Geye53+uU6h4NhgGTH4QBlxvPR8v6mx9P3Q5qeXYLuOd13EKHhIRyTan+6ds3hcbBly2CuaMdB839xyYseH4tiXf+SDs/oNQ2ME3wcS7dN0i2eV0/R3LUjAawPCvwrLbnWsrv9K69ncLjd71fHp7d5sUXGhsr6lwyXuw9TGr3kQtrP976nnLf2R9Xvtn6/MVa6HD0PTrSDbAqx+BLQ82tpUNgHPnQOfR3tZwej4c0693iIiIiIiIiIiIiIiIiIiIiIiIiIhI26DfnBWR3BErsMLR7IIO6isyX79yDRx+37m/k8fDCCJB6Twm/QAKIwZ9LrE+glZsE3zgpKQvdHMJHIxCUWeY/AC8cj0kqq228pkw4mvZrUvSY8SgXW+o2mjfX7EUyEIwmg7MiliqtsKm/0D1Vuh5HvS/Vt8f4B5I1ZYPrI74Biz9vvuYmu2w7QnYOReKu8HAG6HjMPc5DR6D0dwObLdGToemvdj8YJ4Fo2XwfeUWyO1ky8PweDmc8msrnDif7veSCVj6X7CyWRD43lfgtY/COY+7BzMUdYHLV8P8C637foDO4+D0O6G0T7i1i39l/aBdL6jd1bKvegscPQRFnVr2JROw6V44+C6U9IITv2iF5jV3aGX6tVWuscL20pHO922YDAP6XWl9uI6LwdDPwLq/texLKBhNRHJUwiFcOJ7lkMpOI+D0v8FbX3IOQK7aCAeXQpdx1u3dC6yA26b+P3v3HSdXXe9//DWzfdN7L6SSBEJCIPTeI12QoldRwAJX9HcB9VqxYMGuV7nqtcBVUBSkd6T3ngBJCCSk9142m+zM/P445GY3O2f6zM7uvp6Pxzyy862f3cycPWfgvDP/T8Fjn68Hx+j6IcWsWkquHIPRKuvhgF/DC5e27qsdAEfcGpwDLX8QHj2psHsPO7uw63UbDROv3v181EXw5DnJz5HD3DU2uPYbdVFu/w3mqXOCzzqa27oQ7t0HJn0FJn4p+fl2c/EiXA9LkiRJkiRJkiRJkiRJkiRJ7UiB/vllSSqQmj7J2xvX5r/2on+k7h9U4Js5pPaqOotgtH2/Edzs3daGng5nr4BjH4HT5sERt0Fll7auSrkafm5437YlpaujhXYUgCIVy6a58MB0eP3LMO96ePo8ePHTbV1VeVh6V3hfZ75hdWyGr48nzoR5v4I3vgUPHAhrnks9Pr49s3UX3wrLHshsbEeQTzDa1oWFq6OQwm4EzytwMJHbtIal8PT58OxH89i7xOIx+NdxrUPRdllyexCQlggJZoi8H8zQfTycPh9OfBZOeR1OfsVQtHI24arwvs3zWrclEvDkWfDcx2Duz+C1L8E9k2BHkoD6TXNyr6thCWyem/28cVe0rzDCPfU5OHl73GA0SWUq7PgUrS5tHcmMuRTOXAK9poaPmf/H3V/P+034uDe+BffuC+teKVx9UqbCzr/bMhgNghCwZOcuYz69+3xs0InQZa/C7VndKwgpLKZ+h8Hp78Bxj2U3b9Et8NgMmPXt7ObNvKZ1KFpzb14Ltw9Nfr7dXGiAXif+nEmSJEmSJEmSJEmSJEmSJEmdShkkmUhSM9VFDEZLFVhx2F+hogxu7pLKQXWvzMbt9z0YfXFxa8lGVTcYeCx0G9O+b5xX6mC02v6lq6MFX1MSs38E21e0bHvnt7BxdtvUUy4S8dQBcW19Y3NbqukTnGdnY+cmmHVN6jHxHZmvN/Mr2e3fnoXdNJ2JxjWFq6OQErHk7fkEDoaFrWXqvT/DqifyW6NUlt4Jqx5PPeb5SzILoItWQt+DoddkiFYUrkYV3vjPh/dtej+YrGkbvHIl3BSBm6OtPy/Ztgj+0ev9/gq4uTL4+s1rw9c++eXUdS2+DV69OrPvobn9f5z9nHJSUZO8PWYwmqQyFRqMFnI8K7XafjD9t+H9c38WXKPFm2DR31KvtWM9vPGd4OsVj8Ajx8J9+8PL/wGN6wpXs7Sn0MCrNv78IFoJR98NQ88KwhBr+sDE/4R9vtZy3OFp3luZqu4Nxz4E1T0Ks14qlV1gwFFw6M3Zz5319eD4sH1V+rHb16Q+Z95l58bgfHvJneFjwsLPO3MAvyRJkiRJkiRJkiRJkiRJkjoVg9EklZeakGC0HXkGozWuhbXPh/ePOC+/9aWOpLp3+jEnvQiTvgQRTyVUBH0OCO9r2rb76+2rgkcsi4CcVBKJ8D7D9iRYGHLj63t/Lm0d5WbVk8EN9WE6+w2rA47Jfs7yB1KHfGUTALbu5cxuXu4Iwm6azkTj6sLVUUhh31M0j/dV15HhfWMvy2yNhVkG/rWVpSlust9l0xzY8m7yvrYOZlBuohXQY5/kfSsfga0L4d59Yc5PMlsvEQ8PKdxln69B7/3hlNezqzWdvf8jv/d7OQgLEoo3Bp9VFepaRpIKJey4FBb02BZSfW4E8MSZsHleZmst+WcQ+P2v42Hlo7D+VZj7U3jyrNSfE0n5CLumjZTB+XdNHzjyNjh3M5y9GqZ8t3Uwcvfxua9f1QM+tBUuTMA5a6H3tPzqzdbwc6HX/tnPW/koPHoKxNOcF69+Irtr8yfOgCUh/6iTwWiSJEmSJEmSJEmSJEmSJEnq5EwzkVRewoLRGvMMRpv7y/C+g36f39pSR1OTJhitblBw07tUTCPOT97etBXWz4Sbq+C2AcHjbzXw6tVBaEM+UgY+eNqsTi6RgKbNyfvm31DaWsrNsrtT93f2YKGKutzmbZkf3hfPMgBs09u51dDeZBMYt6fGNYWro5DC/q4jFcnbM9FjH+gyonV7z33hgP+CYR9Mv8a863Pfv1Te/T3M/1NmY1c9nry9HIIZlJs+05O3z/8j3DEy9TE2n/16TYbJ3y7cuiMvLNxabSUsSGjHeri1L9zWD2Z90/AdSeUj3pi8PSzosa2ctTy8b+ld8NwnMl/rhU+1blv1BCxNc60n5Srs2q2cPj+oqA7/hyKquucWgg5B8G1lfe515StaAcc/CntfCb0PzG7u+ldgUcg/GrDLtiXZ1/TE6clDKcOuh8vpdSJJkiRJkiRJkiRJkiRJkiQVkQkPkspLdRGC0RJxeOOb4f29puS+ttQR1Q1N3T/tlxDxFEJFVt0reXvjGnj4CEjscWPY7B/BnJ/mt2eqQJmwGwGlzmLH+vC+sMC0zmLjnNT90crS1FGuKmpzm7cpxc81kWUAWKq1OpJsA+OaK9dgtD1/3+8SyeN9FYkE57PR6t1tFfWw/0+CvoP/2LIvzM4yPfZtWwKvfQmevyT/tTr78as9G3JaafdrHowx9IzCrDn+/0HvaYVZqy2lCxLauQlmXROEGUpSOQgNRsvg/KiU6gZC/6PC+9c+l/8eS25r+TyRgA1vwsJbYOvC/NdX5xXbmry93AIIU8klDLf73jDh6sLXkq2q7rD/j+DkF+C87dBrauZzF9+Wur9hWW41vXBp67aw62Gv0yRJkiRJkiRJkiRJkiRJktRJmGoiqbzU9E7enuuN+k0NcM8+qcdkc9OD1Bl0GwPdJyTvO/DXMPyDpa1HnVNFffL25fcF4QHJLPjf/PaM78hvvtSRNSwP79u5KQii7ay2zEvdH6kqTR3lKprj97/2pfC+VEGWyXSWYLRsA+Oaa9oCse2Fq6VQwsLe8r0RfOhpcMqrsN/3YOoP4ZRXYODxQV9VNxj54fRrbH47vxqKYcH/wp1j4K0fFGa9zn78as/6HlS6vQYeD5Vddj/vkeYzmGQmfhEmfAH2+mgQsnHswzDtJ4WrsS1lGhC68K/FrUOSMhUL+WykogwDm8Z8qrjrL7hx99fxpiB49t594Onz4I6R8Ma1xd1fHVM8Bo3rkvfV9i1tLfnodxicsSi8P1IJXUYGj65j4MDrYcZMqKwrVYWZqaiBk54PArIzsfjW1NfO23IMRlt2XxC+2FzY9XA+QeGSJEmSJEmSJEmSJEmSJElSO+L/OSupvNQOTN6+5d3c1nvkaNg0O7z/yNshEsltbamjikTg8Fvg0ZOgodmNPPt9D8Z+pu3qUufSPFwhUxteD24gy/W4njIYzTxhdXINaW7sXPM89DukNLWUk/hO2JzmPDXfAKfOaumdsN+3k/cZjJZc2E3TmWpcA/VDC1NLoSRiydsLcSN4j4nBI5kp34dNc2HNM+HzN86B3tPyr6NQGtfCC5+CeGPh1sw12FBtr3YgVHYNQg+LbcgZLZ9HIjDhKpj9o8zmV/UMrjU76mcz0QyDhFY+Utw6JClTYecSmR7PSmnE+fDMhcVbPxEPAqxqegcBlvP/0LJ/5ldh4AnQd3rxalDHs2MdkEjeV9OOgtEAugyDczbAk2fDyn8FbbUD4OAbYPBJbVtbNqJVMOoiGHBc8L2sSxHUDnD3BOgyArqOglgjJJpg0S3BP/QR25ZbDY2rYfsKqBu0uy1hMJokSZIkSZIkSZIkSZIkSZI6NxMeJJWXbuOStzcsg52bs1vrxctg7Qvh/T0mwtAzwvulzqznPnD6Ajj+ySBA8OxVMOlLbV2VOpPK+tzm7Vif+56pgtE6alCDlKntK1P3L72zNHWUm60Lw29U3cUbVnOzYSZsmZ+8L93PfE+dIRgtHiP05vpMNa4pSCkFFXojeEVx963tD8c/DienuCF+9VPFrSFbi2+DWENh1zQYrf2KRKDb2OLvUz80CJHY0/DzMl9j0Akd+1y7ogyDhCQpldBgtOrS1pGJSAROnVvcPe4eHwQz7xmKtsvSO4q7vzqeVNdd7S0YDaC6Bxz7MJz8cnANddq89hWK1lyXYXDS88F/E0ll63uw6nGY/0dYeFMQiga5h6LtsmmP41nYZ9XFvh6WJEmSJEmSJEmSJEmSJEmSyoR3aEsqL93Hh/dtnge9psDmd2Ddy8Fj/StBCE6XkTD5O9BzUjB20zyYd33qvUZcWLCypQ6pohr6H97WVaizqsgxGK1hKdT0zm1uqmA0OnBYg5SJdGE7S+6AKd8rTS3lZPvq9GMMFoJBJ8Py+7Oft/RuGH9F6/b4zuzW2boAYtuhojb7GtqLTMPijnsMHjk6ed99U2HkR2C/7wY3hJeD0GC0EnycFa2E3tNgr4/Cghtb97/z38H7e/8fl8f7fPFt6cd0GwfHPAB37pXZmgY7tm/9DoP1r+Y+P1IZvAe7joa6wbDupZbnA30PgQN+BVVdW8/tMQmqesLODen3GfbB3GtsD2r7Zz72latg4hehtl/x6pGkipK2bwAAIABJREFUVOIxSMST95Vr0GP3cTD6Ynj398VZv3ENLH8AVj6avP/N78J+1xZnbxVXIg6xxiAMcNef8R2t25L1terfkXxOsrk7UpwfVfcp3fdfSJEI9N6/rasojEg0+G8ip86Bu/cu/PoH/xGe+3jyvkeOgRkzoee+wfOwfwCkukfh65IkSZIkSZIkSZIkSZIkSZLKkHc4Siov9cMgWhPcILKnZy6EhuWwc1PrvvWvwfIH4dTZ0GU4LLs39T7RKhj374WpWZJUeJU5BqNtW7b75rFspQraiURzW1PqKGJJzs2a2zQ7CKbtPrY09ZSLxjXpxxgsBOM/Dysezjy8a5cNbyRvzzYYLRGHrYs79usz05/JgKOgujfsWJe8/70/w8pH4ANvQnWvwtWXq3jIayZawvfV4A8kD0YDePuX0LQ5uLm9LcUaMwsfPPnlIMRqxiy4N4Pzpcq6/GtT2xl7efDaTfYZCsDoS+Dd/wmff+6m4LOZ6p7Z711ZBxOuhJlfSz2u11QYdk7267cntQMzHzvnx7D6aTjhKYhWFK8mSQqT7DP5XaJlGowGQbhvJsFoIy6EQ/8cXB/sWAuvfgEW3JB+3tv/lX+NuzSuDc6zO9vnTPGm9IFh+fZlG1KW7fVpsVV28fy7nHQfD4f/A54q8LlqtDoIMF79dPL+eyfDic8G55ANy5KPqelb2JokSZIkSZIkSZIkSZIkSZKkMuUd2pLKS7QCuo2FjUlCEDbNTT03tg3e+A4c9FtY82zqsacv8F9Vl6RyVtElt3kNS3PfM74jvG/9q7mvK3UEqW6Q32XpHdD9quLXUk4yCUaLVhW/jnI3+CQ45j741wnZzduxPnl7tsFoEAQf0IGD0bK5qb+mb3gwGgRh1Av+DOM/m39d+UrEkreXMnBw8ClQ2RWatiTvn/8nIAIH/U/bBVwsuT39mIEnBqFoAD0mQddRsGV+6jndJ+Zfm9pOj73hhKfhretg3Uu7jxN1Q2DE+TDmk6mD0SrrgDzCOSZ9JQh0WPhX2L4CmrZCVbcgiKSyC/Q/Cva9puMHgEUi2Y1f+xws+juMPL849UhSKimD0apLV0e2Mg0JGnlhcFyOVEBtfxj7mcyC0ZY/kF99AOtegWc+EoSKV/WESV+GCVdl/3sinUQiuF5KGhjWCLEdSdqKGVL2fn8iXtjvsyMy7Kr8DDqp8GtGq6D39PBgNIAHD0m9hq8VSZIkSZIkSZIkSZIkSZIkdRIGo0kqP93HJw9Gy8TSOyDx3xDfHj5m6o+hfkhu60uSSqOyPrd5Dcty3zNVMFrDctixAap75r5+udqyIAh+630AdBne1tWoXKV6f+zy3l+CG7s7ungTrHocYtth4c3px5cywKmcDTweqnunDuTa084NyduzCQHbZfvq7Oe0J5mExQ09M/izth9sfjv12AU3lEkwWsjfdbSE76uqbjDhapj1jfAx8/8I/Q6D0ReXrq7mVj+Tfszkb+3+OhIJXg9zfhI+PloTvG/VvvXcBw69Mbx//Odh7s9at4/6RP57RyIw5pLg0dmNuCCzc4Zd3v6FwWiS2kYsxXVfRU3p6shWJiFBwz4Ig2e0bOt7EOz1sczC0fKxfTXcP233850b4LUvwOJbYdjZ4WFiuYaUqX2qH9rWFWhPVV1h7ythzo8Lt2akCoaeDnN/mvsaBqNJkiRJkiRJkiRJkiRJkiSpk/AObUnlp/v43OduXwXLH4Ald4SPGfnh3NeXJJVGuQWjASy5E0Z9NPf1y00iEdyIO/tHu9smfQUmfzsIspCaizWmH7P+NVh2Hww+pfj1tJUt8+Hx02Hjm5nPiVYUr572Jlqd3fgdIcFomYSA7alxTfZz2pNMwuJ2BR1lchP1upfzq6dQ4iHfV6TE76uJXwxCjTbNCR/z/CUw5AyobYOb1FMF3Y35NOz7dagb1LI9XTDaXv8WBAGoYxt+TvJgtKFnlL6Wjmz0J7ILRlvzbPFqkaRU4imu+6LlHIzWJ3X/gdfDmE8m/6zj4D8G50VPnpXb3pFo6v5Nb8PdIf+9Y+3zwUOC4FpC5WfqD4MQs0S8MOtFq6Df4dB9AmyandsaBqNJkiRJkiRJkiRJkiRJkiSpkzAYTVL56bV/fvMfmxHe1+9wqBuQ3/qSpOKr6JLbvG1Lc98zXTDaq1d1rGC0Zfe2DEUDePNa6H8UDDqhbWpS+Up1g3xzj82AC+IdM1wvth3uHN3WVbRvFVmGKax7KXl7wmC0VsICxHaZ8AUYcmrwdXWa4IhdXroChp0FA47Jva5Nb8N7N8Ha54KwtX6HQd3QYM1hZ6c/VoQFvkVK/HFWRQ0cfR/cuVfqcY+dAie/WJqamgsLRht4Iky/Pnlf30Ohph80rk7SGYH9vluw8lTG+h4Kk78DM7+6u23CVTDktLarqSMacFz2c9a+BH0OKHwtKr1ty2DBDbBpLpBo62qk1HZuDu/L9ly+lKJVqfvHfCr8vDMSgWFnwr7XwKxrctg7TfjzC5dmv6Y6n2EfhPFXtHUVSiYSgVNeC0Lyt76X/3rRKohWwiE3wKMnwY712a9hMJokSZIkSZIkSZIkSZIkSZI6CYPRJJWfoadD/VDYtiR8TCSa27/Q7s0lktQ+VNbnNq9hWe57xtME7SQNDmnH5oUEpcz/k8Foai1dcGBz8/8Eoz9etFLaRKwR7hjR1lW0f9EcwhTe/jWMu6xlW7rjdTIdPRgtVVjcCU9Dv0N3P8/05/f2L4PH1B8GQUnZWvUEPHoKxLbtbltyR/DnvF/B6EvhoN+mXiMs8K3UwWgAXUfCmUvh9iHhY9a9BCv+BQOPLVlZxJvCb9Df873TXLQC9vk6vPzZ1n3n7wz61fFFIrDPV2DURbD+Veg5GboMb+uqOp5IBOoGQcPyzOc8cCAcejOMPL94dan4Ns6Bh4/o+Och6hzSBYC1tV5Tg99le+qyV3GDu1P9XLavDs6J1b5FKoJr2YqaJH9WJ++L1kBFdbOvQ+ZW1EGfA6HbuI4ZMN9R9NwXPvAmPHoirH66df+hf4G3fgAbZqZfa1eQY58D4YxF8PCRyY9dqdRkGHYuSZIkSZIkSZIkSZIkSZIktXMGo0kqP9EqOPZhePYiWPcCEIEeE6HX/tB7WvDotR/cfyBsmp3d2n2mF6NiSVKhVbRFMFoWwU8dwbJ7krcvvAkO+0tpa1H5izVmPvb5T2QXjBZvCm4gXfFQEHY04UoYfEr2NRbTO7+F7avauor2L5cwhde+AMPPgdr+u9vCwrJS6eiBJKl+Jl32CPXbsS67tV+9GrqNh6Gntd5zwY3w5rWwZX7QVjcEGpZmtu67vwseu+qr6gEDjoPJ34KqrkFbIpZ8brSNPs6qHxwEzT10WPiY5y6CMxeVrCR2rA8PDa9PE3A19jPQuArm/CwIsBtwDBz0B0PROqP6IcFDxZPL767XvxT8DmyrY56yl4jDnJ/A4tuCa9OtC9u6Iqlwcgk5LqV9vgpPfrB1e78U522FkOr47jEge/8XNJYiVCxaHRI0lkVfxgFn1Z4bK1BZD8c9Bq9eBe/+AZo2Q1VP2PfrMOICGHoWvHolzP8jxLaHrxOp2v11Vdfg+vLVK8P/AYtWdXSD7nvn9a1IkiRJkiRJkiRJkiRJkiRJ7YV3VUkqT93Hw0nPBjcUxpuCG2H2VNM3uzWHn9c6FECSVJ4qcwxG274SEgmIRLKf29mC0TqCxnXQtAWqe+2+cVbFEc8iGA1g6yLokiaQZ5dnPwoLb979fOUjcNRdMOTU7PYspoV/besKOoaKHMIUmrbCkjtgzKW72xI7s19n+8rs57Qn8RQ/k2hVy+fDPhgejhnmidPh+Meh/5HB79n4Tph9Hcz8WstxmYaiNdc8MGLDTFj3UrBXJAKJkKCJSBt+nNXvUDjyzuBnksy2xbBxNlR2CR6x7VDTBypqC1dDvCm4Vq6ohsa14eNq+qReJ1oRBNHt87XgZ5rL+ZOkzAw9MwiDzMbWhcFxsduYIAQRgjCNyvogTNL3bPl5+fPw9i/bugqp8CJRqKhr6ypSG3pWEPK68tHdbdEaGPfZzOb3PiC3fWPbIB5LHp6VT3h/0UVSB4MVIogsVeBY0j2r/d2m8hathGk/g6k/CsLz6wYGx0eAyjo48Ncw7efwwidh/p9C1tjj+rz5vPumwMa3Utcw7t8Le20pSZIkSZIkSZIkSZIkSZIklTGD0SSVt0g0POQk22C0Q/83/3okSaVR2SW3eYlYEHCWS/iOwWjtx7pX4LmLYMOslu3jPwdTf5z8hmTlJ9v3x5I7YHwGN6AvubNlKNouj58GR94BQ0OCh0pp+xpY82xbV9ExRHM4NgMsub1lMFqqELAwZR1KUABhAWLQOkRs0Am57THz67D/T+DFz8DaF3JbIxOrn4TlD8Dgk1MEo7XxcX7oaVA/LAhBS+aeia3b9vooHPBfUNUt931jjfD6l4PQnfhOGHwqjLwgfHy6YLRd9rw5X1LhDZ6RfTAawP3TgAiQaN037edB4I8hMuVhw5uGoqnj6nto+QeRRyJwxK0w5+ew/H6oGwz7fh16Tcls/sDjoKo77NyU/d5NW6C6R+v2Wdekn1vVE3pMTB04lk/YWFifobhS7qKVUD84pK8quFYMnRty7RWtghOfh1evhHd+m3zMtF/CuMuzq1WSJEmSJEmSJEmSJEmSJElqxwxGk9R+ZROMdvyT3uwtSe1JRX3uc5u25haMFjMY7f8suRP6HZZ5oEo+Eokg4KxhGVT3hqZN0HVU8NjT5ndh/Svw1IeSrzX358FNxZOvKWrJnVKsMbvxyYLRdmyA1U9B47rgtdVrCjxxRvgaT5wBp86B7uOzr3f9a7DyseA1NeBo6DI8s3k7N8Ga56BhRXCja+0AmPsLkoaRKHu5no8vuxe2LYH6ocHzXILR1r8KO9ZDda/caih3qX4me/7c64fCxP+Et76X3R6rHn8/oKcEFv09CEaLhwSjRcvg46wTn4Pbh2Q+fsGNUFEL03+T+55v/QDm/GT382V3B49kojX5nU9JKqzBM2DgibDiwRwmh5yHvPw5qBsCwz+YV2kqkHv3aesKpOKo7AZTvt/WVWSmulfweUAunwlU1MKU6+DFT2c/N1kw2tJ7g2uQVPa7FiZ9Ofv9JJW5FKGDqT4XqeoaXC/22AdevmJ3e2WX4L9x9p5auBIlSZIkSZIkSZIkSZIkSZKkdqAM7iSVpBxlGoxW2RX6HlLcWiRJhRWtgkgFJGLZz23aCjW9s5+XyCBoJ5GASIqb2zqKJ84AInD432D4ucXbp2krPHcxLPpby/ZIZXBz8ORvBs8TcXj9q5mF+Cy40WC0YohnGYy26nGIbQ9uLocgKO2JM7Pf9+694YIYRKKZjY83wdPnw+JbW7ZP/RFMuDL13DXPw5NnQcPyzOsbcQH0PgBeTbO23pciYK6iNnjNhLl9WHCD8JhPQiIkLCudW/vCEbfB0BSBfO1Vqp9JJMlHP/tdC/2PgqV3wrxfF6+uXM3/Q/A7YPWTyfuTfU+lVj8YJlwNs3+Y+Zx3fw/7fTe34NGmBph9Xebja/p0jnMWqb2oqIaj74X3/gLPfaxw68673mC0crBhVnbjR11UlDKkguu+Nww9C7qPa+tKSmPsp6DnvvDQYdnNa9rauu3d/0k958Rnoe/B2e0jqf2LZBAYP/6zwX/TXPJPiNbCmEuhbmDxa5MkSZIkSZIkSZIkSZIkSZLKTBncSSpJOartl9m44R+CaEVxa5EkFVYkApVdYOem7OcmuyF1l3gMlj8AK/8F9UNg9MVQ1T39vF0STZndwNYhJODZj8HA46G6V2GX3jIf3rsZZn41ZOsmeONbsHNzEIi16O+wbVFma29dAPGdQbieCie+I3n7gGNg5aOt2xNNQQDQuMuD9/HT5+e+980V0H1C8HXfg6HLSBh2VnDD+i5bF8GsbwZhSsm8ehW8dxP0mtKsMQ6rn4Eek2DQiUG4UTahaOOugAN+/v76BqNlpMe+sOqJ1u3R6iAY4L6pqee/8KngmBTPIMgymUQcnjoPzl4J1T1yW6PcrHkBltwOy+4OH5PseBiJwOCTgkfD8uCG63Jz+7DwvmiZfJw16uPZBaMlYvDSv8NhN2e/18pHMjtX2SWX8DVJxRWtgFEfDQIp1z5fmDVXPhL8fss0RFbFsf71zMd+aEtwrSupPPU7FMZ9Ft7+ZeZzYttat6U6vx7//wxFkzqrTD+v7HNA8JAkSZIkSZIkSZIkSZIkSZI6sTK5k1SSclA3JLNxE79Q3DokScVRUZ9bMFosJDQkkYCXLod3frO7bc5P4KQXoW5gEMKVTnxH5wrcijXAkjth1McKt+bqZ+DRk6BpS/qxc3+a2x4Lb4G9PpzbXCUXa0ze3nsarHoyCELb00v/HoT4dBkJse357b9pdss/3/wuHH4LDD0dVj4Ojxydfo31rwSPPW1+O4dQqAiMuSTLOWLEh4IwGBIt24efF4TWfWgr3JImKGTRreHBaEfeEbzmnrkwfH68EVY8CMPPzar0sjT/T/D8xUEgTiqRNCHRmQZO52P674LwtiV3FGa9dN9zqXTfG7qNhc3zMp+z8K/Qa2r216lLbs9ufLXBaFLZGnFB4YLRADa/C93HFm49ZW/b4szGHfeooWhSe1A7ILvxe4bXNiUJSmuu+/js1pfUzkTCuzrT58qSJEmSJEmSJEmSJEmSJElSnqJtXYAk5axucPoxR/zTG40kqb2qqMtt3v0HwFPnw4ZZLdtf+0LLUDSAbUtg1jeCrxfelH7tsDCejmzjW/mvEdsB8/4bHjoCHjoss1C0fLxgYFXBxXckb6/sCt1Gh8977Yvw9HlFqKcRXr0K1r+eWShaoY29DHruW/p927v+R8Ih/wv1Q4Pn0eogHGb69cHzyvogaCqVNc/SKlhtl+qeMOJ86DYu9RrblmRVdllqXAvPfTyDULRKiKS4KRugpn/h6kpm/OeCIMEDfhXUUwgNywuzTr4iERh2TvbzZl0D21elH7f6GXjsVPhHb3j399nt0efA7OuSVBrjr4B9vla49e6fCg8dGfxe2LqwcOsqMzs2wutfTj2mpl8QEjrg6JKUJClPVd2zG79nMNrmt1OP7zEhu/UldRwGo0mSJEmSJEmSJEmSJEmSJEkZMxhNUvtVPyS8b9RFcH4TDDuzZOVIkgqsojr3uYv+Bg8cBFsWBM/n/gJm/yj52Hd+C/NvaB2klkxnDEbL5Oeyp9j2lj+r1/8TXvwMrH6qcHWl279hZWn26izijcnbozXpg6yKZfM8uG9K6fftsQ/sd23p9+0o9vownLEIzlwC526Ew26Cyi67+7uMSD1/e4r39q4QsAlXpl6jYUXm9ZaT2PYgEC3eBLf2zWxONIMgstoiB6PVvX/dVj8E9vpoYdbsMakw6xTCxKuDwJtsxBpg4V+Dv0sIAu4ScUgkIB4LfoeteiIIE112D+xYn31doz6R/RxJpRGJwORvBZ9bjb44//WatsLqJ2H+n+D+A3M7Zig38SZ45NjUY87dDGctC0JCJbUPVd2yG79nMNrGOanHt9U1tKTSSBVOHjEYTZIkSZIkSZIkSZIkSZIkScpUBnfISlKZqhuUuj9aUZo6JEnFEcnzVDXWAHeOgklfhXd+k3rscxdltmZnDEZbfj9sXwO1GYTw7NwCz18MS+6ASBSGnwsjPwJzflL8Ovf0xjfhwF+Xft+OKhYWjFYNg04O/s47g0EnwaF/geoebV1J+xaJhIccpwtGq6gL74u+f4PxmE9CZVd45sPJx82+DhbeHBwjhpyavt62tmM9PPcJWHJ79nMzuem6JsOQtVwNOnH319N/C93Hw7J7g+fjPwfrXoY3swwb7Htw4erLV3UvOOk5mPkNeO/Pmc97+XPwyn9AIhac8ySaClfT6Iuhh4EbUtmLVkC3sYVds3E13DsFzlxY2HWV3Mp/wfpXwvvHfAqqupauHkmFUZltMNq2ls+X/DN8bO9p2YfqSuo4ogajSZIkSZIkSZIkSZIkSZIkSZmKtnUBkpSzilqoqE/eN/z80tYiSSq8Qt0o9uZ3goCAQojvKMw6bS2eTfhKAmZ+LbOhz30MFt0C8cYgmG7BjfDoiennFcO862HNC22zd0cU9tqvqAnC7/oclP8e9cPg4D9BpEzDbSd9BY65H2r6tHUlHVu6YLRUx/PmvzdGXghjPh0+dttiePw02PBGdvW1hacvzC0UDTJ7vVaGXFMVwqiPQ6/9dj+PVsDEL8DxjwWPYWfBuM9mt+aYT0HPyYWsMn9dR8Gh/wsXJlo+zgsJldwlEXv/zwKGovWeBgf8qnDrSSquwTNS99cPg3PWw/FPZr7mtkWw8rG8ylKGFt+aur/HPqWpQ1JhVWUZjBbb2uzr7cHnImGmfD8IipbUORmMJkmSJEmSJEmSJEmSJEmSJGXMYDRJ7duoj7duq+wKA44qfS2SpMKq7NrWFbQW39nWFRRGbHt24xfcAE3bUo9pXAdL7si9pmKY86O2rqDjiIeE+0RroKorHPcoTLgq9/WHngGnvAajPganvJ77Osn0PyoIb9v1qKjLfO7Ij8C4K+Coe2C/7xS2LiXXZWTq/g0zw/silS2f1/RNv9+8X6cf05a2LoTl9+c+f9BJ6cdUZhn8kE7X0TD2cjj873DQ79OPrxsQhP6kUzsQjrwjCP1qL2ESFdVw8svFW3/az2H/n8Koi2DUJ+DAX8MJTwehlZLahx77QI9Jyfv2/wl84C2o7gn9D4dpv8h83Xd+V5j6FG7rQnjnt6nH1A8uTS2SCivb8+OmZsFoS+8KHzfsbBh4fG41SWo/9vxsojmD0SRJkiRJkiRJkiRJkiRJkqSMpfg/cyWpHdj3Glj/Cqx5NnheURvcgF9R26ZlSZIKoNBBLYWQ6CjBaA3Zj3/7lzDxi+Fj1r8GiVh+dWWjsmsQ+LP41vAxi/4OjWuhpk/p6uqoYmHBaNXBn5V1MPWH0GUveOny7Nbe5xsw+Zrdz3tOgt4HwroXcyoVCMLQjvsXRJJkgSduhBcvg3f+O/UaZy6G+qGZ7Tf9d/DCpa3bR12U2Xzt1mVEVsMXNIzkjjWns6GpJ6ct68q0ns06MwpGuz4IkypXKx7Ob/6U76cf0+fA4L0c35HfXgDjPw/7/zj5ey+V6p5wwlPwxFnQuHqPvt7BNd7AY/Ovry303j8IWXzvz4Vfe8QFUNuv8OtKKp1IBA7+IzxxBjQsD9q6jAzOY7ru1XLs0NPh5SsyW3fhTTDiPBhyWvsJk2xvXrws/Zi6IcWvQ1LhVWX5eVTjut1fr3s1fNyIC3OrR1L7MvLDMPOrrdvrh6YOTZMkSZIkSZIkSZIkSZIkSZLUgv/3raT2rbYvHP94cMPR9uXQ/0io7tXWVUmSCqGqa3jfgdfDi58pXS27FCI0phxkG4wG8NqXoOtoGH5O8v7Z1+VXU7ZGnAdDz04djAZwa184aznUDSxNXR1V2Gt/VzDaLuMuC8I3MgmKABh9cctQtF2yDVVqrtdUOP6x8P5IBKZfH7yGHjkm+ZizV0Jt/8z3HDwDKrtA09aW7cPOzXwNBbIIRntu40HMmHU3G5qC8/9v/zzBHy+K89FD3n/9ZBKMBjDr27Dv17KttPi2vAfPX5L7/LNXBoFj6VR1g6FnwqJbct8L4NS50H1c7vP7HQanzYXVT0PDiqCttj/0OxxqeudXW1ub+kNYeifs3FS4NcdeZiia1FH0ORBOnQNrng/OgfodDhU1rcfVD4OKuszP5Z84A0ZfCgf9trD1Cja/C8vuTT+ubnDxa5FUeNkGo735HZj0peCacNOc8HFDTs2vLkntQ9eR0Gc6rH2hZfvw8wyslSRJkiRJkiRJkiRJkiRJkrKQx93mklQmolXQdzoMPcNQNEnqSCpTBKMN+yCMu6J0tewS31n6PYth41u5zXv1CxCPtWzbuQlevByWP5BfTZXdoH54+nHRahj5YZj2SxgyIwjJS+e1L+VXm8Jf+xXVrdvGfgb2/xlU9Ui95t5XwvSQoI5cg9H2+igc90hmYwccDcc/AV1H7doU+hwEZ7yXXSgaQP1gOOZB6PZ+KFTtAJj+m+A1quzUDsp46FcWfOf/QtEAEokIn705wc6mRNDQ54DMFpr1ddgyP5sqi6thBTz/Sbhzr/zWyeZ1fNDvg9+t0argMfRMGHF+5vMHnZJfKNou1b2CwIgxlwSPoae3/1A0CMI5J3+ngAtGYMr3CriepDZX1R0GnQADj0seigbB+VHfQ7Jb993fwd/qYf4NkEjkX6cCS+/KbJzhzFL7VJllMBrAg4fATRFY8s/k/cPPCz++S+p4jroLBhwbnL9V1AdhtVO+39ZVSZIkSZIkSZIkSZIkSZIkSe1KZVsXIEmSJCWV6kbUaDWMvhjm/wGatpSupo4SjDb3Z7nN27oA1r+6O2wokYAnzoKV/8ptvaoecNrbEKmEqm4Qb4Jb6sPHz5gZhFhVdtndNvbTMOaT8OgpsOLB5PMW3RIEqFXW5VanIBHy2o9UJW/f+3NBQFp8R3Dzd3wHNK4N/u4iFVBRl+am8EjmtfXaH054Aohm/3fc/wg47R1oWA4VtfkFMPU7FE6bC9vXQE0fiGTxPWi3aEVGwxrj1Ty64ZhW7Zu3w2NvwwkTge7jM9934S0wqQxCFHduhvsPgIal+a3T+8Dsxld1hSP+AU3bIBEPnq97FRb+Nf3cSAWMb4Ow0vZm7Kfh9a9A0+b81uk6Gk6dHQTYSep89r4SVj0WHKszFWuA5y6C7atg4tXFqqxz2fhG+jG1AzxWS+1VVQ7BaBtmpe4f/sHcapHUPtX2D4L7d2wMPm8yGFGSJEmSJEmSJEmSJEmSJEnKWrStC5AkSZKSquoa3hetgl6T4diHS1cPdIxgtMZ1sOKh3Oc/cCDM+WkQirb0rtxC0bqMhGEfhJNeDG4UrOkd/J2mC7WqG9IyFG2XSBTGXBI+L9YAKx/Jvk7tFm87yJnlAAAgAElEQVRK3h5NkbVdUR28j6NVwd9bl+FBYFh1z/Q3hKYKFZv+W+h/JPTYByZ+EU54Klg/1+C7SATqB+cXitZcbV9D0fI19jNph2xs6hHaN2dFYveTkf+W2Z5Lbs9sXDHt2Ah/755dKFq/w5O3Dz0jtxoq63f//u09FU58Drrvvbt/4Akw4w0Y//ngPTjoFDjqHhh8cm77dSbRKtjrI9nNqR8a/J6sHQC9pwVBoCc8bdCO1JkNmQFH3gWDToK6wVA3KPO5r30Bti4uXm2dybu/Tz9m8AeKX4ek4ohWQb8jCrtmtyxCmyV1HNU9DEWTJEmSJEmSJEmSJEmSJEmScpTiLnZJkiSpDQ06Cd78bvK+itrgz74HwYSrYfYPS1NTfEdp9imm9a9AIp7fGq/8B2xfCeteyW7ePl+Dyd9KPSZaHf5zruoePm/QyRCpgEQsef+S22HIqZnVqdYSIaGARQvnSREsNvIjMObSIu2rsrD3f8CSO1MGhG1qCj8edG1+z3HdwMz2XPs8vP3rIFCsfkiGhRbYMx/Ofs6oTwTBgMsf2N3WfQKM+VRhaup7EJw6u3X7tJ8WZv3OZvJ3YP6fgsDO5iKVcNjNMPycNilLUjszZEbw2GXVU/DYDGjanH7u3XvDeVuLV1sxNTXAhplAAvoc1HZBtOtfTz+mbhBMuLL4tUgqnv2uhYePLNx63cYWbi1JkiRJkiRJkiRJkiRJkiRJkjqBaFsXIEmSJCXV73CoH9q6feiZEGl2GlvKsKt4SDhUe1Ko7+GtH8CKhzIbO/YyOOru9KFoEITDhImm6KvqBnt9NLx/xSPp91ZyiXh4mF6qv6+8pAi62BWMqI6r2xg46YWUr6+NsR6hfV2aB6NV98x835cuh9uHwutfhUQi83mFsG0JLLsn+3lV3YLj60F/gDGfhv1/Bic+A7V9C1+j8lfTG85eAZO+GhzLolVBwOtJzxmKJil3/Q+Hk1+ECVelHxvbBhuTBF6Wu3WvwH37wYMHw4OHwAPTYVt4gGpRzfpm6v6uY+CU16DHxNLUI6k4+h8BtRmGLKdT1RMq6wqzliRJkiRJkiRJkiRJkiRJkiRJnYTBaJIkSSpPkSgcenNwA+ku3cbBAb9qOa7fETDpyy3bRl9SnJoSHSEYral0e03+NlyYgAN/BUM+kNmcVOFn6Uy5Lrxv63ulDzrqKBKx8L5iBaNFUlyqRlKEpqnjqB8M+3w1tHtjU3gwWn11s9dIVRbBaLu8eS2seDj7efnY8EaOEyPBcXP0x2H69bD357ILg1PpVXWH/b4N5zXA+Ttg6nXQe1pbVyWpves+Hqb+EI66JzjOpDLz66WpqVASCXj+Utg8b3fbupfgpc+WvpblD8KSf6Yec9rbUNu/NPVIKq6+hxRmnQHHFGYdSZIkSZIkSZIkSZIkSZIkSZI6EYPRJEmSVL76Hw5nzIej7oLjHoUZs4KwnOYiEdjvWjjtnSBI7ZTXYfpvi1NPfEdx1i2lVCFXhTT4AylDjUL1PiD3PWv7wonPhvcvfyD3tTuzeIpAwGhVcfbsOro466p9iVaHdm1IEYzWIgMxVcheKgtvym1erhqW5zbPEDRJUnNDZsBp82Cfr4WPWfwPmP3j0tWUr3Uvw/pXWrcv+SdsXVy6OmZ9Gx49KfWYg35viK/UkRTqXHvcZYVZR5IkSZIkSZIkSZIkSZIkSZKkTsRgNEmSJJW36l4w5FQYcDRUhIfk0G00jDwfek0Obkaf+KXC15IqIKq9SDSVZp9cf/4TrkrevtfHMptf2z+874VLs69HqV8z0cri7Dnu35O3D55RnP1UnqI1oV0bUwSjNcWbPUnEQ8eltOjW3OblatuS7OdUdoG+hxa+FklS+1bbHyZ/C3pNDR/z6lWw+Z3S1ZSPtc+H9y27uzQ1LPgLzPp6+nFV3Ypfi6TSqSpAMNr038CA4/JfR5IkSZIkSZIkSZIkSZIkSZKkTsZgNEmSJHVMoy4q/JodIRgtnkEw2oBj8tujz8HQ77Dc5g48HnpMatkWrYExn8xsfk3f8L5tS2Dn5tzq6sxSve4jVcXZs9cU6HfEHntFYexnirOfylNFbsFoseZZaN3H57Z30+bSBsZkErayp9GfhMq6wtciSeoYDvtr6v67xpamjnytezm8b/1rxd9/8e3w7EcyG1tpMJrUoVTnGYw2+NTgs4xIpDD1SJIkSZIkSZIkSZIkSZIkSZLUiRiMJkmSpI4p1zCcVDpCMFoilrq/y0g45iGY8gOo6p79+v2PgmMfzP3G32gVHP84jL4k+Dsc/AE45n7od2hm89OFEWyel1tdnVmqML1oZXH2jETg6Hth3Gehx0QYeCIceQcMObU4+6k8RatDuzbGwoPRmmKJ3U/6HQFVOQYa3DUWEon04/K14Y3U/X2mw4QvwJTrguDJ3gfAlO/D/j8qfm2SpPar+7j058ZrXypNLflY+2J4X+Oa4u0ba4QXPgVPnpX5nCqD0aQOJd9gtNEXF6YOSZIkSZIkSZIkSZIkSZIkSZI6oSLdxS5JkiR1QPEdbV1B/hIpQq4ilbDf9yBaARO/AGM+Cf/old36R9yWfyBATR846He5zU0XyLb4Vti5CbqOhi7Dctujs0mkCASMVBVv36qucMAvire+yl+0JrRra6xLaF/zXDQqqmHK9+DFz7Rct/f+sObZ9DXMux7GXZZBsXlY9I/wvn2/Cft+fffziVcXtxZJUscy7jJ46wfh/cvvhz4HlK6eTDWshK0LoKYfbHorfFwxg9Fe+iy8m+U1SWXX4tQiqW3UDsx97oBjYfCMwtUiSZIkSZIkSZIkSZIkSZIkSVInYzCaJEmSlKl4ioCo9iIRC+874Unoe/Du51U9sl+/OssgtVJ787vBA2D0JXDgfwdBcAoXTxGmF/WSUkVUER6MFk9EQ/ua9jzMjf00dN8bltwBlfUw/FzoNQWW3Q+vfQk2vB5ew0uXQ91gGHZmlsVnYcVD4X1Di7ivJKnjG/Xx1MFoM78W/I4cfk7pakolkYC3fwWv/L/Ugc67FCsYbecWeO9/s58X8dxY6lAGnRC8r/c8HtUNgpEfgZ0b4Z3ftp4XqYSj7w1CmiVJkiRJkiRJkiRJkiRJkiRJUk7C7ySWJEmS2rsJVxd2vQ0zC7teWwgLGOg6pmUoGkAkAt3HZ7d+JJJbXYWUaZDQu/8ThC689QOY+wvYurC4dbVXqUIpDH9QMUXDgwRiVT3D++JJGgccDdN+CvtdG4SiAQw+GWa8Bqe8lrqOJ8+ChpXp683VlvnJ22v6Qa/JxdtXktTxdR8P036ResxT58JLV8DG2aWpKZUFN8DLn80sFA2KF4y2aQ7Etmc3p6IOuo4qTj2S2kZ1LzjkxpbXvX0PhQ/MhqnXwfTfwGF/g2izQOfeB8CZS1KGPEuSJEmSJEmSJEmSJEmSJEmSpPQMRpMkSVLHNewcoIBBXfP/AItvL9x6bSERS94eDQm4GnFh8WoplhEXZD727V/Ca1+Clz8H906B1U8Xr672Kr4zvC9aVbo61PlEw8MEYtGuoX1NyYLRUum1Hww/L/WY5fdnuWiG4jthe0jo2iE3FmdPSVLnMv6zMO6K1GPe/iXcNxUW/7M0NSUz/0Z47uPZzWlcC4lsf/FnYNOc7OcMOR0q6wpfi6S2NfICOGMhHPZXOOFpOP4xqO6xu3/Eh+D0d+HQm+G4R+GEp6BuQJuVK0mSJEmSJEmSJEmSJEmSJElSR2EwmiRJkjquvtPh0L9ATd+W7ZVdcg90eumy4tx8XyrxpuTtkZBgtElfgbGX7Q4o6rlf0JbM2Mvzr68QRnwIBhyb/bydG+DVqwtfT3uXCHnNQPjrRiqEivBgtHi0S2hfLJdD9MF/SN3fsCyHRVPY8h48fjr8tRpIJB9TP6Swe0qSOq8RaQJAAeKN8OTZEGssfj172rkpCCrOViIGT5wJa1/Mv4Y1z8EzH4F/nQTP/lv28w/6n/xrkFSe6gcHx9F+hyb/LKl+CIw8HwYcnfIaRpIkSZIkSZIkSZIkSZIkSZIkZc5gNEmSJHVsIy+As1fCmYvhgljw5zkbYcabUFHXcmzdEDjldeh/ZPh6DcthwxvFrbmYwkKuIhXJ26MVcOCv4NwNcNZymPEaTPrP4GfVXEUdjLm0sLXm4/Bbcpu35tkgsKi59hyEVwjxneF9uQYMSpmIVod2xaJ14X25vGUr6+Ho+8L7m7bksGiIhuVw1xhYelfqcXseZyVJylXfQ4JHJh4+qri1JLP0niCkOKe5dwU1r3429/2X3QcPHwnv/QVWPJj9/HFXQFXX3PeXJEmSJEmSJEmSJEmSJEmSJEmS1ILBaJIkSer4IlGoH7r7z2gFdB8LJz4Dg06GLnvBiAvg+Meg1+TWgWl7um8/eORY2PxuScovqEQseXu0MvW8ilqoGxh8XdkFTnoeRpwf/OwGfwCOfQR67VfYWvNR0yf3uXfuBbd0gyfPhbsnwl+r4b5psOKRwtXXnsRDwvQg/etGyke0JrQrFqkN7WvKNctw8MlAJHlfId//s74ZfizepaIWqnsVbk9JUucWicAxD2Q2du3zsHNTcevZ07J785sfa4C5P819/pyfpA4DTqeqW+5zJUmSJEmSJEmSJEmSJEmSJEmSJLViMJokSZI6r15T4Jj74Iz5cNhN0G1M0J4ijOf/rHwUHj4KmrYVt8ZCCwu5ilRkt079EDjs5uBnd/Td0O+Q/GsrtOHn5T63aQss/gdsmh0EGK1/BR4/HTbOKVx97UUiRUhEpKp0dajzqUgVjJaiL9dgNAgCH5NZ+zw0rs1j4ffFm+C9P6cfVzswCLGRJKlQqrrB6EsyG7vulcLvn0jAlgWw+mmIbW/Zt/nt/Ndf9Pfc61r1RH571/bPb74kSZIkSZIkSZIkSZIkSZIkSZKkFgxGkyRJkvZU0yezcQ1LYcUjxa2l0BKx5O2RytLWUQqjPlbY9WLbgrC0ziYsTA8g2gFfNyof0erQrkSKYLSmfILRKruG9839eR4Lv2/WNdC0Nf24vmUYNilJav8qu2U2blOBw4CbtsKTZ8Odo+Chw+G2gbDi4d39jWsKs08uIaZNWyC+I/24ab+Eqh7J+wadkv2+kiRJkiRJkiRJkiRJkiRJkiRJkkIZjCZJkiTtKdNgNIA3v1u8OoohERJy1REDrgadDL2mFnbNjW8Wdr32IOw1QwQiXlKqiKJVoV0xwoPRYnkFo3UJ73vj27DuVXjz+/DKlTD3v2DrwszX3rkF3rw2s7Ejzs98XUmSMlWVaTDa3MLu+9Z1sOT23c93boR/nQDLHgieFyoY7ZUrs5+T6d6jPgqH3AgVtS3b9/8pdB+b/b6SJEmSJEmSJEmSJEmSJEmSJEmSQnXA9ANJkiQpTzV9Mx+7Y23x6iiGRCx5e6SitHWUQiQCh94E90wo3JqL/g6H3Vy49dqD+M7k7SlCq6Rii0XrQ/ua8gpG65q6//79Wz6f+VU46m7of3j6te/dJ7Maeu4Lg0/JbKwkSdnINBht87zC7vveX5K3P3Yy7PUx2LmpMPssuAEO+VN2czIJRqvsBlXdYejpcPp8WPkoxLZD/6Og2+icSpUkSZIkSZIkSZIkSZIkSZIkSZIUzmA0SZIkaU/ZBKO1t3CoeFPy9kgHvTSo7lHY9RIxSCSC0LXOItHJXjMqH11HBcfjPQNLKuqJ1w4MnRbLKxitS3bjd26Eh4+A0+ZBtzHh4zbNha0L069XOxAOvbn9/W6RJLUPVd0zG7f+FXjuYpj/h+B5RT0c/ncYMiP5+KYGeOsHsOpxaNoctFV2gwFHw9jLYcu74XstuCHj8jPSuBZq+gTn7Av/Cgvf/7069jIYeFyS8RkEozUPlKsbBCMvLFy9kiRJkiRJkiRJkiRJkiRJkiRJklqJtnUBkiRJUtmp7p352Eg7C68JDbmqKG0dpVLVs/Brzvxq4dcsZ/GdydsNblKxRaIw5tOt20d/glgiPJivKZbHnpX1uc27ayxsfie8f/FtqefPeAPOWg5nLYOek3KrQZKkdKI1mY1rWL47FA0gtg0e/wAs+EvrsYkEPHoSvPFNWPUYrHs5eKx6DGZdA3eOKkDhWXjr+0FNs66BZy6EpXcFv4f/dTy8d3Pr8Y1r06/ZPBhNkiRJkiRJkiRJkiRJkiRJkiRJUtEZjCZJkiTtKRHPfGy0unh1FEMiJDEoEh4y1K5V1kHvA5L3jb08tzXn/ASaGnKvqb0JC9OLdtDXjMrL5G/BlOug5+Tgse83YdrPicUToVNi4V3pxUNe75m4ayw8cixsmd+6b9m94fNGXBCEodUNhEgk9/0lSUpn5+b85r/5ndZtS++G1U+Gz2nKc8/m6galHzP7R/C3GnjjW637nrkQmra1bGtck37NSoPRJEmSJEmSJEmSJEmSJEmSJEmSpFIyGE2SJEnaU++pmY+taGfBaGGhPx055Gryt1sH2E35ARz4X7mtF9sOKx/Nv672Yvvq5O2RqtLWoc4pEoGJV8OM14PHvl+HSJQUuWg0heQ/ZiSWZ+jhykfhocMh1tiyfcf68DlDz8xvT0mSMtVnen7zN81pGSy2fRXM/Gp+a2ZjwPGZjYvvDO+7b0rL51sXpl+vymA0SZIkSZIkSZIkSZIkSZIkSZIkqZQMRpMkSZL21GUv6D4hs7HtLRwqEZIYFKkobR2lNPhkOOFpGHcFjP0MHHUPTPxCfms2rilMbeUskYC3roOXLk/e35HD9FT2YvHc+tKKFOBjkoblsPjW3c8TCdi2OHz84Bn57ylJUiZ67w81ffJbY1cw2qxvwe1DYcPM/OvKVEU1jL44vzU2z4N1L+9+vmlu+jlh11CSJEmSJEmSJEmSJEmSJEmSJEmSisJgNEmSJGlPkQgc/MfMxkbbWzBaU/L2SAcPuepzABzwczjw1zCkWQjRpC/ntl5Vt8LUVc5WPQ6vfTG8v72FAqpDSRV+1pRPMNrQM/KY3MwzH4YXL4d7JsF9+8HOTcnHjb0cqroWZk9JktKJVsKhN0G0Jvc1Yg2w/EGY9Q2I7yxcbZmIVsO+10DPffNb5/4DYO2Lwdeb5qQfv3NzfvtJkiRJkiRJkiRJkiRJkiRJkiRJyorBaJIkSVIyfQ+Cg29IP669BYolYsnbIxWlraNcDD8XiGQ/L58wifbivb+k7o+2s9e+OpR4IrwvVWhaWt0nQI+JeSzQzLxfw8a3YMOs8DGTv1mYvSRJytSgE+HMRXDIjTD+89nPjzXAnJ8Uvq5MRKuhfiic+BwcfV9+az0wHWZ9C7a+l35sWMCpJEmSJEmSJEmSJEmSJEmSJEmSpKIwGE2SJEkK031c+jGJncWvo7mdW2D2j+DxM+DFy2DbkuzmJ5qSt3fWkKteU+DQm6CqR3bz4juKU085efd/Uve3t1BAdSipws+a8glGi0Tg6HuDY0Ox1fSDmj7F30eSpD3V9oe9/g2Gn5P93LvHw/IHCl9TJqJVwZ+V9TD4ZOi+d37rzfoGkCJtdZemLfntI0mSJEn/n737jo/sru+F/zmSthfvet3WvdtUY7BxsE1wgiFwSR5aKAkhIaSQkEuAkHvTHi6hPJc0SCMJISEO3HATjAOEJJRQQzHFlBgwLtjGhV23NdtXqzbn+UO7rHZ2yhlpRpqR3u/XSy/p/OpXs6NBZ/DvIwAAAAAAAAAAAKAjTrIDAEAzK45pP2Zqf+/rOKisJf/5o8n9/3mo7c53J0+5Lll7ZrU1ak2C0ZZyyNXpz09OfU7yzdcn33xttTmLPRitrBAQcTCYAhbAVIunaKvQtErWnJY89WvJ3ruT5Ucly9YnYw8me++cDpIZWp6MrEtu+N/JDW+Y/T5zDXMBgLkaXr3QFXRmaPnh16tOTHbd1Pt9T3567/cAAAAAAAAAAAAAAAAAvm8Jpx8sbUVRnJ/kgiQnJ1mVZH+S+5PcmuT6siz3zmHtZUkuS3Jqks1J9iTZmuRrZVneMbfKAQDmUb8Fo9159eGhaEky/r3klr9IHv2mamuUU43bi+G51TbohoaTs168OIPRtnww+fqrk313Jkc9LHns3ybrz2k959a/br/uUg7TY8G1Cj+bczDaQWtOOfT1ik3THzNd8Ppk5fHJV142u/VPeOLsawOAbhgZ8GC0NafNz76n/9T87AMAAAAAAAAAAAAAAAAkEYy2pBRFsSHJy5O8ONOhZc1MFUXxX0muKcvy9zpY/9gkr03yvCRHNxlzbZI3l2X5z5ULBwBYKMuOmj583yoEaz6D0W76o8bt932i+hrlZOP2IbcGWXNqcvYvJbe+tf3YQQlG23FD8plnJLWJ6ev7P5185LHJ0+9Ilh/VeM5d1yTX/XL7tZdv7FqZ0Kla2byva8FoVZz335PxB5Nv/G7nc89+SdfLAYCODC9wMNrQiung0dGtFccvO/z6tJ9Ibr+q+3XNdOLTkmMu7e0eAAAAAAAAAAAAAAAAwGGkHywRRVE8J8lfJdlUYfhwksckOTlJpWC0oiiemuTvkxzXZuilSS4tiuJdSV5SluXeKusDACyIokiOvijZdm3zMfMVjFaWyfe+0rhv+391sM5U4/ZiuPOaFqOL/zI59tLk1rclD3y2+bhBCUb7xv86FIp20MSO5O5rkrN+7vD22kTyhRcnd/xDtbVPeGJ3aoRZaBV+NtnkZa5nHvGaZMMjky0fSEbvTfbekey6qfWci96SrDphXsoDgKZGFjAY7bxXJme8INl4YXL7O5L7Pp6sPnX6d/AHPtN4ztDyw6+PvyJZd26y+5bu13faTyTHPT458+eSIfdKAAAAAAAAAAAAAAAAMJ8Eoy0BRVG8JsnvNui6K8ktSR5IsjLJ5iSPSLKmw/WvSPL+JDNPppVJvprk9iQbklyY5JgZ/S9Isr4oimeUZdniSDsAwAI78amtg9Fq8xSMNrGrdf/4zmT5Ue3XqU02bi/cGiSZDsM744XJKc9OrtlwZKjYQYMQjDa5L7n7vY37vvjzyfE/lKw9M9lze7L1w8mXf6X62sc/MTnv5d2pE2ahVTDaVK2cv0IOOuWZ0x8H3fKXyVdf0fg15PQXJOe8dP5qA4BmhhcoGO2kH0se8+ZD12f97PRHknzpl5sHoxXLDr8eWpZc8vbkY4/vbn2P+r3kob/R3TUBAAAAAAAAAAAAAACAyqQfLHJFUbwqR4ai/WOSN5Zl+Y0G44eSPC7Js5P8SIX1T07y3hweiva5JL9QluWNM8atSPKSJH+U5OAJth9L8oYkv13x2wEAmH8rT2jdPzUPwWhTY8kn2/xqtvfOZPkj269VNglGG3JrcJiR1cnmpyZbPtC4fxCC0T799Nb9HzgrOfNFyZ1XJ1P7qq/7xE8lx146HUQBC6RV9tnUAuSiHeHclyabn5w8cG0ytTcZWj4dcHn0Rcmxl0+HMALAQhteuTD7nvEzzfuGV7ToW35k23GXJz++I7n9quSrr5x7bUmy6sTurAMAAAAAAAAAAAAAAADMivSDRawoiguS/N6MpokkP1mW5TXN5pRlWct0sNnniqKo8vx4bZKNM66vTXJlWZaHJYSUZTmW5M+KorgryftmdP1aURR/XZblnRX2AgCYfyOrW/ePbUsm9iTL1vauhruuTh78Yusxe+9INlYJRptq3F4Md1zWovcDVyX/vKlx33wE4s3F/geSez/Wftztf9/Zuhe/NTn+CbMqCbppqta8b7LJy9y8W3f29AcA9KuiSDY8ItlxxN/PSIqhpGzxP7j1hpYnx12R3Psf7cee8szW63Tat/yo5PxXJJsuST56afv921m1ee5rAAAAAAAAAAAAAAAAALM2tNAF0BsHQs3+LoeH372kVShavbIsJ9vscU6Sn5nRNJ7kRfWhaHVrvj/JO2Y0rUjymqo1AQDMu+E2wWhJ8h+XJJOjSVn2poab/qT9mL0Vc2ZrTX7Fq5SJu8SsODo5rkkI2NdfPb+1dKpKKFqnVhybnPHC7q8Ls9AqGK1VHwBQ56xfPLJt81Or3QfN9OM7kkf8r/bjHvI/p0PXmhle2byvWNZ67WMuSTY+qn0N7aw6ae5rAAAAAAAAAAAAAAAAALMmGG3xek6SR8+4/nhZlld1eY+fTDI84/q9ZVl+u8K836+7fm5RFC1OvAEALKCRCoEAO7+VXL06uWZD8pnnJPvv724N27/afsyDX2w/Zu9dyX0fb9xXDDduX+qGljfv6/a/czftv7e76534o8lTrqv28wDzoNYih3JSMBoAVHfef08uekuy4YJk9anJ2b+UPP6aZHJP9TVWn5qMrEo2Xth+7KrNbfpPbN7X6nfzZDpw7Yc/lpz+wmTlCcnRFyWX/mPyzK3Jyc9IVh7fvr7Vpybrzm0/DgAAAAAAAAAAAAAAAOiZkYUugJ55Sd31/+7BHs+su64UvFaW5Y1FUXwxySUHmtYkeXKSD3SxNgCA7hheVX3sxK7k7muSB7+UPP070wfz56o2UW3cHe9KfuAdyVCTgLOpseSjlzWfX7g1aKhV+MKd707Oe1nr+VNjyc4bkvXnz2+o2Ni2ua9x/quSR//R3NeBHphqEX7Wqg8AaODcX5n+mKuR1cmKY5OxB5qPaReMtv785n2Tu9vXsGJTcuk7j2z/wfcd2faddyWf/6kZDUXyiP/V/J4KAAAAAAAAAAAAAAAAmBddSGqg3xRFcXaSJ8xouiPJJ7u8xwlJLpjRNJnkcx0s8am666fOtSYAgJ6YTZjVvruS9x6XTI3Pff89d1Qf+8Bnmvdt+UCy77vN+x3+b6Js3rX71tZTb39ncs2G5MOPSa7ZmNz4pu6W1spcg9Eu/b/JhX/YnVqgB1qFn00KRgOAhfO4BqFkM7UNRjuved/UaOf1tHLGC5InfyE582eTc34leeInkrN+rrt7AAAAAAAAAAAAAAAAAB0bWegC6Ikfqrv+eFmWLRIdZuXhdddfL8tybwfzr627ftgc6wEA6I3hWQSjJcnYg8k3X59c8Pq57T92fz91sfoAACAASURBVPWxD3wuOf6Kxn0PXtd67u7bqu+zlLQKX2gVmrf9+uQLP3PoujaefO3Xkw2PSDY/uXv1zbTzW8k9H03Gv5fc+rbZr/OI1yWn/0T36oIemGpxh9sqNA0AqOiclybf/svO522of9u4ztqzWvevPCFZtiGZ2HFk37GXd15PO8dcMv0BAAAAAAAAAAAAAAAA9I2hhS6Annhs3fXnk6SYdmVRFFcVRfGtoih2FkWxtyiKO4ui+FhRFL9ZFMXpFfd4aN31rR3WWJ+8Ub8eAEB/aBV+1c7d75n7/hO7q4/9+v+b7Pr2ke1lmdz4h63nHuXXsYYm9zXvG17VvO+772/cfvf75lZPM7f+bfLBRyZffUXyzdfNYaEiOeOnulYW9EqtRfjZxNT81QEAi9bJz6g+dt3Zh75efXJy/A83Hnfs45PVJ7VeqyiSs3/+yPY1pyUbH1W9JgAAAAAAAAAAAAAAAGBgCUZbnC6qu77xQODZx5J8NMmLkjwkyfokq5OcmuSJSd6Y5JaiKP6iKIp2CSBn113f1WGNd9ZdbyqKYmOHawAA9N7wHILR9twxHUrWiS3/nnz+RckXXpxs/Ugysauz+f92bvLZ5yYfvzL52v9Mdt+WbPtC+3nrz+9sn6ViapbBaN/43cbtt751TuU0tG9r8qVfSMoupEFdfnWy9oy5rwM9NtXipXX/xPzVAQCL1uYnJY9+c7X7oYf8+uHXj3tncvTFh7cd/Zjksn+qtvfDX5Oc+pxD1+vOSa74cFL4vzMAAAAAAAAAAAAAAABgKRhZ6ALoic1116uTXJfkmApzlyV5aZLHFUXxtLIs72kybkPd9f2dFFiW5Z6iKPYnWTmj+agk2ztZp15RFMclObbDaWfNZU8AYJEbmUMwWm0smdybLFtbbfy335pc98uHrm+/Kjn2ss73ves905/v+3jynXckx/5g6/HrzkmOe0Ln+ywFky2C0YaWzV8drbz/pO6s89y9c3u+wzyaqjXv2zs+f3UAwKJ2/iuTs38p2XNbsuvm5LM/fuSYtWclxz/x8LbVJyVP+dJ0UPS+u5PVpyRrT6++77K104G9Yw8mY9uSdecmRTGX7wQAAAAAAAAAAAAAAAAYIILRFqf60LKrcigUbW+Styb5UJLvJlmT5IIkL05y+Yw5Fyb556IonlCW5USDPerTPUZnUedoDg9GWzeLNeq9NMlrurAOAMC04VVzmz/+YLVgtLKWfOO1R7Y/8Lm57b///uTua5r3H/v45HF/Xz28bamZahGMdvOfJee/osGc/b2rp96DX57dvGIkSS0ZWZcc/0PJRW8RisZAqZXN+27tKLYbAGhpZFWy4eHTH497Z/L5nz7Ud8KVyQ+8Ixle3nju2tM7C0Srt2LT9AcAAAAAAAAAAAAAAACwpAhGW2SKoliRZEVd88kHPn8ryVPKsry7rv+rSa4qiuJVSf5oRvvjkvxGkjc02Ko+OWM26Q+jSTa2WBMAYOEVQ3ObP7YtWXNa+3EPfjnZf+/c9pqNJ316/vccJJMtgtH2fie57e+Ss158ePu1L+xtTTPd94nOxj/rvmTlcb2pBebRVK11/7uvq+V5F8/x9RsAONwZL5z+AAAAAAAAAAAAAAAAAOghp4QXn+Em7TvTOBTt+8qyfFOSP65rfmVRFFUCy8qK9c11DgDAYNm/rdq4sft7W0cjF75p/vccNGWb9KXb/vbw6/3bku++t/WcqfG51TTTDW+sPnb5xmTFsd3bGxZQu2C0t3/W7SYAAAAAAAAAAAAAAAAAAAwiwWiLTFmW+5I0OiL+5lahaDO8OtMhagcdneSpDcbtqbteVa3ClnPq15yNv0zy8A4/nt6FfQGAxWz9ebOfu++uauPKBQjxWX3S/O85aC78g9b92z5/+PWuG9uHqX38h5LRe+ZWV5LsvTuZ2FF9/KrNSVHMfV/oA7U2L5kfu3F+6gAAAAAAAAAAAAAAAAAAALpLMNritLdB2zurTCzLcm+S99Y1X9FgaF8Go5VleX9Zljd08pHktrnuCwAscqc+/8i25Ucnz96WXPL25NJ3JcvWN577pV9Mtn+9/R7l1NxqnI1VgtHaOrFRRnALE7vbj9l2bfLhxyQPXDu7mg667e2djT/uirntB31kqk3+IAAAAAAAAAAAAAAAAAAAMJhGFroAemJHknUzru8ry/KODuZ/IcnPzrh+SIMxO+uuj+1g/RRFsTZHBqPt6GQNAIB58/DfSfbcntzxD0nKZNWJyRM+kKzYlJz14ukxt7wl2fb5xvO/+PPJeS9Ptv57suKY5IyfTjZddPiYhQhGW3vm/O85aNaclgyvTKb2Nx9TlklRTH89WSEYLUlG70k+fkVy7suSYjjZe2dy/BXJWb+YDA1XW+Obr6027qCzfq6z8dDHBKMBAAAAAAAAAAAAAAAAAMDiJBhtcbolySkzru/pcP7WuutNDcZ8u+76tA73qB//vbIst3e4BgDA/Bhallz6zuQxfzwdaHXUQ5Ni6PAxI+saz02S712XfP6nDl3f9jfJE/41OeHKQ21To92tuZ2jHp6sPnF+9xxUpzw7ueNdzfvLyaRYNv31RMVgtCSpTSQ3vfnQ9V1XJ/d9Mrns3YeC1pr5+muq75Mkpz43OfrRnc2BPlYr24/5yA1lfuRhbX6WAAAAAAAAAAAAAAAAAACAvjLUfggD6Ia667EO59ePX9lgzI1112d3uMeZddff6nA+AMD8W7Ep2fDwI0PRkmRZi2C0elP7k088KXnfycmXXzZ9Pbm3e3VWsfnJ87vfIBta0bq/Nn7o68kOgtEaues9yc5vNu67+/3JBx+V/N8i+ebrmq/x1P9KHvNnydqzkpXHJee9Irn4r+ZWF/SZqVr7Ma9+f4VBAAAAAAAAAAAAAAAAAABAXxlZ6ALoia/XXW/ocH79+AcbjKlPa3hkURSry7LcV3GPy9qsBwAwWDoJRjtodEtyy1uSXTdPh1h14gfekdz8p8n2r3a+b5Ic9bDZzVuKhpa37p8aS0bWTH89sWvu+9329uQxf3J42z0fTT777KRsE/S04YJk44GP814291qgT1UJRvvynUmtVmZoqOh9QQAAAAAAAAAAAAAAAAAAQFcMLXQB9MSHkpQzrs8simJlB/MfXnf93foBZVnek8MD2EaSXN7BHlfUXX+og7kAAP1nZBbBaAfd+9Hk1rd2NmfFMclZL579nuvPm/3cpaacaN1fGzv09cTuue9370ePbLv1be1D0ZLkjJ+e+/4wAKbK9mOSZNue3tYBAAAAAAAAAAAAAAAAAAB0l2C0Ragsy61JPj+jaVmSJ3awxFPqrj/TZNz76q5/tsriRVGcn+SSGU17k/xHtdIAAPrUsjkEo83GimOSM180y8lFsv4h3axmcZscbd0/NSMYbbILwWg7v5WUdalPd19Tbe65L537/tDnyrI84kekmXt29rYWAAAAAAAAAAAAAAAAAACguwSjLV5X1V3/WpVJRVE8PsljZzTVknywyfB3JZmacf2soijOqbDNb9RdX12W5f4q9QEA9K1l6+d3v5XHJCNrkif8W+dzT3xasuLo7te0WE21CUarzQhGm2gTjHb0Y5Infbb9nl/8+aQ21X7cTFd+Jhle2dkcGEC1iqFoSbJ1R+/qAAAAAAAAAAAAAAAAAAAAuk8w2uJ1VZIbZ1z/cFEULcPRiqI4LkcGql1dluVtjcaXZfntJO+Y0bQ8yd8XRdE0jaEoiqcnedGMpvEkr21VFwDAQBhZN7/7Ld904POGzude8rbu1rLYtQtGm6oYjLb+/OTyq5NjL0tWbW695u1/l9z+9uTrr0k+/az2NT76T5LjLm8/DhaBqVr1sffs7CBFDQAAAAAAAAAAAAAAAAAAWHCC0Rapsiynkrw8ycwj428qiuJPi6LYWD++KIork3wuyVkzmrcn+e02W73mwLiDLk3ysaIozq9bf0VRFC9L8p66+W8qy/LONnsAAPS/opjf/Zatn/48vKqzeatPbh/KxeHaBaPVxg99Pf5g4zGnPjd52reStWdOXxfL2u/7pZck33xd8t33tR535ouT81/efj1YJGodZJ1t3dm7OgAAAAAAAAAAAAAAAAAAgO4bWegC6J2yLD9aFMXLk/z5jOZfTfLLRVF8IcmWJKuSPCrJaXXTx5P8RFmW32mzx3eLonhWko8kWX6g+bIk3yqK4itJbk9yVJJHJzm2bvq/JXl1x98YAEA/GmsSiNUrB4PYhld3Nq9dyBdHahuMNpbc9KfJ7X+X7Ph64zHH//Dh4XlDyxuPm43jfrB7a8EAmKq1H3PQPYLRAAAAAAAAAAAAAAAAAABgoAhGW+TKsnxLURRTSf4oycHUjGVJHt9i2n1JnlWW5bUV9/hUURTPTPL3ORR+ViS56MBHI/+Y5BfKspyqsgcAQN9bqHCqkQ6D0c791d7UsZid8uPJg19q3n/DG5Ot/956jfXnH3599i8k//Ubc68tSTb/SHfWgQHRSTDavTvL3hUCAAAAAAAAAAAAAAAAAAB03dBCF0DvlWX5V0kemeQfkuxuMfTeJL+b5LyqoWgz9vhgkocneWuS7S2GfiHJj5dl+ZNlWe7tZA8AgL626ZJkZN387LVs/aGvVx7X2dxTntXdWpaC057Xur9dKFqSrD+vbs3nz76emTY/NVl1QnfWggFR6yDrbOuO3tUBAAAAAAAAAAAAAAAAAAB038hCF8D8KMvytiQvLIpiVZLLkpyc5IQk40keSHJ9WZZfn+Me9yf55aIoXn5gj9MO7LE3yZYkXyvL8jtz2QMAoG8Nr0gu+Zvk2hck5VRv97rwTTP2XVl93kP+R3LUw7pfz2K35tTkgjcm1//W7OYv25CsPL7Bmv9fcv3vzK22i98yt/kwgKZq1cfes7N3dQAAAAAAAAAAAAAAAAAAAN0nGG2JKctyNMnHerzHeJJP9nIPAIC+dNrzko2PSr70S8n9n+rNHsOrk1OfXX384/852f3t5NjLk2MuTYqiN3Utdg/7zdkHox3/hMaP+8N+OznhSdPPl+1f7XzdTY9N1p45u5pggHUajFaWZQqvfQAAAAAAAAAAAAAAAAAAMBCGFroAAABYVNafl1zwht6svWx9cvl7kuUbq8855VnJQ38jOfYyoWhztfrk2c3b/NTmfZsuTp706WRoeefrPnSWQW0w4Gpl9bETU8n4ZO9qAQAAAAAAAAAAAAAAAAAAumtkoQsAAIBFZ/mmuc0fXp1c8W/JxguT5RuS0XuTfXcnRz08GVl15PgVxyZjDxzZvvqUudXB4WoTs5u37qzW/SNrkrVnJbturL7mpkuSk35sdvXAgCs7CEZLktGJZMWy3tQCAAAAAAAAAAAAAAAAAAB019BCFwAAAIvOimPaj9lwQfO+/3Z9cvwPTYeiJcmqE5JNFzcORUuSR76+cftDfr19HVQ3tm1281ad2H7MU75ScbEiOe0nk8vfnQwNz64eGHC1ToPRxntTBwAAAAAAAAAAAAAAAAAA0H2C0QAAoNuWb2w/5ke+lGx+yuFtw6un29ed3dl+pz03WXfO4W1rz0xOe35n69DapsfObt6qk9qPGVmVnPHTrccMrUh+Yiq57F3JmtNmVwssAh3momV0oidlAAAAAAAAAAAAAAAAAAAAPSAYDQAAum1oODnxv7UeM7w8+cF/SS54Y3Li05IzX5Q86TPJpos732/5xuRJ1yYP+R/JCVdOf77yM8nK42ZVPk0c/8Ozm7dsfbVxJz+jdf+KTUlRzK4GWERqtc7GC0YDAAAAAAAAAAAAAAAAAIDBMbLQBQAAwKL0qN9Ltn6wcd9RD5/+PLw8edhvdme/lcckF/5Bd9aisfNfOf1vuv1r1edseGT1MLPNT05SJCkb9y/fWH1fWMRqTX5Emhkd700dAAAAAAAAAAAAAAAAAABA9w0tdAEAALAobXhE8v/c1rjvlGfNby10x4pNyZX/2dmc03+q+tiRNcnGC5v3Lzuqs71hkeowFy2jEz0pAwAAAAAAAAAAAAAAAAAA6AHBaAAA0Ctrz0ye+KnDA61OeXbysN9asJKYo2Xrqo8982eTc3+ls/Wf8IHmfa1C02AJqdU6G79fMBoAAAD0jU/cVOZX/6mWX39PLV+8vdP4cwAAAAAAAAAAAABgKRhZ6AIAAGBRO/4JybPuT773lWT1ycmaUxa6IuZqeHUyta9x3+YfSR7x2mTVCcma0zpfe/VJybkvS27588Pbi+HkjJ/ufD1YhDo9Mj063pMyAAAAgA79zWdqecn/OXRn/+efKPPuXxzKMy4sFrAqAAAAAAAAAAAAAKDfDC10AQAAsOgNL0+OfZxQtMXiob/ZuH3FpuTyq5NjLpldKNpBj35Tct4rptdLkg2PSH7w/ckxj539mrCI1DpMRhud6DRKDQAAAOi2qVqZ33nf4ffoE1PJq/+ltkAVAQAAAAAAAAAAAAD9amShCwAAABgoZ/5McutfJaP3HGpb/5DkKdclI2vmvv7QsuQxf5w8+s3J1Ggysnrua8IiUuvwvPToRG/q6Gej42W270uOW5eMDBcLXQ4AAADkc7cm2/Yc2X7D1mTrjjInbnD/CgAAAAAAAAAAAABME4wGAADQiTWnJk/6XHLTHyc7vpFsujh56G92JxRtpqIQigYNlB2OHx3vSRl9648/Wsvr/q3MztFk81HJX79wKD/6SIfLAQAAWFh3Ptj8jn7XaHLihnksBgAAAAAAAAAAAADoa4LRAAAAOrX2jOSiP1voKmBJqnWYjDY60Zs6+tG/Xl/mVe859ADdszN53l/XcuPrhnLqJuFoAAAA9KepTlPQAQAAAAAAAAAAAIBFbWihCwAAAACoquw0GG28N3X0o2u+cuSDMzqR/OV/OmEOAADAwmp1Z7pvCd27AwAAAAAAAAAAAADtCUYDAAAABkat02C0id7U0Y+uu6Pxg/MHHxaMBgAAwMJqFXS+d2z+6gAAAAAAAAAAAAAA+p9gNAAAAGBgdBqMtm+8N3X0o5vubd63e79wNAAAABbO/hbB5YLRAAAAAAAAAAAAAICZBKMBAAAAA6PsMN9r+97e1NGP1qxo3reUHgcAAAD6z54W4WdLKdQcAAAAAAAAAAAAAGhPMBoAAAAwMGodBqNt29PhhAG2alnzvt0tDqADAABAr+1tEX62d3zp3LsDAAAAAAAAAAAAAO0JRgMAAAAGRtlxMFpv6uhHy0ea9+0anb86AAAAoN7eFoHdrfoAAAAAAAAAAAAAgKVHMBoAAAAwMGqC0ZoaLpr37d4/f3UAAABAvVbhZ/vG568OAAAAAAAAAAAAAKD/CUYDAAAABoZgtObGJpv37RKMBgAAwAJqFYzWqg8AAAAAAAAAAAAAWHoEowEAAAADo+wwGG3naDI+2eGkAdUqGG33/qXxGAAAANCf9o41vy/dOz6PhQAAAAAAAAAAAAAAfU8wGgAAADAwarPI93pwT/fr6Eetg9Hmrw4AAACot69F+FmrPgAAAAAAAAAAAABg6RGMBgAAAAyMchbBaDtGu19HvynLsmUw2i7BaAAAACygyVrzvomp+asDAAAAAAAAAAAAAOh/gtEAAACAgVGbTTDavu7X0W8mp1qHxu0WjAYAAMACanXPOikYDQAAAAAAAAAAAACYQTAaAAAAMDBaBaONNHmXYykEo41Ntu7fJRgNAACAPjVVW+gKAAAAAAAAAAAAAIB+IhgNAAAAGBhli2C0jWsat+8YbTFpkWgXjLZXMBoAAAALqNWd+aRgNAAAAAAAAAAAAABgBsFoAAAAwMCoNTlJXRTJhlWN+3bs6109/aJdMFq7fgAAAOilVkHnk1PzVwcAAAAAAAAAAAAA0P8EowEAAAADo9lB6qEi2bC6cd+O0d7V0y/aBZ/tn2hxAh0AAAB6rNVd6WSzFHQAAAAAAAAAAAAAYEkSjAYAAAAMjGZnpYskG1Y17tuxr2fl9I3xtsFo81MHAAAANNIs6DxJJqfmrw4AAAAAAAAAAAAAoP8JRgMAAAAGRrNgtKGhZMPqomHfUghGG2sXjNamHwAAAHqpVTDaLffNXx0AAAAAAAAAAAAAQP8TjAYAAAAMjGYHqYeK5KjVjft2jvaunn7RNhhtYn7qAAAAgE7dfF+ydUeL5DQAAAAAAAAAAAAAYEkRjAYAAAAMjFqTc9JFknUrG/ft3r/4D1ePtQk+E4wGAADAQmp3Z37NVxb/vTsAAAAAAAAAAAAAUI1gNAAAAGBgNDsmPTSUrG8ajNazcvrG+FTrfsFoAAAALKSyTe7ZK94tGA0AAAAAAAAAAAAAmCYYDQAAABgYtVrj9iLJuibBaLuWQDBas8flIMFoAAAALCSxZwAAAAAAAAAAAABAVYLRAAAAgIFRa3KSeqhoHoy2ewkEo021OWE+KhgNAACABVRKRgMAAAAAAAAAAAAAKhKMBgAAAAyMZueoh4aS9Us4GK1Wa92/XzAaAAAAC0gwGgAAAAAAAAAAAABQ1chCFwAAAABQVbMAsCLJupVFGkWn7VoCwWhTbQ6YD3ow2te/W+aNHyzzlbvKDBfJRacXef3Ti5x+TLHQpQEAAFCBXDQAAAAAAAAAAAAAoCrBaAAAAMDAaHaQeqhI1q1s3Dc+mYxPllk+snhDtJoFxh00WUsmp8qMDA/eY3DjPWUu//1a9owdarv5vjIfuaHMja8byqa1g/c9AQAAAAAAAAAAAAAAAADQ2NBCFwAAAABQVa1sHI1WFMn6JsFoSbJ7f48K6hNTzRLjZhib7H0dvfAXnywPC0U7aNue5E8/XuEbBwAAYME1uZ0HAAAAAAAAAAAAADiCYDQAAABgYNRqjduHimRdi2C0XYs9GK3J4zLT/one19EL197W/PT8e7/qZD0AAMAgcPcGAAAAAAAAAAAAAFQlGA0AAAAYGM0OUrcNRhvtSTl9o1a2P2I+iMFotVqZm+9t3v+te5Jv3+d4PQAAQL+rcNsKAAAAAAAAAAAAAJBEMBoAAAAVPbC7zJs/WsvvvK+WD33DaVYWRq3JU68okg2rms+7b1dv6ukXU7X2YwYxGO3u7clom7r/5XqvRwAAAP1OMBoAAAAAAAAAAAAAUNXIQhcAAABA/7vzwTKX/34tW3YcbCnziiuLvPm58raZX80OUg8VybKRIsetS+7ffWT/1p1lkqKntS2kZoFxM7ULGOtHtz/Qfsxnbinz60/ufS0AAADMXpVctInJMstGFu+9OwAAAAAAAAAAAABQjRPsAAAAtPWGfy9nhKJN+9OPl7n+7irHWqF7mgWAFQfOTZ+4oXH/lu29qadfTNXajxmf7H0d3bZvvP2Ym+7tfR0AAAD03iAGegMAAAAAAAAAAAAA3ScYDQAAgLY+d+uRaVRlmbzxQ4LRmF/NgtGGDgSjndQsGG1H4/bFotnjMtP4VO/r6LbJCoFvt29Lxie9FgEAAPSzssJtW5VwbAAAAAAAAAAAAABg8ROMBgAAQFs33du4/eovCyNifjU7SH0wGO3EDUXD/q07FvdzdapCgNj4ZO/r6LaJCmFuU7Xktgd6XwsAAACzV+WufHSi52UAAAAAAAAAAAAAAANAMBoAAAAwMGpNTlIXB/LQNh/VuH/bnt7U0y8WbzBatUC7Ox/scSEAAADMSbOg85l27+99HQAAAAAAAAAAAABA/xOMBgAAwJzs3l8tuAi6odlB6qEDwWhHrWrcv2esN/X0i2aBcTONT/W+jm6bqFjzlh1ehwAAAPqZYDQAAAAAAAAAAAAAoCrBaAAAALRUtjm5es/OeSoE0jwArDgQjLZ2ZeP+xX64eqrWfsz4ZO/r6LbJisFoW3f0tg4AAADmpkqc9a7RnpcBAAAAAAAAAAAAAAwAwWgAAAC0NNYmTOkegUTMo2Y5fUMHgtHWrWjcv9iD0ZoFxs00NlnlGHp/magYjLbF6xAAAEBfa5O7nyTZOTp4960AAAAAAAAAAAAAQPcJRgMAAKCl0fHW/ffsdGiV+dMsAOz7wWgri4b9e8Z6VFCfmKq1HzPeJuSwH1UNRrtnh9chAACAQbdrkYeaAwAAAAAAAAAAAADVCEYDAACgpdGJ1v337Z6fOiBpHoxWHMhDW7uicf/+iWRyavGGZ1UKRqsYMtZPqgajbdnR2zoAAACYmyp35ILRAAAAAAAAAAAAAIBEMBoAAABtjI637t81Oj91QJKUTU5SDx0IRlu3svnc3Yv4gHWzwLiZxid7X0e3TVYIfEuSrYLRAAAA+lqz+/mZvMcEAAAAAAAAAAAAACSC0QAAAGhjf5swpV2LOGyK/tMsAOxALlrLYLQ9Y10vp29MVQgQG5/qfR3dNlGx5vt2JxOTFU7ZAwAAsCAqBaN5jwkAAAAAAAAAAAAAiGA0AAAA2hgdb92/a3R+6oAkaXaOeujAOxxrVzSfu31f18vpG80C42YabxNy2I+qBqOV5XQ4GgAAAP2pSpS195gAAAAAAAAAAAAAgEQwGgAAAG2MTrTu371/fuqAJKnVGrcPFdOf161sPvcPP1LlGPZgmmryuMw0iMFokxW+r4O2bO9dHQAAAMxNWeGWfNfo4r1vBwAAAAAAAAAAAACqE4wGAABAS6PjrfsdWmU+1Zo83Q7komXNiqQoGo/5/G2L97na7HGZaWwAg9EmpqqP3bqzd3UAAAAwN1XuyHcJ3wcAAAAAAAAAAAAAIhgNAACANkYnWvc7tMp8anaQeujAOxxFUaRsMmjZcE9K6gtTtfZjxjsIGesXnQSjbduzeIPvAAAAloJdowtdAQAAAAAAAAAAAADQDwSjAQAA0NLoeOuwIcFozKdakwCwYsbXTzy/8Zgdi/iAdaVgtMne19FtnQWj9a4OAAAA5qZZiPlM3mMCAAAAAAAAAAAAABLBaAAAALSxv02Y0q5FHDZF/2l2jnpoRjLaK65s/HbHjn3dr6df1CocMB/EYLRJwWgAAACLQpVgtJ3eYwIAAAAAAAAAAAAAkowsdAEAAAD05I0k1wAAIABJREFUt7GJ1v279s9PHZA0DwAbmpGFtmF14zFjk8n+iTIrlxWNBwywqVr7MeMdhIz1i4kOan5QMBoAAEDfqpCL5j0mAIAOFEXx6CTnJDnpQNOWJLeUZfm1hasKAAAAAAAAAAC6QzAaAAAALTULojpo12hSlmWKYvGFTdF/ak0CwGY++5oFoyXJ9r3J5g1dLakvtPs5TZKJyd7X0W2THQWjVTlmDwAAwEIoK9yy7R1Lpmplhoe8xwQALJyiKM5McnGSiw58fnSSdTOG3FmW5ekLUFqKoliW5FVJfj7JWU3G3Jrkb5O8uSzLNn/+CAAAAAAAAAAA+pNgNAAAAFpqF7g0WUv2TySrls9PPSxtzZ6OM89Mb1jVfP6O0cUZjDbVJDBuprEBDEab6CAYbdue3tUBAADA3FSNst69v3XgOQBALxRFcUWS38p0GNrRC1tNY0VRnJPknzId1NbK2Ul+L8lziqJ4flmWt/a8OAAAAAAAAAAA6DLBaAAAALTULhgtSXaOCkZjfjR7PhYzg9FaHKDesa+79fSLKj+n45NVj6H3j8kKgW8HCUYDAAAYfLtGBaMBAAviUUmevNBFNFMUxQlJPprktLquW5PckKRI8rAkZ83oe0yS/yiK4gfKsrx/XgoFAAAAAAAAAIAuEYwGAABAS1MVgol27U9OOKr3tSx27/piLVdfV2aoSJ7/2CLPu3hooUvqO2WTbK+hGcFoq5cnI0ONQ7UWazBalZ/T8ane19FtE1PVw9wEowEAAPSvZvfz9XaO9rYOAIAOjSX5bg4PHJtXRVEMJXl/Dg9FuyfJi8qy/I+6sU9JclWSEw40nZHkfUVRXF6WVX8jAwAAAAAAAACAhScYDQAAgJZqFY5J7HJodc5+/8O1/NZ7Dz3Y/3J9ma07annlk4SjzdTs+TgzGK0oimxY3Tgo695dZZLiyI4BVyU/bP9E7+votokOwtx2jiYTk2WWjSy+f18AAIBBVzWGY9f+3tYBANDCRJIbknw5yXUHPn8jyWVJPrmAdb0gySUzrr+X5NKyLO+oH1iW5YeLorg0yVeSbDzQfGmS5yX5px7XCQAAAAAAAAAAXeN0NQAAAC1VCkZzaHVO9k+U+YMPH/lAv/FDZcYnK54cXiKaPR+Luiys0zc1Hnfzfd2tp1/Uau3H7BzAAMNOgtGS5Hv7elMHAAAAc1P13Q3h+wDAAnlHkvVlWV5YluUvlGX5trIsv1qW5YL+yZGiKIaTvLau+dcahaIdVJbld5L8Wl3zG4qi8N+KAgAAAAAAAAAwMPzHLgAAALRUJXDJodW5+dpdyfYGgU7b9iTf3DL/9fSzsslJ6qG6YLTzTygajrv5nsUZNDdV4dvaMYChYZMdBqNt29ObOuhvd2wrc/3dZXbsW5w/3wAAsBg0u5+vt2u/3+sBgPlXluX2siz78c8AXZ7kjBnXW5L8Q4V5/+fA2IPOSnJpF+sCAAAAAAAAAICeEowGAABAS7UK51EdWp2bm+9r/vjd0qJvKWr2fCzqctDOPaHxuJvu7W49/aJKgOGOAQwwnOg0GG13b+qgP9VqZX7pH2o5+3dqufD1tZz527X881e8ZgIAQD+q+pv6rn6MIwEAWDjPrLt+Z1mWbd85PzCmPkDtWV2rCgAAAAAAAAAAekwwGgAAAC1VCkYbwMClfnLr/c37bmnRtxSVTZ6PQ/XBaMc3Hnf39qRstsgAq/JzumPf4H3vHQej7elNHfSnq64t87ZPl99//u/Ylzznr2vZtnuwnucAALAUVL0d3ek9JgCAmZ5Sd/2pDubWj33qnCoBAAAAAAAAAIB5JBgNAACAlqoELjm0Oje3tQg/u/ne+atjEDR7PtYHo52ysWg4bt/44ny+1mrtx0xMJaPjva+lmzoPRhOItZT8ycca/3sf96rawIUAAgAA04TvAwBMK4piRZKz65q/0MES19Zdn1MUxfK5VQUAAAAAAAAAAPNDMBoAAAAtVQlG2ztgYUv9Zu948wf5pnuE+8zU7PlY1OWgnbih+RpbdnSvnn4xVfFpsmPADphPVgh8m2n7vt7UQf+588EyN2xt3v+l78xfLQAAQHtVs4t37e9tHQAAA+S8JMMzru8vy3JX1ckHxm6b0TSc5Nwu1QYAAAAAAAAAAD0lGA0AAICWahWCifaM9b6OxWxyqnnfzfcltSrpdEtEs4PUQ3XBaJuPar7Glu3dq6dfTFUMENsxYMFhEy1+NhoRjLZ0fHNL6/73/ZfXTQAA6CdVf0PfNWCB3gAAPXR23fVds1ijfs45s6wFAAAAAAAAAADm1chCFwAAAEB/m6pwcnWvYLQ5aRX+tG88uXt7ctqm+aunnzXLiCvqgtGWjxQ5bl1y/+4jx27ZUSYpjuwYYFXD83YO2AFzwWg0s2+8df/HvlUmz5qfWgAAgPaaBZ3X271fyDEAwAEb6q7vn8Ua9XNa/FmZ6oqiOC7JsR1OO6sbewMAAAAAAAAAsDQIRgMAAKClWq39GMFoczPZ5jG+Y5tgtIOaHaQeapBzdtKGxsFotz3Q3Zr6QZUAwyTZtb+3dXRbs2C04aFkqsHPzY69DtAvFeNtnvSjE/NUCAAAUEnVu7VBC/QGAOihtXXXs/lNqX7OulnWUu+lSV7TpbUAAAAAAAAAAOAIQwtdAAAAAP2tVuHk6t4xYURzMdkk/OmgLTs8vgc1ez42CkY75/gGjUluumfxPZ5VAgyTZGzAwqKa/WwcW38c7IAdDtAvGeOTrfvbva4CAADzq1nQeT3BaAAA31f/Tvhs/vRJ/W9XTd5dBwAAAAAAAACA/jKy0AUAAADQ36oFo/W+jsVsom0w2vzUMQiaPR+LBhlo55/QeOxN93avnn4xVfGA+f7JMknjwLh+1Oxn47j1yb27jmzfvq+39dA/xtoEo23ZkZRlmaLRiwMAwCzcen+Zj9xQZvlI8rRHFDlxg98zoBce2L3QFQAA9K3Z/NWXxfeXYgAAAAAAAAAAWBIEowEAANBSlWC0PYLR5mSy1rp/q2C07yubPB+HGmQSPGRz47Hfvj+ZnCozMrx4ggxqbZ5DB41N9LaObmsajLaucfv2vb2rhf4y3iYYbd/4dFDe0Wvmpx4AYHH71+vLPO9ttew/8Pv0xtVlPvKKoVx0+uK5p/j/2bvzODnqOv/j7+qZyT2TmyQT7isBRBQvZFlF8b5W8WQFj3VX/Hlf6wEKKKIoiAouIMqxIIeCgghyiBwLBJCbJCSTkJPMlbmnp+fsru/vj84wPTP1ra7q6e6p7n49Hw8e6a5vVfWn6/h2VZHvO0Ch2e7nJ2ruIeQYAABgj74J72fnsI6Jy0xcZ64ulnRjyGUOkvSXPH0+AAAAAAAAAAAAAAAAyhzBaAAAAAAAX0GC0RLDha+jnBGMFpztePQaLn3YCkfS5AVGUtKWNmnV8ryWNq1SAQeYD2UJk4oa27mxtNZ733b1F7YeRMewJTQv06ZW6ZgDC18LCuOxrUYX3WtkJL3jCOnkYxzCMQAA08J1jb5w3VgompS+7nztj125l1VNX2FAiQl426qhJCHHAAAAe0Q2GM0Ys1vS7jDL8GwPAAAAAAAAAAAAAAAAYcSmuwAAAAAAQLS5WUK7JKlvsPB1lLORLAE/Td1Bhw+XP9uWiMUmD6g5dJnkMVmStKE5fzVFQSrAeSppXJhDKbCdG0vmeU/vHkgHV6D8DQU4lhtaOBZK1V3rjV5/rqvr/ml0/T+NPnml0Xf+zP4EAEyPR7dJu7q8235yR8ALcQAyIS7nCIgHAACQJPVMeL80h3XsNeE9V1oAAAAAAAAAAAAAAAAoCQSjAQAAAAB8BckYSgwXvo5ylswSjNaRKE4dpcAW1OcVgDarxtEBS7zn31BmgUlBs8CGkoWtI99swWh71XpPN0bqJaixIgxn6TclaWNL4etA/hlj9KXrJ3f2F91r1B4vr74bAFAaHttq//05/WajFMG8QCBhzhSC0QAAACRJmye83y+HdUxcZuI6AQAAAAAAAAAAAAAAgEgiGA0AAAAA4CtlCaLK1DdU+DrKWTLLNm7vK04dpcCWOeB4BKNJ0mErvKfv7MxPPVER5DyVpMGRwtaRT8YYezBanX25rv7C1INoGQ4Q8tfYVfg6kH9P7ZRe2D15+uCI9PCW4tcDAEB/liDwtY3FqQModSZEMlpTD4GDo7a2GTW0EMIIAECFapCU+ZR8L8dxLP9syGSO49RJyvznY1IiGA0AAAAAAAAAAAAAAAAlgmA0AAAAAICvIOMuh5NSMsUAzVzZwp9GdSbEANg9bFshZglGW1bn3dBZZmFzQQ+PoQBhUlHh952WzrPscEndBKNVhOEs/aYkxQfpN0vRX56x77e1jexTAEDxZQsCb48Xpw6g1IUKRusuXB2lIj5o9JYLUjr4dFeHneHq8DNcPd/E9TAAAJXEGDMkaeI/FfD6EKs4dsL7zXvWCQAAAAAAAAAAAAAAAEQewWgAAAAAAF9BA5cSDKXIWTJLwI9rpK7mTpm7rpO56dcyL24uTmER5Lre020xWYvneU/vSJTXYOKUZbtMVErBaH6Bgbb9KkldBKNVhKGR7PPE+V0qSbc+a++ft7YVsRAAAPZoyxKqXErX2ECpaO6Z7gqm3xevM7p349j7zbulj13myoRJmAMAAOXgzgnvjw+x7MR575hSJQAAAAAAAAAAAAAAAEAREYwGAAAAAPAVNBitjwCanCUDhFq1f/WjMj/6tMyvviFzylEy/7ix8IWVkJjlCcfiud7TO7KEG5SaoOfpYIAwqajwC0abXSPVzvJu60oUph5Ey3CWQElJ6h0ofB3Ir94Bo+d22dsf304IBACg+Fq6/X9/yi10GSiUMGdKc5bzrtwZY3T72snbYF2T9OjWaSgIAABMp5snvD/FcZyqbAvtmefkLOsCAAAAAAAAAAAAAAAAIotgNAAAAACAr6CBS4nhwtZRzvwCoEa192Rs4FRK5rzPywxXXhqd7Xh0LPPbgtEaWvNSTmSkAoTrSdJQsrB15JPfeVFTJS2c493W1V/ZA+grxUiAYzk+WPg6kF8vdvm3r2+SGlqicY4/vt3o89e6+vClKf32QVfGRKMuAED+9We51y230GWgUMJcLjX1FK6OUjCSkjotod9XP8p1JwAAFeZBSdsy3u+tyYFnXk6WtDLj/RZJD+exLgAAAAAAAAAAAAAAAKCgCEYDAAAAAPhyAwYu9RFAk7NkgG3cVrXX+AmJXmn9Y4UpKMJsx6NjSUZbPM+7YXBE6imjAK2gAYbDJRSMlvQJRqv2DUYrTD2IluEAgZLxysuOLHmNWYLRJOmwMwJemBTQAw1GbzzP1aUPGP3pKenUa4w+f135/KYAAMbLdt3RYQkvAjBemKulHR0FK6Mk+IXIbdnNdScAAKXMcRwz4b/j/eY3xqQknTlh8gWO4+zv8xn7S/rFhMnfM8ZM/4M1AAAAAAAAAAAAAAAAICCC0QAAAAAAvvwGY2ZKDBe2jnLmFwA1qqlmxeSJax/JfzERZzscY5YnHIvm2td17p3lM5g4aIDh4Ehh68inEZ/zoqbKvm8JpqgMQyPZz984gZ0lp6knWL/81I7p7b9/dpc7qT+97P+MmrvL53cFADAmW7gw159AMEGfL0lSc4/UO1C511Z+4eebdxevDgAAKo3jOHs7jrP/xP8kLZ8wa7XXfHv+W1KA0q6VlPkv5SyStMZxnLd5fIe3S3pE0sKMyWsk/aEAdQEAAAAAAAAAAAAAAAAFQzAaAAAAAMCX32DMTImhwtZRzvwCoEY1VtdPnjhrdv6LiTjb8RhzvKevmG9f11+eKZ9B1qmAX2UoWTrfOVsw2mJbMFpfYeqpBMYYbWw2aukxMmFSC6bBcIB+Mz4ouUF/xBAJjV3B5rt/0/Tu1zvWTZ5mjHTZgxxvAFCOsl13dBOMBgQS9hajobUwdZQCv9uYlp7i1QEAQAV6SNI2j/+unzDfSst82ySdn++ijDGupA9I2pkxeYWkuxzH2eQ4zs2O49ziOM5mSXdqfJDbdkknmqg/8AUAAAAAAAAAAAAAAAAmIBgNAAAAAOAraKZMH8FoOXFdE2gbN1WvmDwx0Zv/giIu5XpPtwWjHbTUvq6NLVJjV3mMBXIt22WioZHC1pFP2YLRFs3z3uldifLYp8W2qdXo2HNdHX6mq/r/dvW+X7uR3pbDyWDzJYYLWwfyq7E72HwbWwpbR66eb5ruCgAAhZDtuiM+GN1rJiBKwp4pDS2Ve275xZYMBbwXAgAA5cUY0yzprZKentB0iKT3S/o3SQdPaHtK0luNMRUcOQsAAAAAAAAAAAAAAIBSRTAaAAAAAMCXLYhqosRQ+AGrfYNGtzxtdNG9rtbuqswBr0G3b2N1/aRpprstz9VEn2tJkbMFozmOo+v+09IoaUdnPqqafkEDDAdLaAB10ufcqI5Ji+d6t3UkClNPOXNdo89c5eqxbWPTbl8rfePG6PbLQYPR4oOFrQP5tWV3sGNuU0RDMoaT0awLADA1foG9khQnJBwoiLb4dFcwfYLe4wMAgMpijNkk6XWSvitpq8+sW/bMc4wx5oVi1AYAAAAAAAAAAAAAAADkW/V0FwAAAAAAiLaggzH7Qg4Gb+01escvXT27a3SK0S8+6ugrJ1RWhne2QfajmmtWTJ7Y3ZHfYkqA7Xi0BaNJ0kdf4+jff+e9YHuZDLQOep4OjRS2jnzyOzdqqqTF87zbOvoKU085e2Sr9PCWydNvetLo0pONZlT7nGDTZChgMFrvgFS/oLC1IH8aWoPNtyngfIVgC+iUgh+XAIDSki2QtY8gViAQEzLsKzFcmDpKQdhtBQAA8sMYs38RPmNKD1uNMSOSzpV0ruM4r5J0qKTRf1mnSdImY8yTU6sSAAAAAAAAAAAAAAAAmH4EowEAAAAAfPkFgGRKhAxG++mdJiMULe0bfzT66KuNls+PXghPoSTdYPN1xzySfXra81tMCbAdjlU+eXqO42jvhdKurslt7X1GUukfb4GD0UootCdrMNpc77aORGHqKWcX/sP7AOobktr7ohksNhwwVLKlV1rtkSuJ6EkMGe3sDDZva1waSRrVTENon1/fFPS4BACUlmz9ezzkvTBQqcJmfYV9zlROgt7jAwCAyrYnAI0QNAAAAAAAAAAAAAAAAJQln2HDAAAAAAAEH4zZF3LA6m8emLxi10i3PFNZoz/9AlYyxWPzJk/sastvMSXAdjzGsmTjLPHYfFI69KkcBD1PB0cKW0c+ZQ1Gm+e909v7JGMqqx+Zqq3t9u3VEdFzZDhgyF9TN8dCqdi8O/i8xqRD76aDXzjOUAn1sQCA4LJdd8QHi1MHUOpst2nVlr+xEPY5UzkhGA0AAAAAAAAAAAAAAAAAAACVjmA0AAAAAICvoIMxE8Ph1jtgCQ+56uHKGv2ZdIPNF6+qk6sJQVAdzfkvKOKswWhZnnAstQSjbQoRxBNlbsDjyHbeRVHSJ3yoOibtVevdNpKSOhOFqalc1VTZ26IaHjgUMBitsbuwdSB/NjaH+/2frn3rF47jF5oGAChd2fp3gtGAYGzBaPNmeU9PVHAwWras72Sqsp6dAQAAAAAAAAAAAAAAAAAAoPIQjAYAAAAA8BU0GK1nIPg6E0P2lWYLuCo3fuFPEyVic8dP6OmQGa6skcK2ALCY4z191JJa7xmueMjIZBtxXAKCnqf9IQMMp9OIXzBalbRivr29uSf/9ZSzlE+wXkdEQ+b8wqkyNRGMVjIaWsPNP1371q9vCnpcAgBKi1/fL6WvsVNBL8iBCmY7S+bN9J5eSvev+ZatS6nk0DgAAAAAAAAAAAAAAAAAAABUhgobbg4AAAAACCvo+O7OvuADwVt77W1VWQKuyk22QfaZemN1kye2N+WvmBJgOx6zBaMtnmdve3Bz7vVERdDztJQGT9vOjeqY5DiOlnmcDqMIRgtnwCdwoD1E315MwwH7ToLRSsemkMFojd3Tc2z6hZ8NEYwGAGXHGBMo+LKUrrOBqKmd5T29bzCa9yLFkO2bV3JoHAAAAAAAAAAAAAAAAAAAACoDwWgAAAAAAF+uG2y+tnjwdfoGo1XYnWoy4PaVpHjMI92rvTl/xZSAXIPRDlhsbzvr1hA7IaKCBqOV0uBp27lRXZX+c0a1oyWWwLvmnsodQJ+LQZ+wj/a+4tURRpCAEklqi3MslIqOkCF8nYkCFZKFXygfwWgAUH6SAcNY44OFrQMoB8ZyuTdvpvf0RAndv+ZbtmdxlbxtAAAAAAAAAAAAAAAAAAAAUBkqbLg5AAAAACCsoIFLYcJzdvuEqFVaqEjQgfaSFI/VTp64e1f+iikBuQajfeCV9hnu3ySdWeLhaEHP06QrjSRLIyhqxHJu1FSNvV4x33ue5p7811POBnwG1XdENBgt6G9FxzSFZyG8sL//0xVAY+ubpOCBfQCA0uEXiJmJYDQgO9udqDUYbahgpURetnv8St42AAAAAAAAAAAAAAAAAAAAqAwEowEAAAAAfKUC5kW1hQjPae21j/CstBAbv4CViXq9gtEat+SvmBJgDUbL8oRj/yWO3neUvf3s24ye3lkagWFe3BC5bv0+IVhRYut7qjP29fI673nCBDVCGhyxt0U1GC1oAFWl/aaUMr/j0Mt0BdD4HXuN3dLQSOn+lgAAJgt6zVEq19jAdDKWyyRbMFpfBYd/ZbuiTNDnAAAAAAAAAAAAAAAAAAAAoMwRjAYAAAAA8GULopqoq19KpoLN3Nprb9veLnX3V06oSDJEoFWfRzCaeXFzHquJPlsAWMzJvuxZ7/N/DPK/j5TucRf0PJVKJ7TB9p2cjH29pNZ7x0c1zCuqBn0CPzoS0TsvjDEaDhgq2dGXnh/RNxQweGbUtAWjZTn2TrzE5ZgDgDISNMh6IGTAJ1CJrMFos7zv6xIVHIyWLfy8krcNAAAAAAAAAAAAAAAAAAAAKgPBaAAAAAAAX0EDl4xJh6MFsTtub0u60h3rSj9Q5KkdRm8+P6W6L6W077dT+uofXA0MT/5eYYLReqsmB6Op0oLRLIdGkGC0Q/fyb7/k/tI97lIhjqPSCUbz3h+Z+3rxPO9l2/tKd18WmzFGAz7HRHsEQ+ZSrj1UYaKhZOkc85XOFoxWU+U9PT44Ped5toCcO9ZJtzxTnFoAAIUXNIyV6w0gO9vV29yZ3tMTFXxeZbvS9buHAwAAAAAAAAAAAAAAAAAAAMoBwWgAAAAAAF9Bg9EkqTMRbL7dvf7tv7zHyARNvYmghhajV5/j6v5NUt+QtKtLuvAfRp+9ZvJ3yhawkqmjatHkic3bc66zFE0lGG3OTEf7Lba3j6SkxFBpHndhztNSCW2wdQGZ+3qJJRitI4JhXlGVTPkfP1EMRrMFaNlwPJSGoRHv6Us9MkElKT5YuFr8DAc4/s66NURaJQAg0oL0+xIhRUAQtnu82lne03sGpFSYm90yku1r93sE7wMAAAAAAAAAAAAAAAAAAADlhGA0AAAAAICvMGNQE0PB5rvxSf+VPr5detlZrja3ltZAT9c1+tZNrg47wzsQ5drHjLbsHv+dkiGC0Zqrl0+e2N0mkwyZElTCphKMJkn/9gr/GZ/cEbKgiCjHYLQg+9oWjBbFMK+oGrCEUY2KYqhY0ICSUS1ZwjgRDbbAO9t5HuVgtLWNKumAVwDAmKDXHYQUAblbMd97esqV2uLFrSUq3Cw5u6VyXw8AAAAAAAAAAAAAAAAAAADkimA0AAAAAICvbIMxMyWyDMw0xui6x4KtcEOztOr7rjY0l84A8yseNjr/bv96b3lmQjBaiO3bXL1i8kRjpK7W4CspcSnL9ooFfMLxrbc7OsxjM456z0UhdkiEVFQwWsa+XjzXex6C0YIbzBKM1jsoDSej1Q8PhwiUlKT7GqJVP8Zbu8vo8odcNXZ7t1uD0QKGsebbSMDjL4qhggCA8IJed2QLmwUg2a7K915gX6bJco1Y7rLdwZTKfT0AAAAAAAAAAAAAAAAAAACQK4LRAAAAAAC+wgQuJXxCSgaGjT7yG1cnXx4uoOaIM11dfH9phFVd/Uj273bfxvHzBA1YkaQmr2A0SWpvDr6SEmcNy3KCLV+/wNGj37U/DukbkoZGSi9EqSyD0WwheBn7esk87x3f1R+9MK+oyhaMJkmdicLXEcZwMtz8D23mWIiqs29zddQPXf3X1fZ9tNRynvcOFKoqf0EDcpp6ClsHAKA4gt6vlco1NjCdjOWSb2mto2rLbbotPLfcZbvHp88BAAAAAAAAAAAAAAAAAABAuSMYDQAAAADgK0zg0ieucPWPDd4L/PEJoz89lVsNX7zOTAoUixpjjNY2Zp9vQ8v498lQwWj13g0dBKMFDUaTpNpZjt59pL39hbZwNRWKMUa/f9TVKZe7+u+bXD3fZD8HbCFiXkplAHWQfb1ivn35LRHZj1E3ECAYrb2v8HWEMRQyGK0tXpg6MDVP7zT6wV+z/7Yvnuc9PT6Y54ICChq62NhV4EIAAEURNJA1yDUVAG9VMfu9XVN3tJ8FFYotRG4UfQ4AAAAAAAAAAAAAAAAAAADKHcFoAAAAAABfqRCBS+190tt+6eqKhyYvdNOTUxvMesIFrh7fHt0Bsa29Us9A9vm2d0iDI2PfIxli+zZVr/Bu6Gjxnl6GbAFgYYLRJOnrb7U/EtkQkZy5L11v9IkrjK59zOjndxsd8xNXj271PgfCBBgmhqN7HmUKEox20FL7vt9YOafFlAyWYDBa0ICSUfGhwtSBqblyjQnUdy2t9Z4+MCL1DhS/PxsJGGjaWKEhHgBQboJed5RK+DAwXUyWpK+VC72nN/cUoJgSkO06mT4HAAAAAAAAAAAAAAAAAAAA5Y5gNAAAAACArzCBS5JkjHTGrUbJ1PgFb1879Vq+9ocQKWJ50Dtg9L1bXB10WkqvPSflGfg2KmgIkzHSptax90EDViSpr6pW8di8yetsj0iSVxEECcsK4k2r7Qtc7rN+Ln3tAAAgAElEQVSfi+XFTqOL7x//ZfuGpGPPdT0HlIc5T+ODU62uOGzfycnYdTNrHB241Hu+jS2EEgUxECAYrSNqwWgh+k2pdI75SvO7B4Odo4cus7c9uytPxYQQNCCnqUJDPACg3AS9zh4gpAjw5ZeL5khaOvlRhySpO0AAfTkiGA0AAAAAAAAAAAAAAAAAAACVjmA0AAAAAICvsMFoktTULW0ImdV1w2ezJ1ut2ZIOjCqWL11v9OO/GW1rl57YIf3n1Ub/c593aNa29uB1vdg59npigFw2TdUrJk/sIBitKocnHO9/hff0u9ZLm1unN1Tr7uftn//zv1d2MNrEELxVltCkrW35radcDQUIRmvvi1bIXJCaM/VWaJhClCWGjAYD7sdDlzlaMMe77amdxT82gwbzbaMPAoCyEPQ6m5AiwJ/fqeQ40oI53s+EevoLU0/U+QXJSfQ5AAAAAAAAAAAAAAAAAAAAKH8EowEAAAAAfOUSjCZJG1rGFhwY9l/J8jrpA69w9LbDs693v++42t1b+CCUZ180uubRyZ9z8f3en93YHXzdPQNj60h656xZNVbXT57YTjDaxLCsIFavsC+06vuu3FwP/jy453l722l/NjITRkmHKbW3VILRLOfGxH2972Lv/djcHa0wr6gKcux0JApfRxhBg6lG9Q1p0jmD6dUU4jdzdo109L7ebU/vzE89YYwEPP4apjlgEwCQH0EvIQZCBrcCGOM4Ut1s77bu/sq8psp2nzZAMBoAAAAAAAAAAAAAAAAAAADKHMFoAAAAAABftnCibDZkZHWdfbv/iM6LToqpptrRrz4W01612dd9xJljoVWPbTW67jFX/9yW38Gyv7jHe30bmqX+ocltYUJeegbGXgcNWBnVXL1i8sSOlnArKWHWYLQcnnActty//bIHp28A9rxZ9rakK8Uzws2MMYEDG6Txy0aZ7StNDEZbucB7vjBhhZUsSDBae1/h6whjOBluftdI/QQHREqY38yZ1dIr9/UOQHxqR/H76aDHX0MLgXwAiqO7P30/dMvTRh199Dv5FnSLElIE+PO7LHIkLZjj3dY94D293GW7jMz2DxAAAAAAAAAAAAAAAAAAAAAApa56ugsAAAAAAERbkNAcL5tax17f9qx9JU+cHtPR+6UDT1Ytd7T5nJhe/SNXm3fb192RkI7+kasj6h1d/8/RdRt95jhHl53iyHG8A1TCuHu9veaOhDRn5vhpTd3BN1TmwN5kyOC5Jq9gtKatMsmknOryv823BfVNDMsK4rAVjvyiDq591Ohzbwy/3nzoyxJe1pmQ6manX4fN3YmXyMDyoCF4tmC0pp781lOughw/HSUejCalAwHnzsw+H4qjqSd4xzWzRjp6X++2DS3ScNJoRvXUf/eDGg4YaNrVL7XFpb3qClsPgMr2xHajEy5w9wTfGtUvkG79wtj9FaYu6P1wPyFFgC/fYDRHWjDbu627vzD1RF22vofgZwAAAAAAAAAAAAAAAAAAAJS7WPZZAAAAAACVLNdgtBc7xxYc9AmxmThov3aWo3VnxfThV/kP5n9ulzJC0dIuf8io6lRXH/+dq9884CqVa/GShnxqbvcICWrqDr7unoxgqpGAASujmms8gtH6eqS1a8KtaAqM68rc9ye5554q99LvyXS0FO2zrWFZOWQ/HL5CmuGTJffwFsmETR3Lk2yhQV0Zg8PDHubxwdIIbQgagle/wHvnt8WloZHS+K7TKcjx0zMQre3o1z/b9GYJG0RxNYb4zZxZLR250vs8T7lSS5FDEFMhAk0bWrPPAwBTccrlo6FoaU3d0lduCJm8DF9BbwfiXGsAvrKdSgvmeE/vLpFg73wjGA0AAAAAAAAAAAAAAAAAAACVjmA0AAAAAICvXLPFMkNPeiwDWV9W7z29ptrRH06N6Ten5JB2pXRg2v+71ujDl7o5B1v5BZ94BaPt7Ay+7sztkQwZjNY0Y2/P6WbN7eFWNAXmZ/9P5ox/l26/Srr2PJlPHi2zY2NRPjufwWhzZjr6/PH+C976bPj15kO242lKwWhD4euZDkH39coF9nW09OavnnIV5PjpjVgYwXDKu+hqnyedhJVES5gw0ZnV/ud5c5GD0cL0uRtbohUqCKC8NHUbzwDGh7dIW3bT/+RL0H6/uz/7PEAl83s04zjSgtne9+aVem5le5RFMBoAAAAAAAAAAAAAAAAAAADKHcFoAAAAAABftoHgPznR0YeOti/X1K2XQslswWg/PtH/tvS//jWm1+wfoEiLW56Rqk51dcjpKX3rJleDI8FGtSdTRr0+ITodfePX05Uw2h0PXldmyFDSJ4DNy721J3g3PPTXnEPgwjD3/CEdiJapp0Pm+l8U/LOl/AajSdK5Jzr6zHH2hT9wsavz73bl5poQmIP+IZM9GC0x9tovxM9L1EKubILu63qfwKTGEOFLlSpQMFrEQsVsx/yCOfZlSuW4rxTNIc7NWTXpfTurxru9qdjBaCH63IaWwtUBAH7XOY9uIxgtX4LeYnVzrQH48juVHNmv5XsHVdT78ajI9pUJRgMAAAAAAAAAAAAAAAAAAEC5IxgNAAAAAODLFkCzZJ70x89V6eFve99aDiWljj5pcMRoOOm9jgWzs3/+3V+d+q3rljbp/LuN/uVcV+ubjJ7bZfR8k1Ey5T3StDPhOfkl7X3j3ze0hqunp3/sc0dS4ZbtNLVqq1oyuWHXFmlnQ7iVBWTiXTKbnpF59iGZH3zCe6ZH7izIZ09kDcvK8TCZUe3ot5+IaWmtfZ5v3WR09u3FG4i9eXf2AIaujGMo7BjxeMRCrmyCBqPNny3NmeE9bxPBaFmVYjCareYZ1dK8md5t/9xeeWEKUdbYHXx/1FRJjuOofr53e1OIdeVDmE97MUvIJQBMxWxLYKQkbQ55fwK7oNfa3f2FrQMoZ45jD0YzJvszmnKU7ZnAwEhx6gAAAAAAAAAAAAAAAAAAAACmC8FoAAAAAABf2cKJ9l1kX7axW+oZsLfPDxCMNn+Oo+bz83P7+vSL0pFnuXrFD1297CxXS77m6ppHJie/7Y77r6dtQjDac7vChbJ0Z2yTZMhgNEm6cNEXvBseuzv8ynyYRK/cM0+Weddymc+8TuaLJ9hn7myRiRc+hcq1BPVNDMsK6/hD/Vfwg78avbC7OOE7G1uyf05XRvBC2GC0qIVc2di+l+NMfO+ofoH3vGHClyqV7ZzK1OvTj08HW81VjnTU3t5td6zlWIiSoKGFc2emz3FJWmEJRmvuyVNRAYXpc+ODHHcACsevP3phd/HqKHfZwolGdfVLJujMQAXyOz0cScvr7O1NRb7ei4Js15z9w8WpAwAAAAAAAAAAAAAAAAAAAJguBKMBAAAAAHxlC6JaVmcPpcoWjLZgTrAaltU5evr7+b+F7R2UPnml0X9c5eo7f3Z18u9c/eQOVy//gX9S0I6O8e//FjJwpy0jeC1p+aiFqU7r8n9ecpLndLN1fag6bIwxMs88KPOOpdK9NwZfcOemvHy+n2xBfbk694PZV/CqHwVIkMqDiceXl87E2OsgwVaZSiW0IUwI3kpLMFrQ8KVKFiTkKWphetZ+ICa99yjvc3ltY2kc94XSO2B04xNGtz5j1JmY3u1gjAkcbjF3xtjr+gXe+7bY53mYPjcesXMHQHnx+w1v6a3c37x8CxqImXKlxFBhawFKmW8wmuP/bKkS7+sIRgMAAAAAAAAAAAAAAAAAAEClIxgNAAAAAODLNhizas8dZXWVo+XzvefZ1WV8Q57mzw5ex1H7ONrww8Lcxl61xuhndxpd90+j02/OPvK9oWVsHmOM7m/wnm+/xd7TG7vHAnpGUt7zvGLwWfvna1+1VC2b3LDDUkgIZmRY5jsnynzpLeEX3rFxyp+fTaGC0Q5Y4ui0d/mvJD4obWwufMhEY4BB3139Y6+DhjWMGhwpjdCGMPs6KoFJpSjI4TM4Ig0noxOwkvIJzTvmQO9joatfau8rYFER9vROowO+6+qjl7l6/8Xp8M+ndkzf/uxMpI+pIObNHHu9whKA2NxT3O8Sps+NWqgggPJi+z2UxofoYmrC/Mp0+4SCA5Uu27lUXeVoWZ13W2N3dO5FiiVbpnP/cGUHPwMAAAAAAAAAAAAAAAAAAKD8EYwGAAAAAPAVJJxob0tYSWO3dPrN3iP2HWd84EkQq5Y7uuurMS2eG265fGtoHRuAmhiyB5985jjvgJ7+Yal3z6D5pCXQoMYk9bed77XW0FhTP3nijo2hB8Y+ttXoC9e5+tZlzXr2Z+fLvLlWWvO3UOsYZXZOPZgtG79ApKn6/rsdffx1/is6/ExXL+wOt40f2mz0lRtcffkGVw9uzr5sU4BB391TCEaTpLYSCIiyfa2Yx9OseksfdO1jhsHiWbg+oSqZeiMU9OH3u7R6uX25jS2FqSfqPnmFOy5Msalb+vINAXd8AWxqDT7v3IzrhHpLCGtzz9TqCStMnxsnGA1AAfn1R5n9PqYm6LWSNP4aHcB4frdlzp7bcNt9XSUGXge55gwaNgwAAAAAAAAAAAAAAAAAAACUIoLRAAAAAAC+ggSjrVzoPU9jt7SlzbutbpYUyyHN6q2HO9p+bkz3fzOmWz4f07qzYhq+JKa1Z6Xf//zDeUjIyqK7X2qLp1+3+wRMHXOAvZbGPQN7kynv9mqT1FsS91qXb6taMnlivEvavsFe0AS/fdDV6891dcn9Ruc/sZeO2fT/dNu8dwZefpIdG3NfNiDr8ZiHJxwzaxxd/R+Obv+S/8pe9SNXT+8Mloxz7WOujj/f1UX3Gv36XqM3ne/q6kf80xUaAwz67kqMfX4uwWi7e8MvU2y2EAqvbmOlZQC9JH3rTwSj+Ql6/NgCIKeDreaqmLS0Vlowx7t9S1vlHQvN3UbrmiZPX7NF2tY+PdujoTX452ae7ysswWjFDsogGA1AVPgFdnUlildHuQvza9nJdges/M6l0Us+231dU5GDcKMgSL73AMFoAAAAAAAAAAAAAAAAAAAAKGMEowEAAAAAfAUJoqpf4B0A1tRl5FiywXoGcq9p7kxHbzjU0fte4ejwekfVVY6OqE+//9pbY7r1izGtWpb7+oNoaE3/6ReMduTe9rbRIJcRWzCakorJaK9kq2d7e81S7wUfus3+oRkau4xOvWb8zh2KzdKZS88MNfh/nBChbLmyB/XlJxDPcRy980hHbz3MPk98MB2O1hb331LJlNFpfzbjanaNdPrNRsmU97LGGD26NXudXf3j1xlWm89xGxVBQhlH1fsEo/38bqMlX0vpw5emtL5p/Ep39xp94TpXR5yZ0nE/TenOdZUXnOUGGXGv0ghGiznpc3gfS1hnJYbE7Oy0tz26dXqO940twedNZoT+2K412vuk4WTxvkuoYLShwtUBAJbLSUnp320T8Dce/sJsxuYetjlg43cujd7Or/B5tlRpglxz9g8Xvg4AAAAAAAAAAAAAAAAAAABguhCMBgAAAADw5bre0zODqFZaQole7Bof4JTpW+/IT5CVl/e83NGGs6vkXlalR79bmFvfhpb0KFVbMFpVTFo6T1pa692+rSO9fNKyfWvMiCRpabLds71t79d4TjcNT1kqHm+fb3t/8LOzXq7m6hXeCzmOnGuekfOd32jAmaX1Mw7TgDNrrH3XFpmmbYE+P1dhwrKm4n8+nv24WfYNV/FB+2jlDc3pc2Cixm5pfZP3Mv95dbAB350ZAU+2c9RPtlC3KAizr1daBtCP6kxIf3pKetP5rjr60it2XaMPXOzqkvuNNjRLa7ZI77rQ1QMN0d82+RQ05Kl3CmGW+Zbt2Fg4x7vd9ntUzvz274s+oWmFtN37Z81Talwwmn2+HR251xNWmD53OCkNjVRWnwKgeLL1R1MJosaYoCGyUvo6H0B4o3dztmdLTT1FKyUyCEYDAAAAAAAAAAAAAAAAAABApSMYDQAAAADgK0g4kW3w6vomyTaO/KOvLlwwWqbXHuDoye/F9KGjx0+vnSUdtbf/sm89zN7W0Jr+0xYwtWSeFIs5Omip9/Kb9yyfTHm3V5tkej0p7wSZ9mUv815wZ4P39Az/c59/ikLDjEMmT3z3p+X8YaOSe6/W5xpP1OJDm3XUQU9q4apWfWuvc5RUVXq+h2/L+vlTYQ/qy+/nHLyXo6oAT03mf9nVbx/0Lmp9k30k8zqPtmTK6MYnggUvZAY8+Q2YnjvTe3pbPNDHTKswwWh+gUmZ2vukn92VXvHX/mj0yNbJ87zp564GKyjIKHAw2mBh6wgjlaUfWGAJRuuuwICYxJC9bXsRw8QyNfcEP78yw0P3Xyw5lr5+9De5GML2DvEInTsAyku23/Bv3GhkQoR6wVuYTUgwGmDndy6NXuPVz/dub/QIHC93QfoegtEAAAAAAAAAAAAAAAAAAABQzghGAwAAAAD4yhZAI0krF4ZPpVoyL8eCcvDKfR398XNVci8b+6/nwio9fUaVei+M6Yj68fN/9g2O3MuqdNfXqnTKMd7fbVdn+s/2Pu/PHP1+h+zlvfzm1vQo1xFbMJpGg9G8k2vaZ9Z7Tte252WSSe82SfFBoy9d7z/CdtOMQ8e9d367RrHvXCpnxf764e1Gv31iroZj6cStpFOjCxZ/TbMOi+v3dSep78G/+657qsKEZU1V0FWeeo3R2be5Gk6OL25Lm32ZrR5tW9qkPp8Qo0zdA5K7Z2P4hWIsq/We3mY5bqPE9r28gpFsA+i9nHeXUWuv0UX32jfct/5UOSEitrDBiXoHorNNrP3AniedC+Z4n73diQIVFGF+YQmbWqdnnzb3BJ83Mzx09gxH+y3ynm9jS/G+S9AwwVHxgP06AISVrT+68mGjm58uTi3lLEy/30wwGmDldyq9FIy2wPs6vjWeDhKvJEH6nqkEo7mu0VM7jK59zNXWtsratgAAAAAAAAAAAAAAAAAAACgNBKMBAAAAAHwFCaJauSD8ehfPza2efJs3y9FT34vpik85+smJju7+akyXnjx2u1xv+W5NPekNszvu3f5SMNoy7/bNu9N/2oLnakw63Gxpqt2zfVtqqfeCknTNudam6399t325PRpmHDL25u0fl7P6VS+9/f2j9gGzn1p5ueYP3qzH14dIvQnJdjxWFeAJxxsPzT7PqDNvNXrDz1x19I0VOLqPvTyxffIX2dAc/POMkXoH0699g9HqvKe3W47bKLEFdnmF4M2scTRnRvB1/+QO/4Hf1z9mKmbgfdBv2TNQ0DJCsR0bVXuOjQVzvNu7IxTuViyJYft33thSxEL2MMaoKURoTHLCvl613Hu+hiJ+l6BhgqOidO4AKC+2+4hM594RstPCJGGuHhq7K+9aAwjKBDg9bM+WjAkXrlsOgvQm/TkG8A4njU76rdGrz3F1yuVGB5/u8nsBAAAAAAAAAAAAAAAAAACAyCEYDQAAAADgyzbgPjOIKmww2pwZ0pyZHulG06Sm2tGnjo3p2++I6S2Hj69rxXzvZUYH5W7Z7T1cdXldej37L/ZeviOR/nNi6Muo6j3BaPuO7PRsf7BxrnpqFnm2mSvOlhmanMRitqzTrU8lvT8wwyWLTk2/eP075Xz9Vy9N7+k32tGRdXH911UjSvmldU1BkKC+fPnE68Ot9J/bpaVfd18KPWuL27fB3zdI/UPj2ze2hNtmXf3pP3MJRvOrLSrC7usz3hN8f134D//v35GQ1mwJvLqSFvRUHQ3iiwLrsbHnd2nBbO/2rkRh6omyhE9YQlO31FvksLj4oNQ/HHz+idcgB+/lfZ43dhXve4T9edvaVpg6ACBIf/TEDqmJsK4pCROIWYnXGkBQfj3R6BXePt6POCT5B4+XoyB9z8BIbuu+8mGjG58cv0dOu9nomRf5vQAAAAAAAAAAAAAAAAAAAEB0EIwGAAAAAPBlDe6qGns9b5aj+ZYgGi9L5k2tpmJasfUBz+nN3UbGGG1s8V5u1fL0n/O7t3u298TTyTAjSe+Bp9VKB5idkLjPs30k5eifh3/SUrWkJ+6dNMn96xVaM/t19mVG1+3M0IVf2i7npzfLmVP7Up37fzdYKsBzPQv16NZAs4aWLRApnz54tJPTsfraH7u6+Wmj7n77PIMj0lMTMu8aLMeSTeee4AVbeKEk7VXnHSLU1hfus6ZD2H196hvym453yzOVMSg8aNhH7+SsxWljO+ZHQ/MWzvVu747QdyiWRJYQsi1FDu1a1xRu/tfsP/69LYi1qSencnISNhgtbOglAAQVtD+6fS390FSE2XpdPtf/QKUzPieTs+c6fsEcR0trvec59ZoQKYVlIEgfnxjKrX//n/u8l/v9o/xeAAAAAAAAAAAAAAAAAAAAIDoIRgMAAAAA+LIF0FRPuKO0hZV4KZVgNDMyrOV3XejZlhh21BVPatNu72VX7wlGq7vvas/2QTNDg2v+bg2eqzEjkqSjB5/W0qT3hzx1wAfsxW/fMO6teeE5td5yk7qrFtqXyfDd+/dS31D6dWLIaM4XXfWECBX6+h/Hf7G71xu9+fyU6r+Z0ht+ltK1j+U2qNkW4hTLbyaWJGnOTEf/998xvf7A8Mt+8BJXj2QJh5sYlnPD4+EGIXftCUbzGzC9rM57+u54qI+aFraB87Z9PX+Oox+9P38Hwi/vMXLDJiCVoKBfsXewsHWEYQ3NGw1UsAR1VmJYSX+WYLS2IvcFd6wLd0599S3jLzbqLdcajV25VhRe2G5hU2th6gAAv3DcTH97rvyvZwopTL9fiSGsQD5k3sWNPkuZaEub1BavnP4syDcN8oxmzRajt/8i/Sxm2TdSOvrslDWs+IK/V872BQAAAAAAAAAAAAAAAAAAQPQRjAYAAAAAsHJdYx0IXgnBaNqyVvWd663ND/z0NxpOeretWu7IGKP56++1Lt992qc1kvTewFUmvWJH0uFDGzznOb3h1TJKD5iNx+Zp0Jn5UpvZ0TD2unm7zKdfo4/tfY21lomGktI1jxo932R05Flu4OCFUY9vTw/ANf1x3ft0n97xK1f3b5JaeqWHXpBOudzoqjXple7uNdrVFWwAbrZApHxbvcLRw9+p0uDFMX3lhPx+yMaWsdebWo2GLMeSzWjIky0sTpKWW4LRih2GlItc9vXHXpPfffSBi3ML8CslQcM+4iUQjFa153dp0Vzv42B3r6x9brlKDPm3t/cVd3us2+X9eXsvlOpmjZ927EHScQePn7Zygfe+7UhIQyPF+S5hg9F2dFTWMQegeIL2R0/uDL/uzoTRhmajrW1GxpZWWyHCfP3EUOVdawBB+Z1LTsYl3qHL7Pd0f322cs4vv/v8UdmCn5950eiN57n6+4b0s5i2uPTMi/mpDwAAAAAAAAAAAAAAAAAAACg0gtEAAAAAAFZ+YVhVE4PRFgYPJFo8r0ApVvm2o0F7jzSq2ox4Nt+62Z7wdugySR3Nmp9oss7TE6vTyBbv0LNqM5aStXp4k3UdFx57lQ4+aIMWrtqt/Q/epIsXnppu2LJWkmSM0baPv1Wv3/8BPTTnOOt6vHzxOqOXneVqe0eoxV5y3E9dDb1rb73lktme7Z/7vdGrzk5p+Tdd7fttVwefltKjW/0HOhc7GG3UjGpHF3zE0UUnOZpZnZ91NrSMfZmL7g0/wLurP72MXyjGsjrvDdM/LPUPRXtQeS77er/F+a3hr89JPf3R3k5TFTRUpXcgOtsh27Gxv+U4SLrSthz7s1K0vd3ox3/z32/tfUUqZo/Gbu/pnznO0f3/HdOn/8XRvx4infYuR3d+JabqqvEnfL1PCOuNTxYpGC1kXmJHkbcxgMoRtD/a1SX1DQbrIxu7jI4/L6UlX3N1xJmuDj7d1fJvuvpTkfrYKAobiNkzUJg6gFLndyplBqO95+X2G74711VOXxTkm3Zn6W/OuT18yD0AAAAAAAAAAAAAAAAAAAAQFXkaygsAAAAAKEdJnwGU1VXj3/uFlUy02J4nFilmZ4NqlNTBw1u0cebqSe1/qX2P53L7LpLmznRk1jVovttrXX9P1Xwl21ukuYdPaqvRWDDaEUPPW9fxja6PSDPSr9url+rLy3+h1UMb9eZND8jc/r9yXVdv3/d2bZlxkHUdhTT3kHZr23BSevrFsfdb26W3XOBq509jWjR38mBoY+xDgwsdjCZJjuPoC29y9IU3Sade4+q3D05tUPbGlozXzfZ17b9YnuF0Xf3pP/2D0extbX3SfjOzFDmNcglGq4o5elm9tM6eRxja3zdIH3pV/tYXNYGD0QYLW0cYtsH9o8fGIcvS4QpeXcbG5j3BlWXOGKN3X5Q9BaHYwWhNPd7TVy6QXrGPo8s/6d+Z77MwHczqdQycfZvRx19n5DiF/UHw+Sny1JEoTB0AECaw6+s3Gh29r/8CxkhfuG7yPG1x6cO/cfXsGTEduXeJBFznUdh+v3tAWlJbmFqAUhb0XHr3kfa2zbvzU0spCNLHd/fb2wZHjO5YF+4zi/FcBQAAAAAAAAAAAAAAAAAAAAgqNt0FAAAAAACiyxY+I0nVE+4oV4YIRltSIsFo2tEgSVo1vMmzubtqoef0VfPSYWjmzI+rzu2VY7w3ZE+sTiOq8WyrNmPBaCf23hK4ZEn68ZJvpz//3M/qtCt3T1somiQZJ9yjh/5h6eanvUcA+w0MjhX5CcdvTonpzq/E9I235T5yeFt7erCyZA8LkqSDlnpP79wTtpNzMFo8S4HTzBqMlmVff+y1+R3Nfe/GqQXgRZ2bPTtLktQ7UNg6wsgWmjerxtEBi73naWgt7/056vRbjDY0Z5+vmMFoKdeoxRqMFuy8nTfL0VsO827bvFt6YkeOxYVgO4Js1zadCf9gTwDIld+92kS/e9Do89f6/+cVipbpqkcqsy8LE0An+QcVAZXM71TKvBKsrrKH5frdN5ebIPdpfv3N49vTz1fCqOJvjgAAAAAAAAAAAAAAAAAAACBC+OutAAAAAACrpF8wWtX490FDTaPm5OkAACAASURBVKQSCkbbmQ5GO3xoQ6jF9t9xn8yWdVJPh2IyqnW9E6h6q+Yr6VR7ttWYkZdeL0+1hvr8++cer46qRdo441Cdt+SbWef/9b/nHiT12cX/1LWNn8h5eS8bW7yn+w0MjuU3CyuQtx3h6LwPxeReVpVTQJprpBd2p183WwZ4n/MBRwvneLd19Y+tx2bRXPvg5sgHo1n2d7Yt/dUTHJ34yvzV8djW8g4BCfrtekogGC3zWD/QEijY2pv/eqKmd8Do3DuC7dmOIgajtfba9119iHDVs95rf6T93K7Cn6+2vmlprff0oWT4UAoACCJsYNdUPbipvK+JbMJmWxKMBnjzO5ecCTd5+yz0vutri0tDI5XRFwX5lt399rnWN4XfTpnPVZ550ej7f3H17T+5WrOlMrY5AAAAAAAAAAAAAAAAAAAAooVgNAAAAACAVTJlb6uecEe5cmHw9ZZCMJpJpaRdL0iS3py4L9SydZ1bZK4656X3813vJJ6u2AKNODWebdVKjnv/kZeFSyVaM/sYfX75hVnn++dpMZ38uvChXld+ytH2n8R0yVf31msHHg+9vJ+mbu/pKZ+xuNMRjJbpvA/F9Kljwxfx0AtGA8PGGqDw+gMdLZjrvd6uRHqD+AXGVcfs51tbX7QHN9vCPrLt6zkzHd34uZgazo7pxlNj+peDgn3em1Z5T3/6xbFtXY6Chqr0Dha2jjBsx3zmsbFknveB0pkoQEER88qzfTqFCXIJTMiVrW+XwgWjve5AR4ev8G5rsARr5pPtnFnqc21TzAA6AJXDDZvYNUVP7JA6In79WAhhv3F3hMJkgSjxDUab8N7v+VJLBQQdS8H6eL8gRlvgvJ/RfwDhjrVGx/zE1Tm3G513l9Ebfubq948Gv8cAAAAAAAAAAAAAAAAAAAAA8oFgNAAAAACAVdJn3GPVhDvKvUMEo61cMM0pVkG0bJdGhiVJx/Wv0Uw3eCpQrdsn3f/nl94vTbZ7f0T1MiVicz3b5rrjR7gurg13C/+BfW7S/819g+88f/hsTK/e31HdbEcXfCT7PnEc6V8Okjb8MKZPHhvTvosdOcv2Uf3b3h6qtmwau7wHAPsFgE13MJokXXqyo2+8zVHtrODL3PqMUXOPvX3FfHuw2WjQjl+wVcyxh/XsjgercbpYg9EC7GzHcXTIMkcffJWjTwYMrPvSm+3n2PHnl+8gcL/zKlNvhEI+7MfG2OtF3l1r2Qa67Ogw+vffuop9NqVt3j85np5vlra2FWeb2ILRaqqkxZb9ZfPq/b3P64aWwn8X2/HnF/ra6RNaMd2MMfrD466O+2lKrzknpXPvcDU4Em47/v5RV286P738mbe6SvolmQLIm6Dhpvn0q39U3vkddjv3DVXeNgKmyplwaVc/3z6vX9huOQmSfdnlc42Zy3Vx1Z798J0/uxrOyOp3jfTfNxm50/HDAwAAAAAAAAAAAAAAAAAAgIpVPd0FAAAAAACiyy8YrXpChtDSeelwk5FU9vWuXj61uopiR8NLL2uU1MHDW7R+1hGBFq1L9Y57vzzZ4jlfS/Vy9cbqvNfhjl/H4vn5u4V3ZDR0SZWqq8ZGH3/lBEd/W2t0z4bJ81/wEUcnvdbRvJnS3JmTw2hmfeGHWvqVNrVVL81LfY2Wgc6+AWARiH6fUe3ovA85+umJRv+3WXrzz7MnTt3bIK1ttLf7BaO1Bw1Gq/VuayvVYLSQIXjvOtKR5D+A+/PHO3rVfvb2tY3SI1uMXn9QBBL48izo2PaBEWkkaVRTPf3bIGU5tTKPjcWW86Yzkf96pltPv9ExP3HV2pt9Xi9P7DA6cGnh92tjt/fBVr8gWOBhpkOXeU9vaA1bVXi2c2bRPEeOYzxDLBq7pFfsU9i6ghoYNoo56fNlJCX98Umj/7hqrOgndxhtaZN+/mGpdlY6aNLP7x509dlrxi+/rU26+jPT31cA5c72e1hID22uvFCcIOFEmRJDhakDKHV+p9LEy4262dLcmd7n0/aO8rwvmyjIfVq3T3j1hubwn1kVk1p6jOczitZeac0W6bhDwq8XAAAAAAAAAAAAAAAAAAAAyAXBaAAAAAAAK7/B9tVV49/HYo5WzJd2dvqvc2mttHheCQxi3dkw7u0hwy8EDkardfvGvV9hCUZrrl6u3ph3alVdanxq1eK6amULdwqq7SubVF11+LhpjuPoL1+I6Zy/Gd3zvFHPgHTQUunUN8b03qP895dTu1Bvn3GXfu++JS/1NXZ7BzBlCwCLiljM0fGrpGfOiOmc212tf3yLulJz1FyzYtK8w0npl/d4n2hLa6W62Y6WzPP+4oGC0WLS0lrvYLCoB6PZQijC7uv6BY5WLfMPTLropPRK62ZJvYPe83z/L67u+XqVd2MJCxqMJknxIWlRBJ4m2mquyghIXDzXe56OMgxG+5/7Tc6haJLU4P0TlXdNPd7T6+eHX9fq5d792pY2aThpNKOAAX6u5QCsqZL2Weh9HdTQavRuTe8PlTFG5/zN6Iy/ZD/pL3/I6PKHjF69n3TRSTG97kB77Rf+Y/L6rvun0U8/aLRiQYR+nIEyZPs93KtWOvWNjv7+vFFXDr97RtImy3XT5t3h11fqwlwrSVIfwWiAJ7+QwYlXDI7j6MAl3iHitv6p3AQJZezuT1/jTQyyTQyZrM/mvFTFpB6fsLUdnUbHTfM1LQAAAAAAAAAAAAAAAAAAACpHBIYyAgAAAACiKpmyt1XHJk9buSB7MNrq5VOrqVjM1ufHvT90eFPgZWvd8YlTyy3BaI019YpX1VnWkZFyM2uO9lnkHQITxkx3UE8ffokWHfFNz/bZMxz96P2OfvT+8Os+7bMH6/eXTqm8lwyOSA++IL159fjppRKMNurlezu64aQemd8fKVeO9j94s5pq6ifN94Dl0Bo9V5bM89737X3pQdDZtsuSed5t7X35CdorFNv3ymVff+JYR6ff7L3Cx06LvTSQ/LJPOPrYZd7z3btRuuVpo9kzpDev0qTgvlIVJuyjd0BaZAkcK6Ygx8Ziy3Ef1WC0jj6j53ZJ65uMDljiaN9FUmdC2rzbqG62dOxBjvZeOPmY60wYfe+WYDvxA6+Ubn568vRiBaM1dnlPr18Qfl2rLNcSKVfa2iatnpxDmTd+x9/q5d7XQRuLtI39/PzvwULRMj2xQ/rwb1ytOyumutmTj7+RpNG6psnLuUb645NGXzmhPPpJIKps/dHsGdIP3hfTD96X+7q//kdXv7xn8gc0dkt9g0bzZlXO+R0knChTgmA0wFPYu89Dl3kHo20ukWC0+KDRA5ukBbOl1+wvzawJ128GuU8bSUn9w9LcmeOn5xoe194n3fSk/YNdn388AQAAAAAAAAAAAAAAAAAAAMg3j2HsAAAAAACkJX0GPVZZgtGy+ddDoj+I3vR0SHdcPW7acf1rAi8/MRhthSUYbdOMQ6zrqMtcx8w5euvhgT/e6qup67T6696haFO1+uiDtGvV2frB7h/kZX1/f37yYNxSC0aTJLWlE2NiMnpv3+2hFl21PP2lbMFmSTcdVOU3ODnmSEtrLaXFvadHhS2EIpbD06xPHONo3szJ0z9znKPX7D928Hzk1THtZdleknTiJa7e+StXq89w9XxTtIPlggoVjDZYuDrCCBSMNte7U+hMSG6YL10EDzQYHXGmqxMucPXlG4ze+2tXR/3Q1Zt+7uqz1xh97DKjg093ddWa8Sf7/Q1GS74WLJ3gxZ/GdOgy723S0Fqc7dHc4/059QvCd+AHL7X3+w0FDsvwO/4OXe5d1KaW6T3mrnzY1bduyq2GXV3SlWu8l437hP/kGsgBILiU5ScgH9fFX3yTfSXPeQQVlbOwlw2J4cLUAZQ6v5BBx6PLOcRy7bqpSNeuU/HwC0b7fMvV+37t6g3nuXrtj101dYerO2jf090/eVrDFK49v+8TpBux2ygAAAAAAAAAAAAAAAAAAACUOYLRkFeO49Q4jnO84zifcBzn247jfMFxnA84jrP/dNcGAAAAlCvT0yFz9blyf/k1ud85Ue7F35W581qZVGrK6/YLRqv2uKOsX5h9FP67j4xqglWacV2ZEw+cNP3N/fdrjpsItI6JwWgrk97pAd1VC63rqHN7x97MmqPaWY5OfePUtt0pb5w9peWzWfHl03T6ERt1Us8NU17XhmaPYLQsAWCR1N700sv3xf8aatEDnXSgni3YTJIeekH6xBX2DVMVkzXoK+rBaEHCr4JaudDRZac4mp9xCrzvKOnXJ01e2VPfz/64bFu79F9XuzJ+o/tLRJiv0DNQuDrCCBIEYztvUq7U3pf/mnLlukafvsrV7izn43BS+o+rjGKfTekVP0zp33/r6s0/zx6KNmeGdO1/Olq50NHq5d7zNLSoKMdyh2W7L6sLv66ZNY72WeTd1tpb2O/i1zfZtvFG73zUvNnYbPTD21x9+kpX59/tqisxVuTd640+879T2yY//Kv38n0+YYnxiPQXQDnL57XSRPstlmbXeLfdsa70r3/CCPsT6dc3ApXMNxjNY9qhy7znbWgtzrVrrlzX6MOXuuNCpdc2St+8MVzNQb9it8c1V6HudwhGAwAAAAAAAAAAAAAAAAAAQDFVT3cByD/Hcc6SdOYUVvG/xphPhfzMpZJ+IOmjkjyHJTqOs0bSBcaYP02hNgAAAAAZTNM2mf98vRTvGpv48O0yknTPDdJ5t8pxch8ZbwufkaTqqsnTVi7Ivs5D9sq5nIIzxsiccZI0PHk0+ywzpLf13aNb6v4t63pq3fGjUFcPNYSupS6VkZIzK53mdNHHHP3mgdxGoh46tEmrD7OMLM4Tp2aGnHP+qO88sknXXzm1dXmFyPgNwo1FNfo9Ixjt+P7/U22qV/GqYClAC2/6icwB79CSV73LOs97f+0fjOQ4zp6AqMkbry1C4VBe/ILwcvGx18b0lsOM1jZKC+dKr9jHu2+sX+Do7UdId633X98jW6VnXpReuW9+6yy2MIPbu/sLV0cYQYJg6ufbl2/slvbKIYyrEB7bJm3vCLfMc7uk53Zl33G3fjGmYw6QltSmN8yq5Y68+oK+IampW1ppz+rMiy7L8bNwTm7rWzpP2uGx7QodfGcLqYjFpFXLvLfx7rjUlTBaODf/KZ73Nxi999euEkNj0359r9Gj342poUV6x6+m3pl29aevkSZeU8aHLAtI6h0kOQMoNNu1UlUerourYo6OXyXdsW5y25oXKuv8DhsE1D9cmDqAUud3Knk9tjrUcl0VH5Rae6XlPtf70+npF6WW3snTb3jc6PefMYoFTK8M2vd0eeT39xYooJFgNAAAUIqMMXLd8vhHTgCUFsdxFIvFpvR3NQAAAAAAAAAAAACg0hGMhilzHOedkq6SlC3e4FhJxzqOc62kU40xHn9VGwAAAEAY5uLvjg9Fy/TY3dK9N0knfDjn9SdT9rZqjwH32YLRZlRLi+flXE5BmVRK5vwvSg/cYp3nfTMe1y0KEowWH/f+gJHtqjHDGnFmBK6nzs0YSTsznRpTXeXols/H9P6Lw4ecfHDgr3Je9rnQy+XiyNcfqptmGn3o0tzDWDa1Sv1DRnNmjv1lcb9BuFVR/TvlbWPBaDPNsE5I3BcoXE+SFg63yVxymuZe/U4tq0sP/g5jdLz1Uss5Fx+UBkeMZtVEc+NZw6+mEPaxpNbRm1Znn+9lKx3dtT77QKmbnjR65b7R3H5BhRnc3txjJE3/97XVXJURMrBXXToYxivgs6k7OoF2Da2FGZB35nsdvefl4/fVKp9szI0tpReMtsTStxU6GM0vmG/1cvtyDa3SMQfmv57Tbx4fiiZJOzul4893tak1f5/T1S8tmjt+Wp9P6EbvQP4+G4C3IEGhU/GWwxzdsW7yh9zXIPUOGNXNLu41wTWPuLpqjdHgiPSeoxx9++1O4IChqQj7S91HMCQQmmcwms//dd7UGt1gNK9+c1RnQlpSG2w9QXM7uj2uuQhGAwAAlcwYo8HBQcXjccXjcQ0Pk14NYHrNmDFDtbW1qq2t1axZswhKAwAAAAAAAAAAAIAQ8vDvxqOSOY5zvKRbND4UzUh6UtKNkv4uqX3CYh+XdL3jOBx/AAAAwBSYvh7p4dv857n7uil9RtIn16rK44p+74X+f5G3fr6i+5d9b7xQuu0K31neffK/BgoaqHXHp7JUK6VDhl8IVc5s8//Zu+/wKKr9DeDvmU0DQgoJhA7Su14EVEQFARuKyvXaC9ixYa8/FRuK2JVrV7Bju4IdUVAQEZEi0ovUhISE9J6d7++PJZBk58zObDbJAu/nefIkO6fM2dnZKZucN1Vmt8bsT40ZfYTCBYOsBxHfCNj4mIE4T/WElJYVu3DbcSVQTeJcjaE2xvRX8L5qoPy0t7BrfTvkr22GMXn/c9VH34eq74B2k3BrE5ZVlyQztdrj3qWrHbeNN3OBrWuhdm3ByZ3dZ4vvC0azmXidVccBQrVR12EfduzCjapyEp4W7kwX+YWpOXU3Djd0Y656HPAYCq00YQk7c8LnddtTB/82oEVT4KYT/d8oiU0UWmiOB3UV0FbJNAU5umC0JsG9qZNjrdvVxTatyu7Y1DoBiI22Lt+8O7TbuMIryMgT/LbZujyUoWgAkJbrvyzfJnQjI983EXVPoUCcJnsQkStW4Z9A6K6V+rTRd9TiNhOFpfX33n7lZxOXvS2Yuw74bTNw3/8E49+vn/W7uVYCgELOuSeyZHc5YHW0SW6q/EJZK62v42vX2oi2+bd0u13cfzsNIcsp8q+YW0cBtU6Ph6Xlgp3ZvAYkIiKi+ldUVIRNmzZhy5YtyMrKYigaEYWFsrIyZGVlYcuWLdi0aROKijS/LCEiIiIiIiIiIiIiIiIiIj9hOm2YQuwCAIe5+LrdSadKqbYAPgcQVWXxrwB6i8gAETlXRE4C0BbABADlVeqdAeDRWjwnIiIiIiJa/ANQUW5fZ+E3kKL8oFdhF4wWYXFH2beN/UT8NglBD6VOybZ1kKl321dKaoXmJ52Gw9vaVzPEiwSvf3rQgOI/XY2p2maMblStbNpYhYfPVGhZJefs9H7AmocNdGqusOLRRhjbYTOGGH9jrPE9Fp74IxJvuN/V+kNBKQWjzWFI9mahkZRgdL59kF9N/2QC/2Tun0hrG4wWpnl7qBGM1qNsneOmCV5fCo2c1xNnfHml61VXhkTFN9LXsQu1aWgNGYx2cm9lGf5Y09JtwC/rD+zJ3k4n3APAzjAJRvM63Dd055xweR6AddhUbaTEAX/cZ2jDxnShf2t3hXYcNeWX6Pe1xMbWywNJirVenplfxyFvmu6V8p332jezLg/Va71ul+CYx72IGm+i5e0u03pqIc3ifVNQ6r+s0uo0oM0dJpJvMdHhbhNf/XVgHyuJwpHueOTkGsYJu6DYsgqg6Y0mLnjNREFJ3b+/n5vjv45pCwVZBXW/brdrsDs2Eh3Kgnm3dkuxXh7qANhQionUl2XkOe/H6X1atsV8+nxNMNqxnZ2v34ruPqxSSbngsrdMNLvZRLu7TLS/y8QHv9ff9SoREREd2oqKirBt2zaUlwf4vSkRUQMqLy/Htm3bGI5GREREREREREREREREROQQg9EODbtEZIuLr0yH/T4EILHK44UARojImqqVRKRURF4AcG6N9rcqpToE/7SIiIiIiA4NYpqQVYshi76rFnImCxyGTM35OOh1V3j1ZREe/2WJTRSO76pv0zYx/NKrRARyUb+A9dQrPwMAerayfw7NvHvggf/Ez9EFXzseU8/SNdUXxFRPjYmMUPi/UQZSn/LAfM33NesGD1rG+8bWIUnhrfu64pdXDsdbr5yGjhdfCqUaaNu3777vx3PzPsXgooWumn+xrEowms182nAMRhMR4I851Zb1KHUTjLY/hWZkwRxEm+5SzCq3SZxNMFpeGAejSQMGo7VNVLjnVGcrGvqUCa+bdLEgFJcJvlkpmLdOUFYR2nW5GXpqTngEG+mOBTX3jbaJ1vW2OP3kqx7sCnEwWuoUA+2a6ffdbi2ty9bvqtvX1iqwoVKwwWjJmmC0P7cF159Tgfa/lvHW5YGC0QpLBT+sFrz/u4nVqdavR0m5oOcDJn7/x+FgXYj0AEfafFKblus/pvwAYUi79oZ/7MgGzpqqf15EFJy6DpFtkwA0jbGvM2OJ4Nr36va9XVAiliFI5V7gf8vq/rji9jKvkMFoRJZ093eAL2DWSrcUzbVrevheU5RV6Mt2Fzjvx257VevT4n8h5Gmu0Y7sqHDT8OBPEqUBMkZu+FDw7iJB8d56O3OAS94SzN8Qvq8XERERHRwqQ9HE6UUUEVEDEhGGoxERERERERERERERERERORTR0AOgA5NSqiuAy6osKgMwVkS0U6pF5Aul1PQq7aIBPAjg8jobKBERERHRAU6yd0MmXgwsnedbEJ8E3PsG1ODTgGU/O+tjynVAcitfG5e8QQRRnfUvhXnrrScfHNPZ9RDqnLz5UMA66pbnoFr60kK6tbSvm+zNslw+smAOYjxelHgtEuVqOKXg++oLYoJMjQkHLdoCjZoAxYWIQjnmbj0J0+MvwaTku5DricO4nOloYhbhkeb3WTafs0Zwy0jfz3ahBOEWjCalJZDHrwLKqicj9CldhQRvNnI8msSmKhLM/Sk6sVKIC/I+xrSESx2PoXKbNInS18kP42A0UzOJqb5e64fPNDDoMMHol2wOhHtd977g1UvqZmB/bBGc8py5L1iqT2tg5g0GDksOzfrchH3szAlcpz7o5rd5avwLiE7NFQD/yuEUpLB5d+jG8s/jRsAQzB6ac9iy7YBpCow6eoPVRTBakiYYLT0PeOYHE7eOrJv/CRIoiKhVvPV+ZxeCt2K74MypJrbtqVwiuOo4hVcuVvte04w8QcvbAx+PnDi6E3DUYQptEn3nAQXgkqMVOrdQMK62TsXdbBEoWOAi/McU4O2FginnhNkJm+gAprtXC9Wh3DAUzh2g8OYC+3PVJ38KXrpQkNC4bt7fhWX6sg0ZdbLKatzOq3dzbCQ6lNgGo2mWd21hvXz5dt9E8gYLgLdhd4+dkS/QP9vqnN6npVpcY+YVW9eNbwRMPEPhpF4Kp7/o/rqy1Cb0rbxC8OkS/0GLADP+EBzXNfxeKyIiIjo4iAhSU1P9QtEiIyMRFxeH2NhYREZGhuW1IxEd3EQE5eXlKCgoQF5eHsrLy6uVpaamonPnzjw+ERERERERERERERERERHZYDAaBetCAFVn838uIhsctJuM6oFq5yqlrrMLVCMiIiIiOpTJczfvD0UDgNwsyF1nA7e/BGSmOu/nrrOBb9Khmia4Wn+FZp5khAHtH+meeYTCzTOsZ3CeeUR4/WGvbFgBTH88cMUBJ+77sXcr68CTSkmaYLQm/x6HER4PvvrLflXHFv2Kibsfrb4w+sANRlNKQdp3B9YtBQB4YOLy3Om4PHd6tXq6YLTVaft/PpCC0fDNdODHj/0WR6ICpxTMxkfx5wXsIt5bfYbzYxkPYFV0T/zRaKCjIVRuE8NQaBpjPUE7L4zvxrXhQ3WTdWTp9H4KP99h4JxXTOzO19d7fb7g0bMEzZuGdkcUEfznFbNaqNTfqcBNH5r48sbAIYvO1uG87p7CkKyy1nT7Rs3TUrcU63rr0sMjSCG7UPDbZvs6bROBj642MHO54OnZYvncYyKBVy5W6JAU+Pn00pzDducDi7f4ArPqgl0wWkKQp7iWcfrz8e2fCIZ2E/TvEPrXOFAwWst46/K03OoNswsFb/4q2J0PTPnev9PX5wteny+4daTCfacpPDArdCF6C+/WHz9O7wfLa5XZqwQPnlF9mdtwzadnC6ac464NEenVx7XSo2cFDkYr9wLHPG7i9MMVTu6lMKJXaI+9RTbBaHl5pQAahXR9NbkNRrMbL9GhzO6tpLss76m5dt22B1iVCvRpE5KhhVS+TTii3T1lTU4PPWk5/jVzNcFocTG+z2hO6wv89yKF6953d4ArKdeXZRboP1/4cU34BFMTERHRwaekpKRa2BAANG3aFG3atGnwz3+JiCIjI9G4cWM0b94cO3fuRH7+/hvD8vJylJaWIiYmpgFHSEREREREREREREREREQU3upxKikdZM6u8fhtJ41EZA2A36ssagLgpFANioiIiIjoYCJ//Qr89Kl12VM3uO9vzGGu21R4rZd7bO4mOyQpXHaM/2SDS49xFtpSX2Ttn5DLBwWuePgQqPbd9z0c2t3++SdHWcyCHTUWxoRncKSDgJZ5W0eiidRIkIk+wP8gukOPgFVmbh9juXxrFlBY6ptEaxuMFmafcIhFKFql/iXLArZvbBYiCtUn86R4M/DLluGYv2Uo3k69Em+fss22j6phcU01u1B+SfhOUDY1wYz1HYJ3XFeF9Y8YeONS+xWn3KYZcC2sTvNN+q/p65XA9j2hee3s3lc15diEW9WnQMFUlbqlWL9mOUXAxowQDyoIgybp95mXLlSYfbOBtQ8bGNxZYfK/Dax52MDsm33ff7vbwPRxCp+PN7B5koFLj3F2EBzSBYjW/KuMmcvr7niQrQnVaxoDRHiCe1N3b2lfPuAxE+UVoX9Ogfa/VppgtB3Z+3/emCE44mETd34qlqFoVT3zgyDpFhOv/RKa55ISZ19+Qjfr12PRP0BmfvUxFNgEfxBR3dMdj4I8rFpKiVMomhr4HLMu3Rd+eNJzJh75KrTXRIU2x5rcn2dDMtP0FULAzbUSABQzGI3INV1ehd3nL7NWhOe9bJ4mlAwAMlwEo+nuh2tKzbEYgyagLK5KjmRCEJmSpRX6MrtQyEIeF4mIiKgOVQ0ZAnwhRAxFI6Jwo5RCmzZtEBkZWW15Xl5eA42IiIiIiIiIiIiIiIiIiOjAEGbThulAoJRqCeDwKosqAPzqoot5NR6fWtsxEREREREdjGTK9aHtsKQIsmWNqyYVmomYER77ds+cqzB2sIJSvgmuYwcreNMYbgAAIABJREFUPHNueExCkIwdMB8ZB7lqcODKR50E9chH1RYlxSoc31XfJPmoQcCxo3wPIqOA8yZA3foCAKB7iv3qLsz9EJZbKTI68FjDmOrQPWCdHqXrtGXr033fbYPRwmP32m/FAm1Rd2NnwObNKzItl0eiAscUL8YluR/gkj3TcctI/ROvGhYXpw1GCziUBuM0/Ko+xDdWuHyIgfFD7Vd+3fsmREI3Qd9qknslJ0EAO7IF49420ftBLwY/4cXTs014a2xYN2EfBaVAhbfhAwi8DkPzerfW9/HGgvp9HhVeweTvTLS90wvjat/Xpt3WddslAuNPUBjRS6Fx9P4n1TXFt6zbznkYOPUMXPTucJy5cjJSom3SF2qIjVEYrsmqrNNgtCLrvhMbB99n5+aB68xaEXz/Otpj095jbvtm1seJfzL3v3+mfC/Ynm1Zrc5dfqz9cWxUX+tyEeD71dWffHG5ZVVb4RzISXSgCXQ8CpWYSIUNjxoY0sVZ/Ue+EqTnhe69bhuMVhYBefeJkK3LittnUmITHER0KLO7TdJdnTRronBsZ+uyb1aG5zVFgc099ortzsfs9D4tLdd/mS6cLb5KGFpiE/c31iU21352wWghvEUmIiIi8lMzGC0uLo6haEQUlpRSiIur/p9Lah7DiIiIiIiIiIiIiIiIiIioOgajUTD61Hj8l4gUumi/sMbj3rUcDxERERHRQUcKcgGXIWaOLPreVXVd+ExEgLvJxCYKb401UDLV9/XWWAPNgph0GWqSkwkZNxCY/UHAuurrNBhPfQmV6J+8cuYR+ufSvEVTGE98DjW3AGp2NowbnoSK8gWb9WgVIIyk4FvrAk+AJLpw1z5wMFrH8q2INq1nEK/d5ZtFq9sfgfAKRpO5n9mW9xxxdMA+WlekBl7R/FloHqsvNqtsr6aaYLS8AzAYrSHnNL1wvv3KX/lZcM//JGThaHaTy5dssW+bWyToO9HE9N8Ea9KARZuBOz4V3PJx8MFoQHjsM7oxe2qcm5o1URjU0bruc3MEa9Lqb4b++PcF93wutmF3lU7rp7ST92TxD5CbTwEW/wCsXAh5/UHIY1f41zNNSJFvQo2U+3YkKS2GpG/HGZ2sB7F2F7A+vW62SY4mnKE2wWhREQpdW9jX+ebv0D8f3du78jzUTROCWmECW7J8P3/pINiwLiQ2DhyM1r0l0CnZuuzPrdUf24Vj6Pyy3n0bIrLmNCg0FDq3UPjlTg/O6Be4boUJ/LgmdMc5u+uhHCMe+OkziGlzo1BLbrsuq4BfEC2RU1JRASl1Hnp7IAn2XXHG4dYHtZWB88YbhF0I7MJNQIHDkFin2ysjHyiv2F9bRJCr2YXiYvZvy4RG1nXslNoEP9oGo7lfFREREZEjIoKysuoXIrGxNr80ISJqYDWPUWVlZSH9h0tERERERERERERERERERAcbBqMdGq5RSs1RSu1USpUopfKVUluUUj8rpR5TSh3nsr9eNR5vdNl+U4D+iIiIiIhoW92kRsjX01zVrwgyGK1SZIRCZEQYJVbNegPI2xOwmnr6K6i4ZtryMf0VoiKsy0b09D1fFREJFVG9Up/WQNtE63bx0V6cUjDbutCjWdmBoueRAat4YKJb2QbLsrW7fN/t8gXCKhjt+dv0hWPvw2HX3oDkAHNz2jgJRtu8Cn2LlmuLqwZYxWmC0fLDIORKR/d6N+Rr7TEUfrnD/gD45HeChAkmXvm59gEddpPq1/6+BrLbPw1gd77g6EleJN5sWk6If+knwZIt+/t1G/aRU+Sufl0wNTuH1b4xpr/1DlPuBW74wKzzCSemKbj6XRNvLnC+nvMG+I9ZigthPnYF5LbT/RvM+xwy83VfPRHI+09BRreFnJwM87hoyIlNfd9HJEDO6YLTn+6vXffM5XWzPbI1/1KhNsFoADDaJqgUAN7+NfTPJ9CxqYt/nuo+G9KBvGLBrryQDwsAEBsNtNNcZ1w4SOGXOw10bmG/zZRSOL6bdZ1Xfq7+5IMJRvt+NSd5EYWK06DQUBrWw9mF2MVvSrWgntootAnbSY9IAXJ2Axv018S1pXsWjaP0bYI5PtKhTbxemC/cBjmjNeSU5jBvOx2Sk9nQwwopu8tuu/Dr/u2tC/NLgApv+F1X5Jfal78419mY3dynVb22LCnXf5YXVyUMLSGI63C7Y5tdMJpdyD0RERFRbZgWF02RkZENMBIiImciIvx/5291LCMiIiIiIiIiIiIiIiIiIh8Gox0azgcwHEBrANEAYgF0AHA8gHsB/KKU+kMpNcJhf11qPN7mcjxbazxOUkpppuwRERERER2itq0Lrl3zNsCJ/9GXb1kDyc5w3J1ukmldTravS7J8fuBKY66FGjTStkrbRIWJZ/hPzv13f+CEbvp2ER6FJ/+t/ILllAImn5iJeFOTlHKAB6OplPZAl34B63Uvsw4EnL3Ktx/a/V14uASjSWYqkJVmXdg0Eery++HxGDi9n/2AW5dXCUaLTdDWG/b8UEfjaqoJRsuzCM4KF+EYjAYAQ7oqJDWxr5NfAlz3vmDc2yZScwJPfDdNwapUwYeLTSzavD9IpMBmUv268hSYF/XzC/b6zysmFm+xX9+gSfsDwewCB62ERTCabt+wODddc7xCSpx1/bnrgA8X122YwtsLBW/Md7eOod2r7+RSXAi54ijgu/e0beSpGyDFhcA370BeuQ/IzdLWbVWxC4OKF1uWBbM9TFMwf4Ng4SZBYal1+2zNfpMY4L0UyM3DFTol29epGgQYCrr9rzLQo3G00oagrs8QbHB+GebKqL5A7gsGtk72wHzN/+u9Kw30bu3sANo1xXp5STmwLUuqPXZrQ3r4BZgQHah018Z1ea10Wl/nnR92r4lXfzaxOrV273vduQUAUiNa+YLLNv1dq3XY0R33m0Tr2xTbBAQRWZE3JgKfvAQU5AIV5cDiHyB3j2noYYWUbTCaTTu7AK+8MAz6tgqnrurzpc6OiW6OnKk5+3+22yZVA9ObN3Wxgr3KKvRldsFoPCYSERFRXbH6pxfKLnWXiKiBGRa/yKrrf+BDRERERERERERERERERHQgO0CnslMdGABgtlLqMRX4L4Rqzsh2NZ1PRAoA1Pyz7Hg3fRARERERHexk/fLgGsY1g5r4LtB/qL7OrDcdd1ehmWwf4XE3rLDxxxz78q6HQ938nKOu7j7VwA+3GLh5hML4oQofXKnw0dUGPAGSCM4fZGDh3QbuPU3h0mMUbj9JYf6dBq4aqE8bUgd4MBoA4LjRAat0L7UORvv9H+Dhr0zbACerQKSGIA+P1RcOHL5vUs5ZR9jvJ21HDgcuvA1qwjNQX2wFeg60rBcjNslZVcQ1sl5ffhhOJK/UEGEfTm2a5GyHm/6boO2dJl6ep0/1KywVjHnZRN+JJi56QzD4CRNDnjSRliO2r0+OJxH/VCRDzuoIKfSFKm5IF/yywdlzWLI3tt51MFoYhOl5Xewb8Y0Vppyj32lu/0SQW1Q3k05yigRXveOu751PVt+3ZNkvkLM7AtsdvLA/fAj56i1H6xmd/5Xl8uXbgW9XOh/z1ixB/0dNnDDFxJDJJo542MTSrf7tdYF6CY1r94Zuk6iw7AEDZ9hkb776S4iD0Rzsf900wWIb0oGNGaEdzzUnKEwfp/DF9UbIJn52a6Hv56W5VYPR3D+XqsEdRFQ7mgzrOr1W6pai0Eaf2VtNag4w/n1Bn4kmrnzHDHqSZ2HGbm1ZidEIuUY8JNhgcQd0w24cpW9THERwJB3ifpzhv2zV75AdG+t/LHXE7ghgdwljF4wWDqHNNe0ptC//c6vvPiEQN/dpqbn7f7YLZotvtP/nZk0UurRwvg4AKLa59rMLRiss40R/IiIiIiIiIiIiIiIiIiIiIiIiIiJyL0ymDVMd2QngdQBXARgCoBeAHgCOBXAjgO9r1FcA7gUwKUC/sTUeBzMltmabIP4vtT+lVAulVG83XwA6h2LdREREREShIiLAr9aBJQE1bw2lFNSVE/X9L/jScXfaYLQD8G5SSgMnQKl7XncVKjK8p8Iz5xqYeqGB8wcFDkWrNKCjwqNnGZg2zsCT5xgY3FkBkTYz6w+CYDTlIBjt8NK/tGUTZwlW7NBPpI0Jg00kqZuBZT9ry9XNz+77eWQv+zCFHoP7wBg/Ceqc66GiY6COP1Nb992dYy2XD+q4/2fdZPKM/PCdnKwbWTgEo8U1UvjqRucHwus/EPSd6EXENV6cMMWLXzfuf3Yv/iSYtaJ6/T+2AG3uNHHXZ/avz5exo4A9u4DPXgYArNjheEhYvt3Xt9v56eEQPqALCdDtGxcdpXBCN+uyXXnAA7Pq5n1w68fO+20UCbx72lakfPYIzGcnQN5/CuYbEyE3jQT2Bt8FIlOuB/5e5KiuLhgNAEa9aMLrMIlhxDMm/qqy323aDVzznn/4TbYm/CHRJujCqaYxCm9epn8/rkoNcTCag/2viyZYbEO6IN3Zy+lI0VQDL19k4JJjnF+DOHF4O33ZrBVVg9Hc952WG7gOETnTUCGy/xngfgVvLRBMnev8eCy/z4Y59S6U3n42XpyRals3NaIVsM06YDkUdMd9BqNRqIjXC6RttS777r16Hk3dsbvvsA1Ga6QvC4d7k5qyHYxpp4OgWN0x3kpqzv6Nm2fzW/u4mOqPzwwQ2F5Tgc3HakVl+hfYawKlFa5WRURERERERERERERERERERERERERExGC0g9RiACcDaCciV4vIGyLyq4isEZF1IrJQRF4SkVMADASwoUb7u5VS+hnX/sFogdMF/NX8s+yafQbrOgB/u/yaGaJ1ExERERGFxuZVQOo/QTVV/Yf6fuhztL7S2j8hu3c66s97MAWjPXKZfYUjhwFd+tXPYKxERuvLjANwg9fUpR/QsoNtlVMKZiPRu0dbPn2h9UTbRpFA4+iGT8uSr6frC4eOgUpsse9hoyiF64Zaj7llHHBSrxoLTx+n7XpM/hfo2sh/ZvV5A/f33zreuu3ObP2QG5o2fChM3g6n9VX4doLzwaxK9T2n+RuA45408fBXvgPsjD+CD22a33gIAEC+9e17O3Oc97V2l++7w/yrfXI0AVf1STdmj+blUEph6oWG9tw1da5g2bbQP68fVjvr85NrDGwc+QUueK4PMO0x4PNXIK/cB0x/PORjqtSzbC26lG3Uli/cFLiPV342sWm3//I/t/r296qyC637CEUwGgAkN9WfA9btgl9QW204CUbrlmJdZ+NuIEuzLSrFRgPbJwc+tvx+r4GYyLo59+mC3QBgfTqwNs23EYIJRsssAErLG/44QnQwcHs+DJWbhwd37LnpI0FGXuD3v/nyvZDbz0DpjP/imIz7sSLG/h5te2RbYNu6oMbkhO4UYhuMVlY3Y6GDVIXNCbXg0EgUtTuqxNkFowXzr7vqUFmFoLA0cL3M/MB13FwtpVb5OCDP5rf2sTWC0W4YphDtImTebnsXBTjuOdkuREREREREREREREREREREREREREREVYXJVFIKJRH5RkRmi4MZfyKyBMDRANbXKHpCKeVxukq3YwyyDRERERHRoWH+rODbHjcagC8ERr0wW1/v168ddVfhtV4e4fRuIUzInI+Bn7/QV+g/FOr/3oZSDRiu5bGZjWpXdoBQSgHHnWFbp7EU49GMidryv3ZYL09WuTDHD4X5wIWQZT/XYpS19NU0fVnzNn6LHhqtcOVxCpFV3k//agfMvd1AVET1fVElJAP/ucGy62gpwyfld2JQR9/j2GjgrlMUbh6xv482idbD2plWAPPifjDvPAvyS3jlhpuaYEaj4TPw9jm5t8L7VyokBxH3PnGWwLjaixWa/dqJddHdfD/s2IT8vBLcMsP5xy3r9gYbuQ1GKwiDCe1Ogqlq6tVa4daTrCuYArz4U2g+qsotEtz1mYn+j3ix0z+vsJpLjlbYPcXE2cseRsrTFwJezUm3DigAZ+Xp3/OzVthvDxHB9R/o6/y9s3pZdpF1vcQmtqtx5csbrD/qzi4CdjsIn3DKyf53WLL1vpaaA2QV6PvulAzMusFAm0SF2TfrP7p/41KFgR3r9mC4cqJ+/ZX7R3EQwWgAsCsvuHZEVF0w58NQaJ+k8PWNwf16seXtJvJL/AcuInhzgYkTb9+EfosuQKcua9GkRw6WxxwesM9NUZ2Bresge8OlKryC+2eaMK72wrjaixa3evHVX8Gf53Xb2TYYLcjjIx2ivDY7TEmYJX/Vgt270O6jGI+h0DTGuixHc43ZUHTXvDXttrkerOTmPi2tSn5enmaXaRrj25ZVdUhS+N91Btrt/bwg0PnDbnszGI2IiIiIiIiIiIiIiIiIiIiIiIiIiEKNwWgEEdkD4AJU/5v0HgCGaZrU/HNtm//VrVWzjYM/ASciIiIiOjRIsMFox42Gattl30P1rxOAw3pZr2PBl/ZjKPHNdqzQBBN5griblNJiOMhvDjlZ8iPkoUv0FfoPhfH891DJrepvUFaiNDN9AaB9t/obRx1Se4P77FyZ85a2LKvQenly3j/A378Bcz+D3HY65M+5wQ4xKFJcCEn9B9izS1tH9TjSb1mjKIXXLjGQ94KBDY8a2P2MgT/v96B7S+vZyOr6J7X991n1AX4bn4WCFw2kP23g8TFGtaC/1vHWfWZLLIq3bQV++xZy37mQ7z/QrqO+NVTYh1sXDPJt8yfG1P/ANkZ1RjkiYELhpIkZrtpu2u37fiAGo3mDDM27f5TaN+m/pp/W1v78ZJqCk58zMeV7wfLt+nrPnqdQNNXA9MsNJD53BTB9Uq3XHYxb9ryoLVuyxX57bMkC7E7p62vsjtpgtMa2q3FlYEd92ebM0K1He2yqcm3UJsG6TmkFsDHDuoNT+wAbJ3kwtLtvRx7RS+HGE/136hcvULh8SN1/rN+7tcLgztZllftHSZDBP6kBQgOJyJlgz4ehcGpfhfJXDBS8aCD7OQN/3Of8uDTiGRNZBdWPhY9/K7jqHcG8vI5YHd0L2yLbO+5vY9Teg9WnLwEA/vOKice+3t9/ZgEw+iUT0xeaKC5zf77Xne9sg9ECBAQRVVNus8OUhlnyVy3U5uOgBM1vonOKwuv/cO3RfGZR07hpmgN4FW62V1ru/sq5xdYN4zQfOZ3SR2HLEwZ2PGkg61n7Y3mOTU5foGC0cLiPJCIiIiIiIiIiIiIiIiIiIiIiIiKiAwuD0QgAICJLAcyusfgUTfVwDkb7L4A+Lr/ODNG6iYiIiIhqTdK3AeuXBdVWTXjaf+GQM6wrL50HKcr3X/8Xr8E8+zDISc1gXns8KnanWzaPcHE3KTs3wbxuGOTkJMiYTpAZzztvHALy+kTbcjX6yvoZSACqUROg91H+BU0TgYEj6n9AdaHvsUCLtrZVPDBxccHHrrpNqqiSeFNeBvl0ajCjc03StsC8YTjk1OaQ83rYV7Z5DaMjFTq3UEiKtU+xUB4P1FRN6JtpQp67BY2jFRpF+ffTRhMGBQCpEftDAeXdybZjqE+68CEVZsFoAKCUwp2nGJj87/odXLmKwj9RHfFjk2H4vaCNq7Y79wYTuQ1GKwyDCe3BhuY1iVZ46EzrSrvyUOvwzts/FSzeErjejcMUYiIVZNPfwJwZtVpnbaR4M3DjHuvj5bo0+7CGtWn2fa9O3f+ziNgEo4XuPdO8KRATaV2Wlhuy1cB0EETUWhOMBgArd1ov79Xaf1tMOUfh2fMUBnUEju0MvH+lwvgT6u84M6yH9bo+Xer7rgtGu2KIwn+O1I8zlK8H0aFMdz4MJsQ6GB5DoXG0QnxjhSM7KPx6l4GTewdu98cWoPmtJtre6cWXKwQv/mTi/74I/hy8PqorAECmTcK6XYKZK6zrjZsmSJhg4rTnvcjIc74+XU2PAqIjrMuKgwyOpENUhc0OU3JoBKMFurpJ0ITpfrkivILRdNe8NRWWwi8gsiY392lVQ2fzSqzrxNn8Nl8phdYJvuO5nZwi/T1ToGC0QgZGEhERERERERERERERERERERERERGRSwxGo6q+q/G4n6Zezalrzd2sRCkVC/9gtByrum6JSIaIrHLzBWBTKNZNRERERBQS6duBVh1dN1N3vwaV0t5/uS4YrbwM+L16NrLM/Rzy9I1AZqpvxuqq31Hxv9ctmzsNRpOyUsiNI4GVCwGvF8hMhbx0J+S795x1EAQpKYIsnw9ZswTy9yJg9WL7BsP+XWdjcUtd8wgQU2XGr1JQ4ydBRWiSXg4wKiICasIzgEeTILBXi1JNaoxGsjer+oIFX7odmiuSuhky9zPIud2BFQt8+7ady+6FSnR166zX9xigbRfrsp8+haRutixqHa/vMj2ixf4HW9dCcrP0letRsOFXDemOkw08NLp+B7guqjt+bTTYdbuCUiC/RLQhTzoNPaG9wiv4/R/rMidBMD1bWr8+ZRVAbnHw40rNETw3J3B6Qf/2gGEoiAjk9QeCX2HbzsG1O+ZUqE837ns4Kv8by2q78g3kFOmfz9pd9s/1h9WCCq+vTkEp4NXsZ4makItgKKXQSnOsS8sNXWiGrqeqx6aWcfoQR10oWLMm/suiIhQmDDew6F4P5t/lwQWDDBj1eBDsnqIve/VnUxuAcdRhwIxrDHTWnPpSc8IrxIToQBVu10rHdFb4doIH301wdrOYmgOcOdXEhI9qd0zYF/JbUoQF6yts65Z7ge9WAWe85PwCyC6st1GUdVkxA4DIDbtgtNJaXKCGGbt3eqDw6+RY6+UzVwAfLzFRVhEe1xZ7Cp3XXbLVvjzoYDTNLhMX47w/nXKv/vgWKBgt5+DJ+CMiIiIiIiIiIiIiIiIiIiIiIiIionrCYDSqakuNx7pZ2xtqPO7gcj016+8RkWyXfRARERERHZRUv2OhZqyFmvYn1BUPAt3+FbhRoyZQoy6zLutxJJDUyrJI/vyp+uNvpvnVeTZmnGXbCE/gYQEA/loA7PYPuZIfPnLYgTuyfD7kwj6QG0dArj4WMv4E2/rqvRVQRvjcGqt/nQD12q9Qlz8AXHgb1Es/Qp1xeUMPK6TU8WdCvboAuOh24PgzLeskeDWpMRp+wWh1yJx6N+S8npAHLnTcxrjywZCtXykFHDdaWy7n9YSI/wzqJtFAjCZfL8uTXH3BtvW1GWLIhFvYh1P3n27gp9sMDNj76UenZPv6tbU2qhvWRXcLqu3ObF8OphsFpUGtKiR2ZAsGPGYiv8S63Mm+kRKnL0vPC25cADDjD2cb8tguCpKbBblxBPDr1+5XNHA41B1ToaYthZrwtKum6ooHoZ74HCqlHdTVjwAAupfp3+/rdun7Wr7dfl3ZRcD8vZ8gZtsERCRahIHVhi4Ybdby0IVl2AXkVIrwKKQ0dddvUoi3RSh0baF/U41/X7BFc/qtPN/oXo9Ud6d5ItLQXis18O3NSb0V1j9af4PI8iT5fvBWYPVGZyfzP7YAf+90dm7QXSsZCmikub4uLg+PkCY6QFTYJEr9Maf+xlHH7O47AgWjHdlBX+H81wTd7zfx++aGf9/tKXQ+hnd+s6/r5j4tqxAoLvM10IU9x9f8l2VBSs+3Xh4oGC2roOFfHyIiIiIiIiIiIiIiIiIiIiIiIiIiOrCEz+xvCgc1/1Ra9yfSa2o87uJyPZ1qPF7tsj0RERER0UFNKQXVuQ/U2HthvLkI6pbn7Ou/tVhfZhjA0adYF37/AczXHoD50p2Qn78AFn1frXhJTH+kRra2bOpxeDcpbz5sXbD4B2cduCAlRZDHrrAMYrOibn0eqkOPkI+jttRhvaDG3Qdj/CSofsc29HDqhOr+LxjXPgbjsY+Bwaf5lSeaOa76a12R6rdMvN6gx6djvnwv8NGz7hqdeE7Ix6E0gXL7fPmmfxulkBxrXT2zMkxiL1n4TbBDCynTtF4e7sFoADC0u8Li+zwwX/Ng4yQPXruk7ga9Lro71kXpg9GePU+/7tRcwO309MKCUsjnL8Mc0wnmdcMgv31rGcZXFyZ8ZOKvHfpyJ0EwLWzCqmoTjLYqzVm90W13QU5vDaxY4Hod6p7XYTzzDdToK6GiY4Ax1zlve+vzUGPv3R8GesGtwPBz0aYiFU3MAss2a6dMhnn5UTCfuh7y9qOQDSsAAF5T8M3KwK/5zBW+OtlF+jqJjR0/BUd0QVyzVwOmLkHIJafHpraJ7vptkxB+B7ceLYFIp2G4VcRE+p5La81zSnN3miciDW8YXyt1aaHw5mX1M5BMT9K+65nSHOcn8zlrnJ0X7AIx9cFojodBBFTY7zBSHiBx6iAQ6Ghxej/7GluzgLFvmyiraNjwLbvr3po+XCy216duL103Z/q+52lCpONinPUzcbT9tn70a+uBFQfYTTOtbzmIiIiIiIiIiIiIiIiIiIiIiIiIiIi0GIxGVSXXeJypqfd3jcf9lFJupjHWnNlfsz8iIiIiIqpq9FVAp97WZWdeCdXWPqtYtdOUlxQB704GZjwP+b/z/Iq/iz1J22eE07vJEhezQmvrt2+BXVud1R15PtTZ19bteMiZlh38FsV7c111MazwZ/+FxaGddSsfPQd88LTrdmrU2JCOAwDQ+yjbYplyPSQ7w2+502A0vPck5Nevgx1dyOgmgodD2IdbVx5nYNtkAy9fpHDTcIW7T9U/iZcuVPhugoHnz1d4bUw+Xkm7HlPS70JKRbpl/b+je2FjVGfLssfPNDFhuIFmTazXtW2PaEOedAp+nw959mZfCOXKhZA7z4JMvLjOw9EKSwWzVtjXcbJvNI5WiI22LsvIdz+uSqnZgZ9/35KVOOGemv8vwBn16Qao0y6tvswwoKb9Gbjx6Cv8znkqIgLqwXfgmfA0upVttGy2Nh3AhuXAzDcgbz0CueoYyPcfYH06kFUYeLULNgQORkvQ/VuGIKXE6XeCJQ4vEQJxemzq3tL5wSrCAI51+68n6kF8Y4WOSYHr1VQZFKQLqkvLbdjQEqKDhe545AmTi6XzBii0jAt23je8AAAgAElEQVRdf31LVlouLzViULT3V1Rp6c7vP52e93WXOIYCYnTBaAd/jhWFUkWFffkyi/vdA5Dd2V8FOGwNcXCdtC4d+KGB/xXXHgfXyFXZXZ+6vb1at8v3PV8TjNa0kbNzwzn97et9skQs7/0KS+0HzGA0IiIiImpoHTt29P1zsr1f8+bNa+ghERERERERERERERERERERUQAMRqOqas6sTrWqJCJpAP6qsigCwBAX6xla4/G3LtoSERERER1yVEQE1CMfAq06Vi849VKoCc8G7qB5m6DWm+FpoS37V3uHk+1tZnLKb6G9FZCnb3JcV51zQ0jXTcFTCTUzuoFSpUkt0hhQYhEMVBQ46UBS/4H5yDiYx0X7vq44GuZlR8KccDLMe86BrPrdV++XmZCpd7kaE2IToG5/CWrQSHftHFBKQb29xLaOjG4HqbENdMFouyP8XwP5790Qt4lZIaY7ehgH6KdZbRMVrjnBwHPnGZh0toGvbjTQOmF/eaNI4NGzFK49XuGk3go3nmjgip67cGXO27hlz4t4JGOiZb9LGg1AkWGdfDY4bgcAoEMz6zGtT9eHqugUVnj8F/70KfDrV+46cmlDBuANsEt6HO4bKZqQlvS84MOaUgPkOTYyi/Bm2jUwbCMhLBxxvC8ULaW9ZbHq3AfqwXeAFu20XajzJlgvVwo4+1p0F+tEhvVRXasv8Hohj47D9uXrHA196TbgkjdNjHnZ+oWLjQYiI0Ib3jOwo77snd9CE8blNBitW4rzPgcdBiQ0Do8go5oW3eP+oFsZFKR7r4VDMMY/mYLL3jJx7BNe3DzDRGoOw9rowKO7VAuTXDQ0jlb4+qbaXbhFG17cVvAyStY0xYydF2vrVQb9pu0pd9x3WYAsqkq6475SQBPNbUsRg9HIjYoAO8zWtfUzjjpWmxxlw1CYd3vg40morveCZRcIbGX7Hn2Z2/u0dem+BrlF1g3jYpz106u1wpc36Ld1QanvPrKmQMe9cLj+IyIiIiIiIiIiIiIiIiIiIiIiIiKiA8sBOpWUQk0pFQNgTI3F82ya/K/G43EO19MD1QPYCgHMdtKWiIiIiOhQptp3h/HxOqjvdkN9uhHqxzwY974OFRkVuHFyq6DWWab0fY8d7DQYTZ9iI3ePgcz9zO2wrPta8CWQm+ms8jGnQvUaGJL1UgjEJ/kt6la23nHzm7JehOXeGCAYTVL/gYwbCMz+YP/C9cuAzX8DS+cBC76EXHs85N0nIfed62gs6s6Xod7/C2rGGqiv06DOvMrx83BLdekLHDvKto7cMBzi9e57nBxr/b7N8vgHo2HbemCbs/CjuuIm7EPKSrX92JU1pNP6KmyfbGDL4wbWPWIg53kD955mwKj6BPdk7PvxyJKlrteR+M9iAECPVtav/bpd4nrCfYFhnbAn377rriOXrn03cFCf0yCYFk2tl6fnuRhQDf/YnII8UoE3U69B/5LlgTs65WKoX0qgPlkP9XUajBd/0IaiVVIjzoP6aDXU3a/5Fx59ClT77vq2Hg+6tbYIuwOwLrqb5fK0qZNtx1PV+78LcjQBEYmNHXfj2Jj++p3gv/MEi/+pfViGNiCnRuhdj5bOk4k6JoVJipGFxCYKL5zvbnyVwWhJmkDOrMJaDipI+SWCknLB3zsFRzxs4t1Fgt82Ay/8KBj+tIkcTZBIICIC0+3BlCgEvA6DGhvSv9orrJzo7leRL+y6BasHvI21jxjIfSkST753HSJnrELyhwu1bbIiklCqorBSDnO8nrQAoaaVdGFOCkATzS1zQXheflK4qrAP9JPtG+ppIHXLLhjNyWHr+G4K/9JnAQMAfl7fsOfkbJfXOFmF+rG6fRrrd/m+55VYl8c3ct7XqH4KD43WvyrLtvkPrjBAMFoWg9GIiIiIiIiIiIiIiIiIiIiIiIiIiMglBqNRpbsAtKny2Avga5v67++tU2mMUqqrw/VU9bGIaP5Em4iIiIiIalJN4qBS2kFFRTtvlNw6qHWVqUjL5d1SfBPcHdElG+0tkxnPBzGy/aSoAObk8ZB7znHW4D83QD3yYa3WSSEW7x/KNcBFANSjuydaFxQGCEb7dGrA8DQAkNfudzaQgcOhzrgcqn13qNadoIy6/8hFTfrUvsKGFZDXH9j3UBdQs9sqGG1v+4akmwheNexDvp4G89xukJEJMMefANmyZn/Z3M98ZSPiYV41GLL2zzoesXtKKbRPUuiaohAZ4X9clZfv3fdz79LVaGRqEqY0EpZ+BQDonmJdvnaX+wn3RYYmzeqXmZAAoQ7B2pUrWLwlcD2nQTApcdbLgwlGy8gTnPKcF/maT7c8UoGftwzHufnOgkDVeROglIJq2QEqrpnjcajIKKhRl0E98hFw5DCgUx/g/FugHp0RsG2P/tYhMhsjO6MC/qFpaREtHY/LTpcWIemmmqYxCsfbfEL54KzAAXuBaI9NU8bDPL0NzFfvh3i9GNDReZ9tEms9rDp1/TCFNy51nrQUHeH7ntREE8hZz8EYizYL+k30Iv4mE42vN9HvIdPvPbsuHZi53H2Qyp9bBcOeMhE13kS7O72Y8Uft9zEip9yEyDak3q0VFl6fi5YVu/zKUirS930NLlqIdzKvw/XjeqP7VVegW4pCVISCMgyo1ochMbmp9rllepLwW6OjUKgJcLWSmuPsPW93TRobY11WyGA0ciPQNfTBEoxmU6YcHreG97SvmJEPR/cNdSXbJujMil1YrF2QnJV16b4GumC0OBfBaABw/+n6zzR25vgvC3TcyyxgiCwREREREREREREREREREREREREREbkT0dADoNBSSl0CYLaIpLtocxWAB2ssniYiW3VtRGSDUmo6gMv3LooCME0pNVwXdKaUOhPA2CqLygA85HScREREREQUpBZtg2pWpqIslx/X1cVMewkQDrHqdxcjqtKtCLB9PeS6YUBuVuAGHg/UA+9AnegwQI3qT3yS36JoKcNxhfMxv8lxtk07lm1BYym2Lty5Ceg9yG+x7EkH1i0FPnkxqOFaatfVUfhQqCnDAJ74DHL3v/WV3n8K8p8boZJaonlT6yrbI62PEfLwZVAjzw/BSIOjC6FQq3+HRGUA2RmQp27YX/D3IshNJwEfrvKFwj1w4f6ytX9CbjkVeO8vqKTQhDqFgmTt8u2Ppf4fpcjiH4A1f+x7HAEvjihZgd8aH+O4/8SlsyAFueiasRKAf7ud2YLerazbRkcApRX+ywvsAke2bwQO6+l4fE61v8tZ0JDjYLR4Batohm173E3WFxFc8LqJuev0dVZu7o9uZRuddXjW1VBd+rkaQ01q6NlQQ8921ab7MX2AH/2fe5kRjS2RHdClfHO15btCFIw2oGPdJPcM7a7wywbr1/L7VUBOkSChcfDr1gYRmeVAbibw3pMQpXDY1Q+jVytgdVrgPtskBD2ceqGUwuVDFI7rKjh2sonMAMFmSXmbIX/tQrPNAHC0X3lBKVBaLoiOrLv0psJSwYodwKpUwTXvOntv/7EFuGyw83XkFgnOnGoidW84yM4c4ILXBS2aCob1UNhTKFi6FejeEmjXLMySquigoAvN8YTZv0SSjX9h0Cs3YseGRfYVz70Jxo2vaos9hkJiY+sgoT2eZihW7lJ/duU6q6c7giil0CTKukYBg9HIjfIy+/LtDq8lw5xd0JfTYLQeDi5DZy4XHN2pYc67e9zlWGOPTTCa2wDr9Xv/MiBP8xFJnCbI0c6InsCcNf7LV6UCc1YL+rYFUuJ827oowG6c7XLbEBERERERERERERERERERERERERERMRjt4HMFgFeVUp8A+BjAPBGx/LNqpdQAAPcCqDlbcieA/3Owrgf3tk3c+3gwgDlKqStFZG2V9UQDuBrA0zXaP20XvkZERERERKGhYhpDOvcFNq101a5cRVouj/S46MRu5mtlFa8XyuO8UykrhUy6EvjxY2cNzr8Zatg5UL0GOl4H1aOE5paL78l6MmAw2jl5n2nL5JGxQGEe1NnX7F/2+cuQF+8AKsqDGakldd3jwJlXQTXWpI7VMXXs6ZA+RwN/2wRNLPoeGHUZulhvaqyP6govDHjgn/YjmWlQyZrkrDrm1YQPqTkfQT55xbowOwNYPAfyyxf+ZQW5wK9fAaOvDN0ga0E+fgHy33sAr0X6mMbAkj8dB6NFmyVoJCWQSVcieVssYNEuv0RQYVqHBsQ1Anbn+y8vVI31K926NuTBaDuzBRXOctEcB8F01rwX1u1y1r7Skq2wDUVLqshE57LN+gpVqIfeB4bZhBzWoe4p1kFxALAuuptfMFpaqILROtRNYMV/Big8/JX++uOSN018eaObi5nqdD0bVcNgv30XcuVE/Ku9wuq0wNdCbRIOjNCsrikKy+438OavgrVpwEd/+D+3LmUb0f76fhAAzaJ7AZ2WWPaVVQi0rqNAuDmrBZe+ZWJXnrt2ny0VvHRh4HqVXpsv+0LRqpo618SGDIXrP5B957LxQxWeP08hwnNgvNZ0YNCGyIbJbiZFBZA7zwJWzA9ceeBwqBueDFgtKdY6GC3T4x+2HIhVP1a0gZgKaKIJGgoUEERUjTfA/Wn6NkhpMVS0u/C/cGN3ReT0sNW9pf66tdKsFYLHxzgdVWhlOzyuVMqyCZvVfZzWJBootAhf3FMIZOYLcjXBaPGN3J8cWidYb+9pCwXTFvqW3zdK4eHRCoUBjnvFofsYhoiIiIiIiIiIiIiIiIiIiIiIiIiIDhEMRjs4NQJw6d4vUym1AcAWALkAvACSABwOIMWi7R4Ap4hIwKmgIrJDKTUGwPcAovYuPhbAaqXUnwA2A4gH0B9AzSmnXwG4393TIiIiIiKioA053XUwWpmKslwe5eZO0vQGrlNRBnicT/CVaY85DkVTX+6ESkh23Dc1gOatLRfHee3TTI4t+hV37HnWto48cxNw5FCo9t0hG/+CPHtz0MP0k9QK6vPNUIbDJKY6pCZ9AhndTlsuOzZCAeihmUReasRga2R7dCrf4t9400qgnoLRSssFny8TLNnqmwS+Os26XqxpP9tcPnoWWL3Yuuy796EaOBhNVv8BefcJYMFXrtseWbzUcd1Ec29az/xZSIj5F3CYxVhgICe7GL6PkqqLjbYORisyAgSjhdjUeYFDpSoZDuf6d2th/V7YugcoLhM0inLW0RfL7Md2esG3loGD1StdDnXnf6EaMMWmcbRC+2bAtj3+ZeuiumEUvqu2LMOjSZZzaWDHkHTjp3drhUlnK9z7P+vX5+uVwLYsQfuk4La5Noio6j6VmQoU5qJVfLyjPusqIKwutElUeOB037a7b5TgjEfSscXr2ycSvNl4f+dl+8JNkiuytP1kFQR+3hl5gpkrfOFjJ/VSOKZz4Ncsv0Qwdpr7UDQA6G71abmNh7603hk+XwZ8XuP48PI8Qf/2wBVDwiSxivYxTV+AnVd8AVhe8YWzVvsKsMx03Ub827rswxRgyVbrfTAMLk8BADL5GmehaADUk7McnQuTY4H16f7LszxJiJESV+PbU+h7LTwBLiB0Z3ulgCbWt8woLHV+/ULkKLh7xyagc5+6H0sDcXop3Ls1EGHANjh5TRqwPl3QLaX+z7m68K/YaKDAMsxMf6zQXXP2bOkLaLayLh3I0xwK44LI1Wvl4FL2sa8FRx+mAgZCMjCSiIiIiIiIiIiIiIiIiIiIiIiIiIjcYjDawc8A0H3vVyA/AhgrIjucdi4i85RSZwOYhv3hZwrAgL1fVj4EcJWIOEhIICIiIiKiUFBnXgWZ/rirNtpgNI+LTswAgTCAbxJwtLMZmrJzE/DuZEd11d2vMRTtAKDikyCdegObV1VbHiv68Kv7B6Xi3umnIhIVAfuX2R8BY++DjBtY67FWpS6+PSxC0QBAJbYA5uRCRmhmLYvvfdjNJvBlfVRX62C07RuAo06q/SADKCgRnPaCiQUbA9ftUhagUobNxxqb/3Y3sBCTz/4Lef5WX/JbEHqWOQ8eS/Rm7/s5wZujrZedkQurYDRd0Eex0RgCwCpmQP7+zXJ5sMa/b+LVn0MfjNa9pfVyEWDTbqBPG2f9zFyuH5uC4KY9L9m2V09+AXXMqc5WVsd6tNQEo8X28/0bhSoyPbU/tyY1ATok1bobrbtPNTB/gxffat7y7y4S3DcqyGA0zaWNUTMELycTbRKdBaM1bxrUUBpcr1bAii1HYR6OQJmKxkkFP6CJFO0rb+a12Kn2yrLPuMSGdMHIZ819++VDXwqmnKNw20n2597PlvqC1Opaep64Dvi46h3BOf0F8Y3d7XsiYhm8VZtALb8yyzZiH/7lcL124/QfiyDgWB0sq9YuQP2DkScM8vdk1e/AT586qqum/QkV4ezXlUlNrJdneZKqXfs4YQqQUwQkxQauZ8VQQJNo6zKrACQirYrA97XYsfGAD0azuwVyethKaKwwpr/Cx0vs7xFmLhfccXL9Hwx155UWTa2PCxkWQdSVdMeeVvFA0xgg3yIAbdk20Y6haYx+XTptHIb3TltoojDAcY/BaERERER0qBARLF26FGvXrkVGRgZKS0vRvHlztGnTBkOGDEFsbIAPIsLY9u3b8ccff2DHjh0oLi5GcnIy+vbtiwEDBsCo5e9MMzIyMH/+fKSmpqK4uBitW7dGp06dcPTRR9e6byurV6/GypUrsXv3buTl5aFZs2Zo1aoVhgwZgqSkOvzlBRERERERERERERERERERucJgtIPP8wB2AjgWQAcH9QsBzAYwVUR+DGaFIvKNUqoPgIcAnAcgUVN1EYCnROSzYNZDRERERETBU83bQEaNA75+23GbMhVpuTzKzZ2kOEgbKA88O1IyUyHvTgY+f8XRatXlDwCnXuKoLoWBY071C0brVroB8d4c5Hqqz8RtGgPc0XO9o1A0AMCKBcB374ZqpD5HnwKcdW1o+6wlFR0Dad8N2Lbev9DryyWPjVFoFQ+k5fpX2RnpnwQlAF7/qxm+Tfe1v/FEA8N7Wk8uX7RZ8NT3JgrLgFP6KIw/QSEqwlf3l/WC134R/J0qEAG6tgCuH2ZgWI/9fb27SByFogFAjzKL51hVZqq+LEmTiBVi4vUC370HeeLq/QsTWwDZGbXqt1vpBsd14737X+gE0+JF32tPESyTCHRBHwBQqqIRIxYz3xd9DynKh2pc+5Snjxa7C0UDAKdzYzolAx7DOrhg3S5nwWjr0wWr0/Tl73SeicPXrLQubN4G6p7XoAaOcDbgetCtpcLs1f7be32/84H8e6vtu7sjah+MNqw7oFTdhlXcfpKBb/+2vg75coXgvlHO+yqvEEz/TfDJEsGuPOs6Rs1rntwstIrv7Kh/XdBPuJLtGyCTxwMr5qMJgFH4zrJeFMrR1JuHfE+cX1lmgf06HvtG/ML67v5cMHawIClWv+98tDi44EkAyC12Xvfrv4JbT+LNJjoluwv+0gWjEOk0dHavpG6GXHu8o7rq/96GchH25Hv/+78psjzNEGV1bRJAZkHgYDRdmJNSQKzmeilQQBBRNQ4+E8HunXU/jjoWZDa0n1cvViguE3y9Un+OvOszwR0nh2Z9bujG064ZsDnTf/mGdH1fuu1lKKB7CrBkq3/ZcpuMcN3xys6AjtbH3Jo+Wxq4LwajEREREdHBLjMzE5MmTcJ7772H3bt3W9aJiorCiSeeiIkTJ+Koo45y1O/YsWMxffr0fY//+ecfdOzY0VHbefPmYdiwYfseP/jgg5g4caK2ftXP7E844QTMmzcPALBw4UI8+OCD+Omnn2Ba/OeQlJQU3Hfffbj++utdh5gtW7YMd9xxB+bOnWvZd9u2bXHNNdfg7rvvRkREBCZOnIiHHnpoX/ncuXMxdOhQR+vKysrClClT8N5772HnTuv7bMMwMHjwYDz44IMYMSJ8fodDRERERERERERERERERHSoauDpERRqIvI/EblIRDrCF1A2BMAFAG4GcC+A/wNwA4CLAPQHEC8iY4INRauy3gwRGQ+gJYATAYwDcA+AmwD8G0AnETmGoWhERERERA1H3TEV6DnAcf3yUASjOUlyqLCfHSm5WZBrjnMeivbpRqhx90E1dCIAOaY6+YchRKEcV2e/4bd8/FCFJmU5zjvfsgYy+8PaDK+6Y06FMWUmVEQYZs2362q93PTu+7FNgnWVnRGt4YWBArU/nee2FpMxfte5mLUCmLUCGPmsiWkLTZRVCPKKBbJ3pvbXfwkGP2Hi82XA96uAW2YIrnrHV/bDasHIZ018sFjw1w5g5U7g82XAiGdNfLty//HhK4cBM80qspDszXJU11JC8+DbuiCv3V89FA2odSgaAMRKIdo1KnRUN9Hc/z6pGpJW0x6xTgOxC0YrVo20ZXLjyMCDC2BPoeDCN9wnJxiarKTKfVUqygEAkREKnRpZb5N16eLXzsrM5fqybZMNXBDzq3Vhp95Qn20Kq1A0AOihyQxcm2FAzVi777EJhSxPkmXdRzMegAdey7KqlALuOa3uz9FDu+vLFm8BduU638du+1Rw9buCH9bo6xioGYyWiXaJgcPfPAYQr39LhR1J2wK5sA+wYr6j+knePZbLswrst/87v/mXe03gC5v3XnGZYF6A7Ew7boLRZq0IPt1lcyawNQvYkQ2k5gDpeb5wpuwiIK/EF6hUUg6UexmKRsGJacDLVMnPgZzX01FdddNTUCdf6Kp/XYhZlqcZio3GlmWDOur7y3JwWWUXTqS7XipgMBq5sfca1Y7YhT8fIOxOaW7ycuMbK8y8wYPMZw3ceYq+4Ys/OQjqDzGr4GUA6NHKepxZhUBmvvWW0V0DKAV0b2nd35pU/VaOsf6Iz9ZRh7lvo1NUZn9/RURERER0IPviiy/QqVMnPPvss9pQNAAoKyvDd999h6OPPhrXXHMNKioc/hOoBjRp0iQcf/zxmDNnjmVwGQCkp6fjpptuwjnnnIOyMuepyM888wwGDhyIH3/8Udv3jh07cP/99+OEE05AerpNunQA77zzDjp16oTJkydrQ9EAwDRNLFiwACNHjsQll1zi6vkQEREREREREREREREREVHocZb4QUxEckTkVxH5SESeF5HHReQxEZkqIh+IyDIRCTxb0d06y0RkrohME5EnRORFEflcRP4J5XqIiIiIiMg95fFATf4COOtqoFMf4IjjoZ79FjjJejJ6mYqyXB7lcbFSJ5MeywP8QfG37wAZOwL3c+woqPdWQKW0czY2Ch/tu1kunrT7ATwR+yGOaAcM7Ag8eY7C42croEAf8uTHMByHtwAA+g8FDj/Of3mH7sBFt0M98pHzvuqb0nzMI/snE+iC0R5u/n+I7lmAhB670aHLBrwTfxFeTbzKr97l0wQx15lImGDCc83/s3ff8U3V+x/HX9+ke9CWtoyydwGZiiKCIkNRZAiK4p4o4h7g1qu/K6I4roqgXlCc14kILtyKqCiKomyQPbso3W3y/f0ROtKeb3LSpgP8PB8PHuSc70yanJyc9vuOG8ckF6OeqbpY4ZUfNSu2ah5b4qbY4sqD1nDX++Xt1ttcy9C34Dd7FU3y7YWK1YTeux1ef6x6jUPDIC6x/F9YhFexuu9lurSNNjT2luDKLLsdgosY10HLerkO64SRKOu3AADyHT5SnNb/hrZzzPbhuIeqF2LgrPAS0Hu3475nIu5B4egTIzz/nxyDe1A47ufvpfMe6+Cy9Zuy+Gy1xjHJVfYcd0xy8eVa7/czUzDace2gZYKP41THXqhAkh/qSJem1nPafxDSSqLghJEAZDoTcCnrxJ1huV/yqftGhqRCjxaefa0SyoMuHAqGpMKyaQ76tK79x0ApxYq7zZe/7QYyrt2tmfWV/7pVgtGy0jm6DcT4CBkESIwGhynVrwHSL9wfUH1jMJqPw7HbRxrY56vN7T5fA0U1WEtoNxituETzmY95CFHfTuhY+8cU/cf3uK8ahHtoHO7zjkL/8gU6cx/69Ka22qvbn4Ozrg143CRTMFpIErnKOhgttbki0hAIlGZ9euTF9JFWKfMxPleC0UQgXP6D0UjbXfvzqGW+Lg9V5/Q4PkpxUX9zw0c+qfsQLlMwWrfm5jZr91jvN83eoaCNdU4xm8z5C9UKzVRKccmA4LynaA2FDT/zQQghhBBCiIDNmzeP8ePHc/Cg90WGDh06MGrUKM455xyOP/54nE7vX7A///zzjBo1qkGHo82cOZO77roLl8vzi74uXbowevRoJk6cyODBg4mI8P4d1oIFC7jnnnts9f3YY49xyy23lPVdqlu3bowZM4YJEybQv3//ssdt2bJlTJgwoUp9O+69914uvvhisrOzy/YppUhNTWXUqFGcd955nHbaaSQne3+50quvvsrpp5/eoH9GQgghhBBCCCGEEEIIIYQQQghxpKvH740XQgghhBBCCFHXVEIy6panvXcefTK6uBC+etdrd7EhGC00oGA0G+E2Jb4XAeuV/kOt1H9/QHXpa3dWoqExBKMp4Nb9M5n6+AVe+3VuAMFoGTYTt0JCUR/uRkXF2u+7oXEaXpwVFgmkJCjMS6w9doa24LKUF2o8nXsXulniIzhm5XbYvF/TMgG2pNvr8/ScT2o2qZysmrW347uF1Wqmbn0GNaZqGF1lqWluPl/jf5F/gsv7vsa7D5DjtP/8jg4zP1cKlJ+kp+8+gPHX2B6rom/WaZ8L+n0pzZbSbjf6XxfBqmXWFV+ZQecmD/Ehp1cp+uS3Al5eVfW9a9jjblb/y0Fqc8XebM0Pm627HtP70CRMwWgxcf7uRr1IbWYuu/JlNwsGjUZ//yFpTkMKA5Bcsp9jNs7n5BdmNZjwtz6tFanNrAMnFv+hucIiB7Oy+T9oWzmvjsqvlwNphIUoZoxXTHnd3IEp5Kch0kWF8NkbAbVp7LI+wPsKRsvyEVAWYQg3Aljwm/lxdjpg8XUOTu2u+PQvzWn/qfo6zy4ArbXf5++OLMi3kWEjRH04uQuM7FG7Y+iMvXqme70AACAASURBVOgpQ8p3bN+Avqnqe6qJ+t9qVIsO1Ro70ZAPm+5sTJ7DOhgtKgwSY2BHZtWytByN51OHma9womhDkGyOBKOJQPgLiwfYv7P251HLfJ1OVffMsWtzaN0YtlnksO7Mgqw8TXxU3Z2XmrJdU+IUjSI02QVVy7ZmaAZaPAKmkDWlzIHn+3yEPfo6h/Kli4/PCYGa9ZXmllMaxucEIYQQQghdUgL7a/YFH8Km5JaokCPzz5RXrlzJ5MmTcbvLT+B79+7NrFmzGDBggFfd/fv3c8899/Dcc8+V7fvkk0+49957eeihh+psznatWrWK777z/I5+7NixTJ8+ndTUVK86mZmZ3Hzzzbz00ktl+x577DEmT55M27ZtjX2vWLGC22+/3Wvf4MGDeeaZZ+jevbvX/v3793PvvfcyZ84cvv32W1avDuwbK+bPn8+DDz5Ytu1wOJgyZQq33norrVu39qqrtWbhwoXccMMNbNu2DYAvvviCe+65h+nTpwc0rhBCCCGEEEIIIYQQQgghhBBCiOA4Mv/iQAghhBBCCCGEbUopuP9VdKVgtCKsV02GBfJJ0l3zYDS2rfdd3newhKId5lRUrHmR9JY16LyDXoFlOt1m2FkgBo87vEPRAJTDen+FgELTAura8PGf/uss+kMzorsyLvquKNKdx9kH36vZpExhVUGiC/LQ/7klsEb9hqIumIrqO9hW9S5N7XUbXykYLc51gB2hLW1PK8pH9lm+ivTZVq/6AVXNYLRHPrXxZDDIK82U+OULcyjaIV2KNlju3xdifoBnfa15eqLiizXmoKyx/oLRYuvwRRiAlHiICbcOcvngdyg5fwzOmGnsdyUZ+0h2pYEugW8Xwklja3G2gRnVS7F2T9Uf2GerIb9IExnmO5zhrV9spKIBjkphsDorDQVMHuzgh01uXv3Jup/EwykYbd4DAbdJMgSjpf29C7A+Jq3Zbe4v3BDqsStL89Iy88/ql7sc9Grl+VnHGQ5hLrfnNRAbYR4fIC3Hd7kQpZyOQ/9UhduH/jmUuczXPoehLDpccWJnOP845fe4VlN6TGv/lawMHoe66UlUY5snMxYSY6yDW9OcieQ6rFPTosM9IZTWwWj+x/T1kTY63Ho+uRKMJgLh75oIwM7NtsI7GzJfQbPVvVtKKUb1Usz6yrrzL9bA+KOr13d1mD7XOh3QqjH8tatq2U6LY5PvvhQt4v0HnldW3WC0lCDmOs/5RnPLKcHrTwghhBCiRvbvQE/oUt+z+EdQb62D5m3rexq14vLLL6eoqDzseuDAgXz66adERVUNb09OTmbOnDl07NiR2267rWz/jBkzmDhxIj161HLSfYAyMjwJ1FOnTmXGjBmWdRISEnjxxRfJzMxk4ULPlwa5XC7mzp3rFUZW2ZQpUygpKSnbHjduHG+++SYhFgF6ycnJzJ49m/bt2zN16lTS0tJs34etW7cyefLksu3w8HDef/99RowYYVlfKcXYsWMZMGAAJ5xwAhs3bgTg0UcfZdKkSbRr18722EIIIYQQQgghhBBCCCGEEEIIIYJDgtGEEEIIIYQQQqAcDvSQs+HLt8v2Fakwy7phzgA61jYCboqLjEX6YBZstw6vKaXOuzmACYmGSj3wOvre8yzL9BM3oe76b/mO5UuCO3j77qir/x3cPuuDw/DidLvKbtZlMJodN72paTPZ/yr4MHchz+y5keYle2o2YO4BtNuNchhC5GpA79uBPu8o+w0cDtSUGagJ1wc0Tmoze4vgE9zeK+wbuzICGifaVzCaw3cwGvnVSw06WKD5Ym21mgKw6e8DuGc/Cq8/5rduJ0Mwmi9LN3ged6tAA4BOTSC1eWkwWpZlHRUTxGSBIFJK0bMlLNtkXf793nhOmjqbtCfetSyPcucSpfMB0HefA1/noZyBnDDUnlE9FY9+WvU1k18MS1bDmN7BGUdVfl3u+rvs5sPjlTEYrUPy4RFwovNy4LWZAbdLNBx70n9bic6JtXxNTHndfP4YaQj1GDvL3ObdyeWhaOAJSDLZkgY9/GRIph30XX44Ucp/MFeVIK4AgrwclmXKO+grgPAvf/u82inzmJbzrEZIma/Hx+E4PF7bgdK/fFmtdurfb6FOHFPj8U2v3zxHNOnOxpZlUWHmdum5/sc0nXU5HJ5QUSv5xeBya5xH6PNABJmdYLS922DLGmjXrfbnUw9q8kqZMc4cjHb2c27cz9fdOanbcMBwOjyfxa0+R+wy5Cn7CllrmRD43KobjNYiIfAQNpNN+4PSjRBCCCGEEA3CV199xa+//lq23ahRI958803LULSKbr31Vr755hsWL14MgNvt5oknnmDevHm1Ot/qGDhwINOnT/db79///ndZMBrAl19+aQxG+/nnn/npp5/Ktps3b868efMsQ9Equu222/j8889ZssT+74gfffRR8vPzy7afeOIJYyhaRU2aNOH111/n2GOPBTxhb0888QRPPfWU7bGFEEIIIYQQQgghhBBCCCGEEEIEhwSjCSGEEEIIIYTwqBRgUqysV02GBfJJUttYPPnr19C5aiqJPpCOPiPFd9sufeGYYQFMSDRYx59mLvv1q7KbOjcbNv9V8/Hik1GX3AktO0DvE1HhfoKeDgemsC93+YrqlLjgLGgOpnGzzWE2T+y5hXj3AQblLaVt8baaD+Z2ewKrGlkHZ1SXXv0z+paRUJjvu+KZV6Fad4bIWOhxvOd2gFKb2asX7/JeYZ9SsjugcaKsszEByFcRvhunVy/AbslfUFRSraYANFv0CKQ/bqtul8LAg9F+3wFaa9btsX4dHdO2QqRDjiHhIKaBpRNWcN5ximWbrO/bwpWaweeMY3/eSbCwanlySZrXtn7oCtQ9L9bGNAN2fAdIjLYOvznzWTdFsx2EOM1xHBk2QnMAFJWOZdvWld1MiVdMOEbx1i9VH9+Jxx4moTnfWvzgbTCFMqY7G8M3C2DkJV773W7NHzvM/Vk9QwuKNb8b2kSEwimVMmTaNIZQJxS7qtZfu8dGMFpOYO+lY3t7jg/xUf6Cv5StUC5z+FfgIWVKHSbPP9Eg6MIC9E0+ztlNjhkSlFA08BzPTXaEWr94o1Z+RlLz4VgdQdJsZLmago4UvoNk84og1s8pkxCAvWA0gJXfHtbBaHYuD1VHVLjiqBT40xBePOcbN1efFPxgbCu+wsxS4q0DxnZlWj8wxr4UtAgwGE0pz7lPdaQ0zFxnIYQQQggh6t38+fO9tqdMmUJKip/fax/y8MMPlwWjAbzxxhvMnj2b8HAfFxrqwV133YXDxhcNde/enbZt27JlyxYAVq5caaz7xhtveG1fe+21xMXZ++Bxzz332A5Gy83N9Qqba9++PVdddZWttgD9+vVj0KBBfPfddwB88MEHEowmhBBCCCGEEEIIIYQQQgghhBD1QILRhBBCCCGEEEJ4OLxXSRYp61ScysFoWmtY9iF60TwIj0INPbt84bvbHHhU1n7WNNS5N3puf78Y/fGrkHcQfv7cd8Ou/VB3z0U5q7m6UzQoKiIKHRYBRQVVC/ftQBcVosLCIXNfcMa7aBpq/DVB6avBcBheCxVehy0auYDD4zUzPOczrsucHfyOl38Gw86pcTfa5YJ3Z6F/+Bh++dJvffWv11BDzqrxuCnxEBMOOYW+6yW4sry2mwcYjBYe4lnAb7UgP9/hJ0hw23q01gEH7iz6w39aQqsE2J5pXXZqzme2x2rq2kuboq1sDWtjuw3AvoOwxpD71uVQaJ3WGg4aJhndcJMFrj5Rce3r1j+DRb9rnjgH0kjAKtAh2eUdjMaS19FDxqNOOKMWZmpNp+1CP30bfPmOZ8ewc1DXP4YzIZmRPRUv/2B938ImuxnZA07prmgUAQt+0+w7CEe3Udw+QnHAT95hKYeu9GLZsRHtcpWdpzwzUZFToPnoT09xowiYPk4xvFvDDqbSBzPRL/4fvP1MtdqbgtEOOOPQSxejKgWjWQXYVZRrcezbsNc65Azg6NYQHe79GIeGKDoke0LQKlu3V+OJOzLzN8eKXrtCMfHYugljEaLWLZhTrWbq3peDNoWkGHPZnhDr9NioXz6i8elHA1WThNJtBB2awpyU8pyTmeQWSjCasEfv2Wqv3vYNft6hGjZfr7aa5nQe117x5y7rEa55TXPZCZqwkNp/9ExBig7l+RxnZZchT9l07HE6IDkG4iKxfZ4aEVL9MNRAQ9iEEEIIIYT4p1i6dKnX9gUXXGC7bffu3enbty+//vorAAUFBaxYsYIBAwYEdY41ERkZyZAhQ2zX79q1a1kwWl5eHjk5OcTEVL2Qs2zZMq/tCRMm2B5j4MCBpKSksGuXIRm7gqVLl5KfX/6h6ayzzrIV8lbRySefXBaMtnXrVrZt20br1q0D6kMIIYQQQgghhBBCCCGEEEIIIUTNSDCaEEIIIYQQQggP5f3HwEUq1LJamLPSYsr3n0c/fn3Zpv7ybbh+Jurs68BtSKmoRGfugx8+QU+/0t5cux2LmvNttRd2igZqwvXw6iPWZe/NhnNv9ITeBMMp5wWnn4bE9Af9FYPRYko4XILROhdtrJV+9b8ugl4DUcktatbPvy+Dz/5nq6669pGghKKBZ0F7ajP4xU9+QrzbO5irRYn/hSJe42hNZKh1AFuB8hOMlp8D6bshKSWgMZdtsl79f8UgxayJit0HoFVjWLgSxs32DqEakLeMHoV/2h5LAddkzmFa0+kBzfH1nzRrDBlzqaV5LKt/htxs60qxhkSEBsDhULx4ieLSl6r+HDanQdpBzf4c67aJrvQq+/Tt4+GpJag+JwV7qt7jFBdB+m702Z29Cz5/E/3jp/DmGkb1TDAGowF8uAo+XOVd/uNmzXPf+A/MKeWgUjBacRHs2QItOgCQFKtYfL2T9BzN3mxPkJ7T0bDPY3ReDvrSY2HvtsAaxiV5zgEPZhLvsk77yHLGe14rlezMsqhcQV5R1X3r9prrP3q29XtjajPrYLTN+32PD5BmeB1U1iYRzuzTsH/GQgRCfzQ/sAYxcaj3t6HCg5cO1jg68DbR7lwS9/wBVH0/svN69hV0FO0jGM1fiK0QcOhayMIX7FXevqF2J1PLTEFfUPNgtCknK+YuNQ/wzXoY3q1mY9hhFSoNnjAzUzDaHkMwmqkvh8Nz3n5qd8Vbv9g7V42wvrxnS2xEcM9lqhOgLYQQQgghREOTmZnJpk2byrbj4+Pp2rVrQH0MGDCgLBgN4Oeff25QwWgdOnQgLMz6S9SsJCR4pyofOHDAMhjt999/L7sdHx9Px44dA5rXMcccwwcffOC3XuXgupSUlLLgNrsq3//NmzdLMJoQQgghhBBCCCGEEEIIIYQQQtSxwL4CSwghhBBCCCHEkcvpHZZUpKz/2Dm0QjWdm42ec1eVOvq1x9AlJaANKzkry0pHvzLD9lTVuMmykPIIpC6921imZ01D5+XAso9qPs6tz6DiEmvcT4PjMASeVQgobBRWQozrYNCGjIuEHi3gkbMU718T3MtMvQt+91+puj55rdpN9bZ1uM9oYTsUDUCdc0O1x7PSp7X/419SiXdQVUqJIc3LQL0xk8gS6+dKvsNGwMnfqwMa72CBZuM+67JTuylCQxStExVKKcb2USy4xsGgTtA+CSYn/8wH28fjwH6IFUPO5hb9BvGuTP91K7jlbfMYR7dWaK3RVw+yrqAUdDgqoPHq2vBu5udWk1vczDMETiSXWKdJ6etPQW/8Iyhzq9L3ljW4rx2KHp5QNRStVE4WLPwvp3Sv3hglNk9jwCIYDWDruiq7EmMU3VJUgw9FA+DjlwMPRQPU+MmoZ76AgaOIi7M+nzzgaAQZe9A53mkgu/wEo+UWVn0Ort1jfl32b2/9OKfEW+/PyPV/HPEVpNQuCVrEw8RjFcumOYgIPQx+zkL4obdvwH1u18De29t3R72yMqihaAAhTkV8VGBtotx5JG1bbllmJxjNFOakFET7WB+cK8Fowo4lb9ivu2197c2jDvgMRqth371bKUb2MJef+3wAJ3U26MUv4j67M+7TmuK+eST60PmSy0eQYmPDsetAvvV+U1/OQx+7B3exP9+aBKMFW7G9708QQgghhBCiQdu/3/t6eKdOnQL+vXVqaqrX9r59hl+Q1JPKQWf+hIZ6f/AoLi6uUic3N5eCgoKy7eqEjNlts337dq/tG2+8kXbt2gX07+67vX9vnZGREfB8hRBCCCGEEEIIIYQQQgghhBBC1ExIfU9ACCGEEEIIIUQD4fAONTIFo4VV/CT57ULIswjOSd8NOzb4Xvla0YE02LHRXt0OPWDYOfbqisOKCgtHt+oE2zdYlutz/Xzb+plXwYLnfNcZPA415spqzrCBU4ZgMneFReCuEtoU7+AvZ2ApQZdlvcTzu69BTXoQkltAi/bQqRcqwnt19xc3Oxj6eM0XnSvt5vScT2rcj4l+/h5o3w2at4O2XVEOc6ibLimGdb9B1n7ISkM/PMn+QDHxqDnfBGHG3kb1Urzwne/ja6LLe4FGSvGugMZwFOQSWZAJobFVyvJVpN/2+qclqH7DbI+3aqe5rI/FOpfRqfmMDvkDMveh7zzb9jg4Q1D3vYI6eRxaa1YNaUuHDmsocoTb78NC1+bQoYlCvzbTXKnfMFRCkxqNU9uax0GjCMgusC7PMYS8JLnSjH3qS/vBR3tRsfEBz0cX5sPqn2HvdgiPhLDyn5O+fZy9Pj59ldgLpzJ5sGL21wGE5wXIYRUGu209DDi91sasCV1cBDs2eUJs23WrsnBPFxag33oq8I5btIdRl6OSmqOmv0PjDRoerfrY5DuiKFRhuDZt5PfovnRuCsmxip1Zvn9GVs/B9Xus647pZe4nMcZ6f0auz+EBSM+xnuMVgxTPXyjfRSOOHLqkBNb9ag78NGnSCvXSiloLsm4SC1l59utH6TwS9/4JLaqWpdsIRnMbPtM6FMT4yH3LLbI5QfGPpt/8j/3Ku/5G52ajohvV3oRqQV6h5uct8P0m83t8MA4Xb1zpoNH11p9FM/PgnoVupp6qiI2o2WB62UfoGVeX7/j5c/R1w9GvrzZeAnM6IC5SgUWQc3YBaK2rHDNdho/VpcFoLROs+7NS02C0/u3hx80166NUQXGl64pCCCGEEPUluSXqrapfaiBqQXLL+p5B0GVmen/hSlxcXMB9VG7T0EK3HD5+b1ZdWVne34oRG1v190/+NGpk7zNxenq6/0oBOngweF88JYQQQgghhBBCCCGEEEIIIYQQwh75s1MhhBBCCCGEEB4Op9dmsbJeORlWoZr+frG5v7RdkJtta2j946e26gGoF5ahnE7/FcXh6fjTjMFoZPr+tnQ1cBTaRzCauu1ZGHlJDSbXwDlNwWiu8tuuEkblfMhfEdbBaO2T4IyCz/h7tyd5Js51gGG5X3J+9hvAoUCxip74CHXM0LLNQZ2gQzJs2l+1767N4bUrHPR90H9w2mk5n9LU5fvnXVP69vGeGx17wsPvoZq2qlpn9c/oO86CDEPqji9xiaj//oBq1qaGM61qaCpEh0OuIaQKINHlvegjpWR3QGM4cBPpzrcsK1A+UkBKLf8soPFW7bBe1B8bAW0Tvffpbxei/+9SyLeRYFTqpDOhSUvUkLNQR/UHQClF8zHjuGLpizzb+Go/Hfg2upcnyEB//LKxzuEQyqiUIrUZLN8SWLtkH8FoACyeBxNvDqhP/e1C9F0TApuIla3rcD9+PU9f/wSzv655dyYOqh7b9LZ11E4sUM3ov1ej778QNv/p2dFrEPzrVVRiM0/5+pXoy4+z1Zea+xP89SN6zQpUmy4w4oKyfgDifOQoPh9/ObfP7kHhoQDP64cq4v3kLlod99busT5+dGlufvQbR1vvT7cVjGa9P8kQtibE4Ujv3uI5Bm/4PfDGp11Qa6FoAP3aKtbvtR90Ge3OJUSXWJYdyLcOJKrIFHSkgPAQT0Ca26LO5v2aAR0a4ruAaFD2+0gHtrLhd+gdYFhhPXrrFzcXz9MUWr8EywTjmBEToZh9vmLya9Yv2n9/qHnqC828ix2MP7r64+kX7qu6c/cW3Ms+AqwDcR0KGhnOcYpdUFhSNbzMZXVgAZyHpt4igMzhyBoGo13QX/Hj5uAEDBcUmx8LIYQQQoi6pEJCoHnb+p6GOEzpShcLgvGZpjavpTQU4eHeX1BTVBR4qrzdNtXp25/KP3chhBBCCCGEEEIIIYQQQgghhBC1L/hf6yWEEEIIIYQQ4vBUIWzMhQOXss7SDju0WxcXwS9fGrvTH79qf+zXHrVVTb2zARUaZr9fcdhRF99R/cbHDIVxFuFGkdGo6e+gRl9+ZIfqKcNlHl0hrKekmFvSn+SEvO+rVOuYUMSnNzp44p6+LNgxgQU7JvDS7iu5IPsNY7CPvul03LPvRKd7gsNCnIoXhm8lIaTAq975od/wx5Zj6fXLc6y4aCPNwwypMoc8vvc2n+Xqtlk4viuEo473Wc+WjX+gH72mym5dUoK++5zqhaIB6v1ttRKKBhAZphhhnW0HQKMICD3tPK99KaeeGtAYDtxE6gLLsnyHjWC03VsCWiSyLcN6/1Ep4HCUPwN15n70/RcEForWYwCO//sfjutnloWilVIXTOXhfXdxXN5PZftCdDGXZJkDzqyMPrgYvXc7bF1nXSEkFAaMDKjP+tKjZeALsJIHneizXD97B9rl8lnHq376nuCEopVa8Byc15Wvx6wKXp+VWAWjsW19rY1XHbqwAP3Jq+iL+pSHogH8/h16bBvcs25HvzbTdigaSkGbVNSZV+O48wXU+bd6haIBPoPObmr2GIXu8vflp77QPLDY93GjcjCa1pp1e63rdmlq7ifRFIzm++0JgDQJRhP/AHrmtdULRet5AirAIMxAndEzsPpR7nzi3Acsy0rckO9nnazpqORweBYtR4dbl180TxbLilqw/rf6noFtW9M1E1/wH4oWTOf0U4T4+OuHgwVw9nNulv9dvdene+fffL0rjocSp/JW7HjyVPmJjmut+WfjdHg+o5kcsMijdhnyxEvz0FMCCEarHLoWqEsHBC+goaA4aF0JIYQQQghRbxo3buy1feCA9XUHXyq3SUhIqNGcrLgCuCZfFyrfx8zMzID7yMgw/DKpkqSkJK/tZcuWobWu0b9LLrkk4PkKIYQQQgghhBBCCCGEEEIIIYSoGetV7kIIIYQQQggh/nkc5cEUxcq8arI0GI3Nf0Jutrm/Ja8HaWIe6p2NqKatgtqnaHhUo8Zw83/Qj98QeFuHA258Es64DNb8jN6zDZV6NHQ9BpXcohZm28CYQt8qLnxwlZDgzuKzrafzQ9RxrAzvhVs56Fy0gZPueJJGTdoBTdAXToNXZtgb9/XH0K8/BrO+gl1/c+LDk/iLBL6MHky6M5G+Bb/SP385CtCP30Av4A9HPGe0WsBPUVXDd3avb02yK808XngknDweAHXezeg7z7Y3T1+Wf4bOSkPFV1go8ft3sH9ntbpTc39ChdTuZbfRvRTv/mq9oD+7ABx3voAeOwl2/Q0tOxCdejQJN7rIzLPXv0IT4bZYoQ/kVwgAICwcigqrVirIg7yDEN3I1ni7DeuGWiZUWoT/zQIo9pNgUom6wBy0p5KaE33N/Xw3awhfRJ9MujORPgUraVW8g/lxF6BNgYMVNCvZQ7//TkD/10fAwugrav05ESyXDFDMXRpYWESToadC+A3w5n+MdfSkE+C5pbYeBz22FkIFd29l4MPHcd6AZbye2Tvo3Sur6JwGFIym03ahbzkDNv9lrvS/J4wBQJaatUGF+w5KjI8KpEP/DlY63OzN9oScWEltZg7xSIxWWMUdZeR6wtaUMrc1BaOZwtaEONzoXZth+We26qr7XoHIKM/5Rtuu0Gdwrb/f9W1t/fo1ida5ON3mhcBZ+RBlCDcDcBvCiUqPEqZjEEBeoSYqPHiBQuLIok1PLl9t1v1mDK1uaBau1ASQkxwU8VGKAR3g2w2+6/Wf7mbpNAcDOgT2aN40L4un23xatn10/q98tH00ia4MXCu+Ae6ybOdQEOcjLDY7H5pW+tjkLxgtOQZCnVBsI+egpsFokWGKt69ycPZzgT9nKyuow6A8IYQQQgghaktycrLX9vr1gV8HXrfO+0tWmjRpYlkvpNJ1lpIS+yfV1Qkeq01Op5MWLVqwc6fnd2+bN28mLy+PqCj7F5FXrbL35SdNm3p/a8b69es5/vggfNmSEEIIIYQQQgghhBBCCCGEEEKIOuV/ZZ8QQgghhBBCiH+GCuEvRSrMWC3k67dx3zYafUUd/vFwn5MkFO2fZOxV1W6qlEJ16oUafQWOSQ+gThzzzwhFA6/XsBddYfGyy7NgIoxiTspbyg2Zs7gp42lG5nxCbFR5sJoadk7Aw+spJ6P/fRm4Smji2s+52W8zJXMOxx8KRasowZ3F11uHc23Gszi1Z069Cv7gx78H+g5FA9TMRajYQ98qP3BUwPO0nryG377B/eRNuO8Yj/u5e9DvzAq8n6hY1J3/RXUOfuhSZSN7+l/Er7r1Qw2b4AkIBFrE2+8/0ZVBlLZOUct1VEj/adLS3EnaLtvj7T5gnZrQvMKcdV4O+rHrbPdZSg043XeFCdfjQDM890vOzX6bLkUbiNL5dCraaKv/Mw5+hMNPQIu69hG70613J3RUPH+hCihAITkW1OTp4OuxXv8bfPwyOn0P7gcuwT0o3PNvxmT0gfSyavrHT2owe/+e+fFUzuqY7r9igNxWl9oz9+G+9zz0ht+DPl6g9FtP+w5Fq45ux/qtEhPuCQMJln3ZnuCyUjuzzHU7JJvLEmOs95e4fYccaa2NwWhJMYdLVI0QZlpr9N3n2m/QuTfqhDNQZ1+H6jesTkJA2yaWBwPZEeXOI95tSGDFE8765OduRj/j4sqX3fyd5v2ebnqHt3NsMx0vhAAgc1/gbdb/Fvx51JKtGfUz7oJr7B0gBs5w45jkYshMJflFWQAAIABJREFUF2t3+09w+22b5untPb32rYjsy7MJnusX7gLrUGnwHLMa+QhGO2DR1F8wmsOhaJXgc8plahqMBhBlvkwYkILi4PQjhBBCCCFEfUpISKBDhw5l21lZWaxZsyagPpYtW+a13a9fP8t6jRp5pyhnZfm4IFrJX38F+XpwEPTv37/sttvt5ptvvrHdNiMjg99/t3etfcCAAV7bS5YssT2OEEIIIYQQQgghhBBCCCGEEEKIhkOC0YQQQgghhBBCeDjLQ5GKlXnVZOjrD8OPn9bFjMqoSQ/U6XiifimloN+wwBod1d9/nSOdw2m93+0qv+3y8U3yzvIgC9W+O5w0NkgTsxZKCU/uvZW961uxbUMHlv89gGMKfjU3aNYG9U0+qveg8nkqhXr9z6DMR997Hrz7LCxdDK8+AksX2W6r3l6Pmv8r6sPdqNMuDMp8/GkcrWjayLpsZA/r/SkBBKN1KVxHjDvXsizPEVW+0cRHaGX6Htvj7TKs5UmJ8/yvi4vQkwZYV/JBvfiL/zoOB+rWZ6rsn5I5x9YYo3IW+67QujMqNEhJAnXkikEOsp9y0NtmJmlSDCinE/Xwe9C4qbGefuNx9Pj28Nkb5TsXz0Of3wNd4Ani0x+9XL1JN24KJ53pt1oj90H+t6gV+2fC8ts1v0wtpmcQ8jOj3IYwjK/eRU8Zgl7j/7lYG3RxEbq4CL54K7gdO0NQ46/xW83hUMT5CAIJVH4xZFd4qE3HjlCn53lp0jjaXLbbnJ/EwQJPeJoVX+MJcbjQ/70fAglzTGlXa3MxCQ1RtEuyXz/anUe8y7xoeOhjLm5+S7P4D5i7VNPrX25W7yoPSXIb8pKUjWC0Ah+n3kLw10+Bt9m2Dl1UGPy51IJ0m8GA4UHOU0yIVsy92H5Y6dfrodt9bn7Zoskv8v7nqnAAeHuF9cHgg1hPWLdr51bjGE4HxEaY55BtEcrqMhx7KgZDdm1u7rOiiCA8xmFB+jlJMJoQQgghhDhSDBw40Gv7tddes912zZo1rFixomw7IiKCo48+2rJukyZNvLZXr15te5yPPvrIdt26MmyY9+9/X3jhBdtt58+fT1FRka26Q4cOxVnhbx8++OAD9u2rRkC5EEIIIYQQQgghhBBCCCGEEEKIeiXBaEIIIYQQQgghPCqEKhUpc4BLmLb3B8fBomYuQkno1T9P5z4BVVejLq+liRxGHIbLPO4KCS4ul3Ud8ApGA1B3vwhnTQnCxHyLdx8gpWQ3TgxJMwAjLkQ9vxRlcR9Vq06o57+vxRn6cfZ1qGZtUO27o0LMoZK14f/GWi/4H97Nen9KvP2AgC5FG4g2BKPlOCqk/0REQaPG1p3s22l7PFMQUfNDwWh88TZsXWe7PwB1+X2ojoaUuMpOOKPKLjvBaIklaQzN/cp3pXbd7M2hgQlxKm4cZu85kxzr+V8pBb7CAbdvsD4OHUhHD09AvzMLvno38MmOuQL1vzWoB99AXfeorSYJI6Poe3E0vS+NY9nSFG6JWEjbhOol2IS5C+lZuMpcIT8H/fbT1eq7uvSKr3Bfcgx6SCx6SCzs2xG8zvuchJr5AarH8baqm0IcqyvhRjd3LnCTX6TZmWWdGtI8zhPKZtIi3hxqtNHH+rg0HyEvEowm6ov+43vcU4bgPq0J7sv7o1f/XL1+CvLgf0/ab3DMkDo/9ynVt7X9c5oonUeELiDU8Dk2u8C7r5xCmLmk/NiiDeFEPg4xZfLq9qOzOMzoHz4JvJHbDTs3B38ytSA9x/DiqeT49sEf+5IBnnC0+Cj/dUsd+5Cb6Gu9/8Vd7yZ6iovkm1w8/LH1/fktojcacBWbE78cCpwORUy4dXm2Rb6uy/Dx2Fnh2NOlmb1jYUQQDtWhhhz2QOXLcVEIIYQQQhwhLrroIq/tZ555hj177H1ZzB133OG1fe655xIebv2BoW/fvl7bixbZ+1KfTz/9lOXLl9uqW5fOP/98YmNjy7YXLFjAp5/6/0K2nTt38sAD9r9ILSEhgfPPP79sOycnh1tvvTWwyQohhBBCCCGEEEIIIYQQQgghhKh3EowmhBBCCCGEEMKjYjAa5lWTdRmMpp5bijrulDobTzQcamDVkCKfThpbOxM5nDgMK5XdFUKIXD5CfyoFW6iIKBw3PI56dKE5dK2OqDtfQCU0MZd3PQbOv60OZ3RIYnPUpXfV/biHXDJAcUIH732pzeC8Y03BaPb6beQ6QJIrjWh3nmV5rqqQMOAMgaQUy3r696W2xssp0MawoZR4hS7MR7883VZfXkbbD0xUSc1Rkx6ssv/XzccS68o2tnt4391E6ELffQ8aY3seDU3X5v7DFsJCIC6yfFtNvLna4+n/BNhWKdRd83DcOgsVGY1SCjXherhwWkDdRBRkMeO3iWzc1ofHzvJd96zeLpzKOxjjX/sfIFIX+G74e90FOOrNf6FvHAGbfIS1VUf341Bf5+F4agnqmKG2m9k99gTi4Y81932g2bzfuryFnzEjwxSt4q0TR9bvNQe5bMsw9ynBaKI+6P070VPHwh/fQ84BWP8b+qqB6F3VCE7atAqK/BzLSkVGoy69O/AxguSMnvbrRrnzUEC8K8t2my/Xlh8H3IZDQmm44oju5n7yimBftmbVDk1Grr2QKPEPsmGlsUjd8Lj5M9j29bU0oZorLNYs/1vz7XrN32n+60eEwr2jgv9ZUynFpSc4yHjSya2n2A9SrCyvCPKLId06L7rMzpAWuH382YXzUFGjSOvyA/lVjw/GYLQKw3Rt7ntepSJCq/8YlOpo/jgekILq5RALIYQQQgjR4AwZMoTevXuXbR84cICJEyeSn2+RfFzBE088wcKFC8u2lVLcdNNNxvrHH388UVHlv5NZsGABv/zyi88xNmzYwMUXX+zvLtSL2NhYbrjhBq99EyZM4KuvzF9As2XLFoYPH05Wlv1rOwD333+/V+DcK6+8wrRp03D5+hIpC6tXr+bbb78NqI0QQgghhBBCCCGEEEIIIYQQQojgkGA0IYQQQgghhBAezvJQpQhdyLkH3mRc9gLOcPzIqd3h5Mh1nJD3vTEoJ+g69oTUo+tmLNHwdDvWdlX15Ceo6Ea1OJnDhGnhvLvCimpfwWjOEMvdqv8I1LyfYcwVNZhczSjlfyG3uqAOg9E69IBL7kK98hsqNqHuxq3E6VB8drOD2ecrLhmgeGCM4qc7HSTFWj9e/oKCSrUt3ooCot3WaWW5jugKkwiBrsdYd/TLF7bGW7/XXNZ+57foce1h+wZbfZXpNRDVuGlATdSFU1GPLYbWncv29Sz8k5//HsDN6U9w+sGPOS3nE07L+YQrM+fy2dYRXHrgZd+dxsTDCSMDm3sD0sXGQ9i1mfdrVMUlohbvqp0Jjb4cddm9MGg0jLkC9Z8lqBHnV6mmRlxQJezRlh2buOG3a2kUYV0c5i7k2cXdWd7paa7JmMPFWa+wcPs4bs14wn/fGXvQuvZDcfS639AX9w1+x6MuQz31GcppCOH0oUV8zcM4rMxcopm5xPox9RXGprVGv/hvOm23XmznKxht7R7rssRoiIuqnfsphC/6tZmQWzXAU5/TNfBjjq9QtA49UPe9AiMuhIk3o+Z8h+p5QoCzDZ5Bney93iLc+TjxnAvHuw7Y7n9bBqQd9Dx+poexdAYje5rncvu7btre4abXA25aT3Mzd6kh6Uj842itYds668LhE1FnTYHmba3LtzXMYLSlGzTt73TTf7qbwTPdrN5trjs0FW49RfH9NAeDu9Tu++eM8YrTjqrVIVgb1hmXMp8jOQ7dxThDMFq2xeHXTjBa68b2HruocP91/EmJVxzbtub9FBTXvA8hhBBCCCGCYc+ePWzZsqVa/0rNnTuXsLCwsu2vv/6aQYMG8dNPP1UZLy0tjSlTpnDzzd5fDjJ16lR69jQnwMfGxnLOOeeUbbtcLkaOHMmSJUuq1C0qKuKFF16gf//+7N27l4SE+vv9lS/33HMPPXr0KNvOzs5m6NChTJgwgXfeeYc//viDtWvXsmTJEm688Ua6d+/OmjVriIiIYMwY+19E065dO55//nmvfY888ggDBw5k0aJFlJSYf2e6ZcsWZs2axZAhQ+jevTtffvll4HdUCCGEEEIIIYQQQgghhBBCCCFEjVmveBVCCCGEEEII8c/jKF/E2dS1j1d3XerZSBqE44bPcT81D359us6mo6bNQZmCnsQRTzkc6IvvhPkP+a/cd3Ctz+ew4DAsxHZX+OZzH3/kbwpGA1AdjkLdOgtunYUuKUafHFPNSdYeFROHbtYG9mytvTEmP4Q675Za6786IkIVV52kuOok/3VT4hXgPyRl/q7LAYjW1kGYOZWC0VT/EegPX6pace82dEkxyk9AlSmEKDxE0/LxiXAww++cvSQ2R13/WGBtDlHHDke9tgoAveA59OPX07F4M4/su6t6/U2bg4qJq1bbhqBRpKJJLOw7aK7Tp3XVQAYVl4iecD289VRQ56POnIzq2AN/ERCqdWeY/BD62Tt8B0JaWTyPn09N4qitd1KswryKXtp1BY0PbqPxwtsJ+J6VFMOBdIhPCrSlTzptN/zwsSfQ6LhT0Ff0D2r/ADRvg2Pq7Oo3txnKGEytE308S75fjJ73AB2aPYVVfOOe7elAE8um6/ZYd9klIR/95lxIbAaDxqDCDel6QgSR1hrefdZc4aOXYeTF9jssLjIWqdueRXU/FjVsQgAzrD2tEiAyFPL9BOxEVQj1TnBnBjTG5fPdLLzWidtw6lT6UfWKgYrr3rCutHRj+e28Ipj0imZQJ03nphKk+I+3fyfk51oWqfGTPTdadYadm6uU623r/Z4L1bX8Is3EF9zstpE/+MaVinP61d21HqUUH1zr4NQn3Xy5tnbGWBfehR6FfxnLS8PMTOG72flV95mC0RwVfvh2g69jghCMBjDnQs/juP/QZ4OEKFhyk4NeLWHsLDcf/em/j4JiDQ3uGSyEEEIIIf6JJk6cWO22pWH0ffv25ZlnnuHqq6/GfehLilasWEH//v3p2LEj3bt3JyIigu3bt7N8+fIqQVzDhw/nwQcf9Dvegw8+yIIFC8jKygJg3759nHrqqXTs2JGePXsSHh7O3r17+emnn8jN9XzWbNasGTNmzODiiwO4NlRHwsLC+PDDDxkyZAgbN3ounmitefvtt3n77bct2yilmDVrFtu2bWPhwoVe+3256KKL2LNnD3fccUfZz+jHH39k9OjRREVF0adPH5o2bUpkZCQHDx4kLS2N1atXlz3WQgghhBBCCCGEEEIIIYQQQggh6pcEowkhhBBCCCGEAEAph3Vcjj60GjM7wGCamjjqeFTq0XU3nmiQ1BmXoP0Fo/Ub6veP3v8xTEGC7gorqn0FBPkIRqtIhYTCiz+jL+3nu96jCyEvBz3zWjhoCKJo1sYTNJafg559p63xfRpxAbz075r3Y2Xc1Q0uFC1QdhbOR7tzyhb1R7utwxpyKwWj0aqTdWdaQ8ZeaNLS55gb91vv7xiRifNgut85lwmPRN39IvQ5ERWXaL+dybBzYNY0KLRIKrBBTX8HNXBUzedRz/wFo/Vtbb1fjZ2EfvfZwIPJTNp2hQ5H2a6uJlwP/UfAqh/QD08KaKgOnz5CpvoPC2LH8F7sWAbk/8CE7HdpUbIr0Fl7S98T1GA0vfI79N3neALXapGa93ON2tsN7QimEzuZzw30d4sASHKlWZan787EFIy2wRDk2OXPt9CfTfVsdOoFj7yPSkqxP2EhqmPvNp/F+uFJcOJoVGyCvf58BaN1PzaQmdU6h0PRpRms3O67XsWQ15Ti3RBpf4zSUDNtCEYrPcqEhyoSoyHd+rTJi9Yw73vNw+Pk88s/3vYN5rLWncv///ETi7bra2dONbDoD81Om2vGk2Lq/vnvdCg+u8lBj/vdrN4d/P7Xh3XCpQxB5ZSHmZmC0Q5YBaMZjj3OCh/77Z5jRQcpGK13K8Xqfzn4eh2UuDXDuioSD/08F13n4Kt1sGm/pn87xRlPu9lucRmgwE+gpRBCCCGEEIebK6+8koSEBC699FJycnLK9m/cuLEs9MvKZZddxpw5cwgN9f3FMgAtWrTg3XffZezYsRw8WH6x3jRGu3bt+PDDD9m7d2+A96butGrViu+++45rrrmGBQsW+KybmJjI/PnzGTlyJNOmTfMqi42N9TvW1KlT6dmzJ5deeil79pR/80VeXh7ff/+9rfkmJNi8viaEEEIIIYQQQgghhBBCCCGEECKo6u7rmIUQQgghhBBCNGxOwyJOt8vzf3otrB41iYyqu7FEw9Wklf86ccELmDnsOUyv4QrBaKaAMl/tLaiOPVF3/te6sEV71H9/QPUfgRpyFmrRTnM/F92OOvOqoAWOqQunwekXQ2lYnum4Vp2+r388aH3Vly7Nyhflm/Qu+L3sdozdYLRkH+E/+/0HSWUYgkRa7QksjEn951PU4DODE4oGqNh41MxF/isOGg09BpRvh0eibnv2iAhFA0iK8V3et431k0q16oS6dz7ExNV8Eu2PQs1YEHAQpmrdGTXyYjjlvICHjNCFTMx+i7d3nsdNGU/bD0Xz9fwL4rmU1hp93bCghaKp+16Bxk29dzZuhnr6c1QNf4atG9d9AMrwrj4K164AIKnEEIyWZ/61iSn0pX3R5vKNDb+j35nlb4pC1Ny+Hf7rvPOs/f5MQZYx9ZBuaEOXpv6PLVHO8vuUUhLYMTgzD3ILNW5DOFHFc6pYQ9iRlc9XGzoU/yyZhmTgmPiyMENVGpBW2bb1aFNiXz355E/7dRP9nFvWFqUUS6c5GNUz+H2vDeuM28efXZSGmcUZwhmzC6ruc7mr7qvYF0CjSIgK8z+/mCAFowEkxijGH604p5+jLBQNPI/vkFTFlYMc9GipiDBkO0gwmhBCCCGEOBKdddZZbNq0iRtuuIGkJPPvLUNDQznllFP4/vvvmTt3rq1QtFJDhgxh+fLljBkzxnidPDk5mdtuu42VK1fStauvC6QNQ7NmzXjvvffKAtK6detGfHw8ERERtG/fnmHDhvHcc8+xadMmRo4cCUBWlvcF2rg4e9euR4wYwd9//82sWbPo3bu33981hIaGMmDAAO6//37Wr1/PDTfcUL07KYQQQgghhBBCCCGEEEIIIYQQokZC6nsCQgghhBBCCCEaCFMokutQMJqdhffBkrGv7sYSDZZyONAde8LGP8yVghSAdCRQyoHl8njtWVGtiwrRt4+zbuxwoByB5eer0y6EIWd5gn4y9wMKGiVAy45eCwqU0wlzvkNfPci7gzapMOKCgMb0O6ewcNQdz6OvexR2bITWndGjW0Fhfs36ffEXz/04zMVGKLqnwCpzVh2phevLbkfbDUaLTYCwCCiyWNGf5j9MKivPen+Cy0eQX2Vd+kK3Y+3Xt0n1HgTPfIG+dqi5zhmXogacjk7bDZn7oE0qKiyI6QP1zFcwmlLQs4WP8iFnwYljYMvaqq/DkFD0Z2/Am//xOb6a+xOqc+8AZmzRxyV3ope8XqM+bI1z+X1w/q3oIbHWFYJwLqVdLtAa/WSQF2INHuf5eW1bB7kHIToWWncJ+L3BSpem/usE05heEBXuY2HboeN5kss6VC5NN0Jrbbk4zhSM1rKk0oH1m/fh6n/bmq8Q1Za+x28V/eXbqEvvstdfcZH1/lAbqTv1oEsz/3WiW7eGnXGQc4AUuwGXFazfi/X5NeU5vGAvmKjUr9sCnoY4Eh2wDuckvsICelMwWnYG/L0a2ncP/ryq6fft9oPa/IXu1qb4KMXCa53szdbsyoIQB+RVOvS5NAycYUglM1gf3hmXjWC02EiF1VEl2+Ljqp1gNKUULeJhg59LaMEMRrPLGIxmyOAUQgghhBCitm3ZsqVW+2/SpAlPPvkkjz/+OCtWrGDt2rXs37+fwsJCkpKSaNmyJQMHDiQ21nDt2IbU1FTef/990tLS+Oabb9ixYwd5eXk0bdqUdu3aMWjQIEJCyv8kfPDgwQEFa9ckhPull17ipZdeqlbbgQMHMnDgQFt1V69eXXZbKUWTJk1sjxMREcE111zDNddcQ0ZGBj/++CO7d+8mIyOD4uJiYmJiaNKkCZ07dyY1NZWoKPkiNyGEEEIIIYQQQgghhBBCCCGEqG8SjCaEEEIIIYQQwsMUfOF2oUtKYNff5rbtu0OPAbDwheDMpcA6jEf886hL70bfNcFcHmf+5vV/HFNwV2m44YovfbSt3iUiFR4JKe09/3zV634szFyEnvsAZO2H7sehrnoQVUtBGyomDlKPBkD7+dZ3n47qj5r0AKpjjyDNrP4tv9NB5BTzQv8uRevKbhuD0VSFxSBOB0opdHIK7NxctfJ+Hylsh2TlWS+2iXcd8NsWgBEXoK5/zDLEKBhUr4HwwBvoeydWLYxLhKOHeOolNYek5rUyh/rUOMY6wAGgSSzERPh+3FVIKJheQ517Q/uj0NOvtG577SM1DkUDUK06wayv0LeOgvycGvdn1G8oKjQM3fUYWPNLlWL98+eoMy4NqEtdmI9+ZQbMn16zuTVrA8cMhcXzqpb1OQlVumCubdeajWOhfbInxMMU8BFs5/TzcywoKQYg0RCMlu5IwJ2+D2eSd6JbYbEmzfD0aV6823vHjo3GcLV/Iq2153zEXeGfy3Dba9t96F+AbUpva3fAbXTZuAGMU7FMuw1z9XM/vOZq6sNi258ta+z/oA6zYLRUG8FoyXFO1PPfo5++jZTN2QGP8dcujdtw7HJUeHmbAoCsKAW5hZpoXwGO4siXnWG9v2IwWseenus0Vk/C7z9sUMFoWQHkUCdG+69T25o2UjRtZC7fPdPBTXMz+XJVAQcccQC0Ld5K85LdfB09uEr97aGtyHaaOyw9XsRFWpdn51c91zYGo1U6dLRL8h+MFt2QgtGK63YeQgghhBBC1DWHw0G/fv3o169frY2RlJTE+PHja63/hio3N5dff/21bLtz587VDppr3Lgxp59+erCmJoQQQgghhBBCCCGEEEIIIYQQopZIMJoQQgghhBBCCA+HIVTJ7YK9W8tCJCpTL/6C6tgD7Xajv/sAMvbWeCpq7FU17kMcIQaN9l2eaCMR4Z9CGcINtRutNfq1mea21QxGC4Q67hTUcafU+jhVxj3/NvTcfwXebtKDqAun1sKM6ld4qOKSAYqXllkHXXUpWl922xSMluOIKd8ofe4kWQej6S2r8Rf7kZVnvT/ObQ5GUzMWoAbU3aIVdfI4uP159MOTvPdf+wgqPKLO5lEfkmLMZfGGcAe7lFJw+kXQbyj6oj6QU+FnPuB0mHB9zQaoOFbPAaglVYOw3E/fBm89FZxB2qR6/m/Z0TIYjS/fQd85N6DnjH7hPnjzP9WfU7djUbO/QR0KwHXHNYaK7wdhEaiL76h+/zaEhSg6JMP6mp8i2jLhGD9HnTxPulmSIRjNrZxkbdxMYqVgtN0+shpblOyqunP1cnTnPrDhd8jJsgj8MgRgGQOxyutqY/hWxW1TuJeP/f7m4TWujbmXbovDQ4khGC0kgNSvOpTa3BzcWSolXqFadUI98j5t1mp4PLCExs9Wm0eomHvo6/hQmdaefsf2CWgq4gijs9KsC+ISy26q2AR0jxPg9++qtl//m99z7Lp0sMBevagwiAxrSDP3pnOzYeMfNCkq4NX3RlYp3xzals4dV1u2XRfW2div89BH9UaGU8Bsi8fPGIxW6WN/p6aKJat9Hwtj6iGIUYLRhBBCCCGEEME2f/588vLKf6F0/PHH1+NshBBCCCGEEEIIIYQQQgghhBBC1AUJRhNCCCGEEEII4eE0BKO5XLBjo7ldyw4AKIcDfdqF3mEb1VUP4UmiYVJKwXub0ePaW1fof2rdTqghcxiC0bZvQJ93lO/XsSlU7Ugw4HSwCkYbNxnem21u161f7c2pnl18vHUwWrzKZcilI1HR49APTyJaWwejFToiKMFJCK7yYLT4ZOvBFv4X3aQVXDjN83quRO/dTtbag+DoUnU+rizLLtW85ahOvQz3rvaokRdDq07oj+YDCjXyYlSPI3/hjc9gtKjgjKGSW8Brq9D/exKy0lDd+sEZl1k+Z4JNXfsIeuMf8OvXNesooQkqJs7TZ6tO5qieL97yhMHZoDP3wTvP1Gha6unPy0LRANRV/wedeqN/+BgaNUadej6qS+2n86Q2q5tgtDUPOHA4/Dxv9m4DINEQjAawf/N2Evt7v753Wh+SAEgp2V1ln776RN/zEKKhKTYEo4WG1e08bOrW3H+dlPjy2yd0DHyMD1dpUg05zI5qBqMBfPynZmyfhhsOJerAAcN7UFyS93bvQZbBaHz9HnrvdlTTVsGfWzXkFNqrlxhdu/OoCf3us+hnphq/FACgTfE2wt0FFDqqJpytDu9qbFd6vGhkCBU+kF91n8twMlk5GK1LU+t6FUXXw2E8wvBXKBKMJoQQQgghhKiOHTt2cM8993jtu+gie9fZhRBCCCGEEEIIIYQQQgghhBBCHL6O4FWvQgghhBBCCCECYgpG0m5I22NdltgcFVGeiqIumApdj6nZNC67F9WuW436EEcWldwCdeszUCkgR133KKpJy3qaVQNkCkbLzvAdigaQnxP8+QTqkrus94+/pmb9duoFF0z13tdvqCccqEtf6zYx8dBrYM3GbcBO6qK4Yaj36yksBGZfEUP0hEkQFg5AI9dBYx9ZzkNJI2XBaInGuvqF++Dnz6vu37IGfVZHskrCLdvFu6umjKhP0+slFK1s/J4DcNz+HI7b5/wjQtEAkmPNZcEKRgNQjZviuGY6jjtfQI2dhAqpm+/0UEqhHv8IBp5RtTA2AfX05zBotP+OOvYov92uu7Ga/u4D23PTbz/jCaitjvZHoRZuQ4V5v76UUqihZ+O4ex6O62fWSSgaQOem1Q8AWrexO2dmv++33kNnKro08z2OXrqo7HaTkv3Gepu3VD3+bN5vnVAS7c6hkTvn4DNdAAAgAElEQVTb7/yEqC963W9oO8eSEkMwmjM0uBMKkrAQxYRjfL/mkyuEe4aFKO44LbBjUUYuLNtkXVaT7M6/dhnjM8U/xYE06/1x3ufUqk3V8OBS+v4LgjmjaitxadthV74Cd+uT/vNH9JM3+QxFA3DipkPxZsuynSEtzO0OfVSPMwSjZRdU3edy++6rVNfm/g9GMVVz3GpdpCGMTYLRhBBCCCGEEADvvvsud955J/v3m6/Rlvrtt9848cQTycjIKNvXq1cvTj755NqcohBCCCGEEEIIIYQQQgghhBBCiAagblaXCSGEEEIIIYRo+JxO6/1uF2SnW5fFJ3ltqpg4mPUVLF8CW9ZC01awYxN67r8sm6tpc+CU82Dlt7BzM/Q8AdXhqJrcC3GEUmOuhD4nwa9fe8L6+pyEatu1vqfVsDgMr+HDhDpxDHr+Q6C9gyLUSWNr1q9SqKseRJ88Hv76EVp2hD6DPaFLs75ED4uv2mbCdaiQhhkCEixPnOPg3H6aHzZrosNhWFdFu6RDi+oPJX0kuQyBDcA+ZzJJrvTyYLS4JGNdAP3BXNSxw8u3P3oZPf1KALKccZZt4l1ZXtvqmumoqAaapnAES4lTgHWAS/gRcnVZOZ3w0Duw4ivYsBKKiyE5BY4djkpsBgW5fgPN1KkVwkmOH2GuuPJbtNYoP4k6+qOX4ZUZgdwNjxEXoAaNhuNOQYUb0jfqQWqz6rftUPw3/9t5AW8fHM8FLeZXKe/ZEl6+zEHPlv6DQfQrj5TdjtL5tCjeyc7QqkEm67YVcHqlfRv2WffZqWgTNchHEqLW6Sv6Q1Qs+qj+qF4DoecJ0LUfKrxSUk6xIRgt1JBu0wDcPFzx1i/mkLG2id6vzv8bq/jfz5q/K53ixLmyKFah5DmibY9dsedOTczHCCtrdmPrvUAcwTKsnzCqUjAarc3BaPz5I3rfjnoPC88ptF83sQGeyuviIvTkk2zXTy7ZDxa5zvtCko1tHIde6o0irM+rD+RXbWM3GK1/e885eWGJcXii6+EwHhFqfV8LfMxTCCGEEEII8c9x8OBBpk+fzsyZMxkxYgRDhw6lV69eNGnShJCQEDIyMli1ahWLFy9m0aJF6Aq/OwwLC2P+/KrXiYUQQgghhBBCCCGEEEIIIYQQQhx5jpCla0IIIYT4f/buOzyqKv/j+OfMTHoggSSU0HuVJoiAIIK42FgLKthWdC3outZ117ViXV3Xsquua8Gy9rVXXAvqCvpDsaBrwUWaSi+hhbQ5vz8Gkgxz78ydSSb1/XoeHnLP+Z5zv0kmk5lJ7icAANSYW6hSRYVs0UbnuT0v2pVkUlKlMYeF/kmy3y6UnILROvaQDj0ldDF4tbAcwI3p3Fvq3Lu+22i4fL7YNQ2Y6TVYuvxB2Vt+IxVvkzKyZGbeKDPU+0XqUffvPUTqPSR8LC1D+scHsjf8Wlr+bSgQbPJJ0gm/q5VzNnQjuxuN7O4QyGFCt6WCKMFo6wL5Uqkqg9FMy9Yu0Vm7vPe8Xp/1Nz2de5xKUlvo1y88ovGSgjIq8jkHo+UEi8IHeuwV7QxIksLI7MBKO1wydBojY4w0fELo355G/kJm5g2y910llZeFz/n90vEXS5OmVe2VliGddb3sPZdF7rWtSNqwWspv79qL3bC6Mjgwrvfh0vtkDjk57nV1oU8794C9aJ5beawkya+gpm35lzKDxZpReK+K/LkK2DJd0f0TXf6HMZ7Chezm9dLXC8L7Kv3OMRht8cZU2c3rZaqFAC/+qVRSZGhmz9L/xfleAfVgx1ZpwZuyC94MHaekyvYdLg0aLTNojLTX6Mj7t90acDDaPt2M7phmdN6TkfcvxkhDOu05ZvTmBT6d8mBQH+z60j1062u6b9VMndX+Tr3U4nDP506vdncwY4zRH5/3fh+3aYe0dqvUtqXnJWhCbDAo/bTEeTJvj8cHXfqEvgbdggt/XirVczDa1p3eawtzG04YoK2okF68V/a28+Nal1/h/IcD1vrdg9F2h5m1ynSeLyqWyiusAv6qj49rMNoeH8KsNKMJfaXXv3I9vbLT3eeSJd0lZ7zE5VsNAAAAgOaprKxML7/8sl5++WVP9RkZGXrkkUc0ePDgJHcGAAAAAAAAAAAAAGgICEYDAAAAAIS4BaMFK6Qtzhd+qmXrmNuavnvLDhojLZoXPn7WDZ5CLAB45PY13IiYg6ZLE6ZKK7+XOvYMBS0m+5z9R0gPLZTWrpTSMmTy2iX9nA3erpC9dFuiFhVbtNUfmdqx3r8rLGhXMJpy8iNqqvt7qzN07k9nSz+Fjp/s8oZm/3y6Jm/7t6xxDvXLrdgjGK1rP+/vA2pNtGC07SV110d9MsZIx18kHXGGtHmdlFcobd0orflR6tZfJjM7ctGhp0hOwWiStOK76MFoR3SJv8fTr2mwoWiS1DfBu9b9d7wfdjxl2ytas7iTvkvtrW5ly5RZeJiM2c/bZt9+EtlXyWK9kxUZhvdDoEsoRG30IZVjy5YXSYq8r+tZ6hJug7rh94ceA/n8oe9fvmrH1ef80eb8oVDQsPE9j/d4O2KdL3qdzy9Tfc6Y2HtHvO0Lfx+r1dh/XCF99aH3j1tZqfTlfOnL+bKP3RLqJ8slpSvQcIPRJOncCT6VlAd1yTPhwWRTBkmd8yKfb3YvMHrvdz4t3yD5X39QHe6dKUkaWPLfuILRstKq3j6m/zb98fmsuPp+9zur40bwfLhZWrtSKil2nuvSJ+zQpGfKHjVTeuoO5/oNq2u5ufhti+PxYO+2yesjHtbaUDj2vx/3vqh9V5l/fq78+7dKX0ROrw20cV3q2/Wlnt/CrZ9QYGJBtXnXYDSHp06HDzZ6/Sv3cMbsNNeppElz+S2UnQSjAQAAAJCUm5srv9+viooKz2vGjBmj22+/XcOHD09iZwAAAAAAAAAAAACAhoRgNAAAAABAiGswWlDastF5rmUrT1ubm56XvfP30hfvS4FUmRMulsb9MsFGATjyOYdLNTYmkCJ161/H5wxIhd3q9JwNWrWgsoKK9Y7BaOv8BaHSXcFoL2/po8u7LdCaQBtN2P6url13tbqXLZMklZhUXZ//h4g9Ti28L2obnctWVh106iUVdIj3PUEtaJHuHtqyo7QOG2kATGYLKXNXYkVaoZRf6F6bmy+bkycVOYTLLvtGGjbecZ39vzfib+zQU6STLol/XR3KyzbKy5I2bPe+Zu/iT5UT3BIxHlCFBpR+EzpY/7P3DZd/FzHUsfxHx9IN/nxpxQdhwWg/r90ppUTWdi1b7r0HKXQb2jPEq3rwVayArLAAL5cwLsc99gjVclljItZEOY/jHj6XXj2u8e1a5yE0zDSRxz614ubnZQ+pQbirtdK2Iue5FIcbfgNz4YFGmanSX9+2MpIOGmB009Hu37+MMeqaL9kTZ8gu/0B64zH1Lvk+rnNmVcuL6/7xP3V8UY4ez5nuef30+6xOebBCfl8o6Ciw5/9+yW/C3w74w2sc11XOmbB1Ps/rInvYfd7IHkz0PV3Xxeil2vvu8zXB8DiH70eVOveOGDIzb5R1C0ZbsbiWmkrc1p3ea/u0rd/Pp138uewdF0YE90fVopU0bH+Z826VSctQfsc06YvIELI1UYLRdoeZ5Ttk6e62flt4MFrQJefM94/LZEuGyxxwdOXYYYOMzn7MPRitnUvuZTKlu3zr2Fnm3icAAACA5uOII47QmjVrNGfOHM2bN09ffvmlli9fro0bN2rnzp3KyMhQ69at1aVLF40dO1aHHHKIxowZU99tAwAAAAAAAAAAAADqGMFoAAAAAIAQt2CBYIVU5BaMludpa5OdI/OHexJsDIAnbuGGXvQaUnt9oPEzVYEF+RXr9YO6R5SsC+SH3vD59ebXVke8NVRKDw09lXOsvk7rpwVLxyhF5foqbYBWB+ILa2lVsVFtKtbuOodP5tdXy5gmGIzRSKQFpJLyyPEzxvE5iapzH+nL+RHD9uO3ZI6aGTleXiZ78ZT4znHUWfJd4BKW0sD0bSfNWxI53raldMxwozvfqQrKSLGlumL99bE3jSMYza6MDI/JL3cIrpO0PpAnu+I7lZRZfb5Syv3qTa0K7O9Y2758lXTkmdLz/4jZgzn9GpmTf++5Z8CzjBaxaxIVSI1dU898PqOzxxudPT6+dcYYmctnKyip/3v/jWttdlrV90D7zjM6oSgzrmA0yfl7a+2pi/Ch5J/DmERC4eIJd5MCPlNZ66tRGF2085qqt/8r+bImKC1YoiEli9QyuDX0zrZuJ5MVmWBl/H7ZoftLn70XMWdnXyMz47Ja/7gX7bD6abPUvUBKT4n+eG9bifd9+7WvYWM1YDeslj1tpPcF086X75ybIobdws12+LJct/LZoCS/8txLtH5b+HFF0LnOv36l7JW3Sre+KjPiQElSx1ZGQztJn62MrD9uuKmXgEH3YLS67QMAAABAw5WXl6cTTjhBJ5xwQn23AgAAAAAAAAAAAABooAhGAwAAAACEuIUqBYPSFufQCJPTOokNAYiLcQk39GKYc9gLmqlqAWQF5esdS9b5C0Jv+P26463Iq/a/TN9LT+Qcp5OLHtN3qb3jbqFPyWIZSTrkVzKTT5QZOi7uPVB7Lphk9KfXI8NPDhtEMFpUA/d1DEbTJ+/IlpfLBPZ4ef6dZ2JuaS57QPabT6QtG2XG/VLa/8haajb5jhpmNG9J5O3o1mONpo0wGt1devmNpWq56E2dWPSYRhUviL3p+p9lrY0ZnGhLiqUX748Yz69wCUbz5+nB/3XSuecHdwV4TJRcTtFh5kUyh4+VBu0ne/2pUnmUxI/0jKh9AokygUDyIqoCLuk2TYj54/0a2vsu6S3va7LSqh18OV99UjrXel+QrJXKrVTuEhJVS2dJ5uYO55godZ4oSQrYMv124526ae1l0V9fyXdPFLNLvpLpMbBWugwGrW56w+qKF6yCVmqfI912nNGxw92fa27Y5joVZlDHeg5GO7pHXPVOoWiSooabue41/xVp4i+VkWqUlSZtdwiTiwhGc7lZ+m2FJMnOvq4yGE2STt3P6NwnIhedul/9PF53C0YrJhgNAAAAAAAAAAAAAAAAAAAAHtXgilkAAAAAQJPidwtGq5A2rnWey8lPXj8A4uP2NRxLarrMry6t3V7QuPmqXjJ0Cw3a5M8NveEP6O1vnbc5tfA+HdHxX7ox/5K4WxhY8rXMqVfKd+m9hKI1ABceaDSia/jYLccYdWpNMFo0ZsyhzhM7d0hrlkcM2/dfiL7h8RfJTD5Rvgtul++qR2QOOFrG13he4v/1WKMJfcPHLpkcCkUzxmjaPj49ut/numv1ed5C0SSptETauil23bN3Ow63drmP2+HL0un6/a5QtOgKR4+UMUbmwGPlm7tN5t0dUka2c/FQgkiRRB17us/1GiLtO1nKzol/39ZtE++pkTA+n/zHnqvZLf7ueU32rmA0uysMsXPZSrWsKEpGe2jCyk2Kbs27QA/lnCylR0nc6uAe6mUfubHW+nl5kXTZ86FQNElaVSRNu9dq6Xr38Li3vokdLJefLd1+nC9mkGlts+Vlsm89reCMEVJFubdFuQUy9zkE2+5S0CL+98H3zxsq33YLVlu/LfzjWOESBuhXKBhNX30ou3FN5fiZ44x+MSC8duZ4o0n9G1YwmpfHVgAAAAAAAAAAAAAAAAAAAIAkBeq7AQAAAABAA+FzCVUqKZa2b3Gey2+fvH4AxMckFo5jXl0lk55Zy82gUasWWJBb4Rw4tMnfSpL0xY62KomSMfBKC5dgqBhOLHpMyvhlQmtR+/JbGL17sU/vfCstXW81vo/RwA6EosXUe6j73IrFYSEntmSn9F6UYLQDj5Nv5g3u841Ai3Sj13/r01vfSN+vtRrT02hYZ4WHpKSkxr/xsm+kQWOiltgnb3ccdwt/9Mpvy9WmdXjPxu+XPWia9OL94cVd+kg9B9XofEBU+x8pPfbnyPGMbJm/vyeTli5bUSEt/a/0xQeyi+ZJX8yTNqyKuq0Ze3iSGm54fjWxpc57dou2+lvGrM3aFYymNSskST5Z7b/jP3q5xWFJ7BBN1YstDteMjBWu82bCVNmHrneefOcZ2X4jZKadX+M+/vmhcxpXjz8GVfGPyGCzYNDqlUXOwWi/HCxNGWKUGpAm9jVql1PHoWib18uec0DoMZdH5re3SAceJ9OqjWtNYQL5kr4liyrfzs+WVmyMrFm/LfzYNRjNVpuY96p0+KmSpIDf6LXf+vTvr6WVG60GFBqN6lF/j9fTXX4LhWA0AAAAAAAAAAAAAAAAAAAAeEUwGgAAAAAgxC0YzS0UTZLyOySnFwDxc/sajubwUwlFQ6RqIXu5wSLHks2+UCLAtEWTav30bcrXaL/iD6X042t9byQuI9Xo0EGSRCCaVyYjS7ZNJ2ntysjJld/L7jtZev2fsnMelT57L/peR56VpC7rVkrA6OC9pIPdbkcpac7jUdj5r8lECUaz81+TNq11nKtpMFq77Ar5fJHvi5l5o+zan6QPXw8NdOolc+OzEYEyQG0yp10p+/MP0txnw8dveUkmLT30tt8fCujrOUjm6LNlrZVWLZW+mCf7xTxp0QfSyu9DC9MyZGZcLjPyF3X9rtSfUQfrzAfu1y15F8Yszd59d7Wt6vnyIz+fqlZ9nO9vOpWt1MqUTrXRJZqgn1I6SBlZrvOmW3/ZXkOk7z93nLd3/V4aNVmmS9+w8Y3brW75t9VD86xWb5H26Sp1yzc6clgooOrVRdL6baFgs06tjZ77zL1H/5lBnTLaaHwf6aR9jYwxWrhCWuX8dEEn7OvT1L3r5/ueLS2RPTy+16vMba/LDJ8Qs65Dq/j78Skoa62MMcrPdq7xGozmU9WEnfeKzK5gNCkUNvuLAVJDeLyenuI8TjAaAAAAAAAAAAAAAAAAAAAAvCIYDQAAAAAQ4vPFrtlTfvva7wNAYuL9Gs7IlvnVpcnpBY1btdtSq4pNjiVF/hztMBlauqNFrZ46PVisL3/YO3QQcLmaHmhMOvdyDEazKxZLd1woPXt37D16DZb2GpWE5hqg1PiD0fTV/7lO2X8/IXvtKa7zrSo2yRjJ2vhPK0mFrZ1DSU1WS5mbX5DdsFratlnq3IdQNCSdSUmVueZx2XU/ST/9ILVuK7XrIhPl68oYIxV2lwq7yxx8kiTJblorbV4v5bWTadm6rtpvEEyrAk1ps1y3VMSuzdr9YS0prhxrEdymx388Scd3/GdY7eCdi7Rg6WitDbTR9yk9VDH5JAUnn6KKoFQeDAUglVdIFdZWe3vX/9VqwuqDUeb2WB8M28s61tbWectdwpwQXbFJl9Ldg9EkyVz9iOwJg1zn7YmDpfd3Vn6/KdphNXhWUD9trqpZsExasMzqqU8cd4jZ50PzrR6aL/3fUumu441e+sJ5TWpAuwK66p61Vva8+AIdzT3vywwY6am2VaaUFpBKyj3ubYOhmLIdW6WslsrPNnL6WG/wHIxW7Q7q47dli7fLRAnVqy+uwWgeP24AAAAAAAAAAAAAAAAAAAAAwWgAAAAAgJB4Q5XSM6XsnOT0AiB+PudwFkeDx8qcMUumbefk9YPGq1p4T25FkWPJJn8rvZs5TmU2jttdFOnBYo0sXqA71lykvIqNtbIn0CB06iV98k7k+Iv3ed7C3D6n+YRqpabHv2blYsdhW14ue3f0AFD/6MnqkyZ9uzr+00pSu9bRf8Ri8tpJee0S2xxIkCnoIBV0SHx9qzZSqza12FHjMmpCX3V6baVWpnSKWpeVuuuN0uKw8WO2PqvinzN0U97FWhfI10Hb3tJf1vxefgXVvny12pevlp6fJz1/VmLh5I1AUEYV8qvC+FWuwB7/h8Yr5Fe5CVT9b3wRtVU1vsraisr/q/aqXLd7Tn6VG+fzO+0VeY7IfsP3ruo3GNGvw/smf2V9iUlTqS8yrLDYZEgZ2dE/sJ16S936S0u/dq95/C/SCRdLkm543YaFotWme9+3uuQXVi997hyMNqGP1CK99h+72OLtsg/Mkt57QZJkDj1FOvkPMtW+luzsa6WvPvS2YadeMr+52XMomhQKlCzMlZau91bv3x1kVrRBymqpPJdP84Zt4R/LCpecOr+tFoxWulP6+C1p3C+9NVOHXIPRyuq2DwAAAAAAAAAAAAAAAAAAADReBKMBAAAAAELiCVWSpNZtm09IB9AYeAxWMKddJXPKH5PcDBo1U3Vbygk6B6Nt9uXo8/TBCZ/ijtUX6pxN90gTj5XefjrhfYCGznTuLZdcC2/rr3tKpmXrWuunwUuJDIuJaeMa2a2bZFq0Ch//cr60YVXUpebkS3Xw10bfrk7ss1SYy2NhoKnxTfm1bn5whqZ3fDRqXdbuu6uS8GA0I+lXRY/qV0XR10uSgsHEmmzgfJJ8qpBLLlKz9mTLY3Rih4cjxot96VJGZtS1xhhp5g2ylxzhWmPvuUw6bIY+29xaf36jJo9AoqsISne/a/XlT87zhw9OzvdHe+0p0n9eqjp+YJZUViJz+izZYFD6eoH00PWe9jJXPCRz0PSE+ugQTzCarRaMVthN+S7BaOu3hR9XuNw9VAat7WLnvSrTIIPRjOTwKJhgNAAAAAAAAAAAAAAAAAAAAHjVNP8UOQAAAAAgfv44g9GyWianDwCJ8RpuOHRccvtA41ctZC+3YrNjyU5fhhal75XQ9nsXf6qzNt0rc+XDMmdck9AeQKPRqXfN1o84sHb6aCwSCUaTpBWLI4bsBy9HX3PA0TID9tE+XRM7pSQV5iS+FkDDZNLSdezlJ+nN5ZOj1gX8u4KfSnbWQVdoKjKCzreXYpMhpWfFXG9GHSxzzROu8xXy6eJbF2v49ckP3YsWvFbbwWg2GFTw8mlhoWiVXnpAdslXsoe0lZ25v6f9zG9vSTgUTZJ6tvH+/vm063OxeoUk1TwYzYYHo2n+a7IVFc7F9Sjd5c/zEYwGAAAAAAAAAAAAAAAAAAAArwhGAwAAAACE+F2uWnSTlpmcPgAkxufxZZ4ufZPbB5qAqgv9c4NFrlULMkY4jh+zt3tQQPfSH/TUT8cr8M9PZSZNkwo6SOku30+aWyAUmqYufRJfO/oQmUyX9IymKjU1sXXLv5Mk2fIy2bnPyr75pPT0X93r+wyTueAOSVKH3MTDW3oUJLwUQANmRh+iA3a8r72LP3Wc7+lfU3VQUlxHXaEpSLfOt5diX4ZMhrfv+eaAo6R9I4P7PksbrPFd3tRtq/apUY81Nayz1LFV7QWj2fJy2cuPk9573rlg8zrZU/aWtm/xtuGMy2WOObdGPfVu6712d5CZveE0SVJ+tvPHpnowWjDoHjrn1x4haJvXSf/9yHtDdSQ9xXm8pFyy1v39AwAAAAAAAAAAAAAAAAAAAHaL86p3AAAAAECTFYgziCI9Izl9AEiMl2C0nDyZ3Pzk94LGrdptqVXFZteyFSmdHcd/MUB68BSfZt/1np7+1Khr6XJ1LVuugSX/1YHb31GrZz6TKeggSTIpqbKjD5HeeSZ8kz7DZNp2qvn7AtS3tp2ldl2k1cvjXmqO/W0SGmrgUtISWmZXLJY2rpGdub/089LoxWOnyFz5sMyuUMbC3IROKUk6bFDtBb8AaFjMSz/q6Bm3amHGsIi5X256RrbsLJmUVILREJeMoPPtpdykqFw+uWRJRTA3/Et2QovK42vzL9WsgitqocOaO3xwLYaiFW2Q/c1Eadk3tbKf+dtbMkPG1nifvu2MJG/hXj4FQ2/s3CEbDLoGoxUVSzvLrNJTjF7/yn2/3UFrYT57Xxo0xlM/dcUtGE0KhaNFmwcAAAAAAAAAAAAAAAAAAAAkycMVswAAAACAZiEl3mC0zOT0ASAxxsPLPN0GJL8PNH7Vbkt5FRviXt63vVFmmtE5543Vu0Of0UOrz9DV66/TVL2rVrc+VRmKVnm6i++SBlcLKOjaT+a6JxNuH2hIjDHS6IPjX3jQ8TJ7H1D7DTV0qemJrVv+rexfL44diibJXPjXylA0SWqfk9gp92mxWi0zCEYDmirTqkAXHlChUzY/EjZ+9JbndM3Pl0mfvRcacAtG67GXzNPfSQNHJblTNCbptsR1bsfa9Z73MSmpMjf8S5J0R6tzaiUU7aXf+DR5gGRq+K3tl0OqNrClJbLP3KngVScoeP8s2TUrQuOb1yt45yUKjk0L/bvnMtnvv1Dw7ksVvOoE2RfulS0vk73vytoLRbvn/VoJRZOkoc750I78qhZktmVj1McdS9ZJO0qsTn046G2/Xey/7vTeUB3JiPIS486yuusDAAAAAAAAAAAAAAAAAAAAjVegvhsAAAAAADQQgTiD0dIIRgMaFL8/ZokZeVAdNIJGr1oaQobdqdblG7QxkOd5eZ+2u7bx+2Uu+pvsGddIq5ZL3QfKBCJfjjQtcmXufCsUlFCyU+rUKxQmBTQRZvShss/dE9+a8/6SpG4auNS0xNZ9+JpUERkUEsHvl1q3DRvKSDVqnWm1cUd89ztn9FkhqUPMOgCNV8rZ1+n+l/J109o/6su0AepX8p3aVqwNTf5vkbTPJKnUJegqLUOmfVfp7rnSysWhupKdUvG2OusfDU/m+nTpOee5km6D49rLjJ2iO3pfr4v8F3iq/2Dp/rqr9Uw9kTMtYi7bFOvQvbJ02CC/Nm63WvRj6DH94wusfveM9dzTwQOlIZ1C309tebnsH46SPn6rct6+/oh0w79kLzlS2ri6auFjt8g+dktV3TvPSB++Ln36rudzu0rPlHl9rUwgpeZ77dIlz2hiX+ntb2PX+my1kLMNq9W9S578PqnCIfvs21XS92ukdVvd9/Nbh4VF62VfekBmymmxG6ojXfOkJ88wSg8Ypaco7F92gg/3AAAAAAAAAAAAAAAAAAAA0LwQjAYAAAAACEmJMxgtnWA0oEExvtg1e41Kfh9o/Hzht6UO5T97DkbLz5byssPDhUyLVlKLVjHXmqpv4mMAACAASURBVLadvfcINCZD94+vvms/T18zTVJK9KQMc9pVsg/MipzwEoomSS3zZHyR3y+HdTF66xtvW+w2rhcBjkBTZ1JSZfuNUN4XH2j8jv+Ezdm//1EadbBsSbHz4rSM0B7GSJ37JLtVNBKZa630nEOwlaTiAePi2mtLsdWVqedIHr4FFn/TUikqlzbKMRjtwKJ/S990kvqPUOsso/G7brLnTQz97yUc7djhRv84sdr3xi/+ExaKJkla+6Ps2QdIpTtjNz3/tdg1HphTr6jVULTdbp7q097XOX8uq/NX/wRtWKWU/Pbq7ivR98G2EbXH/CPO/aqx914pHTbD8XFOfcjNNDp2OI+VAAAAAAAAAAAAAAAAAAAAkLiG8ZuxAAAAAID6F++Forsu9AbQQPj9sWuycpLfBxq/PUL2CstXeV7at11tNwM0fiY1TTrp997rf/XHUJBOcxTt8Wh2rjTt/Jo9Bs1xDnm84rD4flRyyuZH1KNH68T7ANB4+N3/xpQ9+wDpx/85T6alJ6khNGYZUb7N7cwpjGuv17+y2lYRO+D++ZXHhELRJO2782OdtPnRsPnM4HZdsuEv0oI3I9YG/EYXHeTTwsujf5+cOd7oyTN8ysmsevxin7zdudhLKFpt6dBdOurspGw9tLNRew9Pr32qFiq3YbXstaeo96aFCZ/Xb12S8IrWSz//kPC+AAAAAAAAAAAAAAAAAAAAQENDMBoAAAAAICQl9gW1YdIzk9MHgMQYDy/zZLVIfh9o/Hzht6UO5T97Xtq7XTMNcwJi8J1xjac6c9trMgcem+RuGi5jjLTvZOe555fKpGdK/fdJ/AQ5+Y7DY3sZjUv52nFu9I75mrV2liZte1OHb31Fd646T/euminlxxdgA6CRihY+vG2z9PbTznMEicNBRpSXXYrLvO9TEbSafp+NWde/5Gsdvu3VsLF7V52t+34+S0dseVG/3jRbnywdpX12fiL7wCzXfYZ2NjpqqPt57jre4bnoR3Ni9pdUx5wrc/9HMkkMKezXPnZN9SAz+84z0v/9W13KViR8Tr9cgtEkaevmhPcFAAAAAAAAAAAAAAAAAAAAGhr3P3MOAAAAAGhe4gxGMwSjAQ2LL0pow26ZBKPBi/Bws8Iy78FofdvVdi9A02Hu/1D216Pc5295WWb4xDrsqGEy594su/hzaePq0EBKqswfH6h67Nm5l/TZe4ltnpvnOvWvAa9o4kdBfZU+sHKsXflq3b36txpY8rW0oVpxVkuZzOzEegDQuHh5jO0klWA0RMpIcZ8rLvW2x6fLrU6eHfRUO2fF4RFjKSrXjKJHNKPokYg5u/J7mU69HPeafYpPyzcGtXB51Vh+tvTqbxvW32EzVzwkc9D0OjlX77ZG73wbPaAuLMhsV1hc+/JVCZ+zetBahO1FCe8LAAAAAAAAAAAAAAAAAAAANDQEowEAAAAAQgLxBaMpjQu9gQbF5+GCdILR4MUet6WCivWel/Zpa2IXAc2U6TNMUaMz8gvrqpUGzXTuIz28MBQesmOrtPcBMl36Vs136h394xhNjnswWn73TvrwyXF6scXh+jqtn7qWLtfh2151vg/Mb59oBwAaG3+CP0rl+TIcpEcLRiuLvf4PzwV18xxv3wUf+PkMFcYZwGWPHyi9v1PGRD6mb5lhNO/3Pr3wudVXP0mdWkuHDzJql9PAHv+PnVJnp+rdNnaNz0aG2HUo9x48vaewoLU9bduS8L4AAAAAAAAAAAAAAAAAAABAQ0MwGgAAAAAgJCXOYLT0zOT0ASAxJkYwWmqaTLxf52ie9ghGy48jGG0AuU5AdDl5UtEG5znuoyuZ3Hxp8onOk90HJL5vt/7uk90GKMPu1LQt/4q9UbfEewDQyCQcjJZeu32gSTDGKD1F2ukQglZcGn3th0us51A0Y4OatP3tBDqU7Lh02YnHygzbXzp0hozfXzmXGjA6drjRscMT2jrpzNk3ymRk1dn5QqHQ0T8nTkFm7eMMrKvOKkoQ3fai8Nr1P8v+/TLp34+HBg4/VWbyiTKDxiR+/s/el333WSkYlBl/lMzeByS8FwAAAAAAAAAAAAAAAAAAABBNjCtmAQAAAADNRiDOMI40gtGABqXaBeuOMlrUTR9oAsIvts8v9xaM1rut1C0/Gf0ATYgvyn01wWje7DVaSstIbO34o9zneg6Scgs8bWMOPzWx8wNofKLdb0eTSjAanGWkOI8XO4SlVffwh95C0STpsG2vqbAG4Vt6+2nZP58je9UJie9RHyafVKen6902do3PBiPGOpT9nPA5U2yUG8q2qmA0+/NS2SO7VYWiSdLLs2XPPVD2nWcSOrd980nZ838hPXeP9MK9shccLPvqwwntBQAAAAAAAAAAAAAAAAAAAMRCMBoAAAAAICTgcnWum3SC0YAGxcR4mSczu276QOPnC78t5Vds8LTsoAFGxpjYhUBzRjBajZn0TGn0IfGv+9NzMvmF7vN+v7T/EbE3atNRZp9JcZ8fQCPlDyS2jmA0uMh0+Xa/vcQ9+CwYtLr3/djBaC3TpVO6LdOj5jr3ouxcmQc/ibmXJOm95xUcmyb74HWy5eUxy+1n7yn4mwMVnN7f2/61KZAi5eTV6Sm75oc+5tH4VREx1r1sqVKDJXGfr035GnUrW+Y6bzdXBVrbv//RuSgYlL3qBNnS+M5vrZW97yopGKw+KHv/1bLWe2gfAAAAAAAAAAAAAAAAAAAA4BXBaAAAAAAASbvCIPxRwjr2lMaF3kCDEuvrN7NF3fSBxs8kFow20D1vCMBu0QJ2AgSjeWVmXBH/olEHx9735D9I2bnuBbkFMrMXxH9uAI1XPM+RqzGEXcJFdprz+PZS9zWH3xl0n5QU8ElvXuDTxtt9mn1pD7V4/GOZd7bKnH1jRK054xqZnntJIw703LOdfa3sPS5BW7trfviv7AWHSF/8R/pxiee941LQwX0ur72Mr25/9cHvMzooRgZcuo0MIEu3JZq4Y27Udf3bR45dtv4m+RQlhOzRmyVJdsdW6T8vRd3fHtNLdueOqDVhVn4vrVoWOb7+Z2nxZ973AQAAAAAAAAAAAAAAAAAAADwiGA0AAAAAUCWeQI60jOT1ASB+JsbLPFkt66YPNH7GhB3mV6z3tKxfexO7CGju/FHuq1NdklIQwXTrJ/Pwp94XTJrmKSzFtOko8+AC6YgzpIGjpH0mST0HSWOnSEefLfPgxzI5eTXoHECjEy3QMppASu32gSYjy+Xb/badzuNl5VbvLXbf74gh0vuX+DSxn5HPV/V43KSkStMukLn5BWn/I6T9j5S55SWZI88Mzd/ycnyNP3u37JaNrtP2vqukivL49oxHZgupZWv3+XyHJLE6MHV49OdAA3d+5Tg+ZesrUde9fZFPz870aZpvro7c8oL+9eN0nbPpnpj92PU/Sx/Oif252LhGdlIrBe/6g2wwevCeJCnK516b1sZeDwAAAKBWrFixQpdffrnGjh2rtm3bKjU1VcaYyn8PPfRQfbcIAAAAAAAAAAAAAECtSfC3+QEAAAAATVJKqlRS7K02NT25vQCIT6zQhszsuukDjd8e4UFptlStyzdoYyB6GFD/+skiABoXn999Lp6AWsh0HyCdfo3sfVdGL2zXReaUy7zv266LzEV/q2F3AJqMRIPRUrhPh7Nsl2C07aXO4ys3STtc5kZ2k5472/2xhTFGGnWwzKiDI+d8PumON2QvnSrt2Bqrbam8TPbP54RC1vqPkCnsXjllt26WPogzaK26vQ+QFs6NXpPfPnqIbOu2iZ+/Bo4aajSoo9WiH53nD9v2muv4TJc9jx1u1Lal0ZFDpV/6rpd+mu+9oS8/lH3/Re/1T94mW7xVGrK/VNhNpv8I5zpr3fcwBGQDAACg4evatauWL19eeTx37lyNHz++/hpKwH333adzzz1XJSUl9d0KAAAAAAAAAAAAAAB1whe7BAAAAADQbMQTyEEwGtCwBGIFo7Womz7Q+Dlc2D66+KOoSwYWSnnZXBAPxBQ1GC2l7vpoKk66ROrQPXK8dTuZs66XuewBmfs/lOncu+57A9A0+BL8UWpKlAAnNGtZbsFoLte1rypy3+vs8TV7/G2GjZd5eKHMebdKLVrFXvDuc7KzTpY9YZDsc3+XJNlNa2UPqVkomRn3S6lNx+hF+YXRv66ycmrUQ6ICfqO7jvfJ5/Cp6NiiTIedNNZxXfvy1Tqu6OmIcaOgHj2t2mYV5XH1Y688Xnr32bjW6MX7ZWedJHvmfgpePk02GIxvPQAAAICke+2113TmmWd6DkV79913ZYyp/Hf11Vcnt0EAAAAAAAAAAAAAAJKAYDQAAAAAQJUUgtGARivW129my7rpA42fQzDakVtfjLrkiKGEogGeRAlGM4mG7zRjxhiZ2+dI/fepGuw3XObud2ROuFhm8okyOXn11yCAxs8fI3zYTTzPrdGsZLncNLYlEIx24r41fwxu2nWRmXqOzF/f9L6ovEz2tvMVHJsmO6VTjXtQQQeZPz0XvabHQCk1SjBaZnbN+0jQmJ5Gj59ulF4t47Z9jvTEzDRlTj9H5qUfpaH7R6z7y5rfa9z29yuPB+z8rxam/UYBf+LBaJKkmgSbvfe89MrsyPGoffBcEAAAAEi2Sy+9VNbayuPjjz9eb7/9thYvXqylS5dW/ps6dWo9dgkAAAAAAAAAAAAAQO1K8Lf5AQAAAABNUiAlds1u0S5IBVD3/DG+fuvxQnE0MiYynOmwba/Jb8tVYZxfTjySYDTAm0QDduDKtOsi3fO+tOQrKTVVKuwuE89jWgCIJkqgZVQBgtHgLDvdSLIR4ztcg9EiayWpR0EoILS2mJ57yQ4eK33xn1rb07P8Qpleg6W3imR/O0n6ekH4vD8gM/kk2fuvdt8js0VSW4zl2OE+HT7I6uNlUmpAGtJJSk8JfX5MqwLp9jnSj99Lq5ZL3fpLc59Vuzsv0dsrJuvr1H4qMykaWPJfBTr3CN/YLZDM56tZAFoU9um/yUz5dfhgmcsNVEosvA0AAACAZ999950WLVpUeXzIIYfoscceq8eOAAAAAAAAAAAAAACoG5FXOQIAAAAAmq+UOC7eTk1PXh8A4hcrBKaeLxRHI+KLfMkwr2KjJm6f61jes03own8AHvgTDNhBVMYYmZ57yXTuQygagNqVaKBlPM+t0axkutw0tpc6B6CtLnKub59TSw1VY254WjrwOCknv/Y3j6agMHT+tHSZO96QjjxTys6VjJF6DZa5+QWZ3kOiBvSbBvB8NyPVaFxvo327m8pQtN2Mzxd6nDLyIJk2HaWCDqFxSQNKv9GQkkUKqEJasTh8U7fQsb0nJOE92GX5t7KrloWPle50ry+NEpoGAAAAoMY++eSTsOOpU6fWUycAAAAAAAAAAAAAANQtgtEAAAAAAFUCBKMBjVaM8AWTmV1HjaDRM8Zx+Jp1s5QaLIkovelon4zLGgB78BGMBgCNCsFoqGXZLi+lbHPJnVrlEozWrmXt9FOdadlavqseke+Vn2Se+rb2T+DEH5Bata3qIT1Tvgv/KvPqKpk3N8s3e4HMPpNCk6kZ7vs0tue7+e1dp+xn71cduASjmf0Ocwy0rjXffRZ+HC38rMx5zlZUyG5aK7t9Sy02BgAAADQ/a9asCTvu2LFjPXUCAAAAAAAAAAAAAEDdIhgNAAAAAFAlnou30whGAxqUQEr0+awkXDmPpsk4v2Q4fOenmr9sf524+TEN3/mpjtnb6N/n+3TkUELRAM8IRgOAxsWf4P12rMfmaLayXF522V7qPL66yDqOt8tN7mNwU9hNatOpdjbrOUgaMNJ5buRBMg5fZ8bnk9nzdadWBe7naGzPd/MLXafs3y+tOnAJRlNKmszjX9VyU9Us3yMYr8QluU+SSiPn7DefyJ42UnZKJ9nDChW88xLZiopabhIAAABoHrZt2xZ2nJLCaw4AAAAAAAAAAAAAgOYhwT9zDgAAAABoklLSvNemEowGNCj+GBdCZLaomz7Q+Pnc/5bCkJJFemjV6VJOnnxn/lyHTQFNgznmN7LX/CpyolOvum8GABCbP8EfpcYTOo5mJdvlZZdtJc7jq4qcx9vn1E4/0ZirHpY9Z0LNNsnOkTnnT1KPQbLnTpSWf1c117qtzOnXeO+noFDOMXFqfM938wul1DSp1OET/8N/ZXfukEnPlNzCxPwBqV3XUHhjEgLH7PLvFBa95xB+VjVXIrt1s/TxW1JmtjRgpOwZY6rmy8ukp+6Q/eBlaeo5MlN/U+v9AgAAAA2FtVaffvqpvv32W61du1YlJSUqKChQhw4dtN9++yk7OzvuPYPBYBI6BQAAAAAAAAAAAACg4SMYDQAAAABQxevF2z5f4heIA0iOQIxgtIz4L7ZAM2Xcg9EqpWclvw+gKRpzqJSWIZUUhw2bSdPrqSEAQFQ+f2Lr4gkdR7OS5RaM5pA7VV5h9cWPzvV1Eow2aIzsxGOlt5+Ob93jX0nzXpXS0qXRh8i07RyauO9D6Z1nZJd9I9OpV2guv733jfOi1GY2rue7JjVNtnMf6X+LIidLiqVvPpGGjpMqyp038Adk/H7ZvPbSWpcbSU2sXBx+HCUYzf7nJeneK6Vtm6Pv+dMPsndcRDAaAAAAmqT169frhhtu0KOPPqp169Y51qSmpmrChAm6+uqrNXLkSNe9li1bpm7durnOH3DAAY7jDz74oGbMmOE4N2vWLM2aNct1z7lz52r8+PGu8wAAAAAAAAAAAAAA1AeuYgcAAAAAVIkVrLRbarqMMcntBUBcjN8vG60gs0VdtYLGzsv9ewbBaEAiTGYL6abnZf94jLRja2jwgKOlE39Xv40BABwZfyD6Y2w3XkPH0ezkZDiPb9oROfb8Z+77tGtZN6/JmEv+Llu8TZr/mrcF+0wKhZ5NOz9yr4ws6dBfKeHOs6OkwXkJd25gzJ9fkj2yq/PkhlWh/6MEo0mSug9ITjBa0fqwQzvvFffaj9+q/fMDAAAAjcgLL7ygk08+WVu3bo1aV1paqjlz5mjOnDk644wzdNdddykQ4Fe4AQAAAAAAAAAAAABww0/VAQAAAABVvF68nZqe3D4A1D6C0eCVz0OoAMFoQMLM3gdIL/8kffep1KajTNtO9d0SAMCNP8EfpQYIRoOz/GwjOcTtbdohlVdYBfxVsWFPfRx03ad9lIyw2mQys2Vuel526TfSzu2hIK6iDdJn78teN2OPYiMz4/LkNZNf6D6X1TJ5500Sk99etmNP6cf/RU4WbQj9HyMYzRx2quxHb0Q/0fQLpSduja+5rUWVb9oHr5M+eSe+9W68PNcEAACoC8FyaUcSAmYRKbOj5Gu6v6Y8e/ZsnX766QoGw5+/9ejRQ/3791dmZqZWrFihBQsWqKKionL+3nvv1YoVK/Tyyy8TjgYAAAAAAAAAAAAAgAt+og4AAAAAqEIwGtB0ZWTWdwdoLIyXYLTs5PcBNGEmNU3aa1R9twEAiCXREB+vz63R7ORHeRi9cbvUplq+13Ofudf2bVd7PXlhuvWrOmjTUfrF8VLXvrK3Xyh9/7nUuq3MWdfLDNw3eU10HyjltZc2rAofb9FK6jk4eedNppw8x2A0u/ZHGSlKMJpfkmT2P0L2qLOk5+5xPYXJzZftPlD64SvvfW3brOCvR4WCfAEAAJqiHT9KL3Wr7y6ahylLpeyu9d1FUnz++eeaOXNmWCjakCFDdNddd2n06NFhtevWrdMVV1yhf/zjH5Vjc+bM0ZVXXqkbbrghrLZjx45aunRp5fHtt9+uO+64o/L4iSee0L77Rj73ys/P1/jx4yVJH330kaZPn145d9555+n88893fV/atavjJ5kAAAAAAAAAAAAAAHhAMBoAAAAAoErAazBaWnL7AFD70jLquwM0FsbErkknaA8AADQD/gR/lBpIqd0+0GREC0Zbv60qGO2zFda1rn97KS3Fw2P2JDN9hsn8/d26O5/fL514sewdF4WPH3+RTKCR/tpDy9bO44//Rfbgk6RtRc7z1e6bzIwrZKMEoykjW+bE38lee4pk3W9XEQhFAwAAAKI67bTTVFpaWnm833776Y033lBmZuTPTwoKCnTPPfeoZ8+e+t3vflc5ftNNN2n69Onaa6+9KscCgYC6du1aeZybmxu2V7t27cLmq8vODj3pXLZsWdh4bm6u6xoAAAAAAAAAAAAAABqqRvobwgAAAACApEjxGoyWntw+ANS+VILR4JHxxa7JiJLoAAAA0FT4/Ymt8/rcGs1OXoxgtN0ufS7oWvfQDA+P15soM/U3Uqu2su/8SyorlZlwjMzkE+q7rcTl5LlO2ZOGuK+rHgSXkxe6zykrda7NyJKZNE3Kain72sPSey8k2GwNtG4rtWoj+ZrvbRcAAABNy9y5c/Xpp1Vhwi1bttRTTz3lGIpW3cUXX6z33ntPr7zyiiQpGAzqtttu0+zZs5PaLwAAAAAAAAAAAAAAjRG/eQoAAAAAqBIgGA1ostIIRoNHXi5WzyQYDQAANAP+BP/GFMFocJGeYpSd5jy3OxittNzqwx+ca3xG6tMuOb01FmbiMfJd/7R8N7/QuEPRJGlbUWLrqoVZG2Ok/PbutbtCrc3oQ+S77imZ659O7JyJOnSGfC+ukO+hT+SbvaBuzw0AAAAkycMPPxx2fM4556iwsNDT2j/96U9hx0888YRKSkpqrTcAAAAAAAAAAAAAAJoKgtEAAAAAAFVSUrzVEYwGND4Eo8ErY2LX5BYkvw8AAID6lnAwmkvyFSAp3yVjeN1WK0n6z/fS1p3ONT0KpBbpHh6vo1EwvYcmttDnDz/O7+Bem54Zfpzo/VqCzCV31+n5AAAAgLrwwQcfhB2feOKJntcOGDBAw4YNqzzeuXOnFi5cWGu9AQAAAAAAAAAAAADQVBCMBgAAAACoEkj1VpfisQ5Ag2H8/thFgCSZ2C8Zmtz8OmgEAACgnu0ZPuQVz5kRRZ5LMNrm4tD/ryyyrmvfOJ8f7zcpPfdKbJ1vj9tB6zbutRl73OD6DfcWhl1T7bvKPPixzJ69AgAAAI3cpk2btGTJksrj3Nxc9evXL649Ro8eHXb88ccf10pvAAAAAAAAAAAAAAA0JXX754ABAAAAAA2b14u3AzydBIAmy8uF67kFye8DAACgvvkTfO7rNXQczVJuhvP45h2h/z9c4hyMdvQwqWt+HQRaoe7sOzmxdXuGWecXutdmZIUvbd1WduRB0kdvJHbuaG3NekzauUPq1EvqPVQmLb3WzwEAAFArMjtKU5bWdxfNQ2bH+u6g1q1bty7suFevXjJxhg/37ds37Hjt2rU17gsAAAAAAAAAAAAAgKaGK9kBAAAAAFW8BqP5U5LbBwCg/ni5gCc3P/l9AAAA1DefP7F1AZ4zw12OWzBasWSt1WKX6+En9ScUrakxKanSdU/JXn5cfAv3CLM2bTrKOU5PUmpa5HmvflT25rOlea9IJcXxndtJ594yt74q07ZzzfcCAACoC76AlN21vrtAI7Vp06aw45ycnLj32HPNxo0ba9QTAAAAAAAAAAAAAABNEcFoAAAAAIBKJpDqfiFldQGeTgJAk2V8sWtatUl+HwAAAPUtwee+xufh8RSarZxMIzm8+lK0Q1q/Tdq8w3ld//YEozVFZv8jZPedLH00J45Fe9wWBo5yr82JDLU2WS1lZj0qW1YqPf1X2Xsui33O7gPle3ihbHmZVLpTKi2RMrJl0tK99w0AAAA0AdaGP58zXv7YTAy1sQcAAAAAAAAAAAAAAE0Nv5UPAAAAAKiSkuqtzp+S3D4AAPXHS5BHbuTF9QAAAE2OP4FgtBETa78PNCm5mc7jm3dYLV7jvq532+T0g/pnbnwmzgV7PGcbMFJq3yWyrvsAmSjP3UxKqjRhqhSI/TqfmXJa6P9AikxmC5ncfELRAAAA0Cy1bt067LioqCjuPfZc06pVqxr1BAAAAAAAAAAAAABAU0QwGgAAAACgiocLIeOqAwA0QiZ2SQ7BaAAAoBnw+eNeYs65OQmNoCnJzXAeLyqWFq+xjnM5GVJBiyQ2hXplAikyLyyXuvbztmCPMGvj98v85s9SalrVYGq6zG//Evvc7bvKnHpl9KLeQ6WDT/LWGwAAANDEFRQUhB0vXrw47j2+++67sOM2bdrUqCcAAAAAAAAAAAAAAJqiBP7MOQAAAACgyUpJ9VZHMBoANF2+GH9LISdfpvoF9wAAAE2VP85gtBETZXoMTE4vaDJyM53HNxdLi9c4z/VuKxnjIcAYjZbJayfd/6Hs5AKpvCxGceRzNjPul9L9H0kfvi4Fg9L+R8h06uXt3CddIg0aLfvRG9Ibj0nrfgpNtOkk8+urpInH8hwQAAAA2KVVq1bq0aOHlixZIknavHmzvvnmG/Xr5zHoWNL8+fPDjkeMGFGrPfL8EQAAAAAAAAAAAADQFBCMBgAAAACoEvAYjObn6SQANFkOF9mHyW9fN30AAADUN198wWjmpN8nqRE0JbkZzuObd0jfr7GOc73bclF7c2DSMmRP+r304HXRC13CrE23/lK3/omde/B+MoP3k868NqH1AAAAQHOy3377VQajSdJjjz2m666L8Th+l2+++UYLFy6sPE5PT9fee+9dq/2lpYUHG5eUlNTq/gAAAAAAAAAAAAAA1IUYVzkCAAAAAJqVFI/BaAGC0QCgyTIxQhcKCuumDwAAgPoWTyh4597S4LHJ6wVNRm6m8+PtdVuleUscp9SrbRIbQoNicvI8FPFrHgAAAEB9Ovnkk8OO77zzTq1evdrT2ksvvTTseNq0aRFBZjWVm5sbdrxq1apa3R8AAAAAAAAAAAAAgLrAb8wCAAAAAKp4DkZLSW4fAID644vxkmEewWgAAKCZiBWMlpMfqhk2Xua212ViPY4CJBXmOo+XB6U1W5zn9uoQI7wYTUdOfuwa7msAAACAejVhwgQNGTKk8rioqEjTp09XFVSUYwAAIABJREFUcXFx1HW33XabXnzxxcpjY4wuuOCCWu+ve/fuSk2t+rn/3LlzVVZWVuvnAQAAtcdaq29XWd3xdlB/fiNY3+0AAAAAAAAAANAgxPFnzgEAAAAATV7AYzBarIvDAdSPbv2lpV9HjnfoXve9oNEyxshGK8hvX1etAAAA1K/UNPe5fSbJ/PklqaxUJi297npCo9enbXz1qQFpYt/k9IIGKKd17BpDMBoAAABQE6tXr9ayZcsSWtu1a1dJ0gMPPKBRo0aptLRUkvTuu+9q7NixuuuuuzRy5MiwNevXr9dVV12lu+++O2z8kksu0aBBgxLqI5rU1FSNGTNGc+fOlSStWLFCU6ZM0VlnnaVevXopMzMzrL5du3ZKT+e1DQAA6tqWYqs3v5be+Nrq3/+1WrExNJ6XJV04ycrv4w9mAAAAAAAAAACaN65kBwAAAABUSUnxVuf3WAegTpkTL5G99pTI8V9fXcedoNHz+aSg818hNtkt67gZAACAetK5j/tcRpaMzycRioY4ZacbdWwl/bjJW/3EvlLLDC6AazZy8mPX+AhGAwAAAGpi+vTpCa+1NvSnZYYNG6Y777xTZ511loK7fp6ycOFC7bvvvurZs6cGDBig9PR0rVy5UgsWLFB5eXnYPpMmTdK1116b+DsRw4UXXlgZjCZJc+bM0Zw5cxxr586dq/HjxyetFwAA4Gz+EumYf0T+XsaG7dKnK6QRXeu+JwAAAAAAAAAAGhJ+YxYAAAAAUCWQ6rGOYDSgQdr/SGnEgeFjIw6Uxk6pn37QeJkowQtpmXXXBwAAQD0yuflSx57Oc/1G1HE3aEr6tvNeO2UwoWjNSkGH6M/HpNjzAAAAAOrE6aefrqeeekrZ2dlh4//73//04osv6qmnntL8+fMjQtFOPfVUvfrqq0rx+kfLEnDYYYfpuuuuk9/vT9o5AABAzYzrJaUFnOfOeMT5D9kBAAAAAAAAANCcEIwGAAAAAKiS4jEYze/yW1kA6pVJS5e58VmZWY9Jx18kc/WjMn96TiYto75bQ2NjorxsmE4wGgAAaD7Mib9znhh5UN02gialTzvvwVajehCC1ZyYVgXSsPExirhNAAAAAA3F1KlTtWTJEp133nnKz893rUtJSdFBBx2kefPm6YEHHkhqKNpul112mRYtWqQ//OEPGjdunNq1a6eMDH5mCABAQ5GZZjSul/PcFz9KvjMqNPKGCp37RFAfLrGy1tZtgwAAAAAAAAAA1DOuZAcAAAAAVEnzFnZjAsn/RW0AiTFp6dKEqTITptZ3K2jMfASjAQAASJImnyQtmi+99nDo2B+Q+c1NMj0H1W9faNT6tvNe27MgeX2gYTIX/U32+IHuBdGerwEAAACIsGzZsqTu36ZNG91+++269dZbtXDhQn377bdat26dSkpKlJ+fr44dO2q//fZTixYt4t776quv1tVXX51wb/3799eNN96Y8HoAAJBcBw0wevMb98Czj5dJHy+z/8/enUfLddV32n92zXcepCvJlmTLxgg8QGyMwRiS2C95ISFkaKATArwMTQIhhMQdIAkdXmKMkyYJazUm6SyGJoZOdwhTAoSX0A6TAYMbTAPG4NmWZE1X0p2nqlvDfv/YV7rz1ZV0Bw3PZ61aVWefffb5nVOnbg23zrf4r1+NvP0XAzf/ij+aIEmSJEmSJEk6dxiMJkmSJEma1tG9vH4Go0nSWW6JL9MWm9auDEmSpHUWslnC2z5I/I3/CAd2wZOvJnRtWu+ydIZ78pYALH6y21Hbu6C56Ilu55qw/YlLHx3BYDRJkiTpdJTJZLjmmmu45ppr1rsUSZJ0hvj5KwJv/dTxPysGuOX/i7zqWZEnbPIzY0mSJEmSJEnSucFvzEqSJEmSpnVsWF6/bHZ165Aknb5KzetdgSRJ0poLOy4lPOsXDEXTinjaBRCWce7azs2rX4vOQBm/5iFJkiRJkiSdDS4/P/DkLcvv/7UHlxeiJkmSJEmSJEnS2cBvzEqSJEmSprV0LO/kylx+9WuRJK2f2uTi84oGo0mSJEmnoqslcOPPHT8Z7Ymbl5GepnNP8GsekiRJkiRJ0tnia29Z/ud9R0ZXsRBJkiRJkiRJkk4zfmNWkiRJknRMyGSgrev4HQ1Gk6SzW6Ox+LySwWiSJEnSqXrPS44ferZz8xoUojPPcn7UQJIkSZIkSdIZYVN74P53ZXhCz/H7Dk2sfj2SJEmSJEmSJJ0u/MasJEmSJGm29u7j98kajCZJ56xS03pXIEmSJJ3xQgg8//Kl++zcfPzwNJ2Dgl/zkCRJkiRJks4mOzcHfvLODN/9kwyf+93FP/8zGE2SJEmSJEmSdC7xG7OSJEmSpNk6Nhy/Tza3+nVIkk5Pxeb1rkCSJEk6K5zXsXjwWSbAtRevYTE6c2T8mockSZIkSZJ0tsnnAldfGHjhUwOvvm7hz46HDUaTJEmSJEmSJJ1D/MasJEmSJGm25rbj98nlV78OSdLpqWQwmiRJkrQSLtq4+LxrdkB3y+LBaTqHBb/mIUmSJEmSJJ3N2psWbh+aiGtbiCRJkiRJkiRJ68hvzEqSJEmSZisUj9/HYDRJOncZjCZJkiStiOdeunjw2b+7ylA0LSJ4bEiSJEmSJElns45Fg9HWtg5JkiRJkiRJktaTwWiSJEmSpNnyywhGy+ZWvw5J0mkpGI4pSZIkrYhrL4KtnQvP++WfMvxKi8j4NQ9JkiRJkiTpbGYwmiRJkiRJkiRJBqNJkiRJkuZaTjBazmA0SZIkSZKkU5HJBP7yJfMD0P7DcwJPPs9gNC0i+DUPSZIkSZIk6Wy2WDDa4Pja1iFJkiRJkiRJ0nryTHZJkiRJ0mzLCkbLr34dkiRJkiRJZ7mXXhNoLgRu/VKDcg1e9LTAm24wFE1LyBiMJkmSJEmSJJ3NOpoCEOe1949BjJEQ/AxZkiRJkiRJknT2MxhNkiRJkjRboXD8PlnfTkqSJEmSJJ2qEAK/ciX8ypXZ9S5FZ4pgMJokSZIkSZJ0NtvSvnD7aAUOj8CmReZLkiRJkiRJknQ28RuzkiRJkqTZ8sXj98nlV78OSZIkSZIkSbNl/JqHJEmSJEmSdDbbuXnxeQ/0rl0dkiRJkiRJkiStJ78xK0mSJEmaLV84fp+swWiSJEmSJEnSmgt+zUOSJEmSJEk6m/W0QWfzwvMe7I1rW4wkSZIkSZIkSevEb8xKkiRJkmbLF4/fJ5tb/TokSaeflvb1rkCSJEmSzm0Zv+YhSZIkSZIknc1CCOzctPC8Pf1rW4skSZIkSZIkSevFb8xKkiRJkmYJywlGy+VXvxBJ0umnvWu9K5AkSZKkc1vwax6SJEmSJEnS2a6jaeH2an1t65AkSZIkSZIkab34jVlJkiRJ0myFwvH7GIwmSeema35uvSuQJEmSpHNbxq95SJIkSZIkSWe7XHbh9prBaJIkSZIkSZKkc4TfmJUkSZIkzZYvHr9PLrf6dUiS1s8v/YcFm8PL3rzGhUiSJEmSZglhvSuQJEmSJEmStMpyi5ztVWusbR2SJEmSJEmSJK0Xg9EkSZIkSbMtJxgtazCaJJ3NwiveCj1bZze++HcIW5+wPgVJkiRJkpLg1zwkSZIkSZKks10uu3C7wWiSJEmSJEmSpHOFZ7JLkiRJkmYrLCMYLZdf/TokSesmnH8xfOAb8OVPEHsfJ1z1s/DTv7zeZUmSJEmSMgajSZIkSZIkSWe7XCYAcV57rb72tUiSJEmSJEmStB4MRpMkSZIkzZY3GE2SBKFnK7z0PxLWuxBJkiRJ0jEh+C5NkiRJkiRJOtvlsgu31xprW4ckSZIkSZIkSevFYDRJkiRJ0mz5wvH7ZH07KUmSJEmSJEmSpLNXCOEi4ErgfKAVOADsBr4VY6yuY13dwNOBi4BOIABDwF7guzHGg+tVmyRJkqSVkV3k9xFq9bWtQ5IkSZIkSZKk9eKZ7JIkSZKk2ZYTjJbLr34dkiRJkiRJkiRJ0hoLIbwE+APgWYt06Q8hfBx4R4zxyBrVFIBfB94IPOc4fb8PvB/4uxhjbQ3KkyRJkrTCctmF2+uNta1DkiRJkiRJkqT1klnvAiRJkiRJp5l88fh9sgajSZIkSZIkSZIk6ewRQmgNIXwM+CSLh6IBdANvAO4NITx/DeraAnwZ+BjHCUWbchXwAeCuEMIlq1mbJEmSpNWRXeRsr5rBaJIkSZIkSZKkc0RuvQuQJEmSJJ1mCssJRvPtpCRJkiRJkiRJks4OIYQs8HHgBXNmHQa+DwwBTyCFjoWpeZuBz4YQfi7G+M1VqqsH+Crw5DmzqlN17QYawDbgaqA0o8/VwFdDCM+JMe5ejfokSZIkrY5cduH2usFokiRJkiRJkqRzxCK/ISJJkiRJOmc1tx+/Ty6/+nVIkiRJkiRJkiRJa+PdzA5FqwJvArbFGJ8fY/y1GOPVwBXAt2f0KwKfCSGct0p1vZf5oWjvn6rrmVN1vTTG+BzgvKntmBmVsA34wCrVJkmSJGmV5BY526tWj2tbiCRJkiRJkiRJ68RgNEmSJEnSbBfshKaWxeeHQMgu8pOUkiRJkiRJkiRJ0hkkhHAx8Ptzmv99jPFvYoyTMxtjjD8BnsvscLQNwJ+uQl07gJfNaf7PMcY3xBgPze0fYxyMMb6N+dvy/BDCM1e6PkmSJEmrZ9FgtMbC7ZIkSZIkSZIknW0MRpMkSZIkzRIKRbjyZxbvkMuvXTGSJEmSJEmSJEnS6vpTYOY/wD4SY/zsYp1jjBPAq4GZoWmvnQpYW0m/NGe6F3jnMpb7r8A9xxlLkiRJ0mkst8jvltbqa1uHJEmSJEmSJEnrxWA0SZIkSdJ87d2Lz8vm1q4OSZIkSZIkSZIkaZWEEJqAl8xp/ovjLRdjfBD4zIymHPCyFSwNYG7Q2u0xxsrxFooxRuBf5jQ/ccWqkiRJkrTqcouc7fWFe+H7eyKTtbi2BUmSJEmSJEmStMY8m12SJEmSNF++uPi8XH7t6pAkSZIkSZIkSZJWz/OB5hnT344x3r/MZW8Dfm3G9IuAW1aqMKBlzvTeE1j28TnTXadYi3TWGh8f5//8n//DQw89xJEjRyiXyzQ1NbF582Z27tzJVVddRaFQWJF17dmzhw9+8IPccccdPPjggwwMDFCtVo/Nv+2223j1q1+94LLf+c53uO222/jWt77F448/ztDQEI1G49j8xx57jB07dgBw/fXXc8cddxybl/ISJUnSmSSXXXze1bc0aC3C+34j8OrrFklQkyRJkiRJkiTpDGcwmiRJkiRpvqW+2J01GE2SJEmSJEmSJElnhZ+fM/21E1j2G0CN6e9hXhVC2Bxj7F2JwoCDc6ZLJ7Ds3L79p1iLdFap1+t84hOf4LbbbuOrX/0qtVpt0b6lUonnP//5/OZv/iYvfOELT3qdH/rQh3jTm95EpVI5oeVqtRq/8zu/w4c+9KGTXrckSTrzZMPS80cr8NqPRn5qW+SqC47TWZIkSZIkSZKkM5DBaJIkSZKk+XJLBaP5VlKSJEmSJEmSJElnhSvmTH97uQvGGMdCCD8CrprRfDmwUsFo35gz/bQTWPbqOdPfPcVapLPGV77yFd7whjfw4IMPLqt/uVzms5/9LJ/97Gd5+tOfzgc+8AGe9rQTeTjCF77wBV7/+tcTYzzhev/kT/7EUDRJks5Btcbx+8QIV9/S4JZfDRRz0NUMEcgEKOagszkQIxwcjtQbsL0r0D+ebk/WoJBLbddeDE0Fw9UkSZIkSZIkSacXz2aXJEmSJM2XLy4+L5dfuzokSZIkSZIkSZKk1XPpnOmHT3D5R5gdjHYZ8JVTqmjal4EHgCdNTf90COGpMcZ7lloohLAVePGMpirwsRWqSTqjvfOd7+Sd73znvICyEAKXXnop27ZtY8OGDRw+fJg9e/bMC0+7++67edaznsXf/M3f8Fu/9VvLXu/b3va2Wet82ctexmtf+1q2b99OPj/9//eNGzfOWq63t5f3vve9x6YLhQJ//Md/zAte8AJ6enrIZDLH5m3btm3Z9UiSpNPfPXuXH6j69s8s1ndu+0L9Ils74V/elOHK7YajSZIkSZIkSZJOHwajSZIkSZLmyxcWn5fzraQkSZIkSZIkSZLObCGEbqB7TvOeExxmbv8nnnxFs8UYGyGE/0AKWisCGeBTIYTnxRh3LbRMCGEz8BmgeUbzLTHG/StVl3SmuvHGG7n11ltntbW1tfG2t72Nl7/85VxwwQXzlnn44Yf5yEc+wnve8x4qlQoAk5OTvO51r2NsbIwbb7zxuOt94IEHuOee6TzDF7zgBfzP//k/l1XzZz7zGSYnJ49N33LLLbz1rW9d1rKSJOnMdtUFgc/fs/xwtFOxbxBe9XcNfvCODCEYjiZJktZHoxEJAV+PSJIkSZKO8Wx2SZIkSdI8IV9c8PchAcj6VlKSJEmSJEmSJElnvM450+MxxrETHOPQnOmOU6hnnhjjt0IILwT+AeghBa/dE0L4MPBFYDcQgW3Ac4HXARtmDPEB4F0rWVMIYdNULSfiCStZg3SiPvrRj84LRXvOc57Dxz72MbZt27bocpdccgm33HILr3zlK3nxi1/Mvffee2zem9/8Zq688kquv/76Jdd99913z5p+yUtesuy6T3bZr33ta8tehyRJOj096+IAi3+Db8X9aB9c+58b/PwVgQDs6Yf//u1II8LPXw5HRqGrGbpaAs0FyGQgTpXXXoLmAkxUodaAfBZKORguw8GhyCWbApkAlRq0N8HeARiZgJ1b0vJjFSjkoKUAoxUo5uDaiwPPv9xgFEnS4sYrkb+/K/IvP4zs6YfJOjQi1BvpuqMJrtoeeO6lUMwFclnIBMhmYKwSOTAEh0dgfBLqESpVGByHliIcHonUG9BahHwuPTcCNBVgSwf0tKZxchkIIT1PDo6n9Y5PQu9w5JkXBTIZ6G6G7d2BzmZoNKB/DA4MRXb3Ty/fPPUcmMvA/sE0VqmQnhsv3AAHh2BgPG1bSzE93w6OwWQ98r3dabt+7rJwrKamPAxOpOfY0XJk7wA8eiQ9V+/YkPpM1tPz9fmdacx6A3b1wcRk2sZGAx45DDs3wyWbAyMTUK2n/ZL2RWCkHDk0AvsGoJSHC7rTfm/E9DqhMXUZKad1V2pQrUMg1ZfLpNcAlWqaPzSRXlc8ZSu0lVLb3oG0f7e0w9hk2qYQ0n4EuOJ8uPz8wK9cCT+1PTA8AZ3N0+NO1tN6K1Prz4R0P5anphsNGC5H7juQXv/0jUbK1VTno0fSvu5qTnU9chgOjaTbF26A8zrgkk2B8ztTrfsGoFaHwYnIdx5L+2THhvSaqDH1uqlWnz6W6o10HI2W0zFwxda0T/vH0vHQ1Qyb2gOXbErb31pM6+tpg/sPpnEu6UmvvfYPpX0yPhmPratcTcdOrQH3H0jHy2Xnh2P3TT6baizmUl2tpbRtMcKOjYHLz0/HY0dT6lPKw4GhtP8na+n20ERa57auwAXdaTvy2VT/WCWtZ3N76jtSTvf9ldtTv/sPphqbCulYyGamH1czr7OZtD0HprYFOPaYDGH6diaTbmdCas+E2bfnXs9qm7P8QmMZ2idJkiStD89mlyRJkiTNVygsPi+XX7s6JEmSJEmSJEmSpNXROmd64iTGmLtM20nWsqgY45dCCJcCNwIvBy6aun3jEovdD7wjxvjJla4H+B3gT1dhXGlVPPjgg/zu7/7urLbrrruOf/3Xf6W1de6fgYXt3LmTL3/5y1x//fXcd999ADQaDV7xilfwgx/8gI0bNy66bG9v76zppYLYVnJZSZJ0ZvvZnSno4979a7fO7+6C7+6aH8b2xR/PnDqZsLaTW6a9BC97ZqBcTSEzh0ciE1XY1AYXbgiMT6bwksMjKTylEVMISimXgk4KuRTusq070FZKAR6TdXjscDwW9HI0rCUToG8sBeRctDEF0mQzKXwjE1IQSXMBeochl03LDE2koI8t7bChJYW1DIxPh+7EqXCeo0EihVwad6Kawkc6m6dDP0r5dD1amQ4O6WhKASl/9ZLA1i5DOCRppsla5Pr3NLh799L97tkb+ei34dTCRk9u2X/+/szlVj/s9L99Y3nreHD2Rw0LvtZ4aMZPQRwchq8/tNDY89t29S2rhCUNl+HOR+a3Dy3yye29++He/ZGP371wTSth/+Ds6eFyCpX90T64/SdLr3NP//LX8/3Hl7OfT20bZx+XSznR9axdoO96WzBsjRSmdiIha4sGty0x1moFvmVCWHLMcFJjrmR9J7uvlt6uZdUyZ8yhien3JfksdDUHWoopZLE+9fr/aEDn9O04r32yDud3BJ53OZTygUYjjZnLQDGfXvvHGBmtpHUXsun4OzQV6NmIqR5I8za2pvcUY5XU1tEcODwSuXffVOhkU3ovUmtEelrT+6NsZvq9S72R3qd0NsElm9J7o3v3pfU8/cIUkD1TvRHZP5jq7WiCfYPpr8CevvQ3MpuBkXIkn4XWYmC4HGkrBdpLs0NMq3X40b5ItZ7e041Pwq4jaTuO1relI91+5BBUaik88pkXp/DGGFPAYrmW3vsdvR1jGq+9lLa9rRjS9ay2FAiZzfheS5Kk053BaJIkSZKk+XIGo0mSJEmSJEmSJOmsNjcRqXwSY8w9JW95KUsn7uh3PSvL6Pst4CbgS6tUi3RGectb3sLo6Oix6c7OTj796U8vOxTtqE2bNvGpT32Kq666isnJSQD27dvHu971Lm699dZFl5u5boB8fvn/bz+VZSVJ0pmtqRD419/P8I7PRb5yf2R7F7z9FzP83Z2RT9x9bgRPDJfh/Xcstq0nsg8W7vvI4YV7HxlduH0hI2V4+NDx+52MxwdS0MsdD0buvSkzL4xAks5l/+VL8bihaJK0GhoRiFBf70JW1Nn6/mIttmvlgzfbSymgeXzyFIY+ifUuJZ9NIWalPDTlUyD0ia9v5e6PhQM7l1PDfC3FqbC00lRw2lRoWntTCpCb3QbtpbBAWxonBN+zSZK0GgxGkyRJkiTNVyguPi/rW0lJkiRJkiRJkiSddU7mrIxVP7MmhPBbwH8BWpa5yHXA7cC9IYTfjjHeuWrFSae5+++/n89//vOz2t797nezZcuWkxrvsssu4y1veQt//ud/fqztwx/+MDfddBNdXV0LLtNoNE5qXae67Er4yU9+wo9+9CP6+voYGBigVCrR09PDpZdeylOf+lSKxSW+V7CEWq3Gd77zHR599FEOHz5MpVKhp6eHHTt28OxnP5tSqbTCWyJJ0plpa1fgw6+afWL1cy+FG54En/lB5Mf7oTZ1cvrYJLQWU1DD4ZF0En0+CyHAZG2dNkAr4sAQ/N2dkd+9AfrG0kn3gxOwuQ3yucBkLXJgKB0LG1vTm9QHDqa+h0ciTQV48pbAkdEUZpDLQDGXjpn+schoJbXHqWPnyChcfSF0NAXqDWjESLmajqULuwOVWjq+6g0Ymojcsy8da8MT8Hh/ZGAculugqzlQKkDfSCQCm9oDuQxkM9DRlLZttAIXbYRrLwp8b0/k8X44PAqDY+mt9iOHoVKD518eaMQURHdeBzQVIJDmPXYkHeMb21INh4bTNm1shV+5MvArVwYOjUD/1L5rRHiwFwo5ODIaGZqAickUZJDPpkC+GNM21hpQyqWxmgppfZO12dfDZegfhSduTmMf3TdHL0f75rKwbyBtVyEH3S2B8UqkuzVtW62e+hVyUMxDcyHtpyOjabsyIe3vah02tAQ2tMJEFXqHIk2FQDaT7sdyNVLMBc7vTPs6E9L9PVqByTp0N8P/fVng2ZcY2nCmiDEeC9mo1SMTVdh1JB1z5WoK6wikY3F8Mh2HMU5fl6spsGNwPIWYhJDaW4vp+Mpm0jFeb6TH10g5PQ7z2dSn3kiPhVo9HWMHhqBSi/S0pcd0vZHGmKimxxikdUCq6+h0tQ5jlVRPT1tapphLj830tyb9/ao30vPa8AR0Nqf2C7pTzRHYsSHV9uFvnq0hPpKkc93wyfyEzyqrTiUBlqvpcjYZq6TLgaG5c04spDuEFJR2NDTtWNBaCdpKgbZ5bSlkrb1pbtvU+x1D1iRJOsaz2SVJkiRJ8+WX+AJzzl+hliRJkiRJkiRJ0hlvdM5000mMMXeZuWOekhDCnwC3zGm+G/hb4BvAfqABbAGuBV4H3DDV7wrgjhDCa2OMH13Bsv4W+OQJLvME4LMrWIO0LLfeeisxTp+otHHjRl7zmtec0pg33ngjf/VXf0W1ms4AGxsb40Mf+hB/+Id/CMCuXbu46KKLFl3+hhtuWLD9tttuA1iyvsVOhnrsscfYsWPHsenrr7+eO+6449j0zH1wPI8//jh/+Zd/ySc/+Ul6e3sX7dfU1MQNN9zAq171Kl784heTzWaPO/Z9993HLbfcwuc//3mGh4cXHfeXf/mXufnmm9m5c+ey65Yk6WTFx34CBMJFl653KcuSzQRe/7OB1//s0v2qtUg+N/u1w8RkCtT54r2RV3zYQJkzyVs/FXnrp+bfZz1tKezoaFDB4lYqB/xExpnbd6lllx73/oMnd7z+yz2R3/zvp+uxHudcn8yyy52e7ebPp/ndLSkEAqZD00pToWwT1RSy1VKA5zwxheS1FNO8o8v0j8VjYVn7BlOIVXdLCngbraS2egMKWajH6bC4Yg62dEyHdzUiNBrTt+uNFM5VjynYraNpOpwL0nQuk8InxiqpfbSctnqylsYYLqfbT9qcQr8mqtPLj0/CoeEUONFegs3tsKktzZuoptoHxuD8Tnji5sBl58GmtsBIJdI7PB0Qdng07a9aPQXfNeXTOsu1FBgyOXU9PpkC+OpT69/cDtmQgg3HKpHzOgMTkzBaTqF+I2XYPwR9U2GGldM23PJ0fWxJkiStvTj1GnS4nF4Hz5m72FILtmYz88PS2pumgteawry2FK4WFmhLr70NWZMknekMRpMkSZIkzZcvLD4vazCaJEmSJEmSJEnrOTk3AAAgAElEQVSSznindTBaCOH/At41p/km4OY4P+Vo19TlH0MIrwPeDwQgC3w4hPBwjPHOlagrxngIOHQiy3jShdbLF7/4xVnTr3zlKykUlvhf+DL09PTwS7/0S/zTP/3TrPUcDUY7U8UY+bM/+zPe9a53MTk5edz+ExMTfOELX+ALX/jCvGC2uer1Om95y1t43/veR6PROO64H//4x/n0pz/Ne97zHn7/93//RDdFkqTjiof2wpc+TvzwzTBZhpZ2+MxuQql5vUtbMXND0QCaCoGmAvza0+F9X458Z9fa16WVdXhkvSvQmax/bPZ039jCfT72nZUPwNrVt/y+ewdOfj0P9KbLQobL0DsMDy3yCce9++H2n5xKgN3xrObYkiRJOlPVGykAe3B8obknFrKWz84IWJsRmtZeCrTOazsaxBam+88IaCss8DmDJElrwWA0SZIkSdJ8+eLi83K+lZQkSZIkSZIkSdIZb2jOdHMIoSXGuMCpwIvaNGd63u/An4I/I4WbHfXRGOM7j7dQjPGDIYTtwNunmrLArcDTV7C2M1atHk/ppGot37YuyGXX70SZvXv3smvXrlltz3ve81Zk7Oc973mzgtHuuusuqtUq+fyZ+SNjtVqNl770pXz605+eN2/Lli085SlPYePGjVQqFXp7e/nhD3/I6OjyciAnJib41V/9VW6//fZZ7fl8niuvvJJt27ZRLBY5ePAg3/nOdxgfHz9W04033sjAwAA33XTTKW+jJEkA8ftfJ952C/zg6zAza3hsmPjaZ8LffIXQ1bN+Ba6yODoEfQfIdm3iK2/u5NZ/a3DXrsDYZDpZenwSJmtQqcEPHp+97JM2w4ZW2NQGzYX0Gi8EKFcjvcNQyEEpBxNVKFehlIf9g2nMXDZNdzfD/qEU5rW9G2p1aCmm60aEnxxYh50iSTqrvP8VgU99L/Kl+2a3ZzPQWkxP//WYAkfyWbigO1329EPfaHpeuuw8uGBDIJ+FoQkYLUPvcKRSg7FKGqvemB6n3kiBIT1taf6djyyv1p426GlNz5sT1fS8el4HDIzBo0dm1z00kaafug22tKfn2KGJFIFSzKXn51oDmvLQVIBGAzqaoL05bUcpB90tabyxCoxW4J69keYC7NwcqMdUx8GhSC4DI2XIBOgdgc1tsKE1BaQU85AN6Xl7oppCUoq59FyeyaTXEZCWzYS0TZmQXge0ldIHnYdG0jYV89NhLYUcFHOB/rHInv70WqGtlO6P5gK0FKBcg919cGg4tT9yOPKNh07teAkBcplU4xN6YOdmaC0GNrWnfdtSSLX2jaX901RI+68RU11DE/B4f6RvNL3e2daZQmN29UWyGdjSHjivM61rU1va/7lM6lupputHDsMPH49pPzbggu5AMZ/uw/sOpM8x+8fS/p5bO8x+SduUT6/jGnF6+gk9qdbeEajW0/HT2QwTkzA4AcMT0NWc7oOBcXjsyIntw6OPB0nS6alaT89j80OQlwrnXXheMbdIkFpToHVeuBq0lcICbemynv87kiSdeTybXZIkSZI0X26JL2xnfSspSZIkSZIkSZKkM1uMsS+EMAB0zWi+ALhvkUUWcuGc6VM8HS8JIWwFrp3TfNxQtBneDbwZaJqavjqE8NQY4z0rUd+ZbO8AXPyfPFtvLTz65xl2bFy/9d95553z2p7+9JXJB7z66qtnTU9MTPCDH/yAa665hm3btvHYY48dm/fe976XW2+99dj0xz72Ma69du7DGzZuTDvr+uuvP9b20pe+lP/9v//3semZ4860bdu2k9qOo9785jfPC0V7wQtewE033cQ111wzr3+j0eCuu+7iH//xH/nIRz6y5NhvfOMbZ4WidXR0cNNNN/Ha176Wtra2WX0nJib427/9W97+9rdTLpcBuPnmm3nmM5/JL/zCL5zk1kmSNEO1At+/Y+F5ex4k/vI24q++DiYrMNwH9To0tcLAoZQ+0bWJ8LP/jnDDi1aspBgj3P89uPfbxEN74fB+woVPJpbHoNhEyOag1AytnTAyAK0d0LUJJkZhZBAGj0BXT0rFaGpJP4gaGzA6BCODxN7dcHAPPHYfHJpOOysBfwTQvQWe91LCb91MKCzxY6prZHdf5K/+V+SbD6cgkPM7UkjJ4AR88+EU0Lap7WhQSqC5yLHAl3ItBXMEUkjH4/2RpnxqbzRS4Ee9AQeGUrjIBd3Q1ZxO1K41oG80hbFsboNrLgqEkMJpKlMhL22lFDLTWkwBL8PlFCoyPpmCRNpKKVgEUttENQWq5LJToTeTKXTnyGhk55bAhpa03rEKHJkK47ntzki5uujukSQt4ZOvz/DiqwOv+5n0/HpgKD1HbGyFENY2fCPGeGydk7X0t/1oWFg2MxWQdZxAkEYjEoFs5lwKDjnxbe0djjzUm56HxyZT2FyY2s/F3OxLLguD4ynQbEsHlPJnzr6NMfJg7/Rrjgu60/F0eGR6W3vaTv1YjzHyo31w775IPhtoKqQgm3w2vY7a3D79+uVJW1LoTaMR2TeYgvFqjbSPJ6pw0cbUb/8gnNcJl/TAwWF49HAK6qnU0njbuqZCCxtp+ZnXR2/X6inQrbtlOgwuMuN2TNONmG7PvF6oLZJeH868PXf5BZc7qTHjiY85p6aF6lup5ZfalrjAWMeWm/obtS77fIWXnzvWyZj5933m7WxIwZFH/+QfHD658c9UIaR9Wsilx/3R/Xs0OPPofVLMpfDsXCb1a8rDvftT32IuhZbuH4Le4enlN7SkfqWpy8zbMcJIJQV9Dk+k924j5engSJ2cSi097xwemTtnsR27+A5vLswOS2svTYWulcKx8LTpNmifap/dlt6fZ86p10qSdG7ybHZJkiRJ0nxLfclpqdA0SZIkSZIkSZIk6cxxH3DdjOlLOLFgtIsXGG8lXDln+tEY42PLXTjGOBZCuAu4YUbzM4FzPhhN5469e/fOmt68eTMbNmxYkbGvuOKKBdd3zTXXkMvl2LFjx7H2zs7OWf22bNkya/5cra2tx26XSqVZ85Za7mTdfvvtvO9975vV9u53v5s/+qM/WnSZTCbDddddx3XXXcfNN988r86jPvnJT3Lbbbcdm77wwgv52te+tuh2NDU18eY3v5lnPetZPPe5z6VcLhNj5Pd+7/d44IEHyGQyJ76BkiTN9LQbUhBY/8HF+3zmg0sOEb/8CXj9LYRXvPWUy4nVSeI7Xwl3/PPs9kVur4r+g/CP7yX2HyL8v7cdv/8MsV6HRj19n3DwcApqO/9iGOmfDm4b7odiE2zeDhvOB6bSBvoPpvnjIzAxli7DfVzQd5C/zmThsrZ0f1102ZqH2aynZ17U4NW3eba+JJ2oi7O9vOAbt9L43L4UbprJsqXUDLkCcXyYODYCLe0wNgy1agoTLRThwG5o64Tx0XR99Lktm4Mj+4EI2TxUJ6HUlAJTi1MpmF09afrwXii1pOe7fAE6U/B5HBsm9Gwlf9kzyG/YAn0HoFKGoT4Y7p/9fD86lFJe6jVCezexPA7jI4Rsjgakeob70nNnow5NbSnwdbg/BaI2tabrfY/CxvOgrzfVkc1CrQZbnwAP/xAKpbR8rZqCVtu709gToylcNV+E8WHY+0ja9tzU9ux/DHbfn7bvBa9Mz+UT43B4H9RrKbi1tSPt4wO7UnBrvZa2iZCuj14KpdQvNqBjYwqALTal+6AynvZv34F0X1UraazKRKq5Vk1hsY36VOppkZ62LnrqNSiWpu+/Rn327UYd6g1iSxsdnT10bN4OIUPj6GuMRj3V25j6MYWRgVRnvQb33gXdm+Dya9P+nrr/UqpPBtq6p7ZzSiaT9sXYcNpf+WLax7XJdN1oTK+vfvS6loJsx4Zgw5a0b4+Oc8GTCBddBlsuYGf35rS/hmqwvwa1KheWJ2B0EM7bARvPIx7ck+prNGbs90xa/8Ah4lB6fFCZSP36DsL2S9J2VCZg4BBXVCa4oqkVymPp2C41pWVCSPfHwKH0+q86SWPqvt5ar6Vw4WolbUeukI7LEHjyxGjaHx0b2N7cyvZIegxOltNjIpOZPk4yIa1r41YolgjXvwg6NqT7vjqZjpsYob+XeGgvYdO2tM+6NqVxZqZaHbsdZ0/PvV5O37m3T3acuMAr/VOp61jKFBDmtGVOcp3H7bNAfae6nccbbznrnNEnHq/PQvt4xvWxQDgCjRiIMdIgEDM5stlAMZ+l0dSajslalWwum/7eZnPpsZHNTV9mTWfJ/v0vzt/uKR961j10jB+g0dJJpWUDBWpsyo/TnJmkQoFGtQqZDDtaxskXcsRaDRp1+icL9B4uM1ZpkG9ro5Zvolxop1TI8JSWw5yfH2GYZpoH99EysIdKI0ulPEnjyEHquSKN5g4aA0fIDRzksZYn0t9opVQe4MLKboY6L+CBrmugtYPYtZl97U+iXM9Ao0FbY4Se7AitXe3Q1Eq2VqaVca7oGCJfK1MsD5KrjlOu5yiWB2mQIVz0ZEJlgpDJQHsX5PLEzs3EiTEyI33pPjq8P/1tqlVhdJD4wPfTc9BkBZ74U4TLnwlbL05/b6qTMDZC3DX1r7lMBqoVQltX+tswI3Azxsh4PcdILcdwLc9wNc/IsescI7UCw7X81PwCI9Xc1PRUv1nXhUXvRy3P+FTIeO+8sMATD1lrzU7Snp2kLTtJey5dt2UnyYbIUK3IcL1AyOXpLlXZ1p3h4s4qV5b2siE7znjrFvbX2jk8UOWi2m66myOPNzYyXoXNrQ1am3I82lvl4GQrFErkMpFaI1Cv16k1MtTzTdQi1Kt1apk89RhoCxM0F+BArZ09IwU68jV+6RnNvOTqsO6fb8RGIz1PZ7LQ3JZei4wPp+fgkQHo2EhoaSdWJ9PrgnoNHn8ovSaA9JlPeze0tK/ptsRGI4X9T4ylv6f5ArR2Eto6j7+wpLOCwWiSJEmSpPnySwSjFZsWnydJkiRJkiRJkiSdOe5ldjDas4B/Wc6CIYQW4KkLjLcS5n6Te4nkhkXNXWbjSdYinZH6+/tnTXd1da3Y2KVSiWKxSKVSWXR9Z4qbb7551vRv//ZvLxmKNtfc4LejYoyzxs7lcnzuc59bVrjb0cC1P/zDPwTg4Ycf5jOf+QwvetGLll2XJEkLCbkc8bn/Hj7516c0TvzA24n9vYTOHigUoLk9BXlUJ1Nww8bz0wmmPefDob2pPZNNoSOH9hJ7H08nbH/lU7D34RXaulN0+z/QuP0fYMuFKVhi68WEHZcSa1VCNkccOpJqHTicTlQfPDQdHrJcISwcgHAc8eIr4NF7ob2b8Kq3QaNOHB8lNE+F0wz1pZNis7l00m6tmgJAzrsQrvxpQs/WE17nvBqG++HIAThvB6GpZeE+MaZ15/KzThCOjUYK/qhOpoCTo4b60v4MwKZthOY2uppPudQl5bORan3+ycuZAI0Zd01TPlLKQ4ZIvQFj1UCtDpFAJkSa85FcJjJYzh5bZmtnpCnXYFtH5NKtWcargdHhcfpG4fAIPLF1hGypyGQo8OhQkR8fzM6rA2BDC/S0waGhOhtKNTaWakyUazRqNbL1KiOhmdFajiJVag0gZNhSnGBLW51iU4GvP97Mkcnlf8d1e3uVbIBGJksx06CzNUuDQFMe7j8II2XY2AqFHBRz6bqQTbfzWegfh4ExqNRgSwec3wG5LGQDZDOQywYKWegfi0xUodZID51sBs7rCNQbMfXJpUOhfzxSyKZ91jeW9kc+CxtbA81FGC3DaCUei3hobwrks9P3X60OtUbkwBBU69BWgskafPM0+VOjs0Muk47llZTPQr0x+2/Rcm2u9XLbrt+geO9dK1vUCjiZqMtTjsd87Cfz275/x6mOmlQn4bP/bWXGOlnjI7OnD+5e/XWODMDuB1Z/PQCjQ7OnH75n9YNyv/ullR9zsjL/vhrqS5fl2PcoAPE7/7ZkN+NktRqmIh1Z6icaZs47kePwxk3/mfdu+P157ZdW7uM1f3ftCYw07Xxg/s94zHb0n0MRKExdFtK9QNtTTqqq6fUdPTNt0X2WyRAajeXtx4d+QPzCR5e13oU0T102L2ddS2gQGMu0MJxpZyTTynCmneFMG6PZNoYzbYxk0vVwpo3RTBvD2em2kaPLZNP1WKb1+CvUkkbrBUbrywyrO3D0xkKfE+xYmYLm/Ys3z//4QQQiT2I3bYzTzjhtjFNikjIF2sIEO3mcPHXy5WGuOng7143fRZ5aCmtt7YShIxwLrs0Xpl8zZDLTn8+EkM75bOuCXC71naykz6NGB2d/jpPLp88w5ohHx1nq85t8gdi1eToouDIBHd0paO2H30yfgeQL6fOxo0Gw2akQyfYNad7R0Nujl0Y9fUYyMZrW0dqRPp+arMCRfWmchWp92vWE17ydcOVPL+vekXRmMhhNkiRJkjRffokPBZvb1q4OSZIkSZIkSZIkafV8EXjdjOnrT2DZn2b2dzC/H2PsXYmigME50wufeb+0uWdTjJ5kLdIZaW5Q2WIBXiers7OT3t7ph3xf3zJP7DyN3HPPPdx5553Hptva2viLv/iLFRn7q1/9KvfeO50V+fKXv5ynPnVuluTi3vjGN/KOd7yDcrkMwOc+9zmD0SRJKyI87zeIpxiMBsAn//rsDGI4uDtd7vvuse1bse08iVA0IIWiAQz3E//6rdPDLXe1MB2clsunE3O7p06Fr9emw9TqtXQy78RYCrIbH0lBKAuNB+lE4YsuTyf8jgxMB320dhCLzVAemw5Em2mxk487e+huPBm2/q9Ft+WLu38RgH35reRjGiMQGcp0sLl+iAaBQpzkssp9bK/uJRCphjyD2U5aGmN0NIYhm6XcyBGIFPKBsdhES32Y0GikE65rkwuG3kWgRo4cNWZGqw1l2mlvDDM/bu349uXOZ3d+O531IXZUd9McJ9JJ3JWJkxhtWo0s95SewlCmndZslc1Pv4ruOExvpUh9cpLOyX56hh8h7HtkwfuCfCHti+zUieRtnel+e84LCa0dUK8T9z8Kux6E3j1pmUwG9k+d6J3NpeM9l0/HQK6QThZvbk3XE6NpvYeK6Vgrj0N/L4wMwuDhdCxCGmvTNqiU0zEbYzrxPGQgTiWsNRrpNgE2bEnL1Krp+JysQF85Hcu9u3hspMi3mp7FUOtWWijTUumnVBvhcNsT2M8Gzht5hCx1vld6Gn/f8TI21PvJ0CBPnQsyhxjPt1PMNBgPTWRqFY40WtnQGODi7GGqjUA15OkplOmoHKZ54ggtjXFaKaddUhkjW6+SaW7mUKabMiUyIZIZGyTT1UP2p64jU2oiMzpIGB2gqTIAITARC9TLZTK1KvlGhTFK9MZOamQphiq5WCOWJzhSbaapMU42l6VYyHA3TybbqLGxvI/O8YN05yboLNQglyOTzdCaq1PMRfZmtnB/ZTMxBFor/TTFCfLUOBK6uCt3JY9mtlOJOVoKkVIOMtlAUy6SpUFXrkxrZpKxWpZ8pkExGylm6hRr45RyDYotzZSydUpU6Qhj5GsTlAcGuH34idxduXDWIdccKjw99yjPiPfSGifozFdoClWKpRwjjRIj9QKhMk5LuZ8L9n+b3p4riG3dDOa72XzhZrqf/TNsKZVpG+slOzZAKBQI+QIBGKtliUB26DDnVQ/Qn+0m09YB+Tzn9TRRHR5i93gro9lW6mTY1Ohj71CGA+NFtrdN8qS2YXLNLeRCg3y9QmFigGyIVIutxI4ectsuZiQ0U29AcyEdepAO16N/9iu1yOBYpFgdZWOhTN+BAeoxUGnupqm7ky1dOTKZQLUW6RtLYY2lPNRrDe49GBgvR0Ym6jy4r8Zgvcjw0AQtP/w3Cnsf4JLJR3jJyD/R1vBjL0nS6e8vD/2nBYPRXjt42zpUc5o40cDt00CGSFtjdEVef9TIMpppPRawNh2aNiNgbSpEbWTRILbUVs4sPyBa6+MBLlx4xswPOIrAhW8B4Nnjd3J55T5GMy1szB2hFMucVzvIwdwWHuq4hEoo0tYYoRryfLo9/f/kZ8a+zrbaPrKxTrE6SQyBkdZWNjb10dYYmfp8YJRqKNCX7SYfa+RijR3VXWyop/+r1UKOC6p7yMUak6HIWKaZ/mw3dTKUMyWOZDcwmO2iMZyhZXCMWshR6J+kQYbHNr2BQKS1MUopVviZyjfYk99Oo5Gh0cgwOtBCjhqbaoe5oPo4hVilszFAV32QOu1Mlgo8WriIkUwb2ZE6IUa6mgeZCCVGM60MZDupkSOGQFt9hI5Hhhl/5z9x5AUXMNC2nVw2hVv2DsMjhyPDEzA+CQeGoLMZJiahuwU2t8P+wbTrWwop6HxrZyCbSWHNh4YjD/RCSxGa8ikcvZibfs/TiLC7D34yFbaXz8KmNtjWBWMVqE+9H2oupLDyYh62d6WQ6UMjsG8QJqrQVoQjoyk8/TXPDrQWU9h6/xgcnAo839ye+sYIwxPQNHXK7/gkPPdS2NAS2DcYeegQHBqGf3zdUtGe0pnJYDRJkiRJ0nz54uLzmv1FCkmSJEmSJEmSJJ0V/hcwARw9W+BZIYQnxxjvX8ayr54z/c8rWNf+OdNPCiE0xxjHT2CMp82ZPniKNUmaIYSTiX44vXz5y1+eNf2yl72M9vb2FRn73/7t32ZN//qv//oJLd/c3MwznvEMvv71rwPwjW98Y0XqkiSJJz0Nrr4BvvfV9a5Ea6k6OR1QNjoEu+479TFjnA5tm2l0KF0Ws1AQF8DgYc7LL34i+7PH7+Tnxk/8uM3HGs21GUFj9Tol6un2JLRSmZ43WV50nADkqc1r72gMn3BNR22t7Wdrbc7b31MMRQPIUedp5R9MN3z128D89PBFzTxeAPqn3k4/8qO1DUSs1+HA7qkaTj2H/SLgoupumHuXzTlcXzX0P3hf7x+c8vqW7RDwwNqt7kTUSSeUZ1m5wI6bp8b9cfEy+rNdPHHykfmPg+MZ/dfp298D/mn5i86NDC8Cl89pu+Q4Y0Rmn5TcDtDZkyYmy9PBfTFCbFBq1Omo14/13zyvqB4am7aRrUywqVpJy1cqMNDLs082VFOSpNNQhsijD+3kVed/mDubr6O9Mcwb+9/P7/X/1/UuTeskR53OxhCdjSFg3ymNVSWXwtSyM0LVMu2MHgtbmxGqNjV/5Fi42uwgtmoorMwG6pTc2fxs7mx+9gkt8/WWn1mlak7ORzv/n7VZ0XfheBH6vVPvhYfLsGvObx090Hv85ZdSraews31zf/pshu/tXnqMv/jiia//E3fD3Lo/8IpIR/OZ/z9MaSaD0SRJkiRJ8y0VjNZkMJokSZIkSZIkSZLOfDHG8RDCp4CZ38r+I+A1Sy0XQtgJ/LsZTTXgH1awtHuAAaBraro0VeMHlrNwCOGFwNY5zd9cseqkM0B3d/es6aGhJcIpTsLg4OyzG+au70zwrW99a9b09ddfv2Jjf/Obs//kdHd3s2vXrhMaY2ZI265du2g0GmQy/tK9JOnUhBDg7bcRX//TcOjx9S5HmmVHdQ9PLd/DPaWnzpu3c/LhdahIOretZCDa3HGfWlkgWPFMNnj41JY9leUlSTqDXFDby1f3PJ+x0ExTnCCzttG7OovlqdHdGKC7MXDKY1VCgeHMdJjayLFwtekAtWPX2dn9RqbC1Y621YNxNtJaeugQPH3HelchrSyfSSRJkiRJ8+Xzi84KzW1rWIgkSZIkSZIkSZK0qm4CXgoc/QfZq0MI/xxj/NxCnUMIJeA2YObPpX84xvjIUisJIcw9u+WGGOPXFuobY6xPBbb91ozmd4cQ7owxLnnmbAjhAuD9c5rvjDEeWGq5c8W2Lnj0zw1WWgvbuo7fZzXNDSobGDj1k4GOKpfLlMvlWW0bNmxYsfHXyoEDs/8sXH755Ss29uOPzw6aufbaa09pvEajweDg4BkZQCdJOv2EjecRPv0w8ch+4if/Bnofh0Z9ukO1ArsfgO7N8MN1yBfeeRXECBOjMDYM5fFUU74AxWYYHYRadbp/vgDVyXS71AzN7ZDNQjYHLe2w8yrCRZfCjkthw3lwz53EW/9g7bdLy/LHR/6Kl237+3ntLxn+9DpUI0mSJGk1tMTx9S5BWlQxTtJTP0JP/cgpjROBcigxnGmfClGbDlVLwWrToWujU0Fqaf5CbW3E4P/3pON5+FDk6TvCepchrSiD0SRJkiRJ8+ULi89ralm7OiRJkiRJkiRJkqRVFGN8NIRwK/CWGc2fCiH8AfDBGOPk0cYQwqXAfwOum9G3D3jnKpR2M/AKoGlquhP4VgjhPwF/F+Pss2ZCCAXgN4D3ABvnjPW2VajvjJTLBnbM3Ts6K23dunXW9MGDB+nr61uRALMf//jHx13fmaCvr2/WdFfXyqXZzR17JYyMjBiMJklaUWHj+YQ3/PmSfWJ1kvjqq2HPg2tT0++9h/Dv33TcfrFWhWyOENKJjnFkAAiEts7jr2TnlVCZIH7oT6FeO8WKV0A2l76TWGqBI/vXu5p192sjn6b/QDc3bnkPtZAnE+vcdPhdPG/sS+tdmiSd/i6+HPJF2HpxChONEWIjPdeUmiBXILR2EIf6YGwEQkjhqI06dPZMPy+2dqTn1EYDcvkUNFqZgLERYnkstQ8cgslyGhugUITxUTi8H+77bpo3UwiQyabrrk0pgDWTTfMq49B3MLXHmPr0bE31TIxCUyu0dUJ7d1rf+Ggav3tzClAd7oORIRgbSsvmCjB0JN3e9+hUfaXpmi57Blx2DQwPpPVVxtO8GKGlIwWstnWlgNbxEfjG59K6N22DzdvTvh0fhpHB1DY09RlAsQk6NqRlW9oJLe1AnLof0iX296Z9P3QkjX20tuZWGDyStrm9Gy6+nJArQPcmqNeIvY+n/Z4vpNdApea0bL2e2mpVyGTSPs1m0/XM20cOEI/uJ6Z+vyJOXTcaMHh4uv6WdqhNwoHdcHhfuk+fcAWcf3H68fkDu9Jx0dYNXT1puaPK42m/1ibTsh0b0kyITZMAACAASURBVDE5MpD2VS6f7sPMVIjtVH0hk0mv55paCe3d0NRCPLgH7r8bHvg+DPfPPp6y2VR/ozH/cVBqhtbO6f3OVL9MFto60ryBQ6nWYgk2X5iOs0IpLVsopuX6DqZjqrkdOrrT/Z7NQlMbtLan4N6Bw/8/e3ceZ9ld1wn/86u1u6v39JI0WToJwZAQNuMy4AMqKEYeZH1kBpwRQVScBR/hUXFhURllEJ8HBQcHWRwEZHBhGR1FeAgOZJAJwQlZYJIQkgnZOp2kt3R39fKbP051ddWt6u6quvfWrbr1fr9e59V9zj3n9/vdc3/3c6tOnfpWsnFLytk7m1N6163Na79xS7JlR/OaDI8277GHdyXjh1MPH0yOjKeMrErWb2rm3IkxHjua+oG3NOd4Nus3N18zpiZloJm3hx6Z/n6b+Pp48t9p/y/d3Wfqvp3a54x9Tmlu0cY1y/gWsk+n25vTPpm5fqp2pu5z8EDzfjh4oHlfP/xA817ZsKWZ30ePNPl1Yjl6pMmnaestj8/FwMDs7/NTWb22eT/PZt2mic+WI01+H9jbfLat3ZisWdfk1Oq1yWVXNu/3kVXJHV9LbvrS3PvvhpHRZPzwzO3DI02+DI80Yx1dlaQkd38j2Xx2k9cznKJQUOv8ON32U+27VNqeT3+nanu+bZym7ZLmh5yrk2yf3Hf/xDLlD7fMoe2a5EBdnX1lLHuzJnszln1ZM7nszdiMbUeO1mw5dE8GjhzMAwObc8Po5bl+1eNPMd4ze+Kh/5GRejhD9WgG67EM5cS/x1JSs2twS/YMbMhQjubm0ccuuB9oxy3393oE0HkKowEAADA/m7b3egQAAAAAAADQSb+U5PIkV02sDyf5/SS/Vkq5Lsm+JBcleXKm/5bAeJLn11qn3L3fGbXWu0opL03y0SQTvyWZdRPj+nellC8nuTvJ8SRnJ7kyydpZmvqVWut/7fT4YKl7ylOeMmPbtddem2c961ltt33ttddOW1+9enWe+MQntt1ur5VT/gLT/I2Pj595p3mqJ35hGQAWURkeSd7196nv+83kxi81v8S+Zl3zy+lHx5tfJN+zO9m/p/ll7D0PLLyvn3xj8vyfmdu+Q9N/ybusm1+B0/LS1ybf94Lk5i+n3vSllHMfnaQmD+9OPfxIcvO1yT23N4VLtpzTFPLYuC1lx87meW7ZkWx7VFPQ48h4UzxjYKI4xcatTdGKo0eaogHHjzeFNR6892RhjPWbm1/KX7MuZWR02tjqF/4q9Qv/ObnvfzV93fSlpqjAngeac3/2BU3BkgN7ThbBGBxufiF+aLh5LR5+INn/8LzOyVLyMw+/Oy/d++HcMHpZHnv469l4fE+vh9R7o6ub13j/nmaObd3RvPcOHmiKOAAr22XfmfIHV6cMDp5535yyvEhHj60HDzRFyY4fa4p7bdjSfF2xwi303HfiikXnrnp0R+v4pq7Xwweb/wwOTSuOmyT1wN5k9z3JkSPJ5m0pm7Z1faynMpdzfKZ9ynNe3lwD2r+nKZ47ONR8bTe2fsbXjbBc1WPHknu/2RQrW702ueV/NN9PXfS45nPjvjuT9WelbNqa+si+5PCh5v0wurr53mpgIGXz9tSjR5vvi8bWT36PWMcPJ1/7clNQ7MLLJnosKaOrFjbWWpMbvph867bm+7nVY82YR0ab7wUHBpvvk4eGJ4tXZmAwWbsh2bil+V5u9Vhy/11NQcXR1c2+j+xrCrQ9eF9TnG3jlpPFFA8fbL7OP/v8lA3NHzqpD9yTfPWa5nvJx313ytSilKwY6yeWhfyZmhPvl/27bsuRkbUZ2rw1I8cPZfTYoTxy4HDuGl+XgbF1Gd+zN2vGH865Zw2l1GMZGD+Ysmlrc/1h7DHNfB9Zlex7sCnat2pNM6dPFEfdd19zvePwzfnmdV/Pn9y0IffWTdkxciAbBg9n37Hh7Ds2kvvH1+Ta/dvz1QNbU5f8VyksJ7ft6vUIoPMURgMAAGCmrec2f3XqoZYy8SOjyXc+szdjAgAAAAAAgC6otR4rpfxokj9K8uIpD21L8kOnOOz+JD/ezaJjtda/LKU8N8l7MvHH1CesTvI9Zzj8QJJfqrW+o1vjg6Xs/PPPz/nnn58777xzctunPvWpjhRG+7u/+7tp69/1Xd+VkZHl98vNW7Zsmbb+4IMP5lGPWsivFM3e9t13350kWbVqVR555JGOFl4DgMVU1m1K+Tdvm9O+9fjx5hfZ9+9piqHU48l5lzS/rP7IgWTHhSlr1qbee0fyxb9tfoH2in+S8qiLu/wsZio7Lkp2XJTyjP9r+vZudLZpa5Ir5rRreeqzU5767La7rPffldx9e1Og7djRZnloV+rtNzav0eq1TfGAiQIjGRpullVjzes2uropxnbsWHLsaOo3v5Zy7qNTDx2YLIhXLrys+YX/E0XgNpyVPHBPUkpTxG10dfML08MjzS/873uoKRQ3PJqctb0pOHf0aFMU4f5vNfufe3FyYG/WHxnPU8YPNX0NDjW/WL1hSzK2bqLgwEThgYHBpnDCoUeacSRN20fGmzGMH0oOHZwoXHe4KVB38ECz35q1zfEDA0lKcnB/MydH1zRtD48mIyPJ0Ehz7+iJIgV7H0q+dm2yZ3fqoUeaQj/nPSZZt7E5H+OHmuWBe5rCBY9+fPLQrua81tqcgxNFD46ON30myV23Jvv3Jhs2N8dt3JKUgaYQ2qo1KQMDp3699+9p2l491jyXq/889SufS47Xpo/hkeb8jq5uiiisWpNsO68psLZmfVNI78jhk3Pl2LHk4IHUv/9Y89o9sr8Z84nzVQaStetTrnhqsv28Zk4dO3ry34OPpD50f8rGrc25O3igKWpxcH9z/k+0c2BP8vDu5jW74NLknjua12jz9qbAxYYtyeBQ6pHDzfMbP3Ty2InxlDKQ+sje5nU5fqyZZ+s2J2vXN/NvZFXK6rHmvA8ONoUskmbfgcFm3h/cn+zfk/rVa5JHXZxy0eMmCg0+3BTaSW2KbBx+pNn3kf1NkZodO1PO3pkMjzSFefbvaR7b9qiU9Zua99PAYPMaHDvWjCc19b9/JvnMf5r+Ig4OJWdNFGLctLUplHFw/8TrurbZtv28iRd8omjy+KFmXp91dsrY+tQ9u5tjJopFlo0T3/McGU/GD6c+eG8zF1KasRzc37x3Vq1O2X5+6u57k6/+t+Tm/z6/wJl4XkmasR4Zb4p9JM28WzXWzM39Dzf9DQ6dfD3H1ic7H9sUobzthuY9tPOxzRw7fqzZ98H7ki/+zcT7dt3Jtudr89nNa3hg78KOX4oGB5MnPi3l1z8056Joi6WsHksePbfPPjiT0xUAKmPrmyzpI6WU5uuKEzZt7d1goAvK4GAy9XvAy75j+g4XXHpy3zXrms//E7acc/KxoaHme5CpbY+MJo+f+UdDFjzWUpIr/kmztOPE13EnzLOIY9lyTvJ9L2xvDKxoJ94v66a9Z4aTrMvYpuTbTmzavjHJxhnHzzC6Y/r6+s3N9zJTXHjx4/JrZ2jm0JGakcFkYKDkjt01f/blmr+7qebevcna0eSsseT+fcmBw8ldDzfrG9ckj9lesnFN8tW7aj5/68n2HrM9+fYLSr56V80Nd0/v6zt3JoMDyQP7k90HktXDyc6zktHh5KEDyb7DybHjyaEjTZ8DJVk13Cyb1jT/JsnYSNPGbbuSi7YmOzYkR48nDz/S7HPdyR/LpZTk3I3Nv0eONf2OH03GRpM1I8neg8nho9PHOTyYnL85+ebuZjwnnLMh2bH2SEZuuTY1JfsG1mXf4LoczVBG6+FsOfZABurxjNUD2XZ0Vw4MjOXhgQ3ZeeSOlNQMpObSw19LTcn9Q1tTUrPu+P7sHViXvQMbcqQMZSA1ZWI5UNbkWBnMjiN3Z8ux3TlcRrNvYG2OlaEcK4O5ZvV3Z9vR+3PloetysKzKhuN7M1SPZuz4gQznaPYOrMv9g1tTy0BGjx/K/omxHi8D2Xx0d/YNrs8fbnrl5PMbrEez5djubBg4mNF6OAP1eIaPH87WI/fn9qHzc7CsTi0l/2vo3Kyqh3K4jGZ1PZiakk3HHs6jx2/NJUduy9Mf/WNpbiWA/qEwGgAAADOUgYHU57w8+Y+/Pf2BH3hJ88MzAAAAAAAA6CO11v1J/mkp5c+SvCbJd59i1weTfCTJG2qtXf+by7XWvyqlXJbkp5O8IsmZKibcl+QDSd5Ra72j2+ODpeyHfuiH8h/+w3+YXP/ABz6Q3/7t387w8PCC29y1a1c+8YlPzOhnOTrnnHOmrd9000254orO/NL29u3bJwujHTp0KHfeeWcuuOCCjrQNAEtZOVGsaOOWZjmh9ZfVz74ged5PLfLoVpay7dwZv5ScLLzwW2n5t6Muflx7x194WWfGMVfbzp0s9jPn8zHLazHDzscueEhl7YbpG5754pRnvnj2nefT7rNesvBjz7DeTlvzfbwT/XRyDOXZL0ve+IHUR/YnI6NNkcIOaHeMUx+v44eTe25vCrolTbGzA3tOFiYZP5xs3ZFyzs4Z7dRam0KFQ8MzCkTXWlNKafYZP9w8/wUUka4P3JNc89fJ+MHmj2FvP695nw0MNsXChkdPFpBLmrEMNwW967FjTVG4h+5vCjgceqQpvjY41LQzNlHg8PDBZp99DyUXXZ6sWZ8yONgcf/3nU//mg815WbU6Zdt5E8eub/ovAyeLCKY2+20+uykcNzTUFIzb+2DT7923p+76VlP4adO25jmU0hSTGxqeKCK4rykId9bZTZHILec0Bfe27GgKxgAAwDK0avjk9wIXnFXymh8sec0Pdqbtg+NNcbR1o8m3nZ1F/eM1d+6uTVG0TTP7PXqsZnCg2X7seM2ufU2xtGM12bwmWbsqGRxojnnoQM0D+5tCaaPDJfXo8dTve8aiPY9ue+e9r87+MpZDA6ty1rHdc/6++sR3erPtX7ZdmeRJnRkgLBEKowEAADCr8pNvTEbXpH7qg81finvac1N+8k29HhYAAAAAAAB0Ta31z5L8WSnlwiRPTrIjyViSe5PckeQLtdbxBbS74LvNa60PJvmtJL9VSjk3ybcnOSfNnywvSfYk2ZXkK7XWW0/ZEKwwr371q/Pud7+7+YXzNEXN3ve+9+WnfmrhRUje/va358iRI5PrY2NjeeUrX3maI5aupz71qfnoRz86uX711VfnxS9uv3hEkjzlKU/JV77ylcn1T33qU8v2PAEAAN1R1qzt9RBOqYyMJhdcurBjS0kmipDN+tiJf0dXLXx8W85JfuQVCzt2cDBZu6FZkqZ45/bzpu80tDZZszbZtHX245/09JQnPX1B/U+aUjBx8Uo0AADAyrB6pOQ7dvam7/PPOvVX+EODJx8bHCg5e8Mpd82msZJNYyfXy9Bw6tqNyf6HOzHMJWFtPZC1xw7M65jTfv/0zZuTb1MYjf4y0OsBAAAAsDSVUlL+xS9m4E+uz8CHbsjAz7w5ZUh9bQAAAADoqme/bPbtq8dm3w4AdEWt9fZa65/XWn+/1vrbtdb311o/u5CiaB0e11211o/XWt81Ma7fqrX+Qa31o4qiwXSXXXZZrrrqqmnbfvEXfzH33Xffgtq76aab8ta3vnXatp/4iZ/I5s2bFzzGXnrmM585bf1DH/pQ9u3b15G2n/WsZ01b/6M/+qOOtAsAAAAAAMAKtXNhBaxXinr7Tb0eAnScwmgAAAAAAAAAAEtEecGrZt/+8tcv8kgAAGD5e9vb3pY1a9ZMrj/88MN5wQtekP3798+rnV27duVFL3pRxsdP1kY855xz8vrXL9+v0y+//PI8/elPn1zfu3dvXve613Wk7auuuioXX3zx5PqXvvSlvPe97+1I2wAAAAAAAKw85ap/3ushLG133NzrEUDHDfV6AAAAAAAAAAAANMpjnpj6E7+avO83T278zh9Inv/TvRsUAAAsU5deeml+//d/P694xSsmt11zzTW56qqr8uEPfzjnnnvuGdu45ZZb8sIXvjA333zylwkGBgbygQ98IFu3bu3KuBfL61//+jzjGc+YXH/nO9+ZCy+8MK95zWvmdPyePXsyOjqaVatWTds+NDSUX//1X89LX/rSyW2vetWrsnHjxrzgBS+Y1xg//elP56KLLspFF100r+MAAAAAAADoI895Rcq+h1P/0+8lD96XlJJsPz85+4Lk7m8kA4PJhrOSoeHkyHjz+DdvTradm5z/mGTtxmTN2uSBe5KH7k+OH09WjyXrNycH9iaP7E/2PJAcPtg8tn5zctb25K7bknu+2YzhrHOafY4emT62gYHmmNkMDjaP1dq5czE0nIytb577zsem7Hxs8tgrO9c+LBEKowEAAAAAAAAALCEDL/+11Kc9L/nqNcnOxyZX/JOUoeFeDwsAAJall7/85bnuuuvyzne+c3Lb5z//+Vx22WX55V/+5bz0pS/NeeedN+O4W2+9Ne9///vzO7/zOzl8+PC0x97ylrdMKyi2XH3/939/XvOa1+Rtb3vb5LbXvva1+dznPpc3vOEN+fZv//YZxxw/fjz/8A//kD/90z/N+973vlx//fXZuXPnjP1e8pKX5DOf+Uze+973JknGx8fzwhe+MC95yUvy8z//87O2nSTHjh3L9ddfn0984hP5yEc+kptvvjmf/exnFUYDAAAAAABYwUopyUtfm7zkNcme3cn6zSkDA13vt9aa1DprX/X48eT4saYo25HDTYG1gcGmGNrAYDI8mjIymnr4ULLvwWTjtpShptRT3b8n+fwnm0JtQ8PJ8EgyPJqMjCZDI8mq1U3xsxNF1dZvbgq/bdqWMjLa9ecNS4HCaAAAAAAAAAAAS0x59BXJo6/o9TAAAKAvvOMd78imTZvy5je/ufnlhST79u3L6173uvzyL/9yLrvsspx33nnZtGlTdu/enTvuuCNf//rXZ7QzPDyct7/97XnVq1612E+ha97ylrfkzjvvzEc/+tHJbZ/85CfzyU9+Mjt27MgVV1yRs846K4cPH869996b66+/Pvv27ZtT2+9617vy0EMP5S//8i8nt33oQx/Khz70oWzdujVPeMITctZZZ2VgYCB79+7N3XffnZtvvjmHDh3q+PMEAAAAAABg+SulJBu3LG5/pcz+2MBAcqJg2ujqZpltv9FVyeiO6dvWbkh+6Mc6OlboNwqjAQAAAAAAAAAAAAB97Td+4zfy9Kc/PT/7sz+bW265ZXJ7rTU33nhjbrzxxtMe/+QnPzl/+Id/mCuvvLLbQ11Ug4OD+chHPpLLL788b37zm3PkyJHJx+6+++7cfffdC257eHg4f/7nf563vvWtecMb3jCt4NmuXbvy6U9/ek5tjI2NLXgMAAAAAAAAACw/A70eAAAAAAAAAAAAAABAtz3zmc/MTTfdlA9+8IN5xjOekaGh0/+N6dHR0TznOc/Jxz/+8Vx77bV9VxTthFJK3vCGN+TrX/96XvnKV2bz5s2n3X/t2rV53vOel4997GM5//zzz9j2L/zCL+T222/PL/3SL+WCCy4443jWrVuXH/7hH8473/nO3HPPPfmO7/iOeT0fAAAAAAAAAJa3Umvt9Rigp0oplye54cT6DTfckMsvv7yHIwIAAAAAAAAAWJgbb7wxj3vc46Zuelyt9cZejQcAOn2P3tGjR3PLLbdM23bJJZecscAVzObAgQP58pe/nFtvvTW7du3K+Ph4RkdHs3379jzmMY/Jk5/85IyOjvZ6mIvu+PHjue666/K1r30tDzzwQPbv35+xsbFs27Ytl156aR7/+MdneHh4we3ffvvtue6667Jr16489NBDGRgYyLp167Jjx45ceumlueSSSzI4ONjBZ9RbcgsAAAAAAAD6g/vzFo+fptJRpZThJE9Ncn6Sc5LsT3J3kq/UWr/Zw6EBAAAAAAAAAAAAwKSxsbE87WlPy9Oe9rReD2VJGRgYyJVXXpkrr7yyK+1feOGFufDCC7vSNgAAAAAAAADLn8JoK1gp5U+TvLhl8x211p0LaGtrkjdNtLf5FPtck+R3a61/Pt/2AQAAAAAAAAAAAAAAAAAAAAAA6G8DvR4AvVFK+ZHMLIq20LauSnJDklflFEXRJjwlyZ+VUv6klDLWib4BAAAAAAAAAAAAAAAAAAAAAADoD0O9HgCLr5SyMcm/71Bb35vkY0lGpmyuSa5L8o0kG5M8KcmWKY+/NMn6Usrzaq3HOzEOAAAAAAAAAAAAAAAAAAAAAAAAlreBXg+Annhbkh0T/9+30EZKKecm+YtML4r2hSSX11qvrLX+aK31B5Ocm+TVSY5M2e85SX5zoX0DAAAAAAAAAAAAAAAAAAAAAADQXxRGW2FKKc9M8vKJ1aNJXt9Gc29KsmnK+jVJnllrvXnqTrXWw7XW30vyoy3H/3wp5YI2+gcAAAAAAAAAAAAAAAAAAAAAAKBPKIy2gpRSxpK8e8qm303yjwts65IkPz5l03iSl9VaD53qmFrrx5L88ZRNo0nesJD+AQAAAAAAAAAAAAAAAAAAAAAA6C8Ko60sv5Vk58T/v5HkjW209ZIkg1PW/6LWesscjntLy/qPllJWtTEOAAAAAAAAAAAAAAAAAAAAAAAA+oDCaCtEKeUpSf7llE0/XWs92EaTz29Zf99cDqq13pzkH6ZsGkvyg22MAwAAAAAAAAAAAAAAAAAAAAAAgD6gMNoKUEoZTfLenHy9/7jW+uk22js7yROmbDqa5AvzaOLqlvWrFjoWAAAAAAAAAAAAAAAAAAAAAAAA+oPCaCvDG5N828T/dyV5TZvtPa5l/fpa64F5HH9Ny/rlbY4HAAAAAAAAAAAAAAAAAAAAAACAZU5htD5XSnlyktdO2fRztdbdbTZ7Wcv6rfM8/rYztAcAAAAAAAAAAAAAAAAAAAAAAMAKozBaHyulDCV5b5KhiU1/U2v9UAeafnTL+p3zPP6OlvWzSimb2hgPAAAAAAAAAAAAAAAAAAAAAAAAy9zQmXdhGfulJE+Y+P+BJK/qULsbW9bvn8/Btdb9pZRDSVZN2bwhyUPtDqyUsi3J1nkednG7/QIAAAAAAAAAAAAAAAAAAAAAANAehdH6VCnlsiS/OmXTr9Vav9mh5te2rB9cQBsHM70w2rqFD2ean03yhg61BQAAAAAAAAAAAAAAAAAAAAAAwCIZ6PUA6LxSykCS9yQZndj05SS/18EuWgujHVpAG63F1FrbBAAAAAAAAAAAAJimlDJjW621ByMBmJvjx4/P2DZblgEAAAAAAADQUBitP706yXdP/P9okp+stR7rYn8LuaPIXUgAAAAAAAAAAADAvAwMzLz19ciRIz0YCcDcHD16dMa22bIMAAAAAAAAgMZQrwdAZ5VSLkrym1M2/W6t9R873M3+lvXVC2ij9ZjWNhfqD5J8dJ7HXJzk4x3qHwAAAAAAAAAAAOiSUkpGRkYyPj4+uW3//v1Zs2ZND0cFcGr790+/TXpkZCSllB6NBgAAAAAAAGDpUxitj5TmJ+TvTnLi7p5vJHljF7pasoXRaq33J7l/Pse4sQAAAAAAAAAAAACWj3Xr1mX37t2T63v37s3WrVvdDwgsObXW7N27d9q2devW9Wg0AAAAAAAAAMvDQK8HQEe9Msn3T1n/6VrrwS70s6dlfet8Di6lrM3MwmgPtzUiAAAAAAAAAAAAYEVoLSp05MiRfOtb30qttUcjApip1ppvfetbOXLkyLTt69ev79GIAAAAAAAAAJaHoV4PgI5605T//3WSW0spO89wzNkt60OzHHN3rXV8yvotLY9fMMfxnWr/B2utD82zDQAAAAAAAAAAAGAFWrVqVYaHh6cVG9q3b19uu+22rF+/PmvXrs3Q0FAGBvz9YGBxHT9+PEePHs3+/fuzd+/eGUXRhoeHMzo62qPRAQAAAAAAACwPCqP1l9VT/v/DSW5fQBuPmuW4JyX5xynrN7c8/uh59nFRy/pN8zweAAAAAAAAAAAAWKFKKdmxY0fuvPPO1Fontx85ciS7d+/O7t27ezg6gNmdyK5SSq+HAgAAAAAAALCk+VN4LMQNLeuPL6WsmcfxTz1DewAAAAAAAAAAAACntGbNmpx//vkKDAHLQikl559/ftasmc8t1wAAAAAAAAArk8JozFut9Z4k10/ZNJTke+bRxPe2rP+XdscEAAAAAAAAAAAArCwniqMNDw/3eigApzQ8PKwoGgAAAAAAAMA8DPV6AHROrXXjfI8ppXxvks9O2XRHrXXnHA79yySPn7L+E0k+NYf+Lk3yXVM2HZjLcQAAAAAAAAAAAACt1qxZk4svvjiHDx/O3r17s2/fvoyPj/d6WMAKNzIyknXr1mX9+vUZHR1NKaXXQwIAAAAAAABYNhRGY6E+mORXkwxOrL+glHJJrfWWMxz3iy3r/6nWeqjjowMAAAAAAAAAAABWhFJKVq1alVWrVmXbtm2pteb48eOptfZ6aMAKU0rJwMCAQmgAAAAAAAAAbVAYjQWptd5SSvnjJC+f2DSS5P2llGecqtBZKeW5SV42ZdN4kjd1daAAAAAAAAAAAADAilJKyeDg4Jl3BAAAAAAAAABgyRno9QBY1t6Q5KEp609J8ulSyqVTdyqljJZS/nWSj7Yc/7Za6x1dHiMAAAAAAAAAAAAAAAAAAAAAAADLwFCvB8DyVWu9q5TygiR/m2RkYvNTk9xUSvlykm8k2ZDkyUm2thz+n5P82mKNFQAAAAAAAAAAAAAAAAAAAAAAgKVNYTTaUmu9upTy/CTvz8niZyXJlRPLbD6c5JW11mPdHyEAAAAAAAAAAAAAAAAAAAAAAADLwUCvB8DyV2v96ySPS/KuJA+dZtcvJnlRrfUltdYDizI4AAAAAAAAAAAAAAAAAAAAAAAAloWhXg+A3qq1Xp2kdKCd+5O8qpTy6iRPTXJBkrOTHEjyrSRfqbXe3m4/AAAAAAAAAAAAAAAAAAAAAAAA9CeF0eioWut4ks/2ehwAAAAANQ/O7gAAIABJREFUAAAAAAAAAAAAAAAAAAAsLwO9HgAAAAAAAAAAAAAAAAAAAAAAAACAwmgAAAAAAAAAAAAAAAAAAAAAAABAzymMBgAAAAAAAAAAAAAAAAAAAAAAAPScwmgAAAAAAAAAAAAAAAAAAAAAAABAzymMBgAAAAAAAAAAAAAAAAAAAAAAAPScwmgAAAAAAAAAAAAAAAAAAAAAAABAzymMBgAAAAAAAAAAAAAAAAAAAAAAAPScwmgAAAAAAAAAAAAAAAAAAAAAAABAzymMBgAAAAAAAAAAAAAAAAAAAAAAAPTcUK8HAEvAyNSVW2+9tVfjAAAAAAAAAABoyyz3PYzMth8ALCL36AEAAAAAAAAAy5778xZPqbX2egzQU6WUH0ny8V6PAwAAAAAAAACgC55ba/1ErwcBwMrlHj0AAAAAAAAAoE+5P69LBno9AAAAAAAAAAAAAAAAAAAAAAAAAACF0QAAAAAAAAAAAAAAAAAAAAAAAICeK7XWXo8BeqqUsiHJ06ds+l9Jxtto8uIkH5+y/twkt7XRHsB8ySFgKZBFQK/JIaDX5BDQa3IIWApkEdBrKzWHRpKcN2X9c7XWPb0aDAC4Rw/oQ3II6DU5BPSaHAJ6TQ4BS4EsAnpNDgG9tlJzyP15i2So1wOAXpsIl090qr1SSuum22qtN3aqfYAzkUPAUiCLgF6TQ0CvySGg1+QQsBTIIqDXVngOfaXXAwCAE9yjB/QbOQT0mhwCek0OAb0mh4ClQBYBvSaHgF5b4Tnk/rxFMNDrAQAAAAAAAAAAAAAAAAAAAAAAAAAojAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8pjAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8pjAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8pjAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8pjAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8N9XoA0Id2JXlTyzrAYpJDwFIgi4Bek0NAr8khoNfkELAUyCKg1+QQAPQnn/FAr8khoNfkENBrcgjoNTkELAWyCOg1OQT0mhyiq0qttddjAAAAAAAAAAAAAAAAAAAAAAAAAFa4gV4PAAAAAAAAAAAAAAAAAAAAAAAAAEBhNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnhno9AGYqpQwmeXSSy5LsSLIhyeEkDyW5Lcm1tdYDHe5zOMlTk5yf5Jwk+5PcneQrtdZvdrKvxVJKuTzJE5NsTTKa5N4kdyX5Qq31UC/HtphKKZuSXJ7kkiSbk6xK8nCSXUm+XGu9rYfDm6GUcmGa121HkrVJ7klyR5Jraq1Hejm2lUQOdYYcasghFkoWdYYsasiiU/ZjfpyGHOoM86yx3HKIpUEOdYYcasih6Uop56U5F+cm2ZJkdZLxJHuS3JnmnOzq3QiXBjnUGXKoIYdYKFnUGbKoIYtYCDnUGXKoIYdmZ34AveAzvjNkeGO5fca7N2ZpkEOdIYcacoiFkEOdIYcacuiU/ZgfpyGHOsM8ayy3HGJpkEOdIYcacmg69+fNnSzqDFnUkEUshBzqDDnUkEMshBzqDDnUkEOzW9bzo9ZqWQJLmsD8uST/Oc039/U0y9Ek/yXJszvQ79Ykf5Bk92n6+0KSF7bZz0VJXpzkrUmuTrK3pY9vdug8rkvyK0m+dZrnszfJB5Jc3MPXu2vnI8lwkmcleUeSG84wl+rEufr1JGf3+D3woiTXnGacuyfm6pYFtH2mc3CmZWcvz80ivgZyqDPnUQ7Joalt7uxABk1dXtbLc7RIr4Ms6sx5lEWyaNnPjx6+BnKoM+dxWcwzOdSz+TGW5HuS/N9JPpjkfyY53tLXy3p1Hnq9yCE5JIe6dj4uSfJvk3w2zQ81znQ+apLrkvzLJKO9Oic9eh3kUGfOoxySQ7O1P5fsOd2ys1fnpgevhSzqzHmURbJoars7O5BDU5eX9eocLdLrIIc6cx7lkBxa9vPDYrH01+IzfmVluM/4WcftHr0eL3JIDskh9+j1epFDckgOuT+v14sckkMrOYcWcX64P+/050cOdeY8yiE51Nq2+/Pmd75kUWfOoyySRbO1P5f8Od2ys1fnZpFfBznUmfMoh+TQ1HZ3diCDpi4v69U5WqTXQQ515jzKITm07OfHGZ9HrwdgqUnyoTY+0D6ZZPsC+70qyX3z6OtPkozNo/3vTfK3Z/hQ6NgbM8l3panCOdfncyDJqxbxde76+Zg4Bw8ucC49lOTHejD/1yb58DzGeW+SZ82zj4W+v04sOxf7vPTgdZBDckgOdSGH0vlvZF+82OdnkV8LWSSLZFEXsmg5zY9eL3JIDq3EHFrM+ZHmwvFX01yQPlNfL1usc7CUFjkkh+RQ9+ZHkp9s4/319STftVjnpJeLHJJDcqi786ON99eJZedinZdeLrJIFsmirp2PnR3IoalL316vjhySQ3Joxc8Pi8XSn4vP+JWR4T7jTzlm9+gtgUUOySE55B69Xi+RQ3JIDrk/r8eLHJJDKzGHFnN+xP15czlHckgOyaEuzY+4P28+50oWySJZ1MX50cb768Syc7HOS68WOSSH5FDXzsfODmTQ1MW1ajk0l/egHJJDy3J+zGcZCkvBY06x/VtJbkkTrkNpqv49IcnAlH3+zyR/X0p5eq313rl2WEr53iQfSzIyZXNNU2X9G0k2JnlSki1THn9pkvWllOfVWo/PoZsnJvnBuY6pHaWUZ6apBjra8tAdSa5P8yY8N82bd3jisTVJ/qCUMlBrfeciDHMxzsfWJJtm2T6e5uL2vWkqpp6V5MqJf0/YmOQDpZRttdbf7fI4kySllMEkH0nywy0P7UrylYmxXpxmLpaJx7Yn+Xgp5Zm11s8vxjhXCDnUJjk0SQ51zyNpKlr3M1nUJlk0SRbN3s9ymB+9JofatEzmmRyabtHmR5KXJNmwSH0tV3KoTXJokhw6s5rmIv+taX6w8Eiav5h7YZLLc3J+JM178zOllGfXWj+32ANdZHKoTXJokhyiHbKoTbJokizqnn6/Xi2H2iSHJsmhWSyT+QH0J5/xbVomGe4zvsUyuzem38mhNsmhSXKoe1zzkEOnJYcmyaHZ+1kO86PX5FCblsk8k0PTuT9vaZFDbZJDk+TQmbk/79RkUZtk0SRZxELJoTbJoUlyqHtcq5ZDpyWHJsmhWSyT+TF3va7MZqlJcm1OVtG7Lsm/SnLxKfZ9VJI/zMzqe/81SZljf+dmZtXDzyd5bMt+o0n+TZo3/dR9/+0c+/m5WcZZkxxKc0GjIxUL01RPba2KeGuSH5hl301Jfr9l32Oz7duF17nr5yPNB/mJNvYleU+SZyRZPcu+Jcnz04RX65i6fj4mxvDWln7HJ+b/SMt+lyW5pmXfB5KcM8d+ph73xYk5M59laDHORy+XyCE5JIe6kkNpvvE6U8acavl8S3/vX4xz0sslskgWyaKufU20XOZHrxc5JIdWYg4t1vyY6OvhU/R11yyPvazbz30pLnJIDsmhrs6PVyT5WpqvvZ6dZNNp9t2Y5OfT/ABkav/fSrKh2+ekl4sckkNyqOtfD01ty7XqU58nWSSLZFF3zofr1XM/V3JIDsmhFT4/LBZLfy4+41dGhvuMn3W87tFbIkvkkBySQ13JobjmMZ/XQg7JITnUpa+Hlsv86PUih+TQSsyhxZofE325P+/M50gOySE51L354f68uZ8rWSSLZFF3vyaa2pZr1bOfIzkkh+RQd86Ha9VzP1dySA7JoRU+P+b1nHo9AEtNkv+eptrelfM45mdnmfD/dI7HvqfluC8kWXWa/Z83yxvrgjn083MTof+VJO9O8lNJnpymYuD3dvCN+eGWtm5Jsu0Mx/xCyzE3Jhns8uvc9fMxEdz3JXlNkrE5HnNWkpta+r85c/xCoI3zcVFmflHw3NPsvzozf9D4rjn2NfWYq7v5vJbrIofkkBzqbg4tYGyPSnK0pa//o5vnYyksskgWyaLuZdFymR+9XuSQHFqhObQo82Oir4fT/KWFv0ryponztH3isatb+npZN5/3Ul3kkBySQ12dH8MLOOaJSfa3jOEXu3k+er3IITkkh7r+9dDUtq7u5vNazosskkWyqLtZtICxrbjr1XJIDskh88NisfTn4jN+ZWS4z/gZ/bpHbwktckgOyaHu5tACxuaax9yOkUMn+5FDJ/uQQ8t0fvR6kUNyaIXmkPvzltAih+SQHHJ/3lJYZJEskkXu0ev1IofkkBxyf16vFzkkh+SQ+TGv59TrAVhqkuxc4HF/1jK5/moOx1zS8sF4OMklczju/S19vXcOx2w61QdCB4PqojQVB6e29T1zPPb/bznu5V1+nRfjfGyda2C3HPeEWc7jd3T5fPxxS3/vm8Mxj5mYsyeOOZLkojkcN7Wfq7v5vJbrIofkkBzqbg4tYGy/0jK2/9nNc7FUFlkki2RRd7JoOc2PXi9ySA6t0Bzq+vmY0t4p/4Ju3Hh14jzsXOBxckgOtbYjhzo3vl9vGcMXF3sMi/x8dy7wODkkh1rbkUOztze1rau7+byW8yKLZJEs6s75aGNsK+56tRySQ3LI/LBYLP25+IxfGRnuM35Gn+7RW0KLHJJDcqi7ObSAsbnmMffj5JAcam1HDi3T+dHrRQ7JoRWaQ+7PW0KLHJJDcqg756PN8a2o+/MmnvPOBR4ni2RRazuyaPb2prZ1dTef13Jd5JAckkPdOR9tjM216rkfJ4fkUGs7cmiZzo/5LAOh52qt31zgoe9sWf++ORzzkiSDU9b/otZ6yxyOe0vL+o+WUlad7oBa60O11kNzaLsdz06mzeMv1lo/P8djf6dl/Sc6M6TZLcb5qLXuqrUeWMBx/yNJ63mby3xakFLK6iQvatncOsdmqLX+zyQfm7JpKM2cpk1yqC1yaHofcqhNpZSSmXPhPZ3sY6mSRW2RRdP7kEXTLZv50WtyqC3LZp7JoRl9Lsb8ONHXPYvRz3Imh9oih6b3IYc6569b1h/dk1EsEjnUFjk0vQ85xILJorbIoul9yKI2rdTr1XKoLXJoeh9yaLplMz+A/uQzvi3LJsN9xp+0lO+NWankUFvk0PQ+5FCbXPOYNzkkh1r7kEPTLZv50WtyqC3LZp7JoRl9uj9vCZFDbZFD0/uQQ52zou7PS2RRm2TR9D5kEQsih9oih6b3IYfa5Fr1vMkhOdTahxyabtnMj/lQGG15+0rL+upSysYzHPP8lvX3zaWjWuvNSf5hyqaxJD84l2O77Gkt6387j2M/k2R8yvpTSinntD+kZat1Pu3oYl/PSrJmyvp/q7V+bY7Hts7ZF3RmSCyQHJJDnSSHGk9PcvGU9aNp/mIdpyaLZFEn9WMWmR/dJ4fMs05azByif8ghOdRJcmi6B1vW1/VkFEufHJJDnSSHWChZJIs6SRY1XK+eHzkkhzqpH3PI/ACWK5/xMryT+vHn0XSfHJJDnSSHGq55zI8ckkOd1I85ZH50nxwyzzqpH6+90n1ySA51khyazv15cyeLZFEnySIWQg7JoU6SQw3XqudHDsmhTurHHOrL+aEw2vJ2dJZtI6fauZRydpIntBz/hXn0d3XL+lXzOLZbzm1Zv2GuB9ZaDye5dcqmgSyN59QrrfPplHOpA36oZf3qeRz7XzN9rE8qpWxve0QslBySQ50khxqvaFn/q1rrvR1svx/JIlnUSf2YReZH98kh86yTFjOH6B9ySA51khya7oKW9bt7MoqlTw7JoU6SQyyULJJFnSSLGq5Xz48ckkOd1I85ZH4Ay5XPeBneSf3482i6Tw7JoU6SQw3XPOZHDsmhTurHHDI/uk8OmWed1I/XXuk+OSSHOkkOTef+vLmTRbKok2QRCyGH5FAnyaGGa9XzI4fkUCf1Yw715fxQGG15e3TL+tEkD5xm/8e1rF9faz0wj/6uaVm/fB7HdsvmlvWH53l86/5XtDGW5a51Pt3Txb5a5+J/m+uBE3P2qy2bl8JcXKnkkBzqpBWfQ6WUDUle2LL5PZ1ou8/JIlnUSf2YReZH98kh86yTFjOH6B9ySA51khya7l+0rH+2J6NY+uSQHOokOcRCySJZ1EkrPotcr14QOSSHOqkfc8j8AJYrn/EyvJP68efRdJ8ckkOdtOJzyDWPBZFDcqiT+jGHzI/uk0PmWSf147VXuk8OyaFOkkPTuT9v7mSRLOokWcRCyCE51EkrPodcq14QOSSHOqkfc6gv54fCaMvbi1rWr621Hj/N/pe1rN86616ndtsZ2uuF8Zb10Xke37r/UnhOi66Usj7JD7Rs/lIXu3xsy/pizsXzSynvK6XcWEp5qJQyXkq5b2L9T0opP1VKaQ18Tk0OyaGOWGE5dDr/LMnqKev3JPkvHWq7n8kiWdQRfZxF5kf3ySHzrCN6kEP0DzkkhzpCDk1XSvmXSX5syqajSf6/Hg1nqZNDcqgjVlgOuVbdebJIFnXECsui03G9ev7kkBzqiD7OIfMDWK58xsvwjujjn0fPxnWPzpJDcqgjVlgOnY5rHvMnh+RQR/RxDpkf3SeHzLOO6ONrr3SfHJJDHSGHpnN/3rzJIlnUESssi1yr7iw5JIc6YoXl0Om4Vj1/ckgOdUQf51Bfzg+F0ZapUsraJK9o2fyXZzistWLhnfPs9o6W9bNKKZvm2Uan7W5ZP2eex7fu/21tjGU5++kka6as70mXqutPfJPY+o3ifOdi6/6XzOPYC5O8LE0Ib0wynGTbxPpLk/xhkjtLKf/vxPuMU5BDk+RQZ6ykHDqd1vfUH9daj3ao7b4kiybJos7o1ywyP7pIDk0yzzpj0XKI/iGHJsmhzljROVRKGSulfFsp5cdLKZ9L8o6WXV5Xa72+F2NbyuTQJDnUGSsph1yr7iBZNEkWdcZKyqLTcb16HuTQJDnUGf2aQ+YHsOz4jJ8kwzujX38ePRvXPTpEDk2SQ52xknLodFzzmAc5NEkOdUa/5pD50UVyaJJ51hn9eu2VLpJDk+RQZ6zoHHJ/3sLJokmyqDNWUha5Vt0hcmiSHOqMlZRDp+Na9TzIoUlyqDP6NYf6cn4ojLZ8/VaSs6esP5zkj85wzMaW9fvn02GtdX+SQy2bN8ynjS64uWX9u+d6YCnl/CQ7Wjb3+vksulLKziS/1rL57bXW1mqQndI6Dx+ptR6YZxutc7fTr9tYkp9L8uVSyuUdbrufyKGGHGqTHGqUUq5IcmXL5ve02+4KIIsasqhNfZ5F5kd3yaGGedamHuQQ/UMONeRQm1ZaDpVSNpZS6tQlyf4kX0vy/iRPm7L7/iQ/VWv9nR4MdTmQQw051KaVlkNz5Fr13MmihixqkyxquF69IHKoIYfa1Oc5ZH4Ay5HP+IYMb1Of/zx6oVz3mBs51JBDbZJDDdc8FkQONeRQm/o8h8yP7pJDDfOsTX1+7ZXukkMNOdSmlZZD7s/rOFnUkEVtWmlZNEeuVc+NHGrIoTbJoYZr1QsihxpyqE19nkN9OT8URluGSinPT/KvWjb/Sq31wTMc2lqt+OACum89Zt0C2uikz7Wsv7CUsmbWPWf6F7Ns6/XzWVSllJEkH8n05/3NJP+ui932ah4eTXJ1kl9N8iNJnpzmrzY9Kclzk/xOZn4x85gkny6lXLCAMfY1OTSNHGrDCsuhM2mtVP25WuutHWi3b8miaWRRG1ZAFpkfXSKHpjHP2tCjHKIPyKFp5FAb5NAp3ZfkV5JcWGt9d68HsxTJoWnkUBtWWA65Vt1hsmgaWdSGFZZFZ+J69TzIoWnkUBtWQA6ZH8Cy4jN+GhnehhXw8+ipXPfoIDk0jRxqwwrLoTNxzWMe5NA0cqgNKyCHzI8ukUPTmGdtWAHXXukSOTSNHGqDHDol9+fNgSyaRha1YYVlkWvVHSSHppFDbVhhOXQmrlXPgxyaRg61YQXkUF/OD4XRlplSyhOS/MeWzZ9K8u/ncHhrcLdWp5yL1uBubXOx/VWaap4nbEzyxjMdVEo5L8lrZ3losJSyujNDWxb+KMl3Tlk/luTHF/DXkOajF/PwV5M8qtb6fbXWN9daP1lr/Uqt9dZa6z/WWj9Ra/1/klyQ5LeT1CnHnp3kL0opZQHj7EtyaAY51J6VkkOnNfGF9I+1bFbd+zRk0QyyqD39nkXmRxfIoRnMs/b0IodY5uTQDHKoPXJodtuT/EySV5VS1vd6MEuNHJpBDrVnpeSQa9UdJotmkEXtWSlZdFquV8+PHJpBDrWn33PI/ACWDZ/xM8jw9vT7z6NPcN2jg+TQDHKoPSslh07LNY/5kUMzyKH29HsOmR9dIIdmMM/a0+/XXukCOTSDHGqPHJqd+/POQBbNIIvas1KyyLXqDpJDM8ih9qyUHDot16rnRw7NIIfa0+851JfzQ2G0ZaSUcn6aiTg1LO9I8mO11jr7Uae1WMd0Ta11X5K3t2x+bSnl1ac6ppRybpK/SbLhVM12aHhLWinlN5L885bNr6u1/v0iD6Xr83Dim9fW6t2z7Xeo1vq6JP+65aEnJ/ln8+mzX8mhmeTQwq2kHJqD5yY5a8r6nv/d3v3HWpMX9B3/fJctIIJSi0AVdSn+wlBSFFMBTTcUDNSAsqAQmoYVtLbYJrVt0pSadGsbTNNo7R+NUotiKdBSBEREQMSVVuOvZlGoW0oqawVd5JdF9vey3/5x7tN77px75sycHzNzzrxeyflj5p4zZ57zfJ/33Od7J9+b5A17fo+ToUWrtGh7c2iR8bF/OrTKONvehDrEEdGhVTq0vRl36NNJHr30eEwWc0DXJfnXST529rwvSfIDSd5XSvn6Ec5zknRolQ5tb04dMle9X1q0Sou2N6cWdWC+uiMdWqVD25tDh4wP4Fi4xq/S8O1N6BrvHr0jokOrdGh7c+pQB+Y8OtKhVTq0vTl0yPjYPx1aZZxtb0Id4ojo0Cod2t6MO+T+vB1p0Sot2t6cWmSuen90aJUObW9OHerAXHVHOrRKh7Y3hw6d6vi4euwToJtSysOT/EKSL17afWuSp9daP3b5q1Z8prG9zcp8zdc0jzmGlyd5Zs5XZixJfqSU8rwsVkd9bxYrcX7R2fP+ds4vfh9O8qilY91Za11Z6bOUck3Xk6m13tLr7EdQSvl7Wax6veyHa63/quPrr+n6Xpd8HpMfh7XWf1tK+eYkz17a/dIkr93n+xwbHWqlQz3p0IqXNLZfW2ttriJNtGgDLeppZi06+PiYCx1qpUM9jdwhjpQOtdKhnubcoVrrfUluueRLNyV5Uynl+5P8yyR/52z/lyZ5VynlKbXW9w9zltOkQ610qKc5d6gLc9XraVErLepJi1aYr+5Ah1rpUE8z65C5amDSXONbucb3NLOfR/dm3uNyOtRKh3rSoRXmPDrQoVY61NPMOmTOY090qJUO9TSzuVf2RIda6VBPc+6Q+/N2o0WttKinObeoC3PVl9OhVjrUkw6tMFfdgQ610qGeZtahk5urtjDaESilfEGSdyX5yqXdH0/ytFrrB3sc6iTDXWu9u5RyXZK3JXn80pe+8eyxziey+MbhHUv7/mTNcz/U45RKj+cOrpTy3Ul+uLH7R2ut/6DHYXb5PI5lHP5gLv5H9htKKQ+tta4bIydNh9rpUD86dFEp5UuSPL2x+5XbHu+UaVE7Lepnbi0aaHycPB1qp0P9TKBDHCEdaqdD/ehQu1rr7Un+binlniTfd7b785L8h1LK1235G4aOng6106F+dKgzc9UNWtROi/rRoovMV3ejQ+10qJ+5dchcNTBlrvHtXOP7mcA1/ljGoXmPJTrUTof60aGLzHl0o0PtdKifuXXInMd+6FA7HepnAh3iCOlQOx3qR4fauT9vPS1qp0X9aFFn5qqX6FA7HepHhy4yV92NDrXToX7m1qFTnKu+auwToF0p5fOTvDPJX1za/aksVrL8Hz0P938b21/Y81wenNVwT2Ig11o/kuTJSV6R5J4OL/mlJE9Mcltj/617PrVJKaX8jSQ/losx/ckk3zvgaTTH4YNKKZ/b8xgPb2wfYhz+Rhb/1q64X5KvOcD7TJ4OdaND3ejQpa7Pxe/JfrvW+t93ON5J0qJutKibubbI+NiNDnVjnHUzkQ5xZHSoGx3qRod6+SdJ/nBp+wlJnjbSuYxKh7rRoW50qBdz1Uu0qBst6kaLLnV9zFe30qFudKibuXbI+ACmyDW+Gw3vZiLX+KndG7OOeY8zOtSNDnWjQ5e6PuY8WulQNzrUzVw7ZHzsRoe6Mc66mUiHODI61I0OdaNDvbg/b4kWdaNF3WhRL+aqz+hQNzrUjQ5d6vqYq26lQ93oUDdz7dCpjQ8Lo01YKeUhSd6e5OuWdn86yTNqre/d4pDN1S+/rOfrm8//ZK31U5c+cwS11ttqrX8ryVdlMSHyS0k+nOSOJH+a5OYkP5XFKqp/tdZ6S5LHNg7zW4Od8MBKKS/IItLL/+5fk+S7hlxBv9b6iVz8D2KSfGnPwzTHYp+VXTuptd6X5P80dvf6ZucU6FA/OtROh1aVUkqS72zstrp3gxb1o0Xt5t4i42M7OtSPcdY3m3gKAAARjElEQVRuKh3iuOhQPzrUTof6qbXekeTNjd3PGONcxqRD/ehQOx3qx1z1OS3qR4vaadEq89Wb6VA/OtRu7h0yPoApcY3vR8PbTeUaP6V7Y9qY91jQoX50qJ0OrTLnsZkO9aND7ebeIeNjOzrUj3HWbiod4rjoUD861E6H+nF/3jkt6keL2mlRP+aqF3SoHx1qp0OrzFVvpkP96FC7uXfolMbH1WOfAJc7+200b0vyDUu7P5PkmbXW39jysDc3tr+85+v/QmP7d7c8j4OqtX4oycvPHps8qbH962uOWS7bfyxKKc9N8uosVqm+4r8kedHZf9h62cPncXMWK0xe8eVZHZ9tmmOxz2v7uKOx3VzR9aTp0PZ0aJUOrfXUJI9e2r4ri2+qOaNF29OiVVp07hDj41Tp0PZ0aNUEO8QR0KHt6dAqHdraBxrbff/NHDUd2p4OrdKhrc16rjrRol1o0SotWst8dQsd2p4OrdKhc+aqgbG5xm/PNX7VBK/xU7k3ZpNZz3vo0PZ0aJUOrWXOo4UObU+HVunQOXMe3enQ9nRo1QQ7xBHQoe3p0Cod2tqs789LtGgXWrRKi7ZmrlqHtqJDq3RoLXPVLXRoezq0SofOncJc9VWbn8LQSimfk+StSb5xafftSb6l1vqrOxz6/Y3tx5dSHtTj9U/ZcLyjcraq6lMbu395jHM5pFLKs5O8LhcXQnxzkhfWWj87zlmtjJ1mINc6+6bm8RuOty8Pa2x//EDvMzk6NAwd0qEkL25sv7HW+sktj3VytGgYWqRFG95nFuNjHR0axlzG2UQ7xMTp0DB0SIc6uKex/YBRzmIEOjQMHdKhDmY7V51o0VC0SItivnotHRqGDulQm7mMD2BYrvHDmEvDJ3qNn/zPo8/Mdt5Dh4ahQzoUcx5r6dAwdEiHNrzPLMbHOjo0jLmMs4l2iInToWHokA51MNv78xItGooWaVEH5qp16KB0SIdirnotHRqGDulQmymPDwujTUwp5YFJ3pLk2qXddyZ5dq31Pbscu9b6R0l+Z2nX1bl4cdjk2sb2z+9yPhPw1CTXLG3/cq31gyOdy0GUUv5aFitX/pml3T+X5Pm11nvHOaskydsb29f2eO035eJF6KZa60d3PqOGUsrDsrqK6x/u+32mSIcGpUPjGb1DpZSHJrmusfuVfY9zqrRoUFo0ntFb1MHJj491dGhQJz/OJtwhJkyHBqVDbPKoxvYhvu+aHB0alA6x1pznqhMtGpgWzZj56vV0aFA6RJuTHx/AsFzjB3XyDZ/wNX7yP4+e87yHDg1Kh8YzeofMeaynQ4PSofGM3qEOTn58rKNDgzr5cTbhDjFhOjQoHWKTWd6fl2jRwLSItcxV69BAdGjGzFWvp0OD0iHaTHZ8WBhtQkop90/yxiRPW9p9V5Jvq7X+4p7e5k2N7e/seG5fneQvL+26Lck793ROY/lHje1XjHIWB1JKeXqSn05y/6Xd70zy3Frr3eOc1f/3jiR3LG0/6WyMdXF9Y7s5pvflBbnYyI8muflA7zUZOjQ4HRrPFDr015M8cGn7liTv3vJYJ0WLBqdF45lCizY56fGxjg4N7qTH2cQ7xETp0OB0iE2+ubE9icn9Q9KhwekQbWY5V51o0Qi0aN7MV19ChwanQ7Q56fEBDMs1fnAn3fCJX+OP4efRs5z30KHB6dB4ptAhcx6X0KHB6dB4ptChTU56fKyjQ4M76XE28Q4xUTo0OB1ik9ndn5do0Qi0iDbmqs/p0OHo0LyZq76EDg1Oh2gz2fFhYbSJKKVcneT1SZ65tPueJM+rtb5jj2/1miSfXdq+rpTyFR1e1xzEr6+13rm/0xpWKeVFSZ6+tOu9Waz8eBJKKX8lyc/k4jdI787im4C7xjmrc7XW25O8obG7OcZWlFK+Mslzlnbdm+S1ezy1K+/ziCTf39j9s7XWuu/3mhIdGpYOjWsiHXpxY/snTr0zXWjRsLRoXBNpUdv7nPT4WEeHhnXq42zqHWKadGhYOsQmpZRvSfLExu6fGeNchqJDw9Ih2sx1rjrRoqFpETFfvUKHhqVDtDn18QEMyzV+WKfe8Klf44/g59GznPfQoWHp0Lgm0iFzHg06NCwdGtdEOtT2Pic9PtbRoWGd+jibeoeYJh0alg6xyRzvz0u0aGhaRBtz1To0BB0i5qpX6NCwdIg2Ux8fFkabgFLK/bII6rcu7b43yfNrrW/d53vVWj+Y5KeWdt0/yatKKQ9c85KUUr41F3/jzd1J/tk+z2tXZxe+rs+9LsmPL+26N8mLa6337v3ERlBKeVKStyb5nKXd70nyrFrrHZe/ahQ3ZPHNyRXXl1Keve7JZ2P0J3Nxhc5X1lr/d8trvqqU8qw+J1VKeWQWn98jlnbfneQH+xzn2OjQ7nTonA5tVkr5S0m+dmnXfUle1fc4p0aLdqdF57To0tcaHxvo0O6Ms3NH1CEmRId2p0PndOhcKeWJpZTnbH7myuu+PsmrG7vfU2t9337ObHp0aHc6dE6Hzpmr7keLdqdF57RoM/PVq3Rodzp0TodWGR/AWFzjd6fh547oGn9D3KM3GTq0Ox06p0ObmfNYpUO706FzOnTpa42PDXRod8bZuSPqEBOiQ7vToXM6dM79ef1o0e606JwWnTNX3Z0O7U6HzunQZuaqV+nQ7nTonA6tOrXx0fkPw0H9RJLvaOx7WZKbSinX9DzWrR1WmvynWfwGmz97tv3kJO8qpXxXrfV/XnlSKeUBSf5mkh9qvP6Haq2/3+VkSimPyuXj7JGN7atb/qyfqbV+fMNbva+U8nNJfjrJr9da77vkXB6X5B8neWHjSy+rtd604fh7cejPo5TyhCQ/n+TBS7s/kOR7kzy8lNLndO+std7a5wV91Fp/r5Tyb5L8w6Xdbyil/P0k/67WeveVnaWUxyb591mM1Ss+kc3fQPz5JG8ppbwvyX9M8qazb15WlFIekuRFWazs/YjGl/9FrfX3OvyxjpkO6ZAOLey7Q+u8pLH9jlrrH2x5rFOiRVqkRQuHatFRjI+R6ZAOza5DyXDjo5Ty4CQPW/Pl5oTyw1re68NTmlzbMx3SIR26aF/j41FJ3lhKeX8WP0B7c5IP1Hr5b1kqpXxNku9J8tLGed15tu+U6ZAO6dBF+xof5qr70SIt0qKL9j0+msxXr9IhHdKhi2Y5PoCT5Bo/k4a7xp9zj97k6JAO6dCCe/TGo0M6pEML7s8bjw7p0Ow6lLg/b2J0SId06CL3541Di7RIiy5yj97wdEiHdOgi9+cNT4d0SIcumuX46KzW6jHyI0nd4+Paju95bZK7Gq+9L8lvJvnPSd6e5I8vOf7PJrlfjz/bLXv4M72qw/t8fOn5f5rkV7P4R/qaJO9sOY9/PvDf9UE/jyx+o9G+xtKNA3we90vytkve+6NZXIBen+S3zsbm8tfvSvJNHcd589h/kuS/ZTHB9uokbzp7j3vWfA6vGLsRA41NHdIhHTpAh9a85wOyuFFi+XjPHbMBU3nscexokRbdsMexdOMAn8cgLTqW8THmY4/jRocmPs4O/Xnk+Do01Pi4fk+fyTVj9+KAfxc6pEM6dJjP49suef6nz8bHW7K4AeL1Sd6V5NY1x789ydPG7sQAfxc6pEM6dJjP49pLnm+uev3npUVapEUHHB+N9zRfffnnokM6pEPGh4eHxwk+9thk1/iJN/zQn0eO7xrvHr2JPPY4bnRIh27Y41i6cYDPwz16E3nscdzokA7dsMexdOMAn4f78yby2OO40aGJj7NDfx45vg4NNT6u39Nncs3YvTjg34UO6ZAOHebzcH9ev78PLdIiLTrM53HtJc83V335Z6VDOqRDBxwfjfc0V33556JDOqRDxkfnx2UryTEDtdYbSynPSfKqJF94trskeeLZ4zKvS/LdtdbPHv4Md/LgJE/a8JxPJXlprfU/DXA+rFFr/Wwp5Tuy+M1Kz1/60sOTPGPNy/44yYtqrf91y7f9/CRP6fC825J8X631x7d8HzbQIR2agpE69JwkX7C0/bEsJvoZgRZp0RSM1CLjYyJ0yDiDsemQDs3YQ7J5fFzxa0m+p9b6Owc8n9nSIR2aMXPVE6JFWjRj5qsnQod0aMaMD+CkucZr+BS4R2/edEiHpsA9evOmQzo0Be7PmzcdMs5gbDqkQzPm/rwJ0SItmjFz1ROhQzo0Y+aqJ0KHdGjGjn58XDX2CTCeWuvbkjwuyY9lMVDX+bUkz6u1vrDWetsgJ9ffjyS5KYtVOdv8QZIfSPKYqf6jnJta62dqrS9I8u1ZjLV1PpnkR5M8rtb69o6HvznJy5P8SpI7Or7mfyV5WRa/4cR/Yg9Mh3RoCg7cocu8pLH96lrrPTscjx1pkRZNwUAtMj4mSoeMMxibDunQDLw7i9+K+7okH+74mtuTvCHJs5I82U1Xh6VDOjQD5qqPgBZp0UyZr54QHdKhGTE+gFlxjdfwKXCP3rzpkA5NgXv05k2HdGgK3J83bzpknMHYdEiHZsD9eUdAi7RoBsxVT5wO6dBMmaueEB3SoRk5qfFRaq1jnwMTUEq5fxarHn9ZkkdmsbrxR5LcVGv90Jjn1kcp5fOSPCHJo7NYqfOBWfwH5iNJfrvW+rsjnh4dlFIeneRrk3xRks9NcmuS30/yK7XWu3c47lVJviLJY5J8cZKH5nx8fCrJHyX5zVrrx3b6A7A1HWIqDtUhjoMWMRWHbJHxMW06BIxNh5iDUsojkjw2i3H+55I8KMk9ST6d5BNJ3p/kA0fwm31Okg5x6sxVHwctAsamQ8yB8QHMkWs8U+EevfnSIabCPXrzpUNMhfvz5kuHgLHpEHPg/rzp0yJOnbnq6dMhYGw6xBycyviwMBoAAAAAAAAAAAAAAAAAAAAAAAAwuqvGPgEAAAAAAAAAAAAAAAAAAAAAAAAAC6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADC6/wfh0VgquWOTFwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 5), dpi=300)\n", + " configs = get_known_configs()\n", + " to_display = configs[\"Relative humidity\"], configs[\"RAM available\"]\n", + " for i, config in enumerate(to_display, start=1):\n", + " plot = figure.add_subplot(1, 2, i)\n", + " coros.append(plot_sensor(config, plot, {}))\n", + " await asyncio.gather(*coros)\n", + "\n", + "display(figure)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAE0YAAAUsCAYAAAC9bUPVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdd5h1Z1kv/u8dAqEEEnoRSIBIVUA6AiYRPDSlKr0EIgiCla6IAVEPR1DPQQRF6aKIQEDqT8HQu1IUBUKJEECQloSSEHL//lj7lXnX7Cl7z57Z8877+VzXXGQ9az1l773WzsXMN/dT3R0AAAAAAAAAAAAAAAAAAAAAAACAZTpk2QsAAAAAAAAAAAAAAAAAAAAAAAAAUBgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAYKSqjq6qHv2csOx17aSqOmX0+k9Z9pr2Iu/zga2qThp/VxwI87vvAAAAAAAAAAAObgdq7gUAAAAAODgojAYAAAAAAAAAAAAAAAAAAAAAAAAs3aHLXgAAAACwO1XV0Uk+M0OXs5OckeSbST6V5F+SvCfJG7r7nEWvDwAAAAAAAAAAAFaqqsqQeztqdOr7SY7q7tN3flUAAAAAAMzikGUvAAAAANgzDkty6STHJLltkscnOTnJ6VX1tKo6fJmL2+uq6gVV1St+PrvsNQF7S1V9dvQ984JlrwkAAAAAAAAAYOQ2WV0ULUnOl+SEnV0KLEZVHTfK7XRVHbfE9cgrwgJ5pgAAAGA1hdEAAACA7XapJI9N8q9VdfNlLwYAAAAAAAAAAIA968R1zj24qmrHVgIAAAAAwFwOXfYCAAAAgAPKt5Kcusa5Cye5RJJLrnH+qCRvrKpju/tD27E4AAAAAAAAAAAADk5VdYkkd1nnkqsmOS7JP+3IggAAAAAAmIvCaAAAAMAsPtDdx613QVVdMcnPJHlUkquNTl8syd9V1bW6+3vbs0QWYaPPGUi6+6QkJy15GTPzfAMAAAAAAAAAe9T9khw2auskteL4xCiMtnQHau4GAAAAANgZhyx7AQAAAMDe0t2f7+5nJ7lekldOueRqSX5hZ1cFAAAAAAAAAADAHvfg0fEnszrDdreqOmKH1gMAAAAAwBwURgMAAAC2RXd/K8l9k/z7lNP33+HlAAAAAAAAAAAAsEdV1Y0ybOa50ouSvHDUdqEk99mRRQEAAAAAMBeF0QAAAIBt093fTfL7U07dqKousdPrAQAAAAAAAAAAYE86cXTcSV6c5A1JvrzBtQAAAAAA7CKHLnsBAAAAwJ73xilthyS5RpJ3zztoVR2S5MeSHJ3k0kkukeSMJF9JcmqSf+nu8+Ydf5Gq6oeSXDPDWo/IsOvoGUm+luQ/k7x/UkSObVBVF0pykySXT3KZJIcn+WqGe+XD3f2pJS5vU6rq0kluluSqGdb/zQyBzfd292nLXNt2q6ojMrz2H87w/Hw3yelJ3j3La6+qKyS5cYbn8PAMz9/nk7y1u89Y8LLnUlWHJblFkisnuVyS7yf5ryQfTfKh7u4lLg8AAAAAAAAAYFea5IPuPWp+275sSVW9NMmvrjh3w6q6Xnd/eJvXdf4MuaVrJ7nkpPm/kvzzLHNX1cUy5F6ukeTIJN9K8qUk7+zuzy900avnvmSSmya5WpKLZcgtfSG7NHdVVVdMcr0MmcJLZyiQ95UkX0zynp3ICVXVDye5YZIfSnJYhqzaF5K8o7u/vt3z70VV9SNJjsmQ/7tkkm9n+Fw/myF/+b1tnt+zPP+8u+WZvF6SK2bIDp6T5Ivd/eJN9pcB3gZVdYEkN8rwPFwqw/flGRlyse+dYZxjMjyb++6xs5P8d4Z86Hu6+zsLXjoAAAA7RGE0AAAAYFt191eq6owMQYqVLjXPeFV1qySPSPJTGYqhreVrVfX6JL/f3R+bZ655VdWlktw1yW2SHJvksht0Oaeq3pPkT5K8YrMF3arqs0mOWuP0UVW1mSJKx3f3KVPGPiXD2vd5a3cft8Y6PprkR1Y0fSXJD20lbFRV907y0lHzI7r7TzfZ/5Ak901yvyQ/keSC61z7mSR/m+Tp3f3f8614e1TVcUl+I8mtMxQUnHbNx5L8XpKXzlI4q6pOSPL8UfNVuvuzc6xzPO+Tu/ukDfqclOS3V7Z1d604f+MkT0xyh6zxe8yqemuSx3f3e9aZ52eSPC7JjyepKZecU1WvSvLY7v7P9dY862uYYZyjk5yU4Xtj/F25z5eq6jlJntHdZ806x2i+U7KJ53uyrs+sM9QDq+qBG8237z2ZBPtOzxAu2+eU7j5+w0Wvo6r+b5JfHjVff7vDywAAAAAAAADArvGzGYrVrPTC0T//6uj8g5P8yjyTTTI9/zRq/p8c1mQDv99Mcv8kF11jjE8keep6hXmq6roZ8jN3ylAwZto1707ymO5+52yvYn1VdWx+kFs63xrX/HOSZyf5y1k3/FtU7mYy1mWS/FqSn0lynXUuPbeq3pvkWUleNuvGq+tlpCZ5tQcm+fXsn6Vb6fuT3M4T18s7rZjvpIzeo5F/qtrwLXthd5+w0UWbsZ15xTXmu26G5/a2Sa6wzqVnVdU/JnnaZt7X0RzH5QB/ljeRw9vWZ3mN8XbDM3mRJL+U5CEZNqSdZupndqBngDe6r2cxZY0bfqdslE2tquskeWySuye5yJQhXphk3cJoVXWVDN+3d8jan2+SfLeq3p7kj7r7DeuNCQAAwO4z9T+mBAAAAFiwaUV81ir+M1VVXX1S6OxtSe6Z9YuiZXL+fkk+WlV/UVVrFsZapMnuol9M8udJ7pGNAxFJcoEMxbv+Nsm/Tv7ofyAZBxguneSOWxzzhNHx2Un+ejMdq+p2ST6a5EVJ/lfWKYo2cZUMhbM+XVVzhR0XraoOq6rnZgin/FTW/z3etZO8JMkbJ2GeA1oNfifJezIEwdbb3OHYJO+qqkdPGeeIqnpFktckuUWmF0VLhufvnkk+VlW32dLi5zC55/4tQzByve/Fy2UonvZvVXXDHVjawk1293zJqPm4qrrWvGNOdnx+wKj53YqiAQAAAAAAAMBB5cTR8beT/N2+g+7+UJKPjK65X1VNLVC0FVV1tyQfS/KLWaOQ0sTVk7yoqv52vI5JfuZJSf45yc9ljUJKEzdP8vaq+o2trfx/5j5fVf1JklMyZK+mFlKauEGS5yZ526RIzY6qqgtU1VOSfDrJ47N+AaZkyCHdIsOGnR+eFKtaxDqumOQdSZ6XtYuiJcN7eesk766q313E3HtRVV2+qv4qyYeSPCjrF0VLhk0a75LhfT25qjbKlm52HZ7l2efcLc/kTTN8dr+f9YtmTet7MGaAd0xVPTHDs/2ATC+KtlH/i03u648neWQ2/nwvmCGD+/qqentVXXnWOQEAAFgehdEAAACAnXDklLYzNtu5qm6dYfev288x9yEZgm9vrarNBBS26sezfiGnjVwryXuWUaBpC16S5HujtgfNO9gkKDZ+/Sd399c30ffRSV6XoVjYrC6a5I8nhfS28hluyaSI3xuS/PyMXf9XhvDGegGmA8FzMuyOudnfXVaSP6iqh/5PQ9WRSd6c5G4zzHuRJK+pqhvP0GdLJgHHP05y4Rm6XTnD99kBWRwtw66YYw/bwnj3zup/xzx7C+MBAAAAAAAAAAeQqjomQ0GalU7u7jNHbS8cHV8iQzGlRa7lfhkKsh0xQ7efy1BQa98YlaFA0ZOzfiGj/aZO8rtV9cgZ5l09yDD3S5I8Ysaut8yQZ5mpANFWTIpf/X9JfitzFNfJUMDsnVX1M1tcx1UzbAB58xm7/kZVPXUrc+9FVXW9JO9Lcp+svRHmeu6cIX959S2uw7M8+5y75Zn8iQzF4OYtgHUwZoB3xKSg2e9kzve3qo5K8s4M9/X55xjilkneV1U3m2d+AAAAdt7S/gNPAAAA4OBQVVfL9KI/n95k/59J8oqs/iP2OUnekqFg2ueSfDPDzn9HJ/nJJLcaXX+TJCdX1U9097iI13b5foad/v4tyX8k+WqGgnCV5GJJfjjJzTLseLeyCNThSf6mqn6suz+3zvgfS/KNyT9fOcnFV5z73uT8Rs7axDXr6u4vV9XrM4SK9rlDVV2mu788x5APyOqiWM+bduFKVfW/kzxuyqmvJfmHJB9M8uUMO8IemWE3wtslucbo+hMzvK+PnmnVi/O8JMevOP54hkJp/5HhtRyR5MeS3D2rdyP8iSS/luTp27/MxauqX0ny0BVNpyX5+yT/muG1H5nkphlCZBcbdf/jqnpThu+Dv0mysnDYB5O8MclnkpyZ4X37ySR3yv732oWSPLeqbtTd5y7oZU1VVb+eZNrunmdP1vq2JF/IEBK7Sobna9+OshdJcnJW7Gy8Tc5J8uEVx9fO/t/FX0/yn7MM2N3/VlWnJDluRfMDquoJ3f3tOdb48NHxV5O8fI5xAAAAAAAAAIAD04OzuoDSuAhakvxVkv+T/QsUnZjkZQtax42S/N6KtXwjyeszFM36coZcyrWS3CNDxm2l+1TVyd398gx5khNXnDstyWsz5Ge+miE/c5PJOOP8zNOq6rXd/dk5X8OjktxrxfGZSV6d5P1J/msy9zUz5JauNOp7pSRvqarrd/c3so0mmya+c7KWsX9N8tYMmb1967hMhsJld8iweeY+hyd5eVXdors/OMdSLpoh1/VDk+NO8q4k/5ghU3NWkktnyAfeNckFR/2fUFV/393vXWP8L+UH2Z3Dk1xtdP5T2Tj/N1O2ZwPbmlesqhsl+acMr3Wl85K8PcN7+5nJGi6U5IpJjk1y6+z/XP9whg1Gb9jd39zEmsY8yzM+y7vombxckldm/2ftfRkKtp2W4X24fIYc3M9tYryDIgO8Qx6S/Qv1nZUh1/vODPfkIRme6eMzvO/7mRRFe29WZ2aT4TN+Z4as7deTXCDD5/zjGTbkPmzFtZdN8rqqukF3n7a1lwQAAMB2q+5e9hoAAACAXaiqjs4QIlnprd193IzjPDbJ00bNX09yqe4+b4O+V8kQKjhyRfO5Sf4oyR9091fW6Xv9JH+R/YsjJckfdvejNpj36Kx+7Q/q7hes12/S9xNJPppht723bCZYM/mD/e8nuffo1Ou6+6c36j8Z4wVJHrii6bTuPnozfdcY75QMoaF91v3sq+pOGYIzKz2qu/9wjrk/kSEwss/nkxy13v1SVXfNEGhZ6etJHp/kRd393TX6VYadX5+TIWyz0p27+zUzLn8mU97n7+YHoZwvJfml7p5a/KqqDk/yrAyF5Fb6RpIrdPd3Npj7hCTPHzVfZZ4wVVWNf8n45O4+aYM+JyX57VHz2RlCKN/OEM56bndPC7lcNkPBxFuMTv15hnDLMybHn07y0O5+8xpruFGS12X1Z3+f7v7r9da/1mvo7g13Kq2qayT5UFaHHd8wWe/n1+h31yTPzg/CPd/JELSbdf5TMsPzvaLfZ5MctaLphd19wkb9poxz96wu6nZid29YAHE0zg2TfGDU/PTufsysawIAAAAAAAAADjxVdb4MhZ+usKL5C0muNC1rVFWvy1CIZ5/zklx11uIoVXVchgJOK+3LvSTJM5M8aVpRoao6LEO25RGjUx/PkAN6d4YCMRvlZy6XIT/z46NTf97dv7CJ13BSVmd3VmaXnp/k19d4DYdk2LzxqVmdf3lBdz9onvk3k3uZ9H1VhszXSu+arHetImP7ijf9Voa1r5zrs0mu291nbjDvOCO18v16b5Jf7O5/XqPv0Rk+rxuMTr2pu2+33ryT/sdl9T13fHefslHf7bANecWLZ8iKjsd4fpKTunvNAm+TzXufleS2o1Ov7O67bzDvcfEsb+lZnoyzW57J7+cHRfI+kuRh3f3uNfpecFqudC9kgBf5fTFPZnCNbOrKz+Y5SZ7Y3V9do/9+n01VXSDJO5LceHTpa5M8trv/fZ21XC7JHyS53+jU+5PcfNozCQAAwO5xyMaXAAAAAMynqi6f5NFTTv31RkXRJv4q+xdF+3aS23b3Y9cripYk3f2hDEGRfxid+qWqGu9wt0g37u67d/erNrvbYHef1t33SXLS6NQdqmraDnq70esz7Nq20gmzDlJVt8j+RdGSIUixXlG0y2R1iOKTGYIxf75WUbQk6cGrMuzyOC5G9fuTwmk7aV+46NNJbrZWUbQk6e6zMrzHbxqdOjLDTo4Hon1F0W7T3c9ZK3TS3f+V5Kcz7MC50v2SPGXyz/+WIbgytSjaZJwPZPp7talA1xY8O6uDZH+b5KfXKoqWJJN79dj84HVfaK1rd7mTs/p5e/gc44z7dJI/m2tFAAAAAAAAAMCB6PbZvyhakrxknazRC0fHh2SOjNMa9hVS+pXu/uVpRYiSpLvP7u5HZnXm5xpJ/n6yprOS/OQG+ZkvZcjPjHN096qqeTMl+/Is/7u7H7zOazivu5+R5OcybHS60glV9RNzzr+hqnpoVhdg+tMkt1yvAFOSdPc3Jpuqnjg6dXSSX5xjOfver9cmOW6tomiTuT+b5KeyOmP3U1V15Tnm3muelf2Lon0/yf0m9+GaRdGSpLs/leG7YJwhvFtV3XSOtXiWB5t6lnfZM7mv8NY7k9xqraJok7nXypUerBng7bbvs3lUdz98raJoydTP5qSsLor2+O7+mfWKok3G+lJ33z/Jk0enbpzkZzdeNgAAAMukMBoAAACwLSa78L0xyaVHp76dYWe0jfr/VJKbj5of3N1v2ewauvucDIGN/17RfP4kv77ZMWa12SDEGp6SYReyfSrJg7e2op3R3edm2CFvpR+tqhvOONS0glTjwNLYryQ5YsXxt5Pcbr0CU2Pd/bkk9xo1XzvJnTY7xgJ9L8k9NrMTbXd3pt/P490vDyS/ul4gaZ9JWOvpo+YLJ7lIhh0v79Hd48Jp08Z5R4bvqpWOr6px4bKFqKofTXL8qPnUJA/YTMHI7t63o+gBaxLyGxcwu1FV3WizY1TVEVm9w+Y/dPepW10fAAAAAAAAAHDAGBfTSZIXrXP9q5OMCwQ9qKoW9d/YvbS7/98mr/2tKW2Xmfzvr2xUUChJuvvrSZ4xar5Yhg1F53VKdz9hMxd292uTPHXKqV/ewvxrqqpDk/zGqPmN3f2ISY5qU7r7+Un+YtT8a1V12LTrN/DZDAW81ty8c8W8X8vq4jyHZCiYdtCqqmskueeo+Te7+682O8bk8/+FJOMiSY+fc1me5cG6z/IufSa/meSe3X3GHH0P2gzwDnlFd//hLB2q6uJJfmnU/Jzuftos43T3SVm90fa83w8AAADsEIXRAAAAgIWoqgtW1Q9V1R2r6s+TfCTJdadc+pBNFqx63Oj47d39slnXNQkp/N9R811nHWcnTIIgLx4133IZa5nT86a0nbDZzlV14ST3GDW/bbKj41p9Ds/qnQGf0d2f3uy8+3T3O5O8edS8jHvlpd39wc1e3N0fSzLebXTWgnS7xSeyOuC0nles0f7iyfuyWX83Oj40yY/O0H8WD5vS9qjuPnuzA3T3mzLsKnog+/Mk54zaHj5D/wdmKIS30nO2tCIAAAAAAAAA4IBRVZdJcsdR8z9397+t1WeSzxhn0I5KcusFLOn7WV0gaE3d/f4k/znl1Mez8UaSK41zL0lygxn6j81a1OxpScZ5wDtX1eW3sIa13CvD57VPZ3XBnM16yqT/PpfN6o1cN+PJMxZS+psM98pKB2rWa1Eek/3/O9fPZPWGmRvq7u8l+b1R8+3n2CDTs/wDGz3Lu/GZ/MPuPn3ONWzJHsgAb6fzkjx6jn6PSHL4iuOzsjpfvllPGR1fv6qOnnMsAAAAdoDCaAAAAMAsjq2qnvaT5DsZQhGvTfKQrC5Y8+0k9+3ul240SVVdIslPjppnKZY09rrR8VFVddTUK5fvk6PjG1TV+ZeykhlNClG9b9R8nxl27bt7kouO2jYKBt0myZGjtr/c5HzTjO+VY7cw1ryeO0ef8ft+9UUsZAmeP+NOkZ/OsMPj2Kz3wL9MabvGjGNs1u1Hx1/M6vtuM/5sAWtZmu7+cpKXj5rvVVXj53ktvzA6Pj0HfrE4AAAAAAAAAGDzHphknKt64Sb6vWhK24lbX07+sbtPm7HPh6a0zZqf+VSSM0bN8+Ze3tPdH52lQ3d/N6sLAR2aIde1aD87Oj6lu0+dZ6Du/lyS8WudNSv2rSQb5iFH8349qzOC25VT2vWqqpLcbdT8gu4eF4/brNePjg9LctMZx/As/8BGz/JueyY70zf43UkHbAZ4m72luz87R7/xPfby7h4/J5v1riTfGLUtIyMMAADAJimMBgAAAGy3MzMUNbvmZoqiTdwqSY3a3rWFNXxmStuPbWG8Tauqw6vqDlX1+Kp6UVW9rqreXlX/XFUfGv8k+ZPREIdl2PnuQDEuZHaJJHfaZN8HjY7PyurCSWPjUMLpc4SSVhrfK0fPUKhpEb6T1UXONuNTo+PzVdXhU6/c3d42R5/xbpvfTvLBGcf47JS2hX/uk52KrzJqfvWcQb43ZQhXHsjG33cXTvKAjTpV1bFJrj1qfm53n7uohQEAAAAAAAAAu96DR8fnJvnrjTp197uyunDNXSabeW7FPLmXaTmnty9gnHlzLyfP2e+VU9puNudYU00KaN1q1LyVTGGyOis2a6bwPd19zhzzjrNeR8wxxl5x3SQXH7XN/bl299eyeqPNWT9Xz/L+pj7Lu/SZPLW7P7/FNeznIMwAb5d/mrVDVV08yY+Omrfy/XBeVj9jO5IlBwAAYD6HLnsBAAAAwJ73gSTPnOzmtlm3mNL2iqra9O55m3CpBY61SlXdMMljMhQFu9AWhzsyyULDGtvor5P8YfZ/zSdkgwJnVXVUkuNGzX/b3RsVfhrfKxefhEvmNa2Y2KWyepe47XJad39vjn7jMFcyBObO2uJ6dto8u0WeOTo+bY4CWeMxku0JHN5wStusRdySJN19blV9JMnNt7ak5enu91TVB7P/+/KwJP9vg64PHx2fm6EAJwAAAAAAAABwEKiqWyS55qj5Dd39lU0O8aIkv7Pi+LAk903yzC0saxG5l0WNM2/uZa4cS5KPJvlekvOvaJuWk9mKa2XYpHOlB1bVT29hzCuPjmfNFI4L7G3WOOt1MBdGm5YVfWZVnb2FMS88Op71c/Usb+5Z3o3P5D9vYe79HMQZ4O0yz2dz8ySHjNqeUFWP3MI6jhkdb2uWHAAAgK1RGA0AAACYxbcyPaxx/gy79l1+yrnjk7y/qk7o7g135Jy44pS2626y72ZdcsHjJUmq6vxJ/ihD4Z7xH+TndcAEn7r7m1X1qiT3WdF826q6fHd/cZ2uJySpUdvzNzHl+F65cJLrbaLfLC6Z+UJK8/janP2mFVM7/5S23e7rc/QZv/aZx+ju7w0bWO5nO96/y0xp+/gWxvuPHMCF0Sb+JPs/69eqquO6+5RpF1fVZZLcddT8mu4+fZvWBwAAAAAAAADsPidOaXvhDP1fnOQp2T+vdGK2VhhtEbmXRY0zb+5lrhxLd59dVZ9N8sMrmqflZLZiWqbwimu0z2vWTOGisl4HYs5rUaZ9fuOih1s16+fqWd7cs7wbn8kvb3XCgz0DvI3m+Wym3UtX3epCRrYlSw4AAMBiLOr/mAMAAAAHhw909/Wn/Fynu6+Q4Q/EJ2Qo1rPSBZK8uKp+ZpPz7MQfmre6g9sqk0DEy5M8Iov9vcuBFnwaFzQ7X5L7r3VxDRWpHjBq/mR3v2MTc413HNwOC79X1jEtIHXQ6O5FvP7d/B4eOaVtvAPsLLbSd7f4myRfHbU9bJ3rT8zw75SVnr3QFQEAAAAAAAAAu1ZVHZ7kHqPmryd57WbH6O7Tkpwyar5eVd1wC0tbSGZlQfmZeS0yxzItJ7MVuzFTuJtzSgeKPfu5HgTP8m787M7YymQywNtqns9mN95jAAAA7CCF0QAAAICF6e6vdfcLk1w/Q7Gblc6X5CVVdfQmhrr4gpe2Ux6X5M5T2k9P8qdJ7pfk5kmulCEscsHurpU/SY7fsdVunzcnOW3U9qB1rj82q3dxGxdXW6WqLpzksNmWBkt10Slt39rCeFvpuyt093eT/OWo+W5VddnxtVV1SJKHjpo/meE7BwAAAAAAAAA4ONwryUVGbS/r7rNnHOeFU9pOnG9Je8YicyzTcjJbcaBmClmfz3V77MSzvBs/u3O32F8GePvM89nsxnsMAACAHXToshcAAAAA7D3dfXZV3T/JZbP/H/kvlqEAzq03GOI7o+NvdPeu/gN3VV0myRNGzecmeUySP+nuzf5R/4Dffay7u6pemORJK5qvWVU36+73TOkyLpr2/SQv2sRU301yXvYv/ioagZ8AACAASURBVH9yd991pgXDzjlzSts4qDuLrfTdTf40yaPzg2f5/BmCxr83uu72SY4etf1Zd/e2rg4AAAAAAAAA2E2mFS97WFU9bAFj37uqHtXd4/zaweIiSc7YQt+VpuVktmLaZ3KX7n71gudhZ037XC/e3d/Y8ZXsLTvxLO+pZ1IGeFeado9dv7s/vOMrAQAAYCkO2fgSAAAAgNlNQgAPyOpwxU9W1T036P7fo+Mjq+rIhS1ue9wpyYVHbY/r7j+eIRCRJJdY4JqW6QVJxsWKThhfVFWHJ7n7qPn/6+7TN5qgu89LMg5AXWXzS2QRqur8y17DAWRaYO+ILYy3lb67RnefluS1o+aHVtX499cPHx1/N8N3DQAAAAAAAABwEKiqaye52TZOcWSSu23j+LvdInMsiy5sNc4UJrJie8G0z/XonV7EHrQTz/JeeyZlgKdbZj50r91jAAAAzEhhNAAAAGDbdPfnkzxpyqnf26CY0n9NabvuYla1bX5qdPz1JH8yxzhXXcBalq67P5PklFHzvarqgqO2e2T1DoPPn2Gq8b1y9ao6bIb+B7PvTWmbJ8Ryya0u5CDy5Slt19jCeNfcQt/dZvx9eVSS2+87qKr9jif+tru/ut0LAwAAAAAAAAB2jRP3yBy71dXn6VRVF8jqYlbTcjJbcSBmCtmYz3V77MSzvNc+u72UAV5UNjRZbqG3vXaPAQAAMCOF0QAAAIDt9uwknx61XTXrB8jeN6VtXBBnt7nS6Pi93X3OHOPcfBGL2SXGBc6OSHLXUdsJo+OvJXnNDHOM75ULJTluhv4HszOmtF1sjnGO2epCDiIfnNJ2w3kGqqpDs7dCPv+Y5OOjtoev+OeHZvXvs5+9rSsCAAAAAAAAAHaNyUac9x81n5Pkw1v8+dpozOOqajcUtlmGuXIsGTIs46I703IyW/GRJN8dtd1uwXOw8w7ErOiBYCee5b32TO6lDPBCsqFVdcUk482Qd9J7p7T5fgAAADiIKIwGAAAAbKtJMOApU079ZlUdtka3f5jSds9JIaDd6lKj43FgbkNVdakkx885/7mj4/PNOc4ivSKrAxYP2vcPVXW1JLcanf+r7j57hjmm3Sv3m6H/wewbU9rmCXUeu9WFHCy6+8tJPjNqvlNVzfN72tsmucjWVzWTbfue6e5O8qej5ttX1VGTYPO4mOaHuvs9i5ofAAAAAAAAANj17pTk0qO2V3X39bfyk+SJozErKzJOB5m7zNnvblPaFprr6O7vJnnHqPnyVXXrRc6zi41zO8lyM4KLyhG9K8m3Rm13rKqLzzkeg21/lvfgM7mXMsB7Ihva3aclOXXUfJOquvoy1gMAAMDOUxgNAAAA2AkvSfKJUdsVkzxk2sXdfXpW7zJ3lSQnLHxlizMO54xDEpvxiMy/u9qZo+PD5xxnYbr720leNmq+dVXt21nvhCndnj/jNG/K6l0H711V15hxnIPRx6e03WSWAarqfEkevJjlHDTeMDq+QpI7zjHO1O/Pbbbd3zMvSHLWiuNDkjw0yV2TXHZ07bMXPDcAAAAAAAAAsLuNN1VLhlzaVr0syTmjthPm3OjuQHfzqrrOLB0mm6Pef9R8bpJ/XNiqfuDVU9pO2oZ5dqNxbidZbkZwITmiyca7bxw1XzTJo+YZj/+xU8/yXnom91IG+PTsn8NLZsyGTjx0C2tYlPE9dkiSJy1jIQAAAOy8g/EXtAAAAMAO6+7vJ/mdKaeeUFVrhQB+d0rb03fxTl9fHB3/eFVdZLOdJyGUJ2xh/q+Pjo/cJbsmjgudHZLkAZPg4ANG5z7c3f8yy+Dd/d9J/nzUfL4kL62qC8200oNMd385yedHzfeYFDvbrEdkvp0ED2bPmdL29Kq6wGYHqKrbJLnz4pa0aePvmYV+9t19RpIXj5pPTPJLo7Yzkrx0kXMDAAAAAAAAALtXVf1Qkv81av5KVhdUmll3fy2rN7q7YpLbbnXsA9T/nfH6x2Z4v1Z6dXeP83SL8JdJvjRqu2VVPW4b5tptxrmdZLm5rUXmFadlRR9bVbecczwGO/Es76Vncs9kgLv7vCQfGjXfsaqO2OwYVXWnJD8xz/wL9oys3jz5vlV1z2UsBgAAgJ2lMBoAAACwU16a5D9GbVdI8rBpF3f3q5J8YNR8RJI3zLqT3T5VddGqekxV3W+e/ht4++j48CS/vZmOVXV0ktckOWwL8390StsdtjDeQnT3u7P6cz8hya2TXHnU/rw5p/n9rN6t7wZJXjVvMKSqjqqqZ1bVj8y5pgPFONR55SS/upmOVXXrJP9n4Sva47r7o0n+adR89STP38xOw1X1w1ldPGynjL9nfqSqrrTgOf5kdHzZJOOQ40u6e7yjJQAAAAAAAACwdz0ow2aJK72su89d0PgvmdJ24oLGPtDcuqqeupkLq+r2SX5ryqn/t9glDbr7O5leROv3quqR845bVberqj+df2U74nNJvjlqW2Y+cGF5xclmqq8YNZ8/Q/5vrsJMVXVYVT20qn5tnv57xLY/y3vsmdxrGeBxNvRCSTZ7P1w3qzdFXopJYb5nTTn1vKq6+zxjVtX5quqeVTXt3gUAAGAXURgNAAAA2BGTHciePOXU46vqwmt0u3eSr43arprkvVX1m5vZvayqDqmq46vqOUn+M0Mhp8vNsPTNekWS80Ztj6mq36mqQ9dZ372TvDs/2L3xjDnnf8+U+Z9RVXeuqvPPOeaijAMSx2T1boTnJPmreQbv7i8leWCSHp26bZIPVtX91vsM9qmqi0zCDq9McmqSRya54DxrOoD8xZS2p1XVL1RVTetQVRec7Oj4hgxBnvFufGzsF7P6fbtPktdMdjieqqrukuRt+cF32He2Z3lretfo+JAkL6+qGy1qgu7+WFYXjht7zqLmAwAAAAAAAAB2t0mG5UFTTk0rZjavv8/qolN3qqpLL3COA8G+PMtvVtVz18rnTTJ5v5rklRkKWK30gu5+2zau8VlJXj1qOyTJM6vqVVV1vc0MUlVXqarHVdVHMuSg5irAtVO6uzPkDFe6TVX9flVdZglLWnRe8ReSfGbUdqkkb66qP6iqTWU+q+qmVfWMJJ9N8mdJrjbHWvaCnXyW98ozudcywC9I8v1R2yOr6slrvZ5JwbATk7wjySUyZHLPmWPuRXtikveN2i6c5O+q6i+qalPPeVX9SFU9JcknkvxNkk3dmwAAACzPhv9BKAAAAMAC/W2GP1BfZ0XbZTMUCXr6+OLuPrWq7pHk9UkusOLURTLsXPaEqnpHkncm+WKSb2T4Y/eRSa6U5AaTnyMX/kpWr/UTVfWSJA8YnXpikhOq6u+SfCTJWRkCA9dIcqfsH7z5dpLHJXn2HPN/saremP13iLtskpOTnFNVn0vyrawuHvbz3f2BWeeb0YuT/F7237X1WqNr/r67vzrvBN39iqp6UpLfGZ26ymT+p1fVKUk+kOQrGd6Li2W4N45JcqMk183Wduw74HT3+6rq1UnuvKL5fBkKTz2iql6VoUjcOUkuneSGGe6xlWG6X41CVTPp7v+oqt9M8ozRqTsmObWq3pBhB8ovZtip8aoZPqMfXXHt6UlenuH93ymvzlCs8hIr2m6a5P1VdWaSL2RKobzuvv6M8zwryfFrnHtHd0/bHRMAAAAAAAAA2JuOzw8Kzuzzye5+76Im6O6zq+rlSX5+RfP5k9wvyR8tap4DwJMybDyaDO/FParq5CTvT/LlDFmraya5e5IrT+l/WpJf284FdndX1f0yFO4ZF7W5S5K7VNWHk5yS5JNJ9mXSjsxQaOu6GTJQ43vqQPC8JLcbtT0+w+a0X8yQ6zl3dP413f2kRS9k0XnF7v5qVd0pw+e6sojXoUkeneSXq+rdGTaV/HySr2fI+h2Z5PJJfixDBvBgK2a4lh17lvfKM7nXMsDd/YWqemZW5wuflOS+VfWKJP8+WfMlM2QT75j974enZdjg+qhZX88idfd3q+quGYrHXWl0+sQMn88Hkrw1Q1HEr2XIwR6ZIet6/QzfD2tuWgsAAMDupDAaAAAAsGO6+7yqenKGAmkrPbaqnt3d35rS581Vdaskf5fVf9C+SJLbTn52g19OcpMMgZGVrpiNixd9L8nPZQgZzOsxSY7N8L6sdIGsvfPh4VuYb1NWBDbuuM5lz1vAPE+tqi9kKKp0wdHpyya55+SH/T0syY2TXGHU/qPZvxDXNH/Q3X9WVQqjzai7/7CqLpXkCaNTF0xy18nPWr6VITT209u0vKkmAaNfS/LCKacvmiHstQgnJ/lcVn/nJ3OExgAAAAAAAACAA9qJU9pesg3zvCT7F0bbN/fBVBjt6RmKx9xjcnyxDEWCxoWCpvl8kp/s7m9s09r+R3efNckUPj9DYaex62V1gaa94BVJ3pzk1lPOXX7yM/ahbVzPQvOK3f2vVXXjJK9M8iNTxjx28sPGdvRZ3kPP5F7LAP9mkttk9fN0tSSP3WAtL5v0v/cG1+2ISaG3m2RY10+MTp8vwwavN93xhQEAALCtDln2AgAAAICDzr5d01a6dJJfWqtDd78vyQ0yhCa+t4W5O8Ouc2/fwhhrD979zQwhgvfM2PULSW7T3a/f4vwfS/JTSU7dyjjbZL3CZ19M8qZFTNLdz0ty8yRv2eJQ303yN0n+c8uL2uW6+0tJbpnZ7ptzkjy6uzcKx7CO7v6NDDtrzhKG+nyS46ft8rgTuvtFGULAZ27jHN9P8mdTTn0lQ8ATAAAAAAAAADgIVNWRSe425dRfbcN0b8vqrNB1quqgKbTS3Z3kvklm3STxnUmO7e5PL35V03X3md39s0kenuT0LQ73nxmyibtad5+X5GeTvHTZa0m2J6/Y3Z/MUNzoDzNsHrkVH0iypUzmgWoZz/JeeCb3Wga4u7+d5Lgk75ulW4bCeveZfOfsGpOs662TPDHJ17Y43L9n9SbfAAAA7DIKowEAAAA7ahK4OGnKqUdX1UXX6fff3f3gJMdk+KP7v2X4A/xGzkzyugzFh67S3cd393tnXvgmdffpGXYje2SSjcIhpyX5rSTX7O63LWj+d2fYre4OSf40yTsyhC7OSrLMkMLfJ/nvNc69aFIIaSG6+0PdfeskN0vyogyFpDbjixl2fn1gkst19727+8uLWtdu1t2fSXLdJL+R4X1YyzkZdtz7se5+xk6sba/r7j9Ocp0kL0xyxjqXfjnJU5Ncp7vfvxNrW0t3/2WSH0ryoCQvTvIvGdb3nQVOM63w2/O6++wFzgEAAAAAAAAA7G73TXLBUdu7u/tTi55okmubVnDtxEXPtZt197nd/fAMxYHekvUzZ/+S5CFJbrWTRdFW6u7nJLnqZB3/mM1tUHhehrX/QZLjkxx9oGShuvsb3X3fDBnBk5K8Nsmnknw9W9t0dt71LDyv2N3f7u5HJTk6w2v8QJLN5Au/m+Ge/Y0MGasbb7VQ1YFsWc/ygf5M7rUMcHd/NcktMhSsW+/fnd9P8oYkt+jux+y2omj7TO7r301yVJJHZXh/ztlE13OTvCvJU5LcpLuvPdkkFgAAgF2sht/ZAgAAABx4qurSSW6Y5NJJLpnk8Ay7BJ6ZoRjWfyQ5rZf4C5CqunqSm0zWeJHJ+j6f5CPd/fFlretgU1XHJLl2hvvkkkkukCEo8s0kn0nyHwdLEbTNqKrrJrlekksluXCG9+njGYKlZy1zbXtZVR2W5JZJrpzkchmCTP+V5CNJPrRbw0bboapemuTeK5o6yTHLCtECAAAAAAAAAByMqupSGTaovFqGfN4ZGTZe/JftKFC3VVV1gQyZwitmyD5dPENBnDMzbOz5iSSf6O5FbgDINquqI5LcOMllMuT/jsiwieOZGYpGfTzJpxe5QeuBoqpOSvLbK9u6u6Zct5Rn+UB/JvdaBnjyem6Y4Vm6aIbP4VNJ3tXdX1vm2uZVVRdOcqMkV8jw/XBkkrMzvLYvZ/h+OLW7N1NADQAAgF1EYTQAAAAAAHaNSdHLzyU5bEXzG7v79ktaEgAAAAAAAAAAwK6z2cJoAAAAAAeaQ5a9AAAAAAAAWOEh2b8oWpI8axkLAQAAAAAAAAAAAAAAAGBnKYwGAAAAAMCuUFUXSfIro+ZTk7x+CcsBAAAAAAAAAAAAAAAAYIcpjAYAAAAAwG7xlCSXGbX9cXeft4zFAAAAAAAAAAAAAAAAALCzFEYDAAAAAGCpquoSVfX0JL8+OnVakucuYUkAAAAAAAAAAAAAAAAALMGhy14AAAAAAAAHl6r6iyQ3mhxeKskVktSUSx/T3efs2MIAAAAAAAAAAAAAAAAAWCqF0QAAAAAA2GnHJLneBte8qLtfvhOLAQAAAAAAAAAAAAAAAGB3OGTZCwAAAAAAgJGXJPn5ZS8CAAAAAAAAAAAAAAAAgJ116LIXAAAAAADAQe87SU5P8u4kz+vuU5a7HAAAAAAAAAAAAAAAAACWobp72WsAAAAAAAAAAAAAAAAAAAAAAAAADnKHLHsBAAAAAAAAAAAAAAAAAAAAAAAAAAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdIcuewGwbFV1RJJjVzR9Lsk5S1oOAAAAAAAAAMBWXCDJlVYcv7W7v7msxQCAjB4AAAAAAAAAsEfI5+0QhdFgCFy9etmLAAAAAAAAAADYBndO8pplLwKAg5qMHgAAAAAAAACwF8nnbZNDlr0AAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgKU7dNkLgF3gcysPTj755BxzzDHLWgsAAAAAAAAAwNxOPfXU3OUud1nZ9Lm1ruX/Z+/Owyyr6nvh//bpmrrpEehmVJtJQKIiyhtoGkRARcwbjfGS+JKHaHzVKDF4fRH1GgbjjUOccm/kxuGiYDSGoIISofFGmVFB0NgJIIJAM3dDz0ONZ71/dHdRw9nn7FN1qs6pU5/P8/RD77X3GvbuemBteq3vBmCaWKMHAAAAAAAAAMx41udNH8FoENE/8uDQQw+No446qlljAQAAAAAAAABopP7alwDAlLJGDwAAAAAAAABoR9bnTZFSswcAAAAAAAAAAAAAAAAAAAAAAAAAIBgNAAAAAAAAAAAAAAAAAAAAAAAAaDrBaAAAAAAAAAAAAAAAAAAAAAAAAEDTCUYDAAAAAAAAAAAAAAAAAAAAAAAAmk4wGgAAAAAAAAAAAAAAAAAAAAAAANB0gtEAAAAAAAAAAAAAAAAAAAAAAACAphOMBgAAAAAAAAAAAAAAAAAAAAAAADSdYDQAAAAAAAAAAAAAAAAAAAAAAACg6QSjAQAAAAAAAAAAAAAAAAAAAAAAAE0nGA0AAAAAAAAAAAAAAAAAAAAAAABoOsFoAAAAAAAAAAAAAAAAAAAAAAAAQNMJRgMAAAAAAAAAAAAAAAAAAAAAAACaTjAaAAAAAAAAAAAAAAAAAAAAAAAA0HSC0QAAAAAAAAAAAAAAAAAAAAAAAICm62j2AGA2SilFuVyOlFKzhwIwTpZlUSqVIsuyZg8FAAAAAAAAAADqZo0e0KqszwMAAAAAAACoTTAaTIOUUvT29saWLVtiy5Yt0d/f3+whAdTU1dUVCxYsiAULFkRPT4+FWAAAAAAAAAAAtCRr9ICZxvo8AAAAAAAAgHyC0WCKbd++PZ544okYGBho9lAA6tLf3x/PPvtsPPvss9HZ2Rn7779/zJs3r9nDAgAAAAAAAACAYdboATOR9XkAAAAAAAAA+UrNHgC0s+3bt8eaNWssuAJmvIGBgVizZk1s37692UMBAAAAAAAAAICIsEYPaA/W5wEAAAAAAACMJhgNpsjuBVcppWYPBaAhUkoWXwEAAAAAAAAA0BKs0QPaifV5AAAAAAAAAM/paPYAoB2llOKJJ54Yt+Cqs7MzFi5cGPPnz4/Ozs7IsqxJIwTIl1KKgYGB2Lp1a2zevHnUF3V3//vtkEMO8e8wAAAAAAAAAACawho9YKayPg8AAAAAAACgNsFoMAV6e3tHLVSIiFiwYEEccMABFioAM0JnZ2fMmzcvli5dGo8//nhs2bJl+NzAwED09fVFT09PE0cIAAAAAAAAAMBsZY0eMJNZnwcAAAAAAABQXanZA4B2NHKBQsTOBQwWXAEzUZZlccABB0RnZ+eo8s2bNzdpRAAAAAAAAAAAzHbW6AHtwPo8AAAAAAAAgMoEo8EUGLvoauHChRZcATNWlmWxcOHCUWVj/z0HAAAAAAAAAADTxRo9oF1YnwcAAAAAAAAwnmA0aLCUUvT3948qmz9/fpNGA9AYY/891t/fHymlJo0GAAAAAAAAAIDZyho9oN1YnwcAAAAAAAAwmmA0aLByuTyurLOzswkjAWicjo6OcWWV/n0HAAAAAAAAAABTyRo9oN1YnwcAAAAAAAAwmmA0aLBKX2jLsqwJIwFonFJp/JTBFykBAAAAAAAAAJhu1ugB7cb6PAAAAAAAAIDRBKMBAAAAAAAAAAAAAAAAAAAAAAAATScYDQAAAAAAAAAAAAAAAAAAAAAAAGg6wWgAAAAAAAAAAAAAAAAAAAAAAABA0wlGAwAAAAAAAAAAAAAAAAAAAAAAAJpOMBoAAAAAAAAAAAAAAAAAAAAAAADQdILRAAAAAAAAAAAAAAAAAAAAAAAAgKbraPYAmB5ZlnVGxAkR8fyI2C8itkbEExHxi5TSww3u66CIODoi9o+I+RHxZEQ8EhG3p5QGGtkXAAAAAAAAAAAAAAAAAAAAAAAA7UEwWpNkWXZwRBwbEa/Y9c9jImLBiEseSSktb0A/SyPioxHxRxGxZ841t0fE51JK35lkX2+OiPdHxPE5l6zPsuyKiLgwpfTMZPoCAAAAAAAAAAAAAAAAAAAAAACgvQhGm0ZZlp0cER+OnWFoFUPKGtzf6yLisohYVuPSFRGxIsuyb0bEu1JK2+rsZ35EfCUi/rjGpXtGxLsj4k1Zlv1pSun6evoBAAAAAAAAAAAAAAAAAAAAAACgfZWaPYBZ5uiIeE1MTyjayRFxdYwORUsRcVdEXBkR/ycinhlT7ayI+FaWZYV/LrIsmxMRV8T4ULR1EfHDXX3dvavv3faJiO9lWbayaD/QzpYvXx5Zlg3/uvHGG5s9JAAAAAAAAAAAAJjxrM8DAAAAAAAAgJlHMFpr6IuIBxvVWJZlB0bEdyOia0TxbRFxVErpFSmlM1NKr4mIAyPi3IgYGHHd/x0R/72O7j4ZEWeMOB6IiPdGxIEppdfu6uvlEfE7EfGTEdd1R8TVWZbtV0dfAAAAAAAAAAAAAAAAAAAAAAAAtCnBaNNvICJ+GRH/OyLeFREvj4gFEfH/NrCPj0bEkhHHt0fEaSmle0delFLqSyn9z4g4c0z992dZ9oJanWRZdnDsDFYb6b+klL6QUuof09c9EXFqjA5H2ysiLqrVDwAAAAAAAAAAAAAAAAAAAAAAAO1PMNr0ujwiFqaUXpZSekdK6csppbtTSgON6iDLssMi4k9HFPVHxFtTSr15dVJKV+8a227dUSyw7KKI6BxxfFlK6XtV+tkREW/dNabd3r4rYA0AAAAAAAAAAAAAAAAAAAAAAIBZTDDaNEopbagWUNYg/09EzBlx/N2U0m8K1PvUmOMzsyzrybs4y7K5EfHmGm2Mk1K6PyKuHlHUETvHDAAAAAAAAAAAAAAAAAAAAAAAwCwmGK39/MGY468VqZRSujcifjaiaI+IeE2VKq+NiHkjjn+SUrqv0AjHj+lNBesBAAAAAAAAAAAAAAAAAAAAAADQpgSjtZEsy/aNiJeOKBqMiNvqaOLGMcevq3Lt6TXqVnNL7Bzbbi/LsmyfOuoDAAAAAAAAAAAAAAAAAAAAAADQZjqaPQAa6nfGHP8qpbStjvq3jzk+qo6+flK0k5TStizLVkfEy8b09XTRNoD6pZTi7rvvjvvuuy/Wrl0bfX19sXTp0jjggANi5cqVMX/+/GYPccIeffTRuPPOO+Oxxx6LHTt2xN577x0vfvGL4xWveEWUSpPLAF27dm3ccsst8cQTT8SOHTti//33j4MPPjiOO+64SbddyT333BOrV6+OdevWxebNm2PPPfeM/fbbL1auXBl77bVXw/sDAAAAAAAAAABgcqzPmxjr8wAAAAAAAACoRDBae3nRmOMH6qz/YI32RjqyAX2NDEZ7UUT8uM42gAKeeeaZ+PjHPx7f+MY3Yt26dRWv6erqilNOOSUuvvji+N3f/d1C7b71rW+Nyy+/fPj4oYceiuXLlxeqe+ONN8arXvWq4eOLLrooLr744tzrsywb/v0rX/nKuPHGGyMi4vbbb4+LLroofvzjH0e5XB5Xb5999omPfOQjcc4559S9SOoXv/hFfOADH4gbbrihYtsHHnhgvOtd74oPfehD0dHRERdffHF89KMfHT5/ww03xMknn1yor2effTY+/elPxze+8Y14/PHHK15TKpVixYoVcdFFF8Vpp51W170AAAAAAAAAAADQeNbnWZ8HAAAAAAAAQOMJRmsvh445XlNn/UfGHO+VZdmSlNKGkYVZlu0ZEXtOsq+x1x9WZ32ggKuvvjrOPvvs2LJlS9Xr+vv7Y9WqVbFq1ap45zvfGZdcckl0dLT2fyI+/vGPx4UXXhhDQ0O51zz99NPxl3/5l3HDDTfEP//zP0dXV1ehtj/3uc/F+eefX7Xtxx57LC644IK47rrr4rvf/W7d49/t61//erz3ve+NzZs3V72uXv0wVQAAIABJREFUXC7HrbfeGq9+9avjT/7kT+LSSy8tfD8AAEB72zG0PR7q/XX0l/vqqrd3576xf/fzo5RV36gylIbi0d4HY+Pg+skMs210lbrjoJ4Xxtw5ezS87a1Dm+ORHb+JgTQw7lx3qScOmnt49JTmNrzfRhkoD8Qjvb+JJZ17xV6d+zR7OAAAM8LWoc3xVN+jsW/382L+nIXNHk5LWj+wLh7reyjKafxG+QVzFsUL5h4aHVlnw/vdNLghnu5/PJ7fc8ik5uG95R3x8I77o7e8o4Gjmzr7dB0Q+3YdOCoYoZKd8//7Y+tQ9b+HnDdnfrxw3u80cogAANAyrM+zPg8AAAAAAICJGxxKcfeaiMXzIg5bFjXXrQGzS2v/rTr1WjzmeG09lVNKW7Ms642InhHFiyJiw5hLx/azPaW0rZ6+KoxtUZ31gRq++tWvxjve8Y5xX1M85JBD4kUvelHMmzcv1qxZE3fccceoBUZf/vKXY82aNXHNNde07OKrz3zmM/GRj3xk+Pjwww+Pww8/PPbYY4948skn46c//Wn09vYOn7/qqqviggsuiE996lM12/7sZz8b55133rjyF73oRXHYYYdFd3d3rFmzJu68884YGhqK22+/Pc4888w46aST6r6PCy+8MD72sY+NKsuyLA4//PA47LDDYsGCBbFhw4b4+c9/Puprot/4xjfiySefjFWrVrXsnxEAADA9btpwbVy59n9HOcYHBBSxf9fz4y+ed3Es7hibgb/Tk32Pxt8/dnFsHHx2EqNsP6UoxZnL3hEnLXldQ9pLKcV1z/5L/ODZf44UqUq/c+Ksfd8Txy86tSH9NtL921fHFx//RPSWt0dExEvm/1/x9v3Oi86STUMAAHmufeaKWLX+yhhMg5FFFm9e9vZ41ZLfa/awWsZQGoyvPfn5uHvLbVWv26O0IN5z4F/FQXMPb0i/5VSOK9Z+OW7ZuCoiIuZER5y931/GsQvr/7ugn226Mb7x1BdiKAYbMrbp8oKew+KcAy/IDev79fbV8aXHP14o7G15z2Fx/gs+3eghAgBA01mfZ30eAAAAAAAAE/cfj6d47d+V48lNO49XHhpxzV+UYtE84WjATv62tr3MH3M8kU9O74jRwWgLprCfkSr1U7csy5ZFxNI6qx3SiL4bJQ0ORqx7rNnDaH9LD4ysjRes/PKXv4x3v/vdoxZdHX300XHJJZfEihUrRl27bt26uOCCC+JLX/rScNmqVaviwgsvjI9//OPTNuaiVq9eHbfccktERLzxjW+MT3ziE3HEEUeMumbDhg3x/ve/Py677LLhss9+9rPx7ne/O5YvX57b9l133RUf+tCHRpWdfPLJ8YUvfCGOOuqoUeXr1q2LCy+8ML74xS/GzTffHPfcc09d93H55ZePWnRVKpXinHPOifPOOy+e//znj7o2pRTf+9734txzz401a9ZERMSPfvSjuOCCC+ITn/hEXf0CAADtY03vA3HF2i9Pqo0n+tfEPz75P+O9z7t43LmUUnzp8U8IRaugHOX457VfioPmHh7P6zl40u3ds/0X8a/PfqtAv0Pxj0/9fSzveWHs1/28SffbKP3lvviHx/4m+tJzm6B+tfWOuO7ZK+P3l57VxJEBALSu1VvvHDUHTJHiyrX/O5b3HNawgK+Z7ofrv1szFC0iYlt5S/yvx/97fPKQr8WcbPJ///eTTT8aDkWLiBiKwbjsyc/HQT2Hx95d+xRuZ23/E3H5U3836fE0wyO9v4krnv5yvH3/8WEFfeXe+OKY+T8AwExifd40auM1etbnWZ8HAAAAAADAxKWU4vf+/rlQtIiIWx+IOPeKFJe9TTAasFN7rjiYvcYGlk1kJfKOiFhSpc1G9lOtzYl6T0Rc1KC2mmPdY5HOtNlhqmX/8uuI/ZY3exhT5u1vf3v09/cPH69cuTKuv/76mDdv3rhrly5dGl/84hfj0EMPjQ984APD5Z/61KfiLW95S7z4xS+eljEXtX79+oiIOP/883O/MLlkyZL42te+Fhs2bIjvfe97ERExNDQUl1566bgvQI50zjnnxODg4PDxm970prjiiisqfvVx6dKl8Q//8A9x8MEHx/nnnx/PPPNM4Xt45JFH4t3vfvfwcXd3d1x99dVx+umnV7w+y7J44xvfGCtWrIgTTjghHnjggYiI+PSnPx3vfOc746CDDircNwAA0D7+Y+tdDWnn19tXR295R/SU5o4qXzvwRKwdeKIhfbSrX229oyHBaL/ackdd16/eemdLBaP9evvqiqEIv9r6M8FoAAA5rnv2yorlv9z6U8Fou9TzzrNtaEs8uOO+eOG835l0v6u33TmuLEWK1dvujFd1/V7xdraOb2cm+Y+tP4+hNBRzsjmjyu/Pmf8DAMwY1udNm3Zeo2d9nvV5AAAAAAAATNydD0esWT++/Os/SXHZ26Z9OECLKjV7AEyp1GZ1gAJuuOGGuPvuu4ePFy5cGFdccUXFRVcjnXfeefF7v/fcZo5yuRyf//znp2yck7Fy5cpCX2L8m7/5m1HHP/7xj3OvvfPOO+NnP/vZ8PF+++0XX/3qVysuuhrpAx/4QLzmNa+pOZaRPv3pT8eOHc/lQ37+85/PXXQ10rJly+Kf/umfho+HhoZa9s8IAACYepsGNzSknXIMxdbBzePKNw4825D229mmwQp/CzMBGwfre9abhhrTb6Nsyhl/o35GAQDazZreB+Lh3vsrnts40FpzvWbaMrSxrusbNj/PeReqd35b7zy/1fSl3ugrj/3eWcTGBj1nAACYqazPe471eQAwC6QUUR5o9igAAAAAaDM/WC1yBqhNMFp72TrmeO4E2hhbZ2yb09kPMAGXX375qONzzjkn9t9//0J1P/nJT446/ta3vhV9fX0NG1ujfOQjH4lSqfZ/wo466qhYvnz58PEvf/nL3Gu/9a1vjTr+i7/4i1i0aFGh8VxwwQWFrouI2LZtW3z1q18dPj744IPjXe96V+H6xx57bJx44onDx9///vcL1wUAANrLYGrcwtO+NH6ze2+FDfCM1qhn1Jd6m9Jvo/SVK4+/0s8VAAARN228LvecOdRz6l32lDcvrVfe/LxSSFg1rTZvn4hK91DvcwAAgHZjfd5zrM8DgDZ33/+I+P5BEf+yIOLHr43Y/lizRwQAAAAAwCxS/TNbzDSC0SL+V0RcWWedQyLiew3qH5ru1ltvHXX8J3/yJ4XrHnXUUXHMMccMf9Gyt7c37rrrrlixYkVDxzgZc+fOjVNOOaXw9UceeWQ8/PDDERGxffv22Lp1a8yfP3/cdbfffvuo4zPPPLNwHytXroz9998/nnjiiZrX3nrrraO+RvnmN7+50CKykV71qlfFLbfcEhERjzzySKxZsyae//zn19UGAAAw8+UFo82JjugqdY0rTxHRW95esU5vhQCBamFdc0vzig2yTQyk/hhMg+PKGxa8UGc7jeq3UfLGM5gGYzANREfWOc0jAgBoXduGtsTPN9+Se77V5nrNVV80WqMCu/ICzRoVjJb3ztYsKVKVex7/85h3bSlK0V3qGVdeqQwAAGYy6/NGsz4PANrUg1+LuPt9zx0/9cOIf3tVxO/dG1GyFQ0AAAAAgKnn/0a3l01jjpfWUznLsvkxPrBsY4F+5mVZtkdKaVsd3S0r0E/dUkprI2JtPXWyLGtE19ASNmzYEA8++ODw8eLFi+PII4+sq40VK1YML7yKiLjzzjtbauHVIYccEl1dxTeLLFmyZNTxpk2bKi68+vd///fh3y9evDgOPfTQusb1ile8otDXIccujNt///2HF4YVNfb+f/vb31p4BQAAs1CloK6IiBWLT4u37PPn48pTSvHe+/8wylEed67SBv+8ze5LO/eLjx78D3WOdmb7/rpvxqr147P4855RvfICFjqyjikNZGuUas+hr9wbHXMEowEA7PaTTT+KgdSfe75R4V7tIKV6g9GmNri43vbzgqlPXnJG/OGyP6t7XFOlt7wj3v+bt1Q8V+nnMe85HLnH0XHOgRc2dGwAANBqrM8bz/o8AGhTD39zfNnWByKevTNi6fHTPx4AAAAAAGYdwWjt5Tdjjl9QZ/2x169PKW0Ye1FK6dksyzZExMjVDM+PiHsn0dfYsQMTsG7dulHHhx12WN3hf0ccccSo47Vr68oanHJjF1LV0tk5evP1wMDAuGu2bdsWvb3PbeKYyCKmonUeffTRUcfve9/74n3ve1/O1cWsX79+UvUBAICZaTCNf7+JiOjMKodQZVkW3aW5saM8Ptu+ns3uPaWxufrtL++e+1JjghfygsUWzlkS6wfXjStvtbCMagERfeXe2GPOgmkcDQBA6yqnctyycVXVa1otBHcmaURwcUqpgcFolcfT3WLvVF1Zd2SRRYrxQXSV7jnvfaTV7gsAAKaC9XnjWZ8HAG3q6R9VLl99ccQp10/rUAAAAAAAmJ0Eo7WXscFk9X1OLeLgMcf31Ohr5CfqDq3Qfz191VO3vS09MLJ/+XWzR9H+lh7Y7BFMiQ0bRmcZLlq0qO42xtZptUU9pVKp4W1u3Lhx1PGCBfVv2F64cGGh65599tm6265ly5YtDW8TAABofXnBaHOy/P/l113qyQlGq2eze0/BEbaPvHtuVEBZXsDCoo49c4LRWissoy/lP4dWGysAQDPdu+0XsW7gqarXmD89p1JQVzWNeHYDqT9SlCueqzd4Le/6uaV5dY9rKpWyUnRl3RWDnyvdQ95zno3vigDADGV93vRpwzV61udNjPV5ANBG0mCzRwAAAAAAwCwhGK29/MeY45dkWTYvpbS9YP0TarQ39tzIYLTjI+KaIp1kWbZHRLykjr5mlayjI2K/5c0eBjNUSqM3iNT7NcpKGtFGq+vu7h513N/fX3cbRetMpO1axv65AwAAs0NeMFpH1plbp7s0t2J5fcFoldtoZ/U8t3qllHLbWdixpGJ5vYEMU63ac2i1sQIANNNNG6+reY1gtOfkBaOVohTlCuFl1QJ7i6oWflwpOKyavLlwK75TdZfmRt9QhffCCvec9xy6s9a7LwCASqzPYzKsz5sY6/MAAAAAAAAAqJdgtDaSUnoyy7JfxXOhYx0RsTIifliwiZPHHFdbmb8qIt5ZpW41J8bon71fpJSerqM+kGPPPfccdbxp06a62xhbZ8mSypuwJ2NoaKjhbU7G2Hsc+2XPIop+uXPvvfcedXz77bfH8ccfX3d/AAAAgzlf4a0WjNaTswG/0ob9/E38PQVG117y7rkRoV+DaTDKUfk9eWHH4orlrRaWUW081YIlAABmk2f6n47/3HZXzesaEe7V7rpLc2NHedu48kbMkxs5t+0tV/5+WU9pXl3tTIee0tzYPDT+78fqeVfMe98EAIB2Yn3exFifBwAAAAAAQFEppVnxcSGgtlKzB0DDXTXm+G1FKmVZdkRE/O6Iom1RPVDt+ogYueL5+F1tFPHWMcdjxwxM0NKlS0cd33///XW38etf/3rU8bJlyype19ExOltzcLDyhvxKJrKwaSrNmTMnDjjggOHj3/72t7F9e+XNKnlWr15d6Lp99tln1PFE/owAAAAiIgbTQMXyasFoeQFflTb/5wUCzMbN7nn33FfujZTSpNquFnyxaE7lzVCtFjZWLSCu1ULcAACa5eaN10WK2nPHwTSYO9efbfKeVz2Bz/Wq1kZvnXPbvHl7TwuGTTfiXXE2hmgDADD7WJ83MdbnAQAAAAAAAFAvwWjt55sRMfJTb2/KsuywAvU+OOb4X1JKuSu7U0rbI+LbNdoYJ8uyF0bEH4woGoyIfyowPqCAJUuWxCGHHDJ8vHHjxrj33nvrauP2228fdXzsscdWvG7hwoWjjjdu3Fi4j//8z/+sa0zT4bjjjhv+fblcjptuuqlw3fXr18e///u/F7p2xYoVo45/+MNqGZQAAAD5BlPlDTAdWUfF8oj6AgTyAgFm42b3vHtOUY6B1D+ptquFnC3q2LNyndQb5VSeVL+NVC38rBHhFAAAM11/uS9+sulHha8XLrtLTghxteDiyarWRj0BxQPlgdx3tp7SvLrHNdXyg9HG33Pec5iN74oAAMw+1udNnPV5AAAAAAAAANRDMFqbSSn9JiIuH1HUFRGXZVmWuwo5y7I3RMRbRxT1R8RHC3R3cUSM/Fz5W7Ms+/0q/fRExNd2jWm3S1NKDxboCyho5cqVo46/+c1vFq577733xl133TV83NPTEy9/+csrXjv2S5X33HNP4X6uvfbawtdOl9NOO23U8Ve+8pXCdS+//PLo7y+2Ef7UU0+NOXPmDB9///vfj7Vr1xbuCwAAYLeh3GC0ztw63Tn/i6gvVdrsXjkQIC+EoJ1Vu+fJBn9VC15Y2LE491x/6ptUv41ULSCiL//bCwAAs8bdW26LbeUtha8XjLZT5Vi0/GCxhgSjVZm/DqT+KKeh3POjx5I/R27Fd6ru3LC54iHarXhfAAAwFazPmxjr8wAAAAAAAACoh2C0aZZl2YFZli0f+ysi9h1zaUel63b92rtGNxdFxIYRxysi4t+yLDtizFi6syx7b0RcOab+Z1NKj9S6l5TSbyPif4wp/naWZX+RZdnI8LPIsuzIiPjRrrHs9mwUC2AD6nD22WePOv7CF74QTz31VKG6H/7wh0cd//Ef/3F0d3dXvPaYY44ZdXzNNdcU6uP666+PO+64o9C10+mss86KBQsWDB9fddVVcf3119es9/jjj8df//VfF+5nyZIlcdZZZw0fb926Nc4777z6BgsAABARg2mgYnlH1pFbp7uUE4xWIUAgbyN/dzb7NrvnPbeI6oEHRVQLb1jUsWTK+m2kauERQj0AACJu2nhdXdebQ+2UolyxPP+9ZvJz5FrBx0X/bKq1kxfs1kz1vStWfgbV3psAAKCdWJ83MdbnAQAAAAAAAFAPwWjT79aIeKjCr2+Nue6AnOseiojPVOsgpfRYRLwpIkZ+Hu2EiLgny7I7syy7IsuyVRHxaET8z4joHHHdv0bEBXXcz4ciYuRK/s6I+PuIeDTLsuuyLPuXLMt+HhH/GaND0foj4g9SSk/W0RdQwCmnnBJHH3308PGmTZviLW95S+zYUX0jx+c///n43ve+N3ycZVn81//6X3OvP/7442PevOc2blx11VXx85//vGofv/nNb+JP//RPa91CUyxYsCDOPffcUWVnnnlm3HDDDbl1Hn744Xj1q18dGzdurKuviy++eNSCtn/8x3+MD37wgzE0NFRXO/fcc0/cfPPNddUBAADaR34wWmfF8oiI7lLlULNKAQJ5YVezcbN73nOLqB2cUEteqEAWWcyfs6jues1QbSytFOAGANAMD+/4TTzS+5u66kx2jtkuUk55T+57zeTnyLXmr8WD0bbnnssbfzMVDUZLKeWHaLfgfQEAwFSwPm9irM8DAAAAAAAAoB6C0dpUSunGiPiDiFg3ojiLiFdExJkR8dqIWDqm2rci4o9TSoX/5n/XtWdGxBVjTi2LiNMj4r9ExMt39b3b2oh4Q0rplqL9wGzy1FNPxcMPPzyhX7tdeuml0dXVNXx84403xoknnhg/+9nPxvX3zDPPxDnnnBPvf//7R5Wff/758ZKXvCR3nAsWLIg/+qM/Gj4eGhqK17/+9fHDH/5w3LX9/f3xla98JY477rh4+umnY8mSJfU8kmlzwQUXxItf/OLh482bN8epp54aZ555Znz729+OX/3qV3HffffFD3/4w3jf+94XRx11VNx7773R09MTb3jDGwr3c9BBB8WXv/zlUWV/+7d/GytXroxrrrkmBgcHc+s+/PDDcckll8Qpp5wSRx11VPz4xz+u/0YBAIC2MJAbjNaRW6foZveI/DCG2bjZvTvLv+fJhi/kP+eeqoEJrRKWMZQGc0P6IgSjAQDcvPHauuuYQ+1WORqtpzSvYnlfmvxzqzXPzguQrqedVnynynv3GHsfg2kgylGueG0r3hcAAFRifV7zWJ8HAAAAAAAAQFH5uySZ8VJK12ZZ9jsR8dGI+KOIyFvp8NOI+ExK6TsT7GdrRPxxlmXfjoj/LyKOy7l0fewMULsopbQu5xqY9d7ylrdMuG5KOzeIHHPMMfGFL3wh/vzP/zzK5Z2bE+6666447rjj4tBDD42jjjoqenp64tFHH4077rhj3EKfV7/61fGxj32sZn8f+9jH4qqrrhr+IuPatWvjta99bRx66KHxkpe8JLq7u+Ppp5+On/3sZ7Ft27aIiNh3333jU5/6VEt+mbKrqyt+8IMfxCmnnBIPPPBAROx8pldeeWVceeWVFetkWRaXXHJJrFmzZtwXPas5++yz46mnnooPf/jDw39GP/3pT+P3f//3Y968efGyl70s9tlnn5g7d25s2bIlnnnmmbjnnnvq/volAADQvoZS5U0bHVlnbp2im90j8gO/qoV1tavOUmfMiY4YivHPfLKhFXn1u0tzc4PsdtabXCBbo9QaR6uMEwCgGbYObo6fb7m14rkj5r00Htrx64pBW+ZQO6U6g9EGd4X2VnsnqqX2/LbY/L+3vL1ieUfWEZ2liY9vquSFQY/9+az2fLqz/PcXAABoJdbnNY/1eQAAAAAAAAAUJRhtmqWUlk9zf2sj4t1Zlp0bESdExAsiYt+I2BYRj0fEL1JKDzWor29HxLezLDsoIo6JiP0jYo+IeCoiHomI21JK/Y3oC6jtHe94RyxZsiTe9ra3xdatW4fLH3jggeFFRZX82Z/9WXzxi1+Mzs7amzIOOOCA+M53vhNvfOMbY8uWLTX7OOigg+IHP/hBPP3003XezfR53vOeF7fccku85z3viauuuqrqtXvttVdcfvnl8frXvz4++MEPjjq3YMGCmn3t/urn2972tnjqqaeGy7dv3x633XZbofG26tc9AQCAqTeYBiqWVwsB6M4JNRu7uT2llLvhvVpYVzvrKc2NbeUt48orBVnUI/c5Zz0xJ+uIjqyz4p91pTC7Zqg1DqEeAMBsdvumf8udt5+0+HXxRN+a6BuqEIw2yTlm26ici1Y1rLmv3Bsdc6YuGK3oPLw3932qNYOm857p2OdR7f5nY4g2AACzm/V5E2N9HgAAAAAAANWkFFHjGznALFFq9gCYHiml/pTSDSmly1JKn0wp/X1K6buNCkUb09dDKaXv7Orjk7v6vEEoGky/N7/5zfHggw/GueeeG3vvvXfudZ2dnfGa17wmbrvttrj00ksLLbra7ZRTTok77rgj3vCGN+R+hXHp0qXxgQ98IH75y1/GkUceWfd9TLd99903vvvd7w4vwHrRi14Uixcvjp6enjj44IPjtNNOiy996Uvx4IMPxutf//qIiHFfily0aFGhvk4//fR46KGH4pJLLomjjz665pcsOzs7Y8WKFXHxxRfH/fffH+eee+7EbhIAAJjRymkoylGueK56MFrlULOxm90HUn+knPZn62b3vGc32YCyvNCL3f0VDSholkYFRwAAtJtyGopbNq2qeG5Jx97x4vnHFp6fz1YpJxmtVjDaZPQ1KPi3t7y9YnlPaV7dY5oORd93+lL+85mtIdoAAMxu1udNjPV5AAAAAAAAANTS0ewBAMx2Dz/88JS2v2zZsvi7v/u7+NznPhd33XVX3HfffbFu3bro6+uLvffeOw488MBYuXJloS8o5jniiCPi6quvjmeeeSZuuummeOyxx2L79u2xzz77xEEHHRQnnnhidHQ895+ck08+OVKqvJmlknquHeuyyy6Lyy67bEJ1V65cGStXrix07T333DP8+yzLYtmyZYX76enpife85z3xnve8J9avXx8//elP48knn4z169fHwMBAzJ8/P5YtWxYvfOEL44gjjoh581pz0wwAADB9BtNg7rmOLP9/+eWHbI3e3F4tzGq2bnbvnqKAsrz6u/vrLvXE1qHNFeq1RuBYrfvPC34DAGh3/7nt7nh2YG3FcysXvzbmZHOmLHy3XTQnGK3G/LZg+3nz9VYNms4P6RsTjFbl/mfruyIAAK3P+rzarM+zPg8AAAAAAACg1QhGA5glSqVSHHvssXHsscdOWR977713/OEf/uGUtd+qtm3bFnfffffw8Qtf+MIJL2Tbc88944wzzmjU0AAAgDY1mAZyz3VknbnnurOcze6pN8qpHKWstPO4ajBaa27kn2pTFVqR96x399edFQuza5Za45hsMAUAwEx108brKpbPiY44YdGrI6J4cPHsVXljfrV3kknPz1P1+kXb31HeXrG8dYPRigVB591/KUrRmXU1fFwAADCTWJ83dazPAwAAAAAAAJh9Ss0eAADMdJdffnls3/7cBpfjjz++iaMBAABmg8E0mHuuajBalU34/alv+PfVNvvnBYS1u/zQiskFf+U969395T3vvtQagWO1xjHZYAoAgJloXf+Tcc+2uyueO2bBiljYsTgiqsz1hMtGRF4s2s7nlkVW8dxkQ+V6azz7on82eeNo3WC0vJ/FHZFSGnFc+f67Sz2RZZX/TAAAACbL+jwAAAAAAACA2UcwGgBMwmOPPRYXXHDBqLKzzz67SaMBAABmi8E0kHtuTtaRe65aqNnIjfvVNvu36kb+qVYtKGAyqgULVOu3VQLHat3/ZJ8PAMBMdPPGVbnnTlpyxvDvBaPVUjkaLYtsyp5do+a3+QHI8+oe03TIC9EuR3nU+2f++8vsfE8EAACmnvV5AAAAAAAAALOTYDQAGOE73/lO/Lf/9t9i3bp1Na/9xS9+ESeddFKsX79+uOylL31pvOpVr5rKIQIAAFQNRuuYcDBa74jfV97EPyc6oiPrLDDC9pO30X+qg9HyguhaJSyj1jhaZZwAANOlv9wXP9n0o4rnDuw+KA7uOXz4uDtr7bles6WUE4yWZdGdTU2AcK1nX7T9/GC01gwQ65nku6JgNAAAoCjr8wAAAAAAAAAoIn+XJADMQlu2bIlPfOIT8ZnPfCZOP/30OPXUU+OlL31pLFu2LDolexdaAAAgAElEQVQ6OmL9+vWxevXq+Nd//de45pprRm3K6erqissvv7yJowcAAGaLwTSYe66zSnBZtU34Izfu96XKYQCtuol/OuSFyk06eCHnWe8OycgLGJhsv41Saxx95d5IKUWWZdM0IgCA5vr5lltie3lrxXOvXHzGqHlRbvhuao25XivrLs2NGNowrjxvfl1UreDjou3PtGC0vJC+iJ33Mj8WRkTtYGcAAIBarM8DAAAAAACgmsqfVAVmI8FoAFDBwMBAXHPNNXHNNdcUun7u3Lnx9a9/PV760pdO8cgAAAAiBtNA7rmOKsFoecELEaM3uOdt4p/Nm93zAgzyggGKqvWsp6rfRqk1jnIMxWAaiM6sa5pGBADQPCmluGnDtRXPzS3Ni2MXnjSqLG9+XSuca7YoR7lieRZZlWc32WC06vWLtt9b3l6xvNo7WTNVe9cbGdSX+/6Szd53RQAAYGKszwMAAAAAAACgmlKzBwAArWTx4sUxZ86cuuqccMIJcfPNN8eb3/zmKRoVAADAaNWC0eZk+d9CmJPNyQ2oGrnBPW+zf6tu4p8OeRv984IBisp71rsD0Vo9LKNIMESrhLgBAEy1h3vvj0f7flvx3PGLTo2uUveosqkK92p/We67yWTnybWD0Yq1n3fd3NK8usc0HfICmSNGP5ORIWlF6wMAAIxkfR4AAAAAAAAAReTvkgSAWeiNb3xjPP3007Fq1aq47bbbYvXq1fHII4/E+vXro7e3N+bOnRt77rlnvOAFL4gTTzwxzjjjjDjhhBOaPWwAAGCWqRaM1pF1Vq3bXeqJgaH+ceUjN7vnhX3lBTfMBnkb/ScbWpEXmLD7WecHPrRGWEahYLS0I+bHwmkYDQBAc9208drccyctft24MsFo1aVIFctLkU1JgHA5laMv1QpGK/ZnsyN3nt+aAWIdWWeUohTlKI87VyxEe/a+KwIAAPWxPg8AAAAAAACAIgSjAcAYe+21V5x11llx1llnNXsoAAAAFQ2mwYrlpZgTpaxUtW53qSe2Dm0eV95XYLN7XjjYbJAbUJYmHrwQUTtYYCoCHxqpyP3nBe0BALSTLYMb4+4tt1U8d+S8o2NZ1/7jyvPm1+ZPu1UORousWjDaxEPl+lNfzWuKtp83X2/Vd6ps1zPdUd4+7pwQbQAAoNGszwMAAAAAAACgluq7JAEAAACAljOYBiqWd2adNet2ZzkBX6OC0Wx2Hys3GG0SwQsppSrBaDv7684qP/NWCcsoMo7JPCMAgJnitk3/lhtg/MolZ1Qsn4o5ZjtJeblokU1JqFyR8OGi7fdWCBiLaN1gtIhqP49CtAEAAAAAAAAAAACYXoLRAAAAAGCGyQtcmJN11KybF27Wl57b4J4fjDZ7N7vnPbfJBC8MpoEox1BOfzufdV7AwMg/r2YqEtoh2AMAaHflNBS3bry+4rk9O5bG7+zx8orncufm5k8REZEiJxktpubZFQv9rX3NQHkg952tlQPEigT11Qp2BgAAAAAAAAAAAIBGEIwGAAAAADPMYBqoWN6Rddasm7cRf2QIQF4gQF74wGyQ99wG00AM5YQe1FIttKE72/ms8wMfJh7I1khFgicmEx4HADAT/Me2u2L94LqK505cfHqUsjkVz+2e8401FIO5c/7ZpXIwWhZZdGeNDxAuFPpboP1qc/We0ry6xjSdioTN5Ydoz953RQAAAAAAAAAAAAAaTzAaAAAAAMwweUFcHVlHzbrFNrtX3uyfFw42G1Tb6F8kQKFivVQtMKFn1z/zAtlaIyyjUHjEBJ8PAMBMcdOGayuWd2QdsWLRabn1pmKO2U4qx6LtDEYrEvhcr2Jz29rtVxtDK79TFXmmec+ou4XvCwAAAAAAAAAAgJkj5S0eBGYdwWgAAAAAMMMM5ARidWSdNevmbVgfucE9byN/d5Yf3NDuqgUYTDR8oVrwwu6QjGoBA/3lvgn120hFgiGKXAMAMFM93f943Lv9lxXPHbNgZSzoWJRbdyrmmO0lf3VTkcDnehV55kUCinvL23PP9ZTm1T2u6ZL3vjcy0Nm7IgAAAAAAAAAAAADTQTAaAAAAAMwweRvxO7KOmnXzwhdGbnDPCxOoFtzQ7vKCFyImHr5QPRhtbs1+WyEso8i9TyacAgCg1d2ycVXuuVcuPqNq3WohuOZQESknGC2LrEow2sTnyEWfea2A4mrz9Gp/5s2W97438rnkPd/Z/K4IAAAAAAAAAAAAQOMJRgMAAACAGWYoDVYs78g6a9YtEiDQlypvdm/lTfxTrXpoxcTCF/ICE7IoRWfWVaDf5odl5P2s1HsNAMBM1FfujZ9s+lHFc8/rPjiW9xxWtf5UhO/OClmWO0+eXDBasbq1Aop7y9srlndkHdFZqv3O1ix5P4+777ecytGfKofCVftZBgAAAAAAAAAAAIB6CUYDAAAAgBlmMA1ULC8WjJYXINBb8fdF6s4GXVl37rlawQh58p9zT2RZNvz7RvfbKINpIAZzQvpGEuoBALSrOzffHDtyQrBeueSM4Tldns6sK7KofM1kAr7aQUop91wW1QKfe6vWraboM681v+2doe9T1Z5pRER/6osUlZ9tq98bAAAAAAAAAAAAADOLYDQAAAAAmGFyg9FKRYLR8ja7PxcCkBe4VS2kq92VslJ0Z5Xvf+LBaLWfc1fW3bJhGf3lvkLXCUYDANpRSilu3nhtxXPzSvPjFQtOrNlGKSvlBvA2OwS32fICuHbKcoO4ylHOfV+qpS8Vm7fWmofnne8pzat7TNOpVoh2tXl9j2A0AAAAAAAAAAAAABpIMBoAAAAAzDAD5ZxgtOioWTcv3Gt3CMBQGswNEpjtm91rBQXUK6/eyD+jVg7LKNp/s8cJADAVfrvjvnis7+GK545fdGp0lSrP4cbKm2PP9nDZasFopciip0po88SDi4s981rt95a3Vyxv9fep/PedHbv+mf98ZnOINgAAAAAAAAAAAACNJxgNAAAAAGaYoRisWN5R6qxZN28zfq/N7jXlh1ZMMHgh5QSjjXnOrRqWUbT/Zo8TAGAq3LzxuorlWWRx0uLTC7eTG0aVM1ecPfKD0SKy6M7yQ8YmOv8sGqhWq/28dlo/GC0nRHvX/VZ775nt74oAAAAAAAAAAAA0Rqq2fBCYVQSjAQAAAMAMM1jOCUbLOmrWrbXZvVoYQKtv5J9quc9ugqEVRQMTWjUso2gg3ESD4wAAWtXmwY1x95bbK5570R4vi6Vd+xVuq9b8fLZKVYLRssiqBnH1pQkGFxcN/q0xD+8tb69Y3urvU7WCoAWjAQAAAAAAAAAAADBdBKMBAAAAwAwzmAYqlndknTXr5m12H0wDMZQGq4YBzPbN7nkBZdXC5KrJe9Zj+8kPy2hu4Fjh4IhZHuoBALSf2zb9nxiKymHFJy0+o662WnWu12xVv/iYZVVDxnonOP8sOq+vdV3e+bz3iVbRnVX+WewdDkar/Fw7so5C76IAAAAAAAAAAAAAUJRgNAAAAACYYfKC0eZkHTXrVtuM31furRrA0Oob+adaXvjCRIO/8p712HCMvOfe7MCxvlSs/4kGxwEAtKKhNBS3bFxV8dxenfvEUXu8rK728ud6s30OlZ+MlsXOUOhSznKHiT67ovVqzcPz5r9zS/PqHtN0ygvp6099UU7l/MC3bHa/JwIAAAAAAAAAAADQeILRAAAAAGCGGUyDFcs7ss6adfM2u0fs3MBfLcSqK+uuPbg2lvfsJh68UDlQYXwwWuV+mx04VrT/ogFqAAAzweqtd8bGwWcrnjtp8elRyubU1V7+HHN2z6FS1WC0LLIsa/izK1qv1vw/N0CsxYOm84KgU6QYSP258/pq75gAAAAAAAAAAAAAMBGC0QAAAABghhlMAxXLOwsFo+Vvxu8r9+aHdWU9Ucpm9/9OzAsKaHTwwthggfx+mxuMVjw4YnaHegAA7eWmjddWLO/IOuP4RafW3Z5gtInIIiL/3Wbi8/OCwb812u8tb69YnjevbxXV3hWrhWi3euAbAAAAAAAAAAAAADPP7N7JCAAAAAAzUF4w2pyso2bdvOCFiJ1BADa758t7dnnPrJa8emMDE1o1LKOe4IiU0hSPBgBg6j3V91j8evuvKp57xYKVMX/Owrrb7M5ywr3S7A5GS5E/f8x2/TM/GG1i8/Oiz7xW+3nnWz8Yrdq7YpUQ7Sr1AAAAAAAAAAAAAGAiBKMBAAAAwAyTF4zWkXXWrNuVdUc2HCUwWl+5NzcMoNU38U+H6QpeGBuOkffsJxrI1ihFg9lSlGMg9U/xaAAApt7NG6/LPXfS4jMm1Gajw3fbRbVgtN3RaI0OEC5ar9Z1O3KD0ebVPabpVO2dr6+8I/e+vSsCAAAAAAAAAAAA0GiC0QAAAABghhlMgxXLiwSjlbJSdGXdFc/1lnfkhnzlhQ7MJt1ZY0Mr8oIFxj7rRgc+NEo9/U80PA4AoFX0lnfETzffUPHcC3oOi+VzD5tQu3mhUs2e67WyLNsVjJYzP+9LE5t7Fp3X5wUcD5/PDUZr7QCxau98fd4VAQAAAAAAAAAAmAbVPqsKzC6C0QAAAABghhlMAxXLiwSjRUR054UvpN4qYV2tvYl/OjQ6tKJosEB3ltdvc8PG6gmEm2h4HABAq7hj803RW95e8dwrF79uwu3mh+DO7vlTSvlLm7Jd/8ybn09k7jmUBnPfs+ptP+/npNWD0eZkHbnvlH3l3irvL619XwAAAAAAAAAAAADMPILRAAAAAGCGGUyDFcs7so5C9asFCORt8s8LbJhNGh1aUTSELrffNLFAtkapJxBuouFxAACtIKUUN2+4ruK5PeYsiJcvWDnhtvPnmLN9/lTtm487o9Ea+ewaNbcdTAO572utHowWkf9Me8s7qry/eFcEAAAAAAAAAAAAoLEEowHQEGvWrIm/+qu/ihNPPDH22Wef6OrqiizLhn9ddtllzR4iAABA2xhMAxXLO7LOQvWrBQjkhXzNhE38U21sYNluEwkoSynlPuuxfz55/eaF2E2XvlS8f8EeAMBM9uCOe+KJ/kcqnlux6LToLHVNuO3cOeYsnz+lKsFo2RQEo9Uzt64WjFytnZ7SvLrG1AzdWX4oc26Idk4dAACgsazPAwAAAAAAAGA26Wj2AABmu+XLl8cjjzy3meaGG26Ik08+uXkDmoCvfOUr8d73vjf6+vqaPRQAAIBZYSgNVizvyIr97778AIEduSECeXVmk7xwuL5yb6SUIsuywm0NpoEoR7niubHhGNX6baZ6+p9IeBwAQKu4aeN1FcuzyOLERadPqu28eXZveUfdc8x2UiQYLW+ePJEA4XrmttXa7x2qFozW+mHT1d498p7RTLgvAABmN+vzAAAAAAAAAGDmKTV7AADMbNdee228613vKrzo6sYbbxz1pcqLL754agcIAADQhgbTQMXyjqyzUP2xwVu79ZV35G7yt9k9/7mlSNGf6tuMVC14oTsbHY6RH2S3M5CtWRoVHgEA0Mo2Da6PX2z5ScVzR+3x8ti7a59Jtd+TVZ5jlmMoBnMCkWeDasFosSsYLf+9pv5Q3rpCf6tcW23e21OaV9eYmiHvmfZWeVfMqwMAADSG9XkAAP8/e3ceJldx2Hv/V71M94xG0khoAwQIIbFjFiMQIDYvAhTsxEsMxH68hmAnuRdCiK95c21JFwfj1yQ2tnFsEwK8jzEh18bGwSDHxpJAYMAIsACJ1QgQCC1IM0gz0z291PuHNKPpnlOnz+npvb+f5+FBp+qcqurTrVGdmarfAAAAAAAAAADaUazeAwAANLerr766YBP2X/zFX+hzn/ucDjroIMXj+zbkT5s2rR7DAwAAAICWlHEGowX7dp9f0Fbaudnd+5p24ncPUvnBUPcobf0CE4IFo1nllbFD6jCJwP1WkuuzMt5zAQAAGslDvb9WXjnPurOnLBl3+35zyLQdVFzBwo9bjk8umtmTi+bzXBN+7hlubrsnoNgMD2SUVH7AeV0zBIj5Pita70A4nhUBAACA6mJ9HgAAAAAAAAAAAACgHRGMBgAo2/PPP69169aNHC9ZskS33357HUcEAAAAAO0hZ7Oe5TETLDQh6diQn8oPKp13bHY3jb+Jv9pc902S876Vc35xYIJ/v4PqiNQrGC34aw57fwAAABpBzmb1YN+vPOumx2fpqK4Txt2HbzBaPqXu6KRx99GMrE8ymtGeQDJX0Fg5c09X6JeXvHLK2ozipsOjb++AtahiikcaP+TOfU/dz4p+zysAAAAAxof1eQAAAAAAAAAAAACAdhWp9wAAAM3r8ccfLzj+6Ec/WqeRAAAAAEB7ydqMZ3nQYDRX+EI6n1LKsZHfL7ChXfiHVnjfNxfXffbqx69fv3aqLUzgRD3HCQAAUK4/7H5MfdkdnnVn9pyviBn/j9tdQVRS+Dlma3EHo2k4GM24nmvC37ew17jmwoOOdpLR5ggPcz8rDjrvEc+KAAAAQPWwPg8AAAAAAAAAAADtxvotHwTQVghGAwCUbcuWLQXHs2fPrtNIAAAAAKB95G1OeeU96wIHoxnvTflpm1Laem/wT/oENrSLSgajuYIUjCKKm46ifv3CMoKHk1Va2gZ/zfUcJwAAQLlW77zXszxuOnTa5PdWpA+/eXY7z6H8Y9H2BqO5QrwczzR+UiHvtWsu7HouaJbnKdc9Hcj3K2OHQl0DAAAAYPxYnwcAAAAAAAAAAAAAaFcEowEAyrZ79+6C43g82AZ8AAAAAED5sjbrrIuZWKA2XJvyU/lB50Z+v3CudhEzcec9TlUoGC0RScoYU1jmCLIrp99KydqM72exWDuHegAAgOb0Zvo1vTj4jGfdyZPO1IToxIr0EzcdI0Ffxdp5DmV9o9H2cD3XpPMp2ZC/MjJs0LFrHp7KD3iWJyNdodqvF9c93ZXtC30NAAAAgPFjfR4AAAAAAAAAAAAAoF0F2ykJAGh61lo98cQTeu6557R161al02lNnz5dBx54oBYtWqTu7u7Qbebz+SqMFAAAAADgJ2szzrqYCbYhJhFJepan84PO8AU2u++RiHQqm9s1pjxsaIU7gG7sexOPxBVVTDmNDSJL2/qEZVTq9QIAADSqB3tXOOvO7llSsX6MMUpEkp5BW/UKwW0M7mCz4SA5V3izldWQTSthvJ97vISf33qf73rPmuV5ynXP+rI73Nc0yWsDAAAAqo31eQAAAAAAAAAAAAAAVA7BaADQ4rZv365rr71WP/rRj7Rt2zbPczo6OvSe97xHy5Yt06mnnupsa+PGjTr00EOd9eeee65n+S233KLPfOYznnXLly/X8uXLnW2uXLlS55xzjrMeAAAAANpN1o4NxxoWPBjNe+P6rmyfrCOAwBWm1m4SJql+jQ1GCxtaETaALhFJaiC/26Od+oRlhA6OsO0c6gEAAJpNKj+oR99Z6Vl3aPIIHZw8rKL9JUxSKY2dL4Wdc7USdyzanjA5yf8ZJZ1PhXqGqdR8PpUf8CxvmmA0xzjfye10XxMigA4AAABoRazPAwAAAAAAAAAAAACg8iL1HgAAoHp+/vOfa+7cufrmN7/pXHQlSUNDQ1qxYoUWLlyoyy67TNmse5M9AAAAAKC+sjbjrIuZYL8HwRUQ4BW8te+a5tjIX22uQIO0DRda4QpecIUKuN6zeoVlhA5Ga+NQDwAA0Hwe7VvpnK+d1XNBxftzzbXrFYLbEKxfNNoefsFnlQo6C9u+c57fJM9Trucdv4DuZnltAAAAQDWwPg8AAAAAAAAAAAAAgOoItlMSQO3ks9LApnqPovV1zZYirf0l8N///d916aWXKp/PF5QfdthhOvroo9XV1aXXXntNjz32mHK53Ej9D3/4Q7322mv6r//6L8VirX2PAAAAAKAZ+QWjRccZjFbpa1pRpUIrXEFqrvvsCigIG/hQKaFfL8FoAACgSVhr9UDvfZ513dHJOmniGRXv0xmCGzJ8t5VYuYPRjIwk9xxZqv581XW+a37eGekK1X69lPesmKjCSAAAAKqI9Xm10+Jr9FifBwAAAAAAAAAAAABA9fATdaDRDGySfnFovUfR+j74itQ9p96jqJqnnnpKX/jCFwoWXZ1wwgm68cYbdfrppxecu23bNn35y1/WD37wg5GyFStW6Ctf+YquvfbagnNnz56tV155ZeT4W9/6lm644YaR4zvuuEMLFy4cM55p06bpnHPOkSQ98sgjuuSSS0bqLr/8cl1xxRXO1zJr1qwSrxYAAAAA2kvWZp11cRMP1IZfgEAlr2lFrqCAsAFlriAFV/CaMyyjTsFoYV9vvQLcAAAAwnpx8BltHnrds+6Mye9TPBJszh2GO3yXYDQvw8FofiFeoYPObNj5vPf5rnmv6z1uNGGD0eKmQxETrdJoAAAAqoT1ebXTwmv0WJ8HAAAAAAAAAAAAVId79SCAdkMwGgC0oM997nMaGhoaOV60aJF+9atfqatr7G+jnz59ur7//e9r3rx5+od/+IeR8q9//eu65JJLdNxxx42UxWIxzZkzZ+S4p6enoK1Zs2YV1I/W3d0tSdq4cWNBeU9Pj/MaAAAAAMBYWZtx1sUCBqOF3exe7jWtqFKhFa4gBVcAXaOFZYR/ve0b6gEAAJrL6p33eZYbRbSo57yq9NloIbiNbjgYLWbiiiqmnMaGR4e9d+HP957fhp3nN5qwAW7N8roAAACASmN9HgAAAAAAAAAAAAAA1RWp9wAAAJW1cuVKPfHEEyPHkyZN0p133um56Gq0q666ShdeeOHIcT6f1ze/+c2qjRMAAAAAUJ5KBKOF3bweM7HAbbc6171LVShIwRWK4SoP22+lpC3BaAAAoPX0Zt7WH3Y/4ll3XPfJ2i8+oyr9NtpcrxFY5X1qzcifXPPzas9X09b7vUnlBzzLmyVALBkyEJsAbQAAALQj1ucBAAAAAAAAAAAAAFB9BKMBQIu57bbbCo7/5m/+RgcccECga6+77rqC4zvuuEPpdLpiYwMAAAAAjJ9fMFrUxAK1kTDhNuWHPb+VuTb+hw1ScIVcuNp3Bj7UKXAsdHBEG4d6AACA5rGm77+VdwRyndVzQdX6bbS5XiOw1l1n9uWiVX1+7uJq39VOMuIfkNAoEiED3Jol8A0AAACoJNbnAQAAAAAAAAAAAABQfQSjAUCLWbNmTcHxJz7xicDXHnPMMTrppJNGjlOplNauXVuxsQEAAAAAxi9rs57lEUUVMcG+3ecKD6jU+a3MHVpRmSAF1712hdPVK3As9Ou1KeWtd8gIAABAI8jajNb0/rdn3Yz4ATqy6/iq9V2pcK/W4pOMpn3JaK57V6mgMxdX++5gtOYIEAsbjBb2fAAAAKAVsD4PAAAAAAAAAAAAAIDqIxgNAFrIzp079fLLL48c9/T06KijjgrVxumnn15w/Pvf/74iYwMAAAAAVEbWZjzL4yYeuI2YiSuiaODz2ey+j+tehA1SSFtHMJojAK3RwjJcgQ8xn8/hkE1XazgAAADj9oddj+qd3E7PurN6zg8cQlwOZwiuY87YDqxPMJopCEarbnDxhMjEUOe75snN8kyVMCFDtEOeDwAAADQ71ucBAAAAAAAAAAAAAFAbsXoPAECRrtnSB1+p9yhaX9fseo+gKrZt21ZwPH/+fBljHGd7O/LIIwuOt27dOu5xAQAAAAAqJ2uznuVRE/xbfcYYJSJJDeb7A52fbJJN/LXgCihzBSC4uIIUXO273oN6hWW4xj85NkVvZ7y/l5DOp/gsAQCAhrW69z7P8g6T0MLJ76lq340WgtsI3LFohSpx76y1zvn8pFiP+od2BWo/azPOIOvOJpkHJyKJkOc3x+sCAAAowPq82mnBNXqszwMAAAAAAAAAAAAAoDYIRgMaTSQmdc+p9yjQpHbu3FlwPHny5NBtFF+zY8eOcY0JAAAAAFBZro32MRMP1U4y0hk4GM0VNtCOnAFloYPRvM93BQtUKpCtUlxBE5OifsFog5KmVHFUAAAA5XkjvVEvDT7rWbdg0lnqinZXtf9Gm+s1Bnc0mtG+0IFKBKNlbVZ55TzrJsWmaPPQ6x7tj31v/N6vZgkQi5ioOkxCQzYd6HyeFQEAQFNifR7GgfV5AAAAAAAAAAAAAADURqTeAwAAVI61hZtEwv42Si+VaAMAAAAAUDk5m/Usj5lwvwMhzAb2ZtnEXwsJM/7ghT3nu4LRvNt3vQdhA9kqxRmMFusJfQ0AAEC9PbBzhbPu7J4lVe+/UuG7rcQGDEZz3bswoXJ+93lyzDvY16v9VM7dTmekK/B46i3csyLBaAAAAGgvrM8DAAAAAAAAAAAAqsu6lw8CaDMEowFAC5k6dWrBcV9fX+g2iq+ZMsV7wwcAAAAAoD4yNuNZHjPxUO2ECTtjs/s+ztAKGzx4wVrrDAlzB6N5l6fqFDbmer2THMERUnsHewAAgMY1mOvXY++s8qw7rPMozU4eWvUxuOZ6BMs6jAoNSBhXqFzwe+c3l58U9Z7ferXvF8bWTGHTrmee8Z4LAAAAtALW5wEAAAAAAAAAAAAAUBsEowFAC5k+fXrB8QsvvBC6jeeff77geMaMGeMaEwAAAACgsrLOYLRYqHaSIcLOCEbbx3UvsjbrfG/GnptRXnlH+97BAu6wjPqEjbn67Yp0O0P6/IIiAAAA6uWRd1Yqbb1DtM7qOb8mY3DNAdP5lGyb/upDv9dtRv3ZOU92vKee5/qEqE12BP96tZ/KDzjbSUa6Ao+n3sI8//GsCAAAgHbD+jwAAAAAAAAAAAAAAGqDYDQAaCFTpkzRYYcdNnLc29urDRs2hGrj4YcfLjhesGBBRcY2zBhT+iQAAAAAgFM27wpG8w6jcnGFL3hJhji31fndN79AhaDnuQLrXO9Bxg4pZ3OB+q0k12tIRJI+IW7BwykAAABqwVqrB3pXeNZNjE7WCd2n12QcCeM9f8orFzh8t9VY+QWj7Vvm4JonhwkQ9gvwneQKRvO4xtVnVDHFI65Z5bAAACAASURBVOGe1+opzLNimHMBAACAVsD6PAAAAAAAAAAAAAAAaoNgNABoMYsWLSo4vv322wNfu2HDBq1du3bkOJlM6t3vfnfFxiZJiUSi4DidTle0fQAAAABodTllPctDB6OZEJvdHUEN7chv479foMJoaes+z/W++PU7VIfAMb9gNGc4hSUYDQAANJbnB9Zpy9Amz7ozJi+uWZhVJcJ328noLf7uUN7gwWiue2wUUXd0kvMaawvD2wYdfSajzRUeRog2AAAA4I/1eQAAAAAAAAAAAAAAVB/BaADQYj75yU8WHH/3u9/VW2+9Fejaq6++uuD44osvHrNQarx6enoKjjdv3lzR9gEAAACg1WVtxrM8FjK0wRUg4IXN7vv43YugoRV+AWqu96US/VaSq89kpNMZpBc0OA4AAKBWVvfe51luFNGinsU1G0fSZ27uF6rbyqysT+2+aDR3MFrwOXI5ob9WVhk7VNSOIxityZ6nwgRjh3muBAAAAFoF6/MAAAAAAAAAAAAAAKg+gtEAoMW85z3v0QknnDBy3NfXp0suuUSDg/4bZ775zW/q7rvvHjk2xujv/u7vKj6+uXPnqqOjY+R45cqVymS8N/UDAAAAAMbK5B3BaIqFaifMBvZEk23krya/++YKQhh7njukwdW+XzhBPQLHXH0mIknn56UeAW4AAAAuOzPbtW73Y5517+o+RVPj02s2Fv85ZrvOodzBaCZAMFqYObLr3GSk0/dZqPg6dztdgcfSCEI9K4YIUQMAAABaBevzAAAAAAAAAAAAAACovnC7JQEAVffWW29p48aNZV07Z84cSdLNN9+s0047TUNDe35T/apVq3TmmWfqxhtv1Kmnnlpwzfbt27V06VJ973vfKyj/4he/qHe9611ljcNPR0eHzjjjDK1cuVKS9Nprr+mDH/ygPv/5z2v+/Pnq6ircHDJr1iwlk2yqAAAAAIBhOWU9y2OReKh2kiHCzghG26fDJGRkZD2CGoKGVrjOM4oobjo86/zeg7StfViG6zUkIp3OIIX2DfUAAACNaE3fr2SV96w7u+eCmo7Fd67XpnOovHUHo43KRatIKK8r4HhP6G+pYOSekeNUfsDzvDDPXo2AZ0UAAAC0OtbnsT4PAAAAAAAAAAAAAND4CEYDgAZzySWXlH2t3btJ5KSTTtJ3v/tdff7zn1c+v2dTz9q1a7Vw4ULNmzdPxxxzjJLJpF5//XU99thjymYLN9W///3v1zXXXFP+iyjhyiuvHFl4JUkrVqzQihUrPM9duXKlzjnnnKqNBQAAAACaTTbvCEYz4b7V57fBfzzntjpjjBKRpFIe4QleZV5cIQ3JSFLGGM+6RCThbC9ov5WStRlnQF/CJH3CKWo7TgAAAJeszeih3l971s3smK0juiq/Md1P3HTIKOIZ1FbruV7jcAejmVHJaK6555BNK29ziphoyZ6cob+mVDBa4XWu96rZgtF4VgQAAECrY31eIdbnAQAAAAAAAAAAoJH4/V5VAO0lUu8BAACq49JLL9Wdd96p7u7ugvKXXnpJd999t+688049/PDDYxZdffazn9Uvf/lLxePxqo3twgsv1Fe/+lVFo6U3owAAAAAACmVtxrM8ZsI9x4XZnN9sG/mrbbzBX67zXO1KUsREFTcd4+q3UlzBEdKeYARXOALBaAAAoFE8uet3eifX61l3Vs/5zrDaahkO3/XiN/dqZTZoMJrxCy5LB+orbd3zc79noeIgtFR+wNlOMwkXjNZcrw0AAACoJNbnAQAAAAAAAAAAAABQPQSjAUAL++hHP6qXX35Zl19+uaZNm+Y8Lx6Pa/HixXrooYd08803V3XR1bB//Md/1Lp16/SlL31JZ511lmbNmqXOTjZPAAAAAEAprmC0qImFaifcZvfg57YDV/hCcTCCi+u8UvfZFcrQWMFonYR6AACAhvdA732e5QmT1MJJ59Z4NHv7Jly2LH7BZWkbbP7pmqcmIknFTFxReT9rFbfvaqcz0hVoHI0iTNgZIdoAAABod6zPAwAAAAAAAAAAAACgOsLtlgQAVNzGjRur2v6MGTP0rW99S//yL/+itWvX6rnnntO2bduUTqc1bdo0zZ49W4sWLdLEiRNDt71s2TItW7as7LEdffTR+trXvlb29QAAAADQjrI261keM+E20bDZvXzugLJxBi84AtdG6iNJ7cr1ld1vpfgFwCUiyXHfHwAAgGralHpFLw9u8Kw7ZdI56oxOqPGI9nDNBdt1DmVlnXVGZuTPfuHCQUPlXPd4eF6biCQ1kN9d8rrB/IBnO2GevRpBmOc/QrQBAADQDFifx/o8AAAAAAAAAAAAAEDzIRgNANpEJBLRggULtGDBgnoPBQAAAAAwDlmb8SyPVzEYjc3uhVz3I20DBi9YRzBaifekUQLH/PpLRjqdoR5+gWoAAAC1srr3XmfdWVPOr+FICrnnmO0ZjCafYDRVOBjNNU8dbjsZ6XQEow36Hg9rtqDpoM+KRkYdJlHl0QAA0FyMMYdKOkHSAZK6JW2W9Kqkh611fGO3vH7iks6QdLCk/SXtlvSmpCettRsr1Q+AcFifBwAAAAAAAAAAAABA5RCMBgAAAAAAADQRVzBaLGwwmiO8yvPcJtvIX22u+xE0oMx1XqkAOle/tQ4ccwU+GBnFTYf7/rRtqAcAAGgUA7nd+v07D3jWzes8Wgcm5tR2QKO4wrPaNVzWNxbNjA5Gcz+rpMY9P+/c+/9gwb+p/IDnec0XjBbsWTERSRa8FwAABGWMmStpgaST9/7/JEkTR53yqrV2Tplt+00jgji0nGAxY8xHJV0p6TTHKTuMMXdK+oq1dnu5gzPGTJe0XNJFkqY6znlY0r9Ya39abj8AAAAAAAAAAAAAAABAvRGMBgAAAAAAADQRVzBa1IT7Vl+YzfkdJhGq7VY33tAKV7BYqfdkvIFsleLqr8MkFDER5+twvW4AAIBaeaTvtxqyac+6s3qW1Hg0hRplrtcorA2WaRI1UcVNhzJ2aExd8OBi//m5KyisuH3X80DTBaMFDNEOE7YNAIAx5hxJV2tPGJpnoFczMsZ0S7pJ0sUlTp0q6QuSPmyM+ZS19ldl9HWBpFslzShx6umSTjfG3C7pMmttf9i+AAAAAAAAAAAAAAAAgHojGA0AAAAAAABoIlmb9SyPmXiodlyb+8ecZ5KKmEiotltd0GAEF9d5pd4TV/BA0EC2Sklb1/jDBUcAAADUUt7m9UDvCs+6SdEpOmHiqTUeUSH3HKpdw2XdwWgRFT6fJCJJZXJewWjB7p1rPj38nrhD6wqvcwejdQUaR6MIGuTmui8AADicIGlxvQdRScaYqKQ7JRUn7G6T9KSkPkmHSTpRktlbN1PS3caY91lr14To6xxJP5fUMarYSnpC0h8l9eztZ9qo+o9LmmSM+TNrbT5oXwAAAAAAAAAAAAAA1FOwX6sKoB0QjAYAAAAAAAA0kazNeJZXLRiNze5juO5J0ICyUsEL7n4bI3CsdHBEYwS4AQAAjPb8wDptzbzpWbeoZ3Ho+XSlNcpcr1GEWdiUiHRqd+6dMeXjDi42/vPb4uvc8+TmeqYK/qwY7DwAAEpIS9qkPQFilfaopItDXrMpxLnXqTAULSPpSkk/tNaOpLYaY46W9G+STttblJD0c2PMcdbazaU6McbMlnSXCkPRHpJ0qbV2w6jzEpIuk3S9pOHJ7QckfVXS/xPidQEAAAAAAAAAAAAAAAB1RzAaAAAAAAAA0ESyNutZHjPhvtUXdHN+ssk28deC656kAwZ/OYMXStxrZ7+2toFjrvEPj88VkJCxQ8rbnCImWrWxAQAAuKzuvdezPKKIFk1eXOPRjEW4bDF3NJqRKTgeDjArFnh+bv3n5wnjmv/vuy5rM84Q684me6YK+qzYbIFvAICGkJH0rKTHJf1+7/+flnSGpJVV6C9lrd1YhXZljJkr6fKi4j+31t5dfK61dr0x5r2S7te+cLT9JC2V9PkA3S2XNGXU8cOS3mdt4STGWpuW9G1jzGuSfjaq6kpjzA+sta8G6AsAAAAAAAAAAAAAAABoCJF6DwAAAAAAAABAcK7N9jETD9VO1EQVNx0lz3MFNLQz1z1xBYaNOc8VvOAIdCjdb62D0bz7Gx6fX5heOp+uypgAAAD87Mhs09O7H/esO757oXri+9V4RGO5w3eDzTFbjfUJRlNxMNo4Q+XKnd+Obt+vr2YLEAsajk2INgAgpNskTbLWnmitvdRa+0Nr7RPWOr7Z2fiWShr9DdlbvULRhllrByV9WtLQqOLP7Q1YczLGzJf0qVFFQ5I+XRyKVtTXz7Xnfg9L7B0vAAAAAAAAAAAAAAAA0DQIRgMAAAAAAACaSM5mPctjJha6rSAb9JttE38tuO5J8OAFRzBaiRA6V7+1DssoNX6/z0ytQ9wAAAAk6cHeFbLKe9adPeWCGo/GW8I45nruzIuWZq07GM0U5qK5Q+UC3DtrrXN+O9yuM6B4VPupnHue2xnpKjmORhI3HTJF4XNeCNEGAIRhrd3pF+bVTIwxnZI+WlT89VLXWWtfkPTzUUUxSX9R4rK/kBQddXyXtfbFAMMsHs/HjCnxWxkAAAAAAAAAAAAAAACABkIwGgAAAAAAANBEsjbjWR4z8dBtBdnIzmb3sRKOPYRBA8pc4WClQuhc70XQQLZKcY9/bzCazx7Ldg32AAAA9ZPJZ/RQ32886/bvOEjzO4+t8Yi8OcO3ahyC2yisfILRikK7xnPvMnbI2VeiVDDaqHmx35y82cKmjTE8KwIA4O88SaOTT39nrX0u4LW3FB1/uMT5HypxvSdr7QZJj44qmiBpcZBrAQAAAAAAAAAAAAAAgEZAMBoAAAAAAADQRDLOYLRY6Lb8AqyGJZtsE38tuO6JKzAs6HmlggXc/dY2LMPV377gCPdnJug9AgAAqJQndj2k3bk+z7qzei6QMcazrtaChG+1F3cwmsYEo3nPP4MECPsHmu15T4LM//3ep2Sky1nXqIKEufGsCABoY+cXHa8Kce2DkrKjjk80xsz0OtEYM0vS8aOKspIeCtFX8bguCHEtAAAAAAAAAAAAAAAAUFcEowEAAAAAAABNJOsMRouHbivIRvZSYV3tyBmMYFPK27zvtdZaZ7BYqfdjPIEPlZS2jmA0MxyMlnBeW+uxAgAAPNB7n2d5wiR1yqRzajsYHwSjFQoei+Z370oHCPvd3+F2g7Sfyg94nhNVTPFI+Ge1egsSos2zIgCgjR1bdPy7oBdaa/slPV1UfEzAftbtvT6ohwP2AwAAAAAhNMYvGwEAAAAAAAAAtD6C0QAAAAAAAIAmkrNZz/JygtGCbGQPEp7Wbvzu25BN+16btRnl5R2eVur98AtksNYvOqKyXOERw+OLmKjipsNxbelwCgAAgEp5LfWyXkk971l36uRz1RntqvGI3FwhuLWe6zUKGyIazRlcHCBUzm9+OtxusGA0776S0eZ8ngryrDgcjAwAQAM72BhzizHmWWPMTmPMkDFmy97jHxlj/soYM7WMdo8qOn4p5PUvFx0f7TivuLxa/QAAAABACO33/WoAAAAAAADUVhsumQTgQDAaAAAAAAAA0CTyNucM1SonGC1I6FmQDfHtxhVaIZUOX/ALXih1r5OO4IG8csrajO+1leR6DaPH7w6nIBgNAADUzuree511Z/VcUMORlOaaY+aVr+lcr3G4VzaZomC0IMFlLq5As9Ht+oXWlWqnWYOmeVYEALSIQyV9WnsCwXokxSXN2Hv8cUk/kPSaMeabxpjuIA3uDVIrDlN7LeS4is+f7zhv3jj7ebXoeD9jzJSQbQAAAAAAAAAAAAAAAAB1Eav3AAAAAAAAAAAEk7VZZ13MhP9WX5CN7AlHGFc787tvqfygJvtc6xu8UOJe+/WbzqcUj3T4Xl8prtcwenyJSFK7cn1jziEYDQAA1MpAbrcef+dBz7r5ncfqgMTBNR6Rv4RpjLleo/D7hY/GFAWjOe5dqdBiSUpb7/lpVLGR8GlnMJpNKW/zipiIe47cpM9TfmHQYc4BAKAJTJB0haQlxpgPW2ufLXF+T9HxgLW2P2SfW4uOXd9OLO6r+Dpf1trdxpiUpNGTpcmSdoZpx4sxZoak6SEvO2y8/QIAAAAAAAAAAAAAAKB9EIwGAAAAAAAANImszTjrhjfthxFss3vp8LR2k/S5b6WCv9LWJxitxL327dcOqluTfK+vFNdrHD0+12fLLxgOAACgkn7Xd78ydsiz7uwpS2o8mtKSJcJ3azXXaxjWOxrNyIwp8wsuK8UVnlYwt/UJrRuyaSVNp1L5Ac/6zmhXyTE0Ir9njzDnAABQJ1lJayT9RtI6SZsk7ZLULelgSWdK+qSkGaOuOVzSb4wxC621r/q03V10XM43u4qvmVjlvkZPZlx9hfXXkpZWqC0AAAAAAAAAAAAAAABgDILRAAAAAAAAgCaRtVlnXbWC0djsPpbffSsV/OUXnFbqXvsFp9UycMz1GhIBwiNcwRMAAACVlLd5PdB7n2fd5NhUHd99So1HVJrfHNMvXLdVWXkHoylMMFqJ0GK/c0bPvf2DkQeVjHQ65+NBnrkaUZCAbEK0AQAN6n9Luslau9VR/5SkXxhjvqw9wV7/S/smGLMk3WWMOdlaR0rr2LCy0hOOsYonDsVtVrqvKQH6AgAAAAAAAAAAAAAAABpKpN4DAAAAAAAAABBM1macdTET/ncgBNvs3pwb+aspaqKKmw7PulLhC676iCIlw+18wzIChD5UynjCI9K2duMEAADta8PAU9qWecuz7szJ5ylaxty52vzm5rWc6zW6sbFo7nsXJDzYHWiW9Pyz6/pUfsCzvlmDpglGAwA0K2vtP/mEoo0+L2WtvVrS/yiqOknSJWG6DDO+cVxT674AAAAAAAAAAAAAAACAumq8Fd8AAAAAAAAAPPkFo5UT7hBkI3uzbuSvtkQkqUxuaEx5ukT4gl+omDFeMQ/7xE2HjCKyyo+pCxL6UAlZm1FOWc+6hCkdHlGrcQIAgPa2eue9nuURRXVGz/trPJpg/OZ67RiMZp0ZHmPnzK5nlqzNKGezvs9Krvn76FDiIKF1rveoWZ+nggRkN+trAwBgNGvtjcaYxZI+OKr4ryX92HHJ7qLjcv5BLL6muM169BXW9yT935DXHCbp7gr1DwAAAKBu/Nc1AAAAAAAAAABQKQSjAQAAAAAAAE0ia70DqSQpbuKh2wuykT1IeFo7SkQ6tTv3zpjyUqEVrmCwIMEDxhglIkml8gOh+60Uv2Cz0Z8V1+emHUM9AABAbW0f2qJn+9d61p0wcaEmx6bWeETBNMJcr5G4gtGMx6a7UsFlXdFu33ovhXNb91x9+PpBj/dNkpKRLue1jWx06LHzHJ4VAQCt42sqDEZbaIzpsdb2epxLMJoka+1WSVvDXFPql0IAAAAAaBauX2oBAAAAAAAAAEBlReo9AAAAAAAAAADBZG3GWRcrIxgt2Gb3cvbbtT7XvfMLDpOk9DiC0SR3mJ2r3UrzC+UYPTbX62nHUA8AAFBbD/atcIZqnd2zpMajCccVNFVqjtlOvPI0/AK6Ss/PSwejRU1UcdPh275rPh4kjLoRBQk9S5jmfG0AAHh4TNLOUcdRSUc7zu0rOu4yxkwI2d+MomOvADavvqaH6cQY062xwWiuvgAAAAAAAAAAAAAAaAhE8wMYRjAaAAAAAAAA0CQqHYwWZJN+kA3x7ajcgLIgwQt+XOfVKnDMr59EoGA0Qj0AAED1ZPJDerjvN551B3QcrHmdrnyLxlDvENxGYm3eUTM2Gc3vuabUPNkVnFbcZql5eCo/EKidZhHsWbE5XxsAAMXsnonHa0XFniFk1tq3VRiiJkkHh+zykKLjFx3nFZcXXxe2nx3W2uKxAwAAAAAAAAAAAAAAAA2JYDQAAAAAAACgSfgFo0VNLHR7QcK4mnUjf7W57p0rWGFY2jqC0UzQYDRXWEYjBKMlPf8c9HoAAIDxWrtrjfpzuzzrzpqyRMaMDdVqJK45YTvOoazjdz4aj2A0v4CuUvfOGVxsioPR/EPrggasNYtSoWcRRRUr4xkUAIAGVvyPud8/hhuKjueF7Gtuifaq1c/6kNcDAAAAAAAAAAAAAAAAdUMwGgAAAAAAANAksjbrWR5RVBET/lt9pTa77zknWGBXu3EFHLiCz0bqHYEJQe+zKyyjVCBbpbjGb2TUYRIjx+5gtNqMEwAAtKcHeu/zLE9GunTKpLNrPJrwnHOoEnPMVuQdi+Zt9Dy0WKn5pzO4uOi9cIfWDQejebeTjHT59t+oSj2fJCLJhg8aBAAgpGlFx9t9zn2m6Pi0oJ0YYyZIeleJ9lzl7zLGhJlcnBGwHwAAAAAAAAAAAAAAAKDhEIwGAAAAAAAANImszXiWx028rPZKBaPFTEyxMttudeUGf6WdgQmlQ+p8+7W1CRxzBbAVByOUGxwHAABQrldTL2lj6kXPuoWTzg0836on1/y8PcNlvaPRjMaGcUVMxB1cVmZwcfHnpVRoXSo/4FkfJIy6EZX6+9IMf58AAAjKGDNN0tyi4jd9LllRdHxOiO7OlBQbdfyktXaL14nW2s2S1o0qiklaFKKv4nF5pwgDAAAAAAAAAAAAAAAADYhgNAAAAAAAAKBJZG3Ws7zc8DLX5v6ResNmdxd3aEWp4AXv+lLvxTBXAIErsKzSnOMvCqJwBVPUapwAAKD9rN55r7PurJ4LajiS8jnDZUvMMVuRDRGMJo0nuNgd/Dua33uTtRlniHVnkwaIlXxWDPj8AgBAk7hYhesot0ja4HP+rySNnkScZow5MmBfny46/lmJ84vrPxOkk73jOXVUUb+k/w5yLQAAAAAAAAAAAAAAANAICEYDAAAAAAAAmoRrs33UxMpqz7W5fxib3d1cwWilgr9c9a72xp7nCnyoTVhG2rqC3TqLjus7TgAA0F52597R2l1rPOuO6HqXZiVm13hE5WEOVT7XvUuVHVwcbH6byg/6PgMEnec3mtLBaM35ugAAKGaMmSnpfxcV/5e11julVZK1dkDST4qK/1eAvg6X9KFRRVlJPy5x2e2ScqOOP2yMmV+qL4/x/Ke1jm/sAQAAAAAAAAAAAAAAAA2IYDQAAAAAAACgSeRs1rM8VmYwWtx0yMg469ns7pYsM7TCHbwQLITOFWaXLhHIVilBx+8aZ9ZmnJ9jAACAcv2u735l7JBn3dk9S2o8mvL5hW+1G1cWiTHeSxzcoXLlBhcni45d8/CUbx+lwqgbValnQdfzEAAA9WKMOcIY84GQ18ySdI+kmaOKhyR9LcDlyySN/i0WnzbGfNCnr6SkWyR1jCq+2Vr7sl8n1toXJd02qqhD0q1723P19aeSPj2qaEjScr9+AAAAAAAAAAAAAABoFO5fZQag3RCMBgAAAAAAADSJjM14lsdMvKz2IiaiDpNw1jfrJv5acAcj+AcvuOoT7r2MAfv1D2SrFOf4AwZH7GmjNmMFAADtIW9zeqB3hWddT2w/Hde9oMYjKp873Kv95k9WjmA0x/nlzpPHG/ybzg9qMOcXjNbl23+jShj/Z0FCtAEA5TDGzDbGzCn+T9KsolNjXuft/W+ao/n9Jf3CGLPOGPNFY8x8n3FMNMb8raSnJJ1cVP1Va+0fS72WvefcUFT8E2PM3xpjRoefyRhzlKT7JZ0+qvhtBQ8rWypp56jj0yX9xhhzZFE/CWPM/5D0f4uu/2dr7asB+wIAAAAAAAAAAAAAAAAaQqzeAwAAAAAAAAAQTNYZjFb+t/mSkU6lc8HCALCPOxihRPCCHd+9rndYhjsYrbPo2P16UvlBdUW7KzouAADQvp7tf1JvZ7Z41p3Zc56iJlrjEZXPFUZVKny3vXhHo7mCulI+9y5vcxqyac+64vm+a36byg/6vj/NGjYdMzFFFFVeOc/6oMHOAAAUWSPpkADnHSjpFUfdbZI+7XPtcZK+Lunrxpg+Sc9I2i5pl6RuSQdJOl7e6yZ/aK29JsD4hn1J0jGSLth7HJf0HUlfNsY8sbfPuZJOUuEkZkjSh6y1m4N0Yq3dZIz5sKRfSRoOXTtD0npjzFpJf5Q0eW8/04suv0fSl0O8JgAAAAAAAAAAAAAAAKAhEIwGAA1uYGBATzzxhF588UVt375dqVRKnZ2dmjlzpg4//HCdeOKJ6ujoKN0QPJ1zzjlavXr1yLG1tir9rFq1Sueee+7I8dKlS7Vs2bKq9AUAAACgdWXzrmC0eNltJiKdUm6nuw6e/IIR/LgCzIIGJpQT+FBJrvEX3w+/z06tQtwAAEB7eKD3Xs/yqGI6Y/LiGo9mfJwhuI5w3VZm5f3zGuMKRnMEdfnNPdN571A0KXjwbzqfUio/4FkXVWxcz2r1ZIxRMtKpgfxuz3qeFQEATWKy9gSIldIv6e+stTeFadxamzPGfEzSv0m6aFTVDEnnOy7bKulT1toHQ/a1yhjzIUm3al/4mZF08t7/vNwh6VJrrXfSKYARrM+rLtbnAQAAAAAAAAAAAADKQTAaADSgXC6n//zP/9Qtt9yilStXKpvNOs9NJpM677zz9Jd/+Ze68MILazhKAAAAAECt5eT9fDi+YDTvDf6l6tqdX0CZtVbGeAc2pB0BZkGDBcoJfKik4MFo7s8OwWgAAKBStg1t1vr+Jz3rTpx4mibFemo8ovFxzQnbc/4ULhjNFTTsG4zmEzhXPO/2m4e7QoqTkU7nc0EzSESSPsFoPCsCABrOBknXSjpb0kmSgnyz7QXtCRq7yVq7vZxOrbW7JV1sjPmJpL+XtNBx6g5Jd0paaq3dVmZf9xpjjpW0XHuC2KY4Tn1E0vXW2p+W0w/QLlifBwAAAAAAAAAAAABAYyMYDQAazG9/+1t94Qtf0AsvvBDo/FQqpbvvvlt33323Tj75ZP3gBz/QSSedVOVRhjdnzhy9+uqrkqRDDjlEGzdurO+AAAAAAKAJZW3GWIaAlgAAIABJREFUszwWGU8wmnuPoCtcAO5ghLxyytqs4h5hddbawMFiLu7AB+8whkpzhUckTOG4OkzC3UaNxgoAAFrfg72/knUEaJ3ds6TGoxk/15ywHedP3u+q5MhFc9876753fve1eN7tDK2zg+5gtGhzP0/5PQ/yrAgAKIe1dk4V294i6R8lyRgTkTRf0mGSDpTUIykpaVDSTkmbJf2+3IAyR/8/kfQTY8yh2hPMdoCkCZLekvSqpIestUMV6GerpC8YYy6XdIakQyTNktQv6Q1JT1prXxlvP0CrY30eAAAAAAAAAAAAAACNj2A0AGggy5cv1/Lly2Vt4XYPY4yOOuoozZ49W/vtt5+2bdum1157bczirMcff1ynnXaavvvd7+rSSy+t5dABAAAAADWQyTuC0cbxbT6/QK6gYV3tyC8IIJ0fVNwjrC5jh5RX3vOaoPfaHfiQUt7mFTGRQO2UyxX6UDyuiIkoYZKeQWqucDUAAIAwhvJp/a7vfs+62Yk5mtt5ZI1HNH6uuV4qn5K1VsY4UsFaknc0mnEko5UTKudXV9yeMxgtn3LPkU1zh4fxrAgAaFbW2ryk5/f+V+u+X5FU9WCyvSFrK6vdD9CKWJ8HAAAAAAAAAAAAAEBzIBgNABrEFVdcoRtuuKGgbOLEibr66qv18Y9/XAcffPCYa1566SXdeuutuv7665VOpyVJQ0ND+qu/+iv19/friiuuqMnYAQAAAAC1kbVZz/KYRwhXUH4BX3517c4vCCBtB9WtSWPL8+5AsKDBAn7vyZBNK1nl8AXXa/AaVyLSqXTOIxjNJ4ACAAAgqLW71qg/v8uz7qyeJU0ZIuaa61nllbFD6jCJGo+ofvLWOxhNzmA0d3CZS8qnrmNMMJoreC2lVH7As64z2uVsvxn4B6PxrAgAAIDmw/o8AAAAAAAAAAAAAACaR6TeAwAASLfddtuYRVeLFi3S+vXrdfXVV3suupKkefPm6atf/arWrVunY489tqDu7//+77Vq1apqDbllrFq1Stbakf8AAAAAoJHlXMFopvzff+C72d0EC+tqR34BZSlH8JdfKEPQEDq/AIJaBI65+vD6HLk+W34BFAAAAEFYa7V6572edZ2RLi2YdFaNR1QZvuG7bTeH8v6ZjSvuzj33dM+RXfc0bjoUNdGCMtd8PWOHNJDf7RhTc4eH+Y0/GTDYGQAAAGgUrM+rH9bnAQAAAAAAAAAAIAx+pARgGMFoAFBnL7zwgv72b/+2oOz000/Xfffdp9mzZwdq4/DDD9f999+vo446aqQsn8/rE5/4hLZv317R8QIAAAAA6idrM57lMRMvu02/QK5m38hfTf4BZd4BC2nrDmVImKDBaPUNy3D1ESYYrRYBbgAAoLVtTL2o19Ive9adNvm9vnOmRuY3J2y3YDTrDEbzjkZzPdf43Td36O/Ytvw+U33ZnaHG1Cz8Po88KwIAAKCZsD4PAAAAAAAAAAAAAIDmQzAaANTZVVddpd279/0m+Z6eHv30pz9Vd3d3qHZmzJihn/zkJ+ro6Bgpe+ONN3TNNddUbKwAAAAAgPpyBaNFTazsNv02+LPZ3S1uOmQc315NOQIW/EIZgoZ3+IUruPqtJHcw2thxlRNOAQAAEMTq3nuddWf2nF/DkVSWbwiuT8hua3L9ykfvYDTXs4t/MNr4Q38lqS+7w7O86YPR/J4VTXOGDwIAAKA9sT4PAAAAAAAAAAAAAIDmU/6OSQDAuD333HO65557Csquu+46zZo1q6z2jj76aF111VW69tprR8puvvlmLVu2TFOmTBnXWBvNSy+9pHXr1umNN97Qrl27ZIxRV1eXZs6cqUMPPVTHHXecurq6qj6OdDqt1atX65VXXtGOHTs0Y8YMzZ49W2eeeWZV+t+8ebMeffRRbd26VW+//ba6u7s1Y8YMLViwQHPnzq14fwAAAAAaiysYLWbiZbeZMO7N+smAYV3tyBijZCSpwfzAmDpXwIIruCyiSOD30Dcso8qBY9Za52sIEx5RiwA3AADQunZl+/TErjWedUd2Ha+ZHQfWeESV4zfXS7VZuKwzFs24gtHcc09rred1ace81CvQzC/kzB2MVv2fU1WT32smRBsAAADNgvV55WN9HuvzAAAAAAAAAAAAAKCeCEYDgDq64YYbZO2+rR3Tpk3TZz7zmXG1ecUVV+gb3/iGMpk9m+X7+/t100036Ytf/OKYcz/96U/rtttuGzl+5ZVXNGfOnED9rFq1Sueee+7I8dKlS7Vs2TLf9oe9+uqrzo0rkvSpT31Kt95665jydDqtb3/727rpppv04osv+o4vGo3qhBNO0J/92Z/pyiuvdC6COuecc7R69eqR49Hvh5++vj595Stf0a233qp33nlnTP3EiRN10UUXafny5TrggAMCtemSyWR0880363vf+56efvpp53nz58/XVVddpc9+9rOKxfgnHgAAAGhFWZv1LI+PJxjNJ3yBze7+EpFORzCad8CCK7gsEen0fU4eLWpiipm4Z0hetQPHsjarvHKedUmPgD3XZ6vaAW4AAKC1Pdz3G+e8+OyeJTUeTWXFTYciiiiv/Jg61xyzVbl+XmPkCEYz3nPPvHLK2qznM5Mz9NejLb9no77sTs9yv2CxZuD/rEiINgAAAJoD6/O8sT6vEOvzAAAAAAAAAAAAAKDx8FNZAKijFStWFBx/8pOfVEdHx7janD59uj7wgQ/orrvuKujHa+FVM3n99dd13nnnacOGDYHOz+VyWrt2rdauXauLL75Y8+bNq9hY/vCHP2jJkiV68803nefs2rVL//Zv/6a77rpLv/jFL8rua+3atfrYxz6mP/7xjyXPffHFF3XZZZfpX//1X3XPPffowAMPLLtfAACaTV92p57tX6u30puq2k880qG5nUfqyK7jFTXRqvbVrnZn39Gz/Wv1Tq5PR084QQcm5tR7SGgRu7K9eqZ/rTanX6/3UApETUxzkvN19IQTFY+Ufh70CsOSpNi4gtHcm/WbfSN/tbnunSv4yx2MFi5UIBFJKpsb+1l4qO+/9eLAM5IkY4wO6DhYx3S/W93RSc62rLV6fmCdXh7cUDKwzPX5Gx7T2DLv+/Py4HrdtfXWkePJsak6esKJ2j9xkG//W4be0LO716o3u8OzPhnp1LyuYzS/8xjfDV+1mjeE1RFJjMwzIiZSVhubUhu1YeBJ7cr2Bb4mZuI6tPMIHT3hBEVNZX9ksDOzXev7n1TapnTshJM1o2P/irb/Rnqj1vc/pUw+rXldR2t+57GBQwYBlFbq34iYiWtu5xE6out4xSPlz0WAMPI2pwd7V3jWTY1N13HdJ9d4RJVljFEikvQM332wd4We6/+D7/URE9GBiUN07IST1RmdUK1hjsvWoc16tn+tdma2+563eSjcs5vfs8vPtt3q+cz00uB6z/O95rYdJuFsP2OHHO009/MUwWgAAABoBazPC471eazPAwAgGH4eCwAAAAAAAACoDYLRgAaTszn1Zv03AmD8emLT6h5ksWnTJm3cuLGgbPHixRVpe/HixQULrx555BFlMhnF4825OW1oaEjnn3/+mEVXU6dO1XHHHaeZM2cqHo9r165d2rx5s9avX6/+/v6qjGX9+vV673vfq7fffrugfObMmTrxxBPV09OjLVu26JFHHtHg4KB27NihCy+8UN/4xjdC93XPPffooosu0sBA4Qao/fffX8cff7ymTp2q/v5+rV+/vuA3dD711FM69dRT9cgjj2j27NnlvVAAAJrIm+lX9e3Xl+qdXG/N+jxp4un6zP5XVjw8pN1tHXpT3359qXZkt0mSfr7N6OOz/kanT35fnUeGZvdWepO+vWmperNvlz65To7oOk6fP/AfS24udwVTjefrkV+AAJvd/bnuTyo/6FmedpSHDUxIRjrVn9s1pnzd7sfGlE2NTdflB/0fTfcIpMrbvH685Xt6uO83ofr34hmMZrxf1+ah18cEXfxsW1SfPeBKnTTxDM9rntr1iG5+83rllPUfyNvSuVMu1Eenf84zIKse84awFkw8W5/c/3+G/t7VQ72/1o+3fE9Wtqx+j51wsi494IuBQhqD2Dj4gm7cdI3683s+qz83t+mvDviSjq1QYM3v+u7Xj966UVb5PQVvS2f3LNHHZlxKOBpQAdZa3bHl+1rT96uS5x494SRddsCXKvb1A/DzTP/akWfGYot6zlOkBULME5FOz2C0P+x+NHAbszpm63/OXq6e+H6VHNq4PbP7cd305v/rDBILwjg23fk9u6zq/WWoPryekSImooRJKm39w4RH62zyYDS/Z0VCtAEAQDNjfV7t1HuNHuvzgmN9HuvzAAAIrryfRwMAAAAAAAAAEBY7uIEG05vdri//8bJ6D6PlXTP3B9ovPrOuY3jooYfGlJ18cmU2hr773e8uOB4cHNRTTz2lBQsWVKT9oK6//notW7ZMkrRo0SK98cYbkqQDDzxQa9ascV7X3d1dcHzLLbdo/fr1I8dz5szRjTfeqPPPP1+RSGTM9dZarV27Vvfcc49uvvnmCrySPTKZjD7+8Y8XLLraf//9dcMNN+gjH/lIwVh2796tf/7nf9Y//dM/qbe3N/RvBF2/fr0uvvjigkVX559/vpYvX65TTjllzPlPPvmkLr/8cj344IOSpDfeeEOXXHKJVq1apWi0+TeCAQDg52fbbqt5uMkTux7WyRPP0gkTF9a031Z3z/Y7Cja4W1n9x5bv66SJZ7DhFuPyi+0/auhQNEl6fuBpPdq3UmdNucD3vKz1DoWKmfI32vgFCIQN7Go3rq9N6bx3WIKrPGwAXcIEP39Hdpvu2f4f+swBfzem7qXB9RUJRZO8PythXldeOd3x1vd1fPfCMRvl8janH2/519KhaHut3HmPFk56jw5Kzh1T97Nt/19Dh6JJ0u93rdYpk8/WMRNOCnxNKj+o/9x6U9mhaJL0TP/jWrvrIS2cfG7ZbYz20223jISiSXu+ft3+1o269rB/H3dw2VA+rf/Y8oN9oWh7re69V6dOOldzOuePq30A0iup5wOFoknS+v4n9Ng7q3VGz/urPCpAemDnfZ7lMRPTGZNb4zNYiXDit4Y26dc7f6Y/n/GXFRhRZVhr9eMt/zquUDTJLxitcs8urvcgEUkqnQsejNbsz1P+z4qEaAMAgObF+rzaqfcaPdbnsT7PD+vzAAAAAAAAAAAAGhPR/ACGjf1pNQCgJjZt2lRwPHPmTO23334VafvYY48t2V8tTJs2TXPmzNGcOXMUi+3L4ozFYiPlXv9NmzatoJ2777674Npf//rXWrJkieeiK0kyxujkk0/WsmXLtHHjRh1yyCEVeT3f+c539NRTT40c77///lqzZo3+/M//fMxYuru7tXTpUt1xxx2KRCLauXNn4H7y+bwuuuiigt+quWzZMt13332ei64k6cQTT9Rvf/tbffjDHx4pW7NmjW6//fbA/QIA0IzyNqfnB9bVpe8N/U+VPgmhbBgYe0+zNqs/Dj5Xh9GglTTL39f1A0+WPCdrM57l4wlG64x0OesIJfTnCihL5Qc9y9PWuzxM0JkkdUYnhDrf6+urJD3X/4dQ7fjx+qz4fba89Od36bXUy2PK30i/qt25vlBtre8f+/dpz7yhcq+5mjZ4jN/Py4Mbxh0yUk6/Lqn8oF4e3DCmvC+3U1uG3hh3+36vd0OAr6UASnt69+Ohzn9x8JkqjQTYZ+vQm84580kTz9DE2OQaj6g6ws6hXJ4J+fe42t4a2lSRwOqo8f7db5V8dkk63gNXuUul3st6SUa8nzvipsP5PgAAAACNhPV5rM9zYX0eAAAAAAAAAAAAADQ+gtEAoE527NhRcDxlypSKtZ1MJpVIJHz7ayavvvrqyJ+PP/54zZs3L/C10WhU8Xj5AQHD8vm8vvOd7xSU/fCHP9TcuXN9r/vIRz6iv/7rvw7V11133aVnntm3kfBjH/uYli5dWvK6WCym2267TTNmzBgpu/7660P1DQBAs0nn08rabF367s+/U5d+W1Xe5tSf2+VZl8oPeJYDQWTyQ0rbVL2HEYjr78Borq95sXFsSj8wcahniMDBicOUiIQL7Go3rmCEtCMYbTDnXd4ZDReYMK/z6FDn9+d2ydqxvzMnbNiYy8HJeeqIJMaUz+sKN05J6s+N/fd1t0dZ6XbG/n1K51N1mzeEtTvA14OC87OVeS/LuddevN7HYYMV+Hfd77NbqdcAtLsdmW2hzk/n01UaCbDPA70rnHVn9yyp4Uiq67CQcz2Xndntytt8RdqqBL/5QRhzO4/0LO+IJHRIcn5F+pjXdYyjPPh7E1HUOdZmMbfzCEU8lpTM7xobAAEAAAA0ItbnBcf6PNbnAQAAAAAAAAAAAECjIRgNAOqkeCFUT09PRdsvbu/tt9+uaPv1snXr1rr0+8ADD2jjxo0jxwsWLNCFF14Y6NqvfOUroRZ/ffvb3x75szFG1113XeBru7u7ddlll40cP/300wXjBgCg1biCZ2phMEdYVyWl8+7gqkw+U8ORoNU0U7BekK8rWev99yFmyt9wEo/E9Sf7XVzUXkx/Mu2SsttsF8no2EA5yf25S+X7vdtxBKy5LOo5T1Nj0wOfb5XXkB0bWJOqwL+jMRMb8/kZNid5uN7VfUqo9rxCs8oJ0hr0uNeVCOSqlbBfuyrxXkqVu0cDOe/PuuT+OhbGoM/rTTkCCAGEszMbLhhNGhvACVTSUD6t3/Xd71l3UGKu5iQPr/GIqufsngvUE9tv3O1kbbZiYWSV4Pfvd1ATohP1vql/6qz/k/0uGldotCQd1nmUjp3wbs+690z5oLqjkwK1s3jqh9UV7R7XWOptQnSi3j/1QwVlCZPU+VM/UqcRAQAAAOGwPq88rM/zx/o8AAAAAAAAAAAAAKiN8a0KBgA0LGNMvYdQMUceeaTWr18vSXr99dd1/fXX66qrrqrpGNasWVNwfMklwQMCpk+frsWLF+uXv/xlyXP7+/v1yCOPjBwvWLBAhx56aPCBSjr33HN1zTXXjBw/+OCDmjNnTqg2AABoFmnrDtM6ouu4cQUFDds29Ja2Zt4cU16pABLs4RfEUokAFbQvv8/W4V3HKV6BrxNh9WZ36I30xjHlQYKQcjbrWT7ezf/vnfqnmtFxoNbtflSJSFLvnnimDu1snXCJaul0BJq5PneuMAhXOy77xWfo7w/+mn7Xd79eTb2kvHKSpHQ+rZcGn/W8JpUfUCKSLBqPd3jVfvGZmtVxYMlxzOw40PezEjERXXrAF/Vw3/16YeDpgs/4SwPrPf8d9/r31fV3I2461B2dpJ3Z7eNqR5KO6HrXuP8elWPr0GZty2weUx42gNX1XnZGJmhu5xFjyndktmvz0GuB2wnL72tvxg6Nu/2Uz/2p1GsA2p3X11ZJMorIKj+m3BKMhir7/TsPOL/Gnz1lSUv9TGRaxyxddfB1eqTvt9qYetHz79xoOZvTcwN/8KzbmX1bE2OV3fhfLtdcLGZiOqLrXb7XGkV0UHKuTpl0tmb6zFOP7T5ZVx50rR7ftUZbhjaFGl+HSeiwzqN0Rs9idUQSnucckDhYVx38df3/7N17mCRlfff/z92H6e49zuzBhbAgkg1hQVAR5LiAwUeyRCNBExT9RdFEEg1KHjzEmCdBRH8STX6BeBkTkwtMHhONgogGImhgUQiQ1RAUEFg5CArr7uzMsrvTPdOH+/fH7MxO99zf6qqePs3M+3VdXBdd1VV197FqZqvec+/zt+vp0uPB12Z5elAvXnaCXrbslETb71e/vuYtOjR/hB7c+30tTS/XK1acpfX5w3s9LAAAAKAvLKSfRTk/j/PzAAAAAAAAAAAAAKDfEEYDgB5ZtWpV3e3du3e3df2jo6OR25tPLrzwQt1www3Tt9///vfrxhtv1EUXXaRzzz1XBx98cMfHsHXr1rrbJ510UqLlTzrppFgnXt1zzz0qlw+EP4444ojEf1GyVqu/EOfHP/5xouUBAJhPxiPiZO/8hT9SIb10ztu4feQb+vLP/37W9DgBI8QXFTEhjIa5iPqsvvMXPqgl6WVdHM2k7++5W3//sz+fNT0qJDTF+jy0IwR57LITdOyyE+a8nsUklyoEp1vxzJLxXZdPGEaTpKHsGp275oK6aaOVXfrjH7/dHNPKmOM8ZcWvzFp3q9Iuo02D52jT4Dl10//fJ/+3nh5/fNb9i9XZz5EVwVqbPVgbl75E3x65afYygc+TFaaTpN8/5MNmAKOTbtv1VX11x+dnTU96nGG9li/Mb9C71//prOn37r5dn3/u6lnTkwbZLKHXcUo79utR35fEa4G5q/mqRsu7gvOGMqu1q7KjyyPCYue915bRm4PzlqSW6YTlm7o8os5blV0b+3is5mt676O/papmR5RHyjt1WP4X2z28llj776HM2uDxSqsOLxypwzsYeX7BwMF67ZoLO7b+fuOc0/HLT9Pxy0/r9VAAAACAxDg/Lz7Oz3sy0bY4Pw8AsLgtnDgsAAAAAAAAAKC/EUYD+sxgZo0+esTf9noYC95gZk2vhzDrRKiRkZG2rbtUKqlUKtVNW716ddvW323nn3++zj///LqTr+666y7dddddkqQNGzbo1FNP1WmnnaZNmzZp48aNbR/D9u3b627/0i/9UqLljzwy3kU4Tz/9dN3tL37xi/riF7+YaFuNdu0KX8QIAMBCEBW+yKXybdlGwYjVxAkYIb5S1X4tCaNhLqIiP3kjatVp1nZLtaK893LOPom03MEwGpKzX8vw+84Kc1n7mnaNRwqHqqx4VTc+G1YMLrRvt/b3hfSShOsJvy4ppZV1A9ZQO8oef7LjDOu7znotrXhsVKg00Xgixl/xs6MtSUU9PxyjAXP3fHV3MLAkTcaaCKOh2x4vPaJnxp8Izjtl5a/0JG7aT1IupcHsKg2Xfz5r3mhluAcjCrNit736uQwAAACLF+fndU+vz9Hj/Lz4OD+P8/MAAIjP93oAAAAAAAAAAIBFgjAa0GfSLq3V2XW9Hga64JBDDqm7/dxzz2l4eLgtJ0g9+OCDTbc3nzjn9KUvfUl/9md/pr/8y7+cdVLZtm3btG3bNv3jP/6jpMkTsd7ylrfokksuadtf4mw8MW7FihWJll+5cmWs+w0Pt/8ipT179rR9nQAA9IvxWik4PesGlHLptmyjXcESRIsKsZT9RBdHgoXGCuTkXL5t3xNJFVLhIJFXTeO+pLyzwwBWKDDj+DVfL1hBMyvk1ekYRM7l5eTkAyciJwuOhd+j7VRIx9+/WvuIfKpg7qfDIbjw819ILYkMEnaS9dpbET2LdVxifd9Y08t+QhVfnnNsMWq/3o7gaVT8jGM0YO5GyjvNeauya6XAV5T3XASDzrlz5GZz3qbBzV0cSf8azKwOhtFG+imMZhzfWMdzAAAAQKdwft7iwfl58XF+3txwfh4AAAAAAAAAAAAAtF+q1wMAgMXq1FNPnTVt69atbVl343oKhYJe+tKXtmXdvZLJZPSxj31MTz75pD71qU9p06ZNyuVywftu27ZNl19+uY444gh96Utf6vJI52Ziov3RDy5KBAAsZPZFte0JzEjR0Zuar7ZtO4tdVOCk4itdHAkWGiuQkzeiTN0Q9R1lhbOmVI3Pw1wjRmiNHc80wmhWvKpN70fnXERoK1lwrNPMoFlgnGbALbU0IrAWCsH13/eBfZxhh8VCrP1oPh1+La0wmmQH5BKNJxCmm9KOMFpU/Kwd4wcWu5HKjuD0rBvQsnSyC1KBuXq+Mqrv77k7OO/opcfrBQMHd3lE/WkosyY4PSp02G2dPhYGAAAAgEacn5cM5+e1jvPzAAAAAAAAAAAA2od/egEwhTAaAPTIYYcdpsMOO6xu2q233tqWdd922211t0866SQNDAy0Zd1TqtXeREDWrVunyy67THfeead2796tu+++W5/61Kf0ute9TsuWLau77+7du/WmN71JN95445y3OzQ0VHf7+eefT7T87t27Y91vzZr6i5c+/vGPy3s/p/+uu+66RGMFAGA+Ga+VgtNzqXzbthEVS7G2j+Ss6I3UnoAKFi8rFmTFiLqhkI4IEkXEfmq+qppqwXmE0XrDCoiN14qq+dmvlRmvauP70Y611W/bex8ZHOs0OwgWCrhZz1shYWDN+j7ofAjOYo2/4isq1+Lv/+zHFn4towIkVjAviah1lGtzv+gsKn4WFU0DEI8VUpoML7ngPC/OQEBn3L37NlUVjgOfObi5y6PpX4OZ1cHpo5X+D6N1I8oLAAAAYHHi/LzWcH4e5+cBAAAAAAAAAAAAQD8gjAYAPfSrv/qrdbf/6Z/+SeXy3KIPO3bs0E033RS5nSmZTKbudqUSvrgoZGRkJPng2iyXy+mUU07RZZddphtvvFHDw8P64he/qCOPPHL6Pt57vec971GtFo4HxLVu3bq624899lii5R999NGWthN3OQAAFqtxI+iSa+NFtVHxpKiAEZIpViMCKr79f7Ubi4d98X0Pw2gR244K+lS8/TNbxmXMeegc633k5TXhx+umVXzZ/D5rZ6jPDqPV7zPHfcmM2HQjTpEoaGZEsPKpJeZYS7WifMOfCepGmC6pqEBZKUGgLCoeF7IkIn7XjuObsYixR32XxRX1XTnhx1VtwzaAxWzECCkNZVcbWTSgM6q+qu+MfjM4b3X2BTpm6fFdHlH/GsquCU63Ps+9UDR+h9PLYzEAAAAACx/n580N5+cBAAAAAAAAAAAAAHqFMBoA9NB73/teOXfgUrIdO3bo2muvndM6r7766rqTt5YuXarf/d3fDd53xYoVdbdHR0djb+fBBx9MNK6Zj7NTBgYGdMEFF+jee+/VIYccMj396aef1ve+9705rfuEE06ou33PPfckWv7ee++Ndb9TTjml7rm67bbbZl3IDQAADhivlYLT2xl0ibpANyrKgWQagz0zVWrETdC6ohFUameIKqkBl1PK+LXBplxvAAAgAElEQVRcVJCo4u0LdTIuO+dxIbmo/U1jzKtUtb/n2hmDsENhjeOx32uFtB3NahfrMxgaV1T0q2AEvrxqGvf1xwn9GEqM2rYVDwne1wiMWs9PLlWQM/JGUbHSuKLeX1HfZbHX3+QYLOq4AkBzu8o7gtOHMmsl0mjooh/s/S8z7LVp5a8q5dJdHlH/GsqEw2ijleG++TcGK/ray5/NAAAAACx8nJ/XXpyfBwAAAAAAAAAAAADoFsJoANBDRx99tDZv3lw37YMf/KC2b9/e0voeeughffKTn6ybdtFFF2nVqlXB+7/gBS+YtXxcN998c6Kx5XK56f8fHx9PtGxSg4ODOv/88+umPfHEE3Na5+mnn153+1/+5V9iL7tjxw7deuutse67du1avexlL5u+/dOf/lS33HJL7G0BALDYWNGLnMu3bRtR0ZskwRJEKxoXSEvtCahg8erHEJJzztx+VOyn4u1IIGG03sino6JWDSGyiNe2ELGepKyoWWMkMCrC187AqLkN4zGHxmXt7wvppdFxuoblrDhdL2McUdtOEmC1niPr+Um5lHLGvKh9clxjHd6vNzsGs6KYAOIZqQwHpw9lw+ElSfLi4lG0352j4d+NZ1xWp658VZdH098GM6uD0yu+or3V57s8mjBr/93Ln80AAAAALHycn9cZnJ8HAMBixh/RAQAAAAAAAAB0B2E0AOixv/iLv9CSJQcu+hgdHdX555+vvXv3JlrPjh079IY3vEETExPT0w4++GD96Z/+qbnM8ccfX3f761//eqxtffOb39R9992XaHyDg4PT/79z5866v5rZCZlMpu72zBO/WnHGGWfo8MMPn769detWfeMb34i17BVXXJHo8f7BH/xB3e33ve99id8PAAAsFuO1UnC6FfpoRdYNKK1McF6SYAmiRQV6yn7CnAc0YweVenvxvRUrior5RMWEMi78PYXOShLlig6Rte/9aI2pcZ8VGWpLheNq7VSIOU5rmjT5WCPDYrNicOFYVy9jHNEB1njHGd578zmyQnmStMR4nceqcw+jRY29HWG0UpN4G8dowNyMlHcGp6/KrJUzL3YhjIb22j7xU/1o7H+C805YfrqWZVZ0eUT9LSpcOFIJf6a7rfHYbEo3orwAAAAAFjfOz+sMzs8DAGCx4t+EAAAAAAAAAADdQRgNAHrsqKOO0l//9V/XTbv77ru1efNmPfPMM7HW8dhjj+nss8/Www8/PD0tlUrpn/7pn7R27VpzuVNOOaXupK+vfvWr2rp1a9NtvfWtb401rpk2btw4/f+VSkW33357rOXGxsb013/919qzZ0/sbe3du1c33HCDuf1WpFKpWSdEXXzxxU3/0uUNN9ygz3zmM4m29du//ds66qijpm8//PDD+o3f+A2NjIwkWs+OHTtmPQ8AACw0VvAol8q3bRvOOeXTyQNGSCYqYNKOgAoWr34MIUl2rMgarxT9WUgTRuuJnMubgZjxHoXRrFBY3FBbSill3UDbxmOxHnNo326NNZ9aonxE5LBxOeu4wdrPd0PKpZVz4eMWKx7SaMKPq6ZacF5UOM5+DeZ+fFOMiKuV57hfL9fKqvhK9PYJowEtK9fKer4a/j1kVHgJaLctI7eY884Y3NzFkcwPy9Mrzaj7aGW4y6MJM4/FevyzGQAAAICFj/PzonF+HufnAQAAAAAAAAAAAEA/IowGAH3g7W9/u9797nfXTfvud7+ro48+Wp/4xCf09NNPB5fbtm2b/uRP/kTHHnusfvCDH9TNu+qqq3T22WdHbnf58uW64IILpm9Xq1X92q/9mm699dZZ952YmNDnPvc5nXzyydq+fbuGhobiPjxJ0itf+cq62xdddJE+85nP6Hvf+54ef/xxPfnkk9P/7dy5s26773nPe7R+/Xq9/e1v19e//vXIk7Duu+8+nX322Xrqqaemp5188sk68sgjE4035D3veY9e8pKXTN/+2c9+ptNOO01f+cpXVKvVX4C8b98+XXHFFXrjG9+oWq2W6PlKp9P6yle+ohUrVkxP+9a3vqXjjjtOf/M3fxP5+Hft2qUvfelLetOb3qRDDz1U11xzTYJHCADA/DPurYtq2xs46WQ4BJOiInPN4idAFOvi+6hYUDdY31PWeKXoMFrWZec8JiTnnDNfy9lRrvD33IDLKe3SbRvTXMdTSC2Vc+HYWztZn8Gyn6h7r9d8bVZkbuY6ouJ0jY/Rfsw9/j4w4m5xjzNaje4tMQONbQijdTB4Gud54RgNaN3uiIDSUMYOo/lODAaLVqlW1D3P/0dw3mH5DTq8MPff9y80KZfSYHZVcN5IeWdwereZx2IRoVsAAAAAaBfOz+P8vJk4Pw8AAAAAAAAAAAAA+l/4z0YDALru05/+tIaGhvSxj31M3k9eRrZnzx596EMf0h//8R/r6KOP1qGHHqqhoSENDw/rqaee0iOPPDJrPdlsVldffbV+//d/P9Z2P/rRj+qrX/2qRkdHJUk///nPdc4552jDhg067rjjlMvltH37dt17773at2+fJOmggw7SVVddlegvU/7mb/6mPvzhD0//lc2f/exns042m/LWt75V1113Xd20559/Xtdee62uvfZaOee0YcMGHXHEERocHFQmk9Hw8LB++MMfzvornkuWLNHf/d3fxR5nlGw2qy984Qs688wzNTw8eYHgs88+q9/8zd/UunXr9PKXv1wrV67U9u3b9Z//+Z8qFicv3F65cqWuuuoqvfOd74y9rWOOOUbXX3+93vCGN2j37t2SpGeeeUbvete7dMkll+jYY4/VYYcdphUrVmhsbEyjo6N69NFHY/8VUwAAFgorlJJL5du6HSuY0o5wCCZFBUzmGlDB4las7gtOj4oFdUMhZQWJwuOVoiOBGcJoPZNPLQnuDxq/16wAZLujXHFjntZ48un2xkUtUZ/BUrWoZZnJ9/SEH5c3cjv51JLpOF2s18DY1/T6+yCfWqLd2jVretzjjFJEXDTq/WU97jHjezMu77353SvNfb8e53nhGA1o3a7KDnPeUHaNHc/0pNHQPv/1/J3mz4hnDm7u8mjmj8HMag2Xfz5r+khE8LBbqr6iCT8enNfrYzEAAAAAiwfn5x3A+XmcnwcAAAAAAAAAANCvOCsZwBTCaADQRz760Y/qzDPP1Lve9S499thj09O993rwwQf14IMPRi5//PHH62//9m91wgknxN7mIYccouuvv17nnXde3V863LZtm7Zt2zbr/i960Yv0b//2b9q+fXvsbUhSoVDQV7/6VZ133nn66U9/mmjZRt57PfbYY3XPUcghhxyiG264Qccee+yctjfTMccco29961s699xz9eyzz05P3759u26++eZZ9x8cHNRNN92karWaeFuvetWrtHXrVr3pTW/S1q1bp6dXq1Xdf//9uv/++5uuI+lfDgUAYL4Zr5WC03Op9kZd4kZm0Lqo57LsJ7o4Eiw0JSOgWEj3OoxmfK9Uw+OVomNChNF6J2/scxrfe9b3XL7N70V7nxVvPO0OtVmiPoPF2j4t04rJ/48IbE2tw4rTNU6zAmK9jnEUzPdQvOOMqAhY1PvLCjSWIgKNcZT9hKqyQ45zDaPFeV6iYnEAoo2UdwanF1JLlU8V5GSE0YA28d5ry8js37VL0tLUcr18+eldHtH8MZRZE5w+Wgl/rrvJ+rlM6t7xJwAAAABInJ8XF+fncX4eAAAAAAAAAAAAAPRaqtcDAADUe9WrXqWHHnpIX/jCF3T22Wcrk4luWOZyOb32ta/V1772NW3dujXRSVdTfuVXfkX33XefXve618m58IVta9eu1fvf/37df//92rhxY+JtSNIJJ5yghx56SJ/97Gd13nnnacOGDVqxYoXS6bS5zMqVK7VlyxZ94AMf0Mtf/vKmz4ck/fIv/7I+/vGP69FHH9UrXvGKlsYa5aUvfakefvhhXXLJJVq+fHnwPsuWLdPb3vY2PfDAA9q0aVPL29qwYYPuu+8+ff3rX9erXvUq5XK5psts3LhRl1xyib7zne/ohhtuaHnbAADMB9aFtblUvq3bsaM3RDfaJSrqUvF2XAVopmgEfnodQrK2b41Xio4JpR1//6BX4sYzre+5docg4u6zrPF067MRtZ2Z+/eoiMbUY7VDgw1hNCuU2LffB/GOM6zjESennLOPiZakw2G0sTmG0aK+xySpXJtbGC3O8xL3uQMw24gRUFqVXRu5nOdvs6FNflx8WD+beCo475SVZ2sg1fx35IvVYGZ1cLoVPOymqN+fWMevAAAAANApnJ9Xj/PzOD8PAAAAAAAAAAAAAPoRV0wCQB/KZDK68MILdeGFF2rfvn363ve+p23btmnHjh2amJhQLpfTunXrdOSRR+r444+PdTJOM0cddZRuvPFG7dy5U1u2bNEzzzyjsbExrVu3Ti960Yu0adOmupOezjrrLHmf/GK3FStW6OKLL9bFF18c6/7OOZ1xxhk644wzJEnFYlEPPvigfvzjH+u5557Tvn375JzTihUrdNhhh+m4447TC1/4wtjjueOOOxI/BmnyhLBrrrlGn/zkJ3XHHXfoiSee0MjIiNauXav169dr06ZNWrr0wAXGrT5f0uRz8JrXvEavec1rVCqVdO+99+qpp57S8PCw9u3bp6VLl2poaEgbNmzQxo0btXp1+OInAAAWovFaKTi93RfVFlLhcEixSnSjXaIuko6KQQFRvPd9G0IqpK2Ylh2BsiKBKaWVcvz9g16x9jmN+wjrtW13iKxgxK5mj6d/w2gzo1ZR+4ep/bMdpzvwnFd9VePeOG4wPo/dYofd7O+DmezIXcG8wG5yvhFkm+PxzVg1Oow21/16Y/AueB/CaEDLdhkBpaHMmv3/F/5eIYyGdrlz9JbgdCenMwY3d3k088tQdk1w+mhluMsjma0YcVzT62g1AAAAgMWJ8/MO4Pw8zs8DACAZ+9+gAQAAAAAAAABoJ8JoANDnli5dWnfiUaetWbNGr3/967uyrVYUCgWdcMIJLf3lzU7I5XI655xzura9fD6vM888s2vbAwCg31mRmVybw2j5dHh9RDfao1ybMINPU/OBVoz7khnp6PXF92ZMq4VIYNZl2zImtMZ6LzXGO4u1cCyq3TFPa32l2pi899OhLCt+1a1oYNqlNeBymvDjs+bN3L9an4mUUsq6AUl22GzmsuMR0cFCm1+DpKzxxz3OsO5nhV2nLDEienM9vmm2/FzDaFHfk0nuAyBspBIdRuNSF3TS7sqI/nvPfwbnHbP05VozsK7LI5pfBjPhi7JHKsN1x4G9EHV80OufzQAAAACA8/PqcX4e5+cBABCNP5YDAAAAAAAAAOiOVK8HAAAAAABAK7z3s6IzU9odmbHCIlaYDck0i5fMNaCCxatkhJ+k7sWf7O0nDxJZAcEMYbSeihvPLFXD+4xm8aqkrPd2TTWV/YHQpPVesyJdnWBFMGZG28xxppZMxz2sxxwnsDa5rva+BklZ448b97Iid82Oh6ztjhkRv7iaLT/X/XqccBvxWqB1I+UdwelD2TVdHgkWo7tGb1VV4WPeMwc3d3k0889UwLBRxZe1t/p8l0dTz9o3Z1xG2RQ/zwAAAAAAAAAAAAAAAAAAAACoRxgNAAAAADAvVXxFNVWD83Iu39ZtWWGRuMESRGsWL7FiUEAzkSGkLsafgtuPEYRqZMWE0i7TljGhNXGjVkUjFmWF1Vplvbcax2R9ProZDSwYn8O6oJnxmZi5bJz9dNS+ptDmoGpS1msWN+5l3a+Qjg6+mYHGiO+hOIrVZmG0ue3X4xx/RX2XAog2UtkZnH4guOSC8718h0aExaLqq/ru7luD89Zk12nj0pd1eUTzz1B2tTlvtDLcxZHMZu2/ex2oBQAAAAAAAAAAAAAAAAAAANCfCKMBAAAAAOal8VrRnJdrc+DEisTEDZYgWrPASdlPdGkkWGiiQ0i9DaNZQSgrniVJVSMmlCGM1lPWPqfUsJ9qvD3FilO1yoqETY6heSgsKqzWbmYgsG6c4edt5rJ2WOzAslGhrG4+5pC4cT2LHRqJPh6ywmnF2j5533rgqNP79TjHX8RrgdYUq2Pm52coOxlGc0YYDZirB/bea8a7Ng1uVsrxz9rNLE8PKqV0cJ4VPewW+1i4t4FaAAAAAAAAAAAAAAAAAADQX+ZwOQOABYYzyAEAAAAA89K4t8No+VS+rdsygysRkRXEV6zaIShJqvhyl0aChcYKe6SU0oDLdXk09azvlbKfMANoZeOzkHHZto0LydlRrrGG2+HvumbxqnaNZ3IMM0Jhxuejm9HAOOFRKxY483kzw2Iz9i9WTCvjMsqmBpqOtZPivocs1v2aRfes562mmsZ9Kda2Qzq9X4+K3E0hXgu0JiqctCqztsnSnIGAudkyektwetYN6NSVZ3d5NPNTyqU0mFkVnDdS7nUYrfdRXgAAAAAAAAAAAAAAAAAAAADzB2E0AAAAAMC8NDPu0ijX5shMIW0EV4hutEXUaylJFV+R5089oAVRF98757o8mnpR8Snru8WKCRFG662Csc9pfP8Vje+6ZvGqpHIRcdCZQU8r7tnNOIUVhZv5GbD2ETOft7yxn565rLWefohxWM9DqRq9f5xihcKaRfei3nvN4maR4zFidlPmGkaLEz3jGA1ojRVGc3IazE7GlqxDKI7WMRfPjj+tR8d+EJx3wvJNWppe3uURzV9D2TXB6SOV4S6PpJ79s1l7f38DAAAAAAAAAAAAAAAAAAAAYGEgjAYAAAAAmJfGayVzXlQUphXWhboTflxVX23rthajZgEVr5pq4nlGcq3GgrohKoxmxZAqNSuMlmnLmNAaK6xVathPdSsGkXKpWMExKxxlxUA7wXzuqjODZs2fN+vzVIrxePvi+yAdDpQVa/tihUGt/Wiz6FvUaz2XsNhY0zBapeV1S82DqpP3IYwGtGKkvCM4fUV6cEaItbdxWSxMd47eYs47c2hzF0cy/w1lwmG0USN82C1F42ecfojUAgAAAAAAAACS4N+KAAAAAAAAAADdQRgNAAAAADAvWVEMp5SybqCt2yqkwsGSyXEQ3pirOIGTsg8HoYAo1ufTihB1U1QAwIocVRWOCR0IlaAXrLDWzPef994M9XXi/WjH2ibHUPVVTfjxRMt2ghXmmvkZsAOHS4L/P9PM18D8PojYx3eL9R6qqaayn2i6vLUfbfbeinrscwmjlYzXbEpljvv0ZkFVafJ9EycqB6DeiBFOGsqGQ0sz8ZlDq0q1ou59/vbgvMPzR+qw/IYuj2h+G8ysDk4fKQ93eST17NgtYTQAAAAAAAAAAAAAAAAAAAAAsxFGAwAAAADMS+O1UnB6PpWXc+39y5RWsEQijNYOxWrzwMlcIypYnKywT9RnulusIJRkR46sz0EmRRitl6yYQ8WXVa5NvmZlP6Gaqsby7X8/FowxTX0movZd1rKdYAfNijP+v/nn2BpzqVZUzddir6dXogNlMSJgLT62rBtQWpnwOqt7m27XMtZkzOVa89hblDhB1ZqqsaJyAOqNlI0wWuZAGM3J+lmLMBpac9/uO8zv9jMHN3d5NPOfFTIcNcKH3WIdr0T9XAQAAAAAAAAA6Ef8mxAAAAAAAAAAoDsIowEAAAAA5qVx48LpXEcCMxHBkmrzOAeiWRdIz1SpEUZDclYIKeoz3S1pl1HWDQTnWSGksvE5yDjCaL0UFZ+a2ldFfc914v3YLDjWL2E0O2i2b8b/h/ezhfSB5816Dby8Jvy4JKlYteJhvY9xRAdYmx9ntPpd55yrex5nirNvtjQLnlZ8peV1x1n/9P2I1wKJ7TLCSUPZtV0eCRYL7722jN4SnLcsvULHLz+tyyOa/wYzq4PTRyrD8r53F6vZkdreH4sBAAAAAAAAAAAAAAAAAAAA6D+E0QAAAAAA89J4rRSc3okwWtQ6S0bACPFFBXqmVDxhNCRnh5Da/z3RCisKZY3bigllXKZtY0JyUTGHqe+3qO+5TrwfrXVOjcN6j00u2704hbWt4owYmB3RKMz4/4jXoBr9GvRDjCNqDFGv1ZTSHL7r7O+h1o9vmgXJqqqo5mstrz9OLG7yfoTRgKRGykYYLbOm6bK9yy1hPnus+KCenfhJcN6pK/+XsqlwSBi2ISOMVvFl7a0+3+XRHGDtv/vlZzMAAAAAAAAAAAAAAAAAAAAA/YUwGgAAAABgXrIuqs2l8m3fVjaVVcZlg/OKMeMcsDULqEhSmTAaWmBFcQqppV0eSZgVQ7LGXSWM1pfy6ah45uQ+IipuVUi3//1ovreq+8cTFWqLeDztZkW5Zn4GrLHOXLaQjgiLTcXgjP111LLdkkvl5eSC85rFvWq+qnEfjsXGeW+ZYbQ5RMWKMaKx1vdZM9772MGzOFE5AAd47zVSCYfRVmUPhNGs7yvSaGjFnaM3B6c7pbRp8Jwuj2ZhGMraIcPRynAXR1LP/tms98diAAAAAAAAAAAAAAAAAACgf3hOSwawH2E0AAAAAMC8NF4LR0Dyqc4EXeLEW9CaUoxwSYUwGlpghX26GX6KkjeCTNa4rc+BFW5Ed0Ttd6b2Eda+wslpwOXaPybjPT4VrLLGk3UDXX0/mZ+B6pj8/n/JssY6M/5mheBmLl8yYl1Ry3ZLyqWUM95HzQJlVihWkgoxjomseFqcuJmlWG2+bNlPtLTuCT+ummqx7ssxGpDM3upu81hjKBMnjAYkM1rZpfv33Bucd+yyE7Q6+4Iuj2hhWJ5eqZTSwXlW/LAbrJ/7O/U7HAAAAAAAAAAAAAAAAAAAAADzG2E0AAAAAMC8ZIVAci7fke1Z4ZRmwRI0F+c5JIyGVlhRHCt02G12cDH8/WZ9DtIu07YxIbmMyyrrBoLzivtfS+t7LpcqKOXa/yvaZu8tazzd/mxY+9aaqir7CdV8zfw8zBzrgMspZfyqe+qxFo319EuMo9UAa9Q+NJ8KR8/ibLcYI1oaUvVVjftwvHamiq+0tP4kx10cowHJRAWThrJrzHlTvPjTbEjmu6PfVE3V4LwzBjd3eTQLR8qlNZhZFZw3Uu5hGM06pjMirQAAAAAAAAAAAAAAAAAAAAAWN8JoAAAAAIB5adx3N3BirbfUYjgEBzSLvkhSmTAaWmBFcawYU7fZwcV9welWGC3jsm0bE1pj7iP2vwe7Hemz3lvT4zH2Xd3+bEQ9/mJtTONGQEOS8ukDyzrnIh7z5Dqsx9wvocRWA6xRAbNCjGMiK0ZifQ81E3e5VoOnSY674hxfADhglxFMSiuj5enBLo8GC13VV3TX6K3BeWuzB+uoJS/p8ogWFitmOFoZ7vJIJkWFU/slUgsAAAAAAAAAiMv1egAAAAAAAAAAgEWCMBoAAAAAYF6yYim5VL4j27PDIUQ35irOc9hqQAWLW7+HkKxxlKrh77eKrwSnZwmj9ZwdRpt8Lbsd6TPfW/vHYY4n3d3PRlQIo1Qbi9w/NC5rratY3bd/fVZQtT++D1oNsEbFv/Kp8LHLTAXjPq2G0eKGy1rdryc57uIYDUhmpBIOow1mVyvlDvxzonNc7IK5u3/PPdpdHQnOO2Nwc917DskNZlYHp4/0KIwWGbvtk2MxAAAAAAAAAEBcvtcDAAAAAAAAAAAsEpleDwAAAAAAgFaM10rB6bmIyMpc2NEbohtzFec5JIyGVnQ7RpVUwYhQWUEi63OQIYzWc9Z7aur7rduRPms8xf1RCut7t9ChfajFinJJkyGzqqvGXtZ+DabidOHPlfU57LZWA6zW/IzLKJtq/t2wxAqjxQycNRqLGVRrdb+e5LgrbqQNwKSRcjiMtiqzJtby3nMRDOLbMnpLcHrWDeiUlb/S5dEsPEPG59b6nHdadOy2P47FAAAAAAAAAAAAAAAAAAAAAPQXwmgAAAAAgHlpKnTSKJfKd2R7VrzFGgfiqflqrOeQMBqSqvqqJvx4cF6/hJCaxbQaWZ+DtONXfL1mxzOnolxGpK9D78VmMU87GmiHyjohl8rLyckH/qJ0sbpP1VTFXLbxMVqf61JtTFVfUdlPGOvpl++D1gKs1vy4r6X1HrRCcs00C7lNKbe4X4+7/qT3BSDtquwITh/KNgaWXPB+oe9yIORn409pW/HB4LxXrDhTS9LLujyihWcwuzo4fbQy3OWRTIo6nul2mBcAAAAAAAAAAAAAAAAAAADA/JDq9QAAAAAAAGjFeK0UnG6FRebKWm+r4RBMsl7HRuUaYTQkE3Xxfb+EkAqJw2jhSFTGZds2JrSmWeTOek2t98Ccx2NFwqpFee8jxtPdMEXKpZSLiMpZYauU0sq6gbpp1mtQrI1FBjg79RokZX8fRMdDreco7mtpbbfVqFixGu+4qNLifr1ZKK7V+wKQRso7g9OHMo1hNGButozeYs47Y3BzF0eycA1l7DCa992PGJaq9vFMv/xsBgAAAAAAAAAAAAAAAAAAAKC/ZHo9AHSPc265pNMlrZe0RtIeST+T9EPv/aNt3E5W0mmSDpN0sKS9+7fz3977J9u1HQAAAACLmxXUsgIrc2VHb6KDJYgWN7xS8YTRkExUEKdfQkhRIacQ63NAGK33zH3E/giE9Zp2LuYZHk9VFZX9hIpVazxLOzKeKPlUIfh5Ldb2qWrEAAvpJXLO1U+LiNNZj3dq+/0g6ffBlJL5Wsb7nisYr3ncwNms5WIGY1vdr1uPNzwWwmhAEiMVI4yWXVt32wXvBcRTrI7pvt13BOcdkT9Kh+aP6O6AFigraFj2E9pX3aNlmRVdHY91fJBxGWVTA8F5AAAAAAAAAAAAAAAAAABgcer+n4AF0K8Ioy0CzrnTJP0fSWfLeM2dc/8j6bOS/ta3+KfCnXNrJX1E0gWSVhn3uVvSX3rvr29lGwAAAAAwZdwIkuVT+Y5szwyuJAh0YLZOB1SweEWHkPojjGZ/r4S/3ypGJCrj+BVfr+XT4bjWVPDLimhaUaq5KkTEvkq1ohkOLBiPo5MKqUEmqwYAACAASURBVCUa1fCs6aVaUTVXCy4T+gzbAdOxJqHE7sfgQlo9zrDiX4V0vMdl3W/cl1T1VaVdOtZ6pscTM6jW6n49SeyMeC0QX9VXtbsyEpw3O7AUTqN5TkFADPc+f7vGfThyfubQ5i6PZuEazIbDaNJkBLHbYTRrn9wvP5cBAAAAAAAAAAAAAAAAAAAA6D+pXg8AneOcyzrnPivpu5LOUXQI7yWS/kbSHc65Q1vY1mZJP5T0+zKiaPudKukrzrn/65zrj6sOAQAAAMxL47XwxdS5iBjMXOTT4Qt2kwQ6MJsVgGpEGA1JRYWQ+uUCfPt7ZZ9C3Xrrc5Bx2baOC8nljX3P1D7CiltZy819PPZ7vFQbM/dd+R5EwqyxFqv7zHhmKPxmvgbV6DBap44bkmr1OMN6bHHfW0siXvOo580yFjN4Wm5xv55kTHEjbQCk3ZVd8grHKFdFBJaAJLz3unP0luC85emVeumyU7s8ooVrRXqlUgrHTUcqO7s8mrkfrwAAAAAAAAAA+kn4j+gAAAAAAAAAANBuUaEszGPOuYykr2syiDZTWdK9kp6RtFSTQbTDZsw/Q9JtzrnTvPfDMbd1lqQbJQ3MmOwlfV/S45IGJb1M0syrZ94saYVz7jzvffhqGwAAAAAw1HxN4767YbRQhEVqLRqCA6zoTaOyn+jwSLDQWDGhjMsqm+qPkFjBCELVVFPZT2jA5eqmV30leP+M41d8vWbFvUq1yfij9X4spDsTIrPeW5NjskNhUct1irXNUq2omhHpCQXcCkZYrFQrzuvvg2bHGeZ7K2bkLuo1L1b3aWl6eaz1TIl7XNRq8DRJkHbq8weguV3lHea8oUx9GM2ZF7vMjroCMz069gM9N/FMcN6pK/9X3+yTF4KUS2sws0q7KrM/26PlWP/821ZFY5/cL8FqAAAAAAAAAEAS/JsQAAAAAAAAAKA7Ur0eADrmKs2Ool0jaZ33fpP3/k3e+1/33r9w//0en3G/X5Z0g3Ou6Z9ycc6tl3SD6qNod0k6xnt/gvf+t7z3r5a0XtJ7NRlmm/JaSVcmfWAAAAAAMOHHzXk5l+/INkMRFonoxlzFff4qRhAKsPRT+MkSFS4KRQOtkFDGEZHotbwRzxzf/x1nvR+t5eYql7L3hcWIUFgv4hR5M2hmB9xCz5sdp+uvEJwlavxR5vreiorzJYmQTRmrxguethpGSxKkjRtfBSCNVHYGp+dcftbxihVG4xIYNLNl9ObgdKeUNg02/pMm5mowszo43fq8d5J9vNI/x2IAAAAAAAAAAAAAAAAAAAAA+gthtAXIObdR0qUNky/z3r/Xez/SeH/v/a2STlN9HO0MSRfE2NxHJA3NuH23pFd57x9u2Ma49/4aSb/VsPz/ds69MMZ2AAAAAGBaVEwrKgYzFwUjMFL2Ey3HPRA/usJzjKSK1f6/+D4qXBQaf5kwWt+yAltT33HWd11UHG8uUi5thkKL1X0qVcP70YIRKeukqOfO+hyHlolcj3Hc0E/fB9b4S7Wiar5mLmc/R/HeW1HPwVgLYbFO79etxxtCvBaIb6QcDiWtyq5VjL+hAzQ1Ut6pB/beF5x33LITtSq7tssjWviGsmuC00cqw10eSfcjwQAAAAAAAAAAAAAAAAAAAADmP8JoC9MHVf/afst7/5dRC3jvn5P09obJH3fOpa1lnHO/JOmtMyZNSHqb974UsZ0bJX1+xqScpD+LGhsAAAAANBqPCF106sLafERgxArMoLliNV50hTAakrKCOFZ8qBcK6YjvlUA8wPocZFymbWNCa6y41FTUytpvdTIGkTciZ3uru1VVxRhP9z8f1nNQqo1FRDRmj9N+DcZUMkOJ/RPjsMbi5TXhx83l5hoaSTeJ6CVVjBlTs0KPzSSJnY03icoBOGCkEg6jDWXCYaUQL9+u4WAB+u7ub6qm8HfymYPndnk0i8NgZnVw+mgPwmhzDbkCAAAAAAAAAAAAAAAAAAAAWHwIoy0wzjkn6dcaJn8qzrLe+y2S/mvGpBdJOitikQslzQyn3eC9fyzGpq5quP1bzhlX3wEAAABAQFQYLZfqzI8XhbQdGIkbAcFscQMn5RphNCRjfS6tWFQvDLicnFxwXjEQO6r6cMwq47JtHReSsyJU47WixmtFMxbTyRCZtW4rfiP1JhxoBTGK1bHg50CSCoHPsR1YK2rM+j6YJ6HEqECZFUaLWl/c+7ZyfNPp4GmSMXl5jdfMv+EBYAYzjJadHUab/GeoAE8YDWEVX9Zdo7cF560bOES/vOS4Lo9ocRgywmgjZftYsFPMkGvE71kAAAAAAAAAAAAAAAAAAMDixGnJAKYQRlt4jpY080qVCUl3JFj+3xtuvyHivr/RcPvaOBvw3j8s6d4Zk5ZKenWcZQEAAABAkkoRkYucEUaZq6h4Sty4F2aLGzhpNaCCxcv6XPYi/GRJuVREzKk+HlDzVdVUC96XMFrvWa+jl9doZZe5XCjw1S4FY0xRMQzrcXRS1GfA+hyHlokKge02XoNOPv9JRT33UccZVjwuyWtpfS9a647S6f160mMu4rVAPLvKO4LThzKzw2hAUvfvuUfPV0eD884Y3GzH9jAnobChJI1WhuW7fMbQfPjZDAAAAAAAAAAAAAAAAAAAAEB/yfR6AGi79Q23H/PejydY/gcNt38tdCfn3EGSXjJjUkXSXQm2c4ekk2bc3izppgTLA4vG2NiYvv/97+uxxx7Tzp07VSqVVCgUtG7dOh155JF62ctepoGBgbZs6yc/+Yn+7u/+Tlu2bNGjjz6qkZERlcsHLlS99tpr9ba3vS247H333adrr71Wd999t55++mnt3r1btdqBi/afeOIJHX744ZKks846S1u2bJme1+2LcAAAwPw3blxUm3UDSrt0R7YZFUZrJRyCSXGfO8JoSMqK4UR9lnuhkFoa/Bw0Tqv4irkOwmi9F/W+Gq0Mt7TcXFnrHokYTyFlx8U6xQqalWpFVY0YYOixRYXARirhGFw/fR9EB1jtfaU1L0loxHrdS9UWwmgxl2l1v16sJgudEa8F4rG+J8NhpXDEyovf8SJsy+jNwek5l9fJK17Z5dEsHoNG2LDsJ7SvukfLMiu6NhbreKUXUV4AAAAACOH8PAAAgCT4gycAAAAAAAAAgO4gjLbwrGq4Hf4T7LbG+x/qnFvpvd/dMP3FDbcf8N4nuSrt7obbxyRYFljwqtWq/vVf/1XXXnutbr/9dlUq9gXw+Xxe55xzjn7nd35Hr3nNa1re5uc+9zldcsklGh9P0lKUKpWK3vWud+lzn/tcy9sGAABIarxWCk7PdfCi2rRLa8DlNBFoT0cFSxAt7nNX9hMdHgkWGiuGkyQW1A1WDKAxSBQVEco4fsXXa/l0a2G0Tr4frXWPlMPxGyenXCrfsfFYrM9AsbZPVVWD80KPLSosZj3mfvo+GHA5pZRSLRCDsyKi5dqEGU1MEn0rGO/fMSMwafHem1HKRuVa8jBazVc17sPHgBbitUBzE7Vx7avuCc5blVk7axqXuiCJZ0pP6sfFh4PzTlxxphlIxdyFw4aTRio7uxpGKxo/m/VTpBYAAADA4sP5eQAAAK0iuAoAAAAAAAAA6I5UrweAtmu8UjyXcPnQ/Y+OMW1bwu38OMY2gEXpP/7jP3T00Ufrwgsv1G233RZ50pUklUolfe1rX9NrX/tanXjiifr+97+feJs333yzLr744sQnXUnShz/8YU66AgAAXWcFjzoddLEu2i1WiW60Ku5zZ4VfAEuxGo7z9NvF91YMojHmE/UZyLhsW8eE5Ky4l2RHuVJKK+sGOjUk870+UgmPJ5cqKOW6/+viQir8GSjVirMCgVNCjy0qcmbF6frp+8A5Z47HiohGxUWt2FnwvsZrEDdyNmXcl4Jht5BW9utWGDcK8VqgOWu/IEWHlYA47hy92Zx3xuDmLo5k8VmRXqmUcSpAVLi3E6z9cT9FagEAAAAsLpyfBwAAAAAAAAAAAABA/8v0egBou8Yz2Q9OuHzo/r8s6T8bpm1ouP2ThNt5quH2aufckPd+JOF6gAXlIx/5iD7ykY/I+/q/pOSc08aNG7V+/XqtXr1aO3bs0E9+8hM9+uijdffbunWrTjnlFH3605/W7/7u78be7oc+9KG6bV544YV6xzveoUMPPVTZ7IEL7Nesqb8Qbvv27fqrv/qr6dsDAwP6oz/6I5177rlau3atUqkDF92sX78+9ngAAACascIYUWGadiikl+j56uwfW4hutC7uc1fx5Q6PBAuNFVBMEgvqBut7q/GzEfUZyDh+xddrOZeXk5MP/GVkKzhTSC+Rc65jY8qnw++tsm/8uwr779/hfajF2q6X17g39veBz3HWDSiltGqqzppnPeZ+i3EU0ks0Vts7a7oVEW0MKM6UJPpmhtGMwKTFCtmFVIzXJErU4zWXIV4LNGUFPCVpMLN61jSn8L4rtA/E4jZW3av7nt8SnPeLhY1anz+8uwNaZFIurZWZVcFj0ajPfSckid0CAAAAQKdxfh4AAAAAAAAAAAAAAPMDV00uPD9quH2Ic2699/6ZmMufEpi2MjBtsOH2z2OuX5Lkvd/rnCtJyjdsZ05hNOfcCyStTbjYL85lm0C7XHrppbr66qvrpi1fvlwf+tCH9OY3v1mHHXbYrGW2bdum6667Tp/61Kem/5rkxMSE3vnOd2rfvn269NJLm273kUce0QMPPDB9+9xzz9UXvvCFWGO+8cYbNTFx4ELWK6+8Uu9///tjLQsAADAX40bwKOfywentYl2020qoA5PihtGsqA1gKdbCQZ9+u/jeDBIlCqNlzXnoDuec8qlCcH8wUmn8OwaTOv1eTLp+673Yaa08D4VATM05p0JqifbV9iTYdm9icBbrubD2lVHHH0mib1YwMunxzZjxvRvSSvA06phhwOU04ccDyySLuwGL0a7KjuD0ZemVGkjlAnM6F/XEwnLP87cHv5sl6czBc7s8msVpKLMmHEYzjk87oeariWK3AAAAANBJnJ8HAAAAAAAAAAAAAMD8kWp+F8wn3vvnJD3SMPn/ibOsc26ppPMDs5YHpi1ruB2uEkRrXCa0naTeJemHCf/7Whu2C8zJ5z//+VknXZ1++ul66KGH9KEPfSh40pUkbdiwQVdeeaUeeOABvfjFL66bd9lll+mOO+5ouu2tW7fW3X7DG94Qe9ytLnvHHXfIez/9HwAAQFIlI4zW6cCJtX5rPGgubnSl4isdHgkWGutzmSQW1A3W90qxmiSMxt8+6Ac547UcLc+OUUidfy8mDY71KhJmRbmi5I2IW9K4Rivb7iTz+8DYV5aq9j40yetpBhqryaJiSe7fyn698XtxpqFs+G9lFDlGA5oaMfZTQ5nVCdfE73lxQM3XdOfILcF5K9KDeunyk7s8osVpMBv+HIdiaZ0S9fuSUOwWAAAAADqF8/MAAAAAAAAAAAAAAJhfCKMtTP+34fYHnHOHxFjuo5JWBqbHCaOF/9R3tMYz4RvXCSwKjz76qP7gD/6gbtqpp56qW265RevXr4+1jiOPPFLf/va3tXHjxulptVpNb3nLW7RzZ/QFLtu3b6+7HXebc10WAABgLsZr4R9Bcql8R7drRWyKtWThEBxQih1Gs6NQQCPvvRnQ6VX8yWLFqxo/G1ERoYzLtnVMaI21jxipDAenJw2XJZU0NFFIh+NYndbK82A9tqSPudOvQVJWoMzaV1rBtJzLK+XSCbZrHd/E20cfuH/846FyC/t163lIK6Pl6dCvtaUSx2hAU1YgaZURHHTGeri8FjM9MvaAfl7+WXDeaYOv5vi1S4Yya4LTR43j006ICqP127EYAAAAgIWL8/MAAAAAAAAAAACA+YPzkgFMIYy2MH1a0u4Ztwcl3RIVR3PO/W9JlxqzazG22cq+hf0RIOl973uf9u7dO317cHBQ119/vZYtS9YKfMELXqCvfOUrGhgYmJ7205/+VB/96Ecjl5u5bUnKZuNfkDSXZQEAAOZi3IcvrM11OHhkBoyq9oW+sJVrE5Gxp8b7AnFVfFlVhd9bVnioV6wYVWOQKCoOSFiiP1j7CCsWZcWo2iVpaKJX0cABl1Mq4a+prceW/DH3V4zDeg2sQJkVCksauYv7PdRMkjBaK8FTazz5dMGOu3GMBjS1q7wjON0KKslZaTTggDtHbwlOTymlTSvP6fJoFq+hzOrg9NFyN8No9vFEvx2LAQAAAFi4OD8PAACgnfi3IgAAAAAAAABAd2R6PQC0n/d+1Dn3dknXz5h8rKSHnXOflXSLpJ9JKkh6qaR3SDp9xn2fkTTzz8qNBjazt+F2K1dONi7TuM5WfEbSlxMu84uSvtaGbQOJ/ehHP9I3vvGNummf+MQndNBBB7W0vqOPPlrve9/79PGPf3x62j/8wz/o8ssv19DQUHCZWi1O+zBsLsu2w0MPPaQf/OAHGh4e1sjIiPL5vNauXauNGzfquOOOUy6Xa2m9lUpF9913nx5//HHt2LFD4+PjWrt2rQ4//HCddtppyufzbX4kAAAgqfFaKTg9l+rsfrqQNsJoCcMhmJQkuNJKQAWLV9R7K5/uTfzJYoWQGr9Xoj4Dacev+PpB0rBYp0MQScNrnQ61WZxzyqeWaKwW71eDGZdRNjUQnJf0Oe3VY7ZY4cZSNfydZobCEr4X7ajYPnnv5WJGkIrGOEMqPnnw1AzBpZZEHKPFj7UBi9VIJRxIGsoaYTSD9/wtHEzaVd6hB/b+V3DeS5adpMFsONaF9hs0PscjlZ2J9vFzEXV80G/HYgAAAAAWJs7PmxvOzwMAAAAAAAAAAAAA9ApXTS5Q3vsbnHPvlfT/SUrtn7xc0vv3/2e5RtJKSW+dMW3ehNG89z+X9PMky3TjpH/AcvXVV9ddMLZmzRpddNFFc1rnpZdeqk9+8pMqlycvmt+3b58+97nP6QMf+IAk6cknn9SLXvQic/lXvvKVwenXXnutJEWOz/o8PfHEEzr88MOnb5911lnasmXL9O0kF809/fTT+vM//3N9+ctf1vbt2837FQoFvfKVr9Rb3/pWvf71r1c6nW667ocfflhXXnmlvvGNb+j555831/vrv/7ruuKKK3TkkUfGHjcAAGivUq0YnJ40BJKUFVxJEvjCAUmCchVf6eBIsNBEvbes8FCvWONp/F6xPgMppZVyqeA8dFfiKJcRcmqXpOPpdKgtSiEdP4wWNc6kcY1ePuYQK9xoHWfYobBk33OF9LLg9KoqKvsJDbh4F7aNJYiQtbJft0NwSyKO0cLHjAAmee81Ut4RnDeUWRuc7mT9mwphNEz6zug35RW+aPuMoXO7PJrFbSgTDqOV/YT21fZoWXpFx8dgHa+klVHGZTu+fQAAAADg/LxJnJ8HAADah38TAgAAAAAAAAB0B1dNLmDe+2skbZb0SIy775X0bkmXSjqkYd5zgfvvbrgdvkLG4JxbptlhtFCADVjQ/v3f/73u9m//9m9rYGBgTutcu3atXvva10ZuZz7y3uvKK6/Uhg0b9OlPfzrypCtJKhaLuvnmm3XBBRfo6aefjrxvtVrVH/7hH+rFL36x/vmf/9k86WpqvV/60pd0zDHH6Oqrr27psQAAgLkbr5WC03Opzv7laCu6kSTwhQOSBOUqvtzBkWChiXpvdTqgmJQ1nlK1MYwW/gxkiQn0DStqZd6/w1GupONJGhVrpyTPRdRnOHEMLuFz1Gn2cUY47lWsWqGw9r32xQSxsyTHQ+UW9ut2CG6J+RhKCcYPLEZjtb2a8OPBeUPZcFAJiFKulXXX7tuC8w4eOFRHFl7c5REtbkOZ1ea80fJwV8ZgRUrz6QJ/vAoAAABAV3B+XnycnwcAAAAAAAAAAAAA6CeZXg8AneW9v9U5d4yk10k6V9KpktZJWi7p55KekHSjpC9475+TJOfcUQ2r2RpY9WMNt1+YcGiN99/lvR9JuA5gXnvmmWf05JNP1k179atf3ZZ1v/rVr9YNN9wwffuee+5RuVxWNjs/L5ivVCp64xvfqOuvv37WvIMOOkjHHnus1qxZo/HxcW3fvl3/8z//o71798Zad7FY1Hnnnadbb721bno2m9VLX/pSrV+/XrlcTs8995zuu+8+jY2NTY/p0ksv1cjIiC6//PI5P0YAAJDMuHFhba7DwSM7ukEYrRWN4acoZT/RwZFgoYl6b/VbGK2QXhqcPu5LqvmqUi4tSar4SvB+GcJofSPpe6vT78XkkbBehtHiPxeFVPgzI0mFhI+hlzG4EGs8VuzRDIW18XkoVse0MrMq1nrGqvEjZJVa8jCaHYJbYr7frRgLgEkj5Z3mvFWZZGE0P9fBYEH47713a2+18W8rTTpjcDMhrC5bkRlUSinVVJs1b6SyU+v1oo6PwTpe6XQkGAAAAAAkzs9LgvPzAAAAAAAAAAAAAAD9hjDaIuC9r0q6Yf9/kZxzh0paP2PST733Pw3c9eGG2xsSDuuIhtsPJVx+wapUvZ4hEddx64ekTLq3F+Dcdddds6adcMIJbVn3y1/+8rrbxWJR999/v0488UStX79eTzzxxPS8v/qrv6r7y4r/8i//opNPPnnWOtesmbwQ7qyzzpqe9sY3vlH33nvv9O2Z651p/fr1welxXXbZZbNOujr33HN1+eWX68QTT5x1/1qtpnvuuUdf/OIXdd1110Wu+93vfnfdSVcrV67U5Zdfrne84x1avnx53X2LxaI+85nP6E/+5E9UKpUkSVdccYVOOukkbd68ucVHBwAAWjFeKwWn9yoyYwVLEC3J82ZFoYAQ672Vc/np0Fi/KER8b5VqRS1JL5MkVXw4IpR2/HqvXySNO3Q6ypV0/b2MhEXFzhpF7euTHAdk3UDffX6s95AVFLG+6xK/F41AY9Q2wvdNEEYzvtOiRIXgzHhtgggrsBjtquwITk8ppZWZoeA8J+v36qTRIG0ZuTk4PefyesWKs7o7GCjl0lqZWaWRyuwI4khluCtjMPfffRasBgAAwOLC+Xnd0+tz9Dg/Lz7OzwMAAAAAAAAAAAAA9Jv+uvIL/eDshtt3GPf7YcPt45xzS7z3ca80O63J+hatZ0akI/549l9uR3s9/vGUDl/T2zE888wzdbfXrVun1atXt2XdL37xi4PbO/HEE5XJZHT44YdPTx8cHKy730EHHVQ3v9GyZcum/z+fz9fNi1quVbfeequuueaaummf+MQn9MEPftBcJpVK6dRTT9Wpp56qK664YtY4p3z5y1/WtddeO337hS98oe644w7zcRQKBV122WU65ZRTdPbZZ6tUKsl7r/e85z165JFHlEqlkj9AAADQklKtGJyeS4X3++1iXbhbqhblvZdzvY3vzjdJAipeNVV9Vek+i1qhP9nxnPjxpW7JRwShirWxpmG0TJ+FnRazpDGqpPdPKpcwNtHp8URvO/5Yo8aZ5DH0MgRnSRr3skMjyR5bzuWVUko1zf6dZJJ9dbLgafIwWtE4/sunliifThaVAzBppDw7liRJKzOrzJisHUbDYvd06XE9UXokOO8VK89SwfiuRmcNZlaHw2jG57/drN/f9PLYEwAAAOD8vO7p9Tl6nJ8XD+fnAQAAAAAAAAAAAAD6Ef9CjEbvaLj996E7ee+flfTAjEkZSacn2M5ZDbdvSbAssCDs2rWr7vbQ0FDb1p3P55XL5SK3N19cccUVdbd/7/d+L/Kkq0aDg4PBE6+893XrzmQyuummm2KdPDZ1QteUbdu26cYbb4w9JgAAMHfjtVJwetIITFJ5I6pUVaWlwMdiZ10gbSn7iQ6NBAuNFedJEl/qlqiAUXFGDKniK8H7ZFy27WNCa6x4pnn/DsdB0i6tAZdrfsf9ehkKK0QEAhtFRTSSPIZ+jHFYca9xX1LNV2dNLxrBtKSPzTlnvgbFaoIwWoL7tnLcVDIibYXUEvO1TxJrAxajUCxJklZl1yZel5ef63Awz20Zvdmcd+bguV0cCWYayoYLBKOV4a5s34qs9uOxGAAAAICFh/Pz4uH8PAAAkAx/RAcAAAAAAACd5TktGcB+hNEwzTl3uurjZo947++IWOSrDbcvirmdoySdNGPSPkm3xlkWWEgaT4Rq/MuQc9W4vuHh7lzk0k4PPPCA7rrrrunby5cv11VXXdWWdd9+++364Q9/OH37zW9+s4477rjYy7/73e+uO6Hrpptuasu4AABAc+VaWVWFA0E5F/5L1O0SFb0hvJFckoCK1FpEBYtTyfg8JokvdUtUEGDm47De/4TR+kfSuEM3YhDzJRSWT8ePykUF5ZI8BitC1ktRxxmhmKj9XZf8sVnPhxUzmet9yy3s04tGUDWfWmK+9mU/wfEDEGGkHA6jDWXCIaUonH+wuI1V9+q/nr8zOO+XCsfoF3KHdXlEmDKUWR2cPmqEEdutVA3vv3sZ5QUAAACweHB+XnOcnwcAAAAAAAAAAAAA6FeE0SBJcs4tkfTZhskfbrLYFyRVZ9w+3zn3SzE21/in5P7Ve1+KsRyABJyb/3+N6dvf/nbd7QsvvFArVqxoy7pvu+22utsXXHBBouWXLFmiV7ziFdO3v/Od77RlXAAAoLlxH76oVpLyEUGRdogbMEI8SWNyFR8O4gGNitXwe6vT3xGtyKayZtxs5mekUrPCaJmOjAvJJX1/dSMGkST+FRUc67REQbOI+yZ6vH34fZCPiDeG9pnWfrSV6NsSY9tJ9tVJgqetxMpKEd/tUZ8nK8gCQBoxwkhDWTuM5jT/f++M9vvP3d9W2U8E5505dG6XR4OZBo3Q4Ui5OxfrW78r6WWUFwAAAADahfPzonF+HgAACxV/LgcAAAAAAAAA0B1cOblAOecy3se7Ytw5t0zS1yUdM2Py9d7766OW894/5pz7vKS37580IOk659zZVujMOfc6SW+bMWlC0kfijBNYaFatWlV3e/fu3W1d/+joaOT25oO777677vZZZ53VtnV/97vfrbu9atUqPfnkCQR+aQAAIABJREFUk4nWMfMksCeffFK1Wk2pFM1RAAA6bbxmxy1yqbw5rx2iohtJI19IHpOr1MIX2gONrPdWL8NPUfKpJdpbnf0z4czHUVX41zxWVA3d15dhtDYFxzotyXMR9TwniZ31Y4wjavyh7zXr2KOV95b1fIwliJ2N1ZKF0bz3iS4ctL/blzaN1y5Tey7kAxaaXeUdwelDRkgpGhfBLFY1X9Odo/8enLcys0ovWXZSl0eEmazQ4UhlZ+J9cSvskGv/RWoBAAAALDycn9cc5+cBAAAAAAAAAAAAAPoVYbSF62Ln3Osl/aOkf/Pez7q6ZX8Q7fWSPibpkBmznpT0rpjb+TNJvyFpaP/tUyV9yzn3O977H83YVk7SOyX9RcPyf+G9fyrmtoAFpfFEqJGRkbatu1QqqVSq7xOuXr26bevvlmeffbbu9jHHHGPcM7mnn3667vbJJ588p/XVajWNjo7OyxPcAACYb8ZrwQ6zpORRmqSiwmulKmG0pJLG5Mq+3KGRYKEpGQHFfgwhSZMRo1AYbeZnpGK8/zMpwmj9Iun7K9+FUF+S/WI3Qm2WJM9d1DjzqaVtWU+vRI2/VK3/Xqv5mhmLLSR4HqaXMd6PcSOmFV9W2ccPmHp51VRVOsE/UZhhlVQhMnxJvBYIq/mqRiu7gvMiw2hGRMl7wmiL1Y/G/kc7ys8G552+8tVKO/45upeGMuF/Gyr7Ce2r7dGydGfjofPtZzMAAAAACwvn5zXH+XkAAAAAAAAAAAAAgH7FmegLl5P0yv3/eefcE5IekTQiaYmkgyQdL2mgYbknJL3ae//zOBvx3j/jnDtf0jdnrOs0SQ85574n6XFJK/dva23D4t+Q9H8SPq4Fb/2Q9PjH+Yt2nbZ+qPl9Ou2QQw6pu/3cc89peHi4LSdIPfjgg023Nx8MDw/X3R4aat8L17judtizZw8nXgEA0AXWRbWSlOtwGC3l0sqnCsExEN1ILuq1DLHCUECjYm1fcHo/hpAkO141M7hYrhlhNEcYrV8kjTt04/0Yd0wppZV1jb8m7J4kz0XUYyokOA7oxxhHNpVVxmVU8ZVZ8xq/18ZrJXmFI0T/P3t3HibJXd95/vOLzKzKrOrqrupDRyO1JCRAlhCHEAaE1LKRhGg9BnN5PBaPx4Y16wfjGWaN1zasxwJ7AWMW7zDGDHgZG5tBuwwPYJtdZAO2dSFA6DBgJIMEultHH1Xd1VWZWZkZv/2jVa2srN83MvKKzKx6v55HjzojMiN+eUZkVcS7ugnFThkxNevzdN31ugjE1nwtdSwnKbxWiqYT7zP7aEDY0cYRxWoE520vtP4652lO4TAaNq8b578cnB4pp0tmX5nxaNBq1gijSdJC7VAGYbTwdnhUv5sBAABgc+D4vOwM+xg9js9rj+PzAAAAAAAAAAAAAACjijDa5uAkPfOp/5L8raRf8d4f6GTh3vsbnHOvk/QpPR0/c5Iueuq/kP9b0lu99+GzbjaxfM7pzJ3DHgWycPHFF6+bdvvtt+uqq67qedm33377msulUkkveMELel7usDnXv5PuVlbCJ9P2wvvwCckAAKC/qnElON0pyiTqUoymgkEv62Rf2MqNdLGVVYTRkJYV3RvFEJIklXJWkOjpz5VQKEmS8imjQhi8Yi59jKrgJlIHoXqRNhRWyk319Tt3p4q59O/NUsJ1O3mPj+rnQTGa0rHG0XXTWz/XkvY7rM+U5PWGb7OcclvdTXzs+HY93Wu00rBjqsWopJzLa8JNasVX19+WfTQgaL5m/ypoLs8vKZDOodoT+pel24PzXjDzUm3Lc6LysG3LzylSpFjxunnz9UM6TWcNdP3WPsKo7osBAABgc+D4vM2D4/M6x/F5AAAAAAAAAAAAAIBRwZ+927hukfQ5SfNtrleXdL2kK733P9tpFG2V9/7Lkp4r6eNt1vlNSW/03l/jve/sDHhgg9mzZ4/27NmzZtpXvvKVviz7q1/96prLL3nJSzQxMfhISL/t3Ln2KMTDhw8PZNnFYlFxHMt739N/Z555Zt/GBwAAbFbwaDIqZhJ1KRqRmW6CIJtdp6GSGmE0pGRF90ojevK9Na7m90iDMNrIs7YPIVm9FtMGJ4Ydpujk8Uh6nAvRROr3RFJgbZisx6J1PyNpv6OT1+KqKSOmlnZbXY47/1GvFXzsdBylp6Ju1uu43GAfDQiZrx8MTi+4CU3nZszbWd+4vDgpdTO6eeHvzef+stmrMx4NQiKX09b8XHCe9TnQTxVjO9zN/goAAAAAdIrj89rj+DwAANC54f3RNQAAAAAAAGwO/K0cAKsIo21Q3vt/9t7/G0k7JJ0r6fWS/oOk35X0v0l6u6QrJW333l/tvf9aH9b5pPf+bZJOkfQKSW+W9K6n1vsGSc/03r/Me//5XtcFbBSvetWr1lz+9Kc/rVqtt9jDgQMH9Ld/+7eJ6xkXp5566prLd999d9+WffLJJ5/4d6VS0UMPPdS3ZQMAgMGqxpXg9KxOql2Nb7Sygm2wdRqTqxNGQ0rW+7E4oiEkM+bT9B6xXv95VxjImNC5vCuo4NKd9JRViCxt/GvY0cBOHg9rO9zpsoYdg7NY42oNg6UJhXXCeg0sG6HJVlaQMkk9Xkl93cQQXO74PqD1eu80xApsFodr4b+TM5ff2SY4zckuOK4Wr+jrR74anHfqxB6dUzov4xHBMpffGZy+UDs00PXGvqGqD/8MZ9j7nwAAAAA2D47PS8bxeQAAAAAAAAAAAACAUUUYbYPzx/3Ae/9F7/2feO/f571/v/f+Y977r3nvFwewzhXv/T957z/lvf/Dp9b7Be/9/f1eFzDu3vGOd6w5yezAgQP6i7/4i56W+ZGPfGTNwVvT09N661vf2tMyh+XlL3/5mss33HBD35Z98cUXr7ncr78GCgAABq9qBI8mo2Im67cCbN0EQTa7TkMlhNGQVjkOvx9H9eR7a1wVwmhjZzJlpDOrSN+4RMJKHcRN24VQ04ZSswqqdsoaV+s20wqFRYpSB/rWrre3qJj1uZuk1sF2PSmMtvoZmiYyCeBp8/WDwelzhXBAqT3+NNtmc8fi17XUCP+a8bLZfW0Ce8jSXGFHcLr1OdAvVtheGt1oNQAAAICNh+PzknF8HgAA6By/EwIAAAAAAAAAZIMwGgAM0Xnnnad9+/atmfbbv/3beuKJJ7pa3t13360PfehDa6a9+c1v1vbt27se4zBdccUVay5fd911WlzsT8/xqquuWnP5k5/8ZF+WCwAABs86sTZtjKZXJePk3YoRbENY7BsdP2aE0ZCG9958bQ07/mQxYz6N9mG0nMsPZEzoTtrAVychsF6kfc0POxpYjKY7uG7yWEsplzXs+2wp5cLjb/48kKRKIxz7KkXTXYVopoz1LqcMni0bgdik56uT7boVaCu4iROfg2kikwCeNl8LB5G253cl3s4p/BnjOQlm07lp4cvB6cWopJ/c9lPZDgaJZvPh4OHCgMNoSXHSUY3UAgAAANh4OD4vGcfnAQAAAAAAAAAAAABGFWE0ABiyD3/4w5qaevrEzYWFBb3+9a/XsWPHOlrOgQMH9MY3vlErKysnpp166qn6vd/7vb6NNWvnn3++LrvsshOXjx49qne96119Wfa+fft09tlnn7h822236c///M/7smwAADBYVR8OHk26YibrtwIfRDc6YwXuktRiwmhor+orZphjdENI7T9X6r4evE7BFQYyJnQnbYiskxBYL9IGJ4YdDSxEBeVTRv7ajXVc7rPFGn/rfoYVGinmuouMWEG5alxW7OO2t7f2g2Zy28zbWJ9rIa1huFXN47Yeu6QoC7CZHTaCSHOFcEAJaPZg5T49ULk3OO8lW3+a6NWImTPCaPO1QwNdb9LPSdLGbAEAAACgHzg+z8bxeQAAAAAAAAAAAACAUUUYDQCG7Nxzz9Wf/MmfrJl26623at++fXrkkUdSLePee+/V5ZdfrnvuuefEtCiK9OlPf1q7du3q63iz1nrg2J/+6Z/qwx/+cOrbHzlyRJXK+uhGPp/X7//+76+Z9ra3vU1f+MIXOh7j1772Nf34xz/u+HYAAKA7lTgcRsvqxGsrpEJ0ozPdPF51TxgN7VWMeI40uiEkK9hWjpdO/Nt6/ecJo42UtNui0pC3Wa2sOF+W0sTi8q6gQpT8mk8fpxv+fQ6xIiGt200rNNJtALKUC6/Xy6tq7Hs1W276vGq2NT9r3qbmV8x5raz72/yesx67pO0CsJkt1IwwmhFQaiecpcVGddP89ea8vbP7MhwJ0pgr7AhOn68flPeDe/eWE/YhiOcBAAAAyBLH5yXj+DwAAAAAAAAAAAAAwCgijAYAI+Atb3mL3v72t6+Zdsstt+i8887TH/7hH+rhhx8O3u6+++7T7/7u7+qCCy7Q9773vTXzPvjBD+ryyy8f2Jiz8opXvELvfOc710z7zd/8Tb3mNa/RHXfcEbxNHMf6xje+oXe84x06/fTT9fjjjwevd8011+gtb3nLicsrKyt6wxveoDe96U3msiWp0Wjorrvu0nvf+16dd955uvLKK/XQQw91ce8AAEA3qvH6g6olaTIqZrJ+KzhiBTsQlvR4TUczwemE0ZBGUnRvFOJPIVagqTkESRhtPKSPcrWPgPVD2gDbKETC0ow1zTjTvs9H9/Mg/Di0bjetz7pun8ukoJoVPVszHiM+NhVtUWT8GqKT7bp1f5uDbsVc+LEjXgusV4trOtpYCM6bKySH0ZxzxhzSaJvFscZR3b54c3Dec6Yu0KmTp2c8IrRjBQ9rfkXL8bGBrdf63h8pp4KbGNh6AQAAACCE4/NsHJ8HAAAAAAAAAAAAABhF+WEPAABw3Ec/+lHNzc3pfe97n7w/fhLZ4uKi3vWud+nd7363zjvvPJ1++umam5vToUOH9OCDD+oHP/jBuuUUCgV95CMf0dve9ras78LAfPCDH9RDDz2kz33ucyemfelLX9KXvvQl7d69WxdccIF27NiharWqxx9/XN/97ne1uLiYatkf//jHNT8/ry9+8Ysnpl133XW67rrrtGvXLj3/+c/Xjh07FEWRjh49qv379+uee+4J/pVLAACQjeZQUDMrJNJvVnDECoIgLOnx2pLfpqWV9ftzhNGQRlJ0bxTiTyFWkKjcWJb3Xs451X09eJ2c48d7oyTta6xkBJz6LfV4RuC9kSp6luI643SfQ8z9jJb9H+uzrvswmh3rKzeWpTYNxrIRTyvlplVwE6r69T9H6WS7nmb/z7oPxGuB9RbqB815VkBplZMVRsNm8Y0j/6iaXwnO2zt7dcajQRqz+R3mvPnaQU3nwnHyXlWM7/2laCohsggAAAAAg8PxeTaOzwMAAAAAAAAAAAAAjBrOnASAEfIHf/AHuuyyy/Rrv/Zruvfee09M997r+9//vr7//e8n3v7CCy/UJz7xCV100UWDHmqmcrmcPvvZz+r888/X+973PtVqT584u3//fu3fv7/rZRcKBX3+85/Xhz70IV177bVrDqg6cOCAvva1r6VaxvS0fQIxAADor2ocPgB6Mipmsn4rwEZ0ozNWQCWnvBmrqRFGQwpl470YKdKEm8x4NOlYIaOG6qr7mgpuwgwI5V2bWhEylTbSWUyIUPVT2khWVnHR5DGkiZ61H2fa+zw5Avc5xNoGtoZFrMBot8G3Us6+nbXNTnOdUjSlvCsYYbRw8LGT5Tc/3+yjAenNJ4XRCslhNMvqycTY2GIf6+aF64PzZvM79LwtP5nxiJDG1vycnCJ5xevmzdcP6TSdNZD1mmHTjCLBAAAAABDC8XlhHJ8HAADS4w9fAAAAAAAAYLA4KhnAqmjYAwAArHXFFVfo7rvv1mc+8xldfvnlyueTG5aTk5N69atfrb/5m7/R7bffvuEOulrlnNO1116rH/zgB3rrW9+q7du3J15/y5Yteu1rX6u//uu/1p49e9ou+7d+67d0//3363d+53d0xhlntB3PzMyMrr76av3pn/6pHnvsMb34xS/u6P4AAIDuVY0Ta7MKnJRy4QOurRN+EWY9XqXclApG6MkKQwHNrABOMZqSc6N5cGZykOj4/bECQnnH3z0YJWkjD6XMtlnpIlnWti1LacaaJnqWJgw26YrKuVyqcWWtaDwOrZ9t5mddyue8Vd4VVHATwXmpwmiN8HWmctPm51Qn2/VKw9hvaHq+S0Zw0ApmApvZ4Vo4jDYVbRmJWCZG191Ld+pg7YngvEtnrxrZ7etml3M5bcvPBect1A8NbL1J380AAAAAYJg4Pi+M4/MAAEA6nJYKAAAAAAAAAMgGZ04CwAjK5/O65pprdM0112hpaUl33HGH7rvvPh04cEArKyuanJzUySefrGc/+9m68MILNTk52fW63vOe9+g973lPV7e94YYbMr2dJJ111ln6sz/7M3384x/XnXfeqX/913/VwYMHdezYMU1PT+ukk07Sueeeq+c973kqFMJBDcspp5yiD3zgA/rABz6g+++/X3feeacOHDig+fl5RVGkmZkZ7d69W+eee66e9axnKZfjJC8AAIahGleC07MKo1mhgEq8LO/9yIaXRo0VKSlFU8oTRkMPyg3jtdVlLCgLSWGASrysrZo1X//W+wXDkTbyUDQCTv2WNm4zChGcVNGzVPG09vdlFO6vxQq7tW43k7aj3a97WrXGyvp1G9GzteMJX6cUTSsfFaTG+nm1eP26Ol1+8+vG3EczomrAZjZfD4fRthd2tr2tE993NrMbF64PTs8pr4u3XZnxaNCJufzOYARt3ggl9sMg9lcAAAAAoF84Ps/G8XkAAAAAAAAAAAAAgFFAGA0ARtz09LT27t2rvXv3DnsoIyWKIl100UUD+wucZ511ls4666yBLBsAAPSmEofjFpNRMZP1l4yYTaxYK76qSZfNOMadFVkpEkZDjyrGyfdpg1XDkBQGWI0J2GE0frw3StIGt0oZhblyLq+Cm1DNJweorG1bltIEMtK8j1NdZwxDiTW/ooavK/fUe94KjfTyWVfKTeloY37ddGtdaa5TiqaVdxPBeZ1s1639v+ZYXikXfh2X4yXitUCL+dqB4PTZfPswmsXLd31bjIeDK4/r7qU7g/NeOPMybcvPZTwidGI2vyM4fcEIJfbDOH43AwAAALA5cXxeGMfnAQAAAAAAAAAAAACGKRr2AAAAAAAA6EQ1rgSnp43R9CppPdZJv1jPCpwkhdFqMWE0tGfHeUb35PvJpM+VxvH70/D14Hzr/YLhSPs6KxoBp0FIFxzLZhuaPIb240xzX0opomejHONIei6aP99WPxta9fJZZwXy0oTRlo3gaSk3rYIRcKwbn2shldgOqj797/BjtxqvBfC0eSOENFdIE0YLRwYJo218Ny38nfk8753dl/Fo0Cnr/W19HvSDHXId/r4nAAAAAAAAAAAAAAAAAAAAgNFGGA0AAAAAMFaqRlBr0hUzWX9ScKRsREqwXtkInJRyUypE4dBT3RNGQ3tWoHCUQ0iRi8w4wGpMoGa8/gmjjZa0r7NShjGIdMGx7EJt9hj6E3DrV2BtWJKei+YY2iA+66zHpWxEz1bFPjaDp6WE4Gkn2/VywvKf/nfCY0e8FlhjvhYOIW3P72p723AWDRvdSlzVN478Q3DeMybP1Nmln8h4ROjUXH5HcPp87dDA1llp2EF0AAAAAAAAAAAAAAAAAAAAAEhCGA0AAAAAMDZiH6vqK8F5aWIp/VDM2SfwEt1IzwqoFPsUUMHmZQUKRzmEJNlxgNWIoPX6z7v8wMaEzqXdFmUZg0gVE8tlF2ozx5BinGkCbv0KrA1L0nNRbtrPKBv7HKWE/ZR2Srnw42vFTFdV44q84vAyo+m+bNcrxmd783sp6XklXgusdbgeDqPNFXZmPBKMizsWb9FSvBicd9nsPjlHMm/UWe/vhfohee8Hsk475Dq6+2IAAAAAAAAAAAAAAAAAAAAARgNhNAAAAADA2FjxVXPeZFTMZAyTriin8EnfVqQE61mRlRJhNPTIPvl+tMNoVsxpNSJY9/XgfOv9guFIG3nIMtSXFPRcNQrhwDRBr1SRt1TXGf79tSQ9F6ufBw1fV82vBK/Ty32z1t0ujJY0v5Szt+u1lNt1732qEJwVdpOI1wLNyo1l8z0xl08TRgt/F/IaTFgJo+HGheuD00vRlF689bKMR4NuzOZ3BKev+KqW42MDWacVRE/aZgMAAAAAAAAARh1/LAUAAAAAAACDNaC/9wpgDBFGAwAAAACMjapxUq0kTaaM0fTKOWdGV4hupFduGIGTaFqFHgMq2NzSxHNGkRUzKjeWFPuGvOLgfMJooyVtlCqrmKfUPnpWcBPKuXxGo7GleezSRd7ahzZG+fMg5/IquIngvNUAWVKItZfInfXYWdvs1nGFTEXTPQdPa35FsRrBec2vmwk3SbwWSGG+ftCct73QPozmHCe7bDYPlH+ohyr3Bee9dNsrMt2vQfesMJokzdcODWSd1j5C2pgwAAAAAAAAAAAAAAAAAAAAgM1r+Ge8AQAAAACQUiUxjJZlZGY6GNhIGt9G8e2jN+kbR/7BDCpsyW3V87b8pF4x9xrlXM5cjhWRK0Yl+TgcgEobUMHmlvTaGmVWzKgSl1X3dfN2hNFGS5pwVzEqKUr4fOy3dsGxNCGxLKQJeqV5H6cJpaYN2A1LKZpSrbGybvrqfkYlIVTWUxgtZ4TREsJn0vGAo6WYEDxNu11PG4KLXKRiVDL20QijAavmaweC051cYjipLf4024Z148L15ry9s/syHAl6sS2/XU5RMLi8UD+o03Rm39dp/Yykl/0VAAAAAAAAAMCw8TshAAAAAAAAAEA2CKMBAAAAAMZGNa6Y87KMHlnrSgqDbAQ3zV+v/+fJTyRe5wk9qh+V79GTK/v1plPebl7PCpSUctOq+fUxGIkwGtKxAjqjEn+yWEGtcryU+NrPO368N0rSbIuyjnK1G9OoRAPTPC5p3seFqKC8KyS+b0Y9jFaMpnS0sbBu+up+RlIoLE2cz2JFSpLWlzS/4CZOPB8habfrSVGz1tdvMZoKjqfdfQA2EytwvDU/p1yK/QpnTOcUmI3pWP2o7li8JTjv3Knn6+SJZ2Q8InQr53Lalp/TQv3QunnzgWn9YEerR3tfDAAAAAAAAAAAAAAAAAAAAMDwRcMeAAAAAAAAaVXisjlvMtMwWvgk3qTxjbtaXNOXDl6X+vpfP/JVPbHyqDnfCpQUo5IKbiI8BsJoSKHSsF9bo8wKElXisuq+bt7OCg5hOCZdUc5MxhxnPdeD0i48UcqNRjSwlCLolfZ93O4xzvo56JQVN1vdz0iKfPVy36zwXNn4XF21bIRhV5dnfU7V4nTb9aT1t95f87O0zX0ANpPDtXAYbS6/M+USkrdz2FhuPfI1M2S5d3ZfxqNBr6z3+YIRTOxF7GPzZySj/t0MAAAAAAAAAAAAAAAAAAAAwPARRgMAAAAAjI1qXAlOL7gJ5Vwus3FY8ZakUMm4u3vpTi3Fix3d5o6jt5jzKsZjVYqmlHf54DzrhHygmfU+HJX4k8WKV5Xj5cTXvvV+wXA459qGOtuFyvqtXShrVMIUaR6XtNGvdsvK+jnolB1KXF7z/1bH94e6/0yw92/C4bN281eXl4/CYbS023Xr/krrw7hJn6UAjps3Akjpw2gW3+PtMWpi39BNC9cH583ld+qCLS/OeETo1Wx+R3D6vBFM7IX18xtp9PfFAAAAAAAAAAAAAAAAAAAAAAwfYTQAAAAAwNiwTqydjIqZjsM6iTcp3DHuvr14U8e3uWMxHEarxSuq+3pwXimaVt71FlDB5tXwDa34anDeqMSfLFYIqdxYahNGC79fMDztXmtp4179MmrjsaR5jxaNcFenyyqN+OdBu7hXuWHHRXsxFYUDkjW/olpsfw6ZQcqnllfocbtuLb8YlRS5tb/isOJuG3kfDeiUFUbbXkgXRnNywemeMNqG8y9Ld+hw/UBw3qWzV2UaJ0d/zBWMMFr9UN/XlRRWtbbXAAAAAAAAAAAAAAAAAAAAALCKMBoAAAAAYGxU43Jw+mTGgRMzYLRBoxuVuKzvHft2x7d7bOVh7a8+GFie/TgVcyUVoongvFq80vEYsLkkvbZKRvBnVFjBp0pcbhNGyw9qSOhSuzhVMZftNqtdTMyKcGUt5/KacJOJ10kbOCzlkt/vxTbzh80Kt61+xlmfdb0+l8WEz8lKQtyk3AjPWw2t9Ro87eT+tovKAZDma+HQ1Vw+XRhNRhgNG89N89cHp+ddXi/fdmXGo0E/WO/zhQGE0SrGz2+k0dn/BAAAAAAAAAB0g98VAQAAAAAAAACyQRgNAAAAADA2zDCaK2Y6Dusk3kpjY0Y3vrP4LdV8OEp21fY36OdO+hU546C324/esm5aUpykFE2boae6r6cYLTazxOhexgHFTtnBxaXE174VHMLwtAs9ZB3paxdqK7UJp2Up6bEruInUr/d273crPDYqrEBZ+an9DGs72i6C107SayFp2102ommr4+k1jGatO/Tatl7vSdsHYDOJfax5I4A0V9jV07J9T7fGqHlyZb/uXr4rOO+FW16umfxsxiNCP8zmdwSnz9cOyvv+vouTo9Wjs/8JAAAAAAAAAAAAAAAAAABGC8clA1hFGA0AAAAAMDYqRhgt6+CRtb6kaMg4u33x5uD0rblZvXrnNfrpuZ/R2aXzgte5Y/GWdSdYJ4fRpnoOqGDzKifECbOOUXXKDC7G5cTXPmG00dNum5T9Nis5PNFufpaSwlydPG7jdJ9DSrnwfV0NjFihkV4jI1MJn5PLjXD8TLLDaKvLs4KntZTbdSs8G3oerec2afsAbCbHGkfN/Yq5/M5UywjnkCUOQdhYbl74O3PeZXP7MhwJ+mm2EH6fr/iquT3vlvXzm0iRCm6ir+sCAAAAAAAAAGSJ3wkBAAAAAAAAALJBGA0AAAAAMDaqvhKcPhkVMx1HKRcOh1g5YW0NAAAgAElEQVQn/o6zxfoR3bN0V3DehTOXKHI5SdJFM5cEr3Og9pgerv54zTQrcCIdfy6t0FPNr6QZMjYxKxYkSUUjNDQqrKBRNS6rFtuv/ZwRHMLwtItuZR3paxcU6zWm1U9Jj10nj1u7+zRK9zkkKZQo2YHRXu/XZFSSM5JHSZ+vVnRs9X5Y8ZO0wdNO7q8V19uI+2hAN+brB815c0YwCZvPSlzVrUf+ITjv9Mln6qziczIeEfplLr/DnHe4Zn8+dMPadyhGU3LOTiwCAAAAAAAAAAAAAAAAAAAAgEQYDQAAAAAwRqyoRdZhNCsyU46XMh1HFu5avFWx4uC8F2/de+LfL5x5mZzxY4Y7Fm9Zc9kKnBSjkiKXSwio1NMMGZuY9doquAkzuDcqrOCil9dSvBicFymnyPHjvVHTLkTWbn6/tYtltQu5ZSlprJ08bu3uU9b7DZ2yHofV/QwrMNrrcxm5qKt9HGve1FOfa9bnb9owmhlWCUTQrMdgI+6jAd2YN8JHeZfXTG5bqmVYQSMv3/W4MFq+ffQm83Nz7+w+olZjbFt+u/m9fSEhnNgNO5w62sFqAAAAAAAAAAAAAAAAAAAAAKOBMyeBPgudEOI9JwQBGG9xvD6GwglwAIBhqMaV4PSsT6y1ohtWuG2c3b54c3D6zsLJOrP4rBOXZ/Kzes7UBcHr3nH0ljXfi6yT7Fcf17zLB+d7xWr4RqpxY3My4zljcPJ90hgX60eC0wsjHnvbrIq5NmG0QMxpkNrFstqF07KU9D7o5HFLuk+TrqjI5ToaV9ba7WdYEchSH15bpSgcaVxu2GExa97qsnoPo4X3r0LPs/Xcb8R9NKAbh+sHgtNn8zs6iK0aPxPk1yAbgvdeNy1cH5xXiqbXxLExfnIup235ueC8hfqhvq7L+m5mBaEBAACATnGMHoCNhuPzAAAAAAAAAAAAAGAtwmhAn0XR+rdVrZbuJD8AGFX1en3dtNDnHQAAg1Y1ohaTGUePrOhGNS4r9usPWB5Xh2sHdF/57uC8i2b2rjsQ+0Uzl4SXUz+gByo/PHG5XeDECqhI6SMq2JzKDePkeyP0M0qSxniscTQ4Pem9guEZtRBZu21k1qG2JEmPXSePW78Ca8Ni3ddyY1ne+4QIZB/CaEasxFpn0rzVZVnB07pf/7OGECsEF7q/1mNQTgi7AZvJfO1gcPpcflfGI8Gour/yAz1c/XFw3su2Xa6JaDLjEaHfZvM7gtPn6+HPh27Z2+/Rj1YDAABgPHCMHoCNhuPzAAAAAAAAAAAAAGAtfmMK9JlzThMTE2umHTt2bEijAYD+aP0cm5iY4C9SAgCGohpXgtOzDqNZ0Q0vb45xHN2xeIs576Ktl66b9oKZlypSru2yrDhJ8UQYbSI4X5JqfsWcB1jRvXE4+T5pjIuNI8HpVmwIw9UuTtWPeFUnClEhMaKXdagtSSkhWtbJ45a0nFG6vxbrvjZUV93X7BBZP8JoxjKWYzssZs1bDT5ar7+02/SKGb1cP1YzXusrin0j1fqAjcwKH80VdqZehvUTQS/fxYgwam6cv96ct3f2VRmOBIMyZ4XRaof6uh77u9no74sBAABgPHCMHoCNhuPzAADjg+0TAAAAAAAAACAbhNGAAZiZmVlz+ejRo/Kek4IAjCfvvY4ePbpmWuvnHAAAWbFOrJ2MipmOIym4YsVKxtG3j94UnP6MyTO1e3LPuunTuRn9xPQLgre5c/FWxT6WZD+PqzGTQmQHfOp+/V/KBlaVrThPwnt2VBTchHIKh86OGWG0HGG0kVRqE+IbRpgraZ2jFKdIGksngcPk5YzO/bUUc/Z9rcTLKhv7Gv24b9YyykacrBavqO5rwXlPb9fDwdN6HL7dunVb9zfw2R6atsra/wA2k/maEUbLpw+jWSe7EEYbf4v1Bd117OvBeedNvVAnTezOeEQYBCuEaIUTuzXIkCsAAACwimP0AGwUHJ8HAAAAAAAAAAAAAOsRRgMGoPWAhFqtpkcffZQDrwCMHe+9Hn30UdVqa09W3rp165BGBADY7KpxJTi9k1hKPySFRzZKdOOx6sN6pHp/cN6LZ/aat3vRzCXB6Qv1Q/px+R5JdrxqNWaST4g9pY2oYHOy3n/jEEJyzpkBt8X60eD0vLMjghiedq+3Ybwek9Y5SnGKpLGUounUy+lXYG1Yku5rOV5WpZEcGO3FVC687oqx7baiZc3Lsj6r0sZOOwmrJD0GG2UfDeiFFT7aXtiV8Ugwir5+5KvmZ/PeuX0ZjwaDMpvfEZy+UD/U1/VY2+9x2BcDAADA+OAYPQAbAcfnAQDGD/vbAAAAAAAAGCx+5QtglX2mMYCuFYtFFQqFNQcqLC4u6kc/+pG2bt2qLVu2KJ/PK4poEwIYPXEcq16v69ixYzp69Oi6g64KhYImJyeHNDoAwGZXNYIWk1Ex03EkRTes6Ne4uX3xZnPei7aG42eS9PwtP6m8ywdPqL9j8es6Z+p8M6Ky+rjm3YS5/JpfMecB1vtvlMJPSYpRScca6yNooWkSYbRRNdkm9mAF8AYpKUBRMkJYw9CvoFm/AmvDknRfy/Fy28BoL6zHZ9kMo9n7PcUoOXjaUF2xjxW55J+RWvsNoccp6TV0fKzEn7B5NXxdR+qHg/PmjFBSiJMz5nAEwjhr+IZuXvj74Lzt+V167vSLMh4RBmUuvzM4faF2SN57OWe9xztjhVzHIVoNAACA8cExegDGFcfnAQAAAAAAAAAAAEB7hNGAAXDOaffu3XrooYfW/AXKWq2mQ4cO6dCh/v7VdQDIyurnW79OjgIAoFPVuBKc3kkspR8KbkKRcorVWDevYsTbxon3XrcfvSk47+zST2hH4STztqXctM6bvlDfPXbbunl3Ln5dbzzpfzIfo9UTpAsJsae6r5nzgHavrVFnBYkWG0eC063YEIar1GabNIzXo7VOJ6cJNzon1iSG0TqIfiUvJ9t9hm4k7dccrS8oVhyc148IpPU5VG6E42Tlhh1Gm8ptkZQccaz7WuJrMPaxGcYNjTXpMbACLcBmsVA/LG/Ey7YXeo8GkkUbb/9y7HbN1w8G5+2d3afI5TIeEQZlthAOo1V9ReV46cT2u1dmEH0IkWAAAABsXByjB2Aj4vg8AAAAAAAAAAAAADiOsyeBAZmamtKePXvWHXgFAOPKOac9e/ZoaooTlwAAw2NFjyZdMdNxOOdUiqa0FC+um5cUCJGkI/XDeqjyY/lA1KQYlXRm8dmaiNpHahbqh/Vw5cc6eeIZ2lU4pesDo2Pf0CPV+7VQP3xi2nztoA7UHg9e/6KZS9su86KZS4NhtMXGEf3j/Jd0uPZk8HarMZPkgEq97fql43G3A7XH9PjKI6muv2prblanF89WLsWJ/ytxVQ9UfthRDC9SpD3Fc7Q1P9v2urV4RQ9U7lU5Tn5NtXrG5JmJ8bpuVeKyHij/UCu+2vdl98vBlSeC08fl5HsrhrTUWP9ZIyW/VzA87cJnwwiRWe+BYlRS5KKMR2NLeq+2C841S4qf9SMeNmiRy2nSFVX164Owdy/dad6uH9E96zmYrx8IbtsfqdwfvL5TdGL/rOAmzPXVfU0Tst8T1bhihpxCn5mFaEJ5lw/uL9yz/M/Bfbc0ci6vM4rnaEtua1e3B0bBfC0cvZKkuXw4lNRPDd/Qw5Uf6WhjoaPb7Z44QzsnTu77eLz3emzlIR2shfcfTyrs1skTz9g0J6DeuPDl4PS8K+jibVdkPBoM0lx+hznv20dv0pwRTuvUkaafMTQbl2g1AAAAxgfH6AHYSDg+DwAAAAAAAAAAAACeRhgNGKDVA6/279+vWq027OEAQNcKhYJ2797NQVcAgKGq+5oaCkexJjuIpfRLMVcKxjWsSFbDN3TdEx/TN478Q+JyC25Cbz71N/SCmZfay3n8Y/rG0aeX85ypC/Srz3i3GVWyPLHyqD76yHt1yAiVtYoU6cKZi9te77lbLlLBTajmV9bN++KBT5m3K+WmJUl5Z/+4IrTMVuXGkj7+6Pt1b/n7ba8bsi03p7efdq1OK55pXueuxVv1qcf+c6rxhFw6+yr9/En/sxkk+v6xO/TJ/R8KRnHSeP6Wl+gtp75ThciO0XTim0f+UZ95/GPme3DUjcvJ96vvgVahkKIk5SPCaKOo3ettGIEVa/swau+NpPEUo/D7IyQpfjZq99lSzE2pWl+/DbDCNVJ/om8l43E+WHtCH3/0/R0sZ+rEa72X4GklXrbXYXxmFqMpHWscXTf9y4c+m7iuNF61/ef06p3XbJpQEjaW+fqB4PRiVDLfTyFO1uvfPvn8kcr9+ugjv6+jjfnU62l2/vSF+pXdv6XJqD9B7CP1w/qTh9+r/SsPJl5vz+TZ+vXTrtWW/MaOIj6x8qj+dfk7wXkvmrlkw9//zWZbfk5OUfA7xmef/LOBr7/Tn1sAAAAAaXCMHoCNgOPzAAAjhegwAAAAAAAAAGAEhM++BdA3U1NTOvvss3XWWWdpx44dmpjoz0npADBoExMT2rFjh8466yydffbZHHQFABg6KzgmqW8nyHfCio9YAY+bFq5vG0WTjoe/Prn/j3SkftheztG1y/nB8vf0hSc/1XbZrf6vR/8odRRNks6dfoFm8rNtr1eMSrpgy0Udj2f1BOnI5RQpF7xO3bc/oeULBz7VdRRNko405vXxR98nbxzkd7h2QP9t/4e7jqJJ0s0Lf6dbj3wtOG+5cUyf2P+BrqNokvSdY9/S9Yc+1/Xtmz1efUR/9fh/GdsomtSfWFAWOo0EJMWGMDzF3OjFHqwY2Ki9N5LGU+rg/ZFzeRVc+Gdwo3afLd2Msx/Rt349Ps2RpaTgabvtejkhjGZ9Zg7yOf67w5/Td459a2DLBwZpvnYoOH0uv6uj5XQaBox9rP/66Pu6jqJJ0veX7tSXDl7X9e1b/eVjH2kbRZOkh6o/0n9/4qN9W++oumnhenPeZbP7MhwJspBzeW1N8b1+UMYlUgsAAIDxwzF6AMYRx+cBAMYTf0QKAAAAAAAAAJAN+4wkAH3jnFOxWFSxWNRJJ50k773iODZPsgeAYXLOKYqijk9yBABg0KqxHYnqNCbUD9bJvFbA47sdRDRixfqXY3fo5bNXrptnxTi+e+xbukZvS72OAyuPpYoBNLto5tLU133RzCW6c/HWjpZfip6OqBRcQVXfWHedNGG0fgRLDtcP6JHq/Tq9+Mx18+5Z+mfFWj+2Tn332G26ZPaV66Z/f+lO1X3vEbLvHPuWXrPrTT0v57vHbut5GcM2LiffN78H0kiKDWF4krZJw4pyWe+BUXtvJD12nY61FE2p1lgfsBy1+2zpdJxOri+h2OagWU/LaRp/UsSx3XbdCs5Kw3tdf/fYbXrBzEsHug5gEA7XDwSnzxV29mX51u87Hqn+WPP1gz0v/zvHvqk3nvSWnpdTicv64fK/pL7+vy59Rw1fV26D7ndV44q+eeQfg/P2FM/RmaVnZzwiZGEuv8OMsQ/auERqAQAAMJ44Rg/AuOD4PAAAAAAAAAAAAABob2MexQ+MOOeccrncsIcBAAAAjJWkMNrkCIXRrIDHfO1QR8u34gE/XP5ecPrRxoLqvpYYH0mzfEvBTej5W16S+vrnT79IxaikSlxOfZvTJs868e+8K6jq1z/n7QIqtbimY42jqdeZZKF+SKdrfRjtaGOhT8sPPwcL9c5eK50uv/Pl9Gc8w9T82hplnY5zXO7XZpN3BZ06cboeW3l43bzndfA52k/Wa+W04mi9hmbz27Ult03HGkfWTC+4CZ00sbujZZ02eZbuXr5r/fQRu8+W0ybP0gOVH3Z0/chFPa/3GZNnysnJq7eTRVu36ZaaXx+vWzM/tudPuElz3Q9Xf9xmhN3bCNtFbE7ztfC+4fZ8f8Jo9nr7856Zrx2S977nk0WXGosdRY5XfFXVuKKp3Jae1juqvn30RjPufdnsvoxHg6zsKZ6jByr3Zr5eJ6fdk2dkvl4AAABsXhyjBwAAAAwC4WEAAAAAAAAMFn/7CsCq3s+UAgAAAAAgA9WEwFZxCGG0khFGKzfCJ5V3Egg7fv3wcpJY6w5ZahzraNlXbn+dSrnwfQ6ZiCZ11fY3pr7+edMXaufEyScu56NwRKUWJ4fRKvFS6nW2YwUC+nWAn7X8Tp7HJJW4rNjHfVhOf8YzLM+ZukCnTJ427GGk8vwtL9G2/PZU1y1GU7po5tIBjwjd2hsIieSU18u3XTGE0UjP3fIi7SictGZawU3oZdsuH8p4LJHL6dLZq9ZNv3jbFZqIwhEsy6Wzr5LT2njOmcVna8/k2T2NMSsXb7s8dexUCr/murEtP6cXbHlZT8vIu7xevu3KE5cL0YR53bqvJy7LCqLmXd6MI108e6XybnB/E2bct4vYvKww8lyhszBa62drO/16z8RqaMVXe15Ou9BySK+xyFHlvdeNC9cH501HM3rRzCUZjwhZuWTbK1Vw9vZ5UF44c7G25mczXy8AAAAAAAAAAAAAAAAAAACA8TO4s4MAAAAAAOijalwJTneKhnJCb9GIhJWNMJc13dJNHKscL2lG21Jdd9kIozk5TUbFE5fn8rv00m0/rcvnXtPxeK7c/joVXEG3HvkHHa4/GbzOTG6bzp++SK/d9YtrplsxmHYhg3JCgG7SFYMRlWpcCcYOKsZz4I0/O+EUaTIQ7mn4hmp+Zf1YjeVbr5VIUTAMFPs4GInw8qrGlY6CduHxhMeZU14FI2A3Crbktur86Rfptbv+3bCHktqW/Fa98/T364sH/ko/Kt8dfF5zLq9nFs/V1Tt/fmyCb5vRZXNXK+dyuvXIP+jJlf3aUzxbV25/nc6ZOn8o4ylGJf3G6e/XFw/8pX5c/ledMnm6XrX9DTqjeM5QxpPkZ3b8gopRSbcfvVl1X9eFMxdr346f63g5z595iX5l9/+qG+b/P83XD+o5U8/T63e92YxpjZozS8/Wr592rb5y6PN6oHKvYjWC1zt1Yo8umX1lXyN3b979v2jHgZP03WO36WhjPvXtnCKdUTxHr9z+ep099RMnpidFyuptgqc1M4xm7/udXTpXb3/G7+nvD39eD1buk1d3kdC6rwf3O+xwKjDa5mtGGC3fWRjNYsXDrPdM6/eOE8vxXlUf/u5XjpeDt+lEu9ByyEYNo/2ofI8erT4QnPeybZd3HCXF+DiteJb+w2nv1fWH/ocerNynhpJDpb3alt+uC6ZfrNfsetNA1wMAAAAAAAAAAAAAAAAAAABg4yCMBgAAAAAYCxUjeDUZhWNXg1aKwrGp0Dgbvh4MY0nSKROn6fGVRwLLWR8QaBcFW26kj68tx+Ew2jMmz9S7z/w/Uy8nSeQivWL7a/SK7Z1H1boNo4Uet1XvO/uTmsptWTf9Dx/8TT1UuW/ddCviYIURzi6dq9/Y8/510+9euksffeS9wbF679e9fq3X+kVb9+qXT/2P66Y/sfKo3nv/24O3qcTLPYfRrMf0iu0/q59tCdqhdzsnTtFbn/Fbwx4G+uCS2at0yexVwx7GCXOFnXrL7ncOexhtOed05fbX6crtr+t5WS+cuVgvnLm4D6MajmdPPVfPnnpu5uvNu4Jef9Iv6/Un/XJflpdL+DVEu+163YdDLdZ+wqrnTD9Pz5l+XvvBJfjWkX/SXz7+kXXTrXAqMMqqcUVL8WJw3lxhV4dLC3/3svaRrX3JM4rn6LfO+NC66Qv1w3r3j94SvE25saTZ/PaU4wxr97kTYoWRx91NC9cHpzs57Z19VcajQdbOnvoJ/frUtcMeBgAAAAAAAAAAAAAAAAAAAAAERcMeAAAAAAAAaVQTwmjDUDTCaKGYlhXYkqS5/M7Uy6k0wo/B07dJH0ZbaoTDaNOBcNgwFLoMoyU91sWoFJxuRe46DaNZkQhr+bFirfhqYL3h59FajvVaPL6s3uMtZSMAU4qme142AGDjc851HTytG2HZvBv833wp5cLbuX5sW4GszdcOmvOs7yOWTpPUVvTX2oe19nmlzr7vWLoJo8nc/x9fR+rzumvxG8F5501fqJ0Tp2Q8IgAAAAAAAAAAMDo23u9GAAAAAAAAAADjZ/BnDwEAAAAA0AfWCfWTbjhhNDOm1Vh/sn5S0GyukD6M1i4EsGzEzsLXXQxOn4pGI4xmBVRqbUIGFSPiNemKilwuOM+KMlQ6DJ84IxPRLlzWGvfrNESWHI/oPd5ixyzCoTkAAFoVXCEYI2q3XbcCRlZAtZ+s7dyKr6rhG8oZ+xXAKJqvJ4XRdgx03fa+bXgfdsJNKlJOsRqBZQ0njLYRT/259chX1VA9OO+y2X0ZjwYAAAAYDOfcnKTzJT1L0nZJRUkLkg5IusN7/6MhDq8nzrmCpJdL2iPpVEnHJO2XdJf3/oEhDg0AAADAhtfpn9EBAAAAAAAAAKA7hNEAAAAAAGOhGleC04cVZ7JjWusjUkmBrbl8OIwWuo0VqFrVLpzWbDkOR9SmcqMdRmsXMrBCYMWcHQ+zI3fhZXnFwenOhQ/8SwyXNZY0m9++Zpr1erFe6wU3YcYjOo27BcdovK5KCY8pAADNut2uW+E0a3n9lBQ2rcblkdlnAtKwwmgzuW0qRBMdLcuKAXsjH2bv24bfY845lXJTWgqEnPsR/W0XZAyx7tu4aviGbl74++C8nYWTdd70hRmPCAAAAJuNc+6Zkl4s6aKn/n+hpJmmqzzovT+zi+UWJL1C0qsl/ZSOR9GSrr9f0n+T9DHv/eMdrus9kq7tdIxN/tJ7/8ud3sg5t0vSeyX9vI7H3kLXuVXSH3vvP9/D+AAAAAAAAAAAAAAAAIChIowGAAAAABgLVR+Ogk1GxYxHcpwVhQpFpJJO4J8rhMNooShXu/DZciN9GG2pEQ6jTedmgtOzVugyoNJpeCFpnrUsb3QRrL+HmhRl6ySkV8pNh9ebFI8w4m6dsIJ8SY8pAADNug2j1X29o+X1U2LYNF4ijIaxcrh2IDjdijQnMmLAFuu7UFJkdyqaDu7bLncQgra0+9wJ2WhhtO8eu00L9UPBeZfO7lPkooxHBAAAgM3AOfdTkt6l4zG0YNCrx+W/RNL1kuY6uNluSf9J0r93zv177/1/7/e4+sk5t0/SpySd1OaqF0u62Dn3GUm/6r3v/csUAAAAAAAAAAAAAAAAkDHCaAAAAACAsVCNK8Hpk1Ep45EcV4rCkaqaX1HD15VzT3/ltkJXBTehLbmtwXmh21iBqlXtwmnNlo0w2lQ0GpGPbgMqZnghIW5iR+6MMJoRRnAKBwQmXVFOkbziwDrSh/QS70MUDqNVeoxH1H1NNb8SnEcYDQCQVvdhtPA2KIswWtJ2rtwoS4MfAtA38/WDwelzhV19XEt4H7mv4eI+RH+tz5VEVhl5TN208OXg9IKb0Mu2vSLj0QAAAGATeYGkVw5w+bsUjqKtSPqepMclHZG0Q8fjbDuarjMr6dPOuZO89388wDF27amw3F9Lmmia7CXdKenHOn4fXiipuYD9JklbnXOv9d6v/wUFAAAAAHRlY/3eBAAAAAAAAKOHn0ABWEUYDQAAAAAwFqwoWHFIYbSk9Zbj5TXBMysGUIqmzOWs+Oq6wFq5kRy5Wu4kjBYbYbTcaIfRam0CKnZ4wX6+rOCYtSwrjGZxzqkYlYIRtNZ1eO9VNoIPSffBikeU28T02qk07NsnhdoAAGjW7XbdCqcNO4zWa3gUyNp8zQij5XcGpydxcsHpVjusm/3zqVw4Qt3J9x1L3dc7vk2n+/+j7LHqw/rB8veC8140c4kZ7gYAAAAGqCrpEUln93GZxyT9D0nXSbrVe7/mB93OOSfptZL+s6Q9TbM+7Jz7nvf+q12s8xckfbPDMabinDtN0he0Nor2dUlv9d7f03S9SUm/Kun/0NNJ91dL+t8lvbuDsQEAAAAAAAAAAAAAAABDRxgNAAAAADAWqnElOH0yKmY8kuNKUfhkfUmqNNaG0ezQ1VTicloDa2UjKvD0etKHApYaox1GK0Th4Ek9Tg6oWI910uNsR8WsxzscRrAiEcfXPxUMo7WOt+5raigca0i6D3bcrbd4hBWykJKDMQAANCsYITMrfLaqZmz3reX1UyEqKO8KwTH2Gh4FsjZfN8Johc7DaJ2y3i/J++fheaH96U5ZQcZIkWLFwXkbKYx208L15rzL5q7OcCQAAADYpGqSvi/pdknffur/35P0ckn/1IflPynpjyR93HtvfoHw3ntJX3TO3STpZkk/0TT7vzjnznvqOp143Hv/QKcDTum9kuaaLt8q6Qrv/ZpfnHnvqzo+/ockfbFp1m845z7hvX9wQOMDAAAAAAAAAAAAAAAA+i4a9gAAAAAAAEijYpxQPxmVMh7JcaWcHYVqDWpZYy9GJRUTxl9prL1dUqRKkpZThgIavmEuazoajTBavsuAinW/ijn7cbajYuFlxT4cTHDO/jFLKReOO7SuIyl+l/Sas5ZvheLS6nY8AAA063a7XvfhWGjeCKj2mxUBbbdPBowS773ma+Ew2vZ8/8JoVjysYkai7f3zKSuM1kEI2mJ97hTchHmbjRJGq8RlfetouDVxZvFZOqN4TsYjAgAAwCbzl5K2eu9f6L1/q/f+z7z3d3rf5ocD6X1L0jO99x9OiqI1894fkvQL0ppK8rmSLurTmHrmnHuWpF9qmrQi6Zdbo2jNvPd/reOP96pJSdcOZoQAAAAANqSOW9EAAAAAAAAAAPQfYTQAAAAAwFioxuFzPJJOqB+kpPW2xqTKRrCslJtSyTjpP3S7pEiVlD4UkHS9qdx4h9GsxyjpcS4aga9yY1m+gwP9XMI86/WS9rVyfBl2iMxafq/hlqTX3LDeewCA8WOFzNqH0cLzrf2EfrPiqe32yYBRshQvasVXg/PmCp2H0Zy517t+v9l7b75frH1wyQ7w9uO9V4+NMFpkh9FC920c3XbkBjPavXf26oxHAwAAgM3Gez+fFPPqw/IPpA2itdzuO5JuadWc6psAACAASURBVJn80/0ZVV9cIynXdPkL3vt7U9zugy2X/41zrti/YQEAAADYvJKOkAIAAAAAAAAAoH8IowEAAAAAxkLVOIF7MhrOeRw5l9eEmwzOa41RWSefF6MpFXPpA2uVRng5q5YTolrNluJFc96oh9FqbQIqVggsKeJlRU9iNVTzK+umezOMYB/4Z4XZ0r5Wji8jIR5hLL/XeIT1eBbchHIu39OyAQCbh7ldNwJFq+qB7XDS8vrNDI82CKNhfMzXDprztud3dbw8O4y2Xs2vKFYjOK+rfduUIegk3QQXO2gljyzvvW5auD44b0tuq1408/KMRwQAAACMlLtaLu8eyijCXtdy+S/S3Mh7f4+kbzVNmpb0yn4NCgAAAAAAAAAAAAAAABg0zmAFAAAAAHTsrx77iA7UHs90nY+vPBKcPpkQvBq0UjSllUZ13fRySyzDilMVoynlXUEFNxEMcLVGqcptwmdpQwHLCdebzs2kWsagFYwwgRUyWNX62K9KCi8UE+aV42VNRGsDeFYYLSkSYa1/3WvFeG6cXOJr3boPvYbR7MczHKsAACAkb8Q0223X674enG7tJ/RbKWeFTZNjtcAoma+Hw2iRctqan+3bekJ7yEn7okn74Oa+c4/7tpIdWrai18eNfxntvvLd2r/yUHDexduuUCGayHhEAAAAwEhp/QHESOwgO+dOkfT8pkl1SV/vYBE3SHpJ0+V9kv6295EBAAAAAAAAAAAAAAAAg0cYDQAAAADQsUeq9+uR6gPDHoYkadIVh7buYm5KRxrz66a3Bs1aL69aPeG/FE2p1lgfRmuNUrWLcLQLp61abiwGp0fKDfXxbJbvMoxmPdbdhBdWl7dNcy1TOw+j2eGypZbL4fFPRiVFLjKXb92HihE2S8t+PIcXJAQAjJ+CC59P3G67bgWMrP2EfrO2d2n3uYBRMF8Lh9Fm89sVuVwf17R+H9nal5SS9yetKGE/3nvW505SGCzeAGG0Gxe+HJzu5HTp7FUZjwYAAAAYOee0XH5sKKNY77ktl7/rve/ki9GtLZfP73E8AAAAAKCN8AdlAAAAAAAAAADjwT6jFgAAAACAMTDMQJMVo1oXuzLiVKuxLCua1RoSaBcCqPkV1eL1gbVWy/Gx4PSp3BY5Z8e9stR9GC0cjyvl7PhZUjQt9Nx5K4yW8NhZ628db7chsqKxfCu0lpZ1eytWAQBASLfbdWt+dmG0dNtvYJTN18NhtLnCzq6WlxQDbpX0XilF9v6kNa/cGGAYLfFzZbxP8DlSP6x/XvxmcN5zpy/SjsLJGY8IAAAAGB3Oua2SrmyZfFsXi/pV59zXnHOPOucqzrlF59wDzrkbnXPvc85d2sUyz2u5fF+Ht/9Rm+UBAAAAAAAAAAAAADBy/HgfugugjwijAQAAAADG2nRuZmjrThvLsGJXq7GstFGrNBGO5TbxNElaaoTDaNO5LW1vmxUrTFBLCKh47xPCYnb8bDIqmoGH0PK88dPVpEiEtf7W59gMkSWEI47PH0wYzXrNDTNICAAYP3mXD06v+3ri7YYdRksbwQVG2eHageD0uXx3YTRLKB6cFDKbjIrmPCvCW/UVNXyj88E1sT9XJszbWGHkcXHLwlcUK/y4XTZ3dcajAQAAAEbOr0pq/gHAEUn/1MVy/q2kyyXtljQpaYukMyTtlfRuSTc5577tnLuig2We03L5oQ7H9GDL5R3OubkOlwEAAAAAAAAAAAAAAAAMBWE0AAAAAMDYKkVTOqv07KGuP6TcaA2aJce6rOW03i4pLNDJdZaNMNpUNDphNCt4YoUMJGnFVxUrDs6zHmNJilxkhr5CYTE7jGCH0ezXytrnq9Kwwmj2+KWkSF9vYTQr/NJuPAAANLO260nBU8ne7lsB1X5LG8EFRtl8/WBw+vbCru4W6Ox93lZJkd3I2b+iTNrX7HX/1vrcmUgIo42zhq/rloW/D87bVThV5049P+MRAQAAAKPDOXempP/UMvkj3vuVAa3yIklfcc69z7lUX65mWy4/2cnKvPfHJFVaJm/rZBkAAAAAAAAAAAAAAADAsOSHPQAAAAAAALqRd3n9u1PeoZwb3lfbYs6IXbXEpMoJQQApIZoVtwbW2kc4rJBVs+XYCKPlRiiMFnUeRgtFzFZZYZPm+aHbdxJeSDqLKW1YxboP1mttlfUaqvuaanFNBePxbKfSsF67hNEAAOkVjOBQvc15xlbAyAqt9ZsZrzVCpsAomq+Fw2hz+Z1dLS99Fq19INoyFU2b88qNZU3nZjoYxVpmcDGyw2ixD8eXx8F3jn1LRxrzwXl7Z1+VGKgDAAAANjLn3ISkz0pq/oLxgKQ/6nBRj0r6sqTbJN0j6bCkWNIOSRdK+hlJVzWvWtK7dfwP2r6rzbJbf2nTTam9LKnYdLn7L1RNnHMnSeq0uH12P9YNAAAAIAvWH40EAAAAAAAAACA7hNEAAAAAAB3bO3u1FhsLQ1v/1tyczp1+vnYUThraGKSEWEZL7KpixMpWb29Gs5qiG977VJGu5RRhtKVGOIw2PUJhtIIRPKnFdhgtKVJiPVfN80O5gFCoLFY4jOBkRwVKKSN61nPcdvwJ4bRKvKRCNJt4e/u23cUsAABoZoXMkoKnklQ3tvv5jMK4dgSXMBrGQ+wbWqgfCs6bK3QXRkvivZdzT6fTrPdKu33bpChwmhB0EjOMZgQcx92N818OTi+4Cb1s2+UZjwYAAAAYKZ+U9JNNlxuSfsl7n/ZLx206Hjz7qvfeKgbcKumjzrmLJF0n6VlN837HOfdN7/3fJKyj9Zc2lZRja1aWNJewzG79mqRr+7QsAAAAAGOlkz+jAwAAAAAAAABA9wijAQAAAAA6dsnsK4c9hJFgxaGaT9avxTXVfT3x9nY06+mQwIqvmkGuNbdptD9nZ9kIo01FoxNG6yagkhQpSYorSOnidCcYpzi5hOP+rOXX/Ioavq7cU4EXK/TQNh6RML8clzWj7sJoZsyizeMJAEAzK2Rm7SM9Pd8Io0XZBIxKUSk4PU2sFhgFR+sL5neIuXy3YTR7p9fLyzXN7zayW4qmzXk9h9HM4GL4+4d0/H6No/3VB3Vv+fvBeS/euldTIxTGBgAAALLknPsDSb/YMvld3vub0i7Dex+uEIeve7tz7qWSviHp2U2z/tA59/967xtpF5V2nT3eBgAAAAAAAAAAAAAAABi6aNgDAAAAAABgXFkn7FfictO/7XDGalzKXs7Tt02KfjVbThEKWI6NMNoInRjfTRjNeqydIk26YuL67Djd+sfTDiPYkYiksFnzc1tplIPXaR+PsOdXeohHdBuzAACgmbVdryVs1yV7u19ICBj1U9HYR0u7XwYM2+H6AXPeXKG7MJpL2OdtVQ5FhtU++ptzOXP/fTlFCDqJ9blTSAwujmdH4MaF6815l81eneFIAAAAgNHhnPuPkn63ZfIfe+8/NMj1eu8PS/oFrf2Cca6kn064Wesvc8IF92Sttwn/gggAAAAAUhvP35sAAAAAAAAAAMZPftgDAAAAAABgXBWj8Dko5aaT9ZPCGatxKXM5a4JZ6QIc5RShgKXGYnD6dG4m1TqyUHDhMEFSQMV6rItRSc4lBxys0Fdz5G6VVxy8bpTQn7fid9Lx53ZLbqsk+z5Y4bZV1mtIsoMUaZjjIYwGAOhAPjKCp/FK4u2sMFreZfOrjZKxfa37mmpxTQXjfgGjYr52MDh9wk1qOhrEvv/aE2HMyG6u/bn8pdy0qvXKuulJ4ek0rM+VCeP7hyTFfvxO8Ck3lnXbkRuC884qPkenF5+Z7YAAAACAEeCce6ukP26Z/F+99+/MYv3e+zudc1+RdFXT5FdJ+ppxk1EOo31M0uc6vM3Zkv6mT+sHAAAAAAAAAAAAAGxQ43fkLoBBIYwGAAAAAECXSrlw7GpN0CzhxP3VuJQVzWq+bVJgrdly3P6clmUjnjaVEO/KmhU88YrV8A3lXG7dPOuxThPxsq5TjtuH5tJIij+U1zzP4fVZ4bZVkctp0hVV9evjEWlfOyFmzIIwGgCgA1bwtO7ribezgqh5l02QrJiwb1SNy4TRMPLm6+Ew2lxhZ9twsCXpVq0HIYQiw1K6fclSNKUFHVo3fbnH/XM7uGiH0cbx8Irbjt4Q/G4gSZfNXZ3xaAAAAIDhc879oqSPa+3Xmr+Q9PaMh/J3WhtGe17CdY+0XN7VyYqcc1u0Poy20MkyLN77JyU92eF4+rFqAAAAAAAAAAAAAAAAbBLRsAcAAAAAAMC4smJalbgs74+fPJ8UpSpGpTX/b1VupAusrb1NcijAe6/leDE4byo3k2odWUgKnlgxg+bHq1ma8IJ1nUpjfczBG2EEl5CJSIqzrQ3pheMRqeJuRqgv7WunlffefExLOcJoAID0rOCptU1vNz85YNQ/pcSwaX/iqcAgHa4ZYbT8zh6Wmv5Eduu7UJp9W3v/vPvor2R/rkxE9ueKtf8/qrz3unHhy8F5W3Lb9MItF2c8IgAAAGC4nHP/VscjaM3HSn5G0q/41V/mZOeBlstJsbN7Wy6f0eG6Wq9/2Hs/3+EyAAAAAAAAAAAAAAAAgKEgjAYAAAAAQJesk/W9YlV9RZJ94v6kKypyOUnJQas0gbVmy20iHSu+qrqvB+dN5bakWkcWksJoNb8SnG4FwNJEvKzrhB536zwp5+xIRM7lNeEmg/Oax22F7dLE3azARNrXTquaX1GsRtfjAQBglbVdTwqjee/NfZZCwn5CPyVt76yYKTBK5utGGK3QSxgtydr9ZGv/PM2+5JTxHand9512hh1czMIPy/+ix1ceCc57+bYrVYiy+QwFAAAARoFz7g2SPi0p1zT5c5J+yXsfD2FIrT9QsKvs0j0tl8/pcF3PbLl8d4e3B/D/s3enQZLmeWHff08eVZnV09NdPd27y+4Ci/CCYLmWXViWXWbAwMKsjThEIAksDEISWEjIlsIhh7EtobAjbEfIIfmVFLZD4AhZEZKFpAhpZ8ESYvYAZC4BkjiNkGDFMbNTPdPdldWdx+MX1dmdnf38nnzyrOruzydiYjqfO68n/1lV+U0AgCfWo/WlMQAAAAAAPJ6E0QAAAGBFWYgq4n4QLY8B3P+sS7adSUziTnk7IvJg1rxFyx2Pb6bzLrTOTxit28rDBFkkJQuANQkvZMtU3X9l+sd/eRitbh/T+2xSju8F9eZl8bwm288eg4vUBV/6rbrPagHAg7Iw2rAmjDaJcZRR/fnkTtHZyHEtUjeGGKwZZ4JdSMNondXDaEXNmHd+nDxIItF176PuL1M9/l33uZedd/ZqwmjZuei8+tDRByqnF9GKL7n8VTs+GgAAODtFUfyBiPjbETH7g4R/EBHfXJZl9beCbN/8G7LqN26n/uXc5c8pimKZby15z4LtAQAArKD+76MAAAAAAGBThNEAAABgRf12XSzj+IH/z+vNhK7qoxvTwFoeqXpw+fpQwK26MFr7/ITR6oIno0l1zCALgDULLyTRssptVofR6iIREfnjpcl93CREll6HJEixSN1jqUlsDgCmukkYbVQTRquLpmWhtU1rF+3YK/Yr5zUdm8FZOhq+VDn9Svfa6hstmn/YJY1E17yPmkrDaA2D0ZnsvFN3XsmyyOfR0fDl+Lmb/7xy3mc/9c717nsAAHiEFEXx/oj4uxExO9j/xxHxh8oy+faV3XjX3OV/ny1YluVvR8TPz0zqRMR7l9jXl85dfmGJdQEAAAAAAAAA4EwJowEAAMCK6uJQJ/diV1msqz/z75ow2t0P/i8Knk0dLwgFHE/yMNrBuQqj5WGCYXmncnoaXmgQFcvuy6ptTlYNoy3YRxbROz2+6jDEA8uk4bXV4hH1oTZhNACay17XR+UwyrL6dbUumrarMFpEPkZYNTwKuzKc3Ikb41cr5x12rm5ln/NP5zQS3SRcvCAqvKrs3LLX2kvXyc5T59FHXv3hmMSkct5zl9+/46MBAICzURTFV0bE34uI2YH+D0fEHyzL5BcMO1AURS8ivmFu8o8uWO3vz13+9ob7+v3xYITtVpzeBgAAAGt6dH5vAgAAAADAo00YDQAAAFa0V+xHK3lrPbgXRquOS83GALKg1ez6dZGqWccLIljH4+ow2n7Ri3bRabSPXegWeZggixlkgZJG4YU0WjaISTmem7paGC0Nq0zDaDWBlSYhsrrrsIpBTWRvv0FsDgCmspBZGWVMYv519tSoHKXb69YEjDYtizNlQVY4L45GH0/nrRNGqx/x3h8nl2WZjkObjW2rw8B1Y9QmsvcSnZr3H4/KB3xG5TA+er26c/C67hvj0w8+Z8dHBAAAu1cUxXMR8Q8jojcz+Uci4uvKsrx9Nkd1z1+IiDfNXB5HxD9esM7furvc1DcURfHWhvua9XfKsjxpsB4AAAAAAAAAAJwLwmgAAACwoqIo0g/snyyIXc3GAPaLXhRpYO3WA/9fZDC+FWWZf3D/1vhG5fSD9lONtr8rWUAlIg+lpOGFmvBck2Xmt5vevPWViDQAMX2MnNTcx03ibovCa8vKo379aBV+pARAc3Wv68MkUjSa3KnZ3u5irpt+fYVdORq9nM477K4TRlsw6L3rdnkSZUwq560TLl7nuTcpJ+l7ib2aMFr5iITR/sWNn4jXxtcr5z17+LwxPAAAj72iKN4dEf8oIma/2eNDEfE1ZVmu9g0i1fv5o0VRvH7Jdf5ERPzFucnfX5blv61bryzLX42IH5iZtBcR318URS9ZJYqi+NqI+LaZSXci4vuWOV4AAAAAAAAAOCs1H40EnjC7+/QQAAAAPIZ67X7cmjwcG7sfu6r+4P5sDKAoiui1+pXxs+n6J+Nmn9kZxyiG5Z3YK/Yr5x8n8a0L5y6Mlv/IYpQEVLJ43DpRsYjTQNhsOC4LPLQW9Od7SXztXkQvCZF1im50W3lQZioPrzWL6j203hq3JwDMqg+eDuPBzyufyoJpi7a3adnrazbGg/PiaFgdRrvQuhj7rfTz82uZDYhlkd2I09DuIv12dYC6aTC6yjiJokVEdFqPfhjtQ9dfqJy+V+zHFz39ZTs+GgAAeFhRFG+O6r9XfMPc5U5RFG9JNnOzLMuH3vAURfH2iHghImZ/2fHLEfHdEfG6omgWeb7rpCzL36mZ/x0R8TeKovi7EfF3IuJHy7KsfLNSFMU7I+K/joivn5v1sYj4bxoez1+8u/7h3ctfHBH/pCiKP16W5S/N7Gs/Iv5kRPyVufX/yqIAGwAAAAAAAAAAnDfCaAAAALCGNEZ19wP7gySa0Z+LZPVbB5Uf8p8G1pYJABxPbsVeKwmjjR+OuEVEHLQvNt7+LrSKdrSiHZMYPzRvWN6pXCeLL2T3UdNlTm/7awu3sXgfWdxhGtGrvo+bHH9EXXitWVSv6XpNjwcApuoCn6PJMKJdMf2chNGygFM2xoPz4mj0UuX0w+7VNbfcLCZwMs6fI1n07IFl0ujvcZRlGUtGDSKi/ryyV9SF0c6/j93+jfi1wb+unPeFTz/3QOgZAADO0Eci4pMbLPemiPg3ybwfiIhvq5j+tRFxaW7ap0fELzQ9uBkvRsSXLlimHxHfeve/SVEUvxoRvxERr0bEOCKeiYjPjYjXV6z7SkR89YL42j1lWf5WURTfEBE/FBHTNy/viYh/XRTFT0fEr8fpdf/8ePiXGf8oIv7bJvsBAAC4p3wUfjsCAAAAAMDjThgNAAAA1tBLPrA/jUqdJNGM+fXy7UyjWc3jVoPxrbjcuVI579b4ZuX0gyTadZa6RTdulw+H0bKgwWBcHRbLbtumy5yMH7ztyySNUERrwT6qwyrT+3iQxCOyoNrDy9VH+pbV9LELAIvUhcyy1/VROUrX6dYEjDYtHaONVwuPwq4cDV+unH7YWS+M1jRHVhcPzMbFs/pJyGscoxiWd2KvqA5B11k5uPgIfPjnxaMX0nnPXn7/Do8EAACeSK04jbB9eoNl/2lEfFtZlr+1zA7KsvzRoii+PiK+P+7Hz4qIeOfd/6r87Yj4E2VZ8YsWAACAlS3/5TUAAAAAALCK+k/sAgAAALWyWMY0RpXHpR6MAfTb2XaOH/h/E8c1IazjSXUY7UL7YuPt70oWJ6gKpUzKcdwuTyqXz4Jhs7qtvegU1f34+bBYGZPK5YoFf/iXBc6mQbQsftckHFG3/ewxuEgeahNGA2A5dcGhYRpGqwsY7e47X/Ix2mrhUdiVV0ZJGK27XhitzmxAOBuDFtGK/aK3cFt1Y85Vn3/Z+SYiYq+Vh9ay8f95MRjfip987cXKeZ/a/4x4c+8tuz0gAAB4/P21iPi/IuLfNlz+VkT8/Yj4irIsv2LZKNpUWZYfiIjPioi/HhFHNYv+RER8Y1mW31yWpR9gAAAAAAAAAADwSNrdp4cAAADgMZTGqMankassaDa/3qKo1TJxq+Nxdfysbt5B+6nG29+VTqsbVQ2C4eTOQ9OyqFhEHjSZ12sdxM3xawu3XZYPLXJqwReiZsdxci9+V/35pObHXx1QO5kMYlJOolUs18dPo37tZqE2AJjq1oTRsgDasHz49T4iohWtaBXtjRxXE1kEt27sAefB0bA6jHalc23NLeeD3iZhtF6rH0WxYOAcEQfJ+6OIiOPxrbjUubJwG/Pqg4v5eSob/p8XP/HaP0sj0c9dfv+OjwYAAHJlWb5li9v+SxHxl7a1/bl9/f04DZ1FURSXI+JtEfGJEfH6iDiI0y+rvR6n8bJfjIifL8tyvKF9/15E/GdFUfzZiHhPRHxyRLwhTuNrH4uIny3L8t9sYl8AAAAAAAAAAHCWhNEAAABgDVkkahq5mgbSHlpvLmKVRa0G47thtHHzMFoW2IqoCaO1zmEYLYkTVAUN6uIkWdBkXj8Joz0ct6tOI7SiPjyWHcf0/soier2aKMSsfjtf7vZkUDu/+riaRf0AYJG64FAWKsqm121rG/ppGK352AzOwtGoOox22H1mre02iZpF1I0lG0Z/a+LAqz7/6sJoe8VeOq88x2m0sizjQ9dfqJz3dPtyfN7FL9rxEQEAwJOlLMvrEfHRM9jvnYj4Z7veLwAAwPn/ShkAAAAAAB4X9Z/YBQAAAGplkajB5DjKskwjZfORqmw7J5PjmJTjuF2eND6mwTgPo92aVIfRLrQf7TBaXQyucXyhYfhksuIf+OVhlUGUZZkGHvpJNK/p9iPyMEWd7HiyiB8AZOpiZsM0jDZaelvbkIdNhdE4vwbjW+lY7rBzdSfHkIWdm44l94teGh4+rhn716kLo3Vqwmjn+QM+v3z88/G7dz5WOe89l79y5+dMAAAAAAAAAAAAAFikPL9/ngucI8JoAAAAsIa62NWwvBOTmFTOnw8C9Nt5dONkMljqmOpCAcfjG5XTD85hGK1bdCqnVwUNTsb5bZQFTZouN3go6lD9k9ciitrtZ4+VMsq4XZ5U7Gd6XNXRvIeXy69nFsaokz3umt6eADDVKlrRinblvCxUlE3vnpMw2iqvrbArR6OX03mH3WtrbbtuxFvO/IVCNpacD0Sn+ymKPEKdjJsXGU7qwmj5uaU8x3958eL1D1ROb0Ur3nvpq3Z8NAAAAAAAAAAAAACwnnP8p7vAjgmjAQAAwBrmA2dTg/GtGNQEM+YjG+l2Jse128n2XWVSjtNtHbTOXxitU+xVTh9WhdGS69UpOtFtVW9nXh6ne/D2LLMwWlEfRqsLitU9XrLjemi52u0vH4/IHkd1+wGATBY0ywJow8mdyumd1m7DaOn4YHx8rmNJPNleGb5UOb2IIi53rqy59fox79T8GHoqe99Tpen4vKnsfBNx+r4hCx1n4/+z9srwpfj5mz9ZOe9znvrCOOxe3fERAQAAAAAAj4fz+bsRAAAAAB4fCz6GBxARwmgAAACwln77QuX0k8lxGuuKeDgu1W/l21k2apWFAo5rAgIX2heX2scudJYIqGRRsboYWdNlTyaDBy5nEZQspDBVFzg7mQzSx0vT69Bt7UWn6FTOWyUeMX+97x1Pw1AbAMzKX9dHyfTqgFG2nW3JXocnMY5hWR1vg7N2NPp45fRLnSvRTsaLm3F/nJyOJZcYn2fvkbKA7yJ155XTyPGj9RcWH7n+w1HGpHLec5ffv+OjAQAAAAAAngyP1u9TAAAAAAB4dAmjAQAAwBrmA2dTgwVBs/kgQK/Vr97OuD6wVuV4fHOp6RERB0ng7Sxlka+qoEF2G2X3zzLLzkfFyvRbUReE0ZKww3QfWdxtmevQNO7WRBZTW+Z4AGCq06oOmg0n1XGxLJi26zBa3eveKq+vsAtHw5crpx92rq697boY8Ow4eRNj2yxCvUr0NyJiuCC4mF23fPx/doaTYXz01R+unPeGvTfHpx189o6PCAAAAAAAAAAAAAAANkcYDQAAANaQhaiG5Z24NblROa+IIvZbvQemZR/6P5kcp1GBzHESCqgNo7UuLrWPXegWe5XTq8Jo2W2U3T/LLNs0elIXiYg4vT6t5Ecxg8lxnCQhvc3E3ZZ7DJVlmV7vZW5TAJjKgmZVr+t103cdRsvitRGrx5lg214ZvVQ5/bD7zM6OIRvbLjOW3NTYdmrReeVRCqP9i5s/FjfGr1bOe/by81EU9e9NAAAAAAAAAAAAAADgPBNGAwAAgDXURauOhi9XTt9v9aNVPPiWPAsE3Clvx61xdWAtMxhXRzpuTarDaK1o1UY/zkoWPhlWBA1ONhBGS8MLc7dnGZPK5RaF0YqiiH6rOoA3GOcBvF57/bhb9pjI3C5P0gDEMqE2AJjaVBitu+MwWt3rXtN4Kuxa9j7ksHNtZ8eQh4ubv+/Ix86rRQkXnVeylth5DKO9ePRC5fT9ohfvevrLdnw0AAAAAADAk+P8/d4EAAAAAIDHkzAaAAAArKFfE606GlUHCapiALWBtWQ7mcGkOhRwPK4Oox20n4oiqwCcoWUCKoNxdXih7v6ZlwXI5qMn6/x5X7aPG+PrMYlx5bxlQmRZGG3Z+5MAfQAAIABJREFUcMtJcnvW7QMA6nSLTuX0UTmqnF4VQo3Ixwfbsl8TcVo1zgTbdj15/3DYvbr2tutiwLMBsWz82W9Xx86ql02iv0l0bZEsjHb/vJKV0c7XB3x+8+TX49dPfqly3hde+tKl3gMBAAAAAAAAAAAAAMB5JIwGAAAAa6iLRB0Nq4ME/dbDMYDaMFqynczxsmG01lNLbX9Xuq0kjDZ5OGhwksQRqiJ0mew+eCi8kIQRWsXiH7P0k+N5ZfhSzTqbiEcsF26pi01kcTcAqLNM8LRu+q7DaK2ilY4nlg2Pwi5MykkaVr7Subaz48jGn8uNz6vHwcuObacWBRez6Fu5Vhp58z50/YV03nOXn9/hkQAAAAAAAAAAAADAZp2vv9wFzpIwGgAAAKyhNow2qo5dVcUA6mJTWdggMxjfirIi3nVrfKNy+YP2+QyjLRNQyUJey0TFsvtyPro2iUmyheqQwoP7qD6euvt4M/GIPHRWJQvNne5DGA2A5XWKvcrpw/JO5fQ8jNbZ2DE11XSMAOfBzfFrMSpHlfMOu1c3sId8zDsbEMvCgXXvn+alY9vxamG0ReeVRyGMdjy+Gf/vay9WzvsP+m+LN+5/8o6PCAAAAAAAePycn9+NAAAAAADw5BJGAwAAgDW0i3bsFfuV846GH6+cXhWWqotNHQ2ro1mX2oeV0ycxidvlyUPTjyfVAYELj1gYbVgRNMjCJMtFxarvg1E5jOGkOqIwa3EWLd9Hdh9HRPTby8Tdqq/vsuGWLKTWilb6eAeAOlnQLAs4ZQGjbhJY26bs9XvZ8CjswivD6jhzRMRhZ/0wWlE36L37GZlJOYnbSRhtmcjuQTIOXvW5t+i88iiE0X781R9Jg5LPXX5+x0cDAAAAAAA8eZr8hRQAAAAAAKxPGA0AAADWlMauRtWxq1774eXbRScNfWTbOexeS4/peHyzYtqNymUPWhfT7ZylbhJGqwoaDMbVcYR+a5moWB5pOJmJymVhhKLBj1myfWT3cRFF7Be9hdudyq5vdvtk8tDcQRS1NQwAqJYFT7NQUTY92842Za/fy4ZHYReycWWn6MZT7ad3cgy3JyfpmLluzN102UESfF4kPa+0dn9eWcWknMSHrr9QOe9S+zA+7+IX7fiIAAAAAAAAAAAAAABgO4TRAAAAYE29dnWMaljeqZyehdTSqFXywf8rNWG0qnVuVcTSIiIOkuM/a8sEVE4mg8ple61+4/31K4J1U4OZ7adhtAa9sGwfr45eqZzea/WXCpFl21823JKF1Ja5PQFg1jLB04iI4eT8hNGysduy4VHYhTSq3HkmWsX6vxYsIh+bTsfJdWPPujH3vIPk/dHJZBCTctx4O1OLzitFcvuUZfX4f9d+6fjn4qXhb1fOe8/l90W76Oz4iAAAAAAAAAAAAAAAYDuE0QAAAGBN/SVjUb0krrFsdOpKpyaMNn44jHY8qQ6jXWhfXGq/u7JMGC2Lxy0TXsiiJxERJzPbz8MIiwNm2T6y2FoWy8tkj61lw2h5aK757QkAszrFXuX0LCSbBdM6rd2Hf3rt6jHasq+vsAtHw5cqpx/WRJWXUzfmnYbRqseSEcuNJ+vG8nX7yKTnlbtBseyaZWP1XfvQ9Rcqp7eiHe+9/FU7PhoAAAAAAODJdD5+bwIAAAAAwONPGA0AAADWtGwsKotj9dvLRbAudi5FN4mMHFeEwo7H1WG0g/ZTS+13V7Iw2rAiaLCJkFddmG4ws/0sjFA0CKMt+1jZ1GNrsGS4ZROhOQCYlQXNRpNR9fQ0YFQ9PtimPDy6fJgJtu1o9HLl9MPO1Z0dQzaWjKiPET+8bP7+qG4fmey8cv89VfV4/jyE0T4+/L34hZs/VTnv8y6+Ky53ruz4iAAAAAAAAAAAAAAAYHuE0QAAAGBNdR/Yr5IFuJaJBJxu5yAOkn0PxkuE0VrnM4zWTcIn80GDUTmMYXmnctllbtNW0Y79olc578Hbc/Uw2rL38bIhsjSMNj6OsmwedNhEaA4AZmVBsyxUtDhgtDt5eHT5MBNs2yvD7YbR6sa809FmNpZsRWup53Dd+6zjivc7iywKLubX7ezDaB++/kNRxqRy3rOX37/jowEAAAAAAAAAAAAAgO0SRgMAAIA19drVobNMv139Af8smJZup3WQbut4LtRRlmXcmlSH0S60z2cYrdNqFlA5GVeHFyKWD3n1khDZbNyhXCeMtmTobOnjT5YfxygNQVTJQi/Lht0AYKpp8HRqmAaMOhs7pqay19cs/gRn6WhUHUa70t1MGK2Jk8lx5fR+60IUxeIx873la8bOg2QfdRadV7JjO+ss2nByJ37s1f+nct4n7H1SvLX/th0fEQAAAAAA8Fhb4ssXAQAAAGDT/HgKmBJGAwAAgDX1W9VxskwWQFtlO9k6g/GDYatheScNjxy0zmkYLQmoDCdzYbSaKMKyIbIs/DUbCiuTn642iTwsGzpbNkS2qXhEFptb9vgBYCp7Xc/GJ9n0bDvblI4PxtUhUTgr43IUr42OKucddrYfRpsGhAfj6nHnskHpdtGJvWK/ct4qz79F55UsdFyWk6X3tUk/c+OjcXP8WuW8Zy9/9VKxOQAAAAAAgPX4vQQAAAAAALshjAYAAABrWjZelcWllo94XYiDdnUY7XjyYCjgeHwz3c5B+3yG0boNAyp1wa9lQ17Z8ieT+6GwafDhYYv/8G/p0NnSsby6MFrzeES27LKPUQCYSoOnj0AYrZe8/s2OD+A8uD76eDpWPexe28g+snjYqdN9Z+HiVSK7/eT9zjLR36nsvNIt9u7+KwmjLb2nzXrx+guV03utfrzr0pft+GgAAAAAAAAAAAAAAGD7hNEAAABgTct+wD+LYy0d8Wr303DWYPxg2OrW5Ea6nQvti0vtd1ey8Mk2w2jZfTN/e1Zp8n2ovWVDZ+3+UsvXhdeWibdky64SswCAiOav64um3w8Y7U72+rdKmAm26Wj4cjrvsHN1I/soisWj3uy5sWwkuG6dZaK/U4uCi610RH92abR/d/Jr8Rsnv1I5711Pf1n0Wsu9XwAAAAAAAAAAAAAAgEeBMBoAAACsqd9eMmiWfLh/2VBAv3Uh+u3q0NbxXCjguCbsdZBs46w1DaicJOGFvWI/2kV7qX1m983sPsqYVC5TNPgxS3+DobMq+61+FEnQoUncbSq7TYUXAFhVd+kw2qhyeqfobOyYmspej08mgyjLswsmwbyjUXUYrdc6WPo9yyqmz4Z8LLlKGK1ZCLqJ4SQLo03PK9Xj6PIMw2gvHr2Qznv28vM7PBIAAAAAAICIs/xCGQAAAAAAnizCaAAAALCmpYNmSZRg2VBAr9WPg9ZTlfMGc2G0W+MblcvtF700QHbWsoDKJCYxLsf3Lg/G1eGFZe+XiPy+OZkM7v07+/O+LEj24DEtF6FbdvlW0Yr9JF42SAIVyyy77PEAwFTT4OnUsLyz1Ha2KRujlTGJ2+XJjo8Gcq8Mq8NoVzpXd3MAd0OB2VhylchuFoKef7/TRHa+mZ5XstH8WYXRbo5fi5+68eHKeZ928NnxCfufuOMjAgAAAAAAAAAAAACA3RBGAwAAgDUtHzSrXj6LcuXb6cdBFgoYPxgKOJ7cTPZ5fkNXdeGT2ajBSRZeWPL2jMhjarPhhXXCCMvGIFaJR2TrZLdT5bJJbG6V4wGAiOXDaKNJfcBol+piq7PxVDhrR6PqMNphd3NhtCYx4JNx9fNilchuPj5vPradys433dbe6T+K6utWlmcTRvuJV38kjUQ+d/n5HR8NAAAAAAAAAAAAAADsjjAaAAAArKkuljGvFa3YK/Yr5y0TWNsvetEq2mlcYD6EdjyuDqNdaF9svM9daxpGy6IIy9wvU9l9MBs9KctJ5TJFsfjHLK2iHftFr/HxrBKuyx4TTeMRk3Ict8uTjR0PAETkr+vDLIxWjqq309p9GK0utjofo4Wz9Mrwpcrph51rO9n/NCA8GxWe1WsvH9lNx7YrPPfS88rd81Mefdt9GG1STuLD1z9YOe9y55n4nKfeteMjAgAAAAAAnhxn86UxAAAAABDhp1PAfcJoAAAAsKZlgma91kEURfUH7pcJeU0DVQdJqOp4LhRwKwmjHbSearzPXeu29tJ5sxGVkyT4tcz9MpXdB03CC1lGYV5dXOWhZTd4HU7GzcJosxG4h7e9fMwCACIiuknQbFQRRpuUkxhHdcCoWxNO3ZZezetf3esm7Nr10cuV0w+7Vze4l3zUOw2jZc+LVcLF/WTs3DT6O2tY3qmc3ik6EZGH0c7ijyt+8dbPxkvD36mc995L74t20d7xEQEAAAAAAEQ0/wspAAAAAABYjzAaAAAArCn7sH6VurDGcoG10+30W9VhtJPJcUzKyb3Lx1kYrX1+w2jTQEGV0eR+RCWLItTd1pksWjYbdyiTNEIWUpi3VABvhXhEdh2axiPqlusljzcAWKSTBM1mX9PvTauIpS3azjbtF70okl+nDCaL46mwK0fDj1dOP+xsLozWZMSbj89Xif4mIegVnnvZuWV6XsnDaJPK6dv04vUXKqe3oh3vufy+HR8NAAAAAAAAAAAAAADsljAaAAAArCn7sH7lsu182bp52T6zfZdRxu2ZmNfxpDqMduFch9Hy8Mls1OBkXB1eWOZ+ub9OFhW7H15YN4y2TBBilTBats5JwzBa3XL9FWJzABBRE0YrRxXTzlcYrSiKNLg6G0+Fs3R7chK3Jjcq513pbi6M1kQ2nlwtjJaMbZP3AHWyc0u32Ft6W9v08p3fjX9166cr57394rvjUudwx0cEAAAAAAAAAAAAAAC7JYwGAAAAa+oWe9Fq+BY7i2osmpcte1ATNjueiXndGldHEg5aj2YYbVjeuffvQRZeaC8f8cpiDSeTQZTlaRBt+v+HFM3CaMvEznrtzcUjZuNudU7GeeBllZgFAETkr+vjGMWknDwwrSqWtmg727ZueBS27Wj4cjrvsLO5MFpdDHgaEM7DxcuPJQ+SePRxw7HtrOzc0ik6ERFRFNXv6bIw8rZ86PoL6T6fu/z8To8FAAAAAAAAAAAAAADOgjAaAAAArKkoiui3qj+wP68uLLVf9BoH1vp3g1kHNfsdjO/HArJwQF1Y7ax1i7103mzU4GRSHfJqep88uE71/VNGGbfLk3uXqtRFIh7YxxKxs1XiEWncrSZ4NisLqHWKTnRb+X0CAHW6NUGzUTmsvdx0O9uUvb4OkgAU7Noro5fSeZc3GEaLBWPeSTmeGTc/aJXoby8Z059MbuXB4gplWT4QV541DS5m12yZ/azrzuR2/Pir/7Ry3hv3Pjk+tf+ZOzsWAAAAAACAh+32C2UAAAAAAHhyCaMBAADABjT9kH9d6Kooitpw2gP7u7tcXWTreHLz/r/HNyqXudC+2Gh/Z6FTdNJ5s8GUkyTk1Wv1l95n3e0/Dc2Va4bRmt7H3WIv2jW3QSZ7TAwmzcItWWiu6XEDQJXOhsJoddvZpuz19aTh6yts29Hw5crpT7cvR7e1q+dNmY4lIyL6K4zPsxD0qBylobMq4xil86ZB5mw8n43/t+Gnb3wkbk2q37s9d/j+KIpm7zkAAAAAAAAAAAAAAOBRJowGAAAAG9D0Q/6L4lJNY17TwFq76MR+0atc5nh8Pxh2a3yzcpksNHAetIp2tJIfXcxGEAZJfKG/wnWrC81NIw/rhtHq4ngPLrfafZM9xgZJQO7h5aoDL02PGwCq1IfRHgwW1cWOziqMlr++CqNxPhyNqsNol7tXN7qfui5XWeaR3YiI3obH58s8/+bPM7M698Jx2ZXbXRjtxesvVE7vtQ7iC55+dmfHAQAAAAAAAAAAAAAAZ0kYDQAAADag6Yf8F4XP+u2m27kfCMjWmYawJuU4TpJowIX2xUb7OyvdYq9y+qgc3vv3ybj6ujWNzD24Tl144fT2XDeL0DR4tsrxn26/+jrURSoeXC67PYXRAFhdtzaMNpy7XBMwOqMwWv76KozG+XA0rA6jXelsNoyWx8NO1cV4m8akH1wnHzsPxs3CvxERo8kwndcpOhGRh453lUX7jcGvxr87+bXKeV/09H+48vsDAAAAAACA5ezuS2MAAAAAYF7px1PAXcJoAAAAsAFZLOOh5RaEzxpvZzaMlsQCpqGAweQ4yuQP1g7aTzXa31nJ4ifTYEpZljFIgiRNI3Oz9or9aCU/LpmGxcpyUjm/KJr9mKXX3sxjJd1+8hhqGo7Iw2hCDACsri5oNizvPHC5PmB0NmG07HVQGI3z4mhUHUY77G46jFanjJNxHuNdJbRbNybO3gdUmT/PzJqeV4oiC6Pt5q8rPnT9A+m85w6f38kxAAAAAAAA1Kv/Eh0AAAAAANgUYTQAAADYgKYf8l8Ul2q8nZm41kESCzienIawbo1vpts5aJ33MFqncvqoPA2mDMs7MYlx5TKrhLyKolgYmkvXbfiHf6vE75aRxSNulycxKatvq1mD8eZCcwAwVRc0m76uZ5cf3E712GDb8vCoMBrnwyvDlyqnH3Y2G0arG/OWUaaxwE7RiW5rb+n97Re9KJJfZw4mzcK/EfXnlW4xPa4kjJaEkTfp5ui1+KkbH6mc9/sPPjdev/emrR8DAAAAAAAAAAAAAACcF8JoAAAAsAH9dtPYVX1capVoVhryuhsKOK4Jo11on/MwWhJPGE7uRETEIAkvRCy+rTO9dnVQ7WQyiIjT4EOVpt+HuqmIXqZfs970OtTJYharHg8ARER0WnVhtNEDl4flneptFN0oirP5BvJsrNfktRW2rSzLOBq9XDnvSvfaTo8lG583HQPPOw0XZ2HCZcJoo3TeNNx4NmeXUz/26j9J423PXn5+x0cDAAAAAAAAAAAAAABnSxgNAAAANqBp0GxRXKppMGA2+nXQrg6AHd8NBRxPqsNorWitHCjYlWmkYN40GpBFvCLWCYsl4YW7obkyJpXzi4Y/Zmkev1sx7FazXl1IbtEyqx4PAEREdIpOOm80eTAGlAWMsnHBLmRjpun4AM7SrcmNNCh42Lm6s+MoYzuR3X7yfmeZ518WHYu4f37KxvNZGHlTJuU4PvzqByvnHXauxmc/9QVb3T8AAAAAAEBz2/29CQAAAAAATAmjAQAAwAY0D5rVL9dvLx9Yy4JV01DA8bg6jNZvX4iiKBrt76x0k4jKNJgyGOehryygsEh2X55MBhGx/p/3NX6sNHwsPLRezfbrbq+pbcQsAKAdnSiietwxHyzKAkZnGUbLXl+n4wM4S0fDl9N5h91rG91X9jw+VcYgeU6sE9nNw8WLx7ZTWTgu4v65Jbtm2w6j/atbPxMfH/5e5bz3Xv6qaBftre4fAAAAAAAAAAAAAADOG2E0AAAA2IBFwbN7yy2IXTWPZt0PCxwkAbDj8WkY7db4RuX8C62LjfZ1ljrFXuX0adggi3gVUcResb/SPrP7YBqay9JoraLZj1max+9WC6PVrZfdXrOyeNo6MQsAKIoiDZvNB4vyMFp1MHUX8nBq8zATbMvRqDqM1op2PN2+tNF91YfRIk7ujZkftE5kNxuHTt/vNJGdVyJmo4vV123bYbQXr79QOb0dnXjPpa/c6r4BAAAAAAAAAAAAAOA8EkYDAACADehtKHbVNLA2GxbIQgHTkNfx5Gbl/Cyodp5kAZVp2GCQxEh6rX7jUNm87D6YBsPKcr0wQtPAWNPHwrxuq5vebtntNetkMqicvk7MAgAi8rDZqBzNXa4OGHWTYOouZK/LJ5NBTMrxjo8GHnQ0rA6jXe5ciVbR3tlxlFHGYJyNJVcb20bkYeFlwoTz55mpdnTuvW8oiiT6tub4v87v3fnt+Ne3fqZy3udf/OJ4unN5a/sGAAAAAACotMXfjQAAAAAAQFPCaAAAALABTSNWi5ZrGgyYjWulYbTx3TDaOAujXWy0r7O0KKCSxRDWCS9kkbvpvsqo/uO/IpKQwvz2GwbG1opHpPGWWwvXTW/ThvE/AMgsCp5ODZMwWrb+LtS9Dt6enOzwSOBhr4xeqpx+pXtt8zvL4mF3ZWPJLG7WxMGCEHQTw8mdyumz7zey8fw2P/rz4esvpPOePXz/FvcMAAAAAACwimZ/HwUAAAAAq9LtB6aE0QAAAGADmobRFsWumgQDWtGKbrF37/JB+6nK5Y7vhgJuJWG0C63q9c6TPKByGjYYbCGMlt2Xgw2F0brFXrSjOvj2wHG0qwMQTWTXfzAZLFw3u02bPsYBINM0jDZ/+f76i18/t6XudTB77YRdORq+XDn9sHN14/taNOLdxvi8l4TRjsfNw2jpeaV1/7yUh9EmjfezjDuT2/Hjr/5I5bw3739K/L7ep29lvwAAAAAAAAAAAAAAcN4JowEAAMAGNPmgfzs6aRBkme30WxeiKO5/aP8gCQWcTI5jUo7jeFIdRsuCaufJbABu1vBu2OBkvPmIV3YfnNyNimVhtKbfiFoURaMAXq/Vb7S9Ktn1z26vqVE5jOHd6NzDxyOMBsB6Fr2uT+VhtPpx1DbVvQ6eCKNxxo5GSRite22nx1GWZfp8WGcseZAEg5d57mXnley8NGtbXzr3Uzc+nL5Xe+7y+x94zwcAAAAAAAAAAAAAAE8SYTQAAADYgCahq377YOGH25sEvXrtB4NZ/SQUEBExmBzH8fjRDaNlAZRp2GCQhRca3B+Z7D4YjG+d/qOsTiMsEy5oEj3rJ8G7RttPrv9gcqt2vZPxoOZ4hNEAWE+n6FROnw8WpQGj1uKA0bbUvXYPJvnrJ+zC0TAJo3We2cLe8jFvGeW9mPC8dcaS2brH4/qx7axROaqcPnteKtLrtvk0WlmW8eLRByrn9VsX4guefnbj+wQAAAAAAFjftr5SBgAAAAAAHiSMBgAAABvQJGK1qRjWfBjgoGadwfhW3ErCaBdaj0AYrZUEVCanwZSTJIy2Tnihl6w7jTxkf96XhxQetsr9vIxs3SxUcX9+9e0Zkd8uANDUouDp1HBSHUbL1t+FbrEX7agel5wsEWeCTZuU47g++njlvMPu1Y3vb9GYd5A8H5q8F8pkIei6seu8YXmncvrseaUoqn9tWiZh5HX8xsmvxG/e/vXKee++9OWx19rf+D4BAAAAAAAAAAAAAOBRIYwGAAAAG7Df4IP+TcJSvfby28lCARERx5NbcTypDqMdtM9/GK1b7FVOnwZUBkkMYb3wQvX9NJicRh7KmFTOXyaM1uyxsPkw2vQ6ZLLbMyK/XQCgqaZhtPnL99evDpPtQlEU6ThtsCA8Ctv06ugoJsn49Ern2o6PJg/xrhPZzca2xwvGtrPy88pMGC1Zt0zTyKt78foH0nnPXv7qje8PAAAAAAAAAAAAAAAeJcJoAAAAsAHtoh37Ra92mewD/csu81AYrWadwfhWHI8f3TBaFlAZ3g0bZOGFfiuPxS2SRRuG5Z0Yl6OaLELzMFqTyFiTx0Imuw6DcR4+i6gPo60TmwOAiIhua90wWvX6u5K9Np/UvH7Cth2NXk7nHXavbnx/dSPeMsr0+bBOZDcb29+eDGJSVkfh5mXnlQdDzNXXbtNhtBuj6/EzNz5aOe8zDj4vXrf3xo3uDwAAAAAAYDmb/9IYAAAAAABYljAaAAAAbEhvwYf9s1jVrHbRib1iv3aZ+ShHq2in2/7gK/93DMs7lfMOWo9uGG0aNhiMb1XOXyfiVRuamxxH9sd/raJ5GG3RY6EVrYWPgzpZeGJRuCWb3y32ol10Vj4eAIioCZ5OHo0wWhoeFUbjDL0yrA6j7Re9LY338zHvuBzFnfJ25bwm74Uy/XZ1GK0uxDZvVI4qp3dmxrhFet02++Gfj776T9Ljee7w/RvdFwAAAAAAwGY1//soAAAAAFiFbD8wJYwGAAAAG7Low/5ZrGrZ7VQF2A5a1bGAXz7++XQ7F9oXGx3PWeouCKOdTAaV87N4QhN1YbST8XGUZfbj1eZ/+Fe3j4jTx0CxRGjt4fWrr/+icMtgXD2/n2wPAJaxKHh6/3J1MCgbF+xKNkZrGmaCbTgaVYfRLnevrjWeXEU2No9YPP6tUzcWbRomzGLRs+elLIy2yT+umJTj+Mj1H6qcd6VzLT7rwjs2uDcAAAAAAAAAAAAAAHg0CaMBAADAhjSJXTXazoKAWtV+VgmBHbSfWnqdXVsUUBlMblXO77X6K++zKjw3NZgcR5mkEZbJTmwqopeun1z/ReGILOyyzu0JAFNNw2hNAkZnIRvrZWFR2IWjYXUY7bDzzFb2l8XDIvKxecS6YbSa8fk43+es+fPM1ANhtCQkV5aTRvto4hdu/lS8Mnqpct6XXP7qaBXtje0LAAAAAAAAAAAAAAAeVcJoAAAAsCEbC6OtsJ0L7YuNtj1VRBEHrUc/jHYyGVTO77eWD8XdX3fVMFrzH7Msuo/XCUdERPSS65+Fz6aycNoq4T0AmNc0jNYkYHQWsrHcotdX2KajJLJ1pXttOzusqQHXRQKbvheqUhcNXhT+nRpNRpXTu63dnldevP6ByumdohNffOkrdnosAAAAAAAAy6v+uykAAAAAANg0YTQAAADYkEUf9m8au1plO59+8DmNtj31qf3P3HkEYBXdJIAyLIcxKSdxOwmj9Vr9lffZLjrRLfYq553UhNGWsSg0tk444nT71esPxsdRlvnxZ6G5dW5PAJjKXtdH5Wju8vkMo2Wvr8JonKWj4cuV0w87V3d8JPXPhV579fFkp+im4/PB5FajbTQ5rxRJ9W0T4/+IiN+987H4peOfq5z3+RffGxc7lzayHwAAAAAAAAAAAAAAeNQJowEAAMCGZLGMqaZxqUUBtapo1nsvfWV8wt4nNdr+ftGLr7n6zY2WPWudJN42Kodxe3KSRgoWhccWye6Dwfg4sm8+zUIKVRY9FtYNo2XrT2Icw/JOul4Ws1j3eAAgIg+bzb82zYfSprKw2q5kr4cDYTTO0Cuj6jDale61reyvbsybRcq6xd7aYcN+q3p8Pxj094j4AAAgAElEQVQ3C6NlY+BdhtE+fP2D6bznLr9/I/sAAAAAAAAAAAAAAIDHQeesDwAAAAAeF4viUU3jUouWqwqwXexcjj/3Sf9D/PRrH4nfOPmVGJeTynXfsP+mePtTXxxv2H9zo2M5a1lAYTQZphGviOYRunz9g3htfP2h6SeT4yjLJIxWNA+jLYrfZeGHTWx/MDmOvdZ+9bxx9W266HgBoIn0db0cPnB5OHd50fq7ko0vTiaDHR8JnBpO7sTN8auV8w47V7eyz/owWhbZXW9sHnEaPn5tfPTQ9OMkxjZv/jwz9eB5ZXthtNuTk/jxV/9p5bxP2v/UeEvvrWvvAwAAAAAAYDM286UxAAAAAACwDmE0AAAA2JCFsauKoNkqy2XhtAvti/Hs4fPxbDzfaD+PgiyAMiyHaXghYv2wWK99EFHRThhMjtMwQl0kYt6i4+u114tH1D0WTybHcSkO03mVxyOMBsAGNA2jjSZ3qtdvnW0YLXt9HYybhZlg045GH0/nHXa3E0ark0V2NzGWzJ5/dbHkWaNyVDm9O3NeykPH63/45ydf+1D6/uW5w/cvFVkGAAAAAAA4O36nAQAAAADAbrTO+gAAAADgcbEojNY0CLBouUX7eZx0awIqdRGEXms7YbGTmjDaMn/4tyh8tnbYreYxUhdvyWINTaN+AFCnm4TN5oNFWcAoC6vtSvb6ejIZ7PhI4NTR8KV03mFn92G0bHy+ifcvB8n4+LhhmHA+wDg1e15Js2hrdtHKsowPXf9A5byD1lPxjovvXW8HAAAAAAAAAAAAAPCYWPdvd4HHhzAaAAAAbEhvQTyqaRBg0XJPUhgtC6CMymEa8WpHJ7rF3lr7zW7jQU0YrbVEGG1R+Gzd+3i/1YsiOZ66eEsWs2ga9QOAOtnr+nAuWJQFjLJg6q5kodC6WCts09Ho5crpF9oXY6+1v5V9ZmPMiIjBpDpStuh9UhPZNpo+/4blncrpD4bRqn9tmoeRm/n1wS/Fb93+jcp577705Vu7rwAAAAAAAAAAAAAA4FEljAYAAAAbsqmg2aII1ZMUqcoCKpOYxPH4RuW8XrsfRdE8Ula5jeQ2PhkfR2RhhCX2ue34XatoRa/Vr5yXBStO51WHJZ6kGB8A25MGTycPBouyMFq2/q5k44M75e0Yl6MdHw3kYbQrnWs7PpJTg3EW2a0ely7jIAkLH4/zse2sUfIcbXJeWTeM9uL1D1ROL6KIZy9/9VrbBgAAAAAAAAAAAACAx5EwGgAAAGxIP/mw/lTToFm/vWA77fXDAo+Kbk2o4Mb4tcrpmwjH9dvV2xhMjqPMumjRPIy23+rVzu8l+19Gdjtk8bOIiJNk3pMU4wNge9Iw2lywaFjeqVzurMNodaHQk8lgh0cCp14ZvlQ5/bB7dYt7zce8eWS3/v1NE/nYtmkYrTq4OPt+Ix/Prx5Ge210PX72xo9XzvvMC2+Pa3ufsPK2AQAAAAAAdm+9L5QBAAAAAICmhNEAAABgQ3qt+mBZ06BZ3Xa6xd6ZR0F2qe663hi9Wjm9LlrSVBZeOJkcRxmTynnLhNFaRbv2ft7Edci2cTKuDlaUZRkn4+qoS3/BYxsAmugUncrp88Gi+VDa/fXPbxhtkLy+wjYdjT5eOf2ws70wWlHUhdGqI2WL3ic1cZDEo+uiv7OyMFqnQRitXOMDPh999YdjHNXntGcvv3/l7QIAAAAAAAAAAAAAwONMGA0AAAA2pJ98WD9iuaBZv5VvZxPBrEdJ3W12c1wdRsuiZstIo2KT4zSLsEwYLaL+ODcSRlsyHjEs76TRhl7NYxsAmuoWe5XTZ4NFZVmmAaPuGYfR6l67TxrGmWCTjoYvVU7fZhitTvY8qHt/01S2jcG4OsY2bzi5Uzm905oJoyXRt7JcLYw2Lsfx4es/VDnvme7r420X3r7SdgEAAAAAALZqxd+NAAAAAADAJgmjAQAAwIZsKnRVt+wmol+Pkm4rD6DcSMJom4iKZbfzaVRsM3/8t+37udfqV07Pwmgnk0G6rX6yLQBYRhY8HZb3g0WTGEeZvNY2jcxuS6+dvx4Ko3EWjkYvV04/7J5VGK16PJmNS5eRR3+bhdFGZXUA+MHzShJGW3H8/ws3fzKujz5eOe/Zy18draK90nYBAAAAAADOznJfHAkAAAAAAKsSRgMAAIAN2VToqteu2U7NvMdRXQDlxqg6jLaJqFh2X56MB2kYoSiW+zFLbUhvA/dzv1Udj8jCLXVRiSctyAfAdnSKTuX02WDRsBzWrH+2YbRO0Y1usVc5LwuPwrYMxrfSENlh52zCaJlNvIfJxudNn3uj5NzSnTmvFOkHeVYLo714/QPJPvfi3Ze+fKVtAgAAAAAAAAAAAADAk0AYDQAAADakW+xFK9qV83qtfuPt1AXW6uY9juoCKDfH1WG0TUTFsnhDXTxs2e9D7berw2URedRsGVnMbDCujkdkYY3T43myHncAbEf2uj4qh1GWp+Gh0eT8htEi8jFdFh6FbXll9FI670r32tb2m8fDcpsYS2bj41E5jOHkzsL1h2X1Mk3OK6tk0X7n9m/FLx//fOW8d1x8bzzVfnqFrQIAAAAAAAAAAADA4221rzQGHkedsz4AAAAAeFwURRH99kHcGt94aN4ysa69Yj9a0YpJTB6al8WuHlfdYi+d99roeuX0TdxGWbyh6j65b7lIRF0sb3+JkN6y2781uVH5GL0+/HjN8fTWPh4AyAJEZZQxiXG0oxOjMg+jdVtnH0brty7EjYo466ujo8rXV9iW37n9W5XTi2jFpc6Vre13lTDaRsbnNe+nXhm9dC801mv1o108/OvPUTmqXHf2vNQqqr9Paji5s/Tz+59d/0fpvGcvP7/UtgAAAAAAAAAAAAAA4EkjjAYAAAAb1GtVh9GWiQEURRG91kEcT24+NC8Ldj2uOhVRg6nb5Unl9E3cRv3WhaXXaS0ZiciOc7/oRbtoL73/h7bfrr4Ov3L8C/Ff/tofbbydXqsfrQ0cDwB0W3nwdFgOo13Uh9HqxgW7koVHf/Cl748ffOn7d3swUOFS53AjY8lN6m8g+ls3Pv++f/Pd9/69X/TiMy+8Pb7lDd8dB+2nIiJiXI6jTALHWbBx1odf/WB8+NUPLnnE1T6599Z4S/+tG9kWAAAAAADA7pVnfQAAAAAAADwhqr/6HAAAAFhJFrtaJowWEdFvb2Y7j7pW0Y7Wkj++yIIl29/GsmG06rhDL7nvl7WpiN6T9pgDYHvqwmajyWkQbVgbRsvDaruyqddp2JbDztWzPoSH9FaIDs9rGi6+XZ7Ez9788fgbH/sf702rCy52Z8JoxZLj+VU8d/n5re8DAAAAAAAAAAAAAAAedcJoAAAAsEFZRGrZSFW6nScwxtGZiRU00W9vILywwjaWDSlk8bVNhcg2tZ1NBdYAoO41fRouahowOiteFznvDrvbDaOtEg/rt9cPF++3elEs8WvNXx38y/j48PciImJY3kmXe/C8tN0w2oX2xXjHxfdudR8AAAAAAADrK8/6AAAAAAAAQBgNAAAANula9w2V05/pvn6p7VxNtnN1ye08Dpa97ZZdvsp+0Yun2peWWudK99pSy1/b2+59nD0Wl7WJ2xMAIiL2iv103u3yJCLqw2jLxlK34Ukci/FoecPem7e6/U7RjYtLjJO7xV5cbF9ee7+torX08+9373wsIiJG5ShdZva88syS4/llffGlr4hua2+r+wAAAAAAANiu7X7RDAAAAAAATAmjAQAAwAa94+n3PjStU3Ti8y6+a7ntXHx4O3vFfnzWhXeufGyPqrdffHfjZa90rsWn9D5t7X0WRRHvuPiexsu/pffWOOxeXWofb7vwjtgveg9Nr7rvV/Ep/U+LK5314w7vfPpLNnA0ABDRax2k8wbj44iIGNaG0TobP6Zlff7F90Thj/05p4poxRc8/ex291EU8XlPNR+ff+5T74q9Vh5FXMay4+STyel5ZTRpFlz83Ke+aGvP717rIL7s8n+8lW0DAAAAAAAAAAAAAMDjRhjtCVIURb8oincXRfHHiqL480VRfG9RFH+mKIo/VBTFW4ui2MinPYqi6BZF8aVFUXxrURR/oSiK7y6K4uuLonjLJrYPAABwnn3mhbfHH37dd0a/dSEiIi61D+O73vS98Uz39Utt551Pvze+7uq3Rq/Vj4jT4NefefNfioudSxs/5vPu/c98U3zJ5a9+IFpQ5U37b4nv+cS/HK1iMz/u+IZr3x5fcPG5aEW7drlP7X9GfNebvnfp7R+0n4rv+cS/fO+xsV/04muufnO86+kvXeVwH9Iq2vE9n/h98ab9t6y0/n7Riz9w9VviCy5uN64BwJNjv9VLo0P3AkZJGK0VrWgV9a/Ju/Ap/U+Pb33Dn40L7YtnfSjwgKfal+I73/Rfxev33rT1fX3j674j3nnxS6IdeaywiFZ8zlNfGN/8hj+1sf3+R1f/cLz30vsaRxKnwcXsvBIR0W3df4/x1oO3xX/yhj8dT7WfXu9A51zuPBN/8o1/IS53n9nodgEAAAAAAAAAAADgcVOWZ30EwHnR7JMDPNKKonh3RPznEfF1EbFXs+jHiqL4PyLir5Vl+coK+7kWEd8XEX8oIq4ky/xYRPwvZVn+vWW3DwAA8Kh49vD5eO/l98X10Stx2Lkaq3ao3/fMN8SXX/naeG10FJc7z6y8nUddq2jHH3n9d8UfvPbt8dLwtyt/uPlU5+m43Kl8K7qybqsb3/7G/yL+yOS74uU7v1u5zKXO4Vqxuk/pf1r85U/563F99PF4unM52g0jD029bu+N8b1v+atxffRK3By91ni9VtGK1++9cePHA8CTrVW0Yr/VvxdBmzVYEEbrFnU/2t6td1360viCp5+Nl4a/HcNJHlyCXdlr7cW17ifs7P1Ct9WNP/bGPx8nk0E6Tn6mey367Qsb3W+7aMc3v+FPxTe+7jseeF/wv//7/zl+b/jvH1p+eq4ZlnfSbc7Hl9996cvjXU9/2cae3/ut/Xim+/qNxZsBAAAAAAAAAAAAAOBJ4NOtj7GiKDoR8Vcj4k9FRJNPw7wpIv67iPjOoii+rSzLDy6xr+cj4vsj4nULFv3iiPjioij+VkR8Z1mWt5ruAwAA4FHSKtpxpXtt7e20i3Ycdq9u4IgefXut/XjT/lt2vt9eqx9v7m1vv0VRbP0+vty5svFwHACsot86qAyjnSwIo83Hi87aaUT0TWd9GHCmtj1Ozsy/L7jYuVQZRrsfXByl26o6t3h+AwAAAAAAZCq+0RIAAAAAALZAGO0xVRRFERF/OyK+sWL2L0XEL0bEICKuRcQ7I+JwZv7rI+IfFkXxtU3iaEVRfGlE/IOI2JuZXEbEz0TEr0fE5Yh4e0TMfsr7WyLi6aIovq4sy0nDqwUAAAAAwCOs1zqonD4NGA0nWRjNrzOAav3Whcrpi4KLEecvuggAAAAAAAAAAAAAAES0zvoA2Jo/Hg9H0T4UEZ9dluVnlGX5DWVZfktZlu+LiNdFxB+LiFdnlt2LiB8oiuJS3U6KonhzRPxgPBhF+2hEvK0sy3eWZflNd/fx5oj4sxEx++mTr4mI/36F6wYAAAAAwCOon4TRTsb1AaNOS7wIqNZr9SunDxaE0VrRinbR3tpxAQAAAAAAPJrKsz4AAAAAAAAQRnuM/ddzlz8UEV9RluW/nF+wLMtRWZZ/MyK+IiJuz8x6XUR814L9fF9EHM5c/rG7+/nFuX3cLsvyf42Ib5pb/88VRfHJC/YBAAAAAMBjoNeuDqMtChh1ir3K6QD91oXK6dPg4rC8Uzm/UwguAgAAAAAALKc46wMAAAAAAOAJIYz2GCqK4rMj4i1zk7+nLJNPlN1VluVPRcT/Njf5a2r289aI+E9nJt2JiG8ry/KkZh//ICJ+YGbSfkT8xbrjAgAAAADg8dBvVYfRTu6F0UaV87tFZ2vHBDzaeu1+5fTBgvOKMBoAAAAAAAAAAAAAAJxPwmiPp983d/k3y7L8uYbr/sO5y2+tWfabI6I9c/kHy7L81Qb7+J/mLn9TURS9JgcHAAAAAMCjq9eqDxgNyzuV8wWMgEweXBxERMQo+d6grvMKAAAAAAAAAAAAAACcS8Joj6cLc5d/a4l1f3Pu8mHNsl8/d/lvNtlBWZa/GBH/fGbShYh4X5N1AQAAAAB4dPVb8z++PrUoYCSMBmR6SRhtGlxMzyst5xUAAAAAAAAAAAAAOE/K8qyPADgvhNEeT78zd7m3xLrzy75StVBRFG+IiM+dmTSKiI8usZ8fnbv8/BLrAgAAAADwCOq1+pXTB+NbERExKkeV84XRgEwWRju5G0YbTu5UzndeAQAAAAAAWJZPpQIAAAAAsBvCaI+nn4yI2zOXP6MoiupPmz3sHRXbqvJZc5d/vizLWw33ERHxY3OX37bEugAAAAAAPIL67QuV008mg4iIGJXDyvkCRkCmn4XRxqdhNMFFAAAAAAAAAAAAAAB4tAijPYbKsrwREf/nzKReRHzHovWKomhHxJ+em/wDyeKfOXf51xof4Kn/b8H2AAAAAAB4zPRa1d/hMZicfu/GsLxTOf//Z+/uo2W/6/rQvz+z9z6ZyQnkgSQECoaQgFBBwdDLIqlXEBaoqxcFEbiUXmJv1dorpVeWFttqROtawq3epe2yVsviwStoxSAtRdMFQos8yC1QkCb0hgBBeTAKCSYn5yTn4Xv/2HM8k8mevWf2mZnf7L1fr7Vmze/h+/t+Pr/FWt9wZs+8fxsCjIAJ+mtbB6Pd247lVDs5MXDRugIAAAAAAAAAAAAAAKtJMNr+9aoknxvZf21VPWvS4KraSPKrSZ48cvgPkvzOhEuuGtv//Iz93Ta2/5CqunDGOQAAAAAA2EMGvcNbHj926miSTAwwWhdgBEww6G0djJZsri3WFQAAAAAAgBm01nUHAAAAAACQ9a4bYDFaa1+tqmckuSGbYWeDJDdW1VuTvDXJp5IcTXJxkqcl+cEkXz8yxYeTvKC1iX/RuGBs//YZ+7u7qo4l6Y8cPj/JHbPMAwAAAADA3tHvDbY8fu+poznVTuXEqRNbnhdgBEzS3yYY7eipe3JcMBoAAAAAAMCcVNcNAAAAAABwQAhG28daa5+rqqcmuS7JDyS5OskLh69JvpLkF5L8X61N+KXIpvPG9o/uosWjuX8w2oN2Mcf9VNWlSS6Z8bIrz7YuAAAAAAA7G6wd3vJ4S8u9p47lxKQAo54AI2Brg22C0Y6dumfyuiIYDQAAAAAAAAAAAAAAVpJgtP1vbfi6N0nL9o9n+ZMkP5nkN3cIRUseGIx2bBe9HU1y4TZz7sY/SHL9HOYBAAAAAGDO+r3BxHNHTx2ZGGC0IcAImKC/TTDa0ZOTg9GsKwAAAAAAAAAAAACwWlrXDQAro9d1AyxOVV2b5OYk/zrJtdn5f+9HJnl9ks9X1d+bsdxu/tviv0cAAAAAAAfIoHd44rljp47meLtvy3PrAoyACTZ6GxPXiGOn7rGuAAAAAAAAAAAAAADAHiMYbZ+qqmcmeVeSR40c/kKSVyV5cpILkhxKclmSb0/yxiQnhuMuSfJrVfWrVVUTStw9tj/YRZvj14zPCQAAAADAPtLvTf4o+eipe3KindjynAAjYDv93rlbHj966p6cOGVdAQAAAAAAmI/WdQMAAAAAABwQ6103wPxV1SVJ3pKkP3L4PyR5aWvtL8eG/1mSG5PcWFW/kuQdSR4yPPf9SW5N8potyqxqMNovJ/ntGa+5Msnb51AbAAAAAIBtbNShrGU9J/PAoKJjp+7JiXZ8y+vWy58zgMkGvUHuPvm1Bxw/duroNuuKYDQAAAAAAAAAAAAAAFhFfkm0P/1IkktG9j+V5IWttWPbXdRa+1BVvSjJu0YOX19Vr2+t3T42fPzXJZdkBlV1Xh4YjHbnLHNsZdjneK879XK2ZQEAAAAAmEJVpb82yJGTdz3g3NGTk4PRNurQolsD9rB+79wtjx89eWTyutITjAYAAAAAAPBAresGAAAAAAAgva4bYCG+d2z/NTuFop3WWnt3kveNHBokefEWQ28Z2798+va2HP/V1todM84BAAAAAMAeM5gQYHTs1D05PiHAaL0EGAGTTQpGO3bqaI63+7Y8Z10BAAAAAACYVXXdAAAAAAAAB4RgtH2mqg4nuXLs8LtnnOZdY/tP3WLMzWP7V81Y49Fj+zfNeD0AAAAAAHvQpACjo6fuyQnBaMAuDNYmBy6eaCe2PGddAQAAAAAAAAAAAACA1SQYbf+5YItjX55xjvHxF28x5pNj+99YVVv/6mRr1+4wHwAAAAAA+9BgQjDasW2D0dYX2RKwx+0ucNG6AgAAAAAAAAAAAAAAq0gw2v5z5xbHDs84x3lj+3ePD2itfSnJJ0YOrSf5mzPUePrY/u/NcC0AAAAAAHvUxACjk5MDjDZ6hxbZErDH7SZwcaOsKwAAAAAAAAAAAACwSlrrugNgVQhG22daa0eS/OXY4SfPOM3VY/tfnjDubWP73zfN5FX1uCRPHTl0JMl/mq41AAAAAAD2ssHaNgFGp7YOMFqvjUW2BOxxEwMXT92T4xOC0awrAAAAAAAAs/KrVAAAAAAAlkMw2v703rH9H5j2wqq6LMlzxw6/b8Lw30hycmT/+VX1mCnK/OOx/X/XWjs2ZYsAAAAAAOxhAoyAeRtMWFeOnbwnJ6wrAAAAAAAAAAAAAACwpwhG259+a2z/RVX10p0uqqpzkvx6kvNGDt+d5MatxrfWbknyxpFDh5K8oar629T4riTXjRy6L8mrd+oNAAAAAID9YVKA0dFTR3Lqfs/iOGO91hfZErDH9dcmBy5ODkazrgAAAAAAADxAa113AAAAAAAAgtH2qd9M8vGR/Urypqr6xap62FYXVNUzknwoybPGTr2mtXbHNrWuTzJ6/pok76qqx43Nf05VvTzJb49d//Ottdu2mR8AAAAAgH2kPyEY7e4TX5t4zXptLKodYB8Y9AZbHj+2TTDaRu/QIlsCAAAAAADYh6rrBgAAAAAAOCA8Cn0faq2dqqoXJHl/kkuHhyvJP0zyw1X1iSSfSXI0yUVJnpzksi2memeS1+xQ60+r6vlJbkxy+hck1ya5qao+MqxzfpJvTnLJ2OXvSPITs90dAAAAAAB72WBCMNpdJycHo22UACNgsn7v8JbHj506mt6E50QJXAQAAAAAAAAAAAAAgNUkGG2faq19uqq+NcmvJ3nKyKlekicNXxMvT/JrSf5Ra+34FLXeW1XPS/KGnAk/q2Hdp0y47C1Jvr+1dnKn+QEAAAAA2D/6a1sHo9198q6J1wgwArYz6A22PH683ZdKbXnOugIAAAAAAAAAAAAAAKtp60eksy+01j6V5GlJXpbkg9kMPNvO0SS/keSa1toPttaOzlDrnUmekORXktyxzdAPJXlBa+0lrbUj084PAAAAAMD+MOhtHYzWcmriNevlOS/AZP3e4Ynn2oQ/j1lXAAAAAAAAAAAAAABgNfnG/z7XWjuR5E1J3lRV5yd5SpIrklyQ5Jwkd2UzyOyTSf54OH63tW5P8kNV9Yok1ya5PMllSY4k+UKSj7XWPnsWtwMAAAAAwB7XnxCMtp312lhAJ8B+MVgbzHzNRh1aQCcAAAAAAAD72dYPpAEAAACAefEJFHCaYLQDpLX2tSTvXkKd+5K8Z9F1AAAAAADYewaC0YA5G/QOz3yNdQUAAAAAAAAAAAAAAFZTr+sGAAAAAACAg6O/i2C0jd6hBXQC7Bfn9AYzXyMYDQAAAAAAYCut6wYAAAAAAEAwGgAAAAAAsDyDtdmD0dZrfQGdAPvFWq3lUJ0z0zXWFQAAAAAAgFlV1w0AAAAAAHBACEYDAAAAAACWpt8bzHzNWgQYAdsb9GYLXdyoQwvqBAAAAAAAAAAAAAAAOBuC0QAAAAAAgKVZq/UcqnOmHr9eG6ny5HFge/212YLR1mtjQZ0AAAAAAAAAAAAAAABnQzAaAAAAAACwVP3e9AFGG8KLgCkMZlhXkmS9Z20BAAAAAAAAAAAAAIBVJBgNAAAAAABYqsHa9AFG64LRgCnMEriYJOu1vqBOAAAAAAAA9qvWdQMAAAAA7HPNR1DAkGA0AAAAAABgqWYJMBKMBkxjMMO6UqmsRTAaAAAAAAAAAAAAAACsIsFoAAAAAADAUs0SYCQYDZjGrIGLVbXAbgAAAAAAAPaq1nUDAAAAAAAgGA0AAAAAAFiufm8w9VjBaMA0BmuzBKOtL7ATAAAAAACA/cqDZwAAAAAAWA7BaAAAAAAAwFINeoenHrshGA2YQr83SzCadQUAAAAAAAAAAAAAAFaVYDQAAAAAAGCp+muDqccKMAKm0e9Nv65s1KEFdgIAAAAAAAAAAAAAAJwNwWgAAAAAAMBSDXqHpx673hOMBuxspnVF4CIAAAAAAAAAAAAAAKwswWgAAAAAAMBS9XuDqccKMAKmMdu6sr7ATgAAAAAAAAAAAAAAgLMhGA0AAAAAAFiqQe/w1GM3BKMBUxisTb+uCFwEAAAAAADYjdZ1AwAAAADsc81HUMCQYDQAAAAAAGCp+r3B1GMFGAHTmGVd2egdWmAnAAAAAAAAe5hfngIAAAAAsAIEowEAAAAAAEs1WDs89VjBaMA0Br1Z1pX1BXYCAAAAAACwX1XXDQAAAAAAcEAIRgMAAAAAAJaq3xtMPVaAETCN2dYVgYsAAAAAAAAAAAAAALCqBKMBAAAAAABLNegdnnqsACNgGv3euVOPta4AAAAAAAAAAAAAAMDqEowGAAAAAAAsVb83mHrsRh1aYCfAfnFOr59KTTXWugIAAAAAAAAAAAAAAKtrvesGAAAAAACAg2Wwdnjqseu1scBOgP2iV72c0xvk2Kl7dhy7Xv5ECgAAB0VVbSS5NsnXJXlYkruTfDHJx1prn5tzrSuSPCnJw5Ocl+RLSW5L8oHW2vE51lnaPQEAAAAAAAAAQBd86yO3vQAAACAASURBVB8AAAAAAFiqQ3VOKpWWtuNYAUbAtAa9c6cMRhO4CAAAXamqRyf5G0meMnz/5iQPGhlyW2vtUXOoc0mSVyd5UZKLJoz5QJJfaK39zlnWekGSH0nytAlDvlpVv5XkJ1trf3EWdZZ2TwAAAFvb+e+7AAAAAAAwD35NBAAAAAAALFWveun3BjkqwAiYo37v3KnGrdehBXcCAACMqqqnJ/nxbIahbRnoNed635HkDUku3WHoNUmuqarfSPKDrbUjM9Y5L8mvJXnxDkMvSvJDSZ5fVS9rrd04S51hraXcEwAAgPAzAAAAALrk0yngNMFoAAAAAADA0vV7504VjLbRE2AETGcwdTCaP5ECAMCSPSnJs5dRaBjC9rtJRj9QaEk+muQzSS5I8uQkF4+c/9tJHlxV391aOzVlnbUkv5XkO8dO/XmSjyX5WpIrh7VqeO6hSd5eVc9qrf3hqt0TAADAzmrnIQAAAAAAMAe9rhsAAAAAAAAOnv7UAUYbC+4E2C/6a9OtKxs96woAAKyIe5PcOq/JquoRSW7I/QPE3p/kG1prT2mtvbC19uwkj0jyiiTHR8b9L0n++Qzlfi73D0U7nuTlSR7RWnvOsNbVSZ6Q5IMj485J8rtV9bAVvCcAAAAAAAAAAFgJgtEAAAAAAIClG0wdjLa+4E6A/WL6dUUwGgAAdOB4kv+W5N8m+cEkVyd5UJK/N8car05y4cj+B5I8q7V28+ig1tq9rbVfSvLCset/pKou36lIVT06myFko763tfavWmv3jdW6Kckzc/9wtIckuX6nOkNLuScAAAAAAAAAAFglgtEAAAAAAICl668JMALmq98bTDVuvQ4tuBMAAGDMG5M8uLX25Nba97fWfrW19tHW2vF5FaiqxyR52cih+5Jc11o7Numa1trvDns77ZxMF1h2fZLRDyze0Fp7+zZ1jia5btjTaf/7MGBtoiXfEwAAAAAAAAAArAzBaAAAAAAAwNINeoLRgPnqT72urC+4EwAAYFRr7Y7twrzm5CVJ1kb2b2it3TLFda8Z239hVfUnDa6qQZIX7DDHA7TW/r8kvztyaD2bPW9nKfcEAAAAAAAAAACrRjAaAAAAAACwdP3eYKpxG4LRgClNG7hoXQEAgH3peWP7r5/motbazUn+aOTQ4STP3uaS5yQZ/cfHB1trn5qqwwf29Pwdxi/rngAAAKbUum4AAAAAAIADQjAaAAAAAACwdIPe4anGrQswAqbUX5suGM26AgAA+0tVXZbkm0YOnUjy/hmmeO/Y/ndsM/bbd7h2O+/LZm+nPbmqHrrVwCXfEwAAAAAAAACshCabHxgSjAYAAAAAACxdvzeYapwAI2Bag960wWiHFtwJAACwZE8Y2/9Ea+3IDNd/YGz/G2ao9cFpiwx7+uMpay3zngAAAEb45SkAAAAAAN0TjAYAAAAAACzdYO3wVOMEowHT6k8djLa+4E4AAIAl++tj+5+e8fpbd5hv1OOXVGuZ9wQAADCl6roBAAAAAAAOCMFoAAAAAADA0vV7g6nGCUYDpjWYMhhtw7oCAAD7zVVj+5+f8frbxvYfUlUXjg+qqouSXHSWtcbHP2bCuKXcEwAAAAAAAAAArCKPQwcAAAAAAJZu0Ds81biNngAjYDr9KYPRBC4CAMC+c8HY/u2zXNxau7uqjiXpjxw+P8kdO9S5p7V2ZJZaW/R2/oRxy7qnmVXVpUkumfGyK8+2LgAAAAAAAAAAB4dgNAAAAAAAYOn6vcFU4wQYAdMarE0ZjNY7tOBOAACAJTtvbP/oLuY4mvuHiD1ogXVGbVVnnrV2uqfd+AdJrp/TXAAAAAAAAAAA8AC9rhsAAAAAAAAOnsHa4anGCUYDptXvTReMtlGeHQUAAPvMeIjYsV3MMR48Nj7nMussuxYAAMCUWtcNAAAAAABwQAhGAwAAAAAAlq7fG0w1bkMwGjClwZTBaAIXAQBg39vNL/VX+Zpl1wIAAAAAAAAAgE55HDoAAAAAALB0g97hqcYJMAKmtVGH0staTuXktuOsKwAAsO/cPbY/XRr79teMz7nMOsuuNatfTvLbM15zZZK3z6k+AACwSE3GMgAAAADd8ekUcJpgNAAAAAAAYOn6vel+zyvACJhWVWXQOzdHTt217TjrCgAA7DuC0c6u1kxaa7cnuX2Wa6pqHqUBAIDO+f/2AAAAAAAsR6/rBgAAAAAAgINnow5lbYfnt/Syll75UwYwvf7auTuO2RCMBgAA+83XxvYvmeXiqjovDwwRu3OKOudW1eFZaiW5dIo6W9Va1D0BAAAAAAAAAMDK8WsiAAAAAABg6aoq/bXx3+fen/AiYFaD3vbrSpKsW1sAAGC/uWVs//IZrx8f/9XW2h3jg1prX0kyfvzrzrLWeO+Tji/kngAAAAAAAAAAYBUJRgMAAAAAADox6J277XnhRcCs+r3DO46xtgAAwL5z89j+VTNe/+ix/ZuWWGt8vkXV2e6eAAAAAAAAAABgpQhGAwAAAAAAOtHfKRitJ7wImE2/N9hxjGA0AADYdz45tv+NVbX9hw73d+0O82137mnTFqmqw0m+ccpay7wnAAAAAAAAAABYKetdNwAAAAAAABxMg52C0YQXATPaeV1ZT1UtqRsAANhabf6f0h9N0h85/KbW2ufOct4rkvydkUP3tNb+xdnMuRe01r5UVZ/ImdCx9SR/M8l/mnKKp4/t/942Y38/yQ9sc+12viX3/87mx1prf7bVwCXfEwAAwJRa1w0AAAAAAHBACEYDAAAAAAA60ReMBsxZf826AgDAnvCSJD+XM78ov+FsQ9GSpLX22ap6YpLnnz5WVZ9prd1wtnPvAW/LmRCxJPm+TBEiVlWPS/LUkUNHdrjuxiRHkwyG+0+rqse11j41RY/Xje2/bYfxy7onAACAEcLPAAAAAADoXq/rBgAAAAAAgINpsEOA0UZ5vgswm4HARQAAVlxV9ZL89OndJLckedkcS1yX5Nbh3JXkZ+c49yr7jSQnR/afX1WPmeK6fzy2/+9aa8cmDW6t3ZPkrTvM8QBV9dgkzxs5dCLJm3e4bCn3BAAAML3qugEAAAAA9rkmtx8YEowGAAAAAAB0or9jgNGhJXUC7Bc7ryuC0QAA6NyzklyRpA1fPz4M25qL1tqRJK8aOfTYqvq2ec2/qlprtyR548ihQ0neUFX9SddU1XdlM0jutPuSvHqKcj+V5PjI/nVV9dxt6vSTvH7Y02mva63dul2RJd8TAAAAAAAAAACsDMFoAAAAAABAJwYCjIA522ld2bCuAADQvZeObH+ktfa2eRdord2Q5CMjh/72vGvMqqoeUVWPGn8luWxs6PpW44avi3coc32SO0b2r0nyrqp63Fgv51TVy5P89tj1P99au22ne2mtfSbJL44dfmtV/XDV/VPeq+rxSd497OW0r2T6sLKl3BMAAAAAAAAAAKyS9a4bAAAAAAAADqb+jsFo/owBzGbndUUwGgAAnfv2ke3XLbDO65JcnaSSfOcC60zrD5NcPsW4v5bksxPOvTHJdZMubK39aVU9P8mNSU4HlF2b5Kaq+kiSzyQ5P8k3J7lk7PJ3JPmJKfo77VVJviHJdwz3N5L8yyQ/UVUfTXJXkkcPa9XIdfcleV5r7UvTFFnyPQEAAAAAAAAAwErodd0AAAAAAABwMA0EGAFzNlizrgAAsLqq6vIkF48cescCy43OfWlVPXKBtVZGa+29SZ6X5M9HDleSpyR5YZLn5IEBYm9J8uLW2skZ6pwczvdbY6cuzWb43ffmTDDdabcn+a7W2vumrTOs9d4s4Z4AAAAAAAAAAGBVCEYDAAAAAAA60d8hwGhDgBEwo77ARQAAVts3Dd9bkltba19YVKHW2p8m+fTIoSctqtaqaa29M8kTkvxKkju2GfqhJC9orb2ktXZkF3Xubq29OJshaB/aZuhXk/zrJE9orf3+rHWGtZZyTwAAANtrXTcAAAAAAMABsd51AwAAAAAAwME02DHA6NCSOgH2i53XFcFoAAB06pKR7S8uod4Xk1w13L50CfUmaq09asn1bk/yQ1X1iiTXJrk8yWVJjiT5QpKPtdY+O6dab03y1qq6Isk3J3l4ksNJvpzktiTvb63dN4c6S7snAADgIBN+BgAAAABA9wSjAQAAAAAAnejvFGDU82cMYDb93mDb8xuC0QAA6NaFI9tfXkK90RoXLKHeyhkGkr1nSbU+m2ThwWTLvCcAAID7q64bAAAAAGCfa3L7gaFe1w0AAAAAAAAH02CnYDQBRsCMBr3D255f71lXAADo1KGR7WV8d2+0xjlLqAcAAAAAAAAAAHDWBKMBAAAAAACd6O8QjLYhGA2YUX9tsO15gYsAAHTsnpHtS5ZQb7TGPRNHAQAAAAAAAAAArBDBaAAAAAAAQCcGa9sHo63XoSV1AuwX67WRjW3WDsFoAAB07Msj25cvod5ojT9bQj0AAAAAAAAAAICzJhgNAAAAAADoRL832Pb8eq0vqRNgP9lubdkQjAYAQLduHb5Xksur6qpFFaqqK5M8aovaAAAAAAAAAAAAK00wGgAAAAAA0Im1Ws+hOmfi+XUBRsAuDHqHJ56zrgAA0LGPJ7kvSRvuP3eBtb57ZPt4kv+2wFoAAAAcCG3nIQAAAAAAMAeC0QAAAAAAgM70e+dOPLchwAjYhX5vMPGcYDQAALrUWrsvyX9OUsPXj1XV5GTfXRrO+aPZ/MV6S/JfhrUBAABge034GQAAAAAA3ROMBgAAAAAAdGawNjkYTYARsBvWFQAAVtxbhu8tySVJXruAGj+X5NJshq8lyZsXUAMAAIADp3YeAgAAAAAAcyAYDQAAAAAA6Ey/J8AImK/t1pUN6woAAN17c5IvDbcryd+vqn8yr8mr6lVJ/o9sBq8lyZ9FMBoAAAAAAAAAsAe0nYcAB4RgNAAAAAAAoDMDwWjAnAlcBABglbXW7kvy49kMRWvD95+pqt+sqgt3O29VXVBVb07ysyPztiT/ZFgTAAAAAAAAAABgTxCMBgAAAAAAdKbfG0w8t9ETYATMbtvAResKAAAroLX2piRvz/3D0b43yS1V9dqqesy0c1XVVVX12iS3JHnRcK4M5/0PrbU3zLN3AAAAAAAAAACARVvvugEAAAAAAODgGvQOTzy3XgKMgNn1twtGs64AALA6/k6SP0jylJwJR7soySuTvLKqvpTkw0luTnLn8JUk5ye5IMnjk/xPSR4+PD4aiFZJPpLkpQu/CwAAAAAAAAAAgDkTjAYAAAAAAHSmvzaYeE6AEbAbg7XJwWgb1hUAAFZEa+3uqnpmkjckeV42A82SMwFnD0/yXcPXJDWyPXr925O8rLV299waBgAAgL/6pycAAAAAACxWr+sGAAAAAACAg2vQOzzxnGA0YDf6vcnBaNYVAABWSWvtrtba9yR5ZZKj2Qw1ayOvDI9t9crY2EpyLMmPtdae11r7y2XdBwAAAPuJ8DMAAAAAALonGA0AAAAAAOhMvzeYeG5DgBGwCwPBaAAA7DGttf87yeVJfjbJnbl/AFqb8Bodc+fw2stba/9i2f0DAABwUNTOQwAAAAAAYA7Wu24AAAAAAAA4uAa9wxPPCTACdmO7wEXrCgAAq6q19pUkP1FVP53kqUm+Ncm1Sf5akouSPGQ49KtJvpLki0nen+Q/J/mj1tp9S28aAAAAAAAAAGCOWuu6A2BVCEYDAAAAAAA6I8AImLd+79yJ5zasKwAArLjW2vEkfzh8AQAAAAAAAAAAHDi9rhsAAAAAAAAOrsHa4YnnBBgBuzFYmxyMJnARAAAAAAAAAAAAAABWm2A0AAAAAACgM/3eYOI5AUbAbvR7gtEAAAAAAAAAAAAAAGCvEowGAAAAAAB05vz1C7c83ksv/bXJ4UYAk5y39uD0JvwZ9Ly1By+5GwAAAAAAAAAAAAAAYBaC0QAAAAAAgM48ZOOhedihRz7g+JWDx6ffG3TQEbDXndPr57HnPvEBxy/deHguPvTQDjoCAAAAAADYK1rXDQAAAAAAgGA0AAAAAACgWy972D/KeWvn/9X+hesX56WX/XCHHQF73Ysf+vfzkI1L/2r/3N55+bsPf2WHHQEAAAAAAAAAAAAAANNY77oBAAAAAADgYPu6/pV59RW/nFuP3pxereWqwV/Pod45XbcF7GGXHnpY/tmjfimfPfo/cl+7N48994np9wZdtwUAAAAAAAAAAAAAAOxAMBoAAAAAANC5wdrhPOG8p3TdBrCPnNPr53GHv6nrNgAAAAAAAAAAAACAKbSuGwBWRq/rBgAAAAAAAAAAAAAAAAAAAAAAAADWu25gFlX1B8PNluR/ba3dvst5HprkLafnaq09cx79AQAAAAAAAAAAAAAAAAAAAAAAALuzp4LRkjw9m6FoSdI/i3n6w7kyMh8AAAAAAAAAAAAAAAAAAAAAAADQkV7XDexCdd0AAAAAAAAAAAAAAAAAwMHRum4AAAAAAIADYi8GowEAAAAAAAAAAAAAAAAwT034GQAAAAAA3TuowWjrI9snOusCAAAAAAAAAAAAAAAAYOVV1w0AAAAAAHBAHNRgtItHto901gUAAAAAAAAAAAAAAAAAAAAAAACQ5OAGo/3Pw/eW5ItdNgIAAAAAAAAAAAAAAAAAAAAAAAdZa113AKyK9a4bOAszLWVVtZHkYUmeneSfjpz643k2BQAAAAAAAAAAAAAAAAAAAAAAAMxu5YLRqurkNMOSfK6qdl1mZPvf73YSAAAAAAAAAAAA6FpVXZ3kiiT3Jrm5tfbpjlsCAAAAAAAAAADYlZULRsv9Q8vmMW4rbXj9p5K89SzmAQAAAAAAAAAAgLmoqn6Sh48cuq21NvFho1X13CS/lOSRY8c/mOQHWms3LaRRAAAADqDWdQMAAAAAABwQva4bmGDRn5RXkv+a5G+11o4vuBYAAAAAAAAAAABM45VJbhm+3pPk1KSBVfXCJDdkMxStxl7XJPmjqrp60Q0DAACwnwg/AwAAAACge+tdN7CF/5LJn6J/6/C9JflwkmNTztmS3JvkziQ3J3lPa+19Z9MkAAAAAAAAAAAAzNl3ZzPYrCV5XWtty+/SVdWFSf5NNh+O2oavGp4+fc3hJDdU1de31qb9rh0AAABMUDsPAQAAAACAOVi5YLTW2tMnnauqUznzpa0XtdY+v5SmAAAAAAAAAAAAYIGqapDkSTnzHbl3bDP85UnOz5lAtC8kuSHJiSTPT3L5cNwjkvzDJK9dQMsAAAAAAAAAAABz1+u6gV3weBEAAAAAAAAAAAD2mycmWcvmd+SOtNY+us3Yl+ZMKNr/SPKE1torWmuvHM7z/w7HVZLrFtYxAAAAAAAAAMCctLbzGOBgWO+6gRm9emT7zs66AAAAAAAAAAAAgPm6Yvjektw0aVBVPS7JVcNxLclPtta+dvp8a+3uqnp5kg8ND319VT2ytfYni2kbAAAAAAAAAABgfvZUMFpr7dU7jwIAAAAAAAAAAIA956Ej21/aZty3DN8ryV1J3jY+oLX24ar60ySPGB76xiSC0QAAAAAAAAAAgJXX67oBAAAAAAAAAAAAIOeObN+1zbhrh+8tybtbaycmjPvkyPbXnU1jAAAAsPnPUAAAAAAAWDzBaAAAAAAAAAAAANC9Gtne2GbcNSPb79tm3FdGth+8q44AAAA4YISfAQAAAADQPcFoAAAAAAAAAAAA0L27RrYfutWAqrosyVUjhz6wzXzro5eeRV8AAAAQ/7QEAAAAAGBZ1ncesrqq6hlJvi3Jk5NcmuT8bP+kzK201tqV8+4NAAAAAAAAAAAAZvCF4XsleeKEMd85sn1vko9uM98FI9tHzqIvAAAAAAAAAACApdmTwWhV9Zwkv5T7P/lyt48daWffEQAAAAAAAAAAAJyVT4xsX1RVz2mt3Tg25vuG7y3Jh1trx7eZ79Ej21+eR4MAAAAAAAAAAACL1uu6gVlV1Y8meWc2Q9FGw9DaLl4AAAAAAAAAAADQudbarUluyeZ32yrJL1fVFafPV9Urk1w7csnbJ81VVefl/g8evXW+3QIAAAAAAAAAzJcwIOC09a4bmEVVPSfJa4a7p8PNToej3ZPkziTbPQETAAAAAAAAAAAAVtW/zeZ35FqSK5J8qqo+nuTSJI/Mme/MHUvy/2wzz9Nz5rt1J5L89wX1CwAAAAAAAAAAMFd7Khgtyc8N309/uetPsvklsHe01j7fWVcAAAAAAAAAAABw9n4xyfcl+fpsfk9uI8nVORNydvqBor/QWvvzbeZ53sj4j7fW7l1MuwAAAAAAAAAAAPO1Z4LRqurKJN+UzS9qJckfJXl2a+2u7roCAAAAAAAAAACA+Wit3VdVz0ny+0kePzxcOfMw0UryO0munzRHVZ2X5Hty5rt2715YwwAAAOwvre08BgAAAAAAFmzPBKMledrwvZKcSvK/CUUDAAAAAAAAAABgP2mt/UlVPSnJ303y3CSXD099KsmbW2s37DDFdUkePLL/H+feJAAAAAAAAAAAwILspWC0S4fvLcnHWmu3dNkMAAAAAAAAAAAALEJr7XiSfzN8zep1SX59ZK6vzasvAAAAAAAAAACARdtLwWg1sv3pzroAAAAAAAAAAACAFdVaO5rkaNd9AAAAAAAAAAAA7Eav6wZm8IWR7bXOugAAAAAAAAAAAAAAAAAAAAAAAADmbi8Fo/33ke1HdtYFAAAAAAAAAAAAAAAAAAAAAAAwN6113QGwKta7bmBarbU/rqpPJnlCkqur6sLW2h1d9wUAAAAAAAAAAACLVlWPSPLoJBcleVCSaq29qduuAAAAAAAAAAAA5mvPBKMN/XyS1ydZS/LKJP+s23YAAAAAAAAAAABgMarq8iT/Z5LnJrl8iyEPCEarqm9J8ozh7h2ttX+5uA4BAADYX1rXDQAAAAAAwN4KRmutvbGq/laS70nyY1X1/tba73XdFwAAAAAAAAAAAMxLVfWS/EySH83mg0Rri2GTfq3+F0l+6vT5qnpna+3WBbQJAAAAAAAAAAAwd72uG9iFlyX599kMdXt7Vf10VV3QcU8AAAAAAAAAAABw1qpqI8nvJ3lVtn746aRAtM2Trd2c5D05E6b2krk2CAAAAAAAAAAAsEBbfWlqZVXVTw43P57kmiQXJ/mnSX6kqj6Y5KYkdyQ5Ncu8rbWfnmefAAAAAAAAAAAAsEuvS/KsbAagtWwGnL0vm2Fn9yX551PM8TtJnjHcfnaSn5l/mwAAAAAAAAAAAPO3p4LRkvxU7v+0y9Nf+jo3ybcNX7shGA0AAAAAAAAAAIBOVdUzk7w0Z74b9+kkL2mt/dfh+cszXTDaf0zyr4Zz/I2q6rfWji2mawAAAAAAAAAAgPnpdd3AHJx+KuZu1DwbAQAAAAAAAAAAgLNw/fC9ktyW5JrToWizaK3dluTO4e5GksfNpz0AAAAAAAAAgMVou00QAvadvRiMVnN8AQAAAAAAAAAAQOeq6qIk1+TMw0Jf0Vr7i7OY8qaR7ceeTW8AAAAAAADA/8/enYfZWdd3H39/ZyYLBAgh7Ci7yC7ghkUKCIorWhdcerkA1qV1aa1a21oRa/WxdXnaurUa3K2KIiAF2UFEWWSRgAghEEgCSci+LzPzff44Z545OZlz5pw525zJ+3Vd93Xu33p/x+BJZuY+n1uSJEnt0tfpAup0WqcLkCRJkiRJkiRJkiRJkiSpBV7I8MNOl2TmZQ3uVxqqtmeDe0mSJEmStgeZna5AkiRJkiRJkqTuCkbLzJs6XYMkSZIkSZIkSZIkSZIkSS2wT/E1gd81Yb81Jec7NWE/SZIkSZIkSZIkSZIkSWq5rgpGkyRNYCtnw0NfhoGNsP8bYN9XQESnq5IkSZIkSZIkSZIkSWqX3UrOVzRhvx1Kzrc0YT9JkiRJkiRJkiRJkiRJajmD0SRJnbfoWrjhTMjBQvvR78IxF8Axn+hsXZIkSZIkSZIkSZIkSe2zuuR85ybst1fJ+fIm7CdJkiRJkiRJkiRJkiRJLdfT6QIkSdu5TPjd+4dD0Ybc/y+wfkFnapIkSZIkSZIkSZIkSWq/p0rOn9HIRhHRCxxf0vVkI/tJkiRJkiRJkiRJkiRJUrsYjCZJ6qyVv4fVf9y2f3AzzL+4/fVIkiRJkiRJkiRJkiR1xuziawDPjIinNbDXy4Adi+cJ3NpIYZIkSZIkSZIkSZIkSZLULl0fjBYRkyLiTyPiHyPiwoi4JCKui4jrOl2bJKkGT/yy8tjjF7WvDkmSJEmSJEmSJEmSpA7KzAeAhcVmAH87ln0iogf4h6Ftgd9n5srGK5QkSZIkSZIkSZIkSWqd7HQBksaNvk4XMFYRMQ34G+B9wB7lw1R4r4uINwP/UmwuB56bmb4vSlKnrJxdeWzpb2HTMpgys331SJIkSZIkSZIkSZIkdc4PgI9SuAfufRFxRWZeU+cenwFOLGl/o1nFSZIkSZK2Z378SpIkSZIkSZLUHj2dLmAsIuJY4E7gAmBPCjeB1eoXwEzgQOB44MXNrk+SVIfVf6w8lgOw8PL21SJJkiRJkiRJkiRJktRZ/wqspvBp817g0oh4Vy0LI2L3iPg28BGGP62+CLiwBXVKkiRJkiYkw88kSZIkSZIkSZ3XdcFoEXEkcBPwDAqBaEM/cQ9qCEjLzLXARSVdr2t2jZKkGuVg9WA0gAWXtKcWSZIkSZIkSZIkSZKkDsvM5cAHGL43birwtYiYExGfBc4qnR8Rz4uIt0bE94C5wFsZvpduADgnMze382uQJEmSJE1Uo35sS5IkSZIkSZKkpujrdAH1iIipwOXAdIYD0WYD/w7cAEwBHqhhq0uBc4vnpze5TElSrTYsgoH11ecs/U17apEkSZIkSZIkSZIkSRoHMvO7EXEo8HEK98kFcAjw0bKpAfy2rJ0la/4+M69ufcWSJEmSJEmSJEmSJEmS1Dw9nS6gTh8ADmQ4FO0/gBMy81uZOQ/Yipk/qAAAIABJREFUWOM+NzB889dBEbFnk+uUpLFbNx9+fTb8fD+49hRYdH2nK2qdDQtHn7NxCWxe2fpaJEmSJEmSJEmSJEmSxonM/ARwDsP3xA3dM1cafjZ0D1yUzAlgM/D2zPx82wqWJEmSJEmSJEmSJEmSpCbptmC09zN8g9clmfnXmTlY7yaZuRaYV9J1RBNqk6TG9a+Ha14Ij18EG56AJb+C60+HR78HmaOv7zbrawhGA1gzp7V1SJIkSZIkSZIkSZIkjTOZ+R0K97Z9lUJA2lAAWrB1INpQ3yDwXeCIzPxeG0uVJEmSJEmSJEmSJEmSpKbp63QBtYqII4H9is0EPtLglnOBg4rnBwM3NbifJDVuwWWw/vFt+3/7NrjnY3DSj2DPk9tfV6tsqDEYbeVsmPnc1tYiSZIkSZIkSZIkSZI0zmTm48D7IuKjwAuLx9OBmcBkYCmwGPgNcF1mruxUrZIkSZIkSZIkSZIkSaPJ7HQFkrpB1wSjAccVXxO4LzMfaXC/0hvApje4lyQ1x2P/U3lswxNw7Z/CMRcUwtH2PAWip321tcL6GoPRFl4Oh5zb2lokSZIkSZIkSZIkSZLGqcxcD1xdPCRJkiRJkiRJkiRJkiYcQ9MkDemmYLQ9Ss7nNGG/TSXnOzZhP0lq3KJrRp8z+/zC674vh5N/Dr2TW1tTK214orZ5i68v/As2orX1SJIkSZIkSZIkSZIkSZIkSZK03fKTp5IkSZIkSZKkzuvpdAF1mFpyvqnirNpNLzlf04T9JKlxk3apfe4TV8DD/9W6Wtqhv8a33y2rYMOTra1FkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJktRR3RSMtrTkfPcm7HdwyfmyJuwnSY3rnTr6nFKPfKs1dbRL/4ba567+Y+vqkCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiR1XF+nC6jDouJrAMc3slFEzASOKOl6uJH9JKkpMmHT0tHnlVpxN6z4Pcx4VmtqarWBOoPR9n5R62qRJEmSJEmSJEmSJEkahyJiEvAC4GTgEGA3YGeAzDy9g6VJkiRJkiRJkiRJkiRJUtN1UzDab4BBoAeYGREvyszrx7jXuRQC1gDWAb9rQn2S1JhNy6B/Xf3rrjwO3jwIEaPPHW8GNtY+d/UfW1eHJEmSJEmSJEmSJEnSOBMR04C/Ad4H7FE+DGSFdW8G/qXYXA48NzNHnCtJkiRJkiRJkiRJkiRJ401PpwuoVWauAO4o6frniPpTgCJiP+BjFG4KS+CazBxsTpWS1IA1D4197ewLmldHOw1sqH3uQ//ZujokSZIkSZIkSZIkSZLGkYg4FrgTuADYk+EHgdbiF8BM4EDgeODFza5PkiRJkiRJkiRJkiRJklqla4LRiv695PxE4Ov1LI6IvYDLgBkM3yj2xeaUJkkNWjNn7GvvuwC2rG5eLe1STzAawLLftaYOSZIkSZIkSZIkSZKkcSIijgRuAp5B4T63HBqihoC0zFwLXFTS9bpm1yhJkiRJksaBNQ/DrefBlcfDbX8Bax/tdEWSJEmSJEmjyjGOSdq+dFUwWmb+CLin2AzgnRFxc0ScXG1dREyLiPcU1x5H4X0wgasz85ZW1ixJNVvzUGPrH/9Zc+pop3qD0R78v62pQ5IkSZIkSZIkSZIkaRyIiKnA5cD0ku7ZwHnAwcAR1BCOBlxacn560wqUJEmSJI0sE+7/LFzxLPjfo2H2pyAHO11V/dKPnnaN9Qvh2lPhkQthxT0w95tw7Smw4clOVyZJ0taW3Aw3v67w76TffQA2ryz0b1wCt78X/vcY+PUbYdkdna1TkiRJkjSu9HW6gDF4PXArMLPYPgm4MSIWAQ+XToyIrwGHAS8ApjD89MwAFgJvbVPNkrSt1Q/Bo98t/ABvn5cU2iOZcTxsWQVrH6m+323nwYFvgd4pza+1VeoNRlv4vzC4BXomtaYeSZIkSZIkSZIkSZKkzvoAcCDDD0H+D+BDmYVP00fEATXucwPD98odFBF7ZuaSJtcqSZIkSRry+3+EP3x2uD37fNi8Ap79pc7VpInt8Ytgw8Kt+9bPh/k/h8P+sjM1SZJUbumtcMOZw58jXHkvLP0tnHYVXHcarPpDoX/VffDElfDiX8OMYztXryRJkjSerX0E7v4IPPUb2PVoOOofYa9TO12V1DI9nS6gXpn5CPBKYBFbB53tA7ywZGoA7wJOBaaWzV0AvCIzl7atcEkqtex3cNXz4P5/gbnfgF+/Aeb/dOS5+70KXvkgvPiWUTbNwtN+BvubXW3r1BuMtmUlLPlVa2qRJEmSJEmSJEmSJEnqvPczHIp2SWb+9VAoWj0ycy0wr6TriCbUJkmSJEkaSQ7C3P/etn/urMKDwaVWuOtvRu7/3V+1tw5Jkqp5+BvbfoZw+e/gvk8Ph6IN6V8Dj36nfbVJkiRJ3WTT8kKeyPyLYeMiWHQt3PhyWH5npyuTWqbrgtEAMvN24ATgSgpBZzB8M1iWHJSNBXAN8LzMvLcNpUrSyO77Z9iyqra5Ox8GPX2wx5/Aq+ZUn7vsVnj0e43X1y4DG0fuP+lHldcs/EVrapEkSZIkSZIkSZIkSeqgiDgS2I/he+I+0uCWc0vOD25wL0mSJElSJSt+D5uWbdvfv8YHg0uSpO3bIxeO3P/gl0bu/+MXW1eLJEmS1M2evArWz9+6b2ADPPqDztQjtUFXBqMBZObizHwF8Fzg+8AiCjeEjXSsBi4GTsvMMzNzUWeqliQKT4NaeFnt83d+Rsn5oXDKKMFgj1UJFRtPBrdADow8tsN+sP/ZI4+tur91NUmSJEmSJEmSJEmSJHXOccXXBO7LzEca3G9lyfn0BveSJEmSJFUyuHlsY5IkSZIkSZJUi9veOXJ/pdBhaQLo63QBjcrMO4G3AUTEwcDTgZnAZGApsBi4PzMHO1akJJVa93jtc6fsDrsdv3XfnqdA307Qv3bkNYuvh80rYfKuY6+xHQY2VB7r2wFmHA+P/2Tbsc0rWleTJEmSJEmSJEmSJElS5+xRcj6nCfttKjnfsQn7SZIkSZIkSZIkSZIkqd0G1ne6Aqntuj4YrVTxCZmNPiVTklpr8fW1zz38b6Fn0tZ9k3aGE74At7975DXZD09cCQe+eew1tkN/lWC0nqmVg902rxy5X5IkSZIkSZIkSZIkqbtNLTnfVHFW7aaXnK9pwn6SJEmSJEmSJEmSJEmS1HITKhhN40NETAJOAvYH9gHWAk8Ad2fmvA6WJnXe6ofgtvNqmzv9SDj8QyOPHfou2O3Z8MvnjDy+6NrxH4w2UCUYrW8HmFQhGG2LwWiSJEmSJEmSJEmSJGlCWlpyvnsT9ju45HxZE/aTJEmSJE142ekCJEmSJEmSNMFllR9BVRuTtH0xGG0CiohvA29v0naPZeaBNV53D+AC4I3AbhXm/Ab4Ymb+rEn1Sd3l9nfVPvc5X4XeyZXHd3s2POO9MOdr2449ciFsWQ37vQoO/HPo6a2/1mbZsAge/m+YOwvWPw77nQUnfBEGN1de07sDTK4QjLZ5ZeFfsxGtqVeSJEmSJEmSJEmSJKkzFhVfAzi+kY0iYiZwREnXw43sJ0mSJEmSJEmSJEmSJEnt0tPpAjTubahlUkS8DLgPeC8VQtGK/gT4aUR8PyKmNaE+qXtsWQNP3Vzb3JnPg71OGX3ejCr3wM7/Kdz6drjljZ2LxV07D658Fsw+vxCKBrDwMvjFofDkVZXX9e4Ak2eMPJYD0L+u6aVKkiRJkiRJkiRJkiR12G+AweL5zIh4UQN7nUshYA1gHfC7RgqTJEmSJEmSJEmSJEmSpHbpqmC0iDg6Iq4vHtdFxJ5j2GOv4tqhfQ5rRa0TyM9GmxARpwKXAKV/HgncCVwEXAMsLVv258D/RERX/TcoNWTTMsjB0ecBzHx+bfN2OXz0OfN/Bkt/W9t+zTb7k7Bxychjd/1N5XV9O8HkXSuPr1/QUFmSJEmSJEmSJEmSJEnjTWauAO4o6frniIhK8yuJiP2Aj1G4hyuBazJrvWlFkiRJkiRJkiRJkiRJkjqr20Kp3g2cCpwCbM7MCmk7lWXmYmBLyT5/0cT6xosPAweN4XhD2T4JXFjtQhHxNOBiYHJJ9y3AUZn5nMw8OzNfAjwN+CCF/+2HvAr49Bi+Pqk79a+pfe7M59Y2b+casx0f/V7t126WgU2FULZ69e0MPX0wqUow2tUnQubYa5MkSZIkSZIkSZIkSRqf/r3k/ETg6/Usjoi9gMuAGcBQqNoXm1OaJEmSJEmSJEmSJEmSJLVetwWjvbrk/DsN7DO0NoA/a2CfcSkzl2bmvHoP4IyyrW7IzEdGudwFFG6iG/Ib4IzMfKCspk2Z+R/A2WXrPxQRB4zhy5S6z5Y6gtF2qzEYbfKM0ecAPFI147A1Fl8P/WvrXze5GIg2eXrlOVtWwYq7x1aXJEmSJEmSJEmSJEnSOJWZPwLuKTYDeGdE3BwRJ1dbFxHTIuI9xbXHUXgoZgJXZ+YtraxZkiRJkiRJkiRJkiRJkpqpa4LRIuJg4GnF5iBweQPb/QIYKJ4fFBH7N1LbRBAROwBvKuueNcqaZwBvL+naDLwjMzdWWpOZl7B1qN0U4Pz6qpW6VK3BaJN2gV0Oq21uzySGH+5bTS1zmmzBJWNbNxSM1jsVpuxeed7yu8a2vyRJkiRJkiRJkiRJ0vj2emAZhWAzgJOAGyNiIfDd0okR8bWIuA54CvgKsNfQEPAE8Na2VCxJkiRJ27UcfYokSZIkSZIkSapZ1wSjAUcXXxN4MDPXjnWj4toHS7qOaaSwCeL1wPSS9grg4lHWvAXoLWlfnJlzarjW58raZ0fE1BrWSd2tv8ZgtIPeAVHj23NEIUBsNIObatuvWXIQFlw2trWTZwyf73dW5Xn968a2vyRJkiRJkiRJkiRJ0jiWmY8ArwQWUQg4y+LrPsALS6YG8C7gVGBq2dwFwCsyc2nbCpckSZIkTQCGvEmSJEmSJKm1ssqPoKqNSdq+dFMw2gEl53ObsF/pHvs3Yb9ud15Z+weZuXGUNX9W1v5WLRfKzAeA20q6pgEvqWWt1NW21BCMtteL4JhP1LdvLcFoACvvr2/fRiy7HTYuGtvaSbsOn5/w+crz+secjylJkiRJkiRJkiRJkjSuZebtwAnAlRSCzmD40+lZclA2FsA1wPMy8942lCpJkiRJ+v/ftkmSJEmSJEmSpGbopmC0nUvOVzVhv9Ul57s0Yb+uFRGHAH9a1j1rlDV7A88q6eoHbqnjsjeWtV9Wx1qpO/VXCEabdhC86Fp4+b1w2tUwZWZ9+9YajLbgkvr2bcRT9bwdlIne4fPJMwphcSPpXzf2a0iSJEmSJEmSJEmSJI1zmbk4M18BPBf4PrCIwqftRzpWAxcDp2XmmZk5xifaSZIkSZIkSZIkSZIkSVJn9XW6gDpsKDlvRpBZadDaQBP262bnsvXjae7KzHtGWXN0WfvezKwnpeg3Ze2j6lgrdactFYLRpu4Je58+9n17agxGWzdv7Neo15qHRu7f63R4wXfhkv0qrx3YuHV70s4jz+tfO7baJEmSJEmSJEmSJEmSukhm3gm8DSAiDgaeDswEJgNLgcXA/Zk52LEiJUmSJEmSJEmSJEmSJKlJuikYbWnJ+QFN2G//kvNlTdivK0VEL/D2su5ZNSw9sqz9cJ2XnjvKftLE018hGK1S8FetemsMRlu/sLHr1GP1gyP3Tz+yEARXze4v2LrdO23kef31ZDFKkiRJkiRJkiRJkiSNbxGxM3BQSdfc8odVZuYjwCNtLUySJEmSJEmSJEmSJEmS2qin0wXU4fHiawDHRMTMsW5UXHtsSVcb04LGnZcC+5W0NwA/rGHdoWXtx0ecVdljZe2ZETGjzj2k7rKlQjBaX5uC0Z68srHr1GrBL2DJTSOP7XwY9IySybnfy7duT9pp5Hn9a+uvTZIkSZIkSZIkSZIkafx6M3B38bgdmNLZciRJkiRJkiRJkiRJkiSp/UZJpxlXbgU2AZMphKP9FfCpMe71lwyHwvUDtzRcXfc6t6z9s8xcWcO6XcvaS+q5aGaujYiNQGmi03RgRT37lIuIPYE96lx2SCPXlGpWKRhtUoPBaD113AO7+iHY5bDGrlfNyvvhV2dVHt/lmYXXXY+FlfeOMCFgxglbd/VOG3mv/nUj90uSJEmSJEmSJEmSJHWn3SncGwdwR2Yu72QxkiRJkiRJkiRJkiRJktQJXROMlpmbIuJm4Ixi14cj4ueZObuefSLiaOAjQBa7bsnM7TJdJyL2AF5V1j2rxuU7lbU3jKGEDWwdjNZgOhRQCL07vwn7SM3XXyEYra/B//RzoPa5lz8T3jwIEaPPHYvHflh5rGcSzHxe4Xy/s0YORnv9sm1rm1T+dlPUv3ZsNUqSJEmSJEmSJEmSJI1Pq4qvCSzoZCGSJEmSpO1U5uhzJEmSJEmSJElqsZ5OF1Cnzxdfk0Iw15URcWKtiyPiecAVwDSGn6z5+corJry3AZNK2nOBm2pcW55UtHEM1y8PU6uQfiRNEFsqBKNNajAYbbDO//tdewpsXNLYNStZcU/lsT1PhcnTC+dH/T3s89Lhsd4d4eSfweQZ267rmzbyfgajSZIkSZIkSZIkSZKkieXJkvPJHatCkiRJkiRJkiRJkiSpRapF8xvbL2lIVwWjZebVwI0UQs0S2Bf4VUTMiojnRUSUr4mC50bEN4GbgacNbQfcnJlXtKf6cemcsvaFmWN+tMtY1vn3kbYv/S0KRhuoMxjtqZvhqufDuscau265LWvgiSpvqUd+dPi8b0c49Qp4+X1w2lXwmvnw9NeOvK6vQmbi8jt9GpUkSZIkSZIkSZIkSZpI7is5P6hjVUiSJEmSJEmSJEmSJElSB/V1uoAxeBNwF7APhWCtPuAdxWNdRDwIrCiO7QYcBgyl6gwFqgUwHzi7jXWPKxFxInBUSdcA8O06tlhb1t5hDGWUrynfcyy+ClxU55pDgEubcG2pui0VgtH62hyMBrBuHvzqz+BldzV27dIaLt6r8vhuz4W9z9i6LwJ2PapwVNM3rfLYqvtg12Nqr1OSJEmSJEmSJEmSJGmcysyHIuJe4Fjg2IjYLzMXdrouSZIkSdJofOC3JEmSJEmSJEnN1HXBaJm5JCJeClwGHMjwbw+CQgDas8v6/v9ShkPRHgZenZlL2lHzOHVeWfvKzHyijvXjMhit+Gda159rRIw+SWqG/grBaJM6EIwGsOJuWHQ97P2ikccHByD7YfNyGOyHKbsDCTkAm5YV5vRMgh32hZvOgoENla91zCfGViPApF0rjy2+0WA0SZKkTtqyGnqnQU9vpyuRJEmSJEmSJGmi+E/gGxTuc/sU297nJUmSJEmSJEmSJEmSJEkTWtcFowFk5n0R8WzgK8DZQA8jP16ltC+AAeAHwAczc1XLCx2nImIa8May7ll1blP+v98eddawE9sGo62sswapu2ypEIzW16FgNIDrT4dD3gnP+TL0Thnun38J3PxnjdVVaod9x752z5Mrj/U3nKcoSZKksVgzF37zFlh2B0yeAc/8IBz9T2DwtCRJkiRJkiRJDcnMWRHxGuAVwDsi4sHM/NdO1yVJkiRJqsb7piRJkiRJkiRJaqaeThcwVpm5IjPfAhwJfAmYXRyKsgPg98DngWdm5ju251C0ojcApUlMi4HL69xjTln7gDrXl89fnpkr6txD6h6Z0F8hGG1Sg8Fogw0EowHM/Sbc9TfD7VV/bG4oGsC0et8iSkyZWXmskVA4SZIkjc3gFrjuVFh2O5CweTnMPh/mfK3TlUmSJEmSJEmSNFG8Gfg5hfvfPhsRV0XEaR2uSZIkSZIkSZIkSZIkSZLaoq/TBTQqMx8C/hYgInYC9gKGUnSWAoszc12Hyhuvzitrfzcz++vc44Gy9qF1rj+4rP2HOtdL3WVgA+TgyGN9DQajTZ4BG5eMPPbKB+Hej8PjF1XfY87X4NB3w4xnwQP/1lg95XY5onq4WS32fgksunrb/sFNje0rSZKk+i35FaxfsG3/Yz+Ew/6y/fVIkiRJkiRJkjSBRMSFxdPVwBoKD8A8AzgjItZQeEjokuJYrTIzy+8ZkyRJkiRpBNnpAiRJkiRJkiRJ6p5gtIjYG3heSdevM3N56ZzMXAusBea2s7ZuEhGHAS8s6541hq3uK2sfGxE7Zub6GtefNMp+0sSypcq9qJMaDEZ71mfgtndu23/gW2GXw+CFP4ErjoOVv6++z5XHNVZHJSdf3PgevVNH7h/Y2PjekiRJqs8Dnx+5/6lb2luHJEmSJEmSJEkT0zvY+lPoCUTxfBe2vfdrNFHcw2A0SZIkSZIkSZIkSZIkSV2hp9MF1OG1wM+Lxw+ATZ0tp2udW9b+dWY+WO8mmfkkcG9JVx/13XR3aln7ynprkLpKfwuD0fZ9OfSNsMeBfz58fthfNXaNsTr8QzD98Mb3qRiM5l8FkiRJbbd5+ehzJEmSJEmSJElSM2XJIUmSJEmSJEmSJEmS1LWyyt0P1cYkbV+6KRhtVwpPrwzgjsxc1+F6uk5E9AJvK+ue1cCWPy9rn1NjHYcDzy/pWgdc3UAd0vjXv77yWO+0xvbeYR940dUw/ajh9vNnwb5nDs85+Fx41mcau0699jy1edfsmTJy/+DG5uwvSZKk6gb74b5Pw1UvgGW3V57nTx0lSZIkSZIkSWqGaOIhSZIkSWo575uSJEmSJEmSJKmZ+jpdQB2WF18TeLKThXSxlwP7lLTXABc1sN8PgI8DvcX2ayPiGZk5Z5R1f1fW/klmmm6kiW1gQ+Wxvh0a33/3E+EV98HmlTBpOkTZfa09vXDU3xeOa0+FJTc1fs1q9n5xIaytWXqnjtw/4FuHJElSW9x6Dsz7/ujzBjZA346tr0eSJEmSJEmSpInroE4XIEmSJEmSJEmSJEmSJEmd1E3BaKVhaNM6VkV3O6+s/aPMXDfWzTJzTkR8Bzi32DUZ+HZEnF4p6CwiXg28o6RrM3DBWGuQuka1YLTeJgSjDZm86+hzDnhT64PRTrmsufv1Thm5f2BTc68jSZKkba17DOb9oLa5/esMRpMkSZIkSZIkqQGZ+Vina5AkSZIk1StGnyJJkiRJkiRJkmrW0+kC6nA3kMXzwzpZSDeKiL2AV5R1f7MJW58PrChp/wlwbUQcXnb9KRHxfuCisvVf8GY+bRcqBaP1TIZo81vxQW+DXY+tfX5fHVmUOx0Mr5kPvVPrr6uaSvsNjJjBKEmSpGZZOw/u/juGvx0fRf+Ys7clSZIkSZIkSZIkSZIkSZIkSZIkSZIkib5OF1CrzHw8Im4FXgA8MyIOy8yHOl1XF3k7W/9535eZtze6aWYuiIjXAlcBk4vdJwF/iIg7gUeA6cAJwB5lyy8H/qnRGqSuUCkYrXeH9tYB0LcjnHkHzPka3PXXleftfzbs+zLY5Qi4+sSR50w/Eo7/Aiy+HqbuDYe+Eybt0vyae6aM3D+4qfnXkiRJEmTCfZ+G+z4JOVj7OoPRJEmSJEmSJEmSJEmSJG13anzwpCRJkiRJkiRJqknXBKMV/Rtwccn5qztYS7c5p6w9q1kbZ+aNEfFnwLcZDj8L4DnFYyT/A/xFZg40qw5pXOsfR8FoAL2T4fAPwv5vgGtOgnXzth7/00vhaWcVzlfeX3mfTNj3pYWjlXqnjtw/sLG115XUHFtWw2M/gTUPwR4nw36vgOjpdFWSpGqW/hZmf6L+df1rm1+LJEmSJEmSJEmSJEmSJKlNDHmTJEmSJEmSJHVeVwWjZeYlEXEhcC7wyoj4CvDBzOzvcGnjWkScBBxe0rUZ+H4zr5GZV0TE0cAFwBuBGRWm3gp8PjN/1szrS+PewDgLRhuy477wqodhyU2w6FqYcRzsfQZM2W14Tl+1Gtv0S0+D0aTutXEJXH8GrJxdaD/wb3DwOfD8bxqOJknj2bwfjm1d/7rm1iFJkiRJkiRJkqStRMRBwHHAvsBOwJPAY8BvMnNLJ2uTJEmStl/R6QIkSZIkSZKkrlEtpcLYfklDuioYrejdwBrgg8B7gFMi4gvAZZm5rKOVjVOZeQtt+C1LZi4B3hsRHwROAg4A9gbWAQuBuzPz0VbXIY1LlYLRqoaOtUlPL+z9osIxkqrhbW36Z2XPlJH7Bze15/qSxm7Ofw2Hog155Ftw6Ltg9xM7U5MkaXRPXDG2dQajSZIkSZIkacW9cP9nYNNS2O14OOaT0Det01VJkia4iPg28PYmbfdYZh5Y5VqN3jBzUGbOq3dRRLwe+BDwggpTlkfEj4FPZObSBuqTJEmSJEmSJEmSJEmSOqqrgtEi4vqS5hpgZ+BI4JvF8QXAkuJYrTIzT29akSIzNwM3dLoOaVypFIxWNXRsnBgPNfZOHbl/YGN765BUv9mfGLn/8Z8ajCZJ49m6MWZaG4wmaTwYHIDsh94KIduSJEmSpNZZPQeufv7w7/EWXweLb4Azb4fo6WxtktQlIuJtTdwuKdxLtwpYBPwxM3248ugq3OjTGRGxE/AN4E2jTN0NeC/w2oh4e2Ze1fLiJEmSJEmSJEmSJEmSpBboqmA04FQKN2sNSSCKB8DTi0etN29FHXMlaewmajBau+6V7anwYfbBTe25vqTmmzsLTvh8p6uQJJXLhEe/N/b1AwajSeqgwS1w14fh0W8XPoC/z5lw4rdgysxOVyZJkiRJ2497/m7bhxstvxOevAr2fVlnapKk7vNtWndP27qIuAP4DvDjzPTGi5H9rNMFDImIXuDHwMvLhp4C7qYQencIcDzD91HuBVwaEWdk5q/bVaskSZIkSZIkSZIkSZLULN0WjDYSg80kjX/dHIzWM7nKYJvegnunjty/fkF7ri9pbHKw8tjkXdtXhySpdk9eDbe+fezrt6xtXi2SVItMWDsXVj8E93wUVt0/PLbwF3Dz6+CMGztWniRJkiRtVzavggU/H3ls8Y0Go0lS/WL5V3KCAAAgAElEQVT0KXXbicLDSU8FPhsR52Tm1S24Tid8GPjkGNY9B7iopJ3AhXWsvw14U53XrOeGl//D1qFoW4APAf+dmZuHOiPiSOCbwAuKXVOASyLimMx8ss76JEmSJEmSJEmSJEmSpI7qxmC0VtzwJUmt1d/FwWhR5W23WuhRM1UKRgOY/c9w9Mer1ympMx7+78pjBqNJ0vj00H82tn5gXXPqkKRaDGyC294J875fec6Smwqhabsc1r66JEmSJGl7de8nKo/NvxiO/1z7apGk7ld6E0RW6C9X/nS7keZmydg+wJUR8YHM/Er9JY4vmbkUWFrvuoj4WFnXDZn5SB1bbMzMefVetxYRcTDwwbLuN2TmpeVzM/MPEXE6cB3D4WgzgfOB97SiPkmSJEml2vTAcUmSJEmSJEmSthNdFYyWmT2drkGSxmSgi4PRqmrTL3Cn7FF5bPYnYJ8Xw+4ntqcWSbXZtBzueG/l8UnT21eLJKm6lffDgktg4xJ44n9rW7Pbs2H5ndv29xuMJqmN5n6zeijakCevNhhNkiRJklptzcMw58tVJrTpgUuSNDGcU3zdGfgEhXCroPBmeitwB/A4sBqYDOwGHAOcDOxdXJvAj4FfAjsAuwJHFuccwNYBaV+KiAcy8/qWflXjUETsALyprHtWJ2qp4HxgUkn72yOFog3JzA0R8Q5gNoX/NgDOi4h/rTPsTZIkSdL2LA15kyRJkiRJkiR1XlcFo0lS15r7jZH7+3Zsbx3N1q5feu52PPRNqxy08ej3DUaTxpsFFe/FLuib1p46JEnVzb8EbjkbBrfUvubUX8KcrwAGo0nqsHk/rG3eunktLUOSJEmSROF7tKwSfrZuHgxsgt4pbStJkrpVZn4nIp4BXEYhFA3gG8CnM3N+pXUR0QO8Gvg8cBDwBuCBzPxU2byXA/8OHEIhIK0P+AJwfJO/lG7weqD0qV4rgIs7VMtWiqFtry/r/txo6zLzoYi4BDi72NUHvAX4dHMrlCRJkrS16HQBkiRJkiRJkiRNKD2dLkCSJrwtayuP9e7Qvjpaok3BaL1TYY+TK4/P+Up76pBUuzlfrT4+sLE9dUiSKstBuPP9dYSiBTz3a7DvmZUDLg1Gk9ROS39T27wNC1tbhyRJkiRp9Aem5CCsmdOeWiSpy0XEjsAlwDOBfuDNmfnuaqFoAJk5mJk/B44Ffk3h3sDzI+IdZfOuAE4A7i7pPjYiXty8r6JrnFfW/kFmjpdfZp8JlD5x8beZ+cca136rrP3a5pQkSZIkSZIkSZIkSVLjskpMRbUxSdsXg9EkqdWeurny2KSd21dHK+x9RvuutcPe7buWpMY89hNY/rvqcwzOkaTOW/0grF9Q29xjPw1v7odnvKfQ7ttp5Hn9VUKBJamZNi2rfe6qByqPDQ7AxqWFw/BeSZIkSRqbdfNhxV2jz1td5fszSVKpTwFHUHha3ecy8yf1LM7MdRSCsJYDAXw5IvYom7MGeD2F4LWhW4pf0mDdXSUiDgH+tKx7VidqqeClZe0b61h7M4U/2yHHR8ReDVckSZIkSZIkSZIkSZIktYnBaJLUaouvrzy2R/n9lePUMz9Yof8D7ath8szq4+seb08dkkZ3/2dGn2MwmiR13rLbap971D9AlPwIoW/ayPN8f5fULqsfqn3uyt/DRbvCPR+Dgc2FvoHNcPt74We7wcV7FI6LdoHrTi98oF+SJEmSVLsFl1Ye65kE+50FR3wUdn5G+2qSpC4VEX3A24rNTcDnxrJPZi4F/qvY3AF4ywhzHgUuohCeBnDSWK7Vxc5l+GsHuCsz7+lUMSM4uqz921oXFsPxZpd1H9VwRZIkSZIkSZIkSZIkSVKbGIwmSa2Ug/DA5yuP731G+2ppxDM/CDvuv3Xfwe+A6eX3YLbQlN2rj1/1/PbUIam6zSsKwROjGVjf+lokSdsaHIDld8HS2+DWc0afP3k3eOldELF1v8Fokjptw8L65m9ZBX/4XCEcDeCuv4aHvw5bVg/PGdxSCDe/6jmF98vNK2HRdbBhUfPqliRJkqSJaGGFYLRdnglv2gynXArHfw5mHNfeuiSpO70Q2B1I4PZiwNVYXV1y/poKc64qvgbwtAau1VUiohd4e1n3rDFut39EfCsi7o+IFRGxOSIWF9vfj4h3RcRuY9j3iLL2w3Wun1vWPnIMNUiSJEmSJEmSJEmSJEkd0dfpAhoVEccBZwEnA4cAuwE7A5mZ23x9EbErsEuxuSkzF7erVknboaW3Vh475C+gd3L7amnETgfBS34Lj/0PrHkY9jwFDjh724CMVqoUvjFk4yJYvwB23G7u05XGp9UP1jbP4BxJar91j8GNr4BV99c2//APwWF/BTsdvO1Y304jr/H9XVK7bFo2tnUPfgkOOQ8e+U7lORuXwI8mFb7nzcFC3+F/C8f/W3u/D5YkSZKkbrB5JSy+ceSx/c9uaymSNEGUPrXuiQb3erLk/IAKcx4oOZ/R4PW6yUuB/UraG4AfjnGvg4pHqT2Lx5HAnwNfjIhvAP+UmWtH27AYpFYepvZ4nXWVz39GneslSZIk1SU7XYAkSZIkSZIkSRNK1wajRcQxwJeA00q7a1h6GvDT4vm6iNg7M9c3uz5JIhP++KXK4zOf275ammHHfeGIv+1gATW8xT9xJRz6F60vRVJlT/yytnkG50hS+932rtpD0Q4+B074QuXxSqG1/aN+lkeSmmPzGIPRAK44uoZJWfi+fsgfvwC7Px/2f8PYrytJkiRJE82qB+DXZ0P2jzz+tNe0tx5Jmhj2KTkf5Qlyo9qx+BrA3hXmrCg5n9Lg9brJuWXtn2XmyhZebxrw18DLI+K1mTnaL2x2LWuvz8x6f8m+pKw9vc71FUXEnsAedS47pFnXlyRJktRqhrxJkiRJkiRJkjqvK4PRIuIdwFeAqRRu3Cr9qXtSPT3nUgpPQzyAwg1HrwO+15JCJW2/MuG282D+TyvP8Qnp9dlhr9HnDG5ufR2SKltwGdx3QW1z+9cV3iujllxbSVLDNi2HRdfUPv+Ij1QfrxiMZvClpDbZ1EAw2lgtuNRgNEmSJEkaMue/4I73UvFDkjs+HWYc39aSJGmCWF1yfmSDex1Vcl7pySZTS843NHi9rhARewCvKuueNYat+oFfA9cC9wILgDXATsD+wMnA24A9S9YcBlwbESdm5mNV9t6prD2WP5vyNTuPYY9K/hI4v4n7SZIkSROA98NKkiRJkiRJktRMPZ0uoF4R8ToKNyLtUNoNzAfuYZTfJmTmIPDjkq6zml2jJLH0t/DItyqP90yCyU17EOv2Ye8zCv+7VdO7Y/Vxabwa2Aj3ng/XvQhuPQeW39npiurXvx5+9eo6FiRsWdWyciRJZVb9gbqe5Dn9iOrjvQajSeqwzcvbf815P2j/NSVJkiRpPNqwCO7+MFV/3rTfWT4cRZLGZkHxNYCDI+L5Dez11uJrluxbbu+SOU81cK1u8jag9AaUucBNde7xcWC/zDwtM/8lM3+RmXdn5sOZeU9mXpaZH6Hw8Nb/w9Z/ae4NXBxR9S/K8mC0jXXWB9sGo5XvKUmSJEmSJEmSJEmSJI1bXRWMFhH7AN8pNoduFvoqcEhmHgi8tsatLh3aEjilaQVK0pAnrqw+vs/L2lPHRDJ5Bhz0tupzRgtOk8ajTLjhTLjvU7D4Bnjk23DtKbDsd52urD6XH17/mk3Lml+HJGlkG5+sfe6h7x59zqQKn53pX1P7dSSpEf5bUpIkSZI6Z/7F0L+2+pyn1fMwFUlSiZuALRTujQvgqxFR91PiIuKNwEsYvsfumgpTTyg5n1fvdbrUOWXtCzOzjqfLQDEMbUkN8zZm5t8D7y8bOgF4cz2XrKe+BtZIkiRJGjP/CS5JkiRJkiTVqtpv6ev7Db6kiayrgtGATwA7UrjpaxA4OzPfl5mPFsdrfXu7g8INZAAzI+Kg5pYpabt3/6erj0/etT11TDTP/Xr18XXz2lKG1FRLboIlv9q6r38dPPTlztQzFmvmwvr59a8zzEKS2mfto6PPGbLvK0afM2n6yP0DG2FgU+3XkqSx8t+SkiRJktQ593+m+vikXWBPn1EnSWORmauByyncH5fAccBVEfH0WveIiHdSePjoULhaAt+vMP3MkvPfj6XmbhIRJwJHlXQNAN9u9XUz8yvAZWXdf1llSXkC6Q5juGz5mlFSTevyVeDoOg9TUyVJkiRJkiRJkiRJklSzrglGi4heCk9JzOLxucz82Vj2ysx+4I8lXYc3XqEkleidWn18ksFoY9LTV3383n8yAljd56H/HLn/0e+0t44hAxth6e2wcvYocduDsPxuWH4XzP7k2K61aenY1kmS6ldPgOw+Lxl9TrWg3y2rar+WJI3VlpWdue7CyztzXUmSJEkaL7ashQ0Lq8/Z9+XQO7k99UjSxPRhYGNJ+yTgDxHxtYh4UUTsUr4gIg6LiHdHxB3AfwGTGQ5Fm5WZs0dY83TgVIYfRnpzc7+Mcem8svaVmflEm6792bL2iRFR6Rcu4zoYLTOXZOb99RzA3GZdX5IkSRqfotMFSJIkSZIkSZI0oXRNMBpwIrALhd8WbAH+tcH9FpSc1/xETUmqSd/O1cerBUmoMcvu6HQFUn3mX9zpCoY9dQtcfgRc/Xy44li44SWwecW289YvLIz/8gT45bNhXqWHi49i87LG6pUk1W7tvNrmnTUXeqeMPm/yjMpjI/3dIUnN1r9u9DnHfKr5133oq83fU5IkSZK6yd0fGX3O017T+jokaQLLzEeBc4HBoS5gGvAu4BpgRUSsiIjHI2JRRGwAHgC+Cjyb4UA0gNuAD1W41Mco3D8YwKbi3hNWREwD3ljWPauNJdwOlP4SpRc4ssLc8qfQ7Fisvx57lrU79LQJSZIkSZIkSZIkSZIkqX7dFIx2aPE1gTsyc3WD+5Wu3+YpmpLUkMEt1cezvz11TETPKn+Abpm532xPHVIzrH6o+ngOVh9vhvVPwJyvw+3vhWteCOvmDY8tuhbu+Ydt1/z27bDq/tr2nzKz8tgmg9EkqS2eugWevHL0ec/5Mux0cG17TqoS9LvZz9VIaoP+9aPPOeafYJ+XNve6tbyfSpIkSdJEMjgAj/0EHvhC4fXhr1ef3zOp+d+LSdJ2KDN/BPw5sIatg86ieEwHnkYh/GpKSX8WjwCuAl6WmZWeMvA94LTicXKVeRPFG4DSJx0uBi5v18UzcxB4vKx7jwpzl7F1iBrA/nVe8oCy9pw610uSJEnabuXoUyRJkiRJkiRJarFuCkYrvQlofhP2K00a6WvCfpJUsGUtbBklDGKnQ6uPq7Knv7b6+IYn2lOH1AwLR7nH+q4Pt/b6y++GK4+DO95b+YNMj1wIW9YMtzevhCU31Lb/MZ+CVz4Ie/7pyOObltZXrySpfrMvKARfjib64LC/qn3fvmkQvSOPGYwmqR36a/yM5pTdm39t3+ckSZIkbS8GNhd+tnTLG+HuDxdeR3PwuTB5eutrk6TtQGb+BDga+AkwQCHsDIbDz0qPIQHMA96ZmS/LzFVV9r81M28qHne24EsYb84ra383s+1PNtxQ1t6hytwHytr13mxU/jSc8v0kSZIkSZIkSZIkSZKkcaubgtFKb+Cq8OnruuxWcu6nGSU1z5qHRp8z8zmtr2Oi2uWw6uNtv2dVXWfLavj9P8J1p8Md74M1D3eulg0Lq48/+CVYP8qccjkID/4nXH44/DAKxz0fg80j3O/++3+ATU9V329wM1y0S2Gf294JCy4rXGM0Ox8GR38cpsyEyTNHnrNp2ej7SJLGbu4smP3J2uYe8Ob69o6AybuOPLZ5RX17SVK9chAG1tc2d+bzmn/9lfc2f09JkiRJGo8e/L+w7Nba5z/99XDc51pXjyRthzJzQWa+CTgA+CDwY+BBYBmFsLT1wELgFuALwMuAQzPzws5UPD5FxGFA+ZNkZnWglPInOVR7mth9Ze0X1HqRiJgGHDvKfpIkSZIkSZIkSZIkSdK41U3BaKWpHfs2Yb+jS85N5ZDUPKsfrD6+x8mw6zHtqWWi2q1KsNzglvbVoe4zsAmuPRXu/wwsvh7mfAWu/hNYM7cz9fSvHX3Owsshc+u+wYHK829/D9z5ga3fi/7wOfjlCTCwsbi+vxAQ9+RV9dU7dxb8P/buOzyO8l77+PdRtST33jEYXDBgmunV9N4J7QQSckIaSU4K5KSQHt4USM9JQghJCL33YmxjbIPpxtjYYNx7r2qWtM/7x1jRSp6Znd2dmS26P9elS7tP/UkYbZu5Z9a1wcYe+AMnNAegsuOx3bvt0lMwERFPHf/2p2vJv51AyyBMGex3Q/p7lPdyb29S9riIRKylPvjYva6Eit6px3UZCBNfCrbmSydm/3daREREREQkXyV/BrH4ruDzLtkExz8EFT3Cr0lERLDWrrHW/t5ae6W1dn9rbX9rbYW1tpu1dri19nhr7TettS9YqzevXHy6w/0Z1toUB/iEyxjTF9inQ/NqnynPd7h/UhrbHQ+UJd1/11q7Lo35IiIiIiKSNr0UExERERERERERCcrv3TS90yYirQopGG357u8GOMQYU57pQruvADkkqWlONoWJiLSzfYF3335fgJM7HrcoaUs0evdtmxdfHVJ4Vj8LW95t39a4AT7+S27qaa5NPebNz8F9JXCvgRmXwxP7wEPdYdr50LC+bVztcnjmAFh0h/s6OxfDA1XOOveXw0M9iOyl4dH/hhFXtt2v7OM+rtHv4tciIp2UTcB734FH+8GD3WHm1dCwIfW8dmtYJxQziP4nwakvQ79j060UKnq6t+9SMJqIRCzI8+hWXfrCmW9D/xP8xw04GQaeAme+BYPOSL3uxleD1yAiIiIiIlII1k+H5yfAg1Xw/BGw+F/+n3smG3oRVAYIpRYREckBY0wp8MkOzXfmoJQraH+85jpgvs/4F4Dkq0QcbYwZE3Cv6zrcfyzgPBERERERERERERERERERERGRvFBIwWiv4RzoY4Eq4Er/4b6+nHR7XdxXfxSRIle71L192CUw4Y9QVh1rOUWpxScYrWEdbHjNCRUR6cgrAG3+L+Oto1U6gQ4Ayx+C2iXQUgernoJJxzvhN4lmeO7g/AgGPO5h2Pvq9m2ewWiboq9HRKTQvP9DmPcz529k8w5Ydi+89knn731Qu7bAtrnBxp46NbNQNIDy7u7tTdszW09EJKjmuvTGdx0Bp06DM9+BkZ+B0qr2/RW9YP9vObd7H+YEmk98yX/Nxf9IrwYREREREZF81FwHa6fA/NvhpRNg81uQaILNb8Ksa4Ov02NcdDWKiIhk72xgUNL9HcBDcRZgjBkAfLdD81PWen8AZK2tAx7u0HxzgL1GARclNTUD9wYsVUREREREMmZyXYCIiIiIiIiIiIiISFEpmGA0a20jMBnn0wID/NQY0zPddYwxxwI34ASsWeDRMOsUEaFulXt7zV7x1lHMEj7BaACTjoFn9ocdi+KpRwrHmhdyXUF7zTuzm7/jIyc8Z+YnnBCcXOsyAAafuWd7ZV/38QpGExFpz1pY/Pc929c875yUGlTjxvBq8lNS6d5um+LZX0Q6r3QDhlv1PgSOvAMuWg0T/gT7fBr2/184/XXodVD7sQNPgarB3mst+ltmNYiIiIiIiOSLJffAgzUw5RR49+vZrVU1KPUYERGR3Lm+w/37rbUZvclojBltjDkvzTkDgaeBAUnNu4BbA0z/AZD8wct1xpjzffbqAtwFVCQ132mt1QE0IiIiIiIiIiIiIiIiIiIiIlJQCiYYbbef7v5ugSHAi8aY/kEnG2NOBp7E+bkN0AL8KuwiRaSTW/+ye7vfCdWSnpYUwWgA2z9M70r2IjYR/56ZBjokm/NdWJEnOa9H/g3KavZsr+jjPr5xoxMCJCIijpYGqFvp3jfvp+7tbuIKRiutcG9v2RXP/iLSeWX7PLqiJ+z3eTjqTjj4Z9B9P/dxPcf7r7Ptg+zqEBERERERyZUdH8Nr14S3XjeP11UiIhIqY0y5MeZYY8wnjTFfNcZ8zxhzS67rymfGmAHAOR2as7nqwSDgSWPMHGPMTcYYzwdBY0w3Y8yXgNnA4R26f2KtXZxqs91jftuh+WFjzJeMMe0+qDHGjMW58OwxSc2bgB+m2kdERERERMJQRMfD6theEREREREREREREckDZbkuIB3W2teNMfcDV+B8anA4sMAY82vgQZwrKbZjjCkFTgL+G7gMJxCN3fN/a61dGn3lItJprHwKbIt7X9WQeGspZt32g4a1qcdtmAk7l0LXEVFXJMWgcRN06RfvnmEEo4Vt0Bmw5oX05/U/CYac695X6RGMlmh0AoBqhqW/n4hIMWre6d238ong6wQNRus9Ifiabko8gtESCkYTkYi1xPQ8OpEilPuZcXDFLigpj6ceERERERGRsKx4LLy1ugyEASeHt56IiOzBGHMc8A3gdKDSZciPXOacCVy+++5ma+03oqswr11L+2Mk51pr3whh3QOBnwM/N8ZsA+YCG4EdQFdgGDAe9+Mz/2qt/XEae30LGAectft+OfB74HvGmHd277kPcChtx0aCcyzlRdbaNWnsJSIiIiIiIiIiIiIiIiIiIiKSF0pyXUAGrgfexTmIxwI9gR8AH+z++g9jzHygFniRtlC01kuXvIpz0JCISDgSLfD6p737qwfHV0ux2/+m4GM3hXE8qxSF2mX+/fWr4qkjmV8ATi4c8H046Tk49Nfpzx3S8SLbSbru7d23+un09xIRKVapAjN3LAq2TtBgtNFfDjbOi1cwmm3Kbl0RkVSa6+LZp6Uh9Zj5t0Vfh4iIiIiISDZWPgEzroAZl8OyB533mGan8Vmbny4DYOJLUFJQ1+QTESkYxpgaY8w9wDTgPKALzvFvyV9e5gH/hRMM9j/GmPERl5uvPtXh/p0R7NEDOBa4ALgGuBA4jD1D0WqBz1prb0hncWttC07I3QMduvoDZ+IcF3kY7f89rAcusNZOT2cvERERERHJht9LNBERERERERERERERSVfBBaNZa+uBM4AptA86MzhXxEy+PxqooO0TBrv79ovAObsPGhIRCceGGf4hFFUKRgvNgInQbb9gY2d+ItpapDDUr4FnUxznXbcynlqSpQrAidOoG+GgH4AxsPd/QWWf4HMresNeV3j3Vw2Cnge6922ZnVaZIiJFLdXjwsongq3TuCH1mKohMPTCYOt5KSl3b2/Zld26IiKptMQUjDbo9NRj5v4IapdHX4uIiIiIiEgmFv4FXrkQlj8Ayx9yPjd7at9w1h56IVy0BnqOC2c9ERFpxxjTHefCn1fgfna9dWlr67R2BfBs0lyfD3SLkzHmWGBMUtMu4N9ZLjsf+BkwE6gPOOcj4NvACGvtHZlsaq3daa29AicEbZbP0M3A/wEHWGufz2QvERERERHJlO/LNBERERERERERERERSVPBBaMBWGs3AqcBNwMbaR981vo9+YvdY7YB38EJRdseW8EiUvzq18Lkk/zHVPSKpZROoawaTnkZ9roy2Pj6dZGWIwVg8T+gaZv/mGnnwaTjYfM7sZQEQPPO+Pby0n00HPhDOPT2trbKPnDaazDk/NTzB50Fp02H6qH+4/oc6d6+a2vwWkVEil2qx4WVjwdYow5mf8u7v2oIDLsETn8NyrumV19HJRXu7QkFo4lIxFoa4tlneICg7ZZ6+PB30dciIiIiIlJMtrwHLxwFD/WCF4+BdVNzXVFxshbm/TSatcffCsc97FxsRUREovIwkHz1qV3A3cCngetwD0vr6LGk26eFVlmBsNbOtNaapK/K3ccdZrPmOmvtd6y1xwFdcYLXzgE+C9wE3AJ8E/jM7vb+1trR1tpbs9179/4PW2uPBvYBLgW+DPwv8ClgIjDIWvsFa22Aq+iIiIiIiIiIiIiIiIiIiIjkhvW5zoBfn4h0LmW5LiBT1loL/NIY83vgSpyDt44DBtM+8G0LztUzXwDuttamSEUREUmTTcCUU1KPK62OvpbOpHowHHsvjLjKCbTys+xeGP1VnZzRmW16M9i4DTNg8kQ4+32oGRZtTdY64TVR2f9bcPCtmc/vvh+c+AQ8vhfULd+z/8i/wcjrg69X3t29vWlHZvWJiBSj5lr//g3ToWE9dOnv3r9zMbx8jvf8EVfDMf/OvL6OFIwmIrnS0hjPPj3GwD7XOUHLflY8Aof8Uq85RURERESCqFsFLx7thAwDbHzN+Zzn7LnQdUROSys6OxZC3Yrw1z301zDmq+GvKyIi/2GMuRQ4lbYLgr4GfMJau3J3/14Bl3q+dUlgvDGmq7U2D67eVRystQngw91fce+9BFgS974iIiIiIuJHxwyIiIiIiIiIiIiIiISpJPWQ/GatbbDW3mWtvcpaOxwoB/riBKRVWmv7WGvPs9b+QaFoIhKJ9dNg2wepx5V2ib6WzmjgqVA1xH/MO1+Dl06AXVvjqUnyz8rHUo9p1bQtvfGZaqmn7Tj2DvqfCD3HZ772qC9nF4qWbNhFe7aVlMPQC9Nbp6ybe3vz9vRrEhEpVs0BzkV6dIBzAnGylgaYfhk8ORK2L/Ce2/vw7OrrSMFoIpIriZiC0QCOvBOOugtGXOM9pnYpbJ0TW0kiIiIiIgVt6T1toWitmmth3k9yU08xC/JeUyb6TIhmXRERSfbtpNtzgdNaQ9HSYa1dC6zffbcEGBtCbSIiIiIiIiIiIiIiIiIiIiIiIpHL+2A0Y8x4Y8w3jTF3GWOe2v11lzHmJmPMIR3HW8dma+1aa21TLmoWkQCshfUzYNkDMP82ePtrMOMTMOk42PxurqtLz6a3go0zugpUJEq7wJF3QFlX/3EbZsDsbwVbc9sHMP92mPtTWDfN+fcqha28e3rjg4QdZqu5zrvvsN/BGW9AWU1ma48L+G890FrfgV6Htt03pTDh/6CyT3rreP03aNqReW0iIsWmuTbYuLe+1P7+3KxeMQcAACAASURBVB/DiodTzxt6fvo1+Skpd29P6KW4iESsJcZgNFMC+1wHx9wNl2xyng+7WRFDuLKIiIiISDHYMtu9fdGdkGiJt5ZiZyP4fVb2hT5Hhb+uiIj8hzFmEHBwUtON1lqfD5dTSr6iyn5ZrCMiIiIiIiK+iul482L6WURERERERERERESkUJXlugAvxphDgV8Dx/kMu9UYMxP4mrU2YDKRiOSNqafveUV4gJ2LoPceuYf5a/ZNua5ABp8F586H5w6Gxk3e45beAxP+5JzY7mXxv+D168E2t7Xt+1knCMpvnuS3qiHQtD34+KDBNNlI+IQ5lFZCaQUMvRiW3p3+2l0GZl7XHmv1g9NnOiGB9Suh/4nQbd/01ynv5t6uYDQRkTZrng82buXjULcKqoc44UAf/j7YvJq9M6/NTUmFe3tiV7j7iIh05PdcOkqVvZ3nw+um7Nm3/uXYyxERERERKUjL7vPu27EQeoyJr5ZiF8VnHWO+DiUegdEiIhKWo3d/t8AKa+0rWa63Oel2mle/EhERERERERERERERERERERERyY28THgxxlwATMcJRTNJX/8ZkvR1HPCKMebCuOsUkSwY4wQVualbFW8t2Zj701xXIK2qhzrhZX6ad0Ltcu/+ho0w69r2oWgAH/8V1k/PvsZcsNYJe5t+Kcz6NKybmuuKcqPjf9NUmndGU0cy32C0Ls73CX+EwWenv7Yxqceko7QLDD4DRl6fWSgaQJlHMFqzgtFERP5jyb+Cj318KNxfCQ90Cf63NOzHBwWjiUiutOQoGA1gyLnu7dvnx1uHiIiIiEgh8vuMBqBhbTx1dBZhf9bR/yQY87Vw1xQRETfJV8F6L4T1kh8QuoawnoiIiIiIiLgK+dgsEREREREREREREZFOLu+C0YwxY4D7gCqcTwbs7i9oH5Bmk766APcaY8bGW62IZKXaIxitvkCC0Rb/E+Z8N9dVSLIh56ces32Bd9+j/bz71ryQfj354L3vOGFvKx6BxXfBlNNg+SO5rip+zbVpjo84GM1a/zCHkkrne3k3OOkZuHg9XLgCjns49dp7XRVOjWEr9whGa1IwmogIAHWr05+TTgDZ0AiyxBWMJiK54hcy3KrbqGj27nmQe3vDemjcHM2eIiIiIiLFoH4NTDref0zjxnhq6SzS/WzET+8JcOpUKPV4P0hERMLUI+n29hDWSw5DawhhPRERERERERERERERERERERERkcjlXTAa8GecoLPW0DMDNAOvAQ8CD+2+3UT7kLQuwF/iLlZEslA91L29rgCC0da9DLOuy3UV0lFpJVywzH/Mtnnu7Rvf8J/XuCGzmnJp11ZYcHv7NtsC836Sm3pyqbkuvfFrX4JXPwlNYRxnnuTjO+CZcfBwb5h2rve40sr297v0c/5m1gxPvcegM7KrMSpewWiJRmhRgI6ICHXLo11/+OXhr1lS7t6eaAp/LxGRZH4hw63G/yyavbuP8e7b9kE0e4qIiIiIFINFf0/9/ofXZziSmbAuAlPRG059OZy1REQkiC1Jt3t4jgpucNJtJfuLiIiIiIhExua6ABERERERERERkYKhd9NEJIi8CkYzxhwAnEBbIBrAbcBAa+2x1torrLWfsNYeCwwEftlhiWONMQfFV7GIZKVqiHt7fZ4Ho22bD5NPznUV4qVmOPQ4wLt/7WT39uUP+q+7a2vmNeXKmhed0KmOtsyGph3x15NLLbXpz1l6N7x8Tng1LPk3vPFZJyyhaSvsXOw9tqTSvd0vhAGg+1jY64rMa4xSeXfvvg3T46tDRCRf1a+Odv1hF4e/ZkmFe3tCgZciEjG31znJ+h0Lg8+KZu+qwVDmEfq75oVo9hQRERERKQab30495v0fgNXhTqFpCikY7bSZUFYdzloiIhJE8lXbxmWzkDGmEjg4qWllNuuJiIiIiIiIiIiIiIiIiIiIRE1HEYpIq7wKRgMu2f3d4Pyt+rK19pvW2i0dB1prt1prbwa+mDQeIIKzvUUkEtUewWi1y+KtIx02Ac/sn+sqJBW/4I91U6C5Q0iWtbDycf81mwowGG3bXO++qMNX8kmiyfnKxIYZsPAv4dSx6M7gY72C0co9AhhanfUOlHqE1OSaV3gEwKK/xVeHiEi+qoswHHjI+VDq8diSDQWjiUiu+AWjHfIrOOm56E7aNwb6Hu3el+p1pYiIiIhIZ7bysWDj1k+Lto7Owlp456vZr9PzQOiR4qItIiIStnd2fzfACGNMNn+ILwFa38xvBmZlU5iIiIiIiIj4MbkuQERERERERERERESkqORbMNqE3d8tMMta+8dUE6y1fwZm0vYpwhER1SYiYase7t5euxTq18ZaSmCvXJTrCiSI0V8B4/EQl2iEtS+1b9s2D3Yu8l9z1x4ZnfnP+uQhb37Hu6/YdAzCS9ebn4OmHdnXsf7lYONMGZSUevcPPse9/eD/B6Vd0i4rNlUDvfs26vh7ERHqIwxGG3hKNOt6BaO11Eezn4hIqxaPAMZ9roOxX08dKJytoRe4t2+bCzs+jnZvEREREZFC1aV/sHErn4i2js5i+YPZr1FaBRP+nP06IiKSFmvtEiD5Tab/zWQdY0wl8J3WZYE3rbVZfnguIiIiIiIi3nyO2y44xfSziIiIiIiIiIiIiEihyrdgtLFJt/+Zxrx/Jd3W5YpFCkWfCd59G6bHV0dQb34RVj2Z6yokiMrecJlPkNXG19rfX/9K6jU3vw2Jluzqituuzd59r14Fq1+Ir5Zcaq7Lfo2ns3x64RdS11FppX//Ptfu2WZKYa+r0qspbmU13n21S2HRXbGVIiKSl+pWu7cHPWnYiymF4Zdnt4aXknL39vrVkGiOZk8REXACr92UpHguHZah53v3KcRBRERERMRdz4OCjVt2f3rvqYu7FY+lHrPPdc7Fhrycvxj6HRNaSSIikpbWD08NcI0xxuVDYm/GmBLgDtofi5fyAqUiIiIiIiIiIiIiIiIiIiIiIiL5It+C0Xom3X4njXmtY02HNUQkn1UPga4j3ftWPxtvLal8+AdY+KfU40bd6N5+6G/CrUdSK6uGYZe69zVuan+/dlmwNVcV2Anua57373/js9DSEE8tudQcwkWv61fDlvcyn5/O7zlVmMOwS+HAH4Apc+6X94DjH4GaYRmXF5sDvufd9+bnockn0FBEpNg1bnBv73Fg5mtW9IITn4aqgZmv4aekwrtv5ePR7CkinVPtMnjn6zDtAvjgF9C0zX1cXMFo1UOht0fY+7vfiKcGEREREZFCYwNefKZhLWybF20tncH6qanHHPB92O8L7n09x0f3npKIiATxW2A9YHGOh7vTGPMzY0x1qonGmP2BF4Grd8+3wMfA/dGVKyIiIiIiIs7LNxERERERERERERERCUu+BaP1SLq9yXPUnrYk3e4WUi0iEof+J7q3L7kbts2PtxYvyx+Ctz0Cz5Lt9wXnq6ymfXtFbxh2cTS1ib+KHu7tHYOy6lcHW29ZAR0nvHEW7FzsP6ZuOaydHE89udRSF846S/+d+Vyv4AY3pSnCHIyBA78Pl22Fs9+HSzbC0Asyry1O1cO9+xKNsPLJ+GoREck3jRvd23vsn/5aB/4QLlgGF6+DwWdmV5cf32A0/U0XkZDsWATPT4AFt8OqJ2H2zbDmBfexqZ5Lh2nYhd59H/4uvjpERERERApF0GA0cJ77S3Ya1vv3Dz4Huo6A7qNgwMQ9+/e7IZKyREQkGGttHXAtkMAJNisBbgbWGGPuA9olWxpjPmGM+Z4xZjowBzgZ54x8AzQCV1prbYw/goiIiIiIiIiIiIiIiIiIiIiISFbyLRgtuZ40joxuNzbffiYR8TPodPd22wJL7423FjctjTDj8mBjD70deoyBiS/BgFOgsg8MOgNOmQo1w6KtU9yV1ri3L7sPWhra7q95Pth6yx/Kvqa4zPl+sHGrno62jnzQUh/OOvN/BS+dCJvfTn9uOsFoJV2CjSurgZ4HQElZ+vXkSnl3//7Vz8RTh4hIPvIKRut5AHTdN721qodCzXAoKc++Lj9+wWhL7452bxHpPD78LTRuCDa2JMZgtKE+wWhzvg86z1REREREpL20gtE6wWcXUSvzuZ5ceQ84LukzrxOegJHXQ9Vg6HkgHP5H2O/z0dcoIiK+rLUv4ASgtYajgXPB0MuBbyQNNcC9wA+AY2h/7FwzcL219p2o6xUREREREREdJyAiIiIiIiIiIiIiEqYCStIQkaI09EKo7Od+kvOmN+Kvp6O3bkw9xpTBCY9D6e4TsPseBae8FG1dEkyZRzAawGvXwnEPQMNG7yASN4nm/A+ishY2vR5s7I6Poq0lHySH4HV04Qp4PI3gwvWvwPOHOycMdRsFPcZBSWnqeQ0Bgxyg7W9JMSr3ORFLRKSz83o+UtkPDvohvHoNgQ+e83sOFCa/YDQRkbB89PvgY+N8Lt19LNSMgNqle/Y1bYX61VA9JL56RERERETyXaI5+NhNb4BNgNE10TLmF5h/4Qooq2q7X94Vjvxb9DWJiEjarLV3GGMWAfcAA2j/QUHybZN03+6+vxH4hLV2ahy1ioiIiIiIiIiIiIiIiIiIiARlfU6V9OsTkc5FRxKLSG6VVsKQc9z7ErviraWjXVtg0R3+Y4ZdAme+6f0zSG75hYKseBjq18DCP6a35s7F2dUUh4Z10LQt2Nh1UyDREm09udZS795eUgnVQ6H76PTXnHEZPDceHh8KG17zH7vkbnjp+OBrlxRxMFqZgtFERFy1NEDzTve+yj4w4iqYOAn2/qTTluqk4NiC0XxOsBURCUM6wQkQ73NpY5z3BLx0hhBqEREREZF02DQ+i7AtMP9X0dVS7KyFpu3ufcfcp4uYiIgUGGvtFGBf4CZgBU7oWccvkm5vAn4EjFQomoiIiIiISJxM6iEiIiIiIiIiIiIiIhJYWa4LEBGhZoRHRyLOKva06hn//qP+Cft8Mp5aJDN+oSA2AZvfhQ9/m96aDeuh+6js6ora9vnpjV/4fzD6S9HUkg9aGtzbS7s434+8C6acCi11zv2ybtC8I9jaDWth2rlw4Uooq9qzf+v78FqafydKizgYLeXJVjooREQ6qcZN3n2VfZ3vA09xvo7+p3N/1dMw7Tz3OWVdw63Pi1f4qIhIWLbOSW983M+lD/oRLLjNvW/yRDj+URh8DpRWxFtXoatfB6ufBowT+l3ZH/oeCd32zXVlIiIiIpKNdILRAGbfDMMu1vPApu2w5gXYOs+53f94GHiq//vtiUawHkHTNcOiqVNERCJlra0FfgX8yhgzCjgOGAb0ASqAjcA64FXgHWt17WQREREREZH46aWYiIiIiIiIiIiIiEiY8jEYrfXTgKOMMSMCzhmYfMcYczxpJGtYa18JOlZEolDi3rw+x/9rrn/Zu6+sm0LRCoFfMBrAO1+FXVvSW7N5Z+b1xGXHx+mNX/FQkQejeYS2tAaj9TsaLlgKKx+HkgoYdAa8cCTULQ+2/q7NsOY55wStjpY/lH69JZ04GG3ZvXDsPfHUIiKSTxo3eve1BqPtweM5NMT4WOLzstv41CciEsS2BfD8YenNifu5dFk19DkCNr3h3j/9Yuh9OEycBBU9462tUG14Faaesedr79IqJxx0+GW5qUtEREREspduMBrA0nvgwO+HX0uhqF0Gk0+BnYva2j78NfTYH058Grru7THP5/ON8u7h1igiIrGz1n4EfJTrOkRERERERCQdBXbhYOVti4iIiIiIiIiIiEgeyMdgNHDe9b8vi7kvpzHekr+/B5HOoaTUu2/Le9BrfHy1tLIWFt3p3b/3f8VXi2QuVTDajoXpr9m8I7Na4tS0Pb3xuQ4hjFpLg3t7aVXb7S79YN//brvf/wRY+u/ge0y/BHodDFtmZ1Zju7q6ZL9GvipLEYwGULsCaoZFX4uISD5prvXuy+RkVRPTgXR9j/LuswnY/hF0HxVPLVLcdi52Xp9tetM5kb5mBOx1BQw6LdeVSZTmfC/9OT3GhV9HKr0P8w5GA9j8FjzcC0bdCGO/ATXD46utEL1+vXsgeUs9vPl5GHIBlFa0te9cAvNvg6atMOBk2Ps6//eZwmQT8PEdsG4KVA2CkddDzwPj2VtERESkEGUSjLZ+evh1FJLZ324fitZq2wcw9ydwlMdnmR/83HvNIO/Ti4iIiIiIiIiISMgUNCYiIiIiIiIiIiIikq6SXBfgweIEnKXzZZO+0p0rIrmUaPbuW/FofHUkm32zf/+oL8ZTh2QnVTCal16HQLXHyepNBRCMlmjMdQX5xTMYzSeAbPSX098njFA0oKgPfggS7vPEcP/HBRGRYuT1WAVQUune3qWf95zyntnVE1R5ihNpJx0DW+fGU4sUr+0L4cVjYd7PYO0kJ4Bo8d9h6hmw+B+5rk6i0tIAKx9Lb06P/f0DG6My8jNgAgRxffR7eHos7Pg4+poKVd0q2L7Au79xE2yY0XZ/23znd7rwj7D0Hnj9MzDrusjL/I9Zn4I3PwfLH4QPf+v8rdroE5InIiIi0tl5BaMNvdB7zrrJ0OQSnNtZrHnOu2/Vk959i//u3ZdJCL+IiIiIiIiIiIgEoFOTRERERERERERERETClK/BaNA+6CzIVyZzRSQf2IR337Z58dXRauv7MP+X3v3jb3VOuJb8l2kw2vDLvYM+CiEYzS9cxUtzXfh15IuWevf20irvOX0mwMTJ0dSTSnmP3Owbh1KPcJ+ONsyMtg4RkXzjF+JpPA6Y63UodOm/Z3v1cOg+OrzaUjnmXu++xk3w4e/iq0WK08I/QcNalw4Lc26BhMeJ9ZKZDa/C5FPh8eEw5TTY/lFu6tj+oXdoQkemDIZfBqdMhZKyaOty0/tQmPDnYGNb6uCp/eC+MnhiBLx7EySaIi2voNStTD1m58fw3nfhXgPP7L9nMPjSfzt9kyeGGF7tYtt8WPKv9m3NO/zfTxIRERHp7Lye4w86E4Zd6j1v+sXR1JPvWhpg1xbv/saN7q+JU71OThV0LyIiIiIiIiIiIhnSKUoiIiIiIiIiIiIiImHKwdmCvpajTwNEOp/qwd599WviqwPAWnj2IP8x+3wqnlokBBnmf476Eqx83L2veWfm5cSlpTH1mI4aN0LZ8PBryQd+YTN+Bk6Eqyw0bIRH+4Vfl5eKnvHtlQvDL4flD/qPWXo3DDgxnnpERPJBwuOxqsTnsaqkFA64Bd76Uvv2A2/xDlOLQkUv//5Fd8CRf42nFilOfoGpdStg5yLoPiq+eopZ7XKYekbba566FfD84XD+IugS4/NhgI2zUo857mEYfonzOj7Ov3tu9v0MNG2Fd78ZbLxtgdplTohW3Qo49r5o6ysUfsH5rd64Idha66bCpOPgnPlQMyy7utwsvce9fcXD0LILSivC31NEJG47F0P9OqgaCDUjcv94KyKFL9Hs3m5KYdy3nedSbtZOckJvex0cXW35qHFT6jHN2/d8b6Z2qf+ckvKMSxIRkXgZY0qAA4DxwHCgH1CFc2xdPbAe51i794B51lodcyciIiIiIiIiIiIiIiIiIiIiIkUjr4LRrLUjcl2DiOTAwFO9++IOoVo7yb+/79FQNSCeWiR7iab05ww4Bcq7Qnk39/7mHdnVFIdEhsFoNcUajFbv3l5aFWx+l77Q71j/UI4wDTglnn1yZew3UwejLboTxt8afwCHiEiuZBriOeqLUD0Mlj/sBKUNuwyGnB1+fX7KquPdTzofr+dyrbYvUDBaWOb+ZM/X4M07YOm/Ycz/xFODTTjhYgtu9x93/GMw7ELndr6EtIz9BvQcD1NPT2/esvuhrBsc8WcwGYZ7F4uw3wNqroXFf4cDvx/uugArHvHue7AajrgDRipYX0QKVP1amHQ87Py4ra1mBEycBN32zVlZIlIEbIt7e0kZ9BrvP3fhn53nzJ1JkGC0Xdv2DEbbvsB7/MDTsqtJRERiYYw5AbgBOAvoEXDaFmPMM8Ad1toZkRUnIiIiIiIiPvLk+AUREREREREREZEC4Hf5N10aTkRadfKz7UQkL3TdB7qPde+rXx1vLUv+7d9/6G/iqUPC0fsw0v6Qud+xzvcyj2C0pgIIRmvJIBht1TPF+yoh07CZZIf+Gir7hlMPQGUfuHQzjPiv9u3DL4Phl4a3Tz7qcziM+3bqcW9/NfpaRETyRTaPVUPPh2P+BUfdFX8oGkBpgGC0RHP0dUjxSuzy7/c74VuCS7TAojvc+za/HV8dH9+ROhTtsN+1haLlm0GnwXkfpx7X0aI7YPbN4ddTaJprw1/TL8AsG37vDdgWeP3TMOMTsPLJzF6ji4jk0swr2oeiAdQuhaf2g6lnwcyrYd7PYPE/oH5NLioUkULlFYxmSp2Q4CP+4j1305vR1JTPGjemHtO0bc+22mXe4ztbuJyISIExxuxvjJkKTAWuAHriHPAQ5Ks3cA0wzRjzkjFGV5MQEREREREREREREREREREREZGCpmA0EckPh//Ovb1xY3wnkNathKV3e/ePuAb6HhFPLRKOLn2h33HpzRlxtfO9vICD0RIe4Sp+3r8F3voi2ET49eSaZ9hMVfA1+kyAs993Qmcm/F/2NV24Cip6wdH/gFNehkNug1OmwDH3Qkl59uvnu/E/hT5H+Y9Zfj80bIinHhGRXAvjsSpXygIEo+3aEn0dUrwSKV4PKhgtHDs+8u5bek98dSy7179/+GUw+sZ4aslUt5FwcQbPY+f/yvnqzKIIRtv6Pqx6Ovx1g9S6/EF45QKYdCw0bg6/BhGRKDRuhvXTvPvXPO88Xr/3HZj1KXh6f1jnM15EJJlfMBrAvp/1nrvjw+K9uIuXIMFou7bu2Va/yn1szwOdi1WJiEheMsZcDrwBnEBb2Jl1+Wrl1tc6byLwtjHmkrjqFxEREREREWj/sq3QFdPPIiIiIiIiIiIiIiKFSsFoIpIfqgZ79zWsjaeGN7/g3z/0wnjqkHAdez/U7BVs7NF3Q/fdF04u6+o+Zund8PK58PpnYOZV8PwEuNfASyfDR3+ERHM4dWcj0zDBhf8H614OtZS80FLv3l7aJb11qgbCPtfBfp+DYZdmXs/I/4bSSue2KYEBJ8LYr8GAk6GkLPN1C033FBcpt4loAgxERPKRZzBamo9VuVAaIBgtyIm8Il4Su/z7F98F9TG9Zixm9au9+6qHxVfH+lf8+/e6Mp46stWlL1y6FYZekN68d78JzxwAH/wCmj1exxSz5p3RrDvruvB/n+kEkm9+G+b9LNz9RUSiUr8mvfFNW+GN/4aER9iRiEiyVMFoAMc97D6muda5wFFnEuT9lOTPUFc8DrM+7f3cs/v+4dQlIiKhM8ZcBtwLVNM+EK016AxgA/ARMAsnQG0hsDFpTPI8gBrgPmPMRfH8FCIiIiIiIiIiIiIiIiIiIiIiIuFSMJqI5Ae/YLT6dfHUsPkt776KXumf0Cz5oXownL8k9bhzF8De17TdL+/mPXb1M7DoTlh2X9u/m/Uvw1tfgukXg83xVbISGQajAax6Krw68kUUYTP7fZ62Y9DTYMpg7Dcy37eY9D4s9ZiNr0Zfh4hIPvAKVymEYLSyAMFoq5+Lvg4pXqmC0QCePQC2L4y+lmK2a7N3X9O2eGpY82LqMT3GRV9HWCp6wPGPwYUr4eQX4OQXoXpo6nnb5sHsm2HyydAS4N9/MWmujWbdxk2wbnJ46zXXeb/O9LL0bif8WUQk39mm9OfsWAibXg+/FhEpPkGC0Qae4j1/w/Rw68l32+amHjPzCudiOfNuhekXOeHhXqqHhFebiIiExhgzGrgL5xi+5EC07cBvgHOAvtbagdbasdbaY6y1R1lrx1hrBwD9gPOA3wE7aB+QVgb80xizX9w/l4iIiIiISOeUwXHFIiIiIiIiIiIiIiLiScFoIpIfyrt797VEdGJsskQLNPgEsJ09B0rKoq9DomEM9D/Ru7/PkdB9dPu2yv6Z7bXqKVg7KbO5YfE6QXvM11LP/fA34daSD5Y/6N5eWpX5mgMnwvGPQNd93fv3vhaOfxR6HQymxDmxq9ehMPEl6D4q832LybCLU4/Z/mH0dYiI5IMoQjzjUtEn9Zg5342+DileQYKhGjfBgtujr6WYNW7y7mvaDk07o69heornh1WDoOvI6OsIkzFO+MCg02HQaXDwz4PP3fQ6vH9L2/1EMyz4DTw1Gp4cCXNuiS5ILFei/HnCDOls3Jj+nIb1sGV2eDWIiEQlkUEwGsCkY+GBKnjuEFh6f7g1iRSjXVth1vXw2FB44UhYck9685c/4sx7oBru7wIP9YQpp8HWAEFauRQkGK2iJ9Ts7T7u1auhYUP4deWr1c8HG/fGDfDet1OPq1IwmohInvoDUE1bIJoFfggMs9Z+zVr7nLV2i9dka+0ma+0z1tqvAsOAH+9eo1VX4PeRVS8iIiIiIiJJcnxhbRERERERERERERGRIqOUHxHJD6bECSlqqd+zr7ku+v2btoJNuPcd+TeoHhp9DRKt/b8FG1/d8+Q+UwKHuxwHXJ3FCSLv/A+cMy/z+dlqaXRvL6mEIefDqif95+9YBN1CDhxoroXtC5wTnHqMg5Ly1HOshdplUFIBjeudn8uUQvcxUN412L7rpoJtdu8rC7iGl2EXOV9294EMrX9DTIkTgNA6JtEMGCgpdV2m0wryd3X7gujrEBHJB17BaCUFEIwW5PGtvFt0+ydaYOfHUDMCSiuj26fQ1C53fu8VvXJdSfYSHs9tO1oT8IRxcecXjAZOEFTQ5+CZ2P5R6lCsUTcW/nPq4ZfBvFthW8DAig9+DqO/AmXdYNZ1sOKRtr65P3bCto74cySl5kRzhAF8YYaSZRKMBrBtPvQ+NLw6RESikAgQSuulpcH5e/vqlU7I87ALw6tLpJhYCy+fDRtfc+7Xr4LXrnHe+x5xRer5K5+EGZe2b0s0wtqXnJDC8xZClwwv/BI1r/fqTYfn+UPOgY/+iyAqkQAAIABJREFU4D528klw1pzCf22QSqIZapcEG7vkn8HG6bNOEZG8Y4w5FjiFtlC0HcDF1trJmaxnrd0BfN8YMx14FKjZve5pxphjrLWvhlO5iIiIiIiIpM/kugARERERERERERERkYJTkusCRET+o6zavT3VydFh8DupdeDp0e8v0Rt8JpwyFUZe39a297Vw1mzoM2HP8VVZBKNt+wAW3ZX5/Gx5hUeUdgkWTLL03vBqsRbe/xE81AOePxyeOwQe7gWLU5yos2MRPHsQPLk3PD7EmffiUfDCBHi4B7z3He8ww1YtDTB5ond/z4PS/3ncGON8lZQ6X6bDwQslZcV/klamDv2Nf3/jBmjcHE8tIiK55BWMVloAwWjgBBz7iSroeNXT8Gg/eHoMPNwb5t8WzT6FpHYZPHswPLEXPNwHpl8KzS7h04XC2uDhHLVLC/tnzbVUwWgtEQeWr3nRv7/7WBjz9WhriENJOZzxOhzwveBzHhsMD3VrH4rW6uO/wM7F4dWXa1G+/7Pjw/DWSvX/i5fXroGWLAKHRETi0PGiEpmafhE0RRh4KVLIts1tC0VLtvBPqeeufAJeucC7v2k7fOhyIZh8YVvc202Ha7kN9QlW3PYBrH4mvJrylVeIXDb6HB7+miIikq0v7P5ucMLRbsg0FC2ZtfYl4IakdQE+n+26IiIiIiIikg2beoiIiIiIiIiIiEgn4veOmd5NE5FWCkYTkfxR6hGMFvUJ2OAfjFbZJ/r9JR79joUj/wZXWefr6H9AzwPdx1YPzW6v1z8NM6+EObfArE/BWzfCpjedcIeotXgFo1VCWYBgtLUpQgmCaNoOyx+GF4+G97/f/oSn5lqYdZ1zEpcba+GVC50TxFz7EzDvZ/DKRZDwOJFq1xZ4Zpx3faYMBp8V6EeRCHUMkXOzPcQAAxGRfFXowWj73+zf31wb/nOgnUuc5wu7tjj3W+rg3W/AyqfC3aeQWAsvnwtb32ttcIKU3i3gMKl0TwTfMjuaOjqDXSmCnqIKrLIW1k6G2Tf5jzv+USitiKaGuJVVw0E/gstD+p1OPRO2vh/OWrnW4vE7GXENDL3IvW/Ul+Hof+8ZptFR4ybY4BJAkgm/95BS+eDn4dQgIhIVv1DakvL01nqoGyz+B9StzKokkaKz5G739g3Tne/NdbDqGVj4F/j4DicE/INfwJtfcl4HpzLvJ86FSVY+6f1+Q654BqN1uLBI/xOgvKf3Om/d6Px+Nr6R+gIqhSoRcjBajwOg6z7hrikiIlkxxlQC5+Ecy2uBR6y194e1vrX2PuARnHA0A5xvjCmSN9hERERERETyVYBjYkVEREREREREREREJDAFo4lI/ijzCEZrjiEYbcNM9/bSKu+6pLhVDc5+jWX3w9wfOycAfvQHeOEIeOMG7zCvsCQ8TnYqqYTy7qnnb5jhnHiVqR0fw7MHw4zLYNPr3uNeuRBWPLpn+5Z3vEPRkq16Eh4f6pzgnmzr+/DUaNi52Htu/+OhwufEKomH14lwyXYoGE1EOoFCD0YbcXWKATb8k7FXPOL+OLLS5blFZ7FjoftzqOUPxxPOGwWvwF8vk46B2mXR1FLsUgU9RfG6vLkOpp0HU06FlnrvceN/Bj3GhL9/rpVVhxPEvmMhPDse5t2a/Vq55hXAV1YDIz+9Z3tJJYz6Iux9NZw9Bw79DRz8/7zXn3SME6CRrWyC0Zb8M/v9RUSilGhyby+tgnM+gMN+l956sz4FT4+FVc9mX5tIsfB7LrFzKbx4FEw7F978HLzxWScEfPbNsPCPwfeYdR28coHzmcTOpVkWHCKv94NLOgSjlZTDvp/1XqduufP7efFI5+9M2CFi+SDdoPBUxvxPuOuJiEgYjgK60nbW/O0R7HFb0u2uwNER7CEiIiIiIiL/UaDH57gp1GONRERERERERERERKSoKBhNRPJHqUcAWUsMwWizb3Zvr+wb/d6Sn0orwjlJvaNFd8Ca58JfN5lXgERpJZiAD/0zLofaFentu+JxmHU9PLUf1C4JNmf6JdC0vX3b6ueD79mwFl4+t33bG5+Dxg3+8459IPgeEp0gJ6xtXxB9HSIiueYValoowWjd9oWj7/Yf4xV2k6l3v+nevvgf4e5TSJY/5N7euCH8YLq4JHalP2fqWeHX0RnsXOTfP/kkmHombPsgu32a6+CDX8K9Bh6sgdUBApnHfD27PfNZvxNCWsjCnO/C1gAB0/nMMyi0CgafDQf+AMzu0IyK3nDEn6H7KOd+j7Ew5isw9iYo6+q9x5ufgzk/SP/vYu0KeP+H8Oo1sOC21OO97FwU/mOiiEiYvILRSsqd5/2jb4QLlkPvCcHXbN4J086BZp8gVJHOxO/iJW9/xbnwR1i2vg/zfhLeetmwFmzCvc+U7tl2wHeDrbvkX7Dyiczryldef48ztc914a4nIiJhaA0ps8B8a+2ssDfYvWbyG3oKRhMRERERERERERERERERERERkYKhYDQRyR9lNe7tzREHo/mtr2C0zq0igmA0gI//Gs26rRIewWglXaBpR7A1Wuq8A0fcvP9jmH4RLP578DmtHhvS/v6cgCc8tdo0qy1MbddW2Pia//hDfw1d+qW3h0SjZnjqMTsXR1+HiEiueYWzlBRIMBrA3tfA2XO8+1sUApNThRrCk0kw2vb5xXlSfJQSzbAjRTAawJoX4JlxsG5aZvu0NMCU02D2TcHnnPScE1pdrEbfGN5aNgFLUoRU5rtUId8Hfh8uWg1nvQcXLHEPdzAGuo/232fuD2HaecHDJnYugUnHwPs/gKX3QO2yYPO8bP8ou/kiIlHyev5VUt52u2YYnDELzvnAeaze+9pga794ZPb1iRSD8h7efaueDH+/pfd5B5LFya8Gt2C08m5wWcDPM1Y/m1lN+cwGuKhIUGfNDn7RHBERidO4pNszI9xnhseeIiIiIiIiEjqT6wJERERERERERERERIqKjoAVkfxRWu3e3hJxMNr2D737uo6Mdm/JbyVl0ay76il444bgIWWtWhrg3ZvggSq41zhf086Hze/sOc5NaSU0p7Hn8gegfl3qcU3bYd5Pg6/bUfNOeKQ/bF8YbD83L5/lnFjVuAnnoto+Rn8lsz0kfIPPgZIUQRe7tsRTi4hIHFY8Ci8eC4/vBa9dC42bnfaWevfxpQUUjAZQ6RM8unVefHV0Vm4nkrd660vBA4DySSbBaABvfC7cOopd7dL0Trp/538y22fV07Dx1eDjS8qhz4TM9ioUA06GE55wgrxSPS8OYv4v8iP0IlOeId+Vbbe79IdeB0F5d+91uo1Kvdfal+D+CnjpZJj9LZh0HDw9FmZeDQ0b2o/96I9QtzL1mkFtXxDeWiIiYfN6ztjxccqUQI+xMPhMOOquYGtvfT/7cEmRYuD3PCYKLXVwX6nzecJTo2HK6bDx9XhrALAt3n1er2fLu0LPg1Kvvfjv0LQzs7ryVSLEYLRe48NbS0REwpR8MEqUD87Ja+sAGBERERERkUilOH5ZRERERERERERERETSomA0EckfZR7BaM0RB6O9cqF334G3RLu3dF4f/xWmnQvW50Pw5lqoXwstjU6YyDPjYP4v2wefrXoKppzaPlCsxedk8sHnpFdnkOCCjbO8T2APqnEDPD0KVj2Z+RpvfyV18NvZc8Hoimx5o7wrjEkRrLFrazy1iIhEbeVTMP1S57G1bjks+RdMPtkJsOkYwNKqtCreGrNVVuPdN+2c9ENhJT1+wWjLH4BZ18dXS1i8ntcC9DnCu69hLWz/KPx6ilX96vTGb3k3/d+vtbDwz+nNGXE1VPZJb04hGno+nLsArmiETzRkH5D26tXh1JULXmGI6f5Ouo8OPnb9y/DBz2HDTCewbNm9MOlYSCQFdyy4Lb39U6lfFe56IiJh8vpbbMq95xgD5y+Csm6p13/vO877nGEG/ohIcDs+grWTYMop8QcV+oUxG5+L1EwI+Dpi5hXp1ZPv0gmv9jP43HDWERGRKAxIuh3lA3Py2gMj3EdERERERER86dhlEREREREREREREZF0KRhNRPJHqUcwWkuEwWjN9U4whRtTCj0PjG5vkfWvwNb33fs+/D08PhweGwQPdIFnD4Cdi93H7toC837Wdt8rpKy0Cww63f8ko45ShSRsmAlTzwi+XipvfDbzuR//BRo3evefNRt6jst8fYnG+FvhyL979ysYTUSKxcI/ssdVQbfOgbUvwY4P3ed0HRF1VeHyej7fatl98dTRWfkFo4Hz+/cK4ctXXsEcAMc/5j939XPh1lLMEk3pz1nzYvCx2z6AR/vDusnp7XHwL9IbXwxKK+Hitf5j+h4NvQ/z7l/+UPQB81HxCkMsrUxvnT5HZlfHjoXZhXan0lwf3doiItmyHs8LUoVUdt0HznoXRv63/7il9zjvcz7SB5bem1mNIoUuk+ffrWpGtP/cqu/Rma3TXAvv/yDzOjJhW7z7/F7P9gv4M65+Bja/k15N+SysAMn9PhfOOiIiEoXkKwJE+YFo69oG6B3hPiIiIiIiIuLL50LaIiIiIiIiIiIiIiLiSsFoIpI/yjyCFKI8oXf7Au++IbqKusTg7Rvb/o031zsBA9Mvgbe/DLs2B1/no9+BtdC4GVo8TrIu6woVPeHw3wVft26F871ppxMuseRuqN99ov6urTDl9OBrZWvQWc7P4CXRBCufcu8rqYRe46OpS7JjDIz8FBzjcTJs07Z46xERiUJzLax5wb1v6hnQ0uDe131sdDVFoaTUCWL1svgfsZXSKZkUV5a1zbDi4XhqCYtfMFpZNVziE4q7bW749RSrTIIZ3v06rJnU/u9X7XJY/E+Yfzu89z2YcwtMvwyeGecfYOxmn09Dl37p11UMKnrB+UugenhSo4FDboOrLJz+Kpz5FvQ5yn2+bYF1U2MpNXRe/8+nCuPpaMDJ/q8dg9j4GmydC+/elNn8yj7efV6v2UVE8oHX84KS8tRzu42EI/8KVyZSj23aDq9eDa9/xnnusPAvsHVeerWKFKpMg9Eq+8L5i+HsOc7zwqssnDoNSqsyW2/xP8IL3woi02A0gIGnBttj3q3B68l3NoT/NsMvg0FnZr+OiIhEJTkJPspgtOQPW33ewBcRERERERERERERERERERGJj/W5loBfn4h0LmW5LkBE5D9KPYLRWiIMRtvxkXff3tdFt68Uhpq9YdsH0e6x/hV44Qg46i7nRMCtczJf66M/OoEkXrrt63zf7/PQ92j44JewzCOMqtUHP4e9roSZV7QFCZZUwPGPQeOG4P9/DjoD9v0c7PgQZn8r2JxkVYPg5Ged4IXnD/P+77LqSff28m7p7ynxqujp3t601XkFmyrsRUQkX+1cAlMCnsDbUfcx4dYSh9Iq76C3ja+Fs0ezAmVc+YWItdq5OPo6wuT3M5VUOOFoIz8Di/62Z79fCLa0l0kwQ2IXTD0dek+Ak56GtS/Ba9eGc/K+KYFRX8p+nULWdQScPRtWPOoEUvc/AfpMaD9mv8/Dplnu86edC1e2OL/LQpJodG8vqXRv91Ja6fx+5v8y81rm/zK7+We+67x2bdywZ5+C0UQkn4URUmmME9z07EGpxy66M3kijP8JjPt28L1ECpHNMBhtr6v2fI+0pNx5/37x3zNbc+Nr0P/4zOamK5tgtBFXO685UlnxMMy/DcZ+Pb3a8lEmr60O/TVU9HYueNPrEBh8lt5XFxHJb8lveGT4BCGQ5AeVAInHIiIiIiIikrGiOluzmH4WERERERERERERESlUBXZ2nIgUtTKPYLTmKIPRFnr3DT0/un2lMMR1Mv62eU44WjahaABv3whvfsG9r6wbVA1uu9/rYDjoR8HWfe7g9sESiV3w6lWwbW7w2o78Gwy7EPa/GboMDD6v1fArnO+lXeCs97zH1S51by/vnv6eEq9yj2C0RJOCA0SksE2emFkYVc3eUN41/HqitmuLf38YBwA278x+jWIUJDCuwSWgJ595hSRBW1BS70Pd+zfMgMbN0LQD5v8KZlwOb3wO1k6BFY/BrOth5lWw8M/Q4rNPZ5BNmNnmN+G9b8OsT4UTigZw6G+h9yHhrFXIKnrByOudUIeOoWgAe1/jP3/5Q9HUFSWv/xdL0wxGAzjw+9nVkqnSajjuQagZBv1PdB+T6rFSRCSXvAJTS9LMT+hxAHTdN83NLbz3XdiS5XukIvkuk2DiQWfA+B+79x3yi8xreekEePursPmdzNcIKqtgtP8K/nnNu9+ArWl8dpGvEhm8vhrzVdjnk3DAd2DI2QpFExERERERERERySt6v05EREREREREREREJF0KRhOR/FFW497eXBvdnhtmuLcPvRCM/kR2egMmQs1eua4iHN3H7HkSjNf/c0E0bYMVjwYb22N/qB7adn/8T9Pfr2pQ2+2SMhh7U3rzy7qlv6fEq8IjGA3grZhCCkVEwrbkHu/QzlQGnxVqKbHptp9/fxhhMC0N/v2ZnDxcDBIpfi8ADeujryNMiV3u7aYESnafON99jPf8R/rAM/vDu990QqI+/gtMOQWmXwyL/w7L7oM3Pw/TzocWj706g0yCGZItutP7v1W6zp4Lo/XcLxBTAsfc692/6O/x1RIWr39HJRXpr1VWA4f/Ibt60jXwdLhoNQy/zLlfWuU+bsk/FcgoIvnL829xmsFoxsC4b2VQgHX+TooUs3Sff5+/CE56zvviH5V9YNx3Mq/nw9/Ci0fB6ucyXyOIbILRSkrh8N/DmQED3J49EGwieG35KN3g6eQL44iIiIiIiIiIiEgeCuFikiIiIiIiIiIiIiIinYxSf0Qkf5RWu7e31EWzX3MtrJvi3tfzoGj2lMJSWgGnvuKc3Fzo+p+wZ1uXAdB1ZOZr7lwcbNywy9rfH3R6+sGD/Y5rf796SHrzyxWMlvf8gtEW3xVOkI6ISNze/Vrmc/f6RHh1xKnf8f79jRuz36Ol3r+/swYpNKf4vQA0boi+jjB5hZUlhyT1PAjfq+rWrUy9z9oXvV8bdgbZBqOFZcBE6Dku11UUlsFnevetnwq7tsVXSxgSHmFhJZWZrRd3yGjfI6GiR9v9Mo9gNIC1k6OvR0QkE17PCzIJqdzn03Do7VCV5vt4C26He03b19NjYdmD6e8vkq/Sef697w3QdZ89L3rS0Yirsq/p5bMh4RNeli2/EPNUwWiteh0MNSOCjV03Ndi4fJVu6PsBt0RTh4iIiIiIiIiIiIiIiIiIiIiIiIiISI4oGE1E8keZRzBac0TBaFvneZ+AMuTcaPaUwlMzHCa+AFc0pw76yGejvrhnmzEw7n+j3bd6KIz9+p5tIz8TfI0BE6HvUe3b0j2hsrx7euMlfuU+wWgA66bFU4eISFjqVkLD+sznF+rzjlFf8j+huW5F9nukCkZ7/TOdMzgh0ZB6TKEFjSY8gtFMedvtyj57PlfMxJoXs1+jUNk8CEYzpXDIr3JdReGp6AVDznPvSzTBmufjrSdbXv/Pl2YYjNZ1H9jryszrSVdplw73fYLRPvxttLWIiGTK629xSfn/Z+++49uq7/2PvyR5z9jZibP3TsgCwl6BkJCEUUZ7KWW1hZb2Fkq5LaW0QCfQ9Wtp6aXQCaVlBMIegbASRgIJIZNMZyfO9oot/f744uulc3SOdDT9fj4eesQ63/WxI8lHsr5vhT9ux+eD4f8NcyvhokMwMsrXIQ+ugrcuhvUPRTdeJNW4Of8edoOzfqUjoWJudPW09OaF1m0N1VC9Nfq5Qzaha/4sZ3P4fDDqe8767njJWb9UFbIJRivo2/p60WDoa/N/JyIiqSz02b/H+ny+k+JxAaYm8xsUERERERHpWEKRu4iIiIiIiIiIiIiIiGMO32UsIpIAAYtgtMY4BaPtsvi0+KxCKJ8YnzUlffkDMOSrsPuNZFfi3sAroWhA+LZBV0FuF9jwN9jymLfr9poJxz4A2cXt2ybfB6VjYNszkFMOeV3hyGY4srG5T04nE4o24iaz4aml/F7uaskKU4Oklqx8c1uorwrf3vK2ISKSykIh+PgOWP6D6Oc479P2v/vSRfkEOPsDeG58+PZXzzCbmMfeEf33GCkYDWDt76Df56KbP101OPi5WAVDpyqrjeBtgzkG/BfseSe2tVb/0oTpjrkNfB3scwSCNhvu46X76dBwxATbZZfCyO9A2djE15EJTpoHD1vcZivnQb+LE1tPLBrrwh/350Q/53F/hYOrYd+S6Odwyu8iGG1HBw5jFJHUZnW+GMtjMUB2EYy7C0pHwaZHoGYr1O02gdJOrbwbBl4RWx0iqcDp87KBV5jAM6dO+Bes+iXseBkKesPgL5sArU9+Cnvfg72LIs9R+SQc3tD67wnBBljyLVj3B1N7yXA44d/QabTz2sA+GM0uYL2twVebv2ls/BtseQLLjYaf/AzG/9RViSnF7nZy1jvmMXH/h+bvmcNvNM+tREQkXfmAh+O8RuizdURERERERERERERERERERERERNKGgtFEJHVkWQSjNcQpGO3DW8IfLx7S8TbCizN9zofes2Dr08mrIb+32TjoxrCv27dXzDaX6kp4sk/0tbU08jv2m458fhj2NXOJRmFfd/1zOkW3jiTWoCvNhq5wGmsTW4uISLQ2PRJbKNqEu6FooHf1JEPZOCiosA45WHEXFPY3m5mj4SQYrWppdHOns6CD35XVm+HQp1A8KP71eMEqsMvf5uWsQVfDe9fFvt7HPzQBAAO/GPtc6SSU4MC8S462/z+U6Pl8JsR77X3t27Y9A431EIgxzMZO/X7YuQCqt4AvC8omQOcpJlzcjVDQJgwxN/r6/Flw/D/gmRHRz+FUoG0wWl74fiIiqcwyGC07/HE3fD4Y8HlzafLSSc4/iOLAClj3J/M6Zl632OsRSRYnwWidp8Axv3Q3rz8bRt5sLi1N+o35d8VP4KPvRp7nqYFwSUPz+dyqe2DNb5vbD66CZ8fAJfXuHhu8CkYD6DPHXAAe7wG1O8P3O7QOige7mztVWJ0b+7KgoBdMvDex9YiISDwlIrTMIklUREREREREREREREREREREREQkdSn5R0RSR8AiGK0xDsFon/zcuq14qPfrSWYI5MIJ/4GTn4YRN1v0sbgde2Wayw+L7nIcdBrnrG9BBZy3wX1NbZ3+qn0omhfye5lAFad0v04Pg79s3Va3J3F1iIjEYpWDjctT/wyfOwwnz4fup5vfU2Nuh7MWwYgb415iQuR2sW/f/Gj0czc4CEZrOGTCgDoSJz8XgPnD4OO74luLV6w2zvvahGr5s+G8T71Zc9EVUFflzVzpwkkwg5cUiua9ijnhjx89CFUfxG/dfR/CM6PgjfPhg2/A+9fDS8fDwjnuQ+6DNo/Z/hiD3UqGJeY5YbtgtHzrvl4EDImIxIPV47EvTo9bQ77qrv+718L84bDj1fjUI5IIVuff+b1hzA9h2iPmNXavP+xjwBchq9hZ3w1/af56/UPh+7w20936XgajtWQXIPf0EAilaQ6M06BwERHJFKE4X0RERERERCQhMukpWCZ9LyIiIiIiIiIikorsXoHSq1Mi0kTvnBWR1JFlFYxWC6Eg+DzKcmysgw+/Y91eNsGbdSQzBXKg90xz6XUOLJxtNpsDVMw1wWVvXAjb5nu/9rifQNcT3I2Z+gD4XHzAdEFvd/O35PPD9PehPAH3IZ/PbP5f/Stn/UuGx7ce8UbxYOs2BaOJSDrY8TJUvWffZ+CVMOhL5uve55pLJooUjLbjpejnbnQYAFa/F/J7Rr9OugnWOusXaoTlt0HP6dB5UnxrilXIYiN422A0MKG5uV2hbnfs674xF854PfZ50kUig9F6nJW4tTqSbqdAViE0HGnfdnAldD3O+zVDIVh8LdRsa9+2bT480QumvwslDgPJGuus2wK50dXYxOeDk56AV8+Cmq2xzWXHTTCaXZuISDKFLM4LYg2ptNLvYtizCNb8xvmY+n3w6ulwcZ15rVYk3VjdzyrOgzG3xW/dgl5w7J/hva9A3V77vouvgsp55rnCwVXh++x4EfavgE6jnK0fr2C0SH/Te9gPfc6HrCLoeiIM/BL4Y1gvUSyfDytgV0Qkg2xG7+MVERERERHpQFy8lzvVuXlfuoiIiIiIiIiIiIhIDBSMJiKpI2ARjAYm/CCr0Jt1di6wbx9wuTfrSObrfgqcvwuq3oeCCijsZ44Puip8MNppr0DxEPjkJ7D2vsjzH/sgdBoLtbug82TI7eyuvjlbzWYnN/zZkFUMDYfcjSvoC+etM+MTxU0wWumI+NYi3hl6Q/jNsApGE5FUt2cxvHpm5H69zo5/Lakgt2v85nYajFbXwYLRGh0Go4EJnv70f9M4GC3MJnafH4Z8BT6+I/Z1dy2EXW9CN5ehxOnK6uccD4OvTtxaHUkgB0pGhg/nXHwVDLrS+zUPrLAPAz16AF6YAqe97OyxJlhv3eaPMRgNoHQkzN5knr+v/hVseiT2OdtqG4xm21fBaCKSohotHo/j9Zqfzw+Tfg0jboL9y2DVPZFfv2/y+iw47YX41CUST1bBxIkIvOp7IfQ4Aw6ugfoqeO0c675bn4o837Oj4dJGZx9sFK9gtFIHH4qy5XHz74a/wrZn4MTHU3/jntXzNL/e3iEikilCoVD/ZNcgIiIiIiIiiZRB2dihDPpeRERERERERERERCSlOXiXsohIgtgFnzVUe7fOgU/s290GSUnHFsiFrtOaQ9EA+syBqX+GokHgy4JuJ8PMNdDjNCjsY647MfAKKD/GBKi4CUUrnwhnfxD9bTm33P2YM99MbCgamJ97XvfI/Qr6tP7/kdSW2yX88UQGo22dD6+eBfOHw3vXwdGDiVtbRNLX8h9G7pNVBD07SDBaYf/4ze0mGK0jsQsVCmfdH01AWioLutwIPvoHMPI73qy95FvezJMOrIIZYnXSk9DtFPM8oXAATPkj9L0oPmsJlNgEQuxf4e1ae9+HZ8dE7ndnMFE6AAAgAElEQVT0AKy4K3zb4Y3wxgXw7Fh440KoWmI9jz8nqjLbzxOALlPh+H/AqO+Z55NZhdDnAuvHjpJh5nbsaP42wWh2gZUKRhORVBWyOC/w6rHYSmEf6H0uHOPwQxAAdrwITw+Dynnxq0skHqzOvxP1+npOJ+gyxfzdYcqfYp/v4QAcXBu5X32VdVsswWgAsxys36TySXjYD69ON+e1qcrq+bBPwWgiIiIiIiIiIiIiIiIiIiIiIiIiItIx6J2zIpI6sgqs2xo9DEar32fdNvJ/vFtHOrZBXzKX4NH2G5qchHSVjrZu6/9fsPFv4dvOege6HOu8znByyuDIJuf9O081mxcTzZ8F434Mi6+y7zf6VvApCzZt5FkEo1VvScz6256HhXMg1GiuH1wN+z404X+6HYmInd1vRu4z9g7ILo5/Lamg86T4zW0XNNNSfUcLRrPYNG1n7/tmQ3yqCrncCO4PwPifwrifQMMh8Oc2P5fMLjW/y1f9Cpb8d+S1q96DhiP2Ad6ZIh7BaL3Ohd7nQcXs8M+JxHulNsFomx+FTg4CPJ04tA5emOy8f+WT7Y/VVcFTA5qv718OWx6zniOQ63w9J3x+GHen+b0cajTPLeuqYP1DULuzuV/RYDh7KWTlm+/7pRNat7eVXdL6erDOuq+C0UQkVVmF7Sbqd3nZWHMOsfUpZ/0PrTGv45z8NPSeGd/aRLyS7GC0lgZfDQc+htW/jm2e+UNh9ubmvxPUVZnvJ7sYQiGo3gyvnGY93ir82qniwSaIfvvzzsfseBF2LYBzltmfSyeL1fPhWH9WIiIiIiIiIiIiEj+hULIrEBERERERERERERHJKEp3EJHUEbAJRms44t06W+dZt/W9wLt1RCD8ZqbySZDf037cIJuwr8HXhD/e/79iD0UDyCl317+TTYhbvA260r592iMw+NrE1CLeKBwQ/njNNtj2QvzXX/eH5lC0JnvegX1L47+2iKQ3uyDfwn5w4uMw7BuJqyfZyh0Eoy36UnSBTI01zvrVdbBgtFAUP8sXp0L1Vu9r8Urb38lNIm0E9/lMQFEg14T+5pQ1B5zaBXK39WgRrP+L8/7pystgtG4nwdg7zWOez2eOKRQtMXrZhMF8/CPv/p+XRxGwtu255q9rd8Njnd2N9+e4X9MJn6/58SS3HGYsg8FfMaEaw2+Es942oWhgwjbOfAsKKsLPlVUIndsExlmFC4GC0UQkdTVaBaN5HFJp58THTNBtyTDnY5bfHrdyRDxn9dwtWefNo25tH/AajfV/hpqd8Mrp5nzvP2XwWFd4rAvM628/1heIff1TnnE/JngUVvw49rXjwSr83CooXERERERERERERFKcL9kFiIiIiIiIiIiIiIikHQWjiUjqsNug3mATNOHG0UOwf7l1e/lEb9YRsePPggn3WG8o7HysfeBX12kw8IrWx7ocB5N+4019boPRSoZ7s260jn0w/PGSEdDv4sTWIrGzuz29djbU7onv+pUW4Zmf/Dy+64pIeguFrAOcuhwHszdCn7nNIUEdQUGfyH3WPwRLv+N+bqfBaEcPup87nVltmo7kjfO9rcNL8dgIbhfIHc6iK6Dqg+jXSyXVW2HLE7BzQetPKQ5Z/JzLxkNWkbO5K+bCpUE443UY/T0IxCnISqyVjW0OAAznvetjXyPYAFufdj/utRkmEA3grUvdjw8kKIwnrxtMuQ9OfQ6OuRvyurZuLx4EszdD34taH/f5YdLv2tdZMdd6Lbv/KxGRZArWhT+eyN/t/iwYdQvMXAWXhcw5RiRVH0B1Zfi2A5+Yc6CqJd7WKRItq8BaX5KC0fK6wMgonpu3tftteLICdr5qrocaoW4P1FdFHutFEK7PD6e9bAJr3dj4N1j2A3jvOtj0L2isjb0WgFAQ9n0E6/4EW+ebv0+6Gq9gNBERERERERERkcwSitxFRERERERERERERERa0TtnRSR1BPKt2xqOeLPG85Os28b9xJs1RJzofyl0GmM2CQXrIbcbHFoLJcOg74UQyLMe6/PD1Aeg7+dgzztQMhIqZrnf8GMlp8xd/64nebNutCrmQOC69iEp/S9LTj0Sm8K+5vZvtQFtx0vm/pNoNdsTv6aIpA+rUDSA8R00WNHnM+cU9fvs+21+FCbe625up8FowXp386Y7q831kex9F/Z/DJ1Ge1uPFyw3ggeinzOac+ZPfgYnPBr9mqng0wfh/eub7z9dp8Epz0N2kfVtp6APnP4q/CdMcHKvGdDvMqjeDKUjofd5HSv8MVWdtxHm9Q3ftv2F2OffvwyOHohu7OZ/Q+9zYecr7sdahYong88H0/4F/S41z8dzOpn7Q9n49n3LxlnPYxU8JCKSbFaPT8l8LPb54NyV8MwI+34vnQSz17c+9uEtn4Xdf7bZaOAVMPXPOm+R5LI6//YnKRgNYNg3Yfnt1rVVzDXn/nah0TtejG7tzsd6Fxrb43Q45yPY8ript7EWPv3fyOM+/pH5d+195t9Za6F4cPR1BBvg7S/A5n81HyvsByc/A51GOZvD6vmwX2/vEBERERERERERSV0ZFH4WyqDvRUREREREREREUpLdS1B6eUpEmuidsyKSOvxZJhwtXNDB0f2xz39wNRxaY91e6nAzgohXOo2OPoDC54de55iL13LDBB9Yye8NnW0CBxMhpxNMewTeuhQaq82xijkw/L+TW5dEx+eHvJ5wZEP49v3LgCQEo2nDrIhxZAts/DtUb4Fup0Dfi3T/APtAqo68YXX4jbDsVvs+NVuhch5sfwlyO0P/z0PJUPsxDQ6D0ew2bGciq03TTmz6V5oFo8Vwv7IL5Lay+d/wRAUcc48JJ06nx71gIyz7PnzSJgh891vwzn/BSU/YBzPklMHMVfDqmeaxH6DTWJjyJyjoFd/axb3CPpDXA2p3tG+r3gz1ByCntH1bsBE2/gP2LYX8HjDkehOa19aBT6Kv7eBqE7YXjWjut/Hk80GfueZi288Pg6+Fdfe3b2tUMJqIpKhGi3DhQJJDKkuHw5T74f2vWQcgH9kA+5ZB2VhzfecCE3Db0vqHzGX0beYxuqB3PKsWCS8Vg9GyCmDS7+Hda9q35XWHEx8z50DbX4QF071du8/53s5XPAhGfrv5+sAr4I0Lw58jW3l6iHnuN/CK6P4G8+aF5rWOlo5sgmdHw6jvwchbwp9vtxSMw/NhERERERERERERSaI0eq9JJOn0vhkRERERERERERERSWseffyyiIhHcjuHP163N/a5N//Hvr2nx5s5RNJVjotgtDE/MJu9k63iPDh/B5z2CsxaCyc+DlmFya5KotX3Iuu26srE1dGK3sghwsHV8MIU+Oi7sPY+eOtieO8rya4qNWx92rqtI29YHeLw9rFwDqz9HXz8I3hhMuxZZN8/WOts3i2PwbYXnPXNBLEEox3Z5F0dXrLaCB5T4GCUHxlSsxXeugTeuTyGtRMs2Aivnt4+FK1J5ZMmIC1kEczg+yyYoWQYnLceznoHzvkIzl6iULRUNuIm67ZDa9sfC4Xgjbmw6Iuw+lfw4S3wzCioDxNQf3BV9HXVVMKh1e7HDb0hvd9U3fnY8MeDCkYTkRRl9fjkz0lsHeEMvgbmVELZBOs+6x9s/nrtH637ffwjeHYMVC3xrj4Rp6zOv5MZjAYmBCzcucvgrzSfj/U8CwoHeLdmTpkJKYynrtPgvHVw+mvuxm1+FF6bAcvvcDdu2e3tQ9FaWnEXPFkR/ny7JcsAvQ78OpOIiIiIiIiIiEhai/L9KqkolEHfi4iIiIiIiIiIiIiktBRIMhERaSEnjsFodoEV0x6BQAps7hJJBTllzvqN+wkMuiq+tbiRXQw9ToPiwem9cV7sg9HyuiWujlZ0mxJh5d1Qu6P1sXX3w4GVyaknVYSC9gFxyd7YnEy5nc15thtHD8Ly2+37BOudz7fse+7WT2dWm6adqNvjXR1eCjWGPx5L4KBV2JpTG/8OuxbGNkeibH0Kdr1u32fx1c4C6PxZ0OVYKBsL/oB3NYr3hn3Tuu3gZ8FkDdWw5Eb4pw8e9rd/vaR6M/yn7LP2ADycZb5ecZf13Gd/YF/Xlsdh6bedfQ8tHXOP+zGpJJAb/nijgtFEJEVZBqNZPJ4lWl5XmHK/dfvqX5nnaMEG2Pwv+7nq98HHd5qvd7wCr5wGzx0DH3wL6qq8q1mkLcvAqyS/fuDPglPmQ8VcE4aY2xlG/g+M/n7rfidEuG85lVMOp70EOaXezGcnqxC6nwzHP+x+7PLbzOND7a7IfWv32J8zNzl6wJxvVz5l3ccq/LwjB/CLiIiIiIiIiIiIiIiIiIiIiIiIiEiHomA0EUktuRbBaPUxBqPV7YW9i63b+10c2/wimSSnPHKf6e/BqFvAp1MJiYPOk6zbGqqbv67dZS6NLgJy7Nh9ip3C9kRgk8XG141/T2wdqWbXG2ZDvZWOvmG1+6nux2x/wT7ky00AWNUHzjYvZwKrTdNO1O32rg4vWX1P/hjuV0X9rduGXOdsjk0uA/+SZavNJvsmB1fB4U/DtyU7mEGi4w9A6ejwbTtfgSOb4NkxsOpeZ/OFgtYhhU1Gfx/Kj4FzPnJXayTDvxXb/T0VWAUJBevMa1VePZcREfGK1eOSVdBjMti9bgSwcA4cWutsrsonTOD3q2fAzgWwbyms/iW8Mdf+dSKRWFg9p/WlwPl3bmc46XG46BCcvxvG/7h9MHLJsOjnzy6Fzx2By0Jw4V4onxhbvW71vQjKjnE/bucCWHAOBCOcF+9e6O65+cLZUGnxoU4KRhMREREREREREUlD+tuCiIiIiIiIiIiIiIiXlGYiIqnFKhitLsZgtNW/tW6b+kBsc4tkmtwIwWj5Pc2md5F46ndJ+OMNR2DfMng4Gx7vbi7/yoWl3zahDbGwDXzQabN0cKEQNBwK37b+L4mtJdVsm2/f3tGDhQL50Y07vN66LegyAOzgmuhqSDduAuPaqtvjXR1esvq/9gXCH3eidDQU9mt/vNMYmPT/oM8FkedYe1/06yfKpw/A+oec9d31evjjqRDMINHpPCX88fUPwrz+9o+xsaxXNhbG3uHdvP0v826uZLEKEqrfB491gce7wvIfKnxHRFJHsC78caugx2SZu926bevTsOhK53O9++X2x3YthK0RnuuJRMvquVsqvX4QyLH+oIjskuhC0MEE32YVRF9XrPwBOGMBDL8Ryie7G7tvCWy2+NCAJtWV7mtaeF74UEqr58OpdDsRERERERERERERF/ThvCIiIiIiIiIiIiIibinhQURSS04cgtFCQfj4h9btZeOjn1skE+VX2LdP/C34dAohcZZTFv543R54+UQItdkYtvJuWPXL2Na0C5Sx2ggo0lHU77NuswpM6ygOrLJv92clpo5UFciLbtxBm59ryGUAmN1cmcRtYFxLqRqM1vb3fRNfDPcrn8+cz/pzmo8FCuCYe03bsQ+2brNyNEUf+6or4cNbYPHVsc/V0R+/0lnvWYldr2UwRsVsb+Yc9t9QPtGbuZIpUpDQ0YOw/HYTZigikgosg9EcnB8lUn4P6HaydfveRbGvUfl46+uhEOxfAZsehSObYp9fOq7GI+GPp1oAoZ1ownBLhsOIb3tfi1vZJXDM3XD2u3BxLZRNcD52y+P27TXboqvp3WvaH7N6PqznaSIiIiIiIiIiImlKH5YlIiIiIiIiIiIiIuKWUk1EJLXkloc/Hu1G/YYaeGa0fR83mx5EOoLiwVAyInzb5N9D3wsSW490TIGC8Me3P2fCA8LZ8LfY1gzWxzZeJJPVbLduO3rQBNF2VIfX2rf7shNTR6ryR/n9733fus0uyDKcjhKM5jYwrqWGw9BY610tXrEKe4t1I3jFLDhnKYz7CUz4BZyzBHqcYdqyi6H/5yPPcWhNbDXEw4a/wVOD4ZOfeTNfR3/8SmddpiZurR5nQFZh8/XSCK/BhDPyOzDiZhhwuQnZOO1lmHivdzUmk9OA0E2PxLcOERGnGi1eGwmkYGDT4C/Hd/4Nf23+OthggmefHQ1vXQzz+sPHd8V3fclMwUaoqwrfltclsbXEous0mL3Zut2XBYX9zaVoMEy+D2Ysg6z8RFXoTCAXpi82AdlObHnM/rlzdZTBaNueM+GLLVk9H44lKFxERERERERERETEMQW5iYiIiIiIiIiIiEjy6Z2zIpJa8nqEP3740+jme+UUOLjSuv2kJ8Hni25ukUzl88EJj8KC6VDTYiPPuJ/AkK8mry7pWFqGKzi1/yOzgSzax3XbYDTlCUsHVxNhY+eexdD1uMTUkkqCR+FQhPPUWAOcOqqtT8G4O8K3KRgtPKtN007V7YGCCm9q8UqoMfxxLzaCl440l3DG/xQOroY9b1uPP7AKyifGXodX6vbCu1+GYJ13c0YbbCjJl9cDsopM6GG89Z7d+rrPByNugpV3Oxuf3ck818zU12b8DoOEdr4S3zpERJyyOpdw+niWSP0ugbcvi9/8oaAJsMotNwGW6//cun3ZrdDjTOgyJX41SOapr8JyM1luGgWjART2gQv3wxvnw85XzbG87nDsX6DX9OTW5oY/GwZeAd1PN99LlU1QO8D8EVDYD4oGQmMdhBpg86Pmgz4aq6OroW431O6A/J7Nx0IKRhMREREREREREUk7bT8AIVNl6t/3RUREREREREQkoexeTusoL7WJSGRKeBCR1FI8NPzxmm1w9JC7ud67Dva+a91eOhIqZlu3i3RknUbDeRvgjDdMgOD5u2DULcmuSjqSrILoxtXvi35Nu2A0vZFDOrranfbtW59KTB2p5sgm642qTbRhNTr7l8Hh9eHbIv3M2+oIwWjBRmL+pNa6PZ6U4inLjeCB+K6b1w3OeB3OttkQv/vN+Nbg1pbHobHG2zkVjJa+fD4oHhL/dQoqTIhEW30vdj5HzzMz+1w7kIJBQiIidiyD0XISW4cTPh/MXB3fNeYPM8HMbUPRmmydF9/1JfPYPe9Kt2A0gJxSOO1lOPsD8xxq1tr0CkVrqbAPTF9s/iZi58hG2PU6rH8QNv3ThKJB9KFoTQ62eTyzeq063s+HRUREREREREREJE4y6O/i2pUqIiIiIiIiIiIiIgmiHdoiklpKhlm3HVoLZePh0Dqo+sBc9i0xITiF/WHsndBplOl7cC2svc9+rX6XeVa2SEYK5EC3E5JdhXRUgSiD0Wq2Qm55dGPtgtEy6U0pItGIFLZTOQ/G/yQxtaSS2t2R+yhYCHqeDdufdz9u63wYdkP748Gj7uY5sgEaayGQ576GdOE0LO701+CVU8K3PTcB+n8Bxv3YbAhPBZbBaAl4OcufBeUTYcDlsOGv7dvX/cHcv4+5JzXu51sej9yneCic+gI8NcDZnAp2TG9dp8G+pdGP92WZ+2DRIMjvBVXvtz4f6HIcTPodZBe1H1s6CrI7wdH9kdfpc0H0NaaDvG7O+y65CUZ+B/K6xq8eERE7wUYIBcO3pWrQY8lQGHQVfPpAfOav2wPbX4CdC8K3r/gxjLsrPmtLfIWC0FhnwgCb/g3Wtz8Wrq1de334MeHG1tucH+V0Ttz37yWfD8qPSXYV3vD5zd9EZq6C+cO9n//YB2HRl8K3vXIqzFgGncaY61YfAJJT6n1dIiIiIiIiIiIikgAKExMRERERERERERERcUs7HEUktRT0AX+u2SDS1tuXQc12OHqwfdu+D2H7izBzJRT2hW3P2q/jz4ahX/OmZhER8V5WlMFo1duaN4+5ZRe04/NHN6dIpmgMc27W0sGVJpi2ZEhi6kkVdXsi91GwEAz7Jux42Xl4V5P9H4c/7jYYLRSEI1sy+/bp9GfS/WTIKYf6qvDtG/8OO1+Bc1dATpl39UUraHGb8SfwftXr3PDBaABrfgsNh8zm9mRqrHMWPnj2BybEasZyeNbB+VJWfuy1SfIMud7cdsO9hgIw6Gr49H+tx1900Lw2k9PJ/dpZ+TDiRlj2fft+ZROgz4Xu508neT2c9111D+x+C858E/yB+NUkImIl3GvyTfwpGowGJtzXSTBav8vg+L+b5wf1e2HpzbDhL5HHrfl/sdfYpG6vOc/uaK8zBRsiB4bF2uY2pMzt89N4yyrU+XcqKRkGJ/wH3vT4XNWfYwKMd78Vvv3ZsXDWO+YcsmZb+D65XbytSURERERERERERDyk8DMRERERERERERERES9ph7aIpBZ/AIqHwIEwIQgHV9uPbayGj++EqffDnnfs+563QZ+qLiKSygKF0Y2r2Rr9msF667Z9S6OfVyQT2G2Qb7J1HpTcFP9aUomTYDR/dvzrSHW9psOpz8GrZ7obV78v/HG3wWhggg/I4GA0N5v6c7tYB6OBCaPe8HcY9vXY64pVqDH88UQGDvY6B7KKoOFw+Pb1DwE+mPq/yQu4qHwycp8eZ5lQNIDSUVA0EA6vtx9TMjL22iR5SofDmW/BJz+HqvebHyfye0O/S2DwtfbBaFn5QAzhHKO+ZwIdNj0CtTug4QhkF5sgkqxC6HYyjLk98wPAfD53/fcugs3/hv6XxKceERE7tsFoOYmrwy2nIUH9LzOPy74A5HWDIV91Foy2/YXY6gOoWgJvf8GEimd3glHfhRE3uf89EUkoZJ4vhQ0Mq4PG+jDH4hlS9ll7KOjt95mJFHaVenpO935OfzaUT7EORgN48Tj7OXRbERERERERERERSVMe/01ARERERERERERERKQDUDCaiKSekmHhg9Gc2DoPQn+AYK11nwn3QEHv6OYXEZHEyCqIblzNtujXtAtGq9kO9fshp1P086eqwxtM8Fv5JCjsm+xqJFXZ3T+abPyH2did6YINsOt1aKyFTQ9H7p/IAKdU1uMMyCm3D+Rq6+j+8MfdhIA1qd3tfkw6cRIWVzHH/JvXFQ6tse+74S8pEoxm8X/tT+D9KrsYRnwblv/Aus/6B6HrNBh0VeLqamn325H7jP1R89c+n7k9rLrXur8/19xvJb11Gg3H/9W6fdg3YfWv2h8feGXsa/t8MPhqc+no+l3q7JyhyZrfKBhNRJKj0eZ5XyA3cXW45SQkqM8F0GtG62NdpsKALzoLR4tF7W54fmLz9aP74cObYctj0Od86zCxaEPKJD0VVCS7AmkruwiG3wir7vFuTl82VJwHq38Z/RwKRhMREREREREREUlToWQXICIiIiIiIiIiIiKSdrRDW0RST8mw6MfW7oLtL0DlPOs+/T8f/fwiIpIYqRaMBlD5FAy8PPr5U00oZDbirry7+dio78HYO0yQhUhLjXWR++z7ELY9B73OiX89yXJ4Pbx+HhxY4XyMPxC/etKNP8dd/3qLYDQnIWBt1e1xPyadOAmLawo6crKJuuqD2OrxStDi+/Il+H418jsm1OjgKus+i6+G3rMhLwmb1O2C7gZ/BcbcBvk9Wx+PFIw24L9MEIBktr4Xhg9Gq5id+Foy2aAr3QWj7XknfrWIiNgJ2jzv86dyMFpn+/bJ98Hga8O/1nHsg+a86I250a3t89u3H1wD8y3+3rF3sbmIgHkuIalnwi9MiFko6M18/mzoegKUjICDK6ObQ8FoIiIiIiIiIiIiIiIiIiIiIiIiIiLSQSgYTURST9kxsY1/bYZ1W9cTIL97bPOLiEj8BQqjG1e9Nfo1IwWjLb0ps4LRtj3bOhQNYMVd0O1k6HlmcmqS1GW3Qb6l12bApcHMDNdrrIWnBiW7ivQWcBmmUPV++OMhBaO1YxUg1mTEzdB7pvk6J0JwRJP3b4A+c6H7qdHXdXANbPwn7F1kwta6ToP8CjNnn/MjP1ZYBb75EvxyViAXTnkOnhpg3++1c+Ds9xJTU0tWwWg9zoIp94Vv63I85HaFut1hGn0w7seelScprMvxMPZOWHZr87ERN0HvWcmrKRN1P939mL3vQ+dJ3tciiVe9DTb8BQ6uRp8CLynv6CHrNrfn8onkz7ZvH/xl6/NOnw/6zIExt8Py26NYO0L487vXuJ9TOp4+F8CwG5JdhYTj88E5H5qQ/CMbY5/Pnw3+LDjuL7BgOtTvcz+HgtFERERERERERERSWCb9PTCTvhcRERERERERERERSVcKRhOR1FNxHhRUQHWldR+fP7pPaNfmEhGR9JBVEN24mm3RrxmMELQTNjgkja21CEpZ/5CC0aS9SMGBLa1/CAZ9KW6lJEVjHczrl+wq0p8/ijCFNb+Hode1Phbp8TqcTA9GswuLO/Mt6Hp883WnP781vzWXCb8wQUlu7VoIC86BxurmY5XzzL9rfweDroGp99vPYRX4luhgNICi/jBnKzzZ27pP1fuw41XocVrCyiLYYL1Bv+19pyV/AEbfBh98vX3bJUdNu2Q+nw9Gfw8GXgH7lkKnsVDYN9lVZR6fD/J7Qs1252NemAzHPwz9L4lfXRJ/B1bByydm/nmIdAyRAsCSrWyC+V3WVuGA+AZ32/1canebc2JJb76AeS4byA3zb074Nn8uBHJafG0xNpAPnSdD8dDMDJjPFJ3GwLkrYMFZsPut9u3H/wM++RnsXxZ5rqYgx86TYfZmePmk8I9ddnIdhp2LiIiIiIiIiIiIiIiIiIiIiIiIpDC7aH7F9otIEwWjiUjq8WfDaS/DO1dA1buAD0pHQtkxUD7RXMrGwfOT4eBKd3N3nhKPikVExGuBZASjuQh+ygTbngl/fNM/Ydo/EluLpL7GOud9F1/pLhgt2GA2kO54yYQdjbgRep3jvsZ4Wnc/1O5KdhXpL5owhQ9vhr4XQl635mNWYVl2Mj2QxO5nUtgm1K++yt3cS78NxcOgYlb7NTf8FVbcBYfXm2P5vaFmq7N5P/2TuTTVl10K3U+HsT+C7CJzLNQYfqw/SS9nFfQyQXMvTbPus+gKmLM5YSVRv886NLwgQsDVkK9C3S5Y9SsTYNf9VJj6Z4WidUQFvc1F4iea310f3WJ+BybrMU/cCwVh1b2w5XHz3PTIpmRXJOKdaEKOE2n0rfDGBYn/YfoAACAASURBVO2Pd7U5b/OC3eO7HgPc+7+gMZtQMX+ORdCYizbHAWc5OjcWI6sATn8Nlt4En/4ZGg5BdicYcxv0uxQq5sLSG2H9g9BYaz2PL7v56+wi8/xy6Y3WH2DRro5iKBke07ciIiIiIiIiIiIiSRLSVk4REREREREREREREbe0q0pEUlPJMJj+jtlQGGwwG2Hayu3ibs6+F7cPBRARkdSUFWUwWu1O8wYSn8/92I4WjJYJ6qqg4TDklDVvnJX4CLoIRgM4shkKIwTyNHnnctj0cPP1na/AyU9D75nu1oynTY8ku4LMEIgiTKHhCFTOg8HXNB8LHXU/T+1O92PSSdDmZ+LPbn29zwXW4ZhWFp4HZ7wO3U4yv2eDR2Hlz2HZ91v3cxqK1lLLwIj9y6DqfbOWzwchi6AJXxJfzup6PJz0lPmZhFO9BQ6shKxCc2mshdzOEMjzroZgg3muHMiBur3W/XI728/jD5ggutHfNz/TaM6fRMSZijkmDNKNI5vM42LxYBOCCCZMI6vAhEnqPpt6PvgmrPltsqsQ8Z7PD4H8ZFdhr2KuCXnduaD5mD8Xhn7d2fjySdGt21gNwcbw4VmxhPfHnc8+GMyLIDK7wLGwa+bod5ukNn8WTPwVTLjbhOfn9zCPjwBZ+TD59zDx1/DutbD+IYs52jw/bznuufFw4BP7GoZ+zdvnliIiIiIiIiIiIuIthZ+JiIiIiIiIiIiIiHhKwWgiktp8fuuQE7fBaMf/LfZ6REQkMbIKoxsXajQBZ9GE7ygYLX1ULYFFV8D+5a2PD/sGTLgn/IZkiY3b+0flPBjmYAN65VOtQ9GavD4LTpoHFRbBQ4lUuwf2vJPsKjKDP4rHZoDKJ1sHo9mFgFlJ6VACD1gFiEH7ELGeZ0a3xrLb4Jh74b2vwt53o5vDid1vwPYXoNfZNsFoSX6cr5gFBX1MCFo4z4xsf2zA5TDp/0F2cfTrNtbBR981oTvBo9BrJvS/1Lp/pGC0Jm0354uI93rNcB+MBvD8RMAHhHkD/cRfm8Afhcikhv0rFIommavL8akfRO7zwYmPwapfw/bnIb8XjLkNysY7G9/jdMgugaMH3a/dcBhyStsfX3575LHZnaB0pH3gWCxhY1ZtCsUViZ4/Cwp6WbRlm+eKlmMtnnv5s+GsxbD0Rlh3f/g+E38LQ693V6uIiIiIiIiIiIiIiIiIiIiIiIiIiEgaUzCaiKQvN8FoZ7yhzd4iIukkUBD92IYj0QWjNSoY7f9UPgVdpzkPVIlFKGQCzmq2QU45NByEooHm0tahT2HfEnjzc+HnWv1rs6l47O1xLblDaqxz1z9cMFr9ftj9JtRVmdtW2XhYONt6joWzYeYqKBnmvt59H8LO18xtqvspUNjX2bijB2HPIqjZYTa65nWH1b8hbBiJuBft+fi2Z6G6EgoqzPVogtH2LYX6fZBTFl0Nqc7uZ9L2515QASP/Bz75ibs1dr3+WUBPAmz+twlGC1oEo/lT4OWssxbBk72d99/wVwjkwZQ/Rr/mJz+DVfc2X98231zC8efGdj4lIt7qNQN6nAU7XoxisMV5yAffgPze0PeCmEoTjzw7OtkViMRHVjGM/2myq3Amp8y8HhDNawKBPBj/c3jvK+7HhgtG2/qseQ5iZ9xdMOq77tcTkRRnEzpo97pIdpF5vlg6Gj64ofl4VqH5G2f5BO9KFBERERERERERERERERERERERERERSQMpsJNURCRKToPRsoqgy3HxrUVERLzlzwZfAEKN7sc2HIHccvfjQg6CdkIh8NlsbssUC2cDPjjhX9D3ovit03AEFl0Fm//V+rgvy2wOHvtDcz0UhI9udRbis+GvCkaLh6DLYLRdr0NjrdlcDiYobeEc9+vOHw6XNoLP76x/sAHeugS2PNb6+IS7YcSN9mP3LIY35kLNduf19bsUyifB0ghzy2dsAuYCeeY2Y+XJPmaD8OBrIWQRlhXJY13gxMehwiaQL13Z/Ux8YV76GXcXdDsZtj4Fa38fv7qitf7P5nfA7jfCt4f7nhKtoBeM+Das/IXzMZ8+AON+HF3waEMNrPy58/65nTvGOYtIugjkwCnPwsZ/wKIvejfv2vsUjJYK9i9313/gFXEpQ8RzJcOhYi6UDE12JYkx5MvQaQy8NM3duIYj7Y99+r/2Y856B7oc624dEUl/PgeB8cO+bv6mWfkE+PNg8DWQ3yP+tYmIiIiIiIiIiEic6YM5RURERERERERERETcSoGdpCIiUcrr6qxf38+BPxDfWkRExFs+H2QVwtGD7seG25DaJNgI21+Ana9CQW8YdBVkl0Qe1yTU4GwDW0YIwTtfhB5nQE6Zt1MfXg8bH4Zlt1os3QAf/wiOHjKBWJv/DdWbnc19ZAMEj5pwPfFOsD788e6nws4F7Y+HGkwA0NDrzf34rUuiX/vhAJSMMF93ORYK+0OfuWbDepMjm2H5D02YUjhLb4KN/4Sy8S0OBmH321A6CnqeZcKN3ISiDb0BJv36s/kVjOZI6RjYtbD9cX+OCQZ4boL9+He/bB6Tgg6CLMMJBeHNi+H8nZBTGt0cqWbPu1D5JGybb90n3OOhzwe9pptLzXaz4TrVPNnHus2fIi9nDfySu2C0UCO8/zWY9rD7tXa+4uxcpUk04WsiEl/+AAy83ARS7l3szZw7XzG/35yGyEp87PvIed/PHTbPdUUkNXU9HoZ+Hdb81vmYxur2x+zOr4f9t0LRRDoqp69Xdp5kLiIiIiIiIiIiIpJmMij8LJRB34uIiIiIiIiIiIiIpK0U2UkqIhKF/N7O+o28Ob51iIhIfAQKogtGa7QIDQmF4P3rYd0fm4+tuhemvwf5PUwIVyTB+o4VuNVYA5VPwcAvejfn7rdhwXRoOBy57+pfRrfGpkdhwOejGyvhNdaFP14+EXa9YYLQ2nr/aybEp7A/NNbGtv7Bla3/XfFjOOFRqDgPdr4Or5wSeY59S8ylrUNrogiF8sHgq12OEfp9zoTBtH0TYN+LTWjd547AoxGCQjY/Zh2MdtI8c5t7+zLr8cE62PEi9L3IVekpaf1DsPgqE4hjxxchJNpp4HQspvzJhLdVzvNmvkjfc6KUDIfiIXBorfMxmx6Bsgnun6dWPumuf46C0URSVr9LvQtGAzj0KZQM8W4+ca96i7N+py9QKJpIOsjr7q5/2/DahjBBaS2VDHM3v4ikGZ91U0d6XVlEREREREREREQyl8/mdVARERERERERERGH7LL5ldsvIk38yS5ARCRq+b0i9znxCW00EhFJV4H86MY9PwnevAT2L299/MObW4eiAVRXwvIfmK83/TPy3FZhPJnswCexz9FYD2v/AC+dCC9NcxaKFot3FVjluWB9+ONZRVA8yHrch9+Bty6OQz11sPQm2PeRs1A0rw25DjqNSfy66a7bSXDc36Cgwlz355hwmCn3metZBSZoys6ed7D8dNWcTtDvEigeaj9HdaWrslNS3V5Y9CUHoWhZkd+MmNvNu7rCGfYNEyQ46XemHi/UbPdmnlj5fNDnQvfjlt8Otbsi99v9Nrw2E/5TDp8+4G6NzpPd1yUiiTHsBhj9fe/me34CvHSS+b1wZJN384oz9Qfgo+/a98ntakJCu5+SkJJEJEbZJe76tw1GO7TGvn/pCHfzi0jmUDCaiIiIiIiIiIhIB5ZBOzm1K1VEREREREREREREEkTBaCKSvgp6W7cNvAIuaYA+cxJWjoiIeCyQE/3Yzf+CF6bC4Q3m+urfwMq7w/dddz+s/0v7ILVwOmIwmpOfS1uNta1/Vh/9D7z3Vdj9pnd1RVq/Zmdi1uoognXhj/tzIwdZxcuhtfDc+MSvWzoaxt2V+HUzxYDPw+zNMKcSLjoA0/4JWYXN7YX97MfX2ty3m0LARtxoP0fNDuf1ppLGWhOIFmyAx7o4G+N3EESWF+dgtPzPnrcV9IYBl3szZ+kob+bxwshvm8AbNxprYNMj5v8STMBdKGjeOBpsNL/Ddi00YaLbnoH6fe7rGnil+zEikhg+H4z9kXndatBVsc/XcAR2vwHrH4LnJ0f3mCHRCTbAK6fZ97noEMzdZkJCRSQ9ZBe76982GO3AKvv+yXoOLSKJYRdO7lMwmoiIiIiIiIiIiIiIiIiIiIiIiIiIiFMOdsiKiKSo/J727f5AYuoQEZH48MV4qtpYA08NhFG3wro/2vdddIWzOTtiMNr256F2D+Q5COE5ehgWXwWV88Dnh74XQf8vwKp7419nWx//ECb/PvHrZqpGq2C0HOh5tvk/7wh6Tofj/wE5pcmuJL35fNYhx5GC0QL51m3+zzYYD74Wsorg7c+H77fy57DpYfMY0Xtm5HqTrX4fLLoSKp90P9bJputchyFr0ep5VvPXU+6HkmGw7Vlzfdg3oOoDWOEybLDLsd7VF6ucMpi+CJb9ADb+3fm4D74BS74FoUZzzhNq8K6mQVdBqQI3RFKePwDFQ7yds243PDse5mzydl4Jb+ersG+JdfvgL0N2UeLqERFvZLkNRqtufb3yCeu+5RPdh+qKSObwKxhNREREREREREQks4WSXYCIiIiIiIiIiIiISEbxJ7sAEZGoBfIgUBC+re8lia1FRES859VGsRV3moAALwTrvZkn2YJuwldCsOz7zrou+iJsfhSCdSaYbsNfYcFZkcfFw9r7YM+7yVk7E1nd9gO5Jvyu89TY1yjoA8c+BL4UDbcd9T049XnI7ZzsSjJbpGA0u8fzlr83+l8Gg79i3bd6C7w+C/Z/7K6+ZHjrsuhC0cDZ7TXL4jmVFwZ+CcrGNV/3B2DkzXDGa+bSZy4M/bq7OQd/GTqN9bLK2BUNhOP/BpeFWl8utgiVbBJq/OxfD0PRyifCpN95N5+IxFevGfbtBX3gwn1wxhvO56zeDDtfi6kscWjLY/btpaMTU4eIeCvbZTBa45EWX9ea10WsjP+pCYoWkY5JwWgiIiIiIiIiIiIiIiIiIiIiIiIiIiKOKRhNRNLbwC+1P5ZVBN1PTnwtIiLirayiZFfQXvBosivwRmOtu/4b/gIN1fZ96qqgcl70NcXDqruTXUHmCFqE+/hzIbsITl8AI26Kfv6K2XDOhzDwi3DOR9HPE063k014W9MlkO98bP8vwNAb4ORnYNyd3tYl4RX2t2/fv8y6zZfV+npul8jrrf195D7JdGQTbH8++vE9p0fuk+Uy+CGSokEw5Ho44d8w9YHI/fO7m9CfSPJ6wEnzTOhXuoRJBHLg7A/iN//EX8Mxv4SBV8DAK2Hy7+HMt0xopYikh9LRUDoqfNsx98K5n0BOJ+h2Akz8jfN51/3Jm/rE2pFNsO5++z4FvRJTi4h4y+35cUOLYLStT1v363M+9DgjuppEJH20fW2iJQWjiYiIiIiIiIiIdFyhULIrEBERERERERERERFJOzbvzBURSQNjbod9S2DPO+Z6IM9swA/kJbUsERHxgNdBLV4IZUowWo37/mt+CyO/Y91n34cQaoytLjeyikzgz5bHrPts/jfU7YXczomrK1M1WgWj5Zh/s/Jhwi+gcAC8f727uUf/AMbe3ny90ygonwxV70VVKmDC0E5/FXxhssBDf4X3roN1f7CfY84WKKhwtt6UP8G717Q/PvAKZ+OlWWE/V9031PRn3p7z2N/QiVnbipjYqUWjo2C0+0yYVKra8XJs48f/NHKfzpPNfTlYH9taAMO+CcfcE/6+ZyenE5z5JiycC3W727SVm+d4PU6Lvb5kKD/GhCxu/Lv3c/e7FPK6ej+viCSOzwfHPggLZ0PNdnOssL85jyka0LpvxXnwwQ3O5t30T+h3MfSelT5hkunmvesi98nvHf86RMR72S5fj6qrav66aql1v36XRVePiKSX/p+HZbe2P15QYR+aJiIiIiIiIiIiIukvo8LPMul7EREREREREREREZF0pXffikh6y+sCZ7xuNhzVboduJ0FOWbKrEhERL2QXWbdNvg/e+2riamniRWhMKnAbjAbw4S1QNAj6Xhi+feXPY6vJrX4XQ8X59sFoAI91gbnbIb9HYurKVFa3/aZgtCZDrzPhG06CIgAGXdU6FK2J21CllsomwBmvWbf7fDDlPnMbeuXU8H3O3wl53Zyv2WsGZBVCw5HWx/tc5HwOMVwEoy06MJUZy+ezv8Gc/9/x6xAPXhHk8uM+u/04CUYDWH4HjPm+20rj7/BGWHx19OPP32kCxyLJLoaKObD50ejXApi5GkqGRj++6zSYtRp2vwU1O8yxvG7Q9QTILY+ttmSb8AvY+hQcPejdnEOuUyiaSKboPBlmroI9i805UNcTIJDbvl9BHwjkOz+XXzgbBl0DU+/3tl6BQ5/Ctmcj98vvFf9aRMR7boPRVtwJo24xzwkPrrLu13tmbHWJSHoo6g+dp8Ded1sf73uxAmtFREREREREREQkM+i1ThERERERERERERFJkBh2m4uIpAh/NnSZAhWzFYomIpJJsmyC0fpcAENvSFwtTYJHE79mPBz4JLpxS2+GYGPrY0cPwnvXw/YXYqspqxgK+kbu58+B/p+Hib+F3jNMSF4kH94SW21ifdsP5LQ/NuSrcMyvILvUfs7hN8IUi6COaIPRBlwOp7/irG/3U+CMhVA0sGlR6DwVZm90F4oGUNALTn0Rij8LhcrrDlP+aG6j4k5eT8ddv7fhzv8LRQMIhXx8/eEQRxs++8TSzpOcTbT8Nji83k2V8VWzAxZfC08NiG0eN7fjqQ+Y363+bHOpmAP9LnE+vuc5sYWiNckpM4ERg682l4rz0j8UDUw459g7PZzQB+N/4uF8IpJ02SXQ80zocXr4UDQw50ddjnM376d/gn8VwPq/ZNinkyfZ1qed9VM4s0h6ynIZjAbw4nHwTx9UPhG+ve/F1o/vIpJ5Tn4aup9mzt8CBSasdvxPk12ViIiIiIiIiIiIiDf0t2cREREREREREfGA3atMIdtWEelIspJdgIiIiIhIWHYbUf05MOgqWP9naDicuJoyJRht9a+iG3dkA+xb2hw2FArBwrmw89Xo5ssuhVlrwJcF2cUQbIBHC6z7z1hmQqyyCpuPDfkKDL4WFpwDO14MP27zoyZALSs/ujoFQha3fV92+OPDv2EC0oL1ZvN3sB7q9pr/O18AAvkRNoW7+FTJsmPgzIWA3/3/cbcTYdY6qNkOgbzYApi6Hg+zVkPtHsjtrE/GjJY/4KhbXTCHBftPbXf8UC28tgbOHAmUDHO+7qZHYVQKhCgePQTPT4KarbHNUz7ZXf/sIjjxP9BQDaGguV61FDY9EnmsLwDDkhBWmm6GfAU++h40HIptnqJBMHOlCbATkY5n+I2w6zXzWO1UYw0sugJqd8HIb8erso7lwMeR++R112O1SLrKjiIYbf9y+/a+F0RXi4ikp7xuJri//oB5vUnBiCIiIiIiIiIiIqKNnCIiIiIiIiIiIiIirvmTXYCIiIiISFjZRdZt/mwoGwunvZy4eiAzgtHqqmDHS9GPf2EyrPqlCUXb+nR0oWiF/aHPBTD9PbNRMLfc/J9GCrXK7906FK2Jzw+Dr7Ye11gDO19xX6c0CzaEP+63ydoO5Jj7sT/b/L8V9jWBYTmdIm8ItQsVm3I/dDsJSkfDyO/AmW+a+aMNvvP5oKBXbKFoLeV1USharIZ8NWKXAw2llm2rdrR4I2H//3K2ZuWTzvrFU/0B+HeJu1C0rieEP14xO7oasgqaf/+WT4CzFkHJ8Ob2HmfCjI9h2DfNfbDnOXDyM9Dr7OjW60j82TDgC+7GFFSY35N53aF8ogkCPfMtBe2IdGS9Z8BJT0PP6ZDfC/J7Oh/74c1wZEv8autIPn0gcp9e58a/DhGJD382dD3R2zmLXYQ2i0jmyClVKJqIiIiIiIiIiEiHovAzEREREREREREREREv2exiFxERERFJop7TYcWPw7cF8sy/XabCiG/Dyl8kpqZgfWLWiad9SyAUjG2OJd+C2p1QtcTduNHfh7E/su/jz7H+OWeXWI/reTb4AhBqDN9e+ST0numsTmkvZBEKGLdwHptgsf5fgMHXxGldSQnDvwWVT9kGhB1ssH48KGq55zi/h7M19y6GNb83gWIFvR0W6rG3P+9+zMArTTDg9heaj5WMgMFf9qamLlNh5sr2xyf+0pv5O5qxd8L6h0xgZ0u+LJj2MPS9MClliUia6T3DXJrsehNemwENhyKPnT8cLj4Sv9riqaEG9i8DQtB5avKCaPd9FLlPfk8YcWP8axGR+Bl3F7x8knfzFQ/xbi4RERERERERERERERERERERERERERERkQ7An+wCRERERETC6noCFFS0P14xB3wtTmMTGXYVtAiHSidefQ+f/Ax2vOSs75Dr4OT5kUPRwITDWPHbtGUXw4DLrdt3vBJ5bQkvFLQO07P7/4qJTdBFUzCiZK7iwTD9Xdvb14HGUsu2wpbBaDmdnK/7/vXwZAV8dCuEEvwJrtWVsO0Z9+Oyi83j69Q/w+CvwDG/grPehrwu3tcoscsth/N3wKhbzWOZP9sEvE5fpFA0EYletxPg7PdgxE2R+zZWw4EwgZeprmoJPDcOXjwWXjwOXpgC1dYBqnG1/If27UWD4ZwPoXRkYuoRkfjodiLkOQxZjiS7E2TlezOXiIiIiIiIiIiIiIikqQS/F0lEREREREREREREJAMoGE1EREREUpPPD8c/bDaQNikeCpN+17pf1xNh1HdbHxt0dXxqCmVCMFpD4tYaewdcFoLJv4Pe5zobYxd+Fsn4n1u3HdmY+KCjTBFqtG6LVzCaz+apqs8mNE0yR0EvGH2rZfOBButgtIKcFreRbBfBaE1W3AU7XnY/Lhb7P45yoM88bg76Eky5D4Z/w10YnCRedgmMuwMuroFL6mHCz6F8YrKrEpF0VzIMJvwCTn7GPM7YWXZbYmrySigEi6+BQ2ubj1W9D+9/PfG1bH8RKp+w7zNrDeR1S0w9IhJfXY7zZp7up3ozj4iIiIiIiIiIiIiIpLaMen9iJn0vIiIiIiIiIiIiIpKuFIwmIiIiIqmr2wkwez2c/DScvgBmLDdhOS35fDDuLpi1zgSpnfMRTLk/PvUE6+MzbyLZhVx5qde5tqFGlsonRb9mXhc46x3r9u0vRD93Rxa0CQT0Z8dnzaJB8ZlX0os/x7Jpv00wWqv3GNqF7NnZ9M/oxkWrZnt04xSCJiIiLfWeAbPWwujvW/fZ8h9YeU/iaopV1Qewb0n745VPwJEtiatj+R2wYLp9n6kPKMRXJJN4da499Dpv5hEREREREREREREREUkF+puoiIiIiIiIiIiIiCSIgtFEREREJLXllEHvmdD9FAhYh+RQPAj6XwJlY80bL0be4n0tdgFR6SLUkJh1ov35j7gp/PEBX3Q2Pq+bddu717ivR+xvM/6s+Kw59Gvhj/eaEZ/1JDX5cy2bDtgEozUEW1wJBS372dr8WHTjolVd6X5MViF0Od77WkREJL3ldYOxP4KyCdZ9lt4Eh9YlrqZY7F1s3bZtfmJq2PAPWH5b5H7ZxfGvRUQSJ9uDYLQpf4Tup8c+j4iIiIiIiIiIiIiISKpo9amVIiIiIiIiIiIi0bF7mUkvQYlIEwWjiYiIiEhmGniF93NmQjBa0EEwWvdTY1uj87HQdVp0Y3ucAaWjWh/z58Lga52Nz+1i3VZdCUcPRVdXR2Z3u/dlx2fNsvHQ9cQ2a/lhyFfjs56kpkB0wWiNLbPQSoZFt3bDocQGxjgJW2lr0LWQle99LSIikhmmPWLf/vSQxNQRq6oPrNv2fRj/9bc8Ce98wVnfLAWjiWSUnBiD0XrNNK9l+Hze1CMiIiIiIiIiIv+fvfuOl7Os8///uk5NTnovhAQSQu9VAghSpLgrRVDBhthx7bvquiqiu2v5Ka5lbasifBcLIGADpCiKFKlK7ySUBEJCek6Sc2au3x+TbOZMZu65p50y5/V8POaRXP2TcHKYOXPP+5Ykaejyk5ySJEmSJEmSJFXMYDRJkiQ1p2rDcJI0QzBazCSPj9oBXnU97PtlaB9b+f5Tj4Sjr6v+g78t7XDsn2DeO3P/DWe+Bl51LUxZkG59uTCCNY9XV9dwlhSm19LWmDNDgKOuhp0/AON2h+mvhlf+Crb7h8acp8GppaPk0KpM6WC03kzehYRTjoD2KgMNfjO/fy5KXPlA8vikg2G3j8O+X8kFT048EPb9Euz/1cbXJkkausbuXP658fK7+qeWWiy/s/TYxmWNOzezEe54D9x8avo17QajSU2l1mC0ee+oTx2SJEmSJEmSJGmIMPxMkiRJkiRJkqR6atCn2CVJkqQmlN000BXULiaEXIU22OeL0NIKu38cdno3XD6hsv2PuKL2QIDOSXDI/1S3tlwg27O/hJ7VMHoejNq+ujOGm5gQCBjaG3du+2g48JuN21+DX0tnyaF1mVElx/Jz0WjtgH2/CHe+r+++E/eHZbeVr+Hx78LO56YotgbPXF56bK/zYa/Pbm3v/i+NrUWS1Fx2Phce+nLp8SXXwqQD+6+etLpfhHVPQ+cUWP1Q6XmNDEa76wPwZIWvSdpGN6YWSQNjxPTq1047GmaeVL9aJEmSJEmSJEmSJEmSJEmSJEkaZgxGkyRJktLKJgREDRUxU3rsuJth8iu2ttvHVb5/R4VBav3twf/MPQDmvRMO+l4uCE6lZRPC9Fp8SakGai0djJaNLSXHegu/zc1/L4zdFZ77FbR1wewzYMK+sPha+NsnYeXfS9dw1/th5EzY/pQKi6/AC9eXHpvVwHMlSc1v7tuTg9Hu+0zu/5GzT++/mpLECI/9N9zzkeRA5y0aFYzWsxYW/r/K1wWfG0tNZcZxuX/Xhd+PRs6AHd4MPavgiR9suy60wVFX50KaJUmSJEmSJEmSAIjlp0iSJEmSJEmSpD5Kf5JYkiRJGup2+5f67rfyvvruNxBKBQyM3qlvKBpACDB2l8r2D6G6uuophHMn4gAAIABJREFUbZDQkz/MhS489GV49JuwblFj6xqqkkIpDH9QI7WUDhLItI8vPZYt0jntKDjg67DPf+RC0QBmngAn/Q1O/FtyHTefCt0vlq+3WmufKt7fOQUm7N24cyVJzW/sLnDAN5Pn/OUMuOuDsOrh/qkpydMXwd0fSBeKBo0LRlv9CGQ2VLamdSSMntuYeiQNjI4JcOjFfV/3Tl4Ar3kY9vsKHPx9OOwX0JIX6DzxQDjlucSQZ0mSJEmSJEmSpEEvGuQmSZIkSZIkSRp4BqNJkiSpeW1/OlDHoK6nfgzPXlW//QZCzBTvbykRcDXnrMbV0ihzzkw/97Fvwd8+CXd/CK7eF166pXF1DVXZntJjLe39V4eGn5bSYQKZltElx3qLBaMlmbAPzH5D8pwl11a4aUrZHthQInTt0Isbc6YkaXjZ5QOw8weT5zz2LbhmP3j2yv6pqZinLobb317Zmo3LIVb6P/4UVj9S+ZrtXgttI+tfi6SBtcOZcPIiOOzncNwtcOxN0DFu6/ic18Nrn4QFP4Nj/gjH/QVGThuwciVJkiRJkiRJ0kAaJmFig+HmuZIkSZIkSZKkYcFgNEmSJDWvyQfDgkugc3Lf/rZR1Qc63XVuYz5831+yvcX7Q4lgtD3+DeafuzWgaPw+ub5i5r+/9vrqYc7rYdrRla/rWQn3/kv96xnqYomvGSj9dSPVQ2vpYLRsy6iSY5lqvkW/4sfJ492Lq9g0wdqF8KfXws87KHlRZNd29T1TkjR8zSkTAAqQ3Qg3nwaZjY2vp1DP6lxQcaViBv58Ciy/s/Yalt0Ot74Z/nA83PaWytcf8sPaa5A0OHXNzH0fnbKg+M+SuraDHd4I045KfA0jSZIkSZIkSZLUFOIwCYCTJEmSJEmSJA04g9EkSZLU3HY4E057EU55Fs7M5H49fRWc9CC0juw7d+R2cOLfYeorS+/XvQRWPtDYmhupVMhVaC3e39IKB/03nLESTl0CJ/0N9vjX3N9VvtaRsNO76ltrLQ6/tLp1y27LBRblG8pBePWQ7Sk9Vm3AoJRGS0fJoUzLyNJj1fyTbeuCo64pPd67topNS+heAr/ZCZ7/TfK8wu+zkiRVa/KhuUcaNxzZ2FqKef53uZDiqtb+JlfzS7dVf/7ia+CGV8LCS+CF6ypfv/MHoX109edLkiRJkiRJkiRJanKGiUmSJEmSJEn5kvL3zeaXtIXBaJIkSWp+oQW6Zm39taUVxs6HV98KM06AUTvCnDPh2Jtgwt7bBqYVumYfuPFoWPNkv5RfVzFTvL+lLXld6wgYOT33+7ZRcPxfYc4bc393M18DR98IE/apb6216JxU/dpf7wiXjoGbz4Df7g4/74BrDoAXbqxffUNJtkSYHpT/upFq0dJZcigTRpQc6602y3DmCUAoPlbPf//3n1/6e/EWrSOgY0L9zpQkDW8hwKt+n27u8r9Cz+rG1lNo8dW1rc90w6Nfr379IxckhwGX0z6m+rWSJEmSJEmSJEmSmoOf1pQkSZIkSZIkqa4MRpMkSdLwNWFfeNU1cPJTcNhPYcxOuf6EMJ7/8+If4YYjoXd9Y2ust1IhV6G1sn26toPDfpb7uzvqtzDl0Nprq7fZb6h+be9aePZyWP1wLsBoxT3wp9fCqkfqV99QERNCIkJ7/9Wh4ac1KRgtYazaYDTIBT4Ws/yvsHF5DRtvlu2Fhf9bft6I6bkQG0mS6qV9DMx7Z7q5L99T//NjhLVPw0u3QGZD37E1j9W+/zOXVV/X0j/XdvaIqbWtlyRJkiRJkiRJkiRJkiRJkiRJktSHwWiSJElSoc5J6eZ1Pw8v3NjYWuotZor3h7b+raM/zH1bfffLrM+FpQ03pcL0AFqa8OtGg0dLR8mhmBCM1ltLMFrb6NJjj36jho03u/9z0Luu/LzJgzBsUpI09LWNSTdvdZ3DgHvXwc2nwa/nwvWHwxXT4YUbto5vXFafc6oJMe1dC9lN5ecd8C1oH1d8bMaJlZ8rSZIkSZIkSZIkSZIkSZIkSZIkqSSD0SRJkqRCaYPRAB78z8bV0QixRMhVMwZczTgBJuxX3z1XPVjf/YaCUl8zBAi+pFQDtbSXHMpQOhgtU1Mw2qjSYw98AV6+Fx78EtzzMXj027BuUfq9e9bCg/+Rbu6cN6bfV5KktNrTBqM9Wt9zH/oKPHfV1nbPKvjDcbD497l2vYLR7vlY5WvSnj33rXDoxdA6om///l+HsfMrP1eSJEmSJEmSJEnS8BHjQFdQoaFWryRJkiRJkiSpGTVh+oEkSZJUo87J6eduWt64OhohZor3h9b+raM/hAALfgq/261+ez5zGRz2s/rtNxRke4r3J4RWSY2WaekqOdZbUzDa6OTxa/fv277v03Dkb2Hq4eX3vnrPdDWM3wtmnphuriRJlUgbjLbm8fqeu/CS4v03nQA7vg16VtfnnKcvgkN/UtmaNMFobWOgfSzMei289il48Y+Q2QBTj4Qx86oqVZIkSZIkSZIkSVKzGSZhYiEMdAWSJEmSJEmSpGHCYDRJkiSpUCXBaEMtHCrbW7w/NOlLg45x9d0vZnJ3bxxOF/fEYfY1o8Fj9Nzc9+PCwJLWLrIjppdclqkpGG1UZfN7VsENR8A/Pg5jdio9b/WjsG5R+f1GTIcFPxt6/2+RJA0N7WPTzVtxD9z+Dnjqx7l2axccfhlsd1Lx+b3d8NCXYemfoHdNrq9tDEw7Cua/H9Y+Wfqspy9KXX4qG5dD56Tcc/ZFP4dFm/+/Ov9cmH5MkfkpgtHyA+VGzoAdzqpfvZIkSZIkSZIkSZIkSZIkSZIkSZK20TLQBUiSJEmDTsfE9HPDEAuvKRly1dq/dfSX9vH13/O+T9d/z8Es21O83+AmNVpogZ3eu23/vHPIxNLBfL2ZGs5s66pu3W/mw5onSo8/e0Xy+pMegFOXwKmLYfwe1dUgSVI5LZ3p5nUv2RqKBpBZD396DTx9ybZzY4Q/Hg8PnA9Lb4KX7849lt4E938Ofj23DoVX4KEv5Wq6/3Nw61nw/G9y/x/+w7Gw8Gfbzt+4vPye+cFokiRJkiRJkiRJklSxONAF1E9soj+LJEmSJEmSJGlQMxhNkiRJKhSz6ee2dDSujkaIJRKDQumQoSGtbSRMPLD42Pz3V7fnIxdAb3f1NQ01pcL0Wpr0a0aDy96fh32/AuP3zj32Oh8O+AaZbOkL7DK1XHuXLfH1nsZv5sONR8Pap7YdW3x16XVzzsyFoY2cDiFUf74kSeX0rKlt/YP/vm3f87+Fl24uvaa3xjPzjZxRfs7DX4VfdMIDn9927NazoHd9376Ny8rv2WYwmiRJkiRJkiRJkqRyDAyTJEmSJEmS0kr6aZo/aZO0hcFokiRJUqGJ+6Wf2zrEgtFKhf40c8jV3l/YNsBu3y/DQd+ubr/MBnjxj7XXNVRseKl4f2jv3zo0PIUAu/8LnPT33GOvz0JoISEXjd4S+Y+pZGoMPXzxj3D94ZDZ2Ld/04rSa2adUtuZkiSlNeng2tavfqRvsNiGpXDfp2vbsxLTjk03L9tTeuyaffu21y0qv1+7wWiSJEmSJEmSJEmSJEmSJEmSJElSfzIYTZIkSSo0akcYu1u6uUMtHCqWSAwKrf1bR3+aeQIcdwvs/EGY/z448new+8dr23PjsvrUNpjFCA99Be56f/HxZg7T06CXyVY3Vlaow49JupfAs7/c2o4R1j9bev7Mk2o/U5KkNCbuD52TattjSzDa/Z+Hq2bByvtqryut1g6Y947a9ljzOLx899b26kfLryn1GkqSJEmSJEmSJEmSJEmSJEmSJElSQxiMJkmSJBUKAV5xYbq5LUMtGK23eH9o8pCrSQfCgd+Ag74D2+WFEO3xqer2ax9Tn7oGs6V/gr99ovT4UAsFVFNJCj/rrSUYbdbJNSzOc+ub4M73w+/2gGv2gZ7VxefNfz+0j67PmZIkldPSBgt+Ci2d1e+R6YYl18H950G2p361pdHSAXt9DsbvVds+1x4Iy+/M/X71I+Xn96yp7TxJkiRJkiRJkiRJw1wc6AIqNNTqlSRJkiRJkiQ1I4PRJEmSpGImHwKvuKj8vKEWKBYzxftDa//WMVjMPgMIla+rJUxiqFh4SfJ4yxD72ldTySZce5cUmlbW2N1g3O41bJDn8e/Aqodg5f2l5+x9fn3OkiQprRmvhlOegUMvhl0+XPn6TDc8ckH960qjpQO6ZsGrb4ejrqltr98fDPd/HtYtLD+3VMCpJEmSJEmSJEmSJG0RDROTJEmSJEmSJKmeDEaTJEmSShm7c/k5safxdeTrWQsPfxX+dDLceS6sf66y9bG3eP9wDbmasC8s+Cm0j6tsXXZTY+oZTJ78YfL4UAsFVFNJCj/rrSUYLQQ46urc94ZG65wCnZMaf44kSYVGTIUd3wKzT6987W93gSW/r39NabS0535t64KZJ8DYXWvb7/7zSHWn8961tZ0jSZIkSZIkSZIkSZIkSZIkSZIkqSJ+kl2SJEkqpXNy+TmZDY2vY4uYhT/9Ayz909a+Rb+AE+6E0XPT7ZEtEYw2nEOudngjzD4DHvgCPHB+ujXNHoyW5u6VW4IppAGQSfgSTQpNS2XUHDjxXlj3LHSMg/axsHE5rFuUC5Jp6YC2MfDgf8KD/179ObWGuUiSVKvWroGuoDItHX3bI2fC6kcaf+6skxt/hiRJkiRJkiRJkiQNCSmuLZQkSZIkSZIkqQ6GcfrB8BZC2BXYB5gFjAQ2AEuBJ4C/xxjX1bB3O3AYMBuYAawFFgP3xhgX1la5JElSPxpswWiLLu0bigaw6WV47L9h/6+l2yNmiveH1tpqG+paWmHeOc0ZjPb81XDfZ2D9Ihi3Bxz8Qxg7P3nNE98vv+9wDtPTgEsKP6s5GG2LUdtv/X3npNwj3z5fgBHT4O4PVLf/9GOqr02SpHpoG+LBaKPm9M+5O7y5f86RJEmSJEmSJEmS1JzS3KhUkiSpGfk8SJIkSSUkPVX0aaSkLfwk+zASQhgPfAg4h1xoWSmZEMLfgMtjjF+qYP8pwPnAG4CJJebcClwQY/xl6sIlSZIGSvu43Ifvk0Kw+jMY7ZGvFu9/8Q/p94i9xftbfGnAqNmw03vhie+VnztUgtFWPgg3nwLZnlx76Z/h9wfDyQuhY1zxNc9cDne+r/zeHRPqVqZUqWzCDzfrFoyWxi7/BJuWw/2fq3ztTu+pezmSJFWkdYCD0Vo6c8Gj3YtTzm/v255zJjx1Yf3ryjfzNTB5QWPPkCRJkiRJkiRJktQE/LSmJEmSJEmSJEn1ZPrBMBFCOAP4LjApxfRW4ABgFpAqGC2EcCLwE2BqmakLgAUhhEuA98QY16XZX5IkaUCEABMPhGW3lp7TX8FoMcLLdxcfW/G3CvbJFO8PrZXX1IwO+g5MWQBP/ABe+kvpeUMlGO3+z24NRduiZyU8eznMe0ff/mwP3H4OLPzfdHtPP6Y+NUpVSAo/6y3xba5h9joPxu8Nz/8aul+AdQth9SPJaw78Noyc3i/lSZJUUtsABqPt8hHY8U0wYT946iJ48Ubomp17Dv7SzcXXtHT0bU87CsbsDGseq399c86EqUfA3HdAi6+VJEmSJEmSJEmSJEmSJEmSJEmSpP5kMNowEEI4D/hckaFngMeAl4ARwAxgL2BUhfsfBVwF5H8yLQL3AE8B44H9gMl5428CxoYQTokxJnykXZIkaYDNPDE5GC3bT8FoPauTxzetgo5x5ffJ9hbvD740AHJheDu+BbZ/HVw+fttQsS2GQjBa73p49oriY399J0x7FYyeC2ufgsXXwl3vT7/3tGNglw/Vp06pCknBaJnsANx9dftTc48tHvsO3PPh4t9DdngTzD+3/2qTJKmU1gEKRtvuH+GAC7a257099wC4432lg9FCe992Szsc8iO44Yj61rfvl2D3T9R3T0mSJEmSJEmSJEnD2ABczyRJkjQo+DxIkiRJklQ90w+aXAjhY2wbivYz4IsxxvuLzG8BDgVeBxyfYv9ZwBX0DUW7BXhXjPHhvHmdwHuArwJbPsH2j8C/A59K+ceRJEnqfyOmJ49n+iEYLbMR/ljmqdm6RdCxd/m9YolgtBZfGvTR1gUzToTnf118fCgEo/355OTxX8+DuWfDokshsz79vsfcBFMW5IIopAGSlH2WGQzvn+98Lsx4Nbx0K2TWQUtHLuBy4oEw5fBcCKMkSQOtdcTAnLvj20qPtXYmjHVs2zf1cDh9JTx1IdzzkdprAxg5sz77SJIkSZIkSZIkSRpGBsNFS3USm+jPIkmSJEmSJEkaskw/aGIhhH2AL+V19QBnxRgvL7UmxpglF2x2SwghzdfH+cCEvPatwLExxj4JITHGjcA3QwjPAFfmDX00hPD9GOOiFGdJkiT1v7au5PGNy6BnLbSPblwNz1wKy/+aPGfdQpiQJhgtU7w/tFZcVtN7xYXwy0nFx/ojEK8WG16CF24oP++pn1S270Hfg2lHVlWSVE+ZbOmx3hLf5vrdmJ1yD0mSBqsQYPxesHKb+2dAaIGY8D/cQi0dMPUoeOG68nO3PzV5n0rHOsbBrh+GSYfA9QvKn1/OyBm17yFJkiRJkiRJkiRJkiRJkiRJkiSpai0DXYAaY3Oo2Y/pG373nqRQtEIxxt4yZ8wH3pbXtQk4uzAUrWDPq4CL8ro6gfPS1iRJktTvWssEowFcdwj0djfuLnmP/Ff5OetS5sxmSzzFS5WJO8x0ToSpJULA7vtM/9ZSqTShaJXqnAI7vqX++0pVSApGSxqTJEkF5r17274ZJ6Z7HZTv9JWw12fLz9vt47nQtVJaR5QeC+3Je08+BCbsW76GckZuV/sekiRJkiRJkiRJktSUGnSdrCRJkiRJkiRJBQxGa15nAPvntW+MMV5Y5zPOAlrz2lfEGB9Pse7LBe3XhxASPvEmSZI0gNpSBAKseggu7YLLx8PNZ8CGpfWtYcU95ecs/2v5OeuegRdvLD4WWov3D3ctHaXH6v3fuZ42vFDf/Wb+A5xwZ7p/D1I/yCZcX9drMJokSent8k9w4Ldh/D7QNRt2ei8ccTn0rk2/R9dsaBsJE/YrP3fkjDLjM0uPJT03h1zg2tE3wA5vgRHTYeKBsOBncOpimHUKjJhWvr6u2TBm5/LzJEmSJEmSJEmSJCmtRt10V5IkabDzeZAkSZIkqQZtA12AGuY9Be3/bMAZpxa0UwWvxRgfDiH8FThkc9co4NXAr+tYmyRJUn20jkw/t2c1PHs5LL8DTn4698H8WmV70s1beAm84iJoKRFwltkI1x9Wen3wpUFRSeELi34Bu3wgeX1mI6x6EMbu2r+hYhuX1b7Hrh+D/b9a+z5SA2QSws+SxiRJUhE7vz/3qFVbF3ROgY0vlZ5TLhht7K6lx3rXlK+hcxIsuHjb/ldeuW3f05fAbW/O6wiw12dLv6aSJEmSJEmSJEmSpFIM/ZAkSZIkSZJSS/ppmj9pk7SF6QdNKISwE3BkXtdC4I91PmM6sE9eVy9wSwVb3MTWYDSAEzEYTZIkDUbVhFmtfwaumAqnLIbWhGCtNNYuTD/3pZth2lHFx57/Nax/rvRaP/xfQsKPUNY8kbz0qYvhzvdAZkMuYG2f/4TdPlbf8kqpNRhtwU9hzhvrU4vUAEnhZ70Go0mSNHAOvRhuOrH0eNlgtF1Kj2W6q6uplB3fBGN2gie+D61dMPv00q+nJEmSJEmSygghtAOHAbOBGcBaYDFwb4xxYZ3P2hHYF5gJjAaWAIuAW2OMKe+8JUmSJEmSJEmSJEmSJA1eBqM1p1cVtG+Mse63n9mzoH1fjHFdBetvLWjvUWM9kiRJjdFaRTAawMbl8MAXYJ8v1Hb+xqXp5750S+kP8i+/M3ntmifTnzOcJIUvJIXmrfg73P62re3sJrj3n2H8XjDj1fWrL9+qh2DJ9bDpZXjiB9Xvs9fnYYcz61eX1ACZhFe4SaFpkiQppfnnwuPfqXzd+MIfGxcYPS95fMR0aB8PPSu3HZtyeOX1lDP5kNxDkiRJkiQ1hRDC54Dzatjiohjj2RWeOQU4H3gDMLHEnFuBC2KMv6yhNkIIpwMfBQ4tMeXlEMIvgM/GGGu8k5IkSZIkSZIkSZIkSZI0cFoGugA1xMEF7dsAQs6xIYQLQwgPhRBWhRDWhRAWhRBuCCF8MoSwQ8ozdi9oP1FhjYXJG4X7SZIkDQ5J4VflPHtZ7ef3rEk/975Pw+rHt+2PER7+/5LXjvPpWFG960uPtY4sPfbcVcX7n72ytnpKeeKHcPXecM+H4YHP17BRgB3fXLeypEbJJoSf9WT6rw5JkprWrFPSzx2z09bfd82CaUcXnzflCOjaLnmvEGCnd27bP2oOTNg3fU2SJEmSJEn9IIRwIvAA8D5KhKJttgC4PITwvyGEUVWcMzqE8DPgMkqHorG5hvcBD4QQjq/0HEmSJEm1SLjTY+LYYDTU6pUkSYOXzyskSZIkSdUzGK05HVjQfnhz4NkNwPXA2cBuwFigC5gNHAN8EXgshPDfIYRyCSA7FbSfqbDGRQXtSSGECRXuIUmS1HitNQSjrV2YCyWrxPO/g9vOhtvPgcW/h57Vla3/7c7wl9fDjcfCvR+HNU/CstvLrxu7a2XnDBeZKoPR7v9c8f4nvldTOUWtXwx3vAtiHdKgDr8URu9Y+z5Sg2USvrVu6Om/OiRJalozjoP9L0j3emi3f+7bPvRimHhQ376JB8BhP0939p7nwewztrbHzIejroXg2xmSJEmSJGnwCCEcBVwFTM3rjsDd5ALMrgeWFSx7E/CzENL/oCOE0Ar8AnhjwdBLwHWbz7qHvp8wnAb8KoRweNpzJEmSJEmSJEmSJEmSpMGkbaALUEPMKGh3AXcCk1OsbQfOBQ4NIbwmxrikxLzxBe2llRQYY1wbQtgAjMjrHgesqGSfQiGEqcCUCpfNq+VMSZLU5NpqCEbLboTeddA+Ot38x78Hd75va/upC2HKYZWf+8xluV9fvBGevgimvDJ5/pj5MPXIys8ZDnoTgtFa2vuvjiRXbVeffV6/rravd6kfZbKlx9Zt6r86JElqart+BHZ6L6x9ElY/Cn85fds5o+fBtGP69nVtByfckQuKXv8sdG0Po3dIf2776Fxg78blsHEZjNkZQqjlTyJJkiRJkoavM4EUd5H6P2vTTAohzAKuADryum8B3hVjfDhvXifwHuCr5K7LA/hH4N+BT6Ws6UvASXntHuCjwA9ijP/3rkgIYXfgh8Chm7s6gatCCHslXAMoSZIkSZWp9GbBkiRJkiRJkiRVyWC05lQYWnYhW0PR1gHfA64BngNGAfsA5wD5d4jcD/hlCOHIGGNPkTMK0z26q6izm77BaGOq2KPQucB5ddhHkiQpp3Vkbes3LU8XjBazcP/52/a/dEtt529YCs9eXnp8yhFw6E/Sh7cNN5mEYLRHvwm7frjImg2Nq6fQ8ruqWxfagCy0jYFpr4IDv20omoaUbML1dU9UFNstSZIStY2E8XvmHodeDLe9devY9GPhFRdBa0fxtaN3qCwQrVDnpNxDkiRJkiSpei/EGBc2YN/zgQl57VuBY2OMfd4ojDFuBL4ZQngGuDJv6KMhhO/HGBclHRJCmAt8qKD7jBjjrwrnxhgfCiEcA9zI1nC0SeSupXtvij+TJEmSpIYxTEySJA1XPg+SJEmSJFXPYLQms/kuk50F3bM2//oQcEKM8dmC8XuAC0MIHyN3d8otDgU+Qe4OlYUKkzOqSX/opu8FYqZxSJKkwSe01LZ+4zIYNaf8vOV3wYYXajurGsf9uf/PHEp6E4LR1j0NT/4Y5p3Tt//WtzS2pnwv/qGy+ae9CCOmNqYWqR9lssnjv7gzyxsOqvH7tyRJ6mvHt+QekiRJkiRJw1gIYT7wtryuTcDZhaFo+WKMV4UQLspb10kusOycUms2Ow9oz2v/pFgoWt453SGEs4H7gS1p9u8IIXwlxvhUmbMkSZIk1cTQD0mSJEmSJEmS6slPCTef1hL9qygeivZ/YoxfA75e0P2REEKawLJq3sXxnR9JktT8NixLN2/j0sbWUcx+X+v/M4eaWCZ96ckf9m1vWAbPXZG8JrOptpryPfjF9HM7JkDnlPqdLQ2gcsFoP/qLLzclSZIkSZIkSVJDnEXfa/SuiDE+nmLdlwvarw8hjCg1OYQwEji9zB7biDE+BlyV19VGrmZJkiRJkiRJkiRJkgaFmPDxv6QxScOLwWhNJsa4Hij2EfELkkLR8nyGXIjaFhOBE4vMW1vQHpmuwsQ1hXtW4zvAnhU+Tq7DuZIkqZmN3aX6teufSTdvIF6pd23X/2cONft9JXl82W1926sfLh+mduOroHtJbXUBrHsWelamnz9yBoRQ+7nSIJAt8y3zhof7pw5JkiRJkiRJkjTsnFrQvjDNohjjw8Bf87pGAa9OWHI80JXXvi3G+EiqCret6bSU6yRJkiRJkiRJkiRJkqRBwWC05rSuSN/FaRbGGNcBVxR0H1Vk6qAMRosxLo0xPljJA3iy1nMlSVKTm/3Gbfs6JsLrlsEhP4IFl0D72OJr73g3rLiv/BkxU1uN1RhpMFpZM4tlBCfoWVN+zrJb4doD4KVbq6tpiyd/VNn8qUfVdp40iGTK5A9KkiRJkiRJkiTVWwhhOrBPXlcvcEsFW9xU0E56M/KEMmuT3Eyuti32CyFMq2C9JEmSpHoaiBvn1mSo1StJkgatIfc8SJIkSZI0mBiM1pxWFrRfjDEurGD97QXt3YrMWVXQnlLB/oQQRrNtMFph3ZIkSYPDnv8GO7wFCLn2yJlw9HXQOQnmnQM7nAXj9ii9/q/vhKcvgVvOgrs+CMvv2nbOQASjjZ7b/2cONaPmQOuI5Dn5b9b1pghGA+heAjceBfd8DO79OPzlDfD4dyFbwdfBA+ennwsw7x2VzZcGMYPRJEmSJEmSJEnSANizoH3f5huRplV456Sk2cPnAAAgAElEQVSEN5m3Oeu2tIdsrun+Cs6SJEmSVCtDPyRJkiRJkiRJqqu2gS5ADfEYsH1ee0mF6xcXtCcVmfN4QXtOhWcUzn85xriiwj0kSZL6R0s7LLgYDvh6LtBq3O4QCjKG28aUXv/ynXDbm7e2n/wfOPI3MP3YrX2Z7vrWXM64PaFrZv+eOVRt/zpYeEnp8dgLoT33+56UwWgA2R545IKt7WcuhRf/CIf9AkJIXnvfeenPAZj9epi4f2VrpEEsm+I6wt8/GDl+jzL/liRJkiRJkiRJUjN7Twjh0+RuDDoJ6AGWA4uAvwDXxhhvrmC/3QvaT1RYz5Nl9stXeDPTas7ar+CsP1S4hyRJkiRJkiRJkiRJkjQgWspP0RD0YEF7Y4XrC+ePKDLn4YL2ThWeMbeg/VCF6yVJkvpf5yQYv+e2oWgA7QnBaIUyG+APx8GVs+CuD+TavZXcSLwOZry6f88bylo6k8ezm7b+vreCYLRinrkMVj1QfOzZq+DqfeGnAR74fOk9TvwbHPBNGD0PRkyFXT4MB323trqkQSaTLT/nM1elmCRJkiRJkiRJkprZG4FjgJlAJzCa3A09Xwl8CvhzCOHOEMKxpbfoo/AauWcqrGdRQXtSCGFC4aQQwkRgYo1nFc6fX+F6SZIkSSoixR0tJUmSJEmSJEmqg7aBLkANcV9Be3yF6wvnLy8ypzCtYe8QQleMcX3KMw4rs58kSdLQUkkw2hbdz8Nj34bVj+ZCrCrxiovg0W/AinsqPxdg3B7VrRuOWjqSxzMboW1U7vc9q2s/78kfwQH/1bdvyfXwl9dBLBP0NH4fmLD5scsHaq9FGqTSBKPdtQiy2UhLS2h8QZIkSZIkSZIkaag6ELguhPBF4NMxxqRP+RdeV7e0koNijGtDCBvoe6PSccCKMuesjzFWeqetwtrGVbi+pBDCVGBKhcsqfENckiRJGmqSXkoYJiZJkoYrnwdJkiRJkqpnMFpzuobcTwy2fPp7bghhRIxxQ8r1exa0nyucEGNcEkK4D9h7c1cbcDhwXcozjipoX5NynSRJ0uDUVkUw2hYvXA9cX9mazskw7xy4q8pgtLG7VLduOIo9yePZjVt/37Om9vNeKPK18MQPyoeiAez41trPl4aATMr3yJethaljG1uLJEmSJEmSJEkadJ4HrgbuAB4GXgaywCRgf+AfgOPz5gfgU0AL8K8J+44uaHdXUVs3fYPRir3RXK9z8tXwhvY2zgXOq+N+kiRJkiRJkiRJkqRhJOmWZYm3M5M0rLQMdAGqvxjjYuC2vK524JgKtjihoH1ziXlXFrTfnmbzEMKuwCF5XetIH6gmSZI0OLXX8zryFDonw9yzq1wcYOxu9aymufWW+ZxBJi8YrbcOwWirHtr2JzfPXp5u7c7n1n6+NMjFGFP/cHPJqsbWIkmSJEmSJEmSBpU7yAWebR9jfHeM8YcxxltijA/HGB+NMd4aY/x2jPEE4CDg8YL1nwwhnJywf2FgWdobleYrfPOxcM/+PEeSJEmSJEmSJEmSJEkalAxGa14XFrQ/mmZRCOEI4OC8riy5u2cWcwmQyWufFkKYn+KYTxS0L40xVnPxliRJ0uDRPrZ/zxsxGdpGwZG/rXztzNdA58T619SsMmWC0bJ5wWg9ZYLRJh4Ax/2l/Jl/fSdkM+Xn5Tv2ZmgdUX6eNMRlK7jjw+KVjatDkiRJkiRJkiQNLjHGq2OM18VY/hYrMca7gFcAjxUMfSmE0Jr2yEprHORrJEmSJDXEEHt6nvaulZIkSWX5vEKSJEmSVL22gS5ADXMhuTC03Ta3jw4hfDTGeEGpBSGEqWwbqHZpjPHJYvNjjI+HEC4Cztnc1QH8JIRwTKmgs8131Dw7r2sTcH65P4wkSdKg1zamf8/rmLT51/GVrz3kB/WtpdmVC0bLpAxGG7srHH4pjJ4LI2dA95LSc5/6MUw+BNY/DyvvL1/j/v8FUw8vP09qApls+rlLVkUgNKwWSZIkSZIkSZI0dMUYXw4hnAncxdY3FHYFXgXcUGTJ2oL2yCqOLVxTuGd/nlOt7wCXVbhmHvCrOtYgSZIkDTKGfkiSJEmSJEmSVE8GozWpGGMmhPAh4FqgZXP310IIc4DPxRhX5M8PIRwLfJfcBUhbrAA+Veao84BTgQmb2wuAG0II74wxPpK3fyfwbuBrBeu/FmNclP5PJkmSNEiFfg7eaR+b+7W1wmvgu2blQrmUXrlgtOymrb/ftLz4nNmvh8N+vvXrJLSXP/eO96Srb+45sOuH0s2VmkC2gmsIF69qXB2SJEmSJEmSJGnoizHeE0K4Djg+r/sEDEYrKca4FFhayZrQ3++nS5IkSZIkSZIkSZIkaUgzGK2JxRiv3xyO9q287g8C7wsh3A48T+4CqH2BOQXLNwFnxhifLnPGcyGE04DfAx2buw8DHgoh3A08BYwD9gemFCz/LfCZiv9gkiRJg9HGEoFYjbLlwvHWrsrWlQv50rbKBqNthEe+AU/9GFbeV3zOtKP7hue1dBSfV42pr6zfXtIQkMmmn7vEYDRJkiRJkiRJklTetfQNRtu7xLzCdx4Kr4dLFEIYzbaBZStTnNMVQhgVY1xXwXFTU5wjSZIkSRWq4K6WkiRJkiRJkiTVwGC0Jhdj/HYIIQN8FdiSmtEOHJGw7EXgtBjjrSnPuCmEcCrwE7Ze7BWAAzc/ivkZ8K4YYybNGZIkSYPeQIVTtVUYjLbzBxtTRzPb/nRYfkfp8Qe/CIt/l7zH2F37tnd6F/ztE7XXBjDj+PJzpCZSSTDaC6u8EE+SJEmSJEmSJJW1sKBdKvDs8YJ24c1Iyymc/3KMcUXhpBjj8hDCCmBCXvds4OEaziqsXZIkSVI9xYTrlJLGJEmSmpnPgyRJkiRJNWgZ6ALUeDHG75K7i+X/AmsSpr4AfA7YJW0oWt4ZVwN7At8DtrlYK8/twOkxxrMqvIOlJEnS4DbpEGgb0z9ntY/d+vsRhTf6LmP70+pby3Aw5w3J4+VC0QDG7lKw5xurryffjBNh5PT67CUNEdkK3h9fvLJxdUiSJEmSJEmSpKbRXdAeWWJeYTDZThWeM7eg/VDC3HqfVUmomiRJkiRJkiRJkiRJkjSg2ga6APWPGOOTwFtCCCOBw4BZwHRgE/AS8PcY4301nrEUeF8I4UObz5iz+Yx1wPPAvTHGp2s5Q5IkadBq7YRD/gdufRPETGPP2u9reeeOSL9ut3+BcXvUv55mN2o27PNF+Pu/Vre+fTyMmFZkz/+Av/9bbbUd9O3a1ktDUCabfu6SVY2rQ5IkSZIkSZIkNY3JBe1lJeY9UNDeO4TQFWNcn/Kcw8rsVzi2IK99KPCbNIeEEEaRu5Fq2rMkSZIkSZIkSZIkSRoU4kAXIGnQMBhtmIkxdgM3NPiMTcAfG3mGJEnSoDTnDTBhX7jjvbD0psac0doFs1+Xfv4Rv4Q1j8OUw2HyAgihMXU1uz0+WX0w2rQji/+97/EpmH5c7utlxT2V7zvpYBhdeKN3qflVGowWYyT4vU+SJEmSJEmSJJV2SEF7cbFJMcYlIYT72Bo61gYcDlyX8pyjCtrXJMy9Fnh3wtokR9D32tB7Y4wvVrBekiRJ0rDmR08lSVK9+LxCkiRJklS9loEuQJIkSWoqY3eBff69MXu3j4XDL4OOCenXbH8a7P4JmHKYoWi16ppV3boZJ5Yem3QQHPdnaOmofN/dqwxqk4a4bAXvj/dkYFNv42qRJEmSJEmSJElDWwhhBHBaQfdNCUuuLGi/PeU5u9I3gG0dyYFqvwe689qHbt4jjbML2oU1S5IkSaq7pIuaDASRJEmSJEmSJKlSBqNJkiRJ9dYxqbb1rV1wzB/g9BVwVoRTl8Dxd8CpL8B2J207v3NK8X26tq+tDvWV7alu3Zh5yeNto2B0mTmFJh0C2/1jdfVIQ1ys8DrB7ir/6UqSJEmSJEmSpGHhE8B2ee0M8LuE+ZdsnrPFaSGE+SnPyXdpjHFDqckxxvXA5WX22EYIYWfg1LyuXuCnKeqTJEmSJEmSJEmSJEmSBg2D0SRJkqR665xcfs74fUqPnfR3mPYq6Bifa4+cDpMOgraRxefv/YXi/bv9c/k6lN7GZdWtGzmz/JwT7k65WYA5Z8Hhv4CW1urqkYa4bKXBaJsaU4ckSZIkSZIkSRo8QghvCSFMq3DNu4DzCrp/EmNcVGpNjPFx4KK8rg7gJyGEEQnnnAycnde1CTg/RYmfA/JvAXN2COG1CeeMAC7cXNMWP4oxPpniLEmSJEkqr9K7WkqSJEmSJEmSVCWD0SRJkqR665hQfs7xd8CME/r2tXbl+sfsVNl5c14PYwpuQj56Lsx5Y2X7KNmkg6tbN3K78nPaRsKOb02e09IJZ2bgsEtg1JzqapGaQKWX1nX3lJ8jSZIkSZIkSZKGvHcAT4cQLgohvCaEMKrUxBDCgSGEK4AfACFv6Hng0ynOOg9YkddeANwQQti14JzOEMIHgMsK1n8tKXxtixjjU8A3CrovDyH8UwghP/yMEMJuwI2ba9liOekC2CRJkiQ1lGFikiRpuPJ5kCRJkiSpem0DXYAkSZLUdFpaYeZJsPjq0nNaO+CVv4JHLoCX/gIjpsDOH4CJ+1d+XscEOO5WePgrsOJemLAf7PJhGDG1+j+DtjXtaFh2W+Xr2semmzfrFHj64tLjnZMghNLj0jCRzVY232A0SZIkSZIkSZKGjZHAWzc/siGEx4GFwCogA0wC9gGmFVn7MnBCjPGFcofEGJ8LIZwG/B7YElB2GPBQCOFu4ClgHLA/MKVg+W+Bz1TwZ/oksAdw4uZ2O/At4DMhhHuANcDczWflv5m4CTg1xrikgrMkSZIkVSsa+iFJkiRJkiRJUj0ZjCZJkiQ1wr5fKh2MNm7P3K+tHbDHJ+tz3ojJsN9X6rOXitv1I7n/pivuTb9m/N7pw8xmvJrcZxVKXCDVMSH9uVITy1Z4DWH3psbUIUmSJEmSJEmSBrUWYJfNj3JuBM6OMT6XdvMY400hhFOBn7A1/CwAB25+FPMz4F0xxkwF52RCCK8Hfgi8IW9oKnBCiWVLgbfFGG9Oe44kSZIkSZIkSZIkSZI0mLQMdAGSJElSUxq/F7z2yeJj25/Wv7WoPjonwbF/qmzNDm9OP7dtFEzYr/R4+7jKzpaaVKX3Vu3uaUgZkiRJkiRJkiRpcPkG8FNgUcr564ArgWNjjMdWEoq2RYzxamBP4HvAioSptwOnxxjPijGuq+KctTHGNwJnbN6rlJeB7wJ7xhivrfQcSZIkSQIgVnqFliRJkiRJklSZpB9B+eMpSVu0DXQBkiRJUtMaPReOuQn+fDL0rMr1bf862ONfB7Qs1aB9TPq5c98OO7+/sv2P/DVcNav4WFJomjSMZLOVzd9gMJokSZIkSYPGHx6JXPW3SEcrnHFA4JC5YaBLkiRJTSLGeCW5oDNCCOOBPYDtgWlAF7mbyK4kF2D2MHBfjDFTh3OXAu8LIXwIOAyYA0wnF7z2PHBvjPHpWs/ZfNblwOUhhB2B/YGZwCjgBXKBcLfEGDfV4yxJkiRJlfKTnJIkSdvweZAkSZIkqQYGo0mSJEmNNO1IOG0pvHw3dM2CUdsPdEWqVWsXZNYXH5txPOx1PoycDqPmVL5313aw8wfgsW/17Q+tsONbK99PakKVvj3e7cd/JEmSJEkaFP7n5izv+X9bX9l/6w+RX7y7hVP2MxxNkiTVV4xxJXBLP5+5CfhjP531NFCXsDVJkiRJkiRJkiRJkiRpMGoZ6AIkSZKkptfaAVMONRStWez+yeL9nZPg8Eth8iHVhaJtsf/XYJcP5/YDGL8XvPIqmHxw9XtKTSRbYTJad493GpMkSZIkaaBlspF/u7Lva/SeDHzmV9kBqkiSJEmSJEmSVDmvxZIkSZIkSZIk9Y+2gS5AkiRJkoaUuW+DJ74L3Uu29o3dDU64E9pG1b5/Szsc8HXY/wLIdENbV+17Sk0kW+Hnpbt7GlPHYNa9KbJiPUwdA22tYaDLkSRJkiSJW56AZWu37X9wMSxeGZk53tevkiRJkiRJkiRJktRcDFWVJEmSJFXPYDRJkiRJqsSo2XDcLfDI12Hl/TDpINj9k/UJRcsXgqFoUhGVvj3evakhZQxaX78+y+d/G1nVDTPGwfff0sI/7O2HyyVJkiRJA2vR8tKv6Fd3w8zx/ViMJEmSJEmSJNVd0lVNBoJIkiRJkiRJklQpg9EkSZIkqVKjd4QDvznQVUjDUrbC6wS7expTx2D0m79HPnbZ1r+gJavgDd/P8vDnW5g9yXA0SZIkSdLglPEzgZIkSZIkSZIkSZIkSZIkSZLytAx0AZIkSZIkSWnFSoPRNjWmjsHo8ru3/cvp7oHv/MlPmEuSJEmSBlbSK9P1w+i1uyRJkiRJkiQNfl5rJEmSJEmSpMZK+gmUP52StIXBaJIkSZIkacjIVhqM1tOYOgajOxcW/8v5yrX+OFiSJEmSNLCSgs7Xbey/OiRJkiRJkiSpIRLv9ui1O5IkabjyeZAkSZIkqXoGo0mSJEmSpCGj0mC09ZsaU8dg9MgLpcfWbPDCAkmSJEnSwNmQEFxuMJokSZIkSZIkSZIkSZIkSZKkfAajSZIkSZKkISPx5qpFrFjXmDoGo1GdpceG09+DJEmSJGnwWZsQfjacQs0lSZIkSZIkSZIkSZIkSZIklWcwmiRJkiRJGjKyFQajLVtb4YIhbGR76bE1CR9AlyRJkiSp0dYlhJ+t2zR8XrtLkiRJkiRJ0tDmz3MlSZIkSZIkSf3DYDRJkiRJkjRkxIqD0RpTx2DU0VZ6bHV3/9UhSZIkSVKhdQmB3UljkiRJkiRJkjQ0JFzUVOkFT5IkSc3C50GSJEmSpBoYjCZJkiRJkoaMrMFoJbWG0mNrNvRfHZIkSZIkFUoKP1u/qf/qkCRJkiRJkiRJkiRJkiRJkjT4GYwmSZIkSZKGDIPRStvYW3pstcFokiRJkqQBlBSMljQmSZIkSZIkSZIkSZIkSZIkafgxGE2SJEmSJA0ZscJgtFXdsKm3wkVDVFIw2poNw+PvQJIkSZI0OK3bWPp16bpN/ViIJEmSJEmSJKkMrzOSJEn14vMKSZIkFZf0GcFKPz8oqXkZjCZJkiRJkoaMbBU/2Fy+tv51DEbJwWj9V4ckSZIkSYXWJ4SfJY1JkiRJkiRJ0tCQdFGTn+SUJEmSJEmSJKlSBqNJkiRJkqQho5o7Pqzsrn8dg02MMTEYbbXBaJIkSZKkAdSbLT3Wk+m/OiRJkiRJkiRJkiRJkiRJkiQNfgajSZIkSZKkISNbTTDa+vrXMdj0ZpJD49YYjCZJkiRJGkBJr1l7DUaTJEmSJEmSpKGhmrtaSpIkSZIkSZJUBYPRJEmSJEnSkJEUjNZW4qccwyEYbWNv8vhqg9EkSZIkSYNUJjvQFUiSJEmSJElSjRIDwwwTkyRJw5XPgyRJkiRJ1TMYTZIkSZIkDRlJ1xBOGFW8f2V387+pXi4YbZ3BaJIkSZKkAZT0yrzXYDRJkiRJkiRJkiRJkiRJkiRJeQxGkyRJkiRJQ0a2xCepQ4DxI4uPrVzfuHoGi3LBaOXGJUmSJElqpKSg895M/9UhSZIkSZIkSZIkSRrkkt5gliRJkqT/n707j5MkrevE/42q6pmenu6Zhjm7BxFW5VLExWN11/VC3V113RWXdf0puL91d3FFXFAXDxRQVA7RVTxAEGRBhlNADmFGLndgmIFhDmaG6Z6h566qvrvuMytj/6iu6equiMiIqsysyMz3+/Wa11THE5n5zbgy4sl4PsnAEIwGAAAA9Iy877mHkoi9u7LbJuY7V09dtAo+W1h2gwAAAADbp+iqtJGXgg4AAAAAQPcJIgEAAACgw4q6oHRPAWsEowEAAAA9I2+sdBIRey/IbpuY61g5tbHUMhitO3UAAABAlqIblRor3asDAAAAAKAzjOQEANjAeRAAAABbIBgNAAAA6Bl5wWhDQxF7dyWZbYMQjLbYKhitRTsAAAB0UtH97ncf6V4dAAAAAAAAAAAAAED9CUYDAAAAekbeQOqhJOLiXdltk/Odq6cuWgajLXenDgAAAKjq4JGIsQm/FA4AAAAAUH/6cgGAbnDOAQAAgGA0AAAAoIc0c77nTiJiz87stumF/v9yfLFF8JlgNAAAALZTqyvz936x/6/dAQAAAIB+po8TAGAj50gAAGxNs5nGTfen8abPNOOO0TTS1DkmDJKR7S4AAAAAoKy8rsuhoYiLcoPROlZObSytFLcLRgMAAGA7tboX6QXvSuMXn9GdWgAAAAAAustgTQAAAAB6S/rRt0X6sb+JmJuO5F/8SMSzfzWS4eGu1rDSTONn3pzG1Z9f619L41d+MIlX/XhEkiRdrQXYHoLRAAAAgJ7RbGZPTyJiT04w2tQABKPlLZc1gtEAAADYTob9AQAAAAAAAFBKmq7eHA4AwLZIP/CGSP/w+Wf+feCLEUcfiuRFr+tqHVffuD4UbdVrrk3jh56axPc8saulANtkaLsLAAAAACirmTOSeijJD0abHoBgtJUWI8znBaMBAACwjVLJaAAAAAAAPUKHLgAAAMAgS9/75xsn/v1bI52b7modr/hodj/V//6HZlfrALaPYDQAAACgZ+Tddjc0FHHRAAejNVv05y4IRgMAAGAbCUYDAAAAAPpaYSeoDlIAYED5ohgAoOekczMRDxzY2LDSiPjke9v3OiXaDhzObv/Ql9pWBlBzI9tdAAAAAEBZeQFgSUTs2ZlEVrfo1AAEo620uG+g14PRvvRwGq/4+zS++GAaw0nEtzwuiZf/uyQed2my3aUBAABQgtvdAQAAAAAAAABggKTNiEgiEuM+oKc0V/LbZqe6VwdACEYDAAAAekjeQOqhJGLPzuy2pUbEUiON80b698uUvMC4NY1mRGMljZHh3lsGd42n8Z2vasbM4plpB4+kcc2dadz1O0Nxye7ee08AAAAAAAAAANBzUj+DAQB0g3MOgJ7WmIu46XkRD38wYmRXxOOfE/GNL49Ihra7MgCgxzh7AAAAAHpGM+fmuiSJuCgnGC0iYnqhQwXVxEqJ7/8XG52voxP+/FPpWaFoa47PRPzJJ9z4AAAA0AuMlQMAAAAAAAAAgAHw2Z+MuPctEUsnI+Yejrjz9yO+9NLtrgoA6EGC0QAAAICe0WxmTx9KIvYUBKNN9XswWs5yWW9hufN1dML1h/JHz7/vZiPrAQAAeoGrNwAAAACgvxX0gvrlCABgYDkPAhg4iyciRj+0cfp9b3V9DABUJhgNAAAA6Bl5X4O0DEab70g5tdEs8QVRLwajNZtpHDyc3/7l8Yh7jvhyDAAAoO7c1wgAAAAAAAAAAH3ugXdF5sifuQcjlie6Xg7AwHCTJn1KMBoAAAClHJtO44/+oRkvfn8zPnq7jhK2RzNn00uSiL0X5D/uyFRn6qmLlWbreXoxGO2hUxHzLer+u9scjwAAAOrOPTcAAAAAAL1Chy4AsN2cjwD0rGbBABA3EAEAFY1sdwEAAADU3wMn0vjOVzVj9JEf50jjBd+fxB/9R3nbdFfe9yBDScSOkSQu3xNxdHpj+9hkGhFJR2vbTnmBceu1Chiro3uPtZ7nurvT+JUf7HwtAAAAbF6Z2xqXG2nsGOnfa3cAAAAAoJ8Z3A0AsJFzJAAAADbPCHYAAABa+t2PpOtC0Vb9ySfSuO0hX1bSXXkBYMnpcdP792a3j57qTD11sdJsPc9So/N1tNvcUut5DhzufB0AAAB0Xi8GegMAAAAAtOYeOwAAAHhk4A9ARKQFXWZFbeSx0OhPgtEAAABo6bNf2dgxkqYRr/ioDhO6Ky8Ybej09yNX5QWjTWRP7xd5y2W9pZXO19FujRKBb/cej1hqOBYBAADUWZkblcqEYwMAAAAAAADQ5yRhAAAAEILRAAAAKOHA4ezp777Jl450V9733GvBaPv3Zv+CzNhEf2+rKyUCxJYana+j3ZZLhLmtNCMOHet8LQAAAGxemavy+eWOlwEAAAAAwJb09z1YAAAAAADUh2A0AAAAoGc0c+6tS07noe27OLv9+Exn6qmL/g1GK3cz5QMnOlwIAAAAW1LmB72nFzpfBwAAAABARxR1gpbpIAUA6EfOgwAAANgCwWgAAABsyfSCLyzpnrzvx4dOB6NdfEF2+8xiZ+qpi7zAuPWWVjpfR7stl6x5dMJxCAAAoM4EowEAAAAAAAAAAAB0gFBi+pRgNAAAAAqlLTpFxie7VAhEfgBYcjoYbffO7PZ+H1y90mw9z1Kj83W0W6NkMNrYRGfrAAAAYGvK3HIzNd/xMgAAAAAAaMUgSgBg2zkfAQAAQDAaAAAALSy2CFMaF0hEF+Xddzd0Ohhtz/nZ7f0ejJYXGLfeYqP3bhJYLhmMNuo4BAAAUGtlxtFNzvfedSsAAAAAwCr9mwAAAAD0AaH5QI0IRgMAAKDQ/FJx+/ikzi66Jy8A7JFgtJ1JZvvMYocKqomVZut5llqEHNZR2WC08QnHIQAAgF431eeh5gAAAADAoHJfCwAwqJwHAbCOsCVgnaIjgqPFZlhq9CfBaAAAABSaXy5uPzLdnTogIj8YLTmdh7b7/Oz2heWIxkr/dvCVCkYrGTJWJ2WD0UYnOlsHAAAAW1PmilwwGgAAAAAAAABCHQAAtpNzMaA+BKMBAABQaH6puH1qvjt1QET+D8QMnQ5G27Mz/7HTfTzAOi8wbr2lRufraLdGicC3iIgxwWgAAAC1VuYHX/UxAQAAAADUnYGxAAAAAAB0h2A0AAAACi20CFOa6uOwKeonLwDsdC5aYTDazGLby6mNlRIBYksrna+j3ZZL1nxkOmK54cZLAACAuioVjKaPCQAAAADoWUWdoO5pAQAGlfMgAICeU+ZmP4AuEYwGAABAofml4vap+e7UARH5X48Pne7h2H1+/mNPzbW9nNrIC4xbb6lFyGEdlQ1GS9PVcL8/ECEAACAASURBVDQAAADqqcytUvqYAAAAAAAAAAAAAKoSaEd/EowGAABAofnl4vbphe7UARERzWb29KFk9f97duY/9g+u6d8OvpWc5bJeLwajNUq8rzWjpzpXBwAAAFtT5kckp+b797odAAAAAKB36KsFALZZmS+YAQDoDOdiQI0IRgMAAKDQ/FJxu0GrdFMzZ3M7nYsWF54fkSTZ83zuUP9uq3nLZb3FHgxGW14pP+/YZOfqAAAAYGvKXJFPCd8HAAAAAAAAAACA7SMYDagRwWgAAAAUml8ubjdolW7K61odOt3DkSRJbv/rjuGOlFQLK83W8yxVCBmriyrBaMdndLwDAAD0sqn57a4AAAAAAGCTigaMGkwKAAwq50EAAABsgWA0AAAACs0vFX8hKRiNbmrmBIAl6/5+xpOy55no4wHWpYLRGp2vo92qBaN1rg4AAAC2psz97vqYAAAAAAAAAACgXwnMhJ7QpXBbvzPQZhYafUowGgAAAIUWWoQpTfVx2BT1k9dFN7QuGe0F35/d3TEx1/566qJZou+yF4PRGoLRAAAA+kKZe24m9TEBAAAAANSbAZYAQFc45wDoWUmS3+aaEgCoSDAaAAAAhRaXi9unFrpTB0TkB4ANrevh2Lsre57FRsTCcn9+kbLSbD3PUoWQsbpYrlDzCcFoAAAAtVXmalwfEwAAAADQu/rzniQAAAAABo1+LqA+BKMBAABQKC+Ias3UfETqVzvokmZOANj635TJC0aLiDg129ZyaqPVfhoRsdzofB3t1qgUjOY4BAAAUFdluo5mFyNWylzgAgAAAAD0FP2eAMCgch4EwHo+FwA6xzGW/iQYDQAAgEKtxqM2mhELy92pBfI2x6F1yWh7L8h//MR8W8upjZWcwLj1FnswGG25QjDa8ZnO1QEAAMDWlL3lZnqho2UAAAAAAAAAUHtCHQAAtk2ZX0EF6BLBaAAAABRqFYwWETHZp2FT1E/e9pisD0bblf/4ibn21lMXZfbTpUbvdUw3SgS+rRGMBgAA0Pum9DEBAAAAAGyz3rvHCAAAgF7gehMAqGZkuwsAAACg3lZKBBNNLURceXHna+l3b7+xGe/+QhpDScR/+rYkfuJb5ZmfK+9HJ4bWBaPtOi9iZCg7VKtfg9HK7KdLK52vo92WV8p/8SUYDQAAoL7K/oik8H0AAAAAoDcVdYIa+A0ADCrnQQAAPafszX4AXSAYDQAAgELNEn1ZUwatbtmrPtaMX3/fmYX9d7elMTbRjBf+gHC09fK2x/XBaEmSxN5d2UFZh6fSiEg2NvS4MvlhC8udr6PdliuEuU3ORyw30tgx0n/rFwAAoNeVvVdqaqGzdQAAAAAAAAAAANtA2BJABznG0p+MrgYAAKBQqWA0g1a3ZGE5jVd/bOOCfsVH01hq6JRaL297TM7JwnrcJdnzHTzS3nrqotlsPc9kDwYYVglGi4g4OdeZOgAAANiasr0bwvcBAAAAAOrMvWwAQBcIzgEA2D5dOhcrehmng8AawWgAAAAUKhO4ZNDq1tzyYMSpjECn4zMRd4x2v546y+vYHDonGO1JVyaZ8x0c78+e0ZUSb2uiB0PDGhWD0Y7PdKYO6u3+42nc9lAaE3P9uX8DAEA/KHuj0tSC83oAAAAAoAcZrQkAAAAtuHaG3mBfBepjZLsLAAAAoN6aJfqyVgetZgdR0drBI/kL+e4jaTz9qy3bNXnbY3LOInrCldnzHTjc3nrqokyA4UQPBhguVw1Gm+5MHdRTs5nGz1+dxl9dl0Yzjdi7K+KNzx6KH/9mx0wAAKibsrdKTS10tAwAAAAAgO4TmgYADCrnQQCcxecCQMc496ZPDW13AQAAANRbqWC0HgxcqpOvHM1vu7ugbRDl9dENnRuMdkX2fA+dikj7sKOvzH46Mdd7771yMNpMZ+qgnv76+jTe8H/TR7b/ibmIZ/1lM45P99Z2DgAAg6Ds5eikPiYAAAAAAAAAAADYHj029gzob4LRAAAAKFQmcMmg1a05VBB+dvBw9+roBXnb47nBaF/1qCRzvrml/txem83W8yyvRMwvdb6WdqoejKbzfZD88cez1/flv9zsuRBAAABglfB9AAAAAIBt5p4LAGDbOR8B6EuuNwGAigSjAQAAUKhMMNpsj4Ut1c3sUv5CPjCu43+9vO0xOScHbf/e/OcYnWhfPXWxUnIzmeixAeaNEoFv652a60wd1M8DJ9K4cyy//fP3da8WAACgtbL3NU4tdLYOAAAAAIDOcI8XAAAAAH1AiCFQI4LRAAAAKNQsEUw0s9j5OvpZYyW/7eCRiGaZdLoBkde3OnROMNq+i/OfY/RU++qpi5WSAWITPRYctlywb2QRjDY47hgtbn//rY6bAABQJ2XP0Kd6LNAbAAAAAKA19zAAAIPKeRAA6/lcAOgcx1j6k2A0AAAACq2U6BOZFYy2JUXhT3NLEQ/1YZDXZuVlxCXnBKOdN5LE5Xuy5x2d6L+OvrLheZM9NsBcMBp55paK2z/+5f7bzwEAoJeV/RHJ6QXn8gAAAAAAAACDzffGAADbpuzNflt9mU22AYNFMBoAAACFms3W8whG25pGi2V8//Hu1NEL8vpWh5KN067amz3voWPtq6cuygQYRkRMLXS2jnbLC0YbzunRmpjV9T0ollps9PPLXSoEAAAopezVWq8FegMAAAAADBb35gAAALBZrikBgGoEowEAAFCoWaLfeXZR5/RWNHLCn9aMTli+a/K2x6xgtK+7ImNiRBwY77/lWSbAMCJiscfCovL2jct2Z0+fMIB+YCw1ittbHVcBAIDuKvsjkoLRAAAAAICeVNgJ2n/3KgEAlOM8CACg9ziHA+pjZLsLAAAAoN7KBaN1vo5+ttwyGK07dfSCvO0xychAe9KV2fMeONy+eupipWSf80IjjYjswLg6yts3Lr8o4vDUxumn5jpbD/Wx2CIYbXQiIk3TSLIODgAAm/CVo2lcc2ca541E/PBTk9i/13kGdMKx6e2uAAAAAAAAAAAAaLuyv6wIbC/7ao+y3uhPgtEAAAAoVCYYbUYw2pY0msXtY4LRHpHXtzqUkUnw5H3Z895zNKKxksbIcP8EGTRbbENrFpc7W0e75Qaj7cmefmq2c7VQL0stgtHmllaD8h59YXfqAQD624duS+Mn3tCMhdPn04/alcY1LxiKb3lc/1xTQKeVvVdqfFLIMQAAAADA9jKIEgDYZsI4APqU4zsAUM3QdhcAAABAvZUJRptd6nwd/UwwWnl522PWcOkn78seRL28EnHoWPtqqoOVkt8PLbYIk6qbvH3jsj3Z6/bUXAeLoVaWckLz1rv7SOfroHNuvDeNn/6rZvzUXzXjbZ9rRupGJwC2SbOZxvOuPhOKFrF63vltv18ynRiIiPK3NS42XNsBAAAAAL3Id9oAAAAA9AFjN4AaEYwGAABAoWaJsd4zC52vo58ttwj4GZvQobgmb0kMDW0MynrCFREZkyMi4q7x9tVUByslMxnWhzn0grx949Ld2dMn5leDK+h/iyW25YOHbQu96po70/iOVzbj6s+n8Y7Pp/Ezf53Gr73P+gRge9xwX8TDp7LbXvFR4WhQVpV7pQTEAwAAAAB9xWBSAGBQOQ8C4Cw+FwA6xrk3fUowGgAAAIXKZAzNLnW+jn7WaBGMdmK2O3X0grygvqwAtJ07knj8pdnz39VngUlls8AWG52to93ygtEu35M9PU0jpgQ1DoSlFsfNiIgDhztfB+2Xpmk8/x0bD/Z/+sk0jk/317EbgN5w4735nz8vfn8aK4J5oZQqe4pgNAAAAAAAAIBB5l4MAIBtI2ALqBHBaAAAABRayQmiWm9msfN19LNGi2V8fKY7dfSCvMyBJCMYLSLiyfuypz94sj311EWZ/TQiYmG5s3W0U5qm+cFoF+U/7tRcZ+qhXpZKhPyNnup8HbTfzQ9GfOXoxukLyxGfPdT9egBgrkUQ+O2j3akDel2Ve6XGJt1YtebeY2kcPCyEEQAAAACoCQNjAQAA2CzXlMA6RYcEhwtgjWA0AAAACpUZd7nUiGis6HHarLzwpzUnZ8MA2NPylsJQTjDaFRdlN5zss7C5spvHYokwqbooek+X7c5Z4RExIRhtICy1OG5GREwvOG72or+7NX+93T5qnQLQfa2CwI9Pd6cO6HWVgtEmOldHr5heSOP7/2glvvbFzXjyS5rxlJc048tjzocBAAAAoL703wEAbOQcCQCg9ziHA+pDMBoAAACFygYuzbYYLE6+RouAn2YacWr8ZKTXXB3pe/8s0ofu6U5hNdRsZk/Pi8m6ZHf29BOz/dVJu5KzXM7VS8FoRYGBees1IuKUYLSBsLjcep5pn0s96YO35R+f7z3WxUIA4LRjLUKVe+kcG3rF+OR2V7D9fuHqND554My/7zka8Z/e0IzUT2ECAAAAQA/SrwcAAACujwE6yTGW/jSy3QUAAABQb2WD0WYWIy7e1dla+lWjRKjV8Rf8RDz68HWr/xh+UcRv/Z9InvGszhbWQ4Zyot8vuTB7+okW4Qa9pux+ulAiTKouioLRLtgRsWdnxPTCxrZTs52rifpYahEoGRExNd/5Omivqfk0vvRwfvsX7vdFDQDdd3ii+PNnNXQ5L6oZWFPlTG68xX7X79I0jY/cvnEZ3DEWccO9Ed/xNdtQFAAAAAAwQAa7jxYAqAPnIwAA28aPdwI1kjNsGAAAAFaVDVyaXepsHf2sKABqzfHJdQt4ZSXSP/j5SJcWO1dUTeVtj3kxBHnBaAePtKWc2lgpEa4XEbHY6Gwd7VS0X+wYjnhUThDjqTkd8INgucS2nBWcR709dKq4/c6xiIOH67GPf+H+NH7+7c141utX4o3XNSP15R9A35prca3bb6HL0ClVTpfGJjtXRy9YXok4mRP6/dYbnHcCAAAAQC35zhgAAABacO0MPUE/F1AjgtEAAAAo1CwZuDQjgGbTGiWW8bHhy8+eMDsVceeNnSmoxvK2xyQnGe2S3dkNC8sRk30UoFU2wHCph4LRGgXBaCOFwWidqYd6WSoRKDk9eNmRPW+0RTBaRMSTX1LyxKSD/vFgGt/9B814/T+m8bc3Rzz3bWn8/NX985kCwNlanXecyAkvAs5W5WzpgRMdK6MnFN1Xduio804AAAAA6D369QCAQeU8CGDw5AzuiRC2BNBRjrH0J8FoAAAAFCrb7zy71Nk6+llRANSasR37Nk68/XPtL6bm8jbHoZwejkdfmP9cr/xY/3T4lQ0wXFjubB3ttFywX+wYzl+3gikGw+Jy6/13WmBnzxmbLHdcvvmB7T1+v/qa5obj6Rv+bxrjE/3zuQLAGa3ChZ1/QjlV7mscn4yYmh/cc6ui8PN7jnavDgAAAAAAAAAAAAaMEEOgRgSjAQAAUKhoMOZ6s4udraOfFQVArRkd2b9x4s4L2l9MzeVtj0M5Pyqz7+L85/q7W/uno3al5FtZbPTOe24VjHZJXjDaTGfqGQRpmsaB8TQOT6aR1vyLjKUSx83phYhm2Q8xamH0VLn5Pn339q7Xj96xcVqaRrzhOtsbQD9qdd4xIRgNSql6iXHwSGfq6AVFlzGHJ7tXBwAAAADARr4XBwC6oOb3sAKwWY7vwBl1H7cE1INgNAAAAAqVzZSZEYy2Kc1mWmoZj43s2zhxdqr9BdXcSjN7el4w2tdclv9cBw5HjJ7qj07UZs5yOdficmfraKdWwWiP3p290k/N9sc67ba7j6Txz1/ZjKe8tBn7/1czfvTPmrVelkuNcvPNLnW2DtprdKLcfAcOd7aOzfry2HZXAEAntDrvmF6o7zkT1EnVPeXg4cHdt4ru91oseS0EAAAAAHTb4PZpAgAAANBHahBYtv0VAHUhGA0AAIBCeUFU55pdrN7lNLOQxgduSeNPP9mM2x8ezC6rsst3dGT/hmnpxLE2V1N/zZwUubxgtCRJ4ur/mtMYEQ+cbEdV269sgOFCDw2gbhTsGyNDEZdcmN12YrYz9fSzZjONn31LM26878y0j9we8cvvqe9xuWww2vRCZ+ugvQ4dLbfN3V3TkIylRj3rAmBrigJ7IyKmhYRDRxyb3u4Ktk/Za3wAAAAAoEfUYDApAMC2cB4EwHo+FwA6xzGWPiUYDQAAgEJlB2POVBwMfmQqjX/56mY883XN+J/vTONpv9OMP/lEyZSwPtJqkP2a8R37Nk6cONHeYnpA3vaYF4wWEfET35rfeLxPBlqX3U8XlztbRzsV7Rs7hiMu2Z3ddmKmM/X0s8/dG/HZQxunv/eLaW2DnhZLBqNNzXe2Dtrr4JFy891dcr5OyAvojCi/XQLQW1oFss4IYoVSqt5zM7vUmTp6gfuTAAAAAIBtpZMSANh2zkcAALaPczGgPgSjAQAAUKgoAGS92YrBaK/6WBq3PXz2tF9+dxqHJwer86xRMgtuYmjvxomTx9tbTA/I2xyHC3o4kiSJxzwqu+34TH9sb6WD0XootKdlMNqF2W0nZjtTTz977SeyN6CZxYjjNQ2aWyoZKnl4qrN10D6zi2k8eLLcvEemI5a3KbSv6NhUdrsEoLe0Or5PV7wWhkFV9eytaj9TPyl7jQ8AAAAAAAAAAL3DTTEAQDWC0QAAAChUdjDmTMUBq3/5jxufuJlGfODWweroLgpYWW96aPfGiaeOtbeYHpC3PQ4lxY+7NGPxRdQ39KmqsvvpwnJn62inlsFou7NX+vGZiNQv11Zy7/H85XWipvvIUsmQv7EJ20KvuOdo+XnTdPtC74rCcRZ76BgLQHmtzjumF7pTB/S6vMu0kZw7Fqr2M/UTwWgAAAAA0It07AEAbOQcCWDwOPZDzzMmC6gRwWgAAAAUKjsYc3ap2vPO54SHvOWzg9V51miWm296+KJoxjlBUCfG219QzeUGo7Xo4bgsJxjt7gpBPHXWLLkd5e13ddQoCB8aGYq4fE922/JKxMnZztTUr3YM57fVNTxwsWQw2uhEZ+ugfQ6MV/v83651WxSOUxSaBkDvanV8F4wG5eTdK7V7Z/b02QEORmt1X1ljZbD6zgAAAACg9+nTAwAAANfHAJ3kGEt/EowGAABAobLBaJPz5Z9zdjH/SVsFXPWbovCnc80OXXj2hMkTkS4N1kjhvACwoSR7+ppL92TP8ObPpJH2wS9ZlN1P5yoGGG6n5aJgtOGIfRfnt49Ptr+efrZSEKx3oqYhc0XhVOuNCUbrGQePVJt/u9Zt0bGp7HYJQG8pOvZHrJ5jr5Q9IYcBlreX7D4/e3ovXb+2W6tDyiCHxgEAAAAA2813IgBAF/TBvd0Ag6tgcI/jO/QG+ypQIwM23BwAAICqyo7vPjlTvtPryFR+23CLgKt+02qQ/XpTQxdtnHh8rH3F9IC87bFVMNolu/Pbrrtn8/XURdn9tJcGT+ftGyNDEUmSxBUZu8MawWjVzBcEDhyvcGzvpqWSx07BaL3j7orBaKMT27NtFoWfLQpGA+g7aZqWCr7spfNsqJs9O7OnzyzU81qkG1q980EOjQMAAACA2jJgFAAAAIB+0KVurqKX0dUGrBGMBgAAQKFms9x8x6bLP2dhMNqAXak2Si7fiIjpoYx0r+Pj7SumB2w2GO3xl+S3veyDFVZCTZUNRuulwdN5+8bI8Or/zxtJ4tKcwLvxST3gVSwUhH0cn+leHVWUCSiJiDg2bVvoFScqhvCdnO1QIS0UhfIJRgPoP42SYazTC52tA/pB3o1Ku8/Pnj7bQ9ev7daqL26Qlw0AAAAA9Cb3LgAAA0qiBQBn8bkA0DmOsfSnARtuDgAAQFVlA5eqhOccLQhRG7RQkbID7SMipof2bJx49OH2FdMDNhuM9mP/NH+GT98d8dIeD0cru582mhHLjd7o6FzO2Td2DJ/5e9/F2fOMT7a/nn42XzCo/kRNg9HKflac2KbwLKqr+vm/XQE0ecemiPKBfQD0jqJAzPUEo0FreVeiucFoix0rpfZaXeMP8rIBAAAAALqhN+4tAgAAAKAT9A0B9SEYDQAAgEIrJfOijlUIzzkyld9BNmghNkUBK+eaygpGGz3UvmJ6QG4wWosejsddmsSPPi2//eUfTuOWB3u347ZZIddtriAEq07yjj0j69b1lRdlz1MlqJGIheX8troGo5UNoBq0z5ReVrQdZtmuAJqibW90ImJxuXc/SwDYqOw5R6+cY8N2yvsh8LxgtJkBDv9qdUY565gDAAAAAAAA9DX34QH0J8d3AKAawWgAAAAUyguiOtepuYjGSrmZj0zlt91/PGJibnA6uxsVAq1mMoLR0ofuaWM19ZcXADaUtH7sy360uBvk/3yud7e7svtpRO+ENuS9p2Tdur50T/aKr2uYV10tFAR+nJit336RpmkslQyVPDGzOj/1t1gyeGbNtgWjtdj2nvm6pm0OoI+UDbKerxjwCYMoNxhtZ/Z13ewAB6O1Cj8f5GUDAAAAAPXle2IAAAAA+oDxEECNCEYDAACgUNnApTRdDUcr4+h0flujGfHRO3q/A+3mB9L4vtesxEXPX4nH/upKvOBdzZhf2vi+qgSjTQ1vDEaLQQtGy9k0ygSjPeHy4vbXfbp3t7uVCttR7wSjZa+P9ev6kt3Zjz0+07vrstvSNI35gm3ieA1D5laa5b9nWWz0zjY/6PKC0XYMZ0+fXtie/bxVQM5H74j4wK3dqQWAzisbxup8A1rLO3u78Pzs6bMDvF+1OtMtuoYDAAAAAGrIYFIAYGA5DwJgHdfHAJ3jGEufEowGAABAobLBaBERJ2fLzXd0qrj9jz+eRtrDnTEHD6fxLb/XjE/fHTGzGPHwqYjXfiKN//62je+pVcDKeieGH71x4vj9m66zF20lGG3X+Ul89SX57csrEbOLvbndVdlPeyW0Ie8QsH5dX5oTjHaihmFeddVYKd5+6hiMlheglcf20BsWl7OnX5aRCRoRMb3QuVqKLJXY/l72wQpplQDUWpnjfoSQIigj7xpvz87s6ZPzEStVLnb7SKu3PZcRvA8AAAAAAADQP3wnCgCwbXp4TCfQfwSjAQAAUKjKGNTZxXLzveeLxU/6hfsjvuFlzbjnSG91pDWbabzovc148kuyA1HefmMah46e/Z4aFYLRxkeu3Dhx4likjYopQT1sK8FoERH/7puKZ/ziAxULqol+DEYrs67zgtHqGOZVV/M5YVRr6hgqVjagZM3hFmGc1ENe4F3efl7nYLTbR6OnA14BOKPseYeQIti8fRdnT19pRhyb7m4tddFskbPbK9f1AAAAADBYBuS7At+FAwAAsGmuKQGAagSjAQAAUKjVYMz1ZlsMzEzTNK6+sdwT3jUe8cTfasZd473T8f3mz6bxmmuL6/3ArecEo1VYvuMj+zZOTNOIU0fKP0mPW8lZXkMlezhe9K+SeHLGYlzzI39aYYXUyEAFo61b15dcmD2PYLTyFloEo00tRCw16nUcXqoQKBkR8amD9aqfs93+cBpv+kwzRiey23OD0UqGsbbbcsntr46hggBUV/a8o1XYLJB/W+Nj9uY/ZiznHLHftbqC6ZXregAAAAAAAGDQuX8TgPV8LkBP6FIwftHLyObfDAuN/iQYDQAAgEJVApdmC0JK5pfS+I9/2YyfflO1Tpavf2kz/uLTvRFW9dbPtX5vnzpw9jxlA1YiIsaygtEiIo6Pl3+SHpcblpWUe/z+vUnc8Ov53SEzixGLy73XEdiXwWh5IXjr1vWlu7NX/Km5+oV51VWrYLSIiJOzna+jiqVGtfk/c49toa5e/uFmPO13mvHf3pq/ji7L2c+n5jtVVbGyATljk52tA4DuKHu91ivn2LCd8m5UumxPEiM5l+l54bn9rtU1vmMOAAAAAPSaXrtvodfqBQAAAKB99A0B9SEYDQAAgEJVApee8+ZmfOKu7Ae8+6Y0/vbmzdXwC1enGwLF6iZN07h9tPV8dx0++9+NSsFo+7MbTghGKxuMFhGxZ2cSP/zU/PavHKtWU6ekaRp/c0Mznv2mZvyv9zbjy2P5+0BeiFiWXhlAXWZd77s4//GHarIe626+RDDa8ZnO11HFYsVgtGPTnamDrbnlwTR++0OtP9sv2Z09fXqhzQWVVDZ0cfRUhwsBoCvKBrKWOacCsg0P5V/bjU3Uuy+oU1r92qVjDgAAAAAAANDXWn1pCkBvcnwHACoSjAYAAEChlQqBS8dnIn7wj5vx5s9sfNB7v7i1Duxn/FEzvnB/fTvBj0xFTM63nu/+ExELy2feR6PC8h0b2ZfdcOJw9vQ+lBcAViUYLSLil34gv0vkrprkzD3/HWk8581pvP3GNP7w2jS+/RXNuOHe7H2gSoDh7FJ996P1ygSjfc1l+ev+wODsFluy0IPBaGUDStZML3amDrbmr69PSx27LtuTPX1+OWJqvvvHs+WSgaajAxriAdBvyp539Er4MGyXtMVNjVc9Knv6+GQHiukBrc6THXMAAAAAoIYM7gYAAACgH+jnAmpEMBoAAACFqgQuRaz2fb3kg2k0Vs5+4Edu33otL3xXhRSxNpiaT+M3P9CMr/mNlfi231vJDHxbUzaEKU0j7j5y5t9lA1YiImaG98T00O6Nz3m8JkleXVAmLKuM731S/gPeVLCeu+Whk2n8xafPfrMzixH//JXNzAHlVfbT6YWtVtcdee8pWbfqzt+RxD+5LHu+A4d1xJcxXyIY7UTdgtEqHDcjemebHzR/dV25ffQJV+S33fZwm4qpoGxAztiAhngA9Juy59nzQoqgUNF9UklEXLaxqyMiIiZKBND3I8FoAAAAANBnDCYFAAaV8yAAzuJzAaBjnHvTpwSjAQAAUKhqMFpExNhExF0Vs7re+d9bJ1tdf2g1MKpbnv+ONH7/79O473jETQ9E/Ne3pvHnn8oOzbrvePm6Hjp55u9zA+RaGRvZt3HiCcFow5vo4fj335Q9/Zo7I+45sr2dgdd+Of/1//AfBjsY7dwQvCfmhCbde6y99fSrxRLBlfGueQAAIABJREFUaMdn6tU5Xqbm9aYGNEyhzmYX01gouR6fcEUSe3dlt938YPe3zbLBfPc5BgH0hbLn2UKKoFjRrpQkEXt3ZfcJTc51pp66a3V/kmMOAAAAAAAA0N/qdd8qAMBAEbAF1IhgNAAAAAptJhgtIuKuw2ceOL9U/CRXXhTxY9+UxA8+pfXzfvWvNePoVOc72G57KI233bDxdf7i09mvPTpR/rkn5888RyM7Zy3X6Mj+jROPC0Y7NyyrjCfty3/QE3+rGc3Nbvxt8PEv57f9xvvSSM/pZK5S6lSvBKPl7BvnruvHXpK9HscndMSXUWbbOTHb+TqqKBtMtWZmMTbsM2yvsQqfmRfsiHj6Y7PbbnmwPfVUsVxy+zu4zQGbALRH2VOI+YrBrcAZSRJx0QXZbRNzg3lO1eo6bV4wGgAAAACwbQaz3xYAAIB2cE0JAFQjGA0AAIBCeeFErdy1Lqvr5R8p7rz+058cih0jSfzJfxqKy/e0fu6vf+mZ0Kob703j6hub8fn72ttB/r8/nv18d41HzC1ubKsS8jI5f+bvsgEra8ZH9m2ceOJwtSfpYbnBaJvo4XjylcXtb7hu+7502b0zv63RjJheF26WpmmlH+OY7pFgtLy3dG4w2lV7s+erElY4yMoEox2f6XwdVSw1qs3fTCPmBAfUSpXPzPNHIv7pY7MDEG9+oPvH6bLb38HDAvmA7piYW70e+sAtaZyYcdxpt7JLVEgRFCs6LUoiYu+u7LaJ+ezp/a7VaWSrHyAAAAAAALaDfjsAAAAA+kCXxkEUvYqeNmDNyHYXAAAAQL2VCc3JcveRM39/+Lb8J7npxUPx9K9eDTx54pVJ3PN7Q/Etv9uMe47mP/eJ2Yin/24zvn5/Eu/4/Npzp/Gz35nEG56dRJJkB6hUce2d+TWfmI3Ydf7Z08Ymyi+o9QN7GxWD58aygtHG7o200YhkpP8v8/OC+s4NyyrjyfuSKOoqffsNafzcd1d/3naYaRFednI24qILVv+u2t883SMDy8uG4OUFo41NtreeflVm+znR48FoEauBgBee33o+umNssvyB6/wdEU9/bHbbXYcjlhppnDey9c/9spZKBpqemos4Nh1x+UWdrQcYbDfdn8Yz/qh5Ovg2jf17Iz74vDPXV2xd2evhOSFFUKgwGC2J2HtBdtvEXGfqqbtWxx7BzwAAAADQa3yPAAAMKudBAKzjR6cBOsgxlv401HoWAAAABtlmg9EeOnnmgQsFITbnDtrfszOJO142FM/65uLB/F96ONaFoq1602fSGH5uM37qr5rxl//YjJXNFh8RiwU1H88ICRqbKP/ck+uCqZZLBqysGd+REYw2Mxlx+/XVnmgL0mYz0k/9bTRf+dxovv43Iz1xuGuvnRuWtYnsh6fsizivIEvus4ci0m364qVVaNCpdYPDq27m0wu90dFZNgRv/97slX9sOmJxuTfe63Yqs/1MztdrORYdn/NMtQgbpLtGK3xmnj8S8dSrsvfzlWbE4S6HIK5UCDQ9eKT1PABb8ew3rYWirRqbiPif76yYvEyhspcD0841oFCrXWnvruzpEz0S7N1ugtEAAAAAgG1loDoAsO2cjwD0rqLBPY7v0Bvsq0B9CEYDAACg0GazxdaHnkzmDGT9hv3Z03eMJPGu5w7FXz57E2lXsRqY9j/ensazXt/cdLBVUfBJVjDagyfLP/f65dGoGIw2dt5jMqen13+k2hNtQfrq/xHpS/6/iI+8JeLtfxDpzzw90gcOdOW12xmMtuv8JH7+e4of+MHbqj9vO7TanrYUjLZYvZ7tUHZdX7U3/zkOT7Wvnn5VZvuZqlkYwdJKdtEjBT2dwkrqpUqY6Pkjxfv5eJeD0aoccw8c9oUg0DljE2lmAONnD0UcOur40y5lj/sTc63ngUFW1DWTJBF7L8i+Nh/UfatVV5ZgNAAAAACoI9/PAAAAANAHhOYDNSIYDQAAgEJ5A8Ff8cwk/sPT8x83NhGPhJLlBaP9/jOLL0v/278cim99XIkic3zg1ojh5zbj6168Ei96bzMWlst1zDVW0pgqCNE5MXP285yaTePodPm61ocMNQoC2LJ8cs8zshs+86FNh8BVkX78XauBaOtNnoj0Hf+7468d0d5gtIiIVz4ziZ/9zvwH/9hfNOM11zajudmEwE2YW0xbB6PNnvm7KMQvS91CrvKUXdf7CwKTRiuELw2qUsFoNQsVy9vm9+7Kf0yvbPeDYrzCvrlzx+q63bkju32s28FoFY65Bw93rg6AovOcG+5zQ0K7lL3EmnCuAYWKdqUk8s/lpxaiq9fjddHqLQtGAwAAAAAAAHrD4H3fC0ARnwsAneMYS38SjAYAAEChvACaS3dHvPvnhuOzv5p9abnYiDgxE7GwnMZSI/s59l7Q+vWvfcHWL10PHYt4zbVp/ItXNuPOsTS+9HAaXx5Lo7GS3eFzcjZz8iOOz5z974NHqtUzOXfmdZdXqj32ZLonjg1furHh4UMRDx6s9mQlpdOnIr371khv+0ykv/2c7Jk+97GOvPa5csOyNrmZnDeSxBufMxSX7cmf50XvTePlH+le5+A9R1sHMJxatw1VHSM+XbOQqzxlg9EuviBi13nZ844JRmupF4PR8mo+byRi9/nZbZ+/Xwd/nYxOlF8fO4YjkiSJ/Rdnt49VeK52qPJqD7UIuQTYigtyAiMjIu6peH1CvrLn2hNzna0D+lmS5AejpWnrPpp+1KpPYH65O3UAAAAAAO3ingUAAAAAekTZXxUG6ALBaAAAABRqFU702EfnP3Z0ImJyPr/94hLBaBfvSmL8Ne25fL3loYinvqwZ3/Q7zfiGlzXj0hc2422f25j8dnS6+HmOnROM9qWHq3X4TaxbJo2KwWgREa999POyG268tvqTFUhnp6L50p+O9IeujPRn/1mkv/CM/JlPHo50uvMpVM2coL5zw7Kq+p4nFD/Bb38oja8c7U7H7oHDrV/n1LrgharBaHULucqT976S5Nx/J7F/b/a8VcKXBlXePrXeVMFxfDvk1TycRDztMdltH73dtlAnZUMLLzx/dR+PiNiXE4w2PtmmokqqcsydXrDdAZ1TdDz6ytHu1dHvyt7bcWouInUjCOQq2j2SiLjyovz2sS6f79VBq3POuaXu1AEAAAAAsJHvQwCALnAPBkB/cnwHACoSjAYAAEChVkFUV1yUH0rVKhht765yNVxxURK3/Fb7L2GnFiJ+5q/T+C9vacavva8ZP/1XzXjFR5vxjb9dnBT0wImz//33FQN3jq0LXmvkvNSjVk7mPv59l/5k5vT03jsr1ZEnTdNIb70u0n99WcQn31P+gQ/e3ZbXL9IqqG+zXvnjrZ/gm3+3RIJUG5y7fWU5OXvm7zLBVuv1SmhDlRC8q3KC0cqGLw2yMiFPdQvTyz0ODEX826dl78u3j/bGdt8pU/NpvOemND54axonZ7d3OaRpWjrc4sLzzvy9f2/2uu32fl7lmDtds30H6C9Fn+GHpwb3M6/dygZirjQjZhc7Wwv0ssJgtKS4b2kQr+sEowEAAABADxrgexIAAADgDNfH0PP0cwE1IhgNAACAQnmDMYdPX1GODCdx5cXZ8zx8Ki0Mebr4gvJ1PO2rkrjrdzpzGfuW69N49cfSuPrzabz4/a077w4ePjNPmqbx6YPZ8331JdnTRyfOBPQsr2TP800Lt+W/fjw2Dg9fsbHhgZxCKkiXlyL9tWdG+vzvr/7gBw5s+fVb6VQw2uMvTeI3fqj4SaYXIg6Md75zd7TEoO9Tc2f+LhvWsGZhuTdCG6qs67oEJvWiMpvPwnLEUqM+X2ysFITmffs/yd4WTs1FHJ/pYFE1dsuDaTz+15vxE29oxr//i9Xwz5sf2L71eXJ2dZsqY/f5Z/7elxOAOD7Z3fdS5Zhbt1BBoL/kfR5GnB2iy9ZU+ZSZKAgFh0HXal8aGU7iiouy20Yn6nMt0i2t7iubWxrs4GcAAAAA6Dn68+gE2xUAvcDnFQBn8bkAnFF0qug0chMsNPqUYDQAAAAKlQknekxOWMnoRMSL3589Yj9Jzg48KeOJVyZxzQuG4pILqz2u3Q4eOTMAdXYxP/jkZ78zO6Bnbili6vSg+UZOoMGOtBF//+C/za1hdMf+jRMfOFB5YOyN96bxvKub8aI3jMdtr35NpN+3J+L6v6/0HGvSB7cezNZKUSDSVv3WDyfxU/+s+Ime8tJmfOVotWX8mXvS+J/vbMYvvrMZ193T+rFjJQZ9T2whGC0i4lgPBETlva2hjN6s/TnHoLffmBos3kKzIFRlvakaBX0UfS496cr8xx043Jl66u5n3tw8K0xxbCLiF99ZcsV3wN1Hys974brzhP05Iazjk1urp6oqx9xpwWhABxUdj9Yf99masudKEWefowNnK7osS05fhudd1w1i4HWZc86yYcMAAAAAANW51wYA2G7ORwAAto1xWECNCEYDAACgUJlgtKselT3P6ETEoWPZbRftjBjaRJrVDzwliftfORSf/pWh+MDPD8UdLxuKpdcNxe0vW/33Hz6rDQlZLUzMRRybXv37eEHA1Lc/Pr+W0dMDexsr2e0jaSO+f/aTuY8/NnzpxonTpyLuvyu/oHO88bpmfMcrm/G6T6fxmpsuj2+/+3/Eh3f/m9KP3+CBA5t/bEm522MbejjO35HEW/9LEh95fvGTffPvNuOWB8t18r79xmZ8z2ua8aefTOPPPpnG976mGW/9XHG6wmiJQd+nZs+8/maC0Y5OVX9Mt+WFUGQdNq7KGUAfEfGiv9UhX6Ts9pMXALkd8moeHoq4bE/E3l3Z7YeODd62MD6Rxh1jG6dffyjivuPbszwOHin/uuv39305wWjdDsoQjAbURVFg16nZ7tXR76p8Wp603CFX0b60dsqXd1031uUg3Dooc1/ZvGA0AAAAAKiZwbsnAQAAACoRtgQAVCQYDQAAgEJlgqj2780OABs7lUaSkw02Ob/5mi48P4nvekISP/pNSTxlfxIjw0l8/f7Vf7/wB4big78wFE+8YvPPX8bBI6v/LwpGe+pj8tvWglyW84LRohFDkcbljSOZ7cd3XJb9wM98OP9F1xk9lcZz33b2yl0c2hkvveylm79Nr0Io22blB/W1JxAvSZL4N09N4geenD/P9MJqONqx6eIl1VhJ4zfel55VczONePH702isZD82TdO44d7WdZ6aO/s5qzpWsN3WRZlQxjX7C4LR/vDaNC594Uo86/UrcefY2U96dCqN513djK9/6Up856tW4mN3DN4Xbc2SXy72QjDaULK6D39VTljnIIbEPHgyv+2Ge7dnez9wuPy8jXWhP3nnGsdnIpYa3XsvlYLRFjtXB0DO6WRErH5up24gaosqi3F80jKHPEX70trl/L6CvqVBU+acc26p83UAAAAAAAAAAEA1RWN7Bu8+IOhN9tXeZL3RnwSjAQAAUKjZzJ6+PojqqpxQoodOnR3gtN6L/nV7gqyy/Mg3JnHXy4ej+YbhuOHXO3Ppe/DwamdRXjDa8FDEZbsjLtuT3X7fidXHN3KW7450OSIiLmscz2w/9phvzZyeHrw5p+KzfdWvZr/wbTu/McZH9mU/KEkiedutkfzaX8Z8sjPuPO/JMZ/sPNP+8KFIx+4r9fqbVSUsayv+/KdabzdX/HIzphfyOw3vGl/dB841OhFx51j2Y/7rW8t1Qp5cF/CUt48WaRXqVgdV1vVVOQPo15ycjfjbmyO+9zXNODGz+sTNZho/9hfNeN2n07hrPOL6QxE/9Npm/OPB+i+bdiob8jS1hTDLdmu1bTxqV3Z73udRPytavw8VhKZ10v3ZH2uZVs4KRsuf74ETm6+nqirH3KVGxOLyYB1TgO5pdTzaShA1Z5QNkY1YPc8Hqlu7msvrWxqb7FoptSEYDQAAAAD6je+N6QTbFQC9wOcVAAAAmycYDQAAgEJlwonyBq/eORaRN478J76lc8Fo633b45P44m8OxX94+tnT9+yMeNpjih/7A0/Obzt4ZPX/eQFTl+6OGBpK4msuy378Pacf31jJbh9JG6vPs5KdIHP8im/IfuCDB7Onr/PnnypOUTh43tdtnPjD/38k7zoQjcc8KX5u9JlxyRPG42lf88V41BOPxIsu/71oxPDqfJ/9cMvX34r8oL72vs7XXp7EcIlek4t/sRlvvC67qDvH8r/MvyOjrbGSxntuKncDwPqAp6IB0xeenz392HSpl9lWVYLRigKT1js+E/Hqa1af+IXvTuNz926c53v/sBkLAxRkVDoYbaGzdVSx0uI4sDcnGG1iAANiZhfz2+7vYpjYeuOT5fev9eGhj7skIsk51q99JndD1aPDdI32HaC/tPoM/+X3pJFWCPUiW5VFKBgN8hXtS2vnePsvzm4fzQgc73dljj2C0QAAAACAbeH7JwCgK5xzAPQnx3foCfp/gBoRjAYAAEChVgE0ERFXPap6KtWluzdZ0Cb808cm8e6fG47mG878N/na4bjlJcMx9dqh+Pr9Z8//378rieYbhuOaFw7Hs789+709fHL1/8dnsl9z7f193eXZj7/nyGon4XJeMFqsBaNlJ9ccP39/5vS478uRNhrZbRExvZDG899R3EF593lPOOvfyRuvj6Ffe30k+x4Xv/ORNN5404WxNLSauNVIdsQfXfLC2Pnk6fibi34yZq77h8Ln3qoqYVlbVfYpn/u2NF7+4WYsNc4u7tCx/Mfcm9F26FjETEGI0XoT8xHN0wujKBTjij3Z04/lbLd1kve+soKR8gbQZ/mDa9I4MpXGn34yf8G96G8HpxM/L2zwXFPz9VkmuceB0z2de3dl770Tsx0qqMaKwhLuPrI963R8svy868NDLzgvia9+dPZ8Bw53772UDRNcM13yuA5QVavj0V9/No3339KdWvpZleP+uGA0yFW0Kz0SjLY3+zz+yPRqkPggKXPs2UowWrOZxs0PpPH2G5tx77HBWrYAAAAA0Dn62gAAAADoA4LRgBoRjAYAAEChMkFUV+2t/ryXXLi5etpt984kbv7NoXjzf07iFc9M4toXDMXrf/rM5fL+nPc2Nrm6YI5OZ7c/Eox2RXb7PUdX/58XPLcjXQ03u2zleGb7fSuXZT8wIuJtr8xtesefXZv/uNMOnvd1Z/7xr34qkid98yP//Jsb8js3//NVb4qLF94fX7izQupNRXnb43AHeji++wmt51nz0g+m8V2vbsaJmTMFrq3jLDfdv/GN3DVe/vXSNGJqYfXvwmC0i7KnH8/ZbuskL7ArKwTv/B1J7Dqv/HO/4qPFnfTvuDEdmIH3Zd/l5HxHy6gkb9sYPr1t7N2V3T5Ro3C3bpldyn/PBw53sZDT0jSNsQqhMY1z1vUTr8ye72AX30vZMME1ddp3gP6Sdx2x3is/WvGgxQZVzh5GJwbvXAPKKnOfVF7fUppWC9ftB2WOJnObDOBdaqTxk29M41t+rxnPflMaX/vips8LAAAAAIBeZJAyAD3B5xUA67iOAeggx1j6k2A0AAAACuUNuF8fRFU1GG3XeRG7zs9IN9omO0aS+M//fCh+9V8Pxfc/5ey69l2c/Zi1QbmHjmZ3Gl150erzPO6S7MefmF39/7mhL2tGTgejPXb5wcz260YvjMkdj85sS9/88kgXNyaxpIfuiA/e3Mh+wXVe9+jnrv7xHf8mkl/6k0emT86l8cCJlg+P//aW5VgpSuvagjJBfe3ynO+o9qSfvz/isl9qPhJ6dmw6fxn8w10Rc4tntx84XG2ZnZpb/f9mgtGKaquLquv6JT9Sfn299hPF7//EbMT1h0o/XU8ru6uuBfHVQe62cfpzae8F2e2nZjtTT53NFoQljE1ETHU5LG56IWJuqfz8556DfO3l2fv56KnuvY+qH2/3HutMHQBljkc3PRAxJqxrS6oEYg7iuQaUVXQkWjvD+6rsLo6IKA4e70dljj3zy5t77r/+bBrv+eLZa+Q33p/GrQ/5vAAAAACAzumx/jcD1fuD9QgAAABsRpf6FIpeRq8GsEYwGgAAAIVyg7uGz/y9e2cSF+cE0WS5dPfWauqmfff+Y+b08Yk00jSNA4ezH/fEK1f/f/HE/Zntk9OryTDLjeyuupFYDTB7xuynMtuXV5L4/FN+JqfqiLjpkxsmNT/05rj+gn+W/5i1507Oi9c+//5IXvX+SHbteaTOx/16uVSAL00+Km64t9SslbUKRGqnH396sqlt9dt+vxnvvyWNibn8eRaWI24+J/PuYM62lOfk6eCFvPDCiIjLL8oOETo2U+21tkPVdf3c72pvOt4Hbh2MbvSyYR9TG7MWt03eNr8WmveoC7PbJ2r0HrpltkUI2aEuh3bdMVZt/m993Nn/zgtiHZvcVDmbUjUYrWroJUBZZY9HH7ndcWgrqiy9UwXn/zDoim5gSk6fx+/dlcRle7Lnee7bKqQU9oEyx/jZxc0d3//8U9mP+5sbfF4A0H+SJBlOkuSJSZL8WJIkz0uS5DeSJPnlJEn+S5Ik350kSU5PYm9IkuTx697bryZJ8pzT72vHdtcGAAAAALAlAj4B+pTjOwBQjWA0AAAACuUF0Iycc0WZF1aSpVeC0dLlpbjymtdmts0uJXFquhF3H81+7JNOB6Nd9Km3ZrYvpOfFwvX/kBs8tyNdjoiIpy/cEpc1sl/k5sf/WH7x99911j/Tr3wpjnzgvTEx/Kj8x6zz65++PGYWV/+eXUxj1y80Y7JCqNAvvfvsN3btnWl832tWYv+vrMR3vXol3n7j5gY154U4DbU3EysiInadn8T//V9D8R3/pPpjf/x1zfhci3C4c8Ny3vmFal/ynDodjFY0YPqKi7KnH52u9FLbIu+ehrx1ffGuJH7337dvQ/jjj6fRrJqA9P/Yu+/wKKr9DeDvmU2DkEAgkFAEpEvRaxdFRcEuqFy71+5Pr+1i16tXxYINe+/itVwLKmJBEQuCqKACSgu9hkAI6SFt5/v7YwnZ7M6ZndnsbjbJ+3keHjIzZ86cnZ2+e95thpy+xJLK6LbDDW1oXl2ggiaoszWGlVSECEbLj/GxYPpid/vUdaMbXmx001xrbC4Mt0XuuT0srNganXYQEdmF4/r78s+Wfz0TTW6O+60xhJUoEvzv4uqepQRanQ/kl7ae45mTV+rkGc3c1YLjnvA9i8m60Yv97vNqw4of/6b1rF8iImrZlFI9lVLXKaU+B7ADwHIAHwN4FsBEAI8CeA3ADwCKlVLTlVInhbksaeS/3mEu93Sl1FwAa/xe20MA3tz1uvKUUs8rpTLDqZ+IiIiIiMLE8A4iIiIiIiIiImoR+JyLiOIHg9GIiIiIiIhIyzRF2xG8NQSjYfVf6LZjiXbyrIdfQnWt9bSB2QoigvZLvtPOX3T7xaiptV7BHvFVrAAMrlpmWeaOnAMg8D1uLDXaoVIl754m63Pq/96yDnLxgTi7x1vatgSqqgXe+kWwNFcwbILpOHihzvx1vg64UlGK7xaU4finTPywAsgrAeasAs5/TTB5rq/SbSWCTYXOHpqGCkSKtEFdFX66zYPK5w2MHxXZhSzPq/97xVZBlWZb0qkLedKFxQFAtiYYLdZhSOEI570++8DIvkenPR9egF9z4jTso7QZBKN5dp2XOqZabwfbSqA95rZU5VX207eXxXZ9LN5kvbweGUB6SsNxh/YFRvRrOK57B+v3tqAcqKqJzWtxG4y2vqB1bXNEFDtOj0e/b3Bf945ywbItgjX5AmnlnXjcvPzyqtZ3rUHklN2+pPwu8QZk6e/pPlvUevYvu/v8OqGCnxduFBw5ycQ3y3zPYvJLgYUbI9M+IiKieKWUehfAegBPADgJgOYJ+W4eAMcD+Fwp9ZlSKivKTWwUpVQ7pdT/AHwIYLhN0Y4ArgSwWCl1XEwaR0RERERE9lr55y0ULdyuiIioGeB1EBERNcDzAhFR1PDam1ooBqMRERERERGRll0YlicwGC3DeSBRp3ZRSrGKtPU56FGzGQlSYzl52kp9wtuALAAFW9C+PFdbpthIR81q69CzBKlPyRpUvUJbx9OHTka/vsuQMXAbevdbgeczrvBNWP0XAEBEsPa8YzC89yzMaTtCW4+Va94VDJ1gYl2Bq9l2G/GwiaoTe2D0C20sp//zbcH+93mRfZOJnrea6He7F7+ssX8IF+tgtDpJCQqPn6nwzDkKyQmRqTMnr/7FPPOd+4ePhRW+eexCMbLSrVdMRTVQURXfDzzDea97dYpsGz77EyiuiO/11FhOQ1VKdsbPegi1bfTWbAe1JrA2zONZc7Ruu+CBL+3ft+1lMWrMLpuLrMdfOkLhh5sNXHyYwuH9gdtPVPhqvIEET8MdvptNCOuHv8coGM1lXmJBjNcxEbUeTo9HmwqBskpnx8jNhYKRk7zIvN7EkLtN9LvDRPZNJj6K0TE2HrkNxCzeGZ12EDV3druSfzDayXvrb/i+Wtx6jkVOXmlRiOPNxC/ch9wTERG1AAM04zcD+AHA+wA+ArAAQOCZ8mQAPyqlsqPWukZQSnnga//ZAZPyAcyALyztDzS8lMgC8KlSyt2HQ0RERERERNRCtJ7n6kRE1BLxPEZE1CIxtIeoeeC+SkRxJEJdeYmIiIiIiKglqrXpQJngaThsF1YSqJM+TyyuyIYcJKIW/apXY3nyoKDpn6adbDlfz45AarKCLM5Be7NEW3+xpz1qt+cBqYODpiWiPhhtSNVSbR03Fp4JJPn+3p7QGf/KfgKDqpbj6BWzIF+8CdM0cVzPL7A6qa+2jmhK7b9dO626FliwsX54zXZg9OMmNjxsoGNqcGdosXmwGu1gNABQSuHqoxSuPgq44i0Tr8xu3IPe5Xl+f2/R19W7EyzD6QorfP/bB6Ppp+WXAb2SQzSyCYUTjOYxFIZ2Axbr8whd+2YZcPr+kasv3jgORquMbjvc0HXur9s2+mf5whWsDhnLt+wKrmzhRAQnPRM6BSHh++xxAAAgAElEQVTWwWi5xdbju3cA/raHwmsX2h/M98jwBbNabQP3fS4472CBUtE9Ibj9jK+gPDrtICJyE9h1w4eC/XrazyACXP1ucJn8UuCMl0wsusvAsB7NJOA6gtwe94t2Aplp0WkLUXPmdF86aZh+2sptkWlLc+DkGF9UoZ9WWSOYvtjdMmPxXIWIiCjGFgB4HcB0EVkdOFEp1R3AXQAu9xs9AMCHSqkjxO4DCWu/Iji0LJRNLso+BOBEv+EaADcAeFlEqutGKqUGA3gVwPBdo5IBTFVKDRORLS7bR0RERERErrSWDqOt5XUSERERERERERERUVNjMBoRERERERFp6cJnACDBaDjc3UUwWmYzCUbD+hwAwMDqFZbBaEWeDMvZBrYrAZABufs8pJslUGJClBFUrthIRw0SLetIkPpgtHElU/Gv7CccN/uBzFtx9IZZkIcux+2d78XqzKYJRQNg+brtVFQDnywQXDoiuEeuXcdgw91iGu2l8w38fT/BN8sEj80I7wt/a7f7OiunJCptWBAA9O1sHYy2Y1fYTtjBaKVAr07O2toUtMFoId7rsw9S+M/UyH0J87vlgtP3b7k9xM3Q2VkAgJKd0W2HG6FC81ISFfbs5AtbDJSzVQC03Pezzh1TBcscdHOMZTCa1xTkaYPRnL0n7VIURu8FfL0keNrKbcBv64EDe4ffRid0R5fMdtbrc0e5L6gu2oFtRNT62N2rBXq1kYG+ADD5Z8FjZ7S+Y5mbADrAPqiIqDWz25X8jywJHl9Y7qVvBs9hd9/c0ji5T7M73sxf53u+4oYnxs9ViIiIokQAfAFggoj8ZltQZDOAK5RSiwA85zdpBICzALznctmVIrLO5TyOKKX6ABgfMPoMEfk0sKyILFVKjQLwLerD0ToBuBvAP6PRPiIiIiIiImoqDKkjIiIiIqLmhvcxRM2C698Ro/jA941aJn69lYiIiIiIiLRq7YLRPA2HnYaaAM0oGG2DLxhtcNUyV7P1Xv89ZPVioLgABgRpZqlluRJPe9Qq68zyRKnZ/Xe2d6ur5f+QOhIFno5YnjQAkzJvCln+2XPDDzi4vNM8vLP5grDnt7I8z3q8XcdgowkyGo4dojDpdAPmyx7ceKz7BpgCrNrm+3uLpoP3xNMUMtpaTyusqK9Hp2OqvnNzvvVmGTd073eoNX3dKIVx+0auHb+uadkPhp2+uuJmEIzmv6336WxdZmtJ5NsTb0p2Ch6a7uydLYhhMNrWEv17181FuOqEMfpH2n9uiv7+qjs2dU6zHl9V6z6UgojICbeBXY01e0XLvibScfvdDgajEVmz25cC82P3yLC+68svBapqWsexyMmrLKrQl1qS6349+T9XWbhRcOenJm79yMTc1a1jnRMRUYtxhoicHCoUzZ+IPA/go4DR50e2WY12N9DgV3YmW4Wi1RGRnQAuAuD/VOrSXQFrRERERETUJJrbc7bm1l6yxE7MREQUF3g+IiIiImp2YvRMwW4pfKxBRHUYjEZERERERERatV79tISAO8ruGc7rbQ7BaOL1AptWAQCOLv/e1bzpO1ZDJk/cPdzetE7iKTQ6oEYlWk5LQG2D4TOHukslmtvmEFyV/XTIcvNuN/CPg92Her1xkcK6Bw28cF0PHLRzvuv57eQWWY/32jzUbIpgNH+TTjdw0aHuGzFnlWBntWgDFIb3UeiQal1vYblvhdgFxiUY+v0tvyy+nxLrwj5CvddtkxU+/KeBnPsMfHiFgcP6OlveUQOtxy/YWL+uWyKnoSolldFthxu6bd5/28hsZ72h7CiPQoPizL732RwUAoQTmBAu3bEdcBeMdnAfhcFdraflaII1I0m3z3S2ubaJZQAdEbUeZow/8f9tPVAQ59eP0eD2FRfFUZgsUTyxDUYLGLZ7vpTXCoKOAWfHeLsgRl3gvJ26H0CY/pfgkAdNTPxCMOlrwRGPmHj7F+f3GERERE1JRNaFOetzAcNHNbIpEaOUagPg9IDRD4eaT0RWAJjqNyoBwLkRbBoRERERERERERFRFLW+76gQEbUOPL4TERGROwxGIyIiIiIiIq1am36PnoA7yh4ugtG6d2jiFCsn8tYBNdUAgBEVc5FsOk8FSjPLgB8+3j3cuXa79SISslBupFpOSzUb9nDtlObuFv60Pabgx9QjbMu8f7mBA3orpLdRePzM0O+JUsBhfYFl9xq48FADPTspqKw90O3Y41y1LZTNhdYfdtgFgDV1MBoAvPgPhRuPVUhLcT7PtIWCLcX66V3b64PN6oJ27IKtDKUP69lW6qyNTUUbjObgzVZKoX+Wwt/3V7jQYWDdtUfr97GRj7bcTuB2+5W/kjgK+dBvG/V/d7Q+tLbYQJf1BYJzXzFhXO7FWutTjqWlW4A1+bFZJ7pgtEQP0Enzfukc0Nt6v87Ji/5r0W1/dqGvO2xCK5qaiOD9+SZGPOzFgRO9eGi6icoad+vx7V9MHPWob/67p5motUsyJaKIcRpuGklPfdv69m+367msqvWtI6LGUgGXdt3a68vahe22JE6yLwttrjHDuS727HofbvvYRLVfVr8pwM1TBGZTnHiIiIhiZ0HAcBullIso/6g6DkBbv+GfRWS5w3nfCBgeF5kmERERERGRpRj/qA0REREREREREVF08DkXEcWPhKZuABEREREREcUvu2C0hIAMoc7tfOEmNd7Q9Q7Kbly7YmJ9zu4/E1GLftWrsSRliKNZ070lDYaza/Msy+UlZKPESLeuw2xYR6f2kbuFVxBUveBBgqe+9/H4UQpf/iWYuSy4/ONnKpxzkEK7ZCA1OTiMJuXqe9F5fD7yEzpHpH2bNR2dbQPA4iD6PSlBYdLpCg+PE/y4Ejj6sdCJU9/lAH9t1k+3C0bb7jQYLc16Wn5zDUZzGYJ34jCFUA/lrxqpsH8v/fS/NgM/rxYM7xsHCXwR5rRv+84aoKZWkJjQ9OvAq9m1/LeNTpr9Zkd55NvT1IorBIc8aGJrSeiyVn5bL+jTOfrv6+Yi642tWwdngYf+BmRZj8/Z6rZV7un2mY7tFJQSy++6by4E/rZHdNvl1M5qgaF8+0uNF/jgd8Elk+sb/ft6wep84LEzgLQUX9CknVdnm7j8rYbzr80H/ntp0x8riFo63fkwmuasbH1fdHDbh6m8KjrtIGru7HalwMuN9DZAarL1/rSuoGXelwVycp9WZBNevWyL+2V6DCCvWCyfUWwtAeauBkb0d18vERFRM1FrMS4p5q2wdnzA8A8u5p0N32ur+4BpX6VUlojE4CkaERERERERRR3D+IiIqFng+YqIiPzwPoaIKIp4jKWWicFoREREREREpGXX2T7B03DYMBS6tgc27LCvs3Ma0KldM+jEuiGnwWD/6lWOg9HSzLIGw101wWhbErJRYlinVqV7G6ZWdUpPQKQeUOWPX4EEz+AG45RS+PRqAxO/FMxcKijeCfTtDFxxpIEx+9i/XyotA8clfY23zdERad/mIusAplABYPHCMBRGDgQW3mVg4hcmlsxfjUJvW2xJ7BpUtroWeHKm9Y7WOQ1Ib6OQ2c76hTsKRjOAzmnWwWDxHoym+8zL7XvdrYPCwCz7wKRnzvFVmp4ClFRal7nzUxMzb/BYT2zGnAajAUBpFdAxDp4m6trs8QtI7JRqXaagBQajPfeDhB2KBgA51qeoiMstth7frb37ugZlWx/XVucD1bWCpCgG+JmaDTDRA+yRYX0dlLNVcBKa9kQlIpj4peCuT0Pv9K/NEbw2R3BAL+CZcwwc3Eff9qe/Da7v3XmCh/8u6Nohjk7ORC2Q7nzYJQ244kiFb5YKCsM47wmAFZrrppXb3NfX3Lm5VgKAMgajEVmy+05j4BWDUgp9Mq1DxHXHp5bGyXdAiyp813iBQbblVRLy2ZwVjwEU24Strd8hGNHE17RERERR1C9guBbA9qZoiIWhAcM/O51RRMqVUn8B2Ndv9BAAreSqioiIiIgonrBTIjUFbndERNSMMTiHiIiIqOnYXYvxOo2IYiwOujISERERERFRvKr16qclGMHjuncIHYw2KLtxbYoVWbO0wfCA6hWO500zGyZOZWuC0TYndkOpJ11Th1/KTUpb7NHROgTGjWSzEgsGv4COQ26ynN4mSeH+UxXuP9V93bdf3g9vv9io5u1WWQPMXgUcPajh+OYSjFZn7x4K751TDHl7GEwo9O63ErmJ3YLKzdJsWnX7SmY76/d+e5mvE3So9ZLZznra9rL4fhite13hvNcXHKpwxyfWFf56u7G7I/nLFyic/bJ1ue+WA1MXCNokAUcPRFBwX3PlJuyjZCfQURM4FktOto1Omu0+XoPRCsoEf24CluQK9sxU6NkR2FEOrNwmSG8DHNpXoUdG8Da3o1zwn6nO3sTT9gU+WRA8PlbBaJsLrcd36+C+roGaawmvCazJBwYF51BGjN32Nyjb+jpoeYzWsZ3HvnEWiubvt/XAGS+ZWDzBQHqb4O2vplawODd4PlOAD34XjB/VMo6TRPFKdzxqkwTcM9bAPWPDr/uGD0w8OTN4AZuLgLJKQbuU1rN/u/3+RjmD0Ygsub37HJBlHYy2splEeJRWCmatADq0AQ7sDSQnujtuOrlPq/ECFdVAanLD8eGGx20vA6b8rl+wafPjCURERC3A6QHDv4mI27NfT6XUGwAOAtANQCqAQvgC1hYA+BHAFBFxG2G6V8DwKpfzr0bDYLTBAL5zWQcRERERETkS39/DiZzW8jqJiIiIiIgo8nhPSURERO5YdGMnIiIiIiIi8qm16fbh0QSjhXJ4//jvRC/FBcD0/zYYN6JiruP5A4PRumqC0VYk9dfWke5fR3JbHDPY8eK1rvO+i0E3WIeiNdag/fpi08D7cM+2eyJS3zdLgz/waG7BaACAfF9ijAHBmLIvXM06MNv3onTBZrWmL6jKrnOyoYDOaZqmlVqPjxe6EAojjKdZFxyi0C45ePylIxQO7F2/8Zx5gIEumvUFAONeMHHCUyYG3WViaW7L+FDOVTBaZfTa4YajYLRU64PCjnLAdPOiY2BWjmDI3SZGPW7iX+8JxjxrYp97TRz1mInL3xKc/bKg3x0mJs9tuLP/kCPIvN5Z/8yNDxsYkGW9TnK2xmZ9bCm2Xk63Du4P4P0664/7OVEOy7Db/gZkWzdqRV7TbnNv/GTilinhtWFTIfDGXOt5S23Cf8IN5CAi57yaU0AkrouvOUpfyZ8WQUUtmdvLhvLq6LSDqLmzCxlUFoec/ppr1xUxunZtjJ9WCfa4xcTYZ00cMcnEQQ+YyC1y126nx56iiuBxOY249rzTJkg3zm6jiIiIIkYp1Q7ApQGjPwmjqj0BXARf8FgHAIkAuuwaPg/ASwA2KKWe2LVMJ23rCKBjwOgNLtsVWF7/wRQRERERERERERERERFRVPELKETNgu2vCnM/jltufw2aqJlgMBpFlFIqUSk1Uil1gVLqVqXU1Uqp05RSvZu6bURERERELZUUF0D++xDMJ6+Heds4mM//G/LVOxCvt9F12wWjJVjcUXbLCN0L/6Rh8Zpg5SOmCRnXJ2j80RU/oK1Z7qiOwGC07rXW6QFFngxtHelmSf1ASlukpShccWTj1t35R7Zp1PyhdP3X7bhjyHKcU/xeo+tatsUiGC1EAFhc2p67+8+xpZ+5mrWP8gXq6YLNAGDOKuCC1/UrxmNAG/QV78FoTsKvnOqeofDy+Qrt/XaBsfsAz54TXNkfd4Z+XLZ2O/B//zUhLeChsZuXULwzeu1ww0kQjG6/8ZrA9rLItylcpim4eLKJbSH2x+pa4JLJAuNyL/52rxfnvmLi6MdCh6K1TQLeuUyhe4bCoGzrMjl5iMm2XKBZ71np7utKTlTYI7BL6C5bS6L7WuyOTbp1vNw6HzVilm8R3Pu5iYvfMPHoDBOF5fWNnLFEcOmbjVsn935mPX+ZTVhiaZwcL4haskheKwXq1Qlok2g9bfri5n/944bbU6TdsZGoNbMNRrMYNyDLumzO1thcu4bLNAVnvGg2CJX+azNw04fu2uz0JRZZXHNF636HwWhERNSCPQjA/6lOEYBXo7SsVADXAfhdKTXEQfnAnyOqEBFnH1TV2xYw3N7l/EREREREFAlx/FzTWnNrb2sV6n3i+0hERHGg2V0HERERERERUTxJaOoGUOQppSYAuLsRVbwpIhe5XGZnAPcAOAvBv1RZV2YugMdF5KNGtI2IiIiIiPxI7lrIZcOB0sL6kT994ftKy8z3gEnToFT4PeN14TMAkOAJHtc9sIuGhf5dwm5O1IkI5K5zgOrg3uwpUoVjy2ZiavopIetJMxv2Qh1UleO6Lelev5ScFF+a0zNnK7w0K7wPiAdUrcCgvTQ9iyNEJSZBTfwAt/28Av97o3F1WYXI2HXCNeI1+t0vGG1kxY9I85ag1OMsBShjyoOQPY9H5v4nasuMedY+GEkptSsgKnjl5cdROJQVuyC8cJx9kIHRewn+2gxkpAJ/28P62Nitg8JxQ4Cvl9jX9/MaYOFGYN+ekW1nrLnp3F5UEb12uOEkCKabTfe+zUVAlzDCuKLh17XAugJ38/y5CfhzU+g3bto1Bg7ZE8hM862YgdkKVseCsiogtwjors/qjIhCzfaT0Ta8+jq3A9ZbrLtoB9/pvqdlGMDALOt1vK0UKCwXZKRGPsXzhxzBmGdNlFfVj3v2O8Ev/zaQkwcc/1TjD6aFFb5rpMBrytIqzQwASir5hTaiaNNdK3kicF3sMRRGDgSmLw6eNndV69q/3QYBVVRHpx1EzZ3drmT12GqA5rqqtBLYWgJkx2mcx4KNQF5J8Pj35gvevlRgOEyvdHrsKbSIRSmJUkAjg9GIiKglUkqdBuCagNF3iMgOF9XUApgDYCaAPwFsAlAKoB2AngAOB3ABAP9PxwYAmKmUOkRE1tvU3S5gOJwo+sB5bH6KxTmlVBcAnV3O1jcSyyYiIiIiIiIiIqLWgB9QEhE1XzbHcAZmEjUPdvtqBPfjGC2GiJq5eO02TM2IUuoEAIsBXAlNKNouhwKYopR6WymVGpPGERERERG1cPL8vxuGovn7dQbw3ZRG1V/r1U9LsLijDBWMlpQAdArsxhEnxOuFPHIVMGuqtszYpPmO6kozSxsM71mzDonirod8uunXkzbZlxqT4FGYelV4t/J/3/kZ1NCDw5rXrWHDB2DKPxv3yGHFVqCiquFTTLtOuJ7IZ81ERn59MFqyVGNU+feOZ82ozoe8cDtSkwRZYYQ41fW37qzZ50orgcqa+H1SrA2/asSmlZmmcNQgpQ1FqzO0u7MNasrv8bv+nHLTuX1LcXy8Xl2bPX4hA13S9cEwuUVRaFSYcrZGZ53ePUbh5L3V7lA0ABhok41pFUYZaZEORsvUHNuiHYxmF8w3KFs/X87W6LTnjk8ahqIBwIYdwMhHTRz1WOQSJq3evzKb0I2ScLrpEpErToJCG2P0XtYVfZ8DlOyM/TXBWz+bGPWYF4c95MWD002YMUrocbuUMgZDErlmGYxmE6q/IkrXVZEwfbH+GLDDIsRMx+mXuoosrrkYjEZEROSMUmofAP8NGD0DwAsuqvkPgO4icpSITBSRz0RkgYisEpGFIjJNRG4G0AvAQ2h4i5EN4GNl/+tGgU/AwjnTB14xROpTuqvg+76gm3+fRmjZRERERERxig/RiIiIiIiIiHh/TNQSMLGMiOIHg9GoUZRSIwFMRcNftRQAvwP4EMA3ALYHzHYegP8ppbj9ERERERE1gpQVAz99bl9mxruNWkatTZ6GVeBMjwz7Xvjd2gP2fTya0IdPA5+/blvkpH8c7ihoIM1smMqSAC/6V69y1Zw24tdXJaU+NWbs3xTOOci6Ee3bAKsmGkj3NExIya7Nw42HV0KlhpGuFaZx+yl4XzJQc+LryFuxB0qXd8S4kk9c1THsnoYboF0n3MaEZUWTbM9tMDykaqnjedubxcD65VB563BcXxc9qHfZHYyWpi9TEOUAocaIdtiHHbtwI39fL2n+D/RNF7lJ8RIopmuz/3HAYyh0bW9dbnNR/LxvbsIRnOqSBvzr6OAdJSNVoYvmeBCtgLY6piko0gWjpYa3U2e2s54vGuvUn92xqVsHoF2y9fQ1+ZFdx7VewbYSwc9rrKdHOjBkS3HwuFKbrrjbSgERwY5ygfDDT6Ko8OrOhxG6VrILiu1yo4nyqtjt2y/OMnHhG4Lvc4Cf1wB3fCK48p3YLN/NtRIAlLvLwyZqNewuB6yONplpCh01P7O1IsrXro2RnKCflu/i/ttpCFlRRXDB4igF1Do9HlbVCDYX8hqQiIjim1KqJ4Av0DAkbD2Af4iLk9iuMLRtDspVisi/AVwbMGk/AOc4XR7C60XCkzIREREREVGLxVs+IiIiIiJqbngfQ0QUPTzGUssUp92GKcLOAbCni383OalUKdUDwMcAkvxG/wRgiIgcICJnisixAHoAGA+gxq/cGAD3N+I1ERERERHRvG+A2hr7MnO/hFSUhr0Iu2C0BIs7ymHd7Tvid+8QdlOiSjbkQJ67zb5Qp67ofOyJ2KeHfTFDvOjgDU4POmDn767a1GA1JrdpMG3yRQr3nqKQ7ZdzdvLewLJ7DfTprLDo/ja4qNcajDAW4yLja8w9+ltkXHOnq+VHglIKRvc9kektQBupxNhS+yC/QGu3A2u31z+Usw1Gi9O8PQQEow2qznE8awevL4VGztoLYz67zPWi60Ki2rfRl7ELtWlqTRmMdtwQZRn+GOiPDcCPK5r3g2OnHe4BYHOcBKN5HW4bunNOvLwOwDpsqjGy0oH5dxjasDFd6N/yvMi2I1BppX5by2hrPT6UTu2sx28vjXLIm6Z6pXznvZ4dradH6r3OyRMMf9CLpCtNZN/kMq2nEbZY7DdlVcHj6izdAnS/2UTm9SZ63Wbi8z+b97GSKB7pjkdOrmGcsAuKra4F0q41cc7LJsoqo79/PzkzeBmT5woKyqK/bLdLsDs2ErVm4eytA7Ksx0c6ADaSUhL107aVOK/H6X1aoUX4cKkmGO2wvs6Xb0V3H1anskZw4esmOl5nYo9bTfS81cS7v8buepWIiMgppVQX+H7os7vf6DwAx4hIfjSXLSLPAZgWMPoqm1kCo1VtnvZrBc4Txz+XQkRERETUkvHzUmoC/AELIiKKCzwfERG1OrwXIWr+7PZj7uNEFGMMRmsd8kRknYt/2x3Wew+ADL/huQBGi8gy/0IiUiUiTwM4M2D+G5RSvcJ/WURERERErYOYJmTJPMgvXzUIOZM5DkOmZn4Q9rJrvfppCZ7gcRmpCkf018/TIyP+0qtEBHLe3iHLqRdnAQD26mr/Gjp6d8CD4I6fY8u+cNymvaqWNRyR0jA1JjFB4T8nGch91APzZd+/add4kN3e17ZenRRev6M/fnxxH7z+4ono/Y8LoFQTrfueA3f/eWbJFBxaMdfV7FMX+AWj2fSnjcdgNBEB5s9sMG5QlZtgtPoUmmPKZiLZdJdiVrdO0m26SpXEcTCa7ll5LN7rHhkK/z7B2YJGPmrC6yZdLAw7qwVf/iX4IUdQXRvZZblpem5RfHyAoTsWBG4bPTKsy61z+uQrBvIiHIyWO8nAHh312+6AbOtpK/Ki+95aBTbUCTcYLVMTjPb7hvDqcyrU9pfd3np6qGC08irBN0sF7/xqYmmu9ftRWSPY6y4Tv6512FgXEj3A/jZParcUB7epNEQYUt6u8I9NhcCpz+lfFxGFJ9ohst07AGkp9mXe/03wz7eju2+XVYplCFKNF/hkQfSPK24v88oZjEZkye67ULrHFQOyNNeuW+P3mqK6Vj8t30UEidPvjuVb/BZCieYabf/eCv8aFf5JoirEbzNc8z/BW78Idu4qt7kIOP91weyV8ft+ERFR66OU6ghgJoABfqO3w/d9t5UxasaDAcOHKKV0PysUz8FozwMY6vLfKRFaNhERERERNSV2fiUiIqKY4DUHEVHLxOM7ERERucNgNAqLUqo/gAv9RlUDuEhEtF2qRWQqgDf9RiUDuDs6LSQiIiIiahmkMB9y/QmQfx4OufkUyJkDIXO/9E1cMMtZHZOuqp/HJW8YQVSn7qvvZDm8b1jNiCp57Z6QZdT1T0Jl+9JCBmTbl830FliOP6ZsJlI8Nklzfo4v+7rhiJQwU2PiQZceQJtUAEASavD9+mPxcu6V6F29DhneHbih4AncmT9RO/vMZX7BaDafgcRbMJpUVULuuQCobpiMMLRqCTp4Cx3V0cGsT9FpJ+U4p8RdyGHdOklN0pcpjeNgNFPzRcpYvdf3nmJg2jXOHp1d9U70PqCbv07Q4xYTJz9j4ujHTBxwv4m12yO3PDdhH5uLQpeJBd13bD0Bb1efzvEfpLAmP3JtWfugETIEc5DmHLZgI2BGMeAvGsFonTTBaFtLgMe/sbmAaaRQQURd21u/B3YheIs2CobcbeK4J02c/5pg6AQTV7xl+gI2d9lWImh7dWRe1yF9gPGjFB45XeHOkxXuOllh6T0G5t9hkXq7yxqLQMEyF+E/pgBvzI2ffY+oJdDdq0XqWskwFM48IHRlH/4uKKqI3v5dXq2ftnJb1Ba7m9u+PW6OjUStiW0wmmZ8/y7W4xduRIPrpHhid4+9rdR5m51emudaXGOW7LQu274N8MSZCp9fG95XRKpsQt9qagVTfgtutAjw/vz4fK+IiKj1UUq1BzADwDC/0YUAjhGRJTFsyrxdy63jATBYUzbwbN9WKZXqcnmBV1URecorIttEZImbfwBWR2LZRERERERxK06fWxIRERERERHFFu+PiZo9PuciojjCYDQK17nwfTGrzscOfznz4YDhM5VSKZFrFhERERFRyyJPXgf88UP9iOICyK2nQT59Bdie67yeW0+DlLrv61Cr6WyfYEAbvnLK3/Sd5+2mNQVZuQh488HQBQ84evefQ7rav4ZOmmC01L9fjNFD9IEjdfrzLNQAACAASURBVA6r+AkT8u9vODK5+QajKaWAngN3D3tg4pLiN7Fq9WDkr+iBR7bdgbu364PRlm6p/7s5BaPhyzeBb4ODzBJRi+PLZjiqor23YZ+nidvuwoE75ztuQt06MQyFNM2dd0lcB6NZjzdi+DTr5L0VZt1soHOafblXZgvyXXRyd0pEcMaLZoNQqcW5wL/+F7nQJzefV+woj9hiG0W3bQSelgZkWZfL2RofQQqF5YKf19iX6ZEBzLnVwM3HKe1xLiURmHyxQq9OoQ+EgzXnsPxSYN66kLOHzS4YrUOYp7jsdP3rvelDwR/ro/MehwpGy25vPX1LccMZC8sFj84wcetHJva9z8SGHQ3LvzJb4LnCxE0fmigsF9w1LXKvZ+5tHjxxloGbjjVwz1gDE8Ya6NvF9wJO3tt6nhlLgpfvNlzzsRlNv98RtSSxuFa6/9TQ55YaLzD8QRM3TzExc2nk9/MKm2C0kpLop5C5vWSway9Ra2a3K+myfffSXLtu2AEscf5ILKZKbQ5L+aXO63F66NlSFFyyWBOMlp7ie0Zz4jCF589z/xClskY/bXuZ/vnCt8t4DUhERE1PKZUG4CsA+/uNLgFwvIgsjGVbRMQEsCFgdGdN2QI0DFEDgJ4uF9krYNjJ9/uIiIiIiKi1i4PvVJADId8nvo9ERBQPeD4iIiI/vN8kIooiHmOpZWIwGoXrtIDhN5zMJCLLAPzqNyoVwLGRahQRERERUUsif/4EfDfFetqj17ivb9yeruep9VqP99jcTfbqpHDh8OAOlhcMdxbaEiuy/HfIJQeFLrjPCCi/YK+RA+1ff2aSRS/Yky6CMf5x7N8r9Ov/Yf0xSJWABJnkZp4n3WtQyCKfbhxnOX59AVBe5XswZxuMFmdPOMQiFK3OfpULQs7f1ixHEhr2Os7ybsOP60Zh9rqReCP3MrxxfGDfqYb8Q5R0wWillfH70NPUZH/FOgTv8P4KK+4z8OoF9gvOujFyYWV1lm5BUFgSAHzxF7BxR2TeO7v9KlCRTbhVLIUKpqozIMv6PSuqAFZti3CjwnDQA/pt5tlzFWZcZ2D5vQYO7avw8N8NLLvXwIzrfP//fJuBNy9W+PhKA2seMHDBcGcHwRH9gOQE62mfLoze8aBQE6qXlgIkeMLbqQdm208/YKKJmtrIv6ZQ219XTTDaJr8urKu2Cf52r4lbpggmfW3fxse/EXS63sTLP0bmtWSl208/coD1+/HLWmB7QABkWfTziIjIhu54FOZh1VJWukLFc6HPMTlbfeGHxz5p4r7PI3tNVG5zrCmeNQOyfYu+QAS4uVYCgJ0MRiNyTReMZvf8Zdqi+LyXLdGEkgHANhfBaLr74UC5Fr+BoAsoS29T/3eHNtZl7FTV6qfZhUKW87hIRERNTCmVCuBLAIf4jS4DcIKIzGuaViHwqsHu7LwsYLify2X1CVEfERERERHFRHw+0yQiIiKKWwzOISJqxuyO4Ty+EzULdtdivE4johiLs27D1BwopbIB7OM3qhbATy6q+CFg+ITGtomIiIiIqCWSSVdHtsLKCsg6d/0dajUdMRM89vM9fqbCRYcqKOXr4HrRoQqPnxkfoWiybRPM+y6G/N+hoQsffCzUfe81GNWpncIR/fWzZB58EHDYSb6BxCTgrPFQNzwNABiYZb+4c4v/B8u1lJgcuq1xTPUaGLLMoKoc7bQVW33/2wajxcfmVW/RHO2kgcbmkLN3rt1uOT4RtRi+cx7OL34X5+94E9cfo3/h/mFx6dpgtJBNaTJOw69ioX1bhUtGGLhypP3Cr3rHhETwIb9VJ/c6ToIANhUKLn7DxJC7vTj0IS8em2HCG7Bi3YR9lFUBtd6m/xDD6zA0b0g3fR2vzont66j1Ch7+ykSPW7wwLvf9W51vXXaPDODKIxVGD1Zom1z/ovpn+cYN2PwDDnxuDM57axRO+ethZCXbpC8EaJeiMEqTVRnVYLQK67oz2oZfZ9/OoctMWxR+/TraY9OuY27PjtbHibXb6/efSV8LNhZaFou6Sw6zP46dNMx6ugjw9dKGL35njWVRW/EcyEnU3IQ6HkVKSqLCyvsNjHDY9f6+zwVbSyK3r9sGo1UnQN56KGLLsuL2lVTaBAcRtWZ2t0m6q5OOqQqH9bWe9uVf8XlNUWZzj71oo/M2O71P21IcPE4XztbeL24lI9X9jXWlzbWfXTAavwdHRERNSSnVBsDnAEb4ja4AcJKIzG2aVgEAMgOGrT8Q8FkcMDzc6UJ2hcLtHaI+IiIiIiKKGD4MIyIiIiIiIiIicooxikTkBIPRKBxDA4b/FJFyF/MHfrFsSCPbQ0RERETU4khZMeAyxMyRX752VVwXPpMQ4m4yI1Xh9YsMVD7n+/f6RQY6htHpMtKkaDvk4gOBGe+GLKu+2ALj0c+gMoKTV075m/61dO6SBuOhj6G+L4OaUQjjmkegknzBZoO6hggjKZtuPcETIoku3vUMHYzWu2Y9kk3rHsTL83yPM3XbIxBfwWjy/Ue20/cafUjIOrrV5oZe0Oxp6NxOP9n0W19pmmC0kmYYjKaa8L1++mz7hb84S/DvTyRi4Wh2nct/W2c/b3GFYNgEE2/+LFi2BfhlDXDzFMH1H4QfjAbExzaja7Mn4NzUMVXhoN7WZZ+cKVi2JXYflVz5juDfH4tt2F2dE/dWUJoNXeZ9A7nueGDeN8BfcyGv3A2ZeGlwOdOEVJT6/q7xbUhStROydSPG9LFuxPI8YMXW6KyTIk04Q2OC0ZISFPp3sS/z5eLIvx7d7l13HhqgCUGtNYF1Bb6/P3MQbBgNGW1DB6MNzAb6BHbN3eX39Q2H7cIxdH5c4X4eIrLmNCg0Evp2UfjxFg/GBHant1BrAt8ui9xxzu56qMhoD3z3EcS0uVFoJLdVV9ciKIiWyCmprYVUOQ+9bU7C3SvG7GN9UPsrdN54k7ALgZ27GihzGBLrdH1tKwVqautLiwiKNZtQekr9uuzQxrqMnSqb4EfbYDT3iyIiIooIpVQKgGkARvqNrgQwVkR+bJJGAVBKZQLoEzDa7gOBrwKGR7pY3OEAEvyGF4jIVhfzExERERERUVzjE1giIiIiIopDdn0p+At7RM0E9+Nmie8NtVAMRmsdrlBKzVRKbVZKVSqlSpVS65RSs5RSE5VSh7usb3DA8CqX868OUR8REREREW2ITmqEfDHZVfnaMIPR6iQmKCQmxFFi1bRXgZIdIYupxz6HSu+onT5uP4WkBOtpo/fyvV6VkAiV0LDQ0G5Ajwzr+done3F82QzriR7NwpqLvfYPWcQDEwOqV1pOW57n+98uXyCugtGeulE/8aI7sOc/r0GmTaAZAHR3Eoy2ZgmGVSzUTvYPsErXBKOVxkHIlY7u/W7K99pjKPx4s/0B8JGvBB3Gm3hxVuMDOuw61S//dRkkPzgNIL9UcMgDXmRcZ1p2iH/2O8Fv6+rrdRv2UVThrnw0mJqNw2rbGLef9QZT4wWuedeMWIidjmkKLn/LxGtznC/nrAOC2yw7y2FOvBRy48nBM/zwMeTTV3zlRCDvPAoZ2wNyXCbMw5MhR6f5/h/dAXJ6P5z82H7aZX+6MDrro1DzkwqNCUYDgLE2QaUA8MZPkX89oY5N/YLzVHdbuRUo2SnIK4l4swAA7ZKBPTTXGecepPDjLQb6drFfZ0opHDHAusyLsxq++HCC0b5eyg/biCLFaVBoJB01yNmF2D9ekwZBPY1RbhO2szUhCyjKB1bqr4kbS/cq2ibp5wnn+Eitm3i9MJ++ETKmG+T4zjBvPBlStL2pmxVRdpfdduHX+/W0nlhaCdR64++6orTKfvoz3ztrs5v7NP9ry8oa/bO8dL8wtA5hXIfbHdvsgtHsQu6JiIiiRSmVBOBjAKP9RlcBOFVEvm2aVu12Nhp+Z3MrALtfSvoagP+T3uFKqUEOl3VRwPAnDucjIiIiIqJIY6dEahLc7oiIKA7wOoiIiIiIiIgagcForcPZAEYB6AYgGUA7AL0AHAHgdgA/KqXmK6VG66tooF/A8AaX7VkfMNxJKaXpskdERERE1EptyAlvvs7dgaPP0E9ftwxSuM1xdbpOptHsbB9NsnB26ELj/gl10DG2RXpkKEwYE9w59+/7AUcO0M+X4FF45O8qKFhOKeDho7ejvalJSmnmwWgqqyfQb++Q5QZWWwcCzlji2w7tOgbHSzCabM8FCrZYT0zLgLrkTng8Bk7e277B3Wr8gtHaddCWO+qpkY7alaYJRiuxCM6KF/EYjAYAI/ordEq1L1NaCVz1juDiN0zkFoX+UodpCpbkCv43z8Qva+qDRMpsOtXn1GTBPG/voGCvM140MW+d/fIOeqA+EMwucNBKXASj6bYNi3PTFUcoZKVbl/8+B/jfvOh+6eaNuYJXZ7tbxsiBDTdy2VkOufRg4Ku3tfPIo9dAdpYDX/4X8uIdQHGBtmzX2jwctHOe5bRw1odpCmavFMxdLSivsp6/ULPdZITYl0K5bpRCn0z7Mv5BgJGg2/7qAj3aJittCOqKbYKVzi/DXDlpGFD8tIH1D3tgvhz87+3LDAzp5uwA2j/LenxlDbChQBoMu7VyK7/oRhQpumvjaF4rnTjMeeV73m7ipVkmluY2br/XnVsAIDehq687x+rFjVqGHd1xPzVZP89Om4AgIivy6gTgw2eBsmKgtgaY9w3ktnFN3ayIsg1Gs5nPLsCrJA6Dvq3Cqf19/IezY6KbI2duUf3fduvEPzC9c5qLBexSXaufZheMxmMiERHFmlIqAcAHAE7wG10D4HQR+bppWuWjlMoC8J+A0Z+Jza83iEgFgCkBo291sKwBAE7zG1UL4F2HTSUiIiIiIrLBz3yJiIgoFnjNQUTUfNkdw3l8J2oW7L7wx+BbIoqxZtqVnaLgAAAzlFITlbL7XW4AQGCPbFfd+USkDEDg17Lbu6mDiIiIiKilkxULw5sxvSPUhLeA/Ubqy0x7zXF1tZrO9gked82KG/Nn2k/vvw/UdU86quq2Ewx8c72B60YrXDlS4d3LFN673IAnRBLB2QcZmHubgdtPVLhguMJNxyrMvsXA/x2oTxtSzTwYDQBw+NiQRQZWWQej/boWuPdz0zbAySoQqSnIvRfpJx44CnW33Kf+zX476XHMKODcG6HGPw41dT2w14GW5VLEJjnLT3ob6+WVxmFH8jpNEfbh1OoHnG1wb/4s6HGLiRd+0Kf6lVcJxr1gYtgEE+e9Kjj0IRMjHjGxpUhs358iTwbW1mZCTu0NKfeFKq7cKvhxpbPX8Nuu2HrXwWhxEKbndbFttG+rMOl0/UZz04eC4orofDBTVCH4v/+6q3vzIw23LVnwI+S03sBGB2/sN/+DfP66o+WMLf3ccvzCjcD0v5y3eX2BYL/7TRw5ycSIh0387V4Tf6wPnl8XqNehbeN26O4ZCgvuMjDGJnvzpR8jHIzmYPsboAkWW7kVWLUtsu254kiFNy9WmHq1gdCPdZ0Z0EVfz7Pf+wejuX8t/sEdRNQ4mgzrqF4rDchS6K7P7G0gtwi48h3B0AkmLvuvGRTm6lT5tnzttEqjDYqN9pBwg8Ud0DW7bZJ+np1hBEdSK/ft+8HjlvwK2bQq9m2JErsjgN0ljF0wWjyENgfaUW4//ff1vvuEUNzcp+UW1/9tF8zWvk393x1TFfp1cb4MANhpc+1nF4xWXo2wzwFERERuKaU8AN4BcIrf6FoAZ4mI9QOx8JYzUCk1xuU82QA+B+D/5KgawIMOZp8AX7hbnYuUUtoPXZRSKQDeAOB/5/KaiKx23GAiIiIiIgoDn4MREREREREREVELYPt9Lz4DI6LYipNuwxQlmwG8AuD/AIwAMBjAIACHAbgWQOCvYCoAtwN4IES97QKGw+kSGzhPGL9LHUwp1UUpNcTNPwB9I7FsIiIiIqJIERHgpzD7Z3TuBqUU1GUT9PXP+cxxddpgtGZ4NylVoROg1L9fcRUqMmovhcfPNPDcuQbOPih0KFqdA3or3H+qgckXG3jkdAOH9lVAok3P+hYQjKYcBKPtU/WndtqEaYJFm/QPT1PiYBVJ7hpgwSztdHXdE7v/PmawfZjCoEOHwrjyAajTr4ZKToE64hRt2bc2X2Q5/qDe9X/rOpNvK43fB9K6lsVDMFp6G4XPr3V+ILz6XcGwCV4kXOHFkZO8+GlV/at75jvBtEUNy89fB3S/xcStH9m/P5+1OwnYkQd89AIAYNEmx03Cwo2+ut32T4+H8AFdSIBu2zjvYIUjB1hPyysB7poWnf3ghg+c19smEXjrxPXI+ug+mE+Mh7zzKMxXJ0D+dQywK/guFJl0NbD4F0dldcFoAHDSMya8DpMYRj9u4k+/7W51PnDF28HhN4Wa8IcMm6ALp9JSFF67UL8/LsmNcDCag+2vnyZYbOVWwVZnb6cjFc8ZeOE8A+cPd34N4sQ+e+inTVvkH4zmvu4txaHLEJEzTRUie8YB7hfw+hzBc987Px7LrzNgPncrqm46Dc+8n2tbNjehK7DBOmA5EnTHfQajUaSI1wtsWW897au3Y9ya6LG777ANRmujnxYP9yaBCh20abODoFjdMd5KblH9yi2x+dQ+PaXh8CkhAtsDldk8Vquo1r/BXhOoqnW1KCIiosZ4HcCZAeNuB7BAKdXb5b8Ui/rrdAUwTSn1p1LqFqVUf11BpVSaUuoaAAvh++FSf/eLyJpQL2pXmacCRk9RSl2jlGpwd6KU2gvAtwAO9RtdAOCeUMshIiIiIiKqF7/fJyJ/Id4n/mgFERHFBZ6PiIhaHwYqERE1DR5jqWVqhl3ZyYF5AI4DsIeIXC4ir4rITyKyTERyRGSuiDwrIscDOBDAyoD5b1NK6XtcBwejhU4XCBb4tezAOsN1FYDFLv99GqFlExERERFFxpolQO7asGZV+430/TH0EH2h5b9D8jc7qs/bkoLR7rvQvsD+RwH99o5NY6wkJuunGc1whQfqtzeQ3cu2yPFlM5Dh3aGd/uZc6wd0bRKBtslNn5YlX7ypnzhyHFRGl92DbZIUrhpp3ebsdODYwQEjT75YW/W40qno3ya4Z/VZB9bX36299bybC/VNbmra8KE42R1OHKYwfbzzxizJ9b2m2SuBwx8xce/nvgPs+/PDf/A8u+0IAIBM9217m4uc17U8z/e/w/yr3Yo0AVexpGuzR/N2KKXw3LmG9tz13PeCBRsi/7q+Weqszg+vMLDqmKk458mhwOSJwMcvQl68A3jzwYi3qc5e1cvRr3qVdvrc1aHreHGWidX5weN/X+/b3v0VllvXEYlgNADITNOfA3LyEBTU1hhOgtEGZFmXWZUPFGjWRZ12ycDGh0MfW3693UBKYnTOfbpgNwBYsRVYvsW3EsIJRtteBlTVNP1xhKglcHs+jJTrRoV37PnXe4JtJaH3f/OF2yE3jUHV+89j+LY7sSjF/h5tY2IPYENOWG1yQncKsQ1Gq45OW6iFqrU5oZa1jkRRu6NKul0wWjg/3RVF1bWC8qrQ5baXhi7j5mop1+9xQInNp/btAqJdrjlKIdlFyLzd+q4Icdxzsl6IiIgi5AKLcY8AWBvGP5sP2nYbBuBhACuUUkVKqTlKqalKqbeUUp8opX4DsAPAMwACnxi9LCL3uXhttwGY7jecuKvejUqp6UqpD3YtbwkahqJVAzhNRLa4WBYREREREUUcPyMlIiIiIiIiIqJmwq7/BYPYiSjG4qQrKUWSiHwpIjPEQY8/EfkNvi9yrQiY9JBSyuN0kW7bGOY8REREREStw+xp4c97+FgAvhAY9fQMfbmfvnBUXa3XenyC07uFOCEzPwBmTdUX2G8k1H/egFJNGK7lsemNajetmVBKAYePsS3TVnbi/m0TtNP/3GQ9PlMVw7xyJMy7zoUsmNWIVjbS55P10zp3Dxp1z1iFyw5XSPTbn/bdA/j+JgNJCQ23RdUhEzjjGsuqk6UaH9bcgoN6+4bbJQO3Hq9w3ej6OrpnWDdr85YymP/YG+Ytp0J+jK/ccFMTzGg0fQbebscNUXjnMoXMMOLeJ0wTGJd7sUizXTuRkzzA98em1SgtqcT17zt/3JKzK9jIbTBaWRx0aHcSTBVocDeFG461LmAK8Mx3kXlUVVwhuPUjE/vd58Xm4LzCBs4/RCF/konTFtyLrMfOBbyak24UKACnluj3+WmL7NeHiODqd/VlFm9uOK2wwrpcRqrtYlz57BrrR92FFUC+g/AJp5xsf3tmWm9ruUVAQZm+7j6ZwLRrDHTPUJhxnf7R/asXKBzYO7oHw78m6Jdft33sDCMYDQDySsKbj4gaCud8GAk9Oyl8cW14Hy9m32SitDK44SKC1+aYOPqm1dj7l3PQp99ypA4qwsKUfULWuTqpL7A+B7IrXKrWK7jzUxPG5V4Yl3vR5QYvPv8z/PO8bj3bBqOFeXykVsprs8FUxlnyVyPY7YV2j2I8hkJaivW0Is01ZlPRXfMGyre5Hqzj5j5ti19+Xolmk0lL8a1Lf706KXxylYE9dj0vCHX+sFvfDEYjIiICALQHcBiAUwD8A8CpAPYHEPgBTzmAy0XkCjeVi4gXwJkA3g+Y1AXA8QDO2LU8/7P6NgCniMhsN8siIiIiIqIwsVMoERERUeTw2oqIqPlioBIROcTDBRE5wWA0gojsAHAOGn4nfRCAozSzBH5d2+a3urUC53HwFXAiIiIiotZBwg1GO3wsVI9+uwfVvkcCew62Xsacz+zbUOnr7VirCSbyhHE3KVU74SC/OeLkt28h95yvL7DfSBhPfQ2V2TV2jbKSpOnpCwA9B8SuHVGkdgX32bms6HXttIJy6/GZJWuBxT8D338EufFkyO/fh9vEsMjOckjuWmBHnraMGrR/0Lg2SQovn2+g5GkDK+83kP+4gd/v9GBgtnVvZHX1I9r6hy55Fz9fWYCyZwxsfczAg+OMBkF/3dpb11ko7bBzw3rg5+mQO86EfP2udhmx1lRhH26dc5BvnT80LvYNW5XUFzVIgAmFYydsczXv6nzf/80xGM0bZmjenSep3Z3+A323vPHnJ9MUHPekiUlfCxZu1Jd74iyFiucMvHmJgYwnLwXefKDRyw7H9Tue0U77bZ39+lhXYP9B04qAzVEbjNbWdjGuHNhbP23N9sgtR3ts8rs26t7BukxVLbBqm3UFJwwFVj3gwciBvg159GCFa48O3qifOUfhkhHRf6w/pJvCoX2tp9VtH5VhBv/khggNJCJnwj0fRsIJwxRqXjRQ9oyBwicNzL/D+XFp9OMmCsoaHgsfnC74v/8KfijpjaXJg7Ehsafj+lYl7TpYTXkWAHDGiyYmflFf//YyYOyzJt6ca2Jntfvzve58ZxuMFiIgiKiBGpsNpirOkr8aoTGPgzpoPokuqoivbz7t0DyzCHTxZM0B3I+b9bWluL5w8U7rGdM1j5yOH6qw7iEDmx4xUPCE/bG8yCanL1QwWjzcRxIREUXYMgAPAPgJgNM02xUAbgfQW0ReCWehIlImImfDF4L2i03RHQBeADBURL4KZ1lERERERETUDIR8mBxfz9GJiIiIiIh4n0LUTDCxrJnie0MtE4PRCAAgIn8AmBEw+nhN8XgORnsewFCX/06J0LKJiIiIiBpNtm4AViwIa141/rHgkSPGWBf+4wdIRWnw8qe+DPO0PSHHdoT5zyNQm7/VcvYEF3eTsnk1zKuOghzXCTKuD+T9p5zPHAHyygTb6WrsZbFpSAiqTSow5ODgCWkZwIGjY9+gaBh2GNClh20RD0z8o+wDV9V2qvVLvKmphkx5LpzWuSZb1sG8ZhTkhM6QswbZF7Z5D5MTFfp2UejUzj7FQnk8UM9pQt9ME/Lk9WibrNAmKbie7powKADITagPBZS3HrZtQyzpwodUnAWjAYBSCrccb+Dhv8e2cTUqCWuTeuPb1KPwa1l3V/Nu3hVM5DYYrTwOOrSHG5qXmqxwzynWhfJK0OjwzpumCOatC13u2qMUUhIVZPViYOb7jVpmY2R5t+HaHdbHy5wt9mENy7fY1700t/5vEbEJRovcPtM5DUhJtJ62pThii4HpIIiomyYYDQD+2mw9fnC34HUx6XSFJ85SOKg3cFhf4J3LFK48MnbHmaMGWS9ryh++/3XBaJeOUDhjf307I/l+ELVmuvNhOCHW4fAYCm2TFdq3Vdi/l8JPtxo4bkjo+eavAzrfYKLHLV58tkjwzHcm/jM1/HPwiqT+AACZ/ABy8gSfLrIud/FkQYfxJk58yottJc6XpyvpUUBygvW0nWEGR1IrVWuzwVS2jmC0UFc3HTRhup8tiq8v8eiueQOVVyEoIDKQm/s0/9DZkkrrMuk2n+YrpdCtg+94bqeoQn/PFCoYrZyBkUREFCMioiL47web5WwVkTtEZASAdvD9AOlJAC4HcAuAuwDcDOCyXeO7iMhAEXlQRBod4S8iU0RkOIA+AE4H8C8A/wZwMYCjAXQVkatEJL+xyyIiIiIiokiJr+eZRERERDHD4AwiolaIx34iIiKKHAajkb/AX4jcW1MusOtaZzcLUUq1Q3AwWpFVWbdEZJuILHHzD8DqSCybiIiIiCgitm4EuvZ2PZu67WWorJ7B43XBaDXVwK8Ns5Hl+48hj10LbM/1fQi55FfUfmL9o/VOg9Gkugpy7THAX3MBrxfYngt59hbIV287qyAMUlkBWTgbsuw3yOJfgKXz7Gc46u9Ra4tb6or7gBS/Hr9KQV35AFSCJumlmVEJCVDjHwc8mgSBXbpUaVJjNDK9BQ1HzPnMbdNckdw1kO8/gpw5EFg0x7dt27nwdqgMV7fOesOGAz36WU/7bgokd43lpG7t9VVuTehSP7B+OaS4QF84hsINv2pKNx9n4J6xsW1gTtJA/NTmUNfzlVUBpZWiDXnSaeoO7bVewa9rrac5CYLZK9v6/amuBYp3ht+u3CLBkzNDf4i7X0/AMBREBPLKXeEvsEffri6bOgAAIABJREFU8OYbfgLUlFW7B08q/dKyWF6pgaIK/etZnmf/Wr9ZKqj1+sqUVQFezXaWoQm5CIdSCl01x7otxZH7gF1Xk/+xKTtdH+KoCwXrmBo8LilBYfwoA7/c7sHsWz045yADRgwPggOz9NNemmVqAzAO3hN4/woDfTWnvtwifuGBKBLi7VppeF+F6eM9+Gq8s5vF3CLglOdMjH+vcceE3SG/lRWYs6LWtmyNF/hqCTDmWecXQHZhvW2SrKftZAAQuWEXjFbViAvUOGO3p4cKv85sZz3+00XAB7+ZqK6Nj2uLHeXOy/623n562MFomk0mPcV5fTo1Xv3xLVQwWlHLyfgjIiIKIiKmiOSIyJci8oqITBKR+0TkURF5bdf4qASUichaEflIRJ4RkYdEZLKIfC8ivCshIiIiIiIiIiKiZi4+PgcmIqJI4/GdqHmw2VcZfEtEMcZgNPK3LmBY12t7ZcBwL5fLCSy/Q0QKXdZBRERERNQiqb0Pg3p/OdTk36EuvRsYsG/omdqkQp10ofW0QfsDnbpaTpLfv2s4/OXkoDJPpFxsOW+CJ3SzAAB/zgHyg0Ou5Jv3HFbgjiycDTl3KOTa0ZDLD4NceaRtefX2Iigjfm6N1b5HQr38E9QldwHn3gj17LdQYy5p6mZFlDriFKiX5gDn3QQccYplmQ5eTWqMRlAwWhSZz90GOWsvyF3nOp7HuOzuiC1fKQUcPlY7Xc7aC2LxkDk1GUjR5OsVeDIbjtiwojFNjJh4C/tw6s6TDXx3o4EDdj396JNpX76xlicNQE7ygLDm3Vzo/jOJsqqwFhURmwoFB0w0UVppPd3JtpGVrp+2tSS8dgHA+/OdrcjD+ilIcQHk2tHAT1+4X9CBo6Bufg5q8h9Q4x9zNau69G6ohz6GytoD6vL7AAADq/X7e06evq6FG+2XVVgBzN71BLHQJiAiwyIMrDF0wWjTFkbuwze7gJw6CR6FrDR39XaK8LqIhP5d9DvVle8I1mlOv3XnG937kevuNE9EGtprpSa+vTl2iMKK+2PXiAJPJ98f3losXeXsZD5/HbB4s7Nzg+5ayVBAG8319c4afumDXKi1yayYPzN27Ygyu/uOUMFo+/fSFzj7ZcHAO038uqbp97sd5c7b8N+f7cu6uU8rKAd2Vvtm0IU9tw/8ybIwbS21Hh8qGK2grOnfHyIiIiIiIiIiouhrLc/BWsvrJIoR0wvUlDV1K4iIiIiIIoj3jURERBQ58dP7m+JB4FeldV+RXhYw3M/lcvoEDC91OT8RERERUYumlILqOxTqotthvPYL1PVP2pd/fZ5+mmEAhxxvPfHrd2G+fBfMZ2+BzJoK/PJ1g8m/peyH3MRulrN6HN5Nymv3Wk+Y942zClyQygrIxEstg9isqBueguo1KOLtaCy152Coi++AceUDUHsf1tTNiQo1cF8Y/5wIY+IHwKEnBk3PMItc1detNjdonHi9YbdPx3zhduC9J9zNdPTpEW+H0gTK7fbZa8HzKIXMdtbFt9eFSewic78Mt2kRZZrW4+M9GA0ARg5UmHeHB+bLHqx6wIOXz49eo3OSByInSR+M9sRZ+mXnFrv/2LG8rAry8Qswx/WBedVRkJ+nW4bxRcP4/2fvvqOjqP42gD93Nj2BJIQapAjSBQTBgqIodqzYey9YsPdeXhV7w94rVn4o2LuIiCi9hd7SSEIS0pOd7/vHElJ27uzMZjdswvM5h0N25rYtc3dmd+bZKSYWbtKvdxIE09EmrKopwWhLspyVO363bMix6cCCma77ULe/BuOpr6GOvwQqNg4Yf6Xzujc8C3XBHXVhoGfeAIw9DV1rMpFoWp9cufzxSTAv2hfmE1dB3noIsnIBAMBrCr5eFPg5n7bAV2Zrmb5MaoLju+CILojr+6WAqUsQcsnp3LRbqrt2u6ZE3uTWvzMQ7TQMt564aN99Sdfcpyx3b/NEpOGN4H2lPToqvHF+8wwkz5O2Y3+mstD5m/mPy5y9L9gFYuqD0RwPgwiosX/BSHWAxKlWINBscewQ+xLr84EL3jJRVbNzT6q02+9t7KM5Yrt/6nbXdU2e7/9iTYh02zhn7dx3vP1j/dAM64GVB3iZ5vF6LiIiIiIiIiIiIqIwCPRhMsMImkVlATB3IvDNMODPM4E8/fm8DYgA824FPm8PfJYC/DgGKPM/D5KItsv+EfjlKN82893+wKpXd/aIiIiIKBjNdN0BETWR7bbK7ThicY6lVorBaFRf+0a38zTlFje6PUQp5eYyxsZX9jduj4iIiIiI6jv+UqDXIOt1J1wCtZt9VrHqpllfUQa8Nwn4+FnIXaf7rf426Qhtm1FOjyYrXFwV2lR/fQNkr3dW9vAzoE66IrzjIWc69/BblOwtctXEIaW/+S8sD+1VtzLlGeDDJ13XU+MuCOk4AACD9rVdLY9fBdma67fcaTAa3n8M8ueMYEcXMroLwSMh7MOtS0Yb2DDJwEtnK0wcq3Db0fo78cJZCt9ea+DZMxReHb8NL2ddhcdzbkWnmhzL8otjB2JVTG/LdY+cYOLasQbaJVr3taFAtCFPOiV//wF5+jpfCOWiWZBbToTcd07Yw9FKKwVfLrAv4+S1kRCrkBRrvS53m/tx1crcGvj+D65YhINvb/x7Ac6oz1ZCHXNew2WGAfX2v4ErH3+x33ueioqCuvddeK59En2rVllWW54DYOV8YNrrkDcfhFy6P+S7D5GRA+SXBu525srAwWgpup9lCFKntvoXwVyHuwiBOJ2b+nV2PllFGcABbn96ohkkJyj0TAtcrrHaoCBdUF1WEb9wIwoF3XzkiZCdpdNHKHRuG7r2BlcsslxeacShbPtXVFk5zo8/nb7v63ZxDAXE6YLRWn+OFYVSTY39+nkWx7stkN27vwowbR3oYD9pRQ7ww07+Ka4CB/vI9dntn7o9vFqR7ft/myYYrU28s/eGU4bbl/t0rlge+5VW2g+YwWhERERERERERLTLa3EXJba08RLtJDXlwM9jgYznga3zgfVTfLe3zg9cd+kkYNljQHUhIF4g9zfg58Na4HxB1AxyZwK/jgOyvgMq84H82cCcy4GMyTt7ZOQI5zUiol0O92mJWj6b7Tjc1w4RETXGYDSqr/GV1ZY/NSEiWQAW1lsUBeBAF/2MaXT7Gxd1iYiIiIh2OSoqCurBj4AuPRuuOPo8qGufDtxAh65B9Zvr6ahdN6y7w4vt7T4I+yu0hwLy5ETHZdUpV4e0bwqeSmmc0Q1UKk1qkcaICotgoLLASQeSuRbmgxfCHB3r+3fxfjDP3xvmtUfCvP0UyJK/feV+nwaZfKurMSEpBeqmF6D2OdxdPQeUUlBvzbUtI8d3gzR6DHTBaFui/J8DefE2iNvErBDTzR5GC/00a7dUhcsPNvDM6QYePsnA9GsMpKfUrY+PBh46UeGKgxSOGKRwzaEGLh6QjUsK38L1Bc/jwdz7LNudGz8CZYZ18tmotpsAAD3aWY8pI0cfqqJTWuPxX/jzZ8Cf09015NLKXMAb4CXpcfja6KQJackpDv4LmswAeY7xZhneyLochtuTfPY6yBeK1qm75WrVe0+oe98FOnbTNqFOv9Z6uVLASVegn1gnMmTE9Gm4wOuFPHQhNs5f4Wjo/20Azn3DxPiXrJ+4pFggOiq04T0je+rXvftXaL6AcxqM1reT8zb32R1ISYiMIKPGZt/uftKtDQrSbWuREIyxNk9w/psmDnjUi+s+NpFZyC9oqeXR7apFSC4aEmIVZkxs2o5brOHFjSUvoWJZG3y8+Rxtudqg36yCasdtVwXIoqqlm/eVAhI1hy1lDEYjN2oCvGDWL2+ecYRZU86FMgyFX28KPJ+Ean8vWHaBwFY2FujXuT1OW5Hjq1BUZl2xbZyzdgamK3x1tf6xLqn0HUc2Fmjei4T9PyIiIiIiIiIiIiKikMv9zT8EraYEWP1m4LobPvZfVrwMKFocmrERtSZr3gJMiy+kVr7c/GOhZsTzuYiIWifO70REROROC72UlEJNKRUHYHyjxb/aVJna6PaFDvvpj4YBbKUAvndSl4iIiIhoV6a694PxyQqob7dAfbYK6qdiGHe8BhUdE7hy+y5B9Vml9G1fMMppMJo+xUZuGw/55XO3w7Jua+ZXQFGes8L7Hw01cGRI+qUQSE7zW9S3KsNx9Yn5z8Py1RggGE0y10IuHAl8/2Hdwox5wJrFwH+/AjO/glxxEOS9xyB3nuZoLOqWl6A+WAj18TKoGVlQJ1zq+H64pfYYDBwwzraMXD0W4vXuuN0+yXq7zff4B6NhQwawwVn4Ubi4CfuQqkptO3brdqZjBitsnGRg3SMGVjxooPBZA3ccY8CofwcLcnf8uXfFf677SF07BwDQv4v1c78iW1xfcF9iWCfsyTfvuWvIpSveCxzU5zQIpmMb6+U5xS4G1Mham7cgj9TgjczLMbzCwa/BHnUO1O8VUJ9mQM3IgvH8D9pQtFrqsNOhpiyFuu1V/5X7HQXVvZ++rseDvukWYXcAVsT2tVyeNXmS7Xjq++BvQaEmICI1wXEzjo0frn8RvPirYM7apn+Zrg3IafRFff/OzpOJeqZFSIqRhdREhefOcDe+2mC0NE0gZ35pEwcVpG0VgopqweLNgr0eMPHebMFfa4DnfhKMfdJEoSZIJBARgel2MiUKAa/DoMadaVh3hUX3ufsq8rns67F0xFtY/qCBohei8dj7VyL64yVo/9EsbZ38qDRUqhgskt0d95MVINS0li7MSQFI1Bwyl0Tm7idFqhr7QD/ZuLKZBhJedsFoTqatg/oqDNNnAQMAfsvYue/JW13u4+SX6sfq9m5kZPv+L66wXp8c77ytcUMU7j9e/6zM2+A/uNIAwWj5DEYjIiIiIiIiIqJdAr8zpOYW4DXXlF8tIWfm3Wy9POP5wHUbB6rVWv5M8OMhaq3WT7FeXrTY9jx1IiIi2ll4LELU4tl9phDCzxtsuwlZL0TU0jEYjWrdCqBrvdteADNsyn+wvUyt8UqpPg77qe8TEdGcok1ERERERI2pxLZQnbpBxcQ6r9Q+Pai+qlS05fK+nXwXuDuiSzbavk4+fjaIkdWRshKYkyZAbj/FWYVTr4Z68KMm9UkhluwfyjXCRQDUQ1vus15RGiAY7bPJAcPTAEBevdvZQEaOhTruIqju/aDSe0EZ4f/IRT38mX2BlQsgr92z46YuoGaLVTDa9vo7k+5C8PphHzLjbZin9YUcngJzwsGQdcvq1v3yuW/dYckwLx0FWf5vmEfsnlIK3dMU+nRSiI7yn1flpTt2/D2ociniTU3ClEbKf9MBAP06Wa9fnu3+gvsyQ5Nm9fs0SIBQh2BlFwnmrAtczmkQTKe21suDCUbLLRYc9YwX2zSfbnmkBr+tG4vTtjkLAlWnXwulFFTnHlBt2zkeh4qOgRp3PtSDU4C9DwF67QmccT3UQxa/LttI/+HWITKronujBv6haVlRnR2Py84eHUPSTANt4hQOsvmE8t4vm34inHZuenwCzGO7wnzlbojXixE9nbfZNbXJwwqrqw5ReP0850lLsVG+/9MSNYGczRyMMXuNYMh9XiRPNJFwlYkh95t+2+yKHGDafPdfn/67XnDIEyZiJpjodosXH//Dky2p+bgJkd2ZBqUrzLqqCJ1rsv3WdarJ2fFvVNksvJt3Ja66cBD6XXox+nZSiIlSUIYBlb47Utu30d63PE8a/orfF6WaAFcrmYXOtnm7fdKkOOt1pQxGIzcC7UO3lmA0m3XK4bw1doB9wdxtcHTcEC5bbYLOrNiFxbo9d2xFjq+CLhitrYtgNAC4+1j9ZxqbC/2XBZr38kp4mhoRERERERERERERtUIla3b2CIh2DV6b8yYZAtkC8DkiIqL6+L5ARBQ+nGOpdYra2QOg0FJKnQvgexHJcVHnUgD3Nlr8tois19URkZVKqXcAXLR9UQyAt5VSY3VBZ0qpEwBcUG9RFYD7nY6TiIiIiIiC1HG3oKpVqRjL5aP7uLjSPtAvcS3528WI6jUrAmzMgFx5CFCUH7iCxwN1z7tQhzoMUKPmk5zmtyhWqjC69A/8kTjatmrPqnVIkHLrlZtXA4P28VssBTnAiv+ATx38KqNT3fo4Ch8KNWUYwKOfQ247WV/ogycgp14DldYZHdpYF9kYbT1HyAPnQx1+RghGGhxdCIVa+jckJhfYmgt54uq6FYtnQyYeAXy0xBcKd89ZdeuW/wu5/mjg/YVQaaEJdQoFyc/2vR4r/T9KkTk/AMv+2XE7Cl7sVbEAfyXs77j91P++hJQUoU/uIgD+9TZvFQzqYl03NgqorPFfXmIXOLJxFbD7AMfjc6r7rc6ChhwHoyUrWH3gv6HA3ZcAIoIzXzPxywp9mUVrhqNv1SpnDZ54GdQeQ1yNoTE15iSoMSe5qtNv/z2Bn/zve5URi3XRPbBHdcOTOLNDFIw2omd4knvG9FP4faX1c/ndEqCwTJCSEHzf2iAisxooygPefwyiFHa/7AEM7AIszQrcZteUoIfTLJRSuOhAhdF9BAdMMpEXINgsrXgNZGE22q0BgP381pdUApXVgtjo8KU3lVYKFmwClmQKLn/P2bb9zzrg/FHO+ygqE5ww2UTm9nCQzYXAma8JOrYRHNJfoaBU8N96oF9noFu7CEuqolZBd26vJ8J+EklWLcQ+L1+DTStn2xc8bSKMa17RrvYYCqkJ1kFCBZ52KFfuUn+yi5yV080gSikkxliXKGEwGrlRXWW/fqPDfckIZ3c9gtNgtP4OdkOnzRfs12vnvO8WuMuxRoFNMJrbAOuM7WcGFGs+ImmrCXK0c9gA4Mdl/suXZAI/LhUM3g3o1Nb3WJcFeBlvdfnYEBERERERERERtT68KJGIiCg8TMDixz+pFWDoHRFRC2Yzh3N+J2r5uB0TUTNjMFrrczGAV5RSnwL4BMCvImJ5WrVSagSAOwA0vlpyM4C7HPR17/a6qdtvjwLwo1LqEhFZXq+fWACXAXiyUf0n7cLXiIiIiIgoNFRcAqT3YGD1Ilf1qlW05fJoN98fO/iwS7xeKI/zRqWqEvLwJcBPnzircMZ1UIecAjVwpOM+qBmldLBcfHv+YwGD0U4p/ly7Th68ACgthjrp8rplX7wEef5moKY6mJFaUlc+ApxwKVSCJnUszNQBx0L23A9YbBM0Mfs7YNz52MP6oUZGTB94YcAD/7QfycuCaq9JzgozryZ8SP04BfLpy9Yrt+YCc36E/P4//3UlRcCf04HjLwndIJtAPnkO8uLtgNcifUxjZMW/joPRYs0KxEsF5OFL0H5DEmBRb1uFoMa0Dg1oGw9s2ea/vFQl6DtdvzzkwWibtwpqnOWiOQ6C6a3ZFlZkO6tfa+562IaipdXkoXeVs1+GVfd/ABxiE3IYRv06WQfFAcCK2L5+wWhZoQpG6xGewIpTRyg8MF2//3HuGya+uib4k+F0LRv1w2C/eQ9yyX0Y1l1haVbgfaGuKS0jNKtPJ4V5dxt440/B8ixgyj/+922PqlXoftUQCIB2sQOBXnMt28ovBdLDFAj341LBeW+ayC52V+/z/wQvnBW4XK1X/5AdoWj1Tf7FxMpchas+lB3vZRPGKDx7ukKUp2U819QyaENkI+RlJmUlkFtOBBb8EbjwyLFQVz8WsFhaknUwWp7HP2w5EKt2rGgDMRWQqAkaChQQRNSAN8Dxac4GSGU5VKy78L9IY7dH5HTa6tdZv99a68sFgkfGOx1VaG11OK/UyrcJm9V9nJYYC5RahC8WlAJ52wRFmmC05Hj3bw7pKdaP99uzBG/P8i2/c5zCA8crlAaY98pD9zEMERERERERERFR5NpVLgrdVe4nERG1DHxfIiIiijx8fyYiIqIQYjBa6xQP4Lzt/0yl1EoA6wAUAfACSAMwFEAni7oFAI4SkYCXgorIJqXUeADfAYjZvvgAAEuVUv8CWAMgGcBwAI0vOZ0O4G53d4uIiIiIiIJ24LGug9GqVIzl8hg3R5KmN3CZmirA4/wCX3n7/xyHoqmvNkOltHfcNu0EHdItF7f12qeZHFD2J24ueNq2jDw1Edh7DFT3fpBVCyFPXxf0MP2kdYH6Yg2U4TCJKYzUw59Cju+mXS+bVkEB6K+5iLzSiMP66O7oVb3Ov/LqRUAzBaNVVgu+mCeYu973XdjSLOtySab91eYy5Wlg6Rzrdd9+ALWTg9Fk6T+Q9x4FZk53XXfv8v8cl001t6f1/PElUuKGAbtbjAUGCreWw/dRUkNJsdbBaGVGgGC0EJv8q/MvRg2H1/r37Wi9LawvAMqrBPExzhr63zz7sR1b8o1l4GDDQhdB3fIi1E5MsUmIVejeDthQ4L9uRUxfjMO3DZblejTJci6N7BmSZvwMSld4+CSFO6ZaPz8zFgEb8gXd04J7zLVBRPVfU3mZQGkRuiQnO2ozXAFh4dA1VeGeY32P3Z3jBMc9mIN1Xt9rIsW7FR9sPn9HuEn7mnxtO/klge93brFg2gJf+NgRAxX27x34OdtWIbjgbfehaADQz+rTchv3f2X9YvhiHvBFo/nhpV8Fw7sDFx8YIYlVtINp+gLsvOILwPKKL5y1wb8Ay0zXdcS/rss2TAHmrrd+DUbA7ikAQCZd7iwUDYB67EtH74Xtk4CMHP/l+Z40xEmFq/EVlPqeC0+AHQjdu71SQKL1ITNKK3liF7ngJLh702qg957hH8tO4nRXeFA6EGXANjh5WRaQkSPo26n533N14V9JsUCJZZiZfq7Q7XMO6OwLaLayIgco1kyFbYPI1eviYFf2/2YI9ttdBQyEZGAkERERERERERERURgEDBvgd1ZEtCvgXEdERNSy8L2bqEWw/cyB23HEYjAltVIMRmv9DAD9tv8L5CcAF4jIJqeNi8ivSqmTALyNuvAzBWDE9n9WPgJwqYg4SEggIiIiIqJQUCdcCnnnEVd1tMFoHheNmAECYQDfRcCxzq7QlM2rgfcmOSqrbnuVoWgtgEpOg/QaBKxZ0mB5kujDr+7eJxN3vHM0olETsH35fgpwwZ2QC0c2eaz1qXNuiohQNABQqR2BH4sgh2muWhbfdtjXJvAlI6aPdTDaxpXAvkc0fZABlFQIjnnOxMxVgcvuURWgUK7NxxprFrsbWIjJ5y9Cnr0h6A+bB1Q5Dx5L9W7d8XeKt1BbbmtuEayC0XRBH+VGAgSAVcyALP7LcnmwJnxg4pXfQh+M1q+z9XIRYPUWYM+uztqZNl8/NgXBxIIXbOurx/4Htf/RzjoLs/6dNcFoSUN8P6NQT56n6e+taYlAj7QmN6N129EG/ljpxTeaTf692YI7xwUZjKbZtTEah+AV5qFrqrNgtA5tghrKTjewC7Bg3b74FXuhSsXiiJIfkChlO9a381q8qLbLt8+4xMocweFPmztel/d/JXj8FIUbj7B/7/38P1+QWrjlFIvrgI9L3xWcMlyQnODutScilsFbTQnU8ltnWUfsw78c9ms3Tv+xCAKO1cGyBvUClG+NPBGQvydL/gZ+/sxRWfX2v1BRzr6uTEu0Xp7vSWuw7+OEKUBhGZCWFLicFUMBibHW66wCkIi0agIf12LTqhYfjGZ3COR02kpJUBg/XOGTufbHCNPmC24+svknQ937Ssc21vNCrkUQdS3d3NMlGWgTB2yzCECbt0G0Y2gTp+9Lp6vD8N63Z5koDTDvMRiNiIiIiIiIiIh2eS3tosSWNl4iItqF8T0r4nG/gohoF8S5n4iIiEKHwWitz7MANgM4AEAPB+VLAXwPYLKI/BRMhyLytVJqTwD3AzgdQKqm6GwAT4jI58H0Q0REREREwVMdukLGXQjMeMtxnSoVbbk8xs2RpDhIG6gOfHWk5GVC3psEfPGyo27VRfcAR5/rqCxFgP2P9gtG61u5EsneQhR5Gl6J2yYOuHlAhqNQNADAgpnAt++FaqQ++x0FnHhFaNtsIhUbB+neF9iQ4b/S68slT4pT6JIMZBX5F9kc7Z8EJQBeW9gO3+T46l9zqIGxA6wvLp+9RvDEdyZKq4Cj9lSYcLBCTJSv7O8Zgld/FyzOFIgAfToCVx1i4JD+dW29N1schaIBQP8qi/tYX16mfl2aJhErxMTrBb59H/LoZXULUzsCW3Ob1G7fypWOyyZ7657oFNPiSd+uoAyWSQS6oA8AqFSxiBOLK99nfwcp2waV0PSUpylz3IWiAYDTrMJe7QGPYR1csCLbWTBaRo5gaZZ+/bu9p2HoskXWKzt0hbr9VaiRhzkbcDPo21nh+6X+j3fGkDOAbXc0eO1uiWp6MNoh/QClwhtWcdMRBr5ZbL0f8tUCwZ3jnLdVXSN45y/Bp3MF2cXWZYzG+zxF+eiS3NtR+7qgn0glG1dCJk0AFvyBRADj8K1luRhUo423GNs8bf3W5ZXY9/F/X4tfWN9tXwguGCVIS9K/dqbMCf5kiqJy52VnLAyun9TrTPRq7y74SxeMQqSzs7N7JXMN5IqDHJVVd70F5SLsybf9+28U+Z52iLHaNwkgryRwMJru/FylgCTN/lKggCCiBhx8JoItm8M/jjAL1bnur5yjUF4lmLFI/x556+eCm48MTX9u6MbTrR2wJs9/+cocfVu6x8tQQL9OwNz1/uvm22SE6+YrOyN6Ws+5jX3+X+C2GIxGREREREREREREREREYcHQrVaMzy0RUevE+Z2oRbDbz+Y+OBE1MwajtTIiMhXAVABQSqUAGASgG4BOABIAGAAKAWwFsAzAQhHxhqDfXAATlFLXoi6UrTN8wWubAcwTkbVN7YeIiIiIiIKnbp4MWbMIWDbXUfnqUASjOUlyqLG/OlKK8iGXjwZyba7wrEd9tgqqUzdHZSkyqF57+n29EYNqXLb1dTze/qYGyyeMUUisKnT+dci6ZZDvPwrFMH32PxrGY/8LXXuh1K2PdTCaWXfY3zVFE4wWlQ4vDJSreCRJKQDgxo6T8Fz2aUDBxMzBAAAgAElEQVS2r8yXC0y8eYHCWfsoVFT7QuqUUpixUHDcC3WBQN8tEfy3HnjnIoUflgqOfd5Edb1PHhZtBqbONzH9agNHD/aF20x3GDDTriYf7b35jspaSukQfF0X5NW7gQ+fbLiwiaFoAJAkpegWX4qN5YFTlFLNwh1/1w9Ja6xAklwHo5WreOtgNAByzeFQb8wOOD47BaWCs153/2WJoclKEhEopSA11VBR0YiOUugVX4SVpcl+ZVfkCGofkNp6VqbN149vwyQD6e/+ab2y1yCot/8NeyiYW/01mYHLcw2oj5dDjmgHADChkO9Jsyz7UO49uLfjvfDCY9uXUsDtx4Q/tWdMP/26OeuA7CJB52Rnz8ONnwle+Nn+NWmgcTBaHrp1Dhwm4TGA5HhHw4gIkrUOcpaLECNvgWUwWn5J3bZm5d2//B83rwn8b77g4gOt65VXCX4NkJ1px00w2pcLgv9C1yoYhSiU4nbiN3+yrRBy+gBHZdXEJ6COPMtV+7oQs3xPO20Q7D49ffO+Zb3SwH3ahRPp9pdKGIxGbtRUBywieZk275otg907p5td4+QEhWlXe1BYJnj0W8Fj31q3/PzPJq45tHmTIq2ClwGgfxeF3zIsQh1LgbxtgvZt/B8A3cdpSgH9OivMXe9fYFmm/lGOs/6Iz9a+u7uvo1NWZX98RURERERERERE1DrwolCKNHxNEtGugHMdERFRxGFoElHL10zBaJwtiMiJnfy78RROIlIoIn+KyBQReVZEHhGR/xORySLyoYjMC0UoWqM+q0TkFxF5W0QeFZHnReQLhqIREREREe18yuOBmvQ/4MTLgF57AnsdBPX0N8AR1hejV6kYy+Ux9nknDTn5sKvaPhgN37zrLBTtgHFQ7y9gKFpL1L2v5eKHt9yDR5M+wl7dgJE9gcdOUXjkJAWU6EOe/BgGsOAP5+WHjwGGjvZf3qMfcPZNUA9Ocd5Wc1Oaj3mk7ursrinWRR7ocBdiB5Qgpf8W9NhjJd5NPhuvpF7qV+6itwVxV5pIudaE53ITxmXeBqFotd6bLfh3veDJ7xuGou0YkgB3/q+uXkaO/V2rNbxinrOCOuUO0i+aSHI2+oeiORUdAySn1f2LiWuwWt37Lvr1DByKBgCp3q07/o6CF0nebZblSg3rhJEE67cAAEC5YZPilDEP4jDIUmffhzWJAgF46m0CkrMR5t1nwhwdCzkozvf/IUkwR8fCfPUe9M22Di7LWF2IH5YKjMu8O17jxmVe/Ly84fuZLhht392B3VJt5qk9hkZkGEC/TtZj2rINyKtJAA4YBwDY6kmFV1kn7hxW+jO+M6/Dof2BwV19y7ql1gVdGAo4tD8w61YDw7qH/zFQSuHfu/QffzsNZFyeJZj8S+CyfsFohfnYuweQZBMyCABpiYChS/WLQPLafa7Kp3kLLJfbhRGZNsG6Py7V1/txGVBV43Rk/pwGo1XXCH6wGQfRznbAHuGfU2ThnzAvHw1zbDLMs/aEzP0JsjUXckwnR/XVba8Ap1ztut/2umC0qPYoVQmW6/p3UYjXBALlWe8eNaA7pFVKP8eXMhiN3PAGDkZDXlb4xxFmdh8PBbN7nJKgcN5++oq6wLRw0gWjDeyir7M823q5bvSGAnpY5xRj9RZ9P8GEZiqlcMGo0LyniACVTdhPIyIiIiIiIiIiIiIrvHy4deLzSuQOtxkiIqIWhaFpROQQp4tg8EGj1mkn/m48ERERERERNTeV2gHqxucbLtz7EEh1JfDL5w0WV2uC0aJdBaM5CLepsb8IWOYHDrVSr/8F1W+401FRpNEEoykAN215Arc8dU6D5VLqIhitwGHiVlQ01IwsqIQ2ztuONB7NxumtSyZLT1UI9EHn5uiuuCj9tSYP555pJr63CY6ZvxFYs0WwWyqwLt9Zm8eUfNu0QZUUNq2+E39MC6qauukFqBP8w+ga659n4sdlgT+sTvU2vK8pZhFKPM5f34kx+tdKhQqQ9PTHl8DJVzruq77fVojtBf12arOlxDQh958HLJplXfC9Sejb8WHMwDF+q76dV4F3F/m/dx32lIml9xvo30Uhp1jw1xrrpk/Ya/sgdMFoScmB7sZO0b+zft2l75qYOvp4yJ8zkOfRpDAA6FCzBSNWvYNDXpscMeFvw7or9O9sHTgxfaHgEosczMbe+UscfalmNN5eivIQE6Uw6WSFqz7UN6AL+YlEUlUJ/PCRqzrtvNYTvF0wWqFNQFmcJtwIAKbO0z/OHgOYfo2BIwcpfLdEcPSz/tt5cQUgIgFfv5sKgXIHGTZEO8Mh/YBxg8PbhxTkQK46tG7BxpWQ6/3fU3XUlKVQXXsH1XeaJh8239MOZYZ1MFpCDJCWBGza6r8ur0TgO+rQswsnStQEyZYwGI3cCBQWDwBbNod/HGFmtzsV7J7jgC5A93bABosc1s2FQGGZICWh+fZLddmu6ckKbeMExRX+69YXCA60eAR0IWtK6QPPc23CHu32oez0szlOcGvyL4Ibj4iM4wQiIiIiIiIiIqLmx4sSiVonbttEOx3TEloAPkdERLsezv1ELZ/Ndsx9cCJqZgxGIyIiIiIi2sUppYD73oc0CkargvVVkzFujiTNpgejYUOG/frhYxiK1sKphDb6j0zXLYOUbWsQWCb5DsPO3BgzvmWHogGAMqyX1wso1F1AHQ7fLA5c5quFgqMGKe1F3/XFm2U4ddsXTRuULqwqRKSiDPLsje4qjRwLdc4tUMPHOCrer5OzZlMaBaMle4uwKXo3x8NKsMk+K1fxtnVl0V9QQQajPfadgxeDRlltpsTcn/ShaNv1q1ppuTw3Sv8AT/5V8PyZCj8t0wdlnRgoGK1NM26ELqSnAEmx1kEuXy4Aas4+AZ6kW7HF217bRgdvHiA1wO/TgINPDONo3TluqMLybP8n7IelQHmVID7GPpzhk7nOvrgzGoXBSmEeFIAJYwz8tdrE+39bt5PWkoLR3nzAdZ32mmC0vLWZAKznpGVZ+vZiNaEemYWCt2fpn6u5dxoY2s33XCdrpjCv6dsG2sTp+weAvBL79US1PMb2f6re39v/GUq/zm6ZoVmXGKtwUF/g7H1VwHmtqeSE7sFVHDMe6vpnoNo53JmxkJZkHdya50lDqWGdmpYY6wuhtA5GC9yn3SFtYqz1eEoZjEZuBPpMBAA2r3EU3hnJ7M6FCvZuKaVw3FCFyb9YN/7TMuDkvYNrOxi641qPAXRrByzJ9F+32WJusm9LoWtK4MDzxoINRksPYa7zy78JbjwidO0RERERERERERFFnl3lotBd5X4S7Swt9/sgop2D70utF59bIqLWifM7ERERucNgNCIiIiIiIoIyDMihpwI/f7pjWZWKsSwb43HRsDgIuKmu0q6SbYXARuvwmlrqrBtcDIgilXrgQ8g9Z1muk6evh7rz9boFc74Pbee9BkFd8X+hbXNnMDQbp+nd8WdzBqM5cf3Hgh4TAp/MFWNW4oXs69ClJrtpHZYWQUwTytCEyDWB5G6CnLWn8wqGAXXVJKjTJrrqp39nZxfBp5oNr7Bv5y1w1U+iXTCaYR+MhvLgUoO2VQh+Wh5UVQDA6rVFMF96HPjwyYBl+2iC0ezMXOl73K0CDQCgT0egf5faYLRCyzIqKYTJAiGklMKQ3YBZq63X/5mTgoNveQl5T39uuT7BLEWClAMA5K7TgV/LoDxudhjC57ghCo9/57/NlFcD3y8FTtgrNP2oxttl5todfz56stIGo/Xu0DJOaJWyEuCDJ1zXS9PMPfnz5kNK2lhuE1d9qN9/jNeEepw4WV/n8wl1oWiALyBJZ10eMDhAhmTeNvv1LYlSgYO5/IK4XAR5GZbrVMOgLxfhX4GWNain9H1ajjOIkDK7x8cwWsa27ZbM/Tmoeur/PoE66IQm96/bfsuMROR72lmuS4jR18svDdynbq/LMHyholbKqwGvKfC00tcBhZiTYLScDcC6ZcDuA8M/np2gKVvKpPH6YLRTXzFhvtp8+6SmZsLwGL5jcavjiExNnrJdyNpuqe7HFmwwWtdU9yFsOqu3hKQZIiIiIiIiIiIiItohwOe3dr9aQiHC7wOJdjon56kTERFRM7M7FuFxClGLYPeZAj9viGB8bqh1YjAaERERERER+TQKMKlW1ldNxrg5knTyYdd/vwJ9/VNJpCgfcmy6fd1+w4ERh7kYEEWs/Y/Wr/vvlx1/SmkxsGZJ0/tL6QB1wR3Abr2BvQ6Cig0Q9NQS6MK+zLoTP9KTI+9DzvEv6U9MeTr7RqSYRRhdNhM9qzc0vTPT9AVWtbUOzgiWLP0HcuM4oLLcvuBJl0N17wvEtwEG7+/726X+nZ2VS/E2vMI+vSbLVT8J1tmYAIByFWdfOT+4ALvvlwBVNUFVBQB0/uoxIP8pR2X7VboPRluwCRARrMi23o5G9Kx3smOJJuEgKcLSCes5a1+FWaut79u0+YIxp4/HlrKDgWn+6zvU5DW4LQ9fAnX3W+EYpmv79wbSEq3Db0560UTVSwaiPPoTVQschOYAgEKjuWzDih1/pqconDZC4ZO5/o/vmfu0kJNkf7d44h3QhTLme9oBv00Fxl3QYLlpChZu0rdn9QqtqBYs0NSJiwaOaJQh06MdEO0Bqr3+5ZdnOwhGK3H3XnriXr75ISUhUPCXchTKpQ//ch9SplQLef1RRJDKCsj1NvvsOiMODUkoGuCbz3U2RVtvvAnzf0D7LofDagbJc5Dlqgs6UrAPki2rAtoE2GUiAuAsGA0A5v/eooPRwnUuVEKswp7pwGJNePHLv5m44uDQB2NbsQszS0+xDhjL3Gr9wGjbUkBXl8FoSvn2fYKRHpm5zkRERERERERERBR2kXd+ERERkTW+Z0U+PkdEREREREQUPAajERERERERkY/R8CrJKmWditM4GE1EgFkzIF+9CcQmQI09te7CdzPwL3HJ5FuhzrjO9/ef0yHfvA+UbQP++dG+4oCRUHe9AeUJ8upOiigqLgESEwdUVfivzN0EqaqEiokFtuaGpr/zboU6+cqQtBUxDM22UG877NrWC6BlbDOHl/yAa7a+FPqG5/wAHHZ6k5sRrxf4fDLkr2+AuT8HLK/u/wDq0FOa3G96CpAUC5RU2pdL9RY2uN3FZTBabJTvAn6rC/LLjQBBghsyICKuA3e+Whj4BJhuqcDGrdbrjiz5wXFfnbw56FG1HutjejiuAwC524Blmty3fttD60QE2KYZZGLkJgtccZDC1R9aPwdfLRA8fTqQh1RYnajUwdswGA3ffwg59GSoA44Nw0itSV4m5PmbgZ8/8y047HSoiU/Ck9oB44YovPuX9X2LmWBi3GDgiEEKbeOAqfMEuduAvXso3HaUQlGAvMNaRuNfH920CuL17thPeeFMhZIKwdeLfavbxgGPjFc4fGBkB1PJtq2Qtx4CPn0hqPq6YLQiTzJk5nSoRsFoVgF29ZVazH0rc6xDzgBg7+5AYmzDxzg6SqF3B18IWmMrcgSBftE50Bjr++AShTP3aZ4wFqKwm/pyUNXUPe+GbAjtk/TrsqOs02MT5n6NdsfsDcA/SSjfQdChLsxJKd8+mU5pJYPRyBnJXu+s3MaVAd6hIpvd1tbUnM59eykszrTu4coPBBcdIIiJCv+jpwtSNJTvOM5KpiZPWTf3eAygQxKQHA/H+6lxUcGHoboNYSMiIiIiIiIiIiIdBoIQUT3h+kUZol0St6dWi3MlEVHLZTeHc34nahlst1Vux0TUvHhFDhEREREREfmohoeIVSrasliMp9HFlP97FXLbycCfM4CfP4XceRrk0+d960xNSkUjsjUX8vW7vnZ+mxo4FG3gPlCv/AHVvZ+j9qmFOG2ift0XvoAsef7m0PR1xFmhaSeSGJqPeeoHoyXVNNNgmq5v1aqwtCv3nwfZsrnp7fzfRb7Xo5NQtKsfC0koGuC7oL2/de5HAylmw2CurjWZ7voRQbz12wAqVIBgtPISIN9dEBsAzFpt/QXJJaMVKl80sO4RA+seNfDFBP/X+qiyWRhcudhxXwrAlVvdB7x8+Ldgmeau7Xhelv4DlBZbF2qjSUSIAIah8NYF1oEJa/KAvG2CLSXWddO8+X7L5LaTIfN+C+UQLUl1FSR7PeSk3etC0QDgx48hZ+0JKS7AcUPsgyBmLAKunSK48G3BlwuA2WuAyb8Idr89cMBrLQONylZXAdnrdtxs30Zh+kQPtjxlYPF9BvKfMTBhTGR/PC9lJZAL93EfipbcHmjjS9FI8VqnfRR6UnzbSiObCy0K11NW5b9sRY6+/OOnWj/Gunl0zRb7/gEgT7MdNNYjDThpWEuOsCFqSL5+x12FpGSoH4ugUjuEbAztEt3XSTRLkZa90HKdk+3ZLugo0SYYLVCILRHg+ywE015zVnjjyvAOJszszpNqajDaVYfYN/BbRtPad8oqVBrwhZnpgtGyNcFourYMw7fffuQg5w9anOa4zok2caHdlxGe3EpERERERERERK0ZP/+iiMPXZOTic0MUMnz/JSIiIiIiImrVIvvKKyIiIiIiImo+Hk+Dm1UqxrJYdL1iUloMeflOvzLywZOQmhpAHAaKFOZD3pvkeKhq/ASopl45SxFHXXiXdp1MvhVSVgLM+rrp/dz0AlRyWpPbiTiGx3p5vYDCtjE1SPJuC1mXyfHA4K7AY6co/O/K0H7MtFfFgpC218C3HwRdVTasgHlsV+CHKY7rqNOvDbo/K8O6B57/2tc0DKpKr3EXVKY+egLxNdavlXIjLnADa5e66m9bhWBVrvW6IwcqREcpdE9TUErhxGEKU680MLoP0Ks9MKHDP/hy48kw3Jw0eOipuFE+Qop3a+Cy9dz4qb6PvbsriAjkitHWBZQCeu/pqr/mdvhA/Wur440m3pxpff871FinScnEIyCrrMNomkrWLYN59VjI4amQU/taFyopBKa9jiMGBddHjfNcNP9gNABYv8JvUVqSwsB0BY/RAvZjvnkXyNngupo6eQLUCz8BBx6H5GTr/ckioy1QkA0paZgGkhkgGK200v81uDxbv13u18v6cU5PsV5eUBp4HrELUtq9PdA1BThzH4VZtxqIi24BzzNRALJxJcwzBrh7b+81COq9+VCxDvYZXIjyKKQkuKuTYJah/YY5luucBKPpzqFWCki0nuIAAKUMRiMnvv/IedkNzZTuFSa2wWhNbHuvbgrjBuvXn/Gqi506B2T6WzBP7Qvz6E4wbxgH2b6/5LUJUmynmbuKyq2X69rybD/sHuPidwKaEowWatXOfj+BiIiIiIiIiIiIiJxgGFDLxeeOKIS4PREREUUeu/dnvncTtQh2x60hPKZtpm52HXzQqJWK2tkDICIiIiIioghhNAw10gWjxdQ/kvx9GlBmEZyTnwVsWun8A5WiPGDTKmdlew8GDjvdWVlqUVRMLKRbH2DjSsv1csYA+wZOuhyY+op9mTHjoU64NMgRRjilCSYz610E7q1Bj+pNWOJxlxJ0UeHbeDXrSqjLHgQ6dAW69gL6DIWKa3h19083GBj7VNMvOldi4piSb5vcjo68ejfQayDQZXeg5wAoQx/qJjXVwIp5QOEWoDAP8uhlzjtKSoF6+bcQjLih44YqvPaH/fya5i1ocDu9OtNVH0ZFKeIrtgLRbfzWlav4gPXl7++hRh7muL9Fm/XrhnX3X3Z8/3IcH7UQ2JoLueNUx/3AEwV173tQh4yHiGDRoT3Ru/cyVBmxztuwMKAL0LujgnzwhL7QyMOgUjs2qZ9w65IMtI0Diius15doQl7ae/O0bcqFI4Gvc6DapLgej1SWA0v/AXI2ArHxQEzd8yS3jXfWxnfvo825t2DCGIWXfg3fFz2GVRjshgxg1DFh67MppLoK2LTaF2K7+0C/wFmprIB88pz7hrv2Ao67GKp9F6hHPkO7lQI87v/YlBsJqFQx8K5ehQWJw9G3E9ChjcLmQvvnyOo1mJFtXfaEofp20pKslxeU2nYPAMgvsR7jJaMVXj2Xv0VDrYfU1AAr/tMHfup07Ab19r9hC7Lu2AYoLHNePkHKkJazGOjqvy7fQTCaqTmmNRSQZJP7VlrlcIC0S5OPn3VeOHMtpLQYKrFt+AYUBmWVgn/WAX+u1r/Hh2K6+OhSA20nWh+Lbi0D7p5m4pYjFdrENa0zmfU1ZNIVdQv++RFyzeGQD5dqPwLzGEByvILViZ3FFYCI+M2ZXs1hdW0w2m6p1u1ZaWow2n69gNlrmtZGrYrqRp8rEhERERERERER7Sp4USIRNcA5gShk+B4b+fgcERERERERURPwtFMiIiIiIiLyMTwNblYr6ysnY+oVkz+n69vLywRKix11LbO/c1QOANRrs6A8nsAFqWXa/2htMBq25tpWVQceB7EJRlM3vwiMu6AJg4twHl0wmrfub28NjiuZgSVx1sFovdoDx1b8gLVZvuSZZG8RDiv9GWcXfwRge6BYfU9/DTVi7I6bo/sAvTsAq7f4tz2gC/DBJQaGPxg4OO3oku/QyWv/fDeV3Hay7489hgCPfgHVqZt/maX/QG4/BSjQpO7YSU6Dev0vqM49mjhSf2P7A4mxQKkmpAoA0rz5DW6n12S56sOAiXiz3HJdhbJJAak15wdX/S3aZH3yS5s4oGdaw2Xy+zTIQxcC5Q4SjGodfBLQcTeoQ0+B2nM/AIBSCl1OGI9LZr6FF9tdEaABe8cP9QUZyDfvasu0hFBGpRT6dwbmrHNXr4NNMBoAYPqbwJk3uGpTfp8GufM0dwOxsn4FzKcm4vmJT+OlX5venI4B/7lNNqxAeGKBmkbWLoXcdy6wZrFvwdDRwP3vQ6V19q3PmA+5eF9Hbak3/gaWzIYs+xeqRz/gqHN2tAMAyTY5iq+mXIzbXhqMyu0BnhPHKqQEyF20mveWZ1vPH/266B/9donWy/MdBaNZL2+vCVsjaokka51vDl65wH3lo88JWygaAIzsqZCR4/yk2USzFFFSY7muqNw6kKg+3fm5CkBslC8gzbQos2aLYFTvSHwXoIiyxSYd2MrKBcBeLsMKd6JP5po4/01BpfUmuEMo5oykOIWXzlaY8IH1Rvt/MwTP/SR483wDJ+8dfH/y2r3+C7PWwZz1NQDrQFxDAW01+zjVXqCyxj+8zGs1sQDwbB96VxeZw/FNDEY7Zz+F2WtCc7FCRbX+sSAiIiIiIiIiIqIWguEmRPUEuz3Y1eM2RuQOt5nWi88tEVHLZTOH85iSqIXgdkxEkUNzxSwRERERERHtcuqFjXlhwKuss7Rjti+W6ipg7s/a5uSb9533/cHjjoqpz1ZCRcc4b5daHHX+7cFXHjEWGG8RbhSfCPXIZ1DHX9y6Q/WU5mMeqRfWU1ONG/OfwQFlf/oV2yO1Ct9dZ+Dpu4dj6qbTMHXTaXg761KcU/yRNthHrj8G5kt3QPJ9wWFRHoXXDl+P1KiKBuXOjv4NC9ftg6FzX8G/561ClxhNqsx2T+XcbLte3TwZxh+VwJ7725ZzZNVCyONX+i2WmhrIXacHF4oGQP1vQ1hC0QAgPkbhKOtsOwBA2zgg+uizGixLP/JIV30YMBEvFZbryg0HwWhZ6yAuvvDYUGC9fM90wDDqXoGydQvkvnPchaINHgXjoSkwJj6xIxStljrnFjyaeyf2Lft7x7IoqcYFhfqAMyvHb5sOydkIrF9hXSAqGhg1zlWbO8vg3dwHRXQYfZDtennxdojXa1umQfn87NCEotWa+gpw1gD8esKi0LXZiFUwGjZkhK2/YEhlBeTb9yHnDasLRQOABX9ATuwBc/JtkA+ecByKBqWAHv2hTroCxh2vQZ19U4NQNAC2QWfXd34SlWbd+/JzPwkemG4/bzQORhMRrMixLtuvk76dNF0wmv3bEwAgj8FotAuQJ64OLhRtyAFQLoMw3Tp2iLvyCWY5ks0iy3U1JlBeZV9fNysZhi/MKTHWev15b/LEDwqDjHk7ewSOrc8XnPla4FC0UDp9pEKUzdkP2yqAU18xMWdtcNunuXktfs1MxsNpt+CTNiejTNXt6HiX658bj+E7RtMpssij9mryxGvz0NNdBKM1Dl1z68JRoQt5rKgOWVNEREREREREREQRiN8NUHML9JrjazJi8SJyohDi9kREREREFHJ2x608piWiZmZ9lTsRERERERHteoy6YIpqpb9qsjYYDWsWA6XF+va+/zBEA/NRn62C6tQtpG1S5FFt2wE3PAt56lr3dQ0DuO4Z4NiLgGX/QLI3QPXfGxgwAqpD1zCMNsLoQt/qhxF5a5BqFuKH9cfgr4R9MT92KExloG/VShx8+zNo23F3AB0h594KvDfJWb8fPgn58Elg8i9A5loc9OhlWIJU/Jw4BvmeNAyv+A/7lc+BAiBPXYuhABYaKTi221T8neAfvpOV0R0dvHn6/mLjgUNOBgCos26A3HGqs3HamfMDpDAPKqV93bIFfwBbNgfVnHrjb6io8H7sdvxQhc//s/5CobgCMO54DXLiZUDmWmC33kjsvzdSr/Nia5mz9hUEcabFFfoAyusFACAmFqiq9C9UUQaUbQMS2zrqL8s6rwS7pTa6CP+3qUB1gASTRtQ5+qA91b4LEq+8D39MPhQ/JR6CfE8ahlXMR7fqTXgn+RyILnCwns412Rj5+mmQ122+4Dn+krC/JkLlglEKb8x092VVx7FHArHXAh8/qy0jlx0AvDLT0eMgJ4YhVDBrPQ58dF+cNWoWPty6V8ibV1Yn2UVQMJrkZUJuPBZYs0RfaMrT7k4V7NwDKtY+KDElwU2DgW1rNN3kFPtCTqz076wP8UhLVLA6MbKg1Be2ppS+ri4YTRe2RtTSSOYaYM4Pjsqqe98D4hN8+xs9BwDDxoT9/W54d+vtVydRSuEx9eGcheVAgibcDABMTThR7Syhm4MAoKxSkBAbukAhal1E9+Kyq7Ninja0OtJMmy/Nfv5TSoLCqN7A7yvtyze4V0AAACAASURBVO33iImZtxoY1dvdo3n9m4V4vsd3O27vXf4fvt54PNK8BfD++xuAOy3rGQpItgmLLS4HOjU6bAoUjNYhCYj2ANUOsoebGowWH6Pw6eUGTn3F/Wu2sYpmDMojIiIiIiIiIiKipuAFrkThZfeZe0v5NogoQjCUgYiIKPLYvj/zvZuIKHw4x1Lr1DKuxiMiIiIiIqLwqxf+UqVitMWifv0U5kvvA7O/05YJuWEHMxRtV3Li5UAQwWgAfEEmfYYCfYbueqcI6QKcpN6JVF7fVcgxqMbBZTNxcNnMuuoJdcFq6rDTIU6D0Wq7ueqQHX93xBacUfyptmyqWYhf1x+Omzs9ipdSL4NXRWFoxUK8knWlfSgaAPXEV1BtUn03DjzO1Ri1RIB5v8FcMBPI2QD0HAisW+a+nYQ2UNc9DdU39KFLjY0bEjgURA0cCQwcueN21xQ4DkZL8xYgQawLlxr10n867gZsWm3dSF6mi2A06/vSJaXubykrgTx5jaP26lOjjrEvcNpEGJNvxeGlPzdY3KdqFTJi+wZs/9htX8MI9Fxc/VjAdiLFAXsovHquwsQpgopqZ3U6tAHUhEcgG1cCs762LpQxD/jmXcioYyCTbwN++Mi3/NiLoK54CCo5DQAgs78Nwb3Qe2H2kagatxSfrUoLabsmLObgrbkw7zkL6txbofoMDWl/bsknz9uHogVj4D4BiyTF+sJAzBB9x5Zb3DC4bHOhvmzvDvp1aUnWy2tMX8hRW014iYhog9HaJ+1yex7UCokI5K4znFfouxdU98DvlaHUM80XDKQLDWoswSxDvOjTy7KKgE/mmvh5uaBTW4U7jlHYvX3d9qybvgwHm3xeCdDdJnSNdnFbc93XyZgX+nGEyfqCndPv1CsNpF0feII4cJKvzJi+wItnG+jfxX6jnrdB8PzGIQ2W/Rs/HC+mXo678x6BWVEOaLZ3j6HftwCAIos86kDBaIah0C0VWGN/+Ayg6cFoAJCg/5jQFafHF0RERERERERERK0PL0okap2CPE+AQU5EIdT0H/ehcOOcR0RE9fF9gahFYMAhEUUQzRWzREREREREtMvx1IUiVSv9VZPRHz7avKFoANRlDzRrf7RzKaWAkYe5q7TnfuEZTEtieKyXm966v7cHo1ny1OXnq16DgINPDNHArEWjBs/k3IScjG7YsLI35qwdhREV/+krdO4B9Vs51F6j68apFNSHi0MyHrnnLODzF4GZ04H3HwNmfuW4rvo0A+qd/6BmZEEdfW5IxhNIu0SFTprMsXGDrZenp1gvt9KvcgWSzFLLdWVGQt2NjjahlfnZjvvL1IQbpSf7/pfqKshloxy3V0u9NTdwGcOAuukFv+VXbX3ZUR/HlUy3L9C9L1R0iJIEmsklow0UP2dgL4eZpO2TAOXxQD36BdCuk7acfPQU5ORedaFoADD9TcjZgyEVviA++frd4AbdrhNw8EkBi7U1t2HKV92w5Qlgzm2CubdUY0jX4LqsL8G0SLQAgF8+h1x1KGRZ4NdiOEh1FaS6Cvjpk9A27ImCOvnKgMUMQyHZJgjErfJqoLjeQ62bO6I9vtelTrtE/bqsIv26bRW+8DQrdv0RtRTy+n3AygXOK6TvHrax6ERHKeze3nn5RLMMKV59iuLYJ7244RPB9IXAGzMFQ+83sTSz7qQNXbCjcnCNQ4XNrjcRlvztvs6GFZCqytCPJQzyNUGijcWG+GfcUhMV3jjf+UVIv2YAA+81MXedoLyq4T9vvQng03+tJ4Mv2/jCur2b12v78BhAmzj9GIotshu9mrnHU+/sjgFd9G3WFxeCxzgmRM8Tg9GIiIiIiIiIiKh140WhFGEYvhXB+NwQhQznulaMzy0RUcvFOZyIiIhCh8FoRERERERE5FMvVKlK6QNcYqSqOUazg3riKyiGXu16+g5zVVwdd3GYBtKCGJqPecx6CS5er3UZoEEwGgCou94CTrkqBAOzl2IWIb0mCx67X+476lyoV2dCWdxH1a0P1Kt/hnGEAZx6DVTnHlC9BkFF6UMlw+GhE60v+D98oPXy9BTnAQH9qlYiUROMVmLUS/+JSwDatrNuJHez4/50QURdtgej4adPgfUrHLcHAOrie6H20KTENXbAsX6LnASjpdXkYWzpL/aFdh/obAwRJsqjcN1hzl4zHdr4/ldKAXbhgBtXWs9DRfmQw1Mhn00Gfvnc/WBPuARqyjKoBz+CuuZxR1VSxyVg+PmJ2OvCZMyamY4b46ahZ2pwCTYxZiWGVC7SFygvgXz6fFBtB0v+/QXmBSMgh7aBHNoGyN0UusaHHQz1xJdQg/d3VFwX4his1OtM3DHVRHmVYHOh9ckTXZJ9oWw6XVP0oUarcvV959mEvDAYjXYWWfgnzKsOhXl0R5gX7wdZ+k9w7VSUAVOecV5hxKHNvu9Ta3h35/s0CVKGOKlAtOY4triiYVsllcAT39fNLbpzqG2mmB3KmvfQmVoY+etb95VME9i8JvSDCYP8EmcnOO7fK/R9XzDKF46WkhC4bK19HjaReHXDf8kTTSRe5UWH67149Bvr+zMvbi8IAG+1PvHLUIDHUEiKtV5fbJGv69UcHnvqzT39OjubC+NCMFVHa3LY3SrnvEhEREREREREREQUOgwDasH43BGFDrcnIiKiFoXHMUQtg922yu04gvG5odaJwWhERERERETkUz8YDfqrJpszGE29MhNq3yOarT+KHOpA/5AiWwefGJ6BtCSG5kpls14Ikdcm9KdRsIWKS4Bx7VNQj0/Th641E3XHa1CpHfXrB4wAzr65GUe0XVoXqAvvbP5+t7tglMIBvRsu698ZOGsfXTCas3bbeovQ3puHRLPMcn2pqpcw4IkC2qdblpMFMx31V1Ih2rCh9BQFqSyHvPuIo7YaON55YKJq3wXqsgf9lv+3Zh+08RZr6z2aexfipNK+7dEnOB5HpBnQJXDYQkwUkBxfd1udeUPQ/cmzLusqBXXnmzBumgwVnwilFNRpE4Fzb3XVTFxFISbNOxOrNgzDk6fYlz1lLy88quEXRvdveQDxUmFfcUHzBTjKmiWQ644CVtuEtQVj0L5Qv5bBeO57qBFjHVdzOve48eg3gnu/FKzZYr2+a4A+42MUuqVYJ45k5Oi/ENxQoG+TwWi0M8iWzZBbTgQW/gmUFAEZ8yCXHwjJDCI4afUioCrAXFYrPhHqwrvc9xEixw5xXjbBLIMCkOItdFzn5+V184CpmRJqwxWPGqRvp6wKyC0WLNokKCjlyQbUyMr52lXq2qf0x2AbM8I0oKarrBbMWSv4PUOwNi9w+bho4J7jQn+sqZTChQcYKHjGg5uOcB6k2FhZFVBeDeRb50XvsDmqK0yb0y4821e1jbdeX1TuPz9og9HqdTOgi/24asVFB/8Y1NpDfzjuSkVwOcRERERERERERERERK0LLyInCiFuT5GPzxER0a6Hcz8ROWM3W3AmIaJaUTt7AERERERERBQhPHWhSnFSiTOKPkaVikFVShdUD9gPVWtWoCpfH5QTcnsMAfrv3Tx9UeQZuI/jouqZb6ES24ZxMC2E7sJ5s94V1XbBaB7rj4nUfkcBb/4DmfoSMO31JgwweEoFvpBbnXMz5IPHm2E0AHoPBkYfD3XaNVBtUpunTwseQ+GHGwy8M0vw91qgVwfg2rEKbeKsH69AQUG1elavhwKQaFqnlZUaifUGEQUMGAGsWexfcO5PjvrLyNGv67X5d8hNZwDFNmlEVoYeCNWuk6sq6txbgH7DfOFcG3yBE0MqF+OftaPwaurFWB7TH7L9tbhb9WacVvwpDin73b7RpBTggHHuxh5B+jl4CAd0briNquQ0YHom5FjrwLwmOf5iqPZdISvnA+06Qo09HWrYQX7F1FHnQD56Cqipdtf+ptW4dt7VuD/uBRRbZAPFmJV4cfpQ3H7olXhjdgxKjUSM3zYVx5R8G7jtgmyIiKP5rClkxTzIJfuFvuHjLoK67hkojyaE00bXFIVwfDX5xPf6Nu3C2EQEePth9Nk4EhuS/APe7ILRlmdbr0tLBJITwvvcElmRD54ASv0DPOX0AcDvFe7mHLtQtN6Doc65BfL390BqB6ijzoHqZZMIFmaj+zibV+LMcnjg2xdO8RZhS5SzZJ8NBUDeNkH7Nkp7TULtIztuiMK3S6wL3fa5ibnrgYpqICEGePYMhYsP5G9W0fb3og0rrFcefibUKVdBPnsB2GwRcrghMoPRZq4UnP6qiayiwGXH9geGdVc4cx+FYd3D+/456WSFJZmCbywOV0JleUxfDK3UB9Ia2+9icjyQaZHRaLXf6SQYrXs7Z3NhQmzAIgGlpyjs0xOYs65p7VS43D0nIiIiIiIiIiJqPXgpJxHVxzmBKGQYNNh68bklImqlOL8TtQh2+2LcTyOiZsZgNCIiIiIiIvIx6oIuOnlz8X7mhb4b7UfDuPZHmM+9Cfz3fLMNR936MpQu6IlaPWUYkPPvAN55OHDh4WPCPp4WwdCE1Zjeur9r3AejAYDqvSfUTZOBmyZDaqohhyQFOcjwUUnJkM49gOz14etjwsNQZ90YtvaDERetcPnBCpcfHLhsusNwoncyLwYAJIp1EGZJo2A0td9RkBlv+xfM2QCpqYaKirbtTxdCFBsl2O2pM4FtLkPR0rpATXzSXZ3t1D6HQ33gCzWQqa9AnpqIParX4LHcO4Nr79aXoZKSg6obCdrGq/9n777Do6jzP4C/P7ObnpCEJAQCoZPQixQFBRQsqKBiwQYKnqJYz3L208N6ep5n1xPFdnbsXRF7+WEFESlKlR4ggZC6u9/fH5u22ZnZmc3uZnfzfj0PD9n5lvkkszM7u5l5Bx0ygO17jfvohVlIZg7UtIuBl+4LaT0ydQ6k9yAEis+QrkXAnNugHrrGPBBSz9vz8d0RuRi4/lrUSqJP05Obz0b7vRvQ/o2rYfs7c9UCZTuBrFy7I02pki3AN+95A432Pzw8oWidukG78uHgh1sMZQylrjkmz5Kv3oaafxN6dbwPevGNWzfuBKAfnrRyq/6UxdmVUC8+DuR0BMYeC0lKtl0zkV1KKeCVh4w7vPs0cPSZ1iesrTFskr89BBkwCnLoNBsVhk9hNpCSAFQGCNhJbRLqne3ZbWsdf3nKgzcudMBjcOpU/1b17IMEFz2v3+nL3xu/rqgBZj+jMLaPQlE+gxTbvB2bgMp9uk1ywhzvF4VFusFoasOqgOdCkVZZo3DqPGuhaM+fIzh5ZOQ+6xERvHmhhiPu8WDRivCsY2VSMQZV/2rYXh9m1s7g9GBPpf8yo2A0rcnGtxp8nR6CYDQAeGSG9+e4o+69QXYq8OGlGoZ0AY570IN3LYTPVdUqIOqewURERERERERERCHSZm4KbSvfZywItC24rcIv2J+x2ThuNyJ7uM8QERFFnTbz/piIiIgigXeYExEREREREQBAxOAtoqq7G3OPzWCalhg4GtJ3eOTWR1FJJs8M3GnkRIjwploAjekMzXma3FFtFhBkEozWlDgTIE98F7jfv96AzH0WyMg27tSxG+Sy+yBzLATgWTFpemjm0XP8eVEXimaXlRvn0zzlDTf1p3n0wxr2NQtGQ2Ef/cmUAnZtC7jO33foL++dvBuOvTsDjm+QlAK5+QXIUz9AioZaH2fk0JOBpJSgh8vtCyAHT215Ha2sQ4Z5+35d9ZfLcbMtH1cs6d4P6DXQcneZdjHk6Z8gVz9qe1W9PrgTu1fm45lNMzF1z+v417arsH51b0zb+4rtuXzsNEjVCpL6+QuomcOh7pwDdc+lUKcOCOn89WR+4GO+GauhHaE0ro/xuYH64i0AQK67RLd95xbj8KTVBkGOxctegnrgSqi5Z0DNGQdVstlGtURB2rbBtFn9czbUXhthYGbBaANGWZ8nAjRNUNwxcL+mIa8FtVtsraM+1MzoGq36o0xSgiAnTb9Pc0oB87/iRV8EYONq47auRb7/+41dFfp6WuitpQqbSq31zU2P/Pt3hyb46FIN/TuFZ/5ViX3gFoOgcjSGmRkFo5XpBaMZHCocTd72Wz3HSgtRMNrQQsHyuRpePlfD8+cIVt2iYXg3gdMheOsiDQsv0/DfGYIlN2goNPgYoCpAoCURERERERERERFFCd7EThRe3MeIQoj7ExERUWzhazdRbDDZVyP4nlbx/bM9/HlRnGIwGhEREREREXk5DG7i9Li9/++0dyN5i6SkRm5dFL06FAbuk5kb/jpihWa0DzcJRjMLxzAar0N6D4Zc+5h+Y+eekMe+gRwwCTLhRMhbm4znOeNqyNRzQxY4JjOuAo46E6gPyzM6rgUz98V3h2yu1lLcsfGmfCNDq5Y0fJ1uNRgtr8B4wh2Bw4F26a8GhVvthTHJvR9ADp4KycyxNc5wvowsyF1vBe449hhg0JjGx0kpkL89BDloSkjqaG256ebt+3XTf1JJYR/IDU8B6ZktL6LnQMgdr9kOwpSuRZCjzwQOP832KpNVNU7d8xJe3nQaLt11Pzq7LAZdmT3/QngupZSCuuhQoMxGeKAJufEZoH2+78L2HSH3L4S0cBt2bR/5AJTD+pk0rvgBAJDrMghGqzD+tYlR6EvPmjWND1YvgVrwYKASiVpu+5+B+yx4yPp8RgG66a2QbmhBcX7gY0uqo/F7KnDZOwbvrgD2VSt4DK4RaHpOlWEQdqRn4XJedEAAdhskA6dnQeqCpcUoGG3Dqqi72Of9Zdb75gQ4twwXEcGXV2mYMjj0c69ILILH5LKL+jCzTIPM5T1V/svcHv9lTecCgHYpQGpi4PrSQxSMBgA56YIThgtOHqkhp0nInYhgQl/BOWM1DOoiSE7QH89gNCIiIiIiIiIiarOi7HNdImptPCYQhQxfY6MftxERURvEYz9RzDM9h+M+TkSR5WztAoiIiIiIiChKGIUiueuC0azceB8qu7ZHbl0UtUTToHoPBn5fatwpRAFI8UBE0/94WXnvqFY11VBXH68/WNMgmr38fDlyBjDhRG/Qz+4dAARolw106e0TXiQOB/DIF1DnjfWdoFtfYNJ0W+sMWFNiEuSaR6Eu+hfw5+9A1yKoYwqB6sqWzfvE997vI8ZlJAsGFAC/GGfVoW/1qoav06wGo2VkA4nJQI3OHf0lgcOkSiv0l2e7TYL8miveD+g/ynp/i2ToWOCBj6EunGjcZ/IsyJijoEq2ALu3A936QhJDmD7QysyC0USAwZ1N2iecCIw7Fli3wn8/dCZAffQ88OK9puuXx/8PUjTURsU6c8y8FurD51o0h6X1/OVG4PQroCZk6HcIwbmUcrsBpaDuuaTFc/k4+Hjv9tqwEti3F0jLALoW235t0FOcH7hPKB07BEhNMglMqjue57r1Q+VKVDsopXSD+IyC0bq4mh1YP3sdOO9WS/USBW3n1oBd1KKXIbOuszZfbY3+8gQLqTutoLhj4D5pXbsCmzKB8jIUWA24bGLVNuPLN5oeIqwEE9X7cYPtMigelemHcyKrSfC3UTDanl3A2uVAzwGhrytISzZav9ApUOhuOGWlCt640IFtexQ2lwJODahoduhzK+CgOwxSyQysSiqC20IwWkaKQO+oskfn7aqVYDQRQecsYHWAj9BCGYxmlWEwmkEGJxERERERERERUXzgTaEUZRhEEwFB/qE4Zfa7iMj/8Tmi2Gbvd3sUS/g6RkQUu0yO4XyfQkQ28JBBRACD0YiIiIiIiKieUfCFxw3lcgGb1xqP7TkAGDQGeGNeaGqp0g/jobZHZl0Pdd004/bMXMO2NscouKs+3PCHRSZjg/uISJJSgIKe3n9m/QaMAu56C+rxm4DSHcCA/SHn3gwJU9CGpGcCfYcDAJROsI1lAw+AzL4J0ntQiCprfYuv1ZBygfHFQMU1Kxu+NgxGk9TGBw4NIgKVVwBsWuPfeYdJClud0gr931ZkucsCjgUATJoOufjfuiFGoSBDDgJueh7qhlP9GzNzgOETvP1yOwG5ncJSQ2tqn64f4AAAHTKA9GTzn7s4EwCjfahoKNBzINTt5+iPvfDOFoeiAYAU9gEe/ATqiilAZXmL5zM0ciIkIRGq3wjgt+/9mtV3CyGTZ9maUlVXQj1zB/DU7S2rrWM3YMRE4O35/m3DxkOcda8D3fu1bD06euZ5QzyMAj5C7eSRAY4FrloAQI5BMNpOLRuendvhyPVNdKuuVSgxePp0qt3iu+DP3w3D1doipZT3fMTT5J/b4Gufx566fzbH1H+tPLbHqIb12lhP0zblMag1wPfhU6vRHDqPA1n3m/UNFWPBaH0tBKPlZTogj34Fdf/fULBmj+11/LpZwWNw7NKa7N5GAUB6RIB91QppZgGOFP/27NJf3jQYrfdg7+c0ek/Cr96JqmC0Uhs51DlpgfuEW347QX474/Ytd2m49PHdWPRLFcq0TABA99r16OTagk/TDvbrvzGhEHscxhPWHy8yU/Tb91T6n2sbBqM1O3T0yA0cjJYWTcFotZGtg4iIiIiIiIiIiCi+8e7g2MVtRxQyTEogIiKKMXztJooJZufZETwH5xHDLv7EKD4xGI2IiIiIiIi8NINQJY8b2La+IUSiOXnie0jvQVAeD9QXbwK7trW4FDnu3BbPQXFi7DHm7TkWEhHaCjEIN1QeKKWgnr3LeGyQwWh2yP6HQ/Y/POzr8Vvv6X+Denyu/XGzb4bMuDIMFbWupATBzDGCJ7/W/8C7uGZVw9dGwWjlWnrjg/rnTq5+MJpatzzg3zEtrdBfnukxDkaTO16DjDkqwMyhI4ccD1z9KNQ/Z/suv/BOSFJyxOpoDbnpxm1ZBuEOVokIcNQZwMiJUGcMA8qbbPMxRwHTLm7ZCpqua/AYyIf+QVie+/8GvHRfaFbSra/3/y69dYPRsGgB1LWP23rOqHk3Ai/eG3xN/UdBHv4MUheA68lsDzR9PUhMhpx5TfDzW5DoFPTKA1a1/BTRkmkjAhx1KrzpZrkGwWgecaD09zXIaRaMtsUkq7Gza7P/wuWLoYqGAauXAOWlOoFfBgFYhoFYjX2VYfhW08dG4V4mywPV4bNeC7XXP6bY4DIIRnPaSP2KoL6djIM76xVkCaSwD+TO19FthQLutpfQ+NFy4zU0zT00Oz40p5R33uOG2SqF4owqLdFvyMxp+FIysqEGHQgs+cJ//KqfAp5jR9LeKmv9UhOBlMRoqtyX2rcH+H0pOtRU4X+vHu3XviahO4p6L9cduzKxyHBeR91b9XYGp4B7dH5+hsFozd7298kXfLjc/FiY3gpBjAxGIyIiIiIiIiIiIiIywSAnohDi/kRERBR1eL5LRBZFSf4aEUU5BqMRERERERGRl8MgGM3tBv783Xhcl14AANE0qCNn+IZtBKsVwpMoOokI8OoaqON76nc44IjIFhTNNINgtI2roU4baL4fG4WqxYMxRwF6wWjHzwFefdh4XP+R4auplZ05Wj8YLUv2YcKsoyFpx0P9czbSlH4wWrWWDBcccMLdGIyWlae/sjceg+pQCMy4yrs/N6O2bUTpir2AVuxfj7tUd0qZvxjSZ4jBdxc+cvSZQGEfqHefAiCQo8+EDBod8ToizTQYLTU065C8zsCzv0C9cA9QWgLpPxKYfJbucybU5MI7oX5fCvz4acsmyu4ASc/0zlnYx/iSu49f8obBWaB2bwcWPNCisuT+hQ2haAAg594C9BkK9c17QLv2kCNOhxSHP52nb8fIBKP9dpMGTQvwvNm2AQCQYxCMBgA71mxEzgG++/cm/UMSAKDAtcVvmTpvnHkdRNGm1iAYLSExsnVY1L9T4D4FWY1fH9jb/jre+UWhr0EOsxZkMBoAvLdM4bhh0RsORRFQZvAalJnr+3joWN1gNHz6KtS2jZD8wtDXFoTyamv9ctLCW0dLqFcegnrgSsM/CgAA3Wo3IMlThWrNP+FseVI/w3H1x4t2BqHCZZX+y9wGJ5PNg9GK8/X7NZXWCofxZIOrUBiMRkREREREREREbRfv5KTWwOdd9OK2IQoZpiXEgGC3EbctEVF84vGdKCZESWIZT/eJCADi+K5XIiIiIiIissUoGEl5gJKt+m05nSDJjakoMv1KoN+IlpVx1g2QHv1bNAfFF8nrDLniAaBZQI5c9C9Ihy6tVFUUMgpG27PLPBQNACrLQ1+PXTOv019+wvktm7fPEGD6lb7LRk70hgMV76c/Jj0LGHJQy9YbxcYXCy6Z6Ls/JTqBh89OR9q02UBiEgCgnXuv4RyljrqkkYZgtBzDvmrejcB3C/2Xr/sN6sTeKHUl6Y7L8vinjMgHO1slFK1h/YPHQLv6v9CufqRNhKIBQF6GcVuogtEAQNrnQzv/dmjXzoMcNxvijMzf9BARyN3vAgdN9m/MyIbcvxAYe0zgiXoPavy6xwDDbuqLNy3Xpl5+wBtQG4yeAyFvbIAk+u5fIgKZeBK06+dDu/iuiISiAUBRfvABQCt/H4Cpe14P2O+2qYLijubrUV++1fB1B9cOw35r1vkff9bs0P/NapqnHO08ewLWR9Ra1MqfoKwcS1wGwWiOhNAWFCKJTsG0Eeb7fF6TcM9Ep+CaI+0di3btA77+Q7+tJdmdv27mlRptXlmJ/vJM33Nq6eYfHlxP/WN6KCsKmsutLIddmQXutia17Fuoey41DUUDAAc86FW7Rrdtk7Oz8bi6t+qZBsFoe6r8l7k95nPV69cp8MEo3T/HLexSDMLYGIxGRERERERERERxrc3cqdlWvs8Y0Gaec/GI244odLg/ERERRR++PhMREVHoRObuMiIiIiIiIop+Dof+co8b2LNTvy0r1+ehpGcCD34CLP4QWLcCyC8E/vwD6vG5usPlqkeAw08Dfv4c2LQGGHwgpNfAlnwXFKfk2HOAYeOBHz/1hvUNGw/p3q+1y4oumsE+HCNk3LFQT93md9GejD+uZfOKQM69GeqQE4BfvwW69AaGHewNXXpwEdShHzoXrAAAIABJREFUWf5jpl0EcUZnCEio/OdkDaeMVPhmjUJaEnBoP0GP3Lqb6uuSPnLdBoENALY78pDr3tkYjJaZa9gXANSbj0NGHdb4+N2noW4/BwBQ6sjUHZPlLvV5LOffDkmN0jSFOFaQKTD6BXVSnHy6LA4HcNsC4IdPgNU/A7W1QF4BMOowSE5HoGpfwEAzOaJJOMnoScYdf/4cSilIgEQd9e7TwDN32Pk2vCZNh4w9Btj/cEiSQfpGK+jbMfixvWrX4oVN0/Hy3hMwvfNTfu2DuwBPn6VhcJfAwSDqmTsbvk5VlehcuwmbEvyDTFZuqMJRzZat3q4/Z5+aP9CCfCSisFNnHwCkZkANPAAy5CBg8IFAv5GQpGZJObUGwWgJBuk2UeCywwQvfW98EVX3HN+985bjBC98p7C22SlOprsUtZKACi3N8rqbztyng/ExQs9vW2DptYDi2C79J4w0C0ZDV+NgNCz7Fmr7n60eFl5ebb1vThSeyqvaGqg54y33z3PtAHRynbc78wzHaHW7ertk/fPqskr/MVaD0Q7o6T0nr3YZrh5prXAYT07Q/16rTOokIiIiIiIiIiKiaMKb2ImsCXJfYagdUQhxfyIiIoopPBcmihEm+2oE92MeMuziD4ziU5zcukZEREREREQtZhSq5HZDle3Sb2t+0y4ASUgEDpzs/QdArfgB0AtG69ILOHqm92bwJmE5REakaxHQtai1y4hemha4TxSTPkOA65+AuutCoLIcSEmDzLkdMsz6Teqm8xcNBYqG+i5LSgH++yXUbWcD61d4A8EmzQBO/1tI1hnt9u8p2L+nTiCHeJ9LeSbBaDucuUANGoLRpF1784/QP3sN7829Hy9lnYzqxAyc/frTOBiAB4IyTT8YLdNT5rug1yCzNVCYFPhnBzaoMMjQiUUiAoyY4P3X3P5HQObcBjXvRsBV69vmcACnXQEcdkrjXEkpwHm3Qj1ynf9c5WXAzq1AbifDWtTOrQ3Bgba+h2vmQY46w/a4SCjuaBywZ+bVjdMAAA54cMqel5HqqcSsgkdR5siCU9Xi7z2/x/VXH2gpXEiVlgDLF/vWVbNSNxht1a5EqNISSJMQ4FWbagD4h2b2rvnd5ndF1Aoq9gKLP4Ja/JH3cUIiVN8RwOAxkMEHAoPG+B/f6kVxMNqoHoJ7TxFc8oL/8UUEGFrYfJngo0s1zHzCgy/rdt2j976LeVvm4LxOD+DNjCmW153c5HAw60DBta9ZP8btrgC27wXy21keQnFEeTzApj/0G3OanR90K/bug0bBhZvXAq0cjLa3ynrfgqzoCQNUbjfwxqNQ//mrrXG5bv0/HLDdYRyMVh9mlp2q315WCbjcCk5H48/HMBit2Y8wLUkwoS/w3jLD1SM92bgtXJINcsarDV5qiIiIiIiIiIiIiIjaFrPfLfImZiJbmJQQA7iNiIjaHh77iYiIKHQYjEZEREREREReRsFoHjewR//GT7RrH3Ba6TscavCBwNKvfJefd5ulEAsisshoH44hcvipwIQTgY2rgS69vUGL4V5n/5HAkz8A2zcCSSmQnI5hX2fUqwvZS1bVyHDvwV6Hf2pHiaMuLKguGA2ZuX59mno4ezYu2nQ+sMn7+IVuH2D+5nMwqfxDKNEP9ctyNwtG697P+vdAIWMWjLavOnJ1tCYRAU67HDhuNlC6A8gpAPbuArb9CfToD0lN9x909ExALxgNADasNA9GO66b/RrPuSlqQ9EAoG+Qh9bxFZ/7PD6m/G1sW1WIlYlF6FG7DqkFkyFykLXJVnzvX1f1KixK8w/DW+Ps5g1RG3NUw7J168sA+B/retcYhNtQZDgc3nMgzeF9/dKaPG7a5jBrc3hDQX2WN3/c7Gu/cZp5P80BadomEnhuv6813++xSR/1378Dy76x/nOrrQF++Rr45WuoZ+/y1pNmkNLljN5gNAC4aIKGapcHVy7wvZjqmMFA1xz/95s98wSf/U3D+p2A470n0PnROQCAgdW/2gpGS0tq/Pqk/uW49rU0W3V/ulLh5JF8P9wmbd8IVFfqt3Ur9nkoyalQx88BXrxXv//OrSEuzr5yG+eDRfnhq8MOpZQ3HPvD56wP6tQd8szPyH1sL7DEv3m7s4PhUK1uV8/NMKrHG5iY16TdMBhN563TlCGC95YZX1CanmTYFDZJBlehVDEYjYiIiIiIiIiI4hqDjija8HkXvbhtiEKH+1PcYugdEVGc4vGdKCaYnotFbj/mEYOIAAajERERERERUT3DYDQPsGeXflu7bEtTyx2vQT1wFbDkc8CZCDn9CmDcsUEWSkS6NP1wqVgjzgSgR/8Ir9MJFPSI6DqjWpOgsjx3iW4w2g5HnrdrXTDaW3uKcX2Pxdjm7IAJ+z7FzTv+gZ616wAA1ZKIW3Ov9pvjrIJ5pmV0rd3Y+KCwD5DX2e53QiGQkWwc2lJRE8FCooCkZgCpdYkVSQVAboFx36xcqMwcoEwnXHbdb8B+B+uOU//3gf3Cjp4JzLjS/rgIykkX5KQBO/dZHzO88kdkevb4LXfCjQE1v3kflGy2PuH6lX6Lurj+1O2605ELbPjSJxht8/YqIMG/b/fa9dZrALzPoeYhXk2DrwIFZPkEeBmEcenO0SxUy2CM+I0xWY/uHJpBrRbHaHXjLISGSZyc+4TEna9BHdWCcFelgPIy/bYEnSd+lLnsUEFqInDfxwoC4PABgjtOMH79EhF0zwXU9FlQ678EPngWRdWrba0zrUleXM/vnsFpZZl4LvNUy+NPnacw8wk3HJo36MjZ/H8H4BDfr50O3z664xraxGecZnmcfw316/WvQcznNBwXoJYm37umxWF4nM7rUYOuRX6LZM7tUEbBaBtWhaio4O2tst63OL91t6da9TPUvZf5BfebysgG9hsPueRuSFIKcrskAUv8L7faZhKMVh9mlquTpVuvpNw3GM1jcEWX9t/roKpHQA45oWHZ5MGC8581vgSso0HuZTglG7x0VNXyUjUiIiIiIiIiIiKi0OFnrq0vyN99MOyHKIS4PxEREUUdnu8SxT7ux0QURRiMRkRERERERF5GwQIeN1BmFIyWY2lqSc+EXP1IkIURkSVG4YZW9Bkaujoo9knjRXu57hKsQU+/Ljucud4vNAc+Wq5w3MJhQLJ30YuZ07A8qR8Wrz0QCXBhWdIAbHXaC2vJdu9CB/f2unVokLP/AZE4DMaIEUlOoNrlv3z2OG4TU12LgV++9lusvlsIOX6O/3JXLdQVx9hbx/HnQbvUICwlyvTtCHz1h//y/HbASSMEDyxq/AVqgqrB30tuDTypjWA0tdE/PCbXpRNcB6DEmQO1YSWqaxV+3ghkLfsIW5zjdft2cm0Bpp4LvPbfgDXIOTdBzrjKcs1ElqVkBO4TLGdi4D6tTNME5x8sOP9ge+NEBHL9fHgA9P/sV1tj05MaXwPVogU4vSzVVjAaoP/aGjqRuCgl/OsQCSYUzk64G+DUpKGv1qIwOrP1SuPXvwJa2gQkeaoxtHop2nn2er/Z9h0haf4JVuJwQA0bD/z0mV+bmn8TZNZ1If+5l1UobCoFeuYByQnm53vl1dbn7dephYW1gNq5Feov+1sfcMpfoV1wh99io3CzCi3NcCpNeQA4kGPcBSXlvo/dHv1+jpKNUDfcDdz9DmTkoQCALtmCYYXATxv9+588QlolYNA4GC2ydRARERERERERERERRSez37PxWhwiW5TBL9aIiIgoSjFsiSjmRTA0jflsNvEHRnGKwWhERERERETkZRSq5PEAe/RDIySzfRgLIiJbxCDc0Ir99MNeqI1qEkCW5yrR7bLDkef9wuHAvQv9Ly76JXkQns88GWeUPYuViUW2SyiuXuW9zO+oMyGTpkOGjbM9B4XOpYcJ/vme/y9JJg/mxZimBh6gG4yG7xdBuVwQZ7OP5xctCDilXPc41G/fA3t2QcYdC4yfGqJiw+/4/QRf/eH/PLp7muCUkYIxPYG3PliLdks/wvSyZzG6cnHgSUs2QykVMDhRVVcCbzzmtzzXbRCM5sjBE78X4qK/euoCPCYaXnvcec7lkCljgcEHQd16FuAySfxITjGtkyhY4nSG73Ihp0G6TRyRax/DsKIHgYXWx6QlNXnwy9coTuga8rrIe42GSwGusF7LHukQuYlA14kAAKeqxcW7HsAd268z/3wl1zhRTP2xDNJrYEiq9HgU7vhA4e+vK3gU0CkT+M/JgmkjjN9r7iw3bPIxuEsrB6Od0MtWf71QNACm4WaGc339NjDxWKQkCtKSgH06YXJ+wWgGT0uHcgMA1PxbGoLRAOCsgwQXPe8/6KyDWud83SgYrZLBaERERERERERE1FbxpkRqDXzeRS8GORGFEI91UY+vR0REbZDJsZ+vC0SxwWxfDeF+bLqakK2FiGJdC+6YJSIiIiIiorjiMApGcwO7tuu3ZeaGrx4issdoHw4kMRly5jWhrYVim9b4kaFRaNBuR5b3C4cTH6/Qn+asgnk4rsvLuD33StslDKxeDjnrBmjXPMpQtChw2aGCkd19l911kqCwPYPRzMiBR+s3VFUA29b7LVafv24+4WmXQyZNh3bpPdBufBpyyAkQLXY+4j97rGBCX99lV07yhqKJCE4ZpeF/B/2MB7deYi0UDQBqqoG9uwP3e+Uh3cXtDY5xFVoazsFVdaFo5grG7A8RgRw6Ddon5ZBPK4CUdP3OwxhESmHUpbdxW5+hwAGTgPRM+/O2zw++phghmgbHtIswP+Nhy2PS64LRVF0YYtfajWjnLgtHeRTHXJKAu3MuxZOZZwDJJolbnY1DvdTTt4esnreWAte95g1FA4AtZcApjyqsLTG+xGjhb4EvP8pNB+45WQsYZBpqylULtfAleGaNBNwua4Oy8iDzdIJt6+Rl2P8etGdua/jaKFitpNz35+g2uB/KAW8wGpZ9A7VrW8Pyc8cJjhjg23fOwYLD+kdXMJqVcysiIiIiIiIiIqLY1UZu1+RN7FGE2yJ2cdsRhQxfl+IYty0RERFRW8czQiICAGdrF0BERERERERRQjMIVaquBPbt0W/L7RS+eojIHgkuHEfe2QJJTg1xMRTTmgQWZLn1A4d2O7IBAEsq8lFtkjHwdoZBMFQA08ueBVKODWoshV5uhuDTKzQsWgGsLVE4uFgwsDND0QIqGmbctmGVT8iJqq4CPjMJRjv0ZGhzbjNujwEZyYL3Ltaw8Ddg9XaFA3sL9usK35CUhET7E6/7DRh8oGkX9cI9usuNwh+tcigXOrT3rVkcDqjDTwHeeMy3c7dioPfgFq2PyNT4qcCz//JfnpIOefgzSFIylNsNrP0VWPIl1NKvgCVfATu3mE4rY6eEqeDoc+bEdrjklT3Y62gXsG9aXTAatm0AAGhQGF/xBd7KmBzGCilevZExBbNSNhi2y4QToZ68Vb9x0QKofiMhp/y1xXU8841+Glevaz1w/9c/2MzjUXh7qf6lR8cOAY4ZKkh0AhP7CjpmRjgUrbQE6oJDvOdcFsnFdwGHngzJ7mDYpyCIfEntj6UNX+emAxt2+fcpKfd9bBiMppo0fPUOMOUsAIDTIXj3Yg0fLgc27lIYUCAY3av1zteTDa5CYTAaERERERERERFRrOBtp0ThxX2MKHS4PxEREUUd0+BSvnYTxQaTfZXhxFGM24biE4PRiIiIiIiIyMsoGM0oFA0AcjuHpxYiss9oHzYz5SyGopG/JiF7WZ4y3S6lmjcR4JSlh4V89R1c23BQ5TdA8mkhn5uCl5IoOHowADAQzSpJSYPqUAhs3+jfuHE11AGTgPeegXr/f8BPn5nPNfW8MFUZWQlOwZGDgCONnkcJSfrLTaiv34WYBKOpr98Fdm/XbWtpMFrHdDc0zf97kTm3Q23fBHzznndBYR/I7a/4BcoQhZL85QaozWuAT17xXX7Xm5CkZO/XDoc3oK/3YMgJ50MpBWxZCyz5CmrJV8DSL4GNq70Dk1Igs66H7H9EpL+V1jP6SJz7+GO4K+eygF3T6w9X5Y3vl5/efBayi/WPN4W1G7ExoTAUVVIc2pTQGUhJM2yXHv2h+gwFVv+s264evAoYPQnSra/P8l37FO76UOHJrxS27gFGdQd65Aqm7ucNqHpnKVBS7r0QprC94NWfjGt0nOvBzDGCg4uBGQcIRAQ/bAC26L9dwOkHaDhxeOu87qmaaqgp9j6vkv+8BxkxIWC/ztn269HggVIKIoLcdP0+VoPRNDQ2qK/ehtQFowHesNkjBgDRcL6enKC/nMFoRERERERERERERBRfgrzhmDeRE4UQ9yciIiIionjFt89EBDAYjYiIiIiIiOppWuA+zeV2Cn0dRBQcu/twSjrkzGvCUwvFtibPpWz3bt0uZY5MVEgK1lZkhHTVyZ5K/LJmuPeB0+BueqJY0rWPbjCa2rAKuPcy4JWHAs/RZwgwaHQYiotCifaD0bDs/wyb1IfPQ90807A9270bIsH/0rSgvX4oqaS1g9z5OtTOrUB5KdC1mKFoFHaSkAi56TmoHZuATWuA9vlAx24Qk/1KRICCnkBBT8iRMwAAavd2oLQEyOkIadc+UuVHBcnOwzEd1uMud+C+afU/1urKhmUZnnI89+cMnNblGZ++Q6qWYvHaMdju7IDVCb3gnjQDnkkz4fYALo83AMnlBtxKNfm67v8mfXz6e0zamo33+MyldPuGar0ugzAnMlcpyUCycTAaAMg/noY6fbBhu5o+BPi8quH1pqxCYchcDzaVNvZZvA5YvE7hxe91ZwhY55NfKzz5NfB/a4EHTxO8uUR/TKITdQFdkaeUgrrEXqCjPPI5ZMD+lvpmpwJJTqDaZXFu5fHGlFXsBdLaITddoPez3mk5GK3JAeq7j6Eq90FMQvVai2EwmsWfGxERERERERERUfzhXZzUGvi8i17cNkQhw6SEGBDsNuK2JSKKXWbHcB7fiWKC6Xk292MiiiwGoxEREREREZGX3VCl5FQgPTM8tRCRfZp+OIuuIWMhs+dC8ruGrx6KXU3Ce7LcZbpddjuy8WnqONQqG887E8meSuxfuRj3brscOe5dIZmTKCoU9gG+X+S//I15lqeQe95vO6Faicn2x2xcpbtYuVxQD5kHgDrGTEJxErBiq/3VAkDH9ua/YpGcjkBOx+AmJwqS5HUG8joHPz67A5DdIYQVxZbRE/qi8N2N2JhQaNovLbHui5pKn+Un7X0FlZtTcEfOFdjhzMXh5Qvx721XwQEPOrm2opNrK/DaV8Br5wUXTh4DPBC44YBbHHDB2ex/73I3HHCJs/F/0fz6NvbRGvq6G/5vnKthXH0bHHCJ/vr15vJfh3+9vnM31uvxq1fne4OjoX+1JKFG8w8rrJQUICXd/AdbWAT06A+sXW7c57l/A6dfAQC47T3lE4oWSo9+rnDlEQpv/qx/gdOEYiAjOfTnLqpyH9Tjc4HPXgcAyNEzgTOuhjTZl9T8m4Fl31ibsLAP5MI7LYeiAd5AyYIsYG2Jtf6O+iCzsp1AWjvkGGzmneW+P0u3wbVjDtUkGK2mCvhuITDuWGvFRJBhMFptZOsgIiIiIiIiIiKKKAazUKTxORfDeIM5UehwnyEiIiIiilf86IOIAAajERERERERUT07oUoA0D6/7YR0EMUCi8EK8pcbITOvDXMxFNOk8bmU6dEPRivVMvFz8pCgV3Hv1stwwe5HgInTgI9fCnoeomgnXYtadPmd3PIipF37kNUT9RL8w2IC2rUNau9uSEa27/JfvgZ2bjEdKmdcgyOXC1ZsDW4rFWTxXJgo3mjHnI07n5iFU7v8z7RfWv3hqto3GE0AnFn2P5xZZj4eAODxBFdklNMAaHDDIBepTXuh3UmY3vkpv+WVWjKQkmo6VkSAObdBXXmcYR/1yHXA5Fn4qbQ9/vVB+K4IcnuAhz5V+GWTfvuUIeF5fVQ3zwS+eLPx8eNzgdpqyDlzoTweYPli4MlbLc0lf38ScvipQdXR2U4wmmoSjFbQA7kGwWgl5b6P3QaHh4agtTrqq3cgURmMJtC7CYXBaERERERERERERERE4J3dRCHF/YmIiCj6mLw+81yYKDaY7avcj6MYtw3Fp/j8U+RERERERERkn8NmMFpau/DUQUTBsRpuOGxceOug2NckZC/LXarbpUpLwdLkQUFNP7zyR5y3+1HIDU9BZt8U1BxEMaOwqGXjRx4amjpiRTDBaACwYZXfIvXlW+ZjDjkBMmAURnUPbpUAUJAZ/Fgiik6SlIxp18/AR+snmfZzOuqCn6qrIlAVxYsUj/7zpVJSgOS0gONl9JGQm543bHdDwxV3r8KIW8MfumcWvBbqYDTl8cBz/Sk+oWgN3nwc6o9lUEflQ80Zb2k+ufiuoEPRAKB3B+vfn4a6bbF1AwC0PBhN+Qaj4et3odxu/c6tKNngz/MxGI2IiIiIiIiIiIgokngzbPgF+zsRbhuikGEoQwzgNiIiIiKi4PBMkogABqMRERERERFRPYfBXYtGklLDUwcRBUez+DFPt77hrYPiQONFe1meMsNei1NG6i4/abjxRX89a9bgxU2nwfnMj5DDTgHyOgPJBq8nbS0QiuJTt+Lgx445CpJqkJ4RrxITgxu3fiUAQLlqoT55BeqjF4CX7jPuX7wf5NJ7AQCds4IPb+mVF/RQIopiMuYoHFLxOYZX/qjb3tuxrfFBdWWEqqJ4kKz0ny+VWgokxdprvhxyPHCAf3DfT0lDcHC3j/CfLaNaVGNL7dcV6JIdumA05XJBXX8y8Nlr+h1Kd0DNHA7s22NtwlnXQ066qEU1FeVb71sfZKZu+wsAIDdd/2fTNBjN4zG+nMuBZiFopTuAX7+1XlCEJCfoL692AYo3pxARERERERERUdwy++wrnj4Xi6fvhaiVmH5WHto/QEMU91T4/2gUtRL+XpGIKHaZHsN5fCeKCWb7cQjP00yPFjxcEFEdm3e9ExERERERUdxy2gyiSE4JTx1EFBwrwWiZOZCs3PDXQrGtyXMp211q2G1DQlfd5UcMAJ6YqWH+g5/hpR8F3WvWo3vtegys/hWH7luE7AU/QfI6AwAkIRFqzFHAogW+kxTvB8kvbPn3QtTa8rsCHbsBW9fbHirTLg5DQVEuISmoYWrDKmDXNqg544HNa807jz0GcsNTkLpQxoKsoFYJAJg8mBckE8UrefNPnDDrbvyQsp9f27G7F0DVngdJSGQwGtmS4tF/vrgkAS5oMMiS8iO3vQw1IaPh8c2512Bu3t9DUGHLTRkSwlC0sp1QF04E1v0Wkvnk/oWQoWNbPE/fjgKrF2lqqLsRo6oCyuMxDEYrqwSqahWSEwTvLTOerz5ozcdPnwODD7RUT6QYBaMB3nA0s3YiIiIiIiIiIiIisop3CMcuBjkRhQ6PhURERLGFr91EscEsGC2CVfCQYQ9/YBSnLNwxS0RERERERG1Cgt1gtNTw1EFEwRELH/P0GBD+Oij2NXku5bh32h7et5MgNUlwwSVj8emwBXhy62z8o+QWnIhPkX33iw2haA2ru+JBYEiTgILu/SC3vBB0+UTRRESAMUfaH3j4aZDhh4S+oGiXmBzcuPUroO67InAoGgC57L6GUDQA6JQZ3CpHZWxFuxQGoxHFK8nOw2WHuDGz9Gmf5SfseRU3bb4O+Okz7wKjYLRegyAvrQQGjg5zpRRLklW1YVvF9hLL80hCIuS2lwEA92ZfEJJQtDcv1DBpACAtfGk7dmjjBKqmGmrBA/DceDo8j82F2rbBu7y0BJ4HroRnbJL33yPXQa1eAs9D18Bz4+lQrz8K5aqFmndD6ELRHvk8JKFoADBMPx9alwNNgsz27DI97/hjB1BRrXDWU8Y3Q/nMV0e9/ID1giIkxeQjxqrayNVBREREREREREREQeJNlEThxX2MKIS4PxEREUUfvj4TERFR6DhbuwAiIiIiIiKKEk6bwWhJDEYjiioOR8Ausv/hESiEYl6TNIQUVYX2rp3Y5cyxPLw4v24ahwNy+f1Qs28CtqwHeg6EOP0/jpSMLMgDC71BCdVVQGEfb5gUUZyQMUdDvfqIvTGX/DtM1US5xKTgxn3zLuD2Dwrx43AA7fN9FqUkCtqnKuyqsHfcmV28AUDngP2IKHYlnH8LHnszF3dsvxa/JA1Av+qVyHdv9zb+vhQYdRhQYxB0lZQC6dQdeOgTYOMqb7/qKqCyPGL1U/RJLUkGXtVvq+4xxNZcMvYY3Ft0Ky53XGqp/5drx+PB9nPwfOYpfm3pUomjB6Vh8mAHdu1TWPqn95z+ucUKf1tg/ULFIwcCQwu9r6fK5YK6+njgu4UN7eq9p4HbXoa6ciqwa2vjwGfvgnr2rsZ+ixYA37wH/Pip5XUbSk6FvLcd4kxo+Vx1uuUIJvYFPl4RuK+mmoSc7dyKnt1y4NAAt0722YotwOptwI69xvM5lM7AshKoNx+HHPOXwAVFSPcc4IXZgmSnIDkBPv/SgzzdIyIiIiIiIiIiimkMQaLWwOddBAT7M+a2IQoZHuuiH7cRERE1xdcFothgtq9GcD/mEYOIAAajERERERERUb0Em8FoyQxGI4oqogXuM2h0+Oug2Kf5Ppc6uzZbDkbLTQdy0n3DhSQjG8jIDjhW8rtar5Eolgwbb69/936W9pm4lGCelCF/uRHq8bn+DVZC0QCgXQ5E83+93K+bYOFv1qaoN64PAxyJ4p0kJEL1G4mcJV/i4IovfNrUw9cCo4+Eqq7UH5yU4p1DBOhaHO5SKUakblfAqzrBVgAqB4yzNdeeSoUbEi8ALLwEVv7WDglwAbugG4x2aNmHwG+FQP+RaJ8mOLjuKXvJRO//VsLRpo0Q/Hd6k9fGJV/4hKIBALb/CXX+IUBNVeCiv343cB8L5Ky/hzQUrd6dJ2oYfov+tmzK0XQD7dyChNxO6KlVY7Un36/vSf+1OV8T6tEbgMmzdM9zWkNWqmDaCJ4rERERERGML+8QAAAgAElEQVQRERFRW8NbNSnS+JyLXdx2RJYFDF3g/hS/uG2JiGIXj+FEFBrMUiQiAIiOK2OJiIiIiIio9dm9UbTuRm8iihIOR+A+aZnhr4NiX7OQvQLXFstD+3YMdTFEsU8Sk4AZV1nvf+a13iCdtsjsfDQ9Czjlry07B83UD3n8+2R7vyqZWfo0evVqH3wdRBQ7HMZ/Y0qdfwjw5+/6jUnJYSqIYlmKyctcVWaBrbneW6ZQ7g4ccP/axpO8oWgADqj6DjNK/+fTnurZhyt3/htY/JHfWKdDcPnhGn643vx1cs7Bghdma8hMbTx/US/co9/ZSihaqHTuCRx/flimHtZV0MnC22ut6YWeO7dC3TwTRbt/CHq9DmWQhFdWAmxeE/S8REREREREREREREQUQaZ3dvOubyJfDEYjIiKKL3ztJooJfN8ao7htKD4xGI2IiIiIiIi8EgLfUOsjOTU8dRBRcMTCxzxpGeGvg2Kf5vtc6uzabHloUcc2GuZEFIA2+yZL/eQ/70IOnRbmaqKXiAAHTNJve20tJDkV6D8q+BVk5uouHttHMC5huW7bmIqvMXf7XBxW/hGm7H0bD2y5BI9umQPk2guwIaIYZRY+XF4KfPySfhuDxElHisnHLpW11udxexROnRf4Apb+1csxpfwdn2WPbjkf8zafh+P2vIGzd8/H92tHY1TV91CPzzWcZ1hXwfHDjNfz4Gk670W/fT9gfWF10kWQx76FhDGksF+nwH2aBpmpRQuA//sQ3Wo3BL1OBwyC0QBgb2nQ8xIRERERERERERFRPOLNsK2KN5EThYbpvmShnYiIiCKPr89EFCI8nBARABj/mXMiIiIiIiJqW2wGowmD0Yiii2YS2lAvlcFoZIVvuFlBrfVgtL4dQ10LUfyQx76BOnu0cftdb0FGTIxgRdFJLroTatXPwK6t3gUJiZBrH2889+zaB/jps+Amz8oxbHp5wNuY+K0Hy5IHNizr6NqKh7ZejIHVy4GdTTqntYOkpgdXAxHFFivn2HoSGYxG/lISjNsqa6zN8eN6hTPmeyz1fX/DFL9lCXBhVtnTmFX2tF+b2rgaUthHd675MzWs3+XBD+sbl+WmA+9cHF1/h03+/iTk8FMjsq6ifMGiFeZXXvkEmdWFxXVybQl6nU2D1vzsKwt6XiIiIiIiIiIiIgoBhiARtUFmf0BSmbTzmEBkXaD9hftT9AtyGzEFg4gohpkcw3l8J4oNZvtqCPfjCK2GiGIcg9GIiIiIiIjIy2kvGA1JvNGbKKpoFm5IZzAaWdHsuZTnLrE8tDjf7II/orZNivczv8wrtyBSpUQ16VoMPPWDNzykYi8w/BBIt76N7YVFwV/SmGkcjJbbsxDfvDAOb2RMwfKkfuhesx5Tyt/RPwbmdgq2AiKKNY4gf5XK98ukI9ksGK028PirX/XgzvetvQo+vnk2CmwGcKnTBgKfV0HE/5y+XYrgq6s0vP6zwrJNQGF7YMpgQcfMKDv/H3tMxFZVlB+4j6b8Q+w6u6wHTzfnE7TWXPmeoOclIiIiIiIiIiIiso53pUYN3iEc3ZQyyUXjtiOyLsD+ovP7OCIiIiIiig9890xEAIPRiIiIiIiIqF6CzWC05NTw1EFEwZEAwWiJSRC7+zm1Tc2C0XJtBKMNYK4TkbnMHKBsp34bj9ENJCsXmDRdv7HngODn7dHfuLHHAKSoKpyy5+XAE/UIvgYiijFBB6Mlh7YOigsiguQEoEonBK2yxnzsN38oy6Foojw4bN/HQVQIqHHJUBOnQfYbDxw9C+JwNLQlOgXTRgimjQhq6rCT82+HpKRFbH3eUGjzbaIXZNbJZmBdU8rwDioA+8p8+5Zshnr4OuDD57wLppwFmTQdMvjA4Nf/0+dQn74CeDyQg4+HDD8k6LmIiIiIiIiIiIhiidqyDvjqHaC2Ghh9JKR7v1auKNx42ylRy5ntR2ZtUfZHaYhaW8DgM75mERERRZ9gz4WJKHqY7KsM+45i3DYUnxiMRkRERERERF5Om2EcSQxGI4oqTW5Y15WSEZk6KA74XmCX67IWjFaUD/TIDUc9RHFEMzlWMxjNmkFjgKQUoLrS/tiDjzdu6z0YyMoDSncEnEamnGV/3UQUm8yO22YSGYxG+lKMgtF0ljX11DfWL1iZXP4uCloQvoWPX4L6+CVg8ULILS8EP0+kTZoR0dUV5Qfuo+ncqNG5dnPQ60xQJk+U8sZgNLV5LdTJfX3b35oP9c6TwI3PQCacaHvd6qMXoG6ZBXi835N6Yx5w1X8hR59pey4iIiIiIiIiIqJYopZ9C3X5ZKBir3fBozcAt7wAOXBy6xZGFBBvhm1dZjeRBwp6IqJGgY5lPNZFPQZnxL23lii8uUQhMwU4dZRgeDeGfBKRGb4uEMUEs3O4CJ7f8VSSiABAa+0CiIiIiIiIKEo4E+z1T2YwGlFUkQAf86SmR6YOin2a73Mp173T0rDDBwhEeEEDkSkGo7WYJKcCY46yP+6fr0JyC4zbHQ5g/HGBJ+rQBTLqMNvrJ6IY5Qjyb0wxGI0MpBq83O+rNr6Cx+NRePTzwFf4tEsGZvZYh//JLcad0rMgT3wfcC4AwGevwTM2CeqJW6BcroDd1U+fwXPhofCc2t/a/KHkTAAycyK6yu653p+5GQfcfst61q5Foqfa9vo6uLahR+06w3ZV2hhorR6+Vr+TxwN14+lQNfbWr5SCmndjQyha3UKox/4BxavPiIiIiIiIiIgozqn7rmgMRQMAVy3UXRfpfDZm9lkZP0ejcODzqvUFe6M4tx2RZYF+F8XfVcUxbttYcMf7Hhz7oAePf6lw90cKB93hwcLl3HZEbR5fn4mIiCiEGIxGREREREREAOrCIBwmYR3NJfFGb6KoEmj/Tc2ITB0U+yS4YLSBxnlDRFTPLGDHyWA0q2TW3+0PGn1k4HnPuBpIzzLukJUHmb/Y/rqJKHbZeY/chDDskgykJ+kv31djPGbKAx7jRgBODfjoUg277tEw/5peyHjuO8iivZDzb/frK7NvgvQeBIw81HLNav7NUI8YBG3V91nzK9SlRwFLvgD+/MPy3LbkdTZuy+kE0SJ76YNDExweIAMuWfkHkCWrakys+MR0XP9O/suuK7kDmtnF//+7EwCgKvYCX7xpOr86qQ9UVYVpHx8bVwNb1vkvL9kMrPrJ+jxEREREREREREQxRu3ZBfz2nX9DyWbg1/+LfEFEFEMYjEYUGoH2F+5PRK2lskZh7lu++2C1C5j7lvk1DkTUxjE0jSg2REnYN48YNvEYS3GKwWhERERERETUyE4gR1JK+OogIvskwMc8ae0iUwfFPhGfh7nuEkvD+nWSwJ2I2jqHybE60SAphfxIj36Qp360PuCwUyyFpUiHLpAnFgPHzQYGjgZGHQb0HgyMPQY44XzIE99BMnNaUDkRxRyzQEszzoTQ1kFxI83g5b68Sn95rUvhs1XG8x03FPj8Sg0T+wk0rfF8XBISgVMuhdz5OjD+OGD8VMhdb0Kmnuttv+ste4W/8pD3BkADat6NgNtlb047UjOAdu2N23N1ksQi4MQR5u+BBlYt011+zN63Tcd9fLmGV+ZoOEX7BFP3vI6X/zwVF+x+JGA9qmQz8M37gbfFrm1Qh2XD8+DVUB4LF6WbbHvs3h54PBERERERERERUazau9u47c/fG7/2uICa0vDXQ2QHb4ZtZSY/f24bIhsYjEYUrV77SaGq1n/5V38ALjf3TaK2jccAIiIiCp0gr+YnIiIiIiKiuJSQCFRXWuubmBzeWojInkChDanpkamDYl+z8KAkVYP2rp3Y5TQPA+rfOlkERLFFcxi32QmoJUjPAcA5N0HNu8G8Y8dukJnXWZ+3YzfI5fe3sDoiihvBBqMl8JhO+tINgtH21egv37gbqDBo278H8Or5xucWIgKMPhIy+kj/Nk0D7v0A6poTgYq9gcoGXLVQ/7rAG7LWfySkoGdDk9pbCnxpM2itqeGHAD98Yt4nt5N5iGz7/ODX3wLHDxMM7qKw9E/99snl7xoun2Mw57QRgvx2gqnDgGO1W4FNX1sv6JdvoD5/w3r/F/4DVbkXGDoeKOgB6T9Sv5/ZDVrCgGwiIiIiIiIiImqrxPvZ2ZLrgNUPAbVlxl0ZgkTU9pju98G2EbVBgV5DW/s1tnYvsOVDYN86IH8C0H5Y69YTlYLdRjweRru1Jn9z2cPNR0SGeIAgiglm59kRPAdv7dN9IooOWuAuRERERERE1GbYCeRgMBpRdHEGCkbLiEwdFPt0bmwfU/mt6ZCBBUBOOm+IJwrINBgtIXJ1xIsZVwKde/ovb98Rct6tkOsehzz2DaRrUeRrI6L4oAX5q9QEkwAnatPSjILRqvWXbzG5j+78g1t2/i37HQx56gfIJXcDGdmBB3z6KtTcM6BOHwz16sMAALV7O9RRLQslk3HHAh26mHfKLTDfr9IyW1RDsJwOwYOnadB0NkWXjFpMnjFWd1wn11acXPaS33KBB//7S5PJ3C5b9agbTgM+fcXWGLzxGNTcGVDnHgTP9adAeTz2xhMREREREREREbVlK+8Blt9uHooWb3hHahThtohuJp+3cz8isiHQ/tKK+1PVduDD0cCXJwI/XQG8vx+w4j+tVw9RFOFLHVFbx4MAEVnD2HAisoLBaERERERERNQogcFoRDEr0P6b2i4ydVDs0wlGm7r3DdMhxw1jKBqRJSbBaBJs+E4bJiKQe94H+o9qXNhvBOShRZDTr4BMmg7JzGm9Aoko9jkChA8bsfPemtqUNIOnRnkQwWjTD2j5Obh07AY58QLIfR9ZH+SqhfrPX+EZmwR1TGGLa0BeZ8g/XzXv02sgkGgSjJaa3vI6gnRgb8Fz5wiSm2TcdsoEnp+ThNRTL4C8+ScwbLzfuH9vuwrj9n3e8HhA1a/4IelCOB3BB6MBAFoSbPbZa8Db8/2Xm9bB94JERERERERERNSGrff/Awjxgbeexgdux/Az+YzcNBGG24bIugD7S2umLy27FSj71XfZj5cBFZtbpx6iKOLhSx0RGeIBgigmmJ1nR/AcnGGrdvEHRvEpyKv5iYiIiIiIKC45EwL3qWd2QyoRRZ4jwP7bijeKU4wR/3CmyeXvwqFccIv+x4lTGYxGZE2wATtkSDp2Ax75HPhjGZCYCBT0hNg5pyUiMmMSaGnKyWA00peeLNC7+KTCMBhN/0KVXnnegNBQkd6DoIaMBZZ8EbI5LcstgPQZAiwsg7r4MGD5Yt92hxMyaQbUY/8wniM1I6wlBjJthIYpgxW+WwckOoGhhUBygnf7SHYecM/7wJ+rgS3rgR79gU9eQccHrsTHGyZheWI/1EoCBlb/CmfXXr4TGwWSaVrLAtBMqJfuhxxztu/CWoMnKBBceBsREREREREREVFcUMDOb1u7CCKKWsEGo/EaLCIfAZMQwvM7M0tW3ae//I/HgEE3RLYWoijjbsVdk4iiAJOMiIiIKIT873IkIiIiIiKitivBxs3bicnhq4OI7AsUAtPKN4pTDNH8PzLMce/CxH2f6Hbv3cF74z8RWeAIMmCHTIkIpPcgSNdihqIRUWgFG2hp5701tSmpBk+NfTX6FwRuLdPv3ykzRAU1Ibe9BBx6MpCZG/rJzeQVeNeflAy59wNg6rlAehYgAvQZArnzdUjRUNOAfomC97spiYJxRYIDekpDKFo90TTvecr+h0M6dAHyOnuXAxhQ8xuGVi+FE25gwyrfSY1Cx4ZPCMN3UGf9Cqgt63yX1VQZ968xCU0jIiIiIiIiIiKKdSH7AxW8KZzCgGEDUSDI8DNuOyIbAuwv0bg/bX6vtSuIMkFuo2jctmSZh5uPiIzw+E4UI6LjPS2PGEQEMBiNiIiIiIiImnIyGI0oZgUIX5DU9AgVQjHP4MLem3bMRaKn2q/rHSdokJBdDEwU5zQGoxERxRQGo1GIpRt8lFJukDu1xSAYrWO70NTTlLRrD+3Gp6G9vQny4orQr0CPwwlk5zfWkJwK7bL7IO9sgXxUCm3+Ysiow7yNiSnG88Ta+93cToZN6qfPGx8YBKPJQZN1A61DZuVPvo/Nws9q9duU2w21ezvUvj0hLIyIiIiIiIiIiIiIKEaY3ijOW7uJrAu0v0Tj/hSNNRFFFoPRiNo6ngsTxTyGGEanQNuF243iFIPRiIiIiIiIqJGdm7eTGIxGFFWcCebtaWG4c57ik+h/ZDii6kd8vW48ppc+ixFVP+Kk4YIP/6ph6jCGohFZxmA0IqLY4gjyuB3o3JzarDSDj1321egv31qmf6FKx6zwnoNLQQ+gQ2FoJus9GBiwv37b/odDdPYz0TRI88+dsvOM1xFr73dzCwyb1MPXND4wCEZDQhLkuWUhLqqJ9c2C8aoNkvsAoMa/Tf32PdRf9oc6phBqcgE8D1wJ5XaHuEgiIiIiIiIiIqII4M2EFNP4/G1dJj9/5YlcGUSxLuBrMY91RNGIwWhERETxLHIv9PxojogABqMRERERERFRUwlJ1vsmMhiNKKo4AoQvpGZEpg6KfZrxR4ZDq5fiyS3n4Ntdx+LFczVM7MdQNCI75KQL9RsK+0S2ECIissbhDG6cndBxalPSDT52Ka/WX76lTH95p8zQ1GNGbnyq5ZOkZ0Iu+Cfk9leAbsW+be3zIefcZL2ePOMwsZh7v5tbACQaPBnW/ApVVeH92ihMzOEEOnYPPrwxALV+pe8CnfCzxrZqqL2lUIsWQH37PtTe3VCzDwT++MXb7qoFXrwX6vSBUAseCEu9REREREREREREYeNheBERBcvs7m3e2U1kXYD9JSqTEnhNpY+o3EYUCmZb1s3TaKI2jufCRDHP7ByO53dEFGFBXs1PREREREREccnqzduaFvwN4kQUHs4AwWgp6ZGpg2KfWPhbCslp4a+DKB4deDSQlAJUV/oslsNObaWCiIjIlBZk6JCd0HFqU9KMgtF0cqdcboUlf+r3j0gw2uADoSZOAz5+yd6455YBX70DJCUDY46C5Hf1Nsz7Bli0AGrdb5DCPt623E7WJ84x6ZsaW+93JTEJqmsx8PtS/8bqSuC374Fh4wC3S38ChxPicEDldAK2GzxJWmLjKt/HJsFo6os3gUdvAMpLzefctAbq3sshJxoEBRMREREREREREUUjFapEh3i6YTSevpdYx20R1UxvFOe2I7IsYOgC96f4xW0byzzcfERERBQCPKUgIoDBaERERERERNRUoGCleonJEOFftCKKJuJwmH/om5oRqVIo1lk5vqcwGI3o/9m78zhZ9oK++99fbb3NPnPOnDnn7vdyd9Z4lYsQhAsRCUFF8EV4IAoxL01iXPCRPElMhMgrbnGL0fgQn4fogxrQKK5IAsqDyEXhEZDlwt3XM2ebfaanl6r6PX9Uz9Jzuqt7eqaX6f68X68+3V31q6rfdFX9qqpP/b7dCZMfl37y92T/9Ruk4kYy8GXfJr35h/tbMQBAQ8b1Oruxot3QcYycyVzj4SvFq4f93mebz+fMRG++kzHv+C+y25vSJ/+kvQm+9pVJ6Nkbf+DqeeUK0t//js5/H30sJQ2unXDnAWN++g9kv/WGxiOXFpPnlGA0SdJNd3UnGG3tSt1b+5d/1Lzspz9y/MsHAAAAAAAABkV8XMFoJ0zLEBqcCKzHPkv5/AlNAw6BYDRgUKX93/+onkYDqEk73+U6BTgZerQf01wcFtdHGE0EowEAAAAA9rTbeTvIdrceAI4fwWhol9NGqADBaEDHzN95mfSHz0hf/Rvp9DUy89f2u0oAgGbcDv8r1SMYDY3NjRk1uvlkpSiFkZXn7t06/P5PN79TeCElI+w4mfyYzE/+nuxjD0ilrSSIa21J+uzHZd/91gOFjcxbf6R7lZk723xcYaJ7y+0SM7cge80t0tMPXz1ybSl5bhGMZl7zNtlPfTh9Qf/w7dJv/ezhKrextvvSvvfd0mf+7HDTN9POtSYAAAAAAAAwSOiBCSBVSiSMTUuEoW0B2tdif+FYDQykmF0TAAAcg1an+9ZaGdObH5kF0D/ceQoAAAAA2EMwGjC8cvl+1wAnhWknGG2s+/UAhpgJMjLPvpdQNAAYdJ2G+LR7bY2RM5dyGr28Vf/+dz/bvOztZ46nPu0yN94hc8fXyGRyMqevkfnGN8n86v3S3fdKmZy0cIPMO98nc/cLu1eJm+6WZheuHj4+Ld3y3O4tt5smZxsOtpeeTl40DUZzJUnmpd8ive57UhdhpuaSz+4wNlcVf9e9il+Skf2/f+xw0wIAAAAAAADDJE4LNjoEQlvQFWxXgy1t/XQ6DhhBLY+h7DODr9N1xLo9yQhGA0Yd57vAUOvh91x8pQZAIhgNAAAAALCf124wWqa79QBw/DK5ftcAJ0U7v5iSJWgPAACMANfrbDrPP956YGikBaNd2dx7/dknm9/Rc+eClPH7/yuH5rYXyPkvH5PzkVU5H/iqzMtf393lua7Mm//3q4e/6YdkvA731X6bmGk8/Dd/RvbxB6TNtcbj97VN5q3/Nn0ZuTGZN/9we9d5+331bw5XHgAAAAAAABhGNiUYjZ6ZANJCHdLaiE7HASOpRUhp2rEaQFelHbEidk0AANADXEIDo+GE3iEMAAAAAOgKv91gtGx36wHg+AUEo6FNpo3fUsilJDoAAAAMC9ftbLp2r60xcmbbDEb7V7/b/C7h//bW0f3tM/P675Wm52X/7LelakXm5W+QedX/1u9qdW5ytuko+5bnNZ9ufxDc5GzS5lQrjcvmCjKvfKNUmJD9k1+T/t8PdljZI5iZl6ZPS87obrsAAAAAAAA4oWISHXCS0Tu4v9I+/07HASOoZdIB+wwwiGJ2TWDEcb4LnHip5+G9249pMQ7g+ggjimA0AAAAAMAej2A0YGhlCEZDm9rprJ4nGA0AAIwAt8P/SiUYDU1kfaOxjLRZvnrcTjBaJbS6/9HG0ztGuu1M9+p3Epj73iBz3xv6XY3jsbnW2XT7wqyNMbJzC9LiE43L1kKtzYteLfOiV8t+/Pdl/823d7bcTvz9t8r5P36ld8sDAAAAAAAAjlMcNR/XsiMigNHWYSdy2hbgADr+n3yso2FlUsYRjAagKc53ARwjWhRgNPCTvAAAAACAPb7fXjmC0YCTh2A0tMuk3a5QM3Wq+/UAAADot46D0TLHWw8MlbkmGcOXN5LbdP7iIWmj1LjMzaek8Wwb5+s4Ecytz+9sQsetfz93rnnZbL7+faftWofMO365p8sDAAAAAAAAjlUcp4w8TNfLYeqmOUx/ywlHoMBgS1s/9rjaFmAUtNgnaAuHF+v2RCMYDRhxtOHAyZd6Tdu7fZzmBIBEMBoAAAAAYD8vaK+c32Y5AAPDuG7rQoAkmdZfGZqpuR5UBAAAoM8Ohg+1i2tmpJhtEoy2up08/9HfNr+b58M/wH/vD5Vbnt3ZdM6B7WDmdPOyuQMb3B1f014Y9lEt3CDz3k/LHKwrAAAAAAAAcJKkhheljTvp6HU6HFiP/dVpJ3LWG1CnZRIC+wwwiFLzhQGMOI7dwInQo2C01MUccfrhRHA0RlNvfw4YAAAAADDY2u287XE5CQBDq52O61Onul8PAACAfnM7vPZtN3QcI2kq13j4ajF5vv+RxjenfNsLpBvmehBohd554as6m+5gmPXc2eZlc4X6SWfmZb/u70mf+nBny06r1rt+QyoVpWufJd36fJlM9tiXAQAAAAAAAPRUaqIDaQ8A0nQYfkYnZuAAOv4Dgypt74vYNYERRyMA4HjQmgCQJH6eFwAAAACwp91gNNfvbj0AAP1j2ghbmJrrfj0AAAD6zXE7m87jmhnNTTYLRtuWrLV68FLj8a+8k1C0YWP8QObd7z/8hAfCrM3pa5qXDTJXL/ed75Ne/gYp02RjPKzrbpX5nYdkXv56mVf/I5ln30soGgAAAAAAAIaDTQs/o2sm+o1tsP9S/u+m4/aD9QrUa7VPsM8MPMLrRlJqvjCA4Zfa9nNcAE6GkxHoPUBVAdBFHf7MOQAAAABgGBkvaO9rZo/LSQAYWqaN31KYPt39egAAAPRbh9e+xuG3qdDcZN6o0Y1Da0Xpyqa0Wmw83Z0LBKMNI/PSb5F94aukT/3pISY6sC3cfW/zspNXh1qbwoTMu94nW61IH/hPsr/yb1ov86a75fza/ycbVqVKSaqUpdwYAWgAAAAAAAAYbqmJDofoeUkvTWAEddiJPDVQDRhBLY+hHGOHF+t20KXdwRCz+gAAwDFodTnAKQcwGrgrHwAAAACwxw/aK+f63a0HAKB/2gnymLq6cz0AAMDQcTsIRrvnvuOvB4bKVL7x8NWi1YMXm09363x36oP+Mz/+O4ec4MA1211fJy1cf3W5m+6SSbl2M34gvfz1ktf6ez7z2n+cPHu+TH5cZmqOUDQAAAAAAAAMv7SAIsKLMOgI5OuBDsPPUrtus96Aeq2SEPp0PKaNBVIRjAaMuk7PkwEMjI6vadFdBEdjNBGMBgAAAADY00ZHyEOVAwCcQGm/41YzSTAaAAAYAY576EnMP/+pLlQEw2Qq13j42rb04MXGN6ZM5qRT412sFPrKeL7MB5+QbrijvQkOhFkb15X53p+WgszewCAr830/03rZCzfIvO3fpRe69fnSN72lvboBAAAAAAAAwyROC0aLelcPACcQwWjA8RjUjv/sq0AagtEAAMBxaJWlSNYiMBo6+JlzAAAAAMDQ8oP2yhGMBgDDy2nxWwqTczL7O9wDAAAMK/eQwWj33Cdz893dqQuGxlS+8fDVbenBi43H3TovGdNGgDFOLDN7RvrV+2VfdUoKqy0KX33NZv7uN0u/+inp/g8lnTVf+i0y1z6rvWW/5R3Sc14k+6kPSx/+DenyM8mI09fKfNePSvd9O9eAAAAAAAAAGE1xSvhZHB5iRvTSRBfQ+3fApayftHXHegXqDWoSgk0JT8UBna4j2sNBl7aGInYRYMQRBHO2JPEAACAASURBVAyceFy3AhggBKMBAAAAAPZ4bQajuVxOAsDQatDJvs7cQm/qAQAA0G/O4YLRzFv+ZZcqgmEylWs8fLUoPXSx8U1Dt84TijYKTCYn+5Z/Kb333ekFm4RZmxvvlG68s7NlP/fFMs99sfTdP9bR9AAAAAAAAMBQilMSHWxKaNqJR+fX4cC66qvUfYWgCKB9rfYJgtGAQRRzOAPQDNeUAA5hQK8G+qdlGzpynwhGRItejgAAAACAkeK3GYzmEYwGAEPLtAhdOHW2N/UAAADot8OEgl93q/Tcl3SvLhgaU/nG59uXN6S/fKTxNM+a72KFMFDM5GwbhbjNAwAAAAAAAOiJtNCTeJiD0QAcXVrAYFqgEp2YgToD2/GfYDQg7U5jgtGAEUf4GXDype3Hx7iPp8aG05QAqOGOWQAAAADAnraD0fzu1gMA0D9Oi68MZwlGAwAAI6JVMNrkXFLmBd8g83Mfkml1HgVIOjvVeHgYSxfXG4979rkW4cUYHpNzrcvQ1gAAAAAAAAC9EacFo4W9qweAkye1B3dvOpgDw6HFPtGvfcYSkNo+2rVRlHYaDWDUcVwATobBuG5ttSguoYHRcIifOQcAAAAADD2vzWC0Vp3DAfTHjXdKj3356uHnbup9XXBiGWPS/8txbqFXVQEAAOivINN83Ne+Uuan/0CqVmQy2d7VCSfebfOHKx940n23d6cuGECTM63LGILRAAAAAAAAgJ6wacFohwlEoZcmuoHtarClJcJ0GJoGjKRW+0S/gtFIfeo6Ui5OtJjVB4w4GgEAAHB8uGMWAAAAALDH99sr57ZZDkBPmTe/o/Hw73pnT+uBIeA0/9rQjE30sCIAAAB9dN1tzcflCjKOQygaDm0sa3TNdPvl77tdmsiZ7lUIg2VyrnWZlOs1AAAAAAAAAMcoTgk9sWHv6gF0gkCZHkj5/5u0zz91HGFLQJ2WbdkABqMZ/m8XoyFt74s4nAFoiusU4CSwqefhvduPW14NjFyT0uIPHr0PBCOCO2YBAAAAAHu8oM1yBKMBA+ml3yrd84r6Yfe8QnrJa/tTH5xcaTfnZPK9qwcAAEAfmak56ZpbGo+7454e1wbD5PYz7Zd97XO5cX6knDrXurMEnSkAAAAAAACA3kjrTBhHvasHgAHVaUfxwehgDpwMg9rxn9QnIE47VeZwBow4GgEAvUFrA4wGgtEAAAAAAHv8NoPRXK+79QDQEZPJyvz4/5B5129Ib/ohmXe+T+Ynflcmk+t31XDSmJSvDbMEowEAgNFh3vzDjUd83d/rbUUwVG47036w1b03E4I1Ssz0KekF39CiENsEAAAAAAAA0BNRSviZJRAF/Ub338HWYfhZ30KegEHVap/o0/GY84D2ddyu0R4OujhlNyAYDUBTnO8CJ0PavtrD/ZgmA4BEMBoAAAAAYL9Me2E3xvO7XBEAnTKZrMzLXy/nn/4HmfveIBNk+l0lnEQOwWgAAACSpFe9RXr1d+y9dz2Z7/8ZmVue07864cS7/Uz7ZW851b16YDCZH/rF9AJp12sAAAAAAAAAjk9a6EkcHmI+J6wXZ2p9T9jf0ivbF6Snflda+/IAre9BqceI6rgTOesNqNMqgKxfbW5avQbmOAB0V1r4GcFowIjjWAigR2hugNHg9bsCAAAAAIABMjnTXjmC0QBgyJnmozK53lUDAACgz4zryvyr98j+wx+UFh+Xbv87MtOn+10tnHC3nzFqp2PLtdNSPpNybo6hZK59VvrWYQhGAwAAAAAAAHoiTgs9iVJvrcAIefg90l9/9977a18vff1vSg73WI62TsPP6NUN1Gu1TwxgMBowIqK0DGF2EQBNcb6LPrIx9121q+Ow7+NdDMFnBw3o9RHQZbTcAAAAAIA9k7PtlXPd7tYDADC4svl+1wAAAKDnzA13yNz7TYSi4Vi84DrJtNFh7tb57tcFJ5DDbR4AAAAAAABAT6SFnpD2AEnaeLg+FE2Snvod6cFf7k99MEA67EROr2+gXst9ol/7DOcBQJyy+0UczoARRxAwBsz5D0t/eo/0gYL0kZdKK5/vd43QpkG9GgDQW9wxCwAAAADYU5hsr3Olx68ZAsBQCyvNx2UIRgMAAACOYrpg9AOvaJ2M9qz5NtLTMHr45VIAAAAAAACgN9LCz2x0iBnRTXNoPfprjYd/9ee7v2wCtAZb6vohKAJoX4t9ol9tYVp4Kg7odB3RHg66tGA0MoQBAANj6TPSx18rLX9GikrSpY9LH32ZVDzf75oNOAK9AQwO7pgFAAAAAOwyjiONT7cuSDAaAAy3tLsSsgSjAQAAAEf1H1/fOvTs1vkeVAQnTzs/agAAAAAAAADg6NJCTw4VjIah9dWfazx86/GeVqMxOir3V1on8rS0GNYbUK/VPkEwGtAvqcFoHM6AEUegEgbIE/9diiv1wyor0vk/6k99TooB2VdbVWNAqtk7Lf/gUftAMCq4YxYAAAAAUG9ipnUZl2A0ABhZ2Vy/awAAAACceMYYfeNd6WVunW8dnoYRZLjNAwAAAAAAAOiJlB+VszHBaABS/h+n0/CzkevVDbQwqEkIBKQCBKMBAE6Gr/xM4+F//d29rccw4boVQI9xxywAAAAAoN7kbOsyrtf9egAABlMm3+8aAAAAAENhYbJ5hxnHSC+8qYeVwcnhcJsHAAAAAAAA0BNpwUYEoqDv6Ijcf2nroNNxaYFqwChq1db1qy1kX20fx6thFaXsBmnjAIyA1NAkjgvAiTAg+3HLqwGaFGAkcMcsAAAAAKBefrx1Gc/vfj0AAIMpSzAaAAAAcBxunGs+7p4bpJlC8+A0jDDDbR4AAAAAAABAT0Qp4WeHCkYbpl6aw/S3DDl6B/dZyueftm5Yb8ABAxqMlhaeavg/3mNBezjw4pRVFLP+AAAAABwT7pgFAAAAANQLMq3LEIwGAKOLYDQAAADgWNx3R/Ob4r/1+dwwjyboTAEAAAAAAAD0RlroSXyYYLSThiAL4MhSA2E6HQeMoFbhSmnH6m7q13KBARKnnSpzOANGHOe7wIk3IIHeLS8HelONAdLqAxm9TwSjgWA0AAAAAEA9v41gNNfrfj0AAAPJEI4JAAAAHIsX3iidm2o87rXPJfwKTTjc5gEAAAAAAAD0RFragx3mYDQAR0cwGnA8Wu0TfdpnCEYDUsPPCEYDAADtOOrVMTlgwGjgjlkAAAAAQL12gtE8gtEAAAAAAACOwnGMfur1Vwegve3FRrcvEIyGJgy3eQAAAAAAAAA9kRZ6cphAFHppoisGNCwIibT9vtNxwChqtU/0bZ8hGK1tHa8j2sNBlxqMxi4CjDjOd4ETb0CuW2kyAEgSPdkBAAAAAPXaCkbzu18PAAAAAACAIffGe4zygdEvfCRWKZRe9wKjf/EyQtGQwiEYDQAAAAAAAOiJtEQHG/WuHgBOoLTe252OA0bRgIZAHiYgFRhSUcpuEHE4A9AUDQSA4zN6LcqAXh8BXUYwGgAAAACgXhC0LuNyOQkAAAAAAHBUxhh98/Okb36e2++q4KQwBKMBAAAAAAAAPZEWekIwGoBUBKMBx2NAO/6nniOwH2M0xCmbelq+MIARwLEQGAIp+3EP93FaEwCSxB2zAAAAAIB6fqZ1Gc/vfj0AAAAAAAAA1HO4zQMAAAAAAADoibREh7RAFKAXCBsYAKb5qNTQJAKVgLa12if6ts9wHgCk7X5poWkARgFBwAB6g0toYDRwxywAAAAAoJ4ftC7jEowGAAAAAAAA9JzhNg8AAAAAAACgJ1LDi6LDzOjIVRkY9Dg9QVhX3ddp4ANBEUD7Wu0TfdpnCEg9hE7XEe3hoEsLPyMYDQCAEy71+5/eHej5GgqARDAaAAAAAOAgP9O6jOt1vx4AgMFTmOh3DQAAAABgtDnc5gEAAAAAAAD0RJQSfjbMgSj0Om0fnxWaSds2UscNcdsCdGRQg9EOE5AKDKc45ZBFMBow6jo8FwYwODq9pu2xAapKb7T8g0ftA8Go4I5ZAAAAAEAd004wmud3vyIAgMEzMd3vGgAAAADAaDPc5gEAAAAAAAD0RGonUAJR0MLI9c5FvbT13+k4YAS1akv7FSZIiCGgKGX3jNhFAADAMeAKGYBEMBoAAAAA4KAgaF2GYDQAGE33vKLfNQAAAACA0eZwmwcAAAAAAADQE3FKogOBKJAkY5qP6/o20iosiO7D/dVh+BnrDTigVVvap32G84BDoF0bVmmnyjGrHRhtqee0NBDAiZD6YwHHtx8fdTG0KMBo4I5ZAAAAAEA9P9O6jOd1vx4AgP75B29rONi86Yd6XBEAAAAAQJ20jnYAAAAAAAAAjk9a6ImNDjOjI1cFJ5Ct9rsG6KeOe3fTXgB1WqUh9C1MMOUcgf/LOx4ERQ68tPAzgtEAAMBxGNjLAQA9RTAaAAAAAKBeO8FoLsFoADDMzJt/WDp1rn7gt/0zmXM396dCAAAAAICE4TYPAAAAAAAAoCfitGC0lHGAJMVhv2uAvuo0/Ixe3UC9VvtEn/YZzgMAxSlJJGmn0QBGAee7wMnXadg3uoukOIwmerIDAAAAAOoFbQSjeX736wEA6Btz9ibp//wL6aMfkL34lMzzXyq95LX9rhYAAAAAwCEYDQAAAAAAAOgFmxZ6QiAKpPQOp7bbwWh0du2/DgMfUrcb1itQb0A7/nMeAChK2Q1iDmcAmuF8F8AhtGoyaFGA0UAwGgAAAACgnk8wGgBAMqfOSW/8QZl+VwQAAAAAsMsYrtIAAAAAAACAnoiPKRiNjt+jKa72uQJsd13XccBZp+OAEdTyGNqvfSbtHIH9uE7Hnwef46BLCz9LC00DMAI4FgInH/sxgAHCTwkDAAAAAOr5QesyLjnbAAAAAAAAAAAAAAAAAIAhFUdpI3tWjd4jtOlY2LDfNUDXpe0PaW0E+xjQvgENRksNSB3mcwRgT1owWto4AKOOBgI9RLjXidfyamDkVvGAXh8BXUYwGgAAAACgXjvBaJ7f/XoAAAAAAAAAAAAAAAAAANAPcUqwiU0LTQMkxdV+1wDdlhaMlNY7O3U6ApWAei069vcrCYH9GEg9VSYYDRh1NAIYEASWdy71mrZ3+/joBZ8BaIRgNAAAAABAPT/TuoxLMBoAAAAAAAAAAAAAAAAAYEgReoKj6HYH7Ja9g+k93H1pn3E3xgEjaFDbOs4RgNTwM4LRADRFyhF6icDyzvUoGC11MUecHsDw8PpdAQAAAADAgAnaCUbjchIAAAAAAAAAAAAAAAAAMKTi4wo9ad5L05aK0sUnpZXL0ulz0vz1Mq57iHljYNEBewR02FG8Rx3MgeHQYp/oWwhZ2jlC1LtqnAgdtmu0hwMvStkNCEYDRh2NAAZEtwPL0XW0Ju2pxL6WqzNaupTXLbNWGd/0u0rAsaInOwAAAACgXn6idRnP7349AAAAAAAAAAAAAAAAAADoh9SwlaMFsdj7PyT7mz+rX3v8euWiol6z+SfK223pOV8vvfv9MtOnjjR/HI21VltlKfCkwOuwM2m81wHb1sJdjKFj6lBJDe3pxjjgZKqEVhfWpLGsVKpK41lpLFPfJpaqVuXqTrsruU5tXMtwrD7tM6nhZ/0KaxtO1loVK1LW37ddYCCkhZ+lhaYBGHWc76J3SuWq3NiT7xCQdngnI9B7cGrSuTCyurwhXdmUKpEURlIYJ+dTxYpU3rf5bhddPf3k2/VM5Zy+tHWXHtm+SVeqc9qIan2B75e++E7pzrN9+VOAriEYDQAAAABQ77pbpVxB2t5qPN4YfpUSAAAAAAAAAAAA6CNjzI2SnifprKQxSYuSnpD0SWtttZ91AwAAAIZCnJLokBqIkjJZHMv+zPdKf/B/KZKjH7nlvVr0FzQWbej5pc9pZnlF629/UCunjIwx8kwsV1aeiZVxIq1WfW2Fniqxo63IUyUymvCqunlsU+cKZc1kQ02PuZo/ldWZ+YLmZ7MaGws0kXN0ekLK+sMbKBLFVo9clr50XrqyaRXHUmST1RhbqRpJz6xKTy9bXd6U1rYl3036807nJWOSzqYX16Unl5POpzuMkRwjGVk5+1/b8zKyyjolZZ2SYusosq5iOYo+NaVYFYWx0VbFyGrvszeyMkYykhyz93qnlDF7rzNurNlMVVk32p1Wkow9LYWfrpWz9eOMlf4qK8WPSrXxxiYfhjFWMo528ohM7R+z7++c87Z17VhJ1+S3lR0f15lzE7r92oxuvWFM3vikHG847x+11uriurRZrh++XUm2ncsbSThPKZQ2S9Lywz8lx8SKraOVcEqr4bSsNXJNJPfSs2Xyse5/xKoUSi+7zShwpfWSldl8jdy165JyJpJnQmWdbW1HeYX+nKpPRAojq82SVdaXpnLJOt3te24lu6/7985wa+1ur3Bb+7d+GklxLBvV2i/XlY1jqVqRjW0SBmltMj6sJK9lJOPImuRZjpss29pkGlkpilSNjbZjX55j5TpJoODpSUc3zvu64ZqCnnU20JnJJNhoLCPlg+EOCiyWrRbXpNVtyXWStmbn8ZVF6W+fScY7RvIcyXOlTC0QbG1burwhrWwl6891kjAo10nKViOpWLGKk9UgqwPPbQxb207auiubSfu4U7esJ03lkzZxZ9NxjbS0lXTK99ykDq4j5fykztVap/1qlOw7lTApu9P+RnGs1W3nqs8o64SaDqqqxkbFyFMxqu/mPOaHOjse6WzhOTpb/nUtZBZ1Njivs5nzOhss1p7PK9e3YLS0c4TOEqGstXrokvTAorRatJodM6pG0nbFqlRN1teF9WTdrW8n20AYS3EYKYqlami1WZYiaxRb7W4jyevkCLEzfLtqtFxMxvuuFLhJYJ0knV8z8t3kc61GyX5ayEinx7V7DHSM5Dg7x7Fk2/3sU3vt0b03WnkmSgaUv17a+vPDfyBfuUXr4boeXs1oK/RkZDXnb2vGL6tiHW2EgULryDOxPMfKN7Gm/IrmM9tayG7rTLakhWlXZ07ndfrMhKbnp3V60tGp8SOEng65OLZaLyXrNR9IfovPKS0YLW1cM6Wq1fp20obEtv65EknLW8n52cFxca29ObjIRpkt9kCphmUaTtdZuZM0/7brMILzv7AufWXRqrhZlmtDZZ2qZr2STmUr8p1kq0qOs6b+GCxz4Bi8N16SrjuT1Rvum9P1c8N1bm2t1Xo5p+3yfHJdZF1F1lXFBnq6fI0WH3q+VtZizRSk2TEj1ySf0TOrybn40mYyn4mcNJFNjjPFSnIcvLKZfH7ezrmLn5TNeNJ2VVotJsfQAcpsQp9cWJc+84Rk7ZSkkiTJVSjHxHJNJEexPBNq8vORpgvJuW0+kM5MGmX95Jw38JLzI99Nzn8dU/9cCKRckGx/Gc+okEkCrXaCrWztemynHdg9f985T4utbFRVXKnIGkdPr3mKjaNrZoyscevP5WOruLwtWyrKRnHyPo5l41iVSqzl9arCyKrgx5rKxnpiK6/xnKOiNyZXkbxCQUE20KlxozOT0sKk0ZkJaWFSGssO9nlRq/35uPb3jZLVlc3kmsiY2jVN7bomiqX1benSRnJNX6pKG6XauflqrMvrsaphrCiKFYeR4p3zcRmVYk/lSqTxwGo6b3fPnSuR0VLR1cNLrhY3rr5eai4r6adSS1xZqUhnM0f6PIBBQzAaAAAAAKCOCTKyz/u70v0falzA83tbIQAAAAAAAAAAAACSJGPM6yW9XdK9TYosG2PeL+nfWWuv9K5mAAAAwMlgP/J+2Z9/e5Lo4bi1ZA+n9mz23j/9cPOZPPx56do2l/eF+2X/4LVSpSz9zcd2h/95/qVa9BckSZvuuP6i8JK9iVbb/3tWwqyeKI1LqWf/SUjLtNnUvL+lqUykuVxVp8akXD6QF/jyAk9e4CtXep7yV35IgVNRYCqa8NY1460o65QUZAvKPmFVCJLOwTshObkgCTvy3aOFHVlrtVpMQqieWZWeWbG7r8+vWi1v7XV6fexK0glVkm6blx5fSoLNusHapDOstP9vM0oyqqXNaPzqiVLiqndCEqQkwCbNZigtlYMmY0+lTnsk6/tef7Z+1HR8RePaVsZEKrhVzQYljfuR8hlH4zlH2SAJ4ZsaczU5ESiTDRTkA40VAs1MeMoVssoErrK+NDuWbDueIznO8XXILletLqzvbDvJ9nNxXdoqRVqrhSWslR0VK0bVMNbWdqSHrxitlA7T1fIHm4+6Iu2P2fjAZ/b31r6l9mjiGWknKq838t2Z7dOSvrTzpj4oylWkCaekca+qvG81HVQ1nalqMhNrvOArN5ZVNp/R9JiryQlP2cBVLpBmC0YTub0gp7FMEojh7wvH8Nzj+dyKZavza9IzK9L5Nbu7LW2UpHJV2qokQXnhvmCwpU1pcU1aLx1LFfbpbrpHJUweW+UkBO14Ne7kX4o9Labsb5tVTw8ue3pw+bSkNzUtV/jLonyzuRuONeaFyrp2d5vIebFybrR3nHONfE8az+yE0RnlMo7GxgJlMt7uuJmCUeDtBV+4+wLhJnPSVNFVWDkl31RVcLcUOHuNvo1jXVhN2qArm9KFteT10pZUqiZhi8tbVmtFq+1yrPVS8tlf3jLaKO//vNpd70cL1CmHyWNjXyjkTiDajq2y9NiB0Mg09z9mtNd1faH2OKS1+rdWRpereV2uNm+znipJX9hIm2nSFnkKNe6UNReUNeZHKvixxrJSNnCUDRzNTbo6NZ1RYTwj33eVqQWjFIIk9GQnJCXwktCemcLgBD5GcXK8u7QhLa4mYULFShLS+dhiRV96sqIrG1aKQimKJMfRetnR4nZGq9VA8b599oy7plsyS7p9cktnphzNz2Z05kxBC2cnNTOTT23rDuYLP7Fk9cdfsPrbp6wuX95UtL2tqFxRqRSqUol0sVrQQ9VTsk3aDGAwZGqPY/Il6R0flZ43u6pX3mmUy3rKZhwVcp6yWXc3jNRzpHxgNDuWBDFlakGzOX/vemznPOg426HNktXfPiM9uWT11EpyHuQ60qnx5PpocU26sCZd2tgLj96uSg9dki5vvL/F3O2BZ6D7InmKrFTdt9mtr0hPrewv1ek22el0fu3RzvxytcdRXL3vFZyKFrLbmshKhZyjsaxRoXhZk1++Q9Onfkw5W1LWljQeb6oQbykfF1WIr1fuAaup2mnZwe+IxrPJ46ht0lPL0m/9dfpn++MfsnrBdVanJ8zuddrimnR+Odb5K2UtrsRa3HAURlYZJ1beDZUzFYXVWNU4CShbrI5rLe70szVKzsfTzsl7G+m09JlPS3e9uKfLBLqNYDQAAAAAwNUmZpqPc7mUBAAAAAAAAAAAAHrJGDMm6b9KemOLojOS/qmk1xljvsNa++GuVw4AAAA4Scrb0toRM4QP07dzeVH61NWn5b812erU/vit2DGtVMakiqQNSZcalXpR7dHEX8XNx0nyTaSCFynrxfKcvY764zmjwDPyHFsbbjUWJK+LVaP1kvSli65Wyof/4davXjz0JDiCFWdaK5pO3sSSSrVHahjNQVdvR44iZVTVuCkpMJECJ1beqSrvhrvbjO9IWd8q7yfbl2uSzteB76gUSl9cyuvJ7YKuhIUmy20UuOI0GY5uieRqJS5opaKkPWoZxtV+eEbWCZVxIuWcUGNeKN/dCbUycl2jjCflfemjTyWBhm9+7paymSQksxK7euDJsh5a8rRabRZIiEGyFR8IyaocZW62yetGXiVpcfddxpSUd4sadzdUjMd05Q/Tj5WJnRAF9FooTyuxp5VSITl+pWp/uyg4FY25FQWuVeBYTWYiTWcjZfzkHCif8zSWkTImVN63Gg9iZTKOctNTGit4ygdGWV+azu8Fz07lkuOcWzvmuU7yvhDsBYo+sWT1p18I9Rsf39Zfnc+pGjc7pjULX2nsQjSpC8VJfaKo/Zt7W378Q1alxx+Uokh/fvGUPrc2vW/smHbCZQFIn1sa1+f+4uDQg+1N63Mg18TKuLECV8q4tTbGk3zPKBcYGSNN5aWxrCPPd+W7Ru6BoFlrpYcuShfXrT71aKxKxDkyMOy24kAPFwOpuH/omDR9Y/OJQkk/l36+65pYGScJL/aMVeBZjde+A/JcyfMcea7Rp59ufm7y6/e3bvt++WPNrhWNpGzL6YfRUgffqwGDjt7sAAAAAICr+Sm/ZOLxBQkAAAAAAAAAAADQK8YYV9L7Jb36wKjLkj4raU3SzZKer72IhnlJv2+MeYW19hO9qiuAAWZrHUPMYZJcAAAYQlHU7xpo22T1u+Pf3O9qdEXVulqtulL1wIjVvlQHJ0gsV9tytW2zSZ/mdnKFgANKsadS7GlNmbZCst73+YMhevmG5YA0ZZtVOcxqJUz5YXIMva040FYc7J0DFVOLH2DVTvDRDkeRxkxZZeurLF9JwGezUND++LkHbu53FYCREllHxdBRMUzeX2zZBrVqcwhFA9C5yDoqRo608xVcRbpwqHMjdGq5Qsg3hg/BaAAAAACAqwUpX4K4BKMBAAAAAAAAAAAAPfQTqg9Fq0p6u6T3WGt3u/kaY+6U9KuS7q0Nykj6oDHm2dbaxV5VFgNi6dPSY7++995aKSpKlVXJ8SR/UsrOS8G05GQkx5ecIHm4gWT8vdc7w/eXaTTMeNrtyGlt+6/3D4tKycPGko0k1Z5tLMWhFG4kzzaqHx+HUrgpxVVp7UvJ3xluSPlrJK+wN4+d6cJiEhAWVa6el42TR7SdPJIPsP6zbDps//AW0+y8bjhtq/H75x1J4VZ93RXvvd75u6Ni7e+sMY6SLEVTC0tzas9mb5xxJS+fvN75nGwkVVb25pO/LtkOjJs8HE/yxpLtYXc+Kc/GlTKzUvZ0Ml1cldys5I1LXi4Zr1q5nfJuNlmvO9ueV5DiSm3YvroYtzZ+rMHfWwuIIyju6OIwWW/7t5GdbS4q7dvX4/rng8PCrdr6tlJUrs38KPtRl/fRqLzXTpSXOjCgMwAAIABJREFUpNx80nZ2zErVjaRd9sdVv62afdvqwe34wDa98964yT7hZmvteXZv33S82j7q1fYZ9gOMGHsMaUtH7CP+R2Ov1oY7cfR6AAAAYOTEcrVuCXIEAABAvaUywWgYPgSjAQAAAACu5qUFo3EpCQAAAAAAAAAAAPSCMeYmSd9/YPAbrLW/f7CstfbLxpj7JH1Ue+Fos5J+VNL3dLWiGDzrD0oP/ud+1wKDbH8ojG1eTNW19PkUnzyW6vRfs6CpfQFqTpCEZNkwvbxxrh5XulS/uMINtWBBPwmBqwt085JlSUk4nBxdFeaVFvR1VchXs+HtlI2TILzS5b1wvf1Bg3FVisvCCeb4kltIQtT8CcnNJAFvXiEJLXQytSC1fdunP5YM391ePcnNJduD4+9tG9lTSYDcbmDjvgBHW5VKV6TylSSEM5jZW5YTSMGUlDmVhF5KybD9wZhxJQml8ydrgW8H9sVGYYh1w9zk7zDeXpm68QeCHB0/Caxzs5KbT/aHuFoLmHP36i1Hctxer8XREEfH99nGjYLRrORqr+lv9HBrD0kmn3bwPMCRlLG7mZCy0h3VB/Q9K+/Rb4+/TkveXMd/CgAAAAAAAIDh49mqcvG2zL7/0zkzdkELwQXdlHtEdxW+rOsyT2rOX9Ksv6Tpj61p7s6flnRX/yoNdAG92QEAAAAAV/Mzzcd5R/l1WwAAAAAAAAAAAACH8KOS9v8H3X9rFIq2w1q7bYz5TklfkLTza0j/2BjzU9baR7tXTQA46Wx92FijvJuodHyL23r8+OYFHEVcleJVqboqbT/T79oMB8fX1aGJOvB+X+hiXdkD5dys5GT3jWvBWinaSgLb3FwtqHF/yNtOcGPt2c0mgXOytWEHyu9M43i1ADp338NJnt1sEqQnSdsXpa1HpYk7pLEbDyzvwLydIAmZk62F59l9IXq196XL0pd/ItlObZgs48wrk2C8uJqE45UuSXFp7+/fbc93Hqp/b60UVWX+SXXvc9ufh9cF5gYr87Zq3bDn6PP6peif6ef0dv2v9VfpE6sv0lJlWjlTVN4pata9Is9ECq2r0PoqxVmV4qymnFVNOJvKmJKypqzACXW+sqDHSjfoSjij1XBSy+GMLoTzWgwXVFHKfYBDylGka92nlFFFjonlmlCOsXJMLM+t6obs43pW/mFNByuq2EBGVivhtBzFyjhlTXprujbzlBYy57XpZLTh5rTuZrXlZrTpBdp0s9p0M9p0M9pyM9pyMqpGGUWRJ+PEMrLJs4lljJUxsTyvLMdJAvmsTTa45LSj/nUyTpI1srX3YTWjcmlcsXX2NmkZyRpNV4q6c+2y5subu9Na7T3vvm4wbrfMgXHlOKPzlQU9Xb5W58sL2o5zerJ0nSK6IGrGLGnWWVbWKSnnbmsmvyxrjYyxmnTXNO0vyzdVRdZVJFer1WktVha0Fk4o55b0rNxDmvRWJUmRdRXLUWRdVeKMtuOcCu6WfFORZ0J5JlTWKasUZ7QRje92gt7fGdqYBsMavN4pVzfsYDkrGbsX4JgchkzyemeafcHKe/NJyjk2VsHZUhR5qlpPxSirJ6vX6vHKjXq0eqO27NgRP/3hci5+WneWH1BGZYXyFBpPRZNXxQQajzc0Fy9pzl6RZyNFxlUoV5FxVZWvkslqLl5SoFJtL689HCtjrYxN1vnucLPv2bEysVXObmtel3TKXlJgqqoaT1Xjq+jltWqmtGKmku3GSOvOhObskqbMqiK5Co2n0PG05RQUGXd3e/XcUDmnqJy7LVdRrf2N5CqSZ0L9TeUFqiijyPX0TZMf1mo8qY14TBm3oqzZ1nSwrLxXVNV4KjtZXaqe0vnyWZ0vn9ViZUHnK2d1vrygxcqC1qPJfq/Cvrjb/aLOOItacC5oxluW71blulHyMJFcJ9KYtynfrcpYK8fdOxY5iuXsvDaxfKeq2WBFgVNRJQ5UijPajMa0Gk7p+x/+haZ1ePP8+/TiyU/Iyii2jmI5+hcP/WLT8v/2+h+Ta6KO/2bHxrou84RuzD6urbigi9XT2ogmlHVKKrhbCkxFUewpjD2Vo4yuVE7rQnlei9UFXajM60J1XovhGa3FUx3XAYPFtaFcm7QtjmI5NparSEZWjr06/Hj/8a7ZsMZlrtawnO10/kcYZrs3/07/xiPN/xiXeaR12aIeRlZnwgvJcTpa0mV3TkverGI59cfj/Y/aedT+x1PeNfpc9rkNajU6Jpw1FapbqhpfK2Z6d3heRZ3TeU1rWTmVtKgFhcaTr6oyKmtaKzqly/JVVdX4qhpfm2ZMrkJVTKCcU9K4u6EZd1m+qo0X3uZXK313Eup5EuooyQ0i3Tr9oG7JPbJ7nRZZV7F1VLG+lp+a0Xo8qbLJaNWd1OXsKVUqvqoVX2Wb0ZYd25tOyXSRXIXytBkXVLYZlW1yPVeM8wpMRb6pyjXJcWr//u+Y+Ko2oRjntRQ3Dsufcy5r1l3am17xzjcIe++NlatIU86qPlJ6Repn8WL/E7oYz+tCPK8NO9GFT3v4OTbSdLSinC0pF29rLrqiM+FFzUeXlIuLchTLtZEc2dpzLN9WFdiK1t0JLbszsjIK5Sljy8rHW5qM13R3+cu6PnxCp8PLKtgteUrOdzwTykkuyvdkJOcfNWnjJMUFV8Zsdf/DAHqMbyUBAAAAAFfzg+bjPC4lAQAAAAAAAAAAgG4zxuQkvf7A4J9sNZ219kFjzAclfXttkCfpTZLefbw1BAAAwFXi5p3TRsblv+zevC/8ryPPwkgD0ZvKuFJGJb1m+oN6zfQHj33+1kqb0ZiKcV4r1WldqJzRYuWMLldPaSWc1uXKnJaqc6paX5F1FVpPVetrKyqoFGdUsYFKcVYr4bTWwklVbco9hV1gFOu0f0nnMs/oXOa8zmae0Zngot71+I82neZnb367vvvse5RzW4eZWkkrflZPFqZ1PjeuVT+nNT+jNT+nz/oZfdyfVbyblhdJKtYeiVzt0bgLc+9sSprfXNJrn3lAt24udWUZ5TjQA1t36JnKOVViXxUbaDvKqRRntRZNark6o2Kc01Y0ps1oTOU4o2KU13I4rY1oXNU4CfdbDadUttmu1DFNzinqXOYZnQ0WNeWtKu8mHZYnvVVNeBu7ndfng4u6Nf+Qbsw+Jkf14SpZp6RZf6ntnErsiayji5V5bcfJNrMeTmg9mtBaOKFilNdmNKalcFYr1SmtR5N129BSOKONcFxluxPaNN16gV0w5a3obHBe5zLnNesvKeuUlHW2NeZuyTdVeSaUb6oquFtaCBZ1NrOohWBRc/6VpOO79VSuBeDN+kua9Zf78nf00zfrD49tXpthQYuVBT1TPqfNaExV6ym0nio20EY4rooNVLW+qrGvrbig7SiXBFjUjnXlOKutqKBKHKhsk21tK8qran2V44zWokmtVKd3gzOsjpacOudf1kKwqNP+ZeXdojJOWVPeiqa9VRXcLY27Gyq4W/qeB3+l6Tz+53O+Ua+Y+eiR6tEuI6vve/g/NRz36pk/0RvnP1A3LOds67u++qtXlb0z/yW968Z3daWOhxXGrlbCaV2qntZydUZbUUFr0UTt+JXXRjietD020FZU0OXKaV2pzqlifVXiQNtxTuvRhLajnLbikxv0+Lyxz+o2/6u6LfOgAqeinZQNR5HOTTyj08FlzXpLUuxpKZzVI9s364ubd+h8ZUFL1RktVs5osbqgbZvvvA7B5/Q1wWfkmVCBEynvVRSMbSjrlHRz9nHd5l+W70ZyHCvXsbXnWK4Ta9pbVd4tSYolVZScn+0LnG52kG4QstXcYcoe1iDUo0t1ONRnfBiD8Jntm7cxkuPuvm68xbWux+VNV//PxTfrgeLtKsdZFaO8NqJxleOMSnFWG9GYqtZXaD1F1lXV+loPJ1SMC8f1Bx1KwdnUddkndW3maVkZXaqckiSdCS5qIbOo+eDibrBccoxb1d2FL+lscD4JSlUtwNNEmvTWNOmt9+XvABo61e8KSD/xxDv0rx/7D3XDfuT6d+vf3/jOQ83n3Cef1GLlbMNxB88lt6J88h1ROQmTvVQ9ra2ooM1oTBvRuLaivFbD6eQavnYdsx6Oqxgn12/FKN+Xa/v9vmHsY6paX8U4p0fLNymUp8BUFJiKTnuXteCd11lvUWe98zrrnlfO3VY5Ts7lKllPvlcLJS8GmgrPJwH52QuqWl/OTBLy7IRGrvHkulY5r6wZf1WOo9p5R60ipvaPkSQrlUtSaas+zGzntetK2bwUb8vs/ADEMXNeFsleV2xdEDhhBuCrfAAAAADAoDF+pvlX8i6XkgAAAAAAAAAAAEAPfKOk/T3N7rfWfqXNad+rvWA0SXqdCEYDAAAARoYx0ri3qXFtaj64pNsLXz3S/KxV0uk0yms7zimsBdFUra/NaEylOKtKnISpbUaF3c781VqoyEY0vjtsJyRoMyoosq62ojFl3W09u/BFPafwBd2Ue1QLwaJ85+qOon+9fo8+tPzqhnW86Zq/0eMT45LGG44vO66ezk/qyfyUnihMacPvb0fe4/LI2Kx+/rYXa7KyLefAnZ/GSjOVoq4vrur6rVVdV1zVqfJWXR9dK2nLDbQaZLXpBbINYh6yk+f1nPAxTVVLKoSVjmOCynGgShzsBhgthbMqxVlV42TbSALWCrsBRUlQX7Zue9uK8irbzG5YRGS9ZB7W143Zx3R34Yu6LvuUzgbndTZzXhPuOoFmfeSaWGczi8cyr8g6u21NOc5oI6qFYMX+brBjMc6rHCfhRltxobaNJIFYv/D09+nJ8vUN5z3urus1s3+sWf+KnlP4gp6Vf3h3Gyq4dCzvp5LjadXPat3PKNoNrFzTvNY0X3vnx5GmqiVNVkvybdxsVh2xVrvb0FZc0Fo4qZVwWhlTVmg9bUTj2ojGtRpO6lLltPJuUbfkHtFdhS9pxltueCxr5Oef/n59pXhHw3G+c3zBu7GkTS+jNT+rbdfTWFjRVLWkXFSVkTTlrTaddtrfG2clbbu+vvbcn8t/qKxqnKkr++2nf/vY6nxUnhPpVHBFp4IrR57XTju0P/RzJZyuBayNaTvO7YXLVqe1Fk3W2qxAxbiwex61Ewy5E8a2Ewq5FRU6Dhp5TuHzGnO39Mn1F9UNv2f807r/BS+SY44eHGWttB5N6Ep1To9s36xLlVM6Xzmr+9fulTFW096yilFh9zMoxVmdDc7r6yb+Sv9g7o90ffbJo1XgeHdv4PCio8/iVCC9/dqfP/R05Xhvv9oJAj14vZWcZ/vajnPajMbqzrslaaUWcpScR9dCRWvTVa2vxcoZXanO6ebso3rFzEf0mtk/1j3jnz6W9gNAY++47qd1Jrig/7r4T2Rl9NYz79XbFt576Pm4pnkDlQSi7im4Rd2ce1Q35x499HJ2FKOcyrXzv51r9qpNrstWwymthlO16/jkPDoJmC3sXsfvfC+0HM5oK8pruTqrDy2/Sp4J9ZLJT+gPll7bdNmPvfCmo59TdMoqPQPTUf3/7NeJpGjj2Kt0kMl0HmILDCp6swMAAAAArhak/Lqj5/euHgAAAAAAAAAAAMDoetWB9x87xLR/ISnU3n2izzfGzFtrLx5HxQAAAACMFmOkwFQVOGua0lpPlrnqZ/X5qTN6rDCjlSCnNT+rBx4/LS03Lv8/br9FhbHZntRtEK0FuYbDlzN5PTw+t/s+F1Z0zfaaQuNqrRY2FDpu28tx41iTtQCiiWMJISrXHpK0F7rjSpqJYy2UNvT1V56QF3e2nKqSv821sdzUHsytxZJC0/iz2nY9rflZrQVZrflZrfrJc7nJjxF7cayJsKyJ2uc4US1rslrSeFiWFx89fMLIHntAVL+5JlbBLe4GlZ3R4b7iyDol/fOHfqnhuD9/3n16wfhnj1zHYWclVY0jNQhQbKbqOFr3M1r3kvZm3c9qrfYcN0gtjGW06QVarbX7zfahZgphRZPVkqYq28lztaTJSklT1e3d17movbAySbt/qqNQ41rTeLCma9ReEIOVVFF77WujUMrdKjihKrW2xxqp7Hi7n+H+z3PL9WUbfKZV42jdz2q11j7F5up4Sz8ONVUp6TH3JqnJzzJ8/Loz+tLZr0/auCCrqpOsm5fm/rP+7E+/T3GU9DG4+fq/lvPyv9J7dI+8LrdD+bCqid1jUnn3+JSNQx1Hjo+jWJ7dm9FOO5Ss1jWdyRz/V63FKKfIurWwtXFFcndDHiPrqmp9LYcz2o6yCpyqCu6W7sg/oNPBZUnS/1x+pf794/9Wq+GkXjT1l/rRG9+l0Gkv0rTVsdIYadJb16S3fqQwFWBQ7M+32WmHrdn3WtLOgcDIyrPxIY6Ax6NqHFkZGTdSzt1STluaziwdej4H27M0SXCyr3U/q6/4c3XHkC2vcV8zY+1u2ObkvmPvRLUst83ldi5ZY461MrXX5CLjpHCM1Xcu/Lq+c+HXjzQfk3L8Dkyl6bhO5d1t5d3tY5/vju/56i/pPYvf3XDcmeBC15Y7iNK+h9jPs1HHIfbAoCMYDQAAAABwtSZfVifjCEYDAAAAAAAAAAAAeuDuA+/vb3dCa+2WMeYLkp6/b/Bd0iF7DePkKlwrXfu6+mFORgqmJRtK5SWpdFEKN6W4IkUVyVaT1/vfR2Wl//x5Hzi+ZFxJTvJsXKm62nIyLbxKcoKkvJuRbCy52b1hxtk3XycZ7uWT91LS+3PXvte7wxuMbzhNo2lbjW+xbK+QrF/j7NV/5yEnKefmkr9JVrK1bn823vc+3hu+M86GUriVLNO40iffpKae++OSPy7F1WS7slGT+cf1y4/LUulSsj1GpWTdhMVkHlG5Vj7am5+NkjpF3et0gwFgXPVkP2q2X6eNNyZpQ9OM3Zw+fr/NR5qP88Zqn8W+/VY68L7JOBvtGwYAJ4OVdCE7rs9PndHnpxb0RGH6qjKNQnR2ZDJbXazd8Nj2Aj00fqrj6SPH0XImr+VM/hhrle73rrnryPNIwhrKu8FIO+E5hbByVXCClVRy/STcrBYCsRMi1yhQaFDlwqqmqrVwqNrfPB6W5RxDOIXRXgDVzvwDGx290l1078Snmo67Ift47yrSIyXH2wvpC7Iquoe7/zsyjtb8jFaD3G7Q3/4wrEG15QXa8gKdz030uyqHcvHzY1Kx8bhfvPPr9N/nO2+321F1PF3OjulSvtC0zEPTU1rZF7S545bbP6lz131BlxZv1djEZc3MPaXzJq/z6t1xopsahe2NVSupASTHJ649qpIkz8b6/9m783jJ8ro++J9f3bpLr/d2T3fP9Cw9PdMzMMzgDMIExhlAlE0kiqABxW0QlxA1atBgngSRPGqSx0fNo9FHY1BMFMWgAhoVFyQoIxhZwi7MwGzAMFsv0/tdTv6o27fr1l36LlV17vJ+v16nb51T5/zOt06d+lTd6qrv3Tl+OteN3znTVPNcI7MjgyO5Z+tYTl96X1721Nfk3m1jOdEcyk/mlmXtcc+ZE7ni5NFcPj1dcepoRsdPpySZTMnRweEcHdySo0MjOdYcXvS1Wa+ca1ZVlY75ZHpZafsNuX29tmZX082vZjXFKud+y25fr8xtnlU69tm23sw+Z/bRUU/Hesl8jbgy0+Sw6lhv1j47jsF86y12DOZb78LHYP7btvgxmHvbltKM7EK3rX29C92uObd/Fedtc2oyA1WVZjWZ5lTr50BVpTk1mWZ1bn4qg1NTGaim0qym0pya/llNZaDtcvvyUs1ukfmJnXvzkbH9KVW1qnrbbZs4m9Gzp2aal42Nn87g1OT069zWa4Zjg8M5OjiyrMbJa1GZbpLWqDqaplVpWz7dRK2q0phzXfvyKq22sK11zi2bO98xdtt1jY7xZq/bXu+5/XTUNM/2i92mxWqYtd/FrutcPt/tXaimWTV01j+930Vuby+b202mzJznR4a21PZc1k0lydlFHrNDje43Ruu1b7r4zfM2Rrti+N4Mr8Pbs5gqyUPD23Lv1rE8PLx1+ne41mutI8t4H+J1H/2LXHzG+2JsTGv7XQgAAADqMTS88HXL/MtbAAAAAAAAwIo8oWP+zmVuf1dmN0a7Psk7V1UR68e+Z7ambpiaPN80bXK6cVo1fv7y1NlWM6xqPDn3lZVS5l6eb9msy2k192pua2tU1sispmUDW6abfXW4+3eSO75p8dvx5X+YrPEvcK95izVGu+a7k+Hd/avlXOOnyVOtRmoDQ62f1URr+dRk6/LUmVYjtfYmUue2n9NUquO6zuUTJ843zVto+87LD70n+dTPz38bDrw02XNrWyO5tulcQ7qpM20bdDbrKt1dvtB6ze3JyN5kcDQzzQjbp8HtSZluWNhoW94YaTUXbG/Qd+5naX2dcOZnSqtRYTXV2ufAIn/Qby04fnfy9qsWvv5rl/GU/dYrkpP3z3/d8+5Ixr5kWaXNqKpk8uT57J48Of1YOPfYmGxdN/HYdDPCx5Lx4+fzfvxYqwFcNZFMTZw/N6fOTjfVnGgba7w1dqPZug8nT08/Xkpbprc3tJz+OTSWDO9pbX/2yPS+p5tynnm4NTW3thpiVpPT2zbPjzcw3Npu6szcx965xoztj8v2ZVPj083jYG061mx9SbcuE9PNcI52NMM50RyaaTDQC6cGBvPI8MINWZIkZeEKmoP1fjm2JNmW4TTan9/aX/eeW6ltvlEGsiPDGX34AzMNpkbHT2fH+JkMVFXrefa230mSTFYTee+xd+bDx/+u3zdtQ6hKyWODI3lscCT3bYxePRd0qjmYU83BfKFPDaK2TJzN6PiZNHv8HDs4NTXT0GP07OmZ5m9bJ8bnbXJ3ojmUo4MjefTiU9nzyc/n4ROXzlrnyv0fzi/feOPM/NaJ8Vx+6miuPHEkV548kr1nTnSlMcN4aeTo4EhOLbNB2Xij0dbg7Hwun1jgD12PNwZydHAkp5e5H9auRqN/r1svueyT89cwMJ7RXQ8suN2WrY/lykPv71VZtVrLzfZKVWXbxNk0UuVYl147Pjy8LQ8Pb8sHd53Pyu3jZ9JIlceaw11r0ATr1URjIBNJzvSpRUc3H3MzeZbRro25VrUa8JVMiax1aznN7ea/bnbjtiQ50RzOscGN+Vx2ornw++lvPHRT/vSiC7+OGZmcyL4zJ/LMhz672FsvfXFg+KO5ePgL+eKZ/bOWf9Wlb8/9W3Zmz5mTGZmaqKm6CztbBnJkaCRn5vk/ySrJ4aEtuXvbrtyzbSz3bh3LyUXuP0BjNAAAAOYzuEhjtAX+Ix0AAAAAAADojlLK7iSdHYbuXeYwnetfu/KK2NQaA0kGWk2L1up/F1/ynAuvoylabzUv0MSk20ppNUhq7EgGd7SWDe3qbw1LcelXJ3f951ajqHaNoeSpv9JqDMX6M9CnZkWreVyda0qWPj8214uqajV5a2+YNt/PqkoylRz+UPJXz59/rC//o2T4ounH+bmma0tovjjrusxdt7253XKMH281k2sMtWpvvx0zP6enieOtBnNl4Pyymds+dX7dmSaTU9MN8dp+ThxL7n/bwvXsvrljzOp8A72p05ndOLExu3FiabTWO/6Z1lgH/kkyvLeVnWWw9Vgc2ddq4HjBBqznLmeB6xqtx0xjsK2hY1uj1jRa1zW3JZ3tccpAq4nf+GOt+YGRVnPBieOzj2P75clTycSpuefC9DH6u/GP5PfP/q/l3febxA03/lnu/czNc5bvHF24WctqNdLIzuaujDZ3Z7S5KzsHdmWsuXvWstHm7uwY2JlGGVj+Do7fnbxvgYabQ2eT7edv75N23JK7T30qf/jwm/KJkx9a2Q2CHjnVHMqpNf6F7qc+/w35s7f/SCYmWq/nRrYczc3P/m+5f+vs1+Wf2rl35vKWibOtBmmnT6SxjPaQZ6cblJ1raLZYswJItXCDjkajf00ftm47kv2XfyxfuP+GWcsPXPWBDA6eWWAr6lKVkuOLfe+jS/qxDwBop7ld9zy8bUsmti7t/yHu3LEnd+y5sscVLc0z9v10/vSt/yrHH2v9bnbVte9N9YL35KcGvyKNaipXH3801x97MDcc/WIuP3WsK82sO1VJHh3akvu2juX+LTsX/J3u9EAzR8/9YYHBLTnlu7fQVf6HHwAAgLkGF/nPd39BDAAAAAAAAHqt8xPqJ6uqOrHMMR7smB9dRT2wto3sSR7/Q8k//FzdlWxeDV/yn9fg9uTgtyZ3/ers5Vd+k6Zo69nAli4OtshXtgY0NeuZUloNwZbqkucmY1+SHPnI7OX7nplc9sLu1rYevWmR8/irNlFzr+bW85eHVvnS+9Gp5KFNdOyW4bIDH8ng4KmMj8/O4quued+Kx9w7uD/7h69oNTkbmN3sbLS5O9sHdqys4dlSNbcva/WDWx6X77/ix3PnyY/l7Q+/KXee+liPCoON58BVH8rLXvGDue/umzIwMJ4rDn4oW7cdXXSbU82hfHLnvnxyZ5+KhA6Ngf41RkuS57zwZ/Onb/1XeeiL1yRJ9l/28Tzreb/U1xoAAOiOfr+W7JY9++7JN3/Xq3L4kcszsuWxbN12ZOa6qdLInTv25M4de/L2y67PaIZzfS7KNRlLM6XtDxBUrT/4UBrJPW9eeGe7n5zsvC6ZOpvx8SP5fDmV+4YGc3/jTE5lvPc3thu+8i+S5t5kZO+F14V1RmM0AAAA5lrsr/o0/SoJAAAAAAAAPdb5zfhTKxijc5sdK6xlRillX5LlfqL60Gr3C0vy5J/RGK1OZZGmOJvdzf+p1YDpnt9JUiUHXpo82bm6rvWrMdrg8hrl0EOlJE/9L8m7vyY5Pd17dusVyc2/WG9dsAk1B8/meV/7/+Qdb/+XmZhujnb5gQ/nqbe+JY0s3ryspGS0uSsHRg7lypFrc+XINTkwcihbB2rO2xXm/TVbb8gPXfETeXj8gdxz+s5MVHO/7Hxy6njuO/2Z3HP60/ni2ftTLWHcRjWVlIEkjZllVaZSLWlrWPt27HygV20BAAAgAElEQVQo19/4F3WXwQrMn/NVpjLV91q6riycsQON/jaz2Lb9SL7+W16TY0f3ptGYzPYdj/Z1/wAAdE+jz68lu6mUKrv33HfB9Y7mTP42n8/f5vPTG+b8z3NvbVx98wVG+VRr3ZmvzZ5Zbrn12nZFMnRZ3VVAT/g2OwAAAHM1Bxe+bsCvkgAAAAAAANBjnd+MP72CMTobo3Xj2/7/LMnrujAOdJ/GXKxVA0PJzb+QPOXnk1RJaVxwE9a4xiKfq+mmrjZgY9X2PDX5x/+QPPjXSaOZ7H16MrjqvrPAElw6dGWesO2m7B7cl9Hm7owe2J3mrSfy8XuGcmD3YK7f/6SU8qa6y1y5xiJ/yHaxBppJSinZO7Q/e4f2X3A3pz//R7nv72/PPVvHcnhoS4anJjI6fjpjZ0+3fo6fzo7xMxlIldz628nBb5zZdqqazGOTx3J04tEcmXgkRycO58jEIzk+cSxVDxoSHZl4NB898fddH7cfGmlkZ3NXxpoXZbS5O9sHdqR03I9VqpyeOpVjE4dzdOJwjk0eyempkzVVDP2ztbE9O5tj2dncldGBXRlujMxeoaqS05/PyNkTGdv2uIzuvDGjzd3Tj6ddGWwMzTvu6alT0/n0aI6MPzJz+ejEI9M/W/NTmezDrey+xsD8zSxKGtkxMDpzTHcOjKZZ5v6uUtLIjubo9LHcPXNMtzS25bHJI+eP3UTr2J08+0hy+gvJnmay5ZKknP/uwNaB7TPjnMu5HQNjOfnR1+XoXb+UI0MjOTK4JUcHR3J8cChVSrL/q5JtB1Z3EO78z3MWTZaSx5rDOXbxbTk6eTiPTRzZGE3yANaYHQOt55DR5q7sGBhLs8z9Ttl4NZ5jE4dnnndPTh2voVJgPgMLvJYEWC98mx0AAIC5hhb5oM1iTdMAAAAAAACAXqj6tA0AvVJKLtTchHWim40YFxtLE721Z2gsufxr6q4CNrySkqu3XJebtj8tN25/WvYt0PTryif2ubBe6VOD35HmWK49/kiuPf7IhVdubp012ygDGW3uymhzVw7kUI8qnOvI+CM5MrGEei+gSnJq6kSOTjdqONfY7ejEozkzdWbebQbL4HQDiPONhEabu7JtnkZnSTJQmtON0HamsYLn8LNTZ3Js4nCOTz6Wbvw6f7Y6k6MTh9saRLWaHp2cPLHqsZNksprQ0G0d2dbYke3N0TSy9HOzJNneHJ3VAGuseVF2DoxloAwsfZzSyPaBndk5MLZgY7PVGmlsycjQZbl46LIF15mqpnJ8usHjZLWE5hBVlZy4Jzn7SDJ6QzIwcuFtVuHPB/flyALX/eCB12Zs2/mGXwOlmZ3NXdk+sHNZ98V8djf2Zvfg3lWNkSSjAzsyeupoDpw6OvfKa38uufgrVreDd37vwtc97b1JWvfxicljOTpxJBPV2cXHmziV/OWz5r9uZF/y5X+YJDkzdXomQ49OPpoj460sPT3V+fco+qHKqamTOTZxZNEmfxcN7suVI9fkyk/8aq44eSQjk/Oc789/3zyjJ0cnHs39Zz6b+898Nved/kwOTzy84H6a08+TQ2WxBq+LqKaSk/cmE23Nk4Z2J1v2ZynvnZTpf0sp5y+3XUopHUvaLpW29dqvWWCs8+MtbayZf0v7CB3rzbqubdwyd+kFryvz3JZzl0qZ97r2/c+ppMyz/jzXzRq3LDDWYvdFxzYL3xeN1rXz1HXB++GCdS10P8weKUmmMpWJajwT1Xgmq4npy7N/zl2+0HUTmWy7PFGNZ6qav7HjlsbWHNr6hHzp9i+b9/qlas+z9teGE9V4djbHZl7rjg6cf9072tydnc2xDMzTCO1Czk6dydGJR3Ni8rFV1b0UVVr3T1VNpUo163KVKlPVZNvlqVSZXq+aXntm3am2dapU1VRrrOnL58euZi0/f/nc8qk5l+fse7rGqentWkumZi7PqqOjxql51pl7m8/vq1XL5OwaZ7abezvbb8+5ujaqVT+XrQVHP5qJC/z+uVCTXdaWkpKLhy7LRYMXz2pmvFDD9U67mnv6VCn0n8ZoAAAAzDW4yJt6w/4aLQAAAAAAAPTY8Y75lfwnXec2nWMCAADMqzk1mdHx0xk7ezqjO56QsV1Py86BXSv6UvxyjDZ35/Fbn5gdzbGe7mdT6mh2tvi623pXxzKMDV6UscGL6i6jL4Yaw9kzdEn25JK6S1mW01Oncqyt0dxjk8dSVb3s017lZFuTuyMP/VWODo7k+GKfe06yY2B0TqO7LY2t6Wy+M5XJfOHMvbnn9J154Oz9qdZIz/nBMtTWnGz3TKOSRuY2xWqURnYMjE03NNudnc1dGWqs42YPXdIojexsjmXncp5ftj6+dwV1aC7S6Oqa7YeyfWSNN9lerCHHQH+eUxqlkR3NsaW9hqimkpMLtaLbnmx5XFdr66apaionJ4/n2OThHJ04nGMTh3OmOpOLmntzYOSa7GiOtlZ812sWHmSR2/ekHbfMXD4+eSz3n/5sHhp/IANlIGPNi2YyaGtj+0wzqpXfmPHkgXcmxz6e7P5Hyd7b+tYwFuitocZw9g7tz97M3+Sa9WVu87bOBmtzG8bNadDWNn++udu5y53N3dqbwc1u2DZfk7jFmtu1jz3c2DL9PHZRxgZ3Z1tjx+qfy+r2plb9bzx7asH/BH7J5/93Rpqnky/96WSe93Q+d+buvPfYO1PSSLWBG+GtNRcNXtxqZjtyba4cuSYHRg5lpOE7uzAfjdEAAACYa3CRv8i1dUf/6gAAAAAAAIDNaa02RvulJP99mdscSvK2LuwbADagdf7lO0iS0ScmRz86d/nup/S/lg3iy8demNtGn9vfnR75WPLntyVpJdPw1MT5hHrKS5N9r+xvPXTfwDIaoy1nXTa1kcaWjAxtyb6hS+sp4O6PJ/e+OROlZLy0NQm76KnJV/5ZkmSwMZRmGVz20KenTuW+05/JvafvzOfO3J0zU6eXtX0pjewc2DXTROjczx3N0TSySBOpecYZLiPrv2kDKza03r8FvpzGnMs1OLqy7RZr5LbGNUoj25s7s725M5cOX9nTfW0f2Jnrtt2U63JTb3bQGEwufX5rAmDNKqWkZKDVlNdL0rVl3zOTB9+96CrPf/gf0mxMJhe9ZMF1vm3/P8/41NlMVOPdrrDrHhl/KB8/8YF87MQHctepT2RqkQbD3bR3cH8uGbo8zXmayw2UZnY2d2X0+GRGf/EnM3rkTEaPnM7242dTzvXafvZL0/jh/zSzvubVsHTr/VdiAAAAemGxv5y2dXv/6gAAAAAAAIDN6WjH/NZSyraqqk4sY4x9HfNHVllTqqp6MMmDy9nGF3dhAynNpJqouwrYWK78xuTj/77uKmB1nvAjyXu/fe7y6364/7VsEIONwQxm+U18VmV4TzLleX7NOfAN3RtrOY1petnEBrrp0CuTe9+cZlWl2f67yqHvSQa2rWrokcaWXLv1hly79YZVFgmrMzhw4XVqV1ULX9dc3WMxSXLTv0v+97+au/xJ/2H1YwMArFfX/fAFG6MNlMlUD2+5YE+7wcZQBjPUvdp65PKBbbl85GCed9FLcmryZP7h5IfzsRPvz12nPpGTk4v8N/rpLyaZmv+6kf0zF0uSnc1duXz4qlw+clWuGL46lw0fzJYlNJCvpu5J9XffN/+VE400Vvk7KmxWGqMBAAAw12KN0bZojAYAAAAAAAC9VFXVI6WUw0l2tS0+kOQTyxjmyo75T6+6MGBzu/kXkv/1qrnLH/8D/a8FNopDr5y/Mdr1P9r/WmClDnx98plfTx581/llFz87ufxFtZXECgxsqbuCze2G/yv52E/NXX7tPK+9VmoJX+Jd0bpQp4u/Mjn0Xcldv3p+2eUvTq58WX01QZet+z860I3GaAdfnvzDf5xuaDFt25XJFS9Z/dhzrPPjfc7Wy5OT99ddBQDQS/uf13oPbjFTSfXpXRvlFc4sWwa25kk7bsmTdtxy4ZXf/XXJ/W+b/7qXL9Lkdzmaa7+xHKxHjboLAAAAYA0aXPivTZatO/pYCAAAAAAAAGxanU3Qrlnm9ldfYDyA5bn8RcnQrtnLGoPJwW+upx7YCHZckzzxtbOXjd2YXPdD9dQDK9Hcljzrj5NbfqPVLPPL/mvyrD9KmhptrSuDowtft/vJ/atjs3rc9yc7nzB72TXfnYzd1L19NJfR7Kwx0L39Qi81BpKn/kry3L9JnvxzybPfmTz9d5OBRf5ANNB9izU/60azzW0Hkuf8dXL1K5JdX9pqiPicv05G9q5+7E6X/ePuj1mHm/7d/Ms14QaAjWNguPUe3NDuBVep/qiZfHF7H4tao677F/MvP/TK7u1jyO+h0AvNugsAAABgDRpcpEP9li781SYAAAAAAADgQj6a5Na2+S9L8odL2bCUsi3JjfOMB7ByW/Ynz/6r5O+/P3nk75KxJyY3/kRy0T+quzJY3278t8n+r0oe/J/J9kPJpS9IBv3hQtaZ5pbk6m9L8m11V8JKNbcmF39l8sV3zl4+ckmy58vqqWkz2XJJq7HTfb+fPPapZO8zWo1ZSunePgZGlr7u0EXd2y/0WinJ3ttaE1CPK74+ef8/n7t86+WLN01bjp3XJrf8WnfGSpLrXp188mfmLr/2Vd3bR50u+5pk21XJic+eXzY4mlzl9ToAbCgDI0lzcOHrP99I9lf9q2et2nNbsufW5OE7zi9rbu/ua7/mIt/HBVZMYzQAAACWZ9fFdVcAAAAAAAAAm8GfJvnutvlnLWPbZ2T2Z0Q/WFXVF7tRFKxpo09Mjs7TA3DfM/tfy0a166bkue9OqqmkNOquBuqz43GtxjWdDn7Lysbbe2trAqjTU/5j8s7nJKcfbM03hpOnvcFzfr8M706u+c7ejV8aySXPTR7488XX2/uMZGi0d3UAsPFsvTS55DnJA38xe/lV39bdJp/d9PgfSO5/a3L8rvPLDn1n672ljWBoNHnuXycffm3yyPtat+v6H01Gn1B3ZQAA/dcYSL7iHcnHfip56N3J9muSx39/svsp3dvHoMZo0AsaowEAADDX3suTXfuSww/OXj40nDz1OfXUBAAAAAAAAJvLO5KcSrJlev7LSinXVVX1ySVse3vH/B90szBYs65/TfK33zp3+XWv7n8tG50GKWx2T3h18nffM3f5tf+0/7UAdMvYlyRf/ZHkC+9IJk4k+5+XbL+67qropht/Innk75Lxo/NfP7w3ufkX+lsTABvDM34ved93JZ//46S5Nbnq9uTG/7vuqha27YrkeXck9/xucvzOVlP9y1+8dhu5rcTWy5Jbfq3uKgAA1obB7cmTfqp34zcHezc2bGIaowEAADBHaTRSfc13JP/138++4rkvT9m2s56iAAAAAAAAYBOpqupkKeUtSdq7PL0mySsW266U8rgkL25bNJHkTd2vENagA/8kufd3k8/9YduylyWXvqC+moCN6apvTz73P5LPvf38suteney5tb6aALphZF9y1TyNZtkY9jw1+ar3J/f9fnL2cHLZC5OtB5IH/ixpjLSa4Y3srbtKANajwZ3J09+cTE0kZWB9NBgb2Zc8/vvqrgIAoLequgvYHEopixzqdfDaGNYojdEAAACYV/nOH0+Gt6b6s99KpqaSZ74o5TtfX3dZAAAAAAAAsJn8eJJvTHLuT0zfXkr5g6qq3j7fyqWUkSS/nmSobfEbqqq6q6dVwloxMJw84/eSL/x5cviDye6bk0uenTR8ZBrosnN58/AdyZGPJHtuSXY9eX18+R+AzW3HoeT6H5m97NAr66kFgI3HezAAAAB0SaPuAgAAAFibSikp3/aaNH7zw2m86aNp/NOfTGn6j0oAAAAA6KkX3j7/8i3b+loGALA2VFX1mST/X8fit5RSvq+U0t78LKWUJyT5yyS3ti1+JIm/fsTm0hhMLvvq5In/Orn0+b6QC/ROo5nse2byuO9Ndj9FUzQAAGBFXnHb/L9LjAzOuxgAAGZ8yy2Lvy9dvvVf9qkScsmV8y4uX/MdfS4ENg6N0QAAAAAAAAAA1ojyklfNv/w7fqzPlQAAa8iPJvmTtvnBJL+Q5L5Syp+UUn63lPL3ST6W2U3RziZ5cVVVX+hfqQAAAADAcnzrLWXePss/8nzNlwEAWNwrnz7/a8bXPvSTyeBQ8oyv7XNFm9izXzp32Z5Lkxue1v9aYIPQGA0AAAAAAAAAYI0oj3tS8op/M3vhU5+bvPh76ikIAKhdVVWTSV6a5M0dV+1L8lVJ/kmSpyRp/9T7g0leVFXVX/elSAAAAABgRfaPlfzat89ujvbs65LXaIwGAMAFXL235Ke/YfbrxltP3pEfOvlfUn7yd1N27aupss2nvPLHkud+U9KYbuV06VUpP/vHKQMD9RYG61iz7gIAAAAAAAAAADiv8R2vTfXMr0s+ckdy8AnJl3xZSnOw7rIAgBpVVXU8yTeWUt6S5NVJbllg1UfTaqD2uqqqHupXfQAAAADAyn37rY089/oq7/5UlUP7Sp58IBloaIwGAMCFvfp5jbzgiVXe/ekqh7YczTOGhjJ8/adThobrLm1TKYNDKT/2xlQ/9HPJkYeTy69JKV7Tw2pojAYAAAAAAAAAsMaUa74kueZL6i4DAFhjqqp6S5K3lFKuSvLkJJcm2ZbkgST3JHlPVVVnaywRAAAAAFiBS8dKvvGpGicAALB8119acv2lJcmuJE+ru5xNrezYlezYVXcZsCFojAYAAAAAAAAAAACwjlRV9dkkn627DgAAAAAAAAAA6LZG3QUAAAAAAAAAAAAAAAAAAAAAAAAAaIwGAAAAAAAAAAAAAAAAAAAAAAAA1K5ZdwFsLKWUwSS3JTmQZH+S40k+n+SDVVXdXWNpAAAAAAAAAAAAAAAAAAAAAAAArGEao21ipZTfSfKyjsX3VFV1cAVj7U3y+unxdi+wzh1Jfraqqt9b7vgAAAAAAAAAAAAAAAAAAAAAAABsbI26C6AepZSvzdymaCsd6wVJPprkVVmgKdq0W5O8pZTym6WUbd3YNwAAAAAAAAAAAAAAAAAAAAAAABtDs+4C6L9SyliS/79LYz0ryVuTDLUtrpJ8IMlnkowl+dIke9qu/+YkO0spX1dV1VQ36gAAAAAAAAAAAAAAAAAAAAAAAGB9a9RdALX4mSSXTl9+bKWDlFIuT/L7md0U7T1Jbqiq6uaqql5aVdXzklye5AeSjLet9zVJfmKl+wYAAAAAAAAAAAAAAAAAAAAAAGBj0RhtkymlPCfJd0zPTiT5sVUM9/oku9rm70jynKqqPtG+UlVVZ6qq+vkkL+3Y/l+UUq5cxf4BAAAAAAAAAAAAAAAAAAAAAADYIDRG20RKKduS/Grbop9N8qEVjnVtkm9vW3Q2ye1VVZ1eaJuqqt6a5DfaFg0ned1K9g8AAAAAAAAAAAAAAAAAAAAAAMDGojHa5vLvkhycvvyZJD++irFenmSgbf73q6r69BK2+w8d8y8tpYysog4AAAAAAAAAAAAAAAAAAAAAAAA2AI3RNolSyq1Jvrdt0fdUVXVqFUO+uGP+15eyUVVVn0jyvrZF25I8bxV1AAAAAAAAAAAAAAAAAAAAAAAAsAFojLYJlFKGk/xazt/fv1FV1V+sYrxLktzUtmgiyXuWMcS7OuZfsNJaAAAAAAAAAAAAAAAAAAAAAAAA2Bg0RtscfjzJ46cvP5Tk1asc74kd8x+uqurEMra/o2P+hlXWAwAAAAAAAAAAAAAAAAAAAAAAwDqnMdoGV0p5cpIfblv0g1VVPbLKYa/vmL9zmdvfdYHxAAAAAAAAAAAAAAAAAAAAAAAA2GQ0RtvASinNJL+WpDm96E+rqnpTF4a+pmP+3mVuf0/H/EWllF2rqAcAAAAAAAAAAAAAAAAAAAAAAIB1rnnhVVjHfjTJTdOXTyR5VZfGHeuYf3A5G1dVdbyUcjrJSNvi0SSHV1tYKWVfkr3L3OzQavcLAAAAAAAAAAAAAAAAAAAAAADA6miMtkGVUq5P8m/aFr22qqq7uzT89o75UysY41RmN0bbsfJyZvlnSV7XpbEAAAAAAAAAAAAAAAAAAAAAAADok0bdBdB9pZRGkjckGZ5e9P4kP9/FXXQ2Rju9gjE6m6l1jgkAAAAAAAAAAAAAAAAAAAAAAMAmojHaxvQDSW6ZvjyR5Durqprs4f6qPm0DAAAAAAAAAAAAAAAAAAAAAADABtWsuwC6q5RydZKfaFv0s1VVfajLuzneMb9lBWN0btM55kr9UpL/vsxtDiV5W5f2DwAAAAAAAAAAAAAAAAAAAAAAwApojLaBlFJKkl9NsnV60WeS/HgPdrVmG6NVVfVgkgeXs03rsAEAAAAAAAAAAAAAAAAAAAAAAFCnRt0F0FXfleQr2+a/p6qqUz3Yz9GO+b3L2biUsj1zG6MdWVVFAAAAAAAAAAAAAAAAAAAAAAAArGvNugugq17fdvmPk9xZSjl4gW0u6ZhvzrPN56uqOts2/+mO669cYn0Lrf9oVVWHlzkGAAAAAAAAAAAAAAAAAAAAAAAAG4jGaBvLlrbLX53ksysY47J5tvvSJB9qm/9Ex/XXLHMfV3fMf3yZ2wMAAAAAAAAAAAAAAAAAAAAAALDBNOougHXpox3zN5ZSti5j+9suMB4AAAAAAAAAAAAAAAAAAAAAAACbjMZoLFtVVV9I8uG2Rc0kT1/GEM/qmP+T1dYEAAAAAAAAAAAAAAAAAAAAAADA+qYx2gZSVdVYVVVlOVOSr+gY5p551vvQPLv7g475VyylxlLKdUme1rboRJI/W/KNBAAAAAAAAAAAAAAAAAAAAAAAYEPSGI2V+q0kk23zLymlXLuE7V7TMf+7VVWd7l5ZAAAAAAAAAAAAAAAAAAAAAAAArEcao7EiVVV9OslvtC0aSvLGUsrIQtuUUl6U5Pa2RWeTvL4nBQIAAAAAAAAAAAAAAAAAAAAAALCuaIzGarwuyeG2+VuT/EUp5br2lUopw6WU70/y3zu2/5mqqu7pcY0AAAAAAAAAAAAAAAAAAAAAAACsA826C2D9qqrq/lLKS5K8I8nQ9OLbkny8lPL+JJ9JMprkyUn2dmz+R0le269aAQAAAAAAAAAAAAAAAAAAAAAAWNs0RmNVqqp6VynlxUnemPPNz0qSm6en+fx2ku+qqmqy9xUCAAAAAAAAAAAAAAAAAAAAAACwHjTqLoD1r6qqP07yxCS/nOTwIqu+N8k3VFX18qqqTvSlOAAAAAAAAAAAAAAAAAAAAAAAANaFZt0FUK+qqt6VpHRhnAeTvKqU8gNJbktyZZJLkpxI8rkkH6yq6rOr3Q8AAAAAAAAAAAAAAAAAAAAAAAAbk8ZodFVVVWeT/FXddQAAAAAAAAAAAAAAAAAAAAAAALC+NOouAAAAAAAAAAAAAAAAAAAAAAAAAEBjNAAAAAAAAAAAAAAAAAAAAAAAAKB2GqMBAAAAAAAAAAAAAAAAAAAAAAAAtdMYDQAAAAAAAAAAAAAAAAAAAAAAAKidxmgAAAAAAAAAAAAAAAAAAAAAAABA7TRGAwAAAAAAAAAAAAAAAAAAAAAAAGqnMRoAAAAAAAAAAAAAAAAAAAAAAABQO43RAAAAAAAAAAAAAAAAAAAAAAAAgNppjAYAAAAAAAAAAAAAAAAAAAAAAADUrll3AbAGDLXP3HnnnXXVAQAAAAAAAACwKvN87mFovvUAoI98Rg8AAAAAAAAAWPd8Pq9/SlVVddcAtSqlfG2St9VdBwAAAAAAAABAD7yoqqq3110EAJuXz+gBAAAAAAAAABuUz+f1SKPuAgAAAAAAAAAAAAAAAAAAAAAAAAA0RgMAAAAAAAAAAAAAAAAAAAAAAABqV6qqqrsGqFUpZTTJl7ctui/J2VUMeSjJ29rmX5TkrlWMB7BccghYC2QRUDc5BNRNDgF1k0PAWiCLgLpt1hwaSnJF2/z/rKrqaF3FAIDP6AEbkBwC6iaHgLrJIaBucghYC2QRUDc5BNRts+aQz+f1SbPuAqBu0+Hy9m6NV0rpXHRXVVUf69b4ABcih4C1QBYBdZNDQN3kEFA3OQSsBbIIqNsmz6EP1l0AAJzjM3rARiOHgLrJIaBucgiomxwC1gJZBNRNDgF12+Q55PN5fdCouwAAAAAAAAAAAAAAAAAAAAAAAAAAjdEAAAAAAAAAAAAAAAAAAAAAAACA2mmMBgAAAAAAAAAAAAAAAAAAAAAAANROYzQAAAAAAAAAAAAAAAAAAAAAAACgdhqjAQAAAAAAAAAAAAAAAAAAAAAAALXTGA0AAAAAAAAAAAAAAAAAAAAAAAConcZoAAAAAAAAAAAAAAAAAAAAAAAAQO00RgMAAAAAAAAAAAAAAAAAAAAAAABqpzEaAAAAAAAAAAAAAAAAAAAAAAAAUDuN0QAAAAAAAAAAAAAAAAAAAAAAAIDaaYwGAAAAAAAAAAAAAAAAAAAAAAAA1K5ZdwGwAT2U5PUd8wD9JIeAtUAWAXWTQ0Dd5BBQNzkErAWyCKibHAKAjclzPFA3OQTUTQ4BdZNDQN3kELAWyCKgbnIIqJscoqdKVVV11wAAAAAAAAAAAAAAAAAAAAAAAABsco26CwAAAAAAAAAAAAAAAAAAAAAAAADQGA0AAAAAAAAAAAAAAAAAAAAAAAConcZoAAAAAAAAAAAAAAAAAAAAAAAAQO00RgMAAAAAAAAAAAAAAAAAAAAAAABqpzEaAAAAAAAAAAAAAAAAAAAAAAAAUDuN0QAAAAAAAAAAAAAAAAAAAAAAAIDaaYwGAAAAAAAAAAAAAAAAAAAAAAAA1E5jNAAAAAAAAAAAAAAAAAAAAAAAAKB2GqMBAAAAAAAAAAAAAAAAAAAAAAAAtdMYDQAAAAAAAAAAAAAAAAAAAAAAAKidxmgAAAAAAAAAAAAAAAAAAAAAAABA7TRGAwAAAAAAAAAAAAAAAAAAAAAAAGrXrLsA5iqlDCS5Jsn1SS5NMprkTHZQCE0AACAASURBVJLDSe5K8vdVVZ3o8j4Hk9yW5ECS/UmOJ/l8kg9WVXV3N/fVL6WUG5I8KcneJMNJHkhyf5L3VFV1us7a+qmUsivJDUmuTbI7yUiSI0keSvL+qqruqrG8OUopV6V1v12aZHuSLyS5J8kdVVWN11nbZiKHukMOtcghVkoWdYcsapFFC+7H+bEIOdQdzrOW9ZZDrA1yqDvkUIscmq2UckVax+LyJHuSbElyNsnRJPemdUweqq/CtUEOdYccapFDrJQs6g5Z1CKLWAk51B1yqEUOzc/5AdTBc3x3yPCW9fYc77Mxa4Mc6g451CKHWAk51B1yqEUOLbgf58ci5FB3OM9a1lsOsTbIoe6QQy1yaDafz1s6WdQdsqhFFrEScqg75FCLHGIl5FB3yKEWOTS/dX1+VFVlWgNTWoH5g0n+KK1f7qtFpokkf5LkhV3Y794kv5TkkUX2954kX7/K/Vyd5GVJfjrJu5Ic69jH3V06jjuS/Oskn1vk9hxL8t+SHKrx/u7Z8UgymOT5Sf5Tko9e4Fyqpo/Vv01ySc2PgW9IcscidT4yfa7uWcHYFzoGF5oO1nls+ngfyKHuHEc5JIfaxzzYhQxqn26v8xj16X6QRd05jrJIFq3786PG+0AOdec4rovzTA7Vdn5sS/L0JD+U5LeSfCrJVMe+bq/rONQ9ySE5JId6djyuTfJTSf4qrf/UuNDxqJJ8IMn3Jhmu65jUdD/Ioe4cRzkkh+YbfynZs9h0sK5jU8N9IYu6cxxlkSxqH/dgF3Kofbq9rmPUp/tBDnXnOMohObTuzw+TybSxJs/xmyvDPcfPW7fP6NU8ySE5JId8Rq/uSQ7JITnk83l1T3JIDm3mHOrj+eHzeYsfHznUneMoh+RQ59g+n7e84yWLunMcZZEsmm/8peTPYtPBuo5Nn+8HOdSd4yiH5FD7uAe7kEHt0+11HaM+3Q9yqDvHUQ7JoXV/flzwdtRdgKlKkjet4gntD5NcvML9viDJF5exr99Msm0Z4z8ryTsu8KTQtQdmkqel1YVzqbfnRJJX9fF+7vnxmD4Gj67wXDqc5FtqOP+3J/ntZdT5QJLnL3MfK318nZsO9vu41HA/yCE5JId6kEPp/i+yL+v38enzfSGLZJEs6kEWrafzo+5JDsmhzZhD/Tw/0nrj+CNpvSF9oX3d3q9jsJYmOSSH5FDvzo8k37mKx9c/JHlav45JnZMckkNyqLfnxyoeX+emg/06LnVOskgWyaKeHY+DXcih9mnDvl8dOSSH5NCmPz9MJtPGnDzHb44M9xy/YM0+o7cGJjkkh+SQz+jVPUUOySE55PN5NU9ySA5txhzq5/kRn89byjGSQ3JIDvXo/IjP5y3nWMkiWSSLenh+rOLxdW462K/jUtckh+SQHOrZ8TjYhQxqn7xXLYeW8hiUQ3JoXZ4fy5maYS143ALLP5fk02mFazOtrn83JWm0rfOPk7y7lPLlVVU9sNQdllKeleStSYbaFldpdVn/TJKxJF+aZE/b9d+cZGcp5euqqppawm6elOR5S61pNUopz0mrG+hwx1X3JPlwWg/Cy9N68A5OX7c1yS+VUhpVVf1iH8rsx/HYm2TXPMvPpvXm9gNpdUy9KMnN0z/PGUvy30op+6qq+tke15kkKaUMJHlzkq/uuOqhJB+crvVQWudimb7u4iRvK6U8p6qqv+lHnZuEHFolOTRDDvXOybQ6Wm9ksmiVZNEMWTT/ftbD+VE3ObRK6+Q8k0Oz9e38SPLyJKN92td6JYdWSQ7NkEMXVqX1Jv+daf3Hwsm0/mLuVUluyPnzI2k9Nv+ylPLCqqr+Z78L7TM5tEpyaIYcYjVk0SrJohmyqHc2+vvVcmiV5NAMOTSPdXJ+ABuT5/hVWicZ7jm+wzr7bMxGJ4dWSQ7NkEO94z0PObQoOTRDDs2/n/VwftRNDq3SOjnP5NBsPp+3tsihVZJDM+TQhfl83sJk0SrJohmyiJWSQ6skh2bIod7xXrUcWpQcmiGH5rFOzo+lq7szm6lKkr/P+S56H0jyfUkOLbDuZUl+JXO77/11krLE/V2euV0P/ybJEzrWG07yz9N60Lev+1NL3M8PzlNnleR0Wm9odKVjYVrdUzu7It6Z5LnzrLsryS90rDs537o9uJ97fjzSeiI/N8ZjSd6Q5NlJtsyzbkny4rTCq7Omnh+P6Rp+umO/Z6fP/6GO9a5PckfHug8n2b/E/bRv997pc2Y5U7Mfx6POKXJIDsmhnuRQWr94XShjFpr+pmN/b+zHMalziiySRbKoZ6+J1sv5Ufckh+TQZsyhfp0f0/s6ssC+7p/nutt7fdvX4iSH5JAc6un58cokn0zrtdcLk+xaZN2xJP8irf8Aad//55KM9vqY1DnJITkkh3r+eqh9LO9VL3ycZJEskkW9OR7er176sZJDckgObfLzw2QybczJc/zmyHDP8fPW6zN6a2SKHJJDcqgnORTveSznvpBDckgO9ej10Ho5P+qe5JAc2ow51K/zY3pfPp934WMkh+SQHOrd+eHzeUs/VrJIFsmi3r4mah/Le9XzHyM5JIfkUG+Oh/eql36s5JAckkOb/PxY1m2quwBTlST/K61uezcvY5t/Ns8J/41L3PYNHdu9J8nIIut/3TwPrCuXsJ8fnA79Dyb51STfneTJaXUMfFYXH5i/3THWp5Psu8A2/7Jjm48lGejx/dzz4zEd3F9M8uok25a4zUVJPt6x/09kiS8EVnE8rs7cFwUvWmT9LZn7H42/vMR9tW/zrl7ervU6ySE5JId6m0MrqO2yJBMd+3pGL4/HWphkkSySRb3LovVyftQ9ySE5tElzqC/nx/S+jqT1lxb+R5LXTx+ni6eve1fHvm7v5e1eq5MckkNyqKfnx+AKtnlSkuMdNbyml8ej7kkOySE51PPXQ+1jvauXt2s9T7JIFsmi3mbRCmrbdO9XyyE5JIecHyaTaWNOnuM3R4Z7jp+zX5/RW0OTHJJDcqi3ObSC2rznsbRt5ND5/cih8/uQQ+v0/Kh7kkNyaJPmkM/nraFJDskhOeTzeWthkkWySBb5jF7dkxySQ3LI5/PqnuSQHJJDzo9l3aa6CzBVSXJwhdu9pePk+h9L2ObajifGM0muXcJ2b+zY168tYZtdCz0hdDGork6r42D7WE9f4rbv7NjuO3p8P/fjeOxdamB3bHfTPMfxH/X4ePxGx/5+fQnbPG76nD23zXiSq5ewXft+3tXL27VeJzkkh+RQb3NoBbX9647aPtXLY7FWJlkki2RRb7JoPZ0fdU9ySA5t0hzq+fFoG2/Bv6AbH7w6dxwOrnA7OSSHOseRQ92r79921PDeftfQ59t7cIXbySE51DmOHJp/vPax3tXL27WeJ1kki2RRb47HKmrbdO9XyyE5JIecHyaTaWNOnuM3R4Z7jp+zT5/RW0OTHJJDcqi3ObSC2rznsfTt5JAc6hxHDq3T86PuSQ7JoU2aQz6ft4YmOSSH5FBvjscq69tUn8+bvs0HV7idLJJFnePIovnHax/rXb28Xet1kkNySA715nisojbvVS99OzkkhzrHkUPr9PxYztQItauq6u4VbvqLHfNfsYRtXp5koG3+96uq+vQStvsPHfMvLaWMLLZBVVWHq6o6vYSxV+OFyazz+L1VVf3NErf9fzvmX9GdkubXj+NRVdVDVVWdWMF2/ztJ53Fbyvm0IqWULUm+oWNx5zk2R1VVn0ry1rZFzbTOaVZJDq2KHJq9Dzm0SqWUkrnnwhu6uY+1ShatiiyavQ9ZNNu6OT/qJodWZd2cZ3Jozj77cX6c29cX+rGf9UwOrYocmr0POdQ9f9wxf00tVfSJHFoVOTR7H3KIFZNFqyKLZu9DFq3SZn2/Wg6tihyavQ85NNu6OT+Ajclz/Kqsmwz3HH/eWv5szGYlh1ZFDs3ehxxaJe95LJsckkOd+5BDs62b86NucmhV1s15Jofm7NPn89YQObQqcmj2PuRQ92yqz+clsmiVZNHsfcgiVkQOrYocmr0PObRK3qteNjkkhzr3IYdmWzfnx3JojLa+fbBjfkspZewC27y4Y/7Xl7Kjqqo+keR9bYu2JXneUrbtsWd2zL9jGdv+ZZKzbfO3llL2r76kdavzfLq0h/t6fpKtbfN/+3/au/dgafK6vuOfHyD3y6oIiAhLUAmKGhAT8RI3BiyIJcgl3pVVvF8qmphKoaRCNGIuXquSUqIoipdIEBQFgRBdMBqvtQgoElFBUZY74i677C788secfc6cnjNzpmd6unu6X6+q80f3M9PT5zzf5z3n+Z2uPrXWP9nyuc2ZfXw3p8SOdEiHuqRDC5+Z5AFL2zdn8RvrWE+LtKhLU2yR+Tg8HTJnXeqzQ0yHDulQl3TorHc2tu8yyFmMnw7pUJd0iF1pkRZ1SYsWrFe3o0M61KUpdsh8AMfKe7yGd2mKP4/m8HRIh7qkQwvWPNrRIR3q0hQ7ZD4OT4fMWZemuPbK4emQDnVJh85yfd72tEiLuqRF7EKHdKhLOrRgrbodHdKhLk2xQ5OcDzdGO243n7PvtuseXEq5V5JPbDz/N1u83lWN7Ue3eO6h3Kex/Zptn1hrfV+S1y/tulXG8TkNpTlPa2epA49qbF/V4rm/kbPn+pBSyj33PiN2pUM61CUdWnhyY/uFtdZrOjz+FGmRFnVpii0yH4enQ+asS312iOnQIR3qkg6ddb/G9t8Mchbjp0M61CUdYldapEVd0qIF69Xt6JAOdWmKHTIfwLHyHq/hXZriz6M5PB3SoS7p0II1j3Z0SIe6NMUOmY/D0yFz1qUprr1yeDqkQ13SobNcn7c9LdKiLmkRu9AhHeqSDi1Yq25Hh3SoS1Ps0CTnw43RjttHNbZvTvL2DY9/cGP7VbXW61q83m81tj+uxXMP5UMa2+9u+fzm4z9+j3M5ds15evMBX6s5i/932yeezOyrG7vHMItzpUM61KXZd6iUcrckT2jsfmYXx544LdKiLk2xRebj8HTInHWpzw4xHTqkQ13SobO+vLH964OcxfjpkA51SYfYlRZpUZdm3yLr1TvRIR3q0hQ7ZD6AY+U9XsO7NMWfR3N4OqRDXZp9h6x57ESHdKhLU+yQ+Tg8HTJnXZri2iuHp0M61CUdOsv1edvTIi3qkhaxCx3SoS7NvkPWqneiQzrUpSl2aJLz4cZox+2Jje3fr7V+YMPjP7ax/fpzH7Xen11wvCHc2Ni+XcvnNx8/hs+pd6WUuyZ5ZGP37x7wJR/U2O5zFu9bSvmJUsoflVLeVUq5sZTylpPtny6lfE0ppRl81tMhHerEzDq0yRclucPS9puT/GpHx54yLdKiTky4Rebj8HTInHVigA4xHTqkQ53QobNKKd+Y5EuXdt2c5AcHOp2x0yEd6sTMOmStuntapEWdmFmLNrFe3Z4O6VAnJtwh8wEcK+/xGt6JCf88+jzWPbqlQzrUiZl1aBNrHu3pkA51YsIdMh+Hp0PmrBMTXnvl8HRIhzqhQ2e5Pq81LdKiTsysRdaqu6VDOtSJmXVoE2vV7emQDnViwh2a5Hy4MdqRKqXcOcmTG7uff8HTmncs/MuWL/vGxvaHllI+uOUxuvaOxvaHt3x+8/EP3ONcjtnXJrnj0vbf5kB31z/5T2LzP4ptZ7H5+I9u8dz7J7kyiwhfluSDktzjZPtLkjwjyV+WUn7g5N8Za+jQJTrUjTl1aJPmv6mfrLXe3NGxJ0mLLtGibky1RebjgHToEnPWjd46xHTo0CU61I1Zd6iUcqdSygNLKU8qpbw8yX9tPOQptdZXDXFuY6ZDl+hQN+bUIWvVHdKiS7SoG3Nq0SbWq1vQoUt0qBtT7ZD5AI6O9/hLNLwbU/159Hmse3REhy7RoW7MqUObWPNoQYcu0aFuTLVD5uOAdOgSc9aNqa69ckA6dIkOdWPWHXJ93u606BIt6sacWmStuiM6dIkOdWNOHdrEWnULOnSJDnVjqh2a5Hy4Mdrx+p4k91rafneSH7vgOZc1tt/a5gVrrdcmuaGx+25tjnEAr21sf8q2Tyyl3DfJvRu7h/58eldKuTzJv23s/qFaa/NukF1pzuF7a63XtTxGc3a7/nu7U5JvSfIHpZSP6/jYU6JDCzq0Jx1aKKV8fJKHNXY/c9/jzoAWLWjRnibeIvNxWDq0YM72NECHmA4dWtChPc2tQ6WUy0opdfkjybVJ/iTJs5L846WHX5vka2qt3zvAqR4DHVrQoT3NrUNbsla9PS1a0KI9adGC9eqd6NCCDu1p4h0yH8Ax8h6/oOF7mvjPo3dl3WM7OrSgQ3vSoQVrHjvRoQUd2tPEO2Q+DkuHFszZnia+9sph6dCCDu1pbh1yfV7ntGhBi/Y0txZtyVr1dnRoQYf2pEML1qp3okMLOrSniXdokvPhxmhHqJTyuCTf1Nj9HbXWd17w1Obdiq/f4eWbz7nLDsfo0ssb208opdzx3Eeu+vJz9g39+fSqlHLbJD+fs5/3G5L85wO+7FBzeHOSq5I8Ncljkjw0i9/a9JAkj03yvVn9ZuZjkryslHK/Hc5x0nToDB3aw8w6dJHmnapfXmt9fQfHnSwtOkOL9jCDFpmPA9GhM8zZHgbqEBOgQ2fo0B50aK23JPmOJPevtf7o0CczRjp0hg7tYWYdslbdMS06Q4v2MLMWXcR6dQs6dIYO7WEGHTIfwFHxHn+Ghu9hBj+PXmbdo0M6dIYO7WFmHbqINY8WdOgMHdrDDDpkPg5Eh84wZ3uYwdorB6JDZ+jQHnRoLdfnbUGLztCiPcysRdaqO6RDZ+jQHmbWoYtYq25Bh87QoT3MoEOTnA83RjsypZRPTPJTjd0vTfLDWzy9Ge7m3Sm30Qx385h9e2EWd/O8xWVJnnbRk0opH5nk2875o1uXUu7QzakdhR9L8g+Xtt+f5Ek7/DakNoaYw6cm+Yha6z+ptX53rfWXa61X11pfX2t9Za31BbXWf53kfkn+Y5K69Nx7JXleKaXscJ6TpEMrdGg/c+nQRiffSH9pY7e7e2+gRSu0aD9Tb5H5OAAdWmHO9jNEhzhyOrRCh/ajQ+e7Z5KvS/L1pZS7Dn0yY6NDK3RoP3PpkLXqjmnRCi3az1xatJH16nZ0aIUO7WfqHTIfwNHwHr9Cw/cz9Z9H38K6R4d0aIUO7WcuHdrImkc7OrRCh/Yz9Q6ZjwPQoRXmbD9TX3vlAHRohQ7tR4fO5/q8C2jRCi3az1xaZK26Qzq0Qof2M5cObWStuh0dWqFD+5l6hyY5H26MdkRKKffNYhCXY/nGJF9aa63nP2ujvp5zMLXWv0vyQ43d31ZK+RfrnlNKuU+SFye527rDdnR6o1ZK+a4kX9bY/ZRa6yt6PpWDz+HJf16bd+8+73E31FqfkuSbG3/00CRf1OY1p0qHVunQ7ubUoS08NsmHLm3/bZLndvwak6FFq7Rod3Nokfnong6tMme7G1GHOCI6tEqHdjfjDr0nyf2XPh6QxRrQ45P8QJK3nTzuI5N8Z5JXl1I+eYDzHCUdWqVDu5tTh6xVd0uLVmnR7ubUoi1Yr96SDq3Sod3NoUPmAzgW3uNXafjuRvQe7xq9I6JDq3Rod3Pq0BaseWxJh1bp0O7m0CHz0T0dWmXOdjeiDnFEdGiVDu1uxh1yfd6etGiVFu1uTi2yVt0dHVqlQ7ubU4e2YK16Szq0Sod2N4cOTXU+bjP0CbCdUso9kvyvJB+xtPuaJI+stb7t/GetuLaxvcud+ZrPaR5zCE9P8uic3pmxJPnBUsoTs7g76iuzuBPnvU8e9/U5ffN7U5L7LB3rhlrryp0+SymXb3sytdY3tDr7AZRSviWLu14v+/5a63/Z8vmXb/ta53w9Rj+Htdb/Vkr57CSPWdr9DUl+tsvXOTY6tJEOtaRDK57c2P7ZWmvzLtJEiy6gRS3NrEUHn4+50KGNdKilgTvEkdKhjXSopTl3qNb6gSRvOOePrk7y/FLKU5P8pyTfdLL/vkleVkr5tFrra/o5y3HSoY10qKU5d2gb1qrX06KNtKglLVphvXoLOrSRDrU0sw5ZqwZGzXv8Rt7jW5rZz6Nbs+5xPh3aSIda0qEV1jy2oEMb6VBLM+uQNY+O6NBGOtTSzNZe6YgObaRDLc25Q67P248WbaRFLc25RduwVn0+HdpIh1rSoRXWqregQxvpUEsz69Dk1qrdGO0IlFI+JMnLknzM0u63J3lErfVPWxxqkuGutd5YSnl8khcl+YSlP/r0k4913pHFNw4vWdr37jWP/YsWp1RaPLZ3pZSvTvL9jd0/XGv9Vy0Os8/X41jm8Hty9j+yn1JKuazWum5GJk2HNtOhdnTorFLKRyZ5ZGP3M3c93pRp0WZa1M7cWtTTfEyeDm2mQ+2MoEMcIR3aTIfa0aHNaq3vTfLNpZSbknzrye67JvmpUson7fgbho6eDm2mQ+3o0NasVTdo0WZa1I4WnWW9ejs6tJkOtTO3DlmrBsbMe/xm3uPbGcF7/LHMoXWPJTq0mQ61o0NnWfPYjg5tpkPtzK1D1jy6oUOb6VA7I+gQR0iHNtOhdnRoM9fnradFm2lRO1q0NWvVS3RoMx1qR4fOsla9HR3aTIfamVuHprhWfauhT4DNSil3S/LSJB+/tPtdWdzJ8o9aHu5vG9sf1vJc7pzVcI9ikGutf53kU5M8I8lNWzzl15M8LMl1jf3XdHxqo1JK+bIkP5KzMf2JJN/Y42k05/COpZQ7tTzGPRrbh5jD383i39otbp3kYw/wOqOnQ9vRoe3o0LmuzNnvyf6w1voHexxvkrRoO1q0nbm2yHzsR4e2Y862M5IOcWR0aDs6tB0dauU7kvzN0vZDkjxioHMZlA5tR4e2o0OtWKteokXb0aLtaNG5roz16o10aDs6tJ25dsh8AGPkPX47Gr6dkbzHj+3amHWse5zQoe3o0HZ06FxXxprHRjq0HR3azlw7ZD72o0PbMWfbGUmHODI6tB0d2o4OteL6vCVatB0t2o4WtWKt+oQObUeHtqND57oy1qo30qHt6NB25tqhqc2HG6ONWCnlLklenOSTlna/J8mjaq2v3OGQzbtf3q/l85uPf2et9V3nPnIAtdbraq1fl+SBWSyI/HqSNyW5PsnfJXltkp/M4i6q/7TW+oYkD2oc5vd7O+GelVK+MItIL/+7/5kkX9XnHfRrre/I2f8gJsl9Wx6mOYtt7uy6lVrrB5L8ZWN3q292pkCH2tGhzXRoVSmlJPmKxm53927Qona0aLO5t8h87EaH2jFnm42lQxwXHWpHhzbToXZqrdcn+cXG7kcNcS5D0qF2dGgzHWrHWvUpLWpHizbTolXWqy+mQ+3o0GZz75D5AMbEe3w7Gr7ZWN7jx3RtzCbWPRZ0qB0d2kyHVlnzuJgOtaNDm829Q+ZjNzrUjjnbbCwd4rjoUDs6tJkOteP6vFNa1I4WbaZF7VirXtChdnRoMx1aZa36YjrUjg5tNvcOTWk+bjP0CXC+k99G86Ikn7K0+9okj661/u6Oh31tY/ujWj7/7zW2/3jH8zioWutfJHn6ycdFHt7Y/p01xyzn7T8WpZQnJHl2FnepvsX/TPKkk/+wtdLB1+O1Wdxh8hYfldX53KQ5i22e28b1je3mHV0nTYd2p0OrdGitz0py/6Xt92XxTTUntGh3WrRKi04dYj6mSod2p0OrRtghjoAO7U6HVunQzl7X2G77b+ao6dDudGiVDu1s1mvViRbtQ4tWadFa1qs30KHd6dAqHTplrRoYmvf43XmPXzXC9/ixXBtzkVmve+jQ7nRolQ6tZc1jAx3anQ6t0qFT1jy2p0O706FVI+wQR0CHdqdDq3RoZ7O+Pi/Ron1o0Sot2pm1ah3aiQ6t0qG1rFVvoEO706FVOnRqCmvVt7r4IfStlHKHJL+S5NOXdr83yefUWn9rj0O/prH9CaWUO7Z4/qddcLyjcnJX1c9q7H75EOdySKWUxyT5uZy9EeIvJvniWuv7hzmrldlpBnKtk29qPuGC43Xl7o3ttx/odUZHh/qhQzqU5Csb28+rtb5zx2NNjhb1Q4u06ILXmcV8rKND/ZjLnI20Q4ycDvVDh3RoCzc1tm83yFkMQIf6oUM6tIXZrlUnWtQXLdKiWK9eS4f6oUM6tMlc5gPol/f4fsyl4SN9jx/9z6NPzHbdQ4f6oUM6FGsea+lQP3RIhy54nVnMxzo61I+5zNlIO8TI6VA/dEiHtjDb6/MSLeqLFmnRFqxV69BB6ZAOxVr1WjrUDx3SoU3GPB9ujDYypZTbJ3lBkiuWdt+Q5DG11lfsc+xa65uTvGpp121y9s3hIlc0tn91n/MZgc9KcvnS9strrX860LkcRCnln2Vx58oPWtr9wiRfUGu9eZizSpK8uLF9RYvnfkbOvgldXWt9y95n1FBKuXtW7+L6N12/zhjpUK90aDiDd6iUclmSxzd2P7PtcaZKi3qlRcMZvEVbmPx8rKNDvZr8nI24Q4yYDvVKh7jIfRrbh/i+a3R0qFc6xFpzXqtOtKhnWjRj1qvX06Fe6RCbTH4+gH55j+/V5Bs+4vf40f88es7rHjrUKx0azuAdsuaxng71SoeGM3iHtjD5+VhHh3o1+TkbcYcYMR3qlQ5xkVlen5doUc+0iLWsVetQT3RoxqxVr6dDvdIhNhntfLgx2oiUUm6b5HlJHrG0+31JPq/W+r87epnnN7a/Ystz+/tJ/tHSruuSvLSjcxrKv2lsP2OQsziQUsojk/xCktsu7X5pkifUWm8c5qwueUmS65e2H34yY9u4srHdnOmufGHONvItSV57oNcaDR3qnQ4NZwwd+pIkt1/afkOSX9vxWJOiRb3TouGMoUUXmfR8rKNDvZv0nI28Q4yUDvVOh7jIZze2R7G4f0g61DsdYpNZrlUnWjQALZo369Xn0KHe6RCbTHo+gH55j+/dpBs+8vf4Y/h59CzXPXSodzo0nDF0yJrHOXSoxYhGTgAADKBJREFUdzo0nDF06CKTno91dKh3k56zkXeIkdKh3ukQF5nd9XmJFg1Ai9jEWvUpHTocHZo3a9Xn0KHe6RCbjHY+3BhtJEopt0nynCSPXtp9U5In1lpf0uFL/UyS9y9tP76U8tFbPK85xM+ptd7Q3Wn1q5TypCSPXNr1yizu/DgJpZTPTPJLOfsN0q9l8U3A+4Y5q1O11vcmeW5jd3PGVpRSPibJ45Z23ZzkZzs8tVte555JntrY/cu11tr1a42JDvVLh4Y1kg59ZWP7x6femW1oUb+0aFgjadGm15n0fKyjQ/2a+pyNvUOMkw71S4e4SCnlc5I8rLH7l4Y4l77oUL90iE3muladaFHftIhYr16hQ/3SITaZ+nwA/fIe36+pN3zs7/FH8PPoWa576FC/dGhYI+mQNY8GHeqXDg1rJB3a9DqTno91dKhfU5+zsXeIcdKhfukQF5nj9XmJFvVNi9jEWrUO9UGHiLXqFTrULx1ik7HPhxujjUAp5dZZBPWxS7tvTvIFtdZf6fK1aq1/muQnl3bdNsmzSim3X/OUlFIem7O/8ebGJP++y/Pa18kb37aPfXySH13adXOSr6y13tz5iQ2glPLwJL+S5A5Lu1+R5HNrrdef/6xBPC2Lb05ucWUp5THrHnwyoz+Rs3fofGat9c82POeBpZTPbXNSpZR7ZfH1u+fS7huTfE+b4xwbHdqfDp3SoYuVUv5Bkocu7fpAkme1Pc7UaNH+tOiUFp37XPNxAR3anzk7dUQdYkR0aH86dEqHTpVSHlZKedzFj1x53icneXZj9ytqra/u5szGR4f2p0OndOiUtep2tGh/WnRKiy5mvXqVDu1Ph07p0CrzAQzFe/z+NPzUEb3HPy2u0RsNHdqfDp3SoYtZ81ilQ/vToVM6dO5zzccFdGh/5uzUEXWIEdGh/enQKR065fq8drRof1p0SotOWaveng7tT4dO6dDFrFWv0qH96dApHVo1tfnY+pPhoH48yec39n17kqtLKZe3PNY1W9xp8t9l8RtsPvhk+1OTvKyU8lW11j+55UGllNsl+Zok39d4/vfVWt+4zcmUUu6T8+fsXo3t22z4XK+ttb79gpd6dSnlhUl+Icnv1Fo/cM65PDjJU5J8ceOPvr3WevUFx+/Eob8epZSHJPnVJHde2v26JN+Y5B6llDane0Ot9Zo2T2ij1vrnpZQfSvJtS7ufW0r5l0n+e631xlt2llIelOTHspjVW7wjF38D8eFJXlBKeXWSn07y/JNvXlaUUu6S5ElZ3Nn7no0//g+11j/f4tM6ZjqkQzq00HWH1nlyY/sltda/2vFYU6JFWqRFC4dq0VHMx8B0SIdm16Gkv/kopdw5yd3X/HFzQfnuG17rTWNaXOuYDumQDp3V1XzcJ8nzSimvyeIHaL+Y5HW1nv9blkopH5vka5N8Q+O8bjjZN2U6pEM6dFZX82Gtuh0t0iItOqvr+WiyXr1Kh3RIh86a5XwAk+Q9fiYN9x5/yjV6o6NDOqRDC67RG44O6ZAOLbg+bzg6pEOz61Di+ryR0SEd0qGzXJ83DC3SIi06yzV6/dMhHdKhs1yf1z8d0iEdOmuW87G1WquPgT+S1A4/rtjyNa9I8r7Gcz+Q5PeS/HySFyd56znH/+Ukt27xub2hg8/pWVu8ztuXHv93SX4ri3+kP5PkpRvO47t6/rs+6Ncji99o1NUsXdXD1+PWSV50zmu/JYs3oOck+f2T2Vz+8/cl+Ywt57x57Hcn+T9ZLLA9O8nzT17jpjVfh2cM3YieZlOHdEiHDtChNa95uywulFg+3hOGbMBYPjqcHS3Soqd1OEtX9fD16KVFxzIfQ350ODc6NPI5O/TXI8fXob7m48qOviaXD92LA/5d6JAO6dBhvh6fd87j33MyHy/I4gKI5yR5WZJr1hz/vUkeMXQnevi70CEd0qHDfD2uOOfx1qrXf720SIu06IDz0XhN69Xnf110SId0yHz48OFjgh8dNtl7/MgbfuivR47vPd41eiP56HBudEiHntbhLF3Vw9fDNXoj+ehwbnRIh57W4Sxd1cPXw/V5I/nocG50aORzduivR46vQ33Nx5UdfU0uH7oXB/y70CEd0qHDfD1cn9fu70OLtEiLDvP1uOKcx1urPv9rpUM6pEMHnI/Ga1qrPv/rokM6pEPmY+uP8+4kxwzUWq8qpTwuybOSfNjJ7pLkYScf5/m5JF9da33/4c9wL3dO8vALHvOuJN9Qa/0fPZwPa9Ra319K+fwsfrPSFyz90T2SPGrN096a5Em11t/Y8WXvluTTtnjcdUm+tdb6ozu+DhfQIR0ag4E69LgkH7K0/bYsFvoZgBZp0RgM1CLzMRI6ZM5gaDqkQzN2l1w8H7f47SRfW2t91QHPZ7Z0SIdmzFr1iGiRFs2Y9eqR0CEdmjHzAUya93gNHwPX6M2bDunQGLhGb950SIfGwPV586ZD5gyGpkM6NGOuzxsRLdKiGbNWPRI6pEMzZq16JHRIh2bs6OfjVkOfAMOptb4oyYOT/EgWg7rObyd5Yq31i2ut1/Vycu39YJKrs7gr5yZ/leQ7kzxgrP8o56bWem2t9QuT/PMsZm2ddyb54SQPrrW+eMvDvzbJ05P8ZpLrt3zO/0vy7Vn8hhP/iT0wHdKhMThwh87z5Mb2s2utN+1xPPakRVo0Bj21yHyMlA6ZMxiaDunQDPxaFr8V9+eSvGnL57w3yXOTfG6ST3XR1WHpkA7NgLXqI6BFWjRT1qtHRId0aEbMBzAr3uM1fAxcozdvOqRDY+AavXnTIR0aA9fnzZsOmTMYmg7p0Ay4Pu8IaJEWzYC16pHTIR2aKWvVI6JDOjQjk5qPUmsd+hwYgVLKbbO46/H9ktwri7sb/3WSq2utfzHkubVRSrlrkockuX8Wd+q8fRb/gfnrJH9Ya/3jAU+PLZRS7p/koUnuneROSa5J8sYkv1lrvXGP494qyUcneUCSj0hyWU7n411J3pzk92qtb9vrE2BnOsRYHKpDHActYiwO2SLzMW46BAxNh5iDUso9kzwoizn/0CR3THJTkvckeUeS1yR53RH8Zp9J0iGmzlr1cdAiYGg6xByYD2COvMczFq7Rmy8dYixcozdfOsRYuD5vvnQIGJoOMQeuzxs/LWLqrFWPnw4BQ9Mh5mAq8+HGaAAAAAAAAAAAAAAAAAAAAAAAAMDgbjX0CQAAAAAAAAAAAAAAAAAAAAAAAAC4MRoAAAAAAAAAAAAAAAAAAAAAAAAwODdGAwAAAAAAAAAAAAAAAAAAAAAAAAbnxmgAAAAAAAAAAAAAAAAAAAAAAADA4NwYDQAAAAAAAAAAAAAAAAAAAAAAABicG6MBAAAAAAAAAAAAAAAAAAAAAAAAg3NjNAAAAAAAAAAAAAAAAAAAAAAAAGBwbowGAAAAAAAAAAAAAAAAAAAAAAAADM6N0QAAAAAAAAAAAAAAAAAAAAAAAIDBuTEaAAAAAAAAAAAAAAAAAAAAAAAAMDg3RgMAAAAAAAAAAAAAAAAAAAAAAAAG58ZoAAAAAAAAAAAAAAAAAAAAAAAAwODcGA0AAAAAAAAAAAAAAAAAAAAAAAAYnBujAQAAAAAAAAAAAAAAAAAAAAAAAINzYzQAAAAAAAAAAAAAAAAAAAAAAABgcG6MBgAAAAAAAAAAAAAAAAAAAAAAAAzOjdEAAAAAAAAAAAAAAAAAAAAAAACAwbkxGgAAAAAAAAAAAAAAAAAAAAAAADA4N0YDAAAAAAAAAAAAAAAAAAAAAAAABufGaAAAAAAAAAAAAAAAAAAAAAAAAMDg3BgNAAAAAAAAAAAAAAAAAAAAAAAAGJwbowEAAAAAAAAAAAAAAAAAAAAAAACDc2M0AAAAAAAAAAAAAAAAAAAAAAAAYHBujAYAAAAAAAAAAAAAAAAAAAAAAAAMzo3RAAAAAAAAAAAAAAAAAAAAAAAAgMG5MRoAAAAAAAAAAAAAAAAAAAAAAAAwODdGAwAAAAAAAAAAAAAAAAAAAAAAAAbnxmgAAAAAAAAAAAAAAAAAAAAAAADA4NwYDQAAAAAAAAAAAAAAAAAAAAAAABicG6MBAAAAAAAAAAAAAAAAAAAAAAAAg3NjNAAAAAAAAAAAAAAAAAAAAAAAAGBwbowGAAAAAAAAAAAAAAAAAAAAAAAADM6N0QAAAAAAAAAAAAAAAAAAAAAAAIDBuTEaAAAAAAAAAAAAAAAAAAAAAAAAMDg3RgMAAAAAAAAAAAAAAAAAAAAAAAAG58ZoAAAAAAAAAAAAAAAAAAAAAAAAwODcGA0AAAAAAAAAAAAAAAAAAAAAAAAY3P8H9Ry3/pQ2KlkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor, Config\n", + "\n", + "async def clean_magnitude(datapoints):\n", + " async for datapoint in datapoints:\n", + " if datapoint.data is None:\n", + " continue\n", + " yield datapoint.collected_at, datapoint.data[\"magnitude\"]\n", + "\n", + "TemperatureConfig = Config(\n", + " sensor_name=\"Temperature\",\n", + " clean=clean_magnitude,\n", + " title=\"Ambient temperature\",\n", + " ylabel=\"Degrees C\",\n", + ")\n", + " \n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 5), dpi=300)\n", + " configs = get_known_configs()\n", + " to_display = configs[\"Relative humidity\"], TemperatureConfig\n", + " for i, config in enumerate(to_display, start=1):\n", + " plot = figure.add_subplot(1, 2, i)\n", + " coros.append(plot_sensor(config, plot, {}))\n", + " await asyncio.gather(*coros)\n", + "\n", + "display(figure)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAE0YAAAUsCAYAAAC9bUPVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdd5h1Z1kv/u8dAqEEEnoRSIBIVUA6AiYRPDSlKr0EIgiCla6IAVEPR1DPQQRF6aKIQEDqT8HQu1IUBUKJEECQloSSEHL//lj7lXnX7Cl7z57Z8877+VzXXGQ9az1l773WzsXMN/dT3R0AAAAAAAAAAAAAAAAAAAAAAACAZTpk2QsAAAAAAAAAAAAAAAAAAAAAAAAAUBgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAYKSqjq6qHv2csOx17aSqOmX0+k9Z9pr2Iu/zga2qThp/VxwI87vvAAAAAAAAAAAObgdq7gUAAAAAODgojAYAAAAAAAAAAAAAAAAAAAAAAAAs3aHLXgAAAACwO1XV0Uk+M0OXs5OckeSbST6V5F+SvCfJG7r7nEWvDwAAAAAAAAAAAFaqqsqQeztqdOr7SY7q7tN3flUAAAAAAMzikGUvAAAAANgzDkty6STHJLltkscnOTnJ6VX1tKo6fJmL2+uq6gVV1St+PrvsNQF7S1V9dvQ984JlrwkAAAAAAAAAYOQ2WV0ULUnOl+SEnV0KLEZVHTfK7XRVHbfE9cgrwgJ5pgAAAGA1hdEAAACA7XapJI9N8q9VdfNlLwYAAAAAAAAAAIA968R1zj24qmrHVgIAAAAAwFwOXfYCAAAAgAPKt5Kcusa5Cye5RJJLrnH+qCRvrKpju/tD27E4AAAAAAAAAAAADk5VdYkkd1nnkqsmOS7JP+3IggAAAAAAmIvCaAAAAMAsPtDdx613QVVdMcnPJHlUkquNTl8syd9V1bW6+3vbs0QWYaPPGUi6+6QkJy15GTPzfAMAAAAAAAAAe9T9khw2auskteL4xCiMtnQHau4GAAAAANgZhyx7AQAAAMDe0t2f7+5nJ7lekldOueRqSX5hZ1cFAAAAAAAAAADAHvfg0fEnszrDdreqOmKH1gMAAAAAwBwURgMAAAC2RXd/K8l9k/z7lNP33+HlAAAAAAAAAAAAsEdV1Y0ybOa50ouSvHDUdqEk99mRRQEAAAAAMBeF0QAAAIBt093fTfL7U07dqKousdPrAQAAAAAAAAAAYE86cXTcSV6c5A1JvrzBtQAAAAAA7CKHLnsBAAAAwJ73xilthyS5RpJ3zztoVR2S5MeSHJ3k0kkukeSMJF9JcmqSf+nu8+Ydf5Gq6oeSXDPDWo/IsOvoGUm+luQ/k7x/UkSObVBVF0pykySXT3KZJIcn+WqGe+XD3f2pJS5vU6rq0kluluSqGdb/zQyBzfd292nLXNt2q6ojMrz2H87w/Hw3yelJ3j3La6+qKyS5cYbn8PAMz9/nk7y1u89Y8LLnUlWHJblFkisnuVyS7yf5ryQfTfKh7u4lLg8AAAAAAAAAYFea5IPuPWp+275sSVW9NMmvrjh3w6q6Xnd/eJvXdf4MuaVrJ7nkpPm/kvzzLHNX1cUy5F6ukeTIJN9K8qUk7+zuzy900avnvmSSmya5WpKLZcgtfSG7NHdVVVdMcr0MmcJLZyiQ95UkX0zynp3ICVXVDye5YZIfSnJYhqzaF5K8o7u/vt3z70VV9SNJjsmQ/7tkkm9n+Fw/myF/+b1tnt+zPP+8u+WZvF6SK2bIDp6T5Ivd/eJN9pcB3gZVdYEkN8rwPFwqw/flGRlyse+dYZxjMjyb++6xs5P8d4Z86Hu6+zsLXjoAAAA7RGE0AAAAYFt191eq6owMQYqVLjXPeFV1qySPSPJTGYqhreVrVfX6JL/f3R+bZ655VdWlktw1yW2SHJvksht0Oaeq3pPkT5K8YrMF3arqs0mOWuP0UVW1mSJKx3f3KVPGPiXD2vd5a3cft8Y6PprkR1Y0fSXJD20lbFRV907y0lHzI7r7TzfZ/5Ak901yvyQ/keSC61z7mSR/m+Tp3f3f8614e1TVcUl+I8mtMxQUnHbNx5L8XpKXzlI4q6pOSPL8UfNVuvuzc6xzPO+Tu/ukDfqclOS3V7Z1d604f+MkT0xyh6zxe8yqemuSx3f3e9aZ52eSPC7JjyepKZecU1WvSvLY7v7P9dY862uYYZyjk5yU4Xtj/F25z5eq6jlJntHdZ806x2i+U7KJ53uyrs+sM9QDq+qBG8237z2ZBPtOzxAu2+eU7j5+w0Wvo6r+b5JfHjVff7vDywAAAAAAAADArvGzGYrVrPTC0T//6uj8g5P8yjyTTTI9/zRq/p8c1mQDv99Mcv8kF11jjE8keep6hXmq6roZ8jN3ylAwZto1707ymO5+52yvYn1VdWx+kFs63xrX/HOSZyf5y1k3/FtU7mYy1mWS/FqSn0lynXUuPbeq3pvkWUleNuvGq+tlpCZ5tQcm+fXsn6Vb6fuT3M4T18s7rZjvpIzeo5F/qtrwLXthd5+w0UWbsZ15xTXmu26G5/a2Sa6wzqVnVdU/JnnaZt7X0RzH5QB/ljeRw9vWZ3mN8XbDM3mRJL+U5CEZNqSdZupndqBngDe6r2cxZY0bfqdslE2tquskeWySuye5yJQhXphk3cJoVXWVDN+3d8jan2+SfLeq3p7kj7r7DeuNCQAAwO4z9T+mBAAAAFiwaUV81ir+M1VVXX1S6OxtSe6Z9YuiZXL+fkk+WlV/UVVrFsZapMnuol9M8udJ7pGNAxFJcoEMxbv+Nsm/Tv7ofyAZBxguneSOWxzzhNHx2Un+ejMdq+p2ST6a5EVJ/lfWKYo2cZUMhbM+XVVzhR0XraoOq6rnZgin/FTW/z3etZO8JMkbJ2GeA1oNfifJezIEwdbb3OHYJO+qqkdPGeeIqnpFktckuUWmF0VLhufvnkk+VlW32dLi5zC55/4tQzByve/Fy2UonvZvVXXDHVjawk1293zJqPm4qrrWvGNOdnx+wKj53YqiAQAAAAAAAMBB5cTR8beT/N2+g+7+UJKPjK65X1VNLVC0FVV1tyQfS/KLWaOQ0sTVk7yoqv52vI5JfuZJSf45yc9ljUJKEzdP8vaq+o2trfx/5j5fVf1JklMyZK+mFlKauEGS5yZ526RIzY6qqgtU1VOSfDrJ47N+AaZkyCHdIsOGnR+eFKtaxDqumOQdSZ6XtYuiJcN7eesk766q313E3HtRVV2+qv4qyYeSPCjrF0VLhk0a75LhfT25qjbKlm52HZ7l2efcLc/kTTN8dr+f9YtmTet7MGaAd0xVPTHDs/2ATC+KtlH/i03u648neWQ2/nwvmCGD+/qqentVXXnWOQEAAFgehdEAAACAnXDklLYzNtu5qm6dYfev288x9yEZgm9vrarNBBS26sezfiGnjVwryXuWUaBpC16S5HujtgfNO9gkKDZ+/Sd399c30ffRSV6XoVjYrC6a5I8nhfS28hluyaSI3xuS/PyMXf9XhvDGegGmA8FzMuyOudnfXVaSP6iqh/5PQ9WRSd6c5G4zzHuRJK+pqhvP0GdLJgHHP05y4Rm6XTnD99kBWRwtw66YYw/bwnj3zup/xzx7C+MBAAAAAAAAAAeQqjomQ0GalU7u7jNHbS8cHV8iQzGlRa7lfhkKsh0xQ7efy1BQa98YlaFA0ZOzfiGj/aZO8rtV9cgZ5l09yDD3S5I8Ysaut8yQZ5mpANFWTIpf/X9JfitzFNfJUMDsnVX1M1tcx1UzbAB58xm7/kZVPXUrc+9FVXW9JO9Lcp+svRHmeu6cIX959S2uw7M8+5y75Zn8iQzF4OYtgHUwZoB3xKSg2e9kzve3qo5K8s4M9/X55xjilkneV1U3m2d+AAAAdt7S/gNPAAAA4OBQVVfL9KI/n95k/59J8oqs/iP2OUnekqFg2ueSfDPDzn9HJ/nJJLcaXX+TJCdX1U9097iI13b5foad/v4tyX8k+WqGgnCV5GJJfjjJzTLseLeyCNThSf6mqn6suz+3zvgfS/KNyT9fOcnFV5z73uT8Rs7axDXr6u4vV9XrM4SK9rlDVV2mu788x5APyOqiWM+bduFKVfW/kzxuyqmvJfmHJB9M8uUMO8IemWE3wtslucbo+hMzvK+PnmnVi/O8JMevOP54hkJp/5HhtRyR5MeS3D2rdyP8iSS/luTp27/MxauqX0ny0BVNpyX5+yT/muG1H5nkphlCZBcbdf/jqnpThu+Dv0mysnDYB5O8MclnkpyZ4X37ySR3yv732oWSPLeqbtTd5y7oZU1VVb+eZNrunmdP1vq2JF/IEBK7Sobna9+OshdJcnJW7Gy8Tc5J8uEVx9fO/t/FX0/yn7MM2N3/VlWnJDluRfMDquoJ3f3tOdb48NHxV5O8fI5xAAAAAAAAAIAD04OzuoDSuAhakvxVkv+T/QsUnZjkZQtax42S/N6KtXwjyeszFM36coZcyrWS3CNDxm2l+1TVyd398gx5khNXnDstyWsz5Ge+miE/c5PJOOP8zNOq6rXd/dk5X8OjktxrxfGZSV6d5P1J/msy9zUz5JauNOp7pSRvqarrd/c3so0mmya+c7KWsX9N8tYMmb1967hMhsJld8iweeY+hyd5eVXdors/OMdSLpoh1/VDk+NO8q4k/5ghU3NWkktnyAfeNckFR/2fUFV/393vXWP8L+UH2Z3Dk1xtdP5T2Tj/N1O2ZwPbmlesqhsl+acMr3Wl85K8PcN7+5nJGi6U5IpJjk1y6+z/XP9whg1Gb9jd39zEmsY8yzM+y7vombxckldm/2ftfRkKtp2W4X24fIYc3M9tYryDIgO8Qx6S/Qv1nZUh1/vODPfkIRme6eMzvO/7mRRFe29WZ2aT4TN+Z4as7deTXCDD5/zjGTbkPmzFtZdN8rqqukF3n7a1lwQAAMB2q+5e9hoAAACAXaiqjs4QIlnprd193IzjPDbJ00bNX09yqe4+b4O+V8kQKjhyRfO5Sf4oyR9091fW6Xv9JH+R/YsjJckfdvejNpj36Kx+7Q/q7hes12/S9xNJPppht723bCZYM/mD/e8nuffo1Ou6+6c36j8Z4wVJHrii6bTuPnozfdcY75QMoaF91v3sq+pOGYIzKz2qu/9wjrk/kSEwss/nkxy13v1SVXfNEGhZ6etJHp/kRd393TX6VYadX5+TIWyz0p27+zUzLn8mU97n7+YHoZwvJfml7p5a/KqqDk/yrAyF5Fb6RpIrdPd3Npj7hCTPHzVfZZ4wVVWNf8n45O4+aYM+JyX57VHz2RlCKN/OEM56bndPC7lcNkPBxFuMTv15hnDLMybHn07y0O5+8xpruFGS12X1Z3+f7v7r9da/1mvo7g13Kq2qayT5UFaHHd8wWe/n1+h31yTPzg/CPd/JELSbdf5TMsPzvaLfZ5MctaLphd19wkb9poxz96wu6nZid29YAHE0zg2TfGDU/PTufsysawIAAAAAAAAADjxVdb4MhZ+usKL5C0muNC1rVFWvy1CIZ5/zklx11uIoVXVchgJOK+3LvSTJM5M8aVpRoao6LEO25RGjUx/PkAN6d4YCMRvlZy6XIT/z46NTf97dv7CJ13BSVmd3VmaXnp/k19d4DYdk2LzxqVmdf3lBdz9onvk3k3uZ9H1VhszXSu+arHetImP7ijf9Voa1r5zrs0mu291nbjDvOCO18v16b5Jf7O5/XqPv0Rk+rxuMTr2pu2+33ryT/sdl9T13fHefslHf7bANecWLZ8iKjsd4fpKTunvNAm+TzXufleS2o1Ov7O67bzDvcfEsb+lZnoyzW57J7+cHRfI+kuRh3f3uNfpecFqudC9kgBf5fTFPZnCNbOrKz+Y5SZ7Y3V9do/9+n01VXSDJO5LceHTpa5M8trv/fZ21XC7JHyS53+jU+5PcfNozCQAAwO5xyMaXAAAAAMynqi6f5NFTTv31RkXRJv4q+xdF+3aS23b3Y9cripYk3f2hDEGRfxid+qWqGu9wt0g37u67d/erNrvbYHef1t33SXLS6NQdqmraDnq70esz7Nq20gmzDlJVt8j+RdGSIUixXlG0y2R1iOKTGYIxf75WUbQk6cGrMuzyOC5G9fuTwmk7aV+46NNJbrZWUbQk6e6zMrzHbxqdOjLDTo4Hon1F0W7T3c9ZK3TS3f+V5Kcz7MC50v2SPGXyz/+WIbgytSjaZJwPZPp7talA1xY8O6uDZH+b5KfXKoqWJJN79dj84HVfaK1rd7mTs/p5e/gc44z7dJI/m2tFAAAAAAAAAMCB6PbZvyhakrxknazRC0fHh2SOjNMa9hVS+pXu/uVpRYiSpLvP7u5HZnXm5xpJ/n6yprOS/OQG+ZkvZcjPjHN096qqeTMl+/Is/7u7H7zOazivu5+R5OcybHS60glV9RNzzr+hqnpoVhdg+tMkt1yvAFOSdPc3Jpuqnjg6dXSSX5xjOfver9cmOW6tomiTuT+b5KeyOmP3U1V15Tnm3muelf2Lon0/yf0m9+GaRdGSpLs/leG7YJwhvFtV3XSOtXiWB5t6lnfZM7mv8NY7k9xqraJok7nXypUerBng7bbvs3lUdz98raJoydTP5qSsLor2+O7+mfWKok3G+lJ33z/Jk0enbpzkZzdeNgAAAMukMBoAAACwLSa78L0xyaVHp76dYWe0jfr/VJKbj5of3N1v2ewauvucDIGN/17RfP4kv77ZMWa12SDEGp6SYReyfSrJg7e2op3R3edm2CFvpR+tqhvOONS0glTjwNLYryQ5YsXxt5Pcbr0CU2Pd/bkk9xo1XzvJnTY7xgJ9L8k9NrMTbXd3pt/P490vDyS/ul4gaZ9JWOvpo+YLJ7lIhh0v79Hd48Jp08Z5R4bvqpWOr6px4bKFqKofTXL8qPnUJA/YTMHI7t63o+gBaxLyGxcwu1FV3WizY1TVEVm9w+Y/dPepW10fAAAAAAAAAHDAGBfTSZIXrXP9q5OMCwQ9qKoW9d/YvbS7/98mr/2tKW2Xmfzvr2xUUChJuvvrSZ4xar5Yhg1F53VKdz9hMxd292uTPHXKqV/ewvxrqqpDk/zGqPmN3f2ISY5qU7r7+Un+YtT8a1V12LTrN/DZDAW81ty8c8W8X8vq4jyHZCiYdtCqqmskueeo+Te7+682O8bk8/+FJOMiSY+fc1me5cG6z/IufSa/meSe3X3GHH0P2gzwDnlFd//hLB2q6uJJfmnU/Jzuftos43T3SVm90fa83w8AAADsEIXRAAAAgIWoqgtW1Q9V1R2r6s+TfCTJdadc+pBNFqx63Oj47d39slnXNQkp/N9R811nHWcnTIIgLx4133IZa5nT86a0nbDZzlV14ST3GDW/bbKj41p9Ds/qnQGf0d2f3uy8+3T3O5O8edS8jHvlpd39wc1e3N0fSzLebXTWgnS7xSeyOuC0nles0f7iyfuyWX83Oj40yY/O0H8WD5vS9qjuPnuzA3T3mzLsKnog+/Mk54zaHj5D/wdmKIS30nO2tCIAAAAAAAAA4IBRVZdJcsdR8z9397+t1WeSzxhn0I5KcusFLOn7WV0gaE3d/f4k/znl1Mez8UaSK41zL0lygxn6j81a1OxpScZ5wDtX1eW3sIa13CvD57VPZ3XBnM16yqT/PpfN6o1cN+PJMxZS+psM98pKB2rWa1Eek/3/O9fPZPWGmRvq7u8l+b1R8+3n2CDTs/wDGz3Lu/GZ/MPuPn3ONWzJHsgAb6fzkjx6jn6PSHL4iuOzsjpfvllPGR1fv6qOnnMsAAAAdoDCaAAAAMAsjq2qnvaT5DsZQhGvTfKQrC5Y8+0k9+3ul240SVVdIslPjppnKZY09rrR8VFVddTUK5fvk6PjG1TV+ZeykhlNClG9b9R8nxl27bt7kouO2jYKBt0myZGjtr/c5HzTjO+VY7cw1ryeO0ef8ft+9UUsZAmeP+NOkZ/OsMPj2Kz3wL9MabvGjGNs1u1Hx1/M6vtuM/5sAWtZmu7+cpKXj5rvVVXj53ktvzA6Pj0HfrE4AAAAAAAAAGDzHphknKt64Sb6vWhK24lbX07+sbtPm7HPh6a0zZqf+VSSM0bN8+Ze3tPdH52lQ3d/N6sLAR2aIde1aD87Oj6lu0+dZ6Du/lyS8WudNSv2rSQb5iFH8349qzOC25VT2vWqqpLcbdT8gu4eF4/brNePjg9LctMZx/As/8BGz/JueyY70zf43UkHbAZ4m72luz87R7/xPfby7h4/J5v1riTfGLUtIyMMAADAJimMBgAAAGy3MzMUNbvmZoqiTdwqSY3a3rWFNXxmStuPbWG8Tauqw6vqDlX1+Kp6UVW9rqreXlX/XFUfGv8k+ZPREIdl2PnuQDEuZHaJJHfaZN8HjY7PyurCSWPjUMLpc4SSVhrfK0fPUKhpEb6T1UXONuNTo+PzVdXhU6/c3d42R5/xbpvfTvLBGcf47JS2hX/uk52KrzJqfvWcQb43ZQhXHsjG33cXTvKAjTpV1bFJrj1qfm53n7uohQEAAAAAAAAAu96DR8fnJvnrjTp197uyunDNXSabeW7FPLmXaTmnty9gnHlzLyfP2e+VU9puNudYU00KaN1q1LyVTGGyOis2a6bwPd19zhzzjrNeR8wxxl5x3SQXH7XN/bl299eyeqPNWT9Xz/L+pj7Lu/SZPLW7P7/FNeznIMwAb5d/mrVDVV08yY+Omrfy/XBeVj9jO5IlBwAAYD6HLnsBAAAAwJ73gSTPnOzmtlm3mNL2iqra9O55m3CpBY61SlXdMMljMhQFu9AWhzsyyULDGtvor5P8YfZ/zSdkgwJnVXVUkuNGzX/b3RsVfhrfKxefhEvmNa2Y2KWyepe47XJad39vjn7jMFcyBObO2uJ6dto8u0WeOTo+bY4CWeMxku0JHN5wStusRdySJN19blV9JMnNt7ak5enu91TVB7P/+/KwJP9vg64PHx2fm6EAJwAAAAAAAABwEKiqWyS55qj5Dd39lU0O8aIkv7Pi+LAk903yzC0saxG5l0WNM2/uZa4cS5KPJvlekvOvaJuWk9mKa2XYpHOlB1bVT29hzCuPjmfNFI4L7G3WOOt1MBdGm5YVfWZVnb2FMS88Op71c/Usb+5Z3o3P5D9vYe79HMQZ4O0yz2dz8ySHjNqeUFWP3MI6jhkdb2uWHAAAgK1RGA0AAACYxbcyPaxx/gy79l1+yrnjk7y/qk7o7g135Jy44pS2626y72ZdcsHjJUmq6vxJ/ihD4Z7xH+TndcAEn7r7m1X1qiT3WdF826q6fHd/cZ2uJySpUdvzNzHl+F65cJLrbaLfLC6Z+UJK8/janP2mFVM7/5S23e7rc/QZv/aZx+ju7w0bWO5nO96/y0xp+/gWxvuPHMCF0Sb+JPs/69eqquO6+5RpF1fVZZLcddT8mu4+fZvWBwAAAAAAAADsPidOaXvhDP1fnOQp2T+vdGK2VhhtEbmXRY0zb+5lrhxLd59dVZ9N8sMrmqflZLZiWqbwimu0z2vWTOGisl4HYs5rUaZ9fuOih1s16+fqWd7cs7wbn8kvb3XCgz0DvI3m+Wym3UtX3epCRrYlSw4AAMBiLOr/mAMAAAAHhw909/Wn/Fynu6+Q4Q/EJ2Qo1rPSBZK8uKp+ZpPz7MQfmre6g9sqk0DEy5M8Iov9vcuBFnwaFzQ7X5L7r3VxDRWpHjBq/mR3v2MTc413HNwOC79X1jEtIHXQ6O5FvP7d/B4eOaVtvAPsLLbSd7f4myRfHbU9bJ3rT8zw75SVnr3QFQEAAAAAAAAAu1ZVHZ7kHqPmryd57WbH6O7Tkpwyar5eVd1wC0tbSGZlQfmZeS0yxzItJ7MVuzFTuJtzSgeKPfu5HgTP8m787M7YymQywNtqns9mN95jAAAA7CCF0QAAAICF6e6vdfcLk1w/Q7Gblc6X5CVVdfQmhrr4gpe2Ux6X5M5T2k9P8qdJ7pfk5kmulCEscsHurpU/SY7fsdVunzcnOW3U9qB1rj82q3dxGxdXW6WqLpzksNmWBkt10Slt39rCeFvpuyt093eT/OWo+W5VddnxtVV1SJKHjpo/meE7BwAAAAAAAAA4ONwryUVGbS/r7rNnHOeFU9pOnG9Je8YicyzTcjJbcaBmClmfz3V77MSzvBs/u3O32F8GePvM89nsxnsMAACAHXToshcAAAAA7D3dfXZV3T/JZbP/H/kvlqEAzq03GOI7o+NvdPeu/gN3VV0myRNGzecmeUySP+nuzf5R/4Dffay7u6pemORJK5qvWVU36+73TOkyLpr2/SQv2sRU301yXvYv/ioagZ8AACAASURBVH9yd991pgXDzjlzSts4qDuLrfTdTf40yaPzg2f5/BmCxr83uu72SY4etf1Zd/e2rg4AAAAAAAAA2E2mFS97WFU9bAFj37uqHtXd4/zaweIiSc7YQt+VpuVktmLaZ3KX7n71gudhZ037XC/e3d/Y8ZXsLTvxLO+pZ1IGeFeado9dv7s/vOMrAQAAYCkO2fgSAAAAgNlNQgAPyOpwxU9W1T036P7fo+Mjq+rIhS1ue9wpyYVHbY/r7j+eIRCRJJdY4JqW6QVJxsWKThhfVFWHJ7n7qPn/6+7TN5qgu89LMg5AXWXzS2QRqur8y17DAWRaYO+ILYy3lb67RnefluS1o+aHVtX499cPHx1/N8N3DQAAAAAAAABwEKiqaye52TZOcWSSu23j+LvdInMsiy5sNc4UJrJie8G0z/XonV7EHrQTz/JeeyZlgKdbZj50r91jAAAAzEhhNAAAAGDbdPfnkzxpyqnf26CY0n9NabvuYla1bX5qdPz1JH8yxzhXXcBalq67P5PklFHzvarqgqO2e2T1DoPPn2Gq8b1y9ao6bIb+B7PvTWmbJ8Ryya0u5CDy5Slt19jCeNfcQt/dZvx9eVSS2+87qKr9jif+tru/ut0LAwAAAAAAAAB2jRP3yBy71dXn6VRVF8jqYlbTcjJbcSBmCtmYz3V77MSzvNc+u72UAV5UNjRZbqG3vXaPAQAAMCOF0QAAAIDt9uwknx61XTXrB8jeN6VtXBBnt7nS6Pi93X3OHOPcfBGL2SXGBc6OSHLXUdsJo+OvJXnNDHOM75ULJTluhv4HszOmtF1sjnGO2epCDiIfnNJ2w3kGqqpDs7dCPv+Y5OOjtoev+OeHZvXvs5+9rSsCAAAAAAAAAHaNyUac9x81n5Pkw1v8+dpozOOqajcUtlmGuXIsGTIs46I703IyW/GRJN8dtd1uwXOw8w7ErOiBYCee5b32TO6lDPBCsqFVdcUk482Qd9J7p7T5fgAAADiIKIwGAAAAbKtJMOApU079ZlUdtka3f5jSds9JIaDd6lKj43FgbkNVdakkx885/7mj4/PNOc4ivSKrAxYP2vcPVXW1JLcanf+r7j57hjmm3Sv3m6H/wewbU9rmCXUeu9WFHCy6+8tJPjNqvlNVzfN72tsmucjWVzWTbfue6e5O8qej5ttX1VGTYPO4mOaHuvs9i5ofAAAAAAAAANj17pTk0qO2V3X39bfyk+SJozErKzJOB5m7zNnvblPaFprr6O7vJnnHqPnyVXXrRc6zi41zO8lyM4KLyhG9K8m3Rm13rKqLzzkeg21/lvfgM7mXMsB7Ihva3aclOXXUfJOquvoy1gMAAMDOUxgNAAAA2AkvSfKJUdsVkzxk2sXdfXpW7zJ3lSQnLHxlizMO54xDEpvxiMy/u9qZo+PD5xxnYbr720leNmq+dVXt21nvhCndnj/jNG/K6l0H711V15hxnIPRx6e03WSWAarqfEkevJjlHDTeMDq+QpI7zjHO1O/Pbbbd3zMvSHLWiuNDkjw0yV2TXHZ07bMXPDcAAAAAAAAAsLuNN1VLhlzaVr0syTmjthPm3OjuQHfzqrrOLB0mm6Pef9R8bpJ/XNiqfuDVU9pO2oZ5dqNxbidZbkZwITmiyca7bxw1XzTJo+YZj/+xU8/yXnom91IG+PTsn8NLZsyGTjx0C2tYlPE9dkiSJy1jIQAAAOy8g/EXtAAAAMAO6+7vJ/mdKaeeUFVrhQB+d0rb03fxTl9fHB3/eFVdZLOdJyGUJ2xh/q+Pjo/cJbsmjgudHZLkAZPg4ANG5z7c3f8yy+Dd/d9J/nzUfL4kL62qC8200oNMd385yedHzfeYFDvbrEdkvp0ED2bPmdL29Kq6wGYHqKrbJLnz4pa0aePvmYV+9t19RpIXj5pPTPJLo7Yzkrx0kXMDAAAAAAAAALtXVf1Qkv81av5KVhdUmll3fy2rN7q7YpLbbnXsA9T/nfH6x2Z4v1Z6dXeP83SL8JdJvjRqu2VVPW4b5tptxrmdZLm5rUXmFadlRR9bVbecczwGO/Es76Vncs9kgLv7vCQfGjXfsaqO2OwYVXWnJD8xz/wL9oys3jz5vlV1z2UsBgAAgJ2lMBoAAACwU16a5D9GbVdI8rBpF3f3q5J8YNR8RJI3zLqT3T5VddGqekxV3W+e/ht4++j48CS/vZmOVXV0ktckOWwL8390StsdtjDeQnT3u7P6cz8hya2TXHnU/rw5p/n9rN6t7wZJXjVvMKSqjqqqZ1bVj8y5pgPFONR55SS/upmOVXXrJP9n4Sva47r7o0n+adR89STP38xOw1X1w1ldPGynjL9nfqSqrrTgOf5kdHzZJOOQ40u6e7yjJQAAAAAAAACwdz0ow2aJK72su89d0PgvmdJ24oLGPtDcuqqeupkLq+r2SX5ryqn/t9glDbr7O5leROv3quqR845bVberqj+df2U74nNJvjlqW2Y+cGF5xclmqq8YNZ8/Q/5vrsJMVXVYVT20qn5tnv57xLY/y3vsmdxrGeBxNvRCSTZ7P1w3qzdFXopJYb5nTTn1vKq6+zxjVtX5quqeVTXt3gUAAGAXURgNAAAA2BGTHciePOXU46vqwmt0u3eSr43arprkvVX1m5vZvayqDqmq46vqOUn+M0Mhp8vNsPTNekWS80Ztj6mq36mqQ9dZ372TvDs/2L3xjDnnf8+U+Z9RVXeuqvPPOeaijAMSx2T1boTnJPmreQbv7i8leWCSHp26bZIPVtX91vsM9qmqi0zCDq9McmqSRya54DxrOoD8xZS2p1XVL1RVTetQVRec7Oj4hgxBnvFufGzsF7P6fbtPktdMdjieqqrukuRt+cF32He2Z3lretfo+JAkL6+qGy1qgu7+WFYXjht7zqLmAwAAAAAAAAB2t0mG5UFTTk0rZjavv8/qolN3qqpLL3COA8G+PMtvVtVz18rnTTJ5v5rklRkKWK30gu5+2zau8VlJXj1qOyTJM6vqVVV1vc0MUlVXqarHVdVHMuSg5irAtVO6uzPkDFe6TVX9flVdZglLWnRe8ReSfGbUdqkkb66qP6iqTWU+q+qmVfWMJJ9N8mdJrjbHWvaCnXyW98ozudcywC9I8v1R2yOr6slrvZ5JwbATk7wjySUyZHLPmWPuRXtikveN2i6c5O+q6i+qalPPeVX9SFU9JcknkvxNkk3dmwAAACzPhv9BKAAAAMAC/W2GP1BfZ0XbZTMUCXr6+OLuPrWq7pHk9UkusOLURTLsXPaEqnpHkncm+WKSb2T4Y/eRSa6U5AaTnyMX/kpWr/UTVfWSJA8YnXpikhOq6u+SfCTJWRkCA9dIcqfsH7z5dpLHJXn2HPN/saremP13iLtskpOTnFNVn0vyrawuHvbz3f2BWeeb0YuT/F7237X1WqNr/r67vzrvBN39iqp6UpLfGZ26ymT+p1fVKUk+kOQrGd6Li2W4N45JcqMk183Wduw74HT3+6rq1UnuvKL5fBkKTz2iql6VoUjcOUkuneSGGe6xlWG6X41CVTPp7v+oqt9M8ozRqTsmObWq3pBhB8ovZtip8aoZPqMfXXHt6UlenuH93ymvzlCs8hIr2m6a5P1VdWaSL2RKobzuvv6M8zwryfFrnHtHd0/bHRMAAAAAAAAA2JuOzw8Kzuzzye5+76Im6O6zq+rlSX5+RfP5k9wvyR8tap4DwJMybDyaDO/FParq5CTvT/LlDFmraya5e5IrT+l/WpJf284FdndX1f0yFO4ZF7W5S5K7VNWHk5yS5JNJ9mXSjsxQaOu6GTJQ43vqQPC8JLcbtT0+w+a0X8yQ6zl3dP413f2kRS9k0XnF7v5qVd0pw+e6sojXoUkeneSXq+rdGTaV/HySr2fI+h2Z5PJJfixDBvBgK2a4lh17lvfKM7nXMsDd/YWqemZW5wuflOS+VfWKJP8+WfMlM2QT75j974enZdjg+qhZX88idfd3q+quGYrHXWl0+sQMn88Hkrw1Q1HEr2XIwR6ZIet6/QzfD2tuWgsAAMDupDAaAAAAsGO6+7yqenKGAmkrPbaqnt3d35rS581Vdaskf5fVf9C+SJLbTn52g19OcpMMgZGVrpiNixd9L8nPZQgZzOsxSY7N8L6sdIGsvfPh4VuYb1NWBDbuuM5lz1vAPE+tqi9kKKp0wdHpyya55+SH/T0syY2TXGHU/qPZvxDXNH/Q3X9WVQqjzai7/7CqLpXkCaNTF0xy18nPWr6VITT209u0vKkmAaNfS/LCKacvmiHstQgnJ/lcVn/nJ3OExgAAAAAAAACAA9qJU9pesg3zvCT7F0bbN/fBVBjt6RmKx9xjcnyxDEWCxoWCpvl8kp/s7m9s09r+R3efNckUPj9DYaex62V1gaa94BVJ3pzk1lPOXX7yM/ahbVzPQvOK3f2vVXXjJK9M8iNTxjx28sPGdvRZ3kPP5F7LAP9mkttk9fN0tSSP3WAtL5v0v/cG1+2ISaG3m2RY10+MTp8vwwavN93xhQEAALCtDln2AgAAAICDzr5d01a6dJJfWqtDd78vyQ0yhCa+t4W5O8Ouc2/fwhhrD979zQwhgvfM2PULSW7T3a/f4vwfS/JTSU7dyjjbZL3CZ19M8qZFTNLdz0ty8yRv2eJQ303yN0n+c8uL2uW6+0tJbpnZ7ptzkjy6uzcKx7CO7v6NDDtrzhKG+nyS46ft8rgTuvtFGULAZ27jHN9P8mdTTn0lQ8ATAAAAAAAAADgIVNWRSe425dRfbcN0b8vqrNB1quqgKbTS3Z3kvklm3STxnUmO7e5PL35V03X3md39s0kenuT0LQ73nxmyibtad5+X5GeTvHTZa0m2J6/Y3Z/MUNzoDzNsHrkVH0iypUzmgWoZz/JeeCb3Wga4u7+d5Lgk75ulW4bCeveZfOfsGpOs662TPDHJ17Y43L9n9SbfAAAA7DIKowEAAAA7ahK4OGnKqUdX1UXX6fff3f3gJMdk+KP7v2X4A/xGzkzyugzFh67S3cd393tnXvgmdffpGXYje2SSjcIhpyX5rSTX7O63LWj+d2fYre4OSf40yTsyhC7OSrLMkMLfJ/nvNc69aFIIaSG6+0PdfeskN0vyogyFpDbjixl2fn1gkst19727+8uLWtdu1t2fSXLdJL+R4X1YyzkZdtz7se5+xk6sba/r7j9Ocp0kL0xyxjqXfjnJU5Ncp7vfvxNrW0t3/2WSH0ryoCQvTvIvGdb3nQVOM63w2/O6++wFzgEAAAAAAAAA7G73TXLBUdu7u/tTi55okmubVnDtxEXPtZt197nd/fAMxYHekvUzZ/+S5CFJbrWTRdFW6u7nJLnqZB3/mM1tUHhehrX/QZLjkxx9oGShuvsb3X3fDBnBk5K8Nsmnknw9W9t0dt71LDyv2N3f7u5HJTk6w2v8QJLN5Au/m+Ge/Y0MGasbb7VQ1YFsWc/ygf5M7rUMcHd/NcktMhSsW+/fnd9P8oYkt+jux+y2omj7TO7r301yVJJHZXh/ztlE13OTvCvJU5LcpLuvPdkkFgAAgF2sht/ZAgAAABx4qurSSW6Y5NJJLpnk8Ay7BJ6ZoRjWfyQ5rZf4C5CqunqSm0zWeJHJ+j6f5CPd/fFlretgU1XHJLl2hvvkkkkukCEo8s0kn0nyHwdLEbTNqKrrJrlekksluXCG9+njGYKlZy1zbXtZVR2W5JZJrpzkchmCTP+V5CNJPrRbw0bboapemuTeK5o6yTHLCtECAAAAAAAAAByMqupSGTaovFqGfN4ZGTZe/JftKFC3VVV1gQyZwitmyD5dPENBnDMzbOz5iSSf6O5FbgDINquqI5LcOMllMuT/jsiwieOZGYpGfTzJpxe5QeuBoqpOSvLbK9u6u6Zct5Rn+UB/JvdaBnjyem6Y4Vm6aIbP4VNJ3tXdX1vm2uZVVRdOcqMkV8jw/XBkkrMzvLYvZ/h+OLW7N1NADQAAgF1EYTQAAAAAAHaNSdHLzyU5bEXzG7v79ktaEgAAAAAAAAAAwK6z2cJoAAAAAAeaQ5a9AAAAAAAAWOEh2b8oWpI8axkLAQAAAAAAAAAAAAAAAGBnKYwGAAAAAMCuUFUXSfIro+ZTk7x+CcsBAAAAAAAAAAAAAAAAYIcpjAYAAAAAwG7xlCSXGbX9cXeft4zFAAAAAAAAAAAAAAAAALCzFEYDAAAAAGCpquoSVfX0JL8+OnVakucuYUkAAAAAAAAAAAAAAAAALMGhy14AAAAAAAAHl6r6iyQ3mhxeKskVktSUSx/T3efs2MIAAAAAAAAAAAAAAAAAWCqF0QAAAAAA2GnHJLneBte8qLtfvhOLAQAAAAAAAAAAAAAAAGB3OGTZCwAAAAAAgJGXJPn5ZS8CAAAAAAAAAAAAAAAAgJ116LIXAAAAAADAQe87SU5P8u4kz+vuU5a7HAAAAAAAAAAAAAAAAACWobp72WsAAAAAAAAAAAAAAAAAAAAAAAAADnKHLHsBAAAAAAAAAAAAAAAAAAAAAAAAAAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdIcuewGwbFV1RJJjVzR9Lsk5S1oOAAAAAAAAAMBWXCDJlVYcv7W7v7msxQCAjB4AAAAAAAAAsEfI5+0QhdFgCFy9etmLAAAAAAAAAADYBndO8pplLwKAg5qMHgAAAAAAAACwF8nnbZNDlr0AAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgKU7dNkLgF3gcysPTj755BxzzDHLWgsAAAAAAAAAwNxOPfXU3OUud1nZ9Lm1ruX/Z+/Owyyr6nvh//bpmrrpEehmVBkFJCqivIGmQQRUgnkjMV4SL3mIxleNEoPxRdQYBuONQ5zyJnLjcFFITAxBBSUKeq8yo4IMsZNGGQSaubvpeajxrPeP7i5qOPucfapO1Tl16vN5nn7ovfZae62zq55m7aq1vhuAaWKNHgAAAAAAAAAw41mfN30Eo0FE/8iDww47LI4++uhmjQUAAAAAAAAAoJH6a1cBgClljR4AAAAAAAAA0I6sz5sipWYPAAAAAAAAAAAAAAAAAAAAAAAAAEAwGgAAAAAAAAAAAAAAAAAAAAAAANB0gtEAAAAAAAAAAAAAAAAAAAAAAACAphOMBgAAAAAAAAAAAAAAAAAAAAAAADSdYDQAAAAAAAAAAAAAAAAAAAAAAACg6QSjAQAAAAAAAAAAAAAAAAAAAAAAAE0nGA0AAAAAAAAAAAAAAAAAAAAAAABoOsFoAAAAAAAAAAAAAAAAAAAAAAAAQNMJRgMAAAAAAAAAAAAAAAAAAAAAAACaTjAaAAAAAAAAAAAAAAAAAAAAAAAA0HSC0QAAAAAAAAAAAAAAAAAAAAAAAICmE4wGAAAAAAAAAAAAAAAAAAAAAAAANJ1gNAAAAAAAAAAAAAAAAAAAAAAAAKDpBKMBAAAAAAAAAAAAAAAAAAAAAAAATdfR7AHAbJRSinK5HCmlZg8FYJwsy6JUKkWWZc0eCgAAAAAAAAAA1M0aPaBVWZ8HAAAAAAAAUJtgNJgGKaXo7e2NLVu2xJYtW6K/v7/ZQwKoqaurKxYsWBALFiyInp4eC7EAAAAAAAAAAGhJ1ugBM431eQAAAAAAAAD5BKPBFNu+fXs89dRTMTAw0OyhANSlv78/nnvuuXjuueeis7Mz9t9//5g3b16zhwUAAAAAAAAAAMOs0QNmIuvzAAAAAAAAAPKVmj0AaGfbt2+P1atXW3AFzHgDAwOxevXq2L59e7OHAgAAAAAAAAAAEWGNHtAerM8DAAAAAAAAGE0wGkyR3QuuUkrNHgpAQ6SULL4CAAAAAAAAAKAlWKMHtBPr8wAAAAAAAACe19HsAUA7SinFU089NW7BVWdnZyxcuDDmz58fnZ2dkWVZk0YIkC+lFAMDA7F169bYvHnzqDfq7v737dBDD/VvGAAAAAAAAAAATWGNHjBTWZ8HAAAAAAAAUJtgNJgCvb29oxYqREQsWLAgDjjgAAsVgBmhs7Mz5s2bF0uXLo0nn3wytmzZMnxuYGAg+vr6oqenp4kjBAAAAAAAAABgtrJGD5jJrM8DAAAAAAAAqK7U7AFAOxq5QCFi5wIGC66AmSjLsjjggAOis7NzVPnmzZubNCIAAAAAAAAAAGY7a/SAdmB9HgAAAAAAAEBlgtFgCoxddLVw4UILroAZK8uyWLhw4aiysf/OAQAAAAAAAADAdLFGD2gX1ucBAAAAAAAAjCcYDRospRT9/f2jyubPn9+k0QA0xth/x/r7+yOl1KTRAAAAAAAAAAAwW1mjB7Qb6/MAAAAAAAAARhOMBg1WLpfHlXV2djZhJACN09HRMa6s0r93AAAAAAAAAAAwlazRA9qN9XkAAAAAAAAAowlGgwar9Ia2LMuaMBKAximVxk8ZvJESAAAAAAAAAIDpZo0e0G6szwMAAAAAAAAYTTAaAAAAAAAAAAAAAAAAAAAAAAAA0HSC0QAAAAAAAAAAAAAAAAAAAAAAAICmE4wGAAAAAAAAAAAAAAAAAAAAAAAANJ1gNAAAAAAAAAAAAAAAAAAAAAAAAKDpBKMBAAAAAAAAAAAAAAAAAAAAAAAATScYDQAAAAAAAAAAAAAAAAAAAAAAAGi6jmYPgOmRZVlnRJwYES+MiP0iYmtEPBUR96aUHm1wXwdHxDERsX9EzI+IpyPisYi4I6U00Mi+AAAAAAAAAAAAAAAAAAAAAAAAaA+C0Zoky7JDIuK4iHjVrv8eGxELRlR5LKV0UAP6WRoRH42I34+IPXPq3BERn0spfWuSfb05It4fESfkVFmfZdlVEXFxSmndZPoCAAAAAAAAAAAAAAAAAAAAAACgvQhGm0ZZlp0SER+OnWFoFUPKGtzfb0XEFRGxrEbV5RGxPMuyf46Id6WUttXZz/yI+EpE/EGNqntGxLsj4k1Zlv1RSukH9fQDAAAAAAAAAAAAAAAAAAAAAABA+yo1ewCzzDER8bqYnlC0UyLi2hgdipYi4u6IuDoi/ndErBvT7JyI+EaWZYW/L7IsmxMRV8X4ULS1EfHDXX3ds6vv3faJiO9kWbaiaD/Qzg466KDIsmz4z0033dTsIQEAAAAAAAAAAMCMZ30eAAAAAAAAAMw8gtFaQ19EPNyoi2VZdmBEfDsiukYU3x4RR6eUXpVSOjul9LqIODAizo+IgRH1/u+I+B91dPfJiDhzxPFARLw3Ig5MKb1+V1+vjIjfiIifjKjXHRHXZlm2Xx19AQAAAAAAAAAAAAAAAAAAAAAA0KYEo02/gYi4LyL+V0S8KyJeGRELIuL/aWAfH42IJSOO74iI01NK94+slFLqSyn9XUScPab9+7Mse1GtTrIsOyR2BquN9N9SSl9IKfWP6WtVRJwWo8PR9oqIS2r1AwAAAAAAAAAAAAAAAAAAAAAAQPsTjDa9royIhSmlV6SU3pFS+nJK6Z6U0kCjOsiy7PCI+KMRRf0R8daUUm9em5TStbvGtlt3FAssuyQiOkccX5FS+k6VfnZExFt3jWm3t+8KWAMAAAAAAAAAAAAAAAAAAAAAAGAWE4w2jVJKG6oFlDXIf4+IOSOOv51SerBAu0+NOT47y7KevMpZls2NiDfXuMY4KaUHIuLaEUUdsXPMAAAAAAAAAAAAAAAAAAAAAAAAzGKC0drP7445/lqRRiml+yPiZyOK9oiI11Vp8vqImDfi+CcppV8WGuH4Mb2pYDsAAAAAAAAAAAAAAAAAAAAAAADalGC0NpJl2b4R8fIRRYMRcXsdl7hpzPFvVal7Ro221dwaO8e22yuyLNunjvYAAAAAAAAAAAAAAAAAAAAAAAC0mY5mD4CG+o0xx79IKW2ro/0dY46PrqOvnxTtJKW0LcuylRHxijF9PVv0GkD9Ukpxzz33xC9/+ctYs2ZN9PX1xdKlS+OAAw6IFStWxPz585s9xAl7/PHH46677oonnngiduzYEXvvvXe89KUvjVe96lVRKk0uA3TNmjVx6623xlNPPRU7duyI/fffPw455JA4/vjjJ33tSlatWhUrV66MtWvXxubNm2PPPfeM/fbbL1asWBF77bVXw/sDAAAAAAAAAABgcqzPmxjr8wAAAAAAAACoRDBae3nJmOOH6mz/cI3rjXRUA/oaGYz2koj4cZ3XAApYt25dfPzjH4+vf/3rsXbt2op1urq64tRTT41LL700fvM3f7PQdd/61rfGlVdeOXz8yCOPxEEHHVSo7U033RSvec1rho8vueSSuPTSS3PrZ1k2/PdXv/rVcdNNN0VExB133BGXXHJJ/PjHP45yuTyu3T777BMf+chH4rzzzqt7kdS9994bH/jAB+LGG2+seO0DDzww3vWud8WHPvSh6OjoiEsvvTQ++tGPDp+/8cYb45RTTinU13PPPRef/vSn4+tf/3o8+eSTFeuUSqVYvnx5XHLJJXH66afX9VkAAAAAAAAAAABoPOvzrM8DAAAAAAAAoPEEo7WXw8Ycr66z/WNjjvfKsmxJSmnDyMIsy/aMiD0n2dfY+ofX2R4o4Nprr41zzz03tmzZUrVef39/3HDDDXHDDTfEO9/5zrjsssuio6O1/xfx8Y9/PC6++OIYGhrKrfPss8/Gn/3Zn8WNN94Y//qv/xpdXV2Frv25z30uLrzwwqrXfuKJJ+Kiiy6K66+/Pr797W/XPf7d/vEf/zHe+973xubNm6vWfx0p0gAAIABJREFUK5fLcdttt8VrX/va+MM//MO4/PLLC38eAACgve0Y2h6P9P4q+st9dbXbu3Pf2L/7hVHKqm9UGUpD8Xjvw7FxcP1khtk2ukrdcXDPi2PunD0afu2tQ5vjsR0PxkAaGHeuu9QTB889InpKcxveb6MMlAfisd4HY0nnXrFX5z7NHg4AwIywdWhzPNP3eOzb/YKYP2dhs4fTktYPrI0n+h6Jchq/UX7BnEXxormHRUfW2fB+Nw1uiGf7n4wX9hw6qXl4b3lHPLrjgegt72jg6KbOPl0HxL5dB44KRqhk5/z/gdg6VP33kPPmzI8Xz/uNRg4RAABahvV51ucBQCOkgf6IR1ZFlEoRh7605s/mAAAAAABgNmjt36pTr8VjjtfU0ziltDXLst6I6BlRvCgiNoypOraf7SmlbfX0VWFsi+psD9Tw1a9+Nd7xjneMe5vioYceGi95yUti3rx5sXr16rjzzjtHLTD68pe/HKtXr47rrruuZRdffeYzn4mPfOQjw8dHHHFEHHHEEbHHHnvE008/HT/96U+jt7d3+Pw111wTF110UXzqU5+qee3PfvazccEFF4wrf8lLXhKHH354dHd3x+rVq+Ouu+6KoaGhuOOOO+Lss8+Ok08+ue7PcfHFF8fHPvaxUWVZlsURRxwRhx9+eCxYsCA2bNgQP//5z0e9TfTrX/96PP3003HDDTe07NcIAACYHjdv+H5cveZ/RTnGBwQUsX/XC+NPX3BpLO4Ym4G/09N9j8ffP3FpbBx8bhKjbD+lKMXZy94RJy/5rYZcL6UU1z/3b/G95/41UqQq/c6Jc/Z9T5yw6LSG9NtID2xfGV988hPRW94eEREvm/9/xdv3uyA6SzYNAQDk+f66q+KG9VfHYBqMLLJ487K3x2uW/Hazh9UyhtJgfO3pz8c9W26vWm+P0oJ4z4F/GQfPPaIh/ZZTOa5a8+W4deMNERExJzri3P3+LI5bWP/vgn626ab4+jNfiKEYbMjYpsuLeg6P8w68KDes71fbV8aXnvx4obC3g3oOjwtf9OlGDxEAAJrO+jzr8wCgEdIj90f64FkRTz+6s+DwYyI++++RLVnazGEBAAAAAEDT+W1te5k/5ngir5zeEaOD0RZMYT8jVeqnblmWLYuIen8DdGgj+m6UNDgYsfaJZg+j/S09MLI2XrBy3333xbvf/e5Ri66OOeaYuOyyy2L58uWj6q5duzYuuuii+NKXvjRcdsMNN8TFF18cH//4x6dtzEWtXLkybr311oiIOOuss+ITn/hEHHnkkaPqbNiwId7//vfHFVdcMVz22c9+Nt797nfHQQcdlHvtu+++Oz70oQ+NKjvllFPiC1/4Qhx99NGjyteuXRsXX3xxfPGLX4xbbrklVq1aVdfnuPLKK0ctuiqVSnHeeefFBRdcEC984QtH1U0pxXe+8504//zzY/Xq1RER8aMf/Sguuuii+MQnPlFXvwAAQPtY3ftQXLXmy5O6xlP9q+Ofnv67eO8LLh13LqUUX3ryE0LRKihHOf51zZfi4LlHxAt6Dpn09VZtvzf+/blvFOh3KP7pmb+Pg3peHPt1v2DS/TZKf7kv/uGJv46+9PwmqF9svTOuf+7q+J2l5zRxZAAArWvl1rtGzQFTpLh6zf+Kg3oOb1jA10z3w/XfrhmKFhGxrbwl/ueT/yM+eejXYk42+d///WTTj4ZD0SIihmIwrnj683FwzxGxd9c+ha+zpv+puPKZv530eJrhsd4H46pnvxxv3398WEFfuTe+OGb+DwAwk1ifN43aeI2e9XnW5wFAI6SUIv3Vuc+HokVEPHhfpL95d2Sf+GazhgUAAAAAAC2hPVcczF5jA8smshJ5R0QsqXLNRvZT7ZoT9Z6IuKRB12qOtU9EOttmh6mW/duvIvY7qNnDmDJvf/vbo7+/f/h4xYoV8YMf/CDmzZs3ru7SpUvji1/8Yhx22GHxgQ98YLj8U5/6VLzlLW+Jl770pdMy5qLWr18fEREXXnhh7hsmlyxZEl/72tdiw4YN8Z3vfCciIoaGhuLyyy8f9wbIkc4777wYHBwcPn7Tm94UV111VcW3Pi5dujT+4R/+IQ455JC48MILY926dYU/w2OPPRbvfve7h4+7u7vj2muvjTPOOKNi/SzL4qyzzorly5fHiSeeGA899FBERHz605+Od77znXHwwQcX7hsAAGgf/7n17oZc51fbV0ZveUf0lOaOKl8z8FSsGXiqIX20q19svbMhwWi/2HJnXfVXbr2rpYLRfrV9ZcVQhF9s/ZlgNACAHNc/d3XF8vu2/lQw2i71PPNsG9oSD+/4Zbx43m9Mut+V2+4aV5Yixcptd8Vrun67+HW2jr/OTPKfW38eQ2ko5mRzRpU/kDP/BwCYMazPmzbtvEbP+jzr8wCgIR76xc4/Y/38R5EGByLr6Jz+MQEAAAAAQIsoNXsATKnUZm2AAm688ca45557ho8XLlwYV111VcVFVyNdcMEF8du//fxmjnK5HJ///OenbJyTsWLFikJvYvzrv/7rUcc//vGPc+vedddd8bOf/Wz4eL/99ouvfvWrFRddjfSBD3wgXve619Ucy0if/vSnY8eO5/MhP//5z+cuuhpp2bJl8S//8i/Dx0NDQy37NQIAAKbepsENDblOOYZi6+DmceUbB55ryPXb2abB9Q25zsbB+u71pqHG9Nsom3LG36jvUQCAdrO696F4tPeBiuc2DrTWXK+ZtgxtrKt+w+bnOc9C9c5v653nt5q+1Bt95bHvO4vY2KD7DAAAM5X1ec+zPg8AJum26yqX926P2LF1escCAAAAAAAtRjBaexn7m4+5E7jG2DaVfpsyXf0AE3DllVeOOj7vvPNi//33L9T2k5/85Kjjb3zjG9HX19ewsTXKRz7ykSiVav8v7Oijj46DDjpo+Pi+++7LrfuNb3xj1PGf/umfxqJFiwqN56KLLipULyJi27Zt8dWvfnX4+JBDDol3vetdhdsfd9xxcdJJJw0ff/e73y3cFgAAaC+DaaBh1+pL4ze791bYAM9ojbpHfam3Kf02Sl+58vgrfV8BABBx88brc8+ZQz2v3jdt5c1L65U3P68UElZNq83bJ6LSZ6j3PgAAQLuxPu951ucBwOSkZ5+ocrLen5ACAAAAAEB7qf6aLWYawWgR/zMirq6zzaER8Z0G9Q9Nd9ttt406/sM//MPCbY8++ug49thjh99o2dvbG3fffXcsX768oWOcjLlz58app55auP5RRx0Vjz76aEREbN++PbZu3Rrz588fV++OO+4YdXz22WcX7mPFihWx//77x1NPPVWz7m233TbqbZRvfvObCy0iG+k1r3lN3HrrrRER8dhjj8Xq1avjhS98YV3XAAAAZr68YLQ50RFdpa5x5SkiesvbK7bprRAgUC2sa25pXrFBtomB1B+DaXBcecOCF+q8TqP6bZS88QymwRhMA9GRdU7ziAAAWte2oS3x88235p5vtblec9W38a9RgV15gWaNCkbLe2ZrlhSpymce//2YV7cUpegu9Ywrr1QGAAAzmfV5o1mfBwCTsLZKMNrQ0PSNAwAAAAAAWpBgtPayaczx0noaZ1k2P8YHlm0s0M+8LMv2SCltq6O7ZQX6qVtKaU1ErKmnTZZljegaWsKGDRvi4YcfHj5evHhxHHXUUXVdY/ny5cMLryIi7rrrrpZaeHXooYdGV1fxzSJLliwZdbxp06aKC6/+4z/+Y/jvixcvjsMOO6yucb3qVa8q9HbIsQvj9t9//+GFYUWN/fy//vWvLbwCAIBZqFJQV0TE8sWnx1v2+ZNx5SmleO8DvxflKI87V2mDf95m96Wd+8VHD/mHOkc7s3137T/HDevHZ/Hn3aN65QUsdGQdUxrI1ijV7kNfuTc65ghGAwDY7SebfhQDqT/3fKPCvdpBSvUGo01tcHG9188Lpj5lyZnxe8v+uO5xTZXe8o54/4NvqXiu0vdj3n04ao9j4rwDL27o2AAAoNVYnzee9XkAMAlrn8w/l8av7QAAAAAAgNlEMFp7eXDM8YvqbD+2/vqU0oaxlVJKz2VZtiEiRq5meGFE3D+JvsaOHZiAtWvXjjo+/PDD6w7/O/LII0cdr1lTV9bglBu7kKqWzs7Rm68HBgbG1dm2bVv09j6/iWMii5iKtnn88cdHHb/vfe+L973vfXX3N9L69esn1R4AAJiZBtP455uIiM6scghVlmXRXZobO8rjs+3r2ezeUxqbq9/+8j5zX2pM8EJesNjCOUti/eDaceWtFpZRLSCir9wbe8xZMI2jAQBoXeVUjls33lC1TquF4M4kjQguTik1MBit8ni6W+yZqivrjiyySDE+iK7SZ857Hmm1zwUAAFPB+rzxrM8DgEnY9Fz+ufLQ9I0DAAAAAABakGC09jI2mKy+16lFHDLmeFWNvka+ou6wCv3X01c9bdvb0gMj+7dfNXsU7W/pgc0ewZTYsGF0luGiRYvqvsbYNq22qKdUKjX8mhs3bhx1vGBB/Ru2Fy5cWKjec89V+QX2BG3ZsqXh1wQAAFpfXjDanCz/R37dpZ6cYLR6Nrv3FBxh+8j7zI0KKMsLWFjUsWdOMFprhWX0pfz70GpjBQBopvu33RtrB56pWsf86XmVgrqqacS9G0j9kaJc8Vy9wWt59eeW5tU9rqlUykrRlXVXDH6u9Bny7vNsfFYEAGYo6/OmTxuu0bM+b2KszwOAHNs2558bEowGAAAAAMDsJhitvfznmOOXZVk2L6W0vWD7E2tcb+y5kcFoJ0TEdUU6ybJsj4h4WR19zSpZR0fEfgc1exjMUCmN3iBS79soK2nENVpdd3f3qOP+/v66r1G0zUSuXcvYrzsAADA75AWjdWSduW26S3MrltcXjFb5Gu2snvtWr5RS7nUWdiypWF5vIMNUq3YfWm2sAADNdPPG62vWEYz2vLxgtFKUolwhvKxaYG9R1cKPKwWHVZM3F27FZ6ru0tzoG6rwXFjhM+fdh+6s9T4XAEAl1ucxGdbnTYz1eQCQo6/KzzRT5Rc4AAAAAADAbCEYrY2klJ7OsuwX8XzoWEdErIiIHxa8xCljjqutzL8hIt5ZpW01J8Xo7717U0rP1tEeyLHnnnuOOt60aVPd1xjbZsmSypuwJ2Ooxd5gNfYzjn2zZxFF39y59957jzq+44474oQTTqi7PwAAgME0WLG8WjBaT84G/Eob9vM38fcUGF17yfvMjQj9GkyDUY7Kz8kLOxZXLG+1sIxq46kWLAEAMJus6382/mvb3TXrNSLcq911l+bGjvK2ceWNmCc3cm7bW678/rKe0ry6rjMdekpzY/PQ+N+P1fOsmPe8CQAA7cT6vImxPg8AJqDcWv8/BwAAAACA6VZq9gBouGvGHL+tSKMsy46MiN8cUbQtqgeq/SAiRq54PmHXNYp465jjsWMGJmjp0qWjjh944IG6r/GrX/1q1PGyZcsq1uvoGJ2tOThYeUN+JRNZ2DSV5syZEwcccMDw8a9//evYvr3yZpU8K1euLFRvn332GXU8ka8RAABARMRgGqhYXi0YLS/gq9Lm/7xAgNm42T3vM/eVeyOlNKlrVwu+WDSn8maoVgsbqxYQ12ohbgAAzXLLxusjRe2542AazJ3rzzZ596uewOd6VbtGb51z27x5e08Lhk034llxNoZoAwAw+1ifNzHW5wHAeKmvxs8zy+XpGQgAAAAAALQowWjt558jYuSrYd6UZdnhBdp9cMzxv6WUcld2p5S2R8Q3a1xjnCzLXhwRvzuiaDAi/qXA+IAClixZEoceeujw8caNG+P++++v6xp33HHHqOPjjjuuYr2FCxeOOt64cWPhPv7rv/6rrjFNh+OPP3747+VyOW6++ebCbdevXx//8R//Uaju8uXLRx3/8IfVMigBAADyDabKG2A6so6K5RH1BQjkBQLMxs3ueZ85RTkGUv+krl0t5GxRx56V26TeKKfWWQRdLfysEeEUAAAzXX+5L36y6UeF6wuX3SUnhLhacPFkVbtGPQHFA+WB3Ge2ntK8usc11fKD0cZ/5rz7MBufFQEAmH2sz5s46/MAYIwtNYJMy0PVzwMAAAAAQJsTjNZmUkoPRsSVI4q6IuKKLMtyVyFnWfbGiHjriKL+iPhoge4ujYiRryt/a5Zlv1Oln56I+NquMe12eUrp4QJ9AQWtWLFi1PE///M/F257//33x9133z183NPTE6985Ssr1h37pspVq1YV7uf73/9+4brT5fTTTx91/JWvfKVw2yuvvDL6+4tthD/ttNNizpw5w8ff/e53Y82aNYX7AgAA2G0oNxitM7dNd86PiPpSpc3ulQMB8kII2lm1zzzZ4K9qwQsLOxbnnutPfZPqt5GqBUT05b97AQBg1rhny+2xrbylcH3BaDtVjkXLDxZrSDBalfnrQOqPciq2GbHaHLkVn6m6c8Pmiodot+LnAgCAqWB93sRYnwcAY/zq3urnh1rnZWkAAAAAANAMgtGmWZZlB2ZZdtDYPxGx75iqHZXq7fqzd41uLomIka+PWR4R/yfLsiPHjKU7y7L3RsTVY9p/NqX0WK3PklL6dUT8f2OKv5ll2Z9mWTYy/CyyLDsqIn60ayy7PRfFAtiAOpx77rmjjr/whS/EM888U6jthz/84VHHf/AHfxDd3d0V6x577LGjjq+77rpCffzgBz+IO++8s1Dd6XTOOefEggULho+vueaa+MEPflCz3ZNPPhl/9Vd/VbifJUuWxDnnnDN8vHXr1rjgggvqGywAAEBEDKaBiuUdWUdum+5STjBahQCBvI383dns2+yed98iqgceFFEtvGFRx5Ip67eRqoVHCPUAAIi4eeP1ddU3h9opReWNf/nPNZOfI9cKPi76tal2nbxgt2aq71mx8j2o9twEAADtxPq8ibE+DwBGS1+5pEYFwWgAAAAAAMxugtGm320R8UiFP98YU++AnHqPRMRnqnWQUnoiIt4UESNfj3ZiRKzKsuyuLMuuyrLshoh4PCL+LiI6R9T794i4qI7P86GIGLmSvzMi/j4iHs+y7Posy/4ty7KfR8R/xehQtP6I+N2U0tN19AUUcOqpp8YxxxwzfLxp06Z4y1veEjt2VN/I8fnPfz6+853vDB9nWRZ//ud/nlv/hBNOiHnznt+4cc0118TPf/7zqn08+OCD8Ud/9Ee1PkJTLFiwIM4///xRZWeffXbceOONuW0effTReO1rXxsbN26sq69LL7101IK2f/qnf4oPfvCDMTQ0VNd1Vq1aFbfccktdbQAAgPaRH4zWWbE8IqK7VDnUrFKAQF7Y1Wzc7J533yJqByfUkhcqkEUW8+csqrtdM1QbSysFuAEANMOjOx6Mx3ofrKvNZOeY7SLllPfkPtdMfo5ca/5aPBhte+65vPE3U9FgtJRSfoh2C34uAACYCtbnTYz1eQAwxvpnq58v1/f/LQAAAAAAaDeC0dpUSummiPjdiFg7ojiLiFdFxNkR8fqIWDqm2Tci4g9SSoV/g7Kr7tkRcdWYU8si4oyI+G8R8cpdfe+2JiLemFK6tWg/MJs888wz8eijj07oz26XX355dHV1DR/fdNNNcdJJJ8XPfvazcf2tW7cuzjvvvHj/+98/qvzCCy+Ml73sZbnjXLBgQfz+7//+8PHQ0FC84Q1viB/+8Ifj6vb398dXvvKVOP744+PZZ5+NJUuW1HNLps1FF10UL33pS4ePN2/eHKeddlqcffbZ8c1vfjN+8YtfxC9/+cv44Q9/GO973/vi6KOPjvvvvz96enrijW98Y+F+Dj744Pjyl788quxv/uZvYsWKFXHdddfF4OBgbttHH300Lrvssjj11FPj6KOPjh//+Mf1f1AAAKAtDOQGo3Xktim62T0iP4xhNm52787yP/Nkwxfy73NP1cCEVgnLGEqDuSF9EYLRAABu2fj9utuYQ+1WORqtpzSvYnlfmvx9qzXPzguQruc6rfhMlffsMfZzDKaBKEe5Yt1W/FwAAFCJ9XnNY30eAOyUhoYiNq+vXqlc+edwAAAAAAAwW+TvkmTGSyl9P8uy34iIj0bE70dE3kqHn0bEZ1JK35pgP1sj4g+yLPtmRPy/EXF8TtX1sTNA7ZKU0tqcOjDrveUtb5lw25R2bhA59thj4wtf+EL8yZ/8SZR3/VL07rvvjuOPPz4OO+ywOProo6Onpycef/zxuPPOO8ct9Hnta18bH/vYx2r297GPfSyuueaa4TcyrlmzJl7/+tfHYYcdFi972cuiu7s7nn322fjZz34W27Zti4iIfffdNz71qU+15Jspu7q64nvf+16ceuqp8dBDD0XEznt69dVXx9VXX12xTZZlcdlll8Xq1avHvdGzmnPPPTeeeeaZ+PCHPzz8NfrpT38av/M7vxPz5s2LV7ziFbHPPvvE3LlzY8uWLbFu3bpYtWpV3W+/BAAA2tdQqrxpoyPrzG1TdLN7RH7gV7WwrnbVWeqMOdERQzH+nk82tCKvfXdpbm6Q3c52kwtka5Ra42iVcQIANMPWwc3x8y23VTx35LyXxyM7flUxaMscaqdUZzDa4K7Q3mrPRLXUnt8Wm//3lrdXLO/IOqKzNPHxTZW8MOix35/V7k93lv/8AgAArcT6vOaxPg8Adnnu6Yih/KDOiIgoD03PWAAAAAAAoEUJRptmKaWDprm/NRHx7izLzo+IEyPiRRGxb0Rsi4gnI+LelNIjDerrmxHxzSzLDo6IYyNi/4jYIyKeiYjHIuL2lFJ/I/oCanvHO94RS5Ysibe97W2xdevW4fKHHnpoeFFRJX/8x38cX/ziF6Ozs/amjAMOOCC+9a1vxVlnnRVbtmyp2cfBBx8c3/ve9+LZZ5+t89NMnxe84AVx6623xnve85645pprqtbda6+94sorr4w3vOEN8cEPfnDUuQULFtTsa/dbP9/2trfFM888M1y+ffv2uP322wuNt1Xf7gkAAEy9wTRQsbxaCEB3TqjZ2M3tKaXcDe/VwrraWU9pbmwrbxlXXinIoh659znriTlZR3RknRW/1pXC7Jqh1jiEegAAs9kdm/5P7rz95MW/FU/1rY6+oQrBaJOcY7aNyrloVcOa+8q90TFn6oLRis7De3Ofp1ozaDrvno69H9U+/2wM0QYAYHazPm9irM8DgIh45rHadYYEowEAAAAAMLuVmj0ApkdKqT+ldGNK6YqU0idTSn+fUvp2o0LRxvT1SErpW7v6+OSuPm8UigbT781vfnM8/PDDcf7558fee++dW6+zszNe97rXxe233x6XX355oUVXu5166qlx5513xhvf+MbctzAuXbo0PvCBD8R9990XRx11VN2fY7rtu+++8e1vf3t4AdZLXvKSWLx4cfT09MQhhxwSp59+enzpS1+Khx9+ON7whjdERIx7U+SiRYsK9XXGGWfEI488Epdddlkcc8wxNd9k2dnZGcuXL49LL700HnjggTj//PMn9iEBAIAZrZyGohzliueqB6NVDjUbu9l9IPVHyrn+bN3snnfvJhtQlhd6sbu/ogEFzdKo4AgAgHZTTkNx66YbKp5b0rF3vHT+cYXn57NVyklGqxWMNhl9DQr+7S1vr1jeU5pX95imQ9Hnnb6Uf39ma4g2AACzm/V5E2N9HgCz3pona9dJlddsAAAAAADAbNHR7AEAzHaPPvrolF5/2bJl8bd/+7fxuc99Lu6+++745S9/GWvXro2+vr7Ye++948ADD4wVK1YUeoNiniOPPDKuvfbaWLduXdx8883xxBNPxPbt22OfffaJgw8+OE466aTo6Hj+fzmnnHJKpFR5M0sl9dQd64orrogrrrhiQm1XrFgRK1asKFR31apVw3/PsiyWLVtWuJ+enp54z3veE+95z3ti/fr18dOf/jSefvrpWL9+fQwMDMT8+fNj2bJl8eIXvziOPPLImDevNTfNAAAA02cwDeae68jyf+SXH7I1enN7tTCr2brZvXuKAsry2u/ur7vUE1uHNldo1xqBY7U+f17wGwBAu/uvbffEcwNrKp5bsfj1MSebM2Xhu+2iOcFoNea3Ba+fN19v1aDp/JC+McFoVT7/bH1WBACg9VmfV5v1edbnATDNerfVrlMemvpxAAAAAAAz1rotKbb0PX+8dH7E/J7qLwmCmUYwGsAsUSqV4rjjjovjjjtuyvrYe++94/d+7/em7Pqtatu2bXHPPfcMH7/4xS+e8EK2PffcM84888xGDQ0AAGhTg2kg91xH1pl7rjvL2eyeeqOcylHKSjuPqwajteZG/qk2VaEVefd6d3/dWbEwu2apNY7JBlMAAMxUN2+8vmL5nOiIExe9NiKKBxfPXpU35ld7Jpn0/DxVb1/0+jvK2yuWt24wWrEg6LzPX4pSdGZdDR8XAADMJNbnTR3r8wBoO/0Ffo9eLk/9OAAAAACAGeeex1Kc+9VyrHp6dPnX357Ff/9NwWi0F8FoADBJV155ZWzf/vwGlxNOOKGJowEAAGaDwTSYe65qMFqVTfj9qS96doVwVdvsnxcQ1u7yQysmF/yVd69395d3v/tSawSO1RrHZIMpAABmorX9T8eqbfdUPHfsguWxsGNxRFSZ6wmXjYi8WLSd9y2LLFKFGpMNleutce+Lfm3yxtG6wWh534s7IqUUWZbtOq78+btLPcN1AAAAGs36PADaTqFgtKGpHwcAAAAAMKNs3pHi1M+WY7NlpswSpWYPAABmsieeeCIuuuiiUWXnnntuk0YDAADMFoNpIPfcnCz/XQjVQs1Gbtyvttm/VTfyT7VqQQGTUS1YoFq/rRI4VuvzT/b+AADMRLdsvCH33MlLzhz+u2C0WipHo2WRTdm9a9T8Nj8AeV7dY5oOeSHa5SiPev7Mf36Znc+JAADA1LM+D4C21N9fu45gNAAAAABgjG/fm4SiMasIRgOAEb71rW/FX/zFX8TatWtr1r333nvj5JNPjvXr1w+XvfyA4QheAAAgAElEQVTlL4/XvOY1UzlEAACAqsFoHRMORusd8ffKm/jnREd0ZJ0FRth+8jb6T3UwWl4QXauEZdQaR6uMEwBguvSX++Inm35U8dyB3QfHIT1HDB93Z60912u2lHKC0bIsurOpCRCude+LXj8/GK01A8R6JvmsKBgNAAAoyvo8AIhI/QV+BlwuT/1AAAAAAIAZZeWTzR4BTK/8XZIAMAtt2bIlPvGJT8RnPvOZOOOMM+K0006Ll7/85bFs2bLo6OiI9evXx8qVK+Pf//3f47rrrhu1KaerqyuuvPLKJo4eAACYLQbTYO65zirBZdU24Y/cuN+XKi/CbdVN/NMhL1Ru0sELOfd6d0hGXsDAZPttlFrj6Cv3RkopsiybphEBADTXz7fcGtvLWyuee/XiM0fNi3LDd1NrzPVaWXdpbsTQhnHlefPromoFHxe9/kwLRssL6YvY+Vnmx8KIqB3sDAAAUIv1eQAQEYWC0YamfhwAAAAAwIzy6LrKL5yFdiUYDQAqGBgYiOuuuy6uu+66QvXnzp0b//iP/xgvf/nLp3hkAAAAEYNpIPdcR5VgtLzghYjRG9zzNvHP5s3ueQEGecEARdW611PVb6PUGkc5hmIwDURn1jVNIwIAaJ6UUty84fsVz80tzYvjFp48qixvfl0rnGu2KEe5YnkWWZV7N9lgtOrti16/t7y9Ynm1Z7JmqvasNzKoL/f5JZu9z4oAAMDEWJ8HwKxWKBit8s9HAQAAAIDZ65F1zR4BTK9SswcAAK1k8eLFMWfOnLranHjiiXHLLbfEm9/85ikaFQAAwGjVgtHmZPnvQpiTzckNqBq5wT1vs3+rbuKfDnkb/fOCAYrKu9e7A9FaPSyjSDBEq4S4AQBMtUd7H4jH+35d8dwJi06LrlL3qLKpCvdqf1nus8lk58m1g9GKXT+v3tzSvLrHNB3yApkjRt+TkSFpRdsDAACMZH0eAETBYLShqR8HAAAAADCj5AWjffR3snjjMdn0DgamQf4uSQCYhc4666x49tln44Ybbojbb789Vq5cGY899lisX78+ent7Y+7cubHnnnvGi170ojjppJPizDPPjBNPPLHZwwYAAGaZasFoHVln1bbdpZ4YGOofVz5ys3te2FdecMNskLfRf7KhFXmBCbvvdX7gQ2uEZRQKRks7Yn4snIbRAAA0180bv5977uTFvzWuTDBadSlSxfJSZFMSIFxO5ehLtYLRin1tduTO81szQKwj64xSlKIc5XHnioVoz95nRQAAoD7W5wFARAyMX7MxTnn8z+oAAAAAgNlrw7YUm3KWSJ5yRBZ7dAtGo/0IRgOAMfbaa68455xz4pxzzmn2UAAAACoaTIMVy0sxJ0pZqWrb7lJPbB3aPK68r8Bm97xwsNkgN6AsTTx4IaJ2sMBUBD40UpHPnxe0BwDQTrYMbox7ttxe8dxR846JZV37jyvPm1+bP+1WORgtsmrBaBMPletPfTXrFL1+3ny9VZ+psl33dEd5+7hzQrQBAIBGsz4PgFmvv8DPGQWjAQAAAAAjPLIu/9zBe0/fOGA6Vd8lCQAAAAC0nME0ULG8M+us2bY7ywn4GhWMZrP7WLnBaJMIXkgpVQlG29lfd1b5nrdKWEaRcUzmHgEAzBS3b/o/uQHGr15yZsXyqZhjtpOUl4sW2ZSEyhUJHy56/d4KAWMRrRuMFlHt+1GINgAAAAA0VKFgtKGpHwcAAAAAMGP8OicYrasjYv9F0zsWmC6C0QAAAABghskLXJiTddRsmxdu1peeX3ibH4w2eze75923yQQvDKaBKEflxcy773VewMDIr1czFQntEOwBALS7chqK2zb+oOK5PTuWxm/s8cqK53Ln5uZPERGRIicZLabm3hUL/a1dZ6A8kPvM1soBYkWC+moFOwMAAAAABfQVCUYrT/04AAAAAIAZ45F1lddUvmjPiFIpm+bRwPQQjAYAAAAAM8xgGqhY3pF11mybtxF/ZAhAXiBAXvjAbJB33wbTQAzlhB7UUi20oTvbea/zAx8mHsjWSEWCJyYTHgcAMBP857a7Y/3g2ornTlp8RpSyORXP7Z7zjTUUg7lz/tml8iKeLLLozhofIFwo9LfA9avN1XtK8+oa03QqEjaXH6I9e58VAQAAAKBu/X2165Qrv2QNAAAAAJidHllXufzgvad3HDCdBKMBAAAAwAyTF8TVkXXUbFtss3vlzf554WCzQbWN/kUCFCq2S9UCE3p2/TcvkK01wjIKhUdM8P4AAMwUN2/4fsXyjqwjli86PbfdVMwx20nlWLSdwWhFAp/rVWxuW/v61cbQys9URe5p3j3qbuHPBQAAAAAtZ0AwGgAAAABQn0fXVV5VedDe2TSPBKaPYDQAAAAAmGEGcgKxOrLOmm3zNqyP3OCet5G/O8sPbmh31QIMJhq+UC14YXdIRrWAgf5ygcXSU6xIMESROgAAM9Wz/U/G/dvvq3ju2AUrYkHHoty2UzHHbC950WjFAp/rVeSeFwko7i1vzz3XU5pX97imS97z3shAZ8+KAAAAANAA/QV+jlkuT/04AAAAAIAZ45F1lcsP3nt6xwHTSTAaAAAAAMwweRvxO7KOmm3zwhdGbnDPCxOoFtzQ7vKCFyImHr5QPRhtbs1+WyEso8hnn0w4BQBAq7t14w255169+MyqbauF4JpDRaScYLQssirBaBOfIxe957UCiqvN06t9zZst73lv5H3Ju7+z+VkRAAAAAOpWKBhtaOrHAQAAAADMCOVyikefq3xOMBrtTDAaAAAAAMwwQ2mwYnlH1lmzbZEAgb5UebN7K2/in2rVQysmFr6QF5iQRSk6s64C/TY/LCPve6XeOgAAM1FfuTd+sulHFc+9oPuQOKjn8KrtpyJ8d1bIstx58uSC0Yq1rRVQ3FveXrG8I+uIzlLtZ7Zmyft+3P15y6kc/alyKFy172UAAAAAYIz+6i9fiIiIcnnqxwEAAAAAzAhrt0b0Vd5KFgfvnU3vYGAaCUYDAAAAgBlmMA1ULC8WjJYXINBb8e9F2s4GXVl37rlawQh58u9zT2RZNvz3RvfbKINpIAZzQvpGEuoBALSruzbfEjtyQrBeveTM4Tldns6sK7KoXGcyAV/tIKWUey6LaoHPvVXbVlP0ntea3/bO0Oepavc0IqI/9UWKyve21T8bAAAAALSUQsFoQ1M/DgAAAABgRli/Lf/cfoumbxww3QSjAQAAAMAMkxuMVioSjJa32f35EIC8wK1qIV3trpSVojur/PknHoxW+z53Zd0tG5bRXy6wWDsEowEA7SmlFLds/H7Fc/NK8+NVC06qeY1SVsoN4G12CG6z5QVw7ZTlBnGVo5z7vFRLXyo2b601D88731OaV/eYplOtEO1q8/oewWgAAAAAUFx/gZ9FCkYDAAAAAHbZWPkdvhERsaS1lybCpAhGAwAAAIAZZqCcE4wWHTXb5oV77Q4BGEqDuUECs32ze62ggHrltRv5NWrlsIyi/Td7nAAAU+HXO34ZT/Q9WvHcCYtOi65S5TncWHlz7NkeLlstGK0UWfRUCW2eeHBxsXte6/q95corkFr9eSr/eWfHrv/m35/ZHKINAAAAAHUrFIxWnvpxAAAAAAAzwoacYLSOUsS8rukdC0wnwWgAAAAAMMMMxWDF8o5SZ822eZvxe212ryk/tGKCwQspJxhtzH1u1bCMov03e5wAAFPhlo3XVyzPIouTF59R+Dq5YVQ5c8XZIz8YLSKL7iw/ZGyi88+igWq1rp93ndYPRssJ0d71eas998z2Z0UAAAAAKCqlVDAYbWjqBwMAAAAAzAgbt1deU7lkj4gsy6Z5NDB9BKMBAAAAwAwzWM4JRss6arattdm9WhhAq2/kn2q5926CoRVFAxNaNSyjaCDcRIPjAABa1ebBjXHPljsqnnvJHq+IpV37Fb5Wrfn5bJWqBKNlkVUN4upLEwwuLhr8W2Me3luu/GrGVn+eqhUELRgNAAAAABpgoL9YvXJ5ascBAAAAAMwYGyovS4zFrb0sESZNMBoAAAAAzDCDaaBieUfWWbNt3mb3wTQQQ2mwahjAbN/snhdQVi1Mrpq8ez22n/ywjOYGjhUOjpjloR4AQPu5fdP/jqGoHFZ88uIz67pWq871mi3l56JFZFnVkLHeCc4/i87ra9XLO5/3PNEqurPK34u9w8Fole9rR9ZR6FkUAAAAAIiIgb5i9cpDUzsOAAAAAGDG2JgTjLZk3vSOA6abYDQAAAAAmGHygtHmZB0121bbjN9X7q0awNDqG/mnWl74wkSDv/Lu9dhwjLz73uzAsb5UrP+JBscBALSioTQUt268oeK5vTr3iaP3eEVd18uf6832OVR+MloWO0OhSznLHSZ674q2qzUPz5v/zi219gqkvJC+/tQX5VTOD3zLZvdzIgAAAADUpb/g7/nL5akdBwAAAAAwY2zIC0bbY3rHAdNNMBoAAAAAzDCDabBieUfWWbNt3mb3iJ0b+KuFWHVl3bUH18by7t3EgxcqL3geH4xWud9mB44V7b9ogBoAwEywcutdsXHwuYrnTl58RpSyOXVdL3+OObvnUKlqMFoWWZY1/N4VbVdr/p8bINbiQdN5QdApUgyk/tx5fbVnTAAAAABgDMFoAAAAAECdNuYsW1w8N5vegcA0E4wGAAAAADPMYBqoWN5ZKBgtfzN+X7k3P6wr64lSNrt/nJgXFNDo4IWxwQL5/TY3GK14cMTsDvUAANrLzRu/X7G8I+uMExadVvf1BKNNxM6FPHnPNhOfnxcM/q1x/d5y5Vcz5s3rW0W1Z8VqIdqtHvgGAAAAAC2lr2gw2tDUjgMAAAAAmDE2bqv8stnFe0zzQGCaze6djAAAAAAwA+UFo83JOmq2zQteiNgZBGCze768e5d3z2rJazc2MKFVwzLqCY5IqfIvYQAAZpJn+p6IX23/RcVzr1qwIubPWVj3NbuznHCvNLuD0VLkzx93v98wPxhtYvPzove81vXzzrd+MFq1Z8UqIdpV2gEAAAAAYwz0F6uXylM7DgAAAABgxthQ+X2tsbi1lyXCpAlGAwAAAIAZJi8YrSPrrNm2K+uObDhKYLS+cm9uGECrb+KfDtMVvDA2HCPv3k80kK1RigazpSjHQCq4uBsAoIXdsvH63HMnLz5zQtdsdPhuu6gWjLY7Gq3RAcJF29WqtyM3GG1e3WOaTtWe+frKO3I/t2dFAAAAAKhDf8Hfsw8NTfFAAAAAAICZYmNOMNqS1l6WCJMmGA0AAAAAZpjBNFixvEgwWikrRVfWXfFcb3lHbshXXujAbNKdNTa0Ii9YYOy9bnTgQ6PU0/9Ew+MAAFpFb3lH/HTzjRXPvajn8Dho7uETum5eqFSz53qtLMt2BaPlzM/70sTmnkXn9XkBx8Pnc4PRWjtArNozX59nRQAAAABojILBaFEWjAYAAAAA7LQhJxhtsWA02pxgNAAAAACYYQbTQMXyIsFoERHdeeELqbdKWFdrb+KfDo0OrSgaLNCd5fXb3LCxegLhJhoeBwDQKu7cfHP0liuvLHn14t+a8HXzQ3Bn9/wppZR7Ltv137z5+UTmnkNpMPc5q97r532ftHow2pysI/eZsq/cW+X5pbU/FwAAAAC0lMLBaOWpHQcAAAAAMGNszFm2uGReVvkEtAnBaAAAAAAwwwymwYrlHVlHofbVAgTyNvnnBTbMJo0OrSgaQpfbb5pYIFuj1BMIN9HwOACAVpBSils2XF/x3B5zFsQrF6yY8LXz55izff6UH4y2OxqtkfeuUXPbwTSQ+7zW6sFoEfn3tLe8o8rzi2dFAAAAACiscDDa0NSOAwAAAACYEcrlFJtyti0tnje9Y4HpJhgNgIZYvXp1/OVf/mWcdNJJsc8++0RXV1dkWTb854orrmj2EAEAANrGYBqoWN6RdRZqXy1AIC/kayZs4p9qYwPLdptIQFlKKfdej/365PWbF2I3XfpS8f4FewAAM9nDO1bFU/2PVTy3fNHp0VnqmvC1c+eYs3z+lKoEo2VTEIxWz9y6WjBytev0/P/s3XmcHGWB//Hv09Mz3TO5JmQSAkRICDcIGOW+AiIgouuBB14rIovXeqDrrusB7LreirqKJyJe/EBAUYFwbQj3lQDhNiSThDNkkkyume7p7np+f0wmme6pp7qqr+nj8369eJG6nnq6qqf7qern+Vas/nsgJYw7lNkZou3YBgAAAEBl0T8PAIAmMTQUbj3rVbceAAAAAAAAABrCppRkHV0qp9Z/t0SgLPHxrgAAtLrZs2dr1aodg2kWLlyo+fPnj1+FSvDLX/5S//qv/6p0Oj3eVQEAAACAlpCzWd/5cRPudp87QGDQGSLg2qaVuMLh0l5K1loZY0KXlbUZefLvyFwYjhG03/EUZf+lhMcBAADUi0X9N/rONzI6bsppZZXtamenvMHIbcxmEiYYzdVOLiVAOErbNqj8VC4oGK3+w6aDrj1cx6gRXhcAAABaG/3zAABAXRkKeS8yl6tuPQAAAAAAAAA0hA0D7mXdBKOhycXGuwIAgMZ2ww036Lzzzgvd6er222/Pe1LlhRdeWN0KAgAAAEATytqM7/y4aQ+1fWHw1oi0N+gc5M9gd/dxs7IastEGIwUFLyRMfjiGO8huOJBtvFQqPAIAAKCebcyu18Ob7/VdduCE16qnY+eyyk8a/zamp5yyjkDkVhAUjKZtwWju65roobyRQn8D1g1q9yZj9d8DyXVMUwHXiq5tAAAAAFQG/fMAAGgyYYPRPILRAAAAAAAAAEjrtriXddN9D00uPt4VAAA0ti9+8Yt5g7Df+9736pxzztGrXvUqtbfvGJDf09MzHtUDAAAAgKaUcQajhbvdFxS0lXYOdvffppUEHYOUNxjpGKVtUGBCuGA0K08ZO6QOkwi930pyvVfKXRcAAKCe3N1/izz5D0A7YerpZZcf1IZM20G1K1z4cdMJyEUzw7loAdc10due0dq2wwHFZqQio6Q896MZGyFALPBa0foP2ORaEQAAAKgu+ucBANBkciEfiEEwGgAAAAAAAABJq9b5z++ISztNqG1dgFojGA0AULJnnnlGS5cu3T59+umn6w9/+MM41ggAAAAAWkPO+neUjZtwoQlJx4D8lDeotOcY7G7qfxB/tbmOmyTncStl/cLAhOD9DqojNl7BaOFfc9TjAwAAUA9yNqs7N97ku2x6+0zt33Vo2fsIDEbzUprYNrnsfTQiG5CMZjQcSOYKGiul7ekK/fLjKaeszajddPjs2z9grU1xtcfqP+TOfUzd14pB1ysAAAAAykP/PAAAmlDYYLSw6wEAAAAAAABoaivX+fen3GMnKRYb+4BXoJnExrsCAIDG9dBDD+VNn3nmmeNUEwAAAABoLVmb8Z0fNhjNFb6Q9lJKOQbyBwU2tIrg0Ar/4+biOs5++wnab1A51RYlcGI86wkAAFCqR7c8oI3Z9b7Ljus+TTFT/s/triAqKXobs7m4g9E0EoxmXNc10Y9b1G1cbeFBRznJtsYID3NfKw46jxHXigAAAED10D8PAIAmFDoYzatuPQAAAAAAAAA0hJXr/OfP6altPYDxQDAaAKBka9asyZueNWvWONUEAAAAAFqHZ3Py5N8BNnQwmvEflJ+2KaWt/wD/ZEBgQ6uoZDCaK0jBKKZ201Gw36CwjPDhZJWWtuFf83jWEwAAoFSLNtzgO7/ddOioKa+vyD6C2tmt3IYKjkXbFozmCvFyXNMESUU81q62sOu6oFGup1zHdMDbqowdirQNAAAAgPLRPw8AgCYUOhgt5HoAAAAAAAAAmtrKPv8elXtMMzWuCVB7BKMBAEq2ZcuWvOn29nAD8AEAAAAApctad+fXuImHKsM1KD/lDToH8geFc7WKuGl3HuNUhYLRErGkjMn/ccIVZFfKfislazOB78VCrRzqAQAAGtOL6dVaNvi477LXTT5OE9omVWQ/7aZje9BXoVZuQ9nAaLRhruuatJeStcW3z98mWrva1Q5PeQO+85OxrkjljxfXMd2c3Rh5GwAAAADlo38eAABNKJcLuR7BaAAAAAAAAACklev858/uqW09gPEQbqQkAKDhWWu1ZMkSPf3003rllVeUTqc1ffp07bbbbjr22GM1ceLEyGV6nleFmgIAAAAAgmRtxrksbsINiEnEkr7z096gM3yBwe7DErFOZXObx8yPGlrhDqAbe27aY+1qU1w5je34nLbjE5ZRqdcLAABQr+7sX+BcdkL36RXbjzFGiVjSN2hrvEJw64M72GwkSM4V3mxlNWTTShj/6x4/0du3/uu7zlmjXE+5jtnG7Hr3Ng3y2gAAAIBqo38eAAAIJWzgmRcyQA0AAAAAAABA07LW6okX/ZfNnlbbugDjgWA0AGhyfX19+vrXv67f//73Wrt2re86HR0dOumkk3ThhRfqiCOOcJa1cuVKzZkzx7n8xBNP9J1/2WWX6eyzz/ZddtFFF+miiy5ylrlw4ULNnz/fuRwAAAAAWk3WujvJhg9G8x+4vjm7UdYRQOAKU2s1CZPUVo0NRosaWhE1gC4RS2rA2+JTzviEZUQOjrCtHOoBAAAaTcob1P2bFvoum5PcV7sn51Z0fwmTVEpj20tR21zNxB2LNhwmJwVfo6S9VKRrmEq151PegO/8hglGc9RzU26De5sIAXQAAABAM6J/HgAAiCRs4FnYADUAAAAAAAAATev/PejuTTl7mqlhTYDxERvvCgAAqucvf/mL9txzT1188cXOTleSNDQ0pAULFujII4/Ueeedp2yWH1IBAAAAoF5lbca5LG7CPQfBFRDgF7y1Y5vGGMhfba5Ag7SNFlrhCl5whQq4ztl4hWVEDkZr4VAPAADQeO7fuNDZXju++40V35+rrT1eIbh1wQZFow0LCj6rVNBZ1PKd7fwGuZ5yXe8EBXQ3ymsDAAAAqoH+eQAAICobNvCMYDQAAAAAAACg5f1kobsv5ZyeGlYEGCfhRkoCqB0vKw08P961aH5ds6RYc38E/vrXv9a5554rz/Py5s+dO1cHHHCAurq6tHr1aj3wwAPK5XY8eeoXv/iFVq9erb/97W+Kx5v7GAEAAABAIwoKRmsrMxit0ts0o0qFVriC1FzH2RVQEDXwoVIiv16C0QAAQIOw1uqO/ht9l01sm6J5k46p+D6dIbgRw3ebiZW7M4/R8FMOXW1kqfrtVdf6rvZ5Z6wrUvnjpbRrxUQVagIAAFBF9M+rnSbvo0f/PAAAUJKwAakEowEAAAAAAAAtr3/AvWzGpNrVAxgv/KIO1JuB56W/zhnvWjS/t/RKE2ePdy2q5pFHHtHHPvaxvE5Xhx56qH7yk5/o6KOPzlt37dq1+spXvqKf//zn2+ctWLBAX/3qV/X1r389b91Zs2apt7d3+/QPfvAD/fCHP9w+fcUVV+jII48cU5+enh7Nnz9fknTffffprLPO2r7s05/+tD7zmc84X8vMmTOLvFoAAAAAaC1Z6+782m7aQ5URFCBQyW2akSsoIGpAmStIwRW85gzLGKdgtKivd7wC3AAAAKJaNvi4Xhp6znfZMVNOVnssXJs7Cnf4LsFofkaC0YJCvCIHndmo7Xn/9V3tXtc5rjdRg9HaTYdipq1KtQEAAKgS+ufVThP30aN/HgAAKFnYwDMvV3wdAAAAAAAAAE3tyZf8509ISLGYqW1lgHFAMBoANKFzzjlHQ0ND26ePPfZY3XTTTerqGvs0+unTp+tnP/uZ9tprL/3bv/3b9vnf+ta3dNZZZ+nVr3719nnxeFyzZ8/ePt3d3Z1X1syZM/OWjzZx4kRJ0sqVK/Pmd3d3O7cBAAAAAIyVtRnnsnjIYLSog91L3aYZVSq0whWk4Aqgq7ewjOivt3VDPQAAQGNZtOFG3/lGMR3bfWpV9llvIbj1biQYLW7a1aa4cho7kDDqsYu+vn/7Nmo7v95EDXBrlNcFAAAAVBr98wAAQMnCBqOFXQ8AAAAAAABAU7pnufsBsz9/P6FoaA2x8a4AAKCyFi5cqCVLlmyfnjx5sq688krfTlejff7zn9cZZ5yxfdrzPF188cVVqycAAAAAoDSVCEaLOng9buKhy252rmOXqlCQgisUwzU/6n4rJW0JRgMAAM2nP7NOj265z3fZqye+TtPaZ1Rlv/XW1qsHVl7A0h0delzt82q3V9PW/9ykvAHf+Y0SIJaMGIhNgDYAAABaEf3zAABAWUIHo+WqWw8AAAAAAAAAde1rf3f3o3zVTgSjoTUQjAYATebyyy/Pm/7EJz6hXXfdNdS23/zmN/Omr7jiCqXT6YrVDQAAAABQvqBgtDYTD1VGwkQblB91/WbmGvgfNUjBFXLhKt8Z+DBOgWORgyNaONQDAAA0jrs23izPEch1fPcbq7bfemvr1QPrftChzKj+PNVun7u4yneVk4wFByTUi0TEALdGCXwDAAAAKon+eQAAoCwEowEAAAAAAAAIYcET7mVTG6NLIlA2gtEAoMncddddedPvf//7Q2974IEHat68edunU6mUFi9eXLG6AQAAAADKl7X+nWRjalPMhLvd5woPqNT6zcwdWlGZIAXXsXaF041X4Fjk12tT8qz7aTUAAADjLWszuqv/Zt9lM9p31X5dh1Rt35UK92ouAclo2pGM5jp2lQo6c3GV7w5Ga4wAsajBaFHXBwAAAJoB/fMAAEBZwgaehQ1QAwAAAAAAANA0rLW65Umrz/0pePxNN8FoaBEEowFAE9mwYYOWL1++fbq7u1v7779/pDKOPvrovOkHH3ywInUDAAAAAFRG1mZ857eb9tBlxE27YmoLvT6D3XdwHYuoQQpp6whGcwSg1VtYhivwIR7wPhyy6WpVBwAAoGyPbr5fm3IbfJcd331a6BDiUjhDcB1txlZgA4LRTF4wWnWDiyfEJkVa39VObpRrqoSJGKIdcX0AAACg0dE/DwAAlC1s4BnBaAAAAAAAAEBLyXlWH/y11WxCGWAAACAASURBVKk/8HTxLUEPl5WmEoyGFhEf7woAKNA1S3pL73jXovl1zRrvGlTF2rVr86b33ntvGWMca/vbb7/98qZfeeWVsusFAAAAAKicrPXv/Npmwt/qM8YoEUtq0Nsaav1kgwzirwVXQJkrAMHFFaTgKt91DsYrLMNV/ynxqVqX8b+XkPZSvJcAAEDdWtR/o+/8DpPQkVNOquq+6y0Etx4Ed+nZoRLHzlrrbM9Pjndr69DmUOVnbcYZZN3ZIO3gRCwRcf3GeF0AAAB56J9XO03YR4/+eQAAoGxerrLrAQAAAAAAAGgKNz8h/eH+cL0nuzqqXBmgThCMBtSbWFyaOHu8a4EGtWHDhrzpKVOmRC6jcJv169eXVScAAAAAQGW5BtrHTXukcpKxztDBaK6wgVbkDCiLHIzmv74rWKBSgWyV4gqamNwWFIw2KGlqFWsFAABQmhfSK/Xs4BO+yw6bfLy62iZWdf/11tarD+7OPUY7QgcqEYyWtVl58h9kODk+VS8NPedT/thzE3S+GiVALGba1GESGrLpUOtzrQgAABoS/fNQBvrnAQCAsuX8H4ZX8noAAAAAAAAAmsJfl4Z9pKwiP7wJaFSx8a4AAKByrM1v7FSiQUOjCAAAAADqS876d36Nm2jPQIgygL1RBvHXQsKUH7wwvL4rGM2/fNc5iBrIVinOYLR4d+RtAAAAxtsdGxY4l53QfXrV91+p8N1mYkMGo7mOXZRQuaDjPCXuH+zrV34q5y6nM9YVuj7jLdq1IsFoAAAAaC30zwMAAGUjGA0AAAAAAABAgWzO6soHwwWjvWNelSsD1BGC0QCgiey000550xs3boxcRuE2U6f6D/gAAAAAAIyPjM34zo+b9kjlRAk7Y7D7Ds7QChs+eMFa6wwJcwej+c9PjVPYmOv1TnYER0itHewBAADq12Buqx7YdLvvsrmd+2tWck7V6+Bq6xEs6zAqNCBhXKFy4Y9dUFt+cpt/+9av/KAwtkYKm3Zd85S7LgAAANAM6J8HAADKRjAaAAAAAAAAgFEeWmnV8TFP/QPh1v+3U4mKQuvg3Q4ATWT69Ol50//4xz8il/HMM8/kTc+YMaOsOgEAAAAAKivrDEaLRyonGSHsjGC0HVzHImuzznMzdt2MPHmO8v2DBdxhGeMTNubab1dsojOkLygoAgAAYLzct2mh0tY/ROv47tNqUgdXGzDtpWRtuCcANpug121G/dvZTnacU991A0LUpjiCf/3KT3nuXknJWFfo+oy3KNd/XCsCAACg1dA/DwAAlC1s4JmXq249AAAAAAAAAIy7nGf1tkv8xxcVeuuh0mMXxnT4HFN8ZaBJEIwGAE1k6tSpmjt37vbp/v5+PfXUU5HKuOeee/KmDzvssIrUbYQxNLQAAAAAoBxZzxWM5h9G5eIKX/CTjLBusws6bkGBCmHXcwXWuc5Bxg4pZ2vfIdr1GhKxZECIW/hwCgAAgFqw1uqO/gW+yya1TdGhE4+uST0Sxr/95CkXOny32VgFBaPt6ObgaidHCRAOCvCd7ApG89nGtc82xdUei3a9Np6iXCtGWRcAAABoBvTPAwAAZQsbjBZ2PQAAAAAAAAAN665l0gv9wess/nJM3i/adO3H23TgrvwWiNZCMBoANJljjz02b/oPf/hD6G2feuopLV68ePt0MpnUa1/72orVTZISiUTedDqdrmj5AAAAANDscvLv/Bo5GM1EGOzuCGpoRUED/4MCFUZLW/d6rvMStN+hcQgcCwpGc4ZTWILRAABAfXlmYKnWDD3vu+yYKafULMyqEuG7rWR0tx53KG/4YDTXMTaKaWLbZOc21uaHtw069plsa6zwMEK0AQAAgGD0zwMAAGUJHYxW+wekAQAAAAAAAKitKx50P0RWkiYmpH13rlFlgDpEMBoANJkPfvCDedM//vGP9fLLL4fa9otf/GLe9Hve854xHaXK1d3dnTf90ksvVbR8AAAAAGh2WZvxnR+PGNrgChDww2D3HYKORdjQiqAANdd5qcR+K8m1z2Ss0xmkFzY4DgAAoFYW9d/oO98opmO7T6lZPZIBbfOgUN1mZhXU2WdHNJo7GC18G7mU0F8rq4wdKijHEYzWYNdTUYKxo1xXAgAAAM2C/nkAAKAsYQPPCEYDAAAAAAAAmtbiVVZHfD2nX9wRHIx2zrFGXQkTuA7QzAhGA4Amc9JJJ+nQQw/dPr1x40adddZZGhwMHjhz8cUX67rrrts+bYzRZz/72YrXb88991RHR8f26YULFyqT8R/UDwAAAAAYK+M5gtEUj1ROlAHsiQYbyF9NQcfNFYQwdj13SIOr/KBwgvEIHHPtMxFLOt8v4xHgBgAA4LIh06elWx7wXXbwxMO1U/v0mtUluI3Zqm0od2cfEyIYLUob2bVuMtYZeC1UuJ27nK7QdakHka4VI4SoAQAAAM2C/nkAAKAsuWxl1wMAAAAAAADQUF7eaDX/u54eXFl83e++k1A0tLZooyUBAFX38ssva+XKlSVtO3v2bEnSpZdeqqOOOkpDQ8NPqr/99tt13HHH6Sc/+YmOOOKIvG36+vp0wQUX6JJLLsmb/4UvfEEHH3xwSfUI0tHRoWOOOUYLFy6UJK1evVpvectb9NGPflR77723urryB4fMnDlTySSDKgAAAABgRE7+nV/jsfZI5SQjhJ0RjLZDh0nIyMj6BDWEDa1wrWcUU7vp8F0WdA7StvZhGa7XkIh1OoMUWjfUAwAA1KO7Nt4kK8932Qndb6xpXQLbei3ahvJswFMQR/XzqUQoryvgeDj0t1gwcvf26ZQ34LtelGuvesC1IgAAAJod/fPonwcAwLgiGA0AAAAAAABoaX+432pruvh6u3ZLbTGC0dDaCEYDgDpz1llnlbyt3TZIZN68efrxj3+sj370o/K84UE9ixcv1pFHHqm99tpLBx54oJLJpJ577jk98MADymbzfzh9wxveoP/+7/8u/UUUcf7552/veCVJCxYs0IIFC3zXXbhwoebPn1+1ugAAAABAo8l6jmA0E+1WX9AA/3LWbXbGGCViSaV8whP85vlxhTQkY0kZ4/+jRSKWcJYXdr+VkrUZZ0BfwiQDwilqW08AAACXrM3o7v5bfJft3DFL+3ZVfmB6kHbTIaOYb1Bbrdt69cMdjGZGJaO52p5DNi3P5hQzbUX35Az9NcWC0fK3c52rRgtG41oRAAAAzY7+efnonwcAQI3lcuHW80KuBwAAAAAAAKChPPpcuPU+9wZC0YDYeFcAAFAd5557rq688kpNnDgxb/6zzz6r6667TldeeaXuueeeMZ2uPvzhD+v6669Xe3t71ep2xhln6Gtf+5ra2ooPRgEAAAAA5MvajO/8uIl2HRdlcH6jDeSvtnKDv1zrucqVpJhpU7vpKGu/leIKjpCGgxFc4QgEowEAgHrx8OZ7tSnX77vs+O7TnGG11TISvusnqO3VzGzYYDQTFFwW4pGKktLW3T4PuhYqDEJLeQPOchpJtGC0xnptAAAAQCXRPw8AAJQk5/8QspLXAwCgjj2/weqTf/QU+5fc9v/OudzT4y+4fwsEAAAAgGbX2xfumujdhxGMBhCMBgBN7Mwzz9Ty5cv16U9/Wj09Pc712tvbdcopp+juu+/WpZdeWtVOVyO+9KUvaenSpfqP//gPHX/88Zo5c6Y6Oxk8AQAAAADFuILR2kw8UjnRBruHX7cVuMIXCoMRXFzrFTvOrlCG+gpG6yTUAwAA1L07+m/0nZ8wSR05+cQa12bbvgmXLUlQcFnahmt/utqpiVhScdOuNvlfaxWW7yqnM9YVqh71IkrYGSHaAAAAaHX0zwMAAJERjAYAaBFrNlkd9Q1Pl9yeP+D/srutjv2Wp8eeJxwNAAAAQGvqXVd8nQWfjmnXboLRgGijJQEAFbdy5cqqlj9jxgz94Ac/0Pe//30tXrxYTz/9tNauXat0Oq2enh7NmjVLxx57rCZNmhS57AsvvFAXXnhhyXU74IAD9I1vfKPk7QEAAACgFWWtf+fXuIk2iIbB7qVzB5SVGbzgCFzbvjyW1ObcxpL3WylBAXCJWLLs4wMAAFBNz6d6tXzwKd9lh0+er862CTWu0TBXW7BV21BW7oEQRjs6+wSFC4cNlXMd45F2bSKW1IC3peh2g96AbzlRrr3qQZTrP0K0AQAA0Ajon0f/PAAA6grBaACAFvGbe6xe6Pdftikl/ej/rH75QQb5AwAAAGgtqYzVi45rpe+90+gthxjN6ZFiMa6XAIlgNABoGbFYTIcddpgOO+yw8a4KAAAAAKAMWZvxnd9exWA0Brvncx2PtA0ZvGAdwWhFzkm9BI4F7S8Z63SGegQFqgEAANTKov4bnMuOn3paDWuSz93GbM1gNAUEo6nCwWiudupI2clYpyMYbTBwekSjBU2HvVY0MuowiSrXBgAAAGgc9M8DAAChhA088zxZa2UMAyABAI3pxseCfu+T/ni/1S8/WKPKAAAAAECdWLPJvey0g4zmzuB+IDAawWgAAAAAAABAA3EFo8WjBqM5wqt8122wgfzV5joeYQPKXOsVC6Bz7bfWgWOuwAcjo3bT4T4+LRvqAQAA6sVAbose3HSH77K9Og/QbonZta3QKK7wrFYNlw2MRTOjg9Hc1yqpstvnndv+Hy74N+UN+K7XeMFo4a4VE7EkgzIBAAAAAACAqMIGo0lSLifFGfZVa9Za3fi4dM9yq71nSG+fZzQpyb1QAIjq6ZeDlw9mhj9zV6+X/vKI1bI1w/OnTpBev5/R/H357G11fCcDAIBSZHNWNz0h3bvCav9dpDPnGSXaaUOgfvT7dzOUJPVMrF09gEbBHXIAAAAAAACggbiC0dpMtFt9UQbnd5hEpLKbXbmhFa5gsWLnpNxAtkpx7a/DJBQzMefrcL1uAACAWrlv4/9pyKZ9lx3ffXqNa5OvXtp69cLa4CfIj2gzbWo3HcrYoTHLwgcXB7fPXUFhheW7rgcaLhgtZIh2lLBtAACanTGmTdJekg6QtKukKZLSkjZIWi7pIWvt1grvs13SMZJ2l7SLpC2SXpT0sLV2ZSX3BQAAAKCCcrkI62YJRqsxa63O+73Vr+7ccY/6B7da3fzZmKZPYhA1AIRlrdUrm4uv97dHpbN/42lDQTDA/1xv9eU3Gf3XP8WqU0HUPWutzv2d1a/v2vGd/MPbrG7+TEw9fCcDAACHbM7q/ZdaXfXQjjbEzxdZXf+pGAGrqBuF1z+jdTdWV0OgJrhDDgAAAAAAADSQrPV/enDctEcqxzW4f8x6JqmYoYPRaGGDEVxc6xU7J67ggbCBbJWStq76RwuOAAAAqCXPerqjf4HvssltU3XopCNqXKN87jZUq4bLuoPRYsq/PknEksrk/ILRwh07V3t65Jy4Q+vyt3MHo3WFqke9CBvk5jouAAC0CmPM7pLeLulkScdJmhywes4Yc4ukH1trry9zv9MlXSTp3ZJ2cqxzj6TvW2uvKWdfAAAAAKog59/nw5cXIUQNFbF4lfJC0STp0eelS263uuDNDKAGgLDWhghFk6Szfulp0P85sfqfG6zOOdZqj2l8/raiB3qVF4omSY88J/10kdVXzuA9AQAA/N38pPJC0STprmel399n9bH5tCFQH/odwWgTElJ7nPcpUIgRjQAAAAAAAEADyVr/nkBVC0ZjsPsYrmMSNqCsWPCCe7/1EThWPDiiPgLcAAAARntmYKleybzou+zY7lMit6crrV7aevXCHYs2lju4rMzgYhPcvi3czt1ObqxrqvDXiuHWAwCgGRlj/ihplaSLJb1JwaFoktQm6TRJfzfG/M0Ys3OJ+32jpMclfUyOULRtjpZ0tTHm98aYCaXsCwAAAECVRAlGi7IuKuKaJf53p698MMpdawDA8xvCrecKRZMka6UFj/P526r+/Ij/ub96Me8JAADgdvOT/m2Fz/2JNgTqx4YB//fj1MZ6/ipQM/HxrgAAAAAAAACA8LLWv+Nr3ES71Rd2cH6ywQbx14LrmKRDBn85gxeKHGvnfm1tA8dc9R+pnysgIWOH5NmcYqatanUDAABwWdR/g+/8mGI6dsopNa7NWITLFnJ3RjPKfyriSIBZodDtcxvcPk+Y4sFrWZtxhlh3Ntg1VdhrxUYLfAMAoML2ccx/QdIySWs03DdzT0mHKP8BtmdIusMYc4K19uWwOzTGzJf0F0kdo2ZbSUskrZDULek1knpGLX+fpMnGmLdaa72w+wIAAABQRV6EpjnBaDX3rQX+96afLrh625Kyum+FlMlJR82VuruM73aeZ/XkS9KTL1lZK+030+jVu0mxmNHmlNX9K6RpE6Utaekfa6w8KyXi0sCQFDNSsl06aT+jWVP9yweAUm1OWd27XPKsdNSe0hTH51ip+iv0E+eKvsqUgx2stXr2FenR56WcZ7XndKPXvEqKt9XXd823Hd/Jj72w4985z2rp89KKtdK8PaQ5PfX1GgAAQO396Db/NkQqI12z2CrrDS/frdvosNlSop32A2pvw4D/fILRAH8EowEAAAAAAAANxDXYPm7aI5XTZtrUbjqUsUOB67kCGlqZ65i4AsPGrOcKXnAEOhTfb62D0fz3N1K/oDC9tJdWZxu/2AAAgNpan1mrx7Y85LvskIlHqrt9Wo1rNJY7fDdcG7PZ2IBgNBUGo5UZKldq+3Z0+UH7arQAsbDh2IRoAwCw3cOSfi3pRmvt8sKFxpjdJH1V0r+Mmr2PpD8ZY4631hZ9PLkxZpaka5Ufina3pHOttU+NWi8h6TxJ35U0csP4zZK+Juk/o7woAAAAAFUSJbPYy1WvHojsukes/ulQo1uftHrHzzxt3nb7viMu/eZDRu85PJa3fv+A1Tt+6mnhM6PnWh09V/rYfKOP/t5qazrMnq0+f4rRN99uFIsxYBtA+a5favXuX3ga2NZtMBGXfndOTGe+tnKfMf2Ogf5RrSQYraLSGasPXWZ15UOjb0laHbCLdP2nYtpjWmN8z2xNW21JS2f8r6fFq3bM/8CRRpf+s6m7kDcAAFA73V3utug7fz76nozVrKnSDZ+K6aDdaDugtlzv0W6G2QC+YsVXAQAAAAAAAFAvctb/icBxE/0ZCGEG6DfaIP5acB2T8MELjmC0IiF0rv3WOiyjWP2D3jO1DnEDAACQpDv7F8jKf7DZCVPfWOPa+EsYR1vPEarb7ILyQUxBXzRnqFyIY2etdbZvR8p1BhSPKj+Vc7dzO2ON1WOp3XTIqHiHP0K0AQAtzkq6XtJh1tp51tof+4WiSZK19gVr7XmSPlGw6FhJ7w65v4skTR01fY+kk0eHom3bV9pa+yNJ7yrY/nxjzB4h9wUAAACgmqKEneX8+4egOp54MTi3+m2XeNqw1epdv9gRiiZJQ1npg7+2WrMpf/uL/mYLQtGG3bNc+sClYUPRhn33ZqsbHw+/PgC4bBrMD0WTpHRWev+lnvo2F83vD61/oDJl9fZVrk6QfrqoMBRt2JMvSZ/8Y4Tw1nG2cp30uatsXiiaJP3uPqufLeI9AwBAK5vVHX7d5zcMt4NDPMcKqKgNjmC0qY3VzRCoGYLRAAAAAAAAgAaStRnf+XHTHrmsMAPZGew+VsI4ghFCBpS5wsGKhdC5zkXYQLZKcdd/WzCa4/hIrRvsAQAAxk/Gy+jujbf6Ltul41Xau/OgGtfInzN8q8YhuPXCKiAYrSC0q5xjl7FDzn0ligWjjWoXB7XJGy1s2hjDtSIAAMW901p7hrX2obAbWGsvkXRNwewPFNvOGLO3pH8eNWtI0oesdd9os9b+RdLlo2YlJF0Qtq4AAAAAqsiLEDqS9e8fgur466PFB0J/4Rqrfp/Bq1lPunZJ/vZ/WlzZgdVXPshAbQDlu+ExmxeKNmIoK10X4nMwrP4KdWfr7atMORh2lU8o2ogbHx8OzqsHqUxwPZatka592H+dv1XwfQwAABrPblOLrzPa0uelf6ypTl0Alw1b/ed3dxV/mCnQighGAwAAAAAAABpIxhmMFo9cVlCA1Yhkgw3irwXXMXEFhoVdr1iwgHu/tQ3LcO1vR3CE+z0T9hgBAABUypLNd2tLbqPvsuO73yhj6qMzSZjwrdYS1GG9MBjNv/0ZJkA4ONBs+JyEaf8HnadkrPEe5RgmzI1rRQBAK7PWrixx058UTJ8YYpv3SmobNX2ttXZZiO2+VTD9LmNC3BAGAAAAUF22csFoGwesXuy38jwCQCrh+Q3F17nhMfexHj2QekvK6sX+ClRqlN/fz3kGUL5lr7iXPfJc5fbjFyJZinVbpc0pPv8qZVlA6IdnpRV1EkS3en3w8ruXW6UczaS7l1e+PgAAoHFMSkTfJqiNDFTDynX+1zg7T65xRYAGQTAaAAAAAAAA0ECyzmC09shlhRnIXiysqxU5gxFsSl6RTszWWmewWLHzUU7gQyWlrSMYzYwEo7l/Uax1XQEAAO7ov9F3fsIkdfjk+bWtTACC0fKFj0ULOnbFA4SDju9IuWHKT3n+ozvaFFd7LPq12ngLE6LNtSIAACV5uGC60xjTXWSbtxVMXxZmR9bapyTdP2rWBEmnhNkWAAAAQBXlcuHXzfj3D3niRavD/iennT7radYXPPWc7+lLf/YISCtTmBCfl/yfwyJJ+uFtVqnM8DlgUDWAenX9Uvd3xU8WWp3xo5z6Npf/fbKxgj9x9tZJWFej25yyWrc1eJ3v3FQfbYli5/x7N9dHPQEAQP3JRLjtMmJlH20L1JarvTunp7b1ABoFwWgAAAAAAABAA8nZrO/8UoLRwgxkDxOe1mqCjtuQTQdum7UZefIPTyt2PoICGayt3Q9yrvCIkfrFTJvaTYdj2+LhFAAAAJWyOrVcvalnfJcdMeVEdbZ11bhGbq4Q3Fq39eqFjRCN5gwuDhEqF9Q+HSk3XDCa/76SbY15PRXmWnEkGBkAAETid3PX/0aaJGPMTEmHFGx/d4T93V4w/cYI2wIAAACohiIPW8uTGdv/YGvaav53PC1eJY3cOu4fkL5xo9V3CAkpS/9A+cfvk1cMl3HWLyOc5wg2pzjHAEq3JWX1wMrgdW54XHr7T8v/DKtkMNqKtZUrq5WFCZi74gGre5aP/3dNbxnhJOTEAgDQ2oZKCEbrXVf5egAug0PWGbw/p6fwkbEAJILRAAAAAAAAgIbh2ZwzVKuUYLQwoWdhBsS3GldohVQ8fCEoeKHYsU46ggc85ZS1/k+KrgbXaxhdf3c4BcFoAACgdhb13+Bcdnx3fWVCuNqYnryatvXqh7vHuikIRgsTXObiCjQbXW5QaF2xcho1aJprRQAAqmavgumspKAhiQcVTC+11m6NsL97CqYPjLAtAAAAgGrwygtGu+4Rq3WOq4JL7yIJpBwbBsov44r7rbakrP6xpvyy/IQJtQEAlz8/HO574q5npadfKu87ZcPWyn0nlROShR3Cfodcdvf4H+9yvu9SGSmVGf/XAAAAxkemhGC0VbQ3UUOr17uXzempXT2ARkIwGgAAAAAAANAgsjbrXBY38cjlhRnInnCEcbWyoOMWFKxQbHmxYx2031oGjrlew+j6lRNOAQAAUAkDuS16aNOdvsv27jxIuyZ2r3GNgiVMfbT16kVQdzNjCoLRHMeuWGixJKWt/7FtU3x7+LQzGM2m5NnhQYzONnKDXk8FhUFHWQcAAIxxZsH0Q9baoFSEAwqmn424v+VFygMAAABQa16EEbqZoTGzlr7gXv3ZV6TBIQbzlqq/AsFogxnpzmXll+OyYm31ygbQ/IK+Q8auW973yQv9ZW2ep3dd5cpqZWED5h57fvzbEivLDALdWPxnYgAA0KSG3MNtnAghRy2tD3gM2m7dtasH0Eiij5YEAAAAAAAAMC6yNuNcNjJoP4pwg92Lh6e1mmTAcSsWWpG2AcFoRY514H7toCZqcuD2leJ6jaPr53pvFQuOAwAAqJR7N96mjB07aEySTph6eo1rU1yySPhurdp6dcP6d7g3MmPmBQWXFeMKT8tr2waE1g3ZtJKmUynPf8RcZ1tX0TrUo6BrjyjrAACAHYwxEyWdUzD7z0U226tgenXE3a4qmJ5mjJlqrd0QsRwAAAAAFWCtdd779JVJj5n17QXB269cJ+2/S9SaQZI2VCAYTZLe9L9B+dfleWaNlXzukxey1uqHt1n94g6rp18enjenR+rulF6/v9GFbzbqShgtesbqh7d5euwFybPSXtOlDx1jdNbhsaq9BgDjp3dt+O+g5Wul/gGrr/7V6o5/WG0e9bPbvjtLHzkuprfPG/48um+F1fdv9vTI81Ju20fg6vWVq/d9y8c/qKsR+J2vA3aRzjshpi0pq/OvCnccH1gpxf4lp50nS10dw/NGh4XsvpPUtu1rYk6P9L4jjM4+prLfGyvXlXfON2yVdm6xn9cBAMCwTIQ8+hErCeJFDQ34d2mVtKP9DSAfwWgAAAAAAABAg8ha9yNsqhWMxmD3sYKOW7Hgr6DgtGLHOig4rZaBY67XkAgRHuEKngAAAKgkz3q6o/9G32VT4jvpkImH17hGxQW1MYPCdZuVlauze4RgtCKhxUHrjG57BwcjDyoZ63S2x8Ncc9WjMAHZhGgDABDZNyTNHDXdL+lXRbYpfCb0K1F2aK3dYoxJSRr9xT1FUlnBaMaYGZKmR9xsbjn7BAAAAJpClFA0Scrkj5T87s3FA7dWrCUYrRTW2ooFo1XTF6+1+vfTiq/3+autLr4l//02Emrz8HNWD/RaXfiWmE79gZc3aLy3T7rlKauNg54+egLhaECzWdFXfJ0Ry9ZIJ37X06PPj13W2ycteMLT5Wcb7TvT6KTveUq5n/datodWSRsHrKZ0FQ+GbFWZrNUJ3xkOuhytt0+6/rHSAjvXbPKfPzr0rrdP+r+nrdZt9fT5Uyr3vdEb4b3q55olVl96E+8XAABa0VAJwWgbBmhvonZcwWhdHZIxvAcBPwSjAQAAAAAAAA0iLliMLgAAIABJREFUa909iOIm+q2+cIPdG3MgfzW1mTa1mw5l7NhfJYqFL7iWxxQrGm4XGJYRIvShUsoJj0jb2tUTAAC0rqcGHtHazMu+y46bcqraSmg7V1tQ27yWbb1659f1x3XswoQHuwPNkr7/9tt+iqSU5z9irlGDpglGAwCgsowxb5P0yYLZX7LWrvdbf5SJBdOlJOYOKj8YbVIJZRT6uKQLKlAOAAAA0Fq8iKNzRwWjZXNW37u5eLBab5+V/51UBEllpCHHswr//PGYDvAJmzvzZ2MDaIIcMku69uMxZUe9DaZ0SlvSUrJdmtolZb3hgbDv/rmnax/2L+epl6z238V9jjcNWv3s9uD3yh3LpLN+mR+KNtp3brI673jLgFygiVhrtWJt+PV/c0/x75zv3mx1yCxVLBStI+7+LL7uUasPHsVnksuNjyvSd1Klff9mq8+83ireVv452pKy6ttSXhnfuNHqS28quyoAAKABua5zPz7f6NOvN9r3K/6hsSvXSYd0VbFiwDZb0/7XWhMSNa4I0EB4fAMAAAAAAADQIIKC0UoJdwgzkL1RB/JXm+vYpYuELwSFihXrUNpuOmQct3TDhD5UQtZmlJN/D7SEKR4eUat6AgCA1rZoww2+82Nq0zHdb6hxbcIJauu1YjCalWuwxdg2s+uaJWszylnH6IltXO330aHEYULrXOeoUa+nwgRkN+prAwCg1owxh0j6bcHsmyX9NMTmhcFopTQMCxs8hWUCAAAAqBXPf/CtUya9/Z+9fdKaTcU3eTnEOhjrxX73sr1nSHvvbMb8d/Re0cJf5k6X5vTklzFjstGe04127Tbq7DCalDRqixkdOddd9v29wWFF966QBkOEFAW9n8K+3wA0jg0D0qYK/+T42AvSrU8VD1AL67QD3cseXFmx3TSle1dU7jyU4uVN0qp1lSurXMng59MCAIAm5graPWBXaU6PFHek6/T2Va9OwGgDQ/7zuzpqWw+gkdTfo7ABAAAAAAAA+MoGDOpvN9F7c4QZyB4mPK0VJWKd2pIb2wunWGiFKxgsTPCAMUaJWFIpbyDyfislKNhs9HvFHRzXeqEeAACgtvqG1uiJrYt9lx066UhNie9U4xqFUw9tvXriCkYzPsFoxYLLutrc2R9BwcU7/u1uq49sP+hz3iQpGWvMR4mODj12rsO1IgAARRljdpd0vfLDyFZJer+1tpTRirXaBgAAAEA12PxgtP+d+jH1ts/WYKxLA7FObTUTtCU2QT25ddopt0Gb7n2tzGpPbTFpzaZwTft+/1uVGOWuZVZ/W2p1/wqrF/qlNx9iNCWgy8bujp8Vzpxn9PNF4S+5ZveED1J7xzyjL1ztX/btz0gn7GN15YNWT78sjVxdela67hGrLWnfzSLr7ZNmTqlMWQDG34q11Sm3koGc//O2mP76qH+IKN9vwf766PjfAtz7y55uPT+mk/aLFhxaqBLnev1WadOg1eTO8uoCAAAaTybnP7+jTYq3Gb1qJ/8QtHf/wtOKr8e021TaDyiftVY3PCbd/KRV/4C03y7Su183HI6/1RGMNoFgNMCJYDQAAAAAAACgQWSt+5Gu8RKC0cINdi8e2NWKXMcuKDhMktJlBKNJw2F2/mEZwfutlKBQjtFBe67X04qhHgAAoLbu3LjAGap1QvfpNa5NNK5gtGJtzFZifPqeBQV0pbzBsoPR2kyb2k2HMnZsr6SRc+Nqj4cJo65HYULPEqYxXxsAALVijJkh6RZJu42a/bKkN1hrww5F3VIwXcoXcOE2hWWW4hJJf4q4zVxJ11Vg3wAAAEDjyuWPzv39lPdpcec89/rPSXouWtDJRm4nB/rZIk+f+KPV6KjqH9zqPsbTJ0kTk/6Dok/aT/r304y+tSDcOZrTE76ecwJC1H57r9Vv761+AM53b/Z0zcfaqr4fALWxom/8g7NcjJG+906jA3c1OmKOdH/v2HX6B+q3/uPt70utnnqp9O2nTZDWba1MXU7+vqdvvcPo306NlVzGhgqF4K1cJx08qzJlAQCAxjGU9Z/fvu3ydk6PfzBaJie96t89PfVfMe07k3A0lOcL11h97+b8a5jv3mS14DMxDTiC0boIRgOcSr/CBAAAAAAAAFBTlQ5GCzNIP8yA+FbkOnbFAsrCBC8Eca1Xq8CxoP0kQgWj0QsbAABUT8Yb0j0bb/VdtmvH7tqr84Aa1yiaUtuYzcha/6fBS2M7ngVd1xRrJ7tC5wrLLNYO9wu0K1a3ehbuWrExXxsAALVgjNlJ0q2S9hk1u0/SydbaZRGKqstgNGvtK9baJ6L8J2l5ufsFAAAAGl7Bfc9OW6Hkj1E2bCU4xmVwyOqL1+aHohUzZ5p7mTFG33h7TG96dciyAsLO/Hzm5PEdiP3nhyXP4/0ENIsVjpj+2QGfc+X48XuNfvXB4M+xyz5kdMW5Rqu+GdNnTh4e5nzaQf7bVCosq9lYa/WFq12/q4bz/Ldj6ohXqEKSvnitLSvIrr9C59ov8AQAADS/oZz//JH2zh7TgtuoYcPPAZfevrGhaNLwNc1//c3T1rT/dhMSVa4Y0MAIRgMAAAAAAAAaRFAwWpuJ3jslTBhXow7krzbXsXMFK4xIW0cwmgkbjOYKy6iHYLSk77/Dbg8AAFCuxZvv0tbcZt9lx089XcbU99McXW3CVmxDWfl3MjM+wWhBAV3Fjp0zuNgUBqMFh9aFDVhrFMVCz2JqU7yEa1AAAFqBMWaKpJsljR4av0HSG7YFhEWxsWB6esS6TNTYYLT+iHUAAAAAUClefnDJBMcDF8rR33rP2QjtvhXSxojHZ8/pxX9XeP3+4X57mNMTbd/VCiuK4pk1410DAJWywhESdeCu0q7dld3XxIT0sROMPnxs8NDlfz46pncfFtOsqTs+R6d2+a9LMJq/59ZLT79c+vbdXVKi3Wj+PsXXDcuz0i1Plr59/2BlwkhWriPUBACAVpRxBKO1tw23OYtdm//mHtoQKM8tT7rfQzc/KW12dGfs6qhShYAmQE9VAAAAAAAAoEFkbdZ3fkxtipnoz0AoNth9eJ1wgV2txhVw4Ao+277cEZgQ9ji7wjKKBbJViqv+RkYdZsdjatzBaPTCBgAA1XNH/42+85OxLh0++YQa1yY6ZxuqSBuzGUXpYja6HVqoWPvTGVxccC7coXUjwWj+5SRjjtEbda7Y9Ukilqz7oEEAAMaDMWaSpAWSXjtq9iZJp1lrHymhyGUF03tE3L5w/fXW2g0l1AMAAABAJXj5o3O7qhCMRnCMW29f9MHNs0OEmZ12oNH5Re5qz+mR9t052r5PO8hIV47vgOzePmn/Xca1Cg2nf8DqzmXSpKR05J5Ssr20e+nPrbe6b4W0987SwbtJsVj93pPfsHX4Na/ZPPx+7WiTjphjtO9M8VtClVhr9dgL0uJVVtltmZs7TzI6bm9p6oQdx3z1Oqu7l1sl240e7PX/PJkz3WhTyurFCkbpn3Zg6ee+2/HTWj/fb2N4ntWfHynve+Kfj6rO3+jXb/DUPzhcdiIuHT7baOoEadE/rB5eLa3dIu2xkzRzirRnj9Gu3dKS1VYDQ9Kld1bmu6/XEQYIAFFZa/X4C9LCZ6xe2igds5fRSftKXQnaOUA9GvIfbqOOtuH/v/Ego69eF9zeGByy6uzgbxzheZ7V0hekJaus/vPP7vdXJictW+O/fALBaIATwWgAAAAAAABAg8jajO/8dtNeUnnFgtHiJq54iWU3u1KDv9LOwITiIXWB+7W1CRxzBbAVBiOUGhwHAABQqlWpZ7UyVZgbMezIySeGbm+NJ1f7vDXDZf07ABmN7XQWMzElTNK3rVlqcHHh+6VYaF3KMYAxTBh1PSr299IIf08AANSaMWaCpBskHTlq9hZJb7TWPlBisU8VTO8Vcfs9C6afLLEeAAAAACrB8/Imu2zlU14IjnFbUUJAypwQwWj77WL0iRONfrLQ/752e5v07XfEIgdb7bOz0QePMvrtveMXjjYcJsdg8LDu+IfVWy/xtv8d7r+LdMOnYtpjWrRj+KPbPH32Kiu77dS/Y5702w/H6nJg/m1PWb3jp542jfk5xurj841++B6prY5D3RpROmP14cutrnig8LPBanJSuvbjMZ20n9HFt3j6/NUj7yP358iePdLmQaM7l1Xus+bLZ0R/wOuIqV1GfvUl+DPfQNrqrF96+tvS0svYs0f6zMnF/z6PmSvdvXzH9MzJUkdcWr3evc2jz0vn/W70eQx6f5X+3jv9IKlnkv935Y9us/rBu0suGgAkDX/vnvVLT3/Je/SNVVtMeuyCmPbbhXYOUG8yOf/57duC0ebtLh08S1r6vLuMVeuk/QgJR0ipjNX7f+Xp2ofDrf/4i/7zCdwE3AhGAwAAAAAAABpE1vo/wqbU8DLX4P7tyw2D3V3coRXFghf8lxc7FyNcAQSuwLJKc9bfJAOnR9SqngAAoPUs2nCDc9nx3W+sYU1K5wyXLdLGbEY2QjCaNNyeTud8gtGKBhe7g39HCzo3WZtxhlh3NmiAWNFrxZDXLwAAtApjTKekv0s6dtTsAUlvstbeU0bRjxdMH2yM6bI2dHrCMUXKAwAAAFBLXv7o3AmOBy6Ug2A0t5WlBKOFDLT60XuMTjnAaOEzNu8c7L6T9NbXGB36qtIGt172ocoFo33trUb9A1Lflvz5sZj067v899FbwjFrVTnP6gOXennn/6mXpM//ydOfPtoWupxla6w+c2X++bhmiXTCPlafPKm+Bklnslbvv9QvFG3YJbdbnXKA0VsOrW29mt3v7vMLRRu2KSW9/1eebjk/ps/9Kdxnx549RptTlQtFO/sYo4Nnlf5endrlPz+VGQ4cSLbX19/BePnpIltWKJok3ffFmHomFT+ef/hITItXS3c9azV3uvSu1xpNSEgTPukV3baSpnRK5x5n1LdF6uqQjp4rvet1Rt9c4H7/9vZZzenhPQOgdD9eaAtC0YblPOkTf/R02+fCt/MA1MaQIxitY1uqjjFGt342phmfc7dlVvQRjIbwfnmnDR2KJrkDhrs6KlMfoBkRjAYAAAAAAAA0CNdg+zZT2m0+1+D+EQx2d3MFoxUL/nItd5U3dj3/c1KrsIy0dQW7dRZMj289AQBAa9mS26TFm+/yXbZv18GamZhV4xqVhjZU6RKxpOTTsS1VcnBxuPZtyhsMvAYI286vN8WD0RrzdQEAUA3GmKSkv0qaP2p2StJbrLV3lFO2tfYlY8xSSQdvmxXXcPjazSGLmF8wfWM59QEAAABQJps/6LazCsFogxlpIG3VlSAEpFBvX/Tgnzk94dYzxujNh0hvPqSyx90Yo3m7S0tWl1fO2ccY/efpMefyXM7T5T4BbCtLOGat6sGV0nMbxs7/66NSOmOVCBnmdO3D/sf8miVWnzypjApWwd3LpTWbgte5erHVWw7l86iSrl4c/Hf58ibpc1eFD6zac7q0JV1urXY4fu/ytu92BKNJ0rot0m5Tyyu/WVyzpLzP55P3V14omg0obkJCettrjN72mvy/5ZP3l259qqxqRPL2eUbfPnPsd9mcHnflr1li9flT+AwCULqbn3B/xix8RurbbEOFTAKojZxnne2a9lE5htMmBpczfP+Av22Ec02Ra7SwCEYD3AhGAwAAAAAAABpEzmZ958dLDEZrNx0yMrLyvxnPYHe3ZImhFe7ghXAhdK4wu3SRQLZKCVt/Vz2zNqOczZYc5gcAAODn3o23KWOHfJed0H16jWtTuqDwrVZjHb3UjPEfuOUOlSs1uDhZMO1qh6cC91EsjLpeFbsWdF0PAQDQaowxHZKulXTyqNlpSW+11t5Wod38WTuC0STpbIUIRjPG7CfpiFGztobZDgAAAEAVeflBNRNs5YPRJGnVemn/XapSdEPr7Yu+zR7TKl+PqI6aa7RkdXmDbN97+PCAbtvfJ3VNkulI5C2fPWGrpLFpRKUcs1Z1kyM0I5OTVq+X9t55eJB+b5+UHfWgl50nS1Mn7Bhw/7Xr/ctZ9I8d/35hg9XmUd139pgmdXa4B+1vTVu9vHE46C8WKz64f90Wq7Wbd0xP6ZQ2+vwUcvezxd+Xz64lXK9Uo89zZ4e0+07DYYlPvFh825ufDL+fOT3ShISRHP0HozpqbnkBErtMcS9btZ5gtK1pq+fWS/etKK+cw+eEP0+ugIYPH2N061O1+xs/Yo7//CPnuN+/y9dWrz4AWsODq4KXP7NG6plUm7qgOGutVq+XBv27kKEFpP2H2kiSOkYNXTDG6A37S7c4Ql65FkYUdyyrTDnT+T4BnBh9BgAAAAAAADSIjM34zo+b9pLKi5mYOkxCaesfdtWog/hrwR2MEBy84FqeMOGCBYICGWrBWf+QwRHDZaTU1VbkUUsAAAAheTanO/oX+C7rjk/TqyceVuMalc4d7lWbtl49cYU3u7rol9pOLjf4N+0NajAXFIwW8Fj7OpYwwdeChGgDACAZY+KSrpL0xlGzM5LOtNbeVMFd/UHSlyWNPMf87caYva21xbpY/3vB9FXWOm4EAwAAAKgNL5c32eVVJxitt49gtEKDQ1Yvb4q2zev3k+Jt5QX8VMLH5xv97l6rTY4rugkJ6UNHG/1kof999cNnS/MnrZB3zvukfzwsdSRl3/xhmU9+R3pltexX36fZL+8n7fqrMduuYDB4KI8+Z3XR39zhQL190o2Pe7rgr3ZMwJgx0vx9pCvOjamrQ9qadu/n/562Ove33phB+h1x6X1HGP30fUYd8R3v2YG01Ud+a3X1YqusJ03tkr75DqNzj/N/CM3qdVbv/oWn+3uLvuTQ7lsxHFBhzPj/LTWKe5dbfeBSb8zf38zJw3/vL/RXbl87Tx4ORZuTkN5zmNH/e7B4yNWMSdIrm/2XvWOetM/O5Z3rnSZIk5LKC/8bsWKt1dFlBq81qq1pqw//xurPDw//PRdz2/kxvf2nnm+o4bQJ0j8flX8cg/5Ek46uqW99jdFeM6yefaV4fSrhHfP8Kzl3hrvyK/sIZwRQnslJqT/gsu2Ffit3TxbU0k1PWH3kcq+ibSU0l/a2/OnzT4nplqf8G1a0IRDGvcut3vXzEI3zkGbXQTg/UK8IRgMAAAAAAAAaRNYZjFb6bb5krFPpXLgwAOzgDkYoErzgGHsY9liPd1iGOxits2Da/XpS3iDBaAAAoGKe2Pqw1mXW+C47rvtUtZk232X1yBVGVSx8t7X4dyh1BXWlAo6dZ3Masv4jjArb+672bcobDDw/jRo2HTdxxdQmTznf5WGDnQEAaFbGmDYNB5b906jZWUnvttb+vZL7stYuM8ZcLunD22Z1SPqNMeb1rqAzY8w/SfrQqFlDki6qZL0AAAAAlMDLHyw5wdtaclG7dQ+HmDy/Yeyy3j4G5xdauS76Nj98j394VK3tv4vRnV+I6ds3WS1etSMQp81I8/YwOv8NRq/dw+j4va3e9ysvLzDnX08y+tpbrMzZb5Je3JZ2NZSSrrlE6p4ue9PvpeeXa3an/z3fjYPShq1WUyfwfnIZHLJ6/feDB0L/6DZPNzzuv8xaaeEz0pk/87THtODjfLJjP0NZ6bK7raZ2Sd99544yPnWlzQu62jAgnfc7qz17rF6/f/6+rLV60/96euLFwCqU5Pf3WX3gKN5DYazfavWGiz0NDI1dFjXcMYw9e3b8+7cfNjpwV+nGx63uWe7e5u5/j+l/brB6cKVVOjs8b/pE6dSDjL54Wvnn2RijOT3S0ufHLisMBWwln/ij1Z8Whwvo2GOadOJ+2747Flg9tO27o71NOmKO0edPMdp758LPAHd5rmDDZLvRvf8R0+f/ZHX5vTsK2GuGNDhU2RC/Gz4V07SJ7vfX195q9OW/jH0RK1v4PQOgMgqDlAq18ndTPents3rz/3qhwkPRujoK/p5PPdDomLnS3T5tX/62UUzQtVupit0TAFoZwWgAUOcGBga0ZMkSLVu2TH19fUqlUurs7NTOO++sffbZR695zWvU0dEx3tVsWPPnz9eiRYu2T9ugu7lluP3223XiiSdun77gggt04YUXVmVfAAAAAJpX1nMFozkeyxdCItYp5Xx6ysodLoDgYIQgrgCzsIEJpQQ+VJKr/oXHI+i9U6sQNwAA0Bru6L/Bd36b4jpmyik1rk15nCG4jnDdZmbl/3uNcQWjOYK6gtqeac8/FE0KH/yb9lJKef6PB25TvKxrtfFkjFEy1qkBb4vvcq4VAQDQryW9q2Def0p62BgzO2JZL7sCzka5QNLbJE3dNn20pFuNMR+x1j49spIxJiHpXyR9r2D771lrV0WsF9Ay6J9XXfTPAwBgFJs/SrvLlv47/zF7Gb200TqC0UoutmmVckxmT6t8PUr16llGvzsneIDsO19n9M7XjU1usI/cKTsSijZ6/qU78rPnZNyXjL190tQJESrbYv6+VFpfJOPQFYo22l3PSnc9W15b+fJ7rL5zppUxRqmM1f97wL+8y+8ZG4y2eJWqEoomSb+4w+oDR1Wn7Gbzp4dsRQfWF7Pn9B3vg3ib0ZfeZPSlN0ntH80p5wgWmTvD6Ncfqu6A/TnTCEYbbSBtddVD4T8f5u8zfH4O2s3ot0W+O0ZMKfGnv2kTjS472+iys/PnP/6C1cEXVS6d5pi9gpfvPcNIPr8vr1o/fB/CFe4GAMUMZYOXlxLAjMr7w/2WUDQU5Rd0eM5xRncvH9uG6OVvG0Vcvbjy1271dB8KqDcEowFAHcrlcrrqqqt02WWXaeHChcpm3VfQyWRSp556qj7ykY/ojDPOqGEtAQAAAAC1lpP/9WF5wWj+A/yLLWt1QQFlQZ1p0o4As7DBAqUEPlRS+GA093uHYDQAAFApa4de0pNbH/Zd9ppJR2lyvLvGNSqPq03Ymu2naMForqDhwGC0gPyRwnZ3UDvcFVKcjHU2dCf7RCwZEIzGtSIAoOV90Gfet7f9F9WJkm4PWsFa+7wx5u2SbpI0ks50jKQnjTGLJa2QNEXSPEnTCzb/u6SvlFAvoKnRPw8AAIyLXC5vssvx0IXRJielTT63Mt9/pNHVi6U7l429l7qyrzpBpI2sN+Ix2WuG1JVo3Pu7o9nbry26zq7ZF9XhpTUUS4xZ1tsnzdujGjVrDo+/WD9/b+u2Si9vlHbpllb2yTlI2y+ArZqv48WNVSu66TxepXA6l4N285//vXcafebKse+Js4+pzefi7B7/kKtW/X5b0Sel/J+n6+vVs6Lv41Ovj+nqJWMTZY6ZG70sSdqzR+rqcH8ORTF7mjQpGfzem93jPz+V2fG5CAClGMoFL1/Vot9N9ebJGreh0HgScelVO42dP2eaf7uzf0DqH7Dq7mqO+wKovEpfu02fJM2YVNkygWYSG+8KAADy/d//Z+++46Oq8v6Bf86dmcxMGqmEThIpgnRBpCiwKM2yigVRf7ZddW3oKutaHttaVldcF3tZH2Ctu4+AulgRBQUFDE1pQiAJEEJIL5NMvef3x0CSydxzc6e37/v14kXm1jN37tx77txzPvebbzB06FBceeWVWL16tWqjKwCwWq34+OOPccEFF2DcuHHYunVrmErqm/z8fDDGwBhDfn5+pItDCCGEEEIIITHJyZVbuOilQILRxIFconABIg5GkOGCkytfy3PONQeLiYgDH/x/krQvROERRuZZriTm3Vi2bRlhKishhBBC4t/39V+CCwK0pmTMCXNpAieqEyZi/UnYdFTQ3ky47bh426lt1871bmFoHW8VB6PpYvt6Su16kK4VCSGEkPDjnK8FcDGAqg6DGYCxAC4HMBPeoWjvA7iCc95F1x1CEgu1zyOEEEJIxHDPwJEUDcFoT1zk/aNon0xg5lB3UIiSj3f4Vbq4VlLt2/S/nxwfnZ959VFg+StdTieBI99RpjjuIIU9qPpBIWQskt7bzHHbezKGPuIdcHRSaY27DdNr62RM+KsLuX904fb3Qvc+DtUCTld0badotXp3+LaTyQBcPV75WDf/DIbkJM9hjImnD7YCQchVSU1YVh91fDmHmQ3A/HG+f04TTgFO6fzLItxBrP5INjLMPyM4+8sNGs7JBYI6EeA+5hFCiL/s6j8d0zEmTFZu4/jNIhe63+2uu+b+0YU+97pwyasu7K3g+PQXqmsSdReNYkhRCD8X1TsBYH1xCAtEYt6aPcE97lw/iUGS4uO3KEJCgYLRCCEkijz22GM455xzsG/fPo/hjDEMHToUM2bMwPz583HOOedg0KBBXvMXFRVhwoQJePPNN8NVZEIIIYQQQgghYeSQBcFo0Pu9TLVALq1hXYlILQhAFLDg4HbIUG54qHVbiwMfrJC5uFFjsIhCHzqXS2KSMDxOFK5GCCGEEOILu2zDjw1rFMf1Meaj0HxqmEsUOFFdzypbwXmiNeJTfr9MkIzmT6ic2rjOyxMGo8lWcR2ZxXZ4GF0rEkIIIdGHc/4ZgGEAXgNQpzLpRgCXcs6v5JxbwlI4QmIEtc8jhBBCSETJnr97mrl6MFou6nDbNIZnL2XISwd0EjB5ALB2oQSDngk78Lpk4MDxRPtNWV2pSrhXVorn3w+ex7BwRux3RuWtFvA/TNE8vSgYzddQuURisXGs2RvpUnj604ccr67t+vv/m+dk3Poux6YSoMYCtNgDW6/EgCRB8zWXDBxW+xWDAAAqGzn2Vfo+38Duvs8zrBfw9d0SemcqH+ty0xjWLpQwoo87EK0wB3j7BoZpp4YrGE15PYdrAYcz8c5vpTXa3vOwXsCaeyT0zPD9c9JJDN/cI2HaYEAvAT3Sgb/OZbjpbP8/85fmM/xuMkOq+PmqqrJSgD/PYnhgdtdlyE4FUgTr0br9CCFEiU1DMFritecJrxVbOS55VcbafUB1s7vuWmMBjtYDK7cBQx+R0UTN0olAqhH4f2cy/O91yvWJ3pmAQac874UvyWiy0vebeKtq4thToT5NqtEdRq3FvLEMT/w29n+HIiSU/O9LzY9AAAAgAElEQVQxSQghJKjuuusuLF682GNYWloa7r//flx11VXo16+f1zzFxcVYunQpFi1aBJvNBgCw2+246aabYLFYcNddd4Wl7IQQQgghhBBCwsPJle+w6iWNv5orUAv4UhuX6NSCAGy8FalI9x4ui++8ag0WUPtM7NwGU4jDF0TvQalcRskMm8t7erUACkIIIYQQrbY0rYdFblIcd3bGHDAWe41FRHU9DhkObkcS87PVeAyShQ1HRcFo4uAyEavKuCSvYDRR8JoVVlm586JZlyxcfixQD0aja0VCCCGJjXMescom5/w4gFsYY3cCmASgP4AeACwAygFs45yXRKp8hEQzap9HCCGEkIiTXR4vU2T1HON8uRyM5eCeGQx3n8thdQDmpPbLEXdwjPJvqS9+y/GPebH3O3moHBSEez1yAcND5zEcb3KH/+SmApIUJ9tt3Uqg8pDmyQscpYrD1ULlEt3yrbG7bdbt63oakaPPSl7DTgYfpS9QfqjjwSoIwxyJ29sb/duf1i6U8O8ijrv/I55/60MSepxoymY2AN2Suz7Ojc1n2P6wDq127nHuCQfRviJzd8heYW5YixNxooDKU3sA3y6UkG4C7E5tn6uavlkMa+7RwergMOoR8P12o4HhzWsYXr2Ko7rZPSzdBEgSwDlg1LvPubUWDrvTHYSWpGew2DiarED3NO3nZMYY8rOBXUe9x1HAJyEkEPYugtGsDqCyEejRLTzlSUSL1/j/0PD3b2SYMihOru+IX7JTAINevA/oJIZ+WcCBKuXx/1fEccNk2oeIJ7Vrt3d+x3DleAkumcPpAs5/Ue4yUP29G1lMtnUlJJwoGI0QQqLAsmXLvBpdTZ48Ge+//z769OkjnG/AgAF44okncM011+CSSy7Bzp0728bdc889GDVqFKZOnRqqYseFtWvXRroIhBBCCCGEEKKZSxSMxvz/mU+1szvTFtaViNQCyqyC4C+1UAatIXRqAQQ2uTXkYXaiUDOl/cgomQCX97RqARSEEEIIIVpwzrGu7jPFcWYpGePSzw5ziYJDNXxXtiJJSpxgNFFnPlETING2E9XNAXH93MCSoGOejwMV1bMd3I4WuVlQptgOD1Mrv0ljsDMhhBBCQodzbgfwbaTLQUisoPZ5kUPt8wghhJAOuGeH7p7OY6qTD3IeBDASgDvww5zkOX5gd/G8O8tjN7ApFKqVf8ZFvyx36Eo8BhnwPT/5NH2+vVRxOAXKiG1OwFjyKYOAHt3EHba7pwHHFZ5rVFLNIb7LQwDgJz/3p25mYGB3cVBmkh4Y0sMdUuWPQEPR7pzOsHiNd9nOHSKeRy1Er6Q68YLRRAGVZxYy5KW7P5/OdYRAmPzcV0T0OvXzbFaK5/pSjAwpftwWL8hRDkYrrfF9WYQQAgCyzOHUkMlVWkPBaKEiyzygOve4fKZadyUEAAbniYPRfioDbpgc3vKQ6Kd27Ta4h/uYo5MYdBIwqAfDmr3i3+iG9w48kJiQROAd0U8IISSs9u3bh9tvv91j2MSJE/H555+rNrrqaNCgQVizZg2GDGn/ZViWZVx99dWorqY7UYQQQgghhBASL5zcoThczwx+L1MtSCvWO/KHknpAmXLAgo2LQxmMTGswmnpYRqiJ1iEMRlNchng7EEIIIYRoUWrdj0O2A4rjJnSbrlpnimZqdcJw1PWiCRcGoyk3BBJd16htN3Hor/ey1PapBmedT2WKFWr7I10rEkIIIYSQWELt8wghhBASNWTPXvUFjjIMte0WTn655SPVxfXMEHec3HjQt6LFO4tNeXiaKX46n3KnE/yTtyBP7wb5LCOw4jWf5i9wlCoOL61xBxKQdodrOR5fJeOVtYm3XS4bq/6dEQVaHaTLpjbHGjie+kzGZa+5MPcVF+76t4wNxRwHBeFXagw6dyDW9CFAZrLyNBePYn6HogXDNROU1/37s8TdmlOMDN3TlMeV+LGdYp0o2CtfJUAuEfXPVt7XyhJwnyGEBIdd4cHQSkQBlqJpX10r45Z3ZSz4QMaOw3SMOolzjvc3y7hhqYzrl8hY9oOMow2ATfmZ8poU5sbP9R4JncvHifeT19dxNFmj+3u6fj/HXf+WccUbMp77SkZ9C8eROvc168lrjvtWyPjlSHS/j1iidk0ypp/n6ytU9i8AuLyLa2xCiJs+0gUghJBEt3DhQjQ3tz+CKCMjA8uXL0dqaqpPy+nevTs+/PBDjB49Gna7HQBQXl6Oxx9/3Otpl4QQQgghhBBCYpMoGE3H/P+ZT62DP3V2FzOwJDBI4PB+HJhVELCgFsqgNbxDLVxBtN5gEgejeZfLn3AKQgghhBAt1tV/Jhx3VsasMJYkuFRDcFVCduOTqAGRcmMg0bWLejBa4KG/ANDgrFUcHvPBaGrXiiw2wwcJIYQQQkhiovZ5hBBCCIkasnfP+v8cuRIz+32KckNvj+H3Vf8Nc5pXdbnIZy9l+NOH3r+nttjdne7zc6iDJQA0C4LRUo3hLUeocM7BH7oCWP9fv5chCkazOYGKBqB3pt+Ljiv7KzmmLpJR0RDYckb1BbYfDk6ZQsGoB84bDvz3Z8Bx4tB17QSGGyerH1MKcxk2lXgfk0qqQlHK2HOohmPKIhllHkFXHC99w+FP/mCSHmCMwWQAPvyDhLmvymjocEvx9P7A8/Miex4Y3Y/hlasYbn+v/T0unMFw6enq8xXkAMebvIcnYsheieA9F2SHtxzRThTMWCIIliOEkK7YNQZy3f0fjivOEC2D4/v9wOc7OT7fybGnwnP8q2s5Pl8g4ZyhdN1223scr61rrxAt+xHon+1/kNNTF9M2JdpcNZ7huiXifW3qszK+XSgh3Rx9+9Q7G2Vct6S9nv2fIuDhj90vWj26HbmvOT69Q8KUwdH3PmKNqH55y1QGxjy37+QBwJMXMzy40nsfmzsauPtc+jwI0YKC0QghJIL27t2LVas8b1g+/fTT6NGjh1/LGzp0KBYuXIinnnqqbdhbb72FRx99FJmZ8XUnqri4GD///DPKy8vR1NQExhiSk5ORl5eHgoICDB8+HMnJgkeeBJHNZsO6detQUlKC2tpadO/eHX369MFZZ50VkvVXVFRg06ZNOH78OGpqapCamoru3btj3LhxKCwsDPr6CCGEEEIIIdFFFIymZwa/l2lk4s76Jo1hXYmIMQaTZEKr3OI1ThSwIAoukyBp/gxVwzJCHDjGORe+B1/CI8IR4EYIIYSQ+NXkbMDWpvWK405NHom8pN6K42KBWl3PmmDhssJYNCYKRhPXPTnnivPZBPVSpUAztZAzcTBa6O9ThZLae6YQbUIIIYQQEiuofZ7/qH0etc8jhBASArL3g9dOte/DgeJTUWQag3JDbyRxB8Zat6Cn8xjAmPD3zZPOGcIg+kX1oY853v4ddbB0OHlbsFNnKXESjIafN2gPRTtzJtic6zyH1RxFwYtPCGcpqaZgtJOe/5p3GYp2zhDg6z3q03x+p4SeC72PCSe98zuGKYMYPtnBcdt7yt/xu89l+Ptq/8MiOhvQHXjqYgndzMD4AiDdzNDQwlFU5h7XP7vr40m+IKippDp45YxlL6/lnULR3NRC0V65iuHWd5UnsHQIfZx2KsPRZyVsKgGqm4FBecCwXoAkRf488IcpEuaPc+9Lw3oDeeldl6kgRzlkrzTBgtHqLNwj7K6jAgo/9ZCfrVwnKqsBZJlHxXeBEBJbtAajHWsEWu0c5iT3ceZwrTsE7fNfONbsFYc0A4BLBu5dLmPrUF0QShy7Dhz3DEU7SanepNXsYXTcJ9roJIb3fs9w5T+V69zbDgPvb+a4eUp07VMumePBld4By63K3Y3QYgce+6+MbwYn9vEmUM1WjiqFAGcAmDvaex9hjOH+2Qy/m8SxqQQ43sSRZgJO78dQmCtuC0kI8UTBaIQQEkGLFy8G5+21zpycHFx//fUBLfOuu+7Cs88+C4fDXXu1WCx48803ce+993pNe91112HZsmVtr0tKSpCfn69pPWvXrsW0adPaXj/yyCN49NFHVZd/UllZmWpl7dprr8XSpUu9httsNrzwwgt48803sX//ftXy6XQ6jBo1ChdddBHuvvtuYSOoqVOnYt26dW2vO34eahoaGvDwww9j6dKlaGxs9BqflpaGefPm4bHHHkOvXr00LVPE4XDgrbfewiuvvIJffvlFON3AgQOxcOFC3HDDDdDr6RRPCCGEEEJIPHJy5bushkCC0VTCF6izuzqjZBYEoym3RhIFlxkls+abGjqmh54ZFEPyQh045uROyFBuLWxSCNgT7VuhDnAjhBBCSHz7oeFrYb14SsacMJcmuAwsCRIkyPDuCCOqY8Yr0f0aBkEwGlOue8pwwcmditdMwtBfhWWpXRs1OOsUh6sFi8UC9WtFCtEmhBBCCCGxgdrnKaP2eZ6ofR4hhJCw4cohSHq4cKb1J8D6U6fpOWBrBUziMNCCHPHq9lRQEBEAWOzicSlJ4StHKPFv/k/ztOz/3Qc2YqLn/K0WZC6+B+muBjTqunnNU1LNMXkgddYFgC93df29Gtab4es94ukyk93BUFkpQK3Fe/zLVzJcOV4CAMwaBojCD88fEdxgtJF9gEtP9/ycuyUzTB+ifRmFucrDDyZYmJXIGpX9QuRclQDMMztlN5uTGKYO9qNgYeDrvpQvOL+V1yfWua28XjyuvyCIMFGJghkdLqCigQI+CSG+swvClZU8+xVHs5Xji50cO4/6tp4dRwC7kyNJn7j17TV7g39+V7tWJqSz/BxxnRsAvt7DcfOU8JVHi/2VwGHlJmtC6/YDNgeH0ZC4x5tAlahc24quhwGgezrDBSMBCNo+EkLU0V1ZQgiJoC+++MLj9TXXXIOkpMDuruXm5uKCCy7AihUrPNaj1PAqlhw+fBgzZ87Enj1dPDrnBJfLhS1btmDLli244oorMGDAgKCVZceOHZgzZw6OHhX/StHU1IR//vOfWLFiBT755BO/17VlyxZcfvnlOHjwYJfT7t+/HzfffDNeffVVrFq1Cr179/Z7vYQQQkisaXDWYZdlC47ZjoR0PQYpCYXmU3Fq8kjoGD0lIRSanY3YZdmCRlcDhqaMQm9jfqSLROJEk7MeOy1bUGE7HOmieNAxPfJNAzE0ZTQMUtfXg0phWACgDygYTdxZP9Y78oeaaNuJgr/EwWi+hQoYJROcLu99YUPDV9jfshOA++kxvZL64bTU05GqSxcui3OOX1t+xoHWPV0Glon2v5Nl8h6mvH0OtO7GiuNL215302dhaMpo9DT2VV1/pb0cu5q3oN5ZqzjeJJkxIPk0DDSfptrhK1z1Bl8lSca2eobEJL+WccRaij0t29Dk7OLxxB3omQEF5sEYmjIKOhbcWwZ1jmrstmyDjVsxLGUsuif1DOryy22l2G3ZDodsw4DkoRhoHkZPTiIkiLo6R+iZAYXmwRicPBIGyf+6CCG+kLkL39d/oTguS5+L4aljw1yi4GKMwSiZFMN3v6//AnstO1Tnl5iE3sb+GJYyFmZdSqiKGZDj9grssmxBnUO9B0yF3bdrN7Vrl5VVSxWvmYpbdytOr1S3TWJG4fIdXLlXXawHTVMwGiGEEEIIiQfUPk87ap9H7fMIIYSEgcuHnvUntVpUg9HSzeL7o2U1vq8uHlls4nEp4p9+Y8uK17RN1y0HGOJ9L4WZU8Ayu6PAUYYduhFe40toXwIAyDJX7QR90tAumkZcMNL9vb30dIY3vvPsfC+x9vGAO+hnaE9gd4XnMgZ0B6YMAsb2B4rKxOsy6IBZpwH//bnrcp83IvD2FgWCQIHqZqDJypFmSuw2Hb4GxBl07oCwOcOAz3Z6jz93aPxuz9xU5eH13rdR45ra+81NC185YoFaAE5JNQWjEUJ8Z1N+ZqOiRz/xP9iLc8ClnKGdMEqDfL2RnaJ+rUxIZ6f3A7qnAceblMcXlQF/X+3+oibpgLH5DGfkA5IUuf3Mn+8N58ChWmBgXvDLkyhEvwnoJKAv1TcJCRkKRiMkyri4C/VOehRGqGXocyIeZHHkyBGUlpZ6DJsxY0ZQlj1jxgyPhlcbN26Ew+GAwRCbndPsdjtmzZrl1egqKysLw4cPR15eHgwGA5qamlBRUYHdu3fDYlF4dE4Q7N69G9OnT0dNjedVQ15eHkaPHo2MjAxUVlZi48aNaG1tRW1tLc4//3w8++yzPq9r1apVmDdvHlpaPH/J7tmzJ0aOHImsrCxYLBbs3r3b4wmd27dvx/jx47Fx40b06dPHvzdKCCGExJCjtjK8cPgRNLpUHosVZGPSJuL6nncHPTwk0R23H8ULhx9BrbMKAPBRFcNVPW7DxG7nRLhkJNYdsx3BC0ceQb0zelvpDU4ejj/0frDLzuWiYKpAjkdqAQLU2V2daPtY5VbF4TbBcF8DE0ySGRaX9523n5s3ew3L0ufizr5/Qa5CIJXMZbxX+Qp+aPjap/UrUQxGY8rvq8J+2CvoYmWVDjf0uhtj0iYpzrO9aSPeOroILnTR0qAGmJZ5Pi7N/Z1iQFYk6g2+Gpc2Bdf0XODzb1cb6lfjvcpXwFWeWKVmWMpY3NjrXk0hjVqUtu7Dy0ceh0V276sfsWW4qdd9GBakwJofG9bgnWMvg+NEi5AaYErGHFze/UYKRyMkCDjneL/yNaxv+LLLaYemjMHNve4L2vGDEDU7LVvarhk7m5wxE1IchJgbJbNiMNqO5k2al9EjqQ8W9HkMGYboekz4zuYivHn0b8IgMS2Y4KmJatcua+s/9WkdStdIEpNgZCbYuHqYcEfmGA9GU7tWpBBtQgghhMQyap8XPpFuo0ft87Sj9nnUPo8QQkiYcD96u1stAHJVJ3nyYoYHV3rfJ66xUBARADTHeTAa5xrbCOj0YHf9HcwguKfXMx/5jaXYYfIORiulSygAwFENz6hLMwG9MpTDwU56cI77O3nfLIY1ezgOdLj19cgFDH0y27+zjDE8P0/C3FfltpA/swH4xzwJjDEsukzChS/JaBTcvnjiIoZLxjD8Ui6rdpw/Zwhw+emBHysKuwgmGpHA1ec6C/c51Cs/G9BJDE9cLKGoTPYIahjVF7h9Wvwe3zMEmaB1iRaMptzcECYDYDLE7+fvj4xkIN0ExeNhaQ3H5IG0vQghvrH7EIwWKNn/XLW4cCjIXTwK1S+hCfFi0DMsvoJh/pvKX8ayGmDh/3UcxzH/DIYl1wFJ+sjUMd7e6N+BY9ZiGfuekKCLYKhbLCupUd7ufTMBvY62KSGhQj24CYky9c5qPHTw5kgXI+49Xvg6sg2RjbTdsGGD17CxY4PTMfT000/3eN3a2ort27dj3LhxQVm+VosWLcKjjz4KAJg8eTLKy8sBAL1798b69euF86Wmej7aY8mSJdi9e3fb6/z8fLz88suYNWsWJEnymp9zji1btmDVqlV46623gvBO3BwOB6666iqPRlc9e/bE4sWLcckll3iUpbm5Gc899xyefPJJ1NfX+/xE0N27d+OKK67waHQ1a9YsPPbYYzjjjDO8pt+2bRvuvPNOfP/99wCA8vJyzJ8/H2vXroVOF/sdwQghhBA1K6uWhT3cZGvTDxibdjZGpZ0Z1vXGu1XV73t0cOfg+KDyNYxJm0QdbklAPql+J6pD0QDg15ZfsKnhW5ydOVt1OidXvsuqZ/53tFELEPA1sCvRiI5NNlm5taFouK8BdEamffpaZxVWVX+A63v90WtccevuoISiAcr7ii/vS4YL7x97DSNTz/TqKCdzF96rfLXrULQTvq1bhTPTf4O+pkKvcSur/hXVoWgA8FPTOpzRbQpOSxmjeR6r3Ir/HH/T71A0ANhpKcKWpg04s9s0v5fR0fKqJW2haID7+PXusZfx1Cn/G3BwmV224YPK19tD0U5YV/8ZxqdPQ755YEDLJ4QAJdZfNYWiAcBuy1ZsblyHSRnnhrhUhADf1X2uOFzP9JjULT72wWCEEx+zH8HqupW4rPvvg1Ci4OCc473KVwMKRQPUgtGCd+0i+gyMkgk2l/ZgtFi/nlK/VqQQbUIIIYTELmqfFz6RbqNH7fOofZ4aap9HCCEkImR/gtG6ToC5YpxyMBrg7rw7rLfvq40nFrVgtHh47s+urh+swv7wJHDmLLBThokn6lWAguoSxVEHK50A4mFjBUZLQFxBjjuwSGTuaGBgnvteR34Ow8b7JXy8neNIPTD9VIZJA7zvg5w7lGHbQxL+u4ND5sD5IxgG93BPd/Yghm0Pu8d1DFjLTgVmDGU4s9A93eYHJHy8g+OXcqBjlp5RD5xRwHDhyOB06O+TCegkwKVwuEv0YLSDfgQMngz1GNWXYetD7n2luAo4vZ97P0g3x2/H+8xk5YBBX8PlYl2dRfn8nhHbtyFDgjGG/Bzg5yPe49SCIQkhRCScwWhas47jVZkgaMhfBTnxW0cioTNvnIQai4zb39O2P76/meO84cCV48O/v8kyx/ub/fvelFQDX+0CZg8PcqESRInguq5AJSScEBI4CkYjhJAIOXLE85e2vLw8ZGdnB2XZw4Z537A6cuRI2Bte5eTkICfHXZvT69tPOXq9Hvn5+ZqX8/HHH3vMu3r1agwYMEA4PWMMY8eOxdixY/HQQw9B9ucmsoIXX3wR27dvb3vds2dPrF+/HoWF3h2tU1NT8cgjj2DYsGG4/PLLUVdXp3k9sixj3rx5Hk/VfPTRR/HII48I5xk9ejS++eYbzJs3r+1ppOvXr8e7776La665RvO6CSGEkFgjcxd+bfk5IuveY9lOwWhBtqdlu9cwJ3fiYOteDE0ZHYESkXixx+K9b0Wj3S3bNASjORSHBxKMZpYEj1eEOPiLuIkCyqyy8qMabVx5uC9BZwBg1qX4NL3S8RUA9lp2+LQcNUr7itq+pcQiN+GQ9QAKzIM8hpfbytDs0vDY3Q52W7Z5BaO56w3Be8+htMeyzadgtAOtewIOGTm53mAEo1nlVhxo3eM1vMFVh0p7OXoYA2vpqvZ+97Rso2A0QoLgl+Yin6bf37qTgtFIyB23H8Xulm2K48akTUKavluYSxQavtahRHY2F0VVMNox+5GgBFbrmHITh2Beu5gEn4FJSvYpZDdYn2WkmCTl6w4DSxJ+DoQQQgghhEQTap+Xr3k51D6P2ucRQggJE9nl+zwtzV1O0icDkBggK/SJLaVgNFhUbqWnGMNXjlDh6z5SHc9ueQrsynu6XlDPfBRsKVMcVVJhBwWjASXVXXc8L+wiGK17umen+exUhhsmd92RfkB3hj+eqzxdQQ7Dgunqy8hJY/idhvUESq9j6J+lHAJ2sIoDggfgJIJDtb7P0zHUo1cGwy1TE2f7ZQhuszXbAIeTwxCEIL9YUK/c3BCZvjUfTBgF2crBaP58/wghxBbEYLR0EzCyL/D9fuXxStdyieRIkJ93TQFFxF8XjGCag9EAYOU2jivHh7BAAj+XBzb/im0cs4cnRn062EqqlPePfApkJCSkvB/jRQghJCxqaz1/VcvMzAzask0mE4xGz7t0ndcXS8rK2m+wjRw5UrXRVWc6nQ4Gg/8BASfJsowXX3zRY9gbb7yh2Oiqo0suuQS33nqrT+tasWIFdu7c2fb68ssvV210dZJer8eyZcvQvXv3tmGLFi3yad2EEEJIrLHJNjh5GB/F0oFFbozIeuOVzF2wuJoUx1nlBHvEGwkqh2yHjVsjXQxNRN+BjkTHPH0AndJ7GwsUQwT6GU+BUfItsCvRiAITbIJgtFaX8nCzzrfAhAHmoT5Nb3E1gSs8TszXsDGRfqYBSJK8WwsPSPatnABgcXmfX5sVhnW9HO/vk022Rqze4KtmDccDj+mdwfks/dnWSpQ+x5Nag3BeV9t3g/UeCEl0tY6qrifqwCbbQlQSQtp9V/+FcNyUjDlhLEloneJjXU+kzlkNmQenY3owqNUPfFFoPlVxeJJkRH9TcMJRBySfJhiu/bORoBOWNVYUmgdDUmhSMjDZOwCCEEIIIYSQaETt87Sj9nnUPo8QQkiYiH6zZQyQBN27LOJ7o7ylGfzXrdBbG9FHUNUpq0nMHvaccxys4mhs5bAIbmMZdEBSPATrHClWHz/5Ak2LYSMnId9RqjjucIsZdmdi7ksdlWp4/sukAQymBHy2CLdZwX/dBr77JxRkKKcRlgT+/JyYVmfx/TuUyKEemSrN6RoEYWHxqF7QzCojwZ53yzkHP7QPfE8ReMlu8NpK8OKfwXf/5PEvT1Zu6+LP948Qktg4F19HaDWiD3DvLIa1CyVU/V3CP+aJIz0UmnjHrcZWjtJq7tGuvc6iMoMfJg+Ig+s8EhG9M4B8H56vc8C3ZraaNLRwbCnjsNjEB4aDAa73oCDci3StRCEEHHCHpBNCQicBf2ojhJDo0LkhVEZGRlCXn5GRgcrKyrbXNTXxcRfh+PHjEVnvd999h9LS0rbX48aNw/nnn69p3ocffhivv/46HA6HpulfeOGFtr8ZY3j66ac1lzM1NRU333wzHn/8cQDAL7/8gtLSUp+eAEoIIYTEElHwTDi0uiisK5hssji4yiFrq0cRoiSWgvW0HFecXPn7oGf+dzgxSAacl30Fllct6bA8Pc7Lme/3MhOFSafcwki031ll5Tu3ooA1kckZM/FT43eodWq7q8Uhw85tMDLPoDtrEM6jeqbHedlXKI7LNw3CiNQz8HPzZs3LUwrN8idIq1VhWwcjkCtcfD12BeOzBIK3jVpc4lYKouOYL1pV3q9VEEBICPFNncZzTDtqKEFCyy7b8GPDGsVxfY2FyDcNCnOJQmdKxmxsaVqPemdg93Wc3AmLqxFp+uDef/KX2vlbqxRdGs7J+q1w/HnZ8/DG0acDCsM9xTwEw1JOVxz3m8wL8XPzZk1BrDOy5iJZl+p3OaJBii4N52ZdjC9rl7cNMzITZmVdEsFSEUIIIYQQoh21z/MPtc9TR+3zCCGEBEQWBKPp9IA5FWiq8x7X7B2MxqzU87MAACAASURBVF0u8BcXAh+9DrhcgCSh/4itOATv38q1BDnFm1+OcFzymozi44DEAFlwGyvF+/lvMYdXHgLW/1c8wfTLwfppvIcy9hwU2O8Vjn5ljQN3zUzysYTxRdQB+qR+WcA1ExiqVJ6FF293VTnnwDvPgi99ArC700MKerwEZN7gNW1Jgne+r/fjVllhTuKGemSoNKerawFy0sJXlkiqEwWj+dbcMKbxXZvBH54PHD/S5bQZuY8BOX/yGi7ajoSQ+MM5R6sdaLS6/zW0Ao2tJ1638hP/t49rEgxvbAWcPj6LMM0EnDMEmD2MYdYwhj6ZnudxxsR1IdE1SzxxujhufY9j6QYOp+wOEVp+i4SB3d3b3Ren5IoDqc7IB2bR8/6InySJ4cHzGG78l7Yv5fbD7uMOY4HX2+1Ojpvf5nh7I4fMAb0E3DqN4bnLGHSS5/JLAwzB7+ralijjnAsDvxM51JqQcKBgNEIIiVPBqEhHi1NPPRW7d+8GABw+fBiLFi3CwoULw1qG9evXe7yeP197QEBubi5mzJiBTz/9tMtpLRYLNm7c2PZ63LhxKCgo0F5QANOmTWtreAUA33//PTW8IoQQErdsXPwL+ODk4QEFBZ1UZT+G446jXsODFUBC3NSCWIIRoEISl9q+NSh5OAxBOE74qt5Zi3JbqddwLUFILkEHfz0L7Ge+6Vm/Rfek3vi5eROMkgmnp52FAnP8hEuEilkQaCba70RhEKLliGQbuuOefn/Fjw1rUGYthgwXAMAm21DcuktxHqvcAqPkGYymFB7mXn4eeiT17rIceUm9VfcViUm4sde9+KFhDfa1/OKxjxe37FY8jyudX0XfDQNLQqouHXVO77tzviwHAAYnjwj4e+SP4/YKVDkqvIb7GsAq+izNUgoKzYO9htc6qlFhP6R5Ob5SO/Y6uPKTgX1hVdk+wXoPhCQ6pWMrADBI4PBu9cXjrgk/iTY/NX4nPMZPyZwTV/dEcpJ6YGG/p7Gx4RuUWvcrfuc6cnEX9rbsUBxX56yJmmA0UV1Mz/QYnDxCdV4GCX1NhTgjfQryVOqpw1LH4u6+T6GoaT0q7V03jO8oiRlxinkIJmXMQJKk3Buul7EfFvZ7Bpsav8Vh60HFzyZNl4FhqWMxOnWCT+uPVhfmXI2+pkLsat6KFF0azkifij6m/EgXixBCCCGEkKgQT9ei1D6P2ucRQggJE9mlPFySgLQM5WA0pWEfvgQsf6XDcmXkV27G9xne9+7LqhPrHo7TxTH7BRlH692v1QIGUuIg44s/cLl45KDRYA8t1bwsptMhf9okwLspAQDg7uU6XDyWo392/NSDfVWq8n1aMJ3hzzMZctMYmqwJ9L377mPwNx7yGJTvKFWc9GCCd76v9yOYqTA3+OWIFZkqzen8CZmLVaL9JjM5MY7FvNUCfs95gKXrB1cBQKarXnF4HTUnIyTqcc7RYncHkjW0BZmdDDjjXsM9As06BaC5fAw088f9sxnWF3MwAOMKGOYMY5g0AEjSi4/PksqhOxFqj09/wfHP79vf6cFqYPZiGbOH+3ZO654GFD0o4bFVHP/42r28dBMwqi9w1iCG+2Z5h0gR4ovfTZaQm8rx7iaO4uPufazFDvxaqTz9q+s4bp0a+D73l1Ucy35s/444ZeCFNRwFOcCd0zsHowW2rsN17t9P9Dr6rviiuhmw2JTHFSRwqDUh4UDBaIQQEiFZWVkerxsavJ/mFIj6es8f8zqvL5ZceeWVWLFiRdvrP/3pT/joo49w/fXXY86cOejZs2fIy1BUVOTxevz48T7NP378eE0NrzZu3Ojx5MrCwkKPJ2FqIXd6mtiBAwd8mp8QQgiJJTaVcLKbet0Hsy4l4HV8W7cK/3f8n17DtQQYEe3UQkwoGI0EQu27elOvPyNZlxrG0rhtbfoB/zz6N6/hakFCJ4m+D8EIghyeOhbDU8cGvJxEYpTMisNF4ZlWwbHO5GMwGgBkGnIwJ2eex7B6Zy0eOOD9xNWTZeqmsZwT0n/jtWx/6ZgeZ2XMxFkZMz2G/7X0bhy2HfSavtXlvY1EIVi5hp4YkjISa+o+8Z5H4fskCqYDgFt6PygMwAil1bUrsbJqmddwX+sZos+yv2kAbuvzsNfwTQ3fYtmxxV7DfQ1kE1H6HE8Kxnld7XhJ4bWEBE7mLtQ7ahXHZeqzUesUPG6RkBDhnGNd/WeK45KlVIxNOyvMJQq9LEOu5vqYzGXcue9yuOAdolznqEY/0ynBLp5fROfvTH2uYn3FX/nmQcgPYchz96SeuCDnypAtP9owxjAmbRLGpE2KdFEIIYQQQgjxGbXP047a55X6tC5qn0cIIcRvsqCHvqQDUgUPuWj2rsPwL9/zGtbfoZxmFWhn2Vjz7a9oC0XrSkr4mwgEFS/dA+zbJhzP7n4BTKfzaZkpAwYi72AlKvV5iuPf38xx3+zE7ewr+j79Yx7DgulS22tT+J/TGTH8K+/jUaG9RHHa0mr3fb94Cpn2RYMfzVkKc4JfjliRanQHyCgFXNYmUMhVnUU5Kqeb780NY9OGTzWHogFApiwIRqMm/4SEDOcczbYOIWYe/3OvkLOmjsPbgs/cf6uFGkeT5CTgyYulrifsRK0GJLpUjCcfbvH+gI81Aks2+PbBF+QA3ZIZ/n45w99VcqIJCcSFoxguHNX+rT1Sx9Hvz8pf1Hc2ctw6NfB1vrtJ+bvwzkaOO6d7Dgs0BN8lA0fqgPwEvt7wR4lK2HcBbUtCQoqC0QiJMhn6HDxe+HqkixH3MvSRr2F0bghVV6fwNCc/Wa1WWK1Wj2HZ2dlBW364zZ07F3PnzvVofLVhwwZs2LABADBgwABMnDgRkyZNwllnnYUhQ4YEvQyVlZ5xzgMHDvRp/kGDtHXCOXz4sMfrDz74AB988IFP6+qstla5EyMhhBASD9SCL4ySKSjrMAvCarQEGBHtrC7xZ0nBaCQQaiE/JkGoVaiJ1muVW7ts/OUIYTAa8Z34s1Te70TBXKJzTbDKAygHVYnCq8Lx3RCFwSmd20Xne7Mu2cflKH8uEnQwsMg8Clpcft/qGaJjneizFIXHqgWV+lQelfI7uXdoi6/Utg/V0QgJXKOrQTFgCXCHNVEwGgm3g9ZfccSm3IFiQrffRCTcNJpITEKGIQs1juNe4+qd0dPjTRR2G6nrMkIIIYQQkriofV74RLqNHrXP047a51H7PEIIIWHCBb3dmQSkKQej8aY6jw70XJaB/du9pqNgNLcPftLeOXho6LNfQ+vQPvE4QxLQf7Dvyxw4CgWrSoTBaH/9nOO+2b4vNh44XRyHBZcU+dmebb3UgtHiLhKsbK/XoD7OI4qTtjqAVjuQnKC39nwNRsvPdod+JCpJYshNAyoVMrEO1XLE4bdJ0RFB2GdO+J8HHBG8dI9P02e6lA/UFIxGiDdZPhFo1inMrOFEcFnn0LImK9DQyr0D0KwAj5FAs2A5tYd/86llwybCJvxZuYrosz6ZwVkOIb7o1fnp9B1UBOGZPBYbR5ng95stZd4B01p/6zklFzggaO5bUk3BaL4qEQTSmQ1AXnqYC0NIgqFgNEKijI7pkG1QvolA4kvv3r09Xh87dgw1NTVBaSC1a9euLtcXSxhj+Pe//41HHnkEf//7370alRUXF6O4uBj/+te/ALgbYl199dW44447gvYkzs4N49LTfaulduumcuXTQU1N8O8+NzU1BX2ZhBBCSLSwyVbF4QaWBIn59rRDkWAFlhB1akEsDm4PY0lIvBEF5BiZKWjHCV+ZJeVAIg4ZNm6FiYmDAURBgXpGP/NFgijQTBTkFeowCCMzgYGBK9wi9y1wTHkfDSazTvv5VXSOMElm4XlaOQhOefubpeSIPY1W9NmLQvRERPUS0fFGNNzB7XByR8Bhi2rn9WAEnqqFn1EdjZDA1TnEjzXLMuQCCoconmgt3EhYfVf3mXDcWRkJ2vumkwx9tmIwWl00BaMJ6jei+hwhhBBCCCGhQu3zEge1z9OO2ucFhtrnEUII0czlUh4uSUCqcjAamuvBW5rAX/gTsOlLoPqo4mT9HWWKw6ubgWYrR6op/gNkOOdYskH7PatrJ0ohLE0YlOwWjzvnCrBUbfUjD6OnoMDxPjbiTMXRTcrNNeNeUSnHFW/IcAmyDQs6dSY3xXAzLr51Lfj/Pg78uhVwnXiYVlYPYNJ5YLc+DWZsf2AxX7UEKPvVaxmZLkGSE4DalsQNRqtv8e2e+k1nx99xm3/+NviSJ4CKUuUJxkwFu+kvYKeNB+AOh1MKRisRN2mIO1uUT+/oH5xL8ei3Y71Pk2cIjj8NrYBL5tBJ8fe9IonHJXM0Wz1Dy7zCzE7839AKNLVyj2nbgs5siRdoFizXTvTvWKJ2CJLj/LNwuoL3BjMSODiWRI4kMYzooxzwV1YDHKrh6HciMHt/Jccf/y3jh4NAix3ITgFmDGV4fh5T3H+LSjkueElwsXnC1kPA6f3df3PO8Ut512VO0nO8da0Ol7wqo0ahWX9JNce0BAkbDpaDguuQghxErC8KIYkihn9qI4SQ2DZx4kSvYUVFRZg5c2bAyy4qKvJ4bTabMWrUqICXG0l6vR5PPvkkFixYgHfeeQcff/wxNm/eDJvN5jVtcXExHn30UTz//PN4/fXXMW/evAiU2D92e/BDP6hTIiGEkHgm7lQbnIAZQD30RuauiAUrxRu1gBMnd4axJCTeiAJyTIJQpnBQO0ZZXS2q412C70OgIUbEP+LwTEEwmii8Kkj7I2MMJsmseExVHiYOHAs1YaCZQjmFAW5SikrAmlIQXPQdD8T1DHGwmBLRedSkU/4sRcFogDtALk3vRwNpj2WENhhNLfxMFIBHCNGuzqn8iDgDS0Kqjh5rRsKr0VmPrU0/KI4bmjIG3ZN6hrlE0SlTr/z4RrWgw3ALdV2YEEIIIYQQQjqj9nm+ofZ5/qP2eYQQQjQTnTMknTgYrakB/N6LugwGyRcEowHA019wPHFR/HfQfPlb7efksf2B346K7W3C//mocBxb+JJfy2SShJTxZwN7/SxUHCo+zjF1kYwWlWpkfqfbNMYYbcbF924Bv+d8wNmpXUflIWDFq+BV5WBP/Z972s/fBn/mD4rLUQtGq7MAfTKDVuSY0iB4RuJ1ExmONXCs2we0OoC+mcCNZzP8eVZsH6M641++B/7U79Un2roWfMEM4K2NYPlDUJDDsKnE+9heGj23QEPq+/3i81r/7PjaP5Rwawuw/Tuf5smUxcefhlYgK/TPiyVEyCVzNHkEmZ0MKuNeYWaNrUBTx6CzDsObvX+qI2HSPxu4dSrD7dP8OwarZebE+8+LonqQPzKpmRGJkGXXSxj9uHKA2ci/yKh8TkKzDZj0jIzq5vZxFQ3Ash85dldwbLxf8gjQKj7OMe05GZYuju3jnpTR/KKEZCPDqp/Vp2VcxljrFjzQaz3OHrQQBTlQDkaLnuetxgxRQHPnsHRCSPBRMBohhERIv3790K9fPxw6dKht2FdffRWUhlerV6/2eD1+/HgkJSUFvNyOXKInVoVYXl4e7rnnHtxzzz2w2WzYunUrfvjhB3z//fdYs2YNmpvbrxgaGhowf/58GI1GXHTRRQGtNzPT8+5LY2MjcnNzNc/f0NCgabqcHM8a8FNPPYX7779f83oIIYSQRGOTlR9BaJRMisP9oRaWYpOtMOvoLmkwiEJvgOAEqJDEJQoLEoURhYPacaNVbkEGshXHydwFGco3UygYLTJEAWI2uRUylyExz6cLC8Orgrg/mqRkQbiY5zDOuWrgWKiJA8G0hboB7u3vW8Ca6HgQ+iA4EVH5ndwJh+yAQdL23Ra/N+XPUi2ApFW2IA0BBqOpBLs55MA7namFn6mFphFCtBEFKbmDl5RbaHHEeessEjE/NKyGC8rhwFMyZoe5NNErQ698DVHvjJ5eAcKQ2gjWxQghhBBCCCHxjdrn+Yfa5xFCCCEhJCu3+YAkAWmCYLRt64C6410uuo+jHBJ3QVZ4yOfL33I8EdipOia85EMw2sMXSF1PFMV4yR7xyPOuA0sy+r3szOxU1fE2B4fREP+BPCct2cBVQ9GyU4A0k+f20EmxuX34x//0DkXr6PtPwCsPgeX1A1/+inCyTLlOOK4ugZt01Ave+2m9gP+9Tgeni8PuBJKNsbn/dEVtn/Fgt4J/uhTstme8QgdPOliVGO0TFn0pqDfAHc4T99Z9pHlS9vI3QH01Mh/9k3CaOgsFoxH/OF3uQDPPMDOgsZW3B5ZZT4aZtQ/3CECzosvQGxJaaSYg3QSkm93/dzvxf5qZeQ83A+km1jbs5PhuZngEGvlKrYoY78FowawDZtKxnETIKSq3KxpagX/9yGFzwiMUraOfSoHNJcD4wvZhS3/gms8PK7dzXDWe4bmvxHXE0v0DkeuqgpHbgUMSePVVKMjJQ1FZ4oYNB1NptfLBOj8nPq/hCIkmFIxGCCERNGvWLLzxxhttr99++208/fTTMBj879BeVVWFTz75xGs9SvR6z9OA06ncuUhJXZ34ZkW4GI1GTJgwARMmTMA999wDu92OlStX4uGHH8a+ffsAuDt6L1iwABdeeCEkyf8bmHl5eR6v9+/f71PDq5Pl8XU9WucjhBBCEpVNEOhiDGKnWrXwpFa5hYLRgqTVpRKgwoP/1G6SOMSd7yMYjKaybrVAHycXX7PpGf3MFwmi/YiDw85tMLH285GTO4THs2AG9YnK1DkEzcatwhCbcIRT+BRoJgjBMknJwrJa5VZwzj0aIYQjmM5XagFlVtkCgyRo/N6JWnickmSV8DvRsnzRohKMpnYs00rtWGnnNri4Ezo6LhLitzpBkFKmIVsQi0ZIaLi4C9/Xf6k4LtvQHaeljAlziaJXpkG5V4Do+xwJrYLfcCJZFyOEEEIIIYTEP2qfFxhqn0cIIYQEmSwIPmUSWHqW8h18DaFoAJAEB1LlZjTqvB+CZXMCsswhxWhYkxZNVo59ldqnz4/1QJlftwhHsb4DA1r0BSOAZzeIx1c3A70zxePjzRaFDuQdDe6hPDwrBahVaDpx9ZlR/D1U2a/a7NsOnt0LKN4hnMTI7TDLLWhVuAeUyMFoRwVZzpknNpNex6D3zraMC9zlAvb8pH2GD/4B3PYMCgTBaCU1wSlXtDui8rNA3wQ4DvNft2qbUJKA/CFAYy2yXbXCyY42AKd0D1LhSExwOHlbKFmjR6gZdweWdQgta1IafuJ/tYBUElqMAWnG9lCy9gAzhrROAWdeYWYd5kk1IiquhdQy1eQ4D0YTBcT6I4Oev0giJNXE0DsDKK9XHv/05xyTBqgfa4rKOMYXtk/T1fWmx7ylwFXjgeNN4ml6OY9COvnrkiwDB35G/+xzFacVhXwRsRJBU8xCwXULISR4qGcQIYRE0J133ok333wT/ESkd1VVFZYsWYKbbrrJ72UuXrwYDkf7U1pSUlJw4403Kk6bnp7u8bq+XlAjV7Br1y6fyhVIGrpWSUlJmDdvHmbOnIlhw4ahvLwcAHD48GFs2bIF48aN83vZY8eOxccff9z2euPGjZg4caLm+Tdt2qRpugkTJoAx1rZPrF692qsjNyGEEELa2WSr4vBgBrqoddBVC+Ugvukc2NORUw48QIUkrlZBoFIwg6h8lcSMkCBBhvfTWtQCiZxc/EROPfO/Aw/xn9r5xupq8RhvdYmPc8EMgxAHhXnuW6KwMQBhCf0UfQeVyqUW+mUWBHxxyLBxq0c4XTQGJaqtu1VuRRo0BqMJAkZF28comcHAFMPx1MJKtVLbv9SOZZqX30UdzCq3IkWXFvB6CElUtY4qxeGZ+lyAotFIGP3S/JMw2OusbrMgsTjtGeCHTL1y65p6Z03U3GOwCoJTI3ltRgghhBBCCIl/1D4vuKh9HiGEEBIg7t1OBAAg6YC8vgEvfkLrJnyZOsNruNUBHGsEemm7/RyTynwMyYn2YDT+4+fg364AjpYAO753D5xyMdhNj4H1Gwx+5IB45mmXBLTuCYONMMmtsAranzS0JlYwmqjj80lXjFOuR141nuHFbzzbZPTsBowvCFbJQqCirMtJ+D8fBTtlGOASBD2ekOmqFwSjcSTiPecWG0eVIMCgX1YCbI/qcp9nkf/xR+SfdiuAQq9xVU1As5Uj1RRf287h5Hh5Lcemg+6AnG2HxdMaDfH13hVVlGqb7oxzwdKzgPQspMtNyHDVoV7nfaIqreY4a2ACbLc4trWMY8kPHNVNwKxhwDUTGL7ZC7z/E8eB4xzNNs9Qs9bAmykSP0kM7QFlpg5/mxnSToaZeYxn7SFnHYLNUpKiI9AsWNTeSrzHEwUzGC2TmhmRCLriDIbnvlL+xh6sBg52ETb23FccK7e5oGPAqH4MX/pwG+iDnzh+KXehWJCfn+5qaA9FO6miLOHDhoNlSxnHAeWm1SjIiZ9zFSHRioLRCCEkgoYOHYrZs2fjs88+axv25z//Gb/97W+9nkyoxe7du/Hss896DLv++uuRlZWlOH337p6POti9ezfGjh2raV0dy6yF0Whs+9tms/k0r68yMjIwd+5cvPjii23DSkpKAmp4NXnyZI/X77//Pu6++25N81ZVVeGrr77SNG1ubi5Gjx6NrVvdT7YoLy/H559/jjlz5vhWYEIIISRBiMK0jMwUtHWohd60qoR5Ed+0CjpIA8EJUCGJKxqDkBhjMEnJaJGbvcaphf04uTgkkILRIsOkUwu1akEG2lvSqn22ZpXl+EoUatY5JFAthC+YAaPCdQjes1K5ROd7sy5FPZxObtUUThfJMA61dfsSwCraRqLtIzEJRsmsuA61c7JWLSE+r3dVB2t1tVAwGiEBqHMqt3jINOTALiv/tqsUtEhIoL6r/1xxuJ4ZMLHbOWEuTXTL0Cv34HJyJ5pdjUjTdwtzibyJzt+RvDYjhBBCCCGExD9qnxca1D6PEEII8ZMsCkaTgB79A178GxW3ov/AYsVxB6soGO2knFREdZgOX/Eq+PN3eY9YtxJ83UpgSRGw7Cnh/KxXYMlbktmMNYfOwqT8dYrj6xOoyaRL5ihV2bduOpvhD1OU96Wn5zKUVHOs+tn9uncG8OkCCbooDffgTfVAs4Yg54O7wOcN6XKyTFcdjhp6eQ2vDbxJSkw6VCse1z/KgxqDgX/4iu8zLX8F+V98C/Tbojj67Y0ct0yNzu+TP2SZ48KXZU3hGMtvkUJfoGhQUdr1NIPHgP359fbX1/8P8tcewnalYDQK/4hp3+7lOO9FGdYTTQ//XQTc9W+ORivAqclS0EhMKbQM6HYi0KxjaJl7PPMKM0s3ASnG8DzEIdaobRHRpWK8qAtiMFpGMu1bJHIevYBhzR6O7SoBtmpKa9rrJKv3+HYCq2x0/xP5z5ErvYbxY2UoGMCgFL94tB6wOjhMiRC4G6Dv93NMeVZ8oBaFzxFCgoeC0QghJMKee+45rF27Fi0t7qu7+vp6zJ07F19++SVSU1M1L6eqqgqXXnop7HZ727CePXvi4YcfFs4zZswYj9f//e9/cc0113S5ri+//BKbN2/WXDbA3RjqpOrqajgcDhgMoeu4r9d7nuI6Nvzyx9lnn438/HyUlpYCAIqKirBq1Sqcf/75Xc77l7/8xeMpoV25/fbbccMNN7S9XrhwIc4++2yf9gdCCCEkUdhkq+JwYxADXQwsCTro4YJ3IJEvgSVEnVpAj4PbheMI6Yo4UCmyne9NklkxGK1zeFVHamFCekY/80VCV6FcHakHkQVvfxSVqfM5SzWoTVIOVwsms8ZyioYB7veqGizmagH07Z3RRIFfkQzjUA9g1VbP4JwLt5EoKA8AkqUUxflaXIG3QlUrezCC0axdhLdRHY2QwNQ5lB97nqXPRaVd9CRnamVIgqvSXo69LTsUx41Nm4xUfXqYSxTdMg3i1jV1zuqoCEazCq51whHKSwghhBBCCEls1D4vNKh9HiGEEOIH2aU8XJKAHv18W9bAkWC3/hVoagB/eD4AoJfzKLq56tGg805AK6nmmDwwfju7ltVqv1cVzQFx3OkAX/Kk+jRP/U48ct6dAZeBMYYzsAc67oRLoT1SfQLdjj9aDzgEX9sv7pQw4zTxd8qcxPDJ7TqU13FUNwPDewNSlIaiAdAWQOSDTLlOcXgwQzFiSZlKMFpf5Zzt+PLB837N1s+yHxJckKHzGnfvco5bpgZYrijywwFoCkUDgNN9rDLEIs65+Lg062qw6ZcBvQqBvgM9wpfYmKnov7oM200jvWYrPWYDQPemY9VTn7WHop3UkEBhrV3RSScCzdqCzE7+fSLQrENomTvIjHUKOHP/nZxEgWahJKnkWsZ7y7v6Vt/e4Wm9gF1HlcdFc5WaxL8UI8PWh3SY8bwLX++JdGk8jbL97D2wokw1tKusBhjcI3Rlihd//Uw9vZKC0QgJvQSJByeEkOh16qmnejw5EQB++OEHzJ49G0eOHNG0jP3792P69OnYs6e9Ji1JEt5++23k5uYK55swYQKSk9s7/65cuRJFRUVdruvaa6/VVK6OhgxpfyqM0+nEt99+q2m+lpYWvPjii2hqatK8rubmZqxYsUK4fn9IkoTbb7/dY9jNN9+MkpIS1flWrFiBV17x7ekm11xzDU499dS213v27MHFF1+Mujrlm0MiVVVVXtuBEEIIiTeiwCOjZAraOhhjMOmUb4SqBRgR36gFmAQjQIUkrmgMQgLEYUWi8gLq3wUdBaNFhJGZwATP8LJFKBhNFBSmNahNggQDSwpaeURE71np3C4qq0lKhkkl5LDzfKJ6g+g8Hw4S08HIlOstovCQzuzcBhnKN9zUguPEn0Hg9ZtWlXA1R4DndYfsgJN7B9Z6rJ+C0Qjxm0N2oNGl/DukWvASIcG2ru5z4bizM2aHsSSxIU3XDTrBM9HqndHx6GthXSzC12aEEEIIIYSQ+Eft89RR+zxqn0cIISSMZEFHSkkHZPcEkrQHjbKL/IdRgwAAIABJREFUbgIbOx0YP6N9GIACR5ni9AeVn4sTNyoatE87OC+Ke9KX7gHqq9Sn2a/8YBkAYL0KglIMZk5Blks5yam+Jd5jG9qp7Vfj8rUto3cmw8i+LLpD0YCgB6NlCe45H/PhuxpPKhqUvzd56YDJEOX7RoB4i/Zrzc4McCLPeVxxnNMFyHL8HI/W7tP2XpL0QO/MEBcmGjTWAoJ9h13wO7AzZ4H1G+Qd4NQzH/3tynWhsmP0kO5Y5ZI51uyNdClCQy8B2SnuQJVRfYGzBwLnjwCuPIPh5ikMf5rJ8MRFDC9cwbD0eoYVt0j4+m4Jmx+QsPdxCRWLJFhekmB/VUL18zoc/KsO2x/WYd2fdPjvHTq8+3sJr10t4W+XSvif8yQsmC7h2okSLh7NMH0Iw7h8hsE9GHpmMKQYGYWihZja1o2jU5qiykbfpp94inhrDcwLsDCEBMFLV0qIpkNmmqsR2S6FNoKVh9A/WzxfSZz/VhQMnHOs3Scen53iDhwlhIQW9ZgkhJAocMMNN2Dr1q14+eWX24atX78eQ4cOxQMPPICrrroKffv29ZqvuLgYS5cuxaJFi2Cz2TzGPfPMM5g+fbrqetPS0jBv3jwsWbIEAOByuXDeeefh7bffxowZMzymtdvtWLZsGe677z7U1tYiMzPTp4ZA06ZNw9KlS9teX3/99XjwwQcxfvx4ZGZmQuoQeZ6amoqcnJy29S5YsAD/8z//g0suuQQXX3wxpk6dirS0NMX1bN68GXfccQfKytp/yDzzzDMxaNAgzWUVWbBgAd5++23s2OG+mXj06FFMmjQJL7zwAubOnevxHiwWC5577jk88cQTkGXZp+2l0+nw4YcfYuLEiWhsdF/1f/311xgxYgQeeOABXH311cL3X1tbi9WrV+Ojjz7CypUrceaZZ2Lu3LkBvnNCCCEketm4qFNtcANOTFIyLC7vG6zBCA4hbmohc12FnxCiRtT5Xi0sKBxExylReQH1YDQDMwRcJuI7xhhMklkxhMk7lEv5OJfEjNAx76da+ku0b2ktj1lKCUvjBtF30MHtcHIH9Cf2aZnLXiFzHZdxMpyOKzwvrfN7FL/nCB8PdMmwOa1ew7XWM/wN3UsWBjQGIRgthIGnWrYL1dEI8V+DSoBSpl4cjBbnbbNImFnlVmxs/EZxXD/TAOSbA/+9P95ITEKGIQs1Du+OAXWO6GjBJKyLqQTdEkIIIYQQQkiwUPs8ap/XEbXPI4QQEjGyS3k4Y2A6HfiEOcC6lV0vR5KAiXPcsyanetynKbCXYLtppNcs8d7Ztd6HW8QXjgpdOfzBZRnYuhbYUwT+7YeBLWzSeUEpE0zJyHA1oErf3WtUg7hpU9yx2MTjukXuGXyhUaEeSOyrvg7lEOrS6sS8syw6RuWmhrccEVF+MKDZ8+2lqND39BpucwLHm4Ae3QJafNTQGhhzwQhAF+1Bi8FwTDncDADQK188LqcX+svliqO+OZQKm4PDGOdhhPGo3Lcc+7BI0rvrAummE/9O/m1mSDOdGOcxniG983AzYNSDwshiDK+uADavBlc7TonY0gHcrjiKx3kVydfr0ZF9gbH9gaJOm3lgdyBfJeSJkHAZlMcwZSBUA7P8NbovcLTBt0DBC5tXKYcvlu2FycDQs5ty8HdpDYd6bCOpbASsKl0fLhxF24+QcKBgNEIIiRIvvfQSMjMz8eSTT4KfuJJtamrC/fffjwceeABDhw5F3759kZmZiZqaGpSVleHXX3/1Wo7BYMDixYtxyy23aFrv448/jpUrV6K+vh4AcPz4ccycORMDBgzAiBEjYDQaUVlZiU2bNsFisQAAevTogWeeecanJ1NedtllePDBB9uesnn06FHcdtttitNee+21Ho20AKCxsRFLlizBkiVLwBjDgAEDUFhYiIyMDOj1etTU1GDnzp1eT/FMTk7GG2+8obmcagwGA959911MmTIFNTXuDoIVFRW47LLLkJeXh9NPPx3dunVDZWUlfvzxR7S2uu/6devWDc888wxuuukmzes67bTTsHz5clx66aVoaHBfcRw5cgS33nor7rjjDgwfPhz9+vVDeno6WlpaUF9fj3379ml+iikhhBASL0RBKUbJFNT1iAJTghEcQtzUAkwCDVAhia3VZVEcrhYWFA5mSRRIpFxeQD0kUE/BaBFjkpIVzwedj2uiAMhgh3KJ9m2t5THpwtNyU+07aHW1IlXv3qft3KYYenZyGWrhdF7vWXCuifTxwCQlowHeT1rWWs+wqoSLqu1fovfdIjhuasU5Fx57gcDP61q2C9XRCPFfrVP8BPpMQ464MV68t84iYfVT43fCa8QpGbPDXJrYkaHPVg5GUwk8DBcXd8LOlXsPRbouRgghhBBCCEkc1D6vHbXPo/Z5hBBCIkSWlYefCP9kNz0GvqcIOH5YdTHslqfAcnq1v779b+Av3QsAKHAohxsdrIrvezkNGm8R/3YkcOmY6Om0yp0O8L9cC3y7PCjLY3n9grIcmFLQTVboNQ2gPpGC0ezKw80GQIqzYCL+8n2BL6R3YVsIluhYFO8hjSKiYLSMOL9Nxh128BsnBrSMl47dhdMLNymOK6uJn2A0tSDGjp64SOp6ojjAv3xPeUSSEcjqIZyP6XTITxFXCn7znIxPF0jISI6vY3i8+2RH8OqxJkOnILMTf3c7EWjWMbTMPZ55hZmlm0ABewmK79wI/ueLgUbv9r5aMH1vYKByMJocx5drnHMs2eDbG8xMBp6fJ+HCl2TUnTispxiB1/+fRGGCJGoUdmdYuy/4X96XrpRwrBG48k0ZNnH3ofZy2A/i4aonlUc2N4BXlaMgp4diMFqiXp/54tNfxJ9xRjLw0Hl0TCIkHCgYjRBCosjjjz+OKVOm4NZbb8X+/fvbhnPOsWvXLuzatUt1/jFjxuD111/H2LFjNa+zd+/eWL58OS666CI0NTW1DS8uLkZxcbHX9AUFBfj0009RWVmpeR0AYDabsXLlSlx00UUoL1d++oJWnHPs37/fYxsp6d27N1asWIHhw4cHtL6OTjvtNHz99deYM2cOKioq2oZXVlbis88+85o+IyMDn3zyCVwuwRO+VJxzzjkoKirC/PnzUVRU1Dbc5XJh+/bt2L59e5fLyMzM9Hm9hBBCSCyxyVbF4UYpuKEuWkNmiP/UtqWDC1oYEaKBVRCgaNZFOhhNcFxxiVsPqoUJUTBa5JgE55zO+57oOGcK8r4oPmdpK0+wg9pE1L6DrbIFqUh3/60SsHVyGaJwus7DRAFikQ7jMAv3IW31DLUQMLX9SxTQaFUJaNTCwe1wQXwnNtBgNC3bRS0sjhCirs6h3NLBLKXA9P/Zu+8wN6qzbeD3kbRFu+tt7gXvrgGDDRgwpmNDDJjQQkgIJEA+SDAlkISQhIQ3gQQICeQl8AIJPdQQWgqE3rHpNiVgG2NsbK+Ne9tdb9FqJc35/pC36jyjGXVp7991+fJq5syZI2maZs7c4/FD8elwlGZaa8xtij3XDgDlniHYb8hhGW5R/qjxDTMObw5nvweT9LsMyNzxJxEREREREcD+eU6xfx775xERUZpoKRjNCwBQ43cD7p0HzH8ZetWSmGKqogqY+hWoifv0HzH9a8COYLQJXY3GWRT6za4tAfONql/fBzh2L4WN24ED6hWOnAR4cynQ6s2nUxeKdu5VKakHAOAvR9V2IRhtEF2Ob+s0L1flJRluSJrpptgH77g2bAwwaf/eYLSuVcZiq7YB4YiGz5tD62EGSIGChR6MhrlPAhGbNIed9wLKhgC1I4HmLcAnb8YUmRJcKE7euFXjwAmFsSxJ+7G+Vl7rQd3Qwni/drTWwD/+bB45cjyUxz4crq5WA+bbC/DuCuCOuRqXHVv4n2Mh+fGj7kJnHjpHodKvjAFoxT5+95Q4fdMlCYeiAYBHeEg0UNjPJH13hftpqv0Kh+6isOC3Hrz8mUYwBBw/RWFcDddhyh31Q+3H33GmwphqhWUbNbZ1AJ0h4IaX7Ff2IyYCB+8cXc4XXenBi4u1MdAMlgYevBaTuz7DrLZXUGM1i3Xqv/wSDeMfxDvLY+fdWODnilLh3Afl72zFHxi4S5QpDEYjIsoxRx11FBYvXozHH38c9957L+bOnYtwWD4RXFJSglmzZmH27Nk48cQTE0q8njlzJubPn4/LLrsMTz31VM8TMfsaPnw4zj77bFx++eWorKx03fEKAKZNm4bFixfjkUcewQsvvIBFixZh06ZNaG9vFzsmVVVVYe7cuXj22Wfx6quv4pNPPrH9PABgt912w1lnnYWLL74YZWWpv1Kwzz774LPPPsMVV1yB+++/v1+HtW4VFRU45ZRTcPXVV2OnnXbCnDlzEprXLrvsgvnz5+PZZ5/FzTffjDfffBPBoP2jQCZNmoSjjjoKp556Kg499NCE5ktERJQvpBtrSzylKZ2PHHoziHr5pJldqEtYO3jMBZEgIAT8ZDsISZq/1F7APkzIq3iaL1uchmdK27lUB0E43WdJ7cnUumE3n777d7sQje736veUoclUz4BwLDEoMWe3B86OM6TjEQWFEiUfE5V5zcFoHUkGo9ltxwAgZCUXjObkc3H62RFRrCYhQKm2aLjtdNqm4xaRG8sDn2GdcKPEwVVHothTYHeapFC1z9zbSgo8zCS78yfS8SsREREREVG6sH9ef+yfx/55RESUQZYQ5Nkn4ENVDQWO/ra7R9WMGBetw7JQH2o0FlnbDHSGNEqLCvOGTSl0aK9xCudOtw9QySb95lOpq2xMQ+rqKqtAdbM5GG3L1k4AhZ7mFNUuPM+10ILR8O4L8rjakcA2B79N6nbrtww2hFYai0UsYMN2YNwgyxduES6VVfsLc5vcTb/1tDxy6hHw3Pxiv0HWWfsBKxb1G6YATPJvwWeB2IdErdqailbmhnihk7XlGBShaACAjavlcaPr405eP6oUaJTH/+djjcuOdd0qypL2oLv+SN/aT+H0A3P32I/yl968Fvj8o6TqUDb96yLhCAo18uOFRe77FXaHx46tUTj7kEGy/6O8U1crj/v+YQrnzejeH0WXYa01bntdI2DTjb47FA0Adh6hcOEI8/KvP/8IesvvnDX0i09QP9U8auUW9vu10xmSP5/Jo8FQNKIMKsyjJCKiPOfz+XD66afj9NNPR3t7Oz788EN88cUX2Lx5M7q6ulBSUoKRI0di4sSJmDp1KkpKkr+ysvvuu+PJJ5/Eli1bMHfuXKxZswYdHR0YOXIkGhoaMH36dPh8vbuNI444wthBK57Kykqcf/75OP/88x2VV0phxowZmDFjBgAgEAjg008/xfLly7Fhwwa0t7dDKYXKykqMHz8eU6ZMQV1dneP2JNohqqqqCrfccguuv/56zJkzBytXrkRTUxOGDx+OcePGYfr06Sgv773BONHPC4h+BieccAJOOOEEdHZ2Yt68eVi1ahW2bt2K9vZ2lJeXo6amBrvssgsmTZqEoUPjRE0TEREVkKBlfqRTqm+q9XvMwSGBCEM3UsXuJmm7MCgiO1rrnA1C8nulMC05BEoKCfTAC4/ihfxskfY5A/cR0neb6iAyvxB2Fdue3A1G6xtqZbd/6N4/y+F0vZ95REcQ1MJxg7A+Zoq0PeqMyNuDvuSQO7/tDXpiIFuSxzcdEftgtGT36wMD74xlGIxGlLBtQoBSja+7k7HQ0YLBaJQibzQ/bxyuoDCjmr2T7dQUxd4MAADN4ezfERCwOa7Jdmg1ERERERENTuyf14v989g/j4iIMsiyzMOT7POhfEXQO+qeIIQRAUDjFmD30UnNKmdJgTLVaXw2h27ZGg3wiUSAMfXA6AZXIbp66wbg5UdS0xiPB5iSwsDW8bth9OoNxlGrNgZRyMFoWmus2AxENNAu5OVWFFAwmt6wCvrpe8Tx6nuXQ9/wo/gVTT4AanR9z1XjUWE5TG1be+EHo23arrFoHaA1UFYMbNhu/q1SVbirUtS6FeIote/hsQNH18UEowHAeGzEZ4i9FtqY/cugKdMUp6vTzN0y046csFZebjBp/7iT14wbib2XLMAnpVOM41dk/7li5MJKl99XHU/ZULrYbZscsgtG0+EQCjXyY1PsMy/iGlOd+nYQpdqMiQpKaZguS5ywV+y5AaUUDp8IvPCpXOcRuzk8p+Bmm7R5HeqF/aPb/exgYxfE7PaYQ3d2AEs/BiJhYJcpUEO4oSNyozCPkoiICkh5eXm/jkfpNmzYMHzzm9/MyLwS4ff7MW3aNEybNi3bTQEQfSLoMccck7H5lZaW4vDDDRcAiIiIBikpZKYkxcFopV5zfQzdSI2Q1SUGPnWPJ0pEUHeKIR3ZvvleDNNKICSwSBWlpE2UGGlZGhjeGbDMYVGpDvOU6uu0OqC17umEK4VfZSo00Ku8KFYl6NKxvUj77l+ldcIDD4pUMQA52KzvtEGb0EF/ir8Dt6T2Oz3OkMpJwa7dyoQQvWSPb+JNn2wwmt120k0ZIjJrCtsHo/H5ZpROLeEm/Lf1XeO4Pcr3w7DikRluUX6p9pl72zSFt/Y7DswGu+ODbP82IyIiIiIiYv+8/tg/j/3ziIgojbQQjObxJl/39y4H7rsGdaHVUNqCNoStXfh3C6/+zJPV88XpIgajpeEUtA6HoW/5KfDEnf1HNEwGbnoBqtb+eoYOdkJfey7w6uOpa9RJ50KNGJey6tR3LkH96zcbx63cloLlNUdtaNE46VYL7zfalysvzkhz0kpv3wb969OAj9+wL3jSucAHrwJzn7Qtpr55IbBqSc/r6kizWFZaXwtBV1jj3Ac1/vaes9DmdGyjcoXWGvjsA7nACd+LHTa63li0PtQIYI+Y4XfM1bjtjISal3Ps1ouKEuBnswbHg3O1ZUFffZY4Xn3jgviVjKnHFVv+gFPGPWocvbkVaA9qlJcU3vFQIXpnubsQ/Hrz8+SIkvfJW0lX4ZF+D0LO0C4Ebo/9fJ7CD9GlwlA3VGH2YQp3v9l/X3XYLsDX9jZPc9mxHsxdaiFg6Ep/+ETgyN2dzVu/+4Lzhgba0FC6HcCQmFFb24HWTo0hpTwuMrELjvvDyc6Pz/UTd0Df8nMgvOOLVwr69J9DnXc1lGdwHOcTJYvBaERERERERJSXtNYxoTPdUh0yIwWLSMFs5E688JJkA1Ro8OoUgp+AzIU/yfN3H0gkBQj6GIyWVU7DMzsj5n1GvPAqt6Rl24KFkO5CsSoxtq+bFNKVDqWeMnRFYoPR+oa2ie30lPV01pbes5OAtWhdqf0O3JLa7zTcSwq5i3c8JM23Qwjxcyre9Mnu150EtzG8lihxTaHNxuE1Rew5SOn3dvNLiMB8zHt49bEZbk3+6Q4wHCisQ2iLbMcQX1WGW9RL2jf7lA9FHv6eISIiIiIiIiIiokEiEjEPT8FNkOpr50Dfdw1KdBfGhdfiy6KdYsrMWQq88hlw9OSkZ5dzmoVufFX+NNzc+9TdsaFoALByMfT1F0Jd+y/byfXf/ugsFO3AWUBRCbBlHbDkw+iwvacDfYPtqoZCHXQMcPzZztvvgBo5Hg1qo3Hc6nY/whENn7fwbpye/UD8UDQAKC9Je1PSTt90SfxQtFN/HO2bc+XfgSfvhL75p2JRNXQUdFdvf95ihFBmtaPD0CenqYC7dPzpJeehaABQU8DBaHjxYXGUuuJ+qGGjY4ePrjc+Bnd821Kg9HhjXcs2auw6Mv+3R9J6MbYaePEnHkwek//v0ZHX/glsM+9/MHJ83PBRAMCoOny99Sncs+48nDPmLmORxq3AHmOSaCdlzAUPuQxGGzpI1hXKOP3XK80jyiuBXfdxVIfqkAOGdQEnozV3uFuPx9cCXg/XZcoPd5ypsH898OKnGp0h4NBdFH5ylIJHWIZnTFR48xce3Pu2xuJ1GhrAkFJg+q4KP54pT9eX1hp44W+u2lkfXg1T0DAANG4B9kpdznpBWbFF3n7tvZOz7ZT+dD70jRcPGKiBv18P7LIXcNRpyTSRaNBgMBoRERERERHlpbAOw4K5s1iJKk3pvKRgEaeBJWQvXniJFAZFFI9tEFIGw5+M85eCkGzC3KQwIa/iKb5schpqFRDCoqRgtURJy1Z3m4o9JT1/m2QyNNDvLcP2SFPM8H6BZsI64e+zDjvZT9vta/wpDlR1S/rOnIZ7SeX8XvvANzGg0WY75EQgEi8YLbn9upPjL7ttKRHZawqbH3HWG7hkvpivjd2TiZyL6AjeannJOG5Y0UhMKt83wy3KPzVFQ8VxzeGtWQ1Gk/bf2Q6oJSIiIiIiIiIiIsooLdzsrpIPRkPtKKC4BOgKor6r0RiMBgCPzNc4enJh3WQejmi0mp+viuo0dIHQr9iEmr3zHHRbC1SFzTn5Vx6NOw/12GdQYyYk0LrUqZ9QC7TFDo/Ag7XNQJ18WSIvbW3TeOFTZ2XzPRhNBzuBuU/ELafG7RL93+cDTrlIDkYbPnbH/+MArw+IRPuFVEdahGA0Dem6c757ZL676+bV2e2ylFb65UfkkXseZB4+qs44uL5pARCbowYA+M8nGj+fld/Lk2VpbBf2Y/edPYhC0QBou33k5P2dVTK6HgBwesujOHf07bBUbBDRyi0MRssHW1rd90WqL7DjE8oNeuOX8shpM+G55jFH9Xj/+zFwuzCPAu571+yyO28Dn99KeUQphdnTFWZPdz7N1DqFqXVJHN8t/a/rScZ9+Bi8nqsRMZyWWslgNNFKc3dqHLaL8zrsjm/1y49CMRiNyJEUnD0nIiIiIiIiyrygJTzmEUBJigNOpJAYp4ElZC9ewElId2WoJVRo7IOQshuM5heC2aTwLACICGFCPgajZZW0z+kcsJ8a+LqbFE6VKCkkLNqG+EFhdsFqqSYGBPZrp/lz6zutHCzWO61dUFYm37OJ03A9iRw0Yn88JAWnBaz26NOkEpTu/bqT4y+G1xIlJhDpENefmqJojyNVoB3UKfsWtM1Dc3ircdz06mPhScVNYQVuiLcaHpifLiuFHmaKfCxcwHd7EBEREREREREREQ0UMT8EFL7k+30oj6cnUGZqp3yT7OcbCu+G+zWxz2PrMbwiDTNc+I48zrKAVZ8bR+lQF3RHK7BupX39VcOAEeOTaGBqjB0p96XYZv+8tLy0aC1gOVw9yovz95qptizgy2VAVzB+4YkDHlx02sXGYupbP4z+7/MBo3qX3RrDwxIB9+EY+SJiaSzd6G6a6rL8XZbi2rJeHjfCHN6JMQ3Gwft2fChWtcp8iTmvbO8EpK5aNQXynKl4fdG01tDhELBysVhG7TbV2cxqRwLFpShCGOPCa41FVm4pvOOhQqG17lleFq1zN21lKTBheBoaRbTafHwPAGrnvRxXo2z6PlmRwtsuRSyNYEijyeWxX1KBUUQFTofDwBcLXE/ne/I27FRlPie1cmvhbX8SobVGeMC2eOVm82fTMEx4wLRlQXcF+/2zO761278QUX/sQU5ERERERER5KajlYLRST2lK5yUGrtiErJBzgYh9T6mwDmWoJVRopGAPDzwoVtl9dKe0XQnpLjEALSSsCz5VlLJ2kXtyKFfHgNfmbV288KpUtSfahj5BYcL6kcnQQCfBo1JYYN/PTQwW67N/kcK0fMqHIk9x3Lamk9NlSCKVixe6J31uFiwEtfAYUgfSvV+3C7nrxvBaosTYBSfV+uL1HGTnCErO3ObnjcOLVDEOqToyw63JTx7lQbWv1jiuKZTtYLTsh/ISERERERERERERZZ0UjOZN0QPxRtcDAM5pvl8ssjK7p4vTwi4Up25o6uaj13wB6weHxy930VegW5t7X7/wd1hn7g09cwj0McPk9JtuXz8vGjCVZTVjR4jj3IYb5IPlwg3PJmXZ7XaWEN20CdavvgX91eHQ35sWf4JJ04DJ+/cbpE74HlA8oG9uRRUw6/Te1zu2QwBQbTXDZK15cN5b1wyEhM28pLpAL5VprYGNq80jxzTI27gdAZ8DTez6QpxXSwFsj+y2qdV5/pwp/cVCWBfNhD6qGtb3D4Se/3L/8ZEIrNt/BT2jFPorFfbhocecLo/rQykFjIyG79V3NRrLFOLxUL6zLI0rn7JQf5kF7/kWPOdFMPMGy1Uds6crlBYxUInSYPkiedxxZzmuxmOT6JHMw4xzzcbtGt+4LYKaiy34L7KwbJPzaf1FwDmHcT0mGkivWgLrx7OgZ9VAX3e+WE59/wrziM4O1IdWGUcN9uOirrDGxY9aGHNpdJt10B8iePuL6DZZ+mwahvV/rVubYP32TOjjR0EfWdnvHz58XZ75muXQG79M0TshKmwMRiMiIiIiIqK81DfcZaCSFIfM+L1C4ApDN1LC7rsEgLAOF9TFHsocu5vvlcruRTO78Clp2yKFCTEYLbv8wj5n4PIXELZ18cKr3CqxCQftG+gphXtmMpxCCoXruw5I+4i+n1upsJ/uO61UTy6EcUifQ2fEfv/YTQoKixe6Z7fsxQs3s22PEGbXLdlgNCehZzxGI0qMFIymoFBdFA1bkg6heLROyVgf/BJLOxYax00bMh3l3iEZblH+qikaZhzeFM7uo9Ll32Z53pOfiIiIiIiIiIiIyI2IcK00xcFok7uW4PLNfzAW2bAdCHQV1pWdVdvM76e6DKj0p6Z/kO5og77wK8Ci9+IXjoShf3lydLo3n4L+/feBVUviTzdiJ6hzr5JvZM4w39g6DIlsN45r+mJFhluTfrMfdL5elOdZMJq2LOiffBV48ykg0GZfuHo4MOt0qBuejelfp+onQd30ArD3dKCyFtj/SKjb5kANHdVbaExDb1WRFuMsbnipsLZB3RIJFMj30CtRWzPQbt5+qF/9VZxMVVQBQ2qM486pM4ejNXXk//LUbBeMlv2ubQnTTZugfzgTWPA20NUJLPsY+hdfh/78o94yt10GPHxD3LrUr/4KNWyM85mPGg8AaBACQBq35P9yU2iufkbj6mc0vmxyP+3Ow4GbadqDAAAgAElEQVTLj1f44zcZpkTpoW/9pXlEiR9qRxCjE3b3LlhWYWyXLEvjqBstPPkx0Ba0L/vr4xVm7AqUFkX/HT4ReO1nHkwcyXWZqC/d2hw9H/HfuUCoSy5Ytzvw7UuAGnPIecP6d4zDB/tx0YUPa/z5NY2N24GIBcxvBI660cLSjRorhS6XfYPRtNbQl54EvPYPoM38G9iO/s5k6HA4scYTDSLZf4QEERERERERUQKCVqc4zi4UJhHSjbpdOoiIjsCrvCmd32ATL0BFw4KFCLw8jUEuJRoWlAl2wWidkQAqvJUxw8OWFIzGdSObpGCtzgH7qUyFQXiUB6UevzEIrG9YlBQcJYWBpoP42UX6BprF/9yk9anTwfvNie2B1xxQFrDaobWOG+Qo7Ufjhb7ZfdcBqwPmbobxdcQNRkvu4l28QNVoGQajESWiKbTZOLzSW90niJUdjyj13mh+Xhx3eM2xGWxJ/qvxmYPRmoXgw0wJCIGvuRBSS0RERERERERERJQpOiJcK01RMJoaXd/zMJvTtz+Ka4b/yliucSswaXRKZpkTVgk3qtbVpnAmbzwJNG1yXn7hO9DLF0H/525n5YeOhudf5tCfrBlVh2qrBa2GPkxNb70BnLBzFhqVHpu2u7sRvLw4TQ1JlwVvAys+jV9uyqHw3PqabRG118FQf3lFHj+6oWc7VBOR022+3KaxU21hXXtemUCgQD6HXtnasFoeN6rOftrR9UBr7LIzJrwewC4xw+1CxfKF3Xuoyn7XtsS9/GhsQF4kDP3MfVC7TYUOdQHPPeCsrkOPdzfvkdHlrE4KRsvuc8VoAMvSuPMN59vQE6cA//kh792gzNBrl8sjDzvRVV0ej0eeT4EEo731BfDpOmdlj9tT4XcnyZ8JEe3w+j+B7dvil9vvCCh/OXD6T6FvvSxmdH1gOWB4Pm0iAc+FYntA4+/vxW5/g2Hgple0eJw+YXif37LLFwKfzku8EaEu4P2XgYPZT5bIDo8YiIiIiIiIKC9JoRgKHhSp1PY88XvMgSXRdhTAVfUscxJwEtLCE1OJbEjrpxRClEl2AQBSyFEE5g6yvUEllA1SsFbf5U9rLQb1pWN5lMPaom2I6Ai6tPlRXJkMp5CCufquA3LAYZnx7776fgfi9sBmH58p0jJkwUJI2zzZaQdpPxpv2bJ771KQnBOdwnfWLZzkPj1eoCoQXW60LoyOIkSZ1CQEJ9UUmYOW+uI6R4nqtAKYt/1147j60okYXxrbuZ1k1b6hxuFNoez27JbDbgv1bg8iIiIiIiIiIiIig7AUjJaiYIfRDT1/1oVWQ2nLWKyxwG563dxmHj4u0aeBGeil/3U/0bKPgWWfOCtbt5v7+tNt3M5isFVzU2H1mfxsvbvydebLMblr2cfOyo2uT35eY3q3Q/VCIBEALFiT/KxyTSKBAgUbjGYX3DBsjP20I3cyDq4JmT/gQtgcSe9hSCng8+ZvgKD+x1/MI568K/r/+kagrSV+RTUjgCHuduqqbiIAoCHUaBw/mANActGG7cDG7fHLddt9dP6uF5SHli0QR6m63V1VZfeQZKtAgtH++6Xz91Gb/e7bRHlBL3X2e06N33Fe4aTzosdPA9gdFw3W/r+fb4yGoJk89Yn8mYzvG8Tv9LyPHYffMdFglprHihARERERERFlWNDqNA4v9ZTaXjRIhBRYAkRv7i33Gh6bQI4FIvEDTqIhKvn86DPKBinYx26dzhQpEAqQQ46kMCGfh8Fo2SSFOYR1CCErhCJPEUK6CxYiwvSpXx79njI0Izb8onudsAv19GcwnEIONAv0+Tv+eiy1udMKwNIWPMrjqJ5ssQ8oa0exp8R2+kS3dUWqGF74jKGLgYjQc9yBjjjBZSErftibHSeBqhYiCOkuFCv7z46I+msSOhLX+HqD0RSk31qDs2MEJW9+yxxx2354NZ+C55YUZNgsBB9minS8Yve7iIiIiIiIiIiIiKjgRKRgtBT1+xhT3/Nnie7CmPB6rC0aG1Ns5VYNiNd88k+L0AWitjyF73HJR64n0Xf/Fti20VFZNet01/WnmxpSg6qI+Qbfps0OgmzySHP8bgg9in3ACVPSu/7o91+Bfv4hYM0y5xP5ioFJ06C+81OoYaN762prgb7l587qSHEw2jdan8Q1w39lLPb0Ao3j0/w5ZlpjAs8pqsp+t6X0CAj9jvzlUPHCQCtrjYOru8wfsJv1N1c1d5j7W9TEuZSqtQaevgf6+ot6B06aFv2/shbYsBoYXQe0uF04FTBhT6iTZkN11+eCXt8I/djNwAY5HNE671Cgw2H/tFnfcX9fwMxvAbdehvquRuPolgDQ1K5Rk8pjhTz339Uat83RWLRWo7wEmL6rwqWzFMpK0v8ZuQ2qO+NAfm+UQetXyuOOPs1VVR6PPK5QQomWbHBeNu/CholSSFsW8J+7oN95HmjpsyP0FgGT9oP69iVQI8ZFh33u4HyErwg44hsAAOUvhz7gaODFv/crUi8Eo7UFga1twLBBeFuk3YMD1jXL44buuPVDd3ZAX3de0u3Qf70SOOUiqPJKd9N98Br0cw/GnDtQ5/wG6sBjkm4XUS5hMBoRERERERHlpaBw43RJWgJmbAJLIgGAmURJkW6Q7itshYAUPRyVBg8pCMlunc4Ur/KhSBUjpGMDggJCqFDIEoLRFDdC2WQXPhW0AijyFNlu59KxPMYLHMuVYDQ50Ky9z9/m/b3f2/u5Sd+BhkaXDqJU+RGISOFh2Q/jsA9gDaAqzvSJbuuUUvB7y9EWie2w7GTfLIkXeBrWQmf/FNXfU87qiBsqR0T9bROCk2qKhme4JTRYaK0xt/l547gKbyWmDjk0wy3Kf9U+c6/BpvBWaK1THiTvlBxSm/1jMSIiIiIiIiIiIqKMkYLRfCm6tWtAqFF9qNEcjJbdZ2mknBQoU5WiU9C6fTuw8B33E25aE7+M1wd8+xLg2O+6rz8DanadAKyLHd7iqYJe/D7U5P0z36g0aBKWoYEqSoB/XODBuJr0XW/Rr/0T+qrvApblfuKF70C/8R/grregakZABzuhf3ik48lVKoLRxk7o+XNKcJFY7K43NM6drrFfXeGE26zc4j7QxOspnPffT0Do2+OviD9thbmnVE3QHDTZ5KwbUU5rErppVccLRrvlZ8A/b+0/8LMP+r9etSSxRn32PvTLjwA3Pgu192GOJ9MbVkFfMCN+MOjAdkpmfgvq3Kscz7+bGjEOGkBDSA5nu+MNjf85tkDXQZfmrdA48kYLHX26M7+2ROOlTzXe+IUn7duqS//pbJ9XXgLcfobClHH83ihz9PpGcZwat4urupRNMppl5X8wmmVp3DnX2fsYXQWUFnFdpsFL3/BD4Kl7zCMXvQs95wngzjejx89LPrSvrLIW6rcPQg0d1TtsVF1MsfrQarGKW+do/PbEwbdOrtqWyG+46DGJjkSgLzk2sd/uBvqHRwJ3vAlVUuqs/Ov/hr7yDPP8tzelpE1EucQmX5aIiIiIiIgodwWtTuPwdASj2dXZKQQYkXN2AT3dwtocCEVkRw5Cyo1HLUqhUFK7pTAhn+KzD7LJLsyhe/tmt51Lx/Io1dndDmkZi06buXAKaV6BPmFocoiGv8/fNt9BxP47yIUwDrs22H1X3TqT2NbJ26HEj2/ihapFEIalE78IKIXlxZZLPNyNaLBqCgnBaL5hcafN/65ZlA3LAp9ifZe5w80hVUejyFOc4RblvxohGC2sQ2iLbM9wa3pJ++9c+W1GRERERERERERElBFSMJo3Rf0+htQA5ZU9Lxu6Go3FGhMI78llzcIl5JpUdQd45TFxlLroj8C0me7qUwrq1teg7nwL6vlN8FxwjW1IQjZVD680Dm/yVkPfdUWGW5M+ToOVmm/24Jg90nuzuH7g2uRurN6wCnjuwejfbz4FLF/ofNoUBKOpITXRbdEOZzb/XSx70yuFtS0qtNDJpATazMNL42+YVZ/lp6+qzk3mWYWAYCi/l6VE9mO6aVNsKFqqdXVCP3Kjq0n0f/4aPxTNqWP/HzxXPQRVkuA15Un7Y0x4HYoMDy8GgCuezO/lJpVueKl/KFq3d1cALy9O77zDEY33VsQv9+HlHmz7Pw/OPCg3j5mogK1vNA8/abbrquwO+bXO/23SG8ucl22I3x2RqGDpTWuAZ+6zL7R5LfDM/bbnI3DaxVAPfAT11BqoA47uN0qNjg1GGxXegBJtvg/zqqfzfxuUiMYEfsPVlEUfTo8PXgEWvScXPPrbULfP7fcPZ/9aLv/FAuCtpx23Qz+Y5LkDojzDXwFERERERESUl6Sbaks8ztLx3SjyFMGniozjAg7DOUgWL0AFAEIMRqMESKE4fk95hltiJoUhSe2OMBgtJ5V67cIzo/sIu3Arvzf1y6O4bEV2tMcuqM3m/aSaFMrVdx2Q2tp3Wr/XJlisOwxO2F/bTZspJZ5SKJg7zsYL97J0BEHhIqWTZUsMRksiVCzgIDRW2p7Fo7V2HHjmJFSOiHpprdEUNl/lry3q7Ykkba8YjUaJeKP5OeNwBQ+mVx+T4dYUhpoiuedgc3hrBlvSn/zbLPvHYkREREREREREREQZk+ZgNKUUMHbnntf1oVXGcoUW3tMsXBquTlH3B/3JW/LIvQ6BmvF1dxWOHA815VCoyftD+XOjD5Okdqi5fet9o6I3ahcIKZSor5m7Ax5PmkPRWpuBFYuSr2fB29H/P3nT3YRj6pOeNwBg+NiePxtCjWKxN5YWzjVmrTXWt7ibZv/6tDQlNwSEvkP+ivjTVlQZB9e2rxEncfvZ55qE9mPzXk5LW2LY7QNTUd6G+uoZyVVQUQUPNEaHNxhHe1Q0lIvsw4zeXJbez+gLc+ZhP3uOAfYdr1DkS+9+mMhoq3kbokbGhg7Fo2yOJS0r/7dHb7jYXkwYxvWZBrGF7zoKtNIL3ur5bWeijv4O1IQ9oLze2JEjx8cM8kBjTGi9sS6PAkLh/N8OubW51f003eHF+mP74161x4FQex7U/9+UQ2yn0QucHUvr9u3RIDWiQYTBaERERERERJSXgpY5BKTUk55AFyfhLZSYTgfBJWEGo1ECpGCfTAY/2SkVApmkdkvrgRTcSJlht9/p3kdI+woFhWJVkvo2Cct4d2CV1J4iVZzR5UlcByIdPU8/k9raN/xNCoLrO32nENZlN22meJQHJcJyFC+gTAqKBQC/g2MiKTzNSbiZJBCJP21IeBJnPF06CAvOnm7EYzQid9oiLeKxRo3PSTAakTvN4W34uHWecdxeFdMwtGhEhltUGIZ4q+CBobMTIIYfZoL0uz9d53CIiIiIiIiIiIiIclIkYh6eomA0AFAzTur5WwokGjTBaKnqDrBupTxu9/2AQ48HPC5uz+vzHeW68cPM1xzmlB8BbFjd07cj3zU56F5w8r6910n1p/OgH/wj9PN/g96+LXUNWbciNfW88xysM6cAT97lbrphY+OXcWLPA3v+PKn1abHYl01AV4HcfN8WBCJCd5YG4blGx+6Z+WvvOhyGfutpWHdeAeu2/4F++VHojgTSAOJJJhhtSI1x8PjWz8VJPt/opFG5S96PycuI/vzDNLVmgLYW6Aevg96xL9Sf/xfWNd+HdeYU6Pt+D71pDbTW0B/NgfXzE4GF76RmvtXDgb3sgyPiGlINANgjuNg4OmwBa5uTm0UhaA9qbLLZDKT7uNFJ/V/fl32VKIvahPTNqqGuq1LKZrteAMfVjS62FydP5XpNg5de8oGzgh+8Brz8qDx+173lcaPN4Y1TgguNwy0d/X022LQF3W97u4PR8MGrciGlgMNOiB2+93T7/cf8V2D95RfR4+wBgcN6wdvR4Q9eB33v71y3myjfMRiNiIiIiIiI8pIUBFKiStMyPyk4JV5gCcXn5DNkMBolQgrFkYIOM00OXDRv36T1wKtS10GW3POpIhSpYuO4wI7vUtrOlXj88KjUn6KNt2xJ7cn0uiHtWy1EENJdsLQlrg9921qsSuARTnV3v9eAUE+uhHEkGsBqtw8t9cR/srQ034CD0FKTiI4gqM3htX2FtfAk9DjcHHfxGI3IHbvApJoioad2Hxr53zmLMuut5hdhwXwD2IzqYzPcmsLhUV5U+2qN45pCWQxGk47phJBWIiIiIiIiIiIiooIUEa6TpjAYDd/4Qc+fdaFVxiJNHUBLR+Fc22kWnidmFyjjyvpG8/DDT4byeqFGjIP60fXRG1/j2W0q1JmXpqZdGTBhmPye/q/iXKBpUwZbkz7NcZ7/dtyewNmHRD8L/dD10BfMgL77N9B/mA193qHQ6xuTboMOdkLPPjjpenqskkOkJMprDsJzXc/51/T8vU9wAU7e/qRY9uTbnD0cL9dJwVYAcOvpHuw64JlQ03cFLjkqs4EguisIffmp0P9zCvDQ/wKP3Ah99VnQF82ETvG6rANt5hF+B9cGd4RZDVTZugbDhFy1Y2+20J5AqEGuaBb2ybYBn5YQtpoG+u7fQn9vf1i/OR169kHAi38HVn0Ofe/V0N/cGfqHR0JffAww76XUzNDrg/rl7VBF5j6ZjlVUAQBu2XCJWOTxD/J3uUmVxq324x99XyNipe9zWrnVvu5Dd8789pKoHykYTdhf2fF45GXZSuN6limNW5y9h7MOVjhxSpobQ5Sj9JfLgEdvSr6imadA2QW0j9jJeI7ipg0/EycptBB9J9qD7qepKQf0vBeBJXJQsbroj1Ajx8cOLy6B+sXtcuVrvgAeuzl6nP3DI2Hd/VsAgPXXK6O/2+69Gvru3wKP3+K+4UR5jndNEhERERERUV4K6swGnEj1diYYHEK94oW+AECIwWiUACkURwpjyjQ5cNHc204KRvOpopS1iRJT6vEjFOmKGd69fct0SJ+0bPW0R9h3ZXrdsHv/AasDxULgHACUenunVUqh1FOGDiu2U113CIf0nnMlKDHRAFa7ADO/g2MiKYxE2g7F43S6RANP3Rx3OTm+IKJe24TAJC98GOJ135GLyE5Eh/F2s7lT9PCi0di9zOZphhRXTdEwbAtvjhneHI7TozlN7IJTcyWkloiIiIiIiIiIiCgjMhCMpoZUA9c8Bn35aWjoahTLNW4F9s6Ny+VJCUc0WoVnd1Wn4BS0DrQD2zYax6mvn9v79yk/BA44GvjvG+bwBI8HmLAnsM90qJL8OTc+Ybg87tKRf8T3Vn6M2tqRmWtQmjQH5BCHOT/34JCdAZ9XQW9ZB333b/oXWLsC+qH/hbr0tuQa8YYcHobq4VDf/knMYL15LfCvJOebBqqyFnrETsCmLwEAD6w7B09Uft1Y9vlFwMdfauyzU36H3jTZdFGZOh744HIP5nwOLN2oMXW8wqG7AMW+DL/nN58C3n42dvgXC6D/dRvU7CtTN69Oof+Qk2C0CqF/QqgLE4Za2NJmDoB4eL7GudPzczmSlh/bYLRNa93PaPIBUDNOEkfru38DRITAtY5W4PV/mccteDv+vHfdB9jvCKhqYccS6oLu7ICq2w3Y7ytQI8bFrzOeHctSQ2gVyq02tHtik/V++S+NS49Jflb5zEkIyqufAbP2SM/8G23m/9JPPJi+K1BSlJ/rNuU/rTXQLgSjlVe6rs8uxEjr/A9GWyl0S6ofClxwuEJJEXBgg8KBDdF+30SDkb7/DympRx1/tv34omLo4WOBTWv6Dd8pvBaVkRZs91bFTLNyiwYwuNbNtgSC0arLAH3TT+UCp10MddrF4mg14yTggt9D3/Hr+DN78DrofWcAD1zruH3qgt8Du7D/LRUeBqMRERERERFRXgpa5mC0Ek9pWuYnB4cwdCNZTj7DRANUaHDL9SAkqR2dEfP2LazNHWSLGIyWdaUeP1ojsRe/u0O5Mh3SJy5bO9ohtseb2XXDLgij0+pARAmdwg3Tlnr8xmC0QKR9R31SoGpubA8SDWC1C/8q9cTvTOgXyiQajOY0uCzR/bqb4y4eoxG50xQ29zSsLhoKj+rtlMVOSZQKH7e+h5ZIk3HcjOpj+y1z5F61b6hxeFOWgtGk8zdA7hyLEREREREREREREWVEWLhO6vWmdj477QoAGBdeC58OIWzoV7JyC7D3TqmdbTa0yKeg7QNlnFrfKI8b09DvpRq/GzB+txTMNHc0DLMf/9gHGj/YLzNtSacmoYvEFScozJjY5/rouy8AlhVb8PV/A0kGo+l3n5dHNkyGOuPnscM3r4VOVTDarvukpp5udRN7gtHKdAAjwxux0WcO0XtmQQEEo9l0s6kui4agnbg3kM2gAf3Oc/LIt58FZl+Zupl1SMFoscFUMYbID26bUBnAfJj7Oj27QOPc6U4al3uahS5ONXb7sfWNruejDjrGvC3ZQT9xJ7Bxtet6Hc379rlQJfb9+1O9dqiKanTHDO0eXIoP/VON5Vo7NYaU5vc2KBnREBR7Ty/QmLVHej6jNeauIzjzQIWjJg/e74VyRKDNfOwHyEGeNjweeZnWVn4Ho2mtsVZYn286zYOv7cP1mUhrDbxjCCpOxOj6+GVG1cUEowHAxK5l+MA/LWa4k7DUQtOeQDBardUMrPlCHK8OcpC6u9chjuenb/ix47LY7yu2x/tE+YzBaERERERERJSXgpb5UY8lNiEryRADSxi6kTQnnyGD0SgRmQ6jcssvhFBJgUTSeuBjMFrWSctU9/Yt0yF9UnsCO0IppO2uP037UIkUygVEg8wiSngCpWFa+TvoDqczr1fSephpiQawSuN9yociT/xtQ5kUjOYw4GygDoeBaonu190cdzkNaSOiqKaQuVdDrS/O3Q47FMJTKylz5jabb+woUsU4uGpmhltTeGqE9VZaz9PN7ngmV36bEREREREREREREWVERHg4mC/F/T5G1QEAvLAwPvQlVhRPiCkSDcHI/5vTpTAZIEXBaOtWmId7PMCIAkiWi6O8RKGsGOjoMo//9/Ja/CCzTUqLZiFgb2AokX7mPnPB1iboYACqxH2/G93RBix8B3j5UbGMmnakecSwMcD4icDqpa7nGzOPMy9Nuo5+9jgIeP/VnpdHtr+Gh6u+YyxaCDfgS8tQWXE0FC0nrG+Ux61bCa116h6UFoh9uCUAwB//IY8YPlYcNXPoOjyKXY3jPljlpGG5SVp+pP2Y1hpYvtD9jPaLcy1+2kzg2fvd1xvP3ofFDUVLi4qqnj937VomBqM1bgH2GpepRuWeRgfPV2t0EJ6WqOYOc90jKp3XoVubgMXvA0GbxFyiRGzfJo/rs41xym4/m+e5aGgLAmEhQ26U+4+KqKDoriCw5EPgy6VAW0vyFY6qA8buHL/cznsCC96OGdwQajQGo63KzjNXs6pdONdh5/Cy5fJIXxEw+YD4ley2bzRgs605flmbELaBxHMHRAWAwWhERERERESUl7qDTgYq8aTn4qkU3iK1g5yxdMTRZ8hgNHIroiPo0uZHeORKEFK8MK2BpPXAq3iKL9vk8MzuUC4hpC9Ny2K8ME85NNBB57MUKvGUQkFBI/aKfiDSjohH6BSO2PcordedVgciOoyQNl+5ypUwjkQDWKXxTr9LaRmUguTiiRfk1i2U4H7daf1uyxIRsC282Ti8pmhgwJK5g5ZpW05ksi64Cl8EPjWOO6DycJR5HTwlnGxVFw01Dm8OZ6f3kt3xTKaDeYmIiIiIiIiIiIiySgpG86a234cqq4CuHg40b0Z9qNEcjFYgN7xKYTIAUJ2CU9D69X+bR4zcCSrVgXY5yueRx73aXJe5hqRRk3ApIyaUyC40an0jUD/J1Xz1G/+B/vWp8QuecLZxsFIKOPdq6CvPlLcvA1UNBWpGAI2f9Q7b8yDgsBOdTe+Q+uaF0Pf/vuf1pVtvFIPRVm3N/2vNTUKwT0oCGlNlfaM8rqMV2LQGGJmiwEcxGC3+tWBVXgldWWsMozmt/EOcJwSjrWsGrn3ewmVfVakLeMuQJqGbVrU/9n3ojjbonx7nfiaHnQDsdbBtEXXaT6DffhZoNvcfSUiJH+rsX6euPjeGVPf8efXmq/Bo1WnGYnOWauw1Lr+WmVRyEnqWzgBLt8GAA+kn7oC+6RLAEhKZiNIlgWA0eDxQ2oJWsQfYOs+T0dIeWE2Up/Ti96Ev+wbQtCk1FXo8UOdeBeWx+aG+g/p/l0E/cWfM8PquRmP5h+drPDQ72Qbml3bz7Waiw0a14Li7Z4nj1ewrocqGxK1HlfiBc66Avvln7hpgZ6ddgePPTl19RDkm/laPiIiIiIiIKAcFrU7jcClYJFlSvYkGh1CU9D0OFLIYjEbu2N18nytBSH7XwWjmDmw+NTg6WuayeCF30ncqLQNJt0cKCYsEoLW2aU9mgyk8yoMSm1A5KdjKAy+KVHG/YdJ3ELA6bAM40/UduCVvD+zDQ6XPyOl3Kc030VCxQMTZcVE4wf16vKC4RMsSEdAUMvdirPENDEYjSs7c5ufFcTOqj81gSwpXjU8ORtM68x0pOyPy8Uyu/DYjIiIiIiIiIiIiyogMBaMBAEbXAwAaulYZRzsJwcgHdjfgVybZBUJbFvDSw+aRoxuSqzyPxMsXam0SApDyiBRKVFM24M1bEbmS9Y2u5qmbtzgKRVNX3A9VO1Ief8TJUH951fF81a/+CvXnV6AuvBY45gyoH10PddOLUMUljutwNJ/qYcC4nXte7xX8FBdtu91YtjGNgTuZIm2LanLkUpjuCgJb1tmXueFHqZthp/kDUX6HD+3csQ8bqHzzF3j2R/Lt0L9+QuPNZc5mkSuCIY2A0I2qxvBx6QevBT6dJ9anHl0M9et7gGPOAA45Djj621CX3gr1u8fiBsaphklQd74JpDDITN0+F2razJTV50qf0KIJoUaUCP3VL360MI6JEuUk9KxxK9LW10DafjoJuNXLF0HfeDFD0Sg7yhMIRlPRR0mbWFnoz5NKUtAwkJrAaqJ8pCMR6MtPcxSKpv6+MH6F3/gB1M0vQc0yB07H1DlsDFAV28EBIjoAACAASURBVP+3PrRanOb9xvzeFrnVJgSjDS0HTpjS++/UaQo3fTOC5z6cijIt94VUZ/zc8bzVKT+E+tPTwEmzo8ftLoPWY+q7fS5UzfCk6iDKZWk4e065Sik1BMBhAMYBGAagFcA6AIu01ktTOJ8iAIcCGA9gNIC2HfP5r9a6MVXzISIiIiKiwU0K1JICVpIlh97YB5aQPafBK2HNYDRyxy4QJ1eCkOyCnEyk9YDBaNkn7iN2hEBI32n6wjzN7YkgjJDuQiAitcdh57MUKvX4jetrwGpHRAgD9HvLYjpq2QUNSu+3e/65wO32oFun+F062875he/cacBZzHQOA2MT3a9L79fcFgajEbnRFBaC0Yr6XygfvM/IpVQIRDowv2WOcdyE0t2xU+mEzDaoQEmBhiHdhfZIKyp8lRltj3R84FM+FHmKjeOIiIiIiIiIiIiIClKmg9E+ex/1oUbjaCchGPlACtOoLAW8niSvbC2eL49jMFqP5/6zEKedfXBmGpMGtqFEA7tebN0gV7RBvrnc6M2nnJXbbd+4RdSeB0HPPAV47Z/x6xvdEA0t+85P03/td+JUYM3ynpcz2+fg1tofxBRbvQ2IWDr5dTaLtgrdZXImCGSjg+Vz8fupm19ACEx0E4z2+Uexw9c3Yo8x9pM++r7GjIn5syxts+lqZVx+Xv2HPEFxSXQdH7sz1FfPTKg9akwD1Dm/gfXFAuCtpxOqo6eu2VdC7bp3UnUkpaK638uDAvMwt/xwY9GN2zVGVubPcpNKTo4JO7qATa3AyDR0NZCO5aqcBKO9ZrM+EKVTcQlUSan76ZQHHliw4I0Zpa38DiOyC6yuzo3bNogyb+E7wOa18cuN2wUY0wB4PGLYp7rg965Ct3pMmga890K/QdJ5IiB6LL1//eA4JgqFNUJC9vm/fuCJ+U2h334Jevt6ucIEjr/VgbOgDpwVrf/Fh6Gv+Z7rOgAAXzsHqsr8MF2iQsFgtEFAKXUogCsAHAnhO1dKfQLgDgB36gTju5VSwwFcBeA0ALVCmXcA3Ki1/lci8yAiIiIiIuoWFALJSj0JXGRwQAxccRHQQbHSHaBCg5d9EFJuXGGTtyvm7VtYCInyKZ7iy7ZSr7kXRnfglxSiKYVSJctvE/bVaQXE4EC/8D7Sye8pQzO2xgzvtAKwlPninmkdlgNMO+IEJWY+DM4k0eMMKfzL73X2vqRyQd2JiI7Aq2I7YNi2x2GgWqL7dTdhZwyvJXIuoiNoCTcZx8UGLJk7PWjhaZZEfc3b/jqC2hxyfnjNsRluTeGqLjIHowHREMRMB6NJ++Rc+V1GREREREREREREg48OdsaGthSXAFBAVyfgrwA624HSMqiSFF5Hz3QwGoD60Crj6MatgNY65qFk+aY5YL5GVRPnkrlubQbKK6E8HrnQ6qXiKDVpPyfNKwjxlpBla4IZaUe6NNt0Legb4qC7gsCmNXLhoLs+Cvpft8UvVFkLjHH2YCH11TOh4wWjDakBxmbuQUVq0rR+oTXSDfhhC1jXDOxkvBMxP6yO7foEID0hQibasoDt26Iv/OU9+66e4Us+jF9JWzN0JALldddXqF87WpuASARo324u4K9wVtGOfViM9Y0YWwOMrgLWt5iLLNuYX30XVm+Txw1cfnSwE9hg3q8DACZOtd+vuaAm7Q+dZDAaZpyUkrYkrKKq38s9g4vFYLRlGzO3vuaSpnaNFoe7r5Vb0hSMJsy/uqz3CESHQ0CbYaVf8WnqG0TkxK77JDadUlBCHzurQIPRyoqBYl9+/+YkSpjNOYV+Jk2D8hVBT9xXPm7fPcFzEKPrYgbt2/mJWDzfjqWd6gprBMPAkNLe7VF7l1y+osQwMM73qRL9jrolcZ5J7TZ4zlHR4JWaX7qUk5RSRUqpOwC8BeAY2Afh7Q3gdgBzlFI7JTCvYwEsAvADCKFoOxwC4J9KqYeUUrlx1yEREREREeWloGW+mbrEJgwmGaVe8w27bgI6KJYUADUQg9HILbsgpFy5AV/errTDlFsvrQc+VZTSdpF7pcK+p3sfIYVbSdMl3x55Ge+0OsR9V2kWQsKktgYi7WJ4pin4TfwOIvbBaOk6bnAr0eMM6b05XbbKbL5zu89N0uEw8DSU4H7dTZuchrQREdAS3gYNcxhlrU3AEpEbWmu80fy8cdwQbxX2qTgkwy0qXJXeKngMT5cFosFomZbs8QoRERERERERERFRyr34d+gTx/b/d8ww6GOGRv8+qgr6hDHQR1XDumgm9NrlqZlvJGIenoZgNLXj5lcpiKg9CGxuTflsM066Ab9aOAWtX3gI1rcmQh83Evpr42D95RfQwvei7cJnjjzVZUvzV7zsvGdWD81MQ9KkyaZrQc2Orhy6Kwh96dfsK5KCDw30oveA5QvjFzz5fKiiYmeV7n80ULd7/PqKTXd4p8kxp/d7WRdaLRa95638vgG/cau5/fXD0hsEoi0L1p1XQH9tXL/9mfWDw2H98mTo40dHh119VvzKImHg1ccTa8fT98I6ZVfo40ZBnzgWWLfSXNBhMJqSgtEWvgPPk3fgRzPlz/XVJcDf3jX3f8hFC9eal52yYmD4kAED1wuf6w7q1B+lqFUAjj0zGqaYqP2PgmqYnLr2JKKiut/LH26TAymldbjQrXDRfWDlltR/Rp0hjU6hG2F1GaA7WmH99kzoY0fEHrufOBZINryPKEHq5AsSnFDBo837qHzfCjV1CIHVuXHLBlHG6VVLoK+/MH5BX1HPNkV9SziW22UKsK853DUe03H1iMhmsfzKzHctTKvmDo1v3RFBzcUWqn5sYe+rInhneXR71WaT8V4+4Gez1hr6tv+RJ6gZARz97aTaqsbvBhz0VfcTDh0NzDwlqXkT5YM0PFaEcoFSygfgaUQD0foKAZgHYA2AckQD0cb3GT8DwMtKqUO11sLzCmLmdQSAJwH0PduqAXwEYAWAagD7Auh798wZACqVUl/XWjiSJyIiIiIiEljaQlBnNhjNFMICJBYaQr2k0JuBQtrmcQxEBlKYkE8VociTG0FifiEQyoKFkO5Csep/Rj2izR3ofIqn+LJNCvfqtKLhj9Ly6PemJ4hMWraibZKDwuymSxdpnp1WAJYQ0mMKcPMLwWKdViCvtwfxjjPEZcthyJ3ddx6ItKPcO7CHnT2nx0WJBp66CaTtXv+IKL5tIbmjQ42vfzCaEp8Jn+/dsyjdlnYsxIauNcZxh1QdnTP75ELgUV5U+2qxLRy7bjeHHF3+TamAsE/OlcBqIiIiIiIiIiIiIlsL3ob+0dHAY0ucBxRJhOAklYZgNOy4+bWhSw73+unjGg/NTm9oT7o1C5eFqw2noPW8F6F/f07vgJatwGM3Q/uKoC74fewE64XPbvf9oCqq3Dc2T8VbQuZjMrZva0Vlrbv+BblCWoaA3uVI/99PgI/m2FfkMBhNb1oD/ZP4Nzuri64DTvuJozoBQPl8wF9ehf7TRcDcJ/uPHDEO6psXAt/5qeP6UkHVjIAe09ATklVttaA60oRmb2zY0tXPaJy2v8ak0fm5TZICBBrS/RyyB64FHvrf/sMiYWDRewlVp393NrDnQVBjGpxP88Z/oP/3B84Klzq8Pmgzf/1/P8EvflOLV3Y/Ba8tMZc56z6N4UM0vrpn7i9P5/1NCNUbCqgByZT6uvPFetSv74X6yjdT1i41fCxw2+vQd14BLH4f6NrRZ7+tObZwRXX/4V87B+pHf0pZWxI2pH8w2q4hOei20EJAnDr7Pue3dafjM2qx2wf7AX3ld4F3zQ/gs1VaBviSPG4nGkgpYMIeUCedC5Vo+I3yQAl97KxIfve9c/O7jKjQ6UA79EVH2heqGgpM3AfqjEuh9joYAKBmfQdQCvqJO4HGz4CKSmDqTKiLroXyeBJrzGjzcfX9G8/H2SPvjBm+cks0BGzgcWi+OvVOC6981vt64VrgyBssfP47D55eIG93Bwaj4R9/tp2PumMuVGVtEi3dUc81j0aPv997AWga0Pcz0NZ73sFXBFQPB/Y6GOrCawfVOSoavHjXZOH6I2JD0W4BcKXWuqnvQKXULAC3A5iwY9BuAP6tlDpCa217NK2UGgfg3+gfivY2gHO11p/1KVcC4HwAfwLQfWfDiQCuAfArF++LiIiIiIgIXVqO5i9RpWmZpymEBWDoRrKcfn5hIRCKSJJLwU8Su+CigNWOYk//M+pSkJBPMUQi20qF8Mzgjm2ctDxK0yWrxCPvCwM2QWHZCKcoFQPNOmDB/FRm0+cmh9PlVhCcxK79dpJdtuzC+dyEkHXriDgLPE00GM1NIK3T8FUiAprC5t6LJao05nhFCkbL765ZlAlzm58zDlfwYHr1wEualKxq31BjMJq0vqeTfLySO8diRERERERERERERLY2r43elDj9a8nVIwUnpTEYbWRkI/xWBwKGc7KPf6Dx0OzUzzqTmoTLwtWGS+b66XvNhV98GPr8a2Jv/F3faC6/z3SnzSsIteXA1jiX3//9+Cc4+4LDMtOgFJOWIa8HqCiJ3tSOlx+JX5HDYDS8/CgQjNNn8vCTob59ibP6+lDVw6Cuecz1dGk1bSbw1D09L+tDq/GxIRgNAB54V+O6b+TfDfhdYY21hqwoAGgYlr73o7WGfvqe+AXdevFh4Hu/dt4OadtqUlbhrNyOfZjo6Xvwp0tPxdTfyaFO97xl4at7ep23LQs2tMg9LQaG6mmtgU/nmQsPHQ311TNS2LIoVT8J6tp/przejCkuBYqKgVDvg7m/1vo0nhpyYkzRwRiMprXGp+ucl0/HZ9Rs0xWwqmN9YqFoANQfn4CaekRijSJKJ6XgER4YbZ/kkPvc/C4jKnhvPgW02Ow4v/tLeM672jhKHf3txMMXTYTj6p0DnxuHd3QBm1uBEZWpa0K2rNyi+4WidQuGgYfmafzjA5tgtAH5qvqZ+8Sy6oLfQ42ZII53Q5X4oX78J+DHORAyTJRjEoyHpFymlJoEYOBjIX6mtb54YCgaAGitXwJwKIAVfQbPAHCag9ldBaDvGcl3ABzVNxRtxzyCWutbAJw6YPqfKqXqHMyHiIiIiIioh12Yll0YTDL8QsBISHclHO5BzkNX+BmTW4FI7t98bxdcZGp/iMFoOUsK2OrexknbOrtwvGR4lFcMCg1E2tEZMe9H/UJIWTrZfXbSemyaxrYe4bghl7YHUvs7rQAsLXfikz8jZ8uW3WfQkUCwWLr369L7NWF4LZFzTSFzJ4zaouEF8+Q3yq6m0BYsaJtvHDelYn/UFg3PcIsKX02R+fHzTeGtGW5J5kOCiYiIiIiIiIiIiNJi+aLk65CCk3xpCEYbOR5Q0UfeVFnbzc3R0UCffLamydz+2grDNa65T5or2bIOCBiuj29YZSyuRg2uW6B+c2L864ULVufvQ0+/FJahYRWIXitduzx+kBkAHXbWD0IvXxi3TDoCjrJF1U/q93pycLFYduGa/Nwerdoqh5kMDLdKqe3bosGdKeZkGe1nhYv9Y7zAs26j6oBSm35dyxdil+FAsc3uc8Ea583KlkU2X9/uowdse1tsrvNWp3NBy19KKWBASEV9V6OxbOOW/Nz+JCPQFb9MX6u2pv4zsgtGq974aWKVKgXU7Z7YtETpphSU8PhRK8+T0ZqFw+Wa9HSTJ8pp+osFtuNVw+QMtQTAaPP5i4Yu8/kOAGjMfPfCtLD7PbBwDdBp8xO+sk+3Rh3qAhoNCWvdMvl9Eg1iDEYrTL9E/+/2Fa31jXYTaK03APj+gMF/UEqJ0fhKqV0BnNVnUBeAs7XWnTbzeRLAA30GlQD4rV3biIiIiIiIBgraBF2k68baUpuAESlghuILRJyFrjAYjdySAnGk8KFs8HtttiuG8ABpPfCpNHSQJVekcKnuUCtpv5XOMIhSIeSsLdKCCMwdUrMRFCZ9Bp1Wh02IRmw75e+gA51iUGLuhHFIbdHQ6NJBcbpkg0a8cUL03Ao4DFOTgh7jcRN2FowTKkdEvZrC5mC0Gp/zzrNa6LRFBABvtbwIS3ji6eHVx2W4NYNDtW+ocXhzFoLRkg1yJSIiIiIiIiIiIsoFroNiTKTgJG/q+32o4hJg+FgAwMnb/2Mso3U00CefPDzPwnE3RzDlygi+d5+FF4TMjPoBp8l1JGJfcaCtf/lwCNgs3EXrNNinQBy/l0JFiX2Zm7ZMz0xj0mCl+VJpb6DV2hXOKpKCDwf65C378dXDgQNmOasrH8z8Vr+XZ7Y8LBaV1udcZxccMHBblCpaa+jbf5Weyt9/xXk7Ql3Ow9l23w9q7M6OiqriEuDI0+QC27ehPNKKU6bKwY3LNgHtwdzux/DsQrl9Zx084L2tbxTLqlnfSU2DCpA6qv9y1BBqNJabsxSIWLm9vKTaApe5itL+MhlSkJJHAeVvPJ5YpQccDTV0VOKNIkon5YFH6NOq83wb1CIEHVb744cs69ZmWLf8HNbsg2GduTesq8+CXvReiltIlBy9djms686HddZ+sM7YK/rvzL1hXfld6E/nRctoDf3UX4FHbCJdKqqAQ0/IUKsBDKkByitjBo+MbITfa/4Nu2Jzfm+Pui3bJL+Pxz7Q+HyjedzQcsDr6bPt2vSlnIQNAPsflWALicgNBqMVGKWUAnD8gMF/cjKt1nougPf7DGoAcITNJKcD6Buc9m+t9TIHs/rjgNenKiXcfUdERERERGRgF4xW4knPzwu/Vw4YcRoCQrGcBpyELAajkTvSeimFRWVDsSpB9Nm8sQKGsKOINl988KmilLaL3JNCqIJWAEErIIbFpDOITKpbCr8BshMcKAViBCIdxvUAAPyG9VgOWAugQ9oe5ElQol1AmRSMZlef07KJHN+kO/DUTZs0NIKW+AwPIupDDEYrig1Gi16GMsjzp1ZS+oR1CG83v2wcN7J4LHYrm5LhFg0ONUIwWlMoDb2V4xCDXG3OsxARERERERERERHlnDn/hg4mef1RCk5KQzAagJ4Ar+s2/VoscuXT+XON55ZXLZx5j8YLnwKL1gEPvKvRJXykDQMvc738qH3lnQOuRW/6ErCEB3ENsmC06jKFV37qwYQ4z1S67vn8fHCZHIwWvS6qL7cJZ+pLCj7sQ2/dAGwSAvcAoLQM6uYXo6FQBUINHQVU1va8ntX+Kg5vn2ssqzWwbGP+bJO6rdxibvPISsBfHD8MJBH6ziuAZ+9PS93oaIVe3+is7MbVzvoK7HUI1LX/ctUMdfENwOQD5ALrG3H7mQp1NuFzU39nQedoX4bF6zRuflVu255j+y87+i+/kCv79iWpalbh+e4v+72sD60Si85+IDeXlXTYuF3jkOvc7bdXb0t9eFxzh7m+6pIw1AsPuqtMKWD/I6GuuD/5hhGli1JQQn/yPM9FQ5O0PsfpyqxDXdAXfQX4x5+Bzz8CVi0BXn4U+idfhV74bhpaSuSe3vgl9AWHR4+/VywCVi+N/lu1BHj1cegfz4Je9B70PVdDX3+RbV3qphegyioy03Ds6O9rOIehANR3mCNhTv9rnm+QdvjFPxN7H09c2D9+Sd9/rVhW3fU2VFFxQvMhIncYjFZ4JgPoe7q5C8AcF9O/MOD1KTZlTx7w+j4nM9BafwZgXp9B5QAK6HEWRERERESUbp02IRclQjBKsuzCU5yGe1EspwEniQao0OAlrZfZCH6SeJTHJsypf3iApSOwYO6IwGC07JO+Rw2N5vA2cTpTwFeq+IU22YVhSO8jnezWAWk9Nk1jFwTWInwH6fz83bL77O2OM6TwODffpbRdlOq2k+79uttjLobXEjmzLbTZOLzGF+fuBiIHPm59D9sjzcZxM6qPlcP2KCmmYEMAaA5vzXjn/3z4bUZERERERERERESDzBEnQz3wEdSPrnc33YK3kptvloLRynUHRoU3GIs8Ml/nbGhMXxFL439fdN7O7lCrbvreq+0nCAy4Pr5eDk7ByPGO21EoDmhQ+OIPXly7x8dimRtf1ugK5/6yNJAUatUwDNCtTc4rktbvvp59QBylLrsLnpeboCbs4Xye+eK4/9fv5bWbrhCL/tHFep4rGreah8cENKaI7mgF/nVr0vWoG56R5/GPvzirZIO8rVR/fTe6r316LTy3vQ41bLS79vnLoW6bIxdYtxJDShU+uly+PXrZJuC9Fa5mmzG3zZGX9W9O7f9aRyLAgrfNhcdPhPLwFnGJ8nqBY87oeW0XjPbAuxrrm/NvG5SIB991/z5DEWCti92iE81C98TqkNznFoedEN22DPz37Hp4bnwOqsomLZEo2zweMRgtH36T2RHX53hdmd9+Fli5OHZ4MAD9xB1Jt4soFfQz9wHN5j62AICuTui//TEa8GdDXXYX1G5TbcukhRDubndctK09v7dJX2xKvP27jxow4IW/mQtWD4eaNC3h+RCRO2k6e05ZNG7A62Va66CL6RcOeH28qZBSahSAvfsMCgMQzrAYzQFwYJ/XxwJ4ysX0RINGR0cHPvroIyxbtgxbtmxBZ2cn/H4/Ro4ciYkTJ2LfffdFcXFqEmVXr16Nu+66C3PnzsXSpUvR1NSEUKj3RtX77rsPZ599tnHa+fPn47777sM777yDL7/8Ei0tLbD6PCVp5cqVqK+vBwAcccQRmDu39ykv+f7DnYiIiDIvKNxUW6SK4VXetMzTLhgtkeAQinL62TEYjdySwnDs1uVs8HvKjevBwGFhLXeeYzBa9tktV81hofdbnOmSJdXdZNMevyfOo7nSQAo067QCiAhhgKb3ZhcE1hQ2h8Hl0vbAPoBV3ldK49wEjUjfe2ckgWA0h9Mkul8PRNwFnTG8lsgZaTtpDlYyh1hpodMW0dzm54zDS1QpDqr8SoZbM3hUC8GGId2F9kgrKnyVGWuLdLySjVBeIiIiIiIiE/bPIyIiGnxUZS1QWQtdWQv8+VLnEy75CNj/qMRnnKVgNAAYE1qPDb6Bd3dGbWsHhlakpwmpsmorsM78HBajCQNPk7e12E/QOeBatBT2Uz0cqizHP6w0mv7/2Tvv8DiK849/5+5kFVvWqdiW5CbZFOMCprjSTDPYtFBCaIGYEpKQEAjwA0IzpgdIgACBQOi9mF4N2BhjwJhusI2LzlWSbVmy6p3ubuf3hyzpyrxzu6eruvfzPDz4ZmZn506zu7O773xmlAP4SZ23rblDQjSmPLFt6ilrifntlSUAVn5rviJf5DgIuXwJnTluivl9pRmirCLobfJIL22qWlGdfvcuLmKNyoriOC0Qtep7wN3DmOWBQ4ARY+n81T+Yq4eSSBYOjIn0QdjtkOWVwOYqxb5dHbvqK1DcF6gjQooWr5GYMjL1FutavIbu6yMGhLS3ViPrHDA4Ri3qxfQr6PpnZbsLNumHQcw1WOICjh+foHYlEZ2YT0dNIzAsht6xBiK0z+nRyGd2Hd87JaJMhiBgI+KiDSP9xkCB1FNitAihzPLHxXTmz5qxM8MkEl0/7WSxOkYyiCEje96WaBis3u+u7avxLrHJN+uAw0fHr0nxRjfW1mETwc/HtLL0YvUzNoZh4gOL0XofRSGfLTz6V5YfKoQokFKGvgUIffr1g5TSyqy00FEA340yTAB+vx8vvvgiHnvsMcyfPx8+Hz0BPicnB0ceeSTOO+88HHPMMVHv8+GHH8Zf/vIXeDxWXIqAz+fDn/70Jzz88MNR75thGIZhGMYqHsOtTM+O46Rau7Cjj8hGu8I9rROWMHrM/nZe2R7nljC9DUqGY0UWlAgoGUCokEgnEXIIfsSXbHLs0YnR4tkfqbrrvepoPAGBbFtO3NpDQR0DbUYL/PAr81TfTScWo75zKp0P+ohs2GCDoQh6oCSiXqOdlCZakb7lEv23lRBMUkgpSSllKF7DuhjNkH54pHoMSMHyWoaJTLvhQYu/SZlX5BgQlpZ64cJMKrPR7cKatuXKvAn9DyYFqUzPUYsNO6j3bUuoGK2NuDdLJUktwzAMwzAMwzCZB8fnMQzDMAwDAKKkDHLsFGDZ56bKS68nqncl0t0KfPSiWuwCxE2MFigjOrTlY3yTu7eynKsu9cVoP24yXzYnCyjtdqBANjUAusmsQJgYTVa71OXKhptvSC9k4vgSDHqhFrWOQcr8dXXpJUZrcktSpjSiRACrXOYro8SHgVASKQAYuqv5faUbAZJGACj2byeLfq35iVIVV5160n0F/boOACB9XmDBXMhlXwD9iyCmzoQYtW/E/cnXY3BvePAJHddAKv/bT2Dccn7Hv5d+BLQ1A0eeATHtRIjxB3a3pdql3r40hufKsgrl9VN+txDiN38FAJy4j8DDn6q/zeUvSxw1VmJMeWpFO3y3gc47aZ+QtmrOHeKg42PUol5MfmHXP/vJFhzV/AHeyZ+hLNpxPKdWX4klNTskXvpaYh0d0oqB+R2yU5WjqSHGoXjv/qg+bgs8W8htxLQTY9sIhkkkQkAQC1ik47oWtY0SLy2VWLaZvl8rjBQatHE1ndfG8b9MivD1/J7XUVIOjJnc83qiQEw7AfL5f4Wln9D4Gu4t+rNym3Xb03tMVEXIqyMxpBAQIuB7b3bRhfeZFt1OGIaJCluyG8DEnNCZ4tkWt1eVVzk9Q9M0o08la0zsg2Eyko8//hijR4/G6aefjnnz5mmDrgDA7Xbj9ddfx7HHHosJEybgm2++sbzPd955BxdccIHloCsAuPrqqznoimEYhmGYhEMJj+ItdKEm7bb5+aF7tJj97SjxC8NQtPnVUWupNvmekkGEynx0x4BDZMW0TYx1KLkXQEu5bLAjS/SJV5PIvl7vU7cn25YLm0j84+Jcm/oYcBttYYLATlTfTSc5o+R0qXQ+EEKQ7aEkojq5KCU7U5Yl/gZmJWedeKRbKXZTEc11nRLj6mB5LcNEhrouAHqxEsOYYWEDvRLiQU51oDETG/rbC2AjQgF04t54QF2PU0lSyzAMwzAMwzBMZsHxeQzDMAzDBCIuvx8YOMRc4cdu6hDZWEA2j2HnewAAIABJREFU74C86AjI2y6gC8VJjBYoI7p2261kMVeUE0YTxfYWiRMeMPcuGgAqikMmsn70YuSN2kLej1MSmljKftIQ+4AyPFN7Lpn/z3nm/06pgG6ydGWJRvqkIsJ9BQCgdr06/dd/Ce6zvY0QMRoA/LPmMmVRjw9YvSW9zCBUP6rUvG6X3nbIK0+EvOEs4JUHOq4vFxwA+f6z2n0Z918JzHu+B60FMHYyxFlXAgDE+XPocu8+2fHf1k1A8w7glQcg/3I45LN3dZd56nb1toq/edSUVarTF70FubLj/nzO8frjZ8LNBt7+IXX61Xcb6LYcNgqYUBGcFvSbh3IsfU5mOhD9CoI+/6tWff4BgEteSJ1+Emt+qZWYcLOBvz6v/45FfQEn8Sq/vjV2v889HxlYuEqd5/TvUGcceQbEiDExawPDJBxbx/LJKqRMr3H06i0Sk24xcNHzEv9dSJ8bnHn0NVp624HFdGwZPBz/yyQf45HZPa+kb3+Iax6FcMTp2U8kRk9UJh/Qtpjc5OpX03tMdMOb0bX/yXOC4y3ly/eRZcV510e1D4ZhooPFaL2P0Ej2Movbq8rvrkjbJeQz8XSWJPQtQbEQolBZkmEyiBtuuAGHH344fvnll6B0IQRGjx6N6dOn47TTTsPhhx+O3XbbLWz7pUuXYsqUKZYDoa666irIAK346aefjo8++gi//PILqqqquv47+eSTg7arra3F3Xff3fW5T58+uO666/DFF19gzZo1QdsOGWLyhTHDMAzDMIwJKDGGTkwTCyjJCEs3osfsb+eT1oIKGYYSKFqRBSUC6rwVemzojgGHSNJLEqaLbJEDQayKQwlncu15cQ1qzLGr+5ZXhq6rsLN8nK+hFNR+JSQ8krjeK47jLNEHNtiV5anvnGoyDur8RElEQwWKgViRvpFiNEIwSUGJ7FT4iL+JDt33JbdheS3DRIQSeAKA01EclkZd7yS9ljSTobT6m7Gk8RNl3sjcPTAkpyKxDcowbMKOAkeRMk933McDK7JbhmEYhmEYhmGYeMPxeQzDMAzDhCJGjIF46juIO9+A+MdrEM/8oN9AN3FbxbtPAsuX6ss44rQgXoCYpq9sxcj2NcpirrrUfs/z8KfW2hcqI5J3/SXyRu6QZ9k1LEZTIWw2TCvYgD08y5X5H68A/EZq96dA1m5VpztswJBCANUu85X59WI02dTQIZdSIKadYH4/6YhCknVUywdk8UtfTB8xSFu7RG2jOq+iWBMXtvgd4MuQ38AwIO+9FNLvV24iN60Bnv9XlC0FMOMsiPvnQ9w7D8K580R5wDGWq5GPzIZs3A65eS1dqCx250qhkazJR24AAAzqL3D9sfTv7fYCl79sBN2XJ5OLnqP7+GOzbEExhdLvB5bMUxcetS9EVvwWZu015AdPWR7prcLJja+Qxbc2pUY/iTW3vSuxqSFyOZsAnEQoaUOMQvEa2yT+PlcjUjKI6+Xf7o1NAxgmaQgIIsbOSJ/hDwDg9vck1m+PXK5QFxq06C39xu6WlLl2M5mJ3FYNPEFL5s0iXlgBse8hMWhRlPsXAjjqt+HpAE5qnKvcZksT0OpJz+OvJ6LtSQFOZikl8N7T6oJDRkLk5Ue9H4ZhrMOzJnsfK0I+DxZCDJFSbjS5/RRFWoEizRnyeYvJ+gEAUspmIYQbQE7Ifuqt1BOKEGIggAEWNxvZk30yTKy4+OKLcc899wSl5efn46qrrsIZZ5yBYcOGhW2zevVqPP7447jzzju7VpNsb2/H73//e7S0tODiiy+OuN+VK1fihx+6X+DOnDkTzzzzjKk2v/baa2hv757IetNNN+Hyyy83tS3DMAzDMExP8BDCo2yRo0yPFdSk3WhEHUwHZsVolNSGYSjaDLXQJ9Um35NCIktitDgFyDKmEUIgx5arvB7U+0LXMegg3n3Rav1UX4w30fwOuQqZmhACubY8tBhNFvadHBkcBfVbUNdK3fjDivSNFLJZHN+0EuddFdEIT3Vjhj4iG+3So9jGmtyNYTKR7T51tH8/ewH62LIVOb14pXImpnzROF95bgaAg50zE9yazKTQUaKU9FLj03hgSL8l2S3DMAzDMAzDMEw84fg8hmEYhmEoRF4+MOnIrs9yn2nANwuUZeX9V0AcdLzpuuXn70UuZI/T1K6S8g7pmq/j/WxlexXW9AmfPuNK3GPjqHhvmbVJrRUlAUIZj/oZdRhtIe+Wq13KYjpBT8ZQVoHxG7/H8uw9lNnLNgF7DU1wm6Kkapu6bw0rAhx2AWNzlfnKfBHiICjZHtDrhXsiOxeyqBTYXtOVNty7niy/mhDWpSK682eopDEQ+dnb6ozG7cDaZcCue4XnUXKsTnbfB1j5DZktTr0YYsSY4MRozmneduDrBUADPZVUxLJPl1fQeV/Ng/T5IBwO7D5IX82Kmo6/l+7vkigoOZXDBpSFzuKt+pmuiK9J5ugXPjV6D0/oFOxuPloucerE3hcb867J8dTwYpDCx/oYTZdYuApo01w2C/0K25JzAERev9g0gGGShc0GGyFGSzf/1zs/mmuwUxMaJL98X7+x398xxmYJKJMsln7U8zqOOxeiIHyB4kQjyiuUZ59hmvuyxWuAw0fHr03x4v2fojuhDnYC2VkBY8BN6sUFAADlI6LaB8Mw0cNitF6GlLJGCLESwO4Byb8FEFFJKoToC+BERZZKWRl6F6m2EuhpQ7AYLRZqzD8BuD4G9TBMQnniiSfCgq4OOOAAPPfcc9qVHHfZZRfcdNNNOOuss3DSSSdh2bJlXXmXXnopxo8fj2nTpmn3vXRp8ApUoatOxmPbBQsWmN4HwzAMwzCMCjchRou34ISqn2oPExmz0hWf1K+oyDChUMelFVlQIqDOK21+K2I0fsSXCmQTYrQGb7iMAoh/X7QqHEuWJIyScunIISRuOXZrYrRo9h1PyPMBca10++lrqJW/Jylo9FuTilkpH811PfS8GEhh1gDUtoevDdLGYzSGiUg9cZ0qdFgNxkiz6CwmrhjSwML6d5V5/e1OjM+fnOAWZSbOrGJAMd9LJUuLF7rnJSrZLcMwDMMwDMMwTLzg+DyGYRiGYSxhs9F5JkVJ0ucDVn0HfPVh5MJ2u8mGWUPY7ZCDhgKb1gIAKogJry5CDpUqrLUoSQqS3tTSk3yDcHe/75btHmDbZnW5st4tsDJFeSUOWzkfzxWcqsyu2pb6YjQpJVZvAW59V933RwzY+Y+dx44p/BHiIKpd6nRHFlBcZn4/6Up5RZAYLVuzUO66uo6/kRCpKyba2iSxeA3w/BJ1HxICGFqoqWCzpm+1NSuTZYTrj5h1NeSNs4AWhdFo4BBg+KjwbXL7Qu65P/DDZ9q6w9ry6RtAyw66wMTDLdWnZZ9pdJ7fD2zZAJRX4pBRAg6bhM+gi983X+LaowFnXvL6lt+QqNK8rrXbQtqm6Stiv8Ni1KpezoDBYUlHtHyIGwdcrSyeTnJGs7R4JCk7C+XwPQQpPGqIQSje5gaJf7ynOVABHNqyIDxx4hE93znDJBshIIgYO8NI7XuyQNraJao1w4BABjs1mdWuyBW4W0yJ0WRrM/DTF0BdTcSyTIZROhwYMwkiCsGe3LCqx7sXE6f3uI6YMPEI4NEbw5Knt3yIfxWrFwCqqpNIx4WU10YZGlkRGjKtuf8Sex8c3U4YhokanjXZO3kaQODV6f+EEE9KKTdF2O5GAOEKdHNiNJPLqATRBiDwMR8ru5mM5JdffsGf//znoLSpU6fi3XffRb9+5g6L3XbbDR999BGmTZuG5cuXAwAMw8CZZ56J7777DiUl9JIWtbW1QZ91gV6x3JZhGIZhGKYneAz1LUi2LUeZHisoiU2bYU0cwnTjNi1Gi7CiIsMEIKUkBTrJkj9RUPKq0GNDJxFyiKyYtomJjlxbHhoQvgxovU+9NKhVcZn19ljr67l2tRwr3kTzO1Dfzep3jvffwCqUoIy6VlLCtGyRA5swHzhPj2+sLfFoZTzkjeK6Tv0OdjiQby9ALcLFaG4eozFMRChBUlHWAGU6FeaQPqFZTCJY2foDtnjVE4b2d07n8WuCKHSo3w01EOPTeKATo6XaWIxhGIZhGIZhmN4Lx+cxDMMwDGMZoRGjmUDWb4G84gRg+dLIhYEOg068KKsIEKO5lEXe/rFjIr4tVMaSArT7JDY2WNumsjjge3y/yNxG7oD30Vs2AJJ4+1XKYjRRVoFTGm/EeeUPKfOf+sLAr/aOj+wvFvj8En9+TuK/C+k3nBUlAnJ7LbDDwozqSGI0StI3cAhEnOSIKUVZBbDsi6Ck22uvwhWDbg0r2toObNgODLO6lleCePoLA+c+IeH102UGO4HsLM05dcsGOs9HxNQ8fze9zf5HA1NmQlxwI+Q//xqcZ7dD/OFmsp+J82Z3XLMIIZuSec9ps0X5CPN1RUAUDYI89WLy+8vrTgf++xkG9bfh7zMF5rxFH9v/mtdx7L/wextmjkvONU/XvgfOCG+TXDCXruwItaCSCaGsIixpStuXZPHrXpf4/YESA/un3rgoWlwmQwTGDwXOniqweA0hRrMWThjGv+YZuPQlfYTR0U3v4LCW+WHp4szLe7ZzhkkJBGxSLQaU1P1HCmL2nNI3GyghHr9Lvx/4ZkHkStytQL7ONgvIn5Z0jGWsjN2ZzGLAYOCe9yGG7mp6E1m/BXjytp7td99DgKkze1ZHrBg9Edh1fIfAPwCljHQnFzwlcdoEiX456TUmilb+7wwNZdSJqY8/L6p9MAwTPT17Ws+kKvcBCPTtOgG8K4QI15vvRAjxNwBqpSegV3B3EM1VIn1G6gwTRy677DI0N3c/QHY6nXjllVdMB111MnDgQLz88svo06fbXLxp0ybceGO4xTeQwH0DQFaW+QlJPdmWYRiGYRimJ3ikemJtdpyFR6TAyB+DJZAyEK/RrpU9hZZlGLP4pBd+qPsWJR5KFpSMKlRIpJMDslgiNaCuEZQsipJRxQqroolkSQP7iGzYLD6mpr6b9e+cWjIO6m9ACcooUZhVyZ3Z81AkrIjRohGeUu3JsefScjceozFMRLZ71UvdUkKluE7MYXoNCxveVabbYMOBBUcmuDWZS6FDPVukwZtIMRo9nki1sRjDMAzDMAzDML0Xjs9jGIZhGMYyESRF0q+x4QCQD11rXooGAHW1kctES4AMpMK7jiw2b3n8mtAT1m+nHWUUlQGvueQ//mhqG9kW8L672kUXVMhVMo6ySuTJNkxtXazMfvVbwG+k7nSxl77WS9EAYEQJIP9FTbEjoGRWO5HVxPGXKbI9xbFzauNLZPFLXjQzlTHx1OyQmPW4XooGABUaqZv0+YAt4Yv/deENj5WVNfT5G+WVEDe9CGGzQZzwB4h/fwicenGHNOuMyyEe+ARCI9ASex8E8fBnEOdcR+/DCr+7Ojb1BGC78HY6c+U3wFfzAACzj7PhnYv0cWgtHuD0hw20ehJ/nlpfJ3GjRoz2632D4zGklMC859WFx06GyE2tWNiUpaAYyA1+BiQA/KH+v+Qm17yeutexaKiK4Arae2iHmG/+pTYU9RVw5qljg3oiRvtxo4woRbNLH17eeCqyQuO/jzkHonJ09DtnmFTBZoMgtAopPHwOI9I5pZPKYkBQsYafvGquErf+xCMNA3LOWSxFY/Rs3QR5w1mWNpH/vZ7OnDoT4uVVEH+4GTjitI5xd+B/R8+CuPIhiDvegMjqQ9eTQIQQEP9ZEJZuh4FfNb5ObvfPD9Po5LQT6hx19dECN/2Kjn8OXStAUmK0keMgIggbGYaJPY5kN4CJPVLKBiHEOQBeCUgeB2C5EOJBAO8C2AwgF8B4AOcCOCCg7EYAgcvKqdZXCV0GIJqZk6HbWFhagOQBAPSTUTUjAdBXbYaJIytWrMBbb70VlHbbbbehtLQ0qvpGjx6Nyy67DLfccktX2v/+9z/Mnj0bhYXqgZZhRP/CoCfbxoKff/4ZP/74I+rq6lBfX4+cnBwMGDAAe+yxB/bcc09kZ2dHVa/P58OSJUuwdu1abN26FR6PBwMGDEBFRQX2339/5OTkxPibMAzDMAxjFY/hVqZn2+J7nc61E2I0i+IQpgMrwpVoBCpM5qLrWzn25MifKCgRUuh5RXcM2AU/4ksFrIrF4i2CsCpei7eojUIIgRxbHloNc48GHcKBLJv6JaHV3zRZ35mCEje6/epzGikKs9gXaalYC6SUdGBCWHkr13XrwlNSBGfL04zRzMvaGCZTqfepBUmFWYQYjSCdVq1k4st271b80PyVMm+vfpPgzErRpd17IU7iOK73bbN0je8JuvFBqo3FGIZhGIZhGIbpnXB8Xs/g+DyGYRgmYxERFvfaupGUGUkpgfmvKPNI8p3WyltAlFV2Tb0frhGjvfCVxJFjUm+BHLOT7gPpFKMFyc4i4Q4UoxG/U9EgiOzUijtKCuUVAIDRnhVYnDdVWWTxGuDAXRPYJgu8/HXk95qVJQB++tJaxf4IC8RSYqsMke2JsoowDUiZrxpZsh1eER4H9JUrIc2yzGvfSfhN3KZVlmjOp1s2ADrBpkqy98lrZHHxu6shHN3xg2L8gRDjD4zcyMA6ho8CZl0N+f2nwNfzLW0bVle8+vQeE4Dl6vfQcv5ciEkdC3QdNVbglP0EXlxKH+uN7g4h6PHj49JSkrnf0m0qzAMKQmVUq76nKxu+R4xa1fsRQkCWVQBrlwWlj2hfS27z0lKJh85MzDv1RLB+u7rvDS0E1t0eLgR2Eq/yG1qjjw16ycT195ptt4ZL0QCIPdXjDYZJO4SADeqBRDrF3lVtM9fWSk34ofzoRXM7iyBGw6rvAUpexDCBrPwGsmEbhDNyXKyUElhAP9cRk6ZDDBoGnHEZ0mmkILJzIUvKgW2bg9IrvfQx9PJSieuOiXfLYouLWDN214HAGZMErnlNfQ6bWBny16x2qSsaOS7qtjEMEz08a7KXIqWcK4T4K4B/Aeh8K5MP4PKd/1HcC6AAwNkBaWkjRpNSbgGwxco2veUBBZOe3HPPPUE3rSUlJZg1a1aP6rz44otxxx13wOvteBje0tKChx9+GP/3f/8HAHC5XKisrCS3P+SQQ5Tpjz32GABo20cdT1VVVaioqOj6PG3aNHzyySddn63cuG/YsAH/+Mc/8NJLL6G2ll4dKzc3F4cccgjOPvtsnHTSSbBHWLkLAJYvX46bbroJb731FhobG8l6jzvuOMyZMwe77bab6XYzDMMwDBNb3EabMt2qCMQqlHDFiuCL6caKUM4nIwQOMUwAur5FiYeSBdWe0PMKdQzYYIctUkAukxAsS7kIkVOssNqeeIvadOTazYvRdO20KtdI5ndWQYkbqXEGLQqzdp7LtfdTpvvhg1e2o48wN7Gt1YKELJrrOi2Cy9OM0dRjRoZhOpBSot67VZlX6BigTBdkKEf6BGcx8eXThvchiSC+gwpnJrg1mU2hQx3I5ZXtaDGa0M/eP+5toMYrdjjgEFlx3z/DMAzDMAzDMAzH53XA8XkMwzAMYxFbhDiM6nWkGA31W4DWJmv722eatfJWCBDUjPX8TBZbuzU13/WYnXTfyahSoLDvzjFTtcv8hl5P1z8lJbCi/uaZRkWHjGdS2xI8UniOssiqWokDd03NuVq/0EPcLiYMl0CD+j0qSZRiNJEp/WrM5LAkGyQk8f65rhkJW+jHCmb6DwBU6HwL1S79xgoxmty4mi4/ZqKZJpljzKQei9Fi2p7QegkxGjauCfo4qRJ4cam+utVbJJBglcUqzYzXySMUiZvWKBI7EPH6nXsrZcPDxGiT22gB5o62jvNQSX68G5YYthNhfWUF4WnSMOD0N6BjinkwDT2YLrHaxIzvSW1L1BmjJ0S/Y4ZJKQQEEWOX5PUxLLHWpLx68kjNdbZ2g7lKIonRNqwyVw/DAEDjdsCEGA0NW4HmHXT+mEmxa1Oi6V8YJkabTF1/AazZKlPyvoyioVWS45XKEgG7TWDqyA6Zeygn7hPyHSnpYjn9/o9hmPjBsyZ7MVLKewHMALDSRPFmABcCuBjA4JC8GkX50Cu6eoYMgRCiH8LFaCoBG8P0at57772gz2eddRb69Alf7cQKAwYMwLHHHqvdTzoipcRNN92EXXbZBffdd5826AoA2tra8M477+A3v/kNNmzQ3yj7/X5ccsklGDt2LJ599lky6Kqz3hdeeAFjxozBPffcE9V3YRiGYRim53gMtzI92xbflaMp6YYVwRfTjRWhnE8qVsFjGAJd34q3QNEqVHvc/lAxmvoYyGKZQMpASa3I8nGWclltj1WpWCyx8lvojmHLMjiLv1G8occZarlXm58ShcXub99mQXZmZTzkjeK6Tovg8sjv4LbQfobJRFqNZrRLjzKvMMtEAAjDhOA1vPhsxzxlXlmfodgtd2yCW5TZFDqKybwGL7E0YoyhJKU59ty0CZhiGIZhGIZhGCa94fg883B8HsMwDMMEEGmBumqXMlm2NEKeGy7/0TLjLIgC+nlujwkQo+Ubzcgm4u6qTE5uTzRUuyaPAH43Nfw582XTA9KqiUmsKtrbA7ZzqcsE/JaZjMjOBfoV4NeNr5Bl5tEOvqTi2ibx02Z9mVP2E6g0NgLedn3BUCKJ0aop4d4wa/tJU0TlHsr0S+rUY/42L1BL3zYkjWe+NCdrrNCc1uUDV+k3VojRKLEeAIhhu5tqkxnE0b8D8gujr+CAYyCGj4pZewIRx59PZ37/adDHMycLpfApkMtflli2KbFSUJdG9nnx4eFjD7nsC7qyQ0+ORZMyB8U1fErblxgp6IvCQwtTUxobDZQgpDBk/VX5ygOQxw2B85nrleXrezBdIpLsNs9owWEtCjHjfofG7bzCMAnHZoNNqg1oFy2shM+fHucd3fWskwH5wNlTNHFBK78xtzM3HQMspYS85Vxz9TAMALOL/8pXHqAzR4wBdts7Ru1JPOLsv4elHdP8Dlm+zStQ86/ZkH5/PJsVM3TPtjrv0f52hA2hYYvH7AnsURaS+Mu3ynoEi9EYJik4kt0AJr5IKT8QQowBcDyAmQCmAhgEIB/AFgBVAF4D8IyUsgYAhBChd4oqR36oRtfqEhWh5bdLKest1sEwac3GjRvhcrmC0qZPnx6TuqdPn465c+d2ff7iiy/g9XqRlZWeE+Z9Ph9OPfVUvPJK+Muz0tJSjBs3DiUlJfB4PKitrcX333+P5uZmU3W3tbXhV7/6FT744IOg9KysLIwfPx5DhgxBdnY2ampqsGTJErS2tna16eKLL0Z9fT1mz57d4+/IMAzDMIw1PMTE2uw4C49o6QaL0aIhVPykwystBhoxGY2ub6WaGC3X3leZ7pFuGNIPm7ADAHxSHTznYDFaymC1b8W7L1qXhCVTjGb+t8i1qY8ZAMi1+B2SKYNTQbWHkj2SorAY/g5t/lYUOIpM1dPqNy8h8xnWxWi0CC6P7O+UjIVhmA7qvXQUQJHDmhgtPcKymHjzbfNiNPvVqyUe5JzBIqwE09/hhA02GAgPqqz3bcMQxD9IhxqvxFsSzDAMwzAMwzAMA3B8nhU4Po9hGIZhQrDpxWiyZh1UT7zlLecB2yJYlwIQ580GzrjcUtMsU14R9PGFTWfgV0PDr/kbG4B2n0QfR2o9y3cRr7MqSwQeOlNg10HAq99IlPQDzjnAhpP3DRSjuczvyBuwmBAlICq1Om2q9yKu/h/6XXUyDmhdhEV5B4Tlv7BU4qlzJRz21OlPhiGx1xy1iKKTa48RuGamgLzsArrQaX8DnvtneLpKZrUT2bwDaG5QZ2ZQvxLnzYZ8ZHZQ2iXb/407Si5Tlq/aBpRGkFslkpodElubzJWtLFH3ffnpG+QE+y5UUr5ql7KoOFctL4oWUV4JPDAf8olbgeVfAZvWBhcoKgUcivteZwkwaTrErGti2p6gtlXsAZx/A+TD6u8sv18EsVfH+WhAvsDiK224/g2JJz+noxkOudPAuttsyMtOzLmKEjUcvgdwxOjgNkgpgRfvVW8wYgxE3/4xbl3vRpRVhMW1CABfNxwPZ8FXym2ufV3iNxMkdhmYOteyaGkgQuicud3fTS58HfLuSzrS+6uvWVQ9Zogk4V29ejTsitgGcftr0e+UYVINISCIKLsWnx2z35S46Vepf85Zu5XO22UgMKlSYPaxAuVOYjw073nzO3Nr5hu99hAtM87OBQp4YdiMxPDTz2Vk5ChXWfUz8MStZL7472fpHQN5yEnA9WcEJWXLdvywZh/sOVItLLzqi0o8WnAzxLnXJaKFPYIab2TZgXJnx79P3Efg9Qtt+M8CA7WNwPQxAtcfEzIW/+A5eicszWeYpMBitAxASukHMHfnf1qEEEMBDAlI2iSl3KQoujzk8y4WmzUi5HOKrgeSeHx+iY2siIs7QwqR9Jcsn332WVjafvvtF5O6991336DPbW1t+O677zBhwgQMGTIEVVXdqx/dfffdQSsrPvfcc5g8OXylqpKSjhvBadOmdaWdeuqp+PLLL7s+B9YbyJAhQ5TpZrn00kvDgq5mzpyJ2bNnY8KECWHlDcPAF198geeffx6PP/64tu4LL7wwKOiqoKAAs2fPxrnnnov8/Pygsm1tbXjggQdwzTXXwO3uWC1rzpw5mDRpEmbMmBHlt2MYhmEYJho8xMqVyZLMUMISRo+V342SQjGMCqpvZYucLtFYqpCrOW+5jTbk2fsBAHxSHTxnF/x4L1WwKneIt5TLav3JlITpZGeh6K71VsYBWaJPyh0/VB+ihCLUuc5yXyQEjbp9qMtaEKMR5zQdOhEcKa+1IGFlmExku08dpWSDDQUO9SrQQjnNB2A1GgMAn9SrVw/MFjmY2H9aYhvDwCbsKHAUod4XHvFT76tLSBvI63eKCasZhmEYhmGYzILj8xJHsmP0OD7PPByfxzAMwzAhCL0YTSWokTvqgM/eorepHA3bkxFkOPHAOQDIyeuaUD6iXT2ekBIAWK/HAAAgAElEQVRYv71jInsqUbVN/Q6qohjIcghcNUPgKmKYIDe7zO8ocEJ9tVqMJsoyR2AVkbKOxVcmt36pFKMBwIfLgaPGJrJRehatBprUYacAgOo7bRjUv+P+xfh6vrpQvwIIZ4n6zahfE99Ys57Oy6R+NWy3sKQB/q3oazSjxdYvLK9qm8SUkakjHXhuifl34hXF6nT5zpORN/YHx9RIKcnzEobuarpNZhEVe0Bcb6KdyWD/YwBKjPbaf7vEaAAwvFjg8VkCIwcYuP4N9d+urgV460eJU/aLfz+TUsJFvKI970DF/n/5jq5s9KTYNCqTICSU/WpXYtTuwIoa9WZPfSFxw3Gpcx6KloYW9THgDAgblO880Z3uV4vR6ls6+rJVIUyLR2JLBLHkQL8ihmnsZIg+2Zb2xTCpjNCI0QDgsc8kbjze+jGWaKjr2ROzBH47JcK9NAD5+sPmd6YRo2nHVcfMgu3if5nfD9NrkNtrIY8fRmSaEKO9/wydWTkaIju9Y96EEJDDdwfWrQxK36N9BXJsPriN8LkVr+cfC3x4EJAGYjRXnfpvPLwYsNu6z63H7ClwzJ70vDL55qP0TsrjvxgtwzDhpNbMLyYVOCzk8wKi3LKQz3sKIfKklGZnmu0fob6MZWM9MOLv+lVImJ6z9hYbKpIsfN64cWPQ50GDBqG4mHj6bZGxY8PfIG3cuBETJkyAw+FARUVFV7rT6QwqV1paGpQfSr9+3S8ccnJygvJ020XLBx98gHvvDV7l4rbbbsMVV1xBbmOz2TB16lRMnToVc+bMCWtnJy+99BIee+yxrs/Dhw/HggULyO+Rm5uLSy+9FFOmTMFhhx0Gt9sNKSUuuugirFy5ErYIq4MxDMMwDBM73IZ6yaFsm/q6Hyuoibtuf1tUL/oyHSsCFQkDfumHPcWkVkxqQstzzMuXEkWORgjVZrRGFKM5UkzslMlYlVFZLW+VbIuyiXi3R79v823VtdPKd0imCI7CqtyLFo1Y+27ZIgc22GAoVly0cq22Jjy1LkZrI8Z/ObY85NitSeUYhumg3qteHq3AUUTKZGkxGpPpbHCvRZV7pTJvYsE05BLnaia+OB3FajEacfzHGur5TTLHngzDMAzDMAzD8XmJI9kxehyfZw6Oz2MYhmEYBZGuOdWu8LR1KwC/n95mRHIMUUIIyL4FXRPKK7yEXAdA1bYUFKMRk+4rzYwzq9USOCVeDwBAetqAump1GUKqkpHsnAi8p4eeCvbjJomjxqbOu8UXl9KT4LPswMCdzl7Z0khXkl8I2IlYLZ8mDqLGpU63O4Dicnq73obiGBIAKttdWJYTfo6sSszrLNP8uMlcuYLcDlG4krUmpk8GihoBYHst0E5Y/coqzDWqt6CTENRuUCaPHSygW+jtx03AKbFxqGup2QG4idNEZYniXFn1E1mXGDE6Rq3KIKi+4/dhbHErVtSo31//tKl3LBLYoH5tD2dg2GbA+clpqMVoPgNobQf6WnSVrYuwbtv05nnqjBFjrO2IYdKAEd4qrO0zQplXvQPY3gIUh/tiUwavT2IHcU4ZUmhy7E/db6lo9yiTpZTAWt21MoUMzUxi0c3pM3NZ1/SrZD3XiTmlw8PEaAJALjxwK9RDbSIXxsY1EGkwZ3Jbszp9iFOdTrKdsOYCQEkG3cMzTArBb4iZUM4N+fyIqpCUshrADwFJDgDqZT7UTAv5/K6FbRmmV7B9+/agz4WF1JNv6+Tk5CA7O/gpU+j+0oU5c+YEff7DH/6gDboKxel0KgOvpJRBdTscDrzxxhumgsc6A7o6Wb16NV577TXTbWIYhmEYpud4DPVLfqsSGKvkEFIlP3xRCT4yHWqCNIVXtkcuxDCg5TxW5EuJQicwaguQIfmkelVRh8iKeZuY6KDkmWT5OMtB7MKOPsJ8BEoyRWG5GkFgKDqJhpXvkIoyDkru5ZFuGDI8gL6NEKZZ/W5CCPJv0Oa3IEazUDaacZObkLTl2vLIv70VWRvDZCIqWRIAFGUNsFyXNBU1wvRmPml4h8w72DkzgS1hAinMUs8Ma/BFiDyOEZRkNRXHYgzDMAzDMAzD9D44Ps8cHJ/HMAzDMApEJDFauFxMfviCvsqZZ/WkRT3j8FO6/pkn2zDIV6ss9oJGHJUMmt0SW5vUeUqJTCifvW1+ZzvFaKhdT5fJNAGRBpHbFxACxze9SZa56e3U6k/LNHKbLDu6J3hXu8hyYsZvaTGaXx3bBQCoIYSEAwdDODJoUUziGKKEjXPeSp0+JKXE44vNteesKQIOe/g5Svp8wGYTwsZQyR7VfwCgLLOEjSJXE2NGnL9njgUG9ac3uzlB5ypK9AkAFQqHu3StoDc47BQ6j1GjuYbPqlhL5qWaoDFaGogQusKdr+2lzwds6V5gwOnfYbkuHZF+x1kNTyjTxYwkjp8ZJk6c0vSKNj8Vzzten8S1rxvY90Y/Jt5CLzpTaCIUXLY2AxvXWNi5WoyGuhpaHAsAh5xkfh9ML0P3rEA/7pOGAXxO607E0WdH2aYUgxgX/cq+WJnebstGjaNUf8ylCNQ4pUhxfpLtHhgPXgNj1gQYJ1TCOHUPGDefC7l5LVBDPBsaNAyCF/BhmKTARx7ThRDiAATLzVZKKRdoNnk15PMsk/sZBWBSQFILgA/MbMswvYnQQKjQlSF7Smh9dXWJmeQSS3744Qd89tlnXZ/z8/Nx++23x6Tu+fPnY9my7tUMzjjjDOy5556mt7/wwguDArreeOONmLSLYRiGYZjIeA0v/FAHkWQL9UrUsUInvWHxhnWsCFSA6CQqTGbiJo5HK/KlRKETAgR+D6r/sxgtdbAqd0iEDCJdRGE5dvNSOZ1Qzsp3oCRkyUQ3zlDJROlznfXvRv0elMykp2W9UVzT2wihao4tj/zbe2U7jx8YRkO9Vx1JVehQi5R0pE5IOpMMWv3N+KpxoTJv19wxKM8eluAWMZ0UOhRR9AAaCDFirHH71dfvZEp5GYZhGIZhGIbJHDg+LzIcn8cwDMMwBJEmOW7dCOntXuBRrvgaePUhsri48iGIiUfEqnWWEeffEPS5ot2lLPfoIolv16fOWx+dFKAywussuWEVIC18F+/O98oK6V0Xg/h9RyDijjfQV7biwJZPlflNbuDhT2lxQiKRUmLhKjpfBM6d14mrfnsl4CBitUJlVoH7p/pVaQW9r95IQTGgEFtVel3K4l4/cP/81OhD17wW+XyS1wc4/0CBO04mZAzvP21uZ76QBYSrXepyOXmA0/qiZ+mOuPF5dca2zUHX5k6yswTmX6q/rt/9Yfz72QVPqffRNxso6afIeOYOdUVFpRBFg2LXsAxB9O0P9C9S5h351Mk4cFf1djqhXTpRT0xxcHa+tt+6EfB3L9xa6G8g63rrB+tjxapt9Db/rLkMv26aG5YubngGYuxky/timFTnnMancdOW68j8VBSjnfWoxM1vS3y7Afh+I13OGSEUXEoJee5EazsPHRd11vX4TeQm4s43IfJj+y6ASSOERowW4RmB/OdFdOZ+h0JMODzKRqUWghCj3VpPH1c3l1wJtFmb/5cMKDFaQZ5CXH396R1j7tU/ANs2A5vWAu89DXn6OFICJ2Y/FcvmMgxjARajMQAAIUQegAdDkq+OsNkzAPwBn08UQhCPAYIIXUruRSll6mtCGSbNELoBfJrw0UcfBX0+/fTT0b+/ZqkOC8ybNy/o829+8xtL2+fl5WHixO4b8U8/Vb/QYxiGYRgm9nikelItAORohCKxwKzAiDGHVZmcT2pWVWSYANr86r4V73NENGTZski5WeAx4jMoMVoGrRqa4ljtX4mQQViRf+mEY/HGktBMU9bS903B80GORt6oumZS19FopG95xL6tXKutCE+jkZW5Ned23fFECVkYhgHqCTFSYRY9k0RoV9RjMpXPd3wEr1QHoh1cODPBrWECcRKiw3pvYiK4qWclyZTyMgzDMAzDMAzDxAqOz9PD8XkMwzBMWiMiTLWSEtiyofvj3NCpOAEccCzE0b+LTbuiRGTnAsVlXZ8pCREAPLAg9cVoNgEMLdRvK1+819rOvJ6O/9cQAqviMojs+C7amnZU7AEAOK75LbLIXR+kRn9a+Is+vyjwtUW1S12ovBLC4QDsRKyWXxPbWLtenV46XN+wXoYQAlBMwqdkjUBHH5JWJIdxoK1d4r75dBuePlfAdasN9Xfb8NBvbejjUN8ryqcJ0VUovpC+RIn1yip6xX2pZYbvrk43DGDzWmXWqDKB+0+nf6t/zpMwjPj1M69P4qfN6rzK4vDnC3LNMnVhADjC2r01EwB1zq1djzkz1efwhlagoTU1rmU9gZKEdInRql3B6QYtRvvH+1GI0YjwhANaF+Gi+gfCMw79NcShJ1veD8OkBULgyro7satHbe3ViQSTwbo6iRe/Ntemgkhh2Su+BjausdYAhfQUAPD6I+r03H5AEqXkTAoQpRhNtjQCrz9MVzvr2p60KrUoq1QmF9d8j3y7R5n3UOH5gDsdxGjqv3FhSKiiXP8LsIh4lqG7tx+yS5QtYximp/DMyV6KEMIhpbkZ40KIfgDeBDAmIPkVKeUruu2klKuEEE8AOGdnUh8AjwshDqNEZ0KI4wH8LiCpHcANqrIM09spKgpeaWDHjh0xrb+hIfghVOj+0oHFixcHfZ42bVrM6l60aFHQ56KiIrhcLkt1BAaBuVwuGIYBW6QVwhiGYRiG6TEeg5ZbZNviG3ykk25YlXwx1mVyPoN4scEwIVB9K5niJx05tjw0+8PvCQO/hx/qxzyUVI1JPCkpRouRcCzeWPktdL+zFdlZKso4dO1XndeosUc0fYv6PVotyM5aDWtiNCmlpQBN+tzeN6K8th9iM5GPYXob271blemFhEhJT2oFZTGJw5AGFja8p8wrcBRhr36TEtwiJhBKdFjv22b5WhwNtMg19SS1DMMwDMMwDMP0Pjg+LzIcn8cwDMMwBGauN9UuYPDIjn///CVdLlUmTZZVAHXVAIBd21eTxb5cmzrvfKrq1G0ZWgRkEeKh7o2XW9vZzgn3stqlzlfInDKeknLAkaXtT7/UdkxMduYlV970RZW+X19+ZHf75OYqdaHOPuAgYrX8fnoHhNhKlGWWGA1Ah5ho7U9BSbo+5KoDtjYBA5MY9rGiBmhSzpLsYO9hAsOKTfTx1mZzOwwRgMhqok9mmFivC933/uxtYPgoZdZugwSouIaN9UD1DmBwBOlmtFBSKAAYotrnz0vI8iJVxhXpSOkw4JdvlVmVnrUAdlPmueqA8akXamgaw5DYQUy9KOy8Ple7gtJzpFqKAgB+w3obtjSq0yvaCfHjkJHWd8Iw6cLOOJ1KrwursncNy9ZdM5LB2z9KnUsqiP6RQoF+0tw3U3jDF2GWujFV0cDMFMcy3UQpRgu9Rwlj8Ijo2pOKDBqqTBbedgzKakGTP1uZ39bYhrzSeDas5zQQYx5n6Fju56+sV57bFygotr4dwzAxgcVovZcLhBAnAXgSwNtSyrDZLTuFaCcBuBnA4IAsF4A/mdzP9QBOAND5GGYqgA+FEOdJKVcE7CsbwO8B3BWy/V1SSuIOlmF6N6GBUPX19TGr2+12w+0OfvJeXJx+A67q6uqgz2PGjCFKWmfDhg1BnydPntyj+gzDQENDQ1oGuDEMwzBMuuEx6AgDq1Iaq+jEa24/i9GsYlUm55XhLzYYRoWbECimoggJ6JAYqcRogceIj+j/DhuL0VIFq/0rJwGiPivXxUSI2iis/Ha6dubY+saknmSha7/bH3xeM6RBymJzLfwOXdsQ/dGsxNQnvfBK8wJTCQkDftgtvKIgxSq2XK34kuW1DKPGkH40+LYr87RiNCJwJNmrdDPJY0Xr99jqrVbmHVAwHXbBr6OTSaFD/W7IK9vRYjShnz2+s0jS7d6MYRiGYRiGYZjeBcfnRYbj8xiGYRiGwGaPXGazCwAgDQNYt5IsJg49OUaN6iFlFcCyzwEAJzfOxY0DrlYWW7YZuO51A6dNFNijLLkTyqu2qdMrzQy7ql3WdubdKQAhBFbIRIFVBITdDlk6DIdv+lhb7sdNwIHhzoeEsnqLPv/EfQL6+roV6kLllR3/txPvvnya2MYaol8NGqZvWG9EIbU6tHWBdpOfq5MrRnNpBCWjy4BRJuQA0uMGtteY2p/0exF09qX6T4YKG0VuX8hR+wIrvg7Lk//5e4fc9MgzIQoHBOUdtCuQZQe8hMPw0c8krj0mPte9b9fT8RSnTAjfp6xdT1d20PGxaFJGIg47BXLh68q88qZVyLLvpuwfVduA8Wp/SFrQ5AYMogt2SkJUUtAS31ZscwwIS9/UAPj8Eg67+eOloVXdgCK/Om5JHHKS6boZJu0QHRLuSq9Lmf3yUon/nJHA9kTgh43myvXPAew2/XmBFBDrtvG1I6xWamwEAPseYnkfTC9DK8bTxLg2N9B5ex0IUZziRjArFNDvWA7qW4XVbnW+a4sXo9Ue2bhT3yLxxOcS36wLH887+wJH7CFwwt5APbHGuzN0Sk21y3ojSoezeJFhkghHovdeBIBDdv4nhRBVAFYCqAeQB6AUwD4A+oRsVwVgupQywmPfDqSUG4UQJwJ4P6Cu/QH8LIT4GsBaAAU79xV6J/wWgGstfq9ez5BCYO0tvKJdvFGuqJBgBg8eHPS5pqYGdXV1MQmQ+umncDtx6P7Sgbq64DcIhYWx+8OF1h0LmpqaOPCKYRiGYRIANakWALLjLEazCTtybLnKNrB0wzq6v6UKSgzFMKG0Geon2qkoQgJoeVWgcNFrEGI0wWK0VMGq3CER/dFsm2ywI0uEPiZMHFZ+C913yrUwDkhFGUeWLQsO4YBP+sLyQs9rHsMNSbygjUYUm0fI1KjzaVi5KASxXuk1LcvRiddybX2135nHaAyjptG/AwbUEb9FWeGBjZ2I8FAjJsP5pP4dZboNdhzgnJ7g1jChOAkxGgA0eOsSIEZTX4dT9d6MYRiGYRiGyQw4Pi9xJDtGj+PzIsPxeQzDMAxDYIs8XpQ16yAAyKtPoQtNOxEYtW/s2tUTyiu6/jmmfTlO2/E8nis4VVn0prcl7v5Q4q2/2HDQbsl7N+Tapn4nXlESYcK9tx3YSszgrxwNVP0cnt4pRqMm2StkTgyAsgrkbFyDd9Yfi5nD3lQWOfgOAw332NA/Nzl9yTAk/reIngD/xCyBcmdH22S7B/h6vrKcKNspRnMQsVr+8FgPAJAtjUCjWvySicI9UVYRFu2SIz14b93ROGr428ptDr3LQOO9NvTLSU4fos5FAPDMeTZzk+N1oqtQvCHxMdUuZTGRgf2nEzHtREiFGA0A5P1XAq8+BNz3EcSA7vv0LIfAvEtsmHanodzu+jcknHkG/nJobJ8ZbW2SOO1hug/9drKi/zxxK1leFA2KRbMyk4NPILPsW9ZhWBGwZmt43rWvGThhbxPS3BSlQROqX9j52v7J28LyXth0Bg4b/kFYut8ANtQDlZo1F0OpJ8L3Cg21hEbssqf5yhkm3dg5bqhodymz61qAl7+WOHnf1IjR++9Cc4ulFkQIW5ZSAi/9my6w+z7Aym/C09s94WnVtGBN/Cn8fMZkGppjR7f4b0sjXeMV/+lBe1KQfPo90D9KXsWjdernWP/5xol/HxCvRtFsa5KYdqeBn9Vr9wIAHvpE4i+HCnLc4wwJVZSPzrHekAwVUzNMqsBitMxAABix8z8dbwA4T0qpuIWnkVIuEEKcAOBxdMvPBID9dv6n4jkA50spCc9+5uKwC1RYeDDApC9Tp04NS1u6dCmOPPLIHte9dOnSoM+5ubkYP358j+tNNrG06ba3qyfT9gSpuzFiGIZhGCZmeAy3Ml3AlhCpS44tTyn0oib7MjRtfnOylU5YjMaYhZLupaIICQBy7ZSQqPu8ohIlAYDDpFSIiT85dvMyqizRx7QQqieYFYXl2vOSuoJNjt38sZmrKWvlGE/V80GOLQ/N/vCXq6HnNd24gzqn6Per3qbV5LU6GvlYx3XdXB91++kIrRxbLuzCgT4iG+0yPAiCx2gMo6beS78KKnTwSwrGHHXeWixrWarMG58/GQUOnqicbAochbDBBgPhAf71vjoMQWVc90+NEVJ1LMYwDMMwDMNkBhyflzlwfJ51OD6PYRiGYXYiTEhRql2Q61cCi9QyKAAQl92X1HfxgYTKiO6ovYoUowFAsweY/YaBjy9Lngikaps6fQS9xk8HtevpCc9TZhBitJ1xadUu5WaCJ8CqKe94zzC95SOU+mpQ4yhVFnv6S4k/TUvOsbDgFzrvyhkCv50ScLwvfJ0u3NkH7ES8j4+IbazRCLEyUbhHHEuHt85HeU4rNrvV75Ce+0ri/AOT04eqCOfzAbsAew012SYrYrSAviQNg+5DZfF9z5fSHHIS8ODVdP7mKsi5D0JccGNQ8kG7CYwcoJZfAcC1r0mcu79EXnbs+tojGjHjlBGA3Ra8L1ntois79ZLYNCpDEXY75D7TgG8WhOXJahcqS9R94+dqoN0n0ceRGmM6qzRoQuecuYCsWq7M28f9Hbmda5s1MRrVBqdfIUabfrr5ihkmHdkp4a70usgiV75i4MS9bbDZknve2VRv/llsqHQoDJX0rJOz/w788q06z6d4xryZEKMNGgbRN74LRDJpgO4ZjO79QpNa1onS4RBDd+1Zm1KNPPo4cbZUo9y7GZuzysPy7l9WjnulTPhzrkcWSa0UrZN/f0z/fQvzutss12seEujIxPt3hkkheNm73ssiAC8BqI9QzgfgXQBHSCmPtypF60RK+Q6AsQAejLDPLwCcLKU8XUppbQY8w/Qyhg0bhmHDhgWlffBBuEk/GubNmxf0edKkSejTJ/6SkFhTUhL8lGz7dmKlnB7WnZOTA8MwIKXs0X8VFRUxax/DMAzDMDSU8CjblpOQB2w5hGQmGiFIpmNVVOJlMRpjEkq6l5uik++pdgUeI34Wo6U81PVBRaL6olnhRLLFFFZ+D93vnGXrY/qY0AnWkgn1W4SOM3TjDit9sZM8QqZm9lrdZlh/1EsJH622I3en1I3qx21+HqMxjIp6n3omSZbog772fHI76o5Lhq3rzWQCnza8T/7tD3bOTHBrGBU2YUd/h3qVR+o8EEvcxHU4mvEKwzAMwzAMwzCMVTg+LzIcn8cwDMMwBGYmoFe7gK8+ovPz8oH+KbSASIiMaJC/FnkR3vN+sgpwe5PzDkhKSYrRIoo4qInyAMSw3dQZXg+k3w/Ub1Hnlw5Tp2c4IkDMtKf7R7LcBz8l713i+5p97zc8REi0VHNM75TAwUHEpfiJGIiadep0ux0YMITeX29FIxkcY6wh85LZh9ZtU+9791IL8co6QV4ogQKQbZtp6V4GT8wX5ZXAqH31hb76UJk8bjC9SaMbWOKKvl0qdH23skTRh5Z+TJYXZZn7N48Z1Dmo2oXhxfQx/d2GuLQmIdRrQucKcgF8NU+Zl280o5iIKXDVWTsnU21wGjvCE7mfM72ejnONToy2dhstiU4kn/xi/lgviBQGtER9XQYAMXgE0CdbnekNF6OREtHBIyI0gskIohWjNSuuSQDg7H0rLQmHo+OZlYrGOgzz0vcuW5vi1CgNHy7v+b1gkLxRd9+vgcfiDJNcWIzWS5FSfielPAVAMYBRAE4EcBGAawBcDeBCAEcAKJJSzpRS0qNK8/vcIqX8I4BSAIcCmAXgqp37PQnACCnlFCnlKz3dF8P0Fo466qigz0899RS83p7JHrZu3Yo33nhDu590oaysLOjzzz8rVmeKkkGDBnX92+12Y/16Cy8aGIZhGIZJKh7DrUxP1KTaTvlGKJSwjaGxKpPzsRiNMQl1POakqAiJlPkEHCNU/3eIrLi0ibGOQ2QhS5ib9JQoEZlZ+VeypYFWfg/qOmy1rmTL4CiodoWKwcyIwqxA9YFWQjQZCiWk1OEzFCu5UfXrRHD2jjEg1d+tilgZJlPY7lWvk1PoKIkgnE7PFXCZ2OM12vHZDnWAbFmfYdgld3SCW8RQFDrUAVoNXmJ5+xhhSD88Uv0MJ9njT4ZhGIZhGIZhMgeOz9PD8XkMwzAMQyBMTLX66Ut6QjYATJmRkEU+TRMiAhEAjmrWS2OlBNbF91EySV0z0OxR5ylFMoFUu9TpRaVAP6c6z9sOuDXvvantMp3J3ePgGc3vkcWSKXao2kpPoj50VEhCtYuuaLfxHf+3U2I04j6DEqOVDO6YkJ5pjBxHZs1on0/mrVW/3k4Ia6OVNAagle6FEihCo/oPAJRXmK+zFyKOOlNfYOU3yuQZ4/TXkM9Wx1bCt5rwbQLATMXhIHV/80nTe96gDEdQYrSfl2Kmpm98vjZ9FwtsIELn+mUDWQ6hHc9WEGIUq9d1qg1Of0NYmpgyw1rlDJNu7LxH3Mv9AwoUx0Ana5I49umkzkJY8GCn/vqqvXeeeATgIOLvfYo4Y6oujYCXySC0z2Ho67lsJo7HfgU9a0+qkq9eaBU76jCx7Stys2Tc27tisM8hAV9Xez7SUVrR84YwDBM1LEbr5cgOVkopX5VS/ltKebOU8hYp5QNSyg+llDF3c0op26WU86WUj0spb9u537lSSnrZFYbJUP76178GvfDcunUrHnvssR7Vec899wQFb/Xt2xfnn39+j+pMFvvvv3/Q5wULFsSs7qlTpwZ9jtVqoAzDMAzDxB8PITzKtuUkZP+UgC0aIUimY1VUwmI0xixtxIq2qTr5nmqXm8VoaUe2SUlnoiR96SIJy7UgN40kQjUrSk2UUNUqVLtCr5mUKMwGm2lBX/B+eyYVo867OrwWrus6MVrnOdSMZJJhmG7qiVVdC7OiXeEufYNAmej4uukztPjVrxkPdqbYZK8MpzCrWJlOnQdiBSW2B1JXWs0wDMMwDMMwTO+D4/P0cHwewzAMwxDYTE61euEeMkuc/fcYNSZGDBgC2O1BSdduuwWDfHK0aE4AACAASURBVLXazWbea8BvJP490Mcr6X1Wqh97d0FOci2vABxEnI3XA7Rp3nvnWF+gLBMQI8d2/fusHc+Q5aq2AVIm530iJbXKzwGceSHvszYT097GTobo7DtUH/L7lMmk5Kh0uDq9lyPs9g75hYKza/5LbvftBsDjTXwfamuX+GmzOq8iwrmoE/nErcDHL5vfaaDMe7NLXaZfAQQlM8gUjj8fGDdVW0S+9O+wtNMmCBy4K73Nta9LPLfE6GnrAAD1LRKbaOcNTtxH8U69mhajicEjY9CqDIeS5myvwdEeWmB4yQsSLy6NTb9INPWt6nOns/OVfbWL3LbCq86zIs71eCXaiDBBlRgNoyear5xh0pGd95oO+PFg9Z/JYkfdY6DVk9x4vHoLobfDIo2Lqmm9hCguBbKIuGfVIifE+IiUXzIZhiZmUXdP2rJDnd5bJemU8G1HHa6uu53cbNqdBry+xJ2bDENiQ33P6rDbgMGBf8bn746uIj7HMExSYTEawzBMEhk9ejRmzAg22V9xxRWordW/YKT4+eefcccddwSlzZo1C0VFRVG3MZkcfvjhQZ+fffZZNDXFxud45JFHBn1+5JFHYlIvwzAMwzDxh5pYa1ZG01Nyicm7bkLYxqgxpN/yb8ZiNMYMUkqybyVb/kRBynz8kcVodpGBK4emMGYFX1ZEYD3BbJ9PtjQwx2Y+gDjSd8o1WVeyvzNFrl3d/sDzAQC4/eqIg1xb36hENHnEfltNCs9aCUGs7u9l5bpOCdqyRJ+u86AZySTDMN3Ue9UzAIocA7TbCSJwRLIYLeNY2PCOMj3HlouJBdMS2xhGi9OhFh42xFmMppOTpqqklmEYhmEYhmGY3gfH5+nh+DyGYRiGIRA9nGp13LkQlXvEpi0xQjgcwMChQWnjPD9hSdX+uLvmb+R2VduAd5fFu3XhnPpf9bunnCyglJi/20W1S51eVgH0yVbneT2AR/NuOTc1YwxSgjMuBwAUGI14f91MZZFmD1DXnMhGdUOJ0e49Nfi9p/R5gS0blGXFmZd3f7ATsVp+v1r+RkmOyjJTjAYA4jT1Oaegfi3e+r2H3O4/nyT+nfQ/59H7rCiJHJ8jV30P+chsazv1BcTTsFiPRDiyIO79AOLc68ky8t7LIOu3BqX1yxF4/2L9df7cJyR2EDIpK1w5l67jm2ttyMlS9CHqb376pT1uDwOt0MJx5XE4dHf6b3b2oxJN7vSLjWkghjeFJsRow73q/uiqM/87NGimCjiNEAnNzLN5ET4mA+ju479umotcTWzNI4uSe86hzh8qhkcSoxHXN/Hnf3T8w0GJ0YLHhlJK/f0ew+iuIzoxWhMhRusb6QFEmkJJlnfUodi/HUO96ntjjw945ZvEnZuqdwBef8/qGFoIOOwd/YIUl5shg+/hGSYVYDEawzBMkrnrrruQl9f9oqyhoQEnnngimputvfnZunUrTj75ZLS3t3ellZWV4brrrotZWxPNmDFjcPDBB3d9bmxsxFVXXRWTumfMmIGRI7tXy1iyZAkeffTRmNTNMAzDMEx88Uj1G7JskZOQ/VOCD5ZuWIMS3OnwGixGYyLjkW5SzJG6IqTI5xWfVK8qmiWIVUiZpGBWRGZFBNYTzAonki0NzLJlwWFS8heprenynSmo9oeOMyjRSI49OskIJZTzGG0wZOTVLqlxUL6dfiFMnddUhIrhOglsN/Xb6aQsDJPJbCeESIVZaoESwwSyzr0aLvcqZd6k/oew9CrFKCTEaPVeC8s4R4HuOYlZmS3DMAzDMAzDMEws4Pg8Go7PYxiGYRgCW8+mWomxU2LUkBijmCg+2LcZf65/EPtX0O9v5yZw0isAtPs0IqJiRBZmVLvU6WUVQBYhRvP7gVbN+DCHn2tTiPKKrn+Pbl9BlquK72sJJfUtkhQ6jBgQ0o+2bAAMIj6irLL733ZNrJZfcRxt2aguO2gYXU9vJ6DPhDLGrp6ADwDv/Jh4Oci7y/Tno0jIT16zvlNf9z2nrCV+DxZ/AOiQo+G3V9DCQgBY/HZYUk6WwKXT6WuJ26v/25tl8Rq6jl2oNesocQzL8GKDTmjh96PSRov0PT7g/Z/i0KY4U0esi+rMiyAYAlBJiNGqLKzBphMrFfobgj6L8kqiJMP0IkLuZY5reossmuj7sFAsidGK6Ouq9PuBSGOaPpQYrT34c3MD0Ebct/H4iAGiF6NR9235vVSM1o/4Xq0dC+eM9dCDnkSem5Zt7nkdQfdti96MrpK8fFomxzBMQmAxGsMwTJIZNWoU/v3vfwelLV68GDNmzMDGjcRgOoRVq1bhsMMOw/Lly7vSbDYbnnrqKQwYQD0tTQ9CA8fuv/9+3HXXXaa337FjB9zucOmGw+HAnDlzgtL++Mc/Yu7cuZbb+OGHH2Lt2rWWt2MYhmEYJjrchlqMlqiJ15RIhaUb1ojm9/JJFqMxkXET8hwgdUVIlLCtzeiOSKD6v4PFaCmF2WtRbpKvWaFQcr5EYkYW5xBZyLLp+7x5OV3yv7MKShISet2kRCPRCiBz7er9Skh4iLFXIK2GOoKqv8NJbuOV7WReKNT3DTzmqN9Od11gmEymwUuI0QiBUiTSb01cpicsrH+XzDvIOSOBLWHMUJilnpVR79vWEegcJ9o0YwiW5zEMwzAMwzAMk0g4Pk8Px+cxDMMwjALRw6lWYyfHph2xpnI0mbV/MW24+GlzYt8EbdhO5w01Mw91s0uZLMoqgCxiwj0ANNXTebksRiMJEBCU+mqQQ7wfWLs18W8U12rELSNCX4sS/QYAECgk0gmYfIr4riZ1hxbFpXQ9vZ2BQ0kB5ZAW9eJMALCpgcyKG7p9lvY3U8Ea6zsN7EdE/0HRIOv19lKE3a697sqN6r/B/iP1ks3VW3vULADAZk3/6ZcTvn/Z7gG2EfYHjVCQsUBxGaCRb03N0T97eGJx5AVGU411hJi0tL8AGrYCbYQ5DcDwdrUYbVODXmQbSL0mdM8ZIkZL2TE0w8SSkDHQ/m2fk0VjcS3qCQ2t5sfvEyo0mds2qcfJQPe9hIO4T/OFxBk3am4WM3l8zXQThRhNetzAyq/V1fVW4V6x/n5iamtqnJvmr+z5c4SKku4+ITdF+Z6pdHhkST/DMHGFxWgMwzApwDnnnIMLL7wwKG3RokUYPXo0brvtNmzYoDZir169Gtdccw3GjRuHH3/8MSjv9ttvx2GHHRa3NieKQw89FJdeemlQ2mWXXYbjjjsOX3+tvtkwDAOff/45/vrXv2Lo0KGoqalRljv99NNxzjnndH1ub2/HSSedhDPOOIOsGwD8fj++/fZb3HDDDRg9ejSOOOIIrF+/PopvxzAMwzBMNHiM8KBqAMi25SRk/5RwhBJ2MGp0v1dfW74yncVojBl00r1UkD+poARNgSJIFqOlB+alXIkJmDUrYEsFSZiZtpppp9njPHXPB+rfIfS6SZ3rov1b6oRqlPQsqD2EfCzP1g824jWEles69X0DhW45dvVvx/JahgnHa3jRGBpcuJPCLL0YjX65z2q0TKHZ34ilTZ8q83bPG4ey7KEJbhETCUp46JXtaDWIVVRjAHXfb4MdWUIz8YxhGIZhGIZhGCYOcHweDcfnMQzDMIwCQthjFjF01xg1JLaI0y4h884f9B2Z95ULuO51I66LbQTiIgQeAHDD8fq/jWxtBnYQNqyyCiArm964kRCjCQH0SUxsYloSMFFcAKj0upTFTntYJlyy9/ka9f6yHUBZQUhitUtdSeFAiLx+3Z8dmlgtvy88rWmHumw+vdBcb0c4sjrkaKq87xbikN3V2y2vRsLOQ0CH9IcSCh23F2CzmZgY/+EL1nfsDRCANBFmrXwzlsjMQZz2Nzrz6X9AusPfWx49DthrCL3Zda9LeLzR97cdrZIUQv1xGtF3ateTwo4gQSMTNUIIiDP/j8w/qfoJ7fYLaXdjyuLapu5TFc0rII/TxHeUVaDCqxajSakX2QbSQBwHdulDXxkSl7j3weYqZZi0JvgacNoOeqywuQH4Ym3yYvLe/8l82YH96XGRfPoOesPOewlKYO0NEaM1E2NrgMdHzE50Y3TieProxfC+1sm4qT1uUSoiymhRLAD8bsdTZN53G4BVtYk5Ny1Yod6P08J0ieGBa8q+82R0DWFJMcMkHc0yBQzDMEwiue+++1BYWIibb76562F9U1MTrrrqKvz973/H6NGjMXToUBQWFqKurg7r1q3DypUrw+rJysrCPffcgz/+8Y+J/gpx4/bbb8f69evx0ksvdaW9+eabePPNN1FeXo5x48ahuLgYHo8HNTU1+OGHH9DU1GSq7gcffBD19fV49dVXu9KeffZZPPvssxgwYAD22msvFBcXw2azobGxEZs3b8by5cuVq1wyDMMwDJMY3MSKgpRIJNZQwhFKCMKo0f1e/RwFaGkPH8+xGI0xg066lwryJxWUkKjN3wopJYQQ8ElF4BwAu+DHe6mE2T6WSwicYo3p9qTAsWFKemaiTDp9ZxXkOCNk/EOd66IXo9GyvjZ/KxDBwdhGyNNy7X2RJfrAI8Ofo1i5rpsZ/1HfgeW1DBNOg49eGp0SKHUitIEjTCbw+Y6P4ZXqQKCDnDMT3BrGDE5HMZlX7932/+ydeZwcRd3/P9UzszuzV3ZzX2R3E44gZzgEAyRyyX0piKIi8Mij4K2PeAuiiA94iwieqMAjigry45I73EICAQkhQHZyTpJNsvc5M12/Pza7mZ2pb3XP7szs7M7n/XrllZ2qPqpnqquru7/1LlQGzHLy0dIr3PdHnArOoEgIIYQQQggZExifJ8P4PEIIISQNJzDiVdUn/zeHBcktasY86LIw0J95nZ3f8Rp++oFT8Nk/mwedfvdejYYpwCVH5//5bnSHPMD2yPke+49F5bxZDUCfpY/RIYjRwnyubWXGvAF53K4+dmN/FK+X72tc9D0/dhG91kEoWJjv8zNCfW6cmim10rGoeSMp4jcAQMASq5UmRtNaA51CvSphMRqAAcnTFoNw546f4po/fB+Lv2/+7X7+qMZnji9M/fnWP+W26Ltnews09dv/kTOnzQGOPw/4808y85Ip8TRCu6RKvf6koY46DXrfw4HXXzDm6198GeqLPx+WFgoqPPElB7WfdcXtfv0ujR+cN7L6ZpN8fvkkYZumc2IQitFyhjrjEujrLzdK6Koe+xOw783iuh29QEevRnV4/PQLmoS62PD4L+SVysLAfkeg4ZF/ytvdDiyY7r3/1m5zW1qXbBkegXTQMVCjlBMTMi5Iq+d1bisejZ6I4xoeMi6++Psuum5wECkrbLvT2q3R4zPE99cXWqRob70C3PUrc2Z1HVTVLltxUBCjJdIKId2zKQVU1niUlJQEtnt3w7Vfaw197aXm5asmAfP3z1HBioz0+9z07MQW/HHTxbhwzu+N+Ude66L5R44/WfQIaevWeFHoHp99sMItz/iTszXsCp3UO7YA3f7ea2XAvjghYw5HThJCSBHxne98B0uXLsXll1+ON9/cPY2A1hqvvfYaXnvNrtk+5JBDcPPNN+Owww7Ld1ELSiAQwB133IH99tsP11xzDeLx3Te0mzdvxubNm0e87VAohL/97W+4/vrrceWVVw4LqGpubsbDDz/saxuVlfIAYkIIIYTklj7XHJxU7hRmVkZJwEbpRnZIApUAgqKsJk4xGvFBj3AuOnBQpiyzvo4hksgoiQQSOo6QKhMFQkHlYSsiBcWvpDNskVDlEr+SrELJRe1l8CM98y6n32MuL4JjNiFdA9PFIpJgdKTCt0hAXk+6ZvtZJuJUIKhCghjNLHzMZvupvzf7aIT4p8UmRgvZxWgShZyZm4wdrnbxZOv9xrza4BQcWPXOApeI+KEmWAcFBxqZQf0tiR2YC/sMkCNFFJsWSBJMCCGEEEIIISYYn2eG8XmEEEJIGqORMsxdkLty5INDjwWezXzWr2NNOPEEBUB+5/On5zQuOTqPZduFJJN5Z4OPlWNN5vRAAJi+B7AlKq/bvtOcHmY/xIYKlUFPmwts2wAAaIxHxWVjbcAjq4GTCzC2fL1FsDff9Eo0FjUvnI0YLV3c0NMFJJPmZatKXGw1qwF4eZkxq771NQDvMObd+pzGZ47PX7FSufNFuQ41yPMSDaEfuFXMU1/9FfSrz5ozU+7H0NlqXqa6zrsAJYY6/SJoQYyGh/4M/dkfQwWHn781EYUfvV/hC38x/9Z/ek7j+nP1iOSYTUJYRtAB5kg/X0wwP0yeAVXOd6w55bxPA3/5mTFr6ew2PLF5krjq3S9rfPjI8SFG641rbBaakfq4RcQ3qx6Y3YgK3YPpia3YFpyRsciAyNb7e2gRQvdq3bbhCVNneW6LkAmB4Zryzt4Xravc9yrwvkPzVSBpn/5jAWfWWMRoD94mr5jSz1ahMvOdaDxt8s6ONtNSQOUkyhXJAFmK0bBK6D8CwP7vggqMXJxf1HiI0QDgmO6nxLyWbuDpt4Fj9sphmdJ48i3AFZqicxZlI0bbVSceu3PEZVEUoxEy5vAqTwghRcYJJ5yAVatW4bbbbsPxxx+PYNDusCwvL8cZZ5yBu+++Gy+++OKEC7oaRCmFK6+8Em+88QYuvfRSTJ482bp8VVUVzj77bNx1112YN2+e57avuOIKNDU14Stf+Qrq6707qdXV1Tj11FPxi1/8ArFYDIcffnhWx0MIIYSQkdMnDKwtlOAkEjAHOkkDfokZ6fuKBCoQEkRPkhiKkFQkAU7YKd7ZW+1CooHjkQRCQcV5D4oJv5KHSMGuWf4kWdK1rZD4Kasf6ZkfMVi5CiOgivNFZVj4HtLbNrGt8/mbpxNUIYSUecY1X2K0pHmZikCl2E5lc13vTQr9hpTfOyIIByVhJiGlzM64OQK3wqkqClkmKV5Wda3A9vhWY94xtScV7fW11AmoACYFzdH1rQnLVOWjxHZvRgghhBBCCCFjCePzzDA+jxBCCElBjWKo1YIDcleOfCANfo1F0TgVqLbMTfp6LB8FymSdIJNpmOoj7icWNadP32NAiGORnOmd5ncgCPO5tieTpw/9eWDfq9ZFX48VZsKlVZb6esBcQ12KRc0Lp58ztvuHZFp8V0eLvGx1aYvR1F4Hinkztsl1aFtHPkpjZoclXKYq7KM9ir4u5zXuByVJ9lLrUQfFaL5ZINcpdLUD2zcZsw4ytQe7aO4AdnSOrDhN281t3bzJQMAx71NvEURVFDHkHGXpr1061S4osl1fio11lnAAm8gUU2ZB7TlwTtXH1xsXkUS26bQKwytqk2lyoypZRkfIxCLzGhDWfVhY3S6usapA/edU1srzrg4j6ABH2OZjtPWHUtvikDl+GfG+4Z+l/nU12xCyi2zFaJY6qhYtyUGBihQfYrTZiRimJprF/FWb89s2PbravP1ZkzzanTTqd0mtta098sLH90UIyS8cOUkIIUVIMBjEBRdcgAsuuABdXV1Yvnw53nrrLTQ3N6O/vx/l5eWYMWMG9t57bxxyyCEoLy8f8b6uuuoqXHXVVSNa9/HHHy/oegDQ2NiIX/3qV7jpppuwYsUKrF69Gtu3b0dnZycqKysxffp0LFy4EAceeCBCIbNQQ2LmzJm49tprce2116KpqQkrVqxAc3MzWlpa4DgOqqurMXv2bCxcuBB77bUXAhPV9kwIIYQUOX1urzG9UGI0SRTQ63ZD65HNDFaKSJKSiFOBIMVoZBT0JIW6NUJZUCGwiQF63W7UoFas/9L5QsYGv5KHsCBwyjV+5TbFIMHxJT3zJU/zPpZiOF4JSeyWft20XUdHvu9KxJP9GemS9Gx4eczLRJxKBJ0QYJgAOe5m7ivb7afWG7GPJkjVCCllWhLmyKXJIdPU6MNRPmZ7JROXJ1rvN6YHEMTiSScWuDQkG+qCU40StBZBlJgL8tFfIYQQQgghhJBcwfg8GcbnEUIIIQCcEYrRDj8BqsgHS6pZDTAOLX3xUZSHFD66WOGGR82DT7d1AN19GhXl+X1fFN1h3v/gYFYbetUL5ozB38UmE9q+2ZweGfvJ5ood9d7LoL/3MQDAue1/x5enX4PWgPm7/s69Gp8vwGslSUoEABcfZajDm5uMy2ac05LMCgASafFdnW3m5QCgqrTFaDjhfOBn/2POu+ZiLDrhXLy0KfN+YP1OINaqMas2v+1QS5dGmxBucrrFvzWM5x4Qs9TUWdAeYjSdTMp1iAKhTN5xODCrHoiZ5WL6qo8ANzwCFRx+H7t07wEpaIc5NB1NO4Cp1dkXp0mQRjXawjIoRisc7z4HuPZSY9aZrXdhSuXxohzx+/drXHN28Y8XeGy1xvE/csV8SXgGYKDvs/g0AEBjfxQvRDJl9VGfoQYtwvdYm0yTG1H4SEoF4V7z0sa1+OIrBxvzrvynxh0vJPH+wxW+caqCIwg2c0mrz/mI33eIwtRqQfgZ7weee1BcV51+8e4PohgtLc5YEqOVet+apGA7PzLvEXUsKi9+2kWjLEsRM2kKEKkCemQLcAAuLmm9BddN/ZIxf+XGfBVugMffMN/TH7dQYZLPoSABB5hbB2itgbt/M/LCFPmzPkJKAYrRCCGkyKmsrMSSJUuwZMkEtguPAMdxcNhhh+VtBs7GxkY0NmahDSaEEEJIweh1zdEG5Y5lusocEhFkNi5c9Os+lKvClGO8I0lWwhSjkVHSKwy+9yusGgtsYoBBmYAsRuPjvWLCr3ArUiAxV0AFEVJliGu7gEq6thUSP4IMP+exr2XGoSgxrvuR1AkEdp3zkmhkNG1dJFCB9vSAI8u+/CwTcSoRVOaAhWyu61L/L1WWFwmY63GP20V5LSFptMTNs7jVBr3FaBLaPISGTCC292/Bqq4VxrxF1e/CpCCDVIuZ2qB5tFirIErMBePx3owQQgghhBBSmjA+zwzj8wghhJQ0amRiNPWd/8txQfLAbPn6q994CT8892A0NWvc+6p5megO4B2z81S2lH2YaPAQo+lEAnj4DnPmrIHjVuVh6LJyoL8vc5lmQYxWzufanpz8YWCXGG2S247H152Ig+e/aFy0tRu45RkXFy0eoYDQJ02WVyB7zxgeP6B7uoCWbeaFZzcM/xy0yIF3Ca2GkMQNQMnLG1TddOgZ84CtZjHP79Z9FIuCtxrz5n/NRecNDgJ5lIJI7RAA3PBB77qrm1aJeeorNw/8IYmg3V2zD3ZZxHoUCGWglAJuehL6rHnmBV57Hvq6y6G+9uthyY6j8Nq3Hcz7slkg9bE/uFh5ZfbS7nWCnLFhqqXeClI3zKIYLdeoimrohYcCq5dn5FU8+Fs8/ZefY+GV8vrfu0/j66cVbyza82s1Tv6pLEWbFY8hrA19oUHKKwb6TJNnoD5urpeSyDadVkEyWesOb+MUhY+kVBDiWD+7YLUoRgOAVTHgqn9qtHQBPz4//+2PJIgFgLoKIOkC7z1E4YYPymUZFCcbOf79UAcu3v05KIjREsPj37UkjWXfiAxiixXXhmuXJKad3Qg1yYedfZyilIKe1QCs/Y91ue80f1sUo930hMYvLshPfP6OTo2XN5jz3r0PUB5SiISAHo+hCHPrgGBAwf3dd0ZXIIqKCRlz8vsUkRBCCCGEEEIIyTF9rnlaLr8ymtFi24806JdkIglObGK0uEsxGvFGlvMUb5Biua1dSQ4cT1InjPnS+ULGBr/1LCwInPKBP+FYYa6h9jJ4l9PPsUR8SM+KWcZh+y1S27fBtiGd0bR1kiDPjxitWxCeRgKVCAkCx4TQrpnodWWh6u6/zd/doLyWELKbFkGEVBfyI0YTZnikGG3Cs6z1AfF3XlJ7SoFLQ7JFOr+l9iAXyCLXse97EkIIIYQQQgghhBBCiBVnhGK0ypocFyQPzGoQs/TtP0QoqPC3y+Tjt8mCckF/QmNTqzmvYYrHYNvnHxSzVKrcShJSbd9kTo+M/WRzxY5SClhwwNDn/ftW4dvbvi0u/9OH8/9usUmQEn34CEM9kgbDA5nnTMAyiWUiLb5REqOVR6DKyuXtlApLzhKz5r/1gJjXlwAekr1jOUES64UCwBwf3g3955/ImY37DfzvCLKtQcGeTaxXXdpiPQk1eQaw9yJ5gfv/CN2a+ePOrVPYZ4Z5lVc3AYlk9m2WVIcabWEZQlukKGLID0eeLGbtteFR3PwRud9xw2MaSbd442RuekIjnpTzG+JR+wbCu2Ly9jkEjYIYzSYgTaVNCD2sS6Z1+NiukVJBEAgppX0Jz37zlEZXX/7bn7Zu8z7+e4lC848c7PiJg99d5KCiXIgl3LFFllYDUOd/dnhCSBCjxdMmBpf6R5QrkkFyJUZbcnZuylPM+JDvBuDiq9v/V8x/bm0uC7Sbp9+S845bOPAbT/IRgtgwBdCJOPD3m0ZemKpJUOynEDLmUIxGCCGEEEIIIWRc0ScItcpVuCD7twlHegRJCcmkRxCcRAIVCDlm0VNCU4xGvJEEhcUsQnKUI8oBBmUCcaH+U4xWXPitZ5ECyiD8CcfGPog3VwK3XAnWxgrbb5EqQ8tHWyd9Lz2C9GwQV7ui8DRiEZ5mc13vsWx/99+W747yWkKG0RI3RydODk7zXLd457sl+aTf7cOzbY8Y8+aUN2BBZN8Cl4hkS13QPINlSzx/I9h6k7IQnRBCCCGEEEIIIYQQQooZpSxDrcqF99Yf/EJ+CpNr5syX82JNAICyoMIegvgnuiO/g/DX7zSPVQaABo85fvQbK+TMPfbe/bc0oLV5szk9zOfavpi397CPe/e/KS76yiagL57fuiQJW4z1aHOTeWHHAWbMG54WtMRqJdMsNNuFOlUzWd5GCaHS6kwqlbobc8s7xPwXovmuP+bt108BAo6Pt+br18h5cxcM/C9J9gbFaDu2yNtgHZKZOc+ev/IpY7JNeLfB4qgzobVGk/AatsH82ha6v09uM3xIK0j22NogrF6BfWbI5/rWdmBjlvWikHi1kXv3W2wjABDe1d+trkO9fTKEzAAAIABJREFUIEaLtQG9Pq7l7b3mZard9uEJNcLJQchEQ7rX1Nra7gzS1QestnQRckWrOeQHkyKA4yjv/tCbL8t5SmXel0r32T1p8cvStbKafSOyi2zFaDFBTJsqV5+oWMT5qezTJ9/bvLguP/dl63eatzu3DmicOvAbT/Yx/KVhihqQ37WNYvLYaXNGvi4hJGdQjEYIIYQQQgghZNzgahd9uteY50eWkgvCATnQidIN/0gClXCOBCqkdJEEhcUsQgJkOcCgRFCq/0FlmYWUFBy/16JCyiB8ycQChRO1iWXwUU4/ArdcCdbGCttv0ZPSz+gR+hwRSz/Fi0jA/P1KMtNB+txeaLjmbTqVObmu9wpte+q5ZPtdKa8lZDg7E+aX/HUhj9EkpGRZ3vEUulzzwIOltadA2QKKSFEgnd+tiR3Q0gizUSKLXIu3L0YIIYQQQgghhBBCCCEABmRIEid8wJisjn9/ngqTW1RFtZy5Zf3Qn5KE7FO3azz9Vv6ERFHLWNV6r7HuwoBmAMCRJ+3+u0oQoyWEd9jhsZ9sbjygTjh/2OdTOh8Ul9UaiOZv7hYAshhtvmmuqFjUvPC0uVDpIjRJZgVk1CG9WdjuTEqOAABLz7aK5s6reEHMW7M1HwXajVR/Gv16e2JRMUsNSs1EMdouwV5KmzyMyhqoqkk+C1J6qPdcYF9gq/l7ff9h8jvvnz6S3XVve+eAuMbEoMjBb7kAsM3IF4tPFbP0hjU4ak+g2jJnu63PMpZorT2vse9v/6t9gcG+T9UkNMaj4mLrfFzLpXOhMj2ewEtqSMhEQYqxcl0ctxCYZrldG8TPuTda2gQxWq3fEOWtG+S8d564uz80iNS36WwdHtcUixoXU5SIkl3Y4xiH9+l0vB9o3mhetAT6X8qnGO30zvvEvCvu1HmRnrcIYf9zU2TG9T7uzeqnAPrvvxxdYSprRrc+ISQnUIxGCCGEEEIIIWTc0K+Ft2MAyh3L28ccUq7CUDA/LJUkJSQTSbISoRiNjBJ58H1xi9EkmdOgRDChE8Z86XwhY4NfyUMhRX02oecgxSAO9CP08iV587XM2B+vhO23GGwPkjqBuO43LjOaY5P27SVGs+VHAvJ1Pe7zuq619iWCk8RuAOW1hKTSk+wWz4m6oB8xmvleSCO/M3KTseWJ1vuN6RGnAofXLC1wachIqA2aI4H6dR+63c687FMSotuu2YQQQgghhBBCCCGEEFIUKHmolVp8CnDR13cnOA7U538Ctc+iAhQsN6iv/86c0bINum/g2W7DFHkw8THXufjri/l5NxTdYd7ujBqgotxjopZY1Jy+18FQkZRn09kKhSJ8ru2LY84E6vcZ+lilu3D3hveKi69tzl9RWru1OJC60VC3dSxqXtg0UNwi8kIyLb4rm+2WIKpuOtS3bxPzr0z8Ssy77XmNpJtPSaN52w2S1CoF3dcD7IgZ89RXbt79IRAwb2CwHm0RZI8zKA+ysuQsa7ZuM9tkPna0/Nv+7BGN791nnjTShCTWA4BGKSwjFpVXKgExx1igKmuA+oXmzAduhaNdPPIFuU/4zbv914lC0twBdJtDCwEAVzVfjfd0PWzdhgrvismrrsO8uCw3stX1QaSyVKbHHLKek1JBkDbpVc+jLKjwj8sdTPG4/Vgn3DPlklahLz3J51yI+gefEvPUFQZJkSSvjvcD/b0D29Sa/WsyOtInD922ITNtkJkNeS/OmOPzvKl12zA9YTZT9yWAM29wEU/ktl1qleSMKW2Qn3uz+jX3A3+9QcxXn77euzDh4h13QkgpQTEaIYQQQgghhJBxQ58wqBYAyn3KaEaLUkqUrlC64Z+epCA4cSoRGqVAhZQ2fuQ5xYgkM+pJdsHVSWiYgygoRisu/EqpCiXzBLylZyFVhoCyzGZbIPx8d/4kb94BycXcHgRUECFVZswbFJDZRKyjkdxJ3510zU4vl4kKp3LUwtO47oeLpDEvtd6UqXLKawnxQUtCjkqcHPIWo9ln1CMTkWjPGqzvfcuYd+Sk4wraryEjRxKjAUBLPD9TyUp9BL8yYUIIIYQQQgghhBBCCBkzHMtQq0AQzn99C+r/bYa64RGoe7dAvfeywpUtF+z3Tjlvl4inXn6sDAD41t3uwMD0HBMVHlk3eJQHgCgRUqd9dHhCdV12hSrnc20/KKWgrvzTsLTTOh/A1ITZgLZWEE/lgqylRLGoeeHZjZlpAUuMTSItDkLaLsUNQ6glZ0Fd8k1jXtWW1fjx+fL76YdW5atUQJPQFolSq1QkoRkAHLB4999SXdolRtPSdmZSjGbDM6YhZv5eHUfh8AZ5te/dp9He46/dkiSf4dCA6NOI9HtPngnF61DeUGf+l5z54iM4rEHhgDnm7KfeAhLJ4ptE0HYNfLXq0/jG9u8LEXYp7KpzqmoSwroPs+ObhX15H39Xnzm9UqfE80WqgEl+OnuETACk69Q/fwsAWLxAYdP1Dp7+snxPKt0z5ZI2H1IiCd1qaYiOOw9q+tzMdEmMBgAdrQP/t24HeoR4ZVO/nZQu0nmW/gxD6BcCKI0+9yz/582lLYJgH8BDrwNPrMlFgXYjyRnrKnf/tn7uzeqXGUSMg+x1ELC3j0kOwpTlE1IMjP2IN0IIIYQQQgghxCe9VjFaISUzlUbBhq18E4UX2pfh2bZHRKFCVaAGB1a9E8fVnYmAEma0gyyRCzsRaNcsgPIrUCGlja1uFTOSzKjX7UFCJ4x5AMVoxYYfcVfYicCxtI+5xks45kckVgj8CL38nMd+RKl+BXZjRcSpQDyZOVXiYD+j1yIqG5UYLSCI0SziM2BA4CgRtghP/V7X/YrgHOUg7ESEPhrFaIQM0hI3DzxQUFZxkid5GPhCioMnWu8X85bUnlLAkpDRMCk4GQqOUbjcmtiOuWjI+T6lZySj6a8QQgghhBBCCCGEEEJIQbBJVXZJ09SkKcBBRxeoQDlm+h5y3pb1QP1CzJ9m38QbW4ENO4F5OXZYrBPFaHaFh07EgeaN5syZ9cM/V03KrlCR4oirGBcYhAT79q3Gk8HMCrXW4ksYLZIUJhQA5pi8eJubjMsrk8DMJkZLpsV4xaL+t1vKNOxrTt+yDo1T5PfQD7+ucfL+uZ/YS2uNqFCHfInRYlFzulLD2yOpLg3Gz26PmfNnWNpwMsDJHwEe+JM5LxYVV5s/VeGFqLnOdfcDzzcBJ77De/dSG9QwRRa3aUnMMavenE5yw5z5YpZe/hjUEe/BntOBVzeZl3k9Bhxg8PuMJc83metwJAQs3PaUv42Ed73Trx24fjfEo9gcmp2xmE3CNkhXZhgkAKAiNZ5vVgMnaiSlQ5k85klrDaUUyoIK71oAXLRY4ZZnMs/p9YKAM1ckkho7hLDgSREf5+orT8t5Uj+42kOMNnUWsEPoGwGZ93yktFHKHM+aniaJaeumQ5XCc4DZDb4XbYxHrflPvKlxwjtydy1v7Ta3c5NShonMn6oA2NvDhs435Mw5C4Cgj7FYpVAXCBkHWKYxIYQQQgghhBBCios+t1fMK6T0SNqXTQwyEVjWcj9+H/sRVnevxNb+TcZ/b/e8jn80/wF/3nqTdVuSoCQSqBRFTxSjET9IAp1ikT9JSEKtHrfLWveDivMeFBN+rkWFlnJ5lalYpIF+vhc/53HICXkKA4tdjCaVb7CfYROF+ZHzSUiSEtv+bPkhVWb9Pfxe121Ss/T6K353FKMRMoQkOK4J1iHgo18hhS5QizYx6Uy0Y3mHOTB2YcVBmFEmTI1Mio6ACmBS0DTSB2hJ5GcqWVlaXdx9MUIIIYQQQgghhBBCCEHAMtmZM/6HYanyMDBlljlz63oAwMn7eQ9oXbczl6UaILrd/Nap3ktGtG3jbplQOumD76vNz8slVLi4Y46KCVVZk5E2XxhA/eOHtPh7j5YmqR5NAQLO8LqttZZFSQZxg3IcuR1IEaPpzjago8W8nEEgV9JIgoz+Prx72jZxtX8L8p/RsrUd6BFCWhqn+hjsH4ua06fOhior3/3ZEa41g/Woo9WcX+thriRQx5whZ66X5QinH2Tf7idudXHXSxrtPfa6J8mirGK9WNScTtFLflm0VM6LRQEApx0gn/ePrC6+aJnH3zCXadE8QEkCvnQG+z6HHw9AlqH4uY53C2K0ytTJWrMQsxAy7olUyXmtwy8gDcJ14+6VQDyRv/ZnYwuQFG6t9pjsYwOxqJiljjrNnGETo3Xu6hNJfSMAqPVjryUlgyjbHH7e6FjUvFiJ9L9URbXvZU/qegiOTor5b8Ry2ya1CmH/dSlhh8cv9N5OfXy9mKeOOs2fGC3MWEdCioHx/0SeEEIIIYQQQkjJ0Ov2iHnlBRWjmR9s2co33om7cdyz/Xbfyz/d9hC29gtTZEEWlISdCEKqzFwGitGID3qTct0qZiQhUa/bg4ROGPMAeAqgSGEpV2EoURkzgPRb5wsv8UQkUBwBvBEfQi+/57HXd1zo3yBbJLnZYD/DJvkazbFJ4rkeoV0dpFsQww5uT2qn4q6/67pt/+nHK7alHsdASCmxM26OwK0L+g0O4gytpcQzbQ+LIssltacUuDRktEjneasgTBwNrnbFZyTFfm9GCCGEEEIIIYQQQgghUJahVra88cTMecZkfet1A9mTFK460/5e6A/P5n4wflSYy6NhiseKWyyij7RBzapqUnaF4iDYrFCf/P6wz43xJnHZfb/l4s7lua9HX7rTvM1GUz1q3wl0d5g3JAm7pMHTyZT3arGoUDpQAJOO9D0DqF5+H+YKLsOn3gKeW5v7+iNJrQAPsdUu9J+uM2ekCxYCwsRlQ2I0s1hP2cQhZIDFpwIGUSMAoH0n9PbNxqxzD1E4/UB5s03bgff+0sVh17hY2yzXPUkW1SCI9bTWwCN/MW+sRMQcY4WqqJZlsY//Hdp1ccERcn/oC3/RuPU5wR40BiRdjcfXmPPePa8L6JcnqB/Grr6PmjITANDQb+5n3bkCcF17O9zVZ06vSI2BZD0nJYS64kY5c/mjwz7WWyRkZ9zgorM3P3I06Z4M8HFfBkDb7s32P9KcXhYGQuYxREN9Ikk6HKmC8iM3IiWEcO3WaeeMJAydVTrXJXXJN30tNyuxBdds+5aYf+cK4Jm3c9cmSWK02pTHM5Mq1LDP6Vw2/QU52vnIk4Bj3wcEhXYnFcryCSkKJsgTeUIIIYQQQgghpUCfa34hF1JlCCjLTJ05RpK32EQl451VXSvQ5QoBQALL258S83qF7yriVCCozAEf0oB8QlKRzsNikT9JSPKqHrfbWvel84WMDUopT1Gnl6gs13iJsopFTOHne/Er/fLaVqF/g2yRRYndw/5PZ6A/NPI2Qe7fmMVnXvmD2ws65oADv9d16XiBTDGurS0lhAzQIgiQ/IvRJIpvFlwyOlydxLLW+415dcGpOKDq8AKXiIyW2qA5OrFFECaOBun5DVD8fTFCCCGEEEIIIYQQQgiBYxlqZcsbT8wwi9EQWwfdM/AO+Fun24/1d0/pAZlLjuiLa2xuM+c1TPGYvEca0DxpKlRF1fC0qiylQpHijjkqOo5937CP8/tlMVpfAvj4n1z0xnNXj7a2y9sySoliUXljksBMElolUia/3CwcdzAETJ0j77MUqZkMVFQbs/T1l+Pqs+Tz/1O3515I1CRIrSrLgalVxqwhdHcn0CxMKJwugJPqkZsc+L9TaBCrBVMcGUIFQ1A3Pynm659fYUwvDyn8/TIHVeX27b+1Dfjm3RYxmiCUEcV6K+VYa1VCYo6xQl16lZy5/FGEQwpH7ykvctltGh15khNly8oNskjk3bUb/G+ofHdMnvr4d9EQlyVHj66WN5N0NfqEeaEr9O6CKosgk5AJx4IDxCx99UeHfa633AP9axXw+2fy0/ZIfaHJlUBNxMekqrGoOf20i6GUeX2llNzHGewTiX0jSmNJGkI9yxCjSRK/UhJ2Lj3H96Jf2vljHD1TOA8BXH6bm7NnRC1Cf6YuLezws8fLbdJHYY59RXkE6tq/QZVHgKCPcRd8JkRIUTBBnsgTQgghhBBCCCkFpIG15U64oOWQBvHaxB3jnRc6lmW9zvIO88v6uNuPhDa/6Yw4lQiq0QlUSOmS1En0a/P0YsUif5KQREg9yS4PMRpnOCo2vOqaX7lXrii28kj4OUfDgrgr221Firw98JJ79SRluehoqHDML+7iuh9xV26HRCHlru2FRnldl7YfdiJw0mZjl+RuE7mPRki2SGK0ySF/YjQlzKGmKUabcPynazl2JpqNecfUnlRQOTnJDXUhQYyWsEz1OkJsYlXpek0IIYQQQgghhBBCCCFFg7KJ0SbI83GbaGX5o0N/VnuE5a3ekqPyAFi/M3Oc8iAN5kfcQ2hpQLPpOLOVCpXzuXZWTJ0zIP/aRWNcFqMBAwOel63J3e7vfUV+bzl/miExFjUvXFYOTJ5pzpOEVsmUmMjmjeZlZuwBFZgg7UiOUEplSsNSaKg2xwMCwIr1wIaduX1X3STMKdQ4BaLMY4iU9jOD9GOURJuD9aijxZxP+Yc/ZjbIeW++LGYFAwqfOs5b+nLXSxqum1n3XFeLYjRJ8qmX3S3vqJTEHGOFpf0Z/G32nC7Xia4+4OHXc12okbFivbk9LAsCi9Vr/jeUKpWd1YCGeFRc9B8vy21wd7+8i8rUeD6K0UgJoZQC6heaM7WGTiaHPnrdA931Un7i9TYIXRCv8gwRixqTlSQdHqRqkjm9s3Xgf6lvJK1HSpdRitFKStg5U5DmC5wwPSbmvbJRFgRnS1uPOX1SmpzxwLlyH61x+wpzxrmfhBp8ZhH0HoulwhSjEVIMUIxGCCGEEEIIIWTc0Oean26VF1hwIgqMJqh0o9ftwaudL2S9Xqx/Azb3ZT4stslJwoEIQk6ZMS/uWt6QEgJ73YoIwp9iQRI+9bo9HmI0H7OUkILiJacKBwp7zfKSiUkSrkITUEGUKft0m34Fh5GA/XwPe+SPNZK4bbCNk9q60f6WYUs72WuRm/QkzXmDorXRCk+zOV4vqRwhBGiJm0VXdUF/YjQIYjQy8VjWYp4xL6iCOGrSiQUuDckF0nnemgcxWq/w/AYonv4nIYQQQgghhBBCCCGEiNjENzZp2jhCHXS0nLl5t8jq8nfb3w29tS1XJbIPoK33GoQfi5rTZxgG+VZnOXA+UtwxBsWGCgSAxO54gIN6X0VNss26ztrtuZM6vGV+HQoAWLKXoT5vFsRtM+uhJHFVQBg8nSpG6xbiLCb5fS9bYsxuFLMOKVtnbZbftvzmI6FJaIsa/fx0m94Ws9TBae2uRbCn+3qBfvNE0qiiGM0Pqtxi9tweg1751MA/gxBj6d7ecRE9cWBLe2Z6rA3oN88bLdehzWvlHb3jcM+ykFGy8FA5b9PAb7N0b/sm1jYXx2SCawWx48Fzgcg2Sz1LJVQG7HPI7s+zGnBYryAWgf3Yu2SvJSpT4xFLSUBDCABMEeS7ALB909Cf8ybb74Ny3QcapEXoxs6s8V5Xay3fm3md61Ifp2NAjKY7hXuKbMXXZOIj3jzsvmbp/j5g+2bzYjaR/ARDVVRntXyta+gAp/B2jp4RdQp9iJq0IRbH7gOEDbfn+80GJsdeMW5jmPjOhxgNEcY6ElIMTIwn8oQQQgghhBBCSgJRjKY8pqbMMdIg3t7kxJRurOx4HnFtlpKdNPl9OG/6x6AEQcKL7U9lpNnkJBGnUhQ9JbQQLUDILqzSvQILFLNFFi52Weu+JBwiY4eX6KHQkj4vUVvEQ5xWSGzfXUiV+a7vXue7JB4rFiRBWc+ufoZ0HfWS4Hlhqwu2a3ePIE0bLM9oxWjSvk11W6rvtusDIaWEq120CAKkupBpenT/FEeIJ8kV2/o3Y1X3S8a8RVVHoTrIYPvxSG3QHC3ZEt8+EJiYQ+zS6uLpfxJCCCGEEEIIIYQQQkjWSKKk8cbh8iQo+om7hv7++BKFMsucfWf9wsXydbl5xhzdYd7OjBogUuYhqTGIbQCYB99nO3A+zOfa2aI+dtXQ3xW6B1fs+KF1+X++nLv3FFFBCgMAR87PTNOxqHlhm7hBElqlCOF0r2CUYH0yklpn0qluieJbp8ttwEd+6+b0XVdUEPU1TPWWZen7b5UzDzl2+OegJEZLAh0t8nYo//DPh75kTu/phP7U8QP/ztsb7ieWQO/YMpR9wr7AUQu8N3/VPZl1ZeVGeXlRjBaLiuso/t55R1VUy23zrv7FuYcq7Ddb3saX7tSIJ8Y+cubXy8xlmD9NQd/3B38bef9nhktSZtWj2u1ERIgBePA1eVPdlvnQK3TK9ihGIyWG+u+r5cw3dsdrOY7CN0+T+x/rdwK98dy3Pa1CyE9dpY8JVVu3Az1CP9jrXK82x6PpzgExmtg/qspSfE1KAKGupt4zbF0//HMqM0tHjAYAOPO/fC9am2y15r/nJy7e3Dq6dime0IgnzXkVZWnlqVD4/AnDf29HAd84sQ9q5xYYSW2LnIB3gcKU5RNSDEyQJ/KEEEIIIYQQQkqBXkGMVmjhkbQ/mzRkPPNix5PG9JpALc6YegGOrTsdCyLvMC6zvOOpjKATuxitYtQCFVK69FjkhIWWUWWLKFx0e6x1n2K04sPrmlT4a5Y9oNIrv5DYxFzZfG/j6ZhNRALmYx0UjEiikdFKRios7WR3UghUgCxGG9yeJDyN+7yuS+JZ0+8o/ba26wMhpURnsl3sV9QF/c1MLoc3jX2AJ8kdT7Y+IOYtrTulgCUhuaQ2ZD7P+3WfeD0fKdLzGwcOQqrMmEcIIYQQQgghhBBCCCFFg02woybGMCwVDALHv9+c+crT0PEBk0XDVIXVV9uP+bSfuejPgQxEElo1mOf9GE4sakxWsxsyE7MdOB8p7pijouT0i4d9/MqOH+C2TReKiz/wGnImlFnbbN7OF9+joJThbWcsat6QTdwQFOK1kimTX/YKcQoUoxlR8/eTM2NRXHmG3A5tagX+79+5e1/dJLRFotRqF7qzDVj7H3PmKRdCpYs1pUH4yQTQYREOCNIQkok65+P+FnzteehrdgshAo7Cvz7v4OqzFE7cV17tN09qrNwwvO6d/nPXuGxNGKgznP5aayBmlnuqb97iWXSSG9TXfmvO2LIO2nVRWa7w5BX2/tD1/xrbuJmt7Ro7hNf+9dW9wKa18sqHvBtYchbUV38N9fHvDs+rnQaEK/D7zZeKqz+8ynzsXX3yLisHYyBrJkNV1sgLEjIBUfsdIebprw+/R7vkaAf/+z45Yu/rd+VDjGbe5iQ/YdySsBrwlk1VCX2cwX5RZ1t265HSxXTfBwx/1jOaujrBUOd/1veyTp93jOHZN45OXN1lEatWGsIOv3u2wi0XK7x3EXDhuxQe/JyD8575H3kjqff6kvQ8FYrRCCkKJsYTeUIIIYQQQgghJUGf7jWmlzvhgpYjEjA/2JIG/o5nOhJteL3rJWPeIdVHw1EDwRmHVR9tXKY5HsOGvuEvUyXBCTDwW0qip7i2POEkBLIsCADCgmioWJCERn1uD+KuXPcDgnCIjB1e0q1CS/q8hGKjlWnlEtt3l8335nVMxXTMJmyiREAWjI72uMqdCJSgPLK1r5J0bPA4JPmJX+FpNscryfUmYh+NkJHQkpCnR68ThEmk9Oh3+/BM2yPGvD3K56MxvE+BS0RyRV1QHjm2My63DyNB6juEnQrzoCNCCCGEEEIIIYQQQggZL6SLbcYxqn6hnPnvh4b+bJiqcNFi+dnutg7g4ddHX551O8zpjVPtz5V1vB9o3mTONA1oznbgPAfBZk/ddKCsfFjS+e134ivbrxNXeeyN3Ox63U5z+j4zhBU2NxmTlU2MFhCEVomUOIheYcA465PMgUcZk/UuadS5h8ir3v58bqQgrquxQahDXm0RnntQzFKNBruWNAg/mQA6bWK0Ons5yG6mzvYnOwCAFx+Bbtk29DFSpvCN0xw8+PkADpgjr3ZbSt2zSUIbpsL8nrRtB9DTaV7J1g6R3GISqQJAvB/YEQMA1FYofO8cuR24LUft0Ei5Z6Wl/u18WcxTn7oOzk8fhHPNX6BOvTCjniqlgFkNaIjLApnbBTmlVWwyOHkb6zkpVfY6WMzSPcP7kZctldse27k/UlqEcOE6P93YWNScXhYGpsy0rysJrAf7RVL/iNJYko4vMdp68zKTZ0CVF/e4o5wzw78IrqpfuFlK4fUY8JLw9frBKlYtz0xTSuHCdzm487IAbrnYwfH7KvneTClgxrzdn/3cK0SKe9wJIaXCxHkiTwghhBBCCCFkwiNJLQotRpMkMz2u9+wH442XOp6BC/MMZofXLBn6e1H1u6CExwzLO54a9lkSnISdCBwVsAhUEsZ0QgaR6lZIlYnCvWJBEi5qaHS5HcY8BwE4E2Qm4omEl4jMKz/XeMmyvERuhcRW1my+N69jKnS/IVuk72GwnyEJRkf7WzrKGVEfR8qr2NWuSe2vXzGaKFYxSNCk72Ai9tEIGQktgvgoqIKoDgiBRWlIQiONsQ3wJLnjhfZlYru5pPYUSq3GMZOCk8X79laLOHEkyOLUEgscI4QQQgghhBBCCCGETDwcQYg0Htn7IDlv/XBL1aJ5wnK7WL1l9O+KojvM26iX5/0YYNuG4QOcU5nZkJlW6e+92BDlxR1jUIwoxwECmbECi3plMcvrOahDWmtsF/xCc+sy33Fp1wW2CiO2Z8+XdxQU4tCSKfGNvcIEbuHiidMpOkwiQwDYMiDjWVQvv6dcvSU3RWjrARLmcFnM9fKRbZGlQUb5iW0QfrtgigyGgFITNYwCFQgACw7wt7DWwIY3jVmHzJPr3hspbdcOof0BgFrpZ4tF5ZUojCoctu86tvvcXmSpC29uBZLu2MXORIVmAwAW9ayQM/de5L3xWQ1Y2CcbTLe0mY+72yJGC+vegT+mzfbePyETkVkWEVEsOuxjVVhue6S+72hoFbqx4rUslVjUnD5SP1xEAAAgAElEQVSr3jvmTJK/drQO/z+dbMXXZOLjR4zWLgi+pszKfXmKHJXFM4/FyVfg+AgfHc0zIqtY1SBGS0drLf++WkOlStz9iNEqqr2XIYTkHY6cJCTHmDrnWnrJQggh4wTXzXy7wwFwhBBCxoI+t9eYXuiBtZJ0QxK3jWde7HjSmD41NAMN4b2GPlcHa7FPhTmAYHn7U8Pui6RB9oPfa1CZHy5quEjqpK9yk9JElOeMg8H3tjJ2JNqM6aEil72VKuGAhxjNIHPKJ16yLC9xWiGxnQfZfG+2YypXYTiquAPVvfoZkgQykoO6FXHMksbupCwWk/IGtzV6MZq5f2X6naXffiL20QgZCTsTzcb02uCULGSrUtDIyMpEigutNZa13m/MiziVw+TYZPwRUAFMCpqDCFsTlijpESDdm0lCaEIIIYQQQrKFMXqEkIkG4/MIIWQc4UygYVhHnCRm6Ru/OqyP/cHDFWotr6T/568a37/fHVW/XBJ6NHiJ0WJROc8gHFDBYHYDWykhGhmnXpiRdFqn+T0UADzz1uh32dkHJAWpVZ2p/m7fDMSFUdc2SY40eDqREgfRZ35XQjGaBUkQ8tjfAAAfOVLuH6/dDhx8dRJrm0f3bEASgQBCHUpBd7TImYe8OzPNJtpsFSY1qq7jfUKWqHM+7n/h6Gpj8qVL5O/8nleAj/7ORVu3ttafTx+X2X/Qz94P/d9HmVcoCwNTZlqLS3JIdZ3YN9D3/XHo7xP2lTeRcIGNlmYg37QKlx0AOLTtWTnzoKO9Nz6zHlVajh+U6n5Xnzm9wu2CMxhoVOVlnSRkYqLO/5yYpx/5S0baewWHYWs38OrG3L4bkdoT2/3gIHrlU+YMH7JPVSUIrNe8NPB/p1mMpqopRiPpSH233eeKlkR7pVqf3nOBr8Wm9mzEOT6cqh/+rcbPHhnZMyKp/wAAlWU+NtDaDPQKDdnJHxn+2Y8YrXqyj50SQvLNBHoiT0hx4BhedMXj/gb5EUJIsZJIJDLSTO0dIYQQkm/6BKlFeYGlR5J0o8/tgauFyJpxyM54M97qWWXMO6x6SUaAxaHV5pejOxPNiPauGfrsJTiRBCqAf4kKKU16ksLge0H0U0zYytiZbDem284VMnYUm4jM6xpZaFGbDdt3l833livB2lghHWtPshtaa4sEMgdiNEFWIu3Tlje4LUl4mtCZzxpMSCI40/FK30GPRexGSCnREjcHT9cFpxW4JKRYaep9Axv61hrz3jXpeJQ5PqbcI0VNbdA8eqwlIQyuGCHy9ZuDxwghhBBCSG5gjB4hZKLB+DxCCBlH+J5spvhRwRCw+FR5gT//eOjPqdUKT11hP/av/UPje/eNbFB+b1xjszAuuWGqhwQots6cXjcdSpJQVWUx2Lks7H9ZMoT66Ncy0sK6D8d3PmJc/q/LNeKJUUqtLFKYOlM4RCwqrzC7Qc4LCjFbyZQ+XY8Qp0AxmoiaKYjRAOiNb2FuncLvL5Lbg1c2Akde66Kzd+T1yFaHPGUggqwDBx0NZerb2wbhi2K0EhU1jAJ1+sVQX/gZUL+P57L6+suN6YsXKHzoCLnu/ek5jTNucNFiqT+nps07rV95Bvqr75NXmFVPCV4BUUrJ0p57fw/91isAgICj8PrVcn/oi38ZuzEEUvt19sGA2hI1Z575X+b2KQ2167v5wdYrjPktwiWvq8/cHlekxhNUCyIkQiY46sDFcuYfvw+9/o1hST96v3yuHnS1i57+3MnRpOtZXYX9uqT7+4BnBRGyDzEaqgVRYmcbdHcnIImssrm3I6WB1IdKlXR1tZmXKdH+tvrEd/0t2NGKP17i4ONLvfupn7tD48bHcyxG8xO+ujkqZqnLrhme4EuMVpp1gpBiY+I8kSekSFBKoaxsuHK0s7NzjEpDCCG5Ib0dKysr40N2QgghY0Kf22tML7QYTZJuaGixjOOR5R3CjC0ADqs5JiPt4Ooj4cA8i13qtiQ5SXhIjCZP4xDXwgyNhECW7o2Hwfe2MnYkzS9eJNkQGVu85FS5kFdlQ8gJWSV6hRa12YhYpGXZfG+27RTT8UpIx5pEAgkdl0VkuRCjCdvodmWxmJQ3KHyU6p/fa3qvKL3MLKsor9W9cHXS1/4ImchI4qO60FTf25Dn0svtzJNkbHiiRQhOA7Ck9uQCloTkizpJjBbfkdP9yPdmxd8XI4QQQggh4wPG6BFCJhqMzyOEkHHEBBNXqgOPEvP0P24a9vkdsxWuOcd+fbrxcQ2ts39vtH6nnNdgfrQ9hN4iiNEskqWsBrZSjDYyaqcaJWBLuuWYxPv+M7pd2qREtabQrFjUvHDVJChJzADIg6dTxWh95ncloqyPWM9Zfc/vAADnLLK3Qds7gb+tGPm7a1sdmuQVgijJOvbY25xuGYSv24R3d7Z6SUTUOR+Hc+srUI93Qz3eDRxzpris3rbRmH75u+1176m3gGVrzHWvLAiE08Kn9D9/AyQtsUx+BDIkt1i+c33Pb4f+3memQp3QlP/9pRyXKQtau831r2GqEgUhat/D/W18diMAYJoQd9RqvuShWwgPrEyJf7RebwmZ6Njuxe79w7DPc+qAoOVW9J8rcxO7l3Q1OoThUJ6S2GfuE7OULzGa5R5t2V2yhLaKgkWShh8xWqcgRqss0fo0ZZYsAE+lsxWRMoVffshB8mYHnzrO+xlRtnQJ/YegA5QFfbwziUXN6eEKoG768DRfYjT2VQgpBibWE3lCioTq6uphn9vb20f0cocQQooBrTXa29uHpaW3c4QQQkihkAbWljuFDT6yCVckWcl45IX2Zcb0OeUNmF0+LyO9MlCNfSsPNq6zouMZuHpgJizpdxyUmYQc+YFqQmfOlE3IID2SnMdyzhYLIVWGAMwP1jsFMVqAYrSiJOIh4hsLMZdtn8Ukp7CVJRvBoX07xXO8EuGAfKy9bjd6hL5GLo5N2kaPICeLu/1I6Lgxb/d13Sw8Tbjm9TL2LR2voW03pQ0i9T8IKSVa4oIYLehfjCap0ShGG/90JFrxUufTxrx3VCzC9LLZBS4RyQeSCFESJ46UfIpcCSGEEEIIGYQxeoSQiQLj8wghZJzhmCeNHLfU7yPnxdZBd7QMS9p3pn0QaqwN2CKML7YRtTymnjfZY+VY1JxuG3xflYUYrbz4J2QsRpRSRiHUvv2rxXVWrB/dPV2LPOebWWITi5oX9hI3SAPGEymxjT1CYShGk5knCMQA4O1XAQA1EYXZHqfvzctGXo9ahfDfmjAQcDwG4UuyDknyEbBcT1qFRjEbqSPJQAUCUIEAMM9y7XvrFWOyl6QTAB5/w1z3aiPIFF+v8TBo2cpI8oOtT7Tm5WEfp1bJi3b2js3zSUlOVhvsB9qENsWvgG/XcrWuuZ2T2k5JbFKpU66RFBqRUkaSpwIZ14mAo7D3DHnxFetzU6ROQYoGeEtite3aZuvnDTIjc3zS0LZff0HuX1NaRNLxJUajaC8V5TjA9LneC6YI5ZRSWDjTvvjrMaCnP7u+UVefOb2y3OcGYlFz+sz6zD657Z4MGLj3j1T63DEhJJ9QjEZIHkgPSIjH49i0aRMDrwgh4w6tNTZt2oR4fPhg5ZqamjEqESGEkFKnzzU/ac9GlpILbOKRiSLdiPVtwMa+JmPe4dVLxPUOrT7amN6a2IG1Pa8DkOVVgzKToEX25FeiQkoT6fwbDyIkpZQocOtItBvTg8rHrCyk4HjVt7Goj7Z9FpOcwlaWiOP/pVKuBGtjhe1Ye9xu9CbtgtHRUBEw77tXuHZL0rLUbUltlV/ZaTZiFdt3MFH6aISMBkl8NDk0rcAlIcXI020PiW3zkrpTClwaki9qg+aI/daEMOv8CJGu3+OhL0YIIYQQQsYPjNEjhEwEGJ9HCCHjEGeCDcM6/ER7/ubosI8n7y8IplL43v3Z98mjO8zrzKwBImUeMqLYOnP6rHp5Hb9yIaVkCRbxRJ14fkbaKZ0Pist/5/9p7OwahdRKCAuoLAeCSELf8VO4Xz4H7iePg/vJ46B/9x3zCl6imIAQ35hMedfWJ8RTUIwmomwD8Z//19D9/gffaW8Tnls78jK0dAtiKz8/W4dZrqAkEaNUjwBZYpSN1JGIqBM/IObpG78CnUxmpM/04ciQpDTp102dSABNq6zbspWR5Ad1guU7T+sPnXGQ3A5Fc/vq3TctwmWnLrFTXsmvGG3mQJ+qNmlu5/oSZumJJDapSI3jo9CIlDCmvvIQLz4K7brDki44Qm57rn9Q44o7XWxqGd37EUloCACV5jmSdxOLynle950AsPBQOe9Ns7gUAMWxxIDHMwQA6DSPzxH77qXATMszlEHS5PnnHqIQ8nCLZds36uozt2N+xWh6nSBjN/R7lFJ2OVp1XaZMjRAyJlieoBBCRko4HEYoFBoWqNDR0YG3334bNTU1qKqqQjAYhDPRXooRQiYErusikUigs7MT7e3tGUFXoVAI5eV+9cqEEEJIbukThBblTrig5bBJNyTp13jjxY4nxbxDa8zyMwA4qOqdCKqgcUD98o6nsWfFfqJEZfB7DSr5rUlcW962kJJHOv+KSfxkI+xE0JnMfMliSgMoRitWyj1kD5IAL5/YBBQRQYQ1FuRKaJYrwdpYYTvWHrfbUzA6GqTvp1sUo8n9nrBjF54mkYCrXTjK/oxU6jeYvidbHRooK+VPpHRJ6gTahGDHOkGUZEKJQSMcdD6eSeoknmw1D0KZHJyG/SstgWdkXFEXnGpMb43vgNY6Z4E8ksh1PEirCSGEEELI+IExeoSQ8Qrj8wghZJwzwQZEqvIw8MsnoC9baszXv7kK6vq7hz6HQwr3fsbBe290scUczoJfPKYxtcrFlWf474tLA2UbzI+1h7PFLEZTtkG9fgc7l4U5CHY0nPdpYMObwD2/G0qK6F4s7n4Gz1QsNq5y9P+6eO6rDmoi2X/votQqAuhvfgB46h5/G/ISxQiyPJ2I736b2itY2sLFH7cylqhPXQd9wxXGPH3zN6A+cQ2+fYbCD/9lfz/9i8dcfPLY7J8HtEpiIT+vuDrNwiBR1mEbgN8qiNEo/sgJasH+coTDujegr7kE6lt/GL6Oj2vB9k5zerpYT3/ePjGZ+tKNUDY5DMkLas8DoE/8APDQnzMzd26B7u2G2iW3/O7ZCj96yFyLvnefxu2XFr7vILVfk16615zhOIBNSJmCqq6FrqpFXb/Qzu3afyQt/L9bCPmvSI05rPJhHSRkgqIOPRb6oGOAleZxO/q6y6G+ctPQ5/95j8I37pL7QD/4l8YdL2g8+1UHs2tH1g5JQkPAh5QoFjWnH3osVJn3s07lONDHvx945C+ZmW+tlFdkO0LSkfptqRMriX33Eq5PM+Z5L9PXA93fN3ROT69RuPuTDs69yRWv+//7gMYtF/tvkyRBo6ecERgQHD94mzlTus8PBAGDGBkA778IKSIoRiMkDyilMHv2bKxfv37YDJTxeBw7duzAjh1jpH4nhJBRMti+8QUvIYSQsaLP7TWmZyNLyQUhVQYHAbjIfPjVK8jbxhNaa7zYvsyYtyCyL6aEpovrRgKVeEflIXil898ZeSs6nsa50/9L/I4GB0iHLLKnhI6LeYR41a1iRxISdSTbjOmSbIiMLRGPa9JY1EdpnwoKZap4BtZYxWhZSL/s2ylsn2Ek2Po17YlWuHCNebmQQErtUE/SHDnVk5TFaBWBKgB2iWNCx6110NWuKMY1ldX2HUiCFkJKhdbETmghtHdyaPTSQGrRxjf/6XwRLQlzcP2S2lPgKI9p/ci4oTZkHkHWp3vR43YNXb9HiyhEHwNJMCGEEEIImbgwRo8QMhFhfB4hhBQLljcfE1C8q/Y/EnrOfGDT2szM5x6Adl2olOM+cr7CxuscBD9hfncNDAzK/8KJGtVhf9e0dZIYbYp9fd3XC2zfbM60ya38DnYuK+yErRMNFQxBXfFLuK88Dax7Yyj9g+1/EcVoq7cAt/9b4xNLs+8PiVKrYA/wpE8pGgDlJUaThFbJlMlke4V4ijDflVg5SJ60F7f9APqCL6KiZjI+cLjCn1+Q2+rv3qvx38dohILZ1aNWIbQkXWxlpMMc4ycOpncs72DbJDFanY+CEF+c/GHggVvNeQ/9GfqjX4WqX5iTXaXWH/32f4CXzfHZAKD+usYu9iR5RV3yTWiTGA0AYuuAxn0BDIhi66eY+y9/fkHjto/lblIyv4hitJfvM2dM3wNKEH0amdWA2qat8v57gFlpzZ0oNtEphWW7Rkoc9bkfQV98uDnz3t9DX/w1qF2yorKgwq8vVLj0j3IfaEML8JunNL51+sjaIElsBAAVXlKiWNSYrI471/f+1ZEnQZvEaD1yrDLbEZKBLzGa0HevLGEx2kwfYjQA6GoDynaPKTx5f4XWnzoou8z8jOiPz2r8/iL/fSNJ0OgpZwSAFx8Ws8T7/EAQgLBTti+EFA0cPUlInqioqMC8efMyAq8IIWS8opTCvHnzUFHBl3GEEELGDkl6VK4KG4CklELEqUCX25GRZxOEAEBbYifW966FNkhNwk4EDeG9UeZ4P7FrTezEht61mFE2B9NCM0f8AtXVSWzsa0JrYudQWkt8O5rjW4zLH1Z9jOc2D6s+xihG60i24dGWe7Azvs243qDMxC5QSYh5qWit0RyPYUv/Rl/LD1ITqMUe4QUI+Bj43+/2Idq7JisZngMH88J7oiboPXNE3O1HtPdN9Lj2OpXOnPIGq7xupPS6PYj2rEG/tkwFNMZs7ze/dB8vg+8lGVJXMrOtAeznChk7vMRnYyEik86BsBOBo4onaNt2rnoJ51Kxyc9yIQ/LN44KoFyF0aczhbCrulaI6+VCuif9Bi2JZuO1fWNvk3F5BWeofxZScjREQsdRBvmc6HN7RZGTqc0MOWUIqqCxv/B698vGvpsfAiqI+vCeqArUjGh9QoqBlrgQOA2gLmgWJeWSpE5iQ+/baE/Ks8eamF1Wj6llM3JeHq01Yv3rsT1u7j9OD83GjLI5JTMA9YlWcyBsUIWweNIJBS4NySd1wSli3gvty1AniNOypS3lGUMq40VaTQghhBBCxg+M0SOETCQYn0cIIeOEInrHnlNm1pvFaACwJQrMnj8syXEUzjoIuHuleZWuPmDFOmDpPv52H91u7s/Xy4+1B9i6Xs6bJYtlVHWdv4l/yot/8rVxwT6HDhOjze8X6toulq0BPrE0+91saTen18XN7y1E5sy35weEmK14SlxdnxBTyDplZ3ajPf/1F4AjTsL5HmK0re3AG1uB/edkt/stgh+hzqOLruP9QLtgeJTEaAHLsN4287aUtC2SNWr2fPt1YOVTQJoY7ZPHKvziseyfP9VVpMQdWKRoiFQCM3wKKUh+mDFvQKZies4YaxoSowHA3FpZ7Lq1HZhZQK9Ke49GjzDveF2yxZwxLcsGcspM1L21Wsze0gbsO2t4miRYqkidaK2K7RopcbyEvK88A5y4+9qwYJqC1xSmy9aM/F2JJDQE7FIi3dcD7BTkiV7HmEq2clClgEhuJoEkEwgPMZp2XVlEXFW6YjQ1u9Hfc5IdW4G64ePVggGFI+cDzwm3+s0dwHSfIfiiWNVLzghAv/SknCnda9ruy0q4PhBSbFCMRkgeGQy82rx5M+Jx4ekCIYSMA0KhEGbPns2gK0IIIWNKQseRhFmKVZ6FLCVXhAMRo1xDkmQldRK3b70Rz7Y9Yt1uSJXh4llfwMHVR8rb2XIjnm3fvZ19Kg7Ax+d8TZQqSWzt34QbNn4bOwRRWToOHBxSbZ6pMZX9qw5DSJUhrjOfSP6j+RZxvUigEgAQVPLjCtM20+lJduGmTd/Dmz2veS5rYlKgDp+ceyXmhhvEZV7qeAa3xH7iqzwmjqk9GedP/29RSPRa53L8ZvP1RimOHw6qOgKXzPoiQo6Pp78+eK7tUdy25UbxHCx2xsvg+8FzIB2TSBEAgg7FaMWIV30bC8GKdH0otnPDVp6wYz4/TNjkZ8V2zBLhQAX6EpnXAElcA+RG+hYRvuft8a24adP3sthOxVBdH43wtNcVprKE3GaGnQp0JjOjne/bcYd1X344efJ5OGPqBSUjSiITi5ZEszE97ETE88mEglT/5ZCIjb1NuGHj1WiXgi092K/yEHxs9hUod3IjxG5L7MTPN3wbm/vXWZebV74An5p7JaqCE1uKuLV/E1Z3m0ctHVp99IQ//lJjUrAOCo7xHuOObb/K+/6zfW5BCCGEEEKIHxijRwiZCDA+jxBCxhEB78kWxyPqyJOglz9mzly/JkOMBgBnLVK4e6X8jmhVTGPpPv7erUYFsUij13wesaicN8MyqN7v4Naywk9+NxFRS86C/tftQ5+XdD+F2mQLWgN1xuXvfXVkMoeoMLZ9D22eJFZkkYeVLSK8X+1NmQA1Lkw+yjplRdVMhj7oGGClMKB9cxQAcPxCIBwCei2PAdaMQIzWJEga95js0ZZtXW8WKQHAdEF0ZRuA3ykY2igQyh3HnAH87moxW2+OZkRHnHXQyMRoe0xO2W4sKi949BmMSRpjVKgMevoeRvGq/vmXgHe8E6p2oHNy7EKFp98214em7YUVozXJcyViXnyDOePAo7Lah3rXyYg89wCmJpqxPTjNUAaNY9POmm7hUliZOmE4hY+kxFGVNdCHHgtI92Kx6LCPixcAU6uA7Z3yNh9dDby0XmPRvOyvKdJ5qxRQbjOSxKJyXjayM4vc2kioHMqZoPJyMgo8Ylx3xIC4MA5s+h55KdG44IiTBu5Rkh5jxmJNwJ4HZCQv3VvhubXmvtG/Vml8+Eh/bVKX1H/wcysdi8p5hx1nTrfdl1G8SEjRwKs9IXmmoqICCxYsQGNjI6ZMmYKystwMSieEkHxTVlaGKVOmoLGxEQsWLGDQFSGEkDFHEo4ByNkA+WyQ5COSwGNZ6/2eUjRgQPz1m83XoS1hnqVwWev9w6RoAPBG96v4+7ZbPLedzq83XedbigYACysPRnXQ+wVk2InggKrDsi7P4ABpRwXgwBxEmNDeA1r+3nzLiKVoANCWbMFNm66BFgJVdsab8dvNPxyxFA0Anmx9AM+0PWzM60524ubN145YigYAKzufx/07/jri9VPZ0rcRf9zys3ErRQNyIwsqBNlKAmyyITJ2hAPFJ3uQZGDFdm7YyhPJ4vwIqCBCyvwMrtiOWWIk5cyF9C1X30+qZMkmPPW6rvdYxGhSm5nP3/iBnX/Fys7n87Z9QvJJS9w8mqTOEKxoI9sgXFe7+OWma0YsRQOA17pW4J7tt3sv6JM/xH7qKUUDgPV9b+PWrTfkbL/FyrLW+8W8pbWnFLAkpBAEVBA1Pu7r88V4kdQSQgghhJDxB2P0CCHjEcbnEULIOEWYBHHcc/bHxSz9pbOguzMnEP3A4QpnHSRv8pO3a2zv8BbI9PRrxAQHUMMUj3dTW4R3PlNmQZVbYgqrzUKuDMoKH5c4ITnq9GEfI7oXv4x9Wly8oxe47XnzRJI2JKlV/VpznJ4JddWtUOUeMSphQYzWMxDjoJNJwBXKH6IYzQv1mR+IefqXXwMAVIUVfvURe/tw7k0uOnuzk1hJcqFRSRolwYczAtGm37aLeKL2PBD40JfkBW67PiPpuIXAx47JXjLTMCXlwx0/lcv0sSuz3jbJA7MazOkb34I+Yw509HUAwBUnyXXhN0+NTPA5UqS2K6hczElsNuapC7+c3U5OuxgA0BDPlMYBQJMhLKmrz/w9VKbGBFL4SAjUpzKvOYPoXw+/NpQFFW7+iGOXlAE49LsufvJw9v3pLmF4TGWZR9xgLGpOVwqYIUhiTUyZbZcUpRPiuyBiQKqrg+PDtpivZQCAmVnU1wmGqpsG9dkfyd/fILGoMflrp8rrXfg7jX+85K9/lBcx2vQ9oCqqzXm2Nke69yeEFJwsegeEkJGilEI4HEY4HMb06dOhtYbruuIge0IIGUuUUnAchzONEEIIKTr6XFkSla1MKBdIg3klgccrWUg0XLj4T+dyHFV7YkaeJON4pfN5XIDLfO+juT/mSwaQymHVx/he9tDqo7Gi45msth9xdj80DKkQ+nQyYxk/YrRcCEt2Jpqxsa8Je4QzZzt9vetluMgsW7a80vlvHF37noz017pWIKFHLyFb2fk8zpz2oVFv55XOf496G2PNeBl8n3oO+MEmGyJjh+2aNFZSLukcKLZzw/bdZVvWiFOBeDLzDX2xHbNEtuVUUDkRxaYKzUa1nZTy2ySOXtd1STgLjF29fqXz3zi4+si87oOQfLAz0WxMrwt5RXD7Q3rfsbFvLVoSlqlpfbKy8zmcO/2SUW+n1+3Bmu7/+F5+dddKJHUCgQna7+pze/Fc26PGvHnhPdEQ2bvAJSKFoC44RZSx55vxIqklhBBCCCHjE8boEULGC4zPI4SQcY4zMcVoKlwBvdfBwJsvmxe47w/AuZ8alhQOKdx5mYMpn3PRLoT2/fwxjW+fab/mrbc8sm7weJWlY0L8myQiGqRqkj1/EIrRcoIKBqEXnwo8c99Q2nkdf0d77HJ8fNaNxnUu+r3GexdpRMr895lEqVV/1N8GwhVQx5/nvVxEeN/R2zXwf1wYyQ0AQcobvFB7Hwx9xHuA5/+VmdnTCd3RAlVdhw8f6eCIRo19vilLP/70nMZl7/ZXhxJJLbZHjVNHJgfA5BlQYaG+ZCP9GKSaAqFc4nziu3DffBn490PGfL1+DdS83e/MHUfh5g8DFy1WOO6HLvp9hvkO1h/dtEpe6PzPQs3OjFcmY8DsRuDlZWK2/s23ob77Z1SFFRbOBFZvyVzm909r/OZCXbD7fkkMOq+8HQEY2sg582U5iIAqD0NX1qAhHsWLkUMz8qOGa3C3IFiK6F0xgYEAEKFwhBC15wHQJ34QeOj/jPl620ao6XOHPp+zSOH1qx386GGNGx6V3398+W8aHzpCY1q1/7aou9+8vQqvLmwsak6fNgeqzL8YWLQrXUIAACAASURBVAWD0NPn2qWzqVA6TEx4idG2CmK0SBVQMzk/ZRonqHM+DixaAqx4HPrHnzMuo2NRmL7h6rDCntOBt7aZt/3J21yccaCDYMDeJkn9h0o/zwZiUWOyuuhr8jo2YbV0708IKTgTM4qfkCJHKYVAYAQzOxBCCCGEEFLC2MRo5UUkRpMEHi1xw1RIFiR5wJruV43p7clWJHTcKh/xs32JkCrDQVVH+F5+v8pDEXYi6HV7fK8zt7xx6O+gCqFPZ/7mXgKVuBtHZ7Ld9z5ttCZ2YA9kBhq0J1tztH3zb9CayK6uZLv97LeTm/KMJal1q5jJtpzj5bhKjaAKYVbZHoj1b8jIOzCLdjSXSHVlbri46lBtcDKqApPQmRw+FXRIlWF62eystjW3vBGrul/KTC+yY5aYW96IaO+arJZ3cjAz+ZzyBigoaIxusGj6NV0iroW3l4P5rpxfpswBDXPLG7Ghb61HCUfORLguktKkJW7uG04O5kaMJu83N+dMS3wHtB590GhXsiMryXG/7kOf24uKQNWo9lusvND+hCj3Xlp7SoFLQwrFvPCeiPa+WfD9KijMLvcYiEYIIYQQQkgOYYweIYQQQgjJCzl4L1u07LGXKEbTT94DlSZGA4CAo3DRUQo/e8T8jvmelRrfPtO+26jlddI8rzHJsag5fVaDfb0qn3Kh8sLHJU5Y5mTG4R3X9Zi4eNIFnnwTeM9+/jbf2auxvdOc1xCP+tvIYcf5Wy4sSFx6BsVolliILMQQJc3Cw8xiNAB44RHguHMBAHvNULhoscItz5jboH+u1Ljs3f52ubFloN6ZaPSSNG6OmjNsbVFwJGK0uuzXIVbU0nOgBTEanrkXmDd8MjGlFBYvAH54nvr/7N13eBzF/T/w9+zd6Yok6+RuuUm2sXGhGJteDMGGQKhOIAmEGkIKCakkkMYvvZPeviGEkEYgQEJCTQi9JxTTYmywbGNkY2zJRbqTrszvD+ns0918ZndPp9NJfr+ehwdpZ3d2fNrbnbudeS8+8idv46t2HT8P3ya3Y9a+nuqiwacmNdtHzj1yG3QmAxUIYPYEczAaAKx6A5g9YTBaWOw1YVh7s7PJXDB1r9J2NGo0moWwUVM4W6cUbJIbp1IXZ2g8UR81ZyG0EIyGR+8ATn1fv0XNYxW+dhqswWipDHDn8xrnHOr9fdYp5PvWunRhdVurucDtc5nJxOneg9HYtyYTt2C0N14zl0+cxusSANU8F2ieC/3ys8BtvyleYdWz4razLcFoG7cDT7YCh8607186D0VdAhp1106gw/wAaeu5yBZYHWYwGlG1GMHfyBMREREREdFI0m0J2IoMQTBaVAhGS2TMk8r9BIT1rm+ux0bat0lnRhgFJFg2+nREA96/1Ktxwjh+9Ds8rz+v9gCMrdl9BzjomENUUll7MFoy2+l5n26kgAAMMCzGrX4/f0ebZDaBrJafhui9nvK0Z6jMie2DieEp7itWgf3qDkZD0NtTZiJODIvrjxzkFlGpjjIEiQQQxOENS4egNcCCukUYExrfb1lI1eDQhmOHpD0SRwVwZPz4ouWHNSxFjePv5vWR8bdCFTyPqDkyG9PCLnfTqsRhDcd6DjsFzMdcKRqCjdi/7tAB1RFUQRzesGzX7yFHvhOZ1vZHp0qBqEEVFG8+HxZfhqAavGfCDPfrIu25pGDkxpC/YLTCc6ubcr1nssigR1uerO6RW9CyyUDDIquV1hr3d9xhLKt16rGo/ogKt4gq5YiG4xBSbo9yLb+F9YdhVJBPsSciIiIiIiIiIqJhzhm54btq0dFyYdsasegtc+T7R8+sB1a/oaG1fL+l1RCkAQCTGoBIqH/deuc26P/8G/rRO6BXPgVseMVc6USXB3V4DRfiRPuyUQccXbRsemodZvTIDz7790r7sZPPFrDX4jUYzWNwg5KC0ZJ990ZTlvuawcrfoxmOrOej1/ufj96yt7zqSiGwyGSN5Tm0bsFoJYU0lnI9qWvwvw3ZHbBELBJDXgAcY7n2FZowqq++DZYHPe7PsaBVw3C96ifVA2xpAwAcNlM+DmznlHLbKTx7fkyPkExSSlARANTF0ZxaZywyXYfFgKXcWP96jh8g2mXRMWKRdD2qjygsdvnY86rPc1GXEGgYE7qwevMG6MfvBp550LxCqcFoXgW9j7OmPYl0fe79bKl3CImijePNy/dQasY8c8GKh6GT5nHBx+xt7yOv3OT++b6z27yOFNCo33y97zz0gFxpU7NcZnvIVlT47E9EFTd4s4OIiIiIiIiIyqg7a75rp+AMyYTeiBASlhCCuaTlklLCsRLZTtTD28CHLiEYTUEh7ER2/d4YHIdDGo7BsY0uj+40WDb6dIRUCI9suwdb0+abq/WBBsyvXYzTxp3Tb7kUBuMWZJCwBNCFVcQYotKdTRrDDpLC30AabKXgIGwI7snoDFK6+C6R9DeWjhUHjjEYKKuzxpAIDY3ubNJXoJ25PeZ2BhBESAiwqwZ1gVGYX7sIp407d6ib4lldcBQ+OfXruGXzdXgl8aLx7xpQQcyI7I0Tx75z2AS+7YmWNJ6IgArgkW334I2e1zEtMhPLRp+OWTGPj7Ets4gTxSemfh23bP4tXk38DxPDU/HW0W/H9MisIWmPzUlj3o2IE8V/tj+ItE7jgPrDcMKYM3zXs1/9wbio6TLc134b2tNvYk5sXywfd8GweZJTc3Q2PjzlSty95Sa0Jlchi4xxvUk103BE/Liyhtxd0PRxjNk8Hit2PoHtmXbP2yk4mB6ZheNGL8fM2Nxdy20hZWmXwNOUGIwm9/1mRvfGJZO/iLu23oS1ydXQKC0kNK3Txn6HHJxKVN3aU0IwWtBfMJpECg+T3jOFnzt21aM1urX5s18i22Xcxg+3oGWTkRqM9kriJWzobjWWHdpwrO9QUho+pkRacOmUL+GOLTdgbXI1MrAHlQ5UQ3A09qk9EKeMO3tQ90NERERERERERERUEY4z1C0YPMeeCXznEnNZ21ro7gRUuPgBpicsABwFZIVbKrM/n8WS2cBNH3Qwurb4nr0UaNU8ZvfPWmvg+u9D/+JzQNb9HrBym0zvNVyoZmD3pijPIcUPfHOg8aXNX8Y5k681bvLtOzWee03j+osd1Efs4z2kAJqATmNq6jVPTVRNLZ7WQ1QYj5fsG/dnC0arYTCaJ/sfJRbpW34J9Z7Ldv2+fKHCucI93dYtwAMvaxw123280BohpHFMLVyPv5KC0QIlTOv1GupInqkps+QRATf/Avj4D41F85oUzjlE4XeP2ccTKAWMivQGNuAf18jr+QmBocG1z6HAlFnAa6vlddpagfFTcNGRCpffbD4Gzr46i81XORUZrygFGdUmzBdHz9e7QvVxNL/eaix6vQNIpnS/UFsxYEn3jfWvYzAaUY6ata98Pbr++8AHvmYsuvJkB8t/nkXKPMQYP7pH48qTvbejUzqfFHRhdXcS+hvvA+65wV5hCdc3NWm699F6IY5vIwPp2pubB7ZTCEZjYGd/C4UAYa2BG34MnPuZoqLzD1O4+kGNlZvMm154rcZe4zUOnyX3j8TzUMHbXfd0Q3/zYuCf14t1Aej9Hm/8VLnc8rlMRQY2F4+IyofBaERERERERDQsJIXAq7BjDrsabFHH/AWXqZ0ZnTYGYwHAxJop2NhTPPAmaQgQcAsF68p4D1/rypqD0SaHm/HZ5u97rsfGUQ7eMvoUvGW0/1C1UoPRTK9bztdmXo1YoK5o+TfXfgrrksU3sKUQBykYYWZ0b3xi2teLlr/Y+TR+8tqXjG3VWhcdv9KxvnjUUTh/0seKlm/q2YAvrTEPSkxmuwYcjCa9pktHn4pTCwLtaODG1kzE+yZ/eqibQWVwRPx4HBE/fqibsUtjaCwubPrkUDfDlVIKy0afjmWjTx9wXQvrD8PC+sPK0KqhMTu2ALNjCyq+36AKYfn487F8/PllqS9guQ3hdl1Pa3NQi9RPyJlTuy/m1O7r3jiLx7fdi99uLB7cKAWnElWz7mwSndkdxrLG0DiftZk/e0l9ZKkvOT0yC5+e/p2i5R3prfjsKxcat0lkOhEPjvbYTjO3846J16fQDzcPdNxhXK6gcFT8rRVuDVXazNhcfDh25VA3g4iIiIiIiIiIiGj4USM3GE3VjgJ+ei/0JccYy/X/fRHqI8X3d0JBhZe/6mDW5+TAsvtfBj51o8Y15xffa1orBaONzVv32Yegf3aF/R+Qr6nZXu51wjOD0cpGBYPQRy8H7ru53/J3b78Bl4//GjaEJhu3u+N54It/0/j+O92C0cz39KakNiAoPIyuyDiPD6mM1JqXJ3LBaMJMbgAIMhjNC6UU9CnvBW79dXHhG+uhd7RD9YWExcIK91/mYMl3zOego7+bRddPnX5hPSavCuF6LV6eNdbWalysyhmM5jhArN7fNuSJuvgr0P/3BWOZfm011BTzw0d/c77C/S9rrNsq190QBRxHIfvtD8n7v+SbvtpLg0spBfz6cejjx8grtbUC+x2B0bUKcycBL7UVr7K1E7jlaWD5AYPV0t06u83XwNpO80PNMan0YLSW1Ati8dotwJyJ+e0yr1ebe4C416Baoj3F2ZcBfyj+vIVMBnrzBqhxxf3lt+2r8MBlDg79prkf1N4FbN6hMa7e23wrMdCwsAv75x+4h6LBpS8k8ROmVsNgNDJwDUbbZi5nYGd/M/cBRo0Gthd3dvWvvgic9UmoYP/PNGPqFB76jINxn5C/Hzr1p1ls+LaDsPD5TOw/FJ6HbviReygaAIybAhW0zDuwfS5jMBpR1Ri538gTERERERHRiNJtCUYbChEhGM0UpiUFbAFAY9A8asK0TTJjfg12b+M9GK0zYw5GqzUEhw2FUInBaLbXOuIUP7EUkEPu/AajSSERUv1ZZNGji7+1lf6OUj3Ssdhb18DDWxJCAEzUEQZ4ERER5VFKlRx4mhaCZYNq8J/5Eg2Yr3PluLYSVVp7ShjBDfnziMRvJLUU+iv1YaU+L+Dv846klGA0eH8G5bCxLd2Op3c8aiybV3sAxtZMNJYREREREREREREREe0RbA9NcUb4NKxZlgdQPXanWNQ8Bgi73Ma94T8amWzxa7t2i/n1np6XR6I9TLrvx20yfbQOCATc62EwWnlNm21cfN6231k3u/5J9/t1a4Rbos2pVtdtdxnb5G09KRgt2TeewBaMxvAGz9TUveTCB27t9+sClz/dP1903986IaSxZaz9LrnuTgAdm82FtjAQx8M5KF9dHGqkX4OGSpMlJOrffxGLHEfhK6faj4/GGKB3dACP32XZ/wy3FlKFqZjLWPq2tbt+PGCafAxc/4QcClJOUoBILG1+iKL13GRTF8f01DqxuPBa3CkFLOXG3zGAhqgfNdlyPSgIF8538AyFH79bPhfd/JT3sW9iIFFBF1b/68/eKhzsYDSGDpOJWzDajnZzOQM7+1GOAyw8Sl7hmfuNi8fUKVx6rHxO2toJ/PMluVqp/1B0HvL6PZHbecgajMY5c0TVgt+GEBERERER0bAgTagPq6EZfCSGaWWKJ+vbAs0aQ96D0dyCALqEsDPzuuabnTGnOoLRpACVlEuQQVII8QqrCBxlHkgihTIkfQafKCEmwm9wmd8gMnt4xMDDW+QwC3PQHBERUSEp8NTtui4FGEn1lZN0nevR3choj0+TJqoS7WlbMJrlCbdlIPdtzX3YGhWGA3O/3fRZy69SgtFGXiwa8Mi2fyKDtLFsSfyECreGiIiIiIiIiIiIiGgYkSbYjhDWIJBtQmoQesNhFrnMX+/qATYY5h9vEW4BNeXPSV73sr3yfEoB46e6rKKA+Hj3uhpGe98vuVJzDjAuX5x4yrrdpu3Ati77XbvWN83lLam1xuVF6uL2YMB8USkYre9gtgWjMbzBuzmLxCK9vv85obFWYYblmWArN7nf9d3SaV6nqSC3R2sNncy7D245N2KcJbHNb8hZrN7f+uTd3uZzEwBol+vP5EZ7vyAeBfD6q0DWEpA1e39rHTREjjhJLNJtrbt+tvV/Vm4qX3NsxAARLYwhLzUYLT4OEd2NSak2Y/GagmtxlxSMlmtXPYPRiPqZu1gs0utXWTddPF2+Hr1ofssaycFou+vXmQywxkPqLAA0NXvfec4kH8FoDB0mE7dgtJ3bzJsxsLOIOmiZXGjpJy92eRuv3Ch/PhPPQ3kfpbXWwOoV9p3kWPr6AFyC0eS5ekRUWQxGIyIiIiIiomGhO5s0Lh+qcCY5TKs4RMoWsNUYNI/GMG0jBVTluAWn5evKmkPUYoHqDkZzCzKQgsAiAfkLSTnkzlyXhnmAghK+QLcGl5mC9KR/g3Csh1SNGB7hN9zNRDquopbXlIiIKF+p13UpOE2qr5xswabdLn0yomojBaPVBxoQcvwNvJfCgLUQHyb3bc3vMaWU2M8sR+ivWyCjifRvG64yOoMHO8xPox4bmoB5tS4DQYiIiIiIiIiIiIiI9mQjPBgNAHDM283Lt22BXv2cuNlH3uL+2vzqoeL7Lh3CLaDG/Oypp+5zrXuXcZOhvEyQ9xAKokoNDiGzQ08AmlqKFp+w807M6llt3XT1ZnvVrUI2VXOq1VvbTn0fVNjjQ3qlydGJXDCaMJMbYHiDH/sdIZc9fFvRokuPlc9Bn/6LxrPr7fd93c5FOp1G9seXQZ88BXpZI7Lv2Q/6gb+JwQoAgPpGsUgpZZ+EX0gK5KMBU5NnyoV3/QH60TvE4rjLEPbGWkDf+BN5hSNOhproIwCGKkYt/6Bc+K/rd/149sHyuee5DcA1D1lC8cpEDBAxjf+ui0OVGEim+gKOpGvrw3mX8kxWIykM0dnVLgbQEPWjbCG9t/wSOm1+CCYAHFTcxd7lx//WuPDaLBI97mPgElKgYf4Qwyf/6VoPgN5+ztjJ3tbNN3YyEDDPjSkSHPyxxDQcSdfmXDBah7mYgZ3FjjtLLNLPPSqWLV+oMEX+KITL/qLxUpv5nCQHNOb90iE/LLqQOukC+woMRiMaFhiMRkRERERERMNCtzYHUIQdj4NRykyerF98E9E2gb8xZA5GM4VyuQWfdRlCtiSdGXMwWm2gOp4qFyoxQMVv8IKtTKpLC/eEpK/PbaFsfoL0ogHzwBZreIQQ7uaHFMhne02JiIjylRqMltbmgRyVCEazBpv6CKMlqgZbU+ZZAlJIs5XPyT7SZyFbyG7MMfd7u8rw3nM775iMtGC0FTufQEfaPDPkyPgJcBRvHxMRERERERERERER7cnUB74qlukLFkN3mx9w+s4DHfzhIoWDLZPyv3abxvMbdt970VqjXRjeFI/23pfSTz/g3uh8XgNmvISeMRitrFSoBupn9xUtDyGN+1uX4h3bbxK3PetXcrCM1hprhHnRLT2txe348p+A8z4LTN0LmLEA6n1fhrr4y27N300KqMqkoVM9QEpIlACAoL8HV+3JlOMAp11sLmx9CXpHe79Flx5rv8951HeyeHOHfO+3Q3hGXi74Sv/scuCGHwHb+g62tf+D/vw7gUdul3fqFvrjNfQDACIMRhtM6pJvimX6irdDr3zKWNbgEozWkNoK3PUHeb//7/ee2keVpw5cChy41FyY6oFuawUAjKtXuOZ8eSzNRddp3PL04I476ZSCjEzjvw0BpZ719YtahGC0Pz6hkcn2/lulcKX8dikGoxEVO+8KsUj/8vNimVIKn1gmn4uufUTjgmvdz0WdQnhaLhhN79wGfdmprvUAACZMhfLT1+mjgkFg/BRvK4cYOkwG0hjX3ESwHUKwMa9LRVQkBux/lLnwX3+Gzpo/p8fCCo9cbv98duS3s9iRLD7nSP2a2vDuv6u+Vv7eqp93fwJq+t72dRxLOxlOTVQ1OLKdiIiIiIiIhoXurHlAVdhxuas8SKLCZP2U7kGmIMRDCroKqRrUBUYZy0zbSAFVOX5COrqEYLSYU+e5jsFUaoCKGLxgCTeRQ+6EYDQhGEEJX7OEVUQs8xOkZ/03iOFuAwuPSOsUUtr8zTKD0YiIyKvSg9HM16BKBKPZrnOJjL1PRlRt2tPmWQCNoXFl3Iu5j1zW4OIyhP5K5xUrKRl5mHqgwzwwP6RqcGjDWyrcGiIiIiIiIiIiIiIiqjrjptgflmMJAXr3QQ4evSKARZZsst88svveS6IHSGXM6zX2Dc/TN/7Y1tpiXoPRmprd15k0gPAQMlJjJkJd8aui5RMyb+D6DedgZmy7cbtVbwDpjPm+XXsXsN08vBTTU2sNC+fAuehKOH98Hs5v/wt17md6Q7i8sgVUJTuBVLe5LBAoKRxiT6ZmL5QL77mxaNE3lsvnrh1J4E9Pyvd+24Whlo0x9Abe3f7b4kKtof90lXnDcBSqxiWsIxC0l+fjpPzBZQtMyGSgb7vWWBR3GUbb+MZLcuFBy6DCQ/NwcPJGvf2DcuGduwPvjptnf8jgrx6Qwz3LoVO47NSaxpAPJPS1b9vpqXXiKvf0HfJSqEm/dtU3lN4WohFKzVggF952LXTa/LBhANh/qr3um57S2GwJiQWALiloMZfte9/N9p3kG8j5ZqLHbd36WrRncgtG29luLq/jdclo/yPlsmfkIPspjQpfO13uI23t7D0v5ctmNZLC1ILa/Izxu6+X25RHveUd7ivZgs3DnDNHVC0YjEZERERERETDghQKFhmiYDTbfguDraQwgKgTE+vp0d1FAWuJjD3kqstPMFpWCEYLVHcwWsolQEUOXpD/XnKomL9gNIlSStx/4T601kgIgQ+2f4MUHpFwCdNzk7QEv9iC2oiIiPKVel2XgtOGOhhtoMGjRJXWnhKC0YJjfdelYB6oIGWHldI/jwXMA7r9fN6RpLU8OEzit/9fzdq612Nl13PGskX1R4jB3UREREREREREREREe5SjTjUvr4kAtSN/oqwK1QBTZonl+pUVrnXMmyRPfl2xfve9l3bLc3HiudtJGw3BVjYeJ+Cr5rn2FUI1QBOD0QaF5bWfpDeLZa8J89fXmG+HAgBaCoPRasID/7tGLOPmEp3yxOoQgxt8a5knFunVxeci27kHAJ59TS7rEIZKxmMKaGsFOs2hfdi+1by8Lm5tCwAg4GP8i+24o4FzuyasMl/7Rrnkmo3etkYutIWxUXWwHBf5/aGJo3pDFCW2c085SEFGtdrQ0XI71m0mTAMAzO9+UVzlmb5+nhTW1tuuXDBaY+ltIRqpbO/RHe3AG+vFYrd+UCYLvPC6ffdi0GJfN9bU/xIN5HwzfY639YI17uvQnkd6K2gN3Z0EeoQDvd5D/30PpCyfyeByTpjvcl56puCUtkMIPAeAur5+t9ZaDiPPFwgAk2e6r9dt+WIqWh3zK4mIwWhEREREREQ0THRnzd9whZ2heVpW1JGfvpYsCLaSg65i1noKA9YKfy9a3yU4LV9nprqD0UKOecBHOmsPUJFea9vrLIeKSa+3ORhBCono3b+wj4L2pnUKGZjDGmz/BjncbWDhEVKQBWAPjCEiIsoXEoLMpOCznJRw3ZfqK6eQExID2AYaPEpUae1pIRgt5D8YzS/p/WLvn5vLEmUIRpMCGR3LLdORFIz2QMcdYtmSxhMr2BIiIiIiIiIiIiIiouqlJkwD5i4uLjjuLChnz5iGpY4/Wy5c9azr9uccIo+juud/wFm/yuLe/2kxiAjoDRjRqR5P+8unJk33tuLhJwF1lqC7o06DilXHWLoRx/T+6nPBK98Sy5ZelcVzrxXfu5OC0cLZJCal2/ovXLIcaqABU1H5XieSlmA0Bjf4N+8guezFJ4sWHT8fGF8vb3LNQxrHfi+Db92ZRTqz+1hKpjSSwhCWxhh6g9H88hKsUOMjLC9iOe5owNSkZmC/I+QVnn8UOpMpWhwKql1hMSYt256X93n8WT5aSENB2cI07v8r9JregDDHUTjb0vdp2wZ0pwZv7IkUZBQzjLNRy95Z8n5UqAaI1uGkHbeL6zy/off/Ulhbb7v6OoC2fhjRnqplHjDFcu5paxWLFk4D5jfZq//g7/v3gQpJ791Yrhvr47OZOq7065z182g+P30p2oOIyWjAzg55MwZ2mh0mjyvV6162bnr8fGCs5WuVH92j8cE/ZNH6Zu95yRaevyuEdusmoNvDOP7D3gbl5TNZwjIumWF5RFVjz/hGnoiIiIiIiIa9pDChPuxEjcsHWzQgD44pDNSS2h5xoohY2p/M9N/OFlIFAF0egwIyOiPWVetUx2AuKYjELUBF+ndFAvLrLIeKmevK6qxxuVLy1yzRgHlQSuE+bOF3tmNOql8KivOq1PYQERHlK/W6ntbmsNCgEKBablIIqFufjKiaaK3RnjLPBBgdLF8wmhQeVhganWP7HBSTgtF8BEFLpPNOSMmTEEZKMFoym8Dj2+81ljVH9sL0yKwKt4iIiIiIiIiIiIiIqHqpr/8FmH9w7y+BALDkdKiPXTW0jaqksy+Tyx65Hbrb/JDTnKXzFJbOlcuvf1LjuB9k8fvH5Psw8RigP36CW0uLTfQWjKaitVBX3W5e/9AToD71E//7Jk+UUsCpFxnLzt32e3G7V98Ejvx2cTha6xbzcTQ9tQ5Owb0+9ckf+WytgS2gKtElB6MxuME35TjAKe81F656BnpH/2CDmqDCXR+zT5e9dyVwxc0a7/n17mOjwzIMJB4D9Pc+4rnNu9R5mEQf8nFM2AL5qCzU/5PPPwCgrzSHtISD8jbNO140F5x0IdScA7w2jYaQev9XxTL9oaN3haN9a7nCflPkev74xOCMPelJa6TNw9pRawpGm773gPanvvEX1OlOLEo8ZSz//eMamawWw9r6tcvLeZJoD6OUgvrBnWK5/u6Hrdve+mEH+0+V61+5CTj7avl8JL13a8OATnYBKx6WK8+J1UN99mqoeQe6rytQCw4Blr3bfcUQg4fJQAnBaNolGI2BnUYqEgNmLDAX/u1X0Fo+p4RDCnd/3P757Jf3axz6zSzWaYENLgAAIABJREFUb7WH58f7hhzrG3/s1mTgwKVQV/yf+3oA0LVDLmMwGlHVYDAaERERERERDQvdWfNgKtuE+sFk229hmFRCCCyLBmKICpP+TdvZQqoA70EBtvVigeEdjCa9RrbXOSIEfCUyXdYvaQvJz/qSjxevx0pvHXIQmVT/QINbbMfcUL33iIho+JGCzNyD0czlUj+h3KTwVLc+GVE16czuQI82j1hqDPkPRlO2p+kVLtFafL9IfXBADuAtx3svnRWC0RzbIKmREYz2xLb7xNDuo+LyU/2IiIiIiIiIiIiIiPZEauwkOL94AOpv66Bu2wjnq9dDhfecsTIqGIT6pGWy6YO3utbx3TPsU9YyWeBbd5rvw4SDQGTdc8CzD7nup8ikZs+rqrmLoW5YCfXnl6Cufqz3v9va4Hz7r1CcFD2o1KJjzcsBLO5+WtxuexL40b/7HzdrzM+JQnNqbf8F7/woVO0oP800swVUJTuBlJAoEWRwQynU4qVy4b+uL1q031SFWz7kPmX2hv9ovLyp91iyBqOFeoC2Vtf6iniZRO8nLI/BaINOjZ0E9Yfn5BXuvwV6wytFi3vMz30EAMzoWWPe13mX+20eDZUFh8hlO7dB3/RTAEC0RuGhz8jnnitvHZyxJ/YAsoKT2wnnDnyHM+YDAM7Y/hdxlVueBjqFjFAAiOq+sSvsaxEZqQnTgLmLzYWvrYbukd/4LWMVnvpCAAe3yPXf+F+NlRvN56Qu4b0bqwFw3y1ype/6WO9nqeuehrp9E9QJ58jreqTe+wX3lRiMRia2YLQdtmA0hmBJ1NGny4UugYn7T1W47kLbbDtg03bg6oc02i1TIuO5YcV/+K64jrr6Uai/b4Bz1W1Q9Y3Wfe5iCUbbk74HJKp2DEYjIiIiIiKiYaFbmMAddiIVbkmvgAqiRpkHJRSGUUmTzyNODJGA94C1ZMby+AMAXZZQrXydWfmLu2oPRku5BKhIQWC2EC8p9CSLDFK6+O6OFoMR5C9rpWA2r8dKbx2W8Aih/oGGR0ivZ0jVIKAsj7kjIiLKI17XhYCinLThOmyrr9zE4NEMg9Fo+GhPCbMAAIwOjvNdnxyMViyle5BFxlhWUt/WYxC0TSmBiz6ykquW1hoPdNxhLKsLjMKi+sMr3CIiIiIiIiIiIiIiouFBjZ5QniCl4WjKTLFIP/eI6+YtY+X5yG7iMZQWihYMAeOn+NpEKQXVNANqzsLe/0aN9r9f8s9yfM1Kvmzd9OHV/W/gbdxmvqE3PbWu3++qyZIQ4YMKhnqPNZNkJ5ASEiVqGNxQkskzxCL93KPG5bPGe6s6dyy1bZPXadxiPx5FXibih3wEo0UYjFYRE6YBgYBc/txjRYsOEk4tjtKYll5fXBAIAuP8XatoCE2abi//29W7fqwNK9QJb2spbGigbPXGdP8xbspHeKwoPg6IxDAzZQ79A4Dbn9Niu6LZLji5cfgMoCGSTZgml61b6br5UbPtH8Ruedrcf5ZCDWtrFPQK+fOZOvKU3s9SLfOgbNdRPyZMAxyXGBQ/fSnac9iC0XYKwWiBIBCRx7Tu8Zrkz2RY4f790Kzx7l8OPbJao0OYTlcXBoIB1RsMKf19J8+AmnMAVNznA6OzWX/rE9GQ4AxWIiIiIiIi8u26th9ic2pjRfe5sec14/KwJfBqsEWdGHoyxU9cSRSEZUjhVBEnhqAKIaRqjAFchaFUCZfgM69BAV2W9WoD9Z7qGGwhIZhACjLIKXztc2zBCxFLWSLbhRqn/w0TKRjNFhIh7b/oWBH+NgrKeqxL/4aBBqPJrycH2RARkXdBIUzT7bqe1uZHqkr9hHKLBqRgU3tYLVE1aU+bg9EcBDAqWL4BhqYesq0vauuDi33nAfZtATloWQq97jX8k9FWJ17E6z3rjGWHNSxFyOEkDCIiIiIiIiIiIiIiKrDvEXLZzT+H/tA3oMLyeKb6iMJx84C7XvC/68YYoNta/W94+Em9oVVU/WbuAzS1AK8XB6ucvuNvuL7hneKm/9sIrNuiMW1M73i9dmE45JjMlv4LyhEIkxOpNU+qT3QBqeIxpQCAIO/JlWTWvnLZ+lXGxfMmAXMmACs32at+9c3c/833hMfUArEtraXdMZ4w1X2dGu9hHirKMZuVoMIR6ENPAB76h7Fc33o1cPxZUHmBDCcsUPj3/4qPkpPHrkHY9FDICVPLFxpDg2/s5N4wzLQ8zk1rveuYmDYaeLGteJ2tncCK1zT2nVJiaqwgaRl+Fy0c41aG66BSCnpSM5auvUdc596VGsfPN5fV5s+F8BIgSbSHUktOh77vZnPhxrX2/hGA5QsVvnOX3IN54GWNy08oXi6FGsZqAKxfLe9w3sHW9pRCBUPQ46f2/nsl7F+TkXSt1cBOIRG5vrFf/44KHPpWsUj/+QfAWZ+09m8PbAYmx4ENQi4dAKzYALR3ms9bjbkhxRvXyk86nneQXDkRDXsuUalERERERERExV7rXoNXEi9V9D9TcBgAhFWkwv/63SIB84T9wkCzwt9zchP+vYZmuYVwuAWn5XRldhiXOwgM6euZL1hiMJr0WpcSvCDX5z8YTQ4u6yz43dz+sBOFo+SvcaR/Q1IINvNKfj2HLpCQiIiGn5AyDz5wu65LAUZSP6HcpOud1z4XUTVoT5mD0eLB0XBUOQfaFveRpb4kYO9PSqGE5XjvSecdWzBYdgQEo93fcbtxuYLCkfHjK9waIiIiIiIiIiIiIiIaDlRNGNj3cLFcf/R4aGlScZ8fvNNB8xj/+47HALS1yiuMnlC8bMosqA993f/OaEgox4G64lfGslN3/B3nd1xn3b75iiyeWtt7H69DGFbZmGnvv6CcwWhSSFVipxyMFvIegkW7KccBjj3TXPi//0Iniu8jK6Xw6/MdjHbJEvvabb3H0BrzbXW0jAX0H77rp7m72+DleKvxMV43Io9zpfJSH/62XPjcI9A/+Hi/RR86WuHEBf1XmzUe+PajJ5vrmDh9gC2kSlKBgHvQ4cqndv34mwvksd77fzmLR18p7xiUbvNzRwGgOJivqbk8O53UjPrsTpy57UZj8dotwPOvmzetzY0lqglDhatjzgJRVTp6uVik//wj180ParGX32kIr85ktRi2GHO6gWceMBcefBxU0Pzw5AFz60/5CJmlPYgUcKY1sENI5qprGLz2jABq1GigdpS5cNsW6M+dAW0JkQ04Ctde4KDecunfvAN4aaO5LN73UUjf9Qe5jbY+PBENewxGIyIiIiIiomFtKAOaxECzwrArIZwqF5YlhWYVBgm4BQGkdA9SWeExLXm6sjuNy2OBuqp5ykXpwWjmUU5RIcQOsIemmf52WgpGs7x20v4L21tqEJkU0icFrXklbS+FVRAREZmUel2XyisXjObt+k1UzdrT5hHcjaGxJdVnCwMuZHuvRB25PymVJTKDGIxmPa8M72C0bemteGbHY8ayBbWLMSZkmDhEREREREREREREREQEQJ3+AbnwhceBO+zhVXMmKjx7pYO/f9jf9LVGWzDaWZ+EunEV1A/vgvro96Au/S7Ud2+FuuYJqKYZvvZDQ0vtfyQw/+Ci5UFk8Ku2D+D2Wb+1bv/5v2YBAO3CELl4tiC4r5zBaFJIVbITSAljIULyw5rITh1/llwoTI4/bKbCyq84uPH9DmosWR0rN2q0CsFozWM08Lz5XqsrL8ebn2MiwjGblaImzwROvlBe4eafQ7/y/K5fozUKf73EwaOXO/jxuxVu+4iD/17yJmam1pi3n+SSVkPVx+X9rK/66K6fD5hmr+qKm7NlaNBuUogRAER0sv+CcoXy9dXz400fF1e5bYV5rE1M91206+LlaQvRCKWCQWC/I82FzzwAncnYt1fK2v8BgJc39X+fJizTkGLP3iPv65SL7DsaCJfzr2LwMJmUEoxWz+uSG3X+Z+XCh28DHjE/vDfn2LkKq77q4LMnymOQv3e3uf+QC0bDdd80bxgfB2UK0CeiEYPBaERERERERDSs1Qbqh2zfXsMypLCrXFiW11ArLyEcXS7haQDQmTEHo9UG6ly3rRQpmCBlCVDRWluCxeTws7ATEQMeTPVpLQSjWUIipP0X/o3FIDJLcERv+eAEo0nH3FAGEhIR0fATVOYRFmlteWQlhj4YzWsILlE125rabFzeGCwtGE1iCg+2BZmFHfnRb1IIb7dOIqPtg7rcyOcVecC5FIw8XDzUcTeyML9uSxpPrHBriIiIiIiIiIiIiIhoWGmyh7foR+9wraI+ovC2fRUOn+l9t/GYEoPRVMs8qJow1AFHQ73jw1BnfATq4OOhogwNGpb2XmRcrAAse+EnqJdvK+LuF4GetEaHMESuMdO++5fRE6HCZRzzJoVUJTqhU93mMgY3lG5is1ikH79LLBtTp/D2RQo/eKc8tvP25zReazffE25RGz03sUhTs/s6fo4JnuMqSs2Yb1/hsTv7/RoMKBw8Q+GSYxycsI9C3QpLgIyXY4Oqi1vQ4Zbd54qAozDDMiTngVXAjmT5xqEkLcPv+gWjhWqAsU1l2afqez3GZLZi/+SzxnWeWW/etjY3rr2uoSxtIRrRJlnCDNe84Lr5h462PwD19uf6n4s6bcFoz98nF5YzfLiAcqubwcNkYglG0zuFYDRel9y5hPvqR++0lgPA+FEKnz7e+8OZcxpjgN62RV5hio8vnArttb95ebR65lcSEYPRiIiIiIiIaBiLOjG0RGcP6f5NEpnCQDN7WJdUT+F2tmABP+t0CcFoMad6vriTAk+kIAMA6NHdyML8JC3pNQYARzli0JcpWEwORpC/oJWPlf5/r2RGCkaT2w/YQvoGFowmBb+4tYeIiCifdF23BZ4C8nVfClAtN68huETVrD1tfrT16NC40iqUBo0Y2EJ2HSXforT1NQfav5XOOzWWYLThLKPTeKjDPBFgXGgS9o7tV+EWERERERERERERERHRsLLXfkCDJd3jFfcJ+TnL5nu/zxQPdgM7t5kLB3HiPVWeOnCpXPbqC1g6V942q4EHVwHbhFv4DZm8Yyg+psQWCoSQKp3sAlJCqkSoMmMdRqRplnHCG9e5br50rnz+WbMF2CoMu52Q3uRat1EgAIyf6r5e2JL8V6jGx7o0cIuPtRbrtlb79q+vKbluqj62axUA4I310OndCWVL59n7POu2lqNVvZKW4Xc1Ou96NGEalFOmOIG84NzFif/62jSaG/dT31iethCNYGrRMXJhW6vr9mcssp+L/vSERk9697yYTiHbFwBqt7wqF7a4hIkOhNv5d+ykwds3DWPSsa8BKRiN1yV3+x0BBC2fadss/d88o6L+g9Fs4fkAgJkLfNeZo878iHn5R79Xcp1EVH4MRiMiIiIiIqJhKaiCOHfiRxFQwSFrQyQghF0VhEklLIEAgCU0K1sYsOYewiEFWeXrygrBaIEqCkZz/AejmULMcqRgE7dyP8ELtq9nvQarSP8G6VjLkY6htE4hlbWHztgkM9Kxy2A0IiLyLiQEDqW15RFzkAOMpKC1chPDa4UgU6Jq1J4yB6M1Bi0TWCz8DElwC4iWxBz5SdeFIdR+iYGLjhyMltXm8OXh4Nmdj2Nbpt1YdlT8rdaAOiIiIiIiIiIiIiIiIhWqgbr4y/IKWzdCP3anp7ref5SPYLSdr8mFDEYbWQ4+HgibH2oKAJ+t/wfCliGiy74v38trzO6e9K4+elVJzRNFhHueiU4gJaRKhMLlbcMeRAUCcjDG6hXQafsYyVnj5fNP65saHcLQ3PgdP/faxP7GT4GyhQbk+DkmQiPzYV/VSjXPBU66UF7hb7+ybm8NTpu7uJQm0VA6/CRgvyPt69zww10/fnKZwljLkPyHVkkP6PavWzj9hbPJ/mN8ytl/mjh914/NqVZfm9bqvnE/dQ3law/RSHXM28Ui/fBtrpsfMgN4xwFy+ZOtwNwvZrFyY+85qcsynDf28uPmgn0OgwoO4nyueQfay/nZkEykh/9qLQew87rkSsXHQp17ubxCW6vnuq44wV84WjwG4Il/iuXq/M/5qq+fJacD+xzWf9m8g4Cjl5deJxGV3dDNHiciIiIiIqJh66j4idiREZ6UUAGjAo3Yu3Y/jAmNH7I2AJawjIKwq6QQVpbbXgzNypv0r7X2FNLV5SEYrTNjDkarraJgtJAQeGIL+bKFlEh/q/xyU1yAKagsC/NgKmXJn496DNGT/sau7bcEpyWznQg5cev28ralhVkQERHlk4LMbIGnAJAWrvvBCgXjyiG4DEaj4SGrM+hIbzGWNYZKC0az0VpD5Q0qkd4rbn1bWyiwlyBoGzEYTQhwHO7ub7/duDykanBoA59CTURERERERERERERE7tQp7wWSndA/vsxYri87FfhnO5QUFNVnwiiFq89VuOg69zCQ+L+vMReEaoCxTa7b0/ChgkHgd89AnznHWL7wl2dixXWbMOcb9b7rjuePcV24pNQmmkWFhz0lOwEnYC5jsNWAqPOugH7yX+bCP/8QOPtT1u2/eprC5/9afP55ZTPQLgwDiWeF4IRFx0DtdwT0NV8xl09qsbZlFz/BaDUM1qs09emfQf/vP8DqFcZyvX4V1NS9zBu3tZqXn/HhfuMqaHhQNWHgqtuAG38M/Qtz8Ib++WeBE86FahyHvSYoPPUFB9M+Yx5v/sE/aLy/TJelZNq8PKKT/RdMmm5esRR5QUQtfoPRcuN+6kob1060J1HhKPTcA4GXniwuvO1a6M/8wnpNUUrhTxc7ePaLWax6w7zOmjeBC6/N4uHLA+gUsn2BvPdu4T4u/ILtnzBgSinoeQcBLz5hXqHJY5+L9iy2YLQd5ofM8rrkjbrg89BvbAD+YfjOZtN66EymN9TaxfuOVPjGHd6DYuNRQP/kSnNhwxioAXxPpKK1wHdvBf71Z+iX/gs1a5/ePl2seuZXEhGD0YiIiIiIiKgER8SPG+omVAUpHCp/sn4qm0Jam+865raXQ7N2j7bo0d1iIFe/bTLuQQFdQjBazKmeL+5KCVCxhZTYwhUAb+F0uwjfv9rGKkj1p3QPMjqNQF/AixT04BoeYSlPZBOoR2lf1IthFi6vJxERUT4pyEzqI+0uF4LRnMoMFo465qdSewmrJaoG29Md4meIxmCpwWhyp1dDQ+WVlxqyG3WESQQoQzCaGLgoP61bSx8Aqtzr3WuxKvGCsezAUUchVkXB2EREREREREREREREVOVOOBcQgtEAAE/8EzjqVNdqDmxWEAdf5YmntpoLJkyDcuSHV9IwNWFab2hYqsdYPGvlP3Bwy7vx+Bp/1TbmgtGa55Y/iCgi3NPs3AFEzGMNfIVgUbG8IJ5C+sFboVyC0VqEW+QvtcnbxDNCcELzXGDBIfKGlrb24yfsjMdPxSmlgLMvg/7SOeYV7r0JOPdyc9nGteY6m2aUqXVUaaomDJz9KejffxvYKYQmPvg34JSLAABTGhUOnwk8/Ip51R1JjfrIwK9NyZS5XxXR/ROOlNfARg9UfRy6Lg7s7MD0HvOxLonlxhLVNZStPUQj2vS9zcFoAND6EtAyz7p5wFG48mSF9/xa/gz26KvA+q0aXeauOAAgqhPmgkoEk+17uByMFh83+Pun4ccWjCZcwxWD0TxTb/8gtCkYLZMGNr8GTHQPY53SCAQcIOM+RRJAQeh5ob0XeavEQsXqgVMugurrxxFR9eG3wUREREREREQlkibsJ7OJvJ/l4IxcuJRcz+5tbaFf+bo8BAV0ZYVgtCqaGF9KMJr0Wis4CKuIdX9yOF3x6ykHI8g3qG3BZvl/22TGfNPIPTxCLk8OIDyi1DALIiKifNJ1PWW5rgPydT9kCTAqp4jQR/PaLyMaalvTm8WyxlBpwWjK0uctlDCFDMM99DegAmL/vctDELSNdN4JWQMXh2cw2v0dd4hlS+InVrAlREREREREREREREQ03Kn6ODB1L3mF9as81TN7AhD3MOyoUQojGjfZ035oeFGOA+y9WCzX61fh4Bn+w2NGZbf3/uBhYrZvceF+6xvrgZQwFoLBVgMztkkue9OSbtZn4VT/x1CjMAFfzTsI2Gt/IGB+UKCaKx/P/fgJRgtW5iGCVGCuHLSg1682L0+nes8FJpMG4XxElWV5fxceEy1j5fNO65vlaU5SuOSEC4LRPAc2ehXrnXPQkvIXjFar+8YS1TeWtz1EI5SyXIe8fgY7qMW9D7TqDaBTCEaL6gQcafzc+Kme2jAQ6i3vMBcccHT5w49phJCOCw3sFAK26hmM5pnt83Wbt35BMKCw2Ee3OJ7YKBfO2s97RUQ0bDEYjYiIiIiIiKhEEcf8ZL9E3mR9W3BGLlxKrKdfYJa3AI6Eh6CAzswO4/LaQL2nfVRCSJkHcdgCVKTXOuJEXW96SEFf+SF3ORrmx1I4lq9ZpPA7oP/fVvo3SMFtOdIxBMiBFF6I7WEwGhER+RB0hMDTrOURc5CD0YLKPLC03KLC9TWtU0hl7aFuRNWgPWUeRVmjwqh1BqPv338AlBiyG5D7rjnRgHt4dCmk80qN8PkDALJ6+AWjJTJdeGLbfcaylsgcTI3wKdREREREREREREREROSPetfHxTL9xD891REOKVxyjPvk9YbMNnMbzrvC035o+FFnXioXXvdNXDz6CdT6yJBqyHQgkBvn19Q8oLaZKClgpq0VSHWby0KVeQjcSKUcB1h0jLlw0zroNS9Zt997ksLBLf72GReC0bDkNKj4WOCt7ykuG9sEHHumtx34CcvzE6JGZaMmz5QL21rNy99YD2TN44wxyedBSFVHnfERufDem/r9+um3yn2eA7+exfbEwMejdKfNyyPZZP8FZQ5GU2d/CgAwPvMGoj7G8sT6Hvat6hrK2h6iEWvpO8Ui/aNPeapi1niFU11yg678WxZdPeZzUkyanzTnAKhgBcby7r0I2O+I/suUgjrTcj6mPZs0d0xrYIf5uwbUMRjNK1XXIAac6t9+3XM9H1vqPdgwvkUOglSnX+y5HiIavhiMRkRERERERFQiabJ+v0Azy82+XLiUFJqVv60tYC1fV3an+zrCzYmYJbyr0qTAE40sMjpjLJNeay8hXtI6iax70JwXtvCHRL+/s3l/UnBbjqMCCKuIa/1+iWEWDEYjIiIfpMDTtBZGZvWRAlGDqjKDhSOWvlG3ITyVqNq0p83BaI2hsSU/LdG2VeHQKFPIMOCtLyn1z7sG2D+XAxdtT9cefsFoT2y/D906aSxb0nhihVtDREREREREREREREQjgTrlvUC0zlz41H3QPUIYVIEvn6Jw1Zn2e1WNWXMYkZJCkWjYU0efDkyfI5bv/fWluO/cDag3D5Er0pgXaCWGmA1EkxButHkD0GV+cK2vECwyUh+9SizT5+4PnbI/oO/Lp/qbSms6F6nf/Acq3DseVH3qp1AXfhHYa//e0KFl74b6xQPeA39qPB7QABCy3dOmwaQu+Za5oK1VWL5Wrmzi9IE2h4aYOvSE3pAek03roNs37/p1wWS5v9OTBs75tRCg50NSeLZnpHDMyKQyH3unXASgdxxRc8pyzBeI5cYS1TOAhsgLNWo0MHUvc+GmddD/vN5TPddf7FjDGh9+Bbj5KXNZrTbPJ1Gf+omnfQ+UUgrqO7cCZ3wYaJkHHHgs1Ddugjr8pIrsn4YhWzDaznZzWT0DO32RPmP/917o//zbUxXvPNDBje93EPcwNa3hHz8yF0TroCZM87Q/IhreGIxGREREREREVCJpsn4ym4DWvZPnbaFUESfa7/+FEhlvAWv9t7EHBWit0ZU1D7yJBeo97aMSbIEnUphB/uuVz0vwgrROMlMc5qCFYARliYmwhbP1D9Izh0d4CncTgvq8HjuFtNbiaxoNMBiNiIi8kwJPpWu6W7k9wKh8otZg0/KEpxINpq0pIRgtOHYAtXoPVJM+C3np28r989JDfwH5vFLjyOcVqf9frbTWuL/jdmNZXaABC+sOq3CLiIiIiIiIiIiIiIhopFDnf1YufOxOb3UohY8tdTC1UV4nnjEEo8090FP9NHypMy+VC9MpLFxxLf77eW9TIePZbbt/mSSEmA2ENBFca+C11eYyBlsNnFuolMt5aOlcYMlsb7tydAb1hWNtIzFg5oJdv6pgEOqCz8G55nE4N6yE88VroSZM9bYDAMpPWF4Ng/WGzDThoHlzgzmMr63VvH58HFRMCBilYUWd/gG58N839vv1GDnzE/94Dti4bWBjUqRgtLDOC6yNxID4uAHtp5AKhoC+IBI/wWi1uTF3dQxGI/Js/yPFIv2P33iqIhxS+OZyB2csksf+3fAf8/koJs1FGYzwYYGK1sK59HtwrnsazlW3Qx3+tortm4YhKRitayeQyZjLeF3yx/L+17df57maty9S2HyV4xqA3mj6jggADn2r530R0fDGYDQiIiIiIiKiEkmT9TWy6O570pI0cT+sInBUAIA90MpLwFq+LpeQjh7djbROG8tigeq54W4LRktp81P9pAAwLyFe0jqm1z33NymkpC/QAQRUEDXKPDAlv91SsJ2XcDcpYMLrsVMopXuQhfmLfy/tISIiypGu67ZgNK212GcJWfoJ5WS73klhpkTVpD0tBKOFBhKMZtO/nyz1z730JWPCZyS3zztuhjpwsRJeTjyPjT2vGcsOb1iGkFOZcygREREREREREREREY1AM+bLZa++ULbdGCe9VnDiPQ2RFsvxBQCvPo9po4E6D/lQ8Uz77l/cwrRKYTse168yL/cTgkVGKlprf+1dzkNKKXzlVG/Tacdm3ix+bNjE6dZxor7V+LhPzeNn6EjHXDYLvLG+aLFuaxXqGYRzEQ0NS39Iv/p8v9/nT5bPGVoDL7w+sKZ4Ckab1Fzec1devQAwP+m9D7gruLSeATREXqkyfgabP9n//muluSijRvuvjKgizNc83bXDuBwAEBs1SG0ZoWznpTX+zksBR+HQGfZ1xma2GJer5nm+9kUb22FZAAAgAElEQVREwxeD0YiIiIiIiIhKJAVRAbsD0eQwgKhrPVlk0dN3Y1IKzCrktl5XZqdYVutUTzBayJEHfEghKVIAmJfgBWkd099PQ3o6l/2msbSP3N8sqzO7AvUKSeF5XuqXjkE3tsCXaN7xS0RE5EYKRktZgtGyyEAjK9QXLEu73Nj6EIkBhjMRVYIYjBYsPRhNWfq8hf3khBASbfsctXsdc/93oO896bxTYwlGk85F1eqB9tuNyxUcHBk/vsKtISIiIiIiIiIiIiKiEWXxsWKR/uN3y7abUdntRcvUae8rW/1UpRYcAkzdSy5/4G8IvfwfnHWwe7hLPLNt9y9NzQNvWwEVjgJjJvnbKDRyHtY0lNQJ54pl+rpvuG5/xF4K7zrQ/RianlpXvLDcAY01Ee/rMhht6FjCFfW75iH76y9Dp/PGIrz0H/PKDPgcOeYcIJfd+mvodSt3/XreoQq2TLJXNktj0r3pNg+pRySbNx59sI69vnrP2fZHONr8IO5CU1N9YYJ1DEYj8uzYM+Wyjs3QXfL8oELv8dCPLhTVhjGAsxcOTuAiUTlIx2bC8l6Juo9ppd3Uce+WC1evgO7plssN9pogn0/CThoT0xvNhcdb2kFEIwqD0YiIiIiIiIhKFA3YwjK6+v2/UCQv6MoeupELWJNDqvqvbw8K6LQFowWqJxjNFniSzprDDKQAMG/BC0JombFO801oW0gEIB8vXv7GXoLIxH+DEEjhxnYseQmbIyIiygkJwWhpSzCaLTRNClort4AKoEaZB5Z67ZsRDaX21Gbj8tGhcaVX6mNAkxgSbfkclSMGo3kMjJZI5x3beWVgQ1Arqz31Jp7d+bixbJ+6xQP72xMRERERERERERER0R5PBUPAwceZCxOd0Lf+uiz7CRgeXKMWLilL3VS9lFJQ3/uHdR196TJ8f+GzOOcQ+33LxmxH7w91DVD1jeVqYn8+g2YUg63K45zPyGU93dC3/NK1it+cr3DWQfZjqKWntXhhucOF/BwTNTx+hoqK1gKN4+UVrv0a9P87BwCguxPAk/8yr8dgtBFDKQWc8RGxXH/waOjX1wAAFk1XuP598jT+D/x+YKNSksIQu4jOCySxhPsNhOo7puf3vISbXnsXmlKvu26zK3SyrmFQ2kQ0EqnG8VCfu0Ze4eafe65rxjiFr53uL9Cs1jAGUH3+N77qIKooaYxr0jKvKmIer0pmasos6+cy/Ym3+aqvxfKs5+mhDjjSHL6mGb72Q0TDF4PRiIiIiIiIiEpkC4dK7gq7ksK6onk/W4LR+ib+uwWe5XS5BAV0ZeVgtFhVBaPJwQQp3WNcLgYveAgVk/6WpjqzpQajuexDCtHrbZ/7F+1SwITXY6e4XbagNgajERGRd9J1Pa1T0Np8XbWFplUqGA2Q+wilBo8SVUoq24Md+U9Bz9MYtIwiGIDCt7MYEu0luNglVLhU0rmlxpGfzi6dp6rRQ9vuRtYwUQgAlsRPrHBriIiIiIiIiIiIiIhoJFIHLhXL9J++Nzj3VhYdU/46qSqpSc1QP/23vEJ3AuG//hS/vdDBN5bL4/UaMn3BaIMUBgPAf8hRqHJjHUYyFQxCffR7YrmX81A4pPD7ixxccYJ8DLWkWov3PZTBaAzWG1pu55L7b4F+bTXw4K3iKmowz0dUcWq/I+TC7Vuhb//trl/PWKxw5mL5fLOhvfS+UzJtXh7OC0Yr+7krJ6/ek3fehrWrZ+G97fawpGmp9b0/1MUHp01EI9XSMwHHHAmir/umr6ouPtJvMFrBXBSlgMkMI6IqJgWjJSzzqiKcH+WXOuW9cuGzD0KvedFzXc1j5PPSdGw0F7zlDM/1E9Hwx2A0IiIiIiIiohLVqDAc4aN1YlcwmjlcKj8MQAq0yt/eFlKVr8slBKsrYw5GC6sIAiroaR+VEFJyMIEUZiAFlHgKXhBDyxLI6kzB0tKC0cRglVwwmiVgxUsQme3fUIqEJWQv7CFsjoiIKEcKMtPQyKLwOtsrrYVRWwBClgCjcpPCmaRAVqJq0Z7eIpYNJBjN3uPd3U/WWov9UG99W3MwsK2P6oX0WSJo+fwh9f+rTVqn8HDH3cay8aEmzIntW+EWERERERERERERERHRiGSbBP/aK8A2+T5VvsuFQKJ9kyuKF05s9lQnjRCTZ9rLX3gMALDvZPnuZVO6rfeHxvHlalURNXUvfxsw2Kp8psySy9rWAluEyfMF5jfJZbN6XjHs1+XY9Csc8b5ukMF6Q8p2zOW8+CT0848NrA4aPlyvVY/3+3WW5XL0ZGvpzejqNi+P5o/ZaWopfQc2k/qH/SkARyQeFlcfm96MWt035q6ewWhEfqhgCKgfbS5M90BnzQ/SNBldCzT6yIAqCkYb2wRVw34tVTExGM08lw4AEOb8KN/GTgZs54KCvpDNXpZ+0uye1eaCidM8109Ewx+D0YiIiIiIiIhKpJQSJ+wnXcKu8sMAwioCJQasdfb7v5tEptP6tLvOzA7j8ligzlP9lSIFqAByUIoYvGAJnvOyTmG94svr8vAcKQAid4wkLX9jL+FubsFrfsmhflE4il8pERGRd7brekoIKUpneyz1VS7MtdzXV6JKaU+/KZY1hgYSjObtiZHdOgkN84CrgQQXD+S9l9VZ8bNEjSUYTQ+TYLRndjyG7bkn3xc4qvEE9uGJiIiIiIiIiIiIiKg8Fh9rL29r9VTNafsr43zlM7f/pWiZKgjeoJFNjZkI7HeEvML6VdCZDI7ZWw51OGnn7b11LTltEFrY5+jl/tYPVe4hcCPewqOtxfqLZ0E//YBrNW/bRyFiGNJSk+3GyTtvKy44cKnHBnrk9ZioCUNJAQ9UEeoY9/e7/v7HgBVyKBT2P7KMLaIhN3MBYAvIfPWFfr+esUh+D//03qx17L9NR5d5u3h22+5fJjWXVLcrQ73Te9aKqzfmxrREa3tDnojIn9n7mZeneoAtbZ6rUUrhHZZzUqF+5xNg8M4pRGUjHN9JYexpJMa+dglUMAgccYpYrv97r+e6FkwG5kwwl7399V+b989gNKI9CkfAExEREREREQ1AJGB+MsTusCvzl6f5YQBKKUQccz257ZMZc0hVoQzSSGk5SKRLCN+qrbpgNDnwJC0EqEjhcQMJFQMMwWhCwIPj8jVLRAhf2xWiJwSRBVUIIcf9BrAcvOYtVK9ouwG8nkRERPnsgafm67oUmOZWX7lJ11epj0dULdpT5mC0WqceYcfHU6d9yA8Qk0J2AYifffJFA+YAaq+B0SYZIRQNAILO8A9Ge6DjDuPyGhXGIaOOqXBriIiIiIiIiIiIiIhopFKRGNS3bhHL9Q0/8lTPpLjCby9QCOQNuTopcRc+tvXHxStPZDDankZd9lNruf7MaYiEFP74Pgd1od33AZXO4qdtl2J2z+reBSeeN3htbJnrb4NQeHAasgdS4QjUd/8ur/DcI9CXLoO+0XA+ydMQU/jdhQ7CecNVa7LduKbtYozNbOm/8uyFUGH3e92+eD0meOwMvcPeBrzjEvs6OzuAVc+ayw44mkFQI4xSCuoL18orbN0E3bF77M5+U+XAlXv+B3z6ptLGprQLQ9ji+Q/WG6x+1NimooDH5pQcjKZzoTN18cFpD9EIpz5l6R/f/SdfdX3lVIWDmr2t25BhMBoNM1LIWWKneXnEPFaV3KkPf0su/Nefof/3X2/1KIXfvdfB+Pr+yz+3ZAeO7LjHvNEEBqMR7UkYjEZEREREREQ0AGIYVd+E/YQQmhEtCMmSQ61yoVneAwCk8DMA6MrsMC6PBeqNy4eKowJwEDCWScFvUviC9Np6XWcg4Qv99yGFO+RC9Mz78dJ+wBa85i1Uz+t2XttDRESUYwv4TGfNAWhSYBpQ2WA0KcBJ6uMRVYv29Gbj8sbQ2AHW7O3JeMmM/B6RQs/6rWP5fFTqU3Jt55UaZQtGq34buluxOvGiseygUUsQq7IgbCIiIiIiIiIiIiIiGt7UYScCoyeYC//1Z8/3c95ziIPXv+Pglg85eOZTnbi5dTkiurt4xUkMRtvTqOl7Q938qrzC43dDr3oWx89XaD3lbtyy/h24/rWzsX7VTLy/4+redeoaoELyfcCycAtKysdwq7JSBx8HjJtsXUf/6kroLvOY2Zy3L1JY/y0HN3/QwY1L/ovW1bPxru03Fu/v9PcPqL1GNR4fahYc5OOYXKlAAOrS70H98fmSQp3USRcMQqtoqKm5i6F+dLdYrv/wnX6/X3iEPObmqn9qrN3if4RKhxSMlu0LRquLQ9UPThCZcpyiUJKmdJu4vs6NOaprGJT2EI14k5qBiHlMnf7F53xVNX6UwoOfdvBey3kpZ9f5JIeh1VTtxGA0YV6Y8L4id2rcZOCMj4jl+pqveK5rcbPC6q85uOOjDn7/XoVXvu7gS69+XB6xzHMR0R6FwWhEREREREREAxARJuznQqWSQmhG4XZyPbnQLO/hVomMHOTVmTE/5SImhHYNpZAQeiIFGkj/bum19bpOMtP/tddCNIJy+ZpFClbJ/Y0TQniEFKhWvJ49pM8vr8cuERGRG1uQmXRdT+u0cTkAhCwBRuUm9tEypQWPElVKe+pN4/LG4MCC0bzFotnDA6V+cb6oEOSVQVoMSnZTcuBiiUFslXR/+x1i2VHxEyvYEiIiIiIiIiIiIiIi2mPstZ9ctuEVz9WMq1c4dX+FfdQaONIjazjhdc80tskenvJ4bxhNY/cbOHnn7XjHjlswMbNpd/kgBcHkU5Oava882CFte6I5C+3liU7guUdcqxlbr3DaQoXT267D+Iz5IWTw87f2qsZjWJ7X9WhQKaWgpu4Fde5n/G88GMcPVYeW+XLZy8/0+3WGZciO1sDdL5YQjCYMYYtntvX+MNjHXkH9QWQQFcYMXdDx294fony4H1EplFJA0wyxXHf7G9MaCiq860APwWi580muHbymUbVjMFpFqelz5MIn/wWdyXiuqy6icPx8hbMOdtAyVgFr/yevPHGaXEZEIw6D0YiIiIiIiIgGQArLyIVRyeFS/cMAogGpnq5+//eiyxKE1ZU1B6PVBuo9118pUjiBKSglqzPo1knj+lJgWL6QU4OgChrLCoPFNLLG9ZRLTIQUcJYLRJPC77wER9jql45BN3JQG7/4JyIif2yBQykxGM0WYGS+Zg8GuY9WWvAoUaVsTQvBaKGBBaPZ5AcIS31QBQdh5f7Ua1ufs9T3n3S+AYAaRx5ILvX/q0Ui04knt99vLJsZnYspkebKNoiIiIiIiIiIiIiIiPYIauESufD1Nf4rbGs1Lw+GgDGT/NdHw55SCjjoOLFc//X/oLt2ADs7zCvUNQ5Sy/I0tXhfl8FoZacsx0eOfu4x7xXazl0LDvFej1chj4FnPHaqi4fjrghDZEYsFbeMw3nqvn5hIG+dbx9nvnaL//23C0PEGzN918amZv+V+mGo//yO3xlXXb7jr70/JEsb105EAKbuJZdtXOu7ukPlnLVd4tn+wWg4aKnv/RBVlnC9TTIYbVAcaDknpFPAm6+XXrflvKZi1TcHkogGD4PRiIiIiIiIiAZADKPK9IZcSYFmhdu5hVr5CbfqypjDz2xlsUD1PX0p6JhDVFLZnqJlUqgYIAeaFJJC7grr1tIDuVwemCO1I7kr/M78Rbv39psD1JLZBLLaf5iDGOoX8BbURkRElBOyBKNJAWgpXXy9BwAHDhwVKEu7vPDaPyCqNu0pczDa6OC4AdYsd3q9BKNFnGjvBAYXMeHzEQB0ZUoLRrMHLsrnKf/P462sx7bfK4ZEL4mfWOHWEBERERERERERERHRHuPU94lF+pMnQafM93zFbe65wVwwYSpUoHL3iKm6qPOukAs3rYN+9wLop+4zl9fHB6VN/UxiMNqQOv4sYP7B9nV++3Xov1/jrb62VvPyyTOgwoMwbrLGazCax/WoItTMBcCpF3nfoCYCjJ4weA2iobf8g2KRvuwU6K7esfsHTFe44HB5zMzXb/c3QiWV1ujsNpc1ZPuC0SZO91WnX8pwHfz41h9iek//IJOPbP0pZves7v2lc/ugtoloJFMf+oZYpr94NnTW35yRWFjh82+zj+VryPQPIVbjJvvaB1HFSeNTE8I8u4g8VpXcqaYW4JT3iuX6y+dBi5PwZLprB7DNnBqrLvyi7/qIaHhjMBoRERERERHRAEghUbmQq1xAWtF2BSFWUqhVItMXjJbxHowmBWwBlmA0pwqD0YRwAlOggS2cRAo0KRQV1isOtzN/Keu4fM0itSP395JC9CKWUIh80YC8XncJ4S1eQ/2IiIjc2AKHpKAiabmtrsEg9Q/8hNYSDYX2tDkYrTE0ZkD1egk1A2x9SY+hv5Zw4FLff7ZgtBolT0LQVRyNprXGAx13GMtGBeLYv34QnlpOREREREREREREREQEQNU1ADP3kVe4+0+e69LZLPDvv5gLBznQg6qbmjEfOPNSeYWtG4HH7zaXVSQYrdn7ugy3KjsVq4f64V1Ql/+fdT393UugN2+wr5PNApvWmffz/q+V3EYrr8FoXtejilGf/AnUlz1e5yZN9zzWgoYndfKFcuGT/wJu+tmuX68+V2HWeHn1N3d4H6OyzTI0PJ7Z1ts2P9epUoyZWLRoRqoVj7YehR9u/AQ+seX7+Ov6t+OqTZftXqFz2+C2iWgEU00tgBTW+urzwNP3+67zE8vs16jc+QSwB7MRVQ2p3yUFB0YGIQB5D+Nc9jO5cMXDvf/51bZWLnvr2f7rI6JhjcFoRERERERERAMghUQlsl3QWoshZYUhVlI9yWwXsjqDbp303KZERg5G68yag9FqA8M7GM0WBuc5fMFj8Em2xGAEOVglAa21GPAQFULzvNYPyMEUNlJ7pBA/IiIiiS3MLCUGo6V91zUY5GBTBqNR9UpkOsW+XGNwbEXaIAU7e+1LhlVEDB7usvT9bWzBaEFLMJoUjFwNVnatwKYe8wD+w+PLKn7OJCIiIiIiIiIiIiKiPUzLPLFI33ez93pWr5DLJjZ7r4dGJLXv4aVtWDf4wWgqVgc0eLwHy2C0QaHCUai3nQecd4W8UjYLPHirvaI3XwdSPeaypuaS22fl9ZjgsVN1lFJQxywHxk12X3mwg6lo6LmEuOb3iZRSuPQtcgjR31d4H6PSYQtGy3b0/jDYx9+EacbF4zObcUn7L/DtNz6Hk3begX7/4kVvGdw2EY10sxeKRfrem3xXF7MNmwPQkM0LM+RnMxoO/AbShr3NNyMXe+0vFvn6fiinbY15eSAAjJvivz4iGtYYjEZEREREREQ0ALawq5TuQRbmp0oUBgJEA3LoRjJruXNpYAsK6MrsMC6PVWEwWkgFjcv/P3v3HSbJVd9t/3uqu2e6J+zMbNDuKq4kJFACBYQkkHclgoRkko2JIhkcCA8YY4IJNvYLGAfA5sEIv4Bfg7EJxg/2izESIIIQGGwRTJBF1kqAVkLSzmyY6d7t7jrPH7O92zNzftVVHad37s916dJOneqqM6m7uqf6rlDQoFK3v0ZW0CTteuUVUYfwH52dkl9At35WvLwO+EpgP415haN5K9ezP08rjJHE+rlL+/UEAKAhcpEi5YJjVqjIWl5YJWG0dh5bgX6Zrd1rjs0UNnW07aQjXu+PHCdbx5LLA9HmfpyzI9TGcXMr1TgpjGbftzR/XqvNjXOfDC6PFOnSqSv7PBsAAAAAAAAAALDWuHMusQfv/En6Df3cXted9ZAMM8JR6cwLpaiNt0Cu39z9uYScc3G69U45q7fzWOPc2cnfB/+zHydvYNdOe6xXYaGRYrr18lwQa9Vq8XMnSe6slPcRGFpuYioxFrv8mOihp9pn3/z4nvT73X/AHlvXeL/Ahi3pN9iOMx4sjWa74La76hk9mgywRiQ9B/vpDzNvbiSf/B6Y6XpTGG1rcggSWB2yhtGyPY7BkPS8+Jb/yr69XTvDy485Xi4ffq8hgKMXYTQAAAAAADqwPHDWUK7Pq5wQzFge2TC3Ey8kbsfad0js6+a2xqLVF0bLu/DlZ6qhMJrxeeVdXoWoxWVsDrHjdEu/nt4Ko7W4skhSUCzp58Wa14r1ErefPR5h/Rwl7QcAAIsVNLMCaNU4fBXefNTfkz3N44P6wqqOJWFt210NnyXp5DSdX9/h1tOdNLL8GLrBet4Tkvb4PC3r/kZafN5ghY6t4/9B2129R9/ef3Nw7IETD9FMIeWV6QEAAAAAAAAAANr1qKfaY3f8QP7276Xbzl077bGH/1qmKeHo4zYdJ12ZPaLijj25B7MJ7OcpL2290pNeLFdKdxEptOnCR0mnnWuPf/Qd8uWEvzXv2hlePr5OmpzpZGa2wmi69QijrVruSS+WRhK+jzPHSL/87P5NCAPjnv5ye3D/Hvl9c4c/PO9Ee9U/+aTXwVq681TmE8Jo4/7Q/d3kdKpttcsVx6SnpngcbPbgR/ZmMsAa4R73PHvwG1+Q/9Dbunpu67p475EPthBGwxBo8b6uFQrp3m+GZO4Jz7cHb71Z8fO3y9/909Tb87t2hge29ud5PoDVhTAaAAAAAAAdKOXCJ6tU4gUz1iWtjEuVIns7WaNWVihgISEgMJ6bzLSPfshnCKhYUbGkGFnadStxecnH1h+KrJBCQ1LgrBKXzZ+XtJ9DIRpR3oWvfNFOPGL55314PilDbQAANLMf12vG8nDAyNpOr1iPw7HqqvpwvA0YtNnafcHlU/n1yhnHi91x5DjZPJbMcHxuPUeyAr6tJN2vLEaOM54QM2Bfmvu0vOLg2I7pq/s8GwAAAAAAAAAAsBa5yRm5P/moOe6f82D5WvhvwkvWu+v28MBpD5IbX9fu9HAUca/6G7nnvynbjbZu68lclnPn/pLcOz+XvM6L/6Ivc1nLXC4n947PJK7j3/YSe3DXzvDyY09uedHctiUFtZrlevl3fnTCnXOJ3Ns/vRjxPOE06fhTF//bdoZ09bPl/ubGxbgjjnru0dfI/c7b7BWajnWcc3rxw+37lVf/S2dhtJyvaaRxXluvwo5N3PNen37lU86SGy32bjLAGuCOO1Xut95gjvtrXy194WNd219e9cV/lMalqQ1d2y7QM1mP3YkQd4U7+Qzpma+yV7jlP+Vf+fj04cZdO8PL+/Q8H8DqQhgNAAAAAIAOLA+cNZRbBM2WBwGKUSm8nXpyYC1kob4/03JJGjMCb4NkRb5CQQPra2R9f7Ksuzwq5mW9ENsijGaEHRr7sOJuWT6HtHG3NKyYWpb5AADQkI/CfziuxuG4mBVM63cYLelxr53HV6AfZqv3BpfP5Dd2vO2kGHDzcXI3jm2tCHU70V9JqrYILlqfm338PzjVuKov7/l0cGzLyPE6feycPs8IAAAAAAAAAACsWWdfbI/VqtLXk4NRkqRdRhjtzAvbmxOOOi6Xk7vm5dIjnpz+Rn18w7R74MPswYmp3oW1sIQbXyf3ur+zV/jcP8tXwn/L9tb9UC9/jnJ5KUrx9l5iDauaO/tiRX/8j4o++F1FH/qfxf8+8N+KXv1uuWNPGfT00E+/8nz793XXziUfnr7Z3swHvuJTRUPmjWt6jsULR86AGet9YNY5J/3yc9KtvGFrT+cCrBkXXZE47K/7QPf3uXUbx7QYDll/TgsjvZnHGuQufWzyCj+5RfrBN9NtzHh+5gijAWsSYTQAAAAAADpghaiq/qDm433BMSen0Wjp1Y6sN/1X4gUzKmBZMEIBiWG0aDLTPvqh4MIvMIfCaNbXyPr+ZFk3bfQkKRIhLX4+kfFSTDleUMUI6XUn7pbtZ8h7b37eWb6mAAA0WEGz0ON60vJ+h9GseK3UfpwJ6LXdtXuCy2cK/btio3Vsm+VYslvHtg2t7leGKYz23/v/Q/vqe4Jj26ev4iQ0AAAAAAAAAADQP9ObpPUJdY/b/qf1Nu4y3vC6+aQ2J4WjlTvl7HQr5nLSMSf0djLLPf43govd01/e33msdacmXETqYEW687bw2Fz47+zadFznczI456TCaOsVCaMBQ8HlctJm47Fn2bHOOcfZ53Xcu1+6J/wWhCXmD4TPZxn3h86rmZhanFMfuFNTPj6PFluvA6C14+8njST8Pu1M8Rwsqy08N8NRKs3xONI58fTWobnbbm25Ge/9iqjsYYTRgDWJMBoAAAAAAB1IilbNVu8NLh+NSorc0qfkViDgoD+g+XqKv242KdfDkY75OBxGixQlRj8GxQqfVANBg0oXwmhmeGHZ19MrDq7XKozmnFMpCgfwynU7gFfMdR53s34mLAd8xQxAZAm1AQDQ0K0wWqHPYbSkx7208VSg36znITP5TX2bgx0uTv+8wz52bi9K2Op+xWqJrcYw2o2z1wWXj7qiLlp3eZ9nAwAAAAAAAAAA1jLnnPSYXzfH/TtfJb/7bnvcezOMpq28+R7LXPFUaSTFG9ePOV4un+/9fJq4q5+z8o+OI6PSFU/r6zzWOne/c6TTzjXH/ef+OTywP3xhKq1b34VZJSCMBhxdjHCQf8crlhwPXXo/aTrhdOzPfq/1uSrzB8LLxxsX+5yYbrmNrnnkU9KtN7L63q8ADCM3NiE94sn2Crtul6/VurtTwmgYFlkvKtsq5IXU3MSUdPmvJa9kvf7TbO9uacF4HyX3RcCaRBgNAAAAAIAOlBKiVbO1cJAgFANIDKwZ27GU43AoYKEeDqON5SYWT1BbZbIEVMr1cHgh6fuznBUgWx496SSLYO1jX31OserBsSwhMiuMljXcUjG+nkn7AAAgScGFTziu+fDJF6EQqmQfH/TKaELEqd04E9Brc8bzh5nCxo63nRQDbg6IWcefpVw4dhZe14j+GtG1Vqww2pH7FauMtrrCaD+t/EQ/qXwvOPaQqcsyPQcCAAAAAAAAAADoBvfcP0wc9y/YIX+gEh7cc59UNv72yhtesYzbcpLc2z4pTc4kr7j15P5MqIk780K5N35EOu6UxQUnnyn3l9fLbT6h73NZ6/eQ2FsAACAASURBVNxbP2EPvv9P5H/83ZXL982GtzUx1aVZGUaKrdchjAYMjy3bzKHm46EocvrWH9pv77/mvV53700+X2X+YHj5kTBaj++/mriZY+T+4H2tV0xznwcgFfd775DOeLC9wnV/3939Ea3GsMj43jiXJ4zWTe6V10qPfqY57tOE0XbttMeO3ZZ1SgCOAoTRAAAAAADoQFIkarYaDhKUopUxgMQwmrEdy0LWMFo0kWn7/VKIjDBavDJoUDHiCKEIncX6HqwILxhhhMi1fpmlZMxnd/WehNt0Ix6RLdySFJuw4m4AACTJEjxNWt7vMFrkIvN4Imt4FOiH2MdmWHl9flPf5mEdf2Y7Pg8fB2c9tm1oFVy0om++ozRy931x7jpzbMf0VX2cCQAAAAAAAAAAwCKXy8n91hvsFe68TfqyESpKelMsYTQEuAddKveJO5NX2rqtL3NZzm1/vKIP3yp3w5yiv/+m3AMfOpB5rHVuZpN03g5z3H/8PSsX7t8TXrlVhK9TI6Ot18mFL0YIYPVJDActOx46Yb3T6Zvt1T/w1RZhtAPh5WONc8B7ff+13GW/2jpGM5riPg9AKm60KPdXnzLH/Qff2t0dJoQfgVUlYxgt1fE4UnOjJUWvfa/0q88Pr7BrZ+uN7DJeJxoZldZvaXdqAIYYYTQAAAAAADqQGEarhWNXoRhAUmzKChtYyvV5+UC8a76+L7j+WG51htGyBFSskFeWqJj1vVweXYsVG1to/QJ60ZhP0ve4O/EIO3QWYoXmFvdBGA0AkF3eha+oVfXhS1faYbT+n+yZ9hgBWA321/eq5mvBsZnCxi7swT7mbQ6IWeHApOdPy5nHtvX2wmit7leGIYy2UN+v/9p7Y3DsfqWzdOwobw4CAAAAAAAAAAADcuLpicP+1q+FBxLf8JpQC8Ga5qJIOuUse/yE0/o4m8D+R9Of84ceOeF+9titX1+5bN9seN2Jqe7Mx5IqjNbfiwgC6MDxCfc9kvytNy/5+LRj7HVvvi15V/Ph0+403rjg4Lr+htHcyKhUbHHe/kixP5MB1gg3NiHlcuHBhf2pt/PcS8Pnzb149zuPfLD5hCxTAwYoYxgtz7F2LzjrmGjXztY3nr07vPyYExZfCwCw5vCbDwAAAABAB3IupxEXPjFhtnpfcHkoLJUUm5qthqNZU7nwHyxjxTrgKyuWL8ThgMD4kIXRqoGggRUmyRYVC38Par6qahyOKDRL8/K5tQ/reyxJpVyWuFv4880abrFCapEi8+cdAIAkVtDMCjhZAaOCEVjrJevxO2t4FOiH3dVwnFmSZvKdh9ESL6Z3qB8W+1gHjDBalsjumHEc3O7vXqv7lWEIo31lz+fMoOSO6av6PBsAAAAAAAAAAIAmD3mUNL7OHr/hI+Hld+0ML998Im94RSL38CfZg5c/sX8TwaqU+PNx681LLj7sDx6QDoT/xq3JHoeFSinO3833/yKCANp0yaOlUsJ537d/f8mHT3qwfSLOR7/uddce+5yV+QPh5eP+0Hk1m0+059Erp5+XPE4YDei+E4xA9e675CvpzrN73APD90VP3fNPRz7oc2wRaFviSa4Bhf6fl74mbDEu8rtrp/xt/5N8231z4eVTGzqaEoDhxSvEAAAAAAB0yIxd1cKxq2Ju5fo5lzdDH9Z2ZgqbzDkt1Fde4WWhvi+47lg0aW5nkApGGC0UNCjXw3+0KUVZomJ2pKHSFJWzwgguxcss1j6s77GT06hL/0dg6/O1vj4WOzQ3Jpf1DwUAAMgOnlqhImu5tZ1esh6/s4ZHgX6wjivzrqCJXMIbUbroQFwxj5mTjrnTrls2gs+tmPcr0XBc8S/2sb44d11wbCo3o3MnL+7zjAAAAAAAAAAAAI5wpXG5N3zIXuHeO+Vv+KcVi/1dt4fXt95ECzQ85Xek7Y9fuiyXl3vNe+WOPXkwc8Lqcf5l0oMuNYf9215y5IP9xhvvJWliuntzCkkVRhuOv2kDkNzYpNz/80F7ha9cJ187cv7KNRc5jSa0D+//B7HuuC98Do4ZRjt0Xo3b2v9jKffKdyaPj6a/4DmAdNyr32OO+RdetiQGa3nsg6TXXH3kPSLOx3rrXa/QRZWbj6zU62MioFuyvt8pTxitJ7ZuM4f8s86Tv+U/7XHr+dnEVIeTAjCsCKMBAAAAANChYi4co6r6g8HlVkjNjFoZb/xfnxBGC91mPhBLk6QxY/6DliWgUonDV+srRun/gFoKBOsayk3bN8NoKV4/t/axp7Y7uLwYlTKFyKztZw23WCG1LF9PAACaZQmeSlI1Xj1hNOvYLWt4FOgHM6qc36DIdf5nQSf72LRxnJx07Jl0zL3cmPH8qBKXFft66u00tLpfccbXJ83JYf3wvYVv6Z7qruDYw6avUM5xlXAAAAAAAAAAADBY7sJHyr30L81x/+4/kI/jpQt3GWG0AcQ8MFxccUzujR+R+9Ati/9/y8fl/u3nclc9c9BTwyrgnJN75bvsFf713fK/+Nniv5PCaJM9joAUU/wNnTAaMFTcxY+We9nb7RW+ev3hf+Yip39/iX0+z76KdO2N4fNWyuG3KWi8cd5OQpCkZ44/Lfk+ayT9xcIBpHTKWfbYD78l3fq1lptwzumNT4i069lf1aduv1p3/+AE/c7sstDhOEEiDImsYbSR0d7MY61rEbv373+zPbjPCqMRaATWKsJoAAAAAAB0qJQxFlU04hpZo1Pr8wlhtPrKMNpCHA6jjecmM+23X7KE0ax4XJbwghU9kaRK0/btMELrF9CtfVixNSuWZ7F+trKG0ezQXPqvJwAAzfIufEUtKyRrBdPyUf/DP8Vc+Bgt6+Mr0A+z1XuCy2cSosrZJB3zNsJo4WNJKdvxZNKxfNI+LOb9yqGgmPWZWcfq/fbFueuCyyPldOn0lX2eDQAAAAAAAAAAgGHbGfbYrp3SnT9ZuuzeO4Orus2E0dCac07u+PvJ7XiC3EVXyvU6YoXhsvnE5DDCN25c/L/1xnup92G0sYnW6xBGA4bPKWebQ/7mzy5ddWPypv72pvB5K/sPhJePNc5537ItecM94KJI2nyCvcLY6nzPAjDMXHFMmjnGXuFrn0u9rWPq9+oRC1/Q+nh26UBpQi7PRTsxLDKG0fLh89vRGTcxJa1bb6/w9c+tDOc3WOFqnu8DaxZhNAAAAAAAOpQ1FmXFsUq5bBGsyfyUCkZkZCEQCluoh8NoY7kUJ1YMgBVGqwaCBt0IeSWF6cpN27fCCC7FC+hZf1a69bNVzhhu6UZoDgCAZlbQrBbXwsvNgFH/T/a0w6PZw0xAr83W7g0un8m3OIuyi6xjSSk5RrxyXfv5UdI+LNb9ypHnVOHj+dUQRruv+gt9Z3/46p3nTl6k6XzCCSQAAAAAAAAAAAD9dPYl0sioPb5r59KPrTe8Tvfv71sAjk5utChdcLk57q/9ffnvfV3aNxteIZeTSj0+vzbN9gmjAcPnjAvtsY+9S/FfvlTxG58r//G/1YnVOxI3dZ9xisyccWr4dLxn8R9TG1JMtAceerU9lnCfDKADl1xlDvnP/7O8T3n+mxWLJUaEYZIURg4pEEbrmYT7Jh08IO2+Kzxm3RdNcF8ErFWE0QAAAAAA6FDSG/ZDrABXlkjA4nbGNGbsu1zPEEaLVmcYrWCET5YHDWq+qqo/GFw3y9c0cjmNumJwbOnXs/0wWtbvcdYQmRlGqy+k/4OWuhOaAwCgmRU0s0JFrQNG/WOHR7OHmYBe213tbRgt6Zi3cbRpHUtGijL9Dic9z1oIPN9ppVVw0f7cBh9Gu2nuU/IKXx1v+3TCCaUAAAAAAAAAAAB95kaLci9/pznu//39Sxfw5nsAPeSe/yZ7cPYX8r/5UPk/vCY8PjEjlzWskFWx9TmZLhe+GCGA1cuNjErbzrBX+Ni7pE/9o/xfvFB68un6zW0/StzebfeuPHdlzrim53T90LHVgI6l3FN/Vzrx9JUD17xCLrQcQMfcs15lD/7o2/J//kL5er31hqxo9cRUexMDBoEw2qrhnv1qqWSfB+xf8+Tw+9yM14kcrxMBaxZhNAAAAAAAOlTMhUNnllIu/MKeFUwztxONmdtaWBbq8N5rPg6H0cZzqzOMlo/SBVQqdeMvu8oe8ioaIbLmuIPvJIyWMXSWef7G+nXVzBBEiBV6yRp2AwCgIW3wtKFqBoz6f7Kn9fhqxZ+AQZqthcNo6wvdCaOlUYnDl6QtReOZThpPOnYuG/tI0up+xZrboLNo1fig/mPPZ4JjW0dO1Gmls/o8IwAAAAAAAAAAgGTuqmdKo8a5cJ/9J/l48YIwPo6l+b3h9XjDK4AucPc/X3r4ryWvVA6fW6vJPkRASinO382Fz7kBsLq5Z7wy9brPvfE3Esdf/MGVF9ObM06dmY73SPmCNBK+WHivuWOOl/ubm+Re817pSS+WnvNauf/9GbnffsNA5gOsBe64U6Vn/b69wif+P+mr17fcjt+/JzwwwXMzDBHCaKuGO+E0uY98317h1pulb3955XIz0sh9EbBWEUYDAAAAAKBDpci+gkGIFUBrZzvWbcr1pWGrqj9ohkfGolUaRjMCKtV4WRgtIYqQNURmhb+aQ2HBK1LIDik0yxo6yxoi61Y8worNZZ0/AAAN1uO6dXxiLbe200vm8UE9HBIFBqXua9pbmw2OzeR7H0ZrBITL9fBxZ9agdM7lNeJGg2Pt/P61ul+xQsferzy5tJ++se/L2l8PvyFo+/Sje3+FcgAAAAAAAAAAgHb80uPssR9+a/H/83sk41ws3vAKoFvcOQ9t74aTM92dSIBLE0bL9/8iggC6YOtJqVc9+cCPE8e/e+fKZXPGNT2n6nuliemBnk/iJqflrnqmope8RdHz/lDuvO2c3wL0mHvABYnj/sZ/bb2ReSuM1odYLNAtWR9v8oTResnNbJJOOdscX37f5L2X9twXXpmAPrBmEUYDAAAAAKBDWeNVVlwqe8RrXGO5cBhtIV4aClioG1e0kzSWW51htELKgEpS8CtryMtavxIf+etxI/iwUusX0DOHzjLH8pLCaOnjEda6WX9GAQBoMIOnQxBGKxqPf83HB8BqMFe7zzxWnSls6so+rHjYosV9W+HidiK7JeP5Tpbob4N1v1JwjRNbjDBa5j11141z1wWXF6OSLpq6vM+zAQAAAAAAAAAASMc98GHmmL/hw/K33Srd/n17A7zhFUC3POjS9m7XjwhIKcXf0fP9P1cGQBfc70GpV91Qv09njIcvhihJd+yWvn671665xbNYqjWv+QPhdafiOSJGwFp01kVSLiGmetstrbexzwqj8dwMwyRjGK1AGK3nzk14PnbHsteF9s1KC/vC627Y0r05ARgqhNEAAAAAAOhQ1jf4W3GszBGvXMkMZ5XrS8NW87HxwqCk8dxkpv32ixU+6WUYzfreLP96hqR5+byYNXSWK2VaPym8liXeYq3bTswCAAAp/eN6q+VHAkb9Yz3+tRNmAnpptnqvOTaT39iVfaS5eqv1u5E1Epx0myzR34ZWwcXIPKIfXBrtjsqPtLPyg+DYResuVzHK9nwBAAAAAAAAAACgbx71VHvsw38l/6xz5V+ww16HN98D6BJ32oOkSx+T/YaTM92fzHKlFBc2JowGDCU3NiGNpTtH30l6zXFfSlznwjfFOu6Vsbb/eV0//IW93nR9D2E0YA1y6zdLj/8Ne4XvfV3xe/9I3iecC7d/Lryc+xQMkxTnuC5RGO3NPHCY+5Xn24P/+Wn5/3PtkY937bTX3bqtSzMCMGwIowEAAAAA0KFSLmPQzHhzf9ZQQCkaVykXDm0tLAsFLCSEvcaMbQxa2oBKxQgvjLhR5Vwu0z6t703zPrzi4DouxcsspS6GzkJGo5KcEXRIE3drsL6mhBcAAO0qZA6j1YLL8y7hinY9Yj0eV+Jy8kkiQJ/N1sJhtGI0lvk5Szsavw32sWQ7YbR0Ieg0qrEVRmvcr4SPo/0Aw2g3zl5njm2fvqqPMwEAAAAAAAAAAMjGTUxJZzy4/Q2M8+Z7AN3j3vBhud9+Y7Yb9SMCQhgNOKq51/5t6nWfVvqK3v/rrWMuX/qR9Jh3hM9ll6TpeI6IEbBGuZf+lXRJwjll73+zdP0/2OP794SXTxKtxhDJHEbr/wW71xq37Qzpma8yx/1f/a781z67+MGu28MrjYxKG7Z2f3IAhgJhNAAAAAAAOpQ5aGZECbKGAopRSWNR+KSI8rIw2nx9X3C9UVc0A2SDZgVUYsWq+/rhj8v1cHgh6/dFsr83lbh8+N9WFsEKki2dU7YIXdb1Ixdp1IiXlY1ARZZ1s84HAICGtMHThqo/mGk7vWQdo3nFOuArfZ4NYNtdDYfR1uc39mcCh0KB1rFkO5FdKwS9/PlOGtb9TeN+xTqaH1QYbX99r76276bg2Olj52jr6Al9nhEAAAAAAAAAAEBG7YbRxibl8v2/aBaAo5fLF+Se8Qq5v//v9DeanOndhBqKKc5zzXF/CAytjcemX3f/Xj3jYqdSitPjdt5nj03X9xCYBdYo55zcC96cuI7/9Aftwf1z4e0SW8QwyRpGI0LcF+4hj0oc95/60OI/7toZXmHziXIRaSRgreK3HwAAAACADmUPmoXXt6Jc9nZKGrNCAfWloYCFeL+xz9UbukoKnzRHDSpWeCHj11OyY2rN4YVOwghZYxDtxCOs21hfp+C6RmyunfkAACBlD6PV4uSAUT8lxVab46nAoM3WwmG0mUL3wmhpYsCVevj3op3Irn18nv7YtsG6vylEh674Z5wQ4/1gwmhf3fM5MxK5Yzrhyp4AAAAAAAAAAACrhDvt3PZuON2nC/8AWHuOPVkam0y1qpuY7vFkJI2va71OjlgDMLROOStdAFGS9s/JOadzO7hOnvOx1sV7pekN7W8EwHBrdaxz+/ftsf17wsv7cUwEdE3GMFphpDfTwFInn5kcfL79e5Ikv2d3eHzTcT2YFIBhQRgNAAAAAIAOJcUylosUacSNBseyBNZGXVGRy5lxgeUhtIV6OIw2nkt3gscgpA2jWVGELN+XBut70Bw98T4OruNc65dZIpfTqCumnk874TrrZyJtPCL2dR3wla7NBwAAyX5cr1phNF8Lbyfq/8meSbHV5TFaYJB2V+8JLp/Jb+rL/hsB4eaocLNiLntk1zy2beN3z7xfOXT/ZEff+h9Gi32sm+auD45N5zfogRMX9XlGAAAAAAAAAAAAbbj8idK69dlvt3Vb16cCAJLkRovS1c9Kt/JkHyIgkzOt18kTRgOGlSuOSVdek27ln/9YkvTbOzIGXZqsi/cqkpfbenLb2wAw3Foe69zzc8W/9xj5O29bObZ/LnwbwmgYJsYFck1RrjfzwBJuasPia0SWW29W/EfPlH76w/B4P56bAVi1CKMBAAAAANChLEGzYjQmZ7zQmiXk1QhUjRmhqoVloYB5I4w2Fk2k3me/FSL7yhvNEZWKEfzK8n1psL4HacILaV8+T4qrrFi3i59DpZ4ujNYcgVu57ewxCwAAJKlgBM1qgTBa7GPVFQ4YFRLCqb1STHj8S3rcBPptrnZvcPlMYWMX92If9TbCaNbvRTvh4pJx7Jw2+tus6g8Gl+fd4lXorDBa/7No0q3z39Q91buCY5dOXaGc42QcAAAAAAAAAACw+rnxdXLXfl46d7tUsM8FW4GYB4Aeci/6c2n741uv2I8ISJo3+BNGA4aae+lfSk/6X9LMMdJUwjk8P/yWfL2uZ10S6a+f3l4cbbq+Z/EfRGaBNc296M+lS66yV/ivz8i/4DL5hSPvMfJxLM3vDa8/MdXlGQI9lDWMlsv3Zh5Ywf3+u6XjT7VX+Ow/STf+S3hsIkVQGsBRizAaAAAAAAAdst6sH5IU1sgWWFvcTikKh9Eq8YJiHx/+eMEKo+VWbxitESgIqcVHIipWFCHpa22xomXNcQdvpBGskMJymQJ4bcQjrM8hbTwiab2i8fMGAEAreSNo1vyYfnhZIJbWaju9NOqKcsafU8px63gq0C+z1fuCy2fy3QujpTnitY/P24n+GiHoNn73rPuWxv2KHUaLg8t76ca564LLI+X0sOkr+jwbAAAAAAAAAACA9rmTHqDoHZ+R+/Tu9Lch5gGgh1w+L/fH/yhFLd5amyZa1qnJFG/wzxNrAIaZyxcUveStcv//HXIf/6ncy95ur/yNz0uSXnhZpA//VvY42nR8KIy25aR2pgrgKOHyebk3fDh5pd13SV/42JGP5/dK3riEaD+OiYBuIYy2arnRotxbP9HejScJNAJrGWE0AAAAAAA6ZL1ZP7huzl43aczap7VvL68DTTGvhTgcRhtf1WE0O3zSHDWo1MPhhSzflyO3saJiR8ILnYbRsgQh2gmjWbeppAyjJa1XaiM2BwCAlBBG87XAstUVRnPOmcHV5ngqMEgH4orm433BsfWF7oXR0rCOJ9sLoxnHtsZzgCTWfUvBjWTeVi/de/Bu3TL/9eDYeZOXaCrPle8AAAAAAAAAAMDwcfmCdPWz06180v17OxkAa57LF6Rii3NM00TLOlUck/ItzoVpNQ5gKDjn5KJIOuYEe6Uf/Pfhf15ySvYw2lR9bvEfmxP2AWBNcKNFaWtyJNF//xtHPtg/Z684QZAIwyTj4ycR4v465gRpNPv70lw/npsBWLUIowEAAAAA0KGCG1GU8im2FdVoNWatO5YQNltoinnN18ORhLFoOMNoVX/w8L/LVnghl/3FUivWUInL8oeugOOtK+GkvLJIlthZMde9eERz3C1JpW4HXtqJWQAAINmP63XVFPt4ybJQLK3Vdnqt0/Ao0Guz1XvNsZl898JoSTHgRkDYDhdnP5YcM+LRCymPbZtZ9y15t3hii3Ph53RWGLlXvjh3nbnPHdNX9XUuAAAAAAAAAAAA3eQe9ZTWK01MSRdf2fvJAMCZFyaP9yEC4pxrHWAjjAYcXR78cHPI/81r5d//Zvn9e3TCeqdL75dt09PxnsV/EA8BIEkPf3Ly+Mfepfj3HqP49c+Qf9Pz7PUmprs7L6CXUr6v67AcYbR+cvmCdPkTs9+QQCOwphFGAwAAAACgQ845laIWV447JCksNeqKqQNrpUPBrLGE/ZbrR2IBVjggKaw2aAU3Yo41Rw0qcTjklfZ7svQ24e+Pl9cBXzn8UUhSJGLJPjLEztqJR5hxt4TgWTMroJZ3eRUi+3sCAECSQkLQrOariR+n3U4vWY+vZSMABfTb7to95th0F8Nora6mF/t603HzUu1Ef4vGMX0lnreDxQHe+yVx5WaN4KL1mWXZT6cOxgf0lT2fDY4dO3KSTi2d2be5AAAAAAAAAAAAdN0FD5d7/pvs8akNcn/2L3Kj2S+ICQBZuZf/dfIK/QoLTbaIjRBrAI4qbrQknXqOOe7f+0fy/+sR8gv79YHnRTr72PTbnqrvkUZLciOjXZgpgGHnnvMaaccTklf6r89In/uo9K0v2euMEyTCECGMtuq5l7xFOm9HthsRaATWNMJoAAAAAAB0Qdo3+SeFrpxzieG0Jfs7tF5SZGsh3n/k3/V9wXXGc5Op9jcIeWe/wNwcTKkYIa9ilP0EuaSvfyM05zsMo6X9HhfciHIJXwOL9TNRjtOFW6zQXNp5AwAQku9SGC1pO71kPb5WUj6+Ar02W703uHxdblqFqF+/N948lpSkUhvH51YIuuZrZugspK6aOdYIMlvH89bxfy98fd+XNB+Hn7vtmLl68WrhAAAAAAAAAAAAQ8o5J3fNy+Wuv0fu7Z+Se8vH5d7yb4v/vfvLcv96h9wDHzboaQJYK7ZsSx6f6FMEpNWb/HODOVcGQO+4Rz4leYUff0f63Ed10ganb70+0nW/ky4FMB3vIRwC4DBXHFP0xo/IvehP299IaUIuTzgKQ4Qw2qrnJmfk3v4p6VdfkP5GrWLSAI5q3FMDAAAAANAFad/k3youVYxKS4Jm9v4Wt5NzeY26og74yop1FupHgmHz9fA2rdDAahC5nCJFihWvGGuOIJSN+EKpjc8tKTTXiDx0GkZLiuMtXa+97431M1Y2AnIr1wsHXtLOGwCAkOQw2tJgUVLsaFBhNPvxlTAaVofZWjiMNl3Y2NX9JJ0z4r0d2ZWkYpePz8vxgkaidFe4XX4/0yx/OBxnfXL9C6PdOHddcHkxGtOF67b3bR4AAAAAsnHOnSLpQkkPPvT/8yU1X5nmdu/9tja33emTkpO99zs73AYAAAAAdJUbXyedf9mgpwFgjXO5nPyWk6S7bl85ODkjl+/TOSqt3uRfGOnPPAD0z9ZtLVfx131A7jG/LuecHvGAdC8TT9X39C/qCGB4PPDS9m/LfQqGTsYwWpTrzTSQyDknXXC5/Mfele4GhF+BNS1dJhoAAAAAACRK+yb/YouAWimXdjtHAgHWbRohrNjXVTGiHeO5yeDy1aLgwid01Hz18L8r9fDn1uprHb5NUnhh8evZ6TuQ0gbP2pn/4vbDn0NSpGLpetbXkzAaAKB9hcQwWnXZxwkBowGF0ezHV8JoWB1mq+Ew2vp8d8NorU4aSYrxpo1JL72NfexcrqcL/0pSLa6aY3m3eB0pK3TcryzazvIPdUflR8Gxi9c9vO3nBwAAAAB6wzl3mXPuU865+yT9WNKHJb1c0g4tjaIBAAAAAABgtdrxhPDyi6/s3xwmZ5LHi5y7CRx1LnxE63W+/eXD/8zn0kVepuO51rFFAGvP6edJG49t77aE0TBskq7+u1wUyUXkdgbmgsvTP9fZfEJv5wJgVeOeGgAAAACALrBiGSvWaxE+S72d5jCaEQtohALK8YK88Xb+sdxEqv0NihU/aQRTvPcqG0GStJG5ZiNuVJHxckkjLOZ9HBx3Lt3LLMVcd35WzO0bP0NpwxF2GI0QAwCgfUlBs6o/uOTj5IDRYMJo1uMgYTSsFrO1cBhtptDtMFoSr0rdjvG2E9pNOia2ngeELL+fada4iXEGQwAAIABJREFUX3HGCTHWc6lu++LcJ82xHTNX9WUOAAAAADI5V9IVktYPeiIAAAAAAABoj3vay6RTz1m6cOs2ud94ff8m0SpiVGrvXFIAq5dbt14azXZe9t8/t3XoZbq+Rxpf1+60ABylXD4v9/J3SCPF7DeeILaIIZMljJbL924eaMmNr5N76V9JuVzyivlC+3FHAEcF7q0BAAAAAOiCtG/ybxWXSr2dprjWmBELWIgXQ1jz9f3mdsai1R5GC790UfOLwZSqP6hY9eA67YS8nHMqReOaj/etGGsVFnNK9wJ6O/G7LKx4xAFfUezrilzyi8blevdCcwAANCQFzRqP69bHS7czmD9r2OFRwmhYHXZX7wkun8l3N4yWdMzr5c1YYN7lVYhGMu9v1BXlFMlrZZy4HKcL/0rJ9ysF15iXEUYzwsjdtL+2V1/b96Xg2APGHqTNI8f1fA4AAAAAuuaApJ9JOrUH2/5PSU/NeJuf9WAeAAAAAAAARwW3YYt07Rekm2+Q//F35LadIV34CLnJmf5NotW+ipy7CRyN3PPfJP/2lyWu4w9U5EYXQ0ZXn+OkFhf3m473EDECEOQe9hjpA9+Uf8oZ2W44MdWbCQG9QhhtqLhffrZ05kPkr32V9NVPhVdav0Uuivo7MQCrCvfWAAAAAAB0QSmXNnaVfIJCO9Esa5uNUMBCQhhtPLfKw2jRiELds2p8UJJUNsILUuuvtaWYKwXDaJW4LGkx+BCS9uXzbkX0LKWE21XissZafM+tmEW78wEAQJLyUVIYrbbk46o/GN6GK8hl+YN1F1nHeo3jA2CQvPeard0bHFtf2NTXuVjH52mPgZdbDBePaSFe+ZymVbi42fL7mWaNcONg7l0W/ceeG8x42/bpq/o8GwAAAAAZVCXdIulrkm4+9P/vSHqYpM/3YH8V7/3OHmwXAAAAAABgzXJjE9KOJ8jteMJg9j85nZw6KhFGA45KW7e1XufuO6QTT5ckzYxJk0VpX8Vefao+J03cvzvzA3DUcceeIn/NK6R//Iv0NyK2iKFDGG3YuJPPkF78F/JWGO34XlyPDMAwIY0IAAAAAEAXpA2atYpLpQ0GNEe/xnLhkx4WDoUCQhEBSYoUtR0o6JdGpGC5RjTAinhJnYTFwl+TRmjOKw6Ou5Qvs6SP37UZdku4XVJIrtU67c4HAABJyjv7j8e1eGkMyAoYWccF/WAdMzWOD4BBmo/3mUHBmfzGvs3DqzeR3ZLxfCfL758VHZOO3D9Zx/NWGLlbYl/XTXuuD47N5DfqnIkLe7p/AAAAAG17v6R13vvzvPe/6b1/t/f+G94nPAEBAAAAAAAAlpucsceck0aK/ZsLgP45+2KpMJK4iv/E38nfd5ekxYsLjiWvrun6HiJGABK587Znu8HkVG8mAvRKlgtwR7nezQPZHHc/adNxwSF3wcP7PBkAqw1hNAAAAAAAuiB90Cx5vVIue2DNClY1QgEL9XAYrZQbl8vyou8AFIyISiOYUq7boS8roNCK9b2sxGVJ6jiLkPpnJeXPworbJWw/6evV0IuYBQAAOeXljKtwLQ8WWQGjQYbRrMfXxvEBMEiz1XvNsZnCpq7uy/o9XuRVNn4nOons2uHi1se2DVY4Tjpy32J9Zr0Oo90y/w3dV/1FcOzS6SuVc5x8AwAAAKxG3vtZ731l0PMAAAAAAADAkEsKo5UmVv15vgDa46Y2SE/+neSVPvQ2+SecpPj118gfqOjPnph8fzAdz8lNEkYDkODBj5Ae9Evp1ye2iGGT5dg5Z1/0G/3lcjm5X3/dyoGtJ0m//Oz+TwjAqsK9NQAAAAAAXdAqeHZ4vRaxq/TRrCNhgTEjALZQXwyjzdf3BcfHo8lU+xqkvAtf2qoRNrAiXk5OI260rX1a34NGaM5Ko0UuXX8+ffyuvTBa0u2sr1czK57WScwCAADnnPKuEIwTLV9mh9EG9ycNO5yaPswE9MpsLRxGi5TTulx3r9iYHEaTKoePmZfqJLJrHYc2nu+kYd2vSM3RxfDn1usw2o1z1wWX55TXw6Ye1dN9AwAAAAAAAAAAAAAGLCliVGjvPFgAw8H99hukU86Sf8Nzklf83D/Ln3CanvLs1+s5f2efxzJd3yNNdPdcIQBHF5fLSW/9hPR/3in/rS9JP/qO9Iuf2utzn4JhQxhtaLnHPlc65jj5Gz4q3Xen9IAHyz3xhXIbtgx6agAGjHtrAAAAAAC6oNil2FXawFpzWMAKBTRCXgvx/uC4FVRbTY5ECpZqhA3KRoykGJVSh8qWs74HjWCY952FEdIGxtL+LCxXiArKu0Iw/mB9vZpV4nJweScxCwAApMWwWSiMVvO1ZR+HA0YFI5jaD9bjciUuK/Z1RS7X5xkBR8xWw2G06fz6vv5senmV69axZHvHtpIdFs4SJlx+P9OQU/7w8wbzKtsdHv8n+cXBXfqf+W8Ex86ffKjW5bniJgAAAAAAAAAAAAAc1SZn7LHqgf7NA0DfOeekK54m/9Xrpc98OHnlGz6i0d/4o8RV1sV7pQnONQGQzI0Wpaf/ntzTf0+SFL/00dLXPx9emfsUDB3CaMPMXXSl3EVXDnoaAFaZ9t4hDAAAAAAAlkgbsWq1XtpgQHNcywyj1Q+F0epWGG0y1b4GKe/CLzQ3wgZWDKGT8IIVuWvsyyscRnApX0BPGxjrKB5hxlvmW97W/JqmjP8BAGBpFTxtqBphNOv2/ZD0OHggrvRxJsBKu2v3BJevL2zq/s5aXE3POpa04mZpjLUIQadRjVdGGaWlzzes4/neZdGkm+auM8e2z1zdwz0DAAAAAAAAAAAAAFaF6YS/7S/s6988AAyMO/281ivdeZv8wQN63IPCw2dVblFOsTSxrruTA3D023KSPUYYDcOmxTmuS+S4KDYADAPCaAAAAAAAdEHaMFqr2FWaYECkSAU3cvjjsdxEcL2FQ6GAeSOMNh6Fb7ea2AGVxbBBuQdhNOt7We5SGK3gRpRT6yuLlHLhAEQa1udfjsstb2t9TdP+jAMAYEkbRlv+8ZHbD+7KXEmPg9ZjJ9Avs9V7g8tn8hu7vq9WR7y9OD4vGmG0hXr6MJp5vxIduV+yw2hx6v1kcTA+oK/s+Vxw7PjRk3VK8f492S8AAACAoXaic+7vnHO3OOdmnXMHnXN3H/r4H5xzv+WcWz/oSQIAAAAAACCDDVsGPQMAg3bF01rHh7yXvnq9XnBZJOdWnsv+m3N/u/gPIkYAsjrmeHtscqp/8wC6IUMXTbnBnZcOAEiPe2sAAAAAALogzRv9c8qbQZAs2ylF43JNV7EYM0IBlXhBsa9rIQ6H0ayg2mrSHIBrVj0UNqjUux/xsr4HlUNRMSuMlvYVdOecSrkx7a/vbTGPUqrthVifv/X1aqj5qqqHonMr50MYDQDQmVaP6w12GC35OKqXkh4HK4TRMGCzNSOMVki4qnQPeO/N34dOjiXHjGBwlt89637Ful9qZh39d+pr+24yn6vtmL56yXM+AAAAADjk5EP/NTvm0H9nSrpG0tucc++R9Afe+/CTjg45546RlPVJ56m9mAsAAAAAAMCwc8717O/SAIaDW79ZuvYL8u94ufSNz0v1enA9/9on64pP3KmPPi3Wn/3tj/Wt0QfqAQe/r+fNvU8vmv2bxZUmiBgByMatm7GPRYgtYthkOe+SMBoADAXurQEAAAAA6IJSLkXQLDfW8s3taYJexdzSYFbJCAVIUjle0EJ9eMNoVgClETYoW+GFFN8Pi/U9KNfnF//hw3/2yRIuKEallmG0khG8S7V94/Mvx/OJt6vUywnzIYwGAOhM3oX/JLE8WGQGjKLWAaNeSQqWlmP78RPoh9mqEUbLb+jB3uxjXi9/OCa8XCfHktZtF+rJx7bNar4WXN58v+TMz637p6B773Xj7CeDY6VoXBeu2971fQIAAABYM8YlvVTS1c65X/Xe39KDfbxQ0ut7sF0AAAAAAAAAWJPcyWfIve3fJUnx40+Udt8dXvGGj+hXzr9MT9i5IzxOxAhAVusSzjMctc+dBVYlwmgAcNSJBj0BAAAAAACOBmkiVklBjSzbWR4GGEu4Tbk+r3kjjDYeDUEYLTICKvFiMKVihNE6CS8Ujds2Ig9WFsEOKazUzvc5C+u2VqjiyHj46ynZXxcAANJqFTxtqMbhMJp1+34ouBHljGvNVDLEmYBui31dc7X7gmMzhY1d31+rY96y8fuQ5rmQxQpBJx27Llf1B4PLm+9XnAv/2dQbYeRO7Kz8QD898JPg2CVTj9BINNr1fQIAAAAYajVJX5D0OkmPk3S+pNMknSfp8ZLeIukXy25zuqQbnHMn9W+aAAAAAAAAaMvTXhZe/msv6u88AKwO284wh/wPvyXtm7NvSxgNQFbnXxZeXhiRNp/Y16kAnSOMBgBHG8JoAAAAAAB0wWiKN/qnCUsVc9m3Y4UCJGkhntdCHA6jjeVWfxit4EaCyxsBlbIRQ+gsvBD+PpXjxciDVxwczxJGS/ez0P0wWuNzsFhfT8n+ugAAkFbaMNryj4/cfnB/gHbOmcdp5RbhUaCX9tRmFRvHp+vzm/o8GzvE20lk1zq2XWhxbNvMvl9pCqMZt/VmGrl9N8590hzbPv3oru8PAAAAwFB7naTjvPeXe+/f5L3/N+/9N733P/Le/7f3/uPe+1dIOknSn2rp9V22SPqYc1kujQ4AAAAAAIB+c1deE16+41f6PBMAq4G74mn24L+/T/5Fl4fHRkblRou9mRSAo5bbuFW6IHC/ctGVcmOr/z1HwBJZ/iyaJ4wGAMOAMBoAAAAAAF2QczmNuuQ/JFpv6M+6zoowWsJtyvV5LdSHN4xmBVSqh8IGVnihFNmxuFasaEPVH1Td1xKyCOlfQE8TGUvzs2CxPody3Q6fSclhtE5icwAASFIh6jSMFr59v1iPzZWEx0+g12Zr95pjM4WNXd9f0hGvlzd/HzqJ7FrH9gfismIfjsItZ92vLA0xhz+7bofR9tXm9I19Xw6OnTF2ro4ZObar+wMAAAAw3A7F0H6RYr2K9/7Vkl68bOh8SQnvomvLtZLOzvjf47s8BwAAAAAAgKOGO/VsuT98v1Q89Lf1sUm5l/1vuXN/abATAzAYVz1LKrVxLvz4VPfnAmBNcH/wPunsi48sOP8yude8Z2DzAdqWJYyWI4wGAMOAe2sAAAAAALqkmBvTgVrFHk8Rusq5vEbcqA76A+Y6y6MckcupGI0FIwTX7/5nVf3B4HbGouENozXCBuX6fHC8k4hXYmguXpCMMEKU4QX0Vj8LkSKNuNHU21vOCk+0CrdY4wU3opzjZSQAQGfM4Gk8HGE0MzxKGA0DtLsaDqONumKPjvftY966r5nPY9I8F7KUcuETPRshtjTB55qvBZfnm45xnfm5dTeM9uU9N5jz2TFzdVf3BQAAAGDt8d6/0zl3haTHNS1+oaQPdnEfv5DUMtbWzGV5EwIAAAAAAMAa5B71VOnyJ0o/+5F03KlyhZHWNwJwVHJRJP3RP8i/6ley3XCCMBqA9rgNW+TedaP8vXcufryRi3tiSBFGA4CjTjToCQAAAAAAcLRo9WZ/K1aVdTvFwHbGonAs4PsL3za3M56bTDWfQSq0CKNV4nJw3IonpJEURqvUF+S9FUZI/wJ60j6kxZ+BTt4kVDR+HlqFW8r18HjJ2B4AAFm0Cp4e+TgcDLKOC/rFOkZrFR4Femm2Fg6jTRc29v1N59axudT6+DdJ0rFo2jChFYtuvl+ywmjdzKLFvq4vzX0qOLY+v0lnj1/Qxb0BAAAAWMPevOzji51z0wOZCQAAAAAAAFJz+YLctjOIogGQjj81+20meBkYQGfcxmOJomHIZThvNsr1bhoAgK4hjAYAAAAAQJekiV2l2k6LgFpoP+2EwMZyE5lv02+tAirleD44XoxKbe8zFJ5rKMcL8kYaIUt2olsRPfP2xuffKhxhhV06+XoCANCQNoyWJmA0CNaxnhUWBfphthoOo83kN/Rkf1Y8TLKPzaVOw2gJx+d1e5/Nlt/PNCwJoxkhOe/jVPtI4zv7v6bdtXuCY780/WhFjhNtAAAAAHTFf0mabfo4J+nMAc0FAAAAAAAAAJDVCadL287IdpuJqd7MBQCAYZHlgsI5ztcEgGFAGA0AAAAAgC7pWhitje2M5yZTbbvByWksGv4wWiUuB8dLUfZQ3JHbthtGS/8yS6vvcSfhCEkqGp+/FT5rsMJp7YT3AABYLm0YLU3AaBCsY7lWj69AL80aka31hU292WHCOSNJkcC0z4VCkqLBrcK/DbW4FlxeiPp7v3Lj3CeDy/Mur4dOPbKvcwEAAABw9PKLhec7li3u0RNFAAAAAAAAAEC3OefkXnGtNDmT/kaT072bEAAAwyBTGC3fu3kAALqGMBoAAAAAAF3S6s3+aWNX7Wzn/mMPTLXthlNLZ/Y9AtCOghFAqfqqYh/rgBFGK0altveZc3kV3EhwrJIQRsuiVWisk3DE4vbDty/XF+S9PX8rNNfJ1xMAgAbrcb3ma8s+Xp1hNOvxlTAaBmm2em9w+Ux+Y59nkvy7UMy1fzyZdwXz+Lwcz6faRpr7FWdU37px/C9Jdx/8ub638K3g2PmTl2oyz1V7AQAAAHTV8hf8eaEfAAAAAAAAAIaIe+BD5f7x23Kv/4D0jFe2vsEE554AANY4wmgAcNQhjAYAAAAAQJdYsYyGtHGpVgG1UDTr0qlHaevIiam2P+qKeuzGp6dad9DyRryt5qs6EFfMSEGr8Fgr1vegXF+QjH1aIYWQVj8LnYbRrNvHqqvqD5q3s2IWnc4HAADJDpstf2xaHkprsMJq/WI9HpYJo2GAdtfCYbT1hU092V/SMa8VKSu4kY7DhqUofHxfrqcLo1nHwP0Mo900d705tmP66q7sAwAAAACaLC9mh59AAgAAAAAAAABWLTdzjNwjn6zot9/QOnw2ThgNALDGuQz5HMJoADAUuLcGAAAAAKBLWsWj0salWq0XCrBN5qf1shPfpK/v/ZJ2Vn6guo+Dt90yepzOm3iotowen2oug2YFFGpx1Yx4SekjdPbtx7S3PrdieSVekPdGGC3DlUVaxe+s8EM3tl+OFzQSjYbH6uGvaav5AgCQhvm47qtLPq4u+7jV7fvFOr6oxOU+zwRYVI0Pan99T3BsJr/8/e/dkRxGsyK7nR2bS4vh47312RXLF4wY23LL72calt6v9C6MdiCu6Ct7PhscO3H0VG0rntbxPgAAAACgwTm3UdIpyxbfOYi5AAAAAAAAAAC6ZOs26YffMofdpmP7NxcAAFajscn06xJGA4ChwL01AAAAAABd0jJ2FQiatbOeFU4bz01q+8xV2q6rUu1nGFgBlKqvmuEFqfOwWDE3JgXaCeV4wQwjJEUilms1v2Kus3hE0s9iJV7QlGbMseB8CKMBALogbRitFh8M3z4abBjNenwt19OFmYBum63dZ47NFHoTRktiRXa7cSxp/f4lxZKb1XwtuLzQdL9kh447D6PdvPeL5vOXHTNXZ4osAwAAAEAKT5XUfDn0uyXdOqC5AAAAAAAAAAC6oUUYTVu39WsmAACsSm5iKv0Zn4TRAGAoRK1XAQAAAAAAabQKo6UNArRar9V+jiaFhIBKUgShGPUmLFZJCKMpQxitVfis47Bbws9IUrzFijWkjfoBAJCkYITNlgeLrICRFVbrF+vxtRKX+zwTYNFs9R5zbCbf/zCadXzejecvY8bx8ULKMOHyAGND8/2KmUXrsIvmvdcX5z4ZHBuLJnTB5KWd7QAAAAAAmjjnNkt63bLF/+Z9p89uAAAAAAAAAAADteWk5PGtJ/dnHgAArFaTM+nXJYwGAEOBMBoAAAAAAF1SbBGPShsEaLXeWgqjWQGUmq+aEa+c8iq4kY72a32NywlhtChDGK1V+KzT7/FoVJQz5pMUb7FiFmmjfgAAJLEe16vLgkVWwMgKpvaLFQpNirUCvTRbuze4fDw3qZFotCf7tI4xJakchyNlrZ4npWFtI+3vX9UfDC5fGkYL/9nUDiOn85Py9/SzAzuDY5dMPaJn3ysAAAAAw805d3/n3GMz3maLpE9I2ty0+KCkN3dzbgAAAAAAAACA/nNbtyWv0GocAICj3cRU+nWjXO/mAQDoGjKWAAAAAAB0SbeCZq0iVGspUmUFVGLFWqjvC44VcyU5lz5SFtyG8TWu1BckK4yQYZ+9jt9FLlIxKgXjcVawYnEsHJZYSzE+AEDvmMHTeGmwyAqjWbfvF+v44KA/oLqvKef4kwv6ywqjrc9v6vNMFpXrVmS31PG2x4yw8ELdPrZtVvO14PI09yudhtFunPtkcLmT0/bpR3e0bQAAAACD5Zw7XuFzMLcs+zjvnNtmbGa/9z70BG+rpI87574j6R8k/Yv3/ofGPCYlPVvS67Q0iiZJb/Te/8TYNwAAAAAAAABgWJxxoT120gPkxib6NxcAAFajyZn0646Fz0sFAKwuvEsHAAAAAIAuKRlv1m9IGzQr5VpsJ9d5WGBYFBJCBfvqe4PLuxGOK+XC2yjHC/JWF03pw2ijUTFxvGjsP4tiNGaE0cLBCkmqGGNrKcYHAOgdM4y2LFhU9QeD6w06jJYUCq3EZY3nJvs4G0DaXb0nuHymsLGHe7WPee3Ibucnj1jHo0nR32ZWcLH5+YZ9PN9+GG1vbU7f3PeV4NiZ4+dp08jWtrcNAAAAYFX4kqSTUqx3nKTbjLH3S3pOwm3PkfRnkv7MObdH0ncl3Stpn6QJSSdIepDC54K+23v/hhTzAwAAAAAAAACsdmdeKJ19sfTdr64Yck9+8QAmBADAKjM5nX7diQzrAgAGhjAaAAAAAABdUoySg2Vpg2ZJ2ym4kYFHQfop6XPdV9sTXJ4ULUnLCi9U4gV5xcGxLGG0yOVUjEqqxOXgeDc+h1I0ptnA8ko9HKzw3qtSt+azdmJ8AIDeybvwnySWB4uWh9KO3H71htHK9QXCaOi72dp9weUz+d6F0ZxLCqOFI2WtnielMWbEo5Oiv82sMFo+RRjNdxBG+/KeT6uu8H3a9umr294uAAAAgDVrStLDUqw3L+l3vffv6fF8AAAAAAAAAAB94pyT3voJ+WtfLd18g7R3Vtr2ALnHPk/u6mcNenoAAAxehjCayxJRAwAMDGE0AAAAAAC6pGS8WV/KFjQrRfZ2uhHMGiZJX7P99XAYzYqaZWF9nRfDaGFZwmjS4jx7GkbLGI+o+oNmtKGY8LMNAEBaBTcSXN4cLPLemwGjwoDDaEnHGJWUcSagm2ar9wSX9zKMlsT6PUh6fpOWtY1yPRxjW64aHwwuz0dNYTQj+uZ9e2G0uq/rprlPBcc2FDbrrPHz2touAAAAgDXjVkl/ImmHpPMlpalO/0DS+yS9x3t/b++mBgAAAAAAAAAYBDc2Kffyvx70NAAAWJ0mMsTOsqwLABgYwmgAAAAAAHRJUiwjS+gqad1uRL+GSSGyAyj7jDBaN6Ji1td5MSrWXhhhuVI0pjndl2n/WRSj8HukrDCaFWmTpJKxLQAAsrCCp1V/JFgUqy5vPNamjcz2SjFnPx4SRsMgzNbC73GfKQwqjBY+nrSOS7Owo7/pwmg1Hw4AL71fMcJobR7/f2f/zZqrhY/3t08/WpHLtbVdAAAAAKuH935bD7d9t6TXSpJzLpJ0mqRTJR0naVpSUVJZ0qykXZJu9t6HC9oAAAAAAAAAAAAAcLQbm5QKI1I1fDHdJSZnej8fAEDHCKMBAAAAANAl3QqaFXMJ20kYOxolBVD21cJhtG5ExazvZaVeNsMIi+9LSi8xpNeF73MpCscjrHBLUlRirQX5AAC9kXfhP0k0B4uqvppw+8GG0fKuoIIbWRJya7DCo0CvlOvzZohsJj+YMJqlG89hrOPztL97NeO+pdB0v+KMMFq7YeQb5z5p7HNEl0w9oq1tAgAAAFibvPexpO8f+g8AAAAAAAAAAAAAsIxzTn7zidLPftR65cnp3k8IANCxbO/YBQAAAAAApoIbUaRccKwYlVJvJymwljR2NEoKoOyvh8No3YiKWfGGpHiYlVGwlHLhcJlkR82ysGJm5Xo4HmGFNRbns7Z+7gAAvWE9rtd8Vd4vhodq8eoNo0n2MZ0VHgV6ZXftHnNsfWFTz/Zrx8Ns3TiWtI6Pa76qatz6yn6hoKGU7n6lnSzaXQd+pu8vfDs4dsHkpZrIrWtjqwAAAAAAAAAAAAAAAAAAADAde3K69SYIowHAMMgPegIAAAAAABwtnHMq5cY0X9+3YixLrGvEjSpSpFjxijErdnW0KrgRc2xvbS64vBtfIyveEPqeHJEtEpEUyxvNENLLuv35eF/wZ3Suel/CfIodzwcAACtA5OUVq66c8qp5O4xWiAYfRitF49oXiLPuqc0GH1+BXrnrwM+Cy50iTeXX92y/7YTRunJ8nvB8anftnsOhsWJUUs6t/PNnzdeCt22+X4pc+HpS1fhg5t/vz899whzbPn1Vpm0BAAAAAAAAAAAAAAAAAAAgha3b0q03wQVuAWAYEEYDAAAAAKCLilE4jJYlBuCcUzEa00K8f8WYFew6WuUDUYOGA74SXN6Nr1EpGs98myhjJMKa56grKudymfe/Yvu58Ofwg4Xv6BU/embq7RSjkqIuzAcAgEJkB0+rvqqcSw6jJR0X9IsVHv3YPe/Tx+55X38nAwRM5We6cizZTaUuRH+Tjs//+LYXHf73qCvqzPHzdM2WF2ksNyFJqvu6vBE4toKNzW7ac71u2nN9xhmHnVQ8TdtKp3VlWwAAAAAAAAAAAAAAAAAAADjCHX8/+VYrRZE0fUw/pgMA6FD40ucAAAAAAKAtVuwqSxhNkkq57mxn2EUupyjjyxdWsKT328gaRgvHHYrG9z6rbkX01trPHACgd5LCZrV4MYhWTQyj2WG1funW4zTQKzP5jYOewgrFNqLDy6UNFx/wFX1z/1f0//78Tw/Oha74AAAgAElEQVQvSwouFprCaC7j8Xw7dkxf1fN9AAAAAAAAAAAAAAAAAAAArEnbH996nfN2yI1N9H4uAICOEUYDAAAAAKCLrIhU1kiVuZ01GOPIN8UK0ijluhBeaGMbWUMKVnytWyGybm2nW4E1AACSHtMb4aK0AaNB4XERq91MobdhtHbiYaVc5+Hi0agol+HPmj8sf1f3VX8hSar6g+Z6S++XehtGG89N6oLJS3u6DwAAAAAAAAAAAAAAAAAAgLXKHXuy3Ev/UnLGOaG5vNwr3tnfSQEA2pYf9AQAAAAAADiabCps0Y/Kt6xYvqGwOdN2Nha26OcHdgaWZ9vO0WBDYbN2Hbwj0/qdGnVFTeSmtL++J/Vt1hc2ZdrHppEtweXd+h5vKoS3n1U3vp4AAEjSiBs1xw74iqTkMFrWWGovrMVjMQyXLSPH93T7eVfQZG5K+1IeJxfciCZz0x3vN3KRNhY2657qrtS3ufvgz7WhcIxqvmau03y/siHj8XxWD516pArRSE/3AQAAAAAAAAAAAAAAAAAAsJa5J75QetgvS9/+D+muO+Tvvl0qTcid+0vShY+SGy0OeooAgJTSX1odAAAAAAC0dMH/Ze/O4+yu63vxvz5nlpyTCSQBEsImhB0RAUVQca1KXapWtO5XRa9LW5dbrVWrrVWrVm9rl9vFq7+6XrVqRVGLdUMEpSIugCAqsoY1SICQZLJM5vv7Y0IZJuecOTOZcyYz83w+HueR+X4+78/n8w7JfDmTmfM6ez5ip7H+0p8T9jhlavvssfM+g2VRHjB00rR7m6tO3ONhHdfu1b8iq+tH7vKZpZQ8eI9TO64/pH5Elg/sM6Uzjh16cBaVnf8xvdmf/XSsbhyZvfp3PdzhpD0fOQPdAEBSry1uOTe8fVOSZFvbYLTZf6+XB+1xakpavIMYzLKSWh6y56O6e0YpOWFJ58/Pj19ySgZrrUMRp2Kqz5M3j47dV0ZGOwtcPH7JQ7v2+V2vLc5jl/1OV/YGAAAAAAAAAAAA4F5l1cEppz0v5UVvSu2N/5zaq9+f8oinCkUDmGMEoy0gpZRGKeVhpZSXllLeUEp5aynlNaWU55RSjiilzMirPUopA6WUx5RSXlRKeVMp5Q9LKc8opRwyE/sDAADszu4/dGKeu/KVadSGkiRL+5bnVQe8NXsP7DulfU7a8xH53X1elHqtkWQs8Os1B/5F9uhfOuM97+6evPez88hlT7xPaEEzByw6JK896J2plZn5547TV5yRh+zx6NTS17busMYxedUBb53y/ov7luS1B73zv/9uLCr1PHWf5+eUPR8znXZ3Uit9ee1B78gBiw6Z1vpFpZ6n7fOCPGSP7oZrALBwLKrVW4YO/XeAUYtgtFpqqZX2/0/uhdWNo/KiVa/LUN8es90K3MeSvqV55QFvzr6DB3T9rGetfFlO2uOR6UvrsMKSWh645OQ8f9UfzNi5T9nnuXnE0tM6Dkm8J3Cx1X0lSQZq936NccTiY/PCVa/Okr49d63RCZb1751X7P+mLBvYe0b3BQAAAAAAAAAAAACA+aqzVw4wp5VSHpbkfyX53SSDbUpvLKX8a5K/r6pq3TTOWZHkHUmek2SvFjUXJPlAVVVfmOr+AAAAc8Wjlj8pj1h2Wu4cWZfl/ftkujnUp+19eh6319OzfuSOLOvfe9r7zHW10pfn7fuqPHPFGblt282pqp1rlvTvmWX9Tb8UnbaB2kDO2P+P8rzRV+U3W29tWrO0f/kuhdWtbhyZd67+YO4cuT179i9LX4chD51aObh/3nrI3+XOkXXZMLK+43W1Usu+g/vPeD8ALGy1UsuiWuO/Q9DGG54kGG2gtPun7d46Zelj8pA9H5Xbtt2cbaOtA5egVwZrg1kxsF/Pvl4YqA3kpfu/IZtHh1s+T957YEUafUMzem5f6cvzV/1BnrXyZff5uuD/u+n9Wbvtpp3q77nXbKu2ttxzYvjyw5Y+Lqfs+dgZ+/xeVFuUvQf2nbHwZgAAAAAAAAAAAAAAWAi8unUeK6X0J/m7JH+QpJNXwxyQ5M+TvLKU8pKqqv5zCmc9KcnHkqycpPThSR5eSvlUkldWVbWx0zMAAADmklrpy14DK3Z5n77Sl+UD+8xAR3PfYG1RDlh0SM/PrdcaObDevXNLKV3/M17Wv9eMB8cBwHQ0aoubBqNtniQYbWJ40WwbCxE9YLbbgFnV7efJrUz8umCP/qVNg9HuDVwcablXs3uLz28AAAAAAAAAAAAAAJhdgtHmqVJKSfKZJM9qMv2LJFckGU6yIslJSZaPm983yVmllKd3Eo5WSnlMki8lGRw3XCX5SZKrkyxLcmKS8a/yfkGSPUspv1tV1WiHvy0AAAAAAOawem1x0/F7Aoy2jbYKRvPtDKC5Rm2o6fhkgYvJ7he6CAAAAAAAAAAAAAAAJLXZboCu+Z/ZORTtvCTHVVV1TFVVp1dV9YKqqk5LsjLJS5PcNa52MMnHSylL2x1SSjkwyZm5byja95McW1XVSVVVPXvHGQcmeV2S8a8+eWqSv5zG7w0AAAAAgDmo0SIYbfP29gFG/TXhRUBz9Vqj6fjwJMFotdTSV/q61hcAAAAAAAAAAAAAADA9gtHmrz+dcH1eksdXVXXZxMKqqkaqqvpokscn2TJuamWSV01yzjuSLB93fcGOc66YcMaWqqr+IcmzJ6x/fSnl4EnOAAAAAABgHqj3NQ9GmyzAqL8MNh0HaNSGmo7fE7i4rdradL6/CFwEAAAAAAAAAAAAAIDdkWC0eaiUclySQyYMv7aqWryibIeqqn6U5MMThp/a5pwjkrx43NDWJC+pqmpzmzO+lOTj44YWJXl7u74AAAAAAJgfGrXmwWib/zsYbaTp/EDp71pPwNxW72s0HR+e5L4iGA0AAAAAAAAAAAAAAHZPgtHmp0MnXK+pquqSDteeNeH6iDa1z0/SN+76zKqqruzgjPdNuH52KaXeSXMAAAAAAMxd9Vr7AKNt1dam8wKMgFZaBy4OJ0lGWrxv0ID7CgAAAAAAAAAAAAAA7JYEo81PQxOub5jC2jUTrpe3qX3GhOuPdnJAVVVXJLlw3NBQktM6WQsAAAAAwNzVqE385+sxkwUYCUYDWqm3CEa7J3Cx5X2l5r4CAAAAAAAAAAAAAAC7I8Fo89MtE67rU1g7sXZds6JSyqokx48bGkny/Smcc+6E6ydNYS0AAAAAAHNQvdZoOj68fWOSZKQaaTovGA1opVUw2uYdwWjbRrc2nXdfAQAAAAAAAAAAAACA3ZNgtPnpoiRbxl0fU0pp/mqznT24yV7NPGDC9aVVVW3s8IwkuWDC9bFTWAsAAAAAwBzU6BtqOr55dDhJMlJtazovwAhopdEqGG37WDCawEUAAAAAAAAAAAAAAJhbBKPNQ1VV3Z3kE+OG6kleNtm6UkpfkldPGP54i/L7T7j+dccNjrlqkv0AAAAAAJhn6rXm7+ExPDr2vhvbqq1N5wcEGAEt1PuaB6NtqTZntNreMnDRfQUAAAAAAAAAAAAAAHZPgtHmrzcnuXbc9ftLKY9vVVxKGUjyoSQnjhs+J8kXWiw5fML19VPs77oJ13uXUpZPcQ8AAAAAAOaQRm2o6fjm0eEkaRlg1C/ACGihUWsejJaM3VvcVwAAAAAAAAAAAAAAYG7pn+0G6I6qqtaVUh6b5MyMhZ01kny9lPLvSf49yS+SDCfZJ8nDkrwyyVHjtvhhkmdVVVW1OGLZhOu1U+xvQyllc5L6uOGlSe6Yyj4AAAAAAMwd9Vqj6fiW0eGMVqMZGR1pOi/ACGil3iYYbXh0U7YJRgMAAAAAAAAAAAAAgDlFMNo8VlXVtaWUU5K8JMkrkjw4ybN3PFq5PckHkvzvqmrxSpExSyZcD0+jxeHcNxhtj2nscR+llJVJVkxx2WG7ei4AAAAAAJNr9A01Ha9SZcvo5oy0CjCqCTACmmu0CUbbPLqp9X1FMBoAAAAAAAAAAAAAAOyWBKPNf307HluSVElKm9o1Sf48yb9NEoqW7ByMtnkavQ0nWd5mz+n4gyRvn4F9AAAAAACYYfVao+Xc8OjGlgFGAwKMgBbqbYLRhre3DkZzXwEAAAAAAAAAAAAAgN1TbbYboHtKKacmuSLJvyQ5NZP/eR+U5KNJri+l/M8pHldNvcNprQEAAAAAYI5q1IZazm0eHc62amvTuX4BRkALA7WBlveIzaOb3FcAAAAAAAAAAAAAAGCOEYw2T5VSHpfkW0kOGTd8Y5I3JzkxybIkg0lWJXliko8nGdlRtyLJh0spHyqllBZHbJhw3ZhGmxPXTNwTAAAAAIB5pF5r/U/Jw6ObMlKNNJ0TYAS0U68tbjo+PLopI6PuKwAAAAAAAAAAAAAAMJf0z3YDzLxSyookn0lSHzf8lSQvrKpq/YTyW5N8PcnXSykfTPLVJHvvmHt5kquSvK/JMbtrMNo/J/n8FNccluSsGTgbAAAAAIA2Bspg+tKf7dk5qGjz6KaMVNuarusvvp0BtNaoNbJh+107jW8eHW5zXxGMBgAAAAAAAAAAAAAAuyOvJJqfXp9kxbjrXyR5dlVVm9stqqrqB6WU5yT51rjht5dSPlpV1doJ5RNfXbIiU1BKWZKdg9HunMoezezoc2Kvk/Wyq8cCAAAAANCBUkrqfY1s3H73TnPD21sHow2UwW63Bsxh9dripuPD2ze2vq/UBKMBAAAAAAAAAAAAAMDuqDbbDdAVvzfh+n2ThaLdo6qqbyc5f9xQI8lzm5ReOeH64M7ba1q/rqqqO6a4BwAAAAAAc0yjRYDR5tFN2dYiwKi/CDACWmsVjLZ5dDjbqq1N59xXAAAAAAAAAAAAAABg99Q/2w0ws0opQ0kOmzD87Slu860kjxx3fUqTmismXB8+xTMOnXD98ymuBwAAAABgDmoVYDQ8uikjgtGAaWj0tQ5cHKlGms65rwAAAAAL0tY7ko3X7zw+dL+kNphsW5809ut9XwAAAAAAAAAwjmC0+WdZk7FbprjHxPp9mtRcNuH6gaWUxVVVberwjFMn2Q8AAAAAgHmo0SIYbXPbYDTfzgBam17govsKAAAAsIBsvSu54PnJTV9LUrWvXXZ88sgvJHtMfJ9mAAAAAAAAAOiN2mw3wIy7s8nY0BT3WDLhesPEgqqqbk5y6bih/iSPmMIZj5lw/bUprAUAAAAAYI5qGWC0vXWA0UBtsJstAXPcdAIXB4r7CgAAALCA/PDlyU1nZ9JQtCS585Lk3CclVQe1AAAAAAAAANAFgtHmmaqqNiZZP2H4xClu8+AJ17e0qPvihOszOtm8lHJ0klPGDW1M8o3OWgMAAAAAYC5r9LUJMBptHmDUXwa62RIwx7UMXBzdlG0tgtHcVwAAAIAFY9v65IYvTW3N3Vcmt1/YnX4AAAAAAAAAYBKC0eancydcv6LThaWUVUmeNmH4/Bbln0qyfdz16aWUIzo45k0Trj9XVdXmDlsEAAAAAGAOE2AEzLRGi/vK5u2bMuK+AgAAACx0d1+ZtHhTirZu+PLM9wIAAAAAAAAAHRCMNj99dsL1c0opL5xsUSllUZJPJlkybnhDkq83q6+q6sokHx83NJjkY6WUepsznp7kJeOGtiZ5x2S9AQAAAAAwP7QKMBoe3ZjR+7wXx736S383WwLmuHpf68DF1sFo7isAAADAAnHNJ6e3bsNVM9sHAAAAAAAAAHRIMNr89G9JLhl3XZJ8opTy96WU/ZotKKU8NskPkjx+wtT7qqq6o81Zb08yfv7hSb5VSjl6wv6LSimvSfL5Cev/pqqq69rsDwAAAADAPFJvEYy2YeSulmv6y0C32gHmgUat0XR8c5tgtIHaYDdbAgAAANg9rPtJ8su/n97a6z83s70AAAAAAAAAQIe8Ffo8VFXVaCnlWUm+n2TljuGS5LVJXl1KuTTJ1UmGk+yV5MQkq5psdXaS901y1g2llNOTfD3JPa8gOTXJz0spP95xztIkD0qyYsLyryb5s6n97gAAAAAAmMsaLYLR7t7eOhhtoAgwAlqr14aajm8eHU6txftECVwEAAAAFoQrP7hr6++4OFl+wsz0AgAAAAAAAAAdEow2T1VV9etSyqOTfDLJSeOmaklO2PFouTzJh5P8r6qqtnVw1rmllGck+VjuDT8rO849qcWyzyR5eVVV2yfbHwAAAACA+aPe1zwYbcP2u1uuEWAEtNOoNZqOb6u2pqQ0nXNfAQAAABaEdRft2vrbLxKMBgAAAAAAAEDPCUabx6qq+kUp5WFJnp/kVUkemrR49ceY4SRnJvnHqqp+MMWzzi6lPCDJO5I8J8nyFqU/SPLXVVV9YSr7AwAAAAAwPzRqzYPRqoy2XNNffDsDaK1eG2o5V6VqOu6+AgAAAMxLN5yV3PDlZPjmseu7rmhde8L7k4v/pP1+P3xFcvl7kqX3T6oqGdmQ3Hb+2Nzx702OeGUy2OpHhgEAAAAAAABgevzE/zxXVdVIkk8k+UQpZWmSk5KsTrIsyaIkdye5I8llSX62o366Z61N8vullNclOTXJwUlWJdmY5MYkP62q6ppd+O0AAAAAADDH1VsEo7XTXwa60AkwXzT6GlNeM1AGu9AJAAAAwCy6/L3JJX/aWe2Bz0iO+eOk1JKfvjFpES6fJNl47dhjokveklz/ueTx5yUDS6bRMAAAAAAAAAA0JxhtAamq6q4k3+7BOVuTfKfb5wAAAAAAMPc0BKMBM6xRG5ryGvcVAAAAYF7Zdndy+bs7rz/pH5JSkmPekBz20uScJyTrfjz1c+/4aXL5XyYn/NXU1wIAAAAAAABAC7XZbgAAAAAAAFg46tMIRhuoDXahE2C+WFRrTHmNYDQAAABgXrn9wmRkY2e1tUVJY/97rweXJ4e/cvpn//x9yfAt018PAAAAAAAAABMIRgMAAAAAAHqm0Tf1YLT+0t+FToD5oq/0ZbAsmtIa9xUAAABgXth6V3L9F5ILX9H5mgN+JykTfoR8/yfvPDYVX9wvWfOlZNvd098DAAAAAAAAAHYQjAYAAAAAAPRMvdaY8pq+CDAC2mvUpha6OFAGu9QJAAAAQI+s/1XytROS7z0r2XhNZ2saByQPfOfO44sPSI5/z671c/4zkq8/JNl43a7tAwAAAAAAAMCC55VEAAAAAABAz/SV/gyWRdlabemovr8MpJTS5a6Aua7etzh3bb+j4/r+MtDFbgAAAAB64OI3JxuvbV+z9AHJ/k/a8fH9k/2fktRXNK+9/5uSlY9NLv6TZO13p9fT+l8ml749edjHprceAAAAAAAAACIYDQAAAAAA6LF6bXG2bu8sGG1AeBHQgUZt8ZTq+2vuLQAAAMAcNrotufErk9cd8NTkhPd0vu8+Jycnfyj56lHT7+2GLyVVlXjDCwAAAAAAAACmSTAaAAAAAADQU42+xVm//Y6OavsFowEdqE81GK34NikAAAAwTaPbk/VXJNvuSqrRGd68JKUv6R9K+hYlm9c2L9t8a1KNTL7dykdPvYUlhyWNA5LhG6e+Nhn77zJ8c7J4/+mtBwAAAAAAAGDB8xP/AAAAAABAT00lwEgwGtCJxhTuKyUlfb5NCgAAAEzH2vOSb00jbGw2rDg1WfX4qa+r9SUPeFty0e9P/+wvHZA8+P8kR716+nsAAAAAAAAAsGD5iX8AAAAAAKCnphJgJBgN6MRUAxdLKV3sBgAAAJiXtq1Pvv3Y2e5icqtOS1Y+Kjn69WMhZ9NxxKuSxv7JdZ9NNl6T1FclBzw16asna85MUiVb70xu/XbrPX78mmT5A8d6AQAAAAAAAIApEIwGAAAAAAD0VL3W6LhWMBrQiUbfVILRfIsUAAAAmIYbzkqq0dnuor29T05+6+szs9eBTxt7THTI8+79+MuHJxuuar3HtZ8SjAYAAAAAAADAlNVmuwEAAAAAAGBhadSGOq4dEIwGdKBem0owmvsKAAAAMA1X/stsdzC55SfuXuet/0Vv+gAAAAAAAABgXvF26AAAAAAAQE/V+xod1wowAjpRr3V+Xxkog13sBAAAAHZDo9uTn709ueYTSaklB56enPBXSZ+vkZvaeH1y0R8ma7+bjNw92910rvQnh7+it2ce8apkzReSVM3n156XfLq0Xr/02OSo1yWHv7wr7QEAAAAAAAAwN9VmuwEAAAAAAGBhadSGOq7trwlGAyY3pfuKwEUAAAAWmkvenFz+7mTTmmTjdckv/za56JWz3dXuafuW5JuPSG766twJRSt9yd4nJ4/9WrLXg3p79qrHJY/89+mvv+vy5IevSK7++Mz1BAAAAAAAAMCc1z/bDQAAAAAAAAtLvdbouFaAEdCJqd1XfIsUAACABaQaTa76yM7j1/y/5IT3J/UVve9pd3bjl8cC5KbqoNOTUz83vTNHtyafW9y+5og/TB78983nSknKLL5X9kGnJ0+5PPmPY6e/x6/+KTn0xTPXEwAAAAAAAABz2ix+FxwAAAAAAFiIGrWhjmsHBKMBHWj0dX5fEbgIAADAgrJ5bbJ13c7j1Uiy5gu972d3t+4n01u3+iVJrW96j/5GsuTw9vsvPab1+tkMRbvH0Oqktmj66++8OBndPnP9AAAAAAAAADCn7QbfCQcAAAAAABaSeq3Rca0AI6ATU7mvDNQGu9gJAAAA7GaqkdZza8/vXR+7s6pKrvpocv4zk5//1dTXDyxL9jtt13o45AWt52oDyf1+b9f277b+RnLQ6dNfP7otWX/FzPUDAAAAAAAAwJwmGA0AAAAAAOipRt9Qx7WC0YBONGpTua/0d7ETAAAA2M2MtglGu+7TybYNvetld/WTNyQXvjRZc+b01j/260nfol3r4di3JIe8cOfxgaXJo85K6it3bf9eOOkfk30fO/31Zx+XjGycuX4AAAAAAAAAmLP81D8AAAAAANBT9Vqj41oBRkAnpnZfEbgIAADAAlK1CUZLkjX/nhz6kp60slvavDb51f+ZvO6YP0n2f9K916WWDC5Plh479vGu6luUPPyTyYM+kGy+JamqpNqWLDs+qc2RfyNdtFfyuHOSTTckd/96bOw3FySXvLXzPa7//ML++wgAAAAAAABAEsFoAAAAAABAjzVqQx3XCjACOlGvLe641n0FAACABWXb3e3n1353YQdR3XbB5OFxSbLfbyf7Pqbr7aS+Yuwxly0+cOyRjIXHTSUYbaH/fQQAAAAAAAAgiWA0AAAAAACgx+q1Rse1A2Wwi50A88WiWj0lJVWqSWvdVwAAAFhQNq1pP7/h2p60sdsYHUlu/npyw1nJHT9J1v148jWL9k5WnNr93uajZcclQ6uTjdd0Vr+hwzoAAAAAAAAA5jXBaAAAAAAAQE81+oY6ru0vA13sBJgvaqWWRbVGNo9umrS2v/gWKQAAAAvIxusnmb+uN33sDkaGk+89K7np7M7X1BYlJ38o6VvUvb7ms1JLTvlQct4zkpENk9dvvLbrLQEAAAAAAACw+/NT/wAAAAAAQE8NlkUpKalSTVorwAjoVKO2uMNgNIGLAAAALCCb1kw+P7o9qfX1pp/ZdP1npxaKdvKHklWPT5as7l5PC8Gqxye/c0Vy8zeT4RuTxQcm29YnP37dzrWb1iSj25Kaf78BAAAAAAAAWMi8mggAAAAAAOipWqmlXmtkWIARMIPqtcUd1fWXwS53AgAAALuRTde3n69GkuGbkqGDetPPbLrxK53XHv/u5PCXd6+XhWbxgclhZ9x7fedlzeuq0bFwtCWH9qYvAAAAAAAAAHZLtdluAAAAAAAAWHg6DTAaqAkwAjrT6DgYzXtHAQAAsABsujG58ezkun+bvHbjtV1vZ9YN35ysObPz+n1/q3u9kAwd0npuwzU9awMAAAAAAACA3ZNgNAAAAAAAoOc6DUbrLwNd7gSYL+p9nQYuuq8AAACwANx6bvLdp3RWu/a7XW1lVo1uSy54YfLF/Ttfc8DTkr1P6V5PJANLkkUrms8JRgMAAAAAAABY8ASjAQAAAAAAPdfoOBitv8udAPNF5/cVwWgAAABwH5f+2Wx30D1X/E1y7ac6q73f7yUn/VPyyC8kpXS3L5Ilq5uPbxSMBgAAAAAAALDQeTURAAAAAADQc/U+AUbAzKrXGh3V9ZfBLncCAAAAc9Cmm5LF+892FzNvzZmd1z7ic93rg50NrU5u/+HO4xsEowEAAAAAAAAsdLXZbgAAAAAAAFh4GjXBaMDMqnd8X/HeUQAAALCTu3812x10x92/7KzumDd2tw92tmR18/E7f9bbPgAAdldVlYxsnO0uAAAAAABmhWA0AAAAAACg5+q1Rkd1A4LRgA51GrjovgIAAABNbLx2tjuYWWvPT84+Idm2fvLavsXJYS/rfk/c19Ahzcfvuiw565Dkl//Qy24AAHYf1WhyyduSL+6ffG5J8pUjk2s/PdtdAQAAAAD0lGA0AAAAAACg5xq1oY7q+gUYAR2q93UWjOa+AgAAwIJQ+pK+xn0fex7Tun7DtT1rres2XJuc++Tkzksmr131hOTx5yZ7HtXtrphoyerWcxuvS378uuSqj/auHwCA3cXP3plc/u5k8y1j13dfmVzwguSmr89uXwAAAAAAPdQ/2w0AAAAAAAALT73W6KhOgBHQqUat02C0wS53AgAAALuBQ5479pjo/Gcla76w8/jGa7veUs/8/L3JyIb2NU++LFl2bG/6obmhNsFo9/j1/00OO6P7vQAA7C6qKrnqQ83nrvpwsv9v97YfAAAAAIBZUpvtBgAAAAAAgIWn0TfUUZ1gNKBT9Y6D0bx3FAAAAAvY0CHNx+dLMNrm25JrPjF53eDy7vdCe0MHT15z56Vj4SAAAAvF5rXJ8M3N5275dm97AQAAAACYRX7qHwAAAAAA6Ll6rdFRnWA0oFONDoPRBtxXAAAAWMhaBaNtuKanbXTNlf+SbN88ed3gsu73Qnt9g0n/kmRkQ+ua7cPJ5luTxqre9QW74pZvJ7/+cLL+ipDAke0AACAASURBVPuOb7sr2XjdfceWHZ+c/MFkn4f2rj8Adn+3ntN6btudybYNycCS3vUDAAAAADBLarPdAAAAAAAAsPA0akMd1Q3UBBgBnal3GIwmcBEAAIAFbcnq5uPDNySj23rby0zbvjm58p86q+3r7I0b6LJHf2Xymiv+uvt9wEy44cvJd347uf6zyZ2X3vcxMRQtSe68JPnGw5K15/W+VwB2T5tuTC54fvuasx+QVKO96QcAAAAAYBYJRgMAAAAAAHquXuvshYcCjIBONfo6DEarDXa5EwAAANiNDR3SfLwaTdb9pKetzLhrP5VsXttZbSnd7YXOLH3A5DW/+Jvu9wEz4fL3JtX2qa8T/gfAPX76x5PXbLxOqCYAAAAAsCAIRgMAAAAAAHqu0TfUUZ1gNKBT9VpnwWgDpb/LnQAAAMBubMkhSVqEgl32zl52MrOqKvnFBzqrXfbA7vZC5xbtnQwsnbxuZFP3e4FdsX1rcvuF01t741dmthcA5qY7Lk6u+7fOam/7Xnd7AQAAAADYDfipfwAAAAAAoOfqtUZHdQOC0YAONToMRhO4CAAAwILWP5SseHhy2/d3nrvp7GTt95KVj+h9X7ti45rkh69M7vp5Z/X7P6m7/dC5UpKDnplc/ZH2dec+JVn5yGTVaXPv7yfz0y3fTm49J9l659j1yIYk1fT3++Grkr56sufRyfbhZMu6ZNVvJfs+dufakU1jwTmXvyfZeE0yuFey5zHJsuPGPt7vCcnKR02/FwB6b8M1yddOnFo9AAAAAMA8JxgNAAAAAADouUZtqKM6AUZApwbKYGrpy2i2t61zXwEAAGDBO+ZNyW1Paz536VuTx507Flg1F6z7SfKd3062/Kaz+hWnJsf+aXd7Ymoe+M5k3Y+SOy9tXbP23LHHZe9Kjn9PcuxbetUd7OziNyc/f9/M7vnr/7vz2OV/mdz/LckJ77l3bOudybcefd/Ply2/SW47f+xxz7rj3pEc9+cz2yMA3XHb95NvTjH4dcPV3ekFAAAAAGA3UpvtBgAAAAAAgIWnXmt0VCfACOhUKSWN2uJJ69xXAAAAWPAO+J1k74c2n1t7XnLLN3vbz6645G3tQ9EOembytGuSh38qefx5Y6FvA3v2rD06sPiA5LQfJL/1rc7qL/3zZPiW7vYErdx91cyHorXz8/cmG6659/qqj7QPEbzHZe9INt3Yvb4AmDkXv2nqazZeM3kNAAAAAMAcJxgNAAAAAADouYEymL70t62ppS+14lsZQOfqfZMHow0IRgMAAGChKyU54T2t5y/506SqetfPdI1uS275Rvuao1+fLDkkOeT5ycpHJrX2/ybJLOlvJKsel6x89OS11Uhy8yR/7tAtN/9n78+84cv3fnz95ztbU436PAGYC7bemdz2/amv27Rm7LkwAAAAAMA85rv7AAAAAABAz5VSUu9rZOP2u1vWCC8CpqpRa0xa0+/eAgAAAMm+j032fVxy67d3nlv34+SGLyYHnd77vjo1Mpxc95mk2t66Zu+HJise3rue2HWrnpCs/e7kddf9W3LI85Kaf+chyfYtye0XJrXBJCUZ3ZLsfXLSV98xvzVZd1Gycc2un3XLN6dWv+z45M5Ldu3Mn/5xUt937OPbf9D5unU/Sg47Y9fOBqC77rys/fxJ/5T86A93Hq9Gk43XJ3sc1p2+AAAAAAB2A4LRAAAAAACAWdGoLW4bjCa8CJiqem1o0hr3FgAAANjh+Hcn32gSjJYkl7wtOeDpSa2vtz114vYfJd99SrJ5bfu6kz/Ym36YOYe/PLn2k8n6X7avu/lrydnHJY/5WrJkdW96Y/d0x8XJuU9Ohm++73h9VfKYs8fC0c59UrLxut73tuTw5NFfTn5wRnLrOdPfpxpJLnje1Ndd+c/JsuOSI141/bMB6J7f/CD51iNbz9//LcmhL24ejJYkt35HMBoAAAAAMK/VZrsBAAAAAABgYarXFred768JLwKmpl5rTFojGA0AAAB22OeU5MCnN59bf0Vy3ad7208nqtHk+8+ZPBTtaVcly4/vTU/MnPrK5AkXJCf+TXLwJEFQ63+Z/FDg04JWVcn3n7tzKFqSbL5lbO6/XtybULSlxyYHPWvscfBzkxP/d3LaBcnQ/cYC/E7+v8nyB913TW0wOeiZycpHd6+vi35/8qBBAHpvdHvyvWe3rzn+3Un/UFLft/n8D18+830BAAAAAOxG+me7AQAAAAAAYGFqTBaMJrwImKLJ7yv9KaX0qBsAAFg4ytgT7TcmqY8b/kRVVdfu4r6rk/yPcUObqqr6613ZE5jgge9KbvhykmrnuUvfntzvOUnfYM/bamndT5INV7ev2fuUZMmhvemHmbdor+SY1499vM/Dkx+/pnXtLd9MtqwbW8PCc9dl7UO/7v5V73o5+o+Sw17WfK5vMDn8FWOPZrZvST5bbz43E677XHLcn3VvfwCm7vYLk01rWs/v96Tknu9nDa1ONt/avM7zIAAAAABgHhOMBgAAAAAAzIq6YDRghtX73FcAAGCWPD/JX+XeZKUzdzUULUmqqrqmlHJcktPvGSulXF1V1Zm7ujeww7LjkoOfl1z36Z3nNl6TXP2vyRG/3/u+mhndnqw9d/K6vU/peiv0yD4PnaSgSu7+dbLo5J60QxdVVbJ5bbJo72TbXcn2zZOvWfPF7vfVqb134e9g36LkIf+SXNSle+3dV3ZnXwCmb/0v2s/vM+757NKjk9t/0Lxuw1WTB6ONjiTVSNLXxRBOAAAAAIAuEIwGAAAAAADMisYkAUYDxbcxgKlpCFwEAICeK6XUkrzznsskv0ry4hk84iVJjk9y+I7rdycRjAYz6YHvSK7/bFJt33nusnclq1+c9Lf/mrurRkeSn74xufojybb17Wv7h5IjXtmbvui+vR6crHx0sva7rWu+cUpy+q1JfWXv+mJmXfWR5NI/S4Zvmu1OpmfVE8ZCJnfFoS9Nrv1Uctv3Zqan8a79ZPLwT8z8vgBM3ej25OI3Jb/4m9Y1g8uTQ8+49/qYNyZXf6x57c/+InnMf7Q4ayT58euSa/9fsn1Lsv8Tk4d+LBlcNs3mAQAAAAB6qzbbDQAAAAAAAAtTfdIAo8EedQLMF5PfVwSjAQBAFzw+yeok1Y7HW6qq2jRTm1dVtTHJm8cNHVlK+a2Z2h9IssfhyWEvaz43fHNy5T/3tp+JfvYXyS//bvJQtAN/N3n8ecnS+/ekLXqglLGwj6P+V/u67z6tN/0w8276WnLhy3obilYbSOr77vpj6bHJ0a9PHnXWrvfUNzi2z+Gvuu94s3MXrdh5/arT2u+//spd7xGAXXfZu9qHoiXJEy5Ihu5373W757Y3nZ3c/M3mcz/9k7Hn8dvWJ6NbkhvOSs5/5tR7BgAAAACYJf2z3QAAAAAAALAwNQQYATNssvvKgPsKAAB0wwvHffzjqqq+ONMHVFV1Zinlx0kevGPoBUnOmelzYEF7wJ8lV398LDRhosvfmxz+imRgz973VVXJVf86ed2Rr01O+vvu90Pv9Q8lD/7b5O4rk5v+o3nN7Rcmd16WLHtAb3tj13Xy+T3TDvq95NRP9f7cySzaKzn5X8Ye03Hj2cl3n9J87ppPJMe/a/q9ATAzrv5I+/mj/ihZevTO4/s/eSwErdWe+z3hvmNVlVz/bzvX3npOMnxL0ljVWb8AAAAAALOoNtsNAAAAAAAAC1N90mA07+8CTM3k9xXBaAAA0AVPHPdxN9NN7tm7JHlyF8+BhWnxgckRf9B8buu65IoP9Lafe2z5TbL5lsnrBGLNf8uOaz9/58960wcz69bv9P7M+Xq/WHZs67m7fH4AzLqtdySb1rSvaXUvb/c8qNlzoK13JMM3N6+//vPtewAAAAAA2E0IRgMAAAAAAGZFQ4ARMMMafe4rAADQS6WUg5PsM27oq108bvzeK0spB3XxLFiYjn1L0r+k+dxl70juuLh3vYxuTy5/b/LFVZPX9g8l93tW93tidq1+UVLa/Oj7Bc9PfvjKZPPa3vXE1Gy4NvmvlyRfPTo5a/XYY+u63vZQ+pNDnt/bM3tl6ODWczeclVSjvesFgJ3dck77+f4lyUHPbD53yP9ove6uy5Oq6ryPanvntQAAAAAAs0gwGgAAAAAAMCvqkwQYDQgwAqaoLnARAAB67fgdv1ZJrqqq6sZuHVRV1Q1Jfj1u6IRunQULVn1FcvQftZ7/2onJltt708sPX5Fc8qeTB/nscWTyW+ckg8t70xezZ+kxyaPOal/z6w8l33hYMrKxNz3RueFbx/5srvl4sv6XycZrxx69tPh+yWP/s32A2Fz3oL9tPfej1/auDwDua/jm5Httgnz3OCJ53DnJ4LLm88uOTe7/5tbrb/nmhIEpBKUBAAAAAOym+me7AQAAAAAAYGFqTBpgNNijToD5YvL7imA0AACYYSvGfXxTD867KcnhOz5e2YPzYOE5+g3Jr/4x2XpH8/lrP50c9Zru9jB8y1h4UjulP/ndNUljVXd7YfdywO8kR7567O9oKxuuTq7/QnLoi3rXF5O75hPJ5lumvu4Rn0+WHT95Xf/ipBoZ+7j0JyObdp5ffMDUz59r9jqp9dyV/5Q88B3Jor171w8AY65u89x2YM/kqb+afI8jX5P8/K+az132rmS/0+69rrZPrT8AAAAAgN2QYDQAAAAAAGBW1CcLMKr5NgYwNfVao+38gGA0AACYacvHfTyNtJMpG3/Gsh6cBwvP4NLk/m9KLn5z8/nf/Ff3g9Fuv2jyMIf9nyQUbaHa44jJa37zX4LRdje/+a/prVv5qKQuC7Vjexzefn7dT5L9ntCbXgC4V7v/D654RGd7tHvuu+W2+16PjnS2JwAAAADAbqw22w0AAAAAAAALU2OyYDQBRsAUNWpDbef7a+4rAAAwwwbHfdyLn0ccf8aiHpwHC9ORbYLPrvtMctPXZ/7M7VuSqz6SXPiK5LynTV5/v9+b+R6YGw46ffKaX38w+Ux/ctm7k613dL8n7mv85/MFLxp73Pa9qe+z8jFC0aaqsSpZ8cjW87/8h6SqetcPwEK36Ybk5/87ufHLrWs6fV5baklfizcIWv/LZP2v7r2uBKMBAAAAAHOfYDQAAAAAAGBW1CcJRhsQjAZMUb3VC0J2ELgIAAAzbtO4j1f04LzxZ2xqWQXsmv7FyVGvaz1/7hOTS/9i5s7bvjn5zhOTC1+WXPXhyesPPSM5+Lkzdz5zy+IDkwe+a/K6anty6duSrxyZDN/S/b4YM/Hz+dpPjj223Da1fYZWJyd/sDs9zncnf6j13E1fTX7yht71ArCQ3fXz5D8fklz8J61ragPJIS/ofM9HfL713FePSm6/aOxjwWgAAAAAwDwgGA0AAAAAAJgVjb72wWj9ZbBHnQDzRX8ZyECbe4dgNAAAmHHjk2YO7sF548+4tQfnwcJ1wO+0n7/83cnwDH0arjkzWXvu5HW1geQpVySn/OvYxyxcx76189otv0muFLDVM51+Pt/j2Lclp3xk7PGwTyYP/WjyuO8kT7k82fOorrU5ry09OjnwGa3nf/m3yYare9cPwEJ1+XuSzZOEsz7u3Kk9r93nYe3nL3nb2K+j7YLRqs7PAwAAAACYRYLRAAAAAACAWVGvNdrO95f+HnUCzCft7i0DgtEAAGCmXbXj15Lk4FLK4d06qJRyWJJDmpwNdMOSQ9vPVyPJrefMzFk3/Wdndcf+2VjgTykzcy5zVylJfWXn9Vd/tHu9cF83f31q9Ue8MjnsjLHH6hcmh74k2fcxSX/77x8wiaX3bz9/8zd60wfAQnZzB89xJ3vOPdHg8mRgaev5284f+7VqF4wGAAAAADA3CEYDAAAAAABmRV/pz2BZ1HK+X4ARMA2N2lDLOfcVAACYcZck2Zqk2nH9tC6e9bvjPt6W5OIungUMrU72OLJ9zZX/lIxs2rVztqxLrv1kZ7X7P2nXzmJ+OfgFndduur57fXCvajRZ84XO65c+IGkc0L1+FrL9nth+/uqPJSPDPWkFYEHZekdyw5eTm76WbLm9fe3yE5LGqqntX0r758TbN4/9OioYDQAAAACY+wSjAQAAAAAAs6ZeW9xybkCAETAN9Vqj5ZxgNAAAmFlVVW1N8t0kZcfjT0oprdOKp2nHnm/MWABbleS8HWcD3VJKcuJfJ7XWb2yQ276f/PteyfpfTe+Mm7+ZnHVIZ7WrX5zs9eDpncP8dPQfJUsO67z+yg92rxfGQhLPe0YysrGz+r56cuL7x+41zLwVpyYHP7f1/O0XJl87Idlwde96Apjvbvl28qWDkvOenpz75Pa1fYuTE943vXOOfVubySqpqqQSjAYAAAAAzH2C0QAAAAAAgFnT6GsdjCbACJgO9xUAAOi5z+z4tUqyIsn7u3DGXyVZmbHwtST5dBfOACY68KnJEy9qXzO6JfnRq6e+9+i25L9emIzc3bqmvio58rXJI89MHvpRAUrc19BByWk/SE76x2Tfx+be/0W0cNHvJ5tv60lrC9KVH0xu/HLr+f2elBx6xtjjge9KfvtHyf5P6l1/C00pycM/1T488O5fJT/+o971BDCfjW5LvvfszgJCj3tH8sQfJfudNr2zlh2bPLzdl8RVMioYDQAAAACY+/pnuwEAAAAAAGDhqtcEGAEzq919ZcB9BQAAuuHTSd6dZFXGUmleVUq5saqq98zE5qWUNyf5w4wFr5Ukt0YwGvTOsuOSB30g+cnrW9fc8s1k6x3J4PLO9117frJ5bfuax30nWXp053uy8NT3SY78w7HH1juTf5/k7+CNX0kOe2lvelto1nyh/fyDPuDzuddKLTnmDclFf9C65qb/SEY2Jf2t/00VgA6sPT/Zum7yuqHVyXF/vuvnDd2v9Vw1mlSC0QAAAACAuU8wGgAAAAAAMGsagtGAGSZwEQAAequqqq2llLck+VjuDS97VynlgUl+v6qqO6azbyllWZJ/TvKccftWSf60qqqtM9E70KF9Tp285pZvJUsfkCxZnfTV7x0f3ZZsWZc09h0LaRi+JRndOhZQ1U59ZbLHYbvWNwvL4LJkz2OS9Ve0rrn5G8mhZySjW5IN17TeZ+tdGftfTpLFByYDe8x4u/PGtg3JpjXJby5oXePzefbs8/D289X2sc+FZcf2ph+A+WrNmZ3VrZjkvtyxWuspwWgAAAAAwDwhGA0AAAAAAJg19Vqj5dxATYARMHVtAxfdVwAAoCuqqvpEKeUZSZ6ee0PMfi/J40spH0ny4aqqruxkr1LK4UlekeSMJHvl3kC0KslXqqr62Mz/DoC29n5IsvzE5I6ftq753rPHfq0tSg57WfLgv0su+8vkF3+TjGyc+plH/3Hi63im6v5vSn7wktbz13927DEVpS858OnJQz8mIG28bRuSH5yR3PDFsXCtdnw+z57lxyf7PTG5+T9b15z9gOTBf58c9dre9QWwUB31upnZp5TWc+c8LjnyNa3nq9GZ6QEAAAAAoMsEowEAAAAAALOmURtqOddfvFAKmLp6u2A09xUAAOim/5HknCQn5d5wtL2SvCHJG0opNyf5YZIrkty545EkS5MsS3JMkpOT7L9j/J5Xet+z14+TvLDrvwtgZ6UkT/h+8rnWX3P/t9EtyZX/PBaWNHzz9M576EeTQ18yvbUsbIe+eCy87Pxnztye1fZkzZlJrf7/s3ff4XFddf7H32ekkVXcbcklbrHTnR7SExISUigJoZelZhd2YYEsS1nI0kLgt7CFXcrCshD6AqEEUoFU0kmB9B7HvUlx72rn98fISI7vHc2MZkYa+/16nvvo6nzPPeer2BnZ8tzPhZP/r3zr1rr73gdLfzn4vPkXwyEfrXw/Svfi38BjX4BHL02f86eLoGUOzDi/am1J0l5nv7/LBQ6XRSa91HFH7kjT21WmHiRJkiRJkiSpsgxGkyRJkiRJkiRJw6axrim1ZoCRpFI01aXfpJ31dUWSJEmqmBjj5hDCmcD3gVeTCzSD/oCz6cCr+o40YcD5wOuvBN4RY9xctoYlFac+/ed4iUoNRZt/saFoGpqZr4Hj/hfufU951136S+j6FmRHl3fdWtS9BZb8vLC5h36qsr1ocHWj4PDPweo/QMft6fMW/sBgNEmqpNlvKN9aIU8w2mBid/n6kCRJkiRJkqQKGsJPQiVJkiRJkiRJkoamKdOSWjMYTVIpGjPpwWi+rkiSJEmVFWPcFGN8LfBhYBu5ULM44KBvLOngBXMDsB34WIzx1THGjdX6OiSl2Pcdld9j/OGV30N7vvFHlH/N3k7Y/Gz5161FmxZA747B5405AOoaK9+PCjPY6+uGx6rThyTtiXo7B58zbn759htKMFqvwWiSJEmSJEmSakP9cDcgSZIkSZIkSZL2Xo2ZptRa1gAjSSVoMhhNkiRJGnYxxv8MIfwQ+AfgfcCEgeWUy8KA83XAN4CvxBifr0yXkoo270JY+IPKrT+qFfY5v3Lra+8x6VgYfxisf6S86/72qN3HRk3afSzTAJOOg8O/AOPLGIIynLatggc+Bh23wZbFhV0z768r25OKM+9CePabEHuT6xufgmVXw4zzqtuXJO0Jutbnr8+4ABrbClpq2faFXP38T1iy/Vm62T3ELBsamFs3lfNGtTBlx5bie40Go0mSJEmSJEmqDQajSZIkSZIkSZKkYdOUaUmtGWAkqRT5Ahd9XZEkSZKqJ8a4BvhUCOFzwPHAacDJwD7ARGBnksxaYA2wArgTuBW4J8bYWfWmJeXX9mI4+Wdw55vKu27IwMTj4MTvQ3363+ulgoUAL/k93P1OWHV9ZffasSZ5fNmVsPoP8PKHoWVWZXuotJ7tcMPJsPm5wuaPmgz7vxcO/khl+1JxJh4Np/4GbssTQHnb+XD6dTD9ZdXrS5L2BJ3r8tdP/FFBy7R3ruQ/lnyCHXF73nl/7l7DsweewsefuJXxXfnn7sZgNEmSJEmSJEk1wmA0SZIkSZIkSZI0bAwwklRujZnm1FrW1xVJkiSp6mKMXcAdfYekWjf7jbmjexv07oCeHfC7Y2Db8tLWO/abMOetkB1d3j6lpmlwxu+h465cqFea5lnQ2wnbV5W/h64N8Nz34LDPlH/talp2ZWGhaOPmw5k354LRQqbyfal4M86D1z4Pv5qcPueprxiMJknF6lyfv17gn3XvWP/7QUPRdtqYbeTB8dM4vWNhQfP/otdgNEmSJEmSJEm1wX9xlCRJkiRJkiRJw6apriW1ZoCRpFI01aUHoxm4KEmSJElSmdQ3QcN4aJoCYw8sfZ3pLzcUTZU1bn7+kK6xB8L8iyu3/5p7K7d2tTx/T2HzWk+FxjZD0Ua6hom5I82a+6rXiyTtKfKFBB92ScHLLNr+dFHbLm0eV9R8AKLBaJIkSZIkSZJqQ/1wNyBJkiRJkiRJkvZejZmm1JoBRpJK0ZgxGE2SJEmSpKqa/UZYfXPx1006AVpmlb8faaCGcTDtZbDi2uT67Dfm6n/+EMSe8u/fcSfcdsHu443TYMb5MP1l5d+z3Bb9qLB5s99Y2T5UHiHkfq2e+WZyvXMtdG02tFKSCtW9DbatTK/PflPBS7V35lknaetSwkh7DUaTJEmSJEmSVBt8HJMkSZIkSZIkSRo24+onJI5nyNBYlx5uJElpRteNJZPyz6Cj68ZWuRtJkiRJkvYCc98Fcy8s7pq6Zjjxh5XpR3qh4/4Hxh+2+/i8d8O+74Dm6XDijyHTUP69uzbAsit3P579H/jDy+Hxfyv/nuW08Eew4/nB5x3+eWg7rfL9qDyO+AI05wmm3LK4er1IUq3bsii9dvBHYewBBS2zvXcbG3vWFbV1d6auqPkAxK7ir5EkSZIkSZKkYVA/3A1IkiRJkiRJkqS916TsFKY1zGRl59Jdxuc1HUxjpmmYupJUy0ZlGjmg+TCe3PrQLuNt2elMbpgyTF1JkiRJkrQHy2ThhMvgsE/D2gcgdvfXenZA73bIjoXYC91bYNwhMPFFkPFtzKqS5hlw7gOw/mHYvABCPUw8Blpm9s+Z8ybY5+Ww5j4Ysx+0zIbt7XBFAT9POuar0LMdHvxY8b09+jnY/72QHV38tZXW2wMPXZxe3+c82O89MOk4aGyrXl8auoYJcN4zcPmo5PqWxTB+fnV7kqRatf7h9Nrhlxa8TEfnytTa3MaDeG77k7uNd4XkBwXl1ds9+BxJkiRJkiRJGgF8R4EkSZIkSZIkSRpW75j2D3x92efY3LMBgAn1k3nr1PcPc1eSatmbpvwdX1v2GdZ0tQPQnBnNhdM/PMxdSZIkSZK0h2uZnTukkShTBxOPyh1psmNh6pn9nze2wfGXwT1/nX/tue8qPRitezOsuWfXfUeKTU/D1mXp9YM/Bm2nVK8flVddQy40MOnXeOvi6vcjSbUo9sLjX0yuNc+AupQAygTtnSsSx+tDPXObkoPRujMlBKNFg9EkSZIkSZIk1QaD0SRJkiRJkiRJ0rCa1TiPS/b9Bgu2PUEm1LFf0yE0ZAp/k7gkvVBbwzQ+OeerLNz2FJ1xBwc0H0Zjpmm425IkSZIkSVKtmf5yCHUQe5LrU14C2dG5Y9LxuZCzYq28fmQGo21emF7LjoNJx1WvF1VGy+zkYLTl18L+761+P5JUa5b+CtY9mFxrO72opdq7ViaOT85OTf238+5QQjBar8FokiRJkiRJkmpDCT8BlSRJkiRJkiRJKq+muhYOHf0iDmk5ylA0SWUxKtPIQS1HcPjo4wxFkyRJkiRJUmmapsLhn0+uNUyEI77Y//lR/54LDCvWE/8KT329tP4qafNz6bVjvwF1DdXrRZXRPDt5fMW18NCnqtuLJNWa3h54+NPp9YP+oajlOjpXJI63NUynPmQTa92ZuqL2ACAajCZJkiRJkiSpNtQPdwOSJEmSJEmSJEmSJEmSJEmSJI1I8z8ObafB6ptgxxrIZKFlDuxzHrTM7J/Xdgq87EFYfg1sfnb37ZH24AAAIABJREFUdVbdABseT97jzxfBzFdD8z4V+RJKsmVh8njDBJjzlur2ospoSQlGA3js87nfkxOPrl4/klRLll8NG59Mrs18DUw8pqjl2jtXJo63ZqeRTQtGC5mi9gAMRpMkSZIkSZJUM2oqGC2EcHPfaQTeHGNsL3GdKcBPd64VYzyzHP1JkiRJkiRJkiRJkiRJkiRJkvYwrSfmjsGMngMHvj+59uDF6cFosReWXQkHvK/kFstuc0ow2j7nV7cPVU6+YDSApVcYjCZJaVbdkFIIcNjnil6uvWtF4nhbw3R6Y09irauUYLReg9EkSZIkSZIk1YYSfgI6rE4HTuv72DiEdRr71th5SJIkSZIkSZIkSZIkSZIkSZJUGW2n5q8v/ims/TP0bK9OP4PZ/Fzy+Oi51e1DlTPY78nNC6rThyTVorTXyJmvhfHzi1pqa89mNvdsTKy1ZadRH7KJte5MCbcFRoPRJEmSJEmSJNWGWgtGAwjD3YAkSZIkSZIkSZIkSZIkSZIkSQWbejZMOj693nEH/O4Y+MV4eOyLEGP1enuhGGH9Q8m10ftWtxdVzrhDcgE+aRb/DLa3V68fSaolK3+fPD7puKKXau9cmVprbcgTjBbqit6L3q7ir5EkSZIkSZKkYVCLwWiSJEmSJEmSJEmSJEmSJEmSJNWOTB2cedPg83p3wEOfgGVXVr6nNM98M73WYjDaHuXkn8GYA9Lrd721er1IUq1YeUN6rYQA0Y6uFYnj2dDA+PpJZDMpwWiZEm4LjN3FXyNJkiRJkiRJw2BvDUarH3DuT3QlSZIkSZIkSZIkSZIkSZIkSZVV3wInfL+wuYt+XNFWSt67hMAXjWCZejj2v9Prq26Abauq148k1YIFl6XXRs8tern2zpWJ463ZqWRChvqQEowWSrgtsLez+GskSZIkSZIkaRjsrcFokwecbxm2LiRJkiRJkiRJkiRJkiRJkiRJe48JRxU2b8Pjle0jn23JAS0ANE2rXh+qjnGH5a9vfKo6fUhSrdj8XHptzAFFL5cajNYwHSA1GK0rU8JtgVtXFH+NJEmSJEmSJA2DvTUY7cV9HyPgT3QlSZIkSZIkSZIkSZIkSZIkSZU34XCYfOLg8zY+ATeeBluXVb6ngXq7Ycui5Nr4IyDsrbcg7MGapsDM16bXtyyuXi+SNNJ1boC19yXXQgayo4tesqMr+da2toZcGGlaMFpvyNCb2Edd+mZbFua+10uSJEmSJEnSCFfL/yoZi5kcQsiGEGaFEP4G+OcBpUfK25YkSZIkSZIkSZIkSZIkSZIkSSlOvxZmvR7qx+Sf134bXH8S9GyvTl8AT301vXbiD6vXh6or369tWlCeJO1tYoQbT02vn3ZdScu2d65MHG/LTgcgmxKMBtCdFIJ22rX5w9Ge/lpR/UmSJEmSJEnScBhxwWghhJ60Y+A0YFG+uQnXbgcWAt8Cxg5Y66oqfnmSJEmSJEmSJEmSJEmSJGkQIYRjQgivCyGcF0LYb7j7kSSprBomwCk/h9etg1ctyj9361JYVsW3vD/1X+m10XOr14eqq74ZZlyQXDMYTZJy1j0A6x9Jr489oOglN/dsZGvv5sRaW0MuGK0+XzBaJuHWwOnnwOvWp2/66KVF9ShJkiRJkiRJw2HEBaORCz1LOwqdN9gR+9Z4Evhl5b4USZIkSZIkSZIkSZIkSZL2XiGExhDC3AFH3SDzzw8hLALuBS4HfgM8FUK4I4RwSBValiSpejJ10DwLGibmn7fgsur0A9C1MXk81EN2dPX6UPW1zEke37K4qm1I0oi19v70Wl0zNM8sesn2zhWptbaGaUD+YLSukHJrYHY0NO2TXOtcDzvWFtyjJEmSJEmSJA2H+uFuIEVk9yC0cgrA/cAbY4xdFdxHkiRJkiRJkiRJkiRJkqS92YeBz/WdLwPmpE0MIbwB+AnJD1M9CbgnhHB6jPFPFehTkqThEQLMfjM889/pc1ZdDz8J0DABOtf1j9c1Q8/W3PmUM5IWh/GHwry/yX1Ms+L3sORyWPcgdG1InjPxRYN+KapxacFoa+6Bm86E+tHQdioc8H6oaxzaXjHCc9+FlddD41SYdyFMOGJoa0pSpW1emF6b9XrIFH+bXnvnysTxUaGRsXUTAMjmCUbrzqQEowG0ngRLfpFQiLDydzDnLcW0KkmSJEmSJElVNRKD0W4jF4yW5LS+j5Hc0yC3F7hmBHYA64EngFtijLcPpUlJkiRJkiRJkiRJkiRJkjSoC8iFnEXgshhj4vsDQwgTgG8Bmb65Ax+wuvOaFuCKEMKBMcZC3z8oSdLId+S/5A9G22lgKBr0h6IBrL45+ZrVN8GC78IZN8Lk43avP/ttuPc9g+994g8Gn6PaNnpO8nj3lv7fX8uvguVXwxk3Q6au9L3u/VtY8O3+zxd8B864HlpPLn1NSaq0x7+YXjvmP0tasqNrReJ4a8M0Qsj9lbg+XzBayPNafML3UoLRgLv+Cma9oaQwN0mSJEmSJEmqhhH308sY4+lptRBCL/1vcHpjjHFJVZqSJEmSJEmSJEmSJEmSJElFCSE0AUfS/76/a/JM/wAwjv5AtOXAFUA38Bpgdt+8GcAHgX+tQMuSJA2P7BiYdi6s/F1l1u/eBE98CU791a7jvd3wyGcHvz7TAGP2q0hrGkFa5hQ2r/02WHU9TH9ZaftsXrhrKBrkQv4e+xc4Pd8fFyVpGG14Ir128MegYUJJy7Z3rkwcb2uY9pfzfMFoXZlM+uL1LTD3nfDc95PrK34LM84roEtJkiRJkiRJqr48P/0cscLgUyRJkiRJkiRJkiRJkiRJ0jA7DKgj976/LTHGP+eZ+1b6Q9GeAg6NMV4UY/xw3zr39c0LwDsr1rEkScNl7jsru/7qW3Yf2/QMbFsx+LUtcyDU4q0HKkqhwWiQ/PupUMt+kzy+4lqIMbkmScOt/Q/ptdFzSl+2M/n7cGt2+l/O6zPpwWjdg31/nnJmem0or+WSJEmSJEmSVGH1w91AkS4ZcL5+2LqQJEmSJEmSJEmSJEmSJEmD2bfvYwQeT5sUQjgI2K9vXgQ+HWPcsLMeY9wcQvgA8Me+oQNDCDNjjEsr07YkScNg2tnk8j8rFAzVuQ4e+iSEAbcQbFlY2LUzXlWZnjSyNIyDttOg/dbB524u8PdOkhW/Ta/t6IDGttLXlqRKWfun9Nr0V5a0ZIyRjq6VibW2hml/Oc+GIQSjTX95em3Lc/mvlSRJkiRJkqRhVFPBaDHGSwafJUmSJEmSJEmSJEmSJEmSRoApA86T7/bOObXvYwA2Ab9+4YQY470hhGXAjL6hwwGD0SRJe46GCXDsN+G+v6vcHo99ofhrJhwJB324/L1oZDr6y3DLubmAsnyW/hJ6eyBTV979Ny8yGE3SyLP+MVhwWXq9ZWZJy27q2cD23m2Jtbbs9L+cZ6gjEIgJ4andg70Oj5oILfsmh6EuuxJ6uyFTU7cXSpIkSZIkSdpLDPJYCEmSJEmSJEmSJEmSJEmSpJI0DzjflGfeyX0fI3BTjLE7Zd6jA85nDaUxSZJGpP3/Fl7+CBzwwdLDoeZ/EkIZAk4O/TSc+is46w5omjL4fO0ZJh6d+z14wvdzv5dmXJA+d/VNpe3RszW9lhTcI0nD7cF/Sq/N/+eSl23vXJFaa2uY9pfzEAL1IZs4rysUcGvg4Zek11ZcN/j1kiRJkiRJkjQMDEaTJEmSJEmSJEmSJEmSJEmVEAacJ9/FnXPSgPPb88xbM+B8bEkdSZI00o0/FF70FTh/UWnXH3EptMweWg/7vj0XojLzNVDfMrS1VHuapsDcd+R+Lx34wfR5y35T2vqbF+WpGYwmaYTp2Q4rf5teb5lT8tIdXSsTxxszzYyuG7fLWH1K6Gl3poBbA1v2Ta+V+louSZIkSZIkSRVmMJokSZIkSZIkSZIkSZIkSaqETQPOpyRNCCFMBfYbMHRXnvUG3gkeUmdJkrQnqG+CSScUd83+78t9nHL60PZuG+L12nNMfFF6bcFlsP353cc3L4KNT0GMu9d6dsC2Felrrvxd8nWSNFy2LIbYm15vO63kpVd3Jr8etmWnEcKuf+WtD8lZ492hgFsDJx6dXlv6a+jtGXwNSZIkSZIkSaqymg5GCyG8JIRwaQjhmhDCvSGEp0IIzxV5LBjur0OSJEmSJEmSJEmSJEmSpD3Q8r6PATgsZc7LB5zvAP6cZ73xA863DKEvSZJqw2GfhkxyEMpuRrXCgR/MnR/4IWiYWNqe4w+DWa8v7VrtebJjIDs2udbbCVe0wj3vht4u2LEGbjgFrtoXrjkIrjsMtizd9ZoNjwF5gs/ab81dt3lRub4CSSpdjHDve9Lrs94IY/cvefmOtGC0hum7jWVDQ+Lc7kzd4BvVN0PTPsm1rvVw5UxYc//g60iSJEmSJElSFdUPPmXkCSGcA3yVXZ8SWerTH32ckCRJkiRJkiRJkiRJkiRJ5ffwgPOJIYRzYoy/f8Gcd/V9jMC9McauPOvNHXC+qhwNSpI0ok1/GZx5Kyz8AWx6JhcqtX11rjZ6Low5AOoaYfQ82P+9MGZerjZ+Ppx9Nzz7LVj3IMSewfeqa4LJJ8KBF0F2dOW+JtWe4y+DO/KE5S34Dow7BNpvh447+8c3PJa77pw/9o/d9VeD77fhMbjzzXDO3aX3LEnlsPJ30H5bev3knwxp+faulYnjScFo9SE5KLUrZArb7Nhvwm3nJ9e2rYRbXwEXLCs8kFWSJEmSJEmSKqzmgtFCCB8FvrjzU/qDzUoJOCs1TE2SJEmSJEmSJEmSJEmSJOURY1wQQniG3ENQA/CNEMJLY4wLAUIIHwZOHnDJlWlrhRBGs+vDVBdUoGVJkkae1hNzR7HGHgBH/0f5+9HeZ/S+g89Z8N1ceN8LrbkHti6D5hkQI2x8srA91/wRNi8sbG9JqpRFP02vtZ4KhYaSJYgx0tGZHIzWmp2221h9SL4FsDtTYA+j5+avb2+HVTfB9HMLW0+SJEmSJEmSKqymgtFCCOcAX+r7NPYdO8PNtgLrgXxPi5QkSZIkSZIkSZIkSZIkSdXzHXLv+4vAvsCTIYSHgDZgJv3vA9wO/DjPOqfT/37BbuCxCvUrSZKkgcYeBHXN0LM1fc6GR9Nrq2+F2W+Aro3F7bvxqfzBaDFCCOl1SRqqjU+k1yYeM6SlN3SvpTPuSKy1NUzfbaw+ZBPndhcazjZmHmTH5n8t3vikwWiSJEmSJEmSRozSH00xPL7Y93HnG6GWAe8H5sQYR8cYZ8QY9y32GLavRpIkSZIkSZIkSZIkSZKkPdtXgCf7ziOQBY4BZtEfdBaBL8cYO/Ks8+oBcx+KMeUOckmSJJVXfQvMu7D06+9+K/ysAX41ubjrHv9i8viin8K18+Hno+Hmc2DzotJ7k6Q0z3wL1t6fXp/3N0Navr1rRWqtrWHabmPZTEPi3IKD0eoaYb/3DNLUbYWtJUmSJEmSJElVUDPBaCGEecAR5N7UBHAPcGiM8RsxxiXD15kkSZIkSZIkSZIkSZIkSUoSY+wEziEXjrYzCC3Q/17AAFwBfCZtjRDCaOC1A665qSLNSpIkKdnR/wXzL84F61RL+62w4re7ji2/Fu56C2x4HHq2wqrr4YZToGd79fqStOdb+CO47+/S64dfCuPnD2mL9s6VieMtmTG01I3Zbbw+1CfO78rUFb7pkV+CQ1P/6g3Lfg09nYWvJ0mSJEmSJEkVVDPBaMCJfR93viHq7THGTcPYjyRJkiRJkiRJkiRJkiRJGkSMcSlwJPBe4LfA48AT5ALRXhdjfH2MsTfPEu8ExpJ7/2AArq1ow5IkSdpVpg6O+AK8YQtkGqq37zP/s+vnz35r9znblsPya6rTj6S9wzPfzF+f89Yhb9HeuSJxvLVhWuJ4fcgmjneHIm4NDBk4/LNw+OfT56y4rvD1JEmSJEmSJKmCaikYra3vYwQeiDE+M5zNSJIkSZIkSZIkSZIkSZKkwsQYu2KM34oxviLGeGjf8boY4xUFXH4ZMGHnEWO8o7LdSpIkKVHIwNiDqrffugd3/Xz51cnzFlxW+V4k7R1i3P21Z6D60dA8Y8jbdHStTBxvKzYYLVPCrYHjDkmv5fvaJUmSJEmSJKmKaikYLQw4f3bYupAkSZIkSZIkSZIkSZIkSVUTY9wWY9yw8xjufiRJkvZq+76tvOvNe3d6besSuONNsOxquP+i9Hmrri9vT5L2XlsWQs+29PrsN0GmfsjbtHeuSBxvy05PHE8NRgsl3Bo47dz02ubnil9PkiRJkiRJkiqgloLRlg84rxu2LiRJkiRJkiRJkiRJkiRJkiRJkvZGB/4DzH5z+dY7/FI44gvp9SWXw23nw9NfTZ8Te6FnR/l6krR36u2Bq+al1yefBEf/59C3ib10dK1KrLU2TEscz6YEo3VlSrjFrr4J2k5Prm1ZWPx6kiRJkiRJklQBtRSM9tiA85nD1oUkSZIkSZIkSZIkSZIkSZIkSdLeKFMPJ/1f+dZrGA8HXjT0dZZdOfQ1JO3dVt2Qv37WHZAdPeRt1nU/T3fsSqy1NUxPHK9PCUbrDiXeGjjr9cnjGx6D7q2lrSlJkiRJkiRJZVQzwWgxxkeAR4EAHBNCmDDMLUmSJEmSJEmSJEmSJEmSpBKFEGaEEF4cQrgghPC2EMLbh7snSZIkFSAEGH/E0Nepa4S6UVDfAtmxQ1ur/bah9yNp75bvdWT8EbnXvjLo6FyZWmvLTkscTw1Gy5R4a+DoucnjnevgmW+UtqYkSZIkSZIklVH9cDdQpP8AvgfUAR8GPjm87UiSJEmSJEmSJEmSJEmSpEKFEGYDHwLOB2YnTPlhwjWnAi/p+3RdjPFrletQkiRJBZlxAax/aGhrZMf1nzfPhA2Plb7WM/8Nm56GcYf2j9U1wKTjYPorc+eSlE/H7em1ma/Je+nWns08vPlelu9YTCTmnbtqx9LE8TF142iqa0mspQajhRKD0VpPyYVT9mzfvfbAR2HSCdB2SmlrS5IkSZIkSVIZ1FQwWozxByGEVwKvBT4WQrgzxvjb4e5LkiRJkiRJkiRJkiRJkiSlCyFkgEuBj5J7OGpImJZ29/jzwGd31kMI18UYF1SgTUmSJBXqoItg9c35g4QG0zC+//y4b8MNJw2tp1U35I4XmnImnHYV1DcPbX1Je67n/wgdd6TXD/xgamlNVztfXfoZOrpWDqmFtobpqbVspszBaNnRsN974an/TK7feCocfxnMu7C09SVJkiRJkiRpiEr86eewegdwFblQtytDCJ8LIYwf5BpJkiRJkiRJkiRJkiRJkjQMQghZ4HfAx0l+oGtaIFquGOMTwC30h6m9pawNSpIkqXgNE+CMG+GMm+Cof4d9zhvaepNeVJ6+kqy+CRb/tHLrS6p9D3w0vXbMV3YNcnyB69dcMeRQNIDW7LTUWn1IDkbrytSVvuH8j0N9S3r9zx+C7q2lry9JkiRJkiRJQ5D0BqMRK4Tw6b7Th4CTgMnAPwP/GEK4G3gcWAf0FrNujPFz5exTkiRJkiRJkiRJkiRJkiT9xWXAS8kFoEVyAWe3kws76wQ+X8AavwJe0nd+NnBp+duUJElSUeoaYOoZueOAv4fLm4q7vnlm/3kmm/t869Ly9rjT8mtg3l9XZm1Jta1zPXTckV4fs3/eyx/Zcl9Z2mhrKD4YrTtkSt+wsQ0OvAge+3/J9a6N0H47TD+n9D0kSZIkSZIkqUQ1FYwGfJZdnwy58w1SzcAZfUcpDEaTJEmSJEmSJEmSJEmSJKnMQghnAm+l//1+zwJviTHe31efTWHBaNcCX+9b49gQQmOMcXtlupYkSVLR6hqh9VTouH3X8cwoaBgH29t3v2bKmbt+3jK7csFo6x+Bpb/OndePhsnHQ3ZsZfaSVFs2L8xfn3xSaqmzdwfru9eUpY2Dmo9MraUGo2WGEIwGcPBH4On/hq4NyfUn/wNiD0w6Fhpbh7aXJEmSJEmSJBVhiD/9HBF2PkGyFKGcjUiSJEmSJEmSJEmSJEmSpF18pu9jABYDJ+0MRStGjHExsL7v0yxwUHnakyRJUtkc9lmoa9p1bP7F8KL/hlC/6/jYA2Huu3Ydq2RQ2eYFcPtrcsctZ8OvWmHRTyq3n6TaseqG9Nphn8uFO6Z4vmtVWVo4esxJzG7cL7WeGowWhnhrYMMEOOnH6fVVN8Ctr4Ar2uDRL0As9RY+SZIkSZIkSSpO/eBTRhzDzCRJkiRJkiRJkiRJkiRJGuFCCBOBk+h/+OlFMcbnh7Dk433rARwAPDiEtSRJklRuU8+As+/OBY51roN9XgEzXpWrNe0DSy6HrUth0vG5ULTG1sLXDvUQu3PnDRNz6z73vdJ77e2Eu94KradCy8zS15FU+x78p/TaYZ/Ke2l758rE8UCGQ1uOGXTrprpm9m86lBPHnUEI6bfMZdOC0TJDDEYD2OeVMGZ/2PRM/nkPfxJaT4IpLxn6npIkSZIkSZI0iFoLRvMnp5IkSZIkSZIkSZIkSZIk1YZTgJ13abfHGK8a4noDQ9XahriWJEmSKmHCEbnjhVpPzB15rz0aVlyXXHvTDggvCADasQaWD+WPmBGW/hIO+tAQ1pBU07YsSa9NPXvQyzu6ViWOT85O4b0z/rnUrnZTnxKM1hXqyrPB7DfBo5cOPm/x5QajSZIkSZIkSaqKmgpGizHeOtw9SJIkSZIkSZIkSZIkSZKkgkzr+xiB+8uw3qYB56PLsJ4kSZJGklmvhcc+v/v45BN3D0UDmPvOIQajAWvu7T/v2Q5dA/7ImamHhglDW1/SyLbxqfTahCMHvbyjc0XieGvDtMTxUqUFo3VnEl4bSzHpuMLmbXq6PPupcD3bc0f9GMjU5c4zoyAE6OnMfa9K+h4pSZIkSZIk1biaCkaTJO3B1j8CT3899480s14P01+R+4caSZIkSZIkSZIkSZIk1aqJA87XlWG9pgHnXWVYT5IkSSPJhCOh7XRo/8Ou4wdelDx/+itg9H6w+dn+sUwWpp4NK64tbM/FP4PlV0P3Fsg0QG/nrvWWOXD4pbDvWwv8IiTVlDX3pNf2/7tBL+/oWpk43pqdWmpHiepD8i2A3eUKxJp2Low9GDY+kX/e6lvg2e/Afn9Tnn2VbsH34J4Lk2vZsdC1EeqaciFpc98JR/1bLiRNkiRJkiRJ2kP4OABJ0vBbdSP89kh49n9h4Q/h1vPg0UuHuytJkiRJkiRJkiRJkiQNzcYB52PKsN6UAedry7CeJEmSRprTr4H9/x7G7A+tp8LJl8PsNybPrWuAs++EOW+Dln1h6lnwkt/DaVfDMV+BiS+C7PjcUdeUvAbkQtFg91A0gC2L4O63wcobhvylSRphYoSHP5Vcqx8No/cddImOzlWJ460N04bS2W6yoSFxvDtTRyzHBpl6eOltsO87oGV2/rn3vhuW/rocuyrN8mvSQ9EgF4oG0LMNutbDU/8FD11cnd4kSZIkSZKkKvExAJKk4RUj3P8BiL27jj/2BZh3ITTPGJ6+JEmSJEmSJEmSJEmSNFQdA873H8pCIYQ64KgBQyuHsp4kSZJGqPoWOPbrhc9vbIOTfrj7+IEfzB07LfkF3PGG0vta8B2Ydlbp10saedY/kl6bccGgl3f1drKu+/nEWmu2vMFo9SGbWusOGbIvvB+jFI2T4cTv587XPwLXHZ4+d8F3YOarh76nkj377eKvWXAZHPEvkKkrfz+SJEmSJEnSMMgMdwOSpL3c+odg45O7j/d2wtIrqt+PJEmSJEmSJEmSJEmSymXnXeYBODCEMJQn5L0MaO47j8Afh9KYJEmS9jLjDh3a9esfLk8fkkaO9Q+l18bNH/Ty57tWE4mJtbaGMgejZfIHo5Xd6HmQGZVezxcqp6FbflXx13SuhW3Lyt+LJEmSJEmSNEzqh7uBoQohZIETgVOBecBEYAxAjPHMYWxNklSIFb9Lry35xa5PapMkSZIkSZIkSZIkSVLNiDE+EUJYDuxDLhztw8CHil0nhJABLt65LPBQjHF92RqVJEnSnm/cwTDxWFh7X2nXb3wSenZAXZ6gIO2ZOjfAI5dAx23QvRm2LIae7blaYxs0TNh1fmYUTDoODrsEmqdXv18VZtmVcPfb0+tz3jLoEh1dKxPHAxkmZdtK7SxRfUi/BbA7k4Hesm4H9c0w6/Ww6MfJ9a1LYfm1sM8ryrzxHqbjTnjqq31BcuX+RUpw/UmwbUXuvHkmnPBdmPrSyu8rac+w5n548su5QOBxh0J2NCz4LrwwBHTGq2Deuwf/HrD4clj4Y+jZBjNfA/u/F0KoWPuSJEmSpD1PzQajhRBayL1B6v1A6wvL7Pa37b9c92bgC32frgWOjTEmP55DklR5+Z4U9PzdsGMNjJpUvX4kSZIkSZIkSZIkSZJUTv8HfIzc+/reH0K4LsZ4Q5Fr/D/ghAGff7tczUmSJGkv8uLfwJ1vhI47Srv+hpPh3PvL25NGtt4uuPHU9Pe8b2/PHS+0/mFYcS284gloGFfZHlW8hT+Gu9+WXq9vgZZZgy7T0ZkcjDYx20p9yJbaXXJLedbrDpmy7vUXx34zFya58ank+q2vzL2uznhVZfavde23wc1nQW9n9fbcGYoGufC6m8+C064xwE7S4NbcBzeelgsxA9jwWPrcZVfCsqvglMtzIZpJnvkfuO+9/Z+vvikXLnvUl8rXsyRJkiRpj1ehn3xWVgjhcOBPwCVAG7k3TBXqamASMAc4Cjir3P1Jkoqw8cn0WuyB5ddUrxdJkiRJkiRJkiRJkiSV278CG8k97LQOuDKE8J5CLgwhTA4hfB/4KP0PS10FfLcCfUqSJGlP1zwdzrodXvZAadev/ROse7i8PWlkW35N/geB57NtJTzzzfL2o/J4/Iv56/v9bUHLtHclB6O1ZqcW29GgsqEhtVaxYLTsaDhnkDDIxw24SfXkl6sbipbmiX8b7g4k1YKnvtLBKQYhAAAgAElEQVQfilaQCI+lfD+NMfm15+mvQ/fWktqTJEmSJO2dai4YLYRwCHArsD+5QLSdb3YKFBCQFmPcDPxiwNBry92jJKlAsTd/MBrAst9UpxdJkiRJkiRJkiRJkiSVXYxxLfBB+t/v1wh8M4TwTAjhX4DzB84PIRwXQnhbCOFHwALgbfS/P7AHeFeMcQTcWSxJkqSaNe4wqGsq7drn7ypvLxrZhvrrvfK35elD5dO5ATY8ln/OmP0KWqqjMyUYrWFasV0Nqj5kU2tdmbqy7/cX2dHQOCW9vuYe6O2q3P61rGOEfL9ovzV3744k5dNxZ/HXrPszdCeEqW1fBZuf2328Zyusvrn4fSRJkiRJe6364W6gGCGERuAaYBz9gWiPAF8BbgFGAU8UsNSVwIV952eWuU1JUqG2rcr9UDMf3zwgSZIkSZIkSZIkSZJU02KMPwwh7Ad8ktx7/wIwD/jYC6YG4O4XfB4HXPOJGOP1le9YkiRJe7RMHcx4NSz+SfHXPvu/sPZP0DwTZrwKJhxR/v7Ub+2fYNnVuXCmGRcUHFg1JKtuhJU3QOdaWP2Hoa3VfhusvB6mnV2W1lQGWxYOPmfGBQUt1dG1KnG8LVuJYLT0WwC7Q6bs++1i5mvhmW8k12JvLvxm7IGV7aHWdG2CHR3D3UW/2y6Afc6H2W+A7Njh7kbSSLJpASz5OWxZVNr191wI9aMh1MGEI2HWG3KvgWm2JX/vlCRJkiQpSU0Fo5F7auQc+kPRvgr8Y4y5xxaEEGYXuM4t9L9Rat8QQluMsb3MvUpSabYshQc+nHvSwpj94NDPwNQzhruryti2fPA529uhcz00jK98P5IkSZIkSZIkSZIkSaqIGOOnQwgLgG8ATfS/DzAMON/5OewaiLYDeE+M8UdValeSJEl7uqO+BBsegfWP7Doe6uHwS+GhTyRft+6B3AHw2OfhpJ/ArNdVtte91cIfwx/fkQteAnj0Ujj9d9B6YuX2fPjTuX3K6ZZz4Ogvw0EfKu+6Ks3mAoLRmgYPNuuOXaztSg6+am2oRDBaNr2XTIWD0Q77LLT/ATY8nly/9lB4w2aoG1XZPmpFjHDj6cPdxa6WX507nv4anHETNE4e7o4kjQQdd8EfXg5dG0pfY/HPdv38yf+EI780tL4kSZIkSepTa8FoH6D/DVC/iTH+QymLxBg3hxAWAfv2DR0MGIwmafh1b4UbToGtS3Kfb1sBN58JJ/4Q5rwVQsh/fa3ZWkAwGsCmZ2DSsZXtRZIkSZIkSZIkSZIkSRUVY/xBCOEW4GPAu8gFpEF/GNpAAegB/g/4bIxxUVWalCRJ0t6heQaccx88/0fY+ERuLDse2k6F5n2gcx088a/51+jtggc+AjNfA6HCwUR7m95uuP8D/aFoAF0b4cF/grNuq8yeW5fDY18o7dpDPgHPfgs61ybXH7oY5l4IDeNK70/lMVgw2uGfL2iZNV3tRHoTa63ZKgejVfr1p7EVzn0ALk8JPovdudAtQyJz1twL6/6cXAt18KKvkfxjkASd63Pfj5r3gUxD7vvO1qXQMAEaxsPWZRCyuV+j+98/+HrrH4YF/wvzLy74y5G0B3vo4qGFoiXZ9DQ8+rn0euwu736SJEmSpD1azQSjhRAOAfbp+zQCHx3ikgvoD0abC9w6xPUkaeiWXdUfijbQ3W+HBz8OJ/8s94/te4ptBQajrX/EYDRJkiRJkiRJkiRJkqQ9QIxxCfD+EMLHgFP6jpnAJKABeB5YDdwF3BRjXD9cvUqSJGkPVzcKppyWO15o7IGFrbFlMWx4AsbPL29ve7tVN0JXwl8FOm7PPYy8vrkCe96waxBbMQ68CDY9BUuvSK73bIf2W2HG+aX3p/LYMkgw2uh989f7tHeuTBwPBCZnpxTb1aAyIUMd9fSwe6BMV6au/5MpZ5R9bwDqGmDScbnQryQrrjMYbacVv02vNc+E/d9bmX0LCUaD3K+VwWiSurfm/mxSCeseSK+VO4hNkiRJkrRHq5lgNODIvo8ReDTG+NwQ1xv4LyQ+ckXSyLD4p+m1bSvgxhfDYZfkwtHaTqv9J4ttLTAYbfk1MO/CyvYiSZIkSZIkSZIkSZKkqokxbgWu7zskSZKkkWXqS4FA7haWQTz4T9B6ErS+GCYfD5lsf61rM6y+Ofeg6MY2CHWwfRW0zIFp58CoSRX6AmrcxqfSaz3byhuM1rMD1twDj1xS2vUTjoSmKTDjNenBaABLfwWd63Lno1qh9WRo8HamqtucJxgt1MGUMwtapqMrORhtQv1kspmGUjobVH2opyfuHozWPfC+kkM/XZG9AZh2bnow2srfQ4wQQuX2rxWrb06vTTu3cvvOeRss+tHg8zruhCW/hMknQfP0yvUjaWSKETY+AYvy3MNYSSt/Dwd9GHo74fk/wtalufFQBwQYfxiMP7T275mUJEmSJJVFLQWjtQ44f6YM6+0YcF6BR8VIUglW3TD4nEc+k/s4/eVw6q9zT96pVdtWFDZv9c3+I5kkSZIkSZIkSZIkSZIkSZKk6miZBQd/BJ74t8Hnrrg2dwA0z4Kz786FzTx/D1x/Qv5rT70CZr566P3uafK9bzwWEFZXqE0L4A8vg00l3qZU1whH/EvufPabYMG3of3W5LkLf5g7dsqOzd0PMPWM0vZW8WJv//+rSeb/cy7krgAdncnBaK0NU0vprCD1mSw7erbvNt6d6QuPmfX6XOBepez/Xnj0c8m1bSvg7nfA8d+p7XtchiL2wp//ETpuT59z8Icrt//8jxcWjAZwx+uBAMd8BQ78QOV6kjSy9GyHu98JSy4fvh5W3wJXtOV66dmWPGf6K+GUn0F9S3V7kyRJkiSNOLUUm9044HxH6qzCDXysyqYyrCdJQ5cdW/jcFdfBs9+qXC/V0F3gy2/XBtiW/A+HkiRJkiRJkiRJkiRJkiRJklR2R/0rvPgqOOD9MPst0FhA4NHWJfDgx3IBOXe9ZfD5d7weOjcMvdc9Tr7bnXrLt8197xs8FG3c/Nyv/8EfgZfeBmfdAQd/FA79NJxzL0w/NzcvUwdnFPCg9J26NsKdb4LertL7V3FWXJde2/ftcPglBS/V0bUqcbw1O63YrgpWH7KJ493TzoGTfpI7MvUV25+mqXD8Zen1RT8qPJhrT7T8WnjqK+n1Qz4BY/ar3P7jDoFXLYGDP1bgBRH+9EHY8GTlepI0sjz7ncJC0Y78Irz4ylxgaKbve092HLSeAs0zYMoZuT8bzXxdaX10rksPRQNYcQ089dXS1pYkSZIk7VEq+NPOsnt+wPnkMqw3d8D5mjKsJ0lDV9c4+JyBnvtebT+dpTvPDzFfaOOTuSenSZIkSZIkSZIkSZIkSZIkSVI1zDgvdwDc+Vew+CeDX7P0V3DgRbD5ucHnxh5Yfg3s+1dD63NPE0J6LfaUZ4/OdbCqgCCzee+Ggy7adaz15OS5mSwc+il49NLCetjRAe23wtSXFjZfQ7Pop+m1/d9X1FIdnckPfm9tqFwwWjYtGG3Om2H8WRXbdxcTjspfX/ILmPfX1ellpFnyi/z1ySdUvoeWmXDUl3JHz3a4vGnwa5b8Ag77VOV7kzT8lg7yOgUw6Xg45J9y5zPOhyM+nz439sLlzdC7ozz9DbTk5zD/E+VfV5IkSZJUU2opGG3nozQCMMhPUfMLIUwCDh4w9OxQ1pOksogRdjw/+LyB1j0A6x6CCUdUpqdKy/d0hxfa+CRMPaNyvUiSJEmSJEmSJEmSJKkqQghZ4ETgVGAeMBEYAxBjPHMYW5MkSZLSTT6hsGC0nu3w1FcLX/fJf4fWEyHUQfNMCJnSe+zalHtYdyY5QGmP0Ntd+rVdmyAzCuoaYNMCIA5+TbFhRpNPLG7+yt/DuEOhaWru8+3t0L0ZGibkDpXPloXptfGHFrxMT+xmTVd7Yq01W7lgtPqUYLSu2FmxPXcz9iDIjoOuDcn1jruq18tIs+np9FrIwMQXVa8XyH0vmHA0rPtz/nmrroe5b899/+nakAuNbJoB9OaCKOtbqtKutIsYYduKCgRuhb7XsPXQND33/8merGvjrvcqbszzOrVTMX/uCRmYfDy031Z8b4NZ92Du9YgAnWsHmZyBlllD+zO0JEmSJGlEqqVgtLuAXiADTAohnBFjvLnEtS4kF7AGsAW4vwz9SdLQ7FgD3VuKv+63R8Kbe/M/FWuk6tle+NyNT1auD0mSJEmSJEmSJEmSJFVcCKEF+BDwfqD1hWVSUglCCG8GvtD36Vrg2BhjAQkGkiRJUhnNeQs8/iXYtnzwuYt+XPi66x6Eq+blzkdNgsMugQP+vrjetq2Cu94C7bdCXRPMfRcc/V+QqStunREjz3vjYwnBaNtWw11/Be235ILRJh4NHXcOfl3rqTDpuOL2mnoWjD8C1j9U2Pwn/j13JJl4LJzyMxg9t7gelOz5u5PHs+OKCn9a09VBLz2JtbaG6gejdceuiu25exNNcOAH4dFLk+vdm+Cq/eCkn8DkIv/fqWVblsCae9Lrc94GzdOr189OB38U7npz/jkdd8CVc9Lr018JJ/3QoEZVz+Kfw4Mfzx9mWQ6ZLMx6Axz37dxr255k4J97Ym/h19WPgf3+tri9DvpI7nWkmH0K9cuJhc9tmADzL4aDPlyb91hKkiRJkhLVTAR2jHEdcN+AoUtDKP5vqCGEfYCPk3sDVQRuiLESf+uWpCLlezrMYB65pHx9VFPPtsLnPv21yvUhSZIkSZIkSZIkSZKkigohHA78CbgEaCNv0sFurgYmAXOAo4Czyt2fJEmSNKhRk+Dsu2HuOysXVLVjDdz/flj6m+Ku+8MrYHVf+EX3Fnj66/DIpyvTYzXku12ot4RgtNsugNU35f779GwbPBRt/BG5YI2X/K74cI1MPbz0D3DA+2HcodA8K3fUjy6+77X3wU1nQm9yCJeKsPTX6bWTLy9qqY6ulam1ydmpRa1VjBERjAa58MZ5706vb14AN58BO9ZWr6fhFCPccEp6ve00OP471etnoDlvglOvgGnnlr7GimvgzkHC1aRyWX1rLtCr0qFoAL1dsOj/cn/u2tPcdn7/n3sKNeuNcNbtMO7g4vaacR68+GqY/gpomd3/557mWVDXWNxaQ9G5Dh74KCz+afX2lCRJkiRVXM0Eo/X5yoDzE4D/KebiEMIU4CpgAv1vqvpyeVqTpCHa9Ezp1z56CXRtLF8v1VJMMBrAmvsr04ckSZIkSZIkSZIkSZIqJoRwCHArsD+59+7FnSUKCEiLMW4GfjFg6LXl7lGSJEkqSMtMOOF7cP6Cyu7z3HcLn7vhCVj3593HF/64fP1UXZ6/JsQig9E2PAlr/lj4/GnnwssfhKP/Heqbi9trp4bx8KKvwSsegQsW546DPlTaWlsWQfsfSrtW/Z75ZnqtyKDDjs7kYLTx9ZNoyIwqaq1iZFOD0UoICxyK/8/efYfHUd1tH/8eraolW5Z777gXsKm2AYNN7wkQAk+AUEMq6SEJLaQ8SQhvypMQkkACCaEaTHXoBowxNsXghnvvkqtsWdqVzvvHSPFqvbN1drQr3Z/r2ks7c86c81Pbnd2duccY5/8jltB+WP+4P/W0tMp34cAG9/bj7ncCE1tK34vglJlw8gupj7HlJTiw0buaRKKxFj78VvLP8+la9wiEkjy/LZvtWQJV85Lb5nM1MPlRqBiX2py9z4Ypz8MFaw/t91y4zhn3cgujfpTauKlYlcQ+tIiIiIiIiGS9nApGs9Y+CixoXDTAdcaYt40xJ8bazhhTaoz5UuO2R+IcVGWBl621cS7zIiLik33L09t+/XRv6vBTssFoy36bmTpEREREREREREREREREREREJCOMMcXA80B52OqFwLXAIGAECYSjAc+E3Z/qWYEiIiIiIqnqdXbmxt69KPG+buFDB9ZDfa039fguxkuEhmByQ215Kbn+Hcck19+PcZP5e5DoYoU6lfZPaqgdwejBaF0LeiQ1TrLyXYPRkvyf8EJBh/g/t7byd7t7oXtbQQco7edfLbF0HJ3e9ttne1OHiJuNM6IHvWZafQ1Ur/Z/3kxJ9rG3/VAIFGemlibdT83s+OH2tJHnHhERERERkTaiBS83kLKLgblA58blScAsY8xWYGV4R2PMvcBQ4ASgiENXmjTAJuALPtUsInK4vcthzUNwcDv0PN1ZjqbiKAjuif8m63vXwoDLIZC5Kwx5LtlgtE0vOB9k50X/QE9EREREREREREREREREREREss7XgQE4x+4B/B74lrW2AcAYk+gZ6G9w6Pi/gcaYbtba7R7XKiIiIiKSuMHXwuYXMzP2/jXw8iTAgglA9SqoCQtjKunpfK2JHtD0X3W7oaR7ZmrMJBMjGM2GoKEelvzCCVGp2Rx7rHg/o2bzBmDglYn3T0avc6GoK9TuSH7bD2+Gpb+EDiNgyI3Q/1Lv62vNrIW9S6O3FXWGQGFSw+2o2xp1fdfCnslWlhS3YLSgrcvovK4GXQsLb3NvX/FHJ6Bx5Peh6yT/6vLL/nXw8Y9g7cPufQZ8IXvOfyntBz1Og62vpLb9nM/Dojuh+ykw7hdQWB5/G5F4DmyGj2+B7W87+z4t5dWTmp+PVzoABlwBR3w59j5JNln7KCz7LVS9l9x2g6/JTD3huk9xAmJjBUl65eA2CNVAfknm5xIREREREZGMy7lgNGvtamPMucDTQE8OHejUEwi/tIYBbgi7T1jfjcC51tpKX4oWEYlU9T68Ps0JPANY9Vf3vr3Pg9G3QtU8eCXWh0EWXp0Cp70NeTny8J5sMFpwN2x/C3roor8iIiIiIiIiIiIiIiIiIiIiOeJrHApFm2GtvTmVQay11caYtcDAxlUjgDYXjGaMKcC5oGw/nOMmq4HNwEfW2rUtWJqIiIhI29P3MzDhD/DB1zIzfuUc97ZEw76CORqMRowQkoYQzP8SrPqb99Oe9Ax0HO39uOAEdEybBXO+ALs+TH77mi3Obdvr0FAHA//H8xJbrXWPured+HTSw+0IRv//61rQMsFooYZQRud1NeqHENoLS+9277PpOdjyMkx7E7oc519tmVZbBS8dDwejh+T91/jf+FNPoiY/Bu9eBVv+Aw3B5Lff+6lzq3wXzngf8gLe1yhtR3AfvHw8HNjQ0pVA3c7myzVbnL/zul0w+sctU1MyVv8D5n4xuW0KyuGIm2DEdzNSUjMmD05+znn82f4Wh94qBkoHQmnfxvUeWf4HGPk978YTERERERGRFpMjyTnNWWvnGWPGAw8AZzWtjvjabBOcT0UM8ApwlbU2zjuPIiIZtOiuQ6Fo8bQf6gSddZ0I562A545w71s1F9b8EwYn+WZmS6k/GH39pEfhncuit216TsFoIiIiIiIiIiIiIiIiIiIiIjnAGDMS6N24aIF0z7RbxaFgtEHAm2mOlzZjzCDgGODoxq/jgfZhXdZZawd4ME9X4E7gc0Anlz5zgHustdPTnU9EREREEjTsqzD0KxDaB6H90YNm8kvB5ENhubMc3AvWOseTh/bDCyMzV1/drsyNnVExgtEObnECQLx26mvQ41Tvxw1XPhLO+gDqdjvH/X/w9dTGWXq3gtGSsfhn7m0dRiQ1VIOtp7JuW9S2boUtFIxmUwi48kJeAI76NVQcBXOucO/XUAvL/691BaOtfTh+KNqoH0OgyJ96ElVYASc/C6EDsG8lzByX2ji7FsC216Dn6d7WJ23L+scTC0Wb+gaUDUpvrmf6p7bdst/CiO9BoDC9+TNtaQIhjAOvhLF3NS4YKOnlb7hhaX8nIDa479D+aaAdFHdx7jeEnAC1R+LUdME656sNwbNDiHo6+ZJfKhhNRERERESklcjJYDQAa+024BxjzATgG8BUnKsfRrMHeA34g7W2xQ+EEpE2zjbApmcT798+LAit/RDnCglvnufef92juRGM1hAEWx+9raQ39LvUeZM70p7Fma1LRERERERERERERERERERERLxyZONXCyyy1q5Oc7zdYffL0xwrZcaYKcAtOGFoUUPKPJ7vLOAfQLc4XScCE40xDwM3Wmv3Z7o2EREREQGMgYIOzi0RTf2agtKKu8PB6EFLaavbHb9PNjIxgtGq5jlhGF6rSDEgKBWFHdO7WPjujyFUA/kl3tXUmtVWubcVdU5qqJ3BSuqJ/vfXtSCzwWgFeVkWjNYkkXC5qnmZr8NPle/F7xN+LlC2yW8HFWOhqAvUVqY2RtU8BaNJeirnxu/T71LoPiX9ubqcAJXvJr9dbRVUr4by4enXkCnBatizKH6/iiOhtF/m64mnoL1zi5TXeKr74Oth1V+jb9vnwubfQ0E5BKPs69YfdEKIY+1PioiIiIiISE7I2WC0JtbaD4Ar4b9XXuwLdAYKgUpgG7DYWtvQYkWKiITbvz7xvkVdoNNRzdd1OxnyyyBUHX2bba87H2AXdky9Rj/U17i35Zc4Vw2KFoyWs1ctExEREREREREREREREREREWlzuobdX+HBeLVh99t5MF6qjgR8Ofu3MYRtBs4xkU0s8CGwGugIHAV0CWu/AuhgjLlQx06KiIiI5IB+l8Dy/8vM2It+Aqv/7gTfbHvdCWUb/1sY+IVDARTZyFr3tn1evLSI0OvspAOy0tZhBJSPhD1LUtt+9qVOuBFA2SAnPCby3AOB0AE4uDV6W+nApENTdgS3uLZ1KeyR1FjJyjfRg9GCti6j88ZVcSSUDYHqle599i2Hd6+CrpNh4FUQKHTvmwt2L4jdnlcEfc7zp5Z09LsEVtyb2rarH4TdC2HrK855Pv0ugZLeENoPHUfDoKsTDwyVtmfLy7Dqb7H75BXBmDu8ma/fJakFowGsfgCO+pU3dWTC/rUJdDLQ97OZrsQb/S5xD0brd2nz5YpxsP3Nw/vVH4Btb0CPU72vT0RERNq2fatg7cON7+XEeO/K5EOnCc7roqKMX2NLRKRVy+JPMZLXeDXJdK8oKSKSWdteT7zv8G9D5FV9CtrD+N/AvBujb2NDsHkmDPh86jX6IRQjGC2v2D3YLVevWiYiIiIiIiIiIiIiIiIiIiLS9hSH3a917ZW48rD7+zwYz2u1wEZgsBeDGWP6AE/RPBTtHeB6a+3SsH5FwI3A3UDTwUbnAT8FfuhFLSIiIiKSQWN/Ars/ge1veT925btAWBBIcC+8dw1sfBpOmgEmz/s5vWDr3du8DkYrHwlH/8HbMRNhDEz8N8w6C2rcw7ZcbX6++fKn98CJ06H3ud7U11qse8y9bdK/kx5uR13031WHQAXFeSVJj5cMt2C0kA1ldN64jIHJj8Ksc+DgNvd+ax5ybuseg1NmHn6uTK6o2xU70DBQDBMfhsIK/2pK1difOuFmO2Ynv231yuZheOufaN6+6n6YNis3fg7iryW/ggXfj90nrwgmPw7lI7yZ84iboHIurH88+W2X/hra9YNhX/WmFq8lEq57/ANQ2i/ztXihxzQY9WNY/NPm64d8yQlNC3fsX+H5odHHeX0qnPqawtFERETEOzs/gNdPc14TJmLdv2HVX2Dqm1DSPbO1iYi0Yq0qGE2ygzGmAJgE9AN6AtXAZuAja+3aFixNpOXtXQ7vXZtY3/KRMPxb0duG3OAkBf/n6OjtW1/N/mC0+hjBaPklUOASjBZUMJqIiIiIiIiIiIiIiIiIiIhIjqgMu9/Fg/EGhd2v8mC8dASBxcD7wPzGrwtxjp17w6M57gTCzyCeA0yz1h4M72StrQV+b4xZDzwd1vQtY8x91tp1HtUjIiIiIplQWAFT33DCaWYe6c+cm56DbbOyNywilWC0bifBEJeLjzeprXLCmAo6OMtlg6BiPAQKY2+XKRXj4PzVUPke1Gxy1hX3cM4l2LUA6nbCnCsSG6uhDhbcAr3OcYKqxDH/Jve2ivFJD7cjGD0YrWthj6THSpZ7MFow43PH1WkCnL/GCeybfWnsvtteg00vQN8L/anNayvudW8b9k0YcxsUupwPk22KOsHUWbBnkRP2VlgBJT1h33KorQTb4ITZVc1Lfuzdn8Dqh2D4NzwvW3JY3R5YeEfsPkO+BOPvhvxS7+YNFMOkR2HsXVC9Ckp6O/sTDWHXcVj8M/fQww++Dt1PgY6jvKvJC9bCyvti9ykfBYOu9qUcTxgD4+6CI26ELa+ADUKP06B0wOH7N+2HOL/b+oNRh+KTW7N3X1dERERyz6K7Eg9Fa7J3mbO/Nua2zNQkItIGKBitFTLG/AO4yqPh1llrByQ4b1ecA7E+B3Ry6TMHuMdaO92j+kRyy7wbEu979J9if8DaaYJzxYpoH6qsfsC5mlfv82DAFZAXSL5Wr9RshZV/ca72cmA99D4fxt/jfPDqJlDi/kFQ3W7njVt9WCsiIiIiIiIiIiIiIiIiIiKS7bY2fjXAUekMZIzpDIwIW7UynfHS9CDw58iAMgDj0TEtxpgjaH4cYB1wdbQ5m1hrZxhjHgzbrgi4HbjGk6JEREREJHNMnhOS1ft82PSsP3Oufyx7wyJiBaOF9kdf3/UkGHB5ZurJpEAxdD/58PUlZzpfV94H299KbKw9i+DgVifYSKCh3v1vqV2flALxdgS3Rl3ftSDzP/OCbA5GA8gvgb4XO2FGbv+nTba8lLvBaNvfdm8b+pXcCUVrkhdwnn8qxh1aF36/XT946/zUxl77sILRpLnKOVBfE7vPETd5G4rWxBjoMNS5AVSMbd6+eaZ7MBoWFt0Jkx/3vq50HIz+nNTMsBz9H2zXBwZ/MXYfY5yQW7ffW+UcCFZDQZn39YmIiEjbYq0T2pqKrS8rGE1EJA15LV2AZL047zQ5jDFnAYuAm3AJRWs0EXjSGPMvY0wG3qESyWLBfbAjxgcg4TofG/3DzUgVMY4X3fAkzL0K3vmcs8PdEqrXwsxxsPB2JxQNnA/qnxvifJDlJlDiXGkmGlsf/0MyEREREREREREREREREREREckGc4CGxvudjTHppC5cgxOwBrAfeD+dwoi/y6YAACAASURBVNJhrd0VK6DMI5cD4VdDfMpauyKB7X4ZsXypMabYu7JEREREJKN6ne3fXCv/Agvvci7UveNdaAj5N3c8sYLR3JQN9L6ObJDs38S6x5xAMIGajWBd/q5L+6c05I66LVHXdyvMfDBafrYHo4ETUtPzrPj91ufw3+m+GDntZYP8q8Mv3U+GQLvUtt05H6pXe1uP5K7qtbDwJ7H7tOsH5aN8Kecwvc6J3b7+CfjgZtjzqT/1xFOzBRb/b+w+JgC9z/WnnpYS7/e2f60vZYiIiEgr1BB0grGX/wmW3g31B1IbZ8c7sOp+2L3Y2/pERNqInApGM8aMNsa83nh7zRjTLYUxujdu2zTO0EzU2opMj9fBGDMFmAGE/z4s8AHwBPAKUBmx2RXAI8aYnPobFElLbRXYhvj9ADofl1i/DsPj99kwHSrfTWw8ry28Aw5uj9724Tfdt8svi32VnAMb0ypLRERERERERERERERERERERDLPWrsLmB+26i5jjHHr78YY0xv4Ac5xaRZ4xdpED8TJWRdFLP89kY2stUuB98JWlQKne1WUiIiIiGTYgCug64nx+5X0hE7HpD/fwttg/pfhlYnw5rkQrE5/TC8oGO2QwddDpwmJ9//wm/D2RRBK8YTd1mTzf9zbjv5T0sM12AZ2BLdGbeta0HLBaMFsCkYDGHMHFPeI3aduF7z9mdz7Ow3ug2qXYLSBVznBcK1NQQc4MjKDPQnPDoZPf+tdPZKbVtwLzw2GqrnuffIKYfw9kBdw75NJfS+CnmfE7rPsd/DCCPj4VrDWn7qi2TADnh0Ey38fu9/o2519xtZs2M1QNti9/bVTsyv8V0RERHJD3S5nP+LVk+D9r8CC76U33nvXwYuj4aPvt+x+pIhIDspv6QKSdCMwBefAppettS5pO+6stduMMUGcA30scD3wXS+LzALfAe5IYbujcYLMmljggVgbGGP6AE8BhWGr3wGubzzAqqlfEc7v726g6Z3484CfAj9MoVaR3BPal3jfzgl+SN0+wWzHNf+ErhMTn98L9bVOKFuy8ttDXj4UxAhGe/l4uHhX6/zQSERERERERERERERERERERKR1+R3w78b7xwN/xjmWLCHGmO7As0BF4yoL3ONlgdnGGNMDGBe2KoRzXF6iZgHhV2Y8C+dnKCIiIiLZrqAMTn0Z1k+HqnnQUAeBIigb5LTvXQ7lI6DvZ5zgoU3PQeVcqN0O5MGWmZBfCt2mAAbWPQrB3YnNveUlJ7hkZBacYpNKMFrpAM/LyApFnWDqLOfY/J3vHwr32DAdandE32bTc7DyrzD8G76VmZXmf8m9rWJs0sPtDlURcgkh61roRzBa9NMA3WpqMR1HwZkfwIanYNFPYvydPgur7odhX/O3vnR8crt729Cv+leH34Z9FTofDZtnwsHG0zlX/jnx7T/8JvQ5/9BzmbQtBzbC+1+FeNc4OPN96DjGn5qiCRTByc/B+idhzuWx+y7+KfS5wPm/8FvoAMy9CuoPxu43dRZ0P9mXklpUu15w5nx4slP09todsPEZ6PdZf+sSERGR3Lbk17Bjdvx+eQUw6Frnfqga1v4rdv+lv4Li7jDiW+nXKCLSRuRaMNoFYfcfTGOcB3GC0QzOVRWz4FMb71hrK4HKZLczxvwgYtUb1trVcTa7k0MHnAHMAaZZa5u9s2KtrQV+b4xZDzwd1vQtY8x91tp1ydYrknOCSQSjJXr1rsKK+H0AVj8Ax96b+Pxe2Pa6sxOfrMLGQLTCcvc+wT2w6yPoND612kRERERERERERERERERERETEF9baR40x38MJ+jLAdcaYkcAPrbVvu21njCkFvgDcDnTDCUQD56KqyYSE5aLREcufWGv3J7H9nIjlUWnWIyIiIiJ+ChTDwCucWzx9zndubspHwQdJhA5teDI3g9FMANr1zUwt2aCgDAZd5dya1GxyAtDcbJjetoPRgjHOZeh8bEpD7qjb4trWtaBHSmMmI98URF2fdcFo4ATVDPsqdD0B/hMjOGjD9NwKRtv2mntb2UD/6mgJXY53bk2SCUYDJyhvxHe8rUlyw4YZ8UPRRv2wZUPRmuQVwIDPQ6AE3r4odt8N01smGG3b6xDcG7tP7/PaRihak8IK6HYybH8zevuG6QpGExERkeRseDKxfqUDD+U31B+MH4wGsOB70PkY6HZi6vWJiLQheS1dQKKMMYOAPo2LDcDzaQz3HND0KclAY0y/dGprDYwxJcBlEavvj7PNEUDYpyrUAVdHhqKFs9bOoHmoXRHOgWsirV+iwWgFHaDD0MT65hXgHC8aTyJ9PLZxRmrbNQWjBYqhqIt7v50fpja+iIiIiIiIiIiIiIiIiIiIiPjtYqCKQ+Fmk4BZxphNwEPhHY0x9xpjXgN2AH8Eujc1AZtxwtJau5ERyyuT3H5VnPFEREREpK3oc15y/fetgF0Lmt/2b8hMbbE0hJLrb+shLz8ztWSrrpNjt+94G6yN3ac127/Ova1sUEpD7ghGD0YrC5RTEihNacxkFOQVRl0fasjCYLQm5aOgoKN7+/Y3c+vvtGaTe1thJ//qyAaDr0uu//on4cDGzNQi2W3f8vh9ukzKfB3J6HMBVIyP3Wfvp/7UEmlfAm8Tds2yn6cfYu0XJfIzExERkdzVUA+h/VBbBQc2Oc/9uxdB3e7kxqmvdbbbu9x5fywR4ftdgWLodEz8bWw9vPM52PHu4e/Bhd/qdkP1mkMhw9Y673XU1yb3fYmI5Lhcete/6QqIFlhmrY1x6Y7YrLXVxphlHDrYZwywPs36ct3FQHnY8i7gqTjbXA4EwpafstYm8iz/S5oHql1qjPlyrEA1kVYhlGAw2sCrwSSYW2mMs6NcXxO7X4PPO7m2ATY+m9q2hRWH7vc+H1Y/EL1fKJmL4IqIiIiIiIiIiIiIiIiIiIhIS7HWrjbGnAs8DfTEOQ7QNN7vEdbVADeE3Ses70bgXGttpS9Ft6whEcvJHt8YmQDQ2RhTYa3dlUZNIiIiIpKLSvvDwCthzUPx+wLU7YKZRx2+vsMIOHE6lI/wtj43tj65/qNvz0wd2WzgVbDs97GDmp7qDpOfgO4n+1dXtlgY429i9K0pDfnhvjlR13ct6BF1vdfyTUHU9SGbZJCgnwLFMOLb8EmMn/nTveDEJ7M/yKdut3OifTSDrnbO72lLhn4NVv0t8f5V78GMvlA+2nk+6TA0c7VJ9lj7KCz/Q+w+nSZAz9P9qSdRxsBxf4NXT3Y/H3DjDFj+Rxj6FX9rq14Tu72kl7OP0NYMuR4W/yx62875TjBjuz7+1iQiItKW2AaoP9h4qzl0v+EghGqcr5Fthy3XHNrGrS1aX9ewcAPdpzjvixR1jl3/kl/Bgu8n9z3nlzmvi8KNugVmX3wozMxNzRZ4ZWKC87SHI26CdY/AgQ3O6+yRP4DRt7W916Ei0iblUjBa/7D7kVczTMUqDgWj9fNgvFx3bcTywwkElV0Usfz3RCay1i41xrwHHNe4qhQ4HUgxRUkkRwQTCEbrfiqMuS25cRMJRgPYvRg6jkpu7FRVzYODW1PbNvxqQOPvjhGMlnI+poiIiIiIiIiIiIiIiIiIiIj4zFo7zxgzHngAOKtpdcTXZpvgBKIZ4BXgKmttigek5JyOEcvbk9m48eKxB4HisNXlOBdMTYsxphvQNcnNBqc7r4iIiIik4bgHoOMY+Oi7qY+xdym8cTqcvwbyfDgVKdlgtGFfz0wd2aykO5wxF+ZcAdvfit6ndgfMOhMu2ADFXfytryXteAc2THdvLx/p3uYi2FDHpwc+jtrWrbBX0uOlIt9E/98L2jpf5k/Z6B87oWKf/iZ6+8Gt8PppcNEmKKzwt7ZkfHCze9voJM8Dag0qxsJZH8O8G6FqbuLb7VkEb5wB562EvEDm6pOWt2sBzPl87D4jvw+jfuTPvkWyOh0F096Al44HtwDK978K7Y/wN9htf4xgtCNugpG3QIk/gZ1ZpbQ/HPsXmHdD9PbXp8G5n/pbk4iIiN9sA9TXphYwlkww2WFhZwehIRtfl1rY9gbMvhSmvubebeOziYeilY8Ekw8VR8Hwm6HiyObtfS+CKTOdEOk9S2DP4tTLbxLaB0t/dWi5/iAsvANKB8KgK9MfX0Qky2XhOwau2ofd3+PBeHvD7nfwYLycZYwZDJwUsfr+ONv0AMaFrQoB7yQx7SwOBaOBc6CbgtGkdXO7QkTpQDjur1DcDTqMTP6N/UBx/D7gXInCr2C0Hck8HEQwYd9/YYUTFrft9cP7hfanPoeIiIiIiIiIiIiIiIiIiIiI+M5auw04xxgzAfgGMBXo6dJ9D/Aa8Adr7Zs+lZgtyiKWE7hq4mFqaB6M1t6tY5K+DNzu0VgiIiIi4oe8AIz4jnN7ug/UbEptnAMbYfss6DHN0/KiSjYYLZvDlDKpXR84+QV4Isbufv1BWP84DP2yf3W1tDX/dG/rOjmlIRfv/9B9yAJ/AmjyTUHU9SEb9GX+tIy53T0YDZyT7Dc8BYOv9a+mZG1+Ifp6E4B2ff2tJVtUjIUz3m2+bsMMePui2NvtXws7ZkP3kzNWmmSBWI/FACf8Ewb+jz+1pKrTBDj1ZXjtVPc+ax7yNxit2iUYbexPYfSP/KsjG8XaR927DPYshfIR/tUjIiJtk7XQUOt9GNlhfaO0ZWU4WRbY9gYcrHQPjA8PHYulsBOck0DQWc/Tm+8fzvsSrLwvsTmSseYhBaOJSJuQS8Fo4Qf2eBFkFv6uf5KfmLQ61+BcVbPJh9baBXG2GR2x/Im1NpmUojkRyz6lNYm0oKBLMFpxN+gxNfVx8xIMRtu/NvU5krVvefT13afCCQ/BjN7u29YfbL5c4PIhbag6tdpEREREREREREREREREREREpEVZaz8ArgQwxgwC+gKdgUKgEtgGLLbWNrRYkS0rMhjtYNResdUA4ekQkWOKiIiISFs04tvw4bdS337PkuwLRut6IhgTv19rVVAGZYOgerV7nz0JnLjbmsT6fjuOS2nILXUbXNv6FA9MacxkFZjCqOsbaKDB1pMXfpH6bFPQHkoHwn6XQB9wHl+ylW2A4N7obSYf8nLpFM0Mq0jwf2zvEgWjtXbxnnsqjvSnjnSVj3ICEN32Tfx87LLW/fzAMn+ei7Jau75OWG7drujtexWMJiLSZvw3nCyBgLFQTVgoWYxgskT7NtS29Hcvh7FQszF6MFr1atjxTmLDJPpaJ9KE38LO92HnB6lt72bba96OJyKSpXLpXbfKsPv9PRivX9j9Kg/Gy0nGmABwVcTq+xPYdGTE8sokp14VZzyR1ifkEozmFvyVqECCwWgHUryyVyr2Lou+vnykEwQXS5cTmi8HSqP3CyWTxSgiIiIiIiIiIiIiIiIiIiIifjPGtAfCz8pbFXkBTmvtaiDGGfwCWJ+2EREREZHWrv/l8MmtqR+L/cE3YOV90O8yGP0jMHne1tckmWC0ITdkpoZcMuQGWPAD9/aV98Gah6CgHLqfCuPviX5CcGsQOgA7Zru3D/5iSsNWBre6to0qHZ/SmMnKNwWubSEbojCbg9HA+Tv9+Bb39k/vgYFXQcVY/2pKxO7F8O4XoKEuevuAK/ytJ9uVDYQep8HWV2L3m/9l2PISHHU3tB/iT23ivWA1fPB1WP33Q+vyG7P5Y+1rdDkBOo7ObG1eKe4GfS6CDU9Gb9/1EWx6EXqfnfla9i6DUHX0ttIBmZ8/2+Xlw+BrYend0dvf/ixMfhz6XeJvXSIikll7lsJH34OquU4wmQ05X0XC1UcJrFv3GLxzWeJjDLkxtbkDxTD5SXjpaKj1ONbm8YiMivB9RZMHgXYQKIGukxpfew32dn4RER9k6BOIjFjf+NUAY4wxnVMdqHHb8HdJfUwLyjpnAr3DlmuAfyewXeQ7juuj9nK3LmK5szGmImpPkdYi6BKMlu9TMNqWmenNk6iNz8H2N6O3tR8a/0o4kW8EF7hcrNbtjVwRERERERERERERERERERERyRafBz5qvM0Dilq2nJwReWBMSQpjRG7j1cE2fwJGJ3m7wKO5RURERCRdJd1h2pvQ6WhINURpzxJYeBt8+B1vawuXaDDa0f8HA/8nc3XkihHfgzF3uLfbeuf4+5pNsPaf8NrJ0JBE+FwumXWWe9vQr0KnCSkNWxXcHnX9uLLjCJg450h4JD/GPEHrEtqVTUZ+H0bfHrvPK5Oheq0v5STkwEZ4ZZITfOTmyF/6V0+umPwE9PvcoYAsNxufgZdPgIOV/tQl3nvzvOahaOA834SqiZnZf/JzGS3Lcyc8CGWD3NvfPAe2vpbZGhpC8MII9/ayge5tbcm4X8Run30prJ/uTy0iIpJ5BzbDyxNh8/NQW+nsgygUTaKJDLpe/2TioWilA+CYe6H/51Kfv2wAnDYHup4IXr6H0LTv/d998DC2wVlXuwM2znBee9Xu9G5uERGf+PPOqzfmArVAIU442leAn6Q41pc5FAoXAt5Ju7rcdU3E8nRr7e4EtusYsRz9HX4X1tpqY8xBIDzRqRzYlcw4kYwx3YCuSW6maFPxh1swWkGawWh5SRwvunc5dBia3nyx7F4Mb53v3t5hmPO141jY/UmUDgYqIq6WFCiNPlaqVykTEREREREREREREREREREREb90wTneD2C+tVZHWycma4PRrLXbSfJ4QWNM/E4iIiIi4p9OE+DM+dAQhLwCsBaCe2kWYLL017D457HHWfVXGHcX5Lsc752ORILRKsbD0K94P3cuMgbG3A7lo2H2xfH771kCW1+FXmdkvjY/7VkC299ybz8i9b+XquC2qOuHthuT8pjJyjcFrm0hG/StjpQZA2PvgNJ+8N610fuE9jkhS2Pv9LU0V6sfhOAe9/b8Uijq7F89uaKwHCY/6gQ5ffQdWPY79761lbDu3zDs6/7VJ97Y9TFsn5X8dme+n3v/N/ntYOoseKafe5/l/wc9pmauhq2vuLcFiqG4R+bmziV5+TDoGlj9gHuf5b+Hfp/1ryYREcmcNQ9CMJFYDGl5BgIlkF8CecXO/kug2FkXeT8vRlu0vuFjzjySqAG9DbXNl2O9Rol0wZq0vvP/6jAUTnvLCe9zC/Cb0ffwgDOv1O6AdY/ovTQRyTk5E4xmra01xrwNTGtc9R1jzNPW2oXJjGOMGQ18l0PPaO9Ya9tkuo4xpitwXsTq+xPcPPKSDTUplFBD82C0NNOhACf0Ls7lQ0RaSMglGC0/zT/9RK+GBfD8MPh8g/OBUias+7d7W14BdD7Wud/7/OjBaBdXHV5bgcsVYjK1Yy8iIiIiIiIiIiIiIiIiIiIiXmk6e9gCG1uykBwTedZ1UhcLNcaUcXgwms4MEREREZHm8hpDloxxQmzCdRwbf/tQNexdBp3Gx++brESOkS+NEU7SVnUYnnjfnfNbXzBa1Xz3trxCKBuQ0rD1NsTOYGXUts4F3VIaMxUFuR6M1qTDsNjtO9/3p45E7IzxNwXQ/ojMnZ/TGuTlQ+fj4veL9b8r2WvD9OS3MXlQNtj7WvxQ0ssJQwy5nIqc6ceuqhjjtx+qx6JwHYbGbq963wkG1s9MRCT3Vc1r6QpyjHEPGGu6Hy+0LGrfOGMGisHk+/PcGyiKHjpWHxaMZi3smJ3YeMO+6U1d4Zp+NtF0PwU2Pef9nE302ktEclDOBKM1uhsnGM3iBHPNNMZcbK2dm8jGxphjgSeBUpyrUNrGMduqK4Hwd8VXAW8muG1kUpFLLGlMNUBFjDFFWpegSzBaQZrBaA1J/vu9ejKc+CQUZ+ADuF0L3Nu6TTn0gfmoW5w3fLf8x1kOtIOJ/4TCisO3c7uCmILRRERERERERERERERERERERLLdlrD7hS1WRe5ZEbHcP8ntI/vvtNbuSqMeEREREWlrep0D+WXxj9l+eSIc8ycYdLUTduIVG4rfZ+AXvJuvtSgf6YTaRbuIeaRPboXh33Q/Xj+X1B+EFffCh99y79PnQvcTj+PYFazE0hC1rUtBj5TGTEV+nvvL6lAi/zPZovPx0K4fHFgfvX3zizD7MueE8MHXQV7A3/oAdi+CNQ/Cxmdi9+t/mT/15LLe58YOkwJY+y8o7e/8vlMMMBQfhQ44j7mL7kp+255nQmFH72vyQ14A+l0Kq/8evf3ARidwI1Dk/dxbX4OFt7m367GouX6XwoIfuLfXH4CNM6DvRf7VJCIimZFouFW2iRYcFjVkzCVwLK8Y8hMMMQvvm1fQ+oNB81yC0RrqnK/bZ8PyPyQ+Xv/PeVNXwvNdltlgtDUPOq/R+l2cuTlERDyWU8Fo1tqXjTGzgCk4oWa9gLeMMf8E7gPmW2tt+DbGGAMcDdwIfAEnCMw23t621r7o2zeQfb4YsfxA5M8vCalsl+pcIrkplKFgtGg76LHseBteOg6mzXI+OPBKcJ/zAZSbkd87dD+/HUx5EfYsgZpN0OloKOoUfbt8l8zEnR/o6gwiIiIiIiIiIiIiIiIiIiIi2W1R2P2BLVZF7lkasTwkye0HRSwvSaMWEREREWmLCsrgpBnw9mchuMe9X0MtvHctbH8TTnjQu/ltffw+fRRmcRhjYNJjMOts2L8mfv/XToVpb6YcGJYVGoLw+mnxT4g/OokTnyNUBre5tnUuyMAF613kG/fTAIMNQd/qSFteAE56Gv4zwb3P+sec29ZXYPIT/p43smMOvHFG/GDI/pfDsJv9qSmXFbSHE5+G2RdDcK97v8U/g1V/g2lvQYeh/tUnyak/6Dx3VL2X/LYVR8Kxf/G+Jj8ddTdseh5qd0Rv3/Qs9LvE2zlXPQDvXRe7z/AYwaBtUdlAOOGf8G6MEN23PwOTn4R+n/WvLhER8db+DVBbmfr2foWRHdZWqPPiM8ktULy+FtY/Ae98PrH3nEweHHUPdDnO2/ri6X8ZVL0Py/5f5uaYfQmM+hGM+2nm5hAR8VBOBaM1ugz4EOiJE6yVD1zdeNtvjFkG7Gps6wQMBZpSdUzjegNsAC71se6sYow5HhgVtqoe+EcSQ0S+u1uSQhmR28R5xzghfwKeSHKbwUCcS3iIeCDoEoyW73MwGsD+tfDWRXDWh+nNHV7DU93d2zsdAz2mNV9nDHQc5dxiiXUFqj2LoOOYxOsUEREREREREREREREREREREd9Ya5cbYz4BxgJjjTG9rbWbWrquHLAoYnmsMaadtfZAgttPijOeiIiIiEh8PabCZ7bBzvfhlcmx+655CEb+AMpHeDN3vJNUu5+iE4ndlA+H81bA7gVwYLNz8fOVf47et2oebJgBAy7zt0YvbXohfija8G9DceoBZm7BaB0CHSnK8y9ULt8UuLaFbJ1vdXii03g4/V14+YTY/TZMh50fQOej/akLnICueKFokx6D/m32tMTk9TzNeT5Z9FPn5+vm4DZY9js45o/+1SbJ2fhM4qFoJz176H7ZIGcfweRlpi6/FHWCC9bC4y7nus3/irfBaA0h+ORWnFOiXUz4HQSKvJuztRj4P9DnQngixnmbn9wKfT+jfUoRkVy16C73tnE/h25TogecBYohr0iP/62V235RQy0s+kVioWhTXoQuE6Gw3NvaEmHyYMI9MOoHTkBacC/kt8OJxwHqaxrD9QLNt1vzD9jwVOLzLP01DP8mFHX2qnIRkYzJuWA0a+12Y8yZwLPAAA69qjc4AWgTItb9d1MOhaKtBC6w1m73o+YsdW3E8kxr7eYkts/KYLTG32lSv1ejHVfxS8glGK2gBYLRAHZ9BFtfhx6nRm9vqAcbgrqdzhupRV0A6+z011Y5ffIKoKQXvHm+szPtZsxtqdUIUNDRvW3bLAWjiYiIiLSk4F4IlDpXcBQREREREREREREREYnuD8BfcY7d+wmHH7smEay1W8IC5cA51nMy8HKCQ0yJWJ7pUWkiIiIi0tYEiqDrJBhyI6y8L3bfra95F4zWEOdE1dKB3szTWuUFoNME5wbuwWgA217L7WC0ba/H79N+cFpTuAWjdS6IcXH5DCiIGYwW9LESj7Qfmli/ra/6F4xmLWx7I36/bidlvpbWJlAMA6+MHYwGzmOSZK+tCf5+xv0M+pyX2VpaSn47KO4BB7ce3hbaB/W13gWV7V0GNXFO+dU+kbuCMigfBXsWR2/fu9T5PZb09LcuERHxxu6F7m2Dr4Pirv7VItkjz2U/rHqNs28VT1Fn6HWWtzWlorgb9D478f771yUXjNZQ54TM97kg+dpERHyWkxHr1tpFOAFoj3Io7MyG3f7bleaBaA3AQ8Ax1tqlftacTYwxpcDnIlbfn+QweyKWk9o7NMaUcXgw2u4kaxDJLUGXYLT8FgpGA3h9Krx3vfOma7gNM+DRfHisGJ7uBc/0g8fbOVe0eKIDPDvQuc3oA4/kwdZXYs9T0iv1Grud6N4W7yo8IiIiIpIZ+1bBS8fBEx3hqW6w8CfOAUEiIiIiIiIiIiIiIiIRrLX3Ay/gHMN3tTHmey1cUq54OmL5i4lsZIwZDhwXtmo/iQeqiYiIiIhE1zuBcJMPvg7b3vTmOCIbJxgtkXrE0X0K5Je6t6/6m3MCbS6yDbDmoTidDPQ6J61pqlyD0bqlNW6y8ghgXE4FDNmQr7V4oqgTdJkYv9+in8CBOMFAXrAWNkyH+prY/TodAyU9Ml9Pa9T+COgwLHafvctg6T1QOVfHpWajyjmJ9etzUWbraGkdx0RfX38wscDORG1/M3Z7fqnzPC/u4u0zfvxjqF7rSykiIuKh4D6omuverlC0tiuvMPr6RXcmtn2fC72rxU+9U3jfY/XfYfHPYfVDULPF+5pERDySk8FoANbaXdbay4GRwP8DmmJdTcQN4GPgbmCYtfZqa21kqFdbcwkQnsS0DXg+yTFWRCz3T3L7yP47rbW7khxDJHdY61z1IZqCNIPRGtIIRgPng8wPv3loec+n8LbHb0CXJvsQEaaos3tbOqFwIiIiIpKahiC8NgWq5gEW6nbCupZEtwAAIABJREFUwtthxb0tXZmIiIiIiIiIiIiIiGSvz+MEfRngF8aYl4wxp7RwTdnuYSA8DeIzxpgjEtju+xHLj1trdZCNiIiIiKSn5xnQ/7I4naxzXNG7V6YfZhMrGK3vxamd8NlWFbSHCb+L3ef54bDxGX/q8Up9Lcz+HATjnCI29idQ2i+tqSpdgtG6FPgbjmWMId/kR20L2qCvtXhm/D1Q2Cl2n/oaeGEEbHsjc3U0hJzHrtmXxO5X0BEm/L/M1dHaGQMT/hA7rBHgo2/DyyfA/JucAETJDtvegD2L4/cb+X0oH5H5elrSMTGOmZ51NlSvTn+Ojc/C+19xbzd5zvN7uucltnbDboaO49zbVz/g7AdteMq/mkREJD3Va+H5GPsaY+/yrRTJQoGi1LfNL4VRP/KuFj+VDYQxdyS3zcZn4OMfwdyrnP+pbXFCeUVEWkj0d0NziLV2OfBtAGNMGdAdaErRqQS2WWv3t1B52eraiOWHrE360iBLI5aHJLn9oIjlJUluL5Jb6mvc34zPT/MNyMIKOLg9etu5y+CTH8P6J2KPseJeGHIjVIyDpb9Or55IHUbEDjdLRI/TYWuUC9c21KY3roiIiIgkb/tbcGDj4evX/RuGftn/ekREREREREREREREJKsZYx5ovLsX2IdzUc9pwDRjzD6cC59ub2xLlLXWRh4H16pYa1cYYx4ErmlcVQj8wxgz1S3ozBhzAXB12Ko6IMFLoIuIiIiIxJCXDxMfhoFXw6wzY/dd+y/oMQ0GXZX6fG7BaKUDYPJjThiIJG7wtXBgMyy8LXp7/UF473roeRYECv2tLVXrn4QNT7q3l4+E4x6ALselPVWVSzBa54JuaY+drHxTQNDWHbY+FGVdTuhyHJz9CWx+IXYIVnAvvHcDnLfcCdfy2qbnnceuWI65F3qdA6V9vZ+/Lel5Gpy9EFb/HRbFCa1YeR/0uwR6TPWnNnFnLcyN81Zcnwtg+Heg22R/ampJ7QdD52MbLzIdxce3wqSHUx+/IQjvXRe7z5kfQcXY1OdoK0q6w2mz4YkY52821MK8G5zH+HTCVERExB+f3Ao1m9zb+3/ev1ok++Sl8FxeMd5536T/ZVAUJ7g7m4253bmwwbbXAQPdp0JxF3h2cPxtg3tg/o1wztLMvOYWEUlDzgSjGWN6AMeGrZptrd0Z3sdaWw1UA6v8rC2XGGOGApHvLt2fwlCLIpbHGmPaWWsPJLj9pDjjibQuwRjHbaZ7ZYZxP4/+ZueAL0CHoTD5cXjxSNj9cexxZh6ZXh1uTvTgigmB4ujr63UxWxERERHfLb07+vod7/hbh4iIiIiIiIiIiIiI5IqrARu2bIGmI6o7cPjxbPGYxjFaNBjNGNOH6Mdg9ohYzjfGDHAZptpaWxljmtuBi4CKxuWJwKvGmOustZ+G1VIE3AD8JmL731hr18UYX0REREQkcSYPep0Bx/4V5l0fu++iu2DAFU6gWircgtF6n6tQtFT1Od89GA2gdgdUvgvdT/avpnRsnBG7/Zj7PAlFO9hQQ3X93qhtXQojX/5lXoEpoCbK+pAN+l6LZ9r1hiE3QFEXePuz7v2qV8KexdBxtPc1bHw6dnvHsXDEl7yft60qGwhj7oSlv45/XtCGpxWMlg32LIH9a9zbz/oIKjJ0Xlq26nOBezDaxhlOmFyqoRI75jjPy24GXqVQtGQUlEHv82HTs+59aqtgx2w93oiIZDtrY78WNHlQ2s+/eiT75CUZ9t7rXJjyXGZqaQldjndu4cbe5QQKxrN3Gez9FMpHZKY2EZEU5dKnAZ8Bnm68PQzUtmw5OeuaiOXZ1tplyQ5ird0CfBK2Kp/kDlCbErE8M9kaRHJKKIPBaL3OhvwoYwy44tD9oV9Jb45UDf8WlA9PfxzXYDQ9FYiIiIj4rm5n/D4iIiIiIiIiIiIiIiKx2bBbrpoNrIlyeySiX2+XfmsAlyvSOKy1G3GOnawLWz0JWGKMmW+MecwY8x9gA/B7oCCs3/NAAke5i4iIiIgkqdtJ8ftUr3ICb7a/7dx2LYCGUOJzWJe+JpD4GNJchxFQ1DV2nw3Tk/s9tZSG+tgnw+eXeRbQU1m3zbWtS0E3T+ZIRr4piLo+5PY/k0u6TIz/P775BecxZf9652911ydQ+R7U7Up93oOVsOah2H0SedyT5BgDXRP4ua75B+xeBLYh4yVJhIYQ7F4IwWrY+YF7v8IK6DDSv7qyRa+z3dvqD8Cm552LTtftTn7sne/Hbu+WIyGm2SSRn9nWVw49x4iISHaq3QGhavf2LhMhL/prJmkjAkXJ9W8Lr/WS2XesXpW5OkREUpRLwWgdca70aID51tr9LVxPzjHGBIArI1bfn8aQkZfD+GKCdQwHwi+7sh94OY06RLJf6IB7W6A0vbFLesKpL0P5qEPLx93vXI2ryaBrYNzP05snWd2meDdnnssLkYY4V4YREREREW80hGDRT+GlE9yvbgbO1VdEREREREREREREREQOZzy8tSnW2lnARcCOsNUGOBq4FDgDiEw3eAS4zFpb70eNIiIiItLGdBgK/S+P3+/jH8KrJzm3mUfBU91g80uJzbF3WfT1Jj/xOqW5QCGM/nHsPsv/ANO7wuaZ/tSUiu1vwdM93cPzAEZ8DwrKPJmuMrg16vo8AnTM7+LJHMlwC0YL2qDPlWRASQ844iux+yz4gfOY8kx/eLQAZo6Dl4+HJzvB3GugIYmfQ6gGZl8GT8UJDCzqAkO/lvi4krhRP3A/X6hJaD+8OAZm9IWq+f7UJbDxOZjeBV4cC0+0h7lXufcdfZvzHNPWVBwJ3ae6t791Prwy2Xl8mndTYsGjDUF473r46DvufcpHQb9Lkq+3rRt4JZQNit1nyS8PPcf851ioib4PICIiLWjhHbHbR/3IlzIki8V7fRGudAAMirGf21p0nQw9piXW983zYO/yzNYjIpKkXApG29n41QJbWrKQHHY20DNseR/wRBrjPQyEHzj1GWPMEQls9/2I5cettUo3ktatvsa9Lb8k/fG7HA/nLIKLd8GFm2DwNc3b8wIw6ha43PpzVYgep8G0N5JPVnYTKI6+vl4PHSIiIiK+mPtF+ORWqJobu1+s/V4REREREREREREREWmrBmbgFucsttbFWvsiMBr4M7ArRte5wMXW2st18VkRERERyagTHoIJv4de5ya+Td0ueOs8OLg9dj9rYZ/LSZgmkPh8crhhX4cTn4rdJ7gb3roAarb5U1Mygnth1tlQu8O9z5AvwZhbPZuyKhj977VTQRcCLfD36BaMFmoNwWgAE34Lx/41tW1X/x2W3p14/0V3wvrHYvfpMBxOf9cJhBTvdT8Fpr0Fg6+P37dmM8w6S+cR+eHAJnj7IgjuSaz/8JszW082OyWRwFcLK/8My34fv+un98Cqv8Xuc9psz8I/25TiLs7j+cjIU5td7JwP71yW2ZpERCQ5uxbAinvd26e9Db3O9K8eyU55CQT2lg2CEd919g2Ku2W+ppZmDJz8PBz5v9DzTOhyAhR0dO//1gXOe3MiIlkil4LRwsPQSlusitx2bcTyo+kc/GStXQE8GLaqEPiHMcYlwQiMMRcAV4etqgPuTLUGkZwRKyAi4EEwWpPCjs4Oaiz9fXhT7uRnvR3PLWCtvtbbeURERETkcPvXwdqHE+sb0vk1IiIiIiIiIiIiIiLSnLV2XSZuWfB9DbDWmjRvVycx33Zr7U1AD+BU4IvALcDXgc8Cg6y1J1hrp2fi+xURERERaSYvAMO+BlOeg/NWgEnw9KSGIKx/InafXQvc2xSMlr6+FzknAMeSyO+pJWx8Nv4xaqN+6OmUlcGtUdd3Kejh6TyJys9zCUZraCXBaMbAkOtg8HWpbZ/osY6J9j3pWWg/JLVaJDFdjoXj/gJnzIvft7YKtryc+ZraunWPga1PrO+AL2S2lmyXF4Dy0Yn1TeQxJ16fEd91zh2U1BR3cwJBRt6SWP/tb8HBGGGsIiLir1jPk+WjoNtk/2qR7OWWR9AkrwDOXQ5H/QpKWuZ1fYsIFDkBsafMhNPnQJ8L3Pvu/RR2fehfbSIiceRSMNpHQFO0pC6zkCRjTHfgnIjVceLjE3I7za9AORF41RgzPGL+ImPM14DIT0Z+kw0HqYlknFswWl5h4h8Ce2XgldBxbOL985PIoiwbBBdugIBrPmJq3MbTlV5EREREMqt6LXz0fQ69HI9DwWgiIiIiIiIiIiIiIiIZZa2ts9a+Ya39h7X2f621f7DWPmWtXdPStYmIiIhIG9V+CPS/PPH+e5aCbTweyUY5LmnvUvdty0cmV5tEVzE+fp+9jb+naL+jlrJnSez24m5Q0svTKauC26Ou71zQzdN5ElVgXILRbCsJRmvSKYG/0Wj2LIaG0KG/XbdbcB8c2Bh7rMIKKO2fWh2SvA7DIVASv1+s5wjxxpJfJN6301GZqyNXVCT4M9j7KdgG98elhnrYuyzOXCk+NkpzCT/HWKjZnNFSREQkTLTnx3B7YuwH6jlSmuTFCUbrOM4Jt23r4u0Pxfp/ExHxWX5LF5Aoa+16Y8xc4ARgmDFmqLV2eUvXlUOuovnve5G1NoFLKcRmrd1ojPkM8BJQ2Lh6ErDEGPMBsBooB8YDXSM2fx64Nd0aRHKCWzBaIm/aey2/HZwxH1bcCx/e7N6v36XQ6yzoMAJePj56n/KRcNRvYNvrUNzDuTJPQQfva3Z7IdJQ6/1cIiIiIuJ8gLDop7DoDudD+EQpGE1EREREREREREREREREREREpO0ZeydsfAZC++L3XfFHWH2/c5HsQAm06wtHfAmG3QzGQHWMzN+eZ3pXc1vW90Io6Q01m9z7rPiTcwPnvIFh34AhN/hTX6Rts2DBLVA1N3a/ITd5foJzZXBr1PWdC7p7Ok+i8l2C0YKtLRit/2Xw8Y+gblfy2z4a/WeUtMHXQ6Awfj/xRkF7GHgVrPxz7H4LfuAE2425U4EGXqs/CB/cDLWVifUvKE8uGLW1OuJGWPdw/OOt6w/AI2n8zZb0gj4XpL69HNL7PGf/88CG+H1nHgkTH4EBl2W+LhGRtmrFfTD/S4evD5RA10kw5iew9Few+QX3MVrqtapkn7w4r+GO+LI/dWS7/pfDJ7dBcE/09ne/AAvvhCHXw4jvOu/XiYi0kLyWLiBJv3a5L/F9MWL5fq8GttbOAi4CdoStNsDRwKXAGRweivYIcJm1tt6rOkSyWiiLgtHA+XBm+Dfgwk1QOuDw9pOegcmPwaCrIb/MfRxrodeZcNSvYMS3MhOKBhAojr6+/mBm5hMRbwX3wsq/wUffg43PJRewIyIiLaPyXVh4W/KP2aHqzNQjIiIiIiIiIiIiIiIiIiIiIiLZq2wQnPISdD4eTH78/k3HgdfXwL7l8OG3YNnvnXX710bfpv1QKO7iSbltXqAYTn8Hep6VWP89S2DejbDq75mtK5pdH8Mbp8cPRRvzExhzm6dTW2upCm6P2taloIencyXKLRgt1NqC0Qor4LQ50H2q+/kkmVLSG0b9GMb93N95BY7+PQz/tvM7iGXxz+DjH/hTU1vy7lWw8r7E+lYcBafNhpKWCYnMKl0nwUnPQqcJYDJ0unbn4+C0dyC/hc5DbG0CRc7fb6+zIb80fv85n4dNz2e+LhGRtmjV/dFD0cB5v2Drq/DKRNg4w32MAVdAt8mZqU9yT6DIva24GwyOjFxpo4q7OPuXsVSvhAXfh6WK9RGRlpVTwWjW2hnAAzihW+caY/5oTCKfmLRtxphJwPCwVXXAv7ycw1r7IjAa+DMQ63Icc4GLrbWXW2v3e1mDSFarz7JgtCbtesF5K+HU12DkLTDpMfhsFfQ5/1CfmG+a2oyXCCgYTSSXHdwOr0yGedc7L4DfOh/eu07haCIi2W7tv1PbLqSXeSIiIiIiIiIiIiIiIiIiIiIibVLXE+CMd+GyWrgsBBMfTm77FX90vlavid7e84z06pPmSvvDKS/CxEcS36bpd+SnVX+DhjihX8feB2Nu9TyQZm/9boK2Lmpbl4Juns6VqDYTjAZQPhymvgqX7nceU3qemfk52/WDizbCuLsgL5D5+aS5vAIYfzdcuAHG/SJ235V/hfpaf+pqC2q2wvrHE+tbUA5nfQgdR2e2plzS+xw48324LOjcAu28Gzu/PZz+LpQN8G5MgdJ+MOUFuGSv8xwT7xzPFff6U5eISFuz/E/pjzH0q+mPIa1HXqF727j/9a+OXNBxFAz7Rvx+y/8I1qc8CRGRKHIxVOxGYB/wDeBLwMnGmN8Az1prq1q0sixlrX0HJ0wu0/NsB24yxnwDmAT0B3oA+4FNwEfWWpdPqERaObdgtGy4UkNeAHqc6tyiifnGnk87snkuCc0N+hBDJOutuA92L2y+bvXfYcgN0OX4lqlJRETi2/xiatspGE1ERERERERERHZ9Aot/DrWV0OkoGHNHYldbFxERERERERGR1sHkOWewlI9Mbrt9KyBYDftdTjspG5h2aRJFMr+nXR9DQ72/gVE7P4jfp8PwjExdGdzm2taloEdG5oynoC0FozVpekzpMBy2/Cezc5WPyuz4khhj4oduBffA/rXQYZgvJbV6299MvG+HEZmrI9eZPOfWYRjs+sibMctHOP8TkhlNzzFu53422fmhL+WIiLQpDSHYlebjq8mD9kd4U4+0Du36urdl6L2DnPb/2bvv8Diqe//j76Nmyb33XrCNbYwNphubTiB0QighIZWUm/IjJIGEm5BcEkKSG0hCSGghhBog9GqqaTaYYoptjLstNxV3SZa02vP7Y6SrlTWzO7s7O7srfV7Ps49Wc86c+dqWV7M7cz7Hz99J7Xpo2AZd+mW+HhERF3kVjGaMeSnm291AD2B/4Lbm9nKgornNL2utPS6wIgVrbQPwcrbrEMkpXh+OJVpNIBfkQo2Fpe7bm/aGW4eIJO+jn7tvX/+QgtFERHKZ182FiSgYTURyQbQJbAQKPUK2RUREREREJHN2rYB5h7Zex9v6Imx9GU5627khVUREOiVjzBcDHM7i3B+4E9gCfGKtlqgWEREREclJvac7oVs7l/rf58Ee3m3dFIyWEb2nQa+psPPjxH1tBJ4/AgpiwrmKusOA2TDp/0FR1+DqqnzDWYy5akH8fl1HQv8jgztujGqPYLQuppRuhXF+VjOoyLhPBWzsyMFoLUZfCMtvyPAxLsrs+OLf4BOgS39nERYvT06CCd9yFm3vc2B4tXU0lQvgjfP999f/k8RGXxRcMJr+vnPD3i3w2rkw7qsw9DPZrkZE8pmNwqp/wKanYceHsGdVa9u4rzsLz3UdmrXyQpXMZwVehnxGYU3S1tBT4f3LwTa13d59HPQ/NDs15bIR58C734doQ/x+1e/A0JPCqUlEZB95FYwGzMW5samFxcnjbok8H9H88Hujk0mir4hI6jpqMFpY95UWeExmj9aHc3wRCd6q22HmH7JdhYiI7MtaWHNX6vs3KRhNRLIo2gjvXQ5r/ulMwB9yEhx2hy52ioiIiIiIhGnxT9ovbrTtXdj8nCYJiIh0bv8kc/fp1RhjFgF3Av+21upmEhERERGRXGEMzH4E5p8Guz9Nf7zuo9MfQ9ozBo5+BOZ/FnYtT9y/+u322zY/B5ueguNfhYIApqptfBJePcsJYoun22iY8zgUFKZ/TBdVDVtct/cvGYwxxrUt04pMiev2SGcIRus3Cw65Bd75bvBzSUwhTP6xE74muaGwC8x9Gl49E+o2efdb8TdY8y849gUt3J6KzfOc39O+GJjwbSeMTuKb+D3nd+qq20j9Y1EDE77p/J1LbtjwH+dx6O0w7ivZrkZE8tU734UVN7m3rboVNjwEpy6BsiHh1hW2SB08Mz39cQ77R/pjSMfScwIc9QAsuAQiu51t3cfBnCe0oKOb0gFw9ONOUHLjDu9+r5wM526Dkj7h1SYi0izfgtHcKNhMRHJfPgejFbhfOHOE9BJcWOq+vbY8nOOLSGps1LutpHd4dYiIiH+b58HCL6W+f+Oe4GoREfHDWmelrF2fwuIfw84lrW0bn4DXzoHjX8laeSIiIiIiIp1Kw04of8S9besrCkYTERFoXQA1SN1xFlydC1xrjPmytXZeBo4jIiIiIiKp6LkffPYTJxjttXPaXtdPVrcxwdUlbfUYD6cug90roG6zs+3VM+NPit1X1QLY9AwM9xuwE8fH1yQORTv6MRh2mhPsliHVjRWu2/sVD8zYMRMpMsWu2ztFMBrA+K/DmIth+wfOIh0FRYBxfl5sivNbCoqg9wFQ3CPQUiUA/WbBmRvgwZ4QibNwb6QGlv4Ojn44vNo6io+vgWhD4n7Hvwq9p2keiF8FxXDoLXDgb51zn5a5NW99DfasdN/n2Oeh5TXeFEDvqQqeyFUf/wrGXqJwFRFJXt1W71C0Fg3bYdXtMPWqcGrKlg0BnLeZIijN3nszyWEjzoZhp8P2xVDUHXpOzOhnB3lv6ElwTiXs+Aienendb809MPG/wqtLRKRZPgaj6beOiOSfSB4Ho8U72Y8XehQkr2A0gI/+x3mTrzclIrln5S3ebbogJiKSmz79S3r7N8W58UREJGhN9c6NQmvv9u5TMd8JTeu5X3h1iYiIiIiIdFYf/ty7bcPDMOO68GoREZFcFHtjh/XYvq99ZzS79bUxbUOAZ4wx37PW/jX5EkVEREREJCOMcSahjv0KvP/D1MYo7AolvYKtS9oyxrm/ouUeix7jYds7yY1RMT/9YLRIHVS/Fb+PKYQhJ2V8DkFV4xbX7f2LB2f0uPEUGfepgJFoJwlGA2d+Sf9Ds12FhMUUOKEG6+6L36/ilVDK6VCaGqDqjcT9xn0NBs7OfD0dUZe+bf/uDvglvHlR+36lg2Hw8eHVJempWec8uiu0V0SSVP22v34rb+74wWhBnLsd8Mv0x5COq6AI+h2c7SryR0ER9J0BQz4Dm59x71MxX8FoIpIVeRWMZq1VhLaI5KemPA5GiyvFFXWS1WWAd9tHP4chJ0D/w8KpRUT8qd8Gi77l3V6sm1NERHLGjiVQ/ijsrYBNT/nbp+9BsO3d9tvjrcgnIhK0VbfFD0VrsXmegtFEREREREQybfdKWHFjnA4hLbgkIiK56svNX3sAPwf64QSZRYGFwCJgPbALKAH6AtOA2UDLbHML/Bt4FigDegP7N/cZRduAtOuNMcustS9l9E8lIiIiIiLJGX566sFopQODrUUSG3FW8sFom5+BxcWwaxlsfRlK+sGwU2HYaU7gi0kwLSzaCCt85FwPPQUKuyRXWwqqGytct/crzt7PY3FBsev2RtuJgtGk8xl+RuJgtIbtUP4EDP2MM6lfWkXqnNfn3Sug22ho3AUbHoHqhWB9XL8ZfmbGS+w0hpwMBV0gWt92u/6O88+u5QpGE5HkRff661dbDouvhB4TnPc+ZdkLZs6Y3SvTH0O/P0WCN+JM72C0DQ/B4p9Crykw7BQo6RNubSLSaelTHhGRMKy61X17Uddw6wiaDSkYre8MKOrmHbSx5m4Fo4nkmvLH4rcXdQunDhERiW/Do/DGec4NZX7Nfbb55jMFo4lIlq2911+/mrUZLUNERERERERw3qPFmzxTsxaa6kOZrCgiIrnHWnunMWYC8DhOKBrArcA11toNXvsZYwqAM4A/AGOAzwHLrLW/2qffKcCfgHE4AWlFwP8CMwL+o4iIiIiISDp6jIfpv4YPfpb8vof9I/h6JL4J34ZNz0Lla/732bnUebRo3AWf3ug8Rl0Ah98FBYXu+0Zq4dUzYcvz8Y/RdSQceJ3/mlIUsY1sj1S5tvUvHpTx43spMiWu2yMKRpOObPhZMPI8WP9A/H6vng6jLoQj7kocxNhZNGyHl09xQtBSMfYSJ8xLgtGlLxx8Iyy6tPW6Wq+pMPWq7NYlyXvlM/C53VDcPduViEg+iUb89136W+dr6SA45jnoMz0zNWVDUz1UvJLeGFP/G3rtH0g5IhJj9Bfg7Uu925de63ztPg6OfV5BsSISCgWjiYhkWuMe77bCsvDqyIiQgtEKS2HAbNj8rHv7ir/CrHgr0ItI6FbcFL+9yecKByIikjk2Cu9+N4lQNAOzboKhJ8Gaf7p3UTCaiISp6k1//eo2ZrYOERERERERSbxgio3C7hXQe2o49YiISE4xxnQFHgUmAo3AxdbaBDNZwVobBR4xxswDngGOAn5hjFlvrf1nTL+njTGvAa8ABzZvPsAYc4K1NsGMehERERERCdWUn8LQU+HlE2Fvhf/9+h+RuZrEXUlvZ5Lr1ldg+3tgm1rbdnyUOKBoX+vucybYDjvFvX3tPYlD0Y56AAYfDyV9kjt2CrY1VmE95kv0Lx6c8eN7KTLFrtsVjCYdWmEJHHkf7PcdqHwTPrjSu++6e6H/oTDxe+HVl8tW/C21ULTRF8P4b8CAI8GY4OvqzMZ/DQbOhq0vQ9lQGHSswrXy1Zo7ndclERG/fM/dibF3Kyz+CRzjMbc6H8V7Lzn6YjjkZifcdcvzUNu8vlK0AXZ8CF1HwNivQF+tjSSSEUVd4dgX4KXj4/fbswo+vgYOuz2cukSkU1MwmohIpsVbIam4R3h1ZMLgBCe2QSrL3sVDEUnSugdg2zvx+yg4R0Qk+3Yth9pyf30PuAamXNm6gl6RxwX4SJxQYBGRINVX+++7c5l3W7TJuXAKzs1FhaXp1SUiIiIiItIZ1WxwJkYmsmuZgtFERDqvXwGTcVbgu85PKFosa22NMeZs4BOgL3CjMeYpa21lTJ/dxphzm/u03Bd5IqBgNBERERGRXNNnOhx6B8w/1V//siFQ2CWzNYm7wi7OQppDT2q7veK15IPRADY+5h2MtvGJ+PsOOApGfi75Y6aoqnGLZ1u/4oGh1bGvIuM+FTBiIyFXIhIyUwADj3Yeq26FPau9+y65FsZ9HYrKwqsvV5U/nvw+A46CI/4VfC3SqudE5yG5o88M2P64iqP7AAAgAElEQVR+cvuUP65gNBFJTqphxpvnQaSu45zbxHvvN/ky589ZVAZjvxReTSLSqsd4f/02PgYoGE1EMq8g2wWIiHR4W1/ybhtwdHh1pGPi9z22h7iCSkm/+O0168OpQ0QSW/KbxH0UjCYikn3Vb/nvO+WnraFoAEXd3Pvp9V1EwrLrU/99d3wAD/aGxVdAU4OzrakB3v4W/KcvPDzAeTzYE148zpnQLyIiIiIiIv6VP+bdVlAMw06HyT+GHhPCq0lERHKGMaYI+GLzt/XAdamMY62tAm5u/rYMuNClzxrgQcA0bzoylWOJiIiIiEgIBh7tfQ/SvgYdm9laJHl9D4KiFBaJX3mL83nirhWwcylseBQ2PAIbn4KdS+LvO+i41GpNUXVjhev2noV9KCnIXlBfsSl23R6xDSFXIpJFiX4v7N0Cr57uvMZsfh4ad4dTV7ZE6qDyTajbAnsrYdNzzmvrhkeSu1e4hX7vSmc0+cfu23tO8t5nyzznHGb3SrA2M3WJSMcSTTEYDQtr74FNz0Ld1kBLyoqqBd5tvaaEV4eIuOs6ErqPS9yvvho2POycD218CioXtM7XEREJkPsyESIiEgwbhWV/8G4ffHx4taRj4vedD8RrY8LHxl4CvUJc0b1L//jtzx0KZ28OpxYR8daw3QmeSKSpNvO1iIhIe9Em53U62ggLv5y4f0lfOPYFMKbtdgWjiUi21W1Mrn/jTlh6nXOh5aA/wns/gJV/b9sn2uiEmz93MJy5CSK7Ydu7zgXWssHB1S4iIiIiItLRbPQIRus5ET77Sbi1iIhILjoK6A9Y4G1rbToXE+YBVzY/PxP4k0uf53BC0wwwPI1jiYiIiIhIJhV3hylXwQdXxu9X0gcm/yicmsS/oq4w7efwfgr/Nq+emfw+3UbB+K8nv18aqhq3uG7vVzww1Dr2VeQRjNZoUw1ZEMlDky6D8kehvsq7z5YXnEeLQ26G8d/IfG1h2/AwvPkFaKoLZrxuo2H8pcGMJZJPhp8G/Q6D6oWt23pOhjlPwBPjvfeb/1nn68A5MPth6NI3s3WKSH6LRlLf9+2Y90MTvg0H/RkKCtOvKUzRRnj7Uqgtd2/ve7Cz+J6IZJcxcMD/wIIvODkZ8bx2TtvvS/rA7Edg0JzM1ScinU7eB6MZYw4ETgdmA+OAvkAPwFpr2/35jDG9gZ7N39ZbaztANK6I5Kyqhd5t474OhSXh1ZKO7mPgxAWw7j5nFYOBc2DUee0DMjIp0Ypge7c4b4i76p5WkazatdxfPwXniIiEr2YdvHJq4pU1W0y6DPb7DnQf276tqLv7Pnp9F5Gw1Fentt/y62HcV2H1nd599lbA/cXOe96WCzmTfggzfh/u+2AREREREZF80LADtr7i3jbyvFBLERGRnDUy5vmmNMeKXTFvlEefZTHP+6R5PBERERERyaQpV0CvybDmbtjwkLOIY8M2p633NBh6Coz9CvTcL7t1irvJl0OPiVD+CNQ2L3C3ZV7wxxl8Ahz+r9AXtatudJ9u1r84u4vrFRn3OSgRm0bIgki+6TUZTnoLVt4KS3/rb5+3L4X+hzu/XzqKus3w+nlgm4IZb+ovYMI3tYiodE5F3eDYebDyFqh+G/pMh3HfgNL+cNzL8OIx8fevmO8Exh52ezj1ikh+ShhmbHDWGUpgxU3Qd6ZzT3w+WfE3WH2Hd/uBPs/rRCTzRl8AZUNh3f2w+1PY+pK//Rq2w6tnwFmbnFB9EZEA5G0wmjFmGnA9EPuO0s/MxGOAh5qf1xhjBltra4OuT0QEa+GT673b+80Kr5YgdB0Kk3+YxQJ8vMRveib0laBEZB+bnvXXT8E5IiLhe+sb/kPRxn4ZZv6vd7tXaG1kT/J1iYikoiHFYDSAp6f66GSd9/UtPvlf6H8ojPxc6scVERERERHpaHYua55w4zHhbviZ4dYjIiK5akjM8wSr4iXUcve0AbxmaG6Ped4lzeOJiIiIiEimDT/DeUh+Gn6a82hxbwYWnDvsjqyE9FQ1eASjlQwMuZK2ioz7VMBIwpAFkQ6m+1g48FqY+H14fCw01SXeZ939HSsYbf1/ggtFm/wjOODqYMYSyVfFPdznTvaZ4W//9f+GQ26BgsJg6xKRjiPqcc7e92A4eZHz/LnDoXph4rHW3pd/wWjr7o/f3n1MOHWIiD+D5jgPgMfGQM1af/s17oTNz8KIszNWmoh0LgXZLiAVxphLgIU4IWf7fmqeKAr3MWB9837dgHOCrk9EBGvhra86K1d50QrpySkblLhPtCHzdYiIt/LH4eNf+usbqWkbNCEiIplVvw22PO+//+QfxW/3DEZT8KWIhKQ+jWC0VJU/Fv4xRUREREREctWKm+GpKbDzY/f2riP8TxIQEZGOblfM8/3THGtKzHOv1VpKY577mBErIiIiIiIigRlxbrDjlQ1xHllQ3Vjhur1/cfghbbGKTbHr9ojVXArppMoGw4Rv+eu75DfQuAua6jNbU9AitU7d0Sbna8tj2e+CO0bQr98iHUlJL+g+PnG/SA3s3Zz5ekQkf3ktOhcbftzvYH9j7fqk9ZwgGlBQaiZFI7DjI+/2LgOg68jw6hGR5PSblVz/6kXO+xgRkQDkXTCaMeYc4HagLHYzsAFYTPugtDastVHg3zGbTg+6RhERqhbA6ju82wuKnQ/FxL/Bxzt/b/EUdo3fLpKrmvbCh7+AF4+FhV+Gbe9mu6LkRWrh1WRW7LNO8reIiIRj51IS54jH6DU5fnuhgtFEJMsatoV/zLX3hH9MERERERGRXFS3Bd6/nLifNw07HUzc2zdERKTzKG/+aoCxxphD0xjr4uavNmbcfQ2O6VOZxrFEREREREQkWft9O+Dxvgsm/KlvdU011ER3u7b1Kx4YcjVtFXkGo0WwWrRaOqspP/UXWgTwYC94sAe8MAd2rchsXena9Aw8NRUe6ObUfX9Rc/3Nj9oNwRyn32HJBx2IdDYTv++v3+o7M1uHiOS3aKP79th50+O+DoWl7v1i1W1sPSf4Tz9nTmouhhBVLYR/l8H9xRDxWvMI2O87UFDk3S4i2TXhO2AK/fdf+lvnfcwTE6H88czVJSKdQl4FoxljhgAt7wxbPq29CRhnrR0NnO1zqMdahgTmBFagiEiLTc/Ebx/ymXDq6EhK+sCYL8bvkyg4TSQXWQsvnwQf/wq2vgyr/+lcZKt+J9uVJefJScnvU18dfB0iIuIumdWnxl+auE9xd/ftEfebwUREAqdzSRERERERkezZ8HD8G1YBhiezmIqIiHRw84FGnPv9DHCTMSbple+MMZ8HTqT1vsHnPbrOjHm+NtnjiIiIiIiISBoGHQNznkpvjMKu0Hs6zPwj7H9FMHUlqapxq2dbv+JBIVbSXlFBiWdbxEZCrEQkh3TpB8fOg9EX+esfbYSKV+GFo3IzQARg23sw/zTYuSSzxxn3VTj2OS12I5LIxP+CWTdBn5nOuYqXD6+CXZ+GV5eI5Bc/wWh9DoBjX4BBx0FxL38haY07nTmpCxLMvw5bzXqYdzg07Y3fb8K3YOrPw6lJRFIzaA7MeRIGHg1FPZzzocKuYBIEGu7+FF49I//my4tITsm36NSfAy3vGpuA8621/4lp97u0xSKcm62KgX7GmDHW2jXBlSkind6Sa+K3l/QOp46OZtbfYdXt3u01a0MrRSQwFfOdi2qxIjXw6Y1w+D+zUlLSdq9KbbWh+mroMS74ekREpL09SbzlHXpq4j7Fvdy3N+2Fpnoo7OL/eCIiqVAwmoiIiIiISPYs+U389uKeMFBr1ImIiMNau8sY8yRwFs79fQcCzxljLrTW+rrQbIz5GnAjreFqUeBuj+4nxTz/IOXCRUREREREJDXDToEL95neda/PwJ1Dbobx3wi+piRVN1a4bi+gkD5F/UKupq3iOJOOI7aRYrTYvHRS3cfAEXdDnwPh/R/522dvBZQ/BqMvyGxtqVj1D7BNwY139OMw/LTgxhPpjCZ8y3kAPDMDti9277f6n3BgguupItI5+QlGAxhwJBz3gvM8UgsPdPM3fvkjULcVyrIb5vx/1tzlo5OBmTcopFUkHww92XnEWvZHeP+Hiff95Ho48p7M1CUiHV5BtgvwyxhTCFyAc3OTBa7bJxTNN2ttBPgkZtOk9CsUEYmRKIW7WMFoKSlIkOf54X+D9ZuRKZIjPv2L+/Y1d4ZbR4umvVD1Nuz4KP7/JxuFbe87KxF9dHVqx6qvSm0/ERFJXjIBskNOTNwnXtBv407/xxIRSVXjjuwcd+OT2TmuiIiIiIhIrmjcA3Ub4/cZegoUloRTj4iI5IvLgdjl4I8Elhpj/maMOdYY03PfHYwx+xljLjXGLAJuBkpwQtEscLu19iOXfUYAc2ldYPW1YP8YIiIiIiIikpIBs/31G3RsZuvwqapxi+v2fsUDKDCFIVfTVpHxDj6LWI+gBZHOZMjJifvE8go2yrYdQeb9G+g3K8DxRISe+3u3Bfr/V0Q6FBtx3x4n/JiirtBtjM/xo7BzSfJ1ZcrS3ybu02O87i8RyWe94pwTxdr6kvIfRCRlCRJmcsphQMsNUA3A79IcrxyY1vx8RJpjiYi0VdTDCRfyEi9IQtJTvQj6H5LtKkT82/BwtitoVfkGvPmF1vCcwcfDUQ9ASZ+2/Wo3wssnpf9BWUN1evuLiIh/e9b663f6Kijskrjfvr8bYjVsh9KB/o4nIpKqSE3iPtN+BR/9PNjjfnoTDPtssGOKiIiIiIjkk/d/lLjP8DMzX4eIiOQVa+0aY8xXgLtwFnO1QDfgG80PjDG7gN04AWi9mr+CE4ZG8z4GeAu4zONQV9C6WOxe4PlA/yAiIiIiIiKSmjFfhMoE2dX9D3cmxeeAzfUbXLf3Kx4UciXtxQtGa7QNIVYikqN6TYE+B/oPPFv2O2jYBpN+CL0mZba2aBMsvwE2PQP1lW3buvSDvgdBUz1Uvw3VbwV33CEnQtng4MYTERhzMay7171t09Owazn0nBhuTSKS+6IeQcYF3uf4gPOa8/Gv/B3jpeNg1Pkw/lIYNDep8gJRtdC5337nRxDZk7j/6IszX5OIZM7g46BsCNRtjt9v7xZ4ehqYQigscz4DmvIzKO0fTp0dSd1mWPIbqHoLovXt26ddDSPOCr0skUzKp2C0lk+3LbDIWrsrzfFi92+34qSISFq83qC28Er2lsSmXwsfXOndvuo2BaNJ/tj1afx2GwVTEL9Pumo3wcbHYfsHsPLvbdu2vACLfwqH/K3t9gVf8h+K1qUf1HsEoHltFxGRYFW+AZufSdzv4Buh+1h/YxbHCfpt2OFvDBGRdERqE/eZ9t9Q9SZsfja44/p5PRUREREREelIok2w4T9QuwG6jmh/LWFfBcUw5ORwahMRkbxirb3fGBMFbsG5X69lSeiW4LNezY92u8b0ew4431rrtXLCXcADzc/3xOknIiIiIiIiYRr3FdizGpZe697e/3A46qFwa/IQtVEW7HrRta1/jgejRTRPRQSMgaMfgxfmtC4Yn8iq25xrIScuyGyQ0VtfgTX/8m7f+nLwxxw4Fw6/K/hxRTq7oSfDgCOd+/TdzDscTlwIPfcLty4RyW2pBqNNvQrqNsHqO8A2JT7Ouvth/UPOOdGwU5KvM1UVr8NLx7sH9bgZfylMiTNXXERyX0ExHDMPXjsHdieYLx87J736Ldj0FJz8LhT3yGyNHUl9tXOeWbPOu0/D9vDqEQlJPgWjDYh57r70RnKiMc/z6e9BRHJd4x5oTBAG0T03VjLKSyPOjh+MVrcpvFpE0rXxyfjt710OB/0xc8ff9j68fFL71YZirf4HzPhd65vLhh1Q4fOC27RfwX7fhtfOhopX27fXVyVfs4iIJOejX8JHVyfuZ4pgv+/4H7eom7NKg9tFFQWjiUgYIj7nM3bJwAoyDTugJE5ApIiIiIiISEfR1OBMHKpe6H+fsV+BErdMGxEREbDWPmCMeRP4A3A2rfftWZfuJubrGuDX1tp/JBg/iV9aIiIiIiIiEhpTAAf+Bqb9HGo2QFMdFBRB6SAnHKBscLYr/D+f1n7k2da/OPt1FscNRvMIWhDpbLqNhDPWOIvIN9VC4y5n7sZHv/Dep2E7fHoTHPynzNRUsw7WBBxQdvK7rc+LujffU2ehxwSINoCNQukAz91FJE0z/gjzDnVva9gOK/6e2TlhIpJ/vM7X45zjA07w0KG3wszrYfcKwMIHP4u/eLiNwLLrwg1G++QP/kPRpv3SeX8oIvmv91Q4bbnznqe+Gp47xF+I4+4VsP5BJ0xf/Flzd/xQNJEOKp8CwWJvfioMYLy+Mc81a1tEgpMo0Rag38GZr6OjSrRSglY5kkQad8HS66BqIfScDJN+AD2yFFZYtzF++/LrYfIPoesw/2PaKHz6V1jxV9i13Nm2/09g/yvbT0T64KfxQ9HAuSD2YE/n+bivwoCjnWMk0mM/ZzUCY6Ckn3uf+urE44iISOpW3e4vFA1g1AXJjW2MEwrk9lqulQVEJNNs1LlhzY9+h8Dau4M9/o4PYeDRwY4pIiIiIiKSi5bfkFwo2ohz4cDrMlePiIh0CNbacuB8Y8wQ4FzgCGA60B/oDdQD24F1wELgBWCetdYtPE1ERERERETySWEp9JyQ7SriWlm31LNtQEn2g9GKFIwm4l/Xoa3PI3vAO/fQUfl65mqpfBP3tQFSNPh46DszuPFEJHndx8Zvr3ojnDpEJH9EPeY+F/iM+yjuDn1nOM/7HhQ/GA2gagFEm6AgiFgOH5I5lxp2aubqEJHs6DbKeUy6DJb93t8+la8rGC0ZmXzPKpLD8ikYLTa1Y6hnL/+mxjxXKoeIBKcliMjLgNnQe1o4tXRUfQ+Gbe+4t0V1MU/iaKqHF+bC9ved77e+BOsfgBMXQI9x4dcT2ZO4z8YnYfw3nACaFvE+kHr7m7Dq1rbbll7nJGefusS5oSAacYIkNj+XXL2rbncefky7urXmLv3d+zToFExExJO1bV/7k7Xmbnjra/76miKYcGnyxyju4x6M1qjscRHJsKY6/31HXeCERDZsi9+vdDAccTe8dHziMV+YAxdE03udFhERERERyVWx1yBW3+F/v3OqoUvfxP1ERESaWWs3A39pfoiIiIiIiIjkhMqGzZ5tk7vNCLESdwpGE0lR/8OhdBDs3erdZ9cnsOg7bbdtexdq10P/I6F0YOt2UwC9D4ARZ0MXl4Xkd6+CdfdDUTcY9XnYszqYP0eLEWcHO56IJK+0PwycAxXz3dur34at82HQnHDrEpHc5TX3ucD7HN/TiLNhya8TH++N82DYGTDyHOe8JEhVC2HTs1D5GlS/BZEaf/t1Gw19sv/eSkQyZPRF/oPRVt8BZcNgyIkwcHZm68pVteWw4RFo2A5DTob+h4CNQvnjznvKipeh+3jocyBseCjb1YpkRT4Fo61v/mqAGcaYYmtT+8TWGLMfMCxm04fpFici8n92feLdNuHbMMPnyZx4i9Z7t+1cEl4dkn82Pd0aitaivhJW3gwzfhd+PX4+7Fn0TecBMPJzUP2OczFu8HFw6G2tF9dq1sMrp3j/H9izGv5dFkzdiRx+N4y+oPV7twt9APVV4dQjIpJPbBQ+/G/nd1NTAww7DQ66AUoHJDGGdUIx/Rg4F6ZfAwOOTL7Wkt7u2xsUjCYiGeb3oik4N56c/C4s/BJUvOrdb9Axzjn2ye/ABz9LHCJc9WZqr50iIiIiIiK5quI1eO8y2PEB9D4Q9vuv+Nc9Yw0/S6FoIiIiIiIiIiIi0iFUNroHo/UvHkRpQUj3YsdRaLynAjYqGE3EW0ExHHYnvH6u9wL3TbWw4ib3Nq8J6Euvg+NehG6jWretvR8WXAw24ny/5Br3hYhTNfwsGHNJcOOJSOoOvhGenubd/uJcmPZLmPbz0EoSkRzmdb4eJ/zYU9+Z/vpteNh5fPpnOGZecPd2LP8zvPv91PY97J9OyKyIdEx9psMB/+PMj/RjyTXOY/pvYMqVma0t12x7H14+sXWu/UdXO+eXFa/A+gdb++2tcOYwiXRS+XTWsACoAyxQBlwQv3tc34t5vtVauzydwkRE2qhZ6759xDkw669Q1DXUcjqkpjjBaHu3QuUCJ1REZF8rb3bf7jd9OmjJBDqA80amZo1zwW3jE/D8bCf8JhqBZw7MjWDAox6CMRe13eYZjBbgxT0RkY7io1/Ckt84r5GR3bDuXljwRef13q+G7bDzY399j3859WCf4p7u2xt3pTaeiIhfkdrk+ncfDcfPh5Pfg3Ffg8J9blIt6QP7X+E873sQHPMsHPtC/DFX/zO5GkRERERERHJRpBa2vATL/ggvHA3b3nFWDN62yAmY9qvXlMzVKCIiIiIiIiIiIhKiyoYtrttP6ntuyJW4KzAFFHmEo0UUjCYS39CT4LSVMCPA+SN7VsHSmPEa98B7P2gNRYP05k0MPgHmPAUnLXJCRE58C456EIqyH9QoIkDvqc7/z3g+/iXUbgynHhHJbVGP8/WCFILRAIp7+++77V1YdVtqx9lXww5Y/BP//addDeO/AYfcAmdXwKA5wdQhIrlr6lVw6lI45FaYeYPzGpDIhz+Huq2Zry2XfHhVaygaABbe+U7bUDQ/hp/p/D3PvAH6HRpoiSK5wHuZiBxjra03xrwIfLZ506+NMY9ba3ckM44x5kjgUpyANYCHAyxTRMT7g6rY1T8kPdE4wWgAzx8BPSc6H/73GBdOTZIfNj+X7Qra8lppyK/dnzrhOdvfc0Jwsq10EAw9uf32Lv3d+ysYTUSkLWth9T/ab9/8rDMptd8sf+O0+UAsgwq6uG/XzVUikmnJBgy36DsDDr3VubFt3X1Q/Y5zDjv2y9BzQtu+g4+DsqFQt8l9rFW3OWOJiIiIiIjkqzX3wIIvBDNW2ZBgxhERERERERERERHJopqm3dREd7u2DSjJnc9Bi0wxkdjQpWYRr6AFEWlVNggm/j/44Kfe4STJ2vR06/Mtz8PeACfzH3QD9Nrfed7v4ODGFZHg9J4av91Gnfls474STj0ikrui7c/hAfAIPk6oIMn9Nj0F+/84tWPF2voyNO3117eoB0z7RfrHFJH802uy8wDY9j6svCV+fxuBLfNgzMWZry0XRBvbvpdMx0E3KMdEOrS8CUZr9mucYDQLDAPmGWM+a62t8LOzMeYY4CGgADBABPhDhmoVkc6q4hX37WVDQy2jQ2tKEIwGsGu5s5L9Ca9nvh7pGGwUTEG4x0w10CHWh1elP0ZQDr0Nirq1317Sz71/fZUTAmRMZusSEckXTXuhtty9bcmv4ehH/Y0TVjBaYYn79qaGcI4vIp1XuufRJb1hwrdgQoJ+vad7B6MB7FzaetOZiIiIiIhIPtm9MrhQNIAeid5giYiIuDPGFAOHAOOAvkAPwFhrf5XVwkRERERERKRTqmzY7Nk2sDi3gtGgrt32iBY1FfGnoBAGHecsXByE2g2w9j7AwLLfBTMmQNeR0GNicOOJSGYUlsKA2VD5mnef9Q/BmC8mH2KUDbXlUP2287zvLOg2Irv1iHQkXufrBcWpjZfsXNidy2Dt/e5tvSZD72lgm2Dbu7Bnrfc4yZxDlfRJqkQR6aB6T4PSQYlDpJdcCz32g74zU39tzFU2CjuXOPOQrIWG6uDG7joyuLFEclAevItqZa19yxhzP3A+TjjawcAnxpjrgQeAdrOvjTGFwFzg68DncALRaN7/T9batZmvXEQ6jfInnDd+bsqGhVtLR9ZjAuzdkrhf5RvOG/DuozNdkXQE9dVQOiDcYwYRjBa0ISc5K5Eka+BcGPZZ97YuHsFo0XrnA3N9SC4i4ojs8W4rf8z/OH6D0frO8j+mmwKPYLSogtFEJMOaQjqPjiYI5X5qCpzf0PEuuIiIiIiISMe34ZHgxiodDIOOCW48ERHpFIwxRwGXAycCXVy6tAtGM8acDJzX/O02a+3lmatQREREREREOqPKRvdgtGJTQs+i3JnQ7wSjtdeoYDQR/6b9AqrehMZd6Y9lI/Dmhantu9934dO/tN9uCuHAa50QNxHJfQf8Cl45FZpq3ds3PwPPHgxzn4auQ8OtzS8bhcVXtg94nHQZzPh98gFMItJeNOBgtGTVV8KbF3i3lw115gP5nZPkx/4/CW4sEclfBUUw/Vp466s4MT8edi2DeYdBz0kw95mOkw/RsANePQsqXgl+7J6TwZjE/UTyWF4FozX7KjARmIHzqtcbuLr50Wb2tTFmGTAGaDkjNM37GOBN4IowChaRTiLaBG99xbs9Vz+0ykf7/xjmx1lFIVb12x3nxFfSU7MufnvdxiwEo8UJwMmGqb9wLvAt/xO89/+S23fYqd5t3cd4t216EiZ8K7ljiYh0VIkCM3evgh7jEo/j9yLExO/56+fFKxhNN1eJSKZFPG4cCVrT3sR9lv0vTNFHjCIiIiIiksPKH4O19wFRGHEu9D0IFv84mLFLB8GxL+THyuYiIpITjDHdgFtwFkaF1kVOY3ndCb0EuBgoaB7rLmvtB4EXKSIiIiIiIp1WZYP74u0DigdTkENhIEXG/TPZiO7dE/Gv/2Fw0tuw9l7YubR9+4aHMl/DxB/AzD/CwKNhy/NQv83Z3m0UjDgHBhye+RpEJBiD5jqvKU9P9e6z4wN49/sw+8HQykrKxqfah6IBfPJHGDAbRpwZfk0iHU3gwWgBB+HUbQp2PIBe+wc/pojkp3Ffhh7jnQU9l18fv++uT2DRN+GYZ8OpLdM++mVmQtEARn0+M+OK5JC8uzvVWltnjDkJuB84ltYboQzO6pEtwWcGJ0Dt/3aNaZsHnGetbQqrbhHpBCpfjx9CUaZgtMAMOhZ6TIDdKxL3fePzMOq8xP2kY6vbDE9Pj9+nthz6HBhOPS0SBeCEab/vwgFXO8/HXAxLroH6an/7lvSFUed7t5cNgd7TYMdH7du2L066VBGRDivR74Xyx2DyZaxdtZsAACAASURBVInHqa9M3KdsGAxP8+Kk18WXpgb37SIiQfFaUS9oQ050VgWN5+NfwegLodvIcGoSERERERFJxoqbnZvEWqwP8Cb74WfC7Ie14qSIiPhmjOkJvAZMpXWB01gt9/a5stZuMMY8DZzW3Pd8QMFoIiIiIiIiEpiKxs2u2weUDAm5kviKjfuipgpGE0lSz4lwwC/d2+4N4fpHt9HOdZaR5zoPEclvvafArL/Bom9599n4ODTVQ2GX8Orya/0D8dsUjCaSPhtx3+4RfNwhdOQ/m4gkb+Bs59F9DLz7vfh9N8+Dhu1Q0iec2jJp/b8zN7ZeZ6UTyMufcmttlTHmBODy5seAlqZ9vrZoCUrbAfwe+J1C0UQkUHVb4MW58ft0hBOvXFHUFY57Bd6/HNbdl7h/3VYoG5TxsiSHrf4nNO6M32f+aTDgKDjoT9B3ZihlEdkTznHi6TkRRl0IU37auq1LPzhhgfN/bOPj8fcf8hmY+QfoOjx+v36HugejNexIvmYRkY4q0e+F8kcTB6NFamHxFd7tZcOcVe5mXg/F3ZOvMVaB+81VRBWMJiIZ1rQ3nOOM/Dx8dHX8Pk11sPzPzjmxiIiIiIj4s/0DePtS2LUcek2G6b+GQcdku6qOx1pY8uvMjD39Wpj8I4WiiYhIsh4CptF6b18D8ADwMhAF/uljjEdwgtEATgCuDLZEERERERER6cwqGzyC0YpzKxityLgvaqpgNJEAjTof1t2f2WP0PzSz44tI+Pol+H8dbYDaDdBjfDj1xNNUD427oLR5ev7uT737bn8/nJpSsbcKoiHdVyySrojH4uAF7uf3HUJH/rOJSOoSnTMBYKFqIfSe1rqpdFBuva407oai7u730DXscOaKRuqgzv3zpkAU5GVklEhS8van3Fprgd8bY/4CXIBzo9NRwFCgIKbrduBN4DngLmttglQUEZEk2Si8dFzifoVdM19LZ9J1KBx5L4y+0Am0imfdvTDxB5qc0ZlVL/LXr/J1ePFYOOUj6DYiszVZ6/1hVhD2vwIOvDb1/XtOgDmPwaOjoHZ9+/ZDb4NxX/U/XnFP9+2Nu1OrT0SkI4rUxG+vfA32VkDpQPf2PavhlVO99x99ERxxd+r17UvBaCKSLU314Ryn1yQYe4kTtBzPhv/AjN/rPaeIiIiIiB+1G2He4U7IMEDVAuc6zykfQ/fRWS2tw9m9wrmpPmgzr4dJPwh+XBER6dCMMecCx9MairYA+Ly1try5fZTPoZ5tGRKYbozpbq3NgRXJREREREREpCOobNziun1giYLRRDqd/b7r3BcWjfl/1WsqTP8NvHamM5csHf2P8BkGICJ5pe8MGHQsbH3Ju8+8w+D0tekvcp6qxj3w1tecRduj9dBtNHQfC9Vve++z6xOYd6QzF6H7mNBKjWvzPFj0bdizKtuViKQv5ZCfOPeuT/4xLPtdiuMGSIE9IuKm3ywYMNuZKxnPK6e0/b6oG4y6AA6+EQq7ZK6+RCpeg7e/7iwM23UEzPgDjDrPadvxESz4UnjBskavs9LxFSTuktustXuttXdYay+01o4EioH+OAFpXay1/ay1p1lrb1QomohkRMV82Lk0cb/C0szX0hkNPh7KhsXv895l8MLRTrqudE7lj/jv27gzuf6paqqj9Z7vfQycA72npz72ft9LLxQt1oiz2m8rKIbhZyY3TlEP9+2RXcnXJCLSUUV8zNt5eJAzgThW01547XPw+DjnoqOXvgenV9++FIwmItkSDSkYDeDQ2+GwO2D0F7z71KyFHR+GVpKIiIiISF5be09rKFqLSA0suSY79XRkfj5rSkW/WZkZV0REOrqfxjz/GDihJRQtGdbaLUBF87cFwOQAahMRERERERGhrqmGPU3u084GFOdaMJr7pNdGBaOJBGfAEXDM8zD0VOg5CcZ9HY6fD8NPg6OfgMEnQulgKB3k/ogVu73nZCd07ZjntBCnSEc15wmY+P+82+urYeEloZXTzsIvw/p/t96LW7M2fpBbi6o34cVjINqU0fJ82bXcWVBeoWjSUXgEH6dl3FfgiPtg4Nw45ys+zkVMoff++57zuO6vwB4RcWEMHPOMMxe+ZxKX/CM1sOo2JzciW2o2wEvHO+cj4Cxc+sbnofJNaNwNzx/tPxStdFD7+Zl+X19b6HVWOoGc/yk3xkwHTgT2xwk8A6gClgHPW2vbvCpYay2wLdQiRSR51kLlG1C3EWrLnXCHuubHQX9x0vHzRfU7/vrpA+vMKCyFQ2+F18+LP8Gj8nVYfAUc8vfEY+5cCpuedSbmDDgKBh6tf798V9wTGpMI4PITdpiuSK1320F/di6e/aev80YtWVOuSL2udmP9zEmv3v6e870phFl/gy79khunuKf79sbd6dUnItKR+H3Nf+e/4OiYEM+P/wc2PJR4v+Gnp1aXF69VaaK6uUpEMqwpxGA0UwBjL3EeB/0JHh4I1uWmjg2PQJ80wo1FRERERDqL7Yvdt6+6HWbdDAWF4dbTkbm9d0lXl/7Q77DgxxURkQ7NGDMEODBm03ettXEumCf0CTCw+fkEYFEaY4mIiIiIiIgAUNm4xbNtQEluBaMVG/dFTSMKRhMJ1qA5zmNfw05xHiIiboq6wkF/hMrXYJvHvNPyR52AtGTnZqWrvhrKH0ncz0vNOtj6Igw5MbiaUrHmLrCR7NYgEqSCDMR9mCIYfb7z8PLkZNj1SfxxBh0Dxz4fv8+9BYD1rkNExE1RNzj4T87zl0+Gzc/533fNXTDzeih0/3wko9beA9GG9ttX3wEDZkPjDn/jdBsDZ6z21/eNi2Ddve5tmfgdIpJjcvan3BgzE7geOCpOt2uNMW8Al1lrfSYTiUjOePnE9ivCg5PUnk/BaIt/nO0KZOhn4LPL4JkDnQ/ovKy9B2bd5Exs97L6X/DWV9t+ODb+G04QVLz9JLeVDUsuGC2VMLJkReOEORR2cd6QDT8b1t6V/Nilg1Ovq91YA+DEN2DrfKgrh4FzoMf45Mcp7uG+XcFoIiKtNj/rr1/5o06wcNdhTjjQ8r/426/bmNRrc7PvigQt3D7cExEJUrxz6Uzq0tc5H3ZbGa/ildDLERERERHJS+vu827bvQJ6TQqvlo4uE9c6Jv1Q4XUiIpKKw5u/WmCDtfbVNMeLXTQ15FljIiIiIiIi0lFVNmx23V5kiuldlFtvP4s8FjVVMJqIiEgO6TXFOxjNNjlhRAOODLemncvSX2Br7b3ZD0bb8WF2jy8StO5jgx/TT1BOrymJg9F6Tcl8HSIivaYmF4wW2e0EtvackLmavCz7nfv2VbdBcS//4/Se6r9vvNdSo3v5pOPLybMJY8wZwL1AKWBimlriYmO3HQW8aoy50Fr7aEgliki6jHGCivasbN9WuzH8elL18a+zXYG06DrcCS97/TzvPpE9ULMeuo92b99bBQu/1H77yltg1IXuK73kOmud5OONj0NxTxhzsZPS3tkkuwpEZE9m6ogVNxit1Pk666/QUA2bnk5ubGMS90lGYSkMPSm9MYo8gtEiCkYTEfk/a/7lv++jw51gsmRCyIL+/aBgNBHJlqYsBaMBDPusezDarmXh1yIiIiIikm9q1sdv37tFwWhBCvpax8C5MOmyYMcUEZHOInZlrw8CGC/2l1z3AMYTERERERERobLRPRitf/EgCnJsgfUi4z4dMBJN8p55ERERyZyxl8CaO73bnz+q7fcTvg0H/I+ziG+Q6rfBh/8NFa/Czo/TH2/Nnc5j1AUw9SrotX/6Y/pV8Tp88kfY+ER4xxTJtNJBMPDo4Mf1eM/Qxtgvw4b/xBsExnzRx8Gsd5OfOkRExnzR+R0f7/VkXy8c7dxv2GL0RTDzeigdkF4tVW/Bst/D9sXugbIN2733Xfl3/8cZ+2X/feO9lup1VjqB3PpkFjDGTALuA8pwAtAsbQPRWmZy25hHKXCvMWZyuNWKSFq6DnPfXpcnwWir74QPr8p2FRJr2OmJ+8RLMH84zsluMknDueSDnzlhbxv+A6vvgJdOgPXxPqzooCI1SfbPcDCatfHDHAq6OF+Le8Dcp+DsCjhzAxz1UOKxR10YTI1BK/YIRmtUMJqICAC1m5LfJ5kAsuFnJj9+IgpGE5FsiRcy3KLHfpk5du8D3LfvrXBuHhEREREREXd1m+H52fH71FeFU0tnkey1kXj6zoLjX4ZCj8+DRERE4otdFnlXAOPFhqHtDWA8ERERERERESobtrhuH1A8JORKEisyxa7bG63u3RMREckZg+bCYXf477/iJicsLcjFg6ONzpgrbgomFC3Wuvtg3pGwe2Ww43qpfANeOg7KHwnneCJh6DMDjnsFCkuDH9sUJu4z7FQ4+K9Q4hLIWDYEjnoQ+s5Mr44CBfaIiA99DoDZDzuvPX7t3edznLX3wLzDIVKXeh3V78CLc51Mhj2roGZt+0c8fu7XK+kDB/0JRpzlv654r6V6nZVOIBd/yv+OE3QWG4bWCLwDbGj+fjhwEFBC23C0m4EMxOKKSEZ0He6+vTYPgtG2vgILL8l2FbKvwi5wxjp4bJR3n51LYOjJ7bdXvR1/7PrK9GrLhoYdzQnJMWwTLLkGRp6TnZqyJVKbXP8tL8CbX4RZN0Jxz+DqWHkrLL/BCb+Jt4JHYZe237ckVHdzX4msjSEnpV5fJnkFo0XroalBk6lERGrXZ3b8kecFP2aB+81VRBuDP5aISCw/N31M/01mjt1zknfbzqUw8CjvdhERERGRzmzVPxJ//rFzCXBuKOV0CkEtAlPSF45/JZixRESks4pdMrmXZy//hsY812oFIiIiIiIiEojKRvf7tAeU5E8wWsTq3j0REZGcMvYSWPcAbH7GX/9dy2DTUzDi7GCOX/6YM2amNO5w5srNuC5zx2jxyQ2JF3A/6iHoMz3ztYgEobg3lPbP3PjGZ4TIft+GCd+EmvVgI862gi7O/H9jwqtDRGTEmTD8DKjbCE0x66O9/nnY/p6/MfasckJUR1+YWg2f/qXtsYMy848w7DQntLLbKDAFye3v8TmQ06bXWen4cuqn3BgzFSfYzOIEoFngf4HfWGu379O3N3AlcHnM5iONMQdYaz8MqWQRSUfZMPftdTkejLZzGbx4TLarEC/dRkKvqd6rGGx5ESb/sP329Q/EH7dhR/q1hW3zPCd0al/bF0Pjbu+gqo6oyUfK8r7W3gU1a+CE14KpYc3d8PY3Wr9vjPMzVdDFfXu8EAaAnpNh1PnJ1xaGeAFzla/B4OPCq0VEJBfVbcrs+EFdHI1V4BFqmeiCo4hIutze58QacCQM/Uxmjl02FIp6QGR3+7bNzykYTURERETEy7Z3E/f56GqY+vNgbqwUaAwoGO2EN6CoazBjiYhIZxW7Et2UdAYyxnQBDozZVJ7OeCIiIiIiIiItKhs8gtGKB4dcSWLFxv3ePQWjiYiI5KAeE/wHowGsvjO4e/8rApoTF8/mZ8IJRqtakLjPwNlQOjDztYjkg4IkIkRMAXQfnZk6FNgjIskwxglmjNVriv9gNIBVt6cejObnfCMV/Y+EHuNT3z/ea7peZ6UTSDJKMOPOaf7aEor2PWvtj/YNRQOw1u6w1v4E+E5Mf4AMzPYWkYzo6hGMVrMu3DqSYaPw1P7ZrkISiffh39aXILJPSJa1UP5o/DHjhVjlKq9wOMh8+EouiTY6j1RUvg4rbg6mjlW3++/rFYyWKMzuM+9BoUdITbYVxal91W3h1SEikqtqMxgOPOx0KPT43ZIOBaOJSLbEC0ab8QeY+0zmJu0bA/0Pd29L9L5SRERERKQzK3/EX7+K+Zmto7OwFt77Qfrj9J4GvRIs2iIiIpJYy13KBhhtjEnnl8s5QMsFigiwMJ3CRERERERERADqo3vZ2dRu6hoAA0qGhFxNYkUek14jNhJyJSIiIpLQyHOT67/xcfj0Jmjclf6x480tDMqOj9pv2/gUvHsZLP091GxIb/ztH8DiK6AuwXyLgXMViiYSK1eCcpIJaBMRcTPyc8n13/oSvPlF5/Ha5+Cx0fDyKc4c/yaXuUjb3oMProI3LoLdKwIpuY1uo6HfwemNEe81Xa+z0gnkWjDarOavFlhorf1roh2stX8H3sC5cQrgkAzVJiJB6zrSfXvNWqjbEmopvr16VrYrED8mft9JKXcTrYctL7TdtnMJ7FkVf8wG9wudOc1a77ZtSaQj57t9g/CSteib0Lg7/ToqXvHXzxRBQaF3+9BT3bcf+FsoLE26rNCUxVktrUr3qouIJLxQl47Bx2VmXK9gtKa6zBxPRKRFk0cA49hLYPIPEwcKp2v4Ge7bd34Mu1dm9tgiIiIiIvnK7w3I5Y9lto7OYv0D6Y9RWAaz/p7+OCIi0ulZa9cAsR+cXZnKOMaYLsDPWoYFFllr07whQERERERERAQqG7znrwwszsVgtGLX7RGb4mLiIiIikjkDjoKpv0hun3e+A8/Phvrq9I4dRjAawJ7Vrc8XXwHzPwvLr4fFP4bnZsGOJamNu/FJeO5QWHpd/H7dxsAhurYtnZAx3m25EpRT4P7eRUTEt2GnwsQkFwhde5fz2PAQ1KyDzc/AW1+Dl0+Cpr2t/dY/6JxrLPk1rLs32LoBuvSDI+7xzrzwK95req4EYYpkUK4Fo02OeX5nEvv9K+a5lisWyRf9Znm3Vb4WXh1+LfqOk7gvua9LX/hcnCCrqgVtv694NfGY296FaFN6dYWtYZt325sXwqbnwqslmyK16Y/xZJqnF/FC6vZV2CV++9gvtd9mCmHUhcnVFLaibt5tNWth1R2hlSIikpNqN7lvT3fVIlMII89LbwwvXhco6jZBVCtPikgGRV1WaQEoSHAuHZThp3u3KcRBRERERMRd7wP89Vt3f3KfqYu7DY8k7jP2EmexIS+nr4YBRwRWkoiIdHotF4QN8AVjjMuFb2/GmALgVtreX5hw0VURERERERERPyob3e/fK6CQPsUDQq4mMa9gtEbrsdigiIiIZI8xcMDVcMqHye2340NY9Y/Uj7u3EvZWpL7/8fPhxLdg5g2J+77/E+drzQZY+rt96tgKS69N/vjWwuKfeN8z3GLuM3DqEug5MfljiHRkuRKUkyt1iEj+MgVw0PVw2gonZOzQf0Dv6amNVTG/9b46G4X3fwTWxxzIWX93jtvyiKelz9xngrv/Lt5raa4EYYpkUK4Fo/WOef5eEvu19DX7jCEiuazrMOg+zr1t09Ph1pLI8hthxU2J++33Xfftfj4AkmAVdYUR57q37btaQs06f2NuzLMJ7pufjd/+9jfaJht3VJEAFoiu2wTbP0h9/2T+nhOFOYw4F6Zd3fpGprgXzP4PdBuRcnmhmfrf3m2LvgWNcQINRUQ6uvpK9+29pqU+ZkkfmPMklA1OfYx4Ckq828ofzcwxRaRzqlkH7/0Q5p/h3DDRuNO9X1jBaF2HQ1+PsPf3Lw+nBhERERGRfGN9Lj6zdwvsTHG1aGlV8XLiPlN/ARO+7d7We3rmPlMSEZHO6k9ABWBx7vG73RjzG2NM10Q7GmP2B+YBFzXvb4GVwP2ZK1dEREREREQ6k8qGLa7b+xcPotAUhlxNYsXG/d69iJ/JvCIiIpIdvac59/cnI9HcwHjSve5e2BX6HwKT4iy21WL3p87X8sdwPsLfx9p7kj9+bTnsXBq/T+lgGHoyFJUlP75Ih2DiNOXI+xgFo4lIUHqMh9EXwrgvw9SrUh9nXfNtBrs+9ZcvUdwLJlzqHLfl4TVXvmxIa5+hJ0Nxz9TrjBXvtVSvs9IJ5NpPea+Y59WevdrbHvO8R0C1iEgYBs6BPavab19zF0z+MfSa3L4tbOsfhHc9As9iTfi281j9j7ZBTCV9YcTZmatPvJX0ct++b1BWnfsKT+2suz9//i2rFsKe1fH71K6HLS/CsFPDqSlbmmqDGWft3dAnxRRpr+AGN4UJwhyMgWm/gMmXw5410HNS/iQ6dx3p3Rath/LHYcxF4dUjIpJL6qvct/faH7a+mNxY034JYy9xPkwrcF8ZMhBxg9Eeh5EeIbUiIsnYvQrmHd4aILnxce++ic6lgzTiTNi2yL1t+Z9h4vfCq0VEREREJB/4DUYD57y/99TM1dIZJFr5e+ip0H2083zQsbD1pbbtEy7NSFkiItJ5WWtrjTFfAp7EWcy1APgJ8B1jzNPA+tj+xpjPA/sBJwKH48zsaJndsRe4wFrrMrtKREREREREJHmVjZtdtw8oGRJyJf4UeUx6jdjGkCsRERGRpAz5DKy713//rS/Bir85c8f6HZZcANiOj5OvL1Yy9+TuWQ0rb4EPf+bdZ9F/QY8JUNwD+s50FpDf+TFsexdsBGo3OfcVdB8NZcNg01OJjzv0FP81inQ2Jk5oWpjyZd6riOSXwcc7gWCpBMRvfBx2/n/27js8jure//h7dleSVVzl3ns3pts0B2x6MaYGCEloCSUhjSTkF3IhnRsCCUlubgoJkBB6B5tmbAOmmG7ce+/dkiVb0u7O749BV21mdnZ3Zov0eT2PHmvnnDnnK1lazc7O+cxSqFrnrX9hp5bb+l0Mi37RcvuAK5Kvxwu351I9z0obkGs/5aFGnydxZXSTviHHXiKSe3qdbgWJNWfGYN0jMN7moCCTYjXw9qXe+h75O+uEz+TX4bOfwL750OVoOPwuKO0XbJ1iL1xqv339ozDxfgi3sx57vXvChif9qSsTFtzhrd/m6W0gGO2gP+MsvRt2f2D9rnc5Krl9kwlGC7Xz1i9Smn8LwxKlW2+ZoWA0EWm7nILROo2FsqFwYJX3sUr6QqlLGKVf3ILR1j0Ex/87+BpEpPVb/oeGULREQhkMRus7DT5zuIBjwR0w/ObceUNZRERERCQXJBWMNh3G/Di4WtqCSHuIVtq3FXSEExu95zXpefjkO7DlZSgqh6E3wLAbM1OniIi0KaZpvmoYxk3A/9JwjV97oPmFOQbwSLPH9SFoUeBa0zQ/CbJWERERERERaVt21DoEoxXkajCa/Q1TFYwmIiKS48beZoWdHdrmfZ8Pb7L+7TASTn654QZYiexfnHR5TbitFWguegA+SHDzrZV/Tq+e5or7wOhb/R1TRPxnKPZDRAJQ2AmOuAs++V5q+88Y7b1v2GbNf+fDYOjXrWDYemVDYcS3U6snEYeA/IRtIq2EfspFJLv6ToOibvaLnHd/kPl6mvvo5sR9jAhMeq4hBb/rRJjyerB1iTcRh2A0gPe+Cic+Dod2OQeR2IlHcz891zRh9/ve+lauCLaWXBA75Nw2bSM8l0Rw4Y634JWjrQVD7YdDxzEQCife75DHIAdI7o4a+aagfbYrEBHJXU7HI0Xd4LCfwbtX0rDmJwG3YyA/JfNmp4hIqlb8yXvfTB5LdxgFpQPt7xJTtw8OboGSPpmrR0REREQk18WTuDvj7g/AjOviyHSE7BfFAdZ7I43vJF5QBhP+EXxNIiIigGma9xmGsRp4GOhB0zc/Gn/eOAzN/PzxLuCLpmnOyUStIiIiIiIi0nbsrHMIRivsmeFKvIk4nANWMJqIiEiO6zgazvwINjwJ22bBttcgXutt34pl8OktcNLT3vrvX+TcNvhqa13cop9D7KB9n0zerDhZR94LAy6F4twMsRUREZEMGPld6HIULPoF7HwbyidC2SCrbc0D/s0TsglGAzjmr9D7bNgxF8oGQ/9LoV1X/+ZtzO06SgWjSRugn3IRya5wEfQ5B9Y82LLN60mdoNTuhdX3uffpdxGM/Ql0PjwzNUly3EJBNj4FB7c2TeP14sAa6DA8vbqCdmg71O331nf7bIjHvIV75Su3E7QlfaHDCKhYntyYb19i/duuJ5z0DHQ7zrnv2ofgva94HzuXTxynK6JgNBERW7FD1l2S7BSVQ/dJ0K4HrP239WGErMXBTjIWjOaywFZExA/JBCdAZo+lDcM6J7DsHvv2yhUKRhMRERERacyMJdd36d0w+ofB1dOamSbUVdi3Hf+obmIiIiJZZ5rmbMMwhgI3At8E+jt0NT7/dxfwv8A9pmlWZqBEERERERERaUNq4zXsi+62betekJthGxHD/tq9uriC0URERHJeSR8Y+R3ro15dBTzZMfG+m16w1h6EHQI66pkm7HMIRjvmLzDsBuvz9Y/Bvs/s+zW+WbERATPJa3qD0u9CGPntbFchIiIiuaD7JJg8s+X23e/D/iX+zBEutt9uGND3fOsjm0KKjJLWTz/lIpJ9pQMdGlzCHjJh8wz39on/gsFJhB1J5rmFgphx2PMpLP9DcmMe2pH7wWgVS5Prv/IvMOKbwdSSC2KH7LfXnwSe8ADMPhVi1dbjSHuIeryW+tA2ePNcmLYJIjYvbvYtTC4UDZqeOG5tEi62MhK0i4i0UjX2F1UBUPT5nQJ6TrE+jvuX9XjzdHjzPPt9ImX+1ufEKXxURMQv+xYk1z/Tx9KH/dw5GG3WZCtEufc5EC7MbF357uB22DIdMKzQ76Lu0HUCtB+a7cpEREREJB3JBKMBzL/VuqC5rR8H1lXA1ldh32Lr8+4nQc9T3c+3x2ucL0ov7RdMnSIiIkkyTbMKuBu42zCM4cCJQD+gHCjECkPbDrwLfGKappmtWkVERERERKR121W33bGtW2FuBqMVOASjRU0Fo4mIiOSlgg7QcSzsdwgzq2dGYdd70GEk1FVa7xsXdIRISdN+B7dC3T77MTqOafjcCDnPFWp07evhv4FPb3GvLVO6HpftCkRERCTX9TjVx2C0HF/zb4SzXYFI4HIxGK3+IqaJhmEM9LhPz8YPDMM4iSSSNUzTfMtrXxEJgsMJlB1Z/tXc8YZzW6S9QtHygVswGsAn34HavcmNGT2Qej2ZUrkquf4bn2zlwWgOoS31wWjdjoPz18Gm56yTtr3OgFcnQPUGb+PX7oGtL1sLtJrb8GTy9YZy/EVSOhIFo61/BE54ODO1iIjkkppdzm31wWgtuL0Jmam/JS4vu93er5MFkAAAIABJREFUJBUR8WL/MnjlqOT2yfSxdKQEyo+F3R/Yt8+9ELocbd2BprBTZmvLVzvfhTlntHztHS62wkH7X5KdukREREQkfckGowGsexjG3eF/Lfmiaj3MmgIHVjdsW/576DgavjAdygY57Ofy/kZBB39rFBER8YFpmiuAFdmuQ0RERERERNqmnbVbbbeHCNGloFuGq/EmomA0ERGR1mf0rfDelxP3mzW55baBV8KEfzQEd2yf47y/52C0RtfkDrwclv0ODm5OXF+QinvDIK3pFRERkQSG3Qhr/wV1+9Mfy8jFSKZGcr0+ER/k6k+5ATyaxr5vJNHfJHe/DyJtQ8gliXTvZ9B5fOZqqWeasPqfzu2DPJxkkuxLFIxWuTL5MaOVqdWSSXUVyfXPdghh0GKH7LeHixs+b9cNhn6t4XH3SbDuP97nmHsRdD4c9s5PrcYmdbVLf4xcFUkQjAZQtRFK+wVfi4hILolWObelsljV8JwTnp6uE53bzDhUrIAOwzNTi7RuB9ZYr892f2gtpC8dCAMug16nZbsyCdKC/0p+n8YXa2RKl6Ocg9EA9nwET3WG4TfDqO9Daf/M1ZaP3r/WPpA8dhA+vBH6nA/hRnchPLAWlt5j3dmwxykw6Cr380x+MuOw6j7YPhuKe8GQa6HTuMzMLSIiIpKPUglG2zHX/zryyfwfNw1Fq7d/CSz6JUx0eC9zyW+cx/Rynl5ERERERERERESkDdlZZx+M1qWgm2MAWbYpGE1ERKQVGnQlxOvg/WuS33fdf6CoHI6613r83pX2/Yp7Q1GXRhvcgtEaXatZ3AtOexuW3Al7PoXaPVDY+fM1jGbLfVNZs5nIkOtg7O3Qrrv/Y4uIiEjr0nHk58cud8G6h9IbK1PrNFMVUlSStH65+lNuYgWcJbtPvRx/dhGRJuJR57aNz2QnGG3+re7tw7+RmTokPYmC0Zx0PgJqdkP1hpZtdXkQjBavyXYFucUxGM0lgGzEt5ILRgN/QtEA2xPCrYWXcJ/n+8NldXoxJiJti9PfKmh6p6XG2rncibKgU3r1eFWQYCHtzONhyhvQaWxGypFWqmIlvD4JDm1run3NAzDxfhh8VVbKkoDFDsGmZ5Pbp+No98DGoAy5Dlb9PXHIw4o/WQF/Z38G7YdmprZ8U70ZKpY5t9fshp1vQ8/P73a4fym8fETDa+B1D8P2N+D4NN+48mre1bD23w2PV98Pk1+HrsdmZn4RERGRfON0zNx3Gmx6zr5t+yyoOwAFZcHVlcu2vuzctvkF57Y19zu3pRLCLyIiIiIiIiIiItKK7azdZru9W0GvDFfinVMwWpw4MTNG2MjQTeVERETEX4OvSi0YDazrGY/8HVRvdO7T/AbEbkEfoWbHG2UD4di/JVfTIz4t9T/8NzD6h/6MJdKqKE5DRMRRp7Fw/L+tD4BoFTw/EGp2ZbUs3xlaiy+tn0ucc9aZSX6ksq+I5AIz7ty2f3Hm6qi3byEs/a1z+/g7rQXXkvtSDUbrf6lz0Ec+BKO5has4iVb7X0euiB203x4udt6n/BiYPCuYehIp6JideTMh7BDu09zOd4KtQ0Qk17iFeDq92dj5SPu7HZX0hw4j/KstkeMfcW6r2Q3L/5i5WqR1Wvm/LUPRADBhwe0QTxBGJcnZ+S7MOhWe6w+zT4OKFdmpo2J54qCxekYE+l8CU+ZkJ1y3y5FwzF+99Y1Vw4vD4NGI9YbKpz+07u4nlupNifscWAWf/cS6WGbG6JbB4Ov+Y7XNmuxjeLWN/UubhqIBRCvdzyeJiIiItHVOx/i9zoR+FzvvN/fCYOrJdbFDULvXub1ml/1r4kSvkxMF3YuIiIiIiIiIiIi0MTvrttpu71aYu8FoBQ7BaABRU9eiiIiI5C3DgG4npbZv7V44uA32L3Hu0+WoZhtcIgbcQtO8Gv7N9McA6HSYP+OIiIhI2xUphVGpBK3meAilgtGkDci1n/INKLBMpO0p6e3cdtD+TabAmCa8lOBEyeCrM1OL+CDF/M/h34RNz9m3RQ+kXk6mxGoS92muZhdE+vtfSy5wC5tx03MyXGHCoV3wTDf/63JS2Clzc2VD/0thwxPufdY9BD2+kJl6RERyQdzhb1XI5W9VKAxjb4ePmr1ZOO52f96E9Kqws3v76vtgwt8zU4u0Tm6BqdUb4cBq6DA8c/W0ZlUbYM4ZDa95qjfCK0fD1NXQLoPHwwC75iXuc+JT0P8i63V8Jp/37Ay9Dur2wac/8NbfjEHVeitEq3ojnPBosPXlC7fg/HofXO9trO1zYOaJcM5SKO2XXl121j1sv33jUxCrhXCh/3OKiGTagTVwcDsU94TSgdn/eysi+S8etd9uhGHMj61jKTvbZlqht50PD662XFSzO3GfaEXLczNV69z3aX5XbxERkQwyDCMEjAXGA/2BbkAx1vWCB4EdWNcPfgYsNk1T1xGKiIiIiIhI4ByD0QpyNxgtkiAYrYgE18mLiIhI7hpyHeycm9q+VeuhYpn72I0ZKa699GrwVdZNsr1cH+qkdAD0PNW3kkRERKQNG34TrH3QPUi2hVy4ftqlhlCuRUaJ+C+nfspN0xyY7RpEJAvcTkxkOoRq20z39q7HQXGPzNQi6YuncLejHlOgoAwK2tu3RyvTqykT4ikGo5W21mC0g/bbw8Xe9m/XFbqd4B7K4aceUzIzT7aM+kHiYLTV/4Txd2Y+gENEJFtSDfEc/g0o6QcbnrKC0vpdAn3O9r8+N5GSzM4nbY/TsVy9imUKRvPLol+2fA0erYR1/4GR381MDWbcChdb9jv3fic9C/2mWZ/nSkjLqO9Dp/Ew5/Tk9lv/GETaw7F/Df4Ck1zn9zmgaBWsuR/G3eHvuAAbn3Zue6IEjr0PhihYX0Ty1MFtMPMkOLCqYVvpQJg8E9oPzVpZItIKmDH77aEIdB7vvu/Kv1rHzG2Jl2C02v0tg9HcLnLveVp6NYmIiKTIMIxJwPXAWUBHj7vtNQxjBnCfaZpvB1aciIiIiIiItGl18Tr21O2ybetW2DPD1XiXKBhNRERE8tigL0PtblhyFxzalty+H98Mez52bm8/pOnjoK9b7XKUdc3vJ7c0vRapsUiZdf1ouARi1Y1qC1vr+Sb+S4EfIiIi4o9IKZzyKsy7Fna8AfHabFeUPkPHSdL66adcRLKvbDB0GAUVS1u2HdyS2VrW/se9/ch7M1OH+KPLUVgpuEncRLjbCda/EYdgtLo8CEaLpRCMtnkGdD4id0IF/JRq2ExjR/4e3jjbCpDzQ1E5nLcSPvo2rHuoYXv/S6D/xf7MkavKj4YxP4bFv3bv9/F34ISHM1OTiEi2pfO3qu9U6yNbwh6C0eJRvRkpqUt0krliGZDF34HWIh6D1ffZt7ldIOG3VfclDkU76o8NoWi5ptdpcN4qeDHJ0JjV90FhRzjit8HUlS+iVf6PufHpYILR3M4NmDF4/xrY+goM/BL0OgPCRf7XICISlHcua3khYtU6eHEY9DoTCrtApzFQ3Nt6jivulZUyRSQPOQWjGWHrYutj/wYfXG/fZ/eHwdWVq7y8H1G3v+W2qvXO/dtauJyIiGSdYRijgT8Dk+o3JbF7F+BK4ErDMOYAN5mmucLnEkVERERERKSN2xPdgUnctq17Qe8MV+OdgtFERERaMcOwbmg84jvWOoNIMTzi8fS62zW/A6+0myylEpNSv94hetD6Wsw4HNrZ0N6um3XNQDxqtYUKoGanFZimm7iLiIiI30r6wuRXrWOTugprW7gdPNUpu3WlSms2pQ0IOM5ZRMSjo/9ov71mV2ohT6mo3tQ0oKi5gVdC12MzU4v4o11X6HZicvsM/JL1b0EeB6PFHcJV3Cy8HT76hnUCsbVxDJsp9j5G+TFw9kKY+AAc85f0a5q2GQo7w3EPwpQ34Ih7YMpsOP4R6wRuazf+V1A+0b3PhseanugWEWnN/PhblS1e3mys3Rt8HdJ6xRO8HqxYlpk6WrtKl/WE6zIYVrv+Eff2/pfAiJszU0uq2g+BC1M4jl16t/XRlgURjLZvIWye7v+4Xmrd8AS8dT7MPAFq9vhfg4hIEGr2wI43ndu3vmL9vf7sNph3NUwfDdtd+ouINOYWjAYw9OvO+1YuBzOJm+C0Bl6C0Wr3tdx2cLN9307jrJtViYiIZIhhGJcCH2CFohk03NWu+Uc9u7b6/SYDHxuGcVGm6hcREREREZG2YUftVtvtBgblBT0yXI13EZfrzeviCkYTERFpFQzDChIDOPy/0x+v/fCW24bdaN+3uE/68zVX/7UYISju0fBhfB5zEIpAuND6utt1VyiaiBejfmC/vf2wzNYhIpKPIsUNxyORUud+RgaCZBNxq8FQMJq0fgpGE5HcUOxyN51D2zJTw4c3ubf3nZaZOsRfJzwGpQO89T3uIejw+Um+SJl9n3UPwRvnwvvXwTtXwCvHWHddeP0UWPFn6+4E2ZZqmODKv8D2N3wtJSfEDtpvD7dLbpzinjD4Khh2A/S7OPV6hnwNwkXW50YIenwBRn0PepzStpKZO9icUG/MjAcTYCAikoscg9GS/FuVDWEPbzh6Wcgr4iRe696+5gE4mKHXjK3ZwS3ObSX9MlfHjrfc2wdcnpk60tWuK1y8D/qen9x+n/4AZoyFJXdZd59pa6IHghl33lX+fz+TCSTf8zEs/rW/84uIBOWg/cIPR3X74IOvQdwh7EhEpLFEwWgAJz5l3ydaZd3gqC3xcj6l8XuoG5+Dedc4H3t2GO1PXSIiIh4YhnEJ8AhQQtNAtPqgM4CdwApgHlaA2kpgV6M+jfcDKAUeNQzjgsx8FSIiIiIiItIW7Ky1v2amc6QrBTl8s+sCw7m2qKlgNBERkVan/yXpjzHg0pbb+pxnfzP3IdekP5+IBG/AF+0DcZxCD0VExF4+r+3P59pFPFIwmojkBrdgtIPbM1PDno+c2wo7J7+gWXJDSW+YujZxv3OXwaArGx4XtHfuu2UGrP4nrH+04edmxxvw0Tdh7oVgms77ZkI8xWA0gM0v+ldHrggibGbYjTRcr50EIwKjvp/6vK1Jl6MS99n1bvB1iIjkAqdwlXwIRvNyJ6YtLwdfh7ReiYLRAF4aCxUrg6+lNavd49xWtz8zNWx9LXGfjmOCr8MvhR3hpGdh2iY45VU45TUo6Zt4v/2LYf6tMOsUiHn4+W9NolXBjFuzG7bP8m+8aLXz60wn6x6ywp9FRHJdKoskKlfC7vf9r0VEWh8vwWg9pzjvv3Ouv/Xkuv2LEvd55zLrZjmL74S5F1jh4U5KArijt4iIiA3DMEYAD2Bdl9g4EK0CuBc4B+hqmmZP0zRHmaZ5vGmaE03THGmaZg+gG3Ae8EegkqYBaRHgX4Zh6Db3IiIiIiIi4ouddfY3ZOxW2CvDlSQnomA0ERGRtqVsMEx0eT/Yiw4jWm4rKIMvvACRsoZtfc+HMbelN5eIZEZxTzjxSQgVNWwb+GUYfnP2ahIRkcyyC8gUaWUUjCYiuaGgg3NbLKCFsY3FY3DIJYDt7AVKTM1nhgHdv+DcXj6h5cm9ou6pzbX5Rdg2M7V9/eK0QHvk9xLvu/xef2vJBRuesN9ud0cLr3pOhpOehrKh9u2DvgonPQOdDwcjZC3s6nwkTH4dOgxPfd7WpN+FiftULA++DhGRXBBEiGemFJYn7rPgJ8HXIa2Xl2Comt2w7HfB19Ka1ex2bqurgLoDwdcwN8HxYXEvKBsSfB1+MgwrfKDX6dDrNDj8N9733f0+LLy94XE8CsvuhRdHwAtDYMHtwQWJZUuQX4+fIZ01u5Lf59AO2DvfvxpERIIST3GRxMwT4PFiePkIWPeYvzWJtEa1+2DetfBsX3h1Aqx9OLn9Nzxt7fd4CTzWDp7sBLNPg30egrSyyUswWmEnKB1k3+/dL8Ghnf7Xlau2vOKt3wfXw2c/TtyvWMFoIiKSMf8DlNAQiGYCPwP6mab5PdM0XzZNc6/TzqZp7jZNc4Zpmt8B+gG/+HyMemXAnwKrXkRERERERNqUnbVbbbd3K1AwmoiIiOSYwVfBxftg0nMw8V/J7TvsJue2nqfCRTvh1Ddh6hpr/HCRc38RyS39psHFu2HKbDh/Axz/b62FFxHxlZHtAtwZioyS1k9HNiKSG4yQFVIUO9iyLVod/Px1+8CM27dN+AeU9A2+BgnW6B/BrndbLu4zQnC0zTWzJWksEPnku3DO4tT3T1esxn57qAj6TIXNL7jvX7ka2vscOBCtgopl1gKnjmMg5Pxm7P8xTahaD6FCqNlhfV1GGDqMtO5I4cX2OWBG7dsiHsdw0u8C68P8/Brs+ucQI2QFINT3iUcBA0Jh22HaLC/PqxXLgq9DRCQXOAWjhfIgGM3L37eC9sHNH4/BgVVQOlBvwDZWtcH6vhd2znYl6Ys7HNs2t9XjgnGx5xaMBlYQlNdj8FRUrEgcijX85vw/pu5/CSy+E/Z7DKxY8hsY8W2ItId5V8HGpxvaFv3CCts69q+BlJoV0QAD+PwMJUslGA1g/1LocqR/dYiIBCHuIZTWSeyQ9Xz77uVWyHO/af7VJdKamCa8cTbses96fHAzvHelde574GWJ99/0Arx9cdNt8RrY9roVUnjeSmiX4o1fguZ0rt5odpzf5xxY8T/2fWedDGctyP/XBonEo1C11lvftR4veNd7nSIikgGGYZwATKEhFK0SuNA0zVmpjGeaZiVwh2EYc4FngNLPxz3NMIzjTdN815/KRUREREREpK3aWecQjFaY28FoYSOMQQiTlmtg6hSMJiIi0noVdoS+51ufb3oONj3rbb+ywe7t4XbQfVJ6tYlI9kRKoccp2Zt/wGWwXjdUFZFWquep2a4AOo5zbnMJzxdpLRT/JyK5I1Jivz3R4mg/uC1q7Xl68PNL8HqfCVPmwJBrG7YN+iqcNR/Kj2nZvziNYLT9S2D1A6nvny6n8IhwO2/BJOse8a8W04SFP4cnO8IrR8PLR8BTnWFNgoU6lavhpcPghUHwXB9rv9cmwqvHwFMd4bPbnMMM68UOwazJzu2dDkv+67FjGNZHKGx9GM3Sn0OR1r9IK1VH3uveXrMTavZkphYRkWxyCkYL50EwGlgBx26CCjrePB2e6QbTR8JTXWDpPcHMk0+q1sNLh8PzA+Cpcph7MURtwqfzhWl6D+eoWpffX2u2JQpGiwUcWL71Nff2DqNg5C3B1pAJoQI4430Y+1/e93m2NzzZvmkoWr1Vf4MDa/yrL9uCPP9Tudy/sRL9vjh570qIpRE4JCKSCc1vKpGquRdAXYCBlyL5bP+ihlC0xlb+b+J9Nz0Pb53v3F5XActtbgSTK8yY/Xaj2b3c+roEK+5fAltm+FdTrnIKkUtH+dH+jykiItLSTZ//a2CFo12faihaY6Zpvg5c32hcgBvTHVdERERERETatpgZZXfdDtu2bgU9M1xN8gocFr5GFYwmIiLSNvQ513vf3ucEV4eIyIjv2m8ff2dm6xARSUfj/In/Y8Cgr2S8lBZ6ToHCzi2395gC4cLM1yOSYQpGE5HcEXYIRgt6ATa4B6MVlQc/v2RGtxNgwj/gCtP6OO5B6OSQklvSN7253r8G3rkcFtwO866Gj26G3R9a4Q5BizkFoxVBxEMw2rYEoQRe1FXAhqfgteNg4R1NFzxFq2DeVdYiLjumCW9NsxaI2bbHYfGv4a0LIO6wkKp2L8wY41yfEYHeZ3n6UiRAzUPk7FT4GGAgIpKr8j0YbfSt7u3RKv+PgQ6stY4Xavdaj2PV8On3YdOL/s6TT0wT3jgX9n1Wv8EKUvo0j8Okkl0Ivnd+MHW0BbUJgp6CCqwyTdg2C+b/0L3fSc+0npP1kRI47OdwqU/f0zlnwr6F/oyVbTGH78nAK6HvBfZtw78Fx/2nZZhGczW7YadNAEkq3M4hJbLkN/7UICISFLdQ2lCSdxR7sj2seRCqN6VVkkirs/Yh++0751r/Rqth8wxY+TdYdZ8VAr7kLvjwm9br4EQW/9K6McmmF5zPN2SLYzBasxuLdJ8EBZ2cx/noZuv7s+uDxDdQyVdxn4PROo5NfAdwERGRNBmGUQSchxVcZgJPm6bp263hTdN8FHgaKxzNAKYahtFKThqKiIiIiIhINuyu20kc+/PM3Qt7Zbia5EUUjCYiItK2DbjMCsNIZNT3oePI4OsRkbar/BgY9o1m2ybAsBuyU4+ISCrG/heUDmq67YjfQrtu2amnsVAEjv1b02sti8rhyLuzV5NIBiVYMSYikkERh2C0aAaC0Xa+Y789XOxcl7Ruxb3TH2N9s2t8V/wPDPkaHPMXCIXt9/FD3GGxU6gICjok3n/n29bCqz4p3g2ichXMPh2q1rr3e2sanPQ09Luw6fa9nziHojW2+QV4ri+cs6hpgOG+hTBrCtTsdN63+0lQ6LKwSjLDaSFcY5XLodtxwdciIpJN+R6MNvBLsPCnLh1M62uMFPs358an7f+ObHoG+p7n3zz5pHKl/THUhqfg6D97CyTNNU6Bv05mHg/nr4PSAYGU06olCnoK4nV5tBrevhS2zHDvN/7XrfOCjEiJ9TqmJkEoXSKVK+Gl8TD+VzDm//lTW7Y4BfBFSmHAF2HTs023h4pg+Degw3DociRsfc16PTz/R/bjzDwejvkrDLs+vTrTCUZb+y8Y91/pzS8iEqS4wyKJcDGcvQC2vAwff8v7ePOuhkgZnPA49DnbnxpF8p3bscSBdfDW1PSDb+ddZf3baRxMegHKBqY3nl+czgc3f78kVABDvw5L77LvX70BPvz8wslBX4EJ/7Qu/GlNkg0KT2Skw515RURE/DURKPv8cxP4XQBz3ANc9PnnZcBxwJsBzCMiIiIiIiJtwM66rY5tXQt6ZrCS1CgYTUREpI2LlMDJL8HmF2H3+y1viFjQEXqcDD1OyUp5ItKGGAYc/Sfod4G1Vr/jKOh1FhSUJd5XRCRXlA6AMz+EzdOtm0L3PBW6Tsh2VQ36XwIdRsPWlyHS3sqAKOmb7apEMiKU7QJERP5P2CGALJaBYLT5t9pvL+oa/NySm8KFTcO2/LL6PuugM0hOARLhIjA8/ul/+1Ko2pjcvBufg3nXwovDEoei1Zt7EdRVNN225RXvcx7aBm+c23TbBze4h6KBtRhTsi/uYXFXxbLg6xARyTanUNN8CUZrPxSOe8i9j1PYTao+/YH99jUP+jtPPtnwpP32mp3O4Xu5rvkb9F7MOcv/OtqCA6vd22edDHPOhP1L0psnWg1LfguPGPBEaeJQNICRt6Q3Zy7rNsmngUxY8BPY5yFgOpc5BoUWQ++zYdxPG+5wU9gFjv2rFYoG1hvoI78No35oBfA4+fAGWPDT5J8XqzbCwp/Bu1fCsnuS27exA6v9/5soIuInp2C0UIF13D/iZjh/A3Q5xvuY0QPw5jkQPehPjSL5zu3mJR9/O/1QtMb2LYTFv/RvvHSYJphx+zbD5kYyY3/ibdy1/4ZNz6deV65yej5O1eCr/B1PRETEXv3drkxgqWma8/ye4PMxG5+k1B22REREREREJGW763bYbu8UKacwVJThapIXMexvGhL1++YbIiIikrvChdD/IjjiLjjq3qYfh/1MoWgikjmGAT2nwLjbrfAehaKJSD4qKofBX4Wxt+VWKFq9TmNg1Pdh2PUKRZM2RcFoIpI7IqX226MBB6O5ja9gtLatMIBgNIBVfw9m3Hpxh2C0UDuoq/Q2RqzaOXDEzsJfwNwLYM393vep92yfpo8XeFzwVG/3vIYwtdp9sOs99/5H/h7adUtuDglGaf/EfQ6sCb4OEZFscwpnCeVJMBrAoCvh7AXO7TGFwGRVvobwpBKMVrG0dS6KD1I8CpUJgtEAtr4KM8bA9jdTmyd2CGafBvN/6H2fk1+2LtporUbc7N9YZhzWJgipzHWJQr7H3QEXbIGzPoPz19qHOxgGdBjhPs+in8Gb53kPmziwFmYeDwt/Cusehqr13vZzUrEivf1FRILkdPwVanS3+dJ+cMY8OGeJ9bd60Fe9jf1aDl4gIJINBR2d2za/4P986x51DiTLJLca7ILRCtrDJR7fz9jyUmo15TI/F62dNd/7TXNERETSM6bR5+8EOM/bDnOKiIiIiIiIJKUqVmG7vVOkS4YrSU3EKLDdXpfKNVciIiIiIiIiIiIiOUhXwIpI7giX2G+PBRyMVrHcua1sSLBzS24L2d9FKW2bX4QPrvceUlYvdgg+/SE8XgyPGNbHm1Nhzyct+9kJF0E0iTk3PA4HtyfuV1cBi3/lfdzmogfg6e5QsdLbfHbeOMtaWFWzG+sG1C5GfDu1OcR/vc+BUIKgi9q9malFRCQTNj4Dr50Azw2A974KNXus7bGD9v3DeRSMBlDkEjy6b3Hm6mir7BaS1/vom94DgHJJqhfpfXCDv3W0dlXrklt0/8l3U5tn83TY9a73/qECKD8mtbnyRY9TYNLzVpBXouNiL5belRuhF6lyDPludBfmdt2h82FQ0MF5nPbDE8+17XV4rBBePwXm/whmngjTR8E7X4JDO5v2XfFnqN6UeEyvKpb5N5aIiN+cjhmb/50yQtBxFPQ+EyY+4G3sfQvTD5cUaQ3cjmOCEKuGR8PW+wkvjoDZp8Ou9zNbA4AZc25zej1bUAadDks89pr7oe5AanXlqriPwWidx/s3loiIiLvGF9gEecDReGxd1CMiIiIiIiIpq4rZn1suDbfPcCWpKXC41iRq5uF1YiIiIiIiIiIiIiI2FIwmIrkj4hCMFg04GO2tac5t424Pdm5pu1b9Hd48F0yXEK9oFRzcBrEaK0xkxhhY+tumwWebX4TZpzYNFIu5LCbvfU5ydXoJLtg1z3kBu1c1O2H6cNj8QupjfPztxMFvZy8Cw0h9DvFXQRmMTBCsUbsvM7WIiARt04sw92Lrb2v1Blj7b5h1ihVg0zyApV64OLM1pitS6tz25jnJh8JKctzuag3sAAAgAElEQVSC0TY8DvOuzVwtfnE6rgUoP9a57dA2qFjhfz2t1cEtyfXf+2ny31/ThJV/TW6fgV+CovLk9slHfafCucvgshr44qH0A9Le/ZI/dWWDUxhist+TDiO8993xBiz5Dex8xwosW/8IzDwB4o2CO5bdk9z8iRzc7O94IiJ+cnoudrjbvNVmwNTVEPGwQOSz26zznH4G/oiId5UrYNtMmD0l80GFbmHMhstNao7x+DrincuSqyfXJRNe7ab3uf6MIyIi4k2PRp8HebDReOyeAc4jIiIiIiIirVx1zP56tpJQfgSjRRzew4v6dY5ZREREREREREREJMsUjCYiuSPsEIwWCzAYLXrQCqawY4Sh07jg5hbZ8RbsW2jftvxP8Fx/eLYXPN4OXhoLB9bY963dC4t/3fDYKaQs3A56ne6+yKi5RCEJO9+BOWd4Hy+RD76e+r6r/gY1u5zbz5oPncakPr4EY/ydMOF+53YFo4lIa7Hyz0CzQNR9C2Db61C53H6fsoFBV+Uvp+P5eusfzUwdbZVbMBpY33+nEL5c5RTMAXDSs+77bnnZ31pas3gKd4nd+pr3vvuXwDPdYfus5OY4/K7k+rcG4SK4cJt7n67HQZejnNs3PBl8wHxQnMIQw0XJjVM+Ib06KlemF9qdSPRgcGOLiKTL6e7xiUIqywbDWZ/CkK+591v3sHWe8+lyWPdIajWK5LtUjr/rlQ5s+r5V1+NSGydaBQt/mnodqTBjzm1ur2e7efwat8yAPZ8kV1Mu8ytActgN/owjIiLiTeO7HAT5Jm/92AbQJcB5REREREREpJWrih2w3V4aLstwJamJOKwJiDq95yciIiIiIiIiIiKSZxSMJiK5I+IQpBDkgt6KZc5tfXQXdcmAj29u+BmPHrQCBuZeBB9/C2r3eB9nxR/BNKFmD8QcFllHyqCwExz9R+/jVm+0/q07YIVLrH0IDn6+UL92H8w+3ftY6ep1lvU1OInXwaYX7dtCRdB5fDB1SXoMA4ZcDcc7LIat25/ZekREghCtgq2v2rfNOQNih+zbOowKrqYghMJWEKuTNQ9mrJQ2yTDc280obHwqM7X4xS0YLVICF7mE4u5f5H89rVUqwQyf3gJbZzZ9/qraAGv+BUt/B5/9Fyy4HeZeAjPGuAcY2xl8DbTrlnxdrUFhZ5i6Fkr6N9powBH3wBUmnP4unPkRlE+039+MwfY5GSnVd06/84nCeJrrcYr7a0cvdr0H+xbBpz9Mbf+icuc2p9fsIiK5wOm4IGR/t/km2g+BCX+Hy+OJ+9ZVwLtfgvevs44dVv4N9i1OrlaRfJVqMFpRV5i6Bs5eYB0XXmHCqW9CuDi18dY86F/4lhepBqMB9DzV2xyL7/ReT64zffi/6X8J9Doz/XFERES8a5xuH2QwWuM3kF3elBARERERERFxVx23D0YryZtgNPv38OoUjCYiIiIiIiIiIiKthP3tIUREsiHsEIwWCzAYrXKFc9ugq4KbV/JD6SDYvyTYOXa8Ba8eCxMfsBYC7luQ+lgr/mwFkjhpP9T6d9iN0PU4WPJbWO8QRlVvyW9gwOXwzmUNQYKhQjjpWajZ6f33s9cZMPQGqFwO83/kbZ/GinvBKS9ZwQuvHOX8/7L5BfvtBe2Tn1Myq7CT/fa6fVboX6KwFxGRXHVgLcz2uIC3uQ4j/a0lE8LFzkFvu97zZ46oAmVsuYWI1TuwJvg6/OT2NYUKrXC0IdfB6n+0bHcLwZamUglmiNfCnNOhyzFw8nTY9jq891V/Fu8bIRj+zfTHyWdlA+Hs+bDxGSuQuvskKD+maZ9hN8Luefb7v3kuXB6zvpf5JF5jvz1UZL/dSbjI+v4s/W3qtSz9bXr7n/mp9dq1ZmfLNgWjiUgu8yOk0jCs4KaXDkvcd/U/G+8I438JY37sfS6RfJTqYqQBV7Q8RxoqsM7fr7k/tTF3vQfdT0pt32SlE4w28EvWa45ENj4FS++BUbckV1suSuW11ZG/h8Iu1g1vOh8Bvc/SeXUREcm0xidxglyB3fgPpYcUZxERERERERF7VbFK2+2l4fy47rzAsH8PL2p6uI5MREREREREREREJA/k2eo4EWnVIg7BaNEgg9FWOrf1nRrcvJIfMrUYf/9iKxwtnVA0gI9vhg9vsm+LtIfi3g2POx8Oh/3c27gvH940WCJeC+9eAfsXea9twj+g3zQYfSu06+l9v3r9L7P+DbeDsz5z7le1zn57QYfk55TMKnAIRovXKThARPLbrMmphVGVDoKC/LjzZBO1e93bTTP9OaL2d+ps87wExh2yCejJZU4hSdAQlNTlSPv2nW9DzR6oq4Sld8Pbl8IHN8C22bDxWZh3LbxzBaz8K8Rc5mkL0gkz2/MhfPZjmHe1P6FoAEf+Aboc4c9Y+aywMwy51gp1aB6KBjDoSvf9NzwZTF1BcvpdDCcZjAYw7o70aklVuAROfAJK+0H3L9j3SfS3UkQkm5wCU0NJZg10HAtlQ5Oc3ITPfgJ70zxHKpLrUgkm7nUGjP+FfdsRd6Vey+uT4OPvwJ5PUh/Dq7SC0b7s/f2aT78P+5J47yJXxVN4fTXyOzD4KzD2NuhztkLRRERERERERERERBJwCkYrCeXHdXsRI2K7PerXNTwiIiIiIiIiIiIiWaZgNBHJHZFS++3RquDm3Pm2/fa+08DQU2Sb12MylA7IdhX+6DCy5SIYp985L+r2w8ZnvPXtOBpK+jY8Hv+r5Ocr7tXweSgCo36Y3P6R/LhzV5tW6BCMBvBRhkIKRUT8tvZh59DORHqf5WspGdN+mHu7H2EwsUPu7aksHm4N4gm+LwCHdgRfh5/iDncvNUIQ+nzhfIeRzvs/XQ4zRsOnP7BColb9DWZPgbkXwpr7Yf2j8OGN8OZUiLXhO6WmEszQ2Op/Ov9fJevsRTBCx36eGCE4/hHn9tX3Z64Wvzj9HIXs73DsKlIKR/9PevUkq+fpcMEW6H+J9ThcbN9v7b8UyCgiucvxuTjJYDTDgDE/SqEA03qeFGnNkj3+nroaTn7Z+eYfReUw5rbU61n+B3htImx5OfUxvEgnGC0UhqP/BGd6DHB7aRyYce+15aJkF601vjGOiIiIiIiIiIiIiCRkmiZVMfsbdJaF8+O684hh/x5e1EzzWiARERERERERERGRHKHUHxHJHeES++2x6mDmi1bB9tn2bZ0OC2ZOyS/hQjj1LWtxc77rPqnltnY9oGxI6mMeWOOtX79Lmj7udXrywYPdTmz6uKRPcvsX5Mcb1G2aWzDamgf8CdIREcm0T7+X+r4DvuhfHZnU7ST39ppd6c8RO+je3laDFKIJvi8ANTuDr8NPTmFljUOSOh0GGPb9AKo3JZ5n22vOrw3bgnSD0fzSYzJ0GpPtKvJL7zOd23bMgdr9mavFD3GHsLBQUWrjZTpktOsEKOzY8DjiEIwGsG1W8PWIiKTC6bgglZDKwdfAkb+D4iTP4y37HTxiNHxMHwXrn0h+fpFclczx99DroWxwy5ueNDfwivRreuNsiLuEl6XLLcQ8UTBavc6HQ+lAb323z/HWL1clG/o+9vZg6hARERERERERERFppWrMQ8SxPy9ekufBaHUKRhMREREREREREZFWQsFoIpI7Ig7BaNGAgtH2LXZegNLn3GDmlPxT2h8mvwqXRRMHfeSy4d9ouc0wYMz/C3bekr4w6paW24Zc532MHpOh68Sm25JdUFnQIbn+knkFLsFoANvfzEwdIiJ+qd4Eh3akvn++HncM/6b7gubqjenPkSgY7f3r2mZwQvxQ4j75FjQadwhGa3xRX1F5y2PFVGx9Lf0x8lUuXAxphOGIu7NdRf4p7Ax9zrNvi9fB1lcyW0+6nH7nwykGo5UNhgGXp15PssLtmj12CUZb/odgaxERSZXTc3HIflGFK8OAkd+FCzbBJZUwOsXzkBXL4J0vwpoHU9tfJNckc/w94lve+nUcDX0vSK2ext6+2LktWg3Vm1Mf23QJXQtFvI1hGDDmNm99t8301i9XmS7BaCX9mz4uGwr9Xf7vREREMsv8/N+JhmFMCuIDmJDNL1BERERERERah6pYpWNbabgsg5WkzikYLWo6vOcnIiIiIiIiIiIikmc8XmUsIpIBYYdgtFhAwWg7HO4WHymFLkcFM6fkr1AYht0IO+dmu5LkDb4GygbZtw25Foq6wtqHYOPT/s7b+1yY+E8osLlr1jF/gY7jYMsMKOwC7bpB1QaoWtfQp7CTFYo26vvWgqfGinsnV0skP+7c1aZFiq2fhdo99u2NfzZERHKZacKiX8DCO1IfY+rqln/78kWXI+DMj+Hlw+3bZ59qLWI+7Bepf42JgtEAVv4ZBlya2vj5Kurh++IUDJ2rnBaCNw/mGPRl2PVeenMt/70VpjvudjDa2H0E4i4L7oPSYwpEq6xgu4KOMPpW6HxY5utoDSY9D486/Mxueh4GfDGz9aQjVmO/PVSY+pjH/RsqlsPeT1Ifw6tQEsFo29pwGKOI5Dan48V0nosBCspg/K+g4xhY/xgc3Aw1O61Aaa+W3g2Dr0qvDpFc4PV12eCrrMAzr058HJb9Hra9DiV9YOj1VoDWkv+G3R/C7nmJx9j0HBxY2/T9hHgUPvkerPqrVXuHkXDik9BprPfawD0YzS1gvbmh11nvaax7CDY+S0P2SjNLfgOH/3dSJeYUt5+T09+znhP3zbfezxx5i/XaSkREJHcYwKMBz2F+Po+IiIiIiIhISqpjBxzbSvIkGK3A4eZGUbebb4iIiIiIiIiIiIjkEQWjiUjuiDgEo0UDCkab/yP77e2Htb2F8OJNvwuhz3mw+cXs1VDcx1o4mIwRN7u39z3f+qjeBM/1S722xkbf6r7oyAjBiG9aH6ko7Z9c/8JOqc0jmTXkGmtBl53YoczWIiKSqvWPpReKdsTdUDbYv3qyofN4KOnrHHKw+FdQOtBazJwKL8Foez5Nbex8Fvfwt7J6A1SuhvZDgq/HD06BXaFmp7OGXAcf3pT+fIt+ZgUADP5q+mPlEzPDgXmX1bX8P5TUGYYV4r3yLy3btsyAWC2E0wyzcVO7D7bPgeqNYESg8xFQfqwVLp4MM+4ShliUen2hCBz/MMwYlfoYXoWbB6O1s+8nIpLLHIPR7BdVJMUwYNCXrI96Myd5vxHF/sWw6j7rPGa77unXI5ItXoLRyo+FI3+f3LihAhj9Q+ujsaP/aP27+E747MeJx3lhMFwWbTieW3YPrPhTQ3vFMnhpHFxWm9xzg1/BaAD9plkfAM/0hEPb7ftVroL2Q5MbO1c4HRsbESjpDUf9LrP1iIiIJCcToWUO6agiIiIiIiIi3lTFKm23GxiUhEozXE1qIoZDMFq+3TxTRERERERERERExIGSf0Qkd4QdgtFiAQSjLbnLua39cP/nk9YhXAQnPgVfeBFG/dChj8PPsV9OSPLGyl2Pg07jvfUt6QtT1yZfU3NTZruHovmhuLcVqOKVfq/zw9DrndtqdmWuDhGRdCzzsHB5wv1w6QH4wnToMcX6OzXup3D6PBh1S+AlZkRRV/f2DU+kPnbUQzBatNIKA2pLvHxfAKaPgEW/CrYWvzgtnDeahWqFCmDqan/mnHcV1OzxZ6x8kemLIRWK5r++0+y311XAno+Dm3fvfJgxBuZeCB9/Gz76Bsw8Ht6alnzIfdzlOTuUZrBbhxGZeU3YIhit2LmvHwFDIiJBcHo+dlhUkbZhNybX/4Ovw/SRsG12MPWIZILT8XdxHxj3MzjhMescu983+xj0VYi099Z37b8aPl/zoH2fN85Nbn4/g9EacwuQe3EYmHmameI1KFxERCR3mQF/iIiIiIiIiKTFKRitOFRKKJ3z1hnkFIxWl+mbJIqIiIiIiIiIiIgERFfOikjuiDgFox0CMw6GT1mOsRqYf6tze+cj/JlHWqdwIfQ51/rofRa8db612Byg7wVWcNnci2HLdP/nHn8ndDsxuX0m/BOMJG7GXNInufEbM0JwxkfQJQO/Q4ZhLf5ffq+3/h1GBluP+KP9UOc2BaOJSD7Y9jrs+dC9z+BrYMjV1ud9zrE+WqNEwWjbZqY+dsxjAFjtbijulfo8+SZ+yFs/MwYLb4deZ0D50cHWlC7TYSF482A0sEJzi7pBzc705517AZz6Zvrj5ItMBqP1PD1zc7Ul3U+GSClEq1q2VSyFbsf5P6dpwvtfh4NbWrZtmQ7P9oYzPoAOHgPJYjXObeGi1GqsZxgw6VmYfToc3JzeWG6SCUZzaxMRySanRRLphlQ6GfBF2DUPVvzR+z61e2H2FPhijXWuViTfOP2e9Z0K424Pbt6S3jDxfvjwBqjZ7d73/Wth0/PWa4WKZfZ9tr0G+xZDpzHe5g8qGC3Re3qPhqDfhRApg24nweCrIZQHC9ocXw8rYFdERHLaBhRaJiIiIiIiInmiKn7AdntpuCzDlaTOKRgtqmA0ERERERERERERaSUUjCYiuSPsEIwGVvhBpNSfebbPcW8f9BV/5pHWr8fJcOEO2PMRlPSF0gHW9iHX2gejTZ4F7YfBkjth5V8Sjz/xAeh0GBzaAeXHQFF5cvVN22wtdkpGqAAi7SFqfxcsRyX9Yeoqa/9MSSYYreOoYGsR/wz/lv1iWAWjiUiu2/U+zD4tcb/eZwZfSy4o6hbc2F6D0WraWDBazGMwGljB06v/kcfBaDaL2I0QDLsBFv0i/Xl3vAU73obuSYYS5yun73MQhl6XubnaknAhdBhtH875/rUw5Br/59y/2D0MtG4/vHosTH7d23NNvNa5LZRmMBpAx9Fw/nrr9fvye2H9Y+mP2VzzYDTXvgpGE5EcFXN4Pg7qnJ8RgqP/AKO+D/sWwLJ7Ep+/r/fmeTD51WDqEgmSUzBxJgKv+l8MPU+FihVQuwfeOMu57+YXEo/30li4PObtxkZBBaN19HBTlI3PWP+u/TdsmQEnPZPcDWWywel1WkiXd4iISO4yTXNgtmsQERERERER8ao6Zn+tfEm4fYYrSV2BgtFERERERERERESklfNwlbKISIa4BZ9Fq/2bZ/8S9/Zkg6SkbQsXQbcTGkLRAPpNgwn3Q9kQMCLQ/Qtw7groORlK+1mPvRh8FXQ50gpQSSYUrctRcObHqf8sF3VJfp/T3s5sKBpY3/d2PRL3K+nX9P9HcltRV/vtmQxG2zwdZp8O00fChzdBXUXm5haR/LXwZ4n7RMqgVxsJRisdGNzYyQSjtSVuoUJ2Vv3NCkjLZfEkF4KPvQNG3+rP3J98z59x8oFTMEO6Jj0H3U+2XieUDoJj/wb9LwlmLoEOLoEQ+xb7O9fuj+ClcYn71e2Hxb+ybzuwDuZeBC8dBnMvhj2fOI8TKkypzJbjhKHrBDj+YRhzm/V6MlIK/S5yfu7oMML6OfY0frNgNLfASgWjiUiuclok4ddzsZPSftDnHDjS400QALa9Bi+OgE3PB1eXSBCcjr8zdX69sBN0PdZ63+HY+9If79EwVKxM3K92j3NbOsFoAOd5mL/epufg0RDMPsM6rs1VTq+HDQWjiYiIiIiIiIiIiPihKnbAdntpqCzDlaQuomA0ERERERERERERaeV05ayI5I5IiXNbzMdgtNq9zm2j/59/80jbNuRq6yNe13JBk5eQro5jndsGfhnWPWTfdvp70HWi9zrtFHaGqvXe+5dPsBYvZlooAuN/De9f695v7E/AUBZs3mjnEIxWvTEz8295Bd6aBmbMelyxHPbOt8L/9HMkIm52vp24z2G/gIL8uaNkWsqPDm5st6CZxmrbWjCaw6JpN7s/shbE5yozyYXgoTAc/t8w/k6IVkKoqOG1ZEFH62/5snvhk+8mnnvPhxCtcg/wbi2CCEbrfQ70mQp9z7d/TST+6+gSjLbhCejkIcDTi8pV8Oox3vtveq7ltpo98MKghsf7FsLGp53HCBd5n88LIwTjf2n9XTZj1mvLmj2w5kE4tL2hX9lQOPNTiBRbX/fME5u2N1fQoenjeI1zXwWjiUiucgrbzdTf8s6HWccQm1/w1r9yhXUe5wsvQp9zg61NxC/ZDkZrbOh1sH8RLP9DeuNMHw7nb2h4n6Bmj/X1FLQH04TqDTBrsvP+TuHXXrUfagXRb33F+z7bXoMdc+CsBe7H0tni9Ho43e+ViIiIiIiIiIiIiABQ7RCMVhJWMJqIiIiIiIiIiIhIrlC6g4jkjrBLMFq0yr95Nj/v3Nb/Iv/mEQH7xUxdjobiXu77DXEJ+xr6NfvtA7+cfigaQGGX5Pp3cglxC9qQa9zbT3gMhn49M7WIP0oH2W8/uAW2vBr8/Kv+2hCKVm/Xe7D30+DnFpH85hbkWzoATnoGRnw7c/VkWxcPwWjzrk4tkCl20Fu/mjYWjJbKBW2vTYDqzf7X4pfmf5PrJVoIbhhWQFG4yAr9LezcEHDqFsjd3BNlsOZf3vvnKz+D0bpPgsN+aT3nGYa1TaFomdHbJQxm0c/9+39emELA2paXGz4/tBOeLk9u/1Bh8nN6YRgNzydFXeDsBTD0BitUY+QtcPq7VigaWGEbp70DJX3tx4qUQnmzwDincCFQMJqI5K6YUzCazyGVbk562gq67TDC+z4LfxpYOSK+c3rtlq3j5jE/aRnwmoo198PB7TBrinW891RneLobPN0Vnh/ovq8RTn/+k2ckv0+8Dhb/Ov25g+AUfu4UFC4iIiIiIiIiIiIiSamKV9puLw3nz41PnYLR6hSMJiIiIiIiIiIiIq2EgtFEJHe4LVCPugRNJKOuEvYtdG7vcpQ/84i4CUXgiHucFxSWT3QP/Op2Agy+qum2rsfB0X/0p75kg9E6jPRn3lRNfMB+e4dRMOCLma1F0uf28/TGmXBoV7Dzb3IIz1xyV7Dzikh+M03nAKeux8H566DfBQ0hQW1BSb/EfdY8CJ/emvzYXoPR6iqSHzufOS2aTmTuhf7W4acgFoK7BXLbmXcV7Pk49flySfVm2PgsbJ9jPW/VMx2+z50Ph4jHu+D2vQAuj8Opb8LY2yAcUJCVOOt8WEMAoJ0Pv5H+HPEobH4x+f3eONsKRAN45/Lk9w9nKIynXXc49i9wystw5N3QrlvT9vZD4PwN0P+SptuNEBz955Z19r3AeS63/ysRkWyK19hvz+Tf9lAExvwIzl0GV5jWMUYiez6G6k32bfuXWMdAez7xt06RVDkF1josXgpcu64wOoXX5s3tfBee6wvbZ1uPzRjU7ILaPYn39SMI1wjB5NetwNpkrHsIFtwBH94E6x+H2KH0awEw47D3M1h1H2yebr0/mdT+CkYTERERERERERERCVJVrPUGo0UVjCYiIiIiIiIiIiKthK6cFZHcES52botW+TPHK0c7t42/0585RLwYeDl0GmctEorXQlF3qFwJHUZA/4sh3M55XyMEE/4J/S+FXe9Bh9HQ97zkF/w4KeycXP9uk/yZN1V9p0H4ppYhKQOvyE49kp7S/tbPv9MCtG0zrd+fTDu4NfNzikj+cApFAzi8jQYrGoZ1TFG7173fhifgqN8lN7bXYLR4bXLj5junxfWJ7P4A9i2CTmP9rccPjgvBw6mPmcox85LfwIlPpD5nLlj9AHz0jYbfn24nwMmvQEGZ889OST+YMhuesglO7n02DLgCqjdAx9HQZ2rbCn/MVVPXwfP97du2vpr++PsWQN3+1Pbd8CT0OQe2z0p+X6dQ8WwwDDjhcRhwufV6vLCT9fvQ+fCWfTuPdx7HKXhIRCTbnJ6fsvlcbBhwzlKYMcq938xJcP6aptvm/+jzsPvPQ2EHXwUT7tdxi2SX0/F3KEvBaAAjvgMLf+pcW98LrGN/t9Doba+lNnf5RP9CY3tOgbM+g43PWPXGDsHqfyTeb9HPrX9X/sX697yV0H5o6nXEo/DulbDh8YZtpQPgCzOg0xhvYzi9Hg7p8g4RERERERERERERP1THDthuLwl7vIlgDihQMJqIiIiIiIiIiIi0crpyVkRyRyhihaPZBR3U7Ut//IrlULnCub2jx8UIIn7pNDb1AAojBL3Psj78VmQTfOCkuA+UuwQOZkJhJzjhMXjncohVW9v6ToOR381uXZIaIwTtekHVWvv2fQuALASjacGsiKVqI6z7D1RvhO4nQ/9L9PsB7oFUbXnB6shbYMFP3Psc3AybnoetM6GoHAZ+CToMd98n6jEYzW3BdmvktGjai/WP51kwWhq/V26B3E42PAnP9oUj77HCifPpeS8egwX/BUuaBYHvfAfe+zJMetY9mKGwM5y7DGafZj33A3Q6DI69D0p6B1u7JK+0H7TrCYe2tWyr3gC1+6GwY8u2eAzWPQx7P4XinjDsG1ZoXnP7l6ReW8VyK2wvFan83gbJMKDfBdaHa78QDP06rPp7y7aYgtFEJEfFHMKFw1kOqew4Eo79O3z0TecA5Kq1sHcBdD7Merx9jhVw29iaB62Psbdbz9ElfYKsWsReLgajRUrg6P+FD77Wsq1dDzjpaesYaOtrMOcMf+fud6G/47UfAqN/0PB48FUw92L7Y2QnLw6zXvsNviq192Devtg619FY1Xp4aSyMuQ1G/8j+eLuxeACvh0VERERERERERETk/1Q5BKOVhvInGC3i8N6CgtFERERERERERESktfDp9ssiIj4pKrffXrM7/bE3POXe3svnxRwi+aowiWC0cXdYi72zre9UuHAbTJ4F562Ek56BSGm2q5JU9b/Eua16U+bqaCKPAlBEglKxHF49Fj77Maz8C7zzRfjwhmxXlRs2v+jc1pYXrA7z+PPx1jRY+WdY9HN49RjYNc+9f/yQt3E3Pg1bXvXWtzVIJxitar1/dfjJaSF4WoGDZmq7HdwM71wG730ljbkzLB6D2VNahqLV2/ScFZDmdDFk/V1lO4yAqWvg9PfgrM/gzE8UipbLRn3fua1yZcttpglzL4B5X4Xl98L8H8GMMVBrE1BfsSz1ug5ugsrlye83/BfDx+AAACAASURBVFv5FUbYXPlE++1xBaOJSI5yen4KFWa2DjtDvwbTNkHnI5z7rHmg4fOVf3Put+jn8NI42POJf/WJeOV0/J3NYDSwQsDsjl2G3tBwPNbrdCgd5N+chZ2tkMIgdTsBpq6CKW8kt9+GJ+CNs2HhL5Lbb8FPW4aiNbb4V/BcX/vj7cYcA/Ta8HkmEREREREREREREZ+Ypkl1vNK2rSTcPsPVpC5iOAWjRTHNFK+REhEREREREREREckhOZBkIiLSSGGAwWhugRUnPAbhHFjcJZILCjt76zf+ThhybbC1JKOgPfScDO2H5vfCeXEPRmvXPXN1NKGfKRGW3g2HtjXdturvsH9pdurJFWbcPSAu2wubs6mo3DrOTkZdBSz8qXufeK338Rbcltz8+cxp0bQXNbv8q8NPZsx+ezqBg05ha16t+w/seCu9MTJl8wuw4033Pu9f5y2ALhSBrhP/P3v3GeZWfedt/JY0fdx7t3HFBoyNwfTeHXpCKMmmV9iQPEvabsqm955N2M1uCmwCaSS0UBIILfSOKabZuPfumfF4RtLz4uB101GXRtLcn+vS5dG//kbWaCTNOV/BwJkQjRWvRhXftI+F9215I5isux2evBKujcB10X3fL2lfAn8c+EZ/DK6rC75+/qvha5/xRPq6lv4JnvpEdt/D7g75bu5zKkmsMXV73GA0SRUqNBgt5PGs3JqGwtyfhfe/9IPgNVqiG5b8Lv1aOzbCc18Jvl51F9x1Etx2CDzxL9C5oXg1S3sLDbzq4fcPonVwwi0w5vwgDLFxMMz4Vzjwc3uOOybDz1a2GgbBSX+Dhv7FWS+dulYYfjwcdV3uc+d/Pnh82L4m89jt69I/Z96pa3PwfHvZTeFjwsLPe3MAvyRJkiRJkiQVyY5kJ90h78O2xvqUuZr8hQWjAaHfnyRJkiRJkiRVE4PRJFWWxpBgtB0FBqN1rof1j4T3j7+osPWlWtIwKPOY0x+DAz4NEZ9KqAQGHxre192+6+vta4JLPIeAnHTSfTqaYXsSLA458fX1X5e3jkqz5v7ghPowvf2E1eEn5j5n5R3pQ75yCQDb8ER2Jy/XgkIOZutcW7w6iinse4oW8HPVZ0J435TLsltjcY6Bfz1leZqT7HfasgC2vZa6r6eDGZSfaAz6H5i6b/Vd0LYYbj0IFnwvu/WSifCQwp0O/BwMOgTOfCa3WjPZ/18K+3mvBGFBQonO4L2qYr2WkaRiCXtcCgt67Anp3jcCuO882PpKdmst+3MQ+P33U2D13bDxKXjp+3D/+enfJ5IKEfaaNs3JS2XTOBiO+xNcuBUuWAuzvrZvMHK/afmvX98f3toGlybhLeth0JzC6s3VuAth4CG5z1t9N9x9JiQyPC9ee19ur83vOxeWhXyok8FokiRJkiRJklQybfGtoX2tsb5lrKQw9WmD0TweQZIkSZIkSVL1M81EUmUJC0brLDAY7aUfh/cd/vPC1pZqTWOGYLTmkcFJ71Ipjb84dXt3G2x8Fq6rhz8NDy6/a4SnPhGENhQibeCDT5vVyyWT0B1yMNDCq8tbS6VZcUv6/t4eLBRrzm/etoXhfYkcA8C2vJxfDdUml8C4vXWuK14dxRT2fx2JpW7PRv8DoXX8vu0DDoJD/wPGvjnzGq9clf/+5fLaz2Hhr7Ibu+be1O2VEMyg/Ayem7p94S/hxgnpH2ML2W/gTJj55eKtO+HS4q3VU8KChHZshOuHwJ+GwvwvGr4jqXIkOlO3hwU99pTzV4b3Lb8ZHn5P9ms9+sF929bcB8szvNaT8hX22q2S3j+INYR/UER9v/xC0CEIvq1ryb+uQkVjcMrdsP+VMOiw3OZufBKWhHxowE7ty3Kv6b5zUodShr0erqT7iSRJkiRJkiRVqbTBaNHqCUarSxuMVsCxZJIkSZIkSZJUIUx4kFRZGkoQjJZMwHNfDO8fOCv/taVa1Dwmff+cH0PEpxAqsYaBqds718Gdx0JyrxPDXvwOLPh+YXumC5QJOxFQ6i12bAzvCwtM6y02L0jfH60rTx2VKtaU37wtaW7XXA/aSrdWLck1MG53lRqMtvfv+50iBfxcRSLB89low662WAsc8r2g74hf7tkXpqtCH/val8HTn4ZH3lf4Wr398auajT67vPvtHowx5tzirDnt/8GgOcVZqydlChLq2gLzvxCEGUpSJQgNRsvi+VE5NY+AYceH969/uPA9lv1pz+vJJGx6Hhb/HtoWF76+eq94W+r2SgsgTCefMNx++8P0TxS/llzV94NDvgNnPAoXbYeBs7Ofu/RP6fs7VuRX06Pv37ct7PWwr9MkSZIkSZIkqWDt8W2hfc2x1jJWUph0wWhdBqNJkiRJkiRJqgGmmkiqLI2DUrfne6J+dwf85cD0Y3I56UHqDfpOhn7TU/cd9lMY9+by1qPeKdaSun3lbUF4QCqL/rewPRM7Cpsv1bKOleF9XVuCINreatsr6fvTHHzUK0Tz/P7XPx7ely7IMpXeEoxWyMFs3dsgvr14tRRLWNhboSeCjzkbznwKDv46zP42nPkkjDgl6KvvCxPelnmNrS8XVkMpLPpfuGkyvPDN4qzX2x+/qtmQw8u314hToG63g4L7Z3gPJpUZn4Lpn4T93hGEbJx0J8z5XvFq7EnZBoQu/m1p65CkbMVD3huJVWBg0+QPlnb9Rdfs+jrRHQTP3nogPHAR3DgBnvtqafdXbUrEoXND6r6mIeWtpRBDj4Zzl4T3R+qgdUJw6TMZDrsK5j0Ldc3lqjA7sUY4/ZEgIDsbS69P/9q5Pc9gtBW3BeGLuwt7PVxIULgkSZIkSZIkCYC2ROpgtOZoC7FIrMzV5K8uzXvG3WEfwCFJkiRJkiRJVcQjZyVVlqYRqdu3vZbfenedAFteDO8/7gaIRPJbW6pVkQgc83u4+3To2O1EnoO/DlM+3HN1qXepy+MT1zY9E5xAlu/jetpgNPOE1ct1ZDixc90jMPTI8tRSSRJdsDXD89RCA5x6q+U3wcFfTt1nMFpqYSdNZ6tzHbSMKU4txZKMp24vxong/WcEl1RmfQO2vATrHgyfv3kBDJpTeB3F0rkeHv0gJDqLt2a+wYbqeU0joK5PEHpYaqPP3fN6JALTPw4vfie7+fUDgteatfreTDTLIKHVd5W2DknKVthziWwfz8pp/MXw4KWlWz+ZCAKsGgcFAZYLf7Fn/7OfhRGnwpC5patBtWfHBiCZuq+xioLRAFrHwls2wf0XwOq/B21Nw+GIq2HU6T1bWy6i9TDxXTD85OB72ZAmqB3glunQOh76TIR4JyS7Ycnvgw/6iLfnV0PnWti+CppH7moLO2HNYDRJkiRJkiRJKlh7fGvK9pZY3zJXUpj6NB962F3Ih2xKkiRJkiRJUoUw4UFSZek7NXV7xwroSv0HqFCPXQbrHw3v7z8Dxpwb3i/1ZgMOhHMWwSn3BwGCF6yBAz7d01WpN6lryW/ejo3575kuGK1WgxqkbG1fnb5/+U3lqaPStC0OP1F1J09Yzc+mZ2HbwtR9uX6aZW8IRkvECT25Plud64pSSlGFnghe4k9mbRoGp9wLZ6Q5IX7tP0pbQ66W/gniHcVd02C06hWJQN8ppd+nZUwQIrG3cRdlv8bIU2v7uXasAoOEJCmd0GC0hvLWkY1IBM56qbR73DItCGbeOxRtp+U3lnZ/1Z50r7uqLRgNoKE/nHQnnPFE8Brq7FeqKxRtd61j4fRHgr+JpNP2Oqy5Fxb+EhZfG4SiQf6haDtt2evxLOy96lK/HpYkSZIkSZKkXqAtnvqD5lqjfcpcSWHqIuF/w+tOpvuwaEmSJEmSJEmqDp6hLamy9JsW3rf1FRg4C7a+ChueCC4bnwxCcFonwMyvwIADgrFbXoFXrkq/1/hLi1a2VJNiDTDsmJ6uQr1VLM9gtI7l0Dgov7npgtGo4bAGKRuZwnaW3Qizvl6eWirJ9rWZxxgsBCPPgJW35z5v+S0w7Yp92xM5fppl2yKIb4dYU+41VItsw+JOvgfuOiF1322zYcLb4eCvBSeEV4LQYLQyvJ0VrYNBc2C/d8Cia/btf/U/g5/vQ75bGT/nS/+UeUzfqXDiHXDTftmtabBjdRt6NGx8Kv/5kbrgZ7DPJGgeBRse3/P5wJAj4dCfQH2Kg4L7HwD1A6BrU+Z9xr45/xqrQdOw7Mc++XGY8SloGlq6eiQpnUQckonUfZUa9NhvKkx6L7z289Ks37kOVt4Bq+9O3f/81+Dgr5Zmb5VWMgHxziAMcOe/iR37tqXq26d/R+o5qebuSPP8qGFw+b7/YopEYNAhPV1FcUSiwd9EzloAt+xf/PWP+CU8/O7UfXedCPOehQEHBdfDPgCkoX/x65IkSZIkSZKkXqYtvjVle0us2oLRwo9Z6sr1w0clSZIkSZIkqQJ5hqOkytIyFqKNwQkie3vwUuhYCV1b9u3b+DSs/Cuc9SK0joMVt6bfJ1oPU/+5ODVLkoqvLs9gtPYVu04ey1W6oJ1INL81pVoRT/HcbHdbXgyCaftNKU89laJzXeYxBgvBtI/BqjuzD+/aadNzqdtzDUZLJqBtaW3fP7O9TYYfDw2DYMeG1P2v/xpW3wVveh4aBhavvnwlQu4z0TL+XI16U+pgNICXfwzdW4OT23tSvDO78MEznghCrObNh1uzeL5U11x4beo5Uy4P7rup3kMBmPQ+eO1/wudfuCV4b6ZhQO571zXD9Cvh2c+lHzdwNox9S+7rV5OmEdmPXfBdWPsAnPoPiMZKV5MkhUn1nvxO0QoNRoMg3DebYLTxl8JRvw5eH+xYD099EhZdnXney/9ReI07da4Pnmf3tveZEt2ZA8MK7cs1pKzSTgaqa/X5dyXpNw2O+SP8o8jPVaMNQYDx2gdS9986E057KHgO2bEi9ZjGIcWtSZIkSZIkSZJ6obZE6mC0PrF+Za6kMHVpjk3sTuZ4jJ0kSZIkSZIkVSDP0JZUWaIx6DsFNqcIQdjyUvq58XZ47itw+M9g3UPpx56zyE9Vl6RKFmvNb17H8vz3TOwI79v4VP7rSrUg3QnyOy2/Efp9vPS1VJJsgtGi4Z/K2GuMOh1OvA3+fmpu83ZsTN2eazAaBMEH1HAwWi4n9TcOCQ9GgyCMetGvYdpHCq+rUMl46vZyBg6OOhPq+kD3ttT9C38FRODw/+m5gItlN2QeM+K0IBQNoP8B0GcibFuYfk6/GYXXpp7Tf3849QF44Vuw4fFdjxPNo2H8xTD5A+mD0eqagQLCOQ74TBDosPi3sH0VdLdBfd8giKSuFYYdDwd9ofYDwCKR3MavfxiW/AEmXFyaeiQpnbTBaA3lqyNX2YYETbg0eFyOxKBpGEz5cHbBaCvvKKw+gA1PwoNvD0LF6wfAAf8G0z+e+++JTJLJ4PVSysCwTojvSNFWypCyN/qTieJ+n7XIsKvKM/L04q8ZrYdBc8OD0QD+emT6NbyvSJIkSZIkSVLB2uOpjwNqifUpcyWFiUQi1EXq6E5x7JjBaJIkSZIkSZJqgcFokipPv2mpg9GysfxGSP4nJLaHj5n9XWgZnd/6kqTyqGvJb17Hivz3TBeM1rESdmyChgH5r1+pti0Kgt8GHQqt43q6GlWqdD8fO73+m+DE7lqX6IY190J8Oyy+LvP4cgY4VbIRp0DDoPSBXHvr2pS6PZcQsJ22r819TjXJJixuzHnBv01DYevL6ccuurpCgtFC/q+jZfy5qu8L0z8B8/89fMzCX8LQo2HSe8tX1+7WPph5zMwv7fo6EgnuDwu+Fz4+2hj83Kq6DTgQjromvH/ax+ClH+zbPvE9he8dicDk9wWX3m78Jdk9Z9jp5R8ZjCapZ8TTvO6LNZavjlxlExI09s0wat6ebUMOh/3emV04WiG2r4Xb5+y63rUJnv4kLL0exl4QHiaWb0iZqlPLmJ6uQHur7wP7XwkLvlu8NSP1MOYceOn7+a9hMJokSZIkSZIkFawtJBittcqC0QDqIg0pg9G6/LuRJEmSJEmSpBrgGdqSKk+/afnP3b4GVt4By24MHzPhbfmvL0kqj0oLRgNYdhNMfEf+61eaZDI4EffF7+xqO+AzMPPLQZCFtLt4Z+YxG5+GFbfBqDNLX09P2bYQ7j0HNj+f/ZxorHT1VJtoQ27jd4QEo2UTAra3znW5z6km2YTF7Qw6yuYk6g1PFFZPsSRCvq9ImX+uZnwqCDXasiB8zCPvg9HnQlMPnKSeLuhu8ofgoM9D88g92zMFo+33T0EQgGrbuLekDkYbc275a6llk96TWzDauodKV4skpZNI87ovWsnBaIPT9x92FUz+QOr3Oo74ZfC86P7z89s7Ek3fv+VluCXk7x3rHwkuEgSvJVR5Zn87CDFLJoqzXrQehh4D/abDlhfzW8NgNEmSJEmSJEkqWHt8a8r2lmjfMldSuLpIfcr2VGFpkiRJkiRJklRtDEaTVHkGHlLY/HvmhfcNPQaahxe2viSp9GKt+c1rX57/npmC0Z76eG0Fo624dc9QNIDnvwrDjoeRp/ZMTapc6U6Q39098+CSRG2G68W3w02TerqK6hbLMUxhw+Op25MGo+0jLEBsp+mfhNFnBV83ZAiO2OnxK2Ds+TD8xPzr2vIyvH4trH84CFsbejQ0jwnWHHtB5seKsAP0ImV+OyvWCCfcBjftl37cPWfCGY+Vp6bdhQWjjTgN5l6Vum/IUdA4FDrXpuiMwMFfK1p5qmBDjoKZX4FnP7urbfrHYfTZPVdTLRp+cu5z1j8Ogw8tfi0qv/YVsOhq2PISkOzpaqT0ulKfAALk/ly+nKKpT/b4P5M/GP68MxKBsefBQV+A+V/IY+8M4c+Pvj/3NdX7jH0zTLuip6tQKpEInPl0EJLf9nrh60XrIVoHR14Nd58OOzbmvobBaJIkSZIkSZJUsLbEtpTtrbHq+xDBupDjqLrzOcZOkiRJkiRJkiqMwWiSKs+Yc6BlDLQvCx8Tieb3Ce2eXCJJ1aGuJb95HSvy3zOR4SCAlMEhVeyVkKCUhb8yGE37yhQcuLuFv4JJ7y5ZKT0i3gk3ju/pKqpfNI8whZd/ClMv27Mt0+N1KrUejJbuQLZTH4ChR+26nu3t9/KPg8vsbwdBSblacx/cfSbE23e1Lbsx+PeVn8Ck98PhP0u/RljgW7mD0QD6TIDzlsMNo8PHbHgcVv0dRpxUtrJIdIefoL/3z87uojE48PPwxEf27bu4K+hX7YtE4MDPwMR3wcanYMBMaB3X01XVnkgEmkdCx8rs59xxGBx1HUy4uHR1qfQ2L4A7j6395yHqHTIFgPW0gbOD32V7a92vtMHd6W6X7WuD58SqbpFY8Fo21pji34bUfdFGiDXs9nXI3FgzDD4M+k6tzYD5WjHgIHjT83D3abD2gX37j/oNvPBN2PRs5rV2BjkOPgzOXQJ3Hpf6sSudxizDziVJkiRJkiRJKSWTSdriqT8wqDXWt8zVFK4+kvpDhAxGkyRJkiRJklQLDEaTVHmi9XDSnfDQu2DDo0AE+s+AgYfAoDnBZeDBcPthsOXF3NYePLcUFUuSii3WE8FoOQQ/1YIVf0ndvvhaOPo35a1FlS/emf3YR96TWzBaojs4gXTV34Kwo+lXwqgzc6+xlF79GWxf09NVVL98whSe/iSMews0DdvVFhaWlU6tB5Kku01a9wr127Eht7Wf+gT0nQZjzt53z0XXwPNfhW0Lg7bm0dCxPLt1X/vv4LKzvvr+MPxkmPklqH/j01eT8dRzoz30dlbLqCBo7m9Hh495+F1w3pKylcSOjeGh4S0ZAq6mfBg618CCHwQBdsNPhMN/YShab9QyOriodPL53fXMp4PfgT31mKfcJROw4Huw9E/Ba9O2xT1dkVQ8+YQcl9OBn4X737xv+9A0z9uKId3ju48Bufu/oLE0oWLRhpCgsRz6sg44a/C5sQJ1LXDyPfDUx+G1X0D3VqgfAAd9HsZfAmPOh6euhIW/hPj28HV2Pzmtvk/w+vKpK8M/wGKfOvpCv/0L+lYkSZIkSZIkqbfrSu4IDQ1rqcJgtDqD0SRJkiRJkiTVMM+qklSZ+k2D0x8KTihMdAcnwuytcUhua467aN9QAElSZarLMxht+2pIJiESyX1ubwtGqwWdG6B7GzQM3HXirEojkUMwGkDbEmjNEMiz00PvgMXX7bq++i44/mYYfVZue5bS4t/2dAW1IZZHmEJ3Gyy7ESa/f1dbPgdtbV+d+5xqkkhzm0T3Ovht7JvDwzHD3HcOnHIvDDsu+D2b6IIXvwXPfm7PcdmGou1u98CITc/ChseDvSIRSIYETUR68O2soUfBcTcFt0kq7Uth84tQ1xpc4tuhcTDEmopXQ6I7eK0ca4DO9eHjGgenXycaC4LoDvxccJvm8/xJUnbGnBeEQeaibXHwuNh3chCCCEGYRl1LECbpz2zleeJj8PKPe7oKqfgiUYg193QV6Y05Pwh5XX33rrZoI0z9SHbzBx2a377xdkjEU4dnFRLeX3KR9MFgxQgiSxc4lnLPBn+3qbJF62DOD2D2d4Lw/OYRweMjQF0zHPZTmPNDePQDsPBXIWvs9fp893m3zYLNL6SvYeo/F/e1pSRJkiRJkiT1Qm3xraF9rdE+ZaykOMKC0boMRpMkSZIkSZJUAwxGk1TZItHwkJNcg9GO+t/C65EklUdda37zkvEg4Cyf8B2D0arHhifh4XfBpvl7tk/7KMz+buoTklWYXH8+lt0I07I4AX3ZTXuGou1079lw3I0wJiR4qJy2r4N1D/V0FbUhmsdjM8CyG/YMRksXAhamokMJiiAsQAz2DREbeWp+ezz7eTjke/DYh2H9o/mtkY2198PKO2DUGWmC0Xr4cX7M2dAyNghBS+UvM/Zt2+8dcOh/QH0Bnywb74Rn/i0I3Ul0waizYMIl4eMzBaPttPfJ+ZKKb9S83IPRAG6fA0SA5L59c34YBP4YIlMZNj1vKJpq15CjKj+IPBKBY6+HBT+ElbdD8yg46PMwcFZ280ecDPX9oGtL7nt3b4OG/vu2z/9C5rn1A6D/jPSBY4WEjYX1GYor5S9aBy2jQvrqg9eKoXNDXntF6+G0R+CpK+HVn6UeM+fHMPXy3GqVJEmSJEmSJO2jLb4ttK81VjvBaO3xrWzt3vzGmDqaY3kely1JkiRJkiRJPchgNEnVK5dgtFPu92RvSaomsZb853a35ReMFjcY7f8suwmGHp19oEohkskg4KxjBTQMgu4t0GdicNnb1tdg45Pwj7emXuulHwYnFc/8QklL7pXinbmNTxWMtmMTrP0HdG4I7lsDZ8F954avcd+5cNYC6Dct93o3Pg2r7wnuU8NPgNZx2c3r2gLrHoaOVcGJrk3D4aUfkTKMRLnL9/n4iluhfRm0jAmu5xOMtvEp2LERGgbmV0OlS3eb7H27t4yBGf8KL3w9tz3W3PtGQE8ZLPlDEIyWCAlGi1bA21mnPQw3jM5+/KJrINYEc/8r/z1f+CYs+N6u6ytuCS6pRBsLez4lqbhGzYMRp8Gqv+YxOeR5yBMfhebRMO7NBZWmIrn1wJ6uQCqNur4w6xs9XUV2GgYG7wfk855ArAlmfQse+1Duc1MFoy2/NXgNks7BX4UD/i33/SRVuDShg+neF6nvE7xe7H8gPHHFrva61uBvnINmF69ESZIkSZIkSerF2hNbQ/taaigY7Y4N13PHhuv/7/rwhjG8Zei7OaBPmY7/kiRJkiRJkqQiqIAzSSUpT9kGo9X1gSFHlrYWSVJxReshEoNkPPe53W3QOCj3ecksgnaSSYikObmtVtx3LhCBY34H4y4s3T7dbfDwe2HJ7/Zsj9QFJwfP/GJwPZmAZz6bXYjPomsMRiuFRI7BaGvuhfj24ORyCILS7jsv931v2R8uiUMkmt34RDc8cDEsvX7P9tnfgelXpp+77hG4/3zoWJl9feMvgUGHwlMZ1tYb0gTMxZqC+0yYG8YGJwhP/gAkQ8KyMrl+CBz7JxiTJpCvWqW7TSIp3vo5+Ksw7HhYfhO88tPS1ZWvhb8IfgesvT91f6rvqdxaRsH0T8CL385+zms/h4O/ll/waHcHvPit7Mc3Du4dz1mkahFrgBNuhdd/Aw+/s3jrvnKVwWiVYNP83MZPfFdJypCKrt/+MOZ86De1pyspjykfhAEHwd+Ozm1ed9u+ba/9T/o5pz0EQ47IbR9J1S/k5LQ9TPtI8DfNZX+GaBNMfj80jyh9bZIkSZIkSZLUS7TFt6Vsb4o2E6uEY5JyVJ/Ne8/A6h3LuGr51/jU+G8ztinFBxdLkiRJkiRJUgWqvndtJWmnpqHZjRv3VojGSluLJKm4IhGoa4WuLbnPTXVC6k6JOKy8A1b/HVpGw6T3Qn2/zPN2SnZndwJbTUjCQ++EEadAw8DiLr1tIbx+HTz72ZCtu+G5L0HX1iAQa8kfoH1Jdmu3LYJEVxCup+JJ7EjdPvxEWH33vu3J7iAAaOrlwc/xAxfnv/d1Meg3Pfh6yBHQOgHGnh+csL5T2xKY/8UgTCmVpz4Or18LA2ft1piAtQ9C/wNg5GlBuFEuoWhTr4BDf/jG+gajZaX/QbDmvn3bow1BMMBts9PPf/SDwWNSIosgy1SSCfjHRXDBamjon98alWbdo7DsBlhxS/iYVI+HkQiMOj24dKwMTriuNDeMDe+LVsjbWRPfnVswWjIOj/8zHH1d7nutviu75yo75RO+Jqm0ojGY+I4gkHL9I8VZc/Vdwe+3bENkVRobn8l+7Fu3Ba91JVWmoUfB1I/Ayz/Ofk68fd+2dM+vp/0/Q9Gk3irb9ysHHxpcJEmSJEmSJElF1xbfmrK9Nda3zJUUR10Ox8omiPPYlvsMRpMkSZIkSZJUNSrkTFJJykPz6OzGzfhkaeuQJJVGrCW/YLR4SGhIMgmPXw6v/teutgXfg9Mfg+YRQQhXJokdvStwK94By26Cie8s3pprH4S7T4fubqWuyAAAIABJREFU1J+6t4eXvp/fHot/D/u9Lb+5Si3embp90BxYc38QhLa3x/85CPFpnQDx7YXtv+XFPf99/mtwzO9hzDmw+l6464TMa2x8MrjsbevLeYRCRWDy+3KcI8a/NQiDIbln+7iLgtC6t7bB7zMEhSy5PjwY7bgbg/vcg5eGz090wqq/wrgLcyq9Ii38FTzy3iAQJ51IhpDobAOnCzH3v4PwtmU3Fme9TN9zufTbH/pOga2vZD9n8W9h4OzcX6cuuyG38Q0Go0kVa/wlxQtGA9j6GvSbUrz1lLv2pdmNO/luQ9GkatA0PLfxe4fXdqcISttdv2m5rS+pykTCu3rT+8qSJEmSJEmSVKHa46mPXW2J9ilzJcUxuH5YTuNX7VhWokokSZIkSZIkqfiiPV2AJOWteVTmMcf+2RONJKlaxZrzm3f7ofCPi2HT/D3bn/7knqFoAO3LYP6/B18vvjbz2mFhPLVs8wuFrxHfAa/8J/ztWPjb0dmFohXiUQOrii6xI3V7XR/oOyl83tOfggcuKkE9nfDUx2HjM9mFohXblMtgwEHl37faDTsOjvxfaBkTXI82BOEwc68Krte1BEFT6ax7iH2C1XZqGADjL4a+U9Ov0V4DB3d1roeH351FKFodRNKclA3QmNvBcTmb9tEgSPDQnwT1FEPHyuKsU6hIBMa+Jfd5878A29dkHrf2QbjnLPjjIHjt57ntMfiw3OuSVB7TroADP1e89W6fDX87Lvi90La4eOsqOzs2wzP/ln5M49AgJHT4CWUpSVKB6vvlNn7vYLStL6cf3396butLqh0Go0mSJEmSJElSj2tLpP4Q5dZY3zJXUhyz+xxFJN2HduwlLBhOkiRJkiRJkiqRwWiSqlfL6PC+ie+Ci7th7HllK0eSVGSxhvznLvkd3HE4bFsUXH/pR/Did1KPffVnsPDqfYPUUumNwWjZ3C57i2/f87Z65l/hsQ/D2n8Ur65M+3esLs9evUWiM3V7tDFzkFWpbH0FbptV/n37HwgHf7X8+9aK/d4G5y6B85bBhZvh6GuhrnVXf+v49PO3p/nZ3hkCNv3K9Gt0rMq+3koS3x4EoiW64foh2c2JZhFE1lTiYLTmN163tYyG/d5RnDX7H1CcdYphxieCwJtcxDtg8W+D/0sIAu6SCUgmIREPfoetuS8IE13xF9ixMfe6Jr4n9zmSyiMSgZlfCt63mvTewtfrboO198PCX8Hth+X3mKH8JLrhrpPSj7lwK5y/IggJlVQd6nM86WXvYLTNC9KP76nX0JLKI104ecRgNEmSJEmSJEnqaWHBYC2xPmWupDgmt8zgn0ZcQZ9Y/6zGtyUMRpMkSZIkSZJUPbI4Q1aSKlTzyPT90Vh56pAklUakwKeq8Q64aSIc8Fl49b/Sj334Xdmt2RuD0VbeDtvXQVMWITxd2+CR98KyGyEShXEXwoS3w4Lvlb7OvT33RTjsp+Xft1bFw4LRGmDkGcH/eW8w8nQ46jfQkN1BRAoRiYSHHGcKRos1h/dF3zjBePIHoK4PPPi21ONe/BYsvi54jBh9VuZ6e9qOjfDwe2DZDbnPzeak68YsQ9byNfK0XV/P/Rn0mwYrbg2uT/sobHgCns8xbHDIEcWrr1ANA+H0h+HZf4fXf539vCc+Ck/+CyTjwXOeZHfxapr0Xuhv4IZU8aIx6DuluGt2roVbZ8F5i4u7rlJb/XfY+GR4/+QPQn11Hjwv9Wp1uQajte95fdmfw8cOmpN7qK6k2hE1GE2SJEmSJEmSelpbfGvK9tZojn8jqiBH9D+Ruf2OZ13XarqTwXHOz217nBvWXbPP2PaQ71+SJEmSJEmSKlG0pwuQpLzFmiDWkrpv3MXlrUWSVHzFOlHs+a8EAQHFkNhRnHV6WiKX8JUkPPu57IY+/E5Y8ntIdAbBdIuugbtPyzyvFF65CtY92jN716Kw+36sMQi/G3x44Xu0jIUjfgWRCg23PeAzcOLt0Di4pyupbZmC0dI9nu/+e2PCpTD5Q+Fj25fCvWfDpudyq68nPHBpfqFokN39tS7kNVUxTHw3DDx41/VoDGZ8Ek65J7iMPR+mfiS3NSd/EAbMLGaVheszEY76X7g0ueflopBQyZ2S8Tf+LWIo2qA5cOhPireepNIaNS99f8tYeMtGOOX+7NdsXwKr7ymoLGVp6fXp+/sfWJ46JBVXfY4nvcTbdvt6e/C+SJhZ3wiCoiX1TgajSZIkSZIkSVKPa4tvS9neEqvuD72KRqIMaxjJqMZxjGocx+jG1MfhtcW3kUwmy1ydJEmSJEmSJOXHYDRJ1W3iu/dtq+sDw48vfy2SpOKqq8CDDBJdPV1BccS35zZ+0dXQ3Z5+TOcGWHZj/jWVwoLv9HQFtSMREu4TbYT6PnDy3TD94/mvP+ZcOPNpmPhOOPOZ/NdJZdjxQXjbzkusOfu5E94OU6+A4/8CB3+luHUptdYJ6fs3PRveF6nb83rjkMz7vfLTzGN6UttiWHl7/vNHnp55TF2RP+20zySYcjkc8wc4/OeZxzcPD0J/MmkaAcfdGIR+VUuYRKwBzniidOvP+SEc8n2Y+C6Y+B447Kdw6gNBaKWk6tD/QOh/QOq+Q74Hb3oBGgbAsGNgzo+yX/fV/y5OfQrXthhe/Vn6MS2jylOLpOLK9flx927BaMtvDh839gIYcUp+NUmqHnu/N7E7g9EkSZIkSZIkqce1xbembO8TK/IxVD2sJeT7SRBne6KjzNVIkiRJkiRJUn7SHJkrSVXgoC/Axidh3UPB9VhTcAJ+rKlHy5IkFUGxg1qKIVkrwWg5HtQQ74CXfwwzPhU+ZuPTkIwXVlcu6voEgT9Lrw8fs+QP0LkeGgeXr65aFQ8LRmsI/q1rhtnfhtb94PHLc1v7wH+HmV/YdX3AATDoMNjwWF6lAkEY2sl/h0iKLPDkNfDYZfDqf6Zf47yl0DImu/3m/jc8+v592ye+K7v52qU19SdVhlnUMYEb153Dpu4BnL2iD3MG7NaZVTDaVUGYVKVadWdh82d9I/OYwYcFP8uJHYXtBTDtY3DId1P/7KXTMABO/Qfcdz50rt2rb1DwGm/ESYXX1xMGHRKELL7+6+KvPf4SaBpa/HUllU8kAkf8Eu47FzpWBm2tE4LnMX3223PsmHPgiSuyW3fxtTD+Ihh9dvWESVabxy7LPKZ5dOnrkFR89Tm+H9W5YdfXG54KHzf+0vzqkVRdJrwNnv3svu0tY9KHpkmSJEmSJEmSyqI9sS1le0usAj/MuQCtab6f9sRWmmMtZaxGkiRJkiRJkvLj0beSqlvTEDjl3uCEo+0rYdhx0DCwp6uSJBVDfZqDDA67Ch77cPlq2akYoTGVINdgNICnPw19JsG4t6Tuf/FbhdWUq/EXwZgL0gejAVw/BM5fCc0jylNXrQq77+8MRttp6mVB+EY2QREAk967ZyjaTrmGKu1u4Gw45Z7w/kgE5l4V3IfuOjH1mAtWQ9Ow7PccNQ/qWqG7bc/2sRdmv4YCOQSjPbz5cObNv4VN3cHz/y//MMkv35XgHUe+cf/JJhgNYP6X4aDP5Vpp6W17HR55X/7zL1gdBI5lUt8XxpwHS36f/14AZ70E/abmP3/o0XD2S7D2AehYFbQ1DYOhx0DjoMJq62mzvw3Lb4KuLcVbc8plhqJJtWLwYXDWAlj3SPAcaOgxEGvcd1zLWIg1Z/9c/r5zYdL74fCfFbdewdbXYMWtmcc1jyp9LZKKL9dgtOe/Agd8OnhNuGVB+LjRZxVWl6Tq0GcCDJ4L6x/ds33cRQbWSpIkSZIkSVIFaItvTdneGqvAD3MuQLqgt7b4NgbXDy9jNZIkSZIkSZKUnwLONpekChGthyFzYcy5hqJJUi2pSxOMNvbNMPWK8tWyU6Kr/HuWwuYX8pv31CchEd+zrWsLPHY5rLyjsJrq+kLLuMzjog0w4W0w58cwel4QkpfJ058urDaF3/djDfu2TfkwHPIDqO+ffs39r4S5IUEd+Qaj7fcOOPmu7MYOPwFOuQ/6TNy5KQw+HM59PbdQNICWUXDiX6HvG6FQTcNh7n8F91Hlpmlk1kM/s+gr/xeKBpBMRvjIdUm6upNBw+BDs1to/udh28JcqiytjlXwyAfgpv0KWyeX+/HhPw9+t0brg8uY82D8xdnPH3lmYaFoOzUMDAIjJr8vuIw5p/pD0SAI55z5lSIuGIFZXy/iepJ6XH0/GHkqjDg5dSgaBM+PhhyZ27qv/Tf8rgUWXg3JZOF1KrD85uzGGc4sVae6PE56+euRcG0Elv05df+4i8If3yXVnuNvhuEnBc/fYi1BWO2sb/R0VZIkSZIkSZLU6+1IdNKVTP0hsS3RNMcsV6GWaGtoX3t8WxkrkSRJkiRJkqT81fV0AZIkSVJK6U5EjTbApPfCwl9Adxn/QF8rwWgv/SC/eW2LYONTu8KGkkm473xY/ff81qvvD2e/DJE6qO8LiW74fUv4+HnPBiFWdbsdsDHlQzD5A3D3mbDqr6nnLfl9EKBW15xfnYJkyH0/Up+6ff+PBgFpiR3Byd+JHdC5Pvi/i8Qg1pzhpPBI9rUNPAROvQ+I5v5/POxYOPtV6FgJsabCApiGHgVnvwTb10HjYIjk8D1ol2gsq2GdiQbu3nTiPu1bt8M9L8OpM4B+07Lfd/Hv4YAKCFHs2gq3HwodywtbZ9BhuY2v7wPH/hG62yGZCK5veAoW/zbz3EgMpvVAWGm1mfIheOYz0J36U2ez1mcSnPViEGAnqffZ/0pYc0/wWJ2teAc8/C7YvgZmfKJUlfUum5/LPKZpuI/VUrWqzyMYbdP89P3j3pxfLZKqU9OwILh/x+bg/SaDESVJkiRJkiSpIrQn2kL7WmN5/I2ogkUjMZqjrXSk+J7b4gUevyRJkiRJkiRJZRLt6QIkSZKklOrTfPpatB4GzoST7ixfPVAbwWidG2DV3/Kff8dhsOD7QSja8pvzC0VrnQBj3wynPxacKNg4KPg/zRRq1Tx6z1C0nSJRmPy+8HnxDlh9V+51apdEd+r2aJqs7VhD8HMcrQ/+31rHBYFhDQMynxCaLlRs7s9g2HHQ/0CY8Sk49R/B+vkG30Ui0DKqsFC03TUNMRStUFM+nHHI5u7+oX0LViV3XZnwT9ntueyG7MaV0o7N8Id+uYWiDT0mdfuYc/Oroa5l1+/fQbPhtIeh3/67+kecCvOeg2kfC34GR54Jx/8FRp2R3369SbQe9nt7bnNaxgS/J5uGw6A5QRDoqQ8YtCP1ZqPnwXE3w8jToXkUNI/Mfu7Tn4S2paWrrTd57eeZx4x6U+nrkFQa0XoYemxx1+ybQ2izpNrR0N9QNEmSJEmSJEmqIO1pAsFaYmmOWa5SfULC3gxGkyRJkiRJklQt0pzFLkmSJPWgkafD819L3RdrCv4dcjhM/wS8+O3y1JTYUZ59Smnjk5BMFLbGk/8C21fDhidzm3fg52Dml9KPiTaE3871/cLnjTwDIjFIxlP3L7sBRp+VXZ3aVzIkFLBk4TxpgsUmvB0mv79E+6oi7P8vsOymtAFhW7rDHw/67H7OcfOI7PZc/wi8/NMgUKxldJaFFtmDb8t9zsT3BMGAK+/Y1dZvOkz+YHFqGnI4nPXivu1zvl+c9XubmV+Bhb8KAjt3F6mDo6+DcW/pkbIkVZnR84LLTmv+AffMg+4sDly+ZX+4KPwTsCtadwdsehZIwuDDey6IduMzmcc0j4TpV5a+Fkmlc/BX4c7jirde3ynFW0uSJEmSJEmSJEl52ZYmEKy1BoPRWmJ9oWvVPu1tiW09UI0kSZIkSZIk5S7a0wVIkiRJKQ09BlrG7Ns+5jyI7PY0tpxhV4mQcKhqUqzv4YVvwqq/ZTd2ymVw/C2ZQ9EgCIcJE03TV98X9ntHeP+quzLvrdSSifAwvXT/XwVJE3SxMxhRtavvZDj90bT3r83x/qF9rbsHozUMyH7fxy+HG8bAM5+FZDL7ecXQvgxW/CX3efV9g8fXw38Bkz8Eh/wATnsQmoYUv0YVrnEQXLAKDvhs8FgWrQ8CXk9/2FA0Sfkbdgyc8RhM/3jmsfF22Jwi8LLSbXgSbjsY/noE/PVIuGMutIcHqJbU/C+m7+8zGc58GvrPKE89kkpj2LHQlGXIcib1A6CuuThrSZIkSZIkSZIkKW/t8dSBYI2RJuoipfqQ2J7TGk0d9taeJiBOkiRJkiRJkiqJwWiSJEmqTJEoHHVdcALpTn2nwqE/2XPc0GPhgH/bs23S+0pTU7IWgtG6y7fXzC/DpUk47Ccw+k3ZzUkXfpbJrG+F97W9Xv6go1qRjIf3lSoYLZLmpWokTWiaakfLKDjws6Hdm7vDg9FaGna7j9TnEIy20/NfhVV35j6vEJuey3NiJHjcnPRumHsV7P/R3MLgVH71/eDgL8NFHXDxDpj9LRg0p6erklTt+k2D2d+G4/8SPM6k8+zny1NTsSST8Mj7Yesru9o2PA6Pf6T8taz8Kyz7c/oxZ78MTcPKU4+k0hpyZHHWGX5icdaRJEmSJEmSJElSQdpCAsFaY33LXEl5tMRSB6O1hQTESZIkSZIkSVKlMRhNkiRJlWvYMXDuQjj+Zjj5bpg3PwjL2V0kAgd/Fc5+NQhSO/MZmPuz0tST2FGadcspXchVMY16U9pQo1CDDs1/z6YhcNpD4f0r78h/7d4skSYQMFqiT0nsM6k066q6RBtCuzalCUbbIwMxXcheOouvzW9evjpW5jfPEDRJ0u5Gz4OzX4EDPxc+Zukf4cXvlq+mQm14AjY+uW/7sj9D29Ly1TH/y3D36enHHP5zQ3ylWlKs59pTLyvOOpIkSZIkSZIkSSpIeyJ1IFhYgFi1Cwt8C7sdJEmSJEmSJKnSGIwmSZKkytYwEEafBcNPgFh4SA59J8GEi2HgzOBk9BmfLn4t6QKiqkWyuzz75Hv7T/946vb93pnd/KZh4X2Pvj/3epT+PhOtK82eU/85dfuoeaXZT5Up2hjatTlNMFp3YrcryUTouLSWXJ/fvHy1L8t9Tl0rDDmq+LVIkqpb0zCY+SUYODt8zFMfh62vlq+mQqx/JLxvxS3lqWHRb2D+5zOPq6/NTxGXeq36IgSjzf0vGH5y4etIkiRJkiRJkiSpYG3x1IFgrb0sGK0tvrXMlUiSJEmSJElSfgxGkyRJUm2a+K7ir1kLwWiJLILRhp9Y2B6Dj4ChR+c3d8Qp0P+APduijTD5A9nNbxwS3te+DLo8oCNn6e73kfrS7DlwFgw9dq+9ojDlw6XZT5Upll8wWnz3LLR+0/Lbu3treQNjsglb2dukD0Bdc/FrkSTVhqN/m77/5inlqaNQG54I79v4dOn3X3oDPPT27MbWGYwm1ZSGAoPRRp0VvJcRiRSnHkmSJEmSJEmSJBWkLb4lZXtLtDb/1tsSEvjWHhIQJ0mSJEmSJEmVxmA0SZIk1aZ8w3DSqYVgtGQ8fX/rBDjxbzDrm1DfL/f1hx0PJ/01/xN/o/Vwyr0w6X3B/+GoN8GJt8PQo7KbnymMYOsr+dXVm6UL04vWlWbPSAROuBWmfgT6z4ARp8FxN8Los0qznypTtCG0a3M8PBitO57cdWXosVCfZ6DBzVMgmcw8rlCbnkvfP3guTP8kzPpWEDw56FCY9Q045Dulr02SVL36Tc383Hj94+WppRDrHwvv61xXun3jnfDoB+H+87OfU1+bB8tLvVahwWiT3lucOiRJkiRJkiRJklQUYYFgrbHa/FtvazR1MFpb3A8YliRJkiRJklQdSnQWuyRJklSDEjt6uoLCJdOEXEXq4OCvQzQGMz4Jkz8AfxyY2/rH/qnwQIDGwXD4f+c3N1Mg29LroWsL9JkErWPz26O3SaYJBIzUl27f+j5w6I9Kt74qX7QxtKst3hrat3suGrEGmPV1eOzDe6476BBY91DmGl65CqZelkWxBVjyx/C+g74IB31+1/UZnyhtLZKk2jL1Mnjhm+H9K2+HwYeWr55sdayGtkXQOBS2vBA+rpTBaI9/BF7L8TVJXeqDyiVVqaYR+c8dfhKMmle8WiRJkiRJkiRJklSwtkRYMFpt/q23JSTwrS2+jWQySSTfD0CWJEmSJEmSpDIxGE2SJEnKViJNQFS1SMbD+069H4Ycset6ff/c12/IMUit3J7/WnABmPQ+OOw/gyA4hUukCdOL+pJSJRQLD0ZLJKOhfd17P8xN+RD02x+W3Qh1LTDuQhg4C1bcDk9/GjY9E17D45dD8ygYe16Oxedg1d/C+8aUcF9JUu2b+O70wWjPfi74HTnuLeWrKZ1kEl7+CTz5/9IHOu9UqmC0rm3w+v/mPi/ic2Oppow8Nfi53vvxqHkkTHg7dG2GV3+277xIHZxwaxDSLEmSJEmSJEmSpIrRHt+asj0sQKzahQW+xemmM7mdpkhzmSuSJEmSJEmSpNyEn0ksSZIkVbvpnyjuepueLe56PSEsYKDP5D1D0QAiEeg3Lbf1K+ET5LINEnrtf4LQhRe+CS/9CNoWl7auapUulMLwB5VSNDxIIF4/ILwvkaJx+Akw5/tw8FeDUDSAUWfAvKfhzKfT13H/+dCxOnO9+dq2MHV741AYOLN0+0qSal+/aTDnR+nH/ONCePwK2PxieWpKZ9HV8MRHsgtFg9IFo21ZAPHtuc2JNUOfiaWpR1LPaBgIR16z5+veIUfBm16E2d+Cuf8FR/8OorsFOg86FM5bljbkWZIkSZIkSZIkST2jLb4tZXtYgFi1a00T+NYecltIkiRJkiRJUiUxGE2SJEm1a+xbgCIGdS38BSy9oXjr9YRkPHV7NCTgavylpaulVMZfkv3Yl38MT38anvgo3DoL1j5QurqqVaIrvC9aX7461PtEw8ME4tHwg9G6UwWjpTPwYBh3UfoxK2/PcdEsJbpge0jo2pHXlGZPSVLvMu0jMPWK9GNe/jHcNhuW/rk8NaWy8Bp4+N25zelcD8lcf/FnYcuC3OeMPgfq/DRtqeZMuATOXQxH/xZOfQBOuQca+u/qH/9WOOc1OOo6OPluOPUf0Dy8x8qVJEmSJEmSJElSuLAwsJY0x6JVs9ZoeDBaW3xrGSuRJEmSJEmSpPwYjCZJkqTaNWQuHPUbaByyZ3tda/6BTo9fVpqT78sl0Z26PRISjHbAZ2DKZbsCigYcHLSlMuXywusrhvFvheEn5T6vaxM89Yni11PtkiH3GQi/30jFEAsPRktEW0P74vk8RB/xi/T9HSvyWDSNba/DvefAbxuAZOoxLaOLu6ckqfcanyEAFCDRCfdfAPHO0tezt64tQVBxrpJxuO88WP9Y4TWsexgefDv8/XR46J9yn3/4/xReg6TK1DIqeBwdelTq95JaRsOEi2H4CWlfw0iSJEmSJEmSJKnndCW66ExuT9nXJxYeIFbNmmPhx9iFhcRJkiRJkiRJUiUxGE2SJEm1bcIlcMFqOG8pXBIP/n3LZpj3PMSa9xzbPBrOfAaGHRe+XsdK2PRcaWsupbCQq0gsdXs0Bof9BC7cBOevhHlPwwH/GtxWu4s1w+T3F7fWQhzz+/zmrXsoCCzaXTUH4RVDoiu8L9+AQSkb0YbQrni0Obwvnx/ZuhY44bbw/u4iHgjWsRJungzLb04/bu/HWUmS8jXkyOCSjTuPL20tqSz/SxBSnNfcm4Oa1z6U//4rboM7j4PXfwOr/pr7/KlXQH1tfoK4JEmSJEmSJEmSJNWC9sTW0L6WGg1Gi0ViNEdbUva1pbk9JEmSJEmSJKlSGIwmSZKk2heJQsuYXf9GY9BvCpz2IIw8A1r3g/GXwCn3wMCZ+wam7e22g+Guk2Dra2Upv6iS8dTt0br082JN0Dwi+LquFU5/BMZfHNx2o94EJ90FAw8ubq2FaByc/9yb9oPf94X7L4RbZsBvG+C2ObDqruLVV00SIWF6kPl+IxUi2hjaFY80hfZ155tlOOoMIJK6r5g///O/GP5YvFOsCRoGFm9PSVLvFonAiXdkN3b9I9C1pbT17G3FrYXNj3fAS9/Pf/6C76UPA86kvjYPkpckSZIkSZIkSZKkWtEWD/9gzNZY7X4QVljoW7rbQ5IkSZIkSZIqhcFokiRJ6r0GzoITb4NzF8LR10LfyUF7mjCe/7P6brjzeOhuL22NxRYWchWJ5bZOy2g4+rrgtjvhFhh6ZOG1Fdu4i/Kf270Nlv4RtrwYBBhtfBLuPQc2LyhefdUimSYkIlJfvjrU+8TSBaOl6cs3GA2CwMdU1j8CnesLWPgNiW54/deZxzWNCEJsJEkqlvq+MOl92Y3d8GTx908mYdsiWPsAxLfv2bf15cLXX/KH/Otac19hezcNK2y+JEmSJEmSJEmSJKmk2uNbQ/taorUbjNYa8r21pbk9JEmSJEmSJKlSGIwmSZIk7a1xcHbjOpbDqrtKW0uxJeOp2yN15a2jHCa+s7jrxduDsLTeJixMDyBag/cbVY5oQ2hXMk0wWnchwWh1aQ5ye+mHBSz8hvlfgO62zOOGVGDYpCSp+tWl/iTofWwpchhwdxvcfwHcNBH+dgz8aQSsunNXf+e64uyTT4hp9zZI7Mg8bs6Pob5/6r6RZ+a+ryRJkiRJkiRJkiSpbNri21K2N0QaqU9znFq1a4mlPh6uPeT2kCRJkiRJkqRKYjCaJEmStLdsg9EAnv9a6eoohWRIyFUtBlyNPAMGzi7umpufL+561SDsPkMEIr6kVAlF60O74oQHo8ULCkZrDe977suw4Sl4/hvw5JXw0n9A2+Ls1+7aBs9/Nbux4y/Ofl1JkrJVn20w2kvF3feFb8GyG3Zd79oMfz8VVtwRXC9WMNqTV+Y+J9u9J74DjrwGYk17th/yfeg3Jfd9JUmSJEmSJEmSJEll055IHQQWFhxWK/rE+qVsb0tsLXMlkiRJkiRJkpS7Gkw/kCRJkgrUOCT7sTvWl66OUkjGU7dHYuWtoxwiETjqWvjL9OKtueQPcPR1xVsPNJzYAAAgAElEQVSvGiS6UrenCa2SSi0ebQnt6y4oGC3DgW63H7Ln9Wc/C8ffAsOOybz2rQdmV8OAg2DUmdmNlSQpF9kGo219pbj7vv6b1O33nAH7vRO6thRnn0VXw5G/ym1ONsFodX2hvh+MOQfOWQir74b4dhh2PPSdlFepkiRJkiRJkiRJkqTy2RZPHQTWJ5bl39GrVFjwW3s8dVCcJEmSJEmSJFUSg9EkSZKkveUSjFZt4VCJ7tTtkRp9adDQv7jrJeOQTAaha71FspfdZ1Q5+kwMHo/3DiyJtZBoGhE6LV5QMFprbuO7NsOdx8LZr0DfyeHjtrwEbYszr9c0Ao66rvp+t0iSqkN96k+C3sfGJ+Hh98LCXwTXYy1wzB9g9LzU47s74IVvwpp7ofuNg8nr+sLwE2DK5bDttfC9Fl2ddflZ6VwPjYOD5+yLfwuL3/i9OuUyGHFyivFZBKPtHijXPBImXFq8eiVJkiRJkiRJkiRJJdceEozWUuPBaK0hwWhtIbeHJEmSJEmSJFWSaE8XIEmSJFWchkHZj41UWXhNaMhVrLx1lEv9gOKv+exni79mJUt0pW43uEmlFonC5A/t2z7pPcST4cF83fEC9qxryW/ezVNg66vh/Uv/lH7+vOfg/JVw/goYcEB+NUiSlEm0MbtxHSt3haIBxNvh3jfBot/sOzaZhLtPh+e+CGvugQ1PBJc198D8L8BNE4tQeA5e+EZQ0/wvwIOXwvKbg9/Dfz8FXr9u3/Gd6zOvWV/bB8JLkiRJkiRJkiRJUq1ri29L2d4aTR0cVitaoqn/3h12e0iSJEmSJElSJTEYTZIkSdpbMpH92GhD6eoohWRIYlAkPGSoqtU1w6BDU/dNuTy/NRd8D7o78q+p2oSF6UVr9D6jyjLzSzDrWzBgZnA56Isw54fEE8nQKfHwrswSIff3bNw8Be46CbYt3Ldvxa3h88ZfEoShNY+ASCT//SVJyqSrwE98fv4r+7YtvwXW3h8+p7uInzLdPDLzmBe/A79rhOe+tG/fg5dCd/uebZ3rMq9ZZzCaJEmSJEmSJEmSJFWz9kTqv123xGo7GK015Ptrjxfxb/mSJEmSJEmSVCIGo0mSJEl7GzQ7+7GxKgtGCwv9qeWQq5lf3jfAbtY34bD/yG+9+HZYfXfhdVWL7WtTt0fqy1uHeqdIBGZ8AuY9E1wO+jxEoqTJRaM7JP8xK/ECQw9X3w1/OwbinXu279gYPmfMeYXtKUlStgbPLWz+lgV7BottXwPPfrawNXMx/JTsxiW6wvtum7Xn9bbFmderNxhNkiRJkiRJkiRJkqpZW3xbyvbWWG3/PTgs+K0tsY1kspBPIJUkSZIkSZKk0jMYTZIkSdpb637Qb3p2Y6stHCoZkhgUiZW3jnIadQac+gBMvQKmfBiO/wvM+GRha3auK05tlSyZhBe+BY9fnrq/lsP0VPHiifz6MooU4W2SjpWw9Ppd15NJaF8aPn7UvML3lCQpG4MOgcbBha2xMxht/pfghjGw6dnC68pWrAEmvbewNba+Ahue2HV9y0uZ54S9hpIkSZIkSZIkSZIkVYX2kGC0lmjq4LBa0Rrrl7K9O9lFV3JHmauRJEmSJEmSpNwYjCZJkiTtLRKBI36Z3dhotQWjdaduj9R4yNXgQ+HQH8JhP4XRu4UQHfBv+a1XX9ufEgjAmnvh6U+F91dbKKBqSrrws+5CgtHGnFvA5N08+DZ47HL4ywFw28HQtSX1uCmXQ31tH1wnSaog0To46lqINua/RrwDVv4V5v87JLqKV1s2og1w0BdgwEGFrXP7obD+seDrLQsyj+/aWth+kiRJkiRJkiRJkqQe1RZP/Xff1lhtHwvamib4Lew2kSRJkiRJkqRKYTCaJEmSlMqQw+GIqzOPq7ZAsWQ8dXskVt46KsW4C4FI7vMKCZOoFq//Jn1/tMru+6opiWR4X7rQtIz6TYf+MwpYYDev/BQ2vwCb5oePmfnF4uwlSVK2Rp4G5y2BI6+BaR/LfX68AxZ8r/h1ZSPaAC1j4LSH4YTbClvrjrkw/0vQ9nrmsWEBp5IkSZIkSZIkSZKkqtBrg9Fi6YLRtpWxEkmSJEmSJEnKncFokiRJUph+UzOPSXaVvo7ddW2DF78D954L/5+9O4+P667v/f/+zqbdliyNFie24zh7AtkJWYCQBZJSoATKvhVoadNLgUJb2lsaKC3w47LcUlpogQa4BUpICaUUAmHPBiQBErKROImdxYtGtixb6yzn+/tDsS3NnO+Zc2bVjF7Px0MP63y389FYOkejmfM+t10pzT4ebb7N+7ev1pCrgdOk874kJddGm+dl61PPSvLQZ4L7Wy0UEG0lKPwsX00wmjHShd9aPDbUW0da6his/34AACjWOSxtfo208SXR537zeGnnd2pfUxix5OK/iW5p/WXSmhOqW+/XV0kKSFs9KM+bwQEAAAAAAAAAAACgVeVtTgt23revOyA4rB0EfX0znn9YHAAAAAAAAACsFFzJDgAAALh0DJUfU/B/s0RdWE/68W9L4z8+3Lb9K9Jlt0m9R4dbw3MEo63mkKujXi5t/F3p7vdJd7833Jx2D0azIQIiDgZTAE1QCPgWDQpNC6Vnk3T5L6WZx6TUWim5RlrYI81sXwySiaWkRJ90z/ule/6u8v1UG+YCAEC14t3NriCaWGr5dtd6af/99d/vkS+s/z4AAAAAAAAAAAAAAHUxW5hx9vW0eTBa3CTUGevSvDdX0jdbIBgNAAAAAAAAwMq2itMPVjdjzAmSTpV0pKQuSfOSxiVtlXSntdb9l//yayclnS9po6QxSdOSdkj6pbV2W3WVAwAANNBKC0bbfs3yUDRJyu6VHvgn6YyPhFvDFvzbTby62lpdLC5teUN7BqM98S3prndLs9ultSdLT/uMtObY4Dlb/6X8uqs5TA9NFxR+VnUw2kE9Gw5/3jG4+LHUqe+TOkekO95S2fqjF1deGwAAtZBo8WC0nk2N2e9Rr27MfgAAAAAAAAAAAAAANTcTEADWE+trYCXN0R3r9Q1GmylMN6EaAAAAAAAAAAiPK9lXEWNMv6S3SnqDFkPLXArGmF9JutZa+8EI66clvVfSyyStc4y5RdJHrbX/GbpwAACAZkmuXbz4PigEq5HBaPd/2L999w/Cr2Hz/u0xnhqoZ6N0zB9KWz9VfmyrBKPtu0e68XckL7e4Pf4T6TtPk164TUqt9Z/z6LXSbX9Ufu3UQM3KBKLyrLuvZsFoYRz/v6TsHunX74k+95g317wcAAAiiTc5GC3WsRg8Orcj5Pjk8u1Nr5Aevrr2dS21/nnS0Hn13QcAAAAAAAAAAAAAIBJrrX62/4e6b+ZXmvGCA77mCjPOvu54b61LW3F64n3am8+UtM8WBaMtePP6yb5v6+G53yhnS98jG1dcmzqP0TP7L1dvYk3d6gWAYtZa/Xz/j3XvzC814/mHXQ4kBnV633k6qef0BlfXmqbyk7px3/XanX1CR3Uep2f2X6Zk8U0rQ8h5Od2479vaNv+ghlPr9Yz+y7Q2wTUGAAAAAIDaIf1glTDG/K6kT0oaDDE8LulMSUdKChWMZoy5XNLnJA2XGXqepPOMMV+U9GZrrfsVBgAAgGYzRlp3ljRxi3tMo4LRrJX23uHfN/mrCOsU/NtNPHpN7ejsf5bS50lb/1XK3OQe1yrBaL/+m8OhaAfl9kmPXStteePydi8n/fQN0rZ/D7f26MW1qRGoQFD4Wd5xmKubp1wl9T9VeuIb0twuaWabtP/+4DlnfULqGm1IeQAAOCWaGIx2/Nulza+SBk6XHv68tPv7UvfGxd/BMzf6zyl+893IhVLfcdKBB2pf36ZXSMPPkI5+oxTjuRIAAAAAAAAAAAAArCRf3v1J3TT13arWSJqUUrGOGlW0cvXE+3zbl4YL5bysPvbYX+vR+a2Ba/165jb9fP+P9Y6NH1BfwnFzXgCosa+Of0Y/2vc/ZcfdPHWDXj78Zj1z4PIGVNW69uX36sPb/+JQaOYdB27SndM/1Vs3vE/xCNeUFGxB//j4e7R17p5DbT+d+oHeufGD6k+GuYQZAAAAAIDyYs0uAPVnjLlK0jUqDUV7VNL3JH1Z0nWSfiopclCZMeZCSV/X8lA0K+kOSV+VdIOkiaJpr5L0ZWMM34MAAGBlW1/mhTGvQcFouf3B/dmpcOt4ef92Q2aypMUwvM2vkZ79HSmWdI9rhWC0/Kz02Nf8+372Jmn64cXPpx+WHvhn6T9S4UPRRi6Wjn9rbeoEKhAUjFbwbOMKOWjDi6SnXy09+9vSb98nnfVP7mPIUa+Sjr2ysfUBAOAn3qRgtCOeL535UWndmZKJSVt+Tzrv36XT3i+tPdk9zxSdW2NJ6ZzP1r6+0z4onf8l6dg/kuLR74QKAAAAAAAAAAAAAKif8ezOqkPRJHdgWLvpjvf6ts8Wpg99/svpW8uGoh00ntuhW6a+V5PaAKCcvbmMfrzv26HHf3PPl5W3ufIDV7Eb911/KBTtoK1z9+qemTsirXPPzB3LQtEkaW8+oxunrq+6RgAAAAAADiL9oM0ZY94h6T1FzV+W9AFr7a99xscknSvpxZKeG2L9IyV9TdLSK8RulvT71tr7lozrkPRmSR+WdPAKtudL+jtJfxXyywEAAGi8ztHg/kIDgtEKC9IPy/xqNrNdSj21/FrWEYwW46nBMoluaexy6Ylv+Pe3QjDaT14Y3P+NLdLRr5e2XyMVZsOve/GPpPR5wcFxQJ0FZZ8VmpCLVuK4K6Wx50iZW6TCjBRLLQZcrjtLSl+wGMIIAECzxTubs9/Nr3P3xQPuxu0XUjZ8gfSSfdLDV0u/eHv1tUlS1/rarAMAAAAAAAAAAAAAqLkHZu+qyTp98bU1WWel64n5B8BNFw4c+vz+mTsjrfmb2bv03MEXV1UXAITxwOzdsgq4m3KR6cJ+7VjYro2dx9Sxqtb2mxn/8+j9M3fpqb1PC7+O43x8/8xdev7QqyqqDQAAAACAYqQftDFjzKmSPrikKSfpldbaa11zrLWeFoPNbjbGhPn+eK+kgSXbt0i6xFq7LCHEWrsg6ePGmEclXbek60+NMf9ird0eYl8AAACNl+gO7l+YkHLTUtL/jmo18eg10p6fBY+Z2SYNhAlGK/i3m3jkstre06+W/nPQv68RgXjVmM9Iu0Lcke/hz0Vb9+xPSSPPqqgkoJYKAe9xyDsOcw3Xd8ziBwAAK5UxUv9TpH0l98+QTEyy4d9UqFhKGr5Q2hXirtwbXhS8TtS+1FrphLdJg+dIN5xXfv/ldI1VvwYAAAAAAAAAAAAAoC7Gsztrss5JPafXZJ2Vrjvu//7m2SXBaJlctMc0k9tVVU0AEFbU45MkjWd3EYwWwPWYRj4XZP3PBZwjAAAAAAC1FGt2AaiPJ0PN/k3Lw+/eHBSKVsxamy+zj2MlvW5JU1bS64tD0YrW/Lqkzy9p6pB0VdiaAAAAGi5eJhhNkr57jpSfk6ytTw33/9/yY2ZC5sx6jl/xQmXirjId66RhRwjYXe9ubC1RhQlFi6ojLW1+Te3XBSoQFIwW1AcAAIps+YPStrHLwz0PWuol+6Sn/E35cSf++WLomku8091nksFrD50jDZxWvoZyuo6ofg0AAAAAAAAAAAAAQF1UEpJT7MiOzbpo4Pk1qGbl63EEo80Upg997gq3cdmbyyhvc1XVBQBhZCoIw6zFeaJdzRVmdaAw5ds3ETHQzBWANl2Y0lxhNnJtAAAAAAD4If2gff2upDOWbH/fWnt1jffxSknxJdtfs9Y+GGLe/6flgWovNcZcGRSoBgAA0DSJEIEAU/dK13RLyTXS6HOks/9J6hyuXQ2Tvyg/Zs/PJL0leMzMo9Lu7/v3mbh/+2oXS7n75sdr+/9cS/M1vtPS+t+Wzv5EuJ8HoAG8gBzKPMFoAACEd/z/koyRtn5ayk5K639LOuMj0jU94dfo3igluqSBEHfT7hor07/e3Rf0u7m0GLh20fekO94u7bpB6j5SOuEd0sizpNuulCZuleZ3B6/RvVHqOy54DAAAAAAAAAAAAACgaVwhOcd2nayjuoJf740ppg2dW3RSz+nqjHXVo7wVpyfe59s+6y0Go817c9pfmPQdc0rPWbp75vaSditPe3LjGklx4zEA9TXuCDnb0nWipgv7tTv7REnfRMSwx9UkKPxsIrtbni0oFuK6Es8WtCdordwubYgfXVGNAAAAAAAsRTBa+3pz0fb767CPFxVthwpes9beZ4z5maRznmzqkfQcSd+oYW0AAAC1EY/wxofcfumxa6U9P5de+MjihfnV8kLeUW3bF6Wnf16KOV6IKixIN5zvnm94auArKHxh+1ek48uE0RUWpKl7pDUnNDZUbGGi+jVOeId0xoerXweog0JA+FlQHwAA8HHcHy9+VCvRLXWkpYWMe0y5YLQ1J7j78gfK19AxKJ33hdL2Z15X2vbIF6VbX72kwUhP+Rv3cyoAAAAAAAAAAAAAQFN51lPGEcRyQf9zdPaaZzW4opXPFYw2U1h8Dd4VNCdJL0q/TvfM3CGr0juZZrI7CUYDUFfWWmWyO3z7zl17sXYsPOobjJZxhKkh+LEpKK/J/B4NJsvfOH5ffq/yNh+wn13a0EkwGgAAAACgejVIasBKY4w5RtLSv+Zvk/TDGu9jVNKpS5rykm6OsMSPirYvr7YmAACAuqgkzGr2Uelrw1IhW/3+p7eFH5u50d33xDek2cfd/Vz871D6Zo5DDmwNnvrwF6Rr+6Xrz5SuHZDu+0htSwtSbTDaeV+STv8/takFqIOg8LM8wWgAADTPuT6hZEuVDUY73t1XmIteT5DNr5Ke81Pp6N+Tjv1j6eIfSFveWNt9AAAAAAAAAAAAAABqZiq/Vznr/97cdHJ9g6tpDd2xXt/2nM0q6y04g+biSmgktV79iUHfftc8AKiVGe+A5rxZ377h5JjSyVHfPo5Pbpls8GMTFJYZZVzYdQAAAAAAKIdgtPb07KLt71trAxIdKnJK0fZd1tqZCPNvKdo+ucp6AAAA6iNeQTCaJC3ske5+X/X7XxgPPzYTkFO757bguQceCr+f1SQofCEoNG/yTumnr5MK84vbXlb65Tulnd+tbX1LTd0r3f8P0l1XSVv/tfJ1nvK30lGvkIypXW1AjRUCnuEGhaYBAICQjr2ysnn9xX82LtK7Jbi/c1RK9vv3pS+orKYgQ+dIT/836exPSCMX1n59AAAAAAAAAAAAAEDNZHLuoJXhVJkbda1SPfE+Z99sYdoZXjOUGlHMxJV2PK6E3gCot6AQr3RqzHl8msrv1YI3X6+yWlrQeVSSJkKGypULnwu7DgAAAAAA5RCM1p6eVrR9qySZRZcYY642xtxrjJkyxswYY7YbY75njHmXMeaokPs4qWh7a8Qai5M3itcDAABYGYLCr8p57KvV7z93IPzYu/5a2v9gabu10n3/J3juWn4d85X3v8uUJCne5e57/Ov+7Y9dV109Lls/I33rqdIv3ibd/bdVLGSkza+uWVlAvXgB4We5QuPqAACgbR35O+HH9h1z+PPuI6WRi/zHpZ8hdR8RvJYx0jFvKm3v2SQNnBa+JgAAAAAAAAAAAABA23GF5PTE+9Qd721wNa0h6HGZ8Q44Q3LSybEn/x317S8XrgMA1RrP7vBt7zCdWhMfcB6fJIK5XMqFWo6HDL0sdw4Iuw4AAAAAAOUQjNaeziravu/JwLPvSbpB0uslnShpjaRuSRslXSzpA5IeMMb8kzGmXALIMUXbj0ascXvR9qAxZiDiGgAAAPUXryIYbXrbYihZFE/8j3Tr66WfvkHa8R0ptz/a/G8eJ930Uun7l0i//HPpwEPSxE/Lz1tzQrT9rBaFCoPRfv0e//atn6qqHF+zO6Sf/75ka5AGdcE1Uu/m6tcB6qwQcGidzzWuDgAA2tbYpdIZHw33fOjEdy7fPvcL0rqzl7etO1M6/z/C7fuUq6SNv3t4u+9Y6cLrJcPLGQAAAAAAAAAAAACwmo3n/ENyDoZ4oVRPUDBaYdoZXjOcOhiM5v/YukLqAKBWnMGNqVEZY7QumVbMcXk0xyh/mTKBcWED5coFrBGeCQAAAAColUSzC0BdFP/VuVvSbZKGQsxNSrpS0rnGmOdZa11/hegv2h6PUqC1dtoYMy+pc0nzWkmTUdYpZowZlpSOOG1LNfsEAABtLlFFMJq3IOVnpGTIu9A9+Cnptj86vP3w1VL6/Oj7ffSri//u/r70yOel9DODx/cdKw0/K/p+VoN8QDBaLNm4OoJ8/YjarPPSmeq+34EGKnjuvpls4+oAAKCtnfB26Zg/lKYfkvb/RrrpJaVjerdIIxcvb+s+Qrrs54tB0bOPSd0bpN6jwu832bsY2LuwR1qYkPqOk4yp5isBAAAAAAAAAAAAALQBVxALwWhuCZNUh+nUgp0v6ZstTLuDh558TNMp/8d2IrdbBVtQ3MRrVywALOEKNzt4fIqbhAaTw75hX+UCwFajrLegffk9gWPCPm7lAtT25fco6y0oFesIXR8AAAAAAH4IRmtPxaFlV+twKNqMpE9J+rakxyX1SDpV0hskXbBkzumS/tMY8yxrbc5nH8XpHnMV1Dmn5cFofRWsUexKSVfVYB0AAIBF8a7q5mf3hAtGs5706/eWtmdurm7/8+PSY9e6+9PPkM79XPjwttWmEBCM9puPSye8zWdO6ZtH6mbP7ZXNMwlJnpTok0aeLZ31CULR0FI86+7bGim2GwAABEp0Sf2nLH6c+wXp1tce7hu9RHr656V4yn9u71HRAtGKdQwufgAAAAAAAAAAAAAAIGncEYw27AjvwqKeeJ8W8qXvbZ3MT2gqv9d3zsFANFfonKeCJnMZDaVGa1coACzhDG5ccsxPJ8f8g9Ec54vVbCK3u/yY7C5Za2UCbmJprXWG1i21JzeusY4NkWoEAAAAAKAYwWhtxhjTIak4Sv3IJ/+9V9Jl1trHivp/IelqY8w7JH14Sfu5kv5C0t/57Ko4OaOS9Ic5SQMBawIAADSfiVU3f2FC6tlUftye26X5JtyZ6NKfNH6frSQfEIw284j00L9JW96wvP2W19S3pqV2/yDa+Ct2S53D9akFaKCCF9z/lds8vezsKo/fAABguc2vWfwAAAAAAAAAAAAAAKDBrLWhQnJQqjveq735TEn79vmtzjnp5GLg2VBqxDkmk9tFMBqAunGFmy0NbBxKjUo+b/ef8AlLW+3ChMUt2HntL+zT2sSAc8yBwpQWbPlLiTO5nQSjAQAAAACqxlXC7SfuaJ+SfyjaIdbaj0j6WFHz240xYQLLbMj6qp0DAADQWuYnwo1bGK9vHX5O/0jj99lqbJn0pYc+s3x7fkJ6/GvBcwrZ6mpa6p4PhB+bGpA60rXbN9BE5YLRPnsTTzcBAAAAAAAAAAAAAAAAoF1MFSaVs/7vv1wakoNSPXH/y8K2zT3g2x5TXOuSizfh7Yx1aU3cPyAnTMgOAFRipnBAM94B376lYZiu478rSHM1C/uYTGSDQ+XCHvszZdYBAAAAACAMgtHajLV2VpLfJeIfDQpFW+LdWgxRO2idpMt9xk0XbXeFqzBwTvGalfhnSadE/HhhDfYLAADa2ZrjK587+2i4cbYJIT7dRzR+n63m9A8F90/cunx7/33lw9S+/2xprgYvts48JuX2hR/fNSYZU/1+gRXAK3PI/N59jakDAAAAAAAAAAAAAAAAAFB/49kdzr7hFMFoQbpjfb7t4zn/x3QoOaK4iR/aTqdGfccRPASgXoJCtYaXhKG5jk97cxPK21zN62plYYPKyh3bM7lw60yEHAcAAAAAQBCC0drTjE/bF8JMtNbOSPpaUfOFPkNXZDCatXbcWntPlA9JD1W7XwAA0OY2vry0LbVOevGEdM5npfO+KCXX+M/9+R9Ik3eV34ctVFdjJboIRitrvV9GcICc/52plpm4Rbr+TClzS2U1HfTQZ6ONH76wuv0BK0ihTP4gAAAAAAAAAAAAAAAAAKB9ZLL+QS3dsV71xP2Dv7Ao6uNTHDSUTvoHz4UNxwGAqFzhXEmT0prEwKFt1/HJytOe3HhdamtVYcMsyx3bQ6/jOG8DAAAAABAFwWjtaV/R9m5r7bYI839atH2iz5ipou10hPVljOlVaTBacd0AAAArwyn/WzrqNZLM4nbXeumi70odg9KWN0hHvVJae7J7/s/eJD3yRenmV0q3/4m05/bSMc0IRus9uvH7bDU9m6R4Z/AYaw9/ng8RjCZJczul718o/eId0i//XLrpZdKDn5S8CN8Hd783/FhJ2vLGaOOBFYxgNAAAAAAAAAAAAAAAAABYPVxBLcMp/1AcHNYT7400Pp1cv3zb8RgTegOgXlzHl3RyTDFz+JLooeSIzMFrPEKusVrVKtBsIhsuFJPwTAAAAABALSSaXQDq4gFJG5ZsR/0rzo6i7UGfMQ8WbW+KuI/i8XuttZMR1wAAAGiMWFI67wvSmR9bDLRae5JkijKGEwF3U9t7m3Trqw9vP/Rp6Vn/LY1ecritMFfbmstZe4rUvb78OEgbXixt+6K73+Ylk1z8PBcyGE2SvJx0/0cPbz96jbT7h9L5X5GM/wu0h9x1Vfj9SNLGl0rrzog2B1jBPFt+zHfusXruyWV+lgAAAAAAAAAAAAAAAAAAK14mW3yp06J0kmC0crrjAe9x9pFOjS7fdjzGmdwuedZbFlIEALUw7gjxKg5qTMZS6k8MajI/UTKWYK7D8janvbnSx8jPRJnHLWzA2p7cuAq2oLiJhxoPAAAAAIAf/vLYnu4p2l6IOL94fKfPmPuKto+JuI+ji7bvjTgfAACg8ToGpf5TSkPRJCkZ4U0DhXnpB5dK1x0p3f6Wxe38TO3qDGPsOY3dXyuLdQT3e9nDn+cjBKP5efSr0tTd/n2PfV361mnSl4x099+617j8V9KZH5d6t0idw9Lxb5PO/ixCrxkAACAASURBVGR1dQErTMErP+bdXw8xCAAAAAAAAAAAAAAAAACw4rmCWIpDclCqJ94bafxwURDacFFQ2kF5m9O+/J6K6wIAl0zWccxPlh6PhnzaFtcgGO2gPblxWYV7X3W5xy1s4JyngiZzmVBjAQAAAABwIRitPd1VtN0fcX7xeL+/UhenNTzVGNMdYR/nl1kPAACgtUQJRjto7gnpgU9IP36BNPmraHOf/nlp4Izo+zxo7cmVz11tYqng/sKSXOHc/ur399BnS9t23iDd9GJp353Bc/tPlQZOlY5/i/SCrdIVu6UzPyZ1rKu+LmAFCROMdvt2yfNs/YsBAAAAAAAAAAAAAAAAANSNtdYZ1JJOEoxWTncsWjBacdicK3RICh+QAwBRuMIwh33CMP3agtZYjVxBc35mvAOaLUz79s0WpjVTCH8j+XH+DwAAAAAAVSIYrT19W9LSq7+PNsZ0Rph/StH248UDrLU7tTyALSHpggj7uLBo+9sR5gIAAKw8iQqC0Q7adYO09VPR5nQMSVveUPk+1xxf+dzVxuaC+72lwWjhX+hz2nVDadvWf5VsiCSoza+tfv9ACyiEzDub8H9dHgAAAAAAAAAAAAAAAADQIvYXJrVg5337XIE4OKwnHv49zjHFNJgcXtbWHe9Vb3yN7/goYTsAEMZsYVrTBf+bladT60vbHAGZHJ8Oixpi6Ro/EXGdCUeoKQAAAAAAYRGM1oastTsk3bqkKSnp4ghLXFa0faNj3HVF278XZnFjzAmSzlnSNCPpu+FKAwAAWKGSVQSjVaJjSDr69RVONtKaE2tZTXvLzwX3F5YEo+VrEIw2da9ki1KfHrs23Nzjrqx+/8AKZ60t+RFx2TlV31oAAAAAAAAAAAAAAAAAAPUVFG7jCsTBYVGC0QaTw4qbREm7M3goR/AQgNoKCt9KJ0dL2oZSpW2StCc3Ls8WalZXK4saEucaPx4x6IxzBAAAAACgWgSjta+ri7b/NMwkY8wzJD1tSZMn6VuO4V+UtPSvQ1cYY44NsZu/KNq+xlrHrVsAAABaRdL/Tmh10zkkJXqkZ30z+tz1z5M61tW+pnZVKBOM5i0JRsuVCUZbd6Z06U3l9/mzN0lexBdiL7lRindGmwO0IC9kKJok7dhXvzoAAAAAAAAAAAAAAAAAAPU37ghW6Yr1RAr9Wq164r2hx7oC0NKO4KGoYTsAUI4rfCtpUupPDJa0+4WlSVJBeU3mJ2paW6vKBITNRRkfNegs6n4BAAAAAChGMFr7ulrSfUu2LzLGBIajGWOGVRqodo219iG/8dbaByV9fklTStLnjDHONAZjzAslvX5JU1bSe4PqAgAAaAmJBr+xIvXki3qp/uhzz/nX2tbS7soFoxVCBqOtOUG64Bopfb7UVeYOhQ//m/TwZ6W7rpJ+ckX5Gs/4v9LwBeXHAW2g4IUfu3MqQooaAAAAAAAAAAAAAAAAAGDFcYVvpVNjMsY0uJrW0x2LEIyWcgSjOQLTJgi9AVBjmdwO3/ah5KhipvRyaNdxS5IyjpC11SZqiKVr/ETEx5PHHwAAAABQLYLR2pS1tiDprZKWXjL+EWPMPxhjBorHG2MukXSzpC1Lmicl/VWZXV315LiDzpP0PWPMCUXrdxhj3iLpq0XzP2Kt3V5mHwAAACtfo99YkVyz+G+8K9q87iPLh3JhuXLBaF728OfZPf5jNr5Uet69Uu/Ri9smWX6/P3+zdPffSo9fFzzu6DdIJ7y1/HpAm/AiZJ3tmKpfHQAAAAAAAAAAAAAAAACA+svk/ANahh1hXVguGUspZTpCjXUFDA0lR33bM9ldspYbmAKoHXcYpv9xqDPWpb74Wv+1CG9UwRa0Jzfu27cukfZtd4Veus7Ha+MllysfWsezEe6IDQAAAABAEYLR2pi19gYthqMt9SeSdhtjfmKM+bIx5uvGmG2SbpB0zJJxWUmvsNY+UmYfj0u64snxB50v6V5jzG3GmK8YY66X9Jikj0tamgDxTUnvruBLAwAAWHkWHIFY9XIwiC3eHW1euZAvlCobjLYg3f8P0rdOlSZu9R8zctHy8LxYqnb1DT+zdmsBLaAQ4fXxnQSjAQAAAAAAAAAAAAAAAEBLG3eG5BCMFlZ3vDfUuLQjbG7Y8Vgv2HntL+yruC4AKOYKM3Mdn4L6XCFrq8lkbkIF5X37Tuw5zbfd9bi5/m9O7Dndtz1ns9qfnwxRJQAAAAAA/ghGa3PW2k9IulLS7JLmpKRnSHq5pBdK2lQ0bbekZ1trvxNyHz+S9CJJmSXNRtJZkl4q6bmSiuPjvyzp5dbaQqgvBAAAYKVrVjhVImIw2nF/Up862tmGlwT33/MB6Rdvk/bd5R6z5oTl28f8fvV1HTT23NqtBbSAKMFou6a4EyUAAAAAAAAAAAAAAAAAtCprrTOgJSgkB8v1xPtCjXMFoAU91gQPAagl5zE/IAxzKDXqv5YjyGs1yeTcx+iTHIFmU4VJLXjzy9qy3oKm8nsjrSNJ4wH7BwAAAACgHILRVgFr7SclPVXSv0s6EDB0l6T3SDreWntLxH18S9Ipkj4lKSjG/aeSXmKtfaW1dibKPgAAAFa0wXOkRLg3DVQtuebw553D0eZuuKK2tawGm14W3L/jf8qvseb4ojVfXnk9S41dLnX5v5ALtCsvQtbZDm5ECQAAAAAAAAAAAAAAAAAta39hnxbsvG+fK8QLpcIEoxnFNJj0f19yT7xPXTH/mzkHhe4AQBRzhVntL/i/+Xc4IKDR1Udwo/sxWBMf0BEdm53zJopC5Yq3l9rYeYx6Yv7nmaB5AAAAAACUk2h2AWgMa+1Dkl5jjOmSdL6kIyWNSspKyki601p7V5X7GJf0R8aYtz65j01P7mNG0hOSfmmtfaSafQAAAKxY8Q7pnE9Lt7xKsoX67uv0jyzZb2f4eSf+mbT25NrX0+56NkqnfkC68y8rm5/slzpHfNb8e+nO/11dbWd/orr5QAsqeOHH7pyqXx0AAAAAAAAAAAAAAAAAgPoKCrVJB4TkYLmeWG/ZMeuSaSVM0rfPGKN0ckyPLjxU0pfJEnoDoDaCQrTSAWGY6ZT/jcYncrtkrZUxpuraWlXG8ZimU6MaTKYVU0yeSt+cncnu0hEdRx3aHnecj2OKaTCZ1lBqVDPzB3zWIZwOAAAAAFA5gtFWGWvtnKTv1XkfWUk/rOc+AAAAVqRNL5MGTpN+/ofS+I/qs494t7TxxeHHP+M/pQMPSukLpKHzpFX8ol5VTn5X5cFoI8/yf9xP/itp9NLF75fJX0Rfd/BpUu/RldUEtLCowWir/Q0NAAAAAAAAAAAAAAAAANCqMjn/QJXOWLd642saXE3r6o6XD0ZLJ/2DhQ71pxzBaI7/IwCIynU8SZiEBhKDznlDjqDMrF3Q/sKk1ibW1aS+VuR6TNPJUcVNQuuSaU3kdvvMWx6o5gqtW5dMK24SSidHtX3+wbLrAAAAAAAQRazZBQAAAABtZc3x0ql/V5+1k2ukC74qpQbCz9lwhXTSX0jp8wlFq1b3kZXNG7vc3Td4tnTpT6RYKvq6J1UY1Aa0OM+GH5srSNl8/WoBAAAAAAAAAACoJ2PMe4wxtoqPzzX7awAAAACAaoxn/QNdhpNj3DAzgp54X9kxw6n1gf1pR/BQxvF/BABRuY75Q8lRxUzcOS+dcgc7rvZjVCbrH0yWTi0e013H9omiec51npzv+j9Y7Y8/AAAAAKA6iWYXAAAAALSdlPtuRKHEu6ULvykNnC6l+qW5XdLsY9LaU6REV+n4jrS0kClt795QXR1YzstVNq9vS3B/okfq3SLtvy/8moPnSEc8v7J6gBZnIwSjSdJcTupI1qcWAAAAAAAAAAAAAAAAAED9ZHL+gSoHA10QTnest+wYVzjOoX5X6E1up6y1BNUBqJorRKvc8akn1qeuWI/mvJnSNXO7dIxOrkl9rcazniZywYFmQ6lRaba0v/j86zofDz15bnAGrOV2cY4AAAAAAFQs1uwCAAAAgLbTMVR+TP+p7r7fulMaefZiKJokdY1Kg2f7h6JJ0lPf599+4jvL14HwFiYqm9cVfAc9SdJld4RczEibXild8BUp5r7rFdDOvKjBaNn61AEAAAAAAAAAAAAAAAAAqK9KQ3KwXE+8r+wYV/DZoX7HYz7nzWqmcKCiugBgqUrDMI0xSicd4Y1Z/2Cw1WAqv1c56/9G6oOP6bDj2J4pClQr3j7o4Pwhx+PPOQIAAAAAUA2C0QAAAIBaSw2UH/Pcn0tjly1vi3cvtvcdE21/m14q9R27vK33aGnTy6Otg2CDT6tsXtcR5cckuqTNrw0eE+uQXlGQzv+i1LOpslqANhAxF01zubqUAQAAAAAAAAAA0AyvkLQ5wgd30wIAAADQsqy1zpCc4TIhOVguVDBambC5oGAi1/8TAEThDsMMDm6U3Meo1Xx8coWZSYcfU1eg2d5cRnm7+CbsvM1pby7jO+7gfM4RAAAAAIB6SDS7AAAAAKDtxOLS+t+SdnzLPSaekp75X9L9H5UyN0mdaem4t0jrzoi+v9SAdOkt0n0fkiZ/KQ2cLh3/NqlzuPKvAaVGLpImbo0+L7km3Lgjf0d65Avu/o5ByZjo+wfajOdFG08wGgAAAAAAAAAAaCO7rLXbml0EAAAAADTCdGFK896cb1+5EC8s1x3vDew3Ms5wnIPWxPvVYTq1YOdL+sazO7W56/iqagSwus17c5oqTPr2DafWl53vOi+4wtZWA9fX3hPrO3RecAWaWXnam8toOLVee3MZWfm/gfvg/KBzRCa3i3MEAAAAAKAiBKMBAAAA9XDaB93BaGtPWfw3npJOfldt9tc5JJ3+odqsBX8nvH3x/3Tyl+Hn9D81fJjZ2HMkGUnWvz81EH6/QBvzHD8iLnPZ+tQBAAAAAAAAAAAAAAAAAKif8YAwm2FHkAv89ZQJRhtIDCkZSwaOMcZoKDWqJxa2lfRN5HZVUx4AaCLrPo6ECcNMp/zDHTO5nbLWyqzCG5RnHMfmpY/VUHLEPT+7U8Op9YHhcgfnB50jVnM4HQAAAACgOrFmFwAAAAC0pf6nSC94yL9vwxWNrQW10TEoXfLjaHOOenX4sYkeaeB0d39ybbR9A20qYi6a5nJ1KQMAAAAAAAAAAAAAAAAAUEeZnH+QSmesS71x3lMZRU+sL7A/HTJoLp10Bw8BQDVcx5G4EhpIDpWd7zo+zXmzmvEOVFVbq3IFki0NmkvFOtSfGPSf/2SwmitgrT8xqFSs49D2kPMcQXgmAAAAAKAyBKMBAAAA9dJ7tHTxj5YHWm14sXTyXzatJFQpGfzGkGWO/j3puD+Otv6zvuHuCwpNA1YRz4s2fp5gNAAAAAAAVowf3G/1J//h6Z1f9fSzh6PGnwMAAAAAAAAAVhNXSE46OSZjTIOraW3d8d7A/uHk+lDruALUMllCbwBUx3UcGUqNKG7iZecHBTyu1mOU8zxa9Fi5A812Bq9TNM8ZnukIaAMAAAAAoJxEswsAAAAA2trIs6QrxqW9d0jdR0o9G5pdEaoV75YKs/59Y8+VnvJeqWtU6tkUfe3uI6Tj3iI98I/L201c2vza6OsBbSjqJdNz2bqUAQAAAAAAIvr0jZ7e/P8OP7P/xx9YfeUPYvqd07l4DQAAAAAAAABQatwRpBIUfgN/qViHkialnPV/Q1065R9mUzIu6QhGc4TmAEBY47kdvu2u406xNfEBpUyHsnahpG8it1Obu46rqr5WY611BpKVBJqlRrV17p6ScQcD5dyhdcXr+P9fTeRWZzAdAAAAAKB6sWYXAAAAALS9eEpKn0soWrs46V3+7R2D0gXXSEPnVBaKdtAZH5GOf9viepLU/xTpmV+Xhp5W+ZpAG/EiJqPN5aJGqQEAAAAAgForeFb/+7rlz9FzBend/+U1qSIAAAAAAAAAwErnDnQhGK0SPfE+Z1/Yx9QVejNd2K/ZwnRFdQGAFHDMDxncaIzRUNJ/rCvYq51NF6a0YOd9+4qP5cVBaQdlngw0yziCzYrPHa51DhSmNO/NBdYLAAAAAICfRLMLAAAAAICWcvTrpK2flOaWvPi65kTpstukRE/168eS0pkfk874qFSYkxLd1a8JtBEv4vXSc7n61LGSzWWtJmel4T4pETfNLgcAAAAAAN28VZrwuR7qnh3Sjn1W6/t5/goAABDSm40xfy3pREmDknKS9kjaLukmSddba29sYn0AAAAAUBPWWmVy/iE5w45wLgTrjvVqn/b49rkCz0rGOUJvJOmmfd/VQHKootpckialLV0nqi+xtqbrNoJnC3piYbt2ZR/37R9IDGpT53FKxpINrgxovgVvXo/M/UYHClOH2nY6flaihGGmU2Pakd1e0j7uOJ+0i4LNa/v8Vu3JjR9qm8jtdo4vPpa7HuM9uV26bf9PtMexVsk6AeeSG/ddr/7EoLO/EnGT0KbOLRpMjtR0XQCAv8nchLbNP6i8Lb1IJ2U6tLnreK1J9DehMgAA0M4IRgMAAACAKHo2SpfeLN3/MWnfr6XBs6WT3lWbULSljCEUDfBhI46fy9aljBXrYzd4+ttvWk3NSWNrpX95TUy//VQuLgcAAAAANNf2Pe5n9PvnpPW8LxIAACCslxdtd0jqlbRJ0jMl/ZUx5nZJf2mt/V6jiwMAAACAWpku7NecN+vbFyUkB4f1xHt9241MYODZUv2JQSVM0jcM4esTX6iqviAvSr9Ol657Ud3Wr7Xp/H596on36+H5+wPHrUukdeWR79b6jo0Nqgxovodm79OndrxfM4UDocYPp9aHXtt1LJvI7gq9RqvJZHfqnx5/n8ZzO0KN74x1qTe+PGwynfJ/3PI2r6t3ftS5VnEQ2kBiUHElVFC+ZOx1mc+Hqq8SF/Y/Ty8ZfoNiJl63fQDAauZZT/898SV9Z++1geOMjK5I/54uXveCBlUGAABWg1izCwAAAACAltO7WTrr49IlP5RO/5DUsa7ZFQGrhhcxGW2u9P1Xbeu/77R6x1cXQ9EkaeeU9LJ/8fRowMXnAAAAAAA0W4GnrQAAALV2lqTvGmP+3hhT87unGGOGjTEnR/mQtKXWdQAAAABob5ncTmdfcRALwumO9/m29ycGlYylQq0RM7HQIWq1dF3m83po9r6G77dS35j497KhaJK0N5/RF3Z9vAEVAStDwRb02Z0fDh2KJrnDznzHOs4PQeeUVvel3Z8MHYomLYaLFv/JcKjC43rx/03MxDWUGqlorWr8aN//6FfTP2v4fgFgtbh/9s6yoWiSZGX1n5l/0+PzjzSgKgAAsFoQjAYAAAAAAFqGjRqMlq1PHSvRtXeUPjhzOemff8wV5gAAAACA5gp6Zjq7ip67AwAAVOEJSZ+W9PuSLpB0kqQTJJ0v6S2SvlM03kj6K0nvr0MtV0q6O+LHf9WhDgAAAABtbE9ut297h+nUmnh/g6tpDz3xXt/2qEFzzQqmu2fmF03Zb1TWWt1x4KbQ4x+d36pMtn1Dm4ClHpq7V/vye0KPjymudcnh0ONdIWoHClOa9+ZCr9MqDuSn9JvZuyLNSadKH6PueK96HOGZLr3xNeqK95S0VxqyVq3b9/+kKfsFgNXg9v03Rhof5XdhAACAcghGAwAAAAAALcOLGoyWq08dK9Ft2/wfnA9dTzAaAAAAAKC5goLOZxYaVwcAAEAL+rmk50raYK39A2vtZ6y1N1tr77PW/sZae4u19hPW2ssknS3pwaL57zLGvLDhVQMAAABAleYKs77taxPrZIxpcDXtYWPHFt/2zZ3HR1rnqM7jalFOZNOFqabsN6r9hUnNef7fvy67s0/UqRpgZdm58Fik8Zs6j1HcxEOP9wv9OqgdAwjHszsiz3Edw2t1LtjcpHPEruzjTdkvAKwGUX9X5XdbAABQSwSjAQAAAACAlhE1GG02W586VqL7d7n7DswTjgYAAAAAaJ75gOBygtEAAADcrLXfstZ+19qgqNlDY2+X9HRJDxR1fdCYCFeQAgAAAMAKsGDnfds7Yp0NrqR9nN53rvoTg8vaumLduqD/0kjrnLv2IvXE+2pZWigFFRq+z0pUEr6UyQW8+Q9oI7sjBnldvO4FkcYPJIYUV8K3rx1/zqJ+TX3xtTpnzbN9+y4aeL5iIS83jymmiwae79t33tpL1BNr/Dkik92lgm2N8wQAtJqo55t2POcCAIDm8X+WDwAAAAAAsAKVv+xnucmZ+tSxEvV0uC8mn5yR+nhPIAAAAACgSaYDws9WU6g5AABAvVlr9xpjXiHpdknmyeYTJD1b0vdqtJt/lvTViHO2SPqvGu0fAAAAwCqw4BGMVmt9iX796Ya/1zf3/Ie2zz+osdQGPX/oVRpMjkRaZ21inf5s44f03xNf1Lb5B5TzAu6OUoE5b0Y5W/rigbVeTfdTL64gCKOY4iauvC19vDJZwiOwOoxnn/BtT5kOdca6JS3+QWusY6Oe2X+5Tut7eqT1YyauweSwxnOlAWyVhBaudJmc/9cUV2JZgGUyltTmzuP1gqFXqy+x1nfOCT2n6o+P/Bv9YPIbenxhm/zu02CM0REdR+migefrhJ5TfdfpTw7qnZs+uHiOmHtQeZuv4Ctz8+RpujBV0l5QXntz40qnxmq6PwBY7eYKM77HXUnqMJ2+gdaZ7E5Za2WM8ZkFAAAQDcFoAAAAAACgZXgRg9EmpiNOaGFdSXcw2oGAC9ABAAAAAKi3mYDws5ms1eHMDgAAAFTLWvsLY8x3JT13SfNlqlEwmrV2XNJ4lDlc/AIAAAAgqgVvzredYLTqDKVG9fqxt1W9znBqTG9c/84aVFTq/+38R926//sl7Z5aIxht3BG+tKHzaG3o2Kybp24o6XOFGwHtZnfOPxjteUMv16XrXlSTfaRTY77BaBOO0MJW5gp7O7XvHL1p/Z9FXu/EntN0Ys9p1ZalkdQRetP6P696HT8L3rze/uDLfft2Z58gGA0AaswV+itJrx37E316x4dK2rN2QfsLk1qbWFfP0gAAwCoRa3YBAAAAAAAAYfncgCzQxHR96liJUgHx9/v93ycIAAAAAEBDuIK8y/UBAACgYtcXbT+1KVUAAAAAQIUWPP8/HhOM1v5ixv9yR8+2RjBaxieQSZKGk2NKJ/0De1zhRkA7yXoL2pvL+PaNpI6o2X5cP2eu0MJW5gp7SydHG1xJ43TEOjWQGPLtG8/6H38BAJVz/Z6aMEkd23VK5HkAAABREYwGAAAAAABahkcwmlPcuPsOzDeuDgAAAAAAigWFn81mG1cHAADAKrKtaDvdjCIAAAAAoFILnv8bnjpMV4MrQaPFFPdt91RocCWVyWQdQUWpMaVT/mFFe3LjKtjW+PqASmVyO2Xl/ybgmgajOX7OXCFirSzoeNPOhlPrfdt3E4wGADWXyfkHnKWTo+pNrFF3rNe3f9wxDwAAICqC0QAAAAAAQMsgGM1tIe/u208wGgAAAACgiYKC0YL6AAAAULG5om2SAwAAAAC0lAVb/LRmUUess8GVoNFixv9yR896Da4kOmttQHjEmNJJ/7CigvKazE3UszSg6VyhVTHFNZQcqdl+0kn/YLTJ/ISyXvu8MDlbmNaMd8C3z3WsaReuIL3x3BMNrgQA2l+5EE5XGGcmSzAaAACoDYLRAAAAAABAy7ARg9Gm5qRsPuKkFhUUjHZgfnU8BgAAAACAlWlmwf28dCbbwEIAAABWj6Giba6uBgAAANBSFjz/O0ESjNb+jONyR08rPxjtQGFK855/qF86NaahlH9gkyRnoBrQLnZn/UOrhpIjiptEzfbjCmiRpD258Zrtp9kyOf+gGskdDtcuhlPrfdtd4XsAgMq5Q39Hl/0bdh4AAEBUBKMBAAAAAICW4VWQ77VnuvZ1rETBwWiNqwMAAAAAgGKzAeFnQX0AAACo2DlF21wVCAAAAKClEIy2esWNIxjNrvxgtEzWHQAxnBxVZ6xLa+ID/nMDQo6AduAKRhtJHVHT/Qwmh50Bi+0U0uI63iRNSmsS/seZduH6ntmX3+MMpwQAVMZ1vkknF4NIXYGkmSy/2wIAgNogGA0AAAAAALQMW0Ew2r5V8Bq3tTYwGG0/wWgAAAAAgCbKB1yrlCs0rg4AAIDVwBjTKemKouYfNaEUAAAAAKiYOxitq8GVoNFcgUaeWiAYzRG61BnrVm98rSQpnRr1nxsQqga0g/EGBaMlTFLrkkO+fe0U0uIKUxxKjirmCJhsFyPJ9c4+jqUAUDsL3rymCpO+fUNP/k57MCCtWCa3U7aSi38AAACKtPczXAAAAAAA0Fa8SoLRZmtfx0qTLwSHxh0gGA0AAAAA0ERBz1nzBKMBAADU2l9IWnpFaUHS/zSpFgAAAACoyILnfzfMjlhngytBo8VN3Lfdsyv/BQVXMFo6OSpjzKHPo8wF2oG1VrsbFIwmBYe0tAtXAJgrfLGdrEumlTAJ377d2R0NrgYA2teEI4RTkoafPNemU/7n3HlvTtOFqbrUBQAAVheC0QAAAAAAQMsICkZLOP7KsRqC0Rbywf37CUYDAAAAAKxQBa/ZFQAAAKxMxpjXGGNGIs75fUlXFTV/zlq7vXaVAQAAAED9LVj/NzylDMFo7S5m/N8I6Gnlv6Aw7gwqGvP9fKlM1h08AbS6A4UpzXn+b+YdSa2v+f6GHAGEE230c+YOYvQ/xrSTmIk7v85xRwAfACA61++nMcU1kExLkoYd51xJGg8IVgMAAAiLYDQAAAAAANAybEAw2kCPf/u+uYBJbaJcMNoMwWgAAAAAgCYKemaeX/nXMQEAADTLGyU9Yoz5vDHmecYYxyshkjHmLGPM1yT9qySzpOsJSX9d5zoBAAAAoOYWPP83PHXECEZrd8ZxuaNnV/4LChlXMNqSAB9XmM9EbldLfI1AJXYHhFWNpI6o+f6cAYSOMLFW5Ap5SwcE1LSTYcf3ze7sjgZXAgDty3XeHEqOKG7ikqTe+Fp1LmRZYgAAIABJREFUxrr85zt+NwYAAIgi0ewCAAAAAAAAwvIcV1IbI/V3SZkDpX37/G8y11bKBaOV6wcAAAAAoJ6Cgs7zhcbVAQAA0IK6JL32yQ/PGPOgpG2SpiQVJA1KOlXSiM/cvZIus9b6XyUJAAAAACtUwRaUtznfPoLR2t/BkIVinl3ZLyhYa53hEcNLQppcgU05m9X+/KT6k4N1qQ9oJlcwWlesR73xtTXfnyscbE9uXAWbV9y09mXVC968pgqTvn2uY0y7GUmt923fnXOH8AEAonGG/qYOn2eNMUonx/TYwsOl89sokBQAADRPaz+DBwAAAAAAq4rrQuqYkfq7/fv2zdWvnpWiXPDZfC7gCnQAAAAAAOos6Flp3pWCDgAAgGIxScc/+VHO9yW93lr7eH1LAgAAAIDay3rzzr5OgtHanlHMt92T1+BKopkpHNCc538X13RySTCaI7BJksZzOwlGQ1tyBaONpI6QMabm+1sa2LKUJ097c5mWDw/LZN33QVh6vGlnI6kjfNvHsztkra3L9xUArDauYLPic006NeofjOYIVgMAAIjC/y+FAAAAAAAAK5DrWmkjqb/Lv2+f/3uN2kq2bDBaY+oAAAAAAMCPK+hckvKFxtUBAADQYv5B0pckbQ85fkbSdZIusdZeQigaAAAAgFa1EBCM1hFzvEkMbSPWosFo47kdzr6lIUzd8V71xPt8xxEegXYVFIxWD0MBAYSZnDtUrFVMOL6GmOIaSA41uJrmGE6u922f92a1v7CvwdUAQHtyBXEWB4y6Qjnb4ZwLAACaL9HsAgAAAAAAAMJyBaPFYlJ/t5FUOmA1BKMtlAtGK9MPAAAAAEA9BQWjPbC7cXUAAAC0EmvtdVoMOpMxpl/SyZI2SBqR1K3FG+PukzQp6T5Jd1lriZ0FAAAA0PIWbEAwmulsYCVohriJ+7Z7K/wpryvUrMN0ak28f1lbOjmqmcKB0jUIj0CbGs/6BweOpPzDrarVEevU2sQ6TeX3lvRlsjulntPrst9GyeT8jzdDyRHnMbTdDAd874xnd2htYqCB1QBA+8l5WU3mJ3z70kUBpK5jMqG/AACgFghGAwAAAAAALcN1IXXMSGu7/fum5upXz0pRNhgt15g6AAAAAACI6je7pR37rNb3m2aXAgAAsGJZa/dJurnZdQAAAABAIyx47jd8dcQIRmt3xsR82z3rNbiSaFyhZunUmIxZ/hpIOjmmbfMPlq5BeATaUN7mNOH4+RhJHVG3/aaTo/7BaG0QQOg6VqRTo77t7ag3vkbdsV7NetMlfePZHTq2++QmVAUA7WMit1tW/hfvpFNjy7eT/uefWW9aM4UD6on31bw+AACwevj/pRAAAAAAAGAF8hzBaEZSn+M9bwfmHZPayEKZ4DOC0QAAAAAAzVTumfm1d7T/c3cAAAAAAAAAQDjz3ryzL0UwWtuLOS53tFrhwWiuoKLkWGlbqrRNkjI5gtHQfiayu+U5fn7rG4zm+DlrgwBCV7jbkCOYph0ZYzScWu/btzv7RIOrAYD24/q91CimweTwsjbX77ZSe5x3AQBAcxGMBgAAAAAAWobrMulYTFrjDEarWzkrRrYQ3E8wGgAAAACgmWyZ3LO3fYVgNAAAAAAAAADAogVHMFrSpBQ38QZXg0aLOf6PC7bMm+SabNwRHuEXFJF2hBdN5HbJlntRBWgxrpAqI+MML6uFdMr/56wdAgidQYwBwTTtyBWsN57b0eBKAKD9ZLL+IZzrkmklTHJZ25r4gFKmw3+dNjjvAgCA5iIYDQAAAAAAtAzPcdNHI6nPEYy2fxUEo7kel4MIRgMAAAAANBOX8AAAAAAAAAAAwnIFo3XEHG8QQ1uJOS53tCrzJrkmcwYV+YSgucKL5r05TRemaloX0GyuYLR1yWElY6m67XfIEbo2kdstz67s40mQnJfTZH7Ct88VutiuhlPrfdtd33MAgPBcgWZ+5xpjjPP323HH78gAAABhEYwGAAAAAABahue4kjpm3MFoB1ZBMFqhzBXmcwSjAQAAAACayJKMBgAAAAAAAAAIacGb821PmY4GV4JmiBn/yx29FRyMNlM4oFlv2rfPL7gnKLxoPLerZnUBK8HunH9I1UjqiLrudzjl/3OWtznty++p677raW9+XNZxW6q0IwyuXbm+hzLZXSrYQoOrAYD24gz9dQSguX6/dQWsAQCA/5+9O4+O5Czsvf+r6kVSt7bRqFujGW941djgGTtgsyRsISwhQGLWhPAmARJ4sydkuQnJzfoGSHJzk8ube8EkkJATDA4xEAw2YFZjY8DYI49taWzP2GN7tHRLo7VbvVbdP8Zjy9P1VFdL3a1evp9zOBxXtaofaaqrt3q+haAIowEAAAAAgLZhmkdt29JgF4fRnCrnfOUIowEAAAAAdhBhNAAAAAAAAABAUHnX+4SvHruvySPBTrAV8lzeypEbUzhC8o5H9IeG1GvYn/22BbSjVGHGc/mYRzSwnkZ9AoTpNg4QpgzHCEuWdkfGmjyanZWMeO9DjspaLM43eTQA0FlMQTNTAM0UTEsX2vc5FwAAtAbCaAAAAAAAoG2YAmCWpIFey3PdaheE0cpVJpi3exjtnsdd/fS1ji7+o7L2/3FZb/tnR48sMKseAAAAANoF7+AAAAAAAAAAAEHlHVMYzXDlTHQU2/Ke7ui6Va4euoNShnBE1OrRUGhXxXLLspSIGOIRhm0B7Wq+cMJz+VhkX0PvNxbqVzw04LluoY0jLQuGqNuu8KgidqTJo9lZSUOER5LmDUE+AEB1Zbekk8W05zrTa1he2wIAgEYhjAYAAAAAANqGaSK1bUkDhvPeCiWpUOrsKdimYNxpJUcqVauntaipWVc//AFHn7rT1UMp6ci89O/fdXXVXzlaXG/P3wkAAAAAAAAAAAAAAACAtwJhtK5mG6Y7OmrdMFq64B18SETHZVneF3xNRPd4Lm/nYBNwpkx5TevlVc91Y9HGhtGkzoy0mI833seUTha1ezQSTniuSxmCfACA6haLaeNr74QhSmlavl5eVba8XrexAQCA7kMYDQAAAAAAtA3H9Q5hWZY06HPe25r3uXIdI0jzLF9q/Dga4R+/7mo9X7l8YV36h68SRgMAAACAdmB4Ow8AAAAAAAAAQIU8YbSuZlshz+WO28JhNENkKRExh4o6MdgEnGneJ07VnDCa92PQFBdrB+bjjfcxpdMlo3s9l88XZpo8EgDoHH6vR0cjY57L/V73LhQJ/wIAgK0jjAYAAAAAANqGYzi3ybakAZ/z3lY7PYwW4JyvXLHx42iE24+aZ8/fcBcz6wEAAACgHfDuDQAAAAAAAAAQlDGMZvU1eSTYCbZhuqOjcpNHElzKEFlKRM2holFjsIlwBDqHKYzWY/VqKDzS8Ps3PQbTbRxoMR0jTMeUTmcK7PlF+QAA/kwB0eHwbkXtHuO6sBXxXJfi9S0AANgGwmgAAAAAAKBtmCZSVw2jbTRkOC3DcatPMW/HMJrjuDri8z3Y/bPSg/NMrwcAAACAVhfgbSsAAAAAAAAAAJKkvOt9sleP7XOCGDqGbRnCaG6Aq4fukHTREEaLmMNopmBTxllTprxWl3EBO22+MOO5PBndK8uyGn7/CWOAcFZuG36BWXbLWiymPNf5hRg7WTK613N5qui97wEAqtvKa1vbss3Pu4btAQAABEEYDQAAAAAQSHrN1d99xdF7P+PopsPt92UwOoNj2PUsSxr2uSDo/GpjxtMqygHO+WrHMNpjS9JGlXF/bpLjEQAAAAC0ujacVwAAAAAAAAAA2CF5J+e5nDBad7AN0x0dtWYYLVteN4bMkj6hoqRPWCJd8LmaKNBG5gsnPJePRfc15f5HDY/BvJvTenmlKWOop6Xigsoqea7zi9V0MtO+tFI6qZzT4VfVBoAGMb0W9XttK5kjnekCYTQAALB1hNEAAAAAAFUdX3R15V84+p3/cPW+m1y9+oOOfvv61jzJBJ3NNJHatqRI2FJywHv9zEpnz8A2BeM2qxYYa0XH0tVvc+sDnf1vCwAAAACdIMg7t2KJ93cAAAAAAAAAAMJo3c62Qp7LHbc1z1lNF80RM79Q0WB4lyJW1LBN4hHoDKkdDqMlI3uM61I+j91WteAz5tHoWBNH0jrGonuN61KFmSaOBAA6h+m1aLUIZ8LwvMtrWwAAsB2E0QAAAAAAVf3lF1ydWH76sn/4qqvJx5iwiuYyBcAs69T/7x32Xn9iqTHjaRXlAOd8FbwvEtfSsoXqt5luv3NTAAAAAAAe2jHoDQAAAAAAAACoP3MYra/JI8FOsA3THR21ZhjNFN6JWFENhUeMP2dbtjEe4Rc/AtqF45aNIZRmhdH6Q0PqNTx3pAvtF2lJGf6eg6Fdxt+z0+0KjypsRTzXzRvCfAAAM8cta6Ew77kuETUHRyVzOC1d4LUtAADYOsJoAAAAAICqbnuoskblutL7biKMhuYyhdHsJ8Jo+0xhtGXv5Z3C9HfZrFBu/DjqrRTgXLZjC1KhxLEIAAAAAFqZG+BtW5A4NgAAAAAAAACg85nDaL1NHgl2gm15T3d05cgN8oVDk5niSqORPcbf5bRE1BSPaL9gE3CmxWJKJdf7ir7NCqNZlqXRDgoQmo4N1UI1ncy2QkoaQjymcCUAwGyptKCyvJ+/TeGzJ9cbXtuulpeUcza2PTYAANCdCKMBAAAAAKqaNnz3e/2drXeSCTqb6bym02G0vcOW5/qZ5c7eV8sBAmIF7++nWloxQMyt7EhH040fCwAAAABg64K8K98oNnwYAAAAAAAAAIA2kDdMmu+xepo8EuwE22e6o6MAJ8o1WdoQV0oawhCbmYJNpm0C7WS+cMK4Lhnd27RxmCIu7RggNMXcEoZjSbcw7U9++yAAwFu6YH4dOlolxOkXTlvw2S4AAIAfwmgAAAAAAKBtOIaZ1NYTPbTxIe/1C+uNGU+r6NwwWrCg3fHFBg8EAAAAALAtptD5Zmu5xo8DAAAAAAAAAND68q73B8Y9dl+TR4KdYFkh4zrHbcEwmiGu5BeGePI2hnhaOwabgDPNF2Y8lw+Hd6vH7m3aOIyPs2L7Pc6Mx5sAIcZONhbd57k8ZdgHAQBmKcPz42Bol3qrvB/bFRlVSGHPde34vAsAAFoDYTQAAAAAwLas5YKFi4B6ME2ktp8Iow0ZvmtZzzdmPK3CFIzbrFBu/DjqrRhwzCeWOQ4BAAAAQCsjjAYAAAAAAAAACMJ1XeUd75O9mhnSwc4J+Ux3dNR6J8GZ4hFBQkVJQzxttbysnLOxrXEBO22+cMJzuSli1SiJyB7P5eniXFPHsV2u6xrHPGr4HbtFMrrXc/l84YTcIF9UAwCeZI5wVn+uCVkh7Y4kDdttr+ddAADQOgijAQAAAAB8VftCcHalSQMBZA6AWU+E0foN5751+uTqcoALYRZKjR9HvZUCnsc2s9zYcQAAAAAAtifI6earzO8BAAAAAAAAgK5XdAty5X0yFGG07mBbPmE0N8CJck20Uc5ovex9Eq0pxvS02/gEJhaIR6DNtUwYzfA4y5TXlC2vN3Us27FSXlLRLXiuSxgii93CtE/l3ZxWy0tNHg0AtLe0KfobMMJpigObtgsAAFANYTQAAAAAgK98lZjSLEEiNJGp02c/EUYb6PFe3+lhNFMwbrN8qf2uelYMGEY7wXEIAAAAAFpakAtxr2y03/tWAAAAAAAAAEB95R3ziV6E0bqD5TPd0RTN2ynpojlelozurfrzu8KjCils2DbxCLS3VKuE0XyiYX6P4VaTLpiPCUlDhKZb+B1vTYE+AIC3tCHOawqeVdzO8LybKsxseUwAAKC7EUYDAAAAAPja8L641JNmV5i0iuYxBcCeDKP1Wp7r1/MNGlCLKAc436tQJXLYioKG0WaXOQ4BAAAAQLtb7fCoOQAAAAAAAACgOt8wmtXXxJFgp4SskHFd2Q14QlmTmEJFYSui4fDuqj9vWyHtjiQN226fYBNwpo1yVivlJc91zQ6jDYVHFLYinuva6XG2YIi4xex+xUL9TR5Na+kPDSoeGvBcR4gHAIJzXMf4fOMXGn3a7aJ7PJe3U4wUAAC0FsJoAAAAAABfG0X/9fNrzRkHIJnDaNYTPbT+Hu/1uaJUKnduPCtQGK21zgkLJGgY7cRyY8cBAAAAANieIO/ICaMBAAAAAAAAAPLuhnFdj93bxJFgp1g+0x0dBThRrolSRe8w2mhkTLYVbNpmIuodmUgbtg20g1TRHKMai+5t4kgk27KViJgiLe3zOEsZQoymY0i3SUa896v5wokmjwQA2tdK6aSKbsFzXdDnm6QhoLZcWlTByW95bADQbR7NHdVD2fu0Ujop1+3c+ZBAEOGdHgAAAAAAoLVteH+u/aRV83lIQN2ZPsuznwijDfic+7aWk3bF6z+mVmAKxm1WKDV+HPVWCnge2wxhNAAAAABoaUHOzeEzJgAAAAAAAABA3jFfRYMwWnfwC4q99+g7Zcna0naHI7t1Rf/z9LrEzypk1Tal0nVdfX35Rt2+/BXNF54KPjnyvvJnwhCEqOW2t618RXesfL2mcW7WG+rTxX3P1JvGflFD4ZEtbwc47YHsYX1+4RN6NHdUjut/cqdriBhGrKh2hRONGJ6vRHRcs4XHKpbfuPAJfXHhU00fz1aYjzfe0bduMxbdq4dzRyqWf23p8/rG0he3vN14qF/741fojcl3KBbq384Qm+r+zN26afH6QI/XzWKhuCZiB/XGsXeoPzTYwBECrc1xHT2eP6apzKSms4c0VzihXrtPL9n1Gr1w+JVNGcPDGw/o8wv/roc3jqjkbn8iSDw0oEvjB/XG5DvVF/KeVOMXDA36fOMXUPvtB39my6/lTWzL1rm9F+o5gy/SC4ZeJtsK1XX7ALBTvnzyBt21dpskKWr1aDSyR4nouK4ceJ6eM/iiHR4d0FyE0QAAAAAAvnJVPkNfNZ+HBNSdKQB2+usRvzDaer5zw2jlAN9ZF7zPiWhpxYBjnl+TiiVXkXB9vygDAAAAANRHoDAanzEBAAAAAAAAQNczhdEs2YpY0SaPBjshJHPMwBQGCmKxOK9blj6rjLOmt+35tZp+9utLn9en0x8NfPukTxDiTImoOTJR1tYjGJnymu5e/44eyx/TnzzjH2uOwQGbPZo7qg8+9mfb2ielUyFAv/hho4waYi6u3G3/TjvN7xjSTZLRfZ7Lt/tvvFpe1ndXv675wgn97jkfkGW1/nnKR7NT+t+P/+WWnjPXyiv6/to3NVM4rj849+925PEK7JTFYkrTmUlNZQ/pSPYeZcprT1u/IumT8x+S6zp60a4fb+hY5vKP64OP/4lyTv2uMLhaXtIdq1/XfGFGv3PO+z2PZ+nCnOfPxkMDgeOQI5GEbNlyPCKp23ktb1J2pYc27tdDG/fr28tf0k+PvVvn9V1c9/sBgGZLF56KVRbcvGYKxzVTOK69Pefs4KiAncG7EgAAAACAr42C//rV+n3WDlRlmkdtP/EJR3+P+WeXsnUfTsswBeM2K7ThuRtBw2iueyqOBgAAAABoTQHetvIZEwAAAAAAAADAGEbrsXvbIkaC7bMaHGH53so3K0IXflzX1deXb6zpPhKR4GG0ZA233YqF4rwOr9/Z0PtA57t1+ea6BMTGDPGqRksYwmidoJbjTScbi+5t6PYfyT2g47kHG3of9XL7yi3bjg+dyD+ihzeO1GlEQGvaKGd0aO0OfXL+w/rTY7+sPz72S/r3+X/UXWu3+b5W/Gz641opnWzo2H6w9u26RtE2ezh3RMdzD3muSxdnPZfX8lwTtiIaiSS2NLbteix/TH/z6O/rurkPKVte35ExAEA9uK6rdNE7Vsnrf3QjwmgAAAAAAF8bRf/1a97nIQEN4VReOEaSZD9xzttAr/ln/+ZLQaZht6ey4e+yWTuG0UoBfq/TTiw1bhwAAAAAgO1xA7wlX93o3PftAAAAAAAAAIBg8oYAQI/lc8VMdJT+0KBCCjds+2WVdCL/SODbZ8prWiymarqPPT1nNeS2W/Vo7mjD7wOdrV770N6ec+qynVrt6Tl7R+63GfZEG38MaQd7e85t+H2YQkKt5vH8wy21HaBVlN2SHsrerxsXrtPfHP99/e5Db9O1M+/Xt5ZvUqo4E3g7eTen/1r49waOVJrJP9rQ7T9qOJ7NF7z/DrUGRvdEd+5515WrW1du1p8+/Cv6zspX5QY5YQkAWsx6eVU5J+u5rpOjz4BJ4z4lBAAAAAB0hI2C/3omraKZHMPudvpaoPEeybK8J1x/52jn7qumv8tm+TYMoxVruGDZzErjxgEAAAAA2J4g78hXie8DAAAAAAAAQNfLO94fFvfYfU0eCXZKj92rS2LP0v3Zuxt2H+nCnC6OPSvQbWsJZUjSrvCoLuy7NPDtd0fGdH7vhI7lpmu6n1qki7MN2zY6n+u6dduHnjP4orpsp1YX9l2q4fBuLZcWd+T+GyURGde5vRft9DBawlh0n87pvdAY+6mHdHGuYduup6yz3lLbAXaK67pKFWc0lTmk6eykHsgeVs4QYa7VHStf04uGf1zn9F5Ql+2dyVENkyi2wPS8njKE0cai+2ra/lWDL9K9mTtrHlc9rZdX9G9zH9TtK7foLWPv0r6e83Z0PABQiwWf152J6HgTRwK0BnunBwAAAAAAaG0bRf/1TFpFM5kmUttPfMJhWZZnFE2SIqGGDKkllJ3qtyk09vuxhqgljLaw3rnhOwAAAADoBqv1Of8UAAAAAAAAANDG8m7ec3mP3dvkkWAn/dz4b+ic3gsbtv1aYmfpQvAg1HB4t9697w9lW7WdrPgLe39L49FzavqZWtTyOwBnWi+vbjskE7Yi+vnx31Jyhybxh6yQ/t9979VwePeO3H8jjIQTete+/ybLsqrfuEu8ffw9Ncd7atEux9JMuT5Bs3ptB2imtdKK7ly9Vf8290H90bFf1J89/Cu6PvUR3bP+vbpF0STJlatPpz4q1zRxZZvKbqPDaJXBHcctG4NpyejemrZ/5cAL9PKRa2Rp55+jjm5M6X2P/LZuSP1LXfcBAGiklOF1Z4/Vq4HQUJNHA+y88E4PAAAAAADQ2jYK/h/WE0ZDMzmGANjmr0x+dEL6qsfFE5c7+HuMQGG0UuPHUW+1hdEaNw4AAAAAwPYEOReUz5gAAAAAAAAAAHnDZHXCaN1lIDys/3bu32qhMKeUIdAQxC0nP6vp7GTF8lriNqb7T0b26k1jv/jkfw+EhrSv59yao2iStDsypj867x80V3hcS6WFmn/+tAeyh/XlkzdULE8XZ+W6LgElbIkpkiJJ79z7e+q1+3x/Pmr16JzeCxS1e+o9tJqc3Xu+/vL8a3Uif1xr5ZUdHct2DYaGtbfnXNmWvdNDaSnJ6Lj++LwPaq7wuJZLi1vezt1rt+u2la9ULPd7LLSKsltWzsl6rvupxM9rX8+5Fcu/cvIzOpK9p2J5trxW9/EB9VZ0Cjq6MaWp7CFNZyb1WP5YXbcftsIKW1HPx9VDG/fp0Pp3dMXA8+t6n5LkyntyyBX9z9cLhn8s8HbuWrtNt6/cUrHc67XwyeKCSm7Rczu1Ridty9ZPJv4fvXzkGj2WO6ayGhN6c11H3175sibXv+t7O0eObln6rO5cu1VvSL5DV/Q/j9fFAFqa6XVnIjrO8QtdiTAaAAAAAMBXrkpMabWDY1NoPaZ51Pamz/V+82W2vjpd+WXQsvf3vB3BCTDBvB3DaCXCaAAAAADQEYKE0Vb4jAkAAAAAAAAAul7e8b6KBmG07jQa3aPR6J4t//yxjWnvMFpxLvA2TBG1fT3n6dL4FVse25ksy9J4z9ka7zl7y9vosXo9w2gbTlaZ8pr6w4PbGSK6VLrg/XjpsXrbLixiWyGd3Xv+Tg8DDWRbtvb2nKO9PedseRs5J+sZRlsozslxy1sKYDbLRjljXDcRu9xz/z+8/n3PMFqmzInZaD2O62gmf1xT2UlNZw7poY37VXQLdb2PfT3naSJ2QPvjB3Vh36Wazk7qQyf+yvO2N6T/Vc+MP1sRO1rXMTiudxgtEd1T0+vPbDnjHUYrzslxnacFNlPFGeN2EtHxwPe5WSzUr0vil2/pZ4O6rP+HdHj9+7o+9REtFlO+t10uLeqfZv5al8au0JvGfknJLf5eANBopvdgiQjHLXQnwmgAAAAAAF9574t+PGnV+zwkoCFMATB700XPhmPet8mXpFzRVW+kfU7CCKrs/d3X0xQac6GdhirWMOZFvn8HAAAAgJYVoIvGZ0wAAAAAAAAAAMJoqCvTpOF0YVau6wYKOqUK3pGIVgwp+EUr0sVZwmjYknTROw44Gt3TVlE0ICjTc0fJLWmptKjdkWSTRxRcxlkzrouHBmpannU4MRutYbm4qKnsIU1nJjWdndRaeaWu2x8Kj2h/7IAm4gc1ETugwfDw09Y/K/4cTcQOeMZ2F4vz+vrSjXr57mvqOiZH3pNDLNmey02ShsBwyS1qubSokUjiyWXzhROetx0O71av3VfT/Tbbs/qfo0til+tLJz+tr5z8jEpuyff292fv1l8+8ut6+cg1esXI6+setgOA7TK9B0tsIxwPtDPCaAAAAAAAX6YQ1WmrGwp8ggiwXY4hALZ57zOF0SRpKSOND5vXt6tqj1NJKvp/v9OSSjWF0YJMswcAAAAA7AQ3wFu2TF4qO65CNp8xAQAAAAAAAEC3MobRrNaejI/WlIzu9VxecPNaKS9pODzi+/Ou6xonJJu2vZMGQkPqsXqVdysfR6nCjJ7Rd8kOjArtbqE457k8EWFSPjrTqM++nS7MtnQYLVs2x8xiof6alvttC2iknLOhB7P3aiozqensIc0VHq/r9nusXl0Yu+zJGNp49GzfuVCWZen1yV/QXz3y23I9gmU3n/wPXT30Eg2Fd9VtjI7rPYkiZIVq2o7v8aw497QwmjkG3Hqveb1E7R69ZvStumrwxfpAI2cQAAAgAElEQVTU/LWeIbvNSm5RX1z8lL6/+k29KfmLuqz/h5o0UgCozhhGMwR8gU5HGA0AAAAA4KtacKnkSLmi1MdFMtAEpt1x85zpYZ9z4JY3OjOMVjYE4zbLt2EYrVhDGG2B798BAAAAoGUFTVmv5fyD5wAAAAAAAACAzpZ3NzyX99i9TR4JOkEiao5BpAozVcNo6+VVbThZ7223YBTKsiwlouN6PP9wxbq0IW4FVJMueO87frEVoJ31hWIaCA1prbxSsS5dnNOEDuzAqILJlNc8l4cUVo/l/VoqbnuH0TKE0dAkjlvW8dxRTWXu1nR2Usc2jshRDZMIqrBk69zeCzQRO6iJ+AGd33eJwlakpm3s6zlPPzz0ct26cnPFupyzoRsXPqG37vmVeg1ZjkeATZJs2TVtJxbqV39oUOvl1Yp16cKsLok968n/ni+c8NzGWGRfTfe508ai+/RrZ/2pfrB2m/4z9c9aKS/53j5dnNM/nvgLXdH/PL0++fanxeIAYCdky+vG13R+n3EAnYwwGgAAAADAV7UwmiStbBBGQ3OY9sfNF+nxm0C97H2OUtsL8jgtlIJOQ28dpQDBt9MIowEAAABA+1vdIIwGAAAAAAAAAN0s7+Q8lxNGw1b0hwYVs/uVdSpPLksXZnVx7Jm+P58qzhrXJaJ7tz2+RkhEDGG0gvl3AfyYonrJ6HiTRwI0TyIy7h1Ga/FjqSlmFg/1y9p8sv0msdCA5/KssybXdY0/B2xHujCrqeykpjOHdCR7WBtOpq7bH42MaSJ2UPvjB3RJ7HLFQt4BwFr8xOhP6/tr31LOI5p7+8oteuHwq3R27/nbvh9JclzvSRSWVVsYTTp1PPMMo53xOjdVmPH8+WSLvub1Y1mWnj34w7osfqW+sHidvrH0BWNs7rS717+j+zN368dH36yX7nqNQhYJFgA7Y8Enap6I8B4M3YlnZQAAAACAr3KAMNFqTtoz1PixdLp//66j67/vyrakt1xl6c3Pqf2Li07nGtpe9qbvXGNRKWx7R7U6NYwW5HFaqN+Fk5qmWA4ecyOMBgAAAACty/R+/kwrG40dBwAAAAAAAACgtRFGQ70louM6nnuwYvmZMQgvpgBOj9WrwdDwtsfWCAlDrCrI7wucaaOc1bpHHEqSRiN7mjwaoHkS0XEdy01XLG/1Y6lXCFSSbxQqblhXcksquHn1WLwGw/Zlyms6kj2s6cwhTWUntVicr+v2++y4JmKXayJ+UPtjBzQarf9z1EB4SD+++026If0vFetcufp06p/1m2f/ZV1igq4h4hVSqOZtJaJ79HDuSMXyza9zC05eJ0tpz58fa8Mw2ml9oZjekHyHnjv4Ul03/yHPv8NmeTenz6T/VXesfF1vGXuXLopd1qSRAsBTUgXvMFrEimooPNLk0QCtgTAaAAAAAMCXE2Di6iqTVrftAzc7+oMbnvpjf27S1cyyo9/6MeJom5n2x81hNMuyNBzzDmXNrbqSOu/KVUH6Ybli48dRb8UaYm4rG1Kx5CoS7rx/XwAAAABod0HDaKve890AAAAAAAAAAF3CFEaLEkbDFiUjhjCaIXr2tNsUZzyXJ6LjdYleNELCEKtKGyZXA34Wiub9xhThAzqB+Vja2mG0THnNc3k8NGD8Gb91mfIacVpsSckt6tjGtKYyk5rOTurR3FFj7GsrQgrrGX2XaH/8gCZiB3Vu7wWyrdqjYbV68a5X69blL3lGEh/cuE+T69/VwYHnbvt+yq73JArLqn1uUSJiiuY+9Ryf8jm2JaP7ar7PVnNW7zP0nnPepztWv6bPpP/VeKw8bbbwqP7nY+/V1YMv0TWJn9NAuDWDyAA6kynEOxoZk72F5wGgExBGAwAAAAD4ChRGY9LqtuSKrv765so/9PtucvUrL3EVJfT0JNP+eOY5Ruft9g6jHanvxYVahhPge8KVNgwY1hJGk6STWWlssDFjAQAAAABsXcAuGvF9AAAAAAAAAOhyecf7g+IeiygHtsYUb0oZJhs/7TaGSESyhYNQpt8346wpU17zDeAAZzJNyg8prF3h3U0eDdA8yehez+Xp4pwc12nZKEW27HHyvKSY3W/8Gb912fK6RiKJbY8Lnc91Xc0WHtN05pCmspN6KHuf8m59JxmNR8/WxBMhtItil6nX7qvr9oMIWxFdk/h5fXjmfZ7rb0h/TJfFf0gRO7Kt+zFF5GxtIYxmeG2YLszKdV1ZlqWUIQYcUli7I8ma77MV2Zat5w+9TJf3X6XPpf9Nt618perPfHf167pn/Xt63ejP6oeHX96U+B4AmEK8hKnRzQijAQAAAAB8BQkuMWl1e+5+VFrKVi5fWJfuPSFdeW7zx9SqXMNMavuMMNrEHkt3Hq+88ZHZoFOx20s5wK+17LGPtbpSjWG0hXXCaN3okQVXKxvSubul4RghSQAAAKAVmd7Pn2k150ridT0AAAAAAAAAdKuCm/dc3rMD4QN0hkSkegzCxDghOeIdzGkFScPvK0npwpzifYTREFy6MOe5fDQ6RhwEHc0Unii6Ba2WljQcac0wYMYQRouHfMJoPusyjvf2AElaKS1pOjOp6eyp/62UTtZ1+4OhYV0SO6D98QOaiB1omcfd5f1X6ZLYs3Qke7hi3UJxXt9YvlE/NvJT27oPxzWE0bYQZTS9Fi64ea2UlzQcHtF84YTnbUajexTqsOf7/tCg3rrnV/T8oZfpuvkP6fH8w76333Ay+mTqw7p99av66bF369zeC5s0UgDdyhSnTkT2NHkkQOsgjAYAAAAA8OUEmLjKpNXtOTJv/iM/MO/qynP5255m2h/PPDfpYsPnfdPe52i0vSABw+U2DBgWaw2jrTVmHGhNjuPqlz/h6p9udeW40nBM+sjbbL3+hzhmAgAAAK0maKZ8tb4XDAYAAAAAAAAAtJm84/1BcY/d2+SRoFMkDXGbzTEIL67rKmWYkGzaZisYCo8oYkVVdAsV69LFWZ3Xd9EOjArtyjQpf5RJ+ehwfuGJVHGmZQJNZ8o63idSx0LmKGbICqnXjinnVF6BO1vmxGw8peDk9eDGfZrOHNJUZlIzheN13X7EiurCvks1ET+o/bGD2tdzrm/AdqdYlqXXJ96h9x3/bbmqnMRx0+L1unrwJRoMD2/5Psoe25UkW1sIo0XNx7N0YVbD4RGlCjOe68eirRsD3q5n9F2i3z/3b/Wt5Zv0+YVPeB4DN3s095D++vjv6keGX6nXjr7VNyoJANuxYIhTm0KXQDcgjAYAAAAA8BUojNaGwaVW8lDKvO4Bn3XdyDXsj/aZYbQx79s9tqSqV3lsR0Eep8vZ9vvdaw6jcWGyrvKx211d+62ndv7lrPTGDztK/Q9bowPts58DAAAA3cD0fv5MK3zGBAAAAAAAAABdq+yWPWNOEmE0bF3CJ2J2OgbhZb28YgwktPKEZMuylIiMe8ZK0gXvyBVgkmZSPrpULNSveGhAGY8wWLowp4tjz9qBUVWXKXufSB2vEvCJh/o9n/NM20N3cFxHj+ePaSozqansIR3bmFLJLdVt+5YsndXzDO2PH9RE7IAu6NuviB2t2/Yb6aze8/SCoZfp2ytfrliXczZ048In9DN7fnnL23ddQxjNCtW8rbg9oD47rg0nU7EuXZzVRbpM84UTnj+bjHRuGE06FYZ8ya6f0JUDz9cNqX/R99e+5Xt7V66+tXyT7l67XT+V+HldPfjitpqbA6D15Z2cVspLnuv8PtsAOh1hNAAAAACAryDBJSatbs9Rn/jZEe9zCrqWaX88M4x29i5LUuWNs4VT++twrP5j20mO93dfT1MsSxsFKdbT+PHUS+1hNFcSXy51i7+/xfuAkHyPo/KHbb5oBAAAANoQ8X0AAAAAAAAA6F4FJ2dc10sYDVvkF4NIFWZ0Uewyz59LFc0nbyajrR2JSEQNYTSf3wnwki56x/QS0T1NHgnQfInIuHcYzfC4aAVZQ8gsZvuH0WJ2vxZVOaHBtD10rsViStNPhNCOZO/xfAxsx0g4oYn4AU3EDmoidrn6w4N13X4zvWb0Z3Tn2q3KOZUnuty2coteOPwqndX7jC1t25H3JApbds3bsixLiei4Hs09VLEuXZiV67rGMNpYdF/N99eOhsIj+oW9v63nZ16mT6Y+bPx7nLZWXtHH5/5Bt6/coreMvUt7e85p0kgBdDpTmFqSEhHeg6F7EUYDAAAAAPgKEkbLeF+kEQFlCuY/8vRsgH+ALmLaH8/sH+0dNm/jxHLnhdHKAXeT5Y32CqOVAgTfNlvyvkAnOtDxRVf3zZjXf+9h6erzmzceAAAAAP7cgO9bV81z3gAAAAAAAAAAHS7vE0brsfuaOBJ0EsuylIzu1fHcgxXr/EJh6YL3yUm9dp8GQkN1G18jmCZMpwutG/NB6yk4eS2XFj3XMSkf3SARGdcjuQcqlrfysTTrGMJoIf8wWjw04Lk849Q3ioXWs1HO6Ej2sKazk5rOTCpV9Dk5ewt67Zgujj1T+2MHNRE/oGRkb8dc+HogPKxX7X6TPpP+14p1rhx9Ov1R/cZZf76l39dxvSdR2FbtYTRJSkYMYbTirNbLq54BYUkaa/EYcL1dEr9c7z3v73XLyc/ppsXrVXT9J8o9tHGf/uqR39JLd71GPz76ZvXynhXANpkCvLZC2hVJNHk0QOsgjAYAAAAA8OUECBOt5xs/jk5W8r6giyTpyLzkOK5suzO+ANou00TqM/884z7nHZ1Yki7rsO9oygEDYstZ/2hcqyn6PDa8EEbrHvf6X4hJnznk6urzOW4CAAAArSJo9n218kK6AAAAAAAAAIAukXd9wmhWbxNHgk6TiOzxDqMZ4meSlDKEbxKR8ZYPeiSj457LU4ZJ1oCXxWLKuC5h2MeATpKIGiKTLXosdVxHmbJ3GM0UPjvNFE7LGraH9lV2S3p44wFNZyc1lTmk47kH5ajGK5n7sGXrvN6LNRE/oP2xgzqv7yKFrM5NWbx4+Cd06/LNWijOV6x7IHtY96x/TwcGrq55u6Z/E1tbC6OZnrfThTmlfF4PJ6P7tnR/7SxsRfTK3W/QcwZ/RP+R+mfds/4939s7KuuWpc/qzrVb9cbkO3Ww/7kt/14BQOsyBXhHI2MKWaEmjwZoHZ37ahIAAAAAUBflADNXM4TRtsUv/pQtSI8tSefubt54Wplj2B/P/O4gGraUHJBSHheqOrHsSuqsLxsc0x/mDCttNsGcMBpMsv4XYNIt97vSNc0ZCwAAAIDqTKHzM63lgibUAAAAAAAAAACdJu+YT27qsQmjYeuSUe8rqfrFbUzr2iEIlYh4j3G9vKKNckZ9oXiTR4R2ZHoMWLK1O5Js8miA5jMdS9OFObmu23Lhm7yzIdcQU4rZ3uGz0+K2dzgtU/Y4ER9txXVdpYozmsoc0nR2Ug9kDyvn85p7K5KRvdofP6iJ2AFdHHtmV73OiNgRXZP4BV07837P9TekP6ZL41cqYkdq2q7jGsJo1hbDaKbjWXFW80Xvq5X32TENhIa2dH+dYHdkTO/e94e6Z/17un7+IzpZSvvefrm0qI/MfECXxa/Um5K/2BbvGQC0HvPnEN7BXqBbEEYDAAAAAPhyAlwAhjDa9pSq/I0fWSCMdpppIrXt8d3yvmHvMNpR/+8k2lKQgKEkrZovqtqSTGG0kC2VPR43yxkm0HeLQpWdfqPYpIEAAAAACCTou7V2C3oDAAAAAAAAAOon55hPbooSRsM2JCLek4j94japwoznzyQj3pG1VuIXYkgX53RO6IImjgbtKl2Y81w+EhlV2Kot8AK0o6ThWJp3c1otL2sovKvJI/KXKa8b18VD/mG0mGG93zbRutZKKzqSvUdT2UOazkxqqbRQ1+3HQwOaiB3QROyA9scPaiSSqOv2282B/qt1Ud8z9eDGvRXr0sU5fXP5C3rZyE/WtE3HEDm0FNrSGE2vDXPOho5mpzzXJaP7Wi4AuRMu779KE7EDunnx0/rKyc+orJLv7e/L3KW/eOTX9YqR1+vlI9coYkebNFIAnWCh6P0ezBS4BLoFYTQAAAAAgC8nwMzVTJ4Y0XaUDPGn004su5L4UkEy749eYbSLxizd/VjlD0zPdt7+GiRgKEn5NotFmR4biX5pbrVy+TIT6LtGwf87xarHVQAAAADNZQqdn4kwGgAAAAAAAAB0r7whjBa2IgpZW4sAAJKUjHrHzE7FbZY0FB552nLXdZUuzhq21foTkofDuxW2Iiq5lScMpguzOqeXMBqqM03KHzWEBoFO4xuZLMy2XBgt63hcTfwJ8dCA78+awmlZhzBaOyg6BR3dmHoyhPZY/lhdtx+2wrqgb7/2x67QRPyAzup5hmzLrut9tDPLsvSG5Nv1/uPvketx2cAvLl6vqwdfooHwUOBtuq735JDQFv/uSZ/n7vsyd3kuHzO8fu5GUbtHr028VVcNvkifSn1YR7KHfW9fcov6wuIn9b3Vb+jNY+/SpfErmjRSAO3OFKf2e10KdAPCaAAAAAAAX8HCaI0fRycrVg2jNWcc7cC0P3pdjGbC8P3NtPfnhG2tHHCCea7UXpE902MjOegdRlvKNnY8aB35KmG0E8syXs0VAABgKx5KufrSfa6iYenVz7K0d5jXGUAjpM3nagMAAAAAAAAAOpwpjNZj9zZ5JOg0iUi1uM3Tw2jr5RXlHO+rufhtq1XYlq3RyJjmCo9XrDMF34AzpQve+0o7PAaAeojbA+qz49pwMhXr0sVZXahLd2BUZpmyd8TMkqVeO+b7s6ZwWqbMF/ityHEdzeSPayo7qenMIT20cb+KbqGu97Gv5zxNxA5of/ygLuy7VFG7p67b7zRn956v5w+9TLetfKViXc7J6saF6/TTe94deHtleU+isLS1MFp/aEi9dp/n69vV8pLnzyQjhNHOtKfnLP36WX+uH6x9W59OfdT4tzstXZzT///4n+mK/ufrDcm3a1dktEkjBdCOik5BS6UFz3XEqdHtCKMBAAAAAHwFCaOtE0bblpL3BV2eNEMY7UmuYX+0PZoE+w3nXjyYkkplV+FQ54QMnCr70Gn5ygtAtjRjGM1w4bKlynMP0KEKVcJo2cKpUN5IvDnjAQAAne3zk67efK2j3BOvp3fFXH3pN209+7zOeU8BNJrp/fyZZleIHAMAAAAAAABAtyq4hjCaRRgN2xMPmeM2qeKsLtRlT19mCEJJUjLaHlGoRGTcO4xW6MAry6Ih0kXvfSURZVI+uoNlWUpEx/Vo7qGKdX7PEzvFFEaL2f2yLf+YUszu91yeNWwTzbdcXNRU9pCmM5Oazk5qrbxS1+0PhUe0P3ZAE/GDmogd0GB4uK7b7wavGX2rfrD2bc/42LdXvqwX7nql9vWcF2hbrus9OaTaY9nEsiwlIuN6LH8s8M+MRfdt6b46nWVZevbgj+iy+JW6cfE6fWPpi3LlP5nn7vXbdX/mLr169C16ya6fUMgi7wKg0kJxXq68T7Jsl88hgEbhmRMAAAAA4CtIGC1T3wvMdB3CaMGZ9kev6dL7xy3J40PBYlk6mpYu6aBzM8oBJ5jnq8SkWo3psZEY8P63Xco2djxoHQVDNG+zB+al557f+LGgMb57zNUHv3bqq51XXib97HMt4hgAgB3hOK5+5RNPRdGkU687r/orR861oZ0bGNBmAr5tVb5E5BgAAAAAAAAAulXeMYTR7L4mjwSdxi9uk/aI26SKM57b6bVj6g8N1X18jZCIjkseFxpNF1sv5oPWU3bLWiymPNclIkzKR/dIRgzPHS14LM2W1zyXx0Le0bPN4obbFNy8ik5BETu6rbGhdjlnQw9m79VUZlLT2UOesdPt6LF6dVHsmZqIH9D+2EHtiZ7FObrbNBge1itH3qjPLny8Yp0rR59OfVS/ftafBfo7O4bQVkhbP1ctEd1TUxgtGd275fvqBn2huN6YfKeeO/hSfXL+w3o4d8T39nk3pxvS/6I7Vr6mt4y9WxfGLm3SSAG0C9PrS0u2RsLJJo8GaC2E0QAAAAAAvpwq0S5JWvc+HwkBFasEfmaWg04f7nymv4RtV35BdPGYZFveMbWp2Q4LowV4nEp6WsyhHZgeG6OG7+iXN06FK7z2B3SWfIB9+cicq+eez77Qjr50n6tX/cNTB7brvifdOyN94PX8ewIAmu+Oh6XHl7zXve8mR3/wqq1diRPoNm4NH23MLBNGAwAAAAAAAIBulHc2PJf32L1NHgk6kSluk/IKo3ksk6REZE/bREOShniVVwgOONNSMS1H3idwjkY66ORboIpE1Ht/b8VjacZZ91xuip5tFgsNGNdlnXUN2SNbHheCcdyyjueOajp7SFOZSR3bmDYeh7fCkq1zey/QROygJuIHdH7fJQpbkbptH6e8ZNdP6NaVL2mxOF+x7kj2Hh3OfF+X919VdTuO6z05xLK2fp5arWFTwmjBnN17vt5zzvv0nZWv6rPpjyvjeEcqT5spPKq/e+wP9dzBl+qnEj+ngXB7RJcBNF66MOe5fCQyqojNcza6G2E0AAAAAIAvr6jUmTKFxo+jk5WqfGe16HHVvm5lCvV5dbB6I5aeMSodTVeum5pz9ZNqjxOUggjyOJWkfKmx46g3Uxgtafj+3XWl1Zw0HGvcmNAaCgG+65/2/l4ALc51Xf3adZUH+w9+zdXvvtzV6EDnHLsBAO3hu8fML7bf+xlXv/cKVyHCvEBVtSTfZ5alZ+5r2FAAAAAAAAAAAC0q73hfoZUwGuohETWEwoqVcRuvZVJ7BSJMv+9KeUl5J8fjCr5ShseAZA5FAZ3IFBJKF+fkum5LxTKzZe8Yj1/07KnbmONpmfK6hsKE0RohXZjVVHZS05lDOpI9rA2nvpNGRiNjmogd1P74AV0Su9z33xn1EbGjuibxc/rIzF97rr8h9S+6NH5F1SidKYpnaxthNMNrQy/D4d28VqyBbdl6wfCP6UD/1frswsd1+8otVX/mjtWv6Z717+l1ibfpBUMvk22FmjBSAK1soeg9AarWsCXQiQijAQAAAAB8lQ0hqs3W840fRycrVfkbL3hfwKkrmQJgpu+V9497h9EePVm/MbWCII9TScoVGzuOenJd1xxGGzT/3FKWMFo3KASI/J1Yavw4UH93PSo9lKpcnitKtx2VXnew+WMCAHS3bJUQ+OET0sGzmzMWoJ25NZTRZlZcqYNi5ttxLH3qvfGFSRFhBAAAAAAAANDxCKOhkZKmuE1htiJuky6YwmjtMyHZb/J0ujCns3rPa95g0HYWCt6T8gdDuzgmo6uYjqU5J6v18qoGwkNNHpFZtuwd1Yrb1WNYMTvus10mMtRLprymI9nDms4c0lR2UovF+bpuv8+OayJ2uSbiB7U/dkCjhCx3xMH+5+nCvsv00MZ9FetSxRl9c+km/ejIa40/77quXMPlB21rG2G0GsI6Y20UA24l/eFB/eyeX9Xzhl6mT81/SI/nH/G9fdZZ13Xz/0ffWblFbxl7l87pvbA5AwXQkkyfQ4xGeD4HCKMBAAAAAHyZQlSbFUpSqewqHGKC5laY4k+nncxIZcdlAqxk+IpHMv1pxgYtz5862WHf0QZ5nEpSPkBMqlX4/U6Jfu9/V0lazjZmPGgthSrHTUlay9VQXkDL+Nwh87/b4ROuXneQ50IAQHNVC4EveF9wF8AZagqjLTduHO1iLefqp/63o69Nn/rvi5LSZ37Z1qV7eT0MAAAAAAAAoHMZw2hWX5NHgk6UMETN8m5Oq+VlDYV3SToVo0gVZry3EWmfSMSuyKhCCqusypMG08VZwmjwlS56T8pPENlBlzE9d0inHietFEbLON4nsMRC1cNoUbtHESuqolt59cCs02En3TdRyS3q2MYRTWcmNZU9pEdzR+Uq4NXQAwgprGf0XaL98QPaHzuoc3ovkG2F6rZ9bI1lWXpD8u36wPHf8QycfXHxk7p68MXqD3tfKd7x2Udsbf3f1+94dqZkdN+W7wfSBX0T+v1z/4e+ufxF3bjwCeWcDd/bP5J7UB84/nt64fAr9ZrRnwl03AbQeczvwdon0A40CmE0AAAAAICvoMGlTF4aijV2LJ2qVCXw47jS0uxJ7b73S9LaSenqV8g6+6LmDK7FOIbveUzTgncbvhNYzHRWMKkc8DvSdgqj+QUDTf+ukrREGK0r5IvVb7NWJWKC1vRfk+bj87F0EwcCAMAT0lXO72yn19hAu5hd2ekR7Lxf/YT7ZBRNkh5MSW+51tHkn9iyLOJoAAAAAAAAADpT3vWeMN5j9zZ5JOhESZ+oWbow82QYba28orzrHelrpwnJISuk3ZGkUsXKyFu64D3hGjgtXZzzXJ6IEEZDdxkIDanH6vV8XkgXZnV+38QOjMpbtux9gkvQwE48NKDl0mLF8kyZKwYG5bquZguPaTpzSFPZST2Uvc/4mmKrxqNnayJ+QBOxg7oodpl6bQLCreic3gv03KGX6jsrX61Yt+FkdePidXrL2Ls8f9ZxfcJolr3lMQ2FdhkDiGcaa6MYcKsKWSG9dNdrdOXAC3RD6mO6c+1W39u7cvTN5S/qrrXbdE3iF3TV4Is4PwjoImW3pMViynMd78EAwmgAAAAAgCqChtHWCaNtWSlA1GrhN9+skbknPgwP/Z70x/8q60ff2NiBtRHb8B3P7rj38sUOu3hV0MdpLkBMqlX4hdH6ItJAr7Tm8V3xUqZxY0LrKFQJSkrSqv/FldCCVjdc3fO4ef33H+msqCUAoD3MLfs//5yKLnMSElBNLa/kZqs87jqd67r6wuHKv8G9M9Idx6TnXbADgwIAAAAAAACAJsg73uEIwmioh3hoQH12TBtO5ZU308U5XajLJEmpQmVI7LRkpH3CaNKpkJtnGK1IGA3+0gVDGK2N4oBAPViWpWR0rx7LH6tYZwoI7pSMIYwWt4OF0WJ2v5ZVGUYzBddwykppSdOZSU1nT/1vpXSyrtsfDA3rktgB7Y8f0ETsgIYju+u6fXL/LZIAACAASURBVDTOa0ffqrtWb/OM4926/CW9cPiV2ttzbsU6R+aT5G1tPYxmWZYSkXHNFI5Xve1YdN+W7wdPNxwe0dv3vkfPz7xMn5z/sOdr883Wyiv617m/1+0rX9Fbxt6t8Z6zmzRSADtpsZiWI+/JpUnegwGE0QAAAAAA/oIGlzLVLxwCA78A1GkLKwVdfPo/ymW5f/PL0o+8Vla0p5FDazmm/dGUITCF0Y7M12U4LaMcIK4nSflSY8dRT36Pi0hI2hUzhNGyhCm6QTHAvuy1f6C1Pbbkv/6+GenInKtL9uz8Y/z7j7j62G2u0muuXn6ZpXf+sMWVuQCgQ2WrvNfttOgy0ChuDa2zmZXGjaMdFMvSSUP0++N3uHreBbzuBAAAAAAAANCZCKOhkSzLUiK6V4/mHqpYtzmGZoqG9dkx9YcGGza+RkgYQm6pAmE0mDmuowVD8Gk0sqfJowF2XiK6xzuM1mLH0mx5zXN5LDQQ6OfjIe+Amim41q0KTl4PbdyvqczdmspMBopM1SJiRXVR32WaiB/QROyg9vWcy7mpbWooPKJX7H69/mvh3yvWuXL06dRH9Wtn/WnFv6/jmieG2FZoW2NKRIOF0ZLRvdu6H1SaiB/Qe8/7B92y9FndvPgfKrr+JyU+uHGf/r9HflMvG3mdXrX7TbwnBjqcX7yc92AAYTQAAAAAQBVOwODSOgGaLSsF+BunQ8mnL8isSvd9V7rihY0ZVIsy7Y+m7/t291uSKmdf54rSStbVUKwzvigMGjAstFEYreQTRgs/EUZ71OOiWkuVF/REByoECEqu5Rs/DtTXiSphNEna/98dOddu74v97frmEVev+l+OcsVT//2fd7m661Hp/7y1M55TAABPV+11x6IhXgTg6Wrooul45UWou4pfRO5oqpa/JAAAAAAAAAC0F8JoaLRkZNwzjLZ5ErIpGpaIjLddmCQR9Z5A7TfpGlgtLRljHabYHtDJjJHJFjqWuq6rjOMdMDMFz85kCqhlHO/gWrdwXEeP549pKjOp6ewhHd2YUsmt3wn5liyd1fMM7Y8f1ETsgC7o26+IHa3b9rGzXrrrtfr28pd1spSuWDedndS9mR/oWf3PftpyVz5hNNnbGk8iQFwnpLB2R5JVb4faReyIXrX7jXrOwAt1feojujdzp+/tHZX15ZM36Pur39Ibk+/Ugf6r2+79CIBgFgreYeqh8Iiidk+TRwO0HsJoAAAAAABffpMxN8v4X7ACPvwCUKfNeH2pevg7XRdGM+2OtuE7npG4eVvvv9nV+67pjC8GggYMT0d82kHR53ERCZn/bQlTdId8sfqT0xrBzrYzsxLsRcddx11dee7OHb//+ktOxfH02m+5+u+vdjU+3BnPKwCAp1SLC/P6Ewgm6OdLkjS7Iq1uuBrs687XVn7x8wdTzRsHAAAAAAAAADSbMYxmEUZDfSSi3nGb9KZJyOnijOdtktG9DRlTIyUNMZ/l0qIKTp4J1vCULnpPypfMsT2gk5mfO1onjFZ0Cyq53ieJm4JnZzIF1LJl7+BaJ1sspjSdmdRU9pCOZO9RplzfONxIOKGJ+AFNxA5qIna5+sODdd0+WkfU7tFPJX5O/zz7t57r/zP1UV0aP6iQ9VTuw3F9wmjW9sJoScPxbLNEdI9sa2cvYN3pRqNj+uWz/kj3rH9P189/xDOct9lSaUHXzrxfz4w/W29KvlOjvB4DOo4pXk6YGjiFMBoAAAAAwJffZMzNMvnGjqOT+QWgTjsR9jipprev/oNpcab90TbMlR4fMm/rc4dcve+a7Y+pFZQDPk7zpRpmou+wamG03aYwWvd9/143ruvqyJw0HJPGBtXSVxQqBDhuruUkx3Flmw4QaDknloLd7hsP7GwY7aZ7K5e5rnTtra7+5DXsbwDQaaq97lgmjAYEUksYTZKOzEvPOa8hQ2l5fp/Fza00bxwAAAAAAAAA0Gx51xBGswmjoT5Mk4pThRm5rivLspQyhG5MYZxW5jfmheK89vac08TRoF2YJuXH7H7FAwaWgE5ieu7IOuvKlNda4nHhF+6K297BszPFDLerdxSsFW2UMzqSPazp7KSmM5NKGSKpW9Vrx3Rx7JnaHzuoifgBJSN7W/ocbdTXlQMv0DeWv6CjG1MV61LFGX1z+Sa9dNdrnlxWlvlkNUvbC6MlAoR+x6L7tnUfCO7y/qt0Sexy3bz4H7rl5OdUlv8VXO/N3Kkjj9yjV4y8Xj82co0idqRJIwXQaObPIQghAhJhNAAAAABAFUHDaOuE0bbEcdxAf+OZsMeXqpnV+g+oxZUNF8AxdY8uSJi3NT0nnVhytW9X+3+x6JgvDPQ0ee+LgbWkamG0kX5LUuWDZynTPvG3VvLAvKuf+6ij7z586r9f/Szp42+3tSvemo+Pgv/3fk/KFKQBzo1tGyeWg91u2nxR0h11f33PhQEAtIhqrzvWcrz+BIKo9ZFyZM7Vc85rzfcjjeYXkcsHfC8EAAAAAAAAAO0o75jCaN13AVE0RtIQCsu7Oa2VVzQQGlLaMCE5aQjjtLKRSEK2bDmqPMEwXZgljAZP6YL3yVmjTMpHl/KLTKYLs4r3tUIYzXxV6XgoWBjNFHjL+my7XZXdkh7ZeFBT2UOayhzS8dyDns+VW2XL1nm9F2sifkD7Ywd1Xt9FClnkHLqVZVl6Q/Id+sDx3/Fc/4WFT+qqwRepPzQoSXJd874YskLbGksiUv25PBkgnob66bF79brE23TV4Iv1qdS1eiB72Pf2RbegGxev0/dWv6k3j/2S9scPNmmkABopXfR+D2YK9ALdhlfSAAAAAABfphDVmTJ5V1JtE1bXc65umZIeW3L14ostPeus7pvwGvTveyJc+QWDu5yu8S/e/hxDRc4URrMsS594p6Wf+Sfvnzt+Utq3q16j2zlBA4a5NppAXfJ5bIRtaXfce91ipjHj6WSO4+od//JUFE2SvnBYes9/uProz7fmUSZoGG0tRxitnRxNBTuYPTDXmgGaQqk1xwUA2B6/YK8krREJBxoi3fkXnTYK+h4fAAAAAAAAADqJ67o+YTRO/kB9+E0qThVm5EZd5V3v/dAvjNOqwlZEI5GEForzFevSRe8AHGDaN9oxDgjUw1BolyJWVEW3ULEuXZzVeX0X78Coni7rmL9gjwUOo3nfLuO0fxjNdV2lijOayhzSdHZSD2QPK+ds1PU+kpG92h8/qInYAV0ce6b6QoYT3dGVzu29UM8dfInuWP16xboNJ6MvLHxSbx77JUnyjfTZsrc1juHwboWtiEpu0Xibsei+bd0Htma852z9xll/rjvXvqX/TH1Mq2X/q42nijP64ON/qisHXqA3JN6u4cju5gwUQN05blmLhjCaKe4OdBvCaAAAAAAAX0EnY67XOBl8ftXVK//e0eTjp5e4+p9vtvQbP7q9D+vbTbVJ9qfNep1QsLxY38G0AdP+aAqjSdKbn2MOoy10yETroI/TvPk7rJbj99iIhKTdhu/pF9v/+/em+84x6bajlcs//QNXH/pZV9Fw68XR8gHDaKsb0t7hxo4F9XOk8hxMTw8EvF0jmAKdUvD9EgDQXqoFWde950UAOINbY+wrU3lOedeo9W8FAAAAAAAAAJ2g6BbkGiIAhNFQL/2hQfXZMW042Yp1p2JQ5g/pk5HKi9u2g2Rkr3cYreA98RpYMOwbo5E9TR4J0Bosy1IiMq6ZwvGKda1yLM2UvU+e7rX7FLKCZQRioQHP5dlye55sv1Za0ZHsPZrKHtJ0ZlJLpYW6bj8eGtBE7IAmYge0P35QI5FEXbePzvPaxNt019rtKriVE69uXb5ZLxx+lcZ7zpbjmsNolrW9uVa2ZSsR2aPZwmPG27Tra95OYFmWnjP4Ij0z/mx9fuET+ubyTcb3yKfdtXab7lv/gX5i9Gf04l2vVsgKNWm0AOplqbSokut9ojLvwYBTCKMBAAAAAHz5BUA2y9QYRvvAze6mKNop77ne1Zuf7WrPUOtFeBql5P859ZOWbY+yz0p9v6BrB6bdMeTzHY9lWTprl/T4UuW6hXVXUvvvb4HDaG0U7akaRjNcSGsx05jxdLL/9VXvHWg9Ly2st2ZYrBAwKjm3Kk1wkZS2kMm7evRksNvOr0nFkqvIDkT7/I5NQfdLAEB7qXZ8X6vxvTDQrWptfdX6OVMnCfoeHwAAAAAAAAA6Sd4xX42GMBrq5XTc5tF85VUkU4VZ48/12XHFDcGYVpeIjkvZuyuWnwrBAU/nuq5x30hEmZSP7pWMeofRUi1yLM0awmgx23AVag9xw203nKzKbrnlYztFp6CjG1Oazk5qKnNIj+WP1XX7YSusC/ou1f7YQU3ED+isnmfI3makCt1lODyiV+x+vT6/8ImKdY4c/Wf6Y/rVs/67HJlPVgtp+4/DRHTcN4w2FiWMttP6QnG9aewX9byhH9V18x/SI7kHfG+fd3P6z/RHdcfq1/SW5Lt0QWx/k0YKoB5MYWpJShBGAyQRRgMAAAAAVBF0MuZ6jRNWP/zNyg07rvTZQ67e/aL2D1UF5RdY2WzN68vGpXR9B9MGTPujXWWXGe03hdG2P6ZWEPRxmis2dhz1VDWM1m/Ja2r9wvqpk3Msq3uOI9t1bMG8Ay22ahgtYORvZrkz4ofd4MFU8Nu67qno3dkjjRuPiV8cJ99Gx1gAQHDVXnesmefoANjENbztCNve0fhaP2fqJITRAAAAAAAAAHQj3zCa1dfEkaDTJaN7PcNop2JQ3h/SJ6N72/Z8NNNEasJo8JJx1rThZD3XMSkf3SwR9b5Cb9onqtlMWcf7hPhaop6xkDmitlHOqD88WPO4GslxHc3kj2sqO6npzCE9tHG/im6hrvexr+c8TcQOaH/8/7J33+FxVIfawN+ZLZJW3dJKstzBxqaFltAuaUAaKRdISOAmkOTmBpIQQgmhhl5DS0IJLRA+SgoQIISSEEIJYDCYYoyxZWNbLpIsrbq0K22b8/0hy15J58zOrLbM7r6/5+HBmjMze3anz5zzzr5YWLYHvHpJWudPxeeI2v/Gq/3PoS/WPaXsw+A7WDX8Nuo8jcrptTSE8Zkdz8v0clS4qqf9GZQec0p3wdlzr8XSgefxROB+5b5+XFu4FTduOR+HVB2Bo/0nodLNZUmUD1TX5hWuapS5yrNcGyJnYjAaERERERERmbLaGTNo8znSiCI85L7XBH70aXvzymeyzr8yQ64qGNCgJza86XHGw9RsUgajJXnG41c8q11rI4jHyQyL65Fqu3OimEn4kFsHGhTP6qNxoDcI1Fl/yVnR85i8PMqp4YFhi8Fobf2ZrQelz5oOe+kPbf05CkYzWffMQtOIiCh/Jdu/MxiNyBpVMFpFKdAv6VsRLOJgNNVvNS4WF3C78rPzFREREREREREREZFKWIwoy0r00izWhAqd3ysPg/gotApb9A3yafI4EEoV5tMbDeDBbbemPF8X3JhXthAfr/wkg2Icbjg+iLcHX0VbuBUGzBubhuLqBoOqdYmoGPg98vW/PbxpWvtSu2rd9fhYxYGYU7rLhOFBxbbrsxGmYRaiFjSGUIGdwWhCCHwQXI61oZXKMMVMGjVCWBdahaH4QFrnW+2egd19+2BJ+b5Y4tsHVW4Hvlma8ppXL8Ex/u/i3o4bpeV/6rwDc0t3VU6vIx3BaOrjeWMehwEXKl3TcVjN57FPxUF4ovt+vD7w76TTvD74b6wYXoaj/Sfi0OrPQU9DoF4hyvWxLJ08mhfzS3fDAVX/BbfmyXV1yKYuRdBuPt+HIEo3BqMRERERERGRKavBaAPqdklTBMPqmSYLuCo0ZuFPkwX1clQmvuVjoAciEobmLZ5GJaoAMD3J85f6Sg2ytzne+6rA3SeKvH+AY3U7DaX3RVgZFTULRnMBM01eYNMxwGA0O+ImbZ16gtmrhx1m4VSJ2hmMljdaOu2Nn6tla7ZvsrpeEhFRfjHb9wNj59hxQ8CV7KKEqMipLlsrSuTBaPl0/Zpuya7xg2Gg2peduhARERERERERERFlS9hQv42GwWiUTn5Ps3T4YLwfiMsbpDR45dPkA1X4hYDA0oHnpzXvVwaAV/v/idNmX4YyFx9eOFFftBu/3XIxuqLt05qPVytBlas2TbUiyj+qYMCwGJ32vtSuf/Q8iu83n4X9Kw/dMSwUH5KO69PVYWdTxnWpG15PDk18pOv3eKn/acvzdqoSrRSLfHthSfk+2N23L5q8s/O+TwE53wGVh+HFvqewcbRlSllvLIDe4YBy2nQEXJkFnTZ4Z017/pQZle5qnNh0Gg6tOhJ/6rwD7ZFNpuOHjGH8sfN2LB34N05o/NGUQE0CHu66Gy/3P5PraqTNy3gGywZfxI9n/RIeneFo+SQQ3SYdzmBqop2KrLs5ERERERER2WU1cKl32OKIADoH1WWuInuWlKyTfaJBvWrqwO7pNVbIN6r1MVkGgVlI1ivrUq+PU1jdToPhzNYjnVTbhlsHNE1Do2RzGNeR3heAFbwRk8CBbhv79myKWNx3Mhgtf6y1GYzW1p+bddMs/CzMYDQiooIjhLAUfJlP59lETlOp6Ms2POrMa5FsSPbNizk0joiIiIiIiIiIiAqXKhhNgwaP5s1ybaiQpdK5WBUulg/qPI3QkLmGua2j6/DG4AsZmz9Nz4t9T007FA0A6j1NDAuioub3NOW6CjvEEcNjXX+AIXY2pA1OCi4bV24SdjZZiVYKF9zSsmBC8FpHeEvehqJp0DG/dBG+OOM4nDHnSly/6AH8ZPYvcXjtVzGzZA73c5QVmqbhuIYfpDStDte0P9/svLYxj8OAi8Wuvt1x/vyb8HX//6JESx4g3jq6FtduOhsPd96NkXgwCzXMD+3hzQUVijZuTWgFVgy/ketqkE2BSId0uJPOP4lyjcFoREREREREZMowrI0XkL9oSMo0GK3IrlRjFn9fABjSJQ8nu+U3wApVqsFoC+rUZZc+aWMhOJTVYLR86jyt2jbc25/ned0a6hXP6zsGircDfSpGTcI+uuVtJXLOSkAJAASGuC7kix6bIXy9OXo2axbKx2A0IqLCE7MYxjok76dDRAmE4nSvokQ+PJhH16/pluxeXDH/NkRERERERERERFS4VMFoJXopQyoorRpSCDlrSCFMzSk8uge17vqMfsaq4DsZnT+lblXw7bTMx+9lp3wqbjXuOkcFtfbGAmgPb97xd8iQd+TwuSotz1PTNGWQWmLw2od5ts+v9zTisOov4IfN5+D6hffjnHnX42v+b2M3315wa55cV4+K1Pyy3XBg1WdsTaNBh1uThxfaUeupV4YgNngYjJYPXJoLR8z4Gi5ZcBsOqDws6fgCBl7qfxqXbTwVbw2+DKFqxFVECvn65YPg8lxXgWzqiwWkw+sZjEa0Q5F1NyciIiIiIiK7rAYu2QnP6TIJUSu2UBGrHe0BYEiXPJzs2pq+yuSBVIPRjtlPPcJLa4FL8jwczep2GjOAaCw/HmREFduGJ+FFRzOr5eN0DKS/PoVsxKRTfY9Dg9GsHit6+GKjvGH3+J+rABrVvgmwHthHRET5wywQMxGD0YiSU12JKoPRwhmriuMlu8Yv5t+GiIiIiIiIiIiICpcyGE0rzXJNqNBVuqsxp2QXy+NXuKoxp9T6+E60R/n+GZ1/IFJcL/jNF4YwEIhuS8u8Mr0OETmdrunYvXzfXFdjgq5o+45/JwaXJVIFnan4FOOHjJ3z74o6e59fppdjv4pDcELjj3H5gjtw+S534n+afoz9Kg9Vfj+iXPjv+u/AqykazUjMK10Ijz79gEaX5sKS8n2mDHdrbiz2fWza86fsqfHU4QfNZ+O02ZdaCrUbjPfjDx2/xm+3XoyO8JYs1NC5Cvn6JRBJz/k/ZUdcxDFihKRl1e7aLNeGyLkYjEZERERERESm4hbzogI2wnM6B9U9PIstxMYsYGWyQVkwWtv69FUmDyiD0ZLc4Zhfr+FrU5/f7HDFUwLvbs6PwDAZw0auW8gkBMtJVPsed8KybqqSj2MnqJGA0ai6zKnBaFYDqIrtmJLPzNZDmVwF0Jite239QDiav8cSIiKayuo5R76cYxPlkuplo6pgtOEiDv9KdkYZ5D6HiIiIiIiIiIiIClBYKILR9LIs14SKwdH+k+DRkgdLaNBxjP8kuDVPFmqVOZ+bcTRq3HUZm39PtAtxwTcKOk1/rAcxYbNRlsT80kX4RNWn0lAjovx2VN23UC5ry58jnZG2Hf8OKYLRfLq9ILByl/z7BeNDO/7ttDAZF9xYVLYnvlr/bZwz9zpcv/B+/HDWufhkzRdQ723KdfWIlGo99fjuzNOhW4j68GolONp/Yto++8t1x6NML58w7Et130KFW9E5gxxt9/J9ceH83+Kr9f9j6RpnbWglrm49E38LPKAMKC903WkKD3aiQv5uhWgkru7wpDovIypG7lxXgIiIiIiIiJxNFUQ1WV8IiMUF3C4t6bidg+qy1m6gPyRQ40s+n0IQsxFoNSx5mCq2rENx/FJjVAFguoUf4dKv6XhyhfoH/3+vC+w3Nz9/TavbKTAW2lDty1xd0kX1nbSERVRfqUHWZdypYV5ONWrSJq0n6LyQJyEEIhZDJXuGx8bXtPzctotJ2GbbyJwFoyVZ94693cBTp+lc54iICoTVIOuR6bclJyp4ymC0Uvl1XbCIg9GShZ8X829DREREREREREREhUvVIbtEL81yTagY7F6+L86ddz3eGVqKQETecbzGMwP7VByEXcqWZLl26ef3zsS5867HW4P/wdZwK4TqwU0SYTGC94ffnDLcQBy90QD83pnTrSqlUcAkFOHjlZ+EliSIxa27Mb90NxxU9Rl4dcXbjoiKyNzSXXHuvOuxfOhVbItsUT4DT7cNo6vRE+2aMjwxGC0xuCyR3UANVZBaYvCaat8yv3QR/J5mW583HdXuWizy7YVFvj1RyiBdylP7VR6KX8y7Du8PL0N3ZOp2DgBNJbOwb8UhmFkyJ22fO79sEc6bdwOWD72KYHwIe5Tvhz3K90vb/Cn7PLoHX6r7Jj5R+Sn8peturAq+bTp+HDH8s/eveGvwPziu4f+wT+VBWaqpMwSi8pDPbB/LpmM4PoDVofemDB+KD2DUGOGxMU8EDfk5HAD4XPYCbokKGYPRiIiIiIiIyJTVwCUhxsLR/Baen3Wp79sgZgDPfiBwwoH5HSjyziaBsx8xsHwTUOMDjt1fwzXHaCjzTvxedoLRBmUPJ7esm2ZN84tqfbQSjLZbg3n57S8J/OZb9uvkBHEb61Eokrl6pJOhaDGQuKzrFPd5u4edF+blVEIIjJisE90ODJmLG+pQhcnCsbF1vpztshxPFYzmcclDaYZGc7OdJwvIefYD4In3gGPYPoCIqCBYDWPNl3NsolxSnb2pztWDRbxdJTvTNbuGIyIiIiIiIiIiIspXYWNEOpzBaJQpzSXz0FwyL9fVyJpq9wwcOePoac0jbIzizHXHS8sC0W0MRnOYQEQe+FDhqsL/Nv88y7UhKgz13iZ8se4bWf3Mx7ruw/N9T0wZ3hVpBwDERBRhIQ+YtRuooRo/ZAzv+KzeaEA6zhfrjsPHKg609XlEBMwrXYh5pQuz/rl+70x8qe64rH8uZVa9twk/mfVLrBhehke6fo++WLfp+L2xAO5svwZ7l38CxzX8H+q9jVmqae6MHcvkv0s+Hcu6I524eOMpirJtmF26IMs1olQkhs9OZjfglqiQmce6ExERERERUdGzGowGAL1Ba+N1DZqX/+Z5kfIb6ZygZZvAx68y8NJaYDgMbO0Dbv63wMkPTP1OyQJWEvW4Zkwd2NGacj3z0XSC0XwlGubVqcujcSAYzs/1zs52mi+hDapdQOKyrlc8r+9xYJiXU8Xi5uuPE4PRVAFaKlwf8kM4Kh+uClwdkrfjybiIhfXv0idtpFUSEZGjWdnvAwwpIrJCdY1XqejPNjACxO1c7BaQZF87FCnO34WIiIiIiIiIiIgKW9iQNwRgMBqRc5Topah21UrLVCFclDuBqHyZ+D0MsCPKJ43eWdLhnZE2CCEQiqs7cJTbDEZTjR/cHtrRE+2CgLx9JPctRETOoGka9q08GBcvuBWfn/F16HAlnWZl8C1c0Xoanu15BFFD0ai/QPRGA8pjWb2nKcu1SV2tpx4uuKVlgei2LNeGUhWMD0mH63ChROP9MKJxDEYjIiIiIiIiU3b6oAbD1sZ75G3zmb7VCux1qYF1nfnV0dMwBM551MDuF8tvkj60TGB918TvFLMRjNbhltxk7Q9AxGymBOWx6QSjAcB/72s+4tubbFbIIQoxGM3KslYFozkxzMupRpI8t3JiqJjVgJJx25KEcZIzqALvVNu5k4PRVrYhrwNeiYhoJ6vnHQwpIkrdzGr58LgBBOTtfgqekSRnN1+u64mIiIiIiIiIiIjsYDAaUX7we+XBN6oQLsodVVidahkSkTOpgtFGjBCG4gPKQA0AKNcVb6ZV8OnyBpuh7cFoqv2KBg31nkZbn0VERJlVopfiaP+JuHD+b7CobK+k40dFBH/vfghXtZ6ONcEVWahhbpgFOufTscyluVDnaZCWMbQ6f4yHz05W7qqAplnsKElUBBiMRkRERERERKaSdcZMFEzSMVMIgT8uszbD1R3A4osMrO7Inw7m974mcMNz5vV94r1JwWg2ft8Ot6QxghBAX6f1meS5uOL30i3e4TjnCxp2N2nT8ZVbbCwQBymqYLSEZV1XLh+HwWjWjSYJRhscBSIxZ+2HIzYCJQHgxRZn1Z8mWrlV4J5XDbT1y8uVwWgWw1jTLWpx/XNiqCAREdln9bwjWdgsEQGqs/LZNepp2hXniIUu2RVMvlzXExEREREREREREdmhDEbTyrJcEyIy4/fIG2B2sfO946iWSYNiGRKRMzV6m5VlXZE2hIygstznUjTAVCh3yYPUxsPXAtFt0vJadz08utfWZxERUXbMLJmDR3HcowAAIABJREFUM+Zcge/NPBNVLpOGWtt1Rdtx89ZLcG/7jeiP9WahhtmlOpbVuOvg1UuyXJvpqfc2SYd3K74jOU/IkHc68SnOyYiKFYPRiIiIiIiIyJSdwKWgSUjJSETgm3ca+M499gJq9rzEwO9eyo+wqvtfT/7dXlwzcRyrASsA0C4LRgOA7uJpUKIMy7L4IoTmGg1vnK++HTIcBsLR/AtRKshgNFUIXsKyrq+QL/i+kPPCvJwqWTAaAPSq20zkRCRmb/xX13FdcKornjKwz+UGfni/ehn5Fdv54EimamXOakBO+0Bm60FERNlh9XotX86xiXJJKE75/JUa3IrLdFV4bqFLdo3PfQ4REREREREREREVorCQNwQo0UuzXBMiMuNXdL5XBQxQbgghEIjK2xarliEROVOFqxpluvxN0p2RdoS2h5ZN5tG8tgNeVEFq46EdAUXgIvcrRETOpmkaDqz6NC5ecCs+XXMUNAsRM8uHXsHlG0/FC31/R1zYfLO9g6lCw+o9+Xcs8yvqzGuz/BGKy4PRynV74bZEhY7BaERERERERGTKTuDSSfca+Pdq+QQPLxf46zup1eGnfxRTAsWcRgiBlW3Jx1s96f5izFYwmuKNTz0MRrMajAYAlaUavry3uvyjgL06ZYoQAg++YeDEewz84lEDH7artwFViJhMvnSgtrKsZ1arp1/vkOXodCMWgtG65ffacyZsMxgtIG/zQTn27maBy/6e/Nhep3imMyR/UXTGWQ1dbOvLcEWIiCgrrAayWjmnIiI5l66+tmvvd/a9oExRhciN4z6HiIiIiIiIiIiIClHYkDcE8DIYjchRGrzydqw90W0wCigwId8NxPsQFfLGon6P4iXNRORImqah0TtLWtYZaUNQEajhU4SpmSl3VUqHB+PDMIShDlzkfoWIKC/4XBX4VuPJOHfedZhXuijp+KPGCB7tuge/2vRzbBhZk4UaZl5XAYV8qsLcVOFv5DzK8zhFWC1RsWIwGhEREREREZmK2whc6h4GPv8bA/e+OnWiR9+eXmfWI24y8FarczvEdg4CA/KXVk7Q2gOMRnd+j5iN37fdrXho2FM8Ny1VAWB2gtEA4KzPqW+JrHZIztxpfxI46V6Bh5YJ3PicwMHXGHhjg3wbsBNgGIw4dztKZCUYbVe/etmvKZ7NYlpG8zAYzWpAybihcGbqQdPzh6XC0r7LL29ng5EoMDiS/f1Z1GL7zbYiDfEgIio0Vs878iV8mChXRJKkr1m18uEdAxmoTB5Idp7MfQ4REREREREREREVooghb+BRwmA0IkdRhd/ERAx9sZ4s14ZUAorABwDwexlgRJRvVKGUnZE2hOLytwf7FCFnZny6PIRDwEDYGEEgIm+czf0KEVF+mVu6EL+Yey1OaPyxct+faGu4FTdsPg8PbrsVw7HBLNQwc1ShYX5FyJiTqcLceqPdiAm+eTMfhAz5eZwqrJaoWDEYjYiIiIiIiEzZCVwCACGAi58UiMUnTvj0yunX5cy/2EgRS4PBEYFfPmFg1wviOPCquDTwbZzVECYhgLWdO/+2GrACAMOuSgxJbjqLbockeWWBlbAsKz67RD3BPSbLOVu29Ar87qWJX3Y4DBx6rSHtUG5nOx2Sv1zVcVTfSUtYdCUeDbv45eOt2cZQIitGLDzv6HFaMJrNF4vmyzpfbH7/irVtdLdGddmKrWmqjA1WA3LaizTEg4io0Fg9zx5hSBGRKbNcNA2AX9G+rt9CAH0hYjAaERERERERERERFaOwIb8pzGA0ImepNwkMMAvjouwKROXLwqdXsJM9UR5q9M6SDu+KtiNoyBv5lruSB93YmWYoPoDuaKe0TBWaSUREzqVrLnyy5gu4ZMGtOLjqcEvTLB14HpdtPBWv9f8Lhsh9vyu7DGEoj2X1eXgsUx1/BQz0RLuyXBtKRTAuP4/zucqzXBMiZ2MwGhEREREREZmyG4wGAO39wGqb7Rv+fHLyZKul68cCo7LltD8JXP2MwMZuYPkm4P/uF7jtRfnN243d1uu1pXfnvycHyCXT7pbcuOwpnsYkqvXRlcIdjqP3lQ//5ypgXWduQ7We+1D9+Tf+q7iD0SaH4C1WhCZtCKS3PoUqbCEYrXvYWSFzVuqcaLBIwxScLBgWGLW4HHdr1FDjk5e9szn766bVYL6N3AcRERUEq+fZDCkiMme2KWkaUOOT3xMaCGWmPk5nFiQHcJ9DREREREREREREhSks5I2aSjQGoxE5SZnLh0pXtbQsELX4hmHKOFVInd+bf4EPRKQORgtEtmEo1i8t86UUjKYOTtwa3ggD8gaUfq86NJOIiJyt0l2Dk2b+DGfNuRrN3rlJxw8aQ3io8zbcuPl8bBndkIUapk9/rAcxIe/E0JCHx7I6T4OyrDvCa7N8EFIEo5XrDLMmSsRgNCIiIiIiIjKVSjAaAKzetnPCkYj5TJqqgGP21fD5PZLPd955BroGMx+EsmKLwANvTP2c370k/+w2+TNFqYGRnfOI2XxJRpu7eerAbgajTQ7LsmLJTPVEiy8yYKS68qfB8x+qyy54TEBM6iVtp6qD+RKMptg2Ji/ruXXy5djR76wwL6eysu70BDNfDzusBlONGw5jyjZDudVu45hZ5gH2VzxjfXdzeupjR9Ti+teS44BNIiJKD6unECM2g1uJaCdNA6rK5GX9oeI8p0p2nTbCYDQiIiIiIiIiIiIqQGFDEYymK24iE1HO+D3ycC1VGBdlXyAqXxYNimVHRM7W6JX0HwBgII7No+ulZakEapTqPmiQt8veOLJWOV29J//CZIiIaKKFvj1w/vyb8HX/9y0FlG8cbcG1m87GI12/x0g8P95+2W0S5JyPxzKvXoIad520jKHV+SEYH5IOTyXglqiQMRiNiIiIiIiITKnCiZJZnfBM/YqnzXt03nKCDo9bw2+P19Fg4RncnpfsDK1atkHgj8sMvLkxvZ1lf/28fH6rO4BQeGqZnZCXgZGd/7YasDKuwy1plNBTPDcslcFoKdzh2D3Jfeu7XsldB+wKk+cIMQMYSmgHKISwHNgATJzWyVRfaXIw2qwa+Xh2wgqLmZVgtG75S0hyJhKzN74hgBCDAxzFzjGzxA3sN1fe0OadTdnfT1td/1q2MZCPiLKjPzR2PfTEuwI9w9zvpJvVX5QhRUTmzE6LNAA1PnlZ/4h8eKFLdhqZ7AUERERERERERERERPlIHYyWvEM2EWWX36sIRlOEcVH2BSLydsWqZUdEzub3zFQGlm0Nt0qHpxKooWs6fLp8uk2j66TDq90zeL5GRFQgXJobR8z4b1y84FbsX3lo0vEFDLzY9xQu33gqlg++4vi286pz5HJXZd4GUfkVgW5mIXDkHCFD3lmrPE/XR6JMYTAaERERERERmbISmiOztnPnv59aoZ7J8gt1fP2AsQd1i5s0rLtKx6IG83n3BIH9rzTw7d8bOORaA9+5R+Dgawz88H4jbTdSn1ulnk9PcOqw9n7rn5vYsTdmM3iuXRaM1r4BImYzKShPqYL6JodlWbH7TPOJHnojdzflh5OEl/UmrIN2V/mhPOlYbjUETxWM1j6Q3voUKivrT0+eB6MB+RMIWCzaB6zvuEo8wP5z5WWrtwGRWHb31RGLgaZ9ISAgf4EPEVHaLG8VmHfe2PXQsbcb2OdyIyehkYXM6vVwiCFFRKZMg9E0oKZMXtafHy8TTbtk+x4GPxMREREREREREVGhiYs4okJ+85NBG0TOo+p8H4gwGM0JhBDoirRLy1TLjoiczauXoNZdLy0zIG/UmGqghioYplURjOb3MHCRiKjQ1Hrq8X/N5+Cnsy+xtJ8fiPfh3o4bcfPWS9AZactCDVMTUISF5fM5cr1XXvcuXps5niEMBOPyzlo+V2WWa0PkbAxGIyIiIiIiIlOpBqNt6d054ahJiM3+8yaGU1WWavjgUh3HHWAeWvX+VuBPb06s3D2vCrhOGQtMu/NlA/FUKw8gbFLnbsl9p/Z+6/MeSAimiloMWBnXIbupPDwArFxqb0bTIAwD4sW/wrj2FBh3/BKiJ3tvklCGZaUQjLbHTMDrVpe/th45e2NJstCgvoTO4XZX86HR/AhtsBqC11wjX/iBISAczY/vmktW1p+BEWf9jmb7Z5VBBqM5SpuNY2aJG9h7lnw7jxvAtiyHIMZtBJq2dCYfh4hoOk68x5gQ/tneD5z+Z5vJy2TK6uUAQ1iJzCXblGp88uH9eRLsnW4MRiMiIiIiIiIiIqJiEzHUD1tKGYxG5Dh+rzwcIRDdBkPwmXWuDcUHEBby/apq2RGR8zV6Z9kaP9VADVWgWkxEpcP9ikAWIiLKf3uU74dfzv8tvlJ3AtyaJ+n4LaH3ceXG0/G3wIOIGOEs1NCe7qg8LKw+j4PRVKFu3YoQOHKOsDECAfn1c7meWsAtUaFiMBoRERERERGZSjVbLDH0ZEDRkXWvZvlwj1vDX07RceeJKaRdYSww7ccPCRx3h5FysJVZ8IksGG1zr/V5J/4eMZvBaO3e2dLhYunT9mY0DeK6H0Nc/D/A0/cBD10P8d39ITatycpnpzMYzVei4SefMZ/wyRX255sOydanaQWjOe/5gpTVZT2rRj2PbYPpq0+hsrL+DDosjCASl1fabXKnk2ElzmInTLTEbb6dd2Q5GM3OPnfNNmeFChJRYWnvF9IAxtfWA+u7uP9JF6v7/f5Q8nGIipnZrRlNA2rK5NfmxbptJbuVxWA0IiIiIiIiIiIiKjRhk2C0Er0sizUhIiv8shf8AoiKCAZjfVmuDU0WiMgDHwD1siMi52vwKjpeKKQaqGE3UI37FSKiwubRvTiq/lu4aP7N2LN8/6TjxxHDP3sfxeUbf4r3h9/MQg2tC0TkYWH5HB5crzgOd0c7GVrtcCFD0jl1u1QDbokKFYPRiIiIiIiIyJSqI/g1x2r4hsk9zfZ+7AglUwWjXX2s+WXpDz+p4xPzLVRS4Yn3ANcpBhZdGMc5jxoYjVrr1R6LCwyahOj0DE+cT19QoGvIer0SQ4ZiNu8zvlB5hLzg1b+nHAJnh3j+L2OBaIkGeiD+9OuMfzaQ3mA0ALj2WA0/OEw98TG/M3DDcwaMVBMCUxAKi+TBaMGd/zYL8ZNxWsiVitVl3WwSmNRmI3ypWFkKRnNYqJhqna/xqafJl/W+WHTY2DZLPWPLtlTxkqn2bAej2djntvBFS0SUQWbnOW9sZDBauli9xOrnuQaRKbNNSYP6XH5wFFm9HneKZF+ZwWhERERERERERERUaMLCJBhNK81iTYjIigaT4ICuqDqUi7IjoFgGpboPFa6qLNeGiNKl0TvL1vjlKQZq2A1UMzsmEBFR4fB7Z+Insy7Cyc3nocZdl3T83lgAd7RdjTvarkZPVPIW4CwTQiAQVQSjeZqyXJv08XvldY+JKAZiSTqmUU4F4+pgtHJXagG3RIWKwWhERERERERkShVAU18BPPwjF147V35pGY4BPcPAaFQgEpPPo8bCyxyfO2P6l67rA8ANzwn817UGVrULvL9V4MN2gVhc3tO0NygdvEP3pHtPLTbv0Q6Edn5uNG5v2l5RiYCrfmrB1vXA5hZ7M7NIDPVBrH0PYsWrEJedJB/p9X9k5LMnU4ZlpbiaeN0a7j5Jh9/k2e85jwpc8XT2OmKv60oewNCXsA7Z7SM+5LCQKxWrwWjVZYDPKx+3ncFoSeVjMJqqzl43UFEiL3uztfjCFJysrd/68vC4AE3T0FwtL2+3Ma90sPNpW/gskYgyqEwRGAkA63LfhqRgWD3X7g9lth5EhUzT1MFoQiS/R1OIkt0TGIlmpx5ERERERERERERE2RI21I1TvLqiMQgR5YzPVYFyXd7oMhBhMFquqYLR/J4maFqKbyEmopyzG4zmSzFQw+50fg+D0YiIioWmadi38mBcvOBWfG7GMdDhSjrN+8Nv4vKNp+EfPY8iJnLX6Gk4PohRQ97Qsz6fg9FM6q4KgiNnCCmC0TRoKNMVDSqJihSD0YiIiIiIiMhUsnCiuTPU07b1AwMj6vJqC8Fo1T4NHTek5/L13S3A3pca2PdyA3tdaqD+TAMPvD41+a1ryHw+gUn3nt7fai+UpT/hN4nZDEYDgJtnnCovWPac/ZmZEMFBGJd8B+KoJogfHATx0yPUI/dugxjKfAqVoQjqmxyWZddndjOfwWV/F/ioKzvhO2u2Jf+cvoT78XaD0ZwWcqWi+l6T2+VomobmGvm4dsKXipVqm0o0aLIfzwVVnV0asM9sedmzK7kuOInV0MLyEuxojDdTEYzWMZCmSllkZ587NMr1jogyx2x/9FFX9upR6JKFE43rC429UZCI5Mw2Dw1Ak8mL6duzfL7nBMnOOUOR7NSDiIiIiIiIiIiIKFvMgtFK9NIs1oSIrPJ75R3w2fk+9wIR+TLwexleRJTPGrzNtsYvTzEYrdxl8rZxiXwOkyEiotSU6mU4xv9dXDD/11hYtmfS8aMigie7H8RVrWeiJfh+Fmo4VbfJdUo+nycztDp/BePyzqtlejl0LXnoIFExYTAaERERERERmUoWRNVYpQ6lShaMVmMxwL6xSsO7F6X/EnZwFPjuHwT+9z4D5z1m4Du/N3DNswY+dpl5UtCmnol/P2MzcCeQcO8qpvio2nivcvrH6k+QDhcbVtmqh4oQAuK9VyC+6AdeeMT6hJvXpuXzzSQL6kvVtV9PPoMDrrSQIJUGk9cvmd7gzn9bCbZKlC+hDXZC8GYpgtGshi8VMyshT04L01PuB3Tgq/vIt+WVbfmx3mfK4IjAI8sFnnxPoDeY299BCGE53KLcu/PfzTXyZZvt7dzOPnfIYdsOERUWs2P4tsHiPealm9VAzLgBBMOZrQtRPjMNRtPM7y0V43Udg9GIiIiIiIiIiIio2IQNeSNDt+aBS3NnuTZEZIXfIw8PYOf73OuKypeBapkRUX6oddfDo3mTj7idT08tGM1nI1Ct0lWNMpfFDiFERFRwmkvm4sw5V+K7Taej0qV4C3qCzshW/HbrxfhD+00YiKn7zGWCKsC5RCtFlUvRISlP1CtCq83C4Cj3gsawdHiq4bZEhYzBaERERERERGRK1RnTtf2K0u3S0KS4f7m1T5iGPFWXWa/HPnM0rL48M5ex9y0VuO4fAn98U+DCx5P3fG/ZtnMcIQReapGPN69OPrytf2dATzQuH2ff0RXqz8dcbHM1Ti3YpKiIDSIagTjvWIjTjrQ/8aY10/78ZDIVjLagXsMFR5nPZGgUWNOR+ZCJNgudvvtCO/9tNaxh3Gg0P0Ib7CxrpwQm5SMrq89oFIjEnBOwEjcJzTt4F/m60BcCuuXPDQreu5sFFpxv4Ft3GTj6d2Phn+9syt3y7A2OrVNWVJTs/PdMxfPGjoHsfhc7+1ynhQoSUWFRHQ+BiSG6ND12jjL9JqHgRMUu2bbkdmlorJKXtfU751okW5JlOocixR38TERERERERERERIUnbMgfsJfopVmuCRFZ5fcqgtEUoVyUHUIIBCLt0rIGxTIjovygazoavM3WxoWOUj21wLJyG4FqDFwkIiJN03BQ9WdxyYLb8KmaL0FD8s5dbw39B5dt/Cle7HsKcaHoVJdmqgDnem8TNG2aHdJyzO+RB6OpwuDIGULxIenwMgajEU3BYDQiIiIiIiIyZSWcaLYirKStH7jwcXmPfU2bGHhixeImDf88Q0ddub3p0q2lc2cH1GBYHXzyg8PkN0dDEWBwe6f5mCLQwCNieGbzV5V1aPNIHmxuWmO7Y+yyDQKn/tHAOXd1YMV1N0AcXgksfcbWPMaJzdMPZkvGLBBpui76soZvH2Q+oz0uMfBRl73f+NV1Aqf/2cDP/mzglXXJp2230Om7fxrBaAAQyIOAKNXX0iV3s5oV+6CHlgl2Fk/CMAlVSTTooKAPs+PSEvkzHQDAmiJ9rvPde40JYYrt/cDP/mxxwWfA2k7r45YnnCc0K0JYOwamVx+77OxzhxiMRkQZZLY/Stzv0/RYPVcCJp6jE9FEZpdl4+3KVNd1xRh4beWc02rYMBEREREREREREVE+CAtFMJrGYDQip1J2vo90sM1eDgWNIYwY8ofXDDAiyn8Nsv4DEj5XRcohLz5XpeVxVSGZRERUfHyuChzfeArOmXc95pYuTDr+qBHCI12/x682nY2NI5nvi6YKCatXXNfkE79X/h26I0XagSZPBOPyjn12QmqJigWD0YiIiIiIiMiUlWC0WbXycdr6gfUBeVlVKaCnkGb1uT00tF6r46WzdTzxEx0fXKojcruOlZeO/X3jcZl/U0N/CAhsD+bvNgmYOniBui5t2zv2xhQvt3CLGI4MvqCcPuCqnzpwqA9oXa2u0CR3v2LgkGsN3P6SwA3LG3Dw2h/jqYovWZ5+ik1rUp/WIuX6mIY7HCUeDff/r4anTzOf2QFXGnh3s7WGOw8tM/CZGwzc8oLArS8IfPYGA/e/bp6u0Gah03dfcOfnpxKM1jVof5psU4VQyHYbsxQd6AHgnL+ykZUZq+uPKgAyF1R1dumAvxKoUbzkbn2g+NaFjn6BDyQvAF26HtjYnZvfo6XT+ucmbu8zFcFo2Q7KYDAaETmFWWBXXzB79Sh0do6WvfzdiZTMtqXxUz7VdV17loNwncBKX6ERBqMRERERERERERFRAQkbimA0vSzLNSEiq1RhOGExiqF4ET7gcYhApENZxgAjovzX6J1laTzfNAI1yl3Wp1WFZBIRUfGaV7oQ58z9FY5v/BHK9PKk428Nb8T1m8/FQ9tuw3A8cx2dVCFhhXAsU4W7BaIMrXaykCoYzUZILVGxYDAaERERERERmbISRNVcIw8Aa+8TUL1saGAk9TqVl2j41G4avravhj2aNbhdGvZsHvv7zM/pePKnOhY3pj5/K1o6x/5vFoy292x12XiQS1QVjIYYdAg0xDql5d0ev3zCV59Sf2iCtj6BUx6YuHDDeiku8V9iq/P/BDZC2VKlDupLTyCepmn40t4aPre7epyh0bFwtMCQ+S8Viwtc8JiYUGdDABc+LhCLy6cVQuCNDcnr2ZfwQr9UgtECJuutU1gJZRzXbBKMduNzAvVnxnHcHXGsap84065BgVP/aGDPS+I47Fdx/OOD4rvpb1h80JEPwWi6NrYNz1GEdRZjSMzmXnXZGxtys76vsfHioVhC6I/qXKN7GIjEsvddbAWjhTNXDyIixekkgLHjNhszpIedn7FjgL85kYrZtjR+OT/T5N5SsbFyzhmKZL4eRERERERERERERNkSNuSNCUv00izXhIis8nvUIVtm4VyUWV2K375EK0WVy6ShJRHlhUZvs6XxphOoYSdUjYGLREQko2sufKrmi7h0wW04uOqzlqZ5beBfuGzjqVg68DwMYfLm4BQFovLz5EI4lqnC3UaMEILGUJZrQ1aplo3PRkgtUbFgMBoRERERERGZMhT3ExODqGYpnpVv6ZsY4JTonC+mJ8hK5isf07D6CheMu1x44/zMXPq2bBvrpaoKRnPpgL8C8CueK27sGZs+pvh9PSIKAPDHuqXlgdmfkA4XLe8oajzRnHPlH7yi9GPocCtu7GoatAfeg3benRjRSrHKuztGtITGZ1vXQ7RvtPT5qbITljUdt307+XrT+HMDQ6Pq3sqrO8a2gcna+oFV7fJp/u9+ax2+exMCnlTbqJlkoW5OYGdZz1J0oB/XGwT++g7w2RsM9AyPzdgwBI75nYHbXxJY3QEsXQ8cdbOBl1uc/9ukk9WQp8FphFmmW7J1o9YnL1cdjwqZ2fLdYhKalkmt8sOaVHxCMJp6vE09qdfHLjv73EgMCEeLa59CRNmTbH80nSBq2slqiCwwdp5PRPaNX82p7i21D2StKo7BYDQiIiIiIiIiIiIqNmFD/sY+BqMROVeFqwqluryhlip0gDJPHfjQBC1NLyAmotxp8M6yNN50AjXKbUxrFpJJRERU6a7BSTNPx5lzrsJM79yk4wfjQ3hw2624afMF2DramrZ6jBojGIrLG6GpQsXySb1JuFt3xMZb7SmrQnF5h1Q752JExYLBaERERERERGTKSjiRqvPqqnZA1Y/8Wx/PzgP2AxdoePuXOr6x/8ThlaXAPrPNp/3c7uqyls6x/6sCpuorAF3XsKtfPv267dPH4vJyt4iNzScuT5DpbtxLPuHmFvnwBLe9aJ6i0OJdNHXgl78P7S9rEJu9BD9qOxZ1u3Vgn13fRu3iTpzTcBVicI2N99pTST9/OtRBfen9nIUNGlwW7ppU/8zA3a/IK7WqXd2T+QNJWSwu8Mhya8ELiQFPZh2my0vkwwN58NIPO8FoZoFJibqHgev+OTbjMx8WeH3D1HE+e6OB0SIKMrIcjCZvf5oT8ST7gRpFMFp/EQbEBMPqstYshokl6hiwvn0lhofOrwNUbfPGj8nZYHfvMOSgbYeICkuyY/jPHxEQNkK9SM7OT8hgNCI1s21p/ByvuVpe3iYJHC90VvY9DEYjIiIiIiIiIiKiQsJgNKL8o2maMkSAwWi5E1AEHzC8iKgwNHqbLY03nUANO6FqDSZBLEREROMW+fbEBfNvwjH+76FES36dv2F0Da7ddBYe7boXI/FQ0vGTCUTU1yd+b/4Ho1W7auHRvNKyQJTBaE4VVASj+fTKLNeEyPkYjEZERERERESmkgXQAMCsWvupVPVZDLDfb66Gh3/kgnHXzv8Gbnbh3YtdGLxZx56TnhGe/CkNxl0u/PNMF048WP7dtvaO/b9bfh9qx/db1CCffl3nWC/XqCoYDePBaPLkmu4SxYPNjR9CxGLyMgBDowKn/cm8h+1a724T/tbuXgr9vDugzZyPy58WuHt5OSL6WOJWTPPgprozUbr7EB6sOgHDr/zLdN7TZScsa7qszvKUBwSueMpAJDaxcusD6mk2SMrWB4BhkxCjRP0jgLH9xzALxWhU3A8NKNZbJ1F9L1kwkqoDvcz1/xTNJWnxAAAgAElEQVToHBS45QX1D3fOX4snREQVNjjZ4IhzfhPlfmD7nc4an3zr7Q9mqEIOZhaWsLYzN8u0Q/6yJanE8NAyr4Z5M+TjrdmWve9iNUxw3JDF/ToRkV3J9kd/eE3g8XezU5dCZme/38FgNCIls01pRzBajfw8vnNoLEi8mFjZ90wnGM0wBN7ZJPDQMgMbAsX12xIREREREREREZEzKYPRtLIs14SI7PArAnFU4VyUeapQOtWyIqL84nNVoNKVvNH0dAI1XJobpXryc7ByvdJWiBoRERU3l+bG52YcjYsW3IL9Kg5JOr4BAy/0PYnLW3+KtwdfndaLgrsV4WAuuFHrrk95vk5hFlqt+u6UeyFD3rFvOgG3RIWKwWhERERERERkykoQ1awa+/OtK0+tPulWUarhnV/quPd7Gq45VsNzZ+i44zs7L5ebFd+tfWDsh+kakpfvCEZrlJev6xr7vyp4ziPGws388W5p+ca4Xz4hADxwrbLoT7c+p55uuxbvop1/fOHb0JYcsOPPB99Q30z+3qx7UD36ON5aZSP1xibV+ujKwB2OT++WfJxxlzwp8KnrDPQM76zg+DKWWd469YustvGSRCGAwe3tAU2D0arkw7sV662TqAK7ZCF4JR4NPvkLTqSuedb8ociflomi6Xhv9VsOjGS0Grao1g3X9nWjxicv73dQuFu2BCPq77wmB8+4hBBotxEaE5u0rBcrXsjUksXvYjVMcJyTth0iKiyq64hE1z5rc6dFU9g5e2jrL75zDSKrrLRLU91bEsJeuG4hsLI3CaUYwBuJCZxwt8DHrzJw4j0CCy80eLwgIiIiIiIiIiKinAsLRTDa9pd3EpEz+T3ysK0uRTgXZZ4yGE2xrIgo/zR4FS9XTzDdQA2fnnx6v1fRoJOIiMjEDI8fP5x1Lk6dfbEyzCvRQKwX93TcgFu2XorOSFtKn6kKbq7zNEDXXCnN02nqFcflQITXZk4VisuD0Rg8SzQVg9GIiIiIiIjIlKrDfWIQld1gNJ8X8JVI0o1yxOPW8L1DdZz7RR1H7jGxXjMVL1Ua75S7vkveXbWpamw+8+vk0/cEx/4/OfRlnHt7MNrc6GZp+Stt5RjwzJCWiXuvgAhPTWIR6z/Ak+/E5B+Y4PYZp4z945AvQTvrtzuGD4QENvUknRw/vC+KuFla1zRYCepLl5MOsTfTN1sB/1nGjtCzwJD6N/jXaiAUnli+Zpu936wvNPb/VILRzOrmFHaX9cVfsb68bv63+ffvCQJL11ueXV6zuqkOytuf5oRy3dh+XKpRvKiuL5iZ+jhZ0CQsob0fGMxyWNzQKBCKWB9/8jnIwgb5dt7Wl73vYffwtiGQmXoQEVnZHy3fBLQzrGta7ARiFuO5BpFVZnui8TO8OfJbHADMg8cLkZV9z0g0tXn/4TWBR96euEQueFzgvS08XhAREREREREREVHuhA1VMFpplmtCRHY0eOVhW4FIO4SVN+dQWoXiwwjG5W/NZYARUeFo9M5KOs50AzXKXZVJx2HgIhERTcee5fvjl/Nvxpfrjodb8yQdf01oBa5qPR1/734IEcPeGyWV4cEFdI6sCpkLRLP4BnqyLGKEERXyjjXlevLzMKJiw2A0IiIiIiIiMqUM7kp4KUJFqYZqRRCNTH0ehdfP3PCydHhHv4AQAmsU9wgXb7+nWN3fKi0fGBq7gRWNyRt/uDEWYHZE8EVpeTSu4c09vquoNYDlL0wZZPz9XiwtO0g9zfi8NS9uPq0V2q8eh+ar3FHP+edbSwV4f6AWb2ywNKptyQKR0unr+2sprasHXm3g8XcF+kPqcUajwDuTMu9abN5v7t0evKAKLwSAhip5iFBA/mIJR7G7rE/5VHrT8Z54rzgaZlkN+xicmrWYM6p1fjw0r7ZcXt7voO+QLcEkIWTrsxza9UG7vfE/MX/i36og1vaBlKqTErvBaHZDL4mIrLK6P3p6JfdD02Hn1+szOf8nKnZm/V607efxNT4NfkWbnlMesJFSWACs7OOD4dT277e9KJ/uwTd4vCAiIiIiIiIiIqLcUQej2WiUSERZp+p8P2KEEDTkAV2UOWahBw2e5izWhIgyyUowmpVgMzNWgtX8inBMIiIiqzy6F1+uPx6/nH8z9vDtl3T8mIjh2Z5HcEXrz7ByeLnlz+lWnCfXK65n8pHqu3RHGIzmRKG4ulPfdANuiQoRg9GIiIiIiIjIlCqAxj3pilIVViKTL8FoIhpB0z9vlpYFIxr6hmJY2yWfdsn2e4pVL94vLR8VXowu/ZcyeM4jogCA/UffhT8m/5B3Fhyjrnzr6gl/io/eR+cTj6LfVaueJsH5LzVgePtLNIJhAd9PDQzYCBU66+GJX+y5VQKH3xBH89lxfOq6OB5allqnZlWIk57eTCwAgK9Ew39+oeOQXexP+/XbDbyeJBxucljOn9+y1wm5b3swmlmH6cYq+fCuPGhzpOo4r1rW1T4NVx6dvhXhN88LGHYTkPKQ1a84KG9/mhPK0LzxQAVFm9hiDCsJJQlGC2R5X/DsB/a2qTOOnHiy0aw412jrS7VG9tndLaztzEw9iIjMwnETPfN+4Z/PZJKd/X4xhrASpUPiVdwSRVuz9QEgMFQ8+zMr39TKPZql6wW+8OuxezGNP49j/yviyrDim/5VPL8vEREREREREREROU/YkN/0LNFLs1wTIrLDLBQnwA74WReIdEiHezQvqtzW2g4TkfNZCTos16fXWaPcSjCah8FoRESUHg3emTh19sX4YfM5qHHXJR2/J9qJ29uuxJ1t16AnqujUl0B1bVJIIZ+q7zIQ71OG0VPumAWJTzfglqgQMRiNiIiIiIiIlAxDKDuCF0MwGtavRHPvKmXxy7+6E5GYvGxxkwYhBKpXvaCcvv+C7yMak//ALjE2Yw3AHuHV0nEubPk4BMY6zA7pFRjVSnaUiU0tO//d0Qrx/U/g+NkPKOsyWTgGPPCGwIftAntfalgOXhj3VutYB1wRGsIL7w7ji7818NJaYNsg8OpHwIn3CNy3dGymXYMCW/usdcBNFoiUbktmanjtPBdGf6fj9CPS+yFrEu6tr+0UCCvWJZXxkCdVWBwANCmC0bIdhpSKVJb18Z9I7zI65nepBfjlE6thH0MOehaiqrNr+3FpRrl8PegahHKfW6iCYfPy7uHs/h4fbJV/3uxaoGpSW+ZDdwUOWzhx2Kwa+bLtCQLhaHa+i91gtE09xbXOEVH2WN0fvb3Z/rx7gwKrOwQ2BASEKq22SNj5+sFw8Z1rEFllti1pCad4uzWqr+n+vqJ4ti+z6/xxyYKf39si8OnrDfxr9di9mMAQ8N6W9NSPiIiIiIiIiIiIKN1UnXRLNAajETlZlasW3oR2q4kCUXlIF2VOV0T+hhy/pwm6xm7ERIWi0Tsr6Tg+C8FmptPryQM5GgooTIaIiHJP0zTsV3koLl5wK46sPRq6hRicFcPLcMXG0/Bcz2OIiah0nKgRRV+sW1rm9yje4pmHzL5Ld5Sh1U4TjA8ry3yu8izWhCg/8I4GERERERERKZmFYbkmB6PVWg8kqqvIUIpVum1qwexoG9yKG6RPrlM/NNytEUBPB6qD8oYGADCgVyG6Xh565hY7U7KWRNYq53Hzofdh4a6rUbu4C/MXrsXvak8ZK1i/EgAghMDGb38Oh8x/Ga/6DlPOR+anfxTY61IDrT22JtvhsF8ZCB81G0feXiYt/9GDAgdcEUfT2Qbmnmtg4QVxvLHBvKNztoPRxnndGm76poZbTtBQ4k7PPFu27fwyt7xgv4N3X2hsGrNQjMYq+Q8TigChsLM7laeyrOclfzmMLX9/HxgIOft3mi6roSqDI875HZKtG/MV60HMADamuD/LR63dAlc/Y77cutXPUzKirV8+/AeHaXjpFzq+/18aPrkIuOAoDf84XYfbNXGDbzYJYX3k7SwFo9nMS+zJ8m9MRMXD6v5oax8wPGptH9nWJ/CZ6+OoP9PAnpcYWHihgaazDfw1S/tYJ7IbiDkwkpl6EOU7s00pMRjtKx9TX/D944Pi2RdZ+ab9SfY3Vz1tP+SeiIiIiIiIiIiIKFfCQhGMpjMYjcjJNE2DXxGME4gwGC3bAorAA9UyIqL8VO9tTBoWM91gtHIL0/s93LcQEVH6leplOLbhe7hg/q+xa9nuScePiDCe6L4fV7eeibWhlVPKe2NdEIrWWPUFFIw2w+NXnh8EIgxGc5qQIhitRCuFW/NkuTZEzpemrrxERERERERUiGImHSjdrol/m4WVTFY3vWdtWSM2t8CDGBZG1mNNyZIp5X+r/Ip0urkzgPISDeKDFlQbg8r5D7iqEeveBpTvMaXMg53BaHuGP1TO4+d93wS8Y//udvvxs6ZfY0l4DQ5f+zLE0/8PhmHgC3Ofxnrvrsp5ZFL5IvmbNQAgEgPe3bLz7w3dwJE3Gdj8Kx0zyqd2hhZC3TU408FowFgjnlM/q+HUzwKnPGDg7lem1yl7TcK95TUd6nnNr4M0nK4vNPZ/82A0dVlgGJgnf1mjI6QSjObSNezVDHygziO07V+rgW8ckL75OY3lYDR5+9OcUHXuH183FjWOhSvIdhlrOrYHVxY4IQS+fEvyFIRsB6O1D8iHz6oB9p2j4Z7vmu/M59SOBbPK1oErnhL49kECmpbZA4LJoUiqJ5iZehAR2QnsOusRgf3nmk8gBHDqH6eOExgCjrvTwIqLdew9O08CrtPI7n6/fwSoT/7SXKKiY3Vb+vLe6rJ1XempSz6wso/vD6nLRqMCz35g7zOzcV+FiIiIiIiIiIiISCVsqILR5C/kJCLn8Hua0BZunTI8EGUwWrapwugYXkRUWNyaB3WeRtP9bLk+vcYrPpf59GW6D+VJxiEiIpqO5pJ5OGvO1Vg2+CIeC/w/DMcVHRG22xbZit9suQifqPw0jm34HqrdtQCALsU5sgYN9Z7C6Vji0tyY4fGjO9o5paxbEaBMuROMD0mHTzfclqhQmcdCExERERERUVFThc8AgHvSFeUsG8Fo9flyn2ZTCwBgcWSttLjfVSsdvrhiLAxNXPJtVBmD0IT8hxzQqxCFPMnfLXYGox07+ITlKgPA1fXnjn3+tSfjgj905SwUDQCEZu/WQygCPP6uvAewWcdgPct3OO48Ucc/Ttfx88+n3nN4Y/dYZ2VAHRYEALv65cN7t4ftpByMJr+P6hjKYLQky/r4A9Pbm/uFNdMLwHM6I3l2FgBgcCSz9bAjWWheqUfDgjr5OC2dhb08x134hMBqC20LsxmMFjcEtimD0axttxWlGo5UvPhpXRewfFOKlbNBtQapzm16g+bBnkREqTK7Vpvs968I/OQh8/9koWiJ7nu9OPdldgLoAPOgIqJiZrYpJZ4Jul3qsFyz6+ZCY+U6zWx/81br2P0VO1xsOUJEREREREREREQ5IoQwCUYrzXJtiMguv1ceuhWIsPN9tqlCklTLiIjyV6N3lml5mat8WvMvTxLK4ffMzPhLbImIiDRNw8HVh+PSBbfhkzVfhIbkx563hl7GZRtPxUt9T8MQcWUoWI27Dh7dm+4q51S9p0k6PMBgNMcJGfKOPMnOwYiKFZu3EhERERERkVLMLBjNNfFvq6EmQB4Fo20eC0bbI7za1mTzN70Isf4DYKAHOgQqDXkC1aCrGjHNLS3ziOiOfzfFp76xwcxL5Z9Bj2sG1nh3w/X1Zycd/9b/Sf3B5Ml1b+KhtpNSnl5mjeKeq1nHYD0Hz1Y/v6eG67+hw7jLlVJAmiGAj7rG/t2h6OB91TEaan3ysr7QzvmozChXd252fDCaYnkn+6XPOELDsfulrx7LNhR2CIjVbzeQB8Foiev6LopAwc7B9NfHaQZHBK591tqS7cliMFrnoHrZNdsIV730q+pb2u9vzfz2qto3+RUvPwzH7IdSEBFZYTewa7peWVvY50QqdrMtGYxGJGe2LU1uKz2nVn7VFxgCwtHi2BdZ+Zb9IfVYq9rt/06J91Xe2yJw0d8MnPtXA0vXF8dvTkRERERERERERLkTFREIyB/GMxiNyPn8HkUwmiKkizJjJB7CUFzeENWvCEggovzV6G1WlpXpPrg0l7LcCp+eJBiNgYtERJRFPlcFTmj8EX4x9zrMLdk16fijRggPd92NX236BVYNvy0dRxUils9Ux+duhlY7TjAu78jjcyk6pRAVOQajERERERERkVIsri5zT7qinFVrfb75EIwm4nFg60cAgMODL9qatqp3PcR9V+34u9qQJ/H06TWIah5pmRuxCX9/cy97qURLyw7GT5puTjremxfo+M5B9kO9/vA9Da3X6Lj9jNk4cOQt29Obae+XD4+b9MXNRTBaouu/oeN7h9qvxKsfCYxEhDJA4ZBdNNSUy+fbFxz7QcwC49y6ensLDDu7c7Mq7CPZsvaVaHjkRzpartDxyCk6/iv5cw8AwGcXy4e/u2Xnb12IrIaqDMpfzJsTqnU+cd2or5CvKL3BDFTIYfa7wmSnMEkqgQmpUu3bAXvBaAftomEPRZualiw8s1NtM36Tc5tsBtARUfEw7CZ2TdPyTUCPw88fM8HuN+53UJgskZOYBqNN+tvs/tK2Igg6Bqzt482CGFWB82bGX4Dw7EqBg68xcNXTAtf/U+BT1xl48A3r1xhEREREREREREREdoUNdaMUBqMROZ+q8/1wfBAhRWdvSr/uqPoBEQOMiApPo3eWsiwdgRrlSeahCsUkIiLKpPlli3DOvOvwrYaTUab7ko6/JbwBH4belZY1FOA5sioQmaHVzqO6Vi5PEk5LVKzcua4AEREREREROVfMpN+ja1Iw2mwbwWizanKcYmXFtlYgGgEAHBZaihJjFGGLDa0qjWHgpcd2/O2PdWOLZ87Uj3A3IqiXS+dRbkzs4VpXaS/b/Jg5jyYd5y8n6/j4/LFlcdM3NZz1sHnHW00DDt0F+P13dSxuGl+Gc9D8+S8AG2xVz1Rbn7weZgFguQ5GA4A7vqOhrgK46z8CQxZDpJ58T+Dze6grP7NaHWw2HrRjFmyla2NhPZ2SzuNdQ9bqmCvKYDQLC1vTNCxqBBY1An0hDa+tT96p/LTDdbzYIl/JPnODgRWXTO/taU5ltl0lGnRQyId63dj57xnyXWvBBrps6hE4/zGBP79l7/t92AFsCAjs4s/8TlQVjOZxAXWK5aXy8fkaPuyY+l1btmV++arWP7PQ194QMLcuM/WZLiEEHl4ucMsLAuEY8PX9NZxxpIZSj/V14sE3DNzzqsBwGDhqbw0XfVmD2+WAAzNRgbMabppOv/23wOX/XVzbt93feTgsMDXmiYjMaJM2meZq9bjt/cA8h55XpZOV7Ms+k2C0VM6Lx0/fznvMQCQhq98QwC8eFfifA4Wl63EiIiIiIiIiIiIqXBEjjLbwJsRENK3zHYz1KctKNAajETmdqvM9ALw3/EZGwnNmePyo8zSkPL0QAoHoNgzEeqXlDd6ZqHbPSHn+2TBqjKAtvAmGGHsD9kcjq6TjuTU3at1F8ICNqMg0eJuVZekI1Ch3mc/D71Xv+4mIiDJJ11z4dO1R2K/yUDwWuA9vDr6U0nzqTa5j8pXqO/VGA1gbWgkN5v0Sq90z4Pc0QZvcoI/SLmTIO/T5kpyDERUrBqMRERERERGRklkwmnvS/TB/xVi4STSefL5L8uH+4aaWHf/0IIaFkfVYVbqnpUmr4hNTqJpi8jexbXM3YVCvks/DmDiPuur0XcJrEAjf7poQWnL6ERqeWSnw/Oqp49/0TQ0nHKihogQoL5l6g7P01MvhPz2AgNuflvq1KcJzTAPA7OXGZYTXreH6b2j41bEC/1kHHH5j8sSpF1qAlW3qcrNgtG6rwWiKl3YF8jUYzeY99qP21gCYdwr/yWc0HDBPXb6yDXh9vcAhuxbeDX6rYR8jUSAaE/C4c/8bxBWbVuK6UafYbnqD6a9Prg2EBA6+xpAGIFqxfFN2gtHa+uUrW3ONtcDDRLs1yoe3dNqtlX2qbWZGhQZNE9IQi7Y+YN+p+ag5MRIR0LWx7SUaBx5+W+B/79tZ6bc3CawPADceB1SWIumDzd+/YuDkByZOvzEA3P+D3O8riAqd6niYSa+uK8yAUTNWwokSBcOZqQdRvjPblCafblSVAeUl8u2ptacwr8sms3Kd1m8SXr06hZd8unRg24CQ3qPoHASWrgcOW2R/vkRERERERERERFQYXu57Bn8N3IuYiCUfOY1KLL7IlIhyp8ZdB7fmkYYmPrjt1ox97oLSxThl1vmoctfYmq4n2ok72q5BW7jVdLwlvn3ww+ZzUebyTaOW6SeEwNM9f8Y/eh6BgeQNB+o9TdC1wnwpLFExa/TOUpalI1DD51I0Pt8uE6GXREREdlS5a/C9mWfg0Ooj8ZfOO9ER2WJrer+38I5lquBSAwZ+s+UiS/No8s7GT2ZdhHqvosMGpUUwPiwdXp7kHIyoWDmg2zARERERERE5lVlne/ek5+S6rmFmdfJ5+iuBuoo86MS6uWXCn4siH1metNKYeINqpiIYrcPdhEFdftOqKj4xtaquKn3BaIHT104IRQPGgk/+dqqOC47ScOB8YHEjcNRewN9O1XHGkToaqzRpKBoAaJW1+IJ3Rdrq19Y/FsA0WbIAMKfQdQ2fWazhvYt1HHcAsIexHjOj8l7JkRjwm+flG5q/Eqgq06YXjKYD/kr5j+P0YDRVCIXdZd1co2Fxknvyt5ygYXYtUGXSlvKiv+UgfSQLrAajAcCQQ4I+VHV2JdzprCuXj9NTgMFot70kUg5FA4AW+SEq7doH5MObLZw7TLakSb4jWB8AIpLjRzoZihXQ4wLm1MqnaenMfZCQEAJXPm2g/KcGyk41UPITAxWnGRNC0cbd86pAzekGDrrawLIN5nW/+d9Ty//4pkCHIgiPiNJHdTxsqAQu+oqGg3cZO6e3+58qfBIA1nVl5rs4mZ1zJQAYdsj5EpHTmIUMTj6z0zQNu9TLx12bhSBcJ7ASytgfGjvHmywYFtjca/8zXTowYBK2tqmX53dERERERERERETF6qPQh/hL111ZD0UDgBK9LOufSUT26JoOvyf7b0veONqSUvDaPe03JA1FA4A1oRX4S9edKdQss94dXopnev5iKRQNYHgRUaGqctWiVHGelI5ADZ+uaIS7XSGGyRARUX7azbcXzp9/E46uPwlercTydLm4hsm0+jR8p22Rrbi97co01IbMhBTBaD59+gG3RIUofb2qiYiIiIiIqODE4uoytyRqe1YNkna+XJIn9w7Fhg8n/L1bZK3laSuNiYlTTYpgtDZPM4ZcVYp5JKTclPowZ4YGYHqdUEuMUby7x+2YsefZ0vIyr4Yrj9Zw5dH2533ByQvx4B3Tqt4Oo1HglY+Aw5dMHJ4vwWjjPjZbw59PGIB4cG8Y0DB/4Tq0e5qnjPeyYtUa31bqK+TLvnt4rBN0st9FHazm7E7Nqu+VyrI+6VANFz4un+GyC3Ro2thM7zpJw/F3ycd7YQ3wxLsCZV7g8MWAx+3AlS4FdsI+BkeAGeZtHbLCyrpRp1jvnRqM1jMs8P5WYFW7wIJ6DXNnAL1BYF2XQFUZcOiuGmbXTl3neoMCv3zC2kI8Zj/g8XenDs9WMFpbn3x4s72XtgIAFivOJeIGsCEALMlgmxuz9W9Jk/w8aE2WfmMzN/5L4OK/2dvvL98EHHengQ8u1VFVNnX9i8YEPmifOp0hgIffFjj9iMLYTxI5lWp/VOYFLvuajsu+lvq8z3rYwG+en/oBbf3A8KhARWnxbN9WwokSBRmMRiRl9+pzt0ZgZdvU4evyJBhtaFTg5bVATRnwiflAicfeftPKdVo0DoQiQPmk9nyphsd1DwOPvq3+YKMws8KJiIiIiIiIiIjIgjcHX87J52rQ4NG8OflsIrLH752JjsiWrH/uquDbGI4NosItb4c7WVekHa2j6yzPf8XQMsSbYnBpzumCu2zgJVvjM7yIqDBpmoYGTzM2h9dPKfO5ph+o4dXNg2WqXCk0/CQiIsoQt+bB5+uOxcerPolHu+7Be8NvJJ0mHSFiTlOil6LaVYuBuKLjhkUdkS3oinSggdcSGROMD0mHpyPglqgQSbqxExEREREREY2JmXR6dCmC0ZL55CLnd6IXAz3As/+fvfsOc6Ja2AD+nsn2hS1soxepSlERuSoWELuIyrXfa0Gxo9jrp2LvXa5eK/aGXkVsiAURVLChUhaQKtv7bpYtyZzvj7DsbnLOZCab7Gbh/T0PD5uZM2dOksnJzGTOO6+0mnZg7RLby/sHo/XQBKOtiRusrSOlZR3xSTh8D9ur17rC+waGXaUORWurYaMH4u+hd+L2otvDUt8XKwMH43a2YDQAQLEvMcaAxHE1HztadGh335PSBZt5TF9QldXgZEMAWZrzosXq86hRQxdCYYRwNuus/QS6KH6jP+9AgX37N288p4wxkG1xHnnK0yaOftzEsFtNrMyL7mA5uxwFo9VFrh1O2ApGS1Z3CmVuwHTypNvBwlyJ4beZmPiIicvfkjjuKRN73mFiwsMmLnhV4rRnJQbdbGL2ktYf9m9yJTKvtJdOsOV+A0Ny1K9JbmH7vB75ler19Exz3oEPytL3+7kRDsuw2v6GdFc3ak1Bx25zLy02cd2c0Nrwdznw0hL1stUW4T+hBnIQkX1ezVdAOPaLp0/QV/K7IqhoZ+Z0t8HdEJl2EHV2ViGDQtHlDNbsu65pp33Xtli8TqLPdSYmP2Xi4AdNjL3HRF6Fs3bb7XsqagOn5bZh3/MWiyDdKDuMIiIiIiIiIiIionaU37C5Q9bbI67PjpsdElF06xs/sEPWKyFR2GD/R+y8emf9Wb2sQ41mwHpHKXAYQNc3oWPeGyKKvH4J6nEIPeP6hqX+/pr6ByUO5z4aERFFpW6xWbig1w24pNf/ITM2R1suO7YnEl1J7diy9tMnTPv/FZ7SsNRDarVmjeHAQ9YAACAASURBVHJ6OAJuiXZGDEajsBJCxAohxgshzhJCXC+EuFQIcaIQon9Ht42IiIiIaGclK0shX7kP5mNXwrxhCsz/3Aj52euQXm+b67YKRotRHFH2TA/+I9exI6P7hzBpmpBTdguYfmjtN0gy3bbq8A9G6+VRX3hR4UrX1pFiVjU/SEhC1wSBCw9p22t35iGJbVo+mB6X34Sbh6/G6ZVvtbmuVfmKYLQgAWBRqSRvx5+Tqz9ytOhuwheopws2A4Dv1gFnvah/YVwGtEFf0R6MZif8yq5e6QLPnimQ2uIjMHlP4KnTAyv75Zbgp8s2lADnv2JCWo3u7yScPIXKbZFrhxN2gmB0nxuvCZSof0PoEKYpMXW2iaIgn8cGD3DubAnjAi/2usOLM54zcejDwUPRkuKA16cJ9EoXGKa5qVFuAdplWy7VvO459m7Y2kp8rECfbup5hVWRfS5WfZPuNV6tzkcNm9X5EnfMMzH1JRMPzTdR7m5u5PwVEue93LbX5I6P1MvXWIQlVkdJf0G0MwvnvpK/fhlAYqx63qd/dv79HyecfkVa9Y1EuzLLYDTFtCGa69JyC9tn3zVUpilx8jNmq1DpP7YC17zrrM12n2KFYp8rUsc7DEYjIiIiIiIiIiLadRU3RPhHb41xaUd0yHqJyLn9Ug9FnFDcubQdFDfmOyjrvD+r9UbPxWZe6UFpY5Ht8qmudOzVZb8ItoiIOtJBaUfCgKvVtGSjK/bqun9Y6h+Xqt4XOyTt6LDUT0REFCkjuozB//V/AsdknIoYERMw/5D0YzqgVe3j4LSjwlKPlMHHqlBovNKDOlM92CKZwWhESoE9OXV6QoiZAG5rQxUvSynPcbjOLAC3AzgVgHJYohBiCYBHpJTvtaFtRERERETUgszbADltf6C6vHni4o8hAWDBW8CDc9t0Rx5d+AwAxLgCp/VKC17n4OyQmxNxUkrIW08HGgJHsyfIehxRswAfpBwftJ6ufsn9w+pzHbclpeVd5hJ8aU5Pnibw34WhjUQdUr8Gw3bX3/EiHERsHMTd7+CG79fgzZfaVpcqRMZqEK4RrdHvLYLRxtd+i67eKlS77KUApc+5F3LAUcjcR3/S/binrE82CyG2B0QFvnjF0XO9jpJVEF4oThtr4LDdJf7YCqQnA3v1UfeNPdMEjhwOfL7Cur7v1wO/bQH2Ds+N1TqMk8HtFbWRa4cTdoJgeqbql99aAWSHEMYVCT9uADY6vJnO738Dv/8d/I2bO93AfgOAzK6+F2ZodwFVX1BTD+RVAL30WZ1hUa7ZftJDvNlSVhdgk+K1i3TwnS6kwjCAoTnq17ioGih3S6Qnhz/F85tcieOeMuGub5721FcSP9xoILcAOOrxtnem5bW+fST/fcrqes0CAKrqmJxBFGm6fSVXGPaLXYbA+KHAp38Gzluybtf6fDsNAqptiEw7iDo7q4+S6rTVEM1+VXUdUFgFdLfY3+9Iv24BCqoCp7+1TOK18yQMm+mVdvueckV+f1WEAhoZjEZERERERERERLRrqjO3ocpbHrxgGHWP641xqUdgfNqx7bpeIgpdt9gsXNX3bswpehEb69bAIz3ttu6iBgfBaA7KNnF7o+cOtKWNxTAR/FqgeJGAgUl74LTsCxFndExgHRFFXu+EAbi8z0z8r/gVFNRvwYDEoZiSNRWpMeG5GHRc2uHwSg8WVnyKgoYt6BHXBxO7HY99Ug4MS/1ERESRFGfEY1Lm6Ribcgg+LX0Xf7p/QhdXKg5KO3KnPt8wossYnNvjGswvm4Ot9ZsgLa/c07Nz3EGhsQrfTjIYjEakwmA0ajMhxNEAZgMIFm9wAIADhBCvA7hQSqm4VJuIiIiIiJyQ/7mxdShaSz/OB76aA0w8OeT6PV79vBjFgPtgwWhxMUBGlJ6jkV4v5EPTgYUfaMtMjluGD2AnGK31hRADGjciVjagUcTZbk+K2WIkbbwvNSbGJfDBJQZO+I/zE4z/3PYRxIiLHC8XipH7D8GceImTngn9ROiaQqC2XiIpvnnQsNUgXFf4s2bCo7g5GC1eNmCi+2tb4XoAkN5QDPn0TUh+5WjkpPgGfzvRNN46S/OZq64D6holEmKj88XThl+1Iewjs6vAhGHBy43oJfD5iuA/AMz5WWLvvtH5+tnlZHB7fqUE0PHPV9dmV4uQgewUXzCMKuAzryJ6Au1yCyOTLnDbcQKTRrV+r4ZaZGOuLuh8wWiZmr4t0sFoVsF8w7rrl8stBPbbLfztufl/rUPRAGBzGTD+IRNrCsO3nvJaoFty62k1FqEbVeqbGBFRGNkJCm2Lw3YX+PTPwJV8nQtUbZNISWzffYJXvzcxe4lEXSMwaU+B648UtgOG2sLpN3UNgyGJHFMGo1n86rymMHqD0VT9ZpMyN5DZ1V49ujBefxWKfS4GoxEREREREREREVE4lTQo7m653e0DnkZGbPhv1GmIaL1DJhFZ6ZswCFf1vcd3g+IQB99beTH/YfxSvThgenGjg2A0TdmD047G95VfolEG3gmr1oyeO9BaPddHBr+JOOELQRMQbbqpNhF1HkOSRuL6fg8qb3waDgenH42D04+GKU3uoxERUaeUHdcTZ/eYEbHvymg0JuVAjEk5EKYMPqbvirWnwiMbA6YzGC1y3FbBaK4oHXRL1MF4JEJtIoQYD+ADtA5FkwB+BvAugC8AlPgt9i8AbwrBI2EiIiIioraQNZXA4nnWZea/0aZ1eCzOY7kUe/S9061PEvZMRfSeSHz3CWDei5ZFjv33QbaCBrr6XQgRAy8GN6xz1JxE2WJ0a0JzaszkvQROH6tuRGoisO5uAymu1gkp3T0FuPqgOojkFEdtaIspowW8/zXQeMyLKFjTB9Wru2FK1f8c1THy9tYboNUg3LaEZUWSLMlr9Xh4/Urby6aalcCm1RAFG3HkQOfZ4juC0SwGXpdGzzU7ASId9mHFKtyoJTvhadHOdPB7RV5F5NrhhK7NLfsBlyHQQxOWsLUiet63sgjcNiC7K3D5oYEflPRkgWxNfxCpgLYmpilRoQtGSw7tQ53ZRb1cJF7Tlqz6pp5pQBfNTVbXF4f3NfZ4JYqqJL5fr54fzlA0AMivDJxWbRG6UVQNSClR5paQdpM9iMgRVfgnEL59pRG99BVlX23CXd9+n+1nFpo4+yWJr3OB79cDN/9P4uLX22f9TvaVAMAdeJ08EcE66EvV22R2FQGhrE3WRHjftS3iLW5LV+zg+NtuCFlFbWDByggF1NrtD+sbJbaWcx+QiIiIiIiIiIhoZ6EL4XEhBt1is2EII+z/iKhzE0JEpG/Iju2pXF9xg4NgNE3Z7NgeSHapL6xye6uV0zuCrv1pMRlIMBJ3vFZRe502EUVMpD/33EcjIqLOblfcR7Z1rKWJGzKlt51bu+twW4Rv645LiXZ1PBrZNZwOYICDf9fYqVQI0RvA+wDiWkxeDGC4lHKMlPIUKeURAHoDmAGgZVzocQDuasNzIiIiIiKipV8AnsBU/laWfAJZG/qP8lbBaDGKI8qRvawH4vdKC7kpESU350LOusG6UEYPZB1xDPbsbV3MkF6keQPTg8Zs+9lRm1q9jPGJrebNPkfgjuMFurfIOZs0Clh1h4HdsgSW35WIc/qtx4HGnzjH+BxLDv0S6dNvcbT+cBBCwOg1AJneUiTKOkyutg7y87ehBNhQ0jyQ1jIYLVrPUfsFow1ryLW9aJrXl0IjT90dx300zfGqm0KiUhP1ZaxCbTpaRwajHTlcKMMf/f2yGfh2Tece7G13wD0AbI2SYDSvzW1D950TLc8DUIdNtUVOCrDsZkMbNqYL/Vutv8FzWFTX6be19CT19GAyNDfDKamOcMibpnohfN97fbup54frvc4tkNj/Xi/iLjbR/Zr2uxNTvuJzU1MfOK3Jynyg17UmMq800e8GE/N+79x9JVE00vVHdvZh7LAKim3wAF0vM3H6syZq6iL/+X5sQeA6Zi+RKK2J/LqdrsGqbyTalYXyaR2So54e7gDYcEqI1c8rqrJfj93jtHJF+HC1Jhht3ED761fRHYc1qWuUOPtFE92uMNHnehN9rzfxxo+8cygREREREREREVFnV9ygvqAgIzYbLuFq59YQ0a4sK079I3ZRY76tG7Y0mg0o95Ro6u6pHYBe642eu8/qwiqzYm3eCZaIiIiIiKgFXfipKXndV6TUasK3Y0QM4kR8O7eGqHNgMNquoUBKudHBP/VZvkC3A0hv8XgJgMOklKtaFpJS1kspnwBwit/yVwkh+oX+tIiIiIiIdg3SNCFXLIX84bNWIWfyO5shUwveCXndHouA/xjFdU3pyQIHD9Yv0zs9+tKrpJSQ/xoVtJx4ZiEAYPce1s+hm7cMLgSeAJxc87HtNu1ev6r1hITWqTGxMQL/d6yBvIdcMJ/1/Zs73YXuqb629csQePHmwfj2mT3x4jPHoP+/z+q4u1v0Hbrjz1Oq5uCA2iWOFv/g1xbBaBbnVaMxGE1KCSxb0GrasHonwWjNKTSH1yxAvOksxazpNUmxCEariuJgNN21Su3xXvdOF7jxaHsrGv+QCa+TdLEQbGuQ+OQPiW9yJRo84V2Xk6bnVURHsJGuL/DfNnqnq8tttHvmqx0UhDkYLe9BA3266bfdId3V89YURPa9VQU2NAk1GC1TE4z28+bQ6rMr2PbXPVU9P1gwmrte4ouVEq//aGJlnvr9qGuU2P1WEz9usNlYB2JdwD4WZ2rzKwPbVB0kDKlge/jH3+XACbP0z4uIQhPpENleaUDXBOsyb/8kcdFrkf1s19RJZQhSoxf436+R71ec7ua5GYxGpGQ1FkV3umJIjmbftTB69ykaPPp5xQ7GzNgYu+OrU3GNVJVmH22f/gKXTwz9S6I+yL0Zpr8p8eoPEtu2l9taAZz5osSitdH7fhEREREREREREVFwRY15yunZcT3buSVEtKvLiu2hnF5n1qLGG/wONSWNhZCa2/lkx/VAkqG+GKlGM2i9I+jCKrPi1K8NERERERGRFaGJGzIV4yIpPHTh20lG144b+0kU5RiMRiERQgwGcHaLSQ0AzpFSaodUSyk/APByi0nxAG6LTAuJiIiIiHYOsrwY8sqjIS86CPLa4yFPGQq55BPfzF8X2qvjwUual3HIG0IQ1Ql760/C7D8wpGZElHzh9qBlxJWPQXT3pYUMCXJjtUxvqXL64TULkOCySJpr4aiaz1tPSAgxNSYaZPcGEpMBAHFoxNebjsCzeRejf8NGpHvLcFXpo7il+G7t4gtWtQhGsxhLG23BaLK+DvL2s4CG1skII+pXIM1bbquONLM5RaeLdOP0Kmchh02vSXKcvkx1FAejmZqR4O31Xt9xvIG50+2dOrvk9cgN9F62UaL3dSYmPWni0IdNjLnLxIaS8K3PSdjH1orgZdqDLiTA5fd27ZYV/UEK64vD15YN9xpBfwgZpvkO+3ULYEYw4C8SwWgZmmC0wirgkS8i90NcsCCiHqnq98AqBG/5Fonht5k48jETZ74gMWKmiQtfNVvdzbaoSiLp0vA8r/12A2ZMFHjgJIFbJgncOklg5e0Glt2sv5v3ekWgYI2D8B9TAi8tiZ7PHtHOQHesFq59JcMQOGVM8Mre/VmiojZyn293g37e2qKIrXYHu+FETZz0jUS7EstgNM30wdnq6b9tQav9pGhidYxdVG2/zXZ3zfMU+5hV29RlUxOBR08RmHdZaJeI1FuEvjV6JOb8FNhoKYG3l0Xne0VERERERERERET2FDfkK6dnxQW5iI6IKMysAhmLG9V9lZ0yAga6xWQj2aW+GEk3aL0j6J6DLjSOiIiIiIjIiiHU15JJBqNFjNtUH2PqjkmJiMFoFLozALQcKfe+lHKtjeXu93t8ihAiIXzNIiIiIiLaucjHrgB++aZ5QmUp5PUnQn74HFCivhujsp7rT4Ssdp5o49Gcx4oxoA1fOX4v/eB5q3kdQa5dDrx8b/CCYw7d8efwHtbPIUMTjJb8z6k4bLg+cKTJuNrFmFl8V+uJ8Z03GE0IAfQduuOxCybOrXwZ6/7aA8VreuOBoptxW4k+GG1li+s4OlMwGj55GfgyMMgsFh4cVTPfVhWp3tYjnO8uuhX7bltmuwlNr4lhCHTVHHlXRXUwmnq60Y5nsyaNElh4rYGsrtblnlskUexgkLtdUkqc/IzZKlTqzzzg8jfD9yODkzyBMnfYVtsmum3D/2tpSI66XG5hdAQplLslvl9vXaZ3OvDd9QauPVJo+7mEWGD2VIF+GcE7wj0032HF1cDSjUEXD5lVMFpaiF9x3VP0z/eadyV+2RSZ9zhYMFr3VPX8/MrWC5a7JR6ab+L690zsfaeJzWWtyz+3SMJ1oYlr3jVR7pa4dW74ns+SG1x49FQD1xxh4PbJBmZONjAw2/cEJo1SLzN/ReD6nYZrPjy/4z93RDuT9thXuuuE4N8tjV5g/3tNXDvHxIKV4f+c11oEo1VVRT6FzOkug1V7iXZlVh8lXbbv7pp9181lwAr7p8TaVbVFt1Rcbb8eu11PfkVgyUpNMFpKgu8czTEjBf7zL+cnUeoa9fNKavTnF75cxX1AIiIiIiIiIiKizqy4sUA5nSE8RNTeurpSEa8ZgqgLcWxdRt2fdYvNRKwRi2SX+iJBt+ngR54IMqUXJQ2FynlZceyTiYiIiIjIOUMTN2RKBqNFii58O4nBaERaDEajUJ3o9/glOwtJKVcB+LHFpGQAR4SrUUREREREOxP5+2LgqznqeQ9Nd17flAGOl/F41dNdFkeT/TIEzt4/cIDlWfvbC21pL3L1z5Dnjg1ecM8DIVoEe40fav38M+MUo2CPPQfGjEewT7/gz/+bTYcjWfolyMR38jzpfsOCFvlwyxTl9E2lgLveN4jWMhgtys5wSEUoWpPRdb8GXT7JdCMOrUcd53iL8O3GiVi0cTxeypuGl47abFlHyxAlXTBadV30DlA2NefR2zsE76DBAmvuNPD8WdYrzrk6/Cf+V+YjICwJAD7+A9hSFp73zupz5a/CItyqPQULpmoyJEf9nlXUAuuKwtyoEIy9R7/NPHWGwPwrDKy+w8ABAwXu/6eBVXcYmH+F7//vbzDw8lSB9y82sP4eA2ftb68TPHAQEB+jnvfhb5HrD8o1oXpdE4AYV2gf6qFBbj495m4TjZ7wP6dg218PTTDa3+XNf68rktjrDhPXzZF48HPrNj7yhUTGlSae/TY8zyUnxXr+IUPU78cPG4ASvwDImsjnERGRBV1/FGK3qpSTIlA7K/h3TG6hL/zwiMdM3DkvvPtEbou+pnLhfMiS4Be4t4WTfSUA2MZgNCLHdMFoVudf5i6PzmPZKk0oGQAUORgzozse9penuAeCLqAsJbH577REdRkr9R79PKtQSDf7RSIiIiIiIiIiok6rwaxHhUd9k1CG8BBRexNCaPueokYbwWiaMk1Bj7pB6LpB6+2t3FMCL9Q/2GTFBrmQioiIiIiISEEbjAYGo0WK26u+kFAX1k1EDEajEAghugPYs8UkD4DFDqr4xu/x0W1tExERERHRzkg+eGl4K6yrhdy4ytEiHs15rBiX9XKPnCJwzgECQvgGuJ5zgMAjp0RHKJos+hvmnVMhzz8geOF/HAFx51utJmV0ETh4sH6RzH+MBcYd63sQGwecOgPiqicAAENzrFd3RuWbUL5KsfHB2xrFRL+hQcsMq8/Vzluz/SZ3lsFo0bF5NVv+nXbWUGNr0MWzPCXK6bHwYP9tS3Fm5Rs4s+xlXHm4/om3DItL0QajBW1Kh7EbftUeUpMEzj3QwMXjrVd+yesmpAzfAH3VIPcmdoIA/i6XmPqSieG3eXHAfV48PN+E1++FdRL2UVMPeLwdH0DgtRmaN7ynvo7nv2vf5+HxStz/mYne13lhXOD791exumyfdODiQwQO20MgKb75SQ3O8U0bsvUb7DvrOPzr1Yk4/o/7kRNvkb7gp0uCwERNVmVEg9Fq1XWnJ4Ve58Cs4GXmLg+9fh1t37S9z+3bTd1PbChp/vw8+LnElnJlsYg7d5x1P3bsSPV8KYHPV7Z+8tsalUUtRXMgJ1FnE6w/CpeEWIG1dxk4cJC98nfOkyisCt9n3TIYrSEG8tX7wrYuFafPpM4iOIhoV2Z1mKTbO+mWLDBuoHreJ39E5z5FjcUx9vIt9tts9zgtvzJwmi6cLbVFGFp6svMD6zqLfT+rYLQwHiITERERERERERFROytpLNDOawoSIiJqT9maYLTihuDBaEUNecrpTWFryYZ6ELpu0Hp7K26w6JMZVklERERERCEwhHqAqCkZjBYpuvDtJEMd1k1EDEaj0Izwe/y7lNLtYPklfo+Ht7E9REREREQ7HVlTCTgMMbPlh88dFdeFz8QEOZpMTxZ48RwDdbN8/148x0C3EAZdhpusKIGcui8w/42gZcXH+TAe+ggiPTB55fi99M8lK7srjPveh/i6BmJ+OYzpD0DE+YLNhvUIEkZS86l6hitIEl206xs8GK1/4ybEm+oRxKsLfKNoddsjEF3BaPLr9yzn737YfkHr6OlRX4TTyqK5yLI472m2eL26aoLRqjphMJrowPf6idOsV/7MQokb/yfDFo5mNbj8p43Wy1bWSoycaeLl7yVW5QM/rAeunSNx5TuhB6MB0bHN6Nrs8vtu6pYsMLa/uuxjCyRW5bffCP2LX5e48X1pGXbX5JhRAkKzoculX0BecRSw9AvgjyWQz90Gefd5geVME7LWd1GebPRtSLJ+G2ThFhy3m7oRqwuANYWReU0qNOEMbQlGi4sRGJxtXeaTP8P/fHQf76bvoSGaEFSPCWzcfiPtj2wEG0ZCelLwYLSh3YHdMtXzft7U+rFVOIbOt2ucL0NEanaDQsNhYLbAt9e5cNyo4GU9JvDlqvD1c1b7QxVGKvDVe5Bm5C7AcFp1gwcBQbREdkmPB7LefuhtZxLqp+K4PdWd2h/B88Y7hFUI7JK/gBqbIbF2X6+iaqDR01xaSolKzSaUktD8WqYlqstYqbcIfrQMRnO+KiIiIiIiIiIiIooSRZqgIQMGMmJt3M2MiCjMdKGMxRZBjsHKZG+vM8mlvhiz1lQPWm9vRY3qPjnFlYYEI4Qff4iIiIiIaJdnCPUAUQkGo0WKW3OMmaw5JiUiBqPtKi4UQiwQQmwVQtQJIaqFEBuFEAuFEHcLIQ5yWN8efo/XOVz+ryD1ERERERHR5sikRsiPZzsq7wkxGK1JbIxAbEwUJVbNfR6oKgtaTDw8DyKlm3b+lNECcTHqeYft7nu+IiYWIqZ1oRE9gd7p6uVS4704qma+eqZLs7LOYvd9ghZxwcSQhrXKeau3X49ilS8QVcFoj1+tn3nOzRhw0XRkBjlf2ctOMNr6FRhZ+5t2dssAqxRNMFp1FIRc6eje7458r12GwLfXWneAD3wmkTbDxDML2/5DgNWg+tU/roIsDkwDKK6W2O8eL9KvMJUD4p/6SuKnjc31Og37qKh1Vj4STM3Godo2poxWbzCNXmD6G2bYQux0TFPigldNvPCd/fWcOiawzXKbG+bd50FePSlwgW/eh/zwOV85KSFffwhycm/IIzNhHhQPeWhX3/+HpUGeNAiTHh6tXfeHv0Xm9SjX3FKhLcFoADDZIqgUAF5aHP7nE6xvGmRx7ffaQqBqm0RBVdibBQDoEg/00exnnDFW4NvrDAzMtn7NhBA4eIi6zDMLWz/5UILRPl/JaAyicLEbFBpOE4bZ2xH79wuyVVBPW7gtwnYKY3KAimJgrX6fuK10zyIpTr9MKP0j7dqk1wvziashj+sJeVQWzKsnQVaUdHSzwspqt9sq/Hp0X/XM6jrA442+/Yrqeuv5T35tr81OjtNa7lvWNerP5aW0GA+TFsJ+uFXfZhWMZhVyT0RERERERERERNFNFyKUEZsNl+jk17MRUaeUFacORitqyLO8DswjG1HWWGxZZ7Krq3K+2xsdwWjFmrBK3WtCREREREQUjKGJG/JKbzu3ZNdR661WTk/SHJMSEYPRdhWnAZgIoCeAeABdAPQDcDCAmwB8K4RYJoQ4zGZ9g/web3bYnk1+jzOEEJohe0REREREu6jNuaEtl9ULOPRk/fyNqyDLi2xXpxtkGsnB9pEkf1sUvNCUiyDGHm5ZpHe6wMzjAgfn/nM0cMgQ/XIxLoEH/ikCguWEAO4/tASppiYppZMHo4mcvsCgUUHLDW1QBwLOX+HbDq0GBkdLMJosyQNK1RegoGs6xLm3wOUyMGmUdYN7NrYIRuuSpi034fHxttrVVROMVqUIzooW0RiMBgAHDhbISLYuU10HXPK6xNSXTORVBB/4bpoSK/Ik3lxq4of1zUEiNRaD6nMbc2D+a1TABV0nP2Ni6Ubr9Y29pzkQzCpwUCUqgtF024biu+nCgwVyUtTlv84F3lwa2TCFl5ZIPL/I2TrGD229kcttbsjz/gF89pp2GfnQdMhtbuCTVyCfuRmoLNWW7eEpwNhtS5XzQnk9TFNi0VqJJX9JuOvVy5drtpv0IJ+lYK6YKLBbpnWZlkGA4aDb/poCPZLihTYEdU2RxFr7u2GOHDsSqHzCwKb7XTCfDfz32jQDw3va60AH56in1zUCm0tlq8dOrS2MvgATos5Kt28cyX2lY0bar3zATSb+u9DEyry2fe513y0AkBfTwxdc9tefbVqHFV2/nxyvX2abRUAQkYp8fibw7lNATSXgaQSWfgF5w5SOblZYWQajWSxnFeBVFYVB36pw6pbe/8Ven+ik58yraP7b6jVpGZieFcI1VA0e/TyrYDT2iURERERERERERJ2XPoSnZzu3hIjIJztWHQK2zXTDbaoHlwNAaWMRJNQ/smfFNgWjqe92W2fWwistfihpJ8WNmj45tns7t4SIiIiIiHYWQhM3ZGqOn6jtdOHbyYb6mJSIGIxGzcYAmC+EuFsIq/tyAwD8R2Q7Gs4nt3QxeQAAIABJREFUpawB4H9ZdqqTOoiIiIiIdnZyzW+hLZjSDWLmq8Do8foyc1+wXZ1Hcx4rxuWsWVFj2QLr+YP3hLjiMVtV3XC0gS+uNHDFYQIXjxd4Y5rAWxcYcAVJIjhtrIElNxi46RiBs/YXuOYIgUXXGTh/X33akOjkwWgAgIMmBy0ytF4djPbjBuCOeaZlgJMqEKkjyDvO0c/cdyKaDrlP2Mt6O+l9+ETgjKshZjwC8cEmYPd9leUSpEVyVgspier1VUfhQPImHRH2Yddf99jb4F7+XqL3dSae/kb/o4C7XmLK0yZGzjTxr+clDrjPxIEPmMivkJbvT4UrHRs8mZAn9Id0+0IV1xZKfLvW3nP4aXtsveNgtCgI0/M62DZSkwQePEm/0VzzrkRlbWSCmipqJc5/xVndWx9ovW3JX7+FPLE/sMXGG/vFm5DzXrS1nsnV85TTf9sCfPqH/TZvKpUYfZeJQx40ceD9Jva6w8QvmwKX1wXqpSW17QPdK13g11sNHGeRvfnfb8McjGZj+xuiCRZbWwisKwpvey48RODlqQIfXGog+Glde4Zk6+t56uuWwWjOn0vL4A4iahtNhnVE95WG5Aj00mf2tpJXAVz8usSImSamvWJa3p3birtIfdduAKgzElFppEKGGixug67ZSXH6ZbaFEBxJu7gv3w6ctuJHyL/XtX9bIsSqB7DahbEKRouG0GZ/ZW7r+T9v8h0nBOPkOC2vsvlvq2C21MTmv7slCwzKtr8OANhmse9nFYzmbkDI3wFERERERERERETUsYpb3tixBYbwEFFHyYpTB6MBQHFDgcU8daiYgEBmrO9CnyRDf2eZWs3A9fake35WrwkREREREZEVQ6jHRknJYLRI0R1fJmnCuomIwWg7u60AngNwPoADAewBYBiAcQAuA/C5X3kB4CYA9wSp179XDWVIrP8yIdyXOpAQIlsIMdzJPwADw7FuIiIiIqJwkVICi9WBJUFl9YQQAmLaTH39331kuzptMFonPJqU9cEToMSNzzkKFZm4u8AjpxiYdYaB08YGD0VrMqa/wF0nGJg91cADJxk4YKAAYi1G1u8EwWjCRjDanvW/a+fNnCux/G/9QNqEKHiJZN564NeF2vniikd3/H34HtZhCsMOGAHj4nsgTroUIj4B4uDjtWVf3XqOcvrY/s1/6waTF1VH7+BkXcuiIRgtJVFg3mX2O8JL35AYOdOLmAu9OORBLxava352T34lMXd56/LLNgK9rjNx/XvW789HXY4FygqA954GACz/23aT8NsWX91Ox6dHQ/iALiRAt2386x8ChwxRzyuoAm6dG5nPwVXv2K83MRZ49ZhNyHnvTpiPzoB8/SGYz8+EvPxwYHvwXTDywUuBP3+wVVYXjAYAxz5pwmszieGwR0z83mK7+6sYuPC1wPCbck34Q7pF0IVdXRMEXjhb/3lckRfmYDQb298gTbDY2kKJQntvpy21sww8/S8DZ+5vfx/Ejj376OfNXd4yGM153fmVwcsQkT0dFSJ78hjnK3jxO4lZX9vvj+WP82HOuh7115yIJ99WD7hpkhfTA9isDlgOB12/z2A0Chfp9QL5m9TzPnutnVsTOVbHHZbBaIn6edFwbOKv3EabttoIitX18Sp5Fc0vbpXFr/YpCa0fHx8ksN1fjcVptdoG/RvsNYF6j6NVERERERERERERUZRgCA8RRZsUVzriRYJyXlGD/rflokZ1MFpaTAZiDd+Pv8kWg9DdHRyMZkoTJY2aPjmWfTIREREREYXG0MQNmWAwWiSY0kStyWA0Iqc64VB2smEpgCMB9JFSXiClfF5KuVhKuUpKmSulXCKlfEpKeRSAfQGs9Vv+BiGEfsR1YDBa8HSBQP6XZYerp74EwJ8O/30YpnUTEREREYXH+hVA3oaQFhWjx/v+GLGfvtDqnyGLt9qqz7szBaPdebZ1gX0mAINGtU9jVGLj9fOMTviC+xs0Cujez7LIUTXzke4t085/eYl6oG1iLJAU3/FpWfLjl/Uzx0+BSM/e8TAxTuCS8eo2d08BjtjDb+Kkqdqqp1R/gMGJgSOrT923uf6eqeplt5brm9zRtOFDUfJxOGakwKcz7DdmRZ7vOS1aCxz0gIk75vk62LeXhR7atCjpQACA/NS37W2tsF/X6u3XSdnMv9qhQhNw1Z50bXZp3g4hBGadYWi/u2Z9LfHr5vA/ry9W2qvz3QsNrDv8A5z+2Ahg9t3A+89APnMz8PK9YW9Tk90bVmNQwzrt/CV/Ba/jmYUm/ioOnP7zJt/23lK5W11HOILRACCzq/47ILcAAUFtbWEnGG1IjrrMumKgVPNaNOkSD2y5P3jf8uNNBhJiI/Pdpwt2A4A1hcDqfN+LEEowWkkNUN/Y8f0I0c7A6fdhuFwxMbS+5/K3JIqqgn/+zadvgrzmONS//R/sX3QLlidYH6Ntie0NbM4NqU126L5CLIPRGiLTFtpJeSy+UGt2jURRq14lxSoYLZRbd0VQg0fCXR+8XEl18DJO9pbyWpwOqLL41b6L3xih6RME4h2EzFu93rVB+j07rwsRERERERERERFFl0azAeWeEuU8hvAQUUcRQiArrrtyXrEm/AwAihvU87JbBD0mu7pql3drBq63l0pPGRql+gcZhlUSEREREVGoDKEJRpMMRouEOrMWUnN1oNUxKdGuLkqGklI4SSk/kVLOlzZG/EkpfwKwH4A1frPuE0K47K7SaRtDXIaIiIiIaNewaG7oyx40GYDvx3/xxHx9ucUf26rO41VPj7F7tBAl5IJ3gIUf6AuMHg/xfy9BiA4M13JZjEa1mtdJCCGAg46zLJMkt+Guopna+b//rZ6eKSphXjwe5q1nQP66sA2tbKN5s/XzsnoFTLp9ssC0gwRiW3ye9u4DfH2NgbiY1tuiSMsETp6urDpeNuDdxuswtr/vcZd44PqjBK44rLmOXunqZm3Nr4H571EwrzsB8tvoyg03NefRjY7PwNvhyOECr08TyAwh7n3mXAnjAi+Wa7ZrO3Ljh/j++PsvVFfV4cq37Z9uyd0ebOQ0GK0mCga02wmm8rdHT4GrjlAXMCXw5FfhOVVVWStx/XsmRt/pxdbAvMJWztxPoPhBEyf+egdyHj4D8Gq+dCNAADihSv+Zn7vc+vWQUuLSN/Rl/tzael55rbpcerLlahz5aLr6VHd5LVBsI3zCLjvb34BM9baWVwGUWlwnuVsmMHe6gV7pAvOv0J+6f/4sgX37R7Yz/GOmfv1N28e2EILRAKCgKrTliKi1UL4Pw6FvhsDHl4X282L3a0xU1wU2XEqJF74zceg1f2HUD6djt0GrkTysAr8l7Bm0zr/iBgKbciG3h0t5vBK3fGjCuMAL4wIvsq/yYt7voX/P615ny2C0EPtH2kV5LTaYuihL/moDq0+h1akYlyHQNUE9r0Kzj9lRdPu8/optjJtxcpyW3yI/r0qzyXRN8L2WLfXLEPjfJQb6bD9fEOz7w+r1ZjAaERERERERERHRzqeksVA7UDObITxE1IF04YzFDQXaZYob1fNa1hUr4hAjYpXlar1hvPgoBFahb1mx6qA4IiIiIiKiYIQmbsgEg9Eiodarv3gw2QhhYBrRLoLBaAQpZRmA09H6mvRhACZoFvHvcS3u1a3lv0zH3jqBiIiIiCiKyFCD0Q6aDNF70I6HYu9DgAF7qNfx3UfWbajzjXb0aM5juUI4mpT122Ajvzns5E9fQt5+pr7A6PEwHv8cIrODL9iK04z0BYC+Q9qvHREktgf3WZlW8aJ2XqlbPT2zagPw5/fA1+9BXj0J8uevQ21iSOQ2N2TeBqBMf2GNGLZPwLTEOIFnzzRQ9YSBtXcZKH7EwM+3uDC0u3o0srj0AW39I1a8ge8vLkXNkwYKHzZw7xSjVdBfz1R1neWyC7Zt3gR8/ynkzadAfv6Gdh3traPCPpw6fazvNb9vSvs3bF3cQDQiBiYEjphZ5GjZv4p9/3fGYDRviKF5txwrdgz69/fV6rZ/P5mmxJGPmXjwc4nftujLPXqqQO0sAy+fayD9sfOAl+9p87pDcWXZk9p5P220fj02lgJWX+lr/DZHbTBakuVqHNm3v37eevVNrEOi7Zta7Bv1SlOXqfcA64rUFRw9Alh3jwvjh/o25MP2ELjs0MCN+snTBc49MPKn9Yf3FDhgoHpe0/ZRF2LwT16Q0EAisifU78NwOHqkQOMzBmqeNFD+mIFlN9vvlw57xERpTeu+8N5PJc5/ReKbqv5YGb8HNsf2tV3furjtndWcpwAAJz9j4u6Pm+svqQEmP2Xi5SUmtjU4/77Xfd9ZBqMFCQgiaqXRYoOpj7LkrzZoy+mgNM0v0RW10XUfrjLNOQt/U2cHv2jMyeuVX9lcuHKbesEUzSmno0YIbLzPwN8PGCh91Lovr7DI6QsWjBYNx5FERERERERERETkjC6ER8BAt5jsdm4NEVGzLE04Y3FjnnaZ4gZ1n9ayLiGEdiC622LwenvQhb4lu7oiycXB80REREREFBqXcCmnS8lgtEhwm/pjSx7bEekxGI0AAFLKXwDM95t8lKZ4NAej/QfACIf/jg/TuomIiIiI2kwWbgbW/BrSsmLGw4ETDzxOXfiXbyBrA+9gJj94FuaJAyCP6AbzooPhKS5ULh7j4GhSbv0L5iUTII/MgJyyG+Tbj9tfOAzkczMt54vJ09qnIUGIxGRg+D8CZ3RNB/Y9rP0bFAkjxwHZvS2LuGDi3zXvOKo2w9Mi8aaxAXLOrFBa55jM3whz+kTIo7MgTx1mXdjiPYyPFRiYLZDRxTrFQrhcELM0oW+mCfnYlUiKF0iMC6ynlyYMCgDyYpov7pGv3m/ZhvakCx8SURaMBvguirruKAP3/7N9G9co4rAhrj++TJ6AH2t6OVp26/ZgIqfBaO4oGNAeamhecrzA7cerCxVUoc3hndfMkVi6MXi5yyYIJMQKyL/+BBa83aZ1tkWOtwiXlan7y9x86x+yVutvQgoAWNniOkMppUUwWvg+M1ldgQT1TVuRXxm21cC0EUTUUxOMBgB/bFVP36Nn4Gvx4EkCj54qMLY/MG4g8Po0gYsPab9+ZsIw9brm/OL7XxeMdt6BAifvo29nON8Pol2Z7vswlBDrULgMgaR4gdQkgX36CSy+3sCRw4Mvt2wjkHWVid7XefHRcoknvzLxfx+E/h28Jm4wAEDOvge5BRIfLleXmzpbIm2GiWMe96Koyv76dCVdAoiPUc/bFmJwJO2iPBYbTN2uEYwWbO8mTROm+9Hy6ApG0+3z+nPXIyAg0p+T47SWobNVdeoyKRa/5gsh0DPN159bqajVHzMFC0ZzMzCSiIiIiIiIiIio09GF8HSLzUSsoflxnoioHWTFaoLRNP2WV3pQ2qi+6ah/Xcmurspytd7A663bky6sUvdaEBERERER2SE0cUMmvO3ckl2DW3NsKWAgwdBcKElEDEajVj7zezxKU85/6FqWk5UIIbogMBitQlXWKSllkZRyhZN/AP4Kx7qJiIiIiMKicAvQo7/jxcQNz0Lk9A2crgtGa2wAfmydjSy/fh/y4cuAkjzfiNUVP8Lzv+eUi9sNRpMN9ZCXHQ78sQTweoGSPMinroP87DV7FYRA1tVC/rYIctVPkH/+AKxcar3AhH9GrC1OiQvvBBJanMgSAuLieyBido6LyURMDMSMRwCXJkFgu+x6TWqMRqa3tPWE7z5y2jRHZN56yK/fgzxlKLD8O9+2beXsmyDSHR06643cH+g9SD3vqzmQeeuVs3qm6qssbHkX102rIStL9YXbUajhVx3p2iMN3D65fRuYGzcUixMPcLxcTT1QXSe1IU86HT2g3eOV+HGDep6dIJjdu6vfnwYPULkt9HblVUg8tiB4esHovoBhCEgpIZ+7NfQV9h4Y2nL7Hw0xZ92Oh8dWf6IsVlBtoKJW/3xWF1g/1y9WSni8vjI19YBXs52lh/G3GyEEemj6uvzK8IVm6Gpq2Td1T9GHOOpCwbolB06LixGYMdHADze5sOh6F04fa8Box05waI5+3n8XmtoAjH8MAN6+0MBAzVdfXkV0hZgQdVbRtq+0/0CBT2e48NkMeweLeRXA8bNMzHirbX3CjpDfulp8t8ZjWbbRC3y2AjjuKfs7QFZhvYlx6nnbGABETlgFo9W3YQc1ylh90oOFX2dqboT44XLgnZ9MNHiiY9+izG2/7E+brOeHHIym2WRSEuzXp9Po1fdvwYLRKnaejD8iIiIiIiIiIqJdBkN4iChaZcWp+yG3Wa0cZF7aWKwd1J8V173V4yRNMJrbrHHYyvAqbmCfTERERERE4WcITTCadDjQiGyp9aqPLZNcydr3gogYjEatbfR7rBu1vdbvcT+H6/EvXyalLHdYBxERERHRTkmMGgfx9mqI2T9DnHcbMGTv4AslJkMce7Z63rB9gAz1D9/y569aP/5kdkCZRxOmKpeNcQVvFgDg9++A4sCQK/nFWzYrcEb+tgjyjBGQlx0GecE4yIsPsSwvXlsOYUTPobHY+xCIZxdDnHsrcMbVEE99CXHcuR3drLASBx8P8d/vgH9dAxx8vLJMmleTGqMREIwWQeasGyBP3R3y1jNsL2NMuy1s6xdCAAdN1s6Xp+4OKQNHUCfHAwmafL1SV2brCZvXtKWJYRNtYR923TLJwFdXGxiz/ezHbpnW5dtqddwQ5MYPCWnZreW+HEwnaupDWlVY/F0uMeZuE9V16vl2to2cFP28wqrQ2gUAby+z90KOGyQgK0shLzsMWPyx8xXtOxHi2lkQs3+BmPGwo0XFebdB3Pc+RE4fiAvuBAAMbdB/3nPVN1EFAPy2xXpd5bXAou1nEMstAiLSFWFgbaELRpv7W/jCMqwCcprEuARy1NdJamWE+bUIh8HZ+g/Vxa9LbNR8/TZ93+jejzxnX/NEpKHdV+rgw5sjhgusuav9GlHqyvD94fVg5Tp7X+bLNgJ/brX33aDbVzIEkKjZv97WGB0hTdRJeCwSpZYtaL92RJjVcUewYLR9+ukLnPasxNBbTPy4vuM/d2Vu+2145Xvrsk6O00rdwLYG3wK6sOdU/1uWhahQfcPKoMFopTUd//4QERERERERERGRM0UNecrpukAiIqL2km0RBqYKENMFPQKBwWLJLvUde1SBa+1JG1bpF+xGRERERETkhKGJGzLBYLRI0B1bJhsOB58Q7WKiZ/Q3RQP/S6V1l0iv8ns8yOF6dvN7vNLh8kREREREOzUhBMTAERDn3ATjhR8grnzMuvyLS/XzDAPY7yj1zM/fgPnsrTCfug5y4QfAD5+3mv1TwmjkxfZULuqyeTQpX7hDPWPpF/YqcEDW1ULefZ4yiE1FXPU4RL9hYW9HW4kBe0BMvRnGxfdAjBrX0c2JCDF0bxgX3Q3j7neAA44JmJ9uVjiqr6cn8EI86VXf4a8tzKdvAt561NlCh54U9nYITaDcDh+9ELiMEMhUX7ODkqYwie3kkk9CbVpYmZrz6NEejAYA44cKLL3ZBfNZF9bd48KzZ0au0bnxQ5Ebpw9Ge/RU/brzKgGnw9PdNfWQ7z8Nc8puMC+ZAPn9p8owvkiY8ZaJ3//Wz7cTBJNt8XtBW4LRVuivn2tlcu8CyEk9geXfOV6HuPE5GI98AjF5GkR8AjDlEvvLXvU4xDk3NYeBnn4VMPEU9PLkIVlzR9PVD94P89x/wHzoUsiX7oJcuxwA4DUlPvkj+Hv+4XJfmfJafZn0JNtPwRZdENf8lYCpSxByyG7f1DvdWb290qKvcxvWHYi1G4bbQkKs77n01DynfGdf80Sk4Y3ifaVB2QIvnN0+DSlxZezYn6mvsP9lvmCVve8Fq0BMfTCa7WYQAR7rDUY2Bkmc2gkE6y0mjbIusakUOOclEw2ejg3fstrv9ffmUmm5f+p013V9ie//Kk2IdEqCvXpmTrZ+re/6WN2wbUE20xL1IQcRERERERERERFFseJG9d3UrAKJiIjaQ2pMN8SKOOU8VYCYKiwNANJiMhBnxLealqQJRqv1dtyPHVJKFDeo++SsWAajERERERFR6AyhCUaTDEaLhFrN2B3dsSgR+TAYjVrK9Htcoin3p9/jUUIIJ8MY/Uf2+9dHREREREQtTT4f2G24et7x0yB6W2cViz6a+XW1wKv3A28/Dvl/pwbM/qzLEdo6Y+weTdY5GBXaVt9/ChRsslf28NMgTrwosu0he7r3C5iU6q10VMUE98LAidvCeyGKfOsx4I2HHS8njj0nrO0AAAz/h+Vs+eClkOVFAdPtBqPhtQcgF38cauvCRjcQPBrCPpyadpCBzfcbePpfApdPFLjhaP2TeOoMgc9mGHj8NIFnp1TjmfxL8WDh9cjxFCrL/xm/B9bFDVTOu/d4EzMmGuiWrF7X5jKpDXnSqflxEeSjV/hCKP9YAnndCZAz/x3xcDR3vcTc5dZl7GwbSfECXeLV84racGPPvPLgz39k3R845Eb/+wXYI+ashTjmrNbTDANi9s/BF558XsB3noiJgbjtFbhmPIwhDeuUi60uBLD2N+DD5yFfvBPy/P0hP38DawqBUnfw1X63NngwWprutgwhyknRbwQ/2dxFCMZu3zS0u/3OKsYAxjm99UQ7SE0S6J8RvJy/pqAgXVBdfmXHhpYQ7Sx0/ZErSnaWTh0j0D0lfPWNrPtDOb3eSEDt9p+o8gvtH3/a/d7X7eIYAkjQBaPt/DlWFE4ej/X8XxXHu52Q1be/CNJtHWhjPym3EPiig2/FVWZjH7klq/1Tp4dXudvHwlRrgtG6Jtr7bjhptHW5d3+SymM/d711gxmMRkRERERERERE1Ll4ZCPKGouV87LiGIxGRB1LCIEsTUijKkBMFZYGqEPFkg31XTfd3jZcWNZGVd4K1Ev1j0Dsk4mIiIiIqC2EJm7IBIPRIsGtCd1OZjAakSUGo1FL/iOr81SFpJT5AH5vMSkGwIEO1jPe7/GnDpYlIiIiItrliJgYiDvfBHr0bz3j6LMgZjwavIKsXiGtt8iVrZ23d1+bg+0tRnLK78N7KCAfvtx2WXHS9LCum0In0vwzuoF6oUkt0hhTpwgGqg1+IYrM2wDzzqkwD4r3/TtvP5hn7wNzxpEwbzwJcsWPvnLffgg563pHbUKXNIhrnoIYe7iz5WwQQkC89JNlGTm5D6Tfa6ALRiuOCXwP5H9ugHSamBVmut7D6KRns3qnC1x4iIHHTjVwz4kG5l1moGda8/zEWOCuEwQuOljgiOEClx1q4LzdCzCt4iVcWfYk7iyaqaz3p8QxqDXUyWcHpPwNAOjXTd2mNYX6UBUdt8cVOPGrOcDiec4qcmhtEeANskm6bG4bOZqQlsKq0MOa8oLkOSaatXgh/0IYlpEQCnsd7AtFy+mrnC0GjoC47RUgu4+2CnHqDPV0IYATL8JQqU5kWBM3uPUErxfyrqnY8luurab/shk48wUTU55Wv3Fd4oHYmPCG9+zbXz/vle/DE8ZlNxhtSI79OscOANKSoiPIyN8PNzrvdJuCgnSftWgIxthQInH2iybG3efFFW+byKtgWBt1PrpdtSjJRUNSvMDHl7dtxy3e8OLqmqdRt6or3t76b225pqDf/LJG23U3BMmiaqLr94UAkjWHLbUMRiMnPEE2mE2r26cdEdaWHGXDEPjmmuD9Sbj290JlFQissqVMP8/pcVpuoW+Bylr1gikJ9urZo6fAR9P1r3VNve840l+wfi8a9v+IiIiIiIiIiIjIvtLGIkjNAFhdGBERUXvSBYIVNQYOhVSFpenqSNIMRnebHfdjR3GDOtgNYJ9MRERERERtYwjF+CAApvS2c0t2DbWa0O0kTUg3Efl00qGkFG5CiAQAU/wmf2OxyP/8Hk+1uZ5haB3A5gYw386yRERERES7MtF3KIx3ciE+K4aYsw7iyyoYNz0HERsXfOHM0H74bhD6us85wG4wmj7FRt4wBfLr95w2S13Xdx8BlSX2Cu9/NMQe+4ZlvRQGqRkBk4Y0rLG9+OWlT0K5NQYJRpN5GyCn7gvMf6N54ppfgfV/Ar98A3z3EeRFB0O++gDkzafYaou47mmI13+HeHsVxMf5EMefb/t5OCUGjQTGHWtZRk6fCOltPhmd2UX9uS11BQajYfMaYLO98KNIcRL2IRvqtfVYzetIx4wU2HK/gY33Gsi900DF4wZuOsaA0fIJlhXt+HOful8cryN9w1IAwLAe6vc+t0A6HnBfY6gv/pKfvuqsIocuejV4UJ/dIJhszW8GhVUOGuRng8VXkEt68ELehRhd91vwio76N8S3dRDvroH4OB/Gk19oQ9GaiMNOhXhrJcQNzwbO3O8oiL5D9cu6XBjSU/1jVm78EOX0/Fn3W7anpdd/lKjQBESkJ9muxrYpo/UbwX++kVi6oe1hGdqAHL/Qu2Hd7ScT9c+IkhQjhfRkgSdOc9a+pmC0DE0gZ6m7jY0KUXWdRF2jxJ9bJfa6w8SrP0h8vx544kuJiQ+bqNAEiQQjpYTptDMlCgOvzaDGjrR3X4E/Zjr7KfKJgiuxcsxLWH2ngcqnYvHAa5cg9u0VyHxziXaZ0pgM1Is4/CEH2F5PfpBQ0ya6MCcBIFlzyFwTnbufFK081oF+csvadmpIZFkFo9nptg4eIrC3PgsYALBwTcd+J5c73Mcpdevb6vRprNk+nqeqTj0/NdF+XceOErh9sv5d+XVzYOPcQYLRShmMRkRERERERERE1KnoQngEBDJjHdwljIgoQrI1wWiqELSihsCwNEAdKpbsUl9Yphu83h5KGtXBbglGErq4NHctJCIiIiIissHQxA3pAvOpbdxe9YV0Sa7kdm4JUefCYDRqcj2AXi0eewF8bFH+9e1lmkwRQgy2uZ6W3pFSai7RJiIiIiIifyI5BSKnD0RcvP2FMnuGtK4GEaucPiTHN8DdFl2y0fZ58u3HQ2hZM1lbA/P+iyHaf04KAAAgAElEQVRvPMneAidPh7jzzTatk8IsNTCUa4yDAKi7imeqZ7iDBKPNmRU0PA0A5LO32GvIvhMhjjsXou9QiJ67QRiRP+Ui7pljXWDtcsjnbt3xUBdQU6wKRtu+fEfSDQRvGfYhP54N85QhkIenwbz4EMiNq5rnff2eb95hqTDPPwBy9c8RbrFzQgj0zRAYnCMQGxPYr8qnb9rx9/D6lUg0NQlTGmm/zAMADNVck7q6wPmA+1pDk2b17YeQQUIdQlVQKbF0Y/BydoNgcjTXg4USjFZUJXHUY15Ua85uuaQHCzdOxCnV9oJAxakzIISA6N4PIqWb7XaI2DiIY8+GuPMtYJ8JwG4jgNOuhLjr7aDLDhutDpFZFzsQHgSGpuXHdLfdLiuDssNSTStdEwQOtjhDedvctv9Ap+2bHrwY5qReMP97C6TXizH97dfZK73NzYqoSycIPH+W/aSl+Bjf/xnJmkDOdg7G+GG9xKiZXqRebiLpUhOjbjcDPrO5hcCHvzkPUvl5k8SEh0zEXWyiz3VevL2MPwJT+3ESItuRhvcUWHJpJbp7Ai/WzvEU7vh3QO0SvFJyCS6dOhxDzz8PQ3IE4mIEhGFA9ByA9Myu2udW4srA94n/gFsT4KqSV2HvM2+1T9olQT3PzWA0ciLYPvTOEoxmMU/Y7Lcm7m5dsKgato4bIqXcIuhMxSos1ipITiW30LeALhgtxUEwGgDcMkl/TmNrReC0YP1eSQ1DZImIiIiIiIiIiDqTYk0IT1pMBmINGzdyJSKKMFWoGQAUN7YOdvRKL0obi5RlVeFqyS71b866wevtwf85NcmK7Q5h94c2IiIiIiIiBUOorxMzGYwWEbWm+thSF9JNRD4xHd0ACi8hxJkA5kspCx0scz6A2/wmz5ZSbtItI6VcK4R4GcC52yfFAZgthJioCzoTQhwP4JwWkxoA3G63nUREREREFKLs3iEt1iDUFzEdNNjBD+kyyImwFT86aFGLaqUEtqyBvGQCUFkafAGXC+LWVyAOtRmgRu0nNSNgUrxswEHuRViUfJDlov0bNiJJblPP3PoXMHxswGRZVgjk/gK8+2RIzVXqM9hW+FC4CcMA7nsP8oZ/6gu9/hDkyZdBZHRHluY86ZZYdR8h7zgb4vDTwtDS0OhCKMTKHyHjioDyIsiHpjfP+PMHyMuPAN5c4QuFu/WM5nmrf4a88mjgtd8hMsIT6hQOsrTAtz3WB55KkUu/AFYt2/E4Bl7sVbcc3yftb7v+9F/mQtZUYnDRHwACl9taLjFcfY0Y4mOAek/g9BqrwJEt64ABu9tun119r7f3o4rtYLRUAVU0w+YyZ4P1pZQ4/TkTX+fqy/yxfjSGNKyzV+EJF0AMGuWoDf7E+BMhxp/oaJmh+48Avgx87g1GPDbG9sOgxvWtpheEKRhtTP/IXJg3fqjAt2vV7+XnK4CKWom0pNDXrQ0iMhuByhLgtQcghcCAC+7AHj2AleprE1vplRZyc9qFEALnHihw0GCJcfebKAlyrWdG1XrI3wvQbT0A7Bcwv6YeqG+UiI+N3MWZ7nqJ5X8DK/IkLnzV3md72Ubg7APsr6OyVuL4WSbytoeDbK0ATn9OIrurxIRhAmVuiV82AUO7A3268UJUCj9daI4rym6JJNf9jrHPXIa/1/5gXfCUy2Fc9l/tbJchkJ6kDhIqc3XDNuEs9aeg0l45XQ8ihEBynLpEDYPRyInGBuv5W2zuS0Y5q6Avu+M1htnYDf3wN4n9duuY790yZznWKLMIRnMaYL1m+5UBVZpTJCmaIEcrh+0OLFgVOH1FHrBgpcTI3kBOiu+1rg2yGZc7fG2IiIiIiIiIiIioYxU3qH/oVoUIERF1hCxNf1TjrUKttwZJ2wPOyhtL4IXiIjiow9WSDfVFlttMN0zphSECbzIZacUN6rBK3WtARERERERklwFNMFqw8aAUklpN6HaSJqSbiHwYjLbzOQ/Af4UQ7wJ4B8A3UkrlZdVCiDEAbgLgP1pyK4D/s7Gu27Yvm7798QEAFgghpkkpV7dYTzyACwA87Lf8w1bha0REREREFB4iIQly4Ejgrz8cLdcoYpXTY538rm818rWpiNcL4bJfqWyoh7xnGvDlO/YWOO0KiAknQeyxr+11UDtKy1JOvrH0gaDBaCdVvaedJ+88B3BXQZx4YfO095+GfPJawNMYSkuVxCX3AsefD5HUMXdnEOMmQY7YD/jTImjih8+BY8/GIPVLjTVxg+GFAZfijh6yJB8is2MuoPFqzqOLBW9BvvuMemZ5EbB0AeS3HwTOq6kEFs8DJk8LXyPbQL7zBOR/bgS86guvVPat+9l2MFq8WYdEWQd5zzRkbu4CKJarrpPwmOrQgJREoLg6cLpbJOlXuml12IPRtpZLeGz+pmI3CGag5rOQq76GTOunTbAMRcvwlGBgw3p9gRbE7a8DEyxCDiNoaI46KA4AcuOHBASj5YcrGK1fZAIrTh4jcMc8/f7HmS+Y+Oiy0C9S1NVstPzx79NXIafNxN59BVbmB98X6pXWOUKzBucI/HqLgRcWS6zOB95aFvjcBjWsQ99LR0EC6Ba/B7DbT8q6St1AzwgFwi1YKXHWiyYKqpwt994vEk+dEbxck2cXyR2haC3N+trE2iKBS9+QO77LLh4v8PipAjGuzvFeU+egDZGNks1M1tZAXncCsHxR8ML7ToSY/kDQYhld1MFoJa7AsOVgVPWoaAMxBZCsCRoKFhBE1Io3yPFp4WbI+m0Q8c7C/6KN1R6R3W5raHf9fmuTucsl7p1it1XhVW6zX2lSahE2qzudlhwPuBXhi2VuoKRaolITjJaa6PzLoWea+vWevURi9hLf9JuPFbhjsoA7SL+3LXynYYiIiIiIiIiIiKgdFDWqg9FUIUJERB0h26I/Km4sQD/XoO1/6+9omBkXeA2U1WD0WtONLq4UB60MD/bJREREREQUKYZgMFp7cmuC0ZINBqMRWWEw2s4pEcBZ2/+ZQoi1ADYCqATgBZABYE8AOYplywAcJaUMOhRUSvm3EGIKgM8BxG2fPA7ASiHEzwDWA0gFMBqA/5DTeQBucfa0iIiIiIgoZAdOchyM1iDilNPjnBxJmt7gZTwNgMv+AF85+27boWjio60QaZm266YOkNVTOTnFa51mMq52Ma4te9SyjHzkcmCf8RB9h0Ku+x3y0StCbmaAjB4Q76+HMGwmMUWQuOddyMl9tPPl3+sgAAzTDCKvNxKwKbYvdmvcGLjwX38A7RSMVt8o8f6vEj9t8g0CX6m5JqmLaT3aXL71KLByqXreZ69DdHAwmly5DPLV+4Dv5jledp9tv9gum25uT+tZNBdpCXsDAxRtgYGK8m3wnUpqrUu8Ohit1ggSjBZms74JHirVxLA51n9ItvqzsKkM2NYgkRhnr6IPfrVu26SaT5WBg60LnQtx3X8gOjDFJileoG83YHNZ4LzcuCE4Fv/P3n2HR1Htfxx/n9n0QhKSUIKA0ouI2EWxYBd7vfZesKBe61WvXq+/a0WvDXvvHbH3ih0vYgEJiNIJSSC975zfH5uQsufszm42Db+v5+Fhd+a0bJmd2Z3zmXdbLVvrsyTLRWjbTWPSTJCxeYobDlVcOdP8/Lz1Mywr1gzKju4xtwYRtXxNFa2CylL6Z2R4arOjAsI6woAsxTUHBB67q6ZoDry+gD/9gddEpn89z6w8aUO4SU5DsbWd4orwf/faMs2seYHwsb3HKHYcGv45K6/RnPx45KFoACNN35aHcN0b5hfDq3Ph1Tbbh/s+1Ww1CE7buZskVokNXDcQYOfXgQAsvw6Es7b6F2aZG3EdHVw3wjZcDXOWml+D3WD3FAB981neQtEAdcvrnj4Lc9IgvyB4ebEvmyRdE9H41lUGngtfmB0I26e9UpBqPmSmstb7/osQnoK7V/wOQzfv+LF0Ea+7wmPzIM4hZHDygtWQX6AZ0bfzP3Nt4V9piVBhDDOzbyts+5yj+wUCmk0WFkCZZVPYK4pcvf4edmX/85Zmh81U2EBICYwUQgghhBBCCCGEEKJnKayzhPAkSAiPEKJ7yIjrTbxKoF4H/whRWLeawUnDNtw26eXLIskJ/gEl1We/QG6lv7zTg9G01hTWrTKu6yPbZCGEEEIIIUQ7OZgvOO/iYT6oiIjWmirXMEkLSAlxLCqEkGC0vwIHGNn4L5yPgJO11iu8Nq61/lQpdSjwOM3hZwrYpvGfyXPAGVpr+UQUQgghhBCik6iDz0A/cWNEdazBaObvvMxcD1cIaKiHRG8zNPXK3+Gpmz2VVVc8KKFoPYDKyEYPGQtLfm21PE3bw6/+ud0qrnxiP+JpCNu+fv95OPkq9CnbtnusLanjL+kWoWgAKqsPfFiK3tMya7nxSh0jQgS+5CcMNwejLV8E2+/d/kGGUVGj2f8ul9mLw5cdVhem0NoQX2ss+SWygcWYfuVe9J1/DyS/RWF0nffgsSz/+g23M/0l1nLr15ZiCkazBX1UOylowBQzoH/52rg8WlOfcXngs9gHo40MvtgnEHhafi+EzQd4a2fWj/axKTTT1t0Tsr665TXUjvt566yDjepnCUZL2yJwGYUWinzt/2zNToXB2e1uxuqK/Ry+WOTnHctb/qlvNFdNiTIYzbJr47QNwSspYkCWt2C03B76O9aY/jDvz+35lC2pU4nsXfEBqbpqw/refsOLqlFx6IxLFhVo9vqvu+F1ed0bmluPUFy8d+jP3lf+FwhS62gFZTrigI8zntQcsZUmIyWy157W2hi81Z5AraB1xjo6dPiXx35DjTN4LJqwY/WwrFW9MOU3Rr5ukL+nf/0WPn7ZU1n1+A+oOG8/V2anmpcX+7Jb7ft44WooqYLsMBdZs4UTOQpSE83rTAFIQlg1hD+uZcXiHh+MFuoQyOtmKzNFcdhWihfnhD5GmPWj5tJ9On9jaPtc6ZNu3i6sNZ/jBNi3Pf0zID0Jyg0BaHOXaesY0pPsfdkM8Bje+/hXLpVhtnsSjCaEEEIIIYQQQgghRM/h1w0U1681rsuNlxAeIUT34CiHnPh+rK5bFrSusH618XZLuQnmE8hSfPYfkKv8FRGOsv0q3XKq3Srjutx4y0lwQgghhBBCCOGRwnxuvtt2boRotzpdS4M2ny+aGuJYVAghwWgbozuBlcBOwGAP5SuB94EZWuuPoulQa/22Umpz4DrgaCDLUvQbYLrW+pVo+hFCCCGEEEJET+UOQE85Bd56zHOdOhVvXJ4QyZGk9vBFWH342ZG6aBX6qZvh1fs9datOvQb2O8FTWdEN7LhfUDDaiNpFZPhLKPW1nombngSXjs73FIoGwLzZ8O5TsRppwA77wiFnx7bNdlKJSehBI2BZfvBKfyCXPC1J0T8DVpcGF1kZH5wEpYGHfurNOwWB+udPdthjtHly+TdLNNPfc6msg303V0zdVZEQFyj7eb7mwc81v6zSaA3D+8C5uzvsPqq5rae+0Z5C0QBG1Rn+xpaKzFdIBCC7c04G0n4/vPs0+qYzmxdm9YH15hNHvRpRu8hz2Qx/8xOd6Rqe9EbrqjAmEdiCPgBqVSJJ2jDz/Zv30FXlqJT2pzw9/11koWgAXrMKh+SAzzEHFyxc4y0YLb9AM9983hwATw6dxfgFP5tX5g5A/eNB1LZ7ehtwJxjRT/H+/ODHO3+Lv0H5la1eu4Vx7Q9G230kKNWxYRWX7O3wzi/m/ZA35mmumuK9rfoGzRNfa16ao1lTZi7jtN3nKS2mf8ZQT+3bgn66K718EfrmqTDvC1KBKbxrLJdAPen+MsoNV8stCnOu6H/e1kFhfVe8qjl5oiY7zf7aef676IInAUqrvZd966fo+sm60GVITmTBX7ZgFCFsujq7V69agj57F09l1dWPoSIIewq8/4PfFMW+3iSY9k3CKKoIH4xmC3NSCtIs+0vhAoKEaMXDdyIUruz4cXSwKLOhgzxwvKK6TvPWz/bPyMtf0Vy6T2z6i4RtPAN7w5Ki4OWLCuxt2R4vR8HIvjBnafC6H0NkhNu2V6Fss6l5m9vWK/8L35YEowkhhBBCCCGEEEII0XOsqy/ExW9cZwsSEkKIrtAnob8xGG1t3Wrj7VZ14/OMyxNVEj7i8BvOT630h7jqTQcprFtjXZebIGGVQgghhBBCiPZxlPmkY+1lPqiISKhjylRf++dgCbExk2C0jYzWeiYwE0AplQmMBQYCfYEUwAFKgPXAAuAnrbX5V4vI+l0LTFVKXUBzKFs/AsFrK4G5Wus/2tuPEEIIIYQQInrq0hnoJT/DgjmeytfHIhjNS5JDQ+jZkbq0GH3WJFgbYoZnC+rlxai+Az2VFd2DGrJ50FTbBOo5c/3D3JpzSavlU3dTpNaVeJia2+jPBej3n4vFMAN23A/nltdi114sDRxuDkZzmw/7B2RagtHi8vDjUK2SSdOVAFzc52buWnMUNJ5b8/o8l0dPVhy7naKmPhBSp5TirZ80B97T/KX3e79q/rcUnjhV8cF8zQF3u9S3+Obh55Uw80eXN89z2G9cINzmTY8BM70bisnxF3sqa5SZG33dCOgH/wnP3tZ6YTtD0QDSdCUDkytZXh0+RSnLLdlwu2VIWlvrdFrEwWjVKtkcjAbo8/dCPfJN2PGFsq5Sc+zDkScnOJasJK01Sil0Qz0qLp74OMWQ5FIWVWYElV1YoGl6QJrqmcz60T6+ZTc75D35pXnlkLGox3/o8FCwSI2ynLv821oH9cJv6L17A+CiKPZlG8v+39pruLbPtfjxhexLKfjH/h2f2rPbSPu67/6ENaWafhnenoeLX9bc83Ho16TT9qpIpUUM7Bc+TMLnQEayp2F0C3r1n+hjIwgx8q8zBqMVVzS/10ye/Dr4cfO78NqPmtN2NterrtN8GiY7M5RIgtFenxd9uospGEWIWErqwl/+dHkJ+ujRnsqqadNR+xwbUfu2ELNiX29rEOx2mwa2+8Z6leH7DBVOZNtfqpBgNBGJhvqwRXTRqhCfmj1DqE/OSHaNM1IUs87zUVKlueldzS3vmlu++2OX8yd3blKkKXgZYFR/xWf5hlDHSigq1+SkBz8Atq/TlIKR/RRzlgYXWLDK/ignmb/iC2n7zSKvY1NVF/r4SgghhBBCCCGEEEII0X0U1ttDeHLiJRhNCNF95Mabg8EKW4ShFdabg9FsQY9KKVJ9aZT5S4LWVfrDXAWwA9jGn6AS6eXL6uTRCCGEEEIIITY2DuZz7Ny2cyNEu1WFOKZMccJc5VmIv7guvm686Eha6xKt9Zda6+e11ndqrW/UWv9Haz1Da/2s1npuLELR2vRZp7X+RGv9uNb6Jq313VrrVyUUTQghhBBCiK6nfD7Uza/BIWfCkM1hy11Q/30H9jZPRq9TCcblCaHzTlqzzSJvqT50MBrvPOktFG2nKain50koWk80aIRx8Q2F13BT2nNsORC23RRuOUJx46EKKuwhT0EcB+Z94b38VrvB+EnBywePhOMuQV3/vPe2OpvlSh20uFLHgExzkX/nXk3i6AoyRxUyeNginsw4jgeyzggqd+rjmqRzXDIvcPGd5eKc6W8VitbkqW80PyzV3PZ+61C0DUPScNVrzfXyC0L/aU22qpnrraBNtYf0i3bSBcuDQ9G8ik+AjOzmfwlJrVara59k5KbhQ9EAsvzrN9yOw0+a5eoilZYv0FPMHwEAVDshUpzy56I9BlnabH9DdD+i+Fq8BXTBctx/HoM7KRG9S1Lg/93TcCcl4j54DSPWmIPL8n8v4YP5GudM/4bXuHOmn49/a/15ZgtG234z2CQrxHZq2PhuGQYwsq95TIXlUNSQAjtNAWC9Lwu/Mifu7Fn5Me+5FzJ5FIwbEFg2MKs56MJRMHkUfHW5w4RBHf8YKKX44Wr7199eAxl/W62Z8Un4skHBaCXFbD0Y0kKEDAJkp4JjS/XrhvRD/4qofLZ/nXF5qDAiN0Sw7ofz7fU+XAB1wRfs9cxrMFp9g+aDEOMQoqvtNKzjtyn6py9xz5qEu0cG7rGbo+d8hF6/Fr1/X0/11RUPwBHnRdxvji0YLS6HSpViXDeqvyLZEghU5OGC3rZDWqXs2/hKCUYTkfCHD0ajyDzhoScJ9fVQNLvHmSmKE3ewV7QFpnUkWzDaGPOcHAB+s8wvtI3eUTDYnFPM74X2fqIJzVRKcfLE2HymaA217dhPE0IIIYQQQgghhBBCdJ6WgUItZcT1JtFJMq4TQoiukJtgCUZrDBNztZ8iS9ijLVQNIMVn/mG6yu2CYDTLNjk3oX+3PAdNCCGEEEII0bM4lnlorpZgtFirDHFMaTsOFUIEdOF144UQQgghhBBCdDaVlYu6+O7WC7feHV1fC5+80mpxvSUYLT6iYDQPX4Q1hJ4ErH8MH2qlHv4aNXIrr6MS3Y0lGE0BlxRO57Lbj2+1XFdGEIy2zmPiVlw86q3VqJR07213Nz7Lm9PfnEyWl6WwT7EOWBk/gFPzHmr3cK6Z5fJ+iOCYH5fDkkLNJlnwZ7G3NveveLd9g6oIvpJjzH0xK6pq6pJ7UAcHh9G1NarI5cMF4Sf5Z7W5amWmW0qFz/vrOzXB/lqpUWGSnr54HQ4/x3NfLX22UIec0B9KU7aUdl30dSfCz1+ZCz51MyP63MBb7B+06t25NTz5c/Bn1563u8y/zmFUf0VBmebrJeamD96ycRC2YLS0jHB/RpcYFeKizmc86TJz0kHoL9+iyGdJYQByGwrZZvET7P7QjG5z4t2EQYpR/cyBE2/+pDndkIPZ1hNfa085r07b90tpEQlxipsPV5z7rL0BW8hPd6TrauGD5yKq09tv3sCHCkYrCRFQlmQJNwKYOdf+OPscePN8h33GKt77VbPfncHv87Ia0FqHff2uKIFqDxk2QnSF3UfClHEd24deV4A+d3LzguWL0BcFf6baqOfnowYMjarvbEs+bLGvN1WOORgtJQGy02DF+uB1RRWawFGHXahwolRLkGyFBKOJSIQLiwcoXNnx4+hgoXanot1zHN0fBvWGZYYc1pUlUFKlyUzpvP1SW7ZrXoaiV5KmrCZ43dJ1mp0Nj4AtZE0pe+D52hBhj6H2oUIZGeI4IVIzPtFcvHf3OE4QQgghhBBCCCGEEELYNQUKtdUnRIiQEEJ0Bdt2qdxfSrW/imq3kgZtvnKLLVQNINVyjl2l5cKkHcm2Tc6Nj+GPOEIIIYQQQoi/LAfzPDS37UXjRbtVWY4pk5wUfCqSybpC/PVIMJoQQgghhBBC/MUppeBfT6PbBKPVYZ41mRDJkaTb/mA0luWHXr/VbhKK1sOplHT7JOk/F6CrylsFlulij2FnkdjtsJ4digZguVJHy4BC2wTqjvDOL+HLvPGTZt+xyjrpu6Vkt4ojy19t36BsYVUxomuq0HdeHFmlbfdAHX8ZaqvdPBUf2ddbs5ltgtEy/KWsiN/E87BSQmSfVavkkHX1z1+jogxGu+W96H9AqWrKlJjzkT0UrdHIukXG5Wvj7A/wjE81dx+j+GiBPSjrkHDBaOmd+CaMQF4mpCWag1xenwcNxx2ML+1yCv051jZy/UWgG+DzWbDrIR042sgcOF7x25rgJ+yD+VBdp0lOCB3O8OIcD6logNMmDFaXFKGAqbs5fP27y9PfmtvJ7knBaI/+O+I6OZZgtKI/VgHmbdIC8zmdACRaQj1WlWge/8r+XM25ymH8wMBznWHZhPndwHsgPcxFzos6/wLAoofyOY3/VIvbjf8cZV8XapljWZeaqNhlBBy3vQq7XWsvffCg6CrudhjqojtQvT3uzBhkp5mDW4t82VQ65tS01MRACKU5GC18n6EOaVMTzeOplGA0EYlw34kArFziKbyzOwsVNBvtn6WU4sDxihmfmBv/aAEcvnV0bUfDdlzrc2Bgb/h1VfC6lYZtU+i2FAMywweetxVtMFpeDHOd7/9Mc/HesWtPCCGEEEIIIYQQQgjRMdbWWUJ4QoQICSFEVwi1XSqsX021337VvlDBYrZgtCp/558wUlhnuBoksk0WQgghhBBCxIZjmYfman8nj2TjV2k5pkz19aAJJUJ0EQlGE0IIIYQQQgiBchz05CPh45c2LKtTCcayCZGE0GsPATf1ddZVurwElpvDa5qoY/8ewYBEd6X+/Sz6mmON6/R/L0Jd9XDzgu/ej23nQ8aizv5PbNvsCo7lzek2fyHdmcFoXlz0gmbw1PCz4BPcWu5ZcyH9G8wn+nhWWYp2XZRjCZFrB712BfrYzb1XcBzUuTejjpoWUT+j+nmbBJ/ltp5h39u/LqJ+UkMFozmhg9Goju4ksPIazUe/RVUVgN//KMW971Z49rawZYdbgtFCmb0o8LibAg0AhveBUf2bgtFKjGVUWgyTBWJIKcUWm8BXv5vXf1mQya6X3UfRf18xrk9xK0nR1QDoq4+GT6tQvu5x1ZoDt1Dc+l7we6a6Ht6fDwdvGZt+VNv35ao/Nty86XBlDUYbmtszAk50VQU8Mz3ietmWbU/x3B/RFenG98S5z9r3H5MtoR6HzLDXeWVqcygaBAKSbP4sgnFhMiSLOv8CwB1GqfDBXEFBXBEEeTnGdap10FcE4V/hlrWqp+x9GscZRUhZqMfHcXrGeztSes7HUdVT/3kRtcvB7e7f9v6tclIp9vU2rktJsNcrtp8Hv4Ftr8txAqGiJtX14Hc1vo30dSBizEswWsEy+HMBbDam48fTBdrzTrn5MHsw2pEPuLgPdt4+qWvZYPicwLG46ThilSVPOVTI2iZZkY8t2mC0AVmRh7DZ/F4Yk2aEEEIIIYQQQgghhBAdrLDeEowWLyE8QojuJTMumzgVT4MO/r2tsG41Va75B+E0XwbJPvOFtwBSHPMPzJX+zj9hRLbJQgghhBBCiI6ksASj4WE+qIiILWzbdgwqhGgmwWhCCCGEEEIIIQLaBJjUK/OsyYRIjiS1h8mT//sURgSnkujSYvQBeaHrjtwHVC0AACAASURBVNwKttkzggGJbmvH/ezr/vfJhpu6sgyW/Nr+/jJzUSdfCZsMhS13QSWGCXrqCWxhX27zF9J5GbGZ0BxLh91n/8L8v2suJtMtZVLVbDatX9b+zlw3EFjVyxycES09/3v0xVOgtjp0wUPPQg0aAcnpMG7HwO0IjbJfrLKVTH/rGfZ5DeaTpGxSzNmYAFSrpNCVi6MLsHv/V6hriKoqAP3euAWKb/dUdmRt5MFo81aA1pqFa8zvo202bRHpUGFJOEjrZumELRy7veKr381/26wfNbsdfRiFVbvCrOD1uQ1Fre7rG05H/fOxjhhmxHYcCtmp5vCbQ+91qbvPIc5nj+NY5yE0B0C1/fFv2cINN/MyFUdto3hxTvDje8x2PSQ053PDE++BLZSx2NcbPpsJU05utdx1NT+tsLdneoXW1GvmWeokxcPebTJkBveGeB/UGy5k9dsaD8FoFZF9lh6yZWD7kJkSLvhLeQrlsod/RR5SplQPef2JbkHX1qAvCrHPbrPN5JiEokFge26zIt785k358QNy+u+FaQtS5CHL1RZ0pAgdJFtVB+lhdpmEALwFowH8+HmPDkbz8vVQNFISFZvnwS+W8OL7P3M5e9fYB2ObhAozy8s0B4ytWm9+YKxtKRgQYTCaUoF9n2jkdc9cZyGEEEIIIYQQQgghRAdxtZ+iugLjutwECeERQnQvjnLIje/H6rrlQevW1q+m2m8+6adPmFCxVJ8lGM2N7mKh0aryV1DhLzOuk22yEEIIIYQQIhYcZQlG0xKMFmtVlmPKFMsxqBCimQSjCSGEEEIIIYQIcFrPkqxT5lSctsFoWmv46i30G49CYgpqjyObJ7674b8I0zMuR/3twsDtL99Ev/M0VJXD9x+Grjh6W9TVj6B8Uc7uFN2KSkpBJyRBXU3wyrUr0HW1qIREWL82Nv2deDnq8HNi0la34VjeCy3ehwN6+YGe8Z7Zq+IDzl9/X+wb/u4D2PPodjej/X54ZQb663dgzsdhy6vrnkFNPqLd/eZlQloiVNSGLpflL2l1v3+EwWiJcYEJ/KYJ+dVOmCDBZflorSMO3Hnjp/BpCQOzYPl687p9Kj7w3FdffwGD65ayNGGw5zoAa8thgSX3bWRjaJ3WGsotg0ztvskCZ++iOO9Z83PwxjzNf4+GIrIwBTrk+lsHo/H+s+jJh6N2OqADRmqmi1ah774UPn45sGDPo1HTbsOXlcuULRRPfm3+2xKmukwZB3uPVfRKgplzNWvLYevBiiv2VZSGyTts4rT98W/FYrTfv2E/5Z5jFBU1mrd/CazulQQ3HqbYa0z3DqbS5evRj/0fvHRPVPVtwWilvgz07DdRbYLRTAF2LVUatn2LCswhZwBbD4LUxNaPcXycYmhuIAStrYUFmkDckV24Mbb0zOmKY7brnDAWITrczPujqqaueTJmQ8gJ8dv/mjhzemzKnLfpvf/WQHCSULGHoENbmJNSgX0ym8paCUYT3ug1S72VW74ozCdU9xbq3dbenM7thyh+WWXu4ZxnNKfupEmI6/hHzxak6KjAcZzJKkuesm3b43MgNw0ykvG8n5oUF30YaqQhbEIIIYQQQgghhBBCiJ5tfUMRfsxXtMuN93glPyGE6ES5Cf2NwWiFdaupds0neIQLFUvxpRuXV/nLIx9gOxTV2y9OKttkIYQQQgghRCw4mM9z120vGi/ardJyTGkL5xZCNJNgNCGEEEIIIYQQAW1S/utUvLFYgq/NZMrXHkTfPm3DXf3xSzBtOurI88G1pFS0odevha/fRd94hrexjtkOdf/nUU/sFN3UUdPg6VvM6169D/52YSD0Jhb2PjY27XQnjiV4pWUwWloDPSUYbUTd4g5pV193IozfGZU7oH3t/OdU+OB5T2XVebfEJBQNAhPaR/WDOWHyEzLd1sFcAxpWRdaP1iTHmwPYalSYYLTqCiheDTl5EfX51e/m2f+nT1LMOEaxuhQG9oZZP8Jh97X+oWVi1VeMq/3Fc18KOGf9/Vze98aIxvjst5oFloy5UU3nm83/HirNV+sk3ZKI0A04juKxkxWnPB78PCwpgqJyTaHlwqfZ/uKgZfqKw+Gu91ETdo31UFv3U18HxavRR45oveLDF9DfvAcvLODALbKswWgAb/0Mb/3cev03SzQPfBY+MKeJ0/bHv/o6WPMnDBgKQE664s1pPoorNAVlgSA9n9O992N0VQX6lO2gYFlkFTNyAvuA5evJ9JvTPkp8mYH3ShsrSwyFW6iqC1620HzBcgBuPdL82TiqnzkYbUlh6P4BijxeAHhwNhw6oXs/x0JEQr/9RGQV0jJQry1DJcYuHax3auR1Ut1Kstf8BAR/Hnl5P4cKOkoNEYwWLsRWCGj8LmTWQ94KL1/UsYPpYLagL2h/MNq5uysemW3v4LN82GtM+/rwwhQqDYEwM1sw2hpLMJqtLccJ7LfvM1bx4hxv+6pJ5q/3PElPiu2+TDQB2kIIIYQQQgghhBBC/FXNLnmfd4tf6tQ+G7Q5FA3CBwkJIURXsAWE/VA+2zqRP1yoWKpjnpRe6fd4wkgI+VW/8PH611lZuxTd9iKMbdRrw0kyQJyKJzMuu91jEUIIIYQQQghHmc+1z6/6hat/9zjHs5PFqXiGJI9k3+yj6NNNv6/6ueJ7Pi95hzV1K9CNJ09W+M1zjFIcczi3EKKZBKMJIYQQQgghhAjwtQ5LqlMJxmLxLYrpyjL0/VcFldHP3AaHToUwP9xvUFKMfupmz0NVh02ViZQbIXXK1WhLMJqecTkcdDp89Xb7+7nkHlTGRnhiiGMJPGsRUNgroYE0fx0VlqsaRiojGQb1hhN2VIzoozjk3thdFWTLmnkxayvIu8/ACZdFVVUvW4g+ZzKUFnmuo46+IKq+bCYMUsxZGnoSfE5D66CqvAZLmpeFem46yVlnUUHwa6Xa8RBw8sf8iILRyms0i9ea1+0zRhEfpxjU+LY9ZALMPMfh9g9cVq6HfdT3XD/7cBy8h1gx+UgunvscN/ovo8SX5bnaxS/Z+9h6kEJrjT57krmAUjB0c+9j7AJ7jVFgeRz7XOySZgmAyW0wp0npaXvDY9+jhm0RoxG2aPvPBejp58Ev34DfcnJ2RQnMepi9j4wuVLMhgk1aUDAawNKFG4LRmmSnKbJ7ykV93nky8lA0QB0+FXY9FP3QtWQsNe9Pljq9YN0adEUpKi1jw/JVYYLRKmuDX5+/rbG/L3cYYt5fzMs0v9bXVYbfjoQKUtosB+oaYJcRiulHKJLiZX9V9Hx6+SL0pQfByiXeKw0Zi7rtzZiGogHE+RSZKVBS5b1OiltFzrLvIC66YDRbmJNSkGrexAFQKcFowov3n/Nedll+x42jE4QMRmtn21sOVEwZFwi7Nfnbgy7Fd8QuIFy/+Rj6iRuhohRGb4O6/D5U30H4QwQp9k4xryutNi+3teVrPA9tt5Hw4hxv421PMFqs1fshQc5QEUIIIYQQQgghhBDCkxq3inWW3+I7Wy9fJklOmIvoCSFEF8hNMJ+fZgsVC9QJPXE+xXJuZVU7g9Hyq37h7uX/wo89hNKL3Ph+1vACIYQQQgghhIiEwnxsUa/rus33UiZr61cxv/JHLht8C73jc7t6OK3MLf+Kh1fdivY4vynV11MmlwjRdeS0UyGEEEIIIYQQAU7rL7NswWitJjB+PguqyoMLFa+GFYtCz3xtqbQIViz2VnboONjzaG9lRY+iEhLRA4fD8kXG9fpvo0M3cOhZMPOB0GV2Owx1cPe8akW72U52cVuE9fgbGFy/gl99YyNq+tSSx3lw9TmoM6+H3AEwYAgMH49Kaj27+6O/O+xxe/vD0ZR22b/i3Xa3Y6Mf/CcMGQP9N4NNR6Mc+4lCuqEeFs6FkkIoKULfdKb3jtIyUfd/FoMRt3bgeMVDX4Tevmb717W6n1e/KqI+nJpKkmvWQ7whGE2FP9lVf/s+ats9Pff380r7ugmDgpcdNKqag+J+gvVr0Vce6bkffHGoa59C7X4YWmt+nrwpQ4cuoM6xJH55NLo/DO2j0M9Mtxfadk9UVp929dPR+mdAryQoqzGvr7CEvOT47UGB+pRt4e0CVHpmxOPRtdUw/3soWA6JyZDQ/DzpKw7z1sZ7T5N+wmVM3U1x36cRhOdFyDGFwS7Lh4n7d1if7aHr62DF74EQ283GBAXO6toa9It3Rd7wgCFw4GmonP6oG1+m9yINtwY/NtVOCrUqAf/vi5mXuhUj+kJuumJlSejnyPQazF9jLnvweHs7tnC6dZUhuweguMI8xtMnKR48QU48FRsP3dAAC/9nD/y06TMQ9fgPHRZk3Sc9wmA0XUV2wS8wIHhdsYfz1l3LMa2jIC1E7lul/Tx7ITbQL9zpvfCqP9CVZajUXh03oA5QVav5/k/48nf7Z3wsNhfPneHQa5r5WHR9Ffxzlstl+yjSk9rXmf7qbfTNZzcv+P5D9Pl7oZ+db/0KzOdARrI5lLWsBrTWQdtMv+WwuikYbZMse6BxW+0NRtthCHwTQTZmKDX1EowmhBBCCCGEEEIIIURPFC5ESAghukqf+Mi3T7lh6tgmpVe5FbjajTqU7OP1r7c7FA1kmyyEEEIIIYSIHZ+K3QVHO1uZfz0/lM9mr96HdvVQWvlg3WueQ9HAHs4thGgmp50KIYQQQgghhAhwWn+ZVa/MMycTWhTTX75pb69oFVSWeepaf/Oep3IA6qGvUL6e+8WbCGPH/azBaKxfG7Kq2vlAdIhgNHXpvTDl5HYMrpvz2YLR/M23/Q0cWPEWvyaZg9GG5MABNR/wx+pA8kyGv5Q9Kz/muLLngMZAsZb++zZqmz023J00HIbmwu+GC4OM7g/PnO6w1fXhg9P2q3iPvv7Qz3d76SsOD9wYtgXc9Cqq78DgMvO/R//jCFhnSd0JJSMb9fDXqH6D2znSYHuMgtREqLSEVAFk+4tb3c9rWB1RHw4uyW61cV2NCpEC0uS7DyLq7+cV5i/+05Ng0+zWy/Tns9D/dwpUe0gwarLrodBnE9TkI1Cb7wCAUor+Bx/G6bMf497eZ4dpILSDxgeCDPQ7T1rL9IRQRqUUo/rBd39GVi83RDAaAG8+Csf8PaI29eez0FcdFdlATJYuxL19GndP+y/3fdr+5mwcgrdtetlCOiYWqH30H/PR/zoBlvwSWDB+Elz3NCq7X2B9/o/o07b31JZ65Fv49Rv0gh9Qg0fCvsdvaAcgI0SO4oOZp3HFfeOobQzwnLaHIjNM7qJpu/fbGvP2Y2R/+6PfO9W8vNhTMJp5eY5crElsRPTqPwPb4EXzIq+83/EdFooGsO2mivwC7ycMpLqVxGnzyeWl1eZAopZsQUcKSIwLBKS5hjJLCjUTh3bHTwHRrRSGSAc2WTQPtowwrLALvTjH5aRHNbVh5nfEYpuRlqS47zjF1GfMb9r/vKW56yPNoyc5HL519P3ph64NXrj6T9yv3gbMgbiOgl6WfZx6P9Q2BIeX+U0bFsDXOPQBEWQOJ7czGO34HRTfLIlNwHBNvf2xEEIIIYQQQgghhBBCdF99EvK6eghCCGEU6fZJoegTJlgs1TIpXaOpcatIsQSnhbOkemFU9drqEy/bZCGEEEIIIURs2I5/eoqlNZb5h12kQdeztGZxRHUy43p30GiE2HhEF1EvhBBCCCGEEGLj0yJszI+DX5mztBMaF+v6OpjzsbU5/c7T3vt+5lZPxdTLi1DxCd7bFT2OOukf0VfeZg84zBBulJyKuvFl1EGnbdyherYrEeoWYT0N9VxcfAc7VX0ZVGxYVh3vXejw339uxcwVRzFzxVE8vvoMji97zhrsoy/aH/e+K9HFgeCwOJ/iob2WkhVX06rccfGf8dOf2zF+zgP8cOJi+idYUmUa3V5wacj16tIZOF/UwuY7hiznyeKf0LeeE7RYNzSgrz46ulA0QL22rENC0QCSExT7mrPtAOiVBPH7HdtqWd4++0TUh4NLsq4xrqt2PASjrf4TbUsSMVi2zrx88zxwnOZXoF5fiP7X8ZGFoo2biPN/z+NMm74hFK2JOv4yblp7FdtXfbthWZyu5+QSe8CZyUHlb6ILlsNSywlscfEwcUpEbXaVcZtEHhSRO2mXkOv1vf9A+/0hy7QqX7wmNqFoTWY+AMeO5tODf45dm22YgtFYlt9h/UVD19ag330afeKE5lA0gHlfoA8ZjDvjCvQz0z2HoqEUDB6FOvRsnCsfQh13SatQNCBk0NlF/W6j1m3+XL7rI82/3wy93WgbjKa1ZmGBuezIvvZ2sm3BaKE/ngAokmA08Regp58XXSjaFjuhIgzCjNQBW0RWPsWtJsMtNa5rcKG6LnR921bJcQJhTqmJ5vUnPhqbECEhWsmf29Uj8GxpseaYh8KHosXS0dsq4kKc/VBeA0c+4PLdH9G9P92Vf/DpqgxuyL6MF9MPp0o17+j4f7M/Nz4ncIxmU2rIo/Zb8sSb8tDzIghGaxu6FqlTJsYu5LGmPmZNCSGEEEIIIYQQQgghOtHW6Tt39RCEEMKod3wumyWN9Fx+dOqEsMFmqSHWV/jLPffVUrW/kgq/+XfrSG3dS7bJQgghhBBCiNgYkzqhq4fQLjWuec5TVymuX4s2zSux8BHH2NStOnBEQmwczLPchRBCCCGEEEL89TjNwRT1yj5rsikYjSW/QGWZvb33n43RwALUy4tRfQfGtE3R/aheveHvd6JvvyDyuo4DF94BB5wKC75Hr1mGGrU1jN4GlTugA0bbzdhC31qGEfkbyHJL+GDp/nydsj0/Jo7HVQ4j6hax6z/uoFefzYA+6BMuh6du9tbvs7ehn70NZnwCq/5gl5vO5Fey+Dh1N4p92WxV8z92qP4OBejbL2A88JOTyQEDZ/JtSnD4zur8QeT6i+z9JSbD7ocDoI79O/rKI72NM5TvPkCXFKEyc5qXzfsCCldG1Zx65FtUXMd+7XbQeMUr/zNP6C+rAefKh9CHnAmr/oBNhpI6amuyLvSzvspb+wpNkmuYoQ9UtwgAICER6mqDC9VUQVU5pPby1N9qy3lfm2S1mYT/2UyoD5Ng0oY63h60p3L6k3rOv/hixmQ+St2dYl82E2p+ZGD9Cp7IOB5tCxxsoV/DGrZ9+Cj0wyECFg46vcNfE7Fy8kTFI7MjC4vos8c+kHgBvHCntYw+cyd4YLanx0Ef0gGhgquXsvNN23PsxK94dv2WMW9emaJzulEwmi5ahb74AFjyq73Q8/+1BgAZ9RuMSgwdlJiZEkmD4ZW32dwUlAVCTkxG9bOHeGSnKkxxR+sqA2FrStnr2oLRbGFrQvQ0etUS+O4DT2XVtU9Bckpgf2PT0TBhtw7/vNtqkPn9a5OqK/G59nDOkmpIsYSbAbiW8xOathK2bRBAVa0mJTF2gUJi46JtL65QdRbOtYZWdzezftREkJMcE5kpiolD4fMwF4Hc4UaX2Zc7TBwa2aN50aMl3D34vQ33t67+H28vP4hs/zr8P3wGXGWs5yjICBEWW1YNfdscNoULRstNg3gf1HvIHm5vMFpyguKlsxyOfCDy12xbNZ0YlCeEEEIIIYQQQgghhIiNPbMOYVTK+K4ehhBCWB3X71zuXXE96xoKQ5brE5/H0X3OCNteipNuXVflLwf6RzpECuujuzhrWwfmHMegxKExaUsIIYQQQggh+iYM4Ni+U3mu4H50ZDMJuoVay5ynrrK2brXnsj7iODXv4rDh3UIICUYTQgghhBBCCNGkRfhLnUqwFov79CXc+56Gb96zlom5CbtKKNpfySFnQRTBaEAgyGT4eBg+vsdMGI8ZW4CTbjF52R+YhZxAPbtWzWbXqtnN1VOag9XUnkejvQajNXVz7u4bbvehkL+VvWQtm+WW8OnSvbi0703cl3UmfhXH+JqfeGD1OaFD0QA1/Q1Uelbgzs4HRjRGK61h7me482ZDwTLYdAz8uSDydlLSURf+FzUi9qFLbU3ZInwoiBqzLYzZdsP9AZl4DkbL9q8jRZsLVzot0n/6bAIrfjc3UrQqgmA089/SP7P5tq6qQN92vqf2WlIT9w9d4KhpODMuZ6/Kj1stHl63mPzEEWHbP6D8bZxwz8V5t4Rtp7vYaZjiwRMU057X1NR7q5ObDmrqjejli+Crt82F8ufCO0+iJ+6PnnEFfPBcYPkBp6LO/j9URjYA+pt3Y/BX2N3zzT7UTZnPy4uzY9qui2EbvH4t7jXHok64HDW8a08U1y/eHToULRpjtgtbJC0xEAbixuh30rVlrYPLVpbYyw7Nta/Ltvx+2OAGQo56WcJLtNbWYLSctL/cnofYCGmt0Vf/zXuFEVuiBoX/rIylTbMDwUC20KC2UtwqkrU9vWx1Kbw4x+Xj3zR9eymu3F+xWU7z+9m2+XI8vOWLKmBQiNA18Re3fm3kdfLnxn4cHWTpuq7pd+Y5DtkXhd9A7HxzoMxuI+De4xxG9Q/9pp67THP38i1aLfsheSvuzTqLfxbdiFtTDZb3u8+x71sAlBrOzQoXjOY4ioFZsCT04TPQ/mA0gBT714QR8Xp8IYQQQgghhBBCCCGEgDGpE0j12cN5OlqcimezpBHkJPTrsjEIIYQXeYmDuGaze/ijJp919ebf4HLj+zE4aTjxTvgfPZKcZBwcXIJ/sKl0LSeNhFFomRwfp+I4pu/UsPUTVCKbJY+kd3yIk2GEEEIIIYQQIgo7Z+7D+LQdWFz9KzXdLGisyYLKH5lT/kXQ8u423sJ687Ffui+DQ3JP3HA/xUljWMqYLv3uT4ieRILRhBBCCCGEEEIE+JpDkeqVfdZk/LM3QW2MgzXCUGf+u1P7E11LKYXedk/4/kPvlTbfoeMG1FM4PvNy1998uzEYzcjX/DWRGjIWvesh8NlrMRpcsHgauKPgEv5VeD1VTgp9GwrwGU4m2qDfYNQLv6Gc5vAhpRQ8+wv62M3bPR59zbHNd2a/GVFd9VI+VFXAoBGouBjMOvegd6qiby8oKAteN2WcuU5eJvyyylv7I2sXkuZWGtdVOSnNd/oMtAejFa+BwaM89bfKEm6UlxH4X9fXoc+c6KmtltRjc8KXcRy45B709PNaLT93/f1c0O/2sPUPrAjzehk0AhUfoySBTnL6JIeTJ2q2u8Hlx+Xhy+ekgfL54KZX0YcMhnUFxnL6udvhtvPA32K79Oaj6C9mwcuLUUkp6LefjG7QvfvCuInw2cyQxXq55Tz/xkDWv1XFH0Uax23g1Gfi+WlldN02SbH9qPbJK+hv3oM730ON3qZ9nURB19cFbnz0Ymwb9sWhDj8nbDHHUWQkew9lDKe6HsqqIaNxM2TbdsT7Aq9Lm96p9nWrS+3hJeU1gfA0k1D9CdFT6If/BYvmea+Qt1mHjcUmPk6xWQ4s9pgplepW0cs17DA12uM2P2U1TYFImhe+13zzD4cxeYFltmBH5SEYrSbErrcQ/Ppt5HWWLUTX1aISun/iXrHHOSGJMT5bIStV8chJitOe8JbK+mk+jLnW5bsrHcbmtV6XEAe+xhTEl34wt/d6+oH8s+hG/CuXwhBzHz4H0pPsYygzZDf6LcP3tcjiHd3fYzBaDB7jhBg9TxKMJoQQQgghhBBCCCGEd3mJg8lLHNzVwxBCiB4hwUlkZIrlpLkIKaVI8aVT4S8NWlflL4+qTdvk+Jz4fuyYsUdUbQohhBBCCCFErKTHZTAhPfL5Op3Fr/09IxjNEoqdlzhIjv2EaAcnfBEhhBBCCCGEEH8JLUKV6pQ9wCVB13XGaDZQ099ASejVX8+ICREVVwee1kED6UEcy9c8bosEl5ZhRG35Ws90Vlc/BkecG4OBhZbplpLXsDp0KNq+J6AenN0qFK2JGjgc9eCXHTjCMI48H9VvMGrI2E4LRWvyf4eYEzn2GmNenpfpIcGj0ci6RaRagtEqnBbpP0kp0Ku3uZG13pOmVgefRwZA/8ZgND56CZYu9NwegDrtWtQwjye87XRA0KJz198ftlp2QxF7VH4SutBmY7yNoZuJ8yku3NPbaya38UI1SinY7wR7weWLzNuh0mL0Xlnol2fAJ69EPtiDT0c9vwB1/XOo82/1VCVrSgpbnZTKlqdk8NXsPC5OmsWmWdEl2CS4tWxR+7O9QHUF+qW7o2o7WvqHT3BP3gY9OR09OR3Wrohd4xN2RU1/HTVuR0/F+/aKXdcAWRe6XDnTpbpOs7LEnBrSPyMQymYzINMeahQqbKkoRMiLBKOJrqJ/+hL33Mm4+/XBPW0H9Pzvo2unpgqev8N7hW0md/q+T5OtBnnfp0nRVSTpGuItx7HNoWgBFbUw/f3mbYu2hBOF2MRsUNW5h86ih9Ffvxt5JdeFlUtiP5gOUFzhLZhsR0uYWHucPDEQjpaZEr5sk+1ucEk9r/W/jGkuqef6yb3Iz03vmP+euUlbogF/vT3xy1GBgLU0S55dmeHcLL/l8NjXYtszsp+3bWFSDDbV8ZYc9khVy3ZRCCGEEEIIIYQQQgghhBA9QKrPfBJIpd/j1YHaKKxbY1yeG98/qvaEEEIIIYQQ4q8kyTFf9by2uwWj1cuxnxAdQYLRhBBCCCGEEEIEtAxGwz5rsjOD0dQDs1Hb791p/YnuQ+0cHFIU0q6HdMxAehLHMlPZbRFC5A8R+tMm2EIlpeBccDvq1ln20LVOoq58CJXVx75+9DZw3KWdOKJG2f1Rp1zV+f02OnmiYqehrZeN6gfHbmcLRvPWbi9/KTn+IlLdKuP6StUiYcAXBzl5xnJ63mxP/VXUaGvYUF6mQtdWo5+80VNbrRzkPTBR5fRHnXl90PL/LdmOdH+Ztd5Na68mSdeGbnvSwZ7H0d2M7h8+bCEhDjJa/M6kjvl71P3pOyOsqxTqqkdxLpmBSk5FKYU6ahqccHlEzSTVlHDz3GNYvGwCtx0RuuwRW/rxqdbBGNcV/ptkXRO64rzOC3DUS35FX7gv/B4irC0aY7dHfVqFc9f7C1GGMgAAIABJREFUqG28X7HI67YnEje9o7n2dc2SQvP6AWH6TE5QDMw0J47kF9iDXJats7cpwWiiK+jClejLDoGfvoSKUsifiz5rZ/SqKIKTfv8Z6sJsy5okp6JOuTryPmLkgC28l01xq1BApr/Ec52Pf2veDriWTUJTuOK+Y+3tVNXB2jLNzys06yq9hUSJv5BFP1pXqQtutx+DLc/voAG1X2295rs/NJ/na/4oCl8+KR6uOTD2x5pKKU7ZyWHdHT4u2dt7kGJbVXVQXQ/F5rzoDVbGDcANcdqFr3FVL/O5WZRWB28frMFoLboZ7fFcqaT46B+DJsPsh+MRqYkuh1gIIYQQQgghhBBCCCGEEKJTpTjmk0Cqog1Gq19tXJ6bIJPjhRBCCCGEECKcREswWk13C0ark2M/ITpCXFcPQAghhBBCCCFEN+FrDlVK0rX8rfQF6lQCdZn9qR+9A3VLFlJXbA/KiblhW8CorTunL9H9jNnOc1F1x7uo1F4dOJgewjZx3m0xozpUMJrP/DWR2mFfePR79Mz7YNbD7Rhg9JQKP5FbHX8p+plbO2E0wNBxMOkg1FHno9KzOqdPA5+j+ODvDk98pfn2DxiSCxfsoUhPMj9e4YKCmmxavxQFpLrmE7kqndQWg4iD0dvAkl+CC875yFN/+QX2dUNWfo6+5G9QFiKNyGT8zqjefSOqok64DEZOCIRzLQsETmxR+wvf/zGRB7NO47eEUejG1+Im9Ss5quwldq/6PHSjaZmw05TIxt6NjPTwEI7u1/o9qjKy4c1V6APMgXntctBpqJwB6EU/Qu8+qD2ORk3YJaiY2vd49HO3Q0N9ZO2v+J0L5p7HdUn3UGbIBkpwa7n3zfH8Y/I5PPJNApVOKoeVz2T/infDt71uDVprT9uz9tAL56JP3yH2DR94KurCO1A+SwhnCAMyFRD7QKDp79vbDBXGprWGx29g+PJtWZYWHPAWKhjttzXmddmpkJHSsc+tECb6melQGRzgqY8eDZ/XRLbNCRWKNnQc6vjL0N++D1m5qH2PRw0JkQjWwSYN97ZdSXKr8RHYF870l1IY5y3ZZ9k6KCrX5KQrtC0YrfH/KVso3v3VXOiKV1zmLIWaekhJgDv/pjhtZ7lmlWj8LFq20Lxyr2NQR5yLfvkeWGkIOVzWPYPRZi/SHP2gy+rS8GX3GAUTBimO2U4xYVDHfn7efLji11WadwyHK7HyW8IIxtfaA2mdxj8xIxlWGTIaTfudXoLRBvX2ti1MSQxbJKy8TMV2m8J3f7avnZoId8+FEEIIIYQQQgghhBBCCCG6Qqov3bi80i2Pqr3C+jXG5bnx/aJqTwghhBBCCCH+SpIswWgNuh6/bsCnuj42ya8bKK5fa1yXGy/BaEK0R9e/w4UQQgghhBBCdA9Oc9BFX/9anl51SuBOziScCz7EvetR+N/dnTYcdfn9KFvQk9joKcdBn3QlPHFD+MJb7dbh4+kRHEtYjetvvt0QeTAagBq6OeqSGXDJDHRDPXp38xURu5JKy0D3GwxrlnZcH1NvQB17cYe1H42keMVZuyrO2jV82TyP4URPrDoNgFRtDsKsaBOMpnbYF/3W48EFC5ahG+pRcfEh+7OFECXGaTa5/RgojzAULbs/atptkdVppLbbC/VMINRAz3wAffs0htUv4Za1V0XX3uX3o9IyoqrbHfRKVvRJh7UhzukzhVmojGz0UdPgxbtiOh516FTUsHGEi89Qg0bA1BvQ9/4jdCCkyZuP8v0+OWy+9ErqVUKrVY+vOp3e5cvoPesKIv7LGuqhtBgycyKtGZIuWg1fvxMINNp+744JRes/GOey+6Kv7jGUMZYGZYd4lXz5JvrRfzO0312Y4hvXLC8GzOFJC83nqTIyqxr9wiOQ3Q8mHYxKTIp4zEJESmsNr9xrL/D2kzDlJO8N1tdZV6lL70WN3Q6151ERjLDjDMyC5HioDhOwk9Ii1DvLXR9RH6c94TLrPB+uZdep6VD19J0V5z9nLjR7cfPtqjo48ynNpOGaEX0lSPEvr3AlVFcaV6nDpwZuDBxhDEbTy/LD7gt1tuo6zTEPeQtFe+4MxdHbdt53PUopXj/PYZ87XD7+rWP6WJg4knG1v1rXN4WZ9bLsHpQZLlppC0ZzWjz5XoOv02IQjAZw/wmBx7Gw8dggKwXev8hh/CZwyAyXtz2Ez9XUa+h2r2AhhBBCCCGEEEIIIYQQQojWrMFofvOFRkOpdWsobTCf/5abIJPjhRBCCCGEECIcWzAaQI1bbT2G60zr6gtx8RvX9ZFjPyHaRWaYCyGEEEIIIYQAQCnLIaJunI1ZFmEwTXtsviNq1Nad15/oltQBJ4cvtO0eKCWTaoHmdIa23BYzqkMFBIUIRmtJxcWjHvs+fLlbZ6GuewbSs+yF+g1G/f0u1FQPAXhe7Ht8bNoxOezsbheKFikvE+dT3YoNk/pTXXNYQ2WbYDQGDjc3pjWsKwjb5+JC8/JhSevxlReHrb9BYjLq+udRT/yAGrGl93o2ex4NifYfUMJRN76M2u3Q9o+ji/UJ8xvRVoPMy9UhZ3rerniy6WgYurnn4uqoaagn56KueDDiroa+dwvrF/blqZUnc2jZa9xacDlLFw3jqPJXIm6rlWJLqlaU9I9foE/eGn3LVPQdF6GPGRvT9puoR8Nv80PxGtoRS7sMt+8b6C/eACDHX2RcX7zaHp60yBLkOPKXF9H3XIa+7kT01F3QRasiGK0QUSpYFnK1vulMdHkEYWChgtHGbue9nU7gOIqRHi6c3TLkNa9+dUR9NIWaaUswWtNWJjFekZ1qLtOW1vDol+FDasVfwPJF9nWDRrT+P6hufuzH005v/KRZWeKtbE5a5x+/+xzFBxc5jOmgc4vyE4bjV5agcprDzGzBaKWmYDTLpsLX4rDf6z5WaoyC0bYcqJh/ncNLZzk8d4Yi//8cth6siPMp3jjf4cO/OzxwgmLeNQ4DLV8D1IQJtBRCCCGEEEIIIYQQQgghhOgOUn3mC8dW+kNcXdKiqN5+vlCfeJkcL4QQQgghhBDhJIYJRusO1oY4Tzkn3sNJz0IIKwlGE0IIIYQQQggR4LNM4nQb0+qLI5tI3i7JKZ3Xl+i++gwMXyYjp+PH0VM4tvdwi2C0UOEYtvoGatgWqCsfNq8cMAT18NeoHfZFTT4C9cZKezsnXoE69KyYBY6pEy6H/U+CprA823Ytmran3R6ztrrKyH7Nk/JttqyZt+F2mtdgtNw8e4OF4cOB1pm7YeCayMKY1J3voXY7FJWRHVE9a3vpmajpb4QvOOkgGDex+X5iMurSe1E7HxiTcXS1HPN5fhtsNdj8olIDh6OueQLSMto/iCGbo26eGXEQpho0AjXlJNj72Ii7TNK1HFP2Ii+tPJaL1t3NgAaPQVehXn8x3JfSWqPP3xNKIwgPDEFd+xT07tt6Ye9+qLs/RLXzORzUu/MDUPYaHWLlbz8AkNNgCUarsv9sYgt9GVK3pPnOonnol2eEG6IQ7bd2RfgyL9/rvT1bgG5aF6QbejCyb/htS4qv+W/Ka4hsG7y+CiprNa4lnKjlPlW6JezI5MP5EowmgPWWZOC0TFRjsLSyBaMty0fbEvu6yLu/eC+bHWbfsqMopZh9ucOBW8S+7d8SRuCGOO2iKcwsw3JuVllN8DK/G7ysZVsAvZIhJSH8+NJiFIwGkJ2mOHxrxdHbOmS3CLlTSjF5lOKMSQ7jNlEkxZvrSzCaEEIIIYQQQgghhBBCCCF6ghTH/KNWlb8i4rYK68zBaA4+suJzI25PCCGEEEIIIf5qkkIEo9V2k2C0wjrzecqZcdkkODE8iU+Iv6C4rh6AEEIIIYQQQohuwhaK5G8MRvMy8T5W1q3tvL5Et6UcBz1sC1j8k71QjAKQNgZKORinx+vAjGpdV4u+4jBzZcdBOZHl56v9ToDJRwSCftYXAgp6ZcEmw1qFFymfD+7/An32pNYNDB4F+x4fUZ9hx5SQiPrHg+jzb4UVi2HQCPRBA6G2fV90q8fmBP6OHi49STE2D362Z9UxqjZ/w+1Ur8Fo6VmQkAR1hhn9ReHDpEqqzMuz/CGC/NoauRWM2c57eY/UlpPgno/Q5+1hL3PAKaiJ+6OLVsP6tTB4FCph4/nhIlQwmlKwxYAQ6ycfAbscDH/+Fvw+jItHf/AcvHBnyP7VI9+iRmwZwYgNbZx8Jfr9Z9vVhqd+TrsWjrsEPTndXCAG+1La7wet0Xdc0O62WtntsMDztWwhVJZDajoMGhnxZ4PJyL7hy8TSweMhJTFEYFLj9jzHbw6VK9K90Fobg/hswWibNLTZsH72Gpz9H0/jFSJqxfarSjfRH7+EOuUqb+3V15mXx3tI3ekCIz1cPC110CBYmQEVpeR5DbhsIb8A8/41zTm84C2YqMn/lkU8DLExKjWHc5LZIvjbFoxWtg7+mA9DxsZ+XFGat9x7UFu40N2OlJmimHWej4IyzaoSiHOgqs2mz69h55stqWQW+Ykj8HsIRktPVpi2KmWGw1UvwWhKKQZkwqIwX6HFMhjNK2swmiWDUwghhBBCCCGEEEIIIYQQojtJ9ZnP/an0l0fcVmG9eXJ8dnwffKrnn5MohBBCCCGEEB0tVDBaTXcJRrMc++XGezjhWQgRkgSjCSGEEEIIIYQIsAVfuH50QwOs+sNed8hYGDcRZj0Um7HUmMN4xF+POuVq9FVH2ddn5FjX/eXYgruawg1/+DhE3ei+IlKJyZA3JPAvVLmx28H0N9CP/BtKCmHs9qizrkd1UNCGSsuAUVsDoA3BNp5tvgPqzH+jho2L0ci63ndXOiSfa5/oP7Ju4Ybb1mA0ldJ8x+eglELn5sHKJcGFC0OksDUqqTIHKWT6S8PWBWDf41HTbjOGGMWCGr8z/Ps59DXHBK/MyIatJwfK5fSHnP4dMoau1DvNHOAA0Ccd0pJCP+4qLh5s76ERW8KQzdE3nmGue94t7Q5FA1ADh8OMT9CXHAjVkV+51bNt90DFJ6BHbwML5gSt1t9/iDrglIia1LXV6KduhidubN/Y+g2GbfaANx8NXjdhV1Rc4+fApqPb14/BkNxAiIct4CPWjt42zLagoR6AbEswWrGThVu8Fl9O60S32npNkeXl07/tD5krFlvD1f6KtNaB/RG3xT+/5Xar+27jvwjrNN3WbsR19IZ+I+in5TrtWsYa5u9oNVZbG4b74fy5wPsT1cOC0UZ5OE8gN8OHevBL9N2XkrekLOI+fl2lcS3bLqfF29sWAGSiFFTWalJDBTiKjV/ZOvPylsFow7YIfE9jehF++Va3CkYrieC8ouzU8GU6Wt9eir697OtXT3e46JH1fPxzDaVOBgCb1i+lf8NqPk3dLaj88viBlPnsDTZtLzIs52aVVQfva1uD0dpsOjbLCR+MltqdgtHqO3ccQgghhBBCCCGEEEIIIYQQ0Ujxma/2U+VGft5RYZ1lcnzCxneemRBCCCGEEEJ0hHiVgMJBE3xiXbcJRqszX/Bajv2EaD8JRhNCCCGEEEIIEeBYQpVcPxQs3RAi0ZZ6bA5q2Di066K/eB3WFbR7KOqQs9rdhthITDoo9PpsuXLCBsoSbqhdtNboZ6bb60YZjBYJtf3eqO337vB+gvo97lL0I9dFXu/M61EnXNYBI+paifGKkycqHv/KHHQ1si5/w21bMFqF0+LEr6bXTo45GE3/OZ9wsR8lVeblGa49GE3dPBM1cf8wLceO2v0wuOJB9E1ntl5+3i2oxKROG0dXyDGf5wdApv3CO54opWD/E2HbPdAnToCKFs/5xP3hqGnt66BlX1tMRL0fHITl3n0pvHhXbDoZPCrw/ybDjMFofPwy+spHInrN6IeuhRfujH5MY7ZD3fcZqjEA183oDS0/DxKSUCf9I/r2PUiIUwzNhfz27yJ6ctQ2YbY6VYGTVHMswWiu8lGyeAnZbYLRVofIahzQsCp44fzv0CMmwKJ5UFFiCPyyBGBZA7Gay2pr+FbL+7ZwrxDLw42jVb8ext50X/QMDZZgtLgIUr860aj+9uDOJnmZCjVwOOqW1xj8m4bbI0to/GC+vYeWuYehtg9taR1o95AJEQ1FbGR0SZF5RUb2hpsqPQs9bieY90Vw/fy5YfexO1N5jbdyKQmQnNCdRt6ariyDxT/Rp66Gp1+dErR+SfymjBg231h3YcIIa7u+xkP1XpZdwDLD42cNRmtz2D+8r+L9+aG3hWldEMQowWhCCCGEEEIIIYQQQgghhOjJUn3pxuWV/gpc7eLYztU0KGx7sb1GufFy7qsQQgghhBBCeKGUIslJotoNnnxU212C0azHfhKMJkR7STCaEEIIIYQQQogAnyUYze+HFYvt9TYZCoByHPR+J7QO24hWF4Qnie5JKQWvLkEfNsRcYId9OndA3ZljOdlm+SL0sZuHfh9HcKJOjzNxfzAFox02FV69z15vzLYdN6YudtKO5mC0TFXJ5FOmoFIPQ990JqnaHIxW6yTRgI84/M3BaJm55s5mPfz/7N13eFvl3cbx+zmSLHkkTmI7w9khgwwCgbDCCJuwd6CMQmhLgQ7a0pc9CqVQKB28BUrZ0EIZYa9SRtn0BcreOwkhyxmOR7yk5/1DSWxZ50hHsuT5/VxXrljPOj8nWkc65z6yg0dKx50Zfzy3Y5ct0pqPayRnUnI90TWuS5qbX5OZsLnHb5c/Zr/jpZETZB+/TZKR2e94mc227/Q6OlvKYLSi3GzDVAyX7nhP9q4/SWuqZKZsLe1/out9JtfMj6+Q/fxd6c3nOrbQwMEyJaXxNUdO8I7qeeaeeBicD3b1cmn+1R0qy/z56Y2haJJkfniJNGEL2VefkPoPktn7GJlJ+U/n2XRo5wSjfXSxI8dJc79ZtlCSVOYRjCZJK75cpLLtEh/fi92fkiRJlS3JX2Tak3dOXQfQ3TR7BKOFCjq3Dp+m+DhOoHJA6887jM98G4+9Z7Wpx7HoTpbBaJL0xPtWB8/ovuFQ6ATVHq9BpeWJt7fYyTUYTc/dL7tskcyQkbmvLQu1jf7GlRXnt46OsPddK3v1GZ4XBZCk0c0LFY41qNFJTjj7MDzZc96G54v+HqHC1S7HZUU93ky2D0abNMR9XFvFXfA0HvE4CoVgNAAAAAAAAAAA0BMUOe4HTFnF1Bhbp8KA/y++VjQtdW2vKODkeAAAAADwK+wUugajNXSDYLSYjaqqyf1kCfb9gI7rxWe9AgAAAAAy4hWMZGNSlfsX8yobJhNpTUUxx54hTZ7ZsTJOvEBm7JQOrYHexVQMl/nl1VK7gBzzk9/JDB7RRVV1Q17BaGtXpQ5Fk6R1tbmvJ1MnnOveftipHVt3wubSsWcktm29ezwcaNKW7nNKBkib79ix7XZjsycZnbZ74uOpICj95fslKp57klQQliT1j9Z4rrEmsD5pZGMwWpnnWHvDhdLrTye3f/2R7OHjtaYl7DpvQCw5ZcQ8ubJLQtE2bn/6LDln/VXOWdf1iVA0SapwvwCqpNwFo0mSGTREzqmXyTnnBpmDT5IJds41PYwxMn94XNpx/+TOfgNl/vy0tNOB6Rcav1nrz2Oneg6zLz7suzZ779XxgNpsjJsm89BCmYLEx5cxRmb3I+Scd7Ocn17ZKaFokjRxSPYBQJ98PlWHrH0w7bhLDzGaNDT1duxLj2z8eXDLCs9xX36d/Pzz5Qr3hJLiWK36x9amrQ/oKvaTt2T9PJe0eASjBUK5LShHCoJGc2emfsxXtDlWvSBodPY+mT0XraqTXvnCva8j2Z0ffOsZn4m+orrKvb008T21GZ0cHryB/dWxuawoay1R6zvsKlXgbley7/9H9k8/TxmKJkkBxbRJ85eufYuDw73nrd9VL/UIRlvbkNwWjaVea4PJw9I/GZUk57jlXaFHGBvBaAAAAAAAAAAAoCcoCXgfMFUX9X+sZXOsSatb3L8brAhxcjwAAAAA+BVx3A/A6w7BaKtbqhRVi2vfYPb9gA7rnLPLAAAAAADdXyDg3h6LSmtXuvcNKE+4aUpKpWv+Lb32L+nrj6UhI6VvvpC96SLX6ebM66S9jpbefkFa/KU0fQeZTaZ15LdAL2UO+oE0Y7b05nPxsL4Zs2XGTO7qsroXx+Mx3EOYnQ+Sve1SySYGRZjZB3dsXWNkfvhr2V0Pkz74jzRivDRjl3jo0jXPyu4xIHnO3J/IBLtnCEiu/PFIR0dtbfXql1bFYWmPyUZjy9efVL8+6aM86hHYIGl5oELl0ZWtwWil5Z5jJck+fJPMNnu23n78dtnLfiBJWhModZ0zILom4bY59TKZom6aptCLVZYaSe4BLuFe8umyCQSkS+dL//239NnbUnOzVFEpbbOnTNlQqaEubaCZ2btNOMn2c7wHvv2CrLUyaRJ17OO3S3+7PJNfI27OsTI7HShtu5dM2CN9owtsOjT7uZs0f6W7Fh+re2sO07HDb0vqnz5Cuv1ER9NHpA8GsX+7YuPPRXadhjcv1uJQcpDJJwsbtG+7ts+Wu685oekLdSAfCcg7+/3tpKJ+stO2k9l8R2n6DtLkrWXC7ZJymj2C0UIe6TbdwC/2NLrnDe+QsTFliY/OSw42uut1q6/avcUpja5Rswmp3vF/Ve+2K08Y7P0c4eajJfL1WoBebJX7Hca0C0bTKO9gNL3/H9nl33R5WHhto/+xZd3wrbxtbpI9Zbbv8RUtKySXXOflwQrPOc76h3r/iPv76mqX47L8BqNtNy7+nrzR/ZgqSVJxFzyNR0Luv2tDijoBAAAAAAAAAAC6i6KA9xdbdbEalWuIr3WqmpfJehx3NbiAk+MBAAAAwC+vYLTGbhCMtrxpiWdfeUEHTqQAIIlgNAAAAADABl6hStGobPUq9772J+1KMqECaYf9438k2Y//K7kFo43YRNrvhPjJ4G3CcgAvZtREadTEri6j+3Kc9GO6MTNhc+m8W2Sv/LG0rlYqLJY55TKZGf5PUk+5/sQtpIlbJLaFC6W/viR76felBR/HA8HmHCcd8z852WZ3t+04o23HuQRymPh9qSJFMNqKYLnUpI3BaKb/II9DuNZ7/gE9cdGfdc+AI9VY0E/ff/B27SIpJqNqxz0YrTRWndiwyWaptoA8qUzODtyo3iNDpycyxkgzd4v/aW/bvWVOuVT2hgullubEvkBAOvqX0p5Hta4VLpRO/o3sdecmr1VbLa1cKpV7H9xoVy7dGByY0e9w9g0y+34343mdYdJQ74C9VO5fNFeSFFBMR629V0WxdZpXeb2qAwMUtM06f9wbOu+sHXyFC9k1VdKHryXW1fSJazDap6sKZNdUybQJAf50cZOk5NDM8U2fZ/hbAV2gvkZ67SnZ156K3w4VyG46U5o+S2b6DtJms5Kf3zboxsFo24w1uuooo9PuSn5+MUbaYmT7NqOnfu7ohFtiemn9Q3e/msd1w5JTdPKwq/VwvwN8bzvS5ulg3g5G5zzg/zludb20vEYa0t/3FPQiNhaTFn/h3lnW7v3B6Enxx6BXcOG3X0ldHIxW0+B/bOWA7hMGaKNR6aHrZf/4s4zmlUfdLxywPOAdjLYhzGxgkXt/9TqpJWoVDLT++3gGo7X7JywOG+22qfTE+56bV0nEuy9fIh45440eLzUAAAAAAAAAAADdScQpkpEjq+QvbeqiNb7XWdHsfnK8kaNBwcFZ1wcAAAAAfU3YIxitIZbBQYx5ssIjGK1/YKBnoBsA/whGAwAAAADEeQWjxaLSWvcTP9V/UNplzaZbyU7fQXr35cT2ky/1FWIBwCevx3APYvb6jrTb4dKiz6QR4+NBi/ne5pStpVv/Ky1fJIULZcq4GseGkL2IbVS/6FrVBJJTO6oC68OC1gejqbQ8aUxbfxl4kn6y+FRpcfz2XaOf1M3f/kBzav8la9xD/QZE2wWjjZns/3dAzqQKRqtr7Lw6upIxRjr6dOngk6Q1K6SySqlmlbTsG2nsFJkil6vE7neC5BaMJkkLP0kdjHbw6Mxr/MHF3TYUTZI2zfKpdXb9Cwm3D6x9VMs+HalPCiZqbPPXKqrcX8bs6G+xj99IrqvxUz1bnByG92VwdDxEbda+G9u+XlAtKfm5bnyTR7gNOkcgEH8P5ATir19Om9tt+wKp+gLxUNCE9va32/2cNM9JPc4JyLTtMyb92kk/O4m/Y5sx9q/nS++/6v/frblJeu8V6b1XZO+4Ml5PsUdKV7D7BqNJ0k92c9TYEtMZ8xODyQ6cLo0qS97fHFdh9Pz/OFqwUgo8cYuGX3+KJGla4wcZBaMVh1t/PmJKrc55oDijup/7xOrIrdkf7pOWL5IaPa5QOHpSwk0TKZI99BTp7qvcx69cmuPiMlebwfvBiUPyV0cmrLXxcOx/3el/0rAxMn97W+U31kjvJHcvT3HiirP+oV7ez6ueeGBiRZt+z2A0l12nAzY3euJ973DGkrBnV96EPY5CaSAYDQAAAAAAAAAA9ACOcVQUKHYNQauP1vpeZ0WT+/d5g0LlCjkeV5oBAAAAACTxChhrjHkcj9mJvEKxKwo4Pw3IBYLRAAAAAABxnsFoMWntKve+/gN9LW0uf0D26jOld16QggUyx/xS2vmgLAsF4MpxD5fqaUwwJI2d0snbDEqVYzt1m91am6CyimiVazDaikBFfOj6YLRH1k7SeWNf07LgYO1W95x+veJXGtf8tSSp0RToN+VnJa1xYuUNKcsY1byo9cbICVLF8Ex/E+RAv4h3aEt9UycW0g2Yon5S0frEinClVF7pPXZAuWxpmVTtEi779UfSlru4zrP/92Tmhe13gnTcGZnP60RlJUZlxdLKOv9ztlr3pkpja5Pag4pqatNH8RtV3/pfcMEnSU0jWr5xHboyUC4tfCkhGO3b5Q2SyzGpY5oX+K9Bit+H2od4tQ2+SheQlRDg5RHG5bpGu1AtjzkmaU6K7biu4XjU6nOOs36ej9Aw00ve++TEFQ/I7tuBL8+hRdvnAAAgAElEQVStlWqr3ftC3f9g7F/sYVRUIP3vM1ZG0l5TjS4/zPv1yxijMeWSPXae7IKXpCfv0MTGzzLaZnGbvLhxr/9NR1eX6s7S7/ie/50brE64JaqAEw86Crb/OyAFTOLPwUDiGNd5G/tMwjzH97zkGjZsN7kGk3pNz3lpamnzuztOLwyPc3k92mjUxKQmc8plsl7BaAs/zVFR2avJ4GKLk4Z07f+n/fRt2at+kRTcn1K/gdKWs2VO+4NMuFDlI8LSO8khZMtSBKNtCDMrd8nS3aCqNjEYLeaRc+b89VzZxpkyux62sW3/6Uan3uEdjDbUI/cynyIeLx0Nzd51AgAAAAAAAAAAdCfFTj/XYDS3Ni9Vze7BaBUh7wsqAgAAAACShT2C0Rq6RTAa+35APhGMBgAAAACI8woWiEWlaq9gtDJfS5uSUpmzrsuyMAC+eIUb+jFhi9zVgZ7PtAYWlEer9KXGJQ1ZESyP/+AE9NSHVgc/PUOKxJvuLp2rD8OT9dpXOyikFr0fnqqlwczCWgZGV2lwdPn6bTgy3/+VjOmFwRg9RDgoNbYkt5+0M/8nKY2aJL33SlKzff1pmUNPSW5vaZb95YGZbePQk+X83CMspZvZdKj08hfJ7UP6S0fMNLr62dagjJBt0vlVv0m/aAbBaHZRcnhMeYtLcJ2kqmCZ7MJP1Nhs9fYiacD7T2lJcLbr2GEtS6RDfig98Ne0NZgfXCzz3TN91wz4Vtgv/ZhsBQvSj+lijmN06i5Gp+6S2TxjjMx5NysmacrzH2Q0tyTc+hpon52vY6qLMgpGk9xfW3OnM8KH8r8NY7IJhcsk3E0KOmbjWKdDYXSptmtaf/5Acop3UzjWqC0a31X/2PoTJwYNlSlOTrAygYDsjNnSW88n9dmbL5aZd27O/92r660Wr5HGVUiRUOr3e7WN/ted3IXH+NiVS2W/t63/CUf9TM6PLk9q9go3q3eKPZdybExSQGXeQ1RVm3g7GnMfF6haJHvBH6Q/PCaz9R6SpBEDjWaMlN5alDz+yJmmSwIGvYPROrcOAAAAAAAAAACAbBUFSiSX7zbqY7XJjR5WNC1xbefkeAAAAADITKQ7B6N57fsVsO8H5ALBaAAAAACAOK9QpVhMWuseGmFKB+WxIAAZMR7hhn5s6R72gj6qTQBZRUuV65AVgYr4D4GArno6+az99yKb6R+lR+q71Xfok4KJGZcwqfFTGUna93iZOcfKzNg54zWQOz/f0+i3TySHn+w/nWC0lKZt5xqMpjeelW1pkQm2+3j+2flplzTn3iT70RvS2lUyOx8kzT4kR8Xm36FbGr38RfL96A9zjY7a2mjWOOmRJ79S/3ef0rHVd2j7da+lX7TqW1lr0wYn2sZ10kM3JrWXRz2C0QJluuXzkfrJz2LrAzx2lzw2MfyU02UO2EmavqPsb06UWlIkfkTcv5AFOsoEg/mLqAp6pNv0IuacGzVj4jXS0/7nFIfb3HjvFU0Kjcp5XZCslVqs1OIREpWjreRzcZdt7C6N2l2SFLTN+umqq3X58nNTf75S7n1wjP3ifZlNpuWkyljM6vInrc5/0CpmpWGl0h+PNJo703tfc6XP8z6mj+jiYLTDNslovFsomqSU4Waea73yqLT7QSosMCoOS3UuYXJJwWged8uAjUqS7M2XbAxGk6QTdzT6yT+SJ524Y9e8X/cKRltHMBoAAAAAAAAAAOghigPuV8ypi2YQjNbsdXJ8ZhcZBQAAAIC+zisYrbGLg9FiNqYVzUtd+wjFBnKjA2fMAgAAAAB6lYBXMFpUWrXcva+0PH/1AMiM12M4nYKIzPFn57YW9GxO60eGXqFBqwMD4j8EgnrmY/dlTqy8QQePuFeXlZ+RcQnTGj+UOfECOWdfTyhaN/CLPYy2HpPYduURRiMHEYyWitlhP/eOhnpp2YKkZvvCg6kXPPp0mTnHyvn5n+RceLvMrofJOD3nI/7v72S026aJbWfMiYeiGWN01DaO/r7j27pm6Wn+QtEkqalRqlmdftx917o2D/J4jqt3ivUDnbk+FC21ylnbyhgjs8dcOf+ulXmuXip0PzhWMwgiRR6NGO/dN2ELabs5Uklp5usOGpJ9TT2EcRwF5v5EN/f7i+85JeuD0ez6MMRRzYvUP1qdj/LQi7WYkP5Q9nPdWvpdKZIicWu4d6iXvf2ynNXzyLvSuQ/EQ9EkaUm1dNT1Vl9VeYfHPf1R+mC58hLpT0c6aYNMc822NMs+fY9i87aWoi3+Jg2okLnBJdh2vYp+mf8Ozt8u3fizV7BaVW3iv2PUIwwwoHgwmt5/VXbVso3tP9zZaO+piWNP2cVozyndKxjNz3srAAAAAAAAAACA7qA40M+1vT5a42t+1LZoZbP7sdecHA8AAAAAmQl7BKM1dHEw2pqWlWqx7gfGDS5g3w/IhWBXFwAAAAAA6CYcj1ClxnVS3Vr3vnI+oAG6DZNdOI55bIlMpCjHxaBHaxNYMCDqHji0OjBQkvRO/RA1psgYeLSfRzBUGsdW3yEVHpTVXOReeT+j537p6NmPpa+qrHaZZDRtOKFoaU2c4d238NOEkBPb2CA9nyIYbY8j5ZxyqXd/D9AvYvTETx09/ZH02XKrHcYbbTlKiSEpoYLMF/76I2n6DimH2Lv+5NruFf7oV8C2aPCgxJpNICC711HSQzcmDh49SRo/vUPbA1KafYh0x++S2wtLZP7yvEw4IhuNSl99IL3zkuy7L0vvvCytdL9C9QZmpwPyVHD3c/zu/XXafWtVE+ifdmzx+mA0LVsoSXJkNbv+RT3Sb/88Voje6qF+B2he4ULPfrPb4bK3/sa989n5spO3ljnqZx2u42+vuqdxbXJOTNG/JgebxWJWj77rHox20ObSgVsYFQSl3Tc1GlrayaFoa6pkf7Rr/D2XT+anV0p7HCkzcLDnmMos8iWdL97d+HN5ibRwVfKYqtrE257BaLZNx8uPSQecKEkKBowe/6mjf30oLVplNbXSaPtNuu79esTjKBSC0QAAAAAAAAAAQE9R5LgHo9VFa13b21vZvEIxuX/pU8HJ8QAAAACQkYhnMFp9J1eSaEXzUs++itDQTqwE6L0IRgMAAAAAxHkFo3mFoklS+fD81AIgc16P4VQOOJFQNCRrE7I3IFbtOmSNE08EOOrdPXO++cEty7TjulelyNE5XxvZKyww2m+6JBGI5pcpLJYdPFJavii5c9FnstvNkZ74m+w//y699XzqtQ45OU9Vdq5Q0GifzaR9vO5HobB7ewr2lcdlUgSj2Vcel1a7X4G3o8FoQ0uicpzk38Wccpns8sXSq0/EG0ZOkLnsvqRAGSCXzPcukP32S+nf9yW2X/mwTDgS/zkQiAf0jZ8uc9ipstZKS76S3nlZ9p2XpXdfkhZ9Fp8YLpSZd57Mtnt39q/SdbbfRz+86UZdWfaLtENLNjxd1bbuL9/+7YkaOMn9+WZk8yItCo3MRZXohRaHhkuFxZ79ZuwU2QlbSJ+97dpvrzlT2n6OzOhNE9pX1Vld+S+rW1+2WrpW2maMNLbc6JAt4wFVj70rVdXGg81GDjK6/y3vGgM/jOmEWUa7TJKO287IGKP/LpSWuO8u6JjtHB2+Vde87tmmRtkDMvu8yvzxCZmZu6UdN3xg5vU4islaK2OMykvcx/gNRnPanDxjX35UZn0wmhQPm917qtQd3q9HQu7tBKMBAAAAAAAAAICeojjg/sVOXbTG1/wVzd4XKSsPDcmqJgAAAADoq7yD0dZ1ciWJVjR969peEihVYcD7uFAA/hGMBgAAAACIc5z0Y9or56plQLeR6WO4sETm+LPzUwt6tjb3pYHR1a5DqgOlqjeF+qre/cqY2YrE1um9L7eK3wh6nE0P9CSjJrgGo9mFn0pX/UK679r0a0zYXNps+zwU1w0VZB6Mpvf/z7PL/usfsr8+wbN/YHS1jJGszXyzklQ5yD2U1BT3l7niQdmVS6XaNdKoSYSiIe9MqEDm4jtlVyyWFn8pDRoiDR0tk+JxZYyRKsdJleNk9jlOkmRXL5fWVEllQ2X6D+qs8rsFM7BCBw5eoCuj6ccWb/hnbWw9oKJfrFZ3fnOcjh7xt4Sxmze8q9e+mqXlwcH6LLSJonOOU2zOCYrGpJZYPACpJSpFrW3z8/q/24xJGB9L0ddufixhLes6NlfbbfEIc0Jq60xEiqQ+AMb86nbZY6Z79ttjN5deaNj4elNdb7X5RTEtXtM65rWvpde+trr7DdcV0tZ56ytWt74i/d9X0jVHGz38jvucgqDWB3R1Pmut7GmZBTqa616Qmbqtr7EDi6RwUGps8bm2jcVjyuprpOL+Ki8xcvu3Xuk7GK3NE9Trz8iuq5NJEarXVTyD0Xz+uwEAAAAAAAAAAHS1Iq9gtFita3t7K5rcg9EGBMtU4GRxfAwAAAAA9GFhj2C0xi4ORlvuse9XERrayZUAvRfBaAAAAACAuExDlSJFUklpfmoBkDnHPZzF1eY7yZx0kcyQUfmrBz1Xm/CeAdFq1yGrAwP1XNHOarYZ3O9SiMTWadt1r+mqZaerLLoqJ2sC3cLICdIbzya3P3SD7yXMn/7Zd0K1CiKZz1n0qWuzbWmRvTZ1AGhg1hxNCksfL818s5I0dFDqr1hM2VCpjC810blMxXCpYnj28wcOlgYOzmFFPcv2u22qkY8v0qLQyJTjigvW/9CUeEDFETX3ad23hbq87JdaESzXXrVP6/fLzlRAMQ1rWaphLUulB16WHjg5u3DyHiAmo6gCipqAWhRs93e8PaqAWkyw9W/jJI1tHeNsHBvd+HfrWhvnbehTQC3GfftuayVvI7nexLVb640l1evyuymwcXyjCavJ5SSHdaZQKnQ/sWKjkROlsVOkrz70HnPn76VjfilJuvQJmxCKlkvXv2B1xt5WD7/tHoy22ySpXyT3713sujrZmy6Snn9QkmT2O0H67lkybR5L9uZfS++/6m/BkRNkfnyF71A0KR4oWTlA+qrK3/jAhiCz6pVScX+Vefw3r6xN/LeMeuTUBWybYLSmBun1p6WdD/JXTCfyDEZr7tw6AAAAAAAAAAAAslUccL9gaH20xtf8Fc1eJ8dzQWoAAAAAyFTEIxitIdYga22XnW+xotn9RISKAvb9gFwhGA0AAAAAEJdJqJIkDRrSd0I6gJ7AZ7CC+d6FMieck+di0KOZ1vtSacw9GG2NU6q3I5tnvYmrlv5CP1p9nbT7XOmZe7JeB+juzKiJ8si18Df/krtl+g/KWT3dXiiLK+KuWiZbs1qm38DE9vdekVa6H2S6gfnu2drnQ6OPl2b3v1Q5gPfCQG/jHPh9XXHLPH1nxN9Tjive8HTVmBiMZiQdX/13HV+der4kKRbLrshuzpHkKCqPXKQ+7a7+R+jY4bclta9zIlJhUcq5xhjplEtlzzjYc4y97lxp/3l6a80g/e7JjrwDSS0ak659zuq9xe79B2yen9dH++sTpBcfbr1900VSc6PMDy6SjcWkD1+Tbv2Nr7XM+bfK7PWdrOoYnkkwmm0TjFY5VuUewWhVtYm3ox5PDxuD1tazLz8m0y2D0Yzk8i6YYDQAAHLPGDNW0haSKiWVSFoiaYGkV6y1vPoCAAAAAABkqdhx/2KnLlrr66T7FU1eJ8dzgT0AAAAAyFTYIxjNKqZm26QCk8V5CDmwosn9fIXBhGIDOdM7L0UOAAAAAMhcIMNgtOL++akDQHb8hhvO2Dm/daDnaxOyNyC6xnVIg1OodyObZbX8Vuve1Mmrr5e54DaZky7Oag2gxxg5sWPzt94jN3X0FNkEo0nSwk+TmuxLj6Ses+thMlO30TZjstukJFWWZj8XQPdkwhHNPe84PbVgTspxwcD6g9wbGzqhKvQWhTH3+8s6UyhFitPON9vvI3PxPzz7o3L0yz98qpm/yX/oXqrgtVwHo9lYTLHzjkoIRdvo4Ztkv3hfdt8hsqfM9rWe+emVWYeiSdL4wf5/P0fr/y+WLpSkjgej2cRgNL3yuGw06j64C0U8Ls9HMBoAALljjDncGPOKpC8l3S/pakm/lXSbpOckLTXGXGuMKe+6KgEAAAAAAHquokA/1/aYomq06b8nXtHsfnJ8BSfHAwAAAEDGIk7Es68hts6zL5+std77foRiAzlDMBoAAAAAIC7gcdail3BRfuoAkB3H58c8ozfNbx3oBVpP9B8Qq/Yc9Vrh1q7tR2zlHRQwrulL3b34aAX/9qbMnkdJFcOliMfrSV8LhELvNHpS9nNn7StT5JGe0VsVFGQ3b8EnkiTb0iz77/tkn7pLuud/vcdP2lLm51dJkoYPyD68ZZOKrKcC6MbMrH21a/0L2mrdm6794wPLWm80ds3BFOiZItb9/rLOKZQp9Peab3Y9VNouObjvrfDm2mX0U/rjkm06VGNHbTlKGjEwd8FotqVF9rwjpecfcB+wZoXsCVtJdWv9LTjvPJkjftKhmiYO8T92Q5CZvfR7kqTyEvd/m7bBaLGYd+hcQO1C0NaskD74j/+COkkk5N7e2BI/GAwAAGTPGFNijPmHpHslbZ9i6CBJp0h63xizd6cUBwAAAAAA0IsUewSjSVJdtCbl3JiNqqppmWtfRQHBaAAAAACQqYhT6NnXVcFo1dHVarZNrn0VocpOrgbovTI86x0AAAAA0GsFMwyiiHh/oASgC/gJRistkxlQnv9a0LO1uS8NjK7xHLYwNMq1fe+p0i0nOLr5mud1z5tGY5oWaEzzAk1r/EB71D2rgfPfkqkYLkkyoQLZWftKz85PXGTSljJDRnb8dwG62pBR0tDR0tIFGU81c3+ah4K6uVA4q2l24afSqmWyp8yWvv0q9eCdDpS54DaZ9aGMlQOy2qQkaf/puQt+AdC9mIe/0WHz/qD/Fm6Z1HfQ6vmyzSfLhAoIRkNGCj0OvmkxIbXIkUeWVBJz6b2yu7WeiPHr8rN1UcX5Oaiw4w7YPIehaNUrZX+8u/T1RzlZz/z5aZktdurwOpsONZL8hXs5isV/aKiXjcU8g9Gq10kNzVaRkNET73uvtyFoLcFbL0jTd/BVT2fxCkaT4uFoqfoBAIA3Y0xA0t2S9m3XtULSW5KqJW0iaYZar34xRNJDxpg9rLUvdVatAAAAAAAAPV1xwPvCRvXRWpWFBnv2r25ZqahaXPsqQkM7XBsAAAAA9DXhFMFojV0UjLaiaYln32BCsYGc8XHGLAAAAACgTwhlGoxWlJ86AGTH+PiYZ+zU/NeBnq/NfaksujLj6ZsOMyoKG/3otJ303Iz5unXpSfpV1SU6XM9p4B/u3hiKtnFzv7xG2rxNQMGYyTKX3JV1+UB3YoyRZu2T+cS9jpbZatfcF9TdFUSym7fgY9n//WX6UDRJ5hf/uzEUTZKGlWa3yW36LVX/QoLRgN7KDKzQL3aN6oQ1tye0H7b2fl387bnSW8/HG7yC0TbZTOaeT6Rp2+e5UvQkEdvo2Ve/vMr3OiZUIHPpvZKkqwb+KCehaA//2NGcqZLp4EvbQVu0LmCbGmXnX63YhccoduNFsssWxtvXVCl29RmK7RSO/7nuXNnP3lHs2rMVu/AY2Qevl21plr3hgtyFol33Qk5C0SRphns+tKuA2gSZrV2V8n3HFyuk+karE2+L+VtvPXvv1f4L6iSFKT5ibGjuvDoAAOiFfqvEULRmST+RNMJau7e1dq61ditJ0yS92mZcWNKDxhiOvAYAAAAAAPCp0CmSkfuXZ3XRmpRzU50cX8HJ8QAAAACQsUiKYLSGLgpGW970rWt7sdNPRSnCtgFkJtjVBQAAAAAAuolghsFoYYLRgG4lEEg7xGy7VycUgh6vTRpCoW3QoJaVWhUs8z190pD1ywQCMqf/Wfaki6UlC6Rx02SCyR9Hmn4DZK5+Oh6U0NggjZwQD5MCegkzaz/Z+6/LbM5pv89TNd1cQTi7ea8+LkWTg0KSBALSoCEJTYUFRoOKrFbVZ/a8c9KkhZKGpx0HoOcKnXqJbny4XJcvP0fvhadqcuMnGhJdHu/8/F1pmz2lJo+gq3ChzLAx0rX/lhZ9Gh/X2CCtq+20+tH9FFVFpPvd+xrHbp7RWmanA3XVxN/o9MDPfY1/6avZumbQKfpH6VFJfSVmnfbbrFj7Tw9oVZ3Vu9/E39Pf+ZrV/8y3vmvaZ5q0xcj466ltaZE961Dp9ac39tsnbpcuvVf2jEOkVUtbJ95xpewdV7aOe3a+9OoT0pvP+d62p0iRzBPLZYKhjq+13ugyo903lZ75OP1Yx7YJOVu5VONGlyngSFGX7LOPl0ifLZNWpDiPJmBdJlZXyT58k8yB30tfUCcZUybddZJRJGgUCSnhT0mWb/cAAOjrjDHjJJ3WrvkIa+1D7cdaaz80xuwu6RlJG9KayyRdKOnkvBYKAAAAAADQSzgmoEKnWPWx5O940wajNS91be8fGJDyZH4AAAAAgLugCSlogmqxLUl9XRWM5rXvV1EwtJMrAXo3gtEAAAAAAHGhDIPRIgSjAd2KcdKP2Wz79GMAJ/G+NLzlW9/BaOUlUllJYriQ6TdQ6jcw7VwzZJT/GoGeZMbszMaPmezrMdMrhVInZZjvXSh700XJHX5C0SSpf5mMk/x6ueVoo6c/8rfEBjtPIMAR6O1MqEB28tYqe+cl7VL/YkKf/cs50vb7yDZ6HEwRjh/MboyRRk3Kd6noIYqWW+l+l2ArSeum7pzRWmvXWV1Q8CPJx0vguo/6K6QWaZVcg9H2qP6X9NFIacrWGlRstMv6u+xpu8f/9hOONnem0V+PbfPa+M6LCaFokqTl38ieuqvU1JC+6FceTz/GB3Pi+TkNRdvgisMdbXWJ+/9lW4G2/0ErlyhUPkzjnEZ9FhuSNPaIv2a4Xhv2+guk/ee5vs/pCgOKjObO5L0SAAA5dqGktm9sbnULRdvAWrvOGHOCpPckbfgC8HvGmCustV/mr0wAAAAAAIDeozhQ4h6M5tLW1oqmJa7tFQXDclIXAAAAAPRFYadQLS5B1Y1dFYzmte8XYt8PyKXucWQsAAAAAKDrZXqiaJirlgHdSiCQfkxxaf7rQM/XLmSvssX9w3o3m3JhEyCJKQhLx53pf/zx58SDdPqiVO9HSwZIR/2sY+9BS91DHs/fP7OvSk5Yc7s22WRQ9nUA6DkC3teYsqfuKn3zuXtnOJKngtCTFaZ4mWsorcxorSfet6qNpg+4f2DREfFQNEnbNbyu49b8PaG/KFanM1b+XnrtqaS5wYDR6Xs5+u95qV8nT9nF6K6THJUWtb5/sXf9yX2wn1C0XBk+Tjr01LwsPWOU0TAfu9eO2oTKrVwq++sTNHH1f7PebsB6JOFVV0nfkm8CAEBvZYwplHR4u+bL082z1n4q6cE2TUFJR+ewNAAAAAAAgF6tKNDPtb3e5UT8tlY0e50cz8F1AAAAAJCtiON+HkFDVwWjee37EYoN5BTBaAAAAACAuFD6E2oTRIryUweA7BgfH/MUux+oAyRwEu9Lw1u+9T114tA+GuYEpOGcdLGvceaPj8vsMTfP1XRfxhhpuznufQ98JRMpkqZsk/0GSstdm3eaYLRz6EPXvln1r+ii5Rdpz9qndEDNo7p6yWm6fskpUnlmATYAeqhU4cO1a6Rn7nHvI0gcLgpTfOyyrtn/OtGY1XdusGnHTWn8UAfUPpbQdv2SU3XDtyfr4LUP6furb9YbX22vbRrekL3pIs91ZowyOnSG93auOdplX/Q//0xbX14d8ROZG/8jk8eQwsk+jl1qG2Rmn50v/d+/NLp5YdbbDMgjGE2SatZkvS4AAOj29pbU9ku5V621H/uce0u724fmpiQAAAAAAIDer9gpcW2vi9amnLeiiZPjAQAAACDXwsb92NzGLghGs9Z67/sRig3klPdlzgEAAAAAfUuGwWiGYDSge3FShDZsUEQwGvxIDDerbPYfjLYpn98DnsyNr8p+f3vv/isfkZm5eydW1D2Zn1wh++nb0qql8YZQgcw5N7W+9xw1QXrr+ewWH1Dm2XXv1Ee1+39iej8ybWPb0JalunbpTzWt8UNpZZvBxf1litwPfgXQy/h5j+2mgGA0JCsMefeta/K3xpsLrL57c8zX2H8uPCCpLaQWzau+XfOqb0/qs4s+kxk5wXWtm09wtGBVTP9d0NpWXiI99tPudR02c/6tMnt9p1O2NXGI0bMfpw6oSwgyWx8WN6zF/WAoP9oGrSWpq856XQAA0O21T5F/LoO5L0pqUetxojOMMUOstctyURgAAAAAAEBvVhRwPzakPkUwWszGtKJ5qWtfRYhgNAAAAADIVsRxPza3oQuC0Wqi1Wq0Da59gwu4ADuQSwSjAQAAAADigpkFoynMid5At+L4OCGdYDT40e6+VBGt8j110hCTfhDQR5lJWypldEY5X4BJkhk1Sbrtv/HwkPoaaatdZUZv2to/cmLqf8dUSr2D0crHjdSrd+2sh/odoA/DkzWmaYEOqH3M/TmwnANVgT4jkOVXqewvw0UkVTBac/r5Z90f0xX/9PcqeNO3J6kywwAue/Q06YUGGZP8nr5/odHLZzp68G2r9xdLIwdJB0w3Glrazd7/73Rgp21q4pD0YxybHGI3vMV/8HR7CUFr7dWuzXpdAADQ7U1rd/tVvxOttXXGmPckzWjTPFUSwWgAAAAAAABpFAfcj7esi9V4zlnbslrN1v2qSBUFHG8CAAAAANnqTsFoK5q8j88kFBvILYLRAAAAAABxoQyD0SJF+akDQHZMmmC0grBMpo9z9E3tgtHKMwhGm0quE5BaaZlUvdK9j+fojcyAcmnOse6d46Zmv+7YKd6dY6eq0DboqLX3pl9obPY1AOhhsg5Gi+S2DvQKxhhFQlKDSwjaOvdzIzZ69QvrOxTN2Jj2rHsmiwolu3NEdve5MlvOlvabJxMIbOwrCBrNnWk0d2ZWS+edOfUymcLiTttePBQ69f+JW5DZsNcqDQ0AACAASURBVAwD69qyShFEV1edOLbqW9m/nCv96854wwEnysw5Vmb6Dtlv/60XZJ+7T4rFZHY5VGarXbNeCwAAZGRyu9ufZzj/CyUGo02R9GyHKgIAAAAAAOgDPIPRot7BaMubU50cP7TDNQEAAABAXxX2CEZr7IJgtOXN7hdILXSKPPclAWSHYDQAAAAAQFwwwzCOMMFoQLfS5oR1V4V8sAq/Ek+2L2/xF4w2cYg0tjwf9QC9iJPiuZpgNH82myWFC6XGLL7A3OVQ777x06UBFdKaFWmXMQecmPm2AfRMqZ63UykgGA3uCr2C0Vza2rrtVX+haJK0f+3jquxA+JaeuUf2mXuk156WueSu7NfpbHOO69TNTRySfoxjY0ltwz0OiPIjZFPcUWpbg9Hst1/JHrlpYv8jN8s+dqt04d9kdjs8423bp+6SvWSeFIv/TvahG6Qz/yqz3/EZrwUAAPwzxgySNKhd88IMl2k/fkL2FQEAAAAAAPQdRYES1/blTd/q0ap/uPYtblzg2l4c6Oe5HgAAAAAgvYhHMFpDnoPRFjZ8rk/r30/YzufrPnQdWxEaJmNSXAAVQMYIRgMAAAAAxAVDmY2PEIwGdCvGSd1fxEE18MlJvC+VR1f6mrbXVMMH+EA6BKN1mIkUyc7aV/r3fZnN++39MuWV3v2BgOzsg6WHbki90OARMtvsmdG2AfRggSy/SiUYDR6KCqTV9cntdY1W7QOKN4jFrK5/IX0wWv+IdOiwr3XVe5d4DyoZIPPnp2XnzUxf7PMPKLZTWObE86XjzpIJpn482Leel73p19LK7IO/shYMSaVlnbrJMeXxf/O1Dd5jAoomtY1r/koFsUY1OeGMtje4ZZnGNn/t2W/XVG28B9m/nOM+KBaTvfAYaccDZAr8b99aK3vDhRtD0dY3yt74K2nf77IfCABAfg1od7veWluX4RrL290u7UA9AAAAAAAAfUax437MZU20Wo+vvDujtSpCw3JREgAAAAD0WeEuCEZ7tOofGe3/VRSw7wfkWpozZgEAAAAAfYUJBKRAirCO9sKc6A10K+kev0X9OqcO9Hwmu2C0ad55QwA2SBWwEyQYzS8z7/zMJ22/T/p1v3uWVNL+fOM2BlTI3Pxa5tsG0HNlso/chiHsEh5KPLKo6pq85xxwdcy7U1LQkZ76uaNVf3J089mbqN+dr8s8WyNz6mVJY81JF8uM30zaeg/fNdubfy17nUfQ1oYxX34g+/N9pXdelL75wvfaGakY7t1XNkzG6dxDHwKO0V5TUo+J2EbXtt3r/51y3hSXY6POrbpcjlIE5P39CkmSra+RXnw45fr2iAmyDS4JfV4WfSYt+Tq5vepb6dO3/K8DAACy0f7s22yO6G4/p8NfFhhjBhtjpmbyR9ImHd0uAAAAAABAZyoK5O6YS4LRAAAAAKBjIh7BaI15CkZb2vgNodhAN5DlZc4BAAAAAL1SsECK+vwwKOz+YRKALmLSnARe3L9z6kDPZ0zCzfJola9pk4eZ9IOAvi6Q4rm6wCMpBUnM2MnSbW/KHr+lvwl7HuUrLMUMHiHd8prsHVdKn78nFZVIq5ZJw8ZIg0fIHHuGTGlZx4oH0LOkCrRMJRjKbR3oNYo9Xu5rG9zbm1usnv/Ue72Dt5DOmONou3GJ78VNqED2qJ/LjJks+9itkozMAfNktt073n/lI7KzM/hc575rZb97lkz/Qa7d9oYLpWiL//UyVdRP6j9IWrHYvb+8aw4mOnym0fw3vcPKpjW879p+YM2jeqJkjue8Z0539MoX0r1/fUaNa6p19Nq7dUjNQ2nrsVXfSu+8nP7/YtUy2T0Hxu8jp1ya/n3S2lXefauXp60LAAB0SPtgNI93jim1/+Kv/ZrZOFXShTlYBwAAAAAAoNsqyWUwWsHQnK0FAAAAAH2RVzBaQ56C0T6oezPjOez7AblHMBoAAAAAoFWoQGr0+WFQQSS/tQDITLrQhqJcnOuEPqHdSfFh26RBLSu1Kpg6DGgKFzYB0nMC3n3Bgs6roxcw46ZKP7hY9oYLUg8cOlrmhHP9rzt0tMzpf+5gdQB6jWyD0UI8p8NdiUcwWl2Te/ui1VK9R9+2Y6X7T/V+b2GMkbbfR2b7fZL7HEe66knZsw+X6mvSlS21NMv+7kfS7IOlKVvLVI7b2GVr1kgvPZJ+DS9b7Sr999+px5QPSx0iO2hI9tvvgENnGE0fYfXuN+79+9c+7tl+iseac2caDelvdMgM6SDnN9LiV/wX9N6rsi+kD1Db6K4/yq6rkbaYLVWOlZmytfs46x3+1j5YGwAA5F2KF+aczgEAAAAAAOjzhofHKGwiarTZZNUnmlg0LQcVAQAAAEDfFXbcz2VtjHV8n81NTXRNxnMmFLLvB+Ramkv/AgAAAAD6lEwCOQhGA7qXYLpgtNxdvRC9nMuJ7bPW/SfllGmVUlkJJ8QDaaUMRgt1Xh29xXFnSMPHJbcPGipz8m9kzr1J5sZXZUZN7PzaAPQOTpZfpYZSBDihTyv2CkZrdG9fUu291qm7dOz9t9lyF5nb/itz2h+kfgPTT3juftmLvit7zHTZ+/8iSbKrl8vu27FQMrPzQdLgEakHlVemflwVl3aohmwFA0bXHO3IcfmvGNGvWfsft5PrvGEtS3Vk9T1J7UYx/f17bRaLtmRUj73gaOm5+zKao4dulL3oONkf7qjYeUfJxmKZzQcAAPlW2+62+yWwU2s/p/2aAAAAAAAAcFHghDWn7IgOr7Np0eacHA8AAAAAHRRx3L8ub4ity8v26qI+Ljrbxg6le6q8oGsu8gr0Zlle5hwAAAAA0CuFCEYDeqx0j9+i/p1TB3o+l2C0Q2oe0qP99vOccvAMQtEAX1IEo5lsw3f6MGOM9Kd/yl54rPTha/HGyTNlLrxdZvgmXVscgN4hkOVXqZnsW6NPKfa4a9RmEYx27HYdfw9uho6WDv+RtMXOsvNm+pvU0iz7x5/J/vFnHd6+JKliuMxv75c9cRvvMZtMk7760Lu/qCQ3tWRhh/FGd/7A6IRbrBqa423DSqV//DCsovE/kp0zV/bCY6S3nk+Y9/tlZ2pJcKheKN5ZkjS14QP9rfQaBQN/bR2UYTCaJKkjwWbPPyA9erN04PcT21PWwb4gAAB51l2D0a6VdG+GczaR9FAOtg0AAAAAANBp9i47TIMLhumd2v/T6uaVGc0tDBRpQuFUzR64b/wYFwAAAABA1sIewWiNeQpGq4+6f7U+IFimitCwjbdLAv01pXiGZpXukZc6gL6OYDQAAAAAQKtgyP/YgnD+6gCQuUCax28XniiOHsYkhzPtX/u4ArZFUeP+ceIhBKMB/mQbsANPZuho6boXpC/elwoKpMpxMpm8pwWAVFIEWqYUJBgN7koiRpJNaq/3DEZLHitJm1QopydPmPGbyW6+k/TOizlb07fySpkJm0tPV8v+dM/WsNMNAkGZOcfJ3vgr7zWK+uW1xHTmznR0wHSr17+WCoLSFiOlSCj+/2MGVkh/+qf0zWfSkgXS2CnSv+/T0KvP0DML5+jDgslqNiFNa/xAwVHtgl29Askcp2MBaCnYe/4s0z4YrdnjDiplF94GAAAy0T4qt8gYU2ytrctgjcHtbq/pYE2y1i6XtDyTOZz8CwAAAAAAeqoZ/WZpRr9ZXV0GAAAAAPRpEa9gNNugmI3JcTkXqiPqYu7BaNv230UHVRyX020B8JbbRzYAAAAAoGcLZXDydkEkf3UAyFy6EJguPlEcPYiT/JFhWXSVdq/7t+vw8YPjJ/4D8CGQZcAOUjLGyIzfTGbUJELRAORWtoGWmexbo08p8rhr1DW5B6AtbR+Dsd6w0hwV1Ia59B5pjyOl0vLcL55KRWV8++GIzFVPSof8UCoZIBkjTdhc5ooHZSZukTKg33SD/d3CAqOdJxptN85sDEXbwDhO/H3KtnvJDB4hVQyPt0ua2vSRtmh8V0FFpYWfJi7qFTq21W55+A3WW/Cx7JKvE9uaGrzHN6UITQMAAB1mrV0paXW75lEZLjO63e3Psq8IAAAAAAAAAAAAAIDO5xWMJkmNsRTHuGWpPlrj2l4U6PrjFYG+hGA0AAAAAECrIMFoQI+VJnzBFJV0UiHo8Yxxbb54xUUqiDUmDb38MEfGYw6AdhyC0QCgRyEYDTlW4vFRSq3HMTlLPILRhvbPTT1tmf6D5Fx4u5xHF8vc/XHuN+AmEJQGDmmtIVIk5xf/K/PYEpmn1si5+TWZbfaMdxZ4H9Sknra/Wz7Ms8u+9ULrDY9gNLPj/q6B1jnzyVuJt1OFnzW799loVHb1ctm6tTksDACAPuujdrfHZzh/XJr1AAAAAAAAAAAAAADo1sIpg9HW5Xx7ddFa1/biQA87XhHo4QhGAwAAAAC0yuTk7TDBaEC3Egyl7i/Ow5nz6J2M+0eGMxve1Ctfz9axa+7QzIY3dcRWRv/6maNDZhCKBvhGMBoA9CyBLJ+30703R59V7PGxS12Te/vSauvaPnRAft+Dm8qx0uCRuVls/HRp6rbufdvuJePyODOOI9P+c6eBFd7b6Gn7u+WVnl32L2e33vAIRlMoLHPn+zkuqo0F7YLxGlNcTbMpuc9+9Ibs97aVPXCk7P6Vil19hmw0muMiAQDoU9q/8G/vd6IxpljS9DTrAQAAAAAAAAAAAADQrUVSBKM15CEYrd4jGK3IIRgN6EwEowEAAAAAWoXC/scWEIwGdCuBNOELRf06pw70fI73R4ZbNL6rW5f8QP9ZdZDu/qGj3ScTigZkwhzxY/eOkRM6txAAgD+BYHbzMgkdR59S4vGxS22je/uSavf2YaW5qScVc+FtHV+kpFTmR7+Vuew+afSkxL5BQ2R+cLH/eiq8w8R63P5ueaVU4HFn+PID2Yb6+M9eYWKBoDR0TPbhjWnYBZ8kNriEn7X2NcrWrJF9dr7sf/4pW7Na9qQdpC/ei/e3NEt3XyV7zDTZ+VfnpV4AAPqAf7a7vUsGc3eS1HbH5i1r7bIOVwQAAAAAAAAAAAAAQCfqzGC05lizGq37cXPFgR52vCLQw2V5ND8AAAAAoFfye/K242R/gjiA/AimCUYr5IoU8Mn4uJZCpDj/dQC90Q77SeFCqTHxizez53e6qCAAQEpOlqFDmYSOo08p9gpGczl+piVq9c437uM7JRht+g6yu8+Vnrkns3l3vi+9/JgUjkiz9pUZMireccOr0rPzZb/+SGbkhHhf+TD/C5elGFvUs/Z3TUFYdtQk6fN3kzsb10kfvSHN2FmKtrgvEAjKBAKyZcOk5R53ko5Y9Gni7RTBaPbFh6XrL5Bq16Rec/GXsledLnO4R1AwAABI5UlJ6yRtOMp7e2PMptbaj33MPaHd7QdyWRgAAAAAAAAAAAAAAJ0h7EQ8+xpzHIxWH6v17CsO9KzjFYGejrPYAQAAAACt0gUrbVAQkTEmv7UAyIgJBGRTDSjiihTwyc/zeyHBaEA2TFE/6fIHZM85QqqviTfueph07P90bWEAAFcmEEz9HtuL39Bx9DmlHhcsXF2f3PbAW97rDO3fOZ/JmDP+IruuVnrlcX8TttkzHnp21M+S1yoslvY7XllXXpIiDc5PuHM3Y373sOwhY9w7Vy6J/50iGE2SNG5qfoLRqqsSbtqXH/Ue+/rTud8+AABIYK2tN8bMl3Rcm+YzJc1LNc8YM1HSIW2aWiTdmfsKAQAAAAAAAAAAAADIL8cEVGDCarKNSX0NuQ5Gi3oHoxUFOD8P6Ew97whhAAAAAED++D15u8A7YR9AN0UwGvxyfHxkSDAakDWz1a4yjyyWufY5mfmfy7n4ThkCdACgewpkeY2pIM/rcFde4h4LtrpeaokmxvDd/XrMc51hKTLCcskUlci5/AGZ29+Wuf5lmafXyNz3hcx5t7gMNjLzzstfMeWV3n3F/fO33Twx5cOkEePdO6tXxv9OE4xm9j8x/Ya+84vMi6up3vijveUS6Y1nM1/DjZ99TQAA4OVXkprb3D7BGHOg12BjTETSLZLa7pzcZK39Ij/lAQAAAAAAAAAAAACQXxHH/eq0uQ5Gq4vWePYVOZxPBXQmjjwFAAAAALQiGA3ovQqLuroC9BTGTzBaSf7rAHoxUxCW2Wx7mSEju7oUAEAq2Yb4EHgJD+Up3kavqku8ff9b3mM3HZqbevwyYyfLTJ4pEy6UGTxCZu+jZW58VZq2vRQulIaNkfnV32WmbZe/IsZNk8qGJbf3GyiN3zx/282n0jLXZrv8m/gPnsFoAUmSmX2wdOjJKTdhBpTH/+0yUbtGse9vr9hOYdmbf53ZXAAAkBfW2i8lXdWueb4x5sfGmIQdEGPMZEnPSJrVpnmlpIvyWyUAAAAAAAAAAAAAAPkT9ghGa8xxMFp9rNa1PWQKVOCEc7otAKkRjAYAAAAAaBX0G4zGBzhAjxN2//AXSGJM+jERgvYAAEAfEAhmNy8Yym0d6DVSBaNVtTmO5q2F1nPclGFSOOTjPXuemUlbyvnLc3KeXiPnnk9kdjs8v9sLBGSO/WVy+9GnywSzfKx2tf6D3Nvv/L3s1x9JtdXu/W2em8y881Nvo7BE5tj/8bef19Ynb2Y2HgAAdIazJD3R5nZI0p8lLTLGPGGMuccY84akD5QYitYk6RBr7ZLOKxUAAAAAAAAAAAAAgNyKeASjNeQ4GK0uWuPaXhzol9PtAEivhx4hDAAAAADIi5DfYLRIfusAkHsFBKPBJ+PjWgqFKRIdAAAAeotAILt5fvet0eeU+QxGO/v+mOe4W+f13WufmcN/LA0cIvvsvVJzk8xuR8jMOaary8peaZlnlz1uC+95bYPgSsvizznNTe5jC4tl9jxKKu4v+/ht0vMPZllsBwwaIg0cLDl9974LAEAuWGujxpi5km6UdGSbrsGS5nhMWy7peGvti/muDwAAAAAAAAAAAACAfAp7BKM12twGo9VHa13bixzOpQI6G8FoAAAAAIBWQYLRgF4rTDAafPJzsnoRH+YDAIA+IJDlV6kEo8FDJGRUEpZqG5P7NgSjNbVYvfql+3zHSJOG5q++nsDsfoTM7kd0dRm5UVud3bw2YdbGGNnyYdKSBe5j14dam1n7yszaV/aFh2TPnZvddrOx3zw5Z13XedsDAKCXs9bWSjrKGDNf0umStvMYukrS3ZIutNau6Kz6AAAAAAAAAAAAAADIl4hHMFpDLLfBaHUewWjFAc6lAjobwWgAAAAAgFahkL9xBKMBPQ/BaPDLmPRjBlTkvw4AAICulnUwWji3daBXKS9xD0ZbUWMlGb34mVTT4D53kwqpX8TH+3X0CGbiDNmXHsl8ohNIvF0+3DsYLVKUeDvb57UsmTOu7dTtAQDQV1hr50uab4wZK2lLSZWSiiUtlbRA0svW2qYuLBEAAAAAAAAAAAAAgJzqtGC0WI1re1GgX063AyA9gtEAAAAAAK2CBf7GhXyOA9BtmEAg/SBAkoyTfsiA8k4oBAAAoIu1Dx/yi31mpFBWIn29Mrl9zfrjch5913rOffJn6d+rowcZv1l285x294NBg73HFra7QuXkmfEwbOt9P8uJYWNkLr1Xpn2tAAAgp6y1X0n6qqvrAAAAAAAAAAAAAAAg38JOxLW9McfBaPXRWtf24kCJazuA/CEYDQAAAADQyu/J20F2JwGg1/Jz4vqAivzXAQAA0NUCWe77+g0dR580wP2ChVpTH//71S/cA6sO21IaU27yVBW6xHZzspvXPsy6vNJ7bGFx4tRBQ2S33Uv6z5PZbTtVWRfdITXUSyMnSBNnyITdD0IDAAAAAAAAAAAAAAAAACBTEcf9AMyGWENOt1MXrXFtL3IIRgM6G5fnBQAAAAC08huMFgjltw4AQNcxPsIWBpTnvw4AAICu5gSymxdknxneSr2C0dZJ1lp9uty9f88phKL1NiZUIHPJ3ZlP/H/27j3KsrOsE/DvO+dUneqq7nR3SOdCEuhcCQkYQJCrEklAgZEAIjoIGhGHhTdQRnGWo5AZlzoizBqdYXS8wQg6423AcURcusRRkFkjwvKGw02iokBUwO6qVHdSteePatJ1Oafq3HfVOc+z1l7p8+1vf/vtXbve6jrZ9attYdbl4iu6z51v7zzva96cPOUrknaXm7FfD7o+5Zc+lPKU56U842tSHv54oWgAAAAAAAAAAACMVLtLMNqZ9XtGep5uwWhLzSMjPQ+wtwF/zTkAAADTqLTmU/UyseXbSYCpVXr4XQrHLx5/HQAAdRvwe9/S8Lup6O7oYkk6vPvy2ZXk708nn1npfNyNlwlGm0blyc9O9bgvTd7zG30ctO1eeNjju889ujPUuixdkHLnm1Pdezb5hR9J9WPfvfc5r35YGm96b6r77k3OriZnzySHDgtAAwAAAAAAAAAAYCIWugSjrY44GG1l/XTH8aXm4ZGeB9ibp/IBAAA4b26+t3nNufHWAUB9egnyOLbzh+sBAKZOc4BgtMfcOvo6mCrHFjuPf2alygc/2f246y8ZTz3Ur/zAL/V5wLbv2W56bHLZg3fOu/qmlF2+dytz88lTnpe09n6frzzr6zf+25pLWTyScuwioWgAAAAAAAAAAABMzKSC0ZbXugWjHRnpeYC9CUYDAADgvB5+ELKveQAcQGXvKUcFowEAM6DR7PuQ8k0/NIZCmCbHOj+Xk8/ek3zwk1XHfUcPJSc8TzO1Smsu5a13JScf2tsB28KsS7OZ8s2vTebb5wfnF1K+9XV7n/uykykv/t7dJ13/yOTpL+qtNgAAAAAAAAAAABiDdpdgtDMjDEZbq+7L6vpKx32LgtFg4gb4NecAAABMrbn53uYJRgOYXo09fpfC0YtSNv/APQDAtGr2GYz2mFtTrnnYeGphahxb7Dz+mXuSD36y877rL0lK6SHAmAOrPODS5Cf/INWXnkjuu3ePyTu/ZytfdHvyk+9J/uDtyfp68uRnp1x5XW/nftF3Jp/3hFTveUfyjrckd398Y8fFV6a85NXJrc/3PSAAAAAAAAAAAAC1WugSjLY6wmC0lbXlrvuWGodHdh6gN4LRAAAAOK/VYzBa07eTAFOrww/Zb3HRZZOpAwCgbo3+gtHKi141pkKYJsc6P5eTz6wkH/pk1XHf9ZcIRZsFpX0o1YtelfzM9+0+sUuYdbnqxuSqGwc7981PSrn5SclL/+1AxwMAAAAAAAAAAMA4tbsEo91X3Zu16r40y/A/87qyfrrrvsWmYDSYtD1+yhEAAICZMtdjMFpLMBrA1Cp7hC6ceOBk6gAAqFs/oeAPuj65+QvHVwtT49hi539v330qeddHOh9z3SVjLIh9pRx9QA+TPOYBAAAAAAAAAADAbFnoEoyWJKvr94zkHMtrp7ruW2oeGck5gN55YhYAAIDzeg5GmxtvHQDUp7HHW4YPEIwGAMyIvYLRjl60MedRt6T8+7en7PXvKEjywGOdx+9bTz75T533PfzyPcKLmR5HL9p7jl4DAAAAAAAAAADAjJlMMNrpjuOt0sp8aY/kHEDv+vg15wAAAEy9Vo/BaHv9cDhQj6tuTP7yz3eOX3715GvhwCqlpNptwkWXTaoUAIB6ze/yAMMXPDXltb+a3Hs2pb0wuZo48B5ySX/z51vJrTeMpxb2oaMX7j2nCEYDAAAAAAAAAABgtrR3CUY7M6JgtJW1Ux3HFxtHUopfcguT5olZAAAAzpub621es8d5wESVF35n5/GXvGaidTAFGt3fNiyHL5hgIQAANXrQQ7rvO7SU0mgIRaNvhxdKrjje+/xbb0guOORhmplx9KK95+zy/RoAAAAAAAAAAABMo4VdgtFWRxSMtrx+uuP4UvPwSNYH+uOJWQAAAM5rzfc4TzAa7EtPfk7ymNu2jj3mtuQLn1VPPRxcu/0Wk/bi5OoAAKhROXZRcsW1nfc99DETroZpcsOlvc991s1C0WbKict3/34s2Xs/AAAAAAAAAAAATJn50k7pEpM0qmC0lbXOwWiLgtGgFoLRAAAAOG+ux2C0Zmu8dQADKe2FlB/45ZQ735K84JUpr3lzyg/+Skq7+2/EgI7KLm8bLghGAwBmR3nhd3Te8dinTbYQpspDLu092Orx1wjBmiXl+InkUbfsMck9AQAAAAAAAAAAwGwppaTdWOi478yIgtGW1051HF9qHhnJ+kB/BKMBAABwXru3sJvSmhtzIcCgSnsh5SnPS+Nl359y61ekzLfrLomDqCEYDQAgSfKlL0qe8bXnXzdbKS9/Xcq1n1dfTRx4N1za+9xrT4yvDvan8sof3X3Cbt+vAQAAAAAAAAAAwJRaaBzqOL46omC0lbXTHccXG4dHsj7Qn1bdBQAAALCPHL2wt3mC0QCmXOm+q935fyIAAEyj0mym/Kv/kuqff1vydx9Lbvj8lOMX110WB9wNl5Yk1Z7zrjyeLLZ3+bc5U6lced3ud0cRjAYAAAAAAAAAAMDsaY85GG15vXMw2lJTMBrUQTAaAAAA5x19QG/zms3x1gHA/rWwWHcFAAATV04+NDn50LrLYEo86kFJKUm1Rzba9ZdMph4OmIZgNAAAAAAAAAAAAGbPQpdgtDMjCkZbWTvVcXyxeWQk6wP98cQsAAAA5y0d7e2HK1tz468FgPrcd7b7vrZgNAAAGMbxpZJX3Fb2nHfdJXvPYQYVj3kAAAAAAAAAAAAwexYaCx3HV9dXR7L+8trpjuNLjcMjWR/ojydmAQAAuF9pNJIjx/eeKBgNYLqtr3fftyAYDQAAhvXDz9s79Oz6SyZQCAdPL7/UAAAAAAAAAAAAAKZMu3Go4/iZ9XtGsv5Kl2C0xeaRkawP9McTswAAAGx1wYV7z2kKRgOYWQud/ycCAADQu1JKvuSm3edcf8ne4WnMoOIxDwAAAAAAAAAAAGbPQpdgtNURBKOtV+tZWe8cjLbUPDz0+kD/PDELAADAVkcfsPecZmv8dQCwP7UX664AAACmwmVHuwefNUryuKsn6svn2QAAIABJREFUWAwHR8NjHgAAAAAAAAAAAMye9hiD0VbXV1Kl6rhPMBrUwxOzAAAAbLV4ZO85rbnx1wHA/rQgGA0AAEbhqou673vMyeTCpe7Bacyw4jEPAAAAAAAAAAAAZs9Cl2C0MyMIRlteO9V132Kjh5+5BUbOE7MAAABsNd/ee45gNIDZJRgNAABG4taHdg8+e84jhaLRRXFvAAAAAAAAAAAAMHu6BaOtjiQY7XTXfUvNw0OvD/RPMBoAAABbzfUQjNZsjb8OAPalIhwTAABG4nFXJZcf67zvWTcLv6KLhsc8AAAAAAAAAAAAmD3tLsFoZ0YQjLay3jkYrZFGFhqLQ68P9M8TswAAAGzVSzBaSzAaAAAAwDAajZIfet7OALQXP6nkhssEo9FF8ZgHAAAAAAAAAAAAs2ehSzDa6giC0ZbXTnUcX2weTime6YQ6+El2AAAAtuopGG1u/HUAAAAATLmvekzJ4nzJf/it9azelzz3USXf8sUeoGEXDcFoAAAAAAAAAAAAzJ5xBqOtrJ3uOL7YODz02sBgBKMBAACw1fz83nOavp0EAAAAGFYpJbc/Irn9Ec26S+GgKILRAAAAAAAAAAAAmD3tLsFoZ9bvSVVVKWXwX0y7vHaq4/hS88jAawLD8cQsAAAAW821957Tmht/HQAAAADAVg2PeQAAAAAAAAAAADB7FkrnYLT1rOfe6uxQa6+sn+44vtg8PNS6wOA8MQsAAMBWc/N7z2kKRgMAAACAiSse8wAAAAAAAAAAAGD2tBudg9GS5Mz6PUOtvbzWORhtSTAa1MYTswAAAGw11957TrM1/joA2H+WLqi7AgAAgNnW8JgHAAAAAAAAAAAAs2dhl2C01aGD0U51HF9sHBlqXWBwnpgFAABgi9JLMFprbvyFALD/XHC87goAAABmW/GYBwAAAAAAAAAAALNnnMFoK2unO44vNQ8PtS4wOE/MAgAAsNX8/N5zBKMBzKbH3FZ3BQAAALOt4TEPAAAAAAAAAAAAZk97l2C0M0MGoy2vdw5GWxSMBrXxxCwAAABbzbX3ntNqjb8OAOrzZS/uOFxe8MoJFwIAAMAWpdRdAQAAAAAAAAAAAEzcXGMuzXT+2dbVIYPRVtZOdRxfah4Zal1gcILRAAAA2KqXYLSmYDSAaVZe+B3Jicu3Dn75N6Zcfk09BQEAALCheMwDAAAAAAAAAACA2bTQONRxfHV9deA1q6rK8trpjvuWGocHXhcYjp9kBwAAYKv5HoLRWnPjrwOA2pQHXp38+O8lv/0LqT751ymPfHLyhc+quywAAAAagtEAAAAAAAAAAACYTe3GQpbXT+0YP7N+z8BrnqlWs561jvsWm0cGXhcYjmA0AAAAtpoTjAZAUk5cnnzVt6XUXQgAAAD3K8V3aQAAAAAAAAAAAMymhcahjuOrQwSjLa/tDFr7nKXm4YHXBYbjVwkDAACw1dz83nOacrYBAAAAAAAAAAAAAAAAAJiMdpdgtDNDBKOtrJ3uum9RMBrURjAaAAAAW/USjNaaG38dAAAAAAAAAAAAAAAAAACQ5FBjseP46hDBaMtrp7ruW2wsDbwuMBzBaAAAAGw11957TlMwGgAAAAAAAAAAAAAAAAAAk9FuHOo4Pkww2sr66Y7jhxpLaZTmwOsCwxGMBgAAwFbzvQSjtcZfBwAAAAAAAAAAAAAAAAAAJFnoEox2ZohgtOW1zsFoS83DA68JDE8wGgAAAFstXrD3nNbc+OsAAAAAAAAAAAAAAAAAAIAk7S7BaKtDBaOd6ji+2Dwy8JrA8ASjAQAAsNWDrk8OLXXfX0pKszm5egAAAAAAAAAAAAAAAAAAmGkLYwhGW1k73XF8qXF44DWB4QlGAwAAYIsy304e8UXdJ7TmJlcMAAAAAAAAAAAAAAAAAAAzr1sw2pkhgtGW1091HF9qHhl4TWB4gtEAAADY6YILu+9rtiZXBwAAAAAAAAAAAAAAAAAAM6/dWOg4vjpEMNrK2umO44LRoF6C0QAAANhprt19X2tucnUAAAAAAAAAAAAAAAAAADDzFhqHOo6fGSIYbblLMNpi8/DAawLDE4wGAADATvPz3fc1BaMBAAAAAAAAAAAAAAAAADA57S7BaKtDBKOtrJ3qOL7UEIwGdRKMBgAAwE6t3YLRWpOrAwAAAAAAAAAAAAAAAACAmbfQJRjtTLWa9Wp9oDWX1093HF9sHhloPWA0BKMBAACw01y7+77W3OTqAAAAAAAAAAAAAAAAAABg5nULRkuSs9WZgdZcWescjLbUPDzQesBoCEYDAABgp7n57vtarcnVAQAAAAAAAAAAAAAAAADAzGvvEoy2un5P3+udXT+Te6uzHfctNo/0vR4wOoLRAAAA2KHMtbvvbApGAwAAAAAAAAAAAAAAAABgchZ2CUY7M0Aw2sra6a77lhqH+14PGB3BaAAAAOw0P999X2tucnUAAAAAAAAAAAAAAAAAADDzdgtGWx0gGG15/VTXfUtNwWhQJ8FoAAAA7NQSjAYAAAAAAAAAAAAAAAAAwP7Qbix03TdQMNra6a77FgWjQa0EowEAALDTfLv7vmZrcnUAAAAAAAAAAAAAAAAAADDzGqWZ+dL551/PDBCMttIlGG2hcSjN4mdpoU6C0QAAANhpbpdgtNbc5OoAAAAAAAAAAAAAAAAAAIBshJZ1sjpAMNry2qmO44uNw32vBYyWYDQAAAB2mpvvvq8pGA0AAAAAAAAAAAAAAAAAgMlqjzAYbWX9dMfxpeaRvtcCRkswGgAAADvNtbvva7UmVwcAAAAAAAAAAAAAAAAAACRZ6BKMdmaAYLTltc7BaIvNw32vBYyWYDQAAAB2as1139cUjAYAAAAAAAAAAAAAAAAAwGS1uwSjrQ4QjLaydqrj+JJgNKidYDQAAAB2mm9337dbaBoAAAAAAAAAAAAAAAAAAIzBQpdgtDMDBKMtr53uOL7YONL3WsBoCUYDAABgp7ldgtHand80AgAAAAAAAAAAAAAAAACAcekWjLY6QDDayvqpjuNLzcN9rwWMlmA0AAAAdpqb775vUdI9AAAAAAAAAAAAAAAAAACT1W4sdBwfJBhtee10x/HFpp+jhboJRgMAAGCnuXb3fYuS7gEAAAAAAAAAAAAAAAAAmKyFxqGO42cGCEZb6RKMttT0c7RQN8FoAAAA7LRbMNohb+gAAAAAAAAAAAAAAAAAADBZ7S7BaKsDBKMtr53qOL7Y8HO0UDfBaAAAAOw0N9d1V1k8MsFCAAAAAAAAAAAAAAAAAAAgWegSjHamz2C0+6p7c6Za7bhvqennaKFugtEAAADYaW6++75DS5OrAwAAAAAAAAAAAAAAAAAA0j0YbbXPYLSVteWu+5aah/taCxg9wWgAAAD05/gldVcAAAAAAAAAAAAAAAAAAMCMaXcNRlvta53ltVNd9y02j/S1FjB6rboLAAAAYB86cUVy/OLk05/aOj7fTr7gtnpqAgAAAAAAAAAAAAAAAABgZi10CUZbXjuVH77ru3pe50zVPUhtsbHUd13AaAlGAwAAYIfSaKT6shcn//UHt+546gtSli6opygAAAAAAAAAAAAAAAAAAGZWu0swWpX1fHT1L4Zef67MZ77RHnodYDiC0QAAAOiovOQ1SXsx1W++JVlfT77o9pSX3Fl3WQAAAAAAAAAAAAAAAAAAzKCFLsFoo7LUPDLW9YHeCEYDAACgo1JK8jWvSvmaV9VdCgAAAADMjmfekfyvN+4cP7Q06UoAAAAAAAAAAABgXzncvGCs6x9pHh3r+kBvGnUXAAAAAAAAAADAhvLcl3Uef/H3TrgSAAAAAAAAAAAA2F8unDuRy+avHNv6Dzv8+WNbG+idYDQAAAAAAAAAgH2iXP+I5Ov+9dbBL3hq8pyX1lMQAAAAAAAAAAAA7CMvvPSbc6ixOPJ1r1p4SG49fvvI1wX616q7AAAAAAAAAAAAzmu8+HtSfdGzkz95d3LyocnDH5/Smqu7LAAAAAAAAAAAAKjdVYcekldf9YZ8YPn9+cf77h56vUYauXLh6lx36KbMNeZHUCEwLMFoAAAAAAAAAAD7TLn24cm1D6+7DAAAAAAAAAAAANh3Lmgdy2OP3lJ3GcCYNOouAAAAAAAAAAAAAAAAAAAAAAAAAEAwGgAAAAAAAAAAAAAAAAAAAAAAAFA7wWgAAAAAAAAAAAAAAAAAAAAAAABA7Vp1F8B0KaXMJXlikgcluSzJ6SR/m+R9VVV9rMbSAAAAAAAAAAAAAAAAAAAAAAAA2McEo82wUsp/S/KV24bvqqrq5ABrnUhy57n1Luwy591JXl9V1S/3uz4AAAAAAAAAAAAAAAAAAAAAAADTrVF3AdSjlPKs7AxFG3Stpyf50yQvS5dQtHOekOSXSilvLqUsjeLcAAAAAAAAAAAAAAAAAAAAAAAATIdW3QUweaWUY0n+84jWuiXJW5PMbxqukvxRko8mOZbkkUku2rT/q5NcUEp5dlVV66OoAwAAAAAAAAAAAAAAAAAAAAAAgIOtUXcB1OJ1SR547s+nBl2klHJFkl/J1lC0dyW5qaqqR1dV9fyqqp6W5IokL09y76Z5X5bk+wY9NwAAAAAAAAAAAAAAAAAAAAAAANNFMNqMKaXcluTF517el+R7h1juziTHN71+d5Lbqqr6wOZJVVWdqarqR5I8f9vx315KefAQ5wcAAAAAAAAAAAAAAAAAAAAAAGBKCEabIaWUpSQ/sWno9UneP+Ba1yX52k1DZ5PcUVXVardjqqp6a5I3bRpqJ3n1IOcHAAAAAAAAAAAAAAAAAAAAAABgughGmy0/kOTkuT9/NMlrhljrBUmam17/SlVVH+rhuH+37fXzSykLQ9QBAAAAAAAAAAAAAAAAAAAAAADAFBCMNiNKKU9I8k2bhl5aVdU9Qyz5nG2vf6aXg6qq+kCS/7NpaCnJ04aoAwAAAAAAAAAAAAAAAAAAAAAAgCkgGG0GlFLaSX465z/eb6qq6reGWO/SJDdvGrovybv6WOKd214/fdBaAAAAAAAAAAAAAAAAAAAAAAAAmA6C0WbDa5I85Nyf707yyiHXe9i2139cVdVyH8e/e9vrm4asBwAAAAAAAAAAAAAAAAAAAAAAgANOMNqUK6U8Ksm/3DT0iqqq/mHIZW/c9vrDfR7/kT3WAwAAAAAAAAAAAAAAAAAAAAAAYMYIRptipZRWkp9O0jo39BtVVf3cCJa+dtvrv+rz+Lu2vX5AKeX4EPUAAAAAAAAAAAAAAAAAAAAAAABwwLX2nsIB9l1Jbj735+UkLxvRuse2vf5UPwdXVXW6lLKaZGHT8NEknx62sFLKxUlO9HnYNcOeFwAAAAAAAAAAAAAAAAAAAAAAgOEIRptSpZQbk/zrTUPfU1XVx0a0/OFtr+8ZYI17sjUY7cjg5WzxjUlePaK1AAAAAAAAAAAAAAAAAAAAAAAAmJBG3QUweqWURpKfStI+N/TeJD8ywlNsD0ZbHWCN7WFq29cEAAAAAAAAAAAAAAAAAAAAAABghghGm04vT/K4c3++L8lLqqpaG+P5qgkdAwAAAAAAAAAAAAAAAAAAAAAAwJRq1V0Ao1VKuTrJ920aen1VVe8f8WlOb3t9aIA1th+zfc1BvSHJL/Z5zDVJ3jai8wMAAAAAAAAAAAAAAAAAAAAAADAAwWhTpJRSkvxEksVzQx9N8poxnGrfBqNVVfWpJJ/q55iNywYAAAAAAAAAAAAAAAAAAAAAAECdGnUXwEh9Q5KnbHr90qqq7hnDeT677fWJfg4upRzOzmC0zwxVEQAAAAAAAAAAAAAAAAAAAAAAAAdaq+4CGKk7N/3515N8uJRyco9jLt32utXhmL+tqursptcf2rb/wT3W123+P1ZV9ek+1wAAAAAAAAAAAAAAAAAAAAAAAGCKCEabLoc2/fkZSf5ygDUu73DcI5O8f9PrD2zbf22f57h62+s/7/N4AAAAAAAAAAAAAAAAAAAAAAAApkyj7gI4kP502+vPK6Us9nH8E/dYDwAAAAAAAAAAAAAAAAAAAAAAgBkjGI2+VVX1d0n+eNNQK8mT+ljilm2v3z5sTQAAAAAAAAAAAAAAAAAAAAAAABxsgtGmSFVVx6qqKv1sSb542zJ3dZj3/g6n+x/bXn9dLzWWUm5I8thNQ8tJfrPnvyQAAAAAAAAAAAAAAAAAAAAAAABTSTAag3pLkrVNr59bSrmuh+Nete31L1RVtTq6sgAAAAAAAAAAAAAAAAAAAAAAADiIBKMxkKqqPpTkTZuG5pO8sZSy0O2YUsrtSe7YNHQ2yZ1jKRAAAAAAAAAAAAAAAAAAAAAAAIADRTAaw3h1kk9vev2EJL9VSrlh86RSSruU8i1JfnHb8a+rququMdcIAAAAAAAAAAAAAAAAAAAAAADAAdCquwAOrqqq/qaU8twk70gyf274iUn+vJTy3iQfTXI0yaOSnNh2+K8l+Z5J1QoAAAAAAAAAAAAAAAAAAAAAAMD+JhiNoVRV9c5SynOSvDHnw89Kkkef2zr5+STfUFXV2vgrBAAAAAAAAAAAAAAAAAAAAAAA4CBo1F0AB19VVb+e5GFJfizJp3eZ+p4kz6uq6gVVVS1PpDgAAAAAAAAAAAAAAAAAAAAAAAAOhFbdBVCvqqremaSMYJ1PJXlZKeXlSZ6Y5MFJLk2ynOTjSd5XVdVfDnseAAAAAAAAAAAAAAAAAAAAAAAAppNgNEaqqqqzSX6n7joAAAAAAAAAAAAAAAAAAAAAAAA4WBp1FwAAAAAAAAAAAAAAAAAAAAAAAAAgGA0AAAAAAAAAAAAAAAAAAAAAAAConWA0AAAAAAAAAAAAAAAAAAAAAAAAoHaC0QAAAAAAAAAAAAAAAAAAAAAAAIDaCUYDAAAAAAAAAAAAAAAAAAAAAAAAaicYDQAAAAAAAAAAAAAAAAAAAAAAAKidYDQAAAAAAAAAAAAAAAAAAAAAAACgdoLRAAAAAAAAAAAAAAAAAAAAAAAAgNoJRgMAAAAAAAAAAAAAAAAAAAAAAABq16q7ANgH5je/+PCHP1xXHQAAAAAAAAAAQ+nw3MN8p3kAMEGe0QMAAAAAAAAADjzP501Oqaqq7hqgVqWUZyV5W911AAAAAAAAAACMwe1VVf1q3UUAMLs8owcAAAAAAAAATCnP541Jo+4CAAAAAAAAAAAAAAAAAAAAAAAAAASjAQAAAAAAAAAAAAAAAAAAAAAAALUrVVXVXQPUqpRyNMmTNw39dZKzQyx5TZK3bXp9e5KPDLEeQL/0IWA/0IuAuulDQN30IaBu+hCwH+hFQN1mtQ/NJ7ly0+vfrarqs3UVAwCe0QOmkD4E1E0fAuqmDwF104eA/UAvAuqmDwF1m9U+5Pm8CWnVXQDU7Vxz+dVRrVdK2T70kaqq/mxU6wPsRR8C9gO9CKibPgTUTR8C6qYPAfuBXgTUbcb70PvqLgAAPsczesC00YeAuulDQN30IaBu+hCwH+hFQN30IaBuM96HPJ83AY26CwAAAAAAAAAAAAAAAAAAAAAAAAAQjAYAAAAAAAAAAAAAAAAAAAAAAADUTjAaAAAAAAAAAAAAAAAAAAAAAAAAUDvBaAAAAAAAAAAAAAAAAAAAAAAAAEDtBKMBAAAAAAAAAAAAAAAAAAAAAAAAtROMBgAAAAAAAAAAAAAAAAAAAAAAANROMBoAAAAAAAAAAAAAAAAAAAAAAABQO8FoAAAAAAAAAAAAAAAAAAAAAAAAQO0EowEAAAAAAAAAAAAAAAAAAAAAAAC1E4wGAAAAAAAAAAAAAAAAAAAAAAAA1E4wGgAAAAAAAAAAAAAAAAAAAAAAAFC7Vt0FwBS6O8md214DTJI+BOwHehFQN30IqJs+BNRNHwL2A70IqJs+BADTydd4oG76EFA3fQiomz4E1E0fAvYDvQiomz4E1E0fYqxKVVV11wAAAAAAAAAAAAAAAAAAAAAAAADMuEbdBQAAAAAAAAAAAAAAAAAAAAAAAAAIRgMAAAAAAAAAAAAAAAAAAAAAAABqJxgNAAAAAAAAAAAAAAAAAAAAAAAAqJ1gNAAAAAAAAAAAAAAAAAAAAAAAAKB2gtEAAAAAAAAAAAAAAAAAAAAAAACA2glGAwAAAAAAAAAAAAAAAAAAAAAAAGonGA0AAAAAAAAAAAAAAAAAAAAAAAConWA0AAAAAAAAAAAAAAAAAAAAAAAAoHaC0QAAAAAAAAAAAAAAAAAAAAAAAIDaCUYDAAAAAAAAAAAAAAAAAAAAAAAAaicYDQAAAAAAAAAAAAAAAAAAAAAAAKidYDQAAAAAAAAAAAAAAAAAAAAAAACgdq26C2CnUkozybVJbkzywCRHk5xJ8ukkH0nyh1VVLY/4nHNJnpjkQUkuS3I6yd8meV9VVR8b5bkmpZRyU5JHJDmRpJ3kE0n+Jsm7qqparbO2SSqlHE9yU5LrklyYZCHJZ5LcneS9VVV9pMbydiilXJWNj9sDkxxO8ndJ7kry7qqq7q2ztlmiD42GPrRBH2JQetFo6EUb9KKu53F/7EIfGg332YaD1ofYH/Sh0dCHNuhDW5VSrszGtbgiyUVJDiU5m+SzSf4qG9fk7voq3B/0odHQhzboQwxKLxoNvWiDXsQg9KHR0Ic26EOduT+AOvgaPxp6+IaD9jXeszH7gz40GvrQBn2IQehDo6EPbdCHup7H/bELfWg03GcbDlofYn/Qh0ZDH9qgD23l+bze6UWjoRdt0IsYhD40GvrQBn2IQehDo6EPbdCHOjvQ90dVVbZ9sGWjYb4iya9l45v7apftviRvT/LMEZz3RJI3JPmHXc73riRfPuR5rk7ylUlem+SdSf5p2zk+NqLreCTJdyf5+C5/n39K8rNJrqnx4z2265FkLsmXJPmPSf50j3upOnet/k2SS2v+HHheknfvUuc/nLtXLxpg7b2uwV7byTqvzQQ/BvrQaK6jPqQPbV7z5Ah60Obtjjqv0YQ+DnrRaK6jXqQXHfj7o8aPgT40mut4IO4zfai2+2MpyZOSfFuStyT5YJL1bee6o67rUPemD+lD+tDYrsd1Sb4/ye9k439q7HU9qiR/lOSbkrTruiY1fRz0odFcR31IH+q0fi+9Z7ftZF3XpoaPhV40muuoF+lFm9c9OYI+tHm7o65rNKGPgz40muuoD+lDB/7+sNls07X5Gj9bPdzX+I51e0av5k0f0of0Ic/o1b3pQ/qQPuT5vLo3fUgfmuU+NMH7w/N5u18ffWg011Ef0oe2r+35vP6ul140muuoF+lFndbvpf/stp2s69pM+OOgD43mOupD+tDmdU+OoAdt3u6o6xpN6OOgD43mOupD+tCBvz/2/HvUXYCtSpKfG+IL2v9McsmA5316kk/2ca43J1nqY/1bkrxjjy8KI/vETPLYbKRw9vr3WU7ysgl+nMd+Pc5dg38c8F76dJIX1nD/H07y833U+YkkX9LnOQb9/PrcdnLS16WGj4M+pA/pQ2PoQxn9N7JfOenrM+GPhV6kF+lFY+hFB+n+qHvTh/ShWexDk7w/svHG8Z9k4w3pvc51x6SuwX7a9CF9SB8a3/2R5CVDfH79vySPndQ1qXPTh/QhfWi898cQn1+f205O6rrUuelFepFeNLbrcXIEfWjzNrXvV0cf0of0oZm/P2w223RuvsbPRg/3Nb5rzZ7R2webPqQP6UOe0at7iz6kD+lDns+redOH9KFZ7EOTvD/i+bxerpE+pA/pQ2O6P+L5vH6ulV6kF+lFY7w/hvj8+tx2clLXpa5NH9KH9KGxXY+TI+hBmzfvVetDvXwO6kP60IG8P/rZWmE/uL7L+MeTfCgbzbWVjdS/m5M0Ns35Z0n+dynlyVVVfaLXE5ZSbkny1iTzm4arbKSsfzTJsSSPTHLRpv1fneSCUsqzq6pa7+E0j0jytF5rGkYp5bZspIG2t+26K8kfZ+OT8IpsfPLOndu3mOQNpZRGVVX/aQJlTuJ6nEhyvMP42Wy8uf2JbCSmPiDJo8/993OOJfnZUsrFVVW9fsx1JklKKc0k/z3JM7btujvJ+87Vek027sVybt8lSd5WSrmtqqrfn0SdM0IfGpI+dD99aHxWspFoPc30oiHpRffTizqf5yDcH3XTh4Z0QO4zfWirid0fSV6Q5OiEznVQ6UND0ofupw/trcrGm/wfzsb/WFjJxm/MvSrJTTl/fyQbn5u/XUp5ZlVVvzvpQidMHxqSPnQ/fYhh6EVD0ovupxeNz7S/X60PDUkfup8+1MEBuT+A6eRr/JAOSA/3NX6bA/ZszLTTh4akD91PHxof73noQ7vSh+6nD3U+z0G4P+qmDw3pgNxn+tBWns/bX/ShIelD99OH9ub5vO70oiHpRffTixiUPjQkfeh++tD4eK9aH9qVPnQ/faiDA3J/9K7uZDZblSR/mPMpen+U5JuTXNNl7uVJfjw70/d+L0np8XxXZGfq4e8neei2ee0k35qNT/rNc7+/x/O8okOdVZLVbLyhMZLEwmykp25PRfxwkqd2mHs8yY9um7vWae4YPs5jvx7Z+EL+uTVOJfmpJLcmOdRhbknynGw0r+01jf16nKvhtdvOe/bc/T+/bd6NSd69be7fJ7msx/NsPu495+6ZfrbWJK5HnVv0IX1IHxpLH8rGN1579Zhu2+9vO98bJ3FN6tyiF+lFetHY/k10UO6Pujd9SB+axT40qfvj3Lk+0+Vcf9Nh3x3j/rvvx00f0of0obHeH1+f5C+y8W+vZyY5vsvcY0m+PRv/A2Tz+T+e5Oi4r0mdmz6kD+lDY//30Oa1vFfd/TrpRXqRXjSe6+H96t6vlT6kD+lDM35/2Gy26dx8jZ+NHu5rfMd6PaO3T7boQ/qQPjSWPhTvefTzsdCH9CF9aEz/Hjoo90fdmz6kD81iH5rU/XHuXJ7P2/sa6UP6kD40vvvD83m9Xyu9SC/Si8b7b6LNa3mvuvM10of0IX1oPNdaSfFZAAAgAElEQVTDe9W9Xyt9SB/Sh2b8/ujr71R3AbYqSf5vNtL2Ht3HMd/Y4Yb/qh6P/altx70rycIu85/d4RPrwT2c5xXnmv77kvxEkn+R5FHZSAy8ZYSfmD+/ba0PJbl4j2O+c9sxf5akOeaP89ivx7nG/cn8//buPFqatKDv+O8ZEBjWUZBBQBj2oLiAmAhqHA0YiEeQJS64MIL7cqLRHA9CTlATjYnrOfEoUQTEJRIEREEgiANuuJ1BQEcEdVCUQVZxhlnhyR99573d1ff27equ7qqu+nzO6T+q3q7l9vu837rvc+vUTb4jyW3W3OaOSf68cfzLs+Y3Alt8HvfO8jcFj13x/vOz/IPGn1rzWPPbXLrLr+tQXzqkQzq02w5tcG53S3Jj41ifvcvPYwgvLdIiLdpdiw5lfPT90iEdmmiH9jI+jo71gcx+08LLknzP0ed04dGfXdo41iW7/LqH+tIhHdKhnY6Pj9pgm09NclXjHL5rl59H3y8d0iEd2vn3Q/P7unSXX9chv7RIi7Roty3a4NwmN1+tQzqkQ8aHl5fXOF+u8dNouGv80nHdozeglw7pkA7ttkMbnJs5j/W20aHj4+jQ8TF06EDHR98vHdKhiXbI/XkDeumQDumQ+/OG8NIiLdIi9+j1/dIhHdIh9+f1/dIhHdIh46PV19T3CXjVJLlow+1e2BhcL1tjm/s1LozXJbnfGts9t3Gsn11jm48+7YLQYajundkTB+f39VlrbvuaxnZP2fHf8z4+j49dN9iN7T7lhM/x03f8eTyvcbznrLHN/Y/G7E3b3JDk3mtsN3+cS3f5dR3qS4d0SId226ENzu3pjXP7y11+FkN5aZEWadFuWnRI46Pvlw7p0EQ7tPPPY25/p/4G3bjx6qbP4aINt9MhHWruR4e6O7/vbZzD6/d9Dnv+ei/acDsd0qHmfnTo5P3N7+vSXX5dh/zSIi3Sot18Hluc2+Tmq3VIh3TI+PDy8hrnyzV+Gg13jV86pnv0BvTSIR3Sod12aINzM+ex/nY6pEPN/ejQgY6Pvl86pEMT7ZD78wb00iEd0qHdfB5bnt+k7s87+pov2nA7LdKi5n606OT9ze/r0l1+XYf60iEd0qHdfB5bnJu56vW30yEdau5Hhw50fLR5nRd6V2u9YsNNf6Kx/LlrbPOkJDebW35RrfWta2z3g43lLy6l3GrVBrXW99dar11j39v4gmRhHL++1vo7a277Q43lr+7mlE62j8+j1vruWuvVG2z3p0man9s642kjpZTzkzyxsbo5xpbUWv8yyUvmVt08szHNlnRoKzq0eAwd2lIppWR5LDy7y2MMlRZtRYsWj6FFiw5mfPRNh7ZyMONMh5aOuY/xcdOx3rmP4xwyHdqKDi0eQ4e68/LG8n17OYs90aGt6NDiMXSIjWnRVrRo8RhatKWpzlfr0FZ0aPEYOrToYMYHME6u8Vs5mIa7xh8b8r0xU6VDW9GhxWPo0JbMebSmQzrUPIYOLTqY8dE3HdrKwYwzHVo6pvvzBkSHtqJDi8fQoe5M6v68RIu2pEWLx9AiNqJDW9GhxWPo0JbMVbemQzrUPIYOLTqY8dGGB6Mdtssay+eXUi44Y5vHNZafs86Baq2XJ/mDuVW3SfL562y7Y/+6sfzKFtv+ZpLr55YfXkr5uO1P6WA1x9Ndd3isf5vk1nPLv19r/Ys1t22O2cd3c0psSId0qEs6NPM5Se4zt3xjZr+xjtNpkRZ1aYwtMj52T4eMsy7ts0OMhw7pUJd0aNH7Gsu36+Ushk+HdKhLOsSmtEiLuqRFM+ar29EhHerSGDtkfACHyjVew7s0xp9Hs3s6pENd0qEZcx7t6JAOdWmMHTI+dk+HjLMujXHuld3TIR3qkg4tcn/e+rRIi7qkRWxCh3SoSzo0Y666HR3SoS6NsUOjHB8ejHbYbjxh3S1Oe3Mp5S5JPqWx/e+2ON6ljeVHt9h2V+7eWH7zuhvWWq9L8ra5VedlGF9TX5rj6dSx1IFHNZYvbbHtb2fxXB9cSrlw6zNiUzqkQ13SoZmnNpZfVmu9ssP9j5EWaVGXxtgi42P3dMg469I+O8R46JAOdUmHFt2zsfwPvZzF8OmQDnVJh9iUFmlRl7Roxnx1OzqkQ10aY4eMD+BQucZreJfG+PNodk+HdKhLOjRjzqMdHdKhLo2xQ8bH7umQcdalMc69sns6pENd0qFF7s9bnxZpUZe0iE3okA51SYdmzFW3o0M61KUxdmiU48OD0Q7bfRvLNyZ5z4r3P6ix/MZa69Utjvd7jeVPbLHtrnxMY/kDLbdvvv+TtjiXQ9ccT+/c4bGaY/H3193waMy+qbF6CGNxqnRIh7o0+Q6VUu6Q5AmN1c/uYt8jp0Va1KUxtsj42D0dMs66tM8OMR46pENd0qFFX9VY/q1ezmL4dEiHuqRDbEqLtKhLk2+R+eqN6JAOdWmMHTI+gEPlGq/hXRrjz6PZPR3SoS5NvkPmPDaiQzrUpTF2yPjYPR0yzro0xrlXdk+HdKhLOrTI/Xnr0yIt6pIWsQkd0qEuTb5D5qo3okM61KUxdmiU48OD0Q7bExvLf1xr/ciK939CY/ltJ77rdH91xv76cH1j+ZYtt2++fwhf096VUm6f5JGN1X+4w0M+sLG8z7F4j1LKc0opf1ZKeX8p5fpSyruOln++lPJ1pZRm8DmdDulQJybWoVW+LMn5c8vvTPIbHe17zLRIizox4hYZH7unQ8ZZJ3roEOOhQzrUCR1aVEr55iRfMbfqxiQ/1tPpDJ0O6VAnJtYhc9Xd0yIt6sTEWrSK+er2dEiHOjHiDhkfwKFyjdfwToz459EnMe/RLR3SoU5MrEOrmPNoT4d0qBMj7pDxsXs6ZJx1YsRzr+yeDulQJ3RokfvzWtMiLerExFpkrrpbOqRDnZhYh1YxV92eDulQJ0bcoVGODw9GO1CllNsmeWpj9YvP2Kz5xMK/bXnYtzeW71hK+eiW++jaexvLH9dy++b7H7DFuRyyr09y67nlf8qOnq5/9J/E5n8U247F5vvv12LbeyW5JLMIX5Dko5Lc+Wj5y5M8K8nfllJ+9OjfGafQoXN0qBtT6tAqzX9Tz6u13tjRvkdJi87Rom6MtUXGxw7p0DnGWTf21iHGQ4fO0aFuTLpDpZTblFIeUEp5cinltUn+V+MtT6u1vrGPcxsyHTpHh7oxpQ6Zq+6QFp2jRd2YUotWMV/dgg6do0PdGGuHjA/g4LjGn6Ph3Rjrz6NPYt6jIzp0jg51Y0odWsWcRws6dI4OdWOsHTI+dkiHzjHOujHWuVd2SIfO0aFuTLpD7s/bnBado0XdmFKLzFV3RIfO0aFuTKlDq5irbkGHztGhboy1Q6McHx6Mdrh+IMld5pY/kORnztjmgsbyP7Y5YK31qiTXNlbfoc0+duDyxvJnrLthKeUeSe7aWN3317N3pZSLkvznxuofr7U2nwbZleY4/FCt9eqW+2iO3a7/3m6T5NuS/Ekp5RM73veY6NCMDm1Jh2ZKKZ+U5KGN1c/edr8ToEUzWrSlkbfI+NgtHZoxzrbUQ4cYDx2a0aEtTa1DpZQLSil1/pXkqiR/keS5Sf713NuvSvJ1tdYf6uFUD4EOzejQlqbWoTWZq16fFs1o0Za0aMZ89UZ0aEaHtjTyDhkfwCFyjZ/R8C2N/OfRmzLvsR4dmtGhLenQjDmPjejQjA5taeQdMj52S4dmjLMtjXzuld3SoRkd2tLUOuT+vM5p0YwWbWlqLVqTuer16NCMDm1Jh2bMVW9Eh2Z0aEsj79Aox4cHox2gUsrjknxLY/XTa63vO2PT5tOKr9ng8M1tbrfBPrr02sbyE0optz7xncu+6oR1fX89e1VKuUWSX87i131Fkv+xw8P2NQ5vTHJpkmckeUySh2T2W5senOSxSX4oy9/M3D/Jq0sp99zgHEdNhxbo0BYm1qGzNJ9U/dpa69s62O9oadECLdrCBFpkfOyIDi0wzrbQU4cYAR1aoENb0KFTvSvJ05Pcq9b6032fzBDp0AId2sLEOmSuumNatECLtjCxFp3FfHULOrRAh7YwgQ4ZH8BBcY1foOFbmMDPo+eZ9+iQDi3QoS1MrENnMefRgg4t0KEtTKBDxseO6NAC42wLE5h7ZUd0aIEObUGHTuX+vDVo0QIt2sLEWmSuukM6tECHtjCxDp3FXHULOrRAh7YwgQ6Ncnx4MNqBKaV8SpKfa6x+VZKfXGPzZribT6dcRzPczX3u28sye5rnTS5I8syzNiqlfHyS7zzhj25WSjm/m1M7CD+T5F/OLX84yZM3+G1IbfQxDp+R5G611s+ttf63Wuuv1Vovq7W+rdb6hlrrS2ut/ynJPZP89yR1btu7JHlRKaVscJ6jpENLdGg7U+nQSkffSH9FY7Wne6+gRUu0aDtjb5HxsQM6tMQ4204fHeLA6dASHdqODp3swiTfkOQbSym37/tkhkaHlujQdqbSIXPVHdOiJVq0nam0aCXz1e3o0BId2s7YO2R8AAfDNX6Jhm9n7D+Pvol5jw7p0BId2s5UOrSSOY92dGiJDm1n7B0yPnZAh5YYZ9sZ+9wrO6BDS3RoOzp0MvfnnUGLlmjRdqbSInPVHdKhJTq0nal0aCVz1e3o0BId2s7YOzTK8eHBaAeklHKPzAbifCzfnuQraq315K1W2tc2O1Nr/eckP95Y/Z2llP9w2jallLsneUWSO5y2245Ob9BKKd+X5Csbq59Wa33dnk9l5+Pw6D+vzad3n/S+a2utT0vyrY0/ekiSL2tzzLHSoWU6tLkpdWgNj01yx7nlf0rywo6PMRpatEyLNjeFFhkf3dOhZcbZ5gbUIQ6IDi3Toc1NuEMfTHKvudd9MpsDenySH03y7qP3fXyS703yplLKp/dwnoOkQ8t0aHNT6pC56m5p0TIt2tyUWrQG89Vr0qFlOrS5KXTI+AAOhWv8Mg3f3ICu8e7ROyA6tEyHNjelDq3BnMeadGiZDm1uCh0yPrqnQ8uMs80NqEMcEB1apkObm3CH3J+3JS1apkWbm1KLzFV3R4eW6dDmptShNZirXpMOLdOhzU2hQ2MdHzfv+wRYTynlzkn+X5K7za2+Mskja63vPnmrJVc1ljd5Ml9zm+Y++/D9SR6d4yczliQ/Vkp5YmZPR31DZk/ivOvR+74xxxe/dyS5+9y+rq21Lj3ps5Ry0bonU2u9otXZ96CU8m2ZPfV63o/UWv/nmttftO6xTvg8Bj8Oa60/UUr5/CSPmVv9TUl+scvjHBodWkmHWtKhJU9tLP9irbX5FGmiRWfQopYm1qKdj4+p0KGVdKilnjvEgdKhlXSopSl3qNb6kSRXnPBHlyV5cSnlGUl+MMm3HK2/R5JXl1I+s9b65v2c5TDp0Eo61NKUO7QOc9Wn06KVtKglLVpivnoNOrSSDrU0sQ6ZqwYGzTV+Jdf4lib28+jWzHucTIdW0qGWdGiJOY816NBKOtTSxDpkzqMjOrSSDrU0sblXOqJDK+lQS1PukPvztqNFK2lRS1Nu0TrMVZ9Mh1bSoZZ0aIm56jXo0Eo61NLEOjS6uWoPRjsApZSPSfLqJPefW/2eJI+otb61xa5GGe5a6/WllMcneXmST577o886ep3mvZl94/DKuXUfOOW9f9PilEqL9+5dKeVrk/xIY/VP1lq/o8Vutvk8DmUc/kAW/yP7GaWUC2qtp42RUdOh1XSoHR1aVEr5+CSPbKx+9qb7GzMtWk2L2plai/Y0PkZPh1bToXYG0CEOkA6tpkPt6NBqtdYPJfnWUsoNSb79aPXtk/xcKeXTNvwNQwdPh1bToXZ0aG3mqhu0aDUtakeLFpmvXo8OraZD7UytQ+aqgSFzjV/NNb6dAVzjD2UcmveYo0Or6VA7OrTInMd6dGg1HWpnah0y59ENHVpNh9oZQIc4QDq0mg61o0OruT/vdFq0mha1o0VrM1c9R4dW06F2dGiRuer16NBqOtTO1Do0xrnq8/o+AVYrpdwhyauSfNLc6vdn9iTLP2u5u39qLH9sy3O5bZbDPYiBXGv9+yQPT/KsJDessclvJXlokqsb66/s+NQGpZTylUl+KosxfU6Sb97jaTTH4a1LKbdpuY87N5Z3MQ7/MLN/aze5WZJP2MFxBk+H1qND69GhE12Sxe/J/rTW+idb7G+UtGg9WrSeqbbI+NiODq3HOFvPQDrEgdGh9ejQenSolacn+Ye55QcneURP59IrHVqPDq1Hh1oxVz1Hi9ajRevRohNdEvPVK+nQenRoPVPtkPEBDJFr/Ho0fD0DucYP7d6Y05j3OKJD69Gh9ejQiS6JOY+VdGg9OrSeqXbI+NiODq3HOFvPQDrEgdGh9ejQenSoFffnzdGi9WjRerSoFXPVR3RoPTq0Hh060SUxV72SDq1Hh9Yz1Q6NbXx4MNqAlVJul+QVST5tbvUHkzyq1vqGDXbZfPrlPVtu33z/+2qt7z/xnT2otV5da/2GJA/IbELkt5K8I8k1Sf45yeVJnpfZU1T/Ta31iiQPbOzmj/d2wntWSvnSzCI9/+/+F5J8zT6foF9rfW8W/4OYJPdouZvmWGzzZNe11Fo/kuRvG6tbfbMzBjrUjg6tpkPLSiklyVc3Vnu6d4MWtaNFq029RcbHZnSoHeNstaF0iMOiQ+3o0Go61E6t9ZokL2msflQf59InHWpHh1bToXbMVR/Tona0aDUtWma++mw61I4OrTb1DhkfwJC4xrej4asN5Ro/pHtjVjHvMaND7ejQajq0zJzH2XSoHR1abeodMj42o0PtGGerDaVDHBYdakeHVtOhdtyfd0yL2tGi1bSoHXPVMzrUjg6tpkPLzFWfTYfa0aHVpt6hMY2Pm/d9Apzs6LfRvDzJZ8ytvirJo2utf7jhbi9vLN+35fb3biz/+YbnsVO11r9J8v1Hr7M8rLH8B6fss5y0/lCUUp6Q5PmZPaX6Jv83yZOP/sPWSgefx+WZPWHyJvfN8vhcpTkW22zbxjWN5eYTXUdNhzanQ8t06FSfl+Rec8vXZfZNNUe0aHNatEyLju1ifIyVDm1Oh5YNsEMcAB3anA4t06GNvaWx3PbfzEHToc3p0DId2tik56oTLdqGFi3TolOZr15BhzanQ8t06Ji5aqBvrvGbc41fNsBr/FDujTnLpOc9dGhzOrRMh05lzmMFHdqcDi3ToWPmPNanQ5vToWUD7BAHQIc2p0PLdGhjk74/L9GibWjRMi3amLlqHdqIDi3ToVOZq15BhzanQ8t06NgY5qrPO/st7Fsp5fwkv57ks+ZWfyjJF9Raf2+LXb+5sfzJpZRbt9j+M8/Y30E5eqrq5zVWv7aPc9mlUspjkvxSFh+E+JIkT6q1frifs1oaO81Anurom5pPPmN/XblTY/k9OzrO4OjQfuiQDiV5SmP5RbXW9224r9HRov3QIi064ziTGB+n0aH9mMo4G2iHGDgd2g8d0qE13NBYvmUvZ9EDHdoPHdKhNUx2rjrRon3RIi2K+epT6dB+6JAOrTKV8QHsl2v8fkyl4QO9xg/+59FHJjvvoUP7oUM6FHMep9Kh/dAhHTrjOJMYH6fRof2YyjgbaIcYOB3aDx3SoTVM9v68RIv2RYu0aA3mqnVop3RIh2Ku+lQ6tB86pEOrDHl8eDDawJRSbpXkpUkunlt9bZLH1Fpft82+a63vTPLGuVU3z+LF4SwXN5Z/Y5vzGYDPS3LR3PJra61v7elcdqKU8u8ye3LlR82tflmSL6m13tjPWSVJXtFYvrjFtp+dxYvQZbXWd219Rg2llDtl+Smu/9D1cYZIh/ZKh/rTe4dKKRckeXxj9bPb7mestGivtKg/vbdoDaMfH6fRob0a/TgbcIcYMB3aKx3iLHdvLO/i+67B0aG90iFONeW56kSL9kyLJsx89el0aK90iFVGPz6A/XKN36vRN3zA1/jB/zx6yvMeOrRXOtSf3jtkzuN0OrRXOtSf3ju0htGPj9Po0F6NfpwNuEMMmA7tlQ5xlknen5do0Z5pEacyV61De6JDE2au+nQ6tFc6xCqDHR8ejDYgpZRbJHlRkkfMrb4uyRfVWn+zo8O8uLH81Wue279I8q/mVl2d5FUdnVNfvqux/KxezmJHSimPTPIrSW4xt/pVSZ5Qa72+n7M655VJrplbftjRGFvHJY3l5pjuypdmsZHvSnL5jo41GDq0dzrUnyF06MuT3Gpu+Yokr9lwX6OiRXunRf0ZQovOMurxcRod2rtRj7OBd4iB0qG90yHO8vmN5UFM7u+SDu2dDrHKJOeqEy3qgRZNm/nqE+jQ3ukQq4x6fAD75Rq/d6Nu+MCv8Yfw8+hJznvo0N7pUH+G0CFzHifQob3Tof4MoUNnGfX4OI0O7d2ox9nAO8RA6dDe6RBnmdz9eYkW9UCLWMVc9TEd2h0dmjZz1SfQob3TIVYZ7PjwYLSBKKXcPMkLkjx6bvUNSZ5Ya31lh4f6hSQfnlt+fCnlfmts1xzEL6i1Xtvdae1XKeXJSR45t+oNmT35cRRKKZ+T5Fez+A3SazL7JuC6fs7qWK31Q0le2FjdHGNLSin3T/K4uVU3JvnFDk/tpuNcmOQZjdW/VmutXR9rSHRov3SoXwPp0FMayz879s6sQ4v2S4v6NZAWrTrOqMfHaXRov8Y+zobeIYZJh/ZLhzhLKeULkjy0sfpX+ziXfdGh/dIhVpnqXHWiRfumRcR89RId2i8dYpWxjw9gv1zj92vsDR/6Nf4Afh49yXkPHdovHerXQDpkzqNBh/ZLh/o1kA6tOs6ox8dpdGi/xj7Oht4hhkmH9kuHOMsU789LtGjftIhVzFXr0D7oEDFXvUSH9kuHWGXo48OD0QaglHKzzIL62LnVNyb5klrrr3d5rFrrW5M8b27VLZI8t5Ryq1M2SSnlsVn8jTfXJ/meLs9rW0cXvnXf+/gkPz236sYkT6m13tj5ifWglPKwJL+e5Py51a9L8oW11mtO3qoXz8zsm5ObXFJKecxpbz4ao8/J4hM6n11r/asV2zyglPKFbU6qlHKXzD6/C+dWX5/kB9rs59Do0PZ06JgOna2U8qlJHjK36iNJntt2P2OjRdvTomNadOK2xscZdGh7xtmxA+oQA6JD29OhYzp0rJTy0FLK485+59J2n57k+Y3Vr6u1vqmbMxseHdqeDh3ToWPmqtvRou1p0TEtOpv56mU6tD0dOqZDy4wPoC+u8dvT8GMHdI1/ZtyjNxg6tD0dOqZDZzPnsUyHtqdDx3ToxG2NjzPo0PaMs2MH1CEGRIe2p0PHdOiY+/Pa0aLtadExLTpmrnp9OrQ9HTqmQ2czV71Mh7anQ8d0aNnYxsfaXww79bNJvrix7ruTXFZKuajlvq5c40mT/yWz32Dz0UfLD0/y6lLK19Ra/+KmN5VSbpnk65L8cGP7H661vn2dkyml3D0nj7O7NJZvvuJrvarW+p4zDvWmUsrLkvxKkj+otX7khHN5UJKnJXlS44++u9Z62Rn778SuP49SyoOT/EaS286tfkuSb05y51JKm9O9ttZ6ZZsN2qi1/nUp5ceTfOfc6heWUv5jkv9da73+ppWllAcm+ZnMxupN3puzv4H4uCQvLaW8KcnPJ3nx0TcvS0opt0vy5Mye7H1h44//a631r9f4sg6ZDumQDs103aHTPLWx/Mpa699tuK8x0SIt0qKZXbXoIMZHz3RIhybXoWR/46OUctskdzrlj5sTyndacax3DGlyrWM6pEM6tKir8XH3JC8qpbw5sx+gvSTJW2o9+bcslVI+IcnXJ/mmxnlde7RuzHRIh3RoUVfjw1x1O1qkRVq0qOvx0WS+epkO6ZAOLZrk+ABGyTV+Ig13jT/mHr3B0SEd0qEZ9+j1R4d0SIdm3J/XHx3Socl1KHF/3sDokA7p0CL35/VDi7RIixa5R2//dEiHdGiR+/P2T4d0SIcWTXJ8rK3W6tXzK0nt8HXxmse8OMl1jW0/kuSPkvxyklck+ccT9v9rSW7W4mu7ooOv6blrHOc9c+//5yS/l9k/0l9I8qoV5/F9e/673unnkdlvNOpqLF26h8/jZklefsKx35XZBegFSf74aGzO//l1ST57zXHe3PcHkvxOZhNsz0/y4qNj3HDK5/Csvhuxp7GpQzqkQzvo0CnHvGVmN0rM7+8JfTZgKK8Ox44WadEzOxxLl+7h89hLiw5lfPT56nDc6NDAx9muP48cXof2NT4u6egzuajvXuzw70KHdEiHdvN5fNEJ7//g0fh4aWY3QLwgyauTXHnK/j+U5BF9d2IPfxc6pEM6tJvP4+IT3m+u+vTPS4u0SIt2OD4axzRfffLnokM6pEPGh5eX1whfHTbZNX7gDd/155HDu8a7R28grw7HjQ7p0DM7HEuX7uHzcI/eQF4djhsd0qFndjiWLt3D5+H+vIG8Ohw3OjTwcbbrzyOH16F9jY9LOvpMLuq7Fzv8u9AhHdKh3Xwe7s9r9/ehRVqkRbv5PC4+4f3mqk/+rHRIh3Roh+OjcUxz1Sd/LjqkQzpkfKz9OulJckxArfXSUsrjkjw3yccerS5JHnr0OskvJfnaWuuHd3+GW7ltkoed8Z73J/mmWuv/2cP5cIpa64dLKV+c2W9W+pK5P7pzkkedstk/JnlyrfW3NzzsHZJ85hrvuzrJt9daf3rD43AGHdKhIeipQ49L8jFzy+/ObKKfHmiRFg1BTy0yPgZCh4wz6JsO6dCE3S5nj4+bvD7J19da37jD85ksHdKhCTNXPSBapEUTZr56IHRIhybM+ABGzTVew4fAPXrTpkM6NATu0Zs2HdKhIXB/3rTpkHEGfdMhHZow9+cNiBZp0YSZqx4IHdKhCTNXPRA6pEMTdvDj47y+T4D+1FpfnuRBSX4qs4F6mtcneWKt9Um11qv3cnLt/ViSyzJ7Kucqf5fke5PcZ6j/KKem1npVrfVLk/z7zMbaad6X5CeTPKjW+jbdgAcAAAUCSURBVIo1d395ku9P8rtJrllzm79M8t2Z/YYT/4ndMR3SoSHYcYdO8tTG8vNrrTdssT+2pEVaNAR7apHxMVA6ZJxB33RIhybgNZn9VtxfSvKONbf5UJIXJvnCJA9309Vu6ZAOTYC56gOgRVo0UearB0SHdGhCjA9gUlzjNXwI3KM3bTqkQ0PgHr1p0yEdGgL3502bDhln0Dcd0qEJcH/eAdAiLZoAc9UDp0M6NFHmqgdEh3RoQkY1Pkqtte9zYABKKbfI7KnH90xyl8yebvz3SS6rtf5Nn+fWRinl9kkenORemT2p81aZ/Qfm75P8aa31z3s8PdZQSrlXkockuWuS2yS5Msnbk/xurfX6LfZ7XpL7JblPkrsluSDH4+P9Sd6Z5I9qre/e6gtgYzrEUOyqQxwGLWIodtki42PYdAjomw4xBaWUC5M8MLNxfsckt05yQ5IPJnlvkjcnecsB/GafUdIhxs5c9WHQIqBvOsQUGB/AFLnGMxTu0ZsuHWIo3KM3XTrEULg/b7p0COibDjEF7s8bPi1i7MxVD58OAX3TIaZgLOPDg9EAAAAAAAAAAAAAAAAAAAAAAACA3p3X9wkAAAAAAAAAAAAAAAAAAAAAAAAAeDAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgdx6MBgAAAAAAAAAAAAAAAAAAAAAAAPTOg9EAAAAAAAAAAAAAAAAAAAAAAACA3nkwGgAAAAAAAAAAAAAAAAAAAAAAANA7D0YDAAAAAAAAAAAAAAAAAAAAAAAAeufBaAAAAAAAAAAAAAAAAAAAAAAAAEDvPBgNAAAAAAAAAAAAAAAAAAAAAAAA6J0HowEAAAAAAAAAAAAAAAAAAAAAAAC982A0AAAAAAAAAAAAAAAAAAAAAAAAoHcejAYAAAAAAAAAAAAAAAAAAAAAAAD0zoPRAAAAAAAAAAAAAAAAAAAAAAAAgN55MBoAAAAAAAAAAAAAAAAAAAAAAADQOw9GAwAAAAAAAAAAAAAAAAAAAAAAAHrnwWgAAAAAAAAAAAAAAAAAAAAAAABA7zwYDQAAAAAAAAAAAAAAAAAAAAAAAOidB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9M6D0QAAAAAAAAAAAAAAAAAAAAAAAIDeeTAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgdx6MBgAAAAAAAAAAAAAAAAAAAAAAAPTOg9EAAAAAAAAAAAAAAAAAAAAAAACA3nkwGgAAAAAAAAAAAAAAAAAAAAAAANA7D0YDAAAAAAAAAAAAAAAAAAAAAAAAeufBaAAAAAAAAAAAAAAAAAAAAAAAAEDvPBgNAAAAAAAAAAAAAAAAAAAAAAAA6N3/B89nvm568KCIAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor, Config\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 5), dpi=300)\n", + " configs = get_known_configs()\n", + " to_display = configs[\"Relative humidity\"], configs[\"Ambient temperature\"]\n", + " for i, config in enumerate(to_display, start=1):\n", + " plot = figure.add_subplot(1, 2, i)\n", + " coros.append(plot_sensor(config, plot, {}))\n", + " await asyncio.gather(*coros)\n", + "\n", + "display(figure)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAE0YAAAmZCAYAAAAwyqtnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdd5RkVbX48e8eZkiSGXIaJAoIKElRkiBREZAgQRyCOYvx93yK+MxZjKBkQRHBwEMMKPoQUBBEJKkIKEgecmZm//44NVJ9+1Z3pe7qnvl+1uoFd997ztlVdavWmu5d+0RmIkmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmDNGXQCUiSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJknoQEVn5OXrQOUmavPxMkSRJkiRJkiRJkiRJkqT5S0QcXa0dG8txgxIRM2pq5GbOL+tLkiRJkqT2TR10ApIkSZIkad4WEVOBDYDnAEs1fhYAHgEeBm4FbgZuzswnBpSmJEmSJEmSJEmSJEmSJEmSJEmSJEmSpAGzMZokSZIkSeq7iFgI2Bs4HHgxsEgbw56KiL8AlwG/AX6emfeMXZaSJEmSJEmSJEmSJEmSJGk0ETEDuKmDIU8ADwIPADcCVwKXAj/NzCf7nd9cEfES4IKaUz/LzF37tMb2wK9HuGSHzLywD+scCpw8wiVrZubNva4jSZIkSZIkTURTBp2AJEmSJEmat0TEnsDfgTOAl9JeUzSAacDzgNcB3wHujIgvj0mSktQnEXFzRGTTz0mDzkmSJEmSJEmSJEmSJEkasIWA5YC1gV2A9wM/BG6LiE9FxGJjtO4RLeIvjYjVx2jNqsMn2DySJEmSJEnSpGNjNEmSJEmS1BdRfA34EbBqH6acAoxXIZIkSZIkSZIkSZIkSZIkSRpb04H3An+JiBf2c+KIWArYp8XpKcDMfq43gldGxBK9TBARzwa27VM+kiRJkiRJ0qQzddAJSJIkSZKkecY3gNe1OPdP4FfANcDdwCPAYsDSwDrAZsAmlF0iJUmSJEmSJEmSJEmSJEnSxPYI8PcW5xYFlgGWbXF+DeD8iNguM//Up3wOBhYe4fxhEfHRzMw+rdfKosABwPE9zHE4EP1JR5IkSZIkSZp8bIwmSZIkSZJ6FhF7Ud8U7QrK7o6/Gq2YKCIWBXYF9m78PKvfeUrSRJeZFjRKkiRJkiRJkiRJkiRpMrg8M7cf6YKIWBV4OXAUsFbl9BLAWRHxnMx8qg/5HFE5ToY2F5sB7Aj8sg9rVd1H2Sh2rsPpsjFaREwBXlMJz6I0mtM8KjOPBo4ecBqSJEmSJEkTxpRBJyBJkiRJkia3iAjgCzWnzga2zswL2tlhMTMfzcyzM/PVwCrAO4G/9TdbSZIkSZIkSZIkSZIkSZI0HjLz1sz8OrAJpaawai3g9b2uExGbAs+rhL8APFmJHd7rWi18F5jddPyCiHhOl3PtAqzadHw/8NNuE5MkSZIkSZImIxujSZIkSZKkXm1N2Umx2W3AzMx8opsJM/OBzPxiZr6n1+QkSZIkSZIkSZIkSZIkSdLgZOYjwMHAdTWnX92HJY6sLgl8CTi3Et8nIpbuw3pV/wZ+Xol124StOu504PEu55IkSZIkSZImJRujSZIkSZKkXu1WEzspMx8a90wkSZIkSZIkSZIkSZIkSdKEk5mPA5+oObV5RCzT7bwRsTBwUCV8YWb+Ezi5El+I0qBtLJxQOX51REztZIKIWBbYc5R5JUmSJEmSpHleR79YkyRJkiRJqrFGTeyP455FCxGxPLA5sHzjZzZwF3AncGlmPjjA9IZo5Lo+sBawFPAs4CFgFnAb8IfMfHicclkK2KIplymNPH6ambeMUw6rA88HVgaWBh4GbgIuy8zbxymHRYAtgZUo989iwL3A3cBVmXnjOOSwJPACYB1gScrzcDdwRWZeP4brbgSsTXncywKPNta9mfIaPDVWazfWXwDYFNgAWAFYGHgE+HNmXtDm+GdT3lOrAEsACwD3NX6uB67OzDlj8gAmiIgI4LmU+2c5YBngAcrn4E2U+2jMn4NB3ceSJEmSJEmSJEmSJEmaUM6viU0B1gMu6XLOfSj1Zc1Oafz3PEqNynJN544AvtLlWiP5MXAPML1xvAKweyPerkOABZuO/5yZfywlQBPD/FiXFRGrUB7vDErt0yLAg5Sayn9S6ukeH1iCfRIRC1JqBtcHVqS8tlAe5yzK63rDOOUylVL7uyHlPTUHuJ1S83ZpZs4ejzzaNRFqTSVJkiRJmtfYGE2SJEmSJPVq+ZrYI+OeRZNGgcFbgAMojbVaVQU9HRGXACcBJ493oURELE7Z3XFnYHtg9VGGzI6IK4FvAqdk5pNdrHkS8Jqm0C2ZOaPp/G7Au4AdKMVKVYdRnq8x0Wji9BrgTZTGbHUyIn4HfCozz20aezNDG/WdnJkzu8hhCmVX0EOAbSkNuVpdexNwJvDZzLynw3VOYuTXYlPgg5R7ZFqLOW4BPgd8ox+NyiJiY+AdwC6UhnStPBwRv6S8Bpd2uMb2wK8r4R0y88LG+dWB91J2ca0WLAL8BqhtjBYR61AKHV8CvIjSXHAkD0TELyiv3+/bzH8GpbiqlddExGtGOA9AZtZ+LkVEVkIfycyj28mtMs+6lOdxd0qxVSv3RsTPKM/BlV2scxIT7D6WJEmSJEmSJEmSJEnSxJSZd0fEgzzTcGmu6XXXt+mIyvGjwFmN9Z6OiNOBtzed3zQintdNrcxIMvPJiPhOZa3D6awx2uGV4xN6TqwPxqMuq7HO1cBGTaG7gVV6qSmKiAOB0yvhN2fm10YYMx3YG9gJ2I7S5G4kT0bEpZSGez/opilcRBwNfLg51qrGrJ8a9V17UWpGtwIWGuX6u4FzKa/ttWOQzwrA+4GZlE1969wVEWcCx2Tm3f3OoV3jVWsqSZIkSdL8asqgE5AkSZIkSZNe3S53a9TExkVEHAD8Dfg0sBmtm6JBaRq/DfBt4KqI2HbsMywi4tPAXcBpwKGM3hQNSqOyzYHjgRsjYps+5rNYRJxF2SFzJ+qboo2pRsOp3wIn0ropGpTX9MXATyLiexGxaB9z2BW4mrJj6M6MUKjSsCbwPuAfEfH2Ua5tN4cpEfFR4HLglbRoJtWwBvBl4PcRUdeksN01V2oU5f2J0vxupKZoUHYz3Au4JCJ+GBHLdLt2JY8jgOuAN1PfFK3VuGUj4grgr8AnKa/daMV3UHbv3Be4NCJ+FBGtCqkmjYhYNCK+BlxDKfocqSkawLKUJnR/jIhTI6Lt532UPMb9PpYkSZIkSZIkSZIkSdKk8HBNrNoorS0RsSaloVOzszOzeY2Ta4ZWm6n1y7crx3u0Ww8TEZsDGzeFnqTUFw7MAOqyTqwcLwfs0W6+LcysHD8BnNHq4kYjvduB44D9Gb0pGsCClMZYZwJ/iYgNu8p0HEXE+hFxA3AlpSHbtozSFK1hOUqN4V8i4viIaGdMuzntDlxL2dx1pHtmecrmyddFxKv6tX4nJkKtqSRJkiRJ8zobo0mSJEmSpF7dURPbf9yzACLiv4HvAqt0MXxD4BcRcVB/s2ppS0YvhBjJqsAFEfHqXhOJiGcBF1CaFw1ERKxFaYr24g6H7g/8NCIW7EMO7wb+F9igi+GLA1+MiG9FxNQecphCKZT5IJ01p3se8NuIWKyLNTcB/kBpjtXNDpOvoBSwrdvF2OY83gN8C+im0d3ilOegF3sCf4iIVXucZ2AaO5X+CngjpfFjR8MpO1deFBHtNGocKY9xv48lSZIkSZIkSZIkSZI0adQ1PHqwy7kOZ3jN0ynNB5l5JaWBUbODI6KX+r1amXk18Mem0FSg3Rq/wyvHP87Me/uSWPfGuy7rNOCpSuywbhdurLlTJfzDzLxvhGFb03ntVbPnUOrpqutONCsCvdT8BXAkpd6rq8aGQyaLeDnwI6CTTVqXBU6PiNf1un4nJkKtqSRJkiRJ8wP/4SxJkiRJknp1MVAtKtgpIt6amceOVxKNpmjH1Jx6Gvg18EvgNsrvQ1YDdgdewNCiqAWB0yLi6cw8c2wzHiIphVdXA9cBd1MKvWZTiiCeDWxB2dlyWtO4acDxEXFNZl7Rw/rHURq1zfVv4Dzgz8BdlN0416AUKPVdRCxJaea0Ws3pfwA/pOw4eR9lt8HnUppxrdi4Zlvg8z3m8EnKbnxVs4BfUIrV7gIepRTmbQjsCqxXuf4I4H7g3V2m8jHg4Kbjf1EKaK4G7gEWoxROvZKyg2Cz9Si7cr6l3cUau4z+ujFvsznA/1He3zdRHtMilIZ82wE7MrTh1TrAeRGxWWY+0O76TXYG3t90/EQjrwspzRefbqy9VU2udR4GLqO8n/4GPAA8RHmPL00pSNqB8lw2Wwf4XkRsl5lPt5j7SeCqpuMNGPq+vA/4Zxs59lVELEJ5zjaqOX0PcA7PvKeX5Zn7aOXKtRtQmqNtmpmzukxnXO9jSZIkSZIkSZIkSZIkTQ6NDTTrNk78RxdzTQFmVsK3UTYJrToF+EzT8VLAPsDpna7bhhOAzZqODwc+N9KARpO2A2vmmWjGsi6LzLwrIs6j1AfOtXtELJ+Zd3WR76HAlEqsk+d1NnAFcA1wPXAvpbYzKHWV61DqUF9UWWcx4LsR8bzM/FcXeQ/CfTzz2t5IeZwPU+oGp1NqJncGqptubknZELWXDZXXBI7lme87J6V28Tzg1sbxasBulOe6ue43gG9ExL2Z+YMecmjLBKo1lSRJkiRpnmdjNEmSJEmS1KvzgMcoxQ/NvhwRLwU+nZkXjWUCEfEi4MM1py4CjsjMv9ac+5+IeCGlyGX95umA4yLi95l5S/+z/Y85wM8pBVc/z8y7RxsQEdOBD1EaBs0t7FgIOJnSLKwbqwIHNf7/MeADwNcys7rrIsAHx2KXTOALDC+WeYhS8HF8ZmZ1QES8DXgPcDTld1xvojSs6lhE7M3wQpX7KI26TsnMx1uMC2Av4BvA8k2njoqI32bmjztMZaWmPB4CjgJOyMzZNWv/P0ojwPdXTr0hIj6RmbeNtlhELA18n+GNxk4Ejs7MVs29Pt4oUPwqsEtTfC3K++mVo61d4708c0//AHhnq4KwEe7B+yk7hp4FXNziHq7OtTXwJWDzpvDWwDuAz9aNycx/A5s2zXEzpXHgXD/OzJmjrT0GvsDwpmizgU8BH627jyPincC7gI9SPkvmWo1SrLZPF3mM630sSZIkSZIkSZIkSZKkSaWutug+SjOmTu1CqX9rdlpmzqm59jTKZn3Nm0Eewdg0Rjud0ghtbp3TBhGxVWb+foQx+1CaKM11G6W+cCIYl7qsJicwtDHaVOAQuts8dWbl+FbKJrsjeRI4m/KYf9XORqERsQbwCYY2t1sW+DrwsnaTHYA7gJMom25e3uK98x+NmsndgC9SmsLNtV9E7JuZZ3WZx3t55v1yPTCzxfvl4xGxZSPn5uZ7AXw9In6Tmfd0mcOoJlCtqSRJkiRJ84Vqt3tJkiRJkqSONBp6faXF6ZcD/xcRt0bECRHx2ojYJCL61qy9UTDwbYYWLEFp2LZji6ZoAGTmJZTd466unFqS1o+pX/bOzF0y8zvtNEUDyMx7MvNtwGGVUxtFxM5d5jH3eXsE2DUzvzRS4VKrwo1uRcQLGP54Hm7kclxdU7RGHk9m5scoTd1mUwpbFqq7dpT1l6c0Amv2N2DjxvotH28W51CKt26tnP5E497sxIKUxzEL2CYzj69rJtVY+6nM/ABwfOXUAgx/Plv5KjCj6Xg2cEhmHj5CU7S5699IKXCqPnf7RMRWba7fbO59eCyw30i7ZLZ4Tf4NrJyZb83M37RTfNeY62JgG+D8yqm39fNzaqw1mkO+vhKeAxyWmf/V6j7OzNmZ+RlKYWX1Ods7Irppcjfe97EkSZIkSZIkSZIkSZImgYhYibJZZtUZozVkauGImtgpdRdm5h0MbzS2Q0Ss2cW6I8rM+ymNppqNVgtTfSwnt6q5GWeDqMs6D7izEpvZzrrNGjVV61TCJ7dxr22Rma/MzHPaaYoGkJm3ZOZBlI1em+0eEevXDJkI/gCslpkfyMw/tPMebNRMngdsBVxZOf2uHnKZ2xTtGuDFIzURzMw/UO6tayqnlqNsIjomJlitqSRJkiRJ8wUbo0mSJEmSpH74EHDJCOdXoRT2HAf8CXgoIn4fEV+OiH0jYoUe1t4DWK8S+yewf2Y+OdrgzJxF2V3wseq8EVGdt2/aLZhpMfZkyu6LzY7sLSPen5m/7XGObry5JvaeRmHUqDLz+5SdJbv1dkojvLkepTRlqxafjJTDv4BXVcIbAHt2mdNhmXlVm9e+H6gW1Owy2qDGvX1AJfxfmfmdNtel0bTu9QzfrfX97c5R8Qfgna2a4Y2Sy5OZWX0Ptzv2ceA1lNd+rtWAbpsNDsI7a2JfzMxT2xncKFb775pTR/WQ05jfx5IkSZIkSZIkSZIkSZocImItSpOs5SqnHgU+0cV80ykbtza7PDOvHWHYydVpGLvN+06oHL8qIhapuzAiZgA7VMLVBkwDMYi6rMx8GjitEn5uRGzWYQp1r+2oz2svtZ3AMcBlTccBHN7DfGMmMx9tPNfdjL0POLQSfmFEbNBDSk8C+2TmvW2sfy9lM9BqjfDBjc+GsTARa00lSZIkSZqn2RhNkiRJkiT1rFHAsjvwkzaHLAxsCbwV+D5we0RcGBGHR8TCIw8d5i01sXdn5iPtTpCZNzF8p7igvmnXRFHd2fLFPcx1I/DVHsZ3JSKWAvarhK+jNNDrxIeB+7tYfzHgTZXw5zLzH53OlZm/Ay6ohPfudB7gN5n54w7WnUXZIbPZphEx2u/93sPQ3w3eBHy23XWb1n8K+HglvFsX72MoDfEGsstpZt7F8N1Je3lPjZuIWAXYqxK+i9KwshOfp+xg2eyFEfH8LtIar/tYkiRJkiRJkiRJkiRJE1BELBwRq0TEHhFxHPBnYOOaS1/bSWOhJocCC1Zi1Zq6qh8B1aZXM8eoRuUC4Jam4yWBV7a49jBKveJcv83Mv49BTuOuh7qsamM5gJntrhsRiwL7V8K/zcwb252jG41NQaubWU6KOrROZeZfgCsq4V4e67GZ+dcO1v8rcGwlvBAd3CftmqC1ppIkSZIkzfP8YpkkSZIkSeqLzLwfeAWl4KjTopwAtgO+DdwQEQe3NShiwca4ZncA53S4PsA3gerudy/tYp7xUm1gtFJErN7lXCc2CnLG24sohSjVXOZ0MklmPgx8r4v1dwKWqsS+3cU8c/1v5bh6b7bj+C7G/KFyvBiwSquLIyIouyU2O6mHpmTVhlYLAVt1OMffMvO3Xa7fL9X31AsGkkXnXgIsUImd0klzSPhPk7u6+6+bz8Exv48lSZIkSZIkaaJrNAHYMSKOiIj3RcTbI2K/iNhk0LlJkiRJUp9sFxFZ9wM8BtwKnAu8Fli0MvZR4ODMPL3LtQ+vHD8FnDHSgMYGsGdWwqsBO3eZw0hrJXBSJVzNmUZTttdUwnVNwSazjuuyMvNahtcTHRQR1XrDVl4JLF6Jndjm2F5VH+/zI2LaOK093vpZc9dNzVndJry79ZBDKxOx1lSSJEmSpHne1EEnIEmSJEmS5h1zd7uLiDOAXYGDgD2AJTqYZnXgtIjYCXhDZj4xwrXPBxauxH6YmdUGZ6PKzDsi4iJg+6bwehGxbGbe2+l8nWoU7LwY2ATYCFiO8rwtxvCmRzB8t0soz90/u1j+112M6Ye6Iphqk612nQu8vsMx1WKS2zLzltor23NT5XhGRCzVaBrYrt90sW7dLpZLAv9qcf3GwNKV2MVdrAtAZs6KiAcaa871PDp7LBd2u34rEbEKsDXl8a5LyW8JYBGG7rA614qV424bDY63F9XEzupyrjOBT7cx/2jG4z6WJEmSJEmSNA+JiGcDWwCbN/77fIZ+gfmWzJwxgNQ6FhEbAR8CXs7wv2PNveZvlC9kfy4znxzH9CRJkiRp0B6ibIJ5TGZ2VRcSES8ANqyEz8vMe9oYfjKlUVuzw4Hzu8llFCdS/n04t1Zp+4hYMzOb68x2AtZoOn6I7mt/xsU41mWdCGzZdLwMsCfw/TbGHlY5frjNccNExGLAtpTHuwGwLOXxPguYUjNkscrxQsAKlEaBE1pErEWp69wYWIvyOJegPIa617b6WnZbc3d9Zt7Q6aDM/GtEXMPQz4MtImJKpxv0jmIi1ppKkiRJkjTPszGaJEmSJEnqu0ZjsnOBcyNiAWBTStOvzSlfZFmP+mZfzWZSCkf2H+Ga59fELu803yaXMbQxWlAaPP2yhzlHFBFrA+8H9mVoY6luVHeka0cCf+px3W49t3L8GHB9l3Nd2cWYasOnpSOil+eiWtAEMB1ot1jl8czspvjpgZrYSPdSXaOrYyNipCaEo6nu6Dq9w/FX9LD2EBGxL/AmSjFSXeFZu7p5Pw1C9XPwaeCqbibKzFsi4i5g+RHmH8143ceSJEmSJEmSJrmI2B74AOXvR8sMNpveRUQA/w0cTf2XhZutA3wcODAiDsrMv4xxepIkSZI0UVwOHNttU7SGI2pip7QzMDN/FxF/B9ZuCr8iIqa32VitbY1anF8BOzZCQamL/HDTZYdXhn0vMx/pZx79MoC6rDOAz1Mars01k1EanEXEGgytAwU4s9PnNSI2A95Daca2yCiXj2YpJmhjtIiYQnlPvZbSrL4X3dbc/bGHNa9gaGO0xSkN+7qtRa0z0WpNJUmSJEmaL9gYTZIkSZIkjanMnE0pWvhP4UJELApsBewA7Aes32L4fhHx1sw8tsX5uuZL1/WQ7rVtrtEXEfEh4P9RdtPrh26aCD2cmY/2af1OLVs5/lfjfulYZt4WEU8B0zoYtmrleFFgk27WH8GywN/bvHZWl2s8VRMb6XmoPm5o/R7sVvW1Hc1dvS4YESsDpwIv6XWuhsnSlKv6GXVTZj7ew3zXMbQxWqefgeN1H0uSJEmSJEma/DYFdh50En10PMO/nD+H8qX/m4EFgQ0oX86d67nABRHxwsz8x3gkKUmSJEl99Aj1tVHTgKWBlWrO7QBcFhEzM/OMTheMiGcBB1TCsygbubbrFOCYpuMFgUOAL3aaTxtO4JnGaAAzI+IjmTknIpYG9qq5fkIZVF1WZj4QEecABzWFd4mIlTLz9hGGzmR4w/IT200uIqYBXwDeSG8N4JpNyFq0iHgO8B3KBsL90O3jvKGHNesaoC3fIt6tiVZrKkmSJEnSfKFfv5iRJEmSJElqW2Y+mpm/zswPZeZzgF2Ba1pc/sFGI7U6S9fEetkx7b6a2DI9zNdSRHwV+Aj9a4oG3TURerCP63eq+vo90ON8nY4fk9e2opOdIusaQ42FTpuWdaPTHTJ7ug8jYhXgQvpXfAeTZ1OJ6vuo110jq5+DC43wGVxnvO5jSZIkSZIkSfOuJ4AbB51EJyLirQxvivZdYPXM3CozD8jMvTNzPWBL4Mqm65YHfhoRC49TupIkSZLUL5dn5qY1Pxtm5sqUOqWZDG9QtCBwakS8vIs19wcWr8S+m5lPdjDHKUBWYtV/0/XL2Qyt51mdZxqlHczQ+sHrM/OSMcqjKxOgLqva0GwB4NWtLo6IAA6thP+WmRe1s1ijKdr3gTfT3+/eTrgNIiNiI+A39K8pGnT/OHupHa0bu1QP89WZaLWmkiRJkiTNF2yMJkmSJEmSBi4zfwZsAfy05vTywJ4thlYLnKDsQtmturF1a/QkIg4B3lRzahbwbeBwYBtgBqXp0SKZGc0/wJp9SufpPs3TjWpTuE6K0+o80e6FjUZP/WxKN5nUNRQctF7vw5OAdWrifwI+AewNPB9YEVgCWLDmPfWRHnMYlOpnVC+fga3G9/1zUJIkSZIkSZIanqL8LvdbwOuBzSi/kzxykEl1IuCbghUAACAASURBVCKWBT5eCR+bmQdm5m3V6zPzMmBb4A9N4XWBd4xdlpIkSZI0/jJzVmaeDGxKaR7dbAHgtIiY0eG0dQ3MTukwr1soDaGabRQRW3aYSztrPQ6cUQkf1vjv4ZX4Cf1evw9OYrB1WRcAt1Rih9Vd2LAd8OxKrNpcbSTvA15RE78N+BpwCPBCYDVK862Fax7vDh2sNxCNBnBnAsvVnP4dcDTwMmATSg3v4sDUmsd6cp9SmrB1v/N5rakkSZIkSQPVSXd9SZIkSZKkMZOZj0XEq4AbgemV0zsyvDAK4KGa2LN6SKNubN0aXWsUlHy65tQngWMy87E2p5oXdoer7tTXazHKEh1c+zgwh6EbB/wwM/fuMYfJoO4eWzoz76+JT3gRsQewUyV8F3Boo+liuybre+ohhu5w2ctnYKvxff0clCRJkiRJkqSGk4FvNL4kPkREDCCdrr0VWKzp+DrgqJEGZObDEXEwcC0wrRH+QER8MzPvG5s0JUmSJGkwMvOJiHg1sAJDm0YtQdlIdMd25omI9YAX1Zy6tE//jjycoU2s++VE4I1Nx3tHxA7A85piTwOnjsHaXZsIdVmZmRFxMvChpvD6EfGCzLy0Zki1adps2mycFxHLAx+ohJ8G3gN8JTPb3fxzMtShvQ54TiV2I/CqzLy8g3n69Vgnct3v/FxrKkmSJEnSQE0Z/RJJkiRJkqTxkZkPUnYYrFqvxZC6L4YsVRNrV93YWT3MV2c7YKVK7NjM/EAHTdEAluljToNSff2W7XaiiFiQoV86GlFmzgGqjcDW7Hb9SeaemtiM8U6ijw6sHM8GXt5h8R1M3vdU9X3Uy2dg3fgnMvPRHueUJEmSJEmSpGEy8766pmiT0Msrx1/KzKdGG5SZfwd+2BRaAtinn4lJkiRJ0kTRaCp1KPBg5dRLIuKANqc5or9ZDXNgRCza70kz8zLg6qbQwsBplcvOy8w7+r12jyZKXdZJQFZiM6sXRcRiwCsr4Z9n5m1trrMnUH3935eZX+ygKRpMjjq06mv7ELBTh03RoH+Pdck+j+3bJrHzea2pJEmSJEkDZWM0SZIkSZI00dTtuDi9xbV318Squ9h1YoOaWF0TqV68tHI8B/hYF/M8uw+5DNq/KserRMTSXc71XKDTbT/vrByvGxELdbn+ZFJ93AAbj3sW/VN9T52fmd3s3DpZ31PVz8E1e7yPq5+D/f4MlCRJkiRJkqSBi4jFImKXiDgsIt4bEUdFxKsjYvOIaLu2NiIWBzathDv5gvj5leN9OxgrSZIkSZNKZt4KfKjm1McjYtpIYyNiKqWx2lhagrH7d9mJleOVK8cnjNG6vZgQdVmZeRNwYSX8qohYuBLbH3hWJVZ93kdSfbz3AV/pYPxcE7oOrdFA7oWV8CmZeXMX0/Xrsa7bw9i6jZfv6mG+OvNrrakkSZIkSQNlYzRJkiRJkjTRPFATa7Xb3hU1sc17WHuLynG2WKMXq1WO/5qZdY2qRlMtTJmM6oqkXtDlXN2Mq66/CLB9l+tPJnXP+27jnkUfRMSCwPKV8P91Mc8CwJZ9SWr8VT+jpjL8S3htiYjVGf58/rGbuSRJkiRJkiRpImo0Q/sVMIvSlOwE4FPAZ4FTgMuAOyPik21u5rIyQ2txH+nwi8RXV4539Iu1kiRJkuZxXwf+UYk9GzhilHEvA1aoxO4Arurxp2q0PLp1KvBki3N3Af87Rut2ZQLWZVUbnC0J7F2JzawczwJ+3MEa1drO32dmq9dsJBO9trP6uwzo7rVdnv41Rtusj2MfAv7aw3x15tdaU0mSJEmSBsrGaJIkSZIkaaKpFi/B8N3W5roCeLwS26tRTNORiFgB2KYSviEzZ3U61yimV447nr+xO+Ze/UlnoC6piR3U5VwHdzHmFzWxQ7pcfzK5GHikEtujzS94TTTV9xN08Z4CdgcW6zKHauPGjj9/enRxTazbnWv3a3N+SZIkSZIkSZpUImJ6RPyC0gxtB2DaCJdPB94H/C0ith1l6mUqx/d3mFr1+mnA+h3OIUmSJEmTRqPR1DE1p/5rlEbRdQ3LDsvMTXv5YXjDo20jYu1uH18rmXkPcG6L06dmZqvNYwdlItRlNfsB8GAldtjc/4mItRhe//mdzHyigzX6Uds5nfJ7h4msX6/tAb0m0uQ5EbFep4MiYl1gw0r4ssyc05+0/mN+rTWVJEmSJGmgbIwmSZIkSZImmpfUxG6suzAznwJ+XQmvSHdNw14HTK3Eft7FPKOpNqSqKzIZzUHASn3IZaAy8yrg+kp434hYs5N5IuLFdLfL4s8Y3ljvwG4KbCaTRnHh+ZXw4sBRA0inV9X3E3T3nnpXDzk8VDnuRyFfJy4AZldir46IZ3UySURMBV5bc2osPgclSZIkSZIkadw0vtD+e2CnyqmHgAuB7wFnAZcDzV+cXRb4RUTsMsL0T1aOR/oSf5266zfocA5JkiRJmmxOA/5aia1Kfe0KEbESsFslfCf1zYq6yaXq8D7MW+eEDuODNBHqsv4jMx+l/Pu92Y4RsVrj/2fWDDuxw2X6Udv5ZmDhLsaNp55f28bmvm/tTzr/cWQXY+o+M37aayI15staU0mSJEmSBs3GaJIkSZIkqScR8fJOG1mNMNdawP41p1rtlAjw1ZrYZyNi0Q7WXQN4fyWcLebu1e2V43UjYka7gyNiBeCz/UxowL5ROV4Y+EZELNDO4IhYrGaOtjR24TyuEl4AOD0iFulmzknkYzWx9zaazE0amfkA8GglvHMnc0TEkcD2PaRxX+X42T3M1bHM/DdwTiW8AvDhDqd6B1At1PpdZl7ZbW6SJEmSJEmSNGiNvxedw9Df3d4A7AssnZk7ZOarMnO/zNyC8kX845uuXRA4LSJWabHEvZXjpSOiky9A122E45dqJUmSJM3TMnM28NGaUx9o8W+qmZS6rmZnNObp1XeBpyux17Rbv9ah8yj/Dmz+WSEzrx2DtXoyQeqyqqqNzqYAh0bEFODQyrmruqh7qtZ2bt3J5pQRsSHwgQ7XHITq44QOX1tKbdo6fcil2Vsbze3b0ri22pztCeCkfiYF832tqSRJkiRJA2NjNEmSJEmS1Ks9gL9GxIkRsX63k0TEypQvplQbmt0N/HKEoecB11diMygFB1PbWHdp4Ec16/4kM6u7UvbD/9XEPtXOwIhYhtIkrpudCCeqE4BbK7GdgZMjYqGRBkbEUpTnY8Me1v8Ew3dAfD5wTuPe6FhErBERx0bERj3kNaYaRV8/qISnUR73tt3MGRELRcTrIuKdPSfYmYsqx9tHxO7tDIyIXYEv97j+1ZXjjZp2Ih0vX6iJHRURr2pncETsQn2zvM/1lJUkSZIkSZIkDd5ngObf1/8UeF5m/qDuC/SZeXtmvg44qik8nfov7EP5G8fDTccLAJt3kN8La2JLdjBekiRJkiar0xle97cy8Iaaaw+riZ3WjyQy827gZzV57NaP+StrZWbeUfm5q9/r9NGg67KGyMxLGH7PzAR2BFavxE/oYolqbeditLk5ZWNz3B8DI9Y8TgSNe65aG3twRGzSzviIOIyxaQC3EHB2O3WbjWvOZvjzfXqjidlYmC9rTSVJkiRJGiQbo0mSJEmSpH6YSikwuS4iLo2It0RE3Q73w0TEohHxBuBK4Lk1l7wnMx9vNT4zEzgCqH555RXAz0faQS4itqIU71QLOu5n+E5y/XI+8FAltn9EfGuk3QUjYmfgUp75Ms2DY5TfuMrMh4DX1Zw6GPhLRLw6IoZ8ASgiVoyIt1CKnLZrhG8C7uxi/TuA1wBZObUL8MeIOKTNBnvPiogDIuJs4O/AW4C63UsnktdTnrdm04ELIuIzEbFiO5NExFYR8TngZuCbwFp9zXJ0Z9bEvhcR+7YaEBELR8SHKE0R5+7Y2O176uLK8RTg+xHRyRffepKZFwNfr8nj1Ig4OiIWrBsXEQtExLuAHwLVa87JzHP6n60kSZIkSZIkjY/GpjxHNoVuBvbNzMdGG5uZn6dszjPXwXW/N8/Mp4HfVcKvbjO/AA6pObV4O+MlSZIkaTLLzDnAR2pOvT8i/rPJaURsB6xTueb6zPxjH9Opa7J2RB/nn6wGXZdV58TK8drAlyqxJ4HvdDH3D4A5ldh7IuKjI9UQRsSBwCXAsxuhyVDbWX1tpwHnR8T2rQZExFIR8SXg2zzzveR+Pda5NcLPBS6KiC1HyGMLShO7ar3x3cD7+pTPMPN5rakkSZIkSQMx6j+0JUmSJEmSOrRV4+fYiLgZ+D1wLXAPcC+lKGAJYA1gY8pufa0agp2ZmSePtmBmXhwRHwGOqZzaAbg2Ii4AfgXcBiwArAbsDmwNRHU64PWZ+c/R1u1GZt4XEV8APlQ5dQSwV0R8H7gCuA9YilIs8zKGFnHMBt7O8CKfSSkzfxoRHwP+q3JqbeAUYHZE3ElpWDcdWI6hr9uTwKEML1CrNstrtf4PGsVYH62cWhM4FfhsRFwIXE4pnnmEcg8v1chxc8q9POF3e2yWmfdGxJ6U5oDNzeemAu8G3hYRlwC/BW6l3JMLUR73SsDzKI99ufHMu8YplB0omxuyLUZpTnYF8BNKAdFTwPLAZpT31LJN11/buK6bwqgfAbOAZZpiWwGXRcRDwL95pnDrPzJz0y7WGslRwDZA8+6RUym7lr4xIs4B/kz5LF4a2ADYB1i1Zq5/MfTLgpIkSZIkSZI0Gb2BoZtCfCQzH+1g/Ocof0+iMc+uwEk1151G+RLsXIdFxNcz80+jzP9Whn+5H2yMJkmSJGn+cSbwQWDDptgKwJuAzzaO6xqUndrnPH5EafC0RFNsj4hYPjPv6vNak8mg67LqnAp8nFIHOtdzKtf8JDPv7XTizPxrRJxGqUVs9kFgZkScRam/ephSK7YesCdDn59HKY+1usnlRPMFSkOupZpiKwK/jojfAj+jNJif04hvDexGef3nuoBSk1t9vrrxaeBdjfk3AC6NiIuAn1Jq2aDU/e5KqZGrq/t9Y2be3YdcWppfa00lSZIkSRoUG6NJkiRJkqSxNKPx042T6WDXxcz8aEQEw3eRnEYphti1jWmeAg7LzLqdDvvpf4DtGj/NlqV8SWckSSn8urD/aQ1OZn4wIpJSRFS1ALBy46fqCeDgzLyoZre9tncjzMz/iYh/A19l+O57KwAHNH7mKZn5l8YOimcztKEWlC951d2nE0pmPhUR+1EavC1aOf38xs9IbgP2AGZ2uf7jEfFOymdW1eKUArgxl5mPRcRLgHOB6o6ZywOvb3Oq64BdM3NWP/OTJEmSJEmSpAF4adP/zwbO6nD8RcDTPFNruw31jdG+CxzNM1+Engb8JCJ2zcxr6iaOiAN45kv+VXM6zFOSJEmSJqXMnNPYELVar/feiPg6pW7sldVhwHf6nMdjEXE2Q+uHplEaPrX6t9s8b9B1WS1yuj0izm/M28oJPSzxNkrt1fqV+KrAO0YZ+xSwH6U52oSWmbMi4mDgxwxtMgewbeNnJH+hPNYv9Cmlm4CDKXWMC1Aan23T+BlNAm/IzB/0KZeRF5tPa00lSZIkSRqEKYNOQJIkSZIkTXqnUgqN7u/TfP8AXpGZMzNzdicDM/MY4EDg312sey3w0szsa9FUncx8CngFpYFRJ+4H9s/M4/qf1eBl5n8DOwN/a3PIn4AXNxW0LF05/0CH658AvBD4VSfjajxO+RLUP3ucZ1xk5t+ArYDPU3Yo7MXlwHk9J9WhzLwS2AW4vcOhlwIvyMybe1z/FOBI4KFe5ulVY8fLHYBvUL6s19Fw4HTgRZk5Ke5dSZIkSZIkSWolIhYGNmsK/QuYHhEz2v2hbNjS/PevtaiRmU9Tvrz7ZFN4VeCKiPhaROwSEetHxHMj4oCIOJfyd4RpjWtvrUzZr7+5SZIkSdJkcBbw50psOeCtwEEMb8h1UWbeMgZ5nFYTa3tj13nVoOuyWhip8dntwM+6nTgzHwB2ouTfiX8DO2XmuNfOdauR6350sAFtw7nANpl5X5/z+TGwF539XmQWZWPdca2pnV9rTSVJkiRJGm82RpMkSZIkST3JzN9l5iHA8sCOwDGUP/Y/3ME0d1Kaq+0BrNcocOg2n+8CawPvBa6gNPtp5WnKboZHAhtn5m+6XbdTjQKaPSlflKkWdlXdBXyG8tycNda5DVJm/gLYEHgZcCJwNXAPMJvS6Owq4DhKsdXzM/NygIhYnOFFcLO6WP9Pmbkj8ALgFIZ/GamV2ynFca8BVszMAzPzrk7XH5TMfDQzjwJmAEdTGpy105jwccr7/f8BG2bmFoMq7srMi4BNgE8zenHU5ZTX6kWZ2e5rPNr63wZWAQ6jNIy8kvLefawf83eQx6OZ+UZgI0oR4B2jDJkFnAFslpkH97tgTZIkSZIkSZIGZEWeaTwG5fffN3XxM71pjmVaLZaZvwcOofzefK4FgTcC5wPXUf4e9F3K38Pm+iFwUmU6G6NJkiRJmm9kZlLqlareDby+Jl7XwKwffg3cVomtHxFbj9F6k8ag67Jq/IRSU1jnlE435K3KzNuAbYG3UDb6HcktwH8D62fmb3tZdxAy8xxgY+CbjFznNge4kLLp8cszc0x+d5GZ5wIbAF9l5IZtdwNfoTzvZ4xFLqOZX2tNJUmSJEkaT1F+dyhJkiRJktRfERGUJkHrAKsDSwCLUxqVPQg8RPkD/9WZOVrjnl7yWAHYgtK4bTlKs6e7Kc2CLm00KBu4iFidsoPcCpTn6nHKLoLXAH9Of4kzooh4KfDzSnjHzOx1Rz4iYm1Ksc2yjZ8FKY3/HqB8Ker6ebEwJSKW5Jn3zrLAkpTip4co9+YNwD96LSQbCxGxALA5pcnedGAqJe+bgMvH8jNnoml8Fm9M+SxeHliK8hl8N888H3MGl6EkSZIkSZIkDRcR21O+lD7XLZk5o4Pxm1G+jN1PN2fmmqOsuznwNcrv10fyFPBx4GON649sOveOzPxSL4lKkiRJkjQW5se6rIhYF9iSUn/6LOARShOsP2fmDYPMrZ8iYiFgK2A9Sr3gFEojvBuByzKz441qe8xnGuX3Kxs28plDqTm+CbhkgtYtzpe1ppIkSZIkjRUbo0mSJEmSJGnSi4gvAm9vCs0Bls7MkXYNlCRJkiRJkiRJE1AfGqO9ELi4z2m1nUNjQ5c9gW2AlSmbVswCbgH+Fzg1M29qXHsR8KKm4S/OzN/1MW9JkiRJkiRJkiRJkqRJZeqgE5AkSZIkSZJ6ERHLAEdUwlfZFE2SJEmSJEmSpPnWPZXjn2fmLuO1eGb+AvjFaNdFxDRgs6bQ08AVY5WXJEmSJEmSJEmSJEnSZDBl0AlIkiRJkiRJ3YqIAE4GFqucOm4A6UiSJEmSJEmSpInhzsrxugPJYnQvAhZuOv59Zj42qGQkSZIkSZIkSZIkSZImAhujSZIkSZIkaeAi4tCI2KnDMUsAZwMvq5y6HzitX7lJkiRJkiRJkqTJJTMfBK5pCs2IiHUGlc8Ijqgcf2sgWUiSJEmSJEmSJEmSJE0gNkaTJEmSJEnSRLA18IuIuCEiPhkRO0TEMtWLImJaRGwREf8D3ATsVTPXWzLz4bFOWJIkSZIkSZIkTWg/qxy/diBZtBARawH7NoXuB743oHQkSZIkSZIkSZIkSZImjMjMQecgSZIkSZKk+VxEfAN4fc2peyhfBHoCWAqYDiw0wlTfzswj+5+hJEmSJEmSJEkaLxGxPfDrptAtmTmjwznWBq4DpjZCjwObZ+Y1/cixFxGxAHA+sFNT+N2Z+bkBpSRJkiRJkiRJkiRJkv4/e/cdZldd5w/8faaldxJCSEJIUSBIR5CiCLrYVkXFFdYCKIKr+0OxLbsqqCyru7rqrgW7riKyomJdsAUbKkgRUFqAkGAoIb3PJHN+f5wh0yczaTfl9Xqe88z99s+dmXufBE7el51GXa0LAAAAAIA+7JVkZpLZSfZN36FolyY5d0cUBQAAAAAA7NzKspyb5MsdugYn+XFRFAcNZJ+iKAYVRXHWZuY09DXeZW5jkq+lcyjajUk+PpC6AAAAAAAAAAB2V4LRAAAAANgZ/DbJvC1c+7MkzyrL8r1lWZbbriQAAAAAAGB7KopiclEU07peSSZ2mdrQ07y2a68+jrgwye0d2lOT/LEoin8timJKH3UNKYriOUVR/FeSBekcsNaT5xVF8ceiKP6ht33bAtZOa6vnjA5DS5O8tizLjZs5AwAAAAAAAABgj1D4t6IAAAAA7CyKojgkyYlJnp5kRqp/oDQ6yZAkG1L946DFSe5J8qskPyvL8i+1qRYAAAAAANgaRVHMS7LfVm7z1bIsz+rjjClJfpLkgB6GH0hyd5JlSRqSjEoyLcnMJPUdJ5ZlWfRxxouS/KBD18NJ/pJkSZLGJHsnOTzJsC5LFyd5YVmWf+htbwAAAAAAAACAPU1DrQsAAAAAgCeVZXl7ktuTfKrWtQAAAAAAALu+siwXFEVxdJLLk/x9l+HpbdfmLBvgsZPbrr78Nslry7J8YIB7AwAAAAAAAADs1upqXQAAAAAAAAAAAAAAbC9lWa4qy/LVSQ5N8vUkS/uxbGGSK5KcnmTiZub+OclXkzy6uVKS/KptzxOFogEAAAAAAAAAdFeUZVnrGgAAAAAAAAAAAABghyiKoi7JIUkOSjI2yegk65KsSDIvyV1lWS7Ywr2nJXlakilJRqX6EOMVSe5P8oeyLBdvXfUAAAAAAAAAALs3wWgAAAAAAAAAAAAAAAAAAAAAAABAzdXVugAAAAAAAAAAAAAAAAAAAAAAAAAAwWgAAAAAAAAAAAAAAAAAAAAAAABAzQlGAwAAAAAAAAAAAAAAAAAAAAAAAGpOMBoAAAAAAAAAAAAAAAAAAAAAAABQc4LRAAAAAAAAAAAAAAAAAAAAAAAAgJoTjAYAAAAAAAAAAAAAAAAAAAAAAADUnGA0AAAAAAAAAAAAAAAAAAAAAAAAoOYEowEAAAAAAAAAAAAAAAAAAAAAAAA1JxgNAAAAAAAAAAAAAAAAAAAAAAAAqLmGWhcAtVYUxagkz+rQtSBJc43KAQAAAAAAAADYGk1JpnRo/7Isy+W1KgYA3KMHAAAAAAAAAOwm3J+3gwhGg+qGq+/VuggAAAAAAAAAgO3gJUm+X+siANijuUcPAAAAAAAAANgduT9vO6mrdQEAAAAAAAAAAAAAAAAAAAAAAAAAgtEAAAAAAAAAAAAAAAAAAAAAAACAmmuodQGwE1jQsXHNNddk5syZtaoFAAAAAAAAAGCLzZ07Ny996Us7di3obS4A7CDu0QMAAAAAAAAAdnnuz9txBKNB0tyxMXPmzMyePbtWtQAAAAAAAAAAbEvNm58CANuVe/QAAAAAAAAAgN2R+/O2k7paFwAAAAAAAAAAAAAAAAAAAAAAAAAgGA0AAAAAAAAAAAAAAAAAAAAAAACoOcFoAAAAAAAAAAAAAAAAAAAAAAAAQM0JRgMAAAAAAAAAAAAAAAAAAAAAAABqTjAaAAAAAAAAAAAAAAAAAAAAAAAAUHOC0QAAAAAAAAAAAAAAAAAAAAAAAICaE4wGAAAAAAAAAAAAAAAAAAAAAAAA1JxgNAAAAAAAAAAAAAAAAAAAAAAAAKDmBKMBAAAAAAAAAAAAAAAAAAAAAAAANScYDQAAAAAAAAAAAAAAAAAAAAAAAKg5wWgAAAAAAAAAAAAAAAAAAAAAAABAzQlGAwAAAAAAAAAAAAAAAAAAAAAAAGpOMBoAAAAAAAAAAAAAAAAAAAAAAABQc4LRAAAAAAAAAAAAAAAAAAAAAAAAgJprqHUBAAAAAAAAAMDOoyzLtLa2pizLWpcCu42iKFJXV5eiKGpdCgAAAAAAAAAAAMBOTTAaAAAAAAAAAOzByrLMunXrsnLlyqxcuTLNzc21Lgl2W01NTRkxYkRGjBiRwYMHC0oDAAAAAAAAAAAA6EIwGgAAAAAAAADsodasWZOFCxempaWl1qXAHqG5uTmLFy/O4sWL09jYmEmTJmXo0KG1LgsAAAAAAAAAAABgp1FX6wIAAAAAAAAAgB1vzZo1mT9/vlA0qJGWlpbMnz8/a9asqXUpAAAAAAAAAAAAADsNwWgAAAAAAAAAsId5MhStLMtalwJ7tLIshaMBAAAAAAAAAAAAdNBQ6wIAAAAAAAAAgB2nLMssXLiwWyhaY2NjRo4cmeHDh6exsTFFUdSoQtj9lGWZlpaWrFq1KitWrEhLS0unsYULF2bGjBledwAAAAAAAAAAAMAeTzAaAAAAAAAAAOxB1q1b1ymUKUlGjBiRfffdVygTbEeNjY0ZOnRoxo8fn7/+9a9ZuXLlprGWlpasX78+gwcPrmGFAAAAAAAAAAAAALVXV+sCAAAAAAAAAIAdp2MYU1KFNQlFgx2nKIrsu+++aWxs7NS/YsWKGlUEAAAAAAAAAAAAsPMQjAYAAAAAAAAAe5CuwWgjR44UigY7WFEUGTlyZKe+rq9NAAAAAAAAAAAAgD2RYDQAAAAAAAAA2EOUZZnm5uZOfcOHD69RNbBn6/raa25uTlmWNaoGAAAAAAAAAAAAYOcgGA0AAAAAAAAA9hCtra3d+hobG2tQCdDQ0NCtr6fXKAAAAAAAAAAAAMCeRDAaAAAAAAAAAOwhyrLs1lcURQ0qAerqut+209NrFAAAAAAAAAAAAGBPIhgNAAAAAAAAAAAAAAAAAAAAAAAAqDnBaAAAAAAAAAAAAAAAAAAAAAAAAEDNCUYDAAAAAAAAAAAAAAAAAAAAAAAAak4wGgAAAAAAAAAAAAAAAAAAAAAAAFBzgtEAAAAAAAAAAAAAAAAAAAAAAACAmmuodQF0VhTFAUkOTTI5yZAk65I8nmRukj+VZbl6K/ZuTHJ8kqlJ9kmyKsnCJLeWZTlv6yrvdtb+SQ5LMinJ8CSPJHkoyQ1lWbZsy7MAAAAAAAAAAAAAAAAAAAAAAADY9QlG2wkURTE6yQVJzkkVWtabjUVRjXXTagAAIABJREFU3Jbk6rIsPzSA/ccneX+Sv0sytpc5NyT5z7Isv93vwnve5xVJLkzyjF6mLCmK4qok7yvL8omtOQsAAAAAAAAAAAAAAAAAAAAAAIDdR12tC9jTFUVxepK5SS5J36FoSVKf5Mgkbx3A/s9PcmeSN6WXULQ2xyW5uiiKrxdFMay/+3c4Z3hRFFcm+VZ6D0VLWw1vSnJnURSnDvQcAAAAAAAAAAAAAAAAAAAAAAAAdk+C0WqoKIqLk/xvknFdhuYn+VmSK5N8N8nvk6zegv1PSnJNkgkdusskN6cKMPtpkie6LPv7JFcWRdHv342iKOqTXJXkVV2GFiX5SdtZt7Sd/aS9k3yvKIoT+nsOAAAAAAAAAMBAzZ8/P+95z3ty4oknZu+9905TU1OKoth0feUrX6l1iQAAAAAAAAAAAAC0aah1AXuqoijenuSSLt1XJvm3sizv6GF+XZJnJHl5klP7sf/kJN9J0tSh+7dJzi3L8q4O8wYlOS/JR5I0tnX/bZJLk/xzP5/Oh5K8oEO7JcmFST5XlmVzh7MOSvKFtueRJIOSXFMUxdPKsnykn2cBAAAAAAAAADvAtGnT8tBDD21qz5kzJyeddFLtCtoCn//85/OP//iPWb9+fa1LAQAAAAAAAAAAAKAf6mpdwJ6oKIpDU4WJPaklyellWZ7ZUyhakpRl2VqW5W/LsrwwyaH9OOb9ScZ0aN+Q5DkdQ9Ha9l1fluV/JXlll/UXFkWxXz+ey/QkF3TpPr0sy092DEVrO+svSU5J8rsO3eOSXLy5cwAAAAAAAAAABuLHP/5xzjvvvH6Hol1//fUpimLTdckll2zfAgEAAAAAAAAAAADopqHWBexpiqJoSPKldP7en1eW5dX93aMsyw2bOWNWktd16GpOclZZluv62POaoii+2mHdoFSBZedsppyLkzR2aH+lLMvv9XHO2qIozkpyR5Kmtu7XF0Xx72VZPrCZswAAAAAAAAAA+uWiiy5KWZab2meeeWZe//rXZ8qUKWlsbL/VYa+99qpFeQAAAAAAAAAAAAD0QDDajnd6kiM6tH9eluWXt/EZZyap79D+TlmW9/Vj3YfTOVDtlUVR/ENvgWpFUQxJ8ooe9uhTWZb3FkVxTZJXtnU1tNV8aT9qBAAAAAAAAADo0z333JPbb799U/sFL3hBrrjiihpWBAAAAAAAAAAAAEB/1NW6gD3QeV3al22HM07r0u5X8FpZlncl+UOHrmFJ/qaPJacmGdqh/buyLO/uV4Xda3pZP9cBAOycWlYkC76T3PfZZNUDta4GAAAAAAD2aH/84x87tV/xiq6f+wYAsIdZdmdyxweSez+drF+SbFiblK21rgoAAAAAAAAAoJuGWhewJymKYmaSZ3XompdkzjY+Y2KSQzt0bUjy2wFscX2SYzq0n5/k+73MfV4Pa/vr16lqe/J38PCiKPYuy/KxAewBALBzWL0g+flJ7YFoRX1y/FXJ1JfXtCwAAAAAANhTPfZY59sPJk+eXKNKAABqbMV9ybWHJxtWt/f98c3tjye9MDnua0nTmB1fGwAAAAAAAABAD+pqXcAe5tld2j8vy7Lcxmcc3KV9e1mWq3uc2bMburRnD+Cs3/X3kLaa7hjAWQAAO69b39keipYk5cbkd69JNq6rXU0AAAAAALAHW7VqVad2Y2NjjSoBAKihJbck1x3dORStq4U/Sm56y46rCQAAAAAAAABgMxpqXcAe5uld2r9LkqIoiiSnJPn7JMck2TfVz+aJJPcl+VmSb5ZlOa8fZxzUpT13gDXev5n9OjpwG5x1eJezfjHAPQAAam/+Vd37Nq5NFnw3mXbGjq8HAAAAAAB2IWVZ5pZbbsndd9+dxx9/POvXr8/48eOz77775oQTTsjw4cMHvGdra+t2qBQAYBfSvDz59cuTluWbnzv/quTIjyeDx2//ugAAAAAAAAAANkMw2o51VJf2XUVRTEvyxSQn9zB/att1SpIPFEXx+STvLMtyTR9nzOzSnj/AGh/q0h5XFMWYsiyXduwsimJskrFbeVbX+bMGuB4AYOe26DeC0QAAAAAAoBdPPPFELrvssnz961/PokWLepzT1NSUk08+OZdcckmOOeaYXveaN29e9t9//17Hn/3sZ/fY/+Uvfzlnn312j2Pvf//78/73v7/XPefMmZOTTjqp13EAgJopy+SmNyWr5/Vz/sZk8R+SfV+0XcsCAAAAAAAAAOiPuloXsIfZp0t7aJKb0nMoWleNSf4hyW+Koui6T0eju7Qf7395SVmWq5Ks69I9qh/nrCnLcvVAzkr32no6BwBgF1bWugAAAAAAANgpXXPNNZk+fXo+9rGP9RqKliTNzc259tprc+yxx+a8887Lhg0bdmCVAAC7qAXfTh66cmBrfvm3ycb17e2NzckdH0x+eFDyf0cm9302KVu3bZ0AAAAAAAAAAD1oqHUBe5iuYWJfTrJX2+PVSS5P8n9JHk4yLMmhSc5JckKHNYcn+XZRFM8qy7KlhzOGd2mv3YI61yYZ3KE9Yjue01FP5wxIURQTkowf4LIZW3suAAAAAAAAANA/X/rSl3LuueemtbVzsMaMGTNy0EEHZejQoZk/f35uvPHGbNy4cdP45z73ucyfPz8/+MEP0tDglhcAgF5Nen4y49zk/s8PbN1Vg5PxJyQT/ya5432dx246P1l6azL5tGTQuGTMYUld25/JHvtl8vj1SdOYZOzRyYgZSfOyZOi+yaO/SFY/lOzzN8mIWUlRbJOnCAAAAAAAAADsvtwluoMURTEoyaAu3ZPbvv4lyfPKslzQZfyWJF8uiuLtST7Sof8ZSd6d5NIejuoaWLZuC8pdm2RMH3tuy3P62nNL/EOSi7fBPgAAAAAAAAB01bohWfNwravY/Q2d3B4ysZu57bbb8qY3valTKNphhx2WT33qUznuuOM6zV20aFHe+9735rOf/eymvmuvvTbve9/7ctlll3WaO3ny5Dz44IOb2h//+MfziU98YlP7yiuvzLHHHtutnr322isnnXRSkuT3v/99zjjjjE1jF1xwQd761rf2+lwmTpy4mWcLAFAjDcOSYz6X7HNqcuO5SfPS9rG6pqS1ufe1i35TXT2Z+9nq2lrjjk2W/SnZ2HYb6eSXVH2DxyeLb0we/VkydGoy6XnJ6EPbAteOSOoaq/mr5iWL/5AUdcm+L66e04bVSVFf9dUPStY+ksz/VjV/ysuqP2MPRMuqqr7B/fis3nWPV9+zsjXZ53lJ47a4HRYAAAAAAAAA9ly75120O6f6XvqXp+dQtE3KsvxoURT7Jnlbh+63FUXx8bIsV23m3HKAde7sawAAdh2lP+4AAAAAALuZNQ8n39+/1lXs/l78YDJ8Wq2r2C5e//rXp7m5PYjjhBNOyHXXXZehQ4d2mzt+/PhcfvnlmTlzZt75zndu6v/whz+cM844I0972tM29TU0NGTatGmb2qNHj+6018SJEzuNdzR8eBVcMW/evE79o0eP7nUNAMAuYerLk3FPT3736uSJ3yXPvSFZeV9yw5m1rWvx7zu3H/5edXW06oHk8eu3zXk3X5A0jkqmnJZsXFddQ6cm089Kxh5ezVl4bXLXR5Lld1RBZx01DKsC2B66snN/XWPS2tL9vNFPq0Lp6odWAW1No5Ipp1cBdWsXJkv+mBQNyYhZyV7HJOsXJy3LkwnPTJbcWs2bcEIybL9t8/wBAAAAAAAAYBcjGG0HKctyTVEUrUnqugz9Z1+haB28N8k5SUa1tccmeX6Sb3WZ1zUobchAa+1hTU/hazvqHAAAAAAAAABgNzBnzpzccsstm9ojR47MVVdd1WMoWkfveMc78stf/jI//OEPkyStra352Mc+li996UvbtV4AgN3CsCnJyb9IFt+YjDuqCu1qGJZsWF3rynasluXJA1/p3Hffp5Pjr6zC4v70z72v3bC6eyha0nMoWpIsu6O6OrrrIwMqN0kV5jb7X5Kppyet65MV9yarH0we+Umy4u5kw6pk3WPt8+sHJyOe0vYzHpEMm5pMeFYy9oikblBSFAOvAQAAAAAAAABqQDDajrU6yYguff/Tn4VlWa4uiuI7Sc7u0H1SBKN19el0/55szowk39vsLAAAAAAAAABgi331q1/t1H7zm9+cSZMm9Wvthz70oU3BaEly5ZVX5jOf+UwGDRq0TWsEANgt1dUn459RPa4flJwyJ7nu6bWtaWdQbkh+c3qtq+hdy/LktndVV39sXJcsu726enLEx5KnXiAgDQAAAAAAAICdXl2tC9jDLOvSfqwsy3kDWP/7Lu0De5izvEt7/AD2T1EUw9M9sKxr3T2dM7QoimEDOSvJhH6cMyBlWT5eluWfB3IluX9rzwUA6FlZ6wIAAAAAAGCn8Zvf/KZT+9WvfnW/186ePTtHHHHEpva6dety8803b7PaAAD2KOOOTl78QDK4622c7NZueVvyYL8+zxkAAAAAAAAAakow2o51b5f2IwNcv7BLe1wPc+7r0t5vgGd0nb+kLMulXSeVZbk4Sdf+qVt5VtfaAQAAAAAAAIDdwNKlS3P//e2fWzZ69OgceGBPnwfXu+OOO65T+6abbtomtQEA7JGG75+87LHk9OXJ0ZfXuhp2lJvfmmxYUz0uy+oCAAAAAAAAgJ1MQ60L2MP8OckpHdrrB7i+6/zBPcy5q0t75gDPmN6l/Zc+5t6VpONdxzN7OH8gZw1kLQAAAAAAAACwi1i0aFGn9qxZs1IUxYD2OOCAAzq1H3/88a2uCwBgj9c4Mpl1XnUlycZ1SYpk1f3V4+H7J0tuTn7x3L73GTolqRuUlC1Ja0sy7phk/PHJre/Y7k+BAWhZlvzvsJ7HBo1PGoYnG1YkE5+b1A9OBu+TNC9O1j6aHPL+ZNTsZPFNSV1TMubwpNyQ1A/asc8BAAAAAAAAgN2eYLQd6/Yu7dEDXN91/uIe5tzZpX1IURRDy7Jc088zjt/Mfl3HOgajPSPJD/pzSFEUw5IcMoCzAAB2QT5VFwAAAADYzQydnLz4wVpXsfsbOrnWFWxzS5cu7dQeNWrUgPfoumbJkiVbVRMAAD2ob/vM3lEHtfdNfE7v8yf+TXLydb2P9xaMVjcoedW65BsDC8vdZPShybI/9TzWMCyZ8Oxk4Q+3bO891fpF1ZUkD32z+/hfv9/72iGTkoPenaxZkCz9U/LoT5MJz6p+n8YckUw8uQrLWz2/ClprWZE8/L2kaKjGJr80qWts32/NwuSxOUlRJJOenzSN2bbPFQAAAAAAAICdmmC0Hev/UqVjPHkXx/SiKAaXZbmun+sP7tJ+uOuEsiwfKYri9rSHjjUkOSHJT/p5xkld2v/Xx9xrk7yxj7V9OTGdf/9uLcvysQGsBwAAAAAAAGBHq2tIhk+rdRXsgsqy84eJFMUWBmBs4z0AAOinyS+pgqy6mnVe3+umvDxZ8O3u/Yd9aPNn1g9ONvZwi21Rnzz318m3xyWtLd3HX/iXZNjUZOP6ZN43kiduSAaNS4btn9x0/ubP7csZrcnczyY3vann8ef8KhkxMxk8MVlwdfU9a16ejDks2e/vqnrvuKTvkLFd0dqFyc0XdO57/JfV10euS/7yb72vnXt5++P6ocnGXj4LeviMZNTsZMPKpGlsFa7W2pIsvbV6PPE51c95+jnJ+OOqgLzm5cn6J5KUybD9Ooev9aVsrepfeV8yYlYV8lbU9W8tAAAAAAAAAFtNMNoOVJblwqIofpfkuLauxiSnJPlRP7d4Xpf2r3uZ9920B6MlydnpRzBaURQHJDmmQ9fqzay7LsnaJEPa2s8oiuKAsizv3txZSc7q0v5uP9YAAAAAAAAAALugsWPHdmovX758wHt0XTNmzJitqgkAgAGYeX73YLShU5NJL+p73bRXdw9Gq2usQsKSZNILk4U93Ea735nJyKdUIWJdHXxx0jgimXxaMv9/O49NeFYVipYk9YOSGWdXV1KFZ93y1p7D1vpjn1OTokgmPb/n8bFHJxNObG9PPb26upr9L70Ho71kXjJ0SnJlfe91HPah5LZ/6nnsqE8l085IGkYk3+xnCNjOpLdQtCRZdX919ebRn1ZfH/pm73PqBiWt67estiSZ8Ya2B0Wy4q6keWkV1DdkUvKUtySD965C4oqG6uufLqqC2SY8Kxl5QDJ8ehW6NuVl1e/30tuSNQuTvY5NBnX4O9PG5iqIrc6t/gAAAAAAAMCeyf8t3fG+nPZgtCS5MP0IRiuK4sQkT+/Q1Zrkx71MvyLJe5I8eVfEy4qimFWW5X2bOebdXdr/W5Zlr3d/lGW5piiKq5O8psseZ/d1SFEUT0lyWoeuDUm+sZnaAAB2PWVZ6woAAAAAAGCnMH78+E7te++9d8B73HPPPZ3aEyZM2KqaAAAYgEnPS46/KvnLh5JVDyTjT0ye/pmkvqnvdVNemhz+H1XA2YbVVXDUcV9PhuxTjU89vedgtP1fk4x8anLXR5MNK9v7G0Yk019bPX765UnzsuTRts8AHndMcvyVvdfSODKZ9prk/s/3+2lvUtQlT31b9XjYfsm0v0/mXdF5fPZF/dtr7BHJ4InJukc79488oAqbK4pk5huTuZ/rvnbGG5ID35nc++lkzfzOY42jk+lnJw1tn3d85H8lN/+//tW0p9iaULQkuf8LPfcvuz155Nre1z3+y+p60p/6+buSJPVDqtC1Q/81WXxTsurBKmCtcXhSNCYjZiV1bbeMr16QrH4oGXNI9fsOAAAAAAAAsIsSjLbjfTlVGNqBbe2Ti6K4sCzL/+xtQVEUE9rWdfS/ZVn2+LFnZVneVxTFV5Oc09bVlOQrRVGc0lvQWVEUL0lyVoeu5iTv39yTSXJJklclefJj5c4qiuK7ZVn2+FF2RVEMbnsuHe+E+WJvzwUAAAAAAAAA2PWNGTMmM2bMyP33V7cHLFu2LHfddVcOPPDAzaxsd8MNN3RqH3300du0xqIotul+AAC7nf1eWV1lWYV39deB70ieekGy5q9VqFjHtfv9XTL/W53D0aa9Jpn43Crs6Tm/TG57V7L0T8mYQ6uQtWH7VfOaxiQnX5esezxpbUmG7rv5Wo7676R+cHLvf/c97/TlyW0XJY/9Ihk6JTngbcmkU9vHj/1KMvppycIfJ4P2SmacW4XH9UddQ3LYh5I/nJOUrW19TVXfk9+bqaf3HIy236uqELaD35vceG7nsdn/1B6KliSzzk9W3JXc95n+1cXOaePa5K7/qK6BGLJvsu+LqoC0Jbckj/2883jTmOq1NPm06jU0bGoVXDhsWjLmsKRpVPvc1o1JuaG61ixMhk5KGoZVY2WZpKx+LwEAAAAAAAC2EcFoO1hZlhuLorggybVJnvw/wB8timK/JJeUZbm04/yiKJ6T5DNJZnToXprknzdz1MVJTksypq19XJKfFUXxhrIs7+6w/6Akb0zy0S7rP1qW5UP9eD4PFEXxiSTv6NB9dVEUFyb5XFmWzR3OOjDJF9pqedLi9C+ADQAAAAAAAADYhZ1wwgmbgtGS5Iorrsill17ar7V33XVXbr755k3twYMH58gjj9ym9Q0aNKhTe/369dt0fwCA3caWBMrWNSbDp3Xvrx+cPPO7yaM/T5bdnow9Mtn75PYzxh6enPzTvvcePKH/ddQPSo76r2Taq5OfHNPznHFPr8Kkjv5U7/vUNSQHvbu6tsT01yUjZiYLvluFok19efXcn7T3KVX42Z0fbO+b/Z7qe5MkM9+QDJmYzPtGFVY15eVVyFynGhuToz+dHPiuZN7Xk9vfu2W1smta+9dk7md7H29eWl1Lb+t7n0F7Jeuf6HmscXTSsqzt8cgq0G/GG6vX5BM3tO1dJJNekIw/rgpgaxxVvX7qB3feqyyTjevaw/02Nle/wy3Lk3WPJSNmCV8DAAAAAACAPYhgtBooy/KnbeFoHT9u7v8leVNRFL9P8tckQ5IclmS/Lsubk5xRluWDmznj4aIoXpbkuiRNbd3HJ/lLURQ3J3kgyagkRyQZ32X5D5MM5O6Hf0oyO8nz29qNqZ7be4uiuCXJyiTT287qeDdMc5LTyrJ8ZABnAQDsQspaFwAAAAAAADuN1772tfnqV7+6qf3JT34yb3nLWzJx4sTNrr3ooos6tV/1qld1CzLbWqNHj+7UfuQRtzMAAOwQdY3JpOdV144y7qjex0Y8ZcfUMP746upJUSSHfCCZ+cZk6Z+S0Yckw6Z0nrPvi6prc4ZPSw5+TxVudc8ntrrsfusrUItdR18/wydD0ZKkZUVy/xerq6u7/r173/AZVahfw/Aq8GzVvGTDyr5raRyZjH9msvqBKmCttTlZcnPSNDYZPj1Z8sdq3pgjklnnJavnJ+sXJQ9fk6xfnJQbq/HpZ1evrVUPVO8/409MBu+dbFhVBRXWb9u/awIAAAAAAAADJxitRsqy/GRRFBuTfCTJ0LbuxiQn9rHssSQvK8vyhn6ecX1RFKcl+Uraw8+KJEe1XT25Msm5Zfnk//nt1zkbi6J4ZZIvJOn4cXMTkvR2l8rjSV5XluWv+3sOAAAAAAAAALDrOvnkk3PYYYfltttuS5IsX748Z5xxRn784x9nyJAhva772Mc+lu9973ub2kVR5G1ve9s2r2/69OlpampKc3NzkmTOnDlpaWlJY2PjNj8LAIAaK+qqsLFlt3cf2/+1O76e3gydXF3bwuTTeg5GK+qSsnXbnJEkIw9IXnRXe/vx3yR3XJI89vMq2OqkHycjD0zu+Xhy5wfb5zWMSA56V3L7QD7bmV3WqvsHvqZlRbLwh937m5ckS5a0t5fektx4Xu/7PPDl6toS445JhkxKRh1UfR00Llk5N3nom8mah5OppycjZlWvq5Vzk33/Nhl9cLL20WTYfknL8mTtI1XQYcPIpGlMUle/ZbUAAAAAAADAbkwwWg2VZfmZoih+kuSSJC9JMqKXqY8muTzJx8uyXD7AM35cFMXBSd6fKrRsTC9Tf5/kI2VZfnsg+3c4Z1WSVxVFcXWStyc5tpepS5JcleTisiwXbclZAAAAAAAAAMCO9+ijj2bevHlbtHbatGlJki9+8Yt5xjOesSl87Prrr8+JJ56YT33qUznmmGM6rXniiSdy8cUX59Of/nSn/ne961055JBDtqiOvjQ1NeX444/PnDlzkiTz58/Pi1/84px//vmZNWtWhg4d2mn+xIkTM3jw4G1eBwAAO8j0s5JbLuzcN2y/ZO+Ta1LOdjfhxGSfU5NHrmvvG7x3cvyVyc97ec4HvD25+6Pd+8cdmxRF8sTvuo8ddFGXc09ITvlZ93mHfKC6yrJqF0X1ddFvk0eu7T5//AnJc36VPPg/ybyvJxvXJlNflTzlzcmvXpr89fs9P4ckOfK/kmV3JPd/vvc50B+L/1B9ffi7PY93/R2be/nA9h8yKZnysmTFvVWQ4NqFSeOIZPW8ZPiMZOmtSf3QKoBw7JFVMNvkl1QBa/VDk41rkpZV1dqV9yStLcnYo5K6huq1tnFNFTBXNCSNo5LWddVcAAAAAAAA2MkIRquxsizvT/KaoiiGJDk+yeQkE5M0J1mU5E9lWfbwcXQDOuPxJG8qiuKCtjP2aztjdZK/Jrm1LMsHt+aMDmddneTqoij2T3JEkklJhqUKd3soyW/LsmzeFmcBAOz8yloXAAAAAAAA28wZZ5yxxWvLtrCDI444Ip/85Cdz/vnnp7W1NUly880359hjj83MmTMze/bsDB48OAsWLMiNN96YDRs2dNrnuc99bj74wQ9u+ZPYjAsvvHBTMFqSXHvttbn22h5CGZLMmTMnJ5100narBQCA7eypFyTrFiX3fjLZsDIZe3QVElZXX+vKto+iLnnm96ugpkW/SYbPTGadnwybmsw8v3uA09DJyaGXJvOvStY83Hls5huSDWu6B6PVD0kmv3iAdRWd25Nf0nMw2ow3VHOnv666utbam5N/lkw8JWndkDzwpaTc2H3O8d9Mbn1XsmZ+97HjrkimnVk9XvzHZN1j1XljDq36vlF0X7M5B7072dic3POxga9l97Z2YfWe1JMV97Q/XnV/svBH1eObL+jn5kV6vJ+tYUQy9fRk1dzk8V91Hpv5xmT/s5KxhydFfTL/6ur1OWTf6nU18ZTej2tZVe05aEIydFI/awQAAAAAAICKYLSdRFmWa5P08HFo2/SM5iRzNjtx25z1YJJtErYGAAAAAAAAAOw+zj333IwZMyZnn312Vq1atal/7ty5mTt3bq/rzjnnnFx++eVpbGzcbrW96EUvyqWXXpqLL744Gzf2EJgAAMDuo6hLDrssOeQDyYZVSdPoWle0/dU3JU/9f9XV0VH/XQWGPfDlpNyQjHxqcuJ3kvrBySnXJ79/XRWC1jQuOfAdyfRzqvkr7k7u+0ySMmkam5x49dZ/H6edmdz/hWTJze19445Jpr6y9zX7nJrc9+nu/XWNyZjD2h43JBOf2z10rX5otX7JLcld/959bNILO9RxVPcz9joueeKG7v1Hfzq56z+rYKiOZp6XHPah6nFvwWj1g5PTVyaP/iy57Z+qwLbmpclBFyV/+bee18Bm9fIhnxtWVqGBPZn7uerqScffxfHHJ0OnJGsWJCvuTdYv6jx3+PTqfWPNgqRxVJLWZMjkKghu5T3JsOnJhGcme5+UlK3JoLHJ+iVJ44ikaOgcoFiWXdqtVfBhfVPnM1tbqq912++/IQAAAAAAALD9CEYDAAAAAAAAAGCHesUrXpFnPvOZueyyy3LFFVfkiSee6HFeY2Njnv3sZ+fiiy/Occcdt0Nq+5d/+Zecdtpp+drXvpYbbrgh9957b5YvX561a9fukPMBANjB6hr2jFC0vtQ1JMd8Ljnio0nzsmTYlPaxETOS5/4m2bAmqR/SHkhUNCRHfyo59NJk9fxk1Oxqn63VODI55RfJA/+TLLstGX1YMvMNVVhYbyY9P9nned1Dz/Y/Kxk0rr19yAeTxTcSLAWJAAAgAElEQVQmzUva+w69tPr5z74oWXJT8ljbZ1DXD06O+1rSNKrvevd7VfdgtLrGZMorkvHPTH75t8nqts+a3ufU5NDLOtT3uuTBr3bf82mXVN/LSc+rro72eW7y85N7ruXwjyS3vqPnsVlvSo78RLL2keShq6pAqvWLkykvq4Lwhu2XLP1T8tM+/t41+SXJot9Wj1ubqzXL7uh9PnuOJ38verPqgeT29/Q9p7egwJ4Mn5Gsur9zX+PIZNyxyfI/J2v/2nnsmC9Vr6U1D1fz1j2WrH4omf+tZOV9SV1TMvm05ClvrkIzN6yuroe/mzz4P9X725RXVK/3jqFsSbJhbdKyPBkysf/1AwAAAAAAsFlFWfbyyT+whyiKYnaSO59s33nnnZk9e3YNKwIAdjnfKHrun35OcuwXd2wtAAAAAAB92LBhQ+67775OfbNmzUpDg89Vo3ZaW1tz88035+67786iRYuyfv367LXXXpk8eXJOOOGEjBgxotYlbhfb6/X45z//OQcffHDHroPLsvzzVm0KAFvBPXrADtHaktz98eSvP6gCjaaclhx0UVJX33neqnnJgquT5qVVmNqEEzvssbEKY1uzMNnrGcngvfp37o3nJw98qWrXD02O/0YVIpYkZWsV1NQ4Ohk6uXOo0qO/SH5xSuf9iobkxfcnw6b2fN7iPybXHd3z2HHfSG59exV+1tUL/5yMOmgzz2VD8s3G3sfP7OXfHfR279TmDNor2bg+2bCy7znrew7S3mTMEcnSW7asBtgSYw5PNq5LVtzVuf/Z1yUtK5ObL6jC0kYdnLQsTcY+vQppXPijZN2iKnxt9j8nk16YDNmncwDjivuqtaMPqeaVG9qDIdc+Ur1vNAxJxh7V+/sE7cqyCsQbMilJWYVRzv9W9XOYeW4y6/xaVwgAAAAAwC7G/Xk7jjubAQAAAAAAAACombq6uhx99NE5+uhe/nE/AADA5tQ1Jge9s7r6MnxacuA7etmjPhl7ZHUN5Nxjv5gcemmy6oEqpKthSPt4UZeMflrPayeenBzzheS2dyfrF1fBacd+pe+woxEz2sKSWruPjT8+mfGG5M4Pduk/YfOhaElS11CFMS27vfvYfmf0vm7cscni33fvP+YLVSDRHZf0vO4FdyZD9u49WG3YfslL5iXL/5L8qJdAzVNvTMa1/V2ybE1W3l+F3o07Klm/pAqiaxyVpKxC55b/ufo5NS9LBo1Nivrk/i8kC77T+/ODrpbe2nP/nFM7t598Xay4p/vcW99RXVvr4Pclrc3JyrnJ4huTEbOSfU6tgthGHZQ0jEiaRifNS6owsFUPJCmr94sNq5PV86v3xbFHJhvWJMvuqN7XRsxKHroqeeS6JK1V0OS4o5J1jydLbk4aRyZjj07qm7b+OWwP65ckd/9nMvezvYcr3vSm6nrZ48ng8Tu2PgAAAAAAYLMEowEAAAAAAAAAAAAAwJYask91DdSM1yfTz67ChgbvXQV59aVpTDLhpOSxX3TuH3t0Fah28MXJxvXJA1+sQo/2OTU55ov9r2fmG5M/vqVzX8OI3sPkkmS/v+sejFY3KJl8WhXC1FMwWsOI9iCip16Q3POJ7nMOaDtzxFOr0Lg1D3ceH7JPMuaw9nZRl4yc1d4evFf3PUcfXF0dTXp+++O7PpLc2ku43pll9fXnz0ke+3nPc05fmTQMTVbel9x4frLy3upnVjQkM85Jhs+sQqju/2Lbcy6SckP3fRpHJS3Lez4DOrrzA53ba+b3/vu5NXoLDzzxO8mkF1TvYSvursIVh+zdeU5Z9v3etn5xsmZBMvLApH7Q1tW5fkly98eq19eGlf1b85vTk+dcv3XnAgAAAAAA25xgNAAA2G7KWhcAAAAAAAAAAADszIq6ZMjE/s8/5ovJnL+pwreSZOjU5Bn/Uz2uq08O/3By2L8l5cakrnFgtcz6h2Tj2uSe/06aFyfjT0wO+3Ay5pDe1zzlzcnyO6uwr6QKPTvhqmTQ2KRpdDJsWrJ6Xuc1U19RPe+kCoeb+9lk47r28aaxybQz2p/TIf+a/P6stN+PVSSHXDrw57c5k17UczDafq9qfzz9rJ6Dp+qHJI3Dq8cjn5o8Z07v5xzx0eraXGBUa0vyxO+SuqYqBK5+cNK6MWldn5StyYKrk7/+KFn0m2SvY5OppyfL/5z8+bKe95vwzOr7tuDbPYfRwUD9+mUDXzP++Op9Yc2C5PFfdR5rGlO9py27PRl7ZBVutnFdMupp1XvC3icnrc3Joz+rvrZuSJ74bbL0tiqYbUs8/sukeVn1fgUAAAAAAOw0BKMBAAAAAAAAAAAAAMCuYPi05IV/SZb8sQrHGntkUj+o85yirj14bCCKIjnwHckBb6/2rqvf/Jq6xuSYL1ThZasfSsYc2l5PUZc885rk+hckaxdWfeNPTA7/SPv60U9Lnv3T5I73VaFeY45Mjvx4Mmhc+5zpr02G7ZfMvypJXTL15cnezx7489ucUQck089JHvhSe1/T2OSgf2pv73NqUjQk5YbOa6edOfDz+gpFS6rv7YRndumrT+qGVo+nn1VdHa1b1Hsw2gEXJhNOrK7D/yNZckuy9pFk4ilJ44hqTtmaLL6xOvuRnyR/+ufOexzx8apv45r+PEPobtFvq6snzUurK6ne4560+qFk4Q+3X02r5yVNh22//QEAAAAAgAETjAYAAAAA/H/27js8zurO2/g9Rb1LtmxLstwbtjHYmF4NobcACYGQTkJ62c2mbMiml01v+242bbPJBkgjpIcNSSiB0AnVNmCMe2+SrK6Z949jZTSaGVnFtlzuz3Wda+Y5v3POc55pBlvzlSRJkiRJkiRJkqRDRTQOY07cf+tHIhAZRChaX0XjQuuvagFctiqEcOVXQtmMzECw2lPh7D8PvP64M0Lb3074DtSeAZv+DMUNIXisbHqqXjg2BLs9+u5UX+l0mHvj/t/bYBSMgfLZ0LQsvT9WBLVnpo6jeTDmhMz5kWjqtVW9CCZeAZvvgqI6GH8OxAoh0QF/f3/28x/zOTjqX8L97jbYei889QnYfDdMegXM+ReoXhhqT9wIy76UfZ3iRigcB8ke2PFoZr32zHBN2+5PBWlJw7VrKVQZjCZJkiRJkiRJ0sHEYDRJkiRpv0mO9gYkSZIkSZIkSZIkSZIkaXRF4zDm+NHexeBEIjD11aHlMvtdUHsabPxTCAyrvxDyqw7cHgcSicC8f4P7Xknaz6/NeS/kVwx9vfJZofVVMjn3+OpjU/fjRSFMbfw5mePiRTDtDbmD0c5/CAprw/2eDtj4xxDWN/YUyCtPH5tMwu5V4X5+JbSth542+MNx2dcunQbHfQPuvCD3dZxyC9z7itz18jnQtDR3XYeW+66FydeM9i4kSZIkSZIkSVIfBqNJkiRJkiRJkiRJkiRJkiRJkiQNVvXC0A5Gk6+BgjGw8ofQ0woNl8PkV+679SecC9F8SHSm99ecALVnDn6d8jlQNgOan0vvH3tKKhQNIFYA9RfnXicSgdLJqeP8Smjfknv8/I9B3fnhPFvuzT5m0tW5g9GO/SLM+adw/6ZIjj3F4Zou2PEELP8q7HwyXNPs90DrWrj/tbn3p9HRthGKxo/2LiRJkiRJkiRJ0h7R0d6AJEmSJEmSJEmSJEmSJEmSJEmS9pEJL4GTfwCn/QymXBfCw/aV/Eo4+X9D+FevsafA6b+AaDz3vP4iETj+W5BXnuorHAeLvjbyPRaMgZJJWc4ZD48NwLQ3ZZ9bf2m4bbw6SzECjVemDuOl2deYfkO4rToaTvwunP8gnPkbGH82TH1N+mPX15iTYMkfs9cAzn0Aznswd724Ea5N5q4DnHPPwHWAhpfufczhpmXFaO9AkiRJkiRJkiT1YTCaJEmStL8k9/IDRpIkSZIkSZIkSZIkSZIkHWoaXwYv3QCn/hTOuRvOvguKJgx9nXFnwsXL4aQfwCm3wIVPQfXCke8vEoFZ78nsn/IqKKwN9ydeDnmVmWOmXR9u534QCmrSa7PelR641ju2v8mvHHh/M9+RvX/GW6B6EUTzMmvxEqicB6VTc69bc1y4PfoT2euTroHaU8N15FLcCKfclLs+5mSomJe7PljRgpGv0V9eJRz9SXjZLqhcMLS5Xc37fj+SJEmSJEmSJGnYhvDreCRJkiRlMPxMkiRJkiRJkiRJkiRJknSkKRwDjVeNfJ2i8SGwbF+b/a4QJrby+9C9G+ovg3k3pup55fCSu+H+18H2R0Ow2/yPQsMloV61AM57EFb+CNrWw/hzYOIV6eeY9U5Y8zNoXZvqa3gpjDlx4L3NuAFe+B507Ur1lU6HiVdBvAgaXwEv/jB9ztQ3QLw4tAnnwYbbM9edcH64nXQNPPkRSCbS69NeH27LZ+XeW+U8iBXmrk+8MgS3PfLO7PVrEiGYLtEDt+T4ylJxI8z/CDzwhuz1M38PpVNgy725x0w4D8aeCj0dkOyCuotCqFy8ONSP/gT89UpIdKXmNF4Nq3+cfb3uluz9kiRJkiRJkiRpVBiMJkmSJEmSJEmSJEmSJEmSJEmSpMPL9OtDy6VyPpz/MHS3QqwoBHr1VToV5n849/zSKXDu/fDC96HleRhzCkx9XeY6/ZXPgpfcA898DnY9A2NOgPkfD6FoACd8OwS3rfkpRPJg8rWw4NOp+Yu+Dve8FHY9neqrPSOMAyibBqfdBg+8Hjq2QqwYjv1cCHeDEMD2yHsg0ZG5t6l7wtMmXglrfp5ei8Rg0tWQ7IZH3gX0+8WyE69KXXs0FoLaNvwh8xxzPwBjT8v+2MSKYdwSiOXD7lXZxwAc8zmoOjp3veESeMm98OLN0NMGDZeG/eQKRlv5g1DPK8295sGkuw1aXoDdK8Prt3J+eL0mE+F5a98EdRdAfjU0LQ21kknQ0w6dO6FgDERzfKUs0QORaOq57OkIz0WiI5y3pxW6mqBtQzhvXnl4L8RLDtz1S5IkSZIkSZIOewajSZIkSftNcu9DJEmSJEmSJEmSJEmSJEnS6IkXD39ucT3M+9DQ51XOh5N/mL0WK4DF34Djvh6O+wetlc+A8x6Etb8MwWqV80PwV6wwNabhEqjfBLtfhOLG9BCswrGw5I9w37XQujbVv+hr0HhluD/vw7D5TujYlqrPeV+4XoBZ74TlX03V8qtg7r+m73PytZnBaNECmPgyKBwD1Ytg+yP95lwTQtEAao6HaD4kOtPH5FWEcLm9qVkcWl8VR4XHrL91v4afloX7jS+HCeeFELHVP4GmZTD+JSFobPw5sOF2WPrF8Dy1roGyWVA+M+yzqwnW3Jq+9rTroXgiNFwOFXMgmrf3vSeTsO5XsOonsOlP0NUM098UXqtPf3rv8wEee+/gxgFMegWsuiWzv+FyWP/77CF62VQvCo/dzLdD0QTo6QyvgaZl0Lk9hLmVzQghdOWzYcffQ2Dbzidg55N7HqdLobA2PP6RvBCyJ0mSJEmSJEk64hiMJkmSJI2I4WeSJEmSJEmSJEmSJEmSJGkf6x+I1le8OISIDTg/CqVTs9dqT4PLVodgtLxyyCsL43tVLQjhay/eDO2bQyBYwyWp+sIvw9hTYMMfQwDWlFdB2fT0c0y+Dpqfg2f+PYSGFdbCyTeHUDSA034B91wB2x8Oxw2Xw8KvpObnV8Kka2Dl/6SvO+0NIZRsOOKlex+z+ieh9fXi/4aWTduGECKXy4rvhNsnPxJuy+dA6TSY9jqoXgwlEzPnPPFhePpT6X3Lv5I5bl/JFooGsPa2oa2z/ZHQ9hbeNlD9wTemH0ficNrPQ6Bc9aLwOuqvuzWE7kVj4floehYiMSidAokuKBwH8aKhXYskSZIkSZIkaVQZjCZJkiRJkiRJkiRJkiRJkiRJkiQdSSKR7KFcvUqnwrwP5Z7b+LLQBlr/6I/DUR8MAWxl09LD10omwvkPhVq8BPKrMtc4/luhf/VPIZoPk6+F+R8b3PVlM5hgtP2taWlo638z2js5NCS74e7LDuw5y2ZC41XhtdfdBsu+AF1Nqfr8j8GU63IHD0qSJEmSJEmSRsxgNEmSJGl/SSZHeweSJEmSJEmSJEmSJEmSJEmjJ14E5TNy14sbctdi+bDoy7DwSyFobaQKx498DR3+mp+Fpz+du/7kR0IDGH8OFNVDrACqF0NPK6z/PWz4Q6hXL4LaM2HGm6FsOnTuhFgxJLugYxsUT9w3r21JkiRJkiRJOswYjCZJkiSNhOFnkiRJkiRJkiRJkiRJkiRJ+8++Co6a+FJYddO+WUsC2HhHn4NvZda3PxLasi/ufa3iBpj/Uag5HqKF0LQ0hPmVToa2DZBXDiWTQrha925Y+QPYfBdsvQ/KZkDJZJhwPhRNgPaN0NUM064P9zffBXmV4T0QzQs//2wgmyRJkiRJkqSDmMFokiRJkiRJkiRJkiQdISJZvuiU9BdASKMikUhk9GV7j0qSJEmSJGkfmXglTH09vPC90d6JlKl1LTxw/fDm7vh7aGtvS+9/7L2ZY/MqoacVEp3huOGyELRWcyJULYCieiABRXUhbA2gYytE4xArgqVfgA3/B+WzYdLLYexp4Xj3Kqg7H8qmQzIBkejwrqVXTyfE8ke2hiRJkiRJkqRDlsFokiRJ0n7jlwklSZIkSZIkHVyi0cwvInV1dZGXlzcKu5GObN3d3Rl92d6jkiRJkiRJ2kciETjhO1B7Oqz5eQii2vHYaO9q8IomQLwUYoUhlGr1T4c2v+ZEiBdDcQOs/MH+2aMOfl0704/X/jLcbrxjaOtsuQdWfDu975Es4wrHQfumcL98NjQ/D8l+fzcaK4Se9tznGnsKJHrCa3f82dBwORSNH9w+ezohmhfe/5IkSZIkSZIOGQajSZIkSSNi+JkkSZIkSZKkQ0ckEiE/P5/Ozs5/9LW0tFBcXDyKu5KOTC0tLWnH+fn5RPxyniRJkiRJ0v4VicDU14QG0NUEP63IPrZkCsy7ESKxEKLWtBy23Q+l00JQ0xMfzjFvElz2Yghy2ngHPPx2aHl++HuuPQPO/ktmsNOvZuRe96KlUD4LundDNB6Cp/o66X8gmYSWF0JIWncLTDgftvwVnvp49jVP/Rn89arM/uJGuHQF3DLAL+C4dAXsegb+/gHo3A6Vx0DZNCACz3499zwd+npD0QCalmUfM1AoGsCWe8PtNmDNz+Cht2SOqVwQAtC2P5xZK50aggW7W8NrvXt3eB32tENRHdRdBJEotG2AWAFMflUIdCuohq5dkOgK7+uC2rBeNBbe34lOiBelnyuZNIRNkiRJkiRJ2gcMRpMkSZIkSZIkSZIk6QhSVlbGtm3b/nHc1NTE2LFjDWSSDqBkMklTU1NaX1lZ2SjtRpIkSZIk6QiWV567NvcDMO31ueu5gtEaXx5uozGoOw8ufW7P+H+Dpz4xtP3N/xgc9f7sQUuz3x1C1/qb+XaomB3u55XmXjsSCeFkR38s1ZdfmT0YbdobYcJ5EC8JoVJ9TXlVCF/Lpf7SEExVOhXqL86sT3k13L44+9ySSbB7Ve61pV47H89da3khtGza1sOKb6f3rf7p4M8biUOye+/jiifCxKtgxyOw+e7sY07+EVTOh9Z1IYyxa1cIeysYA2NOgvbNUDY9BLVtvAOi+VB3YXif93TA2l/CM5+B5ufDZ9vY02Duv0LV0ennaV0H638LRGH8kvDe7JXoguYVUDYjfIb1Z/CbJEmSJEmSDhCD0SRJkqT9JjnaG5AkSZIkSZKkDP2D0bq6uli3bh319fWGo0kHQDKZZN26dXR1daX1l5cP8CVcSZIkSZIk7T+TroFVN6f3RaJQf8nA86a9MTNQCWDyddnHz/sIrP4JNC0feN1rB/nzp41Xh7C1zu2pvmg+TLt+cPOzqT4uhDet+Vmqr7AW5rw3hC+ddivccyV0t4Ra3UVw1PtS+1n948w1p71hL+dcCMWN0Lo6vX/CeXDWH+CmIf699bizYfF/wG9mD20eQOE4aN80tDmRGCR7hn4uHR4GE4oG0LoGln954DH3vXLk++nV3RLej73vyWyhhn01XAY7/p49iLDmRNh2f7hfMhmIwO6V4XjMSTDjLeFzLxKBRA+0PA9F9dC8HLbcC9GC8HlaMAZ2PQn5VelhbJIkSZIkSVIWBqNJkiRJI2L4mSRJkiRJkqRDS2FhIXl5eWmhTM3NzaxYsYLy8nJKS0uJx+NEo9FR3KV0eEkkEnR3d9PS0kJTU1NGKFpeXh4FBQWjtDtJkiRJkqQj3NwPwaa/QPvG9L6iCQPPm/1PsO5X6UFak6+DqqOzj4/G4Ow74aG3wtpfZB8z4y2D33fhGHjJvfDIu2D7Q1AxFxZ8CqoWDH6N/iIROOUWeOG/YfPdUDolBJuVNIb6hHPhik2w9X4oqoPymSFEDmDm22DNz9ODospnQd2FezlnFE78b7j7cuhuDn3FjbBwT4jUjLfCc/8vc16sEHraM/snvzLsbajGngLlR2UPu8uldBpcvAx6WqG7FTb8AWJFUHsmPPbP8OKPhr4PaX8YKBQNYO0vc9d6Q9EAdr+YXtv6t9D+9uqB13/ozQPX8yohryy02jOhcDy0rYeCaogWQtdOSHSFcLWJV0Ll3OzrJJPQsSWst/Nx6GqCinlQNG7g80uSJEmSJOmgYzCaJEmSJEmSJEmSJElHkEgkQl1dHatXryaZTP3yh66uLrZt28a2bdtGcXfSkaf3PRmJREZ7K5IkSZIkSUemyrlw/kOw+qchiGf8S0IA2N5UzIZz74eVPwhhQbVnwJRXDTynaDycfiss/wY88o7MeuPVQ9t7xWxYcvvQ5uxNNAbTrw8tm3gxjF+S2V97Gpz1e3jmc9DyAow9FY79AkQH8fW18Uvgkudg058hXhIey/yKUGu8Knsw2kk/DAFu63/XZw9nwqSrwx7HngJb7u03KQInfBceeH3mehOvguqF2YPRGi6D9X+AREd6f+NV4fqi5ZBXDlNfm6pVLgCGGIxWNAEmviy8nvIqYOzJUDIJnvn38Npsfi41duY7oGAsdO2CbQ9C8cTw+kp0wbNfz32OxpfD6p8MbV/S/ta1MzSAXc8MPPbJj8DY08JnzIbbYceje1+/oCa8Z8aeFoIwW56HLfdB57ZUaNyEC6B8NtSeGgIOi+pD4GQkCp3bQ9haNDay65QkSZIkSdKgRfr+kLN0JIpEInOBp3qPn3rqKebOzfFbIyRJkvpLdMEt+dlrk66FU/xNb5IkSZIkSZIOTq2trRnhaJIOrEgkQmNjI8XFxftszaeffpp58+b17ZqXTCaf3mcnkCRpiPwZPUmSJCmLrha4+9IQ0NNr6uvhhO+AAfrpkkl4/EPwzGdSfTPfDgu/AiRg7W2w/VGonB/CzWJ7fq5328Pw53NCcBhAtACO+xpMfxMs/SI89t7UenUXw6m3hDCkPy2BzXelavEyOOeuEKR033WQ6Az9tWfA6bdBfmX2fe9aCr89KrO/dFoI3nvuPzNrJ3wXpmUJbevV1RLOX1Cde0zHdvh5Tfba6b+EhkvT+5LJ8Bi1roP7roGdTwIRGHdWCFF76M25zyUdiWKFUDIFWtdC+UxIJqBlJZCEwnEhLDFWEgIaJ18HHZth8z2w4Q9hfsVcqLsQJl0DpZOBSFizY1uY37EFtv4NYsUhHDGvfBQvVpIkSZIk9efP5x04BqPpiOcPXUmSpBHp6YQfF2SvGYwmSZIkSZIk6SDX2trK+vXr6erqGu2tSEecvLw86urq9mkoGviDV5Kkg48/oydJkiTl0NMBG26HXU9DzfEwbomhaANpfh52PAaVR0PZzME9Vm0bYfXPgARMOD+EGP1jvRUhfKhsOlQvhmgs9He3wdLPw+a7oXQKzHwHVB0dau2bYctfoagBqheGAKSB3HFGWKevY78A48+G/zsJetpT/UX1cPEyyCvd+3Xtze+OgZ2Pp/fFS+ClGyCvbOC5XU0hkKn32v76Clj94+xjr+3zvcSu5nCOSDQcv3hLCFrL5pRboGpheMy3PgjJHmi4BNbcCve/LvucCx6HrffBQ2/JrJVOg5YVua+pqD48X1ULobsZln0p91jpYFQwFqJ5kFcBkT2fVXUXwJTXhPfP8q/A7lVhTP2lMOak8Bm5/OvQtBTat8C8G6H2tDA/vzoEsCWT0LQcttwD2x4IIW9l06HhpSG8zT+TJEmSJEnK4M/nHTgGo+mI5w9dSZKkETEYTZIkSZIkSdIhLplM0tHRQVNTE83NzXR2do72lqTDVn5+PmVlZZSXl1NQUEBkP3ypyB+8kiQdbPwZPUmSJElHrM5d8NBbYf3voKAapr8J5rwvhA1tuQ+e+mQILao5ARZ+AYob9s151/4S7rkKkt2pvgWfhrkfHPpa634Hd12U2T/+HFjyx9zzOrbBL+og0e/fHKoWwgWPZJ/T8iL8akpmfzQPrtoRgtcAEl3Q/ByUToVYYWrczidh+6NQOA5qz4B4Ufbz/KQ8BKRJGrqCMdCxNXstvxoKx4YxBWMgXgata2HznaFefwmUzwnhbD2tUD4rhIRGolAyCfJrINkFRXVQNiMVtNhXMhHmRPNDPde/syS6obslfEb0/ZyQJEmSJGmE/Pm8A2cvv5ZCkiRJ0vAZQixJkiRJkiTp4BeJRCgsLKSwsJDa2lqSySSJRAJ/0Zq070QiEaLR6H4JQpMkSZIkSZJ0kMqvCL9kOZnMDO8ZezKc9bv9c96Gy+Ccu+HFH0HPbqi/DCZePry1JpwbAshaXkjvn37DwPMKamD2e+CZf0/1ReIw/99yzymdHELitj2Q3l9/aSoUDUJQWsVRmfMr54e2N3M/AI9/KLN/zMmw9b69zx+MyvkhqC2Xy9dCcX24n0zAjsdg9yooHA9Vx8CLN8GDb8w+N5qfGTjXa/y5MOlqeOANuc+9t+ucfB3sXglb7s09RkeuXKFoAJ3bQ2N59vq6X4c2FEUTINkTgs5IQvfu9Nf/mJOgejGs/D50NYXwxYGUl8UAACAASURBVB2PZl9r/LlQvQialsGYE8J7r3I+7FoagtrKZkHlXOhqCe+B4onhMynZBbGiEMTWvhnW3gadO6H+4uyfRYkuIAJRv74tSZIkSdJI+H/WkiRJ0oj4xUBJkiRJkiRJh5dIJEIsFhvtbUiSJEmSJEmSdHgYjV+YMPak0EYqGg8haw/eAJvvhJJJMOdfoPGqvc9d8BkoPwrW/wbyymHKq6H29IHnnPpjuPMi2PV0OB57Ciz+5ogvI039ZdmD0SZdHQKNtj+UWcsadBaBeHEIaupv9j/Dyh/Cpj9l1qIFIQDtH8tEQ1hT9aJU35gTcu//kmfht/Ohuzm9P14Kp98KrWtzzz3uG1B3AfxqWvb69DfB8f8VAqNuzvFvRQs+BdOuhyc/Cmt/Be2bwuti7Cmw7SFoWpr7/NJQtW0YuL71b6H1yhWKBrDx/0IDWPuLke/t7+9P3a89M4TC7Xwi1Tf2NJh8DTRcEcLVIrEQ9DZciZ7weTHQnynJJJAM4yRJkiRJOsQZjCZJkiRJkiRJkiRJkiRJkiRJkiRJkjIV18OZvwmBO0MJeYtEYOqrQxuskklw4ZPQ/GwIECudPOTt7lXl3BDu1Tccre4imPYGyKuE+1+TPn7sKXD8t+FPS6B9Y6p/9nsgVgxPfzJ9fDQf6i8GktmD0eovguhefkFNxVwomQK7V6b315wYHqOZb4NnPptem/FmiJdAcWPYQ6Izc91xZ0PhAMFMZTPCbSQaxmbbf8PlUFgLi/9faNm0bwmBVuWzIZYPNw3wupnxNnjuP7LXJl0Lq27KPVc6WGy+M7Nvyz2hPfTW4a0ZKwaSkF8Nbesy66VToageelph+yOZ9VN/Ej4POrZCwVioOhq6miC/Jnw+xApHJ7hTkiRJkqRBMhhNkiRJ2m+So70BSZIkSZIkSZIkSZIkSZIkSRq5AxWgE4lA+az9e465/woTr4Qt90H5zBA4Fo2FELdkTwjqat8EE86DhV+CvHI470FYdUsIKBq3BOovge4W2Pq3VIBYNB9O/D4U1MDk62DXM7D086nzFjfCgs9m3VKaSBSO/ybccwV07w59BTWw6Kvh/oJPh7CkVbcACWi8Go56X6jFi0Iw25pb09esOgYqZof75bOhaVnmeRtemrp/1Pthy92Q6Er1TbwSKo7a+/4Lx4bWq/FlsPqnmeN6H6tcwWjHfn54wWjnPQg1i2H3anj8Rtj59/DY1yyG0mnQshKqFoSxOx4PYXPVC8NzXtwAd14ILS+krxnNS38spP2tpzXcZgtFg/Aa7f867euvLx/ceSrmhvdETyvES0MYZtsmaLwqhCBu+CNsfyjUzrkrfM6tuTV8VpbPgp522PU0FE+E6uMg0RHGjDk5fK42LYdtD0PJnnq8eGiPgyRJkiTpiBVJJg1r0JEtEonMBZ7qPX7qqaeYO3fuKO5IkiQdUnra4cdF2WuTXgGn3Hxg9yNJkiRJkiRJko5oTz/9NPPmzevbNS+ZTD49WvuRJMmf0ZMkSZIkHdYSPSF4a/fqEARUNC69vvPpEJ4WL4G6CyC/cvBr714FG24PIUMTzoei8YOb174Z7roEtj0YjkunwZm/TQXOPfef8NBb0+fUXQxn/jq9b/M98Nw3oX0jjH8JzHkvROOD33+v9bfDneen9xXUwKUvQrIbbh0fwpT6Kp0GlzwHf/8ALP1c5przPgIv/i+0rEjvLxwHl68JQWbD1dMRgp+6dsK4s0N4HsCtE8Jj0d+ir8Gsd4T7bRthwx+gcALUHBfWIgG3TRz+fqTDXXEDtK5NHY85GWKF0N0Ku18MQYYtL4SQxTEnQVEddGyFkikhhDGvPMzrboFoIZAI8yVJkiRpP/Dn8w6cYfwtlCRJkiRJkiRJkiRJkiRJkiRJkiRJ0hEuGoPqRaFlUzk3tOEomQTT3zT0eYW1cO790Pxs+EXgFfPCPnvNeAsQhee/BZ07oP4iOCZL+FjtaaGNVN15cPKP4KmPh3CjmhPghO9AXmmoz3wbLPtS+px5N0IkAlNeBcu/AonOVC1aAFNfEx7Xe68N4WoARGDBp0YWigYQK4DJ12S5jgvhhe+l90Wi0HBZ6rhoPEx9bebchpfC2l+MbF8A1yRgx2Ow8ofhsSyZDBMvh6pj4GfVueeddTtsfzQ8NvlV4Xnv3g0Vc6G4Hrqaw7XsegY23w1rfja8/dWeDrVnhtCqjq2w8wloWja8tXTk6BuKBrD1vvTjDXsCCZ/+9NDXnvVumP+RoYVSSpIkSZIOCgajSZIkSftLMjnaO5AkSZIkSZIkSZIkSZIkSZIkHWkiESiflbs+44bQDpTJ14aW6IZov6+1HvsFKJsOa24LYWlTXgMNl4Za5Tw487fw2L/Azqegcj4c9w0onRJaUUMI8Up0wcQrYNyZ++8a5n4QNt4Brav79N0IJY17nzvt9ZnBaPFSaHwZvPDfgzv/Ue8Pz2v1wtD6m/XuECLX38QrYMK5oe3N+LNh1jvgF/XQtj77mKpjQzhbNmf/JQSsZfPUp+CJG7PXZr4Tnv1a9tr0N0HtGSE8q2MbbH8INv0l+9h4CYxbEgLeWlZkH6Mjy/KvhPft2X8KoZGSJEmSpEOGwWiSJEnSSBh+JkmSJEmSJEmSJEmSJEmSJEnS3vUPRYMQ9jXjLaFlM/4cuOCx7KFqY08K7UAomw7nPwRrboXWdTB+CYw7a3Bz6y+Gxd+EJz8C7ZugYi6c9D8QLYBVN0NP+97XaLx64PrEl+YIRrtqcHvsa+6H4OG3ZfZXHQsz3wYPXJ9ZK5qQOxQNoO787MFoeZVQs3jgvfQPn+vpDIFyO58Ij+WkV0BBdebcnnaIxEOg2rYHoaAmhMr1tMGTn4C2tSFcb8K5UDoNWp6HOy/MvZdJr4BVt+Su6+C06ylY8d0QbihJkiRJOmQYjCZJkiRJkiRJkiRJkiRJkiRJkiRJkqSDV7ZQtQOtsBZmvHl4c2fcANPfBN3NkFee6l9yBzx+Ywhvqj4OFn4JXvgeLP3CngERWPhlqD524PXHngZz3ttnHjD5Oph45dD32nAZPPIOSCb69V8OdReFALT+tUnXDLxm1UIonwVNy9P7p1y3J2AuAvT7xfUFY6GoPnOtWH54PPcmVhhui8ZBwyXp/Yu+lDm+fEZ4jts3Z9ZO/hFMvjYE9K35WfbzXd0RHpvVPw3Pw45HIV4WnvOieujYAonOve9b+97GPxqMJkmSJEmHmIPgb4IkSZKkw1Vy70MkSZIkSZIkSZIkSZIkSZIkSdLhLxJJD0UDGHsKnPOX9L5jPw+z3gO7noaqY6FwzODWPvbzMOU1sP0RqDgqBK1FIkPfZ3E9HPf/4OG3pgLQxi2B2e8O+1/4FXjknanxVcfAnPftfX9n/AbuuhSaloa+iVfAMZ+FeAnUXwLrfpU+Z8abIRob+v5Hov5SWPGd9L5oAUw4P9yf+prswWhVC0NgG8Dka0IbSMe2EJ7WshJqjoNpb4T8ilT9pgGet4uXw29m5a6fcze0b4I1P4fVP4Nk98B7ORJ0bB3tHUiSJEmShshgNEmSJGlEDD+TJEmSJEmSJEmSJEmSJEmSJEn7UHFdaENVOS+0kZpxA0w4D7beByWToeZ4iO75SvKsd4SgtM13QnEjjF8Sws32pmw6XPQ0tLwAeRXpgW+n3BzC1tbeBvEymPpamPfhkV/HUM37N9jyV2haFo4jUTjua1BQHY7HvwQKa6F9c/q8qa8Z2nkKauCYz+SuT3sjrPh2Zv/cD0H5TJj5dnj2G5n1ya+C2tPC/car4NgvwK5noHAsVB4drmf3GvhlY/bzzv4naLgc7jg9997m3gid26CrGV7839zjDiadO0Z7B5IkSZKkITIYTZIkSZIkSZIkSZIkSZIkSZIkSZIkSVJK6eTQsqmcG9pQRSJQNi2zP14MJ3wHjv92GDNaSibCeQ/Cxj9C24YQAFcxJ1WPFcCSP8G9V4fAsVgRzHpnCCrbl6ZclyUYLQKTXxnuNrw0ezDapKvTj4vrQ+uraALEiqGnNXP+5FdC9UI46X/hb9dl1iecDws+kTrOFYxWvQhO/Rk8+RFY+YPsY16+G6L5IXAvmYTdL4bAvObngQSUTodYfhiz8c+w/KvQ/GwYByFcbsprQlBdsge2PwJrbs1+LoPRJEmSJOmQYzCaJEmStN8kR3sDkiRJkiRJkiRJkiRJkiRJkiRJh4bRDEXrlVcGE6/IXa+cBxc9DW0bIb86hHfta7Wnw/Hfgkf/GbqbIb8qBMf1hrSNOwuO+iA885nUnFnvDsFlexONQ+NVmYFlZTOg6thwv+GycM7+gWLT3pB+XLkAdj6eeY5Z7w6herP/OXswWtnMEIbXKxKB0inhfsHxmePrLwxtbzbdBX86M7O/ezfseBwqjoJo3t7XkSRJkiSNOoPRJEmSpBEx/EySJEmSJEmSJEmSJEmSJEmSJOmIUjR+/64//Y0w9XXQugZKJkEkmqpFInDMp8OY7Y9C5Xwonzn4tRd+GXa/CJvvDsfFE+G0W1PBdHmlcM5d8LdXw46/Q+E4mPfhEKjW18QrMoPRogVQf3G4Xzkfak6Ebfenj5nx1sHvdSjyq3LXfn9MuK27KDye2x6E4voQBldzIuRXQF55CLsrGAvRWGruqp/A8/8FXU3h2ub+KyQT0LYOihtD2NxgJLqBSPrayWTqcU90Q7IHYgVDumxJkiRJOhwZjCZJkiRJkiRJkiRJkiRJkiRJkiRJkiRJB5NoHEqn5K6XThm4nktBNZx9J7SsCGFflQvSw7oghJpd8Bh0NUO8NBXe1dec98L2h2Hdr8NxrBBOvhnyK8NxJAJn/Q4efDNs+AMUjIEZb4FZ7xz6ngdjoGC0Xut/m7q//WFY+8uhnWP7w/DkR9P78sqhYh5E88Nj0L0bonnhudn6AOx6au/rxsuguzm9b+Y7wmNVOi398U8m0oPyevsSXWEPXbugZSVUHJU7ZC1bSNvedLeF57qnFSZcAEXjBj9XkiRJkobIYDRJkiRpf0kmR3sHkiRJkiRJkiRJkiRJkiRJkiRJUrpIBMqm731cXlnuWrwYTv8lND8Lu1dBzQmQX5E+Jr8KTv1x9jCvfW0wwWj7Q1cTbL0vs3/TENboH4oG8OzXQxuJSDQ89gBFE6BqEbRvgqal0N0SQu9mvh3aN0PReGjbCKtugspjoP4iqL8ENt4BT308XGevaD7M/1hYs2kpxEpgzIlQOS/09T7fiZ5wG4nsCW/rhp62EBwXLx7ZtUmSJEk6rBmMJkmSJI2E4WeSJEmSJEmSJEmSJEmSJEmSJEk6EkUiUD4rtAHH7edQNIB4CeSVpwd4Hel6Q9EA2jZA22/S690t8MxnM+dtuz+0Jz6cfd1EJzz+wZHtrXwWVB8PhbXh9VF1LDRcDvGizLEHIlhPkiRJ0kHFYDRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0qErEoG6i2HVTaO9Ew1G0/LQ+iuZAoXjoLghhNz1tMHW+yDZA7FCqF4cbiecD+POgEQP5FeGllcBsYIDfy2SJEmS9jmD0SRJkqT9JjnaG5AkSZIkSZIkSZIkSZIkSZIkSZKODIu+DDseg6alo70TDdfulaFty1LraYct94T7G/+YfX6sEPIqIb9iz+2ewLT8ysH1x0tCyJ4kSZKkUWUwmiRJkjQihp9JkiRJkiRJkiRJkiRJkiRJkiRJo66wFi58ErbcDY/fCB1bofnZ0d6VDqSedujZCO0bhzc/EusTmDaEQLXe/rwKiMb27TVJkiRJRyCD0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJh75oDMadBefeG45bXoBfTcs+9pjPwriz4fbFudcrmQy7X9zXu9TBKtkDndtDG6542eCD1DL6KyBWuO+uR5IkSTpEGYwmSZIk7TfJ0d6AJEmSJEmSJEmSJEmSJEmSJEmSdOQqboT8KujckVmbdC2UTITF/wkPvSWzXjEXLnoKkkl44sOw7MvQ0wrVx8EJ34aqY8K4nk74cUH281ceDRc+njpe8T144A3Zx16xBbpbYPWP4e8fyKzXnAhta0NYW7wENtwOkSgkE6kxeeUhmKttXeb8vHLoasp+bu073c2hsXZ486MFITCtNzxtUIFqffrjpRCJ7NNLkiRJkg40g9EkSZKkETH8TJIkSZIkSZIkSZIkSZIkSZIkSTooReMw7XpY+vn0/rqLQygaQMNl8PDbIdmTPqbx6nAbicCCT8LcD0GyKwSP9Q2eiuWH0LJt92eef/Z70o/Hn5N9nyWToaAGCsfAUe8PbTB6Q9Ei0cxa5w7Ych+UToPyWdDyAvx6evZ1cu0foGohnP8wPPt1eORdg9uXhi/RAe2bQhuOSLRPoFqfwLS0oLUs/b1ha3nl4X0jSZIkjSL/i1SSJEmSJEmSJEmSJEmSJEmSJEmSJEmSdHha8GkgCS/8Twidqr8EFn8zVS+aEI4fuiEVNDb+HJj1zvR14kVAUfZzTHpFZrBYrBAaLk/vK2kMfWtvS++f9a70sLXByhaI1iu/CuovSh0X1eUeO+Mt0Lw8hKn1d/THwt5mvRPGvwS23hfC4RouD6FwK74LD1yfe+2r22DjHXDXJdnrp/4Edq+GFd+BpmW519HgJBPheezcAbuHuUa8NEtgWsXgg9Zihfv0kiRJknTkMRhNkiRJ2l+SydHegSRJkiRJkiRJkiRJkiRJkiRJknRki8bh2M/DMZ8LoVHRWOaY6ddD3fmw+a9QOhmqjwvzBmvm26DpGXj+W+E4rxJO+2kIiervlJvhsffDul+H+rTrQzDZ/hYvgqqFsOPR9P5oHtRdCJvvghe+l17Lq4RxZ6eOK+aE1lfdxbnPWTIphGTVngHxEujul9RVdyE0vizcL50C91yZfZ0574Oln8teW/hlGLcEunZC5649tzuha9ee2779fes7IdGVe+9Hsu6W0Fg7vPnR/MxAtVxBa/378ytC8N5wggIlSZJ02DAYTZIkSRoJw88kSZIkSZIkSZIkSZIkSZIkSZKkg18kApEsoWi9ihtg8iuGt3Y0Dsf/Fxz9KWhdDZXzQ+BYNrFCOO6roR1o8z4Ef305JHtSfTPfAYVjYMEnYfvDsPOJPfssghP/OwSqDaRoHCz4DDz+wcxa48vDbV4ZHPsFeOitwJ7vYxWMhQWfSo2tOTH7+tF8qJyX+/xVx0LV0QPvMZtkEnraBxmolqO/f9CbgkQntG8ObTgi0RCW1j8wLS9HkFq2+lCCDSVJknTQ8b/mJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEkaqcIxoR2sJl4BZ/0frPwf6GqC+oth6utDrWgCnPcAbP0btG+B2tNC32DM/UAIP3v47am++kth/kdTxzPeDNXHwYY/QH41NFwGxfWpenEdjD8HNt6Rvnbjy6DmhNznLps+uD32F4mE0Ld40eCvs79EV3gchxqo1tvftQuSieGd+3CWTEDnjtCGmz0XLxlkoFqO/lhheI1IkiRpVBiMJkmSJO03ydHegCRJkiRJkiRJkiRJkiRJkiRJkiSljF8SWjaxQhh31vDWnfk2mH4D7HgMCsdBSWPmmJrjQsvl5Jvh3lfApj+HUKr6y2Dxf0K8FMpmQPNz6eOrj0sPVzvQonlQUBPacCQT0N2SPUjtH+FpAwWt7YRE5769psNF9+7Q2tYNb340PwSmVR8HM24IQX4j1fIirL0NCmuh7qIQwiZJkqSsDEaTJEmSRsTwM0mSJEmSJEmSJEmSJEmSJEmSJEkiGoeaxcOfXzgGzr4DOraH0LG8slRt8Tfh7ktD2BVAfhUs+urI9jvaIlHIKw+NicNbo6d9gEC1QQStdbfs00s6bCQ6oWMLbPh9aH3N/yjEyyBeDPESiO25TTsuhtievlgRPP4hWPrvIQyv15iTofZ0mP5GaN8S+pI9UHVMmNereQV0N4f3xbpfQaI7vDd2PAYbbg9jSibBUe+HKa8Oe5AkSTrEGYwmSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIODgXVmX3jl8BFz8D634fQtAnnQXH9gd/bwSZWCEXjQxuORDd0NWUGpg0laK1v2NeR4MmP7pt1tt4X2jOfHflau1fBQ28NrXBcCN2LFYfnpuFyaLwKEh3Quh5e+C5s+gsU1UHZdFj8X1AxO6yz7WHY/jAUjof6SyAaG/neJEmShsFgNEmSJGm/SY72BiRJkiRJkiRJkiRJkiRJkiRJkiTp8FDSCDNuGO1dHF6i8RBEly2MbjCSSejePbxAtd77Pe379pqOdO2b0o+Xfzm0/trWh/bbOeE4mgeJrvQx5bMhVgSdO/Y8XztTtcJxMO4siJfBzieguxkmnA/z/g3yK1LjeoPzItFw27Q8tNKpUHFUqn+wOneE11zh+PD6lSRJhyX/lJckSZJGxPAzSZIkSZIkSZIkSZIkSZIkSZIkSdIRKBKBvNLQihuGt0ZPO3TuSoWnDRSo1hvO1be/u3nfXtORqn8oGkDTstzj2zfBqlvS+3Y9A8u+lH38hPOhYytsfzh7PZoPZTMh2QPF9SGQbfuj4Txl06GnbU8oWksqbA2g5gSoOhZiBSGkLb8ytLzKzPt5FYapSZJ0iPBPbEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJB14sUIoKoSiccObn+iB7qaBg9Q6d2UGqvUNYEv27NtrUqYNfxi4nuiEXU+F+01L02sDBbRteyC0wYqX9gtLyxKg1huiljGuAqJ5gz+XJEkaNoPRJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSdOiJxiC/KrThSCahpzUVmNayAu6+bN/uUQeP7pbQWDu8+fGS7GFqOQPWDFaTJGk4DEaTJEmSej33X7DyB+EvMRsuh7k3hr8UHUgyeWD2JkmSJEmSJEmSJEmSJEmSJEmSJEmS9q1IJIRdxUuguB4q58JVO2HZF2H1T6BpeeacvAoorIXu1vB9xO7dkOg88HvXgde9O7S2dcObnzNYrWIvoWp7xsTy9+31HG6SSWh+DlpXQ/FEKJ0G0Tj0dIZQukgk99zOXZBXPvAYSdIBYzCaJEmSBLDsy/DoP6WOd/wdWtfBCd8a/pqGpkmSJEmSJEmSJEmSJEmSJEmSJEmSdGjJr4CjPx5a7/cEe9og2QOxYojGMuckuveEpPUJS+vec/vns7Ofp+FyaH4edj01/L1G86DhClj94+GvoQNnpMFqseLcwWlHerBa63q4/7Ww8Y/Z63kVUD4b2jfB7hdzr1N7Znhv5leE7xlvuRealsHuldnHVx4NY06Cogmw/REoqAnvyfqLIBINYxLdsPRzsPluyK+GadfD+CV7al2h7X4RWteGevWiENCWTEDLCyHsrXs3tKwMz2XDZSGcUZIOYwajSZIkSQDP/kdm38rvw8IvQV7pAd+OJEmSJEmSJEmSJEmSJEmSJEmSJEkaZZFIuI0XDzwuGodoOeSVZ9YWfRUeeVe/daOw6GshdOm+a7KvedX2EGrV0wo/HwM97ZljprwaTvgOcAusuS18L7JtQwhrmvpaKJ0WQpfW/w5W3QLdLVA2E2pPD8eb74RoPpTPgaZnwlgdvHpaoa0V2tYPb36saHihar33D9Zgte5W+Mt5A4cMdu2CbQ/sfa3Nd4Y2WDufCK2vF74fbiNRiJdD1870+qqb975urDg839k8+CZYcgd0bINEB1TMC59RpdMh0QnNy6HpWahaAOWzBn8tq34Cj7wzhMcV1MDib0LjVSEgcstfQ3hbtAAq5kDZjPDZEYlCV3P4fMqvDJ8hLSuguDGEy/XqagGS4TWY7A6ffa1rofY0KJ06+D1KOmIYjCZJkiR1bAv/k91fogvW/gKmvGqAycn9ti1JkiRJkiRJkiRJkiRJkiRJkiRJknSIm/5m2Pq3EEQGEInD8d+CkokQOyccJ7vT55TPCkFUkQjES2DWu+GZz2auPfX1qfsTLw8tmxk3hNa/D0LoUW8AXDIBzSugoBq6mmDdr0P4Ud1FkFca9ppXFr6Xue7X0L0b8qth7S/D9zETnUN7bArGQMfWoc0ZSOXRIQCrc2e4VbqeNmhrC+F5wzGUYLW8isxarGDfXk+vNT8fOBRttCQTmaFog5UrFK3Xn88Z3Dolk2D+R8PzESuGwloonw3bH4I1t8LW+8Pz2j8MrmMb/PVlw9l5pnhJ+KwYyLglIbSxYysU1YXPkoIaGHsabL4rhNrFiqFwDBROgO2PhKC26uNgwaegdPK+2aukg4bBaJIkSVKiO3etu2UECxuaJkmSJEmSJEmSJEmSJEmSJEmSJEnSES2WDyffBPM/Ds3PQc1iKBwbaoVjYPob4bn/TJ9z1AdSYWUAR38SiMCyL0GiIwSUzf8ojDlp5Pvre55IFMpnhPsFNTDrndnnFNTA1Nemjidfk33cTZHs/TUnwHn3p47bNsKqm2H978K1LfoK/PGUEM6UMfd4OPdvsPPJEIiVVwGNLw9Bc30leqC7eU9I2s5wm+t+1j6D1TKMOFitcHCharn6cgWrbXtw+Nd0uNu9Cu5/3ejuYW+haACb/hzaUDU/C+t/A6f8GOrOH/p8SQctg9EkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZKk/SUSCYFjvaFjfR33DSidDut+BXnlIXBs4hXpY6IxOObTMPPt0LoaihtCO9iNW5I97Gjm29KPi8bD7PeE1mvam+CZz2TOnfGWEOBWtSC0XKKxVLDWcGQEq+0afKjaP4LVksM79+Gqpx16NkL7xuHNzwhWqwi32x7Yt/vUoaWrCe68INyPl0G8GNo3heNZ7w6fqQN9Vkg6KBmMJkmSJI1E0r+UkiRJkiRJkiRJkiRJkiRJkiRJkiRJwxSJwpx/Cm1viutCO1RMfX1mMFp+VWbwWzbT3wgrvgUd21J9pdOh8eX7do+5jDRYLZmAruYBgtP6BKjlqhmslm6kwWo6/HU3h9Zr+VdC+//s3XmUpGV9L/Dv09PD7AMM+zrs83+RdwAAIABJREFUIqIggqi4YBTFaFSMihqNGI9LjN6cmOS6JIbojcvNek2iSdRcJDcmUYlKFuOGmiCIYPS4gSKyqOwwIMwwCzM894/qoatrumvp7qrqmfp8zqnz9rP/CoZz6h3q/fb4quQZ30xWHTm82oCeCEYDAIB+/cWQ0DQAAAAAAAAAAAAAAAAAYFQd9pJk403Jle9OttyV7H588ri/T8ZXdF678vDkjEuTq/4w+dmVyZqTk4efm4wv73/d86GMJbvt3nitWNv7+vpAsnV9+1C1KQFrLX33/6yxB9AIS/vsKcnTL09WHTXsaoAuCEYDAIC2yrALAAAAAAAAAAAAAAAAAADY+ZSSHPfbyUN/sxHUtdueva1ffUxy6of6U9tCV8aSxasbrxWH9r6+1slgtV5D1bZfd/Zgtcd/LPnKC6cf2/dJyVO+1PgzmjTe69XvS37w5433fsDTk+PPTf7jhGTbxmn2/nhy6POT9dcl916TXPpLyebbpz9ryd7J5jumH1u8R3LUq5MDz0xu/lxy0380/r3VrcmipcmqY5LlhzTm/vD9vb1/ptpyV3LteckJ7xx2JUAXBKMBAEBbdY7jAAAAAAAAAAAAAAAAAAAjrIz1HorG3JSSLF7VeOWQ3td3Cla7/2edg9bqtnl/W10bX5Uc8Ixk5ZHJ+h/tOH7YSydD0ZLGn9GHvKHxanboC5Przp/at2h5csDTGj+vPLzxOvg5yY9mCPF7/MeSi35ux/7FuyfPXzdZx35PTk5898zv6VH/J7nu75Mfvq/x72fPE5NVRydb7002r2vUtHVDstseybd+J7n72zPvNZ2Hvz35zrkzj5/6t8mm25JvvaW3fZsd/7bku/9r9uvn6vZLhnc20BPBaAAA0DdC0wAAAAAAAAAAAAAAAAAA2MnMS7DahumD06YLUZvvYLVjfyNZvDI54V3JpS9O6gOTY/s9OTn8Zd3t84i3J3d8Nbn36ka7LEpOeV+yePXUeWvPnj4YbY8Tkn2emCw7KNl449Sxw395ajhbJ2OLkyNf0Xh1ctCzkjuvSO74WrJoSbJibbLx5uSyc6aff+J7kuPe1Pjn9N237zi+/JDkyF9pjM8UjLbi8OQJFySfedT04/s+MXnEO9oHox307OTGf5l+7HEfSfZ4RHL7xckVr5t5j3bWXze7dcDACUYDAID08JcGAAAAAAAAAAAAAAAAAADAzEppBJMtXpksP7j39bUm2+7rPVRt2YHJwc9JjpgID1v7wkbfdX+XpCb7PCE5/KVJGeuujhVrkzOvSG65KNl0WyNUbfUxO87b9/RGeNh9P5naf8QrkrFFyZP+JfnyM5NNtzT6939aIySsn/Y6pfHabut9ydd+ZWpI3Hb7/Vzjeshzpw9G2x4kV8aSVcdMBsU1O+mPkzUnNfa69Ys7jh/dKcysJA8/d/pgtDKeHPK8ZNHS5J7vd9injbmE7QEDJRgNAABSh7QWAAAAAAAAAAAAAAAAAACYopRkfEXjtfygue217+Mbr9lavDo55Kz2c8bGk6d8Kbnkxcm6KxprjvkfyUPe0Bhfc1Ly3J8kd30zWbJ3suKwxnscpPHlyQFnJjd9emr/8kOSNY9q/LzniclRr06u+cDk+O7HJce8frJ96AuS771z6h6LVzf2TpIjztkxGG3JXslBz54446Tkrm/sWN/Dz22cv+KwZMP1U8cOfk4jFC1JFu8+83t84qeSy16RbLlr+vGZ+oEFRzAaAAC0NZe/VBCaBgAAAAAAAAAAAAAAAAAAu7xVRyZnXp5suTsZX5WMLZo6Pjae7HXKcGrb7qQ/S3525WTw2PjK5DHnJWVscs4pf90IMbv9K8mqo5JDfjHZbY/J8Ye9Nbn7O8mN/9JoL949ecInGsFrSXLYS5ONtyRXvifZsq4RdvbY/5eML5sYf8n0wWiHvqBRx2n/lPznM5PNdzb6dz8+OelPJ+eNr5j5/S3ZJznmDcl33zH9+Lb7kus+kqz77+TWLyTbNifH/kYjGG7rfY33sPrYZPGqyTW1Jvd8v7H30r1nPhuYV4LRAAAAAAAAAAAAAAAAAAAAAABgrppDxBaa1cckP/+t5Nb/TLauT/b7uWTZflPnlJIc9MzGazrjy5MnXZisvy6578Zkr5OTRUunrj/ut5OH/mZy/73JbrtPXX/Ua5KbP5vc8vnJvoe/Pdn9uMbPe5+aPPv65PZLGgFlax6VLFoyOXfPE5JFy5JtG1vqWpns+chkyV4zB6MlyVdfOrV9xa9OP2/1Q5NlByS3fnFq/6l/myw7qBEut+nWRh1b1ycbfpysPCJZvDrZ/4zG+xhbPHMdc7HptmTpvv3ZGxYIwWgAADAXtQ67AgAAAAAAAAAAAAAAAAAAgM4Wr04O/oW577Py8MZrJmVsx1C0JFm8Mjn93xvBZ/f8INnncckeD99xzoFPn37f8RXJ4S9LrvnA1P4jXpGML0tWPyR59AeTy1/V2/tpdc9VjVerr72y89p2wWxJI1ht+cGN97L/U5IDn9UInLv3R42QtaX7JOOrki13Juuvb8xbdkAjEG3x7slXX5Yc9Kzk5L9ojMEuSDAaAAD0i9A0AAAAAAAAAAAAAAAAAACASWOLk/1Ob7xm4+T3NQLebvhoUsaTtWcnj/iDyfHDfmnuwWj9tPHGxitJbv1i8q3f6X2Pa89Lbrs4ecIFyZ4nzG99sACMDbsAAAAYPgFmAAAAAAAAAAAAAAAAAAAAC97YePLIP0qe++PkOdcmJ747GVs0OT6+LFlz8vDqG5T11ySfPTW5+v1J9bw8uxbBaAAAMCduEgEAAAAAAAAAAAAAAAAAABaMo14z7AoG44HNydd/Lbn2/w67EphXgtEAAKBvCdhC0wAAAAAAAAAAAAAAAAAAAAbqyF9JjnzlsKsYjD0fmRz20mFXAfNqfNgFAADA8AkwAwAAAAAAAAAAAAAAAAAA2CWUseTRH0wOeX5y+yXJirXJwc9O7r8nKYuSMp5svi3JWHLXN5P7703WX5Pc84PkjkuTrRuG/Q66M74yOe2jyaIlw64E5pVgNAAAmFMwmlA1AAAAAAAAAAAAAAAAAACABaWU5MAzG6/tlu47+fOKQxrXNY+cfv0dX0tu/WKy7IBkvycnFx42ixoWJXVb7+u69ei/SVYf3b/9YUgEowEAQO1XuJnQNAAAAAAAAAAAAAAAAAAAgJ3O3qc2XklSH5h53tL9kk237ti//JDkuT9Ott6XXPvh5L6fJnscn6x9UVLGkq0bkw3XJ5vvSNZfl6y/Ntnr5EYQ26IVyb8/dOYz15ycHPfm5NBfnMs7hAVLMBoAALQNMCsDqwIAAAAAAAAAAAAAAAAAAIAFpowle56U3PWNHccec37yX89JHtg8tX/t2Y3r+PLkmNftuG58WbL7RPjZvk+Y7tBM+xz8PqclZ3yll+phpzM27AIAAGD42gWjdVo6h7UAAAAAAAAAAAAAAAAAAAAsfEe9ese+PU9MDnha8tjzk7HFk/37nJYc9+a5nXfcm2ao47Vz2xd2AuPDLgAAAIauX+FmQtMAAAAAAAAAAAAAAAAAAAB2fke9Otm2Kbn6L5JNtyb7PzV59AeSUpK1Zyf7Pim5/eJk2YHJXo+eGpQ2q/Nelfzog8nmOyf7Vj8kOeSsue0LOwHBaAAA0JZwMwAAAAAAAAAAAAAAAAAAgJFWSnLsrzde9YGkjE0dX7Z/cugL5u+8lUckZ1yaXPVHyc++1whbO/5tyfiK+TsDFijBaAAAMKfwM8FpAAAAAAAAAAAAAAAAAAAAI6M1FK1fVh+TnPrBwZwFC8iA/gsDAICFrF24WenTvgAAAAAAAAAAAAAAAAAAAAA0E4wGAABVgBkAAAAAAAAAAAAAAAAAAADAsAlGAwCAzCUYTagaAAAAAAAAAAAAAAAAAAAAwHwQjAYAALVf4WZC0wAAAAAAAAAAAAAAAAAAAAC6JRgNAAAEmAEAAAAAAAAAAAAAAAAAAAAM3fiwCwAAgOFrE4xWSoelQtUAAAAAAAAAGKxSyniSk5I8LMk+SXZLsj7JjUmuTvK9WuvW4VUIAAAAAAAAAACzIxgNAAD6FW4mNA0AAAAAAABgp1FKOSLJKUlOnrielGRV05Qbaq2HDaG0B5VSjk7y20nOTrK6zdSNpZSvJPmrWusnB1IcAAAAAAAAAADMA8FoAADQjnAzAAAAAAAAgF1WKeX0JG9JIwxtzXCrmVkpZTzJ76VRazff/VyW5Iwk65IIRgMAAAAAAAAAYKchGA0AADKX8DPBaQAAAAAAAAA7sROTPG3YRbRTSlmW5IIkP98yVJN8L8mPk9ydZGWSI5IcG98PBQAAAAAAAABgJ+WLLwAA0LdwM6FpAAAAAAAAADupzUl+muTIYRZRSilJ/ilTQ9E2JfnDJB+otd44zZrlSc5I8qIkWwZRJwAAAAAAAAAAzBfBaAAAUNsEmJUyuDoAAAAAAAAAGIb7k3wvydeTXDFx/U6S05J8aYh1Jcnrkjy7qX1zkqfUWq+aaUGt9b4kFya5sJTie6IAAAAAAAAAAOxUfOEFAADSJhitr2sBAAAAAAAAGLLzk/x1rXVT60AZ8i/SKqUcmuQ9TV2bkjy1XShaq1rr1nkvDAAAAAAAAAAA+kgwGgAA9C3cTGgaAAAAAAAAwEJWa71r2DW08TtJVja131lrvXJYxQAAAAAAAAAAwCCMDbsAAAAYuirADAAAAAAAAICFo5SyKslLmro2JHnvkMoBAAAAAAAAAICBEYwGAACZQzCaUDUAAAAAAAAA5t/ZSVY2tf+51nrvsIoBAAAAAAAAAIBBEYwGAAAAAAAAAAAAsLA8uaX9+aFUAQAAAAAAAAAAAzY+7AIAAGD4ap+27dO+AAAAAAAAAOzqHt3S/mqSlFKWJTkryYuSPCzJgUk2J7kjyTfTCFD7x1rrvYMrFQAAAAAAAAAA5o9gNAAA6CXAbOPNyU8+mdz3k2T/M5KVh/evLgAAAAAAAABGTilljyRHNXVtSXJtKeVJSc5L0vo/qpcm2T3JkUmen+RdpZR31Fr/fBD1AgAAAAAAAADAfBKMBgAA6TIY7d4fJRedntz300b7yvckR5zTr6IAAAAAAAAAGE37t7RvSvK8JB9LMtbF+r2SvLeUckqSV9Rat85zfQAAAAAAAAAA0DeC0QAAoNtgtO+9czIUbbtrPzz3fQEAAAAAAABg0h4t7ZVJ/j6ToWg3JHlfkq8kuTPJmiSPT/JrSQ5rWvfSJLcm+a35KqyUsm+SfXpcduR8nQ8AAAAAAAAAwK5PMBoAANR2AWZl8sdrz+t7KQAAAAAAAACMvNZgtL2bfv54kpfXWje2zLmslPKXSf4uyQua+n+zlHJhrfXieartdUnOnae9AAAAAAAAAABgB2OdpwAAwK6uXTAaAAAAAAAAAAzUTN/tvCLJS6YJRUuS1Fo3JXnJxLxmvzuPtQEAAAAAAAAAQF8JRgMAgNqvYDSBawAAAAAAAAD0bP0M/b9Va93abuHE+Btbup9WStl3XioDAAAAAAAAAIA+Gx92AQAAMHztAsyEmwEAAAAAAAAwUNMFo91Qa/2vbhbXWr9SSrk2yRFN3U9K8vF5qO39s9jnyCQXzsPZAAAAAAAAAACMAMFoAAAAAAAAAAAAAAvH3dP0XdbjHl/L1GC0h86+nEm11tuS3NbLmlLKfBwNAAAAAAAAAMCIGBt2AQAAMHy1zdgcvqBd2+0LAAAAAAAAANO6Icnmlr6be9zjppb2XrMvBwAAAAAAAAAABkcwGgAACDADAAAAAAAAYIGotW5L8oOW7tagtE5a5y+dfUUAAAAAAAAAADA4gtEAACCC0QAAAAAAAABYUL7d0t6jx/Wt8++cQy0AAAAAAAAAADAwgtEAAKBvwWgC1wAAAAAAAACYlU+3tB/W4/rjW9o/nUMtAAAAAAAAAAAwMILRAACgCjADAAAAAAAAYEH5tySbm9qnlFLWdLOwlLJnkke3dF88X4UBAAAAAAAAAEA/CUYDAIC0C0YrA6sCAAAAAAAAAJKk1npvkguaupYkeX2Xy1+fZGlT+4Yk352n0gAAAAAAAAAAoK8EowEAQNtgtIW4LwAAAAAAAAA7k1JKbXmd3sWytyXZ0tR+aynlsR3OeWyS323pfnet1f/ABgAAAAAAAABgpzA+7AIYjFLK4iSnJTk0yQFJ1ie5Kck3a63Xz/NZhyc5McmBSVYmuTmN3zh5aa31/vk8CwCg/3w3HAAAAAAAAGBXVko5ONN/n3L/lvZ4KeWwGbZZX2u9Yz7rqrVeV0r5w0wGnS1J8rlSyv9M8qHm7+OVUsaTvDLJHyfZrWmby5OcN591AQAAAAAAAABAPwlGG6BSyu8nOXcOW5xfaz2nxzP3SfL2JGcnWTPDnEuT/Gmt9Z/nUFtKKc9P8sYkM/1GynWllI8m+b35/gIYAMCc+MXYAAAAAAAAAKPsK0nWdjHvoCTXzTB2fpJz5qugJr+X5CFJXjDRXpnk/UneVUq5LMm6NL4b+Jgke7SsvTHJL9Zat/ShLgAAAAAAAAAA6AvBaLuwUsozknw4yb4dpj4uyeNKKR9J8ppa64Yez1mZ5INJXtRh6pokv5rkeaWUl9daP9vLOQAA/dOnYDSBawAAAAAAAADMQa21llJelkYA2muahvZIcmabpZcnOavWelM/6wMAAAAAAAAAgPk2NuwC6I9SyulJPpWpoWg1yX8n+XiSzye5o2XZLyX5x1JK138uSimLknw0O4ai3Z7kcxNnfSNT00b2S3JhKeXx3Z4DANBfAswAAAAAAAAAWJhqrZtrra9N8tQ0vvu3rc307yY5J8njhKIBAAAAAAAAALAzGh92ASPuxUku62H++m4mlVIOTvKJJLs1dV+S5FW11qua5i1J4zdI/nGSxRPdv5DkD5K8tcua3pPk55va9yd5Y5IP1Fq3NJ11XJIPJXnsRNeSJJ8qpTy81npzl2cBAPRHbReMJjQNAAAAAAAAYFdWaz1sAGeUedjjoiQXlVL2SfKYJAck2TvJvUluTXJprfWncz0HAAAAAAAAAACGSTDacN1Sa72+D/u+PcmeTe1Lkzy11rqpeVKtdXOSPy+l/DjJJ5uG3lhK+Zta6w3tDimlHJHk11u6X1BrvbB1bq31ylLKU5JclMlwtL2SnJvktV28JwCAPmoTftY2NG0O+wIAAAAAAADALNRab0/yr8OuAwAAAAAAAAAA+mFs2AUwv0opRyd5eVPXliTntIaiNau1firJ+U1dS9IILOvk3CSLm9ofni4UremcjUnOmahpu1dOBKwBAAxRuwAz4WYAAAAAAAAAAAAAAAAAAAAAgyAYbdfzkiSLmtqfqLX+sIt1/7ul/cJSytKZJpdSliV5foc9dlBrvTrJp5q6xtOoGQBgeKrwMwAAAAAAAAAAAAAAAAAAAIBhE4y26zmrpX1eN4tqrVcl+VpT14okT2uz5OlJlje1v1pr/X5XFe5Y0/O6XAcAMARzCE0TuAYAAAAAAAAAAAAAAAAAAADQNcFou5BSyv5JTmjq2prkkh62+HJL+xlt5p7ZYW07F6dR23aPLKXs18N6AID5VR9oMybcDAAAAAAAAAAAAAAAAAAAAGAQBKPtWo5vaX+71rqhh/WXtrQf1sNZX+32kImavtPDWQAA/VMfSK54bbsJAysFAAAAAAAAAAAAAAAAAAAAYJQJRhuu15RSvlBKubGUsqmUcm8p5fpSyn+WUt5ZSnlCj/sd19K+psf1P+qwX7OHDvAsAID+ufFfkw3Xzzxe5xKMJlQNAAAAAAAAAAAAAAAAAAAAoFvjwy5gxL2opb0kycoka5M8MclbSylfT/KWWusXutjvqJb2j3us54aW9l6llD1rrXc1d5ZS1iRZM8ezWucf3eN6AID5cdWfDLsCAAAAAAAAAAAAAAAAAAAAAJKMDbsAOjo5yedKKe8spZQOc/doad/Wy0G11vVJNrV0797FOffVWjf0clZ2rG26cwAA+u/2iztMqAMpAwAAAAAAAAAAAAAAAAAAAGDUjQ+7gBF1Y5JPJ7k8yVVJ1iV5IMleSU5K8qwkT2+aX5K8NY0gu7e02XdlS3vjLGrbmGRpU3tVH89pNt05PSul7Jtknx6XHTkfZwMAu6q5BKMJVQMAAAAAAAAAAAAAAAAAAADolmC0wbo8jcCzz9daZ0rJuDTJX5ZSTk7yD0mObhp7cynlslrrhTOsbQ0s2zSLGjcm2bPNnvN5Trs9Z+t1Sc6dp70AAJIZP7YBAAAAAAAAAAAAAAAAAAAAMJ/Ghl3AKKm1frrW+rk2oWjNc7+e5DFJrm4Zek8pZVG3R/Za4wJfAwAwBD62AAAAAAAAAAAAAAAAAAAAAAyCYLQFrNa6LsmLMzWN49gkT55hyfqW9rJZHNu6pnXPQZ4DALBz65yHCwAAAAAAAAAAAAAAAAAAAMCE8WEXQHu11m+UUj6X5OlN3Wcm+cI00wWjJe9P8vEe1xyZ5MJ5Oh8A2OUINwMAAAAAAAAAAAAAAAAAAAAYBMFoO4fPZGow2iNmmPezlvY+vRxSSlmZHQPL7u7inOWllBW11g09HLdvF+f0rNZ6W5LbellTSpmPowGAXVUVjAYAAAAAAAAAAAAAAAAAAAAwCGPDLoCuXN/Sninw7Ict7bU9ntM6f12t9a7WSbXWO5O09h86x7NaawcAWCAmgtFmFZAmVA0AAAAAAAAAAAAAAAAAAACgW4LRdg4bW9rLZph3VUv7qB7POaKlfWWbufN9Vut+AAALRG25AgAAAAAAAAAAAAAAAAAAANAPgtF2Dnu3tO+YYd53W9qPKKUs7+Gc0zrs127ssd0eUkpZkeQRPZwFADB8VTAaAAAAAAAAAAAAAAAAAAAAQD8JRts5nNrSvmm6SbXWm5N8u6lrPMnjezjn9Jb2f7SZ+5kOa9t5Qhq1bffNWuutPawHABicBwPRZhOMJkwNAAAAAAAAAAAAAAAAAAAAoFuC0Ra4UsrSJM9r6f5ymyWfbGm/ostzjs3UALYNST7XZslnk2xsaj92Yo9unNPSbq0ZAGABEW4GAAAAAAAAAAAAAAAAAAAAMAiC0Ra+NyU5qKm9Lcm/t5n/kYk52z2vlHJ0l+c0+1itddNMk2ut9yW5oMMeOyilHJPkrKaurUn+oYv6AACGpLZcAQAAAAAAAAAAAAAAAAAAAOgHwWgDUkp5WSllvx7XvCrJuS3dH6613jDTmlrrD5Oc39S1W5IPl1KWtjnnOUnOaerakuTtXZT4+0nub2qfU0p5dptzliY5b6Km7f621vqjLs4CABiOWqdeZ7MWAACA2as1uefq5P57hl0JAAAAAAAAAAAAAAAA0GeC0QbnlUmuK6WcX0p5ZillxUwTSyknl1I+keQDSUrT0I1JfreLs85NcldT+3FJvlBKObblnCWllDck+XjL+j9pF762Xa312iTvbem+oJTy+lJKc/hZSikPTXLRRC3b3ZnuAtgAABYAIWcAAAADt+4byYVrk397SHLBmuTy1yYPbBt2VQAAAAAAAAAAAAAAAECfjA+7gBGzLMkvT7weKKX8MMn1SX6WZFuSvZKckGS/adauS3JmrfWWTofUWn9aSnleks8m2R5QdlqSK0sp/53k2iS7JzkpyT4ty/8tydt6eE9vTvKwJM+YaC9O8hdJ3lZK+UaSe5McMXFWc8jbliRn1Vpv7uEsAIAhqC1XAAAABmLrxuSLZyRb1jXadVtyzd8kKw9PjnvTcGsDAAAAAAAAAAAAAAAA+kIw2vCMJXnIxKuTi5KcU2v9abeb11q/XEo5K8mHMxl+VpKcPPGazj8meVWtdVsP52wrpbwwyYeSnN00tG+SM2dYdluSl9daL+72HACA4ZkIRKuzCUYTpgYAADBrt3x+MhSt2TUfEIwGAAAAAAAAAAAAAAAAu6ixYRcwQt6b5B+S3NDl/A1JPpnkqbXWp/YSirZdrfXTSY5P8tdJ7moz9bIkz6+1vqTWumEW56yvtb4oyQsm9prJuiR/leT4Wutnej0HAGAoHgxEE3IGAAAwUN//s+n711872DoAAAAAAAAAAAAAAACAgRkfdgGjotb6yTSCzlJK2SPJw5IckmS/JMvTCKm7O40As6uSfLvWum0ezr0tya+WUn49yWlJ1ibZP43gtRuTfLPWet1cz5k464IkF5RSDk9yUpIDk6xIcksagXCX1Fq3zMdZAACDIxgNAAAAAAAAAAAAAAAAAAAAYBAEow1BrfXuJJcM+MwtSb40oLOuSzIvYWsAAAtGnU0wmjA1AACA2XNPBQAAAAAAAAAAAAAAAKNmbNgFAADAgvZgIJoH8gEAAAAAAAAAAAAAAAAAAAD6STAaAAC0JRANAAAAAAAAAAAAAAAAAAAAYBAEowEAQFu15drLUqFqAAAAAAAAAAAAAAAAAAAAAN0SjAYAAO1sDzcTcgYAADBg7sMAAAAAAAAAAAAAAABg1AhGAwCArnggHwAAAAAAAAAAAAAAAAAAAKCfBKMBAEBbteU6m7UAAAAAAAAAAAAAAAAAAAAAdCIYDQAA2poIN6tCzgAAAAAAAAAAAAAAAAAAAAD6STAaAAC082AgmmA0AAAAAAAAAAAAAAAAAAAAgH4SjAYAAG1NBKLV2QSjCVMDAACYtVndhwEAAAAAAAAAAAAAAAA7M8FoAACMttLtR2IP5AMAAAAAAAAAAAAAAAAAAAD0k2A0AABGXKePxLXlCgAAwECUMuwKAAAAAAAAAAAAAAAAgAETjAYAwGgrHT4S1zr12ovZrAEAAKDBPRUAAAAAAAAAAAAAAACMHMFoAACMtk7BaPEgPgAAwIJz65eGXQEAAAAAAAAAAAAAAADQB4LRAAAYbWVRhwm15QoAAMDQfe9dw64AAAAAAAAAAAAAAAAA6APBaAAAjLhuPxLPJhhNmBoAAEBf3PKFYVcAAAAAAAAAAAAAAAAA9IFgNAAARlvp8JG41qlXAAAABsTZzKyOAAAgAElEQVR9GAAAAAAAAAAAAAAAAIwawWgAAIy2TsFoDz6I74F8AAAAAAAAAAAAAAAAAAAAgH4SjAYAwGgrizpMmEswmjA1AAAAAAAAAAAAAAAAAAAAgG4JRgMAYLSVDh+Ja516BQAAAAAAAAAAAAAAAAAAAKAvBKMBADDiuv1ILBgNAAAAAAAAAAAAAAAAAAAAoJ8EowEAMNpKp4/EteXagypMDQAAYPbcUwEAAAAAAAAAAAAAAMCoEYwGAMBo6xSMtj3cTMgZAAAAAAAAAAAAAAAAAAAAQF8JRgMAYMR1+kgsEA0AAAAAAAAAAAAAAAAAAABgEASjAQAw2kq3wWizCUgTqgYAAAAAAAAAAAAAAAAAAADQLcFoAACMtrKoy4lCzgAAAAAAAAAAAAAAAAAAAAD6STAaAACjrXT4SFzr1CsAAAAAAAAAAAAAAAAAAAAAfSEYDQCA0dYpGC215doLYWoAAAAAAAAAAAAAAAAAAAAA3RKMBgDAaCuLOkyYCDerQs4AAAAGyn0YAAAAAAAAAAAAAAAAjBzBaAAAjLgOH4kffBDfA/kAAAAAAAAAAAAAAAAAAAAA/SQYDQCA0VY6fSSeQzBaFaYGAAAAAAAAAAAAAAAAAAAA0C3BaAAAjLaOwWgThJwBAAAAAAAAAAAAAAAAAAAA9JVgNAAARltZ1GFCbbkCAAAAAAAAAAAAAAAAAAAA0A+C0QAAGHEdPhLXuQSiCVMDAACYPfdUAAAAAAAAAAAAAAAAMGoEowEAMNrGxjtMqC1XAAAAAAAAAAAAAAAAAAAAAPpBMBoAAKOtLOowYSIQrQpGAwAAAAAAAAAAAAAAAAAAAOgnwWgAAIy2jsFo2wlGAwAAAAAAAAAAAAAAAAAAAOgnwWgAAIy2Mt5+vG4PRBOMBgAAAAAAAAAAAAAAAAAAANBPgtEAABhtZVGHCROBaFUwGgAAwILiPg0AAAAAAAAAAAAAAAB2OYLRAAAYbd0Go8UD9wAAAAAAAAAAAAAAAAAAAAD9JBgNAIDRVjp8JK6C0QAAAIaiug8DAAAAAAAAAAAAAACAUSMYDQCAEdflg/YeyAcAAFhg3KcBAAAAAAAAAAAAAADArkYwGgAAtFVbrgAAAAAAAAAAAAAAAAAAAAD0g2A0AABoSzAaAAAAAAAAAAAAAAAAAAAAwCAIRgMAYLTVDoFnncYBAAAYDvdrAAAAAAAAAAAAAAAAsMsRjAYAAG1NPGjvgXsAAIABcx8GAAAAAAAAAAAAAAAAo0YwGgAAdMUD+QAAAAuL+zQAAAAAAAAAAAAAAADY1QhGAwBgxHV4kL7WqVcAAAAAAAAAAAAAAAAAAAAA+kIwGgAAtFVbrgAAAAAAAAAAAAAAAAAAAAD0g2A0AABGXKfAszkEo1VhagAAAP3jngsAAAAAAAAAAAAAAAB2NYLRAACgne3hZkLOAAAABsx9GAAAAAAAAAAAAAAAAIwawWgAANAVD+QDAAAAAAAAAAAAAAAAAAAA9JNgNAAARlvtFHhWW649bT6LNQAAAHSl4/0cAAAAAAAAAAAAAAAAsLMRjAYAAG1NPGjvgXsAAAAAAAAAAAAAAAAAAACAvhKMBgAA7QhEAwAAGI6O92Pu1wAAAAAAAAAAAAAAAGBXIxgNAIAR1+2D9rN54N5D+gAAAAAAAAAAAAAAAAAAAADdEowGAABdEXIGAAAwUKUMuwIAAAAAAAAAAAAAAABgwASjAQBAWxOBaFUwGgAAwEB1vA9znwYAAAAAAAAAAAAAAAC7GsFoAACMuA4P0j/4IP4sHrgXpgYAAAAAAAAAAAAAAAAAAADQNcFoAADQ1hyC0QAA+P/s3XuwpHld3/HPr89hZ4bdhAUEEQmsi4giQSVUqZALJpS38hIMojFFSWIMhff7pSICqdxMImXQqBWDQmlEAhJQg2i4WepiNLArGkCBheG27LrsCuzsmZk93b/8sWfc3p5+ntPdp5/znH769aqa2tPP9WvZ1XWeZn7vAeiOGDUAAAAAAAAAAAAAAAAMjjAaAAC0Olhob8E9AAAAAAAAAAAAAAAAAAAAQKeE0QAA2G4LB89WCaOJqQEAAKzOMxUAAAAAAAAAAAAAAABsG2E0AABo81fhNAvyAQAAThbPaQAAAAAAAAAAAAAAADA0wmgAANDqYKF9XWXBvUX6AAAAAAAAAAAAAAAAAAAAAIsSRgMAYMsdFi8TNwMAAAAAAAAAAAAAAAAAAAA4DsJoAADQpl4KowmkAQAAnCye0wAAAAAAAAAAAAAAAGBohNEAAKDNhb+4+791hQX3q5wDAADAAc9UAAAAAAAAAAAAAAAAsG2E0QAA2HKHLLS/9c3Jb3xWctsfHc84AAAALEaMGgAAAAAAAAAAAAAAAAZHGA0AAA7z8Xcmb3tO31MAAAAAAAAAAAAAAAAAAAAADJowGgAAdKb2PQAAAAAAAAAAAAAAAAAAAADAxhBGAwBgu1XxMgAAgM3keQ4AAAAAAAAAAAAAAACGRhgNAAAAAAAAAAAAAAAAAAAAAAAA6J0wGgAAdKb2PQAAAMCAeeYCAAAAAAAAAAAAAACAoRFGAwBgy1lIDwAAcCJVz2sAAAAAAAAAAAAAAACwbYTRAAAAAAAAAAAAAAAAAAAAAAAAgN4JowEAsOVqh5fu8NoAAADbzjMXAAAAAAAAAAAAAAAADI4wGgAAAAAA3ZmM+54AAAAAAAAAAAAAAAAAgA0hjAYAAAAAwPq9+78mv/4ZycuvSt74pcm5D/Q9EQAAAAAAAAAAAAAAAAAnnDAaAADbrdYuL97htQEA4AQ7+7LkD5+VfOJdyfh8ctNvJa9/cjK+2PdkbJTDnqk8cwEAAAAAAAAAAAAAAMDQCKMBAAAAALBe7/3Fy7fdcWNy65uPfxYAAAAAAAAAAAAAAAAANoYwGgAAdKb2PQAAAPTjw/9r/va3/cvjnYOB88wFAAAAAAAAAAAAAAAAQ7Pb9wAAANAvC+lZo3PvT25+Q/LxdyanH5J88hclVz8uKaXvyQAATobxhb4nAAAAAAAAAAAAAAAAAOAEE0YDAABYhw+8Mvndp+Wy2N6jvjV5wk+KowEAAAAAAAAAAAAAAAAAAMAhRn0PAAAAg1Xr4ccwDPt7yXXPyGVRtCR5139JPvK/j30kAAAYPM9cAAAAAAAAAAAAAAAAMDjCaAAAbDkL6VmDD/16Mr6zef/Nbzy+WQAAAAAAAAAAAAAAAAAAAGBDCaMBAAAc1U2/2b7/xhcfyxgAACdf6XsANoqQNQAAAAAAAAAAAAAAAGwbYTQAAOiMRfzb45DAx86Z4xkDAAC2imcuAAAAAAAAAAAAAAAAGBphNAAAtlu1kJ41uP369v1X/83jmQMAAIbE8xoAAAAAAAAAAAAAAABsHWE0AACAo9jfS26/of2YndPHMwsAAGwT4TQAAAAAAAAAAAAAAAAYHGE0AADojEX6W+HmNxx+zOSu7ucAAIChKaXvCQAAAAAAAAAAAAAAAIBjJowGAMCWEy/jiN7+Y4cfM7nQ/RwAADA01fMaAAAAAAAAAAAAAAAAbBthNAAAgKOY3HX4MR9+TVIn3c8CAABbRTgNAAAAAAAAAAAAAAAAhkYYDQAAulIt0t8Ko53FjvvAK7udAwBgE5TS9wQAAAAAAAAAAAAAAAAAnGDCaAAAbDfxMo5swbjHu36m2zEAAGDreJ4DAAAAAAAAAAAAAACAoRFGAwAAOIqy4GPVzW/odg4AAAAAAAAAAAAAAAAAAADYcMJoAADQmdr3AByHstP3BAAAMFCeqQAAAAAAAAAAAAAAAGDbCKMBALDlLLTnqDxWAQBAL6rnOQAAAAAAAAAAAAAAABgaK/gBAACOonisAgAAAAAAAAAAAAAAAAAAgHWwgh8AADpT+x6AY1H6HgAAAAAAAAAAAAAAAAAAAAAGYbfvAQAAoF/iZRzR5ELfEwAAnBx3fjC57a0tB4jKsozDntc8zwEAAAAAAAAAAAAAAMDQCKMBAEBXqkX6W2H/zr4nAADoX63JH/9w8vYf63sSAAAAAAAAAAAAAAAAADbYqO8BAACgV+JlHNX4XN8TAAD078OvEUWjA+WQ/Z7nAAAAAAAAAAAAAAAAYGiE0QAAAFZVa/Kxt/c9BQBA//78p/qegEESPgMAAAAAAAAAAAAAAIBtI4wGAACdsYh/8G5/a98TAACcDDe9dsEDS6djAAAAAAAAAAAAAAAAALDZhNEAANhy4mUcwUde3/cEAAAbxu/frFH1fgIAAAAAAAAAAAAAAIChEUYDAABY1cW/7HsCAAAAAAAAAAAAAAAAAAAAGAxhNAAA6EqtfU9A18Z7fU8AALBhSt8DsEkOfabyzAUAAAAAAAAAAAAAAABDI4wGAMCWs5CeIxjf2fcEAAAAAAAAAAAAAAAAAAAAMBjCaAAAAKva3+t7AgAAAAAAAAAAAAAAAAAAABgMYTQAAOhM7XsAujYWRgMAgP545gIAAAAAAAAAAAAAAIChEUYDAGC7VQvpOYLxnYsfe8UDupsDAGBTlNL3BAAAAAAAAAAAAAAAAACcYMJoAAAAqxrvLX5snXQ3BwDAphAmZineLwAAAAAAAAAAAAAAALBthNEAAKAzFvEP3v4yYbT97uYAAIBtJLQHAAAAAAAAAAAAAAAAgyOMBgDAlrOQniMY37n4sZO7upsDAGBTlNL3BGwU7xcAAAAAAAAAAAAAAADYNsJoAAAAqxrvLX5s3e9uDgAAGKTDQtZC1wAAAAAAAAAAAAAAADA0wmgAANCVapH+4C0VRht7TwAAAAAAAAAAAAAAAAAAAEALYTQAALacUBVHsH/ncsfXcTdzAAAAAAAAAAAAAAAAAAAAwAAIowEAAKxqvLfc8XW/mzkAADZG6XsABkXoGgAAAAAAAAAAAAAAAIZGGA0AADpjkf6g1bp8GG1yVzezAABsDL8jswzvFwAAAAAAAAAAAAAAANg2wmgAAGy3aqE9K5pcWP6cur/+OQAAAAAAAAAAAAAAAAAAAGAghNEAAKAzomuDNj6//DkTYTQAYNuVvgdgSISuAQAAAAAAAAAAAAAAYHCE0QAAAFYxvrD8OVUYDQAAAAAAAAAAAAAAAAAAAJoIowEAsOVq3wOwqSYrhNEmwmgAALA+nucAAAAAAAAAAAAAAABgaITRAACgK9Ui/UEbn1/+nCqMBgAAC/NMBQAAAAAAAAAAAAAAAFtnt+8BOB6llPskeVKShyf5lCR3JPlwkutrre9b870+LcnnJnlokquS3JTkbJLraq13rfNeAADQm8mFFc7x6zAAsOVK6XsCAAAAAAAAAAAAAAAAAE4wYbQTqJTyK0m+bmbz2VrrNStc60FJnn9wvQc0HHNdkhfUWn912evPXOdpSb4nyRc2HHJbKeVlSX601nrrUe4FALA+te8B2FRjYTQAAOiX5zkAAAAAAAAAAAAAAAAYmlHfA3BvpZSvyuVRtFWv9WVJ/jTJs9MQRTvwxCSvKKX8UinlyhXuc1Up5aVJXp7mKFoOZnh2kj8tpXzJsvcBANg8FukP2vj88udMVoipAQAAAAAAAAAAAAAAAAAAwJbY7XsA7lFKuTrJz6zpWk9O8qokV0xtrknemuTGJFcn+bwknzS1/58k+eullH9Ya50seJ+dJC9L8uUzu/4iyfVJPpbkkQf3Kgf7PjnJq0spT6m1/t4S/2cBAKxfFS9jRatEzlaJqQEAAPN5ngMAAAAAAAAAAAAAAIDBGfU9APfy40keevDzJ1a9SCnlYUlemXtH0X4/yWfXWp9Qa316rfWLkzwsyXcmuWvquK9M8q+XuN2/z72jaHcl+fYkD6u1fsnBvf5WkscmefPUcaeSvKqU8ilL3AsAAE6OcUMYbXSq5RxhNAAAAAAAAAAAAAAAAAAAAGgijHZClFKekuSfHbzcT/KjR7jc85Pcf+r1dUmeUmt9x/RBtdYLtdYXJnn6zPnfU0p5xGE3KaVcm7vDatO+ttb6U7XWizP3enuSf5B7x9EemOS5h90HAGBz1b4HoEuThjDazum7/8wz3utuHgAAAAAAAAAAAAAAAAAAANhwwmgnQCnlyiQ/N7XpBUluWPFaj0ryjVObLiZ5Zq31fNM5tdZXJXnJ1KZTWSxY9twk95l6/eJa66tb7rOX5JkHM13yTQeBNQCAnoiXsaJxw6/YO6eTUVMYrfHXcgAA4DKHPa95ngMAAAAAAAAAAAAAAIChEUY7Gf5dkmsOfr4xyfOOcK1vSLIz9fqVtdZ3LXDej828fnoppaHmkJRSziR52iHXuEyt9c+TvGpq027unhkAADbL5ML87aNTd8fR5hFGAwC2Xul7AAAAAAAAAAAAAAAAAABOMGG0npVSnpjkW6c2PavWuneESz515vUvLHJSrfUdSf7P1KYrk3xxyylfkuS+U6/fXGt950ITXj7T1yx4HgDAZqm17wno0rghjLZzKtk5M3/fRBgNAAAW55kKAAAAAAAAAAAAAAAAto0wWo9KKaeS/Hzu+f/DS2qtrzvC9R6S5HOmNu0n+f0lLvGmmddf1nLslx5ybpvfzd2zXfJ5pZRPXuJ8AIA1stCeFY0bImc7p+/+s8w5AADA8sSoAQAAAAAAAAAAAAAAYHCE0fr1vCSPPvj5L5J87xGv99iZ12+rtZ5b4vzrZl5/9hL3evOiNzmY6U+WuBcAAJw8kwvzt49OCaMBAMBalL4HAAAAAAAAAAAAAAAAAI6ZMFpPSimPT/J9U5u+q9b60SNe9jEzr9+95PnvOeR60z7rGO8FALChat8D0KUbf2H+9h1hNAAAWI/Dnqk8cwEAAAAAAAAAAAAAAMDQCKP1oJSym+Tnk+webHptrfWX13DpT595/f4lzz878/qBpZT7zx5USnlAkgcc8V6zxz9qyfMBANajWkjPij7+zvnb924WRgMAAAAAAAAAAAAAAAAAAIAV7B5+CB34oSSfc/DzuSTPXtN1r555fcsyJ9da7yilnE8yXXG4X5LbD7nPnbXWc8vca85s91vy/LlKKQ9O8qAlT3vkOu4NAHA50bXBOn9r8777XJWMGsJoE2E0AAAAAAAAAAAAAAAAAAAAaCKMdsxKKY9J8iNTm55Ta33fmi5/1czrvRWusZd7h9H+Wof3mTbvPqv4liTPXdO1AABgvvGdzftGVyQ7DWG0/VV+dQYAGJLS9wAMihg1AAAAAAAAAAAAAAAADM2o7wG2SSlllORFSU4dbHpLkheu8RazwbLzK1xjttQwe83jvA8AwDGwkJ4VjFt+BX7oVzSH0Sar/OoMAAAAAAAAAAAAAAAAAAAA20EY7Xh9Z5IvOPh5P8k/r7WOO7zfKpWPk3wOAFzurjuSOul7Cpiv+pVnsCYXmvdd+43Jzpn5+9qCagAAwL15pgIAAACOWSnl2lLK15VS/mMp5U2llI+XUurUn/f1PeOsUsp9SynvmZmzllJe3PdsAAAAAAAAAACwit2+B9gWpZRrk/zrqU0vqLXesObb3DHzuqHG0Gr2nNlrHud9VvHTSV6+5DmPTPLqNd0fgONyx43Jdc9IPvoHyalPSh793cljfjAppe/JgG0wbgmjXXF1snO64TxhNAAAWBvhNAAAAGANSilPTvLDSZ6Q5AH9TrOSf5Pk2r6HAAAAAAAAAACAdRFGOwallJLk55Lc92DTjUme18Gttj6MVmu9Jckty5xTBHQANs/4YvK6L0rufP/dr8/fkvzxDyenHph8+jf3OxsbyEJ6VjBpCaONTgmjAQAAAAAAwOb43CRf3PcQqyilfEGS7+h7DgAAAAAAAAAAWKdR3wNsiW9O8venXj+r1rrXwX0+NvP6QcucXEq5KpcHy/5ygfvct5Ry5TL3SvLgBe4DAPPd+uZ7omjTzr7s+GeBVqJrgzVuC6NdIYwGAADHwjMXAAAA0KkLSd7T9xBNSilXJHlR7vl7oJ/ocRwAAAAAAAAAAFib3b4H2BLPn/r5NUneXUq55pBzHjLzenfOOR+utV6cev2umf2PWHC+puNvq7XePntQrfWjpZTbk9x/avPDk7zjCPeanR0Amr3tR+Zvv/n1xzsHsL0mDWG00RVJKcmoIYw2EUYDAIDFCZ8BAAAAx+auJP8vyf9N8kcH//2TJE9K8sYe52rzo0kec/Dz2SQvT/J9/Y0DAAAAAAAAAADrIYx2PM5M/fzlSd67wjU+dc55n5fkhqnXs2GyT1/yHtfOvH57y7HvSPLEmXstE0abvdcy5wKw7eq47wkYkmqhPSsYN4XRTt39352GMNpYGA0A2HKl9D0BAAAAAMx6SZKfrbVe9j/mlRP6fVYp5XOS/ODUpmcn+fyexgEAAAAAAAAAgLUa9T0Aa/WnM68fV0q57xLnP+mQ67Xt+8JFb1JKuTLJ45a4FwDcm5AVG8N7dbAmDWG0ncPCaHvdzAMAAIN02MJjz1wAAADA0dVab58XRTupSim7SX4+9/zDuC+ttf5mjyMBAAAAAAAAAMBaCaMNSK31piRvm9q0m+RvL3GJJ8+8bvvLUq895Nw2fyf3/KWsJLm+1nrzEucDsPUsfAZ6Nm4Io40OC6NtzHoKAAA4ATz/AwAAAMzx/Ukef/DzbUm+q8dZAAAAAAAAAABg7YTRjkGt9epaa1nmT5IvmrnM2TnH3TDndv9z5vU/XWTGUspnJvn8qU3nkvx2yym/lWRv6vUXHlxjEc+ceT07MwC0q5O+J2BQLLRnBZOGMNrOpTDamfn7hdEAAGB9quc5AAAAYLuUUh6d5LlTm7631npLX/MAAAAAAAAAAEAXhNGG578nGU+9/ppSyqMWOO8HZ17/j1prY7Wh1npnklccco3LlFI+I8lTpzbtJ/nlBeYDgCkWPrMhLNIfrnFDGG10KYx2uuE8YTQAYNuVvgcAAAAAgI1UShkleVGSg/9RMm+otb64v4kAAAAAAAAAAKAbwmgDU2t9V5KXTG26IsmLSykNZYaklPLVSZ45telikucvcLvnJblr6vUzSylf1XKf00l+4WCmS15Ua33PAvcCgHvUSd8TANtu0hBG2xFGAwBoJx7Mgcl+cu6soDQAAADA4r4tyZMOft5L8qweZwEAAAAAAAAAgM4Iow3Tc5PcPvX6iUleV0r5zOmDSimnSinfnuTlM+f/eK317GE3qbXemOQ/z2x+RSnl20op0/GzlFI+K8nrD2a55KNZLMAGADMsmmaNLMJnFU1htNEhYbTJee85AAB4508kv/rA5NXXJK/6G8lHXj//uEN/d/a7NQAAALAdSinXJPm3U5ueX2t9dz/TAAAAAAAAAABAt3b7HoD1q7V+sJTyNUl+K8mlQNmTkry9lPKWJDcmuV+Sxyd50Mzpv5HkOUvc7oeSfHaSLzt4fZ8kP5nkOaWUtyb5RJJrD+5Vps67mOSptdablrgXANytTvqeABZkkf5gjRvCaJeCaKOGMFqdJHU/KffpZi4AgBOvHH4Iw/bBX0ve+t33vN77UPI7X5F8xZ8lVz68v7kAAAAATrafS3Llwc9/nOTH+xqklPLgXP73Dg/zyC5mAQAAAAAAAABgmITRBqrW+qZSylOTvDj3/CWkkuQJB3/meWmSb661jpe4z7iU8vQk/y3J103tenCSL2047ZYk31hr/d1F7wMA9yY2xTp5P7GC8fn520en7v7vTkMY7dK5I2E0AAC21Pt+6fJt4/PJB1+dPPrbj38egDbnziZ/9sLk9huSBzwhecwPJKce2PdUAADAlimlfFOSpxy8nOTuv+O33+NI35LkuT3eHwAAAAAAAACAgRv1PQDdqbW+Jsljk/xskttbDv2DJE+rtX5DrfXcCve5o9b69Um+9uBaTW5L8jNJHltrfe2y9wGAv1InfU8AbLvJhfnbdxYMowEAwLZ6/8vnb3/Ld6xwMaFroEN3fjh53d9L3vmC5OY3JO/4D8nr/m5y8WN9TwYAAGyRUspDk/ynqU0vrLX+UV/zAAAAAAAAAADAcdjtewDmq7W+KUlZw3VuSfLsUsp3JnlSkkckeUiSc0k+lOT6Wut7j3qfg3u9IskrSimfluTxSR6a5MokH0lyNsnv11ovruNeAGw7C5+Bno0bwmijRcJoe+ufBwAAAFivs7+cnDt7720fe3vyoV9LPu0Z/cwEAABso59OcvXBz2eT/EiPswAAAAAAAAAAwLEQRtsSB0GyNx7Tvd6bZC2xNQCYq076noBBEdpjBZOGMNrOpTDameZzx+fXPw8AwMY48r8FwVY55Hmtep4DOnT998/f/of/QhgNAAA4FqWUr0/y1VObnl1rPdfXPFN+OsnLlzznkUle3cEsAAAAAAAAAAAMkDAaALCBLHxmg9SaFPGHwRk3hNFGl8Jop1vOFUYDALaZ5zkANpznegAA4BiUUj4pyQunNr201vqbfc0zrdZ6S5Jbljmn+N/MAQAAAAAAAABYwqjvAQAAllYnfU8AbLtJQxhtRxgNAADWx4JZAAAAYGu9MMmDDn6+Lcl39TgLAAAAAAAAAAAcq92+BwAAWF7tewCGpHo/sYJxQxhtdOre/51nIowGAGwzoSuWcdjzmuc5AAAAYHhKKY9O8o+nNv1EkvuWUq455NSrZ15fNXPOpNb6/qPOBwAAAAAAAAAAXRNGAwA2T530PQEsoUb8YYAmDWG0nUthtN2k7CZ1//JjxsJoAAAAAAAAQKMzM6//1cGfZf2jgz+XfCyXx9MAAAAAAAAAAODEGfU9AADA8mrfAwDbrimMNjp1z887p+cfI4wGAABr4vsBAAAAAAAAAAAAAAAAGBphNABg89RJ3xMwKBbSs4JxQxhtRxgNAAAAAAAAAAAAAAAAAAAAViWMBgBsICErNkj1fh2kSUMYbbRIGG1v/fMAAPSuLHjYgsdBEs//wIl1y+/1PQEAADBgtdYbaq1l2T9Jnj9zqZfMHHN1H//3AAAAAAAAAADAsoTRAIDNUyd9TwBsu3FDGG06hrZzpuHc8+ufBwCgb4sGzy/lKC4AACAASURBVISDWSfvJ6AvH/6NvicAAAAAAAAAAAAAAIDBEkYDADaQhc+sk/cTK5g0hNFGp+75eTqSNk0YDQAYpAXDaACwKUZXNO97z4uObw4AAGAwSil15s+T+54JAAAAAAAAAABOot2+BwAAWFqd9D0BLEF4bZDGDWG0nakw2qghjDYRRgMAhmjBMFoRUANgQ4yuSCYX5++7cOvxzgIAAHSulPKwzP/7lA+Zeb1bSrmm4TJ31Fo9MAAAAAAAAAAAwBEJowEAG0hoCuhZU9xsNBVG22kIo42F0QCAASrFoxo98KYDOnTqQcn+HfP3Xf24450FAAA4Dr+X5BELHPepSd7bsO8lSZ65roEAAAAAAAAAAGBbjfoeAABgaXXS9wQMSbWQnhWML8zfviOMBgBsK1810wHPa0Cfrnx48777Peb45gAAAAAAAAAAAAAAgC1jtRoAsIEsjGaTeL8O0qQhjDYSRgMAtlQpfU/AVvK8BXTJZwwAAAAAAAAAAAAAAPRht+8BAACWVid9TwBsszpJJnfN37cjjAYAbKtFw2gCagBsiNoSRmvbBwAAbKRa6zXHcI9OvxyrtT4vyfO6vAcAAAAAAAAAAByHUd8DAAAsz8JD1sn7iSVNLjbvG02F0UZNYbS99c4DAHASFF81AzA0bf84g3+4AQAAAAAAAAAAAAAAumK1GgCweaqFh2yQKrw2OOMLzft2psJou2cazj+/3nkAAE6E0vcAbCPPW0CX2j5jfP4AAAAAAAAAAAAAAEBnhNEAgM1j4SHQp0lLGG00FUYbnW44XxgNABgiYTS64Pkf6FHrP87gH24AAAAAAAAAAAAAAICuCKMBABvIwkPWqeuF9hbyD854wTDaTkMYbSyMBgAMUBFGA2BoWr6D9A83AAAAAAAAAAAAAABAZ4TRAIDNU4XRgB5NWsJoO8JoAMC2EkajD8JEQIda42e+nwQAAAAAAAAAAAAAgK4IowEAG8jCZ6BH47Yw2un5P9/rfGE0AGCAiq+aARialvhZazQNAAAAAAAAAAAAAAA4CqvVAIDNU1sWJcKyOl/IaqHs4ExawmijU/f8LIwGAGyVsubjIDn0eUqYCOhS22eM7ycBAAAAAAAAAAAAAKAzwmgAwAay8Bno0bgljLazQBhtIowGAAxQETwDYGja4me+nwQAAAAAAAAAAAAAgK4IowEAm6e2LUqEZVnIypImLWG00RVTPzeE0cbCaADAEAmj0QXvK6BHteU7I99PAgAAAAAAAAAAAABAZ4TRAIANJGTFBmlbRMtmGjeE0Ub3ScrUI9bOmYbz99Y/EwBA7wSs6MJhz1Oet4AutcXPfP4AAAAAAAAAAAAAAEBXhNEAgM1T2xYlAnRscn7+9tGpe7/eOT3/uHHD+QAAm6z4qhmAgWn7DtL3kwAAAAAAAAAAAAAA0Bmr1QCADVT7HoBB8X5iSeML87fvCKMBANus9D0AW8nzHNClts8Ynz8AAAAAAAAAAAAAANAVYTQAYPPUSd8TwBIslB2cSUMYbbRgGG1y0ecYADA8RRgNgIFpe3b3XA8AAAAAAAAAAAAAAJ0RRgMAAFjG+IhhtLZrAABsrAW/ahZQA2BjtMXuhfABAAAAAAAAAAAAAKArwmgAAGy3aiErS5o0RM12lgijTc6vbx4AgJNA8IwuHPa85nkO6FKdrLYPAAAAAAAAAAAAAAA4EmE0AADolIX6gzNuCKONZsJoo5Yw2lgYDQAYGmE0AAamNX7m+x4AAAAAAAAAAAAAAOiKMBoAAMAyJg1htJ2ZMNqOMBoAsE2E0dgA++eS87f2PQWwMVriZ63RNAAAAAAAAAAAAAAA4CiE0QAA2HIti1xhnnFTGG0mhLZzpuUae+ubBwDgJCi+aqYPCz7PjS8m1z0jecX9k1c+KPntJyV7N3U7GrD5WuNnvk8CAAAAAAAAAAAAAICuWK0GAABdqhbKDs6kIYw2OnXv17OhtGnj8+ubBwAABmtNz1PXf2/yvl9KJnfd/frW65Lf+cr1XBsYsJbPoNZoGgAAAAAAAAAAAAAAcBTCaAAAAMsYC6MBAMDJsEA4rdbkvb94+fbb3pLc8d71jwQMR2v8TAgfAAAAAAAAAAAAAAC6IowGAMCWs5CVJU0awmg7M2G00RXN1xBGAwC2Vul7ADbKGt4vkwvJXR+bv+/srxz9+sCAtXxn1BpNAwAAAAAAAAAAAAAAjkIYDQAAOiW8NjhNYbTRTBitlGTn9PxjhdEAAGABXT9PCfUBLVrjZ77vAQAAAAAAAAAAAACArgijAQAALGPcEEbbOXX5tlFDGG0ijAYADI3AFD2oC4SJ2o4p3rdAi7YwWms0DQAAAAAAAAAAAAAAOAphNAAAttsiC+mPdoOOr8+xG+/N374zJ4I2b1uSjIXRAADgeLQ9kwmjAW3aPj983wMAAAAAAAAAAAAAAF0RRgMAAFjG/h3zt+9eefk2YTQAAOjQImEi8SJgRXWy2j4AAAAAAAAAAAAAAOBIhNEAAACWsX9u/vbdqy7ftnNm/rHCaAAAsIA1RM1q2zXK0a8PDFjb54foIgAAAAAAAAAAAAAAdEUYDQCALdfxQtbWRfhspMYw2pWXb9s5Pf/Y8d765gEAAFq0PJMVYTSgRZ2stg8AAAAAAAAAAAAAADgSYTQAAIBlrCWMdn598wAAbBQhKtZpkRB12zHej0CL1viZED4AAAAAAAAAAAAAAHRFGA0AAGAZTWG0HWE0AGCLFYEpTqjWsJH3LdCmJX5WhdEAAAAAAAAAAAAAAKArwmgAAGy5rheyWig7OPt3zN++OyeMNmoIo02E0QAA4Hi0PJMJ+gFtWsOKbfsAAAAAAAAAAAAAAICjEEYDAABYxv65+dt3r7p8205DGG0sjAYAAIeqh4SmD9t/6DHCaECbls+PRT5/AAAAAAAAAAAAAACAlQijAQAALGp8Man78/ftXnn5NmE0AABYXJ0kt9+Q7N203ms2EkYDWrR+frTtAwAAAAAAAAAAAAAAjmK37wEAAKBXtXZ9g46vz7Ean2veJ4wGAABH86qH3RNFe9hXJ5MLh5ywyPOWZzJgVS2fH51/nwQAAAAAAAAAAAAAANtLGA0AAGBR+8uG0c7MP1YYDQAALncpipYkH3z1eq5ZJ837SlnPPYBhavv8aNsHAAAAAAAAAAAAAAAcyajvAQAAoF+17wHYJEuH0U7PP3a8t555AAA2jRAVx67tmc/7EWjTFj/zfRIAAAAAAAAAAAAAAHRFGA0AALpULZQdlMnF5n2jU5dvawyjnV/PPAAAsNUWed4SRgNW1PadTm2LpgEAAAAAAAAAAAAAAEchjAYAALCoyX7zvtF95mxrCKNNhNEAgKERmOKEaosXFe9boE1b/EwIHwAAAAAAAAAAAAAAuiKMBgDAdqsWsrKE2hZG2718205DGG0sjAYAAMej7ZlPGA1o0fadUVt0EQAAAAAAAAAAAAAAOBJhNAAA6JTw2qBMWsJoRRgNAACO1SKh67ZjijAa0KDWtH+n4/seAAAAAAAAAAAAAADoijAaAADAoqowGgAAbJZJyz5hNKDJIeGz2vbZAgAAAAAAAAAAAAAAHIUwGgAAW+6Qha5HvnzH1+d4tYbR5jxeCaMBAECHFnje8kwGrOLQzw6fLQAAAAAAAAAAAAAA0BVhNABgWO64se8JgCGbNITRym5SyuXbd840XEcYDQDYVnN+Z4JOTVr2eT8CTdo+O5LUQ/YDAAAAAAAAAAAAAAArE0YDAIbl+h/oewJgyGpDGG20O3/7zun528fCaADA0AhMcULV2rxvXtwYIGn/7Lj7gGMZAwAAAAAAAAAAAAAAtpEwGgAwLB/41b4nYON0vZDVQtlBmTSE0cqyYbS9BRZZAwAA7Rb5nbrtGGE0oMmkfXc9ZD8AAAAAAAAAAAAAALAyYTQAYLMICQF9qkuG0UYNYbQ6ab4WAACwPq3xImE0oMGh30H6jhIAAAAAAAAAAAAAALoijAYAbJb9O/qeANhmTTGzUUMYbachjJYk4/NHnwcAALbZQvH0lmOKMBrQpC2qmEOiiwAAAAAAAAAAAAAAwFEIowEAm+XiX/Y9AUOz0EL6I92g4+tzrCYNYbQijAYAACdS6zOfMBrQ4NDwme97AAAAAAAAAAAAAACgK8JoAMBmuUsYDehRbQijjYTRAADgZGqLGwmjAU0OCZ8dGk4DAAAAAAAAAAAAAABWJYwGAGyWi8JoQI8mDWG0IowGALAYISrW6f+zd+9hsp11nei/v+4dsjck3OWqBoQoIIrgOMhFBVHQUUEYhfF2BJTjMKMw4hzHyyCCjOMI4x1UznhBOSpyFRkRPdwEQYEBQUJQIEBUIhEIhiR772R3vfNHV8+uVLqqV92ruj+f5+mnV631rvf97dR6Vq9VWe+3DgguSpI2pk05HoERDgw+63D+AQAAAAAAAAAAAAAApiIYDQDYLILRmLsFT2QdNwmfzdMmDUY7MbqvnmA0AABYvHHhRoLRgFEO+DznwOA0AAAAAAAAAAAAAABgWoLRAIDNcp1gNGCFRgWjbY0KRjs+uq8dwWgAwCFSAqZYU8KqgWkcGHzm3AIAAAAAAAAAAAAAAIsiGA0A2CzXCkYDVqg3IhitRgSjbZ07uq+dk7PXAwAAR1mn0LNxbQT6ASMcFIx2YHAaAAAAAAAAAAAAAAAwLcFoAMBmOfPpVVfAodNlIv06989StRHBaFujgtGOjQ5N2zk1n5oAADaK62OWbFx4UQlGA0Y56O+Vv2cAAAAAAAAAAAAAALAogtEAgM0ybkIzwKL1RgSjjQo/S5Lt4/uvF4wGAAAz6hJMNK6NYDRghIM+g/QZJQAAAAAAAAAAAAAALIxgNAAAgK6aYDQAgNl0CbKCeRKMBkzh1OUHNPD3DAAAAAAAAAAAAAAAFkUwGgCwWZpJh8zZwo8px+yh0hsRjLYlGA0AoBP3dCxb643eVoLRgBHe/5zx28edWwAAAAAAAAAAAAAAgJkIRgMANoxJ9MAKtRHBaDUmGG1rRDBaTzAaAHCYCJhiFTp8RjA2jM9xC4zwgecd0MBnlAAAAAAAAAAAAAAAsCiC0QAAOOJMZGUCo4LRtsYEox07sf/6HcFoAMBR5PqbZeuN2SYYDZhSG3duAQAAAAAAAAAAAAAAZiEYDQDYMCbRs2GaY/ZQ6Y0IRqsxwWhbx/dfLxgNAAAWzz0ZsCjOLwAAAAAAAAAAAAAAsBCC0QCAzdJlwqFJicCitCmC0bZHBaOdnL0eAICN436NOep0/z+mTdXcSgGOIn/TAAAAAAAAAAAAAABgEQSjAQBwxC16EqtJsodKb0Qw2tY0wWinZq8HAAAYr/XGbBSMBszAlzMAAAAAAAAAAAAAAMBCCEYDADZMlwmHJiUCC9JGBKOVYDQAgE6EyDBXM35GUILRgFmMC14EAAAAAAAAAAAAAACmJRgNAACgq1HBaFuC0QAAuhGMxrKNO+YEowEzEPYJAAAAAAAAAAAAAAALIRgNANgwHSYcmpTIJBZ+vDgeD5XeiGC0GhOMtjUiGK0nGA0AABau9cZsFIwGzGLc+QUAAAAAAAAAAAAAAJiWYDQAYLMIPQNWqY0IRtsaE4y2PSIYbUcwGgBwiFTXgCn3dMxTl+PJMQcsiM8pAQAAAAAAAAAAAABgIQSjAQCHkEmJwIL0RgSj1bhgtBP7rxeMBgAAi9d64zYurQzgMBp3fgEAAAAAAAAAAAAAAKYlGA0A2DAmLTNvCz6mmmP2UGnTBKMd33+9YDQA4Chyfcw8dTqeHHPAgvibBgAAAAAAAAAAAAAACzFm9v7mqqoLkzw8yZ2TnE5ycZKXtNauWGlhAMAcmPQMrNCoYLQtwWgAALCWxgYX+fwAmEVv1QUAAAAAAAAAAAAAAMChtPbBaFV1pyRfObDqBa21a0e0rSTPSvLkJFtDm3+mqp7UWvvNBZQJAKyTsZOeAWbQGxGMVtMEo52cvR4AgI3jfo0la4KLgAXxGSQAAAAAAAAAAAAAACzE2gejJfkPSb6vv/y/Wmu/PqbtTyZ5ysDrvRkJleS8JL9WVdVa+435lwkALIUJh8zdoo8px+yh0rtu//W1PXqfkcFop2avBwBg47g+Zp66HE9j2viMAZiJ4EUAAAAAAAAAAAAAAFiErVUX0MHXZTfYLElGBppV1ecm+X+yO8tpMBBtb9/WX/7FqrrjYkoFABZvxknPALPond5//fa5o/cZFYzWE4wGABwmdXATWAmfEQALIlwRAABmVlW3rqrzV10HAAAAAAAAAACwXtY6GK2qbp3kLgOr/mhM86fk+v+eVyb510kekeSl2Z2Z15KcSPKD860UAAA4EkYFo22NCUbbGhGMtiMYDQA4TDqGwwiRYdlab9zGpZUBHEJjzy8AAMAoVXVBVf1WVX0qyceSfKqq/r6qnllVJ1ZdHwAAAAAAAAAAsHprHYyW5PMHlv+ptfaR/RpV1XZ2Q9D2ZjH9SWvt4a21l7XW/rC19k1JXpDdcLRK8uiqqkUWDgAsSpdJyyY2M4GFBzM4Hg+VnRHBaNtjgtG2BaMBAMBi+IwAWCXnFwAASJKq+s6qurT/c1FVjfwfZ1X1hUneluTbktw0Z5/nu0OSH07ytv6XqQIAAAAAAAAAAEfYugejXdD/3ZJcPKbdv0hyq+w+JJUkz9ynzY/m7AyF2yS5+zwKBACWbOEhVgBj9EYEo22NCD9Lku0RX2wvGA0AOEw636u5p2PJWm/MNscjMINx5xcAADhaviXJZya5Y5LXt9b2/R9qVXUsyQuT3Dq7z/m1oZ9Kco8kL1lCzQAAAAAAAAAAwBpb92C0Ww0sf2JMuy8bWL6stfbnww1aa3+X64er3XPG2gCAdWViM7Aoo8LMtkd+8X2yPSI0TTAaAABHzbzv1zv15zMCYArHb9ehkfMLAABU1VaSBw6setmY5v9Xks/L2SC0JHlPkr8aWvfAqnrMnEsFAAAAAAAAAAA2yLoHo50YWL56TLv793+3JH8ypt3fDizfdtqiAIBVMuGQeVvwMSWo73DZ2fcL7pOtKYLReqcdHwDAEeT6hyUbe83teARG2D5xcJvWW3wdAACw/u6R5Mb95euSvGFM2+/q/64k/5zkfq21e7XWvjjJfZJ8LGdv1p+4gFoBAAAAAAAAAIANse7BaGcGlsfNQLj/wPKbxrS7amD5vKkqAgBWrMukZRObgQXpjQhG254iGC1Jdk7NVg8AwNpwH0YXqzhOBBcB0/AZJAAAdHSX/u+W5P2ttev2a1RVt0vypf12LckzW2tv3dveWnt3kidlNzStkjywqm6xyMIBAAAAAAAAAID1te7BaFcOLH/mfg2q6u5JbjOw6i1j+hsMV9uZoS4AYK2ZlAgsyM6oYLQx4WfjtvUEowEAR0xzv3akzf3979Df2DEdj8AIrUOoYpc2AABw+N1xYPlDY9p9ec6Gnp1J8uv7tHlZkn/uL1eSL5pHgQAAAAAAAAAAwOZZ92C0S/q/K8m9qmq/RIFHDCxf0Vq7eEx/txxY/vSsxQEAK2ASPXO36GPKMXuo9EYEo22dO3qfrTHBaDuC0QCAo8b18dG2ivdfcBEwjS7nK3/TAAAgyXkDy1eObJU8sP+7JXlLa+1Tww1aaztJ3jmw6q6zlwcAAAAAAAAAAGyidQ9G+6vsPgzVkhxP8vjBjVV1LMl391+2JG88oL+7DSz//ZxqBACWqsOEQ+FpwCK0NjrIbHtMMNq2YDQA4AhwH8ZKzPgZgeMWGKV1CFXs0gYAAA6/czq2u9/A8uvHtPvHgeWbTlwNAAAAAAAAAABwKKx1MFpr7fIkb+6/rCT/raq+o6puXFV3SvJ7ST5nYJcXj+qrqm6X5PYDq94/32oBAGA/JtofGu1MRr6fW4LRAAA6EUR1xK3i/XfMAdPocu5wfgEAgCRXDSzfYr8GVXWTJF80sOrPx/S3M7A85n/AAQAAAAAAAAAAh9laB6P1/Vx2Q9Fakpsk+c0kn07ywSSPzNlZB5dlTDBakq8ZWL4qyd/Mu1AAYAk6TaI3KZEJCGagq53To7eNDUY7MaZPwWgAABwhq7j/ar1xG5dWBrBpOpwfxp5fAADgyPj4wPLdR7T5qiTb/eWW5C/H9HfzgeVrZqgLAAAAAAAAAADYYGsfjNZae0mSl+ZsOFoN/GRg/Q+01sYkFeRRe10meWtrEjAAYDP5Ew6sSG/M7cb28em2CUYDAA6Nrvdq7umYI+HpwKJ0Cj1zfgEAgCTv6f+uJBdU1T33afNv+r9bkve01q4c098dB5Y/MYf6AAAAAAAAAACADbT2wWh935rk13I2DG1PJTmd5Ptbay8ctXNVfVaSr83ZGQqvXkSRAMC6MCmRSSz4eJHHe3jsjAtGO3f0tq0bjd7WE4wGAMBRsoL7o7H3ZO7XgFE6nB86hacBAMCh957sBpjtXUT/TFWds7exqh6Y5JsGtr9qVEdVdSzJPQZWfWi+pQIAAAAAAAAAAJvi2KoL6KK1dm2SJ1TVs5M8PMkF/U3vS/LS1tpHD+jia3P22ymT5A/nXyUAsBwmLQMrMi7EbGtMMFpVsn082dln//3WAQAcau7pjrZVvP+Ci4AJtV5y6vIuDRdeCgAArLvW2k5V/W6S783uRfJDkry7qv4wyW2yG4q2ld0vQG1JfntMd1+SZPAbhy5aSNEAAAAAAAAAAMDa24hgtD2ttb9J8qwp9ntekufNvyIAYC01kxKBBdg5PXrb9phgtCTZGhWMdnK2mgAA1kbH+zD3a0fb3N//Dv2NG9PxCOznb36hW7smeBEAAPqemeQ7kty0//rzknxuf3kvEK0leUlr7b1j+vnG/u+W5AOttSsWUCsAAAAAAAAAALABtlZdAADARDpNWjaxmXXieDw0emOC0bYOCEbbPr7/+v3C0gAAgDkSXARM6JLf6NZOMBoAACRJWmuXJ/nXSU7lbBDa/9ncX/fBJE8c1UdVbSV59MC+r19ErQAAAAAAAAAAwGYQjAYAbBghU8CK7IwJRhsVfHbQdsFoAMBh0SnEOnFPd9TN+/3v0N/YY9PxCOzjU+/u2FAwGgAA7GmtvTbJvZK8MMk12Q1DqySfSPJLSb60tfaJMV08PMkF/X2S5I8WVy0AAAAAAAAAALDujq26gINU1SX9xZbky1prH52ynzsmeeNeX621u8yjPgBgHZnYDCxAb0ww2ta54/cVjAYAAFnN/brPCIAF6Z1ZdQUAALBWWmsfSPItSVJVt+6v+3jH3T+U5JEDr1893+oAAAAAAAAAAIBNsvbBaEnu1P/dMlu9x4b6AgA2kj/jzFFbwvG0jDFYjt51IzZUsrU9ft/tE/uvF4wGABw5ro+PtFXcH7XeuI1LKwM4hJpgNAAAGGWCQLS99u9K8q4FlQMAAAAAAAAAAGyYrVUXAAAwkS6TqAVRAYvQdvZfXweEoiXJ9vH91/cEowEAh4X7MFag0/2/YxNYkJ5gNAAAAAAAAAAAAAAAWATBaAAAAF2MDEbrcFs1KhhtRzAaAHDECLI+4lbx/o8Z0/EIDJvkvNAEowEAAAAAAAAAAAAAwCIcW3UBS3TOwPJ1K6sCAJhRl8mJJjbT1TKOFcfjoTEyGG374H23BKMBAOxyfXy0reD9b73ljwlsrt7p7m0FowEAQGdVdfMk5yep1tqlq64HAAAAAAAAAABYb0cpGO22A8ufXlkVAMCMTKIHVmSWYLTtUcFoJ6evBwBgrbhXYxVmDU933AJDJgkw7wlGAwCAUarqG5M8PMmXJblTkq3+ppZ9nlmsqjsl+ez+y6tba/9r4UUCAAAAAAAAAABr6ygFoz2s/7sl+ftVFgIALFgzsRlYgNbbf/1MwWgTTLgGADgU3K8daau4Xx91HQ+wn0nu05tgNAAAGFZVD0vyC0nuureq4653SfKn2f3w6NqqukNr7YoFlAgAAAAAAAAAAGyAtQhGq6rPPrhVkuSOVV2flUqSnJvk9kkemuQHBtb/1SSdAABrpNMkahPt6Wgpk/Idj4dG29l/vWA0AADoaM73R13u6ca2cb8GDJnkPr0nGA0AAAZV1Y8l+bHshqFVrn/j3TImJK219pqqujjJ3ZPcKMljkvzK4qoFAAAAAAAAAADW2VoEoyX5cA6egVRJ3jTDGIMPVr10hn4AgJUyaRlYEcFoAACjdQ0dXko4MetrFe+/Yw6YwCT36U0wGgAA7KmqJyX58f7LvZvx00nemuTKJF/foZsXDvTxdRGMBgAAAAAAAAAAR9bWqgsYUvv8HLS9y09y9oGrtyR55cL+BQDAGjDpmTUi+OHwmCkY7cT+6wWjAQDAYrXemG3u14AhPcFoAAAwqaq6MMmzs/s/6lt2A9F+MMmtWmsPSvJ9Hbt6xV6XSb6sqoafHQQAAAAAAAAAAI6IdQtGW5S9h6RekuQbWjPbCQA2lz/jzJPjiQnMFIx2fP/1k0y4BgA4FFyDH2lz/2i+S3+OOWACkwSY9wSjAQBA3zOSHMvuM3qnkjyktfbs1trJCft5d3//JDk/yYXzKxEAAAAAAAAAANgkx1ZdQN/zx2z7zv7vluSlSa7q2Ofet09+KsnFSd7QWvvI1BUCAOuhyyRqGajAIswSjLY1IhhtkgnXAABrzX0YXaziOBk3puMWGDLJfXoTjAYAAFV1bpKH5+xN9n9urb1lmr5aa72qujjJvfur7pbkb2evEgAAAAAAAAAA2DRrEYzWWnvcqG1V9Z05++DUD7TWLl1OVQAAMA8m2h8aswSjbQtGAwDY5fr4SJt7kHmX8PTenMcEDrVJ7tN7gtEAACDJA5Kc6C9fneS5M/b30ZwNRrvDjH0BAAAAAAAAAAAbamvVBXRUqy4AAFgXXSZRm2hPV44VJrCQYLST09cDALBWOl5bzz0YCw4y7phzPAJDJglGu+i/JL0RnxUAAMDRcaf+75bkra210zP2d+XA8vkz9gUAAAAAAAAAAGyoY6suoIPHDSx/5askPgAAIABJREFUfGVVAABrwqRlYEVGBaNtzRKMNsGEawAA2HgruKdvveWPCWyuSe7Tr/pg8tYnJF/664urBwAA1t9nDCz/4xz62xqxDAAAAAAAAAAAHCFrH4zWWnv+qmsAADaN8DTWiePx0OiNCEYrwWgAAN25Pj7a5vz+ty79jWnTaX/gSOmdnqz9Jb+Z3PtZybm3Wkg5AACwAQYvos+dQ3+DF9dXzKE/AAAAAAAAAABgA619MFpV/djAy59rrV05ZT83S/LkvdettWfMWhsAsAJdJi2b2ExXjhUm0RYQjNYTjAYsWWtJ1aqrAA4j19asK8cmMIlJg9HSkkuen9z9KQspBwAANsA/DSx/5hz6u9eIvgEAAAAAAAAAgCNk7YPRkvx4kr2ZS7+ZZKpgtCQ3H+pLMBoAbCQTmoEVmSkY7cT+63cEowFLcuZk8o7vT/7hFck5N03u/NjkHv9JSBqwAu7pjrSVhJT1xmxzPAJDpjlPnf74/OsAAIDNcUn/dyX5oqq6SWvt6mk6qqr7JPmMgVXvmLU4AAAAAAAAAABgM22tuoCO5jlL14xfADj0TGxmjaxk4j8LMVMw2vH91wtGA5blzd+afOBXk5OXJVf+TfKuH07e+1OrrgqAI2fe90cd+nNPBkxkXJjiCF0+FwAAgMPrrdn9otOW5Jwkj5+hr6cMLH+ktfaRWQoDAAAAAAAAAAA216YEowEA9JnQzDw5npjEiMnRXSZAb40IRms7Se/M9CUBdHHq48nf/8EN17/rR5IzVy+/HuCQ6nhtLaTqiFvF+z9uTMcjMGSav1OC0QAAOMJaaztJ/md2v6y0kjy9qj5r0n6q6pFJvjW7N+stye/Os04AAAAAAAAAAGCzHFt1AUtUA8tTfN37fFXViSR3S3JBkjskOT+735p5ZZJPJHlPkotaa3NJSaiqc5I8IMlnJ7l9kquSfDTJO1trH57HGANj3TnJF2X333VeksuSfCTJm1tr181zLADYn4nNwAK0nf3Xd5kAvT0iGC1Jdk4lW+dNVxNAFx/53Yy8PnrTY5IHvXKp5QBHnfs15qnD8dRW/r8DgI0iGA0AAKbwE0kek93n826e5PVV9fDW2kVddq6qxyb55exekFeSk0l+fjGlAgAAAAAAAAAAm+AoBaPdbGD5mlUUUFWPS/KVSe6b5C5Jtg7Y5aqq+v0kv9ha+6spx/yMJE/P7sNntxzR5s1Jfqa19pJpxhjo55uSPCXJ/UY0+WRVvTDJj7XWPj7LWAAcYc0keuZpGceTY/bQ6I0KRjvosj4HB6OdIxgNWKCdU6O3ffR/JmeuSY7deHn1AHB0reSefsyYPmMAhk0TprglGA0AgKOttfa+qvrFJE/O7o34nZO8o6pekOT3k3xyeJ+q+qwkD03y3Un+Zc5+6WlL8rTW2uXLqB0AAAAAAAAAAFhPHWbwHxpf1P/dkqwqlOsnknx7kgvT7b/9eUken+TtVfWzVTVRkF1VfW2S9yR5YkaEovXdP8mLq+oFVXWTScboj3NeVf1ukhdldCha+jU8Mcl7quphk44DALs6TFo2sRlYhDYqGK3DBOixwWgnp6sHoKuDAhw/+fbl1AEccl3vw9yvHW0reP+nCTkCjrApzlNdPhcAAIDD7weS/Gl2A85aknOSPDbJHyX5iwxcbFfV1Uk+nOR5ORuKtrf9Za21Zy+raAAAAAAAAAAAYD1NFLS1qarqwiQ/NLDqvauqZcg1ST6Y5NIkV2Y3LO2WSb4gye0G2m0n+Q9J7lRV39TaqESGs6rqQUlenuRGA6tbknckuSTJzZPcO8mtB7Z/W5KbVtU3ttZttlhVbSd5YZJ/NbTpn5K8M8k/J7lLf6y9b/a8bZI/qKqvaq29qcs4AACwcgsLRjs1XT0AndX4zQd/zAAAczLnYLROwejj2gjqA4ZM84ULgtEAACCttV5VPSLJc7MbiLZ3cb33AXUbWHdicNeBdr+e5N8utlIAAAAAAAAAAGATrEUwWlW9tmPT36uqSVIDzk1y+yQXDK1/zQR9zNPVSV6R5FVJ3pzkPaMCyKrqS5M8M8lDBlZ/Y5KnJHnWuEGq6jOTvDTXD0X78yRPaK1dPNDu3CTfk+TZ2f2WziT5hv64P9Lx3/RTuX4o2nX9Gp/XWrt2YKx7JPkfSe7XX3VukpdX1Re01i7rOBYAzGHSMwyYZrLr5IMsYQyWYpZgtK0xwWg9wWjAgtXW+O2C0YBlWso1OAxwzAET6fS9QdcnGA0AAJIkrbVTSR5fVa9K8tQk9xzVtP+7+j8fTPJjrbXfXXyVAAAAAAAAAADAJliLYLQkD8rBiRGV5L5T9D34rZNJ8qkkL5iin3m4Z2vtui4NW2t/UVUPTfL8JN8+sOlHq+oXWmunx+z+9CS3GHj95iRf1X/4bHCM00l+oaouTfKygU1Pqapfba19ZFyNVfU5SZ48tPqbW2t/sM+/571V9ZDshtLthaPdKsnT4ps+AZiIYDRgRWYJRjt2YvS2HcFowIIdFIzWO7OcOoDDTfgUXcz9OOnS35iQI8ctMGya84JgNAAAuJ7W2ouSvKiqHpzkq5M8MMlnZfdZsRsl+XiSj2X3mbZXJ3lVa77BAwAAAAAAAAAAOOuAmbGHwuA3TH46ybe21j6+kkI6hqINtO8l+fdJrh5YfbMkDx61T1VdmOQ7B1Zdm+Sxw6FoQ+O8PLsBbHvOzW5g2UGeluScgde/uV8o2sA4J5M8tl/Tnu/qB6wBAMB6myUYbevc0dsEowELV+M3tzGBMQBzJ4jqaFvB+y/8DJiIYDQAAJiX1trrWms/0lr78tbanVtrN22tHW+tfWZr7Ytba9/XWnulUDQAAAAAAAAAAGDYOgWj1YifLm1G/Vyb5PIkr89uiNfdWmuvXvC/Y65aa1cmedPQ6ruO2eVbkwzOwHhpa+39HYb6b0OvH11Vx0c1rqoTSb7pgD5uoLX2t0lePrDqWHZrBoCOOkxONOmZzpZwrDgeD4+ZgtGOJXVs/22C0YBFqwM+/jHnDJiLjte9ro9ZunHHnOMRGCYYDQAAAAAAAAAAAAAAVm0tgtFaa1ujfvaa9H/uNK7tPj8nWmu3b619ZWvtJ1prl63wnzmLTw69Pn9M20cOvf6NLgO01i5O8pcDq26S5KFjdnlYkhsPvH5La+19Xcbap6ZHddwPAEyiB1ZnlmC0JNkekTssGA1YtAOD0c4spw4AmHsQWZfw9N6cxwQOtWnOGYLRAAAAAAAAAAAAAABgrtYiGK2DWnUBK3bB0OuP7teoqm6X5F4Dq84k+fMJxnn90OuvHdP2aw7Yd5w3Zre2PfeuqttOsD8AHEB4GuvE8XhoLCoYrScYDVi0g4LRRpzfABbC9fGRtpKw83FjOh6BYVOcFwSjAQBwxFXVa/s/r6mq28zQz20H+5pnjQAAAAAAAAAAwGY5tuoCOviznJ2FcOQSA6rqc5Pcd2BVS/KGEc3vOfT63a21qycY7s1Drz9/TNvhsd7SdZDW2tVV9ddJ7j001se69gHAUWbSMvPkeGICiwpGO3NyunoAuqoD8uYFowFz4dqaLlZwnLTe8scENtc0AY6C0QAA4EE5e9M/4n+IdXK831fiwyYAAAAAAAAAADjS1j4YrbX2oFXXsCpVdfskL0oyOKPixa21D4/Y5R5Drz8w4ZAfPKC/QXefw1iDwWj3SPLaCfsA4Ejq8vyzZ6SBBZg1GG1rxDyQ3pHLfwaWbmv85t6Z5ZQBkMT9GnPVKcBoTJtpApCAQ26KMEXBaAAAkCQVH/wAAAAAAAAAAABzsvbBaEdJVR1Lcovsho59fZLvSXLTgSaXJPneMV3cdej1pROW8JGh17eqqlu01q4YqvOWSW4541jD7S+ccH8AgA3h+f9Do42YHN11AvT2iGC0HcFowILVAcFoo4IfAWDuVnB/JPwMmMQ05wzBaAAAAAAAAAAAAAAAMFeC0Vaoqn4uyZM7Nn9dku9orV0+ps3Nh16Pa3sDrbWrqupUksHEhpsluWKo6fA417TWrp5krH1qu9mE+wNwVHWZnGjSM105VpjEqOCgzsFoJ/ZfLxgNWLgav7mdWU4ZwOHW9draNfjRNvf3v0t/IwKOO+8PHC2C0QAAYIUGn2X0wTUAAAAAAAAAABxhgtHW3yuSPKe19icd2p439PrkFOOdzPWD0c5f4DiD9htnYlV1mySfMeFud5nH2AAsS5fJiSY2AwswczDa8f3XC0YDFq22xm/vXbucOgBgFffrwviASbRxYYojHHS9DQAAdHXrgeVJv6QTAAAAAAAAAAA4RDY2GK2qbpXk7klukeRmSSaaddBa+61F1LUAX5tku6pOtdb+7IC2w4Fl0yQsnMzuf9NRfc5znHF9TuvfJXnanPoCAJidSfiHh2A0YGPV+M2965ZTBkASQdYs37hjzvEIDJvmvHDA9TYAANDVl/d/tyQfXWUhAAAAAAAAAADAam1UMFpV3Tq7wVffluSuM3a3DsFoz0jycwOvTyS5VZIvSvLIJF+Z5JwkX5fk66rqOUme3NqoRIYbmGb2xjrvAwDp9CdEEBWdOVaYgGA0YFPVAVnyvWuXUwdwyHW9tnYNfqTN/X69S3+OOWACU52nnGcAAGDARBfIVXVOktsneWiSHx3Y9NfzLAoAAAAAAAAAANgsGxOMVlWPSvLrSc7P9F+93vr7rsUMhdbaJ5N8cp9Nb0ryS1X1wCQvSHJBf/2/z2542neN6PKqodcnpihreJ/hPpc5DgDckNAzYFUWFYzWE4wGLJhgNADWxprd0/uMAbgBwWgAALCfquryRZ6V5MNV0z7ad71nAl8xbScAAAAAAAAAAMDm24hgtKr6tiS/lf0D0QZnGwxvH9429VNXq9Bae1NVPTjJ25Lcqr/68VX1itbaH+yzi2C05LlJXjThPndJst9/TwA2lsmIrBPH46ExMhjtgMChPVsjgtF2BKMBiyYYDViGjte9gqiOuBW8/445YBKtt+oKAABgXXV97m6W5/P2vvT0fUlePEM/AAAAAAAAAADAhlv7YLSqunOS52X3oae9h5/eneRlSU4m+al+05bkcUlumuQOSe6f5AHZnf3bklye5JlJPr3E8mfWWvtQVT0jyc8PrP7B7B/k9c9Drz9jkrGq6rzcMLDsUx3GuXFV3aS1dvUEw92mwzgTa61dnt33urMZvqUUgJUwoZl5cjwxgZHBaNvd9t8eFYx2crp6ALo6KMBRMBoAm6pT6Nm4Nu4JgWFTnBcEMAIAcHTsPbu3KJXk7Uke01q7boHjAAAAAAAAAAAAa27tg9GS/MfshnXtzSp4epJntNZaVV2Qs8Foaa09f3DHqrprkp9O8o3ZDQn7niQPba1dtozC5+j3cv1gtC+tqpu31obDxN4/9PqCCccZbv/J1toVw41aa5+oqiuS3GJg9WcnuXiGsYZrB4ARZp30DDClhQWjnZquHoCuDgoEF4wGLJX7tSNtJeFBjjlgEtOcM5xnAAA4Ev4soy9+v6L/uyV5a5Ku//OrJTmd3S/UvDjJ61prb5ylSAAAAAAAAAAA4HBY62C0qtpK8u05+1DVi1prT++6f2vtA0keVVVPT/LUJPdI8odVdb9N+lbJ1trlQ0FkW0nunOSdQ02Hg8nuOuFQnzP0+r1j2l6c5P5DY00SjDY81iT7AgBsEJNjD42Zg9FO7L9eMBqwcFvjN+8IRgPmYCWBV2yeeR8nHfobe2w6boEhrTfFPs4lAAAcfq21B43aVlW9nL3Jfkxr7dKlFAUAAAAAAAAAABxaB8yMXbkvTHJ+kuq/fsY0nbTWnpbk5f1+7p3kSXOpbrmGg9zO3afNe4Zef2FV3XiCMR5wQH/jtt2v6yBVdZPsvrddxwKAs7pMNDQZka4cK0xi5mC04/uvF4wGLFrV+O09wWjAMrkGZ9kcc8AknDMAAGBKB3wQDQAAAAAAAAAA0N26B6Pds/+7Jbm0tfbecY2rxs70/eGB5e+atbBlqqrjSW49tPpjw+1aa5cleffAqmNJHjjBUA8aev2qMW3/+IB9x/my7Na2552ttRv8ewBgeiYwAgsgGA3YWILRgDUinPiIW8X7P2ZMxyMwbKrzgnMJAABH3tP7P89I8qkV1wIAAAAAAAAAABwCxw5uslK3HFi+aJ/twzMNjic5uV9HrbW/qaqLk9w9yedV1ee31vbrcx09JNcPsbsmyT+MaPuyJF848PpxSf7koAGq6m5J7juw6uoD9nt1dv9bn+i/vl9V3a219r6Dxkry2KHXL+uwDwD0mWjIhjHR/vBovf3XzxqM1hOMBqxY77pVVwAcCq576WDu90cd+nNPBkxkxL3/WM4zAAAcba21p6+6BgAAAAAAAAAA4HDZOrjJSp0/sHzFPtuvHtN+P387sHz3qSpasqraSvLUodV/3Fq7dsQu/1+SnYHXj6qqCzsM9Z+GXv9+a21kQkNr7ZokLz6gjxuoqs9N8siBVWeS/E6H+gCgr8tEQ5MR6cqxwgTazv7rZw1G2xGMBizaAX/veqM+YgBYBNfgR9sq3v9xYzoegSHThCkKYAQA4IjrP98GAAAAAAAAAAAwN+v+UNJg8Nk5+2z/9NDrOx7Q31UDy7ebqqIpVdX3VdXtJ9znnCS/luS+Q5ueM2qf1tr7kzx/YNWNkvxmVY1IYUiq6hFJHjuw6tokXb7J88eTXDfw+rFV9fAx4xxP8hv9mvb8Wmvtgx3GAgDYUCbHHhqjgtG2OgajbQlGA1bkoKAGwWgAbCphRMDcOa8AAMAULq2qp1XVQc/uAQAAAAAAAAAAdLLuwWgfH1i+6fDG1tq1Q23ueUB/g8Fk581Q1zS+K8kHq+oFVfUNVXX+qIZVdaKqviXJO3P9wLIk+e3W2msPGOtpSa4YeH3/JP9/Vd1taJxzq+r7krxoaP//3lr7yAFjpLV2SZKfH1r94qr63qoaDD9LVd09yWv6tez5RLoFsAHAWV0mPZsYTWeOFSYwKhitOgajbY8KRjs5XT0AnR30987fQ2AOOt+HOeccbat4/8eN6XgEhkz1uaJzCQAAR94dkvxYkg9V1Uur6qGrLggAAAAAAAAAANhsx1ZdwAH+dmD5whFtLkryFf3lhyT57f0aVdVNkvzLgVVX7NduwU4k+bb+T6uqDyT5cJJPJbk2yflJLkhyjyTn7LP/K5M84aBBWmt/X1WPSvLqJHsBZQ9I8t6q+l9JLklysyT3SfIZ+4zx1An+TT+U5POTfG3/9TlJfjHJU6vqHUk+neRz+mPVwH7XJnlka+2yCcYCgJhoyMZpvVVXwLwsLBjt1HT1AHR2wPWTv1UALMsqgsyFpwMTmeba2HkGAAD6jiV5RJJHVNWHkvxqkt9orX18/G4AAAAAAAAAAADXt7XqAg7w3iQ72Q3UunNV3XifNm/s/64k31xVF4zo64eSnDfw+qK5VTmdym7Y21cn+ebshqU9PMm9csNQtJNJfjTJo1prp7t03lp7fZJHJvmnoTH/RZJHJ3lYbhiK9rtJ/k1roxIf9h1np9/fC4c23SbJ12T33/bFuX4o2uVJHtFae2MAYCFmnIx45prk/b+a/MXjk/f9XHL6k/Mpi6Ppop9cdQXMy86IS/Gtc7vtLxgNWJUDA2EEOQBLJKTqiJv3+9+lvzFtHI/AsGnOC84lAABwbXafDdu7OK7sfpHmTyX5u6p6QVU9cFXFAQAAAAAAAAAAm2etg9Faa1cleUf/ZSV5yD7N9gK5WpITSf6kqr58b2NV3ayqnpndYLG9h68+meQvF1L0aE9I8swkb0nSKdwsyfuSPDXJ57bWfrK1dt0kA7bW/ijJPZP8SpIrxjT9iyTf1Fr71tba1ZOM0R/nqtbav8luCNpfjGn6ySS/nOSerbU/nnQcAEiy+ImGO6eSNzw8edu/TS75jeQd35+85sHJ6U8sdlxWYxkTV//hFYsfg+XojQpGu1G3/bdPjO7XJGpgoQ44x7TecsoADrmu1zOue1g2xxwwCecMAACYwh2S/GCSD+Tsl2e2/vK5Sb4lyRuq6q+r6t9V1fmrKRMAAAAAAAAAANgUx1ZdQAevTvIl/eWHJ/nDwY2ttYuq6g+SPCK7D1RdmOR1VXV1kiuT3CbJdr/53jdT/tKkIWOzaq29Lcnbkjy1qs5JcvfsfjPmHZOcl+ScJFf1a/5wkne21saFmXUd9/IkT6yqJyd5QJILktwuydVJ/qE/zodmHac/1ouTvLiq7pzkPtl96O0mSf4xyUeS/Hlr7dp5jAXAUdZlcuIMExg/+sfJx15z/XWfenfyoRckd3vy9P0Cm6834lJ2+9xu+28fH9P36fHbAWZxUPiiYDQAlmYFgUNj/w4KQAKGTHVt7FwCAMDR1lr7ZJJnJ3l2VT0kyROz+5zfsZy9YK4kn5/kF5P8t6r6nSS/2lp7xz5dAgAAAAAAAAAAR9wmBKO9MMl/zu7DUd9SVf+xtfbPQ22enOS+SW6bs982eV7/Z8/e+rcn+clFFz1OP5Tt3f2fZY15bZLXLWmsDyWZS9gaACzdu354//Xv+A+C0eCo2zm9//qtOQSj7ZwSjAYs0EFBDYIcgHnoei5xzjnSDgrrnLzDObUB2DPNOcN5BgAA9rTWXpPkNVV12yRPSPLdST57b3N2n9+7SX/9d1fV25P8cpLfa62dWkHJAAAAAAAAAADAGtpadQEHaa1dlOSLk3xJkq9IsrNPm0uTPCTJe7L78NT/2ZTrf+vkq5I8tB9MBsAm2zmd/NUPJ6+6d/LahyWXvmTVFbE0HSYazjLR+sr3Tb8vG8jEVSbQGxWMdqNu+28dEIwGsCqtt+oKAGBxxn5G4J4QGDbFeWHuoY8AALD5Wmsfa609M8mdkzw8yR/l7AX34PN8X5Lk15J8tKp+tqrutvRiAQAAAAAAAACAtXNs1QV00Vp7Z4c2F1fVfZI8KskjklyY5OZJrkjyriQvbK29dqGFArA8f/6Y5O//4Ozrf/zT5AG/l1zw6NXVxHJ0mmhoMiKwADsjgtG2z+22/7ZgNGBVDro2EowGLJHwmCNuzu+/zwiAeVtEaPA1H01O/WNy83slW9vz7x8AANZYa60leWWSV1bVZyX5niSPS3L7vSbZDUi7eZInJXlSVf1ZkucmeVlr7czyqwYAAAAAAAAAAFZta9UFVNUrq+oHquo+VVWz9NVa22mtvai19u2ttfu21j6vtfalrbXvEYoGcIhcfen1Q9GSJC15/3NXUg4AR0Tv2v3Xb92o2/6C0YBVOSg0ZhHhD8DRI/CMTlZxnIwZ03EL3MAU54W/fHzSu+6G63dOJ2/818nL75j88RcnL79D8om3z14iAABsqNba37XW/nOSz07y6CSvGWpS/Z8vT/J7Sf6uqp5ZVRcst1IAAAAAAAAAAGDVVh6MluRfJfnpJG9L8omqenlVPamqvmDFdQGwrv72l/Zff/kbllsHK9JlcqKJzXRkEjxdtV4y6gvpt87t1sfYYLSTk9cE0NlBf+/8PQSWyTnnSHMPBqy7ac9TF/3XG67766clf/fSs69PXZ68/mv2D1EDAIAjpP/lpy9urX11ks9N8t+TfCK7Hxy1nA1Iu22SH07ygap6aVU9cFU1AwAAAAAAAAAAy7UOwWh7KsnNk3xDkp9N8ldV9U9V9aKq+ndVdbfVlgfA2jj98VVXwEqZRA2swM7p0du25xGMdmqyegAmcsD1U+stpwyAJO7pmK8Ox9PYkCPHIzBsyvPC+597w3Uf+u0brjv9ieSyP51uDAAAOJxumuRmSQb/R1ob+EmS7SSPSPKGqnpVVd1luSUCAAAAAAAAAADLtk7BaIMPM+196+OtkjwqyS8muaiqLquq36mqJ1TVXVdUJwArZ9IqBxg76RlgCr1rR2/bulG3PrbGBKj1BKMBC3TQtZFgNGAu3IfRxSqOE8cmMIFpr41PfeyG605+dP+2l/z6dGMAAMAhUVUnqurxVfWXSd6e5LuS3HiwSZIzSU72lwefKXxYkndV1dctsWQAAAAAAAAAAGDJ1iEY7T8leVWST+dsIFqyf1DabZM8JsmvJPmbqrq0qp5fVY+tqguWWzYAKyP06mjz/jNXjic66p0evW1c4NmgqmT7+P7bdgSjAYt00N87fw+BJXJPd7TN+/3v1N+YNo5H4AaWcF7oXbf4MQAAYA1V1T2q6heSfDTJ/5vkX+Tss4J7zwdeluTHk1yQ5A5JvjfJRTkbkNayG6L2+1V1l2XWDwAAAAAAAAAALM/Kg9Faa89qrX19klsmuW/OBqVdlYOD0j4zybcn+bUkl1TVJVX1P6rq26rqDkv8ZwAASzPjpGeAaeyMCUbb7hiMliRbgtGAVTjg2qj1llMGAKzifl34GTCRGc4ZXc83vWunHwMAADZMVd2o/yzfG5P8dZJ/n+RmOftMYPrLr0/y6CQXtNae0Vr7x9bala2157bWvjDJ1yW5eGC/40m+f1n/DgAAAAAAAAAAYLmOrbqAPa21XpK39X+eVVVb2f1WyAcleXCSByQ5b3CXgeW9B57ulORx/Z9U1QeSvC7Ja5O8vrV2+eL+BQAsjwmtACxZb0ww2taNuvezfTy5bp/1gtGARToooEEwGjAXXe/V3dOzbOOOOccjMGSWa+OdU8mxEx3GODP9GAAAsCGq6sIk35PkO7P7hanJ7jN+e1+OWtn94tTfTvKc1trF4/prrb2qql6X5E1J7tPf/6sXUz0AAAAAAAAAALBqaxOMNqwflPbW/s9PV9V2doPSHpzdsLQHJLnJ4C4Dy3tBaRcmuWuSJyRJVV2c3aC017XWXrrI+gFYoIOCHTjkurz/jhG6cqzQUe/a0du2zu3ez/bx/dcLRgNWSjAaAMsy73swnxEAczbLZ88713QLRuvtl5gOAACbr/983yOT/NvsPuOXnH2Orw28vijJLyf5rdbaVV37b62dqqr/muRF/VWfNXPRAAAAAAAAAADAWlrbYLRhrbWdJH/Z//mpqjqW5EuyG5L24CRX2fZoAAAgAElEQVT3T3LjwV0GlvcesLpH/+eJ2aB/OwDDTGg90rpMThSeB8zbzunR27bnEIzWE4wGLNIB10aunYBlcs452lbx/o8d0/EIDJvhvHDmmuTcWx3cTjAaAACHTFVdkOT/TvL4JLfZW53dC+zWX95J8vIkz2mtvWGG4d47sDzB/6QDAAAAAAAAAAA2ycaGg7XWziR5S//nv/aD0v5ldkPSHpTkftk/KK1yNigNgI1k0ioAS9YbE4y2daPu/YwKRjtzcrJ6ACZy0PVzbylVAIecwDPWlmMTmECb4dr4zNXd2vWunX4MAABYTx/M9Z/JG3xO77Ikz0vyvNbaZXMY65qhMQAAAAAAAAAAgENoY4PRhvWD0t7c//kvVXVOkvsm+eYkT4hviASAQ6LL882egaYj4Q10NW7S8tYEtxpbI4LReqcmqwdgEgf9vZsl/AFgYq7Bj7Z5v/8z9ueeELiBGc4LO9ecXR53fmlnph8DAADW01Z2L6Zbzgak/VmS5yR5Wf+5vnmr+KAJAAAAAAAAAAAOrUMTjLanqm6R5CuSPDjJg5J8fs5+GyUAh4FJqwAs287p/dfXdrK13b2fYydG9C8YDVgkwWjAMnS9V5/wnv66TydXvi+5+Rcm2777YvMt6DOdqz+SnHvr5NhNljcmcEjNcM44MxiMtjO6Xe+66ccAAID1VUmuSvLbSZ7b2v9m787DLMnq80B/J6sa6G5WsQq1gG6QtSC0IckbaECDtdmSNVibLVndNjOjsWfRWLN4bGvzjD22Rx7b8iNrNF4k2mgxFthIxrIshA1oYRGLhNqgBbpo9oaGpmmglsy8x39UZtetrBtxI27cLW6+7/PU05kRceOcIg4nTkTl78v6n1bRSK31rlwOYgMAAAAAAAAAAHbY6IPRSimPTPIVuRKE9ozMDkKb3qYSCgBGq8NtXHgesGyThmC0vQf1O8/eQ2ZvF4wGrNS8tZG1E7Cl7vgbyW//9aQeJGeuT778Hyc3f8eme8UQy35ev+/tycs/J/n47yZ71yW3/LnkS3/06vDi1jbdA4EThsxTh9PBaC3hw4LRAADYPW9P8qNJ/nmt9f5NdwYAAAAAAAAAABi/0QWjlVIenquD0L4wV4eelVyuZjoZhPbWJK8++vOadfQVgFVRtHqqCT1jqYwnOmoqWu4bjHamRzDaJ84l73v55cLqz/j65BGf168tgGPz1k9toQ0Ay9b1me69P5+89fuufH94PnntdyaP+sLkkc9YTd8Yn3f82JWvJ/vJO/5xcv1nJM/4/qmDPPcBfQxYGx9MB6MdtjRxafE2AABgC9Van77pPgAAAAAAAAAAALtl64PRSikPS/LsXAlC+6Ike9OHZHYQ2ltyJQjtV2qt966jvwCsgeAG5lL0DCxZU0FzOdPvPF2D0T782uRVX5Psf/zy97/1vcmzX5Lc9Cf7tQeQZP7ayPoaWIYlP4e945/MbuPci5Iv/n+W2xZrtIbn9Tt/vEcwmvcHwAlDfinDYcdgtHqweBsAAAAAAAAAAAAAAHAKbF0wWinlxlwdhPbFSabTBsqMj02SvDlXB6F9fLU9BQA2Q9EysAHrDkZ78/dcCUVLLhdNv+G7ks/4hqTMeiQCGGBI+ANAbx3nnPe/fPb2t/+QYLRRW8M955N3nWjSfQ7oY8CccfCJqdO0BKNN9hdvAwAAAAAAAAAAAAAAToGNB6OVUm5I8qxcCUJ7ZuYHoe0neWOuBKH9Wq31EzOOA2AnKWg93bpcf2OErowVOlp1MNpkKhjt4keTj7zu2mMu3J185PXJY/5QvzYB5t7vJmvpBQBsJqSspU2hacBJdcDa+GN3TH3Tch7BaAAAnFKllEcn+eYkfzDJ45OcT/LeJL+c5N/XWi9tsHsAAAAAAAAAAMAW2XgwWpKPZX4Q2qUkb8jVQWjn19A3AGCMFDbTxfm7k3e/dNO9YCyWFYy21xCMdjD1eHPxnubP3/9OwWhAf/PWRkPCHwCOdX4O87zGmnlHAPQyYM5478uSZ/5wUkoyaXiPkCQTWQ8AAIxfKeUxSb4gyWOTXExyZ5I7ar32hXMppST5K0n+apLrZ5zuf0hyVynlL9Zaf3F1vQYAAAAAAAAAAMZiG4LRzuZylcF0INqFJK/LlSC019VaL2ygbwBspZbitFovF56xuxQ0swznfjJ53a2CYOhuWcFoZxqC0SZTjzttBdJnHtyvPYAkc8Md3A+BdfJMd8pt4vq3tWk8AicNmBc+9Z7kvjuSRz6j+T1CktSDxdsAAIANK6V8UZIfSvKcJHsndn+olPIPkvzdWi8vio9C0W5P8u25+ucDjxffx9uekuTflFJuq7X+1Gp6DwAAAAAAAAAAjMU2BKNNq0l+OcnfSfKaWlUGADCDIupTrsv1N0Zocf7u5LXfGeOEXppCg8rJeo85zlw/e/vhdDDaxebP7z2oX3sASYf1s3siAOvingNsuaGhwR985fxgtMn+sDYAAGBDSinfluSfJzmTq0POjj0+yf+d5CtKKV9fa50k+e4k35HLLwWmw9COPz/9suBMkh8vpbyl1vq2FfwVAAAAAAAAAACAkehZxb9Sxz/k9Lwkr0hyXynll0sp31tKeXYp5boN9g2ArdJWRKvAFpjjzp+IuYLemgqay5l+59lryKaeTGVCH15q+bxgNGARc+57Q8MfAJJ0X2Nbi7Nu3iMBPQz9pRzn33f0Rcsauy00DQAAtlQp5cuSvCiXfxFrydVBZ5n6viT5miT/SynlYUl+MFcHon0gycuT/HSSX0xyb64OWbsuyQ+v6u8BAAAAAAAAAACMQ0NV/lq9Pcnn5NrfInl9kuce/UmSC6WU1yV5dZJXJXldrbUlMQCA3dVSnFbr7N9LzA7pUpyosJkWd/74pnvAGC0rGK00ZVNPFUy3jdEzD+7XHkASwWgAbI2hgUNjaRMYsYFzxnHwufAzAAB2z/+X5EyuDjm7N8k7jr5+apJH5Uo42l9Kcl+Shx9t+0iSF9Ra/830SUspe0lekOQfJHnI0We/spTy1FrrO1f8dwIAAAAAAAAAALbUxoPRaq1PL6U8JslzcjkE7TlJPvdo93S0zfVH+56T5AeSXCylvD5XgtJeW2u9uI4+A7BhrQWtil133soLmo9/uTU7a7K/6R4wRksLRms4/jiUqNbknf+0+fN7gtGABcxdP1n7AOtkzjndNnH95wTsA1xlaDDa0XsnwWgAAOyQUsofTPIluRJ69uEk35Xk52q9/HBdSilJviHJjyV5XJLHJ/meo1PsJ3lerfWtJ89da50k+SellLuTvCxXFuXfnORvr+rvNFallOtz+WcrPyfJY5M8NMknknw0yR1JfrvWerC5HgIAAAAAAAAAwHJsPBgtSWqt9yR5ydGflFIelyshaM/J5R/kSa4OSntIkq84+vN9SS6VUt6QyyFpr07y67XWCyvvPABbRkErGVbYXPYULu46PwfOIpYVjJa99vPf+5vtH+/dHkAyd418HM4IMIjncbrYsmA0gJOGro2P3ztNvF8EAGCn/Kmj/5ZcDjn7qlrrb00fcBSQ9nOllHNJfiOXfy7xD+Tyg/lPzgpFO/H5ny+l/Mdc/sWqNcmXLvev0F0p5ZYkX3bUhy/L5VC4h00dclet9Slr7M+XJPnGJF+Z5MuTXNdy+CdLKS9O8sPz/jcHAAAAAAAAAIBtthXBaCfVWj+U5F8e/Ukp5fG5EpL23Fz+oank6qC0Byd51tGf702yX0r5jVwOSntVLgelnV955wFYg5aC1iGBWIzEqq9xmX8I4zbZ33QPGKPGYLSGoLMmTccfF15fuHteR/q1B9CJYDRgjTy3s26tY854BE4aOC88EMhvjQ0AwE75kqP/1iT/8mQo2rRa61tLKf8iyZ+d2vzSju28NJd/NjBJnt67lwOUUp6T5K/kchjap62z7SallIck+U9JbunxsRuT/Pkkt5ZS/m6S76u1+gdyAAAAAAAAAABGZyuD0U6qtd6d5MVHf1JKeUKuhKQ9J8lnHR06nWTyoCR/5OjPX83loLQ3Jnl1klfVWl+xjr4DsG4KWndepyL6AeOg7BlGu04wGouoDQXN5Uy/8zQdfxy8dvbGOf0wQQGLmDN3NM1xAH10XqdYz5xqG1nPGnNAD0PnqeP3Tk0B6w8cd5DsjeKfaQEAILnyS0yT5OUdjv+FXB2M9taO7RwHrpUkj+74mWX5oiRfteY25zmb2aFoNcnvJnl3knuSPDTJ55849kySv5zks0op31rrAynOAAAAAAAAAAAwCqP8ifta6weT/IujPymlfHquhKQ9N8lTjw49GZT2h4/+/OWM9O8OQKKglfmGjJEy/xDGzc98s4imgubewWh7DTuOQonOXD+vI/3aA0g6hDuYWwBYl20LRnMPBE4aGBo8OXrvNC8Y7fBCsvfQYW0BAMD6PGLq69/tcPzJYz7SsZ17pr5+eMfPrNrFJO/NlZ9H3JTDJL+U5PYkr6y13nPygFLKM5P8vSRfMbX5+Ul+MMn3rqGPAAAAAAAAAACwNE1V+aNSa/1ArfWna63/ba31s5LclMu/dfLHk9x5fNjRf0skngCMW2uwg4LW3bfia9wYWsTOmOyvv825gTRsvaUFozUcX48Kr/fm5TcbS8Ai5swddWD4A0Av1jOn2iaejTyPAX0MnTNqx2C0ycVh7QAAwHpNp/re1+H4j09/U2u90LGd6eOu6/iZZdpP8ptJ/mmS70ryzCQPS/Jfb6Avxy4m+UdJnlJr/bpa64tnhaIlSa31TUm+MsnPnNj1v5VSnrzifgIAAAAAAAAAwFLNq7ofpVrr+0spb0vyuCSPT/LEJA/ebK8AWJ6W4jTFrqdAh2s8aBy05KfWmhT5qqO3iWC01MjmHbmlBaM1hC8en39eOJH7HLAQwWjAOlinMELW18A1Bs4Lx++d5q2xD7vmQgAAwFaY/ofOOSnAnY/ZNrcn+bFZIW5lcz8jcCHJ02qt7+36gVrrYSnlBUmeleQzjzY/KMm3JPmh5XcRAAAAAAAAAABWY2eC0UopX5jkOUmem+TZSR650Q4BsDqtRasKWhmo9YeahVvthHqw6R4wRo3BaA1BZ42agtEmV/+3uSM92wPI/NAXwWjAOgmiOuU2cf2NOaCHoWvj4/dOTe8RjglGAwCArVJrvXfTfTip1nqQpHMo2tTnzpdSfiLJ909tfm4EowEAAAAAAAAAMCKjDUYrpTwjV4LQviLJo6Z3T31dG7YDsJMUu+68TkX0Q8ZBS8hRPVwgBAmSvPOfJU/7bzbdC4ZoKowuZ/qdp+n444JpwWjASsybO8wtAKzLtgWjuQcCJw2cFyaC0QAAgK3wlhPfP3EjvQAAAAAAAAAAgAWNJhitlPL0XB2E9ujp3VNf11ypWihT+96b5D9O/QFgtFqK0zqFZjFuK77GpSVHdW5gETT43X8gGG3smgqaewejNYQrPjC/uI8BqzBnbrHGAZai6zrGeoc1864I6GXgnFH3j/47JxhtcnFYOwAAAO0OTnz/oI30AgAAAAAAAAAAFrS1wWillM/NlSC0/yLJY6Z3T33dFIT2gSSvylEQWq31nSvsLgBr1VacptiVZNg4aAgtSuYXNEKT+96WHF5Izjxk0z1hUUsLRms6/iiUaF44kVAHYCUEowGwJhtZz3qPBPQwdJ6aHGUPzHu+P/jUsHYAAADaPe3E9x/YSC8AAAAAAAAAAGBBWxOMVkr57FwdhPa46d1TXzcFoX04Vweh/e4KuwsAbMyKi5ZLad4nGI0hDi8KRhuzpQWjNYQvPnD+eeFEghuABcwLdxC6CKyVOYd1M+aAPgaGBtfjYLQ57xHf+r3J8141rC0AAFiv4wfsP1RKecqcY58w/U0p5dm5+uf/On2OQb7pxPdv2EgvAAAAAAAAAABgQRsPRiul/FQuB6JN/2BTlyC0jyZ5da4Eof2n1fYUgK3RGtyg2HXndQnuGBLu0RRalCR1YGEkp9vk4qZ7wBDLCkZLUzDa5Or/NnekZ3sAyfy5wxoHWIKuz2HCGE+5DVz/tjFnPAInDZ0XJh2D0T706mHtAADAZpQkP7PAZ17V4/iabiFqNCilfFmSP3pi87/eRF8AAAAAAAAAAGBRGw9GS/Knc/UPNDUFoX0syWtyJQjtrevsJADbREEr8wwZBy0/Yz2voBHaHApGG7WmwLK2MMVZ9hqC1I7nl3nBaO5zwELmzB3CXwFYm02sZ62hgT4Gzhl1/+i/1tgAAOykPqFl04vrPkFnHuQHKKVcl+T/P7H5V2qtb1hyO49L8tieH3vqMvsAAAAAAAAAAMBu24ZgtGPHPzh1/INQ9yf5lRwFoSV5S61SAABI2n8O1q1i9636GrcFoyloZIDD85vuAUM0BSOWhqCzRg1Bag/ML/PmGfc5YAHzXqdY4wBL0XWdYj3DunmPBPQwdG08OTg6T4dfsFBrUvrkQwAAwFZY5GHaA/j6/FCSL576fj/J/7SCdv5ikh9YwXkBAAAAAAAAACDJ9gSjlSSfTPJruRKE9sZaVeYCMENrsIOfpyUZNA5KQ2hR0q2gEZocXth0DxhiWcFoTccfP/rMzYJ2nwMWYW4BYEv43SfA1hs4T9U+wWiHSdmWf6oFAIBW744XyVuvlPLnk3z3ic0/WGv9zU30BwAAAAAAAAAAhtiGn7b/vlwOQntDrcfVAgCwIAW2p8Cqr3Fp2SezlQEEo43b0oLRGsIXHzj/nHnGfQ5YxLy5Qy49ALus7T5ofQ2cNHRemOwfnadDMNpkP9nbhn+qBQCAdrXWp2y6D7QrpXxNkh87sfnlSf7WBroDAAAAAAAAAACDbfyn7Wutf3PTfQBgbBStnmpdihOHFDA2hRYl3QoaoclEMNqorToY7TgQbW44kXsgsIh5c4e5BYB12cQ9x30O6GNgaPDx74DqEj5c95NcP6w9AADg1Cul/NEkL01y3dTmX03yrbWuLBX+R5P8bM/PPDXJz62gLwAAAAAAAAAA7KCNB6MBwHIpdmWo0rxLMBpDHApGG7Wmgua2MMWZxzcEqR3PL/MKp1dWuwDsto7BsqVlHQSwTOYc1ql1DW19DZww9Ll7chyM1uE94uGlq2MLAAAAeiqlPDPJv01yw9TmNyT547XWT62q3Vrrh5J8qM9niveBAAAAAAAAAAD00LOKHwC2QUtxmsCYU6DLNR4wDtpCjuYFFkEbwWjj1lTQ3BR01qhhjjmeX+bOM+5zwIpY5wBrZU1zem3i2htvQB8D54y6f/TfDsFox8cCAAAsoJTyBUl+Kckjpja/JclX11o/vpleAQAAAAAAAADAcghGA2B8WkMbFLvuvlVf45bfUtyloBGaCEYbt2UFozWFLx6f/+D+fucD6KJTeLBgNGAAIeV0tZGx0tamsQucNHBemBwcnabDe8SJYDQAAGAxpZTPS/LLST5tavMdSb6q1vqxzfQKAAAAAAAAAACWRzAaADtGQSsZVmhd2oLRBIYwgGC0cVtaMFrD8cfzy/kPzutIv/YAknSaO6xzgHUSpMY6GW9AH0PXxfU4GK3DeQSjAQAACyilfHaSVyZ57NTm30nyvFrrPZvpFQAAAAAAAAAALJdgNABGqKWgVbHr7ut0jYeMg5blUVMwEnQxEYw2aksLRmuaY+rl+e3C3XP64T4HLGLV6ycA6GoT9xvvkYA+Bs4Lx2FnXd4jCkYDAAB6KqU8Lcl/SPKEqc2/n+Qra61z/qERAAAAAAAAAADGQzAaAOPTWrSqoHX3rfgal9LS9GS1bbPbDgWjjVpjMFrPR6q2ILU6SS58cF5H+rUHkHQLfbHOAQbpu0axpmGdjDegh6GBifXg6L8dgtGqYDQAAKC7UsrNuRyK9sSpzXfmcijaBzbTKwAAAAAAAAAAWA3BaADADhpSwNiyPOpS0AhNBKONW1NgUFvQ2czj2x7BJsmFeb/IXagDsAjBaABsi21bz25bf4DNG7gunvQIRptcGtYWAABwapRSnpTLoWifObX5rlwORXvvZnoFAAAAAAAAAACrIxgNgBFqK1pV0Lr7VnyNS2lpWjAaAwhGG7em///3DUabF754/oNz+uE+Byyiy9whGA1YJ2saVmx63WwNDfQxdM6oB0fn6LC+nuwPawsAADgVSilPTPLKJE+Z2vy+XA5Fu2sjnQIAAAAAAAAAgBUTjAbACLUUpyl23X1drvGQcVDalkcCQ0Zvk3OEYLRxW1YwWtvxdZJcuHteR/q1B5Csfv0E0HcOMeecXhu59gL2gT6WMC/Uw26/YEEwGgAAnDqllHriz3PmHP+4XA5Fe9rU5g8keW6t9c4VdhUAAAAAAAAAADbq7KY7AAC9tRbRKmhlqNK8a9KhoJHtVg8217ZgtHFbWjBaS/jiR9+cnH/fvI70aw+gMwGwAKzDutazNVee762hgR7qEtbF9aDbe0TBaAAAsFVKKTdl9s9TPuHE92dLKU9pOM0naq33LKk/j0zyiiSfM7X5k0lekGS/pQ8z1VrftYx+AQAAAAAAAADAOghGA2CEBKOdbl2u8arGgfE1ehstODV+Rm1pwWgtx//yszv0wzgCFtFh7lhGAARwivVdo1jTsGK1TuWitYw362vgGkuYFyYHze8RrjpOMBoAAGyZX03y5A7HfUaScw37bk9y25L680VJvuDEthuT/MKC52v5LXEAAAAAAAAAALBd9jbdAQBYKgWtp8Amr7HxNXqC0VhUU2BQ6flI1ff4azsy8PPA6dQlGM38AsA6bOJ+4x4H9LCMdXHdT9IheLgKRgMAAAAAAAAAAAAAgFkEowEwQm3FaYpdSVY2DgSGjN/k0ubaNn7GrR7O3l7O9DvP4GA0gAV0ugd1CG4AWBprY1atNnzddhxAspR5YXLQ/B7hquM2+J4KAAAAAAAAAAAAAAC22NlNdwAAoJcuwR4rC6BSMD16k/1N94CxWlowWs/jr+3IwM8Dp1OX9ZNgNGAIaxQ6Wltg9FQ7QqqBPpaxLq5dg9G8pwIAgG1Sa33KGtooPY59VZLOxwMAAAAAAAAAwC7Z23QHAKC31oJWxa67b5PX2PgavbrJglPjZ9SWFYw29BFMqAOwEMFowJaxpmHVrhpj3iMBfSxhXpjsJ598d7fjAAAAAAAAAAAAAACAawhGA2CEWorTFFeTZGWFzcbX+B1e2nQPGKtlBaP1DlK7piMDPw+cSp3WMOYXANZhE/cb9zigjyXMGfUg+dhvzT9OMBoAAAAAAAAAAAAAAMwkGA2A8WkNdlDsuvNWHk5mfO20usmCU+Nn1Opk9vbS85Gq7/HXdmTg54HTqcPc0TTPAXTR+znNmubUWlvgeMd2BKADJy1jXTzZTz722x3aEowGAAAAAAAAAAAAAACzCEYDYIQEV51uXa7xqsaB8TV6kw0WnCq4H7d6OHt7OdPvPEOD0YwjYBGd5g7BaMA6WdOwalNjzBoa6GUJc8bh+WT/4/OP2+R7KgAAAAAAAAAAAAAA2GKC0QDYLYpdWaUqMGT0Jpc23QPGamnBaD2Pv7YjAz8P0MA6GoC12MT9RsA+0MMy1sWHF7od5z0VAAAAAAAAAAAAAADMJBgNgBFStHq6dbj+Kwv2MPZGb7K/wcaNn1FbWjDawEcwwUXAQrrMHQJggSF6rlGsaVi1q8aY8Qb0sYR1cedgtE2+pwIAAAAAAAAAAAAAgO0lGA2A8WktoFbsykBt40vx/vgJRmNRSwtG63n8tR0Z+HngdOoSLCsYDYB1WNd6dqod75GAPpbx/u/wYrfjBKMBAAAAAAAAAAAAAMBMgtEA2C2Cq3Zfp2s8ZBwomN5pk0ub7gFj1RiM1veRaugjmHkIWECX9ZNgNGCtrGlYJ+MN6GMJc8bkQsfjBKMBAAAAAAAAAAAAAMAsgtEAGCHBVafbioPRWoNDjK/R22TBqeDGcWsKDCpn+p2nd5AawDKsOlgWwBxCR2t7Lppqp61Nz2nANZYwLxx2DEa7eM/wtgAAAAAAAAAAAAAAYAepygdghARXsUoKpnda3WAwGuNWD2ZvL2f7nadvkNo1/TAPAYvoMHc0BUACrIQ1zem1pmt/1brZeAN6WMa6+PBit+Pe85Jk0vC+AQAAAAAAAAAAAAAATjHBaACMT1sojMCYU6BLsMeAcdBa/Gh8jd7k0gYbN35GrR7O3t436KwMfQQzjoAFdFkbCUYDhuj7DObZnbUSsA/00TAvPPHrup9i0jEY7cLdyQd+qft5AQAAAAAAAAAAAADglBCMBsAIKWg91VZeQC94b6dN9jfYuPEzavVg9vZytt95+gapXduRgZ8HTqcuc4dgNADWYV3rWetmYEFN7/9u+fPdz3F4ofux527vfiwAAAAAAAAAAAAAAJwSgtEAgB00pABa8N5O22gwGqNWD2dv3+sbjDbwEUxAI7Aq5hdgrcw5rNrUGGu9xxmLwAm1ITC4lOQzn9/tHJOL3dt778uSS/d2Px4AAAAAAAAAAAAAAE4BwWgAjJCC1tNtxddYwfRum1zaXNsCZ8ZtcjB7eznT80RDH8GMI2ARXeaOhgAIgE6sUehoI89FxifQR9OcUbqf4rBHMNrkUnLXi7sfDwAAAAAAAAAAAAAAp4BgNAB2i+ChU6DLNR4yDlo+a3yN32R/g40bP6NWm4LRzvY7T+8gtWs6MvDzwKnUZQ1TBaMB62RNw4pdde/znA/00RaM1jEc7fBCvybvfGG/4wEAAAAAAAAAAAAAYMcJRgNgfFqLVhW0MpTxtdM2GozGqNXD2dv3+gajDXwEE9wALEQwGgDbYl3r2al2rKGBPprWxeVMOgejTXoGo33k9cl9v9PvMwAAAAAAAAAAAAAAsMMEowEwQm2hDYpdd16XguYhRc+C93bb5NIGGzd+Rm1yMHt7OdPvPEOD0YwjYCFd5g7zCzBEzzlEUNUptolr7zkf6KExGG0vKR2D0Q4v9m/33O39PwMAAAAAAAAAAAAAADtKMBoAu0Vx9Smw6mCPluA944AeVzUAACAASURBVGv86v6me8BY1cPZ28vZfucRjAZswqqDZQF6M+ewarXha4B5WoLROp+iJRjtEU+fvf3ci5JJw7sHAAAAAAAAAAAAAAA4ZQSjATA+QhtYpdbxZeyN3mSDwWjmrvGqNakHs/eVM+vvC0Bvqw6WBYCO1rWenW7Hcz7QR236pQl7SUq3cxxeaN731BfM3n7+fcndr+x2fgAAAAAAAAAAAAAA2HGC0QAYIQWtp1uHazyo0Lrls42FkYzG5NIGGzc/jVbb//f3zq6vHwALE4wGrFjfZzBhr6yV8Qb0UA9nby99gtEuNu978p9O9h48e9+dt3c7PwAAAAAAAAAAAAAA7DjBaADsGMWuO2/lBfSC93baZH/TPWCMmoqik6SsOxjNPAQsoMv6SQAsAGuxrvVsx3aE9AEnNa2Ly15SOgajTVqC0R786OSmb5y9773/Krl0X7c2AAAAAAAAAAAAAABghwlGA2CEWopWFbSSZFChdesYMr5Gb6PBaMbPaNWD5n3lzPr6kcQ4AlbH/AKskzmHFbvq2d54AzqqNY1zRp/n/8MLzfvKmeSWW5s/9+6f7d4OAAAAAAAAAAAAAADsKMFoAIyP4KpTbtXXWPDeTptc2lzbxs941cPmfXtn19ePxDgCFtRh7jC/AIOYQ+hqA2PFeySgs5Y5oewlKd1OM7nYdJLL53nCH0uu//TZh5x7Ybc2AAAAAAAAAAAAAABghwlGA2CEFLSebl2u8ZBxYHzttMn+pnvAGNWD5n3lTP/zPfrLF++LeQhYyKrXTwB9mXNOrbUFcdaGrwFa1EnLzh7BaIcXZm8/foewdzZ5ynfMPubDv5bc/45u7QAAAAAAAAAAAAAAwI4SjAbACLUUtK6twJad1VoAaXyNXt1kMJrxM1qTtmC0s/3P9/S/tnhfjCNgEV3WyK1rIIB5rFHYNh2D0bxHAqa1rYnLXlKWFIyWJDff2vz5c/+8WzsAAAAAAAAAAAAAALCjBKMBAOPSKdhjQGFz22cVTI/f4aVN94AxqofN+xYJRnvi1w7oi3kIWESXucP8AqyRNc0ptoFrb7wBnc0JRut8mosN55gKRnvk05NP+9LZx915u+BiAAAAAAAAAAAAAABONcFoAIxPa0GrYtfdt+pgD+Nrp9X9DbZt/IxWPWjeN13U3NUiYWoPMI6ABXS6B5lfgHUy57BiV937POcDHbWGke0lKd3Oc9ghGC1Jbrlt9nGfenfyoVd3awsAAAAAAAAAAAAAAHaQYDQAdovgIQZrGUPG1/hNNhiMpuB+vOph8769BULOSsdC6pl9MY6ARXSYO8wvwBDmEDpb11jpGowGMKUtGK30CUa70HCOE8FoT/62ZO+62cfe+cJubQEAAAAAAAAAAAAAwA4SjAbACLUVtCp23X1drvGAcdBa0G98jd7k0qZ7wBhNDpr3nSxqXjnzELCILnNHSwgEwNJZ05xamwjR85wPdDYvGK3raS7O3r534h3Cgx+dfMY3zD72PS9N9j/RvU0AAAAAAAAAAAAAANghgtEAGJ/aFtqgoJWhFEzvtMn+Bhs3fkartgWjnV1fP05qC2wDmNYlhObgk6vvBwCsjecvYAFt753LXlJKt/McNgSjzXqHcPOts489+GTynpd0a49xuvCh5EO/mnzsjuUEhx58MrnnDcnBp4afCwAAAAAAAAAAAABgwwSjATAuh5eST7yzef8yCojYbl2u8aBx0PJZ42v8NhqMxmjVw+Z9e+sORqvJB1+Z/LtnJi9+SPILX5h86FfW3AdgJ73mG5MPvGLTvQBGq+ezkmerU2xN1/6qMeY5H+io9Rdy7CXpGIx2cP/s7eXMtdue+DXJQx43+/g7b+/WHuPzOz+c/NyTk19+dvILz0j+/Zcn97f8u0eX873kUckv/cHkJZ+W/P6PLa+vAAAAAAAAAAAAAAAbIBgNgHF56/fOOUBB6+5b8TVuLYA0vkZvcmlzbSu4H6/JQfO+WUXNq3Tf25JXf31y75svB7Z97K3Jf3he8vHfX28/gJHpeA96zZ9M9htCHABgrDyLAV21vRcse0npGIzWeI4Z7xD2rkue/O2zj//Qq5JPnBvWJtvnI7+RvPkvJYcXrmz76Bsvh1Uvcs+6+z8mb/6fr/xCiMnF5Df+QvLh1y6nvwAAAAAAAAAAAAAAGyAYDYBxufOFm+4BozCk6Lnts4qpR++4QHAjjJ/RqofN+8rZ9fUjSd7zkuTw/NXbJpeSd71ovf0ARqbjPejwfPLen19tVwCSWBufZuu69rXh67bjAOYEow3VFK5+y23NnznneX/nvP/fZeb95747kvsXCL5/5z+bvf3dP9v/XAAAAAAAAAAAAAAAW0IwGgDjcvHDcw5Q0Lrz6oqvcdv5V902q1c3GYzGaNWD5n1NRc2rcvEjs7ff8X+ttx/AuPRZw5x74cq6Aeyyvs9Knq1Yta7BaABT2oLRs5ekDDt/0zuER31B8qgvmr3v3O3eSe6aC3c37zv//v7ne9dPzd7+u3+//7kAAAAAAAAAAAAAALaEYDQAdosisVOgyzUeMg7aPjsZcF62wuTSBhs3P43WpCUYbe/sYue87pGLfQ5gIT3uQesOfATgdNnEe5vWNj2nAVNqy7u/ssJgtCS5+dbZ2z9xZ/LhXx3WLttlcrF5X1s4PwAAAAAAAAAAAADAKSIYDYAdo6CVDCy0bvms4L3xm+xvrm3jZ7zqYfO+smAw2md/92KfA1hIn3uQV0XAAvquda2NT7E1XfurxpjxBnQ0LxitrDAY7Sl/pvkdw7nbh7XLdjm80LyvLZwfAAAAAAAAAAAAAOAUUe0KwI5R7Lr7VnyNWwv0ja/R22QwGuNVW4pS24qa23ze/5484XlT59lLnv7Xksd/ZfLgxyx2TuMbaNIngGjReQ0AtkrHYDQhfcBV2oLRlrBO3msJV3/I45Inft3sfXf9y+TgU8PbZzscXmze590OAAAAAAAAAAAAAECSpOUn8AFghBS07r5O13jIOBCMttMmlzbYuPEzWvVw9vayl5Sy2DnP3pA85xeTe9+cfOJc8thnJTc88cr+X/zS5KNv6nfO8x9MbvzMxfoD7Lge96A9wWjAOlgbn1qbeG/jXRHQVW0LRttLsuA7gAfOMWetfcttyft+/trtB/cn7/nXyc3fPqx9tsPhheZ9beH8AAAAAAAAAAAAAACnyN6mOwAAsFXaCiAVU4/fZH/TPWCMJg1FqfMKmufZO5M8+suSJ3/L1aFol0/e/3yX7h3WH4Bk+NwGnFKeldg2XceksQtMaXsvmDUEoz3xjycPfvTsfedeOKxttsdEMBoAAAAAAAAAAAAAwDyC0QDYMQpad1+XazxkHLR91vgavY0Goxk/o9VUlFrOrrDRRYqt2wq4gdOtzz3IqyJgHayNT681Xfurgs2NN6CjtmC0speUFQejnXlQ8uQ/M3vfB1+ZfPI9w9pnOxxebN7XFM4PAAAAAAAAAAAAAHDKqHYFYMcodt19m7zGxtfoTS5tru1q/IxWPZy9faXBaAtoK+AGTrc+96B5YQ0Ay2BtzFoJQAe6mhOMNlSXtfYttzbsqMm7XjS8D2ze4YXmfU3h/AAAAAAAAAAAAAAAp4xgNADGo0vhtOJqksXHwbzPGV/jV/c33QPGqKkodZXhQaX0/0xTgBtAn9CXZQQ+AKePZyU6W9dYmWrH+AS6ag0c30uywLP6tC7vER71JckjPn/2vjtvN6ftgsnFln2C0QAAAAAAAAAAAAAAEsFoAIxKl6IvhWE7b6XFf/PObXyNWq3JZJPBaMbPaDUVpe6dXWGjiwSjtRVwA6dbn2C0FYY+AjzA2vjUWlugT234+uRhxiIwpe25uuxl8P2ry1q7lOSWW2fvu//3knteN6wPbN7hheZ9TeH8AAAAAAAAAAAAAACnjGA0AMajU7Gqgtbdt8JxMHeMGV+jtvHCQuNntOrh7O0rDQ8SjAYsUZ/Ql+JVEQA74OD8la8nlzbXD2Bk5gSjDX3uLh0D1p/y7c3vHM7dPqwPbN7agtEWeLcEAAAAAAAAAAAAALAlVLsCMCIdCs/6hD7ANeaMH+Nr3Cb7m+4BY9VUlNq1oHkRZZHiVcFoQJM+wWirDH0EdlffZyXPVqfXmq79m//S5f/e8/o5BxqLwJS24LOlBKN1XGtf/+nJp3/17H13/Yurwx8Zn8nFln1LfH+596DlnQsAAAAAAAAAAAAAYM0EowEwHkKpSNKtaLnhmFqT+9+ZHHyyYf+84kZjcNSawq3W1r7xM1r1cPb2lYYHLRCMNrRAG9hdfe5BxasiAHbAB19x+f73npdsuifAmLQ+V+9lcCB5n/cIN986e/v+fcn7fn5YP9iswwvN+yY931+2PevtXdfvXAAAAAAAAAAAAAAAW+TspjsAAN0NCMRid3QJ9ph1zEfflLzm+cmn3p3sPSh52n+XPOJzkzt/Irn0seQzvj55xg8Mb5vt5fqxqE0Eo5VFgtEa+gnQZ4280tBHgCPW5qfYOq99Td7+d+cfA/CAluCzsjf8/tVnrX3TNyTXPTLZ/9i1++68PXnytw7rC5szudi8r+73PFfL8YLRAAAAAAAAAAAAAIARE4wGwHjUlsK0B45R0MoMB59KXvm8K4WEk0vJ7/3Dq4/5nf83uf/355zI+Bq3TV+/TbfPwpruPysND1okGK3DfRJgrr1NdwAYpb5rXWtj1sA7IqCvtufqsjc8kHyvx3uEMw9JnvxtyTt+7Np9H/z3yafen9zwxGH9Yf1qTQ4vNO//zf/j8v7P//5uofltIWt7D+rfPwAAAAAAAAAAAACALaHaFYAR6VLQquh19y0wDj7wi1dC0dq87+eX0Dbba9PXb9Pts7CmwueyysepBYLRIhgNaNLjHrTS0EcATr21hpUJ2Ad6ag0+2xseSN53rX3LbbO310nyrp8a1hc2Y3Jp/jG//YPJ2/5Ot/MdtgWjXdftHAAAAAAAAAAAAAAAW0gwGgAjIhiNZKFrfMffXFLTQodGrW/B+5nrV9MPxqfp//urDA8qCwSjmaOAJn3ugSsNfQR2Vt+1tjCqU2yN1976GOirbd4oexk8h1338H7HP/rLk4d/9ux9517ofjpGk5Ygs2nvetHw8xXBaAAAAAAAAAAAAADAeKl2BWA8uhS0KgYjyTVFil0Lzvqel5Hpef2ef3fyrJckX/X65BGft4TmjZ/Rqoezt680PEgwGrBMfYLRVhj6CABrJWAf6Kk1GO3M8Ofu6x7V7/hSkptvm73vvrclH33TsP6wfocXuh1339u6Hdf23vvMg7qdAwAAAAAAAAAAAABgCwlGA2BEFLSSxcKlDpcUjCbYatz6Xr/rHpY86U8lj/nyZO/Bq+kT49BU+Lxt4UFNAW4AgtGArePZ6vRa47UXHAz01haMtte+v4sHPbL/Z27+jjSGp9/5wiG9YRMml7of2+U+1vbeu1zXvS0AAAAAAAAAAAAAgC0jGA2A8RBKRVcnx8pkScFoivdHbsj1ayhAXVv7bFRT4FhZ5ePUAmNO8APQpM86WjAasBBrXbaRgH2gp9bn6jL8ufu6h/X/zA03JU/4Y7P33fUzy/uFEGyfLgH4be+99wSjAQAAAAAAAAAAAADjJRgNgBHpUnimoHX3LXCNDy9srm22yIDrV5YQjCbcccQa7j+rDA9aaMwJRgOa9AlG86oIWAdr41Nrnc9FgoOBvhrnjXL5OX3ovHL2xsU+d8uts7df+mjyvpcv3h/Wr899cHLQ4Zj95n2C0QAAAAAAAAAAAACAEVPtCsB4dCkaEjx0CnS5xieOmVxaUtPG16j1Kl49GUq1hGA0xqseNuxY5ePUAmNO8APQqE8w2gpDHwFgnbqsjz3nA1dpCkY/fv4fOGecfehin7vpG5PrHj5737nbF+8P260ODEbzYwAAAAAAAAAAAAAAwIj5iWgAxqNT4IuCVnJtYfPk4rJOvKTzsBkDrl9ZxrLZ+BmtpvvPSsODBKMBG7KUex5w+vRc6wqjOsXWee2NM6Cnxuf/vfb9XZ29ccHP3ZA86Vtm73v/LyTn7168T6xZj3tTl2C0tmP2znZvCwAAAAAAAAAAAABgy6h2BWBEuhQNKXrdeYsU0B9eWFbjSzoPG9Fn7JSToVQLhFRd24ElnIONqIezt68yPOiaMdhBUz8BBBABW8e8dHqt8doL2Af6apw3lhSMdsNNi3/2lttmb6+HyV0/vfh52V6TDsFok/2Wnct4nwkAAAAAAAAAAAAAsBmC0QAYkQ7FqkIfToENBuQZXyPX5/qtIhiN0WoqfC5nVtjoIsFoAwu0gR3W4x5oLgFgV9QOgTIA0xqf/4//OXXgWvlRX7z4Zx/zR5KHPm32vjtvX/y8rFmfZ7OhwWie7QAAAAAAAAAAAACA8RKMBsB4CGlg4wSjjduA61eWEIwmWG+86uHs7WWVj1OLjDn3SaBJn3uQ+xWwgN5rXXPNqbXO56LD8/OP8ZwGXGVOMNqQOeNz/9dh7xFKSW7+ztn7PvZbyb2/ufi52U6TgcFo/j0FAAAAAAAAAAAAABgxwWgAjEiXwjMFrSSrGwfG16j1Kl49GUq1hGA0xqupkLScWV2bi4TxKXgFmvS5B5pLgG0grIplOPjUpnsAjE3jWvg4GK0hOL2LW16w+GcfOEdDMFqS3Hn78POzXWqHYLS2Y6ynAAAAAAAAAAAAAIARE4wGwHh0KuRR7LPTNl3Mten2GWjA9VskpOqke9+UvO7PJa94VvKbfzXZv3/4OVmPpsLnssrHKcFowDL1uQda7wBrMPfZyly0u9Z4bQ/PdzjIWAOmNAajHz//D3ju3ju7+GeP3fjk5PHPnb3vXT+VTPaHt8Fq9Xm/POkQjNZ6zb0nAgAAAAAAAAAAAADGSzAaACPSoZBHcBXJCseB8TVuPa7fNUFoS1g2X/hQcucLkw//WvK2v5W86usUrI5GU2H0mfV2Y56mADeAPvdAIYvAQjwrsYUOPrXpHgCjMycYbcg7x7KEYLQkufm22dsvfjh5/79bThtsh9rhvWHbu0XPdgAAAAAAAAAAAADAiAlGA2A8OhWeKcbebRu+voL3xm1Q8erJoLQl+PCvJve8bvnnZfkaA8dW+Ti1yJhT8Ao06HUPtN4B1mHOXOPZa4et8doenu9wkLEGTGl6/j8ORhvy3L23pGC0z3x+cvbG2fvufOFy2mCFetx3JgcdTtd2jHscAAAAAAAAAAAAADBegtEAGBHBaKde5+L4VY0D42vc+ly/k6FUKwhGS5Lf/sHVnJflqg2Fz+XM6tpcJIyvqZ8Afe6B5hJgIX2fleYd79lrZ60z9O7wwvraAnZD41p4b87+DsqSgtGue2jypG+eve/9L08u3LOcdti81tCzI5P9ls97tgMAAAAAAAAAAAAAxkswGgDj0aWQZ50FtmyxFY0DxWQjt4XBaPf/3mrOy3LVw9nbyyofpwSjARtiPQ1sBXMRy+A9EtDTvGD0QcFoSwxXv/nW2dsn+8ldP7O8dliBHvedSYdgtNoSjGY9BQAAAAAAAAAAAACMmGA0AEZEIQ+bHgObbp9BhhS8lxUFoy2zKJbVmVcYvRKLjDnBaECTPvdAcwmwBvPW5sKqdtgar21TwDFAk8bn/+N/Th2wVt47u/hnT3rcVyQ3PmX2vnO3L68dNqt2CEabtASjCdAHAAAAAAAAAAAAAEZsiT+FTx+llDNJnpbk85I8MckjklxMcm+SdyZ5Y631k0tu87okfzTJk5J8epJPJHl/krfUWt+15LZuTvJFufx3e2iSDyS5K8mv19r668sBmnUq5FE8vds6Xt+VFdEbX+PW4/pdE4S2omA0OcXj0BSoUFZ4/RYJ45sIfgAa9FkbCSMCFmHuYBt5jwT0NicYbVDo/hL/SbbsJTd/Z3LH/3ntvo++KfnYHckjP3957bE8vZ7NugSjtRwjGA0AAAAAAAAAAAAAGDHBaGtUSnlSkucneV6SZyd5eMvhh6WUVyT5kVrrvx3Y7mOT/PUk35rk0xqO+fUkf6/W+tKBbX1Tku9J8ocbDvloKeXFSb6/1nrPkLaA06hD0ZBibFbJ+Bq3QcWrKwrAKmdWc16Wq6mQdKXXb5EwPgWvQJM+90BzCbAO8+Ylz147a53P1QJhgL4a5429Ofs7WGYwWtIcjJYk525PvviHltse69cWenas9XdRWU8BAAAAAAAAAAAAAOO1ooQHTiql/HSSu5L8/SR/PO2haElyJsnXJHl5KeXflFIev2C7X5vkjiR/IQ2haEf+SJKXlFJ+spRy4wLtPLSU8jNJfjbNoWg56sNfSHJHKeWr+7YDnHKdimcV++y0zgXUqxoHxte49bl+J0OpFgmp6tKM5fgo1MPZ21d5/coCY07wA9CkTwiNIFhgK5iLWIKmdfzVB628G8CINAajHz//D3ju3ltyMNrDnpo89tmz9537yW6hWmxAn2ezDtdw0hKM5j0RAAAAAAAAAAAAADBikhjW5w80bH9fklcleXGSlyZ5S66trPgTSV5TSnlCnwZLKc9J8rIkj5vaXJO8KZcDzF6R5J4TH/v2JD9TSveUh1LKmaP+f9uJXR9O8ktHbb05V/+0/+OT/Fwp5Vld2wHoVnimoHW3bbqYy/gatyHXTzDa6dZUGH1mhW0KRgOWqc890FwCLKLvWnvO8UIad9gar631MdDbnGC0ReeVcjbZu26xz7a55bbZ2y98MPnALy2/PdarS7hd6zHugwAAAAAAAAAAAADAeEli2Iy3JPkfkzyt1npTrfW5tdZvq7V+U631S5I8Kck/PvGZP5DkZ0spnRISSik3JflXSR40tfnXkjy91vqltdZvqbV+VZKbknx3kulfKf71Sf5Gj7/P307ydVPf7x/9/W6qtX71UVvPTPL5SV47ddyDk7yslPLpPdoCTrMuhdGKp3db5+LDFY0D42vcel2/E0uubkuw/lYarMXS1MOGHat8nFpkzCl4BRocXuh+rPUOsA5z5xpz0e5a57XtsD523wOmNb57HBiMdvaGxT43z5O+KTlz/ex9525fTZusT+0QjFb3W/a5xwEAAAAAAAAAAAAA4yUYbX1qkn+b5MtqrV9Sa/2RWus7Zx5Y6/tqrd+V5L8/setZSb61Y3t/Pcmjpr7/9STPq7W+/URbF2ut/zDJt5z4/PeUUp48r5FSyi25HKw27ZuP/n6XTrT1tiT/Za4OR3t0kh+Y1w7AZV0KeRT77LRFiw+X14ENt88wPa7fNUFoqwpGsxwfhaa5Z2/Lgu0aA9yAU2/SIxhNyCIAu2Lj7xCA0WmaNx54f7NoMNqNi31unusennzm82fve+/Lkkv3rqZdFtcnrKxLMNqkLRjNfRAAAAAAAAAAAAAAGC9JDOvzzbXWP1FrfWPXD9RafzTJS09s/rPzPldK+awkt05tupTktlprYyV0rfVlSaZ/ffyD0y2w7AeSXDf1/QtrrT/X0s75JLcd9enYC44C1gDaKeSha/FhnwKzXgSjjduQ67eiYDTL8XFoDBxb4fW7JpyvA/dJoMnB+e7HrmwdBey2vnPHvOPNRTtrnfeZTsHBxhowbU4w2qLP3WdWFIyWJLfcNnv75FJy14tX1y6r1xZ61ukY74kAAAAAAAAAAAAAgPGSxLAmtdZ3LfjRf3Ti++d2+MyfSXJm6vt/VWv9/Q6f+zsnvv+WUspDmg4upVyf5JvmnOMatdbfS/KyqU1nc7nPAHN0KVZV0LrTOhcfTo2DZRZdCwoZt17X70Qo1SIhVZ2aOTP/GDavae5Z6fUTjAYs0WGPYDTF88A28OzFMnRaHxtrwJTG5//jf05dcM44e8Nin+vicc9Nbrhp9r47X7i6dllQjzE0OehwupZjrKcAAAAAAAAAAAAAgBETjLb93nLi++tLKY+c85n/6sT3P9GloVrr25O8fmrTjUm+quUjX51kuprjtbXW3+nS1ow+Pb/j54BTrUMhj2Kf3bZQ6M8yx4TxNW5Drt+Kls3FcnwU6uHs7Su9foLRgCU6vND9WOtpYC3mzTXmot21zmtrfQz01PhcvTdn/xxnb1zsc13snUlu/s7Z+z7y+uS+rv9sx9ZpCz07Ntlv27m0rgAAAAAAAAAAAAAArJskhu0366feH9R0cCnlCUm+8MTnf61He6868f3Xthz7NXM+2+ZXcvXf7YtLKY/v8XngNOpUeKZ4eqc1hRNde+DUl8ssADO+xq3P9TsRSlUWCKnq1MyZ1ZyX5WqaR1Z5/RYacwpegQaH53scbC4BFrD0UEXPXixBl3cIAkGBaY3P/wOD0c7cMP+YIZqC0ZLk3O2rbZueetx3hgajuccBAAAAAAAAAAAAACMmGG37Pe3E9wdJ7mk5/vNPfP/WWusne7T36ye+f3qPtl7btZGjPv12j7YA0q1oSLHPTluk+HCZwWiKycZt0PVbVTCa5fgoNAUqrPT6LTDmOodHAqfK5KBbQf0x6x1gHcw1p9gar/1Sg9KBU2Hu8/+C88rZGxf7XFcP/+zkMX949r5zL0om3heM0qTDc1zrs577IAAAAAAAAAAAAAAwXpIYtt83nfj+jbW2VnR93onv39GzvXfOOd+0z11jW8Bpd/87kt/7kfnHKa7ecR2Lua4aB8ssADO+xq3H9Sul/ftlEYw2Eg3zSDmzwjYXCUZT8ArMcHih3/HmEmAhS35W8my/u9Z5bTvd04w1YFrTvHH0/mbRtfLZGxb7XB833zp7+/n3JXe/cvXt002f+2CXgOvJfsvnPdsBAAAAAPxn9u49WpezrhP8r/Y+J3cSAiSQgEnOISAqOgrYNiiIDghoNzdpURBPutsZp132co3jmqvdtmt6pp1erbO6HXW6l445It6gBWy8gEIj0ly0EW0VlcA5uXAJCSSE5Jycy95vzR9nn/Ced7/PW5e3qt6n3vfzWSuL7Kq3qh5StZ9L7f37bgAAAAAAYLwkMWSsKIorIuIfzmx+c8VhN898fWfDy94xpDgpEQAAIABJREFU8/Vji6K4ek7bHhMRj1nyWrOff0rD44FNcdebI37ryyM+/vOrbgmr1qaYq8sCMMX5I9fk/s2GUvUVjNZnsBadSfYjPS6n2oTxKXgF5tl9uOEB5jvAEKr6Gn0RHSh3V90CYGxS6+rz72/avhs8cHm745q48dURWxfP33fsaP/Xp3uTJYPRzKcAAAAAAAAAAAAAgBETjJa3fxERT5j6+vMR8XMVxzx65ut7mlywLMuHIuLUzOaralznZFmWJ5pcK/a3bd51gE032Yn4wD+oKPCZpthnrdUO/Zl6DjoNChI6NGpLBdv1FIxmOj4OqUCFrT6D7do8c/ooYI7d2SV+FfNpYACVc3N90foa8N7Weh/gWQOmJIPRzr+/abnu3h4gGO2iR0c86eXz933iNyLOPNB/G6ihwbhT1ghGKxf83ESAPgAAAAAAAAAAAAAwYgdW3QDmK4riFRHxAzOb/7eyLO+rOPSKma8fbnH5hyPikqmvH9XjdabNu04jRVFcGxHXNDzsycteF+jR3b8XcfbzDQ5Q0LreWhRzpQKN2lgqWIvVa3L/ZkKpip4CzIo+g7XoTLKQtM9guxbBaApegXl2Gy7X9SVAK9ZK5MiYBjRVEYzWdq584LJ2xzV1+JaIO39t//bdUxF3vjHi5u8dph10o04w2mTBZ6ztAAAAAAAAAAAAAIARE4yWoaIo/quI+MWZze+IiJ+tcfhsYNmpFk14OCKuXnDOLq+z6JxtfH9E/GgH5wFy8bk/avZ5wVXrrXYx1/Rz0GUBmOdr3Ja5fy1Cqmqdts9gLTqTCljsM9iuaBOM1mEQJLA+jv1CwwPMd4AhVPQ11vZrbMB7W+cdgmcNmJbsN4qK/RUOXN7uuKae8MKIS6+LePjT+/cdPyoYbWwWhZ498pmzC3Ya4wAAAAAAAAAAAACA8ZLEkJmiKG6IiN+KC0PC7oiI7y7LVlVa63YMQAVdy1qrW3w4PWS2LVicf+IOz8XgmkylZkOp2oRU1bqO6fgopPqR3O5fp/0dsBaOvyHiIz/e7Bh9CZAFay86IDgYaKpy/d9yrnzJ49sd19TWdsRNr5u/7973Rjz4sWHawQIN5jhljWC0ckEwmrUdAAAAAAAAAAAAADBimVXyb7aiKK6NiN+LiCdObb47Il5YluW9NU/z0MzXl7Zoyuwxs+cc8jrApmucCal4eq21KebqsgCsVUYp+Vjm/vUVjLbdz3npVipQodf71+KZU/AKzLrtZ1ocZL4DtND12t3aa30NeW9rBaN51oBpqT5hb43edt39uGe3O66Nw0fS+47/4nDtYHl/+X9Uf2ayIDzNeyIAAAAAAAAAAAAAYMQOrLoBnFMUxWMi4vcj4qlTmz8bES8oy/K2Bqfa9GC0n4mINzY85skR8dYOrg3kQPH0mqtbzDX1HHRaAOb5GrVG/cNsKFVPwWhyikci0Y/kFoxWu48ENsZn39f8GMXzQBasvdbXkMFoxjSgodS7o2Lv/U2bfuXAFRFXfXn7NjV11ZdHPOZZEff95/37jh2N+Mp/9sX/PwyvyfvJydmIe98fcc2CYL3JmUUXq38tAAAAAAAAAAAAAIDMCEbLQFEUV0XEOyLiK6c23x8RLyzL8i8bnu6Bma+vadiWK2J/YNnna1znsqIoLi/L8kSDy11b4zqNlGV5T0Tc0+SYougr6ATohuIdppS7LQ4SjMZ5De7f7Pygr/nCVp/BWnQm1ff0WUjc5pkT/AB0wnwHGIBQc4ZQa37sWQSmpfqN82v0Fn3GwauGDyI7fMv8YLSTd0bc8wcRj/+mYdtDe7e/fnEw2u7D6X3eEwEAAAAAAAAAAAAAI+ZPgq9YURSPiojfjYhnTm3+QkS8uCzLP21xyttmvr6x4fGzn7+vLMv7Zz9UluXn4lx427QblrzWbNsBWlDQutbqFnNNF9l3WQCmeH/klrl/fU2bTcdHIdWPFH0G2wlGA1ZEXwK00nSuXfV5a6/1NeS9NaYBDaXe/S0TmL91sP2xbd34nenrHrt10KYwq+E4eNvPLt6/KBjNfAoAAAAAAAAAAAAAGDFJDCtUFMXlEfHbEfG3pzY/FBEvKcvyj1qe9q9mvr654fGHZ77+yIDXmj0fQAuKfdZam6COTsM9PF+j1ijYbqbgdZkC2IWXMR0fhXJ3/vY+71+bZy7VToBGzHeADAilpgt15seeNeACqfeIe+v/Z/1U81NuXdS6Na1d/NiIJ750/r67/n3E2YeGbQ/9WRSMJvQaAAAAAAAAAAAAABgxSQwrUhTFpRHxtoj4hqnNJyPi28qyfN8Sp/6Lma+/qiiKyxoc//UV51u079l1L7IXCvdVDa4FUI+C1jVXt5hr+jkQjMZ5y9y/voLRtvs5L91KFZL2ev/aPHMKXoEOKJ4H2mi8Fq/6vLXX2hryvY0xDWgq1UedDy9//H8dcdHVzc65imC0iIhDR+Zv3zkRcdebhm0LUzoeBxcFo3lPBAAAAAAAAAAAAACMmGC0FSiK4pKI+M2IeP7U5lMR8dKyLN+zzLnLsvx0RPyXqU0H4sLwtSrPn/n6dxZ89ncrjl3kuXGubed9uCzLzzQ4HtgUjYtYFU+vtTZFzV0WQgveG7km9282lEow2kYrdxM7+lxOtXjmBD8AXTDfAbKgL6IDtebHnjVgWqpP2Fv/X/yYiG9+Z8RVT69/ylUFo13/4ohLrp2/79jRYdtCf3YWBKNZ2wEAAAAAAAAAAAAAIyYYbWBFUVwUEb8RES+Y2nw6Il5eluU7O7rMm2e+/vs12/a0iPi6qU0nIuIdCw55e0RM/8b9s/fOUcctM1/PthngnMnpZp9X7LPeaof+TD0HnQYFeb5GbZn+oRCMttFS/Uif96/NMycYDeiEvgQYgLX7Bhvw3icDjgESkuv/qTX6Y74m4tv+POJV90U87y3V59w62E3bmto6GHHja+fvu+fdEQ8dH7Q57OlyDlSWEbsLgtGs7QAAAAAAAAAAAACAEROMNqCiKA5ExK9HxEumNp+NiFeVZfn2Di/1hoiYrvp6ZVEUT6lx3P808/Wvl2V5KvXhsixPRsSbKs6xT1EUT42IV0xt2omIX67RPmAT7TYMRhNctd7qhv6UgtGYp8H92xdK1VMwWm/npVOpQIWiz+WUYDRgRYQVAa103Hfoi9bYkMFodebHnjVgWqpPmLNGv+jqeoHpWxct1aKlHL4lve/46wdrBj2ZnImF45j3RAAAAAAAAAAAAADAiAlGG0hRFNtxLrDsZVObdyLi1WVZvq3La5VleVtEHJ3adFFE3FoUxSUL2veyiLhlatOZiPixGpf7Z3Eu3O28W4qieOmC61wSEb+w16bzfr4sy4/XuBawiSbJfEY2Uptirg4LwBTnj1yT+zdT8NprABb5S/QjdQqgh5QKcANoRPE8MISqubm1F10wpgFNJcaf5HuhGqHmqwxGu/qrIq7+6vn7jh/1rnMlOvxvvvvwcNcCAAAAAAAAAAAAABiYhIfh/H8R8R0z2/7XiPhwURQ3NfwnGXA25Ucj4v6pr58TEb9fFMXTpj9UFMXFRVH844h448zxP1GW5R1VFynL8lhE/OuZzW8qiuIHiqK4oNqjKIovi4h37rXlvM9FvQA2YFPtnm54gGKftVbWLWqeeg5qH9PwvIzPUsWeNQpdW/FMjUIqcKzXwLw2z5zgB6ADwhGAQQhG21hDjjN1goONe8C05HvE1Bq9TjDawbat6cahW+Zvf+hYxL3vHbQpdKwqGK3T9+IAAAAAAAAAAAAAAMM6sOoGbJDvmbPtX+7909Q3RcS7F32gLMtPFEXxyoh4e0ScDyj7+oj4SFEUH4qIYxFxVUQ8IyKumTn8bRHxTxq053+OiK+IiJfsfX0wIn4qIv5JURR/EhEPRsThvWtNV4mciYhXlGX56QbXAjbN7qlmn1fQut7aFHMJRuMRTe7fTGFr0VMwmgLFcUjdp2K7v2u2eeY8T0An9CVAGx2vlazt6YL5MdBUcvxJrNHrBKZvXVT9mT7d9JqID/9wRLmzf9/xoxHXPnf4NtGNqmC0iHPPdF/vNQEAAAAAAAAAAAAAelTjN/YZq7Is3x0Rr4iIe6c2FxHxrIj4joh4UewPRfuViPjOsix3G1xnd+98vzaz69qIeHFE/L2IeGZcWDlyT0S8rCzLP6x7HWBDTU43PEDx9HqrW9Q8/Rx0WAitqHrcdk4ucXBfBYT6rFFITY3rFEC3JhgNWFLbUCFhRMAQ9DUbbMB7X2t+7FkEpiX6hOT6v8bafdXBaJdcE3H9t87fd8evL/m+jOY6HHd2agSjGecAAAAAAAAAAAAAgJESjLbmyrL87Yh4ekT8vxFx/4KPfiAiXlWW5WvKsjzR4joPlWX5nXEuBO0DCz56X0T8bEQ8vSzL3216HWAD7Z5qeIBCn7VWP7dz6pgug9E8X6P2x99X/7PFbGFrT8FogqzGIXWfiu0eL9rmmfM8AdPazlv0JUAOrL3ogjENaCi5/k+s0VPbp606GC0i4vAt87fvPBhx15sHbQoNFQfS+3ZrBKN59wgAAAAAAAAAAAAAjNSC36amS2VZ9pSmUeva90TEPyqK4gcj4usj4saIeEJEnIiIT0bEh8uyPN7Rtd4UEW8qiuJQRDwjIq6PiMsj4u6IuCMi/lNZlme6uBawIZoGowmuWm91C7mmn4NOi788X6M1ORtx8hPtj69T6NqK4sRRSIYy9pgz3eaZaxMeCayXT/9exG0/HfHwpyOue1G7c5hPA2007juqPq8vWltDjjMf+3fVnzHuARdI9QmpYLQa7wW2DrZuTWeu/7aIix8bcfpz+/cdvzXi0GsHb9LGajrubC0ZjGZOBQAAAAAAAAAAAACMlGC0DbIXSPYfB7rW8YjoJGwN2HCT06tuATlpFXImGI2IePBjDQ+YLXjtKRhNEf44pALHFhWnLq1NMJqgPdhon3xbxHte9sW+4HN/1PJE+hIgA+bJayy3e5tbe4DVSvQJyQC0Gmv3rYtat6Yz2xdF3PiaiI/+1P59d78z4sRdEZd/yfDtolqxZDCad0UAAAAAAAAAAAAAwEjV+FPmALBCkzMND1DQutZqF3JNfa7L4i/F+SPWNGRq5vPJAthlKU4chXJn/vZFxalLE4wGNPRXP9FNP2C+AwxCX0MuPIvAlOR8OrVGH0kwWkTE4SOJHWXE7a8ftCmbreG4U2yn9wlGAwAAAAAAAAAAAADWmGA0APJW7jY9oJdmkIuahVzTgR6dFn95vkaraBEydeEJOmnGPsJnxmGSCEbb6jEYrc0zq9gVNldZRtzz7o5Opi8B2uh6XmuevL4yu7fm0MAFUn1UYo1eJ0g/l2C0q58RcdXT5+87dtQ7qlwtevdU64/KuK8AAAAAAAAAAAAAwDgJRgMgb6kwmhQFXOutdsGyYDRmNQyZ2hdK1VMwmvCZcSgTY1HRYzBaq2fO8wQb6/S93Z3LfBpoo+m6q7Kv0RcxFM8aMCU1PiUD0Gqs3bcOtm5Op4oi4vCR+fse/GjEZz8wbHs2VsNxZ9G7pzo/OxEACgAAAAAAAAAAAACMlGA0APJW7jY9oJdmkIk2wWhdBgUJChmxJYPN9gWldURx4jikCk1zC0ZrPGYCa+PEnd2dy9gEtNK076hYW1l7ra/c7q1xD7hAqk9IrNGTgWlTti5q3ZrO3fTaiGJ7/r7jR4dtC8tLBflfwDgHAAAAAAAAAAAAAIyTYDQA8laruOeCA3ppBrmoWcg1XdjcaZGz52u0GgebzX6+r2A0z9QopMairT6D0VrwPMHmOtlhMJr5DtBG5+FS+iIGIhgNmJZaVyffK9V4X5RTMNql10Vc96L5++741YjdU8O2ZxM1fXeTCrKLSAf5L3M9AAAAAAAAAAAAAIBMCEYDIG/lbsPPK2hda7Xv71TBl2A0ImL5YLOegtHqhv2xWqlgtKLHYLTGYX4R+ijYYCfu6u5c5tNAG437DvOWzZXbvc+tPcBqpcazxI9T66zdtzMKRouIOHzL/O1nH4j4xFsHbQo1HLwyva/WH5WxvgMAAAAAAAAAAAAAxkkwGgB5m9Qp7pnSNEiNcalbbF9OFzZ3WPxVKpgercYhUzOfL3qaNnum8ldO0n3PVo/BaK3C+DxPsLF2T3Z4Mn0J0EbHoRvmyWsss3srEBSYlhp/ku+VarwvKrZbN6cXT/y7EQcfPX/fsaPDtoVqi37eUScYzTgHAAAAAAAAAAAAAIyUYDQA8lanuOeCzwtGW2t17+90wVenxV+ZFXDTQMOQqX0Fr21CqupQnJi9Rf1OkVkwmgAR2GAdfv8rnAfaaNp3VM5bzGsYimcNmJbqExI/Tq0TxH/q3tat6cX2JRE3fdf8fXe/PeLkp4Ztz8ZpOO4s+sMxdf6ojHdFAAAAAAAAAAAAAMBICUYDIG9Ng84Eo6232sX2UwVfgtHoRE/3XvhM/hYVmfYZjFanuHoffRRsrE6L3fUlQAudz2v1RWsrt4AWazJgWqpPSK7Ra6zdT97Zujm9OXRk/vZyEnH7G4ZtC4st+sMxtf6ojHEOAAAAAAAAAAAAABgnwWgA5K1Wcc/05wWjrbcVB6PlVsBNfUXTae9MYWtvfYtnKnuLxqGtHoPR6hRXA5zX6XxH4TzQQuO+o2IebO3FYIx7wLTU+JNYo9d533TtN7ZuTW8e+7cirvzS+fuO32oc7lPT/7aL3kkuCvNvez0AAAAAAAAAAAAAgEwIRgMgb5OGYUSC0dZb3WL7Cz7XZZGzQrLxWjJkqq++RfhM/hYFoxU9BqMVbZ5ZfRRsri6///UlQBsN57VCOjZYZvfeswhMS/UJyQC0Gmv3676ldXN6UxQRh26Zv++Bj0Tc96FBm8MCi95L1fqjMt49AgAAAAAAAAAAAADjJBgNgLzVKu6Z/rxgtLVWO0Rqqoixy+ApIVYj1rTYfaawtbe+RRF+9iYLxqGtHoPR2oT5CXWADdbh97/5DtBG532HeQ0DMe4BF0j1CYk1elWo+VP+UcQVh5dqUW8OfXck/38du3XIlmyYhnOcRe+lFu175HLGOQAAAAAAAAAAAABgnASjAZC3psFoE8Fo661mIVfZUzCa4vzxWjYwqq9gNMWJ+Vs0DhWZBaPpo2Bzme8Aq9a4H6rqa/RF6yu3e5tbe4CVSr0/SgagVfyY9Vn/z1LN6dVlT4p4wgvn77vjVyJ2Tw/bHuZb9E6y1s9OjHMAAAAAAAAAAAAAwDgJRgMgb43DiIQMrbXaxfaTxL8ve32FZOPV8N7NFrwKRttckwVFpls9BqMli64X0UfB5urw+9/YBLTScd9h7bW+cru3xj3gAqk+KvHj1EVr9xteHVFk/mPYw0fmbz9zX8Qn3zZsWzZGw3FwUfhZnWA04xwAAAAAAAAAAAAAMFKZ/0Y+ABtvUSDNPB/9qYj3vCLiP/9gxAN/3U+bWJ26hVzThdadFn9lVsBNjwYKRvNM5a88m95X9BiM1kZuIRPAcDr9/teXAC00XndV9TX6IoYiMAaYkhrPkgFoC4LRiu2lm9O7J7084uCV8/cdPzpsW5hv0c9H6vzsRDAaAAAAAAAAAAAAADBSgtEAyFc5icbF0OUk4hNvifjov4l4x9dF3PfhXprGqtQt5BKMxqwl713TkMa6FCfmb9G97zUYbUFxdZI+CjZXh+OJsQloQ99BbZnNWYULAxdI9QmJNXqx4MesYwhGO3BZxA3fMX/fp3474uHPDNueTdB03Fn0xxrKOu8rjXMAAAAAAAAAAAAAwDgJRgMgX4uKfuo4+4WIv/6JbtpCHuoW21/wuS6DQhSSjVbjezdT8Lpsf5QiQCJ/i4pMtzILRtNHwebq9PtfXwK00HReW9lv6YsYijUZMC0x/iQD0Bas3Xt9Z9Chw7fM317uRtzxy4M2hTnKnfS8qc4fcvDuEQAAAAAAAAAAAAAYKcFoAOSriyCi29+w/DnIR+1CrqlisU6LvxTnj9eS925RONZyJ+7pvHRmUZFp0WORc7LoehHPE2yuDr//Fc4DrTTtOyr6LYGvayyze2vcA6Yl+4REANqitXuxvXRzBvG450RccfP8fceODtsW5ks9l3XeVxrnAAAAAAAAAAAAAICREowGQL4WhdE0sXu6m/OwerXD8gSjMaNpsEIxU/DaVxGh4sT8LSoy3RKMBmSiy/Hk7Be6OxewOTqf1wpOYyieJWBaqk9IBKMlt8d4gtGKIuLwkfn7Pv9nEff/6bDtWXstxp3UO/Faf8jBOAcAAAAAAAAAAAAAjJNgNADyVauwp4YTd3ZzHlavbrH99Oe6LNAXYrW56oTyPf2ftjlxi2MY1KKQzqLHYLQ2SzUBIbDBOvz+P31vxKRuGC3AnsZrpWX7LfOe0cptzmqdD0xL9VHJ8PJFwWh9vjPo2KHXpfcdOzpcO5gv9XOSOn9YxjgHAAAAAAAAAAAAAIyUYDQA8lUniKiOE7d3cx4yULeQa7qIUTAaEc2DE2YKWxcFNT7z30R8659HfNWPNW6VZ2oEFt37Pouck0XXi2QWMgEMp+vx5L4PdXs+YAN0Pa81r1lfud3b3NoDrFZqPEsEoC1auxfbS7dmMJffGPH4b56/7/Y3REzODtuetdZi3Hnwo4lT1fnDMsY5AAAAAAAAAAAAAGCcBKMBkK9JncKeGk7c0c15WL26oR/lVMFXl0EhXYX1sQINiwCL2WC0Bff+5u+LePTTmzcpIroPkKBzi4pMt3ILRgM2V8fF7vcLRgMaarruKiv6rWX3Q13CqoFpqfFl9j3RF3ekz9XnO4M+HDoyf/vpeyM+9TvDtoULve+187fX+fmJcQ4AAAAAAAAAAAAAGCnV9gDkq6sQqp0T3ZyH1asdjDaZ/+9LX18w2mgtG5ywqNBwmUJXgQ75S977ot/wslbn9jzBxup6PHnw492eD1h/nYduVPVr5j3jldm9ExgDTEv2CYk1ejIwLSKK7aWbM6gveWXEgcvn7zt266BNWWtt1m4PfCTi9H1zzlXnD8sY5wAAAAAAAAAAAACAcRKMBkC+ahX21LD7cDfnIQN1C7mmC8wEoxHRvPh+prB10b1fKhxLcWL2UmPRMoF4tbR4rgTtwQbreDy5+HHdng/YAE37oWWDz8x76IpnCZiW6BNSAWiL3gmNLRjt4BURN/y9+fs+9baIU58dtj1c6NQ9+7fV+fmJd0UAAAAAAAAAAAAAwEgJRgMgX4LRmFW2CEarfUyX12ft9BWKpzgxf5PEWFT0HIzWKnDP8wQbq+vxZHK62/MB689aibpyWwN5doELpILRUmv0RGBaRP/vDfpw6Mj87ZOzEXf8yrBtWVsLxsHHfl163+7J/dsmZ2tczzgHAAAAAAAAAAAAAIyTYDQA8jXpKIhIMNr6qFuwPP25ToPRegrHYgBNi+9nClt7u/eKE7OXCukUjAZkpePv/13BaEBDjcOuKj5fdb7cwrVoILd7l1t7gJVKvkdMBaAtCEbbGmEw2rXPi7j8pvn7jh8dtCkb6XlvTe+b9zOOVJj/NAGgAAAAAAAAAAAAAMBICUYDIF+pMJqmBKOtj9qFXNOFzYLRiOWDE/q694oT85cai3ovcG6xVBMQApur6Xjy7F+KuPpr0vsngtGAphr2Q5XzlmX3Q03WZMAFUuNLIgBtUah5sb10awZXbEUc+p75++77UMTn/2LY9qylBXOYix+XfqZ2Ts45VZ2fn5gzAQAAAAAAAAAAAADjJBgNgHx1FUQkGG2N1CxYni6y77LIWTDaiDUsAixmCl67CmrcR3Fi9iaJe1/0HIy2qLg6yfMEm6vh9/81Xx/xkj+JuO5F8/fvCkYDGuo6XGrp4DTyldm9E4wGTEuNP8k1eiIwLWKcwWgR6WC0iIjjR4drxyYqiojty+bv220ZjGacAwAAAAAAAAAAAABGSjAaAPnqKohoRzDa2qgdTDZV8CUYjYhoXnw/G4zW071XnJi/1Fi0JRgNyEnLANCLHjN//0QwGtBQ43mt4DNy4VkDpqXGs0QA2myw/gX7RhqM9qgnR1zz3Pn7jv9SOkCebmxfOn/7vJ9x1LkX3j0CAAAAAAAAAAAAACMlGA2AfHUVRLQrGG1t1C3kKqcKmwWj0YXegtEU4WcvVWRa9ByM1map5nmCzdV4vrMX4LB98fzdu4LRgKYGDt0w7xmv3O6dwBhgWqqPSgagLVi7jzUYLSLi8C3zt5+6O+LT7xi0KWunahw8cNn87bsn55yrTkhdZuMuAAAAAAAAAAAAAEBNgtEAyFcqjKYpwWjro3bB8nTBV5dFzgqmR6tx8f1MwWtX/dE+nqnspYpM+w5GK9os1RS7wuZqOc5tJYLRJoLRgIYah0tV9VvL7oe6PEvAtFSfkFijJwPTYoBA9R7d8KqI7Uvn7zt+dNi2bJQi/d993s846ryvFAAKAAAAAAAAAAAAAIyUYDQA8pUKo2lKMNoaqVnINV3w1WXx12S3u3MxsCWL3cue7r3ixPylxqItwWhARpoGgBaC0YCOdT2vrezXzHvGK7N7Z00GTEv1CckAtEXBaNtLN2dlDl4Z8SXfPn/fJ94Sceb+YduzVirGwe3L5m/fOTnnVHV+fpLZuAsAAAAAAAAAAAAAUJNgNADy1VUQkWC09VG7YHmq4KvLIue+wrEYQMvAmEcO7+veK07M3iRRZFpkGIzWNBgJWCNN5zt749x2IhhtVzAa0FTDfkjw2ebKbs4qGA2YluqjUgFoC/q0vgPV+3b4yPztkzMRd/zasG3ZFEURcSARjLbbMhhNACgAAAAAAAAAAAAAMFKC0QDIVyqMpqndU92ch9WrW8j1ibdEPPBXe18IRiOWL76/+qu7accsxYn5SxWZFts9X9hSDWig8Ti3F+ywlQhGmwhGAxpqPK9dMhgtu3AtRsuzBFwg0SekwssXvSvs/b1Bz679pojLnjR/37FbB23KeqkYd7Yvnb993h9/qfPzE+8eAQAAAAAAAAAAAICRUm0PQL66CqHj4sQhAAAgAElEQVSaVzTEODUp5Prtr4y4/Ze7Lf4SjLZBigu//LL/cf7HnvL9S15HEX72Ut/3fRc4p4quF/I8weZqON8p9sa57Uvm7xcsDDQ1eOiGec945XbvcmsPsFLJ8ayYv3lRMNXYg9G2tiMOfc/8fZ/7YMQDfz1sezbFgcvmb985uX9bKsz/wg8t1RwAAAAAAAAAAAAAgFURjAZAvmoV9tQgGG2NNCi2L3cj/ui/nV801pZgtBFrWgQ4U/D6mGdGXP93Ltx28WOXD0YbPECCxlL3qFVwWQOC0YAmypbj3PbF83fvnl6qOcAGajyvrei3GvdrsATPG/CIVH+QCEbbvjR9qkuesHRrVi4VjBYRcfzocO1YJ1VjTuqZmvczjkXBfI9cz7tHAAAAAAAAAAAAAGCcBKMBkK86hT11CEZbH02DyXZORHzyrau7PhlZstB9azviuW+KeMZPRjzxpRFP+6GIF7w34tFfsWSzFCdmL/V9X2z3fOEWSzWBDrDBWgajbSWC0SaC0YCmup7XVvVr5j3jleG9sy4Dzkutq1Ph5Zc+PuLKp+3ffvCqiOu+pbt2rcqVXxrxuGfP33f89RET70q7cz68+rL5ux/82P5ttdZtxjgAAAAAAAAAAAAAYJwEowGQr65CqHYEo62N3VPNj/n8n3fYAIVko9U0MKoo9m/bvjjiaf99xDe+NeIZPxFx1ZzC1+YN6+Ac9GpVwWipouuFPE+wsZoGupwf57YTwWi7gtGAhpr2Q5Xz84r9AmHplLU+sCc1ns17T3Te0/9pPBJq9ci2H4nYOtBZs1bq0JH52x/+ZMRn3jlsW9ZCxRxm+9L52+95d8QHv/fCMLo678rNmQAAAAAAAAAAAACAkRKMBkC+yp2OTqTAdW3srjjkbtJRWB8rkGkRYNMACYaXLIrueSnV5vyKXWGDNf3+3wtu2EoEo00EowENdT2vXTY4jXzlOGfNsU3AiqT6gwVr9Ju+K+Kb3h5x+B9E3PiaiG94Y8SX/XAvrVuJG1+dXjccOzpsW9bZ+fC9rYvSn/n4z0d87N9+8etawWjePQIAAAAAAAAAAAAA47Qmf64cgLVUdhRCpfhnfeycXO31u3omGYFioOsowM9e6vu+2O75wm2C1zxPsLEaB7pUBKPtnDh3zmKo8RAYv6br7qp+yzp+feU4Z/W8AXuS4egV8+LrXnjun3V00aMjnvTyiDt/bf++T7w54swDERddNXy71tVWxY/uj90a8dTvP/fvkxrBaMY4AAAAAAAAAAAAAGCk2lTbA8AwJjvdnEcw2vrYfXi11xeMNl6NA2MGon/KX7IouudgtEIwGtBEw/HkfLDDRVfP33/mvogHb1uuScBmaTqvrZqfV57PvIcO5bpeBFYg1R9seGDw4Vvmb999OOLONw7alPGrGHO2Di7ef98fn/vfyU69+ZcxDgAAAAAAAAAAAAAYKcFoAOSr7CgYrWlQBPkSjEZrTYsAByp4FYyWv9T3favgsgbanF+xK2yuxt//e+PcY58VyTHv3j9cpkXApul8XlsVnGbeM1453jvrMuC8RB/V9zuA3D3hhRGXXjd/3/Gjw7Zlbe2ty4oD9T6+e6rmeY1xAAAAAAAAAAAAAMA4bfhv8gOQta5CqAQPrQ/BaLTWsPi+GCgYLctQAC6QDEbb7ve6rYquPU+wuVqOcxc/NuLRT5//mdP3LdckYMM0XXdXBZ9Vnc+8hw55bwScl+wPhnpPlKmt7YibXjd/373vjXjwY8O2Z8yqwl27DkYTJgsAAAAAAAAAAAAAjJRgNADyVe50eC4FQGth5+SKG6BYerRy7QMU4I9A6h71vZQSjAY00Hg8mQp22L4scU6BsEADXc9rzZPXV5ZrsxzbBKxGqj/Y8GC0iIjDR9L7jv/icO1YW3vP2NbBeh+f1AxG8z4bAAAAAAAAAAAAABgpwWgA5KvLMAZF1eth9+HVXr+cZFrETfeGKnj1PGUvNRYV2/1et8359U+wwZp+/0+Nc1sHEqfsMKQYWH+N19wV/VbV+cx76JJ3RsB5qfGl8OPUuOrLIx7ztfP3HTuqL62tYg6TWp/N2j1d83LuCwAAAAAAAAAAAAAwTn6TH4B8TboMY1AAtBZWHYwWoZhstDINTvA85S91j3oPRrNUA5poOM4VU8FoRaLwvtO5OLD2Op/XVvVrmc7vqSHHe5djm4DVSI1nQwXoZ+7wkfnbT94Zcc8fDNuWdXN+jVYcrPf53VM1T2yMAwAAAAAAAAAAAADGSbU9APkqdzs8l/ChtZBFMFqHzyUDaloEOFTBq74pe6nv+b6Dy1qdX7ErbKzGc93pYLRE0GMpGA1oomE/VFbMWyr7NfOe8crw3nlnBJyXGp8KwWgREXHjd0ZsJYK7jt06aFNGq2oOtJUIrp41qRmMZowDAAAAAAAAAAAAAEZKMBoA+eoyjEEB0HrYObnqFghGG6uqosNVybVdfFEyGC0RJNQZwWhAE0sEgBaJwntzHqCJztfc1vAMyDsj4BGpebUfp0ZExMWPjXjiS+fvu+vfR5x9aNj2rJW9NVpqfTZrVzAaAAAAAAAAAAAAALDe/CY/APmadBiMpqh6/MpJxOT0qlshJGS0GgbGFEX1Zzqhb8peqoC072C0osVSTdAebK6m3//T49xWKhity7k4sPYah25U9FtV5zPvGa8s712ObQJWIvkOYKj3RCNw6Mj87TsnIu5607BtGaWKMWfrYL3T7NZ9T26MAwAAAAAAAAAAAADGSTAaAPnqMoBKmNX47Z5adQvO8SzRpSxDAbhA6nu+TXBZE63O73mCjdU4kGgq2KFIBKN1GlIMrL+Bg9HMe+hS43EUWF+p8UUw2iOuf3HEJdfO33fs6LBtWSt7z1hqfTar7rtyYxwAAAAAAAAAAAAAMFKC0QDIV9lhGIMCoPHbObnqFuzxLI1T0+CEgQpeBe3lLxmMtt3vdQWjAY0sMc6l+rMu5+LA+ut8zV3Vr5n3jFeO9y7HNgGrkegP+g5HH5OtgxE3vnb+vnveHfHQ7UO2Zv1sHaz3uYlgNAAAAAAAAAAAAABgvflNfgDy1WVgkAKg8dt9eNUtOGciyGqUykyD0RTg5y81fvReFN3i/I2fc2BtNJ3rFlPj3NaB+Z/ZOdG+PcDmadoPVc1bqs5n3kOXvDMCzkv2B0O9JxqJw7ek9x3/xcGaMU4Vc5jU+mzWbs1gNO8eAQAAAAAAAAAAAICREowGQL4mO92dS5Hr+JUdPg/L6DKwjwFlXASof8pb6nu+2O73uq2C1zJ+zoHuTc5G3POeiOOvjzh5Z8ODp4IdikTh/bFfiHjoeOvmARum6zltZTCaddl4ZThntSYDzksFbxaC0S5w9VdFXP3V8/cdPyrAtI3zz1hqfTatLCN2T9c7rzEOAAAAAAAAAAAAABgpwWgA5KvTICwFQOOXSUGdAvyRavj8tC14ffI/bH6MZypvqQJSwWjAKp39QsTvf+O5f97/PREP/GXDE0wHoy3ozz7YYlwDNlTTNXfVvEUw2trKMiwnxzYBq5Eaf/w4dZ9Dt8zf/tCxiHvfO2hTRqVqHNw6WOMcOxGTU3UvWPNzAAAAAAAAAAAAAAB58Zv8AOSry0LnVLAN45HLPbzvQ6tuATk7dKT5MUId8pa6P62Cy5pocf4sQyaAXvzF/x7x2fe3P346AHTrQPpzn/mPETsn218H2Bxdr9cqz5fJ+pD1kMv7BmD1UuvqtgH66+ym10QUibXE8aPDtmUt7D1jqf+m0yZnI3ZrBqMZ4wAAAAAAAAAAAACAkRKMBkA+dk5EPHTsiwVok53uzq0AaPxyCfx5z0vPFZ8xLo2fn5YFr9c+N+Lm/67ZMfqnvCWD0bb7vW6r4LVM+kmgf3/1r5Y8wdQ4V1V4f/bBJa8FbIam85Cqz1fsnwgXHq8c56w5tglYjVR/4Mep+1xyTcQTv23+vjt+XcByUsWYs3Wwxil26gejCZMFAAAAAAAAAAAAAEbKb/IDsHrlJOKPfyDiTVdH/OaTI/7DzRH3/1k6jKYVBUDjl1Gh8mc/sOoW0NiAz8/1L272+U77OrqXGj96XkoJRgN61SAYbXKm36YA66Fp2G9VcHHV+cyh6ZKwauC8VH9QtAzQX3eHjszfvvNgxF1vHrYto7f3jFWtzyLO/UGZusFoufyxEQAAAAAAAAAAAACAhgSjAbB6f/WvIm776YjJ2XNfP3Qs4l0viNg90d01FLmOX0738GP/dtUtoLGGRYBLFbw2PFaoQ95S96fY7ve6rYLRAGqaHueq+rPybL9tAdZD1+u1yvNltD6koQwDWnJ63wCsWKqPEow21/XfFnHxY+fvO37roE0Zj4pxcKtOMNrZiMnpmtczxgEAAAAAAAAAAAAA46TaHoDVO/76/dtOfzbi0+/o7hqKXNdARsXTWxevugU0VTZ9foYMRtM/ZS11f/oORmuzVGv8nAOba2qsqiq83z3Tb1OANdF0Tls1b6k4n3BhOmUeDZyX6A+El8+3fVHEja+Zv+/ud0acuGvY9ozZ+fDq4mD1Z8udiN1T9c7rvSMAAAAAAAAAAAAAMFJ+kx+A1XvgL+Zvf/hTHV5EAdDo5VTEtS0YjQ4Jdchb6v70XRTd6vwCHYCaiqlgtKIiGK08229bgPXQ9XqtKvDVHHq8cgzzzel9A7Bayf5gmQD9NXf4SGJHGXH7nD+IsumqxsGq4OqIiMnZ+sFo3hUBAAAAAAAAAAAAACMlGA2AzaDIdQ1kVMS1JRhtfJo+P0sUvBYNjxXqkLdkMNp2v9dtE4yWY8gEkL+q/mxyZph2AOPWeM1dNW+pOJ81/ojlOGf1PAHnpfoowWhJVz8j4qqnz9937Kh3FbXtPWNVwdUREeVO/WA0cyYAAAAAAAAAAAAAYKQEowGwGQQPjV9ORVzbgtFGJ+cizJyebfZL3Z++g9FaLdUyfs6BjMyEOmxVFN5PzvbXFGCNdDynrZojW+PTpZzXi8CwUv1Bm/DyTVEUEYePzN/34EcjPvfBYdszdlsHqz8z2YmYnK53Pu8dAQAAAAAAAAAAAICR8pv8AGwGBUBrIKNC5S3BaOPT8PkpiurPpA9u9nGhDnlL3Z++i6JbnT+jfhLI1+wYVwhGAzrQdM1dFUQlGG19ZRlC5p0RcF6qP1jmPdEGuOm16QD5Y7cO2pT8VYyDVeuziIjybMTuqW6uBwAAAAAAAAAAAACQKcFoAGwGwWhrIKMirm3BaOMz5PMjGG2tJIPREgW/XWkTjJZlyASQn6bBaGf6awqwPhqvuZcNRrPGp0Pm0cB5qf5gqQD9DXDpdRHXvWj+vjt+tUGI1ybbe8a2DlZ/dLJT/7+pORMAAAAAAAAAAAAAMFKC0QDYEAqARi+nIq4twWjrb8iC14yebfZL9T1tgssaaXN+gQ5AHTNj3FZF0OPkbH9NAdZH5+u1quA04cLjleOc1ZoMOC8VjObHqZUO3zJ/+9kHIj7x1kGbkreKcXCrIrg64twarXbYXI7jLgAAAAAAAAAAAABAtRq/XQ0AayCnUC1ayqiIa+vgqltAU2XT52eJYLSi4bEToQ5ZS4VuFBVBQstqVXSdUT8J5Gt2nCoqXg1NzvTXFmCNNF1zVwWfVZxPMBpd8s4IOC/ZHwwZoD9ST/y7EQcfHXH28/v3HTsaceOrh2/TmJxfp1WtzyIiyp2Iyel65zXGAQCstaIonhERT4mIJ+5t+mREfLQsyw+vrlUAAAAAAAAAANANwWgAbAYFQOOX0z1UhD9CGQdGeZ4yl+h7cgxGaxwACGym2VCHipCHydneWgKskc7Xa1XBaBmtD2koxzlrjm0CViPVHwhGq7R9ScRN3xVx28/u33f32yNOfirisuuHb1duqt7d1PmDHOVOxO6pmtczZwIAaKMoisMR8bUR8ay9/31GRDxq6iN3lGV50wqaFkVRHIyI/yEivjcinpz4zMci4uci4ifLsvSSHwAAAAAAAACAUWpRbQ8AY6QAaPRyCvwRZDVCDZ+fYpmC16bH6p+yNkl8v7cJLmui1fkz6ieBjM2OUxXjkGA0oI6moRtV67uq81mTjVdOa/vzhMYA56X6qL7fAayLQ0fmby8nEbe/Ydi2jM7eOq2o8TfNJmfqB6N5VwQAUFtRFM8viuLtRVF8LiI+HhG/GhE/HBHfGBeGoq1MURRPiYgPRMS/iEQo2p6bI+LHI+L9RVHcPETbAAAAAAAAAACga36TH4DNoMh1DWR0DxXhj8+gxfcNg9E8T3lL3Z9iu+cLC0Zjxs7JiLvfGfHAR/IMFGE4y97/2fDPqnny5Mxy1wM2Q7nT8fkEozEgcyvgEanxZ5kA/Q3y2L8VceXT5u87fqv+NiIq393Ued/0X360fjCan4sAADTx1RHxLRHxmFU3ZJ6iKJ4QEb8XEc+Y2fWxiHhrRPxmnAt0m/bMiHhHURTX9t9CAAAAAAAAAADolmA0ADaDAqDxy6lwThH+Bhiw4NXzlLnU+NHzUqqwVGPK3e+K+I1rI971gojf+opz/7tzYtWtYlWWntc2DEYrzy55PWAj1A3neETV+q5ivzX+iGW0tn+E5wnYk3r/OBsuzHxFEXHoyPx9D3wk4r4PDdueUdl7xrYvqf7oZ98XcerTNc9rjAMA6MDp2B84NqiiKLYi4i0RcePU5k9HxIvKsnxKWZYvL8vyZWVZ3hwRL4mIu6c+dygi3lwUFjYAAAAAAAAAAIyLansANoOi6TWQUfH0RJDV+Az4/DT9nXL9U95SwXXFdr/XbROMllOAJN3ZPRXxnpddGIT2mXdF/NmPrK5NrNbSgZoNg9EmZ5a8HrARug5GqwxttCajQ9ZkwCNWFI6+Tg69Lv1O49itgzYlTxVzoK0DEdf/nerT1J17eVcEANDU2Yj404j4uYj4voh4ZkQ8KiK+d5WNiojXRsTXTX19X0Q8pyzLd8x+sCzL342I50TE/VObnxMRr+61hQAAAAAAAAAA0DG/yQ/AhlDkOno5FSorwh+hpkWAy/zB7KbBaJ6nrKX6nr6D0Vot1RS7rqVP/oeInYf2b7/tp4dvC3lYdtyYDfCsOt/k7HLXAzZD42C0KoLR1leOc9Yc2wSsRCpEqmkI/ia77IkRj3/B/H13/ErE7ulh2zMW08/Y1/50xBVP7ua8Ob1TBwDI39GIuLIsy68py/K/Kcvy35Vl+SdlWa70JXlRFNsR8WMzm3+oLMvbU8eUZXk8In5oZvM/L4o2f5kJAAAAAAAAAABWwy+7ALAZFACtgYwKlRXhj0+qsDVlyIJXz1PeUven77qBVufPqJ+kO7e/Yf52YVWba+lxY3aMq5gnT84seT1gI0waBqNVzc+r1vDm0HTJOyPgEanxyY9TGzl8ZP72M/dFfPJtw7ZljC6/IeJb/7yjk3lXBABQV1mW95dl2XX6fxe+ISIOTX39yYj4pRrHvX7vs+c9OSKe02G7AAAAAAAAAACgV36TH4DNoGh6/HIqVPY8jdCARYBNQ9VyerbZLxmMtt3vddsEozUNAGQcJsYcZi07bsyMU1XjkBA+oI7djmtGK+c15tCjleWcNcc2ASuRmhsPGaC/Dp708oiDV87fd/zosG3JTXIcnHnGDlwa8ew6WRdV1zNnAgBYA6+Y+foXy7L6Fxb2PjM7qXxlZ60CAAAAAAAAAICeCUYDYLWGKohVALQGMipUFoy2AQYsePU85S1ZFJ1hMFpO/STd0Ucwa9lnYjbUQTAa0IXGwWhLBp8JDh2xDOes3hkBj6gZWsViBy6LuOE75u/71G9HPPyZYdszVode28FJjHEAAGvgxTNfv7vBsbOffclSLQEAAAAAAAAAgAEJRgNgtQYrPlUANHo5FSoLqRmhIYvvGxbLep7ylro/rYLLmhCMxp5yZ9UtIDdLhwHNBqNVnO/kXUteD9gIjYPRKlSt/8yh6VJO7xuAFUusq3t/B7CGDt8yf3u5G3HHLw/alLw0fHfzpJcveTnvigAAxqwoiosj4uaZzR9ocIr3zXz9lKIoLlquVQAAAAAAAAAAMAy/yQ/Aig1UfKrIdQ1kVMSlCH98GhcBNgw3W+ZY/VPeksFo2/1et03RtWLX9WTMYdbSz8TsOFUxDn3855a8HrARmgajVc1bKufI5tDjleOcNcc2ASuRHH+WeU+0oR73nIgrZvMb9hw7OmxbxqBIPGPblyx5YnMmAICR+9KImP6h5D1lWX6h7sF7n/3s1KbtiHhqR20DAAAAAAAAAIBeCUYDYLWGCgQSPDR+Od1DITUjlHGhu+cpb6m+p01wWROtzp/xc0575c6qW0Bulh03Zgvuty+tPubMA8tdE1h/k4bBaNUnXLzbHJou5fS+AVixxLo6FVpFWlFEHD4yf9/n/yzi/j8dtj3ZaPjuZuviJS9njAMAGLnZtOE7W5xj9pintGwLAAAAAAAAAAAMSjAaAKslGI3aMgr8UYQ/Qg2fn2UKXpse63nKW+r+FNvzt3fGUo09+gj2WXZeOzNOHf771YecumfJawJrrSwjdpsGo1XMz8uq/cbH0aq6tyuRY5uAlUj2UdborRx6XXrfsaPDtWMUEu8Tty9Z8rzGOACAkXv0zNdtXtbPHnNVy7YAAAAAAAAAAMCgDqy6AQBsuqECywSjjV5OxdOK8DfAEsFoTY8V3Ji5xP3pOxit7fnLcrlgP/IzWTDmuN+badl5yOwzc8WhiGufF3HPe9LHTJoGHgEbZXKmxUFV67uKObI5NF3yPAGPSIxP1l3tXH5jxOO/OeIz79q/7/Y3RHzNv4zYOjh8u1ap6TvuZYPRjHEAAGN3xczXD7c4x+wxj2rZlgsURXFtRFzT8LAnd3FtAAAAAAAAAAA2g2A0AFZrqMIcBUBrIKN7KBhtfHIK1pvlecpb8v5s9XvdoufzMx6L+ohy0n9IH/lZetyYE+rwvN+MeNOj04fsCkYDFuijj6haw5tDj1iGazPvjICIindHgtFaO3RkfjDa6XsjPvU7EU966fBtylLiGdu6eLnTGuMAAMZuNhitzYu42WC02XO29f0R8aMdnQsAAAAAAAAAAPZRbQ/AaglGo66cgq0U4Y9Q0+dnmYLXhsd6nvKWuj9bPYdRtQ5Gy6ivpBsLg9H0Hxtp0kMw2kVXRbzyM+lDBKMBi7TpI6rWd4LR1liO89Uc2wQMb0FfILy8vRu+PeJAInfh2K2DNiUPDcec7UuGvR4AALlrM8EzKQQAAAAAAAAAYJT8Jj8AKzZUYJlgtPHL6B4qwh+fnIL19sno2Wa/ZChH30upluF8WT/rtCIYjX2WHDeKRP9yybULLnl6uWsC62334e7PWRmMZg5NhzxPQERFX7BMgP6GO3B5xA2vmr/vU2+LOPXZYduTq9Q6bdlgNGMcAMDYPTTz9aUtzjF7zOw5AQAAAAAAAAAgSwdW3QAANtzuqWGuowBo/HIK+xFEM0INn59UMWIfx3qe8pa6P8V2v9ctijhXeN2078uor6QbgtGYtfR9XzBObV8WsXty//ah5uzAOLXqI6rmLBX7jYHjldPa/hE5tgkY3qK+QDDaUg4diTh26/7tk7MRd/xKxJf+48GbNBrLBqMZ4wAAxi7nYLSfiYg3NjzmyRHx1o6uDwAAAAAAAADAmhOMBsDqTM5GvOeVw1xLMNoayOgeKsJnoYbFshPPU9ZS40ffwWgREcVWi/5GwevaKXcW7NN/bKReg9EuEYwGNDfpoY+oWsMbA+mSd0ZAxOLgxmJruHaso2ufF3H5TREnbt+/7/jRzQpGSz5niXXa1sVLXs8YBwAwcg/MfH1Ni3NcO/P151u25QJlWd4TEfc0OaZY5o+TAQAAAAAAAACwcfwmPwCrc88fRHzuA8NcS9H0+C0qThya52mEmj4/Q/5StgLFrKW+34coim5zjZz6SrqxcMzRf2ykZechiwqPti+Zv10wGrBIqz6ias5SFYxmDByvHOernicgYnFfoHh/KcVWxKHvmb/vvg9FfP4vhm3PmKTWaHWZMwEAjN1tM1/f2OIcs8fMnhMAAAAAAAAAALIkGA2A1fnI/zXctRQArYGMiqcFo41P47CoZQpeGx7recpbavwYIhit1XIto76SbizqIyb6j4209Lx2wTi1dfH87ZPTS14TWGuTnebHVM3Pq/o6c2i65HkCIhaPPcX2cO1YV6lgtIiI40eHa8fKNXxvs2wwmvdEAABj9zcRMf3i4tqiKB5V9+CiKK6MiMdNbdoNwWgAAAAAAAAAAIyEYDQAVufu3x/wYoLRRi+ncDtF0yOUcRGg5ylzqWC0AYqitw60OCjjZ512FoXN6D8209L3fUEwWqrofvfUktcE1lrZIhit+qQVu42B45XhfFXYLBBREYzmx6lLe9STI6557vx9x3+pXdDqWkms05YNRsvpnToAAI2VZXk6Ij4+s/nZDU7xnJmvb9s7JwAAAAAAAAAAZM9v8gOwGRQArYEVFE+nih4VTY9Qw+enWBAa0/Wx+qe8pUI3hiiKLloEo5UZBk2wnEXBL0JhNtOy933ROCUYDWijVTBaVfBZxRzZHHq8cpyvmlMBEbHwD2sIRuvG4Vvmbz91d8Sn3zFoU1an4Ti4dfGS1zNnAgBYA7878/XzGxw7+9nfWaolAAAAAAAAAAAwIL/JD8DqtAl8aUvR9Pit4h6mCs8UTbNQ02A0z1PWkn3PAEuprTbjZIZBEyxHMBqzlr7vgtGAjk3aBKNVqAxGMwbSIc8TELG4LxCM1o0bXhWxfen8fcePDtuW3KQCrFNrtLpyDCQFAKCpN898/bqiKLarDtr7zHdXnAsAAAAAAAAAALLlN/kBWJ2tg+2PveJwwwMEo43fCoq4BKOtj8ZFgA3DzZbhecrXoudmiKLoVgGiCl7XjmA0ZvUZjJaa+0xOL3lNYK2ViWC07csirn5G6qCKkwpGW18Zzlc9T0DE4lDO6swB6jh4ZcSXfPv8fZ94S8SZ+4dtzyo0fUe5bDCan4sAAKyDP4yI4/Q6OiYAACAASURBVFNfPyn2B57N890R8cSprz8eEf+pw3YBAAAAAAAAAECvBKMBsDqtAl8i4ut/NeJb3t/smEWFbYzDKu7htmC09TFk8X3DUDX9U74WFkVnGozWOASQ7AlGY9ay40axYJxKFd3vnlrumsB6mySC0bYOLO5zFqnq64yBdMnzBERUjD1+nNqZw0fmb5+cibjj14ZtS1YSc6ZUeHVd3jsCAGSnKIpy5p/nL/p8WZa7EfGjM5t/siiKmxZc46aI+L9nNv9IWZogAgAAAAAAAAAwHn6TH4DV2TrY7rjLbwzBQ5toBWE/qcIzRdMj1PD5aRvg0OZYz1PGVlwUvdUyQJT1UibCZiL0H5tq6fsuGA3oWGqsWhTyWhnmWrXfGn+8MgzyNacCIlYfjr4prv2miMu+ZP6+Y7cO2pTVaDgOptZofV0PAGDDFUXxpKIobpr9JyKeMPPRA/M+t/fP43po2hsi4oNTXz8mIt5XFMW3zPn/8KKIeH9EXD21+X0RsclJxAAAAAAAAAAAjJBKewBWp20wWrEdjYPRFE2PX2XhfA+2BaOtjcbPzxLBaE15nvK1sCh6u//rLwoTSVLwunYW9RGCXzeTYDQgN5NEMNrWgUj3ORVzlqoxzhyaLnmegIjFfYFgtO5sbUccel3EX/6f+/d97oMRD/x1xFVPG75dK5eYMy0bjOa9AQBAU++NiBtrfO6JEXE8se9oRNzSVYMiIsqynBRF8YqI+EBE3LC3+bqIeHtRFLdFxF/GuUnlV0TEzTOH3x4RryzLVfzCBQAAAAAAAAAAtOc3+QFYnVaBL3EujKZoGFr0hb9pdy0ysoIiri3BaLTRsH9SoJivhcFoAyyltgSjERXBaMajjbTsfV80j07NfQSjAYuUiWC0tmv+iOo58sQYOFo51uCaUwERsfDd4xDh6Jvk0JH0vuNHh2vHSjQcB5cORstw3AUAoJWyLD8dES+MiA/P7HpKRLw8Il4W+0PR/iQiXliW5Wf6byEAAAAAAAAAAHRLMBoAq9Mq8CX2CtEaBg/9zb9udy3ysYoirm3BaOuj6fPTsI9ZhucpYysORmsTJqLgdf0sCobRf2ympQM1F/RfBy6bv333xJLXBNbawmC01Ly6Ys5S2dcJFx6vDOer5lRAxOrD0TfJlU+NeNyz5+87/vrNDEBNBVinwqtrM2cCAFgnZVl+NCK+LiL+l4g4tuCjH9/7zN8uy/JjQ7QNAAAAAAAAAAC61jKRBgA6UBxsedx2ulBokcnZiK2W1yQDKyjiShWeKZoeoSGL7xv2T56nfK26KLpNMFqOQRMsRzAas5a974vm0QeumL/97IPLXRNYb5NEMNrWgXZr93MnXbzbGEiXPE9AREUop2C0zh06EvHZ9+/f/vAnIz7zrojrXjh8m3K0fclyxy8drA0AsFnKsrxpgGss9Re6yrI8GxE/HhE/XhTFMyPiqRFx/d7uT0XER8uy/NByrQQAAAAAAAAAgNUTjAbA6rQNKSu2o3HwUIRgtLErVxD2s3XR/O2Kpsen6fPTOsChzbEKFLO16qLoLcFoRCy8p8ajzbT0fV8UjPao+dsFowGLlIlgtEUhr1Xz88r9xsDRWsXavornCYhY3BcMEY6+aW58dcSHfjBicnr/vmO3rm8wWtNxcNlgNO+JAADW2l4AmhA0AAAAAAAAAADWkt/kB2B1WgW+xF4hWovQIoWuI7eC8Kjti+dv9yyNUMZFgBPPU74W9DtDFEUvChNJyTFoguUsCugzHv3/7N15nB11ne//d50+3emEbE0WCGFJmsVABJFlDCEoRFCEi6AyUURJ1JlRYO7AOIA63gDKHRnc8OfAT9QLphkUETEgLsAV2VFAFgmGRbISMHtCtt5yTt0/Omm6T9e3Tu3beT0fjzyg9m84RdW3vqc+79OYwn7ubgGezYZgtJ0EowFwUTUEo5XKCvTs3rdT98WuAbaAT/SpAEju9xarKbl2NIqWsdK+ZzkvW7VQ6nkz2fakztBnssrhxqDoMwEAAAAAAAAAAAAAAAAAAADIKYLRAADpsZoDbtfkHuhgQhFQvqUR9lMiGK1xBQ1wCLAt51N2uRZFJ/AoFShAlGC04nH5TLl+NKbQn3uAYLRegtEAuDBdl1xDXg33N7sqbX1VqnQHOyZyIIP9Vc4nAJJSD0dvRO3znOdXOqWVtyfalOT4vA9alnmM2tPh+E4EAAAAAAAAAAAAAAAAAAAAQD7xJj8AID2lEMFoQUKLKHTNuRSKp5sIRisOv+dPiGA038GNFChmlmvxaAKPUq5hIgZphEgiPRQ4N6bQn7vLfapsCEbbSTAaABf2Tuf5Vlm++tWr7pZ+MVG6+2Dp9V/WOSbPZLlUrUgbnki7FUNxPgGQ0h8DaER7nyINn+S8bFlHsm1JnUufqak1xH4ZJwIAAAAAAAAAAAAAAAAAAACQT7zJDwBITylA4IsUIhiN8JBcS+PzKxGMVhhZDovifMout+uOldFgNApei6XevY/rR2MK+7m7BXg2m4LRtoU7JoBiMwWjuT7z1/RZtrwiPfJhqXuDx2PyfJ9Lf/la2i1wRp8KgOR+LUhiDKARlZqkKZ90XrbuUWnrq8m2JxEBxm3CBKPRZwIAAAAAAAAAAAAAAAAAAACQU7zJDwBIj9UccLsm90AHEwpdcy6FsJ8mgtGKw+f5E+Qa89bG/lbnfMqwlIPRAgWIEoxWKFVD0MxuXD8aU+jP3eU+VTYEo1V7pe6NIY8LoLBM9yurbO5X1wYXr7jNHLDmuD33wFxatTDtFjjjfAIgpR+O3qja55qXLbs5uXakzW0s0vTjHZ4QjAYAAAAAAAAAAAAAAAAAAAAgn3iTHwCQnkCBL+oLRvMbPCSJIqCccytOjEup1Xk+RdM5lOGwqDTObXjj+tkk8ChlBbhP1oaMIN/s3jrLuR81pDiD0ZoNwWiSdMd46fVfhzw2gEIyBZqVyrue3522qelnLbo8mmMi2zY9m3YLnNGnAiDJPRzdcD9DeGMOk/Y81nnZ0o7ijZsFGbdpMoxRx3U8AAAAAAAAAAAAAAAAAAAAAMgAgtEAAOkJEvgiSVZJgYLRKHTNuRSKuJpHOs+vdCfbDqQgSPhiwG25NmWXW/GtlcCjVNAAURRHtU7oC9ePxhQ2GMAKGIwmW3rsY1LX+nDHB1A8pvuVVTY/94cNNqv2hNseGIg+FQAp/TGARtY+13n+jpXS2oeSbUtqXJ7TQgWjFSxYDgAAAAAAAAAAAAAAAAAAAEDD4E1+AECKAgZdWU3ugQ7Gw1HommtpFHGVTcFoncm2A+HZCQbr+b0+cW3KsJSLogMFiKYQIon4VHvdl3P9aEyhP3eX+1TZLRhN0s5tDRRMAMAzU8iZVTYHvYYORqtzjwT8qNKnAqA6/Wy+To3VAR+TSi3Oy5YuSLQp8QswblMKEYzGOBEAAAAAAAAAAAAAAAAAAACAnOJNfgBAeoKGOlhNcg10MB4vhWAtRCiFIi5jMFpXsu1ABPyePwGuMUFxbcout8+GYDQkoV5oDMFojSnWYLQ96m/etSbk8QEUjul+VSqb+zNVgtGQIfSpAEjpjwE0smHjpMlnOC977Q6pd1uy7UmFy3Na07AQ+2WcCAAAAAAAAAAAAAAAAAAAAEA+8SY/ACA9QcOAAgejUeiaa3YKRVzNo5znV7vTaQ+C8/t5WWGC0Xxuy7Upu1zvUwk8SpUCBKNxbSqWeqEvXD8aU9jP3e0e19Raf/tqT7jjAygeU8iZ5RKMVi/8s+4xCUZDhOhTAZDqBKM1JdeORtU+z3n+zu194WiNzMtzmgk/yAAAAAAAAAAAAAAAAAAAAAAgpwhGAwCkJ2jhqdUULLSIIqCcS+HzK480L6t0JdcORCDDYVEU4WeXa1F0Ao9SpiARVxk+1+FfvdAY+jaNKfR9w6UfbZWkUov75tXukMcHUDim+1WpbA56NYWpeT4mwWiIEM9kACS5jj0mMQbQ6Ca9X2qd6Lxs6YJEmxKvAOM2YYLRGCcCAAAAAAAAAAAAAAAAAAAAkFO8yQ8ASE+YYDS3QIeoj4dssFMo4iqPMi+rEoxWbAGuMUG35dqUYSkXRZuCRFxR8Foo1TqhL1w/GlPoQLw696mm4e7LKwSjAahhCjmzyuag13rhn3WPSTAaIkSfCoBU51rA16mxKzVLB5zrvGztg9K25Um2JnluPwRTChGMlsaYOgAAAAAAAAAAAAAAAAAAAABEgDf5AQDpSTwYLWyIBNKVwufXPNK8rEIwWr4kWAToVsjohGtTdrl+Ngk8SpmCRNxQ8Fos9UJjCPFoTGE/93r3qXrBaNWecMcHUDym+5VVNge9EoyGLKFPBUByHwNIIhwdUvs887JlNyfWjFgFGbdpGhbmgCG2BQAAAAAAAAAAAAAAAAAAAID08CY/ACA9QcOArJL/4CGJQte8SyPsp+wWjNaZXDsQnu/zJ8A1JiiuTdmVdlF0kGA0Cl6LpV7oC9ePxhT6c68XjNbqvrzaHfL4AArHFHJWKpv7M1WC0ZAh9KkASC5jAFawsWj413aE1Hak87JlHQUPg3c5x+o9o7kq8n8zAAAAAAAAAAAAAAAAAAAAAEVGMBoAID1BC0+tkoKFFgUMYkNGpPD5lUeZl1W6kmsHIpBkEaDP6xNF+BmWcjBaiWC0hkcwGpzEHow23H15hWA0ADVMIWdW2dyfMYWpeWUTjIYI0acCIMk4BpDE8z/eMnWe8/xtS6V1jybalHgEGLcphQhGK3SYHAAAAAAAAAAAAAAAAAAAAIAi421+AEB6ghSeWk27/hkgGI1C13xLo4ireaR5WaUzuXYgAj7PnyDXmLc29re6TWhjZrl9NkkURlsBgtEoeC2WeqEx9G0aU9j7Rr17XL1gtGpPuOMDKB7T/apUNvdnTGFqXtULDwX8oE8FQJKqhmsBwWjJmvJxc/9hWUeybUmUy3NaoOD83Rh3BAAAAAAAAAAAAAAAAAAAAJBPvM0PAEhPkFCH3cFoQZiK25ATKYT9lEeZl1W6kmsHUhAmGM0nivCzy/U+lcCjVKDCV4LRCqVe6AvXj8YU+nOvF4zW6r682h3y+AAKxxRyZrkEo9UL/6x7TILRcifLAb70qQBIMgdI8VVqolonSJNPd1624mfSzh3JtidyAe6HYe6hWb7/AgAAAAAAAAAAAAAAAAAAAIAL3uYHAKQnSOFpmGA0Y3EbciFIkF5YTcNlDA8hGC1fkiwCtHyGqlGEn2Eu1x0rgUcpU5CIKwpeC6VeaAzXj8YUezDacPflFYLRANQw3a+ssjnolWC0xpPGM71X9KkASObrVKjxaAQyda7z/J1bpdcWJtuWpPgdT/SMcSIAAAAAAAAAAAAAAAAAAAAA+UQwGgAgPUkHo1HomnMpFHGVmqSmVudllc5k24KQ/J4/cRUjOslwQECjcwtvyGwwGgqlXuhLlgNGEJ+wfdp6Bfemvs9u1Z5wxwdQPFVDyFmpbO7PmLbxyiYYLX8y3G9hvAiA5BKMxlepidvndGnYOOdlyxYk2pTIBfrxhjDj4gSjAQAAAAAAAAAAAAAAAAAAAMgn3uYHAKQoQFFsmEI0wkPyLa3Pr2m48/xKV7LtQEhJFgH6DFWjCD+7XK87CTxKlQIEowUqsEVm1QuN4frRoML2ieoFoxn6PrtVukMeH0Dh2Ib7lVU292cGbhPkWa9eeCiyJ8tjMvSpAEjmawHBaMlrapEO+LjzstX3S9tfS7Y9iXB7Tgsx1sM4EQAAAAAAAAAAAAAAAAAAAICc4m1+AEB6qgEKT62m4Mej0DXnUiriamp1nv+HuRTj54nfIkDLZ7jZ4I39rR7kWohkuIU3JFEYbQUIRkvrWol42HXuM/RtGlPYz73ePa5eMFqVYDQANUzBaKWyuT8zMPyz2uP/mDyL5Q/BaAAyz3Sd4qvUVLTPMyywpeX/nWRL0hcq3IxxIgAAAAAAAAAAAAAAAAAAAAD5xNv8AID0BCk8DRWMluEiXNSX1udnCkar7JCe+bdk24KC4tqUXSkHo5UCBKOFKpZF5lQNQTO7EeLRmEIHatYLRjP0ffqPHyDACECxme5Xlksw2sAwtUpXgGMSjJY/GX7uoU8FQDKPPZZCjEcjuLZ3SmPe7rxsaUeOxz8SbjffiQAAAAAAAAAAAAAAAAAAAADIKYLRAAApClCUEyoYjULXfEu4aGxke98/S8PM66z4KcVlueH3/KkTGuO6qc9tuTZll+tnk8CjlClIxFVeC4PhqF7oC9ePxvPaL6SXrw25k3rBaMPdl1e6Qx4fQOHYLsFopqDXsMFoNsFouZPlZ2f6VAAkl+sUX6WmwrKk9rnOy7a+Im14Itn2xM11PDHMWA/jRAAAAAAAAAAAAAAAAAAAAADyibf5AQDpCVJ4GioYLcNFuKjPTriIa7+z+/7pds51r5O61ibTHoTk8/zxG242iM8uNkX42eV237ASeJQadUiAjSh4LZTNz7kv5/rRWDY+Kz06J/x+6t3jynWC0aoEowGoUTUEo5XK5qDXathgtCrP+HmT5c+LPhUAyXwtSOL5H86mnGsem126INGmRCfAuE3rxBCHY5wIAAAAAAAAAAAAAAAAAAAAQD4ZKtNQNJZlNUs6XtL+kiZJ2ibpDUnP2ra9POJjTZV0pKR9JI2U9DdJKyQ9btt2b5THApBziQejUeiab0kVUVvS/nOkI67aNVnnnMtycTfekmQRoN+CWc6h7HINRgsTnufR3rP9b0PBa7EsvsZ9OX2bxrLqzog+8zrXr2ET3JdXeyJoA4BCsQ3BaFZZsgz9KTtkMJokVXulpmHBtkUKMvzcQ58KgGQeAyAYLT3DJ0mT3i+98Zuhy1b8VDr6O1JTa/LtioXLc1r7POn5+QH3yzgRAAAAGptt26pWq7L5DhVAwizLUqlUkpXEuyUAAAAAAAAAAAAAUFAEo6XEsqx2ScdKOmbXP4+SNGrAKits254SwXEmSPqKpI9K2tOwzuOSvm3b9h0hj3W2pM9LOs6wykbLsm6TdLlt2+vDHAtAQQQJA7JC3LoodM23OF9UnTBLOvG3Uufr0rDx0rBxby2rG8bHC7T54PdzCvFiot8AR65NGZZyUXRTq9Q8Rup908dGXJMKo+rh2sD1o7G88NWIdlTnHrf3Ke7LK90RtQNAYZiC0Upl83N/dcA2VYLRGkKWA6HpUwGQZB4DCPFDHQivfZ5zMFrvm9Kqu6QDPpp4k0IJMsY9Yt8wBwyxLQAAAJA/tm2rq6tLW7du1datW9XTw4+9AEhXS0uLRo0apVGjRqm1tZWgNAAAAAAAAAAAAADwgZ85T5BlWSdalnWvZVkbJC2R9FNJl0h6jwaHokV1vA9IekHS+TKEou0yU9LPLcu6xbKsPQIcZ6RlWbdKul3mUDTtasP5kl6wLOv9fo8DoICCFJ6WwmR6ZrgIFx5E/PkNn9RXWHfM9X2haM0jpdFvGxyKJtUPQKKAGrUIRisOU3hDkkXRY6b73ICC18KoegifynLACLKrXohQ2xHSO79lXu7l3ATQWKqGYDSrbA43HximFjRw0e4Nth3SkeV+i5dAWgDFZ7xO8VVqqiafITWPdV62tCPZtsSqTlH0u24Ktts4f2wEAAAAyJgdO3ZoyZIlWr58uTZs2EAoGoBM6Onp0YYNG7R8+XItWbJEO3bsSLtJAAAAAAAAAAAAAJAbvM2frCMlvU/uIWWRsCzrREl3Spo4YLYt6Wn1BZj9X0nrazY7V9KtllUvAWbQcZok3SbpYzWL1km6b9exntHghIa9JN1lWdYsr8cBUFBBwoBMRdVxHQ/ZEXUR1yH/U5rxI+mQC/pC0UzqBSBVKcbPB7/nT4hfaPUdjJbhgIBGl4Wi6Kbh/tan4LU4bEPIzKB16NsggKbW+usc+nlzOFqVQiIANUz3rFLZHG4+KBitK9hxeRbLlyw/99CnAiCZrwXevzJDHJpapSnnOC9bfa+0441k2xNawHGb5qC/r5Xh+y8AAAAQoR07dmjlypXq7WXMEEB29fb2auXKlYSjAQAAAAAAAAAAAIBHvM2fDd2SlkS1M8uy9pX0C0ktA2Y/Jmm6bdvH2LY9x7bt90naV9JFkga+EXSGpP/t43D/Kem0AdO9kv6npH1t237/rmMdLentkv4wYL1hku60LGuSj2MBKJpAwWg+A4cGHY8ioHyL+vPzGHxFMFr+dW+QNj6b3PH8FsxShJ9dpvtGkkXRXgKMBiEYrTCqBKMhJiWP15WRU5znV7ojawqAgjDds6yyOdy8SjBa48nwmEzn62m3AEAWZGEMAM6mznWeb1el5T9Oti1xseqMVZeag+2XAH0AAAA0gN2haDb9XwA5YNs24WgAAAAAAAAAAAAA4JGhMg0x6pX0F0l/kvTUrn8uknS8pAciOsZXJLUNmH5c0sm2bQ+qMrRtu1vSdy3LWilp4YBFn7cs6/u2ba9wO4hlWe3qC1Yb6O9t276rdl3bthdblvVeSfdLOm7X7HGSrpD0OQ9/JwBFFCSoLEwhGuEh+Rb1S6z1is3616tzztkU42dWtSI99VlpyU3yHRbl9fxw3NZngCPXpgzLQFG078JXXvgvDJtgNMTEa+BiaZjz/CrBaABqmO5ZVlmyDP2pgdtUCUZrCFkOq+98o+/5sRQijB9AAZjGALg2pG7c30mjp0lbXhq6bNkC6dBLwo3lJSnoGLcVMBiNcSIAAAAUnG3beuONN4aEojU3N2v06NEaOXKkmpubZeXlmQFAYdi2rd7eXm3btk1btmxRb2/voGVvvPGGDjzwQK5PAAAAAAAAAAAAAOCCYLRkdUi6oTagTFJkX25blnWwpIE/nd4jaZ7TMXezbftOy7I6Bmw3TH2BZZ+uc7grJA18E3+BUyjagON0WpY1T31BcC27Zn/Gsqyv27a9tM6xABRRkDCPUMFoGS7ChQdRF3F5DUarU/xIMX52vfQtacmNATdOMhiNa1NmGT+bBIPR0LiqBKMhJp6D0Vqc51d7omsLgGIwBaOVyub+1MD7XIVgtIaQ9eeeTc9K445JuxUA0mS6TiUZjg5nliVNnSv9+UtDl725WNr4dAGu4XXGIn0H5+9GMBoAAACKraura1DYkCSNGjVKkydPJmwIQOqam5s1YsQITZgwQa+//rq2bt3av6y3t1fd3d1qbfX43S0AAAAAAAAAAAAANCDe5k+Qbdub3ALKIvJxSQPTOH5h2/ZfPWx3Tc30HMuyjN+4W5Y1XNLZdfYxhG3br0i6c8CssvraDKARBQrzCPHiIuEh+ZZWETXBaPn11++lc1y/BbNcm7Irj0XRNgWvhWF7uL9w/UAQXoPRmoY5z7crUpVzD8AApjBPq9z3x4kdQTCaKZANGZXxYLQtL6fdAgBpMz5fZXgMoJFM/aR5PGbpgkSbkoqgwWiMEwEAAKDgBoYMSX0hRISiAcgay7I0efJkNTcPfr7fsmVLSi0CAAAAAAAAAAAAgHzgbf7i+VDN9I+8bGTb9ouSnhgwaw9J73PZ5P2SRgyY/oNt2y95auHQNn3Y43YAiiZI0FWYMJq0grUQkaiLuDy+CFvvnCMYLbu2Lw+xcYgXpeuF6dUi2CjDchiMFvm1EqkxhcwMxPUDQXgNRisZgtEkqdodTVsAFIMpoKzULJU8BKMFvabwjJ8vmf+8st4+ALHLYzh6IxkxWdrrZOdlK26VKnl5RjGN29QZiwwajMY4EQAAAAquNhht9OjRhKIByCTLsjR69OhB82qvYQAAAAAAAAAAAACAwXibv0Asy9pb0jsGzNop6TEfu3iwZvoDLuueWmdbN4+or227vdOyrL18bA+gKAKFeYR4gZHwkHyLuoja68uw9UKubILRUMNvMBoF+NmVy6JoCl4LwxQyM2gdrh8IoGm4t/VKLeZl1Z5o2gKgGExhnla570+9bSpdwY7LM36+ZL3fwvkEwDgG4HecB7Fpn+c8v2ej9MavE21K4kbsF2y7rN9/AQAAgBBs21ZPz+DvK0aOHJlSawCgvtprVE9Pj2ybdzwAAAAAAAAAAAAAwCTLFf3w7+0108/btr3dx/aP10xP93GsP3g9yK42LfJxLABFZNsKFN4SJoyGIteci/pFsIiC0aoEoxVSmF+R9nud4tqUXcbi0Qw/RvHSbHGYQmYG4vqBIJpaPa43zLys0h1NWwAUgynMs1Tu+1Nvm6DBaAQM50vWg1my3j4ACchjOHqD2fcsqXm087KlCxJtSnABx2322D/Z4wEAAAA5UK0OfY5rbm5OoSUA4E25PPQ7E6drGQAAAAAAAAAAAACgD2/zF8thNdOv+tx+SZ39DXRogscCUESBC05DhBVRNJ1vkRcpez2X6nSXCEZDrXpherWqBBtllum6k+miaApeC8MUMjNoHa4fCKDkMRit1GJeViUYDcAApnuWVe7746QaQTAaQVY5k/HPi/MJQB7D0RtNebi0/xznZW/8Rupck2x7ouTlRxr2/VCAHTNOBAAAgOKyHX4wygrzA2gAELNSaeg4k9O1DAAAAAAAAAAAAADQh7f5i+WgmumVPrdfUTM9zrKsttqVLMvaU9KeIY9Vu/7BPrcHkHeBgzxCvMRIeEjORfwimNcXYkt1Qq4IRiuoENcav8FoWQ8IaGgEoyFFXu4v9G0QRJPXYLRh5mXVnmjaAiD/ejaZg81KLsFolR3StuW7/j1oMBr3wVzJevAY5xMA03Ug02MADah9nvN8uyKt+EmiTQkkTLHz2MOTPR4AAAAAAAAAAAAAAAAAAAAApIi3+YtlbM30Wj8b27a9TVJtJeIYD8fZYdv2dj/H0tC2OR0HQJEFLTgN8+uuWS/ChbvIi7g8nkv1Qq5sgtGKKUwwms8uNgX42WW8b2T4MYqC1+Kwd3pYh+sHAvAajNbkEoxW6Y6mLQDybftK6bdHm5db5b5wNJNfvU1647chgtF4xs+VzH9eWW8fgNhtes55vu8AfMRq/ExpZO3vRO2ytCPZYh4TLwAAIABJREFUtkTKw1hkc5CvUhknAgAAAAAAAAAAAAAAAAAAAJBPLpVpyKGRNdOdAfbRKWlglfSoGI8zkNNxfLMsa6KkCT43OzCKYwPwK2DBqd/AoYEID8m5tIqU65xzVYLREBLXpuwyhTeEuRfFjoLXwqgSjIaYeA1GK7WYl1UJRgMg6c9flrYvMy+3ynIN+aj2SE98Rpp8ZrDjcx/MmYwHj1U5n4CGt+JWw4IQ4fmInmVJ7XOl5+cPXbb5z30Bd21HJt8uz0KM27QQjAYAAAAAAAAAAAAAAAAAAACgcWS5oh/+1QaWdQXYR21gWe0+kzxOEBdIesHnn7siOjYAP3ZuD7hhiEK01xYG3xbps6Mu4vJ4LllN7ssJRkNYpvAtZEAGgtH8FvNGfq1EamyC0RATz8Fow8zLqj3RtAVAvi2/xX15qdz3x03n36RNzwQ7Pv3ofMn855X19gGIVfdG87ItLyXXDngz9ZPmZUs7kmtHpDyMVTcHCEbL/P0XAAAAAAAAAAAAAAAAAAAAAJwRjFZsQVIRsrwNgCJZ/0Sw7cKE0ax9UNr0XPDtkbKIi7gsgtHgwk7wcyXYKLuMxaMJPkYd+A8+N6CbXRgEoyEuJa/BaC3mZZXuaNoCoNissjz1mzr/FvAABH3kStaDWbLePgDx6lpjXta7Obl2wJs9DpD2mu28bPmPMz5eG2Lcpnl0gMMxTgQAAAAAAAAAAAAAAAAAAAAgnwhGK5ZtNdPDA+yjdpvafSZ5HABFtu7RgBt6DLMyee3OcNsjPZEXcXkNRqvTXUoyQAvJSTLwhWCj7DKFI4QJ6fRrxGTp4AsGzys1u2xAwWtheCnkJsADQTR5DUZrMgfEVglGA+BBqVw/aFqSegIGztCPzpmM91s4n4DG5uV+hWyZOtd5fvc66Y3fJtuWKHj5EY/mMQF2zDgRAAAAAAAAAAAAAAAAAAAAgHwiGK1YCEaT/n9Jb/f558yIjg3Aj54NwbYLG0bzwlfCbY8UGYqoJ8ySWtoC7M9rMFqdwkgvwTXInyQDXwg2yrAMBKNJ0jHXSTM6pCnnSodeKp3yeLLHRzqqO+uvQ4AHgvAajCZJpWHO86s90bQFQLFZ5b6QxXp2bg22f/rR+ZL1zyvr7QMQL4J/82f/j0jlkc7Lli5ItCmJaRlrXjZ6mmEBwWgAAAAAAAAAAAAAAAAAAAAA8qmcdgMQqTdrpif42diyrJEaGli22cNxRliWtYdt29t9HG6ih+P4Ztv2Wklr/WxjefkVdgDRCxzkwf+zDcs2FHGNbJeO+S/p+SukTc9Kex4j2Tul1+9235/X6z/BaI2pkmQwGsFGmWUKR0g6GM2ypPbz+v5IUqXLvK7pWon8sQlGQ0yG7+N93aZhUmXH0PlJ3icB5JdVlhTj8xL3wXzJevAY5xPQ2Nyes5FN5T2k/c92DkF741dS9wZp2LjEm1WXcdzGw1j1yIOk1r2krjWD5zeNkA78B+nZS3wcDwAAAAAAAAAAAAAAAAAAAACyLeGKfsTsrzXTB/jcvnb9jbZtb6pdybbtDZJq5+8f8li1bQdQdFWC0eCXoYjLKkltR0rvuUs6a6X07l9IYw+P7rAEozWmKsFokEt4Q9qPUW73QgpeC4NgNMSh7Uhpj/28r19qcZ6f5H0SQH6VyvWfp8LIetAWBsv855X19gGIFcFo+TR1nvP8aq+0/NZEm5KIUpN02BeHzj/2eqllT8NG3N8AAAAAQJKmTJkiy7L6/zz44INpNwkAAAAAAAAAAAAAANSRdkU/ovVizfRBPrdvr5lenOCxavcHoOiCBnlYBKM1LGMRtdM54aWL4/Fcsursi2C0YqokGYxGgWJmmT6beteF2BGM1hCqBKMhAntMeevfRx4onXCHv+1Lw5znV3sCNwlAA7EIRsNAGf+8OJ+AxkYwWj5NPGHwM89AyxYk2RIfQo7bTLtYmvVzaconpP0+LL37l1L7PPP3JjbjRAAAAAAAAAAAAAAAAAAAAADyqZx2AxCpF2qmj7Asa4Rt2zs8bn98nf3VLps5YPo4SXd7OYhlWXtIOsLHsQAUUtCC07TDaJAeQxGXU0CRl9AiryF79Qr5d7zmbT/Il2qSwWgEG2VXRoPR3K5fFLwWh5fgTa4fqOe059/qq4ye5v/61WQIRksyQBRAfpXK8fabuA/mS9aDxzifgMZGMFo+WSVp6lzpha8MXbbxaWnzC9LYtyffrkB8/CDM/h/p++Npe8aJAAAAAAAAAAAAAAAAAAAAAOQT6TIFYtv23yQ9P2BWWdIsH7s4sWb6ty7r3lNnWzcnaHAo37O2ba/xsT2AIghacJp2GA3SYyyidij68nSeRBSMtuSHUvcGb/tCfiQZ+EIBfnYZrztp34vcrl8UvBaGvdPDOlw/UI8ljTms70+QfnSpxXl+kgGiAPLLKtd/ngol40FbGCzzwWgZbx+AeFU6024Bgmo/z7xsWUdy7fAsrnEbgtEAAAAAAAAAAAAAAAAAAAAAFEvaFf2I3sKa6U952ciyrGmS3jVg1nZJ97lscq+kgZUix+3ahxfzaqZr2wygEQQO8vAYZoUCMhRxOYZ8RBmM5mFfK3/ubV/Ij0QDXyjAzyxTOELqIZ0EozUEgtEQBStk37k0zHl+tSfcfgHkn+2hzxF3MBr3wZzJ+HMP5xPQ2CpdabcAQY1slyac4Lxs2S1S1cOzdRaEfXYzbe+lzwYAAAAAAAAAAAAAAAAAAAAAGZR2RT+i92NJA6u4PmxZ1sEetvtCzfTPbNs2VoLYtr1DUm0KTO0+hrAs6xBJHxowa6ekn3hoH4CiCVpwGrZACPllCihyCgjyElrk9VzyUsj/l//tbV/Ij0qCwWh2lSLFzMpoMJrb9YtzqTi8FG+vffitf7dt6a83SL87UbpvpvTydzkfoNDDPk2GYLQk75MAssn4fDZAKe5gtIwHbWGwrH9eWW8fgHhVXYLRxr3LvAzZ0D7PeX7Xaulvbr8BlYLYntNNY0WMCwAAAAAAAAAAAAAAAAAAAADIJ4LRCsa27b9K6hgwq0XSAsuyWk3bWJZ1pqR5A2b1SPqKh8NdKal3wPQ8y7I+6HKcVkk/2tWm3W60bXuJh2MBKJrABafcuhqXqYgrYDCaV14K+Xesiu54yIZqwoEvFOFnk/FzSfte5BbsSMFrYdgegtEkacsrff/8y39IT50vrX1IWv8H6emLpOfnx9c+5EPYUOFSs/P8aq/zfAANxEP/1SrHGyhLHzpfMv95Zb19AGJVcQlGO+ifkmsHgtn/bKlpuPOyZR3O8zMn5LObqc+V+fsvAAAAAAAAAAAAAAAAAAAAADgrp92ARmNZ1r5y/u++d8102bKsKYbdbLNte73LYa6Q9CFJbbumZ0r6nWVZ/2Db9ksD2jJM0j9J+lbN9t+ybXuFy/4lSbZtL7Us6/+TdMmA2T+3LOvzkn5g23bPgGMdKun/7GrLbhvkLYANQBHZlWDbhQ13QH6Ziricir48Fd97PJfiLORHdiUdjKaqJA8hfEiWn+tOklzvhQSjFYbX4KkVP5Wm/7v08neHLnvlOunwK6USj/6NK+T1yjKcO0H78gCKw0vIRqnsLWg6cBu4FuVK1oNZOJ+AxuYWjDblE8m1A8E0j5b2+4i0/Jahy1bdKfVsklrahi5LRVzjNqaxIsaJAAAAACBJtm3rmWee0UsvvaS1a9equ7tbEyZM0OTJkzVr1iyNHDky7SYG9tprr+mpp57SqlWr1NnZqfHjx+vwww/XMccco1Ip3HeSa9eu1SOPPKI33nhDnZ2d2meffdTe3q4ZM2aE3reTxYsXa9GiRVq3bp22bNmiPffcU5MmTdKsWbM0bty4yI8HAAAAAAAAAAAAAAiG6ujkPSrpAA/rTZa0zLCsQ9I804a2ba+yLOvDku6V1LJr9vGSFluW9bSkpZLGSDpK0oSazX8lab6H9u32RUnTJX1g13SzpP+SNN+yrGckbZXUvutYA9/K75H0Idu2/+bjWACKJHDBKcFoDcve6Ty/1Ow008MOvQajEVbVkCoJB6PZFfV1o5AtGQ1Gc2NT8FoYpvterUVXSJNOlbrXDV3W+6a06Tlp3DHRtg35ETZU2NQP8np+AiguLyFXVtzBaBkP2kKNjH9enE9AYzMFo417l9TU4rwM2dI+1zkYrdojrbhNOvhzybfJl7DfexCMBgAAAABpWr9+vb72ta/plltu0bp1Dt/bSmppadHs2bN15ZVX6l3vepen/c6bN08dHR3908uWLdOUKVM8bfvggw/qpJNO6p++4oordOWVVxrXtwZ8r/ie97xHDz74oCTp8ccf1xVXXKHf//73qlaHjqPutdde+vKXv6wLL7zQd4jZs88+q0svvVQPPPCA47733Xdfffazn9UXv/hFlctlXXnllfrKV976LeYHHnhAJ554oqdjbdiwQd/4xjd0yy236PXXX3dcp1QqaebMmbriiit08skn+/q7AAAAAAAAAAAAAACil+GKfoRh2/aDkj4kaeBbFpakYyTNkfR+DQ1Fu1XSx2zbe1rRrnXnSLqtZtFESadK+ntJR2vwG/lrJZ1p2/YjXo8DoICCBqOFDXdAflUNARyWQ86rl9Air+cSwWj5FDYcqppGMBoyp2r4XLIQjGZsAwWvhWG67znpWm1exvWlwYUNRjPk6ROMBsDL/cVqirnfRJBVrmQ9eIw+E9DYTMFozaOSbQeCm3iSNGI/52VLFyTalFSYxroJ0AcAAACA2N15551qb2/XtddeawxFk6Senh7dc889mjFjhj772c9q587sf9/2ta99Te9+97v1u9/9zjG4TJLWrFmjf/mXf9HZZ5+tnp4ez/v+9re/rWOPPVb333+/cd+rVq3S/Pnz9Z73vEdr1qwJ9HeQpJtvvlnt7e265pprjKFoklStVvXoo4/qlFNO0Sc/+Ulffx8AAAAAAAAAAAAAQPQyUNGPuNi2/RtJb5d0g6RNLqv+UdLZtm1/3Lbt7QGOs8227Y+pLwTtjy6rbpT0PUlvt237Hr/HAVAwgQtiuXU1LFMAh1Nwmafie69BIR72VRrmcV9ITsiiv0rSwWgZDwloWKbPJQv3IlPBK+dSYfgJnurZbF7WNDx8W5BfYQOJTAGxpuBIAA2kTp/DauoL6IgzaJogq3zJej816+0DEC9TMBrPU/lRapKmftJ52YYnpC0vJ9seI8OYZegfhDFtTzAaAAAAAMTppptu0kc+8hFt3bp10PwDDzxQZ5xxhj760Y/quOOOU1PT4LHyH/zgBzrjjDMyHY72zW9+U1/+8pdVqfSNxb/tbW/TBz/4QZ1zzjk68cQT1draOmj9hQsXav78+Z72/a1vfUv/9m//1r/v3Q477DCdeeaZmjNnjmbMmNH/3+3xxx/XnDlzhqzvxeWXX665c+dqy5Yt/fMsy9K0adN0xhln6OMf/7g+8IEPaMKEwb8zfcstt+i0007L9GcEAAAAAAAAAAAAAEVXTrsBjca27SkJH2+tpPMty7pI0vGSDpC0t6Ttkl6X9Kxt28siOtbPJf3csqypko6StI+kPSStlrRC0mO2bfMTagD6BC1gDhvuIEmvXC8dcmH4/SBZpnOm5NSdiTAYzUshf3mEt30hOXbYor+EiwYJdcgmUzhCFPeisKyS4byh4LUwqn6C0VxysDc8KbUdEb49SFfg+1rI4nrHfpb8BfcBKKZ6IVLWrutHrMFoBFnlS8Y/L57JgMZWNQWjtTrPRzZNnSv95WvOy5Z2SEcalhWBMViNcSIAAAAAiMtzzz2n888/X9XqW2OfRx55pK6//nrNnDlz0Lrr1q3T/Pnz9f3vf79/3j333KPLL79cX/ta9p5XFy1apEceeUSSdNZZZ+nqq6/WtGnTBq2zadMmff7zn9eCBQv6533rW9/S+eefrylTphj3/fTTT+uLX/zioHknnniirrvuOk2fPn3Q/HXr1unyyy/XDTfcoIcffliLFy/29ffo6OjQVVdd1T9dKpV04YUX6pJLLtH+++8/aF3btnXXXXfpoosu0sqVKyVJ999/v+bPn6+rr77a13EBAAAAAAAAAAAAANEgGK1B7AokeyChYy2TFEnYGoACC1xwGjLcQZL+9M9S60Rp/78Pvy8kxxQQYzl0Z6IMLSp5KOQvNUd3PEQk40X3tSjCz6YsB6OZ7ocEhBSH3et93d7N5mVP/qO04qfSCbdLLW3h24V0BP1/21gc73V7Qz+I+xaAusFou64fcfabuBblS9b7qVlvH4B4VQzBaKVhybYD4Yw+RBp/nLT+D0OXLbtZOuIqb2O9cQr9Yw4mhj4X9zcAAADAkb1zp7RuVdrNaAwT9pVVLuZryp/5zGfU0/PW7wTPmjVL9957r0aMGPrjihMmTNANN9yggw46SJdeemn//GuuuUbnnHOODj/88ETa7NXGjRslSZdddpmuueYax3Xa2tr0ox/9SJs2bdJdd90lSapUKrrxxhsHhZHVuvDCC7Vz51vvgH34wx/WbbfdprLDeTJhwgR973vfU3t7uy677DKtX7/e899hxYoVOv/88/unhw0bpjvvvFOnnnqq4/qWZemss87SzJkzdfzxx+vVV1+VJH3jG9/QP/3TP2nq1Kmejw0AAAAAAAAAAAAAiEYx3zgAAGRf0ALmsOEOuy2/lWC0vLH9BKN5KHDzfC55KOQfdbDHfSExeSv6y1t7G4bpc8lAMJoxZCSuAlskzhQI6qTHJRhNktbcL/3qMOl9f5BGTgnVLKQkUN85gn6zUz9LMvfLADSOev3XMdP7/unl2SyuNiBbMv95Zb19AGJVNQRTNxGMljvt85yD0Tpfl9b8Xpp0SuJN8iZsqLUpQJ9xIgAAAMDRulWy57wt7VY0BOtnL0uTpqTdjMg98MADeuaZZ/qnR48erdtuu80xFG2gSy65RA899JB+9atfSZKq1aquvfZa3XTTTbG2N4hZs2bp6quvrrvef/zHf/QHo0nS73//e2Mw2lNPPaUnnniif3rSpEm66aabHEPRBrr00kv1u9/9Tvfdd5/H1vcFmnV2dvZPX3vttcZQtIEmTpyon/zkJ/q7v/s7SX1hb9dee62++93vej42AAAAAAAAAAAAACAaGajoBwA0pMAFsRHdulYtjGY/SI4pIKbkUGhvDAwatJK343oKWSNrNnPCFt0fnfQLjRQpZpIpiCjOgA/PTAWvBDoUhp/gqd46wWiS1LVaev5/BW8P0hUkiCyKQOGSKRgtYMgxgAKp0+c48NN9/4y130S/J18y/nlxbwMam58fZEC27T9HKhkC7ZYuSLQpzuIaAzQ9/zHmCAAAAABx6OjoGDR94YUXap999vG07X/+538Omr711lvV3d0dWdui8uUvf1mlUv33r6ZPn64pU6b0Tz/33HPGdW+99dZB0//8z/+sMWPGeGrP/PnzPa0nSdu3bx8UNtfe3q7Pfvaznrc/9thjdcIJJ/RP//KXv/S8LQAAAAAAAAAAAAAgOgSjAQDSEbTg9JALo20H8sMYUORQoJh0MBoF1BkUsuhv8unRNMMrwqyyyfS5ZCEYzXido+C1MEyBoE4qHl+UX/7jYG1B+gL1NSIIRjNd7/ycnwCKya3/evAF0sGf2zUR4/BzleewXMn6M0/W2wcgXqb+LcFo+dMyVtrvQ87LVi2Uet5Mtj2ehX1+IxgNAAAAAJL06KOPDpr+xCc+4Xnb6dOn66ijjuqf7urq0tNPPx1Z26IwfPhwzZ492/P6hx56aP+/79ixQ9u2bXNc7/HHHx80PWfOHM/HmDVrlufwuUcffVSdnZ3902effbankLeBTjrppP5/X7FihVauXOlrewAAAAAAAAAAAABAeASjAQDSESTcYfg+0vjjom8L8sH2U6DooYtjeQ1G87AvwkGyJ2xR+8j2aNrhGUWKmWQMZMzCY5ThGkagQ3GY7nuO6/K5F16QvnMU1ypTEISf8xNAMbldl9520Vv/HmugLPe/XMlCf+Wk+6Qpn3ReRuA50NhM/dsSwWi5NHWu8/xKp7Ty9mTbMkRMY4CmsW6bMUcAAAAAiNqmTZu0ZMmS/umxY8cOCgbzYubMmYOmn3rqqUjaFpUDDzxQLS0tntdva2sbNP3mm87B5H/+85/7/33s2LE66KCDfLXrmGOO8bRebXDdPvvso+XLl/v6U/v3X7p0qa+2AgAAAAAAAAAAAADC441+AEA6ghSczr6fYrRG5qdA0VMQiNdgNA+F/BRQZ1CIovsx06NrhldZCAnAUMZgtDgDPjwyXucoeC2Maq/3df2EVFUrUikD5zD8CdTX8NjXcd2F4Vyh7wPArf86sJ8SZ6As16J8SfuZZ2S7NOkUacWtzsvTbh+AdJl+9MAUFIxs2/sUafgkqfNvQ5ct65AO+ofk21SP1x/xMGKcCAAAAACSsm7dukHTBx98sCyfz3XTpk0bNL127drQ7YpSbdBZPc3NzYOme3uHfte9fft2dXV19U/vv//+vtvldZvXXntt0PTFF1+siy++2PfxBtq4cWOo7QEAAAAAAAAAAAAA/sVYmQYAgAu/BafNY6Qx0+qvh+LyU6CYeDCaj0AaJMMOUfQXZ3iDCUX42WT6XLIQjGa6hnEuFYefe4uvYLRu/21B+tIKRjOFEpv6ZQAaiFsw2oC+kmUpkuuRE/o9OZP257XrOc8Y+pl2+wCkys8PMiD7Sk3SlE86L1v3qLT11WTbM1CYMUs3pgJ87m8AAAAAELlNmzYNmh4zZozvfdRuk7XQrVIp+vdmNm/ePGh61KhRvvcxevRoT+tt2LDB977r2bp1a+T7BAAAAAAAAAAAAAC4441+AEA6fIc7xFRIjfwwnTOORc0RvqDnJSSLYLQMClP0l0Z2cExFkQjHeN3JQL60sQ2cS4XhJ3jKz7qVTqk8wn97kK4gwWhRXKucAmilgEFtAArFLWSj9vpjNcXzzETQR76k/XntDowx3R+5twGNzXSfMvWHkX3tc6UXv+68bNnN0hFfTbY9dYX9/sO0PeNEAAAAgKMJ+8r62ctpt6IxTNg37RZEzq4JvbZMYdU+RLGPrBs2bNig6Z6eHt/78LpNkH3XU/u5AwAAAAAAAAAAAADixxv9AIB0+C04bYAXwFCHqUCx5NCd8RIE4vWccgxeq0EBdfaEKbpPI/Qq7ZAAOPMVyJg0wzWMc6k4/ATI+Fm30uW/LUhfoL5GBP1n0/WOUFgArn2OpILReA7LldT7qbuD0Ux9+bTbByBVprBpgtHya8xh0p7HShufGrpsaYd0+JXZCL6PDMFoAAAAgB9WuSxNmpJ2M5BTe+6556DpN9980/c+ardpa2sL1SYnlUq2xtBr/46bNm3yvY+NGzd6Wm/8+PGDph9//HEdd9xxvo8HAAAAAAAAAAAAAEhXkd74BgDkie8CZoLRGp6fAkVPRW1ezykPxWOmtiE9eQtGo0gxm7IcjGY8TzmXCsNPgIyf+1Cl039bkL4gfY0o7mdOAbQSfR8A7v3t2utPbP1rgqzyJeXPqz8c3XA+ErQHNDY/P8iA/Gif6zx/x0pp7UPJtqWfYdwm7A/DmLa3GScCAAAAgKhNmDBh0PQrr7ziex8vv/zyoOmJEyc6rlcuDx6b2LnT+3d0QYLH4tTU1KTJkyf3Ty9dulQ7duzwtY9FixZ5Wm+vvfYaNB3kMwIAAAAAAAAAAAAApI9gNABAOvyGFoUtDEL+mQoUnYLRPHVxPJ5T1d7661BAnUFhiv5S6CKHCXJDfEyfSyrhebVMBa+cS4XhJ3jKT4hapct/W5C+QH2NCPrPpiBI+j4A3K4DQ4LRYgqVrXItypXU+6m77oumvnzq7QOQKj8/yID8OOBjUqnFednSBYk2JX6m5z+C0QAAAAAgam1tbTrwwAP7pzdv3qwXX3zR1z4ef/zxQdPHHnus43qjR48eNL1582bPx/jLX/7iq01JmDFjRv+/V6tVPfSQ9+DyjRs36s9//rOndWfOnDlo+r777vN8HAAAAAAAAAAAAABAdmShoh8A0Ih8hykQjNbwTOeMU5G9l9Air2F7noLRfATSIBlhitrTCL2iCD+b/Fx3kmYMdKDgtTC83H92617vfd1Kp/+2IH1BgsiiCBY2BUHQ9wEgt/5rQsForm1A5qT+zLM7GM0U+pl2+wCkytS/LRGMlmvDxkmTz3Be9todUu+2ZNsjxTduYxzPZJwIAAAAAOIwa9asQdM//vGPPW/74osv6umnn+6fbm1t1dFHH+247sSJEwdNL1682PNxfvOb33heNyknn3zyoOkf/vCHnrft6OhQT0+Pp3Xf+973qqnprbHgX/7yl1q7dq3nYwEAAAAAAAAAAAAAsoFgNABAOghGg19+ChQ9BVt5DUbz8FJdlXCQzMlbMBpFitmU5WA04zWMQIfC8BM89aaPX/uudPlvC9IXJBgtiiEfYzBakPYAKBS3/nZtXymu/jVBVjmT8ue1OzDUGDDMvQ1oaKbnL1N/GPnRPs95/s7tfeFomRH2+w/D9vSXAAAAACAW55133qDp6667TqtXr/a07Ze+9KVB0x/72Mc0bNgwx3WPOuqoQdN33323p2Pce++9evLJJz2tm6Rzzz1Xo0aN6p9euHCh7r333rrbvf766/rqV7/q+ThtbW0699xz+6e3bdumSy65xF9jAQAAAAAAAAAAAACpIxgNAJAOvwWnFsFoDc8UPuZUoBhl4b2XYDQKqDMoZ8FoFClmk+lzyUIwmjHQgZC9wvATjOZHpTOe/SJeQfoaUfSfTde7uM5PAPnhGoxW00+Jq+/Ec1i+pP7Ms+u8NN7b0m4fgFT5GXdEvkx6v9Q60XnZ0gWJNqVPTOM2xuc/xokAAAAAIA6zZ8/WkUce2T/95ptv6pxzzlFnp/t3sddee63uuuuu/mnLsvSv//qvxvWPO+44jRgxon964cKF+tOf/uR6jL/+9a+aO3duvb9CKkaNGqWLLrpo0Lw5c+bogQceMG6zfPlgP5p6AAAgAElEQVRynXLKKdq8ebOvY1155ZWDAuf++7//W1/4whdUqfj7bmHx4sV6+OGHfW0DAAAAAAAAAAAAAIgGwWgAgJT4LTiNIRiNotd8MQVwlJwKFD10cbyGhVR7669DOEj2hAqHSqOLTJFiJpnCNtIIzxvCdA3j3lYYpsL8sAhGy6dA/dYI+s+O/SzFd34CyJEsBKPR78mVtD+v3WMAxoBhgvaAhuZr3BG5UmqWpnzCednaB6Vty5NsjYuwz2+G7QnQBwAAAABHq1ev1vLlywP92e3GG29US0tL//SDDz6oE044QU888cSQ461fv14XXnihPv/5zw+af9lll+mII44wtnPUqFH66Ec/2j9dqVR0+umn67777huybk9Pj374wx9qxowZWrNmjdra2vz8J0nM/Pnzdfjhh/dPb9myRe9973s1Z84c/fznP9fzzz+vl156Sffdd58uvvhiTZ8+XS+++KJaW1t15plnej7O1KlT9YMf/GDQvK9//euaNWuW7r77bu3caf6+c/ny5br++us1e/ZsTZ8+Xb///e/9/0UBAAAAAAAAAAAAAKHxRj8AIB2+C05jCEar7pSaWuqvh2wwBXBYDt0ZT6FFXoPReuqvQwF1BoUouk8j9CrtkAA4MwajxRTu4Ycx0IGC18KIK3Sz0hXPfhGzAPeJKO5npusdfR8Abv3XIcFoMfWvuRblS+rPPLvHAAznY++bibUEQAb5GXdE/kydK730bedly26WDr88wcbENW5jGutmnAgAAAAAnJxzzjmBt7V3fSd/1FFH6brrrtPnPvc5Vat9459PP/20ZsyYoYMOOkjTp09Xa2urXnvtNT355JNDgrhOOeUUXXXVVXWPd9VVV2nhwoXavHmzJGnt2rV6//vfr4MOOkhHHHGEhg0bpjVr1uiJJ57Q9u3bJUl77723rrnmGs2dOzfw3zMuLS0t+vWvf63Zs2fr1VdfldT33/T222/X7bff7riNZVm6/vrrtXLlSt11112D5rs577zztHr1an3pS1/q/4z++Mc/6oMf/KBGjBihd77zndprr700fPhwbd26VevXr9fixYv7/1sDAAAAAAAAAAAAANLFG/0AgHRUfRYw13mRKRB7pySC0XKj2u083ymwI+lgNFPxJNITpug+jWC0MEFuiJHhc8lCMJrxGsa5VBjV3nj2W+mMZ7+IV6D7WgT9Z1MQRFzBfQDyw/W6VBuMFlffiX5PvqT9ee26L5rOxw1P9J3XqTwPAkidqX9b4mvUQmg7Qmo7Utr03NBlyzqkt8+P5/sHP8IeP+32AwAAAECD+sd//Ee1tbXpU5/6lLZt29Y//9VXX+0P/XLy6U9/WjfccIOam5vrHmPy5Mm64447dNZZZ2nr1q11jzF16lT9+te/1po1a3z+bZKz33776ZFHHtEFF1yghQsXuq47btw4dXR06PTTT9cXvvCFQctGjRpV91iXXXaZjjjiCH3qU5/S6tWr++fv2LFDjz32mKf2trW1eVoPAAAAAAAAAAAAABAtqnwAAOmwfQajRRHsMKQNBDrkxpuLzcucChS9FN57LRbzEkzDuZRBdohtU+gi22Hai9gY71UZeIwyBTZwLhVHXPeWSlc8+0W8ggSjRVEYbwqC8N2XB1A4bteB2n5KXMFoYcKQkby0P6/d90W34LP1TyTTFgDZY3r+MgUFI3+mznOev22ptO7R5NoR27iNy/2NsSIAAAAAiNXZZ5+tJUuW6KKLLtL48eON6zU3N+t973ufHnvsMd14442eQtF2mz17tp588kmdeeaZsgzfAU6YMEGXXnqpnnvuOR166KG+/x5J23vvvfWLX/yiPyDtsMMO09ixY9Xa2qr29nadfPLJ+v73v68lS5bo9NNPlyRt3rx50D7GjBnj6Vinnnqqli1bpuuvv15HHnmk8b/hbs3NzZo5c6auvPJKvfLKK7rooouC/SUBAAAAAAAAAAAAAKHwRj8AICV+C2JjCEarEmaVG0s7zMscCxS9hBZ5PKf2/aD0yn+5r0M4SPaEKbp3K5SPDaEOmVQ1/L8dV7iHL6ZrGOdSYcTVT6l0xrNfxCxIIXsE9zPT9W7zIun5K6XJ/0Mad0z44wDIH7f+9pD+dEz9a57D8iX1YLSmwf908tK3pQm3J9MeANliev4iGK04pnxcevYS5xC8ZR3SxBOSb9MgIb//cCvotqsZGcsCAAAAgPQsX7481v1PnDhR3/nOd/Ttb39bTz/9tF566SWtW7dO3d3dGj9+vPbdd1/NmjVLo0aNCnyMadOm6c4779T69ev10EMPadWqVdqxY4f22msvTZ06VSeccILK5bfGMk488UTZPsKy/axba8GCBVqwYEGgbWfNmqVZs2Z5Wnfx4rd+WNOyLE2cONHzcVpbW3XBBRfoggsu0MaNG/XHP/5Rf/vb37Rx40b19vZq5MiRmjhxog455BBNmzZNI0aM8P13AQAAAAAAAAAAAABEizf6AQDp8FvAXOeXGoO1gWC03Hjx6+ZlTgWKUQZbTXyP1NIm9Wwyr8O5lD1pB6Mde4P01Oe8rx/iBVPEyXAelTJQTGo6TzmXiiOue0ulK579Il5B7mtR9J/dgiBe+Ir0wleld90oHfip8McCkDNuwWhN7tNRSTtoCz6l/Hk1tfb90+15b+vLybQFQPaYnr9KfI1aGK0TpMmnS6vuGrpsxc+ko78rlfNc8Oz2/MdYEQAAAAAkpVQq6dhjj9Wxxx4b2zHGjx+vj3zkI7HtP6u2b9+uZ555pn/6kEMOCRw0t+eee+q0006LqmkAAAAAAAAAAAAAgJhEmBoCAIAPfoPRXAt7AqoSZlUITkX2noKtPJ5TpWbp3XdJ5ZHmdewqYURZEyokIYIu8n4fkvaYMnhe82iXDQh1yCTjvSoLj1GmaxjnUmHE1U+pdMazX8Qr0H0timC0emFGtvTMxVKlJ/yxAOSL63Wppq8UV6is73EFpCrtILuSh2C0OMaeAOSD6fnLLSgY+TN1rvP8nVul1xYm1AjTGHLYexDBaAAAAACAYuvo6NCOHTv6p4877rgUWwMAAAAAAAAAAAAASEIWKvoBAI3IbwGzp6Arv23ojX6fSF7JoUDRy/li+Sg2m3iC9OHV0vR/N69DUX7GhCj4i+J60zpROvkh6aDPSXseLR34j9LJD5vXTzskAM5M/1/XDQpKgOk8JaSxOOLqp1S64tkvYhbgPhHF/cypn1Wrd4u0+v+GPxaAfHHrvw65/sQ0BE0fOl/S/ryadgWjuQbHEIwGNCzbEIzmpT+M/NjndGnYOOdlyxYk2pTIuY11M1YEAAAAAMi5VatWaf78+YPmnXfeeSm1BgAAAAAAAAAAAACQFILRAADp8F0QG0NxatVQ8IZ8sZwKFL10cXyeU+U9pH3+h3k5wWjZEqboPqogxj32l/7ue9Kpf5Le9QNp1MHmdSlQzCbTeZSJYDTTNYyAkMKIq59S6Yxnv4hXoPtaBP1nx36Wg82Lwh8LQM64BaPVXH9i6zvR78mVrASjVbrTbQeAbDIFo3ntDyMfmlqkAz7uvGz1/dL21xJoRFxjgG7Pf4w7AgAAAACy5Y477tC///u/a926dXXXffbZZ/Xud79bGzdu7J/3jne8QyeddFKcTQQAAAAAAAAAAAAAZABv9AMAkpdWsEMtU8Eb8qXk0J3xFGwV4JxyK+i3d0oa5n+fiEkGgtGG7thlGaEOmWQKPIztHPHD0AZC9oojrn5KpSue/SJeqQWjeQwzcuqPASg2Y4CsQx8lrmA0wqlzJivBaITEAnBgCqamn1s87fOkV/7LYYEtLb9Fmv6lpFvUxxiA73V7t7EqxooAAAAAANmydetWXX311frmN7+pU089Ve9973v1jne8QxMnTlS5XNbGjRu1aNEi/epXv9Ldd98te8B7EC0tLero6Eix9QAAAAAAAAAAAACApPBGPwAgeUGKl8MWBjkxFbwhX6yAwWhBzim3YkjOp2wJFCCzW0yhV27nJWFW2WQMRosp3MMP0zUs1LmPTIktGI0wkHwK8P92FCGOXoMgnPpjAIrN+FzvFIwWU/+afk++pP15eQlGi2PsCUD22bb5+Yt+bvG0vVMa83bpzReGLlu6QDrsi/HeD2IbA3Rpc9r3YAAAAAAADHp7e3X33Xfr7rvv9rT+8OHDdfPNN+sd73hHzC0DAAAAAAAAAAAAAGRBTFVpAAC4CBKM5lbYE1RcgSNIlmNAUVzBVi7FkIHOa8QnRJFhXMENrvulQDGTshyMZrzOEbJXGHEFbla64tkv4hWoeD6C/rPX6x2BEUDjMQVsOF034uo7EfKRL2l/XiUPwWhxjD0ByD636xP93OKxLKl9nvOyra9IG55ItDlvCXsPctuesSIAAAAAQLaMHTtWTU3+vjs4/vjj9fDDD+vss8+OqVUAAAAAAAAAAAAAgKzhjX4AQPICFcMSjAaDkkN3xlOwVYBzyq2gn/MpW8IU3ccVjOZ2zqUdEgBnfgI/kmYZzifOpeKo9sazX9cwEGRXgP+3o7ifeQ2CMF2TABSXsZ/kcO2JLRiNcOp8Sbmf2rQrGG3nDpeVuJ8BDcltTM9p3BH5N+Vc6bkvOPclli6Qxs+I8eAxhZS5PZMFCtoGAAAAACA+Z511ltasWaN77rlHjz32mBYtWqQVK1Zo48aN6urq0vDhw7XnnnvqgAMO0AknnKDTTjtNxx9/fNrNBgAAAAAAAAAAAAAkjDf6AQDJC1K8HEfYQpUgq0JwCuyIKxjNrRiSovxsCRUOFVMwmut5SYFiJpn+v44tPM8PUxs4lwojrsDNSlc8+0W80goW9hpmVOkOfywAOeMnGC2mvhOBsPmS9ue1Oxit4hKMZscUTAsg29yevbwGBSNfhu8tTTpVeuPXQ5et+Kl09Hfeum8kJuzzm9v2jBUBAAAAALJn3LhxOvfcc3Xuueem3RQAAAAAAAAAAAAAQEZloaIfANBoAgVIxRCMFlfgCJIVNBgtSNieWzgIQXsZE6LgL7bQK5dzLu2QADgzBqN5DAqKk+kaxrlUHLEFo3XGs1/EK8j/21EEC3sNguC8AhqP8brkFIwWU9+JcOp8Sbuf2h+M5nLP2rk9mbYAyBa3MT23H0lAvrXPdZ7f+6a06q4YDxxTSJnr8x/BaAAAAAAAAAAAAAAAAAAAAADyh2A0AEDyghQvRxHsUIsgq4JwKq720sUJEozmUgxp9/rfH+ITpug+rmA0ChTzx3QeZSEYzXid41wqBLsaX3hIpSue/SJegYLRIrifeQ2CIBgNaDzGfhLBaDDJSDBa03DzOgSjAY3JLZTaa1Aw8mfyGVLzWOdlSzuSbYsUwfcfLs9/aYeTAgAAAAAAAAAAAAAAAAAAAEAABKMBAJIXqBAnhmA0t6I35IdTUbOnIJAA51R5hHlZ7xb/+0N8QgWjxRh6ZTo3KVDMJlPYRlzheX6YCmY5l4ohzqAXAqxyKqX+s9d7IucV0Hj89JPi6jv1bIxnv4hH2v3U0q5gtGn/al6nSuA50JDcfjyDYLTiamqVppzjvGz1vdKON5JtT1j8IAMAAAAAAAAAAAAAAAAAAACAgslART8AoOEECvuIIRjNregN2dI82rysZezQeV4K712LxUzHGifjudi11v/+EKMwwWhxdpEJs8oVY+BHjOF5npnOU4pdCyHOUI5KV3z7RnzSChZ26mc5IRgNaECG65JjMFpMfaeu1fHsF/FI+5mnaVcw2rgZ5nXSbiOAdLj9eEaJYLRCmzrXeb5dlZb/OJ5j2qZxm7DPby7bG48J/D/27jxejqrO//+7+y5JLiEJkIUlkIWwRnYYFtkRdBgEv1+ZEXAUZpRBdBzUUb8wuMCMgqM/BxzRr8go4AiI4yiRr05QJICIgIQlskbMiiRkD1lu7tb1++Nyk7vUOV3bqTrV/Xo+Hnk86KquqqN1uuqc6vt5NwAAAAAAAAAAAAAAAAAAAOAvgtEAAPlLEoyWJMSqbjscho4gW6bi5AM+Hr7cVeF9tUUaNTF8HcFofklV8OdwiGwMXaNA0U+mwA8PgtFM90XCHBqDrTA/LQKsSirBfSKLoM/xs6O9j8A9oPmYxhxh4yRXY6fOFW72CzeKHqcOBKO1tEtH/bvhTczLgKZkm39VCEZraLv9mTTuwPB1i28rWaCY7fuTMv3vAAAAAAAAAAAAAAAAAAAAAIB+BKMBAPKXJBjNWtiTUM1h6AiyVTOE2O3+NsMGUYY4CfvU6MnhywlG80yKovssgmTMOw9fXHRIAMLVDPcrp30kKkL2GlYQSEvudLd/gtHKKdF9IoPxc7VNat+1/vvoV+Xy2n3SEx+S5n9MWv1o/fe/Okd67APS/I9La55w3z6Ug/G6FDZGcTR26l4v9XW52Tcc8CQYTZJ2mh7+HuZlQHOyPSOuEozW0CoVacbF4es2viCtm+/goKbnNinnb7YflilVwBsAAAAAAAAAAAAAAAAAAAAA9POhoh8A0GyKCnYYLiAYrTRM56raFr48SmiRrVjMxhSM1kUwmlfSFLS7DL0y7psCRS+ZgjwrLfm2I7QNhOw1rGf/Sfrd5e7237fN3b7hTpLPdtKxznB7vL3+ewhGK4+F35QefIf0ys3Sy1+T7j9FWn6P+f0v/Kv08LukRd+VXr5R+sWx0qv35tde+Mt0XQob77ocO21b6W7fyFbR49TBwWjGeyRjaaAp2Z4RVwhGa3gz3md+Xrf49nzbkopt/sdzRwAAAAAAAAAAAAAAAAAAAADlQzAaACB/pqAZm6yCHQar9WS/T2QvCMx9Jk0wWtKwvVGTwpdvIxjNL2kK/lwOkQ37LjokAAamwA8fgtEI2WtIXWulF7/s9hi1bqmWYCyGgiW5T2R0P6u2139PL8FopVDrlRZ8ZuiyoFf6/efC39+3Tfr9tSOXP3yutPHF7NuHkokRjFZ1GYy22t2+ka2i5zzVUYNfhL+n6DYCKIbtGbEP83+41bGXNOVt4euW3Cn1dWV8QEfPbWzPw7m/AQAAAAAAAAAAAAAAAAAAACghgtEAAPlLEoyWNMTKhmC0crAWJ7YalrsMRpsYvrx7fbL9wY00BX+R+k/SfRv6HQWKfjLdr7wojKYvNaTF38/nHNa2uT8GspWkX2QVLNwyqv576FPlsOrh8DHrht9LnStHLv/TvVKfIfTu0Yv6A4zRvIzXpZCxtGnelgXm9SVSdDDaoKBP05yPsTTQnGqW4KuW0fm1A8WZeUn48u510ms/y6cNqedvtu0ZtwMAAAAAAAAAAAAAAAAAAAAoH4LRAAD5S1RoGlLY85bPpmsHAQ7lEPSa11XbTCvq7zdpsVnVEA5Ss7QT+fM1GM3YNylQ9JIxyNODaZSxn9KXSm3jc/kch3tW+WQ1fk5icJCMSa8hPAt+6fyTeV3PGyOXbVlmfv/6Z6TVv0nfJpSXMUA252C0osO2EF3RoWPVQf2QsTSAwfosz4gJRmsOU98ltY0LX7fotmyP5SxcmGA0AAAAAAAAAAAAAAAAAAAAAI3Fg4p+AEDzSVAMGxZiNe0iqW18+Punv6/+Pm1Fb/BHrce8zhSMVmlx0xZpaDH1YLYAN+QvVdG9wyGyKZCv6JAAhDOdF5fXmMjoS0iBe1b5JPlsZxX0GSUYrY9gtFKwhVOFhVzVu9+9/LV07UG5GcdJIdce0xwqk3aYgmzhnaLHqZUIwWhFtxFAMUzPiCtVx+Ge8EbrGGmf94Sve+3nUufrOTQiZbC17UdAnIWxAQAAAAAAAAAAAAAAAAAAAIA7BKMBAPKXqNA0pLBn/IHS6fdLU9+1Y1nrTtLsz0jHfbf+LglGKwdbeIupODFSEEjCYjNTGBshM55JUfCXVZBMKNO+KVD0kiloo+pBMJqxn9KXyi1lIXRUNe5Z5ZPks51RfyIYrXHYgs5Cg9HqBIFsfiVde1ByMQJkXYbKEIxWIgWHjg0J6DONpQlGA5qS6RlxdbQ9bAqNZebF4cuDPmnpnRkeyNVzG1tf5VkRAAAAAAAAAAAAAAAAAAAAgPLhp84BAPnLKhhNknY7Wjr5J8naQTBaOdR6zOtMIWW20Icdb0rUHGNRPyEzfkl0nXmTy2A0077TtBfuGIM2fMiXNlzD6EuIgjDP8kny2c7qflYdVf89BKOVg22MXOsaucw01h4QELDQ1EzXpbBrT9VlMBpjn9Io+lwNnsubgo6KbiOAYpieEbeMzrcdKNbEE6Sxs8LDfxfdLh34cccNSBvCRzAaAAAAAAAAAAAAAAAAAAAAgMbiQ0U/AKDpJAl2SFsYFNaMkOJ/+McWjGYKKYsSjJa0T5mOSciMZ3wNRjP1OwrwvWQKRosUvuiYsZ9S7FpqLsY7YbhnlVCGwcJxtbTXfw+Bw+Vgu3+FncN6YVY+3A9RHGOAVMgYxTSHyqQdpiBbeKfo0LEh/dAy5yP0EWg+BKNB6p+Pz7w4fN2GZ6X1z2R0IEf3GdvzzKLvwQAAAAAAAAAAAAAAAAAAAACQAMFoAID8JSpcdhAUQoBDOdjCW6pt4csjhTQk7FOmgIgaITNeSVXw53KIbNg3xfd+MvUjL4JgDNcwil0RBfes8kn02c5o/FyNEozWmc2x4JYtfDFsblQvzMplmCz8ZxwnEYwGg6LHqYPn8oTHABisRjAa3jTjfeZ1i253e+y0QenW7XnuCAAAAAAAAAAAAAAAAAAAAKB8qGAEAOSvyGCHwQhGK4daj3mdMRgtyhAnYZ8yFfXbAtxQgBQFfy5DPkxFihTf+8kUtOFDEIyxDRS7IgLbvRV+SnKfyOpaFTUYjZBP/9lCEZMEo7mYo6E84oyTTOHSmbSDcXR5FHyuKhGD0RhPA83H9IyYYLTms9M0acrp4euW3OH5XNoyNmeuBgAAAAAAAAAAAAAAAAAAAKCEPKjoBwA0nUTBDgSjNS1bwZkprKHS4qYtkrmon2A0v6QJSHAaekWYVakYAz8cXmMiI2QPKXDPKqECx8/VUdHeV+vK5nhwxzauDpsb1Q2z4p7T3EznP2S8WzdkLwXTeA3+KXqcOuSaZpnzFd1OAPkzPSOuEozWlGZcHL68a7X02v+k378xpCzt/M22Pc8dAQAAAAAAAAAAAAAAAAAAAJQPwWgAgPwlKjIlGK1p2cJbqm3hy6OEFiUNCzEV9dcImfFKqmJ2h0NkU+gaxfd+Mp0XH4LRjAF+FLuWm4PxThiC0cqnyPFztT3a+/o6szke3AliBqPVC4u1Ba2h8cUZJ9UN2UvTDoLRSqPoOc/gubz1eQBzM6DpmJ4RtxCM1pT2ebfUOjZ83eLb821LHNZ7G8+KAAAAAAAAAAAAAAAAAAAAAJSPw6o0AABMPAlGqxGMVgq2wIU0wWhJ+5SpqN8WNIECpCj4qxcCkoqp31F87yVT0IYPwWimvlR04ATiqfVJ6+ZL65+Wxh0g9W7O6bgEo5VPgvtaVvezyMFojK29Z/vsh82N6t1TCFlsbsZxUsi1xxQunUk7GPuUh0fBaLYwbPoU0HwIRsNgrTtJ+5wvLbpt5Lo/3St1rZVG7ZbiAK5CyizPugOC0RrS8nukZXdLLR3StPdIe5xVdIsAAAAAAAAAAAAAAAAAAACATBGMBgDIX5Ii04qDYDTCG8rBFoxmKrCPFASSsE+ZjknIjF/SFLO7DEYz7ZsCRf8EgYzFqk7D8yKiL5Vf7xbp1+dLK+bmf2zCjMon0X0to/FzS9RgtM5sjgd3bEG+YXMjU/DVAMa/zW3TK+HLQ4PRHIbK1uun8EfRgWODQ85t4/mi2wkgf6YfzyAYrXnNuCQ8GK3WIy25Szrg7x0cNOX8jXtbc3npa9JTH9vxetGt0nHflWZeUliTAAAAAAAAAAAAAAAAAAAAgKx5UNEPAGg6RQY7DNbXlf0+kT1beEu1LXx5lML7pGF7pmA0Qmb8kqrgz+UQ2dTvKFD0jq0PuQz3iIy+VHoLbyomFE0izKiMihw/VyMGo/USjOY9W+BwWLBd3WA0y/7Q+Fb/Onx5+64jlxGMBqn4UJZKxGA0UzgygMZl+vEMgtGa1+STpJ2mh69bfFu6fTsLtLfN/7i3NZRan/TctcMWBtLv/7n48RYAAAAAAAAAAAAAAAAAAACQIYLRAAAFSFCckTTEytoMQ9Eb/FLrNq8zFdhbi5zfNO7AZO2pGoLRCJnxTIoisCj9J+t9OyuKRGK2kA0fgtHoS+W39AfFHZswz/JJUtyc2f0s4jg8LFgLfrEGo4XMjer1O64lzatns/TGS+HrJp80chnBaJCKD+qoRgxGK7qdAPJnCkarjsq3HfBHpSrNuDh83br50obnHBwz7fcfBKM1jY2/l7rXj1y+ZbG08cX82wMAAAAgV8uWLdNnPvMZnXTSSZoyZYra29tVqVS2/7vtttuKbiIAAAAAAAAAAAAAAJkhGA0AkL9ERaYOgtFMRW/wS19X+PKW0ckLxqZdKLVPSLZtxRCMFlaMhOKkCYcqIhgtTZAb3LAGo/kwjTJd/+hLpbH+meKOTZhRCRU4fo46dicYzX+xg9HqBE5xLWlem18xr5v6rpHLXI6dCLEqkYLP1ZC5vO0eSZ8Cmo7pGXHL6HzbAb/MfL953eLbU+zYUUiZ7Tk5IfqNpWezed3mRfm1AwAAACiZ6dOnDwkQe/DBB4tuUmy33HKL9t9/f33xi1/UI488olWrVqmnx/LdDwAAAAAAAAAAAAAAJedDRT8AoNkkKVx2UUhNMFo51AznqToq+T6Puy35ttW28OV9W6Wudcn3i4ylKGZ3GnplKFIk0MFDlnNSacmvGcY2GPopxa7lYCtizcO2VcUeH/ElGj9nFSwc8brC2Np/QcbBaLagNTS2TX8IX15tl3Y+YORyp8Fodfop/FH0nGdwMJqtTxbdTgD5IxgNYcbOlCafHL5u8felWtYhwWnnb7bteVbUUFo7zOs6X5O2/kl68grplydKT35U2rIsv7YBAAAAcObnP/+5LrvsMnV1GX5ccpgHH3XGYEIAACAASURBVHxwSBDcNddc47aBAAAAAAAAAAAAAAA4QDAaACB/iYpMswp2GITwhnLoM/xRX5rixJb25NsOLqYe7g/fTL5fZCtVMbuD6832XZuG3xQoescWsuFDMJqxnxLkUApblro/xr4flFp3Cl/36HvdHx/ZSnRfy+qRT9RgtM6MjgdnbEFmocFodfpd5mEQKI1NfwxfPnamVA0ZJ7kcOxGMVh5FB44NmYsRjAZgENMz4irBaE1vxsXhy7etlFb8IuFOXT0DJBitadjGvxt+L91/irTw36XVv5EW3iTdf7LUuTK/9gEAAABw4qqrrlIw6EfSLrroIv3qV7/SwoULtXjx4u3/zj///AJbCQAAAAAAAAAAAABAtghGAwDkL1HhcoLinWP+r309wWjlYDpPaYLR0qhagtEWfDa/dsAuTTG709ArQ5Eixff+sQajeTCNMrUhoNi1FPIIRmsZI9W6zeu7N7pvAzKU4LNdySjoM+p1hWA0/9mC0WphwWh15m0BwWhNq3dz+PIxexo2cDl2YhxdHkUHow26L1rH84yngaYTNg6Sinv2CH/s85dSS0f4usW3Z3ustPM3272N546NxRZQ/YdvSJuHhRhvWSot+6HbNgEAAABw6uWXX9aCBQu2vz777LN1xx136PTTT9d+++2n6dOnb/83duzYAlsKAAAAAAAAAAAAAEC2PKjoBwA0nwSFOOufib/NXu+U2saZ1weWYAD4w1ScWB2VbzsGVCzBaPBHogDGN7kMvTLum+J779iKRp2G50VlKpil2LUUet5Itt2U06K/t2WMPQRp7ePJ2oBiJCpkzygYbcKh0d7X15XN8eCOLcgsLIy43njKdo1BYzP1pWpb+HLb2Gm3P0vZlhTjfuTLp1AWwmMADObbjzLAH207S3v/7/B1r94jda/Ptz1Wtvkfzx0bSpKA6vlXZN8OAAAAALl58sknh7w+//zzC2oJAAAAAAAAAAAAAAD5IhgNAJC/JEWmvVvib9Oxl3T6/eb1tQQFJMifKWSjqOLEKsFopZAqGM1h6JWpAJ/ie//Y+pAPwWjGvkSxayn0dSbbbqqhIDtMS50AUYI+SybBfSKrczxuP2ncQfXfVyMYzXu2ILMkwWhJCvLRGExzadN1xxZCdfRN0pE3SlNOl8bOTNAWgtFKw6s5jyU8xqt2AsgFwWiwmXlx+PJat7T07vj7Mz63SRlsXbHd23hW1FAIBgYAAACazuuvvz7k9dSpUwtqCQAAAAAAAAAAAAAA+SIYDQCQv0RFpgkLg3Y7Rjr5HkM7KOQvBVNxYrVO4IsrBMmUg6/BaKZrGcX3/rH2IR+mUab7In2pFGqGe5vNmb+Rdt43+vsrbfb1BH2WS5L7RJbn+IQ7pPZd7e8xjdngD2swWkhgY71+F/QRstCsTHNp03XHFoxWaZEOvEI641fSyT9N0BjGPuXh0bmy9Umf2gkgHwSjwWbyaVLH3uHrFt2Wa1PsbN+fMGZvKHyvBQAAADSdzZs3D3nd1lbne2AAAAAAAAAAAAAAABoEldAAgAIkKDKtJAxGk8xBVjUKSErBt+JEgtHKIU3QmLVIPiXjvilQ9I4tGM1peF5Epr5EQE05xA2QOuEOadIJ0opfRN+mWucP4rmflUuS+1qW53jXI6RzF0mrHpQeflf4e2pd2R0PbliD0UKuS1GCZoM+rifNyDSXNvUF29hp8JgmyTg8TSAy8uVTGLStr/nUTgD58O3ZI/xSbZFmvE96/rqR69Y+Lr3xsjTugBg7dPTcxvr9Cc+KGgrfawEAAABeC4JATz31lF566SWtWrVKXV1dmjRpkvbaay+deOKJGjt2bOx91mo8swQAAAAAAAAAAAAANCcqFwEA+UtSZJqm2NlUnB1QQFIKppCNoooTqwyfSiHVNcNl6JWhSJHie//YzknVg2A0U19KEj6K/MUNRhsYy8QJjKl3v3IZAonsJblPZD1maR8vTT1Pmni8tOa3I9f3EYzmvcBBMFqth/FxMzLNpY3BaLZ7zqAxDcFojc2rOQ/BaAAGqRnmZ1WC0fCmGReHB6NJ0qLbpcMN62JJ8cMwkuz3NoLRGgrfawEAAABeWrNmja677jp9//vf1+rVq0Pf097ertNPP13XXHONjj32WOO+lixZohkzZhjXn3baaaHLb731Vv3N3/xN6Lprr71W1157rXGf8+bN06mnnmpcDwAAAAAAAAAAAABAEaiEBgDkL1EwWorCVFOhPgUk5WAKj6mOyrcdA0zF/vCLr8FoprAHiu/9Y+tDTsPzIjL2JYpdS6GvM977B8YycfpevftVjXFQuSS4T7gas5jGYHED/5C/WsxgtCj9jjlVczKdd2NInuUR9JAxTZJgNMbRpeHTubKG8DGeBpqOaRxb1I8ywD/j9u8PiA6z+HtSLc5zSEf3mYotWM2jezDSIxgYAAAA8M4999yjmTNn6oYbbjCGoklSd3e35s6dq+OOO06XXXaZenv5jgUAAAAAAAAAAAAAABuSPQAA+cu7GNYUChHU+v9ZC2JRuFpX+PKiihONxf5vCoI6hWjIRaoCMZfXBNO+Kb73jrUPeXDfMF1nfAqcgFncAKntY5kYfa9eKBZhRuWSJPSw3pglKdMYzDRmgz9swWi1kOtSlIAHriXNyRSuabr3WIM9B93bkszNCYYoEZ/GqZY5O+NpoPn0efbsEX6aeYm05rcjl3f+SXr9AWmPM9PtP/XzZNu9jeeODYWgewAAgGzUeqWtrxbdiubQMdXdd1Ye+O53v6tLL71UtdrQ54r77ruvDj74YHV0dGjZsmV64okn1Ne343n2t7/9bS1btkz33nuvWlsb9/8fAAAAAAAAAAAAAADS4Bt1AEABci4ytf2BXdBHMJrvTOExRRUnRgmaqbTl0xaYpQlIsAY3pESYVXnYzonLPhIZIXulljQYLU7fq9a5FxFmVDIJ7hP1xixJtYwKX24KlIA/bMFoYdelKOMp2z7RuEz3ENPc2zbnHjw+Jhitsfk057H1NZ/aCSAfYQGxEsFoGGqfv5Ke/IfwQOhFt0UPRnMWUmYLVuNZUUPheQ4AAEA2tr4q/XRG0a1oDuculsZOL7oVTjzzzDO6/PLLh4SiHX744frGN76hE044Ych7V69erc9+9rO6+eabty+bO3euPve5z+m6664b8t6pU6dq8eLF21/feOON+trXvrb99V133aXjjjtuRHsmTpyoU089VZL02GOP6cILL9y+7oorrtDHPvYx4/+W3Xffvc7/WgAAAAAAAAAAAAAA8kcwGgAgf3kXmdpCIWq99YNDUCxjMJohlMO1eiEjfdvoU15IcZ1xGnpFmFVp2EI2fAhGI2Sv3Po6471/IGgmTmBMvV9er1FIWypJPtuuxiNVwxgsLCAAfrEV0IeOuSP0O64lzcl03k1zJevYadC9LVEwGmOf0vDpXFn7mkftBOBerc8c9EowGgZrnyDt/b+kpT8Yue7Vn0jdG6X28SkOYAs2i7K5ZXtnYWwoBMHAAAAAgDc+8IEPqLu7e/vrE088Uffdd586OjpGvHfSpEn61re+pVmzZulTn/rU9uX/+q//qgsvvFCHHHLI9mWtra2aPn369tcTJkwYsq/dd999yPrBxo4dK0lasmTJkOUTJkwwbgMAAAAAAAAAAAAAgK8SVJsBAJBS3sWwtmAQWzgA/GAK2agWVJxYL2TEFOSGfNVSFIglCWSIvG/CrErDGozmwzSKkL1Si3uvqBfKmWQbxkDlkuQ+kaTfRGEKRmMM5D9T6IcUfv6iFNxzLWlOpvNuDEaLOnZKEoxGMER5+DTnsfQ15mYok84V0jP/JN13vDT3z6SXv04AUly2cN+inj3CXzMuDl/e1ykt+6+IO3H1GbUFq3FdaCiEUwMAAABemDdvnp566qntr8eNG6e77747NBRtsE9+8pM655xztr+u1Wq64YYbnLUTAAAAAAAAAAAAAIAy86GiHwDQbPIuXLaFQlDI7z9TyEaLIZTDNVvQnkQoiC/SXGcqLdm1YwTT8Jvie+/YAhGc9pGICNkrt7j3ioFQzjjb1QvFopC2ZDwKRmsxBETYQiXgB2swWufIZVHGU7Z9onGZ5tHGuZLtEfSg61uS8FmC0crDp3Gqta8RHoMS2LxYeuJyac4M6YXrpbWPSet+J83/B+n5LxbdunKxzbFM4140r93PlMbsGb5u8e0pd24LNouyOfe2psF3WgAAAIAXbr996DzwIx/5iPbc0zBnHOZLX/rSkNd33XWXurr4ng0AAAAAAAAAAAAAgOEIRgMAFCDnYlhbKASF/P4zBqMVVJxYL2SEYDQ/+BqMZipSDChQ9I6tD/kQjGacytGXSiHuvWLg3hMWXGQyEKZmQiFtuSQJk6kX5pqUKZy2j4IN7wW2YLRtI8cjUcZTXEuakylc0zRXqlrGTkHaYDSPwrZg59W5soTPeNVOYJiNL0iPvl+6dz/plW+FB9Mu/DrPGOIgGA1xVFuk6X8dvm71I9KmV/JtzxDc25pG0ufe9AMAAAAgU4888siQ13/914b5YojZs2fryCOP3P5627Ztmj9/fmZtAwAAAAAAAAAAAACgURCMBgDIX94FGLZQCFNBN/wRVuQpSVVDKIdr9YLRagSj+SHFdcZpMJqhSJHCNP9Yg9E8mEbRl8otTsCZtGMsEysYrd79ijFQqST5bNcbsyRlGoMRDus/ayh0MHJ9lH7HtaQ5mQLxjPcey9hpyJgrSTBaikBk5MyjcaptPM94Gj5aN1/69buln71FWvKf9mvftlXStpX5ta3sbM/xCEZDmJkXm9ct/l6EHRiCC03PeSKzbU9YYkNJGk5NmDkAAACQmfXr1+uPf/zj9tcTJkzQQQcdFGsfJ5xwwpDXv/vd7zJpGwAAAAAAAAAAAAAAjcRRlSwAABZ5F5naQiGSFpEgP6YAh2p7vu3Yftw6wydCQfyQJiDBaeiVad8UKHrHdq9yGZ4XGX2p1OKGaA6MZcbF+IP6eqFYjIFKJsFnu96YJSlTQIQpzBb+sAajqf/a1DJojB1lPBXU2ScakykQz3TvsY2dBo+5kozDCUYrD58Cx6x9zaN2Aqselp6/TlpxX7ztfPq8+c72HI9gNIQZf7C06zHSupCC9UW3S4dcU0ygvi1YLeBZUUNJGk5d2yZpTKZNAQAAKLWOqdK5i4tuRXPomFp0CzK3evXqIa/3228/VWIGXh944IFDXq9atSp1uwAAAAAAAAAAAAAAaDQEowEACpBzcZ4tFIJQEP+ZCt2LCiaqFzRDMJofUgWjOexbpj+GpWjZP7Y+5EMwGn2p3OLeKwbGMuMPlnaaJm1ZGmGbNvt6xkDlkuSzXanTB5KqjgpfTjCa/+oFo/Vtk9rG7XgdZTyVtCgf5Wa6hxiD0SzhIIP7WaJgNMY+peHTubL2SY/aieYUBNKKuf2BaKsfSbgP+nFkq35tXkcwGkxmXhwejLZ1mbTqIWnKaeZtnYWU2QrwCUZrKL2bEm7XKbXvkm1bAAAAyqzaKo2dXnQrUFLr168f8nr8+PGx9zF8m3Xr1qVqEwAAAAAAAAAAAAAAjaiAn6wGADS9vIvzbEFWFPL7z7tgtDrHJRjNDzVPg9GMw2+Klr3jezCasS9R7FoKfZ3x3j8wlqlUpONuj7eNCWOgckkyfraFA6fRYghG6yMYzXtBhGC0Ie+P0O8IWWxOpvNuuu5EDaFKFIyWYtyPfHkV1EQwGjxU65OW/Uiae5T04NnJQ9H6d5ZZsxreyzea11UJRoPBtAukanv4ukUR5+wj2ILN0m7Ps6KG8uzVybar8b0FAAAAkJVgWOh1xfSjZjFksQ8AAAAAAAAAAAAAABoNwWgAgPz5FIxGIb//TMEtrsI+6qm22dcTjOaHNAEJSQIZ0u47oEDRP5Z7lcs+EpXpD6MJciiHuPeKwfeeKaf0F2HX3abOfZIxUMkk+GzXC8dLqmoKRmMM5L1a3GC0COOpevtEYzLN0UzXnV0ON+9r530HvSAYrbF5NE61FhkyN0POaj39QUo/f4v0yF9K659Ov0/mhdH1bDKvq/cMEM1r1G7SXu8MX7f8R1LPZsvGju4zUYNoUW7b1iTfljk7AAAAkJldd911yOuNGzfG3sfwbXbZZZdUbQIAAAAAAAAAAAAAoBF5UNEPAGg6SQpxJr01+fFswSCmgm74w1ToXmnJtx0DWkZJE08wr69RYOSHFAV/TvuWqQCfAkXv2EI2fAhGM07lCHIohbhBQsODZsbuG/6+4dsc9sXs2oBiJRk/uwqRbRkdvrzW5eZ4yE69uU+SYDRCFpuT6bybrjsdU6Vdjx65fNKJ/cEiAxKNsRhHl0aRoSxHfGXYAsJj4IHeTmnhN6V795Meu0R646Xo2044VDriq+b19OPo2nY2r7OGKKLpzbwkfHnvFmn5fyfYYcr+VqmYn2nWutPtG/74073JtyUYDQAAAMjMpEmThrxeuHBh7H28/PLLQ15Pnjw5VZsAAAAAAAAAAAAAAGhEPlT0AwCaToLivFkfSn644WEig1HI7z/TObKdV9cOu868jgIjP0QJ8jBxGYxmCnsICLPyjm+hjMOZCrQpgC+HuOOP4UEzpmCqIdu0Sfu8J7s2oFhJPtuuxkoto8KX9xGM5r2gTiBikmA0gqabk+m82647J9wpdey94/VO06Xj/3PY9gkeVacZ9yNfRY5TZ/7N0Ne2vsZ4Gq71bJJe+LL00xnSkx+RtiyNvu1ux0mn3Cv9+TPStL+yvJFnDJGZnuPN+rt824Hy2ePt0mhD0fqi2ywbOvx8towJX97X6e6YyFeac8ncDQAAAMjMLrvson333fFDVhs2bNCLL74Yax+PPvrokNfHHHNMJm0bUCHwHQAAAAAAAAAAAADQAAhGAwDkz1RkOuFQadoFI5dP/2tp2oXJjzc8TGQwikH852M40ZRTzOsIRvNDqmA0l0Nk0x+fUnzvnZrp2uPJFMrYDgrgSyHu+GN40EyUYLRKq7TzvuaQGsZAJZPgPmEbA6dRNQSj1RgDea9WLxhtWJF9lHAgQhabU5Lw6nH7Se98RXrbw9KZj0jvXCiNnT7sTQSjNbYC5zyjdhv62jqmZ24GR7rWSgs+L82ZJj3zf6Rtr0ffdve3SWc8IJ31qLTXOW8GZRPwlwnTc7zJp+baDJRQta3/e4swqx6UNi+Jt78sCtZNwWi9BKM1jDT9hLkbAAAAkKkTTzxxyOs77rgj8rYvvvii5s+fv/316NGjddRRR2XWNkkaNWro93ldXfzAEQAAAAAAAAAAAACgfDyp6gcANBVTcV61XTrhDumsx6UDruj/946npONvl6opQrBsxdkUg/jPFNziKuwjqvGzw5cTjOaHVMFoDkP3TAX4FC17yHBOigxlHMJQCElfKoe4448RwWiGYufBBu6Tuxr+iJ4xULkk+WzbxsBptHaEL6fY3n91g9GGjWOjjKfq7RONyXQPqTdHa2mXJp8kTXprf5jIcEkCaAlGKw+vxqkESiFHnSukpz7ZH4j23D9L3eujbzv1POmsx6TTfylNOW1oII7tmkk/js70HC9KGDUw42LzusXfC18eOAy0N83Vhgcgo8RS/GkHz4EAAACATL3//e8f8vqmm27SypUrI2171VVXDXl9wQUXjAgyS2vChAlDXq9YsSLT/QMAAAAAAAAAAAAAkAeC0QAA+TMVLleq/f8m/pl01I39/3Y9Illx9JD9EoxWasb+UnA4kalAkmA0P5QtGE0OiyKRjK/XngH0pXIzhX6aDA+aiVKkPzD+MYXUxG0DCpbgsx0WOpQFUzBf31Y3x0N26oWY1RIEozGfak6me0jaQMZEwWiE/5SGT+eqYggZlsR4GpnZvFh64nJpzgzppa9KvVuibVepStMuks5eIJ18jzTxWPP7jDz6vPlu+PhnAMFoiGKXQ6Vdjghft/j2mCFotntTRMzVGp91DFMHz4EAAACATJ1++uk6/PDDt7/euHGjLrzwQnV22sOpb7jhBs2ZM2f760qloo9//OOZt2/mzJlqb2/f/nrevHnq6eHHbgAAAAAAAAAAAAAA5ZKyWg0AUlj3tNS9tv+/BxeI7DRdGrdfIU1CXkzFeY7yOm2FghSD+M/XcCKC0fyWqujeZXawoXjNp5AA9DOGwfiSLU1fKrW4QULDg2ZMxc6DDYRiVQzhWIQZlUuSz3bagCKTlo7w5UFff/CWq0A2pBfUKXgZPo6N0u+YTzUn0z3EFMYZWZJgtBSByMiZT+NUS6gI42mktfEF6fkvSUvvjHeNqrZJMy6RDv60tPOsKBuYV9GPowkC83M8gtEQ1YyLpfVPj1y+eZG0+hFp8kn5tcUYjGYvykeT4DkQAAAAMMTKlSu1ZMmSRNtOnz5dkvSd73xHxx9/vLq7uyVJDz74oE466SR94xvf0LHHDg27X7NmjT7/+c/rm9/85pDln/70p3XooYcmaodNe3u73vrWt2revHmSpGXLluncc8/Vhz70Ie23337q6Bj6fd/uu++u0aN5HgIAAAAAAAAAAAAA8AvBaACK88yV0spfjFx+8JXS4dfn3x7kx1ScV3UUdFWp9AdDhBV+UAziP9M5chX2EVXV8AeBNYLRvJAmIMHVtUgyBzUODgiFH0z3qqJDGQcYQz/pS6UQd/wxPGgqSpH+wH3SFFLDGKhcfApGazUEo0lS71apfbyb4yK9WtxgtAjjqXr7RGMyBeKlve7YQs1NCEYrD5+CmioV9YejhYydfWonymXdfOn566TlP1GseVnLGGnWZdJB/yh1TI2+XYWAv9Rq3eZ1pud+wHDTL5Ke/mT4HHvx7SHBaKbrg+UzHZUpGK2XYLSGkSaYmlBrAAAAYIgLL7ww8bbBm3/fceSRR+qmm27Shz70IdVq/c9j5s+fr+OOO06zZs3S7NmzNXr0aC1fvlxPPPGEenuHjsvPPPNM/cu//Evy/xF1fOITn9gejCZJc+fO1dy5c0PfO2/ePJ166qnO2gIAAAAAAAAAAAAAQBIJqs0AAEjJWJzn8LY0PFBkAMUg/jMVuhcdTmQKpRkeKIFipAlIcNq3TEWOFC17x9SHXAbnxWLoSxTAl0Pc8cfwoJkoRfoDgWimkBrGQOWS5LNtCsVLy1RsL0l9W90cE9lwEYxGyGJzchVebQv5MbaFsU9p+HaujEF8nrUT/lv1sDTvHdLco6XlP1bkULS28dLsq6XzlkpH3RAvFE2qEyZJP47E9gwvShg1IEmjJ0l7/UX4uqU/7A+PzotprtZHMFrDSPPdA3M3AAAAwIlLL71Ud999t8aOHTtk+SuvvKI5c+bo7rvv1qOPPjoiFO1v//Zv9bOf/UxtbYa/Z8vAOeecoy984QtqafHlbxwAAAAAAAAAAAAAAIiHYDQAQP5MxbDWgr6UTAXaFIP4zxTc4irsIyqC0fyWJhjN5RDZdJ3zLSQA/oYyDjDeMyMW4aM4QU2xz9Pw891qCabavk2dYDTGQCWT4D6RNqDIpLXDvC7Pon/EE+XaM2IcG6HfcS1pTqbzXsQcLdW4H7nybc7D3AxpBIH02v9IvzxJuv8UacV90bcdNUk67Lr+QLTDvtAfqpSI5dkF/TgagtGQlRkXhy/v3SQt/8mwhQ6f2xCM1vhqKb57qBeUDQAAACCx888/X3/84x91xRVXaOLEicb3tbW16ayzztJvfvMbfec733Eaijbg6quv1oIFC3TllVfq5JNP1u67764xYyJ81wwAAAAAAAAAAAAAgAcKThQBgDAEejS+AoLRTAXaFPL7z9dwIoLR/JamCNhl3yLMqjyMfciXbOlK+GIK4P1nCvw0qbRKlWHnuxqhSL/65h/Sm8ZAcduBYiX5bLsKKGqxBKNRcO+vKEXww4vsaxECpyiub06me4irQEYbgtFKxLdxqmk8zdwMFrU+6dWfSM9fJ61/Ot62HVOlgz4l7ftBe9BsVLbnqMwLo7EFDBGMhjj2/Atp1G5S19qR6xbfLs14b/19DJ/3J2G6tjBPaxxpvnvguzAAAAA0uSVLljjd/+TJk3XjjTfq3/7t3zR//ny99NJLWr16tbq6ujRx4kRNnTpVJ554onbeeefY+77mmmt0zTXXJG7bwQcfrOuvvz7x9gAAAAAAAAAAAAAAFIVgNADFyaLQA+VURNiMqUCbUBD/mQp2iii6H4xgNL+lCUhwGrpHmFVp+BrKOICQvfKKW4gaFm4VpUh/4D5pul9SEFsuSe4TrsZKtiCP3q1ujon0ogSY9Q4LTIgynmI+1ZxM9xBXgYw2jKPLw7dzZRxPe9ZO+KHWIy25U3rhS9IbL8XbduwsafaV0vT3SS3t2bWJYLT0bM/wCEZDHC3t0rSLpIVfH7lu5f3SluXSTnv3v3YZwNkyJnw5wWjlEgTSxuekLUulSW+V2nfZsS7Ndw/M3QAAAIBcVKtVHXPMMTrmmGOKbgoAAAAAAAAAAAAAAKVHMBoAPwWB9OL/Jy3+Xn8AyT7nSwdfJVU9CSNBOqbiPFtBX1qmAm1CQfznazhR1VAgWSMYzQupgtFchjQSZlUavl57tiNkr7Tijj3Cwq1Mxc6DDYx9TGOgKCFJ8EiC+0S1LftmSPb+10cwmreCCJ/54ePYKOMp5lPNqXdL+PIiwqvTjPuRL+/GqYa5mXftRKF6O6VFt0ovfrk/oCaOCYdKs/9J2vt8R8+0bc8ueMYQCcFoyNLMS8KD0RRIS74vzb6qzg4y+CEh01yNAOvy6O2UHj5PWvnL/tfVNum426SeTdLax6RFtyXfN3M3AAAAAAAAAAAAAAAAAAAAlAzBaAD8EwTSgs9Jz39hx7INz0obfi+99QdSJYMCERSsgGA0U4F2jWIQrwWBudDdFPSSl1ZDoZmtqBL5SRWM5jL4ijCr0igixDMOQvbKK+7YIyzcKkqR/sDYxzQGoiC2XJLcJ1wFFFWqUnWUVOsauY6Ce39FCUMcMY6N0O8IWWw+G18wrytijkYw4LiqPwAAIABJREFUWol4NucxjaeZm0HqD6D5w7ekl74qbXs93ra7HSe95Wppz79w+xzbNjelH0fT12leZ/pBBMBklyOk8W+RNj43ct2i26SDr3zzmuDwuY0pGM3W1+GX57+4IxRN6p9vPfrebPbNcyAAAAAAAAAAAAAAAAAAAACUjCdV/QCakykcpk965f+OXL7sh9JL/+a2SciHsTivgGA0ikH8ZivkdBpeFYGpQJJgND/4GoxmKlxeMVfavNjdcRGfqQ8Vfe3ZjpC90oo79ggbw5iKnQcbCFQzhdQQDlsyCT7bLgOKWjvCl1Nw768kwWhRxlPMp5rPq/eY17kKZLRZMVda8Hlp5QP9wdrwl2/jVGOolGftRL661vZfU+ZMk575dLxQtClnSGc8IJ31qLTXOe5/3MMa2k0/jsT2DK9lVH7tQGOoVKSZl4Sv27RQWvt4vR2kb4PxhzyYp5XGwpvc7ZvnQAAAAAAAAAAAAAAAAAAAACgZgtEA+Gfbyv4itDBPf1Lq2Zxve5A9UzGstaAvJVMwBIX8frOFMRQdTtRCMJrX0hTdu7wWmYbfW5ZKP50p/ea90YJL4J7vwWimfupb4ARGiluIGjaGMd2DBhvoq4TDNoYkn22XAUWmcL6+re6OiXSSBKP1bIqwX64lTWfZf5nXFRGMJknP/bP0wBnS7y5nLOQz784NQcMYpHOF9NQn+wPRnvtnqXt99G2nnied9Zh0xv3SlNPcB6JtZ3l2QT+OpmtN+PJqu+NnQ2hY099rfm606LY3/8NhkKtxnkYwWmn0bHS375e+KnU73D8AAAAAAACA1Hr7Av36D4F+8Tw/CgYAAAAAAAAAgEQwGgAf1QsVeuPFfNoBd4xhMw5vS6YCbQr5/WYLbSmq6H4AwWh+s4Xq1eMy+KpegfTSO6WF33B3fMRQQIhnHMb7GsF63osbSBZ2riMFo1XN20vS0rvitQPFSvLZNgUDZ6GlI3x5L8Fo3oobjBYE0ron629DyGLz2bDAvK5W8FzolZulNb8ttg2w8CyoyTiup8igqWxeLD1xuTRnRn9gTO+WaNtVqtK0i6SzF0gn3yNNPNZtO01tMCEYLZqnPx2+PMp8CwgzZndpj3eEr1v6A/tz4yxCFY3Pq7vS7xvlt+kP0o8mSIu/X3RLAAAAAAAAAAyyaVug/54f6JJba9rjkzWd8pWarvox3/UAAAAAAAAAACARjAagUIZCj3qhQlEL1OAvU3Gey7AZUzAEhfx+s4VbuQyvisJUaFZ0GAD6+RqMFmX4/fLXHB4fkdVMIZ4FX3sGtIwKX16j2NV7WQSjVdujb28LxyLEqjySfLZdhsi2GoLR+uhT3opy7Rk8jt20MNp+CeRsPrsebV43aqK747buFO19K+931wYkFwT+BTWZnkH51k64sfFF6dH3S/fuJ73yrehjrWqbtO+l0jkvS2+9Q5pwiNt22lhDlOjHkfRuCl9OMBrSmHlx+PKejdKrc9weu8qzIkTw2/dJmxcV3QoAAAAAAAAAku55OtCkT9T0lzfX9L3fBlr7ZonE08ul5ev4QScAAAAAAAAAAAhGA+CfekUa9YLTUAKmYDSHYTOmYAgK+f1mC3CwBb1I0uFfDl9+0KeSt2cwU5Ek1yg/pApGczhEbokQZrRlibvjIzpTH/ImGM10DaLY1Xtxxx7VtpHLKpXo16q2ceZ1656M1xYUJ8lnO6zvZMVYcN/t7phIJ8q1Z/A4dv0z0fZL0HTzGTvLvG787PT7n3pe+PIDroi2fffG9G1A9lzfHw65NsFGBKM1pXXzpV+/W/rZbGnJf0Z/dtAyRjrgY9K5i6Rjvy3tbLkW5soQjkY/jsY0p9q2Kt92oLHs9U6pfZfwdYtu7w8LDWULO4yI59WIatmPim4BAAAAAAAAAElH7CN1G/7s4h/u4vseAAAAAAAAAAAIRgPgn3pF/xRxlJ+xOM/hbckUjEYhv99qlgLVeuFEU88dGdpRaZH2fnf6dklSlUIzr6UKRnMYfGXqN/CPMRjNkymUMZSIYDTv1WKOPVrGhC+f8X7zNnu8Y8d/736m+X29W+K1BcVJ8tkeNTn7dgwwBdTG7d/ITxAlGK1z0H9HHNNyzpuPbZydRSDjwVdKrWOHLtv/o1LHPtG2rzEf81KW8+Th/aw6Ktk83zSuJ1CqMa16WJr3Dmnu0dLyH0syBRMN0zZemn21dN5S6agbpI6pTpsZG/04HdO1afZn8m0HGkvLaGnaBeHrVt4ndb7m7tg8K0JUCz5XdAsAAAAAAAAASJq2W0WHGb5+mvOsVP27Ph16TZ8+cHtNP1sQqFaL+B0XAAAAAAAAAAANwpOqfgBNqVIJX16vWJLQofIzFee5DJshvKGcbEX3prC7AeMOkE65V9p5v/7XO02T3voDaeKx2bSthWA0r6UpAnYZjNZqCDiCh0z3Kof9Iw5TsSvXIP/FDWU13W+O+Ko08YTwdQdfueO/J51k3jf9pTzqhUeHGT0x+3YMIHS4fGpRgtG2hf+3TZTANTQW0+d8vw9ns/+Jx0ln/kY66JPS9PdKx39POuprUoth7DMc9zY/ZXVe2neVTvzRjnn+uAOlU/+fNP7gBDszPJc0zQNQPkEgvfY/0i9Pku4/RVpxX/RtR02SDruuPxDtsC9Ioye5a2caBKOlY7o2TXprvu1A45lxSfjyoCa9/qvwdabvy+IwjZcYH2E4X374AQAAAAAAAIDeeZj9+fBzr0m3/ibQO2+q6Yq7AwUB4WgAAAAAAAAAgOZRJ1EEAApQ79fr+XX7BlBAMBrhDeVkOz9Rwon2OFN650Kpe4PUNj6bArMBBKP5zRaqV4/La1ELwWilYepDvgSjmYpdGSf5L6tgtFG7Smc+Ir3+gPTs1dK6J6V9PyjNulTa9agd76u2SKMnS9tWjdwH96zyqHXHe/++H3TTjgHVtvDlhA77K3YwWmfE/XLOm47pPlYvuDqOXQ6VdvnK0GWmUNjhkgRJwr1aRmOOSlWaem7/v55NUtvO6fYVhkKC8gtq0vIfS89fJ61/Ot62HVOlgz7VP5Zq7XDTvkyZnl/Qj+sKauYxtmkOBkS12zH94Z1vvDRyncvgQuPzasZHGC7D70kAAAAAAAAApHLuYRV94WfRvtv5xrxAHzm1ogP3cNwoAAAAAAAAAAA8QTAaAP/UC/QgwKH8jMU/DsOIqoZbHoX8frOFW8UJJ2qfkL4tw5kKzWrb+gupswxhQ3ypgtEcBl9RXFse3gejUexaWnHHHrbrRqUi7X5G/z/rPgyhjFGDj1C8uKGHO89y044BhA6XT+xgtIjzbs5586kVNEYyhcIOl1UAF7KV1bO8wWFmaULRhu9rCIeBNXCr1iMtuVN64UvhYUQ2Y2dJs6+Upr9Paml30z4XjAF/9OO6bHNnnt0grUpFmnGx9OxV+R7XFCRLiD6G47sLAAAAAAAAwBtHTZMOmCK9/Hq09z+0MNCBe/CMDwAAAAAAAADQHBwm0ABAQvWKJQlGKz9TcZ6xKDUDhDeUk+38mMLu8mIqkgxq9CsfeBuMZggngn+KuFfFYSt2DaL9giQKEvcekcV1wxikx7i6NOKGHlYdhzmYxmGMgfzlKhgtyn7RWEyfc9fzM9PYZzjubX7K7LxkORYnUKph9HZKC78p3buf9Ngl8ULRJhwinXCXdM5L0r4fKFcomkTAXxq2IE2C0ZCFGe+L+QwpgyI24w95dHN/wzAUTQIAAAAAAAC+qFQq+p8roj9PXrvFYWMAAAAAAAAAAPCMJ1X9AJqT4Q/v6xVL2oqWUBIEoyGimiXcymV4VRS2IkmK8YuXptjPh2A0W99HPkzhekVfewa0WMJBCKnxWy1uMFoGRfmmkCzuV+VRixmM1uo4iNM0tub6468gwrkZPNeOOu9mPtV8jGMkx8FotrHPYNzb/JTVeclyLG56BkVwTHn0bJJe+Ir00xnSkx+RtiyNvu1ux0mn3Cv9+bPS9AukqifzvNjox4nZrkuuQ4bRHDr2kqa8Ld9j2oJka935tQP+8+WHHwAAAAAAAABIkqZPrOj1r1Y1fbf6712/1X17AAAAAAAAAADwheOKNQBIoK9O0T9FruVnKs5zWYxRNYU3UMjvNVvQguvC+3psRZJ926S2nfNrC0YyBTZE4vBaFDXgqNYlVTvctQP1+R6MZi123Sa1tOfXFsQTN0Qoi2A00z4IHC6PenOk4VyHOTC2Lp8o52bwXDvqvJtz3nxM9zHXYyTb2Gcwnhn5KbNgtCznaoYfbDCF+cMfXWull78uLfx3qXt9vG2nnCG95Wpp8qlSxdQHSoSAv+Rs16Us5mCAJM28RFr5i4hvzuCaZAuS7euib2OQBrgHAgAAAAAAAA1m0s4VLbq+RUvWBHpllfSub9a0NeQ3LzYQjAYAAAAAAAAAaCIEowHwT88G+3qKXMvPWJznMIzIFKIVN5wE+bKFWxUdTmQrJOM6Vbw0wWguQxpbxkR7X982qZVgtEIVca+Kw3oN6pLa8msKYoobIhT1upFkH72d6feNfNRiBqO5LnhnbF0+QU/99wwJRot4fYiyXzQW033MFJiYFYLRys3HYDQCpcqnc4X04lelV74l9W6Jt+3U86SDr5ImHuumbUUxfibox3URjIY8TH2X1DZO6nkjn+PVfV49Pp92oAQIRgMAAAAAAAB8NX1iRdMnSn99XEXffjgYsX7D1pHLAAAAAAAAAABoVASjAShQwj+8p8i1/EyBRS7DiExF2nHDSZAvW7iG68L7eghG81uqYDSHhWFxgtFQLOO9quBQxgG2cJC4AUrIV9zgqGoGRfmme1aNa00p1Pri39cIRsNwtQgBZrXu/v5WbYk+FmE+1XyMYyTH87OW9mjv497mp8zOSw7BaKKQwDubF0svfFladGu8uU6lKu1zgTT7SmnCIe7aVyjD8wsC/uojGA15aB0j7fMe6Y+31H9vFs8jeVaEqFx+FwcAAAAAAAAgExMMv6u7fmu+7QAAAAAAAAAAoEgEowEoHwo4ys9UnOeyGIPwhnKyhYAUHU5kK5KkGL94aYLRXIpaXEsfKp7vwWgtlmLXPsZKXos79siiKN+0D0IYy6HWHX8b12EOhA6XT5RgNKl/vl3tiH59YD7VfEzn3PUYyRb0MRj3Nj9ldV6yfG5k2heBUv7Y+KL0/PXS0jvjzfGrbdKMS6SDPy3tPMtZ87xAP06OYDTkZebF0YLRsmB9VsQYCYO4/GEQAAAAAAAAAJnYxRCMtoFgNAAAAAAAAABAEyEYDUD5UMDRAEzBaA4LqQlGK6eaLRit4GGMrUiS61TxfC0CbhkT7X30oeIVEeIZhy0chBBZv8UNjiIYDUk+067DHBhbl0/UYLS+bVJrjGC0qPtF4zDdx0yBiVmxBX0Mxr3NT5kFo2X53IhAKW+tmy89f520/CeSgujbtYyRZl0mHfSPUsdUZ83zCsFoydkC6aOGcQJRTDxBGjtL2vxKnTdmEFRVtf2QB8+KvBfEuOel5snzTQAAAAAAAABGpmC09QSjAQAAAAAAAACaCMFoAIqT9BfJKXItP2NxnsNijGpb+PI+CoK8ZgvXcBmkF4WtSJLrVPECS6hekaIG1dCHimfqQ0VfewYQzlhecYOjogYqJtlHX2f6fcO9JONV12EOpgAk+pS/ghjBaFL0c0kYXvMxjpEcP2aOel3rfM1tO5BMZsFoGT43Mj2XJFCqOKse7g9EW3FfvO3axkv7/710wBXS6Elu2uYt02ciz3CdklrzePjy6qjk31sAYSoVaebF0oLPuj+WLUiW70H8l+fzbK5zAAAAAAAAgPd26ago7DuftZulIAhU4TkfAAAAAAAAAKAJ8HPAAMqHsI/yMxWZZlngOpwpvGHpXVLN0wAl2IuBig4nqraai/+5ThXP22C0iAFH9KHieR+MRrFradXiBqNFDFRMsg+uNeVQSxKM1p59OwYzjYGW/1iqRQzgQr6inpfaQDBaxOtD3Gsays8Uhud6jBQn8HHjS+7agWR8DEYzfjVCMFqugkB67X+kX54k3X9KvFC0UZOkw66TzlsqHfaFJgxFk/kzQcCf3bY10rNXha+zzbWBpGa8X1K9ArUMCtgI0S+3XK/dFEwCAAAAAAAAvpsyLnz5G9ukVZvybQsAAAAAAAAAAEUhGA1A+fR1Ft0CpFZAMJopvEGS1j7h7rhIx1R0L/kRTkTQjL8IRkNaxhBPD649kj30aNvr+bUD8W14Nt77swhGqxr2sfy/pV7G1t574+X427gORqu2mdetesjtsZFM1GC0vpjBaFuWjly29TVp4TekJ/9Beu6L0hrmWw3FNEczhZFnJU5Qzas/cdcOJFPLan6T4XMj0zOo136e3TFgFtSkZT+S5h4lPXi2tPqR6Nt2TJWO+pp03hJp9lVS+3hnzfSe8VkqwWhWtgC+njfyaweax077SFNOc3+cSquMgVdJAreRsxyv3bVu6ZVbpF+eLP3XBOmZq7j+AQAAAAAAAJ45aA/zuhdey68dAAAAAAAAAAAUiWA0AOWzZXHRLUBam03nsKBgtJe+6u64SGfFL8KXV6pSxVDklSdTWE1mRd9IzNdgtDGWv1YZjBDQ4pn6kMsQzzgqVXMw0a//l/TGwnzbg2jWPim9+JV420QNVLTuwxKu9tA5Us3TayakjS9K886Kv12cAKEkbGPr5693e2wkEzcYLep4dusy6f7TpO4N/a9X/1b6f/tLT/69tPDr0oLPSL88Xvrjd+O3GX4y3TNch8dWY1zXTPNIFCer4Ocs+5lpXL/iPstzK6RW65EW3S79bLb0yF9K65+Ovu3YWdKx/yG984/SAf8gtXa4a2dpGPqxKegb/Tb9oegWoBnNuNj9MSoV81yQH2HwX57Ps7vXS0/8nbT611LPRumFL0n/NV56g+sjAAAAAAAA4ItJO1c0aefwdc+/FuTbGAAAAAAAAAAACuJJVT+A5pQw1OiNl/v/aB/lVOuRNiwIX+cybKZqCW947efujot0Xrk5fLktjCNPpqAZCs2K52swWtTCbYLRimcMRnMc+hGHLSBk/hX5tQPR/e7y+NvYQs0i78MSrvb6A9Lax9MfA268+OVk28UJEEq0f8tY7PUH3B4byQS90d43MI6NM55d9aD0+Af7//uJv5N6tww7dk166uNSX3f0fcJfpr7keo5mCoQNs+Y37tqBZDILRsvwuZGtz756T3bHQb/eTmnhN6V795Meu0R646Xo2044RDrhLumcl6R9PyC1tDtrZumYPhMEo9n5+swIjW2fd0utY83rs/oRkKrphzy6stk/3PHh2v3kR4puAQAAAAAAAIBB9p8cvnzlG/m2AwAAAAAAAACAohCMBqCc1v6u6BYgqQ3Pmde1jXN3XFvBqy8hWxipfdfw5TVPQhVMhWYEoxUvavjHcLuflW07wuz/9/XfU+tx3w7YGYPRPLpnmK6RkrT6kfzagWh6t0jr5sffbswe6Y9db4z1/PXpjwE3Ft2WbLs2S8F9Fny6FiKaqGOL7cFoMUNa//RTaetr0kbDfK/njWTXQPinqDFSnLCQKae7aweSyWp+k1cw2lOfyO44za5nk/TCV6SfzugPW9myNPq2ux0nnXKv9OfPStMvkKoehVT7wviZ8CBcx2e2Z0aTT86vHWgurTtJ+5zv/jgthpDsPoLRvOdDMNrKX0q9W4tuBQAAAAAAAIA37WR45NvrweNEAAAAAAAAAADyQDAagHJa83jRLUBS3evM6/b8c3fHrVoKXm3rUCxT8XSLIZAsb6Z2EIxWPFNgg02lKu3/4ezbMpwtzGpA0mA3ZMd0Dny6Z0w5zbyud7MUBPm1BfX1bJYU85yMntwfCJHWpBPs69c/lf4YKEZrSADaLkdK7bu4PS7BaOUTNZRo4P4Xdzxb65E2LLC/p29LvH3CT6YxUiWHwKKx+0Z7X8sYt+1AfJnNbzL8OsOncX0j6lorLbhGmjNNeubT0rbXo2875QzpjAeksx6V9jonXjBi0zF8JnwI1/GZ7ZnRnn+RXzvQfGZcYlmZ0bWuagpG43m195I8z3ahZ2PRLQAAAAAAAADwpjbD1/C9njxOBAAAAAAAAADANYLRABQnTVHbWoLRSstWkL/bMe6OawtvyKOAG8nUDAVbR30933aYEIzmr1rEwvsDPyFNOETa4x3SST+Wpp7ntl1StGC/qO2HO6Zz4FMY0BFftq+nGN4vpnvagNadhr4ePVk65WdSNYNxyq5H13kDYROltOc50qFfGLqs2iYdco37YxMmUz5BxGC0WsJgNKl+8BHjm8ZgOo95XBfe8rlo7+vrctsOxJfV57+S4dcZPo3rG0nnCunpT/UHoj13rdS9Pvq2e50rnfWYdMb9/SHQBKLVZ/r/iLmgne2adOAn8msHms/kk6Sdpoevq7ZncwzTc8ca4yPv+XLtZt4GAAAAAAAAeKPV8PVoD8FoAAAAAAAAAIAmQfUPgHJa+7gUBBTIlZGpWH54GEjWrMFo3A69ZQpkGDUx33aYEIzmr3rBHAOO/KrbdoSpjqr/nqjthzumc+BTGNDoydLbHpLuPyV8fdArifBPb/R2mte9a7nUvqu09AfSpoXSTtOkff5KGrVbNseuVKQJh0kbns1mf/DDPu+WZl4i7TxLevUeqXWsNO090sTj3B+b8XP52AKqBwtSBKPVC6NifNMYAsNfWOdxXWgdE+19BH/4J6vPf5bB9j6N6xvB5sXSC1+WFt0a7zNYqUr7XCDNvrI/tBzxGMMCPQnX8ZXpmjT1XVwb4FalKu37QWnBZ0auy+pHY1oMzx0JjvWfaZwtSQdfKb3wpXj7O+DjUuefpGU/jLcdY2kAAEaoVCozJB0uaU9JYyWtkLRU0qNBEPUXKZy0a1dJR0uaIWmC+n8FZ6OkVyX9LgiClUW1DQAAAEA2Wg1fj/byVRAAAAAAAAAAoEnwF/4AyqlrjbRlsTR2ZtEtQVymX5t3XURtK2qj4M1fpkCGlogF8a4Zg9Es4TdwL/D8rz5MBYqDERxSPNM58C0MqKXDvC7olRShvyEfNUvIUOtOUmuHtO/fuju+9d4ZuDsu3Km+OQ7Z6y/6/+V6bM+uhagvTjBarTfZWKR3S502ML5pCMYxUg5hrFXD/Gs4whz8k1kwmikEKsm+CBDOxMYXpeevl5beaQ90Ga7aJs24RDr40/0hr0jI8Jnw/blI0YoM+QQO+sf+oKoNC3Ysm3yytM97stm/abxkeyYBT1iu3XucFT8Ybe93SWNnxQ9G47sNAAC2q1Qq50v6hKTjDW9ZV6lU7pb0uSAI1uTUpoqk90j6iKQT67z3aUnfkvTdIODLZwAAAKCMWqsVhf1dV2+Mr+UAAAAAAAAAACgz/sofQIEq6TZf8zjBaGVk+nvLapvb49oK2yh681NQk2rd4etMgWR5MxWamQLdkA/fQzei9F/f/zc0g6KCPOOyBTrQj/xiuzdEDXpJw5d7J7JT5Dn17VqI+qIGo9V6k49lezfb11N71xhM44s8AhOjXveYj/knq3FppsFo3MtSWTdfev46aflPFCtkt2WMNOuy/mCgjqnOmtc0TJ+JgOBjqyJDPoGW0dLbH5de+Q9p8yvShEOkaRdJLe0Z7d8QkN9HcKz3bKGWSZ4bVUcle27AWBoAAFUqlbGSbpF0QZ237irpckn/u1KpXBwEwX2O27W7pDslnRZxkyMk3Szp7yqVygVBELzirHFAA9i6daueeuop/eEPf9CaNWu0bds2jRkzRlOmTNH++++vI444Qu3t2czdli1bpm9/+9t66KGHtHDhQq1fv149PTu+x7n11lt1ySWXhG77xBNP6NZbb9Wjjz6q5cuXa+PGjarVdswnFi9erOnTp0uSTj31VD300EPb1wU8MwIAoHTaDF9d9PIbOQAAAAAAAACAJkH1DwC/veVz0rL/kt54ceS6tU9I0y/Mv01Ix1SQ77og1VbYRtGbn2zFWr6Eu5jaUaN4qFCB5z+HVzUUKA5GcEjxjEGenk2hbO2hH/mlr9O8Lo/7WtX2h/opA4tRjJYxxR2bMJnyCSIGowUOg9EI7GwMprF2HvPqyMFoBH94J7NxaYbBaL6N68ti1a+l578orYhZ6902Ttr/o9IBV0ijJ7lpWzMyhgVSDWNlupdxXUBeWkZLB/y9m32bnjsSduU/2zPt1gTz/5bRBKMBAJBApVJpkXS3pLOHrVot6WlJGyXtq/7QsYEvV6ZImlOpVN4WBMEjjto1SdI8SQcOW9XzZruWqn8yOFXSUZIGDwSOkjSvUqmcGATBUhftA8qqr69PP/zhD3Xrrbdq3rx56u01P8ccPXq03v72t+uDH/ygzjnnnMTHvOWWW/TRj35UXV3xnmP39vbqwx/+sG655ZbExwYAAOXTagpG8/xPZAEAAAAAAAAAyAp/5Q/Abx17SROPNQejoXwKC5qxFARS9OanogNkojC1g+KhYvkeBtUSIRiN4JDimc6Bb2FAtvbQj/xiujdUR0mVHILJ8jgG8lXkeIjxc/lEvSfUepOH/PZssq/3fYyGaEznMY8xUtTrXo1gNO9kNS7NMoDPt3G9z4JAWjFXev46aXXM+u5Rk6QDPy7t92Gpfbyb9jU1QzBaQDCalXG+z49noAEYf8iD8ZH3bNfuKD+0EbZNku1s38sAANAcvqShoWg9kj4h6dtBEHQPLKxUKgdL+g9Jx7+5aJSkeyqVyiFBEKxw0K4bNTIU7VuSPh8EwarBCyuVygRJ/0fSp7Vj4jhV0s2S3uGgbUApPfDAA7r88su1cOHCSO/ftm2b5syZozlz5ujoo4/WzTffrCOPPDLWMX/+85/rsssuUxAEsdt79dVXE4oGAEATajF8FdTLV0EAAAAAAAAAgCZB9Q8Av43ZS9r1GGnRbSPXbV2We3OQgaKCZmxFuBTD+skWLkYwGmx8D92oRui/vv9vaAaFBXnGZLuH0Y/8Yro3eHFPi//H98hBvUCLIvsOoRHerce7AAAgAElEQVTlU+uJ9r6gN/lYtrdOMFrUNsBfQSAFhp+ezmOMFPW610fwh3eyGpdWDH/5n2hfno3rfRTUpOU/7g9EW/90vG07pkoHfUra94NSa4eb9sH8mSAYza7IkE/ANdMPMjA+8p9pnC0lm/+3jJKqLVK1Ld5cjO82AABNrFKpzJR0xbDFfxkEwZzh7w2C4IVKpXKGpF9pRzjabpI+L+lDGbdruqSLhi2+PgiCfwp7fxAEGyRdValU/iTp64NWvb1SqRwbBMHjWbYPKKNrr71W11577YiAskqlooMOOkhTp07VbrvtptWrV2vZsmUjwtOefPJJHX/88brpppt06aWXRj7uVVddNeSYF110kT7wgQ9o7733Vltb2/blEydOHLLd66+/rhtvvHH76/b2dl155ZU6++yzNWnSJFWrO54RTZ06NXJ7AACA/9oMf57Ta3mcCAAAAAAAAABAI+Gv/AEUqFL/LWP2lHoMxdW17vDl8FtRhWe2ohKK3vxUIxgNCdU8/6sPU4HiYLYwR+TDeL/yLAzIFkJCMJpf+jrDl7eMybcdKI9694Ii+w5hG+UTxAlGM1yv6undXH/fKDfbZz+PMVKUgGHJPpdEMYxj62q8e0qmwWiejet9UuuRltwpvfAl6Y2X4m07dpY0+0pp+vv0/7N35mGyVPXBfk9Vr9OzL3fnLqz3sgUVRcBEEIOiohE3EpKoMaJGE4ggBpMP8YoGUZOg0cQVEp+AfqhB9CPKoiiCiBiQ5V7gwl2469zZZ7qn16rz/XG6Z+mZ6mWmp7t67u99nn6661TVqV8tfc6p5byFHVqa+IRpPP8T0lYrSSMln4Kw1Hi1l6R95H9KtYmsBdSphXsXdrRKMdoCzwcFQRAEYXnwcSA4Y/jm+aRoBbTWSaXUu4AngEKF/R6l1A1a6501jOvCouF+4BMVzPcl4L3AqUV5iRhNOKK5/PLLufHGG2eltbW1cfXVV3PJJZewfv36OfM899xz3HzzzXzuc58jnTbi6Uwmw6WXXkoikeDyyy8vu9xnnnmGxx9/fGr4da97Hf/1X/9VUcy33347mcz0c5LXXXcdH/nIRyqaVxAEQRCE5ibgcUsz68hLMAVBEARBEARBEARBEARBEIQjgxr2JBIEQVgComvM28zno5oH+QX/4LXfvPZzrSglRpNOb/6klFys0g7xS42I0fyJ36UblYj9/L4ORwJeQiK/yTRLxSOCPX/hVTf4QvZZgbBYqD/l6oJGHjul2taCP6n0/NnNLbwtmxUx2rKn1D6sRxup0nLPSS9tHEL1eLVLqz63r+HtDLkWNJdcEp79MvzwOHjoXdVJ0TpPgbNuhTc8Dce8R6RodcPjPyES29J4nu+LMFFYBni9kEHaR01AKQnxAtpAVv5YqPbagdzbEARBEI5QlFJR4K1FyZ8pN5/W+lng9hlJAeBPahgawNFFw3dprcs28LTWGvhhUfJxNYtKEJqQ//iP/5gjRXvFK17Btm3buPrqq+eVogEce+yxXHfddTz++OOcfPLJs8ZdccUV3HfffWWX/cgjj8wafutbi4uc2s973333obWe+giCIAiC0HwEPC4N5uRWkCAIgiAIgiAIgiAIgiAIgnCEIGI0QRD8iwpApE/EaMsNr47US90htdEduIXqKdUBxxcSGbw7cbvSeaih+F3WYnl0UJyJiEMaT6Pqq2opFY8cR/7C12I0wZeIGE2oJZWeP+tFiNFyZcRoIuxsfkr99/0kRnNF/OE7vOq0auuyhUhBPPPyWbu+kWQnYNtn4Y5N8MgHIbGn8nl7zoA/uAMu+B1svBgsEUvVFa//hIjRSuNVJkm5ICwHvK47iuzK/5Rsay+gfi1I8qoV0cqxIgiCIBy5vAZomTH8K611pcbwm4qGL6pNSFPEiob3VTHv3qLhrkXGIghNy7PPPsuHPvShWWlnnXUW//M//8O6desqyuP444/n3nvvZcuWLVNpruvyp3/6pwwODpact7+/f9Zwpctc7LyCIAiCIDQ3XmK0/SOQc0R8KgiCIAiCIAiCIAiCIAiCICx/RIwmCELjUKr0+Ohq07lLxGjLC6/O8Evd8axUpxK/SW4EQ0kxWrR+cZTCqxO3dB5qLH6XQdkViNFEHNJ4GlVfVUupeOQ48hdOcv70utVpZdregv8o9x8WMZpQDZWeP7uLEaNNlB7v9zaaUJ5S+7AeMqRKyz0nDVoeAvcVXnVa1WK0Gh5nci0I0kPw+LXwgw3w2FWQ6i87yxQrz4Pzfgrn/wrWXVj+Oq+wRHhtdxGjlcSrLVvLMkYQGoVX3SriWP9TUmq5gEc6CpK8attbXtevBEEQBGH589qi4fuqmPd+YObFjxcppVYuOqJpDhUNV1PBF087vMhYBKFpufLKK4nHp1/w0tnZyfe+9z1aW1urymfFihV897vfJRQKTaXt37+fT37ykyXnm7lsgGDQ43nIGs8rCIIgCEJzE/S4dfHoXgh9wOWln3L45Q65Ny4IgiAIgiAIgiAIgiAIgiAsX6T3jyAI/iW6xnx7idG0iNGaEq+O1EstmikllvCb5EYweAoZlHe5UG9EjOZP/C5rsSp4Vl3EIY2nUfVVtZQSOshx5C+86oa6ya3kIbimo5zIqpGiWL/XtcJcKj1/1rmFd4TPxkuPP3QPbP7bheUt+INGn1dXXGdqcywrn5w3Ct7t0qrFaDV8z4vf2vX1JHkQnv4n2PFvkEtUN+/aN8JJH4PeM5YmNqE6vP4TJeU6gmd9JsJEYTng9UIGR8RovqfUefZC2kCFMq3aawdyb0MQBEE4cjm5aPhXlc6otU4opZ4AXjQj+SSgCgN5Se4vGn5xFfO+pGj4N4uMRRCakqeffpof/ehHs9Kuv/56Vq1ataD8TjzxRK688ko+/elPT6V94xvf4Nprr6Wrq2veeVx34ddrFjNvLdi2bRtPPPEEQ0NDjIyMEIlE6OvrY8uWLZx66qmEwxW8HHAecrkcDz/8MDt37mRgYIB0Ok1fXx8bN27k7LPPJhJp4EuiBEEQBMEnBMq80+W3e+C1N7o8ea3Fxl55kZEgCIIgCIIgCIIgCIIgCIKw/JCn/AVB8C8FMZpXR1btmk8tO0UKS4+X4GGpRVclO5WUuXMsNIZSAhnlkxv4IkbzJ6WEDX7Aq4PiTPy+DkcCXvIGv3WULiV0EDGav2i4GK0Eyf2NjkCYj3L/4UYeO+XEaHu+A+vf7p82m1BetFfgmRvhhMsXtoyR/y09/sCd8Pg1cOrWheUvNJ6S59V1aCNVs4zhR6H3ZUsXi1AdnmK0KkUdIkZbHPFdsO0G2HkTuFUIcpQF698BJ10NnacsXXxC9XiK0USKXBKv+uxILBeE5Yflcd3RlevVvqeU1HIx97CqvXawUFG2IAiCIDQ/W4qGn6ty/ueZLUY7EfjpoiKa5l7gGeCE/PDvK6VO1Vo/XmompdRa4C0zkrLArTWKSRCaihtvvBE943pJb28v7373uxeV5+WXX85nP/tZsllz/yWRSPC1r32Nq666CoDdu3ezadMmz/nPPffcedNvuukmgJLxKY/7b7t27WLjxo1Tw+eccw4///nPp4Z1FdeM9u7dyw033MBtt91Gf7+35zEajXLuuefyzne+k7e85S3Ydvnzl+3bt3Pdddfxox/9iPHxcc983/jGN7J161aOP/74iuMWBEEQhOVGJdX3ZAaO/pjL3/6hIhqE1vxlYqWgJWSGlYJkBnIudERhPAnpHGQcCNmwrgtetVnR1ybP+QiCIAiCIAiCIAiCIAiCIAj+Qp7yFwShgZS5eday1nyXEma52coEM4J/aJRopmQHbpHr+RKvzlp+EMgUEDGaP/G7DKqSY9jv63Ak4CWn81tH6VLxDP4auotfBC80DK+OpdUKQRZMmbb3vjtg3RvrE4pQGeXqgkaWR+XEaA9cDKOPw+99qj7xCOWpVLqaPACPXbV0cTz5STjmLyG2fumWISwdpcqlegjHq5Et3nUGvOFpaD+h/LTC0uNVBlV9fl9LMVqZY9bN+U+KvFDGtsNT/wh7bilfh8/ECsKmd8GJV0HbsUsWnrAIPK9plpDrCN71mbw8Q1gOeF6vrkKIKTSIUmK0RbSBqm1vPfcVOPUTC1+eIAiCIDQhSqluoLso+YUqsyme/riFRzQbrbWrlPoLjGgtjLlA8l2l1Pla693zzaOUWgncDrTMSL5Oa32gVnEJQjPx4x//eNbwn//5nxMKhRaVZ19fHxdeeCHf//73Zy2nIEZrVrTWfOpTn+KTn/wkmUym7PTJZJI777yTO++8c46YrRjHcbjyyiv5whe+gOuWvn6VTCb5zne+w/e+9z0+97nPcdlll1W7KoIgCIKwLHhiX+Vi03++e3Evzulq0Xz/AxavPEHkaIIgCIIgCIIgCIIgCIIgCIJ/WCY9ewRBWJZE15hvEaMtLxolmuk+3XtcNZ1ChfrhJRfzkxjN8ojFS+om1Ae//6etCuotEaM1nkaJPKulVDyPfAiO/6v6xSKUxu/12mNXiRjNb5QTWVUjCKo1ldS12z4DW66CUMfSxyOUR2cbHcE0z30Nfu+TjY5CWAhuiePIb20kgOe/Di/6bKOjEMC7bV1tO6iW0qJyx6yTAqu1dstrBMO/hac+DXv/G6iiI4QdhWPfB1uugJZ1SxaeUAs8RDlaxGgl8RSj+bAuE4Rq8ZKvJ/fXNw6hetxSL/dZRBuo2vZWqt/UI/JCIUEQBOHIorNoeFJrnagyj8NFwzW9MK61flAp9QbgFqAPI157XCn1DeDHwB7Myf864DzgUqBnRhZfAeSi7AxyjmbfSKOjODJY1wUBu3H3tPbt28fu3btnpZ1//vk1yfv888+fJUZ76KGHyGazBIMlnnX0Mblcjosvvpjvfe97c8atWrWKU045hd7eXtLpNP39/fzud78jHo9XlHcymeSP/uiPuOuuu2alB4NBTjvtNNatW0c4HObQoUM8/PDDTE5OTsV0+eWXMzIywrXXXrvodRQEQRCEZuMlGxU/+N3ihGeVMjIJ7/2Wy/atFrbl3X5zXI2lQDXyuSVBEARBKCKZ0RwYhawDjgbXBVfDxh7oaFlYnZXKalwXoiH/13ta65Ixam22zwvDkMrC6g5zzeaFYbN+azogaIOVbwMk0prJDIRsaI/OXv9EWjM6Cd0xiAQhnYPBOPSPQyxk8g7aZj9obZaXc8HJ7xPHhUPj0BqGgGUuauYcyDhm2tFJaI/AizeArSCVg4NjMDgBqzshmYGJlIn70BhYCk5ZB2s7a7efMjlNOmfi2jNstsO6LhP/gVHzrTWsaDfrEQvPXW4mpwnaJqZsTjOegrH8O9Yd16x3LAQB22yH9ggEA2pqf2Uds/yADaGAv48/QRAEQRAEQRCEpUae8hcEwb9UJEYr/2ZCwWc0quPZUW+GX3mMKyedEBqDk5w/3UtG1gi8OhV5yW+E+lDpf3r925c2Di8qEXpKudR4GiXyrJaSHSM1ZMZESuQXvKSZ9arX1r4BDv7Ye/z4M5AahEhvfeIRyuNnSWbn75WfRjsw8iisPGfJwxEqwE/nzofuEjFas+KkvcdVIv+tBa3HQvy5yqYd/PXSxiJUjlfbutp2UC3FaOXyclIQbFIx2uH74alPwcGfVDdfsB2O/2s44TKI9C1NbEJt8ZLWiBitNF6S31qWMYLQKFqPmT99ch8kXoDY+vrGI1RBibJbWXD8h+DZf60+24UI+Seeh/bjqp9PEARBEJqX4gsAHg8qlKR4nrYFxuKJ1voepdQW4HLgEmBT/vflJWZ7GrhGa31breNRSq3ASNqqwaPBWn/2jcDRH5Pz53qw89MWGxt4+/GBBx6Yk3b66SVerlkFL3nJS2YNJ5NJHnvsMV760peybt06du3aNTXuX/7lX7jxxhunhm+99VZe/vKXz8mzt9dsrHPOOWcq7eKLL+bXv56+3j0z35msW7e4lxxcccUVc6Ror3vd67j22mt56UtfOmd613V56KGH+Pa3v83NN99cMu8PfvCDs6RoHR0dXHvttbznPe+hrW12kZlMJvnyl7/MP/zDP5BKmXvsW7du5YwzzuCCCy5Y4NoJgiAIQnNy+gZFVS9AWiTPHYbg+11OXQfpLDzTP/90loKWkHmno86H19sKtmWEJlkHwgEjRUnljChlfTd0RI0IJJGGgbiRffS2mumzDrRFjFwknjbzn3G04oa3KHpbIZmFyYwRr7RFYF2XQmtNKmukboNxM6+rzXiATM7E0BMzsVmWmSfnGEFLJGhiGU7AUMKsz6p2IyZ5YRj2j0IsbGLOOia9JWTkLLZl4pxIaXpbFas7oLPF5DeaNNuoIHtxXCNUCQfNekWCZl0Oj5v8bMtIT9rCZvp42myzeAo6WmDzKuiOiRBFEARhPh58XnPtHS73bC893dnHwNouRdYxgk/bUqSymkNjpg5J5Ux5nXNMORwKGPlWgaBtPq42ZXpvq6nXNKYu1Jh6J5GeFn31T8AJK0391NkCazsVsXxdNZaE/nEj7g9Ypi4IBUz9YCsYT00LxUYn4fiVZtzopKmTlJqWjOXc6fq4JWTyiwTNZzxlYspW8C7kcnS1QCJj1rOAlY/DL7SG4eKXKSxl4g3aRriWyeU/+d+WAssyAr2sY7ZjPK3Z0W/q/3iJxyTnY0UbrGw3++zgmMkzvcBHwCNBk89M1nVBX6tp44QD5ng9pk8xmX8seGOv2e/94zA6qUlmpsV0WQcOT5h13DVotsExfWacq818sbykLuuYbRgNwVAcJtJwxiZF0DbjtqyGaNAc2zp//A1MmPbQZAZWdShWtBmZ3lDcLCsaNNMVhIXpnDl+V3eYZR6egAOjmo29inDA/Bdslf+e+ck3hQ5PmGMeoNA6Umr6XeOWMulK5X/P+FbMTVvacWr+6a355ys5Tk2vW/E01Y6bE2uNxvldICk0H66rp87hCseX1hrHNeWCHHOCIAiCcGThs179giAIMyiI0VQpMVrWe5zgT7z2mbXEVVKgBWIbILFn7jg/SyeOZLzkYgvpyLNUiBjNn3h1cC3m+A8tbRxeVCKNkHKp8TRK5FktXh3hC2RHRYzmF3Ie/WgC0fosf8MfwyNlyr1cHBAxmm8oJclcVZs32S+Y1a+BQGv+mClBLlGfeITy+Kl9qn30JIxQHW6JJ34qkf/WgrUXwjP/XNm0XrJtof54ta2rPb+v6fWAMg9FeElt/YrWRoL71Kdh4JfVzRvug81/C8f9lZw7NBue54PSsbsknrJGn53vC8JC6D3Te9zAAyJG8zOlrmkrGzZ/GPb9ACb3Tqf3ngmD87wRaP07pn/bC7ju5Mi5vCAIgnDEUSxGW8hFgeILUUtlWy+cuFTSNe9B4FrgniWK5a+Ajy9R3oJQM/bt2zdreOXKlfT09NQk75NPPnne5b30pS8lEAiwcePGqfTOzs5Z061atWrW+GJaW6eLkUhk9nXRUvMtlLvuuosvfOELs9Kuv/56PvrRj3rOY1kWZ511FmeddRZbt26dE2eB2267jZtuumlqeMOGDdx3332e6xGNRrniiis488wzOe+880ilUmit+Zu/+RueeeYZLKvMMxKCIAiCsIz4g+PgpDXw1IH6LvfxfaXHu3quMKScQGTX4Pzpe0emfw8VXZp8pl/zn7/yfsZkppitEgpSj9qztM/BBCz44h8r3vdKaQcJgiDMZNeg5g1fdBmdLD/tA8/D7PK6dNldLLUqSDzBSKvGK7yC+PShmUMLry9m5+NNQZRVaXzVMDLPdvaTFA1Me+Tr99c/qMMT5lMLiqVoYF7ysG9kdtr9Oxa+ns8drmbaapazmG3vs4OpJizHdSpNpUK1+URySzFuqWR44ykjuJzMmLZ6d8xIDR13WlpZ7vtgXsxZ4HNvU6RzJt/WMHRGjQRxJGHmsZSph8ZT5rwmnRc+FtY9aBvJYSEOMBLPgQl45pAmkTGi54EJk09vK8TCakoUaSsjHUykNas6FBt7jUB62wFN1oFNvYpjVxjZZkfULKd/3IgSbWVEiCMJzYFRI/rMOuZcLZeXRIcC05LRcMDUKenctIQ6k8t/O2YZxWVqa14inZhx3rm2E/raTB7pnCk/07np34X5WsPTEu6p3xEjK52THoa2iJo7XwRiISPbFgRBEAShMchT/sKSoJTaBJwGrME87HUQ2AM8qLUWk5WQp8yJQMta822FvKeRw6n58OoMa5UQ4NWK4z4Aj/3d3PRKJUpCfWl2MZrW06+dEOpLpVKxvrOXNg4vrIDpzFaq7CklwxHqg2d91WSnUFo6xPsGL7mGVad6LdwNL/sKPPw+72n8JE4SStdnp36yfnHMhx2Cl34ZfvXnpaeTY8o/LHZfdL8Ejnkv/Ob9NQjmyLvZv2woKUarU3128t/D8MNG7FEOKYP8gy/FaGVoluNHu7D3+0aINvJodfO2rIMtH4Fj/tK8UEBoQjw6P8h5YGm8rsf4TYQuCAsh0gvtm2H86bnjBh6AjX9c/5iEyihZdlvQugnOfwj2fBviO2HlOXDURXDf640ctYAdmf1CkIW0n7zk/oIgCIJw5LCQC5hLftFTKfVe4J+BWIWznAXcBTyplHq/1rqCC2qCsPwYHh6eNdzV1VWzvCORCOFwmHR6+tp58fKaha1bt84afv/7319SilZMsfitgNZ6Vt6BQIA77rijIrlbQbh21VVXAfDcc89x++23c9FFF1UclyAIgiA0Oy1hxY8vs/g/P9D89GnNUV3w8QstbnlYc/OD8uxFte/lWxop2tKTc+ED/6U58xjNqetq/1y662osS5HJaYK2ESB0RMlLEipbntaanANPHYTdgxBPa9ojivaoETQMxY2wYEW7ESfYFrRHze9kFlZ3QHvUxLB3GLpiRhSxe9Dst64YrGo3wpt4Gjb1QEvIyCJSWSOkGIibY2I8CcOTMJHS9LUqzjoGOlpKr0cyoxlOmFiDtslDKSO7CNpGuBAOgFIKrTWuBrdIcFHJb8eFJ/eb70jQbOdUFjpbzIWFTF5w0RYxy48EjRRjNAk5x+QxGIeJFKxsNxKOVNaIIyIBM5+jzT4M2bCuy+xHjRlO5mURXS1mnJJ+DsIi0Fo3/Bj6xA91RVI0QRAEoT5obdoigLzXs0quvK0R53dey5wvvbHnn/OJuPePmk8pUtnZArppSq2P97jYHIlaQaymaJ1HstYagbYZ44rniwSlTS4IgiAIlSJP+Qs1RSn1VuDDgNcryYeVUt8BrtFae7z3RRDyRNeY71LCLFfEaE2Hl+ynHh3PvJYhAiJ/0sxiNLQpn+wSYkdh6ahEdrj6AlANfHuaHYFcwnt8pXI3YeloZH1VS5xKXhgv1AU/1GvHXgodJ8Hdr5h/vJe8TWgMpeqCji31i8OLTX8Gu74Fh+72nqZZpDJHAovZF+0nwKt/YaQ5yoaH31u7uITmolS7wgrXJ4ZwD7zqXhj6DUzsgI4TYejX8NvL5k4rZZB/8GpbN1SMVuZBDb8fP24Wdt8C266fX35TitZj4aS/g41/Jtctmh2v6xoiRiuNVztb2fWNQxCWir6z568bBsWD4WtKld2F8r5lDWz58Oxxf3A7bPsM9N8LLRvguPdD31nT4xci5JfrQ4IgCMKRR3GXiOgC8iieZ95uFgtFKfX3wHVFyY8AXwbuBw5guhmtAl4OXAqcm5/uZODnSqn3aK3/o5ZxCUIzUCwq8xJ4LZTOzk76+/unhoeGhmqafz14/PHHeeCB6XPGtrY2PvOZz9Qk75/97Gc8+eSTU8OXXHIJp556asXzf/CDH+Saa64hlTLnKXfccYeI0QRBEIQlQY+bNoNq725wJHNZ26X45rtmd5Q+bwu89mS44zF4+pCRNAVtI3GKhcyd0KE4jCWNPEopI1JK5yAUgHjKyLaE5uK0rS6v3mL2YzIDARtWtpljZCgOP3tGY1tGhLWhx8gD9o1MS7k25A/vnGs+WcdIuA6Ne0vmWkLTcq9MzhxLazrMuPGUyXsy4xWxH+R9JoZoEE5YBaOTRkKQSMOBMbN+YERilaBU9UI+P/OqzXBMnyKZAatwKyJkyolo0IjU2iJw+gZFNGj2dThgypuJNChgOKEJ2EZOt2sQoiEjfEvnzPQHx4xELhQwx4vjGmFKOAB9rWYPzRTNacxvR5v95LjmmG6LTM+rMMtQysQ5ljTLS+W7liWzZj+lsuZz3EozfTIzXfYl85KMglCut9UI8MBMl8yafFe0wYvXK1683iwjnjYiukKpfGjcbI+sY7adbUE6L6Cb/miSGfOfcbWJbWW7Wa+gbfJ3XHhivxH6jadMmT0yaY5ZxzXyvn2jZrktITO+IMzb0GO2Qzhotlkya7ahxixLY7ZDW8TkN5Y08a7pNLEOxk15ErLNfrItk98je6aPlZPzXfsKZUf/OGQcs91sZdKtvOiwI3+VrLCNCq4PpUy8kxmzXdoiZntEAmY+pfJCRmX+ky0hIwuxlNnug3EjA9zYY2SKL1qv+M9fLaM/pCAIgiAIvieRNp/+8eIxCxOt2da0TG2OUC2iiM2Sr80Wsc2WrzElXwsFRLQmCIIgLE+arFe/4FeUUq3A14CLy0zaDXwAuEgp9U6t9U+WPDihObGjEMzfNREx2vLCs+NZPcRoHp3bKpEoCfXHUyCzkOeQl4hSnbLdlHQwbhSVyA4b/b+3woCI0XyN1z6wmuwUykk2OgKhgNe+qHe91vVi73F+F4AcaZQ61/GLpLH3zNJiNOlM7R8W8/8+6m1GigZw7F9CYjc89alFBCMPJDUtpY4jq47nPnYYVrzCfADGn5l/OimD/INX27qhYrQy+LVd5KTg+W/C9hsgsaf89DPpPAVO/BisfxtYIoBaFngK36UnS0m8rhs12/m+IHjRezY8/4256aOPQ3YCgm31j0koj+f1ajXdY2Q+7DCcco35zDt+Ae0nv7aDBEEQBGHp8LUYTSn1KuCTRcnXAlu1ntMde3f+822l1KXAv3wJIP4AACAASURBVGP6odrAN5RSz2mta2XM/TJwW5XzHAP8oEbLFwRfoEq115uEe++9d9bwn/zJn9De3l6TvO++e/Z9xHe84x1Vzd/S0sLLXvYyfvGLXwBw//331yQuQRAEQQDQrguP/QL931+B+74Pb/pL1JVfanRYFaGU4u2nK95++sLzePQFzUuuk3tKzcY92+dLnfsczv7RuVM9eaD65RVLz7SeP2+/k8zCY3vnpqeq7Iq0nKRoAD99Gn76dCUrtcxWvGqWev0Xl//OwYXNd3Cs8mm9yo8D85QHlYoGx8o83h6f5/2dw4np/P/fE0f6cSkIgiAIQrPjuKZNNH+7aGGytVCgWKI2W6jWOo9QzXyreeeLhcG2mv8+iCAIgtD8yFP+wqJRStnAd4DXFY0aAB4FxjAPNr2Iaen/SuAHSqlXa61/Wa9YBZ9R6sGg6Nrp8SJGW1547bN6dDzzEkiIgMifeHVir2dH6HJYJWJxUhCszYOCQpVU8p9utBjNDpceX4ncTVhavPaBX2RElSIdGf2Dp/CzzvVaqfJHRHr+olRd4BdpQ7njV8ogf6D14gRRgaI+fX4SFQv1xZ3niTMwUrRGdv7yKoukDPIPnhKiKttB1U6/GPx2/GQnYMe/w9Ofh1R/dfP2nAEn/T2sfUNj/6vCEuCxP7V0YimJ1zWhZjvfFwQv+s6eP127MPgQrP7D+sYjVIhH2e0pwayQBYnR5PqQIAiCcMRR3A20RSkV01pX2I0TgBVFw7XsJv4pZp8A/ofW+hPlZtJaf1UpdRTwD/kkG7gRWIQ6YVb+h4HD1cyzHARSQvPR3d09a3hsrIqe3xUwOjr77168vGbgwQcfnDV8zjnn1CzvX/5y9qPB3d3d7N69u6o8Zkradu/ejeu6WNYiz5UEQRCEIxo9dAj+51voH30T9u+cHvGDr+NOJlAf+xoqUKLvQpOjXReGDnJabzuffFOMa+7Qy072JAiCIAiCIAiCIAhHIpkcDOe8ZLULk61FgzOEafMI1WLzithmiNZmzNMahpaQ3DMUBEEQqkee8hdqwfXMlqJlgQ8DX9VaT70jRCl1IvB14Mx8Uhi4XSl1itb6YL2CFZqEljXTv0uJ0bSI0ZoOL2FRPTqeeQkkRIzmT/wikClFqVj81on6SKIS6Vmj//flOvQ3Oj7Bu43RbB2lpSOjf/BLvaYsI7BxM3PHSd3lL0rVBX4pi0SM1hzo3OIEKcXtFj+1x4X64niI0Rp9TIgYzf94ta2rPXbqeawtRihZS9JD8MwX4dkvQGakunlXngcn/z2sOEeEaMsVL1mO9F4pjef1abu+cQjCUtF2HIT7ID0wd9zAAyJG8yuul7RxkWXTQsTW0o4WBEEQjjC01kNKqRGga0byemB7FdlsKBresejAAKXUWuDlRcllpWgzuB64Aig0Cl6ilDpVa/14LeJrZtZ1wc5Pi1ipHqzrKj/NUlIsKhsZqfIaWwlSqRSp1Oz2c09PT83yrxcHD85+dPekk06qWd579+6dNfzylxcXadXhui6jo6NNKaATBEEQfMTPvof+yj/MP+7uW9F334p+218DGoYPm/su0RiMDpjfXStQr/wj1JkX1CwkrTU8+yg89WuYjKOHD6G6VqJTCVQoAoGgiSHaCvFRaGmHzl7IpGBi1KS1dprrjLF2sAPgupBKwNgQemwIDuyEvTvgwC5ITQJwdWsHb1PreaTvVWRPOpvoOa9nMmcxGIeABeMpeHyvJhI0HZ1ftB5cDavaFbZlNodSpuP1QFwTtCESAEfDRApCNhyegMkMhAMQtCEWNt/7RkyH6FgY2iOQysFIvuP2//lBc9zrspTZHoIgCIJ/+MA5imsvVAzG4Z/u1uwd1gQs6IopgrYRcWjAcU0ZHrBgfTes7YSDYzAQN9OcsBLWdiqCARhPQjwNg3FNOgepLNiWeZOBUqY+UMrkFQtDOgs/f9bUk7YFqazm0Dj0tZphS4FtKQI2rGiHFW0m/3QWAjb0tprYfvQ7TTQEK9sVHVH4zW5NNAhvOk2xvluRdUz9e2jM5NvXZmIIWGbYcaE9qmiLmLo3HIDVHeb3YNzUz1lnOibHhXQOBiY0QVsRDZnfh8ZNjB1RRSxk1jEcgIwDyYzZXp0t0BOD4UmIp0z8hW0TC0/HpLUZt6INklkTQ9A2bYGgDaGAme7J/TAwYeZtCUE0ZPIfnYSca6bV2sR/y8Oae7ZrhuJm31oKOqMmn3DA5BkKmHZJKKBwXIinNcmM2baRINi2mW9jDxzTB7GworfVLKM7ZrZLIm2W3R4x+6uw3caTsHdEM5wwca3uMHkentBkcmYZfW2m3dOef/QtYJvjJ5k1271/HJ46oIkEzfZZ3aEIBczynzus2T9qYvjWrzRDCThuBXS1wIYehaWgf1xj5dd3XZci50LOKRwDcFQ3xEJmOVnHHAdtEbMPhxNmfTqiZhtNpOCxvZqHd8GhcRO3paCn1eSRccyx7GpIZOD4FdAZUwzHNWNJk3/OnW7/hQMm/6EErGjVtEYUEymz3FQODoyabfmqE6b/m1MfPXu4sP27Wqb1PVoX/c4fY5oZv4u/fTJOM//0giAIfiOZNZ/DE/ON9Sq4vAs0pYolarOFarE58rXCeOU5XyggsjVBEITljk960grNilLqaOCyouS3aa1/UDyt1nqbUuo84F6m5Wg9wMeB9y9poELzEZ0hRlMlxGiuiNGaDtej41kpAV6t8OpA4tXhRGgsXp1vygml6omI0fyJVzkzk0aLx+xw6fGVrIOwtHjWV012CiViNP/gtS8W0kF1sdhREaM1A6WEDX65aF/u+JUyyB8s9r8dKNrPixUTiayleXE9xGhWmbbtUuNVFkm95h+82tZVi9HqeKw1+vhJHoSn/wl2/Bvk5n11mzdr3wgnfQx6z1ia2AT/4CVGYxFC1COB5XK+LwheKAV9Z8G+ObdqYfCB+scjVIhH2e1Z1lfIQs7f5FxeEARBODLZDpw1Y/hYqhOjHT1PfrXgtKLhnVrrXZXOrLVOKKUeAs6dkXwGcMSL0QK2YmNvo6MQ6sHatWtnDR86dIihoaGaCMyeeuqpsstrBoaGhmYNd3XVzmZXnHctmJiYEDGaIAiCsDjO/2P4t6sh43H/G+C2L5bMQv+/m+FDN6DeUdyNpnp0Love+k742fdmpxd9LwnxMY7lCY6deAJ23giJt6I++hWIxirqUKxzORgfgmTcXJseGTDStY5e82x+Mg72CCQmIBSGjh4jcItEIZeDbGZK3kZyHCYGIZ3i6hMP82x2Jb9yNnOo92RWbd7EsSstOqNGsnFo3Ag0osFpWUosZKQdGiNp0Ri5x/5RIynJ5IxcI5R/7OrgmBGiHLtCsaLNSGgcDU8fhH2jmjUdipcfbZY3OmmEL4NxiATNtCHbSE3AiD0mMzCWNJ2yO6Jm+em88KUrZjx1BZnOSF7qclSXkYU42kw3lJfx/N9HNFt/JM/WCIIgVEuQLFfv/Dg9n9hGz/gIXwmGIBiCYBjiYzA5bn5n0+YZxnDUDA/sh5Y2kx6JmZfQFuyfw/0mcztg2g7hKERbIBQ14zt6INICI4chFMkvL8R7O3pNHsk4tLShNm6BjZtNXZnLwuggenwYUhr6C5YkDUz//nAgb0kayhnLVcCGkSH4wbCpZ7U2FQz572jMxHlgF/SugeFD0N5jrF9ODlYcZUSpuSxrXdesZ3s3tHWCZUMyYerrcBQS4zB0CBJjZl27VsDgAdj3nNker/wjs6zU5PQ2CrewEqC1HeLjRirrZDEKMMz2KnxCUTrau8w2beuEWIcRwSbjkE1zSiBk5k+Mm/bCxAhkUnTlsmZd27uNINbJcW0wzLWtHWYdQxGzXq5jpnNn/nbAcaAlBl0roWcVjMyIDUweKLOP4qP5/DTseMxsg2NOgfFh80mMm22glBHTKpV/ebll8rAsE3sgaI6LwjEUyBvPHCcfm8Nm1+GVuZzJN5UwMtxkHCyb82NtsO5YOOp4Pn/GOujsM/vIyZlPLgt9SdPeau+GFWvNcTYxYtZbKZjIx5PLoUcHYdew2eeZtFmP8WHoWwtdfSafkX7zUtEV7SZ+yzax2gEIKBgahtFBM3wwf8yOHDbrm0mb/R4Mm+PDts12SSXM+EiL+b+5rjlWUklIJ2Gvmt6GSpll9qwyyz3rdai+tWZ9Xcd8a40eGYDBg9CzEtW7xvwfC8dboRWti75n/Z4nrdrpZj0PXSKPUtPNM712NS7K/M0BjcJ1NRplhGpuPq0gVMuna62mZGxT06DQ+XnzJQauzuetFVrr6em0NmkwvXw9+/f08hQaPZ1XPs0sd/Z00zI4NXvczHjzy52afuZ3fvkzpyuOc/Z8am6ezIhz5jrM2H5m+ul8CmlMza/QloUVsAkph925XhI5m82hfgKWNsJES2FbCluBbSssy8gwrfzHthVXbPN+rrM7mKLLThEOaCzbJulYrAoniagsGRXG0ZBzNBuicaIB1+wzRzOSDTGci5JIQzAArrKxlSZsa1ZEUnQF0uQIEM1N0J4bIaMDZCbTuOkUTjCKG4zgpNOMpgOM2e1MEiHkpFin+2kJwZ7QBgZ1B0kVoT/XSjpnDqZowEEDm9rSqEAAhSadcWmxsqyMpNnUMk5YZwjbmmwmSzYYI6kihFSOaEDjBCL0xjSR9lYCTopQNm72w1A/dmqC5+Jt7E628mJnG2sy+4mPJ9keO4XDsY1sWhWkw0oRJkPYSRAeOUCEDOEghMMBtLJIBDuJuyHiToi4EyTuhJjIBc1v1/xOuCEmcoXxQSacEGktzxEuJVobEedEyohpi8aWmtNzTACHVjtDm5Wm1crQapvvoHIYcyKMu1GUbdETyrCqzWFdKM6G4DDtgTSJlhXE3TCZeJJuZ4icCmJForwwbrM5OkRrSLNvRHMwtJZwOEDOVeS0heO4ONrCsYM4KoDjanKOecFLKylaoxYHnQ72JyK0B7O84eVtvPsPgthWZX3BdGLc1IeFdkogBKOHzW87aOroQN7JkBg3v13H1LV2ABWOorWeur6jXdfU+WODpv4NRaC9y7SpEuOm3s5lYfVG094Y6YfJuKmb9z4Lh/aYunzL6Wb8yqNQsfbK1kVrM28wBJSX2OlczrQhtEZZFtpxYOgg9O81bYpA0GyDjm5YdxzKlpciC8KRgNTOwmL5ODDTZnTzfFK0AlrrpFLqXcATQCif/B6l1A1a651LF6bgT0o0XmaK0UoJs0SM1nx4Ch7qUCV5LaPRgiRhfrw6IS9WxFBLRIzmT3QFssNGCxHLySOkXGosunDJfx7qUV/VEimL/IOf6jU7Atk5V5DlePEbXsIGP5VD5Y5fOab8wWL3Q7F0yk/tcaG+OB4PhtdTVjXv8j2OSZ0zZamIbhqP1/lNteWJFSo/Ta1olBAkvgu2fxae/6a3jHA+lAXr3wEnXQ2dpyxdfILP8JDlaBGjlcTrupHXSzUEoRnpPXt+MdrEc/WPRagMz7K7EWI0OZcXBEEQjkieZLYY7Uzgh5XMqJSKAafOk18t6CwaPrSAPIrnER2YcERx1llnzUl75JFHeM1rXrPovB955JFZw9FolNNOK/YZNh+VSFAqJZOZ52Vdi0TLC3gEQRCERaLau9GvfDPc/e1F5aP/9Sr0w3cbCVgwBLE2I3XIZKCzx8gbCvKVvBRDx8dMR07LguHDRsTy9G9rtGY14KffRf/0uwDojl5YvQGOOj4vwQgaQcnooOlEOzpohBtLxPH5zxSBoOmgC/Cqt5mOvsm4EYeEIzA+Mi0dKUhCLJvjV61Hnfgy6F1txtkB07n2qDWolrap7LXW4ORYsTFnOgUnEzBuE0nG6c5mIBOm+7knzDqv2QSbTjQxpJN0h1voDmZZlxyGXbvMfu9eaeJKTcJY2khCsvlPtNUITYbywp10EhLjbOzqgw2bOS0EsG7Jtm29CFguOXeR17gFQRCq4NP9/8Ca7aXlpo2i7mey++a7L/zQwvPb8/Ts4Z/fvvC8asHggdnDowOVzzs2CAf3VL/M+Bjs3VH9fAthbIZofuQw7HseHvpJ/Y+jpSA1aT5Qfr8NHTTfzz1edt2XxbYpotCKkqeZlh/f2XgfD0dfNid9XXYfu7cfP88cQr3JEiBhxZiwWonnPxNWK4n8t0mLMWG1Ebdi86YnrNjUfBNWG46f+gAtQ3LYjDpRRh2Pl60XSABLdymjJHfshEtvcQnoLO06TpsbJ6aTREgzqaIcsvr4/czDdOpxAtkkvzf5v1wy9m263NEFLW9K7znzekqN0a2dRs6rLMhljCw2l4WDu6cnCoWnX06Qv2aj27rMdZ7C9ZvCd0H+O3MZeZkaWe/7TXrDZtQ7r0b94cVzxjmuZjIDbREjGR1PGel9MgPtUSPSH09BT8y8WGs+UlmNAkKBuffQhhMarY0MvyVkhPm2ZfLP5FenJWTSXA2hQF5UpzUTKYjlu+EcHoeV7UawKQjC/EhNKiwYpVQUeGtR8mfKzae1flYpdTvw9nxSAPgT4LraRig0NdEZb08UMdrywmuf1aOjstcyREDkT/wkkPFCxGj+pJL/dKP/9+WOY6nfGouXjAiaT6zRKKGDMBc/1Wtey5S6y1941VV+KocsEaM1BbUWo5Xb72VZjo8gHCF4SZrKSX+XmnLnZVZr/WIR5serfV21GK3ENcKqKVMW1bsOG9sOT/0j7LmlMtl3ASsIm94FJ14FbccuWXiCT1EiRlsQjXxxhyDUi9ZN86dnFvaglFAHlkraKGI0QRAEQaiUHwOXzhg+p4p5f5/Zz2A+qrXur0VQQHEDLraAPIovjsUXGIsgNCXr169n/fr1vPDCC1Npd911V03EaHffffes4TPOOINQqI4vd6gRvb2zfYnDw8OsXbvWY+rq8z5wwHRWjkQiTE5O1lS8JgiCIAgLRb3h3ehFitEAePhuz1FN/2TEWF6A5hdx28xOvD+9rapZvfaFDkXMfTUnB65/7q/1Rs+AjT/zHP++ka+RUC08FTmJntwgMT1JRoUYsHtZn92LjUPYTbMh+wIbs3uYtFoYsrtpcycI6BwBHAI6R1BnyakAe4LrWZnrp88ZZFK18HzoaE7IPEubGyeoM1jaRaOIW61kVRBH2bhYdDmj2OQYszrYFdqIRvGa+N2cnH6KoM4SIEeOAJNWCxkVosMZI6NCOMomo0IcCqxkd3AD98ZehYNNtzPMutx+2t1x1mQPENYZVuUOkVVBFJq41UpEp+h0xngudDRJFSWkM9g4pFSEVbl+VuX6sXFod8e5s/W13B89mwm7nZgbpzfq0umMMKDbcRzNsG4j6k5yWvpxOp1RYm4CR9mEdIZ2ZwJXWUTdJAcDqxgK9BJz41jaxd5wHFasFdvNYY0exhrYi51NYeFiawcL10xH0W/tYuNCIMjqwBjJRIaArXEjbWQDLdihEKHDO7FwGbU7Cegcw3YXw3Y3q3L9tLiTWLiEdIZgKMBgoBflOqBderKDOChSVhS7s4eIypHRNvvUCrI5TXtmiEzWJUmY29rfwuPhU0hYLbS4SVr0JBE3RX9gJQOBPlblDqG05s62C6o6bm2dw8UipDP0usPEnDgtOkmbM06rTuBiYWtnarsM2j2kVRiFxtIuFi6qoxsrGMTKplHZFNFcHEtBVgVIOTbKdQi6GSatKINWj1keWWztgOswYncR1mna3DgOFk9GTkZply5nhHZ3gg53nDZ3HJSF0i5t7gRB5TJutzOouhm0u7G0S1QnCeosI3YXhwKrFvQ/DpAjrHKELdd8qxwdKkHAzZLOap5Ux3jOe3J6G63uBG0kCekMVsAiSYS4asFysvRkB4joFONWO+lgjKy26Qyk6F6/mhUtDrHMKFZmEmXbWJaFApI6iKvBSifIpjKEQhYDVg/doTRHtyXJpTJsy61lx2Q7q9Uo4YBmV6qDDivJCmucdePPEHGTBNZuIKA0oWyCqJVh8vAQWlkETjubiZWbyWVztGRGUW4OtEbnP7ianAOj4xnCbopw2CblBnCwSLs20SC0tEdp7Wgh58BkBsbTCjfn8Mg+m10TUU7uGOfn/T10hh1yLsQzFrGJAwR1lqMzu/irkX/n/MQ9C9pfgiAIglBP7t3zWto2D89Jv2Ts1gZEI8xHkByd7hid7lhN8tNAWoXnCNXM8PTvmSK2uNVKXMWYsNuIq7nytbjVivZ6flTwNTkVZFh1MWx1zRn3w8gfmh9RoP1PuXzVPwGwJb2duNVKtzNCxE2ywhlgwO5ld2gjSms6XHO+vTN09FReR2X3YmsHR9nsDR4FwOnJRwjpDA42WilyBBmz23GwcZTN2ux+1mf3EtUpwjptzke0Q1aFmLRaGLPacZRNSoUZsbuJWzGyKkirmyCjgoR0FgLwwvHrUFozHOgB4NzEz3CwmbRiuFhopViffYHe3BDrsy9g4xDSGRSaiE4zZHezJ7iBcasNWzvsD67hsL2CDdk9HJXbTw6bnAqYDwFyTgDnmza5Bw7htPeRcyHnwKFxeL4Kf27QhlXt5n0GrgtjSSNNK54mGgSlIOdCoop3oAP0tkLAgsG4mb+Y1jC89iQjVTs0Zs6NbMtI2QrLSmRMHK5rfp+yFo5ZoTg0qtk1BPtH4NDnLWyRrAnLDHnKX1gMrwFaZgz/Smv9tNfERdzEtBgN4CJEjCbMJLpm+reyzGe+Dl1axDFNRyM7nnl1IKmmw6lQP7xkPn4So5USALjSeahhVCRGa/D/3i4jj2i0uO1Ip9T2b7aO0tKR0T941mtl3kixFHjVpVJ3+QsviYyfyqFy7TIpg/zBosVoRfs5sNhyq+kf/z1y8ZR8+lyMFhQxWsPxlH1WeX6vailGK0O96rDh38JTn4a9/01V5aMdhWPfB1uugJbmf1u4sEA8H2zxT8cNX+IpH/JRO1sQFkuwY/703Li51yYPxvkPL6nlYvfVQsTW8qIFQRAE4cjkJ0AS85g5wJlKqc0VPgf3rqLh/65hXAeKhk9QSrVorSeryOPFRcOHFhmTIDQdr33ta/nqV786Nfytb32L66+/nmBw4dcbBwYGuOOOO+YspxlZvXr1rOFt27Zxyimn1CTvlStXTonRUqkUL7zwAhs2bKhJ3oIgCIKwKF70Sjj1bHj8gUZHIjSSjD+fa1qV83Zt/37ifr506LI6RrM4guTocMenhkM6O3VbvM8Z5JT0U1wYv7PqfFcky/dsfn38x7w+/uOq8y7m2OzO2Qnb71tchvnHJ1oLv+NzT/F7nSEAOt0xjs7unptHGlanJ2YlBYGIk4SB4anhE3huzqynDDxVcahpFWJ3cAO2dtiY3YONYwR1booAOeJWKy3upBG+LVMG7R6eDJ9IjgCtbpyITk9JByJuiqhO0erGieokCRUzYkKdxqrg+Y9nQsdxd+w8RuwuVucOcW7iPo7J7lp4sDsWPmvFeB0+v6vDsgVBEARhmRDVKe7ffQ5vXncbg4E+AN48fjsfG/xMgyMTlgoFRHSaiJOeausvFhdFUkVnCdUK34ki+dqE1UqiaJppMdt0WtJqKb9goSFsD28BmBKcFXOQ1XPS5pv2kejpJZezN3gUD/HyBURYmp/Fzp2T9mjktKrz2RE+rvQEB5h7d70Ksg7sHSk/TXYR3dIHy7zCLJ6G7/5vdXn2j8M922efg+4fgfU9VQYnCD5HnvIXFkPxkxz3VTHv/ZjLuIVj8EVKqZU1fGOm0AzkEt7jWtbMHlZB0POoU10RozUdXoIHqw6dW706t3nFJDQWz073fhKjBcxxNV8nbxGBNA63grPLRovHynVIk3KpsZQ6PqwmO4WSjoz+wU/1mlcZJHWXv/CUyPioHCp3/Ipszx8sdj8UCxwX0rFeWB64Hq+0afQxUWr5Ug75A686rdp2UD2uHRVY6nbR4fvhqU/BwZ9UN1+wHY7/azjhMoj0LU1sQhPhIcvxkusIBs92tsdLNQShGfESo2kXcnFTnwj+wlPauMiyaSFia7k+JAiCIByBaK0nlVLfBf5sRvJHgXeXmk8pdTzw5hlJOeCWGob2ODACFF4ZHsnH+JVKZlZKvQFYW5T8y5pFJwhNwmWXXcbXvvY1tDadAgYGBrjpppu49NJLF5znjTfeSDY7/dxiLBbjve9976JjbQRnn302t91229Twfffdxzve8Y6a5H3WWWfx6KOPTg3fddddTbudBEEQhOWFUgq23oJ+x2ZIy/N1gr/YlN3Nxsxudoc2zhl3YqYSf7cg1IawznBCZrZtq82Nz/t7udLrDHHO5P0VTduqS/SPm4cTMjvmbF9BEARBEI4Mzkw+zL4dR/O7yKmszB1mXW5/o0MSmgwLTUxPEnMmWekcrkmeDtaULC1eJFcrlqiZ9NnytbjVSkLFmLDbiOe/sypUk9gEQaiOXYMiRhOWHz7qTSs0IScXDf+q0hm11gml1BPAi2YknwSIGO1IIllCvRotei7PCs7fAVfEaM2HV8czL2lZLfGSSDRakCTMj1cH9kZ3ui/GjpjOZMVI56HGUcl/utHiMTtceryUS42l1PFRj/qqlkhZ5A+09pbJNEKMViw5KiAiPX/hVRb5qRwqd/zm5JjyBYutC4rLjMWWW7r8GzEFn+J41WVl2rZLTaljUtpCjUe73pKmqsVodbxBvhTHjtZGhPbUp2Cgyj7I4T7Y/Ldw3F9ByEN2Ixx5KBGjLYhmaGcLwmIJdXqPy4yJGM2XeJTdXmV9pZS8n6KAec7PpA0tCIIgHLlcC1wMFMzs71JK/bfW+o75JlZKRYCbgJkXLL6htX6+1EKUUsUV8Lla6/vmm1Zr7eSFbTMtQtcrpR7QWj9ZZjnrgX8vSn5Aa32w1HyCsBw58cQTueCCC7jzzjun0j760Y/ypje9iZUrV1ad37Zt2/jsZz87K+3d73433d3di461Ebz61a+eNXzLLbdwww030NbWtui8X/Oa1/ClL31pavjrX/+6iNEEQRAE36B6VqHuGUVvfwR9963QxJW0ZAAAIABJREFUv3f2S3lzOdj/PHT2wbZfg1PBC3trybGnglIwOQGTccikjMQtGIZIC8RHIZuZnj7SAqlJM0+0FSIxsCywA9DaAUefhDrqOFh3LDg5OLwf/bVr6rtOQkUo4IuHLufC9bfPGXfJWC1d3IIgCIIgCIIgNIoADi9JPVp+QkGoEzYuHe44He54zfLMECwSqpnfiXnka4X0cvI1d7EvmRSEI4Cdg5pXnqAaHYYg1BR5yl9YDFuKhp+rcv7nmS1GOxH46aIiEpqLkmK01bOHreD804kYrfnw2mde0rJa4nXSo+t8s1qoDK/ONwEPmUujEDGa/6jkP93o/70lYjRfU2r7N1tHaRFd+YNSdYKXpGwp8ZKQSN3lL7RHu9lP5VA5oY2X6FaoL74To0k7p2nxknyWa9suNSJG8zelzr2qFqN5XB9cCmp57GgX9n4fnvo0jFT5IEvLOtjyETjmLyHQUruYhOWBpyxHxGgl8SqX5IEZYTkRLCHRzI4BR9UtFKFCvKSWixajlRDLhrogMzw3Xa4nCoIgCEcoWuudSqkbgStnJH9XKfVh4Kta6ynjgFJqC/B14KwZ0w4Bn1iC0LYCfwoULtR2Ag8qpT4GfFNrPTlzYqVUCPhj4HNAb1FeVy9BfILQFHz+85/nvvvuY3LS/GVGR0e56KKL+MlPfkJra2vF+QwMDPDWt76VTGZaQrJ69WquuaZ5pSInnXQSr3zlK/n5z38OwPj4OFdffTX/+q//uui8L7jgAo455hief944Ix9++GG++c1v8hd/8ReLzlsQBEEQaoXacjpqy+klp9Gui77yQvjNPfWJaeutqHMvKjuddhywLJQyHR11OgmhyNRwWVZvQP/TZUayttRYFrge10EjLRCOQs8qCEXg6d8ufTw+54LEXXx/79u5dPWXGAz00ZMb5LOHr+as5K8bHZogCIK/CUfhlDONSLRvjRGFatfUQeEoKhID24aWNpicQMfHjBg1lwXXQXWtABQ6k0K1dhi5qOtCIGjEo5mUkZamk6A1enQAsmlAmTpMKUjGYegQvPAM7HlmdnwdvRDOPy/V2QfdK8z9QKVMXYkyvwsflIk/k4JwC7R2QlcfKhSenk8p9NgQjI9AcgLiY0aMatkmFq1h7w7zu2cV7N9ptsEr3ggbN8PEKKCNcDWVNL9bWs16B8NmGU7OtINiHSaPzj4IhSGdgvgIdOfF845jpm3tgFgHqrXdbDet8y/U1fntNmiEruPDkMjLV4JhiLbA2LDZJx29qHXHmG3f0Wu2T/9ek38wZPZ1IGjSM2mTlsua9bZts31m/rZtGB00y06MTb/gd+rbNdsuFDHxR1vNsgYOwOB+GD4MG7fAinVm3Q/vN3nG2lGF9dfabDftguugJ0Zh6CC0dUIgZGS33SshYPaPsuzpGC3LxJlMQCQK7T3mWOnfi37+CXj2MXNcoc3+LXyUBYf3zj7OAkFYedS82x5lQXu32cfjI5BKmG2/Yq2JLxwxx1qkxaz/6ICJKdpqtkswbGJuaTX/o0zKbM+OXlRvvi/w2JCZPhCA7lVmmaGQOT7Ghsx+yqSm91t7t5m+EKPron/4Ddj+iDkWIjHIZcz/rqXNbMNQJL/dbBNfenK2NJgZ7eFC23hmG1lVOp2aPd1842a1vRc4XalllptuqfKteF2K56tDbEu9zvNNp5Q51iZGTPkVjppjMhw1//FC+ec607+nhnNFn/w0EyOmbA4ETfp8Lx4PhU0ZOD5slgfm/5mvh4jGTJk8ctjE1bsGYm1wcI/5nxWItZv/YvcK6Flt/p+TcfOfPLQHNmw2/8fEuPmvbzzRlAfBEBzeBz+fK22uiEJ9FgxPxz9zXCUvWw9FTJk2eNBsrwLRVujoMdsvGDLbpVBv9e81ZYvt0e+m1Dmz17iS59kLmGdB42ocd6XXDhaxnBDQrRRzXyszmf8MVpWf1pBSYSZ0lDgR4joy/ZsW4npmWpSEjpDNaXpSB7BzaYacGM+oDfxv5EVopYi5k7TqSRIqyoTVyqjdNWeZvbkBbFzGrHZiboIXZZ8kqDPY2iHgmm9bO9jKxVIwrDoYsToJkOP54DEcDK6eZ00EYWnZ5fHXEoRmxke9aYVmQinVDXPaIi9UmU3x9MctPCKhKUn1e48r7ujn1fFx580w9FDNQhLqwMSO+dPrIXjwWkZuEh79yNIvX6iOxJ75061FihhqjVdH7p03w/Bv6hqKkGf0ifLTNFrIUU4AMLlfyqVGkp1HdligHiLPWnLgTshNNDoKwfEQycDiBUMLwWuZB34snV/9xOiT86f7qRwqd/yOPCb1mR/waldXSvF+Xmy5Je2c5uXwL+ZPt30sRtt2A0RX1i8WYS5uiXOvRorRyj1QceBOyNXgrWfaNXmNP13dfK3Hwkl/Bxv/DOwSQhPhCMdDljP4a6lrS+F1zuMnAbEgLJZQCTHaU/8ILWvqF4tQGWPb509frLSx1EOMwbb5xWgD9y9tPfJ715sH1AVBEATBn/wdcBJwQX44CHwR+D9Kqf8FJoCjgRczu/dBBniz1vpgrQPSWu9TSl0C3AYUKtG2fFw3KKV+CxzAWLJXAacD81me/l5rfX+t4xOEZmHz5s188Ytf5D3vec9U2oMPPsgFF1zArbfeyrp168rmsWPHDt7ylrewfft0+92yLL71rW/R19e3JHHXi2uuuYbzzjtvavhLX/oSmzZt4oorrqho/rGxMcLhMJHI7Gu+gUCArVu3cskll0ylfeADH6Czs5OLLiove5nJPffcw9FHH83RRx9d1XyCIAiCUAuUZcENP4D/+U/0U3kxVTRm5AsFscP4MCQmTOfxsSHTsT0xAQP7zL3JQNBMGwgamUNHD+z43ewF2QHUp/4v6uzXVxaXPfs6mwpX94JO9YcXw9mvh0MvwM4nTcdxrc26ZFLoHb+D/c+bDvMdPSburhWozl7TOb8z/4m1mw7/yjK/hw9DZw+0dZltFGlBKYXO5YyELZMyHdaDIQiGUeG59431ru3w65+gD+9Dda9E73wKxgaNPCASM1KWaMzElkkZmYgdADtovlMJsx92PGYkJ37GDpjO/snZz62+Mf4jLtzxIw4E1rA6dxCL/D3uQNBIQQJB87ED5tgaHSgSgsygs89IS5Q1LWSolIJoINZhvgNBc413T5X3wAvMFCCEwmafFdJdxwgdCkRaoKXd7OOO7rxQKGr2aVsn9K01x2syAYMHpiUrrmOO533PLSwuQRCakze/D+vDX6hqlgVoR6qaThfqVdeFjh7TplgCFqA1aSiNjLeey67VsirJR7uukQ7lMhBtQwWa+xkY9eq3NzoEQagLOjUJgRAqEEAPHjRt0oJsMZkw51Iz6g6t9fS5lVJzzglnTsfAftN271pRuTy7VKwD++HALiN6jMbybfU206ZPjJtzkYK4UlkmXVlG5lnII5c1UriZYsvEGIwOmnPJjh6zDUIRc46TGIfWzqkyTWcz8Nzj0N4Fa46uyXoJzUcs/1ko2nWnxKAq2DcrfTKjsSwLSwHZDKGQBfQaAWe0BXT0/7N35+GWpXV96L/vqTo1dA1d1d3V88xMM2iDE6IQwAkjoBghqKHVaKIxN0aMEUwuiT5ouKKJCRi5EUGJKFeUSeMQEFAwDtgo0LTQDT0ATTc9VHfX0F3je/9Yp6rO2Wfa++xh7eHzeZ71VK111vDutd/zXfu8e+3fTtl05r2UenyhAOL8ljNF648eaQqj7rs0eehADt7xqfz+Xx3KnQc356qdhzM/dyIHj2/OgWOb88DR+Vy//+z87f492VxO5nidyyce3N3Ho4PGLV88kVXvMYcJNdl/4dCmPR3zh2uth3rcxxc75te4S5+ZV1b54OMdv9dMTL5RFHhY7cNt9Xhy42uGf3wGo40CMmtZrVDbF/6gmRhPa304fxTWKx5x9D65NK4m7YPS9/5lMzG+2ij4udq19L6/VtRzEqz2t1Eb1vuA9sHPuJ5Ng03b157v1bH79YtpMzfGhdFuffPo2kHvei6MNsICYff+RTtfxrDnicnjX5Fc/o8UDGF9q93Y88DHm4nejFMBYujXpm3NdfPkCh+Auu0to28PfRjiDUqrvRa7/2PdffnIRj35Z3KmpgsAjJda64lSynck+ZUkL1r0o/OTfOMqm30xyUuHWXSs1vr2Usrzk7whyeJvAdie5OnrbH4oyU/UWl87rPbBpPje7/3eXH/99Xnd6153etkHP/jBPP7xj88rXvGKfOd3fmcuu+yyZdvdfPPNedOb3pTXvOY1OXJk6RdivfrVr15SUGxSPetZz8rLXvay/PzP//zpZT/2Yz+WD3zgA3nlK1+ZpzzlKcu2OXnyZP7yL/8yv/Vbv5U3vvGN+ehHP5orr7xy2XoveclL8t73vje/+qu/miQ5evRoXvjCF+YlL3lJfvRHf3TFfSfJiRMn8tGPfjTvete78ta3vjU33nhj3ve+9ymMBkBryubNybd8b8q3fG9P29Xjx5JaU+ab9zpPfZD91P+bok4Hk/MuaaWARTlrV3L1Nc3U+bON7vTsc8/8f/OZ+5zK5s1NIbVu2nXV45KrHne6Df183L0eeehMMbDjx5MH701u+2TzgfyzdpwppnZq2jzfFLirtfmg/4H9TaGR7TubfTx8uPlQ9LGjpwvdZOv2pkDA7r3N/++7qzn4qUIBW7Y1xeCOH03uuDXZtr05zu5zUrZub/rC/Xcn93yhOfZFVyWHHkw5fjSX1toUBNi6vTnW9p0rFgA4XSRhoTjaqT63bL0TJ5p+d3iheMHe85vHfargwuGDTRu2bG8+3L1GEZ96YH9y+6eaPrzj7KYfbVk4d8eONudr83xy9OGUnWefbmdqTU4cX9bGWmuy/4vJ4QNNu87a1Vexg3rnbcnffaj5QrNjR5u2bdnWPCdbtyVbz0r2XZycd3FzDo481JznA/ubIg0njjUFGT7656m3f6p53stc817+pk1NoYcdu5PHf1my94Jm/VP97NS2Bx9oigRu2doUbjvyUHLk4abQxalibAf3JwcfTPbuS65+QtPegw8kB+5vttt9TvP8nDje9LmjDzdtmJtbaM/Cv4cPNNvVk822u/Y0heW2NEUIc86Fzf4euLcpZpE0+9u2PTlxMjl2pCleePJEctGVzT5Lac7JFz/X7P/Y0eYxPHy4KSZw+EBy1eObgoWb55u+cOhA8/NzL0h27mnO81xJjh1r9n3q92v/F1N/6780bT52pDne7nOaYiD7Lk45+9zUAwvFFE+cSDlrZ1Pk79wLlz7RRx9uzul5FzaP98F7m/mzFurGL/Sl3PXZpr0H7m+Kdmw768zzvlB4JOdf2pzbv/rjpiDj9e9vHtupfnj8WNM/6snmsaQkF13RFO3bu+9Mcb3tO5tz9eB9zbG2bGv2v21H87v38OFm+YkTzeM/+9zkysel7N2X+tmbkh27Uy5e+Nvn5ImmnQ/c0/zs7z6YPPFpTbvf89Yz56GU5rGee1Ezv3nzmd/HUzbPNwUFHz7cFCF56FBTdHLX3iZnjh5p+vauvc05S5rnfv8Xz+z//Eub/dz8sabgw1rmFvpQmTtz/k5lZq1N/6snm3Y8tMaXmq9UuHDnnqaPHTuanH9ZU1T0Rf9q7fa0oJSy9LoIQ1Lm5hayvZ9SMcColW1nnfn/eRct/eFZy78D59Rr4/X+diylNNfsASr7LmleR6zk1OuG9fZxqrjzKVu3NdM5K3wB9vyWZX8/lvktyeOe2m2TYUVlbm7FPlvm5rJj8a1U84s+H7F55WJlze/i0t/HsmVr8/dUkuzam12P2ZsXP6b79h07XvORzyYf+FTNHfcnO7Ym+3Yl9xxMDjyc3H0g2b092b0tufq8ZNt8ctt9yYdvrfnTTyXPflxy1Xklj74geeCh5Of/uOboieTYieTyc5LnPblk17ZmP3c92Gz/mAuTHVuS2+9L7j2UHD+RHDmeHD1ec/xksnVzsm2+ZPf2ZMvCLV/n7EjuPpjcek/NFeeWXLC72W7/4eTSvclr/6Tms/uTay5OHrkvOXdXySV7kpM1+fz+5PP7ax4+3vwpeuJkcuhIUpM8dDQ5d2eyb2dyyd6SLz5Yc+u9TbvO2ZE87sKSreVoNv/v38jmeryZcjybTv//xOnlZ9XD2VKPZf+mPXn0kZtSUnOyzOXiY3ekpGb/pnOS1Jx18nAOze3MgbmdOVq2ZC4nU1JTUnOo7EgtJVcdvSXb6sM5Urbm0NyOnMimbMqJfHHT+dleH8rFx+/I9pMP5ViZT03JWScPZ0uO5XDZnrs3n58Tmcu2+nAOzu3MiWzKyTKXvSf2p6Tm187+7nx4+1Oy7/g9ueD4XTmrHs6ukwdz9on7s60eycNla847cW/u3HxhDs3tyI6Th/K5zZfkZJnLkbI1O04eyomyKXtOPJCrjt2Sq47emid93/+d5BHddzyYAO7yZ6M6X1U/tIF9dG7T3avfNZRSzk/S69fvSfZJMDdGH/5nOEZR4MEHSqfDuBVGG7f20J16ot3jt1EIicHwQWkGrY3rSL9FjWiXHGLUlhVG8zqGDm33ibK5uYGunmy3HfSu17+Lpnl88NyvSK75yeSSf7h6sSvoVHyb10CtV/QXJs2WPcnDnd9RxcQZZjYZHwKAFdVaDyZ5cSnlbUleluQrV1n1viRvTfLKWuvdI2jX75dSHp/knyX5vqx/v9tdSd6c5LW11tuG3T6YFK997Wuzd+/evOpVr2qKLiQ5cOBAXv7yl+cVr3hFHv/4x+eyyy7L3r17c++99+a2227LJz/5yWX7mZ+fzy/+4i/mB3/wB0f9EIbm1a9+dW6//fb89m//9ull7373u/Pud787F198cZ74xCfm3HPPzZEjR3LnnXfmox/9aA4cONDVvn/5l385+/fvz9vf/vbTy97ylrfkLW95S/bt25cnP/nJOffcczM3N5cHH3wwd9xxR2688cY8/PDDA3+cADBqZfPS9zgXF3k6XSxFwZShKls7xkL37kuueGz3O7hgefHcdS0UAVtm0/bkqsctW1xOFRzae/6ZhYuLAKxWgKBzH1m9INrp9TZtas7B3lU+dtVlUYMkKbv2Jtd8xUqNaQocnLJl66IflebnK3wxWimlKYqwUmGEDSgXXpFceEX3G5wqTLH7nKXLL3lEX8X5psKAnpMlrnxcypc+Y81VBnreL3tU9+te8+WtPedrHXfZz17566n339MUSTvngnV//zfq1N/PnYUKa63JPXckn/l481mt8y5JzruoKey2RlHFFY9x+EBy9+ebInC79i4UVCtNsbuF/5dSmmOePNlkGQAATJn5zSVfflXy5VcN5i+Sf/MNA9nNWB231q2pv/WjTZHsKfDNB/9w4PssR74tyucwbXyalo3qLIy2katHZ2G05SWMe/dDSV45gP0wCnuvTfZfv3z5Sh+o3XzW8mVMl1F8kFohoumwecy+wWLc2kN39q33xdlDpt9MLtcSBm3zIP4M6vWYMmiitV2AaLH5PW23gFHozAwZQqe2x2xKSTbtSI539wEsxsj87jS3bdb11mxsXeP7MDbvSI4fWr58tevmrh5ueB2mC56dXPOK5IJ/oCAavZvbuv46dG+cXmfDIGzZqzDaNNjUZ9ZvO3/1n+24Itn/t/3tHwCmWK31bUneVkq5Ksm1SS5OsiPJnUluS/KhWuvRDex3wwMAtdb7kvxskp8tpVya5ClJLkqyJ80gywNJ7k7ykVrrzRs9Dky7n/7pn84znvGM/NAP/VBuuumm08trrbnhhhtyww03rLn9tddem9e//vV56lOfOuymjtSmTZvy1re+Nddcc01e9apX5dixY6d/dscdd+SOO+7Y8L7n5+fzO7/zO/m5n/u5vPKVr1xS8Ozuu+/Oe97znq72sWOH96gAAAAWK4uLKA7rGKvcz1JKaQo3dlG8cd1jnLWrq6KVpZREUTQAAJhZpZTUCy9Pbv9U200ZX5+9af11YML4OnkGpctPr/W9DdPkEd+38vIv/3+XLzvvq4fbFtq3bwTP8TnX+sDgNDjvaW23YKm2C2yxMY97WbvH128m085HJNuH8K1n/XqCusATa/djkm3DvylhGRk02cbpb6MdlzX9mOm154nJlo5vsd12frLr0e20h/E0DteV87+m7RbQq63nJXuekJz7Zd2tv/PqZPcaN0A+9bW9Lb/iRcnc/Mo/G4VLnpd8/V8kz35PcuGzFEVjY8ZtjGySbdrWfJELTJN9X9t2CxiEfrN+z5OT7St8GGXHlcnVq7xPCwAsUWu9pdb6O7XW/1Zr/U+11jfVWt+3kaJoA27X52qt76y1/vJCu3621vpLtdbfVhQN1vec5zwnn/jEJ/Ibv/Ebefazn53Nm9f+jumtW7fmW77lW/LOd74zH/7wh6euKNoppZS88pWvzCc/+cl8//d/f84555w119+5c2de8IIX5B3veEcuv/zydff94z/+47nlllvyEz/xE7niiivWbc+uXbvy3Oc+N6973evyhS98IV/2ZV2OJwMAAAAAADCdvvYFbbdgrFVF45hCpVa1qehdKeVJSf5u0aJ7a609faK/lPIvk/zXRYt+t9b6wj7b9R+S9FUZ4uMf/3iuueaafnZBt47en7znmcn9i7rSOU9NnvP+ZHPHt/s9cGPy3mf6dvtpdfmLkq9+S1JGUK/zhv+U/N3Lh38chuMx/zp5yi+03YqlDt6SvOdrk8Ofa7sldOuyb0+e/tbRZM5qTjycvP+bk7v+pL020JsylzztLU0BhXFz+PPJH3xJcuSetltCL8qm5Kt/M7n8H43+2MceTN77nOS+vx79senPtguT53wg2T1GRaluf1vyoRcl9WTbLaEX83uSbfuSA2t8E0jZnHzN25JLn7/8Z7f9f8mHXhw178k5T0me9d7lBfRG7e4/T973Dcnxg+22g+59+euTR/5AcscfJn/6/OTkGp8lLnPJV/3P5Mp/vPo6K72+Wa9/fuynko+NsMhwmWvGwK55eVN4Evp17EDyJ1+X3PuXbbdk8j35Z5NrfqLtVsBgeV9t8m09N3n2+/p/3fCZX0v+4nty+u+3Mpd81ZuTy16YvP+5ox+jfvHRdgvUzpAbbrghT3jCExYvekKt9Ya22gMApZRrknz81Hy/9+gdP348N920dIz7UY961LoFrmAlhw4dyt/8zd/k5ptvzt13352jR49m69atueCCC/LoRz861157bbZunb0v4zx58mSuv/76/P3f/33uueeeHDx4MDt27Mj555+fxz72sXnSk56U+fmNv76/5ZZbcv311+fuu+/O/v37Mzc3l127duXiiy/OYx/72DzqUY/Kpk2bBviI2iW3AAAAAAAA+lMPH0z99y9O/up/977x1u3Jlm3J9p3JvV9IThxvls/NNV90fuoz58ePDa7Bo7JzT3L5o1Oe9tyUl6qjMQruzxsdhdHYkFLK1Uk+vWjR4VrrjtXWX2UfP57k1YsW/Xqt9aV9tuv8JPt63OwRSd55akZhtBE7cm9zQ/7+65O9X5I86oeSzWetvO7BzyS3vDm598NJfOh+KszvSS58VnLVS5O5Ed7g87l3JZ9/d/LQHaM7Jv3Zui+56BubgkSltN2a5Q59NvnMm5oPYNcTbbeGxcqmZNsFSWpy4mhy/tcmV790PD54dfyh5NNvSL74geSO30vmtiX7ntZ2q1jJzkcml397cv7XtN2S1R2+I/nUf00+sfDy+oJnJ5tm78bsibHzkU1BtPOf3l4bjj3YZNDdH0pOPNReO+hO2dQUkb7qu5OdV7XdmuXu/lBy61uST/+P5jX+ub6tfXzNNX97n+pLn/m15It/2hQs37rvzLVj16OTy78j2fdVq+/qix9MbvvN5KZfaubPeWqy7fyFw8wnB25OHlg0nrvrUc3EdNi0Ldn39OTq70m27Gm7NY37P5bc+hvJ/R+Pon1j7KzLk8u+Lbno684su/evk9vemjx4Y5MjFz832XpeU3yzbO7+tfjRB5LPvDG578NNUbSrr0u27F17m8++vbmGfe4dyY7Lk92P7evhrWhuPtnzJclV35XseuTg989sO/pAMyZ19595Xb8R2y9OLnlecum3tN0SGI6Dn0k+8+vJfX8T76tNkrnknGuTK78r2T2gv6Huel9y++80769c9u3JBc9olp8ao777T5PjhwZzrPV87TtH+57gDHPjFQDjRmE0YNbJLQAAAAAAgP7VkyeT2z6ZfObjydnnJBdcnuy7JNm8JTn6cLJpc/Pv8aPJ/NZkx+7k5MmklJS5pvjZqTpLZYWaBfXwweSu25Pd5yR7z2/uu/vczcntn0wuuKIppPbgfcmhB5PU5OCDTTu27UgOH2imTfPJpk1NWzbPn2nTg/uTXXuSPfuSkyeST/xV6ic/khx6IJnf0rR385Zkfr6Z37I95aydTXtrTdl2VnL2ucm+i5vjbTsrOf+yZM95Kz4Whsf9eaOjMBobUko5N8k9HYt31lq7vmO6lPKaJC9btOi/1lr/1SDa14tB33QFAAAAAAAAANAWN14BMG4URgNmndwCAAAAAACA6eD+vNGZa7sBTKZa671J9ncsvrzH3VzRMX/TimsBAAAAAAAAAAAAAAAAAAAAAAAw9RRGox83dsw/ssftr15nfwAAAAAAAAAAAAAAAAAAAAAAAMwIhdHox8c75r+q2w1LKTuSPGmd/QEAAAAAAAAAAAAAAAAAAAAAADAjFEajH3/YMf/MHrb9miSbF81/pNZ6V98tAgAAAAAAAAAAAAAAAAAAAAAAYCIpjEY//ijJQ4vmv6qU8tgut72uY/7tA2kRAAAAAAAAAAAAAAAAAAAAAAAAE0lhNDas1no4yds6Fv/b9bYrpTw6ybcuWnQ8yVsG2DQAAAAAAAAAAAAAAAAAAAAAAAAmjMJo9Os/JDm2aP66UsrzVlu5lLItyRuTbFm0+A211k8Pp3kAAAAAAAAAAAAAAAAAAAAAAABMAoWi+bsXAAAgAElEQVTR6Eut9TNJfrFj8dtKKT9cSllc/CyllMcleW+Spy1afG+S/zjcVgIAAAAAAAAAAAAAAAAAAAAAADDuNrfdAKbCTyS5Jsk3LczPJ/lvSf59KeX6JAeSXJ3k2iRl0XZHk3xrrfULI2wrAAAAAAAAAAAAAAAAAAAAAAAAY0hhNPpWaz1RSvmOJL+S5EWLfnR+km9cZbMvJnlprfXPht0+AAAAAAAAAAAAAAAAAAAAAAAAxt9c2w1gOtRaD9ZaX5zkHyX5izVWvS/Jf0/yhFrrH46kcQAAAAAAAAAAAAAAAAAAAAAAAIy9zW03gOlSa31bkreVUq5Kcm2Si5PsSHJnktuSfKjWerTFJgIAAAAAAAAAAAAAAAAAAAAAADCGFEZjKGqttyS5pe12AAAAAAAAAAAAAAAAAAAAAAAAMBnm2m4AAAAAAAAAAAAAAHSjlLJsWa21hZYAdGeljFopywAAAAAAAABoKIwGAAAAAAAAAAAAwESYm1t+6+uJEydaaAlAd1bKqJWyDAAAAAAAAICGd1QBAAAAAAAAAAAAmAillGzatGnJsoceeqil1gCs7/Dhw0vmN23alFJKS60BAAAAAAAAGH8KowEAAAAAAAAAAAAwMXbs2LFk/sCBAy21BGB9Bw8eXDK/c+fOlloCAAAAAAAAMBkURgMAAAAAAAAAAABgYuzatWvJ/OHDh3P06NGWWgOwuqNHj+bw4cNLlimMBgAAAAAAALA2hdEAAAAAAAAAAAAAmBg7duxYMl9rzWc/+9kcP368pRYBLHf8+PF89rOfTa11yfLODAMAAAAAAABgqc1tNwAAAAAAAAAAAAAAurVp06bs2rUrBw4cOL3s6NGj+fSnP53du3dn9+7dmZ+fz9yc7w8GRuvkyZM5duxYHnzwwTz44IM5efLkkp/v2rUrmzZtaql1AAAAAAAAAJNBYTQAAAAAAAAAAAAAJspFF12Uo0eP5siRI6eXnTx5Mvfff3/uv//+FlsGsLKtW7fmoosuarsZAAAAAAAAAGPPV+EBAAAAAAAAAAAAMFE2bdqUyy67LJs3+45gYPzNz8/nsssuy6ZNm9puCgAAAAAAAMDYUxgNAAAAAAAAAAAAgIkzPz+fyy+/PDt27Gi7KQCr2rFjRy677LLMz8+33RQAAAAAAACAieBr8gAAAAAAAAAAAACYSFu3bs3ll1+eY8eO5YEHHsgDDzyQY8eOpdbadtOAGVVKyfz8fM4+++ycffbZCqIBAAAAAAAA9EhhNAAAAAAAAAAAAAAm2vz8fM4777ycd955qbWm1pqTJ0+23SxgxszNzaWUklJK200BAAAAAAAAmFgKowEAAAAAAAAAAAAwNU4VJZqbm2u7KQAAAAAAAAAA9MgdHwAAAAAAAAAAAAAAAAAAAAAAAEDrFEYDAAAAAAAAAAAAAAAAAAAAAAAAWqcwGgAAAAAAAAAAAAAAAAAAAAAAANA6hdEAAAAAAAAAAAAAAAAAAAAAAACA1imMBgAAAAAAAAAAAAAAAAAAAAAAALROYTQAAAAAAAAAAAAAAAAAAAAAAACgdQqjAQAAAAAAAAAAAAAAAAAAAAAAAK1TGA0AAAAAAAAAAAAAAAAAAAAAAABoncJoAAAAAAAAAAAAAAAAAAAAAAAAQOsURgMAAAAAAAAAAAAAAAAAAAAAAABapzAaAAAAAAAAAAAAAAAAAAAAAAAA0DqF0QAAAAAAAAAAAAAAAAAAAAAAAIDWKYwGAAAAAAAAAAAAAAAAAAAAAAAAtE5hNAAAAAAAAAAAAAAAAAAAAAAAAKB1m9tuAIyBLYtnbr755rbaAQAAAAAAAADQlxXue9iy0noAMELu0QMAAAAAAAAAJp7780an1FrbbgO0qpTyvCTvbLsdAAAAAAAAAABD8Pxa67vabgQAs8s9egAAAAAAAADAlHJ/3pDMtd0AAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgNaVWmvbbYBWlVLOTvKMRYs+m+ToBnb1iCTvXDT//CSf7qNpAL2SQ8A4kEXAOJBFQNvkEDAOZBHQNjkEjINZzaItSS5bNP+BWusDbTUGAAZ4j94ps3qNB8aHHALaJoeAtskhoG1yCBgHsghomxwC2jarOeT+vBHZ3HYDoG0L4fKufvdTSulc9Ola6w397hegW3IIGAeyCBgHsghomxwCxoEsAtomh4BxMONZ9JG2GwAApwzqHr1TZvwaD4wBOQS0TQ4BbZNDQNvkEDAOZBHQNjkEtG3Gc8j9eSMw13YDAAAAAAAAAAAAAAAAAAAAAAAAABRGAwAAAAAAAAAAAAAAAAAAAAAAAFqnMBoAAAAAAAAAAAAAAAAAAAAAAADQOoXRAAAAAAAAAAAAAAAAAAAAAAAAgNYpjAYAAAAAAAAAAAAAAAAAAAAAAAC0TmE0AAAAAAAAAAAAAAAAAAAAAAAAoHUKowEAAAAAAAAAAAAAAAAAAAAAAACtUxgNAAAAAAAAAAAAAAAAAAAAAAAAaJ3CaAAAAAAAAAAAAAAAAAAAAAAAAEDrFEYDAAAAAAAAAAAAAAAAAAAAAAAAWqcwGgAAAAAAAAAAAAAAAAAAAAAAANC6zW03AKbI3Un+Y8c8wCjJIWAcyCJgHMgioG1yCBgHsghomxwCxoEsAoDp5BoPtE0OAW2TQ0Db5BDQNjkEjANZBLRNDgFtk0MMVam1tt0GAAAAAAAAAAAAAAAAAAAAAAAAYMbNtd0AAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgNYpjAYAAAAAAAAAAAAAAAAAAAAAAAC0TmE0AAAAAAAAAAAAAAAAAAAAAAAAoHUKowEAAAAAAAAAAAAAAAAAAAAAAACtUxgNAAAAAAAAAAAAAAAAAAAAAAAAaJ3CaAAAAAAAAAAAAAAAAAAAAAAAAEDrFEYDAAAAAAAAAAAAAAAAAAAAAAAAWqcwGgAAAAAAAAAAAAAAAAAAAAAAANA6hdEAAAAAAAAAAAAAAAAAAAAAAACA1imMBgAAAAAAAAAAAAAAAAAAAAAAALROYTQAAAAAAAAAAAAAAAAAAAAAAACgdZvbbgBnlFI2JXlkkscnuTjJ2UmOJNmf5NNJPlxrPTTgY84n+eoklye5KMnBJHck+Uit9dZBHmtUSinXJPmSJPuSbE1yZ5LPJflQrfXhNts2SqWUvUmuSfKoJOck2Zbk/iR3J/mbWuunW2zeMqWUq9I8bxcn2ZnkC0luS/LntdZjbbZtlsihwZBDDTnERsmiwZBFDVm06nH0j3XIosHQ1xqTlkWMBzk0GHKoIYeWKqVcluZcXJrkvCTbkxxN8kCS29Ock7vba+H4kEWDIYsasoiNkEODIYcacoiNkkWDIYsasmhl+gfQBtf4wZDhjUm7xrtHZjzIocGQQw05xEbIocGQQw05tOpx9I81yKHB0M8ak5ZDjAc5NBhyqCGHlnKPXvdk0WDIooYsYiPk0GDIoYYcYiPk0GDIoYYcWtlE949aq6nFKU1Q/kiS30vzR31dYzqe5A+SfPMAjrsvyS8luXeN430oyQv7PM7VSV6U5OeSvD/Jgx3HuHVA53FXkp9M8vk1Hs+DSd6c5BEtPt9DOx9J5pN8Q5LXJvn4On2pLpyrn0pyYcu/A9+e5M/XaOe9C331vA3se71zsN50ZZvnZoTPgRwazHmUQ3Jo8T6vHEAGLZ6ua/Mcjeh5kEWDOY+ySBZNfP9o+XmQRYM5jxPR12RRa/1jR5KnJ/nXSX4jyaeSnOw41nVtnYe2Jzkkh+TQ0M7Ho5L8TJL3pXlDY73zUZNcn+RfJNna1jlp8bmQRYM5j7JIFq20/27yZ63pyrbOzYifBzk0mPMoh+TQ4v1eOYAMWjxd19Y5GuFzIYsGcx5lkSya+P5hMpmma3KNn60Md41fsd3u1Wt5kkNySA65V6/tSQ7JITnkPr22Jzkkh2Y5h0bYP9yjt/b5kUODOY9ySA517ts9er2dL1k0mPMoi2TRSvvvJn/Wmq5s69yM+HmQQ4M5j3JIDi3e75UDyKDF03VtnaMRPQ9yaDDnUQ7JoYnvH+s+jrYbMMtTkrf0cSF7d5ILNnjcb0pyVw/H+p9JdvSw/2cm+aN1LgYD+4VM8hVpqm92+3gOJfnBET7PQz8fC+fgvg32pf1JvquF/r8zyW/20M47k3xDj8fY6O/XqenKUZ+XFp4HOSSH5NAQciiD/wP2RaM+PyN+LmSRLJJFQ8iiSeof4zDJIlk0i1k0yv6RZtD4Y2kGo9c71nWjOgfjNMkhOSSHhtc/kvzTPn6/PpnkK0Z1TtqeZJEskkXD7R99/H6dmq4c1Xlpa5JDckgODe18XDmADFo8GbOWRd0cTxbJoontHyaTaTon1/jZyHDX+FXb7F69MZjkkBySQ+7Va3uKHJJDcsh9ei1PckgOzWIOjbJ/xD163ZwjOSSH5NCQ+kfco9fLuZJFskgWDbF/9PH7dWq6clTnpa1JDskhOTS083HlADJo8WSsWg518zsoh+TQRPaPXqbNoU2PXmX555PclCZUN6ep9vfkJHOL1vmHSf60lPKMWuud3R6wlPLMJO9IsmXR4pqmuvpnkuxJ8qVJzlv08+9MsruU8oJa68kuDvMlSb6+2zb1o5TynDRVQLd2/Oi2JB9N88t3aZpf2vmFn52V5JdKKXO11teNoJmjOB/7kuxdYfnRNIPad6aplHpukqcu/HvKniRvLqWcX2v9hSG3M0lSStmU5K1Jntvxo7uTfGShrY9I0xfLws8uSPLOUspzaq0fHEU7Z4Qc6pMcOk0ODc/hNJWsp5ks6pMsOk0WrXycSegf40AW9WlC+posWmpk/SPJS5KcPaJjTSo51Cc5dJocWl9NM8B/c5o3FQ6n+bbcq5JckzP9I2l+N99bSvnmWusHRt3QFsiiPsmi02QRGyWH+iSHTpNDw2PMWhatSxadJotWMCH9A5hOrvF9mpAMd43vMGH3yEw7OdQnOXSaHBqeaR/3kEN9kkOnyaGVjzMJ/aNtcqhPE9LP5NBS7tEbL3KoT3LoNDm0PvforU4W9UkWnSaL2Cg51Cc5dJocGh5j1XJoTXLoNDm0ggnpH91ruzLbLE9JPpwz1fOuT/LDSR6xyrqXJHl9llfd+7MkpcvjXZrl1Q4/mORxHettTfJ/pfllX7zuz3R5nB9ZoZ01ycNpBjIGUqkwTdXUzmqINyf5uhXW3Zvkv3Wse2KldYfwPA/9fKS5gJ/ax4Ekb0jy7CTbV1i3JPnWNKHV2aahn4+FNvxcx3GPLvT/LR3rPT7Jn3ese0+Si7o8zuLt/mKhz/QybR7F+WhzihySQ3JoKDmU5g+u9TJmtemDHcd70yjOSZtTZJEskkVDe000Kf1jHCZZJItmMYtG1T8WjnX/Ksf63Ao/u27Yj30cJzkkh+TQUPvH9yX5+zSvv745yd411t2T5EfTvPmx+PifT3L2sM9J25MskkWyaOiviRbvy5j1yudIDskhOTSc82HMurfzJYtkkSya8f5hMpmmc3KNn40Md41fsb3u1RuTKXJIDsmhoeRQjHv08lzIITkkh4b0emhS+kfbkxySQ7OYQ6PqHwvHco/e+udIDskhOTS8/uEeve7PlSySRbJouK+JFu/LWPXK50gOySE5NJzzYay6+3Mlh+SQHJrx/tHTY2q7AbM8JfnrNFX2ntrDNj+0Qkd/cZfbvqFjuw8l2bbG+i9Y4Rfqii6O8yMLYf+RJP8jyQ8kuTZNpcBnDvAX8jc79nVTkvPX2ebHO7a5IcmmIT/PQz8fC4F9V5KXJdnR5TbnJvlEx/FvTJcvAPo4H1dn+YuB56+x/vYsf4Pxl7s81uJt3j/MxzWpkxySQ3JouDm0gbZdkuR4x7G+ZpjnYxwmWSSLZNHwsmhS+sc4TLJIFs1oFo2kfywc6/4037Lw+0n+48J5umDhZ+/vONZ1w3zc4zrJITkkh4baP+Y3sM2XJDnY0YZ/O8zzMQ6TLJJFsmjor4kW7+v9w3xckzrJITkkh4abQxtomzHr7reRRWeOI4vOHEMWTWj/MJlM0zm5xs9GhrvGLzuue/XGaJJDckgODTeHNtC2mRv3kENySA4NL4cmpX+0PckhOTSjOeQevTGa5JAckkPu0RuHSRbJIlnkHr22Jzkkh+SQe/TanuSQHJJD+kdPj6ntBszylOTKDW73to5O9ftdbPOojgvikSSP6mK7N3Uc61e72GbvaheCAQbU1WkqDS7e19O73PZPOrb73iE/z6M4H/u6DeqO7Z68wnn8siGfj1/rON4bu9jm0Qt99tQ2x5Jc3cV2i4/z/mE+rkmd5JAckkPDzaENtO0nO9r2qWGei3GZZJEskkXDyaJJ6h/jMMkiWTSjWTT087Fof6t+e27cdHXqPFy5we3kkBzq3I8cGlz7fqqjDX8x6ja08Jiv3OB2skgWde5HFq28v8X7ev8wH9ekTnJIDsmh4ZyPPtpmzLq37WSRLOrcjyya0P5hMpmmc3KNn40Md41fdkz36o3RJIfkkBwabg5toG0zN+4hh+SQHBpODk1S/2h7kkNyaEZzyD16YzTJITkkh4ZzPvpsn3v0ut9OFsmizv3IopX3t3hf7x/m45rUSQ7JITk0nPPRR9uMVXe/nRySQ537kUMT2j96meZCa2qtt25w09d1zP+DLrZ5SZJNi+Z/t9Z6Uxfbvbpj/jtKKdvW2qDWur/W+nAX++7HNydL+u9f1Fo/2OW2r+mY/57BNGllozgftda7a62HNrDd3yXpPG/d9KcNKaVsT/LtHYs7+9gytdZPJXnHokWb0/Rp+iSH+iKHlh5DDvWplFKyvC+8YZDHGFeyqC+yaOkxZNFSE9M/xoEs6svE9DVZtOyYo+gfp471hVEcZ5LJob7IoaXHkEOD87865h/ZSitGSBb1RRYtPYYsYkPkUF/k0NJjyKE+GbPeEFkkizqPIYuWmpj+AUwn1/i+TEyGu8afMc73yMwqOdQXObT0GHKoT7M67iGH+iKHlh5DDi01Mf2jbXKoLxPTz+TQsmO6R2+MyKG+yKGlx5BDg+Meve7JIlnUeQxZxIbIob7IoaXHkEN9MlbdMzkkhzqPIYeWmpj+0QuF0SbTRzrmt5dS9qyzzbd2zL+xmwPVWm9M8peLFu1I8vXdbDtkX9sx/0c9bPveJEcXzT+tlHJR/02aWJ396eIhHusbkpy1aP7/1Fr/vsttO/vstw2mSWyQHJJDgySHGs9I8ohF88fTfFMdq5NFsmiQpjGL9I/RkEX62iCNMouYHnJIDg2SHFrqvo75Xa20YjLIIlk0SLKIjZBDcmiQ5FDDmHXvZJEsGqRpzCL9A5hUrvEyfJCm8X1phk8OyaFBkkMN4x69kUNyaJCmMYf0j+GTQ/rZIE3j2CvDJ4fk0CDJoaXco9c9WSSLBkkWsRFySA4NkhxqGKvujRySQ4M0jTk0lf1DYbTJdHyFZVtWW7mUcmGSJ3ds/6Eejvf+jvlv6mHbYbm0Y/7j3W5Yaz2S5OZFi+YyHo+pLZ39adW+NADf2DH//h62/bMsbeuXllIu6LtFbJQckkODJIca39cx//u11jsHuP9pJItk0SBNYxbpH6Mhi/S1QRplFjE95JAcGiQ5tNQVHfN3tNKKySCLZNEgySI2Qg7JoUGSQw1j1r2TRbJokKYxi/QPYFK5xsvwQZrG96UZPjkkhwZJDjWMe/RGDsmhQZrGHNI/hk8O6WeDNI1jrwyfHJJDgySHlnKPXvdkkSwaJFnERsghOTRIcqhhrLo3ckgODdI05tBU9g+F0SbTIzvmjye5Z431n9Ax/9Fa66EejvfnHfPX9LDtsJzTMX9/j9t3rv/EPtoy6Tr70xeGeKzOvvh/ut1woc9+rGPxOPTFWSWH5NAgzXwOlVLOTvLCjsVvGMS+p5wskkWDNI1ZpH+MhizS1wZplFnE9JBDcmiQ5NBS/6Rj/n2ttGIyyCJZNEiyiI2QQ3JokGY+h4xZb5gskkWDNI1ZpH8Ak8o1XoYP0jS+L83wySE5NEgzn0PGPTZEDsmhQZrGHNI/hk8O6WeDNI1jrwyfHJJDgySHlnKPXvdkkSwaJFnERsghOTRIM59Dxqo3RA7JoUGaxhyayv6hMNpk+vaO+Q/XWk+usf7jO+ZvXnGt1X16nf214WjH/NYet+9cfxwe08iVUnYn+bqOxX81xEM+rmN+lH3x8lLKG0spN5RS9pdSjpZS7lqY/5+llB8opXQGPauTQ3JoIGYsh9byj5NsXzT/hSR/MKB9TzNZJIsGYoqzSP8YDVmkrw1EC1nE9JBDcmgg5NBSpZR/keS7Fi06nuS/tNScSSCLZNFAzFgWGbMeLDkkhwZixnJoLcasN0YWyaKBmOIs0j+ASeUaL8MHYorfl16JcY/BkkNyaCBmLIfWYtyjd3JIDg3EFOeQ/jF8ckg/G4gpHntl+OSQHBoIObSUe/R6Jotk0UDMWBYZqx4sOSSHBmLGcmgtxqp7J4fk0EBMcQ5NZf9QGG3ClFJ2Jvm+jsVvX2ezzkqFt/d42Ns65s8tpeztcR+Ddm/H/EU9bt+5/mP6aMsk+2dJzlo0/0CGVFV/4Y/Dzj8Qe+2Lnes/qodtr0pyXZrw3ZNkPsn5C/PfmeT1SW4vpfznhd8zViGHTpNDgzFLObSWzt+pX6u1Hh/QvqeSLDpNFg3GtGaR/jFksug0fW0wRpZFTA85dJocGoyZzqFSyo5SymNKKS8tpXwgyWs7Vnl5rfWjbbRt3Mmi02TRYMxSFhmzHhA5dJocGoxZyqG1GLPukSw6TRYNxrRmkf4BTBzX+NNk+GBM6/vSKzHuMSBy6DQ5NBizlENrMe7RAzl0mhwajGnNIf1jiOTQafrZYEzr2CtDJIdOk0ODMdM55B69jZNFp8miwZilLDJWPSBy6DQ5NBizlENrMVbdAzl0mhwajGnNoansHwqjTZ6fTXLhovn7k/zKOtvs6Zj/Yi8HrLUeTPJwx+Kze9nHENzYMf+V3W5YSrk8ycUdi9t+PCNXSrkyyb/vWPyLtdbOKpCD0tkPD9daD/W4j86+O+jnbUeSH0nyN6WUawa872kihxpyqE9yqFFKeWKSp3YsfkO/+50Bsqghi/o05VmkfwyfLGroa31qIYuYHnKoIYf6NGs5VErZU0qpi6ckB5P8fZI3JfnaRasfTPIDtdbXtNDUSSGLGrKoT7OWRV0yZt0dOdSQQ32SQw1j1hsmixqyqE9TnkX6BzCJXOMbMrxPU/6+9EYZ9+iOHGrIoT7JoYZxjw2RQw051KcpzyH9Y7jkUEM/69OUj70yXHKoIYf6NGs55B69gZNFDVnUp1nLoi4Zq+6OHGrIoT7JoYax6g2RQw051Kcpz6Gp7B8Ko02QUsq3JvnhjsU/WWu9b51NO6sUP7SBw3dus2sD+xikD3TMv7CUctaKay73T1ZY1vbjGalSypYkb83Sx31rkv9niIdtqx8eT/L+JP8uyfOSXJvm25q+NMnzk7wmy1/EPDrJe0opV2ygjVNNDi0hh/owYzm0ns4K1R+otd48gP1OLVm0hCzqwwxkkf4xRLJoCX2tDy1lEVNADi0hh/ogh1Z1V5KfTHJVrfV/tN2YcSWLlpBFfZixLDJmPUByaAk51IcZy6H1GLPukSxaQhb1YQaySP8AJopr/BIyvA8z8L70YsY9BkgOLSGH+jBjObQe4x49kENLyKE+zEAO6R9DIoeW0M/6MANjrwyJHFpCDvVBDq3KPXpdkEVLyKI+zFgWGaseIDm0hBzqw4zl0HqMVfdADi0hh/owAzk0lf1DYbQJUUp5cpJf71j8x0n+exebdwZ2Z1XKbnQGduc+R+3301TxPGVPkv+w3kallMuS/NgKP9pUStk+mKZNhF9J8uWL5k8keekGvgWpF230w3+X5JJa6z+otb6q1vruWutHaq0311r/ttb6rlrrv0lyRZL/lKQu2vbCJL9bSikbaOdUkkPLyKH+zEoOrWnhBfR3dSxW1XsNsmgZWdSfac8i/WNIZNEy+lp/2sgiJpwcWkYO9UcOreyCJP88yQ+WUna33ZhxJIuWkUX9mZUsMmY9QHJoGTnUn1nJoTUZs+6dLFpGFvVn2rNI/wAmhmv8MjK8P9P+vvQpxj0GSA4tI4f6Mys5tCbjHr2RQ8vIof5Mew7pH0Mgh5bRz/oz7WOvDIEcWkYO9UcOrcw9euuQRcvIov7MShYZqx4gObSMHOrPrOTQmoxV90YOLSOH+jPtOTSV/UNhtAlQSrk8TQdcHJK3JfmuWmtdeas1jWqboam1Hkjyix2Lf6yU8q9W26aUcmmSP0xy9mq7HVDzxlop5aeTfHfH4pfXWv90xE0Zej9c+KO1s2r3Sus9XGt9eZJ/2fGja5P8416OOa3k0HJyaONmKYe68Pwk5y6afyDJ2wZ8jKkhi5aTRRs3C1mkfwyHLFpOX9u4McoiJogcWk4ObdwM59CDSa5aND0izTjQtyX5z0nuXljvsiQ/leRjpZQva6GdY0sWLSeLNm6WssiY9eDIoeXk0MbNUg51wZh1D2TRcrJo42Yhi/QPYFK4xi8nwzdujK7x7tWbIHJoOTm0cbOUQ10w7tElObScHNq4Wcgh/WPw5NBy+tnGjVEOMUHk0HJyaONmOIfco9cnWbScLNq4WcoiY9WDI4eWk0MbN0s51AVj1V2SQ8vJoY2bhRya1v6xue0GsLZSyvlJ/neSSxYtvjPJ19Va7155q2UOdsxvpCJf5zad+2zDzyT5ppypyFiS/JdSyrenqYr6t2kqcF68sN4P5sxF73NJLl20r4drrcsqfJZSruy2MbXWW3tqfQtKKT+Sptr1Yr9Qa/25Lre/sttjrXA+xr4f1lpfV0r5+iTPW7T4h5K8ZZDHmTRyaE1yqEdyaJnv65h/S621s3o0kUXrkEU9mrEsGnr/mCWyaE2yqEctZ1QVJ7cAACAASURBVBETSg6tSQ71aJZzqNZ6MsmtK/zoI0neXkr5d0leneSHF5ZfnuQ9pZSvrrV+fDStHF+yaE2yqEeznEXdMGa9Mjm0JjnUIzm0jDHrLsmiNcmiHs1YFhmzBsaaa/yaXON7NGPvS/fMuMfK5NCa5FCP5NAyxj26IIfWJId6NGM5ZMxjQOTQmuRQj2Zs7JUBkUNrkkM9muUcco9ef2TRmmRRj2Y5i7phrHplcmhNcqhHcmgZY9VdkENrkkM9mrEcmrqxaoXRxlgp5Zwk70ny6EWL70nynFrrTT3saioDu9Z6tJTybUn+V5InLfrR0xem1dyb5gXDHy1adv8q697SQ5NKD+uOXCnl+5P8Qsfi/15rfVkPu+nnfExKP/zZLP0D9itLKXtqrav1kakmh9Ymh3ojh5YqpVyW5Os6Fr9ho/ubZrJobbKoN7OWRSPqHzNBFq1NFvVmDLKICSSH1iaHeiOH1lZrPZzkX5ZSjiX51wuLdyf59VLKUzb47UJTQRatTRb1RhZ1zZj1InJobXKoN3JoKWPW3ZNFa5NFvZm1LDJmDYwz1/i1ucb3Zgyu8ZPSD417LCKH1iaHeiOHljLu0R05tDY51JtZyyFjHoMhh9Ymh3ozBjnEBJJDa5NDvZFDa3OP3upk0dpkUW9kUdeMVS8ih9Ymh3ojh5YyVt0dObQ2OdSbWcuhaRyrnmu7AayslHJ2kj9O8sRFi/enqWB5Q4+7e6Bjfl+PbdmZ5YE9Fh241vr5JE9L8vokx7rY5H1JnprkUMfyOwfctLFSSvnuJL+cpSH6xiT/YoTN6OyHZ5VSdvS4j/M75ofRD/8qze/aKZuSPH4Ixxl7cqg7cqg7cmhF12Xpa7G/q7X+TR/7m0qyqDuyqDuzmkX6R/9kUXf0te6MSRYxYeRQd+RQd+RQT34yyR2L5r80yXNaakvrZFF3ZFF3ZFFPjFkvkEPdkUPdkUMrui7GrNcli7oji7ozq1mkfwDjyDW+OzK8O2NyjR+3e2RWY9xjgRzqjhzqjhxa0XUx7rEmOdQdOdSdWc0h/aM/cqg7+ll3xiSHmDByqDtyqDtyqCfu0VtEFnVHFnVHFvXEWPUCOdQdOdQdObSi62Ksek1yqDtyqDuzmkPT1j8URhtDpZRdSf4wyVMWLX4wyTfWWv92A7vsrHp5RY/bd65/X611/4prtqDWeqjW+s+TPCbNQMj7knwuyUNJDiS5Mcmvpame+uxa661JHtexmw+PrMEjVkp5cZpwXvz7/htJ/ukoK+fXWu/N0j8Mk+TyHnfT2Rd7qejalVrrySS3dyzu6UXONJBDvZFDa5NDy5VSSpLv6VisqncHWdQbWbS2Wc8i/WPjZFFv9LW1jUsWMVnkUG/k0NrkUG9qrQ8leUfH4m9soy1tk0W9kUVrk0W9MWbdkEO9kUNrk0PLGbPujizqjSxa26xnkf4BjBPX+N7I8LWNyzV+nO6RWYtxj4Yc6o0cWpscWs64x/rkUG/k0NpmPYf0j42RQ73Rz9Y2LjnEZJFDvZFDa5NDvXGP3hmyqDeyaG2yqDfGqhtyqDdyaG1yaDlj1euTQ72RQ2ub9Ryapv6xue0GsNTCt9D8ryRfuWjxwSTfVGv9qw3u9saO+Uf2uP3VHfOf2GA7hqrWekuSn1mY1vNVHfN/uco+y0rLJ0Up5YVJ3pymOvUpv53kpQt/qPVkAOfjxjSVJU95ZJb3z7V09sVetu3FQx3znZVcp5oc2jg5tJwcWtWzkly1aP5ImhfTLJBFGyeLlpNFZwyjf0wzWbRxsmi5McwiJoAc2jg5tJwc2rBPdsz3+jsz8WTRxsmi5WTRhhmzlkMbIoeWk0OrMma9Dlm0cbJoOVl0hjFroG2u8RvnGr/cGF7jx+UemfUY95BDGyKHlpNDqzLusQY5tHFyaDk5dIYxj+7JoY2TQ8uNYQ4xAeTQxsmh5eTQhrlHTxZtmCxaThZtmLFqObQhcmg5ObQqY9VrkEMbJ4eWk0NnTMNY9dz6qzAqpZTtSX4vydMXLT6c5JtrrX/ex64/3jH/pFLKWT1s/9Xr7G+iLFRTfVbH4g+00ZZhKqU8L8lvZmkBxHckeUmt9UQ7rVrWdzqDcVULL2aetM7+BuW8jvl7hnScsSOHRkMOyaEk39sx/7u11vs2uK+pI4tGQxbJonWOMxP9Yy2yaDRmpa+NaRYx5uTQaMghOdSFYx3zW1tpRUtk0WjIIlnUBWPWcmio5JAcijHrNcmi0ZBFsmgts9I/gNFyjR+NWcnwMb3Gj/370guMe8ihoZJDcijGPVYlh0ZDDsmhdY4zE/1jNXJoNGaln41pDjHm5NBoyCE51AX36MmioZNFsqgLxqrl0FDJITkUY9WrkkOjIYfk0FrGuX8ojDYmSinbkrwryTMXLX44yfNqrX/az75rrV9I8tFFizZn6UVhPc/smP+DftozBp6V5MpF8x+otd7UUluGopTy3DQVK+cXLf79JC+qtR5vp1VJkj/smH9mD9t+TZZefD5Sa72r7xZ1KKWcl+XVW+8Y9HHGkRwaKTnUntZzqJSyJ8m3dSx+Q6/7mVayaKRkUXtaz6IuTH3/WIssGqmp72tjnEWMMTk0UnKI9VzaMT+M115jSRaNlCxiVcas5dCIyKEZZsx6bbJopGQRa5n6/gGMlmv8SE19ho/xNX7s35c27iGHRkQOtaf1HDLusTo5NFJyqD2t51AXpr5/rEYOjdTU97MxziHGmBwaKTnEetyjJ4tGQRaxKmPVcmhE5NAMM1a9Ojk0UnKItYxt/1AYbQyUUrYk+d0kz1m0+EiSF9Ra3zugw7y9Y/57umzbY5N8xaJFh5L88YDa1JZ/2zH/+lZaMSSllK9L8jtJtixa/MdJXlhrPdpOq077oyQPLZr/qoU+1o3rOuY7+/SgvDhLs/GuJDcO6VhjQw6NnBxqzzjk0Hcm2bZo/tYkf7LBfU0VWTRysuj/Z+/Ow2S7ynrxf98QCEMgYQqjJMyDyhiUgJiDgAIKGFBAZAjkyiDOIALXIaAXLj9F8YqCoJAwKoMEZFTEwxAIMo+KTIkQmQmEEDKv3x+7jqfO7urumrqquvvzeZ5+yF6119qrqtZ+O+x+867lWYVYtJkdvT42IhYt3I5eaysei1hR4tDCiUNs5id7xyvxYH+riUULJxaxEc+s9xOHto44tLt5Zr0OsWjhxCI2sqPXB7BYfscv3I6O4Sv+O347/F3ac4/9xKGtIw4tzyrEIc89RhCHFk4cWp5ViEOb2dHrYz3i0MLt6HW24nGIFSUOLZw4xGbk6O0nFm0dsYiNeFa9nzi0dcSh3c2z6hHEoYUTh9jIyq4PhdGWrKoOTvLKJPccar4wyc+11t46x0u9LMnFQ8f3q6obj9Gvv3hf2Vo7b37TWqyqeniSuw81fSRdxccdoaqOTfK6HPgvRm9P98v//OXMar/W2rlJXt1r7q+xNarqJkmOG2q6KMnL5zi1fde5RpLf7TX/Y2utzftaq0QcWixxaLlWJA49snf8wp0eZ8YhFi2WWLRcKxKLNrrOjl4fGxGLFmunr7VVj0WsJnFoscQhNlNVP53k6F7z65Yxl0USixZLLGIjnlmLQ4sgDhHPrEcSixZLLGIjO319AIvld/xi7fQYvuq/47fB36U999hPHNoi4tByrUgc8tyjRxxaLHFouVYkDm10nR29PtYjDi3WTl9nqx6HWE3i0GKJQ2xGjp5YtAhiERvxrFocWgRxiHhWvYY4tFjiEBtZ9fWhMNoSVdWl0gXS+w41X5Tkga21N8zzWq21zyQ5eajpMklOqqrLrtMlVXXfHLjTzQVJnjrPec1q8Atv3HPvl+QFQ00XJXlka+2iuU9sCarqmCRvSHK5oeZ3Jrl3a+37o3stxYnp/qVkn+Or6j7rnTxYoy/KgZU5/7a19rkN+ty0qu49yaSq6prpPr9rDDVfkOQZk4yz3YhDsxOH9hOHNldVt05y26GmS5KcNOk4O41YNDuxaD+xaGRf62MMYtHsrLX9tlEsYoWIQ7MTh/YTh/arqqOr6rjNz1zT7/ZJXtJrfmdr7ePzmdlqEotmJxbtJxbt55n1+MSh2YlD+4lDm/PMejSxaHZi0X5i0VrWB7AsfsfPTgzfbxv9jj8xcvVWhjg0O3FoP3Foc557rCUOzU4c2k8cGtnX+tiEODQ762y/bRSHWCHi0OzEof3Eof3k6E1GLJqdWLSfWLSfZ9XjE4dmJw7tJw5tzrPqtcSh2YlD+4lDa+209TH2m2FLvDDJA3ptT0ny4ao6asKxvjJGhck/SLdzzZUHx3dM8raq+l+ttf/Yd1JVHZLkUUme1ev/rNbaGeNMpqqum9Hr65q944M3eK/ntNa+scmlPl5Vb0zymiTva61dMmIuP5TkyUke3HvpKa21D28y/lxs9edRVbdJ8uYkhw41fzrJ45IcUVWTTPe81tpXJukwidba56vqz5M8Yaj51VX1W0me31q7YF9jVd08yd+kW6v7fDOb/4vDtZK8vqo+nuSlSV47+JeWNarqikkenq6i9zV6L/9Ra+3zY7yt7UwcEofEoc6849B6Tugdv7W19sUpx9pJxCKxSCzqbFUs2hbrYwWIRWLRrotFyeLWR1UdmuRq67zcf5h8tQ2u9aVVerA2Z+KQOCQOHWhe6+O6Sf6hqj6R7o9npyT5dGujd1iqqlskeXSSX+7N67xB204nFolFYtGB5rU+PLMenzgkDolDB5r3+ujzzHo0sUgsEosOtCvXB7Aj+R2/S2K43/H7ydVbOeKQOCQOdeTqLY84JA6JQx15essjDolDuy4OJXL0Vow4JA6JQweSo7ccYpFYJBYdSI7e4olD4pA4dCA5eosnDolD4tCBduX6GFtrzc+SfpK0Of7sGfOae5Kc3+t7SZL3J/n7JG9J8rUR4/9jkktN8N5On8N7OmmM63xj6PzvJnlPupvzZUn+aYN5/OGCv+st/TzS7WQ0r7W0dwGfx6WSvGnEtb+a7hfPK5N8YLA2h18/P8mdx1zn/bG/neTd6R6svSTJawfXuHCdz+Gvlx0jFrQ2xSFxSBzagji0zjUPSZcgMTze/ZcZA1blZ45rRywSi06c41rau4DPYyGxaLusj2X/zHHtiEUrvta2+vPI9otFi1ofx8/pMzlq2fFiC78LcUgcEoe25vP42RHnnz1YH69Pl/zwyiRvS/KVdcY/N8ndlh0nFrQ+xSKxSCzams9jz4jzPbMe/VmJQ+KQOLSF66N3Tc+s1/9sxCKxSCyyPvz48bMDf+YYk/2OX/EYvtWfR7bf73i5eivyM8d1Iw6JQyfOcS3tXcDnIVdvRX7muG7EIXHoxDmupb0L+Dzk6a3IzxzXjTi04utsqz+PbL84tKj1cfycPpOjlh0vtvC7EIfEIXFoaz4POXqTfR9ikVgkFm3N57FnxPmeVY/+rMQhcUgc2sL10bumZ9WjPxdxSBwSh6yPsX9GVZJjB2ut7a2q45KclOTqg+ZKcvTgZ5RXJPml1trFWz/DmRya5JhNzjkryS+31v5uAfNhHa21i6vqAel2VHrg0EtHJLnHOt2+luThrbV3TXnZw5LcaYzzvpfkN1trL5jyOmxCHBKHVsGS4tBxSa4ydPz1dA/4WQKxSCxaBUuKRdbHChGLrDVYNnFIHNrFrpjN18c+pyV5dGvtY1s4n11NLBKLdjHPrFeEOCQO7WKeWa8QsUgs2sWsD2BH8zteDF8FcvV2N3FIHFoFcvV2N3FIHFoF8vR2N3HIOoNlE4fEoV1Mjt4KEYvEol3Ms+oVIQ6JQ7uYZ9UrQhwSh3axbb8+Dlr2BFi81tqbkvxQkuelW6DrOS3Jz7XWHtxa+95CJje5Zyf5cLpqnBv5YpKnJbnhqt6Mu01r7ZzW2oOS/Hy6tbaebyV5bpIfaq29Zczh/z3J05OcmuT7Y/b5zyRPSbezif/zusXEIXFoFWxxHBrlhN7xS1prF84wHjMSi8SiVbCgWGR9rDCxyFqDZROHxKFd4O3pdsR9RZIvjdnn3CSvTnLvJHeUcLX1xCKxaBfwzHrFiUPi0C7lmfWKEYvEol3E+gB2Fb/jxfBVIFdvdxOHxKFVIFdvdxOHxKFVIE9vdxOHrDNYNnFIHNoF5OhtA2KRWLQLeFa94sQhcWiX8qx6hYhD4tAusqPWR7XWlj0HlqiqLpOu2vGRSa6ZrqrxmUk+3Fr7wjLnNomqulKS2yS5froKnZdN939czkzy0dbap5Y4PcZQVddPctsk105yhSRfSXJGklNbaxfMMO5BSW6c5IZJrpPk8OxfH2cl+XKS97fWvj7TG2Bq4hCrYqviENuDWMSq2MpYZH2sPrEIWDZxiN2gqq6R5Obp1vlVk1w+yYVJzk7yzSSfSPLpbbCrz44lFrHTeWa9+sQhYBWIRewG1gewG/kdz6qQq7d7iUOsCrl6u5c4xKqQp7d7iUPAsolD7AZy9FafWMRO51n16hOHgGUTh9gNdsr6UBgNAAAAAAAAAAAAAAAAAAAAAAAAWLqDlj0BAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAHqq6qiqar2f45c9r0Wqqr2997932XPaiXzO21tVndiPFdvh+tYdAAAAAAAAAMDutl3zXgAAAACA3UFhNAAAAAAAAAAAAAAAAAAAAAAAAGDpDl72BAAAAIDVVFVHJfnCBF3OT3J2ku8k+VySDyc5LcmbW2sXzHt+AAAAAAAAAAAAMKyqKl3e25G9ly5OcmRr7czFzwoAAAAAgEkctOwJAAAAADvGIUmunuRGSX4qyZOSnJLkzKp6ZlUduszJ7XRVdVJVtaGf05c9J2BnqarTe3HmpGXPCQAAAAAAAACg525ZWxQtSS6V5PjFTgXmo6r29PJ2WlXtWeJ85CvCHLmnAAAAYC2F0QAAAICtdrUkT0zyiao6ZtmTAQAAAAAAAAAAYMc6YYPXHllVtbCZAAAAAAAwlYOXPQEAAABgW/leks+u89rlk1wlyVXXef3IJG+pqmNbax/ZiskBAAAAAAAAAACwO1XVVZL87Aan3CDJniT/upAJAQAAAAAwFYXRAAAAgEl8oLW2Z6MTquq6Se6d5PFJbth7+UpJXl1VN2+tXbg1U2QeNvuegaS1dmKSE5c8jYm5vwEAAAAAAACAHeohSQ7ptbUkNXR8QhRGW7rtmncDAAAAACzGQcueAAAAALCztNa+1Fp7bpJbJfmHEafcMMmjFzsrAAAAAAAAAAAAdrhH9o4/k7U5bPerqsMWNB8AAAAAAKagMBoAAACwJVpr30vyi0n+fcTLD13wdAAAAAAAAAAAANihqurodJt5DntxkpN7bZdL8uCFTAoAAAAAgKkojAYAAABsmdbaeUmeMeKlo6vqKoueDwAAAAAAAAAAADvSCb3jluQlSd6c5GubnAsAAAAAwAo5eNkTAAAAAHa8t4xoOyjJTZO8d9pBq+qgJLdJclSSqye5SpKzk3w9yWeTfLi1dsm0489TVV0nyc3SzfWwdLuOnp3kW0n+K8n7B0Xk2AJVdbkkP5LkWkmOSHJokm+mWysfba19bonTG0tVXT3JHZLcIN38v5MuYfN9rbUzljm3rVZVh6V77zdOd/+cl+TMJO+d5L1X1bWT3D7dfXhouvvvS0ne0Vo7e87TnkpVHZLkTkmul+SaSS5O8tUkH0/ykdZaW+L0AAAAAAAAAABW0iA/6Bd6ze/cl1tSVS9P8htDr92uqm7VWvvoFs/r0unylm6R5KqD5q8m+dAk166qK6XLe7lpksOTfC/JV5Kc2lr70lwnvfbaV03yo0lumORK6fKW/jsrmndVVddNcqt0OYVXT1cg7+tJvpzktEXkCVXVjZPcLsl1khySLlftv5O8u7V21lZffyeqqh9KcqN0+X9XTXJuuu/19HT5lxdu8fXdy9Nfd1XuyVsluW663MELkny5tfaSMfvLAd4CVXWZJEenux+uli5enp0uL/Z9E4xzo3T35r41dn6Sb6TLDz2ttfb9OU8dAACABVEYDQAAANhSrbWvV9XZ6RIphl1tmvGq6s5JHpfk7umKoa3nW1X1piTPaK19apprTauqrpbkuCR3S3Jskmts0uWCqjotyXOSvGbcgm5VdXqSI9d5+ciqGqeI0l1aa3tHjL033dz3eUdrbc868/h4kh8aavp6kuvMkmxUVb+Q5OW95se11v5qzP4HJfnFJA9J8uNJLrvBuV9I8sokf9Ja+8Z0M94aVbUnyVOS3DVdQcFR53wqydOTvHySwllVdXySF/War99aO32Kefav+9TW2omb9DkxyR8Mt7XWauj12yf53ST3yjrPMavqHUme1Fo7bYPr3DvJ7yS5Y5IaccoFVfXaJE9srf3XRnOe9D1MMM5RSU5MFzf6sXKfr1TV85I8q7V2zqTX6F1vb8a4vwfz+sIGQz28qh6+2fX2fSaDxL4z0yWX7bO3tXaXTSe9gar68yS/1mu+9VYnLwMAAAAAAAAAK+Pn0hWrGXZy759/o/f6I5P8+jQXG+T0/Guv+X/ysAYb+P3vJA9NcsV1xvjPJH+0UWGeqrpluvyZ+6QrecPL+wAAIABJREFUGDPqnPcm+e3W2qmTvYuNVdWx2Z+3dKl1zvlQkucm+dtJN/ybV97NYKwjkvxmknsn+cENTr2oqt6X5C+T/P2kG69ulCM1yFd7eJLfyoG5dMMuHuTt/O5G+U5D1zsxvc+o51+rNv3ITm6tHb/ZSePYynzFda53y3T37U8lufYGp55TVW9L8sxxPtfeNfZkm9/LY+Thbem9vM54q3BPXiHJryb5pXQb0o4y8jvb7jnAm63rSYyY46YxZbPc1Kr6wSRPTHL/JFcYMcTJSTYsjFZV108Xb++V9b/fJDmvqt6V5M9aa2/eaEwAAABWz8j/mBIAAABgzkYV8Vmv+M9IVXWTQaGzdyZ5YDYuipbB6w9J8vGq+puqWrcw1jwNdhf9cpLnJ3lANk+ISJLLpCve9coknxj80X876ScwXD3JT8845vG94/OTvGKcjlV1jyQfT/LiJD+ZDYqiDVw/XeGsz1fVVMmO81ZVh1TVC9Ilp9w9Gz/Hu0WSlyZ5yyCZZ1urzh8mOS1dIthGmzscm+Q9VfWEEeMcVlWvSfL6JHfK6KJoSXf/PTDJp6rqbjNNfgqDNffJdImRG8XFa6YrnvbJqrrdAqY2d4PdPV/aa95TVTefdszBjs8P6zW/V1E0AAAAAAAAANhVTugdn5vk1fsOWmsfSfKx3jkPqaqRBYpmUVX3S/KpJL+cdQopDdwkyYur6pX9eQzyZ34/yYeS/HzWKaQ0cEySd1XVU2ab+f9c+1JV9Zwke9PlXo0spDRw2yQvSPLOQZGahaqqy1TV05J8PsmTsnEBpqTLQ7pTug07PzooVjWPeVw3ybuTvDDrF0VLus/yrkneW1X/Zx7X3omq6lpV9bIkH0nyiGxcFC3pNmn82XSf6ylVtVlu6bjzcC9Pfs1VuSd/NN1394xsXDRrVN/dmAO8MFX1u+nu7YdldFG0zfpfabCuP53kV7L593vZdDm4b6qqd1XV9Sa9JgAAAMujMBoAAACwCIePaDt73M5Vddd0u3/dc4prH5Qu8e0dVTVOgsKs7piNCzlt5uZJTltGgaYZvDTJhb22R0w72CBRrP/+T2mtnTVG3yckeWO6YmGTumKSZw8K6c3yHc5kUMTvzUn+14RdfzJd8sZGCUzbwfPS7Y457rPLSvLHVfWo/2moOjzJvyS53wTXvUKS11fV7SfoM5NBguOzk1x+gm7XSxfPtmVxtHS7YvY9ZobxfiFrf8c8d4bxAAAAAAAAAIBtpKpulK4gzbBTWmvf7bWd3Du+SrpiSvOcy0PSFWQ7bIJuP5+uoNa+MSpdgaKnZuNCRgdcOsn/qapfmeC6awfprv3SJI+bsOuPpctnmagA0SwGxa/+KcnvZYriOukKmJ1aVfeecR43SLcB5DETdn1KVf3RLNfeiarqVkn+LcmDs/5GmBu5b7r8y5vMOA/38uTXXJV78sfTFYObtgDWbswBXohBQbM/zJSfb1UdmeTUdOv60lMM8WNJ/q2q7jDN9QEAAFi8pf0HngAAAMDuUFU3zOiiP58fs/+9k7wma/+IfUGSt6crmPbFJN9Jt/PfUUl+Ismde+f/SJJTqurHW2v9Il5b5eJ0O/19Msl/JPlmuoJwleRKSW6c5A7pdrwbLgJ1aJK/q6rbtNa+uMH4n0ry7cE/Xy/JlYdeu3Dw+mbOGeOcDbXWvlZVb0qXVLTPvarqiNba16YY8mFZWxTrhaNOHFZV/zfJ74x46VtJ/jnJB5N8Ld2OsIen243wHklu2jv/hHSf6xMmmvX8vDDJXYaOP52uUNp/pHsvhyW5TZL7Z+1uhD+e5DeT/MnWT3P+qurXkzxqqOmMJP+Y5BPp3vvhSX40XRLZlXrdn11Vb00XD/4uyXDhsA8meUuSLyT5brrP7SeS3CcHrrXLJXlBVR3dWrtoTm9rpKr6rSSjdvc8fzDXdyb573RJYtdPd3/t21H2CklOydDOxlvkgiQfHTq+RQ6MxWcl+a9JBmytfbKq9ibZM9T8sKp6cmvt3Cnm+Nje8TeTvGqKcQAAAAAAAACA7emRWVtAqV8ELUleluT/y4EFik5I8vdzmsfRSZ4+NJdvJ3lTuqJZX0uXl3LzJA9Il+M27MFVdUpr7VXp8klOGHrtjCRvSJc/8810+TM/Mhinnz/zzKp6Q2vt9Cnfw+OTPGjo+LtJXpfk/Um+Orj2zdLlLf1Ar+8PJHl7Vd26tfbtbKHBpomnDubS94kk70iXs7dvHkekK1x2r3SbZ+5zaJJXVdWdWmsfnGIqV0yX13WdwXFL8p4kb0uXU3NOkqunyw88Lslle/2fXFX/2Fp73zrjfyX7c3cOTXLD3uufy+b5fxPl9mxiS/MVq+roJP+a7r0OuyTJu9J9tl8YzOFySa6b5Ngkd82B9/WN020wervW2nfGmFOfe3nCe3mF7slrJvmHHHiv/Vu6gm1npPscrpUuD+7nxxhvV+QAL8gv5cBCfeeky+s9Nd2aPCjdPX2XdJ/7AQZF0d6XtTmzSfcdn5ou1/asJJdJ9z3fMd2G3IcMnXuNJG+sqtu21s6Y7S0BAACw1aq1tuw5AAAAACuoqo5Kl0Qy7B2ttT0TjvPEJM/sNZ+V5GqttUs26Xv9dEkFhw81X5Tkz5L8cWvt6xv0vXWSv8mBxZGS5E9ba4/f5LpHZe17f0Rr7aSN+g36/meSj6fbbe/t4yTWDP5g/4wkv9B76Y2ttZ/ZrP9gjJOSPHyo6YzW2lHj9F1nvL3pkob22fC7r6r7pEucGfb41tqfTnHt/0yXMLLPl5IcudF6qarj0iW0DDsryZOSvLi1dt46/Srdzq/PS5dsM+y+rbXXTzj9iYz4nM/L/qScryT51dbayOJXVXVokr9MV0hu2LeTXLu19v1Nrn18khf1mq8/TTJVVfUfMj61tXbiJn1OTPIHvebz0yWhnJsuOesFrbVRSS7XSFcw8U69l56fLrnlWYPjzyd5VGvtX9aZw9FJ3pi13/2DW2uv2Gj+672H1tqmO5VW1U2TfCRrkx3fPJjvl9bpd1yS52Z/cs/30yXaTXr9vZng/h7qd3qSI4eaTm6tHb9ZvxHj3D9ri7qd0FrbtABib5zbJflAr/lPWmu/PemcAAAAAAAAAIDtp6oula7w07WHmv87yQ+MyjWqqjemK8SzzyVJbjBpcZSq2pOugNOwfXkvSfIXSX5/VFGhqjokXW7L43ovfTpdHtB70xWI2Sx/5prp8mfu2Hvp+a21R4/xHk7M2tyd4dylFyX5rXXew0HpNm/8o6zNfzmptfaIaa4/Tt7LoO9r0+V8DXvPYL7rFRnbV7zp99LNffhapye5ZWvtu5tct58jNfx5vS/JL7fWPrRO36PSfV+37b301tbaPTa67qD/nqxdc3dpre3drO9W2IJ8xSunyxXtj/GiJCe21tYt8DbYvPcvk/xU76V/aK3df5Pr7ol7eaZ7eTDOqtyTF2d/kbyPJXlMa+296/S97Ki80p2QAzzPeDFNzuA6uanD383zkvxua+2b6/Q/4LupqsskeXeS2/dOfUOSJ7bW/n2DuVwzyR8neUjvpfcnOWbUPQkAAMDqOGjzUwAAAACmU1XXSvKEES+9YrOiaAMvy4FF0c5N8lOttSduVBQtSVprH0mXKPLPvZd+tar6O9zN0+1ba/dvrb123N0GW2tntNYenOTE3kv3qqpRO+itojel27Vt2PGTDlJVd8qBRdGSLpFio6JoR2RtEsVn0iXGPH+9omhJ0jqvTbfLY78Y1TMGhdMWaV9y0eeT3GG9omhJ0lo7J91n/NbeS4en28lxO9pXFO1urbXnrZd00lr7apKfSbcD57CHJHna4J8/mS5xZWRRtME4H8joz2qshK4ZPDdrE8lemeRn1iuKliSDtXps9r/vy6137oo7JWvvt8dOMU6/T0vy11PNCAAAAAAAAADYju6ZA4uiJclLN8g1Orl3fFCmyHFax75CSr/eWvu1UUWIkqS1dn5r7VeyNufnpkn+cTCnc5L8xCb5M19Jlz/Tz6N7UFVNm1OyL5/l/7bWHrnBe7iktfasJD+fbqPTYcdX1Y9Pef1NVdWjsrYA018l+bGNCjAlSWvt24NNVU/ovXRUkl+eYjr7Pq83JNmzXlG0wbVPT3L3rM2xu3tVXW+Ka+80f5kDi6JdnOQhg3W4blG0JGmtfS5dLOjnEN6vqn50irm4lztj3csrdk/uK7x1apI7r1cUbXDt9fJKd2sO8Fbb9908vrX22PWKoiUjv5sTs7Yo2pNaa/feqCjaYKyvtNYemuSpvZdun+TnNp82AAAAy6QwGgAAALAlBrvwvSXJ1XsvnZtuZ7TN+t89yTG95ke21t4+7hxaaxekS9j4xlDzpZP81rhjTGrcRIh1PC3dLmT7VJJHzjajxWitXZRuh7xhP1xVt5twqFEFqfoJS32/nuSwoeNzk9xjowJTfa21LyZ5UK/5FknuM+4Yc3RhkgeMsxNta61l9Hru7365nfzGRglJ+wyStf6k13z5JFdIt+PlA1pr/cJpo8Z5d7pYNewuVdUvXDYXVfXDSe7Sa/5skoeNUzCytbZvR9Fta5Dk1y9gdnRVHT3uGFV1WNbusPnPrbXPzjo/AAAAAAAAAGDb6BfTSZIXb3D+65L0CwQ9oqrm9d/Yvby19v/GPPf3RrQdMfjfX9+soFCStNbOSvKsXvOV0m0oOq29rbUnj3Nia+0NSf5oxEu/NsP111VVByd5Sq/5La21xw3yqMbSWntRkr/pNf9mVR0y6vxNnJ6ugNe6m3cOXfdbWVuc56B0BdN2raq6aZIH9pr/d2vtZeOOMfj+H52kXyTpSVNOy73c2fBeXtF78jtJHthaO3uKvrs2B3hBXtNa+9NJOlTVlZP8aq/5ea21Z04yTmvtxKzdaHva+AAAAMCCKIwGAAAAzEVVXbaqrlNVP11Vz0/ysSS3HHHqL41ZsOp3esfvaq39/aTzGiQp/Hmv+bhJx1mEQSLIS3rNP7aMuUzphSPajh+3c1VdPskDes3vHOzouF6fQ7N2Z8BntdY+P+5192mtnZrkX3rNy1grL2+tfXDck1trn0rS32100oJ0q+I/szbBaSOvWaf9JYPPZVyv7h0fnOSHJ+g/iceMaHt8a+38cQdorb013a6i29nzk1zQa3vsBP0fnq4Q3rDnzTQjAAAAAAAAAGDbqKojkvx0r/lDrbVPrtdnkJ/Rz0E7Msld5zCli7O2QNC6WmvvT/JfI176dDbfSHJYP+8lSW47Qf++SYuaPTNJPx/wvlV1rRnmsJ4Hpfu+9mlZWzBnXE8b9N/nGlm7kes4njphIaW/S7dWhm3XXK95+e0c+N+5fiFrN8zcVGvtwiRP7zXfc4oNMt3L+212L6/iPfmnrbUzp5zDTHZADvBWuiTJE6bo97gkhw4dn5O1+eXjelrv+NZVddSUYwEAALAACqMBAAAAkzi2qtqonyTfT5cU8YYkv5S1BWvOTfKLrbWXb3aRqrpKkp/oNU9SLKnvjb3jI6vqyJFnLt9nese3rapLL2UmExoUovq3XvODJ9i17/5Jrthr2ywx6G5JDu+1/e2Y1xulv1aOnWGsab1gij79z/0m85jIErxowp0iP59uh8e+SdfAh0e03XTCMcZ1z97xl7N23Y3jr+cwl6VprX0tyat6zQ+qqv79vJ5H947PzPYvFgcAAAAAAAAAjO/hSfp5VSeP0e/FI9pOmH06eVtr7YwJ+3xkRNuk+TOfS3J2r3navJfTWmsfn6RDa+28rC0EdHC6vK55+7ne8d7W2menGai19sUk/fc6aa7Y95Jsmg/Zu+5ZWZsjuFV5SiuvqirJ/XrNJ7XW+sXjxvWm3vEhSX50wjHcy/ttdi+v2j3ZMnqD30XatjnAW+ztrbXTp+jXX2Ovaq3175NxvSfJt3tty8gRBgAAYEwKowEAAABb7bvpiprdbJyiaAN3TlK9tvfMMIcvjGi7zQzjja2qDq2qe1XVk6rqxVX1xqp6V1V9qKo+0v9J8pzeEIek2/luu+gXMrtKkvuM2fcRveNzsrZwUl8/KeHMKZKShvXXylETFGqah+9nbZGzcXyud3ypqjp05Jmr7Z1T9Onvtnlukg9OOMbpI9rm/r0Pdiq+fq/5dVMm8r01XXLldtaPd5dP8rDNOlXVsUlu0Wt+QWvtonlNDAAAAAAAAABYeY/sHV+U5BWbdWqtvSdrC9f87GAzz1lMk/cyKs/pXXMYZ9q8l1Om7PcPI9ruMOVYIw0KaN251zxLTmGyNlds0pzC01prF0xx3X6u12FTjLFT3DLJlXttU3+vrbVvZe1Gm5N+r+7lA428l1f0nvxsa+1LM87hALswB3ir/OukHarqykl+uNc8S3y4JGvvsYXkkgMAADCdg5c9AQAAAGDH+0CSvxjs5jauO41oe01Vjb173hiuNsex1qiq2yX57XRFwS4343CHJ5lrssYWekWSP82B7/n4bFLgrKqOTLKn1/zK1tpmhZ/6a+XKg+SSaY0qJna1rN0lbquc0Vq7cIp+/WSupEuYO2fG+SzaNLtFfrd3fMYUBbL6YyRbk3B4uxFtkxZxS5K01i6qqo8lOWa2KS1Pa+20qvpgDvxcHpPk/23S9bG944vSFeAEAAAAAAAAAHaBqrpTkpv1mt/cWvv6mEO8OMkfDh0fkuQXk/zFDNOaR97LvMaZNu9lqjyWJB9PcmGSSw+1jcqTmcXN023SOezhVfUzM4x5vd7xpDmF/QJ74+rneu3mwmijckX/oqrOn2HMy/eOJ/1e3cvj3cureE9+aIZrH2AX5wBvlWm+m2OSHNRre3JV/coM87hR73hLc8kBAACYjcJoAAAAwCS+l9HJGpdOt2vftUa8dpck76+q41trm+7IOXDdEW23HLPvuK465/GSJFV16SR/lq5wT/8P8tPaNolPrbXvVNVrkzx4qPmnquparbUvb9D1+CTVa3vRGJfsr5XLJ7nVGP0mcdVMl6Q0jW9N2W9UMbVLj2hbdWdN0af/3iceo7V2YbeB5QG24vM7YkTbp2cY7z+yjQujDTwnB97rN6+qPa21vaNOrqojkhzXa359a+3MLZofAAAAAAAAALB6ThjRdvIE/V+S5Gk5MF/phMxWGG0eeS/zGmfavJep8lhaa+dX1elJbjzUPCpPZhajcgqvu077tCbNKZxXrtd2zPOal1HfX7/o4awm/V7dy+Pdy6t4T35t1gvu9hzgLTTNdzNqLd1g1on0bEkuOQAAAPMxr/9jDgAAAOwOH2it3XrEzw+21q6d7g/Ex6cr1jPsMkleUlX3HvM6i/hD86w7uK0xSIh4VZLHZb7PXbZb4lO/oNmlkjx0vZOrq0j1sF7zZ1pr7x7jWv0dB7fC3NfKBkYlSO0arbV5vP9V/gwPH9HW3wF2ErP0XRV/l+SbvbbHbHD+Cel+pwx77lxnBAAAAAAAAACsrKo6NMkDes1nJXnDuGO01s5IsrfXfKuqut0MU5tLzsqc8memNc88llF5MrNYxZzCVc5T2i527Pe6C+7lVfzuzp7lYnKAt9Q0380qrjEAAAAWSGE0AAAAYG5aa99qrZ2c5Nbpit0Mu1SSl1bVUWMMdeU5T21RfifJfUe0n5nkr5I8JMkxSX4gXbLIZVtrNfyT5C4Lm+3W+ZckZ/TaHrHB+cdm7S5u/eJqa1TV5ZMcMtnUYKmuOKLtezOMN0vfldBaOy/J3/aa71dV1+ifW1UHJXlUr/kz6WIOAAAAAAAAALA7PCjJFXptf99aO3/CcU4e0XbCdFPaMeaZxzIqT2YW2zWnkI35XrfGIu7lVfzuLpqxvxzgrTPNd7OKawwAAIAFOnjZEwAAAAB2ntba+VX10CTXyIF/5L9SugI4d91kiO/3jr/dWlvpP3BX1RFJntxrvijJbyd5Tmtt3D/qb/vdx1prrapOTvL7Q803q6o7tNZOG9GlXzTt4iQvHuNS5yW5JAcW/z+ltXbcRBOGxfnuiLZ+ou4kZum7Sv4qyROy/16+dLpE46f3zrtnkqN6bX/dWmtbOjsAAAAAAAAAYJWMKl72mKp6zBzG/oWqenxrrZ+/tltcIcnZM/QdNipPZhajvpOfba29bs7XYbFGfa9Xbq19e+Ez2VkWcS/vqHtSDvBKGrXGbt1a++jCZwIAAMBSHLT5KQAAAACTGyQBPCxrkyt+oqoeuEn3b/SOD6+qw+c2ua1xnySX77X9Tmvt2RMkRCTJVeY4p2U6KUm/WNHx/ZOq6tAk9+81/1Nr7czNLtBauyRJPwHq+uNPkXmoqksvew7byKiEvcNmGG+WviujtXZGkjf0mh9VVf3n14/tHZ+XLtYAAAAAAAAAALtAVd0iyR228BKHJ7nfFo6/6uaZxzLvwlb9nMJErthOMOp7PWrRk9iBFnEv77R7Ug7waMvMD91pawwAAIAJKYwGAAAAbJnW2peS/P6Il56+STGlr45ou+V8ZrVl7t47PivJc6YY5wZzmMvStda+kGRvr/lBVXXZXtsDsnaHwRdNcKn+WrlJVR0yQf/d7MIRbdMksVx11onsIl8b0XbTGca72Qx9V00/Xh6Z5J77DqrqgOOBV7bWvrnVEwMAAAAAAAAAVsYJO+Qaq+om03SqqstkbTGrUXkys9iOOYVszve6NRZxL++0724n5QDPKzc0WW6ht522xgAAAJiQwmgAAADAVntuks/32m6QjRPI/m1EW78gzqr5gd7x+1prF0wxzjHzmMyK6Bc4OyzJcb2243vH30ry+gmu0V8rl0uyZ4L+u9nZI9quNMU4N5p1IrvIB0e03W6agarq4OysJJ+3Jfl0r+2xQ//8qKx9nv3cLZ0RAAAAAAAAALAyBhtxPrTXfEGSj874863emHuqahUK2yzDVHks6XJY+kV3RuXJzOJj/z97dx4maVnei//79KwsAwwwIEsUWdxQYxRUEEVwTfQkaAyuiRijHIInag4aDWFRE40/RJKjxiWK4kE9xBhAcwx4RIgiKuBKxAVcGDZlhGGYYXqmZ6af3x/VM3RXV3VXddd09XR/Ptc1F7zPuzx3VXf1VE3f7/dJsqFp7Lk9noOZtyP2iu4IZuK1PNdek3OpB7gnvaGllAOTNC+GPJO+1WLMzwcAAIB5RDAaAAAAsF2NNAa8vcWu00spS9qc9v9ajL14JAhottq7abu5YW5SpZS9kxw3xfk3N20vmOJ1eulzGd9g8aqt/1NKOSTJU5v2f6rWurGLOVp9r7yii/Pns3tbjE2lqfPY6RYyX9Ra70ryi6bh3y+lTOXfaZ+TZJfpV9WV7fZzptZak/xT0/DvllIeMtLY3Bym+b1a6zd7NT8AAAAAAAAAMOv9fpIVTWMX11ofN50/Sf6m6Zolo3qc5pkTpnjeC1uM9bSvo9a6IcnVTcP7lVKe0ct5ZrHmvp2kvz2CveojuibJ/U1jzyulLJ/i9WjY7q/lOfianEs9wHOiN7TWekuSm5uGn1hKeVg/6gEAAGDmCUYDAAAAZsKFSX7aNHZgkte0OrjWenvGrzL30CQn9byy3mluzmlukujEqZn66mprm7Z3neJ1eqbWuj7JRU3DzyilbF1Z76QWp328y2kuz/hVB19aSnl4l9eZj37SYuyJ3VyglLIgyZ/2ppx54z+atvdP8rwpXKflz8/tbHv/nPlEknWjtgeSvDbJC5Ls23TsB3s8NwAAAAAAAAAwuzUvqpY0+tKm66IkQ01jJ01xobsd3VGllMO7OWFkcdQ/bhrenOTLPavqAZe2GDt7O8wzGzX37ST97RHsSR/RyMK7lzUNL0vyP6dyPbaZqdfyXHpNzqUe4Nsztg8v6bI3dMRrp1FDrzR/jw0kObMfhQAAADDz5uM/0AIAAAAzrNa6Jck7Wux6aymlXRPA37UYe88sXunrzqbto0spu3R68kgTylunMf/qpu09Zsmqic1BZwNJ/mSkcfBPmvZ9v9b63W4uXmv9TZKPNA0vSPLpUspOXVU6z9Ra70pyW9PwiSNhZ506NVNbSXA++1CLsfeUUhZ3eoFSyjOT/EHvSupY88+Znn7ta633JfnfTcOvTvI/msbuS/LpXs4NAAAAAAAAAMxepZQDkjy7aXhVxgcqda3Wek/GL3R3YJLnTPfaO6h/7PL4N6fxfI12aa21uZ+uFz6W5FdNY8eUUv5qO8w12zT37ST97dvqZb9iq17RN5dSjpni9WiYidfyXHpNzpke4FrrcJLvNQ0/r5Sye6fXKKX8fpKnTWX+Hjs34xdPfnkp5cX9KAYAAICZJRgNAAAAmCmfTvLjprH9k/z3VgfXWi9Ocn3T8O5J/qPbley2KqUsK6W8qZTyiqmcP4mvNW3vmuSsTk4spRyU5PNJlkxj/htajP3eNK7XE7XWb2T81/2kJM9I8uCm8fOnOM27Mn61vscnuXiqjSGllIeUUt5XSnn0FGvaUTQ3dT44yRs6ObGU8owk/1/PK5rjaq03JLmyafhhST7eyUrDpZTDMj48bKY0/5x5dCnlt3o8x/ubtvdN0tzkeGGttXlFSwAAAAAAAABg7npVGosljnZRrXVzj65/YYuxV/fo2juaZ5RS/raTA0spv5vkjBa7/ldvS2qotQ6mdYjWO0spr5vqdUspzy2l/NPUK5sRtyZZ0zTWz/7AnvUrjiym+rmm4UVp9P9NKZiplLKklPLaUsobp3L+HLHdX8tz7DU513qAm3tDd0rS6ffDYzN+UeS+GAnm+0CLXeeXUv5wKtcspSwopby4lNLqexcAAIBZRDAaAAAAMCNGViB7W4tdbyml7NzmtJcmuadp7OAk3yqlnN7J6mWllIFSynGllA8lWZlGkNODuii9U59LMtw09qZSyjtKKQsnqO+lSb6RB1ZvvG+K83+zxfznllL+oJSyaIrX7JXmBolDM341wqEkn5rKxWutv0ryyiS1addzkny7lPKKib4GW5VSdhlpdvi3JDcneV2SpVOpaQfy0RZj7y6lnFxKKa1OKKVaAjpkAAAgAElEQVQsHVnR8T/SaORpXo2Pyf15xj9vL0vy+ZEVjlsqpZyQ5Kt54GfY4PYpr61rmrYHkny2lHJEryaotd6Y8cFxzT7Uq/kAAAAAAAAAgNltpIflVS12tQozm6ovZHzo1O+XUlb0cI4dwdZ+ltNLKf/crj9vpCfvDUn+LY0Aq9E+UWv96nas8QNJLm0aG0jyvlLKxaWU3+7kIqWUh5ZS/qqU8oM0+qCmFMA1U2qtNY0+w9GeWUp5Vyllnz6U1Ot+xZOT/KJpbO8kV5RSzimldNTzWUp5Uinl3CS/TPLhJIdMoZa5YCZfy3PlNTnXeoA/kWRL09jrSilva/d4RgLDXp3k6iR7ptGTOzSFuXvtb5Jc2zS2c5J/LaV8tJTS0eu8lPLoUsrbk/w0yf9J0tH3JgAAAP0z6Q2hAAAAAD30L2n8gvrwUWP7phES9J7mg2utN5dSTkzyxSSLR+3aJY2Vy95aSrk6ydeT3Jnk3jR+2b1Hkt9K8viRP3v0/JGMr/WnpZQLk/xJ066/SXJSKeVfk/wgybo0GgYenuT3M7bxZn2Sv0rywSnMf2cp5bKMXSFu3ySXJBkqpdya5P6MDw/7s1rr9d3O16X/neSdGbtq6yObjvlCrfXuqU5Qa/1cKeXMJO9o2vXQkfnfU0q5Ksn1SVal8Vzslsb3xqFJjkjy2Exvxb4dTq312lLKpUn+YNTwgjSCp04tpVycRkjcUJIVSZ6QxvfY6Ga6N0RQVVdqrT8upZye5NymXc9LcnMp5T/SWIHyzjRWajw4ja/RY0Yde3uSz6bx/M+US9MIq9xz1NiTklxXSlmb5I60CMqrtT6uy3k+kOS4NvuurrW2Wh0TAAAAAAAAAJibjssDgTNb3VRr/VavJqi1biylfDbJn40aXpTkFUnO69U8O4Az01h4NGk8FyeWUi5Jcl2Su9LotXpEkj9M8uAW59+S5I3bs8Baay2lvCKN4J7mUJsTkpxQSvl+kquS3JRka0/aHmkEbT02jR6o5u+pHcH5SZ7bNPaWNBanvTONvp7NTfs/X2s9s9eF9LpfsdZ6dynl99P4uo4O8VqY5LQkf1FK+UYai0relmR1Gr1+eyTZL8nvpNEDON/CDNuZsdfyXHlNzrUe4FrrHaWU92V8f+GZSV5eSvlckh+N1LxXGr2Jz8vY74d3p7HA9UO6fTy9VGvdUEp5QRrhcb/VtPvVaXx9rk/yn2mEIt6TRh/sHmn0uj4ujZ8PbRetBQAAYHYSjAYAAADMmFrrcCnlbWkEpI325lLKB2ut97c454pSylOT/GvG/0J7lyTPGfkzG/xFkiem0TAy2oGZPLxoU5I/SqPJYKrelOTYNJ6X0Ran/cqHu05jvo6Math43gSHnd+Def62lHJHGqFKS5t275vkxSN/GOu/Jzkyyf5N44/J2CCuVs6ptX64lCIYrUu11veWUvZO8tamXUuTvGDkTzv3p9E09vztVF5LIw1Gb0xyQYvdy9Jo9uqFS5LcmvE/85MpNI0BAAAAAAAAADu0V7cYu3A7zHNhxgajbZ17PgWjvSeN8JgTR7Z3SyMkqDkoqJXbkhxfa713O9W2Ta113UhP4cfTCHZq9tsZH9A0F3wuyRVJntFi334jf5p9bzvW09N+xVrrf5VSjkzyb0ke3eKax478YXIz+lqeQ6/JudYDfHqSZ2b86+mQJG+epJaLRs5/6STHzYiRoLcnplHX05p2L0hjgdcnzXhhAAAAbFcD/S4AAAAAmHe2rpo22ook/6PdCbXWa5M8Po2miU3TmLumserc16ZxjfYXr3VNGk0E3+zy1DuSPLPW+sVpzn9jkmcluXk619lOJgo+uzPJ5b2YpNZ6fpKjknxlmpfakOT/JFk57aJmuVrrr5Ick+6+b4aSnFZrnaw5hgnUWv86jZU1u2mGui3Jca1WeZwJtdZPptEEvHY7zrElyYdb7FqVRoMnAAAAAAAAADAPlFL2SPLCFrs+tR2m+2rG9wodXkqZN0Ertdaa5OVJul0k8etJjq21/rz3VbVWa11ba31RklOS3D7Ny61MozdxVqu1Did5UZJP97uWZPv0K9Zab0oj3Oi9aSweOR3XJ5lWT+aOqh+v5bnwmpxrPcC11vVJnp7k2m5OSyNY72UjP3NmjZFe12ck+Zsk90zzcj/K+EW+AQAAmGUEowEAAAAzaqTh4uwWu04rpSyb4Lzf1Fr/NMmhafzS/Ydp/AJ+MmuT/N80woceWms9rtb6ra4L71Ct9fY0ViN7XZLJmkNuSXJGkkfUWr/ao/m/kcZqdb+X5J+SXJ1G08W6JP1sUvhCkt+02ffJkSCknqi1fq/W+owkT07yyTSCpDpxZxorv74yyYNqrS+ttd7Vq7pms1rrL5I8Nslfp/E8tDOUxop7v1NrPXcmapvraq3/kOTwJBckuW+CQ+9K8rdJDq+1XjcTtbVTa/1YkgOSvCrJ/07y3TTqG+zhNK2C386vtW7s4RwAAAAAAAAAwOz28iRLm8a+UWv9Wa8nGulraxW49upezzWb1Vo311pPSSMc6CuZuOfsu0lek+SpMxmKNlqt9UNJDh6p48vpbIHC4TRqPyfJcUkO2lF6oWqt99ZaX55Gj+DZSf49yc+SrM70Fp2daj0971esta6vtf7PJAel8RivT9JJf+GGNL5n/zqNHqsjpxtUtSPr12t5R39NzrUe4Frr3UmekkZg3UR/d25J8h9JnlJrfdNsC0XbauT7+u+SPCTJ/0zj+Rnq4NTNSa5J8vYkT6y1PmpkkVgAAABmsdL4N1sAAACAHU8pZUWSJyRZkWSvJLumsUrg2jTCsH6c5Jbax38AKaU8LMkTR2rcZaS+25L8oNb6k37VNd+UUg5N8qg0vk/2SrI4jUaRNUl+keTH8yUErROllMcm+e0keyfZOY3n6SdpNJau62dtc1kpZUmSY5I8OMmD0mhk+nWSHyT53mxtNtoeSimfTvLSUUM1yaH9aqIFAAAAAAAAAJiPSil7p7FA5SFp9Ofdl8bCi9/dHgF101VKWZxGT+GBafQ+LU8jEGdtGgt7/jTJT2utvVwAkO2slLJ7kiOT7JNG/9/uaSziuDaN0KifJPl5Lxdo3VGUUs5OctbosVpraXFcX17LO/prcq71AI88niek8VpalsbX4WdJrqm13tPP2qaqlLJzkiOS7J/Gz4c9kmxM47HdlcbPh5trrZ0EqAEAADCLCEYDAAAAAGDWGAm9vDXJklHDl9Vaf7dPJQEAAAAAAAAAAMw6nQajAQAAAOxoBvpdAAAAAAAAjPKajA1FS5IP9KMQAAAAAAAAAAAAAAAAAGaWYDQAAAAAAGaFUsouSV7fNHxzki/2oRwAAAAAAAAAAAAAAAAAZphgNAAAAAAAZou3J9mnaewfaq3D/SgGAAAAAAAAAAAAAAAAgJklGA0AAAAAgL4qpexZSnlPkr9s2nVLkn/uQ0kAAAAAAAAAAAAAAAAA9MHCfhcAAAAAAMD8Ukr5aJIjRjb3TrJ/ktLi0DfVWodmrDAAAAAAAAAAAAAAAAAA+kowGgAAAAAAM+3QJL89yTGfrLV+diaKAQAAAAAAAAAAAAAAAGB2GOh3AQAAAAAA0OTCJH/W7yIAAAAAAAAAAAAAAAAAmFkL+10AAAAAAADz3mCS25N8I8n5tdar+lsOAAAAAAAAAAAAAAAAAP1Qaq39rgEAAAAAAAAAAAAAAAAAAAAAAACY5wb6XQAAAAAAAAAAAAAAAAAAAAAAAACAYDQAAAAAAAAAAAAAAAAAAAAAAACg7wSjAQAAAAAAAAAAAAAAAAAAAAAAAH0nGA0AAAAAAAAAAAAAAAAAAAAAAADoO8FoAAAAAAAAAAAAAAAAAAAAAAAAQN8JRgMAAAAAAAAAAAAAAAAAAAAAAAD6TjAaAAAAAAAAAAAAAAAAAAAAAAAA0HeC0QAAAAAAAAAAAAAAAAAAAAAAAIC+E4wGAAAAAAAAAAAAAAAAAAAAAAAA9J1gNAAAAAAAAAAAAAAAAAAAAAAAAKDvBKMBAAAAAAAAAAAAAAAAAAAAAAAAfScYDQAAAAAAAAAAAAAAAAAAAAAAAOi7hf0uAPqtlLJ7kmNHDd2aZKhP5QAAAAAAAAAATMfiJL81avs/a61r+lUMAOjRAwAAAAAAAADmCP15M0QwGjQari7tdxEAAAAAAAAAANvBHyT5fL+LAGBe06MHAAAAAAAAAMxF+vO2k4F+FwAAAAAAAAAAAAAAAAAAAAAAAAAgGA0AAAAAAAAAAAAAAAAAAAAAAADou4X9LgBmgVtHb1xyySU59NBD+1ULAAAAAAAAAMCU3XzzzTnhhBNGD93a7lgAmCF69AAAAAAAAACAHZ7+vJkjGA2SodEbhx56aA4//PB+1QIAAAAAAAAA0EtDkx8CANuVHj0AAAAAAAAAYC7Sn7edDPS7AAAAAAAAAAAAAAAAAAAAAAAAAADBaAAAAAAAAAAAAAAAAAAAAAAAAEDfCUYDAAAAAAAAAAAAAAAAAAAAAAAA+k4wGgAAAAAAAAAAAAAAAAAAAAAAANB3gtEAAAAAAAAAAAAAAAAAAAAAAACAvhOMBgAAAAAAAAAAAAAAAAAAAAAAAPSdYDQAAAAAAAAAAAAAAAAAAAAAAACg7wSjAQAAAAAAAAAAAAAAAAAAAAAAAH0nGA0AAAAAAAAAAAAAAAAAAAAAAADoO8FoAAAAAAAAAAAAAAAAAAAAAAAAQN8JRgMAAAAAAAAAAAAAAAAAAAAAAAD6TjAaAAAAAAAAAAAAAAAAAAAAAAAA0HeC0QAAAAAAAAAAAAAAAAAAAAAAAIC+E4wGAAAAAAAAAAAAAAAAAAAAAAAA9N3CfhcA81GtNcPDw6m19rsUgHFKKRkYGEgppd+lAAAAAAAAAABA1/ToAbOV/jwAAAAAAACAyQlGgxlQa82GDRuydu3arF27NkNDQ/0uCWBSixcvzrJly7Js2bIsXbpUIxYAAAAAAAAAALOSHj1gR6M/DwAAAAAAAKA9wWiwna1fvz533HFHNm3a1O9SALoyNDSUu+++O3fffXcWLVqU/fffPzvvvHO/ywIAAAAAAAAAgG306AE7Iv15AAAAAAAAAO0N9LsAmMvWr1+flStXargCdnibNm3KypUrs379+n6XAgAAAAAAAAAASfToAXOD/jwAAAAAAACAsQSjwXayteGq1trvUgB6otaq+QoAAAAAAAAAgFlBjx4wl+jPAwAAAAAAAHjAwn4XAHNRrTV33HHHuIarRYsWZbfddsuuu+6aRYsWpZTSpwoB2qu1ZtOmTVm3bl3uu+++MSvqbv35dsghh/gZBgAAAAAAAABAX+jRA3ZU+vMAAAAAAAAAJicYDbaDDRs2jGlUSJJly5blgAMO0KgA7BAWLVqUnXfeOStWrMjtt9+etWvXbtu3adOmbNy4MUuXLu1jhQAAAAAAAAAAzFd69IAdmf48AAAAAAAAgIkN9LsAmItGNygkjQYGDVfAjqiUkgMOOCCLFi0aM37ffff1qSIAAAAAAAAAAOY7PXrAXKA/DwAAAAAAAKA1wWiwHTQ3Xe22224aroAdViklu+2225ix5p9zAAAAAAAAAAAwU/ToAXOF/jwAAAAAAACA8QSjQY/VWjM0NDRmbNddd+1TNQC90fxzbGhoKLXWPlUDAAAAAAAAAMB8pUcPmGv05wEAAAAAAACMJRgNemx4eHjc2KJFi/pQCUDvLFy4cNxYq593AAAAAAAAAACwPenRA+Ya/XkAAAAAAAAAYwlGgx5rtUJbKaUPlQD0zsDA+LcMVqQEAAAAAAAAAGCm6dED5hr9eQAAAAAAAABjCUYDAAAAAAAAAAAAAAAAAAAAAAAA+m5hvwtgZpRSFiV5SpIHJ9kvybokdyT5bq31lz2e66FJHpdk/yS7JrkzyS1Jrqm1burlXAAAAAAAAAAAAAAAAAAAAAAAAMwNgtH6pJRycJIjkxwx8t/HJ1k26pBbaq0H9WCeFUneluTFSfZsc8w1Sd5ba/3cNOd6UZK/THJUm0PuKaVclOTMWutvpjMXAAAAAAAAAAAAAAAAAAAAAAAAc4tgtBlUSnl6kremEYbWMqSsx/P9bpJPJNlnkkOPTnJ0KeVTSU6utd7f5Ty7JvnnJC+Z5NA9k5yS5IWllFfWWi/vZh4AAAAAAAAAAAAAAAAAAAAAAADmLsFoM+txSZ49ExONhLBdkmTxqOGa5DtJfp5kjyS/k2TvUftfnmS3UsoJtdbhDudZkOSiJL/XtGtVku8mWZPkkJG5ysi+fZNcWkp5Zq316i4eFgAAAAAAAAAAAAAAAAAAAAAAAHPUQL8LIEmyMcnPenWxUsqBSf4tY0PRvp7k8FrrEbXWE2utz05yYJLXJ9k06rj/luRvu5ju7zM2FG1Tkv+R5MBa63NG5npCkkcn+cao45YkuaSUsl8XcwEAAAAAAAAAAAAAAAAAAAAAADBHCUabeZuSfC/JR5OcnOQJSZYl+bMezvG2JMtHbV+T5Jm11h+NPqjWurHW+r+SnNh0/l+WUh4y2SSllIPTCFYb7Y9qre+vtQ41zXVjkmdkbDjaXknOmmweAAAAAAAAAAAAAAAAAAAAAAAA5j7BaDPrgiS71Vp/p9b6mlrrR2qt36m1burVBKWUw5K8ctTQUJKTaq0b2p1Ta71kpLatlqSzwLKzkiwatf2JWuulE8wzmOSkkZq2evVIwBoAAAAAAAAAAAAAAAAAAAAAAADzmGC0GVRrXT1RQFmPvCzJglHb/1ZrvamD897dtH1iKWVpu4NLKTsledEk1xin1vrTJJeMGlqYRs0AAAAAAAAAAAAAAAAAAAAAAADMY4LR5p4XNG1/vJOTaq0/SvKtUUO7JHn2BKc8J8nOo7a/UWv9cUcVjq/phR2eB3PSQQcdlFLKtj9XXXVVv0sCAAAAAAAAAACAHZ7+PAAAAAAAAADY8QhGm0NKKQ9K8tujhjYn+XoXl7iqaft3Jzj2uZOcO5GvpVHbVr9TStm3i/MBAAAAAAAAAAAAAAAAAAAAAACYYwSjzS2Pbtr+Qa31/i7Ov6Zp+/Au5vpGp5OM1HRDF3MBAAAAAAAAAAAAAAAAAAAAAAAwxwlGm1se1bR9c5fn/2yS6432yBmcCwAAAAAAAAAAAAAAAAAAAAAAgDluYb8LoKcObdpe2eX5tzRt71VKWV5rXT16sJSyZ5I9pzlX8/GHdXk+AAAAACM2100ZrsNdnbOoLE4ppaNjh+twNtdNUyltzhkoA1lYFm23628a3pSa8V/LBWVBFpTZ/8+5w3U4A8V6HAAA3ai1dvzefL4aGt7YcnxhWZiBsmC7zdur97db6uZsqVt6UNH2181nxS11S7bUzRMeU1KyaGBxL0oDAAAAgDmr1prUmjLg9+0AAAAAAJAIRptr9mjavqubk2ut60opG5IsHTW8e5LVTYc2z7O+1np/N3O1qG33Ls8HAAAAmPdWbvhZPnvXR/OLwZ9mON3dZL/bguU5Yren5gUrXpkFbYIENg5vyEW//nB+sO66rB9e14uSd3gDWZCH7vSw/NE+f5YHLz2kZ9f9yfobcsmqT2blhp+1DkbLwjx0p4flxfu+NgcsOahn8/bKms2r8+lf/VN+uv6G7L5wzxy3/Pk5dvnv9bssAIBZ7cf3fz///pvP5NaNP88BSx6SF+97ch6ytHktrPnt6/f+v1yx+tL8aui2lvuXDuyUR+78uLzsQX+eXRYs69m83117Tb5497/krqE7ctDSh+VlDzol+y4+oOvr3Lnx1vyfX38oPx/8SbZk4gCx2WKPhXvlybsdn+fv/dK2oXCj3/9vrBsmvN5BSw/Lmx9yzvYoFQAAAAB2eHXD+tR/eGNy9b8nCxakPvcVKa99R8qC7bcgBAAAAAAA7AgEo80tuzZtD07hGoMZG4zWqnu8V/OM1pMu9VLKPklWdHla7+5gBQAAAJgh92xalX+89YwMDq+f0vn3bVmdr6z+fLbUzXnxvq9teczH7nhP/uv+66dT5pwznC352eCP8g+3npEzD3pf9li017SvecfGW/KB296ezXVT22O2ZHNuHrwx/7DyjJz50Pdl2cLmtQv6Z7gO5x9vPWNbWMVdm+7IRXd9JEsGlubJux/f5+oAAGanOzauzIdvf9e2UKlfbrgp5608PWc89H9lr0X79rm62eH6+67Op379gQmP2TA8mO+u+0buvm1V/urB56SUMu15f7L+hnz0jvdsCyy+afC/8t6Vf52zHvqB7Lyg+Vfl7a3bcl/ee+tf5/4ta6dd00y6d/Pdueyez6aU5L/t/fJx+5vf/wMAAAAAU1ffcVLy1UsfGPj0ualJyinv7FNFAAAAAAAwOwhGm1uau7AnXpq5tcEkyye4Zi/nmeiaU/XnSc7q0bVgTqm15jvf+U5+/OMf56677srGjRuzYsWKHHDAATnmmGOy6669ehnOvFtvvTXXXXddbrvttgwODmbvvffOYx7zmBxxxBEZGGi9kn2n7rrrrnzta1/LHXfckcHBwey///45+OCD8+QnP3na127lxhtvzA033JBVq1blvvvuy5577pn99tsvxxxzTPbaa/o32wMAAHPHD9ZdO+VQtNGuve+q/OE+r8rCsmjM+H2b780P7//2tK8/V20YXp/vrvtGjlv+/Glf6/r7rp4wFG20+4fX5gfrrstT9njWtOftlV9u+GnLUIRr1lwhGA0AoI3P/+bCbaFoWw3Vjfn2fV/Ps/d6YZ+qml2uve+qjo9dueHm3DF0Sw5YctC05/3Wmq9sC0Xbau2WNfmv+7+dJ+52bMfXuWHddTtcKNpo31jzlTx/r5eNC5v7xeBPhKIBAEAL+vOmRn8eAPNZ/c0dydVfGL/jsgtT//vf9WQhCAAAAAAA2FEJRpvb6hw7B5iC3/zmN3nnO9+ZCy+8MKtWrWp5zOLFi3P88cfn7LPPzpOe9KSOrnvSSSflggsu2Lb9i1/8IgcddFBH51511VU57rjjtm2fddZZOfvss9seP/qXuscee2yuuuqqJMk111yTs846K1/5ylcyPDw87rx99903p59+ek499dSum6S++93v5k1velOuvPLKltc+8MADc/LJJ+ctb3lLFi5cmLPPPjtve9vbtu2/8sor8/SnP72jue6+++6cc845ufDCC3P77be3PGZgYCBHH310zjrrrDzzmc/s6rEAAABz051Dt/bkOoPD67Nm8+rstWifMeO/Grot1T/hTOhXG3sTBnDn0Mouj+/N175X7tzYup5fzbI6AQBmizs33pofrLu25b47unxvOJf9usvwrTs33taTYLQ728zb7n1v+3p27PfD926+OxuG12enBbuMGZ9tn0cAAKDf9OfpzwOAKfvyRUmLvwdzz6+TdWuSZXvMfE0AAAAAADBL9H4pLfppXdP2TlO4RvM5zdecyXmAabrkkkty8MEH57zzzmvbdJUkQ0NDueyyy/LkJz85J598cjZv3jyDVU7NO9/5zjztaU/Ll7/85ZaNUUny61//On/xF3+RF73oRRkaGur42u9973tz5JFH5oorrmh77dtuuy1nnHFGjj322Pz617+e0mNIkk9+8pM5+OCD8+53v7tt01WSDA8P5+qrr86znvWs/PEf/3FXjwcAAJibNtdNPbvWxuHBjsYYa0OPnqNurzPbvjbt6u/V8wMAMNdcsfrStvtm23u9fhruMqi5V89du/ex3V5/w/D6XpTTV62eC9+jAADwAP15+vMAYDrqrTdNsLP135EAAAAAADBfLOx3AfSUYLTkn5J8tstzDknS/u4D2EGdf/75ec1rXjOuceiQQw7Jox71qOy8885ZuXJlrr322mzZsmXb/o985CNZuXJlvvCFL2Thwtn518R73vOenH766du2H/7wh+fhD394dtlll9x555355je/mQ0bNmzbf/HFF+eMM87Iu9/97kmvfe655+a0004bN/6oRz0qhx12WJYsWZKVK1fmuuuuy5YtW3LNNdfkxBNPzNOe9rSuH8eZZ56Zd7zjHWPGSil5+MMfnsMOOyzLli3L6tWrc/31149pnLvwwgtz55135rLLLpu1XyMAAGD72zzcu5tmBlvc2D4XbuLf3nr1HHUbLDA4y7427erfXDdlc92UhWXRDFcEADB73bv5nlx731Vt9wuXHa27YLRevT9vd51urz8XvpatHsNs+zwCAAD9oj9Pfx4ATNuvVrbfN+r9AwAAAAAAzEd+Wzu3rGnaXtHNyaWUXTM+sOzeDubZuZSyS631/i6m26eDebpWa70ryV3dnFNK6cXUPVM3b05W3dbvMua+FQemzOGGle9973s55ZRTxjRdPe5xj8sHPvCBHH300WOOXbVqVc4444x8+MMf3jZ22WWX5cwzz8w73/nOGau5UzfccEO+9rWvJUlOOOGEvOtd78ojHvGIMcesXr06f/mXf5lPfOIT28bOPffcnHLKKTnooIPaXvvb3/523vKWt4wZe/rTn573v//9Ofzww8eMr1q1KmeeeWY+9KEP5atf/WpuvPHGrh7HBRdcMKbpamBgIKeeempOO+20PPjBDx5zbK01l156aV7/+tdn5crGL8CvuOKKnHHGGXnXu97V1bwAAMDcsbm2Xqn+d3Y9Ks/a8wUt971n5VsznPHNs61u8G8VlpYkyxfundfs/+YuKt3xXb3mS7lmzZfHjfcqeKHdc72oLM6mFl/n2RawMFEwwobhwey6QDAaAMBWV63+92yu7UOOZ9t7vX6qtdtgtN48d+2Cf7u9/uBw61+fH7ns2By3/Hld17W9bKqbct6tp7fc1+oxt3t+Dl76iLxonz8dN754YOn0CgQA6DH9eTNoDvfo6c/TnwcAPfHrW9vvGxaMBgAAAADA/DY3Ow7mr5uath/S5fnNx99Ta13dfFCt9e5Syuoky0cNPzjJj6YxV3Pt89eq21JPfHi/q5jzyr/8JNnvoH6Xsd28+tWvztDQAzdOH1vQ57oAACAASURBVHPMMbn88suz8847jzt2xYoV+dCHPpRDDz00b3rTm7aNv/vd785LX/rSPOYxj5mRmjt1zz33JEne/OY3t11hcvny5fn4xz+e1atX59JLL02SbNmyJR/72MfGrQA52qmnnprNmx+4GemFL3xhLrrooparPq5YsSIf/OAHc/DBB+fNb35zfvOb33T8GG655Zaccsop27aXLFmSSy65JM997nNbHl9KyQknnJCjjz46T3nKU3LzzTcnSc4555y89rWvzUMf+tCO5wYAAOaOTXVTy/Hli1bkoJ0e1nLfTgM75/7htePGW93YvmFL67CrXRfs1vb6c9VNgz9sOb69gxf2WLhnVm36VcfH98tE9WzYMphdF+w2g9UAAMxeg1vW52v3XjbhMYLRpq4XwcXDdbjt16DrYLQ2n6n2Xbz/rPpMVWtNSUnN+CC6Vs9pu+dh+aK9Z9XjAgBoS3/ejJnLPXr68/TnAUBPrLm7/T7BaAAAAAAAzHMD/S6AnmoOJju0y/MPbtqeaHm1Xs/VTagaMIErr7wy3/nOd7Zt77bbbrnoootaNl2Ndtppp+X5z3/+tu3h4eGcd955263O6TjmmGM6Wonx7/7u78Zsf+UrX2l77HXXXZdvfetb27b322+/nH/++S2brkZ705velGc/+9mT1jLaOeeck8HBB24aOe+889o2XY22zz775NOf/vS27S1btszarxEAALD9bW4TjLawLGp7ztIFO7Ucb3XD/sba+mb3pQMTf76ci9o95l6FVrQLcNh94V4tx9sFLPTLRM+DYA8AgAd8fc2XMjhJeFcvwr3milZBXRPpxXvPjcMbenb9dl/rpQtm12eqUkqWDLT+rNjq+7Ht42pzDQAAmGv05z1Afx4ATNPa1e33DQ/PXB0AAAAAADALCUabW/6rafuxpZRuuqqfMsn1Jtp3VKeTlFJ2SfLYLuYCunDBBReM2T711FOz//77d3Tu3//934/Z/sxnPpONGzf2rLZeOf300zMwMPlfYYcffngOOuigbdvf+9732h77mc98Zsz26173uuy+++4d1XPGGWd0dFyS3H///Tn//PO3bR988ME5+eSTOz7/yCOPzFOf+tRt25///Oc7PhcAAJhb2gWjLZogGG1JaX2j+sYWN/gPbml90/9Os+wm/pnQ7gb/XoRWDNfhtuELeyzcc7vN20sTB6PNrloBAPplc92Ur6z+wqTHtXpvPl+1C0ZrFwbdm2C03r23HRy+v+X4TrMwbLr9Z57xz0e750gwGgAA84X+vAfozwOAadqyuf2+4S0zVwcAAAAAAMxCgtHmkFrrnUl+MGpoYZJjurjE05u2/2OCYy+b5NyJPDWN2rb6bq31112cD0zg6quvHrP9ile8ouNzDz/88Dz+8Y/ftr1hw4Z8+9vf7lltvbDTTjvl+OOP7/j4Rz7ykdv+f/369Vm3bl3L46655pox2yeeeGLHcxxzzDEdN7ddffXVY1ajfNGLXtRRE9loxx133Lb/v+WWW7Jy5cquzgcAAOaGdsFo7UICkvahZq1udm9303+7cLW5rJuQgG4N1Y1tAx/2WLhXy/F2QWr9MlFAhGAPAICG6++7OvduvnvS4zYMD2a4Ds9ARbNfu/fJ7YLFevH+fHCC97bdXr/d8TsN7NLVdWZCN89pu8e1dBYGvgEAwPagP28s/XkAMDV1yyTBZ4LRAAAAAACY5xZOfgg7mIuTPHbU9quSfGmyk0opj0jypFFD909y3uVJBpNsvSv0qFLKI2qtP+6gxpOati/u4BygA6tXr87Pfvazbdt77LHHmMajThx99NH5zne+s237uuuuy9FHH92zGqfrkEMOyeLFizs+fvny5WO216xZk1133XXccd///ve3/f8ee+yRQw89tKu6jjjiiI5Wh2xujNt///3zy1/+squ5mh//z3/+8zz4wQ/u6hoAAMCOb9MUgtGWtAn4anXzf7uwq6UL5mMwWusb/DfVoWyumyZ8ziczUbjCHgv3bDk+OLw+tdaUUqY8by9N9BgGBaMBAKTWmi/f0/mvRIfqxiydh4HE49TWwWhLB3bO2i1rxo1PFNjbqYmCfbsJRhuuw22v1S54uZ/afVbsLhht9j0uAADoNf154+nPA4ApWnfvxPsnC04DAAAAAIA5TjDa3POpJH+TZMHI9gtLKYfVWm+a5Ly/atr+l1rrhnYH11rXl1L+NckfN13jVRNNUkp5WJIXjBranOTTk9QGdGjVqlVjtg877LCub5J+xCMeMWb7rrvumnZdvdTcSDWZRYvG3py+adP44ID7778/GzY88CNvKk1MnZ5z6623jtl+wxvekDe84Q1dzzfaPffcM63zAQCAHdPmNsFoiyYI6Wp3o3qrG/bb3ey+U5uQsLlsohv8NwwPZtcFUw9Gmyh4YY9Fe7UcH86WbKpDWVyWTHneXproMUy0DwBgvrjx/u/kjqGVHR+/YXhQyFSS1rFoyU4LdklafBzqxXvPicLPNg4PdhxQvHF4MLXNI9hpwS5Trm97aff91ipsrm2I9jz8rAgAwPyjP288/XkAMEW3/GTi/cOC0QAAAAAAmN8Eo80xtdabSikXJPnTkaHFST5RSnlGu6CzUsofJDlp1NBQkrd1MN3ZSV6SZGtXw0mllItrrS2XZCulLE3y8ZGatvpYrfVnrY6ft1YcmPIvk/ySi+lbcWC/K9guVq9ePWZ799137/oazefMtqaegYGBnl/z3nvHrri1bNmyrq+x2267dXTc3Xff3fW1J7N27dqeXxMAAJj9Ng0PtRxfONA+pKtdqFmrm//bBQLMx4CGicLgNg4PZtcFnX0mbGVwS+tQgSTZfWHrYLSt8y4emB3BaIMThEe0C00AAJhPvnTPxV0dv2HL+mThntupmh1Jm2CxNu/PJ3pf2qmJgtFqajbWDVlaJv9MNDjB++DZGDbdPhitxWfFLa2foyXz8LMiALCD0p83c+Zgj57+vKnRnwcA49UP/83EBwwPz0whAAAAAAAwSwlGm2GllAPT+nl/UNP2wlLKQW0us67W+psJpjkryQuSbF227egkXy6l/Fmt9cejalmS5LVJzm06/9xa6y0TXD9JUmv9eSnlH5OcNmr4X0spf5nkI7XWbXfnllIemeSjI7VsdXc6C2CbV8rChcl+B/W7DHZQtY69QaTb1Shb6cU1ZrslS8beSD401DpcYCKdnjOVa0+m+esOAADMD5vr5pbji0r7YLR2N6q3umm/XaDVfLzZfekEwQWDWwYfWDZgCjZOELywx8LlbfcNDg9mWfaY+sQ9NNFjmChYAgBgPvjl4E25afC/ujrHe6iG2iYYrd37816E8k52jQ3Dgx2FRQ8O39923+wMRmvznDaFoNVa235/7jQPPysCADsm/XlMh/68qdGfBwAt3PLjifcPb5mZOgAAAAAAYJYSjDbzrk7ykA6OOyDJL9rsuyDJSe1OrLXeVkp5YZLLkyweGX5KkhtLKd9O8vMkuyd5fJIVTaf/e5IzOqhvq7ckOTzJ745sL0ryviRnlFK+k2RtkoNH5hrdvTGU5AW11ju7mAuYxJ577jlme82aNV1fo/mc5cvb34Q9VVu2zK5f1DY/xuaVPTvR6cqde++995jta665JkcddVTX8wEAAGyum1qOL5wgGK3dDfytgq3a3+w++27i394mCoObbvhCq1C6JFlSlmangV2227y9sqVuzqba/iaj2VInAEC/fHn1xV2f4z1UQ7tgtHafSSYK7O1Uu/fn3c7RHCg22tIJ3uf3S6dhc5vrpmxJ65DuiQKlAQBgrtCfNzX68wBgrLplS7JukvcRw8MzUwwAAAAAAMxSA/0ugO2j1npVkhckWTVquCQ5IsmJSZ6T8aFon0nyklprxx0RI8eemOSipl37JHlukj9K8oSMDUW7K8kf1Fq/1uk8QGdWrBj7sv7pT3/a9TV+8pOfjNneZ599Wh63cOHYbM3Nm1vfBNHKVBqbtqcFCxbkgAMO2Lb985//POvXd3fT0Q033NDRcfvuu++Y7al8jQAAAJK0DaOaKBitXYBAq+CFdmEM8/Fm90UDi7KwtF5jYrqhFe2CFZYO7DRJINv0Qx96YbI6ZkudAAD9sGroznx37Tdb7jt0p8OzpCxtuc97qIZ2wWjtPpNsrpuzabh1gHSnJgs+G9zS2fv/weH7W44vLIuyaKD9Z7Z+aRei3fy9ONH35kSfXwAAYK7Qnzc1+vMAoMldtyZbJvm7fXh2BZ0CAAAAAMBME4w2h9Vav5jk0Uk+lGSiLodvJnlRrfVltdbWHdoTz7Ou1vqSNELQWnf2N9yT5INJHl1rvazbeYDJLV++PIcccsi27XvvvTc/+tGPurrGNddcM2b7yCOPbHncbrvtNmb73nvv7XiOH/7wh13VNBOe/OQnb/v/4eHh/Od//mfH595zzz35/ve/39GxRx999JjtL33pSx3PAwAAsFWtNZtr6ybZRWVx2/Pa3ajefHP7cB3OxuENLY9td8P8XNcufGFDm+epU+2CBZYu2DkLyoIsLkvanDe9QLZemawOoR4AwHx2xerPp2a45b5n7XlCx2FU81brXLTstKB9WPNkwWaTmey57/T6gztY0HT778X1E26PttOC+flZEQCA+UV/3tTpzwOAUe74xeTHbBGMBgAAAADA/CYYbYbVWg+qtZZp/jmpi/nuqrWekuRBSY5P8qokb03yF0n+MMnBtdajaq2f68Fj+9da61FJDk7yopE53joy5/FJ9qu1/nmtddV05wLaO+aYY8Zsf+pTn+r43B/96Ef59re/vW176dKlecITntDy2OaVKm+88caO5/niF7/Y8bEz5ZnPfOaY7X/+53/u+NwLLrggQ0NDHR37jGc8IwsWLNi2/fnPfz533XVXx3MBAAAkyXC2tA1YWFgWtj2vfbjX2Jv7h+rG1DYpBPM3GK2zoIButQte2BpiN9vDMiarY7bUCQAw09ZuXpNvrLmi5b79Fv9WDt/lCVnaJuBruuFec0W7zyQ7TRAutr3en2/VLvCs0+Mmqr2f2n3uaA7Mnuj5aRfEDQAAc43+vKnRnwcAo6y6Y/JjhgWjAQAAAAAwvwlGmydqrUO11itrrZ+otf59rfV9tdZ/q7V2sNRM13P9otb6uZE5/n5kzitrrZ11JQDT8id/8idjtt///vfnV7/6VUfnvvWtbx2z/ZKXvCRLlixpeezjH//4Mdtf+MIXOprj8ssvz7XXXtvRsTPp5S9/eZYtW7Zt++KLL87ll18+6Xm333573v72t3c8z/Lly/Pyl7982/a6dety2mmndVcsAAAw722qm9ruW1gWt923dGBpy/Hm8IANW9rf7N8uXG2um+lgtJ22BaN1FmbXLxuaghLG75/e8wMAsKP6z3u/mE1tfj36zD1PyEAZaBsk1Wn41lzXPhhtl7bnTPd98mTvXzsNrWv3mWrWBqO1Cekb91lxgsc/X0O0AQCYf/TnTY3+PAAYZaiDf2cUjAYAAAAAtLBhU83f/t/hPPu8LTnqXQ/8ufyHrXsuYUcmGA1gjjn++OPzuMc9btv2mjVr8tKXvjSDgxP/AvW8887LpZdeum27lJI3vvGNbY8/6qijsvPOD9wkcfHFF+f666+fcI6bbropr3zlKyd7CH2xbNmyvP71rx8zduKJJ+bKK69se87/z96dh0lSFXi//53IzKrM3rt6VRqGpUGWEZARQWiYpllGQQFHXhWdYUa9jo6+iuMdF1zxOtdtZoSZC47ggOAyyAVZbNEWkIaWRkAaEBQa6JamAemNql4rMysz47x/FFVdWRUnMqJyz/x+nofHjjgnIk5GllXnZJ7ziw0bNuj000/X9u3bY13r4osvLpvQ9oMf/ECf/vSnVSrF+wL7iSee0KpVq2IdAwAAAKAzFP2wYLSUs8wVslW0RRXGnDMsiMG1YL7T1SugzBW80DsajOYIZAsJr2ukSsERrRLgBgAA0EhDfl73bP95YNnMZJ9eP/1kSXvDcMeLGr7V6VzBaGEBXPUKLo5aPiLr7wncn2nR8ZTrno4fG7rub8r0hI5FAQAAgE7C/LzJYX4eAABj5AlGAwAAAAAAABCf71u96VJfX7zV6s4npQee3fvfy7sJRkPnIRgNAFrMpk2btGHDhkn9N+Kqq65ST0/P6Pbdd9+tk046SQ888MCE623btk0f+chH9IlPfKJs/6c+9SkdeeSRznZOnz5d73znO0e3S6WSzjrrLN1+++0T6g4NDem73/2ujj/+eG3evFmzZ8+Oc0sa5gtf+IJe+9rXjm7v3LlTp556qt7xjnfoxhtv1GOPPaa1a9fq9ttv18c//nEdccQRevLJJ5VOp3XOOedEvs4BBxygK6+8smzfN7/5TS1ZskTLly9XsVh0HrthwwZdfvnlWrZsmY444gjddddd8V8oAAAAgLZXtO5gtJQXPxhNKg9fCAtiCAsh6GTuYLTqghdc93rker2uYLQWCcuoFNrRKu0EAABopN/s+JX2lHYFli2b/dbRPnur9/WaL3iSTtKknCFc1QcXhx8fFiId5Txpb2rsNjWCa5xXsEMq2b0LMF2vy/WzDAAAALQi5uc1D/PzAAB4xVC+cp2YgZ4AAAAAAAAAOt9da6VVzzS7FUDjJJvdAABAufPPP3/Sx1o7vEDkmGOO0WWXXaYPfehD8n1fkrRmzRodf/zxWrx4sY444gil02k9//zzevDBBydM9Dn99NP1la98peL1vvKVr+jmm28efSLjli1b9Fd/9VdavHixjjzySPX29mrz5s164IEHtGfPHknSwoUL9Y1vfKMln0zZ09Oj2267TcuWLdO6deskDd/TG264QTfccEPgMcYYXX755dq4ceOEJ3qGueCCC7Rp0yZddNFFo+/R/fffr7PPPltTpkzR6173Oi1YsECZTEa7du3Stm3b9MQTT8R++iUAAACAzhQWjOYKCJDCQ81y/qCmacYr/w5e7G5k1GvSEVvZWVz3rtrghawzMGH4epmEK5CtNcIysqXwYIhqg+MAAADaTcmWdOfArYFlaS+jJTPPGLPd2n29Zhv53ms8Y4zSXka7SxPHRVUHo1Xo31YKBh6R9fcE7s+0aIBYpRDtKYlpktz3t1VfFwAAABCE+XnNw/w8AACG2XyEzxmtX/+GAAAAAAAAAGgr9zwTPK8S6FQEowFAh/rABz6g2bNn673vfa927949un/dunWjk4qCvO9979N3vvMdpVLuhfQj9tlnH/3kJz/Rueeeq127dlW8xgEHHKDbbrtNmzdvjvlqGmfffffVr3/9a334wx/WzTffHFp3zpw5uvbaa3XWWWfp05/+dFnZ9OnTK15r5Kmf733ve7Vp06bR/YODg1q9enWk9rbq0z0BAAAA1FdhssFoibBgtL0Tb7OOMKteL1NxoUmncgejVRf85QpWGAkmqNd1a6VSMETU4AgAAIBO8eiu3+jlQvD3IEtm/pUyiamj2/UK3+10RiPBaDsnlFXbT65076O+N64A4bQ3NXB/s4WHaI8NRnOPFQEAAIBuw/y8yWF+HgAAkqIEo/ml+rcDAAAAAAAAQFtZ17pfAwJ14TW7AQCA+jnvvPO0fv16XXjhhZo7d66zXiqV0hlnnKHVq1frqquuijTpasSyZcv04IMP6pxzznEujp83b54++clP6tFHH9Vhhx0W+3U02sKFC3XTTTeNTsA6/PDDNWvWLKXTaR144IE67bTTdMUVV2j9+vU666yzJGnCkyJnzpwZ6VpvetOb9Oyzz+ryyy/X0UcfXTFgIJVK6YQTTtDFF1+sp59+WhdeeOHkXiQAAACAtlYMCUZLhQWjhS52Hwz8d9TjO91IUNl4uVJ1oRXue52W5A4YaJVgtErBEEVbVMF3/7wCAAB0Emut7ugPXtSdUFLLZr+1bJ+zj9kifb1ms3I92dDULVSuZsFojvcwkwh+z5vN9bMojR8rhgc7AwAAAN2G+XmTw/w8AEDXG8pVrlMiGA0AAAAAAABAuXVbXfMqgc6UbHYDAKDbbdiwoa7nnz9/vi699FJ961vf0po1a7R27Vpt3bpV+Xxec+fO1aJFi7RkyZJIT1B0OfTQQ3XLLbdo27Ztuueee/TCCy9ocHBQCxYs0AEHHKCTTjpJyeTePzlLly6VtdE7XXHqjnfNNdfommuumdSxS5Ys0ZIlSyLVfeKJJ0b/bYzR/PnzI18nnU7rwx/+sD784Q+rv79f999/v1566SX19/erUCho2rRpmj9/vg455BAdeuihmjKFxSUAAABAtyvYIWdZMiQYLWlSSppUYLDa2AXursXumS5e7O4KXnAFHkTlutcjgWiue15t4EOtRGlH3s8q5UVf5AUAANCunh58XBvz6wPLjp1xsmal5pTtGwnDHS/fIn29ZnMFoxmFhcpVd+8q3fuooXU5f0/g/lYdU4WHaI8dKxKiDQAAgPbD/LzKmJ/H/DwAQIPlI3yO6ROMBgAAAAAAAGAva63WbQkue80C6ah9wx8QBLQjgtEAoEt4nqdjjz1Wxx57bN2uMXfuXL397W+v2/lb1Z49e/Twww+Pbh9yyCGTnsjW19enM888s1ZNAwAAANChgoLNRoQFo0nDAQK7Szsm7I8SjNbbxYvd04ngRTDVhlZUCqFzBQy0UzBazh/UNM1oQGsAAACa646BW5xlp/WdO2Gfq3+dbZG+XrO5g9GM895V00/2bUl5mwutE/X8rvcw402N3a5GSJkeefLky59QFmWsSDAaAAAAwPy8emJ+HgCg4wzlK9fxJ35WBwAAAAAAAKB7bdst7XBMYfzuBZ6OeDXBaOg8XrMbAABAu7v22ms1ODg4uv3GN76xia0BAAAA0A2Kthi4P6GkPBP+kV/aSwfuz/mDgf8uP7Z7F7vXK6CsUgidO/Ah+D1qtCjtaJUQNwAAgHp6IbdBT+x5OLDsz6e+Xq/u3W/C/pEw3PGqDd/tHMHBaDLGee+q6SdHC/2N9t7kSsHtyDgCl5vNGKN0hHuaK7mC0VrzdQEAAADoDMzPAwB0nHyEzxlLpfq3AwAAAAAAAEDbWLfFXXbwgsa1A2gkgtEAAKjCCy+8oC984Qtl+y644IImtQYAAABAtyj4Q4H7kyZZ8Vj3Yve9E29di91d4QPdwHXfslUEL1hrnaEXI/faHfjQGmEZ0cIjWiPEDQAAoJ7uHLjFWXZ639sC97tDcFujr9ds1pWLJqNeZ+Dz5O9drYLRrLXK+nsCy1o5QCxKGDQh2gAAAAAajfl5AICONJSrXMcnGA0AAAAAAADAXs9sCZ5UOa1Xmj+9wY0BGoRgNAAAxvjJT36iz372s9q6dWvFuo888ohOPvlk9ff3j+476qijdMopp9SziQAAAACgoi0E7k95PRWPjRSM5ljs38qL+OstLCTAuhIbKsjbnKyCjx0JyYjyfjVTrcIjAAAA2ll/Yase2vnrwLL90wdrcebwwDJXCG6+ij5mJ3H1lY1MXfrJtQr9HbJ5+fIDy1o5bNo55intfc3usSLBaAAAAACiYX4eAACS8hE+x7TBnzECAAAAAAAA6E7rtgTvXzxfMsY0tjFAgySb3QAAAFrJrl279LWvfU3/9m//pje96U069dRTddRRR2n+/PlKJpPq7+/X448/rp/97Gdavnx52cKknp4eXXvttU1sPQAAAIBuUXAEoyVNquKx7oCvwcB/j9XbxYvdXQEGVr4Kdkg9pjf2OfMhwQvp0WC04Hs+EpbR7C8vwl7DCILRAABAp1s5sFy+SoFlp/e9zdlnc/WvrazyNqe06d7+txQejBYWKjdZkfq2pcrBaNmQ8LRWDpuuKkQ70bqvCwAAAEBrYX4eAACShvKV65SCP3MGAAAAAAAA0J3WO547dPB8QtHQuQhGAwAgQKFQ0PLly7V8+fJI9TOZjL7//e/rqKOOqnPLAAAAAEAqOoLRUlUFo41d7B68kD+T6N5ghrAAg6w/qB4vfjBaWGBYpWC0VgnLcP2slNchGA0AAHSuwdJu3bv99sCyealX6ahpxzmPdfX1pOE+VFh5dwgORpPcoXLZCMFlLmGBZiPyNiff+vKM5z5PaY+zLJOYOqm2NUKUsaIrPI6fVQAAAABxMT8PANDV8hG+Q/cJRgMAAAAAAACw1zObg+dUHjS/wQ0BGsg9WxcAgC40a9YsJRKJWMeceOKJWrVqlc4777w6tQoAAAAAyrmC0ZKRgtGCA77GBly5gqzCwsE6Xa+XdpZFCQcLPi5KMJr7nrdC4FiUNkz2/gAAALSDVdtXKG9zgWWn9p0jz7i/cwgLk3IFUHUT6whGMzLOe5e3k79vUfvXeT/4/Y5ynkwLj6nSjiDssf15V3hcN48VAQAAAMTD/DwAAEQwGgAAAAAAAIBYrLV6Zktw2eJ5jW0L0EjJZjcAAIBWcu6552rz5s1asWKFVq9erccff1zPPfec+vv7lcvllMlk1NfXpz/7sz/TSSedpDPPPFMnnnhis5sNAAAAoMsUqgpGcy12z435N8Fo44UFGEw2oCxXcgeGjQSxhYVl5EqDUrJvUteulWjBaIR6AACAzlTwh3T3wG2BZdMSM3X8jFNCjw/rX2dD+ordzhh3MFquNPm+Z9QwuryfVSYR8t75ewL3e/LUY3on1bZGcIdoD98Xa23IWNE9bgEAAACAsZifBwCApKHwhy9IkkoEowEAAAAAAAAYNjAo7XBMcTx4gWlsY4AGIhgNAIBx5syZo/e85z16z3ve0+ymAAAAAECgYj2C0cYEL+T84BCG9CthXd2oN+S1hwWchXGFCvSatDyTkCSlQwIXmh04VrIlFexQxXrNbicAAEC9PLjzHu0sDQSWLZ11pnq88BCssD5m1JCuTmWtDSk1zn5y1h+UtVbGxJ/ok3WMg4LqzdIcZ7l7PDVlUu1qFHeI9vDPYsEOycqPdSwAAAAABGF+HgCg6+UjBKP5BKMBAAAAAAAAGLZ1l7tsv77GtQNoNK/ZzqQG5QAAIABJREFUDQAAAAAAAAAQT9ERRhUpGM0RIDB28b4ryCrtuUO6Op1nEuo1wcEVkw3+ct/nvaECPaZXRsHhCa7AhUaJGtbR7aEeAACgM/nW150DtwSW9ZhenTz7zRXP4RnP2ceMGtLVqazcwWhGRmkTHMTlq+QMkq6kVv3brCM4ORMSetwKXOO9kXFL2M9kN48VAQAAAAAAgNiGCEYDAAAAAAAAEF3/HnfZnKmNawfQaASjAQAAAAAAAG2m4Acv9E95PRWPHRu6NdbIYveSLargCF7r9sXu7ns3udAK13G9Y67jGU+9Xm0D2WolalhHt4d6AACAzvT47t9q89CLgWUnzDxN0xIzIp3H1cfs9nDZ8GA0KZ0Ivm/S5PvnrkCzieevEIzmB89AyrT4eKq3wngn7GfS9XMMAAAAAAAAIMBQhM9/fb/+7QAAAAAAAADQFlzBaD1JaWpvY9sCNBLBaAAAAAAAAECbKdrgYLSkSVY81hVuNrK4P2yRf7cvdk8nwu9dXHk/+CnQ469T6T1rlqhhHc1uJwAAQD3c0X9z4H5Pnk7tOzvyedxhVN3eh3IHo0kmdGxS6/553PO7ytNeaz+WMVMhpC8scK7bx4oAAAAAAABAVNZaaShfuaJfqn9jAAAAAAAAALSF/j3Bcyr7pkjGmAa3BmgcgtEAAAAAAACANuMKRkuZnorHuhas5/xBWWtZ7B7CFVCWDblnYVzHjb/PYe9ZM2UjBk5EDVADAABoF+sHn9Qfc2sDy46ZfqLmpBZEPletw3c7hQ0JRjMyzr65NPl7F7V/Xale1g9+NGOrj6fc451s2f8GH9varw0AAAAAAABoGUPRHtBAMBoAAAAAAACAEf2OaYt9rf28VqBqBKMBAAAAAAAAbcYVjJY0qYrHuhas+/JVsEPKlsIWu7vDB7qB695NNvjLdVy7BKNFfd3ZUnPbCQAAUGt3DNzsLDut79xY53L39bo8GM2diyZjTGgQ12TvXdTA40r1XP3fjNfaM5B6K4w7XP3/HtMrzyTq1i4AAAAAAACgo+Qjfn5ZIhgNAAAAAAAAwLD+4Oe1EoyGjkcwGgAAAAAAANBmCs5gtGTFY8PCzXJ+NjRsi2C02oZWuO71xGC04Pue8yM+SbpOor7uvO3uUA8AANBZNuVf0OO7fxtYduiUo7Rf+qBY52vVENzmcyejGRklTFIp0xNYPtl7FzX4t1I9V3BaJtHa46mM42exaAsq2oIz8K3bx4kAAAAAAABALEMRv+f3/fq2AwAAAAAAAEDbeHl38H6C0dDpCEYDAAAAAAAA2kzREYzmCgYYyxW8IA0HCLhCBJImqZSXitbADuVa8O8KPqjEFSzWOyEYrTXDMqJeP1ciGA0AAHSOXw3cKusI7Tqt79zY53P19aKGdHUq1z0eZiTVI7g42nGV6uX84EczZlo8QGz8OGSsnJ91/kyGjTEBAAAAAAAAjJOP+PmlX6pvOwAAAAAAAAC0jQHH8p2+qaaxDQEajGA0AAAAAAAAoM0UHMFoSVM5uCw8GC2rnB/8dOKwRfLdotYBZa5AhfGBCa0bjBY9OMLasGALAACA9rCjOKAHdq4MLFvUu78Om3J07HO6w3cJRnMZmcbTqsFo2VJwPz3jtfajGcOC2/J+1vm6CUYDAAAAAAAAYhjKR6tHMBoAAAAAAACAV/TvCZ5T2dfa0xKBqhGMBgAAAAAAALSZoiMYLeVVG4w26AzbcgU2dBPXPah18ML4ELpaX7dWco7Ah/FKKjp/ZgEAANrJ3QM/U9EWA8tO63ubjIn/5D1X/zxPMFpI6fB9rn3/PFr/tlI9Z4BYorXHVGFjvmwpq6xrrNjirwsAAAAAAABoKflon19a369zQwAAAAAAAAC0i/49wfsJRkOnIxgNAAAAAAAAaDNFPzhkKmkqB6N5JqEe0xtYlvOzzkX+mZBAtW6RqXHwgivsYnw4RssGo8W4frPbCgAAUK2cn9Wq7b8ILOtLztNfTD9xUucdH4o79noI5r0SQOe+d9ECziYeF+2eV6qX9YNnILX6mMp1P6Xhexp1/AIAAAAAAAAgxFAuWj2/VN92AAAAAAAAAGgbBKOhWxGMBgAAAAAAALSZgh0K3B8lGE0KD9pyLfJ3HdNNer104P5caXLBC1lHYMPEYDRH4MMkr1sr8YLRmttWAACAaq3efoez/7as72wlTHJS53X29bq8/2StDSkdDkar5b0r2aJznDXx/JWC0Vz9/NaegZTyUko6fo7zISHaBKMBAAAAAAAAMeQjfs9eIhgNAAAAAAAAwDCC0dCtCEYDAAAAAAAA2kzRFgP3Rw9GcwdtuRb597LYPTRQbjLyEUPo3IEPk7turbjaH6TZbQUAAKhGyRZ118BPA8umeNN0wszTJn3uVu3rNZuV7ywzFYPR4t+7WKG/IQHFBb+goi0ElmXaIGzaNe7L+lllGSsCAAAAAAAA1RvKRavnE4wGAAAAAAAAQCr5VtsdUxznTDWNbQzQYASjAQAAAAAAAG2maIcC96eqDUbzs8r5wYv822ERf71lEq5gNHcwgou1Vjk/eMLz+Pcn7bxuc8MyYoVHdHmwBwAAaG8P7bxXA8VtgWUnz3qzs38dRa3Dd7uJ896V6hyMFlI35zseyyj3eKKVuO5p3s86g5EZKwIAAAAAAAAx5AlGAwAAAAAAABDd9kHJ2uCyvqmNbQvQaASjAQAAAAAAAG2mYAuB+5OmJ9LxYUFbrpCvasIeOoXrHgzZvHwbb1LykM3Lyo90HXeQXfxAtlqKc32CPQAAQLuy1uqO/psDy5ImpaWzz6rq/K6+Xt7PyrpmsnQBK/drNxp+wmHYvYurVn3bbEhZxmv9GUiZkLEHY0UAAAAAAACgBvIRP78kGA0AAAAAAACApH7381oJRkPHIxgNAAAAAAAAaDNFZzBaKtLxYUFbuVLwJNy0Fxym1k3CFvzHDf4Kqz/+XtcykK2W4rzmZoe4AQAATNYTg4/oT0PPBZYdP+MUzUjOqur8rn62lVXe5qo6dzsLDUYz4cFo2Un0PXN+9HsdFryW890zkNohQKzXOVbMOvv/rmMAAAAAAAAABCjko9UrEYwGAAAAAAAAQHpxu7tsDsFo6HAEowEAAAAAAABtxhWMlqo6GM292L0dFvHXW1g4XPxgNHdYQ6+Xrtt1aynOtcPCIwAAAFrZnf03B+43Mjq175yqzx/Wz+7qPpQ7F01GrwSjJYL7yZO5b3GCfPM25wwozpbc52mHMZVr7JHzB539/wwh2gAAAAAAAEB0pWJt6wEAAAAAAADoaOu2BE+onDNVmpY2DW4N0FgEowEAAAAAAABtxhWMlvSiBqOFLXYPXsjfDov46y08oCx6kIIUHtYwPlgg7N43MxgtTuBEtptDPQAAQNvamFunpwYfDyw7ctpxWtCzT9XXaNW+XrPZsGS0kWC0kMDnuHIhgWZB8n4ucH82ZDzlmUTsdjVaeIh28GvrZawIAAAAAAAARBc5GC344QwAAAAAAAAAusv6rcH7D5rX2HYAzUAwGgAAAAAAANBGfOuraIMnyiZN1GC0sMXuwSEC6YQ7FKxb1DK0IiworNdLj7tuWCBb88IyXKEPQeKEqAEAALSKO/pvcZad0fe2mlyDYLRgYcFoZjQYzRX4PIlgtNj9+eC+cNbfE7g/rE/fSlw/j1l/jzMMbnywMwAAAAAAAIAQxeAH4U0QNUANAAAAAAAAQEf7oyMYbfF809iGAE1AMBoAAAAAAADQRkqOUDRJStUgGM21wL9dFvLXU8r0yHN8pBo3SMEVFNZr0vJMomxfeFhG9HCyWirZkgp2KHL9ZrUTAABgsrYNbdLDu+4LLDsoc5gOyLymJtcZH4o7FsFo4dzjmkFZW/n48mPi9ueDQ8Jc58l4U2Odv1lc476dxe3O9yRsvAIAAAAAAABgnFIpYj2C0QAAAAAAAABI67YEz907cF6DGwI0AcFoAAAAAAAAQBsJC6NKRg5GC17snvMHnYFdLHaXjDGh9y6ObCm4fm/Afa5lIFutuH5OXFyBewAAAK3qVwM/lZUfWHZ639tqdh3PJNRrgsPRco4+Y3dwB5t5Zrhv7Bqj+PJjhfhK8fu3rv5/trQncH+mTYKmXfd0e/Fl5zFBYxgAAAAAAAAADlEDzwhGAwAAAAAAALqetVaPPB9cdhDBaOgCBKMBAGpi48aN+vznP6+TTjpJCxYsUE9Pj4wxo/9dc801zW4iAAAAAHSEonVPfk2ZnkjncC1231XcId8R/kAw2jDXfXAFnbnECaALD2RrTjBa3OvGDZoAAABopt3Fnbpvx52BZQt6FunPp76+ptdzBUs1q6/XCtyxaHuFjVHi3ru4Qb6u+q796US7BKMFt3N7sd95TLuEvgEAAADtjvl5AAB0CILRAAAAAAAAAET0nXvcsykXzzcNbAnQHMlmNwAAut3++++v5557bnR75cqVWrp0afMaNAnf/e539dGPflT5fL7ZTQEAAACAjle0BWdZ0kT7uM+12H2Pvyv2Md2mVgFlrvqucIe0l9GgvzvgPPECHGol9ustdW+oBwAAaD/3bP+5CnYosOz0vnPlmdo+fyztZbSzNDBhf7P6ei3BuifzGA1P5gkbo+T8Qc3QrMiXi3uvXcG/rvO0S3iYazwSNg51BfsBAAAArYL5eQAAoJXYovuztjIEowEAAAAAAABd7/u/cc+lPGheAxsCNEltZ2wDALrOz3/+c33wgx+MPOnq7rvvLntS5cUXX1zfBgIAAABAh3EFNEhS0qQincO12L3Wx3Qi131wBSO4uILFXKECruvmSs0KRot33bhBagAAAM0y5Od1z/afB5bNTMzWsdP/subXdPcxczW/Vrvw5YeUjgSjuccocfufce+16/xZf0/g/nYPRgvT66Xr0BIAAAAAI5ifBwBAh4kaeEYwGgAAAAAAAND1BkKW7iyY0bh2AM2SbHYDAADt7aKLLpK1e5Nm3/3ud+v973+/9t13X6VSexfkz507txnNAwAAAICOU7TupwenTE+kcxCMNnnpRHCgQbZGQWEZx/nTjiCFZgWOxb1u3CA1AACAZvnNjl9pd2lnYNkps9+qlBctjDiOWvUxu4V55X9docJS/P5nrfrzWUdwsas/32pcP4vO+l5GnuF5fAAAAEA9MT8PAIAOQzAaAAAAAAAAgAhyBaunNweX7TtbMsYEFwIdhGA0AMCkPfXUU3rsscdGt88880z96Ec/amKLAAAAAKDzFXx3MFoyYkjDZBblE4w2zHUf4gYvuOr3muDzuwIK2icYrTntBAAAiMO3Jf1q4NbAsrSX0ZJZZ9Tluq4+Zr6L+1BW1llmXolGS5iEekyvhmx+Qp24/c+499rVn3cHIE+Ndf5mSTvGIy5h4XQAAAAAqsf8PAAAOlDRPeejDMFoAAAAAAAAQFf7+i/c8ygvfw8PNEV34CcdADBpDz30UNn2eeed16SWAAAAAED3KFr3JNmUiRqMFnOxu0nLM4lYx3SqjCNUrlbBC+mEIxjNSzuuGy+QrVbiB0d0b6gHAABoH4/uvl/bCsGP1ztx5hmakphWl+u6wnG7uw8VEow25imH7uDi2gSduesHnz/r7wnc3y5B067xiLP+JEK3AQAAAETH/DwAADpQ1MCzUqm+7QAAAAAAAADQ0q5Y5Z5HuWBGAxsCNFGy2Q0AALSvzZvLFwctWrSoSS0BAAAAgO7hCkYzMvIULbwsnYi3eL1dFvE3Qq2CF7KO4AXX+V2BA80Ky4gfNJGVtbYsxAIAAKCVWGt1R/8tgWWeElo2+611u7YrjKpZIbitwLrn80gaG4w2RTtL2yfUmEx/NVb9kisYLfg9y3hTY52/WeKO/RgrAgAAAPXF/DwAADpQ5GC0iPUAAAAAAAAAdJS1L1mtesZq8053nT6eaYouQTAaAGDSdu/eXbadSqWa1BIAAAAA6B4FRzBa0qQih071mF4ZGVmFpg2M6mWx+yjXvYgbWpH3c4H7XQForReMFvx6jTxZ+RP2+yqpYIfUY3rr3TQAAIBJeSb7ez2Xeyaw7NgZJ2t2am7drl2r8N1OEtSnHGHGBKP1eunAOrlSvP65616nTI8Kdihyfdd1M47+fKtxjTvc9RkrAgAAAPXE/DwAADpQqRSxHsFoAAAAAAAAQDex1uozN1n96y8rr/Xqa49ntQJVIxgNALqEtVYPP/yw1q5dqy1btiifz2vevHnaZ599tGTJEk2bNi32OX3fvSgFAAAAAFAfxZBgtKg846nXS0cOWkgn2mMRfyO4Ag3ihla46ruCBdxhGfECH2rF1f4ZiZnaURoILMv7WfV4BKMBAIDWdEf/zc6y0/rOqeu1Wy0EtxVEi3B237u8jds/D+5Xz0rO0dbCS5Hql2xJeRscgJxpkzFV3KCzuEFqAAAAQCdjfh4AAIikGDznYwKC0QAAAAAAAICucu86RQpFk6SZPNMUXYJgNADocNu2bdNXv/pV/fCHP9TWrVsD6/T09GjZsmW6+OKLddxxxznPtWHDBh1wwAHO8lNOOSVw//e+9z29973vDSz78pe/rC9/+cvOc65cuVJLly51lgMAAABAtynaocD9qRjBaNLwAvaoQQuZmIvjO5k7tCJeQJmrfvxgtOaEZeRKwdedmZrjDEbL+llN16x6NgsAAGBSXsxv0B/2PBxYdsTUv9A+vfvX9fquvl6+i4PRwqLRjMzov12BY1lHfzVIwS+oaIMXGc5K9kUORgt7vzJeezyeMWGSSpkeFRzjzvHiBqkBAAAAnYj5eQAAIJaogWcEowEAAAAAAABd5YY1UR8pK3meqVwJ6ABesxsAAKifW265RQceeKAuueQS56QrSRoaGtKKFSt0/PHH64Mf/KCKRb5IBQAAAIBW5Vqwn4wZjNYbYwG7KwysGzkDymIEL0juQDN3MFptAtlqxdX+Wck+5zHdHewBAABa2Z39tzrLTu87t+7Xd/UBs03q67UCGxaMZvZOc+g1rgDh6PcurJ86KznHcf6Jx2T9Pc7zZNpoTBUn7IxgNAAAAHQ75ucBAIDYCEYDAAAAAAAAMM6a56wuuytaMNqb/7zOjQFaSLLZDQAA1MfVV1+tD3zgA/J9v2z/QQcdpMMPP1xTpkzRxo0b9eCDD6pUKo2WX3nlldq4caOWL1+uZJI/EwAAAADQagr+UOD+uMFomRgL2OOEqHU6ZzCan5W1VsZUfuqKtdYZLOa612HXbQZX0IQrOELq7mAPAADQugYK2/TbnasCy/4sfbAOztR/Bomrr0ewbLCxPe50ovp7F9annpWKEYxWcvd32ylsOu1ltKu0I3JdAAAAoFsxPw8AAExKsRCtHsFoAAAAAAAAQFf4r7t9feR/ooWiSdLHT/MqVwI6BN+oA63GL0qDLzS7FZ1vyiLJ69xfgY8++qj+8R//sWzS1dFHH63LL79cJ5xwQlndrVu36gtf+IKuuOKK0X0rVqzQF7/4RX31q18tq7to0SI9++yzo9uXXnqp/uM//mN0+7rrrtPxxx8/oT1z587V0qVLJUn333+/zj///NGyCy+8UB//+Medr2XhwoUVXi0AAAAAdJeiDZ4km/J6Yp0nzsL8TBst4q83130rqaiiLShlKr8PBTskKz+wzHWvWy8YLfi6U7xpSpkeFezEAD+CPQAAQCu6a2C5fJUCy07vOzdS8G21XH3MnJ+LHL7baXwb3F8etvd+uPrJcUJ5XaG/kjv4N6hvG3bNTKJ9xlRxxortFPgGAAAwivl5jdPBc/SYnwcAACYtauAZwWgAAAAAAABAx9sxaPWxH0cLRdt/jnT133ta+prum1OK7tWZMw6Adjb4gvTTA5rdis539rPStP2b3Yq6ef/736+hob0LkJcsWaJf/vKXmjJl4uKEefPm6Tvf+Y4WL16sT37yk6P7v/GNb+j888/Xa1/72tF9yWRS+++//+j2rFmzys61cOHCsvKxpk2bJknasGFD2f5Zs2Y5jwEAAAAATFS0wZNfkyYV6zy9jgCBIK6wgW6UTrjvRc4fjBRQFxaY4HpfXIEDRVtQwS8o5cV7/6vlCjlLexmlvYwKpYnBaGGBEwAAAM0wWNqte7f/MrBsbmqBjp42cbF5Pbj621a+hmxevSbdkHa0C1MWjBbcT877ucjnC+unzkz2Be4P6tNn/T2BdVOmRwnTPlMz4oz/GCsCAIC2xPy8xungOXrMzwMAAJNGMBoAAAAAAACAV6x8SiqFPUdW0u8v9nT4qwlDQ3fymt0AAEBtrVy5Ug8//PDo9owZM3T99dcHTroa65//+Z/1lre8ZXTb931dcskldWsnAAAAAGByCnZi4JQkJWMutM/EWuwePqbsJmH3IusICxvPFSo2fH5XMJr7/Qo7X73kQoPRgu9RLkY4BQAAQCPcu/125W1wH+XU2efIM4mGtCMstNjV7+p0Vu4nII6d3uPqJ8cJ5XXd46RJalpiemBZwQ6pZEtl+7Kl4GtmvKmR29IKCNEGAAAAwjE/DwAAVCVyMFqpch0AAAAAAAAAbSk7ZPXvt/v66/8KT0VbNFt6zcIGNQpoQQSjAUCHufbaa8u2P/KRj+jVr351pGO//vWvl21fd911yufzNWsbAAAAAKB6RVsI3J8yPbHOEyfsjMXue9UioCwspMEdjOZ+v5oRluG6Zq+XqUk4BQAAQL0V/ILuGlgeWDYtMUNvnHlqw9oS1sfs3j5UWDDa3mkO7r5n9D6yO/R3Smg/fHz/3/VeZRLtFTSdiTVWbK/XBgAAANQC8/MAAEBVihGD0aLWAwAAAAAAANBWhopWp37L1ydvdM+THPH/nmuU8EzFekCnIhgNADrMvffeW7b9N3/zN5GPPeKII3TMMceMbudyOa1Zs6ZmbQMAAAAAVK/gCEZLmlSs8/TGCDsjGG2vsHuRjRhaERbS4Hpf0onWCssIC30gGA0AALSD3+66RztLA4FlS2edpR6vt2FtqUX4bqexIcFoGjPHpxZ9T3cwmjv0N+g413ig3cLDGCsCAAAA4ZifBwAAqlKKGHgWtR4AAAAAAACAtnLLo1b3/zFa3b99I7FQ6G78PwAAOsjAwIDWr18/uj1r1iwddthhsc5xwgknlG3/9re/rUnbAAAAAAC1UXQEo6ViBqNlYizOb7eF/PWUMEmlTE9gWdTwBVfwQo/pVcIkAsvCAxkaGzjm25KGbD6wrNfLOIMUwgLhAAAAGsm3vu7ovyWwLGV6dPKsNze0PeHhu93Zh7KhuWh7k9FcY5Wcn5MNO0lZXVegWSZ0LDT+OGd4cJuNp+KEnaUT7fXaAAAAgGoxPw8AAFSNYDQAAAAAAACgq/3qyWj1PvNmU7kS0OEIRgOADrJ169ay7YMPPljGxOvwHHrooWXbW7ZsqbpdAAAAAIDacQWjJWMGo7HYffJcwQZRg79c9cLek6RJOd/jRgeOhV0v42Xc96fUnaEeAACg9fx+z0PaPPRCYNkJM0/TtOSMhrbHMwn1mN7Asny3BqPJd5ZFCUaz8p1hvuO5++dTYoXWZUudEYyWiTH+izOuBAAAADoB8/MAAEDVCEYDAHSRP261eu/3fHn/UBr9711X+npoQ7QHHAEAAABAJ1q3JdqY6OyjCEYDks1uAIBxpiySzn622a3ofFMWNbsFdTEwMFC2PXPmzNjnGH9Mf39/VW0CAAAAANRWwa9NMFpvnGA0FruXSXtTtLO0fcL+6oPRwgMI0t4U7S7tmPR1ayXser1exvmz1eh2AgAAuNzRf3PgfiNPp84+p8GtGZb2pmioNDHIyxW2hWFhY5Wcn1Wvl654Dlc/tdfLKGV65MmTHxDUNj60LuvvCW5jmwVNM1YEAAAdj/l5jdOBc/SYnwcAAKpWDJ7zMUEpYj0AAFrUn7ZbvfHrvrbuKt///z9k9bPHrH79KU+v249F/gAAAAC6z7oIz036h5ONjjug/m0BWh3BaECr8ZLStP2b3Qq0KWvL02HjPo0ySC3OAQAAAAConaJ1BKN58YLRMjEW57PYvZwrXCEXMbTCVa9SaEPaSzuC0RoblpH3c86ytDfF+fPS6HYCAAAE+WN2rdZnnwwsO2b6CZrbs6DBLRqW9jLaWRqYsH98+Fa3sHI/EdFo73dX4cFog5qp2RWv5eqnZrwpMsYo7U3RoL+74nGugLWMN7ViG1pJpkJg81iVwp0BAABaEvPzUAXm5wEAgKqVirWtBwBAi7p6tZ0QijZicEj6/+6yuvrvGRMDAAAA6C65gtUL293lbzlS+vhpnk55Dd8jAhLBaADQUfr6+sq2d+yYuFi6kvHHzJ5decEIAAAAAKBxCnYocH/KxAtG640RdsZi93Ku++EKQhgvb4PrVbrP1V63VsICztJeJiQYrTtDPQAAQGu5o/8WZ9npfec2sCXl6EONFxKMZrzRf4cHo0W7d656I8HFaS/jCEYrPy7r7wk8T7sFTUcdKxp56jG9dW4NAADtwRiTkLRY0uGSXi1ppqS8pAFJ6yU9ZK0N7ixM/popSSdK2k/SqyTtlvQnSY9YazfU8loA9mJ+HgAAqFrkYLSSrLUsfmwi7j8AVGfF793f90nSD++3uvrv9277/nB9Y1j8j3L8TQYAAEAn2bRDso7h0hNf9nToq+j7AmMRjAYAHWTevHll208//XTsczz11FNl2/Pnz6+qTQAAAACA2iraQuD+pOmJdZ5MjMX5GYLRymQSroAyd2DYWNmSKxgt/D1pnWC04OuNBCOknfenW0M9AABAq9g89KIe2/1AYNlrprxW+6UXN7hFe7nCqLq1DxW+TGKvkfCyINUGo430v52hdaXy/n+2FDweyHhTI7WjVUQNckt7aRYgAAC6mjFmP0l/Lek0SSdJmhFSvWSMuUPSZdba26q87jxJX5b0Tkl9jjr3SfqWtfYn1VwLwETMzwMAAFUrBs/5CFQqSUmWfTXas9usPvIjX6vXSwfPl774Fk9nH81noQAQ15MvhZcXfalYsvoizKhjAAAgAElEQVT6CqtrVlv9cdvw/hlp6dTDpG+/x9OCGfz+7Wbrt1j97+t83ffK3+SLz/b0liP5mQAAAOEefd7q0zf6euBZ6dCF0r/+L08nHUwfAq2jP+SRavPDZh0AXcqrXAUA0C5mz56tgw46aHR7+/btevLJJ2Od47777ivbPvbYY2vSthEskAAAAACA6hRt8NODkybeZFhXyNZ4Rp5SMUPXOp0zGCFiMFreGbxQKRituuvWiut6I8EIrna6XjcAAECj/Kr/VllH5NbpfX/d4NaUc/f1urMPZa3vLDPa+12TZxLqNcHhaOODy1xc/dSRgOiooXWufrIrWLlVRQ3GjjqmBACgExlj/kfSc5IukXSWwkPRJCkh6U2SfmaMWW6MWTDJ675Z0u8l/aMcoWivOEHSjcaYHxpj2iulFWhxzM8DAABVK5Vi1A2eH4L62ZO3OvHrvlb8QdqVkx7eKL3tv3zd/VTUx3kAAKThwLOBCF/VfehHVl+8dW8omiTtzEk3PyKd8m++fJ/fv91qd87qxG/4+uWYv8nnXu7r18/wMwEAANz+tN3qjEt83fHkcL/ywQ3Sqf/u6/EX6EOgdbiC0YyRZkZ7pinQVQhGA4AOs2TJkrLtH/3oR5GPffLJJ7VmzZrR7XQ6rb/4i7+oWdskqbe3t2w7n8/X9PwAAAAA0OmKdihwf9KkYp3Htbh/vLSXYRHNOFGDEVxc9SoFC7RKWIbreiP3xfU6sg0OcAMAABhrR3FA9+9cGVi2T+/+OmzK0Q1uUTlXH6rRIbitImwq2thgNKn6fnLWEaA20r91BYWNP3/WD56xFDVorFXEGSsCANDFDnHsf1HS3ZKul/QTSY9IGp/4+hZJq4wxC+Nc0BizVNItkuaP2W0lrZF0g6Q7JG0bd9h7JF1njGGeKFBDzM8DAABViRN2RjBaw930sNWmneX7rJWuuIcF1AAQx3MvR6t39b3u369rN0m/WlujBqHt3Piw1ZZd5ft8K32Hv8kAACDET39ntW13+b6iL12xij4EWkf/YPDP46yMlPBYuwWMx4QXAOgwF1xwQdn2ZZddpk2bNkU69qKLLirbfte73jVholS1Zs2aVbb90ksv1fT8AAAAANDpirYQuD9lemKdJ+ri/HZbxN8IUYMRXFzhFr1eOvS4VgnLcL3OkfviCkjI+1lZy5eKAACgOe4euM3Zlz5t9rlNDwMO60N1p+j9RndwcbR+sqveyHsSJRjZt35IP3lqpHa0iqiBZ5WCnQEA6CKPSPqopMXW2kXW2lOste+y1p5nrT1G0n6Srhx3zCGSbjARO6HGmEWSbpI09kPg1ZKOsNa+3lr7DmvtGZIWSbpQ0tiO71sl/cukXhmAQMzPAwAAVSEYraX9tyOg5/qHJu7fusvqT9srf5adL1g9tclq7UtWuUJ5/a27rIaKVtsHrZ7dZvV8/3DdzTutNmyzemm7le8zzwJAfWzeOfx7pi7n3lW5ThRrnuN3YD0US1bPbB7+27Qn35r3+KpfB7frugfL92eHrNZtsSrx9xIAAMgdvPvtu4f7DGtfGv5vhyOYCmiEl3cH7+9rr2mGQMMkm90AAEBtLVu2TEcffbQeffRRSdKOHTt0/vnn6+c//7kyGfdChksuuUS33nrr6LYxRv/0T/9U8/YdeOCB6unp0dDQkCRp5cqVKhQKSqVSNb8WAAAAAHSigiPMIWnifdSXMj3y5MmXH1ov6qL4buK6J9GDFxyBCYnwYAHndUuNDctwtX8kMMLVTl++CnZIPaa2i7wAAAAqyflZrdr+i8Cy2cm5ev2MJQ1u0UTpRHAfKtvgENxWYUOC0cy457+lE1PKoz9ekfdzka7lqjfSr3W9N2P7/0M272xzuwWIRR0DVgp2BgCgw1lJt0m62Fr7UGhFa1+U9EFjzO8kXT6maImkd0r6cYTrfVnS7DHb90k6zVpb1pGx1uYl/acxZqOkm8cUfcIYc4W19rkI1wJQAfPzAABAVWz4HI0yBKM13K+fcZetfcnq0FcZrdti9c4rfD3y/PD+g+dLP/q/PL1+//Ls65Jv9c83WF2xyir3ymfYvUnp704w+shSo7+92tdjL0Rr1w/eb/Se47zKFQEggif+ZHX+d309/uLw9qELpf/5gKej963dg6QG9tTmPOu21uY8GGat1TdWWH3tF1a7XvlkMelJbz/G6L//zmhqb3MfJjbW6vXusmLJquRL//gjqx89YFUoSbOmSJ870+j/PoO/lwAAdLNHn3eXHfL5vZ/JGCOdfpj0w/d7mju9dfpA6A79jvHSHILRgEAEowFAi9m0aZM2bNgwqWP3339/SdJVV12lN77xjaOTm+6++26ddNJJuvzyy3XccceVHbNt2zZ96Utf0re//e2y/Z/61Kd05JFHTqodYXp6enTiiSdq5cqVkqSNGzfq7LPP1oc+9CEdfPDBmjKlfHHIwoULlU6zsAIAAAAARhQdwWgpryfWeYwx6vUyyvrhs5B6CUabwBVskHUEho1XKVjMfV1XIENjg9HyjuuNBkeEBD/k/Kx6PILRAABAY923/Q5nv3fZ7LOViBkyXA+uvl7UcK9OE/ZMTjNuLlrGce+ihMpZa5310q8EF0fph2dL7nFVpQDkVhM1GC3TZoFvAADU2P+y1m6Ic4C19tvGmGWS3j5m99+qQjCaMeZgSX83ZteQpL8fH4o27lq3GGOuHXNcr6QvSXpfnDYDnYr5eczPAwCgqUqlGHUJRmukFwbCPpmWDv+Sr9y3PZ1xia8NL+/d/8wW6bRv+Xr+m56mp/d+gP3NX1r9x6/Kz5kvSleusrpyVfi1xvvbq6wOmmd1/IEs1gZQnaGi1Wnf8rVp5959azcN/x7b+HVPU2oUjNW/J97vOZd1m2tzHgz7nwetPntz+T0t+tL1D1lleqSr/749/s48PyD956+srrlv72vZPih98karfft8veP1hKMBANCt9uuT/ritcj1rpdufkN79375u/6dE/RsGjNHvmNbYRzAaEKj5M7wBAGXOP//8SR9r7fAHesccc4wuu+wyfehDH5LvDycYr1mzRscff7wWL16sI444Qul0Ws8//7wefPBBFYvlX5qefvrp+spXvjL5F1HBJz7xidGJV5K0YsUKrVixIrDuypUrtXTp0rq1BQAAAADaTcEPDkZLmlTsc2W8KRWD0VjsPpE7tCJaQJmrXqV7nXYEKuQiBD7UkjM4YjQYzR2kkPMHNUOz6tIuAACAICVb1F0DywPLMt4UnTjr9Aa3KJgrXLbRfb1WYa3vLDMqn5DvChiO0j8v2oJ8BS9ETJvw4N+yYLSQ9yksOLgVeSahXpNW3p21Iqn9XhcAALUUNxRtjMtVHox2SoRj3i1p7Gz8m6y1z0Q47hsqD1R7hzHmw2GBakC3YH5eOebnAQDQYH6MYLRi8PwQ1MdND1cO37l4uS0LRRuxMzd8/N+dsPfz6++trm2YzzX3EYwGoHq//IPKQtFG9O+Rbv2d1flvqM3vmYEafcW5bmttzoNh14T8bfrxb60uf7dVpqf5f2sKxfC/oU9vlr7/m+A61z1g9Y7X16NVAACgHUQNRhtx55PS8/1W+/Y1vw+E7vHy7uD9fVP5OQSCEH0NAB3qAx/4gK6//npNmzatbP+6det066236vrrr9d99903YdLV+973Pt12221KpeIvqI/qLW95i/7lX/5FiQQpygAAAAAQV9EGT3xNTSIYzRUgMFY6UblOt6k2tMIVmlDp/XAFjuUiBrLViitgIlowWmPbCgAAsGbXavUXg2fMnzzrzaF9l0Zqlb5e6wib7F4+Aaia/nlYnZGxUJTzhwWjtWPYdJSxYpQ6AABggkfGbWeMMZWeIvC2cdvfi3Iha+2Tkh4Ys2uqpDOiHAsgGubnAQCASQl5KMQEJXcw2p681d1PWS3/ndW6LXY0wBWTFyV85+u/cN/n372w99+Deat1W2rQqDGuXMV7DKB6j7/o/l1y1b22YiBVVP3hz2qN7E/bh//moTYef9FdlitI61skiG5jf3j5zY9YZ/jefX+sfXsAAED7mDOtcp3x/vCn2rcDCLNhW/AYZ970BjcEaBMEowFABzvvvPO0fv16XXjhhZo7d66zXiqV0hlnnKHVq1frqquuquukqxGf+9zn9Nhjj+kzn/mMTj75ZC1cuFCZDAsoAAAAAKASVzBachLBaFFCIFwhAN0sLLTCrzCJ2VpbMVjMfV1XIENjwzJc1xtpX1hAQtTwOAAAgFqw1urO/psDy5ImqaWz39LgFrkRjFYueixadfcuG1JnpH/rOv/Yfn2uFLy6I6GkUqanYjtaTZSxYoYQbQAAJqMYsM/ZWTDGLJR01LjjV8e43t3jtt8c41gAETA/DwAAxFYqRa+bzwfuvvkRq/mf8LXs332dc7mvQz7v683/4WtnluCYavTvru74S++0emFg+D24/9kaNAgA6uBff+n+W3HXWunAz/p69Pnq/564Qqsmo1XCutrdzqzVll3hdd5xhS/fb35/olJYaVhY6O5cjRsDAADaSjHGxy4j1m1pfv8H3eUZR5j+4vmNbQfQLpLNbgAAdLsNGzbU9fzz58/XpZdeqm9961tas2aN1q5dq61btyqfz2vu3LlatGiRlixZounT48fIXnzxxbr44osn3bbDDz9cX/va1yZ9PAAAAAB0o0INg9EyEULPoiyI7zZhYXF5P6dMwl1esEPyFRyeVjkYzRX4MChrrYwZHxFRH66AiZFAtIRJqMf0ashOnKTdrcEeAACgOZ4cfFQv5DcElh034xTNTM5ubINCuMJlc362oX29VmFDotHMuOe/VRMg7AotHj5vpux/xxsbquYKWMskprTlexdlHNhrGCsCADAJi8dtFyVtC6n/5+O2H7PWBieyBrtv3PYRMY4FOgbz85ifBwBAS6nwsLUyhYnfuW/ZafWuK30Vxi30vf0J6Us/tbrkne33eWSr6N9T/ULoD/3A188+ltDZl8V4n2MY2GM1eyrvMYDJ2bTDakeFr89e3D4cjrX2//HkeZP/fbO9hsFoz2yWjlxUu/N1q3WO8IWx1m6Sfvo76dzX1b89YaoJJ/GtuvL7dQAAMGxoEsFoBPGikXbnrF7aEVy2eD59WCAIwWgA0CU8z9Oxxx6rY489ttlNAQAAAABMUsmWZB2hWqlJBKO5whfGCgsB61ZhwWd5PxtaHhbOMNlgNF++CnZIPaY39PhayZWCZ66NDdpLexkNlQhGAwAAzXVH/82B+42MTus7t8GtCefq69kG9/VaR0gw2rhJ7GkvHVgv51decZENqVMpGG1sqFrOD84nadeg6XTImCZOHQAAMMF547YfsjY0FeHwcdvrYl5vfYXzAagh5ucBAIBI/BgrdAOC0X7ysJ0QijbiugetLnnnJNsF9ceJoXZY8Yfh8LrBoerPFeSZLdIbDqjPuQF0vhvXRAubWrdFeui56n7fbNtdfdjkaHu2WkkEBFRr+D5Wdt2DVue+rrn3O0qIm0u+KGWHpCnd9vU6AACQJA0V4x+zPmI/CaiFDS+7yw6e37h2AO2EYDQAAAAAAACgTRSse+ZkchLBaOlElGC09lzIX09hgXJZf1CzNMdZHh6MFh4sEFae87Pq8RoUjOZ4Db1jAinS3hTtLG2feKwjVA0AAKDWNubW66nBxwLLXjvtWC3o2afBLQoX1tfL+oMN6+u1ijjTzVz3Lkoob95RJ2V6lDDJ0PMX7JBKtqiESToD1jLe1IptaEVRxoEZxooAAMRijJkm6f3jdgcn+e61eNz2xpiXfW7c9hxjzGxr7UDM8wAAAACoFT8sG3mcoYnBaL8ZH388xpZdUv8eq76phMdMxss1CEbzrfTf99ZvQfUzW6zecEC093fLTqtfrbV6erPUk5RSCWlWRlr6GqPF84fPkS9YrXpGevxFK99Ki+cZnfIaaeYUfoaATvTES3HqDv++efIlq1VPW+0a8yfpNQuMlr5Gmp4e/l0xVLRavU569Hmr0iu/An/x+9q1+5kqQrK6zfj36/BXGf3lIVLJly69M9rfpxvWWC34sa/9+vbuGxyS1r4kLZwpvXrW3v0HzDFadqg0u8Z9j2rDSfoHCUYDAKBbDcXIox9RTSgrENeOkCmNY/vaAPYiGA0AAAAAAABoE0VbcJYlTU/s82UqBHFJlcO6ulFYSECl8IWcIzCh0nkrX3dQM9SYb0Jc4RFjf1bGhqSNFSWcAgAAoBbu7L/FWXZ63183sCXRhPX1hvtfsxvXmBZgbfDiQBPwNHjXvYvS93T1z8ees1L/f2piurKOAOB2HU9FCUYLC4wGAACBviZp4Zjt7ZL+u8Ix4z/wizUt31q72xiTkzT2w7qZkghGAwAAAJrAWivZGEEfQ7myzd89b/XDB8KPX7dFesMBk2kd+msQjCZJn7+lfsFoX/mZ1XuOq1zvnqeszv22H7jY1jNWl7/b6O3HGL31Ml8PPDu21Gq/PukXF3o67FWEowGdZt2W6L+fnt4sfWOFr4tuCjrG6uD5w78r5kyV3vZtX3c/Xbt2jnf1vVbf/VsrY/i9FObrv/D12ZvHv19WPUmpWBoO74zqsruiVrZ61Uzp5x/zdNS+tXt/qg0neXqztKi7vl4HAACvGCrGP+aP26SSb5Xw6G+i/nZPfA6CJCnhSb2kPwGB+L8GAAAAAAAA0CaK1v1NTcpLxT5flIXsURbEd5tek5aRkdXECUBhwWfD5e5whkrvR6VgtEZxvYby8IjgAAiC0QAAQCNsG9qsh3etDiw7KHOYDsoc2uAWVdYqfb3WFxSMNvm+Z87PBe6PHow2OByM5gevmMsk2jUYjRBtAABqyRjzNkn/e9zuz1lr+yscOm3c9mQ+XMuqPBht+iTOUcYYM1/SvJiHHVTtdQEAAIC2VyrFq18oXyn5sR8HP1BirGe2WL3hABbyxlXyrbaHjLimj3s2XK4gFWK+nZI0e4pUfOVt3BX88XSopzdLu3JW09Pu99j3rT7wg+BQNGk4GOdjP7Z64FmNC0UbtrFf+ucbfN32sUT8BgJoac/ECJv6+eNWj70Qfq6LbrJ67SLVNRRtxG/+KJ3Ap0tOT2+2AaFowyYTDhLHSzukj17na9WnavN3o+Rb/XFbdee46CZfD3yWv2MAAHSjsL5PKhE8lh8qSi8OSPvNqV+7gBF7HMFo03pFGDTgQDAaAAAAAAAA0CaK/pCzLGnif9QXbbE7wWjjGWOU9jLKBgRUVA5GCy5PmR4lTPhknPBAhsYEjvm2pLydfHgEwWgAAKAR7hr4qXwFLxA7bfa5DW5NNGEhud3YhwoKIZaCYtHcfc+8n5W14U+Pd/XPx46VwsZN2VJWSrnfo4w31XlsK4syDmSsCABANMaYoyR9f9zu2yX9V4TDxwejTWLZvLKSZoecczI+LOlLNTgPAAAA0F1s5WCzMoW9c0Q277T69TOVD3m2yiCRbrVtt2SDP5bWQ5/zdMyfTfyc+R3fKenGh6NfY9mh0p2fiBbS8pmbfH1zRXCD7nhC+utj3Mc+/qK0rkL4UaEkXXOf4wVLWvEHaXfOalpIABuA9pIrWG2sFNE/Rlgo2ohbf2e1dtPk2zTeoQvlPN9tj1mdcBC/k1xuetj9O70R7l0nbdlpNX9G9e/Rph3Vh7k98VLVzQAAAG1qyBFi/p/vMrrgjUazLgz+bGbdVoLR0Bi788F996m9DW4I0EYIRgMAAAAAAADaRMEWnGVJ0xP7fNEWu1cOT+tGvc5gtPDQirwzMKHyffZMQr0mHRhM1qiwjLzvXnuZTlQOj6gUHAcAAFCt3aWdum/HnYFlC3r20WunHdvgFkWTMAn1mF4N2YmPBCQYbS8jb8I+17jGyipvc0qbsNA5VzBa5dBfaW//PuvvCSyP0s9vRYwVAQCoDWPMfpJuU3kY2XOS/sZa15L7UI06BgAAAEA9+OWrc6+c9X5tTO2rPd5U7fGmareZqt3eNL2quEnT/Z3a/ZvXSi/4SnjSrogfE/cHf1SJMX67wepnj1k9/JzVSzukN/250bzp7vr7zA7ef9IhRjfGCKI5aF70sJi/PNg4g9FWPmX1hgOkG9dYPfnS3kGftdKK31u9uD3yZZysldZvlY7at/pzAWgN67e6AyAna6g4HMZYK5843egffhDcyJd21O46neinv2v+R4CHfdHX8o96VQfYvVyDvkx2SMoXrHpThOkBANBtXAGrPUlpRsZo/nRpy66J5Rdc7evhz3s1CXoFJOnOJ6zueNJqYFA6bKH09mOM9ptjtGfi9FBJ0jSC0QAngtEAAAAAAACANlEMCUZLmVTs87HYffIy3hRt18sT9lcKrcg5gsV6I7wXI/XypYnnyJYaEzgW9vqihEe4guEAAABqZdXALwLDxSTptNnnyjMTg7VaRdr7P+zdd3gcxcEG8Hf2Tro7FduSLbnJVZKNjQGbGGyDHQwGU0MnkFBCSyGBQBKSEJJQEkIgdEJIIQQICUn4ANObMbbpBoMpxk2Se5UsyVa705Wd749zke5m9qquvr/n4cE3szc72tvbm72bfdcFb4DBaFaEYu6Z1TmLx3Rbnvfotm3P8bldFMAGOwIInzm3N1hNNx7P1vOpaPrtivIchoiIKF8JISoBzAcwvEfxdgDHSSmbomymI+RxPB/Aoc8JbZOIiIiIiFLFNHs9/FvZ5fjUeYh++fUA1scWdNLKYDRL/3jHxHcelzB7bNZPNuq3cakTqNSEpl0wTeC+NyTW7oxu3bWDo+/n3AP1dX9aKPGnhX0fgHPX6xL/vIwXhBPlirod6e6BtckjgItm6IPRWjrTH/yVqV5dLvHB2nT3AmjtAmbebuLecwV+OCf+3+STEfJqSmB9MzB+SOJtERERUXbxBtTlhXtSdWoq1cFoW3cBQ641seYWAzWVPBemxPxynonfv9L7HOb3r0i8do2BDk0wWnFhCjpGlKUyd9Y3ERERERERERER9WIVjGaPKxgt8sXu0YSn5SPdttsbjKCjq492O6c7cCzqYDSbup/uCNuHiIiIKBFesxuLdr2srOtnK8Ph/Y5KcY9iox9j5l8wmpSmpiZ84pnVWDrSONkTUNe7erwWQgjtOva+NrpxvsuWrcFokc9Pog13JiIiykdCiHIAbwAY16N4J4BjpZR1MTSVqcFoDwKYFON/pyVhvURERERE2c3sfXVusZn83GIGx+i5vRI/fap3KFokNRXB74hVyooF3v9F9Jfl1VREf2G1zRC45Mj0Xoj9ryUSZiwbi4gyWl2j+v1coQl/TNTwAcBXRlkvc/ho4Ku1wPUnCSz+qYFCu8CvTlYf+5IRlpWLpJT46VO631Wj8+JVyb3E/Nr/k9jdFf/nR7Je6/rG5LRDRERE2cUbft9LAEChLfj/6gjn5re/yvNgSsyGZonbFPvRzg7gpudNdGqC0UqcfdwxoixmT3cHiIiIiIiIiIiIKDq+pAejRb6OThdwle90284diBSMpg5eiDoYzVYEKHaDVIVlWK2nZzCCPsDNk/Q+EREREe31QdtCdAR2K+tml52MAiOzb6vnMNSzWzwRxpi5SEI9yUyogtEswsfiHZ+Hhn45bS50muG3C937fLepnqHviiKMOhNFCtE2YEOByOz3ExERUboIIfoDeB3AQT2KWwEcJ6X8MsbmQge3FTH2pQThwWi7YuxDGCllI4CYLi3UBQkQEREREeWVsGC05H/328zgGK0P1gKtMW7y2sHW5zIVpQJ3nC3w06ciXzhdUxnbug8aHtvyfWH1DmDC0HT3goiSYc0OdflXRgKfbgK2tyVvXa4CYOPtBoQQML4T0C73wfW2sLKBJeplGYymtrEF+HJr/M/v5wROOkjguAnA/JXJ6ZPfBN5cDZwxJb7nNycp5LW+SUJ10y0iIiLKbd26YDR7cFxQHeHc/MmlEg9dlOROUV55dbmE1AxpX/0SGKv5xb+YU/GItBiMRkRERERERERElCX8mmA0AzYYIvY790UVjBZlYFe+iTf4y6OZ2BwavBDret19MGFapVsTHCEg4BD7gzx0QQq6v5+IiIgoUaYMYEHLs8o6h3DiqwNOSHGPYqcdY8rUhOBmklimuxcKh7Yu0vhTVx/6WjiE+rXZH4yma6fYcv2ZKtJ5oMsoYrgJERGRghCiFMCrAL7So7gNwAlSyk/jaLIu5PGoGJ8funyLlLI1jn4QEREREVEymGavhyVmR9JXweAYvWBASmyqo4inPv7AyMFoI8piDxibO1Egtm/Lk6+OwWgxkVLivx9JPP8pUOIELpohMKs29u/SPT6J+xdIvN8gUTNY4AezBUYPyszv5KWUePwDiZc+Bxrbg/troQ04bIzANXMEBpVmZr+z3aYWiQcWSnyyQcK/56OlslTg5IOBC6cLCCHg9krc/6bEO3USzgLg6U/UbdUMFujyyqQGox1/YPwh+eWae/cw+DNcQ6PE1/9qRl7QwoUz+uY9etafTRw1Lvhvhx34yigBRwEw7xOJzzbvX276WGBUucDODolCO9DlBRavSU4fEgmMIyLqqaFR4qF3JP7wanCsU1MJPPANA3MP5DiHKBN5dcFoezJ5j58ocNPz+nPtdg/Q2S1R7OB7nKK3fqfEnxZJLNso8eYq/XK+ALBym3r/K9FPgSTKewxGIyIiIiIiIiIiyhK6YLQCURBXey5NeNX+dgthj7PtXBdv8JdHEywW6bXYv15dIFtqwjJ0gQ8Ow9VrQpuun7q/n4iIiChRn3UsQZNvu7Ju5oC5KLJpbi+eQXRjTHcgH8dQ6glABsIDoQ1hwGm4lGPNSONP7fjcVmT5eP/zuyClhEfzGumel+kiBaM5DKdlPRERUT4SQhQDeBnA9B7FHQBOlFJ+GGezK0Me18T4/LEhj1fE2Q8iIiIiIkoGM9DrYbGZ/JQXBqPp1e2I/Tm1gyMvM2m4wGUzBR5+R/29ts0AbjtLwGbEdlH1xGEC3zxc4IkP0xeOFgyT48Xg0bpBxuAAACAASURBVLrheYnfvbT/9XrsPYn/fdfAGVOi34YBU+KEe028tS8qXeLx9yXe/bmB6srMey1+9rTEXa+H76PzV0o8uVTi/esMDCzJvH5ns43NEkfcbmLrrtAaif/7GPhiC3DbmcDce0y82xC5vXGVgNsr8FZd8o41vz4l9hu87hXcX8L70tIZDOLjjXuCVm2TmPUHM6HAuBFlwI+Pi7w9Dx8NfLh+/+OBxcHPtsZ26+f1DDh7fYV6//pgLfDB2vj3vTkHACMHCjzybngbf39b4i/nSxgxfv4SEfW0ZofEUXeY2NEjQLS+ETjhPhP/uFjg4iPi/8wjor7hDajLC/ek6hw+Bpg4FFixTd9GfSNwyIjk941yU0OjxJG3mxHHx3st26QuZxgfkR6D0YiIiIiIiIiIiLKEz/Qqy+1GfOFljogXu1vX5zOnTb1tdMFhe+kCE6Ld1vEGsiWLLoAtNDhBH4yWmn4SERFRfpFS4vWWeco6AzYcXfa1FPcoPukOwc0kUhOMpuNIcjBa6PhcN173mG74pBcBqG83qhu/Z7pI/c7Wv4uIiKivCCFcAF4EMLNHcReAk6WU7yXQ9PKQxwcLIYqklNF+yXZkhPaIiIiIiCiVTLPXw+Koh/bRY3CMXkNT7MErNRXRbce/XSgwd6LAwtUSu3t87TyiHDhzisDhY+J7PR6/LHnBaD87QaDLCzR39C43BPDvJep11DUmZdV5obUzPCDMbwI3v2DijCm2qNt5YyV6hKIFNbYDf1woce+5mfW+bmyTuH+Bfv+sbwQee19GFbxE0XtwsVSEou13/wKJA4chqlA0AKgdLOD2JS8U7duzBKaMjP81Ly9Wl/sCQEc3UMp79wAA7l0gEwpFA4Al1xsY0j/ya/XUFQbeqZN4ux6orgDOnyZQ4gBKrzIjPjeZShzAxUcKNHcAzgLgiGrgwukC97+p338XrgbmTEhhJ4ko5/x5kewVitbTTc9LXDhdxhyATER9R0oJr3oK175gNCEE3rvOwICr9WMZBqNRLP64UEYdigYATZplix3J6Q9RLmIwGhERERERERERUZbwS5+yvEAUxtVepIvZXQxG09IHlFkHL0QbLKZfry6QLTVhGbrgt9B+6YMjPJyETURERElX5/4SGzx1yrqp/WahvKAixT2KT7pDcDOJlOoJ7LpxpNMowm60hJVHCpXTbVtXyGthFfxrFY4c2k62iHR+Eu35CxERUT4QQjgBPA9gdo9iD4BTpZRvJdK2lHKbEOJzAAfvKbIjGL72epRNzA55/Eoi/SEiIiIiogSZgV4Pi80OzYLx85vBCywr+yW96axXtyP259QOjm45IQTOmQqcMzW5cyGEEJhVC7yt/gkkaneeI/Dj4wxtfanTxF8Wh38v39CYvLCkXLdwNeBRTOv6fDPQ0ilRXhzdvvHkUvU2f+gtiXvPTaSHyfdOfTCsysqi1RI/Pi41/ckXC1dZvy99AeB3L0X/3q2tBLp9AojxpkU6cycmdhwcqAlGA4AtrcABQxNqPmc89HZir9dphyCqUDQgGEh23uEGzju8d/nPTxC4/dXUfU5cfKTA/eeFf5bVVgK6/XfRGok5EzhPkYji93ad/ji3sQVoaALGRXnOQER9z29xflLYI6+6n0ugshTaMKu6RgmAYwiKzqLVyRkTlzAEmkiLwWhERERERERERERZwqcJRrOL+L7mKzAKYBd2+KX61jiRgtPymVUwghVdcFr0wWjq1yRS4EOyRBvspguAkDDhld1wCP5yQ0RERMnzRsuz2rpjy05PYU8S4zDUY6RI4bu5SGovvlBPOtOFOluFlgH6bRsa9Ksb33pMt+U5QNYGo9ms+x2pnoiIKF8IIQoBPAPg2B7F3QBOl1IuSNJq5mF/MBoAXIIogtGEEAcAmNajqDOa5xERERERUR8yzV4Pi/vophgNTQxGC2WaEg1NsT9vcL/0Xwh9+mRhGcgQjVMneGE+eDPw4XxgwCCIM6+A+OppkN5uyH/8BjUflgH2H4U9r64xodXmjTa3xNl/MbX19Y3BG8Lc9oqJTzYGAwz3GjYAOG2ywC9OFDAE8Mi76tfa7QOa2iWunyfx1hqJju79deMHA5fNEjh/Wnhg0N/fNvHP9yU2tgBfGQXccIqBQ0ao92uvX+I3L0q89LncFxCwbff++opSwN5jFT3rdF78PPIy1NvOdolfzJN4u06i3RMscxUAR9YITB0NfLQ+chvRHu8KbMDIcqCyFCh1Yt/64lVUCBw3MbE2RpQDQgCqeyjVN+VvMJqUEn97S+JfH0isaVRvn56OqAbea9DXn3hQ9J9vxZp79p4xJbXBaCceqO7znAP0z2ng5xgRJag+wnFkLYPRMsbmVonrn5F4r0HCrb7cgvKA1RjJUdD78WmThTZstj6O7w8o/+w9d/t8c3LaG1WenHaIchGD0YiIiIiIiIiIiLKEXxOMViA0s0+i4DBc8AfUt7uJNqwrH8UbUKYLTYg2WCDeQLZk0Qe7FVk+Dm1DF/pBREREFKut3RuxvHOpsm5i8aGoco5ObYcS4NKMCfMxGE1HN0U/NMhsL6vxuZQy6uBiXfse0w13oFO7DpfN4rb2GaxQOCAgtAF1PFckIiIChBB2AE8COLFHsQ/A2VLK15K4qn8D+BWAvfcxP1MIUSulrIvwvJ+HPH5SSpng5a1ERERERJQQM9DrYYnZkVBzJQ70Ckfaq65RYkZ1+gO9Msm23Yj54vi7zsmMbXj5LIEXP5dYuFpdf0Q1cOsZBmbfqQ7m+u1pAmPvOxf44NV9ZfLjhcBvnoB89V/Aey+juuQkYER4MNrGFqDbJ+EoyIxtkYlMU+LYu/WhaADw1McSf1qoDmjYthv4eEMwuCzSRdCDf6Jez7bdwKI1Em6victn7U8uu+t1Ez99av/3/BtbgPkrTHz0SwPjh4S/phf83cRTn+jX36SeXhbRh+skDh/DfSgaXr/ErD+YWL0jvG7tTonHP0ju+qorALtNoMQGPPANgcsek72C+1TOmALMWxZebjOAP35DoJ8rsdfaWSAwoiy4v4aqb5TQ/1qY2/7wmsQvnok+hOz5Kw2c+1cTC1aF1504CbhgWvTbscCuXvaw0cAP5wjcv6Dvw9GqK4C5B6rrSpwCVWXA5tbwuuA+Q0QUv8p+QJvFLytrd+bvZ1Mm2d0lMeP3JrbsSndPKJMV2no//tXJ+mC0Bo4hKAKrc7d4ja3g5wmRDoPRiIiIiIiIiIiIsoQuGM0uCpTl0XAaRejUBKPpLv4nfRCAO2IwWnTBC8leb7Lo+h+6r1gFn3nMLvRHWVL7RURERPnrjZZntXXHlZ2ewp4kzip8K9/oArkEDGW5LpjXatv5pBcS6qs7QsfdVgHFunUIGHCI7AwENoQBh+FM+PyFiIgoVwkhbAgGlp3Wo9gP4Fwp5YvJXJeUsk4I8RiAS/cUFQJ4VAgxRxd0JoQ4DcDFPYq8AG5OZr+IiIiIiCgOIcFoxQncAG1WLdDhAZZtCq+rb4y72ZxVF8c2uWB6ZlyQWuoUeOVqAwtWAh9vlPDv2Y1sBjBlpMCxE4JBQo13GXjqE4knlkg0tgNHHyDw7ZkCU8yVkLe9GtauvP17QGcbAKDWW69ct5TA2p3AhKF99udlvUVrgKUbrJe58/XIF9X/XXNBfizueE3i8lnBfwdMibvnh7fZ0Q38ZbHEPef23r/XNknLULRE/PZFEy9cZYu8IOH5z5DUC+sjqa3c/+8LZxiYNlZi/gqJq/6j3x+f/K6BhauAjzZIdO+ZyjioBDh2gsABQ5Nz3Kyt1AWjJaX5rOMPSNyjeD/rnDEFKC8WePmHBhasApZuCH52FNiAaWMEjhqnDzuLhRAC954rcO5UiT8vktjRJvGV0QKFtmAg4qtfJryKfRZda8Bm6Pt886nBYL9QDU3J6wMR5SdfwLo+Xz+bMs1/PpIMRaOICkNSdUaUC/zuDIFfzgsfQ8TzHQLllxf64NytuiK57RHlEgajERERERERERERZQlfnwSj6S9od2nCBcgqeMF64nLiwWjq9XanORjNFdJ/q30nVX0lIiKi3LfL14yP2t5S1o10VGNc0UEp7lFidGPC/Bw/6YLR1BPe9cFl+m3nthi7h467rV4bt9mp7ZMQmXHhXDycRpHF+QvPFYmIKO/9A8DXQ8quB7BMCDE6xra26wLOergRwBnAvrsNHAHgDSHE5VLKVXsXEkI4AHwHwF0hz79LShnhMm0iIiIiIupzZu8bNZSYHXE3ddlMgZc+B5ZtCv8ulRfnh6tvjC10qrw4GPSTKQrtAiceBJx4kP4750GlAt87SuB7R/Uul/98Qf2EPaFoADDGtx6GDMAU4eFV9Y0MRrPyfkPigWbJUtcINHdIDCwRaGgCtu1WL7dw9f4+SynR2Q0sWNV3fwePSdF7f21q96fxQ3ofU8YNFhg3WKCx3cRvXwzvy5lTAJshcOxE4NiJffcbWHWlUO6TsR7Lc8W6nUCj+r63ShP2BNQV2AVOmAScMCnya3X5LAPzV4bfUKqyNPL6ZlQLzKjuvY7mDomKH6tvUBWrUicwbID1MtUVAqrfl1u7gJZOifLi7P3NlojSq1s9bX+ftU35+dmULp3dEnLPJrfbggHRALBkbRo7RVlDdY5/6Ej1GGLrruD+VuzgGILUkn3uVmgHRpYntUminMJgNCIiIiIiIiIioizhT3EwGi921wsNAtvLL33wS5/yNZFSJhwsoA98iP9O0rHQrccR0i+H4dS24c7LYA8iIiLqC2+2voAA/Mq648rPyLpQKt2Y0CrAK1dppw5pXtJ4xslWdaHt6V8bt/b1yfag6dAxfk/RBjsTERHlsIsUZX/Y81+sjgawyGoBKeVmIcSZAF4DULin+EgAK4QQHwNYC6A/gEMBhN5L+kUAv46jX0RERERElGxmoNfDYhn5u98fzhG4f0Hvb0xdBcCphwis2q7+JvW/H0k88e34u5mL6mIMZjr3MJF1vzGoyIblkA/dEHE5h/RipG8T1heODqura5TQfjlPeO7TzArDuPF5ifU7Tby8XL/M55uBgClx/TyJf74vsaNNv2wyrN0J+AMSdhv3o0gefz+1+9M3Dle/JucdJpTBaF87JDWvYW2lujxfQ/Zi/bvPnRr763TSQcHxhTtkeuq3jojvNR9YInDsBOCNlXE9vZevT438mVyj2WcAoKEpGHhKRBSPbvWUpH3y9bMplaSUuP9NiXvfkNjQvL9cCGByFXDveQYeS/EYirLPYaOBitLw8URN6K+qPcxbJnHBdJ7DkNoTS5J73DlzikChnfsbkY6R7g4QERERERERERFRdHymV1lekFAwmv5ifaeNF7vrWIUE6MLPfNILEwFlnVV7PekDH9wwZXLusmilWxvs1rtfhrDBIdThaJ5A/gV7EBERUfK5A514Z/dryrqBBYMxuXRGinuUON1Yr9t0Q8r8msQnNWNbobn4ymqcrKMb26ras3pt3JrxbbYHTevCoAEGoxEREaWDlHIRgDMANPUoFgCmAvg6gOMRHor2HwDnSSnVX0oSEREREVFqmb2/5y02OywXH4RduOU0gZMm7S9zFQD/utzAgCJheQHvZ5vy6zvlSBoao98eR1YDvzk1+y9GlW0tkFceE/XyNd56ZTnDHvR2dUks3ZDuXvT24CJpGYq215hfmLjjtb4PRQMAXwDY2NL368l2G5oldlp/LCTVH84WmDJSfaybMFTgvvMEjB7V354lcGGKgiFqKtXrWd8MeP359/lW3xT933z31wUOqor9dSp2CMz7voGiwv1lx00Abjgl/tf8LxcYGDc47qcDAKaPBW49I3IfhvYPjpFU6mMYAxARhYoUjLZ2J2CaPM70pYffkfjR/3qHogGAlMCyTcBRd/T93HnKbiPLgScuV0fqjBoI2DVpOxf9Q6K5g+9vCrepRWJ7Es+lK0qBO8/J/u+hiPqSPd0dICIiIiIiIiIiouj4pfoXVruRSDAaL3aPh8si5MATcKPE1i+s3Cp4wSp0oCercAWv7IZT9O1r5tYGo4X3y2G40B3whJVbhVMQERERRevtXa9pxxXHlp0Gm7CluEeJ042/TZjwSS8KhSPFPUof/bQyXTCaepxsNfbUjW2D7UUXjOYxu+A2O5V1Llt2B6NZhmhneegbERFRtpJSviyEmATgZgDnAijTLPoBgDullE+nrHNERERERBSZ2TuzuFjz3eJe1eZGlDgH4vkrDazaDmxqBaaNAQYUBb8nDQbHqL9N/dMiib9dyIsq96pvUpf/+hSBM6YIrNgqIUQwDOig4YDNyIFtt+BJoGN31IvX+NbiDUU5A2X0/vtR9m6bza3xP/dfl4W/P/q5BA4eDoz+hTqYoq4RGGsR5kjAo+/Ftz9tut3AX96S+N1L+uf//kyBEXu+RSoqFJg2Bhg6wPo4d9UxBs75isQnG4GJQ4HRg1J3XKypVJebMhiOlmjYVraxCqh86CKBdg8waqDAEdXA4H7xv05zDxTYfqeB99cCVWXAAUMAIeJvb2yFwOc3GvhkI7B2T7ibwy7g8QdDGb9aKzCoBPh4A9Dtl6gqExg/BFi2EWjplJgwVODgqug+k4UQqK4Alm8Nr2PAJxElIlIwmscHbN0dPG5S3/jL4vjH3N+aIXDcxCR2hrLO6EECh40CCuzq8YTdJjBmUPB8ReU/H0pceUwOfD9ASfXY+/rj0s9OELj5awKfbgLcPuDXz5p4t8G6vc23G9p9lIiCGIxGRERERERERESUJfzSpyy3i74KRuPF7jpW28ZjdmnK9cELjiiD0azCFTyBrj4Ps9OFu6nW6zRcaAuEz6TUbR8iIiKiaPlMHxbuelFZV2wrxYz+c1Lco+SwGst5TDcKjfwJRtNdzGdog9H0wWU6urFtoXDACAnW07Xvl350BNS3gHQZxdp1ZwOrcxSGaBMRUb6TUqZtZrKUshHAFUKIqwEcCWAUgCEAOgFsAbBMSrkuXf0jIiIiIiILsndg0CjfJsvFJ/lWA5gCwxCYOAyYOKx3/YSh+ueu2pa9gU19oaldXT52EDB5hMDkEblxAaqUEti2DvD7IF96LKbn1njrleUMlFHz+CQeeTf/3mdzJwLfnGZo64f2B7Yp8vjqdkgcf2BuvM+SodsnsWo7EDCBkeXAoFKBZRvj258GlgBH1Qr8TvPbWrED+PGxIq4L7Yf0FzjpoLi6tc9tZwpc90x43y6dqe9PdQUgBCAVf1J9Y/4FozVoAiovmylw2Uz9+zEeJc7kBsgU2gWmjwWmj+35evd+7UcP6l12wqTwZaJRU6kORlurCUclIookYEoE1JmvvTQ0xhaMFjAltu8G7LbEAi1zkZQS65sB0wyG6voDwOeb42/vt6cLVJVxG5O1ScP1wWgfb0htX+K1s11ie1sw2NZuC+7zHp/E6j3nHDWVwTBrSg6rc7cLpgk4CgSmjQ0+PmyMwLsN+uWnWgT3EdF+DEYjIiIiIiIiIiLKEn7pVZYnFoymD9rixe56ViEB8QSjuaIMobNar9vswgAMjKqdeHkC6r9NF4ym0m16ktonIiIiyj9L29/Cbn+Lsu6oASdlbYCYdfiuG/0wIIW9SS+puXhDNwleH4ymH4O7tWPb8NfB6rXZ5W9Wlkc7xs9ULgajERERZTQppRfAwnT3g4iIiIiIYhAI9Ho43L8V07s+wAdF05WLX9D+PwDnaZurKNVfOPlOffCiciF4cSUAdHSry3PpwmC5bDHkD+fG/fxq71pl+caWYIiToyB3tlUiTFPi189J3DVfwutPd29S74Lp1vtBbaUmGI0BewCCx+VbX5b43csSnh73Rz1uAvD5ltjbcxUAzgKB2eMlqsqAzeH3r8Q3Do8vFC1ZTpss8KtnJfwhwTLnfEXfJ2eBQNUAYJPi76lvlIgnNCub6d4/NZWp7UemG1shoLr5Vr0mWI6IKJJu9b3MwyyukzhqvP6zSUqJNTuABask3lwpsXA10LpnusqZU4DHLjVQ7MivzzaVzzZJnPNXc18w84gy4HdniLAxRCwYikbRuHC6gXnL1DvaY+9LzB5v4ltHJDeMNlmaOyS+8ZCJN1YGH5c6gTvPEdjYAtz5mkT3nnNWQwTPCx66SMDJc/uE1e3Q1x0YclODi2YI3PuGfjx64Qy+HkTRyMyjMBEREREREREREYXxS/WMuoKEgtGsLnbP7gv5+1KBUQC7UN93Qhe+YBXKYBV41pPV69Vt0X6y6P4GVf+dNvX+49YExxERERFFw5Qm3mh5VllXIApx1ICTUtyj5LEa6+nCd3OXekKQbiqQ7txFF+wL6LepOvRXf27U6tsZU5+yhdU5CoPRiIiIiIiIiIiI4mAGwoqe2vwNTOta0qus2OzAn7ddiVm734zY5L8v119A+eh7DAIBgkEEumC0kuy8z0oYuWsn5NXHJ9RGrbdeWW5KYJ36a/C89Mh7Er9/JfFQtB8cndkXPw8fANxyusDgfsHHDjtwwykC50+z7nfNYHU9g4mCnlwaDNbzhAStzF8J7GiLvT3fno8Vu03glasN1PYIyhICOGMKcPc56d3Xxg8ReOp7BgaVBB+XOoH7zxM4/sAI+5Im9CvfQvb8Aak9BtdUZPZxJNV0+0xDU2r7QUS5wxt++qZ00/Ph45zNrRKPvWfiW/8wMfLnJibcYOLKJySeWbY/FA0AnlkGXP0/jpO6fRJz790figYEA1Iv+kf82+axS/g5SdE5bTJQVaavv+RRiQ/XZeb79NJH94eiAUC7B/ju4xK/e2l/KBoQPK//9xKJXz6bmX9HNjFNqR1f3nqGCLtBweQRAo9fJlCouOzoR8cJfH82j1VE0VBfuUdEREREREREREQZxye9ynJ7QsFo+ov1ebG7NadRhI5A+Kw0fTCaOnihQBTCJmxRrdMhnBAQkIqgCKvgtWQwpYlu6VHWuRT7kW7/SUWAGxEREeWuLzs/xjbvJmXdjP5zUGrvn+IeJY9VEFVfj/UyjSk1E7GEejKQduwpPTClCUOE3zOu21SPbdXBaPrXptXfrCx3aYKCs4X1uWJ2/21ERERERERERERpYZphRUMCO/DuhqOxzT4EW+zDUCi9mNC9CgUIXsEq/X4Iu/7Sr+ljBXQ3mnjkXYlLjkxKz7NalxfQfeVc6kxtX/rMwqf1f2QIcekNwIwTehe6OzDm6lNgyABMxfyVukbggKHJ6Gj2e/z9yNv5m4cLPPGh9XJ3nSPwp4XqZb4yCnj8UgNjK4C364Dj7gk/dgDAvecKXJPEII1iB7DwJwb6u4IBQ0IIXHdCMJRpeBngLIh8wXatJpioPs/CrHT+GcX+E+rVqw2ccJ96H6go3f/vA4cJrPqtgQ3NwM4OoLoCKCvOjIvsT50ssP1gA+t2AqMGBoPcIqmpFFi4Onx7rW3KrzCHTa2AX/3ya4PA8lV1hXpMtL0N6PBIlDgz4/1ARNmjO4Yg3A/WSmxuBRaskli4SmLNjuifO+8Tib9dIGEY+Xuceu1LoKk9uW3OrM3f7UmxEULgz+cb+NoDmkEXguP4w8dk1j61s13ipS9ie84/35O482wZFt5F0du6G3D71HVzJqi36/nTDJw7VWLVdqDAFvyeavxgoMjB14EoWgxGIyIiIiIioqznNbux1r1Ke2F0shSIQox1HYChhSP4RWAf8ZlerPOsRpt/N8YXTUKpfUC6u0Q5wmd6sda9Clu9G9PdlV5swo4xznEY7hitvFA/lF+qv0UvEIVx98HqAn9e7G7Nabg0wWjqADRdmEUsAXRCCDgMl3IdH7e/s++zUEBgmGMkxjgPQIFhHZy3w7sFDe6V2mCIvfxS/yu/KsRD93et99RhYeuL+x73t5djXNEklNj6Wa6/M9CONV3LsUsTPOE0XKhxTURFofVsXK/ZjQb3Smz3brZcLtUKhSM4znCMiLuNNv8urOlajvbArqifYxcF+45DyR7feEw3Gtwr4TW7Mb7oIBTZSpLa/t6/1ye7Ue2aiMoIrz0Rxc7qM8IuCjDWNR7DCkfx/IhSan7LPGW5gIE5ZaemuDfJZRM2FIhCZSDy0ra3saV7veXzDRgY5hiFMa5xCYUn96WuQAfWdC1Hq19za/M9NnjqleUCmmA0ixCyBa3Pwy7Cp0as6VLPDlO1ZRVa1xHYrW4ny8+nVOHHe2X730ZERERERERERJQWZkBbNdS/HUP928Mr3B1AqX7+1Mhy/eo2t8bSudzV0a2vK3Gkrh99ST7z5+gXPvECiCGjej/fNOEoMDDStwnrC0eHPaW+UQKa7+fzzVt1kZeZNNy6fvIIoNAuMGMs8P7a8PpbTjdwwNDg9p42RsJZAHhCpowV2ICvTxX49XMS7dbTfaJ2+UyBqaN7v86GIVAdQ/hSbaU6mGjdTsAfkFEFYuWyL7bE/pwZ1cDwAcAWxVSgWSGBH0IIjB4EjB4UZwf7UKz70qiB6vJkh6ZkOqu/V7eN8pVVUFxDE3BI/FPyiChPdWuCb1SOuE0fqBRJa1cwhM0V/6UAWe/LbckNPi2wWZ8rE4U6ZETwXp26vPEHF0nMrAm+zwvtAoeNBkaUp/fcZvUOwIzxrdPcCexoA4Zk731n067OIviypkJfZ7eJiN8VEJEeg9GIiIiIiIgoq7X4mnD/phvR6NuasnUeXXYKzqq4NKoQI4pem38XHth8EzbvudDbLuz4zrDrMKlkalr7Rdlvl78Ff9x0E7ZlWChaT4eVfhUXDf0hbIqL9XvyaYLREgk9sA5Giz6wKx/pwgDcmgC0ZASj7V1eFYz27u75YWVVjjG4qupGZdCklBIvN/8PLzX/N6b16/oUShcesd6zBus9a8Ke/73hv8S4oknK59R3rcCDW27Rhs71dGbFxTi2/HRlXTrGDbGaW34mTht0YcwhQ190fISHtv5BG6AYyRH9j8U3B18BQ3H353g0erfi/k03osXfBCAYrHFV1U0Y7RqXlPaXdyzFQ1v/0Cs45vRBF2HuDjrRNAAAIABJREFUwDOT0j4RAa80P4kXdj4Rcbnp/Y7BBUN+kLTjB5GVde7VqHevUNZNKZ0eMSA1GzgNF3yB8GC0d3a/FnUb1a4JuGL4L5MeSpqo9e41eGDzb9BldiS9basx9bymRxNuq8AogF3YLcOCQ1kFi2UDh+HU1vFckYiIiIiIiIiIKA4yjovlIwSj2QyBiUOBFdvC6za2AF6/RKE9v4OIOixCo3IlGA3rV0a33PTjw0LRAEAYBuTwsaj2NiiD0eoaE+xfjmjpjHzVud0Axg9Rh4Pt9d2vBt+T3z1K4P21vZerrgCOnbD/cYlT4PxpAg+/03u58w4TGNJf4OIjBP74pn5dE4cC1xwr8J3HrftuN4DLZiZ+rKjVBBP5TWB9s3VwUa7r6pYxB1YO6QeUOgW+e5TADc+Fv4bfmpG7x/eBxeryls7U9iPdWjVT5WwG0J8/1/Uyoix4LPMrhlsMRiOieHRHPz0kYbowpnyxtim57Y0dFDxXJopWVZnAyQcBL36uX+abf9/7Rg3+/0fHCdxxloCRpn1t3rL4DhwXP2LilasN3gw5TvVN6u0+sBgoK+Y2JeorvIKbiIiIiIiIstpTjQ+nPNxkYeuLWNn1aUrXmQ+e2/n4vlA0APBLPx7eeid8ZnwBL0R7Pdv0WEaHogHAR+1v4cO2xRGX82veDwVGAsFoNv3F+tl+IX9f04UB6MK79MFosW3nWF6Xzd3r8PzOfyvrNnjqkxKKBqj3o1j66THdeGTrXTAVE8GllHh02z1RhaIBwDNNj2J792Zl3dON/8joUDQAeL3lGdS5l8f0HJ/pwyPb7o47FA0A3tv9Bj7t+CDu54f6746/7gtFAwC32YVHtt0NmYQZHH4Z/Ht7hqIBwLM7/4ktPcYSRBS/zZ51UYWiAcAHbW9iafs7fdwjoqD5LfO0dceWnZHCnvSdWMeGKg3ulZjf8mwSepM8wTHdvQmHohmaKQ7JDOrStRXzuN2muWIjS1j9vboQZCIiIiIiIiIiIrIQCMT+HHfk71Sf+Lb6e1NTAhuaY19lruno1teV6u8PkTVkvcWV23sVlQLHnQdxs3r+CACgqga1vgZlVd32OPbdHNQQRWDDmEFAaYTAve/sCUa7aIaB+88TGD0QcNiBuROBhdcaYSEOf/qmwBWzBcqLgbIi4PJZAn+9MLjMnWcL/HCOwKCQe+U4C4CTJgFv/NjAZTMF7jlXYNRAdX8OGg68/EMDk4YnfhF3dYW+rm5Hws1ntWj2n1C1g4P/v/5EgV+fIjCkX/DxAUOAxy8TOPGg3L3wvlwTKtAS3fSxnKELZCwrAsMsQthtAmMGqevqG/M8cYiI4pLKYDQzzw9T63YmdwPsHUMRxeKJy42w8yor98yXeCGK0/G+IKXE3fPje9+8vgJ4uy7JHcojuvNaHneI+pY93R0gIiIiIiIiipcpTazoXJaWdS/vWIoDiw9Ny7pz1ZcdH4eVdUsP1npWYXzRQWnoEeWK5Yp9KxMt71iKGf3nWC6jCz2yiwSC0Xixe9x0204fjKYuj3U7xxrIsLxjqbq8U10eD1V4RKzhFLsDrdjcvQ4jndW9yrd6N/QK2IrG8s6lGOKo6lVmShNfdn4SUzvpsrzjY4yL4bOvwb1CG7wX63oPLT0y4Xa6TQ/WdH0RVt7k246dvu2oKByaUPtr3avg1ryflnd8jOGO0Qm1T0SIOShxdefnOLzfUX3UG6KgRu9WfNaxRFlX65qE0a7aFPeobyQr4OvTjvdxWsUFSWkrGZp825MSUGsIXTBa8kKddW05DRc6Am0xtJPd51MuTYi2XRQkFM5NRERERERERESUt8w4wqU62yMuUlupr2to4sWZ7R59XUmEAKtsIN940nqBc6+GuOL3EDab9XJVNaj+Uh2M1rDZA4DfC0cTrFNbCbgK9fXfPUr0CjO68hgDVx4D+AMSdps65KjQLvCnbwr88bzg+o0ewWkFdoF7zxW45+uy177uKgjW7XX1HIGr5wDtHome97MrsAGuwuSFKxU5BKrKgM2t4XV1jRInIn+DnOIJRqupDG4vwxC4+VSBm74m0eUFih25vx3LNfcf2tUFBEwZFiCYq1o61eW67ZPvqiuAusbw8nUMiiWiOKQyGC3Pc9Gwfmdy29s7hiKKRYlT4P3rDNT+Kvwm7zr//VDitMmp399WbEvs+f/5SOKr4/g+iUdDk/qIXVPB7UnUlxiMRkRERERERFnLK7vhlRa3dOxD7YFdaVlvrjJlAG2abdoZw0XHRKF8pg9dZuS752YC3XugJ18fBKNVOUajQBTCJ729yocWjtBeCE9BLk1ggjugDmzSleva0RntqsU6z+qol28L7IaUMuwukW3+5HyWDS0cqQx9GOMcH3Nb7Yo+xdNP1XO6TU/axg2xiuZ4kMjy2nb8ipmpcegI7IYJ9Q/DHYF2VCCxYDSrfYJjNKLk2OnbHtPyXaZmNi5REr3R8hykZirg3PIzUtybvjPaNQ6butcm3E6zbwdMaWqDxFItWeOMkc4aZbnDcGJo4Uhs825MeB1jnOM05eOx06e57WMIAYHRmnayxShnDQRE2Psu2/8uIiIiIiIiIiKitJEWF9cKgV5pRXt1qH//lJ4uYOkCYO0KOEeOw/D+p2DL7vDvg4MXbObfxZmrt0u8uUpicD8Bv6n+bcFuAIW5cFXdh69bVosTLogcigZAHDgNNS88pqxb31mEbp+EoyD/9qWe6hVhO6GmjRVwWkzj0m1BXShaT4ZFEJQQAv2iuF9LqTP5r6H0eYFPFgFrPgUCftTaL8ZmhCcyqsKK8klzZ+yRJ6HBl0IIFOdAoGM0rIK/WjuBQaWp60s6MRgtSDYsB5YtgqxfDjRuAgYMAiqrIJy9N0TVzuMBTA57/s72fI8cIiIr3b5gwGx7dzBUee9/yzYlfuyYOBQ4ZoLAnAME+jmBOXerzwnN6HOYslqHR2L+SmBHm8RXawUmDguOTdcmORht+tjktkf5Y/QgYEg/YHuUl7B9viW5Y4w2t8T8FcDqHRKThgkcOyEYPh1qVYLBaGu2c2wUrzrN1MGaPL8pAVFfy4WvcImIclpXVxc++eQT1NXVYefOnfB4PHC5XBg8eDDGjRuHKVOmoLDQ4pYyZGn27NlYvHjxvsdS9YNyEixatAhHH330vsc33ngjbrrppj5ZFxERUT7xaAJmUqErwAv/k8ljurV1PtOrrSOKxJNFIR3uKI4rfk0wWkECwWgOw4mjBpyEN1qf7VV+XA6FS/QVpyY4zm1qgtE0+6PLFttMpZn9j8eS3YuiDv2TMNEtPXCK3jMgdf2JlW5fqSk6EGOc42MKcVMF68TTT9VzkvX3pkI0x4NEltdJVpCk1TgpNIQxrvYtXkuO0YiSo9kX66x0TpSgvtXm34UP2t5U1g0rHImJxYemuEd9Z1b/E7C07S3tmDJafulHe2AX+tvLk9SzxCRjLFYgCjF7wMna+rnlZ+Cx7fcltI7BhVU4uORwZd3sspPxWceSqMJ2Z/Sfg372AQn1Jd3628sxrd/Rvd57BgwcW35aGntFRERERJR8nJ/Xtzg/j4iIqIdAQF1uLwCKSoG2lvC6tvCbTsjm7ZA/PRWo+2xf2djat7DFPjVs2YamuHubtR5+x8T3/iURMAGr37BKnAi7wVy2ke++1Gs/CDP1GIiag6Nr7MiTUeO9QVt96t2dePVnxVm/zRIR6f1UVgRccqRAm34qZM79qiq7OiCvPxv4eOG+spohg7Cw7LKwZesbc+2vj01rHD/91Vbm7/ttoMV0upYuBqOV59H9buV/74H803XqupDH5RUGMCg8GE23HYkoO3n9cl94WUdImFl7t+z1uKMb6PAA7Z7w8LO9z/VpTtPiMWogcMwBAsccABwzXmDogP2f5Z9aBK1pspxzytZdEsfdY2LlnkAnmyHxp28KzB4f+3inrEg/tqqpBE6fnL9jKEqMzRD40XECP386ujflym3A7i6J/kWJ73Prd0ocf6/ZI1BaYsoI4OWrDQzu17v9YAh+/KIJ/aZwpim13wvUVKS2L0T5hsFoREQZKBAI4Mknn8QjjzyChQsXwu/3a5d1Op04/vjjcfnll+OUU05JYS+JiIiI0s8qTGtwYRVsCL8LZqw6Am1oC4TfeTPRC5SpN+sAFXUQFFE0rMJzknWciFWX2Yld/mZleSS6QCF7AsFoAHBGxbdQUTgUn3UsgUM4cHi/2TikdFpCbeYDl6GegaUL5NOFQRRp2tEZ6hiBH4+8FYtaX8R6Tx1MGfxV3i/9aPRtVa870Amn4QorUymx9UM/W+QQh8GFwzGt/9Ha4AibsOGqETfh9eZnsKbrC3h6fHY2+rbCL8O/71D1SfcZYYMdTsOFTrM9vB3Ftrb6rBlSWAUjDceD9sButAd2h5XHGhyiO34UiEJUFAwJK+80O7DbHz6pPlmhYp2B8NdkL13AYyysguCyKQCPKJPpgtEEDEiE36JS5twUfso0i3e9pP0MObb8jJy6CKfKORo/GnErFu96CRs8dTCl9W1hJSS2eTcp61p8TRkUjKb+HsWADUMKh1s+VwgDIxxjMXPAXIx1HaBdblr/o+GyFWPJ7kXY4d0cU/8KDQeqXRMwt/wsbXDxGNd4XDPiFry16xVs6l4LqXhtSu0DMKl4Ko4uy43f7C4Y8gMMd4zGl50fo8TWD0f0PxYHFB+S7m4RERERESWM8/OIiIgoLXTf9xoG0K9MHYzWHl4mn7grLAyrumMF3h6gCEbLsyCi1k6Jq/6zNxTNWqmj7/vTl6TfD3n79/QLlA+BuO2ZqNsT9gKM/erhEJtNSBE+f2J+gwtL1gHTx8bT29xgFex11qHALacbqCoTWBfIo/fdS4/0CkUDgBpvvXLRuh2p6FDmao1jOkvt4OT3I1uUWwWj5dHUIF3oS3lx7vw+bkU2bob88/VRLz8woBhLAWjOo32GKBP5Az3CykKDzDyyd7hZSJBZePAZ4NV/lZsy35oh8E69hJTA1NHBILQ5BwiMrdCHL1sdufNh9HjzC3JfKBoABEzg6v9KHDQ8tr9++ABgyfUGrviXiRc+319eXQHMqhW4/SyBQnt+fE5S37h2rkCpE/jXB/tDsHa06Ze/+UWJu7+e+D530wuyRyha0LJNwB2vSdx5TmgwWmLr2tQKuL0SrkK+V2KxdTfg1lwGUTuY25KoLzEYjYgow7z55pu44oorsGbNmqiW93g8eO655/Dcc89h6tSp+Otf/4pDDz20j3sZu9GjR2PDhg0AgFGjRmH9+vXp7RARERHlBI9FONnPR90RFgATj8WtL+N/jX8LK7cK5KDYWYWY6IKgiKJh9V5N1nEiVp+2f4C/bb0trDya44oqSAoA7KIwoT4JITBrwPGYNeD4hNrJNy5DfetFd0D9+aQLndIFL1gZ5hiJbw75fq+yNv8uXNdwsbpPZifKMKh3fzTH3qPLvoYTB54Tc59UnIYLp1acH1Z++4afYoOnLqxc1SddiMZQxwhMKJ6M+S3zwp+jeA2sPmuuH31PwgGD8VjQ8hyebnokrDzWgDLd8aPWdSCuHHFjWPlHbYvxyLZ7wtdrdsS0Xh2roMekBKNZtJ+scDeifOYzfcrwRACoLByKHd4tKe4R5TuP6cbi1leUdQPsAzG138wU96jvVTlH4/whP4hqWSklflR3HryyO6yu2deEMa7xye5eXHTjlYrCIfjVmPuTtp6DSw7XBvcmw2hXLUa7avus/UxjCBvmlJ+KOeWnprsrRERERERJw/l5RERElDaBgLrcsAGl5QAawuvaWsPL3n4urGisd62y6UQvls02r6+Q8ET5k3Sps2/70udWLQVa1Tc7AgBx5/MQjtjmRTknHYqR6zZhQ+EoZf28ZRLTx+bvxb71ms395/MFvnvU/jA5l8X0k1zbevLtF8LKar2KYxmADS2AaUoYRq5thejoAq6s1FQkvx/ZotgBFNgAn+Kj0yqYItc0tqnDYgbEPt0wO737EmBGkXa6hzYYLTlT4ojyRsCUIeFlPQPKZFi4WUdImFlofXcGBJklUz8n8Mglsd+I2WoIFMOhLmu9ujz8M63bDyzdEFs7NZXAsAECz11pS1LPiHoTQuB7Rwl876j9ZU3tEoN/on6jvrUm8WhDKSXmLVO38+wyiTtDLutoaEp8net2AhOHJdxMXtF9JwDk97kbUSowGI2IKIPcfPPNuPnmmyFl70GpEAITJkxAVVUVBg4ciKamJmzcuDFsctbSpUsxY8YMPPDAA/j2t7+dyq4TERERpYXHdCvLBQQcIjkzl4o0YTVWgR8Uu74OUKH8pdu3BIykHSdipTuudEsPAtIPm9B/Zad7P9gtnkN9RxuMptnvdOVFRnJmKun6A8QWFJas/liJZdvpQjRcRjFcmr4q29H8vYXCkZZQNEAfimcV/BXL8rr2i4wSZXlXoANSSu0d66LVFdDPJvOZiQeeWoWfxbrtiChcq78JUnMfyoEFgxmMRin3/u4F2vDOY8q+lrbP8UwhhEB5QQW2ezeH1bX4LGbjpJju3MxqDEtERERERJRsnJ9HREREaSU1V7sbNqB/ufopbS0QAOSS1yGXvA40bga2hV85Xu1TB6Ot2JZfQUQ3PR/9xcFH1mT5Ntlcr68bUAGMnhB7m1OOQs3T9dpgtDtek7j9rNibzXZd3RIPLpZobFfX11T23pecFj9dJX75et+S7buA15+AXL0MCOxJMSkfDHHESRBTvtp72W3rgWWLw9oY5t+qbDtgArvdQFm+BDqF2BVjMNq0MUCRI8uPUyHk9g3AG09CvvQI0NEGFDqAsZMAXzdQVQNRfRBw/PkQRSUQQqCqLBjYECoYBJFb20Zn2SZ1edWA1PYjXeSm6ELt99IGo3E6GeW4gCnR0TO8rFcwmQwJNgvW9woyC6l389INS9PHxvc8wyJLzcz0QWKCpJTYpMj8jsfwAfkxBqDMMkg97R4A8MlG9Jp77w9I/HuJxHsNgNsbPP85/kCBkw5S77td3RJ3zg8ej1XW7gQ8Pglnwf7nf7Q+un4fNwF4c3XwXCxUfSOD0WJV16iZV10MlBXz2ETUl3jFJBFRhrjmmmtw33339SorLS3FL37xC5x//vkYOXJk2HPq6+vx6KOP4s4770R3dzcAwOv14jvf+Q46OztxzTXXpKTvREREROniNtUzBRyGK+FAj710gSseszMpwSEUpAu9AZIToEL5S7dvFRnFaXv/6o4rQDC8qsTeT1vvl+r3Q0Geh0Gkiz7USv35pA340rQTqwKjEHZRoAzQUwVR9HV/rOgCAlV90od+FWmDNFTBWfqAtfSFccQS7GZFFxSma7/Ipv6F1oSJbumBU8R21+jw/lgEoyUh8NRq+zAYjShxzRZBSgPtlcry0IuJiZIlIANY0PKcss5lFOHI/nNT3KPMNLCgUhmM1uzPnGA0q7BbIiIiIiKiVOD8PCIiIko7UxeMZgCl6mA0tLVCPnIL5D9+a9n0WO86bd38lcDxB0bbyez1foPE6h3RL3/VMdk970/e/j1tnbj4eoiCwpjbFGMPRJVzdSLdyjkdHolj7zbx4Xr9MjUhP6G6snQal2xthLzqOGDDqvC6/94DXH03xNk/CD6u+wzyB0cr2xkYaNauo7kzf4PRWrui/029wAb86mSL9JQsJOu/gLzmBGB3SNJZ457fOD9eGAwOfOEfwP2vQ5T0R02FOhitPnN+Au1TO9okdrSp68ZWZPdnWDSklMD/PRDTc8o1xx+PLxg6kmthg5S9TFOi09szvKxnOJlUhJthT/CZ7BVutvffXbzUImUcduC6E+P7jLY6AuX6zLtk7qP5Opak9BJC4PuzBR5cpH63Xv0/ifvPE/AHJE59wMSrX/au/+ObEj8/QeD3Z/Y+frR7JI6LcL4JADN+b+KTXxsQQmBDsz5EraeRzg48dFE/HHOXibWKMXUw5Itjo1jozkNqB6e2H0T5iMFoREQZ4LHHHgubdDVz5kz85z//QVVVlfZ5NTU1uOWWW3DRRRfhrLPOwvLly/fV/eQnP8HkyZMxe/bsvup2Tli0aFG6u0BEREQJ6DbdynKnkViYR08uTXCIX/rhk14UCkfS1pXPrEJMkhGgQvnLKlApXXSBUEAwvKoE6mA0KSX80q+ssxuxT2akxOkCtdyBLmV4piqcLNhO8n6ldRlFaA/sDu+TYt2p6I+Obh2qPulCv4qMYn3AWix/bwqC4HSKtAGsbpgyAEPYompHd6zTbR9dMBoQDDVLdCyl29aAPuAxFlaBqrr9hYiipwtG62cbgELNmEPm/PQsSpdP2t9Fi79JWTdrwAlpHddnknJNaGGLT73t0kF/bsYZi0RERERE1Pc4Py99OD+PiIioh0BAXW7YgH5l6roNqyDn/ydi0zXeBm3d9/9touHW6H57zmY3Pq8JnlO4/iSBScOz9wJgubsZ8Gvm1NkLIM76ftxt26bOBj7V15umhGFk77aL1b+XSMuL1AvtQFVZeFlWeu7vylC0veRDNwInfQuiqATy0d8BbvVvPwMDLdo2mjvCg+TyRatmOsuNXxMYUAQsWCmxqwsYP0Tg4iMEjqzJrfeZfOzW8FA0lbpPgVcfB86+EtWVAvNXhs9FqG/Mj/kJN7+g/zvHDkphR9Ll83djfkp5oFVb19IFFHHKP8VJSonO7p7hZT3DyaQi3Cwk5CykvqM73X8RRWIzgFInUOrY838ncMgIgUuPFDh8THyf0VZDaF2Gdq5oSeK03nJOM6I0+cWJ+mC0B96UOGNyMPQyNBRtrztek/j+bIkR5fsPBv/50Pp8c6/PNgPv1gMza4HrntaPEad1LYFLujHDvQSXe5/CiJJ3UVNZqAxGq8+caYVZQ3ceUpMHocVE6ZatX7UREeWMNWvW4Morr+xVdsQRR+CVV15BSYn+ItWexo0bhwULFmD27NlYuXIlAMA0TVxwwQX49NNPMWhQPnzjSURERPnIbXYpy3VBNfGwasttdqLQ4K+kyWAVYpKMABXKX7p9KxXBTzpW67YKCfRbhATaRZbeajTL6V7LAMLDM00ZgEfzuaULx4q3T8pgtJD3gs/0avepZPZHR7ftPIHwbWQVoqFrRzVG0IVppfV4YBHm4jHdlgFmPcUacmf1GncFOlBeUBHVeq3a0ElG4KlV8JrH7IIpTRgit+6cS5RKzb4dyvKBBYPBO8RRKkkpMb9lnrLOLuyYXXZKinuUuXSf3ZkVjNb33+EQERERERGpcH4eERERZQypudpdGEC/cnXdyo+iarrM3IWyQAtabeHttHRCeXO3XOL1S7ypz3MKc8rBWb4tPlmsr/v6DxNq+uRJwD8sgtGaOoDB6ns+5qRXl1sHMI0ZCNhCUi6s3muHjUpKt/qEXPK69QJd7cCXH0B+5RjAYtlSsx126YNfMZ+tOY/vdbejXV1eUQp8f7aBq+ektj+pJKUEFj0T/fILn4E4+0rUakL06tX3ess5X2zWH3/G5MHXEPKD16JeVvxvFbBrJwZ9/3TtMtt2hwdZUu6SUsLt3RtcFvqf3B9u1qO+w7M/yCy0vqMbkPmRyZi1DLE/wGxvoFnJvmAzEfy3sl70Lt/zn8NuPaaLh1Vzub57JTMYbSCD0ShNhvYHXAWAWzMN/vp5Jg4dpX+jmxKYv0Li0pn7l3nty+jf/a8sl5hZK1BnERL8xsYT4ZKe/QUrPkJ15UxgRfhzGvIkbDiZ6tRTq1EzOLX9IMpHDEYjIkqza6+9Fh0d+y8WHTBgAJ5++umoJ13tVVlZiaeeegpTpkyB1xsMjtiyZQt++9vfht3tkoiIiChXeEy3stxhuJK2DuvgkE70t2smpVFMrMKgkhGgQvlLt28V2dL3q5jTKIKAgFT8jKkLbgKsg9EKGIyWFlahVm6zq1d4pu4zK9hO8vbHIlsxoNhVQt8LVsFSyexPrOtQ9UsbjGYUw6UJDvNLH3ymFwVGYY92NMF0aTweWIWydQU6ow5G04a+af42q3a7TH2oWbSs2vCZiQeeWo0bJCS6TXdK9mOiXNXsU88iHliQp7fuprRZ1fUZNnevU9Yd3m82BvB8fB99MFpjxlzslokhtURERERElB84P4+IiIgyhhlQl9tsEJVVCV8MP1ATjLbbDTR3AINKE1xBBlvfHLzIOFo1id0rrM/JBf8HufBpYOtaoO6zYOHkr0JcfRdEzcHABn0KnJh+QkLrPnqS9Y1iWzvzKxitPsI9aE7ShOydPhl4NiRgrtAOnDM1/b/ZaG1piLiIvPdHEHe/BHTr50EJAOWBFjTaw68Ob+6QyMebcXn9Epta1HUjyvJge7TGmGT2+bswb/02qif9GMC4sOr1zUC3T8JRkFvbzu2VuPN1ifcbJNw+4F2Lt2RZcW797UpRHJMAACPHAUNHA5VVGBhohtN0w6O4jqChUeKw0Xmw3XLYu/USD78j0dQucfyBAt+fLfDC58B/P5RoaOoRdrYnyCyWsSGlnhCh4WU9/xP7ysPrhTL8zFWY/CCzZDMsupfr+2syg9HKOc2I0sQwBE6cBDyzTF2/ZB2wZJ31m/nyf0r87a0AbAZwyAiBeZq2VH7/isQbKwP4ZKN+mV6haACwdS1qKmYql82XsOFkebdeYvlWdV2mf8dElAsYjEZElEarVq3Ciy++2Kvstttuw5AhQ+Jqb+LEibj22mtx66237it7+OGHcdNNN6GsLLdua1BfX4/PP/8cW7ZsQXt7O4QQKCoqwuDBgzFmzBgcdNBBKCrSX6CeLN3d3Vi8eDHWrVuHlpYWVFZWoqqqCrNmzeqT9W/btg1LlixBY2MjmpubUVJSgsrKShx22GEYO3Zs0tdHRESU6bo1ITPOJAajWYVqWIVyUGy6LMKgfDLxABXKX7rwp3RefG8IA07DpQxpsgqrsgpGszMYLS2s9iN3oBP97fvPxa0+M6xCOGPlNNTnoqH7m1UIXzL7E+s6VNvJKkTDpfl7geD7qX+vYLTMOx4hVep3AAAgAElEQVQka5yhDYHU/G02YYdDONEd+gMorD+To9UV0AejWR3LomW1/wLB157BaETx0wWjlRdUwpTqC3ZUga9EiZrfMk9bN6fstBT2JPPpggu7pQedZjtKbOm/Qkk7FuNnNhERERER9SHOz4sf5+dxfh4REfUB01SXGzZgeOKfMw9uuwpzR72irKtrzO1gtLURwqt66ucEBsaWkZtS8om7IP98fXjFp29BXnIY8NB7kA/frG9g8qyE1t9/gAu/bboBv65Qr6NVfU+6nGSaEg0W+1ZNJXDNHHXCxU2nGnin3sTOHtMnbj9LoNSZmYEdsrMtuvCqjWsgz66NuNhAXTBank653diiDzypzoOL6OW/7oj9Sa/8EzWLPwZGfaSs/tvbElcdk5nvp3gETInj7zXxTn3kZX95cu783ZY2RxGMVuiE+P5twTAkewGMybMwtm0dVjgmhi1qdTynzPfqconT/mTCt2fa0ktfSPzwv5yrlGoloQFmex6XOEV43b56dV1RFgSZJZtlMJrmVDFXJPMcojwfwkEpY93wNQPPLEvsDfvh+uD/318b++fYR+v1dbfv+EVYmdyyFjXTBKCY37uxJTfDhvvCGysk5t6rf91rB3MbEvU1BqMREaXRfffdByn3DygHDRqESy65JKE2r7nmGtxxxx3w+YIXmXZ2duKhhx7Cz372s7BlL774Yjz22GP7Hq9btw6jR4+Oaj2LFi3C0Ucfve/xjTfeiJtuusmy/b02bNhg+cXFt771LTz66KNh5d3d3bj//vvx0EMPoa6uzrJ/NpsNkydPxumnn44f//jH2klQs2fPxuLFi/c97vl6WNm9ezduuOEGPProo2hrawurLy0txbnnnoubb74Zw4YNi6pNHZ/Ph4cffhgPPvggvvjiC+1ytbW1uPbaa3HppZfCbudHPBER5QdVqBAAy5CUWBUKBwzYYCI8AEC3fopdl2kRoGImHqBC+UsbqJTmi+9dRrHyGGIV9uNjMFrGsQ616v36WoVNOW3J+9wq0vQpdN+yCt1KxftDtw7Ve0D3eVtkK7YMcQsLp7MIWEsXq3VbBSX2JKXU7l9Wr6XLVoxuvyIYzeIzOVpWwWjJCDyNtG3cgU6Ah0WiuOmC0QYVVKLRu03zLE42pOTa5FmLVV2fKesOLjkcQx0jUtyjzFauCUYDgBZfU4YEo2nGdGkcixERERERUe7j/Dw1zs/rjfPziIgoZUz1DWhgGMCwMbG3d8zZwJtP7Xt4dNdi7aJ1jRIzqnP3Qs2Gpuh/qxo1MHNDGGS3B/Lfd1ovc/OF+sqzf5Dw3yYMA9d1/pnBaAC27AI8mulalxwp8IezBAaWqLf3wVUCS39p4JllEk3twImTBGbWZuZ+BwDYsjapzZUHWpTl+RqMZhXINGZQ6vqRNv/3x7ieNsZdBwETEkZY3S/nSVx1TKIdyxyL1yCqUDQAuOzIDD6WJImUEthiEYxWVglx5hXAUadDjNkfgiYu/RXG/kETjLbVC8DZB72lVPj9K/tD0Sh6xY4e4WW9wskESkLDzRz760LDzUqcQHEhYFgle1FEVsP0XJ9519IZ219oNwC/JoPIHj4sIEqZg6sENtxmYNR1mZdmeMHu/2fvzOOjKPL+/6memUzukxAh4UrCLcopcnqAgoiKJ4L7eK27rLrq7uO6ruu5uu4jK+oPb2VXdF3XY5FLWA9QkUMRYQHlEJJwGK4k5M7kmpmu3x9DQiZT1dMz03Pm+369eJHpqq6q7umjpvtb73rXc+HRAyiUhBWqHDhUCQz0bx6hLsVTn2h/34VdQHZNEOGG3soSBEGEkU8++cTt84033oi4uLiAyszOzsZll12GpUuXutUjCryKJkpLSzFt2jTs3btXV36n04lt27Zh27ZtuP7661FYWGhYW3bu3IkZM2bg2LFj0jz19fX429/+hqVLl2LlypV+17Vt2zZcd911OHDA+4umoqIizJs3D6+88gpWrVqF3Nxcv+slCIIgiGih2dkkXG5VEgyrgzGGRFMSGpyewdZaAiPCN7RlUIELVIiui0z+FO7B94mmZFQ5PCOetGQ/Dg0xmoXEaGHByuLBoIDD82VH52NPU0Rm4PEoK8tD1CZpjwIT4pjVsPbIkLVT1C7ZvktQknyT08nKCaMo0cRMsLJ4tHBPQZnefkYrbxEKXAHta12ikowaVHos15Ka6UVLrqYledSDXW3VvB666qc+GkH4S6vagjpntTAtU1OMRhDGsrZquTRtasasELYkOkg1pcPMzHBwh0dalb0CveMLwtAqdyJVWk0QBEEQBEEQRGxD8Xn6ofg8is8jCIIgQoAqGUipmIBuuUBcPNDq+e5YBPv9K2CX3Qp+/2vg07JcywAMb96JHfFne+QvEs+LEzMcq9Gfd0iPCBY6HNwN1ImFUu0ckYtiWO+BhjSDJSSju6MM5eYcj7TqRg7X0Rb7HK+Vpy24hiEjSXs/9M5i+M3UKNlXWgIiP+jm9IxHAYCj4lfRMc+xGrEMpEcakBAXJceIn/B6Hy7QnbDyVpzhKMNxcw+PtBYH4FQ5TDEi6dlYrE8YE28BemUGuTGRQE0F0FgvTGIvrwMbNk68Xm4B8luXCJMOHG8BidGiE7uDY4O2vz9mSIzrLDBrE5e5RGYeafFAivW0yKxjepIVMXONjBW0vg41xs1oR33sDvx8EsNrX4l3ygDPnygEEVJ6ZTLseETBiCdU6JwHJuikOmvR3Sl48HO0BPndXGJGUVuLy0mM5g2nqt0P6ZYMr88GCIIIHBKjEQRBhIkjR47g0KFDbssuvvhiQ8q++OKL3QKvNm/eDLvdDoslOgfKt7a2Yvr06R5BV5mZmRg2bBhycnJgsVhQX1+P48ePY8+ePbDZgjMAds+ePZgyZQoqK91f1OTk5GDEiBFIT09HWVkZNm/ejKamJlRVVWHmzJl4+umnfa5r1apVmD17Nhob3Qdy9+jRA2effTYyMzNhs9mwZ88etxk6d+zYgbFjx2Lz5s3Iy8vzb0MJgiAIIkpoVsXTD8Yr4tmo/SVBSRSK0Ui6YRxawqBABSpE16ZRNvg+zGI0qbzKT0mgmcRoYYExhnglQXgN63yPkh2LVhYPEzMZ1ia9x5bsWEs0JYVkZmSZsMvB7bCrrbAoroFpTu5EsyoWoSYoiYhjVigwCcVgnnI6cb8h3KLEBFMSWhwCMZrOfobWdUPrWpdoShYulx2rvqBVRqDCU9n36JaH5LUE4TfVjpPStCxLd+k9IkLiO4gYodJejm31G4Vp/eIHoiBhcIhbFPkoTEGGuRsq7Cc80qrskTHaTXYPTzD4GQ5BEARBEARBEEQbFJ+nH4rPo/g8giAIIkSo4gmvwBiYyQQ+8TLgi397L8dkBiZc6lo1MdntPU3/1iKhGK24zI/2RhHV3l8jt3PlyOC1wx/4wT3grz0E7N0KVAX4RU2caUyjEpOQ4awRi9G60Ov4eomnkDEgzbi5eyMCvm+7oeX1aT0sXF5c3jXfLFdJzpvslNC2IyysXxHQ6oNb9grFaHanS7TXOyug4iOGkzrnsZw1nHUN0VFpsTwtT2NSsG49UaCWCpPWH0nGV/s4zhvYBfZfjHFI7NqMCOItHeVlHeVkLpGZu9ysLZ0J5GZAcjyJzCIdzjnw7rPga98Hjov7OpqYcoGe30nKDrBxEc6XP/q2gcPzgHPzgc2d5rIYdAbQtxudJ0T4OSuP4cKBwOc/Gl/22H7AkWrfhIJX1a8Q68v3/RdWC0PvTOCw4H5aXNF1xOf+cqTa9dtDxlUjaf8RRCggMRpBRBhO7kSNxsAjwhjSzd0MHXTsD5s2bfJYNnr0aEPKHjVqlNvnpqYm7NixA2PGjDGkfL0sWLAAjz32GABg4sSJOHr0KAAgNzcXGzeKBzUBQHKy+8DcxYsXY8+ePe2f+/bti5deegnTp0+Hoige63POsW3bNqxatQp///vfDdgSF3a7HTfccINb0FWPHj2wcOFCXH311W5taWhowDPPPIMnn3wSNTU1Ps8IumfPHlx//fVuQVfTp0/Hn/70J5xzzjke+bdv34577rkHGzZsAAAcPXoUc+bMwbp162AyhfdYJwiCIIhgIhWlmIyNOvFHYET4hpZAxRGgQIXo2sjEQgmm8IqQEiX1a4mQHNwhTWuTSBGhJ0FJFH5vna9roToWE0xisURnEYVM7hkqaaDWdjeqNqSdOqZlEtS2MhhjSDAlwub0nCHS4zuQ3GviJfssVCQoSaiB59tGvf0MLVGr1n6WXYcaVZ2RdhJUrmpfy9TAhKd6hHF6pXIEQXhy0i4fbJFp7g4mC4KI9egsIqR8Ub0SKlRh2kWZV4ZE4hqNZFqyhWK0Skf4xWh2tVUqRw23tJogCIIgCILoelB8XugId4wexedRfJ4WFJ9HEARBhAWZGO3UvYTNexx8/3+BIyXyMhQF7J5nwTJPC6vY/a+Cz/8VAKCwVbxuUYzLiPTKuuacw3Dl8Mh5z8DLSsFvPw+weU7a6g8sO9eQcpCQjPRW8SjsKh8kdNFOQ4t4eVIcoMSQuIRzDrzju2jYg/7DgaIdrj/t4mtRcfhfW4UFmRgtM8bnD+LHD4E/9cuAynjl+F0YWLhbmFZSETtitFod11bGgD/Pip1rjxb8kbnihMQUID1buh5TFOSniscWAMAFz6j45g8KxuZ3jf0YK9z5L3H8iD9YzR3lZZ3FZKyT3KztH3MTm3VMN5voWOpK8EWPAm/P93t9ZpbHx6gx/HOtppFjfZH3fB3JTGJ4/nqGy15UUXbqp1JaAvDGzZ7PqgkiXAw4g+FzH6V/enj5BgVldcC1r6mwSX6TdmRIyx48WvGENJ2vX4HC7JliMVoX/X3mC799X94P6ZMFPHwp9QUIIhSQGI0gIowax0k8fGBeuJsR8zyR/xqyLJ6z14SSI0eOuH3OyclBVpYxT2TPPPNMYX2hDrzq1q0bunXrBgAwm0/fcsxmM/r27au7nBUrTs8QYjabsWbNGhQWFkrzM8YwevRojB49Gg8//DBU1ZgHYC+88AJ27NjR/rlHjx7YuHEj8vPzPfImJyfj0UcfxZlnnonrrrsO1dXVuutRVRWzZ892m1Xzsccew6OPPipdZ8SIEfjiiy8we/bs9tlIN27ciHfeeQc33nij7roJgiAIItqQyVLiFWOjBWRSEZJuGIfWvrQHKFAhujYysVBimAffywb/a0kC7apcEmhm9JgvXCSaklDlqPBY3llEFqpjUXpsqfokYaGSBmptd5PThjRzxqm/5VFfbWUkKklCMVrne4vsXhPu64FcUKavn6ElUNPatkQlWbi80RmYGK1ZbQSH/EWvTIqiF63rZHse6qMRhN9U2sWRDmnmTFgUC2Szw2md9wThCw3OOmyqWSNM627pibOSPQcmEy4yLd2Fy6vsnn3VUNO5b9wRmdiXIAiCIAiCIIIFxeeFjnDH6FF8Xl/d5VB8HsXnEQRBECFCds9krsHdrGc+8Pdvgf+uAw7v88yXkg6MOA+sV3/35eNntP/Zv7VYWEVRuUt+FKuTj1Q3it9V3TiOYdpQoKwOOKcfw7n9IktoxVe/aZwU7S4DxFZtJCQjs1ncv6puUAF0DSFBQ4v4uEq2hrghweaHbwIvo89AYODIdjFaoeRadKIOqG/mSImPnPMwFFRLXpVlxvj8QXz1W9oZJlwKmC1A1hlAzUngiyUeWQrsB5FssqPBafFIO3CS4wLZ5G5RRpXNe8xFxbMKMpNiY3u14C1NQOVxcWJugde+TEGOAojdngCAl9dxEqNFEZxzrN3r2zpLfqVI5WcWM333hH/wlmZg2asBlaFoxNfFshhtxQ7fNy4zCRjdl+GHRxV8tR9ocXBcPIShWwqdw0TkUCB3tQIA/vlzhn7dGHYd46iyAXVNwP99rH0+XDkCGNHbdZz/+LiCz3/kOF4ryNhkA958EoNbf8QFtq+QxOWxefzt+Sg47zKhxK0kxiX6gcI5x/Id8vRdjylIstJ1iSBCAY2YJAiCCBNVVVVunzMyMgwrOz4+HlarFS0tp3XAneuLJg4fPtz+99lnn60ZdNUZk8lkyIyMqqrihRdecFv2+uuvC4OuOnL11VfjjjvuwIsvvqi7rqVLl2LXrl3tn6+77jrNoKs2zGYz3nrrLWzcuBHl5a4BjAsWLKDAK4IgCCKmaVbFszpZlQRD65FJRbRkLYRvaIrRAhSoEF0bmRwnVPInGTIRkta54OBiSSADg4ke84WNeMk9ornTdxmqYzFBIgftLM8KtyRMa7s7ijO0zom2MmQyuI7bzDmXCrXCfT2Qtl+n3Et2bJmZBRYlTrpeokkiRgtQKuZNXGaXXMv0ome/aMniCILQpkoiRssyi4VLBGE0G2o+QSsXT3U4NXMWFNY1Btr4g+w8jQwxmkafLsySWoIgCIIgCIIgYheKz9MPxedRfB5BEAQRIlSneLly+l7KElOAiZe5/ukl4/TzYZmMqL4ZKK8HclL1FxtNyKRDA3KAOecE590C5xyorwYSkgHFBOZjn4hzDnzzsXEN6jPQuLJSM5BVUSlMKj1mA5BmXF0RiMPJwbnrvBGRHB/a9gQT7nSCf/0feYZh44EfvvZeUO+BYHkF7bqP/NaD0qxldS5BTSzDOUdlA8ABxFuAasmrsvRYl1zt2SJPO/8qKE+867ZILT8K7PIU9Q22nsB3jb08lpeE/zWoYVR5CXUq7I4uIUUDIJbDttGzn9fV++alwFrVjBZFfKH59iAJQKKJYxqSOxG3TGC4amQXOVeI0HKkGGgQ2Yn0w7TEaC0tAGKzg7S91Pd1sk6FN3dLYbh6FCCbzJUgwsnAHAZIzusHL2WYO9b1LGJcwenj961vnJr3tvEd8uZmMNw4TjKR8Xffglc9p6+hVeUolIT/FsdQfzoYlNfL087Og89SNG6rA1QnWIpx7ysJoqtAkeMEQRBhonMgVHp6uqHldy6vslL8YiraaAsoCjXr16/HoUOH2j+PGTMGM2fO1LXuI488AovFc3YSGc8//3z734wxPPXUU7rXTU5Oxrx5p2e1/eGHH9zaTRAEQRCxRotEjJZgsBhNJkzRKywhtHFyp1RyB8hlUAThDbtql4r1QiV/kuGPCEl2LpiZJWZn9I0G5CIy96hb2XdrtAhC7z1LKgkL0bkRx6xQJI+nO7ZVS9IVf2rf69lmO2+FCnGQecReD3TKvfyV3MnSG50NuuqV0ahqr+8IUHjqTbwGUB+NIALhpL1MuDzLkgNAHmLENQK3CEIvrWoL1lWvFqalmtIxNvX80DYoysi0iKehjAgxmsb9WyZrJQiCIAiCIAiCCBSKz/MPis/ThuLzCIIgiIBQVfHyACWjjDGgu0sY07+1RJrv/62N3fc5MjFahjikI2D4ikXgl/Zw/bswBfz8RKjzbwdvFU/+4rYu5+Bv/xX8it7Aj9uMaVBGd2DkBcaUBYBNvBz97IeEaSXlkuM4Bmi2c9z2DxVZv1WR+VsVd7wjPmdSrCFuWBDgDjvU//db8Jk9gXeeluZjf1wEWL3H47JpNwB5pwXL2c6T0ryVgYWlRDSccyz4TEXufSq636si514VaXereH+r+FjKDNI1KmL4bq00iU2d7bkwr0CYt8D5k3D5km2xc1/zJkabe07XiQ/lbz4pTWPT5npd39qrL66sXyFNP3jSJcAkooMfjvqWv0AcNkEQgVO0M+AiFC7vR6tq7F6XZIJYLfK7Gd8OgjCaqYOBboKwN7MC3CwRml0/Rt6nUxhw7Sidfb493+nLBwDlpShIF8fuHzwJ2B2xe/0JlCJxODUA4PLh+vvnfNuXUH92Fvj0bPAZZ0C9bgD42vcNaCFBdB1IjEYQBBGjxNKg+EGDBrX/XVpaigULFoS8DRs3bnT7PGfOHN3rZmdn4+KLL9aV12azYfPmze2fx4wZg379vM9o0ZELLnB/qblhwwaf1icIgiCIaKJJFUc0xUskNf4ik95oyVoI/TRLvsc2ZGIrgvBGs8Y5KhMphQpZ/VrCH7tUjGY2pE2EfySYJGK0Ttc2mQwi0eBjUSbZsvNWN7meVKYVonODMabrPJDtNyuLh4m5gsP13Kf1CNbChWyfy/o5Hvlkkjsv36VMQhKwGM3L+rJrmV70SM/0yNMIghBTZRcPfM2ytE0ZFzvPnYnI49u6dah3imdXPT/jUliUuBC3KLqQidFsar2mjDwUyPo1DAqsLDZnvCUIgiAIgiAIIvah+Dxjofg8giAIokugiifzAgt8aBd7/F8AgG7Ok0hz1gjzzP+EY/tPsTngVSaUCYYYja9bBr7g10B9tXvCqjfAF/7WewHLXwN//WGg2iAhbVoW2J/fB7MY+B5lxo0olEj2imsTwHlsHkd3vMPxxkaO+mbApuG4S46BVxv8lT8CH74MNIivFwCAzDPA8gpd15cEL/FEky53E6OlqPUwS+JDvAmgopk3NnH8fgnHiTp9+TPDG8IYVPi2L+WJvQe4jplOsFyxGC3f9qNweXE5cKI2Nq5HVRphYleNAH53cew8g9CCb/sS2LBSnmHiZd4LySvAs2W/R7zkHbndCZRWC5OICGTG874JWQu7e89DEP7An7w14DIUyI/nWO1fA0CVzbdt654CpCZ0jfseEd1YLQwf3q64PXewmoHXb2Qo6C4+hh+ZyTB9qOfyODPw1q0MvbP0Hfv8b4/51NZCiE2jThU4XCVMIgAUV8ivXw/O0Pld/bQf/N6ZwOF9pxcePwz+pxu1fzMRBOEGjZokCIIIE5mZmW6fa2vFg338pabG/QVF5/qiiblz52Lp0qXtn++77z4sX74ct9xyC2bMmIEePXoEvQ1bt251+zx27Fif1h87dixWr17tNd/mzZtht59+AZSfn+/zjJJqp9nESkrkM38RBEEQRDTj5A6pMMuqeJ+hzhdkkhmZiITwDW/7MVCBCtF10ZIKyc7rUJEou65oCH8cknPBwkgQEU6k94hO36VMzGX0sahVXpOzESnmtFN/h6Y9WiQqSbA56z2Wd9x3snOio/RLJgBrdp6+Bmjda0Ilg5Mh2+d65V7+HltSMVqA4tdG1YsYTQ1MeKqn/6VHnkYQhJhKr2I0MRyxG5xFhAaVO/F5lXjWZiuLx+T0S0LcouhD6zytspejp7VPCFvjjrRPpyTGlEiAIAiCIAiCIIjIguLz9EPxeYd8qovi8wiCIAi/USUD4RVT4GUPGA4oCpiqon9rCbYmjBJme2MTxwu9Y+u5rKpy1EhChDKSjN9W/tHf5Ymf/gv8rgVg8XIjG1/xN691sJ8/CgweBQweA9ScBPZuBSxxgNninjEtCxg0GsxqrKmLMYbCfqmA4PW+zWnBiVqgR7qhVYad+maOd7foe+eZbA1yY4IMd9iB/7zlNR+b4xL9sfEzgJVHwC/KEGc0mcAUBTw3//S6ADKdVSg353hkr2rkiNUJuRat9+29eUyL0T58WZrG/vwBmCKQguZJxGhVOwDJq9Bl2zluPz+6jyfOuVQY+NJchl+dx7rMO1X+0RvyxPEz9O2H3AJ0d1bgeFEfZAwUx8AUlwP9uvnZSCJk1DX5HotUkN01zhUitHAvQmP25Ae6ylEOHgM2idM6P2+MJXyV4vYnwSERRUzqz3D0aQXfHQKaWoExfbWfQ6QmMKy+W0FxObD7GMABpFiBsflASrxO0dahvT63M//7fwO4T5hWVEZiURlFZeLlo/oAcWad39fHbwNOhzjtozfARl0gTCMIwh0SoxEEQYSJzoFQ1dXGTTfQ3NyM5uZmt2VZWVmGlR9qrrrqKlx11VVuwVebNm3Cpk2uJwGFhYUYP348JkyYgEmTJmHw4MGGt6GszL0H279/f5/WHzBggK58paWlbp/fe+89vPfeez7V1ZmqKlI2EwRBELFJs2QmJ8A1sNZIZMKVQMUhhAtv+zFQgQrRddGSCoVbjOaPcFEmRjMzi3A5ERr0fpdNTnEUrtFSLq3ymlQbUuASo0llWiGUhOnZd7JzoqNcUCYa7LiNWveasF8PTOJ+i165l5595Et6o7MBnHO/A+oandpiNNm1THf5OvaLXqkcQRDutKjNqHeKBwi3CZdYjAaoE+FnZ8MWlNuPCdMmpF8kFXoSp0k3Z4FBARfMMFtprwirGE12bw5l35MgCIIgCIIgiK4Hxefph+LzKD6PIAiCCBGSgZAwBS5GY5Y48JzewPFDGNaySypG21kae5PdHKsFVMlmZRv8eoE7ncCWNfIMLU3A4X3AwBHu69nqgIN7gNZmoOQH7UqsCcCc34JZT00Om5oJ9NbX1zGSvj0SgMPitPL62BOjfX8EaJGcop1JtkbnO1OuqsBP+1yivQYd4uj8oe1/svhE8EtvAVYv9sz3s/tP5+meB5QfAQBkOquFYrRK7bCSqEVVOXYe8W2djMToPJZ0cUJyAQGAnv3Ey3PFYrShth3Son484UujIpP6ZsAp8eGM6hP9UjTusAM/7Qdy80/f2zrnOXkMOPET8LmGXCj/TH0Vdu8FmMxIcTbgDMcJnDCf4ZGluJzjoiHRvV9jlbI6DlsLkJEIvPWNb/1Wi4mESkSQOLBbnjb7HrDJV+gqRkn9XkOMFlu/01SVY1+ZS4q2TyIWkjE0l67PRHQRb2GY5MPrDMYY+ucA/T1/KmnCHQ7g4G7wVYLfZF5I+OCvyD3rf3G0zvP5U0lF7IqrfaG0iqOsDhiWC1gtrv1RLPFi9u/uub8450BpkUtu35Glr8gr3b/d3+YSRJeDxGgEEWGkm7vhifzXwt2MmCfdHH6tf25urtvnEydOoLKy0pAAqd27PX9sd64vmmCM4f3338ejjz6KZ5991iOorLi4GMXFxfjHP/4BwBWI9bOf/Qx33XWXYTNxdg6MS01N9Wn9tLQ0XfkqKyt9KlcP9fX1hpdJEARBEJGAlhgtXhG/OPUXmTikmaQbhqAlggIAOycxGuEfMqkQgwKrYuxMqb4iEwC08GY4uQMm5vnYzmzxXYIAACAASURBVE5itIhELrVq7PRZIoMwWMqlJQft2CZZe7zJtIxEj3hUj8BNj2BNds82wQwLi/Pa1mAibb9eMZqfkjuZYEaFE628BVbm33XSm5QsUDGat34DoH/fEQThTpW9QprWLkaTxj/EVnAWEVo451hTtUyYpkDBhRmXh7hF0YmJmZFuzkS146RHWpVde/baYNO5b9yG0WJ7giAIgiAIgtADxeeFjnDH6FF8nn4oPi8wKD6PIAiC0I1MjGY2KO4jrwA4fgg31ryNxek3CbPIBnVGMyUa25SfbVw9fPMn4A9e5z3fbecC/9gO1m8IuNMJ/uJ9roGwqsR605mps6XimFDSrXd3qRit0hZ7A6c3Fut/35lkDWJDggT/cRv4g7OB8lLvmQGXWGjkBW6L2Iz/Ae8sRlMUsGlzT3/OK2wXo2U4xXLq//6ku9lRxdEa/XK9NjJjdA4hzjlw7KA40WwBs0pikvLEYrTRzdukdVXHQIhQlcY2RPsxwr9YAv7UPKCpwdXfue0xYO697bI3XlcF/vAc4L/rvJbFpt+gq05mNoP36AMcKUFBa4lYjCYPjyHCRF0Tx9xFKv6zy/8yrh7JkJoQW/0TIjLgmz+VprEZ4t9dIhST/PjkMSRG23qI46pXVBzxc56Sm8bReUwQneEbPwJ/8ufeBdeX3Qp89Ibn8iYbCuwHcBSeBreu3i86Uctx9Ssqvjng+hxvAZ67jmHeeQqKysXX5oJOIlZ+YDf4H68Bjh7wrfLSIvAdG8CGT/Kj5QTRtSAxGkFEGCZmQpbFR80rEZWMHz/eY9nWrVsxbdq0gMveunWr2+eEhAQMHz484HLDidlsxpNPPom7774b//znP7FixQps2bIFLS0tHnmLi4vx2GOP4bnnnsNrr72G2bNnh6HF/tHaarz0g/PYeTBCEARBEB1plgyqBYB4gwfW6hG3EP7jbT86uB2c86if9YwIPXIRVSIUpoS4Ne5oyaeanI1INnsO9pDJhEiMFl5kModwidGsSgIYGLhAUNNRKCWTS3mTaRmJ7DxwE5pJJRodxGiSNjfpFKyF+/6SKOtn6BSwyvJ5O7YSFfnU2I3OBr8Fko2q9tS+gQpP9UjPSIxGEP5RaRdPz8jAkGHp1v5JBD2BJAKhpGkPDjXvF6aNSpmETIuBo5ZinExLtlCMVhluMZqf/RWCIAiCIAiCCAYUn9d1oPg836D4PP+h+DyCIAhCNzIxmsmgoV15hcB3n2NS09e4vvZ9vJfmeY8+UQc0NHMkx8dOHFZJhfhenJEIpCcas5288gT4A9cADn0TgfH7ZwHv/QiseB1Y8pL+ii68BuyeZ/1spbGY8/KR6qxFnclTQFu1fTswaFQYWhU8Hliqv0+XEt75OH2Gt7aA/+5yoNbzHZKQgmFgj78DZna/NrGzJgAPLAJ/8fdAfTWQmQP2+1fAenUYXJ9X0C44ynJWCYv/xzcci2+OvXjQIj9ex0W79EpKbSVgqxMmsb8ul67GUjLAUzOBOvdjhwGY1eMnLD/e22OdKlv0/x6LVTEaLy0Cf7SDzMxhB3/1QbD8ocC4S1x5FvxalxQNNz8I1meQ/sp79AOOlKCw9QA2JU7wSC4ui/7jJtb47Qc8ICnarOHAqz+LrfsKERlwzoH3npOms/yhusvS6vuoMSJGa7FzzHhexUntMGIAwPVjGD7dzVF9Kkw8M8klIxpXQOcyQXSEl5W6JO3eZOsJyWC3/wV83TLX77VOFJ74GuvTPMVoJRL5V1fh5sWnpWgA0GwHbn+HY1gel/7G699BjMadTvDfzwLK/DOA87umAp9WgiXKx3UQBAGEdwQoQRBEF6Z3797o3dv9oexnn31mSNlr1qxx+zx27FjExcUZUnYbTqfT0PL0kpOTg3vvvRfr169HbW0tvv76ayxYsABXXHEFkpPdO361tbWYM2cOli+XPzjXS0ZGhtvnujrxQ3oZtbVeTMyn6NbNfabUv/zlL+CcB/TvzTff9KmtBEEQBBEtNDubpGnxirEzJsoG6tp5K+yqvmAnQk6jU/vNBweHEz5OpUcQ0JAFhVD8JEOrDTKBk0NyvTErJEYLJ/GSe0Sz013oFarjUWGK9D7YURbVWdzW3h6D5aJa6BKa6ZBoyO7THbdRJuPQkhSGCln7m9VGqNz7jNEyCZhMuHY6XUOM5kVupoW3+7pdInnUix7pmV6pHEEQ7sjESenmLBKxEkHls6pl0rSLMmeFsCXRT6a5u3B5lSO8UztKJcGm0PU9CYIgCIIgCILoelB8nn9QfB7F5xEEQRDBg8ukWgaJ0VhuQfvfT1Q8Js1XEt5HxoZzsFK8vMDIeVe++LduKRoA4Phh4PtN4J/+S/cq7NNKKH96Bywh/HEMAIDcfGQ6PQdTA0DV1u9C3JjgckAi15ORbA1SQ4LFd2v0SdHSs8GWH4by5law3gOFWdiMG8FWHQNbegBs+WGwCZe6p+cVtv+dKRGjAcCe4/qaHk0U+yEUyIjVV2XHD8nT8s/UXrfDvawjw1mJcHmVfI7tqEEmRmMMSDM2HD6k8DXviZefujfyxgZgw0pdZbHrf+Nb5T37AQAKW4uFycUx1heKduwOjve/038NvWoEcGKBgtL5Cn54TEHNQgVL7zAhNYFkSkQQ2L9DnjbtBnmaAEWRKz14jIjRPt0NXVI0APjNVIaKZxXse8L1r/wZBf8zjrQnBOHB5x94l6IBwMybwVIywG56QJhc2FIkXF4c3vlWw0pZHcdne8Rpz36mwuY5bxAAoH/3Dn2O7zf5LUVrZ9OqwNYniC6AQdOKEARBEP4wffp0vP766+2f3377bTz11FOwWPwfZFZRUYGVK90fDE6fPl2Y19xpBheHQ79sorpa/JIrlFitVowbNw7jxo3Dvffei9bWVixbtgyPPPII9u/fD8BlZb/77rtx+eWXaz488EZOjvtMsUVFRcjO1v+2tK09vtajdz2CIAiC6Io0S4QuJpgNH7QvE5a42mGDRUk3tL6uhh7BiV21w2wiGQPhG1JZUASIkLTaIGu3QyITspCoJKzI5FNNqg2cu2Y3VbkqvW8F43hMUJKE4rM2WZRdbYWdt0rXDRUyCZu7wM27REP6HXSQY8mEgxEhSpTscw6OFrXZqzBEum1evkstcVogYjFvUjWZ5FF3+Tra1qw2QeUqFEZBEgThCzIxWpbltGiJQRxEyHlsBGcRoed4Syl22bYK0wYnDkdefL8Qtyi66Xi+dqTKHplitEj4bUYQBEEQBEEQRGxD8XmBQfF5BEEQBGEwTklfwCAxGvJOy2R62Y/AwlthZ57y1uJy4OxexlQZCcgG3udliJf7Az8oGSmrtc7LfwD2it+BeDDpcrBE+eRmYaH3AGQ69+AQ+nokVVaLY06ilQM+vkYZ0jM47WiDt7YAP24FSsVCHyGWOGDwaLBe/T3L2/ypvjImXgaWdYbXbExRgOxccWIHMdrQFvl5s+sox9CesSWw8UcokBmrr8rqJb9nFQXIzBGntZHTC9jrKV/MbBWfqDKpWDRR1SiOt0hPAEyK9nnCG2qB79YCh/a69q351H0/LRPIHwoc+hGo9vEix5hr3cKzwcy+91E458DhH4HFfxZn+PwD8DFTwYt36pOO5hWAJaX61AY2YAQ4gMJWsVBv3wnAqXKv+7cr4VQ5dpYCPxzlSLIyjC8AeqaHZv8crgIafehajOjN0D3V1bZcA/t7BCFE43cAGzDcp6IYk59TaoyI0XYf178d3VMARWHo76VrQBCxCq+vBr7/GqjpILE2W4DBo4BeA9qvGfzgXl3lsf6nrklX/gr48GUPWbGsX7S/vOv2i37UEHYv3S5P65N1+m++7YuA28G/+QTsout9X8/e6nruVNpJejd8otvkCQQRC5AYjSAIIozcc889WLRoUfugsYqKCixevBi//OUv/S5z4cKFsNtPPxhMSkrCL37xC2He1FT3B4M1NTW669m9e7dP7dL64W4UcXFxmD17NqZNm4YzzzwTR48eBQCUlpZi27ZtGDNmjN9ljx49GitWrGj/vHnzZowfP173+t9++62ufOPGjQNjrP2YWLNmTftAeoIgCIIg3GlWm4TL400Jht87NcUhqg0pIDFaIOgRozl4K4BYnR6PCBYyeU4kiJCsSgIYGDg8XwA2SdotE1kZLYMkfEMm91KhooU3I54loEVtEn7XQHCOxwRTEuDwDGhqu96KpGltaN3zjEYm7up47sra2nHdeMl30MKb4eQOmJhZKqaTfX+hRGufN6k2r2I02TXD27FlZhbEMStaued0Ro1OnVO2CfAmLpNdy/Sip9/AoeqSyhEE4Y5MjJYpES25ExvBWUToWVu1XJp2UeaVIWxJbJBpEQ8YD7cYLZJ/mxEEQRAEQRAEEdtQfJ6xUHweQRAEQQSITP5hNijuo4OQyAwn+rUewn7rAI9sReUckEyGE41US14hZyYbs42cc+CjN3xfUa8UDQCb5X//NFiw+ERksjphWlVtC3iTDSwhNp7zy6REIs5IBS4dFrzzh5eVgv/+CuCAb78H2te/5k6wXz8NZjK5Pv/zaWD5617WcsHyDBg43UHMdl3dEtyf83/CbHMWccwYxpESHzvXopIK39+Zp8QHoSGRQKMk7igxxftvr7RM4eKs1jLh8pgQo8nuY14usXz7evC7LzK+QW0Mnwz85QOwFP3mKe6wg//1DuDjf2jne0r/fY/Nmqc7bzsXXgM8fQcK7AeEySoHtv8EjO7re9GxSF0TxzWvqljb7l3hUBjwwhyG288P/sSkH+3Uf/1MjANuHBc79w4i8uFHxSIhAMBFc3wqS9GQDqkxMinpg8v0bUecGeglvuUTRJeAf7cW/KHrgcZ6cYYrbgN+sxAwmYBP3vZeYEZ34DxXrCWLs4KfMxVY8Te3LAWt4n4R58DWQ8DYfF+2IDbw5zccAGSd6qfzZa8Bb4l/8/rEmnfBC84Eu+F3ulfh5UfA77sCOLDLI4098hZAYjQixgj+rxKCIAhCypAhQ3DJJZe4Lbv//vtRViZ+YOuNPXv24Omnn3ZbdssttyAzU/wrsXt39wFte/bon8noP//5j09ts1qt7X+3tHgOuDWS9PR0XHXVVW7LDh48GFCZEydOdPv87rvv6l63oqICn332ma682dnZGDFiRPvno0eP4uOPP9ZdF0EQBEF0JaRitCAITmTiFgBocsrlMoQ+vAlUAMDOdcwKRhCdkMlztM7pUKEwRXq9apS02yE5DyyC2X2J0KF132k+dY+QfadAcI5HWZltkjEtsVQozw+ZCKNj+2TSr44ysUQd92mpjCMCrgdacjY990jZ96m1X9rzmMQzTjeq/ovRbE7JS9pT2Lm9fcCZP8iOCY98OgRqBEG4U2kXP5fuZjk9LSOTDJKJjdAsItTUOKqwpe4rYVovaz4GJp4V4hZFPzIxWp2zGnY1MDlpIMglteHvixEEQRAEQRAEEdtQfF5woPg8giAIgvATp0O83GQ2pvwe/YAOwhmZDKQ4vHNpGE61TfymKtOoMMIdGwwqqBOMAQXDwB5/F+ycIIptAiBz2FDh8mpTJvgbj4e4NcFDr1jposHAV/cpSE8Mohjtpfv9lqIBAJa8BGx29W/5vu3grz2kf90OckW/yS0AFNdw1V6Oo+hhPy7N+vznsfWWuciPn5kxK2iWCR4SU7yvmyL+fZ3RdEK4vMoGqGp0H0v+iNG4wwH++E3BaVAbO9aDv/1X39ZZ+75XKZovsDv+D7jubt/XS04DLHFSAQgA3PA3NZCmxRRPf8Y7SNFcqBy4818cB08G//y699/66phQ4LoP98qM0WsnEZnIxGh9BoJliGN0ZCgaRg8e5fcyADhSrX8b8rsBJg1RHEHEMry1BfxPN8n7zIBLarZhhffnEdYEYPSFYC9/CZZ4ekwA6+lpOdPqF81Z1DX7RSV+PB9LsgJWCwM/dhD8Wd/7qTL4qw+CF+3Un//lB4RSNIKIVUiMRhAEEWaeeeYZJCaefutWU1ODq666Cg0Nvg1AraiowDXXXIPW1tMDW3r06IFHHnlEus7IkSPdPn/00Ue66vr000+xZcsWn9qXnp7e/vfJkyfdZs0MBmaz+wvijoFf/jB58mT07du3/fPWrVuxatUqXes+/vjjPm3vr3/9a7fPv/vd73w+HgiCIAiiKyAbVBuvJBhel1WJB5P8hCbpRuDo2Yd2Hr4B3ET0IhUqRcjg+0SZFErSbgcXB8iamUEBsoRfyOReQAcRmYbIKRjHo0y01dYOLdmW1vYYjWzbO+4vmVSuo0RD+zuwuf3v0YYQbq+MeC2xm5d7JOdcLn3TsW2y70CPkE2GlggQADhUqHAGrfz2fAFsA0F0VSod5cLlWZbuwuUEEShfVn8EJ8R93Isyr4zdgQBBROt8rXKEb6RbJEtqCYIgCIIgCIKIfSg+LzhQfB5BEARB+IFDcr8yWwwpnsVZgZze7Z/7txYL85WUR/+g+45USeY11RLK+AL/4t/SNPb0CrDbHvOtQGsC2Bf1YF80QHlzK9gFV3lfJ0xkdhNLjMpN2cCWtSFuTfDQI0YbkAN8+lsT+ucEUYpmbwU2rAy8nC8+dP2/bqlvK+YWBFw3s8QBPfq2f766fpk07wdbY+tadLDSt/y56d7zRC1Nkt9XCeIJHDvC0sRitMzGI8LlKgeqo3x+a3/EaNi9GTh5LCjtcePLD33Kzr9YYljV7PevgM35X//jBoaMRZpah2xJLMzBkwhocs9Y4t8a1+Ml24K7j07Uei+/ewpgf1XBhvtNGNWH4kiIEHP8kHj5xMt9LoqZ5EoPVY1+KdGy7fqvF4UUjkh0ZXasB2pPes3GP/+39vOIBSvBPquC8tzHYJ0l14LfdsnchjMcYtnw4aqu2S/6qcr3dbLa+uje+sk3PQD2ZYP7v0ff1lyF6+x7c4cdWL9cV16CiBVIjEYQBBFmBg0ahBdeeMFt2ddff41LLrkER46IH9x2pqioCFOmTMHevaf1/Iqi4O2330Z2ttw8Pm7cOLegr2XLlmHr1q1e67rpJt9nlRg8eHD73w6HA19++aWu9RobG/HCCy+gvl7DftyJhoYGLF3q/hKnY/3+oCiKR0DUvHnzvM50uXTpUrz88ss+1XXjjTdi0KBB7Z/37t2LK6+8EtXV1T6VU1FR4bEfCIIgCCKWaFabhMuDIUZTmCItl8RogaNHXGJXgxu4T8QmUqFSBIiQALkEQNZumSDQzIwJkCX8Q0ts1naP0BI5JZiMmqK4Y5kS4VibqE3SHgUKrCze8PbIkLWz4/6SSeU6yt/0fAfycsJ/PbAoFlhYnDDNWz+jlbdIJWN6pHuJJnHAYaPq/wCwRqf3de3cv/u6XbXrlqVSH40gfKNZbYLNKX4Gm9lBtMQgCzDsekERRGA0ORuxoeZTYVqWpTtGpIwPcYtigwxzN2lalT18YjSZ3D4YfWGCIAiCIAiCIIjOUHyeNhSfR/F5BEEQRAhxiicLgcnACfGGjWv/s6D1gDBLsdgPErXIhDIZRj2C/mm/PG3gKLd9rovhk8AscWDmyJ8IsWe2OIZkVcqlQLm+vnQ0UKkjvGDK4NPvSfm+7eDvPgu+5j3w+hrjGnK0RC5Q9IXP/gV13iTgn3/1bb3c/MDrBtwEjeOaNkuz/XAUUNXYeM/cbOewtfi2zgUDQy/34U4n+OZPoL7xBNRFj4J/uRS8KQjxNY2S2KFEsWzRjRSxGK1nvVj2CQB7j+tpVOQiF6PJjxH+zcdBak0nThwGX/IieFmpq97iH6AuuBPqL8aD/+sZ8JOunc+//xrqQ9cDRrVLUYBzLgqsjNQMAEC2UywecahAhf5HITGL3cFRohFK8KPYn2IY+3SUP7k/YFJIiEaEiVqx+ZRl9/S5KK3DOBa6RL5cL87Np3Oa6MLs/lZfvq+WActfl6cPHgOmSFRBkt923SXCWM6Bsjp9zYol6pp8v/i2yYv5ljWa+djwSWBmi9s/nDkW0JL+vj0f6qsPgf/zafDd7pMn8T3fuZb/6xngX88Cdn3jKQgiViAxGkEQRARw66234s4773RbtnHjRgwZMgRPPfUUSktLhesVFxfjoYcewrBhw/DDDz+4pc2fPx9TpkzRrDclJQWzZ89u/+x0OnHppZfis88+88jb2tqKRYsW4dxzz0VZWRkyMjL0bh4A4IILLnD7fMstt+Dll1/Gtm3bcODAARw6dKj938mTpx86tra24u6770ZeXh5uvfVWfPTRR5pBWFu2bMGUKVNw+PDh9mXnnnsuBgwY4FN7Rdx99904++yz2z8fO3YMEyZMwJIlSzys7DabDY8//jiuv/56qKrq0/4ymUxYsmQJUlNT25etXbsWZ511Fl555RXN7a+qqsL777+POXPmoFevXnj++ed92EKCIAiCiC5kg2rjleAMqk2UyVt0SL0IbfSISxw6JSgE0RGZCEmPLCgUyIRMsnY7JCIhmVCJCA0WFgcFJmFa23cp+06tLB4mZnygq+wYbxe1ySRhpiT/Z1j0A1k77bwVdtUOznm7zK0zHaVqViVBKupp21Z5OZEh45DtC2/9DNmxBeiTvknFaDrkZiJUrkr7aB2xq/7d15t9kJ2RGI0gfKPSXiZN62bxPkUjJzEa4SMbaz+T3jMuzLgcJibuXxHaxClWpJrE08uHU4wmlVZHyG8zgiAIgiAIgiBiH4rPo/i8jlB8HkEQBBE2HBIxmtm4CfHYNadFowWtJcI8R2uAxpbYebdTLXlFrSWU8YkjchkPy8gGhk8GhpyjryyTGWz2Pca0KwQUarwmfNkyG7zeN7FspFLtJbwg2Qrceb7reOLvPQd+27ngLz8A/vhN4PMmgpf9FHAbuL0V/Fadx5Ee9mzxnqcTLMGY9zbs1ofb/76i/iPNvHMWxca1SOsY+uMMz2tRvAX41fmhFYJwhx38kTng910BLP4z8I+nXJ/vmgpeIxZH+V1Xo+Q3VaI4TsmNNLEYrUfNj0iyileZ/LQa1fe1apu47ZqCzyb/J730Fb7wXvCbR0P9863gt4wGVvwN+HEb+Ct/BL+yL9T/nQF+5wUueYdRXDwXLKdXYGWkuJ4TPFzxF2mW97dG73FjFIcqAacqT1+8iQdVYllcoV12nBm4ZyppEIgwUifp76aK71daSAVGALjWiRgllJTru1Z0TwFuGU9iNKJrwo+WgL/xhCFlMa3rUM9+wsWPVjwpXSXWJPp6qG/2fZ2sJIBv/Rz47zp5pkGjgJEXeCxmZ/QBLpqjXcE7T4O/9hD4ryaBL/4zAIAvftL17OG1h1x98EWP+N5wgohyIn96CYIgiC7Ciy++iIyMDDz55JPg3PUjsL6+Hg888AD++Mc/YsiQIejVqxcyMjJQWVmJw4cPY9++fR7lWCwWLFy4ELfffruuep944gksW7YMNTWumWrKy8sxbdo0FBYW4qyzzoLVakVZWRm+/fZb2Gyup/VnnHEG5s+f79PMlNdeey0efPDB9lk2jx075hFs1sZNN92EN998021ZXV0dFi9ejMWLF4MxhsLCQuTn5yM9PR1msxmVlZXYtWuXxyyeiYmJeP11DSuyD1gsFrzzzjs477zzUFnpsr0fP34c1157LXJycjBq1CikpaWhrKwM33zzDZqamgAAaWlpmD9/Pn75y1/qrmvo0KH48MMPcc0116C2thYAcOTIEdxxxx246667MGzYMPTu3RupqalobGxETU0N9u/fr3sWU4IgCIKIBZrVJuHyeCUhKPVJBUYk3QgYLalLG3aJEIogtJCdnwkS0WGokQkXZe22q+LzwMyMC5AlfIcxhgRTImxOz4CuNhlXqI9FmeyrXdQmaU+opYFa29+s2mBRrOAQv+zv2FaFKYhXEoTys3YZXITLOBJMSah1egZQeOtnyLarrUxv+Ctkk9GsNuqSI9n9FJ5qba9HXpLXEoRPVNrFUQ0KFKSbu4W4NUSs4+B2fFktHgSRpKRgfNrUELcotsi0ZKPOWeOxvEoy42OwUblTKsGLFGk1QRAEQRAEQRBdA4rPOw3F51F8HkEQBBEmnCEQow0ZAz7nf4F3n0WhRIwGAAdOAmfmGlZt2HCqHDVSMVrg5fPmRqBcfP9nTy11/a8owHMfg7/xOLDtS8BWK8isAPlngl1zJ9goz8GxkUr/HAZIYgDuPuM5zC35AZnDfRP6RiJVEikRAFw/huH+6QxDejLwk8fBX33IPUNpEfjb88F+91JgjfhqOWDXiKXo0cdz2fHDnssiAHb2xPajJp63YH/xEAwo3CPM++9tHA8e4TgrL7rlGJUaISp3ns8wug/Dog0q9pcBI3sz3D2FYXxBiLd5w0fA+hWey/f9F/zDl8F+buDgeqkYLcX7uhLBA2tpwoBsFduPiKUy737H8fOJ0XkcVflzH6s84V9lomsJALS0AFUaZTbUAJ++I0777nP99Z/RB8L5T9uuZ2ndwK67C7jhPv1lykh13Z+uqV8KmX7invc47row8KqiGT0SlC/3AVMGh77+q0YAv5mqYEJhdJ7bRPTDOQcaJGK0FPGkhVooivxYDqJ/MGRonc99swCrGRibz/DoZQw90um8Jrom/E25sNUX2P8t0U5PTAHP6A5Uu5+YlzfIxdXFFRwT+3etc7Ohxfd1MpMA/txv5BnMFrCFn0plmOyBReC7NwNHD3iti7/xBHDWBNfzJr306APEaxmWCSI6ITEaQRBEBPHEE0/gvPPOwx133IGioqL25Zxz7N69G7t379Zcf+TIkXjttdcwevRo3XXm5ubiww8/xKxZs9xmOiwuLkZxsefsRv369cPq1atRVlamuw4ASEhIwLJlyzBr1iwcPXrUp3U7wzlHUVGR2z4SkZubi6VLl2LYsGEB1deRoUOHYu3atZgxYwaOHz/evrysrAz/+c9/PPKnp6dj5cqVcDqdPtc1depUbN26FXPmzMHWrVvblzudTuzYsQM7duzwWoavM4cSBEEQRDQhkp8AZw13OQAAIABJREFUYRCjOSVvpAnd6JGc+CtQIbo2ES9C8lFI5JAIAi0KidHCTYLiTYwmvlcE61j0JvOUCSlDfW5o1deo2mDRkGJ2ln4lKEkSMdqp7yBCtlmGvJ+hfY/UStcjGkk0iWdibVT9m1W00alvPdn1zBt6ZKrteUleSxA+IROjpZuzYGKm9s+Mda3AByI4bK3bgBpHpTBtcsYlsCrxIW5RbJFpycahZs/3J7LzPNjIxPaAXOhLEARBEARBEAQRLCg+Tx8Un0fxeQRBEESQcEjek5pM4uV+wi6eC/7us+hj/wkm7oCTeQ4dKy6PDTGaTIoGABlGPILWGqjae0D7nywxGezXfzWgwsiif3ft9A+32PGL4aFpSzCpkoQXPDyT4U+XdxjM/O2nYsHhhlVAgGI0vmmVPPHsSVBeXOu5TtlP4Nf0D6jedvqfbUw5bYy6wCUKBJBvP4RsRzkqzOIDasWO6BejyY4hwDVwftYIhlkjjL3W+wrfKJcgYMNKwFAxmiR+KEEcp+RGiliMBgD905ux/Yj44v7RTo6fT9TTuMhDdvxoitGOyOWnUm55CMqtD0uT1asLpDLQQGGfVYElhDZOj6VkgMPlYRvevBM74sXXufpmjpT46L4GBUJxhXcb0/IdHFMGB2cf/VQlXj7nHIZ3bhMLRQgiZDQ1ALJnjim+PxNUJJIcAOCqeBLpaIFzLj2fl96uYNaIrnudJYg2OOeAVp/cF3rp+B2Ym+8hRmMARjX9F9sSRnpk1yNLjTX8EaNloRb4ab80nc1fBqYhhGZmM/DAIvBfT9FVH18gngBJyMjzoSz8VH9+gogiSIxGEAQRYUydOhV79uzBBx98gDfeeANfffUVHA7J7FAArFYrLr74Ytx222247LLL/BqYduGFF2LLli34wx/+gJUrV7bPiNmR7Oxs3HzzzXjooYeQmprqc+AVAIwePRp79uzBu+++i08++QS7du1CeXk5bDabNDApLS0NX331FVavXo3PP/8cO3fu1NwfADBw4EDcdNNNuOeee5CYaPygmuHDh2Pv3r14+OGH8eabb7oFrLWRnJyMa665Bo8//jh69eqFdevW+VVXYWEhtmzZgtWrV2PhwoXYsGEDWlq0e9uDBw/G1KlTcd1112HChAl+1UsQBEEQ0UCLZGBtvBKcQbWJJm3JDOE/eiQn/gpUiK6N7NiSnc+hxtfrikwQaGYkRgs33qRWcilXcO5Z3qR7UmlgiM8NLSlZk7MRTkX++7/zuommJFQ5KgTlnPoOJNscKdcD2b731s+QfZdmZoFFifNab6IiEaPpFJx5tkffev4KT/XIVNvwRaJGEIRcmJRl6RycLn7+LHqmTBAiOOdYU7VcmGZhcTg/fUaIWxR7ZEoGlVTZPftKoUCrPxMpklqCIAiCIAiCILoWFJ/nDsXnUXweQRAEEUJEQiUAMBsc95GbDwCwwIG+9sMoiSvwyFJU3qYKiW6qNcRomkIZvRzxFNkCcMnsevQ1oILIJjWBITEOaJS84n+vqBt+EdomBYVKnVIivvLv4oxVJ8Ab6zUHP4vgqgp89i/wF+4D6iQmCQBs1PnihO69gLxC+XHqA2zuvQGX4caZ49rFaABwoW0d3k+7Tpi1JDyvsAxFJrZKsgJWS4Rca49qiLRKfgDn3LiJ0po8f8MBABJ1iNG6y62dF2aU4gMMFKat3AnYWjiSrBGyv33AVzEaLy0CSn7wuR424jztDCMvAD552+dyvTJ0bMilaADcpEWDWn6UitFKKoDhvULVqMhDjwSlpDx4MUFVNnHZPdL0rc9bW4DVi8F3fQu00GT3hMG0NMvT/BCjMUV+j1KjPPSurglwSNxuuTSvBNHF4ZtWg3/zMXBoL9BQG3iB3fOAPB1itMKzgF2bPRYXtJYIxWi7jkb5hcgP6jUu8zImH/5Anmi2AEPO8V7IwJFAUipgq/Oe1wchMht5vu68BBFtkBitC8EYSwEwEUAegG4A6gEcA7CLcy5XU/pejwXABAC9AfQA0HCqnu2c80NG1UMQsYzZbMbcuXMxd+5c2Gw2bNu2DcXFxaioqEBrayusVitycnIwYMAAjBw5ElarNeA6Bw0ahOXLl+PkyZP46quvcOTIETQ2NiInJwf9+vXDpEmTYDafvm2cf/75fg12S01Nxbx58zBv3jxd+RljmDx5MiZPngwAaGpqwu7du1FSUoITJ07AZrOBMYbU1FT07t0bZ511Fvr06aO7Pf4GRKWlpeH555/H008/jXXr1uHgwYOorq5GdnY28vLyMGnSJCQlnX5w6+/+Alz7YObMmZg5cyaam5vx7bff4vDhw6isrITNZkNSUhIyMjJQWFiIwYMHIysry696CIIgCCLaaJaI0cIlmSH8w8mdaOHenybaVf8EKkTXxcHtaOXiQQuRMvheKtOSiAMcXBwgS2K08ONNahVqEZm8Pa7AD6k0MMTnhlWJB4MCDs+34U2qTVOK2fl+Hy+7T6s22FW7VMQVrH6Dr8j2vTcRmFT4pvO7lB0rvgjI3NbT2S+yq/4JT32Rnfm7DQTRVZGL0XLcPsvCszi6XlAE4R+7bdtwvPUnYdq5aRcixZwe4hbFHp5CQxdhE6M55cHHkfLbjCAIgiAIgiCIrgfF552G4vMoPo8gCIIIIU7Je1KTsUO7WEISeLeewMljKGwtEYrR9EgwogGZTAYwRozG/0+i/erRF8xooV2EYlbkaV/W9g5dQ4KI7DjK6nwMcYntAQCOHgD6i6U7MvifbwXWvOs942U/Fy5mjAG3PQb+xE2ARITsQXI6kJENlBadXjZoFDB5lr71dcKuvh38rb+0f76v8lm5GC2Iwp1QIRP7ZEZGWJILbwPqv1sLnHORMXU1ysRo3uWBLCkVPKM7UO15o5qTsBm/kojRAOD8BSrW/U6JKjka51zjGuS5HXzfdvDbzvW9onOnAcMnaWZhc34L/vVqTVGjz8RZwW592LjyfCE1s/3Pxyv+hPfSZguzPbFKxYe3m0LVqohDzzW4OIihBr6KATvCHXbwe2cCO9Yb2yiC0IMfYjQoChhXwZlnB1uNcjNalZawOpL6QwQRYvjiJ8HfeNy4AhkD+/mjYCbvfRf2P/eDL3/dY3mB/YAw/8qdQLOdIz5SxM4hoEF7jhwPzkn4CTM3/kGazm5+ECzZu92VxScCN/8R/CV5WT7Tsx9w2a3GlUcQEQaJ0boAjLEJAB4GMAWS75wxthPAqwBe435GBjDGsgH8CcBsAJmSPF8DeJZz/qE/dRBEVyQpKckt8CjYdOvWDVdffXVI6vKHhIQEjB49GqNHjw53UwC4ZgSdNm1ayOqLj4/Heed5maWDIAiCILoIsoG1ViUhKPUlmMRP5GVCEkIfegUndg05DkGIiIbB91IhkeS8kEmiSIwWfmRyrXCJyGTtaVYboXJVeu8KlqhNhsIUJCiJaFQbPNKaVBscTHzMW1gcLEqc27JEmQzOaUOzxr061NssQypK9HKflKXr3a5ERTwTa5PT8zvRg80pCWzshEMiqvNG2zmlKy/JawnCJ6qkYjSxYIkg/GVN1TLhcgaGKRlXhLg1sUmmJVu4vMZRCSd3wsRCG9StJSuVPWshCIIgCIIgCIIIJRSf5w7F51F8HkEQBBFEHOIJ8WAKQtxHbkG7GO1TQXJJRXQPvG9DJtMwKUBKfGBl8/pqwFYnTswrDKzwKIJ5GRO9f8dBDBjeLzSNCQJaUqLMzlIiu0asw5ESn8RofN92XVI09qd3wLr1kKdPuRbIOgP8rqm66mVPvAvkDwVWLQYv2QU2YDhw9R1gcYHLoN3qyegO3mcQcPhHAMDwlu9xd+ULeD7rLo+8wRTuhAqZDMQIQaMR8IZaoPakdp6F/wv2zg/GVNgojjtiOsRoAFzXWIEYLalsH9b8VsFFz4klhdsOA+9/x3HrxOiROTS1Ai2S7oHo+OFvP6VZHltSBGxZC771C6C+GkhMARsxGbjiFy6Zota6+UOB1zaAr1oMvLNA7yZol/nSl2CDRhlSls+knJ6ULd9+CMnOejSYPI/BZdsBp8phUqLnuDESPdfgQycBu4PDYjZ+H8nuwRl6Qgm+/g9J0YjwkeLPxI8MClQ44SlG83fCh0gh2MJqgohGeG2l175bG2xJEfg1/bUzXf5zsAuvBRt1gb4yu+eBZ+YAVWVuy/u3FkvXWfpfjrlju0afiHMuFaOlJwLn9D39OTEOGJ9Ti18+PxqJvElaJrvpAd31s+t/C/TqD75+JVBx1CWqDgD26nqwDIr3JmIXEqPFMIwxC4AXAOiZ9u1sAK8AmMMY+xnnvNTHui4B8CYAb1fM8QDGM8beATCPc06j0wiCIAiCIAiC8ItmiRgjPlhiNJmwhMRoAaE1QLoj/gpUiK6L1rkpEyiFGpkUS9Z22XlgITFa2JGK0U4J+mTXumBJuWT3LA6OFrVZ3p4wSAMTTElCMVqj0waLRIwm2t/y+3SjtowjwkWJ3voZgX6XiSaxGK1RbQDn3GtAnN72dMbBJRF9XvCl36W3LQRBuDhpLxMu9xSjdY2gByI4HGraj6Km3cK04cnj0D1OPqiD0I9MjKZCRY3jJLIsOSFtj0xWamXxMDEKVyAIgiAIgiAIgiAIgiAIogvhlEwMaQrCs9K8AmDnBhS0lgiTi8Vz5kQd1Y1igUBGInx+3+3B95vkaSRGa2ftutKoFqPZWgC7U5zWUeLAOQeOH5IXdPKoT/XyDSv1ZRw61msWNnwS8KsnwV990Ht5eQVgmTnAjX8I/pvfM89tF6MBwCW2T4VitLI6oKGZIzk+et9FH6sRL48YEcjRA97z1FYZV1+jZGLFRHGckge5BcAPX3suP1KM4b20V/1sD3DrRH3VRALHa+VpncVQnHPgu8/lKySnA917gV12K9hlt/rVHpZXCParJ6GWHwHWvOdXGe1lPfbP8EnRACA10+3jpKZN+Dh5ujDr/jJgcBcMV3A4OQ5qOxNd+VTgcBVQGATXRnUAYkm+ZY2xjSEIvSSng5n9iN1XFDCIf7+oztgUozEGpAVneBdBRD47N2rLtdvofzaQnQfEJwLN4hsj+81zYFff4XsbzpoArFvqtkj2nAgA1uwB5nr/CRoTNNsBp9i3jNV3KRhX4P77lK/+CFww5qWdWb/0uQ1swkywCTNd5a9fAf7gdT6XAQC49i6SohExD0UaxyiMMTOAjwB0nibNDuBbAEcAJMElROvdIX0ygDWMsQmc80qddZ0PYDmAuA6LOYD/AjgAIB3ACADdOqTfACCVMTaLcy65bRAEQRAEQRAEQchpUZuFyxNMeqYI8h2ZwKhRMsCX0IdewYmdSwIDCUKC1rkZMSIkmchJ0na7RCRkJjFa2In3IrmTXeuCdSxq3QubVJv0GAuHNDBRSYLoIWSTaoOTiY95kURMKqfT2F7XepFxPZCKEp2SyJ/2dMl3GaAYzcEdsPNWxDHfZgRudGq88OuA3U/hqS/9LpLXEoR+Gp0N0nOms0CJScLjuSRoiyA6sqZquTTtosxZIWxJbJNplge5VNorQi9Gk4ntg/T8hiAIgiAIgiAIgiAIgiAIwhv8y6Xgb/759IKak0CVYBKZoWOB0VPA/ud+MGt84BU7JfYlfwbVe4HlFoADKLCLZTg/VQHNdo54S/SKiAD5AHyZTIMf2A3+/kKgaAfQMx9s+g1gEy8TZ9YQCbEJl/rY0ujF2xGy80h0vyes1AgtcDuOPnwZsNXJMzv0xzfympPAW3/xnrHwLKB7nr5CJ1wKeBOj5Z8J5PTWzmMgbPwM8NVvtn8uaJWfUxuLgelnhqBRQaKkXHwe9MkK/jWWf/sp+EeLgdL9rgXJ6cCoC8B6DwD//N/AsQPAAfHkVW7UngQvLQLr1d/3NhTtBP/geaD4e0B1AqVF4oyJKbrKY70KxREIG1chs3Qbzs0fgc2Sw+mDrRwPXcpxZm503N+KNESlvTM7LaipkEvnAGD8jMCloKdg42eAByhGw5gphrTFb1LS3T5e3LBGKkYrqeiaYrTSarkctDPF5caL0VSVS8VoGYnMJQNcsQh8/Qqg8rhnJj3XNoIIBudM9W89xqBwVdjB5jy6+9RVNrmwWlGi455MEEbCm2zgj8zRl3n8DDBFAR93CfDlh+I848R9GK/kFngsGtO0TZq9WPK7JlrhnOPldRwrd3DUNAHn5jM8dClDdgpDQ4t8vWTB8Am+6g3NugJ+TjTyfMCaALQ0+bwqGz8jsLoJIgogMVrsMh+eUrTnATzGOa/uuJAxdjGAVwDkn1o0EMBSxtj53EtvmjGWB2Ap3KVomwD8gnO+t0M+K4B5ABYAaHtrcxmAPwP4ow/bRRAEQRAEQRAEAc65dGCtVQnOlCIiCQtA0o1A0ZLVdMSu+idQIbousnOTQYFVMSBY1QBk15UW3gwnd8DE3B/dOSQiIRKjhR+ZiKz51L0q1CIyLSlWk2pDY4hFbVrIzoNGpw0ORSJGE7RTqxzZ9kbD9cBbP0Mq3dN5bGkdK43OBsQpPorRtGZC6oC/wlNf+l16+xgEQQBV9gppWpZFb1RjbAVEEMZT3nocOxq+Eab1TxiKvgkDQtyi2CXBlIhEJVl4X9Y634OF7P6tV+RKEARBEARBEARBEARBEARhOPXV+kQKu78Fdn8L/v0mYOGngctGJOIkZgrC0K68QgBAYWuJNMtLX3Lce3F0D1L3RYzGD+4Bv+P803Krop3gXy0DHnwDbPoNnvmPyvcdRl7ge2OjFG+H/aK6iXjJ7oTZYgpNgwxGdgwBQOapcCD+wfPgL9ynXZBDHOPSGd7YAH77ZO8ZE5LA7pyv+7rD+g4Gn30P8P5CeXl3/dUwaZIuxrsPDO9tL4WZ2+EQxLrNeF5F+TMKuqVE5zWpWPIKzmiJUGf4F0vAH/sZ0Hn45/eb/HqDz+eeCXxcDpacpn+d/TvAf30h0KQjTkenGE0kcGiv79cXYv793+C8A4OkeSbOV/H1HxQM6Rn5x9P1r6vC5bnpQKLVvf38H0/JC4qLB7vpAeMaNnkWMPZi/H/27jvOjeL8H/hnVtJVt7tz99nYvjPG9GIIzaETOtiUHzgkAUIgJkCAQPgmQAiBFGoghJJAgNA7JmAwmGLAuFKMbTC2z/3cfcXldEXSPr8/dLZ10jyjXZ3q6Xm/XveytTu7O5JGuyvtzGcx6/2EFldX3wPVIzrZLc2itn9x49O4tv+92qLhEJDsby/Jdsck53uKVLxGW1tid187lJcC9OhNwPP690yIjOk9EOrimxNbVllQzBHatnO7753bwGohujKybdA1J/Hh+JGG7w01bgIAQF18C2j+DGDz2o5lfnIj1MDhmoXjU5VVMXudAgQwpnUGPis8LKY8970mV133MuGBD3e9AnNWEN6ZT/jqFgtzVvDLdYsaXkIzJwMLZvILHDUWOPiETtVVdesJTPgL6IHr+BMknWPPDYeqCdHFSTBaF6SUGgXgmqjJvyGi+3Tlieh9pdQRCAea7Tgy/hDA/wMQL9r9NgBlEY+nAzieiFqittEK4B9KqVUA3oiYdZ1S6l9EtDLOdoQQQgghhBBipwC1wYb+R8IiSx9O01lcWIyEbnQOF1YTLZhggIrIX1x4YrFVAktZaa6NnjG8KuRHN2+PDtOCtv5z4LMKtNNF+nDvpb/9GJHuILIiY9tqYo9dGQlGY47bzXYTQqTvNKp7vbn3oMVu2hlQp9t2tuwPuNch3nHS38n30hTO57e3oxcqHK1nV30cBqMlGHjq5rzL6TmGEALYHNignW7Bg17ejh1FVR52BBXJ8WHDmyCmc9/x5WPTXJuur9zXB/5WXTCa4ZbjKcIdv1P1+40QQgghhBBCCCGEEEIk3defAPNnAPse3rn1hJjgJG8KbohXGQ6VGda2AhaFYKvY0Ko/vkX4zYnJ33Q6Nei7A6BM8xM0vfrPXaFokdNfuE8bjIY1y/QrP/0SKCs7+hqkg5Org5Nf/xKn/b9DUl6XVDAFo5WVAhQMgJ67J/6KmODDGB+9AtQaQvfaqSdmQ7UHHDplXXkX6NCTQM/cCSz/LrzP6T0Q6uQLgSNOgxo8wtX6Okt5vaBjzw0/ZwBehDA0sBI1Bfrn9d8ZuRnWaNuEZZkKRnvmTneD5p2Y8gIw9pfO6/DKP52FogFASTdn5Sr5YDS0teKIaX/G05c8i58+oX/uW1uABz8mPPLj7G5P21oIW1v087Rt59WH2HWpV5dAlSWvwamCQuBvbwCf/Q/03Wygrb2izU3A7ClA3Tpg6CjgwKMAKKB+QzgsYo8DoS68EWqvLDgmlPYMp3u2f0a6UROO8H+Oz0uOiClak/7L6Fnhyc9dBKOlICjFeAxW24DXHk5sxf13Aw4/JbFlheAoBTV8r/A5VUX/hNdhQR+ImeO5aHwwmnQNEvlozgfAd7PNZc69Emr3A4AxZ0CVhscMqWGjgMdnhM+/ViwEuvWEOugYqAOOSrwuTODwTevvwEm7TYqZvmFr+By1e1F2n0c7Ubed8MgnsTvXpZuAF+cQnp3J73i7R91Xnp4zBLUO3wvqT88n5XcidfYVwJ6HALPeBzVoTlBXLwmf31ZWA0UlUPscBhx+al79RiXylwSjdU03Aojcg33AhaLtQETrlVKXAJgaMfkvSqlXiEibNqCUGgHgZxGT2gBcFB2KFrWdiUqp/0YsVwjgVgCXmOonhBBCCCGEEJFa7WZ2XrFVnJJtFjPBIa3UghCF4NF0HhPxOQ04CVBiASoif7HBT57sucLG7VeAcKBPN0QFozEhUV7NXTRFenGhDjsCubj2aAql6gyf5YNPFWj3nc22H81MYFSq6mPCB4/6EbL0bb5I8znmPk/+UBMfHpaB58vh6tIcagIRsXfs7ex7WWLxHQ6dhpx1XCa1gaduws4kvFYI57igpHJfb1gOv+fkeN8skWLbgo2YueUj7bwBBUOwV+mBaa5R11fu64Pa1uUx0+uD6b+tYzadewohhBBCCCGEEEIIIUTC5k/vfDAaF5zkSUG/s0HDAQAFCKB/cAPW+gbGFGkLAsEQwevJ3QGvaxr00ytKNc9p6hv6wssWgFr8UEVRfRHW6MOr3IZV5bobT1b47avmq4HTFvhx2v9LU4WSbHWD/rmVlQAeS4FW1YQDf+KgUMBRiBzNmx63jPr94wm3MzX6WKjRxya0bErsNrLDwxFtNWww2rQluRnWWNsAtDK5l1V9Urd/Jf82oGZe8tc7bzqUi2A0zJvmvGwvh8FdldUdAq1itzkdJ16vYOqpMG1J9vdimLuan1fVt2PbIU2w507D9kxqKNoOyusFjhkHdcy4pK87HZRlgcr7h0Pc2u3VupAJRsv+9pJsrQF3z3lpCl4jLuAWAMrWfAO08uNFTNS9b0ENGRm/oBDppiw2GI1yPBmtnvk8l0vXIJGHaL75O5+69n6ocRP08yr6A2ddlrzbFzOBw9UBPqx76SZg/8HJqkDmzF4e/t1LZ9oSoM4wTKJHxLBUCoWABTPYsuqC3yQ1mEyNGg2MGi23sBYiisT/dTEqPELu1KjJDm5NARDRJwDmREwaBuBowyLjAURegXmdiJY42NSdUY/PU0oVOamjEEIIIYQQQgBAsyEYjQun6awSJrgF4Af5ivicBpwEEgxQEfmLa1tcCFMmuN2vcAGBXiX3Psg0NtTKboJNNppt/RXfVLZHbt1bg41sW8rE54MLxGi2m/gQDU09i5njv2k93DKZwO0PbNho5e9D0el9nc8qgE8VuFq3id92FqaWaOCpm7CzZtsPm/SdSIQQHdUF9cFoFb7YjrNcUCNJNJowmNr4DrvvP6H8LFhKLlknW7lX3/G9jglCTKVc+G4mhBBCCCGEEEIIIYQQ8dDcTzu/khAzItOb/BviqZLuQHk/AMDerd9qywRCwKr6pG86ZWybcMckG6NuCaH7VSEcfXcIr3ypv0Y1tHfHx2TbwFbDk23ueK2bgkFg3Up92TwLRjvnwPjDce/aMAahHA1zqGEunQzb0YaWL3S2Ii74MNrU1+OXOfwUZ+vKAeqosR0ej9s6kS375jeprk1q1BjuS1TdJzXbpGAAdNN5qVn5By+5qgc2rHJWuLw/MGI/R0VVaQ/g4OP5AnXr0Mfnx5gRfJFv1wIbt2b3fumxT/n6nXdQ1L63toZf0f5jklSjLujwkzs8rGrTh4C8/x3gb83u9pJsH37vrvySFHQ1qGe6AioF9Hjd0ZD4WMP3BgbvnnilhEglpaCY0M8cPZXeqYH5PJfrAquj0LoVsH93NuxT+sM+rifsCUeBPnZwzixEGtG3s2BffSLsEytgH9s9/HdcT9iXjwF9Ev6OQ8Eg7EdvAv77V35FHg8w5ow01RpAxQCgsDhm8uBALXwqpF3k27U5vkNq9/Vq/nk8M5Pw3Tp2Ngq8EfuujavN3/ejzjeFEKkhvcy7nj0BRP6E3wZgqovlJ0c9PsdQdmzU4yedbICIFgKYFTGpFEAO3tNBCCGEEEIIkSktTMAMABRZsT/aJYNpwK6bkA7RkdPXLtEAFZG/uLaVTYPvC61iKOZeHrr6B5mAQC7USKQPF7DVYjejxfaDmDt8pTQYzaOvUz0TfgPwIWWpxL0GzXYT/NznWFNPbj0tdjOaQvqwrmzaHyR6nsHu61y8l1wom5953UycLpNo4KmbMFqCjVabD5UTQuzCBSWVa4LRWNydmkXea7Vb8GnDu9p5vbwVGN1DOmmnQoVPP8qiPmAYmZEiLaH0hwQLIYQQQgghhBBCCCFE0s18D+Tf1rl1cAMpPSm6Id6gKgDAo+t+xRa57JncudnUzW8S/vAmYdEGoKkV+HQJX7Y6+jLXaw+ZVx4VjIaNq/ggu4HD49a1KxnaW+Gf4xWY+yftdP0ruXm9kAtGG9E3/ITpDxc4W5GDYDRauzy2rUVRN/0HqmeFs23mAFW1d4fH47e+aCz/1crca0c1G/V17tMd6FkSPwwkEXTnBOCLj1KybgCg5d85K7hqUcrpAAAgAElEQVR+JRDSByp0UNId6rZnoSznQ5nVr+81F1izFA+NN69v95vtrA1tnLmM8Owsvm7Hj+r4mP74E7asuuz2ZFWry1G/uK3D4xFMMBoAjH04d86JOmvFZsJpD7p7vss3A8FQcj9P9U369fXyBWDNih7m7kCvPlA3Psre9FGIjLMsWEx/crJzex/EfZ7L4nQNIv920ISjgWlvA9sagLYWYMFM0K3jQZ9PSn5FhUgArfwedPWJwNefhL/PBdrCf20twHezQbecD5rxLujeq4DnzMGe6pr7ofoMSlPNET7/HhT7G4YHNoa36IN3f/Kf7Dx/duvmiYk9jxcv63geQfddzZZV1/0Dqkd5QtsRQrgjwWhdT2XU4yVE1Opi+flRj0/VFVJK9QcQGdMfBPC5i+1MjXoscZhCCCGEEEIIx0zBaIUpCkYzhcU0G+ojzJwGnATtxAJURP7i2lYmgp84lrJQxARq+aPqH6IQbOZiqFcl/87Bwh0u1IFAaAzWsculsj1ydaozhGFkIpyCC/Dyh5rY46suiI57LcPvwWbtvGzaH5iCzEznGey+zsV7WeLppp2eUDCa7WyZYIKBp9H7xnjcBKkJkc+4YLTevn6aqdJ5ULgzfcsHaLL1A8WOKTtdzmVThAs2bAhugk3p7UzJHb/dBLkKIYQQQgghhBBCCCFEUu19KNSv7wPGnOFuuS8/7tx2uaAtb4p+K6+sBgAMCdaigrlu/tH3AOXADXDagoRHP3Fezx2hVjvQS/8wL+CP+i27lg9O0Q0q7uquONrC0j9bOKnfWrbM49MI/tbsb0vRlmzQ17m6H0B1652vyEkw2ltP8DMPOQHq1Rqoky50vs1ccf61O/9bSG2YvvyHbNF7p+ReG+LC9ar19zHqNGrcDEx5odPrUXdN5LfxyoPOVrKG31eqq++B+vV9ULe/CPXyIqj93d0wSw0ZCfXOBr5A7VLsPUhhxV/54dFbW4APF7rabNqYjmnnHAhY1q7jGAXagFp9cAUqq6G69Ux29boMVdYXOPbcnY+rDMFoUxYCS5mgw67mic/dP89ACFjdkNx6NDDdIsuZ89Yd1K/vi/3788tQz8+H2vPg5FZSiGRSig1Gy9IcT8fqma665fG6Bk19HahbFzudCPT2k52ulxDJQG89EQ5BYwsQ6Om/Ae89a17RxTdDnXVZcivnRHtofrSqtmXsImsbc3un9M3qxOt//KiI83AiYOZ7bFk19vKEtyOEcCdFtxURGRQdK9nocvno8oOVUj2JaEvU9L2jHs8jIjejzKZHPd7LxbJCCCGEEEKIPNdiN2unF6hCeJQnJdssMgSuNYckdCNRfoevXSDBABWRv7i2lYngJ5MST6k2uCd6vxIkvvOcT8IkMq7Yow+4A+IFkfHLdRa37nom/AbITDgFF+DVbDchRPpO4brPsemzzQX+ZNP+wNQWuPMMIuL3dS7eSzYYLYFQMadhaoEEA0/dnnP5Q00o96Wop6kQXQQRsfvJcm9ssBIXi0bI7Y4QIjVCFMJHDf/TziuySnBkzxPTXKP8UcEc/4IUxLZQI3p603enQu74ncpzYSGEEEIIIYQQQgghhDBRw/cChu8FHHceaNpbgNNgsGXfug9Ta0dEwIbV+pkpCkZTlVU7r+AMC6xEnbe3tty6LcDAXimpQtIs3QQ0urh3aXXEZS4iArbyN7UDAPijbvKyhhkgXN4fqjh7+hqk09DeCrcf24jJLwzUzm9qBRZtAA4YkuaKdQIRYYkp1GrJXOcrcxCMhsVfs7PU9f+E6jfY+fZySOS+CABGti1myy5mguqy2bJN+jpX9XF20zFq2AgUd4MqcnjtrOYbPmjTqYHDgD1G8/NnTA6HcREBWzYDBUWA1wdV2qNjOW5f2Xsg1LlXda6OAFT3XqDBI4DVS2JntoeyDalQ6N8DWL9Vv45pNYQT98q+G8DNWcG39ZEDouq7lg+tyMewTtcq+u/87/DAchTYrWizCrVFv1oFVOnvQdZlhGzCHZMS29eu3wIM059OJoQLUipr5fu4qstuhzrnV8mrhBDppCwo6I/hdo4mo9k2Ye0WYJP+nplxg9Ho+y/4mUvnJ14xIZJpoaGd7rBgZtwi6tCTklCZBAwdBXwW24dzj7bv8Q5O1i4yd3X2/05kYjrXNlEKKC+NOBevNwQ1j9gvoW0IIRLDR6KLXBU9Ulz/LZ2nK7+ng2lM7DwrOl5dtw0hhBBCCCGE0OKC0YpSOKjWUh42HC2R4BARpguE0gkYQqGE0OHaVkkGgp9MuGCm6P2KKRjNK8FoGWcK2DIFkRWlMJiLC8aqZ4LaLFgoVEUpqw+He+2aQ02uPscJBaMZAu3SzacK4FX6+5hw5xlt1AobIe08LnBOh90POQw528GmEJptZz3REwk8DVIAbdTqahmn5xlC5DO/vR0tzGe3wqcLRsu+DsMie329bTp7HB7T60dZdSzuanTBhjtw70mqcOcHmQjlFUIIIYQQQgghhBBCiEiqrA9wyAmOy9OcDxPaDn3wEmjsMKCtRV/Ao79W3GmDqnb+99ytr7LFlvL3e8saN0+0HZftWQz0jrw/2MZaoDnOtePmjtfHaU30kKd2lVX66XnigAMGYvdWPtTq61W5FeiwcRuwnemGMKKfAmqZdqATdBBUZQg3UgOGOt9WrhnU8XPT02YSrAB8ubI9zDCH1DD70HjhSjTnA9jnjQSdMRh0cl/Yvz0LtK3BvMyqRaBrT0mwphFOuCB8DORsXgs6tjvouB6gccNBpw0EndQH9pXHgSJCPmnGu/rlByVxX8msix69CdT+uRv/A74fwx2TCD9+3EZTa/a0K9smLFzHz7/g4Kjns8gQqnjShUmqVdeleuy6aVgxtWDstjfZslMXZ087STYiwh//Z6P3teZzqkG9gALm1JQLMkvE2kbCzRP1r7cpGA3HnZu8SgiRbkrBIv1nMMdOf0BEuGOSjd7X2Rhyo41FTHZQebyuYW/8i5/X4iIZW4gUobXLgXmfd35FlVXAKEMwcQqpE87XTh+/5SV2mZnLcmynFGXSvMTqf0B0VnnNN2xZdfS4hLYhhEiMBKN1PdG3MRngcnld+ZGaadVRj1e53M7KqMcVSqkyl+sQQgghhBBC5KmWkP5Hbi64LFnY8BYJ3UiY82A09wEqIr9xbcsUnpQJTgOJTOGAEoyWecWGYM76oL73m08VwGel7r3j6tQQ1N8FudhTCqXSH3bDBWK0UguamGAu3efGFKyyJVjveD2ZopRyfZ7RHOKPoW6eW4mnm3a633YXjOY0FA0whz2y62fO/4zLyDmaEHGZApJ6+/qlsSaiqyEiTKl/QzvPAy+OKTs9zTXKL6We7ihQ+vtncUG5qcKG3WbRuZgQQgghhBBCCCGEECJ/qRsfBXY/wFnhbz4LD4p1gebPAN32U6DOkIDiTVHfgYgQr2vqH2SLLd2U3QNeP1xIeIPPhIlR3Rcd+j/QHx2ExkQHp61hAqySGfaTg6xeFXi14TJ2/qVPZ3dbiraECXAAgBF9Aaqtcb6ykLkfBAWDwLrooXRh6ld3Ot9OLhocPQQReLn2Arb4Qx/nTjsiItQwl9yrDcFotGYp6IYzgXUrwhOCAWDGu6Cb9aEFAEBtraCrTky4rjsdczbUT34LAFA3PeFu2W+mgX5zKogIFGgDZr6nL5fMEElN+9mBnvozAOCPp5v7vL0wm/DLZ7OnXf3lXb4uVx6rsOfAjs+Hbr+IX9lx5yWnUl1Zj45Dlh/Y8Bu26CNTCbadPW0lmR6eSvjT24Qt+nvT79SrhA8yqm9KzmtDRDjtQT6grSzUqJ2uLrsdauCwpNRBiIxQFhT0n6Nc2/f8+1PCH94kNMbp1lteyh+j455rN7vrwyxEslEoBPrF4Z1fUf/doP78SkbGaQCAGrandvr+rfPYZe6YlFv7pEitAcKbfJ6Z0fO/6Bi9RNefwRcef31iGxFCJESC0bqe76MeD1JKVbpY/jDNtJ6aab2iHru6tTgRbQcQfbsb3XaEEEIIIYQQIkaLrb8ql7FgNEMwiTCLDn/iBGwJRhPu+JnPJRfClCklTH2iwwOCNt95LpXhWsIZn1UAr9LfJo8Lnkh1EAR3zCLoO5RkKpjCFCpnI8QsE1tXj/KiUBVpyxPTkSDbwjjcnmf4DaFfbvZ1JRYTjOby/MbpMR1ILPDUTfDaDm6fgxD5iAtG88CLHl7d/Wz0nTO4fa3IX4v887C6VT9o6JAeR6GXt1w7TySHUgrlPv1d3tMZjEZEbLip6TxQCCGEEEIIIYQQQggh0kX1GQT1+Ayo5+ZBPTMX6qNtQEl3tjy9+4yr9dPbT8Yv5NH3N+i0iBAvD2wc1PyVthgX6pMtnvjc3XWoEX0jQtGIgAUz4y8UPeh+zVJtMTVouKu6dEV79rdxwvYp7PwNW3PnuuGSjfq69iwGencD4CoYLWiev3E1X2b0sc63k4v6VAIFHW/oc4R/Blv8P9Nypw2t3wL4mS4w1X0MQSCTn9O3h6+mgurW6xeaORmoZ+Y5oK66G+qN5bD+9DxUYXtf6wN+6H5FKxeF96szJ/PbGpi8faUyBVK+/SSICN2KFP453hw08cqXhK3N2dG2np7B1+P2M6JC0bj2AAAHHZOxgI2c0qNj34TeoTpcUf8oW3y6/hQg5z3hcN9aUgCUM10P691339P6ehUwdzU/v9xu0M+44LrkVECITFEKFtOHO9eC0Zx+R+P2JwBAk581L9ziB9l8iKIQKff1J8BW/c3ZHRs8AurFhVDD90pOnRI1boJ28kWNT7OLfLc2t/ZLO0yan9hyxb5wQPoOtE0f1AoA2OMgKG+KfssTQmjJJ66LIaL1SqlFAEZGTP4JgL/GW1YpVQpgnGaW7qpO9Gi5OFnhWs0AIkcr8lePHFJK9QWg7+XPy+9btgghhBBCCJGD2GA0T2oH1fIBRkm60peHTKEukYJkvqOiENGig8V2yNUgJFOIkFdJMFo2KLZKsS20JWY6FzyR6pA+t+vn2mKqccdWE+65FXtK0RqMvheD+/VkSomnFNAc7rhjpSmY1c2+jnsP3ASdAc6P6QAQMIQ9crj9OgD09JZjSzD24rNpGSFEWF1Afxv0cl8fWCr2/kqGrttJq5PoGqbUv8HOO778rDTWJH9V+PpifVttzPS6YPpGuAWoDSHoB/lk27mYEEIIIYQQQgghhBAifymlgCG7huDQqNHAlx/rCz/1Z+Dnf3C0XtqwGnjnv/ELpigYTXXrCerVB2gM91sYHliGL4sPjCm3LH3300jIN6vdXYeqihjIirp1zhaKCEYj2wbWLteXMwX05IvKauz9zbeY0u0E7ewFa4B+PdJcpwRs8RMbwFXdN7xfICYgTysYpx/EWv0NhQAAA4c5304OUpYFGjAMWPn9zml9Q/z1qg1b01GrzmkLEuauBibN5/dP1X3ZWcD3X/Dz1q0AKvrHTl8aZ4T/2MuBN/6ln2dZwAkXQJVFDbnsMygcGuUy8IFeegBoMFxzrNrb1fqMqvfl59WtA7bUAb16Y99BCqZ+C21B4IXZhJ8fCXg9mQsTIyLUMplPANCzJKpuy7/jCw/bMzmV6up6xQ413qd1AVv8m1rCkSO6VuBcyCYsWOus7P6DFRau03+W6pPQFa+5jfDIJ+Zzu+o2TTDpiP0kgETkPsuCxRyriHKn751tE+ascFa2jyk1It65DQC0+IES/c2fI5FtAysWOv/+J/JH/92AyurEwmRr5nV68+rE8VAeT6fX0+l6VO+r3fvsbTgnmr+GsOfA3Dsnmleb2P50x+8AO0V8f40xePeEtiGESJx8E+iangVwe8Tj3yqlniaiNXGWux1AT810J8Fozkcc7tIMoMywzkRcAeDWJKxHCCGEEEIIkcVamCCyIqs4pdvlQmP8hmASYWYKdYlkCoUSQodrW5kKf+KwgURRYT6mcECfKkhqnURiuGC0uoC+E1iq26LbEMDiFIeLsttN4HXgnluxVYJG1KV026nkNChxBy6IzKt88FnO9wslHv3Psn7bZTCaiyC1YALHde51UFAo8/bWB6PJOZoQcXHHqQqfqZd2rNzpmiXSobZlORb652rn7V06GgMKB6e5Rvmp3Kv/HNczn/tUMAWnZtu5mBBCCCGEEEIIIYQQQuxkdW7QKvm3gW69EJg52dkCqRwkW1m1KxitTR/29eIcwvO/SF0VOsO2CUtdBreNiPx5/Ls5zhZqjvg9u24d0Kq/cSsGDXdXma5oUBUu/uRp/L3iGu3s178mHDcqewdPExFue4tw+yQClz8xoq8CNTcBtUkMRlvDBKOV9YUqMSVGdBGDqzsMLFcARjd/iS+KD4opun4r0Ogn9IoOiMoSkxcQLnjMxhZmNwEAPYuBctOlsHUr+XkBfZ8aeukBfpmCIqiLbwYt+xb4Zlrs/CNPjw1FQ3to3Sk/A178u6GyGp/wN8kCAPzgRHfrM9nncKC0B9CkT8yj+66G+tPzOLwKGNkPWKS/NxwAYMJzhD++RZh4hYUfDM9M+3pqOqGF2V2cqMk5I8O5hDr14iTVqovTHLvP3foaJgz4p7b4VS8QfnoYoXtRdu6DErG6HgiEnJUdf4jC3z9ITTDa87NsXPgfcw+jIrsZ47ZOjJmuTr2ocxsXIisoKOYE1LZzp/edKeAzkscCdivXzyMiYNrb8VfS0hQ3GI1Wfg/6v3Huzt1FfqneF7j7f1C9BzhehPzbQA/d2LnterzAiRd0bh3JcszZwF0TYiZfsOVlXN/vLu0iFzxGGHsAocCbW+dEbn9D2mFgr6gJtZqg1nZq7OWJbUQIkbDYW72LruCfACJHYfYC8K5SahC3gFLqOgD6X6UB28E2Eznrzp0zdSGEEEIIIURWyVgwGhMa02wY6Ct4QQqgjVodlQ0YQqGEiBaiIFpJn+FezASRZYrTICRTMJpX+ZJaJ5GYIuYYsTWkvwLMheIli9u2nqlgiiKrBAruLphxr7Xb55B1+wOX5xncdLeheCUWE4zmMlSsyUUwWiLHdS5YpcgqQSkT7ibnaELE5zoYLZE754m8M6U+tpPqDieWj01jTfJbuS92cAMA1AcS7P2TAFNIabadiwkhhBBCCCGEEEIIIcROlnmoFdnmITb0r1uch6IBwFaHI8sTMahq53+r2phgJgDTlmTn8J7aBqA16G6Z6r67rmfRTec5Wob823Y94AKsgHDQXJ5TldXYs+17dv4jUymrgx3e+gb409t8KBoAVPcF6MHr3a04TjAace0qX8L2BsV+dv679hK2+HUvZ2cbqm8ijHvEHIoGhNuQYq6tk20D61bwCwdjg9GofgMbDAYA6v7JUGV9oW5/ETj4+F2Bm14fcNRZUL9/nF/2sj8BZ/4CKExS/+sxZ0B5k9efUVkW1FNf8AU+fg009zNYlsJ711g4Is5uesNW4IyHbLQF09/GNmwl/Py//Hb/87OO5x9EBBgC8VT1PkmrW5fWd3D4sxChl70F+7XMYxe55c3s3AclqsbBvdPKSoCnL1E4aqRCeal+/9XQia54NRspbigaALyz6gwMCdbGzhgXG+YiRM6xLFhMXIPp3DTbLHF4P8ahFYCPC1Sa9Z6zlTSb+yUTEegP4yUUTZjVzAPd9lNXi9Bjt5oL/PiGcHgvZ8BQqHvegho4zNV2U0V16wl1f+zvVP1CG1EWir0x+Q4PfJhDO6d2NRv1dTYGVwPwRv0USKZgtH0Oc1stIUQnSTBaF0REjQCifx3cB8BCpdRdSqljlFIjlVL7K6UuUkp9BuBeYOcIxOhvjo2azUSfTSby61f0Ms5HzgkhhBBCCCHyWout71VQZOkDRZKFDTCS0I2ENIf0AXc6QdLfBU8IHVPbchsYlGpcGED0fsUUIuRV3qTWSSSm2OUxKNVBZK7rk6FgCktZroJNLVgoVEXaeW6fQ9btD1yeZ3BBI65fB6a833b3c62b8oEEjuvc8y3xlLKvHRemJoTYxW0wGhdmSbnUO0ukVF1gI77c9pl23tCi3VFVrLnNtUgJUzBauj6zpt9Lsu1cTAghhBBCCCGEEEIIIXZScYZa1a1jZxERMOVFd9vzFbor74KKDEYL8IPFn56Zndd6ahK410d1+8/j1BonuShS5ID7Nczr1L0MqnuZ+wp1Ne3hcD9tfIYtMmt5uirj3vOz47f1EX0BzHrf3YrjBKNhLfOiDMyPYDRVWR0zbXjbcnhIn3z44cLs3Ce98TWhxcG9AKv7GG44tmkN0Ka/6SsAIKDpU/Pxa2xxdcPDOwfmq7I+sO6bBPXOBqiXvod6dyOsO16CMoQ2KF8BrOv/CfXuRqBvJV8vh9ShJ3V6HTHr7L8bMGI/dj5NeQEAMKRC4bMbPTh2D/P6Nm0DPliYzBo688oXfLsuLQQG9oqauMJQyZMuTE6l8oDyeABNKMl5W19hl3luJnWpfjBLN/HPpeF+C6vutLD57xYuPDR8DlzGXMqvb0r8NXnBwfH395v/hh82fx4zXf32ETZsUoicohQU9J8FO4f2OUuY0KFo1cx9WQGA3uW/S3TQHGe80dIFwLJvna1L5Ld500DbdHEpseL9rqOuvAvWL++AmrQe6uVF4fPuyL+JK2G9vAhq9LHJqn1SqIOOAXr2jpn+ky3Ps8s4OX5nGy4Q9m/jFFoe5n/v229w1LnGaiYY7dhzEqyZEKIzJBitiyKi1wH8GugQH9wdwA0APgLwPYCvATwJ4MiIMv8A8GHU6nIpGO1hAHu7/DszCdsVQgghhBBCpFGmgtHY4BAmqEOYuQmUC9gOepMI0c4UhJOp8CcOFwYQ/RyCTDCaBQ8s5Ul6vYR7boMdUt0W3QavZTKYwk1diz2lbCcX9+F0qT1vcIsN92LOM7h9nfv3vpt2epACaLNbHa/HH3L+8y63TzOu3/B82ZBJOUcTwoiIUM8Go/Vzu7bOV0h0CR83vAWbubvpCeVjpbNqGnEBh63UgiZ7W1rq0GzrOyha8MCnCtJSByGEEEIIIYQQQgghhHDNE6cfxppl/LxVi4BtDe62t/8Yd+XdqNwVjLZPCz9gfPH67LzWU+Nw0P0Ou1UAfbq3PzC9T9EiQoqIWy7itcxrw8I3wRnd8hVb5Lt12dmeAGeBWwcNJmBjrbsVh/QBXzutZdrVoPwIRsMeB8VM8iEILxOMtnk7YNvZ146+43MxO6gyBIFg9WLzwpqQPVr5PV9e89qqku5QA4dBFTnvG6V8BcDR4xyXZ40a3fl16Gie504rF3V4eOwe8a9Jv/dt+tuXqf2M3g2x19JX8O+7GnlgkmqVJwbFHsMPauaPY3VN4f1QV8E9l4OHAj1LFCrLFJRSoFAI9O1slK+coy1f34mueAsd7D9Hc++JtHfRVSgLFtOnqimQO3EfS5jQoWijhxqOx6uXOFtJc5ydcc03ztYjhG0DDQ4bb8NGYEsdP7/9vFR5PFADhobPuyP/KvonocIp0is2GO3A5q/Z4vNrCXaLIdQ5yzQ0EeqY85XqvgoFXoUDBuvnjzsgap+1apG+oCb0WwiRerlzpiRcI6J/ADgZALPn7WA7gF8BuAbAoKh56zXlt0Q91t9ynKGU6obYYDRnUasGRLSRiL518weAv+2NEEIIIYQQIiu1MANri6yilG6XCxppcRHwJXZxEygXIM1d8IRgmEL3Mhn+pMPtV6LDfLgQIZ/yJb1OIjFFHnchW6lui8Uu6+M2TCuZuOBRbVlDPd2GzWVdUCIX7sWc93ChX27bVolHH4wGmIMmY8q6CEYLJBCMxj3fYquUfc5uQliFyEdNoW1oJX2nBS5QiZN9XdJFJvhD2/F54xTtvL6+gdiv2yFprlF+Kzd8jusDm9JSB/Z8xRB2K4QQQgghhBBCCCGEEBmn4gy1WqMfgkKLvgJduJ+7bR1+ClTvAe6WcSNiwGa5zQe21aTnZ2PXuEH3hw4HTtk7dvpVx6pdvz/X1jjfUGvETcOY9xcD8yTAKg5VEk6eu2DLS2yZP72VnVcPX/2SHyS9w/GjgFH1s9yvXBNmtQMRsUF9Kl/aFRNq8/PGp7TTmwPAuuiRi1ng71Octe1q5jIdtfhB155iXjig6Stbyw99VLvv76hOTqjTLwEKOtEPe78joUa4PA46pM78BT/zm2mgiM/gzw5T6B7naTz4EeHfn+rDaVJlqSHs88pjYs896PVH+JWdeEEyqpQ/NOGmx/qnordhOPPYh+3w/rsLqNd3P0RFRJc7am4C/e5s0C/HoOyTZ1ytxwknYbcnb58cO3GPg5K6nxMio5SCRfpjz5WfDMequtzY59RsiF/PkgLgkiP0/YKoxQ8scRho1sKfvNOWOtCff+5sPUIAcNLLlWwbdMOZfIG+lcC+RySxTumlLrg2Ztq4bRPZ8iFSmP/Ln4LqdFEz2Wep4betHd/Rrjw2dt90RBVwwJBdj6nFD9TM065HSTCaEBkhwWhdHBG9D2AvAGcD+A+AhQDqAQQArAEwDcD1AEYQ0cMU/ra+R9RqvtCsOjqOdzeXVYsuX09ELm+LI4QQQgghhMhXzXazdnqR5S4Exi0uNMZNwJfYxU1YCRcKJYQON/heQaHQis5pzywumKmNWju0e+4z4LUkGC1buA0WS3UQmev6ZDAkrMhFXU3HereBYKk+b3DLaVDizunMcdTte2kMRnMRdubquG67Dzzl1l/iKZVzNCEStDmwgZ3HBaMpSJCR4H3a+C4btndc+ZmwlCfNNcpvPTy94FVe7by6gMM7YHYSF7JanGXnYUIIIYQQQgghhBBCCNGBZR5qRZqAGiIC3flLd9s54+dQtz3nbhm3ooJA3lw9TltsbSPQ1Jp9A/G5EJnd+ym8fLmFXx2jUFkG7DMIuP//KVx7fMS1LDfBaIHIYDR9gJUuVCVfqb+9hjK7EaObdcPNgNUNQENTdrWn7S2E8/5lDkG6dIzC6xMs0G0/4Qtd+Fv9dEMwGho3A/5t+nmD8iMYTSkFdcktMdNv2/QndhkuGLlJDh0AACAASURBVDFT5q523qar+zDX1d/6T/yFdcFoXGDjxTc7rpMTaugoqAfeA/b/IVDEXM/zeGP/yvsDp/wM6s43klqfDnUbeSAw/jd8gfdf2PnfQWUK035r4YRR5nX+6nnC2sb07au4ENLRuwFnH9SxzVBbKzD3U/0Cg4ZD9ShPcu26NjUo9hhugTC/7kfsMtOXAp8sTmWt0qeB6UJXXhrR7v73ODDj3fD0UL22fH2CXfGIKO4+ffmSEfAhGDNd3a8JSxMiVykFZQhmumlidp0/c0yf59JC4JiRwCc3WBjWmwlGe+4e5xtrNgSjxVuP7pxF/vLgz9A/0Ung6ZwPgMVfs7PVk3Ny+2agp/wsZlIJNWP28sPZRX4ZvAb0yO9TWauk4YJYi3zAwJ7h/198hIV//0Rhv0pgQE/gosMVJl1tdXhf6dm7+Y1IMJoQGeHNdAVE6hFRCMDr7X9GSqnBACojJq0hojWaogujHrvdi0f/cvudy+WFEEIIIYQQeaw1Q8FoJUzQiJsgELGLm9ctQG0gotz+EVmkDTf4vsgqgRXvrr5pZgpyag750d0b/gU+wIQIeZUEo2ULt+EOqQ4icxuM5jZULJm446vbsm6ec5FVDE+WhbO4Pc/gQr+S+d67CUZzUzaQQOCp6fnKOZoQiakP6nsp+VQBenjKtPP4YLTc6JglUidgt2FqwyTtvO6envhBj6PTWyEBS1ko8/bGpkDsHRvrA4bbIyZRS0h/y+hUhwQLIYQQQgghhBBCCCFEp8TrW6ILqFm7DFjyDb/M7gfA+s/MztUrAap7GahHObA1HHAxqvV7tuzSTcC+lezsjOAG3Vf1AUoKFR68QOHBC/RliAsS0mkPRiMiNoBIF6qStwaPAACctP19fFE8Wltk0nzChYdmT1+/KdGj4KI03G+hZ4kKhxzWrdMXKu8H1b2X/sqoKRhtLRO2B+RNMBoAYPf9YyaV2Y2oCNahzlsRM69mI+HokdnThl790vk18ao++un0cdyhnUCwYz9BCgaADau0RdWI/RzXySm196FQD05J+nqTQZ16Eej5e7Xz6NOJUKf8dOfjfSoV3rvWg7sm2/i/1/XvXcgGJs4lXHF06ttZW5Cwsk4/7+ZTNecdXCgaAPzgxORUKp8w4aZ9Ns7H/vvamLtGf+736pfZtR9KVD0TVloWcdmepu7aP5XZDdryDX7AtgmW5e41qW8CtuiHfuw0OKgZwn7AUVClPVxtS4hsppSCl2IDAHd47SvCUxcTPC4/Y+lERFjBHM9evEzhvNEOxmnMet/5Bv2GfslTX+PnnX8trF/9zfl2RJdB9RtAZw5hZsY/n6ephqDf3Q/I+XBapRSoel+gZl6H6Qe0zEUPTwu2hopilllaMBx47zng5ifSVc2ELWf2T1V90OH85dIxFi4dY1jRFx/y8yQYTYiMyK6RoCIbHBf1eCpTbkHU432VUm5Gfx4RZ31CCCGEEEIIwWqx9QNri6zilG6XG7jbYjfDJvPdBEUsLuCEEzRcCBIiUjPTttyEL6VLiacbOy8y0Idr/z4JRssaroPRUhwGUWgVQbn4+TfVQW3Gbbt4LUxl3TyHVIepJqKIeW7NdlO487Vmuo7bfV2BVciGLLoJFvPbboLR9GGPJqbny7WLZiaMRQgRVhfQjyQp9/VxHUhMEoyW92ZtnYqtoUbtvKPLTkWBVZjmGgkg/HnW4YIRk40Lrc7kuacQQgghhBBCCCGEEELE5Ylzk61aTXDWoq/Ny+x7eOL16ayIgbtDAqvhZW5kNXd1dl3vsW3CUuY+HyP6OljBsu+cb6ytJfzv1npg+xZ9mXwKsIpnYDhg5kj/52yRj/gMvox4fhbfv9PnAXqWtF8f3bwWCIX0Bcv7AV6mr5YpGG0NE4xWXAqUOWnMXQQTLlgV0IcRZlsbenues31kVR+gf09m5nez468gENWnZv1Kvk3m26D8gYb98Hp9eNwR1ea+D1O+Tc+xb0UdYDObqtbtBlYvYdel9sngOUWuMoSbHtGPOe4DWLIhu86NElXPdAEsj7xsH9HmykP6YDSi+AFnOlzQ7Q4XNj6nn5HJ82chUmR061fsvJYAsLo+jZVx4auVhL+8Y+O+KYQW5rS3ssxhf8OFc5xvuD3AOhq1tgDrVrKLKdl/5C9Tv1cnh/XP3uTndZV2pTkvUgBKqUVbfLO3D5pVEYj7TpJF6pihDIN66afTwi9A//0r7Aeug/3oTaDP324Ppl7Nb6RX785XVAjhmgSjiWg/j3r8uK4QEa0DEBkH6gVwpIvtHB31+F0XywohhBBCCCHymE02Wmz9VbWUB6MxA3cJxIa1CZ6bsBUACCYQoiLyEzv4PsVBVIkw1SkyPDDIdErlwoxE+rkNd0h1UJ+lLFfHxZIMfj5cBaMZXjc368nk8+VwdQpSUBsklsx9XYmlD2n0h5yHnbkJPOX2aSbceUORVcK2Cz8TKieECNsc2KCdXuHNo873IilssvFB/UTtvAJViB/2OjnNNRI7lPv0n+f6ADOSLMm447fbUGEhhBBCCCGEEEIIIYRIKxVnqNWapR2uQ1LDJtCtP+bLd+sFNfbyJFXOPXXpH3f+34sQhrct15a76EnC5m3Zc3117Rawg+6r+5oH3ZN/G7BghvONtbUPuNeF3u1gCFXJN8rrBfb/IY71T2XLPDWd8MWK7GlPr/EZFLAim5OhDahf3MYHo4UMN33lgtEGDnd9w6qcNmCYNqhgRFuNtviLcwizlmVHG3pnPmFerbOyvztZad9XWvatuZ3sEIzqI7TGsF8aOMxZpboI5fUCexykn7l2ubaP0OFVwNG78+t88xvg85rUt7N/f6rfhlLAcM29ruj+a/mVjTkzSbXKI/13Y4NvJ9Q/zC5Wk57L6ikXLxiNtjUAW+p2TQ/xyUzfrnW//ZqN/GesxG7C1Q0Pxc7o1Qfq9Oih7kLkvgmNjxnn16TnPoeu/PtTG4f8xcbNEwk3vMp/nsscdAWyH73Z3caZYDRjeFVRCXDYKe62I7oQ0/cr8zkfffxah+NhzJrH/jLBOmWZSv1vG7fY/2EXebP76UCLu/F/mcCd81R003w/e/Uh0OVHgh7/I/DqQ8Bz94D+72zQ/40LB6brnHB+fn2HFyKLSDCa2EkpdSQ6hpstIqKphkXeiHp8scPt7AHgBxGTmgC872RZIYQQQgghhGgj5sdthIMxUskUNNIswWiuuQlbAYBAAiEqIj81M+E82RiMVmgVQTE/0UWGCOhCkQAJRssmbttXOtqjm/A1t8FuyeSqnobXLVeeL8dUJ12oCLuvS+C5ca8dF76m0xTa5rhswHYfdso93xKrlA2VI9hoZe5gJYQA6gP6nlQVvn7sMorpOJId3dFFpszbPhsbA/rOIIf3PAGlnu5prpHYgQs6rGM+/8mWzPMVIYQQQgghhBBCCCGESBsrzlAr/zagcVdSBr3+iLG4emQq1JCRyahZYo49p8PDqgAT0gTgUSa4JROW6O/xAwCojnefnzfNgQMxAu3XsLkAouJSoJy/hpaP1DV/hwXCNXUPsGVuesNOY414yzaZ27Un8iNfqw/pAgB1+CmGYDS+byOtZT5zg4Yb69XVqMIioE9lzPSqNn6f9H+vZ74NERGueclcjz0HAGfuB7w2wcIlR+qPIXTvVc422BbVR5oL6+szCKowtTeTzkbq6nv1M5q3Aw2x10CVUph0tQWfPhMLAHDja6ltZ0SE+6bo90ODy4AiX8d+GNRgSOM66qzwZ0m4orw+YMBQ7bw93v0z/jpW3xdmZR3QFsyec6NEscFoO4ZdRAV4loca2HX94U33nxdT0NPUlSfgwJa5MdPVvz6F6jfY9baEyHaHt87BtOVHsfNr4py3ptv2FsL1rxBsB9WKF4xGm9cCz93trgLR50U71nXHJewi6tWacJiqyE+m0CrDjbYpFALdNYFf7ZV3QQ0xpO3mEMWEvl+0VhNU2u6SAf8On29nuYYm/XscvX+ibQ2gR36vbxOz+MgbdcktnameEKITJBhNAACUUiUAHo2afFOcxZ4DEIp4PE4pNcLB5m6MevwykYxOE0IIIYQQQjjTEuIDyIo9qQ1G40I3AH6wr+C5CVsB+GAoIaLpAoSA1O8jEmEpC8VMqGPk8wgywYA+VZCSegn3uPeR4ybEK1FuwtcyGRzoZtumY3GuPF+O6bn5NecZ3L7OtB5+292Y7Tq/iOnmuJ5I2Cm3/mJPqTFcxW0QqxD5hAtGqvAZRpKwHUeyq1OWSB8iwpT66HsphVmwcFz56WmukYhU7tPcXhxAfSA9t7Zmv5tl4bmYEEIIIYQQQgghhBBC7GQZ0lN2iAyqmf4OX+7Ui6GGjup0lTpDKQVU7bPzcXUbE7ID4O1vsueaDxcK0Lsb0KvEMNgZAM350N3GAu0D7tcwAU0Dh4dfR7FLe6jXAS3fsEU++B5obst8m3pnvrkOE47e9d4SF4w26uDwvx4mGC0Y5DdgaFd5pzJ2EL5pn/TJYmBrc2bb0OIN5lCfaTdaWHCbB2/8yoOxBxj2E5tqnW0w2LFPDXGBjUygQZdnChSc8a52cnGBwvOX8sOopy8F6pkQhWRY08jPq9Jdzv2CP4apkQd1vkL5yvCZOb3/au10m4AVdamqUHoQEeqZoRflpe37rKgAxh72VviYPvtLErgH26p6/fSxWydqQ9Fw1mVQ+XiMFPlBKRzaMgeH+6drZyfyGUulTxYD2/XZZDHiBaOZwoZYgdh9EQUDADEhjQOGQvWscL8d0XUkGIyGpfOB7Vv4+YedlHidso3mOxkAFGxZj+GF+nDUkPIguD37++Pz5zxRE76cCrS5jLbxeID+uyVSLSFEEkgwWhellHIcZ6uU6gZgEoC9Iia/RkSvmZYjoiUA/hsxqQDAU0opNnZeKXUmgIsiJrUBuM1pXYUQQgghhBCi2eaD0Qqt1N79zBSq5DbkS7gPk+OCoYSIlsywoHTgAn0ig5C4ECGv85+ARIq5Dd5LRxiEm7C2Eo8+GCsd3ITEmQKw3DzfbAzjMD23lqjzHyLShqXFWw+He//9trOLmDaFYupoLI8QQhSKXzACd95QbJWaw2vlHE0ILSJig9HKTcFohvWJ/LS0eSGWtyzSzjuo+5Go8PVLc41EJC4YzW9vR4vdnPLtNzPh9tn63UwIIYQQQgghhBBCCCEAAMrBUKv2oCOybWDx1/yqDjk+WbXqnIiBr8c38YErs1cA17xk48uVmb/2s2SDfnq1k0tZa5kgKk77gFg+gEjCOaKpohKgbyWO9n/KliECvlyZxkoxFqw1zz/nwIjB80uYoLfK6vC/Xi4YzdC3kQlGU/nYrjRBN6Y2BABfr0pVZZwxhaJ1KwQOHBJ/HRQMABudBaNRdAAIF6yXr8FoZX2BvpXaWfS3y2E/fhtI81r/cHfzau+bkrrj3uc1/LoPGaYJ76jlwwKRLecVOUjtewQ7b5h/MZujYtoH5AJ/G9DGZHfuDAlZvbjDdAUgwNy0edN2IGS7+7xwwYODgvoDtDpY2rnowtq/a45ggmEf/yzz38MiTZzrrD7FPqDQFye8eqW+f5lRUBPSuG4FYPPBaCLPJRqM1mA44PcbAlSOSLxO2aZiADur0qdP9A0pL1Zv1IempsOGrYTb3rJx5j9DOOWBjn8/ftzGk5/bsG1CPTNkICYYbfUS95XoNwSK+z1ACJFyEozWdV2ulPpIKXWRUkrb410p1U0p9TMA3wM4OmLWCgBXONzOrQAi4z8PB/CBUmqPqG0VKqWuAvBK1PL3ElEW/MwthBBCCCGEyBWmgbtFKQ5G8ygvClShdp7bkC/hPqgkYGfuh1SRW5IZFpQOXChA5GeECwb0MZ0PRPoVuQx3cBPilSinbV7BQiF/r4OUK3IVaMaXdfMZdxPGli4FqhAW9Hcejw5gbaNW2NAHiyUSNMK9Htz+NKZcAuFjbgJPQxRCK+nvzFTiKTV+/uQcTQi9baEtCDB3d+1tCEZTMHdgEvnng4aJ7Lzjy89KY02EToXh81zPhCMmE/e9P1u/mwkhhBBCCCGEEEIIIQQAwIo/1GpHgBZdfzpfSCngSMP8dNoR6gTgpO3vw2u4XvuPDwlH3mnj/W8zOyh/6Sb99kf0jTPgPhgA1rscptTWGv5XAojcGVSFQcG1uLruQbbID++22UCUdAjZhH9/ym//3IMUDhkW/j+1NgNzPtCWU4MTC0aj5iagfr1+mYHD2Hp1Vaoy9rM0MLgO19X9nV3mmHttbPFnrg3VMPsiAPjb2QpFcUJAAAAbVgEhhzcQjA4AYQIbda9lPlBKAceeyxf4719Al48BrVvRYXKf7go3ncq/V395h/DXd5mQlU5Y10i44DG+DV13Qmyd6Ik/seXVyAOTUq+8dNZl7Kyi9UswuEw/76oXkt8u0okLCAF2hYTQE7fHzLtv/fXaZdqCwJoG7SzXdSgLMSs6/BR3GxAil7SHNlUxwWjbWoCnZ2TPfuc/05ydg5XF6QZERMAL9/EFivU3d6Yd39Mi1dawq1FX3WOuiOj6jMFohs/WNn0gGACoy2+HcvA7Uc7oUc7Ouq8v3xf0runMyVKKrWskHP43G7e9RXhrHjD5245/L8wm/Py/hEufdh6MRv++xX1F8jHYXIgs0oX2wiKKAnAMgCcBbFBKLVVKvaOUek4p9YZSagaAOgBPARgUsdxyACcQkaOe8ERUC2AcgMhf3Y4A8J1Sao5S6iWl1GQAqwH8A0DkL8BvA0jgyCGEEEIIIYTIZ61MMJqCSkuoCzd4123Il3AetrJDwEWAishv7OD7BMKC0oHbr0R+RgK2vv17LbnrSLZwE0blUwXwWakPtXPa5kus0nCnsQxx89qZnlOy1pMpSikUe/TBb9HhXqawr0SeW4ml71TgD213tLzbYzoANpBJx3SeVWyVwmf52KDIRELbhMgHdYZAJFOQksSiiUjrWldj3vbZ2nl7lOyHwUXSGSTTenkroJguAab9QLI0237t9HSEBAshhBBCCCGEEEIIIUTCLP0NrTpYsxS07Fs2RAkA1CuLoQr0N+FMNxUR7OWBje+X7mMs3xoE/vhWZgfk1zA/Y1fxl7LC1q3gA4jOv1Y/PdB+/VoCiNxpf13u3XijsdhT0zMXavXet/y8kf2A53+hdvWZ+ehVvnBlYsFoWLucX2c+DqxmQgbv3HiTcbFnZmauDS3dxM+74miHQ3NN7SBaYFd/GgqF+GXzsf20Uyf/xFxg81rQaw/HTL79TPP79Zd3CNtaktvW/mUIZty9XziwLRKtWsyv7NyrklWtvKR6lAPV+2rn0ZqlqGbOL5ZvBprbMhsW2xl1cYLRaPFc7byfbXmWXa7GsF/UYUNKQvWxE48aC8Uda4XoCtrDlaqZYDQAuHkiIWRnfr+zss55HcridQNaMJOfd8zZwP5j9PMCLoPRqs3fc0U+MAWjGdr0Nj71U51wfifqk4W69WJn7R/gv0D/+7v+4ZDDNHtsGmH55vjlnppOWLdFP6+8dFe7oGWGHwlMJDBfiIySYLT8oAAMB3AygPEAzgJwKIDokWL/A/ADIuLPCjWIaCqAsQAiv9IqAKMBnAfgRwD6RC32AoDzicjh7Q6EEEIIIYQQIowbVFtkFacl1IULXeHqJXhuw+TcBKiI/MYFBrkJTUonLsQo8jMSZIIBvcqbkjoJ97hAK23ZNLVFp9txU/dU4MIB3Zb1WQXwKmedYtxsM524/VR0uJcp7CuR51biYYLRbKfBaM7KRQoygY86piC4kvbny56jJRDaJkQ+qAts0E4vUIXo5ulpWFL/nYuQ+c5YIv0+bHiTnXdC+dg01kRwPMqLXl79XR7rAy57KyeAOw5nY0itEEIIIYQQQgghhBBC7GQ56INWuxT48iN+fmkPoO/g5NWps6KCvXYLrEJJnL5bM5cBTa2ZuQZk28QGo1VHj06KxoSbAYAauod+RlsLKBgEGpiNDhwWZ6P5SbWHhSkAP9r+Plvu4+8zdy3xQ8O2/zzWgifi805fTeVXtDMYjemrFWL6QHDt0eMB+g3ht9dVMSGDCsCPCr5hF/sog21o6Ub9ti8d46K/8pplzssGI/rJbqrtEJTWQR4PzFfD9wJG7G8u9OXH2sljD+AXaWoF5qxIvF46prZ7yFBNGzLsh9Tg6iTUKM+NPEg/fXUNqvrwn+m5q1NUnzTgQsmA9iAj5ny2p70VvYP6PgVLN7nbJ/PBaJoQmmF7ulq3ELknvK8Z0cbHONQ28CHR6fTpYuef9fJ43YC+4L87q8NPBbhAcU0wGtUy59cHHh2nEiIvmMYUJhKMNurgztUnCymvF+jG9BFu2IjD/DPYZdczwWOp9NHCzn8X7LCPMv2WZ6DyOJhaiGwgwWhd1zQArwDgI0rDggDeBXACEZ1JRAn1gCeidwDsDeDRONucCeAcIhpPRDIiTQgH/H4/pk2bhieffBJ33303br/9dtxzzz145plnMGvWLLS1JS8cYtWqVbj55psxZswY9OvXDwUFBVBK7fx76qmn2GVnz56NCRMmYL/99kN5eTk8Hk+HZVesWLGz7NFHH91hnhBCCCGEGy1MAFmhVZyW7bMBRhK64Zrb14wLhhIiGhcYlGtBSJGfET4YLTr3XmSKR3nhc/h+pKstOg08y3QwhZvQwnhliy2nzzmzYXAcp+cZxqCwBN5PNpDN4bHaaYBaJDeBp6Yw1R2vGfe5MoXICZHP6gL63lMVvr4J/mYrwWj5ZkuwHrO3TtXOqywchj1K9ktvhQSr3KcfIcbtB5IlREG0Uot2XrZ+NxNCCCGEEELkJ+mfJ4QQQogYysFQq4VzQN9M4+cfeXp2HYejAnQUgNO3TYq72Effp6g+cazbAjQzXcVG9IvzutYyIQN9K4HuZfp5gVagxXBtubv+JiR578jTdv73jG1vs8WWZDDYoWYDfx3z+FFRE7i2A+wKYfIyN+wLMg12LROI1W8IFLeurmz43uys05vfY+e9yWempdy7C/TTq+KFNLajxs2ge69yvsHIIDQu+AMA8nxgvjrzUnOBmnmg5tj9+un7mY8h5/3LRksgef0fphl2K7q6kClE77CTk1Cj/MaGy82cjNP34d/3Cx6z0ZrEdpFOXChZjyLA61EgQ6BsVZu+PboJbCIi1DP3ni/TBKOpiHMLIbokK/xdc9/W+egb1N/YFABe/iLz+5w6F11vh5Sbj6+mfQ1+cCLgZfrf636b587ZmQBekWcs0+85/OeKuGC07r06V59sxf020rgJY/z8b12T5qd/37Rsc+fXsVvETzq0eG5iK8njYGohsgFzmwKR64hoLoDzVPhKyu4A9gRQCaAHwkfuRgCLAcwiom1J2uZGABOUUr8GcASA3QD0B9AEYA2Ar4loeTK2JURXFwqF8PLLL+PJJ5/Exx9/jGAwyJYtKirCj370I1x66aU47bTEf/x57LHHcNVVV6G1NTZF2yQYDOKKK67AY489lvC2hRBCCCHcaLGbtdPTFXAioRvJ4/Y1C9jJG3QgujYuMCjT4U8cJ/sVLhjNp/Kwg1wWK7ZKEQjF31clElyVCKfbKclwMIWbYIx4YW/FVim2heLfjijTz5nDvRbRwWDcMdSrfPBZ7gMTSzzdtNOdBp75Q/pyCgrEXEgOuAg85QLaFBSK2s8BJbxWCHe4QKRyX1/jcgpZNIBHZNTHDZMQJP21ixPKz8quwV55rtzbF0uxMGZ6PXN352RpZoLtgewNqRVCCCGEEELkD+mfJ4QQQggj40DaCJ9MZGepi36fpMokSe+BQGEx0Lqr792tm+/AjJJDsco3hF3szIdsrL3bQv+e6f3d/6aJ/GDb6jhhRMQFCVVWAz5uwH0r0Gy4Pl6cnX0MMk0NGbmzR8CFW57Hrwb8Q1tu2SYgGCJ4Pem/frSYyZsYWgH0KI6qD9d2Dj0Jyts+BNPDDMVkgtHYkKM8DbVSlgU67jzgw5dj5l1Y+zCu3O232uWIgEXrCSP7p7cNza817Yvi14Vam0ETjnK30UBEW+KC9cr6QpX2cLferua0S8LH4TkfsEXokoOB57/tcO36/IMVXp5DmPytfpn6JuCsh2xMvsbT6SpOXcS3n9JC4Mz9NTMMwTGq/26drlPeMwRa/OjNSwE8rp23qh44+xEbb1/d+XaRbvVN+nZYvuPUxhDAWBVYhln4Qcz0ZZuch6L424A25me38lB9zDQ18kDH6xYiJ7Ufkzyw8e91V+Cswa9pi936P8KZ+xP2rcxc/ysuWFFnWO84Bbjjm8cLVdYH5CvUzw9q+uQz61KVTPilyDOGzwwZjl/bGvXTuQCxXNejHFi3InZ642bcWHcv7up9g3axy54hHD+KMLR3evZNLQHCGuatcarIBwzoGf4/hULA5GcTW5EEowmRUQ5/rRe5isIWEdEbRPQgEf2ZiP5CRA8T0QfJCkWL2mYbEX1MRE8R0d/at/u6hKIJ4cxHH32EPffcE+PHj8eUKVOMna4AoKWlBW+++SZOP/10HHzwwfjqq69cb/Odd97B5Zdf7rrTFQDcdNNN0ulKCCGEEGnFBaMVpSsYjdmOhG64E7ADCJC7oDM3ASoif4UohFZq0c7L1iAkLrwqcr/CtX+vBKNlFacBX+kKgnB6bMx0aKCbY3i8ujr9nGf6OXP4/UHHYJHooLR4y8fdLheMxgSeOS3XzcN3wgy6OA/gnm+hVQyr/W7t3HvPLStEvqsL6EcAVMQJRuNwIYiia2oO+fFZ47vaeeXePjiw+xFprpEw4T7X9YEUB6MZfifJ1u9mQgghhBBCiPwg/fOEEEIIEZfVydCLH1+fdYOylWXFBDHt3laD2cuPwJNrLzUu++T09F4HIiI8PUO/zYpSoKw0zgDc2hr99EHDAW7AfaAV8BuGV5Xor6kLQF36RwBAKfkxc/mR2jJBOxwqk27BEGHZZv28u87pOKSStm8BGvXXTtT51+x64GH6ahGFB1lH44LRBuZnMBoAqHOv1E7vi0A0PwAAIABJREFU5t+Iz37ZwC535+T0X5O+YxK/zSonl9Y/mcjvkzgRASBs0GOeButFUh4P1D1vQf32Eb5Q7VJg/vQOk4p8Cv+70kIvQ3e1978Dvl7V+fZ26/9sdt7Xt1go8GqOZ8w+Q13yh07XRwCo5AMtPB88j9P30Pc9BoB3FgDzDGGJ2YoLNtoZjMYdpwBUtenn1ejvxehq+wBQbkft88dNcL5iIXKV2nUOetr2dzEksIot+s+PM7vPcROMNjxOeDUXwqiuvT/8nwJDgHUECgaA9Sv1ZSW0SAA7wwe1TMFoW+r007v36lx9slUPJvCtYSN62luxd8sCdtHHPkvfvmnZJvPb5sTw3oBltbeLLz5MfEUDh3WuIkKITpFgNCGEyCK33XYbjj/+eCxevLjDdKUU9txzT5x44om44IILcPzxx2P33XePWf6LL77AYYcd5roj1O9+9ztQxNnh+PHj8eGHH2Lx4sVYvnz5zr9zzjmnw3IbNmzA/fffv/NxQUEB/vCHP2DmzJlYunRph2UrKytd1UkIIYQQgtNi+7XTC62itGyfC73xS+iGKy0JvF5uAlRE/jIF4GRrEBK3X4l8Llz7l2C07OI08MxpgFpnOQ4Jy3AwhUd5UGQVxy2noOKGqDkPg0tPOJ1bTvYHAB80kuh7yQWqBagNATt+MKnf1gej9fTyd8oKkHmwYYf1M883st7cPl7O0YTQqwvoeylW+PoltL7c6/opOuPzLe+jmfluflz5mfAob5prJEzKffreh/XMfiBZuDYCZO93MyGEEEIIIUTXJ/3zhBBCCOGI1bmhVmqvHySpIknWf7eYSb1DdfjJludx6gj+uurMpem9EmQagF/JX4LeZQ0z6H5QFVDA9DEkArY18usskt+1WREBBKNav2eLLUntZQmtlXVAQJNVBgAjokOtmHYDoGOQjtfQVyuk6QdRt15bVA0Yyq+nqzMER+4VXMLO+359+q9KL95gCEaLFwACgBbMcL/RQEQ/wc3r9GUGyKB8oD3087SLgR7lfKH5se+B16Nw/YnmkM3pSTj21fI5fxhaETuNiIC1TEiVIdBLuDBwuPE8bw+r1rj4G1/nXu8Yrh1WlALU1gps4EOZ2GC0TejwO5eJMRgt1LFyareRjtYpRE6LCm06ZftktuiMNH8Pi9bAd/uJMaIvf1w1BRDv/C5hCrDuUKmNgC6MOHJdIr8lEIxGRMD3X+qX6dk7CZXKQj00J6MAEAyPGdi3dT67aDr3TVMXd35b1RHf/WnBzMRW0nsgVFF2jj0RIl9Ir3QhhMgS11xzDR544IEO07p3747f/e53+PGPf4whQ4bELFNTU4OnnnoK99xzz867Sba1teGyyy5DU1MTrrnmmphloi1atAjz5s3b+fiUU07Bc88956jOEydORFvbrh/d77jjDtxwww2OlhVCCCGESFRLqFk7PV0BJ1xwSCJBX/nMFFLiUwUIaEKgAhQ/mEUILiwIcB4SlW5OwnyCTPv3KeYOSSIjHAejpSkIwul2uGNbOhVZJWix9cf4HQqtYljK3AE9V8LgOFwbij5ucsfRRNtWiYe/u7Xf3o6elrl3ORdc1t3TCwoKpIlMCtrOA0+50MvI95ENlTMcF4TIVzbZqA/qOxtV+My3tVamjiMiLwQpgI8a3tLOK7G64bCex6W5RiIeLhhta6gRAbsNPis13ylMx2AnobhCCCGEEEIIkWzSP08IIYQQjsW5Lh3XISckpx5Jpo45GzT9He28c/svxaQl+2rnvTUPeHG2jfMP6eTr4lCNIUDrR3ubr1VRMACsW6mfOXgEUMAMuAeArfX8PAlG40WE9ZSSHwMC67DONyCm2MkP2Nhwr4U+3dN3vXHBWn5edfRl0VomGK2gEOgTEUJsCkYLBmLb2DYmkabMfF22S+tRDnTrBWyPDSPsuepLAIdoF5vJ5EWlChHhG0NGUvciB235w1fcbzgY0Z9ma52+TJmDVLY8oZQCHXM28KY+wJwevQkY/5uYvg7nHKRw80Q+aOGqFwhXHE0J95FoCxJWMm9f96JwOFuMuvVAC5NCM3B4QvUQHamSbqBDTwKY86Gz6SPcDT688blZhFtPT1XtUmPpJn07H+rZBDprfzYkBkqhKqA/Nja1Ahu3Af16xN++KRitVyjqOPDDM+OvUIhcF/Vd85ytr+HRssu0Rb9dC6xtJAzslZn+enNXOw8kOtR0mPrwZX5epctgtK2G1FE5PxJAQsFo+G4OsFn/5VGNPCAJlcpCcYK6z9n6/9k77/g4irv/f2bvTrrTqctykWRjS7JxwUCwTTEYDDY9ENoTCCEklOQHcRqBhzwQQhzTTBJInAAPIYUaAw8x3RQXsAEXjLGNbVzlLldZvZyku9v5/aHiK/Od25PuTifp+369/LJ2Z3Z37m52dnb3O+95A3OzvqNMW7INqG6UyHHHv236cGP3xWjF+QHlXLWwazth8SLD9DiJeSrNMAzDaHn++efDgq7OOussbNq0Cffcc48y6AoASktL8eCDD2L9+vU44YQTgtLuvPNOLFmyJOKxV69eHbQcOutkPLZdsmQJpJSd/xiGYRiGYaKBkqY4EyRGIwVGLN2ICt33lWlXy1dUsjSGCYWS5wCJk1FFCyVyChQJ+KRiRlEAdsHzHiQTLpu1a1GiJH1W5V/JcG5YkbNZydObZHAqqPKHikUo0UhXP1eaoRGj+Rsibt9kqvOk2dJhF+qg4Giu6x5THfQX+H1Rn113XWCY/kqdv4aUrkYUo4EKZuDnvP2F1XWfocanjuA+J+diFl4lIbrzmpIkxgJK5Oo00mAIW9yOyzAMwzAMwzAMo4Lj8xiGYRiGiQqjG88wx50GkZqkz8qnX0cmXZeyHG6NM+z6f0jMX5+YfgUl8ACA+y+NMPD20B7Ar46xQWEJPeAeoMVoKU4IO8fnkIQMEC5tLSOznv8nM6H90yufMpXrC7MBd2pIXSonyl1QDGEEDL/UidH8inewVL3K1E9Q15cRQgQJ9QKRc+7E0zfQ5/lb6xJXf575hD7WS7dElgDIw3v1wsVCwiDiDRSjqeUfIisv4vH7E+KW+/UZnn8kbNWoQQJ/vlb/Oz6+sOv1bXclYBKb/+c2Ykj3AY39j6ovTNSInz9Gpk14XS/ALzvSJr3rTVDC2ZKlT9DyTiGASdNR2krXSZ3INhBKjJblr4Ed/uDDDiiwtlOG6c2ESJvOafoU5zfQop6Rvzbhpy4ocaTZK7H5oLW8354oYDPU11R5cDfkH3+i3tCRckxATAmsW0PFaJq+VUb/7V8zgej6d+pzSd42RZ3dMIBvnNP9IiUhgrgf6+DShvdQ0krIwwFMfzz+9/YtXomPtqrTzj3e+n5K2p2Jsqke2LSqa4XhvjjD9DgsRmMYhulhtm3bhp/8JPjmbvLkyXj//fdRVFREbBXMqFGjsHjxYowZM6ZznWmauOGGG3D06FHttocPHw5atnrM7m7LMAzDMAzTVZoJMYbTlpiAMlJgxNKNqKC+LwED6Tb1FFI+Uy1vYJhAKOmegEiYQDFaKBFSq2zplJZ4TbVAiBIOMT2DVSlXokRklsuTIFFbd8tgKY/Fz+xMVjEa8RlDxSLUdbSrv2WaTSNGs9DHoeRpaYZOjGb9uk6K4AI+L8trGcY6lV46OjGSGI2CB9j2D6SUWFT1hjLNLhw4J/vSBJeIsUKOfQCZVuWNnxiNen7jStL7MoZhGIZhGIZh+i4cn8cwDMMwTNQYXR9qJf7rpzEsSGwRdjtwylRlmv3Adiy9S/+5n16qlkzFmh3Eo+txBUBaqMwqlP30wF0UFtMD7gGghujXuej36QwgMrKBrGPvIkZ66d9gfTnwGe1NiylH6uj3lyMVr0RlOVHuotLgZZ0YzRccByFbPECLeiJgZObS++kPFNID8c/P3kWmPbYgMe0QAPzlI7oOXTA2shgN771IJolfPU3LKgPrUZ16wioWfwQjcgZCzJhNpss3/gZphtedn00zcPtU+rd8aknX4yB00qgpI4mE/YSEyp0JsAwvZoiCYuCS76vTAJyQR7Tb7by3IQ6FihNen8Ruohkp9RCmEQAYNAwYMRYD/EeR4a9TZtGJbAOpalLny/WHSNmmXmVpfwzT6wm51xQAXt5/I5nd4wUWbY5zmRQs+Np63msm0NdS+T7dH0JBMYStTUouKIG1N2T8BCV0dKVDOFJ0xWT6C0LTT1f0B+VOTWUfPREiPSsGhUpCNPdjAGCDiXf2XUmmr90HrNsX60IFs2wH0NiiTrvuVAv3Y+2U5Lfn/Xhel8siInxfDMPEHxajMQzD9DB33XUXGhqODR7Nzs7GvHnzkJ4e3Qu0gQMH4j//+Q9SUo7dwO3fvx8PPPCAdrvAYwOAw2F9UH13tmUYhmEYhukqpBjNSIwYjRKpePzqcjFqKElJmuGGQ6hfSrRK4qkmwwRAyYKchguGSM5HYTqRU0fb4iMEQg6DX+IlE8kmIrMqnUhLAkmYle/OUh4L361DpMBhJOczDOq3CBWDUdfRrkr3HCIFdqGe4ZqSngXlIdreNBt9XfdJtfAxmv0Hfl6W1zKMdaq8h5XrU4UTbiMjwaVhehObGtfgQOteZdrpmech056d4BIxVkgxUpFpU/82OlFid4l1f4VhGIZhGIZhGKarcHwewzAMwzBR0534kuFjIufpSYqIwZzlZRg1CHDY6E2/3BOfIoVCidFUMqsw9hHWrfxCCGca4KTjKGSV+h0a0vi5dkTyCzr/HNuySZt1zd7ETLj0VTmdNqZAMYi6nKg7oeeMTR1bASBMjIa6KjpvPxejiRFjybShh1aTaftr4lEaNUfULiAAQJ6F20m5bQ2dePIUWt4RKACpI+Qf/bz+KCk9kU6rOgQcPaBM0knudh0Fqhq71maVHVFvNzQHcDrUx5SU3LOwBEIn+WCiRow8iUz78RDNuQvgywRdx2LBzqOAn/BJlrRqZLKDhkEMHwMBoNSrFvbp5H+BVBGhe2FitAyON2H6C+HtebZZiwInLWX890qJOk9i256NB6wf77QRmsStmjY18N6Z6hf5QuKMqf41942YDnR9JtXkv7o6OuHc7pcnWQkVgCsY0bobLmL8JgB8uSe+7dIHG9X7z3IBF58QjRit7X+5bW3XC1NY3PVtGYaJCck5GpRhGKafsGXLFrz77rtB62bPno3Bgwd3aX9jx47FXXfdFbTun//8J6qriYfhaJu5sqt0Z9tYsGnTJrz66qt46qmn8NBDD+Gxxx7DCy+8gC+++AItLV2XZvh8PixfvhwvvfQS/vSnP2H27Nn45z//icWLF6O5uTmGn4BhGIZhmK7QbKof+jstyl+6i066IVUPShkllKTEZUuDQ6gD+ikxFMME0hsH31PtCnDsXPES9d9OnC9Mz+CyJZeIzGp5EiVq06E7DzqwInqz8t0mc3tA/Rah103qOmrle1QhhCC/F0tiNCJPmi2dlNBR7ZqKUDFcB4FlpsrP8lqGCecoIULKcwyMGEwrFMFZTP9hQdUbyvUCAtNzv5Xg0jDRkOvIV66v8hKjy2KA7r6fYRiGYRiGYRgmUXB8Xvfg+DyGYRim32LT2MF0lIwHisfFtiwxRlCDX1ctRLpT4Mpv0O+CDtUBjS3xj4/bQchkivMjv6eSi19TJxS2y610A+YP71Ovd0Un1O2PiGnf7vz723XzYNfEA9zxqoTXF/96tJ2oRwBw4+mKukQIiURhiBjNronVChOj0fcJ/V7ecP61ZJLxwI0Y7PYp03YdBT7fGf/6U90oUUnIfCYcB2uSqs/eJZNEUSkt2TP9AADp9wMNhAkuq5/XHxUnnwO46LgpeXUJZHV4rMRFES7b6zWSRR1lxGvYUp3kc79aQMUihjhw3jVk0jU7/6rd9KH5Ek0J6A91Bykl/rTQxJj76edKxa276B24M4BzrmzPp66XOy2GGlBitBx/iNyov18Xmf6DodZ63HDcbnKTlz6XyP2Ficv+6kdNU2Lan2qLYbdTRwFDcwnhZ+UhYPl75Lbigu8cW6DEaK0hz6BJMVqOrphMf0LbTw8/fyTV/wIgvnlTDAqUpOQN1orjAcABH75dN49Mf3d9fNujD79W73/6GCDf4mMaQwDH5QHS0wi8/nTXC0NNMsAwTMLQTFPAMAzDxJs5c+YEyTMGDBiAm27qXmf5F7/4Bf7whz/A6217qdLY2Ii///3vuPvuuwEAu3fvxogRtIb73HPVFuNnn30WALTlox7u79q1C8OHD+9cnjp1KpYuXdq5HI1AZN++ffj973+P1157DYcPE7MyAXC5XDj33HPx/e9/H1dffTVsFl5Qb968GQ8++CDeffdd1NWpp3dxuVy4/PLLMWvWLIwaNcpyuRmGYRiGiR09LUajpBsmTLTIZjiFKyHl6O3oBCcOQ/1iwytblesZJpBYy4ISgU7S1CF6o8SAlEiQ6RmsXosSJSKzCwccIiVi+5koUZsOK7IyK99brPL0FNRv4ZWt8JreTslYEyUa6cZvmWZLR72/Nmx9k9kNMZqRDrsgruum9eu6lbZdJ5WTUvLMqQwTQBUpRhtkYWsikEkRNML0LXZ7tmO7Z6My7aT00zAwpSDBJWKiIdeRj93N28PWV/ksTuPcBUgxWhL0PRmGYRiGYRiG6T9wfF4bHJ/HMAzDMFEi1IPVI2720KvJ/14yVPIUgFw2H09efwk+3yWxp1KdZ0cFcGJRnMoWcAwVWpkMANnUAGxcoU5sF8KJVBdkihNoVchYj7AYrct855fA3+4DABT4DuI/5dfhiqH0AOqH3pOYeXl8z5UyzSuQ04qDjy0b6wCFMAlAZ93pJCoxGiFuAICM/i1vEAXF2jfM8/ZcjTMHvKVMO2O2ifq/GnCnxq8OUVIrAJh7a+RrhFy9mEwTtz/c9gd1D+Vvl8LVVwPUvVwGC4RCEXY78NQSyJsmkXnkb2+A+MuCoHWpDoGV9xg4/RG1QOrSv5hofDJ6YSol+SwZqKm3lJijgMVosUbkDoLMGahs+3O/fBsfPtGKC58kJD0Afv6qxN9vTN4+35vrgDtfo1vZAu8BuKXGeuR0Q2RkQwIoaVWLQ8s0AtJAKDFarj9YHir6+XWR6UcQ94v3j96I328dQ25mSmD+BuCmZ028MaOLIu8osCJGm3gc8OItdL9I3vtf9MalJwJTLj+27EhV5/MGi9EkJR7mNoTpRHN9VvWtCUE2AIgC+j1Pb0cIAVlYAuzYoM33+OH/xvPZ31Omvf0V4PVJOOyx7xPtr5bYsF+dduE4gVSHgMsBeCLM0T4sF0ixC5iP/rx7BeL+OMP0OF17Ws8wDMPEhA8++CBo+cYbb0RKCv3gzAr5+fm47LLLtMfpjUgp8eCDD6K0tBRPPPGENugKADweD9577z1ce+212LePeEnZjt/vxx133IETTjgBc+fOJYOuOvb76quvYty4cZgzZ06XPgvDMAzDMN2j2VQ/ZXcazoQcXydXomRfTDiU0CXN5oadED15zQhPLRkGvXPwfarhhCAe03V8HkqMRp0vTM9gtZ4lUkRm5VjOJDg/rMgLrXwWK79BMojgKHS/RXNA+0YKRrshfUsz1MHcVvo3lDwtzZZOChypdk25f41QVfV3IB3yWoZhjlFJitEijCbRwGK0vs+i6jfItPNzr0pgSZiukGtXn99VXovTOHcBqg+RzNJqhmEYhmEYhmH6HhyfZx2Oz2MYhmGYAIwuDLVyZ0JopGNJQ6jkKQD51t+Rly6w/UH681PSsljR0CxxiOgqlORHGGz7iVqiBACiKOC3ySSEQoeJPo0zMRO29maEzQYcf0rn8jcb3sfMillk/ueWx//dIiVs+cFkRT0qpwfDoyjkvNaK0XzBy7WEYdCVDuHo3n1Jn+A7vySTTjr6CYTmHfTbX8W3DlH1x+UASvIjby/f+gedOOG8tv9tdnV6hxitjqg/AJDFYjQVovREYAwtRsPapZAHd4etPnWEwNgh6k08XsDTGn19o+SMpbr6c0AtRhOh7RATE8TVPybTph99F898j+53vLxKotmbvHEyzy1Ti/46oGRnnXRIYc/6Jkq8u5RZdALJQKob1d9TrhkiN6L6ZwzT1yAk3C6bD09cH1ku9M564Gh9/NufGuLc/X/nCOx91MDOhw2s+rUNhTnEJKt7twGbVpH7F/f8PVgqnmJNjEb2r7kNYTrQPc9RitEIMe13/zs25UlmLPQxs8w6/KbiITJ9waZYFugYn5XR7dyF49rajhwLIYgl+YBsbgI+eq3rhcnMhcjI7vr2DMPEBOIJCsMwDBNvysvLsXv37qB1F1xwQUz2fcEFF+D111/vXF65ciW8Xi8cjt45YN7n8+G6667DvHnhswYNHjwY48ePx4ABA9DS0oLDhw/jq6++QkODekBuKB6PB1dccQUWLAie9cPhcODkk09GUVERUlNTcejQIaxatQpNTU2dZfrFL36B6upqzJw5s9ufkWEYhmEY6zSbHuV6p5GYACSdcMVjNiIHAxJSjt4OKXQx3HAIddCPT7bGs0hMH4GU5yTx4HtDGHAZaUqxUIcYzctitF6BVclDIkV9TpsbtX5ihqx2kkFOYeU7sXIeuyz0B6zk6Sl0v0WT2YgMtL1YoySQ3ZG+UcempGcd+KWf7J+1idHU13VvFNd18vMGlDmSvNZpuCwfj2H6OpVe9aBWK2K05J3vloknFa0HsbZ+pTKt1DUWI1yjElwiJlqo85sSJcYCDyG2T2ZpNcMwDMMwDMMwfQuOz7MOx+cxDMMwTDDCsNE6ntxBQFX4uxZx3R1xLVPM0MnbDu8FANhtAiX5agnam2slvnUSYBjxeWu08yidFklGJHdupBNLTzz2d2YOcPRAeJ6K/eptXepJxpgQSk8Ctq7pXJzgWUNm3VsF1DZJZKXF7+3jdsLzO3KQYuV+QhCTkgoMHBq8TidG84fEdx3arc6XY8Gs1Q8QpSeSba1TtmCM6yg2edTf1Yb9wHfiVzRSalWSb7H9o+oUAAwd2fZ/JDHaob30PrK5DpEMGwVs/oJOX/cpMGR42OrifGDTQfUmWw8DJw9Vp6nw+SV2Edez0oGEQKa+hpa9FBZbPzhjncC+QQhyxwZMuOgagGilmlqBXUeBMYRQr6fZqOjmBHJSywZ9Bld7fGVGLilRq2psk57luPVtYh0xn2mmvzZ4BV8bmf6CIM4Z08TJQwWodqczm2y7Lg3IiH3RAqki5lPOSQOKCBlaELs0tqQU57H+UAdOIpaosT54+aBa1shtCNMJdY4BhBhNfZ3rF2Jai3L/k5vXk2mf75K49MTY39cfrFWvLx0IDM1tO97ADOBAjX4/JQMFsHcb0NqNCdYHFnV9W4ZhYgaL0RgmyfD5Jcr1Y1WZGFCU0/bCridZtmxZ2LqJEyfGZN8TJkwIWvZ4PFi3bh0mTZqEoqIi7Np17Abwz3/+c9DMii+//DJOP/30sH0OGNAm+Jg6dWrnuuuuuw6ff/5553LgfgMpKupex+/OO+8MC7q65JJLMHPmTEyaFD6bh2maWLlyJV555RU899xz2n3PmDEjKOgqKysLM2fOxC233IKMjOAnBB6PB0899RTuu+8+NDe3dYRnzZqF0047DRdffHEXPx3DMAzDMNHglz5SopE4MRp9HErIxIRDC07SYUA9SwclhmKYQOIhC0oELptbKR/qaFd8RP13sBgtqbB6LXLZEifmslL3k0FOYUmMZuH7tSJ5S2ZRolbA2t4eSCnjIoFMM9TB3E1+/eA2Snbatk83KXCM5rpOte2B5xzLaxnGGqb0o8qrjsDNc6hGAYTCarT+yOLqtyGhnlH4/NwrE1wapivkOtQBgDW+KvilDzYR+7ABsr+SBH1PhmEYhmEYpn/D8XmJo6dj9Dg+zzocn8cwDMMwIRjq2CUAwGU3Ay/MDh5Q60gBLvpu/MsVA0SqEzI9G2hQjB49sAtSSgghUDpQLUZ7caXEJ9slPrvbQKGVAfFRojomANgNYFhuhI0P7KTTJpx37O+MSDsKgcVolhCX3QQ5/9nO5fMbF0NIE1Koz6ftR4CJw+NTFr8pScleab6i3paXqTMPGQER2h5QMisA8AXHQUhqvxYHoPd5zv4WkJVHyqBuTv0Id3muVabNfl/i4Ti+pqTEaEqxXghSSqCcEKM5UiDS2tsUqi511KMDhPgjdzCEM3knhexpxFW3Q374bzqDQm4KAD89z8C769XvxE95wMTa3xg4aai1697eKsCn3hVKqfnqdNewAhajxYXTNPL8Fx/FyT/8HcYXtokYVSzYJDFmSPLF0LT6JPYQjj0AMKQfP6h5Qb+TDkFRZg5KWxeT2XZUABMjvP5vaFGvTw+NByws1e+IYfoKlGC1qQ5nFANjh9Cizg52VEicWRrf9qdaPRcicix2QeRHr9GJ538HwhXSeGTmqPPWV0Oa5rE++X719VJw/5ppRwih0QsGp8j6GqCuSp21H4hpRWFJBBVjGxc3fECmPThfYtQgEzecrnmO1gUoOeOQrGN/l+QD6/bp91MiDkHeclr3CuPO7N72DMPEBBajMUySUV4NFN9LPP1iYsbOhw0M7+GxkOXl5UHLgwYNQl5eXkz2fcIJJyiPN2nSJNjtdgwfPrxzfXZ2dlC+wYMHB6WHkp5+7MWe0+kMStNt11UWLFiAv/zlL0HrZs+ejV/96lfkNoZhYPLkyZg8eTJmzZoVVs4OXnvtNTz77LGXb8cddxyWLFlCfg6Xy4U777wTZ5xxBqZNm4bm5mZIKfGzn/0MW7duhaF7Cc4wDMMwTExoNj1kmtNwJaQMDiMFduFQSoooaQcTThPxXbkMN/zSr0yjpHgME0g8ZEGJIM1wQxWL4DEbIaUkxWiUcIjpGayIu9ryJa4+RiqTgIFUQ33fnEisnKPW5Gm9QwRHkWo4IWAo5TMd185W2QIT6mtldySQaTZCjBahf6OSOgbu02GkKNO8prXrul/6yT5g4OdleS3DWKOR2A7JAAAgAElEQVTWVw0/fMq0PAcVgXsMQcyoJy2FSDC9kXpfLVbUqgNdB6cUYZx7gjKNSS4oMZqEiRpfpUUxYnQ0m+ooyURKghmGYRiGYRhGBcfnJY6ejtHj+DxrcHwewzAMwyggRE4AIEZPAB5+DfKJu9sGZQ8fA3HXExCDj0tgAbuHmD0P8ifTwhOam9qEMXmDUZwvEDpouIM9lcCMuSbenGGLednKjqiPOXyABekuJSK65PsQ9oDhc9Sge4q05I0xSCbEuNMgr/gR8OYzAAA7/Ni64wSMKt2kzL/tsMTE4fEROuytArzqsAql2EpSdWeoQtJi18Rq+UPew1L7LWJxA4A2udcTiyG/d7Iy/ee1T+MuqMVoALCzQra3VbGHaotKrByv+gjgUcfSiD++c2yBEqO11yNJidH6gaShO4ixk7TRC/LIPuV0cOeP1f+23/6biS0PGGTMRCCUWA9oEzgoIUQvSEkF8gsjHpOJHmF3QJ5/HbDwFXWGg7uw8I4RGHyX+jniHa9K/FzRneppdlcCpuYkeL382zi5Zb12H6JdCisy81DgOwCn6UGzYpxG2ZHI1/JGUowW0E4KARSM0O6HYfoOROzdcw/DuOYnWHCHgR88a2LpNro/u5OQSceS7ojRpN8PfPQfMl3c8efwlZmEvFpKoLEWyMiBbGkGDu9V5ytiuSJjARlygdSJafuDbM/ifWkKvLigYSEWpJ+vTL/xXxJnFEuUDIzdvRklRssLeDxTOpB+btVB8YePatPFA69A/uY6fWFCRY4Mw/QI/IaYYRimh6iqCjYJ5+RE+YJNg9PpRGpqqvZ4vYVZs2YFLd92223aoKtQsrOzlYFXUsqgfdvtdrz99tuWgsc6Aro6KCsrw5tvvmm5TAzDMAzDdB1qUC2QODEaQEtHPJry9RV2ebbi5UNP46nyB5X/Xjg4B+vqV0bcj4cQlKTZ3HAY6uAhn6kWQzFMIOTg+yQWIQG0FKrJ3wifVMtLAMBOCIeYnsFKPbMLOxwicb9bJOGYy0iDoQnqThRWhF5pVuRpFvJY2U9PYQiDFHx1tG/UNRToXltHfS9Nflp8Fik9zUiHgxA4UsLHUHT9v8Df22GkkOcWy2sZ5hiVXvXsx4A1MRpJaNAI02dYWvMeKak+P/fKpOhHMJHJtdPnd6U3PhGTOiE6wzAMwzAMwzBMIuD4PGtwfB7DMAzDKNDJOA0bxFmXwXhlM8SiGhgvroM46azElS0WHDeaTmsXs5RS4pZ23lkP1Hli/35oB/HImhTJtCOlJAc1i1OmBq+gBt1TuNSTjDHhiO/eFbRc7N2N8c0blHm3a8RB3SVqKVF5mTqzajC8TSNG84XEQRBiNMHihk7E8DEQ//2UOm1/GZ6/iR5c/8oX8XtHXUa0RaVWXqlTQjwAGDHu2N+kGK3dgnJwtzqd5UGRGTiUTtP8PheMpTfbfgT4co+1w5dVqOvmkCzAnUrUaapcQ0ZAsCQ8bohJ0+nExf/BwEyB6WPoLPuqki9WZu1eukwNmI5vNrwfeSeu9vjFzBwYkChpVfexqLYy6JikGC0gniC/CCK15yf3ZZiEYCPk0rVt06sXZAssuMOGmjkGpoxUZ423GE1KiUoi5DYnzYL4aMNyOu2KH6nP9wzNs/u69ufuh/fQMYosHmYCoUS2ofWH6n+lpAIDCmJbpmQkCvnb+Y2LtOlvrottn4iUM7qP/bZW7s2KDyyjEyeeB+RamEyWnwkxTFLAd8UMwzA9RGggVOjMkN0ldH+VlZUx3X8iWL9+PZYtO9bxzMjIwKOP6g29Vvn444+xcePGzuXvfve7OPHEEy1vP2PGjKCArrfffjsm5WIYhmEYRo/H7yHTnIREJB5Q0hWdqKQvsK5+Jf649x58WvsBNjauVv5bWfcxnjkwG/OPEjNotaMbIE1JTajB+AwTSBNxHib74HuqfB6zET5N3XcIIkCK6RFctsjXIpfhtjRzZKyIVPetiMQSgZVyWDmPU4UTRoTH3onsM3QFnSgRoK+hum2tkGaoX9xFFKMR5TFgwGm4un1d1/WvQoV6VB2hrg0M0x+p9KpHAbiMNKTZIr/Ap65gyRfqycSCVrMFS2veU6Zl2XMxMePsBJeI6SouWxp5ra+KkxhNJ0RnGIZhGIZhGIZJBByfFxmOz2MYhmEYAq0Y7ViaSE3cRJ4xJSsPSMtQpx3YBQA4dYQ+rkFKYBs9H0+X2UnIZIrzI8RZVB0GPMR74dBB8rpB9yp4EKx1FDKi0lb1YPPfvSPjJpTZfkS938GZQIZTUZf2RyEwo2QWQJAYTbY0A0f2qfNFMQC9XzCUEMXVVmLSwHpys2Vl8ak/tU0SFcRhSwdaiPmiRHvuTCB7wLFlUozWPolqLXGPmV8YuQz9HHHVbXTi7i1k0qQI175bXzDxzlcS9c36ukfJGXXyBknIPVFYrD0W003GTiKT5J62unLyULpefPh18kXLfPi1en1JPuAs32xtJx19n5Ent23rJcRoFiSnlBjNLQP6bSw0YvoTjlQySTYdi9V1pQicXqxuf176XMLnj1/7U1EPNBLn7uAsCzvYQ19rxegJ6oSsPHp/ddVt/9donr8PGmahYEy/waoYbT/R/yoo7h9i2ijuKyZ5VmvT1+7tbmGCqWxQt3G5AWGHp0XouwPAqNbtdOKYSYBDPcYhCH4mxDBJQT9olRmGYfoniRxkHS8WL14ctHz99dcjMzMzJvteuHBh0PK1114b1fZpaWk49dRTO5c//fTTmJSLYRiGYRg9LWaSiNEo6YZGVNLb8Us//u/I3yFhWsr/fuVr2sHV1ABpl+GGXahnVfRKr3I9wwTiIc7DZB98Hyr36cDjb4RPU/fthHCI6RmsXIsSLemLJGuj6l6isfK9WJF+CSEi7itZPjOFi6hHHe1bNKKwaKCESJH6N41+dTSoy9YmAezudT0aERwpr+3DfTSGiRZKjJbnsDK1NUCr0Zi+yIraxWQ7f272N+Ew1G08k5zkOvKV66uIdqE7SCnhMdVTNya7pJZhGIZhGIZhGMYqHJ+nh+PzGIZhmF6N0InRNFKkXoIQAigYoUyTL/0eADC5BBgZ4fXR8ytiPxh/BxFuVqp+xH0MakAzABQES2VEZm5UZRKu5I4xSCaEYQDfOCdo3UjNQOTjf2PizbWxr0f//Zp6nyMHha+TjXVtYj0VClGLEAKwE+/IAsRoOLArfOB9B5QIrL+iEcUdv/1dMu39jcAXuxPXDgGR20UAkC88ok4oLAm+j+yiGE1kRdeG9UsuuoFOO7IPslr9I99ypkCGU5kEAFhfDnzrSROTHjKx6yhd93YQcsYSQvIppQTmP6feGYsU44o4bjSd+OG/IU0Tt51DP//50YsScz+3FlefCKSUpKxtWkkLUF9tbUfO9r5PuziuhJCcvrBCwjT17XBDs3q9OzCejwWATD9CXPn/6MQvFgUtFg8g8qHtetTYEh85Wrf7QuXqNgMAcO7V6vVpGbSAuK59ApT6KnV6ihPCybFITACkGC34mi0JQXZ/uS4JwwDGnho5I4AzPSsw0fMlmT53lcTKnbFrk6qIsP9AMdoJhfp3dAWOergk0RFxpUN88wcWxWj8TIhhkgEWozEMw/QQubnBD6Nra2tjuv+amhrt8XoDy5cvD1qeOnVqzPb92WefBS3n5uZi9+7dUf0LDALbvXs3TDN5HmYyDMMwTF+lmRhUaxf2hA7I1gmM+iqbGtegxmd9lnMTfnxet4RMbzIblOvTbG44CNGTT7ZaPj7Tf6HkN4mWUUULJfNpMhu18iBKOMT0DDZhQ6rQREch8ZK+SHXfimwsEVgRelk9jyPJ4JLlM1OQAtb2fgYlCrMLBxxG12WJ9HHV1+xI6W6jbYbx7l7XKakKEC5WIftoLEZjmE4oMVquRTGaIMVoyTcLLtM9/NKPRdVvKdOchgtTsi9McImY7kKJ0Sp9sRejtchmUqye7JJahmEYhmEYhmH6DhyfFxmOz2MYhmEYAkMnRusjw7Cogb57tkB6GiGEwKp79Z/1yY9lm8wlRrT6JPYQ4WmUTKYTakCzOxPIDjEKZOZEVzAnP9eOBnH3U0HLIwmZCgA0e4FbXzDR7I1dPTpcJ+EhQq2U9Ugn1aOERFbEaPvL1HkMAxiiFhP2WwYUAKkuZZJ86Gb8+Vr6/J/x79jfI2wnpFapdqAwW7+tbGqg61RRiBAvkhiNEhhl5ukLwUDkDYZ44BUyXT5xt3L98AECn94d+Tq/7TDwmzfpdquMknxSYRlffUYkAKKfiDl6EvHTP9CJaz5Gcb5Aeiqd5baXJOqbkyNmZsN+4CDx+OvCAeXWd+Rqi8kTQgDX/UJ7Lf94K70bv0lfk9MDxhEIFgAy/YnLf0gmyd99L2hZdw/0/kbg2WXxaXvKiL5QhhPIz7CwA+re7JSpEGnqHQghgAzi+XpHn6iO6hv1vufyTLyhxGghdZvqt/ej65L45V+s5QPw4d5LtXluf8mM2TMiUowWMkTkl+fT7eQruU+SaeLJjyAKigGbhbFYLvXE8wzDJBbiCQrDMAwTb0IDoaqrLVr3LdDc3Izm5mCTbV5e73v4ffDgwaDlcePGxWzf+/btC1o+/fTTu7U/0zRRU1PTKwPcGIZhGKY34TE9yvWphjooIl44CeFKX5ZuLK9dFDlTCCtrP8JFudeEzZbuNVvhI0RPLsMNByF60smhGAZokzc0E+1EsouQdMJF6nwB2sSQTHLhsrnR4iNml0HiJX0uI4IkLEnEFJFkZoB1iUZEGVyE76SnoeR5Hf0Mqr/RXclImk394q5VtsAnvaSIkRK1dXwOSl7rNa1d1ynxrNNwwSaCZ4gjJZN9WF7LMNFCCZAGOBTTo0eBZDFan2Nd/QpUeg8r087KujDp+9dMOLl2daR9lVcz1WsX0Ynjue4wDMMwDMMwDJMoOD4vMhyfxzAMwzAEho1OE31EjKYTM61eDEy5HFlpAplOoI4OgcCmg8C4gtgUaU8lYBKvnEoizPEjqQHNBcVhsWtRD5znQbDRMXh4m/CpXe40snW7NntVI/DJNuCCGHVF311Pv7ccqXolWk4IzBwpwMCh6jRKjNYhtAKAQ3vVeQYNhXB0fdK7vogwDMjCYmDn18r0E/JbAKi/s9V7gL2VEsPyIsgTo6CMmFOoJB8wjAjHWb2YTisKESzYiGtNRz2qq1KnRyt37K+crpnoa8tqMunEIoG7LxL4/Qf6GIg31kqYpgyrE6YpsTNKMZr85E36QCxGiz/FJ5BJcumbEBOn4epTBJ5foa4TDS3Awk3AVafEq4DW+XyXuox2AzjPvt76jgL6PuL4U1Dy9r/IrPPWSEwbo24bmzTzproDJ0sdOtJ62RimlyNsNshho4C928ITva2Qfj9Eex+hWD3/YSevr5H4yXmxL+NuUlaN8HsrFYQYTXzjHP12mTlAjeIi2tEn4r4RYxWqnoaJ0Yi62p/6X1F81iyzDr8dvxW/23C8Mv2rcmDX0chtlxWqiTnVc0LCDieXCDy+UN3/GVWxUr2T6++EGHlS29+OyGI0wc+EGCYp4JGTDJNkFOUAOx/uIy/LkpiiJLjXKSwsDFo+dOgQKisrYxIg9fXX4S8EQo/XG6isDL6LzsmJ3Q8Xuu9YUF9fz4FXDMMwDBNnWgjhkTPBghNKPNJXpRt1vhpsaKADASgqvAex07MFJWljgtZTAhWgTaLiMNRBLF5T84aUYQA0m8QTcHRfGBRvKDmAx9SL0RyCA+WSDZeRhhrQ95yJFkFQkq3O9CQ5N2zCjhSRilbZQuaxIk9ryxdBjEYIwJIFSuzWIRihRCPdrVtpBv29NPkbkWlXT3vb5G9Qru/Yn51op3RtWyCUCE71PZGSyT4sr2WYaKn0qqO4cx0RRpN0EruAciZ5kVJiYdUbyjQb7Dg355sJLhETC/Ic6qijuIjRNNfeZBHzMgzDMAzDMP0Xjs9LHD0do8fxeZHh+DyGYRiGIdAN9tZJ03oR4uSzIF/5kzoxYHDwj84W+OMCWg7z9FKJv34nNu+PdmgeVxcPiLAxMaBZOcg3I8o+T1pyxxgkG8JuD5pU6RvNXyHDX4d6Wya5zfYjEheMi0092qae9wcAcPZIxTHKibpTMKJTShGGjRg87QuIg2iqV+fJ6d6EVX2WolJSjDbBsRuGGEWKE1fvAYbF0FNNtUWU1CoIleSkHXHimcErbMSwXr8PssUDtKjjpZHZ+6TcPYFwptHTu+3dBnP2bYAQEIOGAmddBlE6vjP57JGRxWgeL7CnChgRcn3aXwO0+NTblOYT7dw+QtAIAGMmacvBxIDRE+i0dnnmlJHA8yvobJ9ul7jqlJ6Pp9lOXANPGQZkHt5ibcpDuwM4PsDyVliCic1ryOzry+m9NmjkuulmQMxhYQmdkWH6IvmFdJ/h8F6goE1ifVweMDQH2EfM97GCcEN3l6PqkGBLz/ulaQKUtDpUEhsKJbCua/sCZD3xRWTw82ImBIN6B3jsmiWbm4CjB9TZ+tF1SaRnRTUlcq6s0aa/sEJi5uXd6xNJKVFP9CGyXMH7nno8kGoP73+PHgzkfbxAuQ8R+PtS0vNA0jjWkWGSARajMUySYbcJDI/00obpE0yePDls3erVq3HhhZpZKSyyenWwtMLlcuHkk0/u9n57GktGcYu0tsZeqiFDjdEMwzAMw8QcSnrkMlwJLYdOYNQX+bxuCUz4lWlnZE1DmuHGx9XvwoQZlr6y7qMwMRoldAHaBkjbhfrholWBCtN/iVS3khmqfE1mI7yauk+dL0zPEamuJVpE5oxwvESL2nS4bG60+tRitBSRCpuw9jg72X6DaKFkdp72fhAlGO1uO6eT6DX5G2gxmkmI0doFdA6indK1bcHHtv55I0nlGKa/45d+VBMCpDy7NTEa9YSWn4z2LbZ5NmJvi3oQyKTMKchx8Ius3gglQKz2VcCUJgwROzGEThzvSrDcnmEYhmEYhmFC4fi8/gPH50UPx+cxDMMwjAXIAba9jNMuIpPkk/8Dcd0dAIDbpwo8vlCSQqInP5bIzzBx/ze7/72UHVEfpDAbcKVE6KdQg+9VA5qpAfcUruSOMUhGxM2/hfz7/QAAt2zCnVV/xsz8+8n8P31ZYsa5sTk2VY8AYLKiOkhKqldUSh+EGjwdIEaTHuJdCdcnJeLWmZCfvKVMy6zYhnsuOR4PzVf/ttc8beLQHw0MzIzN/QxVh0oGRt6//Nt9dOKk6cHLdlqMhroqej+ZPWwh703ccDfw0u/VafOfBdAe6/DCI8DMlyDO/hYA4MJxwGkjgM936Xc/+jcm6v9qIMV+rG788zO6DSpRz2NFyz0BiCwW4cUbkZ4F6UwDmhVjFNp/m2sntYlitxxS72POYonbzpE4fnDPydGklKTMdtQgAfmvB6zt6JoZEO4AmWlRCbLMOrjMJngU7/qX7wDqmyUynOGfvVHzaChIjNYugWKY/oL44SzIL6co0+Sbz0D8+BEAgM0Q+PWlAre9pD63W3zAloMSo4fEtu2pJrqxuW4Lx6k8SMtdI8mmCIG1rKtqi1mk+kfcN2LCIOpq4PuFA5qOnkqw3pf51q3AW/+wlDXbp7lPATDrXYlBmSZun9r1Z0StPsAXPjQRAJCeGryc6xb42TSBP3x47LcVAvj1hH0QHxMHCJQ0UrLqQFwZkfMwDBN3+sgTeYZhmN7HsGHDMGzYsKB1CxaoDbTRsnDhwqDl0047DSkpKTHZdyIZMCA4CrGqSt9p7uq+nU4nTNOElLJb/4YPHx6z8jEMwzAMo8ZDiNFSEy1Go6QbRPl6M1JKLK9dpEzLdwzBDYN+gqsH3oxxbvWMWV/Wf4ZWM1hyoxPIuWxuOIS67+qVsQ+eZ/oWlCwI0At/kgFShORvhM+k5UEOg8VoyYbLphc9JFpEFkkClkySMF1ZovneIn2mZJLBqaD7GW1tHCX56u5v2SEyU0HJzwCNuKz9e6au6z6L13Wq36BqN6nfVnd9YJj+RI2vUikzBoA8R3dnJudBqX2JhVVvkGnTc69IYEmYWJLnUEfa+6QPdX79bI7RQj0fsQsHHEbve1/FMAzDMAzDMEzvhOPzIsPxeQzDMAzTBQxbT5cgJgi7HbjoBjJdHj0AABgxQGDbg/qhZw+8K3Gwpvvvinao5/ehRTKBEFIZUaQSo0U5cN5Fv0tnCK78UdDifUdn44X9N2k3OVwXm/eN2w+r199zsVCLgMvL1BvoxA0WxGjwEHEWLEZTIkaMpRMP7MSsy/Uijv9dGrv31duPqNePjDDXmNy7lU781q0QoWJNahC+3wfU6sRoUcod+zHi2z+zltHbCvnE3ZBmWzyFzRBY/EsD939T4NzjNZv5gbfWBa+b9a66LuZnAFlp4fVY+nzAwd3KbcQDr1gpPRMDxMwX1QmH90G2tsCdKvDZr/T9odnv92zczJq9dFqJg+hkdXDSFODMSyHu/l+IH88OShIZOUBmLubu/z65+fPL1Z+9QT1HLgAgvSOeb0ABBF8bmX6GGHcqnfjy40GTQ/zobAN//C+6H/SzVwh7UDeoalSf0zlW5kEsp2WfUN2bBUL1cTqEaHXV0W3H9F+oCWACxWiUmNZmAwYfF/syJTHihrst5/V6miPm+Z/XJRpbut4v0vYfUsPXzb5K4O83Clx+EnD9qQLv/czAdz6g+y1B9/pWxGhp/EyIYZIBFqMxDMP0IBddFDzT0osvvgivlx7wboWKigq8/fbb2uP0FoYMGRK0vGnTppjte9CgYwP9mpubsXev5gkgwzAMwzBJQ7Opnj3EqZiBKJ5Q4hFKVNKb2dW8FYdby5VpZ2RN6wwWOj3rPGWeZtODdQ0rg9ZRchIDBlKFEw6hDhzyyu71lZm+j+4cdCZYoBgtlAipVbagWRIzJwGwwcLDeCahUL+l1fRYk2yiNh2678YVxbU+4mdOcL8hWqjydQjIKFFYd3/LVOGEAXUQf5NfJ0ZTp6UZbS8C7ULdTlm9rlPiNVX/rz/10RimK1R6iQhu0MKkUJSDBQBIFqP1Gcqbd2NT4xpl2gnuiShI7V+BP32JXDs9WqNK0z50BVJsmkRSXoZhGIZhGIZh+gccn6eH4/MYhmEYhkBq3nuEim16MaJ4HJ246thEmsX5AjPOpQfj+01gwabuvyvaWaHeR8lAvRBJ1lcfGywfSmFx+LpoB847+dl2tIiMHCA9O2jd9XWvYtaRmeQ2izbH5n3jXqIqjCsgNiDkDaKolD6InYjXChSjNROT7LJoj2bSdOVqWb4DQgj8YDLdFry3ITb1p8UrcbhOnVaSr2+LsPojMkmUjA9fSYrR/EBdJX0cln9YJ3uA9XPu4G4gQG6Xliow83IDi++04XTFpaSD9zceq3v1zXQ9LMomEo7sC247gjbStENMbKG+a9MEDu4CAOS6BeZcp2mHNvZs3IzuOlpcuZpME3c9AeOJRTBmvw5x2c3quKDCEpS2EiJRAJ9sI8RoGneKuyOmQNVXY5j+wIln0mmVh4IWf3qugI24Dd11NIZlaqeK6MbmWrktomRTmblt9wg6KIF1pxiN6OhH2i/T/7AiRjuiHiOHQcMgKBF2X2XgUMBhbeKf4307I+apbwaW0d2GiEQrRhNC4JazDLw5w4aXbjVw4ThB/74pqUB+4bFlK781C1wZJinoO0/kGYZheiE///nPgx4YVVRU4Nlnn+3WPufMmRMUvOV2u/HDH/6wW/vsKc48M/gGf8mSJTHb9+TJk4OWYzUbKMMwDMMw8aWFEKMlWnBCCVco4VdvZnntIuV6AQOnZ57buTw+fSLctgxl3pW1wQEflJwkzZYOIQTshvqhqk96g2bAYZhQqHPQaaTBEMk9Y69OCFXvq1GutwsHKSdheo5Iss6EX7OSTNSmQyf2iqacurwGbEgRirdiSQT1PXQIRihRWHd/SyEE0mzqYEBdH8djEmK09n1R13Wv2WqpXKRYRfE9RfruGKa/U+lVT4+eZqRHIVfkvkdfZ1H1m2Ta9NwrElgSJta4bRlkP6jKG2GG6Cih7vsTLbZnGIZhGIZhGIbh+Dw9HJ/HMAzDMF3ASO74k6g47UIySX7wUtDyReP074huek6SUgyrlBGPqksize+zXzMwt7AkfJ0rnRYSqXAm92SMSYti8PAFjepYRADYfLD7h/T6JOoICcuQrPA6LJvqgapDitwAihR1pwNq8LQ/QG7kISag40HVNJQcZ9MXAIALNS7HL3YDD8030eztXjtUTYhAAGBIln5bWaMxk5x6fvg6XTtUTTSIaRn9T9TQDYQQ6u+egpC5XKi5Bj63XOIfn5qQUuIoPe8kxhcp2qBDeyDv/S96IxZGJY4hI2iJylfLOv+8YCxdFyrqgdqmnotxr6in06Y1f0InElLKIIpKcHzrNjK5kgjNo8QmDtmKFLRfM/MGRz4+w/RFxkyk0zatClp02Om2Z0cF0NgS27anijinrYjR5O7N6gTVfVkIIoOQvx5tv1Gor1Zvx9JYJhQrYrQ6dX1C7iD1+j6MMAzLz0gmtn6FHAvhfxfNMfH5zq61TVoxmjPy9rLFQ4vR7Cltn7cDK5+b5YsMkxSwGI1hGKYHGTt2LC6++OKgdb/61a9w+LB6gFokNm3ahD/84Q9B62666Sbk5vbOm7vp04Mfrs2dOxf19ZondVFw4YXBL3L/8Y9/xGS/DMMwDMPEF4+pjjpwGokNPqLEIx5/Y58SdzWbHnxZ95kybZz7FGQ78jqX7cKBSRlnK/NubVofNMiakqt0fK8OQQdu+GT3ZnBn+jakPCeJxE8UKsFPB3WEGE13rjA9ByXP7ED3W8eDSKKbRJdHh+5cjaacus+cZnMnvVBQ188AohOFRQv1GzT56ci9RiLN3S5Go9oqq9d06vOqvifqu+uL8lqG6QqV3iPK9XmOgZb3Qbagfec2qF9T5a3A6rpPlWnDnSMx0qUZbcAkPUII8nyn2oeuEs/+CsMwDMMwDMMwTDRwfHkdzi0AACAASURBVJ4ejs9jGIZhmC5g9J1hWKJY89x/7VLIZfM7Fy86AbgowmuCaY+beH1N114amabEzliL0VJSgQEFYauFEEA0g+dTWYzWFcQv/hS2bkLzGjL/w+/Jbsde6qRWeap54nRSvaJSOo0aPO33HfvbQ8QpOPldCYWghBnb10HWV+OKkwXpOACA37wlccGfTPjNrtcjSu4DWJCB1FWRScrPphWjEe/usnrnvWdPIn5wL5A1wFJeOesHyvW3naOPNfvRixIz5kpSJAMA/3NR8D7kgZ2Q/28KsGODeoO8IRAsUkwYIiUVGDRMmSb/8GPIdinP8YMFvnkivZ8nl/Rc8Iyu/g0+tI5MEwUjIu+8sAQGJCZ5vojq2I2E2CQ9cCJWlo0w/RTx3f8m0+Svvw1ZWxm07n+/S1+LTphpwuxG/yeUrorRpJTAq3PUiTrpcAeZRHuwfR2k30/3tajtmH4Mdb4cO09kPVGf+ul1Sdz5V0v5HA1H8ejV1sZhnPNHEws3Rd82NRCycwBIV88JG8yB3WRS2Oe0IkZj+SLDJAV954k8wzBML+Wxxx5DWtqxQdM1NTW46qqr0NCgmSpCQUVFBa655hq0trZ2rhsyZAjuv//+mJU10YwbNw7nnHNO53JdXR3uueeemOz74osvRknJsRvqVatW4V//+ldM9s0wDMMwTPxoNj3K9amJFqPZVFEygB8+eGWrMq03srZ+OVqk+qniGVnTwtadnnWeMq+ExOd1SzqXO8QuoXSIbBwihSxTX/p+mdgTqW4lM5TMBwDq/OoZaewsRktKdL+llfRYkyqcEJrHwIkujw7duRpNOXWCtWT6vBSUMKRFNsMvfREFo907trqPoxOjUWlpRocYTX1dt3pNbyLadtX3RH13fU1eyzBdpSoGYjQKyWa0PsHH1e/AhF+ZNj33yqSXizKRyXWoR48FysxjAXX97g19MYZhGIZhGIZh+h4cn0fD8XkMwzAM0wVEHxuGdeP/kEny+Yc7/7YZAm/NMFCQTe/KbwKz3jW7VIwDtUCLT51WOjDC+4n9O9TrC4ohKJFdNIPnWYzWNSZfErZKALiz8nFykxUaT5kVdFIYpcihvEyd2ZECDBxK78xGxGz5AiaIo8RoLnVcBgOgsJhOm/8cUh0CZQ/p2+DPyoAPv+56EaKuQ4HUqWP8cNEN6vWaQfiyhnh3l8GD8qNFlJ4I8fdlED96ADj/O8D519GZm+ohG2rDVg/KFHjlR/pr0TOfSHy1j46bGDUoeFm+/jRQpZG2WxHIMLFF1wa988/OP9/4Md0O3fdmz8XOVDeqj/3jqYIUgYqf/kG5Pixfu9zxR9X/VKZTbWdDi7pMbjPAZMqyEaafInLygSHD6QzvPR+0+J1T6evQnkpgybbYlMs0adFnrjvCfdlXn9FplAA3EF178MVCuq/F7QgTChXjGBhHXl+jztNPxWg492pr+eqqcOsUA5/ebeCn5+nbhFYf8OD86J8RNRBiVSEAl5XhU/uJ+3wg/HPaLewwK8/CQRmGiTd97Ik8wzBM72P06NH461+DLbPLly/HxRdfjPLyckv72L59O6ZNm4bNmzd3rjMMAy+++CLy8yNNkZTchAaOPfnkk3jssccsb19bW4vm5nCZh91ux6xZs4LW3X777Xj99dejLuOiRYuwc2c338IxDMMwDGOJZr96Sj+XkaZcHy90whUPISvpjSyvXaRcn27Lwvj0iWHrh6YWoyDlOOU2K2s/6hSSUN9Rx/eqF6N5yTSGiacsKN6kGrS8qs6nfvGiO1eYniPSNYmSa8YLIUSvEYXpvrtoyunU7iexfYauoPusHrMprhJISoxGXbv90kdKVDskZZTE0eo1nTq26nuivjsTJllOhulPHI2JGE0dzMBitN5Pk78Bn9UsUKblOwbj5PTTElwiJh7k2tXne5WPmHW+izSbxPMbW/L3xRiGYRiGYRiG6XtwfJ4ejs9jGIZhGBWa9x6GLXHFSABi6Eg6cfNqyAC5k8Mu8OAV+oGv68uBKkLMoaNM85i6JEJ3S5YTYjSdVCYauRCL0bqEsDuUkpnjW7aT2yzZ2r13jpU6qZXqFQVVdwpGQNg05zo1eNoXYPdrVhdGuJInTifpKKLbI/nVMgDA8DzAnarfzWuru16PKBFIWgrgdESQgdRXqddTsg7dIHxKmBWN1JHpRAwZDvG9u2Hc/xyM+58HrvgRnXnLauXqScP1v78pgXe+Ute9XDdgGCHbr1mq3Z8lgQwTW4pKySS59pPOv22GwEgizEYIoNnbM/EzVepX9Mh1+oAj+9SJms8cnK+tPuYSkzxTx6bEJunmsckKBLdrTH/m+FPIpMB2BwDcqQKFGkl1d/vRHTS2tl3TVGRHui0KKXMgwkp7k0PHMMovPwYaWGTFWIQSo5kBkq56QrSXoTnR+jAi1QUMKIicsV1QeGapwJzrDDx0pb6PvKwMaPVF1z5R/Qd3iqJPrYISoA8ZDuEIGX8V6RmfYQDp/bNOMEyywWI0hmGYJODmm2/GjBkzgtZ99tlnGDt2LGbPno19+9QPoMrKynDfffdh/Pjx2LBhQ1Dao48+imnTpsWtzInivPPOw5133hm07q677sLll1+OL7/8UrmNaZpYsWIFfv7zn2Po0KE4dOiQMt/111+Pm2++uXO5tbUVV199Nb773e+S+wYAv9+PtWvX4ne/+x3Gjh2L888/H3v37u3Cp2MYhmEYJlqaTY9yvdNIbPCRTjzSRMhKehuHW/djh2ezMu20zHOUkhMhBM7IOk+5TYX3IHZ6tgCgv6MOmYnDoAM+fLKVTGMYShaUFgNZULwxhEEKm+r96hd5lGyI6Vkiyal0krJ44dQIKJLp/NAJwaKRfuk+UyzkYfFGV36PvzGiYLRbxyb2QV27df2eNKNNsuYw1BJHq9d0UgSnKGuk745h+jtVpBhtkHK9CkGI0Zjezyc1H5ASyWm5V8AQfWugV38l16EePVblJWad7yK9WVrNMAzDMAzDMEzfhOPzaDg+j2EYhmGixOhjw7BOv0ifvj9YHHXJCQKOCK8MbnrWhJ8aTU+wo4KWyWSnRXg/dYAQqBaES7k6iUbCkeK0npcJ5qzLwlZd0vABmf2+NyV2EnXBCpTUKtUOOL31MB//GcwbToT5reNgfus4yGd+o94gkpCIFKMFTBDnaVDnYTEazfDRdNpn70D6fBBC4IqT9W3C8ytk5yS+0UKJHXOt/Gx1armCoMRoNju9r2ri3V1mnoWCMJEQUy4n0+SvrgySgnYw1MJl41PCwRBaf2RTPbB9nXZf4my6jEx80NWLUMHG+EJ1NimBXUdjWKgooK6Bub7KtoKp0ElkA2m/Lub41QLIxhagRSGEayTFaAGFjUZWyzB9DG27s+J9yJbgOK5vafpAD86XuPp//Vhf3j1BWoNm/uGMCLdFcj8hHQaA0y+MfPDxk+m0LWvoNKqvxfRfKDFaIPUs2gujYETkPCEy6Ej3ZqYEdldGV4yGFnU7FqkN6kBuXKlOUPR7hGHon/Nl5LTlYRimx9E8QWEYhmESyRNPPIGcnBw89NBDnQ/h6+vrcc899+Dee+/F2LFjMXToUOTk5KCyshJ79uzB1q1bw/bjcDgwZ84c3H777Yn+CHHj0Ucfxd69e/Haa691rnvnnXfwzjvvoKCgAOPHj0deXh5aWlpw6NAhrF+/HvX19Zb2/fTTT6O6uhpvvPFG57q5c+di7ty5yM/Px0knnYS8vDwYhoG6ujocOHAAmzdvVs5yyTAMwzBM/Gk21VMK6YQv8YCSFwEgZSW9jeW1i8i0yVnnk2mTMs/BGxXPw4QZlray7iOUpI1Bk6kO+umQmdiFWqACAF7TS6YxTG8ffO+yuZXnR52PEqPxo71kRHeNAHpGzJVmuEG9U0qm80MntYpG+qX7TD0hposWXfmbzEZaMBqDupVmSyeOq752U+sD9+UgJI4+6YMpTRhC/8KQFMEpPq/uu/OYjcjBAO2xGKYv45c+VPvUV4M8Bz3bonV6ZsZbJjZ4zVYsqZ6vTEu3ZeH0zHMTXCImXujEaFJKCCuBYRaIRmzKMAzDMAzDMAyTKDg+j4bj8xiGYRgmFM2z0j42IFJkDwB+8SfIP9+hTJcP3wrxr1WdywMzBR7/tsBPX6bfDb2zHrj93xLPfM/6M+cdhAOoVP1YO5hy9QB8oZN9WB08n+KM2bPz/oj4zi8h1ywBtn/VuW6w/zDs0gsfEUtwxmwTG35rYGBm9N87JbXKcwO44yJgCy3nDaKLYjTp8x5rPTzqWFc4+V0JhRAC8vJbgLf/qUyXD98Kcf9z+N3lAv/+XP9++tdvSjx8ZVfqkHq9NTGaWhhEihhtGstktXrSs6ikjgzNRI3kvLUF8u4rgL8sCGr/7bbI9YmsPwHhhFJKyFtO0+/oguuB0yKIS5nYM2k6MKAAOHogPK1iP2RzE4Sz7cecc52B19eGx8kDwIx/m/jorsRPPEfVv5xPX1InGAYweLi1nWcPANyZyPWpBZAAUN0EDM4KXtdAiNHSAuMBuV1j+jNTrwIe+AGZLO+9BuKxdzuX771E4KkldB/ojbXAos0mvvi1gVGDunYP06iZ7zg9NcLGlBjNnQmRFVnuKlKdkMeNBvZsCU/csprekNsRJgyi/geKQom+u8jIjkN5egkFI4D1y/R5PI2QrS0QKW0NwpghAvddKvDgfLpt+ulcEx/eYb1vRAkaI7ZBAGRrC7D0TXUidZ9vdwCtRKfFQtvFMExi6FtP5BmGYXo5DzzwABYsWICRI0cGrZdS4uuvv8YHH3yAl19+GQsWLFAGXZ1yyilYvnx5nwq6AgCbzYZXX30VM2fOhMMR/BLpwIED+PDDDzF37lzMmzcPy5Ytsxx0BbQFqs2bNw+PPvoonM5gZXBFRQUWLVqEV199FS+//DLmz5+PtWvXhgVdORwOuN38gophGIZhEkGz6VGudxquhJYjRaTCgPrBHDX4tzfhlz58XvuxMm2E83gMSR1Kbptpz8ZY9ynKtC/rl6HVbIk4QJoSqACAV2retjD9nt4++J4SNtX5CTGaQUsEmZ4jkhitJ8RcTqJMAgZSjeSZ2Vh3rkYj/dIJ1npCTBctun5Nra8KJvzKtFjUrTSDEKP5CTGapt9zTIxGt1U+qReemtIk+3+q+qI7/3RlZZj+QLX3KKRCXgzERozGWrTezaq6pajzqwNYp2ZfghTDQlQJ0yugzvcW2YxGv/V3K5HwEGL73tAXYxiGYRiGYRimb8PxeWo4Po9hGIZhQtG8+ehjYjQAEFf/mE7c/hWkNzhea8a5BjbM1H8Pzy+XqKi3/gZpB+EAKhmoH9AvPY1A5UF1YkExvWGGxcHzqYmNS+xriLzBEE+GxyH++dBd5DYV9cDzK7r29rGSkhLZGq1L0QCIoaX6DHZiMktfQAyEh5hozqWOy2DaEJffSicufBmyYj+K8wWuVoeodvLUxxJNLdHXI7IOWZm7mRSjEYPpbZpJUSkxGg/MjwnCMICLbqAzrPskqjYjEkFivQ0rSKEnAIhZcyHu+xcE1c4wcUMYBsRfF9IZAn63whyBQZnqbEu2AX4zsVE0UkpajFZGCE4GDe2UmkRCCAEUliDPT7RzULeflBgtPUiMZlFWyzB9EJGSCvHPz+kMqxZC7t7cuViQLfDna/X3R/XNwDOfdL0Nos5bAEiPFG5OCat/PNvy8cUNd6sTmgnpMMDtCBMO9dwmUIxWrx6fY/lZQR9EFIywljHkvmfWtwx88Wv6GdHCzYAZRd+onuo/WOm2LHuXTBKUGE13X0bdyzEMk3D4DplhGCbJmD59OjZt2oT/+7//w7/+9S8sXboUPp+PzJ+amooLLrgAt956Ky677LI+OyOREAK//e1vceONN+KRRx7BvHnzUFVFP1BLT0/H9OnT8YMf/ADDhg2LuO+7774bN954I+bMmYOXX34Ze/bs0W6TkZGBKVOm4NJLL8W1116LvDzu4DIMwzBMvJFSasRoVqIOYocQAmk2Nxr8dWFp1OBfADjcuh+f1XyIvc07lVICp5GGkWknYGr2pXAYtBwscD+DUgpxeta5KHaN7tJnWVO/DOvqV6LGV9m5rtVsIUVMZ2RpZkrrzHMeNjaGz8rSbDbhj3t/haPew8rtOgZId0eg0sEOzxZ8XvsxDrXus5S/g0x7Nsa7J+HUzKnavnWr2YKlNe9je9NGNGt+81AMYcOw1BJMyb4Q+SlDyHx+6cPSmvextXE9PGY0IheBotThOCNrGoY6NcF9UdJserCk+l2UeTaj1Uze2dn3t+xWrtdJkpIJShJACQp0EkGm54gke9C1cfGCOgdcRhoMkTxB27rvLpJwLjhvbPbTUxjCBqeRpry+vH7kOXK7WEggqbqyt3kHHt97b9h6SjZmwECqaIuCsGvaKp/0IgX0m8pmswmSGHSgKqvDSIFDpChFqq8cfrpT1hYtNmHHcOconJNzCbLtHETB9E4qvUTgNIDcKMRogppNT4OUEp/XLcHGxi9Q5yMCSoijDUkdijMyp2G4a2Tk7FHwdeMafFn3KXlvMjClABMzpmC0+6SYHjcZMaWJRdXqWfJSRCrOzrk4wSVi4onufH+i/Hcxk+AdaFG/Y+kJSTDDMAzDMAzDMEwoHJ+nhuPzGIZhGMYihnoyzV7PpOnAF4vUaQd2AscFx6aNKxD4rwkCr32pfp/r9QNr9wIXjLN2+B0V6v0U50fY8MAuOq2IGPQKQGTmWpv4h8Vo3Ua43JCX3gTMf7Zz3fGt4RLiQFbu7JrMoVw9DxAG+CvVCRRDR+nTHcT7lNaAuLoWIqbQyXVKS1Fpm8jAVE/6hS1fAvmFuPlMA/PWEHkA1DUDmw8BE46L7vDlxC3QgAjhJtLTSIvRsog4E60YrUK5WvRjUUOsEceN1l8HNq0CxkwMWnXH+QJ/Whh9+5SXHvAcYZNGgJOeDUy9qs8+d+gVDB7edm76Fc+JysuA0vGdi8cPAg6HDyNoy1oNHJfAxxhHG4AW4tFWHnUNHEhPkq4kvwC5278mk8urgXEFwesaSTFagDyUhUZMf2foSMBmA/zqCZOx6Qtg+JjOxYnDBSJNYbqsrBtiNM0wEbcm/F021AI16v6L7r4sjMIox78IweJhJhyqL9UuRpM+L1Ctjhvt19elSPfBHVTsBwYEj4WbcJzAmSXAMsL/e6AWKLJ4K0O1QxHljADk15q+9nHHq9fr7ssysiMflGGYhMBiNIZhmCTEbrfj+uuvx/XXX4/GxkZ8+eWXKCsrQ0VFBVpbW5GamopBgwZh1KhROOWUU5Ca2vWBKjNnzsTMmTO7tO2SJUsSuh0AjBgxAs888wyefvpprFmzBlu2bMHRo0fR0NAAt9uNgQMHYvTo0TjxxBPDZq+MxODBg/HII4/gkUcewa5du7BmzRpUVFSguroahmEgIyMDBQUFGD16NEaOHAmbrY++2GYYhmGYJMUrW2FC/cDfaSQ+WMRlqMVoTYTE6mDLPjy+715ScNTBxsbV2Ny4Fj8puh+GCO9vhO5nu2cjVtYtxm2Fv8ZY9zei+gwfVL6Gt4/+23L+FJGKCRlnRcx3gnsS3EYGGs3wz1pOiKuAYwOkdQIVlegklK8bvsTT+x+BH/QABh1r6pfjYOs+XJF/ozLdL3342/5HsLlpXZf2v61pA1bVLcEvhz2MgSkFYelSSvz9wO+xvmFVl/Zf5vkaK2oX42dDf4cRLuLhbRR4zVb8dd9M7GrWB6QlM7GQBSWCaMupO1eYniPS79gTgUuUDCySxC3R6EQZ0ZRV1y/oLe1BmuFWitGOeA+Q28Ti96TEYS2yGWWeTVHsJ6OzrutkgJGu6zo5qJP4LV2GG15/+H4PtO7VHisSW5vWY3X9p7hr2CPIYjka0wup9KnFaOm2zKjup+jrGB1Q9UbF86R4KxJlnq+xsvYjzCj6DUaljY+8gQVW1C7Gi4f+GuG4m7Ci9iPcNOQOTMycEpPjJisbGr7A4db9yrTJWdORbiOmOWZ6JZm2bNiFHT4Zfr+8t4WemTxWJFpszzAMwzAMwzAMQ8HxeTQcn8cwDMMwETCSZ/KxWCKmXwtJiNHkK3MgfvW/YeuvnUSL0QBg1rsmLhgX+XoupcQOYgx9aSQx2n7i2bbNBgzSyFszLY7IZYlVTBDTvw0ZIEab0rQMQ7wHcdChnlj0jbVAdaNEjju6GJsdR9T1cUTtBus7cbmBkyO8H6TkC81tMQ5SSqCVsMFQUjUGACDcmZBnXAwsm69MlxtXQky5HOeNBvLcQKVmztk5iyReuCW6OlRGSBpH5EfYz/6ddFrBCPV63QB8T4N6fRYLo2PGuVcBf7uPTJarFkJc/eOgdddO7JoYbcSAgP2u+IDOOO0alqL1MMJuhxwyvE2CFoL8zXXALb8Fvn8PhBC4eoLAJ9vV9WHj/sSK0crouRJR3LpbuV6cdVlUxxDTr0Xqsvko9O7HfkehogwSF44Lrr+kGE0GNN4sfGT6OcLlhjzzm8AnbynT5dqlEJccG9Ny2ghgWC6wl57PAp/vAi79ix//uNHAkOzoriuNREiv3QBSdEYSXV+oMI5itBQnXzsZBRFiXA/toUXMVN+9PzD54rb7YY/mJgtoew4TIhAGgCu+IbBsh7pvdMYjJjbNMpDhjHy+NlD9Byu30tQzIgCYcJ56ve6+LC3DwkEZhkkELEZjGIZJctxuN84++2ycffbZPV2UpMIwDEycOBETJ4Z3oGPBiBEjMGJEP76JYRiGYZgkpNn0kGk9IkazuQFv+HqPX/0QcGnNexGlaB1safoKOz1bUZo2NixtSc38sP34pA8fVs6LSozWarbgw8p5lvMDwCkZk+GyRR7E7DAcmJg5BUtr3otq/x1CFyEE7MIBnwz/gr1mZDHaB1X/6bIUrYPFVW/jwtyrlZKZnZ6tXZaidVDnr8GnNR/i6oE3haWVt+zqshStgxbZjEVVb+GHhXd3az8AsLlpXa+WogFAWpLJnyh0UigVLEZLTigJWU9CCbOirXPxRif2iqashrDBaaQpxWLJJoOjcNncgI+I/CaIxe+ZZsRm5rTAsjgMjfDUVHSmAmgi+lWhxwjEZXOjzk9MA91NKr2H/z979x0eR3WvD/w9s7vSFnW5W66SKwYXwDRjeu+QS8cJkIQQkpAAISGFhNSbC5cEAiGBkHDzIwkhkIQWeu8ldDC4AcY2YGzZliWtpN2d8/tDWlnaPd8zs6vVqvj9PA8P0pyZM8fSaObMzpn34Pktj+Hg2uP7pX6i/rQxYZ7hriY0qiD1a20e0NCaasYjm+7qU90J3YEHG/9VkGA0rTXu2XCLv3Xh4t6Ntw77YDQptE7Bwf7VRxe5NdTfHOWgOjgCnyY+HpD9D5V7MyIiIiIi2r5wfJ4Zx+cREREJnGEa3HnwqcDPv2Auu/sP0Icvgdpxj16Lj5kHnH+AwlUPm58TPbMSuPt1jSN3sr/4urEZ2CIMDaz3DCMSXnodMwkqaBlXU+FzMqwSBqMVxM779fo2iBT+uvZ07Dv5YXGTY6518cTFuf29LReCYerXP++7DnX5nfZjB5CD0dIvkCctYyFKwr7bsr1S3/gVtBCMhr/8L/SXforSkMLfznFw4JVCoAGAm5/XOG8/jd2m+g/LWG5+rI4Gr8fqYkhjEBglhDTaXsCXMECoYNT4euCbv4G+/MvmFZ75N3R7G1Tptr/ZXScDPz9e4ZJ/5BaOlj5+dFsr8PJjcps+f1lO9VI/qWswBqMBgL7xMqhQCXDaRfjSYoXzbzEfC0dd48K9vnh9xuVCMGhZIIFRKeHi+JnzctvJ/v8FXLYE9R0rjcFopmtwc7u5XTGXwWhEPanzr4QWgtFw383Q3/odVLCz3xBwFG75ooOjr3GxQchRBYB73wQOuNLFmz904Dj++0LNbeblsVKPicGF8yZKSoGR2ecMUfUof8FM3fWzb00G0rGaHuO67j1527GTC96coUJFy4Ef3gz9g9OAtux3MLqtMd/7fG1/hW/eZr72r90MnHqDi7u+6t0/koPRfJzLPhTORTvvB1UiJKsFLPf/0r0/ERXd8JyqhIiIiIiIiIYdU7hJWngAQmikMI5W1/yEYWV8aU71S+tLgVnL42+KYQQma9s/QLsWnlwI9qw80Pe6e1QKsylYlAcqu78OCYFPCUNYWk+udrEq3vcQrxSSeL9tubHsvQLUDwAr428bl68Qlheq/lytaC1MPQOpLFAx0E3wpTxYldP6hQowosIqdSJwYH5oMzk8rcit6dTz/NrTYPvbkNoJ5N5WqS7bPgaTXNtZqsIIOSV932+O5yFJRY96gkpuV0LbA0+twbgB8wD0/v4dF+o6TVRsGxPmgY4jChSMJnm/bTlcpPpcT6H6tk2pTWjMIXjyo44PreeioW5l61Lx3nPn8r0womR0kVtExVAbGrjf61DpixERERERERERERGJ1PB8DUsFg8Au8ngvfeeNWcsCjsIvT3Kwz3S53uufkEOL0lZaHt3Uj7Rvq6UwovH19g39hnCUMhitEJRSneF7PSyKP4uHPzhY3OapFcDb6/yPh0y5Gqs2mMsaOoTjJGvFnaDmLvJeLyJMBNPaNeFtQniTG+gMhyArNXoicPTZ8gpvPgcA2H+mQtPVDmxZH79/yv8xtKlFY6OQwdHgFdIohYGMndwdZJIln2A0v6GO5Is6+mzg5K/LKzzVexI4pRS+daiDdZc72H2q//00jOo6fh43T1oGAOrLP4eqGuG/Uuo/ExqsxfqOGwAAoaDCnpbuxqaW3AL0+kLqSzWUbIDx7DVrF+8Q0AzKcYCaMWhIrDK3wRDOJgWbdAejhaO9wgeJtldqVB1w2kXyCi880Ovb3acqvP9zBzd+1t4/eedj4PFlubWlpUMIWvTqwkr3ZeOmdp4/fFJKAeNyuMiG2Lcmg3yD0WrHQoWL/27iYKL2PBzqXx9AXXGXeO+q3zOP5Q0FFXazzIVzzxvAwquqIQAAIABJREFUBxu9+0ctUv/B489dp1LAOnM/RR39eXlD6X4NACLb9/FANJgMz0/kiYiIiIiIaNixBmM4xR+AFBGC0eIpc4Bba8oyJYupHtc8wmJLslHcJpcX9ptTTTm1Z1zJJNRHZvtef0JpPSblEABUqsKoj8zq/j4khKh4B6i0QsN7QJ0f0u8gVYBgBwBoTZnrjwvLc65faH+upJ/DUBFSJZgWnTPQzfBldmx+TuvPjO3UTy2hvnCUgzllOxvLdizbtcit6TQ7tsC4fAdh+UCJBsowOZw9YnpUaBxGhMbkVJfp78mBg5mxuXm3r5hyPR/sUFaY3+XkcANiTnmf6+l5zElhpwCQ9Ag8la77DhwEhXpz/dnlaqhfF2n7JQWj1QRzC0ZT5iGTolzvgyRtbhwpnexzPR2u5SUEgasL0/8fjB7c9E+x7MCaY4vYEiqmuWW7Dch+ywIVmBD2eBGNiIiIiIiIiIiIaLDL4aXuIWfKDnLZ8lfFokPnyM+P7n4d2Nxqf/F15afm8mgJMCZjvg2dTEKvegv63Zeh168B1ppfesV4j5fp/YYLMRitYNTU7ONrfttrCFnGAz6x3H+ozJpNQIfwOLG+QzhOMjX4HFMSFSazjHeNJ+iwPJNkeIMvato8ubDH+agsrPCtQ+Vz0Cur/R9DtpDGaR7zDuk1QhhIneXZWD7BaJUMRis0NW+xWKaFa9+YSoVvHuK/PzC5tqu+Za/IK9Xv6Ls+6l/K1h8CgI/eh966GQAwY4x8/nn7owI2ysNGYWjOxNRac0GdPfxNVFGNeiFsdIVhWJIUbFKWnoSeYY9E3ZStH7ri9axF0VKFJXsolHtkC77yYW4hjWKgodCF1W2t0Mtfg14m3C/a+kKSXLZh6DCZeAWjbTKPpcWYif3TniFGxSqgdjsY+MxXzCv851Fo1/zO3pzx9vHFr37ovf/mNiGgUTjfpc9DWP0ukBA+X7CF5wcCcllEuPcnoqIbxp/IExERERER0XDS5poDx4CBCUaLBoRgNCEsI25pv4kUmmXdxvUfOtCSQzBaLFCO08ec1zkDi09KKZw6+lxUBKo813UQwGljvoISZ9uDCSnsxCtApZBhJdLvQOv+DV4rVKBZUieQcO1Bcn4M5QAYBw5OHX3ugJwj8tEQmY19qg73te78sj2wa4U8KIcG1vEjP4eaYO9pi+sjs7Bv1RED0p4JpVNxSM0JvZbNjM7FXlXyzLsD5eTR56AsUNH9fdiJ4LQcr0EAcFjtiRhfOrn7ewWFkzLqHswWVR2CGVF/A95qQ6Nx7IglBdlvQAVxxtivitdhPxoiO/Q6l0lhp4D3dV0qt9W5T9XhaIh4DFDrg0IFmBIVmxSMVhvKLRgNQjCahnkwQq73QTb53CNlSnicd0zcAgUvDzYft6/BG80vGstmRHfCRAZYDVu7V+6P2dH+DRLNFFQhnDHmqwgoy0AiIiIiIiIiIiIioqHAGb6fc6pDTpMLV74hvvh6yq725/k1X3dx0u9ctLabnyetEMKI6kei11gBfd/N0EeMgf7sAujP7wF9Qj3w0iPGbZXtpVcAqKi2l6eVeiQNkH8HnpS1qMLdimO33ilu8uU/a5x1k4uOpHeggymQJa0+4S8YTU3wFxSjpJej413jNzva5I1D8ngH6mG/E8Qi/cBfe31/+u7yOejl1cAba/wFgixfb14vHALGVRqLtlkrBaNZjql8gtHKGSJUcAsPkstuu1YsOmwOUGseRp5lRBmgt24Cbr1aXmnBfv4qo/637/He66zrvK6cvUg+/3ztr8UbayIFkFXEhYtj3sFoNWgQgtFWbQBSbu/zqBiwlB6XXu6zP0a0PVh0pFik77zRuDzgKJy2m/1e7KancwtGEwMNM/LHdCoF9+oLoQ8dCX3WQuBxYXJOr/syk3EeIdc9MRiNjKS/i86/B93UaC6urO2f5gxRau4ic8GWDcCDtxiLluxhPycd9xsXb661n5ek/oPxPHTNxdCHjYI+ayH0Est4SFt4fkB+Z0KFfXb4iajf5fEJChEREREREVHxtblx4/ISVQpnAF6sjThCMJrhZX1Xp8Rgt7JAJZpTW7LrMYRRpXTK2qbWVLPvYIOW1Fbj8opAFRZXHdb9fXVoBObEdkZ50DvgLNOE8FR8b/LVeLPlJTQmzCPYyoKVmBWdi5ElY3stDznmAUBeQV/xlBy8cEjNCcYglSe33I8tyewPt3MNBKsJjsSelQdmLV+f+AgvND1mrF9rnRX2IwWujC+djPlle2Qtb0414bHN9xi3aXVbUCn8LP2SAigaIrMxM+pzlswBUBaowMzYXIwqGTfQTfHNUQ5OHPUFLKzYFyvibyPhZn+qH1BBTI3MxNTITIYKDGKjSsbhO5N/iXdaX8f6jrWYGG7AtMgO4rmtvymlcMzIMzC/fA+sjL+DsSUT0BCd3afwq/4yMVyP70++Gu+0voakTmJWbD6qgrkP6qsIVuGiif+NZa1vYFNiA6ZHd8SY0rp+aHH/CDsRnFd3KVa0vo3325bBFUI5x5ZOwIzoTogGCjcj0U5lC/GDKddgactraEpu8r2dUg4mhRswLTIHIWfbsWU7zhKWmZ8B+bofdOQ6I4Eovlr3QyyPv4kP2lbkHWi6pv09vNr8XNbyQgWYEhVTwk0Y+7sAMCLkMbW1T2IwmtCXrArWYlFldkBn3G3Fw5vuMG7T6jajHF4jzu2SHucdo9zGhw0ZD2+6Q/y9HVRzXJFbQ8VU6oRxbt13say181rpenzW0FeVwRrMjM3NI4iRiIiIiIiIiIiIaIBoy8MBxyleO4pMzZgPfcKXgdt/Y17hT/8NfO47WYsn1ipcdbLC+bfIP7e//0djZDlwzanZL8musgSjpel3/gP907Ot7e/F9tIrAFT4HIdQOjQmYxwK1OgJ0KURoL33ONDrPvoq/l7xGXG7m57RGFcF/ORY+wvWK4RQq1HJT1DhmsdKZhk72d96EeHl6HQwWkJ4kxtgeINPqrIWevxUYK0h1O6t56Fbm6GinWNlZo1VOP8AhaseNh8Du/zURfOvHYSCXseQeXn9SMBxPCZ0FILRrCGNeQWjMUSo0FSoBHrRUcBTd2UXtsehP/kQavSErKJwSOH+rzvY5af2cUllpUBJUMG94ivySgedDBXka96DhSqvAn7xT+hvWcZNrFkJzFiAPevlc8MrHwL3valx6JzcJoTNR7MQPlvW8rFxuWeArKSiGvUd5rDRRAr4sBGYPKJnu8zVlKXH3/ntjxFtB1Q4Cj13EfDaU9mFn6yG3vQpVPXIrKIrPqOwsbnzfsvkzXXA5laNqqi/c5HfQCLcdg3w92s868vnfKPGT/U/XC/EvjUZSJOxp8Pem4Sx8bwu9TZ/n85g70T2mFv9kzM7+7AZn5HtPU3hd2conPP/5L/iQ69y8f7PHQQD5t+T7/PQP38L/O0q6z8BAFA1EqrMMu7Ydl8m3fsTUdHxjpmIiIiIiIiGBCkYLexEi9ySTpGA+QMuU1iG1HYAGF86Ee+2vpG13BQg4BXUJYWdmTSnmozLR5eMx+EjsmdnzFdZsAK7V+6f83YhIUQloRPW7WxhJUeOOAUBlf1RyLL4m8agCCkQzIV5IENtaJTxZ7cy/o4xGC2pk0joDpSo3p/QSv+G+sgsY/2bk41iMFo81YLKYN8Gw8SFUL/ZsQU4tFYelEb5UUphSmQ6pkSmD3RTqI+igTIsKN9zoJvRy8RwAyaG85ztr4jKg1XYtWKfPtdT6oSxY9muBWjRwAiqEGbG5mJmrPghlLWh0VhUlR1YlA+lFIIqhKThGu51XZfKTUGnvcqdEGbH5mN2zDL7k4dXtz5nDEaTQp6IBrNNyQ1iAFZNjkFFuQ7XlPq2o0vGGfu28ZQlGK0Af38J137eMdFC/38o25LchOebHjWW1ZVOxqzovCK3iIotoIKYFZuHWTH+romIiIiIiIiIiIhy4gzvSezUWd+HFoLR9MO3QhmC0QDg3H0ULrhVI2V5rHLzcxpXnawRyAgYWvWp+TlW/aht6+n7bvZoeYbxHmMjYpWdL0vbQvAABqMV2vHnAn+9steiKncLLtrwv7hixIXiZn96VuMnx9qrXiEF7AkBLkYjx/tbLyJMXhfvep7ZYZmsqSTsvz3bOXXEmdDXf99c+OSdwCGndn/77cPkYLRECnhoKXDYjvb9SSGN0zweqev2NmD9GnNhXQGD0coqGZ7VT9Q+x0GbgtEA4KG/AaddZCxaMEnh+jMUvmgJfqiJAbp1K/CEeRwEAKhFR+XUXup/as/D7aE8PcIQT9xF4daXzGv/6dliBaOZl8cSm80FdXmOIS2vQX3iMbF4xfrewWgtYjBaV5BoBcMeiXpSB5wIbQpGA4BHb+vsS2eIlir87RyFmXe6+PHd5nPR7S9rnL2ob8FosYxAIt/3Z7a+kMQr5Lonhg6TiRSMlr7/bzJPMswQ4t5UJNYZ2PjSI+YVXnsKmL84a/EX9nbw4vsufv+k+Zy0bnPn/dmhc8zV+g1G0/f/WWp6b17nIWswWuEmrieivhm+U5UQERERERHRsNKWMoczhZ2BGXwUdczBaKbwMtsL/FIQgSlAwCuIozX9oNAHKUQtFij3XUd/CgqBJwltGTQE+WdUqsLGUDQAiOTwu7Qzf4AuHSuA+ffcmjL/HqV22uv3f0xIpJ+pbb9EREQ9BaXAU9d+XTeFqQFygGohRYUQ3HbdhpRO9fv+iQppY+ITsaw252C03AZsSn1JqW8bdiJwhMeXhejbet1PmPiegXIIeWzT3UjqpLHswJrjoKTBQURERERERERERERE27th/hm6qqiRC1e/KxYFAwpz6+x1N7UBazZlL/9UmAt0Ys+mrHrLXnmmcZOtxcpxgGofz8n4YnRBqenmCVsWtL1q3W7NJmBLq/2p3cr15vKGjpXG5VnCUWDGAn/rRoUxlq1dzzMTwpvcABBieINvwvECAPq9t3t9P6ocGFclV/Xou95PfT/dal5nYm2PkMZkAvqtF6AfvR163SporYGmjXKloyfJZU6Or/XGKnNbn/ybIU+8qJ+917rp5Fp7v6AmBmD1MiBpmcStYSdrHTRAdj1QLNJrtl1b5k2Qq/jHK7rzPNHPmtvMy8ukcfD5BBUBQM0olLvNGJ00j0NakRF2KwWbRHXXOyFl7GcR9TLdcj1a/rp10/1myNej3z2u0Z7wdy4SAw1Le/aHksAKe3u6jc/jfDMuh2A09q3JROpnp6/JzebgUOvnIdsptfuhcuH7b4tFCyfb6318mXxO8hOMprUG3vmPfSdp0zwmqA9a3kmI8J05osGCwWhEREREREQ0JLS5cePygQpGiwhhGaYX/20BW7VBIRjNEI7lFdTVIgRqmdc1jygrC1T4rqM/SYEnUkBKmvQzkn5fgCXkTghx0DBPbeoIAx9t+87leJECWkKqBAGYQ9+8wvT8MIW3AfZ/FxERUU/5XtelACMpQLWQpNAmIJ/wVKKBtTGx3ri8IlCFEqcwg4O0EB+Wa/9cKSWWSQHCuUh4nHdMpH/bUNXmxvHEZvPg7ergCOxcvleRW0RERERERERERERENIQM82A0AMDCg8zLXRf6jhvEzb60j/fP5oTrXLhu72cvjeb5UlHb9chIJ5PAK4971t1tVB1UqY8xhT5e0lf5BoeQ2d5HAzWjsxYf3Xw3xiQ/tm76qJzLBwBYYX4kivrEKn9tO+Q0KL8vPUvrxZs7X9C2BaOVMLzBt10OkMv+fHmvb5VSOGexfA664gGNXz9iHveZ5nku+vgD6DN3hf7S3tCXngp90izoy78MNAoHHwBUyuEKSikgYB73aRQt878u5URNmS0XvvYU3KsugE6ZJ1Gs9jht1EY19AVHyCvM3wdq4nQfraRiU8d+US6890/dgWdL9pDPPR1J4L9+6yLe0b/jTsQAEdMEhOXVUJW1ee1HdYUV1Quho1c+uO3fmUxptAlDdLrbVcFgNKJeZu8ql939B+hPPhSLF0+TN33pA2D691y8udb7XCQFo8V6BhL9/oee9QDoDBsaZUmPlIya4L+PxL41GUnX5q6/gaZGczGvS9mO+JxYpG/9tVh24i4K1VG52l/cp3HjU+b7MzHwNdzjmzUr5MozqCPPsq9gO98wGI1o0GAwGhEREREREQ0Jcdc86iAcsHxa1o+ksIxWtzlrdidbeEZNyByMZtqm1SPkKpeggOZUk3F5LCDMZlhkISHwRApISRNDvCzhJmLwglCXPHmX+QN0KXhN2ocYHiHUYw2P6GNwi9ZaDFez/buIiIh6yve6LgWnSUFrhSQFkgKFCR4lKiYpGE26F7ESX/bJLRjN1peMOuYB3YUIRkt6nHdMhlsw2tObHxTvrw+oPhoBlcPgeyIiIiIiIiIiIiIiGnbUN68Vy/QVX4Fu/MRYdvYihStPVJhkydp4eTVw31s96tMajcLj15pY13Opf9/k0eIMPgLPfK/nty7yRZVGoK59JGt5WLfj8fcPwOKWJ8Rtj79ODrVyXY2Vn5rLpnVkvzCtLv0/4KizgLIqoGokcMKXoc6/0vsfkBYRAqpSSaCjHegQ3uQGgBDDG/xSgQBwxJliuV69rNf33z3cHs54/i0ab62Tn/3K56Ku/V15PvD+0t6Fd/0B+p+/lXda7hGukFMw2uAY2ztcqS/9VC687VrgyTuNRTUew2irW9YAWzfJ+/3Z3/00jwaAWnwMMMsSUvTGswCAcVUKvz5FPv/84xXg2scGKhjNcGLrS+jrhAYAwDQhGG3FemBLa+e/VQpX6tkuVSGHRxJtj5RSwGnfFMv1VReIZY6j8JX95XPRh5uAz/3RHhILAC3t5vNVOhhNr12ZFVArGjcFKpj7ODQVDAJjJ/lbmX1rMpHGuKZfBGsS+mZeffftkCqrBGbtYi5cswK6dauxqCKi8OTF9hijL/4/jfc2ZJ9zxH5N6bbfq778PGvd3Y79ItT0efZ1bBMghPnOHNFgwWA0IiIiIiIiGhLa3bhxedjxMbtjP5Be5E/qZFbIhxRoVqrCKBOCyOJuS04BawDQkjJ/qJjLuoMlGC3omANPEq4wfVQXMcTLEm4i/S6lujTMD4WUEIwWUiUIwPxQJ24Id5COl0L+G/xK6A6kkDSWSWFsREREmYJCkFlCCD7rLnfNAUYhxxy0Vki2UFUpUIhosNqYML+cUptHMJrU55VIfVvb31g0IASj9TH0F/A+7xjJychDTkon8cgm84DtqFOGPasOKnKLiIiIiIiIiIiIiIgGoVilXKa2g9ewRtYBIcsz2cf/ZVyslMLXD3Tw3s8DmFsnb37LC9uevWxtA1LC+/ndYUQP5xgaM26qr9VUV7iHVZ2PdSgnqq4B6gd/ylpen3gPj6w+FNPCjeK2UlDDR1uAuPAYsL5jVfbCWbvAufg6qLvXQd35IZyv/xLKdsxnkoLRACDe3BmOZhIIQjnbwTmkgNT8xXLho7f3+tZxFH55kv159q0vyc9+NwrzdNXEAN3SBDx/v3mFe24yL4+Wex9XuQSjRThes19JgQ9d9MO3GpdXe8ztXfPpUrlw0VGdYRM0aKkvXiaW9TwmTlnoce55caCC0Qwntr70bboCY+uFYDQAuOv1rmA0y7yF3e2qYAANUSY1Zze58Jl7oOPy+Lm9G+znopdXA8s+sZ+P5ECiri8e/Yd1+176EjLt854OJQxGIwNLMJrWGtgq3HPyumSk9j5GLnxOuEcCMHucwv/+l3xe0hr4e8b9WSKp0W5+fQ2xnrdWK9+Q29SDOvYc75USljRX3oMRDRr8NI2IiIiIiIiGhDYhgCLseDxV7ie2UKjMADMp0CwSiCEivPSfS8Bad7npAaZACkYrC1T4rqM/hZR5QEhSW56UwvKztgQvSL9LqS7pcZAUEqGU8r0PV7visZ7Pv6Gv4RG27W3tISIi6kkKMksKwWdpUoCRFLRWSLbw3b4GjxIV28bEeuPy2tDogu1Dyg6z3QtJpNDfVkOocK6kwEUbLd4BDD0vNT2FTckNxrK9qw4dsOBxIiIiIiIiIiIiIqJBZd/jzGE1E6dvFwEmKhAAZsoBMXr1u5517D9Lfvn15uc1bn3JxeZWjUbLo9d0MBpefsxzfz2pOp8v4O9gCR0AgKqRwLgpOe2bfJq9q1g0q+MdseyqhzXaEtnP7laYH4cCMASjVY8CxkwG0HmsK+mleZuoZdxcvFl+sboknPu+tnc7LBSL9AfZx8oeU+2/zx/frXHNIy6WftT7OHJdjU3CHHm1MQWsWQG4QoqjpKLGe51cwjxsgXzUd9Pm2kNBn7rLuLgiLGdvAMCYphVimZotH980SEybJ5f94zroriDMmpjCNMvchC+vRtZk6YUkB6Nld7T6dNyNGAcA2C3+grjKu5/Y2wQAsfQ4+XIf50mi7c3MneWyVApYawj97bJwiv2aBAD/esV+LmoR/nZjXV0WvXqZfQc9KK/7Ldu2c3b3tyL712Qi/R1oDbRu7fxbMuF1ycxyTwaPc8LuHvdn3/6HxoNvayRTnecm6Z4MAKq6Xh3VHe1Akxyo3q2syl8gbKv53crOOob/Z4BEQwWD0YiIiIiIiGhIiLtx4/KBenE7KgSaAdkBZlJ4RsSJiS/9A/4D1tJafAYFaK3RLASjxQLlvurobyEh8EQKSEmTwuOsoWJS8IIYjGYe4KIsM8LK4Q6999HuxsXgBdsxFxECAr2OGS+24JeoJcyCiIiop3yv61IgqhSgWkiOCogBvH0NHiUqtkYxGM0yKjNHUh82nkfor9TvzSUIWpLMI3BxuASjaa3xYOM/jWVBFcK+1UcUuUVERERERERERERERIOTipYDR3w2e/kJXx6A1gwMdfLX5cLbrvUM9zhnsf3l15Ov19j1py5efF9epzYG6FuvttZjNH6qv/Xm7wPMWCAWqxO/BhXs/0m7tkdqnPw7+s7Ki8Wy7/1L48ArXWxq6X38LV9vPh5rkxtQ7W7uve+TzocKGoIPc2ELqIq3AAlhsqZcQrAIAKBsL7I/eAt0RqjBrpOBxdPsdX7tFo2dLnPx+ye3jQNtagNc4bRWEwP0PTf5a3BP5dXe6+QS5sFgtH6lyquBI8+UV0gmoO/5v6zFjqNQaRnGPm3Tf+TCw87IoYU0EFRlrbVcf+Mw6K2d15mLDpH7Pq4G3lhb0KZtq9vVcpCRaZzNwafkvS/lOMDCg7Bf6+PiOj+9p/Nk2twm11OWbleFj/Mk0XZGjRgHHHSyWK7/fZNYNqlW4cSdvUOIbnhSDnsVgxZLuwIe7/2Ttf5uFTXA4Uv8rWtyePb9uFGI/WsyEZPR7IFavC6ZzVssFukbL7NuuvtUYC+P7PpDfuXi+OtcxDt8hue/8IC9wrTPnAdV6uN+q8USjOYn7JqIioLBaERERERERDQktAkv1EuBFf0tl0AzKTwjGoghYgmXygpYE34G29b3FxTQrtuQQtJYNliC0YJC4ElCCEhJk4LAbCFeUpkUCiYN7LM9RhL34fNYAfILj7AFm/lhC1aztYeIiKinfK/rUnCaFLRWaFJ/r6/Bo0TF1OG2Y0tqk7Esn2A0ZRs0YiD1R639c0cIRutj3xaQzzu2wMXhEoy2tPVVrOv4wFi2W8W+qAxyYA8RERERERERERERUZq64NdQX7gMmLkzsGBfqEtugDr+3IFuVtGoxccAc3aXV3j7Bev200crXH2y/aX8lZ8CX/2rNEElUNH2KfSvv+nZ1izjPd66Te/DcaCuuh847hxg0gygZkznf3P2gLrgauD0PPZNvqkLzKF3u7S9bN3umZXAtY/1fn634lPzuvWJVdkLT73QV/usrMFozUCHkCjB4Ia8qAuukgszXopXSuGerzmo9hhWnHI7A9LSIXu2F/Croxr45+/8NnebSh8v0ecSlhdlMFp/U+f/Elh0lFiu//uL0C1NWcvjluFPDfFl5n395G9QI8bm3EYqPvXTW+XC158G7rgBAPCFvR384gS573PO/5ODiPqi1XL8lWWOcZuxAKqPAR/q67+EA43zGq8T13npfY0WS7ti6XYxbITISH3nRrnw79dYQ6r/dJbCd4+w34ede7POChpOE4MWSwG8+qS1XtSMAcZMAvY7Aeq6x6FGjrevb6FGT4C6NDuQNEuo/ydZpiFICX8DWgNN5rG0AHhdEijHAY6QA4T1R+/L2yqFe893EPBINLr7deCWFzUaLa9MpoPR9I8swYnl1cAOu0Gd/79QZ33fvtO01uz+fbeyKn91EFG/YzAaERERERERDQntbty4POxYptrqRyFVggDMMwdmvvwvhWdEnFhOAWteIVetppmdDJqT8gd3ZYEKX3X0t5BjDjxJCgEpaVJYgi3ESyrr0O3G/cnBCPJDJGkfme21hdvZjhWpzO8xIZGOuQCC1vAIIiKinqQgM6/ruhRgJAWtFZoUYNvX4FGiYtqU3CCWFTYYLVtSJ9ChzaOlbAHXUmia3yBoGylwscSxDTgfHsFoDzb+w7hcQeHAmmOL3BoiIiIiIiIiIiIiosFNBQJQS74N54Zn4Fx1P9ThSwa6SUWnTvq6WKafvNNz+xMWeD9XWr/VvLw6CjjP3+e5vdH4qb5XVbEKOBdcDefm1+Hc8UHnf9c9BnXcOVDSy9RUGJNniUWHNdt/93e82vv53QfCI9H6jt7BaOqcnxTm91oaARzhlcx4M9DRZi5jcEN+LMeKfiL7XBQrVbjrq96vzLYlgAfe7jyWPrG8C1/dZJ58ylO5j4mpSsL+67MF8lFBqEAA6pLr7Su9+HDWolmWfLOGjpXmgoUH5dAyGlATp1uL9RN3dH990cEKEWG+z/fk4Tt90iyEGAE9AsjSFuzb9x2OmQQEAljQ9oq4yl9f1GgWLoUlbjtC6cndyxk2QmSigkFg90PkFdYK1xYAoaDCj49x8MXFcp/X1cD9b5nHw0nnlLJS+z2g+p9/dd5L/X0ZnB/9Bcrj3OnLnod7r5NLyCxtP6R7PtcFtjZU/IhmAAAgAElEQVTK28Qq+69NQ5yaPlcufPpu67ZlYYW7fdyf/esVLQZWlwSBaAmgUymg3fxuKcZOgvPvj+H89gmoz3zF/72/FGyOrlA4IhoUzG9wExEREREREVn8ft3/4JOOdUXd5ycda43LI5YX6vuTUgqRQAzNqS1ZZa1ZgWbmaQsiTgwhVYKgCiKpk1nlmaEbmfVmakkJI8Uy13Pl9WKBcl919DcpdCvhWqaQgiWETghXAOyhafFUK8qDmR9wmx8E2UIixGCVzGPF8juOBORjXapfCorzSzrmIoEYB/8REZFvIUe4rgvBZ2lJ1xxgJAWoFprUR4i7limpiAaZjYn1YllNcGTB9mPqIUv3QYBH6K9wTxLvY+gvACSF806JJXDRNsvmULG6bQXebX3DWLZT2W4YXZL/DJ1ERERERERERERERDRM7bSnXPbnK6BPvxiqTH5xeEwlMGM08O4nue+6JgboD5fnvuH0+VCxwTExKHmYsQAIR4G27GeK+7Y8jnvLDhU3/c8HwLsfa8wY0zl+bWOL+XneuGTGGNe6hvzb24NSCjpSBrQY0rRam4GE8GI1gxvyM2OBXLbS/Ax0Xh1QGQG2CO/Mpy3rOj+t/NR8DMVKgaoNeZyLAGBUnfc6OQSjKQajFYWqqIGu31E8tvSffg4sPqZXSMK+MxRe/TD7GNqpfCOq3c3ZldSOhYrIYyZokBk7pTMsRRo7svTF7i+VUoiVAnHDkLf1W4GX3tfYZXJhx16b9pUW073HgKu6+j7vT4VKoEdPxOJPnxTXue9Njd2nmP+dZT3H/lTU9Lk9RMOV2nFP6OfuNxeuXenZr91vBnD9E3L5n57VOHlh9nI5GE2J10YAwA67WduTDxWrgK4eBWySxz/mFDJL2w/xPScNNG0yF5VVQQUC/dakIW/+PmKRvu47wNFfgLLc7+42BQiHOsOpJc+uAk7Y2dzfqol23Yev/7Az4M5kBMfAEg1njCkkIiIiIiKinK3vWIe17e8X9b+kNn8CVupEivyv30Z6mT8z0EwKu4p2hUtJoRvZAWv2kKvWlL+gAClATcGxhoQVU1CZA08SwnGQJgWV2IMXLMFoht+dziMYTdp/ZnCZFGRWqsIIKDnfvr+CW6RjzvbzJCIiyiRe14Xgs+5yIcBIClAtNKmP0NfgUaJi2pAwv2lSGagWQwvzk91HtvVFbcHFfvvO+ZDOO7bzitT/H0oebPyXWHZQzbFFbAkREREREREREREREQ0Vqma0tVyftx/0lo3y9krhB0cpOHnkf9RE0fnCfy4CQagzv5v7zmhAqGgZ1BnfNpZ9dsvNmNqxyrr9rEtdPL2i8zleo/AYsTbV2HtBAQJhukkhVfEWoEMKRmNwQz5UtByoHmUuXPoitCGgLlqq8J3DvU8+P7iz8xhaLuRtNIwEcP33/Da1FzXex/GWyzERZTBasaizvi8XLn8N+qdn95pg7dx9FEZnZHIGHODSpeeZ6yjkuYj6nSoNA6MmWNfRbz7X/fUvTpDPPQt/5uKRdwo7BiVumZc07GZcj/ycl/wYX48piQ/g6JSxeOlHwNsfmf+dZemwtkBQvpYSEXD058UifeOPPTc/dp69H3TfW9nLXFejVTinRNEGvPyYWJ/qr6BDr2DjEIOHyUQ4/rUGmhrNZeVV/decYUBNmS0XdrRDX3gktHQfDKAqqnDhwfbz0oZm4LU15rLari6D/sd1chu//HNr/UQ0tDEYjajAlCFJVkuJ8EREQ4RrSFE2ne+IiIgGQngAg9Gkl/kzA82kF/jDTrSznj4GrKV16HbPgBEAaE4ZZioEEAuUwVGD46MCKZggKQSkpElBXpFAVNzGFgZn+t2JwWiW/pF0rGT+TqXfsS04AvAf0perzGPZb3uIiIh6yve6LgWiBi1hoYWU7qtl8uqTEQ0mjQnzCO7akP1FFokUBmzqI9v+VuzBxeaBj62uvyBoGylwscSRB0kN9WC0DR0f4+WtzxjL6iOzMDUys8gtIiIiIiIi6juO0SOi4Ybj84iIaLBS379JLlz1FnD3H63bn7zQwYPfcHDmXrld12piANasMBfuegDUH18Ejj8XmLcYmLs3cNRZUFfdD7XoqJz2QwNLLfmWcfmI1EY8/f6+OLv6Bev2l97R2YeSgtFqUpt6LyhUIAwARITnna1bgYQwFoLBDXlT3/qtXHjPTcbF3zzEwW1fcnDqQvv55401GiulYLQRLrD8NZ+tzOAn/Kokh2OCAUJFoxYfA0ybK6/wwF+Ad1/u/nbaaIWnLnbwzUMU9p8JnL1I4aEzN+DYrXeatx83tcAtpn433v4707/6RvfXp+9mP+d871/Z9/990WZ5bSCi470XFCqUr6ue91bMEFf55yvmz2pj6bFEFTX83IPIQlWNACZONxcufRE6aX9nqDTk/ff1xpref6dSKBoAlL16n1imfvQXz33lzaP/rti/JhNHeCdOa2DrZnNZf4X7DSPqnJ/Iha8+ATwp9H27/OhohZvPVphuGbr8ywfN/YeaWNdz4Ft+Jbdvzu7W/RPR0DY43nYmGkYcQ4cpkfAOJiAiGsySyWTWMtP5joiIaCCUBwduZoaIz7AMKRAg2hUuFRUD1nq/+C8FrNm2MWlJbTUujwXKPbctlpAKGZdLASkA4GoXcbfVWGYLPyt1wlDCRySm3530Yo0UEmHbf2bwmBRkZguOAPyH9OVKDGoTjn0iIiKTfK7rgBycFhSC1gpNDB5lMBoNIRvFYDRhRm0vOQxKlPq2CgqlloBrKRitzY0jJcw261dSOO9IAY7A0A9Ge3jTndAwD6w9qOa4IreGiIiIiIioMDhGj4iGG47PIyKiQauuwVqsn3/As4r9Zirc+FkHi+xV9VJtCUZTB58G1bATnG/8Cs6vH4RzzUNwLr4Oau4i/zugweMz5xkXj0xtwG/XnoPysLzpY8uAtoS2BKM1bvumdiyUFGaWDymkKt4MnWg3lzG4IX+WUCL9n0fFsuMXKNz8eQfXnSY/577vLY3VjeZnwvXOR/7bmMnj/AkAKLEc4JkKefySJ3X4Z+0rZFz/6kcp/OIEBw9dEMANSxws3mAJkClUOBUVj0cwGho/6f4yFFSoHymv+twqYEtr4cahxC0fiYZ127ZvSkqBkXUF2afqCioan1yHndpeN67z+hrzttuC0aoL0haiYW32bnLZyjc8N//eEfZxfve91ftc1GIJRosufUou9NPnyZOa4FF3LiGztP2QxrhqDd3UaC4r53XJkxTW2EU/d7+1XCmFU3dz8OJ3c3/uURMFsElIswaAvoSizd/HvLx2bP51ElHB8YkpUYEppVBS0vsFmuZm72ACIqLBLPM8VlJSwpkZiIhoUIg55ZgcnjZg+xcDzVK9r51yuFSs1/+z6/EXsGbbt4kUjFYWqPDctliCjjmYIOHKT1za3TbxhX9bMJqjHN8hd4AcjGALRpPCHTLDIqQgMyn4rLt+Kbgl1SIGufkRT+UeNEdERJRJCjKTAorSEq4UYGQOWis0MXjUR1gt0WCxMfGJcXlNvsFoOZD6tmEnAkfJjyhtocBS2JpfCSFwMeQMz0FSzckmPLPlIWPZ6JI6zIntUuQWERERERERFQbH6BHRcMPxeURENGhNnwfUjJHLX3kc2hDwaXLYjv6vbTWBOBAXngsxUGZYUbsfKpd98C4O38E8HhAAtAYOv8pFU5u5vDq1ads3Iwr8UrMQjKbjLUCHEIxWUpxJ4IaliTPksuftL+ADwKFz5PPPivUQw/XGrHvJs26jYAgYNcF7vVyC0UrlyceoH+x2sLVYewTS6LUr5cI9DsunRTSAlNfv7NO10M1bur/16vOs2lCIVnVqE4bfKe2ipOcYmbFToAoVwN6jL7ZH/PmcNi1LTwBfXlOYthANY2r3Q+TCde95bn/MPPu56Fu3a/ztxW197WahTw0AZa8/LBdOnePZlrxZ7hUAAKN99LdoOyQd+xrYuslcVMHrkqf5i+33L+tW+aqmPJz7c4/qmALWWPrXs3bNuc40dfTZ5uXn/izvOomo8BiMRtQPysvLe33f1NTUpxfRiYgGktYaTU1NvZZlnueIiIgGQokqxVnjLkRABQasDVI4VGaYlhQulQ5Wk0I3surxEYwmhZ711JxqMi6PBQbPNV4KPLEFqNh+PlKIXVouwSd5BaP5PVY8QvTE+oXgtRSSYviDH1J7vH6eREREPYUc83U94RWMJgYYFWewsN/rN9FgtjFhniVtRGh0XvXZhiRkPgeRQszy7dsCQKvbt5fcpcDFEiHAEQBcLb9sMdg9sfle8Vx6YPUx1oA6IiIiIiKiwY5j9IhouOD4PCIiGsxUMAT1lV9Y19HfP9lXXV/cO4dgtOVPyIV1Db7roSFg1wOB0RPF4u8+eypqLY8XH1sml9WmGru/Vhddk0/rZBGhUfFmoENIlQgNz8maikE5DnCQcK5JpaA/eMe6/aRaWzCaxkZhGEjNf+7028Texk2BCvgY25xLMFoJj59iUhOmASedL6/w6O3QScu4J0swmpo2tw8towGxx+Ge4Tx6yfzuzyYvPEhhcq287qV3FG4cSlw4DMO6rfcYn0IGy/boizV0rMhp07L0uLuK6sK1h2i4WnyMWKR/9FnPzXeepHDmXvZ7sFNu0Ljigc5zUovllZOyVvPkrFh0lL8+T57U9Hn2FXhvSCbShCNaA02N5jJelzyp8mqoL1wmr2ALLsvwixNyC0eriQH6ivPEcrXk2znV18vexwALD+q9bOf9gH2Ozb9OIiq44EA3gGg4Ki8vx8aNG7u/TyQSWLt2LcaPH88Z3IhoSNFaY+3atUgken9SWlFRMUAtIiKiweLAmuPEcK1iqAhUY0Z0DsqDVQPWBkB+Yb9nmJarXcRdczBaOhDAT+hGSqfQ5sY92+QnKEAKTxtcwWjmQRy2kC9TiFmaZ/iCE8NGw3JT8IkYjGa535OD15qhte7eVvo3eAa7Wf59ralmlDj5DYrJN8yCiIiop5AQOJRw7eGdUiBqUAhQLTQxvNbS5yAaTDrcdmxNbTGW1YZG5Vmr/2cc+YbsRh1LMFqqj8FoUuCicP8xlHW47Xhs8z3GsopANRZW7FvcBhERERERERUYx+gR0XDA8XlERDQUqINOBpwA9A9PN6/w1F3QH7wDNWmmtZ7aMoV/nOvg+Ou8w0Bq3nzAXFBWBVRakkZoyFGOA9z4HPSR44zls1feiVf/9w1M+P2OOdddk9q0bT8zd867jUZRYaxlvBlwhHCIXEKwKIs6+RvQD95iLNN/+DHUZX+2bv/LkxS+8bfssZ+vfAhsNg/xRU1KCE7Y5zioeXtDX3WBuXy8zwCiXI4JBusVnfOV/4H7wbvAc/eZV3j6HjkwQQqG6EtoAw0YFQwCP78deOAv0D//gnmlT9cCrz8NzF2ESbUKL3zHwagLzX2ee94AXFfDcfr+GWabJRitF7/nJT/GTukMndEaDR2rcto0lh5LVM4AGiIvKlQCvesBwIsPZxcmE9AtTVAx+2eIv1+i8N6n2hom/It7Nb66n0Zzu7xOTBgHqE6/2Lr/gliwL/DyY+ayQp7baPiwBqNtMpdV1PRfe4YRdfLXoZu3AP/3s+zCxo+hW5uhovL437TP7anwrdv9T3ZVE04C771tLqxrgKoa4buuTKo0DPzsNuDpu6GXvgTVsBOw3wlQDKYmGlQYjEbUD8LhMEKhUK+BClu3bsXKlStRUVGBsrIyBINBOI4zgK0kIjJzXRfJZBLNzc1oamrKGnQVCoVQWspOPRHR9m5hxT4D3YRBQQqH6hmE1u62QcP8YDPiRDv/L4ZmbXuA0CaEq2WSQs96kkLtYs5gCkYzB54khIAUQA5eAIBIIGrdn5/fQVp6Rq9s8gNqKfzOhYt23YawigCQ/w1eQWRS+wGg1W1BFfIbENgqtccjzIKIiKgnKchMCj5LkwOMzEFrhZbuq2Wy9TmIBpONifViWU2ewWjK0ufV0L3K8+3bhp0IHDhwDfdRUv/UL+m8U+LI5xUpGHmwe3bLw+K93/7VRyHkFCdkkoiIiIiIqL9wjB4RDVUcn0dEREPSPscCgSCQSprLX3sK8AhGA4AFE/3trmegVS9jJjIIeRhSlbXQlbXAFtPUpsC4lY/g0B12xH1v5VZvd6jV7IV9bKFBTBhr2fgJUCm8lM1gq76pswRfrLakfXSZPkoBhme/UigaYAlGmzzLflxNmObZHgBALv1+BusNCHXCudBCMJp+7SkoQzCa1hpYaw5GU3UNBW0fFY8KBoHDl0D/4cfAJ6vNK732FDB3EQBgRLnCgbOAh5aaV127GZhQgAyWeId5TEvE7R2Mpmzn0BypklLo2rHAhnWo7xBCAAVl6XE/FQxGI/Jl0kxzMBoAvPtyZ2iYhVIKFx7s4LFlcjj1xhbg7Y+A5jZzeQAplGohNa2A5xaJOmwJtCkYbcQ4XwFMtB2yBaNtNffvVVlVPzZoeFGHL4E2BaMBwLpVQMNOnnWMKAOqovZ7sZ6q4x/JhdPm+qvEQpWGgf0/A7X/Z/pcFxH1DwajEfUDpRTGjRuH1atX93phPpFIYOPGjb1mqiQiGkrS5zc+UCYiIuokhV3Fe4Rp2cO6Orf3E7AWNwR0mZiCvDJJ4WllgcEz63RICCZICgEpgPyzLlGlYiBLmvw7MNVpfojsQH6xxhb+EE+1IOx0BqNJv7+oRxCZdCym68+X9DO17Y+IiCiTFGQmBZ+lJbV5UL0UoFpo0vW7zY3D1S4cxZdqaXDbmPjEuFxBoSaU/wxpst79ZKlv6xWyq5RCJBAz3rf4CYK2kQMX5QHnUtD1YObqFB7edIexrFSFsajq4CK3iIiIiIiIqPA4Ro+IhiOOzyMiosFKBUPQex0BPGF+/qDffgnq6M971jOxVmGXScBLH9jXq5aC0eYv9twHDVGLjwHu+oOxSP/mEhx30Sm47y3/kz+F3TiiOt75zfjCBzaoMZPMowg/XAFEhNC0Egaj9YWKlstTWq14HbqpEapCThnaexoQLQFa7UNVeqlxzecite9xwJQdgFETgPUfZpfvc5y/HeQSdsZgtIEx3zKRuBB+hs0bgBbzJGb9cT6iIlt8DPD3XxuL9CuPQy35dvf3h81ReGip+cx1+o0uHrnQQcDp2/1/m5BZG9YZCUeFPvYmTgc2rMPUxHtQ2oX2OY4u5jYDAFR5AVLhiLYDavGx0LddayzTt10L5RGMBgD7z/QOILrxKY0DZpnPR7FUsziVqqqs9dx/n+1xaGc/uiMjnM0QTkrUSTpiNdAkfNZguY+gDKMmAMEQkMyepFjfdzPUV/7HswqlFI6br/DHp/1NWlzTnH3P1V2X33svIhrS+NYOUT+JRqOYOJGz0RDR8KGUwsSJExGNRge6KURERIOG9EJ/a48wKVtQWTpcyk/AWqslYK33vr2DAqQwgVhAGJAzAKQgs6ROwtXmYIJ8gxcAf7+DNC0PrxHZ2tAzfEwKIrMFqwGdQXLSz8zvsWNsWx9+pkRERGlBZZ6jJaGzH4r2LhcCjIQA1UKTgkk1NNpcn9NUEQ2gjYn1xuWVwRrP4GCJ7YlHZi85374tAEQd82yOralmz21tpPNOieW8onPv/g+4V5ufwwYhGG9R1SGIBjhbJhERERERDQ8co0dEwwnH5xER0WCnzv2ZXHjPH6FTKV/1XHuag5Eew9RqUo3mNpx1qa990NCjzvyetfy06/fA0bPbrev0VNMzXK+uH4KIpICZdauAdmE8Qag4Yx2GM/Xt34ll+ox50K486VVZWOH8A3L7/KDGFNJ44ElQDTtBBQJQ3/4tEMl49nri14Ad9/C3g9KI/8YwWG9AqNIIMHNnc6EUjCYtB/rnfERFpc64WC586RHo+LaxMufuK59znlwOnPeXvg9IiQthjxE33ntBgY89dfFvAABh3Y4JyTW+t4vprmtkRXVB20M0bM3bWy578k7olx72rCJSonDDGQ5KzcN4AQC/eUzj0XfN56QyYQygOv9Kz30XgqqshbrgaiAQ2LZw2jyoM75VlP3TECQ9M3RdoMn8WQOvS/6pYBAYO9lc+LeroJe/5quey45W2GGcv31W/+0nciFDEom2CwxGI+pH6YFXoVB+LxgREQ0WoVCIg66IiIgMbGFa6ZnppTAAAAing9GEl9J7BlpJAVWZWnwEBTSnzDORDaZgtJCSBwElhTAD6Wct/Z568hNylyYFoynLxyy2NvQMdJN+z36CC8TjsQ/BaFKomp8wCyIiojQpyCwpBJ91l7vma36+gU65sl3v+nJ9JSoWKRitNuR/JvVs/geKx1PmAf++gtF83CPlI+mazzslSh5EriEPnh+MtNZ4sPFfxjIHAexXfWSRW0RERERERNS/OEaPiIYDjs8jIqKhQNU1ACd/XV7h5Ud91bPrZIW3fmh/na3GNYQRTZoBVVbpax809KiR46G+8COxPNz0EW4b+Vv85jR/zyt7huspKcSsL+oazMsTHcDaVeayEIOt+mwvy7POxk+Alx+zbv7twxTGVPjfXbUhGE199w/bvt71QKi/vAn1/ZugvvErqBufh/PVy30HuKuSsP/GMBhtwKhTLzIXrHvPHAq6RghGi5QB1X0Zr0GDgaoeBfWV/5FXePT27i/DIYWFk+VVb3pGY1NL38LR2oR5ScO6R5hoIAiMmtin/WRS4+uBWOcJtb7DEgaYocztes+hoqag7SEarpRSwMGniuX69t/4queEnRXe/bH9HuyaR6RgNOH9pCKGEakjPgf15zegvn091BV3Ql33GFTtmKLtn4YYqS/e3gZ0tJnLeF3KjeUeW99xva8q6qoVnrvEwV+/4H3vZPyMCAD2PBwqyOfDRNsDBqMR9bNoNIr6+npMmTIFtbW1KCnhDB9ENDSUlJSgtrYWU6ZMQX19PQddERERGUhhWikkkegK+pBCM0KqBCEnZK2nZ8Ca3wCAVo9gtA63vbttmcoCOYz46GchS+CJ1H4pVMxX8IIl5C5T+neSyTaWJeSUiGFvPY+RvgSR2Y6jfCTcDjGELuKwb0hERP5J1/WEEHzWXS5c820BqoUkXVsBOfCJaDCRg9FG99Mee/eTxeBiy99W9zpC/9frfsdLQujfSgGOQ9Hy+Jv4oG25sWzXisWoCY0scouIiIiIiIj6H8foEdFQxPF5REQ0FKnZC+XCpf/xXc+IcoWJlveOawxhRGIQFQ0fM+Zbi52lL2DJ7gpBH29D9gxGQ10/BKNNsByP771lXp5LCBaZVdYClSPk8qUvWTcvDyv87Hif4XrJjQhkTqJVVw8VDPZapEaMhTr4FKjjz4WaPs9X3d1yCTtjsN7Akc4hiQ7gw2VZi/VaISSqrt53aB4Ncpa/db30xV7f7zBe/p13JIHX1/StKXExGC2+7Zuxk7POXQUxZQcAwKz2d31vUuFu7fqiuvDtIRqm1KSZcuHb9r5PTxNrFS46OPfrUEwLY2Vrx+ZcV1+o8fVQR3wWardDoEojRd03DTFCf0s3b5a3Kavqp8YMU5Mt56UcPhuKlSqctKuDPT1u2UckN5gLJs7wvS8iGtr64W6GiDIppRAOhxEOhzFq1ChoreG6rvgyPRHRQFJKwXEcfuBORETkgy2sqtVtQYlTKoZS9XzRX3rpP4UkOnQ7SlVYDBXI2q9HUEBLaqtYFguU+9pHMdiCCaQwA+lnZAs18VrHVKeGEIzmkT8fcWJIpLIDXlq7jhFXp9Dmmh8cScdIZv0mfkP1MsWFtgD+wiyIiIjSgkKQmRR8BgApnYKbOcC0iy1AtZC8+npEg93GpBSMlv8MxAryZ4aZ/eTWvgQXB8qMy1ulGSh9yidwUer/D1YPNv5TLDuw5pgitoSIiIiIiKi4OEaPiIYKjs8jIqIhbfdDxSJ9w6XAqRf6Dt6wddWrUtkvLKtDTvdVLw1hO+8H1IwGGj8xlz/+T0QW/gHHzPscbn/ZXlWvcL3xhQ9GU9FyaKmtrnmsQ04hWGSklII+6CTgtmuN5fr67wOnfAMqKI8rWbK7wu8e13j+Pfu+pibez15Y6IDGXMLyGKw3cMZPFYv0GfOgdz0A6rt/gKod07nwkb8L9fRDSCMNjB33ksv+dT30woOg9j4aAHDyrgp/fFru9Dz3nsY+M/L/fEAMRnPbtn3THwGh6XrffBYnNv0dv6n5kq9NJne83/lFuSUhl4h6O/C/gBsuNZc1fgzduhUq6u89oFMWKlzxQG7PTGKm8Xqj6qAcH2nFRANBCcdmq/wuHSJ8PyoX6sCToG/5lblw2SvQ69dAjarzXd9OdQrPrDSfm0IqhfHJdeZ2HHyK730Q0dDGYDSiAaCUQiAQGOhmEBERERFRH9nCoeKpFlQFa8TQjHCPbW3BAPFUC0qdsBiwlqnFIyigOdUklpUNomC0oCXwJOmawwykn3XE8Z5ZO7dQMSkYzWMfgRiaDLOZpsMdbEFkfsLdxPAIj7A8iS2Mz0+YBRERUZoUZJYUwk4Be2iaFLRWaAEVQKkKo123ZZX57ZsRDaTGROGD0aTZ9ICul1d6FMvBxd7986gj9W379rcnnXdKHPklhKEUjLa2/X281WJ+C2SH2AKML51c3AYRERERERENII7RIyIiIiIqPBWJQU/dAVj1lrFc33Ap1Lk/6/N+gkhlL9zn2D7XS4ObCoaAn/wN+sv7iuvoy7+Mqy+twwcbD8RLH8h11bhd4/TKKoHK2sI2NG18vRziZqBCDEYrBHX2D6CFYDQA0Nd9B+qrl4vljqNwx3kODr3Kxasfyvtp6FiRvbDQwVYMRhsSrEGIAPDiw9AXHgn88UWgqRFYvcy8HoPRhg0VDELv/19iCJ7+7onA9U9DzdwZB84CLjta4Qd3mseeXPIPjW/JubOe2oThd5Ge49366dhT4+uhAewVfxb//cl3cMmon0BLYTRdpia6UikrqvulTUTDkRo3FfrM7wF//ImxXF91IdQl1/uqa/5Ehc/tqXDTM/7Hww03m6sAACAASURBVMUM77ioH/3V9/ZERSeNcY1bxp5GzONVyUzNWAC97/HAY/8wlusv7An8833fAYoNliHNU0saERAmWlfT5vqqn4iGPsaxEhEREREREeXJFg6VDqOSQjOiPba1hV6lg7mk0K/s/VpmsQDQYimPDqJgtJAl8CQhhBlIP2t/oWLmdUx1umIwmv1jlqhwvKT3YQtYkbb1Vb/PYyeTLXTCz8+UiIgoTbquJ3QHtDANeNKVQ9NCjhygWmjSNS/f6ytRsbS5cTEUuTY0Ou96c5mjVgr+9ROyK/XP8w39TUsIIcu2+w/pPDUYPdR4h1h2UM1xRWwJERERERERERERERENV+qos+XCe26Cds0vrGYamctQtYUH+X6hloY2teMeUL9+yLrO6Id+i+cucXDuvvLTy+pUY+cX4+uhLJM/9UldQ27rh4ozCdxwp8oqob7xK3mFf/8fdDJprWNUhcJ/vufg9N3kY6O+Y1X2vusGMhiNwXoDyitYauUbwNKXgIdvFVcp+PFDA0oddJJcqDX0PTd1rqcUvn+kg4Nny6u/tS7/cSlxYe7RcI9gtH479rrqVQAuavwVPlk2AXu3PCmurrSLSYnVnd+UMxiNKBdqySVyoRDSKPnlibn1jcvcjPF6jgNMn5dTHURFJd3/tVretWMwWs7U166QCxs/AV5/2ndd00bJ56WpWGsuOPhU3/UT0dDHT4WJiIiIiIiI8lTilCKozMEc6SAzKTSjZ8iGLfTKT2hWTy0eQQHNQjBaxIkhoAK+9lEMIeHnCnSGqJhIP2s/oWJSOEOHbkcyK4hNeADt8YzIK1jFFn7nJ4hM+jf4PXakdmVy4KBUcfZBIiLyL+jIg3uT2jwYVbreA/YAo0KTrq9+Q2uJBkpjYr1YVhu0TK/WJ9v6ya5OoU0IRvMV+hswDzSJZw60ypEUsmw/rwyNYLRNiQ14sekJY9nEcAOmReYUuUVERERERERERERERDQsTd1BLtuyEfhUeGk1w8WHmgdbHdT8YPbC8VN91UnDRP2OQCAoly97FY6jcPKu8oC9hnSo1chxBW7cNqo+x+dvDLYqnPod5bLmLcB/HvacAEsphf/aRT6Gdmp/I3vh1AI/c/UbjOY49r8J6n+2a1/aK49DL3/dUgef2Q8rXsfEit7nkP1myuebV1bnPy5la5t5eaznmB2vYL98ZdRb427CuZuuF1cfl/wIYd3e+U1ZVf+0iWiYUsEgUC2M+etog+5o911XZVRhQg7ZhOWZ4/XGTIJi4C8NZlIwWlwYe+o4vFfLR+1Ye9DpCku/OMOc8XLZjnHDfRkAjJviu34iGvoYjEZERERERETUB9JL/fHuYDTvMICQU+IZsOY3fCPutsDV8qybLakm4/KyQIWv+oslaAkmkMIMWoUAMCnQxO868VTv36E0YEZ5JKNJx0p3iJ4lwCziRK11A3J4Wr7BLeLPMxDrv1k0iYhoWLIFniaFADTpeg9A7Df1h6gUbJpn8ChRsWwUgtEUHFSHavOu19bn1T0CxNrcuLien9DfqGMORpP6qH6kdAouUsayEkce2KKHSDDaI5vuEv99B9ccxz48EREREREREREREREVxty9gYoaufyNZ3xVc/gchcpI9vJTmm7NWqbGMRhte6LKq4B9jpVX2LAO+pl/Y696YJohHyLituLorXd31nX05/uplQAOPCm39f2GYJG3HfcERsihd/qio6FP3wl69bvWag7ZARhjGDpbm9yAI5rvzS6Yu3euLbXzG8AQKuXz3gGmDlviuY7+7XeBu/8grzBrlwK2iAaaGjcVmLdYXuHNZ3uNNz91ofw3vOQPGs+vym9sSmOLebua1MZt3/RXMFpddr1TE++Jq4d1V4pbWRVUYPBM5k40ZCw+xrzcdYFVb+ZU1ef28t+vqE419l5Q15DTvoiKTzi+W4VgtEgZ+9p5UI4DHHq6WK6vugC6zfw+ZaYpIxT2mW7YhwLOeO9K8/4ZjEa0XWEwGhEREREREVEfSC/1p8MypNCMzCAuz4A1nwEAGhptQhgbALSkthqXxwLlvuovlqCSZ7dLuuYAlbgQACYFmvhdJ7NeKRjBKxhNCl9L/26lALOwE4WjvB8Ai8dQnuER4s/TR9AcERFRT6E8Ak+lwDSv+gpNvH5b+ltEg8GGxCfG5dXBWgQsfW1v/gaA2ALM/IT+Sv3z1swZKHOQtAQulljOK0MhGK011YyntzxgLBsRGo15ZbsXuUVERERERERERERERDRcqUAA6ndPiuX6Mu/wGAAoCys8cqGDGaM7v68Ia/x4w2U4Y8ufs1cez2C07Y26+Dpg8iyxXH/rOKiWzbj3fAc7127pXj6l4z3ct/pIjE51TSS1+6H918baMcCoOv8bhHyGYJEn5ThQ1z5sX2n1MuhLPiNOhAsAJUGFhy5wMKdHxtqs9qV4YPURCOv23isffXbhg3z8huUxVG/AqR0WQn3/JqAyz4noTv46AzeGIfUjQ5+lp0dv7/5yQo1CueVP+fCrXcQ7ch+f0igMz6lJber8wnGAsZNzrtcPVV6d9TdR37FKXF+nxxxVVPdLe4iGO/XVy8Uy/d0Tc6rre4crnLuvv+tSdWpz7wWGUESiQUXqc8WFsadhvh+VL/Wln1rL9Y2X+a7rb190sP/Mbb++0RXA7fPuw6wOIeyawWhE2xUGoxERERERERH1gRSWkQ65ksKuIoFoxvceAWtCPSZS+BkANA+RYDSllBh6khCCUuIpc0CJ9Dvyu05mqEO+wWhSuEN3+F0fg8jEYyiHY6fXdkKYRdhHkAUREVFPIRUSy6TruhSYBgAhp5jBaObrXr7Bo0TF0phYb1xeGzJMmZ4Dv8N0bX1Qqd/aU9QpMy5vc+NI6ZTPVvQmnW8AoMSRX0KwDZQfLJ7a/ADa3Lix7IDqY3wFLRMREREREREREREREfml6hqAOfLELHrzBl/1zJ+osPTHAXx0hYNPL3ofl3z6C/PzqPF8+X57o2IVUH980b7SY//E1JEKL+zzb3y0bCLeXz4Ny1fugL3iz3WW14zp9yAideSZ/lcuYTBaIalxU4G5e9tXWr0MePdl6yqzxym8/sMA1l3u4MO5V+KNVTtjbvsb2fvb7ZC+NNeMwWhDijr4FKg71wAH5BY+AwBq5/36oUU00FT1KKhb3hbL9b1/6vX9OYvla9KmVuDeN3Nvg2cw2uiJUKF+HGuX0UerdjcLKwK7xV/o/KKcwWhE+VClEWDMJHPh+jXQKf9j6kJBhWtPdfD/zvbuK3efT9Lt4L0ZDXbSPWCrEIwWYTBavlRJqT0c7f6/+B5/O6pC4aELAthwpYOVP3Ow7nIHR7/2C3kDBqMRbVcYjEZERERERETUB1JoVXegmRCakRnE5RmwlkP4RktK+MAWcmhaWaDCd/3FEhRCVExBKVprSwid9wfVpU4YSviYJDPUQQ5Gs3/MIv6OvY4VH+231p9vMJoU1OazPURERGlBS5BZUghAS7hygFFQBfvcJr+k63C+11eiYtnYT8FoNj37ydZgNB/Bv9GAORgNyD+YMOlaAheVJRhN6P8PFgk3gUc23WUsKwtUYI/KA4rcIiIiIiIiIiIiIiIi2i5MmiWXrX43p6pGVygEP1olr8AXXrdLKhgCps0Ty/Xffw3d2gw0NWJkagPqkmt7r1BZ088tRG6hff0ZTLO9mrnAe52XHvFV1ZhKhbFrX5BXmDbXZ6NyUOo3GI3HzmChHAdqvxNy35AhMsPX6Ily2XP39woq2lnIM0p75+Pcx6c0mucUR02qsfOLun4+9gzH9oHNDxlXPbnp1s4v3PwmRCQiACPGymUb1splgj3rvYPRqt3ewWiYPj/n/RAVlRiMZn6XjsFofTTDck7YtB5oasypuuqYwpQRqjPk/NN18oq1lvMhEQ07DEYjIiIiIiIi6gMpLCMdBCAFAmRuJ7343x2wlkP4RqtrC0ZrMi6PBcp9118sIWUezJHU2UEp7boNGq5xfSm8ridHOYg4UWNZVjCaNGOFx3MhKVCsO/xO+L35CY6w1R9PtfieZcPUrnzbQ0RElBYSwk6BzkAfEykwTUEhgCIGo0khuAxGo0FODkYb3cea5U5vzwAxKdi5VIURUAHPvdjCeG33OzYJw31EmnTv0WlwB6P9f/buPE6Sur7/+Ptb3T1Hz7E7M8suyy7I5cEGEBGQQwE5lUMFb7zQmBhj1BhjPBOPBHMfaqJREzXRmOQXFcRbUBHxVjyIGg88OVxgZ6+Znt3t7vr+/pjt3Z6e76e6qs85Xs/Hgwc79a2u+k7PTHVNT/Wrv77789rV8M6cNeesvUQDEe88DwAAAAAAAAAAOs894QXmmH/BefJl+28zwdvc8F/hgamNckPh67qw8rnHP98e/Nn35a86Xv7Wm8Lj4z0Io20+Nv26Bf5u12nu0mc3Dc75t79G/qPvTrfBO2+397XxyAwzS2kgbRgt5XrojTMvSY5hNcrlpEObFLGwbLl8IfHr619xxXzEU9JjT3LatNbe1jUfy3Z9SjX22tEsjNbtKF8gvPb87e9ctOzofT/VxTM3zH8ws6O7cwJWMPeUl5hj/o+fmvk1I0etczpxc/I6E43XpT344Zn2AfRe1jCa/Sa+SOHkR0qja8xh//pntPR6Nr93TrrnV+HBLafJRWSSgNWEn3gAAAAAANpgxTJKB4Jm4b84Nsa6rHhX7UX/mcJoVTsUMBOHn8wdXYphtCgcUSkHQilJn7MVr0u73uKoQ/hJ2ajJ0yxmWGX/9q14RFIUYsF6xvZjxdrr96TaRmhejdLenwAA1CQFh0LBU8kOGOVdYf5doHokKTwKLGV2GG19W9tN+/OXNhBtKUb2xSZJ5/5JQr9H1CTFw+IlHEaLfawbpq8LjhXcgM5Ze0mPZwQAAAAAAAAAAFYLd+wJyStYobMAH8fSp/4jPBgIbmD1cJdeLa0/3F5h293SFz8WHhub6MqcFsjy/UncquPcUcfJ/f0npC2nJa7n/+YF8vfembxOHEt3hMNo7uX/3PIcEw2kjOUR1VtSXGFA7p8+K518brobbDhCrknAD8ube9377MGvfEr64FslSUMFp1tebl9rPleW7tud/hoVK4omSZP7Q0auy2E0t35xUemxMx/Rv935HJ2w5zaNV3fq8t0f1U2/uFB5VedX2E0YDWiVO+dx9uAPviF96/OZt/mR30t+DcxkfRjtSS/q6fW7QEusYFa1El4+zOuj2uGiSO5937VX+PpnpNu+lH3Dd/3c3uer/yX79gAsa4TRAAAAAABogxnLiGflvTdjV41BgKRoVtVXtSeeSz2n2arxThYJYyO58dTb75W8EVEpx4tDKXuMAJ1kB8PSrtcYdWg1jGBFIObikmIf2/GIlPNPiky0Eo+w5pP2/gQAoCbv8uaYFSqylidF1rrBPEfLEK0Fem2uOnsgsNxoss0wWpY5hKQ9tx2MhuWMP2OWWvz5s0KMUrNjy9INo/3v7De0dd8dwbEz11yg0fzS+z0PAAAAAAAAAACsIOc90Rzyn/tg+u38+Dv22GFHZ5gQViL3e3/Z2g3HJzs7kQA3Ppk+wEYYrSvcgx+u6O1fkJ72MnulalX6fPgNpw647y5pn/EGtMee2PoEk6T9niCMtuS4DYcretOnpMkNzVfucpgKS8AR908crj8nut+U05ueYkeFrv9O+mtUtieE0Sbi/SGjbgdmN4XP056267/0rZ89TNt+tFHX3vEkHVa5++DgqRd0d07ASnf8GeaQ/+wHMm9uQ5PLyybqwmjuNx6WeftAz2WN9w3x+qh2ualDpWPseH4rxybd+ZPw8iiSNh6VfXsAljXCaAAAAAAAtMF6YX8pntU+v1dx7d2NGjTGpayoVSmeTYx+hW9jR7Bmq7uCy0dyY5n20QsFVwgurwRCKVaATpKG2gyLLd52+I/OVrihxgqKecXaG+8xPwcrvpd2+1Jr8RYz6kcYDQCQUeRyyikcRysboaJQCFWyzw+6xYzgVrOdnwG9tK18jzm2rpDiotwESZeMeH/wPHnO+B0m7blt5CLz/LaV6K8kleNwcFGSCpF9bFm6WTTphulrg8udIp0/8ZgezwYAAAAAAAAAAKw27gT7Rfn6yifTb+hXP7L3cfzpGWaEFWnLadlf3C5J6zZ2fi4hST8HNc5JR23p/lxWMXfimYnj/pufS97AnbfbY0b4p21pw2gDhNGWrBOSv++kJo+VWBHc2IR0vwfZK9zx4wXX1Jx5jP2YdovRAAnZbbQcJWlN7fUCh2xKv8FWPOiUxGNZ6DN1Fz6le/MBVoOk348+/E75PdmubR3IJ59nT9aF0bp2TgR0VMbfHQeHuzON1SbpnPeDb5X/6feybe8O4/ezDUfIFXr7JusA+o8wGgAAAAAAbbBiWnPVGc0lxrqKCz62XvQ/V51N3E7IrBEKqPiy9sRzwbHRJRlGCz9ZGQqoWOGvghtIjBzUs4Jfjdv2VhityfPn1vdKbR/W55A2RJYUgMv6PVSbU3A+KWMWAADUsx6PQ8HTpOX5qLd/zGw8Z6spxbMLLlgDlhIrjBYppzX5dt8VPTGNduBf7Z7bSnZEreUwmhFidHLKKW+Gjr2PW9pft/107v90+9wPgmMPGTtD6wYO7fGMAAAAAAAAAADAqnPxVYnD/v1/m247d/7UHrvgSRkmhJXIbThcuij5ey14u83HdmE2gf08+cXNV7ry+XLF0e5PZjU77SLp2BPt8Vs+Iv/dL9njvzJqRGum5qNH3ZA2wpALvxkh+s896UVSUphhzTrp0qt7Nh/0j3vaH9qDc7PS9NYDH558hL3qe77k9Z1fpbsmbWavPTZae5P18XavE0rmhkekNI+D9U67sDuTAVYJ99jnJo77F14gv3Nbx/a3Jt558IPDCKNhGcga1Say1RHuyucnjvvnnCr/ifem3p63wtWbj8kyLQArBGE0AAAAAADaUIzCF6uU4lmVjBiAtPhF/mZgrcl2gvuu7g4ut4JpkjSyBMNoeRcOqJQDoZSSEf7KFF5IiNPVsyIoVkjh4PbtC5tKCQE8a16NClHBjMll/R6S7JhalvsUAICavBU8jcOhIiuMVjDOD7rFehz2irXXJ7ztJtBH2yrhMNpEYZ1yLtfWtl3Kd9PrxPn5cM76XavVMJoRXHQFOZf2M1s6bpi+zhy7cPKKHs4EAAAAAAAAAACsVm5sQu6vP2yO+7e9Sn57+G9XC9azwmjHnSpXXHrXtaH33CveIfdbb8h2o029ecG0O/lcubfcmLzOi1JGAtEyl883/Tr4f/wje8x84X0XA3uFwZTrEWtYqtyJZ8r9wyelc6+cjzQcdtT8f/d7oPSop8u9/Wa59Zv7PU30gHv0M+Re+hZ7hbpzHeecXnqRfZXKq69N9wZ+M8ala4PxHhVUmf+gy2E0SXK/9fr0Kx9zglzaKCSAILf5WLkX/IW9wv99U7r27R3bX1R7s9Q1U3Jjazu2XaBrCKP1hTtqi9xz/theoVqVf9MfyM+lfG2b9ftZj37PB7C0EEYDAAAAAKANjYGzmrmE0JW0OAhgBQJKcfJ2rNuEzFZ3mbcZyY1n2kcvFKL0AZU543O2gnNZ1m28P72sMFqz7RfNsaQAXpbPIW3cLY25uBTeR4b5AABQk3fhd6+1QkVlHw6mWRHQbkl6HC4lRGeBftpW3hpcvq6wvqv7rT9Pts/P7XPiRta5rRVda6bS5LhihY5jpbvgtJe27rtT3535anDsgcUTdL+hLl6cDwAAAAAAAAAAUO/EhyePf/XTzbdxlxFGO+GM7PPBiuTyeblnvly65Fnpb3R47/5m5k56hHTUlvDgwy+Ti3gJZy+40TVy1/w/e4UffF1+26/DY7/+RXj5YUe3PzGDy+WkfIo3CEyzDvrGnXiWoj/9T0X/+X1F//1/8/+977uKXv2vcoQbVpfH/pZkBV0bznW2bLQ388nvSXvL4WvV683sDS8frb3hYC5nz6eDnHPSlc9Pt/Ihh3V3MsBqcealicP+lo90fp9dPCcCOipzGC1lrBjNnXtl8vjsLunbN6fb1h3hMBrn18DqxLNqAAAAAAC0wQqaxYq1o7ItOJZ3+UVRj6TAWinOFt2Yre4OLp8xlkvSSLT03lmz4MIXc1QCARUrvGDFFLKs2xgVs8NoyU+z5F1BAy78pHmpOmPGy6zvseC6KeNuzVR8Wft8+C/mWeYDAECNFTSzQkVWMC1vnB90S9K5hHX+AfTbtvI9weWTXQ6j1bMiu1nOJYu50eDyrL8f1VjHldrvHVmvh+mnz0x/2Py95ILJK3o8GwAAAAAAAAAAsJq54qi05TRz3L/tVfKVSvJG7gyH0dwmXnyPhdxDH5luxeKYtPaQ7k6mgbvoqvDy857Y03mseieelTz+vfAbUGnXdHh5tyM+A0PN1yGMBiwLzjnJOHfx//yaBedDj3ygfZFK7KUfGA3HejN7w9eNjNauaRubnJ9TD6R+fB4c7u5EgNVi0zHShiPs8R/eKu+bBxYz2UyMCCvUAGG0jjn8AdIhm5LXuTMcPKvny/ukrb8MD3IsAlYlwmgAAAAAALTBCppJdpBgOBpZ9IfG5MCaccGFoVQNhwJmq7uCywfdkArR0rtwwgqolAMBlZIVFUv4+qRdtzF6YgUI2tnHTHWX9vo9wbGk77FF60bheIQVXbPMVcMhC4kwGgCgNVbw1AoVWcG0QhQ+P+iWoaQwWsLjJdBP08bvIVP59sNoTukumLTOPztxbmv9vtNMOQ4fV/IHjivhz62d8/9u2FXZoa/s+lxw7LCB+2lL8SE9nhEAAAAAAAAAAFjt3HNeYw9Ob5V/1RPk4zg47PfOSffdFb4tYTQ0Oudx0nGnNF9v87E9i8EccOnVi1+kfdyp0tmP6+08Vjm3dp30jJeb4/7VT5LfFigO7doe3t74ZKemFpYqjNbba2UAtOEw49xl293yr37igVDRkeucrj7Tfpw6+U9jlYzwWc1M+P2vNVp7w8E1XT5+1TvzknRhmQHCaEAnuFxO7rmvTV7pti91dqfW8Q1YarL+HlggjNYpLp+X+83XJn4NvBHGX+Dun0vGc0jafGxLcwOwvBFGAwAAAACgDUmRqG0VO4zWqJXAmmXWDKPtDi4fzY9n2n6v5DMEVBrjZTXFDBEv62tZaty28e45kWv+NIs1n2nje2X+NuEgRIgVXlv0OTRh3Z9StpgFAAA1eSNoZoWKynE4mGYF1rqlEBXMWGvS4yXQL9573WeF0QoburvvuoCYdf6ZJbI7kjPCaC3+7FWMEGPtuGJF37w3LrDok5u2f8z8XC6cfFzvX+ABAAAAAAAAAABWPfewi6VTL7BX+PInpO98ITx218/s2/HiezRwg8Nyb/q03HNfl7xiH14s7SYOkXvbzfMvBD/viXK/++dyb/603GCK8BU6KvrtNySvcP2/Ll62y3gD47GJ9ieUJFUYbem98TEAQ1LU9Usfl75984EP//VZydd3fODW1sJoI37/dTVjvQujuXxB7r9/2HzFQcJoQKe4Rz1d7rX/bo77t7yss/trDAADS1XG6ycdYbSOcpc+S+7vP2GvcMftzTdyp7GOc9LGo1qbGIBljTAaAAAAAABtGI6K5ti0ESQIxauSAl5Zw2ilePeBd5SqN2OE0UaisUzb7xUrQlLxiwMqc9X2wwtW8Ktx27GsMELzJ9Ct+SR9ja3YWYj1fWTdP5ZSwvpZ7lMAAGqsoJkV9ykHHu8lKW+cH3STGU/N+PgK9MJcPKs9cSk4NlVY34E9JLyTW10YzTr/zBLZLVphNCME3Yx1XKn93mGG0VraW3fsief0+R0fD45N5NfplPFH9HhGAAAAAAAAAAAA89wFT04c91+7MTxgveA1l5MOvV+bs8JK5IZH5J71SmnDEfZKfQo3uLXr5K5+laLXv0/uqX8gN2RfX4ouO/9J5pD/euB4ZIXR1kx1aEKGgRQhBsJowLLhNiU//tSfDznndPb97XVv/H7yvmb2hJePxvuvqxnvctixgVu3URpdk7wSsVCgs85/kh0c3H5v6s2cYvzadc7s5w9+cBgxIiwTWd9YdqD316WvdO6hj5R73p+FB+/6afMNbP1VePkhmwmPA6sUYTQAAAAAANpQiAbMgJcVuwrF1IYSw2hbg8tHc+PB5RVfCb7of7a6K7j+SG6JhtGi8MUc5XhxQKUUG2G0DOEFK3qyz+81oy310jx9bs0nKYyWFM1Lu33r/rHMGes7OQ1GPJEMAMjOOl+yQkXWY68VWOsm6/HVerwE+inpvLITYbTEa0b2F8S895oz4mxDCWHpRsWo02G08HElv/+4YoXRllIa7Us7bjCPPedNXK6cy/d4RgAAAAAAAAAAAPuddqGUS/hbxfv+Krz8TuNFsesPlyvwAmUkOOsSc8ideWkPJ4KlyJ2V8D1w25fkKwf/fuwrZakUfuPhroeFhsN/F1+AMBqwfJx+sRQlvGz/+19b8OGlJ9oX4rzvq1633WFfszKzN7x8tHZdyaEJAdFuaRaTtAJOAFrinJMGjNd2bP2l/O4dqbbzO+eEj0UvmX7zwQ8mOvGmrEAPuIz5nEKKUDGy23R0ePkvfxQOVdfbtT28fGpDe3MCsGwRRgMAAAAAoE1WUGu6HH6XlWIgrlGICpkDa1MF+0m92eriizRCyyQ7sNZv+QwBFSu8kCkqlrDuXPXg9r3i4DouxdMsVtzB+hrPh8jS/xHY+hyyhlus9YeioqKsfygAAEAHw0ONrFCRFUyzzpe6yTqfIIyGpeg+I6qcU15r8pNtb9+Ohx201+8xz5mznJ+Hfm+Sskd/ayrWcSWaP644o/rml0gYreor+uz2jwTHhqOizlp7UY9nBAAAAAAAAAAAcJBbt1Huua9LXMf/198vXnaXEUazXkQL7Oeueqm0+djFA5c9R9pyau8nhKXlnCsS3/nLv/IJBz/YbbzwXpLG2v87e6Jiijc2JowGLBtu/Wa5q19jr3Dr9MQnewAAIABJREFUTfJ7Dl6T/tyHJ1+H8+A3xPreXeHrVuww2vwbDrpNxyRPtgvcy/85eQXCaEDHJf3c+adukY/D1/HVe8qpThcct3DZ43d9SBfP3HBwwXiXz4mATkl8998AwmjdkXAe4v/gUvkvftQe3z0dHhjrcrQawJLFK1kBAAAAAGjTsPGC/X0+/BdHK16VNbqxLjGMNrNo2YwRRhvJpbiwog8GjPBJJRBQmauG7yPraxNihRekhV8DK4uQ5vlzax87K+EnbrOGyKztW/ePpT4El2b7AAA0YwXNrABaOQ4H0/JR7y/2tM4nrMdLoJ+mjeDuZOGQrgduawGxUuB3kZpM5+dGVHhPXFLsq9kmJ/u4UjgQbjTCaH5phNG+ufuLmq6E49tnr320hjIElQEAAAAAAAAAALrBPf1l81Eqg3//38lXGv5mcydhNLTGbThC7u1fkHvFO6QnvlB6xsvl/uZ6uT96q/mmSFg93MCg3L9/y17hK5+U//kP5v+9c5u93niXX3xfDP9dfIFC799EEEDr3LNfLV1unw/ppg8d+OfEiNNHfi/5ep63fDZ83cqsGUbbf814H8JoevAjEocdYTSg8x6W8GaaO7dJ3/xs000UB52u/71IH7joe/rje6/Rtb96gt5/5zNVUOXgSqNrOzBZoAey/i44QBitK5o8p+P/42/twV1GuJpAI7BqEUYDAAAAAKBNVtDMYoXRskQCJGkqIYxWihdH0GaNMNpobjzTfnsl78Lhk3IojGbE44ajYur9WV8XSSrVhcW8D79rjkvxNIu1D2/k1rKGyKztl2I7ThFe37o/CaMBAFpTMIJmFSNUZAXTrMBaN2WN1wL9tM0Io00V1ndoD0kXjcyf0yb9bGT53amYsy8At85Xk1jHlfz+44qzwmhmGrl3vPe6cfra4Fje5XXuxKU9nhEAAAAAAAAAAECYe/TT7cHt90i/+snCZffdHd7OxqM6OCusVG58Uu7SZyl60d8o+u03yD3sYqJoOGjTMVI+4Q34bvvy/P+tF95L3X/xfTHFGxvnev8mggDa4y692hzzt31pwccnHZ68rXfcHL5uZedcePlI7Zrxw3ofmXVRJB15nL3C2nW9mwywSrihorR+sznuv/slc6zeUMHpiqmf6LX3XaPLZz6unOpeMzO6Ri6Xa3eqQI9k/H2wQBitG9zIuDRpv+ZR3//q4nB+za7p8PJuR6sBLFmE0QAAAAAAaFPmeJWxftbo1FhuXENR+J2T6kNeNVYYbSSX4sKKPihE4fBJOV4YNPDeBz9fKVtsbjAaMuNm9XGHdrIIWeN3Wb8nrO9F6/6xzFn3J2E0AECLrKBZJRA8TVpeMMKp3TRkhFazPr4CvXBfeWtweafCaFY8TDp4nmydS0rSUKYwWrpwcVrNjitLOYz2g9K3dcfenwfHHjb+SK3J8054AAAAAAAAAABgidjyMGlNQvTi599f+PFuI0i09pDOzQnAquQKA9JZl5nj/q+er/jFF0vf/Fx4hYGh+dhINxXtNww7ICnuBmBpetAp9tj1/6r4EYMH/tv4lmc33VwcL752Zbtx6cxEdcf8P/oVITv3Snvs1At6Nw9gNTnnCnvsPdfI/+jb6bZj/W42tjb7nIB+yRrKLvT+DbtXjXMTjk3VqvTVT4XHzGMR18kCqxVhNAAAAAAA2pQ5XmWs30pgrRiFL4oIRdBmqruC6y7ZMJoRPin7hWG0fX6vYlWD61r3dUjkIg0b4ZOFYbQ4uE6U4mmWLPORpGIuxUUvC7YfXn9PXFLsw/MOqf98F86HMBoAoDX5lI/rzZZb2+km6/HPerwE+mm6fE9weafCaGnMxaXg8oIbUCFK/zNsndtKUqk6k3le1nGlFm60o2/9D6PdMH2tOXb+xGN7OBMAAAAAAAAAAIBkLp+Xe917zXH/J1ctXLBzW3jFNbzgFUD73Av+InmFW2+Sf9cbwmPjPTgOFZtfv+uINQDLjsvlpIdfnm7lG/5Tf1Z9W+Iqb785EEYLX56jyer+mEifQkbuSS+SHnJOw0In90dvk1u/uS9zAlY698xXJI773ztP/te/aL4hYkRYCbKG0QYGuzMPyF39aumoLea4f8Xj5bffu3jAeJ7IjU90amoAlhnCaAAAAAAAtGm4haBZcHnGaNZwNGKGs0rxwlBA7KtmvGM0N55pv72Sd+GLORqDBnNVO0qS+T41vjalhH10Yvvm+h2av5fX3ngu9XaszzfrfAAAqCmYj+vlTMut7XST9fhXIoyGJcZ7r219DKP5/QGxTp1LDkbDcsafMht/30mjHIePK/n9sTZnXBDj+xxG++We2/XD0neDYyeOnqZDB7loFAAAAAAAAAAALC3ulPOkBzzEHPfbfj3//71z0l7jmqZeBIkArHhu45HSVS9t7ca9eOF9ijCa8r1/E0EA7XOXPiv1ulf+PDmM9g83Lr52Zdq4dG0i3i4Nj8r16djhxtbK/d3H5N56k9wfvFnuNe+W+8BP5C5/Tl/mA6wGbu06uZe+xV5hblb+4//edDveCqMRI8JykjWMlidC3C1uYr3cv3wleaVPv3/xsl3WsYjniYDVijAaAAAAAABtKrYQNAsuzxjNKkYjGjHCaLPVhaGAUnXWfEH/SC7FhRV9UHDhP8hWGkIpSVGSVu7TkPqonPfh+9G55k+zZP1e6dT3lpQt3mJF9IZzxUzzAQCgphBZj+v7wsvj8PK8sZ1uss4nkuKsQD/MVndrr98THJsqbOjIPpySLhqZP0+2zyWzndtGLjLPh0vVFsJoxvHmYHDRCKMZ5/+9cuP0debYhZNX9nAmAAAAAAAAAAAAGZz0CHvs5uvkZ3ZK995przPGC14BdIZ70ENbu2EPjkNuOMXf0XP5rs8DQBcc8cDUqx657xcaiirm+I/vke7a4VXaO38NSxx7bS+F152obpfG+hsxcvmC3AlnyF3xPLmLr5Jbz5v+AV13/wcnj//g6823sWs6vLzPxxQgk6xhtIHB7swDkiQ3MCidcp457n9468KP9+6Rtm8Nr7xmqpNTA7CMEEYDAAAAAKBNSTGqEOvF/ZkjWLkRFaNw1KxU3b3g45nqLnM7SzaMFoXfeaPcEEpJipK0cp+GlOr2YQXm0jx9XswYg+hU2E3KFm8xYxYZ708AAGryznpcL4eX+/DygrGdbrLDqcbVZUCfbKvcY45NFdZ3ZB8uxUUj1rlk1nNzyT5/biWM1hhYrqkFma3PrJ9ZtPv2bdWtu78YHDt66EE6ZvhBPZ4RAAAAAAAAAABAOu6ip5pj/u9eLP/o9fJP/Q17A+O8+B5Ah5z+KGlkPPvt1vQg0FhMcf1uoffXygBonzviAanXHVBZT1j3o8R1Nv9RrNEXxnr826q6c4cUGxe0TFR3SGNrs0wVwEpw3KnSpqPt8a98Sv4D/5i8jd07wsv53QzLSsYwWoEwWre5C+3nh3TDf8nf+N8HP777Z5L1ZsZJxzgAKxphNAAAAAAA2tSp2FUxN5ptv9GIRozblOKFoYDZhlBavdFcCxd89EB+f6CgUWMopWSEF/KuYMbVLFb4qz7uYIfRmj/N0qmInrn9XNEcs+6nECui1krMAgAA6WB4qFHZ78u03NpON1nnbnPVWXnrj69AH2wrh8NoeVfQWK77FzzWfhrmquFo4HBkn6tahlP+vpOGfVyZ/53BOp/3ijPvq1M+u/16xcb+L5y8osezAQAAAAAAAAAASM898OT2NjDGi+8BdIYbHpH7iw9Ja6ay3XBsiYTR8r2/VgZAZ7jnvi71un+34TodmuKS/mu/JT3mH+1rWSaq2zmPAlYhF0Vy1/xP4jr+TS+Vv+lae4Vd0+HloxxTsIxEGfM5hNG67+KnScP2a9H8658pf9uX5z+48/bwSlEkHXpk5+cGYFkgjAYAAAAAQJuyxq6sIEDm7eRGzJjabLUhjBaHw2gFN6CBaGk+kVsLFDSKVVXVVw98PGcEv1qJeFm3qQ+F2WG05u8sYoVVOrV+zuU16IaCY6Vq+niEFVHLOh8AAGqsx/VKQ/C02fK8sZ1uss7dqqqYoSWgH7aVtwaXTxXWK3I9+JPg/lCgdX7eyrmkdX5eMkK+SRoDyzW1ILN9Nt+fAOJMdZe+tPPG4NiGgU06YfTUHs8IAAAAAAAAAAAgo8uf09rthkfkBpbmNW0Alid30iPkrvul3Mv/Of2NxnsQASmmeEPlfO+vlQHQIQ85J/Wqk3N36Vd/le76nu/ckbCd6nZprPtvoAhg6XHHHC/3r19NXMd/7N324O7t4e324pwI6BTX/HVdCwxwrt1tLpeTe+MHEtfxH//3+X/c+dPwChsO53kiYBUjjAYAAAAAQJs6FbsqZtzOUFRUMQpfFNEYwZqp7gquN5JL8W5zfVJw9rvc1cdS5owoQivhBes29aEwM4yW4gn0rPG7VuJu1udgBSqC61r3aQvzAQBAOhgeamSFxawwWtL5QbckPf5ZMVGgH7aV7wkun8qv79g+kmLAtfNkK1rWyrmkFYIuxemjvzWVOHy8KUTzF7Y4Ix7XnyyadPP2T2if3xscu2Dicb2J3QEAAAAAAAAAALTB3f/Brd1w7SGdnQgASHL5vHTBk6WB8JvPLlp/fLLLM5I0sqb5OvneXysDoEOOOV4qpAyu7N6hXOR08hHt7XJNvFNau669jQBYvo54QPK5zlc+Jb93Ljy2e0d4+RhhNCwnGcNoRIh746gtydG6j75LvrxPfjp8HbQOPbIr0wKwPHDFPAAAAAAAbbLiZCGRIg268B8asoQChqJh5VzODJvNVncnflwzuoTDaHlnP8FcH1Gxgl8thReM29SHwryPjVs3fwI953Lm1z+klbhbms8hSdVXtdfvCW+7hfkAACAlhdHCAbRybITRot7/ATrp8S/t4yvQC1YYbbLQuTBamnNe6/y8lXPJtCHoNKzjTbPgon3+3z374r26acfHg2PjubU6bTz9OwoDAAAAAAAAAAD0zXlPlIaK2W+3+ZjOzwUAJLmh4nwcLY3xHkRA1kw1X4cwGrBsuZFx6dzHp1v589dKkp59VsagS5211e3KKZbbxLkUsFq5oaJ04VMS1/EXrJX/zP8sHtg1Hb5BL2KxQKckxbdCONfuCTd1qHTGoxPX8Y85XLrpg+HBNL83AVixCKMBAAAAANCmLC/wH86NyBlPtGYJedXWLeaMUEBDjGCmuiu43khuPPU+e60Q2U8wV+piKSUjSDIcZb+ozgqRWXGHelHKdxbJEjuzImetbL/xe8KS9Lm2EpsDAECyg2aVQAAt9lVVVQmubwXWuinp8S/NOQLQK9vKW4PL1xU29GT/Xl6SNBeXguNDLZyfp/19J436uHK9WpDZGefzPvOe2veVXZ/TTHVncOzcicv6EokEAAAAAAAAAADIyq2ZknvTp6X7PSjbDYl5AOgi9wdvkk46u/mK4z148f1Yivhagb8PA8uZe9k/zQcZBwaT4yvey8/u0u+e6/Tay1uLo01Ud8z/Y/OxLd0ewMrgXvIP0vFnJK7jX/8M+V//4uDHlbJU2h1eeWxtJ6cHdFfWMFou3515YBH3x+9JDpzN7JDu/Gl4rBfRagBLFmE0AAAAAADalCUWlRS6yhRY27+dESMUsCcuqeoPBkVmq+E/UozkxlLvs9cKzr6Yoz5qYAVJsgTIDtzG+PqUqjMH/u0VG7dO9wR6lthZJz+HtOGWOSM0l7RtAACaKRhBs1CoqOLDUbT57fT+Ys+CG1Dehf/wnfS4CfSS917byvcExyYL6zu2nzRnvNbPRSvRX+s29efnaVX84hCjdPD4ZIfRrPP/7oh9VZ+Zvi44NuiGdPbaR/V0PgAAAAAAAAAAAO1wW05V9L7vyH3kzvS3IeYBoIvc4LDcmz7VPJrQixffj082X4dYA7CsueERRa/9d7lP3Cv3yXvnQ2mWL35Mzjm99vJIH31h9pf/T1a3z/+DyCywqrnBYbm33JC8kvfSZ/7n4Me7d9jrpjlfAZYKwmhLlhtdI/eeb7R24zGOQ8BqRhgNAAAAAIA2DeeKqdcdiux1MwXW9gezilE4jCZJpbogwfIMo9nvilWuixpYwa+WwgtGiKxUtw9v3NalfAK9aMTsQloJkVmfQ9pwS1JALUu8DwCAelbQrOzL8t43LFscSzu4nYR3zewS55yGrDhTyvAo0G0z1Z3mz85UR8No9jmv33+mbP1ctBL9tc6dWwmjlePw/VOI5o9Pac/nu+07M1/VveVfB8fOWntRpt8nAAAAAAAAAAAAlgq3dp101UvTrfygh3Z3MgBWPRdF0sia5JV6EAFxA4PScJO/ped7f60MgM5zA4Nyg8PSMSea6/h3/In8T78nSTrzGGkwY6tlbS2MtmFzq9MEsEK4fKHp71X+PdfI/+S78jf+P+nz19orjvUgFgt0DGG0JW1qo7TusMw3c72IVgNYsgijAQAAAADQprwraMANplo3KSyVJbBWC2YlvSi+FB+MBcxUdwXXGc2Np95nr+WNgIokVeqiDyUj+NVKeMEKkZX9PpXj+Rib93FwnaRIRJp9hLQSPbC2nzbcMlctmWND0XDm+QAAIM2fL4V4xYpVXbCsPoDaqBYw6jUruJo2PAp0233le8yxdR0MozXjvTd/LloLFxthtBaihNax5eDxKXw+7800cud573XDdPgis0g5nTdxec/mAgAAACA959zRzrknO+f+2jl3k3Nul3PO1/338za27dv878iOfaIAAAAA0CZ32bObr3T/k6QTz+r+ZADgyt9JHu9VBGR8Knm80J9rZQB0yZZT7bGtv5R/1smK3/xSrRnyeuYZ2eIuk/F2ybnm4UcAq4J7/AuSV9hTkn/2qfKvf4b8377QXo8wGpaTrG+QS4S4p5xzck9ocmwK6UG0GsDSRRgNAAAAAIAOSBvhSopiZQms1fY3khsz15mt7g7+u17S7futENlPMNciZZI0F4dDXlkCZGlus2d/fKHdLELa75VIkQbdUObtW/E9KyC3aD0jMjEUFRW5XOb5AAAgJQfNGmNFlXifsaYdWOs26/G7lTgT0A3bjDBawQ1oNNfJix2TLhrxKvt9qqoSHG0lXGzF1PbEJcW+GhwLqfrqoghjTe24EllhNN+7MNpP5r6vn+/5cXDslPGHa7JwSM/mAgAAACCZc+5c59ynnHPbJN0u6b8k/aGkcyQt3T++AAAAAEAfucPvL/eOL0qHbFo4UBiQJg+VLn6a3Js+KZf1hcwA0AL3tJclr9CrF9+PN4mNEGsAVhTnnPTY30pe6X/+Ubr1Jv3TVU6veHT686KJ6g5pbEIuIh0AQHKPeprcK9/Z3kbyBWk4+3V/QN9kfT4hl+/OPGC76qVyL/jLbLchjAasahypAQAAAADogGI0op2abrpesxjAcG5E+yp7U+1PkgbcoPIur4pfHB8oVWcO/NsKo43mxpvuq19yysvJyQdSZGV/MJgyZwS/rIhCEisqJs2HT8a0Vl5xcDxK2Z9PO6/h3EhLF/lZcbe5lOEWa71W7k8AAGoKCUGzcrxPQ9HwwY8bQmkLt9Ofd8EdjorB5WkfX4FumzbCaFOF9R194UjSprxP/ploJVxczI2aY6V4NvXvM5VUxxUjjNZ2Gjm9G6avNccumLiiZ/MAAAAAkMpJki7q9yQAAAAAYLlxx50i96Gf9nsaACBXHE3+a/BQ+FqRjmv2Iv8cYTRgpXEPPLnp1Sj+pg8pf8p5euMVTq96tNf4i8LXr9ebqG6XxtZ2ZpIAVgR3yTOl9ZvkX3JJaxsYmyBcjeWFMNqS55yTnvL70pop+Tc+N92NxprEpAGsaGSfAQAAAADogLQv8m8WlypG9gv/F+xvf8DLOWfeZnZ/GM17b4bRRnJjqfbXD8455Y2ISn0wpWTEF5pF6IK3Sfj61AJs7WYR0s6r1RCZGUYzAnJp12vl/gQAoCafEDSrD56GPq6XFFjrJiueOlct9XgmQNh95a3B5VOFDR3eU/JFI6WEc85WzieTfj9K2lej5DDa/HHFmZ9bb8Jod+39pf539hvBsS3Fh2jz0JE9mQcAAACAtu2VdHuXtv1VSUdl/O+OLs0FAAAAAABg+TvHeIOqk87uXQSkWRhtmGs3gRXnhDOar/Phdx745+hQuuPRRHV782MKgNXngSdLA0Ot3XacGBGWGZchn+OcXC7XvbkgWZrzoZp1G7s3DwBLHmE0AAAAAAA6IO2L/JsF1KzoxqL16rZTzIVjAaV4Pow2F88qVvhdokaipRtGk6SCEVGp7A+meO/NkFcrYbHBaEjOeLqkFmDzPnxfupRPoKedV9rY3qLtm98P6cIRZmiuxfkAACAlB80qvrLg43JCwCgpsNZNZng05eMr0G3T5XuCy6cK63s4C5/4M9HK+XnS70el/SHoNJKOK4Vo/rhiXdQe9yiMduP0debYhZPGxfgAAAAA+q0s6duS/kXS8yQ9VNKYpJRvbZ3ZHu/9zzP+V2m+WQAAAAAAgNXJPfnFi0MhuZzcU36/d5MgjAasOu7I4zLf5iUXNo+jTcQ7pNG1LcwIwErmxiakK5/f2o3HCKNhmckSN87luzcPNOU2Hytd8OTmK+Zy0sYjuz4fAEsXYTQAAAAAADogdeyqSfgsbXyqfjsjuXDcbLa6W5I0s///IaO58VT76xcrolILG5T9PlUVfk1P2lhdvchFGo6KwTErwFbjlO4J9NQRvRbmL9nfi3vikmJfbXp76/O07hcAANKwYqfSweDpgY/jfcaaUt7154/QZhityfkB0CvbKr0JoyWd83rZ0eKc8onHActQVDT3WQtBp5F8XKn9zmF8br77YbQd5W36+q6bg2NHDB6jBxRP6PocAAAAAGT2b5LGvfcP8d7/lvf+Hd77W71PKDMDAAAAAABgSXEnnCH3lhuli58mHXuidP6T5P7mo3JnXdq7STQNo4XfLBfA8uZe8BdN1/F79xz49ysf1fw69cnq9ubHFACrkvvdP5d76Vuy35AwGpYbwmjLinv1u+R+55rklSYPlcvbb9AOYOXjaA0AAAAAQAcUc+kuPGgWPksdRqtbrxiF912qzocCZhPCaFZUbanIRwNSoOVV3h82mIvtGEna+3LR7XIjwchCbV9ecfB2acNo1tdr8Xqtz9+yJ55r+r1aMu7TVkNtAABIUj6y/yBZbni9cNmHA0Z5V5DL8gfrDrIeB63HTaCXYh9rW9kKo23o2Ty8pLm4FBwbzhVb+vmdDxeHz89LGcKEjceZerVgW2Scz3t1P4z22e0fMYPPF0xe0bdjHwAAAACb9357v+cAAAAAAACA9rktp8ptObV/+x+fTP6rdHFpX+cLoEX3e1Dzde7+mXTkcZKkqVFpzbC0c85efW11uzSWYrsAVh3nnPS435b/9S+l//jr9DckjIZlJ8O1lsS2+s7l89LT/lB6xGPkn2a8gfCRnNsAq13U7wkAAAAAALASpI1wFZvEpZqNH1ivbn8jRuiqFg+Yre4KjkfKaSgaTrW/fim48BPNlf1hg6QYQtr7ctHtjK9lbV9WGCFtGC1tYKzVEFlSUC1NPGLOWKfVUBsAANLB8FBILXh64GMjYGSdF/SC9TiYFGkFemV3dceB8+NGU4X1Hd1Xs3NeM7LbxrmkdV4fiqVZrOCiVH9s6U8Yba46q1t2fio4NlXYoIeMndHV/QMAAAAAAAAAAAAA+mh80h7L5aWCfc0NgGXshDOlweTr+P0zTlL8j38k/7PvyzmnNU0u+5+sbidiBCCRO+2CbDcY55iCZSbLm9Dm8t2bB7LZfKy08X7BIXfahT2eDIClhjAaAAAAAAAdkDp21SQIkDYYUL+/ohFGm63OhwJmqruD46O58fl3flnCrIhKLWyQFCNpNb5gfS1r+zLDaCnvy7SBsU7PX0oXj5iLS5m3CwBAMzmXU2T8SaIx6FQxAkZJcbVuM88PquHHTaCXtpXvMcem8p0NoyXzZmS3nXPJYmSEoKtZwmjhcJwk5fcfW6yz+W6H0b6w41PaE4ffzvf8icco53Jd3T8AAAAAAAAAAAAAoI/WJITRhkeW/HW+AFrjRtfIXf3q5iv+95vkf+ds+e99TW9+SnISYKK6XY6IEYAkJ50tnXlJ6tVdUsAVWIoIoy1LLorknneNlGu4XvaoLdIlz+rPpAAsGRytAQAAAADogE7FrtIGA+r31ywUMGuE0UZyY6n21U95Vwgur4UNrPBCTvmW4ynW16hUC6N5I4xmphTSbb+RFbxrZigqmmPW/bVgHSM2l/Z7HAAAS8ENaK/fs2h5uSGEZgWMrPOCXrAev5MirUCvbCtvDS4fdEMdP+dPOuf18l05l7TOi7OE0SpxOLgoSXk3/+dS58IXj3YzjFaOy/rcjo8Gx0ZyYzpjzfld2zcAAAAAAAAAAAAAYAkYSwiORLyRFrCSuae/TDr2BPmXPTZ5xdJu+ff+hS574wcTV5usbpfGCKMBsLkokq75H+mT75X/zi3SHbdL//tl+wZja3s3OaATsoTR8v27Lh2LufOfKG04XP6mD0n33S33oJOlS58tx3EIWPUIowEAAAAA0AFpg2bDOTtaJWUIrNXtz4od1IJoM9VdwfHRZRBGK0ThuFllf0ClZIQXhnOtv0ue9TWoRcWsMELaMFqxhfhdFjmX01A0rD3x3KIx6/6qZ8XT0n6PAwBgyUcF7a2GwmgLQ2hlI2BknRf0wrARHi37fSrH+/o6N2Bb+Z7g8qnC+s6/c3ST7c1VS8HlaePAIdb5c5YwYWOAsabgBg7cR+ZnZoSRO+Ebu2/Wzsp0cOyctZdoMBrq2r4BAAAALEtHOOfeLek0SYdJGpG0XdJ9kr4l6WZJH/Deh3/RAAAAAAAAwNKzJiGMNhu+/hfAyuFOf5T8Fc+Trn178oq33iTnpAdskH4UeA/F4bikET9LGA1AUy6fly57ttxlz5Ykxa96ovSF68MrJwVcgSUpwzWzOVI7S407/nS540/v9zQALDGcPEZOAAAgAElEQVThtz4HAAAAAACZpI1YNVsvbXxqqC7OUcyNBtepRbBqgbRGVlBtKSm48DtwlOP5gIoV8Wo1KibZX4NaeMEKo6V9An0oGm5rHqlua8XdUsQjzNicEYQBACCtggvHwxpDaBVfMW7fv3fmSgqbzsXhEBTQK1YYbbKwvsczsc83mwWikxSj8O8tpepM6m00Bhhr8guOK+Hz+W5l0WIf68bp64JjBTegc9Ze0qU9AwAAAFjGjpJ0taQtktZKKkhav//jp0l6u6RfOuf+3jkX/uMRAAAAAAAAlpYNR9hj1fA1NABWFnfWZc1XmpuVbr9NV54cvr7l4pkb5q98IYwGIKuNR9pjY2t7Ng2gI7K8mXAu1715AAA6howlAAAAAAAdkCZi5eQ02CSKlSboNRQNK+cOPgFrBc5K1d3y3i/zMJoRUPHzARUz4tVGVMz6GpSqyWE0lzKMFrmchqKi9jSJqFhxszSKuVFtr9y3aLkVkquJfdWcVzvzAQBAkvIu/CeJSkOwqPY4v/j24fOCXkh6HJyLZzUuLv5A/1hhtHWFDR3fV9IZr/c+IbLb3rltSClOH0arGMeV+t83rPN5rzj1frL43uw3dfe+XwXHzlhzvsbya7qyXwAAAAAr3oik35d0iXPuSu/99zq9A+fcekmHZLzZMZ2eBwAAAAAAwErghopde8MuAMvEqRdIF10lffr9iav5Z5+qF39wWp/8dl7fvvvgtXibynfqz+597fwH45PdnCmAFchNHWqfi3BMwXKToYumHKkdAFgOOFoDAAAAANABaV7oPxQVFbkocZ1iiqDXUFRceBtj37Fi7YnnNFPdFRwfzY033Ve/WWG0WkBlzgwvFIPL07Ciagf25Y0wWoZ3FilGI03DaGkieRbr+9EKVdTsiefs+bQRmwMAQGoePK1pDKUdvH2h43NKKym6WmoSHgW6zQqjTRXWd2Fv9jmvlzdDvO2cSzYLF6dRto4r0cHjih1G644bpq8LLneKdP7EY7q0VwAAAADLVEXSLZJulPRdSXdI2i1pVNIRkh4h6ZmS6n8RfICkG51zp3vvf9Hh+fyupNd2eJsAAAAAAAAAsCq5KJJe8y7p0U+XbvuK/LveYK67/usf0M1PP12fePGf6NtDD9YD9/5IF8/eoEOq+99Qe4w3+ASQ0diEPTYcflNTYMmKkl+zt0C+f9elAwDSI4wGAAAAAEAHpIlYpYkBpAmsNe6rmBsz1y3FuzVb3R0cG0m43VKRj8JPNO+L5wMqvQwv1PbljTSCFVII7iM3ounKvYnrJAVY0mw/xLq/apLiEmm+NwEASJI3wmaNwaLGUFqNFVbrhUE3pEiRYsWLxqxQK9ALsY81XQ6fV052IYzW7JzXDhe3c24bvriqFM+k3kY5Dh9X8nXHFWdErL1f/HPfrp/N/VA/mftecOwhY6frkIGNHd8nAAAAgGXrNZLe6b0PV7Glb0u63jn3x5qPlb1cB6vWh0r6kHPuFO+Nd30BAAAAAABA/110lfTp9y9efvlzej8XAH3hnJNOOV865Xz5L39C+sHXg+v5b39BI5uO1uN3X6fH7w68KV9S4AgAQh5ydni5c9L6zb2dC9C29K/rUo7UDgAsBxmSlwAAAAAAwJImYpUmBpBqOw3rjBihAEmarc5oNg6H0UZz40331W9WAKWyP5hS6kJ4wfoa1PbViTBaqgBewte11e03i0ckhV3aCbUBACA1f1yvKcfl4HpWMLUXnHPmY2Gz8CjQTTsr06qqEhxbV9jQ49nYPw/DUbHlbZphtGr6MFrFh48rhbpgY4bLYdp2w/S15tgFE1f0cCYAAAAAljrv/TUJUbT69fZ4718p6YUNQydLempXJgcAAAAAAICOcI/5zfDy0x/V45kAWArceY+3Bz/5XvkXXhAeKwxIQ61fowNgdXKbj5UeePLigRPPkhtb2/sJAe1whNEAYKUhjAYAAAAAQAfkXE6DbihxnTQxgFTxtIZ1hqOiGeXaVdmu2equ4NhIbqzpvvqtPlRQr7w/bGCHF1qPeBWN25b9PpXjspFFyxhGSxEZs+aRavtWGK1JuCUxjNbGfAAAkKSCETZrDKE1htIO3N4Iq/WKdS6X9PgJdNu2sv3a+KnC+o7vL+mM18vb4eI2IrvWefFcXFLsq6m2UU51XAl/dlYYuVX37LtL35n5anDs/sPH68jh+3d0fwAAAABWF+/9P0m6vmHx73Z4N2+VdHzG/x7b4TkAAAAAAACsHCeeJT3rlQuXPeEF0iMe05/5AOivxz2vtduNTchlCcIAwH7uFW+X1m8+uGDDEXKvfEf/JgS0KsvjYL5/b9gNAEiPjCUAAAAAAB0ynBvR3sqexPFmaoG1vd7eTrFhO5HLaTgaUSmeWbTuW+/8M3M7yyGMljcCKLWwwVxcCo433kdZJH2d9sSz8oqDY1n+kNwsepZTvq34i/X5Nwu3WOG0QTeknMu1PB8AAKTmj+sHPy4H17OCqb3SangU6CYrjDYUFbsUtrXPeSu+bAbI2on+FnOj5thcXEr1e411XMnXHVes0LF1/t+qG6c/bMbWLpq8oqP7AgAAALBq/bmk+lfNnu6cW+u939GJjXvv75Fkl7oDeDEeAAAAAACAzTkn99zXyV/yTOknt0nHniB32NH9nhaAPnFDRelvrpf/w4xxxLGJ7kwIwIrnjj1Reu93pP/7huS9dOJZcoX+vpkx0JIsf5PMkdoBgOWAozUAAAAAAB1SjEa0Q9sSx9NoGlgLbKeYC4fRkozmxjOt3w9WAKWyP2xghb7aiUAk3bYUz8poGCgpErFoH03CbcO5kbZeJGR9DnNNwi3m/dlGaA4AgJpmj+s1VljJCqv1SqvhUaCbtpW3BpevK6zv+YvOrWix1N75ZDGyw2iz1Zl0YbQ4fFwpRAePK3YYrXN2VXboK7s+Gxw7bOAIbRk5uYN7AwAAALCKfU3Sdkm1V8HlJG2R9KW+zQgAAAAAAABNucOOlgiiAZCko34j+20IowFogyuOSief2+9pAG0ijAYAK03U7wkAAAAAALBSpIldpdEsoBaKchRTxAAapQkI9Ft9qKBeLWxghb7aCi/k7PDCXHVWseLgmBVSCGkWbksb0TNvb3z+pSbhFvP+bHM+AABIUsEImzWG0Ro/PnD7KBxW6xUzPJoQgwK6bVvlnuDyycL6ruwv6Zy3VLVDze2cT1rnts32Wc88rtQFG+2QXOfSaJ/f8TFzLhdMXtHzmB0AAACAlcl7H0v6ZcPiQ/oxFwAAAAAAAABAdm795uyBonHCaACAVS7LNZiE0QBgWSCMBgAAAABAhzR7sX/aGEDTwFpgO+sKG1Jtu6YYjS6L2FXehQMo5f0xASv01c7nNuiG5IynTOb3Fw4jZAmjJcXXpPbCblJCuMUIn9VY92dSjAIAgLTyRtis7Pct/DjeF1zPCqv1ivX43OzxFeim6XI4jDbVpTBa0ilvt8JoQ1HRPNcuxenCaI3HmZr644q1D+87E0bbE8/p89s/ERxbm5/SKeMP78h+AAAAAGC/uYaPh/syCwAAAAAAAABAS9wfv1s67tT0NxgjjAYAWOUIowHAikMYDQAAAACADmkWj0odRmshsPbQsbNSbbvm5LEzFbml/7SAFUCp+H0qx/tU2R9Ia1RsI7zgnDNvP1edle9EGK3p17iYelvB7Rvfi3v9HlV91bzdXBdCcwAA1FiP6+V44eN52Xh8t4KpvWI9HlphUaAX7jPDaNnCyWklnfNaPwtOkQajoZb3GbnI/vlLGSZMd1wxwmjG+X9WX975GTPkdt7E5X0/xgEAAABYcdY1fHxfX2YBAAAAAAAAAGiJW3eYonfcIveBH8u9+YbmNxgnjAYAWOWyhNHyhNEAYDlY+q+ABgAAAABgmWgWj2oWTku7Xmj8pNEz9Nh1zzCDIzVOTg8ePV1PWP+bqebSbwUjDlD25cQIyXDK+9q+fThMNhfPynsjjJbhCfTm3yujqbeVdftzCfGIuWop8/YAAEjLflzft+DjSsPHB2+ffJ7TbUnhVKAfqr6q7eXw69qn8ut7PBv7Z2E4KrYdZbZ+R7JCY43SHFes6FsnwmhVX9Vnpj8cHBuKijprzUVt7wMAAAAAapxz6yQd3bD4rn7MBQAAAAAAAADQHrfhCLmHnC1tPiZ5vbWH9GhGAAAsUQPD6dfNEUYDgOWAozUAAAAAAB3SLGiWNi5VjJKjWKHtOOd08dTjdd7EY3T3vl+o6uPgbdcPbNRIbizVPJaCQhQOoJT9vsQIiRUuScv6WpWqs2YYwQopBLffLH7X5vyTvhdL8axGNR4cmzNic2mjfgAAJMkbYbOKLy/4uNzw8cHbh8NqvWI9fluPn0C37axMK1Y1ODZV6E4YLemc1/pZaDdaLNV+R9q6aHmpmi6MVo7Dx5VCdPC4YoWOOxFGu3X3FzVduTc4dvbaR5lhZgAAAABo0VO08E1zt0r6QZ/mAgAAAAAAAADohE3HSHfcnjwOAMAq5sYn0l/xmevvdekAgHQIowEAAAAA0CFNg2YpgwBNo1kJ44WooCOGjk21n+XACqBU4nJihKTd+IJ1H8/FdhhNGcJozcJn7c4/KcKXdL+VjNhc2qgfAABJCsbjetnvW/hxvC+4nnX7XjHDqYTR0Cf3lReHwmq6FUZLYkXKhqP2o1/FXPh3rdRhNB8+rtQHG+2z+fbCaN573TB9rbH/vM6duKyt7QMAAABAPefcBkmvaVj8Ee99+9VnAAAAAAAAAED/NAufbV45ryEAAKAl45Pp182R2gGA5SBqvgoAAAAAAEijadAsZVyqaTRrFUWqCnWhgnplv8+MkETKacANtrXfpPCJFUaLMoTRmn2vtPs1HoqKcsZ85oz4mWRH04Zz7ccsAAAoRNbjennBx5WGj5vdvlescOqeaqnHMwHmTZfvCS4vRqNth3Yt1jmmZEcCO/H7S1K4OA3zuFIXXHTGn03jNtsBPyx9V3fs/Vlw7NTxc7Q2n+FCHAAAAACrhnPugc65yzPe5lBJH5W0oW7xPkl/3sm5AQAAAAAAAAB6zx3eJHy26ejeTAQAgKWKMBoArDgcrQEAAAAA6JBmL/hPGwRoGs3qUuRgKaoPFdSLFWumsis4VsyNyLn0kbIQ6z6ej4oZYYQM+2wWv0sb0bNELtJQNKy5eHGoxQpWSAlhtFUU4wMAdE/eeFyvxPsWfFz2+4LrWbfvFevxcK/fo6qvKOf4kwt6a5sRRpsqrO/xTOZZAV4rapZFMRoNLi9VZ1LdvjHAWGOFmBdqL4z26ekPmWMXTDyurW0DAAAA6C/n3GaFr8E8tOHjvHPuSGMzM977+wLLN0q63jl3m6T3SbrWe/9jYx5jkp4l6TVaGEWTpD/z3v/U2DcAAAAAAAAAYLk47lR77IgHyI2u6d1cAABYirKE0Yq8TgoAlgNepQMAAAAAQIc0i1kN54qpttOpwNpKkE8IFeyu7ggu78T9Y30t5+JZxT4cRnBKH0YbjIbl5OSNyEIn4nfF3GgwjGYFKySp1MWYBQAAVoCoMVjUXsCoe4Yj+1xurlrSaH68h7MBpG3lrcHl3Q2j2ee8pTgcKevI+XnOCKMZ+2xUjo3gYnQwuGidz7eTRfvVnp/q/0rfCY6dMHKqNg4e3sbWAQAAACwBt0i6X4r1Nkn6mTH2b5KuTrjtCZL+UtJfOud2SvpfSfdJ2i1pVNLhkh6s8LWg7/De/2mK+QEAAAAAAAAAlrotp0nHny7971cWDbknv7gPEwIAYInJEkYbn+rePAAAHUMYDQAAAACADmkWsxpKiGnUSwqsDboh5Vwu07yWs0JdqKDRrooRRutAxMuKN8yHw9oPo0Uu0nA0YoYcrPBDFubnEIfjZ7GPtScQUkvaFgAAWeRd+HG97BcGiypmGM0+L+iFpHOMUjyrURFGQ29tK98TXN7NMJpzCWE0I7KbNhCdpBgZYbSE6G89+7hyMLjoXBRcxytOtY+QG6evM8cunLyi5e0CAAAAWLXWSDorxXqzkl7ivX9nl+cDAAAAAAAAAOgR55z0tx+Vf+srpK/dKO3eLt3vQXKX/6bcpc/q9/QAAOi/8YnUq7oM6wIA+ocwGgAAAAAAHZIUNBuKhlMHzZKiG52Ifi0n9aGCRruq24PLh1MG6JJY9/NcPCvfgTBabR9mGK0DITI77hbe5954j/m5EUYDAHSCFTarDxZ5782AUT6yzwt6Ienxec4IjwLdZIXRJrsYRkti/Rx04lyyaJyfW+fTjRoDjDX1xyXrbN778DlyM9vK9+ibu28Jjh019EAdM3xcS9sFAAAAsGr8QNIbJZ0j6WRJwylu8yNJ75H0Tu/9fd2bGgAAAAAAAACgH1xxTO4P/6nf0wAAYGkam+zOugCAviGMBgAAAABAhyQGzTLEAJKiG50IZi0neSOgIkm7KjuCyztxH1nbmKt2LoxWjEa0zRjrZjzCClYkBV2sbQEAkEXBCJuV44PBIiuKJtlhtV4ZjIbl5ILnAnNVwmjoraqvaHslfDa5rrChx7OZZ8XHOnJ+nhsNLreiv43KVnCxLsTsFAXXsc7/m/ns9usVKw6OXTh5xfy7+AIAAABY1rz3R3Zx21slvVqSnHORpPtLOkbSJklrJQ1JmpO0XdLdkr7uvb+3W/MBAAAAAAAAAAAAgKXMDQ7Jr5mSdlqv1qozPtH9CQEA2kYYDQAAAACADhmKiuZYltBVYmBtlQWqCi4cUJGkXZXtweWduI+sbZQS4mFZwwbd/jpb33NWuKWUEHTpRKgNAAAreFofLLLCSlLyeUEvRC7SUFQMxkSTAqNAN2wvb5M3oltThfVd22/WGLDUmXPbYhQOo83FJcW+qsjlEm9fMY4t6YKL2cNos9Xd+uKOG4Jj6wuH6cTRUzNvEwAAAMDq5b2PJf1w/38AAAAAAAAAAAAAgJBNx6QLo62Z6v5cAABtI4wGAAAAAECH5FxOQ9Gw9sRzi8aGc3Y0rVGnAmsrQSGyAyg7q0YYrQP3UdHYRlKsRRkjEUnztPafRdEIUOyq7tCuyo5Fy7eVt5rbyvL9CwCAxQqbxaqq6qvKudyCSFojK6zWS8NGGG26fF/w8RXoljv2/swcm1xqYbQunttK0r3lXx/Yx3A0okK0+FhRjsPHlvrfN6zPbW+8J/PP9+d3fFz7/N7g2AWTj20acgMAAAAAAAAAAAAAAAAAAEBGm46Rvv+15uuNre3+XAAAbSOMBgAAAABABw1HI+EwWoYYQFJgLSkIsBIVEgIos9XdweWduI+GW9hG1kiEFT/Lu0JiEC4t63vuh6Xv6hW3X516OwU3sCRCNACA5S/pcb3iy8q5nCoJEVIrrNZLxdyIpiv3Llr+wXvfpQ/e+64+zAhYaDQ3rqFouN/TWKCVc+tGxWjUHHv9z15w4N8FN6DjRk7SMw99kYq5+dvEvqqqKsHb1p/nOhc+n79l56d1y85PtzLtRcZya/Sw8Ud2ZFsAAAAAAAAAAAAAAAAAAAA4yB1+rHyaFdes6/ZUAAAdEPV7AgAAAAAArCS1F98vXp4tBmC98D9LYG0liJSTy/j0RSfuo1a2kTWMZgUirGBaVtb3YubtrLLvOQBA9+QTwmbl/UG0clw21ylE/Q91rrZzMSw/k4X1/Z7CIp04n0x7blv2+/Tdma/pn+9844FlFR+OokkLg4tZz+dbce7EZR2JIAMAAAAAAAAAAAAAAAAAAKDBaRc1X+fYE+XWTHV/LgCAthFGAwAAAACgg6xYRtaIhhnNyhhYW+6ccyq4bBGUTgRLWomKZQ0pWIGI4Q4FzToVbrG+FwEAyCopbFbZH0SrBdKCt08Iq/UKj4tY6qby3Q2jtRIP68R56VBUzLTvn8x9X/ft2yqp2XGl/rjU3TDaoBvS2Wsf1dV9AAAAAAAAAAAAAAAAAAAArFpbTpUufEriKu53runRZAAA7cr3ewLoHefcsKSTJB0naULSkKRdku6RdKukn3jvfQf2U5B0lqQjJG2UNCPpLknf8t7/vN3tAwAAAMBSdsjAofrJ3PcWLy8cmm07hUN1596fL1q+LuN2VoJ1hQ26a98vU69/yED799GgG9JYbo12V3emvs1UIVuE4pCBjeHlHfoaW9vPajV+zwEAumPQDZlje/0eSVLFl8118hljqd3QqcdpoFs2Dh7e1e3nXUHjuQntqm5PtX7BDWg8v7bt/UYu0rrCobq3fHfq29xTvkvrBjaonHBcKUQHg4tZz+ezOmvthRrJjXV1HwAAAAAAAAAAAAAAAAAAAKuVc056zbulsy6T/9bnpS9+TLrvrvnB858k94yXyx1zfH8nCQBILer3BNB9zrkznHP/LWmHpP/P3n2HR37V9+J/n5G0u9JWr73r3gsG22DjRjU2mGJCL+b+CDUECJAfJJcQSiB0AgnhXgiQBLihtwAGYxIw1TYxNhAb27Exwb33trvaova9f2h9V9bOjEZazai9Xs8zz+p7zuec89mir0bSzlu/SPJ/knw4yfuSfCzJ15L8PskNpZR3l1JWT/GcNaWUTya5NcnPknw+yQeTfDzJaUmuKaWcW0p57o7+ngAAAGarY5Y/drux7tKTI5c/cnL7rDhhu7HFZUmOWHbslHubqx6+/NEt1+7cs2v2W3LIDp9ZSskxK7b/u2xk/yUPyqqenSd1xuFLj86SWt9248dO4tzmPR0yLeEOx9b5twgAU9HbtbTh3Mbh/iTJYDXQsGY2BKMdvfwxKSkz3QbUVUstx604sa1nlFJy1CQ+tzly2SOyqLZ4Ws6e7PPS++8rQyOt3VeOXPaItr1/99b68oSdntmWvQEAAAAAAAAAAAAYVWq1lCc8P7W/+Hhq374mtZ9vGX2864tC0QDmGMFo81gppbuU8vEk5yY5NcmiCZbsmeSvk/y2lPKUSZ51SpJLk7wmSbNgtUcl+WYp5UullMavggMAAJijHrz0yLxw19dmadfyJMnq7jV53Z7vyOqeNZPa5+HLH5Xnrnl5emujnzqt6dktr9/73VnWtWLae57tnrLz83PiqqdlUWkeqLDP4gPzhr3ek1qZni93PHvNS/OIFY9vGsJSUsshfUfkT/Z826T37+1amj/b+z1Z27PH6HWtL8/a5SU5dsXjptzzWLVSyxv2ek/2WXzglNZv60cwGgDTY1FZnFqDb0tsGrk/GG2w7nx36Z62j/E7Yr/eQ/Ly3d+YFV2rZroVeICVXTvlT/Z8W9Yu2r3tZz137ctz/IqTmj5PrqUrRy17VF6422un7dyn7nxqHrfqqekpE327a9RE95UkD9jroL6H5CW7vSErunbasUbHWd29Jq/a863ZqWeXad0XAAAAAAAAAAAAAADmq1JV1Uz3QBuUUkqSf03yvDrTv0tyeZJNSdYkOSbJ+Fd5DCR5ZlVVP2jhrBOTnJkHBq9VSS5McnWSVUmOSjL+FR9nJHlWVVUjE53RTqWUwzIa6pYkufTSS3PYYYfNYEcAAMB8MFKNZP3wfVnRtSqjn6JNdZ/hbBhenxXdwjeGqsHcOXBbqmz/tYxlXSuyvHtlW84dGNmSuwZvrzu3snun9HUt2+Ez1g3dm2Vdy1MrXTu8Vz3rh+7LhuF1LdfXSi1renZrWz8ALFxvuvLF6R9ev934H+3+FzlmxWNy0frz86mbP7jd/JJaXz5y8Fc60WJLqqrKXYO3NQ1cgk5ZVFuU1d1rd+jzjqlo9jx5p55dsqTW25ZzB0cGc9fgts8LPnPz3+WWgeu3q3vWLi/Jk3Z+Tq7ffFU+eN0b6+719wd9Ob1dD/w5PtP5/r2otjiru9d0/O8GAC677LIcfvgDfsLt4VVVXTZT/QCA/6MHAAAAAAAAAMwH/n9e53TPdAO0zR9n+1C0c5K8rqqqS8cOllK6k7w4yf9Kcv+ryBcl+Xwp5ZCqqu5rdEgpZa8kp+WBoWjnJnllVVWXj6lbnOTVST6cpGfr8NOTvC/J2yb3WwMAAJj9aqWWld3jM6insk+XULStuktPdlu8V8fPXVRbnN0X793WM9r9d7y8e2XbguMAYDL6akvrBqNtGulPMhqEWk936ak7PlNKKdll0W4z3QbMqE48T66np/bAzwtWdK+qG4y2cet9pVnAWXdZtN2Y928AAAAAAAAAAAAAAJhZtZlugLYZHzZ2TpKTx4eiJUlVVUNVVX02yclJtoyZWpvkTyY4591Jxr7S/xdbz7l8bFFVVVuqqvpYklPHrf+fpZR9JzgDAAAAAIB5oLe2tO74puH7A4wG6s73zLJgNGD26Gt0X7k/cHGk/n0lSbqLnyEFAAAAAAAAAAAAAACzjWC0eaiUckSS/cYNv76qqsFm66qq+s8knx43/PQm5xyc5KVjhgaSvKyqqs1NzvhOks+PGVqc5J3N+gIAAAAAYH7o7aofYLRx5P5gtPpfxu4pi9rWEzC3NbqvTBy4uCillLb1BQAAAAAAAAAAAAAATI1gtPnpgHHXN1RVdXGLa08fd31wk9oXJukac31aVVVXtHDGh8Zdn1pKWdJKcwAAAAAAzF19teYBRkMj9QOMuktP23oC5rbeWl/d8U0TBC66rwAAAAAAAAAAAAAAwOwkGG1+Gv/KshsnsfaGcdc7Nal99rjrz7ZyQFVVlyf55ZihpUme1MpaAAAAAADmrt6uBsFoWwOMhqqhuvM9tUVt6wmY23obBC5uvD9wsaofuNhT3FcAAAAAAAAAAAAAAGA2Eow2P9067nrJJNaOr727XlEpZbckDxszNJTk3Emcc9a461MmsRYAAAAAgDmoYYDR1mC0wYYBRj1t6wmY2yYKXBysBuvO99TcVwAAAAAAAAAAAAAAYDYSjDY//TrJljHXDy6l9La49ug6e9Vz+LjrS6qq6m/xjCT5xbjrwyaxFgAAAACAOaivUYDRcPMAo27BaEADfQ0CF//ffWWkfuBid1nUtp4AAAAAAAAAAAAAAICpE4w2D1VVtT7JF8YMLUnyionWlVK6kohUJLMAACAASURBVPzpuOHPNyh/yLjrK1tucNRVE+wHAAAAAMA809sgwGjjyGiA0VBVP8CoR4AR0EBvg8DFbfeV+oGLPQIXAQAAAAAAAAAAAABgVhKMNn+9Jcm1Y67/tpRycqPiUkpPkk8lOWrM8E+TfKvBkoPGXV8/yf6uG3e9cyllp0nuAQAAAADAHNIoGG3T8GiA0eBIgwCjmgAjoL6+BveVwWoggyODGRS4CAAAAAAAAAAAAAAAc0r3TDdAe1RVdXcp5aQkp2U07Kw3yZmllG8m+WaS3yXZlGSXJI9M8uokDxqzxa+SPK+qqqrBEavGXd8+yf42lFI2J1kyZnhlknsmsw8AAAAAAHNHX1eDYLSRrcFoDQKMugUYAQ30NrivJMnmkf4MVvUDF7uLwEUAAAAAAAAAAAAAAJiNBKPNY1VVXVtKOT7Jy5K8KsnRSU7d+mjkriQfSfJ3VdXglSKjlo273jSFFjflgcFoy6ewxwOUUtYmWTPJZQfu6LkAAAAAAEyst1Y/wGiwGsjgyECGGnxZukeAEdBAo/tKkmwa2ZjBkfqBiz01gYsAAAAAAAAAAAAAADAbCUab/7q2PrYkqZKUJrU3JPnrJF+bIBQt2T4YbfMUetuUZKcme07Fa5O8cxr2AQAAAABgmvV1TRBgVDUIMCoCjID6+roaf3tp43C/wEUAAAAAAAAAAAAAAJhjajPdAO1TSnl0ksuT/GOSR2fiv++9k3w2yfWllD+e5HHV5Duc0hoAAAAAAOao3lqzYLT+DDYIMOoWYAQ0sLgsSWnwLbDR+4rARQAAAAAAAAAAAAAAmEsEo81TpZQnJPlxkv3GDN+U5C1JjkqyKsmiJLsleUqSzycZ2lq3JsmnSymfKqWUBkdsGHfdO4U2x68ZvycAAAAAAPNIb1fjYLSNw/0ZHGkQYFQTYATUV0pJb62v7pzARQAAAAAAAAAAAAAAmHu6Z7oBpl8pZU2SryZZMmb4jCQvqqpq3bjy25KcmeTMUso/Jflekp23zr0yyVVJPlTnmNkajPbJJN+Y5JoDk5w+DWcDAAAAANDE4rIktdQykpHt5jaN9GeoQYBRjwAjoInerqXZOLL9t5k2DvdnqGoQuFgELgIAAAAAAAAAAAAAwGwkGG1++p9J1oy5/l2SU6uq2txsUVVV55dSXpDkx2OG31lK+WxVVbePK79v3PWaTEIpZVm2D0a7dzJ71LO1z/G9TtTLjh4LAAAAAEALSinp7Vqa/uH1281tGu7PoAAjYAr6aktzV53xTSP9GRxpELhYE7gIAAAAAAAAAAAAAACzUW2mG6Atnj/u+kMThaLdr6qqnyT5+Zih3iT/o07pFeOu9229vbr1d1dVdc8k9wAAAAAAYI7pqy2tO75ppD+DVf0Ao+4iwAhorLer/n1lY5PARfcVAAAAAAAAAAAAAACYnbpnugGmVyllaZIDxw3/ZJLb/DjJY8dcH1+n5vJx1wdN8owDxl3/dpLrAQAAAACYg3obBKNtHO7PkAAjYAoa3Vc2jfRnSOAiAAAAwKi7L0yu/2bSf+32c9VQMjKYLN032f2UZI8nd7w9AAAAAAAAALifYLT5Z1WdsVsnucf4+l3q1Fw67vqhpZS+qqo2tnjGoyfYDwAAAACAeai3q3GA0eBI/QCjntqidrYEzHF9jYLRhvsz2CAYrae4rwAAAAALyA3fTs59wWj42UT++6PJQ9+XHP5X7e8LAAAAAAAAAOqozXQDTLt764zVfzVIY8vGXW8YX1BV1S1JLhkz1J3kMZM448Rx19+fxFoAAAAAAOaoRgFGG0f6M1gN1J3rKT3tbAmY4xoHLm7M4Ij7CgAAALDAVVVy0ZtbC0W736XvSbbc1b6eAAAAAAAAAKAJwWjzTFVV/UnWjRs+apLbHD3u+tYGdd8ed/3yVjYvpRya5PgxQ/1JfthaawAAAAAAzGVLuvrqjm8a7s9QVf+Fed1lUTtbAua4RoGLm0aa3Fdq7isAAADAAtF/TbL+ismtGRlIbvlRe/oBAAAAAAAAgAkIRpufzhp3/apWF5ZSdkvyjHHDP29Q/uUkw2Oun1NKObiFY9487vpfq6ra3GKLAAAAAADMYY0CjDY2CTDqKT3tbAmY43q7GtxXhvszWA3UnXNfAQAAABaMW86c2rqb/216+wAAAAAAAACAFglGm5++Pu76BaWUF020qJSyOMkXkywbM7whSd3/EVFV1RVJPj9maFGSz5VSljQ545lJXjZmaCDJuyfqDQAAAACA+aG3QTDahqH7UqWqO9dTFrWzJWCO66311R3fNNKfwYaBi+4rAAAAwAKw/qrk16+d2tprvzS9vQAAAAAAAABAiwSjzU9fS3LxmOuS5AullI+WUnavt6CUclKS85OcPG7qQ1VV3dPkrHcmGTv/qCQ/LqUcOm7/xaWU/z/JN8at//uqqq5rsj8AAAAAAPNIb1f9YLR1w/c2XNNT62lXO8A80ChwcdNwf4aqgbpz3cV9BQAAAFgArvjkjq1fd8X09AEAAAAAAAAAk9A90w0w/aqqGimlPC/JuUnWbh0uSV6f5E9LKZckuTrJpiSrkxyVZLc6W/17kg9NcNaNpZTnJDkzyaKtw49O8ttSygVbz1mZ5OFJ1oxb/r0k75jc7w4AAAAAgLmsr0GA0bqhxsFo3WVRwzmARoGLW6rNKVX9nxPVU3NfAQAAABaA28/ZsfV3/DxZcfD09AIAAAAAAAAALRKMNk9VVXVlKeVxSb6Y5JgxU7UkR259NFye5NNJ/qyqqsEWzjqrlPLsJJ/LtvCzsvXcYxos+2qSV1ZVNTzR/gAAAAAAzB+NAoxG0vjLxT2lp13tAPNAo8DFJKkyUnfcfQUAAACYd4YHkkventx4erLpliRVMrShcf0hf5r8/uPN9/zlK0YfSdK9PBlav21u9dHJ8f+S7PTQHW4dAAAAAAAAAMaq/yPSmReqqvpdkkcmeWmS8zIaeNbMpiRfTvKoqqpeXVXVpkmc9e9JDk/yT0nuaVJ6fpLnVVX1wqqq+lvdHwAAAACA+aFZgFEjPWVRGzoB5otGgYvNuK8AAAAA8875L0su/7tk/e9HA8yahaKtfEjy8I8kB/5x6/uPDUVLkrsvSH74iGT9VVNqFwAAAAAAAAAa6Z7pBmivqqqGknwhyRdKKSuTHJNk/ySrkixOsj6jQWaXJvmvrfVTPev2JK8ppbwhyaOT7JtktyT9SW5K8puqqq7Zgd8OAAAAAABz3FQCjLprPW3oBJgvphK42F3cVwAAAIB5ZOPNyfVfb73+8T9Jaj3JcZ9KDnpV8rMnJwPNfi5yA8Obkgv/PHncdye/FgAAAAAAAAAaEIy2gFRVdV+Sn3TgnIEkP2v3OQAAAAAAzD29Uwgw6imL2tAJMF8srvWmpKRK1fIa9xUAAABg3hgZTm7+t6Qaaa2+Z1WyZNfRt0tJdj42OeYTyS9eOLXzbzojuebLyX7/X1JqU9sDAAAAAAAAAMbw3WcAAAAAAKBj+rqWTXpNd+lpQyfAfFErtSyp9U1qTU/NfQUAAACY40aGkgvfmHxrl+RXr2p93X4vHA1EG2vPpyXdk/+hFv/PeS9Kvrk6ufgdrQe0AQAAAAAAAEADgtEAAAAAAICOWVyWpEzi2xO1dKWrdLWxI2A+6Oua3At3u8uiNnUCAAAA0CH/9e7kdx9JBu9tfc2uT0ge9v7tx3uWJ489LelZMfV+Bu9LLntfcvnfT30PAAAAAAAAAIhgNAAAAAAAoINKKemrtR5g1FN62tgNMF/01vomVe/eAgAAAMxpVZVc9emJ6/r2Sk44ffTxtN8nj/9RsmhV/drdn5Q857bkqA/vWG+t9AUAAAAAAAAATXTPdAMAAAAAAMDC0tvVl/6R9S3V9tQWtbkbYD7onUTgYpL0FPcWAAAAYIpGhpP7LksG70tSTfPmJSm1pHtZUlucbLm9ftmmW5PNt0283WF/lez1jNaP71qSHPjHycVvTUYGW1831vorki13JYt3ntp6AAAAAAAAABY8wWgAAAAAAEBHTSbAqLv0tLETYL7o7ZpcMJp7CwAAADAlt52V/OSkme6iNV19yT6nTn7dopXJ3s9Nrvva1M/+1i7J0R9NHvT6qe8BAAAAAAAAwIJVm+kGAAAAAACAhaVvEgFGPcKLgBb0TTJwsZTSxm4AAACAeWlwXfLTJ8x0F61ZdkDy+B8ni1dPbf1xn0r2enZSuraNrXhwsvKwJC1+XeWCNyS3nzO18wEAAAAAAABY0LpnugEAAAAAAGBh6Z1UgNGiNnYCzBe9AhcBAACAdrvhO0k1MtNdNNe9LHna75K+PXdsn57lyQmnJYMbko03JkvWbgtZG7g3qfUk3UuTr/cmw5sb73PNF5O1J+xYLwAAAAAAAAAsOILRAAAAAACAjhJgBEy3yQQu9ghcBAAAYCEaHkhuPysptWT1scmilTPd0ey28abkjv9IBtdvG/vVK2eun1bt94c7Hoo2Vs+yZOWhDxxbtGrb23v8QXLDtxqvv+ozyc7Hj77dvTTp3SPZdHMy1J+Ukqw8LFl99GjQGgAAAAAAAABsJRgNAAAAAADoqL7JBBjVBBgBE5vMfaVb4CIAAAALzYZrkh8/Ltl4w+h1757JCd9Odj52Zvuara78VPLr1ybV8Ex3MjmlOznoVZ098+DXJjeclqRqXDNRoNwuj0pOOD1Zssu0tgYAAAAAAADA3FWb6QYAAAAAAICFpVeAETDNersELgIAAEBD579sWyhakmy6KfnVq5KqSZjVQtV/ffLr18ytULTSlex8XHLSD5LVD+/s2bs9Pnnst3Zsjzt/kVz2vunpBwAAAAAAAIB5oXumGwAAAAAAABaWSQUYFQFGwMQmE7jYI3ARAACAhWSoP7nj3O3H77koufs/k52P7XxPs9kNpyXVyOTXHfa25KHvndqZ1UjytQm+XvHgNyVHfrDxfJnBn5W997OTZ16bnL7f1Pe4/l+To//3dHUEAAAAAAAAwBw3g98FBwAAAAAAFqI+AUbANOubROBit8BFAAAAFpKBe5NquP7cjd/pbC+z2b2XJpd/OLnwz6e2fp/nj4aTTeVR6052Pan5/mse03yPmda39+hjqjbdkgzcN339AAAAAAAAADCnzYLvhAMAAAAAAAtJrwAjYJr1ClwEAACA+hqFoiXJZR9IRoY618tsdfXnk+8fmfzmTVNbv/tTkp2O3LEeHvympHTVn1v10GSPp+7Y/u1WaslD3rxje/zw+GSkyb9XAAAAAAAAABYMwWgAAAAAAEBHTSrAqCbACJjY5ILRBC4CAACwgIwMNp+/5czO9DFbDW1MLnh98wC5+y07cPQx1kPenJzwnR3vY49TkhO//8AAtBUPTg55fXLyOUmte8fPaLdDXpc88kvJ7k+u/2c1kXX/ndz6w/b0BgAAAAAAAMCcMge+Sw4AAAAAAMwnAoyA6dbX1fp9pVvgIgAAAAvJ8Mbm8zd9N9nzDzrTy2x0+9nJ4LqJ6x53RrLn09rby+5PHH3MZfv/4ejjfnf8IvnRo1tff+N3R0PiAAAAAAAAAFjQBKMBAAAAAAAdNakAoyLACJjYklpvy7UCFwEAAFhQ+q9rPr/+qs70MVsM3Jtc+enkik8m/de2tqa2ONnlUW1ta97a6ahk0U7JwD2t1a+/or39AAAAAAAAADAn1Ga6AQAAAAAAYGHprbUejCbACGhFrXRlSa2vpdoegYsAAAAsJBuunWD+6o60MSsM3JP86DHJRX/ZeihakjzkLcni1W1ra17r7k2OeFfr9RuubFsrAAAAAAAAAMwd3TPdAAAAAAAAsLAsri1JSS1VRias7akJMAJa01dbms0jGyes6xa4CAAAwEIyUQDYxuuTkcFkIXwd7uovJPdd1nr9AS9L9nx6svdz2tbSgvCg1yfLD05uOC3ZeFPSt1ey5fbkxtO3r+2/PhneknQt7nyfAAAAAAAAAMwagtEAAAAAAICOqpVaemt92TiyYcJaAUZAq3q7liZDd0xYJ3ARAACABaX/mubz1fBoGNXyAzvTz0y65czWa4/82+Qhb2pfLwvNHqeMPu533+/qB6OlSjZck6w8tGOtAQAAAAAAADD71Ga6AQAAAAAAYOHp7VraUl1PEWAEtKa31up9ReAiAAAAC8CNZyTfe0hyw2kT1264qv39zKQ7zkt+8aLklu+3vmbPp7WvH5Jl+yelwX9jX39FZ3sBAAAAAAAAYNYRjAYAAAAAAHRcnwAjYJr1tRi42C1wEQAAgIVgcF2y7vLWas9/eXt7mUl3nJv89PHJtV9ufc2hb0xWPrh9PZF0LU769qk/t+HKzvYCAAAAAAAAwKzTPdMNAAAAAAAAC0+vACNgmi2p9bVUJ3ARAAAAxtl0czK0KenunelOpt9/fywZ3txa7eHvSHY9afRB+y0/KOm/dvvx9YLRAAAAAAAAABa62kw3AAAAAAAALDy9tdaC0XpqgtGA1vS1el8RuAgAAADbW/fbme6gPe76ZWt1+zw/eeh7hKJ10rKD6o8LRgMAAAAAAABY8ASjAQAAAAAAHddqgFG3ACOgRb1dLd5Xaova3AkAAADMQfMtjOru3yQ/Pinpv661+r2f195+2N7yBsFot/4w+f5RyTVf7Gw/AACzRVUll/998r2HJF9bkpz5iOSmf5vprgAAAAAAOkowGgAAAAAA0HGtBhj1FAFGQGtaDVzsEbgIAAAA29tw1Ux3MH023pj89OTk9rNaqz/g5cnez2lrS9TRKBgtSe65KDnvJcl1X+9cPwAAs8Xlf5f85i+SdZcnI1uSu36ZnPOM5LazZ7ozAAAAAICO6Z7pBgAAAAAAgIVHgBEw3QQuAgAAwBg7H5sc84kHji3ddzRk4fY6gQrrr+xMX51w6XuTgbub1xz4imTn45Kdj09WPTQppTO9sc2yJsFo9/v9PyT7vqD9vQAAzBZVNfocaLvxkeSKTya7Pq7zPQEAAAAAzADBaAAAAAAAQMe1GmDULcAIaFFvi4GL3QIXAQAAWAhWHDL6GO/WH9cPRttwVft76oT+65OrPztx3RHvTvr2bH8/NLb8wIlr7r5gNASk1NrfD0yXkcFk4w3bjy/ZNRnekqRKUpKelUmtq9PdATDbbb4t2Xhj/bnbftrZXgAAAAAAZpBgNAAAAAAAoONaDTDqqQkwAlrT1/J9ReAiAABMt1JKSfKmJEvGDH+hqqprd3Df/ZO8eMzQxqqqPrwje8KCt/yg+uPr50kw2m8/NBpKNJFFq9vfC811LUlqPc3/voY3J/3XJcv271xfMFUjQ8mFb0yu+kwyvLG1NYf/dXLEu5JS2toaAHPIZR9oPLflztHg2NVHd64fAAAAAIAZIhgNAAAAAADouL6uFgOMigAjoDW9Ld9XBC4CAEAbvDDJB5NUW69P29FQtCSpquqaUsoRSZ5z/1gp5eqqqk7b0b1hwVp2YP3xTTclQxuT7r7O9jOdNt40GkjUiu7e9vZCa0789+SnT2xe84sXJU86tzP9wI649H3J7z82yTXvSZbsmhzy2vb0BMDccssPk9//Q/OaHxyTnLoh6W7t+2IAAAAAAHNVbaYbAAAAAAAAFp7eWmv/UbtbgBHQor4W7ysCFwEAYHqVUmpJ3nP/ZZIrkrx0Go94WZKrtu5dkrx/GveGhWf5QY3nrvli5/poh9/+bTIyMNNdMBk7Hz9xzZ2/SKpq4jqYaVf/y9TWXfV/prcPAOam4YHkP/+0tdobvt3eXgAAAAAAZoHumW4AAAAAAABYeFoNRhNgBLSqt0vgIgAAzJCTk+yf5P7UmrdWVbVxujavqqq/lPKWJN/cOnRIKeXxVVX9dLrOgAVl6b5J99JkqH/7uUvenuz7gmTRqs73tSOqKrnz/OT3H2utfu3j2tsPretZniw7INlwdfO6a76YrDg0WX1UUvO1HWaB4YHknguTgXtHrwfuSTbeMLW97rkwuenfkq4lyepjkuGNSf8NyU5HJl0Nvkey5e7krl8n1dBoIGRtcVJqyaKdktUP934CMNdUVXLB65P1V7RWf+8l7e0HAAAAAGAWEIwGAAAAAAB0XF+LAUY9NcFoQGuW1PpaqhO4CAAA0+5FY96+oKqqb0/3AVVVnVZKuSDJ0VuH/jCJYDSYilpPss/zk6s/t/3cljuT/3pPcvRHOt7WlA3cm/zH85Nbf9z6mv1f0r5+mLwD/zi5+G3Na85/6eivi3dJTvhOsubR7e8LGrnlh8l/nJoM3jd9e579tO3HelYlj/1GstvJ28aqkeTitye//ZvGey1anZzw7WTtCdPXHwDts/mO5IePSjZc2fqaVgPUAAAAAADmsNpMNwAAAAAAACw8vbUWg9FKT5s7AeaLrtKVxWXJhHU9NfcVAACYZk8Z8/b/aeM59+9dkjy1jefA/HfEu5OuBp9D//4fknX/3dl+dsRFb5k4FG3VEUnKaKjWw/4mOeDlHWmNFj34L0cfPSsmrt1yZ3L2M5Lhze3vC+oZuC8551nTG4rWyOC9ydnPTAbXbRu74bTmoWhJMnD36PvJ0Mb29gfA9Ljg9ZMLRUuS9ZOsBwAAAACYgwSjAQAAAAAAHbe4tiRlgm9TlNRSS1eHOgLmg96uiUMXu8uiDnQCAAALQyll3yS7jBn6XhuPG7v32lLK3m08C+a3pfskD35T/blqKLnwjZ3tZ6qqkeS6rzavefj/Tp56SfL8dclzbksOe0tSSmf6ozW1ruSoDyXPvTtZfvDE9QN3J7ec2f6+oJ6bvpsMb+rcecMbkxvP2HZ97VdaWzd4X3Lz99vTEwDTZ2jTaOjlZG24cvS5MAAAAADAPNY90w0AAAAAAAALT63UsqTWm00j/Q1rekpPihcpApPQV1uae3NX05qe0tOhbgAAYEF42NZfqyRXVVV1U7sOqqrqxlLKlUkO2jp0ZJIb2nUezHsPeXNy1b8km+q82978b8nNZyZ7PLnzfbVq8+3JNV9KBtc1rlmyNjnolaNv9yzrTF9MXa0r2fXxyforJq797YeStScmi1a2vS3mgM13JreflVTDo9elNvrvY8ma0estdye3n51snIanDRf/1Y7vMVnnvSgZ2Po1zxu/3fq6G7+T7PPc9vQEwPS48xfJyEDj+X1ekFz/9e3HhzcnG29KlsoLBwAAAADmL8FoAAAAAADAjOjrWjpBMNqiDnYDzAe9XUsnrHFvAQCAabVmzNs3d+C8m7MtGG1tB86D+at7aXLkB5PzXlx//sI/T3a7OKnNwoDxW3+cnPOcZGh987ojP5R093WmJ6bHQa9Orv5s84CQJLnzvOTfDktO+n6y6ojO9MbsdNvZyTnPTAbve+B4z8rkhO8kXb3J2U9LttzZ+d5Kd/K47yXn/WGypfkPc5jQBW+Y/Jprv5QsPyg54p07djYA7XHzD5KzTmk8v/ro5JiP1Q9GS5IbTksOncLHBwAAAACAOaI20w0AAAAAAAALU2+teYBR92x80SUwq010X0mS7uLeAgAA02inMW/f2oHzxp6xqgPnwfy23wuTnY+vP7fu8uSKf+xsP60YGUrOf/nEoWjHfybZ/6Wd6Ynps/qo5PE/StaemHQva1676abk16/rSFvMUtVIcv7Ltg9FS0bHzn9Z8stXdC4UrbZ49NG9NFl7QnLSmckeT06edH6yx9OarGvj1yv/613JPRe3b38ApmZkcPTjVDNP+GmyZG2yeJf68xf+2bS3BQAAAAAwm3TPdAMAAAAAAMDCNFGAUY/wImCS+romCFwsPSmldKgbAABYEBaNebsTP6h17BmLO3AezG+llhz90eSHj6g//1/vSvb7w2Txzh1tq6m7fpVsvLF5zc6PSA58RWf6YfqtPSE5+Wejb//+k8l/Ngk/u+Pnyabbkt5dO9Mbs8vdFyb91zae77+uY63k+M80vu8sPyg58YzGawc3JN/cKamG2tPb9d9MdnpYe/YGYGruODfZfFvj+d1PSXpWjL69/ODGIZ+eBwEAAAAA85hgNAAAAAAAYEZMFGDUUxY1nQcYT+AiAAB03MYxb6/pwHljz9jYsApo3S7HJ/u9KLn2S9vPDdyTXPLO5NiPd76v8fpvSG78TnLxWyeuXfvY9vdDZ7Tyd3ndV5ND/6z9vdA+g+uTG05L7vp1cs+FSe/uyZLdJ153xSfa31urdnn01Nf2LEuO/UTyq1dPXz9jrbu8PfsCMDUbb0wueH3zmrHPgXY6MrnzvPp19/wm6X1K4336r0tu/G4y1J/s+QfJqiMm3y8AAAAAwAwRjAYAAAAAAMyIiQKMugUYAZMkcBEAADru1jFv79uB88aecVsHzoOF4cgPjoYSDdfJG7zyn5KDX5OsOqzzfd3v7guSnz052XLXxLWLd04O/pP290RnrDoi2euZyY2nN6658M+T7r7koFd1ri+mz+Y7k589MbnnopnuZOr2fl6y8tAd2+OAP0pu+E5yy/enp6exbvhWMjyQdPnaKMCMu+ei5KdPSrbc0bimd4/Rjwv3e/Cbkiv+sX7tWackz70rWbx6+7m7fj161uC9o9eXvD151JeTfV8w9f4BAAAAADqoNtMNAAAAAAAAC9NEAUaC0YDJWiJwEQAAOu2qrb+WJPuWUg5q10GllAOT7FfnbGBH9e2ZPOQt9eeq4dHgqarqbE9jXfxXrYWiHfSq5InnJcsOaH9PdM5jvpE87P3Nay78i2SovzP9ML2u+MeZCUVbdcSOP9aemDzsb5JHf3XH+6l1J4/9ZnLEuyfuc+Xh268/4OVJafLSkJu+u+M9ArDjLn5781C0JHnyL5PeXbddL9s/6VnVuP7Kf64//pu/2BaKlow+r//1a5OR4db7BQAAAACYQd0z3QAAAAAAALAw9U4QYNRTW9ShToD5os99BQAAOu3iJANJ7k8hfkaSj7TprGeNeXswyQykqMA89uC/SK76TLLx+u3nbv1RctMZyV7P6Hxfw1tGz5/IYW9PHvbe9vdD59V6ksPeLnWOnAAAIABJREFUltx7WXLdV+rXDK1Pbv95ssdTOtsbO+7m73X+zINenRz3T50/dyLdfckRfz36mIoD/ij58WPrz930vWSf5029NwB23MhgcsuZzWsOf2fSt9f243s8Jbnua/XX3PS95LC3PnBsaFNy+znb1w7cndz2k2T3J7XWMwAAAADADGryY4EAAAAAAADap7drggCj0tN0HmC8ie4r3e4rAAAwraqqGkhydpKy9fGXpZTmT8ynYOueb0pSbX2cs/VsYLp09yZH/W3j+XOemWy5q3P9JMn130h+9JikGpm4VrjD/DfR3/FZpyS//bvRIBBmp4F7k0vfl5z19OSnTxp93PWrzvex+5M7f2YnrD668dw1n+9cHwDUd89FSTXUvKbR851mH7vu/MX2Y8NNng/d99vmPQAAAAAAzBKC0QAAAAAAgBnRV5sowGhRhzoB5ouJ7isCFwEAoC2+uvXXKsmaJE2Slabsg0nWZjR8LUm+0oYzgH1OTdY8pvH8t3ZJhvo708sl70r+49Tk7v+cuHavZzXvm/lhn1OTnY9vXnPRXyY/fUIyMtiZnmjd4LrRoMNL3pHc/L3k1h+NPjpt7YnJnk/r/Lmd0N2brDy88fxlH+xcLwA80MB9yZnHNa/Z+znJLo+sP7fPqc3X3nPx1PoCAAAAAJjFume6AQAAAAAAYGHqFWAETLPeLoGLAAAwA76S5P1JdstocNmflFJuqqrqA9OxeSnlLUlel9HgtZLktghGg/YoJTn6o8kPjsnou1wd1309OfCP2tvHwD3J5R+auO6AlyVrTkj2f8lo78xv3b3JE36W/Gtf87o7z0tuOmM0XITZ49qvJPddNvl1i1Ynu57UvGZw3fYha7s9MelZse26qy9Z86jkgJcntXn8vYeHfyT52ZPqz13y9uSQ1yU9yzvbEwDJtV9qPv+Izyb7vbjxc9ruvuSplyT//tD68xe9OTnpB9uuq6Gp9QkAAAAAMIsIRgMAAAAAAGbERAFGPQKMgEkSuAgAAJ1XVdVAKeWtST6XbeFl7y2lPDTJa6qqumcq+5ZSViX5ZJIXjNm3SvK2qqoGpqN3oI7VDx8NDrr6X+rP3/az9gej3XFeMry5ec1uJ48GSLCwdPcmR34wuegtzetu/algtNnm1p9Mbd0pFyVL957eXuaz5Qc3nquGk7v/c+KgOQCmX7OPg7ueNBr4O5EVh2bbp8Xj9F//wOsRwWgAAAAAwNxXm+kGAAAAAACAhalvggCj7poAI2ByJrqv9NQELgIAQDtUVfWFJKdn26u0S5LnJ7milPK3pZQmKR0PVEo5qJTyt0muyGgoWrn/mCRnVFX1uensHajjYe9vPHftl5KL/yoZ3jK9Z/Zfl5z30uR7hyZn/8HE9Xs9a3rPZ+7Y8xkT11zxieQrJTnjQcndF7a/Jx5o7Pvz6fuNPm745uT32enhQtEma+m+yaqHNp4/51nJ0MbO9QOw0N3yw+Sspyc3frtxTavPa2s9qRuKliTrLk+u+9dt11WzYLQGewAAAAAAzDLdM90AAAAAAACwMPV2TRBgVAQYAZPT29XXdL67CFwEAIA2enGSnyY5JtvC0VYneWOSN5ZSbknyqySXJ7l36yNJViZZleTBSY5LssfW8bGBaCXJBUle1PbfBZD07pbsc2py/b/Wn7/sA8k9lyQnnjE9522+MznzEcnmW1ur3/Xxyf4vnZ6zmXtWPjg54I+Sq/9l4tr1v09+cHTy1EuSVUe0vzcm//7cSM+q5OiPTk9PC0kpydEfS35yYv35wXXJz56SnHz2aC0A7XPzD5Kzn5ZUw83rDnh563s+8ovJeS+uP3fuC5KRgWT/FyUjg63vCQAAAAAwSwlGAwAAAAAAZkRfbaJgNAFGwOR0le4sLkuypdpcd17gIgAAtE9VVRtKKU9I8rkkz85ooFmyLeBsjyTP3PpoZGxCx9j1pyd5aVVVG6atYaC5g1/TOBgtSW7+XnLvZcmqw3b8rGu+0HqI0gnfTXZ/ctLlc/wF7fjPtBaMdr/ffzw57p/b1w/bTOb9OUnWnpjs8sikGkr6r0+WrElWPTTZ45Skb6+2tTmv7fq40T/X28+qP3/Hz5M7z0/WPLKTXQEsPJd/eOJQtJN/nvQsb33PvZ7RfP6/PzYajFYNtb4nAAAAAMAsJRgNAAAAAACYEYtrvSkpqf7f65wfSIARMBW9XUuzZahRMJrARQAAaKeqqtYneW4p5c+TvDdJX7LdJ/5lu4Vbl4+rLUk2JXlnVVUfnu5egQmseNDENXeeNz3BaHee21rdUR9O9nr6jp/H3FdKsvro5O4LWqu/8lOC0Trlzl9Mrv4x30iW7NKeXhay3Z/YOBgtGb1/C0YDaI9q66e1E35MLJN/Lt2zIundPdl0S/35ey4c/XVEMBoAAAAAMPfVZroBAAAAAABgYaqVWpbU+hrOdwswAqagt+l9ReAiAAB0QlVV/yvJvknen+TejIac3f+oGjzG1ty7de2+QtFghvTunqx5bPOaX70yuegtycjw1M4YuC859w+TG05robgk+zxvaucwP+1z6uTqN97Ynj7Y5vpvJDd8q/X6XZ8gFK1d9n5+8/nfvDG55K+TaqQz/QAsBAP3Jb94UfKtnZOv1pLhTc3rd39ysminyZ+zzwsaz1Vbn5dXg01q6v/QMgAAAACA2UYwGgAAAAAAMGP6upY2nOupCTACJq+31uy+InARAAA6paqqu6qqekeS3ZKckOQdSX6Q5NIkNyfZsvVxy9axM5P8dZLHJdm9qqp3VFV150z0Dmx13KeSpfs1r/nth5KL3jy1/c95ZnLdVyauK13Jcf+cLN13aucwPx3yp8mez2i9/rsHJSND7etnobvlh8l/TCKsbtmBybH/2L5+FroVBydH/0Pzmkvfm1zyzs70A7AQnPOM5NovJwP3TFy7/JDkmI9P7ZzD39F8vqo85wEAAAAA5oXumW4AAAAAAABYuJoGGBUBRsDk9TYLXCwCFwEAoNOqqhpM8h9bH8BcsvLQ5A9+m5x1SnL72Y3rrvp08rD3J12LW9/73sua75kkB/1JstvJyZpHJb27t743C0N3X3LCt5P7LkvuvTTpvy65+K2N60e2JLecmez5B53rcSG54p+azx/06mSXR4y+veyAZOfjkq4l7e9rIXvQnyYbrkz++6ONa678p+SIdyW1ro61BTAvrft9cvs5rdWefE6y87FT/zi4eHXyhJ8lPzmp/nw1kowMTm1vAAAAAIBZRDAaAAAAAAAwY5oFo3ULMAKmoK/pfUXgIgAAAExKd29yyOuah5gNrktu/E6y8rBk2YGja+43PJBsuTPp22M0pGHjjcnIQHLNF5qfW7qSIz+QLNppen4fzE+llqw6YvQxMpxc9oFkaH3j+uu+nuxxSjK8Odlwdf2anpWj/6ZTjV737Z0sWjntrc8bg+uS/uuTG7/duKZ0JUf+jffnmbDrE5oHo225M+m/Jll+UOd6ApiPrvtaa3VrHpusfeyOn1dr9n30kaQa2vEzAAAAAABmmGA0AAAAAABgxvR1NQ4w6hFgBExBb9P7isBFAAAAmLQ9njZxzbn/Y/TXWk9ywMuTo/8hufTdye/+VzK8afJn7vl0IUpMTq0r2e+FyZX/3Ljm2i+OPiaj1EbfBx71xaRnxY71OJ8Mrk/Oe0ly03dHQw+b2fNp3p9nyu5PShavSbbc0bjmjIOTo/4+OfTPk1I61xvAfLL5ttbq9n/x9JxXao3nfvy45EFvaLK4mp4eAAAAAADarMlXQgEAAAAAANqrt9YkwKjpT7oGqK/pfUXgIgAAAExed2/ypPNaqx0ZTK78VHL63sllH5haKNraxyXHfXry6+CoDye7PWl696xGRsO/fvXq6d13rvv1a5IbvzNxKNriNclxn+lMT2yva3Fy0veTvr2b1/3mjaP/zgFon+7lyYGvmKbNmrwc8M7ztoUW11MNTVMPAAAAAADtJRgNAAAAAACYMb1dfQ3nugUYAVPQ1yVwEQAAAKbdLo+YXP3m26d2zv4vSU4+K1myy9TWs7D1LEsef2by0PdO/943fCsZXDf9+85FQ/3J9d9orfaZ13l/nmmrjx79e1i8c/O6qz/XkXYAFqwTvp2UaXoZ347sMzI4PT0AAAAAALRZ90w3AAAAAAAALFy9tcYBRoLRgKlwXwEAAIA22f8lyTVfaO8Zezy1vfuzMOz2xOSSd0zvniODyUVvS9Y8KhkZSEp30t3gB3/UFiWrj016d53eHmbawH3JXb9Mbv/56J/BRJYfknT3tr8vJlZKss//SK74ROOaG09Pqmq0FoDJmfDjYklWHt7ydvcN3Z3rN1+VoWpou7me0pMDqi1p/OPHJjCy/Z4AAAAAALORYDQAAAAAAGDG9DUJMOopizrYCTBf9HW5rwAAAEBbHPjK9gajLVmb7PmM9u3PwrHzccmqhyX3Xjy9+17xiebBUuMd/s7kiHfOj6Cpq7+Q/OqPRwPiWnXQq9rXD5N34CuSK/8xqUYaFFTJ2c9IHvP1xqF/ANQ3cHfz+b2f01Jg6kg1ktPv/GJ+dPe3m9aVJM9ee2BOvv2qSTS5VTWJj+UAAAAAADOoNtMNAAAAAAAAC1dv0wCjng52AswXS2qNX7TnvgIAAAA7YO1jksd8Y/r3LV3JLo9KTv550t07/fuz8JSSnHRmsvspM9vHpe9ObvvJzPYwHTZcm5z/stZD0ZasTY54V3Lo/2xjU0za6qOSE85oXnPz95LL/64z/QDMJ/+XvfuOk7uq9z/+OrM7m2TT66YHAqGEFjqEIh0RRRQVudeuV8Verlgv9nrVawWx+1NRwQIoKCJdOtISWgokIWUT0nu2nd8f3113Q+Y7OzM7M7ubvJ6PxzzmO+dzvud8Astk2f1+37Ojm2C0439R0DJztzzYbSgaQAT+OOVgFgweVdC6Oykm5FSSJEmSJEmSepHBaJIkSZIkSZIkqdcMyuQJRsvUVbETSbuL+jzvK7W+r0iSJEmS1DNTXwX/EeHC7fDqDfDK56GuhECGDideBa/eCGfdBcP2K1+f0qAGOPUGOOfR/PMGNsC4F1Wuj0VXVm7tallyNUkESzfGHA8XrIZXNMIhn04C6tS3THoJvGZL/jmLf1edXiRpd7Lj+fRa/VSoTf/dVVf3b7y9qG3njBhf1HwA2lqKP0eSJEmSJEmSekFtbzdQjBDCLe2HEbgoxriqxHUagN90rBVjPL0c/UmSJEmSJEmSpOLU1+QJMArZKnYiaXcxKM/7Stb3FUmSJEmSyqNmQPLIAhPPhUW/LH6NzACY8GKorS97e9K/DT8QBoyBHatz1yeeA5POg1XFBZEU7JmfwdAcoX+DxsP4M6B+cmX2LadC/9lMfAkMGF3ZXtRztfUw4hBYPyd3ffMCaGuFTE11+5Kk/iq2weZn0uuHfKbgpVbsWFLU1huzA4qaD0BsLv4cSZIkSZIkSeoF/SoYDTiFzo+bGtiDdQa2rwUFfXyVJEmSJEmSJEmqhEGZ9ACjulBXxU4k7S7q87yvZH1fkSRJkiSp/PZ7Nyz5HbQ1FXfejIshO7QyPUkdMlnY730w59IctTqY8S4YOQuGzoBN8yvTw6Mfzz1eUw8nXg2TXlKZfcvh+Xtg+fXdz8uOgOlvrnw/Ko8DPgT3pvz7amuGbUth8LTq9iRJ/dW25dC6Lb0+7TUFLdMaW1nVtKKorZtDCSGWbS3FnyNJkiRJkiRJvSDT2w2UIPR2A5IkSZIkSZIkqTzG101hYKZ+l/FRtWMZUjO8FzqS1N8NqRnOmGzDLuMDwkDG103phY4kSZIkSdrNjTkWTrsJJpwNA8ZC3cjkkckTUH7oF+CIb1SvR+3ZDv4UHPF/MOqo5GtzwNjk6/W0f8Doo5PwtDPvgr3fAEOmw/gz4ejLYPL5le2rdSvc/7YkiKovihEeuDj/nEETkn9OZ90D9ZOq05d6bvqb4Kjvp9c3P1O1ViSp31s/N732krlQm/6BPl2tbm6kldyhZTXU5hxvyZRwW2Dso993SJIkSZIkSdIL5P7JqCRJkiRJkiRJUhVkM1lOH3ke16/57U7jZ416JSH4WSmSihdC4KxRr+TKlZfvNH7aqJeRzWR7qStJkiRJknZz405OHlJfFAIc8IHkkWbgWDj+FzuPzbgYHv8SPPrJ/OtfsBpatsK1U4vvbdsKWH0fjDux+HMrbcuzsP7R9PqpN8KEs6rXj8prv3fBnEthx5pda5ufgYZTq9+TJPU3McLjX8hdGzAaRhxU8FIrdjyXczwQOGnE2dy2/vpdas2hpuD1/60td/iaJEmSJEmSJPU1e2owWtc/tz/RlSRJkiRJkiSpF71k9IWMzI7hkU33kgkZjhn2Io4YekJvtyWpHztxxNkMrhnKAxvvoCk2cfiQ45k9/IzebkuSJEmSJEn9zeTz8wejDZ8JdaOgbiQMmZ4EShXrqW/A2BOSALe+ZOO8PMUAo4+uWiuqkCH75A5Ge/xLsPebIFNC4I4k7UmWXAXP35W7Nvq4opZqbFqae5nsOOprhuSsNWcyRe0BQFtz8edIkiRJkiRJUi/YU4PRxnQ53tJrXUiSJEmSJEmSJEIIzB5+hqFFksrq8KGzOXzo7N5uQ5IkSZIkSf3Z8Jkw9TVJ8MkLhQwcfGl7oFlIju99U/F7LL0GHnwPHP39nnZbXpsWpNdmfiwJg1P/NmQ6rLl/1/HNz8Bdr4ETr06+ziVJu2rZBg9fkl7f791FLbeyaVnO8fF1U6gN2dwtlBJgGVuKP0eSJEmSJEmSesGeGox2cvtzBJb3ZiOSJEmSJEmSJEmSJEmSJEmSpD5q9pUw5nhovAka/wEDG2DcKbD362HCmZ3zpr8RBo6DRb/OHSq25r70PeZflgSoDJ9Z9vZLtml+eu2wL1avD1XOkOnptef+CCtvhfGnV68fSepPnvsjbF2SuzbhbJjw4qKWa2xamnN8fN1ksqEuZ62llPDKtubiz5EkSZIkSZKkXtCfg9FiMZNDCFlgAnAW8MkupTnlbEqSJEmSJEmSJEmSJEmSJEmStJvI1MABH0ge3Zl4TvLI5bFLYe7n089d/te+FYy2OUe4G8A+b4UQqtuLKiNfMBrA8hsMRpOkNCtvyT0eauDwbxT1d2WMkZVpwWgDJtOSEmbWnCkhGC22FH+OJEmSJEmSJPWCEn4CWlkhhNa0R9dpwKJ8c3Ocux14FrgCGNZlreuq+MeTJEmSJEmSJEmSJEmSJEndCCEcGUJ4VQjhZSGEfXu7H0mSemxCSmBah4f/G/5xCjz0YdiyuCot5bXixtzjQ2dUtw9VzvgzSW7NSPHUN6vWiiT1O6vuyD2+1+tgxEFFLbW+ZQ3b27blrDXUTSabqctZaw41Re0DQErImiRJkiRJkiT1NX0uGI3kN2tpj0LndfeI7Ws8Bfy+cn8USZIkSZIkSZIkSZIkSZL2XCGEgSGE6V0eee/cDiGcF0JYBNwP/A64Bng6hPDPEMLMKrQsSVJljDkOpr02/5xVtydhVDceB5sXVaWtnDY8BbE1d22IeaW7jcFT4cCP5J/z1Leq04sk9SfbGmHzgty10UcXvVxj09LU2oS6ydSGbM5aS6aE2wJjS/HnSJIkSZIkSVIv6IvBaNAZXFYpAXgQeGmM0Y+6kCRJkiRJkiRJkiRJkiSpMj4MzG9/3Aq0pU0MIbwG+CMwhV0/EHU2cF8I4chKNyxJUkWEALN/DaOP7X7u9kaYf3nle0rz2P+k14bOqF4fqrzDvwp7vyG9/vgXoHVH9fqRpP5g3nfTayX8PZkWjDasZgT1NUPIhrqc9eb8ueO5tXkbnSRJkiRJkqT+oba3G8jhDtKD0V7U/hxJPg1ye4FrRmAHsB54Erg1xnhnT5qUJEmSJEmSJEmSJEmSJEndOp8k2CwCP4kx5rw+MIQwEriC5ANfY/sjtJc7zhkM/DGEsH+MsdDrByVJ6jtCBg7+FNz+su7nrrqt4u2k2vR0em3oPtXrQ9Wx//vh2f+Xu7ZjDWx4HEYdUd2eJKkvW31vem3ofkUvlxaM1lA3GYBsyOasN2cyRe9F09riz5EkSZIkSZKkXtDngtFijKek1UIIbXRe4HRhjHFJVZqSJEmSJEmSJEmSJEmSJElFCSEMAmbRed3fX/JMfy8wnM5AtGXAH4EW4JXAtPZ5k4H3AV+rQMuSJFVew6mQHQbNG/PPW3M/3PlqOPoyGDi2Or0BxDZYPye9Xju4er2oOkbOgvopsPW53PXNCw1Gk6QOLVth5S3p9cHT0mspGnfkDkYbPyAJRqvN1OVuJVOzU6J4QdbPgRghFHWWJEmSJEmSJFVdCR8N0ev8yaskSZIkSZIkSZIkSZIkSX3fIUANyXV/W2KMD+WZ+zo6Q9GeBg6OMb4/xvjh9nUeaJ8XgDdVrGNJkiqtdjAc/QPIZLuf+9zv4aYTobWp8n11eOZn6bVjf1q9PlQ9IQPH/ji9vmlh9XqRpL7u1rPTawd9oqTAsZVNKcFode3BaCH9e4aWkOPWwEkvy79hvr/rJUmSJEmSJKmP6G/BaJ9tf3wOWN/LvUiSJEmSJEmSJEmSJEmSpHR7tz9H4Im0SSGEA4B9u8y9NMa4oaMeY9wMvLfLKfuHEKaUuVdJkqpnr4vg3CeTgLR935l/7qZ5sPwv1ekL4PEvpdemnF+9PlRdE86CEYfmrm02GE2SAFj3GDz/z/T63m8oesmtrZvZ2Jr7FrmOYLRsnmC05kyOWwNP+hOceHX6po98rKgeJUmSJEmSJKk31PZ2A8WIMX62t3uQJEmSJEmSJEmSJEmSJEkFaehyvCLPvJPanwOwCfjTCyfEGO8PISwFJrcPHQo8V44mJUnqFUP3SR4xwuIroXlj+tz5P4DJr0jm1AyAUANtzdDWBLVDoGULSbboCwXIDoMQuu8ntkHzBtj8TO56pg7qRhbyJ1N/Ne5FsP6xXcc3Pg1N6yEzAGoHlXfPtmYItYV9jUpSb1tzb3otUweD906vp2hsWppa6wxGq0ud0xxqgJYX9FIDU18FA8fB9lW7nrRjNWx/HgaOLbpfSZIkSZIkSaqWfhWMJkmSJEmSJEmSJEmSJEmS+o36Lseb8sw7of05AjfHGFtS5s2lMxhtag97kySpbwgBpl4IC3+UPqfxJvhNprT16yfD/h+EAz6YO3yqdQf86/2w+HfQvD59nRGHlLa/+o8h++Qef/5O+P3IJJBv1NFw7I9gxME922vbCrj3LbDyVhgwGvZ/Hxx4iQFpkvq2lben16ZcADXpAWZp0oLRBmYGMaJ2NADZkE09vyWT5/uDcS+CJVfnKER48utw+FeLaVWSJEmSJEmSqqrE345KkiRJkiRJkiRJkiRJkiTl1TXZIv1Obpjd5fjOPPPWdDkeVlJHkiT1RYd9qXJrb10KD38Ynvlp7voDF8OCK/KHogEc/8vy96a+ZWhKMFqH2Apr7oWbToSmbr5e8q4T4ZYzYMXfoG0HbFsOj3wM5l9e+pqSVGltrbD4yvT6Ed8oadnGHbmD0RrqJhPawyJrM+mBa82hJn3xY65Irz35NdixtqAeJUmSJEmSJKk3GIwmSZIkSZIkSZIkSZIkSZIqYVOX44ZcE0II44F9uwzdnWe92q6n9qAvSZL6loFjYPpbKrvH/B/sOta8ERblCXnpUFMPww4of0/qW4Z0E4zWoXkDLLmq9H2e/ydseGLX8QV5AnwkqbetvDm9dtAnYNCEkpZtbEoLRpv07+NsSM8Zb87kuTWwbiTMeHd6ffFvuu1PkiRJkiRJknpLbfdT+q4QwqnAacDhwDhgOPk/VTKXGGMs8Dd4kiRJkiRJkiRJkiRJkiSpQMvanwNwSMqcl3Q53gE8lGe9EV2Ot/SgL0mS+p5pF8IzP63c+msfhOfvgVDTObbmPmjb0f25Iw6BYCbpbm/IdKgZBK3bup+79uHS91ny+9zj6x+D1iaoqSt9bUmqlHV53vdGHFryso1Nz+UcH183+d/H2ZD+vtiSqUmtATDpXJj//dy1dY90258kSZIkSZIk9ZZ+GYwWQjgb+A47f0pkqb9pjT3vSJIkSZIkSZIkSZIkSZIkvcBjXY5HhRDOjjHe+II5b25/jsD9McbmPOtN73LcWI4GJUnqMxpOg/rJsHVp5fa4aXZp501/U1nbUB9VMwCmvRae+Vn3cxf8AI65vLR9NjyeXtuyCIbtV9q6klQpLVvgkY+l1ye9rKRlm9uaWNO8KmetazBabUi//a85ZPJvMv7M9NrCH8OxP8p/viRJkiRJkiT1km5++tn3hBA+AtxAEorWNQwtlvCQJEmSJEmSJEmSJEmSJEkVEGNcCMwnuV4vAJeFEPbuqIcQPgyc0OWUa9PWCiEMYecPU11Y3m4lSeplmVo49UaoHdLbnXTKDICZH4V9397bnahajvwOTHkldBe0A7DhiRI3aUsvbVpQ4pqSVEEPX5JeG3M81NaXtOzKpuXElNvbJgyY8u/jTKihhtzhaM2ZmvybZGphxsXp9XWPdNunJEmSJEmSJPWG9I+M6INCCGcDX21/2RFu1hGOthVYD+T7tEhJkiRJkiRJkiRJkiRJklQ9Pya57i8CewNPhRAeBcYBU+i8DnA78Ks865xC5/WCLcDjFepXkqTeM3wmvGYTbF0KW5fD348tfo1zHoa/Ht6zPoZMh5P+BMP2g5qBPVtL/Ut2CJz0B2jaAFuehaV/hjmX5p777C9h1peL32Pr0vTaZoPRJPUxba2wKM//qk59TclLNzblfj+soZYx2YadxrKZLK1tLbvMbSkkyHLSeTD/8ty1Z34BR87qfg1JkiRJkiRJqrICfvrZp3yl/bnjQqilwHuAvWKMQ2KMk2OMexf76LU/jSRJkiRJkiRJkiRJkiRJu7dvA0+1H0cgCxwJTKUz6CwC34wxPp9nnVd0mftojHFHBXqVJKlvqJ8Mo4+G+inFnTf55TByFkx4cc/2n/5mGHmooWh7srr+2Xo0AAAgAElEQVThydfS9Delz3niK7D+cYhtnWNtzfD8PbDydmjN8e1aWwtsyhN+tvDH0LKt5LYlqey2PgfNG9PrI0sPI21sei7n+Ni68dSE2p3GakNdzrnNmQJuDRx5WHrt6W8lYZiSJEmSJEmS1Mf0m2C0EMI+wGEkFzUB3AccHGO8LMa4pPc6kyRJkiRJkiRJkiRJkiRJucQYm4CzScLROoLQAp3XAgbgj8Cn09YIIQwBLuhyzs0VaVaSpL4kBJjxruLO2fedyfOMi0vft2YQ7P3G0s/X7mVwN+F8NxwMd5wPLVtgyxK4/mC4aTbcfApcNz0JTutq7b/o/JYuh/Vz4M8zYN1jPe1cknqurRVue0l6vX4qjDup5OUbm5bmHB9fN3mXsWzI5pzbEmq632jQhPz1a6bA8hu7X0eSJEmSJEmSqqjfBKMBx7c/d1wQ9YYY46Ze7EeSJEmSJEmSJEmSJEmSJHUjxvgcMAu4GPgr8ATwJEkg2qtijK+OMbblWeJNwDCS6wcDcH1FG5Ykqa+Y+VE49PNQv2tAyr+FGhh2IMy+Eia+OBmbfB4c9wsYtn/he4UaGH0MnH5b92FY2rMc+5P89WV/hqe/A/e/HTbN6xzfthzuvmjnuf98Tff7bVsG97wBYp4ANUmqhmXXwsYn0+tn3w+h9FvzVjYtyzk+vm7Xv4ezoS7n3OZMgfvP/k16rWVT8n7dsq2wtSRJkiRJkiSpCmp7u4EijGt/jsDDMcb5vdmMJEmSJEmSJEmSJEmSJEkqTIyxGbii/VGsnwC/7LLWhnL1JUlSnxYCHPwpOOiT0LYDagbCv7NEQ1KPbblDWaa/IXm0bu9yTr69aqEmd+iK9nAjZ3U/Z+GPYfMzu46vnwObn4UheydBZ1uXFLbn+keTkLViwv0kqdwW/za9NvYkGNRQ8tJtsTU9GG3AroGotSGbc25zpqawDUcemr/etA4ab0rCVSVJkiRJkiSpD+hPwWihy/GCXutCkiRJkiRJkiRJkiRJkiRVTYxxG7Ctt/uQJKnXhJCEosGuIWi5QtG66jhPKtWwAyE7HJrzZNPmCkXr8MhHYfjBUDOouH3XPZI7GK1lG6y4EbY8mwQTjT6quHUlqRDNm2DJ1en1Mcf3aPk1zatoic05a+Prdg1Gy2Zyh5e2dPd9QIch+8KA0bBjTfqcjU8BBqNJkiRJkiRJ6hsK/Olnn9D1YzAK/DgLSZIkSZIkSZIkSZIkSZIkSZIklaR2EOz33tLPX3I1zPk0PHJJcefd9dpdA3y2r4Z/vAjufAU89CG48Wh47DOl9yZJuWxdCjcem3/Ovm/v0RaNTUtTaw11k3YZy4ZszrnNmQJvsaupg/0/mH/OIx8tbC1JkiRJkiRJqoL+FIz2eJfjKb3WhSRJkiRJkiRJkiRJkiRJkiRJ0p7i0M/Bkd+B4TOru+/T39359bzvwNoHdh6b+1nYOK96PUna/T3+Zdj4ZHr92J/C0H16tEVaMNqo2rEMyAzcZbw2LRgtFHFr4EGfgKMvzz9n87OFrydJkiRJkiRJFdRvgtFijHOAuUAAjgwhjOzlliRJkiRJkiRJkiRJkiRJUolCCJNDCCeHEM4PIbw+hPCG3u5JkiRJOYQA+78Xzn0cBoyu3r5L//SC19ekzLu28r1I2nOkvdd0mHJ+j7dIC0YbXzc553g21OUcb8nUFL5pCDDjnUnQZRrfTyVJkiRJkiT1Ef0mGK3dN9qfa4AP92YjkiRJkiRJkiRJkiRJkiSpOCGEaSGEb4UQngEWA7cCfwB+Dvws5ZyTQgiXtj/eW71uJUmStItxp1Zvr/WPwWOfhvWPw4Ifw/o5uec9/oXq9SRp99a8EbYtT6+POAzqRvZ4m8YdKcFoA3IHo9WGbM7x5kwJtwY25Hkf3zS/+PUkSZIkSZIkqQL6VTBajPEXJBdABeCSEMI5vdySJEmSJEmSJEmSJEmSJEnqRgghE0L4IjAfeC+wF8m1gF0faVYDnwE+DXwrhLBPRZuVJElSupkfLe96p9+Svz73c3DDwXD/f6XPad4Iba3l7UvSnidG+OsR+ecc8pkybBNpbEoJRqvLHYyWzaQEo4Wa4hsYcXB6bdOC4teTJEmSJEmSpAroV8Fo7d4IXAfUAteGED4XQhjRyz1JkiRJkiRJkiRJkiRJkqQcQghZ4G/Ax0iu/XuhmO/8GOOTwK10hqf9R1kblCRJUuFGHwUvmVPG9Y6Bly/p+TqNf+/5GpL2bM/fBZsXptfPuB2mnN/jbTa2rmdb25actYa0YLRQl3O8JVPirYGzvpp7fP2j0Lq9tDUlSZIkSZIkqYxyXWDUZ4UQLm0/fBSYDYwBPgl8KIRwD/AEsA5oK2bdGOPnytmnJEmSJEmSJEmSJEmSJEn6t58AZ5AEoEWSgLM7ScLOmoAvFLDGH4BT24/PAj5f/jYlSZJUkBEHw7D9YePTPVsnk4Waeqivh+wwaN5Y+lrL/wYTz+lZP5L2bCtuTK8NOwDGnVyWbRqblqbWxqcEo9WGbM7x5lBTWhPD9s89vn0lPP0dmHlJaetKkiRJkiRJUpn0q2A04DPs/MmQHRdI1QOntT9KYTCaJEmSJEmSJEmSJEmSJEllFkI4HXgdndf7LQD+I8b4YHt9GoUFo10PfK99jaNDCANjjNsr07UkSZK6NfHcngej1Y2EEJLj7IieBaPN+07yGDmL5FtGIFMHo4+GAy+BwVN61quk3d/T306vTTw376mLts3njvU3sGzH4m632dK6Kef44JqhDK0dnrOWDXU5x5szmW73y2nsSRBqIbbsWnvko9CyBQ75NIQS15ckSZIkSZKkHupvwWi5xO6npAo9PF+SJEmSJEmSJEmSJEmSJKX7dPtzABYDs2OMq4tdJMa4OISwHhgBZIEDgEfK1qUkSZKKc8AHYdlfYNO80teoG9l5fMwP4bYX97yvdS/4FnHNffDcH+HsB6B+Ys/Xl7R7euYX0JI7sAxI3vNSLNz2FN957lKaY1OPWhhfNzm1ls1kc46XHIw2YBTs81ZYcEXu+tzPwY7n4ejLSltfkiRJkiRJknqoP35sQyjjQ5IkSZIkSZIkSZIkSZIkVUAIYRQwm+QDTCPw/lJC0bp4osvxfj3pTZIkST1UPxnOuicJNJv+FqgZVMIiXW5pGX9G2VrbxbblsPAnlVtfUv8WI8z9fHp91tegflJq+aa1f+xxKBrkD0arDXU5x1tCTekbHvo5yA5Lry/4IWxbUfr6kiRJkiRJktQDtb3dQJFO7e0GJEmSJEmSJEmSJEmSJElSQU6kM+1iVYzxuh6u1zVUbVwP15IkSVJPDRgF+/5X8jjmCrhqMLQVEQ40bP/O40wNDJ0Bm+aXv0+A5++szLqS+r9ty2HzwvT66GNSSzFG5m+dW5Y2xtdNSa1lQzbneHMmk3O8IAPHwUGfgkcuyV2PrbD6HpjyytL3kCRJkiRJkqQS9atgtBjj7b3dgyRJkiRJkiRJkiRJkiRJKsiE9ucIPFiG9TZ1OR5ShvUkSZJULplamPxyWHL1zuMDxsKQfWDNvbueM+mlO7+un1q5YLTGm+Cq9m8ha4fAuBfBEf8H9RMrs5+k/mPj0+m1TBbGzk4tb2rdwLa2rT1uIZBh1tDjUuvZUJdzvCXU9Gzj/d8HC65ID4a78wKoGwWjj4XDvwojDunZfpIkSZIkSZJUoB58LIQkSZIkSZIkSZIkSZIkSVKqUV2O15VhvUFdjpvLsJ4kSZLKadZXYOiMztc19XDcT+GYK2DQpJ3nTnkV7PW6nccy2cr217IleWxfCUuugptmQ+v2yu4pqe+7/aXptZOuyfve1Ni0tMfbBwIXjH0To7PjUufUhtw9NGd6eGtgzQA45fr8c5rWwoq/wk0nwpYlPdtPkiRJkiRJkgpU29sNSJIkSZIkSZIkSZIkSZKk3dLGLsdDy7BeQ5fjtWVYT5IkSeU0ZDq8+CFYdQc0rYOGU6F+YlI7dy6svA22Pgejj4VRR0KmZufzB4xJX3vmR2Hzs9C8CcadBOPPgBuP6Vm/WxbDc9fAXq/t2TqS+q/mjdC6LXetfgpMekne01c2Lcs5PjBTz7mjL+x2+4GZevatn0lD3aS887KZupzjLaEm53hRhu0P098Mz/ws/7zmjcmcQz7d8z0lSZIkSZIkqRsGo0mSJEmSJEmSJEmSJEmSpEp4vsvxjJ4sFEKoAQ7vMrSiJ+tJkiSpQrJDcgcJ1Y2AKefnP3faa2HRr3Ydr58Cs76y6/iR34Z/vb+0Pjssvx6mXQghQMtWaFrfWcvUwoCxSU3S7mn93PTauBd1e/rKpqU5xyfWTeX0US8vtatdZEM253hzJlOeDUYf030wGsCa+8uznwoTI7RuTf5+qhsBmSy0bIGa+uTvptbtEGqTv68kSZIkSZKk3Yw/9ZIk9Q3P3w3zvpd82tLUVycXNoQy/ZJOkiRJkiRJkiRJkiRJvWFO+3MA9g8hTI4x5r5rvHvnAPXtxxG4t6fNSZIkqY8ZfwYMGA071uw8Pu2i3POnvhoe+hDE1tL3XPQrWPxbiC1JuExs2bk+aBIc9gWY/qbS95DUdz1/Z3pt79d3e/rKpmU5xxsGTCq1o5xqQ13O8bIFo025AP71Pmhrzj9v+Q0w7zLY713l2VfpFvwQ7n9H7lqmDtqakufMAJj+Rjjim0lwmiRJkiRJkrSb6PeJMyGEbAjh5BDCJ0MIPw0hXBNCuDmEcHNv9yZJKtCyv8BNJ8Di38DSa+Du/4RHP9HbXUmSJEmSJEmSJEmSJKkHYoxPAh13iQfgw6WsE0LIAB0Xk0Tg0Rjj+p53KEmSpD6lZgCcdE0SjtZh4kvh4P/JPX/QBDjhd1AzqHNs37fD+c/BqKMK37cjDO2FoWgA25bBvW+G5TcWvp6k/iFGeORj6fXxZ3a7RGNKMNr4usmldpVTNuQOvGoJNcRybDBwLJx4NdTUdz/3wXfDkj+UY1elWXpteigaJKFoHc8tm2De9+CRj1enN0mSJEmSJKlKanu7gVKFEAYDHwTeA4x9YRly/1w3hHAR8MX2l2uBo2OMZfkZsCSpBLENHnzvruNP/m9yYcKQ6dXvSZIkSZIkSZIkSZIkSeXya+ASkuv63hNCuCHGeFORa3wJOK7L6x+VqzlJkiT1MeNOhPOXw7qHYWADDJ4GIaTPn3oBTDwnmT9kehKWBnD2/bDxKdi8MHm9+Hew6Fel97XwxzDx7NLPl9T3rHskvTbtovzvPUBT2w7WNq/KWWuom9STznaRDXU5x2MItIZAbTlujZv8crhgNax9AFbdCY99Kn3uwh8n77+qjAUl/Nhj4U9g1lchU1P+fiRJkiRJkqRe0C+D0UIIhwJXATNILpaClCC0HP4M/AAYCkwDzgT+Xu4eJUkFev4u2LJo1/HYBot+Awd/suotSZIkSZIkSZIkSZIkqWy+BryT5Jq9GuDaEMIHYow/7O7EEMIY4OvA60muEQxAI/DTyrUrSZKkXldTB2OOLXx+bT2MPWHnsRBg+IHJA5LQtJ4Eo617uPRz1f+1NcO6R6Flc/I6ZCBGct7KlBkAIw+F2sFVbVElWPHX9NqIQ7s9fVXTCmLK7WxlD0bLZFNrzaGG2thSno1qB8G4k2HUUfD4F6B1e+55jcXmne/BdqyBDY8n98gUavn1xe/TvB6e/QUM2QdCDQzbDwaOK34dSXu2pvWwfi4MOwAGjoEtz3Xe91c/BbY+B0NnwKDxha23dWnyd8mQfboNHJUkSZIk6YX6XTBaCGEmcDswjOQip46LnQoKSIsxbg4hXA28pX3oAgxGk6Tes+LG9NqiXxuMJkmSJEmSJEmSJEmS1I/FGNeGEN4H/Jzk+r6BwOUhhI8AvweWd50fQjgG2B84CzgPGELn9YGtwJtjjE3V6V6SJEm7jeEzYfSxsOa+0s7fvDD5QOgXBrBp97f0Orj7ddCyqfBzMnVw5LdgxsWV60ula94Id10Ey29In7P367pdZlXzspzjNdQyJttQanc51Ya61FpLJgNFZG4VtmE9TL0wCdrKJbbCbefCiVcnc7WrtmZ44GJY+JPq7XnfW3d+PfXVcNwvksA7ScqnrRUe+iDM+x7d3KKdmPxyOP5XkB2Su960Hu54Bay6LXk9/GA45XoYPLVcHUuSJEmS9gCZ3m6gGCGEgcBfgOFdhucAbwWmAwfSeQFUPtd2OT69bA1Kkoq3fk56beOTyadMSJIkSZIkSZIkSZIkqd+KMf4/4Avs/GGo+wCXAN/qMjUA95CEqP0HMLRjifbnj8cY/SBUSZIklebka2DcKaWff9OJ0Lq9bO2oH9i6HO58ZXGhaABtTfDAu2DNg5XpSz3z8Efyh6INHAf1k7tdpnHH0pzjY+vGUxNqS+0up2zIptaaQ01Z9/q3o78Po45Mry+/AeZ8pjJ77w6e+lZ1Q9FyWXI1PP7F3u1BUv+w8Icw77sUFIoGsPRaePQT6fX739kZigawYS7c+aqedChJkiRJ2gP1q2A04H3AXnT+3/V3gCNijD+LMS4CCv0N0610Xly1dwhhXJn7lCQVakM3wWeLf1OdPiRJkiRJkiRJkiRJklQxMcZLgTfTeZ1fx3WAHWFpHY9A5wekdrxuAt4YY/x61RqWJEnS7mfQeDjjVjjvmdLXWHFj+fpR37f4txBbSz9//uXl60Xl0dYKi67MP2ffdxS01MqmZTnHG+q6D1UrVm2+YLRMhW4PrB0MZ96df86iX1Vm791BX/ln01f6kNS3PVvCe8WiX0PMEaTWugOWXbfr+NoHYMvi4veRJEmSJO2x+lsw2nvpvBjqmhjjB2KMbcUuEmPcDCzqMnRgGXqTJBWrZQts7ubCgqU5fhAqSZIkSZIkSZIkSZKkfifG+AuS6/UuIwlI6whAC+wciNYx1gb8P+DAGOMvq9iqJEmSdmdD9obBe5d27r8+AAt+CMv/Cs2bytuXdtW8CZZdD6vugNam6uy5bSUs+X3y7/nhD/dsrWd+CjvWlKcvlce2pdCyOf+cUUcVtFRj09Kc4w11k4rtqlvZUJdaa87UlH2/f6upg5Gz0uvbVkDTusrt31+1tcL6x3q7i8SWxfD0d2Hdo1D8bZiSdnet22HlbbC6myDMXJrWwtwvJN8zLfwJrP1X8j6zbRm0bst9TuMtPWpXkiRJkrRnqe3tBgoVQpgJdPxkOAIf6eGSC4GO32RNB27v4XqSVB7Nm+CJr8Lzd8HQfeHA/4Zh+/d2V5VRyKc8bHwq+SV2Tfov8iRJkiRJkiRJkiRJktQ/xBiXAO8JIVwCnNj+mAKMBuqA1cBK4G7g5hjj+t7qVZIkSbux/d5TWujVlkVw/zuS40ET4JQb8ocGqXRrHoBbzoLm9v8lGLofnH4L1Jc/dOrflvwe7n4dtO0o35p/GAOn/A0mnl2+NVW6TfO7nzPxnG6nxBhZ1bQ8Z218BYLRajPZ1FpLyJR9v53s9x64723p9TsvgNNuhhDS5+xpHrmktzvY2b/elzxPey0c93OoGdCr7UjqI7YsgdvOgQ1PlL7GnEt3fj3pZTDzY+nzY0vpe0mSJEmS9jj9JhgN6PhNUQTmxhif6eF6XS+WGt7DtSSpPNqa4ebTYO2DyetVt8HCH8NJf4LJ50Glf2FVbVuWdD8ntsDmBTB8ZuX7kSRJkiRJkiRJkiRJUlXEGLcCf29/SJIkSdV1wAeT54U/hI1PJ8fZ4dBwGhz9fbhmCsTW/GtsWwH3vhXO+Vdle90TxQh3vqozFA1g0zx44GJ40XWV2bN5I9zzxvKGonW453Vw/jI/LLwv2LQgf33vN0CeELIO61vWsCNuz1lrqJtcSmd5ZUP6105zpqbs++1kn7dCWxM88K7c9ZW3wqrboeGUyvbRX2xaAE99s7e7yG3xb6HhdNg3T9CdpD3Hw//ds1C0XJb9GWJbngmxvPtJkiRJknZr/SkYbWyX4wI+nqNbXX9TUV+G9SSp51bc2BmK1tWdr4CB4+GE30LDi6rfV6Vsfa6weeseNRhNkiRJkiRJkiRJkiRJkiRJUnmEAAd+KHnkcuS34cH3dL/Ouodg8zMwZHp5+9vTrXsItub4EO5lf4bWpsoEjC27AVq3lnbuec/CvW+EVXfkru9YnQRHTTiz9P5UHt0Fo407uaBlVjYtS6011E0spqOC1IQaMmRoY9ewmeaQ6XxRqfeiGRfD/Mth/Zzc9SVXG4zW4bk/pNcGNsArG8u/Z4zwm0z38wCW/M5gNEnJ91NLr6nM2suvT681b6zMnpIkSZKk3VJ/CkYb2OW4HB+/MrzL8aYyrCdJPbfsz+m17Y1w8ykw9dUw9mTY581QO7hqrVXElhy/rM5l6Z9gr4sq24skSZIkSZIkSZIkSZIkSZIkAYw9ofC51+0Lww+EvV4H098EgyZ01jY8CfO+B6tugxGHJtd/r74Xhh8MB3wQxhxb7s53D6v+mV5r2Qw1o8q315YlyXX8hQTh5VI/GQZPhUnnpQejAdzxcpjxruR44FiY8GIYeVhpe6p0G5/MXx8zu6BlGpuW5hwfVjOC+pohxXZVkGyoY0fcvst4S6am88UR/1eRvQEYc0J6MNr8y+Dwr0PtoMrt3x+0NcMTX0uvF/j1VbQQYMLZsOLG7uc2/gMe+zSMOwkaTk/OlbTnaNkCy/4CS65K3rOq7YmvwfS3QNNaWHY9bH0uGd+8AGqHwIRzYPLLIDus+r1JkiRJkvqc/hSMtrrL8ZgyrNf1IzDWlGE9Seq5Z37e/ZwlVyeP+d+Hs+/r3z/o25b7l4G7WHFj8gk2/sJFkiRJkiRJkiRJkiRJkiRJUqWNnJUEV634WwGTI2x4Ah79RPI45+Hk/MVXwV0Xdk7b8ESX48dhye/gsC/BQR8ve/v9XsjkKcby7bPqn3D7S6F5Q+lrzPxY0u++74CnvwVbU66Rb90GT32j8/Wjn4CjfwD7/lfpe6s4rdth+Q3p9cnnJyGHBVjZtCzneEPdpFI6K0htJsuO1l2D0Zoz7f+9jDgMxp9esf3Z7z2w4Afp9ZtPg1P/CnUjKtdDX9ayDe58RRL2k+aAD1Vu/wP/u7BgNIC5n0ue9/kvOOYK79WR9hQ71sCtZ8Paf/ViD8/DH0an1xf9GoYfBKfdtHPYsCRJkiRpj5TvNwV9TWP7cwAO78lCIYTRQNefVC/oyXqSVDbZ4YXP3fhU/k+S6Q+aCvwFcvNG2Lqksr1IkiRJkiRJkiRJkiSpKkII2RDCySGET4YQfhpCuCaEcHMI4ebe7k2SJEn6t5OvgYM+BaOPhaEzCj/vkU9AaxM8+O7u5z76CdiaO2Bpz5YnpCe2lm+bhz5YWCja0Bkw7mQ44ptwxLdg3Ckw4RyYfSXs1/7vOTsEzn6g8L1jW/v+m0pqXSVYfFV6bdiBcGKe+gukB6NNLrargmVDXc7xlqEzYP8PwOk3Q+3giu3PiIPg0M+n19fcCwt+VLn9+7olV+UPJpv2Whh3YuX2H38GnH4rDNmn8HMW/ghW31u5niT1LfMuKywUbcorYa//hNHHpM8ZOgNqh5avt642PA5PfbMya0uSJEmS+pXa3m6gCHcDbSRhbqNDCKfFGG8pca230Plbki3Ag2XoT5J6rmZAcfOf+Aoc+rluPhGrD2vdVvjc9XNh8LTK9SJJkiRJkiRJkiRJkqSKCiEMBj4IvAcY+8IyEFPOuwj4YvvLtcDRMcaccyVJkqSyqRkAh30+eQDc80Z49v91f17jjfD8HbBjdWH7LP8r7Pu20vvcHYU8wWhtLeXZY9sKWFvA7URHfa8z/KzDAe/PPXfQeDjkszDn04X10LIFVt4Kk88rbL56Ztl16bXZv4RMtuClGpuW5hwfXzep2K4Klg25+2s++BMw4qyK7buTyefDY/+TXl92Hcz8SHV66WvyfX0B7PX6yvfQcAqctyA5bm2CqwYlIYz5LPszjD2+4q1J6gO6e58CGHsCnPSHwtaLEa4emnw/U25Lr4PD/7f860qSJEmS+pV+E4wWY1wXQngAOLZ96PMhhFuLvbgphDAJ+BidF1DdFGN3P+GTpCpoa4XtK4s7J7bCIx+Dw79WmZ4qrXVr4XM3zIVJ51auF0mSJEmSJEmSJEmSJFVMCOFQ4CpgBp0fbFro9X9/Bn4ADAWmAWcCfy93j5IkSVJe488oLBgttsEtZxa+7v3/lQRVhBoYeUQSkjZoQvH9Lb0Olv0F6kbCXv8BIw8rfo0+I08wWmwubcllf0n+GWWHwV4XwbzLCjuv4fTi9hl/RuHBaAB3vBymXghjjk2+BlbfCy2bYcBoGH82TLswf1CcCrf67vTa8EMKXmZ72zbWt6zJWWuoYDBabajLOd4cmyq25y6GHQCDJsK25bnrz/8T5v8A9nkbZPrNbYs9FyM898f0es3A6oeP1dTBuBcl4Yv5PPFl2PgkbJoHgyYnoaBN65L3o2EHwtQLkvc1qVp2rE2+33r+LmjbUd61l/05eR66H0x4MUx77e4bDLj0z8mfd3tj8jrGwgJhG4r47z2E5PukQgLXirVpHlzZ/v1P7WBoOC1PHxkYMQv2eSsMnlL+XiRJkiRJvaa//YTx28CV7cfHkVzo9I5CTw4hNADXASPbhyLwzXI2KEkl27II2kr4Je2T/wv7vh2G7lv2liqupYhgtOV/g5kfrVwvkiRJkiRJkiRJkiRJqogQwkzgdmAYScJBbH8uKCAtxrg5hHA18Jb2oQswGE2SJEnVNuUCePq7sPaB8q/dEdSx9BpY+CM4804YPK3w8+d8HuZc2vl63vfglOuh4ZSytlk1+YLA2lqKX+/xL8Ojn+h8/dQ3Cjtv+pth+AHF7TXmeJh8fvLvslBLfpc8XuiZn8Pqu+Co7xbXg3a1dRlsW5G7NvbEJESqQKuaUkLBgIa6ycV2VrBsyOYcbyk1LLAUmVo49PNw31vT5zxwcRJCeMr1e06o3yPd3Osy8xNJaGW1HfxpWH0ftHZz707H+9WGJ3YeX1BVi9cAACAASURBVHU7LPgBHPU92O/dlelR6qppHdxyOqx7pLL7bJqXPOZfBif8Bqa+qrL7VdvjX4JHP1n8eYP3Tu5RLMZBn4RVt0HzxuL3K1TLls7vldMsvRYWXAFn3AHDZlSuF0mSJElSVWV6u4FixBh/C3T8VCMAbwsh3BlCOCnfeSGEwSGEd7afO4vkIqoI/D3GeFcle5akgr3wFwjF+POM5JPF+pvWbYXPXXVb8qkfkiRJkiRJkiRJkiRJ6jdCCAOBvwDDuwzPAd4KTAcOpDMgLZ9ruxyfXrYGJUmSpELV1sMZt8LhX09C0ipl63NJAFuhmjfC41/Yeax1K8z9XHn7qqp8wWhFhkA1bYC5X+h+Xld7vQ6O+zkc+5PizoMkCOrE38MxV8C0i2DiucmjVPO+D5sXlX6+EnM/n147/H+LWmpl09Kc49lQx6jsmKLWKkY2kzu8rbmtqWJ75rTPW7r/b2PFX2HlrdXpp7dtWwFP5vkamvlxOOR/qtdPVw0vgrPugQM/0rN1HrsUWreXpycpn4cvqXwoWlexJQkQi3k/s6F/KeX7ntHHJqGXZ98L9ROLO3fMMXDWvTDzYzDxpZ3f90w8F8afUdxaPbW9EZ76ZnX3lCRJkiRVVG1vN1CCVwH3AqPbX58A3BZCaAQWdJ0YQrgc2A84HhjAzp80uQx4fZV6lqTubXyyZ+c3/gMmnFWeXqqlpZtPnXmhJ78Os75UmV4kSZIkSZIkSZIkSZJUCe8D9iK5dg/gO8CHYkw+BTCEMK3AdW6l8/q/vUMI42KMq8rca58XQsiSXDc5FZgAbAaWAw/HGBf1YmuSJEl7htrBcOCHk+MbZsH6RyuzT+M/Cp+79FrIFYy08tbkw7dDpnx9VU2eYLTYUtxSq25PguIKNe0imP3L4vZ4oUwN7Pv25NHhqf+Dhz5UwmIRVt4CQ97Ss572dOseTq8NnVHUUo1Ny3KOj6ubSCbUFLVWMWpDNud4cywyLLAc9n4jPHBx7veeDo3/gPGnVa+n3tJdANyB/12dPtKMPBRGfg0mvwJuml3aGk1rYc0DMO6k8vYmdbXuUVhYQiBpT22al4TSDp5a/b0rYfXd0Lqt8Pm1Q5IAxVDI51akGH4gzPpyen3Bj+D+t6fXy6mY76ElSZIkSX1evwtGizE+E0J4KfAnkot6Oi50mgCM7zI1AG/vckyXuUuBl8YYV1elaUnKZfMiWPRr2L4yCTTb8ETP1rv7P+EVyyGT+5ddfVIxv2AGWHwlHPbFnv2wVZIkSZIkSZIkSZIkSdX0XjpD0a6JMX6glEVijJtDCIuAvduHDgR6PRgthDAdOBo4qv35CGBolymLY4x7lWGfscBngQuBUSlz7ga+GWP8Q0/3kyRJUgEmvbRywWjrH4Xbzk2C2Fq2wOaFsPHpzvqw/ZPnrmO5NG+AupGV6bGS8l0v3tYMMcK878LSa2Db8vxrdffP6IUmnVfc/EJNfGmJwWjAfW+FJ78Gww5MwtYmnlPe3vYEa+5Prw0YXdRSK5uW5hxvqJtY1DrFyoa6nOMtMU84WaVkamDiubD0T+lznvgybFmchEmOOqJ6vVXLtkaY+zmYf3n6nLEnwICc/wtffaOPgoHjYXtjaef/42QYfQw0nAoH/0/y95PUU9tXw9zPwvN35Q+wrLRrp3V+bwUweC/Y63Ww9+t6raWiLbse5n0fVvy1uPMmvbTy9+lNOg9q3l9cYFupNi+AthbI9Ltb5yVJkiRJOfTL/7uLMd4fQjgC+CnQ8dP8+ILnnU4hCUQLwE3AG2OMJf4UT5LKYN0jcMsZsGNN8nred9PnHvDh5JMTnvoWbJibPm/H6mTN025JfsnUH7QUGYy2ZTGsuQ/GHFeZfiRJkiRJkiRJkiRJklQ2IYSZwKT2lxH4SA+XXEhnMNp04PYerleSEMIpwMdJwtAqfodzCOEc4OfAuG6mzgZmhxB+Dbwjxril0r1JkiTt0fZ/Hyz+DWx+pjLrL78hvVZo2NeOtf0zGI08AR2xBf71AZj3nfJvO/FcmPKK8q8LMGwGzPx4EhZVio1PJ4+l18KJV8HUV5W3v93ZsuvTa4d9sejlVjblDuNrqJtc9FrFyIZszvHm2FzRfVMd+vnk/o584YSLr4Rl18IZd8Kow6vXW6U1bYC/H5fc45LPrP+tTj+FyGThqO/C3f8JbSWG6a25P3msugPO/CeETHl71J6lZSvcNBs2ze/tThJdv7fa+DSsuBG2r4IDSww1rabFv4O7LiL3rdV51E+BQz5TiY52NqgBZn0N/vU+iu6xFAt/AjPeUfl9JEmSJEkV1y+D0QBijCuBc0MIRwLvB04HJqRM3wDcDHw3xtgrF0JJ0k7mfLYzFK07w2fCPm+Bfd4K8y6DB9+dPnfVHbDolzD9TWVps+LSPulhv/emh8Ut+b3BaJIkSZIkSZIkSZIkSf3DrPbnCMyNMfY0MWJ9l+PhPVyrJ2YBZ1Vjo/YQtmuAui7DEXgIeAYYARwOjOlS/09gWAjh/BhjWzX6lCRJ2iMNHAfnPAJLroanvw2ZATD2xJ3ntDXBqluhbhTM/CjUDoGn/g82zYMxs6GtObn+u1Ka1gL7VG79iskTjLatERb8oPxb7vM2OPpyyFTwVqtZX4KJL4aVtyahHVufK2GRCE98xWC0Yjz2qfTa3m8saqm22MqqlGC08XWTco6XS22oyzneHEsMueqpEQfBix+Cu16T3MuSpmVLcn/IcT+tXm+VtujX3YeiTXstjD2+Ov0UauqrknuUlt8A6x6FRb8qbZ3V98Cq26Hh1P/P3n2Gx1Hdbx//HvXiIhfJlnsvuGFMs2kGbHpvCSShJUAgCSGElCeBEJL8CQmBhJCeECCd3nuzwVSDDTZuYBvj3qtkWVpJ53kxEpLlndnZ3dnZXen+XNde0sxpPxftrmZn7gm2PulYVj7gLxRt8IVQ0COJhSws+U1iQxf9EkZ+wwkWzGQLfo6vwLGR33K+GuM8F/Q9DYrKU1pay9pfd64HXPdcyzWVeSXO++GKI2DJb2H1I7D1vRjzNP0ZGqph6V+i95l/o4LRRERERERE2omsDUZrZq19D7gQwBgzBOgP9MA5CWgzsAFYoJN7RCRjNDbAumf99+8yuuX7EVdBwx6Y+233/p/8IzuC0Rojzt26ohlwrnMgc/Mb+7Ztn5faukREREREREREREREREREREQkKK2vrPNxpWNMta2+LwlgvqDVAqsJKHnCGNMPeJi9Q9FeBy6z1i5q1a8QuAL4FdB8peapwM+AHwRRi4iIiIi4yO/cdBPsS/2P6TW15XtrYe1TTQFmKVCbonlTzXgEo215ywmcC9r4n6U2FK1ZxZHOo98Z8Mz+sftHs/U9qK+BvOJga2uvatZF329yoLhPXFNtjWx2DSLrVdAv3sriku8SzFPfGEnpup6Ke8HEX8FzB3v32/R6OPWEZdOs2H16T0t9HYnoup/zsBbWPAmR7bHHRLPpdQWjSXL8/BxVHAWH3uP9vsDXWq/D1tnxj9uzAaqWQ5eRya2fSpEq2P5B7H4Tb4XR16W+Hi89DnQe0Yz9ofN46xJYfk/0Pn1OgUm3t2yvfDD6e+jITuc5Ltn/NyIiIiIiIpJ2WR+M1lrT3SSTvaOkJMkYkw8cBgwAKoEqYC0w11q7Io2liWSG6k+ccDM/Csuh+6S99w29FObdAA27o4/ZMMP54K64MqkyU67epX5w7vjQ99TowWip+tBfRERERERERERERERERERERIJW1Or7Wtde/nVt9f2uAOZLRgRYALwLzG76Oh/n3LlXAlrjJqBbq+03gGnW2r1OPrLW1gK/NcasBB5p1XStMebP1tpPA6pHRERERIJmjHNT6aV/Ts38M0501rCNLfu6TYQjHoROQ1KzZhCsdW/bsci9LVG9pzkBT2EqGw+dh8OuBDOk7y9xgr0ASofA4C/B2Otb9okjstMJtommuE/coSkb6la7tlUUxBeyFq98UxB1v1tQW2i6T4LSQVC9wr3Pro/gvhIoPxwm3QFdR4dVXWp8+l/v9pwC6HtaOLUkyhgYcA4s+1ti4+fd4DzaKujmBK9NuAUqDk+uRmmf6qvhvWti/98zOXDAbcGEWw04J7FgNICXp8EpS5xr3TKR3/cR/c9KbR1B6X+uezDagHP33u4yKvq1hw01MOdaOOB2haOJiIhIsJb+BT76HexYCHgcuzJ5zu/K43+SuaHZIiJZQke72yFjzD3GGBvQY0Uc65YbY/4ArMc5sete4Bbgdzh3rfzEGPO6MebsVPy5RbLGjJP99x19HeS2+fCqoAz2/7nHIOvc8SDTNdS4t+WWQGH36G3ZetcyERERERERERERERERERERkY5nc6vvewYwX+vkhi0BzJeoe4Eu1tqJ1trLrLV/sdbOsdZGglrAGDMcuKjVrjrg4rahaK1Zax9tqq1ZIXBjUDWJiIiISIqMu2nfm2kHxu4digawbS48dzBEqlK0ZgBsg3vbzoCD0UoHw6TfBjunH8bAofdCYY/E57CNzqNqKcy/MXpIUUc35zr3tsPui3u6DXVrou4vy+tBUU5x3PPFI8/kRd0fCe5X0cSYHJh8rxOI5aWhBta/AM9PgT2bvftmsu0LvNtNHhz8VygqD6eeZIz/qROWGaS6bbDpdSdMasfCYOeW9uG1c/2Fok3+Z3Dvj4ZfBX1OSmzs7tXw6pn7vp/KFG+cH7vPpN9mdiBua31OgBHf2Hf/wPNh4Of33nfo3e7zLPkNLPplsLWJiIhIx7bs7/DOFbB9vnPcqvmYTLRHYx1sfhNeORE2v5PuykVEslr0I6IiLTySi1oYY04E7gEqYnSdAkwxxvwbuMJaW51ceSJZZvGvnTvd+NHjEBh1bfS2kVc7B3dfcLl7ytI/QfkU6Dpu32C1dKhZBzsWQMMe6DwSugyHht3u/fNKoMAlGK1OwWgiIiIiIiIiIiIiIiIiIiIiWWJ901cDJHWlrTGmBzC61a6lycyXDGvtthCWuQDIbbX9sLX2Yx/jfsHegWrnGWOu8gpUExEREZE0K+4F09+ALW/Di0eGs2btFlh5Pwy9NJz14mXr3dt2Lo6+v+JIJzTDfVKoWgG5hVDcx9lVOhjKD4P8TolWmpzyyXDqUtj4GtQ0BW4V9YbOw53z7+u2wuwr/c/38R9h3I8hJz8l5WalZX91b+txSNzTrXcJRutd0C/uueKVZ6JfG1Jv61K+dkwVR8Jpy2DNU/Dml7z7RrbDin/BqGvCqS1oH93p3jb8KhjzAyjpG149ySjuDce9CVvecULMCsogvwxqVjvPl7Ye1j4D2z+If+7GWlj6F5j0m8DLliy2aymse8a7z5CLYf9fQFGsy1TjkN8JjnzcCYetWgb5XZ1r3RprW/p4vd6ufx5W/BsGx3h+C1tjBHYu8e7T42AYGSVoLFOZHJh0Bwz/Kqx62Pkz9j8LysY7obKtdRkBeZ2g3iXsd8mdMPq7+44TERERSYTX74JubD0s/TP0PDj4ekREOggFo0ksD8XqYIyZCjwKtD7CboE5wHKgDOekttZ3/PwC0MUYc4a1mRqXLxIwa2Hx7f765hY5d8zJ8XiaLj/M+cBkwc37tu1YCM8eCHmlMOU/0O+0xGpOVmPEOTC87K699/c4GCbe6j4ut9j9bkGRHdDYADm50dtFREREREREREREREREREREJFO8ATQCOUAPY8wx1tqXE5zrUpyANYBq4N0A6stkZ7bZvtvPIGvtImPM20DzFf6lwHHA4wHWJiIiIiJByy2AiiNg8EXwyb3hrLnoVqg4CkwulA5wgigyhW2If0zliU6IRrYpKIN+p+67v2yM83XtM7DG59v5um1QtRy6jAyuvmwW2eXeVtI/oWsSNtStjrq/V0Hqg7DyTfTAu0hjJOVr+1LQDQZ/Ed7/fkvQn5sts8OpKRV2fOjeNu7GYMOcwpBb6Lz+VBwRvb3PSYmHdi65Q8Fosre1z8buM+7Hqfk5ysmFHgc6j2h2LPQOu3jzQug5BToPDb62RG2dG7vPfv8v9XUEzRjoup/ziKXbBNj0evS2mjWwZ4MTAikiIiKSiMYG2L0SGvbAtvcTm2PlfTD+p1BcqcBWEZEEZNCnFrEZY8YaY15uerxkjIn7CIcxplfT2OZ5RqSi1jS7DhicwOPcNvNY4O9eCxlj+gEPs3co2uvAGGvtgdba86y1xwH9gG8CrY+2nwr8LIE/n0h2qlkHu6N/CLaP3tP9fRjZbX/v9vpqeO0sZ+10+Oj3+4aigXM3mRePch+XVwoF3d3b68K46a6IiIiIiIiIiIiIiIiIiIiIJMNauw1ofbXzT42J/4xvY0xf4Ps457RZ4IX2fENOY0xvYEKrXfU45+X5NaPN9onJ1iQiIiIiIRn0hfDW2rkYnhgGjw+GB3vAotudm4FngkSC0ToPC76OTDD4i/H1f3IULPldamrJNts9Aqz6Rgmj82FDXfTAr1CC0XIKou6P2LqUrx2XQRfE7vPpf+CjP6S+lqBZ6x7AA9kXiuZHzylQOijx8U+Ogi3tPdteYtr2Pjw1Ft77hne/8iOgdGA4NbXl5z3YE8PgscGw4ZXU1+OlagU8PwWeP8S7X0F36HNCKCWlTax/twX/F04dIiIi0r5YC/N/Ag91h8eHwFM+Alvd1FfDo33hsYH+goJFRGQvWRWMBlwBTAWOAuqstRvjncBauwEnnKt5nssCrC8jWGs3W2tXxPsAprWZ6hVr7fIYy90EdGu1/QYwzVq7qE1Ntdba3wLntRl/rTEmTUerREIW2em/b/lh/vp1HRu7j22AlQ/5Xzso1sKS38Y/LqcAckug0CMY7c04P9wVERERERERERERERERERERkXS5o9X3hwJ/imewMaYX8DjOeWrNoWq3B1Naxmp7UtA8a211HOPfaLM9Jsl6RERERCQsvafB/r8Ek+vdb8B5MOXfzg2pgxDZDnO/DSsfCGa+ZDXWxz+mvQaj9T8HxlwPJo5LwN77Bqx+LHU1ZYtXPcLPDrgt7ul2N1Sxs2F71LbeBf3ini9eeSY/6v56G0n52nEZ92Pof3bsfu9+DVY/kfJyArX8bve2yf8Mr44w5eTCUY8nHla1cwm8dDTU7Qi2Lske9dXw0jGwY4F3v7IJMOVf4dQUTc9D4CAfgY3VK+CV42H36pSXFJVthBknwOY3vfsVVcDUpyC3KJy60mXoZTDi6+7tH/0Otsx2bxcRERGJZtlfYf6N8WVDxLJ7Fcw8WeFoIiJxyrZgtNNbfX9vEvM0jzXAmUnM024YY4qBz7fZfVeMMcOBi1rtqgMuttbucRtjrX2Uvf/tCoEb46tWJEvF8+a3p89gNL93XVn0C/9rB2XLbKj+JP5xBd3BGOerm3XPOXe3EBEREREREREREREREREREZGMZq39H/B+06YBvmKMec0Yc4TXOGNMqTHmq01j9wds0+N5a+3rqaw5A7S97fjSOMcvizGfiIiIiGQqY2C/78A522Haq3DMizDtNTivCs7aCMe+Ameuh8Pvg0EXwNlb4IT34JytcOL7cOzLcMxLzrhjXoQeh8a3/vK/p+bPFS/bEP+YTkODryMTGAMTfgpnb4VjZ7T828ayLEP+LdOlMQK1W6K3dd0voaCYDXVrXdt6FfSNe7545ZuCqPszLhgtrwSOeBDOXAtjb/DumynPOX4t/Yt7W4XnYY7sVjYOTlsOJ83z/xzUWn1V5gRvSvhWPQp127z7VJ4AJ86F0gHh1ORm+JVwXjV0P8i7X2MEVvw7nJra2vSGEzjopaA7nLEWesb5PjAb5eTBgXdC6WD3Pl6hliIiIiLRxHNMpfl3pMPvj93XNsKs82D7h4nXJiLSweSluwC/jDFDgObbZzQCTyYx3RNAA5ALDDbGDLDWrkyyxGx3DtC11fY24OEYYy7A+Tts9rC19mMfa/2CvQPVzjPGXOUVqCbSLtTHEYzWfZK/fn4/jNuzwf/aQfn0f4mNK2wKRMvr5Pz5GlyeGjbOhE6DEltDRERERERERERERERERERERMJ0DvAW0KNp+zBghjFmPW1Cv4wxfwRGAJNxbrxpcALRDLAG+FJINafTsDbb8Z7f+Gmb7R7GmG7W2hhXoYqIiIhIxsjvtG/ITl4pFE3de19uIXQ/wPm+oFuUebrAcwf7X3fdc7D2mb33FfSA7hMhJ9//PMmy9fGPye8cfB2ZpKAr9DqqZXvkNbDkN+791zwO9budkKqOqLrtr0WtlCQWvLOhbnXU/YWmiLK8HlHbgpRvov8MRjItGK1ZcSWM+AYsuNk97HD1o1BfA3nF4daWqN2r3NuK+7m3tQcmxwlIa9bnZFj7lP/xC2+BsvHhv55I+m16LXaf/mc7QaCZIK8Ejn4WnhjmHei2YQbs973QyvrM9nmx+wz+EuTkxu7XnvQ6GpZ/Er1t2/vR94uIiEh2amyAxlonf6D5a0MtNDZ9bd5f0h+6jPL/PnP3GtixACK7YMvb/sZUngC9j23ZLukHu6MfO/hM/S6YeQpMutMJeXVT1Mv5s5SNd44TNuxx3teUDobiXv7qExFpB7ImGA0Y2/TVAkustVWJTmStrTLGLKHlLojjiP/Eofbmy222/+0jqOzMNtu+otOttYuMMW8DhzTtKgWOAx73M14ka9Xt8Nev3xn+P9QxBnIKnTfoXhojYG14B4ltI6z0kWwcTfMH8sZA7+mw5ono/SI+/z5FREREREREREREREREREREJK2stcuNMacAjwCVtASdVQK9W3U1wOWtvqdV39XAKdbazaEUnV5lbbY3xjO46RzJPUDruy52xblhqoiIiIh0JN0PdC6g9BOi0WzGSfvuKyyHIx+F8inB1ebFLUTJTd9TU1NHJhtyCXz0W+fcfTcPlsGUf8OAc8OrKxNYC29d6t4+4usJTfvq9mei7q8o6IMJ4VqN/JyCqPsjti7layesqNy5RmbVQ+59HuwGh/0P+p8RXl2JqN0CNWujt3Ud2/FCiIZ+Jb5gtKpl8PwhUFQBRz4GPQ9NXW2SGax1AjyX/tm7X36XzHudKuwOE2+Ft7/i3mfds/DBD2H8z8INddu11Lvd5DjvETqaoV+G5X+P3rb5Tdi+AMrGhFuTiIhIe9McSNY6jKxhz76BZG0Dy9z2N+5xDzXzCj2LJ0y/y0g4+jkoHejex1qY8y1Yckf8fydDv7Lv9vwfxx5X/Sm8epr/dSpPhE2vQn21sz3scjjw997BaiIi7UQ2PdO1frVZFsB8y2gJRkvsVh/thDFmKHBkm913xRjTG5jQalc98Hocy86gJRgN4EQUjCbtXWRn7D5FvZ0DovHILY4djAawbW7L3cBSbdMbULMmsbEF3Vu+H/8zj2C0XYnNLyIiIiIiIiIiIiIiIiIiIiKhs9a+Y4w5APg7zvli4ISetf661xCcQDQDvABcZK1dn/JCM0OnNts1CcxRw97BaJ0TL6eFMaYCKI9z2NAg1hYRERGRBBgDU5+BmafCtjmJz1O7yblg84w1kFsYXH1uGuO4yBXg4L+mpo5M1m28Ey400yMUrjECr58PPadASd/waku39S/Aptfc2/ueHPeUexprWLHn46htvQv6xT1fIvJMftT99Y2RUNZP2KF3w46FsHNR9PbGWph1LpyxGop7hVtbPN65wr3t8AfCqyNT9D8DDvoDzL4qvnF7NsKrZ8AZqyAn+v9paSc2vwFzrvXuUzYeJt8LBV3DqSkeQ7/sBE+89033Pgtuhu6ToP9Z4dVV5RGMVjoQJt0J3Sa492mvyqc4QSTL/ha9fcYJcPrKcEPsREREguIaSNY2QCyeQDKPsUEEkmWKnUtg1nlw/NvufT75R/yhaEUVMOYGGHD23vvHXA/1VbD0L/5yJfxa1yaofelfoGwCjIjz9zERkSyUTcForU/K2RHAfK1fSboEMF82u5SWu2sCzLHWvh9jzNg22/OstdVxrPlGm23FrUv75/UGduyPnDfB/c+J/4OcvGKIbI/db/VjIQajzUp8bOsP5bqNhy6jo38AVl+V+BoiIiIiIiIiIiIiIiIiIiIiEjpr7QbgZGPMJOCbwLFApUv3HcBLwJ3W2pkhlZgp2gaj7Ulgjhqgm8eciboKuDGguUREREQkDCV94MT3nHCPp8dD1fLE5qnd4gRO9T0l2PqisQ3x9S+qSE0dma7vKXBeFdzv8XbfNsDK+2HUt8KrK91W/Me9rfyIhKacXzXbta1XQTihc/mmIOr+iK0LZf2E5Xd2LkJ/wOPyPVsPqx6EEV8Lr654bXw1+n6TB52HhVtLphh+JQz7KtTvcl5jGuudUMI3vuA9bs8GWP8y9Dk+nDolPbyei8EJ8Br59XBqSdTIq53wtpeOdu+z4j/hBqPtcglGG/lNmPSb8OrIRGN+6B6Mtns1bHsfuk8MtyYREcluvgPJ2gSIxRNItk97OwkkyyRb3oGa9VDce982a2HRrf7nOn0lmFworoweuJqTCxNvhQm3QM1a55jMa2cnd7MCN5/+R8FoItIhZFMwWus7HgYRZNY6aC3OT0zaD2NMLnBRm913+Ri6X5ttj6j5qJbFmE+k/Ym4ZDr2nALjb0p83txif/2qP018jXjtWBh9f+Xxzt1+HunjPrbtLxZdRkYPRovsSrw+EREREREREREREREREREREUkba+17wIUAxpghQH+gB1AAbAY2AAustY1pKzKz2JDGiIiIiEh7llcKo74N7yYRPDT7SudG2L2mQkG3mN0TFk8wWu9p0S9G7SjySqHrfu7n8APMuRbIgYKuUHEkdBoSWnlpsf5F97buByY2Zd0q17ZBxSMSmjNe+SY/6v5GGmmwDeSa3FDqSEh+Z+gyCnYudu/zyb9g+FWZ9/NsLWx9F2o3RW/PLYKcbLpEM2DGQH4X5wFgjgQMMQ9LzLkGSu6HsnGprlBSbfdqWPmA8zrUaWjLdW4f/8F7XOX01NcWhLLxkFMAjS4hlKsect4b5UR/jg6UDq4q4AAAIABJREFUbYx+jR041yd2dCX9oaiXE74Yzcd/hAPvhNzCcOsSEZHUsha2fwCb324JEdsnyCyOULPW7Y2RdP/pJCg16/bNL2iohYW3wI4F/uaoPAFK+/vrm5Pb0nf6q/DCEbBtrv96/dj0Oiy+Y9/9jbVNNTS958krdt4rlo0Ndn0RkZBk01G3za2+HxjAfANafb8lgPmy1QlA61uT1AAx4vgBaHsri5Vxrts2oamHMaabtXZbnPOIZI/Izuj785PMevQbjOZ24DNokSpY8c/obWXjnQOMXrq2+VAjr3P0fvUKRhMRERERERERERERERERERHJZMaYzsDgVruWWWurW/ex1i4HlodaWOararPt8wQhzzFt5xQRERGRjmjQ+TD/RqjdHLtvNLtXw2tnQVEFHPUU9EgsZComW++/74irU1NDNhlxNcz+qnefOdc4X00OHPg7GH5l6utKh1WPQM0a9/ZhlyU07aa69a5to0omJDRnvPJMgWtbxNaRaxL51TFEI6+G2Ve5t295C965DA76U+YEjTU2wLtfh6V/cu8z4hvh1ZMNSvrBgHOcoCwvOxfD0+OdwM6Jt2ZeIJ74s/IBmHVe/OMqT4AuI4OvJxUKu8PgC2HZ39z7vDwdjnzMCSBNpQ9+6N7Wue3lvh1QTq7znDzv+ujty/4K296HqU9BUXm4tYmISGrYRuf9+sd/THclkuka9uy9vWejE1a26yOfE5jEf/fLK4WjnoDnDvE+XpGI5mM9foz+Duz/C/3uJSJZJyfdBcShOXjLAOOMMT0Snahp7PhWuwJ+Bckql7bZfshau93HuLI22xvjWdRaWwW0eQdB0kd+jDEVxpgx8TyAocmuK+JLyoLRivz12/IO1Nckt1Ys9dXwzET39q77OR+kehlw9t7b+W7BaDpXU0RERERERERERERERERERCTDnQ/MbXq8AxSmt5yskcnBaH8Axsb5OD2gtUVEREQkWQXd4Li3oO+pUNS7ZX9usXNeevMjlj0bYwdxJcM2+Ot3+APQ79TU1ZEthl8BB//ZX1/bCO9+A3avTW1N6VC/2wnuc7P/L6Hr6ISm3lgX/e/r8K7HkxPrGomA5Ofku7bVN0ZCqSEpw690Qs+8LLsL1j4VTj1+rHvOOxQNYKxLAE9HNvmfMPIaKB0cu+/i22DTrNTXJMGLVMGbF8U/rnQQHPFQ4OWk1EF/hN7HubdvnAlLfpvaGnavgYW3uLd30iWyAIz5gXf71tmw4OZwahERkdRb97xC0cSfxtq9tz/8mf9QtJ6TnfevfU9KfP2SvnDCbBhwHhSW730MrvmRk+KP0RfdCpvfTO0aIiIpkCG3T/DlLaAWKMAJR/sa8JME57qKllC4euD1pKvLQsaYcqDtJ0B3+Rzeqc12ImlLNUDrT8xc0o/ichVwYwDziAQvsiP6/vwkMwGN+4db+5h1jnNXg1RZ+QBULXVvL2vKpKw8EdY9s2/7wM9D6cC99+W1fbppEtmVWI0iIiIiIiIiIiIiIiIiIiIiEpaeOOf7Acy21m5NZzFZpO2JRuXxDDbGdGLfYDQ/N0yNyVq7kThvpGp053ERERGRzNJ5KBz1uHefxXfAnGu8+2x9D6pWQKdBQVXWorE+dp9eR8OAc4JfO1sNu9wJRXl5Wuy+tgHWPOYEVbUnG172bh/0hYSmtdayMbIuatvg4hEJzZmIfFPg2haxdaHVkZThV0BhD5h1rnuflQ9CvwzJ1171oHd7UW/IKwmnlmySWwiTfu08Ft0Oc7/t3X/VQ1BxRDi1SXDWvwgNCVxSevRz2fdzk5MHh98HD3Zz77PqQRh3Q+pqWP2Ye1thORQkeX1ie2GME8y45DfufVY96Dw/iYhI9ov1fl3CZ/Kc3weag75ah37tta8Qcor27btPu58+rfY/3AtslGNKDW2C0Vb5DOrtdgAc90byfy8AxZXOe0ovT42DHR8Gs140Kx+E8impm19EJAWyJhjNWltrjHkNaD5Cf50x5hFr7fx45jHGjAW+A9imXa9ba6sDLDWbXAi0TlRaBsz0ObZtUtGeBNavAVofDXJJPxJpJyI7o+/P75LcvI1x/PitfRrm3wSjv5Oag8jrX3RvK+kP3fZ3vh9+Jax7lpanYqCoAqb8e99x+S6ZifVB3cRWRERERERERERERERERERERFKkOeDLAqvTWUiW+bjN9sCovdy17b/VWrstiXpEREREpKPxG1Az6zyY+AsnpCxItiF2n24HBLtme9B9EuQW+wuqWfBzGHo55OSmvq5Us42w+nGYdbZ7n05DnYuQE1DVsIM9jbujtpXnJzZnIvJMvmtbxEZCqyNpPSeDyXH+3aJZ8S8o6ec8r/Se7oTchK1mHax6BJbf7d2v/PBw6slmfl5PltwBZeOg/9lQUJb6miQ5jQ2w+lGYlUA4aXEldBoSfE1hKChz/p9ud7mcefs853nN5AS/9o5F8O7X3Nv1XLS38sO9g9F2r3b+HcvGhVeTiIikxpZ3011B5ogWSLZPkFg8gWQe4WZec6T7GENuUfT8geYshl1LYcV/oWatv/mGXhpcbX70np7aYLQlv4aBn4eeB6duDRGRgGVNMFqTX+EEo1mcEK1njDHnWGvf8jPYGHMw8CBQinMXSts0Z0d1SZvtv1trbdSesSUyLtG1RLJTqoLR4r27xvwfOx/6Hf0sFMV1M9kYddTCiijBZs0GX9RycLffqXD4/bD411CzBiqOggN+Hf3gb55LMNrmN5OvWURERERERERERERERERERERSaV2r7wvSVkX2WdRme1ic49teYbowiVpEREREpCPqfgD0Ocm5MbeXrbPhpWNgzA9hws+CW9/Wx+4z8pvBrddeFJTByKth4S9i9929ygkSO/xByMm2y8tasY3w+vmw8n7vfmOvTzhga2PdOte2ioI+Cc2ZiHzj/mt1va0LrY6klfSFIV+GZX9177PwFucx8hqY9OvwagPYsRBenuaEo3nJLYbR3w6npmzW/UCoPAHWPevd7+2vwKJfwTEvQUl4P1cSp8YGJxBt9aOJjd/vB9n9mjPmh/D6593bN82CiiODXXPNkzDrXO8+o68Lds1s1/dUKJsA2z9w7/P0eDh2BvQ6KrSyREQkYLVbvZ/rw+IrkMwjZMxP2Nhec2RoIFmmyC2MHozWUAsbXoGZp0Vvj6Z0MAz6QrD1xTLiKljxD6jdkro1nj8UDvo9DL8ydWuIiAQoq44iWGufN8bMAKbihGr1AV41xvwT+DMwu22wlzHGAAcCVwBfAvKbxlrgNWttjE9p2idjzKHAmFa7GoB74pii7St+cQJltB3j812Epz8AD8Q5ZijwWABri3hzDUbrmty89XEGowFsmwOvHA8nzklu7c9qqIaHe3v32e97e28POMd5xJLfyb1t11LoHO95nyIiIiIiIiIiIiIiIiIiIiISkta3tB6ctiqyT9tbgY83xpRYa3f7HH9YjPlERERERGI74hFYdCusfxE2zvDuu+BmGPoV6DQomLVtg3d7UW8o7R/MWu3NhJ9Dp6Gw6mGoWQvb57n3Xf2YE1bU95Tw6gvahpdjh6KV9IchFye8xMbI2qj7i3KK6Zyb5PUgccjPcQ9Gi9hIaHUE4uA/Qd1WWPWQd78lv4Fhl0HX/cKpC2D+T2KHopX0c54jexwYTk3ZzBg48jFY9EuYd4N3352LYckdMNFHuKOkx7pn/YeilY1v+b7TEBh0AQyIEfCV6QZ+zgnkfOOC6O1vXgynLw9uPdsI730LGva49+l/NpRPCW7N9iC3AKa/6jyfL77Nvd/c78AJ74RXl4iIBGvhLd7tFVO9Q8ZyiuIMJHMJN1MgWWbJKYy+v7HWee33E4rWZTT0ng5jf+gE0Iep8zCY/iYs/hUs/UvL/rLxex/f6ToWTE7Lttexn31YmPtdGPRFyO+cdMkiIqmWVcFoTT4PzAEqccLN8oCLmx7VxpglwLamtu7ACKA5Vcc07TfAKuC8EOvONF9us/2MtTb6kfroMjIYzVq7EdgYzxiT4B1fROIW2RF9f36X5OZt9Di46WXbXFh0u3OnrGi/eO1eDVtmQ+0mKCyHvFIwuc4b5dqtTp+cfOi2v5MO7PXLwJT/egecefEKjlv/ooLRRERERNKlvsa542txX+g8NN3ViIiIiIiIiIiIiIhIBrLWfmSMmQeMxwn36mutXZPuujKdtXZdq783cM6TPBx43ucUU9tsPxNQaSIiIiLSkeQWOBeBjv0hvHUpLL/bo7N1wlKGfzWYtWMFo/U+Nph12iNjnCCpYZc52ysfhFkeQTRrnszuYLQ1T8XuM+rapJbYVLc+6v7y/MpQr0nKN/mubZHGutDqCITJgQPvjB2MBs6/cVjBaNbC2idj95v+OpQOSH097UVuAYy9HvqdDk+P9+679kkFo2WyNT5+PgBGXwcTb01tLeky6Hx49+tOuGNbe9ZDQ53zfz4IOz+CqqXefQZ+Ppi12pv8LnDAr5wQWLe/w62zYc9GKKoItzYREQnGptfd285YAyV9wqtFMkduUfT91Z/C1vf8zXHyAufYSrp0GQ4H/9l5+LXoNph7nf/+9VWw8VXoe3L89YmIhCzrgtGstRuNMScAjwODcILOwAk76wRMarPvs6G0hKItBU5vCtHqcIwxpcDn2uy+K85p2iY8lcdZQyf2DUbbHmcNItklsjP6/mSD0eprEh8799vw6X+du6+0/iVv/k9h/o+Sq6u1ZMLLenrctaJuW+LzioiIiEji1r8Ir57ZEo7b9zQ4/D73A8giIiIiIiIiIiIiItKR3Qn8FefcvZ+w7009JbpHaAlGA7gEH8FoxphRwCGtdlX7GSciIiIi4qn3cTGC0YDZV0J9NQz9MhSUJbdeY713e+Xxyc3fkVQcBTkF4BactfTP0OsYGHheuHUFYc9mWPKb2P0qj0tqmY2RtVH3VxSEe6F9DrkYDPazy+Za1NtIqLUEoqg3lI2D7fO9+73/Xeg6OvUBfnXb4YMfOM9jXrqMgpL+qa2lveoy2rkZb41HZv6OhTDjVCifDCOuhvxO4dUnsS39k79+/c9JbR3pVjYeNs7Yd39DDXz8Bxh1TTDrLLjZuz2nACqmBrNWe1V5PHzsES733CEw4WYnYC6dASgiIhKfrXNg8xvu7cWV4dUimSWnMPr+eTf4Gz/g3Ox8T1B5HMyNc8zMU6D3NCjp57x/V0iaiGSonHQXkAhr7Yc4AWj/oyXszLZ6fNaVvQPRGoF/AAdZaxeFWXOGORfo3Gp7A+Azrv8zH7fZHhjn+Lb9t1prlXAk7Ze17sFoBV2Tm7txT3Ljt74Lzx3Usr3+pWBD0QA6DU58rFcqd0OSf3YRERERiV99Ncw8vSUUDWDN4/Dh/6WvJhERERERERERERERyVjW2ruAp3DO4bvYGPPdNJeULf4NNLTaPssYM9zHuO+12b7fWquTbEREREQkOf3PhPLDY/ebex28ciJEqmL39WIb3Nt6Tm7/gStBKiqHMT/w7vP65+ADnxcJZ4o9m+H5ybH7Df0KdN0vqaU21a2Lur88P9yL7Y0x5Jn8qG0R6xJ8l8mMgQk/d4J9Ypl5Kiz2EYKXqLod8PwU+PiP3v1y8p2as/FC+UyQkwf73wImxiWta5+ED34ILx4J9TXh1Cax+f0ZHHAe9Dg4tbWk2wG3ubfN+ZZzbV6y5v0IVvzTu8+YH0BRz+TXas9GfcsJZHRTvQLeuMAJxhQRkeyw4RV4dpJ7+8hr9H69I8t1CUbzK9bxk0xVNg6GXBr/uPUvwvJ7nJC0JXcGXpaISBCyMhgNwFq7zVp7AbAf8Gug+fYQps0D4APgV8BIa+3F1todYdebYdrecfMf1toYt9PZR9tguWFxjh/SZnthnONFskt9FUS5Kw8AeV2Sm7vrOPe2aTOh1EduYc1aWPQr2L0W3vtmcvW01W1/KOyR3Bxud/Rq0AccIiIiIqFb+ww07N53/5rHw69FRERERERERERERESyxfnAIzjn9P3cGPOcMeboNNeU0ay1HwP3ttpVANxjjClyG2OMOR24uNWuOuCmlBQoIiIiIh1LbiEc8wIcFCM0CGDLW7DgZ8mt53WJyzEvQV5xcvN3NONuhOFXevdZdCvUbg2nniAsvxuqlrq353WCKf+Fg/+S1DLWWjbWrY3aVlEQbjAaQL6JHiIWsZGQKwlI35PhuLdgv+/H7vvhT1IXkrXiX7Cz7aVybYz+Lkx/A/qfkZoaOorBX4Rps2DIxbH7bpsLKx9IeUniQ8MemBcjQDOvMxx6Lxz23/YfRtL9AOg61r39w58mN3/tVlj4S+8+Rz3pvL6Lt85D4fh3YvdbfDvs2ZT6ekREJHkfxjjeMOqacOqQzJTj+jGqt2GXw2nLnEyEbHXI32DKf5yA+KGXwWH3wfRZ/sd/eBM01KauPhGRBOWlu4BkWWs/Ar4NYIzpBPQCmhN4NgMbrLXVaSov4xhjRgBtb9NzVwJTfdhme7wxpsRaG+Xq+KgOizGfSPsS2enelp9kMNqY78Os8/bdP/xrUHEknL4CXpwKG2d6zzP3O84jaEc8lPwcuS4fXDfoZrYiIiIioVvicse37fPCrUNERERERERERERERLKCMebvTd/uBHYBnYFpwDRjzC6cG59ubGrzy1pr294gNFTGmH5EPwezd5vtPGPMIJdpqqy1mz2WuRE4E+jWtD0FeNEY8xVr7eJWtRQClwO3tRl/m7X2U4/5RURERET8yy2C4V91gk/e/KJ33yV3OOezl/ZPbC3bEH3/iG8oFC1RI6+Bjz2C7RprYfObTlBVNtjwknf7sS9Dj4OSXmZnw3ZqbfTrFsoL+iQ9f7zyTX7U/ZHGupArCVD3ic6j4kiYcZJ7v7ptsP0D6Hlo8DVseNm7vcfBMPEXwa/bUZVPdv4dVz0Kke3efTe8DEMuDKcucbftfaivcm8/ZTF0GRlePZlg2GXw3jejt216DRrqIDd6mGVMm990Xpdd174ie16vM0FJHxjwOVh5n3ufxjrY/Ab0Oz28ukREJH6NEe9r5XMKoSTB4xDSPuQWxte//9lwxIOpqSVsxsCg851HaxN/BXOviz2+dgtsnw89DkxNfSIiCcqaYDRjTG/g4Fa7Zllr97oVibW2CqgCloVZW5a5tM32LGvtkngnsdauM8bMA8Y37crDCVx73ucUU9tsPxNvDSJZJeJx3maywWiVx0OnoVDV6qkvtxiGtjr3c/R3YgejpcKkO6DTkOTnyXVJaFYwmoiIiEh4ts+Hdc/BptfTXYmIiIiIiIiIiIiIiGSXiwHbatsCpun7Lux7o89YTNMcaQ1GA2YBA3306wt84tJ2L87fT1TW2tXGmLOA54DmKykPAxYaY94DlgNdgQOA8jbDnwRu8FGfiIiIiEh8Ko+HnHzngmQ3DXvgmf0hr5Oznd/ZCT2a8H9Q0M193GfjXcJATNZcBpV5Og+HLqNh5yL3PjNPgWFfdf6dCruHV1s8Irtg3g3OuWxuSvpBtwMCWW5T3TrXtor8ykDWiEdeTgFEyQ2stx4/j9mi4ijI7wqRHe59np8MJQOc63B2fNiyv6gCJv8LKqfHt+bqx53AwHXPevfrd0Z880psxkC/0+CTf3j3++ReJ5Sr8jgYd5PCMcOyZzPMu94J6Kr+1PvnsstI6DwivNoyRb8z3YPRbCPcVwilg6BsHIz6FvQ62t+86190Xo8919ZzUtz6ne4djAbw6hnOa0zpABhwrhPIa4z3GBERCdfG19yD1MF5f2lywqtHMk9OnMFoHSEUte+p/oLRAN66CE78AHJ0/E1EMkc2vbKfBTzS9Pg34BF5LtEYY3KBtrdIuCuJKR9ps32JzzpGAYe02lWN/0A1kezUsNu9La80ubnzu8C0mTD4Qicgrc8pcMxLzh1zmvU9GabG+KAmaAf8GkZeHcxcuS4fXDTUBDO/iIiIiHhbdjc8MxHmfse7X2N9OPWIiIiIiIiIiIiIiEi2s60e4sFaOwM4E9jUarcBDgTOA45n31C0/wKft9br6hARERERkQQV9YSJt9OSd+yibivsXuk8dixwwodeONw7UK3Zumei78/JjbtcaWIMHPg7yOvs3W/pn/z/O4XNNsJLx8KSO7z7HfTHwP6vbIpED0YrzimhU26XQNaIR77Jj7q/XQSj5ZU4/0djBSDuXrl3KBrAno3wynGw1iMwr62VDzkhOLFC0XpOhuFf9T+v+DfuRuc6qFi2fwCLbnXCoqwOJaVcQy28cBgs/TNsn+cdigZw4O87ZnhUaX+Y8HPvPtUrYM0T8PJxsOGV2HOuex5eOcG7z6AvQe84QyAF+p/lL/hk90rYNMsJvfvgB6mvS0RE/KvdAi8f695eWA7jfxpePZKZcov89+1zihOG2t51GQFjf+Sv746F8Ha6700mIrK3bApGK8P51MQAs6211WmuJxudBLS+Hcku4IEk5vs3e99n5CxjzHAf477XZvt+a+2eJOoQyXz1XsFoJcnPX9IXJt8Lpy2FqU9A+eR9+/Q5Hi6wMOzy5NeL5YDfwKhrgpvP7ReRBj11iIiIiKRcZBfMucb7rirN6qtSX4+IiIiIiIiIiIiIiGQjE+Cjw7HWPg2MBf4EbPPo+hZwjrX2Ap1jKSIiIiIpNfLrcOJcmHgbFHTzP27HQljzlHef3Wvd22IFJom33sfAyR/G7rdzkRPkkmk2zICts737HPkY9D0lsCU31kX//1he0AeThiCgfFMQdX/E1oVcSYoM/iKcND/x8Ytv89930a3EzGsf8wM49uX4nufEv05D4ITZMOU/0OOQ2P03vAxb30t9XR3d6sdg10f++nabCL09AkrauzHf99fP1sOi22P3W3y79/nanYY61w8qKDZ+uYVw+EMwNUYYZmsf/d4JChQRkczwyb+8209ZBF1GhlOLZK7cwth9Rl8HU5+GIx+JL0gtm42/CY57G/b/hfN7rpcV/4Lda8KpS0TEh2z6RGBr01cLRL/dhsTSNp7zf8mc/GSt/dgYcy9wadOuAuAeY8yxbkFnxpjTgYtb7aoDbkq0BpGs0eASjGbyICf6HXtSZvjXYOlfUjf/2Bth1DeDnTNHwWgiIiIiaVH9KSy+AyI7/fWvr4KCstTWJCIiIiIiIiIiIiIi2WZwugtIBWvtoJDX2whcaYz5JnAYMBDoDVQDa4C51tpPwqxJRERERDq4bhOcx8hvwJP7QdVSf+M2zoB+p4HJAWuhbbiUV/BVYc+Ey5UmpQPggNthzrXe/TbMgD4nAwZyo4dxhW7jq97tJhd6Tw92ybrol7BV5FcGuo5feSb69ScRGwm5khTqOgrGXA8Lfhb/2PUvNF1nEiO0rrEOtrwdYzIDo7/TcS6UT5eCbjDofKg4Ah7tH7v/5jegx4Gpr6sjW363/74dORStWe9psP7F2P02ztw7ZMvkNYWgNQc0Wue118vwq/Z93yT+5eRCn+Nh0h3wno9rH+t3wa6PoWxs6msTERHn+EBjhM9eG00u5LSKQtn8uvvYXsdCYY+UlidZIidGMFpxH5h4azi1ZJqeBzsPcN6HLvxF9H62ETa+BoM+H15tIiIesikYrfWR5NK0VZGljDG9gJPb7P5bAFPfCJwJNN/6YgrwojHmK9baxa3WLwQuB9reeuM2a+2nAdQhktnqXYLR8krCrQOg23g48lF49YzYfTsNhaFfhg880n97TnE+WCjoBhN+DsMuD67WZnnF0fc31AS/loiIiIg4Hygs+D+Yf6NzQNOvyK7U1SQiIiIiIiIiIiIiIllJ54cFy1pbB7yS7jpERERERD6Tkw8TfwmvneWv/5I7YMlvcS52NlA6EIZdAft9zwn72PWx+9jK44KoWPqfDXO+TUsYSxQf3ek8ADoNg5FXw4ivpyeQZd0L8P73YNtc7359T3O/9iBBmyJro+4vL0hPMFp+TvSQunpbF3IlKTbwvMSC0QDuC+j/QOXxulFsmEr6tVyf5OW9b8Lu1TDh5r2DMiR59bth9pWw7ln/YwZ8LnX1ZIsB5/kLRqvfBfclE7RoYMA5SYyXz/Q/G+Z8y9858k+Pg8n/gMFfSn1dIiIdkbXO8YE51+zblpMPPQ6F8T+BhbfAuufc5xmo9yTSJFawtd6/OgZ8zj0YDeCN853jMEO/AmOvVziviKRVTroLiMNcWo64j0hnIVnqIvYOwvvQWvtOspNaa1cDZwGtj6AfBiw0xsw2xtxnjHkWWAX8Fmh9a5IngRuSrUEkKzS4BKPlpiEYDaDf6XCBhaOfj97e/yw4ayOcthT6nuo+T5fRMH0WfK4GztkKw69IzZvbHJdfRBr3BL+WiASv+lOY+x2YeTosvNU9LFJERDLH5jdg3g3xhaIB1Felph4REREREREREREREREREREREclc/c90brLtm235Wr0CPvh/sPg2Z9eupe7DysYlWKDspXQAHPJXMLn++lcthfeuhmV3pbauaLbOgRknxg5F6zoGJv0m0KWttWyqWx+1rSI/TcFoJj/q/khjJORKUqxsHEy8DUjTxdedR8CBv0vP2h3ZIX9zwjJjWXSrc32CBOvNL8En//Dff8LN0H1S6urJFoMvgkEhhGYd8lfn9VuSV9IXDrkLjM9wxTcvhNWPpbYmEZGOaulfooeiATRGYNNr8NLR3qFoAIMvDL42yU45hd7tY68Pp45M130i7O8RjAaweyXM/xEsuDmcmkREXGRNMJq1diXwFs4RzZHGGIWjxeeSNtuBfRphrZ0BnAlsarXbAAcC5wHHA+Vthv0X+Ly1tiGoOkQymlsIUF6agtGaVU6HkxdC5QnOdnElHP4AHP4gFDX92HrWaJ0gtFgJyslym79BwWgiGW/XMnjuEFj0K1jzOLz/XZh5inNgSkREMteK/yQ2TsFoIiIiIiIiIiICzuejkZ3O3X1FRERERERERKRjGPN9OHM9HH4/HHoP9J4e3/iP/+h8dQtGG/61pMqTNoZ+Gc5YAwPO9T/+PHKwAAAgAElEQVTm4z+krh43S/8KsS49GvQlOGFO4IExOxu2UWujX7NQUdAn0LX8yjMFUfdHbF3IlYRg9LVwxirnGpdD7wlv3WmvwUnzoPPQ8NYUR9fRcPIiOPYV6DLau++yu3RNUZB2r4VVD/vvf/pKGPP/nGvKOrrcAph8r/N/d/K/4JC/B7/Gmeud120JzpCL4cw1cMTDzmtMTvTg0c98lIb3QCIiHUEQv2NOnwW5McKwpOPw+r9w8J+hsHt4tWS6/b4L/c6I3e/jP+r8LxFJq6wJRmtyq8v34sEYcxgwqtWuOuBfQa5hrX0aGAv8Cdjm0fUt4Bxr7QXW2uogaxDJaA0uwWi5xeHWEU3X0XD0M3CBhTPXwoBz9j4wnRsjGC0Mbn9PDTXhrC8iifv4D7Bnw977NrwCG2empx4REfFnwyuJjYvsCrYOERERERERERHJPgt/CY/0hQe6whMjYNOb6a5IRERERERERETCUtzLCdoachFM/GV8Y6uWQ8062DQrenvnYcnXJ3sr7gVjrvfff9tc2DoHts9veVQtT90FsvXV8Mm9sfsNu8wJpgnYxrp1rm3lBZWBr+dHvoke3FJv2+lNq0v6Ote4DLkIRl6T+vUqT4SKwxWskE55xdBrauzXkPpdsPpxhaMFZd0z/vv2nAyl/VNXSzYyBrqOgsFfgKGXQLeJwc3d4xDn9VqCV1QB/c90XmMaY7yOrn8e6naEU5eIdAw1653fp3Z+BFUroPpTaIwRCN3eNNTC9nnJzWFyoMuo2P2k4yjxCEwvGx9eHdmi8vjYfWrWQO2m1NciIuIiq4LRrLWPAn8HDHCKMeb3xpi8NJeV8ay1r1trTatHobV2cwrW2WitvRLoDRwDXAL8P+Bq4GxgiLV2srX2oaDXFsl49W7BaF6hYxnCK7zNNoZUQ1H0/foAQyTzLb49+v4V/w63DhER8a+hFnYuSmxsfVWwtYiIxKt6FSy5Exb8HLZ9kO5qREREREREOp5VD8P734PIdme7ainMOEmB+iIiIiIiIiIiHVHZBCgbF9+YR/pAY230NgWjpUbZOOffyq9nJ8HT41sejw+FR/snfjPOaBpq4a1L4IGy2DdTLx0M5YcFt3YrG+vWRt1fnFNKaU7nlKwZS76JHgAXsXUhV5IGg78YwhoXpn4N8af3cU5okZfXP+c8T8z5dscLEglKQx28fRm8/RX/YwZ/KXX1tBdBPpfo7ztzPFgGM0+HyM50VyIi2azqE3jmAHik0vl96smR8PhgeGwQ/C8Plv413RWG56PfJT9Hn5OhsEfy80j70fcUyIkSKN55uBM4K3sbcC7k+AgG//Cnqa9FRMRFVgWjNbkCuAMnHO2rwPvGmEuMMXrXkiGstXXW2lestfdYa2+x1t5prX3YWvtJumsTSZsGl2C0vCwIRsuEGhWMJtL+rHky3RWIiEg0tVucD1cSpQtcRSSdNr8Dz+wP710NH/wAnj0Qlv8j3VWJiIiIiIh0LPN/su++yHZY8Z/waxERERERERERkfQyBo58NP5wNDedFIyWEsbAkQ9DWRLnjdWsgVdOgJoNwdQ073pYfg/Yeu9+nUfA1KfApObyuE2RdVH3VxT0wRiTkjVjyYt2gTcQaYyEXEkadJ8Eh94NuSm4xiUnH8beCAM/F/zckpjcApj6LJQO8u7XWOvczH3JHaGU1e58eBMs+5u/viYXRn4Lhl6e2pragxFfdx4mN/E5mv++h301uLokeWseh3f0byIiCbKN8PI02DbXvc87l8OGmeHVlC5Vy2HudcnPc8hdyc8h7UvnoXDEw1DQvWVfl1Fw1BPO8Q/ZW2EP57hKYbl3v49+B1s9nrtERFIoL90FxMMY83KrzV1AZ2A/4G9N7auBjU1tfllr7bGBFSkiEo3bXYpS8YFM0Fw+OAPA2nBqyC2Ovr9mLexYCF33C6cOEYlP9Sr3toJu4dUhIiL+LbkTdn2U+Pj6quBqERHxY+0zMO9G2Dp73zZbD3O+5dzFJs/l90oREREREREJztpnYfsH0du2vAPDrwi3HhERyRjGmAsDnM7inB+4A1gPLLY2rBNYREREREQkbp2GwIkfQPUKePNC2DQrwYkMdBocZGXSWqchcNIHULUCaprCwF6YEt8cjXXw6X9h1DXJ1WKtE4oWy7RXofzwlF7YvLFubdT9FfmVKVszlnxTEHV/xNaFXEmaDLkYBn0Btn8IDXtazglqqHWCJhKRkwddx0BeFlzf09F0nwinLYfHBsDu1d59P7kXRl8bTl3tiZ/nW4Dj3nJ+TvI7pbScdiMnDw68Eybc7Fz31vz89O5VsO396GOmvQqm6XJvk6O/70y26iGIVOnfR0Tit+19JxAslk/ugV5HpbyctPrkn8nP0eNQKIoR5iQdU99T4OxNsGMB5JVC6WCFonnpfSyctR52LIKnx7r3++Re53c0EZGQZVUwGjAV58SmZhYwTQ+A/k0Pvyc6mTj6iogkrn539P1Z/8FJSE+hXn9PT42BM9dDca9wahERfxob4AmPO/MpGE1EJHPU18Cm15wP0T+8Kcm5FIwmIiHa+CrMPMX7pMa6rc5J1ZXTw6tLRERERESkI6rfDW9/2b193bPh1SIiIpnoHlJ3kkm1MWY2cC9wn7W2NkXriIiIiIhIokxTqNnwKxMPRsvJh9zCYOuSfXUa5DwA+p4Ka56Ib/z8m6CkPzTWQt02yCmA4sqmC9Z7+ptj2/tQu9m7T1FFykPRADZF1kfdX16QzmC06De+r7eRkCtJo5x8XYzdkRgD/c+FJb/27rd9HuzZ7P+5pqOpXgm7PoZuE6H6Uyesq2at84hl7A3Q85DU19ge5Xfe++/ugNvhpWP27ddtf6g4Iry6JDmNdc7Pk16LRCRe1Sv89Vt+D/Q5BToPh7KxzrU+7c32D5OfY9hlyc8h7ZfJgbJx6a4ie5gcKBsDQy6B5XdH77PkDqg40gnw7TxCYXMiEppsC0aLRsFmIpL51j4dfX9ulgejJXpHnXh13c+7fdnfYOwPw6lFRPxZ/7xzsN+NgtFERDLD9vnw8nTYs8H/mKJezokR0S5mjewKrjYRkViW3Onv99J1zykYTUREREREJNU+/a/3xTORnc7vcO3xhF0REYlHKs6O7oRzw9WpwM+NMZdYa59PwToiIiIiIpKsfmdCYTnUbop/7MDzg69HvA27PP5gtMh2mHVO9LaJv4JR17pfOGsb4f3vw6JbY68z9PKUX4BrrWVT3bqobRUFfVK6tpd8UxB1f8R6nLctku2GXgIf/RZsg3e/h8th/1/Cft8Jp65s0BiB2VfCsrsSn2PwRcHV09FVHOWESOz6aO/9w65ITz2SuJknw+mrICc33ZWISDZpjCPMuPn3qu4HwVFPQHGv1NSUDtbCqgeTmyO/Cww4N5h6RKTF0Mvcg9EAXjvb+Vp5PBx+v/OzKCKSYtl4xqkJ8CEiknqN9e5J3nlZHowWltKBUDbBvX3e9eHVIiL+LLnDuz2sYEUREfH2xhfiC0XrNBRO/MC5g1k09VXB1CUi4offD0TrtqW2DhEREREREYFP/+fdXl8F1Z+GU4uIiGSq1ufr2VYPL9ZH3+b9BqgEnjHGfC2JOkVEREREJFXyimH6a1B+WPxjJ/0m+HrEW99T4NC7oXRQMPPNvQ62zHZvX/1Y7FC0wh4w+rsw7sfB1ORhR/1W6mxt1Lby/MqUr+8mz+RH3R+xcYQsiGSbsnFw1FPQZXTsvu9/F1YmGbTRniy/J7lQtGkzofPQwMrp8EwOHPsy9J4OOQVQXOmE+SkYLfvUrEs+1EdEOp54gtGabZ0Nc64NvpZ0Wv+Cd/v+t8CgL0Fep+jtxZUw/Q3365pEJHHlk2HIpbH7rXsOPvy/1NcjIgLkpbuAeFhrszHITUQ6uk2z3NtyszwYrauPDxWCUjYWtn8Q3noikrjVjzm/2HpRcI6ISPpVrYDt8/33n/BzGHaZc3KZ2wcMen4XkbBEdvrvu+FlqK+GvNJ92+q2tVyYX9AdSgcEU5+IiIiIiEhHsmej87tXLNvnQ6fBqa9HREQy0SVNXzsDPwJ64ASZNQJvAbOBlcBOoADoDowDjgB6N421wH3As0AxUAbs19RnIHsHpP3aGLPIWuvjBUpERERERELVZSRMnwXL/v7/2bvv6Diqu43j36tqybZcZbl3sHHDdIxppvceWmgJCakvCQkpJCSkUtITEkJIAQKh946BgKk2BmwD7r1b7pKtutLO+8dIUZuZnS0zuys9n3P2aHfunTs/GbE7O+W5MOdqf+sU9IWC3sHWJc5GX2U/6neD1diyfPPL9qSc8Vr7IPQ/1KUtxuQL3UfCWSvtUJkQbI1scm0bUJDGYLQc52C0hmh9yJWIhGzwyTB4EUT2wOP9wetvft53YMiZkFsYXn2Zau2D8a9TMg5O/RhyC1Jfj0DxEDhuJjTWQ04+GBN7HQleYT+o2xHfOmsfhBEXBVOPiHROie6zr38covfYnxudwer73dtOfNcOZgKINkCkoqUtrzuQo30UkaDt9x1Y9a/Y/dY+CAfcFnw9ItLlZVUwmohIVlr7sHtbv4PDqyMZo66E1fd2XD7h++HVUFjq3V651D74LiLp98lPY/dpqAq+DhER8bb5Jf99z98BhX1bXue5zKwS2ZNcTSIiflUs8d+3ag080gNGXAqH3AEFvaC+At69DDY917Zvz33hqMftcG4RERERERHxZ/3jYEW9+3QfBY214dQjIiIZx7Kse40x+wDPYIeiAfwd+IVlWevd1jPG5ABnA78BRgGfARZblvWzdv1OA/4IjMEOSMsDfgsckOJfRUREREREUmXwaWBy24ZtuennEqQl4WkfTDfwRDB5YDXEN87SP0D1eiidDrlF9iT0jbXQZyqse8R73cGnhRaKBrC1frPj8u45Peme63L9XAjyjXMIQMSKhFyJSJrk97TfDzY85d6nag08ORjKjrPDjkZ/zv4s6awBVLs+hu3vQPEI+3fc/Sns/BCIQvnr8Y9XdrwCR8Kgf+PMMuUXMPcrHZd77e9seBoW3mJfdzrweAX5ikhs0QT32aN19ntUz32hzwEw4Jjs/RxprIM197m3t76GPyfP3pcTkXD1HOMvNLZ6PSy4sSm0ECjoY38HK9k3+BpFpEtRMJqISJCiEVhxp3v74NPDqyUZ+3zZPtHYWNOyrN+h0H9aeDV0G+Dd/uJUuKjGu4+IBK9uB+yaF7tfw97gaxERkY4ql9oXg9RssS8y8+PoZ9qGogHk93Duq/d3EQlL9br411n7ANRth+Nehrlf7RiKBrBnGbwwGS6shs0vwo73oddEGHZeywkbERERERERactroqiT3rO/V+Wn70ZBERFJP2NMMfAUMA6IAJdblhXjjnewLCsKPGmMmQm8CBwJ3GSMWWdZ1j2t+r1gjHkLeAOY2rR4ijHmRMuyXknpLyMiIiIiIqlRNBBGfhZW/9u7n8mBcd8Ipybxr1spjL4SVv4z/nXXP24/2i/zklsE+ziElQRoW8Q5GK20YFCodbSXb/IdlzcoGE26knHXwsZnvcM163fC+sfs5yv+Bvt8DQ6+vfOFo33yc/jkx6kbLw3vtyIZYei58OnPoWZTy7L8XnD00/Dase7rLfiB/bP7SJjxEpSMC7JKEcl2iQajQdvvXmUz4OinIL8k+ZrCVLcTZp3h3p5brGtLRDJBTj7s+w1/3zMW/rLta5MLh/wVxn4xmNpEpEsKb6oMEZGuaOub7m3DLoCCXuHVkoz+h8Nxr8LwC6HvQTD+W3DcK3bidlhi3YDeWAt7VoZTi4i4q1jor5+Cc0REwrfpZXjxQJj/fX+haH0OgGNfhKFndmzLUzCaiKRZ3bbE1tsy075hf/2j3v0eKYa3zodFt8F7V8BrJ0B9RWLbFBERERER6cyqN7mfE534Q/s8oy5cFRER+BmwH2ABt/kJRWvNsqwq4DxgJ2CAPxtjStv12QNcADQ0bQfgpCTrFhERERGRIB32D/sYUm6Rc3vZcXYYxeBTwq1L/DnkTpj0Y+g1CQr6BndTfkEfOP4N6D0pmPFdbK13DkYbkOZgtDxT4Lg8omA06UrKZtjXtw48wf86y//ifY9XNqpcmtpQtMGnp+X9ViQjFJXBCW/CiIuhx2g7KO2EWVB2DEx/KPb6VWvsa/RFRLykap+9/HVYfmdqxgrT0j/C9vfc2495OrxaRMTbpBvhwD9A34PjO95jNcIHX4e6HcHVJiJdToiJNiIiXUzlcvivx0H2IQ4BE5ms9Aj7kS6WFbvPlpnQUzOTiKRNZC/M8vneFlFwjohIqCwL5n0bGqv99R97DRz6N/f2PJebWSN74q9NRCQRtdsTX/edi+NfZ8dse5bqcf+X+HZFREREREQ6k9pt8MlPYPkd7n1GXBRaOSIikrmMMXnAFU0v64DbEhnHsqztxpi/ATcARcClwB/b9VltjHm0qc0Cpidat4iIiIiIhCAnH/b/hf2Q7JOTB1N+aj+aPWBSv53TF9thJSHbVr/JcfmA/MEhV9JWvsl3XN5g1YdciUiaDTrRftRsgWf38Tex7/on7JCjzmLDU6kba+ptMOG7qRtPJBv1HAPTH+y4fPDp/tbf+Cw01kOuc4ipiAhRl2C0vgfDKXPt568cBdvejj3W+iey77N7w5Pe7T33DacOEYnNGBj/DfsB8Mw+sHeFv3Wj9bDpBRh1eXD1iUiXkpPuAkREOqX6Cnj1SO8+wy8Ip5bOwteMIwGcSBUJS9VaWPcobJ8DVjTd1STmvSsgUumvb2O1+8E8ERFJvaq1ULHQf/8JN3i35/dwXu7nwhIRkVSo2xb+Npf/NfxtioiIiIiIZCLLgtlXeYeilewHvfyc3xMRkS7gSKA/dlDZ+5ZlVSUx1sxWz89x6fNy008DDE1iWyIiIiIiIhKvMVendryScdBtQGrH9CFqRdkW2eLYVlowMORq2srPcQ5biei6bOmqigbCfj5DQZb9CWZ/Dj641g4Tsaxga0tWQxWs+DvMuQZeORoezIPnJ9q/w+zPwfzvp25bQ89O3VginU1+D+h7UOx+ViPsWRp8PSKSvaIuYcat9/EH+Axx3TGnZZ9gwY2wY27y9QUhGoFV98ATg2D3J+79eoyGYp3WE8lYZcfG1/+9K2DOF2HZX+zvNSIiSchLdwHJMsZMBc4CjgLGAH2BnoBlWVaH388Y0xsoaXpZZ1lWeVi1ikgXsv4JqN3q3l48DPKKw6unMyg9Cgr6QP0u9z553cOrRySVVtwFc78GVoP9uux4OObp7PqbXv7X2Kn97dXtsE9EiohI8CrjPMnaY6R3e55LMFpkT3zbERFJVDqC0SoXh79NERERERGRTLT1TXtmTy8jLrJnDxUREYHhrZ5vSnKsza2ej3Dp0/pAXp8ktyciIiIiIiLxGPdNWPnPFA1mYNKP03KccXfDDiKWc2hBaf7gkKtpK8/kOy5vpIGo1UiOyQ25IpEMsN/1UP6qff4illX32D+X3Q6jPweH/yvQ0hJWXwH/PQF2ftB2ecUi+5FKIy6xgyhFxN2kH8Fb59vhZ15emAIXVkNeUTh1iUh2cQszzmm1jz/2Glj1L6jZ7Ny3teb9GoBFt8Lhd8Ooy5MqMaUa6+GN06D8tdh9J/0YTE7wNYlIYsZ9E9Y9BpHd/tdZ+Q/75/K/wknvQn6Jd38RERdZu4dgjJlsjHkV+BC4CTgOGIkdemaaHk5mAKubHsuNMUomEpHUW/uQd3v/w8OpozPJLYCpt3r3aawLpxaRVKre2DYUDeyDPYt/k76a4tVQBXO/Gv966QizEBHpqqrX+u+7/y9j93E7GNlQCVbU/7ZERBJVq31JERERERGRtFn+l9h9hl8UfB0iIpItBrV6nuzsYM3X+hnAbRau1jPuFSa5PREREREREYlH70lw+iIYdEriY/Q7HEZeDjNegpGXpq62OGyrdw8hGFAwyLUtDPmmwLWtofX16CJdSV4RHPMc7H9zfOutuht2fhhMTclafW/HULSUMJDXdIiu32Fw0B9h2n0BbEekkxl6Nhz3Goy+yt5X8bLukVBKEpEs5CcYrftwOGk2jLsOSo+C4mH+xrYaYd533LeRDhuf8ReKNu3fMPrK4OsRkcT1nggnvQf7fh1Kp9v7Q7H2iZpVLISlfwq2PhHp1PLSXUAijDFXAX8BumFf5GS1arZwD0UDeBpYhz1jZHfgfEBHb0QktbbM9G4v6BtOHZ3N2Gvg/S+5t7//RRj7hfDqEUmFdY+2DUVrtvE5mHxT+PVYUaheDzndoKjMu2/1RjuJf92jiW1LYRYiIuHZs9J/36Hnxe7jtj9rRSFSCQW9/W9PRCQR9TvSs91dH0OfKenZtoiIiIiISCaINsY+L9B7f+g1Ppx6REQkG1S2ej4hybEmtnq+16VPt1bPa5LcnoiIiIiIiMSr134w48W2y54cCjUbY697/OtQdmwgZcVjW8Q5GK1HbgnFuT1CrqatfJPv2hax6ilQRrh0Vfk9YeIN0GcqvHGa//U2vQh9DwqurkRtejF2n3icOs/+txGRxJUdYz8AXjseyv/r3G/TCwr4ERFnlktoWft9/O7D4aDfNa0ThUd6QKOPU1615bBzHvQ/NLk6U2X9E7H75PWAkZcFX4uIJK/XeDj49rbLVt4Ncz4fe911j8GkG4OpS0Q6vawLRjPGnA/8k7aBaAY77Gwn4HmExrKsqDHmYeC7TYvOQsFoIpJq+SV2IISbgj7h1dLV7FkJPcekuwoR/z66znl5ILP7xLD7E3jvStg1z3498rNw6F2QV9y2X91OePsCKH89ue3VKRhNRCQ0e30Go429xt9Nq4UeQb/1OxWMJiLBi+xJz3aX/A6m3ZOebYuIiIiIiGSCpb+P3WfERcHXISIi2WRD008DjDbGHGZZ1pwEx7q86afVatz2Brbqo5PSIiIiIiIimWDYebDsdu8+hf2g/+Hh1BPDprr1jstL8weFXElH+TkFrm0Rt6AFka6k9CjILYbGan/9P/4R1O2AcddCj1HB1mZZsOIu2Pxix0nmC/pC6TRoqIbts6H8tdRtt3gY9JqcuvFEBAad4h6Mtu4R2Hsb9BgZakkikgWiLvvrOe7hx5gc+z1nw5P+tjHzMBjzBfvR/7D4a0zWrgWw4m/2farb3o7df/CpYEzwdYlIMAadaL9PWVHvfrsXwMwjAAO5RdB/Gux3PRT0CqXMTqVuByz+DeyYA411Hdsn3gBDzgi/LpEAZVUwmjFmEHBv08vmULQ7gN9alrXaGDMSWOVjqKexg9EMcEyKyxQR8f4iCmCy6u03s4y7zvuGi9X3wpSfhVePSDKq1nq3W1bwB3b2rIB1j8LuT2HtA23b1vwHigbBAb9uu3zO55MPRQOo3Zr8GCIi4s2yYNPzsP7x2H37HACH3Olv3AKPYLS6ndBjtL9xREQS1bA3dp8LdsKz+0Ld9tRtd/W9CkYTEREREZGupbEWVt0L1evsYz7zvhN7HQWjiYhIW7OACPa1iga4wxhzlGVZPu9OtRljLgJOouW6wVdcuh7Y6vma+EoVERERERGRQIz/Fqy62/t6j6m3QW638GpyYVkWb+x+zrGttCD9wWh5xv1elYZofYiViGSo/B5wwK/gg6/7X2fpH+x7KU56L9jrX+d+FVZ4XKe7yfm9Jykmz74fJCc39WOLdGVjrob533Vvn3l403tKwIGLIpJd3PbXPcKPAZj8Y9j2lv9r4lf+A1bfB8c+DwOPj6/GZGyfA/89Hhqq/PUvLIVJPwq2JhEJVvFQmHADLPxl7L7b32t5Xv4abHgKTp4DecXB1dfZ1O+GmdNgz3L3PrpvXzqhnHQXEKcfA8XYF0hFgQsty/q6ZVmrm9ot1zXbmot9sRVAP2OMvl2KSOo01Nhpq166jwinls5o2Hne7Ts/CqcOyX6W392GAG14xrt9zhcSH7v59/P6Pbe9Cy8dBAt+0DEUrdmyP0Nkb8uMBJE9sOkF/3Uc8lfof4RzW50m5xYRCdxH34ZZZ/rre+I7/gM580uwv5o7qN/lbwwRkWT4CUYr6AMDT0z9tiN7Uj+miIiIiIhIJmqosc8jzP0yLLzZ33mLsuMUmi8iIm1YllUJPId9YsECpgIvG2OG+R3DGPMF7AlVrVbj3O/S/eRWzxckUrOIiIiIiIikWI+RcNZKmPwzyCm0J+YsPRK6j7RD00581w4YyQDLaj51bRuQn/5gtHzjHpoQsSKubSJdyr5fgxPegoEnAAb6HR57ndqtsPTPwdVUtR5W3pXaMUddYT/KZgDGfk8ddQWMuNT+OfFGOHm2JrQRCUJhXzjW496q2nJY/tfw6hGR7BB12V/PcQ8/BqDPVDjlA5j6Kxh1pf05H3NbdbDwlvhrTMbiX8cRitbP/p16Tw62JhEJ3v6/gGNfhHHX+Xt/albxKax7NLi6OqM1//EORRPppPLSXYBfxphc4BJaws9usyzr8UTGsiyrwRizBGjeWxoPrPZYRUTEv8rFsfv0nhJ8HZ1V6XTvdreDAyLNKhbD3K/Ajveh5772l64hZ6Snlqo13u2r/mWn3vcY6X/M+t3277f2oZZlpUfCIXd0PFC04AcQqfQer7EWHu1pPy8aAiM/6+//s+KhcPZaMDmw+WXnPrUKRhMRCYwVhfeuhDVu9wS1M+wCyCvyP77JsQOH6nd2bHNaJiKSSlbU/0nTkvGp3/7ml2D4Z1I/roiIiIiISKZZdAtULPLfv/tIOPgvgZUjIiJZ7XrgVKCw6fV0YJEx5n7gUeCDpgC1/zHG7AvMAL4AHEjLjC0W8E/Lsj5pv5GmsLVjabnG8K3U/hoiIiIiIiKSsG4DYPKP7EcGW17tEYxWMCTESpzlG/fQhIhVH2IlIhluwJFw3Cstr7f8F/57vPc6W2cFV8+2t+zr3lKlbAZMuzd144lI/Poc6N0e5HuKiGSnRIPRALqPgAnfaXldNAgW3ea9zra3INoIObn+a92C23wAACAASURBVEzG1jf89z3meeg+PLBSRCRkg0+xHwD5vWHZn/ytt3UWjL4yuLo6m/I30l2BSFpkTTAacDhQ0vS8HvhVkuNtoCUYzffskyIiMe12PxEG2MFE/Q4Jp5bOyBjoexDs/NC53WoItx7JLvW74JUjWwJbdi+AN8+2ZwMqPSL8eiJ7YveZeRiMvhqGnWe/f2x/F2o2w4BjoLjdyfU9K+HZsR3H2PY2vDAFRlwMg04Gcux/g3gPstdshMU+d8Em3miH5gAUljr3qVMwmoiIo8he2DEH6rbD4NMhv0f8Y3x8k/9QNICxX4x/GwV9FYwmIunRUO2/78hL7ZO+jT7WGXEJrH0wdr+3L4SL6/2dhBYREREREckWlgW7P4Zd86HvgdBrIqy62//6Rz5in4PIL4ndV0REuhzLslYbYz4P3AfkYAeXdQeuaXpgjKkE9gAFQK+mn9A2EM0Ac4BvuWzq+03jA9QCr7j0ExEREREREXG0pX6Da9uE7lNDrMRZnilwbYtYmmRexFXpkfZ9DV73MOz6CB7vz/8OR0Xr205EX9i/5bnJgd5TYPy3YPCpbcdpqIHlf4HV90FeD9jnK/Y5mFQaem5qxxOR+BWVQf8j7Pu8nOx4H+Z+DabeCvk9w61NRDJTMsFo7Q09L3YwWrQeHsqz70ua9CPof1j823HTWAsLfgibXoDKJfGtWzwU+h6culpEJLOMusx/MNqqu2HbOzDoJHufKa97sLVlotX3wYq77PsxB58OU34OteUw/3uw9qGWfvm9IbI7fXWKpFE2BaM1p3xYwNz2M0QmoPX6ujJXRFKnYqF729Bz4bC/2+FekrjGWve28v+GV4dkn3WPdgxrsaKw8h/pCUZr2Bu7T+1WWHSL/WgtJx+m3Q8jLrRfL/8bzP2y91hrH2r7RSgoB/ymbcBONwWjiYj4tnc1zDqzZZ8yvxcc9QQMPM7/GNFG+7PNj5LxsP8t9gHEeBX2BaePsrod8Y8lIhKPhir/fXuOhWNfgLlfgcrF7v1GXWHPoDn6KvjoOqhY5D3uxudh2Dn+6xAREREREclk0Ub48P9g+V9blpUeBdXuNwC2MehkGP6ZYGoTEZFOw7Ksh4wxUeAu7Ov1rKam5otoejU9Oqzaqt/LwMWWZbkdJLwPeKTp+V6PfiIiIiIiIiKOyus3Oi7vndeP4twEJjlNsTzjfitgQ7Q+xEpEskxuARz6N3j3Uu97kryuga3b3vb1llfte5iOfbHtdbjzvwvL/tzy2i00KVEDT4LRn0vtmCKSmIP/BC95hPssv8OemOrEt3U/qYiAW5Bxjnv4sat+h/jvu+l5KH8NTpoDfabEvy0nb11gj5uIQ++CnNzU1CEimaffITDhe7HDG5vtWWY/dn8Cx7/etfaZVv4T5nyh5XXFItg1z76vtGZz274KRZMuLJuC0VonaqxPwXjRVs+z6d9BRDJd1Wrn5SM/C0fcH24tnZXXSQiAJ4fC5JtgzBe61g6wxLbkD87LV90Nh/8r3FoAInsSXzcagXcugrJj7RNssULRwjJjJgw6se2ywgHOfWu3Bl+PiEi2mX9D26DdSAXMvhJOXwz5Pi+qqtsGtVv89T3DIyQolnyXjPF4AotERBLhJ2C4tbJj4PSFsO1tWHUPrHuk7RjdBsLEH9jPB51k9y2fBa8d6z7mwpsVjCYiIiIiItmtbid8fGPbMLTWtr3lf6z+01NTk4iIdHqWZT1ijHkX+A1wHi3X7VkO3U2rn6uBX1qW5Xli37Ks2amqVURERERERLqeqBVla/0mx7ZzSq8IuRpnxhjyTQERq2MImtMyEWll2Ln29bhrH4QFP0jNmFYUlv6xJRht72o7CClVymbA2C9BQV87LKBkPAw4GnLyU7cNEUlc34Pg5LnwskdA0fZ3YftsKJ0WXl0ikpmiLsFoJoHPdWOgoA/U7/LXv7HW3kc59M74t9VexZL4QtHGfRP2roT+R9j32XcflnwNIpLZpt4Kw86Hbe/Y9xlueiF2YPTWWbDzQ+jnETrb2Sz+TcdlW16Nf5zBp0P/pn3NvgcmV5NIBsqmQLDWFz+lIga2b6vnikcUkdSpWue8vPuIcOvozKJ13u01G+H9a+xZ7Kf8NJyaJDtUJhH+EoR4Ax2cPFGW/Bip0nuyfeKtvW6lHZeBHdwjIiItrChsfLbj8uoNdojPmM/7Gyes4MmcQufljTH21UREkpXIfrQxMOAo+3HQH2HD07B7ART2t0+wFg9p27/sGCgZB5VLncfbOdd+v8t1eS8UERERERHJZA018OoxUPFpasYrHpqacUREpEuwLGsDcLExZhBwAXAEsD/QH+gN1AG7gLXAbOBVYKZlWU7haSIiIiIiIiIps6thm2u42MCCIY7L0yHP5LsEo7kELYhIix4jYcL3YfGv/QeJxLL55ZaxVt1tXw+cKtPua7m2rf0E9iKSGfocALlF0Fjj3mf7e9kVjBZpuk7X78TuIuJP1CXIONHAUxNnTMjml9z3f/J729fbg70vE6nwHscvkwsH/d5/fxHpPPodYj8ARl4Cz4yJvc7ml+xgL5MTbG3pYllN768W1FdA5ZLUjDvtXijsl5qxRDJQNgWjtU7OGJyC8Sa1er4jBeOJiMDeNbBjjnNb8fBQS+nUGmv99Vvye9jvOzoIJ/401EBeUcjb3BPu9oI2/WHIcdi9LHQLRttp//+c2y3YukREskXDXmisdm77+Ef+g9HqQgpGcwsDcjtZIyKSKskGDOf3gFGfBT7r3a94mHswGtghAifPTq4WERERERGRdNj0QupC0QBKj0jdWCIi0mVYlrUZuL3pISIiIiIiIpJ2W+o3urYNyKBgtHxTQA1VHZY3uIS6iUg7xsCIS2D5HakZz2qEx/qmZqzWBhzdccJPEck8Obkw/DOw+t/ufeZ9G2o2wdRbne+7yhSbXoKPvgWVi+3XJePhgN/CkNPSW5dIZxF1CTJOOBjNxNe/aq37Pku3MhhztX2/59qHILI7sZraG3BMasYRkezWYzT0PRh2fuDd7+MfweLfwshL4cDfQ25BOPUFzbJg0a2w7Hao2Zz68RWKJp1cNkUlrmv6aYADjDEJ7uWBMWZfoPVRoY+TKUxE5H/eucS9rXhYeHV0dhNu8NevYU/snWTpOmIF6lWvD6eO1pINdAjCkY/AyMviX2/fr0Ov/Zzbiga5rGTZB81FRMQW8QjMrNkE9T5PLNT6DEab8nN//dzkuBxcVDCaiAQtEtJ+dKzvEDvmwPqnwqlFREREREQkUTs/ggU/hPk3wPY59kWsb1+QuvGHnQ8l41I3noiIiIiIiIiIiEialNdtcFzeO68f3XJCnoDbQ75LcELEcglaEJGOpvzcDh5Lp4K+cOyLkNejY1vPfeCwf4Zfk4gk5oDfQL/DvPss+S18fGM49SRi1wKYdUZLKBpA5RJ480z7nLOIJC/VwWjEGYzmpbYcFt4MK+5MXSgawPhvpW4sEclu0+6D7iNj94vstkOsP/xG4CWFZtmfYcEPgglFG3VF6scUyTDZFIz2HlADWEAR4JE+FNO1rZ6XW5a1NJnCREQAqFwOO2a7t3cfHl4tnd3Qs/33nf354OqQ7FFfAS/HOMC8Z0U4tbTmFYCTDmeusGcp2efL8a/r9f9lyTgo6OPctvXN+LclItJZxQrM3OAzfMdvMNrQc/31c+MajFaX3LgiIrE0dpzxNhAl42P3mfslO1RARERERETiZ1n2Q4Kz4WmYebh98eqiW+3nj6dwhsj9b4HpD6ZuPBEREREREREREZE0Kq/f5Li8rGBIyJV4yzPOwQkNbkELItJRYV84/nU47VN7cvn2jzDs920YfAqcuxmOe7Vl2yfNgdMXQs+x4dQhIsnrVgonvRs7mGLlPyDaGE5N8Vr5L7AcarOisFJBjSIp4RZk7HZvTmeQX5LuCkQkU/QaD2cug5Pegz4HxO6/+t/QUBN8XWFY8bfgxu6h743S+eWluwC/LMuqM8a8BpzRtOiXxphnLMuKK3bWGDMd+BJ2wBrAEyksU0S6quqN8Ny+3n26DQinlq6g5xg45A6Y+9XYfatWQ/1uKOgdfF2SudY9Crs/9u4z63R7do6D/gT9Dw2nrlgBOGEpGgLHPGv/vwXQ/wiY8H37Jik/9rseyo53b8/Jh0GnwFqHm6Nqy+OvV0Sks4oVmLn2YRh9VYwx9sJH18Xe1tTboPdE36U5yil0Xh6tT25cEZFYwjq5MfKz9kUoXmq3wtI/wZSfhFKSiIiIiEinsOMDeP+LULkUek2E/X8Jg05Kd1Wd0/zvuc84nIzuI+DIx6DfwakfW0RERERERERERCRNttRvcFyeacFo+S7BaBG3oAURcWZy7Gtpna6nLZsB5a8Hu/1ek+yf+T1goMf9GCKSHUwOjLjEDvFwU7cDajZC9+Hh1eWmepN9T1eviZBbANvfde+7/jE4+M9gTHj1+RGNQMUiaKxNdyUi/tTvcl6e47x/3ymYrIkyEZEw5ORD/8Nh8k/hzbO8+zZWw5r/QO/JLct6jLYDaTNBtAH2rIAeoyC33T2WVhQql9j3ijbWQsXC4OrozJ8hIk2ybW/il9jBaBYwBJhpjDnDsqytflY2xswAHgNyAAM0AL8JqFYR6SqsKPzXxwHovJ7B19KV7PMVGHIWvH8NbHrBu+/cr8KhdypdvCvbMtNfvx1z7P+fT18Y/EFmywo+GG3fr0NuEfQ50P5yU/46FA+G3GJ7Fo+8YigeBqVHQUGvlvWMgam32OE7z413H//Qu2DA0VAyLnYt3cqcl0cq4vqVREQ6tVifC5tfgsrlULJPx7ZoA2x8Dt461339HmNhys+g/2H2gcBkuc1Ko2A0EQlaNKQLGEqPgpLx9gkJL2vuh8k3Zd4FHyIiIiIimahqHbxyJETr7Nc7P4A3z4XTFmjW+1SrWmuHz6XawBPgqMd13k1ERFLCGJMPHAqMAfoCPQFjWdbP0lqYiIiIiIiIdEnl9Rsdl2daMFqecb52L2Lp2j2RlBl1VcdgtLzuMP7b8GkKDl0VlsKgk5MfR0Qyy8DjoWiIHX7m5ukRcO4WKHK5zypoNeXw9vmw7R37dW6Rfc9ZpNJ9ndqt8MwoOOoJ6HtgOHXGsvo++57RoO/NEwmDS/BxUgafDpueT/248VJgj4g4GXSyfc95bbl3v/e/6LDuqTD9wbb3xIdt3WMw52p7/ymnEKbeCuO+Yd9TtOW/8O4l9v5TGHKyLTJKJH5Z9VduWdYcY8xDwMXY4WgHA0uMMb8HHgE6HME1xuQCxwJfBD6DHYhG0/p/tCxrTfCVi4gvjXX2QZ9ugyCvKN3V+Ff+X383FeR2C76WrqZ4CBzxgH1A0Ctcae2DsPEZOHW+bqrpqtY/4b9vw167//hvBlcPQGONHawYhMJ+cObKjl/shp8f3zgl42DM1bDyn+0aDJyzDoqH+h8r3+VLpoLRRERaRPbE7vPcvnDqPOgztWVZ7XZ4ZTrsWea97tgvwMhLkquxNbdgtMa61G1DRMRJWDO75eTC8W/AB1+DDU+D1eDcb+9K2Pkh9Ds4nLpERERERLLZmv+0hKI1a6yGT34GR3jMnC3xq9sezLgTvqdQNBERSZox5kjgeuAkoNChS4e7S40xpwAXNr3caVnW9cFVKCIiIiIiIl1NTWMVlY27HNsGFsRxzXQI8l2CExqsSMiViHRioy6HqtWw6Fb7erXi4TD9Ieh3qH3z+/I7Ep9IuOe+cOSjkOt0WExEslpOPhw3E966ACoXu/d77zI47pXw6mqz7StaQtHAvr+tsSb2elVr4fVT4Jz16X//2jXf/j1EOosgwsP2vxm6ldohglZj6sf3S4E9IuIkt8DeF3r7M/FP/Ln5Rfjg63DEfcHUFkvlcnj7Quy4IuxrIT+6DnpNgL4Hw6zTw7vnCcDofVY6v2z8K78aGAccgP1u0Rv4SdOjzdEkY8xiYBTQvEdomtYxwLvA98MoWEQcRBtg/vfsWeGr19k/a7fYbSe+DaXT01tfPDbP9NfPmNh9JH4FveDA38Ocz3v3a6iC+d+Hox7z7heNwKLbYMMz9kG90iNh8k/SNwuDpEZuN/tvwC+vg8+p0lDt3nbqAigZD4/3S2zmitM+TV3a9YQb7Pe56vUtyyb+ML5QNHC/ScprRhERka6mwUcwGsCca+DkOS37lx99M3YoGsCwOAMyY3E7oZnohR4iIn6FGcBYVGZ/j7QsO1TgyUHOJ4fXPaxgNBERERERP3Z/7Lx8zX1w2D/si54kNaIBXNha2A8GHJP6cUVEpMswxnQH7sKeGBVaJjltzXJZfSFwOZDTNNZ9lmUtSHmRIiIiIiIi0iWV1290bSsrGBJiJbHlG+dj6RFL1+6JpIwxMPkm+36K2i1QPKzlut2Dfg9Tb4HKZbgfygK6j4SaTW2vqy3oA92HB1m5iKRbrwlwxiJ4cjDUbHbus+VVu61oULi11WyGLT7vhXVStw02vwxDz0pdTYlYnaYgFJGgBBGMltcdDr8bDrrdngTcyYtTY4/TbQDM8HjfyO8Fz4xyb3cJdRYRofdkOGMJVK2HmYe57zc5WfcoHHoX5BUFV5+bNffj+D1w1b2wd3V8oWinzrd/mjzIKbAnmG2taAg0VsG878K6R5zHCOIzRCTDZF0wmmVZNcaYk4GHgONoedcw2LNHNgefGewAtf+t2qptJnChZaUz4lakizO5sOLvzuEPVeuyJxitsR4W/zrdVciYz0HvSfDyod79Njxt30DvNSvBu5e13Tms+NQ+2Hjqh+7BTpnOikLFQsjrCT1Gprua9CgeBpVL/PePJBBGFq+ox5eb3CL75q/hF8Cqe+Ifu1sKg/x6joGT58L6x6FmI5TNgIEnxD+OW1BbpCK5+kREOpOPb/LXb+dcWPUvGHiiPSvCmv/4W6/n2MRrc5LjcqOygtFEJGhe+9JBMcaeNWvgCfZFHe2Vzwq/JhERERGRbLT2Ife2ysXQZ//wauns/Ibwx2O/7+hiKhERSZgxpgR4C5hEywSnrTVf2+fIsqz1xpgXgDOb+l4MKBhNREREREREUmKLSzBagSmkd16/kKvxludynDYSjYRciUgXkFvgHGSW2w36TIm9fqomvBeR7DPkTFhxl3v7ir9D3wPte9jyiqDf4fZkvkGo2QzbZ8PG55If682zYdq/of806DGmJTQyDFYUKhbBkt+Ft02RMJTsl/oxc5oiRPJ7uF+LM+JSWPuA9zijrkruWp6crIsyEZGwdR8Goz8HC2/2v060Dj75CfSaCLXl9mSfg09NTeisZdnXMe6aD05xRJ/+zHm9tQ/Apjj2tYZd4PP9tb+dOeDG6H1WOr+s/Cu3LGu7MeZE4PqmR2lzU7ufzZqD0nYDvwZ+pVA0kTQzxj4wXLGwY1v1+vDrSUT1Jngqs2b+6dL6HQIzXobXT3bvYzXAnmV2irCTZX9xTszduwI2PAOjLktNrWGqWAKzToe9q+zXZTPgqCegoHd66wpbvAEtDSEEo3mlPud2s38e/Geor4CNT9sHb/0oHpr6g8pFZbDvV5Mbwy1YsF7BaCIiAEQj9j6HX3O+EFwtfrkFozXWhVuHiHQ96XyfGXquczBaxUJ7n93khF+TiIiIiEi2+OSn3u01WxSMlkqpPtcx9BwY/+3UjikiIl3NY8BkWq7tqwceAV4HosA9PsZ4EjsYDeBE4IbUligiIiIiIiJdVblLMFpZwRByMux6kHzjfO1eg6VJTUVERDLGmC/Cyn86B2oAfOIwqfohf4V9vpzaOpb/FT74P/c6EvHeFfbPsV+Gg28PJ/iooQreuQQ2Phv8tkTC1GMslB6R4Moe95D6CcrZ50uw9kE6xnI0ySmAMZ9PqLKWMTT5noj4MPpzsPi3duCZX4t/1XHZgX+A8d9IvI6GGns/Z/1jia0fqfTfN559Pq99LQVQSheQWUdm42DZfg2MAK4GHgI20jJzZOswtOeBa4FRlmXdolA0kQxR7DBjBkDVunDrSERDlULRMtHAE+wDAV52f+q8vH43fPB19/V2vJ94XeliWfDWuS2haADlr8NH16WvpnSJ9+afjc+kZhaM9vausm/8ev9LsPrf7v2ag9HyusPRT8D52+HcLXCMj5oGn5GaWlMt32Wmo8hu+29VRKSra/15HYRxAXz+5xY6L483kFREJF5eIcPNxl4TzLb7HOC8vLEaqtYGs00RERERkc5gw9P2LI1e6raGUkqXEdmTurFGXApHP6kLqUREJGHGmAuAE2i5s+I9YB/Lsq60LOseYJbPoV5qHhLY3xjTI6WFioiIiIiISJdVXr/BcXlZQebdN5JvnMMFIlYk5EpERETEVb+D/d0H1trcr8CelamrYc8KmPu11IaitbbiTlj/eDBjt7f0TwpFk84lr7t9H+gJs4IJD/Mz5oCj4ajHoffktstNDvQ9CI57FUrGJVeHn4A2EZGeY+H416DvwWByEx/no29CxeLE11/xt8RD0fzqNRGOfAQGHu9/HZfjQDHbRDqJrN+bsCyrFri76YExxgB9gAJgh2XpqK5Ixuo+zHl5dYYHo9VXwBNl6a5CnJgcOP0TeLjIvc+2t2DkJR2Xr33Qe+z6XcnVlg67F0Dlko7L1z0Kh/69a9280lAV/zqzzoQpP4dJN6amht2fwGszoG5H7L7NwWjNCvrYP/0cSBp9VdylhSK/xL2teh10HxFeLSIimSjocGCn/Z9k5TjPOqlgNBEJnJ9gtNGfC2bbvSa4t5W/AT1GBbNdEREREZFs5+cC5fe/DKMuD76WrqIhRcFoQ8+GI+5PzVgiItKV/aDV80+BEy3Lqo53EMuythhjtgIDsCeF3Q+Ym5oSRUREREREpCsrr9/ouDwTg9HyjPO1exFL1+6JiIhklMGnwIiLYe1D/tdZ9yhM/H5qtr/2IVrmKwnI2odgxEXBbqN5O7GcPNcOGxHJBjn5wd7f6zeQbNi59qOxDqxo07q5kOtyv1C8ggh9E5HOqXQ6nDIXGuvbhrq+cQpsfdP/OOsegck3JVbD2ocTWy+W6Q/BkLPsHIzcwvjX9/q86EpZEdJlZfxfuTFmf+AkYALQv2nxdmAx8IplWfNa97csywJ2hlqkiCSmeLjz8qq14dYRr9eOg2hduqsQN7ndYPDpsOl55/b1T8JBt0NOu8TgWAfH6rPwo2XTS87LG6qgdgsUDw23nnSxookFowF8/CMYeAL0Pzz5Ohbd5i8UDToGozXrMdp7vUk/hv6HxVdXWPJ7ubctvR0O/E14tYiIZKLq9cGO3++Q1I/pGoymfWURCVis95n9b07NPryT/B7Qcx/Ys7xj27qHYUxAgWwiIiIiItluh4+8ksZqqFwOJfsEX09XsOaB5MfILYZp94MxyY8lIiJdljFmEDC11aL/SyQUrZUl2MFoAPugYDQRERERERFJUqPVyLbIZse2soLMu+Y+3yVcoMGKhFyJiIiIxNTv8PiC0RbcAL0nw6CTkg8U2jUvdp9kbXrBYbsfQ/nrUDTIDofLL0l8/OpN9jZ2f+zdr7Af9J6SujAnkWwXb1BOIkE9fvgNaBMRadb+s3zAjPiC0T75CUQbml5EoWo9FA+BgcdD2XF2OFlrVeth80t2vsmO2clU7szkwoCjIa8oiTE89gn1PitdQMb+lRtjDgR+Dxzp0e0WY8w7wLcsy/ognMpEJGW6uwSjVSyCyB7I7xluPX58cC3s+ijdVUgs477hHoxWuwW2vwsDjmpZVr0Btr7lPWZdFgajNex1b9v5YdcJRmtI5npqYOY0uKgu+QOja/7jr5/Jcf8iYnKg32GwY07HtqFnw5SfJl5f0Ar7ubdteErBaCIiVeuCG3vSj4IZN8flxEdjbTDbExFp5vY+k9cTzlhsn7QI0pCzYMlvOy7f8irUboNupcFuX0REREQkG8W6SLnZ2odgckDHMrqSrW/DtreTH2f0VXZAtIiISHKmNf20gPWWZcVx1bKj1hdweJyIFhEREREREfFnR2QrDVaDY1tZweCQq4kt3zhf1x6J1odciYiIiMQ06jJYfBvUOIewOpp1Bgw8AY5+CvK6J77tXfMTX9evaD3Ubodu/e3XS/8MH16LfUoAKBkHM2a630vsZdt79r9FvY/7Osd9U6Fo0vV4TXLnFaITpmQDHkVExlwNy273tz/QbOEvOi5bdCuMuBim3dcSHln+Brx5NkQqU1Kqo1FX2mGxyfAKu9T7rHQBObG7hM8YczbwFnYommn1+F+XVo8jgTeNMeeEXaeIJKnPVOflVgNsnRVuLX7M+5694ySZb9CJ9o6pmy2vtn29eSb/O9jmZsdssKJJlxaqyB73tjfP6fjv0Fl5BcT59aLL+1UQcgq9D0oNPct5+fhvB1NPqnQb4N62dyWs9vh/VkSkK6heH9zYQ84MZtwclxOH1esh2hjMNkVEwD0YbeQlwYeigX0yxInVCOsfD377IiIiIiLZqHS6v35r7g+2jq5ijc9j7rkeM1FOuAEO+lNq6hERka5uYKvnC1IwXuuLAJTgKSIiIiIiIkkrr9/g2lZWEMK1KHHKcwk5iFiRkCsRERGRmAr7wUmzYdDJ8a235VVYdW/i262vgL2rEl9/v+thwDH++i74gf2zdhvM+xZt7tOsXAoLb06shg+/ETsEpdckOOQOmPjDxLYh0ll5heiEyWRIHSKSvboPg5Pes+/j6TEGiocmPtbah2DTC/Zzy4IPvuYvFM3k2tttfngpGmT36XsITPkFHHpX4vU28wo/0/usdAEZF4xmjBkPPAgUYQefWbR8C2odkGa1enQDHjDG7BdutSKSlF6ToFuZc9vqDLvp4aPrYfGvYvcbdp7z8sk/S209Etuoy2Dwac5t7WdY2LPc35gbnk6uprCt/Id3++zPuwcKdCapCEarXAy7krg+u7HOf9/cbt7tY78MfQ5su2zUFVB6ZPx1hW3wGe5t718DkRT8txIRyVa1W5yXJ/v+PuZq6Htwqo8CRwAAIABJREFUcmO48ZpRaeMzwWxTRLqmHXNh1lnw3ASY80WocbkYNacwnHr6HmSfUHEy9yvh1CAiIiIikm3cAtbb27MMKhYHW0tXULEwdp9TF8AJbzq39RgNU2+GnNzU1iUiIl1Vr1bPUzHVcuswtC5w0YOIiIiIiIgErbx+o+PyvnmlFIR1PUoc8o3zMfcGqz7kSkRERMSX7sPh2Bchr3t86214KvFt7v448XUBhl8IJ7wBl1oxu7Jjjv1z80sQdQhqTeSezJrNsHOud5/CfnD6J7DPV8AY774iXY3JkOs9vMJ8RET8KtkXpj8IZ62Ac9bD4UmExzbvX+1dCRWLYvfPLYaLI/Z2mx/7Xuvc1+TBuZvsPqe8D5N+mJrr77zCzzIlCFMkQBkXjAbciR101hx6ZoAG4D3gEeDRpucR2oakdQP+FnaxIpIEY2DgCc5t6x6GnR+GW4+bpbfDkt/G7jfoFBh/PS1vTU1MnntgmgSraJDz8sjutq+r1/sbb80DydUTpo3PQ2O1d5/q9bDppXDqSaeGqtSM88HXoHZrYuvW7/LfN1YwWmFfOPEtmPZvmHgjHPMcHH5PdhzAHXq2e1tjLWx6PrxaREQyjdtnTO8p8Y/V7zCYeisc8zwc+vfgPiO8Lvja/HIw2xSRrmfXfHjlKNj4rB1YvPIfsO0d576x9qVTxRgYcZF7+7zvhFOHiIiIiEg2sRr99133aHB1dBVu35ua9TkQ+kyxg59LxndsH3FJMHWJiEhX1fqEeS/XXv4NbvV8ZwrGExERERERkS7OLRitrGBIyJX4k2+cwwUilkMQiYiIiGQGY6DsuPjW2fIKzJwOC26E3Z/Et+6u+fH1by+ecNjdH8PbF8J7Vzi3126BBww8tx+881lY/FuoXAaLf2e/fvM8u/0BA2+eY//OL0yOvd0BM/zXKNLVmAyJEPEK8xERSdSgkxNfd9XdsPRPsO1tf/0L+3e8N3P4Z5z7jv5c4nV58QqZ1PusdAEZsldjM8ZMAo6mJRAN4LfAQMuypluWdbFlWRdZljUdGAj8ut0Q040xCdw1LiJpM/h097a1j4RXh5uqtfChS2pre0fcD6XTYNp9UFhqLysaBEc9Dr0nBlejuMvr4bx83aNtU3zX/MffeOsfS76msCz+lb9+G58Nto5M0BAjIM6vbe/AE2Ww5A/xr1u/O3afZjk+whzyimHU5bD/z2HI6dkRigZQEOMa90RmABER6SzcgtH67A89Rsc31thrYML3YMhpwX5G5DjPOgnACuWWi0iKLPkDROv89Q0rGA1gxMXubavuhmgcoQ8iIiIiIl1BPMFoycx6LbbcIu/2o5v+jY2BGS9B30Ps1zmFMPZLMPkngZYnIiJdzrZWz5O6gMYYUwhMbbVoQzLjiYiIiIiIiABsqXf+ellWMDTkSvzJc7l2LxKtD7kSERERicuEGyCve3zrbH8XFv4SXj4Mtrzqf71kg9HivSbXzwRolUtg7QMw73p4bhzM+7b9esOTLX02PG3/znU7vMfKL7HvmRDp0rLgntKc3HRXICKdUVEZjP924ut/+A2Y7TPELM/hOrzS6TD4tLbLCvvD+OsSr8mLV/iZV2iaSCeRUcFowPlNPw12ONq1lmV9x7KsXe07Wpa127Ks7wFfa9Uf4LxQKhWR1Bh2HuT3dm7b+WG4tTh547TYfQCOfhoK+9nPR30WztsC52yAczbC0LOCq0+8uQWjAbxzKVhW/H9nqQrZClK0EXa8769v+WvB1pIJGmvc2077OP7xProOHsiBdy+DVffaf0deGqrgk5v8jx9mmEPY8kpidMiCg3EiIkGwLKhzCUbrVgaTfhzfePk9k6/JD69gNBGRVFl9r/++8cxOl6xek6DHGOe2uh1QtSa8WkREREREskG0wX/fXfMgsie4WroCr+M2n6mA7sNaXncfAae8D+dtgwt2waF3Qo5mkhQRkZT6qOmnAUYaY8YnMdb5QPMHXQMwO5nCRERERERERADK6zc5Lh9YMCTkSvzJN843vTZYkZArERERkbiUToMT34Vx34DiOANYG2tgwQ/99/cKRis7DsZ+2Xv93BCvyY3XuOvsf8d+B6e7EhEREUmXA34N0+5ruSc/r6e9j1N2XGq34zRBqTH2xKQH/RGGXQD7fQdOmg299kvttltvz7VN1/lJ55dpwWhN0xBjAbMty/pLrBUsy7oTeIeWJI1DA6pNRIKQWwhDz3Zus+K4QSIIFYvsh5dh58PJ73cMPzM5UDzEe0dDgucVjLZ7AVR8CsvuiG/MPcuTqykMe1dBY62/vlVroWJJsPWkW6NLmF1uEfSeDAOOTmBQC9b8B2ZfBe9f496toQZeOwHWPeJ/6M4cjFbQK90ViIhkpoa97p/dhQNg9JVw7Esw4mJ/43ntA6WSZhQQkaDFG4QQ5r60MTD2S+7tq+8DKxpePZ1NQ7UdnNFYp39HERERkc7Caoyv/1PD4wtT68yiDfY+coPHRDCtWVGIVDq3TX/YnjnbSbf+zjNcioiIJMmyrNXAilaLbkhkHGNMIdB815cFzLUsqyrJ8kRERERERKSL29tYyd7GCse2sowNRnOeHEPBaCIiIlmgzxQ46A9wznq41LIfF9XQcou8hx3vQ/3u2P2iEfu+SSeH3wPHvwaH/hX6THUfo/Vkxf0Oi73NsIy4BA76HfSemO5KREREJJ2MgVGX2ftRl1pwYaW9j3P8a1A6PXXbcQpGA/u+ynHXwlGPwgG/gp5jUrfNeGgCVOkCMi0YrXUE4r1xrPfvVs+TmVFSRNKhxyjn5TvmhltHe+se926fMROOegz6HeLdT9InVijI5ldg1b/iG7N+V+L1hMXtwKWbpX8Mpo5M0ehyo1Dzl5FD/wElrXYfeu4b3/gr/wGVS53bNjwNO+KcoLozB6O53WzVbO+qcOoQEck0tVvd27oNsH8OPhmmP9hy8vOYZ93XCSsYLRv2i0QkezXWwZsuQepuwt6XHn+de9unP4VHS2DJ78Gywqsp2zVUwdsXw2O94aF8eLgbPJgLr5/i/XkpIiIiIpkv3gmRIrvtY+xdmRWF+d+3940f6Q6PFMMDBj7+iXeAcMNe7KwYB91HBFGpiIiIH3c3/TTAZcaYK+NZ2RiTA/ydttcXxpx0VURERERERCSW8vpNrm1lhUNDrMS/POM8qWnEqg+5EhEREUmJ3G4w8AR/fR/rY583bn48MQg2vdi2T8ViiLrsF7QJQ/OIGMhtFYy279f91RaGIWekuwIRERHJdINTuL+Q6ff85zgfIxLpTDItGK13q+cfxbFec1/TbgwRyQYm13l5YzXU7Qy3ltZW/9u9re9BMOjE8GqRxOTHCAWZ9+34x4xUJlZLmKrXx9d/xZ3B1JEpGmIEo5XsA6d8BKd8CCfMgjMWQ984Aw9fmAJL/wTvXg7vfxnePBdePBDevST+ejP9S1Iy8nt5t++YDdE4b44TEekM6na4txX2d2nwmBHKhJT033Mf7/aGqnDqkM6voRo2PAsf3wQLboQVf4fqjemuSoK26DYofz2+dWLtb6ZaTh4MPs29vaEKPvoWvHwIrHnQnoFPvL13Fax7uOO/1eaX4Q2Hk1ON9bD6P7D0z7D7k1BKbGPXfFjyB1j7cHYcLxARERFJJ6sx/nU2v5z6OrLJotvsR3uf/hQW/8Z9vTX/cW8L+3uTiIhIiz8CW7HTOw3wT2PMzcaY4lgrGmMmADOBzzatbwErgIeCK1dERERERES6iq31ztchdcspoldun5Cr8SffNRhN16aIiIhkrf1/mdh6tVvgjdPs61SbzTrTuW9OPpS0mn/EeEQM5LS6v23Y+TAwA+6lHXgCDDsv3VWIiIhIpht7DfQ5IEWDZUIkUwbcRyqSRpn2V976KlyPO8M72NXqec8U1SIiYXELRgNY+xDs+9Xwamm2+j7Yu8K9few14dUiicuLEYzmJbfYDudrLxtudG50CQLrqtz+PZqD0QDyiqDvgS2vh38Gds71v41oPXz4jcTqa8/lRHWnkF8Su8/Lh9hBdcbji5qISGfj9dnttj/jlebvtX+dSiXjvdtfORJmzIRupeHUI51T/W54/RTYMaft8oI+cPQzMODI9NQlwbKisOz2+NcrOzblpcTe5vGw6QXvPjs/hHcvhU9/Die9CwWa18FRZA9sfNq9fedc2L0Qek+0X9duh5nTWh2/MXDAr2G/BELQE7HkD3bwHZb9umQczHgFug8LZ/siIiIi2cZtUoz8EvdzLyv/Dof8FXJCOtaRaVbf69H2b5jwXee2T3/uvl6BgtFERCQ9LMuqNsZcCTyHfeVwDvA94GvGmBeAda37G2MuAvYFTgKmYV/p23wSuRa4xLIsK6TyRUREREREpBPbUr/BcfmAgiGYDL2eOS+nwHF5gxXBsqyMrVtEREQ89DsEzlwOz8aYvNzNwl/CyEvs8+/V65z79JoIua32I7yC0XILW57nFcExz8KGp2HXPCgaZE+Otmc5OB2qr99hT45ctz2x38XJEQ/A8Au876MQERERASjsCye8CesftycZ3b3Avj8tWh//WJl+jEXBaNIFZNpfeetvUfFMGd26byZELopIPBrr3NsqPg2vjmbVG+C9K7z7jLw8nFokOYkGo426wg5eqFzasS0rgtFqE1invu2Bzc7EKeAOIM9j4umx17R82QlbXvfwtxkWP/9P7poPuz+BPlOCr0dEJFO4BaPl5Lvf+Nv/cLs92m6Gx9wi6D0ptfW5MQZGXwWr7nFu3zUflvwOpt4STj3SOS39Y8dQNID6XfDhtXDKh5l/kDmb7JoPn/4CKpfYM8Id+Lv0hDztXR3/xRD73wLFQ4Opx8s+X7G/O+z6KHbfysXwWB8o7AdFQ2HERTDhe94XlnQle5Z3/Fxrr+JTO4hu8a8c/kYsmHe9/Rh6Lky9DUoSvEAolpotMP+7/C8UDexjCAt/CYfeGcw2RURERLKd5XL6f/z18MmP3df78Fo45C/B1JTJoo3O56maVSy0LzBv/53YsqBms/t6+QpGExGR9LEs62VjzFeBO2i5xq8ncGG7rgZ4oN3r5gMxDcDVlmX5OCAnIiIiIiIiElt5/UbH5QMLhoRciX/5HhNxN1gR8k0nvS9ARESks+s5FnqMbTVhbBwqFtrXV+/62L1P7/3bLfC4frX9ta25hTDiQvvh11sX2IEkyTr8Hjv0TUTa0X0UIiKu8nvA6CvtR7NZZ8HGZ9NXUxAUGitdgO66E5H0K+jj3rbb40BMECwLnopx0/cZy+yUe8l8LjMhxTT+25BX4tzWWYPRUjkDQ6ZxC5vJ9fj/uKAXnPIBTPs3FJYGU5cbr8C2bGcM9PQRTLDh6eBrERHJJIl8VuWXwOAzOi4fek64nyXDzvduX/9EOHVI57XlNfe2XfPcZzST+NVshteOty9AqFgI6x+Dlw60L5II24Yn/fWbcAPsfzOc/D5M/H6wNbnJK4LjZkKfA/yvU7fDDmFe8AOYdWZwtWUbP7PvvHOxHUgW6zvshidh5mFQU56a2jqM/7RziNuKvwW3TRGRMEUbYevbsPTPsPVNe1IFEZFkWQ3Oy4sGwbEvuq+3/A6oWBxMTZmsfkfsPg17Oy6rcb6B73+8jjeJiIiEwLKsvwMnA1tpG3hG0/Pmh2m33ADbgZMty3ownGpFRERERESkK9hSt8FxeVlBGibo88kr+Cxi6dyeiIhIVht+QeLr7lnpfT/uiIvbvg56cuphSfwuzXIKYPDpyY8jIiIiMvVWMHlxrpThIZQ58f4+ItlHwWgikn4DjnRva6gOrw6Aco+b7gF6jIaeY8KpRZLn56ZqJ32mQH5P57ZOG4y2NfV1ZIqGBMJmwP4yMOpyOK/cnm0jLP2PCG9b6bD/LbH7fPJjqFobfC0iIpkikWA0gGn3wtBz7WT/nAIY/hk47B+pr89LXg/v9j3LwqlDOq9YoVy7Pw2njq7gk59C/c62y+q2w+r7w6uhsQ7euRTmfce7X7/D4cK9MPVm/p+9+46Tor7/OP6a3WvcHRz96BwdpEgTsCGCotiNBdQYjTFqNFFjfkl+xlRTTaIx0V+a0TRjb9gbYEeqovQicCDSOeDuuLY7vz/Gy7WZ2dnd2Xb3fj4e94Cb73e+3w/H3d7M7Hzfw8hbocsxyanPSW4XmDGv5Q0jXux40XrqjF3IVltTV+HveDUH4JP7/R2z3rrfObc93QNW/cIK3xcRyUSHN8Jj+fD6ibDsG/D6SfBoHhz4MNWViUimM0P2240gdJ/qvu/6//O/nnRX5eF9G7tzZrfz5C6TE39ju4iIiAemac4HBgPfAbZh3Unc/INGf98H3A4MMk1zQdILFhERERERkVYrZNaxt9b+AWjFOb2TXI13WUa2Y1utqXtQREREMtqI/4l9bdmiq2HZjc7tPU9r+rmR4IiBfhdAyWWx728E4Zg/QV5X/2oSERGRtqvoKDj+4cQfA/nO5Z6/qIPeRDKPvstFJPU6jXNuq9yWvDoAPvyee/uYn2XgwU4b5va95eSoW60/szvYt7fWYLTlt8DUuc6BcJks1rCZeoYBY34KCy8DM+xfXacvhXnTm35PFY2MLUwhk/T9gvWkjh0vuPdbcgNMez45NYmIpFqsv6uy28PUpz4PkglAlsffbX7KKojcJ1ynpw9I7MLV7u0HV0FvPQUsbuE62PgX+7Z9i4BvJKeO9f8HWx9279P3Qjjx8eTUE42cTtYbJAOugDdmRbfvp8/BCyPhzNVt+/Wy9rD/Y664DUZGuNYTi5qDkedd+XMYdDUMu1Eh+yKSWd6dY/PACRNeanSttftUyO9vXcfqfUZSyxORDBaus98eyIKsfBh8rfN5yd73EldXuvIajFbQr+m28k+c+x/9i/hqEhER8ZFpmhXAb4HfGoYxFDgB6At0AXKAvcAu4D1guWkqhV5ERERERET8t6dmJ2HsH+zRI42D0bKNHMe2OjPGh8uLiIhIesjtAjPmW++TV5RCMM+6n8eLshXObSWX2TxIK8HrZAPZcOy/YeiNcHAldBhhraM7tLqhT4cR0HEM7F8KNWXWPQRVuyGnI3Q/CQoHJLZGERERaVv6XQjdtsPOeVC9x9qWVwzvOYW5pvmDSAPO4fkirUU6rrSrv4lpimEYJR736dH4E8MwTiSKVxjTNN/y2ldEEsAIwLSX4Y3TW7ZV77VCnoJ5ia9j15uwf4lze5fJUHJJ4usQ/7Qrhi6TYN9i7/uUXGr96RiMdtC6qJjX3fq+rN5nLYCvPQw5RfHX7IdwDMFouxZYIV2nvGktQGpNQpX226P5d5bMgXY9YetDUHcEtvw7vprO3WotVjpvG6y7Bw58CJ3HW4vmczvHN3a6Mww48Ql4NEJ4z44XoHwLFJYkoyoRkdRyCjX1egzsJZwsUbzMXb3POi4TiUWLUI5myj5OTh2t3aE1zm1bH4bjHkxOHaWPubfn94MTHk1OLbHqdbp1XvX6SdHtd3gDLJgJx/3HOvdoi+rKEzPuxz+F0T/wd0yn88zmfdb/AT75O5y2CIpG+FuDiEgiVO2G/csi99v9+dtqW/4NE+6BYV9PbF0i0jqY9gvLMILWn5P+7ByMdmgNhEMQCCamtnTkNRitsboKOLTWvm92B+gxPf66REREEsA0zfXA+lTXISIiIiIiIm3PzprtttsNAnTLTt/7N7JdFr3WhmuTWImIiIgkRDAXik9u+LxiK3z43fjG7DC85bZhN8Get1tubz80vrkaMwzoOsn6qNfrtJb98s/xb06RtmLUbbDk+pbbO45Jfi0iIpmkXU8Y8MWGz8N1zsFoLYJl04yRjpFRIv5K1+9yA3g4jn3fiKK/Sfp+HUTaDrfgm8pPof2gxNfw8Y/d20d9P/E1iP+OfxhemWyF7EUy4R7oOMr6u1Mw2pYHrQ87XabAhN83vVCXCk7hKpHsXwrbn2kIh2stQkfstwcjBHM1V3yS9QFAGLb8J7Z6htxghaKB9X026rbYxslkwTzrSSORvobbnoIRtySnJhGRVPLrd1UqeAlGq9qlYDSJXajavX3Lg9DlGBj6dSt0W2Jz5DPntrwk/fyGqmHfIvc+E+/NjP/n7lPh/B3w9oXWE/u82rUAnu4FBf1h8gNtL7Sg7nBixv34hzD4Gv9+F5mm8+9uO3WH4aPvw4lP+jO/iEgiVe2Jfp+PboOBV0J2oe/liEgrY9bZb298Y87xj8K7s1v2CVXB4fVtK2y2amfkPtuehuJpcGQXLLwcdr7m3LfXWb6VJiIiIiIiIiIiItJa7K7ZYbu9S3Y3sgM5Sa7Gu2zDubZaM8KDKEVERCTz9J8dfzBa/zktt/U6HbIKWz7YtsQhGERE0kufL8Cym1s+jH7QV1JTj4hIpgqkedyQWzhbutcu4oN0XUloYgWcRfNhNvqIdl8RSbX8Ps5tVbuSU8P+Zc5thYOg1xnJqUP8VTgQzveweOTMNTDs6w2fZxdFP9e+9+GdC6GmLPp9/eQUjJbVPvK+nz7nby3poHqf/fZ4wmaG3gguT9pyFMyHo+K8EN1a9L0gcp/9SxJfh4hIOqjL5GA0D8cXK25NfB3SeoUjBKMBLLvJClSV2LmFoFTvs4KgEu3D/43cp9PRia/DL+16wqnvwKwP4Zg/w3EPQW43b/tWbIX5M6BiW9PtVXth3T2w5i6rT2tTWx65T6w+nevfWLUHIdqnK3/6AtQmKPhNRMRPzW+Q8qL2ELwwEj74Dmy63/pcRCI78CGsvgM2PwjV+6Pbt/aQtd8H34UPvg0rvg/bn03OcXs8zJD9diPY8PfeLuFdXs4ZWpNdCyL3Wf8HOLwRnu7hHooGDQ9sEREREREREREREZH/2lmz3XZ7cY7L+pY0kGU438deZ0Z5T4OIiIikv4L+1n2o8Wg/uOW2rAKY9iJkd2zY1n8OjNT9/yIZoV0xTH3GCjisN+irMOSG1NUkIiLJZSgYTVq/dP4uj+fOba/7KhRNJF0E88EIgBlu2VZXkfj5645AncsC1dOXWPVJZgoEod9FUPq4fXvfC6FoeNNt+b1jm6tym7UAcMS3YtvfD07BaEOugzW/cd936yMw5R8QzPW9rJSo3ucc9paVH/u4XSfB9Nfh49th17ymbUYQRvwP9DkfPv4RHFhhpTF3GgdjfwUFfWOftzXpMSNyn7KVia9DRCQdhDI4GC2nU+Q+O19PfB3SeoU8BKMBrL8X+l2Y2Fpas2qXYLRwjdWe1z1x89cdgXV3u/fpNA7yM+xY2jCsMLf6QLd2vWDeNO/7z+0Hl4Ss6xF7F8OCUxvCZlZ8D054FPqc63vZKeN2XSZen70Cg6/xZ6yq3dHvE66GPe9Br9P8qUFEJFFiCUYDqCxtuO648udw6tuxX18VaQvW3QvLvtHweeEgmP4aFA6IvG/lpzD/VDi0pmVbn/PhxCfdnw6YSk7BaI2fWJiVD52PsX9oxqfPWq8xo25LTH3pxDRh9xve+j43xFu/gv4xlyMiIiIiIiIiIiLSWu2q+dR2e4+c9H6vyy0YrdaM8T0/ERERSW8ll0Cfc2DvIqgrh3fnOK9DaG7Et53bup8IF+yG/R9Afh/I7+VPvSKSHL1mwQX74MBy6x6kPI8P8vaTkQVmXfLnFRFJhmBeqisA3DJO0vR+UREfpVswWinxBaKJSKYyDAgW2C+CTUYwmtsi8BlveAt8kPQ25ufWhb/K0qbb8/vAxHta9s/vF/tcH/wP9DilYfF7sjkFowXzoO8FsO1J9/13vAh9z/evnt1vwYrbrJCrQBC6TIZxv4Gio5z3CVXBh7c2DUfIKrAukhSNhDE/sb7GkTw/zLktr9j7v8FO96kwI0LQy8kvxzdHa5bdwfq/PLjKuc/hdRCuhYDzm/ciIq1CJgejeVls3fjpM36q2ArLvwX7FkHRKBj1feh2fGLmyhShauu469NnIbsIBn3FCsfNZGGPwWj7FlkLx9M1ACDdVe91b685mNhgtJ2vRu4z+ieZ///bfar1c7npfu/7vHsplG+C/Uubbg9Xw+JrrfOirAJ/60yV2vLEje1n6HIswWhgBQYpGE1E0l2swWiNVWyGZ/rAJeHM/90tkgjV+2H5TU23lW+CVb+Ayfe571u+BZ51CU/b/jRsfRRK5sRdZkKEHW6ANIJNP+93kX0wGsBH37faOwz1t7Z0E65tCEX2S+Egf8cTERGJgWEYAWAUcDTQD+gGtMO6X/AIsBvr/sEVwCrTNHUfoYiIiIiIiCSMaZqOwWjFaR6MFjACZBlZ1NmED9SatSmoSERERJIiqwB6TLf+PvBK2PAnb/t1HO3eHsiGrpPiKk1EUiiYA12npG7+SX+FRVe13F5yefJrERGJVZfJ1tq05oZ9M/m1NNd/NnzwrZbb83q0nvVEIi7SKhjNNM2SVNcgIimUlcJgNLdFrZEu/Ehm6DAEZn0An70Mu9+2gkY6jbUOBoO5LfsXxBGMBvDSWJj8NyuQomo3ZOVDj5nJeWqCWzBadlHk/Usfjz8YLVwL+5bC9mdgza+btu140fo4cw0UDbff/91LrUVcjdW/Fux9D+afChPugaE32C+wDNfB8m9C9T7nGr0Eq0liDb4Wlt3o3B6uhcMb3EP0RERaA6dgtKwMCEYDGHgVfPKAc3tdAoJuasrg1ePgyA7r88rtVhjrzPdSF06bDhZebh3L1du/1Pp9OuwbqaspHuEQmCFvfUNVVghH4cDE1tRauYWFQ2J+jusdXAsf3+7eZ/A10OfsxNWQLIZhnSeWXAalT8KG/4u8T+mjzm1Vu2DRNTD+TmjXw786UyWR32eH11u/K/L7xD9WpJ8XJ7vmwdbHoP/F8dcgIpIofgSj1XvlGDj6l9YNV9nt/RtXJNPteBHMcMvtm/5mBaOFQ3DwYziy03poT/lm67yorhyWeAi+XnoD5HW19u00Dgy3JwUmmdP5ndHsloX+F8OH33EeZ+Xt0H+O9R6PH8d36cjvRWtGlsLkRUQkpQzDmApjNpKcAAAgAElEQVRcC8wCPNy0AMABwzBeAO4zTfOdhBUnIiIiIiIibVZ56CCVYft7FYpz0v/6c5aRYx+M5ud7fiIiIpK+BlzpLRgtuwj6xLlOUETETa9ZkNW+ZT6A7pkWkUzSf07LYLT8Pulx311+b+h6nJWv0Fi/i/UQa2kT0uhOaBFp85wSSUNJCEY78IH9diMLcjomfn5JjtzOUHIpTPoTTLgLBn7JPhQNID/OYDSARVfDOxdZC5He/zI80xs++jEk+qHGYYdgtIDHYLStD8Oe9yL3c1K5A149Fl47rmUoWmMvjIBdC1puL/+kZSianWXfgFentAxPrCiFF46C9fc675vXAzpPjDyHJJaXoJODqxJfh4hIqjkFowUzJBit91nu7eEaCPl8s9X2ZxpC0eqFKmHzv/2dJ5NU7YbSJ1pu3/DH5Nfil3B1dP2fHQRVMQYWtXWRvm6JCCwP18Lia63zggPL3ftOzODvYzvFJ8PEe/wZa+tDMLcENt3vz3ipZBeWDzDoKzDaITzv2H/B+Tuhx6ktAzWae6YvbPNwrhmJW7h+JGvvjH9+EZFEclsk0SvCcX9z+5fBgpnw3FDYszC+ukRak89edm6r3gfzT4GXxsEbs6zr3+9dAgu/6C0UDaBmv/VgkZcnWn/Gc+ziN5vFWQAYwaafF/SH7lOdx9nyH3jzbOv47sP/Tfx7LqkQdvhaxWrAF60H+IiIiCSZYRhHGYaxAFgAzAE6AobHj87AF4E3DcN43TCMocn/F4iIiIiIiEhrtrPmU8e2Hjm9k1hJbLKNbNvtdX4/fENERETSU9dJcNzDkNfduU+HETBjAWQXJq8uEWl72vWA6a9Ch2HW53nd4Zg/Rl5rJCKSTobdBCO/B9kdrM87T7COowIR1qkky9S5n6+bCVprTgdeBeN/m+qqRJIiTX4KRURwDkartX8Kj68WX2O/Pa8bGMqQbJNyiuxTyuO18ifQ/UToMcPfcRsLOQSjBfOcg+Cae+NMOGs1tOvprb9pWkEknz4H22wCOZzMmw4XHW56gfWzV7zvv28xLDgNTm30gOhFX4HDG9z3m/RnpSCnA6eFcI2VrYJ+FyW+FhGRVHL83Z0pwWjnQLcTYc/bzn1CFRDM8W/OZTfbb197Z9u9qFf6BGCzGPzQWghVez8OTCfRBqMBvH6SdRwr0Snf5N7++onWRf1Jf4XO42Ofp+agFZ686hfe9zlrPQSCkftlGsOwnhyz5934xwpXw5KvQfeToP3g+MdLlbpK++3BAhjyNfjkfqjY2rC9+zQoucy6bjP9VSvAzwjC4x2s4D07b38BjvoujPqB83UoO4c2wMY/W+ea8fyf7Vucua/JItI2OAWjZbWHac9ZQT2lj8F7X8T22NNO1U7rAQqzq/T6JwKQ7fIwnmU3w+43/Jtr13xY+XOY+Hv/xoyVaTo/KKN5MBrAuN/CK5Mij7v6Dus4uNes+OpLN07Hs7E6+pf+jiciIuKBYRgXAw8A7bCCzsD+RMJL23RgmWEYV5qm+aSvhYqIiIiIiEibtbtmh+32doECCoMeHkaeYtmG/f14tabPDzEVERGR9FUyB/rPhsrSlg8yz+4A7YpTU5eItD1dp8BZa6FqL+R20dpdEck8hgFH/xxG/8TKlsjplOqKmsrraq2bqT0EgVzdky1titJ+RCR9OC1IratI7LxOQRQAuS6J+dL65XVLzLjr74l9X9O0fiZqDkL1fvvFMW7BaHUegwZry2DZTd7r+vB/4f0rogtFq/d4ewg3WhC15Pro9t/zLmyfa/299jDsWuDev8tk6HNudHNIYnh5jT20NvF1iIgkU6gajuxqtu2Ifd9MCUYLBGH6azD06859/A47rj3o73itQc1+5zavx4DpJhRDMNqhNbD1Mf9rac3CdXBoXeR++5fByxNgz3uxzVNXaQXXRROKNukv0GFIbPNlgkFX+zdWuBY2PeDfeKngFIYYzLPexDnjIxj9Y+vJNsf8GU5+uWmYfVaB1bf9UPd5Vt8B80+Fyu3WOTY0nGebdgGT6+G142HtXVYYuNvrrReH18e3v4hIIjkFo9WHHAeyoORSOOUtGHwd9DrD+9gvjIq/PpHWwO1mmS0P+j/f+j9YN8KYJtQccH9PLJHMsHOb3RMVuxwDM97wNnb9+wOtiZeHing1+QHrybwiIiJJZBjGRcBDQD5WuJn5+YdBQ9jZHmA98D6wGNgA7G3Up/F+AAXAw4ZhnJ+cf4WIiIiIiIi0dodD9vegdc0uxsiARfxZRrbt9lrT54dviIiISHozDCjob91v2/hDoWgikgp5XRWKJiKZLZCVfqFojWV3UCiatDkKRhOR9JFVaL89lOBgtL3vO7cVliR2bklvAfunKMVt+1x4cSwc2hDdfuVbYN40eKwQnugIT3aBp3vD5maLpdyC0WoPeZ+v9HE48lnkfjUHYN3vvI9r55Es2PESVGyLbf+3zrP+bVW7wQy5953+amxziP96nwVG0L1Pzb7k1CIikmimCR/eCk90hqd7wPPD4cAKq80xGC0vefXFK5gLI29zbt/+TPJqaavcfqe+PLFlIF8mcArmiGTZTfbhRmKvfLNzIJWdRVfH9vXd/gyUrfDe3whC77OjnyeT9L8Uhn7Dv/FW/9I6P8tUjueyn79pk90BRv8IptwPQ651fjOnaGTkufYuhGf6wuMd4NnB1rn1Ex3huSEtrxOt/z+o3uP93xFJ2Ur/xhIR8VvzJ8fWa36dtPsJMOlPMO0FmO1wPtNc+UYrbFKkrcspSv6cjxfBwwHrmsTcEth4X/JrcLtu73Q+W3xS5NBbgI1/aX2vL3YPxYnVwCv8G0tERMQDwzCGAX/Hui+xcSDaIeBu4Eygq2maPUzTHGGa5nGmaU4xTXO4aZrFQDfgbOAPwGGaBqRlAf80DKMVP01BREREREREkqUiZH9ffftgCq7lxyDbYa1DnYLRREREREREREREpJVQMJqIpI+sAvvtdQkORpt3snPbUf+b2Lml7SpbAQtOhbDDYqBwHWx9FFb+HN77EnzwbXh2AOx+q2m/6j3w/pfhwIcN29yC0fpeEF2de95zbzdNWPULfxbpvHEGvHlW7Pu/Mwdq7Z/c9V8zF1qL6SU95HaGAV9y71O9Pzm1iIgk2oY/wupfQajS+vzQOph/qvV7+8gO+32cjo/TlVPQMcCyG6Hy0+TV0hYZWc5tFVvgnYuSVopvQi5hXYUDnduqdsKB5f7X01pVeQhDbuzQmui/vmUr4b3Lotun74XQrmd0+2SaYA5M/AOcWwqnLbb+jNebGRwm5/QzH4jyaTZFR3nvW1cO5ZsaziXLN1nnprXlDX3W/yG6+SOp3O7veCIifnIKpnV7gEQwD2Z5DD99fhh88B3rgQxmOPr6RFqFFD8RtWoXLL4W9ryb3HnNOuc2t/PZifd4G/+di6z3VVoLt69XNPpfAoZuCRERkaS7F8inIRDNBH4C9DVN8xbTNF8yTdMx3d80zX2mab5gmubNQF/gp5+PUa8Q8HiQICIiIiIiIuKsPHTYdntBMDPuNc82sm231/n58A0RERERERERERGRFNJdsCKSPlIRjFbjeK+lpeuUxM0tUrEV9rzTcnu4Fl47Ad6dAx99H7b8G9b81nkcsw5W/erzv5sNgSvNBfKgeJr7QsbmKre5ty//pntt0Sr7KPZ9d71uhX44mT5PP9PpaNJ9MOanzu2RXqdFRDLF5n+33Fa9xwoEOLTOfp/CwYmtyW9Z+e7tm/+VnDraKiPo3r7nbSj/JDm1+CXsEow2/TX3fXe87G8trZlTAIqbnfO99934V3hxdHTj53SGCb+Pbp9MVtAXuhxj/XnuFve+gWwIurze7nkPjuzytbykcfqZD+ZFN063E+Oro+YAbH04vjHcOJ2zi4ikg1iC0QA6jYGZi6DXGZHnWPMbeOdiePMchaNJ2xTL8Xe9YF7T0Nj8fjEO9PkDT5LJdHhIDLifz/ac6W38so9g5+vR1ZTO/Fq0NvDL/owjIiLikWEYxwMzaAhFOwycZprmT0zTLHfd2YZpmodN0/wRcDpQQUNA2qmGYRznU9kiIiIiIiLSRpWHDtluL8xqn+RKYpNl2L+HV2vG8V6EiIiIiIiIiIiISBpRMJqIpI9UBKOVrXRuK/li4uYVqTdvmhUUALDp7/DSeHgkB/Ytim6c0ketxdsVm50XVuV0guwOMPlvYHg8BFh7pxW2tv6P8OIYeLo3LL7O+rksWwXrkhhWUHIZtOvp3B6utQ+dASs4oMf0xNQl8QkEYdT34YTH7Ntr9ie3HhERv5kmrLvX+Xf7wi85Lw7uGGWQUKoZAedjeoANf/RnHtOM3KdN8vB12fpI4svwk1swWk4XuLDMub3sY//raa1iWXD/4Xesc5fN/7E+rymDhVfAUz3hIaPpx+Jrox9/wOXQrjj6/VqDgv5w3nboNK5hm5EFkx+AS02YUwOzK6CHU0CEaQVsZyKnn/nG4R9edJ8Kud3iq2Xlz+DFsdb3cCzcfoeHjsQ2pohIMsQajAbQdRJMe8H6feXFjhfg4aB1LfTxTlZQWvkWz6WKZKxYA68KSmD2EZhTZf2cXWrCuZsht0ts4+14MbkPpTDrnNsCWe779v2CtznemAUVER72kincvl5eDbwKepwS/zgiIiLRuf7zPw2si9bXmqY5L95BTdN8Hbi20bgAX4t3XBEREREREWnbKpyC0YIdklxJbLIM++vrtaZPD98QERERERERERERSTEFo4lI+gimIBjt4GrntmE3Jm5eyQx9zk3OPIuvhddPgkVXwYEPYh/nic7w7CDn9qKjrD8HXA5nrYMhN0Qes3I7vHEGLL3BCpc4sgM2/gXevgA+e8l7bQOvhBlvwJS/e9+nsY5j4LgH4dyt0P8S5347X7ffnlMU27ySPDmd7bfXHoSwQ2CQiEgmWPs7WPaN6PcLZEOHof7Xk0qV2/0Zp+6wP+O0NqGqyH0qdyS+Dj+FXILRgrnWMd6Ib9u3b3u8IUTv0AYrwGvHS1B7CKr2wva5sPXRzPuaJIJTAEokBz6AhV+E0sdh/kzY/C+o2hl/PVntYfi34h8nk+X3hlPfhpOeg2P+DOdugUFfbtpn5K3O+2/6W2YGyzi9jgWjDEYLZMGoH8ZXS2UplK2Ibd+sQjjlLWjv8Hu8rjL2ukREEi2eYLTGzo/iGCtcC7Vl8Olz1kMk9DoprV2sx99Drmu5zQjA4DjyQN48F3bO93Y+GS+3a7xG0H3fQdd4n+fZEvdzyUwRS4DesQ/CSc/DhN9bx6OT/wZGjEG/IiIiMTAMIxc4Gyu4zASeNE3Tt6d1mKb5MPAkVjiaAZxjGEaUJysiIiIiIiIiDcodgtEKMiQYLdvhtLjOjPG9CBEREREREREREZE0o2A0EUkfWU7BaOWJm/PAcue2Lsckbl7JDAOuSN5cu99K7Pj5fZuGg7UfDEc5hEg099nLNttegV1veJ9/wj1QfJIVkNbnPO/71et9jvVnIBuOf8ha8GXH6fUiW8FoaS+nk3PbtieTV4eIiJ8Ob4IPYgz36TzR+r2XcSIsuPVjcXKk4OT6MKy2JnQkch8/QquSKezy/VIfztFpvH27GYZ3Z8PSm+D5oVaA1xtnwONF8FQ3eOs8eHcOPNMb1t7tf+2ZJJYF9429dznsX+JPLQAnzYWCvv6Nl6myCqD3WTDkWisorbniaZDfx3n/Nb9OWGkJ4/Q7IpgX/VhDr4+vllh1ngAzF0JOR+vvdtbfk9yaRESi4VcwWrue0PO06Oev2Aqf/CP6/UQySbTH37ldYdQPnEOhR/8o9lr2vA3zZ8DLExIfrGvWObcZWe779joNpvzT4zxhePVY73WlK7evl5MBl0HvM60HP3U/UaFoIiKSClOAQhreKLgrAXPc2ejvhUAr+MUvIiIiIiIiqVIesn9AZ2GmBKM53F9YG++9QCIiIiIiIiIiIiJpQsFoIpI+HIPRIgQfxCocgu3P2LcNujoxc0pmKRoBA7+c6ir80Wlsy215xbEtMK+34wVv/fqcC9mFDZ8Puzn6udoPbvr56Nuj21/BaOkvp7Nz27uz4w/sEBFJhXcujn3ffrP9qyOZOk90b6/aFf8ckQLAdr8R/xyZyFMwmg9f/2RyCkkKZDcE5XYc7bx/6eOw/g+R51n+TTiwIvr6Wot4j7PcAuyikdsN5tRC8cn+jNcWnPiUc1vpExCOIUwhlZy+lwK50Y9lBODkV+OrJ1pHfRdOXwodR1mfZ+U7993vEtQvIpJKfgWjAYz9NWS1j36/pTfAS+PgIcP6ePcS2OdjCKtIqjn9nNkpGglf2A1jbnd+WEggC058Or6aDq6GZwfEN0YkZsi5zQhG3n/gl+Bij+8XHvgADm3w1jddRXueNjzGYH4RERF/1YeUmcAa0zTf93uCz8dcbTOniIiIiIiISFTqzFqqwpW2bYXBGN7jSoEsw/49vFozivciRERERERERERERNKYgtFEJH1kFdpvT1Qw2qG1ULXbvq14RmLmlMwz+W9w7IPQ++xUVxKfAV9quS2YBz1nJX7u4bc0/bzbCVBQ4n3/QC70OafptoJ+0dWQnRlP7mrTcjq5t+9+Ozl1iIj4pWoPHIgj9GTAF/2rJZn6nOfeXr45/jnq7G9I+69502HXgvjnyTSRvi7gfP6TrhyDORqFJBWNgHY945+r9In4x8hU6RJAO/xmK9RBvOs80TnsunpP5r0WOoUhBmMIRgPofhLkdom9nmgFmwX+B12C0bbPTWwtIiKx8jMYrdMYOGMFHHUr9P1CdPse+LDh71sfgVePhR0vRV+DSDqK5vh7+C1gGJH79TzNn4eDrLjNua2uAiq2gmnGNrZbMJrX84CsfOtBLF6UPuatX7qKNuQ42tdZERGRxBjZ6O/vJnCedxzmFBEREREREfGsInTYsa0wmBn3nWcb2bbb68w0uRdIREREREREREREJE4KRhOR9JFVYL89UcFoO1+1325kQe+zEjOnZB4jAAMug5OehfF3pbqa2Dktipl8H3RN4EOUx90J3ac23RYIwtSnIb9v5P2zi+Ck51qGZnnZt/k4kt4ihdcd3pCcOkRE4mWa8NEP4anusY8x6kfJDXLx09Cvw6CvOrfPmwYffi/2hdTgLQBszZ2xj5+pQkci9wk7hA6lK6fAgECjm/qMAPSbHf9cq34GK34Q3/dmpkqHmyFLLocR3051FZnHMGDmQuf20keTV4sfwlX22wMxBqMFc+CkF2OvJ1pZ7ZrN386+H8DK2xNbi4hIrPwMRgMoHABjfwEnPglnb4COY2IbxwzBx3rtlFbC6efMzoArvPXLagfTXoDcrg3b+l8CY35qnTN5teoXVvhZY+FaWHIDPF4Ec0vguaFwYIX3MeuZLkFfRtD7OJP+Bl2mRO738Y+9j5mO3M7Txt9tvZcJ1uvzxHuh23HJqUtERMTdoEZ/X5TAeRqPPcixl4iIiIiIiIiL8tAhx7aCjAlGs38Pr9aM4r0IERERERERERERkTTm8fHLIiJJ4BSMFkpQMNryW+y3tx8C2YWJmVMyW7/ZsOa3cGRHqiuJzoz5zoufcrvAzPfg8EbYOQ+WXOfPnIEcOG8b5DmEwnQaC+dshoMfQ05nyO9j1VCxpaFPdhF0GmctZm+uoH909eR0jK6/JJ9hwMCr4JMH7Ntry5Jbj4hIrLb8B1b+NPb9i2fAmB/7Vk7SBYIw+a+w+Z/Oi71X/9IKSBjsEqDmJuQhGG3PO7GNncm8BKNVbIVPX4Res6zfvenOaeG80exy1lHfhXV3xz/fqp9BbmcY/s34x8ok0QQz+OGUt63j/9yuULHZCsiN9vheGnQaC/0ugtLHW7Ztewom/tH+nMovB9dA6RNwZLv1s9lpLPSfHTn4uDkz7ByGGMyLvb6uk+D0pfDyxNjH8Kp5EFpWfuLnFBHxm5dg2li1HwynL4dDaxqury44zfv++96HZbdYD7HoPCH+ekRSxWsw8ZmrrHNsr7odD+d/BmUfQbte0K6HtX3YjbB/OSy7yWqLZG4JzKlp+Llfcyds+GNDe/lGeGkszK6O7jgzHHJua36O5yavK5y2EA5tAMLw/HD7fmYdlK2EjqO8j51Owi7nw8NvgsFXQ9kq6DjS+f1VERGR5Ctu9Petjr3i13jsHgmcR0RERERERFqx8tBhx7bCYPskVhK7LMP+PbzadHhIooiIiIiIiIiIiIgPonhEtIhIgjnduF+XgGC0Rdc4txUd5f980jrk94JT3oJBV0PBgNTUMHVudP3bD4FuJ3roNxiGXAvHPxpbXY0N/TpcuN85FK1eIGgtmi/oZwW3dRgKPWc2fHSd7LywqqAE8qK4x7n9EO99JXUGu7w2V+1JXh0iIvFYe2fkPn3OhROegD7nN2zLKoSR34NpzyeutmTqMMK93S7AxysvAWC1ByHUxp58WechMA7gzTNh4eWJrcUvTgvBmwdztOsB01/zZ87lt0D5Zn/GyhROASiJ0v0EKCyxAsk7jlYomh/6X2q/veYA7F+WuHk/fRFeGgcf/xA2/tUKzFh8Dbx6XPTH724BfYHc+OrsNC6688dYNQ9wC7oEowUSGFYnIhIPp9djv163AkErpKj++t/4KMNt1/0OXpkMn/zTn3pEUsHtXLXTeOg/xwoRjOW9qkAWdB7fEIoGVmBt8TQ4/hHvAWTr7gHTtD423W/f57kor7k7BV8DGFEEwNXrMAQ6DIPJDvUBvDgaQtUN/5ZM4hhU+fn/YVaBFQKsUDQREUkvXRr9PZFPvaof2wA6J3AeERERERERacUqQodst7cL5BOM5oEeKZTt8B5ebbIfkigiIiIiIiIiIiKSIApGE5H04XTzfqjK/Uny0ao5CJvuc27vPNG/uaT1aT8IJt8H534CU/5hBXrV6zQeLtgLvc5MzNwDr4x+7Ml/a1go40Xf8yP3cTN1Lky8J/GLcQwD+l3kvX/H0YmrRfzTdbJzW9Xu5NUhIhKrJTfAgQ/d+wz6Ckx9BvpdAFOfgktN6+Piw3D0z1uGqmSqSAGpO+MIsfIaAFa9N/Y5MpGXwLh6W/4Dn76QuFr84vT0UrubD4unQ25Xf+Z9dmDmLZqPRzKD0XrMTN5cbUmv062ATTvxvN66CYdg6Q0Qrm7ZdnAVPNUd1v/R+3ghm3HqBeMMRjMCcNyDEGwX3ziRNB/fbb5E1yIiEqtEB6M1N/R66Hl6dPuYIXj/SqjcnpCSRBLO6TxnyNdg1jI4/mHoPM7/eYtGwNg7vIWQffAteDhgfZRvtO9TWWqF43plurzPF0swWr2ux7m3P5pn/TseK4QFp8Nhh39PunEKkjOy7beLiIikh8YXcRIZjHaw0d9byZsqIiIiIiIikmzldfbBaIXBDkmuJHbZDteM65zeixARERERERERERHJMApGE5H04RakFKrwb55d893bB17h31zSug28As7eAJMfgJNfhZnvQm4XGHyNff+jfwHTXoQep3obf/zv4LiHYcLvYeZCa55AFAuEzlwN3ad67w8QyIbsouj2qXfeNuhzTmz7xqL/HO99i0Ylrg7x17Cb7bdXJzEYLVwHexdB6eNwZFfy5hWRzLbuXtjgIQCm99mJryUdRApGi0fIazDansTVkI7CVdH1/+SBxNThp7DDQnC74F8jAEOu92/uNb/xb6x0l8xgNKdzJYlPMA86jrFv+/hH/obN11t7J1Rsce+z9AbY+Dfn9rKVsO0ZKFtlheI7CcQZjAbQYwacsxmm/DNxgfgtws7CUfQVEUkTIYdgtGCCgtEC2TDtBZj+Ooy7Ewr6e9/3mb6wa0Fyj2VE/JDsAMLGRtwCZ66CY/8F4++Of7zF11o/h144BX1BdA93aa5ouLd+oUr47BV4bgisvdu6/pvOgdhOr23xfK1EREQSr/FFnEQeqDc+sFBqqIiIiIiIiMSkPGQfjFaQUcFo9u8t1JoO70WIiIiIiIiIiIiIZBgFo4lI+nALRqvzMRjt8Hrntna9oV1P/+aS1q9wIAz6MvQ81VqMDlY42JR/QPsh1uK+4ulWgNrIW6HXLBh6g7exh98MJXNg2I3QdQoYhrf9ukyCWR9A0YiY/knkdo1+n/N3Qn6f2OaLVdcp1tc4kqJRya9NYucUpFOVpICy2sMwbzq8OgXeuRie6Q1bH0vO3CKS2byETOV1h56nJb6WdNDB48LkWNR5DEarSmKoZjpwCrFwsu0p6/deOnNaOG84LAQf9UMY+T1/5t54nz/jZIJEhYnMWGCdCwVyoHAQTLoP+l2QmLkEikY6t+143r95zDC8fRF8+F1v/Tf8yWYME5b/D7w4Gt4+H14cBQu/6DxG/bl2vNoVw8AvwWmLYdQPoF0vyGoP/S6Csb+y36frsVA8w9v4zcPO3MLesvK9jSkikmypCGwyAlaA5YhbrOMHI4q3LudNh9dOhOp9iatPxG+OgVdJyvToMAwGXA7Db4JjH4x/vHnTYckNkcN4S59wbjOieCCMnfO2Rdd/+Tcbrv86BXKnmtP5cLK+T0RERERERERERERaufKQ/X1ThRkUjJZl2F8zrjX1YCERERERERERERFpHfRIYRFJH1mFzm1+BqNVlDq3DbvJv3mkbRt4hfURroNAs1+3XoJC+pzv3Db+Llh+i33bWeuhg4ewMDe5XaB8k/f+PU6xFpgnmxGAiffCgggBM2Pv8B4qJ6mX18N++4EPoaYMcjomdv6VP4M9bzd8bobgvUut7/PczomdW0Qy28FV7u1GACb+0b9wl3TX9djIfXa8DL1Oj37skMdgtOo90Y+dyWK5oe2NWXDK2+l7rOS0QL358fV/twfh6J/DmJ9Z3ydGNoQ/DybKKrR+DtfdC8u+EXnu8o0wbwYc+8/WH7LrFIASj2E3QfE068PunEj812msc9uSr0Gfc/2ZZ+N9sM0l1KK5A8uh5iDkFFmfmya8fyVs/lfTfjtfdx4jmBt1ma4MA8bcDqN/YgW9Be6uLKkAACAASURBVIJQdwS2PgoHPmjo1+1EK6AnELTCNufPhLIVzuPm9236uVswWvMQNRGRdBGutt+eyGC0xgoHwLCbYe1d3vfZtwg+/jFMvCdhZYn4KhUBhE4GXGY9kOKDb8U3zoY/Wg+F6XUmbLoftj1pHcP1+QIcWg3bnnZ/aJFT+LVX+X2s4NuVP41uv21PwKbpMORr8c2fCE4BevF+rUREREREREREREQEgIrQIdvthcH2Sa4kdtkO7y3UmQm4F0hEREREREREREQkBaJ47LqISIJlFTi3+RWMZprWAg0nA77kzzwi9ewCADoMgy6T3Pcb+GXntj7nghFsuX3ivfGHogHkdImuv9sC/ETrORN6ugSqzPoQep+RvHokfkUjnNtePNp5QZhf1vy65TYzBKWPJ3ZeEcl8bq9PA6+CWSug3wXJqyfVIh3rALxxRmyvr6Ej3vpV741+7EwWy+/IPe86B+6mA9MhGM3haacN7YZ1fhnMgewO1ofx+SUwt/PO5nbNh+eHQ80B7/uks3AtlG+BqmY/G34+JXbI9XDi0zD+dw3bFIqWHP0udm478hmURhFm5mbDn6Lf5/nhDa9RH/2wZShaJAGfg9HqGYYVegaQ1Q5mvg8T7oHht8DkB2DGvIb2vO5wypsw5Ab7sdoPgaKjmm5zC1VsK0GpIpJ5nEIdk/m6Nf5OmPosDL7GeoBDQf/I+2y637n2ugrrGKjWfnGLSNI5Bl5FOM9JlGHfaHkcE4stD8OyG2HxV+Gzl2H7XHj/Clh9h3soGvgT9jXmdsjtGv1+S66HPe/BviVQuT3+OhoLVcO+pVD5afT7Op0PB1L0fSIiIiIiIiIiIiLSypQ7BKMVBDskuZLYZTu8t1Cb6HutRURERERERERERJJEKxNFJH0kIxht+Ted24pGQbtif+YRieS4h+Cdi+HA8qbbjQCM+Sn0Pst538KBcMLjsPAKqDtsLYQZ+QMrhMAP0S4e6jTen3ljNfI2a6FVc73Phk5HJ78eiY/bIrzKUtjzDhSfnLx66m15EIZcm/x5RSQzhEOAad826gfW4ty2JtvLkzNNWP0b6HdRdGPXVXrr5zVArbWI9Ya2dXfDyFut0J9047gQPI7LWdmF0fWvq4CVP4fxv419znSw601YdDWUb7RClgdfBxN+b4U+OX3v9DrDCnba+Ff79mA76+cspxOMvwsGXpmw8sWDvK5WoNfau+zbV/0c+l0Y3xwVpVC2Ivr9qnbCjpegeJpzfW6SFcYTzIFhX3duzymCY+6FrpNh8XUQ+vz3UfuhMO0FK2itsT7nwqKv2I9lhvypWUTEb+Fq++2JCql00uds62PSX6zPX58Gu9907h86Aku/AZPva7p987+t9wSq90FWoXXddfjNCStbxJNwjf32YE5y66gXyLYeujJvenzjbH0oxvlz/fu3z1oB7862riFH47XjG/7e+RiY/irkdIyvltV3wMc/abg2UTwDjn/I+7m3Y4Cebu8QEZG0V/9myRTDMEoSNEePBI0rIiIiIiIibYhTMFphBgWjZRn219drTYf3IkREREREREREREQyjO6cFZH0Eci1bui3W/xeezD+8Y/sgnW/d24fdlP8c4h41X4QnLYYqnaBWQt5PeHQGmg/2D0ksF7f863wtINrrLG87ONVbhfvfQM5VmBCKnU73grK2rWgYVsgB0Z8O3U1SeyyO1jfg9X77Nv3LU1NMJoRSP6cIunoyGew9RGo3A7dT7JCKJuHgLRFpksgVc/Tk1dHuhl8HWz8s3uf/Uvgs9fgs1es1//+c6BwgPs+XoPRDnzkrV9rEc+TPrfPhcFf9a8WvyRiIXgwhuPmtXfCztdhzE+g9zmZ9bpnhq3z4OW3NNoWgg3/ZwUgTPid89c5kGOFkQRyYP29TduO+SP0mw3Ve6FdD+sYTlJv7B2w8S/24fJlH0GoGoI2wTZmGEqfsIK783parwdZ+S377V8We2173rECaUIeX8MbC7aLfd5EGHA59L0Qyj62AjPaD7F/XXA7tw45BA+JiKSa0+tTsoPRmjv5VXjhKCjf5Nxn09+sYOqCftbnZSutgMr6Y526ciskbfk34ehfwMCr9KAUSQ3H85zs5NbRWPHJ1vF96aP27Se/Yp2HvXWe9bAWPw38sn9j5feCU96Cii1WqC/Aoqug/BPvY+xfAk90gkFfta5R9IghMG7J161zrsZ2zYOniq3Xn2E32R9vN+YYFJ7C7xMRERHvDODhBM9hfj6PiIiIiIiISEwqQvbXuzMpGC3b4b2FOrf7GUVEREREREREREQyiBIeRCR9GIbzotGqPfGPH+lp9b3Pjn8OkWgEgtZCnYL+EMyBTkdHF3AWyIZOY/wNRQPI7eq9b8llkFPk7/zRMgw46QUYeRt0Pc5awDXjDeh+Ymrrktj1dAnbK0tVyI3uqxfh8CZ4ZZIVrrP2LnjrXFimYFkAdrzk3NaWF6wOuspbvwUzreCpFd+DlydYIZhuvIbqbH0Ids731rc1iOeGtr0L/avDT2GnheBxBKPFGmpWtsIKAVichgFyTswwLDi9aShaY+vutn7ewg5Pia1//ZrwBzjmT1A8wwqGO/5RGPI1yO0MHYYqFC2dBLKgxyn2bWYYDq9vui0csn7O3rkY3p0Nq++A5TfDc0Oh5gCYJoSqPv+ogQMrYq+t/BM4uCr6/bpMie9nPlGy2kHXSdbPgNvryqS/2m8PVSWmLhGReDm9PgXzkltHi/lz4PQlkR9usrHR6+7au5wDqFZ8D14c3fbClCU9OB5/5yS3jubG/9b+vYZ+F0PPmVZA2EVl/s87+Bp/xzMMK3C9+CTr46x1MPbX0O2E6MbZdB/MnwGrfx3dfqt+2TIUrbEV34One0PtIfdxEhEULiIikjz1oWWJ/BARERERERGJS3nI/jptQbB9kiuJXbZh/95CnVmLaZpJrkZERERERERERETEfwpGE5H0ktvNfnu1D8Fo610WIvQ5D9oVxz+HSGvgFFDYXMcxMO43ia3Fq6x2cPTPYOa7cMIj0O3YVFck8eg/27ktr3vy6hCRptb8Giq3N922/h44tC419aQLM+welNSWg9G6HAMlX4xun5oD8PGP3Ps4LSK3s+LW6ObPZE6Lpr2o2uVfHX4yHYLR4lkIboZi3xdg0/2w+634xkiWT5+Dna+591n0FefvnfpgBsOAIdfBjNfhpLnQ/2J/6xR/TX7Aua3s82CyIzvhrS/AI1nwSDZse7JpvyOfwhOd4eEAPNru849cWPkT57GH3uhe17YnYVmEPnaOfzj6fdJJMN9+e1jBaCKSpsLV9tuDucmtw05OJ5hwt/WABCerfg51lVbw55YID0qp3gMrb7f+vul+mDsAHu9oheGWf+Jf3SLNOR5/p/j6QX4fmPpM0yDEDsNh7C8bPjcCcNx//Jtz7K+g8zj/xrMTyIKjvg2nvg0Tfh/9/h9+1zo2Prg2ct/qfZGvaQDUlsHjRbDuD1YYsR3HoPA2fJ1JREQyjZngDxEREREREZGY1YSrqTHt3xcrDGbOAwKzHB66YmISwuE6s4iIiIiIiIiIiEgG0SOFRSS95HWDgzbb4w1GqyiF8k3O7Sc8Ed/4Iq1JbtfIfUb/GEZ+HwLBhJcjbVCvWc5tdZXWn+WfwOYHobIU+nwBesyIf5Gu29PRDOUJi7DjJfvtWx6GMT9OailpZdcCa+GrE6ONL1gdfxdseTC6fT57FUI1ELS/cSuqYLR9i6Fqd9sI1owrGG23f3X4KRHBaPn9nNuyi6DW7oS0mc3/gu5TY68hGcwwrPhe5H5lH0FWoX2bFtxnptzO0H4oHF7fsm3Vz6BmPyy9wd85R/yPFZpdNByWXO/fuAOvgsIS/8ZLhcbBIo0d+cw6n8nvA91OsAI7RETSQcgpGM3h9SwVep7m3v5ERzh9uXPIW2PbnoTXToA97zZs2z7Xuu502lLncxKReDid0zosXkqqHqfAedut8/KcztD9BMgqaNqn1xnxzTHgS9BhGPS9EDoMjW+saA38Mqy+A47siG6/mgPwxulw5mrIcgi+Bdj9ZnTn5stuAiMIQ22Oz02HceI5HxYREUm8UhRaJiIiIiIiIhmgPHTIsS2TgtGyXe5NrA3XkhXUvT8iIiIiIiIiIiKS2XTnrIikF6dApuq98Y279i7ntrG/VriTSGO5Xdzb84ph1A8UFCWJYwSgx6mw87WWbXXlsOHPsORrDds23Q8FJXDaoviCb8yQW1GxjyvSGphhqNxm37bxz207GG37M+7tbT1YKNgu+n3MOji8ATqOtG+PNgDs4Kq2EYzmFCLmRboGo4Ud/k3x/Fx1HA35fVu+phWNhJnvwwsjreBVN5vuh8l/i72GRAtVw8LL4eBqb/33vme/va0HO2aybsfbB6MdXOV/KBpAt8+DAod8Dfa+b4UH+mHQ1f6Mk0puQUILL7f+7HocnPwyZLdPTk0iIm7CVfbbA3GG0fspEIRZK+Clo+3bw7Xw4mjv4zUORatX9jGUPgoDLo+tRhE3Tue06XL9ILcLlFzi3J7T0Qp23fNO9GMfdSuM/UXstcUruz1MnwdLr7d+9qMJXq/YCp/83T7E7L99IpxL2ln6dStsrnBA0+2JOB8WERFJMNM0S1Jdg4iIiIiIiIgXFaHDjm2ZFIyW5XJvT51ZA7g87ENEREREREREREQkAyjRRETSS243++1Ve2Ifc/9yWPd75/Zes2IfW6Q1Khzo3j7+dwpFk8RrP8R+++ENTUPR6lVsgZU/i2/OcLVzm77npa1zC6mtdX56YptwcI17e1tfsBpLMBpYQQROog1GK1sVWw2ZJtqvS2PVu8E0/avFL05hb0YcOf+G8fnxbKMxArlWYHZ2IZy1GoIebgqsijO8OxFC1fDRD+HRPCh9PP7x2vrrVybre2Fy5+txSsPfR97mz5iDr4Nux/ozViq5BaPV2/serPpl4msREfEi5HBtJJ2C0QA6jbFC9RNp62NNPz+0Ht7/CrwyBZbemL7hwpL+ag/ab8/KoMVJY26Pfp+CEhjl07FiPIqGw4z5cHElXLgfCgd533fro+7tTg8ViGTxtS23OQbo6bl3IiIiIiIiIiIiIvEqD9nf82hgkB8sSHI1sct2CUarNeO4l0xEREREREREREQkTejOWRFJL07BaEc+jW28/cvg5YnufYpGxja2SGtV0B+6TIZ9i1q2TboPSi5Jfk3S9mQV2m+3+76st/0ZmPiH2OcM17g0GrGPK9IaVG53bgsdscLRsjPnSYm+OqRgNFeBYGz77XwVSubYt0UbAHZwZWw1ZJp4gtFCVVBXDtnt/avHD4laCN7vAihcDNvnWmP1ORc6jrbasgpg8LWw7nfuYxxcBXknxVeHn0wT3jgDds33b8y2/vqVyZIZKNbvYshqFILZYWj0Y4z4jvUaVLndukbT7TjodaZ/NaaSl2A0sH7v8YuEliIi4olTaLzX17NkGv5N2Pla4sbf8bx1jGUYUP4JvHZ8Q2j4vkXW3KctarvnwhKbULVzMFpu9+TWEo/ik+HsjfDcYOc+2R0AA4ygFZ479Pr0ei0JBCGnE5y5Cj55AJZcH3mfPW/Dzteh4xio/LTh/zJUBbld4cCK2GrZ/aZ1/tv4HMwxKFznaSIiIiIiIiIiIiLxcgpGyw8WEjBivN8tBbKNHMe2WtPtnmgRERERERERERGRzKBgNBFJLwX97bcfWgtmGIyA97F2vQnzprn3OeMja2GTiDR14lPw1nmwf4n1eXYHOOZPUHJpauuStiMrhieuVW6DUA0End/odxVSMJqII7dgNLDChQZcnpxa0knNATiyw72PodPumGx7yjr2COa2bIv2aZZtIRjNNJ0XTXtVtTv9gtEcF4L78HPVeZz1YWfM7dbPdumjzvsfWA7FaRSMtnehv6FooGC0TJbTCfKKoWpX4ufqP7vltgl/gGU3etu/YACMu8PfmtKJ1/CP/csSW4eIiFehKvvtdsflqdZrlhWsX1eeuDnW/AaO+g5s+ntDKFq9Q2th+3Mw4LLEzS+tT/Ue57a8DApGA2g/CGZXwZKvwSf/AEwoGgVT/g5dIjywKJ0Ec2HI16DfbFj8Vet6hJv5p/pfQ7gGDm+EohGNtiUoKFxEREREREREREREHIPRCoOZ9UCcLJd7e2rjecimiIiIiIiIiIiISJrQnbMikl6KjrLfXlcBFaVQWALhEJRvhLKPrKev15RB4QBr4UJWvtW/tjxyKFqf86DjaD+rF2k98nvB6YutIJzqfVA0UgtuJLliCUYDK8SksCS2fcPVzm3RBHOKtEbV+9zbtz7WNoPRKkoj91GwEBQOto7fo1F7ED57Bfqc07ItHOXTLMtWWsFhrTkQ2WsoWn4f56DDt8+HITfAwCvTJ/gi7PDvSvRxaXYhnPAIVN0Lc/vaB4Qsv8U6n+xxSmJr8Wrn6/6PGYgxbFbSQ9HIxAejdT8J+pzfcnuvM7wHo/X9gr81pZtgFOc12+dC77N17iEiqWOazsfagTQ5PmzuvO3wRMfEjf/hd6H3ObDqZ/bta+9UMFprUx86Ha6BULX1Z/1H88/D1daDFhp//t++DtuqdjrPnWnBaGCdO055AMb+CkJHoF0fCARTXVVscjvDiU/Ckc/gzXMbHhrjpy6TYd8i+7b3r4TprzcEltdV2PdL19djERERERERERERkQxSETpsuz3TgtGyDed7e+rMKO+xExEREREREREREUlDSjgRkfTiFIwGsPgaqDkAB1faL0zf+Bc4fbm1iH37M5HnGnxN7HWKtBX5fawPkWSLNRitclscwWhuNwG04jAdES/cggMBdr5iHafldEpOPemianfkPgpGg56nwYYog9EAdr3hEIwW5dMsaw9aC5vze0VfQ6bw+jWZ9SE82dW+rexjWHIdbH0ITn4NgmkQiuUU+GYk6XJWXlcY8V1Y+RP79vmnwvi7YfhNyanHiWnCxz+K3G/MT2HkbfDSOChbEbm/odevjNZ/NuyaH/v+xTOsMIauU6D4ZNj8T9i/DCq2Qo9TodsJMOJb9qGThQOh80TYv9R9DiMIg66KvcZMEM25yVvnwcAvW+EiIiKp4HZdJJiXvDqikVMEU/4O73/ZW//60GYjy3u4cOmjzm0HPvA2Rr1wXdt++IRpWucuruFijcLE7MLFPAWWRRli1rx/KhjBzL6mkomhbk7a9YRT34Kne1nXuvw09Ouw0CEYbd9ieHYQnLnaes11CjnO6+ZvTSIiIiIiIiIiIiJtUHnokO32gmD7JFcSnyyXe3tqzSjvsRMRERERERERERFJQ2347nsRSUvZ7SG/H1SWtmzb+Zr7voc3wOo74OifRl7kPewm6DUr9jpFRCSxsgpj269yW+xzui18LI8h0EekNbELpW0sXAvb58LAK5NSTtrwEoymYCE4+mewb1HkgJzmqj6z3x5tMBpA1U4FowHkdoGC/lawkZPdb8H2p61QpVQLO4RVJDNwsP9s52A0gOU3W+F7o35gHxCVDLsWRO7TrqcVimYYMPNdeLI7hCrd98nv7U99khoDvgQ750HpYy3b8nrA1Lnw6mTn/We83vRzu6BKJ4YBk/4Kb54FR3Y49AnCuN+6B+S3BtEGCX3ydxhwuRVGJyKSbG7nfcHc5NURrY6jvfU7+pcw8n8bPt/0d1jkIaDz4x/HVFYTh9bDoqth70LI72sdOw7yGObmVYvQsUjhYrEEjvkQYib2cruBEUh1FVIvmAcz34fnh/k7biAH+s+BrY/Yt1fvgaciBJ/ltqIQOhEREREREREREZEUcQpGKwx2SHIl8QkaQQIECRNq0VZr6n0ZERERERERERERyXwKRhOR9FN0lH0wmhdb/g1jbod9S5z79DwdJtwd2/giIpIcWQWx7RdPMFqo2rnt8Aaoq4i9rnRlhmHfUjjwAXSeYH2kKtRF0lvY5eej3tq720YwWl0lbH8W6g7But9H7p/MAKd0ldPRWlD8SJSXIGoO2G+PKRjNQ4hdJvPyNSkosf7M7e4ejAaw46X0CEYzHYLRjCRezioaAb3OgB0vOvf5+EfW13fgl5JWVhOfvRy5z4hvN/yOzyqwQq6cFuPX6zkz/tokdYJ5cPzDcNT/wv5lDT9P7XpB96nWa3PP0+CzV1ruWzw9/vk7j4Oz1sDud6xwyk5jrRDBQ+ut78Fux0HhwPjnyQROX2cnn/xTwWgikhpu532BKIMekyk3QohQfZ8h1zXdVnIJfHQbHHEIZPZLxbam4UoVm61AtnV3W+9VxBIu5rRNMle7HqmuQJrrMBTyuvt7PSGQDb3Pjnwu5ibPw2ueiIiIiIiIiIiIiLiqaCXBaADZRjbVZstgtDozhnvsRERERERERERERNKMgtFEJP0UjfS2sNtOxVb49DnY/aZzn3G/jm1sERFJnlgDyCriCEaLtIB0+3NQMif28dNNOASLr4ZP/tGwbfA1cMyfwAikrCxJU27BgfXKVsDWx6D/xYmvJ1XKVsGCmXBkh/d9jGDi6skkgSDkFUPVLu/7VO+33x7LTVutPRjNy9dk1A+tP/O6R+67+Z9w7D/iKskXToFvgSRfzjrmT/DiaKi1vykSgPevgB6nQH6v5NVV7+Bq9/YJ98DQG5pu6z/HfTF+j1OhoH/8tUlqGQEroKzzOPv2wdfYB3aVXOrP/NkdoPcZTbe1xcCvfrOjC0ZLl9dgEWl73M77grnJqyNakYLROo6G4x+1QkEbC+bBzIWw5Hr3EFxXEcLl9y2FV46xbyv7yPoQAeihUOK0dNZaeKKzf+MFcqzzxpxOzmHwkeR6OKcXEREREREREREREVflocO22wsyMRgtkEN1qKrF9lo9VEdERERERERERERaAQWjiUj66eSwYNert851bgvmWwuhREQkvWUVxrZfZTzBaBGCn1bc2rqC0bY/0zQUDWDjX6HXWdDn7JSUJGnM5sYZW+/Ohn4Xts5wvcOb4MVR0e9nRFgo35YE86Lrv3+JFc7QPITBKSzLTTSBbJko0tekeDr0n239PS9CcES9x4tg+Ldg5K0QyI6tri0PW79bdr/RsK3jaOh+Mhz9Uys0yY1ZZ7/dSPLlrIJ+cNzD8OaZ7v2e6Q2XmsmpqTGnYLTcLnDBXvu2nqdDdhHUHrRvn/QXf2qT9NbrLOh1RtMwmO4nWUFe4p+SS2HRVdHts/7/2bvP8LjuOm/j95lRsyT33uM4sR2nOE53qtNJIz2B0GGBZemwLGF3gST0Tlg6+wCBZcMSCJAQ0nvvxenNiXuvkmWVmfO8ODGWpTmj6Wr357rmss6//iRLU6RzvvMj2PNffB4xEKy8GZ7/Lmx5AeiFxwgpH9meUyb6cDBa1ZDs/ac8Ef8atWE6LLwOnroEnr40/717Cox75MPZ+yWAYbNh9sd7uwplUjMSjroa7rkg/vVpPhLVUD0UDvwB3P+OwtbIJexckiRJkiRJkpRVUyrzmyM2JodWuJLiVQWZz+tqL+TNRyVJkiRJkiSpjzEYTVLfM/UceGwstK4t/doLrij9mpKk0qtqKGxeUcFoPbw7WvNrha/dF73wvcztL//MYDR111NwYGdPfBbmfyu/9VPbofl1CJIwdI/85lZCy2q4tg/W1d8UEqbw6CfgkJ/s2lbIu1m2rsl/Tn+SLcRi/2/CrI/sDIxI5fjz3L4FFn0RVt4IJ92beUwYwuZnIExD24Zo7ZoR0c/ys9+ApX/sPmfTouj24g9g4d+BN0IqaobDiHm7Bluk+0gwGsDkU+HYm+D2k7KPe/5ymFPBUIN0e/xzlEN/GT8vWQt7fQae+s/ufeeuh9pRJSlPfVyyBo7+Kyz9E2x8PPoZnHJWzwEzyk+yNgrqT23Lfc4jH4GWlTDvy+WrS+URpqPHxm0rosfQuNddUn+Tb8hxpY05HNbd1729cffcgrsLDaLM9hqnZSWsf6iwddVPBNHjfKIm+l5I1ES3ZJfjRE2ncZ2Pa2HUQdHfxHz+3XdNPRtOeRz+HvOmS/t8Hp7+Um5rJWqif2e8HYbPhRsOzL8eg9EkSZIkSZIkqShhGNIcG4zWw5s89kHVQU3G9o6wgHPsJEmSJEmSJKmPMRhNUt9TNQSO+Rvc9zZoejlqqx0dXaA7Yr/oNnI/uOdCaHolv7XHHF76eiVJpdcbwWipQXYSwNqYkJsV11W2DvUPqe25j33u27D/N3K7+Bxg/cNw70U7n/dNPgOO+D1U1edfZ7k8/+3ermBgSBYQjPbyT2H2R6MLhnfIFgIWp2V1/nP6kzAmQAxgt7ftGnKU68/mDuvug5uPguNu2fX/sHkJ3H0ubHgkv/U6u+PUXY9rR8OC38Gkk6PjuM8r0Uu/zpp4IhxzHdx5WvyYpy+LgugSycrU1LoeCDP3NeyWfe7cz8K2ZfDq/4t+rkbOh8P/x1CGwSZRBdMvjG4qn+F7w4aH85vzwg+in9Pq/veO1IPWlhfgzjNg60u9XYlUeoU8l6+kuRfDXW/u3j7+2BwXKDAYLVtoc9Nrha2pNwQ7w8N2CRTLNXSs0/GO8cma7iFmOc2PW7NCz/nV+0bsAxdsg4feD69fGQWhBskobHrfS2DOp+HBf8ocDt5Zonrnx6MOgPM25TZvh5qRMGyvgj8NSZIkSZIkSRK0htvpiDknqX8Go1VnbG8PCzjHTpIkSZIkSZL6GIPRJPVNYw6BM16Atk3RBdp14yDocnFSw/T8gtH2+CDUTyptnZKk8qhqLGxe67o3LkzLM/QFIN1a2J6qvDANr/4aVt8Br/8vhCmYeg7se2l0oaJKL9+fj3UPwNgcAmnTHXDjIbu2Lb8W/tAAFzT3jXC0MIQlV/V2FQNDoq6wea9dCfO+tPO4kGC07SsL27u/yPY1SXQ5+W3KWfDa7/Jbf+098Px3osCJ138Pa+6Cl3+Wf509aV0P970VTn8R6sZkCUbLfEJfRUw+FY6/DW49LnN/2wb4fRWM2Bc2LYraZn0EZrwTRh9c/P5b+BFGAgAAIABJREFUXooCA1Mt0WNf3fj4sXVjs6+VqIJDfgL7fzU6rh7R/XW3pNIYe3j+wWgdW2HRpdC+aWcI4rK/Rn2zPgb7XQo1I0peqgoUhvC3Ob1dhVQeyfro1pdNPh0mvxmWX7OzrXpYdH+Z0/zTYNEX89831RI9F8/0/HTDo/mvVzFxoWM5BIwlMwSOFRM6FhdiZuiY+pqqIVGQ9ME/joIPh+6x8/dWNcPhqKugdQPc/y5Y8bfMayRqdj3eMa9tI9xwyM43DYgz9+LoZ02SJEmSJEmSVLCmji2xfQ39MBitquvvnt/QYTCaJEmSJEmSpAHAYDRJfVeQgNpR8f1143Jfq2G36GIFSVL/UNVQ+NxUS2Hz022F7znQdDQX939QiHRHFNDSk1Qb3P8OWPKHXduXXh3dTrgbxh1ZnhoHs1SewWiv/1/mYLSOFkjWRWF2iSq4bm78Gn/fD057JrpIupJSrVE4b6IKakbB6tuh+fXK1jBQFfp/ufL6XYPRCjlpa8vzhe3dX+QTjDbxpChsIN/Awxd/GIU7LL06//ry0bYxCm6b8/HosSGToJd/nTX+WJh0evzF7rAzFA2ir91LP4Ejr4KpZxe+79r74JZjdgbGvfSTKIAtTu2Y3NatGVl4TZJyM+0CeOHy/Oc9/53M7S/+AF78Lzh7JQzJEpCoyrn3Lb1dgVQ+E0/K7fV6bwoCOOJKeOWXsPJGqJ8Me30Ghs7Mbf7I+VA/FbYtzX/vts1RqG9n25bDox/tee6oA2HIpBxDx/INGDN0TCqL6mEwcr/MfbWjYNT8LMFoMSHfNSPh9Gfhue/Ak5/LPOaI38P0C/OvV5IkSZIkSZK0i6ZUfDBaY3JoBSspjeog8++e79p0A882PwZAMqhmRt0sjh5xCkOrhleyPEmSJEmSJEkqSh+/kkGSsqjNIxjt+NujoDVJUv+QrC98bnuTwWjF+kMjjD0SDvt17hcRF+qVX8GT/w7bV+1sGzYHDrw8uvh6h1W3wEMfgqaXs6/39GVw3E3lqXUwS23Pb/zSq+DA70cXpwM0vQYPvBvW3LlzTLIu+7pNr8Btx8OJ9+S398v/DQ+9f9e2XALztq+Dh/8Zll+TPWRKlbfhUbh+Piz4TRQCVcj/z7ZlcPPR0RqNu5W8xF6XTzBa9bDoguq78wzoallZ/lC0HR77BOz5QdjyXOb+3g5GAzjyD/CHPJ6vhCl49GMw+YzCgkXCMLqPCruExXUOYOusekT8RfeSKm/MAtj3Ulh0CRCWaNEQnvkqHFRA4JpKq21T9+BmaaAYtlf/ecORqnqY/ZHolq8gET2/u2lB/nNTzUCXYLQXftDzvGOuhcmn57+fpD4uiO9K1GTpq4a9L4bRB8N9F8H2NVH7yPmw8HrDcCVJkiRJkiSpRJpjgtESJBiSqPAbCpdAdZD5d8/r21ezvn31P46fbX6MR7bezaenfo3GqmGVKk+SJEmSJEmSitIHriSVpALV5RiMNvqwgRl+IEkDWSIJySGQasl/bkcTkOVCsY1PwIbHoG48TDplZ3BmLnulU1Ftg8Hae+DWY+HNr5Q+WKV1A6y4Dp77Dmx6snv/lufh9pPh6L9C8+uw9l5Y8n+5rb3q5ig8JshyEaLyl27N3F47GlrXd29vWQmrb4MJx0O6A249DpoX7zoml7C1tffCdXvDuGMhWQvVw6FhGkw8GYZM3DmufQu88kt47JOZ17nlKNjzw92fPza/Bg27wZjD4IXLYcXfe66ps8N+DcPnwo2H5DdvsKrLct889ZzsoVsbn4CbDoezlhQeZLn2brjlmDfu1wbIr0OaX4cVN2T/3s30rqBTz4LzNsCau+GuM8tXXzFuOwm2r87c1xf+/6qGwJFXwT3n5z5n2zJ48Ucw5+P577fxifgQtExqx/Q8RlLlBAHs+wWY8Xa4poTBw0uvMhitL1hzV+5jp50PE08pXy1SKQ2bA6MPGjxhq2MOg/O3wh+HQ5jOfV57U/e25dfGj0/UwLnroHpo/jVK6t8yvT7vasLxcMbL0e/EkkNg3FG+8ZMkSZIkSZIklVBTTDBaY3IYQT8877Qql989v2F123Ie3noXx470zXskSZIkSZIk9Q994EpSSSpQ/eTcxs18X3nrkCSVR1VDEcFoMZ79FjzxWSCMjkcdCCfcHYWbtG/tee10GySG5F9Tf7VtKay4Hqa8uXRrbnoGbj8JWlb0PLbQsJ4dgVwqnVRMMNrU8+Dln2Xuu+0EOOyKKMCsayhaPjY/G906qxkJx1wLY4+AjU/C9fv3vM5LPyq8hkwOuwJ2f2dp1xzoxh8LS//UvX34PlHA1BMXw3Pfip/f0RSFp6XbM/c3zoy+17KFGGxbAqtvh4kn5ld7X7T8b3DPhZDaln1cXIhYzcjo/n3GO2Hxb0pfX7HW3h3f11cuCp90Wv5Bro99Igotm/G2/PZ6/ff5ja8bm994SZXRuDvs/h549VelWa9lJbSsgiETSrOeCtP0Sm7jhu8NR/6hvLVIKk51I+zzBVh0Se5zuv4eKt0BW56LH7/flwxFkwa0LBfNJWtyW6J6KEx6U2nKkSRJkiRJkiTtoimV+VzhhuSwCldSGvXJxrzGv7TtaYPRJEmSJEmSJPUbfeRKUkkqQP3UnsdMOBFmvrf8tUiSSq+qobB51+8Pd5wB6x7c2RaG8NQX4Yl/4x+haAAbHt15sesrv+h57XRbYTX1ZxseKX6NjhZ47ttw/QHw931yC0Urxn1vL+/6g1F6e+b2uvFQPyV+3gPvioLwSq1tIzzyEdj8fG6haKU2cn/Y7a2V37e/m/EuGHf0rm1VDXDg96Kgq/nfhPpp2dfY9AyEqcx9h/43vKUdqkdkXyNbSEF/0boB7jyj51C0INFziFhdmcN09vhnuCiEUx4v3Zotq0u3VjGqhsCUs/Of98hHoG1Tz+NW3QK3Hgf/G8Bz38xvj6Gz8q9LUmXs84XSBjxeMyN6nn33+dFzI1VW6wZ47FM9jxsxD05+uPz1SCpedZ4XvXQNRtv6UvbxI/bNb31JA0dQ3dsVSJIkSZIkSdKg15TakrG9Mdk/39hmTv1+eY2PC4aTJEmSJEmSpL6oqrcLkKSC9RSMduRVMPWc0l5sKkmqnERt4XNX/C26Hf0XmHJmFMr19GWZxz73TRi6B2x5oed10+2F19Rfrc/z4v0wDRsfh0QNDJsLiSQ8+vHcgudKZfsqaF0PtaMrt+dAl2rN3J6sg+F7w7Zlla0HYOMTcN1eld83WQcLfgMJL2bNW3UjLLwBVvwd1j8AQybB5DOi++Adhs6EbUvi11h9a3xfojp67j/j7fDiD+PHLb8Wpp4H9ZPy/xx6S7oj+p5vehWCAO65ILd5uVx0PaTMwWgNb7xuG7k/jDkc1t1X/Jqdv2d629x/gyV/gLAj9zntm+Dxf4M5n4Rhc2DzM9CxDaqHwpbnIbU9eizLJWgnzm4XFT5XUnk17gZnr4bFv4bHP1P8eqnt0fPvjY/D0j/COWugbmzx66pn6Xa45ZjsY+Z8GkbsF4Xq+vxR6h+qh+c3vmsw2uans48fvk9+60saOBI1vV2BJEmSJEmSJA16zbHBaHm+eU4fceDQo3iy6UGebHqw58HEf/6SJEmSJEmS1BcZjCap/8oWjDbz/TDtvMrVIkkqvUQJnqredRZMOAnW3pV93EMfyG29dFvxNfU3K2+Ara9EYUU9aXoVbn8TbH0pOh6xH0w5q7KhaDvccRqcdH8UIKTipbZnbk/UwvjjYeWNla2nNx13C4zYt7er6L+qhsC0c6NbJo0zYfXt8fPrxsX37bjAeP63oH0LLP5N5nGrboG/ToN9Pg/7fKHv309segbuPAOaF+c/N5cAltosX9NSGNcpMOaIK+GBd0f/x4lqmPHu6Ov/8s/zW3PUQaWssDgj50VhiQ99EDryeEfVV35RvsfHIZNh4knlWVtSadSNgb3+NQrWevLfS7v21ePgLR1RQLHKa+VN2QOQRh8KB3y7cvVIKo3qPC96ae8SjPbM1+LHDp0F9VPyr0lS/5HtdwyGpEqSJEmSJElSr2uKCQZr6KfBaNWJav5p0r/x0ranWbz9BTrC6A2gV7Qu5cmmB7qNj/v8JUmSJEmSJKkvMhhNUv9VNQSGTISWld37DEWTpP5vR8BNsVbdVJp1YOAEo6Xb8xv/+Kfh6L/0PO7et+0MRQPY9FR06w3rH4SlV8eHLyk/6dbM7clamP5WePmnUTBeUQLY91JY9IUi1ymTCSfCcSW8P1Fmjbtn79/yQnzfjguMk3Ww4AoggMVXZB4bpmDRJTD2KJhwXCGVVkYYwv1vLywUDbIHye1Q3VjY2rmYeDKMOXznccM0OP426GiBsD0KnWhanF8w2uQ3w6gDS19rMXZ7K0w9F1LN0fH2tdA4A1pWwF93q2wt9VPhtCwhPZL6lslv7jkY7aT7YfsauOvM3Ndd+keYfmFxtalniy7N3j/jHZWpQ1JpVQ/Pb/yO54AArRtg4+PxY/e7rO8HM0sqn1L9vluSJEmSJEmSVLCmVOY3Pmzsp8FoAMkgyZyGecxpmPePtmeaH8sYjNac2koYhgT+zUqSJEmSJElSP5Do7QIkqSjTLujeVj0Mxh1T+VokSaVVNbS3K+huoASjpVryG7/sGmhZnX3MtmWwvvtJFL3qhct7u4KBIxUXjFYHtaPgpAdhWhHhGyPnw5tfhn0/D8fdUvg6mSSHROFXO275GHtUFFhy8I/h2Bvixw2ZWFyN2qmnYLRtS7s1pcIEzal6CKp37WjYref9Xvnv3GvrDZufho1PFD5/4ik9j6kdW/j6mSTrYNLpMP/bcPQ1mYMfqoZEr9sgChA7c0luax/wPTji95BIlq7eUknWQM3I6DZsVhTU1zAdTn6ofHvu/w2Y/QkYfyyMPx72+jc45fGdX1tJfd/wuTBiXua+2R+HM1+HMYfBlDdHAbK58nlw+S3/G2x4OPuY+qmVqUVSaeUbjNbetPPjpX+KHzduoaGV0mBQMzK+L1Ed3ydJkiRJkiRJqojm1JaM7Y3JPnjOchHigt7SpGlJN2fskyRJkiRJkqS+xmA0Sf3bvpdEFxTtUNUIR/8FkrW9VZEkqVT6YqjHQAlG69iW54QQ/jwB2jbGD1mRJTSqHOrGwR4fyD5m7d3w6CchDCtT00CW3p65PfHGc666MXDk7+HQX+a/9ryvwSmP7QzEmnA8jDq4sDp3mHI2vDUNF4Vw4TY48a6dt7emYfYne17j7JXR+GP+Cnt+CIIsL58P+H7m9lkfK6z+waxxZs5DO9JJPvLi5Yy6Zx2j7lnH6b+cyvqmTj/vdeN6XuT1K2HLiwUUWgFhGu4+r/D5QRXs/7Wex406IP/whzhzPwcXNMPCa2GvT0dhYblomBoFLA6Z1L2vbjyccHf08zznE1GoWn8y+mCY9ZHSr5uoju6bDvweHH8bHH8LzP8G1I4u/V6SyicIYMGvoX7azrZhs+GspXDg96GhU/ue/5z7uuvuh+v2hfU9BHepMOl2eOiDPY8zGE3qn/L9fdRrv9v58aan4sft8x+F1SOpf5n+ViBDQPjwuZCoqng5kiRJkiRJkqRdNcUEozXEBIn1V9mC3ppSWytYiSRJkiRJkiQVzmA0Sf1bzQg4/lY49Sk49iY4ZxWMP7a3q5IklUK2C1EX/HbXYMxKSbdXfs9yaM98YkeP4i7+3/gUPPT+wuspxJ4f6TkYDeCF78Nr/1v+ega6uFDArmG0M98DC6/Pfd39vw57X9y9PVsIWU+mvwWOvjoKGskkCODA78Kpi2L6E1Gw05AJue858WRomLFrW3II7P7O3NdQZEdAXg4ufvVr/HjFh9maGkZ7WMPfn2/g7B+ndw4YMjG3hW5/E6T6UPBlGMLa++Dv+8HWIkLbzt8M1Tm8k2myLrf7056cuQT2/2rhP79jDoHTX4DjboHDfxfdjr0JzngJxh1ZfH29af+v5/W9nZP9vpTb/6+kvm/k/nD6c3DiPXDifXDqM1A/pfu4unFQOyb3dTc/DTceAs98FZqXlq5ewapboWVFz+MMRpP6p5o8Q4M3Pgav/x88cTG8+MP4ceOPK64uSf1D3ViYdn739j0+VPlaJEmSJEmSJEm7SIdpmmNCwRqrBlYwWragt+aYcDhJkiRJkiRJ6msMRpPU/wUJGLEvTDwRqhp6uxpJUqlkC0abdEp0q7S4cKj+5oXvFzZv6Z+gZeWubU9/Ga6fV1w9DTNg7BEw51M9jx2xHxzwXdjnP2HUgXD8HVFIRDZPXxoFDalwcaFRQXX3tklvguNuhbFZgoyG7x0FHM79bMy6BbxUrR0DB3wPFvwmt/Ej9omCnKaeB3UTou/DPT8E52+Bqvr89q4ZDifcGYWyNUyHiafAsTdG36PKT83InIalw4D/XfPWbu33vAzLNr7x855r8EDzYlj+11wrLK8whPvfCTcfAZufKW6tfL6P9/86zPsqjJgX/Xzu9yXY78u5z9/zX6ChBOEv1Y0w4XjY7aLoNvHEgRH+VdUAh/6ydOtNfwvM+XTp1pPU+6rqo+fDYxdAIhk/bspZ+a/95H/A3/eB1XcWXp92tfrWHAYFUDu67KVIKoNsv4+Kc+9b4NlvxPfve0lxAeCS+pcFv4W9PgPDZsPoQ+GQn8Hsj/R2VZIkSZIkSZI06G1PbyNNOmNfY5Ygsf6oNqijKtP5nUCTwWiSJEmSJEmS+omq3i5AkiRJyijbhaiJ2ijAaNlfYN39latpIASjtW2EV39d2NwwDX+eBMdcB5NPhY1PwVOfL7yWiSdHa+0IfwhDeP678ePPXgFDJu7aNv4YOGc1PHVJFICWydaXYOMTMGp+4bUOdmFH5vZE5hNnmHBcdCtYkOOwquji0pnvLWybhqlw1FWFzc201hFXlmatwSwIYOxRsPburMM2dYxgVdvEjH1/XxTygaODKLAuV6//Hqadn0+lpZdOwQ3zYdOi4tea/pb8xgcJ2Ptz0W2Hto2w5CrY9GT2ucNmx4ccaqfxx0RhiRseLW6d2R+HAwsMOJXU/+3zn7D6Dmh6Ob957Vvg1oVw4XZI1pajssFlWQ6BqqMOjJ7XSOp/kvVRePb2VaVbc9zRpVtLUt+XrIH534xukiRJkiRJkqQ+I1sgWGNyALx5YydBENCYHMamjvXd+gxGkyRJkiRJktRfGIwmSZKkvmn4PvF9ydookOm4W+HqsdDRXJmaBkIw2sanINVS3Bp3ngYHXg5b8wxkANjr36L/u1EHwpQzozCeHYIAgiSEqcxza0bGrzv9wvhgNIhCjwxGK1y6PXN7XDBasTp/X3R19ipYcV308zjmcBi5X3lqUO+Z+d4eg9G2dMSHZ+6SQTL7E/BCDiFSS6+Gxb+F8cdD/aQcCy2xh/85/1C0fS+DZ77c/fFp5vuLr6dmJJx0Hyy7Bl74HlQNhTmfhEmnwIbHYPWtUD8VJp0KNSOK328w2PcSuPOM+P5Jp0dhR1VDYcxhUNUIw/eKHhfbNkaPnYZqSINbw3R408Ow/FrY9DQQwsu/gPZNuc2/8WA49amyllg2HS2w6Y3aRx/Se6Fjza9Hwcs9mfm+8tciqTyCAHa7KHtwe76y/Y5LkiRJkiRJkiRJFZEtEKwhmeXNnPupxuTQmGC0rb1QjSRJkiRJkiTlz2A0SZIk9U1Tz4lCYrqGeI0+ZGcYU9UQOOTncN/bKlPTQAhGKzYUbYdHP57f+NGHwYIrYNis7OMS1ZCKCUZL1sXPG75XFBiz4dHM/Sv+BvO/kVut2lUYQtiRua9cwWhkCbqoGxsFZ2ngmvEuaFkFT34udsimjvggrsbaTgc1o3Lf9/53Rv/u/R+w35cqG7jSuh5e+e/85w2fA8feCA+8F5oXQ+0Y2P+bMOG40tRVVQ+7vSW6dTb6oOim/Ew+PQoW7foYOvU8OPTn2QNAJWmHmhEw4x07j+d9JbpfeeknPc/dtCgK9mqYXr76ymHD43DvhTsDyUYdCEdf0zthpk9+vucx874Ge3yg/LVIKp/9v17aYLS6saVbS5IkSZIkSZIkSQWJC0arCqqpDbKcn9pPxYW9NWcJiJMkSZIkSZKkviTR2wVIkiRJGVU3wt7/vmtbohr2+eKubVPOhFFdwlkady9PTen28qxbSXEBV+XQMANOfwHO2wAn399zKBpAUETQ1kE/iu/b/GwU8KX8ZfueKeb/K5sgy0vVbH0aGIIA9r4Y9okPHtnYER8g1VjbKdCskKCpZ74Cq2/Nf14xNj5R4MQEjF8IZ74K566Dc9bAzPeUsjKV2uyPwYXbo9uZS+CCZjjqKkPRJBUuUQ0H/xgubIWp5/Y8/q6zIEyXv65SCdPw4Pt2hqJBFIb8yL9Uvo4Xfgiv/Tb7uPM2Rs9jfM4q9W+Japj85tKsNeGE0qwjSZIkSZIkSZKkojSntmZsb0wOI6jkm2hWSGNMMFpcQJwkSZIkSZIk9TVenSNJkqS+a5//hKP+BLu/B2Z9BE64CyafuuuYqgY47hbY/5sw9bwoSOfkh8tTT7qtPOtWUrqCwWinPxeFoeUT9jL6kML3G3MoHPbr+P7FVxS+9mCWLRAwUVWePYfuUZ511b8kh8R2beoYntsahX6PLu4h9KTUmpcUNq/z/Wvt6ChUTn1fsja6NUyFqvrerkbSQJGsgSOvggX/A7Vj4sdtfAIe/Xjl6irW+kdg4+Pd25f9FZperVwd914Ej340+5j9vw41IypTj6TyK1Vw7e7vK806kiRJkiRJkiRJKkpcIFhjcmiFK6kMg9EkSZIkSZIk9XcGo0mSJKlvm3oOHPZLOOi/YMxhmcfUDIe5n4GjroL9LoPaUTD3s6WvZSAEo4UVCkY74c4o9CVfe306c/tu78ht/rij4/se/lD+9aiHYLTq8uy554czt086NXO7BqZE/H3Ixo74kIKOdKeDMFXY3ot/U9i8Qq25I/85VQ0wZkHJS5Ek9WNBADPeBueuhWRd/LgXfwhLrqpcXcVYd19839K/lH//VCvcdiIs+b+exzbuXv56JFVOzaji15j1MZh2XvHrSJIkSZIkSZIkqWhxgWANMQFi/V1DTOBbc2prhSuRJEmSJEmSpMIYjCZJkqSBaca7S7/mQAhGS+cQjDbxlOL2GH0ojD2qsLkTToDhc3dtS9TAnh/MbX7t2Pi+1HbYvrawugazbMFoQZmC0UbuD2OP7LJXAvY03G5QyRLosqljRGxfR+cstNGHFL7/4v8pfG4+0h2FBbHN/ABUDSl9PZKkgeG0Z7L333MBpPrB65t198f3bX66vHs3LYarJ8CqW3IbXz28vPVIqqzaIoPRJp0GB10OiarS1CNJkiRJkiRJkqSixAWjNQ7QYLS4zyvu6yBJkiRJkiRJfY3BaJIkSRqYhs8p/ZoDIRgt7CEYbcR+sPBvsP/XoaaAi4AnnADH3QRBUFh9iWo44S6Y+T4YOgsmnQrH3gBjj8htflVD9v7NzxZW12AWZglGS5QpGC0IYOH1MOsjMGwvmHAiHPUXmHx6efZT35Ssje3a2DEyti+VDncejDoQhkwqbP/73wHbVhQ2Nx8rb8jeP+pA2Otfo/vl0YdGx/O+Bgd8u/y1SZL6r8bdo8eMbFZeX5lairHuvvi+7WvKt+/q2+HaPaB9U+5zqgfmyfLSoFUT/5ojJ3t9ujR1SJIkSZIkSZIkqSSaU1szthuMJkmSJEmSJEl9k29TLkmSJOUqNcCD0apHwEH/BUEC5n4WZn0U/tBD0FhXR/8VquqLq7F2NBz634XN7SmQ7daF0b/jj4W9/z0KclN26SzfM+UKRgOoboy+HzV4JeKD0ban62L7OtKdDoIEHPILuOdcSG2P2urGwfS3wguX91zDXybDOaujOeXy+h/i+w76Icz68M7juZ8tXx2SpIFn+kWw4dH4/rvOgrNXwpAJlaupJ02vwiMfhy3PQVUjbFsWP7ZcwWhhCI9+HMJ0z2M7Sxb5OkhS3zJsduFzZ/4TjDumdLVIkiRJkiRJkiSpaE0dmQPBGpJDK1xJZcQFo21LNZEOUySCZIUrkiRJkiRJkqT8GIwmSZKkgWvIJGhZUbr1Us2lW6u3ZAu5Om0R1E/ZeVxIwFmxoWilMHwubH42+5jVt8Pae2Dh34EAkkNg1EGQrKlIif1K2B7fV85gNCkZH36WCuNPyurommEy+VQ47TlYeWN0HzXhJBgyHvb4Z3j1V/DcN7PXccOBcMYr5bt/WP9gfN+088uzpyRpcJj5Pnj6MmjfHD/mzxPhmL/B+IVQlWcocqk1vQrXzMx9fGuZgtGaX4NNi/KfVzO85KVI6kXjjoH6abBtya7te3wQRh8CYQoe+kD3eVPOgkN+3nNwuyRJkiRJkiRJkiqqKZU5GC0uQKy/iwt8CwnZlmqmsWpgft6SJEmSJEmSBo5EbxcgSZIklc2+l5R2vScuhk1Pl3bNSgtjgtGGzd41FG2HyW8ubz3lMOm03Mal2+G2E+G2E+DmI+CGA6DptbKW1i+lswSjBQajqYwStbFdqZqxsX0dqQyNjbvBnh+EGe+IQtEAhs+B+d+AC1uy17FtGay5o8dyCxKG3YMWdpjzaagbV559JUmDQ81wOO6WnsfdeTr8bS/Y8Hj5a4qz9t78QtEAtq+JHktLrZDXfI17RAFKkgaORDWccAeMPQKCBNSOhXlfg4N/AjPfC3u8H858DcYeFfVXj4B9Pg9H/clQNEmSJEmSJEmSpD6oObU1Y/tADUbL9nnFhcRJkiRJkiRJUl9iMJokSZIGrmkXwMj5pV3z3gtLu16lpWOC0YKqzO17fw6qMr9rXDdTziqsplKb9eHC5m1+Bh77RGlrGQiyBaMlDEZTGSWzBKMlGmP7OtL57lMHx92afczGJ/JctActK+H+d8GVCUhtzzxm2gWl3VOSNDiNPgiO+L+ex21bGgUFh/k+kJZAqhXue0cB81rggffApkXF17DxCXjoQ3DXOXD/2/OfP+/LBiFJA1G/5G7VAAAgAElEQVTjDDjxHjh/C5yzGva+eNef9YbpcOJdUf9562G/y6KQNEmSJEmSJEmSJPUpqTDFtnRTxr6BGozWkIw/99dgNEmSJEmSJEn9gWfnS5IkaeCqGQ7H3wbzvwNTz4Fhs2HKmbDvpXDYrzPPGTEv+5qbn4U195S81IoJ44LRkpnbxxwGJz8Acz8Hu78nClU44yUgw0X/084vWZlFaZgOJ9xd2Nxlf4V1D+4MKkp3wPa1EIalq6+/yRqMFhOoJ5VCsi62K5VoiO3rSBWw14TjYOq58f3tmd8ttCDb18K1e8Li32Qf1zC1dHtKkga3yadB9fDcxt755vLWksnKG6F5cWFzF18BNx0B6x8pfP9Vt8JNC+Dln8KyP0N7nieAj5gH0/t5gLak7KoasocfVjUYiCZJkiRJkiRJktSHbUs1EZL5PNBsAWL9WU2iltog8zl4BqNJkiRJkiRJ6g+8il2SJEkDW80I2OtTwKd2bQ9D2PoiPPPV6DhRCwdeDnt+EG47GVbdFL/mLUdB4x5wxJUw+qCylV4WscFoWV4aDJ8L+39117bDfgUPfQDSbdHxnE/B9LeUpsZSGHtE4XNvOiz6t2G3KBSsZTnUjonC9CafVorq+pdswWhBdeXq0OCTqI3tSsWcsAWQKjTHcMFvYemfMve9fiXM+1KBC3ex6IvQ0Zx9TKIa6saXZj9Jkqoa4Kir4bbjex674rooELS6gid+L/tLcfM7tsLz34Uj/rew+c99e2cwciEmnVr4XEmSJEmSJEmSJElS2WULAmtMDqtgJZXVkBxKa0f3v4c3p0r4RqGSJEmSJEmSVCa+fbkkSZIGpyCAeV+Bs1fBCXfDuWujUDSAZHzgzj80vQy3nQBtm8tbZ6mFqcztiTwzk3d/F5y7Dk68B85ZAwd8B4I+9PIiCGDqucWt0fxaFIoG0LoO7jwDNj1TdGn9TpglGC1hMJrKKJktGG1IbF9HzN1cj6qGxAc8Nr0CTa8VuHAnqTZ46Sc9j6ub0LfuUyVJ/d+E42C3t+c2dsMjpd9/+1p46afw1Bdh9Z279m1+tvj1X7+ysHlhCKtvL27vurHFzZckSZIkSZIkSZIklVVzlmC0hmQF3ziswuJC37IFxUmSJEmSJElSX+FVtpIkSRrchoyHcUdCdacTG2rH5Da3fTOsuqk8dZVLuiNze5BnMBpEX7OxR/TdIIBcgx9yFsKSq0q8Zj+QNhhNvSQRH1KZDuJD0zrSRexZleUktxe+X8TCb7j5iNzGjTum+L0kSeqqblxu40odBrz1ZbjhIHj4Q/D0ZXDrQlh06c7+7WtKs8/Gp/Kf07EV0q09j5v3FahqzNw38ZT895UkSZIkSZIkSZIkVUxTamvG9tqgjppE/Llo/Z3BaJIkSZIkSZL6M4PRJEmSpK7yCfp6+svlq6McwphgtEQBwWh93ZQzYeis0q65ucQhEf1B3PdMkIhuUrkEydiuVBAfmtaRKmLP6mzBaJfDvRfBnyfBldVw7azoMSDMMYlt3QOw4ZHcxk5/a27jJEnKR3XmE5672fx0afd95iuwbcmubYsugRsPi0LYWksUjPbwh/Kfk1MoWwCzPgaH/KJ7MPC+l8HwOfnvK0mSJEmSJEmSJEmqmLggsIZklvPFBoCGmGC0ZoPRJEmSJEmSJPUDAzD9QJIkSSpS7bjcx6a2l6+OckjHhVwNwJcGQQALr4Nr9yzdmsv+Urq1+ot0e+b2oDpzu1QqVQ2xXamq4bF9HTnmlGXeszF7/+tX7vx460vw1Odh4+Nw1J+yz0t3wE0Lcqth7BEw8eTcxkqSlI/q+MfPXTS9CusfgbX3QstyGHskTDo1e5hy81JYdx90NEXHVUNh3NFQNx6WX5t5zvoH4e/75Pc5ZLPuPkinIPFGuGpHM6y5K3qtM/7YzPXnEoxWPRyqG2G3t8Dog2H1rdHrwHELYeR+patfkiRJkiRJkiRJklQWccFojTHBYQNFY1Xm4Lem1NYKVyJJkiRJkiRJ+RuA6QeSJElSkeryCEZL1JSvjnIIB1EwGkD1iNKuF3bAhkdh1IGlXbcviwtGSxiMpjKrnwRDZ8HWF3dtHzKRdM3Y2GmpYoLRqgt4B9ClV8ODH4CDfxT/c5FrqOK4Y2DBb3cGukiSVErVOZ7Qverm6LbDc9+CIAlnvgb1U7qPf+mn8OjHMjxvDGDfS6F1faEV52/dfTDuKFh7H9xzHrSsjNqHzYaFN0DjbruOzyUYraZToNzQmdFNkiRJkiRJkiRJktRvNA/WYLSYzy8uKE6SJEmSJEmS+pJEbxcgSZIk9TlVjbmPHSjBaIkBGoxWMxJi3vGuYHefC2FY2jX7MoPR1Jvmf3PX4MYgAfO+ljX8rKOYYLSgwO/rV34Bv6+BRV+CVGv3/rX3ZZ9/URjdTrgDGqYWVoMkST1JZ3iMylWYioJAu9ryUkwoGkAIi75Q+J6FuOVouPetcPMRO0PRALa8ANfM6D6+NYdgtFwD5SRJkiRJkiRJkiRJfVJTamvG9oYBHowW9/nFBcVJkiRJkiRJUl9iMJokSZLUVe2Y3Mf2t2C0dEwwWjBAg9ESSZhyZua+428rbM3m12Hri4XX1N+kWjK3D9TvGfUtU86Ek+6DOZ+Gvf4Vjr8Tdn8XqSzZhB2pIvaL+37P1aIvwG0ndg9PXH5N/JwDf1DcnpIk5WrIpOLmr7x+1wC0jm3wzFfig3RLbeIpuY17/ffxfQ99aNfjbct7Xq96eG77SpIkSZIkSZIkSZL6pKaYILDGUr/xbh/TGBOMFvf1kCRJkiRJkqS+xGA0SZIkqavRB0GuJzsk+1kwWhgTjJYYwCFXB/0Qxi3ceTx0Fpz2DIw/tvA119xVdFn9wiu/gvvfkbkvUV3ZWjR4jT4YDvg2zP8WjDsSgFQ6fnhHlr4eFRuMBrD2blh9a5d1t8WPL+a+SJKkfIw5AoIi/yTQ0RT9+9JP4K/TYPEVxdeVqyETYPShxa3x8k+joOMdNj/b8xyf90qSJEmSJEmSJElSv9YcF4wWExw2UDQmM58L3ZLeRirufGJJkiRJkiRJ6iMMRpMkSZK6StbB7I/mNjbRz4LR0jEnMgQDOBitZjiccDuc8TKc/jyc9iwMnxv17f7uAtccUbLy+qx1D8GD743vNyBCvahswWgTTihicie3nQh3nwu/r4E/joaWlZnHJethxD6l2VOSpJ7UjYHd31PcGh3bYM098PCHoXV9aerKVaIW5l4MBMWt89fdYNUt0cebn+55fLvvlC1JkiRJkiRJkiRJ/VlTTDBawwAPRmuICUYDaEptrWAlkiRJkiRJkpQ/g9EkSZKkTPb7Mkw8uedxQT8Lh4p7h7eBHIy2w9CZMGw2JJI726ZdWNhayYbS1NSXvfqr7P397XtfA0rWYLRUEQuPWQA1o4pYoJOlV0O6Hdo2xI85/dnS7CVJUq4O/hns/3UYfVhhrwE6tsGzXwPCkpfWo0QNTD0LFv4dJp9R3Fq3nQiPfRq2vtTz2LbNxe0lSZIkSZIkSZIkSepVcSFgjQM8GC3b59ccExYnSZIkSZIkSX3FIEg/UCZBEMwB5gFTgCHAdmAN8DLwZBiGzUWsXQ0cAUwDJgJNwArg8TAMXyuuckmSpAoJAtjni7DyxuzjwvbK1LPD5mfhyf+ENXdC/VSY/y2YeGLu8+OC0RKD9KXBhBNhj3+Gl3+a37x0W3nq6Ut6+pokDEZT78kWjJatr0eJKjj8d3D32ZDaXsRCOagZCfXTyruHJEldJZIw97PRbc09cMtR+c3/26zy1JWLZE3076Q3RbdrZ8PWFwtf7/nv5jau3WA0SZIkSZIkSZIkSeqvOsJ2tqe3ZexrTA6tcDWV1ZDl82syGE2SJEmSJElSHzdI0w8GpyAIRgAfB95LFFoWJxUEwRPAH8Mw/Hoe648FLgUuBEbFjLkP+G4Yhn/KuXBJkqTeUjeu5zGplvLXsUN7E9x5BjS9Gh23bYDbT4YT74Gxh+e2RjomGC0YpC8NEkk4+Mewxz/BY/8Ka+7IbV66taxlldzGJ6FpMQzfC4bN7nl8mEOylMFo6kWpML6vo5hgNIiCVt78Kqy6BWpGwcj5sP6B6Gdo2zIYdQCk2+GF78OmRYXvM3yfKIRTkqTeUtXQ2xXkJ1Gz63H91OKC0XI1453l30OSJEmSJEmSJEmSVBbNqa2xfY3JYRWspPKqgmrqEvUZg+GasnxdJEmSJEmSJKkvGKTpB4NPEATnAz8BRucwPAkcCEwBcgpGC4LgFODXQE/pIYcDhwdB8Dvgg2EYNueyviRJUq/IKRhte/nr2OHln+4MRfuHEF78Ue7BaGFMMFpiEL80CAIYdSAc/jv4yxQgS+LSDum2spdVEmEI974VlvzfGw0BzPsq7H1x/JxUK9xwUM9rG4ymXpTKEn6WrS9nQybCjHfsPK4/p/uY3d8Niy6Fpy8rbI9JpxQ2T5KkUunvwWjD5sDqW8u/77Tzy7+HJEmSJEmSJEmSJCkvYRiypn1F1uAzgHXtq2P7GgZ4MBpAY3JoTDDalm5tqbCDFa1LaA+7nyObDKqYVDON6q5/u5ekCujpPn9E1WhGVY+tcFX9W1u6lfXtaxhXM4lkkCx4nVSYYk3bCkZXj6MmUVvCCiVJkiRJMhhtUAiC4IvAJRm6lgAvAmuBOmAisC+Q1xVxQRAsBP4CdP7tdgg8BrwKjADmA2M69b8NGBYEwVlhGJbisnVJkqTSq2qE6mHQ3v2P//+QaqlcPU/+R+b2DY/kvkY6Jhgt8KUB9ZNg7mfh2RyygVOt5a+nFF75RadQNIAQnvwcTD4DRuzdffza++HmHEP26qeUpESpENnCzzpSFSoiSMB+l0LNCHjsU/nP3+MDpa9JkqR89HYwWtVQGDoTNj6R2/iuJ87NeAe89KPS19XZ9Itg9MHl3UOSJEmSJEmSJEmSlJcl21/h58u/zoaOtUWt05gcWqKK+q7G5LCM4XDNXYLRHtlyN79b9SNaw/g3jK4KqjlrzDs4duQZBEFQ8lolKZNl21/j5yu+ljXoEmC3ull8YPLFjKgaVaHK+qcwDLlxw5+4bt3vSdHBkEQ975zwceYNPTTvtZ5qeogrVl5OS7qZJFWcNuZCTh51no8RkiRJkqSSSfR2ASqvIAg+TfdQtCuB/cIwnB6G4YlhGF4UhuE5YRguAIYBRwLfA9bnsP4U4Gp2DUW7F9g7DMODwjC8IAzDk4ApwMeB9k7jzgC+XOCnJkmSVH5BAOMWZh/TUaFgtHQHpLu/AxsAW1+EdI5JQKHBaFnN+yoccy1MPSf7uHQ/CUZ7/vuZ21+4fNfvmebX4alLcg9FA5h8ZlGlScXIGoxW6ejtOZ+E426F2Z+MwlMmntLznIXXQ+3o8tcmSVI2vRmMtu9l8KaH4U2PwVFXw6yPwv7fzP442vVdp0cfAuOPLX1tiRrY88Nw+JWw4DdRGKokSZIkSZIkSZIkqU9oT7fzo2WXFR2KNiRRT3IQnDvbkByWsb2pUzDaytal/HLld7KGogF0hO38ce0veX7bkyWtUZLipMIUP17+pR5D0QBe2/4iV6z8XgWq6t+eanqIa9b9Dymi60pa0tv4+YpvsL59TV7rbGhfy8+Wf52WdDMAKTq4Zt3veLLpwZLXLEmSJEkavAb+b3AHsSAI5gFf79TUDlwUhuEf4+aEYZgmCja7Nwhy+g3/pcDITsf3ASeE4a6/DQ/DsBX4QRAES4A/d+r6VBAEPwvD8PUc9pIkSaq8cUfB8mvi+1MVCEYLQ3jum9nHtCyHhmk5rBUToJbwpQEQheFNPh0mnQp/ngTbY/6ImuoHwWiLfwtbnsvc98ovYOUNcNgv4YnPwYZHcl83UQ1zPg27v7skZUqFyBqMlgorV8gOE46Lbjusvh0eeB80L951XKIG5n8HJr2psvVJkpRJbwWjzfoo7Pv5ncdTz45uEAX2xukajBYEcNiv4PaTYcsLpatv/rdh9kdLt54kSZIkSZIkSZIkqWSe2/Y4W1Obi16nMSYwbKCJ+zybOrb+4+MHt9yR15oPbrmdvRr2L6YsScrJC9ueYlPH+jzGL2JD+1pGVY8tY1X924Nbbu/WFpLm4S138qbR5+e8zsNb7iKk+wndD265nf2HHlZUjZIkSZIk7WD6wQD1RqjZL9n1//iD2ULRugrDsKOHPfYE3tWpqQ14d9dQtC5r/iUIgis6zasFvgi8N9e6JEmSKqq2hz+KbV8F6RQkkuWrYe298OR/ZB/T9EpuwWjpmKd4g+Bd7/ISJGDuZ+GxT2XuT7dVtp58pVrh/ndmH7NtKdx2Yn7rjj0Cjr2x90I0pDdkyz7LFppWMeOPhdOfj8JdqhuhfQu0bYIR+/jzI0nqOxLVvbPvnv8S35eszdJX072tYXr0mLv1FXjpJ/D8d4qvr35q8WtIkiRJkiRJkiRJkspieetrJVlnYm0O59wOAI3JoRnbm1Nb/vFxvl/TFa1Z3vRMkkpoeQH3NytblxiMlkXc13RF65I813ktZh0fIyRJkiRJpZPo7QJUNucDB3Q6vjUMw1+VeI+LgM4JIFeHYfhSDvO+0eX4giAI6kpXliRJUgnlEmBz2wnQ3hQFpJXDq/+v5zFbX8ltrbjs24TBaN3M+WR839NfqlwdhVh1a3nWPfgnhjqpT8gWftbRF4LRIApvGbYnDJkIw2bDmEP9+ZEk9T3TLuzeVjsGqvN8Z+wZ74JDc3jdMvEUGD4nvj+Z5dfEiSyhaUNnwt7/XprA5waD0SRJkiRJkiRJkiSpr1rVurwk6xw+/ISSrNPXNSQz//2/qVMw2uq2ZXmtubptBemwr5yoJ2kgW9OW/33+6gLmDBbt6XbWt6/O2Jfv1y1u/Lr2NbSn2/OuTZIkSZKkTAxGG7g+2OX4q2XY4+wuxzkFr4Vh+BzwYKemBuCkUhUlSZJUUrmE2Ky5A64aGt3ufDNsK/Ef0179dc9j1t7d85imV2HVzZn7ShEgMBCNPz5ze2obtG2ubC35aMoxKC8f+14CI/Yt/bpSAfpFMJokSf3BAd+NAjx3qGqABf8D7Vvi53RVPw0W/Bomndrz2PHHZO+vGR3fl6jJPrd2FBz2awg6/dljzOEw93O7tmWTrIehs3IbK0mSJEmSJEmSJEmquHxDvLqaVDONd0/8JPs1HlKiivq2xh6C0drTbaxvX5vXmu1hGxs71hVdmyT1ZFUB9/mr21aUoZKBYV37KtJkPtF6TdsKwjDMaZ0wDFkT83UOSbOufVXBNUqSJEmS1JnpBwNQEAR7AJ2vMHsNuL3Ee0wA5nVq6gDuzWOJO4BDOx2fAlxTfGWSJEkllksw2g6pFlh+bXS7oCm/uXHSHbmNW/wbOPT/QSLmKX5qO9x8ZPx8g9EyS9bG9y37K+z+zvj+MITNT8P6R2DkfjByfu6BDMXavqY068z9LAzfJ6p9xN6lWVMqgazBaKnK1SFJUr9XPwlOeQLW3gNtG2Hs0TBkfGFrDZmQw5gp2fuHz43vS23ref0Zb4Pxx8Lq26F+chSMlqyB3d8Nm5+BMA3pVlh9G6y7HzY/22X+O6F6aM/7SJIkSZIkSZIkSZIqLgxDVrdlfvPit43/MIcMW5h1fhBAVVBdhsr6rrhgtObUVgDWtq8kjAnJ+cy0b/CtJZ/N2Le6bTmjq8eVpkhJihF3n3/BuPezsm0pd2+6oVtfIWFqg0Xc1xOgNdzOpo71jKwe0+M6mzs20Bpuz7rPxNqpBdUoSZIkSVJnph8MTMd2Ob41zDWuPXf7dDl+KgzD5jzm39fl2JQFSZLUNxUabvaHRjhnNdQV+Uf/psW5j11zJ0w4PnPf0j9Dy8r4uYlkfnUJNjwaH4wWhvD4Z+D57+xs2+0dcNgv48PrSqk1v3fv62b6W+HgH0PNiNLUI5VY1mC0LH2SJCmDZB1MOKE0ax35B7jngvj++p6C0bL8mjjVmlsN9ZOigLTOhs2KbjvsdhF0tMAzX4FXfgHJeph2Acz7cm57SJIkSZIkSZIkSZIqblPH+tgglkm106hODK7Qs1w0JjO/OVhruJ32dBurYkJyEiSZVjeT4VWj2NyxoVv/6rblzG2YX9JaJamzpo4tNKW2ZOybVDuNkMyXy67JEv412PUUGre6bXlOwWjZAtZy6ZckSZIkKVeJ3i5AZXFIl+P7AYLICUEQ/CoIgmeDINgcBEFzEASvB0FwSxAEFwdBsFuOe8ztcvxynjW+0sN6kiRJfUOywGA0gEWXFr//9tW5j33+e/F9K67PPrdlVe77DCYd2+L7qurj+9bcsWsoGsBrv4UlfyhJWd2k2mDRZXDjArh2Nrz8s8LX2vdSOOJ/DUVTn5bKEv2dLTRNkiTlaM9/KWzemAXZ+4fumb2/fgrUji5s7XxVDYmC0M5ZDWcuhvnfAE+SlyRJkiRJkiRJkqQ+K1vQyviayRWspP9oSA6L7WtObWV1TEjO2JqJJIMqJsR8XXsK15GkYmW/z58Se7+/ObWRllSWawAGsZ5C43INNDMYTZIkSZJUKQajDUwHdTl+7o3As1uAm4F3A3sBw4B6YBpwPPA14MUgCH4UBEGWlAcA9uhyvCTPGl/vcjw6CIKRea4hSZJUftnCr3qy/NrC5jUthqbXoo/bN+c+b8V18OoV0LIS1twNbW/M7dgWhXJl07h7QaUOeB3N8X3JLN8br/wyc/urvy6qnFj3XgiLvgjrH4CtLxa+TpCA3d9VurqkMskWftbWUbk6JEkasKaek/vYsUfs/Lh+Ckw4KfO4cQuhflL2tYIAdn9f9/bG3WHkvNxrkiRJkiRJkiRJkiQNOHFhXMOSI6hPNla4mv6hMUswWlNqC6taM4fX7AhEGxcTPNRTuI4kFSvuPn9Iop5hyRFZAzHXtK8oV1n92uq27F+Xnvr/Ma7dYDRJkiRJUmVU9XYBKouJXY7rgYeBMTnMrQb+BVgQBMFpYRiujBk3osvxmnwKDMOwKQiC7UBdp+bhwMZ81pEkSSq7qobC57asgDAdhU3lNH4V3Hk6bHg0Oh59KOz2tvz2fODdOz8OEjD7kzByfs/zchkzGKWyBKNlC8177X8yt6+6ubh6Mnn2m7DsL6VZ66iroWF6adaSyihbMNq2tsrVIUnSgDXheDjoh/Dkv0P7luxjZ3141+MFV8A958Hae3e2jVkAR1yZ2977fjEKe94R7jx8bzjqz7m/rpIkSZIkSZIkSZIkDUhxQSvZwnEGu/pkIwEBIWG3vqbUFlbHBA+Nr5kCwIQ3/u1qlaE3ksos/j5/CkEQMLJqDNVBDe1h9xOHV7ctZ3rdHuUusV8JwzA2bG6HXEMvewpQW5NjwJokSZIkST0xGG1g6hpa9it2hqI1Az8FrgeWAQ3APOC9wJGd5swH/hQEwTFhGLZn2KPrW6m0FFBnC7sGow0tYI1dBEEwDhib57SZxe4rSZIGsGKC0cIUtG2E2tG5jb/vbTtD0QDWPxjdCt4/Dc9/B5JDso8btxDGHl74PgNZR5ZgtKZXK1dHnPYt8MRni1+nbjyctQwSvkRU/5AtGO1p/5YuSVJpzPowzPwnaH49el1z02Hdx4xbGIWedTZkApx4D2xbAduWQf0UqJ+U+75V9XD4b+DgH0LremicUdSnIUmSJEmSJEmSJEkaGOICXcbHhHcJkkGS+kQjzemt3fqiYLTMITgT3gibiwud29yxge3pFuoSPZyjLEkFirvP33H/lAgSjK+ZxLLW17qNiQt9HMyaUptpSWe5NgL+P3v3HSbJVd/7/3Oq0+Sd3Z2ZnrC7ykI5gIRAIAzYGOk6EJzANjYY44BzIjj8CNe+Nk6P8c/GXCcMBmNjDAZsIRDJgBICIUArIVZC0oaZ7pndyalTnfvHaKXZmTrdVTOd+/16nn12+5xT53ynt7u6e7rqU8oWwgajlR+34i9pubiovvhA6PoAAAAAAAjCWe9txhiTkpTa0nz6N/z3S7rRWntsS/89kt5ljPkNSX+6qf2Zkl4v6fcDltoajLa+g3LXJO0tM+dOvFbSm6owDwAAwAZv61uriNanwwWj5U5J2c/sbi2XUpkM28t+T7roNyQvUZu1W125YLQj75DOf42096ot7e+sbU2bHftwtPE9B6WuUalrWFqbkhL9Uvr50iWvJxQNLaVcMJok3T9pdcm4qU8xAAC0s1hKGrhw498vvFu666ek+W9s3L7sTRvvI40XvG3PeLRAtK0SAxt/AAAAAAAAAAAAAACQO4hl1BHehQ29sf7AYLTjuUeVs8Gng50Om3MFo0kb/x9ndZ1fnSIBYAvXPn9zGOZIcsIRjBYu4KuTZELcJ7OFGeX9nJJlzqEp+HnNFqYrzpXNnyAYDQAAAACwa5z53n5ijvYFBYeiPcFa+2fGmAlJv7ap+deMMX9hrV2usK6NWOdOtwEAAKgvs8tgnfVpac/FlcedvHN36+zE8LOkK95a/3VbSXG1fP833io950NP3i7lpXvfUH4ba3f/uDrtkXeHH2vi0vc9JMWS1VkbaKBShU+Tf/wJq396FcFoAABU1f5rpP/19UZXAQAAAAAAAAAAAADoQOv+muaLpwL70qkDge3Y0Bcb0HRhclv7w2v3O7dJJzcuhLY3PqSESapg89vGZHLHCUYDUBMFv6CThWxg3+bARld4Yza/fZ/X6cKExVlZzRSmNJE62zlmujApG+K04Ez+uM7rCXEeDQAAAAAAZXiNLgDVZa1dleQHdP15uVC0TX5PGyFqp+2TdFPAuK1Bad3hKiy7TaXwNQAAgNaz8li4cTboLVyNnfvq+q/Zas55Rfn+zK1n3p67VyosBI897QsvkXLBB+dEkp+Tsp8NP77nIKFoaBulCrvM99xBDjcAAAAAAAAAAAAAAAAAtItygS6jjmAcbOiLDwS2P7Z+JLB9ILZXPbE+SZJnvCdC0raaLlQO2QGAnZgpTMkGniIbLhhtOj8pvxHnZzSxMMFoG+PKh8qFDZ0Lux4AAMqodT0AACAASURBVAAAAOUQjNaeVgLa3hNmQ2vtiqQPbWl+bsDQZg1Ge4ekyyL+eVEV1gUAAO3s3FcGtz/lV6SeQ1L/he5t7/xJaf5wiEUa8MVb78H6r9lqzvnJ8v3FLW9h83OV5zz+EenmK6Xs53ZcliTpob+PNn7vFbtbD2gilYLRAAAAAAAAAAAAAAAAAADtI5M7HtieMEntjQ/XuZrW0hvrD2wv2mJg+9agoRFH8FAmR+gNgNrI5oP3+Z48DSdHn7jtCsYs2LzmiidrUlurCh+MVn5c2HmmC+EC1AAAAAAAKCfe6AJQE/OSNv/WOmutfTTC9ndKetWm2xcHjFnYcjvStwjGmD5tD0abjzJHEGvttKTpiLXsdlkAANDuLv0dKfNpafXYk21X/qF06Rukp/3Fxu1PXCed+lLw9nf8uHTgxdKJ/5ZSQ9L5r5EOvuTMMbZUm9rL6Tu3/mu2mqHroo0vbH2b7LB2Qvr086Xh66XEXmltUko/V7r8LVKir/L21kr3vi5abRe8Ntp4oIkRjAYAAAAAAAAAAAAAAAAAncMVxJJOTsgzXp2raS19sYFI47cGo40mDwSOCxuOAwBRufYvQ4lRxU3iiduu4MbTc+xPjFS9tlZV72A0XiMAAAAAANVAMFp7+pakg5tuT0Xcfmsc+/6AMUe23D4r4hpbx89aa+cizgEAAFAf/edLL7xbOvERafW4NPoCaeSGM8ck9ri3n7t3489pUx+XznuNdOFrpT2XS15MKq7WpnaXvnOl3nPqu2YrMp501sulx97vHuMXJe/xj1aFxQiTW2nmtidvzt0jnbxDesEXN9YNsj4tLT0s3fXqCOtIGnqmlP7OaNsATSxMMNq/3OXrR6/jgDcAAAAAAAAAAAAAAAAAaHXZ/PHAdldoF54UNRhtdEvQUDo5HjhuujAp35bkmdiOawOAIBlHqNZo6sx9fpfXrT3xfVoozm4bm82f0CW9V9ekvlZT8As6WciGGlsp0Gw6ZODZTD6jki0qZjiFHQAAAACwc5wh3J4Ob7mdi7j91vFdAWMe2HL7/IhrnLvl9v0RtwcAAKiv7rR0/s9IV7x1eyiaVD4YLcjDfyd9/GrpYxdI84el4kp16gxr4kWSMfVds1XFusv3l9af/HdhYXdrnbxj489Wfkm662ekD6WlW6+XFre+Hd/khv+QzvvpJ2+nnyc98583AviANlGylcf87/8KMQgAAAAAAAAAAAAAAAAA0PRcITnpLSFe2C5qMFp6S/BQ2hE+V7QFzRZO7rguAHBxhXMF7fNdrwOVAr46yclCRlYhrkqtjfvN2uBjsK21oe9XX6XQYWwAAAAAALgQjNaevr7l9mDE7beOPxUw5r4tt68wxvREWONZFeYDAABoLYloBw08YeUR6ebLpLt/Ltp2z3iXdPAHdramJO29aufbdhovWb7f35QrXFjc/XoP/8P2tiPv2AjTq2TftdLBl0rX/Z30w6vSSzLSd35G6j9v93UBTcQP8d38g1mpUCQcDQAAAAAAAAAAAAAAAABaWcmWNFOYDOxzhXbhSb2x/kjjR7eEDI0kx51js/njO6oJAFw2wreC9y2jAfv8dIJgtEqi3Bfr/qoWS/OBfUulBa35qzVZFwAAAACAIASjtaePS9p89ve5xpiuCNtftuX2tt8kWWundGYAW1zSsyOs8dwttz8eYVsAAIDmk9hT3/W6J6SJ79v59oNb3/LByV8v31/a1F9Y2P16p+7a3nbsg+G2vWBTwF68W+pO774eoAmVQuadZaqQVQgAAAAAAAAAAAAAAAAAaJxThWkVbTGwb2uIF7bri4W/+HPCJLU3PnxGW5fXrcH4/sDxhN4AqLaF0pzW/bXAvnTAPj+dIhitkkzEEEvXfRf1Ps3mg0NNAQAAAAAIi2C0NmStnZR0x6amhKTvjDDFjVtuf8Ex7sNbbr8qzOTGmIskXbepaUXSJ8OVBgAA0KQS4Q8aqIquEensH5e6x6JvG++XBi6ufk3tqljhqkZ+7sl/F6qQwrRwv5T59Jlt058Pt+25r9z9+kCTs9bKhgxGOz5X21oAAAAAAAAAAAAAAAAAALWVdQS6GBmNJMfrXE3riRKMlk6OyzPbTzcMCiOSpAzBQwCqLJtzh3gFBqM59k/zxVPOgLVOMx1xX+0aHzUYLeq6AAAAAABsRTBa+3rXltu/HmYjY8wNkp6+qcmXdLNj+PsklTbdfqkx5oIQy7x+y+0PWGvXw9QHAADQtJJ76rtealjyYtL174u+7QU/L8W7q19Tu6oUjFba9Fa2sFB+7NmvkF58rPKan7tJmv+GNHmL9M23Vx4vSS8+IQUcjAK0m5IffizBaAAAAAAAAAAAAAAAAADQ2lzhW/sSw0p6qTpX03qiBaMdCGwfdbRHDckBgEoyjjDM/tge9cb6t7WnE8HBaJI0nZ+sWl2tLBvxfnDt26Pu83mNAAAAAADsFmfNt693SXpg0+3nG2PKhqMZY0a0PVDtA9bah4PGW2uPSHr3pqakpH8yxnSVWeNFkl65qSkv6S3l6gIAAGgJsZ76rpcaenzd3ujbXvWH1a2l3ZUqBaPlnvx3ft497uLfkp7xD1LPAam7whUK/YJ08xUbAWn3/GrlGm+6V+rhqofoDNGC0WztCgEAAAAAAAAAAAAAAAAA1FzWEZLjCvHCmbq8HnkhTyFMJ4MDhkaSwceoEnoDoNpc+xXX/mlfYkhxk4g0Vyex1jrD5tz3W3CQmuv+jCke2O4KNgUAAAAAICyC0dqUtbYk6VckbT5l/M+MMW83xuzdOt4Y812SbpN03qbmOUm/XWGpNz0+7rTrJX3KGHPRlvlTxphfkvTvW7b/M2vtYxXWAAAAaH6FhfquF0tu/B2PGMiWGpIMHwMiKVYKRluXvv0e6VPfIWU/Ezzm6j+Rrv5jyXv8y0MvWb36rvpjae+V1ZsPaHKRgtHKZBUCAAAAAAAAAAAAAAAAAJqfK4hl1BGSgzN5xlNvrD/U2FFH2JyrfbE0p7XSyo5rA4CtXCFermA0z8Q0kiC80WW5tKA1P3g/fVFP8DkIrvvN1X5Bz6XOtVdLyyGqBAAAAAAgGIkIbcxae6s2wtE2+2VJWWPM540x7zfG/Kcx5lFJt0o6f9O4vKSXW2sfqbDGcUkvfXz8ac+SdL8x5m5jzL8ZY26RdEzSX0raHCP/X5J+bwc/GgAAQPMZeEpj1o33Rht/4MW1qaOdDV1Xvv/Bt0t3/qQ0/Xn3mIGLz7w98b27r+u0se+u3lxACyjZ8GNPzFUeAwAAAAAAAAAAAAAAAABoXu6QnOCwLmzXFxsINc4VPORqlwgeAlBd7jBM9z7ftY9i/yRlytwHV/RdG9h+qpBV0RbOaCvagk4Vso55nu5cg/8DAAAAAMBuEIzW5qy1fyXptZJWNzUnJN0g6WWSXiTprC2bZSU9z1r7iZBrfE7SSyTNbGo2kq6R9MOSXihpeMtm75f0MmttKdQPAgAA0OxGvkMy8fqs5aWe/HdqKNq2Z/9YdWvpBOe9unz/0X+rPMfgZWfePvendl7PZnsukQavqM5cQIso+eHHHp+LkKIGAAAAAAAAAAAAAAAAAGgqy8VFrZSWAvvKhXXhTL27DEYbjO9X0qQC+wi9AVAt6/6a5oonA/vK7fMJRnNz3Qc9Xp/O674ksM+Xr5l85oy2mXxGvoIP4r6w5zKlTFek9QEAAAAACINgtA5grf0bSVdIeq+k4G8DNmQkvVnSU6y1t0dc42ZJl0l6p6S5MkPvlPSD1toftdauRFkDAACgqSUHpYt/oz5rXf0nT/470R9+u9HvkoZvqH497W7PZdLBH9z59vF+qefQmW17r5IOvGR3dUnSte+UjNn9PEALiRaMVrs6AAAAAAAAAAAAAAAAAAC1lckfd/aNJg/UsZLW1herfLzxvviwkl5w+JlnPI0kxwP7MoTeAKiS6fyks6/cPj/t2D9N5yfl2wgHHrchVzBZOjmhocSojOMU863bueYx8jScGHe+RhCMBgAAAADYjXijC0B9WGsflvQKY0y3pGdJOiBpVFJe0oykr1lrv77LNaYl/bwx5lceX+Osx9dYkXRC0lettY/sZg0AAICmduUfSnsul+56teTnarNGrEs662Xhx1/8W9LSkY1AtAtfK3mx2tTVzoyRnvUv0r9+cGfbp5+7PbzMGOnZH5CO/I30lV/e2bzd49IIQXfoPFGC0U7MS9ZaGQIEAQAAAAAAAABACzLGvFnSm3Yxxbutta+sTjUAAAAAUH+uQJVur1f9sT11rqZ19cUGKo5JJyfK9o8mD+h4bvtpYdOE3gCoEtc+P24S2pcYdm7n2n/lbU7zxVNlt2135YLREl5CQ4kRzRQy2/q3htS5Quv2J4aV8BJKJyd0LPft0OsDAAAAABAGwWgdxlq7JulTNV4jL+mztVwDAACgKRkjnfNjUt+50q3XV3/+WLf0jHdJXRG+mLv6j6tfRyfyElLPQWn1WPRtD7zIMWdcesovSee/Rvrgfqm0Gm3ep/9d9FqANuDb8GNLvrRekLqTtasHAAAAAAAAAAAAAAAAAFAbmfzxwPbR5AEumBlBb6hgtANl+0eS44HtGUJvAFSJK0RrJDEuz7gvEF8u2HE6P0kwWoDT99lIciIwGG3rdu55Dpwx3/Z5ggPVAAAAAAAIw2t0AQAAAEDb6RrZ3faxHuk5H5Ve9Kj0o1b63gel598qvfiYdNaPbB8/9sLgeQ68ZHd14EyFhZ1t139B+f5YlzQcMUhv9AXS+E07qwdocVGC0SRprVCbOgAAAAAAAAAAAAAAAAAAtVUp0AXh9IUIRhutcJ+OOoLTZgqT8m1pR3UBwGbOMMxU+f1Td6xXA7G9kebsBAW/oJOFbGDf6ddRd6BZ2GC08vPMFKZ4jQAAAAAA7Fi80QUAAAAAbSdMMNr5Pyc99M7gvu//ttSdfvL2wIUbf1wu+Hlp6hPb2w/9YOU6EF6sRyosRt+u52DlMc/7hPR+91WsntB7lnTwB6RL3ihxpUN0KBsxGG01L+3rrU0tAAAAAAAAAAAAdfZySXdGGL9cq0IAAAAAoB6yrpAcR0gXgvXG+iuOSafK36eu0JuiLepUYVrDybEd1QYAp7nDtyrv89PJcS2uzYWesxOcLGRk5Qf2VQxGK5woezvsPEVb0GxhRkPJ0VA1AwAAAACwmdfoAgAAAIC2E++Tuit8uX/tX0tX/dGZbXuvll584sxQtDDG/5d06IfObJv4/o0ALVTP0HU72647xFUJjSdd+jvlxyT2SC96VHrqn0ldQzurBWgD/g6C0QAAAAAAAAAAANpExlr7aIQ/JxtdMAAAAADsVMHP62RhOrDPFcCCYH0hgtFGK9ynI8lxZ1+mg4OHAFSHb0uazk8G9oXZ5zsDvjp4/+T62T15Gn48qCzt2LevlJa0XNy4qPxyaVErpaXAcae3L/ca0cn/BwAAAACA3SEYDQAAAKg2Y6SzX1FhjCdd8nrpe+6Xrv5T6fr3Sy/4otTj/kLIyUtIz/pX6bkfl678Pxt/3/BBKZbaWf0Iduhl0bfpHpNiyXBjz6owf2o4+vpAG4oajLZGMBoAAAAAAAAAAAAAAAAAtJyZwpSs/MC+0dSBOlfT2vpiA2X7u7weDcT2lh2T8rq0Nx58Yd9pQm8A7NJs4aQKNvig30rBjZI7GM0VttYJMvnjge1DiVHFTUJS+dC504Fm2TL34entU16XBuP7y84DAAAAAEBU8UYXAAAAALSlK/9Amv+aNPWJ7X2bA7D2XLzxZ7eMJ43fuPEHtXH2y6T1jHTPr4XfZvS7w48dvEyKdUulteD+5J7wcwFtLGow2irBaAAAAAAAAAAAAAAAAADQcjKOIBVPMQ0l0nWuprVVCkYbTU7IGFNxnnRyQnPFk9vaXeE7ABBWtsx+ZGQXwWizxRnl/HWlvK4d19aqXKGVI8nxJ/49ENurLq9b6/72cxiyhRM6Txc7/2+6vO4zQjXTyQnNF09tG+d6PQcAAAAAoBKv0QUAAAAAbcmLS8+7RTr7x89sTwxKF/9mY2rC7l30q+HHJvdKF/16tPmf+W53X/8F0eYC2pQlGA0AAAAAgJb1kXutXvkuXz/zz74+882IH/IBAAAAAAAAAB3FFcQynBxTzMTrXE1r660QjJZOHgg1jyt4KJufjFwTAGzmCs8ajO9Xl9ddcXvX/kmSpjt0H+W6TzffV8YYZ/Bc9vHts86AtTNDNd2vEQSjAQAAAAB2ht8CAwAAALX0zHdL6edLmU9JPQekc18p7bm40VWhlsZukgYvlS78Ran3rGjbHvqhjcfJasDBPAdfWp36gBbnE4wGAAAAAEBL+otP+fr1Dzz5wf4fv2j1z682evnTuZ4bAAAAAAAAAGC7TC44SGW0TPgNgnV53YoprpKKgf3lAoU2G3UEqLlC7AAgLNd+xLXf2Wp/YkRxE1fRbt/PZfOTOth17q7qazXWWmcg2db7NJ2Y0NH1h7aNqxSMlk6c+drhei2ZJhgNAAAAALBDHGEMAAAA1JLxpPNeJT3rfdLVbyMUrR1c8gZ33/c+KD3vZunqP4keinbaC74oDV55ZtvFvyUd/MGdzQe0majBaGuFiBsAAAAAAICqKxSt/vd/nfkZ3bfSWz/G53YAAAAAAAAAQDBXSE46ZEgOnmSMUV+s39kfNnjIFXqzVFrQaml5R7UBgCRlXOFbIYMbPRPTcGIssK8Tg7mWSwta81cC+9LJ8TNuj6aC7+NsfvKMvyvN4/q/WijNaa20WrZeAAAAAACCxBtdAAAAAAC0lHNfKR15h1RYPLP9B05JqX27n7/3LOnGL0vz35DWTkj7rpW607ufF2gTvh9t/Gq+NnU0q3zR6iP3Sg/NWH3HhUbPPHfjoDYAAAAAABrpCw9JcwHHuj+YlU7MWU3s5bMrAABASD9rjPldSRdL2i+pIOmUpMckfVHSLdbaLzSwPgAAAACoCmutso4gm9GQITk4U29sQAulucC+sMFD5ca988Qfqsvr3lFtLgmT1Pk9l+iZe76z6nPX2vH1R3XX4medj+PB+H5d3f9MXdx7VZ0rAxrvq0t36L7lL2uptPBE29H1hwLHhg1ulDb2UVP5Y9vaXc/DdnFk9bC+svRFzRZmnmhzhaJJ2wNGXfv2mfyk3nH89zXjDEabKHt7s3ee+AOlqrwfj5mYDnWdpxsGb1RfbKCqcwMAzrRWWtHn52/RY+tHVLTFbf1JL6lzui7ScwZvVMJLNqBCAADQrghGAwAAAIAoBp4ifefnpMO/vxFetu8a6ao/qk4o2mleXNp3taSrqzcn0CZsxPGdFIy2sGr10r/x9dkHT7dYveYGo//7Ck4uBwAAAAA01ok59yf65VwdCwEAAGh9L9tyOyWpT9JZkp4j6beNMV+W9EZr7adqUYAxZkTScMTNzqtFLQAAAADa13zxlHJ2PbBva6ALwumLD0gBx9N58jScHA01x2B8v1KmK/D/5qG1w7stMdBXl2/XVxa/qF86+GalvK6arFFt31q9T399/K0q2PIHMH5x4RN62cjP6jl7b6pTZUDjfezkv+jjpz4QenzY4MZyYzP546HnaDVfWvwfvXvq7bIKd+XpHq9vW4jYSCL4fvPl676VLzvn2vp6vDc+pIRJBu77jtToNeJry3fpzoXP6DcPvU398T01WQMAOt1aaUV/evSNmsofLTvunqXb9dWl2/Vrh35fMUOECQAAqA6v0QUAAAAAQMvZd7V0w39I3/ct6Vn/IvUeanRFQMfwIyajdVIw2nvvsptC0Tb83ResbrkvapwcAAAAAADVVe6TaX77hWQBAACwO9dI+qQx5g+MMbW4esprJd0X8c9HalAHAAAAgDaWzZ9w9qWT43WspH30xfoD24cSo4qbRKg5jDEaacD9/+31b+oby3fXfd2d+u+T/1oxFO20/zr1fhX8Qo0rAprDUnFBt85+KNI2oxHCMF3BaNP5SVnbfsfS+rakj868N3QomrRxH239leFIckxG0X6NaGQ0khw7o80zXkNeI2YKGX1x4ZN1XxcAOsWdi5+tGIp22rfXv6mvLd9V44oAAEAnIRgNAAAAAAC0DD/8d/eSpLUOCkb75OHggzZ+64MR7zQAAAAAAKqs3HkGy7n61QEAANDCTkj6O0mvkfRsSZdIukjSsyT9kqRPbBlvJP22pP9TxxoBAAAAoGrmiicD2/tje9QT66tzNe1hILY3sN0VJOQSJaSomh5ee6Ah60ZV8PN6aO3+0OOXS4s6kXukhhUBzePI2mEVbfirJqVMl/bE94Ue79qf5ey6FoqzoedpFTOFjGaLM5G2CQoXTXop7UsMR5pnb3xISS8VMH+015Rq+ebKvQ1ZFwA6wTdXvlbT8QAAAOUQjAYAAAAAAFqGH/GCbSsdFIx2833B7YcnpVLUOw4AAAAAgCoqlsnsJhgNAACgrC9JeqGkg9ban7HW/r219jZr7QPW2gettbdba//KWnujpGslHdmy/RuMMS+qe9UAAAAAsEtr/mpge19sT50raR8X914V2H5V/zMizXN539OrUU5kRVtoyLpRzRSmZBXtYqbZ/IkaVQM0l0zuWKTxV/RdJ2NM6PHlQrna8Xm2k5/pir7rAtsv7422b3fNc0WDXiOm8scbsi4AdIKorzft+JoLAAAah2A0AAAAAADQMqLGey2s1aSMplQqcyzVzFL96gAAAAAAYKuVMuFnBKMBAAC4WWtvttZ+0lpb8SsSa+2XJT1D0re2dP2RMSZWxbLeIemyiH8IZwMAAAAQSc4PPvCry+uucyXt45Lep+qa/hvOaLuo50o9rf/Zkea5qv86Xd57bTVLC8W30cLGGiWzgyCIbH6yBpUAzWcyfzT02H3xYX3P0I9Emr8n1qd+R4Bmpg2Ds6IGz1zV9wxd3he8//7ufS9ROnkg1Dzp5AG9YN+LA/uu7rtel/Y+LVJd1bBcWtBScaHu6wJAuyvagk4WMpG2IRgNAABUU7zRBQAAAAAAAITlRzy2aWYxapRa69rbI80FXyhVC2vSKBdLBQAAAAA0SLnws5WclRT+Su8AAABws9bOGmNeLunLevJN1kWSnifpU1VaY1rSdJRtjOH9HgAAAIBo1h3BaCmvq86VtI+YiemVY7+qZ+x5vh5bP6Kx5CFd3netYhGztOMmoZ+deIPuW/mKHl07ooLNV7XO+1e+qqmA8KSSSlVdp1ZcQRB9sT0aiO0JDIbKtmFgExBkKncssP387kt0VtcFkiQjo7HUQV3ee6364gOR10gnJ7S0tj0gqx0DCF37m+HEmK7oe/oTtxMmqXO6L9SlvU+TZ7zAbQYT+/W6Q2/T15fv1onco7IBl7I2MppIna0r+q5Vd6w3cJ6El9DPTfy27lv+sh5dP6KiLezgJ3Mr2aI+N//fgX1T+WPqj3OwNABU08l8Vr6CT+K5tPdpOrzylW3ti6V5rZaW1RPrq3V5AACgAxCMBgAAAAAAWoYfMedseqk2dTSjVJnf8iyu168OAAAAAAC2WirzubRcaBoAAACis9beY4z5pKQXbmq+UVUKRgMAAACAenAFo3V53XWupL14JqZLeq/WJb1X73qeK/qefkbwTrWsZ1YDg9F82yrBaMEhZ+d2P0UHUudo8lRQMFpwuBHQTkq2qGlHONlzBm/SNQM3VGWddHJCD63dv619ug2fZ659x6W9T9MPjLwq8nzdsV5dt+e5u6xqI4jzyv7rdGX/dbueaytrre5e/LxW/O0HiGdyx3Rhz2VVXxMAOlnG8d7WyNMPjfy0Dj+yPRhN2ggkPaf7wlqWBgAAOkRwvDcAAAAAAEATihqMll2sTR3NKF7mwp0Lq/WrAwAAAACArcqFnxGMBgAAUBO3bLl9RUOqAAAAAIAdyhGM1rE8BR8I58uvcyU7k3EEFaWTE0onJwL7pgtTLRP8BuzUdH5KJRUD+8ZSB6u2zojjeZYtdE4w2qjjPmgHxhiNpg4E9k3lj9W5GgBof65Q0/2JYQ0nRpUyXYH9rrBgAACAqAhGAwAAAAAALcNGDEab3n5BsLaVDz5eRJK0EHycIAAAAAAAdbFSLhhtvX51AAAAdJBHt9webkQRAAAAALBT645gtBTBaG3PM8GnO7ZCcJi1VtlccAjEaPKARpPBYT5FW9BsYaaWpQENN5U/GtjuydNIonpBXq5QsNnCjPJ++1yxaaW0pOVS8NWjXSGM7WIsGRykRzAaAFRfxhFwlk4ekDFGI8lxx3btF0gKAAAag2A0AAAAAADQMvyIwWgLa1KuEHGjFpUrG4zWGfcBAAAAAKA5La27P5eu5OtYCAAAQOfYmiBAcgAAAACAluIKRusiGK3tOYPR5Ne5kugWirPK2eArwqSTE87gCEnKEh6BNjeZCw5GG06OK+ElqraOKxTMymo6P1W1dRqt3D6j7YPRUocC2zM5gtEAoNpcrzenX2tcwb+8twUAANVCMBoAAAAAAGgZUYPRJGlmufp1NKP1grtvIfg4QQAAAAAA6mKlzMXXl9vnwuwAAADNZGjL7ZMNqQIAAAAAdsgdjNZT50pQb55ige2+bf5gtEz+uLMvnZxQyuvSYHy/Y1vCI9DephyhVWOOQJWd2p9IK6Z4YN90oX2eZ67AmZTp0p74vjpXU19jyYOB7YuleS2XFutcDQC0L2ut8/Vm9PFgNFcYZ7bM+2IAAIAoCEYDAAAAAAAtYyfBaHMr1a+j2VhrlSu6+wlGAwAAAAA0UrnP88VS/eoAAADoINdtuT3ZkCoAAAAAYIdyzmC07jpXgnrzTPDpjr5t/i8UXMER/bE96o31S5JGHSFQrm2BdjGVPxrYPpY6VNV1YiamoeRoYF87Pc+y+eBf940kx2WMqXM19TWaCg5Gk6SMI4APABDdcmlRq/5yYF/68fe0rmC0mXxGpRZ4/w4AAJofwWgAAAAAAKBl+Du46ONsBwSj5cuEokkEowEAAAAAGssSjAYAAFA3xpgumyZUuwAAIABJREFUSS/d0vy5BpQCAAAAADu27ghGSxGM1vY8xQLbS2r+LxRcoUvpTWForvCIbP54TWoCmkHRFjSdnwrsG0tWNxhNktLJ8cD29gpGC95nuMIX28me2F51e72BfVPsSwGgasq9Pz39njbteN0pqahThWxN6gIAAJ2FYDQAAAAAANAyypxHrd5UcPvcak1KaSrrhfL9i+v1qQMAAAAAgCDlPs8XdxCCDgAAgLJeL2nzWdYlSf/doFoAAAAAYEdyjmC0LoLR2l7MBAej+bb5v1DIOIOKnvyY7g5Gm6xJTUAzmM5PyXeEG46nDlZ9PVc4WDs9z9xBjMH7mHZijNFYMvhxM5U7VudqAKB9uV43u71e9cf2SJJGkmMyMoHjXO+NAQAAoiAYDQAAAAAAtAzfcSa1MdK+nuC+2ZVyp1+3h1yxfP9avj51AAAAAAAQxJb5aF4MPgcCAACg4xljXmGMSUfc5jWS3rSl+Z+stY9VrzIAAAAAqC1rrXJ+8JUgCUZrf57jdEdXqFIzcQcVHdj07+DQosXSnNZKKzWpC2i0qdzRwHZPMY0kx6u+njuA8LhsuS8uW0TJljSTzwT2jXRAMJokjTkC9abywY81AEB0rmCzdHJCxmyEoSW9lPYlhgPHud4bAwAAREEwGgAAAAAAaBm+46KPRtK+3uC+2dWaldM01gvl+9fyrX8gBwAAAACgdZX7VFoo8ZkVAADA4dWSHjHGvNsY8z3GGMc3IZIx5hpjzIck/a02vjY57YSk361xnQAAAABQVTm7Luv4zXKKYLS25xlHMJp1HDzYJNb9Nc0VTwb2jW4KKnIFNkmER6B9TeWPBbaPJMcUN4mqr+cKB1v317RYmqv6evV2qjCtkoKvqJyuQdBcMxpLBgejZXLBjzUAQHSu96ajW15nN4cAh9keAAAginijCwAAAAAAAAjLd5wr7Rlpb09w31wHXERxPfj4hiesVQhOAwAAAACglspdeL3Y3OcxAQAANFq3pJ94/I9vjDki6VFJC5JKkvZLulJSOmDbWUk3Wmsz9SkVAAAAAKoj5685+7oIRmt7nmKB7b6a+wuF6fyks29zGNpgfL+SJqW8zW0bl82f0NndF9akPqCRpnJHA9vHkodqsl65cLBs/oT2xPfVZN16KRc0Uy58sZ2MpoKD0RZKc1otLasn1lfnigCg/bheb7YGkI4mJ3T/yj2htwcAAIgi+BIKAAAAAAAATch1HrXnSft6g/tmV2tWTtPIVQg+IxgNAAAAANBI5YLRbn+4fnUAAAC0OE/SUyS9UNIPS3q5pO9WcCjapyVdaa29r37lAQAAAEB1rJcJRkt5XXWsBI3gmeDTHX1bqnMl0WTzxwPb4yahfYnhJ257xtOII7QpQ3gE2tRk/lhg+5gj3Gq3+mID6o31B/Zly4QYtgrX/mZffFhJL1XnahpjLOl+7Ezlgh9vAIDwCn5BpwrZwL7R5IEzbm8NSjuNYDQAAFANBKMBAAAAAICW4Tsu+ugZabDXBPbNrdSwoCaxXizfv5avTx0AAAAAAER1cll6eLpMchoAAEDnerukf5H0WMjxK5I+LOm7rLXfZa0NPkMSAAAAAJpcrkwwWpfXXcdK0AieiQW2l5o8GM0VajaSGN/2M6Ud4RHThEegDRX8gmYcYWTjqUM1W3draMtprlCxVuIKmnGFLrajwfh+dXk9gX1TjiA+AEB4JwsZ+Qo+eWfre9lRx3vb5dKilouLVa8NAAB0lnijCwAAAAAAAAjLd5wnbSQNOo55W1xr/5Or1wu76wcAAAAAoJYqfTL/wFes3nhTcOA5AABAp7LWflgbQWcyxgxKulTSQUlpST3auDDuvKQ5SQ9I+rq1TX6WOAAAAACEsFYmGC1FMFrbiyk4GM06ghmahStsaTS1PSjCFYzmCjsCWtl04YQzWGU0ebBm644kx/Xw2gPb2tvheZZ1BM259i3tyBijseRBPbL+4La+DMFoALBrrtdLT56GEqNntKUdYaSn5+mLD1S1NgAA0FkIRgMAAAAAAC3DFYzmedKA45i3Bfdxcm2jUOE0pzWC0QAAAAAADWQrJKP9zoet3nhTfWoBAABoRdbaeUm3NboOAAAAAKiHnCMYLWGSipng0Cy0D2O8wPZSk2eBu4OKtgdFuMKLpgtT8m1JHo9ztJGpXHBooKeYRpJjNVs3nWjfAMJpx8/QScFokjSaOhAYjDaZO9qAagCgvWQcob/7E2klvMQZbQOxQXV5PVr3V7eNzxZO6DxdXJMaAQBAZwj+TSEAAAAAAEATcp1I7RlpjyMYbXG9dvU0i1KFi2ESjAYAAAAAaKQKuWgAAAAAAAAAADxh3RGM1u311LkSNEJMwaFgvpo3GM23JU07gtFGA4KKRgPC0iSpaAuaLcxUtTag0abywSFV6eS44iYR2FcNrpCwU4UZFfzWPah2tbSsxdJ8YJ9r39KuxpOHAttdYT4AgPCihHAaYwLf80pSxhGQCgAAEBbBaAAAAAAAoGX4OwhGWwg+Tq6tVAxGy9enDgAAAAAAgriCzgEAAAAAAAAA2MoVjJbyHAeIoa14Jvh0R99WOEiugWYLJ1WwwQfppQOCikaS4865CPRBu5nKBQejjaUO1nTd0VRwSJiVr5nCVE3XrqWsI4RRKr9vaUejjsfQfPGU1korda4GANpLJkIwmiSNONqzjnkAAADCije6AAAAAAAAgLBcwWjGSHu6jaTtAwhGk9Za9+J2kqSFVav33Gn11aMb/9fXnCX91LOMUgnT6NIAAAAAACEQjAYAAAAAAAAACCvnCEbrIhitI3hyBKOpeYPRsmXCzIKCilJelwbj+zVfPBUw16Quq2p1QGNN5Y8Fto8lD9V03aFEWp5i8lXa1pfNH9d4qrbr14orYCZpUhqM769zNY01lnSH603lj+nc7ovqWA0AtA9rrfP1ZjQg9HejnWA0AABQGwSjAQAAAACAluEKRvOMNNAV3Le0Lvm+lee1b4hWpWC09cLGF1TGtN59MLNk9dw/9fXApgv0ves26d23W33+dZ6S8db7mQAAAACg05CLBgAAAAAAAAAIa90RjJYiGK0jeCYW2O7b7eFGzSLjCHzYGx9yBvqNJg84gtEIj0D7KPgFzeSnAvvGahxMFjNxDSXSmi5Mbutr5eeZq/aR5Lg8Exws2a72xoeUMl3K2fVtfVM5gtEAYKeWSgta81cC+9IBob8b7cGBaScLGRVtQXGTqFp9AACgs3TWJ10AAAAAANDSbJlgtD1ljntb2v6dd1txBcZttl6ofR218I7P2TNC0U770qPS336eU+sBAAAAoBW4Ps8DAAAAAAAAALBVzhGM5gqYQnuJuYLRVOHqoQ2UzR8PbE8nJ5zbuPpccwGtKJs/4XzujiUP1nx99/Nse1haq5h2BKOV29+0K2OMxlLBj6NM/lidqwGA9lEuQNQVgOZ6HfLlayafqUpdAACgMxGMBgAAAAAAWobvOJO6UjDaQvCxcm2jFOKYr7UWDUa75T732fP/fCdn1gMAAABAK+DTGwAAAAAAAAAgrHWC0TqacZzuWLKlOlcSXmYHQUXtGNgEbDWVPxrYHlNcI8mxmq/vfp65A1+anav2TgxGk6Sx5KHA9qkcwWgAsFOuoN4er099sYHAvuHEmPN9fCu/7gIAgMYjGA0AAAAAALQM33EmdccHozkC4zZbb8FgNGutDpc5zuvuR6WHpzm9HgAAAACaXYiPrQAAAAAAAAAASHIHo6W8rjpXgkaImVhgu9/EwWjTjrCH0eQB5zauEKPF0pzWSitVqQtoNFc4VTo5rpiJ13z9csFotgW/wPRtSdOFqcC+Tg1GG00dDGyfyhOMBgA7VS6E0xgT2JfwEhpKpCPNBwAAEAbBaAAAAACAUP7nQauX/HVJN7ytpDd+yNfyeut9IYzW5wpGM0Ya7HFvl1msTT3NouRXHrOWr30d1XZ0VlrOlR/z719hXwQAAAAAza4FzysAAAAAAAAAADRIzhGM1uWVuXIm2obnON3RV4iD5BpgtbSsxdJ8YF+5oKJyfYRHoF1M5Y8Gto+lDtVlfdfzbM1f0VJpoS41VNNsYUZFG3yV5E4NRhtzBFDOFU9qrbRa52oAoD1kygSjleMOJD2+65oAAEDnIhgNAAAAAFDR579l9cK3+/rI16TbHpbedovV9/2V35JXy0Jrcz3kPCMl40bpgeD+Y7Pt/VgNFYwWfCxEU3t4pvKYz3+rvf9vAQAAAKAdhPnkVijy+Q4AAAAAAAAAIK07gtFSBKN1BM/EAtt925zBaOVCzEYdgT2SNBjfr6RJRZ4TaCVTuWOB7WPJg3VZv90CCMvVPJIcr2MlzaNcyF6GIB4A2JFpx+tNufe2UrlgtMld1wQAADoXwWgAAAAAgIr+8tO+8sUz2/7nW9LN32hMPehcfplgNEk6uDe4/+hsbeppFmGC0XLFymOazWq+8pjDfE8GAAAAAE0vTLb+SojPgAAAAAAAAACA9pdzBKN1EYzWETzH6Y6+SnWuJBxX8E7KdGlPfJ9zO894ziCjTAsGNgFbFfy8ZgqZwL6xVH2C0fpiA+rx+gL72ikYbTC+v2NfI/fGh5QyXYF9mXxwMB8AwK3gF3SyMB3YVymE0xWclskflw1z4BAAAEAAgtEAAAAAABV91fG94K9/oDmvwIf25QxGe/w3HAcdxxEdm6tNPc3Cdb9s1orBaIUQx7Idm5MWVvmiDAAAAACaWZhPbSu5mpcBAAAAAAAAAGgBawSjdTTPxALbrax823zHrLqCitKpAzLGlN3WFR4x3YKBTcBW2fwJWQU/Z8eSh+pSgzFG6eREYF9rBqMFX0nY9TN2As94SqeC96VTOYLRACCqmcKU8/Xb9d71tLQjOG3NX9FyaWHXtQEAgM5EMBoAAAAAoKJHTga3Hwm+EAhQM77juKbThw8d3Bd8INHx2fYOziqFON4rV6h9HdVWKIX7f/tm8EUFAQAAAABNIsyFX1fyta8DAAAAAAAAAND8co5gtBTBaB3BK3O6oyukoZEy+eOB7aMhgopGHOERmRYMbAK2msofDWyPm7iGk2N1q6OdgtFc+5tODkaTpPHkwcB212MQAOCWdbzWePI0lEyX3TZdJjiN97cAAGCnCEYDAAAAAOxKMWRwEVANrkeb93geWnoguH8++Fi5thEmGC1fqn0d1VYIWfPR2drWAQAAAACovcU2/+wOAAAAAAAAAAhn3RGM1uX11LkSNELMxJx9Jdt8B8G5wpXKBUM8OSY4zGimMCW/CX9WIIrJ3LHA9pHERNnnebW1UzDatHN/09nBaKOuYDTHYxAA4OZ6fRxKjCpuEmW37YsNqNfrd8wbHLgGAABQCcFoAAAAAIBdyS42ugJ0Et+RjOY9/huOPY6Lgrb7ydVh8glzhdrXUW1hg9GOzRHQCAAAAADNzIb42Da/Wvs6AAAAAAAAAADNrWSLKtrgA526PMfBYWgrXpnAJF8hriBaRyVb1Ew+E9gXJqho1BGeVrQFzRZmdlUb0GhT+aOB7eOpQ3Wtw/VcPFXIOl9vmtFaaVULpbnAvk4PRhtLBQejzRZnnGGrAIBgmV2EcBpjNJIcD+xrxUBSAADQHAhGAwAAAACUVSiWP3P1ePB3rEBN+I7jmjyz8fdAV3D/4npt6mkWpRDHe+WKta+j2vIhaz46W9s6AAAAAAC7EybOeoFj0gEAAAAAAACg45ULMCEYrTN4ZU539G3IK23WyclCVr6CaxoNER7hCo6QpEz++I7rAprBVO5YYLsrxKpWXEEuvnxnsGEzmi5MOvvSZfYlnWAs6Q7by+TYlwJAFNO7CEaT3MG/rsA1AACASghGAwAAAACUtZov339ivj51AJLkO86kfjwXTf1dJrC/3YPRXPfLZrkKIYfNqBDyOLbjs633swEAAABAJ7EhPrbNr/HZDgAAAAAAAAA6XblgtBTBaB3BM+WC0UJcQbSOXIE7Rp6GE2MVt095XdobHwrsy+bdIUhAs8v7OZ0sBIeOlQuxqoWhxKgzcDHbQiEtrloTJqm98eE6V9Nc9iWGlTDJwL5MPjigDwCwnbXWGWAWNhjNNS5L6C8AANiheKMLAAAAAAA0t7VC+f7JeasnY6mA2nKdIu09fszCQFdw/0pOKvlWMa89H6ulEMd75Yu1r6PawgajHZurbR0AAAAAgN0JE3k2v1rzMgAAAAAAAAAATS5XJhiti2C0juAp5uw7nntEvcX+Hc07GN+v/vienZYlSVorrZ4R9nRk7XDguKHEiBJecEjPVunkhOaKJ7e1P7L+oI6tf3tnhUrq9nq0P5GWMe15zCQao2SLyuZPqGTLH9w5U8jIOr4hHEsdrEVpTgkvof2JtGYKU9v6Hlo7rP2JkbrWs1MPrz4Q2D6SHC8bKNkJPONpNHlAx3Lb95lH1g5rInX2jufujfVrX6I1g+fCPl8364n1tcxzAqiXki1poTirpJdSX2ygrmv7tqRsflJFW+GkrhDC7M8WS/Na94MP3hlNHgi1jisY7VRhRo+tP+QMK90pI0/p5IQSXqKq8wJAo3116Q5l8sc1mpxQOjmh4cRY6N8zAO2GYDQAAAAAQFmr+fL98+7jkICq8x0BYKfzzgbKHPu2tC4N9lS/pmYQJhgt187BaLO1rQMAAAAAsDs2RDLaAr9jAgAAAAAAAICOt04wWscrF/Dzl8fftKu5L+i+VK8e/y0NxAcjbZf3c3pf5h368tIXZFX5YL10yOCIjbET+ubq17a137N0m+5Zui1SnVvtjQ/pp8Z/U+d1X7SreQBrrT479zF99OT7lLe5Hc8TN3ENJUarWFk46eREYDDaZ+Y+ps/Mfazu9VRTOjne6BKawljqUGAw2h0Ln9YdC5/e1dzp5AG9Zvx1Gk8d2tU89WKt1a2zH9bHT31AObseefuRxLh+evx1OtB1dvWLA1pA0Rb02PrDOrJ6nx5au1/fXntA6/6aPHl6+sBz9WOjr1XM1D6e446FT+s/pt+lVX+5anOOJg/oNeOvd4aUZvPHndu6As+2rZEKfh9s5ettj/1mqDmiSpikru6/Xt839KOEOwJoG19Z+oLuWbr9idtGnvYnhnX9nhfoxv0/2MDKgPrr7ChwAAAAAEBFFYPRgi8IAtSE7ziR+olgtC73tottfIJ1pwejZZekfDHEWfYAAAAAgIYIE4xG+D4AAAAAAAAAwBWMZuQpYZJ1rgaNEFOsZnMfWTusd039eeTtPnryvbp76X9ChaJJ4YMjoo6Naq54Un917M1aK3GgL3bnvpWv6IMz/7irUDRpI2AqZmr3HHev277hYbXch7SSsWRwyE81ZPPH9VfH36KSDXlQc4N9dfl2/efJ9+woFE2SpguTevvx31PBL1S5MqA5Ffy8vrV6n24++W96+7H/T79x5Mf0Z0ffoI+efK/uX7nnic8nvnzdufgZfSD79zWv6aHVw/rnzP9f1VA0ScpU2J9l85OB7b2xfvXFB0KtMZRIy6vh+/kgBZvXlxY/p7c88gv6z5n3aK20Utf1AaAWMrkTZ9y28nWykFXBVjjRF2hDtY+kBQAAAAC0tErBaAuctIo6cgWjmdPBaGUuCnrvMenQ/urX1AzaNRgtH7Jma6UT89I5Q7WtBwAAAACwM2GirBc4JwcAAAAAAAAAOl7OEYzW5XXJnD5IDG3Nq3Fo0oOrX9dsYUb7EsOhxvvW1x0Ln4m0xmjyQOixtQ41ytl1fXX5dl2/57tqug7a250RnwMutQyvKqedw8NGEu37s0UxlqrtY2u+eErfXP2aLu19ak3XqYa7F7+w6zlWSkv65urXdHnfNVWoCGguOX9dj6w9qCNrh3Vk9bAeXf+WijZ8EOAXFm7RtQPP0fk9l9SsxnuX76rZ3HPFk3pw9eu6pPfqbX3Z/PHAbaK8t42ZuIaTo8rmT1QeXGVFW9AnZz+k2xc+pZv2/7CeM3ijYoYoFQCtx7e+ZgpTgX3t/NkGcOHVHAAAAABQ1lqlYLTVMKe2AtVhHQ8373QwWpd72z+6xdf3X1X/K83VQynE07AVg9EKES6udvQUwWgAAAAA0Kxcn+c3W1jjd0wAAAAAAAAA0OnWHcFoKa/MFTPRVgbig+ryup2PhWo4kXssdDDaXPGk1vyVSPMf7Do39NgDqbPlyZOvEFdH3aETuUdrNjc6Q7UeQ2d1XVCVeaI61HVeQ9ath3b+2aI4mDpXRkY21CW7dubE+qMtEYw2kw8O0Yg8jyOMA2g16/6aHl57QEdWD+vI6n16bP0h+YpwkkKA92f/Rm88+88VN4kqVXmm2cJ0TeY97UTuscBgtKncscDxI8nxSPMfSp3XkGC005ZLi/r36b/X/8zdrBcP/4Su7LuOkG0ALWWuOKOCDT6hl2A0dCKC0QAAAAAAZa1WCkar3bEnwDZ+hWC0rjLfLbXzY9UPcUxUvs2D0U7MW0l8YQUAAAAAzSjM4efzqzUvAwAAAAAAAADQ5FxhWF0Eo3WMuEnoaf3P1m0Lt9ZsjWz+uC7XNaHGZvLHI819dtcFOpgKH4zWHx/UVf3P1D1Lt0VaJ4psrnHBFGh9JVvUyUJ21/OkTJeuG3ju7gvagYOp83RW1wV6bP1IQ9avlfO7L9VY6mCjy2gKexNDurzvWn19+Us1W6ORIT9RrPhL1ZmnVJ15gHpbLS3robX7N4LQ1g7r2Pq3ZascQDuVP6ZbZ/9TN+3/oarOe1otA3OljffCQabywcFo48lDkeZ/9uALdffS5yPXVW3ThUn97eQf6bzui/XS4VfpnO4LG10SAISSKfO+k2A0dCKC0QAAAAAAZVUKRptv47ApNJ9KwWjlruRS6bHcykohzjDPtXkw2sxy7eoAAAAAAOyODfG5tZ0DzQEAAAAAAAAA4RCMBkl6Wfpn5ZmY7lm6rSbBLFHCbbK5cMFoCZPUxb1X6cfTv1j2OMYgPzH6y0qalO5dvlPrfvWvJJMttEaYD5rTTD4jXxEO5tzCyNPBrnP1o+mfV198oIqVRajBGL124nf1vuxf64GVe1WwrX1AcdKkdGnvU/Vjo7/Q6FKayivHfk3/mv2/+vryXc73E7sRNSizEay1WiktVmWu5SrNA9TacnFRR9YO68jqYT20dp9O5B6TDXX5vt35+KkP6Gn9z9JIcrzqc/u21sFo298brpVWNF88FTh+NGII5wU9l+qnx1+nj868V9OFyR3VWE0Prz2gPzn6Oj2t/9l60dArNJRMN7okACjL9TuLPfF9/H4MHYlgNAAAAABAWWuF8l8KcNIq6skVjLb5OKI3f7/Rmz+6feDsSo2KagKlEN99tX0wGhcmAwAAAICmFSYYjfB9AAAAAAAAAEDOGYzWU+dK0EgxE9fL0z+nHxn5mV0FhX1k5r36wsIt29qjhNtkHCckX9B9qX524o1P3E55XYqZnZ2qmfRS+omxX9aP21/YVZjPAyv36h+m/nRb+2xhRnk/p6SX2vHc6Fyuk/KNjP7wvHcpXuFxHzeJpnjs9cf36OcmflslW1TOX290Obuym/1NO+vyuvXKsV9VyZac7yfCuHPxs/rg9D9sa8/mT8haGzn8sp5ydl1FG3zA+C8deLPO6jp/W/u/T/+D7lr87Lb2agWsAdW2UJx7PARtIwxtKn+0JuukTJfO675YObuuh9ce2NZftAW9P/s3+uUDb636fsG3wSdRPHfwe/W9Qy8LPc8dC5/Rf8z847b2oNf2cu+Px5LRgtEk6an91+up/ddr3V9z/jzVcM/Sbfqvk+/XYmm+4tivLH1RX1u+U98x+D26af8PqSfWV7O6AGA3srngz2CjyYk6VwI0Bz79AgAAAADKWq1wUaz56l+cDnBynUjtbfou6YbzjRRwlZ+ldalQtErEm/cL6Z0KFYxWqH0d1ZaP8B3YNMFoAAAAANC0wlyLl98xAQAAAAAAAABcoVApr7vOlaAZeMbbVWDBROqswHZX0FMQV0jEeOqsqocpeCa2qzkPdp0b2G5lNZ2f1IGuc3Y8NzqX6/myLzGigfhgnavZvZiJE4TS5mK73JceSAXvK1f9ZS2XFtUf37PjuWutXJjZ/kQ68H7ZE98XOH65xIHZaA6zhRk9tHa/jqzepyOrhzVdmKzJOt1ej87rvkQX9FyqC7ov1cGu8xQzMS0V5/WWR35Rq/7ytm0eXP2GvrT4OV2353lVrcVX8MkhKS8Vaf/meu+3XFrUcmlRfbGBJ9qm8seC1zRd2hsfCr3mVl01/hz37MEX6pqB5+jW2Q/rU7P/qYItfwJc0Rb16bmP6I6FT+um/T+s5wzepISXqGmNABBVthD8GWyEYDR0KILRAAAAAABlVQpcWtj5BZWAyPwQwWj7et3bz69Jw/3VrakZhAlGK9TuQjs1U4xQ88ximNPsAQAAAACN8P/Yu/M4R+oC///vqtzp+0y6p+eCaY7pAeELKKCCoCwKioAiC4uI51fddVdd15/ren69VndlxQtW3eVQEUFALkGRGx0YUI6ZnhnoYRimj+mk73Tuoz6/P4aZ6Zl8PpVKd5KuJO/n4+HjIakcn0lXKpWkPq9Shc4XiiQBwxDQ9doLmhMRERERERERERGRNaowWrkn1FNtCnj6pJdHcxFEsxE0OpulyxcKKcJoQbf8vpdThysAB5zIIZu3bDw9yjAaLYpqUn6Ak/KpRplt30PpEVuH0cxiZo0O+QH0DYrLYwyj0TIQQmAqE8ZQYm8EbSgxiKlMqCyP1aA3YZ1/Pfp9A+j3b8AKz2romiPvek3OVlzQ9T78MvQj6f3cOnEtBhpOsLRfaVVOyCdRyMZnJmjyXh1Kj6HRtyCMltotvV6PZyU0zd7H8Xh1H97ReSne2HI27pq6EU/MPQhR4BSOcSOKWyf+F4/M3oPzuy7H8Y2n2v7fSUT1I5SSfw/Bz2BUrxhGIyIiIiIiIlOqENU+qSyQzAh4XfwSmMpvqWG06Vj9htFS+cc62V4xMbcwf38nIiIiIiKyLStxy7uEAAAgAElEQVQpayGA+STQ4i/7cIiIiIiIiIiIiIjIplIMo1EJmccgRgsGLGK5eczn5qTL7Dgh2aE50O3uwZ70cN6ycFoetyIqJJwek14ecPdWeCREldHkaIFPb0DCiOUtC6XHsM4/sAyjsiaai0gv16HDq8t/iFcF01T3RVRKQgiEM2N7I2jxQQwltmA2O1WWx2pytKDfP4B+3wb0+wcQdK+ErumWbntqy1vwZORh7EgM5i2L5iK4beI6XN7zjyUbq4B8cogDxYXRmh1t8Op+JI143rJQegSH+47a/997lDHglUU95nJqdXXgvcFP4IzWd+D2ieuwLf5swdtMZkL42dh/YK33SFzYdQUO9x9dgZESEaklcnHM5Waky+wYaCeqBIbRiIiIiIiIyJSV4NJcAvC6yj+WepBI750q7HMzNCejCqNpRYTRalGhgCEApDJWpqHbC8NoRERERERE9WU2wTAaERERERERERERUT1LKsJoHobRaBHMYhDj6ZGC4YNxk5hY0GPPSETAvUIaRhtXxC6ICgkpXgcBl/3igESloGkagu4+vJx8IW+Z3bel0aw8ZtbgaFIGoBod8khoLBeBEAKaxjkNVDpCCOxJD2MovgVDiUHsiG9FRBF/WapWZwf6fQN7Y2j+Deh29S56fdY0DZcEPopv7voUcsg/W/0TkQdxcssZOMJ/zFKHDQDICfkkCs1iyO3A9TUE3CvwSnIob9l4auSQ/87ffwSAHs+qoh7TDvq8a/CJlV/B1tgzuC18HcbSrxS8zcvJF/Dd4X/F8Y2n4J1dl6Pb3VOBkRIR5Qtn5GFqgHFqql8MoxEREREREZEpK8Gl2TgQMD9xHhUQSQh88HoDdz63N/J1/nEafnq5hiYvf0xcSCjWR33B0+R3Ay6HPKo1k398U02wEjBM5f8GZ3vprPWYG8NoRERERERE9qX6PH+oOfl8NyIiIiIiIiIiIiKqEylFGM2reys8EqoF++I2u5Iv5i1TxZ4Ovo48gOPVfWhxtC15fOUQcMtjVVb+vUSHiuXmEc3JQ0uqdY2oFgTcvdIwmt23pTFDfjC1Kn5mtiwrskiJJLwa47S0eIYwMJrahaHEIIbig3gpsVX5vrJUHa7uV0NoG7DOtx6drmBJw349npU4u+Nd+N3Ur6XLbxy/Gv+25ntw6e4lP5YB+eQQBxxF35cqjLYwvJM0EpjOTkhv3+PuK/ox7WJ9w/E4as2xeCLyEO6a+CXmLET4noluxHPRTTit9W04p+M9aHRyohwRVdah4cp9XJobbc6uCo+GyB4YRiMiIiIiIiJTVsNotDQfut7ArX898N83Py3g0IFffohhtIVU6+PCMJqmaehoAMYlv5m9MiUA1N5zmrPwOo2nyz+OUpPF7VTmk0AyI+B11d7fl4iIiIiIqNpZDaPxOyYiIiIiIiIiIiKi+pZUhNE8OqMctDhB9wppGG1cET076DqKCckBd19JQxulFFDEK0LpURjCgK7pFR4RVTOzCBTDaFTL1NvSwu8dyymmCE41OJqUtzFbFstF4OU+GBUhJ3IYTu7EUGIQO+KD2JHYioQRK8tjdbt60e8fwDrfevT7N6DdVf5YzNnt78LTkccOiortE86M4ffTt+LtnZcs+XEMIZ9EsZj9uKDi/Xrhfu54alh5+x7PyqIf0050zYFTW96CE5regAem78D907cjJZKmtzGQw8Ozd+PJyIN4a8dFeFPruSUJ3hERWRHOyD+Ddbt7+Xme6hbDaERERERERGQqJz/ZyEHm5McikUXhiMBtz+RffsvTAj+4RKC9wZ4H0CwHZRjtkO/21nXLw2hb8n+DqglWXqczVTi5vJgwGgBMzAMr28szFiIiIiIiIlo8i100fsdEREREREREREREVOdUYTRGOWixlhK3UcXTgor7tANV/CItUpjNTlUkGkK1QxVG82hetDh5sCbVLlX4bzITRsbIwKW7Kjwia6LZeenlDY5m5W0aTZZFc/PocAWWPC6qXVmRwSvJl7AjPoihxCB2JrYp9+eXqse9Eut8A3tjaP4BtC7D+5BLd+OS4Mdw1fAXpcv/MH0rTmx6I4Kepe0rGpBPDtFRfBBHvT0bR1Zk4NRc2JOWh9E8mhdtztrYd/ToXpzTeTFe3/o3uGfyV/jT3B8hFM/zPgkjjtsnrscjM7/DO7suwwlNb2SUiIjKbjwl/wwWcPdWeCRE9sEwGhEREREREZlShagWmk0IAIx3LdamXfLnOWsAz+wG3nx0xYdkW4bit4dD176BFRoe35H/pA6OWp2KXV0YRtsrzDBa3Xlou8DX7zEwMQ8cv0rDdy/S0NnE9yMiIiIiIrsRFj+Oz8b5HRMRERERERERERFRPUsxjEYlZh63ScOlu5W3VUWhVPdpB2ZjC6VHGUajooTS8rMRd7t7oWn8TY9qlyqAKWBgIrMHvZ5VFR6RNTFDclZxAI2OJuVtvLofOnRpiCmak98f1a+Mkcau5BCG4lswlBjEy4kXkBapkj+OBg29ntXo3xdC861Hk7O15I+zGEf6j8HJzWfiiciDecuyIosbQ1fjkyu/tqSAliEUYTTNUfR9qSLBBgxMpkMIevqwJyUPowU8fTUXAmtxtuHS4Mfxpra347cTN2BL7OmCt5nOTuDaPf+FB2buwoVdV+AI/4YKjJSI6pX6ewj7BtqJyo1hNCIiIiIiIjJlJYw2V56TutSNF0PqJ3n7uMCbj+bBA/uonin9kKfoGMWxPdvHSzoc21AF4xaajpV/HKVWdBiNv7/XlWeHBc7+noHsq+v/ljGB258RmP6eDqeD200iIiIiIjuxmimf5XdMRERERERERERERHVLCIGkkZQu8zCMRotUOG6zWro8Y6QxmQkVdZ924HM0oNnRhkhuJm9ZKD2KoxuOW4ZRUbWqxjggUSl0ugPKWFgoPWLbMFo0Ny+9vMHRrLyNrulocDRhPjeXf39ZHphd79JGCjsT2zGUGMRQfBC7ki8iKzIlfxwNOlZ61qLfP4B+/wYc7jsaDSZBv+V2YdcV2Bx7CjHJa25HYhBPRB7EqS1vWfT9G5BPotBRfKSsy9UDDTqEZHs2nh7ZG0ZLy8NoPe6VRT9etej1rMLH+76A7bHncNvEdRhJvVzwNruTO/C94S/g2MbX4vzOyxH02PczARFVJ0PkMJHZI13Gz2BUzxhGIyIiIiIiIlNWgkuz8fKPo5ZtlX9nBQDYIj/ZWt1Shfr0Q37j6e/WIJt2HZ4HUhkBj6u2oklWAobzSSCTFXA5q+ffns4Wd/3QvABQPf8+Wpp/ve1AFG2faAo49/sGfv+p4s+IRURERERE5SMsltEY3yciIiIiIiIiIiKqXxmRlk7YBwAvw2i0SF3uIHQ4pIGJ8fSoMow2kdmjXB/tHEYD9k6YjiTkYTSiYoQZRqM65dRc6HQFEc7kH8g/buNtqSpk1lggMKUKo8UMeWiNalfSSOClxDYMxQcxFN+C3cmXkEORB/RboMOB1d51e0NovgEc5jsKPkdDyR+nXBqdzXhX1wdww/hV0uW3ha/DMQ0nosnZuqj7N4R8H1TXij8+3qW70OnqxkRmPG/Zvn3D8ToMo+1zVMNr8Dn/d/FU5BHcMfkLzGanCt7m+egmbIk+jTe0no1zOy5e9N+ZiOhQ05lJZERauizIz2BUxxhGIyIiIiIiIlM5CxNXI/KTNJJFk/PqJ3lw1OLM4TqhCvXph7SwVrap72NkBji8u3RjsoOchYAhAMwmgC77njwpT0Z+siOlqWh5xkH2Mx0T+P2gfNn924ChkEB/gJE8IiIiIiK7sBpGY3yfiIiIiIiIiIiIqH4lDPWXxAyj0WI5NCe63EFpFCyUHlHeblyxTIcDXe5gycZXDgH3CgwltuRdrvo3EckYIoeJjPzMzwGbxwGJSiHo6ZOG0ewcmYzlVGG0ZtPbqZar7o9qRzwXxY7EVgzFB7EjsRXDyZdgKMKwS+HUnFjjPQL9/gGsezWE5tG9JX+cSnpd85vwZORBvBDfnLcsbkRx68S1uKLnU4u6b1nQFwAciwijAXvft+VhtBEkjQSmMmHp7Xo8tR9GAwBd0/G6ljNwfNOpeHDmLvxh+lYkDfMzOxow8OjsvdgUeRh/034hzmw7D27dU6ERE1GtCmXU+5ndDKNRHWMYjYiIiIiIiEypQlQLRRlGWxKz+NOWMUAIAU1j4AcADMVE6kOfnZXt6vvYPV2/YbSZeG2H0aZj5RkH2c9fXzFffuMmgS+/g9tNIiIiIiK7sJp9nzU/rpCIiIiIiIiIiIiIaljKZPK5V/dXcCRUawLuFdKQzXhKPel4PCWPiHW5e+DQ7D0lM6iYMG3nmA/Zz1QmjKzISpcF3L0VHg1R5XW75Ou5XbelQgjEjHnpsoYCYTTV8mhWfn9UvaLZCIYSg6+G0AYxmtoFYfmIDutcmhuH+Y7EOt8A+v0DWOM9ouaiUZqm4ZLAx/D1Xf+ErMjkLd8UeQSvaz4DRzccV/R954R8EoUGvej7Ava+b2+RzLMIpcdMt2k97voIo+3j1j14a8e78fqWt+B3Uzfjsdn7CoYCk0YCd07+Eo/O3ofzOi/Da5tPh64t7u9ERBRSfA/R4mznCQOortn7WzgiIiIiIiJadqoQ1ULzqfKPo5aZxZ9m48DYLLCirXLjsTPV+qgf8ttBg0dDe4M8lLV7WiA/pVbdclZeqKi+cFixYbSpKvv30eIViiU8vav0P9ITEREREdHiCYu76JE49+WJiIiIiIiIiIiI6lXSNIzGCaC0eEF3H57HprzLQ2n5pOO9y+SRCFV0zE4Cnj7p5bPZKSSNBF9PZIlZKKWbYTSqA0HFtjSUHrHlSc9TIqmMGTY6zM+qrVoezUWWPC5aXnPZGeyID+6Poe1J7y7L43g0Lw7zHYV+/wD6fRuw2rcOTs1Vlseyk253L97WcRHumrxRuvym0DX4tzVXFR2FE0Ie43IsMrgVcMu3Z+PpEexJydcJl+ZGu6t7UY9X7Zqcrbg48BG8qe1c3D5xPZ6P5n+OONRsdgo3jF+FB2fuxIVdV+CohtdUYKREVGtC6THp5dXwPQRROTGMRkRERERERKZy5ie4AABEk+UfRy0rFH96aYJhtH1UE6l1yW/Lq9rlIbAXQ6Udkx3kLM4bnysQk7Ib1WtD0+TrwgzDaHUjlTVf6QflvwcQEREREdEysZo7KxRBJiIiIiIiIiIiIqLaZRZG8zDkREsQVMQgQulRZdxmXBFNU4Ul7CTgUk+aDqdHscq7roKjoWqlCqO1OTvh0b0VHg1R5am290kjgUhuBi3O9gqPyFw0q46YNTiaTW+rWh4z5pc0Jqq8mczkqxG0LRiKDyKcKc8B1V7dj3W+9a+G0Aaw0nsYHFp9JivOar8AT0Uele47TmTGce/ULXhn12VF3WcO8klcGhyLGqMqqJMwYngxvkVxmz7oiwyx1YqAewU+uuLzGIoP4raJ6/BKcqjgbUZSL+P7I1/GQMMJuKDrfej1rKrASImoVoQy8s9g3QyjUZ2rz71MIiIiIiIissywMHM1mrQ6vZVkCoXRdk8LAPY6q9RyUa2PsjDakQENzw7n32DLaO2tr1YChgCQzJR3HKWWVrw2gs3Anrn8y6ditfe3JblUgXVZtk0gIiIiIqLlowqdH2omXt5xEBEREREREREREZF9pRRhNJfmhkNbXASACFDHbVIiiZnsJNpdXQddbghDGYVSRdbspN3VCZfmRkak85aNM4xGFqleAwFOyqc6EXD3KpeNp0dtF0Yzi5g1OppMb6tabhZbo+UnhMBUJoyhxN4I2lBiEFOZ8pxBvkFvwjr/evT7BtDv34AVntXQuX8OAHBqLlwa+DiuHP68dPn907fjpOY3otez2vJ9CiGfHOJYZKjM7L17c/Qp6eU9npWLeqxa1O8fwL+s+jb+Mv847pj4OaazEwVvMxj7C7bGnsGpLW/G2zsvsd17BhHZUyglD7RXw/cQROXEMBoRERERERGZshJGm0+Vfxy1rFAYbXimMuOoBqr1UXLCRmxYAfz66fzLN8uP1ahqVl6nAJDMVFdkT/XaUIXRpmPlHQ/ZRyprvnxkFjAMAZ2FNCIiIiqBTFbg334rcMezAi4HcPkpGv7lbE165ngikrMaRhuXfNYjIiIiIiIiIiIiovqQVITRPLqvwiOhWmMWtwmlR/PCaLPZKaSF/MDYYBVEoXTNgW53L0ZTu/KWqWJXRIdiGI3qXaOjGY2OZkRz+XGwUGoER/qPWYZRqcnGCQA6dPj0BtPbNjqapZfHFPdJy0MIgXBmbG8ELT6IHYlBzGQny/JYTY4W9PsH0O/bgHX+9ehxr4K+yChXPVjnX4/Xt5yFP83dn7fMQA43jl+NT6/6puXnMAf5JAodi4vRNTpa4NcbETeiectUUcWgm2G0hXRNx0nNp+G4xpPx8OzvcN/UzUgY5md/FDDwp7n78XTkMZzVfgHe3P5OeHRvhUZMRNUmkYtjLiefQMrPYFTvGEYjIiIiIiIiUzn5yUYOEk2Wfxy1LFsgjLZ7ujLjqAaqAJisfXTMCg1A/g12TQHzSYEmb+1EDKy8TgEgmSnvOEpNGUZrATCcf/lU/m91VKMKhdHSWWBkBljVUZnxUOkJIfD4jr0BjWP7gFZ/7WyziYio+nzk5wLXbzzw2eJztwnMJYBvXMD3JyKrLHbRsGcOyOYEnA6+voiIiIiIiIiIiIjqTUoRRvNy8jgtkd/RiGZHGyKSScbj6REc3XBc3mUqAXdfycdXDgH3CkUYTf1vI1oolB6TXt5tEhokqjUB9wpEE/lxsHEbRiajWXnErMHRVPDEfw2KMFo0Nw8hBE8cuEyEENiTHsZQfAuGEoPYEd8q3ZcphVZnB/p9A1jnH0C/bwAB9wr+3Yt0Qdf78Hx0E+Zz+WcE3Jncjj/N3Y83tp5t6b4MoQijLTJOp2kaAu4VeDn5guXb9HpWLeqxap1Ld+Os9vNxSsuZuHfqZjw6cx9yMJ/YkBJJ3D31Kzw2ex/e3nkpTmk5E7q2uMgdEdUus4g5w2hU7xhGIyIiIiIiIlOqENVC8/IT45FFqvjTPsNTVqcP1z6hDKPl//B2rMnxR1tGgVMOL9GgbKDewmiBZnn0btr8pDtUQwqF0QBgcIxhtGo1MS/w1u8ZeObVAGJvK3Djh3ScdgQPsiAiosqbigrcuCl/3/Nb9wq892SBo3r4/kRkherz/KEMsTeOtrK9vOMhIiIiIiIiIiIiIvtJKsNovgqPhGpRwL0CkUR+TEQ2+VgVRmtxtsPn8Jd8bOWgmjg9nrJfzIfsJ5GLK+M7nJRP9STo7sNLiW15l4dtGEaL5eRhtEZF9Ozg6zRJL88hi5RIwqtxX6wSDGFgNLULOxJbMRTfgh2JrYgq/q5L1e7sQr9/A/pfDaF1uoIMoS2R39GId3d/ENfuuVK6/LcT1+PYxpPQ4ix8QIwB+eSQpcS0ig2jBd0rF/1Y9aDR0YyLuj+E01vPxR0TP8cz0T8XvM1cbga/DP0ID83chQu734/1DcdXYKREVC1UYTSX5kabs7PCoyGyF4bRiIiIiIiIyJSVMFo0Wf5x1LJCYbTx8vyeVZVU66Mu+R1udQfQ5AXmJevn5lGBUw6vnR/vLIfRLMSk7EQdRpNfHksBqYyAx1U7f1uSsxRG2yPwtmO4LlSjT/xK7I+iAcDYLPDB6w1s/5oOh2yDT0REVEa/HxTK/dJzvm9g57d49kaiUhueYRiNiIiIiIiIiIiIqB6pwmgehtGoBILuPgwltuRdHpJE0MZT8jBasIqCUKqxTmT2wBC5JYU1qPapJuUDDKNRfVFGJhUBzeUUM+allzdYCKOZXSeajcDr5r5YOeREDsPJndiRGMRQfBA7EluRMGJleawuV8/+CNo6/wA6XN1leZx6d2LTG/HE3IPYFn82b1nCiOM34f/FB3s/U/B+DCE/WM2Bxe+/Bd19lq/r0tzo5DpiSbe7Bx9e8Vm8lNiO28LXWorPjaV344cjX8VR/tfgwq4r0OddW4GREpHdhTPyz2Dd7l7oml7h0RDZC8NoREREREREZMpKcGk+Vf5x1LJCYbSw/HfKuqQKo8lOUKRpGjb0Aht35i/bPl7acS03y2G0THnHUWppRfwq2KK+zXQM6Gktz3jIPlIW1uUXQ+UfB5Xe2KzALX/J39i/NAE8PgScfuQyDIqIiOra7mn1sl1TQDgi0N3McCdRIRa6+/uNzAgAfF0BwExs7zPX1sDng4iIiIiIiIiIiGpfShFG8zKMRiUQ8KjiNvmTj2WxNAAIuleWdEzlFFDELzIijenMJDrdgQqPiKqJKozm0txoc3ZWeDREy0cVRpvOTiBtpODWPRUekVo0qwqjNRW8baPJdaK5CDrB94xSyIoMdidfwlB8EEOJQexMbFOGgZcq6O5Dv28D+v17Q2itTp6drhI0TcMlgY/ia7v+ERmRzlv+l/nHcXL0DAw0nqC8DyEEDMgnh2hLCOMUEzYNuFcwolukw31H4TOr/h3PRDfitxPXYzJTeCLD9vhz+NYrn8bJzWfiHZ2XotXVUYGREpFdjafkn8EYpiZiGI2IiIiIiIgKUIWoFoqlAMMQ0HVO0lwMK2E0IQQ0Wf2rzqjWR9Wqt65bw8ad+TeaqLHYXM7iDPNqCqMZhlD+vYMmJy+bYhitLqQU0byFZmPFpBfILm75i4BQ/OmeHRE4/Ui+FxIRUWXF8o9RO8jzI8Bb1ldmLETVTLWPJzMyU75xVItURuAD1wvc8rRA1gBOOQy46SM6VrZzf5iIiIiIiIiIiIhqlyoM4WEYjUogqAiFzWWnkcjF4XP491+mikJV04TkbnevclkoPcIwGpkKZ+SvgW53L/QlRFmIqo0qMgkA4fQY+rxrKzgac9FcRHq5WfRsH5/eAB26NMYUU9wvFZYx0tiVHMJQfAuGEoN4OfEC0iJVlsda4VmDft/eCFq/bz2anDyYfrl0uoM4t+Nv8dvJG6TLfxW6Bl/0/wAe3StdLhRRNABwoDJhtJ4qigHbiaZp+D9Np+LYxpPw6My9uHfqFsQM84lLAgIbIw/g6fnH8Jb2d+Ks9gsZBieqU7XwPQRRuTCMRkRERERERKashNGAvZPFm+TfzVMBWfVvFwCAdBaY2z2Klqd+CxGZgXbK26AdfWJlBmczqonUqjBap+K33In52gomGQXWoX2qKYxmFgwMNGsA5H/D6Vh5xkP2YiWMNleek6hRmd38lHr7vH28ggMhIiJ61WTUfHmh0DUR7VVMGG14unzjqBafvkXgV5sOPGkbdwIXXWPgic/zjLxERERERERERERUu1JGUno5J4ZTKZhNJg6lR7HG1w8AiOeiiORmpddTxdXsyKv70OrswGx2Km9ZKD2KAZywDKOiaqGelK8O7hHVog5XN5yaE1mRf9DqeHrUVmE0VXyn0WFyNupXaZqGBkcT5nNzecuiuRo7G3kZpY0Udia2YygxiKH4IHYlX0RWlP7gfQ06VnrWot8/gHW+Aazzr0eDhQAeVc6b28/DpsgjGEu/krdsOjuBeyZvwoXdV0hvKwsU7qNpiz9mpMsdhA4HDBQ+2C3oYRhtKZyaC2e2n4eTW87EfVO/wcOzd0vfRxbKiDTunboFj8/+Aed2XoLXt5wFxxL+3kRUXQyRQzgzJl0WZBiNiGE0IiIiIiIiMpezGFyaTzKMtlhWJtKH/vE9aJ7+CwBAXPt14DM/hPbOD5d5ZPajDKMpTn7T1Si/fKLGfqPNWZxgXithtAbP3v/FJCfNYhitPqQthNEi8mNlycaiSYEnXlYv//OO2opaEhFRdRidMX//mYoJAIpSMxHtV8yeXKHXXa0TQuC2v+Y/B5t2Ac8NC7xmJbc5REREREREREREVJsSRlx6OcNoVAptzk64NQ/SIv+gs1B6ZH8YbTw9oryPagqjAXvHKwujjSuiV0T7hNLySflmgUGiWuTQHOhy9WBPejhvWcjk/WI5RLMR6eVWg1mNjmZpGC2Wk98vAUkjgZcS2zAUH8SO+CBeSe5ADhYOcC6SDgdWe9dhnX89+n0DONx3NHyOhpI/DpWOQ3Pi0uDH8N3d/wohOWLmwZk7cVLzaVjpPSxvmSHUE7gcUEyasTimTldAGd5ZqMfNMFop+B2NuLD7CpzW+jbcOfkLPD3/WMHbzOfmcFPoGjw8czcu6HofNjScCE3jcUJEtW46M6mMqfIzGBHDaERERERERFSAYXEualQSKCJrrITRwgkX+hf8t/jR/wec/XfQvP6yjcuOVOujrviuv0vxW+4z+b9PVzWrAcNk6X9rLZu0yevC5QA6GuRhNIYp6oOVMNpcovzjoNJ6ZVodwASAzaPAoy8KnHbE8r/G//sRA1c/IhCOAGcPaLjqbzU0+5Z/XEREVHrzBWKrtRZdJioXs/28Qw3PlG8c1SCTA0KKY8uvfkTgmsu430lERERERERERES1KWXID/bw6vV1jByVh67pCLhXYDi1M2/ZwhiaKozm1X1ocbaXbXzlEHCvwPb4c3mX2y3mQ/ZiCANhRRit28VJ+VR/Au4VijCavSKTqoBZo6PZ0u0bFNeL5nhgzD7xXBQ7EluxI74VQ4lBDCdfggGLB/EXwak5sdrbj37fBvT7B7DWdyRDwVXoMN9ReEPr2Xhs9r68ZQYM/Cp0NT6z6t+ha46DluWEehLFodctVtDTZy2M5mEYrZQ63QF8oPefcWbiHbht4jrsSGwteJvx9AiuHv0GjvAfgwu7rsAq7+EVGCkRLZdQRr1f2c0wGhHDaERERERERGTOsPhbTaHJ4qRmJYwWcgYOviARA7Y8AZx4ZnkGZVNW18d9uho1QHKWHQB4KSxweHdtTCa2GkZLyU8gYUtmrwu3A2hvAHZP5y+bipZvTGQfKQthtAjfl6rO7vwT1OZ5038ayFyjw6EqYlbA/z5u4GO/PPDecv1GgZcmBB797NIOOCAiInsqFGSd4P4nkSVFdHAyMRcAACAASURBVNHw0kTZhlEVzCJyL4wX80wSERERERERERERVZekIozmYQiCSkQdRjswCXk8JY+GBdx90LTqOt4woJhAbbeYD9nLTHYSGZGWLlOtU0S1LODuk15up22pEEIZMFMFzw7V6JCfjTyqCK7Vg2g2gh2JrRhKbMFQfBCjqV0QRR39YI1Lc2Ot70j0+wbQ7x/AGu8RcOuekj8OVd75ne/F8/NPYi6Xf4bAXckhPDp7H97Udu5BlwuT2J4OfUnjsfI+7tSc6HQFl/Q4JLfGdwQ+tfIbeC76JH47cYOlSN2L8c3491f+Ga9tPh3ndV6GdldXBUZKRJUWUnwP0ersYByVCAyjERERERERUQGGxd9uogzQLFrWQtRq2Cn5UXXrpvoLoynWR13xG0+X/DdaAMBX7xK44YPVdaCSitXXabJGwmguB9DZKF/GMEV9SGULr/Rz8mNlycaGZ6xtzP64DTh7oMyDMfE/j+eP8/EdwNYxgfW9tfG+QkREB6QLhKwneGJcIkvMYl+HmowC4YhAd3N97luZfcZ/Ybxy4yAiIiIiIiIiIiKqtJQijMZJoFQqQWXcZmTB/5eHbqoxCKX690Zys4jnovA7FAfhUV0ziz1V4+uAaKmCJpFJQxjQtaWFikohJZLIQX7mv0aLYbQGRRgtpgiu1aK57Ax2xAcxlBjEUHwQe9K7y/I4Hs2Lw3xHod8/gH7fBqzyroNLd5XlsWh5+RwNuCjwYfxs7DvS5XdO/gLHNZ6MVlfH/styQn2wmq4t7QTOVt7HA+4+OJb4OKSmaRqOazoZxzSeiMdn/4B7pm6yFKDcFHkEf53/M85sOw9nt18In6OhAqMlokoJpeWhxIC7t8IjIbInhtGIiIiIiIjIlGEh2gUA86nyjqOWmQWg9tntWpl/obv+zgSkmhzsUMyVXtMhvxwA7tkskM0JOFU3riLWw2ilP0tVuRQKo3U1aYDkrFtTDKMtSs4QuPWvAj/fKNDi0/C+UzWctd6+r42UhchfLIWaeY3Xi+H8E6JJPbFT4OyB5fu7bsw/cTAA4EcPC/zoUq5vRES1ptB+x2y8evaxiZZTMWE0ABgcA7qtHZ9dc8w+40/yMy8RERERERERERHVsKQyjOat8EioVqliEBPpceREFg7NifEFkbSFVGEcOzOLX4TSY1jrO6KCo6FqoQqjNTva4HP4KzwaouWn2pamRQqz2Sm0u7oqPKJ80aw6qqMKnh1KFVCzEuypVjOZyVcjaFswFB9EOCOPkiyVV/djnW89+v0DWOcbwCrvYXBozDvUi+MbT8GGhhOxJfZ03rKkkcDN4Z/iIys+t/8yA+oJXDqWFmIMKKK5C/W4JfOWqOQcmhOnt52D1zafjt9P34aHZu5CRqRNb5MVGfxh+lb8ee5+nNNxMd7Yeja3JUQ1QvU9hJXtNlE94LsdERERERERmbIaXJpPCgDFx0BiKYFQBFjbuffsF/UmZwhLk4NHXPlfZonZqUU849VNtT7qit94elo1NHuBSDJ/2Uwc2D4ObKi+45XyWA0YJi3EpOyiUBitQ3Gyyol5hikW41v3Cnzpjn3PncCvnhK4/v0aLjt5+c9kJ5OSn9guz3wSaOMJkarGK5PWrre1PMeeLFlojtsfIqJalC4Qso7I5+cQ0SGK3VN6MSRwxlH19q3HXmbfxWUtfv4nIiIiIiIiIiIiqkaqMJpH91V4JFSrVJOKc8hiMhNCu7Mbk5mQ9DrBKoxEtDo74NG8SIn8AyhD6RGG0UgqnJYfnBVw91Z4JET2YBaZHE+P2COMZhIva1xiGC1WI2E0IQSmMmEMJfZG0IYSg5hSvOcvVYPehHX+9VjnG0C/fwB9njXQNUdZHovsT9M0XBz4CF58eTPSIpW3/NnoE3g+ugnHNr4WAGAI9cFqS12PrLyXBxnhqSifowHnd70Xp7W+FXdO/hKbIg8XvE00F8HN4Z/i4Zl7cH7X5XhN4+vqci4eUS0JK+LUZvuhRPWEYTQiIiIiIiIylbM44TKa/x19gfsV+OdbBH78kEDWAFZ3AL/5qI4TVtfXF7Jm8aeFhiVhNMxOlHYwVSCnmB2sm6w2T39BxxFfkK/Ie+ZqI4yWszjDvJrCaGmT8JXLAXQpw2jlGU8tG50R+NrdB69EQgDfuU/g714nbPlDmdUw2lyCYbRqMjhmbWO2xeL1ykGY1EytrpdERFRdzPZLAXmEmYjyWYnCL1TPr61inysiIiIiIiIiIiKiWpATOWREWrrMyzAalUi3uwcaNAjJKV1C6VHkRA4C8mMNq3FCsqZp6Hb3Yji1M29ZSDHxmki1blTja4CoFHyOBrQ42jCXm8lbFkqPYn3D8cswqoOp4mU6dPh0awfRNijCaNFcdR6YLYRAODOGofggdiQGMRQfxEzW4tl7i9TkaNkfQev3D6DHvQq6Zs8TU9Py6HB14+2dl+C2ieuky28K/TeO8B8Dr+6DAfUEI8cS16tGRzMaHc2mMcUez6olPQYtTrurC1f0fBJntr0Dt01chxfjmwveJpwZw0/G/h2H+47Gu7rejzWMHhNVpUQuLt3PBPgZjGgfhtGIiIiIiIjIlKJDlWe+yAmrP3hQ4PsPHLjzV6aAs/7LwOh3dPjc9ovwlIvVMFrIEci/cCZc2sFUAdX66DD5jWddt4b2BmA6lr8sPC8AVP/6ZlgMGCarKNpj9tpwO4EuxQnMJqLlGU8t++ljQvp8bxkDZuJAuw3DYlYDVBNRYE1necdCpZEzBLaNW7vuzom9B60sR7Qva7JtYhiNiKg2Fdq+13O8iagYxba+iv2eqZZY/S6OiIiIiIiIiIiIqJakjIRyGcNoVCpu3YN2VzemMqG8ZeOpEWSF/MdBHQ50u3vKPbyyCLr7pGG0cYbRSGE8PSK9nJPyqZ4FPH2Yi8vDaHagipc1OpotH2fZ4JAfmB3NRZbteM1iCCGwJz2MHfFBDL0aQosoIiNL1eJsR79vAP3+Dej3DSDgXmH754eW3xlt78BTkUel+2Wz2SncPXkj3t39QRhCPTFEw9KDewH3CkQTJmE098olPwYt3irv4finvv+HLbG/4PaJ65T7ZQu9lNiG7+z+LE5seiPO67wMnW7J3DMisi2z/Ul+BiPai2E0IiIiIiIiMmUIa7Mxo6ni7vdXm/LvdzYO/GEr8M7jiruvamYWWFkoIvuxsR7DaIrfefQCvyUGmhVhNPVvOlXF6qTphPykqrZkFkZzOYDORg2yqfUT1XlismV17xb1CjQxX91htOFp4KQ1ZR0KlcjOCSCZsXbdVHbvutktP0FhWaUZRiMiqjvpQmE09RwdIlrA4tdL+xX7PVMtYRiNiIiIiIiIiIiI6lHSJIzmYRiNSijoXiENo4XSo8hB/uNglzsIh1ad0zBVE6lDFiILVH9SRhKz2Snpsm5Oyqc6FnCtwIvYnHe5XbalsZz8gHhV7Eym0SE/INNADkkjAZ/Dv6ixlYshDIylXnk1grYFOxJbEVU8D0vV7uzaG0HzD6DfN4BOV5AhNCqaQ3Pg0uDH8Z1XPguB/EkxD83cg9c2n2762cehOZY8jqC7Dy8ltsnvH050uYNLfgxaGk3TcEzjiVjfcDz+PPdH3D15I+ZzcwVv9/T8Y3g2uhGnt56Lt3VcBL+jsQKjJaKlUoXRXJobbc7OCo+GyJ6q8xs5IiIiIiIiqpic+oQjB5lPFne/T+2SX/6TRw2887ilf2FfLcziTwtF9GYIAAf9hBa2x1mmKimnmBxcMIzWBGzbk3/5lrGlj8kOrL5O4zUURgsogkjRFBBJCDT7+INzKUzMA0fa8PfNQoGSfYZn8racZFODRW6Ph2eWKYxmsu6lLIbdiIiouhQKX0aK/CxMVK9UYbRmr/x1VOz3TLVEFYXfJ2cIOAp9EUJERERERERERERUZVKG+othL8NoVEJBdx8GY3/Nu3xL7Gm4E17pbVRxsWqgGns4vQc/Hf32ou/XoTmx2rsOp7a8BT6HDc+8SfvNZaexce4BjKR2QQjzH6LMtsXV/DogWqqAR77+70oMLWlbWqxWVweObzwF6/wDB10ezcnPKt2giJ3JNJpE1GK5yEFhNEMYeHr+MbwQfx7JXNzyY5RKSqTwcuIFJAzJWdNLoMvVsz+Cts4/gA5Xd1keh+rPau86nN56Dh6evTtvmYCBn459B12uHuXtdehLHoNZ6DTg7q3aGHAtcmgOvLH1bJzUfBrun74df5z+LTLCfEJQVmTxwMwd2Dj3AM7peA9Oa3sbnJqrQiOuLoYw8FTkUbyY2Lws72Wl5NTcWOPrx+tbzoJb9yz3cKhIqjBawN0LXVv6dp+oFnDvhIiIiIiIiEwZiomrh5pTn7AxTyKtvtPp8vw+ZVtWw2g5zYmY1oBGseAJmh6HyKShudzlGZwNqSYHF5oP3N2sAchf7679k8BP3yugV/mEYquv01gNhdH62tTLR2eBZh4PWRJh+bESy65QoGSf3dPlHQeVzpYxixuyVw1PAyesLtNgTJite1bXSyIiqi7pAp/Z5pOAYVT/ZwqiclPt7TUpwmixVFmHY2uF9ozj6b3PGxEREREREREREVEtSRrqAxA9DKNRCQXcfdLL53NzQG5OuizoXlnOIZWV6t9rIIdnohuXdN9Pzz+GP8/9EZ9e9U00mAR1aPlMpkO4cvjzmM1OLel+HHAyDER1LajYlqZEcsnb0mI9PPM7XBb8e5zS8ub9l8UUYTSz2Fn+ddURtWgugk4cOMvyz8d/gCcjD1m+b7sLuvvQ79uAdf716PcNoNXVsdxDohp2Xtff4dnoRul781QmjKlMWHlbXXMs+fGDJmG0oKd693lrmVf34R2dl+KNLWfjrqkb8cTcgxAFji6KG1H8ZuJ/8fDsPTi/63Ic33gqNI3HNy50w/hV2BR5ZLmHUTJPzT+CpyKP4pMrv8Y4WpVRhdHMQpZE9YaJQCIiIiIiIjJlNbg0EbEeNNkjP3YEAOCos0+qVsNoABA59AdHIYAJ+RdgtUq1PhZab7pMftd9YPvix2MXlsNoVTSxPK0IDDl0QNM09LaobzsyU54x1aqESTAvPF9crKpSrAaoRhhGqxrb9hR3/eGZ5Vk3VdsmgGE0IqJaJIQw3fbvE62i/Wwiu1EFvuaT9vwsUgmFPuNHJSE5IiIiIiIiIiIiomqXUoTRNGjwaDxbBJWOWQyilLexi253DzSUL4KwJz2MP889ULb7p6V5YOaOJUfRAKDLHYSjBDEWomoVcPcu9xD2EzBwx8QvkBWZ/ZdFcxHpdYuJVnp1P3TIX+cL7384ubPqo2i97tU4vfUcfKj3s/j24dfhS2t/iEuCH8VJzacxikZl59V9eE/3hxd1W9VrtBgBk/3aniqOAdeDVlcH3hv8BP519ZU42n+cpdtMZkL42dh/4D93fw4vJWpg4lSJDCd31lQUbZ9dyRfx1/k/LfcwqEiqMJrZ9pqo3jiXewBERERERERkbznD2vXC8hMNSTGMdkAxYbQ5vRm9OKQcEx4BeteWdlA2ppocrBc4bufwLvWys79nYOZ7Olr81XsGlFoMo6leG+5Xf8/zuDR0N8m3PSMzAijjwVy1JpFRL5soYtteSSmTMS8UKiLaSctrKlrc32oqWqaBFJA2ed9mGI2IqPZY/bwWSQLNvvKOhajaCcXuXrNiLls9BweNAt/F1fNzQ0RERERERERERLUrYcSll3t0HzSNxwFR6QTcfRW5jV24dQ/aXV2YyoTL9hjbYs/grPbzy3b/tHjbYs+W5H44KZ/qXZuzCy7NjYwwORNxBUVyMxhLvYJV3nUA1GG0xkNPym5C0zQ0OpoQyc3mLYvlDhxMXKrtSqVo0NHnWYN+/wb0+wawzr++qGAcUTkc13QyXtP4OjwXfdLybXTocGquJT92hysAp+ZEVuQf9NzjYRitGvR51+ITK7+CrbFncFv4OoylXyl4m5eTL+C7uz+H4xtPwTu7Lke3u6cCI7WvrbFnlnsIZbM19gxObjlzuYdBRZjOyj+r8zMY0QF1Nt2ciIiIiIiIimU1uFSqMFrCHr8XVkzWYngO2BtGy7NnV6mGUhVUob5CYbQLjze/wluvMpCzurLbkNWAYdYA0tnq+HeqIhSuBSc66muTX2c0/zd5MmEWRitm215JVgNUE8sUz6LiJS3G7vaZk58ouuzSJuseAxVERLXHbLu/UGSZ3peIqonqk2iTIow2nyzbUGyv0NcT3O8kIiIiIiIiIiKiWpQy5D+4eHWenYZKq8nZgjXeIyxfv8XZjlXew8o4ovI7puGkst5/KD1a1vunxcmKDCYz4yW5r2May7sOEdmdrunY0HDicg/jIHtSw/v/f6wEYTQAaFBcP7ogjGb3bb4OHWu8R+Cs9gvw8RVfwH+u+zn+dc2VeHf3B/Captcxika28Z7uD8OjKQ6akVjrOxIufelhNIfmwPqG/5N3uUtz40j/sUu+f6qc9Q3H4/NrrsRlwX9Ai0MxseYQz0Q34msvfwK3hH+mjGrWA7u/ly1FLf/balFWZJBUfB/W6myv8GiI7IthNCIiIiIiIjJlWAwuhYr4TnTPnHqG59gcIER1hJtKQRV/kplztORdJl7ZXsLR2J9qcrBe4BuOVR0a3neKOo725MvATU9V73pXTNMtViUTqFX/JseCv3VQ8Xu9XWNedhU3CVJO2vS5tBpGm2QYrWoUG0aLLFMow2zdm5gH7ny2et9LiIgoX9ri57VYnQW+iRZD9VVPs2I+Wz3HvxhGIyIiIiIiIiIionqkmgjqYRiNyuDCrvfBq/sLXs8BJ97d9QE4NGcFRlU+b2k/H12unrLd/0x2Eimjjs96Y1MT6XEYKOLszQpH+I/BiU1vLMGIiKrbuZ1/azk8Uwl70gvDaPKDfVWhM5VGRTRsYTxnPD1S1H2Wm1Nz4nDf0Xhr+0X4h74v4z/7f4nPrv4OLuh6HzY0ngifo2G5h0gk1ebqxAd6PwOnVjh25tP9eFfX+0v22O/ovBTNjtb9/61Bw/ldlzMcWIV0zYFTW96Crxx2Nd7ecYml2F4OWTw0cze+vPOjuH/6dmSM+jv4sZbjYeH0WF3Nyax2qn04oPjALVEtq+5v5YiIiIiIiKjscha/D4umgHhKwO9Rx6f2GZ9TLxubBTaPAsf2WRygTaUyAv/zJ4GndwGtfuDC4zW8oT//uSkmjDavS35o2LVt8YOsQspYVuHVDv92robrN6pX6F8/JfB3r1vkwJZZUWG0NNBWBb/xKiN4C/7W3c0agPwr2jXmZVcJk9+ywvP2+1HEMITlbedUdO/1dd3CRoKWVdJi7G6fSGJ51s10gXFe/r8GNn9Fx8p2rnNERLUgZTHcGWekiKgg1fFWTV7557r5Op47U+jYtGgdPzdERERERERERERUu1RhNC/DaFQG6/wD+PzqK/FcdBMmM+PS67Q423FM44lY4VlT2cGVQburC59d/R08O/8ERlO7ICS/zViRNlLYGHlAuiycHsNK72FLGSaVmCr4oEHHaa1vLXh7p+bEam8/jms62VK0hajW9XpW4XNrvovn5p88KEpWbi/Gt2BPenfe5XtSe8cghEBUGUYrLnKkun7s1TCaEEK5bTnK/xoE3CuKerylaHa24TDfUVjrPQJu3VOxxyUqpWMaT8TnV/8XNseewnRmQnqdgHsFjmk8ER2uQMked4VnDT635ko8N/8EYrl5HN1wHNb6jizZ/VPleXQvzum8GK9v/RvcM/kr/GnujxAFArkJI47bJ67HIzO/wzu73osTmt4AXdMrNOLlFU6PSS+v9HvZUsRy83h6/rG8y1MiibncDFqd7cswKirWwvjsoRirJDqAYTQiIiIiIiIyZRRxsrDwPLDGwu9Ke0zCaABw4yaBY/uqNyiSzgqc9A0DWxZ8V3rVAwJX/52Gj5x28BfFxYTRZheclWW/V7YvcpTVSRnLsvD9+2GdgM8FJBRxg7ufr96AUq6I12msSqINhmIm+MK/dZfie147xrzsyjAEUiahp7ANI3PpIrabhgCmY0AnfxOwvaRi29ziA+Ykxz5H5MdDl12h9S+SBH78sMC3Lqy+9xIiIspndb8jVn8nTSQqmupTWpPiRKWROo5/FYqfx7nNISIiIiIiIiIiohqUUobRFF8kEy1RpzuIN7eft9zDqJgGRxNe33rWku7DEDk8Nf8osiL/QJ/x9AjDaDajihd1ugK4OPCRCo+GqDa0ONtxWtvbKvqY903dgjsnf5l3+b5YWtJIIAf5gcCNjuaiHkt1/dir4bVoLoK4EZVe520d70G/f6CoxyMiIOjpQ9DTV/HHbXW24/S2cyr+uFReLc42XBr8ON7U9nbcPnE9BmN/KXib6ewErt1zJR6YuRMXdl2BI/wbKjDS5RPNRhAz5JNk3tpxUdX8+1VhNGDv5wCG0apDTBG3BRhGI1qoPrKdREREREREtGiFJmMuNG9x0uqD283v9Dv3CVz2MwPTseqLG92w0YD34wdH0QBACOBffiMwFz/435QtIvAz5uzJvzA8CqEISNUiVQDMSstM1zW8dq35dXZOFj8mOyjmdVotYTQrf+tuxfe8EzaMedmVKka1jx2fy1SBMR9qQn4MBtmMal1Uvc6XK5SRNgkJ7vPt++rnfZmIqNZZ2e4DjBQRWaH66qKjQX55LAXMJ+tzv6rQZ/xYuj6fFyIiIiIiIiIiIqptSUUYzaP7KjwSIlLRNQe6XZLjWKGOcNHyCaVHpJcH3CsqPBIiWooe9yrp5VOZMNJGyjSo0VhkUKNBEUaL5iIA1NsVAAhy20JEZBu9nlX4+74v4h/7voo+T4FJVK/andyB7w1/AdeMfrOm9+3N/m3VtJ/c4GhSBk1r+e9Xa6KK/Tiv7odTc1V4NET2xTAaERERERERmVLFiWSiBYJLQgjc87zA7unC93XjJoHOTxkYClXPZM+7nhO44lr1eOeTwG+fPXh5pogw2ohLciaYdBKIWHhCa4RqcrCVMBoA/MMZ5l+FvPuaIlZ4GzFK+Dq1Cyt/6y7F7/VhG8a87CpRIDI2GQWMYsp7FZCyGCjZ5/Ed9ho/HWzbHoGfbzSU+waqMNqc/HjosrMayKnXiAcRUa2xut8RZ6SIqCDVq2SVyckph+vn646DFAyjVcnneiIiIiIiIiIiIqJipBRhNC/DaES2EnBLjmMFJ9/b0bjib1JNwQciAno88jCagMB4emR/tEymocgwmiqwsi/aEUqPSZf79AY0OlqKeiwiIiq/oxpeg8+t/i4uD/4TWp0dlm7zfHQTvvbyJ3BT6L8xn50t8wgrL5SR7yN7dT+aHa0VHs3SdLt6pZeHFe/XZD+q/bhi9+GIah3DaERERERERGSqmB6OWXApmRG45KcC7/hhceGpI79o4CePVkes6uqHC4/z7ucXH0YbdioORpionwNKVAEwh8VvON51gobr3q+uqD0/AmRz1Rc1KOZ1Wi0TqFV/64VhtO4m+d9yYh7I2SzmZVfxtPlyQwDTscqMxap0EdtNALh/kOuCXX3zdwYGvmzgfSZR0W75cTaIJMs0qAKsBnLqNeJBRFRrrAYxq2Ufm2g5CcUu34o2DZriY7qVsH4tUj1X+8QKfI4jIiIiIiIiIiIiqkZJRRjNwzAaka0EPfLjWEPpkQqPhMwIIZSxuqAibkdE9tTp6oZLc0uX7UntRkwR1NChw6c3FPVYqgjHvscYV2zrg+4+aKof/omIaFnpmo6TW87AV9b+GOd1XmYpPm7AwKOz9+LLL38M9039Bmmjdg6QVO0jB9wrqu69TBU8ZrS6eqj241SxWqJ6xTAaERERERERmSqmLXT29wz89DEDQjKD8+anBW5+enFxmo/+QuDaP9k7jiaEwKZdha/3/CG/BxYTRhtxKQ5GCNfPASWq9VEv4vvny0/R8eaj1Mt3hIsbU7mkMgJfusPAKd/K4fwf5XD/VvXrJ1fEy6NaJlBb+Vv3KE4uZgjgpYnSj6kWJTKFrxOeL/84ipGyMOaFRmrvREU14ZndAl+6o/B+QXezfAM/Jz8euuzSFuOZwzNlHggREVWE1SBmodgsEam5HUBQcRzP8Ex9Ro4LfRfHbQ4RERERERERERHVIlUYzcqkbSKqnG6XavL9GAxh7+N868l8bg4JQ35GVFVAgYjsSdccytftnvQIoiZBjWIDL42KMFo0N28aXAy4e4t6HCIiqjy37sFbO96Nr669Gqe3ngPdQmYmaSRw5+Qv8JWXP44n5h6qif39WnovU+0fhBlGqxqxnHyylmqfjKheMYxGREREREREpooJLgHA//25wDd+lz+D85ZFRtH2+eD1Ar/bXPkJsUIIbBkV2DMrpMG3fcbngGn5MQQH2TEBJNIH7qeYMNqwsw/SEUzUz5eWqvWxmDAaAHzgDeobbLbJ0/me/zbw9XsEnnwZuPO5veHBu5+Xr4PFBAyjqeqYWK76NzkWfJt1RED9tx8cK/2YalHCwoR624XRLAZK9oksU0CLzP3kMWFp29Wt+E0nlgLm4pXfnqUtrn/D09WxrSUiInNWt/vVEh8mWi5m36doGrCyTb5stE5js4X2k2O1cxJWIiIiIiIiIiIiov1SRlJ6OcNoRPYS9MhP8JsRacxkJys8GlIZT6tPuMwwGlH16XGvlF6+J7VbGdRocCjOUGaiUXEbAzkkjbhJTEZx8nciIrKdJmcrLg58BF9c+wMc2/haS7eZzU7hhvGr8O1XPoPtsefKPMLyCqXlE42qcR+5WxFzm8yEkRWZCo+GFkMVuG1gGI3oIAyjERERERERkaligkv7XHm/OCj+BQD3bF76WD59s2E6mbbUNo8IHPf/DBz7VQMrPmvgwh8bygiL1QiTEMC2PQf+O1tEeC7qaMKc3pJ/n3UURlOtj8WG0f72JPUNLv7J8p/FZNsegbuez7/8vB8amJWsg8W8TqslEmXlb+1zazi8S369zaOMElmRsPB7x0SVh9HmqmSdrydCCFz/Z2uvIQYzYAAAIABJREFU0aOD6mVP7SrNeIphOYxWpxEPIqJaY3U/O84wGpEps69yNAABxfHY0/GyDMf2GEYjIiIiIiIiIiKiepQ05Ad4eBhGI7IVs2CAKphDlaf6WzToTcrwERHZV49HHkYbTw8jqgyjFR/UMLvNbHYak5mQdFk1xmSIiOpdwL0CH13xeXxq5TewyrvO0m2GUzvx/ZEv40cjX8NYaneZR1h6OZHDZHpcuqzbJY+M2Znq/VfAwITi30n2otqP42c2ooMxjEZERERERESmFhNGm40Dmxf8pm4lZnbL/y38EfXFEHDVA5WJHaWzApf9j3HQv+OO54DP/1b++DsnrY9rZEEsJZMr7t8z4pJ8cRmun4NJVOujo8hvODRNw0UnqONoP354eeNovx9Urxf/dFP+slwRw43IT65qO8ow2iF/6wHF7w8vT5R2PLUqZSGMFp63V2Su2DBatazz9WQuASQtnoToyKCGzkb5sk27Kr9uWl3/huTH/xARUZWx+nmYkSIic2YvJU0D2hrkn89nYuUZj90V+hqNMUYiIiIiIiIiIiKqRSlFGM3LMBqRrXh1H1qc7dJlDKPZh+pvEXCvgKYVeSZiIlp2Qbc8jDaZCWEmOyld1riIMJpZhGNX8kUIyA9YZxiNiKh69fsH8NlV38H7ez6NdmeXpdsMxv6Cb+z6JG4c/zHmstVzNvGpTBg5yCcDVON7WacrCE2RC+Jns+oQUwZuGUYjWohhNCIiIiIiIjJVTHBpoc2jB2ZxPjtsft113cAFxwMXn1j4x/ZP3yxw21/LH0K5b8vBcbd9btokpKG33dPW73smfuD2mVxx4xp29uVfGC7wBNcQ1fqoL+I4jQ0m31v/w40COyeWLwb15E71sp8/IZA9JKhXTMBwTn4Moe0YFv/Wazrlf/zhGXvFvOzKyrozIf+ufdlYibktNJ8EcoupfFLZDBfxnulzAa9bK1+26eXK/13TFt+3t4xynSOiyslk5Z9RaOmsPq2MFBGZM3staRrQ5pcvm4nV57at0McXbnOIiIiIiIiIiIioFiWMuPRyr674EpmIlk1QEQ0YT49UeCSkElL8LQKe6gs+EBHQ61klvVxA4KXEVukys8iZilf3Q4dDuuylxDbp5Tp0dLmDRT8WERHZh67pOKn5NHx57Y9wQdcV8Fn4HC5g4PG5P+ArOz+G303+GinD/mezN4uFdbt7KziS0nDpLnS6uqXLwumxCo+GFiOai0gvX8x+HFEtYxiNiIiIiIiITC22JbMwKva5W83ratdeoUPXNfzXxRpeI+l+Herd1xi4YaOBezcLrP9SDu6P5rDhyzn8YbB0E2a/do98zDNxeVhqpIiTXMwuuH2xYbQRl+QJCtVPGE21PuqL+IbjmBXmNbVv37d8E7B9bvPlMwuOAyw2glE1YTTV3/qQP9vKNvn1igkv1TMr2/iw3cJo8pP0mIra/3e2ujJcxHum1wW8dq18e/3ky8VvA5cqbXH9eyG0N1RERFRO8ZTA+6810PZJA+2fNPDxXxpIZrjtKSWrn4fjqfKOg6jamYbRALQ1yJfNyOfA1bxC255Yitt6IiIiIiIiIiIiqi1CCKQM+UFNXt1X4dEQUSHdijBa2CQ0QJU1rvhbBFwMoxFVo05XAE7NJV02mQlJL29wNBX9OJqmKUMcqjBapyuoHBsREVUXl+7GWe3n46uHXYMz2t6ujGUulBJJ3D31K3xl58fw57k/whBFTpKrINXnlXZnF9y6p8KjKQ1V0C2U4WezahBThNEWsx9HVMsYRiMiIiIiIiJTiw2jDYUO3DBkEtWZuFLH69ftDZ4EWzQ8/QUd/3K2ebAKAK64VuDcHxjYPg5kDWDrHuCtVxn45K8NXPWAgWd2L22S6M4J9TJZJGh42vrjzcQO/P9skd/5DsvCaCM7IEK7i7ujJRJjOyHu/BnEY3dCZBdRKVok1froKLzK5Dm2QITvjmeXb6JxOGL+2FPRA/+/2NdopMbCaKva5X/84ZnKB5OqkZX1Z+H6ZgeLCaNVSxCwXhTznul1Aa9ThNFCEWC2wrEMq2G0TA4YCpd3LEREH7xe4PqNAvH03ve6ax4R+OSvuf9TSlb3taOMFBEtmqYBbYqTjE7H5JfXOsP8/AKIMcZIRERERERERERENSYj0jAg/3LUwzAake0E3fKDL1UxLqqsjJHGdEZ+4FLQY+Hs1URkO7rmQFARpVRRBc4KUYU4QqrgYpHjIiIi+2t0NOOi7g/hS2t/iOMbT7V0m7ncDH4x/kN8c9ensTX2TJlHuDiq9zJVXKwaqN6Hw+mxCo+EipUVGSQVJwloZBiN6CAMoxEREREREZGpXIHJmCrD0wf+v9lE1o7Gg2MnDl3Dt9+l46aPLKJ0BeD7Dwh86tcCJ3zdwNfvWeTgAZhNaw9Lgvy7p/MvU5ld8L1Vpsgw2ohT8ePhQ7cVd0dLIH7zQ4hLN0D8x99DfP4iiI+/CWLGpCRXQspY1iK+4VjbCRy3Ur08PA9s37M8gYNC69PUgtdUsa/RuUR1RBushtFWtsuvl8zYL+hlR1ZiH3ZbZxYTRoskSz8OWrzhGevX9bqAo3vUy0eKuK9SKCZGuWXMXq8dIqotsZTAbc/kb2du2Cgwn+T2p1SsdnZnKhzqJKo2Zi8lTQPaG+TL6vW1VWjTE0tXZBhEREREREREREREFZNSTAQFAK/ureBIiMgK1eT7uew0Erk6/YHHRsKZMQjFL04MGBFVrx73qqKu37DIMFqxIQ5uV4iIale3uwcfXvFZ/POqf8da75GWbjOWfgU/HPkqfjD8FYwkd5V3gEWqxchnt2Lsqn8r2UcsN69cttjALVGtYhiNiIiIiIiITKkCIBt6905eVVkYdlJNZP3i29V38J4TdUz919I+tn7pDgH9Izmc+PUcvnGPgWzO2qx2IQSiJhGd8CHfPSXSAi9PWh/X7ILno9gw2p9azpBeLh66tbg7WiTx7GMQV/0zkFsw8G1PQdzyg4o8vioCdmgsywpN0/Af7zZfx9Z/2cBPHjUgrBYRSiCbE3hRfrK+/RYGv4qJ9ADAnPo4QluxGsFb2aa+j2LiS/XKsBDWm7XZsWqqbXmLyQmCq2W9rxfFxMw8TiDYrN7O2zqMxt8TiaiMXgzJP0skM8BD2ys/nlpldbtvFgMnIvPIoAagzS/f2ZuOoaKfx+2i0LYnzjAaERERERERERER1ZikaRjN5IAQIloWZuGA8P/P3n2Hx1EcbAB/Z+9O3VaxrWbZBtPcgNCrqYbQQseU0D8CoQQcSIAAARNqaAFCDxCSEAjNGNMCxpQYDBhjDO69SJYlWb2f7m7n++Ms6yTN7O1e00l6f8/jx7rd2d2529253b2dd33lCawJqehCEAy4MNxTkODaEFGsFKZaPA1cwWnAWdd0zoI4ClNLIloOERH1Hzulj8PvRt+Py4pvtH08ubx1Ee7b+Fv8a8tfUe+riXMN7ansUJ+r9OdgNF3dmwONlsFb1PeaA43acZkRHscRDVQMRiMiIiIiIiJLutCc66YIzLvJwNHj1OMb24GGVgmfX6LFqy5z1G7WaVa5mQKf/y76U9eFm4A/viORc52J/8w38eb3Ep8sk6huUvc0rW8F/BZhQVU9pltR4Swopa6lq7DTYLS1ogR1Rk7vEcvmQ1ZsdDYzG6RpQq5fDjnvA8jP3oL8zRR1wU/+E/Nlq2jDsiIIRgOAo8cLrL3Xehv79csS932YuI7Ya6qADr91mZqQbchOsFWo/hIQpXtfPdd1wVDA41KXDQ1oJDU7bVd9km0zujpnpgIpbvW4HzYNvjCFZFZaa399pLoBj1ugMFs9vqw+sevWyff92q3xqwcRke74BwCWbuH3XqzY/SR1YeBEFGS1LwkB5GWqx/lNoDHJzkcSIdx5vu46GxEREREREREREVF/ZRWMlspgNKKkk+seDo9IUY6r8JYluDbUky4YbURKEVxCc4MdESW9ohRnwWiZDgPOIp2uwNN/w2SIiMg+IQT2HnIw/rjDEzhzxKXIMLLCTiMh8XXjHNyx/kq8W/2K5bl/vLUFWtEYUD+RvV8Ho3mKteOqNEFwlByaLYLrGIxG1B2D0YiIiIiIiMiSVRDVAWMFXrhIf2q5qdY6UCcnI/zyD9tV4O8XR5h61UNrB3De8xJTnzVx7KMmin5v4sGPevc2DRemVNkjlH+hw8Cd0E7zToPRAOCxvGvUI758z/nMLMi6Kshrj4G88GeQN50Geft5+sJbNkK2xv9pErrOwa4ornDsOFxoA/463TZTYlFpYgImlti49lzT0vV3wGG1+kunct376hmMZhgCIxVZgYCz8KXByk7IU7KF6QUsQvPGFarHzVzEbSGZlKp/U+wl3RPcxwFgVK5mXgkOQHQSjFbfyu2OiOLHqj1aznsZYsZuCHFtCyAl230iHavdQwAotLivuqw+5tVJeuGOOVs6ElMPIiIiIiIiIiIiokTxWnSOTmMwGlHSMYSBghR1B3xdKBclToVXvQ4K+3HgAxEBRanOgtGyIgzUcBrEUZDKtoWIaDDxGB4clXcy/jT2GRydewrcNoJ3fbIDH9a8junrrsTc+o8QkBF0pIuS1XlKfw5Gy3bnIVWkKcfx3Cy5tWiC0dKMDLiFJ8G1IUpuDEYjIiIiIiIiS1YBNABQnNM7qKhTaV33ELCecm0EowHARQcbePuq2J/CBkzgprck8qYF4L4iAOPyAHa5NYC97rLu/b5ua/fXMxY66wAfGqzm1ywq02zWTv/q8AuhWqJc/aOjeujI+mqYL/wJ8uRRwI9f2p9w/bKYLN+KVVBfNKafHH77mvyAmZCwg3Vbwy+jJmTzsBvW0Km6uX+ENujel2pdj8pTl7UbvjSY6dr4UPUW7Xhf0LUDLgM45WfqxuCHTf1ju4+Xz1dK/PplE9NeM/Hl6r79HKSUKLO5bw4J+Y2uRBOMZndeseKkze0vQZRE1D9ZheaUNwze77xYsxuI6QsEg7iJSM0yGE0AI3OC/6skOgg3GYRrelq8CakGERERERERERERUcK0a4LR3MLNzqBESaogpUQ5nJ3v+15lR5lyeH8OfCAiYLin0NFxUZbL4gllMZou0zUk4uUQEVH/luHKwhn5l+D2HZ7EvkMm25qmMVCPVyufxj0brsPi5gUJ7d+hO0/xiBTkuIclrB6xJoRAPkOr+6XmQKNyuNOQWqLBgMFoREREREREZMkqgAYA3C6B4hx1mU21El+t0V+ozM20X49Tfibw5q/jcxpb39r1PtdutS4LAEvLu96TlBL/W60uN9oirKnzAq5P86CL/doWaJe/VpRgs1txg8L6pdpprPj8wbpIvw9y/TLIi/cFXrrH+YzWLolo+U6EC+qL1CE7C5yxt3WZFi/w3YbI5t/hl+jw27tobyfMq6al62+7YQ2dvP7+EdbjJARvVK56A0h0YFJ/ZGf78fqBdl/yBKxYtQNHj1NvC3WtwJaGOFYqib00z8RRD5t47n8Sj8+ROOIhE//+1mGiYgxVNgLtPntls1K7/h6p2c831yV223TS5jb0g7aWiPovq3DTGn3GMjnk5FumtiV8GaLBKty+5HELFGrulS5N8PFeMggXxtvaMbiDn4mIiIiIiIiIiGjgaTfblcNTjfQE14SI7NKFbOlCuSgxpJTaAAQGoxH1by7hsr0fG3AhzbD5BPseshyEcRRqQjKJiGjwGJ5SgEuLb8CNox/AzukTbE1T0VGGpzffjcfKbsem9rVxrmFQlU93jFwMQ/TvyB39uRmD0ZJZiyYYjaGzRL3171aaiIiIiIiI4s5OOJEuAGxTLXDHLPUMXEb3wBM7Tt9b4K0rDcfTxdryLYC57YNpbAsGZqlcfaQ6xKXd1xVWoAtGS5E+vF16prYOZW7FEx3WL4P020ybAbC1SeLCF0ykXx1A5hVtmHbe39B60UFAzRbb8wglIwxmc8JJWJZT/7zUwIm7W5c58D4Tt79jImAzGafFK3HBCyZyrgv+O/95E83t1tOW1oafd21zVxmnwWgAUNnkfJpE065rxdWsUZo26NX50tbnOZjZ3X6SKeDJKrBzovphNwCAJYPwdx3TlLhlRvcPzJTAbTOl7XYs1pY5+IrJDPm+H5WrLmMnTDKWnHxsjer7tomIYsKqPaphQFfMhAsnClXXGr96EPV3VhleYtv5vPZ4rzb29Ul2do452zriXw8iIiIiIiIiIiKiRPGa6htT0hiMRpS0dJ3vq3xbYErNjbEUdw3+Wnil+qYlBhgR9X9FKaNslctyDYEQkd1c7ySMg4GLRETUaYf0XfHbUffg8uKbke+x6NQRYlXrYty/8Qa8tOVR1Pq2xrV+upCw/AHwXZafov68qzrKE1wTcqIloO7Y5ySklmiwYDAaERERERERWQpoOoJ3D0ZT/3BWWqvv/JrmQUQ/uJ22l8Daew28c7WBf1wi8OVNBpr+amDujcHXt58Ug4SsMNp8wPrq4N9WAVOH7qyvy6ZtHXt1wWge6cNJzR9op69yF/Qe2N4KfP+pvkIhpJQ47AETL38rYUqBNpmCv+ZcgdtGTLc1vdK6vgtGc8UgGS09RWDWNQZmXGl9ueTu9yUuetFeMs4V/5L497cS7b5gIN4r8yWueNl62vnrw883NOxCt49aqVQ/WCKpOAnB0wWjAcCYm0089bmJz1dKSEWDtGSzxJOfmXh1vgmff/CFqJlWCQUhkikYzep7aViWQKHmnowNNYNv/a7dClQo9veNNcDCTYmvDwAsLY9sPZRYBKOp9u14cRKMlkz7DRENPFbHgNXNiavHQOfkG6Y/HGMT9RWrfanzFE93XsdgNLUWBqMRERERERERERHRANKuCUZLFQxGI0pWupAtv/TFPdSA9Co6yrTjGGBE1P8VpdoLRst0EG7We1r7YRxsV4iIKJQQAj8bciD+uOPjmJr/K9thm/MbP8f09Vdh5tZ/oS0QnycDV2pCwgbCdxlDq/un5oD6puNojuOIBioGoxEREREREZElO0FUus6rm2ol6jWhINHEWI0YIvCLPQUuOMjAwTsJZKYKHLJz8PX0kw3Mu9nAkbsBET7oyJZlW4L/V1l0ft99JOBxqceFC0Zzww8BYJSvVDm+Ml39w6ac96G+QiGue01iZWXv4S/kXIJ2kWprHr2sXAjpi2/PXDtBfdEQQuDUvQSuOcp6hq/Ml7jpLetEstoWidcX9N6BXl8gUdOs3rHmrpbKEKOeakLCLpyE9HTqD6EN+ran97BRudbr65pXJI562MS5f+sejvbgRyb2/JOJ37wq8cvnJfa400Rty+AKzzJtBuvVt8a3Hk6EC80bqQnQqo3Pb2RJrcbiPf+wqW+29aUOHjzkD9k+SzT7eYs3sdunkza3sT2xoW1ENLhYtUftPgzKwNd4sBsiCwCltfzMiXSsdqXOaze6473SusG3b9lpelq88a8HERERERERERERUaJ4NcFo6a6MBNeEiOzKTynWjrMK56L4quzYrBw+xJWNDFdWgmtDRLFWlDLaVrksB+Fmvae1H8YxEMJkiIgo9lzCjSNyT8SdOz6NY/POgFt4wk7jlz58XPsW7lh/Jb6o+wAB6Y9ZfUxpomoQBqMFQ6urE1wbsqs50KQcHs1xHNFAxWA0IiIiIiIishQugAYARmlCaFZU6Dtq/vXc+KWWHThWYM4NLgSedWHzAwZKNPWLxtLy4AdTpb4OhcxUICtNaD+blZXB6f2aUCKP9AEACvxVyvGVYw9VT7h2iXp46LIrJJ74VL1im11DsDJlV/WEE/aH+KQBr1+7EEeN/i9G7rIeR4z5GB9k/jw4vqURmD877PKjod0eY3yF466Tw2+fD34ksdMtASwqVVfq+43q9Rswge82qOd50Yv2UqpCw44iC0ZL/o7lusAuVQieLpyxp9cXSLw6P/jeP18pcdNbsluH85WVwG632UwKGyDsbj/JFIymC0jsDM3L09wTOxiD0Tosfg9c30e/cTkJjfGHhIeOGaYvt6Iiigo5ZDdMEAgGWjQzsIKI4kT3fdhp5qLE1GOgc9Lul9bFrx5E/Z1lMNq2/3XndaW1Ma9O0rNzntYa31x6IiIiIiIiIiIiooRqM9U3pqQa6QmuCRHZlWqkIdc9XDmuUhM6QPGnC0YrSClJcE2IKB6KUtUPVu8pM4pAjUwHwWiFbFuIiMhCuisTp464ANN3fAr7Dz3C1jTNgUa8VvUc7lp/LRY1fROTh5TX+avhk+qbrfI9+sDn/sIqtLrKx3OzZNWiCUZzcixGNFgwGI2IiIiIiIgs6TrchwZRjc5Th0ht1YSGAcBBO8UvGC1UUY7Aij8ZeOZ8gUsPFThnP4Frjxa47USBaVMEdi1QT3fe/gL3nCZQnKMev6oy+H9Vk/oia8G23xPHF6mnX74l+L8voB7fGYyWrwlGq8rRhJetWGB54TdgSoy/3bp3/7LU8b2Gidv/AfHkp3hlUQrOmz0O/8s8DJXuAnyZcShOHv02po78N+alHwD/J29azjtadoL6YiE7w94M11cDe99l4r9LZK/PfWWFfj10BuOFqmiQ2FBjr361Ldi+PKtQjALN9dCKRnvL6UtO1rUugFDl+bkSbR0SRz2s/uBqWoB/zBs84Wh2g9Ea1A/m7RPhto28TPX+W5tE4W6JYhXKtUrRDiXC5nr7ZUPDJUfmAEPS1OWWlCfuvQQcLqoxifYdIhpYwgV2nf2ciR81Ab5kn5NPcNMgDG8isstqXxLbDt9115ZK6xCTG9z6EzvnaS1RBqNVNEh8tkKiqX1wfbZERERERERERESUnLym+sf1NENzowARJYWClJHK4ZUdZQmuCXWq0Hz2hZp1RUT9y3BPIdzCHbZcVhSBGmlGOlwIvwwX3Bjm0XTEICIiCpHnGYGLi6bh5jEPYdeM3W1NU+Urx3Pl9+MvpbdiQ9uqqJavCw8G9Oc0/UmakY5st/qppFbvnfpWc0DdsS+a4ziigYrBaERERERERGRJ1xnTFdJfdfQw5/PNj/xBRI5lpApcfpiB5y808MqvDDx6toE/nWLgkakGVtzlwl/OFsjJCJYdVwh8eoOBly8z8IfjDZy1j7pj7ua64AdTqQmYyt92HWpckXr6ZdtCXPxhgtEKAupgtFJDk7jmbQM+flU9DsA7f/9cO67T0tQJ3V6L2XUQx5wD4fbgL7PVG8SMoafhsB0+w4jSR7BiU/xSYLTbYxyucOw0wn7ZEx43cfITJppDOhQvsXiwxsKNvYctcXC92esHWrd1grbqMF2crR6u226TiZNgtLxM+/P9fBXw3Fzrjt93zOoddDdQ2Q1Gq29Lns9DFwbY2Q7karaHupbkeQ+J0mIRjOakzYmlzXX2y4Z+RwohMFHzMKOlCXyQUbggop6SKVSQiAYWO0GNt7w9eMJe48XusRIAlNYOvmMNIrusTq86g9F0gdftPqC6OfZ1Sma2gtEsjvUt521KTHvNRPHvTRz9iIlh00y8NIjCwYmIiIiIiIiIiCg5tWuC0VKN9ATXhIic0IUIVLDzfZ/RBR8MhMAHIgJcwoWClJKw5TKjCNQQQiDTFb6jx4iUQriEK+LlEBHR4DM6bWdcV/InXDnyNhTa+D4DgDVty/DAphvxYvnDqO6ojGi5VR3qzgZDXblId2VENM9kow+t5rlZsmrRBKPZOQ4jGmwYjEZERERERESWdAE0RsgZ5Wj1gwW0PC4gO4nuWbruaAMVDxloeNzA4ukGjtitK3mpRNMxt6w++P8adW4ZCrZdh9pN8yCk8m3T+7TBaH4AQLFPfQF2zuZctAr1hyjvvgTS7+s9fNMq/GdOjXqBIe4ffuP2v8Xf5kGkBS/01rZILNxkPW2jMRSXPtMct1Ap7faozp+LylVHOJvp+4uBodea+Hxl8L2X1+s/g1k/SnT4u49fUu7sM6vZ1jHcqsN0kSYYraox+UMbnASjCSFwzVH219ctM6zf/6ZahN3WBwq7YR/JFO4UbtvQBeXVtsSnPsms2atfwWu2Am0diW0L2jokahysB3+PNn9CsXo/31CduPfhJCAHANZXx6ceRER2ghpnLwsew1PknJzWVDXFrx5E/Z3VrtR5hGd1bWlVZPe09Vt22p5Ig9FemS/x+JyuBfhN4NKXJFZs4fcFERERERERERER9R1dMFoag9GIkpouzKCKne/7hNdsR51ffbMSg9GIBo6ilFFhy2RFGahhZ3o7AW1EREQ9CSGwe9a+uHWHx3BuwZUY4tJ0euphQdNc/GnD1ZhR9RJaA86esqkPD9Y8tb0fKvAwGK0/8Uuf9lpYtMdxRAMRg9GIiIiIiIjIUs9Qkk6ekAf85GYAman25zliSPBiZjJJcQsMSRNw9UhdGrlqtrJ8WW2ww+iSzeqOo7sVBeczvG61cnxdQ7AHq18TjOZGMBjt0LavlONbfQLf7nKOemIA+P7TXoPMt5/DZ2mT9dOEuOfQNyD++QPEuH0ABMNshv/WRvoCgG+q8/Dt+t7DA6bExhoJnz/yzrZOwrKiNXVfAXcEV06OetjEy9+YqLMI/2lo6x28tdjh9ebOcCGrUIyiHPUHU6l+sERS0a5rzTq56nD7G0Fb79zAXv7z3eDoFG4nVAUA6lvjWw8ndNuGa9u2wWC0Ls0WYQlSJj5g4qcyZ+UnFHV/vcMwdbnS2sjqEwmnwWhLHYZeEhHZFbDRvPhN4J1FbIei4aTdtzr+JxrsrIK+Oi8PFWYDQ9PUZc5+zuaJywBhp+1psRlybJoSm2ok1ldLtHolXv5GPd07P/L7goiIiIiIiIiIiPqOl8FoRP2SLmyrMVDvOKyAolfVoX4QM6APsSOi/qcoNXwwWqZraFTLsDM9AxeJiCgaLuHC5Jyf486xz+D4YVPhESlhp/FLPz6pm4k71l2JT2tnwS9tdAyCVTDawPkuy9eEvFmdI1DfaQnon8ScFeVxHNFAxGA0IiIiIiIisqQN7go5oxRCYFSu/Xnm95PweultR/HmMR5cAAAgAElEQVScJ5XjmrwCNZsqsKJCPe2kbdcUsz//p3J8G1LR/vpT8GkSDTzbLtAe2fIFcgPqxJd3R1+mr/yaxd1eyg//hbXvvI8a93D9NCHurj8R9fnjAQCrKiUyr3HWCfng+7vKm6bE3e+byLnOxI5/MJE7zcS1/zEjCkjThTjFIxhtZK7A3y8RSHE7n/bCFyW+Wmtdpmeo3t+/cvZ51Gy7b8gqFKNI8/CUfhGM5nBdjysSOGPv2C3/4Y8lapoHfsdwu2EfDer7T/tEIMy2wWC0LlbBaEDi24JZDsMWbji2++Vr3bFGaV2kNXLOeTBafOpBRGQ33PTtHwb+8Uw8OWn3a5MoSJYo2VgGo3X+LwQmae41K68HyusHT3tmp+0JF14tpcTjc0wM+62JHf5gYqdbTGRfZ+LjZeryf5gxeD5fIiIiIiIiIiIiSj7tmmC0VMFgNKJkZhUkUMkO+AlX0aF+aqVbeJDnGZHg2hBRvBSmhA9Gy3JF11nDTiBH4QAKkyEior6TZqTjF8PPw507Po2Dhh4NgfCdw1rMJry59UXctf43WNg0D9Lq5jTow8EGUjBagSYYrc5fDa/ZnuDaUDjNAX1Hnswoj+OIBiIGoxEREREREZGWaUptZ0x3jzPK0Xn259tfgtGwehFKGpZrR3905e/g9avHTRopIE0TuSs+005f99R96OhQJ8+5twWjuRHAnu0/Kcs8vnkv+OHCpxmH4/HcqzBjyCkIbDvVl+uWbi8nv/8MSx96CON2XqKtS0++AHD0Iyauf93EuD86C0Xr9PS71ZBvP4u//OUr3P6ORMu2gJ7WDuCJTyXuel9i4UaJB/5r4u73TcxdHb4Trm57dMXpCscvDzCw5UEDH00z8LPwvyM7siTk2rqd995TTUtwGqtQjOIc9fCKRoS9+N/XdOvaKgTvgTNjuyFMeSSybb8/sR2MlkRBH+HagWGZ6o2kohFo9yX3dh9rS9QPN9quqimxn8fizerlDU1DrxDK8UXAkbt1HzYqT71uq5uBxrbEvBenwWgbagbXNkdEiWMVjhvquw3O5rt8i8Qjs03c9JaJ298x8f5PEqbTxm8AcXLI3OIFOiIIfyYa7ETIId6EYv0J3xvfD579y074Zbjg5/d+Aqa9JruFXOtCpomIiIiIiIiIiIj6mq6TbprBYDSiZJbjHoZUkaYcV6kJ6aL4qexQ3yyW7ymCIVwJrg0RxUtx6uiwZewEm1mxE8hRkFIS1TKIiIhC5XiG4YKi3+APYx7BuIw9bU2z1VeB58sfwEObbsa6thXKMh2mF7X+rcpx+QMqGE3/XnTBcNR3mgNN2nEMRiPqzR2+CBEREREREQ1WfosOk+4ev5EHw0rsdVLNHxL+CQ5JYd1SjPKVIc1sQ7viJqvXhp6lnMwQwLhCAFvWI7etQjv7OlcOfPM/BbKO6TXOsy0YDQAmeZfh88wjlPPYY9IqrAoUbX+9X9t3+GLDFKQs3vbUi+YGvHL7i7hgp4XaeugsKgUWlUbe8fjqd3Ox88YZ+P2Yy5Tj735f4p4PZEjYgMRvjxF4+Cx1uJWU+qA+q7CsaOVmChwzAThiVwPT35W478PYdMZeGhIQ9MKXkQSjBf+3yqkoylbvl+0+oKkdGJrE9w7qOmxbresxeUC6B2jz6cs48WMZUFortWFMA4HtYLQEhU7ZEW7b2CVfP93KCmDPGIccJqvXF5h4dX6Ypx/pf0+Ji9Ja9fDf/Vzg4J0EHvzIxJoqYPIuAvefLpDq6b7vleTq533X+xIPnhn/fdVOSEWo6ub41IOIyG57VNkIVDdJDLdxDvaf+SYu+ruEr1t2s8QpewKvX2HA4x64x0Q6TjPh6lqBgujuLSUakKx2pdBgtNN+JvD8XHXp2Uslrjs6tvVKVnbannDBaA9+xBQ0IiIiIiIiIiIi6j/azTbl8FQGoxElNSEE8lOKUepd12tchSaki+JHF4zG8CKigWW4pxBu4YZfap7ujugDNewEqxWkFEe1DCIiIpWStB1x7ag7sazlB8yo+jvKOzaFnWZ9+0o8tOlm7JV1ME4ZcQHyU7r62FmFglmFifU3wzz5cMGNAHofH1R2lGNU2tg+qBXptGiC0dKMDLiFJ8G1IUp+DEYjIiIiIiIiLX9AP87dI7tqdJ79+Y7oJx3F5fqlcMHE+I6V+CHtZ73GvzvkJOV0O48A0jwC8uv/IjdQr51/nSsHPs0FK0/Ixci923/QziM0FA0AvkvfDw8MvwG3bbkf8rA0lHuKcMHOa7XTx9vPx3xgOV726Oz7l9kSFx8ksXtJ79CFnmVDxTMYrZPHLXDPaQL3nAb8/k0TD38cXVDUkpDr6+u26uc1oQhYtqX38JptYTu6kCgAKM7Rj6tsTO5gtEhC8AxDYK/RwLwYbvJv/yBx7dEDNwTEbthHvfr+0z6hq7Nr2/fSzvlAihvoUNzzsaRcYs9RA3d9diqvlzjnufArN+HBaHXq4aPzgKPGCRw1zvrJpGPygMxUoMXbe9yzX0jcfpLEkLT4rl/dd5HHhR5BQkFbE/wZE9HgEXBwKJp/g4mh6od0b9faoQ/GfudHYOYi4Kx97S9zoLA6B1Gpa2EwGpGK1b4UevT284n6cmvVD+4ckOw0PbWt+nEVDRJfOTwvTsR1FSIiIiIiIiIiIiIdryYYLY3BaERJrzClRBmMpgvpovip7ChTDh9IgQ9EBLiEC/mekSjv2KgtYyfYzEpWmGC1oa4cZLiyoloGERGRlQmZe2HcDnvg64ZP8V71K2gIaDoihPiheR5+ap6Pw3KPw/HDpiLLNVR7XuKCG8M8+bGudp8xhAsjUgpRoTgnqOK5WdJpDjQqh4c7BiMarIzwRYiIiIiIiGiw0nWMB4IBIKGcBKPl95frNOuXAQAmeJc5mmxC22LI1mbIx65HpmyBS/NEpnojB36hzix3h0xzRuPbjpb/Qs4lMCHgFSkYbSMULd0TXcBXrL23WF0fqwAnV4KvcDx4poGvbjJw72kCY4ZFNo/KRmBrU/BN6cKCAGjnX9MS/N/qcynKtl5+MtMGo4VZ15dNjm1v7liGrCUj06KdD1Vv0ek+0XRhgJ0d+d0ugXGF6jKrK+NTp2RTcqO9FVuVwHag1StR26IeNyrX3n6b6hGYuq+6bLMX+GJVpLWzT9c26UJwaluAgN0EQiIiB+x+h3dqbLf+Z3XuBwAzFw3OtsxpE24VVEQ0mFntSiLk8M4wBF79lfp4r7QOkE7TCvspO218XYv+s/hmnfNgx9DrKgFT4rsNEl+tkfD5B8dnTkRERERERERERH3HlCa8sl05jsFoRMlPF7qlC+mi+DClicqOcuU4BqMRDTzFqaO14wy4kGZkRDX/zDDBavlsV4iIKAEM4cIhOcdg+tincdKwc5EqwjwhGEAAfnxW9x7uWPdrzK6dic1edZDoiJRCuIT1Q937G/25mfo8gfpOiyYYLdwxGNFgxWA0IiIiIiIi0rLqHO/uFYxmP4yovwWj7de2wNFkJaXzgJnPAgAEgFzNkynqXTnwwaMc55G+7X9nylaMzlaHq6mUekZhYdpeuHP4rWHL5mQAM6+O7GJuRgrw/B5zMXfDERFNr7OxRj1cF4YEhA/LioeDdhK4+XgD6+9z4Y0rIqvAgg2AaUps1gSjvXKZwLBM9b5V2xz83yqsYUgqkJWqHtdvg9HCNDUXHSRw3+kCudH9pr/d6wskzAEcamT3rTWoH8zbJ+xsGztoAgW3Nse+PsnmznftJ+WU1SVu27YKgBzlIFz17lP0jcDS8vi/H932pzu2MSVQpwmEIyKKRiDB4UCvzpfwBwbuMZGO08NAtvlEak6aLN31pdYOoG6QhA/aaXt0ocMAsHiz8/bave2yxuY6id2nmzjgXhOTHzCx060mVlYMvvafiIiIiIiIiIiIEsdrqkPRACCVwWhESU/X+X5rRwUCMpDg2gxedf5q+GSHclxhakmCa0NE8VaYot+vs1xDIER0D5nOcll39ihkMBoRESVQqpGGE4afjeljn8Kh2cdC2IjIaTNb8fbWl/Df2jeU4wdieLA2GM23OcE1oXBaAk3K4eGOwYgGK3dfV4CIiIiIiIiSl9/ingR3j+uITkJNCoZG92NbIsi6rUBtJQDg5Kb3MK3wEdvTDvXXQT79p+2vhwVqUe0e0atcpTsfbZqbt1Klt9vro3b246Xv7Z/GH7jjl2HLjMoFFt1uIMdhgNTJewJP/dJAUTaAwCGoeWO1sxmEUVqr7nBr1TE4XFhWvJ2xj8DH0wwc+6j9QCIAeOsHib1GC20I4a4FAt+uV7/x6ubgcMvPxQAKhgLNW3uPq2iUCEb3JSd9+JV1nYUQuOk4gd8fK1HeADz3P4m73w/fifuWEwTu/UBd7sa3JB46K3k/q2jYDfuoT6IAAl1Ioivke2n4EAGg95urVv9+0O81tUs8+JHE7GUS3663P90Xq4D6VomcjPhv36W1+nElufbnU5QjcOwE4ONlvcctTcBvdrp9psDi4TzVzcDwJP6NasEGiSc/k/D6gTP3EThtLzi6MerL1RL//EaixQucsDtw3v4i6huriCg809lhZ0y8Ol/igoMG1/7tNH+uoS25j7GJ+orVvtRzj7G6vlRaC+RlxqRKSc200fhYBaMtjeAhn50PQLjsnyZWVHQNL6sDzn7OxKLbB9YTUomIiIiIiIiIiMg5KSVqfFXwhzzwMxaaAg3acemuGD0ZkYjipkATzhOAH6taFyPXPTzmy8zxDENalMGJrYFmNPrrlePyPCOQYmieSJskTBlAta8K5rbwufXtK7VlB2LoA9FgV5Q6Wjsu02VxM6NN4eaha/uJiIjiKdudh/MKr8IRuSfh7a3/wNKW7yOe10A8Rta9p6qOzajwloWdfqg7BxmurFhXixSaA43K4bE4jiMaiBiMRkRERERERFq6sCagq8NkJyehJuOLIqtPQm3oSlwZ7S/DKF8pSj2jbE2a3eNmrWJ/OVam7tarXJl7JBqMbOU8cnrMY0R2bDugnrOfwBPnCeRmBrsgb37AwMgb9Sv8uIlAdrrA0eOBSw8RMDqTyNwe5D35DvB47Oq2SROek8zBaAAwZYLAglsNvPiVxFOf20tQmLFQ4iKLcImSXCBfc12zalvAky4kCgBcIhjWs1YRjFapvo6aNHRhH3bXtWEIlOQCP5+IsMFoY4YF9wldMNojsyV+NVlit8Ik2NBizG4wWpMXME3Zte/3IX1oXtffIzS/x3QGCg4kXp/EwfebEYUf+ALAvLXBMKt4K61Tf/YjhgBpHmfb1Z6jBD5e1nt+S8vjv351bVO+JowPAMobgHFJcuzT4g3W0RDB47yv1gAnPN71pv7zncQtJwj8dkowdCRcwNl7P0mc/pS5/Zjx1fnBII57T+v7toJooAv0wVdaMBgt8cvtS3aPlTo1tcenHkT9ndWu1PNwoyg7GHqsOtfdUAPsae/STL9mJ5TRKhhtyWbnXxJuA2hul/hoae9xP5UB67ZKjB3BYzwiIiIiIiIiIqLBakHjl3i96m9otggxi4fUKIOPiCj+8lOKICAgFb8I/bVselyWacDA7ln74cLC6xwHKDb5G/D3LY9gZetPyjoDgFu4sVfWITi/8Gp4jJRYVDmmvqj7ALOqX0abGf5pp9nuvKhD5Igo+RSl6H84z3JF/xTXrLDBaMVRL4OIiChSxamjcXXJH7Gi5UfM2PoSyrwOniy/zUAMRsv3qL+f2802/GnDNWGnFzCwc/p4/F/x7zHUnRPr6lGI5kCTcngsjuOIBiKjrytAREREREREycsf0I9z9zijTPMIFNgIps9MBcbkRVevhFjXvSfoOO8K25MONbtfoCrxbVaWK3cXo0Hzw2G22SMYLcdje/nhPLLPUrzyKwN5mV0dWotyBN69xkBOj3tEJu8CVDxk4IPrXHj1cgOXTTZ6BSOJifvjcP/8mNVvYw0QUCQQWIUSuJLkCsfeYwSeOM+A7xkDlxwSvsNwfSvw6CfqlJ3MVGB4FpCvua7ZGWxmGRhnQLtfJn0wmi78yuG6PmgskB3mvp6PpxnYrQAYkqYv84cZFgl0/ZjdsA8pgcYkCfrQhQGGtgPDNcFoW9W/H/Rrz82VEYWidYokNCESpXXq4aMcBKt2mqS5p2Z5hfr7I5Z0s89IBYZlqsct39L3gXxSStwxy8SQ3wT/ZV5jIvtas1soWqd7P5AYcb2Jfe42MW+tdd3ved/sFaT7l9kSdS19/56JBjqrcNw8TXsUrZWV8ZlvMrMTThSqyRufehD1d1b7Us9gNJchtNeNkuG4KhHsHNLqgtG8PhlRe+0ygM31+vFfrxscnz0RERERERERERH1tql9LV7c8lDCQ9EAMMyHqB9IMVKR5xmR0GWaMPFj87f4d+WTjqd9YctDWNH6ozYUDQD80o/vmr7Am1UvRlPNuFjcvACvVT1nKxQNAAoHYOADEQEjUorggls5LlyomR1Zbut5FKaURL0MIiKiaI3L3BM3j3kYFxZehxz3MEfT6kLE+rNow94kTKxuW4qnN98ToxqRTosmGC0zBsdxRAOR+syHKEJCCA+AQwCMBlAEoBlAOYAfpJQb+rBqREREREQUAZ+DYDQAGJ0XPmxpQhF6BWslI/nTV91ej/euwOysY2xNm93jJrBi/xZluU2eUWgwssPPIzUdxbkCsLgRw67ncT8u+dUflONO3ENg4/0Gvt8INLQBY4cDE4qDnZKtCCEw7UiJL+ZGXT0AQLMXmLsaOGK37sOtwh+SbZNyGQIvXCRw6xGNWPLrCzHKV4YjxsxGk+Ii5ds/qOcxcdu+EgxG673uq5qCQTeWwWgCKBiq3naqGpO7U7PufbkcrmvDELhsssDDH6tn+MhUgV0KgjM9Zz+Bv81Vl5u5CLjrPRPpKcAv9xcoykmyjS5CpoO8t4Y29ApP7Ava0LyQVTJCEyi4tTn29YmFn8okPl0hMWOhxME7C4wdDnj9wNqtwNA04MjdBI4c13ub+7FU4rr/2NuX9ywBfizrPXyZ+isq5kpr1cMjCUabWKxu19p9wLqtwC4Fzudply54zRDAxGLgf6t7j1sSRXBdrFzxssTzmvZNZ1EpMPVZE4vvMJCb2Xv78wckvlU8YMvrB95aKHHZ5IHRThIlK9334eg8YMn04DF9fVtk8z7tKfUBwoYaoNUrkZE6ePZvp3mbzUkSJEuUbKx2JVWLMqEYWFfde/jyBB27RuunMokPFkvkZAC/2ENgZK6zdtNO29PmA9o6JNJTus97ZaX19ROd6mbgznf1C3Zy7khEREREREREREQDy9cNc/ps2Skitc+WTUT2FaSUoMZXlfDlLmr6Bq2BZmS4NE/R7KG6oxKrWhfbnv+CprmYWvAruIQr0irG3NcNnzgqX8DwIqIBySVcKEgpRnnHpl7jMl2aG2gdSBUWT5oGEh6ISUREpGMIAwdmH4m9hxyMT+vexce1b6HdDH/zbLQhYskoyz0UmcYQtJjq0C27NravRo2vCsM8+TGqGfXUHFB3vo1FwC3RQMRgtAFICDEdwB1RzOIfUsqLHS5zBIA7AZwNQPkMbyHEPACPSCnfiqJuRERERESUQH6LTo8exe/8o/OA7zZYz/PQXZK/E70sXwd8+ma3YYe2zcPj+I2t6Yf0uIhY4t+sLLc8dRykUCTMAcg2Qy5ypWXi2AnRB6NdUP8yLnnhaghDvUwAGJImegWS2XHKBQfj7Q+vwBmZf4UZg5tA/rtU4ojdum8r4QLAktGOgVLs0PwhAODUpln4V875tqedODL4pgo01zV9gWBQVbjAON30ldFd6447qQu/0m++WpccLPDYJ7JXm5adDkyb0jXDZ87XB6MBwB2zguP+OFPiw+uMXttof+Qk7KO+FRjj7EE6caENzQvZNkZkqdvM6mbANGVSBXT+Y56Jy/4pt+/LX67pXe+735e4+XiBe0/repP//NrExX+3twK/+L2BWT9K/FjWu/ySzYkJSdxcp15OSZ7zdTG+CBBC3U4s2xLfYDSrYL6JIwX+t7p3gWXlfRtEefMM03EoWqfyeuDFryRuOLb3emqyCP/5fhNwWURLJCK7dMeALgPIShM4PIJj+k4r7zKw2x97L0BKYMFG4LBdI593f+M0GK3JG596EPV3uvM7IHhc19P4IoH3flIcV21J7oBvAHj5m+Bxemf7cccsiQ+vNbD3GPvHvXbbnrpWID2l+7Bojj3/851FMFryf/REREREREREREQUJ2VexROzEiDfUwxDc28dESWXUak7YlnLwoQv10QAW7yl2CljvK3yTtuzNrMFzYFGZLsjePJjnDh9D6NSx8apJkTU10an7awMRotFIKIQAiNTd8Bm74Ze43ZI2wVGEgVGEhERAUCKkYrjhp2JQ7Kn4P2a1/Bl/Ucwob7RNtc9HFnugRlAVZK2I1a2/hT1fBiMFl8tmmC0WATcEg1EvEJMURNCHA9gCYAroQlF2+ZgAG8KIV4WQmQmpHJERERERIOAnPMGzEv2gzk5Nfjv6KEwbz4dcv3yqOdtFYzmVvyeVZIbvpPnGXsnTxiNiqwshTy7900SP2+ejQyzxdY8ss2Gbq9H+3r/6AgADa4c7TxyAvVdL9IzMXyIwLETbC1e63c/NyCG6JcZrZP/9iA6fAdjasMbUc9rsSK8xwwTAJaUKrvW/VmNznLCdy37DNI0kW9xXXPaaxKHP6j/YFyGPhitokE9PFlYhQ85NaFY4O5TRbcO9xOLgQ33db80JoTA4unhL5d5/cD//cOEP9D/e4ZbBev11BD+wTkJoatz6Lah2+4DJlCVRKGAXp/E796QttbD/R9KGJcHtv+zG4p2z2kCk3cRmFSsHr98CxBIQMrB1mb18OIIvpbSUwTGaK5CbmmI73uxDEbTfMZLNgPSKg0kClJK/GW2id2nB5B1TQD73xPAB4vl9nEX/93EA/+NbtnT31VP32gRjNaYJO0F0UBmJyg0UmNHABkp6nEzF/X/4x8nnDbfVqGRRIOZZTCaYtiEInXZ5VuCQcfJqsMvcc0rslsbvbUJuHWmgxMv2G97ahWXqXTH3dFK4o+diIiIiIiIiIiI4qyyo7xPlrv/0MP7ZLlE5NxB2UfDQN+E5FR0lNkuW9mhfsixFV2H9b7gMztQ49tqu3y6kYG9hxwSxxoRUV+anHNcr2EpIhV7DTkoJvM/cOhRyuGHZB8bk/kTERHFwxB3Ds4puAK37fA49sjaX1nm0JyfJ7hWiXNojL6npXR2vxvZ55c+tJvqzhZZDEYjUmIwGkVFCHEEgJkAQiM/JYDvAbwBYDaA6h6T/RLAq0Lw0S1ERERERNGSX70POf18YE1Imn+HF/jqfcjrT4BsqtdPbIM/oB/nVhzRj7aKSt5G17k1GcjWJsgzd1aOy5StOKnpA1vzye5xI8RE7zLHdck2Q+aRlgEAeO83kZ9GTWpfgkn77RTx9HaIzKEQz3+DW84dHvW8vlzTe5hVJ9xYBEDERVXXTTdTWj5FbqDW9qTDvn4N8m93WAaj/fNr657JQggUDFUniVU2xi+oJxZ0QXgiwhC8G48z8OPtBp7+pcBrlxv44Y8GsjN6z2xiscDhu4af3/pq4LOVkdUlmTjp3F4dpw72TumDYLrW5yiL76NN9nfDuPtqLVBjL3PTsYfPElhwq4E/HB9sICcWq3eeNl9we463Gs32MyzCxyfowu/iHXynDUYzgEmaz7iuNX5hlA9+JHHDGxJLy4HWDmDBRuCkv5qYu1riz/+VYb8n7GjxqsPzrMLPGlqT9/uFaKCwExQaKZchMEXzQO0ZC/tm//YHJL5aIzFnuURTe+Lq4DQIqMUbn3oQ9XdWu5LqHG+C5riqtSO5jud7+t8qdXjsR0sBn99+g2K37VEFo9W32l6MI05CtYmIiIiIiIiIiGjgaA40ojmQ2KcvZrqG4Ni8M3DcsLMSulwiilx+SjGuKbkd+R7NUwXjyEnYWSTBaM1JFIy21bcFEuF/tBEQGJU6Fr8ddS/SXRkJqBkR9YUd03fFr4pvQp57BACgOGUMrim5A3meETGZ/1G5v8CJw85BlisbAJDlysZpIy7CwdlTYjJ/IiKieCpMLcGvR96CaaPuxm4Ze8AFNzKMLBybdwZ+nnd6X1cvbvYZeijOzr8c2a7cqOYTgEWHUopKS0Df4SXLpekkQzTIufu6ApQQ5wL4xkF5W91chRAlAGYASAkZ/BWAX0kpl4eUSwVwBYCHAHi2Df4FgLsB3OKgXkREREREFEJKCfnMrfoC1eWQb/wV4tI/RrwMv8Xv527Fw91G5wlYdXfNSgWy0yOuTlzJ0tWQ502yLHNW9o94HeFvuBpqdr8RYrSvFFmBJjQ7SO7PNkNuKEsPpsa4XQJzrjdw9CPOe6Ne4J0J7HaT4+mcEm439jh1CmaMkTj96ch7zTa1A29+L3HmPl2doa064cYiACIeZGXp9r9T4MNxzR/j1exzbE2ba9YDb7+N9Itvxc75Hqypcrbszs+kUHNdtM0HNHuBIWnO5pso2vChKNb1pJECk0aGn8HkXQS+WBW+J/or30ocMyFJNz6bnIR9lNVJAH3/fu0EwQzPAtI8QLuvd7nSWmD/HeNTN6fWbY1PsMsjUwWmTemeGDneIph0aTmwc75+fCyoQhsAYFhmZNuULjRya7yD0Sy2v4kW93YuKQeKcmJbFyklHpuj3oYOfzC2yRVVjb3rrwr96FQXp0AOIuqiDwqNzfxP2F1g1o+9F7KpFnhpnomLD05cMvGWeokpfzGxfEvw9YghwKyrDRwwNv7HJU6/qRMZ2kbUn1hlcquC0cYV6ssv2wLsEH0ee1x8u17/RquagJE27zeLJhitwSK8NhpOgyKJiIiIiIiIiIhoYKjsKNeOu2XMoxjizo75Moe4smGIZH1KJhHpjMvcE9PHPoXWQDN8UnHTVpTerHoB3zd92Wt4RUeZorSaLhhtcs5x+K7xC7SbvX9oaQzq7jUAACAASURBVLbotJ5ouvobcOGusc/CEMEbu1NEKgPRiAaJvYYchL2GHIQO04sUIzWm8xZC4MTh5+CEYWejOdCILNdQiEifbk1ERNRHds2YhF0zJqHD9MIjUgbFd9nhuSfgsJzj0RxogBnmLtg/rrscfsX5m5R8ima8WIVvZzrod0o0mPBK8eBQIaXc4OBftc353gkg9PbteQCmhIaiAYCU0iulfBzA1B7TXy+EGBP52yIiIiIiGuTWLwM2LLcu88lrkFa9T8PwWwT8uxVnlDuG6Zg6Kg9JeRFRShk2FA0Ajr92KrJs/GaYY3Z/SqYBiQkdYdZVD6myo+tFWub2P48cJ3DLCerP8GejgLpHDew6pHve9R7tP+E3U0dCpCYuAevUvQTM51wInP4qtq4sRvOKXFxa/5KjeUx91oTX17X9WnXCNZL1CkdV95tu9mhfbHvS3EAt0NIIOSUbp1S96njRnSFRuvAgAKixFY3eN+IRjGbXniX2FvKPr2W3bbQ/ctK5vbQufvVwwk4QjBACozShA5tqk2edVcbhgaJ7lAC/Prz3NpyZKjBW8z29ZHN8PxOfX2pDtIZlRTbPEUPV+2ncg9Es2qZhWULb5m6sic1nHDAlHptj4uxnTRz7FxNbEvRg7s31vYc1WQSjfbcB+N0bJo57NIAb3zRR3ZQ8+x3RQGEnKDQau1uEyV76ksRB9wUw84fE7NtX/bsrFA0ItvW/fN6M6lzXLl0gpo5V20g0mFntrarWZkiawOg8dfllW5L3uCI9RT/OybG//WC03gXr+zAY7YPFEhe8YOLwBwP4/ZsmSpPo3IuIiIiIiIiIiIgiU6kJHEoz0jEydQyy3bkx/8dQNKL+LcOVFZe2oSRV/SRMXVhYT1JKbYjaqNSxyHKpn0Br1Wk90So073VESiFyPcO3f1YMRSMafGIdihZKCIEh7uyk7ANCRERkV4qROqi+y4Lf3zlhz7NccCmnD8CiQylFxSp8m8FoRGq8WkwREULsAuCikEEdAC6WUmq7fEgpZwL4R8igVAB3xKeGREREREQDi/S2QVaXd+v4LT97K/yEpauBVT9EvFyfxXUsj+La1+4jgbzM3sM76UJq+pr87fHhC514CTIm7YX91fdWbJdmtiHL7J02dXTLZ7brU+Cv7DHT7jcp3H2qgbeuNHDu/l0XZe87XeDrmw1kZwj8cN9QPDS5FFfkfY0H89/BvKsbkXbGZbaXH1M7jEeuWY806cX/1f3d8eQfLe362zIYLVmvT29e1+3lRO8y25PmBbpSqM5a/6TjRXeGRGWn68vogoqSgTbsIwFXs07Y3botCzXhjsQ8CaW5XaKmOfadyp0Eo5XVxnzxEbEbBDNKE6SwoSa29YlGmSJsKhq/miww7yYDaR51ozixWD3dsi3q4bFS26ofZ3df60kXQFbREN/whXChjWOGqceX2QgW3NoksaxcwufXv4dTnjDx29ck3vheYs6K8POMFVX9G9v19fSbwCOzJT5eBjz0scSB95loaGUwBlEs2QkKjYbuO6PTt+uB05828eRn8T0W8geCbUlP66qB+evjumgAzo6VAKDZG596EPV3VjmGuvvNJhSphy8rj74+8aJ6iECnCgd9ZuzmPlYrws51x1zn7CeQ5rFfh56srhECwEvzTJz0VxP//lZi7mrg4Y8lJj9goqyOx4BERERERERERET9mS5wqCClZFB1KCaivleQMlI5vNpXCZ/pCzt9U6ABbWaLclxhykhkaoLRWpIoGE3fJqs/GyIiIiIiIiu6cHpTJqaf1GDUoglGSzMy4BZR3OBHNIAxGI0idR7QLQJ0hpRytY3p/tzj9VQhRFrsqkVERERENLBIbzvMx38HOSUH8rQdIX99GOSaxcGRc2fZm8dlB3VN45Df4jqWqsO9xy1wxt76G57GFSXfzVDy6w+B78OHlonrHwMATCy2fg/5ga1QlTi78Q3bdTqw7dvuA9J7p8actpfAvy8zYD7ngvmcCzcdZyB1WxBOeorA9RfsgKfvPxQ33H06Mg443PayY26H8dt7OR/Q/h0eqrzR0eRvLezqQKsLQwJiFwARK1JKyJcfBJZ83W343u2LbM8jNyQYbZ/2hdipY62jOnSG9Ay1CEZraHM0y4QyNT3BExGCl54iMONKexvV+mrg5W/id9G/okHi8AcDGHqtiaLfmTj/eROt3th1LDcdVH1TbXJ0aNeFBPRsB3Ycrt5YVmxJjvcBAKU1savLKXsCz15gICNVv5NMHKket6g0vp9JrfqeQgDAsAiD0UZkqYf/bzXwweL4vZ9wwWgjc9TjN1uE4FU0SBzzSAAFN5iYNN1E7jQTT33efef0+iQOuDeAD5ZEUGkbDtgRePFi/baj2v8bHXyHrKsGXvo6efY9ooHAblBopIamC+xZEr7cXe9JdFgEOkarsR1o09zD/l4c2/tOTpfQlMTBw0TJStdsjddcf/mpLHmPKazCESsb7dfbbiij6hizXhNKPGYYMOtqwzI83Uq7RX8iKSXu/aB3pTfVAv/6JnnXFxEREREREREREYXHEB4iShaFKeofsCVMbPWFfypkRUeZdlxBSgmyXOqnNDYzGI2IiIiIiAYoo1tcTBcJBqPFi+4cU3dOSkQMRqPIndbj9d/tTCSlXA4gtId/JoBjY1UpIiIiIqKBRj57K/DGX7sGLJsPecm+kJ/NADYstz+fS/aF9Drvoe0PqIe7DGif+Hju/vqe+KfsmVzBaHLzWsgbTw1bTjw+GyIlFQAwKcz9A/n+rcrhk7zLMKkg/FPpAODXdc91H5AWYWpMEhBpGcDIsdtfT6t9AhWrRuHTDcfgzbJz8O36Q7Bl1Wjt9N9v7OpAa9UxOBFhWY58/jbks7f1GlwYqMSBrd/YmkVeSDCaAHB31R2OqmBsu+qT4hZI0zw0IrmD0dTDE7WuD9tVwPuUgUnF4cte+KJESwzDykKd+YyJudui6P0m8Mp8iZtmxDAYzcGsKpLkHi9dEEzPr6XxRepyy8LfB5cQ7T5pK+RqpxHhy4wrBN60Eean256XbwFWVcYvsKCmWT8uL8KvuAL1Q1oBACf91cSG6vi8H23btO3jH5mrbqQ213WfsLFN4olPTdwxy8Qed5qYs6JrXGsHcM0rEsblAdz+jomGVol7PpD4bkMM3gCAL35v4MubDLQ8YeCnO4L/5t1s4OKDDRw0Vj3N7GWKYDSHh5Zvfc9QDKJY0rVHsQwMvum48AdeVU3AUQ+buG2miS9Xx34/b7EIGapr6Ij58npyEiILWIciEQ1munBjoPdxfKcJmuP5hZuAsrrkPK6wOsd2cj5l9zxN9Tno6pCdDkyZIFD1sIELDnR+Ym0VjFbTDKypUo9778fkXFdERERERERERERkT4VXHSRUyBAeIkqw4SkFMDRdYSstQs+6yqhDxTKNIchyDUWmS30zUrO/yX4l40hKyWA0IiIiIiKKKSHU51gByWC0eGnRBKPpzkmJiMFoFAEhRCGAPUMG+QF85WAWn/d4fXy0dSIiIiIiGojk0m+BN55Qj7v9XCDgdza/cyc4roNfcx3LbXE2OXkXdRjNuELgsF0dVyFu5OofIc+x8ZkMKwJ2P2j7y8N2se48OiKgDkYT/1mGY/dICbu4zzZMwTEtn3YfmJYRvp7JbMeJ3V4OD9TgsLavcGrTLOzT/gNGBKpxf+UtyklXVQJeX7ATbX8KRpPv6/PDj235JOz0KaYXGbK127CzmmbgrdKzcXTzHIzp2Igx2dZBe6GfSXa6ukxDW/J2UNaFUCRyXXvcAt/fZuCuU8IvtPj3sb/wv6lGYt7a3sOf+UJia1Ns1p2TYLS61vBlEiFcMFWnCUWagKr65AhSOOwB623mwLHAI1MFlkw3sOpuA788QOCAHYHcjGBY2g7DgkFnvzlK4OubDbhs7ByH7qwv8/qCOAajtaiHp3uA9JTIdupdCqynG3uLCX8g9u8pXNtUkqseX9qVdYn11RI/+5OJa/8jcdd7EtUWwXF3vy+RO83E3e/H7r1M3kXg4J0E0lMEJo0M/usMvD1Es43MXh4McwvV5DAY7cs1EVWXiDR0QaGxPFY6Z38Dz5wffobz1gL3fiBx2IMmHvhvbI+JrILG6j/9CLJOk8QTI05b37b4Z7UR9UtW+5IuGG2yxfWXN5M0cNUqOLbSSTCazaa0rK73sHpNMFrOtktLHrfAMc4vEaLN4hJEk0VbXaqoIxEREREREREREfUPfulDta9COY4hPESUaG7hwXBPoXJchSYwLJRVqJgQAlmaTui6TuuJ1hioQ7upvoGvIKUkwbUhIiIiIqKBwKWJG5IIJLgmg0dLQB2+neUakuCaEPUfDEajSEzq8fonKaWme6PSvB6vJypLERERERENcvKha2I7w62bITetdDSJNhjNpZ/GZQi8eJGBYZldw4ZlAi9ebC+0Jd7kyh9gXnUk5KX7hy+clgHx+ych3J7tg3YrFNjD4h6C/D0mdg8yKxgN8doKiJE7Yfcw94Od0jQLk9t6njIBSEkLX9dkNrbnaWRvxzd/pBzuN4PhaED/CUaTUgLffqwdv7s//H44PFAD1Vs6pfldfFT6C6xdOx5rxz+Ia4/Wv3FXyFUffTBa2Kr0GW34VYLXtcctcOuJBsznXEh168s1tQMnPBaAzx+7Dvpr1DmLCJjAWwvDL2fhRonDHwwg/aoACm8I4Kp/m2jxdp/OSTBafSsQcDJBnOiCYFw9tg2rNveR2Yl9H03tElf8y4RxeWD7vwUb1WVzMwDvUwbm3ezCtCkGUj0CO+cL/Ov/DMy72UD1US9h5bo9sGbZWCxKvRKPHlOF7Ax7O8boYQIHjlWPe/27+H0mtS3qeQ/LinyeExQhrD29+1Pk89fR7QKdbe7oPPX4NVVd+88DH0lsqIl93ey48gjrbeW0vdTjO/zAh0u6v/kWiwAMneb2vm9DiAaKcO1RrFx+mIGXLhHwWJwDhrp9lkRVY+z2dctgNK8L8qV7Y7YsFaeHPq0MRiNSkhE0C7sWCO0x/ds/JOcxRaPFOfaHi+3X2W7J0trew+o1gdY5IdcF8jKdn1i3WwSjWR0XRrLuiYiIiIiIiIiIKDlUd1TChPomDYbwEFFfKExVtz2VHWVhp9WV6Qx61HVCbzbVndYTzSr8rSClOIE1ISIiIiKigUII9U3HARnbhyRTl2ZN+HamJqybiBiMNlhcIYT4RAixWQjRLoRoEkJsEEJ8IYS4Rwgx2eH8ej5Deo3D6deGmR8RERER0aAnm+qBNXFI85j3gaPifk3AvzvM2eQBYwXW3GPgn5cK/PPS4N8Hju375CpZuQnyysOAxYrwsR7E1X+GePkniENO7DXu7P307yV/l9EQry6D+MPfIKa/DPHvxRDFOwIAJo20/gxObPpQPcJlkcbUD4ix4fOwd+1YDY9Upwgs3hzsRasLQwJiHwARlZnPWY6euM+YsLMY5SsNv5zXH0e+RaiQL2T/HarJ1uuXwWh9uK63PmK98P8uBUbdZOLbdTIYkBclq07136xo146rbpJ49gsT+95jYu5qwOsHqpqAZ76QOPXJ7juS07CPZNhm7G4bI3MFJmnu+XpsjsRXaxLTQz9gSoz9g4m/zbW3vJP3FPC4e39fyPZWyDsvhHzwKqBsDVBbAXzwD8grD4M0u9ar9Pshl3wD+dlbkKWrIefOgvzfO5CfzYB852+YmvaNcrlLyoFl5fH5TGo0j1TIy1QPtyMzVWDscOsy7/4Y+/cTLrRxXKH6u97rB9ZXB/9+20awYTy4DODig62PRQ7YESjOUY/7dn33120W4Rg6nyx3Pg0RqemOjeMRInvhQQaW3mnvIKzDD7zvIPwnHKuwnVpXLjDndUi/P2bL68l0eG+H158cQbLU/0i/D/KH/0F+9R5koyLtqp+z2iusmq0z91GPXWTjlLkvNLbp3+nqKtgOjrTbjFQ2AR0h4dxSSn0wWkiYciTH4ZEGo7FJJCIiIiIiIiIi6r8qNCFCAgZGeGw8zYyIKMY6Q8x6sgoNC1emKxhN3Qm9RdNpPdEqNfXPcg3V1p2IiIiIiMiKS6ifmiw1QfkUveaAOnxbF9ZNRAxGGyzOAXA0gGIAqQCyAIwBcBiAWwD8TwjxnRBiis357dzj9SaH9dnY4/UwIUSuw3kQEREREQ1s65fFZbbyyZsdlfdrrmN51Ne9usnOEDj/QAPnH2ggO6PvQ9EAQM54BvCpw7dCiesfhzhnGkTBKOX4c/cT2nC4KeMFxPAiiBMuhDj6LIjUrkSqPUYCRdnq6TI9AZzaNEs90t2/g9EwYb+wRTzwY5x3pXLc4m33c1h1po1HAESk5PPT9SMPPQm73HQHhoXphDzab6OXd0sj9lj+in50SMfk7HR1mWQIudIJFz7UF7LSgmGPVqqagIPuN3Hqk2a3DuqRaGrXT7/06xWQC+b0Gv7ZCon8G0xc+W/1tHNWAI9+0tW4Ow37qNUEXCWSqdk4XIpVc87+6vUlJXDpSyZavfHtpd/QKjHielMbDKZyrqLOct1SyOOGA3Ne7z3Blo2Qt50dLNdUD3nDiZBXHg55+3mQ502CvOUsyFunQt5+LuRD1+CMd86H0DzB57UFcQpGa1YPD9cWhnPSntb740vzJPyB2L6ncG3TbgWA0FRrWTlQ2yJR1QcPkt1xODDjSgP77WD9mRmGwLET1GUe/aT7m48kGO3DJUzGIIoVXXsUr8DgnfMFHplq70Ds//4hUWkz/CecZouwnS3uIqChBlg2PybLUtG9i8xU/TRt4U85ibqRNRWQF+8Lee0xkDefATl1N8hFc/u6WjFllRutO3YCgMm7qEc2tQO+KM+34iHcOfZDH9sMRrN5niYlUF7f9bqtQ38tL/S6QMyD0SzaPauQeyIiIiIiIiIiIkpuuhCe4Z4CeAxPgmtDRAQUppQoh1d6yywfZNphelHrq1LPMzU4z0xNuFizP1mC0dRhlbqwOCIiIiIionAMTdxQQAYSXJPBo1kTvq07JyUiBqNRl30BfCyEuEcIq9vPAQA5PV6rrwxqSCmbAbT3GKyJBiAiIiIiGqQ2RBiMlj8KmHyyZRG5cqHt2fk0YSK6ULCkt9RGh/mTLoU47QrLIjsMF7j1xN6nTiftARy5m346j1vg/tOFMtjpz0dVI8+sU04nXP07GE0UjgHG7xu23ESverv/838lmtulZcfgZAlGk0vnA4216pE5IyDufROu9DScvrd1hUt86ptYejp61pW2yjEYLXbOP9BAbkb4cu/+BKRdZeLGN000tll3fl9UKnHpSyb2uyeAs54JYM7yYPkmiyCQZe5d4P/tSZDLF2wfZpoSF74Yvtf59a9LtPuCy7AKHFSpa3VWPh50OVeG4rvpqiMECjW/D6yuAm6dGd8whV88YaLe4Wd2zISuv6XfD/nui5AX7Q0ELH5cmjsLcvNayNceBRZ+bjn/kf5yHNI2Tznurvek5U2CPUkp8dFSidOeDODMpwN45VtTOb0uUC/aYLTrpwiUhHncwsxF0S2jJ12wQ2fblJEqsMMwdZnlFRLLt8S2Pp2O3A3wP2PAfM6FwLPB/xseN+B/xoD3KQNr73XhF2GC5DpNKNaP+2Jl1/ptjyD4Z+3W5AswIeqvwrVH8XDKz+zPvOh3JozLAzjp8QA2VEe+7zdbBMVu9hTDhADW/hTx/MPRHStlpuinaWUwGjkkH7se2Liia0BLI+Qd50NaHf/1M5bBaBbTWQV4JcO5SU/h6vTG9/aOt52cp5WFXEqqtzjHzwk5j9WdI1mxDEazOHdlm0hERERERERERNR/MYSHiJKNrv3xynY0+DX3bQKo6tgCqXksVuc8szSd0L2yHT6z73/wqOwoVw5nm0xERET/z959x0dR538cf31n0xNKAiQBBAuidAtYaPZ21rOe3tl7OT3b/WznefaznOU8G+odp6fn2bGDDWxYALHQpLcACSQhvezO9/fHgiTZ73d2ZrMp6Of5ePAgmW+Zb7bMzszO9z1CCJEoR4WMy13kbphtpTpSaVxuOyYVQkgw2s/dauAJ4DxgHDAEGASMBS4FJreor4DrgTvi9JvT4vdEplG3bNMlgT5iKKXylVJDg/wDBiRj3UIIIYQQQiSTnvFhYg2790Td+jzsvp+97zee8t1d2DIHN8V83qvz+/YT7/JBI1H/94ivrm46yuHNSx0u3Fdx5hjFU2coXr7QISXkHRZw2miHj//P4cqDFSeNUvz+AMWHVzlcNLplfnQToa3/DpvqgBPj1hlWP8datvttLrUek3BNgUjtTbsu+sLx9gr7HcvmLPKT9/B+nWx74H5w/MWoi+5ATSmFUQcY66XrBnaq/9FY1qdJrHnXTPP6yi1hRZ2BLQgv1Ame61V3+x/EvVM03f/g8vlizfTFmmXrNZEms9xnLNOMu8tl4ueamcvh5Vlw8P0u//rM5XvzjXcBqHWy+Dxzb/T5Y6OBfMCXS2F1ub9xfbgpdyFoMJot4Ko9WV8bhpd59yzF46fZn6+/f6j5ZGHbBDVNmaP5dFGwNsXXrYFF36Eb6tHl69G3nYW+218Aon72Xvj3nb7qnlTxsrXs2Ef8f4n13FeaXz3oMulbeOUbOPUpzc1vmILRzI9xbnbr0nv691B8d5PD0bvY6zz/VXK/lPMT2ji40Fxn/hpYWJzc19sZoxWPnaqYfLmDs2kQmz9rumQoHEeRmhLscR5caK8/4ZMt469tDP63rDJnwAohEmDbHrXlvtL2PRW79w/W5u0fYIfrXYrKAwRvui56+Xz0snmsnjLFWi+sUikO5aOXJhgs7oNtvyM73d7G67hFiJa01vCRYd+sdC18M7Xdx9NWvLYAXrfs8gql7ozBaBuqvMuXb4A1G+P3E2Qva2XZltpeoczdmwSmd81U7NYvwEqAmgb7qKrr7WVV9dEQbyGEEEIIIYQQQgghxNZHQniEEJ2N1/ZnrSXMEaC40XwhXogUeqYWAN6T0G0T19uTPaxym3YeiRBCCCGEEOLnwrHEDbn653NT186mOlJhXJ4dSkrcjhA/SykdPQDRJr4CDgXe0/ZbTn8O/EMpNQp4DhjYpOxapdQXWutJlrYtg9E8Zu9b1QK5Hn0m6mLgpiT1JYQQQgghRIfQNZXw+duJNe6/EyoUgqv/gf7tMHOdqa+hL38QlRL/kDBsmQSe0gmCiYLSX7/vXcFxULe/8FOYiB+HD1ccPjx4qMuYAYoxA5q308Vp9gahrTWJrokDToCHr/GsMrbmc2vZomJ4aaZ9Im0Xj2CCdjP1Fc9idfFff/p5n52gb3d7iNXow3fH2W7klgUHnWwNTPzH2j9wyLbvxCwf0eQaoHzLNTuryjrv5GQ/4UMdJTNN8eX1Dnvd4T9wadxdzet+cZ3Dntsr/jZFU2O4oeQ5/47/3Lza9deMr/0c/ew9qDteZME6/8/nD6s1hw9XCQSjaaLZ+h0nYnttWD6bjtpFcfpoxdPTYxtqDWdPdJn9Z4fs9OT+Xbe86f/1UZAT4ZnKK8k7/YlAIQjNvPFP31WPq3iNywvuxTXc4ef1b6G4QpPf1fvxWFOuOe2p2NHe957mioM03bK2tLcFRPRIwhnB7lmK5851yLnU/HjPXdP6dTRl3TY1ef0N6q14+4fYinPXaAb3Tt7rLPzYljC0ZNpze3vZ699qauo1WemK2gRuhruqLBoAE2R/SwhhFrF8zLT1vtJJoxSzVgT/tNrm/1xf2y393efoW86AdSt4MPcS/lh4j2f9lanbULik7YLRbH9ptsfhm2nfTgirSNhapL+cghp1YDsOpu1Yv7HGOxgtL9te1tmC0bTWrI8TjAawdmPzIHMTWyijSdPg2XKP25l1bxEyd8peim9W+t+eb/TouzrOdq+mAXIyfK9KCCGEEEIIIYQQQgjRCWitrSFDhRLCI4ToINmhLnQJdaMyEnsnmnUNqxmUbb674tp68/asZ1ohIRW9ljrHYxJ6VaSC7qk9EhhxcjS49ZQ2lhjLCtL6tPNohBBCCCGEED8XyhaMRnJvTi+iwrqROtd8IZ7XMakQv3Rb4VR2EY/W+m2t9RSPULSmdWcAewM/tij6q1KGmZGWboKOMcE2QgghhBBC/DJ89hbUe8w29KDGHx39v99ASLPMONy4HmZ95Ks/azDaVpbTpdetQF95hHel4y9B5XfgRVupHsleoa0/11zlbwO7jPOsM672c3arm20tf/1b86FkXnojoQnXo1/6B3q9+U6l7UF/8IK98LBTUZlbZnSHHMWdx5lnfx8wCEZt22Lhob+1dr1/zTSOyPyu2bKQA1cevOW0T/88c9uVqypw77oI/czd6FWL7OPvAJ05GA1gj+0Uq+5O/NTa3ne6/OZxl//NSPwUycyM3aI/fPI6ruvy+DT/fc3Z9FYJGoxW3gnCB2whASGP18b9Jylr+MDiEnj4o+ScqtJa8/pszTUvu3y+OH79I4bD18fPYunXeRww/4mkjMGPwsg69qn5xFr+8qz4j8f4u81PRFU9zFjefFmp5XXTwyPoIoisdMUIy0f4wmKob0zeqUjb66/ptmlwb3OdJSXEDcsYVAi1D8fftqy5t21C0QB6dVHWv6G6Ht76PvpzbWPwvmsaOl+IiRBbK9tneKiNv/n7/f7Kum8Zz8kTXGxfXX27UnPjU6u58NYfuDlyGgf2f4er4oSiASxO2wG+/aRZvx/M05z0WIS0CyPc8KrLkpLEPwdsj7NXwI8Eo4lAwh4fqLXV7TeONub1LvTao8lKg1TLOajSTvbwVNbZz6M1VVwZv06Q47SVTYLRNlr2s1JDkJHafNlF+yq2CzB/x+vxrq73bluZyG3WhBBCCCGEEEIIIYQQHaoyspFa13xisCCtr3G5EEK0hwJLOKMtzBGioWkmhU22Z1lxgtE6UnHDGrTlGzcJqxRCCCGEEEIkKmSJk9FagtHaQnXEfvFgTqhrO45EiK2LBKMJtNalwCk0vyZ9ELC/8qRE5AAAIABJREFUpUnL6XuZCay2ZRsf988WQgghhBDil8EzXMlLtx4w5vCfflVv2L/k1x++5D2GTZPKwxFzeUoCR5M+spvbhF6xAH3CQM866rJ7Ub+/u51GZBHySJvL+nmk/qsDT/QuB54outBa/uM68/L8isXw3/vQD16FPn8ceuXCVowyOO266Po6+HiStY4aNDJm2al7O7x8kcNhQ2GnAthre7juV4o3L3VQqvnUcJWSinrsY3PfwH9/PIabDo+w705w1AiYfLnDQUO29NEv1zzVfHVdFpE3J6In3Ig+dzT6++k+/uL20dmD0QD6dFcsvsPhtL0TG9SLM1u3XZyTPuSnkzkX3buML5cGaFsUbWkLebKpijPhvT1EbK8Nj8+m3GzF46faK7zQioC6ps59WvPrR1zumezd36794D/nKF7LvZ/dbhtHGgkkTLXSeeX/tJa9N9d7/GXVmuWl9vIfipq332A585eXpGA0gOfONT+/Edf++ZEIP9um7XqYtwkbqmGlx+N2yf6KT69xSE9VlD9of70uvM2hoGvbbgy/udG+/imbXh+1CQb/rCqLX0cIEV/ER1BjW8hKV3xxncNJo4Kv6KVZcNnzmnCLD/PXvtHsfmuE278s5Incc7i11w1My97XV5/z0gZFf/j6fQBuedPl4PtdXpoVDSi68x3Njje4fLZIJ3RMamuSnWZvI8FoIpBGjxfMzykYzePtpzw2J0op6z5jWU3nug/XBp9P193vxj8ICxKMtrpsS+XyWnPD7lnEnGfITldMv87h/H0Uu2wD+3ifOvMORouz3esMx5FCCCGEEEIIIYQQQohgvAKGJBhNCNGRCi3bIFv4Gdi3aU1D1kIqRJaTY6xX5TF5vT2ss4w/RAo9UgvaeTRCCCGEEEKInwulLHMwtGVCqWgVr9DtbAlGE8JKgtEEAFrrWcCUFosPs1TvzMFojwDDAv47JknrFkIIIYQQotV0ZRl82XLX3B910R2ojKwtv2d1gYN+Y6788SS0YfKt/uBF3DN2Rx/aA/eaYwmXmdM7Uj0yvGL6XF+Ee+1x6MN6Rft+5xn/jZNAP3q9d4XTr0WdeCnKK1GnPXTJhZ59Ypc7Dow/uv3H0xb2O847AA7Ytf47MnVtoG57hUu2/FKyGv3svYmMLjC9YS3udSegD+uFPqibd+XBexgXH7ub4u0/hJh/a4jp14W4/ViHjFTzrHA1dC/YzRwQkVW1jhvX3sxHV4eY9PsQBwxq3ke/PPOwIiqFtSmF0V+qK9AT/uz9d7Qja/hQJzubtX1Pxb/Pdlh2Z/sPrDyUy5qU3nybPpwnFm0bqO2KTZv3IBPuASrrgtVvC7Ywt1CcfJYjRijOHGOutLC4lYMCHv7I5V+fxX9Al97pMOvGEKdsX4T6582tX3GCTqqwh6R+v8o7rOH71fZAns3lTdlCFHpkJy+9Z2C+PQxoZRKDuPwEo9m2uQCzV5o7+P0BiodOccjb9Jh0zVS8f6VD7pZdO/rnwbxbHAbkt31CZFqK4tzx5vU89emmYLQE8/wkGE2I5LBtj0LtsEtS2E3x/PkO7oQQ7oQQlQ85cQN1Nnv4I03aRS673RJh2gLNizM0xz3qokls2zY/fWcA9F0XUVyh+cvr5gdm/N0ueZe7nPqky8YAYUq2xzktxR4YLsFoIpCwxwumvqb9xtHGPIPR4rRtuj/U1IfzEx5Om1jv89vuqT9CbYP3dihIjmPT4N1yy0umu+Xb/IKuisdOdfjmzyGm/tH7fE2Zx8uxOk7wWWc4jhRCCCGEEEIIIYQQQgRTbAkYyna6kCMTNYUQHahpmFlTtmA0rTXFDUXGspYha7btW7XH5PX2YPvbeqUVElIBLugWQgghhBBCiCZCmI8nXOLf/FME5xW6nR0yB3ULISQYTTT3bovfR1jqbWzxe68gK1FK5RAbjFYepA8brXWx1npOkH/A4mSsWwghhBBCiKT4cgqEE0iZ2GU8HH5GzGK1//Hm+pVlMOODZov09HfQfzkVlsyB2mr4/G0aXplgbG6bAN6SDjeiLz0YPnsLaiphyRz0HeeiP3rFXwcJ0OXr0R+9jP7sLfT0d+DTNz3rq+MvbrOxBKGUgl+dFlsw5ghUbqDDrk5L5ebD0efGrXde6ZOB+s2PlDRf8NbEQO2D0nO/Rj//APrX28Knb0BtnNnPOwyFwaOSsm517xv2wmfvRa9baSzq7xHSsyqlycU9sz9G13Ts3Q03s4Uu2YKPOlr/HoqKv7f/qbYf0ofwdo4t295ufVV0Mn7QYLSqOBPe21plnea9eeYyP6F5Z401v4Aq66C6PuCD0URJpebS/8Zvv10P2LaHQofD6NvPAUNIaVtTN06M/g+8vNIcoLpkvaLG4/H4ocj7b333B4276cVV26CtAVo9kvjdTWqKotCSUbm6PPHntiU/wWjbdLe3X7DOvLyX4bE4YJBi0e0Oz52rePECh/m3Ouxc2H4bwZH97WX3THatARePnar4/Fr7G3JlafKeDyF+yTrTvlJ2uuKDqxzeu8IhO91fm29Xwf5/c/nNhNZdPLE0dfvoD+UlTP7Bu6+NtfDcV5pjH/G/Tq/tflaauUyC0UQgXvuDtZZ02a2Q16e/irPd6pFtXv6vzzSPTg0WdtiWNgS4DdiXS73LgxynNQ2d3WjJme+WyG3OWqhpgLpG88DiBaPZxiWEEEIIIYQQQgghhOi81lpCeArS+kavcxNCiA7SMsxss7Lweurc2C8lysMbqNfmi1xahqxlh7oY61V10mC0AstjIYQQQgghhBB+OMp8zb+rI+08kl+GakswWoaTRYpKbefRCLH1kGA00dSyFr/bZt4vbPH7tgHX07J+qda6zFhTCCGEEEKIX5oDT0I9+QWcciUUeKRRtKAeeNd8wdFeh0KW+Yt6/UXzbGT9evMwKg3ckH65sW2K3xuMfT8dVi2KXffk//jsIBj92Vvokwej//xb9LXHof/v15711SV3ofIK2mQsiVDn/gVOvxbyt4FuPeCIM1E3Pd3Rw0oqdcldcOKl0b/PIs8NdoiYHy6JXykJtNa4t56FvmAc+uFrfLdTD05J2gWBKi0djjjTWq5P2BEdiT0BnZsFqZb3bUlKz+YLllpSp9qZn/ChziYnQ7HyLofDh7XfOuekD2Fu+uCE2q4qAx0wQ8AWhNQeFqzV7HqLPcjEz2ujtyU4C2BNy1sBBPC/r/09kPvspNDr16DPHAmzpia2sp13Rz0yNRq6GEQohHpyOuqQU6DvDgAMrZ9jrKpRzFtr7+rrOEEOReXw6aaP/w0eeR55lpCLRNkCyf79eTsEozU5056VrqwBHja9zLtr5GYrTt7T4fiRiozU9t0ADuljX981L2uWbTCXZabC3jso9t7BXL4qKbfIEELYtkehDvrmL+QoDhysKLnP4ZrD2m979dO+bEMd8xf7+zCf+iPMX+Pvs8G2r+QVjFbb0DlCmsRWIuwRjPbVe+03jjbmddwR73B5+Db2Cpc8p9nhepcP5nX8+25Dtf8x3P+ed0BjkGC0dZVQvymwrNwSQNY9y39/XlZbTtdUxwmELKnq+OdHCCGEEEIIIYQQQggRzLqGVcblBekSwiOE6Fgtw8yaKm4oillmCxWL9tWn2e85oa7Gep03GM3+WAghhBBCCCFEPI4lbsildTc9Fma2Y8scS0i3ECJKgtFEUy0vlbbdO7rlDOkdA66n5ZS4uQHbCyGEEEII8bOllELtvBvOxXeiXlgQDT7Jzfduc99bqJQUc1l6Bow90tzwlcdwL94f99zRuA9eCZ++2az488y9aXDSjU1TfB5N6om3mws+e8tfBwHoqo3ouy6Eap8XIBx2Kupkc/BbR1GOg3PezaiXFqFeX4Vz7eOojCTNXu0kVHomzmX3ot5YjXq/HHbfL6ZObiRYYkrfcOxFH6ZwsNbQ4Ub0abvClOeCNRx3FKp7z/j1AlAHneRZrh+IfV0rpci3nCctCTXPRddP3pTw2JLJtZxH78zBaAB9cxVvXhbCnRAi/JhD9T8cTh/ddoOekz6UOelDrOUnjrSve2VZsAn3AFXF63EvOQB3fHr03wNXoEvXBeskQVe+4LJ0vb3cTxBMofnaNaB1wWizzdcDxzg+8j762O1g+fzgKznqbNSHlThPTkcNH4167BP/bX91Os7UGtTOuwOgnvoS+u/E9o3LyHRrjE2+v+Sc6HN8TH/cyw5Bv/wI2nVpDGsmfRv/hfPCjGidUo9gtKDhYfH0zTUv/3wxhCPJCWPwu23a1p7/adSnW+fbuA3tk9g2NzMt2sgWVGcL1BBCBBPppPtKGamKO49zeOiU9hlIcagXm7fwG0v8f5h/uMDf54JtX0kpyLQEo9XECQgSoplG7xeMrjPvq21tvN5x8bYWx+zqXaOsBs6a6FJd37HhW+ur/Nd94zvv/dMgx2law8Li6M/llpdLd9u3/i3EC7a8/lXzwGrqvfst7ti5QkIIIYQQQgghhBBCiASstYXwpEowmhCiY+Wl9iRVmb+sNYU6rrUEPXYNdScrlNNsmS0YrTpSGXCUyaO19ghG62NcLoQQQgghhBB+OMoSjKYlGK0tVFuC0bItx6JCiCgJRhNNtZypbZtq+kOL30copYLM1B8bpz8hhBBCCCEE0ZAsNXw06sWFsO0gc6VdxqP2OMi7nx2H2wu//xwWzIKXHo4pmpJ9sLVZmjmHLVZFqc+KSTDtVSgr9le393ao659s2/G0glIK5fy8D9mVUqj0TNg+NtCpe8BgtP2rp8UurPF3IYquLEevWIBeNg9dvArdUI9e8SN6ffM7B+qrjkwoyEgdfnrgNnHttp93+WsT0AtmxSy2BaOtS2kRvjjjQ/Sz9yY2tiSyTQTv6LCPIBxHkZmm+NeZikmXOAzpHV2+U4G9ze/2Ulx/uGKXbWDvfo2cUPEy/RtXWOvPytiVH9MGGsuOGeHy/PnKGj61dL22hqrYVM78Cr77bMuClx9BX3E4uiHOTPhW2lijeSfOGSQ/r42cDEWOOfOTNRsTD1JYVRq/7c71Czjk38cm1L+67X+oPz6CSt1yUZ/KzEY98G78xiPGoq6b0Ly/7K6oJ6YT2u/XDK5fYGw2J31w9IfSdfDNNPQDV6DvPJ/5a+2BC009MlVT36hZ4bErkJf0YDT7i2D6kuSsw++2aXBv/xurFAfGBr31RDvIy1YM9M7nNcpMjf5vez5WlXVsaMlmFbWaxcWahnDnGI8QQdm2R6FOsrN06l6Krhltv556J4MqJ3qx+uoi/xejL9/gr5722O5nWYLRqiUYTQQRDnuXz/ywfcbRgVSczdaBllNiTa0qgze/69jP9A0BgtEAvvDYPw0aYD2nKNpgo2U/vVuWv8+Gk0Z515v0rcY1DK4qTihdccfNFRJCCCGEEEIIIYQQQiSgwa2ntNF8HV5h+jbtPBohhGjOUSHyLYFgplBHe6hYbNBjdsh8kWWVZfJ6e9gYLqVe1xnLCtNkmyyEEEIIIYRInEPIuNxFgtHagu3YMsdyLCqEiPp5z7IWQe3V4vciUyWt9RrguyaLUoBxAdazX4vf3wnQVgghhBBCiF8clZ6B+ssz0DWvecHeh6LumRS/g4L+Ca23NJRnLdtjO5+T7V37iTD3+hPR9bVBh2Wk62rQf73Ad311+wuoeDNvRbtQubGJK67ljhM2e9Z9HbuwxvtCFO266Kf/ij68AP27EejTdkUfPwB9YFf074ajj90e97az0TVVuGfvCbOmBhoTKamo82+FcUcFa+eDCoVQj3/qWUefOxr96RvNluVbbiBRHOoV237i7Ul7fybKGj60FZ7NUkpx1C6KH24O4U4IMf/WEP85R9Elo2kd+MOBiolnKW77tcM3fw7x2alLeH71aSxZNIh/Fp1n7Pu7jBHUOZnGsqsHL0IpxYDYpxiAOUXBJ9xXOYYkqyU/wKQJscuT6P158euEfL42enczL1+z0f94WlpZ5l2e6dbwz6LzSSVO8EVLOwxFPTMbte+vjZ9bauT+qCsfhC651i7UDU+Z22bloG5+lqFqqbHdnPShsQvffYblD9/ne/iZl7gc/Q/zvkDXDEgJJfezeOwAe9m+97g0JiEAy28w2pAAN2QdMwB65HTO/ZKpfwy+0c3cFBRke6+VdIJgjLvfdel3jcvAP7n0vMLllVkSjia2PrZw006Si0a3LMUbl7Z+x+2simeomp/L/EXDrHVKQtH7/iwv9f/H1zX6q2fb7iuFNWy1ynxNuhBm4ThJesuCB3R3RraQQYB479yUkGLy5fG3J09+0sHBaNXB6q8ut4/X6/Eymbsm+v/GWnPDbuZDxhi79Vc8c479GWkIw4zlscur4+RkSzCaEEIIIYQQQgghhBBbl5LGNWjM5xtNQUJCCNHebNuidQ2rYpatNSyL9hEbKpYTMl9k2ZHBaLbxg2yThRBCCCGEEK3jWObvuTrSziP5ZaiOmC+ky7YciwoholI6egCic1BKZQDHtVg81aPJq8CIJr+fBUzxsZ5BNA9gq/bTTgghhBBCiF86teMIeLMIipZAfR30KER16+GvcX5idwSrdyyzvIGzx/qccK497hDwyevoh69BXfn3gCNrsYoF36DP3dt/g4NPRg3cpVXrFEmUG5vYNKLue9/Nby++0TyJuqoCCjwaTn8b/cRN3p1PfhY9+VnfY1GX3QuDRkFKajTMKN3nzOMEqCF7oI85FyY9aa2jrzsBXliA6r0dAPldFBguWixJMaRm1dXA0rkwaGSSRhycn/AhXVYM7z2PXr0Ytct42O841KbkNF1dAW9NRK9ciBq6Nxx4Iio1rR1G7s9v93I4fnfN3DVQH4ZBhdA9q8WrefGW98Lomi8CryPvh8lw4GCG9lV8tSz2AZ2zWpOXHSw9pcox34lEv/gP1ImXBh6jXyc+Hv+OM36DYHp3g4WGGxsXlQcc1CYfzdfMW2MvT3PreW716exlCnFs6cCTUNc8Bit+hOwu0HdA3CBPdeyFcOjvYPJz6Psua1548MmoPtvb2zoOQ7bNgHWxZXPTBxvbFP2wEHrH/Uvi6tUGN7U5ehfzdm6zf3ykueLg1iUGWQNyPnoRvWQJ7H88qv9ODOvjPZamdujVSVKMDAq6RgMbz/yX/3SOzNTo/7bnuKQqCQMLIBzR/Hu65qWZmslzYsur6uGEx1wW3e4Efi5cV/PabPh4oaZvd7hwX0WXjM77fIqfF9v2yG9QaHsYP1Ax/1aHQTf6v3Pc3euuZfThI3EO+g07F0JuysmwZBgFWQVwu7lNcagXWW4t34YG+V7PylJ/2zWvfVJrMFqcgCAhmmn0DkbTy+bFDQ7bGgQN+mrp4CGK8QPhk4X2Op8ugopaTdfMjnnENgTcx1nvUT9ogPXcomiDcku+efcs/339bi+HjbUuv3/OPIi5azR7bt/8MY633SuplBBaIYQQQgghhBBCCCG2JusaVhuXh0ihZ6rXBVlCCNE+Cg2hZgBr62O3X7ZtWqEhVCw7ZL7YpSOD0Wzj7xLqRlYop51HI4QQQgghhPg5UViC0fB/3a/wr8oSjJZjORYVQkR1oukRooNdAzQ9oxcB3vKo/+ymOpsdp5Qa6HM9Tb2gta7zN0QhhBBCCCF+2ZRSqL4DUDsM9R+KBgkHozWQaly+53YwqLfPSaZunBNhk58LNqgW9OTnAoWiqQtvR13/VKvWKZKse2wo1/D6H3w3v2rDA+aC6o3WNrqhHv3q477X4ctJl6FOvBQ1fDRq8Kg2DUXbTF31j7h19Ek7o8NhwB5QU5RiTjjSD1+b8NiSwRpCgUbX16LXrURfuA/6oT/CK4+hb/od+s7z0Fqjy0rQF4yLlr02AX372eg///anx6KzSE9V7FrYwF6FVXSjCl1TueXf6sXom0//qe6OjYvpFTakeXnIm/4/tNYMzS41ls9bG3zCfaVjuZhqzTJ0hXk9rXX1i/6+VPEbBNO7m/kzLJFgtAfedznwPvv4tmtYxsyle3NU1dvxO0vLQF10ByozG7XzbqhtdowbiraZyuqCOvYC1IOT4aDfwMj9o33d8M+4bYeOH25cviK1PxWGILxVKcm50+iIxHZPPGWmKY7f3V7+0Ica3cpUDuu26asp6Cf/gj5vDHrWVMbuCCk+X5P981o1pDZ3+miHSZf4/yohc1MGZU/L5qKkklY/D365rubg+13Oe9ocitbU/2YEH9Np/9Sc8JjL3z/QXPOyZrdbXNZVbOknEnQjK0QAtkMtv0Gh7WWnAsXc039gbM1nzZb3aSxieN33P/37dcUk3tZXctXloxl7wcmMHqDIy1ao9AzU4FF07b8NaZbbPZWk9GJ61t5oy53rTFaW+atn21w5StElw1xWKd96iSDiBKOxbF77jKONeX0i+tzl5aDB3hXrwzBpdsd99m6oCrbuEvM1TkACwWibgprLa8zl3QOeorh4P/v2dEVp7D5OvGC04o6bKySEEEIIIYQQQgghhEjA2vpVxuU90woJKcsXNkII0Y4KDKFmAMWNRbh6y3THOreW8vAGcx/psRcv5YS6GutWRyrb7VqXlmzBaLbHQAghhBBCCCH8CqmQcbmrJRitLdhCt7Mtx6JCiCgJRvuZUUqdppQKdAsWpdR5wE0tFk/UWi+3tdFaLwT+3WRRGjBRKWWZBgJKqWOAM5ssagBuDjJWIYQQQgghRAJ69oHM7MDNGlSacfku/QLMtI93IqwmsYsF9FsTcY/dHn3bWf4a9OqLeupL1O+uRqXIxVmdSm5+zCIHzVUb7ovbdEzN56Q0y+zeQl9yAHpx84A1vWAW7vlj0Qd3hy+nJDZekwNPQl1yV/L680kphXrOR4jct58AsE2uuXhB+s7mgtkfoxvizG5uQ7awD/XQVeiDuqNP2BGKljYvfPc/8ONseG0CLF/QvOzTN2D2tLYZbAL0nK9wz9kbfXB39KE9Y/+dPKRZfQWMrv0y0DpyV38LH7zAgOkTjOUlGyPW0B5b0EeVLRgNYLH/UEO/GsKa+97z9znhNwimnyWEav7aYJ9HxRWa61/1bvP5sn0Z3LDAsw4ASqGu/DuqoF+gMcR0s/t+ODc9jfPAu6jfXoUKmb+oamr4yG2tZXPTBsUsK0rt06oxbjZ6QNsk9xw8xN7vsg3w9PRWBqNZtk2hzRdV1lSiJ95BXrZi35389dnZg9EAjtpFUfaAw5gB3vUy3Fp2+F0P3PHp9Lx6H2OdxghsrG2DQW6yslTzm8ddnPMjpFzoMu1Hf+1mLQ/22nj7e81/v2reZsn6aADfd6s0Y/4aIfNilyF/jvDqNxKQJpLPFprjNyi0rWmt0c/fjzs+nZ2u25Npyw8mPC/rp38rFu3IN0v3+unfy2fXc9gTD6L2P87Yn1KKXrbAxVAv1ocChIfjP6TH9jgrBTnp5s+c6o7bhRZbo3CcYLTl89HxQue3Al6nfvwGow3tE7/iCwkEnSbL+qpg9Us86gd9yheuix47WYPRsoL1B3DMLublf3ldk3mxy263RPhgXvTxjrfdq5TtohBCCCGEEEIIIYQQWxVbCE+hhPAIIToJWyhYWDdS2ljy0+/Flu0ZQEFqbB+2YLRG3UCD7pgvPNY2mMMqJRhNCCGEEEII0VqOJW7ItczVE61THTHfTdV2LCqEiJLZ4D8/5wCPK6VeBF4Apmqtq00VlVKjgOuBY1sUrQb+5GNdN21qu3lq9RjgfaXUuVrr+U3Wkw6cD/ytRfu/eYWvCSGEEEIIIZJDhULoPQ+Gaa8FalfvpBuXp6cG6MTPTM5wI6SaQ9hM9NRX0X+9wF/lgbuizv4T7LoPKqeb73WIdpQXG4wGcETlO/ytx5WeTX9f+qhnuT5zJLxZhOrWA11Wgj53dMLDNDr9WtTYI2HwKJTfmdxJpvoNhD/ch37Q47H67jMYuf+mSeSxk8TXphSyPtSDnhHDnRF//AaG7Z28AXtwXc30JTBjuUZr+KHIXM8WhreZfvcZeMX82tAzp6JGHdjaobaKXrMM3vsf+ok/B247pmY6r3c5ylfdbpFyUoigbz6dvMy9YbtrYurUuyGqasKYThF2y4TKuth+Kz2D0b6H3cxBSIn6zxf+gw38BsEMseR6zVsTfR06PhPWXpqlqWu0l+9R+zX5kRJ7hU3U2X+GX52KKrQHlLWl/nmQkw5Vhmv35mQMZe+6r5stK0rpnZT1jmmjYLST91Bc/Ky2BtmcNVFzwkhNtiXMJp6IpV+HJvs830xD19UwsCCDD+bHfw33z+uYz5CgumUppl7t8MlCWLBOc/MbmnUtgoV+U/ESOZtOR+dHiq19lVTGD+ioqdd8sgiKyjUHDFJs2yP+4xRxNSdPcJm+JG7VGLNXBqv/78/Nz+3T0zUPfah/2obOXwvHP+oy7Y8O4wduHc+1iIZ6RdxoKFbExf6zjh7yRLRHnYT60XHbzi0yvwY7aLc01osPoR++1ldVdceLqPFHx62X3wVWl8cuL0npSZqOEy7VQnFl9HmOtx9vC3NyFORYgmQr6yQMUQTQGOe1W1sNxSuhg/YVk8XrXeF3szXMx9yOKXOhrFqTm93+G8Ogwa8bPILRbI/Xdj2iYb8thV34cZ19DN0ygz8e2+SZzyFsXt+3q+CIh1y+ut4xHks0JYGRQgghhBBCCCGEEEJsXWzBaAVp27TzSIQQwiw/zX5jx7UNq+iZVrjpZ/P2LFWlkZfaM2Z5Top9MnpVpIJ0x/IlcRsqbjBfSFko22QhhBBCCCFEKzkqZFzu6q3/Zq6dUXXEfFfnnFCXdh6JEFsXCUb7ecoETt/0z1VKLQSWARuBCNAD2AUoMLQtBQ7TWq+NtxKt9Sql1HHAZGBzisFYYK5SaiawBOgG7A70atH8TeDGYH+WEEIIIYQQIlHqV6ehAwajNShzWFma+ZyXmZ8TYY31voPR9Ia16BtP9r169dQXHRZYJXwq3A5yukNV84SDHHPG90+eKjqfkypfjt//5GfRJ16KPjrJF4GMPxrnvJsxewduAAAgAElEQVST22eijr8YKkrhX7cZi3V9LQoYZr8WiDnpg9m35tPYguXz2yUYrSGsOfVJl5dmxa/brzFOcs3UV+2hjP+9Dy64NfgAk0R/9DL6trOhwZA45sPIOh8P0CY9IqU//ZwXKbPWKy3agOkUUY45G5NaJxONObxAz/0KxSW+xxjPbW+5/HmS/2ARn3lmDOltnuBf0wDLS2H72GvejP73tffYzij/T9w+1N/fQyU5TC4opRRD+8CXS2PL5qQNjllWHDIHWga1e/+kdBOja6Zi3i0OO99o3wd55gvNhfsmtn9g27w0C0YDKCumX56/P7J394SG0iFSQor9B8H+gxTnjHW586wHeSrlWDLcOo6oeps7i7ec8u0VXm/tp6QKBprOTm+ydqPmVw+6fLvpprchR/P02YpT9vROQHznBxIKRYNo0IhfVXWaF2eatwGrLJvcfe9xqXnYISPV32tPxwvGarNArs11dMJtE1l/bFsf60/W42FoawvD2hr4DQptS3rFj+iH/uiv8pjDfYWiAfSyfO9fEupJN9d8sYBNfTgaCtolznXrtqBNpez7S/ECgoRoJuyRtLvZsnlbfzCax3bV72mbgfkwvC98b56/AkBjBF79RnP2uPY/FxS27Cf27gZrNsYuL66wPyi2bc/OhdF9DdO6Zq/U1FpeTvECaU365cav0xCGZ7/UEowmhBBCCCGEEEIIIcTPiNbaGoxWmObjDhZCCNEOMpxMclN6Uma4NmVdw2qGMWrTz6uM7fPT+hgDALI9JqNXRyrpkZqc66b8qnfrKA2bb8yZL9tkIYQQQgghRCs5mC86dom080h+/sK6kTrXfOdTr2NRIYQEo/0SOMDOm/7F8wFwptbafNbPQGs9VSl1LDCRLeFnChi16Z/Jf4HztNbyiSiEEEIIIUR7GXNE4Cb1tmC0IEeStvSQphob4lbRa5ejn7oV3n3G33oLt0U9/omEom0FVCiEHn80vPN0s+U7NCwlpMNEVOwLrujUz8m/IX7gEIBe+B3qIx8BagGpS+9Jep+JUkqhzr4R1xKMRiR6+F3YLToZurwmtsqK1NjwnggOf/8qj3cWRNv/fn+HX+9mfk+9P1fzt/dcqurgsGGKKw5SZKVH606eo3l0qsucouhk+IEF0b6OGLGlr/99rX2FogEMr/vBu0KpR9Z7r/a5GEg3NsCkCegHr9qy0BAAGNSw+rm+6+Y1CUbLjdjXu77SvJ22BX1EVAqNpJKGYcb9e8+j/+9RVEYCs+5beHGGDhSKBv6DYAb3tpfNKfIXjLaqTPPJQnv5uC4rOWfev+wVDjwJddPTneZzakgfxZdLYx/vObudCZOvabZsXUrrL/AbMwDf4VCJGFigmHiW4sx/mV9DL83UXLiv//5qGzSPf6x5cYZmrSV3x2kZBlu+nn65/oLReuX4H0tnoBd9h775dELL5vEn4E9ca6yXravJcGupczJjykoqvddxy5v6p1A0iIZVnTVRc+QITZcM+2snXmChl3Lz94xGb36X2HqyLnEp7OovzEuIRPkNCm0resUC9O9G+Ks8YDjq9hd9992riznctCSlFymNYd/9bFZckXgwmqPsbSsTy8AVv1R+gtHWrmj7cbQxz2A0n30opbjreIcTH3c9g7bOfVpz9rhAw0sK2+d33+7mYLQfi+192U6npadEj6nnrYkt+2qZvb942zqTQYXmbW5L90yOX6c6/qk/IYQQQgghhBBCCCFEJ1Ee3kC9Nn/ZUSAhPEKITqQgra8xGG1tkzA0W9CjbXuW5WSjcNAtb5AIVEWC3awrGYobiqxlElYphBBCCCGEaC1TYDSA23JuhGi16oh9AkVOqGs7jkSIrU8nuG+8SLIHgeeA5T7rVwOvAgdprQ8KEoq2mdb6bWAY8BhQ5lH1C+AErfVvtdbVQdcjhBBCCCGESJxSCvWm/QtykwZLMFp6kGA0r5mvm8UJRtNlxejzx/kPRTvkt6h/fY3KK/BXX3Q4NWJMzLLu7kYOrXovZvkxu0BBxHwHPKNpr6Bff7I1w4uh3ixC9d4uqX0mxZjDzcs3nZBWSrFdD3OVd7IP5bUuRzM1azylTi4AlxY+wB/XHMGH8+HD+XDcoy5nT3SZNFszeY5mZammrFpzw6suhzzgMnkOfLYYbpykOWti9L3/5neaIx9yef1bWFwCS9bD5Dlw1D9cXvtmy/bhpZn+AmZyIpX0D6/0ruQVyNij0Nd6Wks/el3zUDRodSgaQK/IevJT4qQJbZIX2XKKJte1n67ZEMk2LrcFowHUGkKONtMXtD6BoLhC85sJwb9IaRkEo8ON6CVz0PNmoL+fjp7xAbqilC4Ziv4Z5sdxblH0tbihSvPZIs20BZoNVbGvzxdm2F+zVx+ieK//I6RiDmhRtzzXqULRAIb1MS+fU94F9a8ZP/2ugeKUXsa6J230H2xz+UFtf1r6hN3tj+/UBdHXmV9/+J/myhc005fY6zgtL4gsK6ZfbvznWCnosRUFo+mVC9Fn7QHL5sWtq4hut0xKKr0f/8emxZY3hGHKHHub2gbdumA0Q3Cojdc2IJ61FVBcCRuqo+usqIPqeqhrjP6NEoomWivVfI1C0unqCvTiH9AbN2xZtmGt/1C07K6op75Epfg/wOxluSFaSagX1U7wjWmxj90q2yGto+z7S1UegU1CxPATFl8c+OvbTsfrkzPIbvFhwxTf3+Rwx7Hejf42pf0/UG2f4cP6msdaVA5l1eZHxiuUcYgl6Hn2CvujnJlqLbI6dGjwNjbV9aD9nCMUQgghhBBCCCGEEEJ0OFuIEEgwmhCicylM28a4vOl2bG29eZtma+uoENkh83fP1R0QjGbbJqeoFHqktv7mlkIIIYQQQohfNscSN+QSaeeR/Px5hW1nSzCaEJ6CTGcXWwGt9atEg85QSnUHhgL9gAIgi2gYXjnRALN5wHda61Z/Mmmti4GLlFJ/AMYC2wKFRIPXVgPfaK2XtnY9QgghhBBCiMSpbj3goffRd18EKxdCahocfga88ww0xN7l0RaMlhbkSNIroGizxjizxt+cCGXF8fvJzEb94T7UEWf6GZnoTLY3z7adWHQuJw+bzIeNwwA4aDBMON2BqQECptIy4JtpyRgl7DgC9Zdnou+lzsixpGC4Ww77++XCbEOu2AvdTuSFbif+9PslpY/yz+5nxNSb+Llm4ufxJzO/OFNz2SLN/e+51snh17/qcsyuDkop5q6J2yUAu9XNplVRUg1tn1KhVy+GF//RNp0fcALDcrL4cGH8qj0iW0JK0nUDWW41NU5sCFql5QR6Toa97xoni26u5aT8kjnooqWoPtvHH6SB1prCqxMLMWgajKbnfIm+7SxYtTh2HSPGMqTsalbkHBpTNue71dwf6stVLzZ/nd91vOLqQ9RPYWa28KVhfeDuExzc20vNgzz4FNT+x/v8i9rP0D4KU1zF2gpY0nUY24/cH2Z+RJmTS6Nl/+CK0r+zY9dqHsw4k2rLWy0tBW44XHHcbkkcvEVWuuKpMxTn/Dv273I1vPKN5sJ9429Rvl2pefKT+Nu92GC0EkbuHn+cPXMg1DLVrxPTj98YqH6v8HpWpvaLWV5SZW/j2pJAiH6+HD/S/Hi98wOEW5GBUuYzGK0hrHnXI6BNiI62V2IfwYHoN/6JfuS6aPBrSiqccxPseTD6nL38dXDACaj/exQVCpbiZg1GS+lFQXidsey0vRUvzNDUG/JKWxOMphR0sewvVcYeXgthF44fjMa6OOHQWwGvTKygecHb9VRc+yvFQYM1e95h/vB/6EPNVYcE67e1bMe+I8zzagCYUwTjBsYutz1cjoKBBeZ99x/Nm0EgsWC09FTFuB3h00XB27bk6mg4mtdxphBCCCGEEEIIIYQQonOwhfB0DXUnyxIWJIQQHcEW1rh203bM1RGKG803lC5Is9xFkuiEdNOE9aqIvxuaJpNtm9wrtQ+Oaqe7pgkhhBBCCCF+thxlCUbTcqfvZPM6prQFdAshoiQY7WdMa10OfNbO62wAPmrPdQohhBBCCCH8U7uOh6e/gfISyMhG5XRDX/UQ+ozdYencZnUbVLqxj/QgR5J+ToQ1ek8C1t99GrcLddm9cOyFqJQEZnqKjrf9YOPiPLeMKfPHU/zKRtJSIC87OltaV5b573vjhvh1AJRC/ec76NkHMrNh7XKorojO3nYj0L0n5Pf7KRSpU7IFS0SaBKPlmSdQt/Rw3kWtHs74u73f//PXwverYWC+Zsl6f30eXfVm6wZVFeC1kyD93/sTazjuSNSZNxgKFGRmQbeeqG49GPK8y4cL4z+HeZGymN9NwWg22Wn210qNyvRu/PEkOPly3+tq6tkv4/9tNqFN38nouhr0zafDmmXmit99xuD8I3jXEIz2zKI+PLModgzXvKzZewfF+IGwpETztaXr3+yxaRtRaQlG69Ld82/oKMM8bup8zMMu3x9wInrmR6xLsd9ptCC8jlvmX8zV75xJo3bIy4Z1FbChCgb0gtIayM2C7PT2246eOUZx5zuaRYZ81Zdmai7cN34fT37q7zXptHy/lJeQk6H485GKW96099FrK/oOS1dXwLRXA7XpFSkxLi+usD8mpdX2/rLMuXxANHDTy+3HKs4YrXhvruasibHrL6+JhjPG+6xfWQp1jZ5VhOgww/vCUSPadjur534dDdveLNyIfvxP8PiffLVXD7yLGrl/QuvOtwWjhXpSbdnPycmItltp2A0sqdQQJ3bXK5wox3zITFXbZ/GKn5M450QAKF7V9uNoY157VIlutUZuC327w2pDdvqK0uh7vFeX9tv3tGW79s9TdM3QVBhCE5es14wbGDtGW8iao6B/nrnMK+wx02MfysuRIxSfGo6PEnHDa5oHT+7E51SEEEIIIYQQQgghhBAArG0wn5O2BRAJIURHKUwz352mKrKRqkgFdZEawtp8gUeBpS1ATqgLpvvRmMLS2potGM0r2E0IIYQQQggh/HIwz0NzW940XrRateWYMsPJIkXJfFghvEgwmhBCCCGEEEL8wqiU1Gj40+bflYInpqMP6tasXoPlpEpakJuMNQlksgrHSZZYMse7fPAo1ImX+h+T6HRUVhf7JOmGegrWfoPaefefFulVi5I/iEN+i+q/05bfe2+X/HW0Ncfy5nS3vA9tE6g7ygszNCeOVGgf86yz3SpO2fhC61ZY0bbBaHrZPJj0RLBG2+6MOvUaOPS3voL3hvm8pikv0jyYKzdSxqpU+wVdLWVn2MtqnCzPtvqHLxION/j7B4lPui+rAR2JwPv/s4eibTK0fl7g/id8rBk/UPH+PPsYtwSjGdIZALp2sjfhJr27QfesaDBUS3PXQMXo4+nS7UbWNdqD0fI3BWB1ffACnBueBKBP9+g/gCxLeExbUkpx0ijFHW/HPmdTF0TDufK7er9aX5/tMxitRRis3rAGBfzlaIcvlkSYMtfczhby0xnpM0cFbtMrbA5GK/l6JvxmT2PZizPtj3mG5Tu/l2dqfjRdlbrJO39wOHRo9Lke3BtM8Syujm5H8uJkSJZUeZcL4Zejov9CTvRf3J8VOJv+b1knOx322UnxhwMU3bLaLnRGN9SjLxiXWOM+26PueAk1YFjC6++VYw5uLQn1pNIxJ01mp0F+V3MwmleI0Gaux7UdXTLM46k0hB8JYRX2EYy2+Ht0uHGrDoP3OuZLNH9cKcVv9lDc956587++q/nbie0XxGULMws5sH1P+NYwl3ClJU/Z3peiv8/A86YyE3zp9Evi4ct/v9I8eHLy+hNCCCGEEEIIIYQQQrQNewiPBKMJITqXgnT7tXDrGoqojdgv8Mj3CBbLCXU1Lu9cwWj+rwMUQgghhBBCCBtHOcblrvYxH1QEUhUxX7ScE9qKJpQI0UEkGE0IIYQQQgghBCo9A33gSfDBltChBpVmrJseZDKl9nGHgFrzxQdaa3jub1BsvgvlZurSewMMSHRW6p5J6D8eYyzT91+Oeuzj6M9awydvJHflO+2GuvD25PbZESwnpJu+D5M5qTkZ7nhbs3xD/HqZbg2Pr7mEwohH6o0f1RXocBiVktxTYrq+Dv34DfDiP/w3SklFXX4/6pjzAq1rWF9/k+BbBqP1ipjDiWxyPEKsalWmd+PqjYHWtdmSEs2M5Qk1BWDRlE/Qtx7iq+7g+vmB+588J/q4f2++3oxd+8GO+ZuCFyrMCQeqS/fA620PSin23A5reNcbi7vyu+smUHzvq8bybpFyMnR99Jd3n0GfcgVqh6FtM9iAThxpDkZzNZz3tMuk3wdJfLVTLe+KtGzLa+y/5zkUXu3SaPh+cES/9gvraA29fD6sDf4G7RlZb1xeUlSKXjLH+Dq57PngwWhXvWjf55xyucNBQ7Y8zr27Wasyfy2MGWAvByhu/+tc24xjCNgKGsiVeFsVU9/x2U9yxhK7/mQElPlt6yh8BaJ2NvqqIxNqp+5/GzXqwFavv5flu/96J4N1KQXGspzaEvK79DSW+QpGs2ySHMe+v1QfhsawJjVl63uORQdo9BGMVlkG30yDPQ5q+/G0Ec9gtFb0e8ex9mC0+9/T3HC4Ji+7fd6LEdv2QkWPxY3BaJbsbq+QtX65wcdm24eKp19u8BA2m/USLiuEEEIIIYQQQgghxFZhbYP5Wj0J4RFCdDbdQrlkOJnUubUxZesaVlEbMdwhEshN6UmGY7/+zRaMVt3OwWiudiWsUgghhBBCCNGmrMFoLedGiFazHVNmW45BhRBbSDCaEEIIIYQQQogop3kwSL0yz/JOM+SH6OoKmPoqZGTBbvug8jZNSvea+bq57b2/R/3r6+jPGzfAV+9BQz16/gx4bYJ343FHwrC9465DbAVGeUzwXvjtlp9L10F5sIAno+2HoH5zOfTdAYbuhUo1BwFuVUKWcJ8mM6r7dU/OhOZkevZL+5gmFF1Ed7ec0bVf0ju8NjkrLFkFvbdLSld6xY8w80P0fX/wVV9dcBt07wmZOTBsL1RB/8DrHNrbX70eLYLR+jVa0rwssj3eEjUeF4YBULQ00Lo2e2FG616fB859xHfdIQ3zAve/vgoawpo5q83jHLVdk8CFynJzJ107WTphE5cd6DBlrvkLrBdmaE79/ZEUl+0Dr8eWF4SLm/2uz9gdJm9AZeW0xVCNtNbR9+OHL0E4jDrkFBi5PyO2gYH5sLA4ts0b38GfJ7n0z4P9d1ZkpsF7czXrKqLP5/47Q4nPAAen5Zd/S7ekzOVmKy49IDa0Iz0FzhzT+UNz9OxP0H+7NKG2vSzBaBtCPdFT/ou68LZmy+sbtTUIBKAhHLusuEKzwpxFSH4X2G/n5su2yYUuGVBZF1t/TpFmzADv56S4Mti26qL9FEP7RLerzYPIVIcEcm1uq7bSYC7RcfTcr2H2x8EbHn1OUkLRIPqetlmaup1xedbkp+i139VA7L5yiY9gNNs73lHRbYlNVT3kyrewwg8/wWgA82Zu3cFoHmWt+ThKS1GM3gGmLzGX732ny4+3JScINx6vMLNtLAFjq0rNj4xXX/0DHlKkOJASSuxB7mzh6kIIIYQQQgghhBBCiLZV59ZSHjbf4bBQQniEEJ2MUoqCtG1YXrcwpmxt/SrqXHMwWrxQMduk9KqIjy+Yk6g8vIGGzTeqbEG2yUIIIYQQQohkcLAEo2kJRku2KkswWk7I4+JoIQQgwWhCCCGEEEIIITZrEarUoMypOGktjiT1vBnoKw+Hqo3RBXkFcNv/UMNHgxuJv95F36HDjbBsPvqqI6HUZ/jR8Rejzr5RAh1+JlRKCjp/Gyg23HW0oQ4992vUkD3go5eSs74LbkWNPTIpfXUajmWyd5P3Yf+ujUBq+4ynlU6oeJmzN/476f3qs/aA11eh0szhj777efc/6LsuhHCjr/rqn1+hBu7SqnUCdMtS9MuFlWXe9XIjzSts02i+o69NaggyUqHO8OfVqCzvxmuWoetqUBlx6rXw9vf2uISR28LyDTB+IGyshQ/nx9YZU/uF73V1cavYp/pjPs7eJ9AYv1wK36w0lw3rE/1flxVDuSGFC6BL90Dra0+HD1dskwurDK+t9+ZGQ+HWNeZgCnTIj8T+vfrQHvDKElSvtr8QT7su+voT4LO3tix752nY7zjUX/7DiaMUd7xtfn3d9tbm5S3LNYcNNb8HTJyWX/6tL0JXlqG65AJw57GK7HT4zxeatRthr+3hL0c77Nqv8+7HaK3Rd5wL7/4n4T7yIuaNVVmoO3zxLrQIRjO9/pqqNlzvOafIXv/w4SomCESpaFDZF4YAFa++NisOcJ3r9Gsd9tqh8z7HQgShn7s3eKNdxqOueDBpY+jl8d1/peXi9JyNq+hVOh8YGlNW4iPo0LVc26HwEYyWHbd78Qunw43oJ27yV3fZPLbmTxSv3PzWntY5chfF9CXmFSwqhsXFmgH5bf/oeYWZ2QLGbMd1Xn11y1LsVAA/rvM3rsxW5MD36ZZ4WyGEEEIIIYQQQgghROv8UDWDGZWftOs669xaa1lB2jbtOBIhhPCnIK2vMRhtVuVnRDBfvxwvGM02Kb0qbJ7EHsTGcClfVXxMUf1ydMubMAZYX7y/QQghhBBCCCH8cJR5HtrKusVMXHN/O4/GnxSVyvYZOzOq63jSHY8LeTvQ+oa1zKj8hLUNq9k8T2Vp7QJjXVs4txBiCwlGE0IIIYQQQggR1SJUqd4SjJaesmUyqY5E0LefvSUUDaB0HfqhP6ImfGqfRd5S0RL0Q1f7D0U76TKcS+/xV1dsNdSf/om+7BBjmb5gHHxch37wquSsbO9fJaefzsRHMFrv7DAhrYiozn9KaEj9vLbpuLoCPnsT9j8+oea6ohR998Uw7VXfbdS/Z6F2iA3jSNTwvvGD0XpESpv93i8cLBhNvf0vskInU0fsFwW1TqZ3Y61h2TwYNNL3+sIRzawV5rK/Hqf4v8O23IlmcbHm4PtdljW5SfHtxTfSO+zzM2STO4tvZOz20wK1Of9pl42W64CH941+PuqrjoKIJRg0v1+g9bW35893GHdX7Gd3fRiG3uSSZwl4KQibg+D0cTvApBWovIJkDjPa98YN6Ak3wuxPYMWP5kpTX4Fpr3LiyOOtwWhe3p3jv65julhx6VwYMRaA1BTFzUcrbj468DA6zhfvJhaKtu+xUFcNX04hr8W2aLPSUC4snodubEClbtnnjLdtq6yLfR5/KLI/t3870RyCsnOB4gtDgMrajYbKLZT4DEY7e5ySUDTxs6Ary9EPXgnTXgvW8Mizca55NKlj6ZIRDepuCPtvk+NW0Wvl15iC0fwEHdq2MI4DOR45u5V1voYnfuk+ecN/3WVtdHzUCbT20/LCfRQ3vGrfH7j6RZdXL7EcLydAf/Mx+tl7oufChuyJOu9mVGa2PcxM2QPGNlSbl3sFowGcMNIe/NtSZiuy0VNTkrsvE3E1IUf2j4QQQgghhBBCCCGE8GNtwyq+qgh2TUNbSVGp5KX27OhhCCFEjEJLQFhpuMSjjXfQY45lUnp1pHXBaMUNa3hg5Z8oD2+IX9lD11AumSG5S5cQQgghhBCi9Rwc4/KNkbJOc17K5PON7zN94wf8vt9NZMSb39TOVtQt4u8r/0KNW+Wrvi2cWwixReefBSuEEEIIIYQQon20CFVqsASjpTU9kvxmGiw3JNbP+xq9bgX2aeQtVFXArKn+6gLquAt91xVbD7Xbvp6vGH3jKd4djD0CPnsr/npeX4kKJW9SdKfhmE9INw0oTKGRvuESVqT2D9z9/62/h+IRR9I9SzG1vB977JRBWnoK/fPguN0UPXLg4PtdZi5P9A9o7tCq95LTkYG+7SxIS4fC7WD7ISjbYwfoxgb4cTaUl0DVxmjbIM64PqmhaACHDFW8/YP39rUgvK7Z79s0BgtGc9YuJzN3A6TGXjxWq3x8cfDVe4GC0eatgZoGc9kBg5pPnB+Qr/j6qjpeen8tRRsdDnn5dEbXfuV7Xex/POqQU9h70fc88vKlXNz7Id9NF6wzL++aAaMHgH7/f7BwtrlSr76wwzD/4+wAo7aFFAfChiCGxSXRfyb5HhcT6jNGwkuLUOnB78aj62th7tewbgWkZ0Lapj5SUtFXH+Wvj+f+xognjqdrBlS0YUhNvGC0zkY31MPqxdHPiB2GolTz95mur0M/fmNCfatfnQZ7HgyfvUX3mRvBsKu4MdSdSMSlfsliZjuDGFgABV0VK0u9t21V9bHL5hSZ6+65HeRmm4M38i03ViqpjL/vagtG2zEfTt5D0RiB8QMVv+rcb3ch4tLhMCz+Dn3u6MBt1c3PJhxC69mvUuR3gVVxQhSbynZryF/+BRSeGVNW7OO6ddc1bxcU0aA2G9P2SoiW9Cev+6+8bC66oR6V5pHI1wnV1Gu+XgafGwJJkyU3WzHlcodDHjCniU36Fh78wOWsMYquma0L5dLzZqCvOGxLEPKcL9Fzv4JHp2HZXBByIDdLYTpHVl5jbhMvGG2E93ydZjLNp/c6RG0D5HTOm3QKIYQQQgghhBBCCCE85Kf2wVE/w2uthBBbvYI4IWfmNuYwtc2yLcFoVZFKtNYx19j49V7pK60ORQMoSOvT6j6EEEIIIYQQAtiqz/csqZvPrMrPGNPtoI4eSjNvrn/edyga2I9BhRBbSDCaEEIIIYQQQoioUPNgIFswWnqTI0n9xj/t/a1ZDlUbfa1af/62r3oA6q8vo/oO8F1fbGX2PRamvWousy3fRI09Eu0VjJbTHXXHi6jc/FYMsBOzBqNFtvwcDjO+5lOe7fZbazcKF93krh871y/g30XnMKpuFnxw05aKn4C6/x3UqAN+WvTuHxz6XeNS12juOyfdX0jEgIbF7Fn3dfyKiWqoR1+7KaxjwHC46xVUQWxYnJ7zFfr6E6DUkoYVz++uRp31p1YM1OzEkYorXtBoj2yBXpH1zX7vFzQYDZcs1zxLv8bJittef/oG6vRrfdiUhNIAACAASURBVK9v5grzH5MaguEtrkXTH08i97azOK+22nf/QPQ9MvZI1DWPobK7wrijOG/WoTxd+gVfZO0drK8Wfr2bIiNV4b7wd2sddfzFnT6UMS1FsXOhPWjKJj9SbC8sL4F3noZfnx+oT/3xJPQNJwUbiMmCWej7LmPmDQ8wMLGcL18cHZteoZfMoXXRG21DL52L/supsGROdMGIsXDrf1F5BdHyH2ejz9nLX2f7HgtzvoT1RdAlF3X2n1Bjj4iW7ff/7N13eBtVugbw9xs1y73EJY6dnpBeSAiEFEgIEFoKJIHQy3KpCT0ssMCyF7gsnSV0WOrSwtJZem8LJNRU0km105zYjps05/6huGqONJLl/v6eJ0+kc86c+WxLo5E08850dOqpgJutkz0eSTsXV93TCxX7AjznTBRkhrngUbFFuN2STdbbj5Hd9b993Xq22/gOslATnjZ1mOBvU/VBm0RtidqyLrANXvlL5Asfejxk4oyY11RtYG6kwWglcFT5LPt2aQKJ6tIFHRkCxIcIG1q9TWFUj9b4KkCtyocv2B9bVQms+hUYcEDT1RNjLy80ceaTSvv+sFqU547UM2mAoH/nQOCylcteUrjhDYUnzjAwY0T0K1Tz59WGolVb8h3MHz8HMM5yGYcBpGreQu2tBCp9Cm5n/Zp8mo1P9Ud3XdOtg9asxDXyiJB5kwW3vxebYLuyKgajERERERERERERtUXhQoSIiFpKThMEoyVqTkr3w4dyswxeR/hj56wsKf0xquUa4jaZiIiIiIhixSNt+2CuFaW/tqpgNFP5sXzvzxEtk+RIaaJqiNoPnqVDREREREREAUZtWIsJgU9clsPc+4YpXxXww0fa6dSTN9tf99O32homd70NGXOs/XmpzZEzrol+4YkzgO79rfsmnwZ5axNk+Pjo52/tDE3gUt1gNH8VLt1xP5L9waGFTkPhtQsN7LrgZ/y8ZiR+XjMSa1f2weI1wwOhaBbUZUfBPPdgqBU/AQAyEgU3DFpuObbg9zwUdToLjwz9JuyPckfBNSHDhOScGyFvbgCS08POFdbq36DuvDioWfl8UNefFHUomvx7NYzzb2mSIKzOqYJD+uj7E9wK8ZkZ9dryMyL7GNCAiXhVZtm31/CGn2D9iojWt3qbdfugXMDjqn00qF3boG46DYgkFK1bP8g7WyD/KYBx64JAKNo+xp9uxMNbL7Z8TkRixuYnoJZ8ByxbaD3AMIApf2rUOprL4C6RB0Vkdw79ZYy6aw7U3mLb86mt62MTilbt9UfRY0Y8/rfvotjN2YABi/CvdcuabH3RUNu3wHz4L1CnD68NRQOAX7+GmtoV5rxpMG85x34oGgC55lHIq2sgr62FvLkRMqP+9jQtxLGgc3PuQYVZu428/5NAYEkoDcM1lVJYoglAGRTiONDMROv2bTYepoWaMVlhQt2I2hJ1x4XRhaJ5EyB/ujH8uEaYOiyy16kEVYo0v3WSWoUPKKsMvd3R9RoGYBiCRI91/ymPxyZEiKiepd+3dAW2/bFDYfZj4UPRAEBikYwG4N25od/zFJcDsx4x8cqi6J6flZv/wEMbBuL03Cfw105/wSZnbk2f/2f9+1xD9MFoALDb4m2X3zpXFs6aYDQ7FQd4Q4Q42nHe+NiFPJZVxmwqIiIiIiIiIiIiakaDE0e2dAlERJay3V2Q4cq2PT7P0x2pzoyQYxId+gNASv17bK+rrnKzDEW+HVEt29AgbpOJiIiIiChGescPaOkSGmWvaeOq6M1oR1UhfMr6Ys46/eKHNlE1RO0Hg9GIiIiIiIgooE6oUqXoz5p0OwFVVho4Ub7Y+gRzAMCPn8WwOEBufgky6vCYzkmtj/QZGgg4i2bZhGTIA58AZ1wLZHQONB54BOQvT0KufQzidMaw0lbI0HzM468TjOarwvCKX/DF+sNw0c6HMHbvVzh47zc4q+hpfHRGAaYOEyQPPwCDhuVhUMVS5Ps2hQwoAwAsXwT1p4OgPn8d5oPXYN7z++OFjafi+D2v4dDSz3DZjnux9fd8ZPh3Ah+9hHNenIS3/5iqnW7BxtmYUvK2fn0OB3D06ZC0rNgFb/z3/UDgllJQfj+UUsDPnwPbNkU1nVz3BCQr8qtRRuLEA/R/mdJKgfzze+CUK4FDjwdOuxopT3yM5Agu5iJQ8Jp7reeXhNo7Ls3rxd5iqFL7B4Jt0ryc9Mps0PDpK0BlheVYHZk1B5KcXi8QraZvyMEYNG4wvlo3AeftegzH73kNtxf8GYUr7F9ZM82/E5Peuwzq/BDBiwcfA0lKjajuljJ7VBTBaGddBHgTQo5RM/oE9h8AKNMMhA/6fFBm/dQHZZpQM/tGXIMd17wxDgkob5K5LYPRfvwssD1pBdT65VBnjgD+dYd+0LfvAu89Z3/S7K6B114RSKdcy9fZ9NAPi4jtafDnK9gDFFlvqjAwV/9Y7pRo3be9BGH/ZoWaTVsmg9GonVB/rAB++Nje4NmXA0edDgwdB0w9F/LEd5Bu/Zq0vkP6RvY6lWiWIl0TjAYAO0sDz/tKn/Vz39SEE1VX0TCwsa69Fa3jNYBaJ1X3fZrdZdpQMNprPys0925Q1wzB8Pzw42Y9YuLlhSaqfAqmaa9IpRSm/aMKc3LuxfMps3Fz5rUY3f0LrHN1BQD4fvxSu6zDAFJDZEtHEozm2Pe2Pzu5NiQtHK/1dQ9s69FJcPes2ISjldkIyiMiIiIiIiIiIqLWpbd3IPZPGtPSZRARWTLEwAmZZ8Ep4Y8NdYsH0zLPCHvRnkRH8DFm1UqiDEYrrIzuOMSGBiWMxKCEETGZi4iIiIiIqHtcXxyUPLGly4hauWlx8F0L2hrhe79JadPQyW0/7Juoo2rnZwQTERERERGRbY7at4ihgtFc914E9dtT9cOWmtqQMZBDpjXf+qhFyfVPQX3ySnTLJqcHwrJiFZjVltQJN6zHrPNc9QeuPDGoYinuK7ii3jDpubL29vm3QH33QUSrV385seb2zOJXMbP4Ve3YyaUfYteKLByf9xI+TZgAAEj37cATW87HcSXvhFyPXPVQbejYlHOBuy+JqE4dde+lwOL/AoUbgbzewMZV0U106jzI5FNjUlMoJ+wvuOBf1ifxOw1AUjIg599Sr71ruh+LN9ubv5NvBxLMUsu+UiO+9k5ON2DDSstxKNwE9NAfKFbXxl3WP0uXtNoD0dQvX0Hdc6mt+eo57pyQ3TLvIQz4KB0PbK3/WOpXsRzLPeHDXaYXvwk3Qp/hL9c/Gb7OVuKYwcClkwT3fmQ/ySIn3QV5axPUqUOBreutBxXvAl55ACqvN9QNs+v33fYqZMwxgdvvPhtl5fYsXTkI04Z9hZ9Kc2I6r2iSP9T4OOCCW4HZl4c9sLIpqefvBnbH5sqzNQYeGHZIUlwgwEMX7hGprbsDwSTVv8s/durH7hfiO0JdiJnPDISTpMZb95umwnbNhaWyklru70sUK6q4COqUIbbHy7FnQbo2TZilTu/MwL6Oz+Z2JdEsgdfUh2J+vFzh8S8VvloVCHO8dbrg3HFSs53RvRoaNp7y20qAbh57dVIHtGNL5Mss+S72dTSRddvtjYv17tErFxjodW34DcRJjypUP8P/foLgyiMk5L7aJ8uB93Z2r9e22ZWL+9Ln4J6Cq+DfvRPQ7D84DCAlRDCaVchruGA0hyHo3glYVaift5pX/xGfbX2zBfoton3lDEYjIiIiIiIiIiKyLdfTDaNTDmux9TvFhR5xfTEiaRxcRiOvwEBE1ISGJR2Eea478WvJd9jhs/7yJNOVg6GJB6GzJ/xVduKMeBhwwETwMdLRBqPpTo53ihMHJB8Sdnm3eNDT2w/7J42BIZrjRImIiIiIiCJkiIFTcy7G0MQD8XvZb60uaKza1oqNWFu+Iqi9zK+5wnoL0YVie414DEsaXXM/3khEv4ShGBA/vLlKI2rTGIxGREREREREAXVClSpEf/a2e9m3zRuKBgSF+1D7Jk4X1OijgG/ftb/Q4Sc1XUFthS4YTdU5o9oX4ixkR+1BjNJ7CNT4qcAXb8SouGBJZgk++OMYLIwbgd1GMkaW/4hUc3fIZeTNDZC0rNr7Dgfw/GKokwc1vqC6YXwRhqLJdf8EPHHAfsMhuT0bX4sNnZIEo7oD368L7jtuqPUy+emwHYw2oGIpEpUuGC2x9k5WXuD3ZRUKtW0j0KO/rfVt3GXdnpcW+F9t3wJ12VG25qpLnlwYNoxKvAnA1Q9D/f38eu0X7noEc3PuCbuOmXvCBDl27QuJ16QwtUKGIbh7lmDORIWhN5koqQi/THYyIB4v8PKKQBCYhnr0euv2Px8P/OmvwOzLoZ64KbrCAVuhhl18m/H1wv2wsM+JWOvqjp15w3HZhsgfWw3pni8AoB66NrDtOuq0Rq/HLmWagdfRlb9A/fIlsPCT2K7A4YDMuCjsMBFBWjy0YWKRqvABt/5H4aIJQGq8YIMmGC3OpQ8/A0L3/bFTH4xWVKYPY8pqO09zameUUsCvXwOrfg1sB0cdHnUQY92g27DcHqBLr6jW0xgup6BPNrDMZqZUgrkXKSH2Mc98snYfZmcpcP5zCllJgmn7jjUwNTlAdn7Feyvt1UgdVIRB1ACAzWuh9ha3iX1Lu6/9iTEOD+zRSfDgKYILNSHSVq7+t8KjXyicNKr+EzvVC0zsF9jfmPag9Q7AW4nHBILRNq8DelvP7zACYbEi1m+brILRdPsb1cFoADAo12YwWgzOV3TH6PyaMgajERERERERERER2TYgYTgGJPDkSCIiO/LiuiMvrntM5hIRJDqSsMdfFNRX4i+Oas4CzcnxWa4uOC1nTlRzEhERERERxYIhBoYmHYihSeEvmt5Svi760DIYrdxsXcFoWys3WrZ3j+vL935EjWCEH0JEREREREQdgqP2LMdKcWuHeUwbCSkxJHe8ARk8OvxAaldkUGR/cxk3tYkqaUMcmjOV6wYZhgo1dNTPz5e/PAnMvDgGhekJgAPKF2HS3k9Dh6IdfUZQKFrNHPl9II9/23RFhiHn3AiZfApkwgnNFopWbd5k64/2pgy1TurIS7MfkjKgcjmSNAdyFdcNRouLB9KyrSdZv9zWupRS2BAmGA1vPwlURZYuIhfdBuk92N7gQ6YFAl7quHDXI2EX61a5HhNKPw89aMhYezW0Mj06CZ44w97Hx9nJgf9FBHLezVGtTz3+V6jDkoFt1gcChjT1XMj7OyDPL4bMuSPscDeqcPDK53DK0psx54MTULw8HZfvuBc9vNFd1TXRX4zB5YtDjlHvPB3V3NFQPh/UvKlQfz4+EDQX61C0YeMhd75le/8sNzW2q7/+DYWuV5v4YZ3Chl3WoSd5aQgZDJWfBrg0L5vLtuiDVLaGeKliMBq1BKUU1E2nQ118GNS9l0FdeRzUjadAhQrD1c21fQvw42f2Fzj4mEBIbQsY3cv+Pk2iWQKPqkS8qQ+wbGj+p7WJRKYmnMiwUUJp8751pjZGhQoCN0Lsg62zt4/d0gr32AsmG6cJE2uM88YLHjtdkJNsf5nV24Bb3lH1/l31isKIm01tKBoArHN3R4W4Yfr1P6/DCIQPp3it+4ssLrLp16zSWeehMbCLvW1hXAyC0bz6jwkjUsbASCIiIiIiIiIiIiIiagMSHNZfNJX6ozu2qEBzcnyOp0tU8xEREREREXUkXof1Vc/LWlkwmi4UO9vN935EjcFgNCIiIiIiIgowak9qrwgRjOZWzXcWo7y0HHLQ5GZbH7UiE0+IbPzYY5umjrZENB/zmHXC0EKFZDjrny0t3gQYc+8KhI4lpsSgwOgZ1zxqGYpWTfbbH3L1w81Y0T79RgAnX9H8691n+nDglAPrnwx/5EBg5gjrE+Tz0+3Nm+IvQrJZjCSzxLK/2KiT/uN0Abk9LMepr962tb7NRfrgkPy4Eph3XBgId4qEyw1MOdf2cElKg1wdHIS2dmUf9Khca7lMvFmKB7fOgRMhAgcByCFtN7hxkI3vX1K8QIKnzmNu5sVAVn7TFVWXNwFyz7swrpwPiU8MBLPNmguZe2dk06hy3F54LVb+mIM3p68JOfaGlLeQ5qndlooy8diWC+CCL/RK1i2LqKZoqYpyqKn5wHcfxH7yw2dDviiHcf+HkJGH2V4sPy38mEiVVACzHzVx+cvWISTh1ulY9TP6YINl37It+uVWFFi3iwBZEYSvEMXMxy8H/tX16b+hHv9r5HNtDr39qycrD3LODZGvI0Z0+zoNiTLhVYHEoTSLq3nrfLI8EDoHALqoo+pgtNMO0tfy1SqF6Q/4MfQmP2Y/amKTJsyROqjVv2m75NZXAgHEVtYubaKCGqe0QuHSl0z0u96P7n/240Mbuz5ZScCdM2N/uIKI4JyxBjbf6cADJ9sPUozW7+4+8Is+KLJ6e5GqC0bbG7xt0AWjOeoGo3W2V1+8u/G/g+H5sQlYK4s8t5OIiIiIiIiIiIiIiKjZJTqsr45XEnUw2mbLdp4cT0REREREFF6cYX08ZblZVnO8b2uwlcFoRE3C2dIFEBERERERUStRJxgt1b8bNxXehEpxoyKnN6oOnYXKRV+iYt0qJJvFzVPP4bMhmrAdav8kr7c2hCBo7CurIC59mF+HYWhOxK4bjOYPEdzjsP6YSPbbH3hxGfDhi1A/fQ588UYjimxCk08F/n5+069n2Hhgv+GQfiOACTMgDv0J8E1NRPDM2cC54wT/XaPQK1MwbTjgMDTBaDbDiaYVvwUASNAEo5UYCbV3HE5g5ERg8bfBA5cthFIKIqFPxF8aIoRov/tnAcs+DVtzkMNnQ+ITI1pEjpgNDDgA6tWHgFceAJRCvm8TFq4djVeTpmGZZz8oBH6WLr7NOK74HfSqsg5Nq9F/JHDA4ZHX30r0zgTcTqAyxKZjRLf698XjBV5aBjUhst+/HXLjM4DhgPr9Z0h6FjD2OOt9haNOB164B9hm/cVSKEffOgizjt+Kl5cFp1wNK/8F1y47GRc6UvFS8kzsFS+mF7+B3lU2woR2b4eqKId44iKuKRTlqwqErlWUAf0PgDpvLLBnZ0zXAQDyt+eBQ48P+3y2kpcu0EcLRW/Ndn1ffrq+TvXHCqhLjkD/1AexNDk4xG/lH3sBWD9+l2y2/jl6Zih4ln4NlZEDdOkV1e+JKBrq9cesO/51J9SkkyC9B9ufrFKTUgoAh82CzL4cWPgxkJIBjDkWkpYZWbExdJDNt4kJZimqn43p/p3Y5LJ/YMH8TxXmTBSYms1X9dP85AMFz/7XelDd8MbfNil8ukJh1S0GEuO4jejoVFkpsNl6P1Iuug0y5hio7v2B5YuCl123FK3tEaSUwoyHTby/JPzYFC9w2eGC3BRgylBBVnLT/jQXHGoAMHHR80138NNST39k+wq1/dVhZqnxAHYE9+8uC27za8qtG4zWLcPePlZiDHY/4z2C6cMFL3wfvL6DewHfrLY3T1nzXWuBiIiIiIiIiIiIiIgoaokO66vjlfojP37aVCYKtcFoeRHPR0RERERE1NF4NcFoCiYqVQU8EttzNKJR6i9GiX+3ZV8O3/sRNQqD0YiIiIiIiAgAIA5HzemU6eYuXLfj74E7XcbCOPEkmBteBr59vPnqufTuZlsXtU5y51tQVx4Xflx2cKhJh6QL6DLN2tu+Kv3yTpe2S1IygBkXQWZcFJjy1KHA+uXRVNlkxOmCOuAw4IePm24dj/8Xst/wJps/GiKC8X2B8X3DBwrk2wwnenDrHABAkiYYrdioc0VMhxNywCSop24JHlhWApQUAUmhE9mWbrGuqbO3HGk/RhiK5nQBE06AXHpPZMvtI3m9IXPvAubeBfXT51Bzj0CKuQdn7X4muvlufKZFw/May+UU5KcBq7fpx4zqEfzYE6cLmPcQ1O0XxK4Ytwc48AhIUhpk4oyQQyUxBbj5Jag7LwZW/hzxqp54rTuSsu/CE2ln1bT1rFyD5zedBif86OTfgYt2PRzxvNixGcjtGflyGmrTaqgbTwVW/BizOa3Ihf8HmXBC1MvbDWWMpcEhso/Ue/8CSvega8Iflv3b1m0B0Meyb6n1caoYuPEDqIunB+4cPhu46gGIN8F6MFGMqJLdwC9f6vvPGgl8ttf+65BPn1Yjl98HSU4HWsl+UEp84PVpw67Q4xJVac3tbF8BfoP9oLjb3lWYMxHQXUiuOof2yIH2Q50Ki4EnvwkErlEHt26Zvm/clMD/mmC0kMu2kG/XwFYoGgA8e46BY4c073PggkMNxLtNnPVU04SjLfYMxPi9X2n7Hft+3FSvdX+RRTCazx/cVncuAMhPt1dfUoyO+XrsNIHPD7zxi4JSwDGDgafPNpAUJ/jnVyZuekthwy6gZyd9gG1ZlQJaXbQfERERERERERERERFRfQmaYLQS/56I59rl24YqZf19fLbb/sW9iIiIiIiIOqo4TTAaAJSZe+ExWj4YraByk7Yv28NgNKLGMMIPISIiIiIiog7B0Jww7993NuY2TRJEUxh1eODEe+rYho4NP2b81Kavo63QPYfrBqPtDXHFQof9/Hx57BsgM8RBOaOPgnxRDvlwF+SWl/XjTrkS8vp6yAs2z6IPV9eZ1wEezdnmjZ37+cWtLhQtUr0zw48ZXP4bPPsOxErUBKOVGnXCfhxOIKerfsKCDWHXubnIur3vnsgCreSaxyDvbYdxw9MxCSSS4YcAh0yLbuFOuZAPdkK69Gp0HS0tKyl0/4EWwWgAgKNOA/bbP3aFnHQZJEzIXl0y4ADI499C3t8B9BkW0aq8qhyPbL0IxcvTUfB7HnYv74QVqwehb+WqSKuuL8b7Uuq0YbELRcvtYd0++ijgpMsaNXXXFtilmz48RODGL4HgkiyfdeLftj2mZTsArN1uHajSv+TX2jsfvgC8/kj4Iokaa6ONbdIbj9qfr7LCuj0huVW+NxuYG35MglkbjJbv0x9wYGV7CVDlUzA1OUpSZzOTF0EA5NeNfCmhdqJwo3W72wN0DrwmS/f+1mPWtr5gtFcW2Q8cy0xswkJCOONgA29e3DSHRizxDIAf+hBKx77VpuiC0fYGt/k1uyOOOj9C55T693WSPOHH2BHvEbx0noFd9xrYcY+BVy90ICkusDE8e6yB1bcaKL7fwKpbHejZyXqOshBZ7URERERERERERERERK1FojYYLcTxlxpbQ50cz2A0IiIiIiKisLwhgtHK/RYH4LUAXTCaR+KQ4miBK80TtSMMRiMiIiIiIqIAbTCaL/D/1j+ar5Zdhc23Lmq1JC4eMMJ8dJFmI+mpgxDd78oMhBsqXxXUlcdpFhaIQ38id9BwbwLkuV+B2ZfXNu63P3DIdMjVD0NuexUiAomLh4yfCkw/L3gSjxcy5RxIRg4kr7ftdYesa8gYyEOfAydcCBxwGDBrbkzmxZnXQfL7xGauFtQ1Q5AQ5qT4gRVLa24naYLRio06SVkOF5DRGdA9fmwEo+3SfA+RVaYJjLDiTQQmnADxxPZKL/LXfwF5ocPN5KoHIbe9Chx1OnDQkcAZ10Ke+Skm4WytQfhgNOt2cbog8z+GnHtTIFxr/0Nr/0UiNRNy47OQP/01suUQ2C5KfCLk5MvDD7bgVeXI8O9EgtqLEDFbtY45C3Lh/+n7G7EvpSrKoSrKoLZvgdq8FuaD1wBV1leTjYY8uRAy905g3JTA32jcFMgld0FufQUitn56rX45jVs+Ugd0B3pmhlhnSSCNMctvHYxW6Nc/6Dfssm7vXrW+3n31wQshayQKRSkF5fdDVVUGnvdlpVCle6CKd0Ht3gG1qxBq+xZg9eLwc331tv0V67Yprhgl6sTYwC7hty2JnbNrbudVRbBfAaDKD6wshDYYzaiz+gS3/XlfXmg/QIrasSLr1yBk5NS+r+sxwHpMwR9Qm9c0TV1R+na1/cd1lvU5JM3i2CGCH64zMLpn/fZD+wIT+wX+Degc+bxLPf3hD3HYRXV4WWq89XZrt1UwmuZX6qzztsthiK1gxsQYXwzT6xYkxgX/LE6HIMEj+8ZYL1vOYDQiIiIiIiIiIiIiImoDEh3Wx46U+vdEPJfu5PgUZzrijKa5CCwREREREVF7EucIEYxmto5gtK2V1scpZ3vyGn0+BlFH52zpAoiIiIiIiKiVCBGqpPx+YOPK5qtlb+RXVaP2SS65G+qeS/UDUrOar5jWThtuGAhGw6JP9cs6Iv+ISOITAwFAoUKAqsdecg9UaTHwwfOBhoRkyKX3QnJ7hl4wCtJnKOTSe2rum288BlSURT/hlHMgZ/0lBpW1Dl9cZWDEzaa2f0DFsprbiZpgtBKjTuCX0wFxOKA6dQEKLEKfCm0Eo5Van/Wf7tckEDXk9kBufrFJgsjE6QSe/SUQKmj1HHK6gEOmQVIyIGOOifn6W4NOSQLA+m+UkQDkpOi/pJG4eOD0P2tDxVRxEdT1J+m3T937w3j258gKtnLYLGDJd8ArDzR+rhDksBmQAyZBvf88sPq3oH71/nOQI0+OaE5VvAvq3strt59NoecgSHwiMHMOZOacmE/fvzMgAqhmygI68YBwXxwG+jN91qE024x0+HduhyO9U732Kp/Clt3WMwYFLq36FUqpNvslplIqsP+gzEDAqtVtvz9wv+5t06zzf/Vtf/jbNfOb9tcVtN7adSvb6zVD/4wxq9HU/J40t2P5ZPnhI/tjtcFoEaR+NaOBueHHZGQmQi65C2r+1ciPMBgNAH7eoLR/jrrBaPER/or2VijEe9rm9oFiZJcmGK3u+9s+Q/XLf/YacPIVsa2pEbZF8BFOZmLT1WHHiG6Cr/8cOhT834sUzv5nJYqr7L1PXu3qiRJD/4NVB6OlaI7NKioL3tD4NW/ZHA02HT0ygPU7QteX1AL5lnEu6/ay2OX6EhERERERERERERERNZkEh/XVfkqiCUarsA5Gy3F3iXguIiIiIiKijsgtHggEyuK8lrJWEoymC8Xmez+igfUG1wAAIABJREFUxmMwGhEREREREQXogpFMP7BlLVBZYdktVz0I9B8JdO8PNbUrUGwzyCYEmfKnRs9B7cSxZwMhgtEkI6cZi2nldMFoyoRavxzqqin6ZZ2as5ZjRBwOyPVPQp1+NbB7B9CtHyQlo0nXWWP25cBTt0S+XL8RkL8+C+nSK/Y1taDhXQXHDwde/cm6f6CNYLRio84VMatfO7LyLIPR1IL5wJRzIQ59+MDOnWUAgq9+meov0i6DscdCpp4LeLxAv5FNEopWTZwuyL3vwbx+NvDZq/U7T7u6+R7LLSTL+gKoAICMRgZbSFIqcPd/gPeeg/q/c+t3pmZC/vl941ZQvR6RQNDmzIuBpT8ApXuAynKgx0Coh64Fftc8ISLVd3jg/279LIPR8MPHUCW7IYkptqdU913R6FA0ueddwB0H9BsBdeMpwFdv1e+fFfswtLoSPIIeGcCa7U26mhrnjw8TNlQS2LZk+q0L8okLRSt+R8bo+sFom3fr86ryfcGBS+rJm4EeA4E/VkCVFEUfzBUUvKXChJJZ3TbtBXJV326uFDtqXaqs3+819X5itAbl6oM7q3VNF8iMi4EJM9Dtk3XAh5Gt461fAFOzirq5h1sjPPb97d8UZo1kMFpHpnYVWnekZdbclMwuUP1GAMsXBS//0cuQVhSMVqzZfDTkdQEJLRDSZYcyTeDrt6FW/Ijpe0tw6OJn8YN3BPYYgZNeulX9gQSzFEN6/Ri8rBhY6umvnbs6SDE1+C0PAGC3RY63z2891tHgmgb9cwWf/R56W5gU1/zbG68uGK2qeesgIiIiIiIiIiIiIiKKRqLTOhit1F8MU5kwRHMhagsFVdYnx2fx5HgiIiIiIiJbDDEQZ3gtQ9DKW3kwWrY7r5krIWp/GIxGREREREREAbrQGr8fWL9Cv9zhJ9UE0qjJpwAL5je+llFHNH4OahfE7QEe/Rrqf8ZYDzjoyOYtqDUzNAfbLPkO6syRrSLkRLr1a/51jj4KyioY7ZgzgXee0i933s3tLhSt2v+MN/DqT2ZQe5IqwcSDsyF9b4eaP08bjFZhxKEKTrjgqw1GS8+2XtmGlVCXTgbufAviiQvqVt+9j50rsgHP4KC+dP9Oyyll3kPAMWdCdI/5JiI3PA0MHg31n2cC9489E5h2XrPW0BKyrI/zAwCkxyCPTgwDOPp0oHP3QJBU0TZgwIGQc66HuNyNX0HddeX2BHJ71m+c/zHU0dmAr5EpDRmda0LypHs/fVTPe88CMy62NaXavBZ4/1+NKkv+vRqSVefLtJv+BfXYDcC37wEpGZDjzoFMPqVR67BjUJfmCUb74FID8R59+IeqqgQKAyFmWT5NKA2ArSvXI2P0wfXa/rDeJAEA8quCg9Hw5M1hIpuIWhlfpXW7u3WmGA3JA5LigOJy/Zi8tMD/kpGDcdOygQ+D939CeetXhQGdrfuMOpuaLbsjmhbvLQZmjYxsGWpnirZZt6dl1b9/4JGWwWhY+TPUt+9CRh8V+9qisMci2MtKZlIgsLa1UaYJde0M4Ot3atrSABxR+nG9cX4YiDPLUG4EJ5z9FjdIO391mFlqvHV/kcVxWX7NTkTDYDTdNqquxBbYjDMYjYiIiIiIiIiIiIiI2rJEh/UBUyZMlJt7Ee+wfzXJggqLY0oA5PDkeCIiIiIiItvijHhNMJrNAxibkF/5sK1yq2VfNkOxiRqtec8eJCIiIiIiotbL0ASjmX5gZ4F1X2aXmlA0AJCz/gL0HNi4Ok6+AuilP6GUOh7pPxJy8e3B7efeBOncvfkLaq1ChUSFC/wpb/krZMi5f7PumH154ybuPxI44cL6bUPGQObcAfQeYr1MaiYwbHzj1tuKHTFQcM7Y+oEETgO476wkpFz/QE3IWaqpT/nY7uwUuOHYd8Z7WqZ+hT9/Abz7TL0mVVYK8+65UFdOwU4j1XKxdP+uoDZ5bxvkuLObPRQNAMTlhsyaC+OphTCeWgiZcTHEqTnjvx3JTtL3pWnCHaIhw8fD+McHMJ75CcafH4ZkNs8XQOJNgHy4CxgxIbjTmwi5+x1g4szwE+03vPZ232HaYerTV23VpYqLoE5sRJhkXm/Ia2vrh6IhEDhqXPR3GM/9AuOBT5olFA0ABuRGH4KyfNUgHFnyQdhx1x0jmDQgzHpeuKfmZra/EKKsQ5JWrC4ObttqnVCS4i9CirknbH1ELcW88VSoBfdDLfkOqrJCP1DX54xtSGWsuJ2CqUNDP+dz6+xixLkE8yZHti3aWwksXG/d15hsp182MDaxw9ulCUZLrb9PLSE+G1F3XATVCsKvK6oUKnz2xmaF2K9sSWr+VfVC0XQcMNGncpVl3yanft81qmA0TY6js8HboMFdwm+MkoLzqZucV/PSUabJ4CQiIiIiIiIiIiIiImpNEh36L7ZK/PaPESnz78Vui2PgAJ4cT0REREREFIk4w/oAvDJ/aTNXEmxb5VaY8Fv25fC9H1GjOVu6ACIiIiIiImolQgWjFW237kvLqndXktKAR78BvnwDat3yQBhH0Xaox26wXFz+/EggbOT7D4FNq4GhY4EBoyCNOcuc2iU58RJg/0OBRZ8Apgnsfyik34iWLqt10T2H24pDpwNP3QxU1TlT2uGATJzRqGlFBLjkbmDiDGDxf4G83sDooyAuN/DYN1ATgq/eKKdfDXG274/NHj1NMHuU4NvVCgke4PABgoHVwUUSONs+21eoXb7AkYXOvq2AY9/vqcHrQUPqrjko3+8g/OIcgErlwMF3Toax7HsAwC6bwWhyyd2QBOurcVLTyU8XANahG0Y7ebkWpwu46x3gm3egVv4C+KognToDBx8NyekGeOKhPlkQeo4p59TeOfBI/cCl30P5qkKG6imloK45IdIfI+CIkyEHTALGT4XE2786bVMbmBvdcglmCXpXrcHrG2bgxZRZOCv38aAx+2UDT55l4KCeoR+QSimofz9Qcz9OVaBX1RqscvcOGrtkTQmmK1Vvn3TpFut5+1WssPnTELWQTxbUbsNcbqjeQ4EBB0AGjAIGjgJyewYe67ogXben+WqN0NVHCZ77Th8M1T2j/nbh/6YL3vxZYXmDi7J1rtqCCnFjpzPD9rrrvgaeOFLw0kL7AVVLtwA+v4LT0U5eSClyhRssmyW1U/2GHgP0c2zbBKxbDvToH8PCIldcbn9sZisLRlO7dwAfvgAsmG97mWxfAX7D4KD2Lc4c7TLVT/VUr/V+9c4IgtEcDYLRDuwBpHiB3SEuetkiwWgu65+1LExmOxERERERERERERERUWuQ4NAfo1bi34Ms2DsQpqByk7aPwWhERERERET2eTXBaOVmiIPnmonuvZ/AQKarczNXQ9T+tO8zPImIiIiIiMg+hz4YTRVts+5reNIuAPHEAZNORPUp3mrreuCfNwH+Bsn3Q8dBjjkzcPuQaVGVTB2L9BkK9Bna0mW0XrrncBshXfsCt78OdddcYOMqoEtPyIW3xSQAT0SAIWMC/+q2O13Av36DunsusOhTIC4eOPES4ISLGr3O1k5EMLEfMLGfRSCHETjbvpN/OwzlhynBj60CZxZQAWBfgJykZWqiswKWuPvjpNsMLPMIABP9Kh7G664Z6Fq1ASWaK2ymmg2ulskwxBaRn6bvK6lovjqamjgcwLgpkHFTgvuGHAzc+AzUP64EdjUIDEzLgpx9PWTMsbXjnS7gb89D3XBy8Ip8VYFtXHd9iIl6+Drgl68i/xnu+Q9k5GERL9ccBuXqA/ZCeX/9MQAAF3w4bffz6F25Cud2fhjLPf2Q49uKm7t9ibNvPMneZGuWADsL6jUNqFhmHYxWmQus/g3oPaSmbdmq3QCCD3ztX8lgNGpDqiqBZT8Ay36A+veDgbaUTlD9RwKlmqtaO93NV1+EBuYK/n2BgRMeCk4QSvAAB/eq3yYi+OxKA5e+pPDiDwoO5cM5RU/h9oJrMDfnbjyTeprtdSfU+bVM7A+8tNB+3RU+YPFmYFi+/WWo/VBlpcDmtdaduT3q38/vC2R0BnZo0jkLN7R4MNqeCILRundqPWGA6ss3oW4+G9hbHNFymX7rCwdsdWZrl6kOM8vQZNaWVgB7KxTiPbW/H5/NYDSPSzB1mOCZb/X7WS0SjKZ56SivtG4nIiIiIiIiIiIiIiJqTTwSB6e44FPBV30p8Wu+W7egOzneJW6kOYOPvyYiIiIiIiJrcQ7rYLQy0+LKpM1M996vkysLLqP1HodN1FYwGI2IiIiIiIgCDE2okt8PFFmf+InUzLDTSk43qOMvABbMr210uSGX3xdFkUSkpXsOtyEy8jDIC0ug9hZD4q3DsmK+zq59gXveDWzrRALhSB2dBM62d8BEpn87CixO8q9uE0fg48U/XN1wZ/Zd2OLMwaTST3DG7mfhUbVnvc/JuQfLPLWhDcs9/dCv92IMLF+iLaOTb0ftHcMAeg5s1I9F0clN1feVtqNgtHBk0omQSSdCVVYALncg4Gz3DiAjJxC+2NCYYwOBlQ2DYQFg7VJtMJrasxN4/q7I62vFoWgAsF9O5MvEmWUYUf5TvbbRZd9j8Zr9scdIQpJZDMmYDMBmMNrKX4Ka+lcsx5tJxwW1b3LlBsbXCUZb/8ceWAWj7VfBYLSoGEZg36Xm/3C3Q4x3OAKvXfVuG9btjn3LWt42bNcjoWqzrMeqBqm9XW9+Oz+nUX+uz16FeuDP0f0tdm8H/vuevt/Vur+Qnz5c8OU8A+Nur58i9OfJgmRv8PY5K1nw/LmCp89SwI9fw3HFXADA4IrFEa03sU7Q0EzHlzgPYyNafv//NXF4/8Cfst4/ARyGBLcHjQn8c4bptxxTr1+Cx0jwnKHnsBhj0W8IrF8zO5r1ywGlCbFqsL8rDgdw/i1Qt5xtPb5wY4yLi1xxBMFog3Kbrg47VMluqBfuBp65LfKFDz0exv++gKxnSgGL/NpQwWjGvod9Voi3uNtKgG6e2vt+TTCa8f6zUD3GQXJ71rTNGBE6GC0jQb/ephLnsm4vr4o8KJeIiIiIiIiIiIiIiKi5iQgSHckoqnv82j6lfvsX3tGdHJ/tzoUhhmUfERERERERBYszvJbt5a0gGG1rpfWxnFnuLs1cCVH7xGA0IiIiIiIiCtCFKplm4GR5K6n2rlgmc+4EBh4E9fMXgDsOMuMiSOfu0dVJRNba0YEyzRWKVrM+EcDJj8lqGLWPpWxfgXUwmiMrcMPhwrItCqPfm4g96UcAAF5Nno4PEiZhwabZEABrXd3wRcJ4y1UtibMOO3MoH3pXra5tGD+t2R8XFOB06ANMhnfteOEm4t6XWOFyA506hxyn8noD64NDs9SPn0EmnBDcrhTUMfo5tev6x4eQ4dbPsdYiziXYLxtYUWB/mZP2LIALPsu+ZHPfQaYRBMKotcFBjLm+LZZjtzkyodb8B1AKa7cDqVsXY4OvK2DxUtut6g/bNQAADpnWBoK57NyWCNdVf70MR4otNf0CINpgtHBaeTAaAIzpLVhyk4GHPg8E7hwxQHDskNCPMZdTgFEToe59D+rSyRhYsTSidSbVCTBK/uJ53Lf1VVySc3dEc3y4TNfTnMFBzRtSFCo4zSGA09G4foexb4xFwJxhOSbcHHZD6cReaJ0BGL9ug+EZDI+qQO/K1XBiX4iqxwt07hH0O5PJp2iD0dTtF0CO04SmNYJSCjtKgPQEwDBCP5f2RBKM1qXltv2qohzqf8YAG1baX+jAI4CEZMj+hwLHBn7PWZleWD1vCkMEozn27T+EDEYrBrpl1N7XBaM5Fn0MdfolwD+/D4R8Azi8P5DiBXaXBY8f3AVIiW/+37suGK2sqnnrICIiIiIiIiIiIiIiilaiI8kyGK3Ev8f2HLpgNJ4cT0REREREFBmvEW/ZXtYKgtF07/1y+N6PKCZ4xicREREREREF6ILR/D6gyDoYTVJsBqOJAIfNhBw2M9rqiCgch+Y5bMehx8euDmr76oTVZPkKLYcUOKuD0Ry4432FPZX1P2Z8PXkq3is6AkeVfoBfPUMiLqFv5Up4VGXgTr8RkEvuingOip3jhwOv/hTcfupBDDYKqc8wy2A0fPEG1OX/CA6GWvhxZPNn5UOue7zVh6JVG9NHsKIgOEhk1kjBvCMFUx8wsalo39i9X+O2wuvCT2ozGE35qoDng7cjmb5t1tM6M/HmCi/Ov9JEYTEADLAMRQOALvmpkAs+gpozKWwdcs6NkDOvtVUzUUTcnvBjotUGgtEAoH9nwT9Oivx1SUZMAO58EyPnnRHRcklxddb1zlMY6xkc8bo7Ir+pD3yKvdYaMHc40PNwAECqfxeu3f53XL7zH0B2PkT3nm78VOCLN6zXXLABkp0fYb3WlFJ4/CuFy19WKK0A+ncG7j3RwOED9M+tIpvHFCV6gGGxKTMqkYaiyVOLIL0GBbWHCjfTMZZ8C4w4GKnxgcA8n8VzoLC4/n3d88SpfEBFGdTD10FuXQAA8LgE04cLnvom+HF40qiW2V/3MhiNiIiIiIiIiIiIiIjauARHsmV7ZMFo1se15LjzoqqJiIiIiIioo4rTBKOVmxZXFG1GSils1bz3y+Z7P6KY0JzKQ0RERERERB2O7gRc0w/s2Grdl2ovGI2ImoEu3NAGmfY/MSyE2rw6YU3ZfutgtG3OzMANhxMv/mAdBHFc19cxoOfPuKjzfRGXMLBiKZDXC/LMT5BHvoJ0yo14DoqdORMNOBt8kjyyG3Bwr5app62QcVOsO3YWWAZ6qQ9eCD1hfh/IR7shLy6FPPxl4P/9D218oc1k7kRBXIOQjF6ZwPzZgv27CdbcauDbSZ9i8eph+Gz94ejkD77qbpCSIqi9JeHHvfWEZXOm3zoYrciRhuPL/xIUUmIl/+q/QYaNC/xt5n8MuTzENm/YuPATEkVBRICktKaZPCGlaeZtReTAI5Hx7iocVfKe7WUS92XRKTOQXtSvcgUcytcU5VE7VuRIw7zs2/BK0nQgPkTiVojgM/WPK2JWz4dLgfOeDYSiAcCyLcCR95rYsFMf/PbpCnuhcBdNkPqBgs1AlZVCvfYwzCn5wJrFtpeTc/9mGYoGAFlJkf8MxoLAvoGIIMv6/BkUFtf/PVqFpwGAA/7AjS/fhCreVdP+1+MECQ0yMrtnAHMmtFAwmiZTs6yyeesgIiIiIiIiIiIiIiKKVmIjg9FM5Udh1RbLvmw3j4UjIiIiIiKKhFcXjOa3eXXXJlLi340ys9SyL8fdpZmrIWqfGIxGREREREREAQ6ndXtlBbDD+st5ZPEDGqJWI8pgNLnt35ARE2JcDLVpRu1Hhhn+nZZDdhmB8JVFe3NQXqWf6ndPX2x15kRcwgl7XoMcdw6kxwCIwY8wW9oh+wnev9TAsUOAgbmBYIsPLzPgMFomaKHNOGCSvm/dsnp3VUU58N5zIaeTf3wA8cRBuvSCDBwFcWkSJ1qpIXmCL64ycNwQoH9n4Kwxgq+uNtBpX8CIyykY1Xkv+lX+jogeWTaCTtRzd1q2Z/msg9HsEmWiS9eMwG1PHGToWMj084ExxwQPTukEDDywUesjCumwmdoueW0t5MmFkKseBI45E+gxoF4QaigydGyMCmzdJD4Rrx+7yvb4pLh9Nwr+AAB4VCUOKvuuCSqjjuCl5JmAN1HbL2OO1S/8xRswH78pJnU8+bV1yFm3P5vwm8F9pqnwyiJ9MNqBPYCxvYH7Zwtund7MoWjbN0OdPAjq7kuAXdZhz0GS0yFX3A+cNk87pEtq5LU4vn6z5naWJv+usMH5M35tMFqdji/fqrnZNUPw9dUGpg0D9u8KnDFa8OmVBhKbOYyumtdl3V4W4r0jERERERERERERERFRa6ILRiv127jKHoCdVdvgU9ZfjmS786Kui4iIiIiIqCOKM7yW7WVmywajba3cpO3jez+i2NCc9U5EREREREQdji5UqaRIv0xWftPUQkSRiyY8atKJoU+yp45Jah9Laf5dlkN2OgLBaDN/mdwkJUwrfhOIZ2BfazKhn2BCv+gCGDsqSUqF6pQLbN8c3Ll2KdTg0VDz5wFv/TP8XHe9DenU9q8WO7K74I2LQzyO3HH6Pg31+euQQQdZ9/l8UE/cBBRusOzP8jcuGC0nvhIuZ3Dyh5x3C9TKX2vX63JD5j3Y5sLsqG2RU+dB/fd9YOv6+u2X3BXYfnTKBXoPhkw5BwCgSvcAyxcBS76HWvY9sPQHYGdB/UkPmgwcdXpz/QgtznnYdFz46sN4MP38sGNrgtGKa98vP7zlYgzu9VMTVUft2Tp3dyBeH4yG4YeEnuDpW6EGHQg5qP6++derFK551cRXdTL/8tKAw/oJfCbwyXKFHfsuVNglFVi7Xb8K1/kmemcBE/YT3DFDkOwV/HctsNH67QKePFNwxsEtE3CsNq6Cmj0womXk/Fsgp1wZdlx+euT1GDChlIKIIFPzZy5scP6MNhhN+Wtuq08WQI6u3UYPyRO8emHr2F/3anZ5yiqbtw4iIiIiIiIiIiIiIqJoJTisr3hT4ttj2d5QQYiT47Pcbf8YICIiIiIioubkdSRYtpe3cDBaQeVGy/Z4I1EbuE1EkWEwGhEREREREQVEE6qUxeR6olZDF26o4/ZAzrimaWqhts0IH4y2y5GGHY50bCy3/nKhMdau7AMXfIBF2BBRm9Ojv2Uwmlq3DDihd+gA2mp5vYCRhzVBca1QFMFoWPyttks9+b/Ac7dr+9P9O2EIYKrIVwsA+Z2sv2KRHv2BJ78Hfvg48Dc+YBIkt0d0KyGySbLzgad/BH74COqNRyHDDgHGHgvpaR0OJAnJwIgJwIgJEABKqUCo2tIfgN3bgS69gFGHQ0Sa9wdpQZLdFbM6LcWDmkCiuhI9+26U1x5Q0b9yBe7dejkuzbm73tg+FSvx3bqxeDfxSKx094YfDphjpsCnBH7Lf0bNbcsxqO33mwI/IlzexhgTLRNo1VHtFS/g1QejiWEAz/wMdfow7Rh11VTgoyKIJ3BVxFWFCoffY6K8wUXoN+4Cnv42+IUvVChatVWFgXlXFih8cqUDLy+0fgF1O4Gpw5pm26F8VcCiT4GkNKDXoJqft6a/rDTyULSLb4eceImtsZ0SgTgXgn6v2rmVCQGA0j1AYgqykgVA8O9tm+1gNF/tnYWfQO3eAUnJsFdMM/Jq3sqV+6zbiYiIKHoi0gPAMAC5ABIBbAGwHsA3Simbey1ERERERERERNSQNhjNby8YbasmGC3VmYE4w2vZR0RERERERNZ076NaOhhN994v292lQx2DTdSUGIxGREREREREAY4IQ5XikyCJKU1TCxFFLpJgtG79IOffDOnev8nKoTZMaoMw0jXBaDsdafgoYSL8KnahGQMqlmL+lkuQ79NfLZOozenePxCO1dA7T9meQu59LxCI0hFEE4y2dimUUkFfHKrSPcCL94Zc1HHIVAxyA79aX6gprC6aYDQAkOR04LCZ0U1MFCWJTwQOmQY5ZFrky4oAnbsH/nVgY44YjJ5vrsEad8+Q45KqN1cV9Q+ouGjXw6gQD+7JuAS7jWSMLvsvntp8LpLNYpy455XagW/cEuPKY0sBMGHADwd84oRfHPDDEfw/jLD9ftk3R4N+s+a+Ydnvt91fO8aMYZ1166tus65D32+Kvfdoe414IF4fjAYEQjdVn6HAyl/0f7eTBkBeWwsAOPXx4FC0WPnsd+CHdQqvLLIORjtyAJAaH/sDetTKX6Cung5s2/d+oecg4PbXINlda8dM7apZ2oLbA7liPuTo020vIiLISwuExNnhgD9wY1chkJiCTOvzZ1BYXP936dMFo1XPBwB+H/DFG8BxZ9srphnpgtHKKpu3DiIiovZMRGYAuBzAaM2QnSLyEoAblFI2YnCJiIiIiIiIiKiuREeyZXupv9iyvaGCECfHExERERERUWTijHjL9nKzDKYyYUjLnG+he++X485r5kqI2i8GoxEREREREVFAJKFKAJCR0zR1EFF0bIYbykV/B2bN7TghOxS5Oo+NNE0w2i5HGn72DIl6FQ9smYsTil9DwqRpKP7oTcSpciSb9g4aI2pLpPsAWEeG2Fz+7nfqhX20e54ogtFK9wCFG4Hs/PrtX70NVJaHXFTOvA7Tlgp+3RjdXykvjVdxImpvjOPOxj2PzcTxeS/DL/qvUePd+26U1w9GEwBX7LwPl+ycDwf8aKtbCQEQiAYz4VZVaNSLWQdWN2DOLw68knw8zsp9PGhcmcQB8ZrErDpkzh1Qc4/QD9i+GSs+X4SpHw3D7wWNKNyGA2/VJHcBmDmyCULR1i+HOntU/cY1i6HuuRS49RXgg+ehbjnH9nxy6wLIuClR1dItPYJgNLUvyKxoO5DfB1m6YLQ99e/7dcFoyl/vvvpkAaQVBqPFuQRWG46yJgrrIyIi6khEJBHAYwBOCjM0HcAFAI4XkTOUUu83eXFERERERERERO2ILhhtr1kCU/lhhLlIUkGl9VX6eHI8ERERERFR5LyaYDQFhUpVgTjxNnNFAbr3fgzFJoodngFLREREREREAZEGo9k4aZeImpHdq1vsfyhD0Sg0qQ0ySNcEo/nEhe+8oyz7wplS/Bb+p+hxZN72T8Sf/xdk+bdZh6KlZEQ1P1Gr0r1/9MumZgLDD41ZKW2C2xPdcmuX1NxUe3ZCFRdBfbIg9DKnzoP0Hoz9u0Yf3pKfHvWiRNRKicuNY++/Gd+sOyTkOMPYt+2oKLPsd7bhUDSKneqAOTeq4FXlSPUXWY7ba8QD3sTw8w0/BPLQ55Z9CsA33gPR/19NH4oWiscJTBka20e/WvET1KlDrTt/+Ajq9gsiC0X7v1eiDkUDgH6d7f98DgSCzNTrjwKAPhitztshpRRMTRhh9Xw1fvwMatc22/U0F6/bur2ssnnrICIiam9ExAHgJQSHom0D8AGABQB+RP2E0mwAb4jI2GYpkoiIiIiIiIiondAFoyko7PWXhl2+oHKzZXuWO7cKlCbWAAAgAElEQVRRdREREREREXVEcZpgNAAo9+/V9jWlKrMSO6qsr7LKYDSi2OFZsERERERERBTg0py1qBOX0DR1EFF07ISdORxAt35NXwu1bXVC9tJM62A0APgy3vpcumuOEhza13qZY4vfwbPbzofxzhbIQZOBjM5A5+7BAz1e4IBJkVRN1Dr1GhTY9kZj4gkQpzO29bR27rjolluzBMpXBfOOC6GmdYM6Ohv45j/68cedDTnnBgCNCzc7sAdjj4jaI+k9GCMOyMeU4rcs+w/1/1B7RxOMRmQl3rQ++GavkQB49Aft1CWDDoJcdm+9ti+8Y5DXZy3Gd/+00TU21uSBQLI3Nq+Pyu+H+Y8roP50kH5QZQXwzlO255RbF0DGHteougZFcK6KQ+0LMvvgeQBAZpL176awOBCIBgBrt+vncypf/QbTBL5+235BzcTrsm73mYDPr0l9IyIiIjtuA3B0nftVAOYAyFNKHamUmqWUGgFgEIBv64zzAHhdRDo3X6lERERERERERG1bgkN/8egS/56Qy5b5S7FHc0HSHHdeo+oiIiIiIiLqiOIc+mMsyzTHZja1wqrNULA+Hi7Hw/d+RLHCYDQiIiIiIiIKcEYYjOa1d9IuETUTO8E7XXpBPFGGzlDHUSdkL8O/UztMifVHiwf1FHxypQPLT/0Zr285CW9sOB7/+eM4rFvZB6/v/h8kvr8JkhxIIhIRyImXBE8y9VxIHF9nqO2ThGRg2Pjolj3j2hhX0wZEGYym1i4FnrsDePMJoKoy5Fi55WUY8x6COAOJHflpUa0SADC2d/TLElHrJv/7Ii7e+SBcqv42xVB+zNl8J9SaJYGG8hAHUww8sAkrpLYoXukfL2W7Q588UZccfwGQFHgB+yx+HCZ2/xAFzuxG1xcLM0fWBn8ppaC+fhvmw9dBvfM0VMnuQHtFOdTbT8Kc3gPmCb2g3n0Walch1GuPBMZ+/2EgJOzfDwAL5semsKx8yAc7IeOmNHqqQV3sB78ZMGtuq7JSZCdbj6vyA5uKANNUOPUJ03oQAAf8QW3qgxds19NcvCE+Yiyrar46iIiI2hMR6Qmg4QepM5VS85Wq/8ZFKbUUwGGoH46WAeDGpq2SiIiIiIiIiKj9SHRovthB+GC0gspN2r5sd5eoayIiIiIiIuqovIb+/KLyFgpGK6jcbNluwIFOrtZxTCdRe+Bs6QKIiIiIiIiolXB7Ihsfl9A0dRBRdAwbwWhDxzZ9HdT21Qk8S/fvRJxZhnLDa3vxQfuO3eo7fgT6pF4GteB+YPNaYPgMyNnXQxqE+MkJFwIJKVAfPA9UlgfCCmbNjcmPQtQayIQToBZ9Gtky970PSe+AX4ZFGYyGRZ9CffGGvbGjj6p3NyMRiHMqlPvsh5wAwN/2+xEiB0S0DBG1HeJw4LBH7sN/zpuCB9IuwG9xgzCgYhnO3fUEji59H/j5MKDnQH0wWr8RkAc+Bd57FurFe4F1ywLtWfmAg9et6qjiK/VpUeUJmYjkUxZ5dQ1eOv5PODnv2UbX5YAfu+934Y1fFF7+QWHxZmC/bOA/iyObJzMJmDI08HqqlIL6+/nAO08F7gPAK/OBWxdA3XAysHxRzXLq1j/Vm0f9605g5sXAx6804qeq48zrIKdcGbPg5VHdgc4pwJbd4cc6VJ0gs22b0Cerj3bsks3Amm3Af9eEms8iNO2nz6G+fgcy5pjwBTWTeDeQ4AG8LiDOFfjf6w7879fnvhEREVFoNwJw1bn/lFJK+2GIUqpMRM4E8BuA6h3Rc0TkdqVUiD0OIiIiIiIiIiICALfhgVs8qFQVQX3hgtG2aoLR3OJBqjMjJvURERERERF1JG7xQGBAIfgAtLIWC0bbaNme6e4MhzDKiShW+GwiIiIiIiKiABeD0YjaNCN8wIKMm9IMhVCbV+exJAC6Vm3A756+thaNdwPd0mvvy5CDIUMODrucTD4FMvmUSCslahvGTwXunguYNlMgUjKAoeOatqbWKlww2tjjgK/eCm7fpr/Sbj1JaRBX/VAaEcGQPMH36+xNUe2Q3v7wg4ioTZPu/TEhvwQTVswO6lP3XAoMGg1VUWa9sCc+EAZ7zJmQY85s0jqp7UgoUMD11vsDewcegkhOgSgTL+Z2ewiw8XL09h9TMbn0Q7yYPBOndnk6qH9Y2S/wbk7A7FEDMHtUbfuqQoVJd5v4Y6e9mh49zUBi3L6g0WULa0LRaif8FeriSUDhhvCTLZhvb6XhTD8Pxjk3xGaufVxOwXXHCC5+XoUd66j7B9q+GalJqcg1BJvN9KCxR90Xfl/RofmDq4euAQ4+GiKRBb02lYG5guL7bYS3ExERkS0i4gUwo0Hz38Mtp5T6XUReBzBrX5MTwMkAbo5thURERERERERE7VOiIxk7fduC2kv9xSGXK9AEo2W5c2EIL6RFREREREQUKRFBnOFFmVka1FfeQsFoWyus3/tlu3ObuRKi9o2fpBAREREREVGAyxV+TF3e+Kapg4iiY9g46bgTP1wlGxocfJVfZSO4YJ+BuYBhtI6T8YlaC0nLAgaPsb/AUacHwnQ6ogahZQ3JFffbCgLVSu1k2XzKQZFtt4aU/4oxg5Ojr4OI2o4E/XP9/9m78zg587pO4J9fVd9HJgmZZDKTORjmDoxz4XA43AgoDKcjwq4ggopcHii4glyKuoKK4LGisCgil4DHgqICLgvIrhwLyLVyDMcMMzBXkk53ju5n/8gwSbqfqq6qrj7S/X6/Xnml6/f7Pd/fdyaVTlX183ye6lkPSq79Qv3kyOgyNcSJbKzNP3P7d+3uqtbffbrKd2YnFl33rJt/Pw+d+sckyWP3vDOXznyydk0+uDB49JztJZ9/WSM/cNfF+/nqrzfyyEuO/ntaveuP6xd2EorWR+UJP78sdZ9+35KBDl6SNI+9O+WN30j1kh/N7j0f63nfZtUiCe/aLyTfurbnugDAmveQJMf+UO4jVVV9vsNjXz/v8WP60xIAAADA+jfenKwd3ze7p+1xNxz8Ru34KUO7ltwTAADARjXaqL+WdXp2dYLRvPeDlSEYDQAAgCMGh7tbPzK+PH0AvekkGK1NsAPcYV7o0BmH6z+sr7P7VKFoUKe84m86W/j4n0n5qV9b3mbWsFJKcul96+fe8PGUbTuTi67sfYMt22uHn3n/1t+7mtXhXLn/o2lUsxmZm84P7n133vO1q1N2+IElbAjtgir3703e97b6uRFB4izULhht+lDnr6OnDlR5/B9XHa39rRuef8fXgzmcN3/jiXn0nndlaO5ATjv0zfzh9c/ME/f8ZarX/krt8SODJX/7rPanFNz6qkbOuNO8/t/zZx31t5zKq/4h5ZQzl6d2Kbn3OYuvOzbIrPr7NyYfe3/ucugrPe87kMOtJ2+7qee6AMCa99B5jz/QxbEfTI57EXFpKWXHkjsCAAAA2AAmmvXnWy4ejHZd7fj2ITe2BQAA6NVIi2C0mbnpFe4kqaoqNxz8Zu3cjqHTVrgbWN8EowEAAHDEYJsrdGuUUcFosKYIRqNvjg812HWom2C0fvcC60MZGUt55d+1X/PSN6XxjN9MaRfCswGUp70kmfc6szzjN1PO3n3kwV129158y8n1e5aSr1z8O9lx+Ibjxkfn9uefrn1oPnTt/bPnC9tyyxd25K+/8bjsGJlJ8W8qbAydvMauMywYjYXaBqMdXPz42/ZXee7b5jL5rLmO9vvsly7OQGaPG7vLoa/kbd98Qqa+sCXX/se5edqtr7vj1X/1gXfW1iml5FuvaGTXluPHBxrJe57TyKbRtROOXH75T9P44IE0Pngg5bL7LeteF3UQCt089v//x96fpLv3VwvqVbOtJ/fe0nNdAGDNu+u8xx/p9MCqqqaSfHre8BI+XAEAAADYOFoFo021CUabq2bz7UP1wWinDLkJHwAAQK9Gm62C0favcCfJbYdvzoFqpnbOez/or4HVbgAAAIA1YnC4u/UjLvSGNaXRQf69EBc6Me+5tOPwjR0furuDcADYqMr3PjhVuwVnXrBSraxp5W73TF774VT//LZkel/Kld+fcsUDj87feXf7/4/tbN7WcuqMC07PJ97+vXnt5qfkC8Pn5cxDX8sTb/vLXHDwi0mSkerA0cXb/bASNoxmjz9KHR7pbx+sC8MDSSlJVfMP2f5FgtEOHa5yn9+ay6frbzC4wGuv+6mcd/A/Ws7XvWqvXvj45BV/m2w/PTnz/JRj3hds31TyyV9p5I//Z5V/vy7ZtSV5wveW3G3XGnv9f99Hr9hWF+1cfE2jWhhid/pSgtHSLhjt1gVD1W03Jd+5Ptm/N9l5Zsq2pSdZVzffkMzNpWzr4H8AANAvF8573PqFXr0vJbn0mMcXJXnfkjoCAAAA2ADGWwSj7Zvd2/KYmw7dmMPV4dq5HUOn9aUvAACAjWikUX8t6/QqBKN962Dr8wC994P+EowGAADAEV0Ho40vTx9AbxrN9vMjYykDgyvTCye2ecFo22c7D0a79Ix+NwPrzEnbktu+Uz83OLSyvaxh5cwLUp7ywvrJ8y/rve7ue7SePO/SbJ/9dn75pt9cvFC7OsD60mswmiBxapRSMjpYH4K2WDDan/1r1XEo2tDcgTxq799032CS6rmPOPLF1lOSl7wx5ZKr7pjbOl7y/IetsSC0Y5TnviZldOU+q7poZ0kWiWutCzLbdbj3YLS5tAlE33vLHV9Wc3OpXvMLydtec9yS6ooHpPzKG1K2bO9672rvLale8Pjk4x848vjie6f82ltT2gTPAgBLV0rZmmTrvOGvdVlm/vpze+8IAAAAYOOYaE7Wjt92+ObcdKj+nLovTX+uZb3tQ0u/iQ0AAMBGNdoiGG1mBYLRpmb3ZmZu+o7HX5n5Yu26yeZJGWtOLHs/sJEIRgMAAOCIbsM4VvBiU6ADiwWjjZ+0Mn1w4ivHX2x/8uFvd3TYve6S7Ni0doMSYE1oF7Az1GVI7UZ14d2PhLXc/K3uj73q6tZzp5+bnHlBcu3nFy1THvvT3e8NnJh6DUYbGu1vH6wbY0P1IWhTB6okrV9Lv+Bd7QO4jvVTt742W+Zu7aG7Y9z8rVTPelCqxzw95eE/lnLu9yx6SDWzP3n3G1Ld1MO/0f3w4Mev6Ha7O7hupVktDEY781C3OSZHnTzbImA3SfbddvTrv/7jBaFoSZJ/e1+qZzwg5U2f6Xrv6uVPvSMULUnyqQ+leumTUn77f3RdCwDoyuZ5j/dXVTXVZY35V+n6YQEAAABAByaam2rHv37gy3nhl3+iq1pbB07OcGOkH20BAABsSCON+nNzlzMY7eszX84brn9Vrjt4bUfrdwztWrZeYKNqc0thAAAANpSBwe7WjwhGgzWlscjHPOP1dy+EBeY9l3bM1t/dcr4HXyQUDRbVbBNiOSgYrROl2Uwe/uTuj3vzZ1MmWl/3W0pJecRTFi/0mJ9KOeduXe8PnKB6DkbzPZ16Ey2eGvsOtD7mzz4ylxv2LF77fuclv/uA6/LKCz+anHl+/aJzLk55782LF/uud/xhqqfdK9W/vKvtsmr/3lRPvjzV7/xM8me/0Xn9bgy1uVBk4qSUsZV9z7t9U8m529uvaaY+GO3UQ9d1vd/FM5/KttmbWs5Xf/nbR36fm0v1F69sXejr/y/V22tC09qopqeSj7534cTH359q7xJD+ACAxcy/lfR07ar25h+z5BdOpZTtpZTd3fxKcpel7gsAAACwkiYG6oPRerF9qIO77gAAANDSSGOsdnx6dnmC0aZnp/K7X39Bx6FoSXLK0GnL0gtsZILRAAAASHIkDCKDQ50fMFKfsg+skkabsJ0kGW8dBgPHKcd/ZLj98Lc7OuziXYLRYFHtAnYEo3WsPPEXklPv3PkBZ16QcloH194+5unJPR/Wev7+j015zu90vi9w4usxGK34nk4Lky2yvfbO1I9XVZWfe2vVtuZdT02+/puNvO+5zTz78aen+bI3pfHGT6W89sPJ1h1HF95pZ8rz/zhldDzlRX/eedOzh1P9zs+kOnSw5ZLqdS9Lvvnlzmt2qzmQ7Dyz9fz21bnL4mMua/8eaOfh6xeMlSSP2/uOtse9/NElp24++njL7M3579c9tX0zt92UamZ/8pl/TW74Wtul1at+PnOPvzDVezp8Hnzp00ndn//sbPLv/9pZDQCgV/OD0Vq8cmxrfjDa/Jq9+Okkn+ny11/3YV8AAACAFTPe7F8w2ilDq/PzLAAAgPVitFkfjDYz18v9xRb3qX3/J9Nz3YWu7RCMBn3X423OAQAAWJcGh+svdKwzLBgN1pTmIsFoE/07SYd1rnF8MNpJc7dlaO5ADjbaB3zczef3sLhGm3uVdBNQu8GVsYnkTf+e6n71P9xcsP6xT+9s3eBQ8pvvTP7v/zoSALLt1GTztuQ71yfbd6Xc7Z5LaRs4EfUYjOZ7Oq20Ckbbd6B+/PrbkpunWtf7u2c18oALkpHBhQFd5YLLk7/8bPLRfzgSfnzl96eMjh+Ze9A1qT7wjuRf3tlZ4zddn+o1v5Bc/H3JRXdP2XnWHVPVgenkLa/qrE6vtp2ajIy3nl+lYLSfvE/J7/5TlQOH6+cfNPW+2vEf2vP2/N7WZ7as+4sPKfmJ+5R88Lm/nIPXfikP2fePmajaPBG+6/9+MNWH/kcnrSff/HKqlz81ueHryennJrvOSTn/0vq1VZtwviIgGwBWWPvU3P4dAwAAALDhbR/c2bdapw2f1bdaAAAAG9FIo1UwWnfhZZ268dA3uz5m13AXN38HOiIYDQAAgKMGh5Ps7WztkGA0WFMGBtvPjwlGo1NlwaNLZz6Zj45d2fKI7ZPJ2duWuS1YDxptQiwH24cPcrzSbCbvviHVD+yoXzA8mtzplJTHPD151E92XreU5JKrjvwC6DUYbcj3dOpNtHhq7J2pH//GLa1rPesBJT9wt/ahVGVsIrn/Y+vnXvj6VNt3Je/9y+S277StkyR5xx+lescfHQn+e/YrUx71E6lu/U6qRywtIbn8+ItS/elL2i9aLPhs052W1EOvztpW8uKrS37pHQuzRgZzOD984N21x91j+n/nggOfz+eHL1gw99mXNNJolGwdTx5R/a9k70c77qd67tXJ6ETn/wHJcf/vqwc8LuXFbzzyeui4RbJUAGAV7Zv3uJcfzs0/Zn5NAAAAAGpsGdyW88fuli/s//SS6ow0xnLZ5L371BUAAMDGNNKo/3H59DIFo+073OE1trc7eXBnzh2767L0AhtZY7UbAAAAYA0ZHOp87bBgNFhTFvv7O3HSyvTBia+xMFzhcXvf0faQx15e0qg5Dpin2ToYrbSZo16Z3JzyW3+dHBveMTSc8rI3p7z35jTe8vmUH37OwnAPgE71+r1Z2CUtTI7Uj+89UD/+zVtb1/q1Ry3t37cyPJrGs1+R8rffSHnl33V+4KGDqV75rMxdNbzkULQkyZkXpDzzv7Zfc/q57QMHxyeX3kePfv7BJddcsfDP4kWPGsxZ/+MTKa/+pwVhZSXJH17/zAzPHZ+I99qhV+WCncfUmj3cfUPTS8g5ed/bk7/5k4Xj1Vybg7zOAoBltlaD0f4gyV27/PXIPuwLAAAAsKKeeuovZvf45Wmkt58d7xw6Iz97+q9mtDnW584AAAA2ltHGeO34zHIFo83u6WhdScmdR87Ps09/cRpFhBP0W4+3OQcAAGBd6iYYrd0FqcDKG1jk7+/4ppXpgxNfzQfx1+z5q/zi9l9P1eJD+h+5u4vhoSNNH8n3W7nHQ5M3fSbVe/48ZXA4uc8jU87evdptAetFr9+3u3lvzYYyOVKSVAvGp2YWrk2Sb96ycG2SnLIpmRjpz2vwUkqqKx6YnHVh8tXP9aVmV3acnnL/xyTnXZrq2Q+uXVIe/PhUb/291jXGVy8IfKBZ8hdPTR5zWfI/v5gMDSQ/cNeSB110+5/PJVclr/to8k9vTfWta1POuiDVvtty1Rt+PZ/90vfkdZufnENlINfs+atcsmMmyc8dLX740Ir/91Rve01y9VOPD5Y92OIJmvQW3gYAdOO2eY/HSinjVVVNdVFj+7zHbeJ3O1NV1Y1JbuzmGMH1AAAAwIlovDmZZ+x6YQ7MzWTv4fkf1bQ30hjNxIDzNgEAAPphpFF/H7GZuenMVXN9DyVrFYx2n80Py4O2POqOx2PN8Yw1J2rXAkvnKiwAAACO6ubi7eFebkoPLJvF/v4KRqNTjYU/DDjt8HW5//4P5H3jD1gwd9adknvdZSUag3VAMNqyKLvOSXnaS1a7DWA96jkYTZA49cZbPDX2ztQHoH2jRWTFuTv61NDtSqORvPRNqV7yo8mXPt3f4ovZvutID5feJ3nHl1O9+D8nn/rQkbmhkZSn/1rKFQ9I9a4/blmirPL73Waj5JorSq65on6+7DonefJ/yR1RIO97e6okZx7+el7ynZcdXfi1pJqbO/LnkbQOHbv8/snH3t+n7ue59vNHfp114dGxA9Ot1x88sDx9AABJkqqqbiql3JJkyzHDZyTpJtH2zHmP/9+SGwMAAADYYIYbIxkeGlntNgAAADaskcZYy7kDc9MZbY73db+p2b214ycPnpJtQ30+iRNoqb+RhwAAAJzYurl4WzAarC2LBKOt9oXinEBqgtGS5OU3/koGq4MLxv/r4xppNErNEcACjeZqdwBAN3oORusidJwNZbLFtRL7WmRLXXdL/fhpm/v/+rvc+aKUP/1oyruuTXnth/tev9bwaLL16AlC5eTTUl7zzylv/4+UP/lIyntuTHncM49MjrQ+qemECwLfcXrrub/6/aNfHz5Uu6RcdXXL92198YVPHP/4wEzrtTWhaVVVpfrwuzP36l9I9fpfTXXLjX1uEAA2nPkhaOd0efzZi9QDAAAAAAAAgDVttNn6HMLpuf19329qdk/t+Hhzsu97Aa0JRgMAAOCoIcFocMIaWCR8YeKklemDE1+p/8jwipmP50NfvV9++La35pIDn8qjL03e85xGHne5UDTo2FZ3BgI4ofQajNbNe2s2lFbBaHtb5E5989aqdvzUzX1qaJ7SbKbc6ZSUCy5Pzr2kP0W/56rk7g+sn7vq6pR5AV+llJQdp6ecf1nKsX+Xtu1svceJFoy2fVfLqeptrzn6YPZw/aKhkZS3fL7PTR3Tw5c/c/zAwTbBaDVz1e8/L9XzHp289fdSve5lqa4+PdUXP5lq32197hQANox5/zjnnp0eWEoZT3LxIvUAAAAAAAAAYE0babQORpuZW3iDz6Woqir7ZvfWzo03T7DzFeEE1+PZ/AAAAKxLiwUrHWuoxdW8wOoYXOTv75gPXulQo/W9FC6b+WT+4ronJ1t3pPH0r61cT7BOlP/0C6k+8p6FE/d46Mo3A8DiBnr8UWo3763ZUCZaZObtO1A//v4v1I+ftkzBaMcqL/2LVD+ye2lFTr1zynNemew6J9UvPTb52PuPzt35opSnv7zzfrbvSn1MXE68YLStpySbT05u/fbCueu/mur6r6bsPCuZna0/fmAw2XFGMjKWzPT/TpeZH4x2oPVJY9UNX0v18qcl//zWI38Om7Ym1y4Mbat+/Mqk0Uj5l/6egAYAG8TfJ/mJYx7fr4tjr8rx54h+oqqqG/rRFAAAAAAAAACslNG2wWj9PY9uZm46s6m/semEYDRYUYLRAAAAOGqxYKXvGhhMaTaXtxegO81FPuaZ8MErnSqLLxmbWP42YD3afY/krAuTr37uuOHyA09apYYAaKc0B1oHMbUz1CL9ig1vskXG/K01WVGfva71s++0LX1qqI2y65zk51+d6pXP6vygrTtS3vL55GPvOxKov/vKlLHJI3O//e7kMx858jro9HOTi65MGe4idH/rKa3nRsc7r7MGlGYz1b1+IHn3G+oXfOnTyc6zksOH6uebAymlpNpxenJti/S8pbj+q8c9rL755dZr3/DrR78+OJPccmPrtXNzS2oLADawf0gynWT09sf3LKVcUFXVwjTShZ487/E7+9kYAAAAAAAAAKyEwTKURpqZy8Ibjk73ORhtanZPy7mJ5mRf9wLaa6x2AwAAAKwhnQajDY8uvgZYUaUsEmY1ftLKNMKJr9HBR4ajPsiHXpRmM+X33pvc/7HJSXdKzr0k5Zdfl3L/x6x2awDUWSx8uJVBwWjU2zZR/77t23uTqjo+CO3V728djLZrSwdhxv3wyKel/Pyrk9POTrZsPxLW1c5D/1PKyFjKvR+ecvcHHQ1FS1IajZSL751y9VNTLr1vd6FoSbKpTRrcYu+H16DyvD9qPXnLt4/8Plt/x8kMDB75/R4PXXyjU87srrEk2XPLHV9W7/+r5M2/032NOifgnxMArAVVVe1P8vZ5w89b7LhSynlJHn3M0OEkb+pjawAAAAAAAACwIkopGW2M1c7NzPY3GG1f22C0TX3dC2ivx7P5AQAAWJc6vXhbMBqceEYnVrsDThSlg2C0Mc8n6FXZsj3lpW9KVVWLh1oCsLoEo9Fn21vkCx+aTW6bTjYfc87On3+kdTDaOSf3ubEWSinJo34i5VE/sWBu7qVPSv7xzUcHzjgv5Un/ZfmaOf+yI4Fghw8dP95oJHe52/Ltu0xKo5HqvEuTL35i4eR3rjvy+/z/1u+6/XtTuebZqd7yqvb7POLHU73ld5M9N3fe3C03Zu45D0mu+0ryrWs7P24xXvsCwFK8OMnjk9yekJonl1LeWVXV39QtLqWMJHl9kmPviPSnVVV9aVm7BAAAAAAAAIBlMtIczdTc3gXjM3PTfd1nanbhHknSSDMjLcLZgOXRwVWOAAAAbBhDnQajjSxvH0D/jfrglQ41OvjIUNAeLJlQNIATQLPZ23GDg4uvYUNqFYyWJDcecx7N566vsv9gmzqbVv91RHnhf095+duSH3tBynNfk/L6f0tZxgDlMr4puffDF05c8cCUTVuXbd9ltXlb7XD1upel+rf3JfturT/u9u9NZcLK1l8AACAASURBVPuulNf/W/s9xieT+z+m+94+/oH+hqIBAEtSVdWXk8xPRH17KeWZpZRjw89SSrkwyT8nudcxwzclecnydgkAAAAAAAAAy2e0RSjZ9NxUX/fZN7undnyiOek6EFhhPd7mHAAAgHVpYGjxNUkyNLq8fQD9NywYjQ6VDoLRxtokOgAArBfNHn+UOthh6DgbzsntgtH2JOftOPL1L759ruW6d/702rj3WSkluerqlKuuXrk9n/dHqQ7sT/71H44MXHa/lBf92Yrt33cn1QejJUn1sw9rfdzAMeGLd77oyPeq2cP1a0cnUp71ilR7bkn+57uS2dkemwUA1oDnJ9md5LsvFAaTvDrJC0spH0+yN8nZSS5LcuyZ2AeTPLqqqutXsFcAAAAAAAAA6KuRFsFoM3PTfd1n3+ze2vHx5qa+7gMsTjAaAAAAR3V68fbQyPL2AfTfsEBDOtQQjAYAkKT3YLQhwWjUGx8uGR9Opg4snLvx9vNopg9W+cAX648vJbnvecvX31pXJjen/NbfpNp7a3L4YMqW7avd0tIcnOntuEbzji9Ls5lq26nJDV+rXzs2mTI8mvLSN6Xac3PygXek+q1n9LZvj8qffnRF9wOA9aqqqtlSyjVJ/iTJDx8ztT3JQ1scdmOSJ1VV9cHl7g8AAAAAAAAAllPrYLT9fd1n3+ye2vGJpmupYKWtjdtJAwAAsDYMDXW2TsASnHj8vaVTpSy+ZusJHkAAANCJXoPROg0dZ0Pa3uK8mBv3VkmSf/j3+uC0JLnglGTzWAev19e5Mrn5xA9FS1LOu7S3A48JRkuSbN/Veu3o+NH9Nm1NTjmztz17VN6/L+W8S+74BQAsTVVV+6qqenySH0ryr22W3pzkD5Pctaqqv1+R5gAAAAAAAABgGY22CEabnu1vMNpUy2C0TX3dB1hcj2fzAwAAsC4NdBiMNuQibzjRlGZz8UWQJGXxeymshxACAIBF9RyM1uF7azakbRPJV76zcPzmqSO///Unq5bHvuPp7nu2rpzfY1BYY97zYNvO1mvH5iXxXXB50mwms7O97d2praekvPytKQODy7sPAGxQVVW9PcnbSyl3TnJZklOTjCf5VpJrk3yoqqqDq9giAAAAAAAAAPTVSItgtJm5fgej7a0dH2+2uDMusGwEowEAAHBUp4FnvV4cDsDaN/8i+zpbdyx/HwAAq63nYDRh4rS2dbx+/LvBaP/nq/XBaE/43pLzTynL1BWr4vIH9nbc/DDrHWe0XjsvGK1s2prq/o9L/uktve3drq2f/vVkbi45e3dyt3ulTJzU9z0AgONVVfWVJF9Z7T4AAAAAAAAAYLmNNEdrx6f7HIy2b3ZP7fh4c1Nf9wEW50p2AAAAjhoY6nDd4PL2AcDqmX+RfZ0t25e/DwCA1dZrMJr3zLSxZawkWRh+dsv+5NDhKl+8of64h1+8vH2x8srAQPK6/53qKd/b3YHzwqzLaWfXPKNuN7LwRLDyS69NtWV78i/vSm78euf7jk4k0/sWjt/7B1P+y5+kbNraeS0AAAAAAAAAAADowkhjrHZ8pu/BaHtrxycEo8GK6+AqRwAAADaKMjTc2cLBDgPUADjxNDr4yHCrYDQAYAPoJRht+66UUvrfC+vG5vrzcnLLVJX/+HZyeK5+fvepnlfrUTn3e1Ke+uIuD5r3nu3eP5jUfd8ZGkm2nbrw8KHhNJ79ijT+6j9SXvTnne35kCem8d6b0vjggYW/fuMdQtEAAAAAAAAAAABYVqMtgtGm56b7us/U7J7a8YnmZF/3ARYnGA0AAICjOg08Gxhc3j4AWD3zL7Kvs3XH8vcBALDaeglGe8AP9b8P1pWt4/Xjt+xPPnd9/VyjJOd5Cb5ulSf9UvK4Z3R+wLww63Lyack9H7Zw3fc9ImV4tH2t+zwyOe3sxXt8+I913h8AAAAAAAAAAAD02UiLYLSZuf1926Oqquyb3Vs7N9Hc1Ld9gM4IRgMAAOCoToPRmoLRANatxiIfGQ6PJhObV6YXAIDV1Gx2fUj5yZctQyOsJ1vqz8vJzVPJZ6+vaufO2Z4MD5Zl7IrVVp71ipRn/EaHixe+Zyu/9Nrkyu9PSjnyveuqq1Oe90eLlxoaTnn525NzLm695vn/LeWSqzrrDQAAAAAAAAAAAJbBSKP+RqEzs/0LRpuZ25+5zNbOjQtGgxXXw23OAQAAWLcGhztbNyAYDWDdKosELmzflbLYGgCA9aDZ3Y9Sy0v/MsX7ZRaxdbx+/Jb9yeeur5+7aOfy9cPaUBqN5PE/m+rW7yR/8Yr2i2tCG8vmbSmv+NtU+/cls4dSJrd0vvfZu1Ne/39Sfef6ZP/eZOKkpKqSudnkTjuP9AYAAAAAAAAAAACraLRZfwLmgWomc9VsGqX7GyLPt292T8u5iebkkusD3RGMBgAAwFEDQx2u83YSYN0qi1z0vuP0lekDAGC1dROMNrkluedDl68X1o0tYyVJtWD8xr3Jv3xx4XiSXLhTMPFGUe50Ss2zY/6i1u/ZythE73tv25lECh8AAAAAAAAAAABrz2hjtOXczNx0xpq9nz/3Xftm97acG29uWnJ9oDtu7QsAAMBRQ8OdrRsYXN4+AFg9jUU+MtwuGA0A2CA6DUYb35TyK/89ZWRsefthXThtS/34wcPJdbfWz128a/n6YY3Zsn3xNYu9ZwMAAAAAAAAAAIB1ZqTR+jzdmbnpvuyxb3ZP7XgzAxlpE8wGLI8ubnMOAADAujfYaTDa0PL2AfRm95XJv3904fg5F698L5ywSimp2i04+bSVagUAYHUNtzmB4eJ7p/zsq5JbbkguuCJlcvPK9cUJ7cJTuls/NJA8ZHdZnmZYezafvPiaIhgNAAAAAAAAAACAjWW0TTDa9NxUkg7Ov1vEVItgtInmZEpxLiesNGfMAgAAcNTgYGfrBjpcB6yocs2z68d/9JdWuBNOeI3WHxuWiU0r2AgAwCo668LWc+ddknLO3VLu/iChaHRlYqTkzts6X//Q3cnmMSfTbBidBKO1eb8GAAAAAAAAAAAA69FIm2C0mdnpvuyxr0Uw2njTtVSwGpwxCwAAwFGDw52tE4wGa9N9Hpnc91HHj9330cn3PXx1+uHEVdp8bDgyvnJ9AACsojK5Obn8/vVzZ5y/wt2wntz11M7X/tAVQtE2lFPPSoYW+Xyu3fs1AAAAAAAAAAAAWIcGymCaGaidm5nb35c9pmb31o6PNyf7Uh/oTv3feAAAADYmwWhwQisDg8mL35h87P3JFz6RnH9JcvkDUwZ8BESXGo1ktsWcYDQAYAMp/+kXUn3s/ccPjk4k93rY6jTEurD7tJK//VTV0dp7ni0YbSMpY5Op7vvo5B/f3HpRw3MCAAAAAAAAAACAjaWUktHmWPbN7lkwN92nYLS62kky0dzUl/pAd9xKGAAAgKMmN3e0rAhGgzWrDAymXPn9KT/6vJQrHyIUjd6UNhfajwpGAwA2jnLFA1Oe+5pk4qQjA2ecl/Lyt6XsOGN1G+OEtvvUztaNDiZn3ml5e2HtKc/9/UUWOM0DAAAAAAAAAACAjWekMVo7PtO3YLS9teOC0WB1uDIWAACAozZv62ydYDSAda5NMNrI2Mq1AQCwBpRHPi15xI8n+25NJrektAuRhQ5cfFpJUi267vxTkmbD822jKWMT7Z8dDcFoAAAAAAAAAAAAbDwjjfprmqbnpvtSf2p2T+34xMBkX+oD3XHGLAAAAEedJBgNgCSzh1vPjY6vXB8AAGtEaTRSNm0VikZf3PW05OJdi6+7aKfnGzUEowEAAAAAAAAAALABjbYIRpuZm+pL/X0tgtHGm5v6Uh/ojjNmAQAAuEMZHEomTlp8oWA0gPWtXTDaiGA0AABYilJK/vwpi/+o/sKdK9AMJ57iNA8AAAAAAAAAAAA2npEWwWjTs9N9qT81u7d2fLwx2Zf6QHecMQsAAMDxNm9bfI1gNICNa6T+hwgAAEDn7rar5PvOab/mwp1lZZrhxNJornYHAAAAAAAAAAAAsOJaBaPNzO1fcu25aq5lMNrEwKYl1we6JxgNAACA453UQTBaUzAawIY1Or7aHQAAwLpwzvb2wWf3PHuFGuHE0nCaBwAAAAAAAAAAABvPaHP5gtFm5vZnLnO1cxNNwWiwGpwxCwAAwPEmNy++ZkAwGsCGNSIYDQAA+uHsk1vPXXnnZOfm9sFpbFDFaR4AAAAAAAAAAABsPCON+mC06T4Eo+2b3dNybqI5ueT6QPecMQsAAMDxBoc7WDO0/H0AsDaNCkYDAIB+eOju1sFn11whFI0WGk7zAAAAAAAAAAAAYOMZaYzWjs/MTS+5drtgtPHmpiXXB7rnjFkAAACONzSy+JqBweXvA4A1qfg3AAAA+uLyM5OLdi4cHxpIHne5YDRaKE7zAAAAAAAAAAAAYOMZbYzVjs/M7V9y7anZvbXjA2Uww6WDa26BvnPGLAAAAMcbHF58TXNg+fsAAAAAWMdKKfmDJzbSmJeB9oIfLDl9q2A0Wmg4zQMAAAAAAAAAAICNZ6RFMNr07NKD0fbN7qkdH29OphTndMJqcCU7AAAAxxvuIBhtYHD5+wAAAABY5+5zXsmnX9zIH3ygysyh5LGXlTz0rk6goQ3BaAAAAAAAAAAAAGxAo836YLSZuX4Eo+2tHZ9oblpybaA3gtEAAAA43qBgNAAAAICVcuHOklf/iDA0OlQEowEAAAAAAAAAALDxjDRGa8cPVgcyW82mWZo9156a3VM7PtGc7LkmsDTOmAUAAOB4QyOLrxkcWv4+AAAAAIDjNZzmAQAAAAAAAAAAwMYz2hhvOTczt39Jtfe1CEYbb25aUl2gd86YBQAA4HiDw4uvaQ4ufx8ArD3D9XdWAQAAYIUUp3kAAAAAAAAAAACw8Yw0Wl/XtNRgtKnZvbXjE4LRYNU4YxYAAIDjlKGRxRcNCEYD2JBO2rbaHQAAAGxsDad5AAAAAAAAAAAAsPGMNMZazk3PTi+p9r7ZPbXj483JJdUFeueMWQAAAI43NLT4GsFoABvT3R+42h0AAABsbMVpHgAAAAAAAAAAAGw87YLRZuamllR73+ze2vGJ5qYl1QV654xZAAAAjjc0sviagYHl7wOA1fODP1Y7XJ743BVuBAAAgOM0mqvdAQAAAAAAAAAAAKy4wcZgBspg7dz03PSSak/N7qkdn2hOLqku0DvBaAAAABxvcHjxNQP1Hx4BsD6UJ/xcsnXH8YOPeErK6eeuTkMAAAAc0XCaBwAAAAAAAAAAABvTSGOsdnxmbn/PNeeq2UzN7qudG29u6rkusDQDq90AAAAAa8zQyOJrBoaWvw8AVk0547zkv30wee+bU934tZRL7pM88JrVbgsAAIBSVrsDAAAAAAAAAAAAWBWjjbHsm71twfjM3HTPNffPTaXKXO3chGA0WDWC0QAAADje0PDiawYGl78PAFZVOeXM5EefF5fcAwAArB1FMBoAAAAAAAAAAAAb1EhjtHZ8enaq55pTs3tbzo03J3uuCyxNY7UbAAAAYI0RjAYAAAAAAAAAAAAAAAAAwBoy0hirHZ+Zm+655r42wWgTzU091wWWRjAaAAAAxxsUjAYAAAAAAAAAAAAAAAAAwNox2mwVjLa/55pTs3tqxwfLUIZKB9fbAstCMBoAAADHGxpZfI1gNAAAAAAAAAAAAAAAAAAAVshIoz4YbXoJwWj7WgSjjTcnU0rpuS6wNILRAAAAON5I/QdDxxkYWv4+AAAAAAAAAAAAAAAAAAAgyWiLYLSZpQSjHa4PRptobuq5JrB0gtEAAAA43hnnJc2B1vOlpDSbK9cPAAAAAAAAAAAAAAAAAAAb2sgyBKNNze2tHReMBqtLMBoAAADHKWOTye4rWy8YGFy5ZgAAAAAAAAAAAAAAAAAA2PBGWwSjTc/2Hoy2b3ZP7fh4c7LnmsDSCUYDAABgoZ1ntZ4TjAYAAAAAAAAAAAAAAAAAwAoaaYzWjs/MTfdcc2p2b+34RHNTzzWBpROMBgAAwEJDw63nmoLRAAAAAAAAAAAAAAAAAABYOaPNsdrxmbn9Pdfcd3hP7fh4c7LnmsDSCUYDAABgocE2wWgDgtEAAAAAAAAAAAAAAAAAAFg5I436YLTppQSjzdYHo000N/VcE1g6wWgAAAAsNNQmGG1waOX6AAAAAAAAAAAAAAAAAABgw2sVjHaoOpjD1aGeak7N7a0dF4wGq0swGgAAAAsNjbSeGxhYuT4AAAAAAAAAAAAAAAAAANjwRhqjLedm5qa7rjdXzWb/7L7aufHmZNf1gP4RjAYAAMACZXC49WRzcOUaAQAAAAAAAAAAAAAAAABgwxttjLecm5ntPhht/+xUqlS1cxPNTV3XA/pHMBoAAAALDQ61nhsQjAYAAAAAAAAAAAAAAAAAwMoZaY62nJuem+q63r7ZPS3nxpuTXdcD+kcwGgAAAAsNj7SeE4wGAAAAAAAAAAAAAAAAAMAKGm2MtZybmZvuul67YLSJ5qau6wH9IxgNAACAhQaH28wNrVwfAAAAAAAAAAAAAAAAAABseM0ykMFSf43rzNz+ruu1CkYbKsMZarS5zhZYdoLRAAAAWKhdMFpzcOX6AAAAAAAAAAAAAAAAAACAJKONsdrx6R6C0aZm99aOjzcnu64F9JdgNAAAABYaahOMNiAYDQAAAAAAAAAAAAAAAACAlTXSIhhtZrZ/wWgTzU1d1wL6SzAaAAAACw2NtJ4bGFi5PgAAAAAAAAAAAAAAAAAAIMlIs0Uw2tx017X2ze6pHR9vTnZdC+gvwWgAAAAsNDjUem5gcOX6AAAAAAAAAAAAAAAAAACAJKON0drx6bmprmu1CkabaG7quhbQX4LRAAAAWGhwuPXcQJvQNAAAAAAAAAAAAAAAAAAAWAYjjbHa8Zm56a5rCUaDtUswGgAAAAsNjbSeG5tcuT4AAAAAAAAAAAAAAAAAACDJaItgtOm5/V3XmprdWzsuGA1Wn2A0AAAAFhoabj03LhgNAAAAAAAAAAAAAAAAAICVNdIiGG2mj8Fo403X0cJqE4wGAADAQoNtgtHGfKADAAAAAAAAAAAAAAAAAMDKahWMNj3bfTDavtk9tePjzU1d1wL6SzAaAAAACw0OtZwqgtEAAAAAAAAAAAAAAAAAAFhho836YLSZue6C0War2eyf21c7N9F0HS2sNsFoAAAALDQ03HpOMBoAAAAAAAAAAAAAAAAAACtspNEqGG26qzr7Z/e2nJtobuqqFtB/A6vdAAAAAGtQaZOjfadTVq4PAAAAAAAAAAAAAAAAAABIMtIYrR3fP7cvew7f2nGdGw9e13JOMBqsPsFoAAAALHTyacmW7cktNx4/PjSc3P1Bq9MTAAAAAAAAAAAAAAAAAAAb1mhjrHZ8anZvnv+lJ/dlj/HmZF/qAL1rrHYDAAAArD2l0Uiu/vGFEw/+kZSJk1a+IQAAAAAAAAAAAAAAAAAANrSRFsFo/TJcRjLYGFrWPYDFDax2AwAAAKxN5cdflAyPpfqHNyZzc8l9Hpny1JesdlsAAAAAAAAAAAAAAAAAAGxAyx2MNt6cXNb6QGcEowEAAFCrlJL8519M+c+/uNqtAAAAAMCGUZ7/31L9xk8unHjwj6x8MwAAAAAAAAAAALCGbB3clkaamcvsstTfPnTqstQFutNY7QYAAAAAAAAAALjdlQ9JRicWDJf7P2YVmgEAAAAAAAAAAIC1Y6w5kd3jly1b/btvus+y1QY6JxgNAAAAAAAAAGCNKNt2przib5PTzj4ycNKdUn7md1Kuunp1GwMAAAAAAAAAAIA14Mk7fyZ3Hb8ijT5GJ400RvOIbU/IPTY9oG81gd4NrHYDAAAAAAAAAAAcVS6+V8qbP5fq5huSzSenNNz3DgAAAAAAAAAAAJJktDmen971gkzP7s+th29acr1GaWTb4ClplmYfugP6QTAaAAAAAAAAAMAaVLbuWO0WAAAAAAAAAAAAYE0abY5ltDm22m0Ay0AwGn1VShlMcu8kZyTZmWRfkuuSfKKqqq+uYmsAAAAAAAAAAAAAAAAAAAAAAACsYYLRNrBSypuT/PC84Wurqjqrh1onJ3nJ7fW2tljz4SS/XVXVX3VbHwAAAAAAAAAAAAAAAAAAAAAAgPWtsdoNsDpKKVdnYShar7UeluQzSZ6eFqFot7tXkreXUt5YShnvx94AAAAAAAAAAAAAAAAAAAAAAACsDwOr3QArr5SyOckf9qnW/ZK8K8nQMcNVko8n+XKSzUkuTbLtmPknJtlUSnlUVVVz/egDAAAAAAAAAAAAAAAAAAAAAACAE1tjtRtgVbwyyam3f7231yKllF1J3pHjQ9E+lGR3VVVXVFV1TVVV359kV5LnJDl0zLpHJPnVXvcGAAAAAAAAAAAAAAAAAAAAAABgfRGMtsGUUh6U5Cm3Pzyc5FeWUO4lSbYc8/jDSR5UVdXnjl1UVdWBqqp+L8k1847/uVLKmUvYHwAAAAAAAAAAAAAAAAAAAAAAgHVCMNoGUkoZT/LaY4Z+O8kne6x1bpInHTN0MMmTq6qaaXVMVVXvSvKGY4aGk7yol/0BAAAAAAAAAAAAAAAAAAAAAABYXwSjbSy/nuSs27/+cpIXL6HWE5I0j3n8jqqq/l8Hx/3mvMfXlFJGltAHAAAAAAAAAAAAAAAAAAAAAAAA64BgtA2ilHKvJM84Zugnq6qaXkLJR897/PpODqqq6nNJPnrM0HiS719CHwAAAAAAAAAAAAAAAAAAAAAAAKwDgtE2gFLKcJLX5eif9xuqqvqnJdQ7Jcn3HDN0OMmHuijxgXmPH9ZrLwAAAAAAAAAAAAAAAAAAAAAAAKwPgtE2hhcnOf/2r7+d5OeXWO+u8x5/qqqqqS6O//C8x7uX2A8AAAAAAAAAAAAAAAAAAAAAAAAnOMFo61wp5bIkzz1m6GeqqrppiWUvmvf4P7o8/kuL1AMAAAAAAAAAAAAAAAAAAAAAAGCDEYy2jpVSBpK8LsnA7UN/X1XVm/pQ+px5j7/W5fHXznt8p1LKliX0AwAAAAAAAAAAAAAAAAAAAAAAwAlOMNr69vwk33P711NJnt6nupvnPb6xm4OrqtqXZGbe8ElL6ggAAAAAAAAAAAAAAAAAAAAAAIAT2sBqN8DyKKVclOQFxwy9sKqqr/ap/MS8x9M91JhOMnLM48ne2zmqlLI9ycldHnaXfuwNAAAAAAAAAAAAAAAAAAAAAABA7wSjrUOllEaSP00yfPvQx5L8Xh+3mB+MNtNDjekkW9rU7NVPJ3lRn2oBAAAAAAAAAAAAAAAAAAAAAACwQhqr3QDL4jlJ7nH714eTPLWqqtll3K9aoWMAAAAAAAAAAAAAAAAAAAAAAABYpwSjrTOllLOT/OoxQ79dVdUn+7zNvnmPR3uoMf+Y+TUBAAAAAAAAAAAAAAAAAAAAAADYQAZWuwH6p5RSkrw2ydjtQ19O8uJl2GotB6P9QZK3dXnMXZL8dZ/2BwAAAAAAAAAAAAAAAAAAAAAAoAeC0daXpyV5wDGPf7Kqqull2Oe2eY9P7ubgUspEFgaj3bqkjm5XVdWNSW7ssp9+bA0AAAAAAAAAAAAA/P/27jxaurSg7/3vaZqGZupGhmbmZVQGBwheFTC2BlTkCjJcMWhCKw5xSjDxxqWYFTC5eHMdouvGKFeRJohcCWGSOSgNAkHFNAKCSCOgDI0NNGA3NE3Dkz/qvO+ps6tOndpVu2rvqv35rLUX7HprD2ef53zr9PPutV8AAAAAAAAAWIMHo+2Xp079/5cnuayUcuqEbW7TWD97zjYfrrVeO7X+nsaf33nJ8zvu/Z+otV7Zch8AAAAAAAAAAAAAAAAAAAAAAADsEQ9G2y/nTv3/b0vyvhX2cfs5290vyVun1t/V+PO7tzzGXRvr72y5PQAAAAAAAAAAAAAAAAAAAAAAAHvmrL5PgJ30jsb6V5RSbtRi+wedsD8AAAAAAAAAAAAAAAAAAAAAAABGxoPRaK3W+pEkb5t66ewkD26xiwsb669Y95wAAAAAAAAAAAAAAAAAAAAAAADYbR6MtkdqrefXWkubJck3NnbzgTnve+ucw72wsf69y5xjKeXLknzN1EtXJ3n10l8kAAAAAAAAAAAAAAAAAAAAAAAAe8mD0VjVc5J8YWr90aWUeyyx3U811p9Xa72mu9MCAAAAAAAAAAAAAAAAAAAAAABgF3kwGiuptb4nybOmXjonycWllBset00p5ZFJLpp66dokT93ICQIAAAAAAAAAAAAAAAAAAAAAALBTPBiNdfzbJFdOrT8wyWtKKV82/aZSyg1KKT+e5L82tv+lWusHNnyOAAAAAAAAAAAAAAAAAAAAAAAA7ICz+z4Bdlet9YOllEcneVWScw5eflCSd5ZS/izJXyc5L8n9k9yqsflLk/ybbZ0rAAAAAAAAAAAAAAAAAAAAAAAAw+bBaKyl1npJKeVRSS7O4cPPSpIHHCzzPDfJD9Rav7D5MwQAAAAAAAAAAAAAAAAAAAAAAGAXnNX3CbD7aq0vT3LfJL+R5MoFb31zksfWWh9fa716KycHAAAAAAAAAAAAAAAAAAAAAADATji77xOgX7XWS5KUDvbzd0l+uJTyL5I8KMmdk9wmydVJPpTk0lrr+9Y9DgAAAAAAAAAAAAAAAAAAAAAAAPvJg9HoVK312iSv7fs8AAAAAAAAAAAAAAAAAAAAAAAA2C1n9X0CAAAAAAAAAAAAAAAAAAAAAAAAAB6MBgAAAAAAAAAAAAAAAAAAAAAAAPTOg9EAAAAAAAAAAAAAAAAAAAAAAACA3nkwGgAAAAAAAAAAAAAAAAAAAAAAANA7D0YDAAAAAAAAAAAAAAAAAAAAAAAAeufBaAAAAAAAAAAAAAAAAAAAAAAAAEDvPBgNAAAAAAAAAAAAAAAAAAAAAAAA6N3ZfZ8ADMA50yuXXXZZX+cBAAAAAAAAALCWOfc9mwCVcQAAIABJREFUnDPvfQCwRe7RAwAAAAAAAAB2nvvztqfUWvs+B+hVKeURSV7c93kAAAAAAAAAAGzAI2utL+n7JAAYL/foAQAAAAAAAAB7yv15G3JW3ycAAAAAAAAAAAAAAAAAAAAAAAAA4MFoAAAAAAAAAAAAAAAAAAAAAAAAQO9KrbXvc4BelVLOS/INUy/9bZJr19jl3ZK8eGr9kUneu8b+ANrSIWAItAjomw4BfdMhoG86BAyBFgF9G2uHzklyx6n119VaP9XXyQCAe/SAPaRDQN90COibDgF90yFgCLQI6JsOAX0ba4fcn7clZ/d9AtC3g7i8pKv9lVKaL7231voXXe0f4CQ6BAyBFgF90yGgbzoE9E2HgCHQIqBvI+/QpX2fAACc5h49YN/oENA3HQL6pkNA33QIGAItAvqmQ0DfRt4h9+dtwVl9nwAAAAAAAAAAAAAAAAAAAAAAAACAB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9M6D0QAAAAAAAAAAAAAAAAAAAAAAAIDeeTAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgd2f3fQKwh65I8tTGOsA26RAwBFoE9E2HgL7pENA3HQKGQIuAvukQAOwnn/FA33QI6JsOAX3TIaBvOgQMgRYBfdMhoG86xEaVWmvf5wAAAAAAAAAAAAAAAAAAAAAAAACM3Fl9nwAAAAAAAAAAAAAAAAAAAAAAAACAB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9M6D0QAAAAAAAAAAAAAAAAAAAAAAAIDeeTAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgdx6MBgAAAAAAAAAAAAAAAAAAAAAAAPTu7L5PgFmllOsluXuSeye5XZLzknwuyZVJ3pvkLbXWqzs+5vWTPCjJnZLcNslVST6c5NJa6/u7PNa2lFLuk+SrktwqyQ2SXJ7kg0neWGu9ps9z26ZSys2T3CfJPZJ8SZIbJvlkkiuS/Fmt9b09nt6MUspdMvm+3S7JTZJ8JMkHkryp1vr5Ps9tTHSoGzo0oUOsSou6oUUTWnTscYyPBXSoG8bZxK51iGHQoW7o0IQOHVVKuWMm1+IOSW6Z5Nwk1yb5VJK/yeSaXNHfGQ6DDnVDhyZ0iFVpUTe0aEKLWIUOdUOHJnRoPuMD6IPP+G5o+MSufca7N2YYdKgbOjShQ6xCh7qhQxM6dOxxjI8FdKgbxtnErnWIYdChbujQhA4d5f685WlRN7RoQotYhQ51Q4cmdIhV6FA3dGhCh+bb6fFRa7UMYMkkmE9K8tJM/uO+LliuS/KKJA/v4Li3SvKfk3x8wfHemOQxax7nrkkel+QXklyS5NONY7y/o+t40yRPTvKhBV/Pp5M8O8ndevx+b+x6JLl+km9J8p+SvOOEsVQPrtXPJblNzz8Dj03ypgXn+fGDsXrLFfZ90jU4aTnV57XZ4vdAh7q5jjqkQ9P7PNVBg6aXi/q8Rlv6PmhRN9dRi7Ro58dHj98DHermOu7EONOh3sbHjZM8OMlPJHlOkr9K8sXGsS7q6zr0veiQDunQxq7HPZI8LclrM/lLjZOuR03yP5P8aJIb9HVNevo+6FA311GHdGje/pdpz6LlVF/XpofvhRZ1cx21SIum93uqgw5NLxf1dY229H3QoW6uow7p0M6PD4vFsl+Lz/hxNdxn/Nzzdo9ez4sO6ZAOuUev70WHdEiH3J/X96JDOjTmDm1xfLg/b/H10aFurqMO6VBz3+7Pa3e9tKib66hFWjRv/8v0Z9Fyqq9rs+Xvgw51cx11SIem93uqgwZNLxf1dY229H3QoW6uow7p0M6PjxO/jr5PwFKT5HfX+ED7/SQXrHjchyX5aItj/U6SG7fY/4VJXnXCh0JnP5hJviaTp3Au+/VcneSHt/h93vj1OLgGn1hxLF2Z5Ht6GP83SfLcFud5eZJvaXmMVX++Ti+ntn1devg+6JAO6dAGOpTu/0P2cdu+Plv+XmiRFmnRBlq0S+Oj70WHdGiMHdrm+Mhk4vjtmUxIn3Ssi7Z1DYa06JAO6dDmxkeS71/j5+vdSb5mW9ekz0WHdEiHNjs+1vj5Or2c2tZ16XPRIi3Soo1dj1MddGh62dv56uiQDunQ6MeHxWLZz8Vn/Dga7jP+2HN2j94AFh3SIR1yj17fS3RIh3TI/Xk9LzqkQ2Ps0DbHR9yft8w10iEd0qENjY+4P6/NtdIiLdKiDY6PNX6+Ti+ntnVd+lp0SId0aGPX41QHDZpezFXr0DI/gzqkQzs5PtosZ4chuOcxr38oyXsyievZmTz17yuTnDX1nv89yetLKd9Qa7182QOWUi5M8qIk50y9XDN5yvpfJzk/yf2S3HLqz787yc1KKd9Ra/3iEof5qiTfvOw5raOU8pBMngZ6g8YffSDJ2zL5IbxDJj+81z/4sxsl+c+llLNqrb+2hdPcxvW4VZKbz3n92kwmty/P5Impt0jygIP/Pe38JM8updy61vrLGz7PJEkp5XpJfi/JtzX+6Ioklx6c690yGYvl4M8uSPLiUspDaq1v2MZ5joQOrUmHztChzflMJk+03mdatCYtOkOL5h9nF8ZH33RoTTsyznToqK2NjySPT3Lelo61q3RoTTp0hg6drGYyyX9ZJn+x8JlM/sXcuyS5Tw7HRzL52fyDUsrDa62v2/aJbpkOrUmHztAh1qFFa9KiM7Roc/Z9vlqH1qRDZ+jQHDsyPoD95DN+TTvScJ/xDTt2b8y+06E16dAZOrQ55jx0aCEdOkOH5h9nF8ZH33RoTTsyznToKPfnDYsOrUmHztChk7k/73hatCYtOkOLWJUOrUmHztChzTFXrUML6dAZOjTHjoyP5fX9ZDZLTZK35PApev8zyY8ludsx7719kqdn9ul7f5SkLHm8O2T2qYdvSHKvxvtukOSfZ/JDP/3epy15nCfNOc+a5JpMJjQ6eWJhJk9PbT4V8bIkD53z3psn+X8b7/3CvPdu4Pu88euRyQf56X38fZJnJPlHSc6d896S5FGZxKt5Thu/Hgfn8AuN4157MP7Pabzv3kne1Hjvx5LcdsnjTG/35oMx02Y5exvXo88lOqRDOrSRDmXyH14nNea45Q2N4128jWvS5xIt0iIt2tjvRLsyPvpedEiHxtihbY2Pg2N98phjfXDOn1206a99iIsO6ZAObXR8PDHJX2byu9fDk9x8wXvPT/IvM/kLkOnjfyjJeZu+Jn0uOqRDOrTx34em92Wu+vjrpEVapEWbuR7mq5e/VjqkQzo08vFhsVj2c/EZP46G+4yfe77u0RvIEh3SIR3aSIdizqPN90KHdEiHNvT70K6Mj74XHdKhMXZoW+Pj4Fjuzzv5GumQDunQ5saH+/OWv1ZapEVatNnfiab3Za56/jXSIR3Soc1cD3PVy18rHdIhHRr5+Gj1NfV9ApaaJH+aydP2HtBimx+ZM+C/a8ltn9HY7o1Jbrjg/d8x5wfrzksc50kH0b80yW8m+cEk98/kiYEXdviD+dzGvt6T5NYnbPOvG9v8RZLrbfj7vPHrcRDujyb5V0luvOQ2t0jyzsbx35UlfxFY43rcNbO/FDxywfvPzexfNP7Gksea3uaSTX5du7rokA7p0GY7tMK53T7JdY1jff0mr8cQFi3SIi3aXIt2ZXz0veiQDo20Q1sZHwfH+mQm/9LCy5I89eA6XXDwZ5c0jnXRJr/uoS46pEM6tNHxcf0VtvmqJFc1zuGnNnk9+l50SId0aOO/D03v65JNfl27vGiRFmnRZlu0wrmNbr5ah3RIh4wPi8Wyn4vP+HE03Gf8zHHdozegRYd0SIc226EVzs2cx3Lb6NDhcXTo8Bg6tKPjo+9Fh3RopB1yf96AFh3SIR1yf94QFi3SIi1yj17fiw7pkA65P6/vRYd0SIeMj1ZfU98nYKlJcmrF7Z7fGFwvW2KbezQ+GD+X5B5LbHdx41i/vcQ2Nz/uA6HDUN01kycOTu/rwUtu+4eN7b5vw9/nbVyPWy0b7MZ2XznnOn71hq/HsxrHe+YS29zzYMye3ubzSe66xHbTx7lkk1/Xri46pEM6tNkOrXBuT26c219t8loMZdEiLdKizbRol8ZH34sO6dBIO7Tx6zG1v2P/Bd248er0dTi14nY6pEPN/ehQd+f3c41zePO2z2HLX++pFbfTIR1q7keH5u9vel+XbPLr2uVFi7RIizZzPdY4t9HNV+uQDumQ8WGxWPZz8Rk/job7jJ85pnv0BrTokA7p0GY7tMK5mfNYfjsd0qHmfnRoR8dH34sO6dBIO+T+vAEtOqRDOrSZ67Hm+Y3q/ryDr/nUittpkRY196NF8/c3va9LNvl17eqiQzqkQ5u5Hmucm7nq5bfTIR1q7keHdnR8tFnOCr2rtb5/xU1/rbH+jUts8/gk15taf0Gt9T1LbPcfGuvfWUq54aINaq1X1lqvWWLf63h4cmQcv7nW+oYlt/3Fxvr3dnNK823jetRar6i1Xr3Cdn+epHndlhlPKymlnJvksY2Xm2NsRq31r5K8aOqlszMZ06xJh9aiQ0ePoUNrKqWUzI6FZ3R5jKHSorVo0dFjaNFROzM++qZDa9mZcaZDM8fcxvg4fayPbOM4u0yH1qJDR4+hQ915eWP97r2cxZbo0Fp06OgxdIiVadFatOjoMbRoTWOdr9ahtejQ0WPo0FE7Mz6A/eQzfi0703Cf8YeGfG/MWOnQWnTo6DF0aE3mPFrTIR1qHkOHjtqZ8dE3HVrLzowzHZo5pvvzBkSH1qJDR4+hQ90Z1f15iRatSYuOHkOLWIkOrUWHjh5Dh9Zkrro1HdKh5jF06KidGR9teDDabru0sX5uKeX8E7Z5VGP9mcscqNb6riR/PPXSjZN88zLbbtg/bKy/qsW2f5Dk2qn1B5ZSbrv+Ke2s5ni63QaP9S1JbjS1/j9qrX+55LbNMfvobk6JFemQDnVJhya+Icndptavy+RfrON4WqRFXdrHFhkfm6dDxlmXttkh9ocO6VCXdOioTzTWb9rLWQyfDulQl3SIVWmRFnVJiybMV7ejQzrUpX3skPEB7Cqf8RrepX38+2g2T4d0qEs6NGHOox0d0qEu7WOHjI/N0yHjrEv7OPfK5umQDnVJh45yf97ytEiLuqRFrEKHdKhLOjRhrrodHdKhLu1jh/ZyfHgw2m67bs5r5xz35lLKbZJ8ZWP7N7Y43iWN9Ye12HZT7tBYf8eyG9ZaP5fksqmXzsowvqa+NMfTsWOpA9/aWL+kxbZ/lKPner9SygVrnxGr0iEd6pIOTTyxsf6yWuvlHe5/H2mRFnVpH1tkfGyeDhlnXdpmh9gfOqRDXdKho+7cWP9wL2cxfDqkQ13SIValRVrUJS2aMF/djg7pUJf2sUPGB7CrfMZreJf28e+j2Twd0qEu6dCEOY92dEiHurSPHTI+Nk+HjLMu7ePcK5unQzrUJR06yv15y9MiLeqSFrEKHdKhLunQhLnqdnRIh7q0jx3ay/HhwWi77e6N9euSfGzB++/bWH9brfXqFsd7U2P9Pi223ZQvaax/suX2zfd/+Rrnsuua4+kjGzxWcyz+j2U3PBizb2+8PISxOFY6pENdGn2HSinnJXlM4+VndLHvPadFWtSlfWyR8bF5OmScdWmbHWJ/6JAOdUmHjvqnjfXX9nIWw6dDOtQlHWJVWqRFXRp9i8xXr0SHdKhL+9gh4wPYVT7jNbxL+/j30WyeDulQl0bfIXMeK9EhHerSPnbI+Ng8HTLOurSPc69sng7pUJd06Cj35y1Pi7SoS1rEKnRIh7o0+g6Zq16JDulQl/axQ3s5PjwYbbc9trH+llrrFxe8/96N9cvmvut47z1hf324trF+g5bbN98/hK9p60opN0vy0MbLf7LBQ96rsb7NsXinUsozSyl/UUq5spRybSnlowfrv1NK+cFSSjP4HE+HdKgTI+vQIv84yblT6x9J8oqO9r3PtEiLOrHHLTI+Nk+HjLNO9NAh9ocO6VAndOioUsqPJvmeqZeuS/IrPZ3O0OmQDnViZB0yV909LdKiToysRYuYr25Ph3SoE3vcIeMD2FU+4zW8E3v899HzmPfolg7pUCdG1qFFzHm0p0M61Ik97pDxsXk6ZJx1Yo/nXtk8HdKhTujQUe7Pa02LtKgTI2uRuepu6ZAOdWJkHVrEXHV7OqRDndjjDu3l+PBgtB1VSrlJkic2Xn7hCZs1n1j4Ny0P+4HG+i1KKTdvuY+ufbyxftuW2zff/6VrnMsu+6EkN5pa/1Q29HT9g/9IbP6HYtux2Hz/PVpse5ckF2US4fOTXD/JrQ/WvzvJ05P8TSnlPx78nHEMHTpDh7oxpg4t0vyZelat9bqO9r2XtOgMLerGvrbI+NggHTrDOOvG1jrE/tChM3SoG6PuUCnlxqWULy2lPKGU8rok/6nxlp+utb6tj3MbMh06Q4e6MaYOmavukBadoUXdGFOLFjFf3YIOnaFD3djXDhkfwM7xGX+GhndjX/8+eh7zHh3RoTN0qBtj6tAi5jxa0KEzdKgb+9oh42ODdOgM46wb+zr3ygbp0Bk61I1Rd8j9eavTojO0qBtjapG56o7o0Bk61I0xdWgRc9Ut6NAZOtSNfe3QXo4PD0bbXT+f5DZT659M8lsnbHN+Y/3v2hyw1npVkmsaL5/XZh8b8K7G+tcuu2Ep5U5Jbtd4ue+vZ+tKKaeS/JvGy79aa20+DbIrzXH4mVrr1S330Ry7XX/fbpzkSUn+rJRyn473vU90aEKH1qRDE6WUL0/ygMbLz1h3vyOgRRNatKY9b5HxsVk6NGGcramHDrE/dGhCh9Y0tg6VUs4vpdTpJclVSf4yycVJ/uHU269K8oO11l/s4VR3gQ5N6NCaxtahJZmrXp4WTWjRmrRownz1SnRoQofWtOcdMj6AXeQzfkLD17Tnfx+9KvMey9GhCR1akw5NmPNYiQ5N6NCa9rxDxsdm6dCEcbamPZ97ZbN0aEKH1jS2Drk/r3NaNKFFaxpbi5Zkrno5OjShQ2vSoQlz1SvRoQkdWtOed2gvx4cHo+2gUsqjkvxY4+Un11o/ccKmzacVf3aFwze3uekK++jS6xrrjyml3GjuO2f90zmv9f31bFUp5Zwkv5ejX/f7k/w/GzxsX+PwuiSXJPnZJI9Icv9M/tWm+yV5ZJJfzOwvM/dM8ppSyp1XOMe9pkNH6NAaRtahkzSfVP26WutlHex3b2nREVq0hhG0yPjYEB06wjhbQ08dYg/o0BE6tAYdOtZHkzw5yV1qrb/Z98kMkQ4doUNrGFmHzFV3TIuO0KI1jKxFJzFf3YIOHaFDaxhBh4wPYKf4jD9Cw9cwgr+Pnmbeo0M6dIQOrWFkHTqJOY8WdOgIHVrDCDpkfGyIDh1hnK1hBHOvbIgOHaFDa9ChY7k/bwladIQWrWFkLTJX3SEdOkKH1jCyDp3EXHULOnSEDq1hBB3ay/HhwWg7ppTylUn+S+PlVyf59SU2b4a7+XTKZTTD3dzntr0sk6d5nnZ+kqectFEp5Y5JfnLOH12vlHJuN6e2E34ryf82tf6FJE9Y4V9DaqOPcfizSW5fa/3GWuv/VWv9/VrrpbXWy2qtb621vqTW+n8muXOS/ztJndr2NkleUEopK5znXtKhGTq0nrF0aKGDX6S/p/Gyp3svoEUztGg9+94i42MDdGiGcbaePjrEjtOhGTq0Hh2a74Ik/yzJD5dSbtb3yQyNDs3QofWMpUPmqjumRTO0aD1jadFC5qvb0aEZOrSefe+Q8QHsDJ/xMzR8Pfv+99GnmffokA7N0KH1jKVDC5nzaEeHZujQeva9Q8bHBujQDONsPfs+98oG6NAMHVqPDs3n/rwTaNEMLVrPWFpkrrpDOjRDh9Yzlg4tZK66HR2aoUPr2fcO7eX48GC0HVJKuVMmA3E6lh9I8j211jp/q4W2tc3G1Fr/PsmvNl7+yVLKvzhum1LKHZK8Msl5x+22o9MbtFLKv0vyTxov/3St9fVbPpWNj8OD/3htPr173vuuqbX+dJIfb/zR/ZP84zbH3Fc6NEuHVjemDi3hkUluMbX+qSTP7/gYe0OLZmnR6sbQIuOjezo0yzhb3YA6xA7RoVk6tLoRd+jTSe4ytdwtkzmgRyf5j0muOHjfHZP8XJK3l1K+uofzHCQdmqVDqxtTh8xVd0uLZmnR6sbUoiWYr16SDs3SodWNoUPGB7ArfMbP0vDVDegz3j16O0SHZunQ6sbUoSWY81iSDs3SodWNoUPGR/d0aJZxtroBdYgdokOzdGh1I+6Q+/PWpEWztGh1Y2qRueru6NAsHVrdmDq0BHPVS9KhWTq0ujF0aF/Hx9l9nwDLKaXcOsl/T3L7qZcvT/LQWusV87eacVVjfZUn8zW3ae6zD09L8rAcPpmxJPmVUspjM3k66lszeRLn7Q7e98M5/PD7YJI7TO3rmlrrzJM+Symnlj2ZWuv7W519D0opT8rkqdfTfrnW+gtLbn9q2WPNuR6DH4e11l8rpXxzkkdMvfwjSX63y+PsGh1aSIda0qEZT2ys/26ttfkUaaJFJ9CilkbWoo2Pj7HQoYV0qKWeO8SO0qGFdKilMXeo1vrFJO+f80eXJnlhKeVnk/yHJD928PqdkrymlPKgWus7tnOWw6RDC+lQS2Pu0DLMVR9PixbSopa0aIb56iXo0EI61NLIOmSuGhg0n/EL+YxvaWR/H92aeY/5dGghHWpJh2aY81iCDi2kQy2NrEPmPDqiQwvpUEsjm3ulIzq0kA61NOYOuT9vPVq0kBa1NOYWLcNc9Xw6tJAOtaRDM8xVL0GHFtKhlkbWob2bq/ZgtB1QSvmSJK9Jcs+plz+W5CG11ve02NVehrvWem0p5dFJXp7kK6b+6MEHy3E+nskvDq+aeu2Tx7z3fS1OqbR479aVUn4gyS83Xv71Wuu/arGbda7HrozDn8/R/5D92lLK+bXW48bIXtOhxXSoHR06qpRyxyQPbbz8jFX3t8+0aDEtamdsLdrS+Nh7OrSYDrUzgA6xg3RoMR1qR4cWq7V+JsmPl1I+n+QnDl6+WZL/Ukr5Byv+C0M7T4cW06F2dGhp5qobtGgxLWpHi44yX70cHVpMh9oZW4fMVQND5jN+MZ/x7QzgM35XxqF5jyk6tJgOtaNDR5nzWI4OLaZD7YytQ+Y8uqFDi+lQOwPoEDtIhxbToXZ0aDH35x1PixbTona0aGnmqqfo0GI61I4OHWWuejk6tJgOtTO2Du3jXPVZfZ8Ai5VSzkvy6iRfPvXylZk8yfIvWu7uU431W7U8l5tkNtyDGMi11g8leWCSpyf5/BKbvDbJA5Jc3Xj98o5PbVBKKf8kyW/kaEyfmeRHt3gazXF4o1LKjVvu49aN9U2Mwz/J5GfttOslufcGjjN4OrQcHVqODs11UY7+TvbntdY/W2N/e0mLlqNFyxlri4yP9ejQcoyz5QykQ+wYHVqODi1Hh1p5cpIPT63fL8lDejqXXunQcnRoOTrUirnqKVq0HC1ajhbNdVHMVy+kQ8vRoeWMtUPGBzBEPuOXo+HLGchn/NDujTmOeY8DOrQcHVqODs11Ucx5LKRDy9Gh5Yy1Q8bHenRoOcbZcgbSIXaMDi1Hh5ajQ624P2+KFi1Hi5ajRa2Yqz6gQ8vRoeXo0FwXxVz1Qjq0HB1azlg7tG/jw4PRBqyUctMkr0zyD6Ze/nSSb621vnWFXTaffnnnlts33/+JWuuVc9/Zg1rr1bXWf5bkSzOZEHltkg8m+WySv0/yriTPyuQpqv+o1vr+JPdq7OYtWzvhLSulfFcmkZ7+uX9Oku/f5hP0a60fz9H/QEySO7XcTXMstnmy61JqrV9M8jeNl1v9srMPdKgdHVpMh2aVUkqS72287OneDVrUjhYtNvYWGR+r0aF2jLPFhtIhdosOtaNDi+lQO7XWzyZ5UePlb+3jXPqkQ+3o0GI61I656kNa1I4WLaZFs8xXn0yH2tGhxcbeIeMDGBKf8e1o+GJD+Ywf0r0xi5j3mNChdnRoMR2aZc7jZDrUjg4tNvYOGR+r0aF2jLPFhtIhdosOtaNDi+lQO+7PO6RF7WjRYlrUjrnqCR1qR4cW06FZ5qpPpkPt6NBiY+/QPo2Ps/s+AeY7+NdoXp7ka6devirJw2qtf7Libt/VWL97y+3v2lh/54rnsVG11vcledrBcpKva6z/8TH7LPNe3xWllMckeXYmT6k+7b8mecLBf7C10sH1eFcmT5g87e6ZHZ+LNMdim23b+GxjvflE172mQ6vToVk6dKxvSnKXqfXPZfJLNQe0aHVaNEuLDm1ifOwrHVqdDs0aYIfYATq0Oh2apUMre3djve3PzE7TodXp0CwdWtmo56oTLVqHFs3SomOZr15Ah1anQ7N06JC5aqBvPuNX5zN+1gA/44dyb8xJRj3voUOr06FZOnQscx4L6NDqdGiWDh0y57E8HVqdDs0aYIfYATq0Oh2apUMrG/X9eYkWrUOLZmnRysxV69BKdGiWDh3LXPUCOrQ6HZqlQ4f2Ya76rJPfwraVUs5N8tIkD556+TNJHl6Dc7dAAAAPuklEQVRrfdMau35HY/0rSik3arH9g07Y3045eKrqNzVefl0f57JJpZRHJHlujj4I8UVJHl9r/UI/ZzUzdpqBPNbBLzVfccL+unLLxvrHNnScwdGh7dAhHUryfY31F9RaP7HivvaOFm2HFmnRCccZxfg4jg5tx1jG2UA7xMDp0HbokA4t4fON9Rv0chY90KHt0CEdWsJo56oTLdoWLdKimK8+lg5thw7p0CJjGR/AdvmM346xNHygn/GD//voA6Od99Ch7dAhHYo5j2Pp0HbokA6dcJxRjI/j6NB2jGWcDbRDDJwObYcO6dASRnt/XqJF26JFWrQEc9U6tFE6pEMxV30sHdoOHdKhRYY8PjwYbWBKKTdM8pIkF069fE2SR9RaX7/OvmutH0nytqmXzs7RD4eTXNhYf8U65zMA35Tk1NT662qt7+npXDailPJtmTy58vpTL78syeNqrdf1c1ZJklc21i9sse3X5+iH0KW11o+ufUYNpZRbZvYprh/u+jhDpENbpUP96b1DpZTzkzy68fIz2u5nX2nRVmlRf3pv0RL2fnwcR4e2au/H2YA7xIDp0FbpECe5Q2N9E793DY4ObZUOcawxz1UnWrRlWjRi5quPp0NbpUMssvfjA9gun/FbtfcNH/Bn/OD/PnrM8x46tFU61J/eO2TO43g6tFU61J/eO7SEvR8fx9Ghrdr7cTbgDjFgOrRVOsRJRnl/XqJFW6ZFHMtctQ5tiQ6NmLnq4+nQVukQiwx2fHgw2oCUUs5J8oIkD5l6+XNJvqPW+gcdHeaFjfXvXfLcvizJ10y9dHWSV3d0Tn35qcb603s5iw0ppTw0yX9Lcs7Uy69O8pha67X9nNUZr0ry2an1rzsYY8u4qLHeHNNd+a4cbeRHk7xrQ8caDB3aOh3qzxA69N1Jbji1/v4kf7jivvaKFm2dFvVnCC06yV6Pj+Po0Nbt9TgbeIcYKB3aOh3iJN/cWB/E5P4m6dDW6RCLjHKuOtGiHmjRuJmvnkOHtk6HWGSvxwewXT7jt26vGz7wz/hd+PvoUc576NDW6VB/htAhcx5z6NDW6VB/htChk+z1+DiODm3dXo+zgXeIgdKhrdMhTjK6+/MSLeqBFrGIuepDOrQ5OjRu5qrn0KGt0yEWGez48GC0gSilnJ3keUkeNvXy55M8ttb6qg4P9ZwkX5haf3Qp5R5LbNccxM+rtV7T3WltVynlCUkeOvXSWzN58uNeKKV8Q5IX5+gvSH+YyS8Bn+vnrA7VWj+T5PmNl5tjbEYp5Z5JHjX10nVJfrfDUzt9nAuS/Gzj5d+vtdaujzUkOrRdOtSvgXTo+xrrv73vnVmGFm2XFvVrIC1adJy9Hh/H0aHt2vdxNvQOMUw6tF06xElKKQ9P8oDGyy/u41y2RYe2S4dYZKxz1YkWbZsWEfPVM3Rou3SIRfZ9fADb5TN+u/a94UP/jN+Bv48e5byHDm2XDvVrIB0y59GgQ9ulQ/0aSIcWHWevx8dxdGi79n2cDb1DDJMObZcOcZIx3p+XaNG2aRGLmKvWoW3QIWKueoYObZcOscjQx4cHow1AKeV6mQT1kVMvX5fkcbXWl3Z5rFrre5I8a+qlc5JcXEq54TGbpJTyyBz9F2+uTfLULs9rXQcffMu+99FJfnPqpeuSfF+t9brOT6wHpZSvS/LSJOdOvfz6JN9ea/3s/K168ZRMfjk57aJSyiOOe/PBGH1mjj6h8xm11vcu2OZLSynf3uakSim3yeT6XTD18rVJfr7NfnaNDq1Phw7p0MlKKV+V5P5TL30xycVt97NvtGh9WnRIi+Zua3ycQIfWZ5wd2qEOMSA6tD4dOqRDh0opDyilPOrkd85s99VJnt14+fW11rd3c2bDo0Pr06FDOnTIXHU7WrQ+LTqkRSczXz1Lh9anQ4d0aJbxAfTFZ/z6NPzQDn3GPyXu0RsMHVqfDh3SoZOZ85ilQ+vToUM6NHdb4+MEOrQ+4+zQDnWIAdGh9enQIR065P68drRofVp0SIsOmateng6tT4cO6dDJzFXP0qH16dAhHZq1b+Nj6S+GjfrtJN/ZeO1nklxaSjnVcl+XL/GkyX+byb9gc/OD9QcmeU0p5ftrrX95+k2llBsk+cEkv9TY/pdqrR9Y5mRKKXfI/HF2m8b62Qu+1qtqrR874VBvL6W8LMl/S/LHtdYvzjmX+yb56SSPb/zRz9RaLz1h/53Y9PUopdwvySuS3GTq5Xcn+dEkty6ltDnda2qtl7fZoI1a61+XUn41yU9Ovfz8Usq/TPL/1VqvPf1iKeVeSX4rk7F62sdz8i8Qt03yklLK25P8TpIXHvzyMqOUctMkT8jkyd4XNP7439da/3qJL2uX6ZAO6dBE1x06zhMb66+qtf7tivvaJ1qkRVo0sakW7cT46JkO6dDoOpRsb3yUUm6S5JbH/HFzQvmWC471wSFNrnVMh3RIh47qanzcIckLSinvyOQv0F6U5N21zv9Xlkop907yQ0l+pHFe1xy8ts90SId06Kiuxoe56na0SIu06Kiux0eT+epZOqRDOnTUKMcHsJd8xo+k4T7jD7lHb3B0SId0aMI9ev3RIR3SoQn35/VHh3RodB1K3J83MDqkQzp0lPvz+qFFWqRFR7lHb/t0SId06Cj3522fDumQDh01yvGxtFqrpeclSe1wuXDJY16Y5HONbb+Y5E+T/F6SVyb5uzn7//0k12vxtb2/g6/p4iWO87Gp9/99kjdl8kP6nCSvXnAe/27L3+uNXo9M/kWjrsbSJVu4HtdL8vI5x/5oJh9Az0vyloOxOf3nn0vy9UuO8+a+P5nkDZlMsD07yQsPjvH5Y67D0/tuxJbGpg7pkA5toEPHHPMGmdwoMb2/x/TZgKEsHY4dLdKip3Q4li7ZwvXYSot2ZXz0uXQ4bnRo4ONs09cju9ehbY2Pizq6Jqf67sUGvxc6pEM6tJnr8R1z3v/pg/HxkkxugHhektckufyY/X8myUP67sQWvhc6pEM6tJnrceGc95urPv56aZEWadEGx0fjmOar518XHdIhHTI+LBbLHi4dNtln/MAbvunrkd37jHeP3kCWDseNDunQUzocS5ds4Xq4R28gS4fjRod06CkdjqVLtnA93J83kKXDcaNDAx9nm74e2b0ObWt8XNTRNTnVdy82+L3QIR3Soc1cD/fntft+aJEWadFmrseFc95vrnr+tdIhHdKhDY6PxjHNVc+/LjqkQzpkfCy9zHuSHCNQa72klPKoJBcnudXByyXJAw6WeZ6b5AdqrV/Y/Bmu5SZJvu6E91yZ5Edqrf//Fs6HY9Rav1BK+c5M/mWlx0390a2TfOsxm/1dkifUWv9oxcOel+RBS7zv6iQ/UWv9zRWPwwl0SIeGoKcOPSrJl0ytX5HJRD890CItGoKeWmR8DIQOGWfQNx3SoRG7aU4eH6e9OckP1VrftsHzGS0d0qERM1c9IFqkRSNmvnogdEiHRsz4APaaz3gNHwL36I2bDunQELhHb9x0SIeGwP1546ZDxhn0TYd0aMTcnzcgWqRFI2aueiB0SIdGzFz1QOiQDo3Yzo+Ps/o+AfpTa315kvsm+Y1MBupx3pzksbXWx9dar97KybX3K0kuzeSpnIv8bZKfS3K3of5Qjk2t9apa63cl+T8yGWvH+USSX09y31rrK5fc/buSPC3JG5N8dslt/irJz2TyL5z4j9gN0yEdGoINd2ieJzbWn11r/fwa+2NNWqRFQ7ClFhkfA6VDxhn0TYd0aAT+MJN/Ffe5ST645DafSfL8JN+e5IFuutosHdKhETBXvQO0SItGynz1gOiQDo2I8QGMis94DR8C9+iNmw7p0BC4R2/cdEiHhsD9eeOmQ8YZ9E2HdGgE3J+3A7RIi0bAXPXA6ZAOjZS56gHRIR0akb0aH6XW2vc5MACllHMyeerxnZPcJpOnG38oyaW11vf1eW5tlFJuluR+Se6SyZM6b5jJf8B8KMmf11rf2ePpsYRSyl2S3D/J7ZLcOMnlST6Q5I211mvX2O9ZSe6R5G5Jbp/k/ByOjyuTfCTJn9Zar1jrC2BlOsRQbKpD7AYtYig22SLjY9h0COibDjEGpZQLktwrk3F+iyQ3SvL5JJ9O8vEk70jy7h34l332kg6x78xV7wYtAvqmQ4yB8QGMkc94hsI9euOlQwyFe/TGS4cYCvfnjZcOAX3TIcbA/XnDp0XsO3PVw6dDQN90iDHYl/HhwWgAAAAAAAAAAAAAAAAAAAAAAABA787q+wQAAAAAAAAAAAAAAAAAAAAAAAAAPBgNAAAAAAAAAAAAAAAAAAAAAAAA6J0HowEAAAAAAAAAAAAAAAAAAAAAAAC982A0AAAAAAAAAAAAAAAAAAAAAAAAoHcejAYAAAAAAAAAAAAAAAAAAAAAAAD0zoPRAAAAAAAAAAAAAAAAAAAAAAAAgN55MBoAAAAAAAAAAAAAAAAAAAAAAADQOw9GAwAAAAAAAAAAAAAAAAAAAAAAAHrnwWgAAAAAAAAAAAAAAAAAAAAAAABA7zwYDQAAAAAAAAAAAAAAAAAAAAAAAOidB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9M6D0QAAAAAAAAAAAAAAAAAAAAAAAIDeeTAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgdx6MBgAAAAAAAAAAAAAAAAAAAAAAAPTOg9EAAAAAAAAAAAAAAAAAAAAAAACA3nkwGgAAAAAAAAAAAAAAAAAAAAAAANA7D0YDAAAAAAAAAAAAAAAAAAAAAAAAeufBaAAAAAAAAAAAAAAAAAAAAAAAAEDvPBgNAAAAAAAAAAAAAAAAAAAAAAAA6J0HowEAAAAAAAAAAAAAAAAAAAAAAAC982A0AAAAAAAAAAAAAAAAAAAAAAAAoHcejAYAAAAAAAAAAAAAAAAAAAAAAAD0zoPRAAAAAAAAAAAAAAAAAAAAAAAAgN55MBoAAAAAAAAAAAAAAAAAAAAAAADQOw9GAwAAAAAAAAAAAAAAAAAAAAAAAHrnwWgAAAAAAAAAAAAAAAAAAAAAAABA7zwYDQAAAAAAAAAAAAAAAAAAAAAAAOidB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9O5/AXpnFOxFOo7tAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "from uuid import UUID\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor\n", + "\n", + "\n", + "location_names = {\n", + " UUID('53998a51-60de-48ae-b71a-5c37cd1455f2'): \"Loft\",\n", + " UUID('1bc63cda-e223-48bc-93c2-c1f651779d69'): \"Living Room\",\n", + " UUID('ea0683de-6772-4678-bfe7-6014f54ffc8e'): \"Office\",\n", + " UUID('5aaa901a-7564-41fb-8eba-50cdd6fe9f80'): \"Outside\",\n", + "}\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 10), dpi=300)\n", + " configs = get_known_configs().values()\n", + " for i, config in enumerate(configs, start=1):\n", + " plot = figure.add_subplot(2, 2, i)\n", + " coros.append(plot_sensor(config, plot, location_names))\n", + " await asyncio.gather(*coros)\n", + "\n", + "display(figure)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9f576f5bb8e34cb8ab1d3c09f770d027", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(DatePicker(value=None, description='Start date'), DatePicker(value=None, description='En…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "from uuid import UUID\n", + "import functools\n", + "from concurrent.futures import ThreadPoolExecutor\n", + "\n", + "import ipywidgets as widgets\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor\n", + "\n", + "\n", + "def wrap_coroutine(f):\n", + " @functools.wraps(f)\n", + " def run_in_thread(*args, **kwargs):\n", + " loop = asyncio.new_event_loop()\n", + " wrapped = f(*args, **kwargs)\n", + " with ThreadPoolExecutor(max_workers=1) as pool:\n", + " task = pool.submit(loop.run_until_complete, wrapped)\n", + " return task.result()\n", + " return run_in_thread\n", + "\n", + "@wrap_coroutine\n", + "async def plot(*args, **kwargs):\n", + " location_names = {\n", + " UUID('53998a51-60de-48ae-b71a-5c37cd1455f2'): \"Loft\",\n", + " UUID('1bc63cda-e223-48bc-93c2-c1f651779d69'): \"Living Room\",\n", + " UUID('ea0683de-6772-4678-bfe7-6014f54ffc8e'): \"Office\",\n", + " UUID('5aaa901a-7564-41fb-8eba-50cdd6fe9f80'): \"Outside\",\n", + " }\n", + "\n", + " with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 10), dpi=300)\n", + " configs = get_known_configs().values()\n", + " for i, config in enumerate(configs, start=1):\n", + " plot = figure.add_subplot(2, 2, i)\n", + " coros.append(plot_sensor(config, plot, location_names, *args, **kwargs))\n", + " await asyncio.gather(*coros)\n", + " return figure\n", + "\n", + "\n", + "start = widgets.DatePicker(\n", + " description='Start date',\n", + ")\n", + "end = widgets.DatePicker(\n", + " description='End date',\n", + ")\n", + "out = widgets.interactive(plot, collected_after=start, collected_before=end)\n", + "display(out)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "60091fa7d9ea415985ec53937e422b4a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(DatePicker(value=None, description='Start date'), DatePicker(value=None, description='En…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from uuid import UUID\n", + "import ipywidgets as widgets\n", + "from apd.aggregation.analysis import interactable_plot_multiple_charts, configs\n", + "\n", + "location_names = {\n", + " UUID('53998a51-60de-48ae-b71a-5c37cd1455f2'): \"Loft\",\n", + " UUID('1bc63cda-e223-48bc-93c2-c1f651779d69'): \"Living Room\",\n", + " UUID('ea0683de-6772-4678-bfe7-6014f54ffc8e'): \"Office\",\n", + " UUID('5aaa901a-7564-41fb-8eba-50cdd6fe9f80'): \"Outside\",\n", + "}\n", + "\n", + "start = widgets.DatePicker(\n", + " description='Start date',\n", + ")\n", + "end = widgets.DatePicker(\n", + " description='End date',\n", + ")\n", + "\n", + "plot = interactable_plot_multiple_charts(location_names=location_names)\n", + "out = widgets.interactive(plot, collected_after=start, collected_before=end)\n", + "display(out)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "08a4d937037b45bda2298879df7f80b6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(DatePicker(value=None, description='Start date'), DatePicker(value=None, description='En…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import datetime\n", + "import uuid\n", + "import ipywidgets as widgets\n", + "from apd.aggregation.analysis import Config, configs, interactable_plot_multiple_charts, draw_map, get_map_cleaner_for\n", + "from apd.aggregation.database import DataPoint\n", + "from apd.aggregation.utils import merc_x, merc_y\n", + "\n", + "start = widgets.DatePicker(description='Start date')\n", + "end = widgets.DatePicker(description='End date')\n", + "\n", + "def get_literal_data():\n", + " # Get manually entered temperature data, as our particular deployment\n", + " # does not contain data of this shape\n", + " raw_data = {(53.8667, -1.3333): -1, (53.35, -2.2833): 1, (52.45, -1.7333): 3, (51.5, -0.1333): 6, (51.55, -2.5667): 5, (54.9667, -1.6167): -1, (55.9667, -3.2167): -1, (54.7667, -1.5833): 0, (53.7667, -0.3): 1, (53.7667, -3.0167): 0, (51.4833, -3.1833): 4, (53.2667, -3.5167): 2, (52.0833, -2.8): 2, (52.0167, -0.6): 2, (52.6667, 1.2667): 5, (50.4333, -4.9833): 9, (50.35, -4.1167): 10, (50.5167, -2.45): 9, (50.8333, -1.1667): 9, (56.45, -5.4333): 4, (57.5333, -4.05): -2, (54.5167, -3.6167): 3, (53.0833, 0.2667): 4, (51.35, 1.3333): 7, (50.8833, 0.3167): 8, (58.45, -3.1): 3, (50.1, -5.6667): 9, (58.2167, -6.3333): 4, (55.6833, -6.25): 7}\n", + " now = datetime.datetime.now()\n", + " async def points():\n", + " for (coord, temp) in raw_data.items():\n", + " deployment_id = uuid.uuid4()\n", + " yield DataPoint(sensor_name=\"Location\", deployment_id=deployment_id, collected_at=now, data=coord)\n", + " yield DataPoint(sensor_name=\"Temperature\", deployment_id=deployment_id, collected_at=now, data=temp)\n", + " async def deployments(*args, **kwargs):\n", + " yield None, points()\n", + " return deployments\n", + "\n", + "def draw_map_with_gb(plot, x, y, colour):\n", + " # Draw the map and add an explicit coastline\n", + " gb_boundary = [(-2.6653539699999556, 51.617254950000074), (-2.6937556629999335, 51.59617747600004), (-2.71312415299991, 51.58661530200004), (-2.760487433999913, 51.579779364000046), (-2.7980850899999155, 51.56350332200009), (-2.816395636999914, 51.555568752000056), (-2.8587133449999556, 51.546128648000035), (-2.943348761999914, 51.54254791900007), (-2.9562882149999155, 51.54572174700007), (-2.9641007149999155, 51.552801825000074), (-2.969471808999913, 51.559881903000075), (-2.9746801419999542, 51.56297435100004), (-2.984038865999935, 51.55853913000004), (-3.0102432929999168, 51.53803131700005), (-3.0156957669999542, 51.53164297100005), (-3.0737198559999115, 51.50836823100008), (-3.0764867829999503, 51.50775788000004), (-3.088937954999949, 51.505072333000044), (-3.105620897999927, 51.49721914300005), (-3.1317032539999445, 51.48041413000004), (-3.1350805329999503, 51.47630442900004), (-3.1409399079999503, 51.46478913000004), (-3.1453751289999445, 51.45994700700004), (-3.1524145169999542, 51.45718008000006), (-3.1666560539999296, 51.45600006700005), (-3.1723933579999084, 51.45327383000006), (-3.1727188789999445, 51.453111070000034), (-3.160064256999931, 51.43183014500005), (-3.167144334999932, 51.41046784100007), (-3.1848038399999155, 51.39760976800005), (-3.204009568999936, 51.401597398000035), (-3.218861456999946, 51.402777411000045), (-3.289418097999942, 51.38422272300005), (-3.539173956999946, 51.398504950000074), (-3.557443813999953, 51.40509674700007), (-3.5753067699999406, 51.420436916000085), (-3.6047257149999155, 51.44570547100005), (-3.6631973949999406, 51.476223049000055), (-3.6769913399999155, 51.47703685100004), (-3.695423956999946, 51.47150299700007), (-3.717925584999932, 51.478583075000074), (-3.7376195949999556, 51.49087148600006), (-3.748036261999914, 51.50092194200005), (-3.7494197259999282, 51.50535716400009), (-3.747670050999943, 51.507025458000044), (-3.7445369129999335, 51.50763580900008), (-3.741851365999935, 51.50836823100008), (-3.7493383449999556, 51.52806224200003), (-3.7519018219999225, 51.53306712400007), (-3.758941209999932, 51.54677969000005), (-3.770130988999938, 51.56329987200007), (-3.782215949999909, 51.57664622600004), (-3.7902725899999155, 51.58197663000004), (-3.8077286449999406, 51.589178778000075), (-3.8169652989999463, 51.59650299700007), (-3.8326716789999296, 51.61554596600007), (-3.8416235019999476, 51.621527411000045), (-3.8548884759999282, 51.62384674700007), (-3.8867895169999542, 51.62140534100007), (-3.9623917309999115, 51.61562734600005), (-3.9766332669999542, 51.61188385600008), (-3.989979620999918, 51.60651276200008), (-3.998768683999913, 51.60028717700004), (-3.999908006999931, 51.59088776200008), (-3.9922582669999542, 51.58112213700008), (-3.9818009109999366, 51.571600653000075), (-3.974598761999914, 51.56297435100004), (-4.016184048999946, 51.56297435100004), (-4.016102667999917, 51.56037018400008), (-4.0208227199999556, 51.555853583000044), (-4.026519334999932, 51.554022528000075), (-4.029204881999931, 51.55927155200004), (-4.031971808999913, 51.56313711100006), (-4.0385636059999115, 51.56622955900008), (-4.046457485999952, 51.568426825000074), (-4.0531306629999335, 51.569240627000056), (-4.056304490999935, 51.56704336100006), (-4.065581834999932, 51.55756256700005), (-4.070220506999931, 51.555568752000056), (-4.0768123039999296, 51.55695221600007), (-4.087269660999937, 51.56191640800006), (-4.112131313999953, 51.565619208000044), (-4.121652798999946, 51.56598541900007), (-4.132191535999937, 51.56297435100004), (-4.142730272999927, 51.55695221600007), (-4.156809048999946, 51.54629140800006), (-4.1664119129999335, 51.54254791900007), (-4.176503058999913, 51.544256903000075), (-4.18773352799991, 51.54877350500004), (-4.1967667309999115, 51.54938385600008), (-4.200550910999937, 51.538763739000046), (-4.213368292999917, 51.539129950000074), (-4.272450324999909, 51.554754950000074), (-4.2899063789999445, 51.555568752000056), (-4.293324347999942, 51.55914948100008), (-4.29515540299991, 51.56195709800005), (-4.297352667999917, 51.569240627000056), (-4.278309699999909, 51.578192450000074), (-4.280832485999952, 51.58881256700005), (-4.2897029289999296, 51.601548570000034), (-4.2899063789999445, 51.61701080900008), (-4.255767381999931, 51.62384674700007), (-4.252023891999954, 51.62710195500006), (-4.241281704999949, 51.63934967700004), (-4.234730597999942, 51.644964911000045), (-4.228505011999914, 51.63743724200003), (-4.234730597999942, 51.63743724200003), (-4.234730597999942, 51.631293036000045), (-4.2278539699999556, 51.628119208000044), (-4.22101803299995, 51.62384674700007), (-4.1900935539999296, 51.63027578300006), (-4.139027472999942, 51.63231028900009), (-4.0912979809999115, 51.639878648000035), (-4.070220506999931, 51.66229889500005), (-4.0698136059999115, 51.66893138200004), (-4.070383266999954, 51.67430247600004), (-4.07054602799991, 51.67597077000005), (-4.0754288399999155, 51.677801825000074), (-4.087269660999937, 51.668850002000056), (-4.095448370999918, 51.66510651200008), (-4.106841600999928, 51.66425202000005), (-4.146351691999939, 51.66705963700008), (-4.200550910999937, 51.68585846600007), (-4.214955206999946, 51.679673570000034), (-4.293690558999913, 51.67226797100005), (-4.3152970039999445, 51.67747630400004), (-4.342355923999946, 51.69086334800005), (-4.3664444649999155, 51.70848216400009), (-4.379261847999942, 51.72687409100007), (-4.338042772999927, 51.72333405200004), (-4.319976365999935, 51.72483958500004), (-4.310454881999931, 51.733710028000075), (-4.328724738999938, 51.73297760600008), (-4.3471573559999115, 51.73578522300005), (-4.3625382149999155, 51.74286530200004), (-4.371815558999913, 51.754787502000056), (-4.368763800999943, 51.75698476800005), (-4.362904425999943, 51.76386139500005), (-4.358021613999938, 51.773138739000046), (-4.358225063999953, 51.782131252000056), (-4.365101691999939, 51.789048570000034), (-4.3714900379999335, 51.78595612200007), (-4.379261847999942, 51.77529531500005), (-4.384917772999927, 51.77187734600005), (-4.3929744129999335, 51.763739325000074), (-4.399159308999913, 51.76162344000005), (-4.409331834999932, 51.76316966400009), (-4.417876756999931, 51.76788971600007), (-4.426503058999913, 51.77529531500005), (-4.445790167999917, 51.77326080900008), (-4.449330206999946, 51.76630280200004), (-4.441395636999914, 51.75678131700005), (-4.426503058999913, 51.747300523000035), (-4.460764126999948, 51.73578522300005), (-4.4988907539999445, 51.73484935100004), (-4.574208136999914, 51.74115631700005), (-4.603423631999931, 51.73924388200004), (-4.639230923999946, 51.73318105700008), (-4.6453751289999445, 51.732123114000046), (-4.678212042999917, 51.71743398600006), (-4.680287238999938, 51.692694403000075), (-4.689442511999914, 51.69159577000005), (-4.69163977799991, 51.689886786000045), (-4.69163977799991, 51.685980536000045), (-4.693959113999938, 51.67841217700004), (-4.712310350999928, 51.650091864000046), (-4.721424933999913, 51.652044989000046), (-4.734934048999946, 51.65924713700008), (-4.741851365999935, 51.65607330900008), (-4.759185350999928, 51.644964911000045), (-4.8482966789999296, 51.64630768400008), (-4.86351477799991, 51.64411041900007), (-4.878977016999954, 51.63743724200003), (-4.887806769999941, 51.62995026200008), (-4.8957413399999155, 51.621079820000034), (-4.904774542999917, 51.61383698100008), (-4.923695441999939, 51.608628648000035), (-4.931996222999942, 51.59902578300006), (-4.941029425999943, 51.59650299700007), (-4.946034308999913, 51.59760163000004), (-4.956450975999928, 51.602769273000035), (-5.021595831999946, 51.61603424700007), (-5.0457657539999445, 51.62689850500004), (-5.0366104809999115, 51.63743724200003), (-5.0511775379999335, 51.65692780200004), (-5.100493943999936, 51.66469961100006), (-5.119740363999938, 51.67841217700004), (-5.113433397999927, 51.68528880400004), (-5.0366104809999115, 51.67841217700004), (-5.038726365999935, 51.68183014500005), (-5.04133053299995, 51.68939850500004), (-5.043446417999917, 51.692694403000075), (-5.028675910999937, 51.69293854400007), (-5.002552863999938, 51.68740469000005), (-4.988189256999931, 51.68585846600007), (-4.974598761999914, 51.687933661000045), (-4.941029425999943, 51.70014069200005), (-4.892648891999954, 51.706366278000075), (-4.868275519999941, 51.716782945000034), (-4.8580623039999296, 51.71832916900007), (-4.844838019999941, 51.71381256700005), (-4.844838019999941, 51.720038153000075), (-4.873402472999942, 51.73773834800005), (-4.879017706999946, 51.76203034100007), (-4.8625382149999155, 51.78237539300005), (-4.824330206999946, 51.788275458000044), (-4.824330206999946, 51.79572174700007), (-4.836008266999954, 51.790716864000046), (-4.864979620999918, 51.783270575000074), (-4.921294725999928, 51.78001536700003), (-4.933583136999914, 51.77529531500005), (-4.9172257149999155, 51.77533600500004), (-4.905181443999936, 51.771185614000046), (-4.900542772999927, 51.76211172100005), (-4.906239386999914, 51.747300523000035), (-4.8920792309999115, 51.73940664300005), (-4.895659959999932, 51.728176174000055), (-4.9105525379999335, 51.71820709800005), (-4.988189256999931, 51.70685455900008), (-5.009917772999927, 51.706366278000075), (-5.149240688999953, 51.718085028000075), (-5.166900193999936, 51.71381256700005), (-5.156971808999913, 51.69757721600007), (-5.1686091789999296, 51.68891022300005), (-5.1828507149999155, 51.68927643400008), (-5.180653449999909, 51.70014069200005), (-5.180653449999909, 51.706366278000075), (-5.230132615999935, 51.73004791900007), (-5.2495011059999115, 51.733710028000075), (-5.228138800999943, 51.73395416900007), (-5.213937954999949, 51.73574453300006), (-5.202870245999918, 51.74079010600008), (-5.191151495999918, 51.75104401200008), (-5.176828579999949, 51.75967031500005), (-5.1432185539999296, 51.76386139500005), (-5.125965949999909, 51.76850006700005), (-5.110259568999936, 51.778509833000044), (-5.107085740999935, 51.78807200700004), (-5.112294074999909, 51.81317780200004), (-5.113392706999946, 51.82880280200004), (-5.11750240799995, 51.84369538000004), (-5.125884568999936, 51.85602448100008), (-5.139637824999909, 51.86399974200003), (-5.146473761999914, 51.85716380400004), (-5.16437740799995, 51.86676666900007), (-5.2037654289999296, 51.87018463700008), (-5.221587693999936, 51.87767161700003), (-5.2358292309999115, 51.87103913000004), (-5.2914119129999335, 51.86399974200003), (-5.3109431629999335, 51.86399974200003), (-5.304269985999952, 51.867621161000045), (-5.297352667999917, 51.87018463700008), (-5.297352667999917, 51.87767161700003), (-5.300689256999931, 51.882025458000044), (-5.302561001999948, 51.88523997600004), (-5.300160285999937, 51.888332424000055), (-5.2905167309999115, 51.89199453300006), (-5.2905167309999115, 51.898138739000046), (-5.2983292309999115, 51.91095612200007), (-5.288929816999939, 51.91693756700005), (-5.252837693999936, 51.91864655200004), (-5.234201626999948, 51.923041083000044), (-5.204172329999949, 51.942287502000056), (-5.191151495999918, 51.946600653000075), (-5.16038977799991, 51.94944896000004), (-5.1195369129999335, 51.95892975500004), (-5.088042772999927, 51.97601959800005), (-5.085031704999949, 52.00185781500005), (-5.070790167999917, 52.00185781500005), (-5.070790167999917, 52.00804271000004), (-5.082753058999913, 52.01447174700007), (-5.081206834999932, 52.021185614000046), (-5.070220506999931, 52.02635325700004), (-5.053700324999909, 52.028509833000044), (-5.0266007149999155, 52.027411200000074), (-5.015044725999928, 52.02533600500004), (-4.961740688999953, 52.007513739000046), (-4.942534959999932, 52.007473049000055), (-4.913685675999943, 52.014837958000044), (-4.920521613999938, 52.028509833000044), (-4.9016007149999155, 52.02643463700008), (-4.863189256999931, 52.01699453300006), (-4.841420050999943, 52.014837958000044), (-4.83226477799991, 52.01898834800005), (-4.833851691999939, 52.02875397300005), (-4.8382869129999335, 52.04010651200008), (-4.838002081999946, 52.04901764500005), (-4.83039303299995, 52.05292389500005), (-4.796986456999946, 52.05646393400008), (-4.77757727799991, 52.064886786000045), (-4.7631729809999115, 52.075873114000046), (-4.7386775379999335, 52.100816148000035), (-4.720285610999952, 52.113348700000074), (-4.7065323559999115, 52.11347077000005), (-4.673451300999943, 52.09739817900004), (-4.675689256999931, 52.126939195000034), (-4.637521938999953, 52.13849518400008), (-4.513824022999927, 52.13568756700005), (-4.50226803299995, 52.138373114000046), (-4.495757615999935, 52.14350006700005), (-4.490956183999913, 52.150376695000034), (-4.484283006999931, 52.156317450000074), (-4.454701300999943, 52.16205475500004), (-4.4348038399999155, 52.170355536000045), (-4.415394660999937, 52.18154531500005), (-4.385568813999953, 52.20343659100007), (-4.371245897999927, 52.20929596600007), (-4.3547257149999155, 52.212103583000044), (-4.334339972999942, 52.21283600500004), (-4.315825975999928, 52.21629466400003), (-4.197132941999939, 52.279282945000034), (-4.1390681629999335, 52.33022695500006), (-4.10960852799991, 52.365301825000074), (-4.096262173999946, 52.387884833000044), (-4.0873917309999115, 52.430121161000045), (-4.0789688789999445, 52.45302969000005), (-4.067941860999952, 52.47361888200004), (-4.056548631999931, 52.48786041900007), (-4.0618383449999556, 52.49705638200004), (-4.064035610999952, 52.50918203300006), (-4.062570766999954, 52.52098216400003), (-4.056548631999931, 52.52944570500006), (-4.048491990999935, 52.530462958000044), (-4.0266007149999155, 52.52338288000004), (-4.016184048999946, 52.52195872600004), (-3.998768683999913, 52.52594635600008), (-3.9473363919999542, 52.549261786000045), (-3.9473363919999542, 52.556708075000074), (-3.9744766919999392, 52.55654531500005), (-4.025868292999917, 52.545355536000045), (-4.0531306629999335, 52.54242584800005), (-4.068470831999946, 52.550116278000075), (-4.1141251289999445, 52.58860911700003), (-4.125477667999917, 52.60390859600005), (-4.122222459999932, 52.62872955900008), (-4.105946417999917, 52.653509833000044), (-4.0848282539999445, 52.67267487200007), (-4.067128058999913, 52.68024323100008), (-4.063547329999949, 52.68309153900003), (-4.05882727799991, 52.696600653000075), (-4.056548631999931, 52.70066966400003), (-4.052723761999914, 52.70221588700008), (-4.041981574999909, 52.70465729400007), (-4.001088019999941, 52.72410716400003), (-3.988270636999914, 52.73427969000005), (-4.014719204999949, 52.73232656500005), (-4.031971808999913, 52.723944403000075), (-4.048817511999914, 52.721584377000056), (-4.125152147999927, 52.77830638200004), (-4.144357876999948, 52.802801825000074), (-4.149037238999938, 52.81207916900007), (-4.146229620999918, 52.82021719000005), (-4.128895636999914, 52.82363515800006), (-4.117339647999927, 52.83075592700004), (-4.1197810539999296, 52.84625885600008), (-4.127756313999953, 52.86172109600005), (-4.132191535999937, 52.86831289300005), (-4.131988084999932, 52.882473049000055), (-4.129872199999909, 52.88922760600008), (-4.123605923999946, 52.89325592700004), (-4.064035610999952, 52.919175523000035), (-4.071400519999941, 52.921087958000044), (-4.074574347999942, 52.92279694200005), (-4.0776261059999115, 52.926662502000056), (-4.0891007149999155, 52.918850002000056), (-4.100493943999936, 52.914129950000074), (-4.1105850899999155, 52.915676174000055), (-4.118560350999928, 52.926662502000056), (-4.144398566999939, 52.91478099200003), (-4.171620245999918, 52.91347890800006), (-4.228505011999914, 52.919175523000035), (-4.300689256999931, 52.905585028000075), (-4.317290818999936, 52.89935944200005), (-4.337310350999928, 52.89203522300005), (-4.406605597999942, 52.89252350500004), (-4.4272354809999115, 52.885972398000035), (-4.446197068999936, 52.87592194200005), (-4.4816788399999155, 52.850897528000075), (-4.477935350999928, 52.84833405200004), (-4.475493943999936, 52.84414297100005), (-4.491363084999932, 52.83820221600007), (-4.500965949999909, 52.82680898600006), (-4.501332160999937, 52.81391022300005), (-4.4891251289999445, 52.803168036000045), (-4.501942511999914, 52.794989325000074), (-4.509185350999928, 52.791449286000045), (-4.5164688789999445, 52.789496161000045), (-4.5285538399999155, 52.79047272300005), (-4.5424698559999115, 52.80068594000005), (-4.5639542309999115, 52.80524323100008), (-4.583078579999949, 52.81464264500005), (-4.594634568999936, 52.81679922100005), (-4.606516079999949, 52.81509023600006), (-4.61351477799991, 52.81110260600008), (-4.619211391999954, 52.80654531500005), (-4.626332160999937, 52.803168036000045), (-4.648589647999927, 52.79962799700007), (-4.704497850999928, 52.803168036000045), (-4.719309048999946, 52.79751211100006), (-4.733225063999953, 52.78750234600005), (-4.747425910999937, 52.78343333500004), (-4.762847459999932, 52.789496161000045), (-4.752512173999946, 52.79877350500004), (-4.7514542309999115, 52.80320872600004), (-4.755441860999952, 52.80931224200003), (-4.7492569649999155, 52.81427643400008), (-4.734934048999946, 52.83047109600005), (-4.596058722999942, 52.92841217700004), (-4.580962693999936, 52.93349844000005), (-4.562082485999952, 52.93451569200005), (-4.543527798999946, 52.937933661000045), (-4.523996548999946, 52.944240627000056), (-4.443430141999954, 52.98216380400004), (-4.423695441999939, 53.00263092700004), (-4.358225063999953, 53.02846914300005), (-4.349964972999942, 53.04148997600004), (-4.345692511999914, 53.059475002000056), (-4.343861456999946, 53.10106028900003), (-4.340891079999949, 53.11273834800005), (-4.334339972999942, 53.11676666900007), (-4.3276261059999115, 53.11469147300005), (-4.324696417999917, 53.10789622600004), (-4.320668097999942, 53.10150788000004), (-4.312245245999918, 53.109442450000074), (-4.304758266999954, 53.12099844000005), (-4.303618943999936, 53.12531159100007), (-4.263539191999939, 53.15452708500004), (-4.2523494129999335, 53.159409898000035), (-4.234527147999927, 53.16400788000004), (-4.221302863999938, 53.175034898000035), (-4.200550910999937, 53.20099518400008), (-4.17796790299991, 53.21759674700007), (-4.151519334999932, 53.22809479400007), (-4.122222459999932, 53.23346588700008), (-4.0906876289999445, 53.23517487200007), (-4.08234615799995, 53.23354726800005), (-4.074330206999946, 53.23065827000005), (-4.066883917999917, 53.22907135600008), (-4.054107225999928, 53.234361070000034), (-4.032297329999949, 53.24070872600004), (-4.008900519999941, 53.24445221600007), (-3.974598761999914, 53.261786200000074), (-3.8653051419999542, 53.289129950000074), (-3.8312882149999155, 53.289129950000074), (-3.841420050999943, 53.30744049700007), (-3.870757615999935, 53.32562897300005), (-3.8784073559999115, 53.337591864000046), (-3.859974738999938, 53.33633047100005), (-3.840565558999913, 53.33283112200007), (-3.822987433999913, 53.32656484600005), (-3.8101293609999516, 53.31708405200004), (-3.7905167309999115, 53.323431708000044), (-3.7688695949999556, 53.31915924700007), (-3.748199022999927, 53.307806708000044), (-3.7319229809999115, 53.29287344000005), (-3.7162979809999115, 53.28693268400008), (-3.6022029289999296, 53.28888580900008), (-3.5623266269999476, 53.29441966400003), (-3.372059699999909, 53.350897528000075), (-3.33031165299991, 53.35179271000004), (-3.2923884759999282, 53.34052155200004), (-3.2713110019999476, 53.33055247600004), (-3.262074347999942, 53.32050202000005), (-3.250803188999953, 53.312567450000074), (-3.122222459999932, 53.26227448100008), (-3.107533331999946, 53.25189850500004), (-3.0951228509999282, 53.23932526200008), (-3.0877579419999392, 53.23468659100007), (-3.0845434239999463, 53.23859284100007), (-3.0845434239999463, 53.25857168200008), (-3.0845434239999463, 53.275458075000074), (-3.09593665299991, 53.28713613500008), (-3.1111954419999392, 53.302801825000074), (-3.1354060539999296, 53.33380768400008), (-3.171538865999935, 53.36225006700005), (-3.185210740999935, 53.37726471600007), (-3.186350063999953, 53.39276764500005), (-3.175526495999918, 53.40273672100005), (-3.157297329999949, 53.40875885600008), (-3.1146541009999282, 53.41266510600008), (-3.0942276679999168, 53.41738515800006), (-3.058257615999935, 53.434759833000044), (-3.0355525379999335, 53.43374258000006), (-3.0121964179999168, 53.41669342700004), (-2.9529516269999476, 53.323919989000046), (-2.9351293609999516, 53.309475002000056), (-2.9105525379999335, 53.29633209800005), (-2.8814998039999296, 53.288397528000075), (-2.850575324999909, 53.289129950000074), (-2.849598761999914, 53.29120514500005), (-2.848378058999913, 53.29555898600006), (-2.8449600899999155, 53.300116278000075), (-2.837554490999935, 53.302801825000074), (-2.8286026679999168, 53.302435614000046), (-2.813384568999936, 53.297756252000056), (-2.8061417309999115, 53.296576239000046), (-2.789784308999913, 53.29743073100008), (-2.775502081999946, 53.29987213700008), (-2.7481176419999542, 53.30963776200008), (-2.753651495999918, 53.32245514500005), (-2.750884568999936, 53.33161041900007), (-2.743153449999909, 53.33852773600006), (-2.734486456999946, 53.34442780200004), (-2.7261449859999516, 53.34198639500005), (-2.7174373039999296, 53.34271881700005), (-2.708607550999943, 53.346136786000045), (-2.6997777989999463, 53.35179271000004), (-2.7141007149999155, 53.35236237200007), (-2.764393683999913, 53.34516022300005), (-2.775380011999914, 53.341009833000044), (-2.782378709999932, 53.32636139500005), (-2.799794074999909, 53.32103099200003), (-2.810332811999956, 53.32172272300005), (-2.843658006999931, 53.323919989000046), (-2.886463995999918, 53.33356354400007), (-2.924956834999932, 53.35000234600005), (-2.956939256999931, 53.37055084800005), (-2.980824347999942, 53.39276764500005), (-3.096587693999936, 53.54433828300006), (-3.101918097999942, 53.55805084800005), (-3.0994766919999392, 53.57200755400004), (-3.087635870999918, 53.58771393400008), (-3.021839972999942, 53.65281810100004), (-2.968658006999931, 53.69403717700004), (-2.9603572259999282, 53.69757721600007), (-2.9517309239999463, 53.70807526200008), (-2.9114477199999556, 53.725043036000045), (-2.899037238999938, 53.73541901200008), (-2.9848526679999168, 53.73607005400004), (-3.021473761999914, 53.745794989000046), (-3.049183722999942, 53.769517320000034), (-3.056385870999918, 53.80304596600007), (-3.044911261999914, 53.87848541900007), (-3.056630011999914, 53.90615469000005), (-3.040679490999935, 53.923529364000046), (-3.017567511999914, 53.93195221600007), (-2.925689256999931, 53.95270416900007), (-2.909250454999949, 53.95384349200003), (-2.896107550999943, 53.94773997600004), (-2.8885391919999392, 53.94603099200003), (-2.885365363999938, 53.950506903000075), (-2.881988084999932, 53.95652903900003), (-2.874175584999932, 53.96165599200003), (-2.865142381999931, 53.96548086100006), (-2.8579809239999463, 53.96759674700007), (-2.869252081999946, 53.97882721600007), (-2.8344620429999168, 53.99982330900008), (-2.830067511999914, 54.01601797100005), (-2.8475235669999392, 54.00836823100008), (-2.864857550999943, 54.00429922100005), (-2.895497199999909, 54.00234609600005), (-2.900298631999931, 54.00495026200008), (-2.9160863919999542, 54.026556708000044), (-2.91820227799991, 54.03432851800005), (-2.911284959999932, 54.03998444200005), (-2.9007869129999335, 54.044907945000034), (-2.8920792309999115, 54.050116278000075), (-2.872670050999943, 54.071600653000075), (-2.8588761059999115, 54.08100006700005), (-2.826771613999938, 54.08881256700005), (-2.815174933999913, 54.09878164300005), (-2.795969204999949, 54.12518952000005), (-2.8128149079999503, 54.139878648000035), (-2.8364151679999168, 54.16758860900006), (-2.8509415359999366, 54.18463776200008), (-2.854237433999913, 54.19407786700003), (-2.8328751289999445, 54.19904205900008), (-2.810292120999918, 54.21190013200004), (-2.7952367829999503, 54.22947825700004), (-2.795969204999949, 54.24872467700004), (-2.8028051419999542, 54.24872467700004), (-2.806630011999914, 54.233710028000075), (-2.8208715489999463, 54.22174713700008), (-2.850575324999909, 54.20774974200003), (-2.886382615999935, 54.19627513200004), (-2.904652472999942, 54.18764883000006), (-2.9126684239999463, 54.176988023000035), (-2.9203995429999168, 54.16205475500004), (-2.939198370999918, 54.15509674700007), (-2.9842016269999476, 54.15314362200007), (-2.997710740999935, 54.15957265800006), (-3.011341925999943, 54.17413971600007), (-3.017323370999918, 54.19009023600006), (-3.008168097999942, 54.20034414300005), (-3.015370245999918, 54.21190013200004), (-3.024484829999949, 54.221584377000056), (-3.035755988999938, 54.22597890800006), (-3.049183722999942, 54.22207265800006), (-3.044667120999918, 54.208319403000075), (-3.047840949999909, 54.19432200700004), (-3.053537563999953, 54.181301174000055), (-3.056630011999914, 54.17023346600007), (-3.0610245429999168, 54.16193268400008), (-3.090728318999936, 54.13947174700007), (-3.10765540299991, 54.11855703300006), (-3.117909308999913, 54.10883209800005), (-3.145253058999913, 54.100043036000045), (-3.147450324999909, 54.08869049700007), (-3.1443985669999392, 54.07514069200005), (-3.1453751289999445, 54.063788153000075), (-3.1805313789999445, 54.09284088700008), (-3.1897680329999503, 54.09788646000004), (-3.2057185539999296, 54.098537502000056), (-3.219553188999953, 54.100775458000044), (-3.2311091789999296, 54.105129299000055), (-3.240956183999913, 54.11212799700007), (-3.2381078769999476, 54.12759023600006), (-3.232533331999946, 54.14468008000006), (-3.233143683999913, 54.15916575700004), (-3.248402472999942, 54.16681549700007), (-3.248402472999942, 54.17365143400008), (-3.215199347999942, 54.17983633000006), (-3.206776495999918, 54.20892975500004), (-3.2090551419999542, 54.24274323100008), (-3.207386847999942, 54.263006903000075), (-3.2231339179999168, 54.25763580900008), (-3.231353318999936, 54.24721914300005), (-3.240956183999913, 54.22207265800006), (-3.232167120999918, 54.20254140800006), (-3.247141079999949, 54.19794342700004), (-3.270130988999938, 54.19912344000005), (-3.2860001289999445, 54.19721100500004), (-3.306792772999927, 54.19188060100004), (-3.3285212879999335, 54.204738674000055), (-3.3644913399999155, 54.24249909100007), (-3.394195115999935, 54.26439036700003), (-3.407378709999932, 54.27773672100005), (-3.412912563999953, 54.29376862200007), (-3.41038977799991, 54.30145905200004), (-3.405995245999918, 54.30963776200008), (-3.4041235019999476, 54.31854889500005), (-3.4114477199999556, 54.33274974200003), (-3.4134415359999366, 54.342962958000044), (-3.4163305329999503, 54.344916083000044), (-3.440174933999913, 54.35175202000005), (-3.474273240999935, 54.39350006700005), (-3.497710740999935, 54.40582916900007), (-3.5918676419999542, 54.48309967700004), (-3.608143683999913, 54.488267320000034), (-3.613189256999931, 54.49164459800005), (-3.6236873039999296, 54.50608958500004), (-3.6341853509999282, 54.512884833000044), (-3.6268204419999392, 54.520412502000056), (-3.616200324999909, 54.52757396000004), (-3.61156165299991, 54.52993398600006), (-3.5903214179999168, 54.56464264500005), (-3.5638321609999366, 54.64276764500005), (-3.5301407539999445, 54.68805573100008), (-3.5160212879999335, 54.712876695000034), (-3.5091853509999282, 54.72166575700004), (-3.500721808999913, 54.72597890800006), (-3.478871222999942, 54.730902411000045), (-3.4681290359999366, 54.73529694200005), (-3.455433722999942, 54.745021877000056), (-3.439564581999946, 54.76146067900004), (-3.4309789699999556, 54.780462958000044), (-3.440174933999913, 54.79743073100008), (-3.4075414699999556, 54.85602448100008), (-3.3879288399999155, 54.88336823100008), (-3.3644913399999155, 54.89980703300006), (-3.3449600899999155, 54.90253327000005), (-3.3333634109999366, 54.89728424700007), (-3.3227432929999168, 54.889878648000035), (-3.3064672519999476, 54.88617584800005), (-3.295725063999953, 54.88690827000005), (-3.254628058999913, 54.89980703300006), (-3.267323370999918, 54.905503648000035), (-3.317290818999936, 54.92031484600005), (-3.2914932929999168, 54.93667226800005), (-3.276519334999932, 54.943426825000074), (-3.213612433999913, 54.954413153000075), (-3.2010391919999392, 54.95221588700008), (-3.1936742829999503, 54.94863515800006), (-3.1879776679999168, 54.94448476800005), (-3.1801651679999168, 54.94082265800006), (-3.14281165299991, 54.93353913000004), (-3.122792120999918, 54.93268463700008), (-3.0395401679999168, 54.94717031500005), (-3.021839972999942, 54.954413153000075), (-3.090728318999936, 54.954413153000075), (-3.090728318999936, 54.96124909100007), (-3.0715225899999155, 54.96312083500004), (-3.0562231109999516, 54.968817450000074), (-3.040923631999931, 54.97247955900008), (-3.021839972999942, 54.968085028000075), (-3.021839972999942, 54.97553131700005), (-3.0462947259999282, 54.982123114000046), (-3.0502913779999403, 54.981510325000045), (-3.1354060539999296, 54.968085028000075), (-3.453846808999913, 54.981756903000075), (-3.470692511999914, 54.984442450000074), (-3.486236131999931, 54.989488023000035), (-3.501047329999949, 54.99249909100007), (-3.515288865999935, 54.98920319200005), (-3.5123591789999296, 54.98712799700007), (-3.511463995999918, 54.98688385600008), (-3.510894334999932, 54.985988674000055), (-3.5091853509999282, 54.981756903000075), (-3.5260310539999296, 54.97711823100008), (-3.5418595039999445, 54.98065827000005), (-3.57054602799991, 54.995428778000075), (-3.583607550999943, 54.968085028000075), (-3.5756729809999115, 54.95734284100007), (-3.5706274079999503, 54.937567450000074), (-3.5687556629999335, 54.916001695000034), (-3.57054602799991, 54.89980703300006), (-3.581695115999935, 54.88361237200007), (-3.598378058999913, 54.87799713700008), (-3.691761847999942, 54.88320547100005), (-3.7176407539999445, 54.880845445000034), (-3.739247199999909, 54.859808661000045), (-3.8101293609999516, 54.86627838700008), (-3.8078507149999155, 54.86107005400004), (-3.806792772999927, 54.86090729400007), (-3.803334113999938, 54.85887278900003), (-3.8123673169999392, 54.855169989000046), (-3.8198136059999115, 54.855902411000045), (-3.826079881999931, 54.85993073100008), (-3.8312882149999155, 54.86627838700008), (-3.819976365999935, 54.878566799000055), (-3.815052863999938, 54.87714264500005), (-3.8101293609999516, 54.87250397300005), (-3.8116348949999406, 54.88003164300005), (-3.813221808999913, 54.88312409100007), (-3.8169652989999463, 54.88617584800005), (-3.828846808999913, 54.874986070000034), (-3.8443090489999463, 54.86627838700008), (-3.839751756999931, 54.855902411000045), (-3.8374731109999516, 54.851996161000045), (-3.844105597999942, 54.85097890800006), (-3.8578995429999168, 54.84454987200007), (-3.823841925999943, 54.82469310100004), (-3.833607550999943, 54.82005442900004), (-3.885731574999909, 54.80646393400008), (-3.9641820949999556, 54.771918036000045), (-4.011708136999914, 54.76821523600006), (-4.042876756999931, 54.76947663000004), (-4.042876756999931, 54.77692291900007), (-4.046783006999931, 54.77802155200004), (-4.050200975999928, 54.778550523000035), (-4.053334113999938, 54.77997467700004), (-4.055775519999941, 54.782538153000075), (-4.05296790299991, 54.78546784100007), (-4.050160285999937, 54.78900788000004), (-4.049712693999936, 54.78998444200005), (-4.051747199999909, 54.800034898000035), (-4.0477188789999445, 54.81305573100008), (-4.049956834999932, 54.82322825700004), (-4.063588019999941, 54.82684967700004), (-4.064035610999952, 54.83152903900003), (-4.078602667999917, 54.82412344000005), (-4.09007727799991, 54.809759833000044), (-4.093495245999918, 54.792669989000046), (-4.083851691999939, 54.77692291900007), (-4.122954881999931, 54.77301666900007), (-4.173939581999946, 54.792303778000075), (-4.209136522999927, 54.826239325000074), (-4.200550910999937, 54.86627838700008), (-4.215402798999946, 54.861029364000046), (-4.2397354809999115, 54.843003648000035), (-4.255767381999931, 54.838324286000045), (-4.2707413399999155, 54.83942291900007), (-4.345285610999952, 54.86017487200007), (-4.3569229809999115, 54.86554596600007), (-4.3656306629999335, 54.87250397300005), (-4.375152147999927, 54.88690827000005), (-4.379872199999909, 54.89789459800005), (-4.386789516999954, 54.90477122600004), (-4.402902798999946, 54.90729401200008), (-4.409006313999953, 54.90302155200004), (-4.416818813999953, 54.89280833500004), (-4.423573370999918, 54.88035716400003), (-4.426503058999913, 54.86945221600007), (-4.4172257149999155, 54.84593333500004), (-4.4094132149999155, 54.831244208000044), (-4.402902798999946, 54.82469310100004), (-4.386708136999914, 54.82416413000004), (-4.372425910999937, 54.82184479400007), (-4.35960852799991, 54.81663646000004), (-4.347645636999914, 54.80731842700004), (-4.344471808999913, 54.79450104400007), (-4.353179490999935, 54.78310781500005), (-4.358143683999913, 54.77098216400003), (-4.343861456999946, 54.75641510600008), (-4.356516079999949, 54.741888739000046), (-4.353260870999918, 54.72089264500005), (-4.348133917999917, 54.70197174700007), (-4.3547257149999155, 54.693793036000045), (-4.360340949999909, 54.69159577000005), (-4.365305141999954, 54.68695709800005), (-4.371896938999953, 54.68227773600006), (-4.382394985999952, 54.68008047100005), (-4.405262824999909, 54.682074286000045), (-4.426503058999913, 54.687567450000074), (-4.4518123039999296, 54.69879791900007), (-4.46117102799991, 54.701239325000074), (-4.4967341789999296, 54.70062897300005), (-4.505604620999918, 54.70465729400007), (-4.563628709999932, 54.75641510600008), (-4.596669074999909, 54.77529531500005), (-4.714466925999943, 54.81785716400003), (-4.759592251999948, 54.82534414300005), (-4.781076626999948, 54.83307526200008), (-4.799631313999953, 54.86127350500004), (-4.821034308999913, 54.86664459800005), (-4.859120245999918, 54.86627838700008), (-4.88304602799991, 54.86009349200003), (-4.905873175999943, 54.84979889500005), (-4.925770636999914, 54.83738841400003), (-4.941029425999943, 54.82469310100004), (-4.9496150379999335, 54.81582265800006), (-4.953684048999946, 54.81000397300005), (-4.954823370999918, 54.804754950000074), (-4.954701300999943, 54.79743073100008), (-4.952870245999918, 54.78896719000005), (-4.9479060539999296, 54.777329820000034), (-4.940256313999953, 54.76703522300005), (-4.930165167999917, 54.76264069200005), (-4.923247850999928, 54.75185781500005), (-4.911936001999948, 54.728216864000046), (-4.8959854809999115, 54.70453522300005), (-4.867258266999954, 54.69013092700004), (-4.866932745999918, 54.68146393400008), (-4.872141079999949, 54.663316148000035), (-4.872425910999937, 54.65403880400004), (-4.872059699999909, 54.64923737200007), (-4.859120245999918, 54.63296133000006), (-4.880604620999918, 54.63621653900003), (-4.923491990999935, 54.649725653000075), (-4.944081183999913, 54.652777411000045), (-4.953684048999946, 54.65973541900007), (-4.959868943999936, 54.67552317900004), (-4.958973761999914, 54.69196198100008), (-4.947255011999914, 54.701239325000074), (-4.954823370999918, 54.707464911000045), (-4.958892381999931, 54.714056708000044), (-4.959055141999954, 54.72093333500004), (-4.954701300999943, 54.728501695000034), (-4.973378058999913, 54.729722398000035), (-4.981556769999941, 54.731634833000044), (-4.988189256999931, 54.73529694200005), (-4.992665167999917, 54.74433014500005), (-4.997059699999909, 54.75836823100008), (-5.003285285999937, 54.77130768400008), (-5.0130102199999556, 54.77692291900007), (-5.033192511999914, 54.782416083000044), (-5.1282445949999556, 54.848944403000075), (-5.157134568999936, 54.87909577000005), (-5.175526495999918, 54.91461823100008), (-5.180653449999909, 54.954413153000075), (-5.177601691999939, 54.99054596600007), (-5.170806443999936, 55.008693752000056), (-5.156727667999917, 55.01654694200005), (-5.1356095039999445, 55.01585521000004), (-5.124582485999952, 55.016791083000044), (-5.119740363999938, 55.01992422100005), (-5.115142381999931, 55.03156159100007), (-5.105213995999918, 55.02619049700007), (-5.095529751999948, 55.01508209800005), (-5.091867641999954, 55.00971100500004), (-5.076893683999913, 54.99555084800005), (-5.069488084999932, 54.986029364000046), (-5.064564581999946, 54.97553131700005), (-5.0637914699999556, 54.96458567900004), (-5.065256313999953, 54.940334377000056), (-5.06086178299995, 54.93113841400003), (-5.0475154289999296, 54.92031484600005), (-5.030995245999918, 54.911322333000044), (-5.013091600999928, 54.90961334800005), (-4.9955948559999115, 54.92031484600005), (-4.992298956999946, 54.924261786000045), (-4.988189256999931, 54.927720445000034), (-4.988189256999931, 54.93455638200004), (-5.0240779289999296, 54.97638580900008), (-5.029774542999917, 54.98550039300005), (-5.032500779999907, 54.99371979400007), (-5.033029751999948, 54.99526601800005), (-5.047027147999927, 55.01508209800005), (-5.0502823559999115, 55.02680084800005), (-5.0496720039999445, 55.04897695500006), (-5.047596808999913, 55.05573151200008), (-5.043446417999917, 55.06427643400008), (-5.0257869129999335, 55.08869049700007), (-5.018950975999928, 55.10224030200004), (-5.016184048999946, 55.12262604400007), (-5.007801886999914, 55.14118073100008), (-4.988270636999914, 55.15265534100007), (-4.947255011999914, 55.16791413000004), (-4.882394985999952, 55.21857330900008), (-4.877552863999938, 55.22089264500005), (-4.867258266999954, 55.22247955900008), (-4.865305141999954, 55.22565338700008), (-4.865589972999942, 55.236314195000034), (-4.864816860999952, 55.24135976800005), (-4.841949022999927, 55.275091864000046), (-4.838002081999946, 55.28400299700007), (-4.8372289699999556, 55.293850002000056), (-4.839751756999931, 55.31557851800005), (-4.838002081999946, 55.32501862200007), (-4.832508917999917, 55.33112213700008), (-4.7992244129999335, 55.354722398000035), (-4.781076626999948, 55.36351146000004), (-4.773101365999935, 55.36937083500004), (-4.767160610999952, 55.37905508000006), (-4.758778449999909, 55.40228913000004), (-4.7492569649999155, 55.413763739000046), (-4.71703040299991, 55.43048737200007), (-4.650502081999946, 55.448472398000035), (-4.626332160999937, 55.468410549000055), (-4.617787238999938, 55.49559153900003), (-4.626779751999948, 55.51972077000005), (-4.6507869129999335, 55.53705475500004), (-4.687163865999935, 55.544134833000044), (-4.66624915299991, 55.562201239000046), (-4.666493292999917, 55.56329987200007), (-4.6711319649999155, 55.584418036000045), (-4.692738410999937, 55.60521067900004), (-4.7219945949999556, 55.619208075000074), (-4.776519334999932, 55.632879950000074), (-4.808745897999927, 55.63361237200007), (-4.818104620999918, 55.63719310100004), (-4.810617641999954, 55.646551825000074), (-4.810617641999954, 55.653998114000046), (-4.868560350999928, 55.67560455900008), (-4.900990363999938, 55.69232819200005), (-4.920521613999938, 55.70856354400007), (-4.876332160999937, 55.735256252000056), (-4.861073370999918, 55.756740627000056), (-4.865305141999954, 55.79047272300005), (-4.8717341789999296, 55.802435614000046), (-4.8777970039999445, 55.81102122600004), (-4.882720506999931, 55.82135651200008), (-4.888661261999914, 55.864528713000084), (-4.888824022999927, 55.865301825000074), (-4.892648891999954, 55.89288971600007), (-4.886463995999918, 55.91966380400004), (-4.872141079999949, 55.937201239000046), (-4.849354620999918, 55.94822825700004), (-4.818104620999918, 55.95563385600008), (-4.799387173999946, 55.957912502000056), (-4.7857966789999296, 55.95697663000004), (-4.722320115999935, 55.94009023600006), (-4.705433722999942, 55.93846263200004), (-4.693959113999938, 55.94135163000004), (-4.6725154289999296, 55.93378327000005), (-4.505970831999946, 55.91909414300005), (-4.4816788399999155, 55.92829010600008), (-4.590606248999961, 55.941514390000066), (-4.630034959999932, 55.94627513200004), (-4.673451300999943, 55.96185944200005), (-4.724517381999931, 55.99835846600007), (-4.765044725999928, 56.007066148000035), (-4.78343665299991, 56.017645575000074), (-4.7992244129999335, 56.030951239000046), (-4.810617641999954, 56.04376862200007), (-4.8237198559999115, 56.07367584800005), (-4.824330206999946, 56.07851797100005), (-4.8391820949999556, 56.08063385600008), (-4.844309048999946, 56.07298411700003), (-4.843739386999914, 56.06297435100004), (-4.837554490999935, 56.05060455900008), (-4.790150519999941, 56.010199286000045), (-4.778920050999943, 55.99209219000005), (-4.785308397999927, 55.984035549000055), (-4.803618943999936, 55.982082424000055), (-4.828033006999931, 55.98232656500005), (-4.851551886999914, 55.98802317900004), (-4.862294074999909, 56.00214264500005), (-4.865386522999927, 56.02020905200004), (-4.866851365999935, 56.05833567900004), (-4.865386522999927, 56.06671784100007), (-4.826324022999927, 56.124212958000044), (-4.755441860999952, 56.188381252000056), (-4.750884568999936, 56.20270416900007), (-4.755523240999935, 56.20652903900003), (-4.7662654289999296, 56.20209381700005), (-4.7799373039999296, 56.191473700000074), (-4.837269660999937, 56.12441640800006), (-4.851673956999946, 56.112616278000075), (-4.873117641999954, 56.11200592700004), (-4.880604620999918, 56.11985911700003), (-4.878977016999954, 56.15053945500006), (-4.883168097999942, 56.16400788000004), (-4.893544074999909, 56.174261786000045), (-4.9070938789999445, 56.177069403000075), (-4.920521613999938, 56.16791413000004), (-4.909087693999936, 56.14996979400007), (-4.895253058999913, 56.11473216400003), (-4.8862198559999115, 56.08038971600007), (-4.889149542999917, 56.06484609600005), (-4.901926235999952, 56.06191640800006), (-4.904367641999954, 56.054348049000055), (-4.900054490999935, 56.03412506700005), (-4.900054490999935, 56.01459381700005), (-4.898019985999952, 56.001166083000044), (-4.892648891999954, 55.98973216400003), (-4.906402147999927, 55.98574453300006), (-4.921457485999952, 55.98867422100005), (-4.937489386999914, 55.993841864000046), (-4.954701300999943, 55.99656810100004), (-4.954701300999943, 55.98973216400003), (-4.942005988999938, 55.986314195000034), (-4.928863084999932, 55.98114655200004), (-4.918446417999917, 55.97333405200004), (-4.913685675999943, 55.96185944200005), (-4.917388475999928, 55.94745514500005), (-4.9272354809999115, 55.93768952000005), (-4.9387100899999155, 55.92963288000004), (-4.947255011999914, 55.92084381700005), (-4.952137824999909, 55.90912506700005), (-4.954986131999931, 55.89935944200005), (-4.95921790299991, 55.89012278900003), (-4.96898352799991, 55.87986888200004), (-4.983143683999913, 55.87103913000004), (-4.994740363999938, 55.86981842700004), (-5.026356574999909, 55.87372467700004), (-5.0424698559999115, 55.884751695000034), (-5.056752081999946, 55.91030508000006), (-5.0668025379999335, 55.938788153000075), (-5.070790167999917, 55.958685614000046), (-5.1108292309999115, 55.98895905200004), (-5.116037563999953, 56.00169505400004), (-5.123605923999946, 56.00991445500006), (-5.139637824999909, 56.00275299700007), (-5.123768683999913, 55.986314195000034), (-5.085682745999918, 55.93187083500004), (-5.078236456999946, 55.91095612200007), (-5.086537238999938, 55.901271877000056), (-5.105620897999927, 55.90497467700004), (-5.171538865999935, 55.935532945000034), (-5.180653449999909, 55.948431708000044), (-5.180653449999909, 55.96930573100008), (-5.190825975999928, 55.96173737200007), (-5.1996150379999335, 55.948553778000075), (-5.2057185539999296, 55.93451569200005), (-5.207915818999936, 55.92462799700007), (-5.212635870999918, 55.91714101800005), (-5.242054816999939, 55.89288971600007), (-5.218129035999937, 55.86469147300005), (-5.208159959999932, 55.849269924000055), (-5.201079881999931, 55.83148834800005), (-5.2193904289999296, 55.83144765800006), (-5.2631729809999115, 55.845770575000074), (-5.296701626999948, 55.85268789300005), (-5.307118292999917, 55.86041901200008), (-5.313384568999936, 55.88544342700004), (-5.319325324999909, 55.889105536000045), (-5.327219204999949, 55.89154694200005), (-5.3348282539999445, 55.89667389500005), (-5.3382869129999335, 55.90375397300005), (-5.3391007149999155, 55.91303131700005), (-5.3382869129999335, 55.93138255400004), (-5.336089647999927, 55.93919505400004), (-5.326161261999914, 55.95026276200008), (-5.323963995999918, 55.958685614000046), (-5.325754360999952, 55.967230536000045), (-5.3382869129999335, 55.99656810100004), (-5.313628709999932, 56.01235586100006), (-5.204497850999928, 56.11945221600007), (-5.146473761999914, 56.13312409100007), (-5.104603644999941, 56.15151601800005), (-5.0949600899999155, 56.15737539300005), (-5.0594376289999445, 56.203111070000034), (-5.043446417999917, 56.21629466400003), (-5.013295050999943, 56.22760651200008), (-4.974964972999942, 56.23700592700004), (-4.9400935539999296, 56.25141022300005), (-4.920521613999938, 56.277777411000045), (-4.938099738999938, 56.27098216400003), (-4.975087042999917, 56.24799225500004), (-4.991932745999918, 56.24298737200007), (-5.0327042309999115, 56.24115631700005), (-5.049549933999913, 56.23704661700003), (-5.064564581999946, 56.22931549700007), (-5.0754288399999155, 56.21698639500005), (-5.099436001999948, 56.18195221600007), (-5.1088761059999115, 56.174709377000056), (-5.228138800999943, 56.12921784100007), (-5.3109431629999335, 56.05805084800005), (-5.319935675999943, 56.05491771000004), (-5.338042772999927, 56.05410390800006), (-5.345692511999914, 56.051214911000045), (-5.345285610999952, 56.046128648000035), (-5.350209113999938, 56.03192780200004), (-5.356353318999936, 56.01976146000004), (-5.359364386999914, 56.020738023000035), (-5.3686417309999115, 56.009426174000055), (-5.390288865999935, 56.00568268400008), (-5.415028449999909, 56.00690338700008), (-5.43382727799991, 56.010199286000045), (-5.434559699999909, 56.014960028000075), (-5.434722459999932, 56.02362702000005), (-5.437123175999943, 56.03001536700003), (-5.444406704999949, 56.02757396000004), (-5.4479060539999296, 56.02228424700007), (-5.448231574999909, 56.016058661000045), (-5.447621222999942, 56.009426174000055), (-5.454986131999931, 55.95563385600008), (-5.45140540299991, 55.95343659100007), (-5.436431443999936, 55.94896067900004), (-5.430775519999941, 55.94818756700005), (-5.420806443999936, 55.92829010600008), (-5.416737433999913, 55.91681549700007), (-5.416005011999914, 55.907416083000044), (-5.4125056629999335, 55.899603583000044), (-5.400380011999914, 55.89288971600007), (-5.400380011999914, 55.886704820000034), (-5.407215949999909, 55.886704820000034), (-5.407215949999909, 55.87986888200004), (-5.402943488999938, 55.87872955900008), (-5.39289303299995, 55.87372467700004), (-5.3976944649999155, 55.87156810100004), (-5.402495897999927, 55.868353583000044), (-5.407215949999909, 55.86627838700008), (-5.35179602799991, 55.83242422100005), (-5.326771613999938, 55.808579820000034), (-5.317779100999928, 55.78302643400008), (-5.324574347999942, 55.769232489000046), (-5.3385310539999296, 55.76264069200005), (-5.372425910999937, 55.75641510600008), (-5.3875626289999445, 55.75031159100007), (-5.433461066999939, 55.72101471600007), (-5.4445694649999155, 55.71161530200004), (-5.4539688789999445, 55.70058828300006), (-5.46117102799991, 55.68813711100006), (-5.463612433999913, 55.67983633000006), (-5.466175910999937, 55.662176825000074), (-5.468617316999939, 55.653998114000046), (-5.490101691999939, 55.644598700000074), (-5.488270636999914, 55.640326239000046), (-5.484283006999931, 55.63572825700004), (-5.482289191999939, 55.632879950000074), (-5.4838761059999115, 55.61005280200004), (-5.474761522999927, 55.603949286000045), (-5.462635870999918, 55.60203685100004), (-5.454986131999931, 55.59194570500006), (-5.461089647999927, 55.57880280200004), (-5.476918097999942, 55.57489655200004), (-5.488758917999917, 55.56907786700003), (-5.482289191999939, 55.55027903900003), (-5.503529425999943, 55.52651601800005), (-5.509632941999939, 55.516791083000044), (-5.5106095039999445, 55.51146067900004), (-5.509632941999939, 55.49258047100005), (-5.5109757149999155, 55.484442450000074), (-5.514271613999938, 55.48387278900003), (-5.5187882149999155, 55.48517487200007), (-5.523264126999948, 55.48265208500004), (-5.545521613999938, 55.44916413000004), (-5.561512824999909, 55.435532945000034), (-5.5846248039999296, 55.427435614000046), (-5.5846248039999296, 55.421210028000075), (-5.572132941999939, 55.422308661000045), (-5.562082485999952, 55.41986725500004), (-5.553089972999942, 55.41453685100004), (-5.543690558999913, 55.40692780200004), (-5.527455206999946, 55.38434479400007), (-5.5266820949999556, 55.38027578300006), (-5.5149633449999556, 55.37368398600006), (-5.525054490999935, 55.358628648000035), (-5.557972785999937, 55.33185455900008), (-5.574370897999927, 55.32200755400004), (-5.594105597999942, 55.31313711100006), (-5.616281704999949, 55.30658600500004), (-5.6399633449999556, 55.303900458000044), (-5.649525519999941, 55.30516185100004), (-5.669097459999932, 55.31085846600007), (-5.6808975899999155, 55.31134674700007), (-5.691395636999914, 55.308579820000034), (-5.714019334999932, 55.29913971600007), (-5.725575324999909, 55.29706452000005), (-5.7545466789999296, 55.29734935100004), (-5.772287563999953, 55.30125560100004), (-5.782866990999935, 55.31354401200008), (-5.794667120999918, 55.35639069200005), (-5.796701626999948, 55.37909577000005), (-5.7914119129999335, 55.39862702000005), (-5.763417120999918, 55.41205475500004), (-5.725412563999953, 55.437567450000074), (-5.715646938999953, 55.44790273600006), (-5.7152400379999335, 55.46889883000006), (-5.720122850999928, 55.491522528000075), (-5.7219132149999155, 55.51386139500005), (-5.707753058999913, 55.54336172100005), (-5.712066209999932, 55.55072663000004), (-5.718861456999946, 55.55731842700004), (-5.721831834999932, 55.56460195500006), (-5.718129035999937, 55.57575104400007), (-5.694488084999932, 55.605536200000074), (-5.6733292309999115, 55.640611070000034), (-5.6694229809999115, 55.66071198100008), (-5.6808975899999155, 55.67446523600006), (-5.626535610999952, 55.70062897300005), (-5.61945553299995, 55.71198151200008), (-5.613189256999931, 55.725775458000044), (-5.5982966789999296, 55.74298737200007), (-5.581206834999932, 55.75763580900008), (-5.5678604809999115, 55.76386139500005), (-5.539173956999946, 55.77094147300005), (-5.504628058999913, 55.78937409100007), (-5.4735001289999445, 55.815659898000035), (-5.454986131999931, 55.845770575000074), (-5.551747199999909, 55.783636786000045), (-5.587473110999952, 55.76715729400007), (-5.599436001999948, 55.76422760600008), (-5.6126195949999556, 55.76386139500005), (-5.60578365799995, 55.77684153900003), (-5.6332087879999335, 55.78278229400007), (-5.64671790299991, 55.78750234600005), (-5.66038977799991, 55.79734935100004), (-5.667958136999914, 55.81102122600004), (-5.669016079999949, 55.83783600500004), (-5.67406165299991, 55.845770575000074), (-5.631988084999932, 55.88178131700005), (-5.625599738999938, 55.889837958000044), (-5.61937415299991, 55.90314362200007), (-5.6043595039999445, 55.91364166900007), (-5.586293097999942, 55.92332591400003), (-5.571034308999913, 55.93451569200005), (-5.593495245999918, 55.92796458500004), (-5.6275935539999296, 55.90534088700008), (-5.6537979809999115, 55.89760976800005), (-5.671701626999948, 55.88690827000005), (-5.6808975899999155, 55.886704820000034), (-5.687977667999917, 55.89337799700007), (-5.694162563999953, 55.90497467700004), (-5.696400519999941, 55.91596100500004), (-5.586822068999936, 56.01203034100007), (-5.57843990799995, 56.02448151200008), (-5.5826716789999296, 56.028957424000055), (-5.576649542999917, 56.032538153000075), (-5.571034308999913, 56.037543036000045), (-5.583892381999931, 56.040716864000046), (-5.596424933999913, 56.036810614000046), (-5.609852667999917, 56.03001536700003), (-5.625599738999938, 56.02448151200008), (-5.6317032539999445, 56.005926825000074), (-5.674875454999949, 55.977728583000044), (-5.67406165299991, 55.95563385600008), (-5.690785285999937, 55.93764883000006), (-5.694488084999932, 55.93451569200005), (-5.704497850999928, 55.936753648000035), (-5.707508917999917, 55.942572333000044), (-5.705881313999953, 55.949652411000045), (-5.701975063999953, 55.95563385600008), (-5.696441209999932, 55.98216380400004), (-5.659901495999918, 56.02326080900008), (-5.5846248039999296, 56.08466217700004), (-5.5815323559999115, 56.08828359600005), (-5.580067511999914, 56.09292226800005), (-5.5774633449999556, 56.096991278000075), (-5.571034308999913, 56.09902578300006), (-5.564605272999927, 56.098089911000045), (-5.556548631999931, 56.09589264500005), (-5.550689256999931, 56.09349192900004), (-5.550526495999918, 56.09218984600005), (-5.547840949999909, 56.09003327000005), (-5.5394587879999335, 56.08685944200005), (-5.531605597999942, 56.08633047100005), (-5.530100063999953, 56.09218984600005), (-5.534738735999952, 56.098537502000056), (-5.5414119129999335, 56.10248444200005), (-5.5475154289999296, 56.10488515800006), (-5.550526495999918, 56.10643138200004), (-5.55695553299995, 56.12221914300005), (-5.558705206999946, 56.13080475500004), (-5.554676886999914, 56.13739655200004), (-5.522531704999949, 56.16575755400004), (-5.515736456999946, 56.174709377000056), (-5.509632941999939, 56.188381252000056), (-5.5399063789999445, 56.18341705900008), (-5.562489386999914, 56.16791413000004), (-5.5826716789999296, 56.15058014500005), (-5.60578365799995, 56.139960028000075), (-5.599354620999918, 56.160589911000045), (-5.586415167999917, 56.18113841400003), (-5.569406704999949, 56.20026276200008), (-5.550526495999918, 56.21629466400003), (-5.5594376289999445, 56.22955963700008), (-5.547230597999942, 56.24017975500004), (-5.52562415299991, 56.247259833000044), (-5.50617428299995, 56.24982330900008), (-5.494740363999938, 56.253119208000044), (-5.4928279289999296, 56.26040273600006), (-5.4992569649999155, 56.267645575000074), (-5.512684699999909, 56.27094147300005), (-5.554269985999952, 56.26349518400008), (-5.5631404289999296, 56.26032135600008), (-5.572621222999942, 56.25385163000004), (-5.58234615799995, 56.24876536700003), (-5.592152472999942, 56.24982330900008), (-5.5980525379999335, 56.25861237200007), (-5.595570441999939, 56.26992422100005), (-5.5846248039999296, 56.29075755400004), (-5.57258053299995, 56.32807038000004), (-5.56273352799991, 56.341050523000035), (-5.543690558999913, 56.352850653000075), (-5.525217251999948, 56.34662506700005), (-5.498199022999927, 56.34833405200004), (-5.4481095039999445, 56.35968659100007), (-5.4481095039999445, 56.36591217700004), (-5.4721573559999115, 56.364935614000046), (-5.515370245999918, 56.35683828300006), (-5.5375056629999335, 56.35968659100007), (-5.517323370999918, 56.39276764500005), (-5.509632941999939, 56.40062083500004), (-5.498931443999936, 56.404730536000045), (-5.486073370999918, 56.40810781500005), (-5.4780167309999115, 56.41290924700007), (-5.482289191999939, 56.421128648000035), (-5.457020636999914, 56.44086334800005), (-5.423573370999918, 56.45001862200007), (-5.322865363999938, 56.45498281500005), (-5.242054816999939, 56.44220612200007), (-5.208729620999918, 56.44684479400007), (-5.18187415299991, 56.45966217700004), (-5.118519660999937, 56.50775788000004), (-5.085682745999918, 56.54877350500004), (-5.064564581999946, 56.56513092700004), (-5.086537238999938, 56.55849844000005), (-5.099598761999914, 56.54364655200004), (-5.1105850899999155, 56.52586497600004), (-5.125965949999909, 56.51048411700003), (-5.166900193999936, 56.49005768400008), (-5.190174933999913, 56.46865469000005), (-5.201079881999931, 56.462103583000044), (-5.243763800999943, 56.45921458500004), (-5.350168423999946, 56.47296784100007), (-5.378081834999932, 56.458970445000034), (-5.394276495999918, 56.46548086100006), (-5.4105525379999335, 56.50364817900004), (-5.42414303299995, 56.500067450000074), (-5.4359431629999335, 56.49115631700005), (-5.454986131999931, 56.46954987200007), (-5.468617316999939, 56.47573476800005), (-5.433338995999918, 56.52362702000005), (-5.427642381999931, 56.53782786700003), (-5.4037979809999115, 56.524603583000044), (-5.379261847999942, 56.519191799000055), (-5.3566788399999155, 56.51968008000006), (-5.3382869129999335, 56.52415599200003), (-5.2905167309999115, 56.54466380400004), (-5.265044725999928, 56.551214911000045), (-5.252552863999938, 56.556341864000046), (-5.242054816999939, 56.56513092700004), (-5.27562415299991, 56.553615627000056), (-5.286773240999935, 56.552069403000075), (-5.306792772999927, 56.552801825000074), (-5.3109431629999335, 56.552069403000075), (-5.327707485999952, 56.54466380400004), (-5.338693813999953, 56.542303778000075), (-5.360340949999909, 56.53221263200004), (-5.372425910999937, 56.53034088700008), (-5.384348110999952, 56.53343333500004), (-5.400502081999946, 56.54364655200004), (-5.413929816999939, 56.54466380400004), (-5.410878058999913, 56.552069403000075), (-5.407297329999949, 56.55532461100006), (-5.402699347999942, 56.55744049700007), (-5.396636522999927, 56.561712958000044), (-5.392689581999946, 56.566473700000074), (-5.3893123039999296, 56.57489655200004), (-5.386626756999931, 56.57880280200004), (-5.360707160999937, 56.60626862200007), (-5.351918097999942, 56.612941799000055), (-5.31086178299995, 56.63361237200007), (-5.304514126999948, 56.64016347900008), (-5.298451300999943, 56.64642975500004), (-5.317779100999928, 56.65387604400007), (-5.317779100999928, 56.661322333000044), (-5.309071417999917, 56.66425202000005), (-5.286773240999935, 56.674994208000044), (-5.261463995999918, 56.67332591400003), (-5.248199022999927, 56.67405833500004), (-5.218902147999927, 56.688666083000044), (-5.196441209999932, 56.688666083000044), (-5.153309699999909, 56.68121979400007), (-5.132639126999948, 56.68451569200005), (-5.093373175999943, 56.69904205900008), (-5.012806769999941, 56.70929596600007), (-4.9955948559999115, 56.71596914300005), (-5.1605525379999335, 56.69586823100008), (-5.238270636999914, 56.71662018400008), (-5.23851477799991, 56.72256094000005), (-5.228423631999931, 56.73647695500006), (-5.222075975999928, 56.741522528000075), (-5.154652472999942, 56.78229401200008), (-5.136382615999935, 56.79877350500004), (-5.119740363999938, 56.818426825000074), (-5.179066535999937, 56.78925202000005), (-5.187489386999914, 56.78115469000005), (-5.191761847999942, 56.774644273000035), (-5.202259894999941, 56.76911041900007), (-5.214670376999948, 56.76520416900007), (-5.224964972999942, 56.763739325000074), (-5.233469204999949, 56.76068756700005), (-5.237049933999913, 56.75336334800005), (-5.2389216789999296, 56.74445221600007), (-5.242054816999939, 56.73647695500006), (-5.255238410999937, 56.721584377000056), (-5.268462693999936, 56.71308014500005), (-5.283355272999927, 56.70937734600005), (-5.30101477799991, 56.70856354400007), (-5.3098038399999155, 56.70648834800005), (-5.319162563999953, 56.69749583500004), (-5.34015865799995, 56.693060614000046), (-5.348378058999913, 56.687201239000046), (-5.359364386999914, 56.674994208000044), (-5.388050910999937, 56.65521881700005), (-5.403879360999952, 56.64923737200007), (-5.4242244129999335, 56.64704010600008), (-5.434396938999953, 56.64288971600007), (-5.4487198559999115, 56.62457916900007), (-5.458119269999941, 56.620347398000035), (-5.470773891999954, 56.618394273000035), (-5.482574022999927, 56.613267320000034), (-5.493316209999932, 56.60639069200005), (-5.53343665299991, 56.57290273600006), (-5.599598761999914, 56.52903880400004), (-5.667388475999928, 56.498480536000045), (-5.67406165299991, 56.49689362200007), (-5.683013475999928, 56.50063711100006), (-5.694691535999937, 56.51386139500005), (-5.70539303299995, 56.51666901200008), (-5.721791144999941, 56.51850006700005), (-5.740834113999938, 56.52326080900008), (-5.7582087879999335, 56.52997467700004), (-5.770253058999913, 56.53782786700003), (-5.7551977199999556, 56.554022528000075), (-5.751047329999949, 56.56199778900003), (-5.749134894999941, 56.571966864000046), (-5.756662563999953, 56.571966864000046), (-5.793853318999936, 56.54328034100007), (-5.8543595039999445, 56.550482489000046), (-6.0034073559999115, 56.61871979400007), (-6.009836391999954, 56.62653229400007), (-6.008168097999942, 56.642279364000046), (-5.998036261999914, 56.64988841400003), (-5.983509894999941, 56.65281810100004), (-5.933583136999914, 56.654730536000045), (-5.899037238999938, 56.650824286000045), (-5.866851365999935, 56.64154694200005), (-5.8391820949999556, 56.62653229400007), (-5.831695115999935, 56.633978583000044), (-5.855620897999927, 56.64472077000005), (-5.865589972999942, 56.65143463700008), (-5.865834113999938, 56.661322333000044), (-5.75999915299991, 56.70075104400007), (-5.735503709999932, 56.702337958000044), (-5.672596808999913, 56.68414948100008), (-5.647368943999936, 56.68121979400007), (-5.5941462879999335, 56.68333567900004), (-5.564808722999942, 56.68764883000006), (-5.543690558999913, 56.69546133000006), (-5.636545376999948, 56.688666083000044), (-5.658558722999942, 56.690741278000075), (-5.708851691999939, 56.70856354400007), (-5.749989386999914, 56.714544989000046), (-5.859038865999935, 56.68121979400007), (-5.89679928299995, 56.675116278000075), (-5.907378709999932, 56.674994208000044), (-5.9203181629999335, 56.67796458500004), (-5.942738410999937, 56.686753648000035), (-5.955555792999917, 56.688666083000044), (-6.0248917309999115, 56.68569570500006), (-6.098622199999909, 56.696966864000046), (-6.123850063999953, 56.69562409100007), (-6.143544074999909, 56.684881903000075), (-6.161732550999943, 56.67820872600004), (-6.186594204999949, 56.68109772300005), (-6.2096248039999296, 56.68846263200004), (-6.222767706999946, 56.69546133000006), (-6.228179490999935, 56.70107656500005), (-6.232533331999946, 56.70652903900003), (-6.235340949999909, 56.71238841400003), (-6.236398891999954, 56.71906159100007), (-6.234486456999946, 56.728583075000074), (-6.229562954999949, 56.72907135600008), (-6.222767706999946, 56.72719961100006), (-6.215321417999917, 56.72964101800005), (-6.193470831999946, 56.74852122600004), (-6.1805313789999445, 56.75462474200003), (-6.026966925999943, 56.763739325000074), (-6.0148819649999155, 56.76703522300005), (-5.979888475999928, 56.78156159100007), (-5.965199347999942, 56.784857489000046), (-5.948231574999909, 56.782538153000075), (-5.937977667999917, 56.77692291900007), (-5.928537563999953, 56.769964911000045), (-5.913644985999952, 56.763739325000074), (-5.860910610999952, 56.75079987200007), (-5.8522029289999296, 56.746975002000056), (-5.853342251999948, 56.757879950000074), (-5.858143683999913, 56.768459377000056), (-5.8683975899999155, 56.77586497600004), (-5.886341925999943, 56.777411200000074), (-5.886341925999943, 56.784857489000046), (-5.874012824999909, 56.78571198100008), (-5.861805792999917, 56.78510163000004), (-5.850087042999917, 56.782456773000035), (-5.8391820949999556, 56.777411200000074), (-5.8246150379999335, 56.78758372600004), (-5.8020727199999556, 56.79181549700007), (-5.7766007149999155, 56.787990627000056), (-5.756662563999953, 56.784857489000046), (-5.831695115999935, 56.80536530200004), (-5.8508194649999155, 56.818019924000055), (-5.851185675999943, 56.82892487200007), (-5.837473110999952, 56.83661530200004), (-5.7338761059999115, 56.84479401200008), (-5.692738410999937, 56.85492584800005), (-5.66038977799991, 56.87299225500004), (-5.673573370999918, 56.87653229400007), (-5.692005988999938, 56.87531159100007), (-5.7084854809999115, 56.87055084800005), (-5.724354620999918, 56.85382721600007), (-5.744496222999942, 56.85415273600006), (-5.783924933999913, 56.85993073100008), (-5.775380011999914, 56.86994049700007), (-5.735503709999932, 56.89411041900007), (-5.7805883449999556, 56.89874909100007), (-5.874867316999939, 56.887152411000045), (-5.9211319649999155, 56.89411041900007), (-5.8875626289999445, 56.89911530200004), (-5.8522029289999296, 56.90033600500004), (-5.8522029289999296, 56.90770091400003), (-5.859852667999917, 56.91054922100005), (-5.8801163399999155, 56.92202383000006), (-5.8625382149999155, 56.93374258000006), (-5.851429816999939, 56.95425039300005), (-5.842518683999913, 56.977443752000056), (-5.831695115999935, 56.99713776200008), (-5.814116990999935, 57.00950755400004), (-5.786040818999936, 57.02057526200008), (-5.755238410999937, 57.026556708000044), (-5.729318813999953, 57.02383047100005), (-5.719878709999932, 57.017564195000034), (-5.699940558999913, 56.998114325000074), (-5.688303188999953, 56.98969147300005), (-5.67406165299991, 56.983587958000044), (-5.658558722999942, 56.97947825700004), (-5.625599738999938, 56.976629950000074), (-5.571278449999909, 56.98383209800005), (-5.523264126999948, 56.99713776200008), (-5.523264126999948, 57.003973700000074), (-5.540435350999928, 57.001166083000044), (-5.556507941999939, 56.996079820000034), (-5.571278449999909, 56.99331289300005), (-5.5846248039999296, 56.99713776200008), (-5.607085740999935, 56.98851146000004), (-5.628814256999931, 56.991888739000046), (-5.6498917309999115, 56.999660549000055), (-5.6703181629999335, 57.003973700000074), (-5.685536261999914, 57.00958893400008), (-5.681711391999954, 57.02240631700005), (-5.680043097999942, 57.03620026200008), (-5.701975063999953, 57.044907945000034), (-5.710926886999914, 57.044175523000035), (-5.731353318999936, 57.03900788000004), (-5.742339647999927, 57.03807200700004), (-5.752552863999938, 57.04059479400007), (-5.769602016999954, 57.04975006700005), (-5.780181443999936, 57.05174388200004), (-5.791127081999946, 57.05927155200004), (-5.776193813999953, 57.075832424000055), (-5.734486456999946, 57.10541413000004), (-5.722645636999914, 57.116441148000035), (-5.715646938999953, 57.12006256700005), (-5.703277147999927, 57.120754299000055), (-5.673695441999939, 57.11904531500005), (-5.663482225999928, 57.12372467700004), (-5.645863410999937, 57.12946198100008), (-5.620838995999918, 57.12409088700008), (-5.57843990799995, 57.10639069200005), (-5.558257615999935, 57.10040924700007), (-5.4598282539999445, 57.09979889500005), (-5.454986131999931, 57.10297272300005), (-5.447417772999927, 57.11017487200007), (-5.430775519999941, 57.11074453300006), (-5.41429602799991, 57.10822174700007), (-5.407215949999909, 57.10639069200005), (-5.400380011999914, 57.10639069200005), (-5.400380011999914, 57.11383698100008), (-5.420033331999946, 57.12067291900007), (-5.503895636999914, 57.11269765800006), (-5.527414516999954, 57.107489325000074), (-5.540638800999943, 57.10639069200005), (-5.5477188789999445, 57.11009349200003), (-5.573312954999949, 57.12787506700005), (-5.5846248039999296, 57.133693752000056), (-5.668446417999917, 57.147650458000044), (-5.6808975899999155, 57.157904364000046), (-5.673817511999914, 57.174994208000044), (-5.638824022999927, 57.202378648000035), (-5.625599738999938, 57.21625397300005), (-5.644154425999943, 57.23322174700007), (-5.620106574999909, 57.25214264500005), (-5.578236456999946, 57.26675039300005), (-5.543690558999913, 57.27090078300006), (-5.511586066999939, 57.25763580900008), (-5.480091925999943, 57.23700592700004), (-5.446278449999909, 57.22304922100005), (-5.407215949999909, 57.22992584800005), (-5.407215949999909, 57.23672109600005), (-5.448841925999943, 57.24209219000005), (-5.458119269999941, 57.24664948100008), (-5.47288977799991, 57.26121653900003), (-5.482899542999917, 57.268011786000045), (-5.49250240799995, 57.27090078300006), (-5.501942511999914, 57.27765534100007), (-5.4889216789999296, 57.29242584800005), (-5.464833136999914, 57.306626695000034), (-5.4406632149999155, 57.311835028000075), (-5.4406632149999155, 57.31928131700005), (-5.464995897999927, 57.32493724200003), (-5.4817602199999556, 57.31671784100007), (-5.494292772999927, 57.30442942900004), (-5.50617428299995, 57.298163153000075), (-5.523426886999914, 57.29515208500004), (-5.558461066999939, 57.28143952000005), (-5.57843990799995, 57.27765534100007), (-5.599436001999948, 57.27924225500004), (-5.637440558999913, 57.28900788000004), (-5.656971808999913, 57.29132721600007), (-5.7000626289999445, 57.28359609600005), (-5.720570441999939, 57.284491278000075), (-5.729318813999953, 57.298163153000075), (-5.7252498039999296, 57.30158112200007), (-5.701975063999953, 57.33234284100007), (-5.6937556629999335, 57.337103583000044), (-5.671986456999946, 57.34442780200004), (-5.663482225999928, 57.349676825000074), (-5.654367641999954, 57.353949286000045), (-5.647206183999913, 57.34992096600007), (-5.6414688789999445, 57.34320709800005), (-5.636545376999948, 57.33978913000004), (-5.613189256999931, 57.34198639500005), (-5.5012914699999556, 57.37099844000005), (-5.456654425999943, 57.39354075700004), (-5.4481095039999445, 57.42169830900008), (-5.46507727799991, 57.423895575000074), (-5.492054816999939, 57.40875885600008), (-5.5375056629999335, 57.373928127000056), (-5.563465949999909, 57.36310455900008), (-5.586659308999913, 57.36505768400008), (-5.610910610999952, 57.37140534100007), (-5.6399633449999556, 57.373928127000056), (-5.615589972999942, 57.382473049000055), (-5.607085740999935, 57.389105536000045), (-5.609201626999948, 57.397772528000075), (-5.617746548999946, 57.41010163000004), (-5.619618292999917, 57.41669342700004), (-5.624012824999909, 57.41640859600005), (-5.6399633449999556, 57.40802643400008), (-5.707183397999927, 57.35976797100005), (-5.732411261999914, 57.352769273000035), (-5.784575975999928, 57.34857819200005), (-5.807769334999932, 57.35492584800005), (-5.8248591789999296, 57.39435455900008), (-5.822255011999914, 57.39350006700005), (-5.817372199999909, 57.39520905200004), (-5.812855597999942, 57.398098049000055), (-5.8111873039999296, 57.40119049700007), (-5.813872850999928, 57.40452708500004), (-5.8231095039999445, 57.41233958500004), (-5.8248591789999296, 57.41547272300005), (-5.825266079999949, 57.428900458000044), (-5.821888800999943, 57.435532945000034), (-5.8111873039999296, 57.44220612200007), (-5.8215225899999155, 57.44546133000006), (-5.852528449999909, 57.450384833000044), (-5.859038865999935, 57.45270416900007), (-5.861195441999939, 57.46344635600008), (-5.870513475999928, 57.48078034100007), (-5.872670050999943, 57.49371979400007), (-5.869699673999946, 57.500881252000056), (-5.856068488999938, 57.51780833500004), (-5.8522029289999296, 57.52411530200004), (-5.8510636059999115, 57.538397528000075), (-5.851470506999931, 57.55109284100007), (-5.847075975999928, 57.55890534100007), (-5.831695115999935, 57.55882396000004), (-5.833851691999939, 57.563381252000056), (-5.837025519999941, 57.57477448100008), (-5.8391820949999556, 57.579291083000044), (-5.821400519999941, 57.583197333000044), (-5.803618943999936, 57.581366278000075), (-5.7863663399999155, 57.57518138200004), (-5.732574022999927, 57.54523346600007), (-5.715646938999953, 57.538397528000075), (-5.707020636999914, 57.542303778000075), (-5.68976803299995, 57.52789948100008), (-5.6808975899999155, 57.52411530200004), (-5.650868292999917, 57.51264069200005), (-5.6399633449999556, 57.511053778000075), (-5.645334438999953, 57.51666901200008), (-5.648304816999939, 57.52187734600005), (-5.650542772999927, 57.52680084800005), (-5.6535538399999155, 57.53156159100007), (-5.5815323559999115, 57.538397528000075), (-5.5402725899999155, 57.534491278000075), (-5.5168350899999155, 57.534857489000046), (-5.512684699999909, 57.54148997600004), (-5.543120897999927, 57.55536530200004), (-5.588368292999917, 57.56102122600004), (-5.632720506999931, 57.55768463700008), (-5.66038977799991, 57.544582424000055), (-5.694488084999932, 57.56631094000005), (-5.689198370999918, 57.56940338700008), (-5.6808975899999155, 57.579291083000044), (-5.714222785999937, 57.58270905200004), (-5.7316788399999155, 57.59829336100006), (-5.744252081999946, 57.61798737200007), (-5.762806769999941, 57.633978583000044), (-5.778146938999953, 57.63743724200003), (-5.7936091789999296, 57.63857656500005), (-5.8058975899999155, 57.642645575000074), (-5.8111873039999296, 57.65509674700007), (-5.805409308999913, 57.667181708000044), (-5.785023566999939, 57.67951080900008), (-5.790760870999918, 57.68854401200008), (-5.790760870999918, 57.69599030200004), (-5.753570115999935, 57.707464911000045), (-5.734486456999946, 57.70795319200005), (-5.704986131999931, 57.69013092700004), (-5.692494269999941, 57.691066799000055), (-5.68195553299995, 57.69871653900003), (-5.67406165299991, 57.70966217700004), (-5.685170050999943, 57.71141185100004), (-5.692290818999936, 57.716498114000046), (-5.698841925999943, 57.723089911000045), (-5.708851691999939, 57.72955963700008), (-5.720529751999948, 57.73338450700004), (-5.803822394999941, 57.743841864000046), (-5.80695553299995, 57.75462474200003), (-5.8020727199999556, 57.780585028000075), (-5.803822394999941, 57.792222398000035), (-5.801258917999917, 57.800441799000055), (-5.809925910999937, 57.82062409100007), (-5.8111873039999296, 57.833197333000044), (-5.807362433999913, 57.84393952000005), (-5.799956834999932, 57.85370514500005), (-5.789540167999917, 57.86200592700004), (-5.776519334999932, 57.86790599200003), (-5.751128709999932, 57.87335846600007), (-5.724761522999927, 57.87352122600004), (-5.698638475999928, 57.86908600500004), (-5.67406165299991, 57.86050039300005), (-5.677886522999927, 57.846909898000035), (-5.674794074999909, 57.82709381700005), (-5.667958136999914, 57.80695221600007), (-5.66038977799991, 57.792222398000035), (-5.650542772999927, 57.78180573100008), (-5.6373591789999296, 57.77423737200007), (-5.622141079999949, 57.77020905200004), (-5.60578365799995, 57.77049388200004), (-5.613270636999914, 57.77521393400008), (-5.617909308999913, 57.78021881700005), (-5.625599738999938, 57.792222398000035), (-5.613026495999918, 57.792629299000055), (-5.603260870999918, 57.791083075000074), (-5.5846248039999296, 57.784816799000055), (-5.591175910999937, 57.80442942900004), (-5.587025519999941, 57.81858958500004), (-5.5852758449999556, 57.83144765800006), (-5.598988410999937, 57.846869208000044), (-5.6375626289999445, 57.86635976800005), (-5.650380011999914, 57.87775299700007), (-5.6399633449999556, 57.88784414300005), (-5.6476944649999155, 57.88898346600007), (-5.6507869129999335, 57.89081452000005), (-5.6535538399999155, 57.89468008000006), (-5.643950975999928, 57.90420156500005), (-5.620757615999935, 57.92088450700004), (-5.6126195949999556, 57.92877838700008), (-5.598215298999946, 57.91901276200008), (-5.587310350999928, 57.91510651200008), (-5.550526495999918, 57.91510651200008), (-5.556263800999943, 57.88776276200008), (-5.527902798999946, 57.86758047100005), (-5.487049933999913, 57.85586172100005), (-5.454986131999931, 57.85370514500005), (-5.46117102799991, 57.86050039300005), (-5.449045376999948, 57.869126695000034), (-5.437123175999943, 57.897650458000044), (-5.427642381999931, 57.908270575000074), (-5.4149063789999445, 57.90814850500004), (-5.369496222999942, 57.89752838700008), (-5.355620897999927, 57.89126211100006), (-5.327504035999937, 57.87327708500004), (-5.293853318999936, 57.86204661700003), (-5.221587693999936, 57.846869208000044), (-5.236317511999914, 57.86078522300005), (-5.2475479809999115, 57.86701080900008), (-5.276763475999928, 57.87417226800005), (-5.320668097999942, 57.898504950000074), (-5.384917772999927, 57.914129950000074), (-5.39289303299995, 57.91819896000004), (-5.394398566999939, 57.923895575000074), (-5.396839972999942, 57.926214911000045), (-5.3973282539999445, 57.928900458000044), (-5.39289303299995, 57.935614325000074), (-5.386545376999948, 57.936428127000056), (-5.378977016999954, 57.93183014500005), (-5.3717341789999296, 57.93105703300006), (-5.366200324999909, 57.943060614000046), (-5.3471573559999115, 57.936712958000044), (-5.319162563999953, 57.91474030200004), (-5.297352667999917, 57.908270575000074), (-5.2860001289999445, 57.90875885600008), (-5.266957160999937, 57.91400788000004), (-5.2562556629999335, 57.91510651200008), (-5.2436417309999115, 57.91290924700007), (-5.22101803299995, 57.90403880400004), (-5.211293097999942, 57.90208567900004), (-5.198801235999952, 57.897772528000075), (-5.162261522999927, 57.87848541900007), (-5.1199845039999445, 57.86798737200007), (-5.0911352199999556, 57.84031810100004), (-5.070790167999917, 57.833197333000044), (-5.07648678299995, 57.83852773600006), (-5.083404100999928, 57.84756094000005), (-5.0893448559999115, 57.85724518400008), (-5.091867641999954, 57.86420319200005), (-5.0971573559999115, 57.87091705900008), (-5.197255011999914, 57.91787344000005), (-5.221587693999936, 57.92133209800005), (-5.221587693999936, 57.92877838700008), (-5.201893683999913, 57.92865631700005), (-5.193959113999938, 57.935980536000045), (-5.19554602799991, 57.94765859600005), (-5.204497850999928, 57.960150458000044), (-5.216704881999931, 57.96588776200008), (-5.2488907539999445, 57.96938711100006), (-5.2631729809999115, 57.976548570000034), (-5.292632615999935, 57.98061758000006), (-5.333892381999931, 58.00853099200003), (-5.359364386999914, 58.011379299000055), (-5.357167120999918, 58.01406484600005), (-5.3566788399999155, 58.014878648000035), (-5.351918097999942, 58.01752350500004), (-5.366932745999918, 58.02887604400007), (-5.386586066999939, 58.032538153000075), (-5.427642381999931, 58.03119538000004), (-5.424305792999917, 58.03554922100005), (-5.422352667999917, 58.03896719000005), (-5.419585740999935, 58.04205963700008), (-5.413929816999939, 58.04547760600008), (-5.413929816999939, 58.05231354400007), (-5.447010870999918, 58.08437734600005), (-5.428089972999942, 58.09796784100007), (-5.390044725999928, 58.09218984600005), (-5.366200324999909, 58.06598541900007), (-5.344309048999946, 58.075506903000075), (-5.322865363999938, 58.07172272300005), (-5.300770636999914, 58.07013580900008), (-5.276763475999928, 58.08641185100004), (-5.283070441999939, 58.08641185100004), (-5.278065558999913, 58.09625885600008), (-5.2787979809999115, 58.10537344000005), (-5.283558722999942, 58.11347077000005), (-5.2905167309999115, 58.12055084800005), (-5.276763475999928, 58.12055084800005), (-5.276763475999928, 58.127386786000045), (-5.297352667999917, 58.134833075000074), (-5.284087693999936, 58.14008209800005), (-5.255523240999935, 58.143784898000035), (-5.242054816999939, 58.14789459800005), (-5.242054816999939, 58.15534088700008), (-5.275054490999935, 58.15452708500004), (-5.290842251999948, 58.156317450000074), (-5.304798956999946, 58.162095445000034), (-5.297352667999917, 58.168402411000045), (-5.304798956999946, 58.17332591400003), (-5.313059048999946, 58.17731354400007), (-5.321888800999943, 58.18024323100008), (-5.331450975999928, 58.18203359600005), (-5.3293350899999155, 58.186712958000044), (-5.326161261999914, 58.198431708000044), (-5.323963995999918, 58.203111070000034), (-5.336822068999936, 58.203192450000074), (-5.346791144999941, 58.20685455900008), (-5.39289303299995, 58.24469635600008), (-5.3920792309999115, 58.261379299000055), (-5.375884568999936, 58.26422760600008), (-5.352894660999937, 58.25893789300005), (-5.31078040299991, 58.243394273000035), (-5.293853318999936, 58.24091217700004), (-5.276966925999943, 58.243394273000035), (-5.237294074999909, 58.25763580900008), (-5.2160538399999155, 58.261419989000046), (-5.194325324999909, 58.25999583500004), (-5.173207160999937, 58.25092194200005), (-5.165638800999943, 58.258246161000045), (-5.152251756999931, 58.264837958000044), (-5.138335740999935, 58.269598700000074), (-5.129383917999917, 58.27138906500005), (-5.11156165299991, 58.26825592700004), (-5.0812882149999155, 58.25409577000005), (-5.0676977199999556, 58.25092194200005), (-5.017730272999927, 58.253241278000075), (-5.002430792999917, 58.25092194200005), (-4.933583136999914, 58.22304922100005), (-4.943430141999954, 58.233587958000044), (-4.954823370999918, 58.23981354400007), (-4.982004360999952, 58.25092194200005), (-4.968861456999946, 58.25678131700005), (-4.940337693999936, 58.259466864000046), (-4.926747199999909, 58.26459381700005), (-4.990223761999914, 58.27142975500004), (-5.009917772999927, 58.27138906500005), (-5.018055792999917, 58.26862213700008), (-5.029367641999954, 58.25971100500004), (-5.040028449999909, 58.25775788000004), (-5.0501195949999556, 58.25991445500006), (-5.0707087879999335, 58.269232489000046), (-5.081654425999943, 58.27138906500005), (-5.096424933999913, 58.27676015800006), (-5.125965949999909, 58.30019765800006), (-5.1362198559999115, 58.305568752000056), (-5.137440558999913, 58.30927155200004), (-5.156361456999946, 58.32461172100005), (-5.160145636999914, 58.326605536000045), (-5.167795376999948, 58.33926015800006), (-5.171009894999941, 58.34666575700004), (-5.173207160999937, 58.353949286000045), (-5.153309699999909, 58.353949286000045), (-5.1634008449999556, 58.364569403000075), (-5.162912563999953, 58.37449778900003), (-5.155913865999935, 58.384466864000046), (-5.146473761999914, 58.394964911000045), (-5.145497199999909, 58.400051174000055), (-5.14671790299991, 58.40664297100005), (-5.146839972999942, 58.41242096600007), (-5.143055792999917, 58.41478099200003), (-5.135487433999913, 58.413763739000046), (-5.122222459999932, 58.40957265800006), (-5.116037563999953, 58.40859609600005), (-5.057972785999937, 58.38727448100008), (-5.016184048999946, 58.38812897300005), (-5.043934699999909, 58.400091864000046), (-5.0533748039999296, 58.40664297100005), (-5.0502823559999115, 58.41478099200003), (-5.0570369129999335, 58.42218659100007), (-5.066151495999918, 58.41714101800005), (-5.076161261999914, 58.414496161000045), (-5.086822068999936, 58.41388580900008), (-5.0980525379999335, 58.41478099200003), (-5.0980525379999335, 58.42218659100007), (-5.08812415299991, 58.421942450000074), (-5.085031704999949, 58.42218659100007), (-5.085031704999949, 58.429022528000075), (-5.091786261999914, 58.429754950000074), (-5.09601803299995, 58.43146393400008), (-5.105539516999954, 58.43650950700004), (-5.0501195949999556, 58.45380280200004), (-5.025542772999927, 58.447699286000045), (-4.9955948559999115, 58.43650950700004), (-5.105539516999954, 58.48737213700008), (-5.105620897999927, 58.505560614000046), (-5.103667772999927, 58.51422760600008), (-5.095855272999927, 58.518866278000075), (-5.042795376999948, 58.53546784100007), (-5.0279841789999296, 58.54409414300005), (-5.016184048999946, 58.55939362200007), (-5.0229386059999115, 58.55939362200007), (-5.015207485999952, 58.580064195000034), (-5.011586066999939, 58.60057200700004), (-5.004953579999949, 58.61774323100008), (-4.988189256999931, 58.62832265800006), (-4.859486456999946, 58.61322663000004), (-4.835926886999914, 58.60504791900007), (-4.818104620999918, 58.59292226800005), (-4.817941860999952, 58.587591864000046), (-4.81281490799995, 58.571966864000046), (-4.806752081999946, 58.55841705900008), (-4.803822394999941, 58.55939362200007), (-4.804595506999931, 58.54832591400003), (-4.807240363999938, 58.53961823100008), (-4.811634894999941, 58.53204987200007), (-4.818104620999918, 58.524644273000035), (-4.799794074999909, 58.532456773000035), (-4.791818813999953, 58.54165273600006), (-4.7899063789999445, 58.55174388200004), (-4.790150519999941, 58.562486070000034), (-4.785755988999938, 58.577053127000056), (-4.777088995999918, 58.583319403000075), (-4.771595831999946, 58.59039948100008), (-4.776519334999932, 58.60716380400004), (-4.758859829999949, 58.59910716400003), (-4.7280167309999115, 58.577460028000075), (-4.7113337879999335, 58.57306549700007), (-4.683257615999935, 58.56150950700004), (-4.670399542999917, 58.55939362200007), (-4.660023566999939, 58.555853583000044), (-4.659291144999941, 58.54755280200004), (-4.663238084999932, 58.538397528000075), (-4.6673070949999556, 58.53204987200007), (-4.6790258449999556, 58.52391185100004), (-4.714466925999943, 58.50560130400004), (-4.732411261999914, 58.480454820000034), (-4.751535610999952, 58.46161530200004), (-4.7609757149999155, 58.44798411700003), (-4.74242102799991, 58.44953034100007), (-4.682972785999937, 58.48456452000005), (-4.673451300999943, 58.48737213700008), (-4.6668595039999445, 58.50291575700004), (-4.650502081999946, 58.50995514500005), (-4.630441860999952, 58.514960028000075), (-4.612131313999953, 58.524644273000035), (-4.6010636059999115, 58.54193756700005), (-4.595122850999928, 58.56000397300005), (-4.584950324999909, 58.57416413000004), (-4.560536261999914, 58.57990143400008), (-4.517486131999931, 58.575506903000075), (-4.475493943999936, 58.565619208000044), (-4.426503058999913, 58.54637278900003), (-4.426503058999913, 58.53888580900008), (-4.427886522999927, 58.53530508000006), (-4.428700324999909, 58.53473541900007), (-4.426503058999913, 58.524644273000035), (-4.449940558999913, 58.510199286000045), (-4.464751756999931, 58.49201080900008), (-4.477650519999941, 58.47134023600006), (-4.4953507149999155, 58.44953034100007), (-4.478098110999952, 58.453558661000045), (-4.46117102799991, 58.46246979400007), (-4.43390865799995, 58.483628648000035), (-4.432728644999941, 58.487616278000075), (-4.4339900379999335, 58.49237702000005), (-4.4342341789999296, 58.49628327000005), (-4.430165167999917, 58.49799225500004), (-4.425933397999927, 58.49909088700008), (-4.385365363999938, 58.52240631700005), (-4.382394985999952, 58.524644273000035), (-4.343861456999946, 58.53888580900008), (-4.317005988999938, 58.54572174700007), (-4.306996222999942, 58.54637278900003), (-4.287180141999954, 58.54291413000004), (-4.2573136059999115, 58.52798086100006), (-4.234730597999942, 58.524644273000035), (-4.248931443999936, 58.53204987200007), (-4.238189256999931, 58.536444403000075), (-4.232248501999948, 58.54242584800005), (-4.227691209999932, 58.548163153000075), (-4.22101803299995, 58.551947333000044), (-4.209706183999913, 58.55292389500005), (-4.190785285999937, 58.54783763200004), (-4.1769913399999155, 58.54637278900003), (-4.16820227799991, 58.54938385600008), (-4.1605525379999335, 58.562567450000074), (-4.149322068999936, 58.565619208000044), (-4.111195441999939, 58.565619208000044), (-4.0902400379999335, 58.56207916900007), (-4.081450975999928, 58.561835028000075), (-4.070220506999931, 58.565619208000044), (-4.061512824999909, 58.57282135600008), (-4.048817511999914, 58.58958567900004), (-4.039784308999913, 58.59292226800005), (-4.030629035999937, 58.59406159100007), (-4.029042120999918, 58.59516022300005), (-4.027821417999917, 58.59271881700005), (-4.0092667309999115, 58.57330963700008), (-4.003773566999939, 58.57062409100007), (-3.981434699999909, 58.57306549700007), (-3.8957413399999155, 58.565619208000044), (-3.8101293609999516, 58.57306549700007), (-3.7669571609999366, 58.58372630400004), (-3.6983536449999406, 58.61115143400008), (-3.659901495999918, 58.62083567900004), (-3.597564256999931, 58.62714264500005), (-3.565500454999949, 58.626613674000055), (-3.542591925999943, 58.62083567900004), (-3.552479620999918, 58.61546458500004), (-3.556263800999943, 58.61399974200003), (-3.532053188999953, 58.60211823100008), (-3.504017706999946, 58.60333893400008), (-3.447010870999918, 58.61399974200003), (-3.3914688789999445, 58.60065338700008), (-3.364084438999953, 58.600816148000035), (-3.3508194649999155, 58.62083567900004), (-3.3677465489999463, 58.624701239000046), (-3.3860570949999556, 58.631740627000056), (-3.402251756999931, 58.64203522300005), (-3.412912563999953, 58.655585028000075), (-3.3900447259999282, 58.67177969000005), (-3.3748673169999392, 58.677069403000075), (-3.3582657539999445, 58.675482489000046), (-3.3543595039999445, 58.67015208500004), (-3.35179602799991, 58.66083405200004), (-3.34788977799991, 58.652044989000046), (-3.340565558999913, 58.648138739000046), (-3.3098852199999556, 58.648138739000046), (-3.244252081999946, 58.65900299700007), (-3.204090949999909, 58.66111888200004), (-3.1519262359999516, 58.64126211100006), (-3.118763800999943, 58.64109935100004), (-3.052886522999927, 58.648138739000046), (-3.0191137359999516, 58.640326239000046), (-3.025380011999914, 58.62213776200008), (-3.0444229809999115, 58.601629950000074), (-3.049183722999942, 58.58673737200007), (-3.060454881999931, 58.57843659100007), (-3.0754288399999155, 58.56037018400008), (-3.0845434239999463, 58.551947333000044), (-3.1107478509999282, 58.53864166900007), (-3.1180313789999445, 58.53204987200007), (-3.129261847999942, 58.51264069200005), (-3.1293025379999335, 58.49640534100007), (-3.1187231109999516, 58.484442450000074), (-3.0975235669999392, 58.47748444200005), (-3.0850723949999406, 58.47825755400004), (-3.073963995999918, 58.481675523000035), (-3.064442511999914, 58.48297760600008), (-3.056630011999914, 58.47748444200005), (-3.053334113999938, 58.46576569200005), (-3.0577286449999406, 58.45685455900008), (-3.066761847999942, 58.451157945000034), (-3.077056443999936, 58.44953034100007), (-3.0863337879999335, 58.41421133000006), (-3.129790818999936, 58.36928945500006), (-3.182769334999932, 58.32843659100007), (-3.2205297519999476, 58.305568752000056), (-3.2622777989999463, 58.292629299000055), (-3.34984290299991, 58.27610911700003), (-3.38499915299991, 58.26459381700005), (-3.438099738999938, 58.236029364000046), (-3.447010870999918, 58.22675202000005), (-3.454741990999935, 58.210150458000044), (-3.473459438999953, 58.193426825000074), (-3.515288865999935, 58.168402411000045), (-3.7350154289999296, 58.07217031500005), (-3.809193488999938, 58.05190664300005), (-3.8275040359999366, 58.04205963700008), (-3.8362524079999503, 58.03143952000005), (-3.8460994129999335, 58.01117584800005), (-3.851714647999927, 58.003892320000034), (-3.8605850899999155, 57.998928127000056), (-3.8856095039999445, 57.991400458000044), (-3.9173070949999556, 57.98745351800005), (-3.981434699999909, 57.96356842700004), (-3.990956183999913, 57.96039459800005), (-3.997670050999943, 57.954413153000075), (-4.001372850999928, 57.94611237200007), (-4.001942511999914, 57.935614325000074), (-4.018299933999913, 57.940619208000044), (-4.023060675999943, 57.943060614000046), (-4.016184048999946, 57.949286200000074), (-4.0301407539999445, 57.953192450000074), (-4.055775519999941, 57.95498281500005), (-4.0843806629999335, 57.964178778000075), (-4.0891007149999155, 57.960150458000044), (-4.0863337879999335, 57.95189036700003), (-4.0776261059999115, 57.943060614000046), (-4.062652147999927, 57.93695709800005), (-4.03148352799991, 57.93618398600006), (-4.016184048999946, 57.93219635600008), (-4.009429490999935, 57.92767975500004), (-3.988270636999914, 57.908270575000074), (-4.008941209999932, 57.88959381700005), (-4.013824022999927, 57.879339911000045), (-4.009348110999952, 57.86790599200003), (-4.025135870999918, 57.868068752000056), (-4.054839647999927, 57.874335028000075), (-4.070220506999931, 57.87417226800005), (-4.0793350899999155, 57.87026601800005), (-4.0969132149999155, 57.85736725500004), (-4.1049698559999115, 57.85370514500005), (-4.132923956999946, 57.85415273600006), (-4.190419074999909, 57.87006256700005), (-4.218169725999928, 57.87417226800005), (-4.298898891999954, 57.86277903900003), (-4.3209529289999296, 57.87103913000004), (-4.353179490999935, 57.89520905200004), (-4.3723038399999155, 57.90448639500005), (-4.392404751999948, 57.908270575000074), (-4.339588995999918, 57.86570872600004), (-4.307728644999941, 57.85146719000005), (-4.269398566999939, 57.846869208000044), (-4.229074673999946, 57.85724518400008), (-4.2082413399999155, 57.85919830900008), (-4.190581834999932, 57.85028717700004), (-4.173451300999943, 57.83901601800005), (-4.1497289699999556, 57.82982005400004), (-4.1334529289999296, 57.830145575000074), (-4.1390681629999335, 57.846869208000044), (-4.0750626289999445, 57.82318756700005), (-4.0399063789999445, 57.81818268400008), (-3.9835098949999406, 57.84235260600008), (-3.9514867829999503, 57.838324286000045), (-3.933705206999946, 57.82566966400003), (-3.9473363919999542, 57.81268952000005), (-3.914784308999913, 57.80768463700008), (-3.877674933999913, 57.81671784100007), (-3.8418676419999542, 57.83490631700005), (-3.813547329999949, 57.857123114000046), (-3.798451300999943, 57.866522528000075), (-3.786040818999936, 57.86542389500005), (-3.779449022999927, 57.85565827000005), (-3.782215949999909, 57.83942291900007), (-3.790028449999909, 57.83071523600006), (-3.92601477799991, 57.734808661000045), (-3.948841925999943, 57.72492096600007), (-3.975209113999938, 57.70327383000006), (-3.988270636999914, 57.69599030200004), (-4.00804602799991, 57.693793036000045), (-4.02367102799991, 57.69782135600008), (-4.0286352199999556, 57.70770905200004), (-4.016184048999946, 57.72333405200004), (-4.042958136999914, 57.73729075700004), (-4.077951626999948, 57.73029205900008), (-4.155344204999949, 57.692572333000044), (-4.168568488999938, 57.689439195000034), (-4.1939998039999296, 57.68854401200008), (-4.2592667309999115, 57.67869700700004), (-4.277821417999917, 57.68060944200005), (-4.294789191999939, 57.68016185100004), (-4.302154100999928, 57.66860586100006), (-4.30882727799991, 57.65485260600008), (-4.324045376999948, 57.64826080900008), (-4.33820553299995, 57.64508698100008), (-4.4031876289999445, 57.60952383000006), (-4.412180141999954, 57.60297272300005), (-4.4203181629999335, 57.592962958000044), (-4.428456183999913, 57.57754140800006), (-4.423451300999943, 57.57680898600006), (-4.409901495999918, 57.582464911000045), (-4.379872199999909, 57.58934153900003), (-4.365101691999939, 57.59723541900007), (-4.3510636059999115, 57.60736725500004), (-4.340809699999909, 57.617173570000034), (-4.328724738999938, 57.626288153000075), (-4.283111131999931, 57.64142487200007), (-4.2445369129999335, 57.66303131700005), (-4.201893683999913, 57.674994208000044), (-4.1937556629999335, 57.67552317900004), (-4.182240363999938, 57.67279694200005), (-4.169016079999949, 57.663763739000046), (-4.118723110999952, 57.65770091400003), (-4.096791144999941, 57.65810781500005), (-4.0807185539999296, 57.66498444200005), (-4.068104620999918, 57.672308661000045), (-4.0246475899999155, 57.687201239000046), (-4.009348110999952, 57.68854401200008), (-4.004505988999938, 57.67597077000005), (-4.025257941999939, 57.65521881700005), (-4.0541886059999115, 57.63572825700004), (-4.083404100999928, 57.62335846600007), (-4.118560350999928, 57.592962958000044), (-4.11546790299991, 57.58783600500004), (-4.112294074999909, 57.58413320500006), (-4.1088761059999115, 57.58144765800006), (-4.1049698559999115, 57.579291083000044), (-4.151356574999909, 57.57684967700004), (-4.170643683999913, 57.570746161000045), (-4.187489386999914, 57.55882396000004), (-4.178089972999942, 57.54954661700003), (-4.184925910999937, 57.548163153000075), (-4.207997199999909, 57.552069403000075), (-4.262603318999936, 57.552069403000075), (-4.262603318999936, 57.544582424000055), (-4.233957485999952, 57.54511139500005), (-4.220285610999952, 57.543402411000045), (-4.207997199999909, 57.538397528000075), (-4.226307745999918, 57.51544830900008), (-4.237456834999932, 57.50531647300005), (-4.248931443999936, 57.49746328300006), (-4.212798631999931, 57.492173570000034), (-4.1948136059999115, 57.49160390800006), (-4.173898891999954, 57.49746328300006), (-4.157622850999928, 57.50849030200004), (-4.150054490999935, 57.51504140800006), (-4.149322068999936, 57.51788971600007), (-4.126779751999948, 57.518866278000075), (-4.116200324999909, 57.52179596600007), (-4.097523566999939, 57.53668854400007), (-4.082997199999909, 57.54441966400003), (-4.067290818999936, 57.54995351800005), (-4.0531306629999335, 57.552069403000075), (-4.034982876999948, 57.55687083500004), (-4.046457485999952, 57.56785716400003), (-4.083851691999939, 57.58612702000005), (-4.056019660999937, 57.585150458000044), (-3.9643448559999115, 57.592962958000044), (-3.8682755199999406, 57.587876695000034), (-3.8374731109999516, 57.592962958000044), (-3.6848038399999155, 57.65444570500006), (-3.625152147999927, 57.66193268400008), (-3.632557745999918, 57.65094635600008), (-3.637684699999909, 57.64622630400004), (-3.6456192699999406, 57.64142487200007), (-3.632476365999935, 57.635646877000056), (-3.6196182929999168, 57.63621653900003), (-3.606068488999938, 57.63947174700007), (-3.590972459999932, 57.64142487200007), (-3.61156165299991, 57.66811758000006), (-3.5747777989999463, 57.66111888200004), (-3.55492102799991, 57.659857489000046), (-3.535755988999938, 57.66193268400008), (-3.521473761999914, 57.66779205900008), (-3.5054418609999516, 57.67865631700005), (-3.4959610669999392, 57.69135163000004), (-3.501698370999918, 57.702826239000046), (-3.491851365999935, 57.71312083500004), (-3.4828181629999335, 57.71401601800005), (-3.4730525379999335, 57.711004950000074), (-3.460682745999918, 57.70966217700004), (-3.447865363999938, 57.71246979400007), (-3.4212540359999366, 57.72138092700004), (-3.409169074999909, 57.72333405200004), (-3.2847387359999516, 57.72044505400004), (-3.2100723949999406, 57.69399648600006), (-3.0786840489999463, 57.66941966400003), (-3.034901495999918, 57.66860586100006), (-2.994496222999942, 57.67552317900004), (-2.932687954999949, 57.69961172100005), (-2.9160863919999542, 57.702826239000046), (-2.75804602799991, 57.702826239000046), (-2.7512100899999155, 57.70062897300005), (-2.741118943999936, 57.69086334800005), (-2.731068488999938, 57.68854401200008), (-2.719878709999932, 57.690619208000044), (-2.711537238999938, 57.69399648600006), (-2.7035212879999335, 57.69472890800006), (-2.6929418609999516, 57.68854401200008), (-2.658924933999913, 57.69745514500005), (-2.573394334999932, 57.68146393400008), (-2.541981574999909, 57.68235911700003), (-2.526112433999913, 57.66860586100006), (-2.5181371739999463, 57.67011139500005), (-2.5110570949999556, 57.677801825000074), (-2.497954881999931, 57.68235911700003), (-2.4800512359999516, 57.68121979400007), (-2.4328507149999155, 57.66811758000006), (-2.425526495999918, 57.67572663000004), (-2.4177953769999476, 57.674261786000045), (-2.4087621739999463, 57.669623114000046), (-2.398060675999943, 57.66811758000006), (-2.3865860669999392, 57.671576239000046), (-2.369496222999942, 57.680568752000056), (-2.360503709999932, 57.68235911700003), (-2.3410538399999155, 57.675848700000074), (-2.3289688789999445, 57.67405833500004), (-2.3235977859999366, 57.678941148000035), (-2.32054602799991, 57.68455638200004), (-2.313384568999936, 57.68992747600004), (-2.3040665359999366, 57.69399648600006), (-2.295643683999913, 57.69599030200004), (-2.274322068999936, 57.69383372600004), (-2.230132615999935, 57.67914459800005), (-2.209950324999909, 57.67552317900004), (-2.1840714179999168, 57.67845286700003), (-2.1243383449999556, 57.702826239000046), (-2.108143683999913, 57.70498281500005), (-1.9976700509999432, 57.702826239000046), (-1.9969376289999445, 57.69904205900008), (-1.990834113999938, 57.69037506700005), (-1.982167120999918, 57.68109772300005), (-1.9735001289999445, 57.67552317900004), (-1.961293097999942, 57.674709377000056), (-1.9447322259999282, 57.68256256700005), (-1.9324845039999445, 57.68235911700003), (-1.9256892569999309, 57.678168036000045), (-1.914214647999927, 57.66474030200004), (-1.8294571609999366, 57.61347077000005), (-1.820464647999927, 57.59634023600006), (-1.817005988999938, 57.578192450000074), (-1.8113907539999445, 57.56049225500004), (-1.7960098949999406, 57.544582424000055), (-1.7960098949999406, 57.538397528000075), (-1.8000382149999155, 57.52586497600004), (-1.7895401679999168, 57.514837958000044), (-1.7611384759999282, 57.49746328300006), (-1.7753800119999141, 57.496527411000045), (-1.7821345689999362, 57.48899974200003), (-1.7812393869999141, 57.48041413000004), (-1.7717179029999102, 57.476263739000046), (-1.7593481109999516, 57.47357819200005), (-1.7659399079999503, 57.46743398600006), (-1.7891739569999459, 57.45644765800006), (-1.8301488919999542, 57.42617422100005), (-1.8474828769999476, 57.40814850500004), (-1.849964972999942, 57.39435455900008), (-1.9544978509999282, 57.341131903000075), (-1.9802953769999476, 57.31928131700005), (-2.044667120999918, 57.22650788000004), (-2.068511522999927, 57.17462799700007), (-2.074126756999931, 57.15420156500005), (-2.0714005199999406, 57.13556549700007), (-2.052357550999943, 57.12742747600004), (-2.0493057929999168, 57.118841864000046), (-2.065256313999953, 57.10053131700005), (-2.0658259759999282, 57.09983958500004), (-2.156158006999931, 57.020697333000044), (-2.1869197259999282, 56.98468659100007), (-2.200103318999936, 56.94871653900003), (-2.1971329419999392, 56.94025299700007), (-2.1912328769999476, 56.93414948100008), (-2.186268683999913, 56.92674388200004), (-2.1863907539999445, 56.91453685100004), (-2.191314256999931, 56.90892161700003), (-2.209706183999913, 56.895819403000075), (-2.213693813999953, 56.890692450000074), (-2.219878709999932, 56.87262604400007), (-2.23460852799991, 56.861395575000074), (-2.2689509759999282, 56.84634023600006), (-2.295806443999936, 56.82526276200008), (-2.3198136059999115, 56.80158112200007), (-2.336089647999927, 56.79083893400008), (-2.3918350899999155, 56.771185614000046), (-2.4086807929999168, 56.762925523000035), (-2.4264216789999296, 56.751288153000075), (-2.4359431629999335, 56.74038320500006), (-2.4407445949999556, 56.73484935100004), (-2.4516495429999168, 56.69098541900007), (-2.4637345039999445, 56.67877838700008), (-2.4774063789999445, 56.66868724200003), (-2.487456834999932, 56.65387604400007), (-2.4875382149999155, 56.64606354400007), (-2.481271938999953, 56.63239166900007), (-2.480620897999927, 56.62653229400007), (-2.4861954419999392, 56.619574286000045), (-2.504058397999927, 56.60883209800005), (-2.514556443999936, 56.591498114000046), (-2.530018683999913, 56.58075592700004), (-2.623768683999913, 56.543402411000045), (-2.6409399079999503, 56.522365627000056), (-2.6613663399999155, 56.51422760600008), (-2.6997777989999463, 56.50364817900004), (-2.708729620999918, 56.49599844000005), (-2.7276505199999406, 56.46954987200007), (-2.737294074999909, 56.46702708500004), (-2.74437415299991, 56.46954987200007), (-2.752308722999942, 56.47361888200004), (-2.764800584999932, 56.47573476800005), (-2.819325324999909, 56.47129954600007), (-3.055653449999909, 56.45213450700004), (-3.0606176419999542, 56.45172760600008), (-3.099273240999935, 56.44188060100004), (-3.1339005199999406, 56.426947333000044), (-3.238189256999931, 56.36774323100008), (-3.280181443999936, 56.35789622600004), (-3.3234757149999155, 56.36591217700004), (-3.311512824999909, 56.35651276200008), (-3.294016079999949, 56.352769273000035), (-3.2515356109999516, 56.352850653000075), (-3.230620897999927, 56.35602448100008), (-3.188384568999936, 56.37018463700008), (-3.149566209999932, 56.37555573100008), (-2.950266079999949, 56.43187083500004), (-2.9399307929999168, 56.43854401200008), (-2.930653449999909, 56.44806549700007), (-2.909087693999936, 56.45571523600006), (-2.88499915299991, 56.45799388200004), (-2.867909308999913, 56.45184967700004), (-2.8500870429999168, 56.44204336100006), (-2.8147680329999503, 56.44041575700004), (-2.8028051419999542, 56.42796458500004), (-2.800892706999946, 56.40892161700003), (-2.808257615999935, 56.391058661000045), (-2.8216039699999556, 56.376166083000044), (-2.837554490999935, 56.36591217700004), (-2.8129776679999168, 56.36591217700004), (-2.809193488999938, 56.36286041900007), (-2.8047582669999542, 56.34910716400003), (-2.8028051419999542, 56.345404364000046), (-2.7914932929999168, 56.34247467700004), (-2.7826228509999282, 56.34162018400008), (-2.7752579419999392, 56.33942291900007), (-2.768625454999949, 56.33234284100007), (-2.6771541009999282, 56.32843659100007), (-2.655262824999909, 56.32217031500005), (-2.621205206999946, 56.30442942900004), (-2.613189256999931, 56.30190664300005), (-2.5768123039999296, 56.28392161700003), (-2.5768123039999296, 56.277777411000045), (-2.6301163399999155, 56.24852122600004), (-2.648345506999931, 56.22870514500005), (-2.672027147999927, 56.22239817900004), (-2.7202042309999115, 56.21629466400003), (-2.7835994129999335, 56.19196198100008), (-2.8061417309999115, 56.188381252000056), (-2.8307185539999296, 56.190741278000075), (-2.8920792309999115, 56.20888906500005), (-2.940052863999938, 56.209418036000045), (-2.9643448559999115, 56.20563385600008), (-2.9746801419999542, 56.19830963700008), (-2.982411261999914, 56.189113674000055), (-3.0355525379999335, 56.16791413000004), (-3.0910538399999155, 56.13226959800005), (-3.107533331999946, 56.12689850500004), (-3.127552863999938, 56.12287018400008), (-3.138295050999943, 56.112209377000056), (-3.152251756999931, 56.07851797100005), (-3.1635636059999115, 56.06386953300006), (-3.1783748039999296, 56.05809153900003), (-3.2484431629999335, 56.055975653000075), (-3.268381313999953, 56.05093008000006), (-3.3030492829999503, 56.037543036000045), (-3.342681443999936, 56.02716705900008), (-3.381825324999909, 56.02338288000004), (-3.420969204999949, 56.02488841400003), (-3.5825902989999463, 56.05174388200004), (-3.671498175999943, 56.050848700000074), (-3.710031704999949, 56.05809153900003), (-3.7454320949999556, 56.07221100500004), (-3.7464900379999335, 56.072780666000085), (-3.782215949999909, 56.09218984600005), (-3.8031306629999335, 56.107123114000046), (-3.817005988999938, 56.11225006700005), (-3.8374731109999516, 56.112616278000075), (-3.8374731109999516, 56.10643138200004), (-3.777699347999942, 56.08283112200007), (-3.769154425999943, 56.07514069200005), (-3.7608536449999406, 56.07245514500005), (-3.7264298169999392, 56.03803131700005), (-3.721424933999913, 56.03070709800005), (-3.712635870999918, 56.028998114000046), (-3.693470831999946, 56.03115469000005), (-3.6866348949999406, 56.03070709800005), (-3.6795548169999392, 56.025458075000074), (-3.674794074999909, 56.01870351800005), (-3.6682836579999503, 56.01276276200008), (-3.656239386999914, 56.010199286000045), (-3.599720831999946, 56.017238674000055), (-3.5773819649999155, 56.01703522300005), (-3.405425584999932, 55.98973216400003), (-3.3582657539999445, 55.98973216400003), (-3.340891079999949, 55.99445221600007), (-3.331044074999909, 55.99408600500004), (-3.320423956999946, 55.986029364000046), (-3.303456183999913, 55.97760651200008), (-3.121815558999913, 55.96930573100008), (-3.1147354809999115, 55.966131903000075), (-3.096831834999932, 55.95197174700007), (-3.090728318999936, 55.94818756700005), (-3.078236456999946, 55.94684479400007), (-3.0156957669999542, 55.950506903000075), (-2.9399307929999168, 55.96930573100008), (-2.9166560539999296, 55.98061758000006), (-2.900054490999935, 55.996161200000074), (-2.8828832669999542, 56.00849030200004), (-2.8579809239999463, 56.010199286000045), (-2.863636847999942, 56.02228424700007), (-2.8663223949999406, 56.02676015800006), (-2.8709610669999392, 56.03070709800005), (-2.8527725899999155, 56.03978099200003), (-2.823150193999936, 56.059759833000044), (-2.8028051419999542, 56.06484609600005), (-2.635121222999942, 56.05805084800005), (-2.615956183999913, 56.053168036000045), (-2.587554490999935, 56.030951239000046), (-2.569406704999949, 56.02448151200008), (-2.57835852799991, 56.00800202000005), (-2.583648240999935, 56.00275299700007), (-2.5695694649999155, 55.99994538000004), (-2.5440567699999406, 56.00267161700003), (-2.528960740999935, 55.99656810100004), (-2.5248103509999282, 56.00055573100008), (-2.514556443999936, 56.00576406500005), (-2.507923956999946, 56.010199286000045), (-2.4932755199999406, 56.00153229400007), (-2.4525040359999366, 55.985256252000056), (-2.4143774079999503, 55.97833893400008), (-2.3509415359999366, 55.94818756700005), (-2.307769334999932, 55.93500397300005), (-2.146839972999942, 55.917303778000075), (-2.1380102199999556, 55.91461823100008), (-2.132557745999918, 55.90643952000005), (-2.13109290299991, 55.89720286700003), (-2.1287735669999392, 55.88979726800005), (-2.1209610669999392, 55.886704820000034), (-2.0994766919999392, 55.88178131700005), (-2.080189581999946, 55.86937083500004), (-2.0228572259999282, 55.80548737200007), (-2.009673631999931, 55.79083893400008), (-1.8778376939999362, 55.69489166900007), (-1.8631892569999309, 55.67161692900004), (-1.8530981109999516, 55.65932851800005), (-1.8315323559999115, 55.65070221600007), (-1.8260798819999309, 55.64362213700008), (-1.8216853509999282, 55.636419989000046), (-1.8164770169999542, 55.632879950000074), (-1.8071182929999168, 55.63450755400004), (-1.8007706369999141, 55.63922760600008), (-1.7962947259999282, 55.644232489000046), (-1.7925919259999432, 55.646551825000074), (-1.781402147999927, 55.64565664300005), (-1.768625454999949, 55.641913153000075), (-1.7564998039999296, 55.63361237200007), (-1.7476700509999432, 55.619208075000074), (-1.7679744129999335, 55.619208075000074), (-1.7679744129999335, 55.612982489000046), (-1.7559708319999459, 55.60887278900003), (-1.720855272999927, 55.614569403000075), (-1.6991267569999309, 55.612982489000046), (-1.6308487619999141, 55.58510976800005), (-1.6308487619999141, 55.57827383000006), (-1.6363419259999432, 55.57168203300006), (-1.6346736319999309, 55.56439850500004), (-1.6276749339999128, 55.55711497600004), (-1.6171768869999141, 55.55027903900003), (-1.6308487619999141, 55.544134833000044), (-1.6308487619999141, 55.53729889500005), (-1.6222224599999322, 55.534084377000056), (-1.6029353509999282, 55.52362702000005), (-1.6029353509999282, 55.516791083000044), (-1.6113175119999141, 55.50804271000004), (-1.6063533189999362, 55.503241278000075), (-1.5963435539999296, 55.49990469000005), (-1.5893448559999115, 55.49567291900007), (-1.5849503249999088, 55.483710028000075), (-1.5813695949999556, 55.41665273600006), (-1.5831192699999406, 55.40692780200004), (-1.5882869129999335, 55.39057038000004), (-1.5891007149999155, 55.385199286000045), (-1.5893448559999115, 55.37653229400007), (-1.5833227199999556, 55.354722398000035), (-1.5585831369999141, 55.32892487200007), (-1.5558162099999322, 55.31134674700007), (-1.5570369129999335, 55.306626695000034), (-1.5589900379999335, 55.302069403000075), (-1.5619197259999282, 55.29779694200005), (-1.5657445949999556, 55.29364655200004), (-1.570057745999918, 55.28620026200008), (-1.5682266919999392, 55.27960846600007), (-1.5642797519999476, 55.27326080900008), (-1.5620824859999516, 55.26666901200008), (-1.5564672519999476, 55.25503164300005), (-1.5439346999999088, 55.24388255400004), (-1.5209854809999115, 55.229396877000056), (-1.5291641919999392, 55.21625397300005), (-1.5240779289999296, 55.21010976800005), (-1.514271613999938, 55.204779364000046), (-1.507964647999927, 55.194647528000075), (-1.510812954999949, 55.184759833000044), (-1.5175675119999141, 55.176214911000045), (-1.5221248039999296, 55.16746653900003), (-1.517933722999942, 55.157131252000056), (-1.5007218089999128, 55.141791083000044), (-1.4959610669999392, 55.13458893400008), (-1.492543097999942, 55.112982489000046), (-1.4837540359999366, 55.09170156500005), (-1.4800919259999432, 55.08539459800005), (-1.4762263659999348, 55.083644924000055), (-1.4632869129999335, 55.08030833500004), (-1.459584113999938, 55.07859935100004), (-1.458078579999949, 55.07575104400007), (-1.4547013009999432, 55.067572333000044), (-1.438303188999953, 55.042303778000075), (-1.4291886059999115, 55.033270575000074), (-1.4240616529999102, 55.02435944200005), (-1.4195043609999516, 55.011704820000034), (-1.412912563999953, 55.00031159100007), (-1.4015193349999322, 54.995428778000075), (-1.398182745999918, 54.992621161000045), (-1.3702286449999406, 54.97553131700005), (-1.3626602859999366, 54.96478913000004), (-1.3617244129999335, 54.958685614000046), (-1.3635147779999102, 54.95425039300005), (-1.3640030589999128, 54.94818756700005), (-1.3628637359999516, 54.92593008000006), (-1.3603409499999088, 54.91705963700008), (-1.3531388009999432, 54.91351959800005), (-1.355824347999942, 54.904282945000034), (-1.2967830069999309, 54.77993398600006), (-1.2754613919999542, 54.74843984600005), (-1.2404679029999102, 54.72166575700004), (-1.2250870429999168, 54.71503327000005), (-1.172230597999942, 54.701239325000074), (-1.172230597999942, 54.693793036000045), (-1.1926163399999155, 54.693793036000045), (-1.192453579999949, 54.68927643400008), (-1.1907852859999366, 54.68618398600006), (-1.1851700509999432, 54.68008047100005), (-1.1827286449999406, 54.67206452000005), (-1.1788223949999406, 54.66474030200004), (-1.172922329999949, 54.65835195500006), (-1.1647029289999296, 54.652777411000045), (-1.172922329999949, 54.644191799000055), (-1.1824845039999445, 54.63922760600008), (-1.2062882149999155, 54.63296133000006), (-1.203724738999938, 54.62571849200003), (-1.1988419259999432, 54.62156810100004), (-1.1918025379999335, 54.61977773600006), (-1.1821182929999168, 54.61928945500006), (-1.1793513659999348, 54.62091705900008), (-1.1784561839999128, 54.624212958000044), (-1.1769913399999155, 54.62677643400008), (-1.172230597999942, 54.62612539300005), (-1.1695857409999348, 54.62360260600008), (-1.1654353509999282, 54.61871979400007), (-1.1629532539999445, 54.61395905200004), (-1.1647029289999296, 54.61180247600004), (-1.1526586579999503, 54.61318594000005), (-1.1467179029999102, 54.618475653000075), (-1.1380509109999366, 54.646551825000074), (-1.1205948559999115, 54.63300202000005), (-1.1036270819999459, 54.624660549000055), (-1.0842179029999102, 54.620428778000075), (-1.042062954999949, 54.61709219000005), (-0.9934789699999556, 54.59813060100004), (-0.7879125639999529, 54.56077708500004), (-0.5629776679999168, 54.47736237200007), (-0.5346573559999115, 54.461004950000074), (-0.5228572259999282, 54.44708893400008), (-0.5217992829999503, 54.43805573100008), (-0.5235896479999269, 54.43024323100008), (-0.5204158189999362, 54.42007070500006), (-0.5099991529999102, 54.41156647300005), (-0.47679602799991017, 54.39720286700003), (-0.46275794199993925, 54.38898346600007), (-0.4477432929999168, 54.37319570500006), (-0.43057206899993616, 54.349310614000046), (-0.4184464179999168, 54.32404205900008), (-0.41803951699995423, 54.303941148000035), (-0.4145401679999168, 54.297308661000045), (-0.4090063139999529, 54.29075755400004), (-0.4011938139999529, 54.28563060100004), (-0.39073645699994586, 54.28351471600007), (-0.3948868479999419, 54.273138739000046), (-0.39757239499994057, 54.269191799000055), (-0.3892716139999379, 54.26406484600005), (-0.3704727859999366, 54.247707424000055), (-0.3627823559999115, 54.24249909100007), (-0.3220108709999181, 54.23607005400004), (-0.31191972599992823, 54.231634833000044), (-0.30011959499995555, 54.224676825000074), (-0.2770889959999181, 54.21775950700004), (-0.26960201699995423, 54.20766836100006), (-0.26256262899994454, 54.18109772300005), (-0.2603653639999379, 54.176988023000035), (-0.2338761059999115, 54.16046784100007), (-0.11143958199994586, 54.13157786700003), (-0.07551021999995555, 54.11212799700007), (-0.16392981699993925, 54.08340078300006), (-0.1946915359999366, 54.06232330900008), (-0.2194718089999128, 54.022772528000075), (-0.1974177729999269, 53.99481842700004), (-0.1686905589999128, 53.929348049000055), (-0.1511124339999128, 53.899318752000056), (-0.045155402999910166, 53.801214911000045), (0.13347415500004445, 53.642645575000074), (0.1492619150000678, 53.60960521000004), (0.13689212300005238, 53.57713450700004), (0.13119550900006516, 53.573431708000044), (0.1096297540000819, 53.56289297100005), (0.1313582690000885, 53.59369538000004), (0.1359969410000872, 53.610663153000075), (0.12020918100006384, 53.61810944200005), (0.09945722700007309, 53.622300523000035), (0.056162957000083225, 53.64126211100006), (0.034515821000070446, 53.64606354400007), (0.014821811000047092, 53.64325592700004), (-0.023915167999916775, 53.62885163000004), (-0.04503333199994586, 53.62555573100008), (-0.06940670499994894, 53.626939195000034), (-0.09227454299991678, 53.63104889500005), (-0.11261959499995555, 53.63751862200007), (-0.1300349599999322, 53.64606354400007), (-0.2253311839999128, 53.719916083000044), (-0.2603653639999379, 53.73541901200008), (-0.2956436839999128, 53.738796291000085), (-0.3051651679999168, 53.73969147300005), (-0.4311417309999115, 53.71430084800005), (-0.4496964179999168, 53.71430084800005), (-0.5104874339999128, 53.71430084800005), (-0.5444229809999115, 53.70945872600004), (-0.5515030589999128, 53.71116771000004), (-0.5762426419999542, 53.72565338700008), (-0.5791723299999489, 53.72797272300005), (-0.6370336579999503, 53.73200104400007), (-0.6583552729999269, 53.72797272300005), (-0.7264705069999309, 53.70062897300005), (-0.7173559239999463, 53.69867584800005), (-0.7085668609999516, 53.695746161000045), (-0.7001846999999088, 53.691839911000045), (-0.6924535799999489, 53.68699778900003), (-0.6774796209999181, 53.702826239000046), (-0.6498103509999282, 53.710598049000055), (-0.6195369129999335, 53.71185944200005), (-0.5961807929999168, 53.70807526200008), (-0.5554906889999529, 53.69049713700008), (-0.5447485019999476, 53.683579820000034), (-0.5299373039999296, 53.67767975500004), (-0.5140274729999419, 53.681301174000055), (-0.48631751199991413, 53.69448476800005), (-0.3072403639999379, 53.71426015800006), (-0.27936764199995423, 53.707098700000074), (-0.2603653639999379, 53.68699778900003), (-0.1886287099999322, 53.620428778000075), (-0.1440323559999115, 53.606634833000044), (-0.11318925699993088, 53.58462148600006), (-0.09593665299991017, 53.57713450700004), (-0.06094316299993352, 53.57396067900004), (-0.0466202459999181, 53.570379950000074), (9.199300006912381e-05, 53.53534577000005), (0.0959578790000819, 53.488348700000074), (0.11508222700007309, 53.48322174700007), (0.1340438160000872, 53.48061758000006), (0.15186608200008322, 53.475816148000035), (0.1678166020000731, 53.464504299000055), (0.17090905000009116, 53.457017320000034), (0.1731063160000872, 53.44676341400003), (0.17579186300008587, 53.43768952000005), (0.1814884770000731, 53.43374258000006), (0.1906030610000471, 53.43187083500004), (0.21949303500008455, 53.41950104400007), (0.21192467500009116, 53.41266510600008), (0.2293400400000678, 53.40477122600004), (0.24488366000008455, 53.39093659100007), (0.2561141290000819, 53.375067450000074), (0.26042728000004445, 53.36147695500006), (0.34213300900006516, 53.22630442900004), (0.35621178500008455, 53.18854401200008), (0.3566186860000471, 53.145738023000035), (0.3357853520000731, 53.093451239000046), (0.32984459700008983, 53.08649323100008), (0.31869550900006516, 53.083685614000046), (0.29883873800008587, 53.08120351800005), (0.2824813160000872, 53.07485586100006), (0.19304446700004974, 53.02008698100008), (0.17448978000004445, 53.01544830900008), (0.16081790500004445, 53.008978583000044), (0.08212324300006912, 52.938666083000044), (0.061167839000063395, 52.924994208000044), (0.03760826900008851, 52.919175523000035), (0.022146030000044448, 52.91258372600004), (0.008555535000084546, 52.89862702000005), (0.010264519000088512, 52.88646067900004), (0.04066002700005811, 52.88507721600007), (0.09253991000008455, 52.89252350500004), (0.10564212300005238, 52.88934967700004), (0.13347415500004445, 52.87518952000005), (0.14714603000004445, 52.87201569200005), (0.17090905000009116, 52.86212799700007), (0.22242272200008983, 52.813666083000044), (0.24675540500004445, 52.79572174700007), (0.2644962900000678, 52.80369700700004), (0.2856551440000885, 52.805568752000056), (0.32553144600007045, 52.803168036000045), (0.34180748800008587, 52.79743073100008), (0.36988366000008455, 52.77301666900007), (0.38453209700008983, 52.76837799700007), (0.38453209700008983, 52.77521393400008), (0.37924238400006516, 52.79083893400008), (0.39942467500009116, 52.80951569200005), (0.42554772200008983, 52.827378648000035), (0.4386499360000471, 52.840725002000056), (0.44402103000004445, 52.86505768400008), (0.45671634200004974, 52.89199453300006), (0.47234134200004974, 52.916449286000045), (0.48568769600007045, 52.93349844000005), (0.5202742850000845, 52.95526764500005), (0.5695906910000872, 52.96930573100008), (0.6233830090000652, 52.97565338700008), (0.6718856130000859, 52.97443268400008), (0.6643986340000652, 52.98187897300005), (0.6847436860000471, 52.986395575000074), (0.7067977220000898, 52.98322174700007), (0.7291772800000444, 52.97748444200005), (0.7504988940000885, 52.97443268400008), (0.8357039720000898, 52.97443268400008), (0.8754988940000885, 52.96816640800006), (0.9210718110000471, 52.95465729400007), (0.9684350920000497, 52.94749583500004), (1.013926629000082, 52.960150458000044), (1.0034285820000832, 52.96474844000005), (0.9915470710000704, 52.96747467700004), (0.9790145190000885, 52.968410549000055), (0.9660750660000872, 52.96759674700007), (0.9660750660000872, 52.97443268400008), (1.2746688160000872, 52.92918528900003), (1.3960067070000832, 52.89142487200007), (1.6442163420000497, 52.775824286000045), (1.6733504570000832, 52.75568268400008), (1.6970320970000898, 52.73102448100008), (1.7158309250000912, 52.68374258000006), (1.7341414720000898, 52.65460846600007), (1.747243686000047, 52.62518952000005), (1.7407332690000885, 52.60390859600005), (1.7468367850000845, 52.58852773600006), (1.7487085300000444, 52.568793036000045), (1.7475692070000832, 52.53278229400007), (1.7711694670000497, 52.48590729400007), (1.7671004570000832, 52.47695547100005), (1.7544051440000885, 52.46735260600008), (1.7292586600000845, 52.41559479400007), (1.7301538420000497, 52.405910549000055), (1.7278751960000704, 52.39630768400008), (1.6836043630000859, 52.32453034100007), (1.6518660820000832, 52.289129950000074), (1.6411238940000885, 52.28180573100008), (1.6305444670000497, 52.27045319200005), (1.6282658210000704, 52.24481842700004), (1.6308699880000859, 52.19977448100008), (1.6254988940000885, 52.18036530200004), (1.6074324880000859, 52.14594147300005), (1.6035262380000859, 52.127834377000056), (1.5892033210000704, 52.100816148000035), (1.5875757170000497, 52.08698151200008), (1.582286004000082, 52.08148834800005), (1.5036727220000898, 52.060980536000045), (1.4868270190000885, 52.04901764500005), (1.4720158210000704, 52.05621979400007), (1.4668074880000859, 52.04800039300005), (1.4638778000000912, 52.035142320000034), (1.4558211600000845, 52.028509833000044), (1.4489852220000898, 52.02496979400007), (1.4248153000000912, 52.00185781500005), (1.3548283210000704, 51.95404694200005), (1.3435164720000898, 51.94285716400009), (1.332286004000082, 51.94009023600006), (1.2644149100000845, 51.99437083500004), (1.2348738940000885, 52.00031159100007), (1.1852319670000497, 52.025091864000046), (1.1578882170000497, 52.028509833000044), (1.1578882170000497, 52.02167389500005), (1.1935327480000524, 52.00079987200007), (1.2143660820000832, 51.991441148000035), (1.2602645190000885, 51.984808661000045), (1.2707625660000872, 51.98151276200008), (1.2751570970000898, 51.976996161000045), (1.2744246750000912, 51.96088288000004), (1.2710067070000832, 51.95644765800006), (1.2507430350000845, 51.95962148600006), (1.2389429050000444, 51.958644924000055), (1.2176212900000678, 51.954331773000035), (1.2057397800000444, 51.95343659100007), (1.193207227000073, 51.955511786000045), (1.1652938160000872, 51.96702708500004), (1.1430770190000885, 51.966050523000035), (1.0944930350000845, 51.955959377000056), (1.0691024100000845, 51.95343659100007), (1.0954695970000898, 51.945746161000045), (1.2620548840000652, 51.939154364000046), (1.2819930350000845, 51.946600653000075), (1.278493686000047, 51.92792389500005), (1.1995548840000652, 51.87767161700003), (1.2122501960000704, 51.87164948100008), (1.2278751960000704, 51.86737702000005), (1.2644149100000845, 51.86399974200003), (1.2747501960000704, 51.870306708000044), (1.2822371750000912, 51.880560614000046), (1.2866317070000832, 51.88165924700007), (1.288259311000047, 51.860581773000035), (1.2763778000000912, 51.84479401200008), (1.2192488940000885, 51.811835028000075), (1.167816602000073, 51.790228583000044), (1.1354272800000444, 51.78172435100004), (1.0654403000000912, 51.77529531500005), (1.0466414720000898, 51.777044989000046), (1.0372827480000524, 51.78217194200005), (1.021332227000073, 51.80255768400008), (0.9887801440000885, 51.83026764500005), (0.9798283210000704, 51.84357330900008), (0.9770613940000885, 51.82461172100005), (0.9620874360000471, 51.813788153000075), (0.9251408210000704, 51.80255768400008), (0.8942977220000898, 51.78461334800005), (0.8869735040000819, 51.782131252000056), (0.8864038420000497, 51.776678778000075), (0.8834741550000444, 51.76471588700008), (0.8789168630000859, 51.75275299700007), (0.8737085300000444, 51.747300523000035), (0.8619897800000444, 51.74555084800005), (0.8459578790000819, 51.736761786000045), (0.8357039720000898, 51.733710028000075), (0.8234969410000872, 51.73383209800005), (0.8014429050000444, 51.73969147300005), (0.7917586600000845, 51.74115631700005), (0.7671004570000832, 51.739447333000044), (0.7208764980000524, 51.728176174000055), (0.6985783210000704, 51.720038153000075), (0.7142033210000704, 51.715277411000045), (0.7324324880000859, 51.713771877000056), (0.7492781910000872, 51.70848216400009), (0.7607528000000912, 51.692694403000075), (0.7890731130000859, 51.710150458000044), (0.8530379570000832, 51.71889883000006), (0.8835555350000845, 51.72687409100007), (0.9123641290000819, 51.741522528000075), (0.9300236340000652, 51.74359772300005), (0.9455672540000819, 51.733710028000075), (0.9474389980000524, 51.72524648600006), (0.9445906910000872, 51.71548086100006), (0.9404403000000912, 51.70799388200004), (0.9381616550000444, 51.706366278000075), (0.9401961600000845, 51.698431708000044), (0.9440210300000444, 51.69057851800005), (0.9518335300000444, 51.67841217700004), (0.9417423840000652, 51.673041083000044), (0.9379988940000885, 51.664496161000045), (0.9381616550000444, 51.64126211100006), (0.9347436860000471, 51.63589101800005), (0.9267684250000912, 51.630926825000074), (0.9114689460000704, 51.62384674700007), (0.9384871750000912, 51.624986070000034), (0.9480900400000678, 51.621527411000045), (0.9518335300000444, 51.61701080900008), (0.9244897800000444, 51.588324286000045), (0.8733016290000819, 51.559475002000056), (0.8282983730000524, 51.541856187000064), (0.8162541020000731, 51.537176825000074), (0.7712508470000898, 51.52826569200005), (0.6920679050000444, 51.536322333000044), (0.6643986340000652, 51.53506094000005), (0.6637475920000497, 51.53554922100005), (0.6505639980000524, 51.53579336100006), (0.6466577480000524, 51.53534577000005), (0.6440535820000832, 51.53506094000005), (0.6427514980000524, 51.53351471600007), (0.6233830090000652, 51.52204010600008), (0.6086531910000872, 51.51898834800005), (0.5952254570000832, 51.51862213700008), (0.5822860040000819, 51.51654694200005), (0.5688582690000885, 51.50836823100008), (0.5527449880000859, 51.51797109600005), (0.5472111340000652, 51.51772695500006), (0.5254012380000859, 51.516913153000075), (0.45606530000009116, 51.505560614000046), (0.45085696700004974, 51.49827708500004), (0.44800866000008455, 51.48822663000004), (0.4416610040000819, 51.47703685100004), (0.42847741000008455, 51.46710846600007), (0.41407311300008587, 51.46190013200004), (0.39918053500008455, 51.45840078300006), (0.38453209700008983, 51.453111070000034), (0.4484155610000471, 51.45994700700004), (0.45679772200008983, 51.46312083500004), (0.4614363940000885, 51.47016022300005), (0.46485436300008587, 51.47724030200004), (0.4695744150000678, 51.48041413000004), (0.5348413420000497, 51.49168528900009), (0.6948348320000832, 51.47703685100004), (0.7094832690000885, 51.47052643400008), (0.7219344410000872, 51.456284898000035), (0.7231551440000885, 51.44672272300005), (0.7131453790000819, 51.44122955900008), (0.6923934250000912, 51.439520575000074), (0.6565047540000819, 51.444525458000044), (0.6409611340000652, 51.44415924700007), (0.6093856130000859, 51.425116278000075), (0.5727645190000885, 51.419582424000055), (0.5545353520000731, 51.412176825000074), (0.5622664720000898, 51.40656159100007), (0.5691024100000845, 51.399603583000044), (0.5765080090000652, 51.39362213700008), (0.5859481130000859, 51.391058661000045), (0.6718856130000859, 51.391058661000045), (0.7129012380000859, 51.38422272300005), (0.7049259770000731, 51.39598216400009), (0.7003686860000471, 51.409816799000055), (0.7053328790000819, 51.41950104400007), (0.7264103520000731, 51.41901276200008), (0.7283634770000731, 51.406236070000034), (0.7392684250000912, 51.387925523000035), (0.7534285820000832, 51.371527411000045), (0.7644149100000845, 51.36440664300005), (0.9772241550000444, 51.34918854400007), (1.1009220710000704, 51.37323639500005), (1.4238387380000859, 51.39207591400009), (1.4482528000000912, 51.382879950000074), (1.4391382170000497, 51.35008372600004), (1.4355574880000859, 51.343736070000034), (1.430837436000047, 51.33779531500005), (1.4251408210000704, 51.33295319200005), (1.4186304050000444, 51.32965729400007), (1.3829858730000524, 51.329779364000046), (1.3776147800000444, 51.326239325000074), (1.3806258470000898, 51.304754950000074), (1.387868686000047, 51.28790924700007), (1.4043074880000859, 51.261379299000055), (1.4130965500000912, 51.22174713700008), (1.4047957690000885, 51.18353913000004), (1.3844507170000497, 51.151678778000075), (1.3571883470000898, 51.13100820500006), (1.2903751960000704, 51.116522528000075), (1.2629500660000872, 51.10325755400004), (1.2516382170000497, 51.10252513200004), (1.2299910820000832, 51.10370514500005), (1.2181095710000704, 51.10097890800006), (1.2082625660000872, 51.09467194200005), (1.1997176440000885, 51.087591864000046), (1.1920679050000444, 51.08258698100008), (1.1722111340000652, 51.077378648000035), (1.1067000660000872, 51.07636139500005), (1.0871688160000872, 51.07298411700003), (1.0669051440000885, 51.06439850500004), (1.027598504000082, 51.04165273600006), (0.9764103520000731, 50.99445221600007), (0.9664819670000497, 50.98273346600007), (0.9690861340000652, 50.95685455900008), (0.9798283210000704, 50.91815827000005), (0.9451603520000731, 50.909369208000044), (0.8698022800000444, 50.925116278000075), (0.8022567070000832, 50.93919505400004), (0.7624617850000845, 50.930894273000035), (0.6643986340000652, 50.870306708000044), (0.6241968110000471, 50.858710028000075), (0.4074813160000872, 50.829331773000035), (0.3702905610000471, 50.818793036000045), (0.36524498800008587, 50.81899648600006), (0.35425866000008455, 50.80963776200008), (0.34441165500004445, 50.79905833500004), (0.3422957690000885, 50.79515208500004), (0.3081160820000832, 50.780951239000046), (0.2710067070000832, 50.747381903000075), (0.23389733200008322, 50.74701569200005), (0.2141219410000872, 50.748928127000056), (0.16830488400006516, 50.759833075000074), (0.1573999360000471, 50.761053778000075), (0.12208092500009116, 50.76080963700008), (0.11304772200008983, 50.76414622600004), (0.09555097700007309, 50.775051174000055), (0.07703698000005943, 50.778998114000046), (0.034515821000070446, 50.780951239000046), (0.01754804800009424, 50.784857489000046), (-0.17316646999995555, 50.829006252000056), (-0.20612545499994894, 50.83104075700004), (-0.20889238199993088, 50.83010488500008), (-0.2331436839999128, 50.821926174000055), (-0.2696833979999269, 50.831284898000035), (-0.39757239499994057, 50.802069403000075), (-0.5689591139999379, 50.802069403000075), (-0.7327367829999503, 50.767279364000046), (-0.7415665359999366, 50.769232489000046), (-0.7498673169999392, 50.773871161000045), (-0.7582087879999335, 50.77708567900004), (-0.7675675119999141, 50.774725653000075), (-0.7731013659999348, 50.76601797100005), (-0.7662654289999296, 50.74713776200008), (-0.7709854809999115, 50.73688385600008), (-0.7899470689999362, 50.73004791900007), (-0.8128149079999503, 50.73476797100005), (-0.9041235019999476, 50.77187734600005), (-0.9114884109999366, 50.77781810100004), (-0.9058731759999432, 50.78803131700005), (-0.8924861319999309, 50.794623114000046), (-0.8636368479999419, 50.802069403000075), (-0.8636368479999419, 50.808254299000055), (-0.8736059239999463, 50.812933661000045), (-0.8931371739999463, 50.82534414300005), (-0.9046931629999335, 50.829331773000035), (-0.9095352859999366, 50.82599518400008), (-0.9217016269999476, 50.821600653000075), (-0.9289444649999155, 50.82282135600008), (-0.9190160799999489, 50.83616771000004), (-0.9297989569999459, 50.83999258000006), (-0.9391983709999181, 50.84324778900009), (-0.9707738919999542, 50.846991278000075), (-0.9948624339999128, 50.84707265800006), (-1.0018611319999309, 50.84711334800005), (-1.0207413399999155, 50.84365469000005), (-1.033558722999942, 50.82591380400004), (-1.0426326159999348, 50.80190664300005), (-1.0562231109999516, 50.78302643400008), (-1.0827530589999128, 50.780951239000046), (-1.1030167309999115, 50.79547760600008), (-1.0936173169999392, 50.812933661000045), (-1.0753067699999406, 50.83002350500004), (-1.069162563999953, 50.84365469000005), (-1.0873103509999282, 50.84979889500005), (-1.0881241529999102, 50.84975820500006), (-1.1498103509999282, 50.84666575700004), (-1.1647029289999296, 50.84365469000005), (-1.129709438999953, 50.825100002000056), (-1.1237686839999128, 50.818793036000045), (-1.1212052069999459, 50.79938385600008), (-1.1249080069999309, 50.788723049000055), (-1.1380509109999366, 50.780951239000046), (-1.1511124339999128, 50.78139883000006), (-1.1693416009999282, 50.78587474200003), (-1.1856176419999542, 50.79242584800005), (-1.1926163399999155, 50.79865143400008), (-1.1992895169999542, 50.807928778000075), (-1.231516079999949, 50.81891510600008), (-1.2551977199999556, 50.83193594000005), (-1.288156704999949, 50.839178778000075), (-1.3014216789999296, 50.84365469000005), (-1.3185929029999102, 50.85691966400009), (-1.338937954999949, 50.872707424000055), (-1.4492895169999542, 50.91205475500004), (-1.4664200509999432, 50.91815827000005), (-1.4664200509999432, 50.91193268400008), (-1.4564509759999282, 50.90875885600008), (-1.4379776679999168, 50.90131256700005), (-1.4256078769999476, 50.900091864000046), (-1.4011124339999128, 50.88117096600007), (-1.323068813999953, 50.82575104400007), (-1.3142797519999476, 50.812160549000055), (-1.3172908189999362, 50.80023834800005), (-1.3398331369999141, 50.79515208500004), (-1.4039607409999348, 50.79157135600008), (-1.4186905589999128, 50.788397528000075), (-1.4113663399999155, 50.78489817900004), (-1.4049373039999296, 50.780951239000046), (-1.4049373039999296, 50.774725653000075), (-1.4505102199999556, 50.76935455900008), (-1.4762263659999348, 50.76341380400004), (-1.4875382149999155, 50.75771719000005), (-1.491932745999918, 50.75726959800005), (-1.5247289699999556, 50.761053778000075), (-1.5571996739999463, 50.72329336100006), (-1.559396938999953, 50.71922435100004), (-1.5611873039999296, 50.71898021000004), (-1.5807185539999296, 50.722642320000034), (-1.6021215489999463, 50.731756903000075), (-1.6706436839999128, 50.74005768400008), (-1.672922329999949, 50.74005768400008), (-1.6930232409999348, 50.739935614000046), (-1.7150772779999102, 50.73578522300005), (-1.7535294259999432, 50.72284577000005), (-1.7717179029999102, 50.72011953300006), (-1.7974340489999463, 50.723171291000085), (-1.8350723949999406, 50.72768789300005), (-1.8574112619999141, 50.72695547100005), (-1.8773494129999335, 50.72284577000005), (-1.8963516919999392, 50.71629466400009), (-1.8968806629999335, 50.716050523000035), (-1.9138891269999476, 50.70742422100005), (-1.9291072259999282, 50.69586823100008), (-1.9400121739999463, 50.69082265800006), (-1.9443253249999088, 50.69765859600005), (-1.946115688999953, 50.707912502000056), (-1.9492895169999542, 50.713324286000045), (-1.9877009759999282, 50.72011953300006), (-2.01390540299991, 50.71893952000005), (-2.0219620429999168, 50.72011953300006), (-2.0254613919999542, 50.723863023000035), (-2.026193813999953, 50.72508372600004), (-2.0338435539999296, 50.73712799700007), (-2.038970506999931, 50.739935614000046), (-2.0480850899999155, 50.734808661000045), (-2.0826716789999296, 50.69896067900004), (-2.0695694649999155, 50.700100002000056), (-2.0577286449999406, 50.702826239000046), (-2.046620245999918, 50.70726146000004), (-2.0356339179999168, 50.713324286000045), (-2.0141495429999168, 50.688788153000075), (-2.0025121739999463, 50.681301174000055), (-1.984120245999918, 50.67853424700007), (-1.9674373039999296, 50.67865631700005), (-1.9527888659999348, 50.67658112200007), (-1.9458715489999463, 50.668850002000056), (-1.9529516269999476, 50.65184153900009), (-1.9382218089999128, 50.645819403000075), (-1.9324845039999445, 50.64443594000005), (-1.9672745429999168, 50.61709219000005), (-1.965199347999942, 50.60219961100006), (-1.9837133449999556, 50.59662506700005), (-2.065174933999913, 50.59552643400008), (-2.082183397999927, 50.59784577000005), (-2.1573380199999406, 50.62051015800006), (-2.3426407539999445, 50.63377513200004), (-2.377064581999946, 50.64752838700008), (-2.398345506999931, 50.64557526200008), (-2.435902472999942, 50.63751862200007), (-2.447621222999942, 50.62787506700005), (-2.4600723949999406, 50.60651276200008), (-2.465646938999953, 50.585150458000044), (-2.4564509759999282, 50.575506903000075), (-2.4312231109999516, 50.57025788000004), (-2.428700324999909, 50.55756256700005), (-2.4392797519999476, 50.54181549700007), (-2.45335852799991, 50.52765534100007), (-2.4595434239999463, 50.52765534100007), (-2.4603572259999282, 50.56549713700008), (-2.4835098949999406, 50.59039948100008), (-2.6929418609999516, 50.69281647300005), (-2.8648168609999516, 50.73379140800006), (-2.887318488999938, 50.734361070000034), (-2.94554602799991, 50.725816148000035), (-2.9627579419999392, 50.72329336100006), (-2.998199022999927, 50.708238023000035), (-3.021839972999942, 50.70648834800005), (-3.059722459999932, 50.713324286000045), (-3.071359829999949, 50.711004950000074), (-3.0941462879999335, 50.69896067900004), (-3.099232550999943, 50.69708893400008), (-3.115834113999938, 50.68797435100004), (-3.1254776679999168, 50.68528880400004), (-3.135894334999932, 50.68593984600005), (-3.1551407539999445, 50.69135163000004), (-3.1664932929999168, 50.69281647300005), (-3.1856176419999542, 50.690741278000075), (-3.2191462879999335, 50.68081289300005), (-3.2598363919999542, 50.67454661700003), (-3.271392381999931, 50.664496161000045), (-3.280425584999932, 50.65119049700007), (-3.2955623039999296, 50.63751862200007), (-3.368153449999909, 50.61709219000005), (-3.390736456999946, 50.61782461100006), (-3.4075414699999556, 50.62128327000005), (-3.420969204999949, 50.62946198100008), (-3.433338995999918, 50.64443594000005), (-3.446359829999949, 50.66828034100007), (-3.4504288399999155, 50.672308661000045), (-3.453277147999927, 50.67328522300005), (-3.455433722999942, 50.675441799000055), (-3.458607550999943, 50.67755768400008), (-3.4644262359999516, 50.67853424700007), (-3.467762824999909, 50.67641836100006), (-3.468902147999927, 50.67169830900008), (-3.467844204999949, 50.66697825700004), (-3.45531165299991, 50.657904364000046), (-3.4420466789999296, 50.62352122600004), (-3.433338995999918, 50.610256252000056), (-3.451161261999914, 50.59943268400008), (-3.4672745429999168, 50.585598049000055), (-3.4817602199999556, 50.56854889500005), (-3.494862433999913, 50.548163153000075), (-3.505970831999946, 50.520819403000075), (-3.505034959999932, 50.501206773000035), (-3.487456834999932, 50.459418036000045), (-3.509755011999914, 50.45848216400009), (-3.532134568999936, 50.454779364000046), (-3.549427863999938, 50.446519273000035), (-3.556263800999943, 50.43211497600004), (-3.5493057929999168, 50.41559479400007), (-3.531971808999913, 50.410223700000074), (-3.487456834999932, 50.41156647300005), (-3.487456834999932, 50.40477122600004), (-3.4974666009999282, 50.38735586100006), (-3.49828040299991, 50.383693752000056), (-3.5073136059999115, 50.382798570000034), (-3.5149633449999556, 50.37995026200008), (-3.520130988999938, 50.37482330900008), (-3.5269262359999516, 50.34979889500005), (-3.5388891269999476, 50.34442780200004), (-3.5545141269999476, 50.347642320000034), (-3.57054602799991, 50.35639069200005), (-3.577788865999935, 50.334051825000074), (-3.5991104809999115, 50.325832424000055), (-3.6215714179999168, 50.321926174000055), (-3.631988084999932, 50.31232330900008), (-3.6373591789999296, 50.29539622600004), (-3.6475723949999406, 50.27456289300005), (-3.653309699999909, 50.25104401200008), (-3.6456192699999406, 50.22601959800005), (-3.6606339179999168, 50.22101471600007), (-3.700917120999918, 50.21352773600006), (-3.7180069649999155, 50.21238841400009), (-3.740386522999927, 50.21588776200008), (-3.758615688999953, 50.22174713700008), (-3.774240688999953, 50.22296784100007), (-3.788970506999931, 50.21238841400009), (-3.826324022999927, 50.23419830900008), (-3.8841853509999282, 50.280462958000044), (-3.949940558999913, 50.31899648600006), (-3.9610082669999542, 50.322251695000034), (-3.9702042309999115, 50.320746161000045), (-3.995757615999935, 50.311428127000056), (-4.005604620999918, 50.30923086100006), (-4.011341925999943, 50.30695221600007), (-4.024769660999937, 50.29718659100007), (-4.032948370999918, 50.294907945000034), (-4.044056769999941, 50.29645416900007), (-4.054351365999935, 50.30036041900007), (-4.070220506999931, 50.30923086100006), (-4.067941860999952, 50.31281159100007), (-4.064035610999952, 50.322251695000034), (-4.086008266999954, 50.326239325000074), (-4.1082657539999445, 50.33661530200004), (-4.118723110999952, 50.35187409100007), (-4.1049698559999115, 50.37067291900007), (-4.141753709999932, 50.36904531500005), (-4.1527400379999335, 50.37067291900007), (-4.1655167309999115, 50.37636953300006), (-4.171457485999952, 50.382798570000034), (-4.175770636999914, 50.39085521000004), (-4.18382727799991, 50.40106842700004), (-4.191477016999954, 50.417629299000055), (-4.18390865799995, 50.431708075000074), (-4.1703181629999335, 50.44513580900008), (-4.159535285999937, 50.459418036000045), (-4.179432745999918, 50.45307038000004), (-4.189564581999946, 50.45368073100008), (-4.200550910999937, 50.459418036000045), (-4.203684048999946, 50.45140208500004), (-4.204741990999935, 50.44867584800005), (-4.2123917309999115, 50.441473700000074), (-4.222523566999939, 50.43797435100004), (-4.234730597999942, 50.43829987200007), (-4.234730597999942, 50.43211497600004), (-4.2202042309999115, 50.425848700000074), (-4.2161352199999556, 50.415716864000046), (-4.219715949999909, 50.40509674700007), (-4.228505011999914, 50.397365627000056), (-4.2414444649999155, 50.39468008000006), (-4.2899063789999445, 50.397365627000056), (-4.273019985999952, 50.38190338700008), (-4.216175910999937, 50.38776276200008), (-4.1937556629999335, 50.37689850500004), (-4.228505011999914, 50.37067291900007), (-4.228505011999914, 50.36383698100008), (-4.220122850999928, 50.365301825000074), (-4.200550910999937, 50.36383698100008), (-4.207997199999909, 50.35639069200005), (-4.180043097999942, 50.35639069200005), (-4.180043097999942, 50.35016510600008), (-4.191314256999931, 50.34756094000005), (-4.197987433999913, 50.342230536000045), (-4.199126756999931, 50.33539459800005), (-4.1937556629999335, 50.32843659100007), (-4.1937556629999335, 50.322251695000034), (-4.214995897999927, 50.323146877000056), (-4.225697394999941, 50.33539459800005), (-4.235096808999913, 50.34955475500004), (-4.2523494129999335, 50.35639069200005), (-4.337717251999948, 50.37067291900007), (-4.383697068999936, 50.36749909100007), (-4.456206834999932, 50.33820221600007), (-4.4953507149999155, 50.32843659100007), (-4.659820115999935, 50.322251695000034), (-4.659575975999928, 50.32062409100007), (-4.662709113999938, 50.31777578300006), (-4.667795376999948, 50.315334377000056), (-4.673451300999943, 50.31541575700004), (-4.687163865999935, 50.34271881700005), (-4.694325324999909, 50.343451239000046), (-4.700184699999909, 50.34088776200008), (-4.705555792999917, 50.337551174000055), (-4.7113337879999335, 50.33588288000004), (-4.731556769999941, 50.33466217700004), (-4.752105272999927, 50.33030833500004), (-4.763295050999943, 50.32208893400008), (-4.755441860999952, 50.30923086100006), (-4.755441860999952, 50.30174388200004), (-4.7623591789999296, 50.298041083000044), (-4.771636522999927, 50.29157135600008), (-4.779855923999946, 50.28432851800005), (-4.783355272999927, 50.27789948100008), (-4.7818904289999296, 50.27179596600007), (-4.776519334999932, 50.26508209800005), (-4.776519334999932, 50.26080963700008), (-4.788441535999937, 50.24209219000005), (-4.790150519999941, 50.23655833500004), (-4.800160285999937, 50.22955963700008), (-4.849720831999946, 50.23456452000005), (-4.868723110999952, 50.22943756700005), (-4.887318488999938, 50.21499258000006), (-4.904774542999917, 50.20844147300005), (-4.947255011999914, 50.19936758000006), (-4.960682745999918, 50.19049713700008), (-5.002430792999917, 50.14411041900007), (-5.014556443999936, 50.15656159100007), (-5.0203751289999445, 50.19196198100008), (-5.033192511999914, 50.19936758000006), (-5.05296790299991, 50.19578685100004), (-5.053618943999936, 50.18691640800006), (-5.051869269999941, 50.17552317900004), (-5.064564581999946, 50.16461823100008), (-5.064564581999946, 50.15839264500005), (-5.058501756999931, 50.155462958000044), (-5.043446417999917, 50.14411041900007), (-5.051869269999941, 50.144598700000074), (-5.058461066999939, 50.14272695500006), (-5.070790167999917, 50.13727448100008), (-5.08031165299991, 50.13271719000005), (-5.081613735999952, 50.12539297100005), (-5.080962693999936, 50.117173570000034), (-5.085031704999949, 50.10993073100008), (-5.093902147999927, 50.105536200000074), (-5.125965949999909, 50.09634023600006), (-5.114654100999928, 50.09662506700005), (-5.106068488999938, 50.09511953300006), (-5.091867641999954, 50.089504299000055), (-5.086903449999909, 50.089056708000044), (-5.075347459999932, 50.09048086100006), (-5.070790167999917, 50.089504299000055), (-5.068470831999946, 50.085150458000044), (-5.064930792999917, 50.07184479400007), (-5.06086178299995, 50.06903717700004), (-5.056507941999939, 50.060614325000074), (-5.069488084999932, 50.042181708000044), (-5.0980525379999335, 50.01439036700003), (-5.107289191999939, 50.013006903000075), (-5.127430792999917, 50.01544830900008), (-5.139637824999909, 50.01439036700003), (-5.146473761999914, 50.01056549700007), (-5.176136847999942, 49.987941799000055), (-5.18773352799991, 49.964504299000055), (-5.191151495999918, 49.95913320500006), (-5.200103318999936, 49.961371161000045), (-5.210357225999928, 49.96674225500004), (-5.240386522999927, 49.988348700000074), (-5.245228644999941, 49.99310944200005), (-5.2495011059999115, 50.000067450000074), (-5.253041144999941, 50.01264069200005), (-5.25226803299995, 50.020697333000044), (-5.252674933999913, 50.027777411000045), (-5.259755011999914, 50.03766510600008), (-5.2884008449999556, 50.067694403000075), (-5.304351365999935, 50.08026764500005), (-5.323963995999918, 50.089504299000055), (-5.384185350999928, 50.10797760600008), (-5.424712693999936, 50.11273834800005), (-5.458119269999941, 50.125881252000056), (-5.47484290299991, 50.13043854400007), (-5.495676235999952, 50.12962474200003), (-5.521839972999942, 50.12372467700004), (-5.540923631999931, 50.11347077000005), (-5.540638800999943, 50.09975820500006), (-5.5346573559999115, 50.08234284100007), (-5.5455623039999296, 50.06891510600008), (-5.563465949999909, 50.05963776200008), (-5.57843990799995, 50.054754950000074), (-5.61945553299995, 50.046210028000075), (-5.667388475999928, 50.04287344000005), (-5.705148891999954, 50.05231354400007), (-5.715646938999953, 50.08270905200004), (-5.705962693999936, 50.08348216400009), (-5.698801235999952, 50.08539459800005), (-5.694488084999932, 50.089504299000055), (-5.694406704999949, 50.095770575000074), (-5.697092251999948, 50.10053131700005), (-5.700306769999941, 50.103216864000046), (-5.701975063999953, 50.103176174000055), (-5.707386847999942, 50.12201569200005), (-5.70921790299991, 50.13263580900008), (-5.70539303299995, 50.13727448100008), (-5.7035212879999335, 50.140611070000034), (-5.684641079999949, 50.16152578300006), (-5.676747199999909, 50.16502513200004), (-5.647368943999936, 50.17206452000005), (-5.583607550999943, 50.19586823100008), (-5.549427863999938, 50.20351797100005), (-5.5109757149999155, 50.21946849200003), (-5.4891251289999445, 50.21979401200008), (-5.458119269999941, 50.20075104400007), (-5.437977667999917, 50.19432200700004), (-5.417388475999928, 50.202460028000075), (-5.402943488999938, 50.21735260600008), (-5.395863410999937, 50.22724030200004), (-5.39289303299995, 50.23655833500004), (-5.3875626289999445, 50.240301825000074), (-5.351918097999942, 50.240301825000074), (-5.3148494129999335, 50.253607489000046), (-5.200306769999941, 50.33075592700004), (-5.1635636059999115, 50.34723541900007), (-5.1498917309999115, 50.35016510600008), (-5.146473761999914, 50.35529205900008), (-5.145659959999932, 50.366888739000046), (-5.147043423999946, 50.37938060100004), (-5.153675910999937, 50.39948151200008), (-5.142404751999948, 50.40448639500005), (-5.12726803299995, 50.40521881700005), (-5.119740363999938, 50.40477122600004), (-5.0502823559999115, 50.42869700700004), (-5.0481664699999556, 50.43439362200007), (-5.038726365999935, 50.44790273600006), (-5.029774542999917, 50.486761786000045), (-5.0286352199999556, 50.507025458000044), (-5.025257941999939, 50.52423737200007), (-5.015614386999914, 50.53803131700005), (-4.9955948559999115, 50.548163153000075), (-4.975168423999946, 50.548163153000075), (-4.967844204999949, 50.55158112200007), (-4.954823370999918, 50.56122467700004), (-4.947255011999914, 50.56244538000004), (-4.941477016999954, 50.55695221600007), (-4.937123175999943, 50.54531484600005), (-4.9344376289999445, 50.53164297100005), (-4.933583136999914, 50.52024974200003), (-4.926869269999941, 50.52289459800005), (-4.924305792999917, 50.52448151200008), (-4.920521613999938, 50.52765534100007), (-4.902414516999954, 50.52057526200008), (-4.860951300999943, 50.519191799000055), (-4.844838019999941, 50.51406484600005), (-4.855824347999942, 50.527411200000074), (-4.87328040299991, 50.534084377000056), (-4.906239386999914, 50.54197825700004), (-4.921864386999914, 50.55487702000005), (-4.92023678299995, 50.564154364000046), (-4.915191209999932, 50.57249583500004), (-4.920521613999938, 50.58295319200005), (-4.920521613999938, 50.589178778000075), (-4.895659959999932, 50.585923570000034), (-4.821197068999936, 50.589178778000075), (-4.7924698559999115, 50.59520091400009), (-4.7766007149999155, 50.60984935100004), (-4.765044725999928, 50.62799713700008), (-4.7492569649999155, 50.64443594000005), (-4.755441860999952, 50.659369208000044), (-4.751942511999914, 50.67007070500006), (-4.741932745999918, 50.67487213700008), (-4.728138800999943, 50.672308661000045), (-4.657297329999949, 50.71112702000005), (-4.645578579999949, 50.723537502000056), (-4.637806769999941, 50.74115631700005), (-4.619007941999939, 50.754787502000056), (-4.577259894999941, 50.774725653000075), (-4.5501195949999556, 50.80955638200004), (-4.55492102799991, 50.897772528000075), (-4.543771938999953, 50.93919505400004), (-4.536854620999918, 50.94757721600007), (-4.5226944649999155, 50.972723700000074), (-4.5266820949999556, 50.98037344000005), (-4.530425584999932, 50.99469635600008), (-4.531320766999954, 51.008693752000056), (-4.526437954999949, 51.014960028000075), (-4.437326626999948, 51.014960028000075), (-4.4264216789999296, 51.01268138200004), (-4.4057511059999115, 51.00287506700005), (-4.3957413399999155, 51.00067780200004), (-4.337717251999948, 50.99664948100008), (-4.317290818999936, 51.00067780200004), (-4.302316860999952, 51.007513739000046), (-4.234730597999942, 51.05532461100006), (-4.2291560539999296, 51.06110260600008), (-4.224680141999954, 51.06708405200004), (-4.218495245999918, 51.07245514500005), (-4.207997199999909, 51.07636139500005), (-4.214263475999928, 51.086004950000074), (-4.226307745999918, 51.11322663000004), (-4.228505011999914, 51.120428778000075), (-4.2319229809999115, 51.12669505400004), (-4.249012824999909, 51.14288971600007), (-4.255767381999931, 51.15151601800005), (-4.222320115999935, 51.149725653000075), (-4.214833136999914, 51.15151601800005), (-4.208363410999937, 51.16229889500005), (-4.2098282539999445, 51.17283763200004), (-4.217274542999917, 51.18138255400004), (-4.228505011999914, 51.18622467700004), (-4.228505011999914, 51.19245026200008), (-4.152333136999914, 51.21161530200004), (-3.969471808999913, 51.22239817900004), (-3.931996222999942, 51.231350002000056), (-3.9131973949999406, 51.23338450700004), (-3.840891079999949, 51.23338450700004), (-3.818959113999938, 51.23607005400004), (-3.787098761999914, 51.24677155200004), (-3.769154425999943, 51.247707424000055), (-3.6397598949999406, 51.22638580900008), (-3.559315558999913, 51.22809479400007), (-3.434193488999938, 51.20978424700007), (-3.4043676419999542, 51.19204336100006), (-3.38499915299991, 51.18622467700004), (-3.2707413399999155, 51.18939850500004), (-3.198882615999935, 51.203558661000045), (-3.1627498039999296, 51.206732489000046), (-3.096750454999949, 51.20453522300005), (-3.057525193999936, 51.20815664300005), (-3.029286261999914, 51.220404364000046), (-3.021839972999942, 51.21356842700004), (-3.0355525379999335, 51.199286200000074), (-3.021839972999942, 51.19245026200008), (-3.004790818999936, 51.21312083500004), (-3.0013321609999366, 51.220404364000046), (-2.9995824859999516, 51.23322174700007), (-3.0015356109999516, 51.23969147300005), (-3.0049942699999406, 51.24506256700005), (-3.008168097999942, 51.25454336100006), (-3.0076391269999476, 51.29197825700004), (-3.0106095039999445, 51.310980536000045), (-3.021839972999942, 51.32282135600008), (-3.0024307929999168, 51.31907786700003), (-2.992176886999914, 51.321926174000055), (-2.992095506999931, 51.32204824400009), (-2.988392706999946, 51.33112213700008), (-2.9877823559999115, 51.34666575700004), (-2.9798884759999282, 51.35586172100005), (-2.965972459999932, 51.364935614000046), (-2.959584113999938, 51.374253648000035), (-2.9746801419999542, 51.38422272300005), (-2.9529516269999476, 51.398504950000074), (-2.9210098949999406, 51.39443594000005), (-2.8841853509999282, 51.41697825700004), (-2.816395636999914, 51.47361888200004), (-2.798573370999918, 51.48261139500005), (-2.780873175999943, 51.48908112200007), (-2.7612198559999115, 51.49286530200004), (-2.7376195949999556, 51.49408600500004), (-2.716420050999943, 51.49957916900007), (-2.6961563789999445, 51.51264069200005), (-2.6078181629999335, 51.60736725500004), (-2.599598761999914, 51.611395575000074), (-2.5892227859999366, 51.61424388200004), (-2.580433722999942, 51.61863841400009), (-2.5768123039999296, 51.62750885600008), (-2.57445227799991, 51.63572825700004), (-2.568959113999938, 51.644964911000045), (-2.562245245999918, 51.65338776200008), (-2.556385870999918, 51.65924713700008), (-2.499175584999932, 51.69676341400009), (-2.464995897999927, 51.725897528000075), (-2.4477432929999168, 51.73187897300005), (-2.404896613999938, 51.74115631700005), (-2.3885391919999392, 51.750433661000045), (-2.380767381999931, 51.76190827000005), (-2.3833715489999463, 51.77326080900008), (-2.398060675999943, 51.782131252000056), (-2.4024145169999542, 51.76357656500005), (-2.4203995429999168, 51.753119208000044), (-2.4434301419999542, 51.74843984600005), (-2.4632869129999335, 51.747300523000035), (-2.482085740999935, 51.74286530200004), (-2.495838995999918, 51.73200104400007), (-2.507964647999927, 51.71857330900008), (-2.5221248039999296, 51.706366278000075), (-2.581695115999935, 51.681708075000074), (-2.5911352199999556, 51.67536041900007), (-2.600209113999938, 51.66559479400007), (-2.6653539699999556, 51.617254950000074)]\n", + " draw_map(plot, x, y, colour)\n", + " plot.plot(\n", + " [merc_x(coord[0]) for coord in gb_boundary],\n", + " [merc_y(coord[1]) for coord in gb_boundary],\n", + " \"k-\",\n", + " )\n", + "\n", + "country = Config(\n", + " get_data=get_literal_data(),\n", + " clean=get_map_cleaner_for(\"Temperature\"),\n", + " title=\"Country wide temperature\",\n", + " ylabel=\"\",\n", + " draw=draw_map_with_gb,\n", + ")\n", + "\n", + "out = widgets.interactive(interactable_plot_multiple_charts(configs=configs + (country, )), collected_after=start, collected_before=end)\n", + "display(out)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "apd.aggregation", + "language": "python", + "name": "apd.aggregation" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Ch09/chapter09-mapping.ipynb b/Ch09/chapter09-mapping.ipynb new file mode 100644 index 0000000..916e704 --- /dev/null +++ b/Ch09/chapter09-mapping.ipynb @@ -0,0 +1,254 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "datapoints = {\n", + " (53.8667, -1.3333): -1,\n", + " (53.35, -2.2833): 1,\n", + " (52.45, -1.7333): 3,\n", + " (51.5, -0.1333): 6,\n", + " (51.55, -2.5667): 5,\n", + " (54.9667, -1.6167): -1,\n", + " (55.9667, -3.2167): -1,\n", + " (54.7667, -1.5833): 0,\n", + " (53.7667, -0.3): 1,\n", + " (53.7667, -3.0167): 0,\n", + " (51.4833, -3.1833): 4,\n", + " (53.2667, -3.5167): 2,\n", + " (52.0833, -2.8): 2,\n", + " (52.0167, -0.6): 2,\n", + " (52.6667, 1.2667): 5,\n", + " (50.4333, -4.9833): 9,\n", + " (50.35, -4.1167): 10,\n", + " (50.5167, -2.45): 9,\n", + " (50.8333, -1.1667): 9,\n", + " (56.45, -5.4333): 4,\n", + " (57.5333, -4.05): -2,\n", + " (54.5167, -3.6167): 3,\n", + " (53.0833, 0.2667): 4,\n", + " (51.35, 1.3333): 7,\n", + " (50.8833, 0.3167): 8,\n", + " (58.45, -3.1): 3,\n", + " (50.1, -5.6667): 9,\n", + " (58.2167, -6.3333): 4,\n", + " (55.6833, -6.25): 7,\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAARS0lEQVR4nO3df4hc13nG8eexYodFuJWDVkq0tiqH2oIksiV3LEJFfshuJNukjiIItPQP0RRUmyTQgJVYFTRtjbGwUtxSSqlKTEOJGlKq3YS6tqTGENM/nGQVyZVCrcQ1SuJdN5JSRFOy9Q/57R9zx9pdzXpmdufee87M9wNmd+7OaF9rtM+ee+4573VECACQn6vqLgAAsDgEOABkigAHgEwR4ACQKQIcADL1tiq/2cqVK2PdunVVfksAyN7x48cvRMTo/OOVBvi6des0OTlZ5bcEgOzZ/lG740yhAECmCHAAyBQBDgCZIsABIFMEOABkqtJVKMBiTJyY0oEjZzR9cUZrVoxoz/b12rFprO6ygNoR4EjaxIkp7T18SjOvXZIkTV2c0d7DpySJEMfQYwoFSTtw5Myb4d0y89olHThypqaKgHQQ4Eja9MWZno4Dw4QAR9LWrBjp6TgwTAhwJG3P9vUauXrZnGMjVy/Tnu3ra6oISEfyFzFZgTDcWu81/waAKyUd4KxAgNR8r3m/gSslPYXCCgQAWFjSAc4KBABYWNIBzgoEAFhYVwFu+6ztU7ZP2p4sjm20/WzrmO3N/S6OFQgAsLBeLmJujYgLsx4/KulPIuJJ2/cUjz/cz+JYgQAAC1vKKpSQ9EvF578saXrp5VyJFQgA0F63AR6SjtoOSX8TEQcl/YGkI7a/qOZUzK+3e6Ht3ZJ2S9LatWuXXjEAQFL3FzG3RMRtku6W9CnbH5R0v6TPRsQNkj4r6UvtXhgRByOiERGN0dErbqoMAFikrgI8IqaLj+ckjUvaLGmXpMPFU/6xOAYAqEjHALe93Pa1rc8lbZN0Ws057w8VT7tD0g/LKhIAcKVu5sBXSxq33Xr+oYh4yvb/SvoL22+T9H8q5rkBANXoGOAR8aKkW9sc/zdJv1ZGUQCAzpLeiQkAWBgBDgCZSrqdLKpF73UgLwQ4JNF7HcgRUyiQRO91IEcEOCTRex3IEQEOSfReB3JEgEMSvdeBHHERE5LovQ7kiADHm+i9DuSFKRQAyBQBDgCZIsABIFMEOABkigAHgEwR4ACQKQIcADJFgANApghwAMgUAQ4AmSLAASBTBDgAZIoAB4BMEeAAkCkCHAAyRYADQKYIcADIFAEOAJnilmo9mjgxxX0jASSBAO/BxIkp7T18SjOvXZIkTV2c0d7DpySJEAdQOaZQenDgyJk3w7tl5rVLOnDkTE0VARhmBHgPpi/O9HQcAMpEgPdgzYqRno4DQJkI8B7s2b5eI1cvm3Ns5Opl2rN9fU0VARhmXMTsQetCJatQAKSAAO/Rjk1jBDaAJDCFAgCZIsABIFNdBbjts7ZP2T5pe3LW8c/YPmP7+7YfLa9MAMB8vcyBb42IC60HtrdK+pikWyLiFdur+l4dhg6tCoDuLeUi5v2S9kfEK5IUEef6UxKGFa0KgN50Owceko7aPm57d3HsZkkfsP1t29+yfXu7F9rebXvS9uT58+f7UTMGFK0KgN50OwLfEhHTxTTJMdvPF6+9TtL7Jd0u6Wu23x0RMfuFEXFQ0kFJajQaIWABtCoAetPVCDwipouP5ySNS9os6SVJh6PpO5LekLSyrEIx+GhVAPSmY4DbXm772tbnkrZJOi1pQtIdxfGbJV0j6cJCfw7QCa0KgN50M4WyWtK47dbzD0XEU7avkfS47dOSXpW0a/70CdALWhUAvXGVmdtoNGJycrLzExfAEjMAw8j28YhozD+eTS8UlpgBwFzZbKVniRkAzJVNgLPEDADmyibAWWIGAHNlE+AsMQOAubK5iMkSMwCYK5sAl7gbDgDMls0UCgBgLgIcADJFgANApghwAMgUAQ4AmSLAASBTBDgAZIoAB4BMEeAAkKmsdmICg4wblqBXBDiQAG5YgsVgCgVIADcswWIQ4EACuGEJFoMABxKw0I1JrrI1cWKq4mqQCwIcSEC7G5ZI0qUI7T18ihBHWwQ4kIAdm8b0yM4NWmZf8TXmwrEQAhxIxI5NY3ojou3XmAtHOwQ4kBBu3o1eEOBAQrh5N3rBRh70FbsJl4abd6MXBDj6ht2E/cHNu9EtplDQN+wmBKpFgKNv2E0IVIsAR9+wggKoFgGOvmEFBVAtLmKib1hBAVSLAEdfsYICqA5TKACQKQIcADJFgANApghwAMhUVwFu+6ztU7ZP2p6c97UHbIftleWUCABop5dVKFsj4sLsA7ZvkPQRST/ua1UAgI6WOoXymKTPSWrfhR4AUJpuAzwkHbV93PZuSbJ9r6SpiHiutOoAAAvqdgplS0RM214l6Zjt5yXtk7St0wuLwN8tSWvXrl10oQDmovc6uhqBR8R08fGcpHFJH5J0o6TnbJ+VdL2k79l+Z5vXHoyIRkQ0RkdH+1Y4MMxavdenLs4odLn3OnevHy4dR+C2l0u6KiJ+Xny+TdKfRsSqWc85K6kx/yIn0G+MOpveqvd6Sn8fvF/l6mYKZbWkcdut5x+KiKdKrQpogzv+XJZD73Xer/J1nEKJiBcj4tbiv/dGxMNtnrOO0TfKxh1/Lsuh9zrvV/nYiYls5DDqrEoOvdd5v8pHgCMbOYw6q7Jj05ge2blBYytGZEljK0b0yM4NSU1N8H6Vj37gyMae7evnzKlK6Y06q5R673Xer/IR4MgGd/zJC+9X+RxR3S74RqMRk5OTnZ8IAHiT7eMR0Zh/nDlwAMgUAQ4AmWIOHOiA3YRIFQEOvAV2EyJlBDhKlfvoNZeeIxhOBDhKMwijV3YTImVcxERpBqEXBrsJkTICHKUZhNFrDj1HMLyYQkFp1qwY0VSbsM5p9MpuwjTlfm2lXwhwlGZQemGk3nNk2AzCtZV+YQoFpcmhYx7yMwjXVvqFEThKxegV/TYI11b6hRE4gKywMugyAhxAVlgZdBlTKACywsqgywhwANnh2koTUygAkCkCHAAyxRQKAPRZVTtFCXAA6KMqd4oyhQIAfVTlTlECHAD6qMqdogQ4APRRlTtFCXCgJhMnprRl/9O68cEntGX/05o4MVV3SeiDKneKchETqAEtUQdXlTtFCXCgBtwsebBVtVOUKRSgBrRERT8Q4EANaImKfiDAgRrQEhX9wBw4UANaoqIfCHCgJrRExVIxhQIAmWIEjoFSVRc4IAUEOAYGm2MwbLoKcNtnJf1c0iVJr0dEw/YBSb8p6VVJ/ynpdyPiYlmFAp2wOaZ8nOGkpZc58K0RsTEiGsXjY5LeFxG3SPqBpL19rw7oAZtjytU6w5m6OKPQ5TMcerjUZ9EXMSPiaES8Xjx8VtL1/SkJWBw2x5Sryj7X6E63AR6Sjto+bnt3m69/UtKT7V5oe7ftSduT58+fX2ydQEdsjikXZzjp6TbAt0TEbZLulvQp2x9sfcH2PkmvS/pKuxdGxMGIaEREY3R0dMkFAwvZsWlMj+zcoLEVI7KksRUjemTnBuZo+4QznPR0dREzIqaLj+dsj0vaLOkZ27skfVTSnRER5ZUJdIfNMeXZs339nFU+Emc4des4Are93Pa1rc8lbZN02vZdkj4v6d6I+EW5ZQKoG2c46elmBL5a0rjt1vMPRcRTtl+Q9HZJx4qvPRsR95VWKYDacYaTlo4BHhEvSrq1zfFfLaUiAEBX6IUCAJkiwAEgU/RCwVBiSzgGAQGO5JQdrjS9qh+/QPuDKRQkpYp+G2wJrxc9VfqHAEdSqghXtoTXi1+g/cMUCpJSRbiuWTGiqTZ/HlvCqzFsv0DLnC5iBI6kVNFvg6ZX9RqmniplTxcR4EhKFeHKlvB6DdMv0LKni5hCQVJaIVr2CgW2hNenqvc4BWVPFxHgSA7hOviG5T0u+3oLUygAUJKyp4sYgQNAScqeLiLAAaBEZU4XMYUCAJkiwAEgUwQ4AGSKOXAA2Rr2roYEOIAs0RaYAAcGzrCMSt9qm/og/v+2Q4ADA2SYRqXD1tWwHS5iAgNkmHptD1NXw4UQ4MAAGaZR6TB1NVwIAQ4MkGEaldIWmDlwYKDs2b5+zhy4NNij0mHpargQAhwYIMPUaxsEOCBpsJbeDfuodJgQ4Bh6w7T0DoOFAK/JII34cseGEOSKAK8BI760DNPSOwwWlhHWIKXNFhMnprRl/9O68cEntGX/05o4MVV5DXUbpqV3GCwEeA1SGfG1zgSmLs4odPlMYNhCnA0hyBUBXoNURnwpnQnUiQ0hyBVz4DVIZbNFKmcCKWDpHXLECLwGqYz4UjkTALA4jMBrksKIL5UzAQCLQ4DPMmxrs9l2DeSNAC8M69rsFM4EACxOV3Pgts/aPmX7pO3J4tg7bB+z/cPi43XlllouVmQAyE0vFzG3RsTGiGgUjx+U9M2IuEnSN4vH2WJFBoDcLGUVysckfbn4/MuSdiy9nPqwIgNAbroN8JB01PZx27uLY6sj4mVJKj6uavdC27ttT9qePH/+/NIrLgm78QDkptuLmFsiYtr2KknHbD/f7TeIiIOSDkpSo9GIRdRYCVZkAMhNVwEeEdPFx3O2xyVtlvRT2++KiJdtv0vSuRLrrAQrMgDkpOMUiu3ltq9tfS5pm6TTkr4haVfxtF2Svl5WkQCAK3UzAl8tadx26/mHIuIp29+V9DXbvyfpx5I+UV6ZAID5OgZ4RLwo6dY2x38m6c4yigIAdEYzKwDIFAEOAJlyRHUr+2yfl/Sjyr6htFLShQq/X6+ob2lSri/l2iTqW4o6avuViBidf7DSAK+a7clZW/+TQ31Lk3J9KdcmUd9SpFQbUygAkCkCHAAyNegBfrDuAjqgvqVJub6Ua5OobymSqW2g58ABYJAN+ggcAAYWAQ4AmRqKALf9GdtnbH/f9qN11zOb7T+2PVXcru6k7Xvqrqkd2w/YDtsr666lxfZDtv+9+Hs7antN3TXNZvuA7eeLGsdtr6i7ptlsf6L4mXjDdhLL4mzfVfysvmA7qbt82X7c9jnbp+uupWXgA9z2VjXvHnRLRLxX0hdrLqmdx4rb1W2MiH+pu5j5bN8g6SNqNi1LyYGIuCUiNkr6Z0l/VHdB8xyT9L6IuEXSDyTtrbme+U5L2inpmboLkSTbyyT9laS7Jb1H0m/bfk+9Vc3xd5LuqruI2QY+wCXdL2l/RLwiNXua11xPjh6T9Dk178yUjIj4n1kPlyu9+o5GxOvFw2clXV9nPfNFxH9EREp37d4s6YWIeDEiXpX0VTUHX0mIiGck/Xfddcw2DAF+s6QP2P627W/Zvr3ugtr4dHGa/bjt6+ouZjbb90qaiojn6q6lHdsP2/6JpN9ReiPw2T4p6cm6i0jcmKSfzHr8UnEMC+j2lmpJs/2vkt7Z5kv71Px/vE7S+yXdrmYP83dHhesnO9T315IeUnP0+JCkP1Pzh70yHer7QzVv4lGLt6otIr4eEfsk7bO9V9KnJX0hpfqK5+yT9Lqkr1RZW/G9O9aXELc5ltRZVWoGIsAj4jcW+prt+yUdLgL7O7bfULMZTWV3WH6r+maz/bdqzuVWaqH6bG+QdKOk54obelwv6Xu2N0fEf9VZWxuHJD2higO8U322d0n6qKQ7qxw0tPTw95eClyTdMOvx9ZKma6olC8MwhTIh6Q5Jsn2zpGuUUJez4n6iLR9X88JSEiLiVESsioh1EbFOzR+w26oK705s3zTr4b2Sur7ZdhVs3yXp85LujYhf1F1PBr4r6SbbN9q+RtJvqXnrRixg4HdiFv8QHpe0UdKrkh6IiKfrreoy23+vZm0h6ayk34+Il2stagG2z0pqREQSvwBt/5Ok9ZLeULNN8X0RMVVvVZfZfkHS2yX9rDj0bETcV2NJc9j+uKS/lDQq6aKkkxGxveaa7pH055KWSXo8Ih6us57ZbP+DpA+reQb/U0lfiIgv1VrToAc4AAyqYZhCAYCBRIADQKYIcADIFAEOAJkiwAEgUwQ4AGSKAAeATP0/KVaoHKMq6aEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "fig, ax = plt.subplots()\n", + "lats = [ll[0] for ll in datapoints.keys()]\n", + "lons = [ll[1] for ll in datapoints.keys()]\n", + "ax.plot(lons, lats, \"o\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJcAAAD4CAYAAADhPXT2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAL9UlEQVR4nO3db6ieZR0H8O/XqXEQa8bOTKfrWOmCUqc9jmikLbOplC4hqFejgpVokNBK8Y0FoTgjehWdSPBFEQZzRWHTNIpeWJ41bTOc2pi2cyTPgoHSUme/Xjz3Wc8Oz3PO/dz3/buvP/f3A2PnPOc8ey7Gl+v/dV80M4h4OCV0ASRfCpe4UbjEjcIlbhQucXNqmx+2atUqm5qaavMjxdmePXuOmNnksJ+1Gq6pqSnMzMy0+ZHijOSLo36mZlHcKFziRuESNwqXuFG4xE2ro8XU7do7ix27D2Du6DGcu3IC2zevw5bL1oQuVrQUrpJ27Z3FHTv34dibbwEAZo8ewx079wGAAjaCmsWSduw+cCJYC469+RZ27D4QqETxU7hKmjt6bKzXReEq7dyVE2O9LgpXads3r8PEaStOem3itBXYvnldoBLFL1iHPrWR10LZUipzaEHClerIa8tla6IuX2yCNIsaeXVDkHBp5NUNQcKlkVc3lAoXyUMk95F8iuRM8dp6kk8svEZyQ9kP1cirG8bp0G8ysyMD398L4Ftm9jDJ64vvP1bmH9LIqxvqjBYNwNuLr98BYG6cN2vklb+y4TIAj5A0AD80s2kAXwOwm+R96DevHxn2RpLbAGwDgLVr19YvsSSjbId+o5ldDuA6ALeQvBLAzQBuM7PzAdwG4MfD3mhm02bWM7Pe5OTQQyKSqVLhMrO54u9XADwEYAOArQB2Fr/y8+I1kROWDRfJM0ieufA1gE8C2I9+H+uq4tc+DuB5r0JKmsr0uc4G8BDJhd//qZn9huRrAL5P8lQA/0HRrxJZsGy4zOwggEuHvP5HAB/yKJTkQVtuxI3CJW46e0Ajtf1kKepkuFLdT5aaTjaL2k/Wjk6GS/vJ2tHJcGk/WTs6GS7tJ2tHJzv02k/Wjk6GC9B+sjZ0slmUdihc4kbhEjcKl7hRuMSNwiVuFC5xo3CJG4VL3Chc4kbhEjcKl7hRuMSNwiVuFC5xo3CJG4VL3Chc4iapbc46JZ2WZMKlU9LpSaZZ1Cnp9CQTLp2STk8y4dIp6fQkEy6dkk5PMh16nZJOTzLhAnRKOjXJNIuSHoVL3FS+Eq94/askD5B8huS9fsWUFFW+Eo/kJgA3ArjEzF4nubrx0kVES0/jq9OhvxnAPWb2OnDiXqAsaempmrJ9roUr8fYUV9wBwEUAPkryTyR/T/KKYW8kua24SXZmfn6+iTK3TktP1ZStuTaa2VzR9D1K8tnivWcB+DCAKwA8SPI9ZmaDbyzuZpwGgF6vZ0iQlp6qqXMl3mEAO63vzwD+C2CVV0FD0tJTNXWuxNuF/lV4IHkRgNMBHBn176RMS0/V1LkS73QA95PcD+ANAFsXN4m50NJTNWwzD71ez2ZmTkyTaXifAZJ7zKw37GfB1hY1vM9fsOUfDe/zFyxcGt7nL1i4NLzPX7BwaXifv2Adeg3v8xd0J6p2luZNmwXFjcIlbhQucaNwiRuFS9woXOJG4RI3Cpe4UbjETVLPishRzhsmFa6Act8wqWYxoNw3TCpcAeW+YVLhCij3DZMKV0Cb3j851uupUbgC+t2zw5+dMer11ChcAanPJW7U5xI3uR9S0STqIm3OmOd+SEXhGhBixjznQypqFgfkPmPeNoVrQO6jt7YpXANyH721TeEakPvorW3q0A/IffTWNoVrkZxHb21TsyhuFC5xo3CJG4VL3NS6Eq/42ddJGsksb8+Q6ipfiQcAJM8HcA2AlxotlWShbrP4PQDfQP9WM5GTVL4Sj+QNAGbN7Gm30knS6lyJdyf6l0wtqQjjNgBYu3Zt5YJ2RU4nsKteiXcVgAsAPE3yEIDzAPyF5LuGvHfazHpm1puczONUi5eF/WSzR4/B8P/9ZLv2zoYuWiXL1lzFNXinmNmrA1fifdvMVg/8ziEAvcUd/hx51ixL7Sdb7jNirPEqX4nnWqpIee9UrbqfLNZnTizbLJrZQTO7tPjzATP7zpDfmepCreW9U7XqfrJYd9Bqhn4M3jtVq+4ni3UHrcI1Bu+dqlsuW4O7b7oYa1ZOgADWrJzA3TddvGzTFusOWu3nGsP2zetO6tsAze9UrbKfrI1yVaFwjSHWnaqxlivoHdeSvqXuuFafS9woXOJGfS5HMc6at0nhchLrrHmbFK4R6tY6ddYJc6FwDdFErRPrrHmb1KEfoom1ulhnzdukcA3RRK2j506oWRzq3JUTmB0SpHFqndhmzUOMXBWuIZpaq4vluROhRq5qFoeoujshVqH2e6nmGiGWWqcJoUauqrk6INTIVeHqgFAjVzWLHRBq5KpwdUSIPqSaRXGjcIkbNYuypDoz+wqXjFR3Zl/NooxUd2Zf4ZKR6s7sK1wyUt2ZfYUrkF17Z7Hxnsdxwe2/xsZ7Ho/yGVx1Z/bVoQ8glcMbdWf2Fa4AUjq8UWdmX81iAF05vKFwBdCVwxsKVwBdObyhPlcAsR3e8KJwBZLTNupR1CyKG9VcNXT9KTbLUbgqSmUiNKRS4SpuyHgVwFsAjptZj+QOAJ8G8AaAvwP4gpkd9SpobEJPhKZQa47T59pkZusHnn/5KIAPmtklAJ4DcEfjpYtYyInQVO4IqtyhN7NHzOx48e0T6F8u1RkhJ0JjvTFjscr3LS7yRQAPD3sjyW0kZ0jOzM/PVy1ndEJOhKayfFQ2XBvN7HIA1wG4heSVCz8geSeA4wB+MuyNuV6JF/J5EqksH5Xq0A/et0jyIQAbAPyB5FYAnwJwtbX5QPtIhJoIjfXGjMWWrblInkHyzIWv0b9vcT/JawF8E8ANZvZv32LKoFSewlP5vkWSLwB4G/rXEgPAE2b2FbeSyklSWD5aNlxmdhDApUNef59LiSQbWlsUNwqXuNHaYoNSWJJpk8JV0nLBiWkhO5aQq1ksocxaXixLMjGtOypcJZQJTixLMrGEHFCzWEqZ4DRxMUITPEJetZlVzVVCmbW8WE70NL3uWKeZVbhKKBOcWJZkmg55nWZWzWIJZY+CxbAk0/SxtTrNrMJVUgzBKavJstbpS6pZlCXVaWZVc8mS6jSzCpcsq2ozq2ZR3Chc4kbhEjfqc3VI27slFK6OCLElSOGKVNO1TIhnWyhcEfKoZUJsCVKHPkIee7JCnNJWuCLkUcuE2BKkcEXIo5YJsSVIfa4IeT0Lou2dHQpXhHJ5lLjC1bCmphBS2j82isLVoJjOLsYgi3DFcgg09EN4Y5N8uGKqLWI5uxiL5Kciqkw4et3SmsrjJNuSfLjGrS08j7vHcnYxFsmHa9zawvO4eyxnF2ORfJ9r3AlH735RDlMITUm+5hq3tlC/qD3J11zAeLVFKo/ZzkH04Wp6DiuXpZUURB0urzks9YvaUarPRfIQyX0knyI5U7z2TpKPkny++PuspgsX04PMZHx1rsS7HcBjZnYhgMeK7xulGe+01Rkt3gjggeLrBwBsqV+ck2lkl7Y6V+KdbWYvA0Dx9+phb6xzJZ5mvNNWtkO/0czmSK5G/66fZ8t+gJlNA5gGgF6vN9bNZhrZpa3OlXj/JHmOmb1M8hwAr3gUUCO7dFW+Eg/ALwFsLX5tK4BfeBVS0lTnSrwnATxI8ksAXgLwWb9iSorqXIn3LwBXexRK8pD8wrXES+ESN2zz3nOS8wBedPyIVQCOOP77KfL+P3m3mU0O+0Gr4fJGcmZgeUoQ9v9EzaK4UbjETW7hmg5dgAgF+z/Jqs8lccmt5pKIKFziJrtwkbyL5GyxJfspkteHLlMoJK8leYDkCyQb3ym87Ofn1ucieReA18zsvtBlCYnkCgDPAbgGwGEATwL4vJn9ra0yZFdzyQkbALxgZgfN7A0AP0N/a3prcg3XrST/SvJ+j1NJiVgD4B8D3x8uXmtNkuEi+VuS+4f8uRHADwC8F8B6AC8D+G7QwobDIa+12geK+lDsKGb2iTK/R/JHAH7lXJxYHQZw/sD35wGYa7MASdZcSyn28y/4DPpbsrvoSQAXkryA5OkAPof+1vTWJFlzLeNekuvRbwIOAfhy2OKEYWbHSd4KYDeAFQDuN7Nn2ixDdlMREo/smkWJh8IlbhQucaNwiRuFS9woXOJG4RI3/wOfdKaAPZfJtAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "fig, ax = plt.subplots()\n", + "lats = [ll[0] for ll in datapoints.keys()]\n", + "lons = [ll[1] for ll in datapoints.keys()]\n", + "# Don't draw lines\n", + "ax.plot(lons, lats, \"o\")\n", + "# This is a map of the UK. Here, 1 degree latitude is \n", + "# 1.7x as far as 1 degree longitude\n", + "ax.set_aspect(1.7)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Set up mercator transform from https://wiki.openstreetmap.org/wiki/Mercator#Python\n", + "# Thanks to Paulo Silva and the OSM contributors\n", + "import math\n", + "\n", + "def merc_x(lon):\n", + " r_major=6378137.000\n", + " return r_major*math.radians(lon)\n", + "\n", + "def merc_y(lat):\n", + " if lat>89.5:lat=89.5\n", + " if lat<-89.5:lat=-89.5\n", + " r_major=6378137.000\n", + " r_minor=6356752.3142\n", + " temp=r_minor/r_major\n", + " eccent=math.sqrt(1-temp**2)\n", + " phi=math.radians(lat)\n", + " sinphi=math.sin(phi)\n", + " con=eccent*sinphi\n", + " com=eccent/2\n", + " con=((1.0-con)/(1.0+con))**com\n", + " ts=math.tan((math.pi/2-phi)/2)/con\n", + " y=0-r_major*math.log(ts)\n", + " return y\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJkAAAEDCAYAAAAm1qYrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAARk0lEQVR4nO2de7BdVX3HP98mgqE8biTgwA1pghNCHTU8LoJaLQ9LgE4bcGhLtUVSbEpB+pgxo4zT6gwzVSd1xjIUMsBYSlVQMI1IlWgLiFMJmAgkPLx4IWO4CZbwCLYh05Lw6x973XBycu6957HW2Wvv8/vM3Mk5a6997u+efGft9fh915KZ4Tgp+ZWyA3Dqj4vMSY6LzEmOi8xJjovMSY6LzElOqSKT9GVJz0t6rM36vy/pCUmPS/pa6vicOKjMeTJJHwD+B7jFzN4xTd2FwDeAM83sZUlHmtnz/YjT6Y1SWzIzux94qbFM0tsk3S1pg6QfSjo+XPpT4B/N7OVwrwusIuTYJ7sBuNLMTgY+AVwXyo8DjpP0n5LWSTqntAidjphZdgCNSDoYeC9wu6SJ4gPDvzOBhcDpwFzgh5LeYWY7+h2n0xlZiYyiZd1hZie0uDYOrDOz14DNkkYpRPfjfgbodE5Wj0sz+yWFgH4PQAWLw+U1wBmhfA7F4/OZUgJ1OqLsKYxbgQeARZLGJV0KfAS4VNKjwOPA0lB9LfCipCeAe4EVZvZiGXE7nVHqFIYzGGT1uHTqSWkd/zlz5tj8+fPL+vVOAjZs2PCCmR3RXF6ayObPn8/69evL+vVOAiT9vFW5Py6d5LjInOS4yJzkuMic5LjInOTktnZZGdY8vJWVa0fZtmMXRw/NYsWSRZx/4nDZYWWJi6wL1jy8latWb2LXa3sA2LpjF1et3gTgQmuBPy67YOXa0b0Cm2DXa3tYuXa0pIjypi2RSfrrkFf/mKRbJb256bokXSNpTNJGSSelCTcPtu3Y1VH5oDOtyCQNA38BjIQ8/BnARU3VzqXI7VoILAeujxxnVhw9NKuj8kGn3cflTGCWpJnAQcC2putLKcwgZmbrgCFJR0WMMytWLFnErDfN2Kds1ptmsGLJopIiyptpO/5mtlXS3wNbgF3A98zse03VhoFnG96Ph7LnGitJWk7R0jFv3ry95VUbqU3EVqWYy2RakUmaTdFSLQB2UOTf/5GZfaWxWotb90tUM7MbKIwijIyMGFR3pHb+icNZx5cT7TwuPwhsNrPtIb9+NYXZo5Fx4JiG93PZ/5HaEh+p1Z92RLYFOE3SQSosRGcBTzbVuRO4OIwyTwNeMbPnmj+oFT5Sqz/TiszMHgTuAH4CbAr33CDpMkmXhWrfoTB1jAE3Ape3G4CP1OpPWzP+ZvYZ4DNNxasarhtwRTcBrFiyaJ8+GfhIrW6UvqzkI7X6U7rIwEdqdcfXLp3kuMic5LjInOS4yJzkuMic5LjInOS4yJzkuMic5LjInOS4yJzkZLGsVDZVy8ytGgMvsqpm5laJgX9cemZuegZeZJ6Zm552fJeLJD3S8PNLSX/VVOcwSd+W9GgwAS9LF3JcPDM3Pe2kX4+a2QnhAIeTgVeBf22qdgXwhJktpjgx5IuSDogdbArcQ5meTjv+ZwFPm1nz3qAGHBKMJgdTHMq1O0J8yfHM3PR0KrKLgFtblF9L4VjaBhwC/IGZvd5caTJzb9l4Zm5a2u74h8ff7wK3t7i8BHgEOBo4AbhW0qHNlczsBjMbMbORI47Ybydup6Z0Mro8F/iJmf1Xi2vLgNVhL4wxYDNwfIt6zgDSicj+kNaPSigMwGcBSHorsAg/XMsJtNUnk3QQ8FvAnzWUXQZgZquAq4GbJW2i2Bfjk2b2QvxwnSrSrrn3VeDwprJGc+824Oy4oTl1YeBn/J30uMic5LjInOS4yJzkuMic5LjInOS4yJzkuMic5LjInOS4yJzkuMic5LjInOS4yJzkuMic5FTWQe5bC1SHSorMtxaoFlHMvaHe6eH645J+kCbcAt9aoFq0c97lKIUDCUkzgK00mXslDQHXAeeY2RZJRyaIdS++tUC16LTjP5m598MUbqUtAGb2fIzgJsO3FqgWnYpsMnPvccBsSfdJ2iDp4lY3S1ouab2k9du3b+801r341gLVou2Of4O596pJPudkipZuFvCApHVm9lRjpVYn93aDby1QLToZXU5l7h0HXjCzncBOSfcDi4GnWtSNgm8tUB1imXu/Bbxf0szg0TyV/U/3dQaUKOZeM3tS0t3ARuB14CYzeyxBvE4FiWLuDe9XAivjhebUBV+7dJJTyWWlMvE1085xkXWAr5l2hz8uO8DXTLvDRdYBvmbaHS6yDvA10+5wkXWAr5l2h3f8O8DXTLsjK5FVYXrA10w7JxuR+fRAfcmmT+bTA/UlG5H59EB9yUZkPj1QX7IRmU8P1JdsOv4+PVBfshEZ+PRAXYlm7g11T5G0R9KF8UN1qkoUc2/DtS8AayPH6FScWOZegCuBbwJJjb1O9Yhi7pU0DFwArNrvjn3rRTH3OtUi1sm9X6I4fnBPi2t78ZN7B5NY5t4R4LbinHvmAOdJ2m1mayLE6FScTkQ2qbnXzBZMvJZ0M3CXC8yZoK3HZYO5d3VD2WUTBl/HmYpo5t6G8kt6D8upE9msXTr1JatlpUGnCpnB3eAiy4Q6Zwb74zIT6pwZ7CLLhDpnBrvIMqHOmcEuskw44/jWy2yTlVcJF1km3PvT1gkDk5VXCRdZJnifzEmO98mc5NTZreWTsVPQzxn4Oru1XGSTUMYMfF3dWv64nIQ6z8D3GxfZJNR5tNdvovguJX1E0sbw8yNJi9OF3B/qPNrrN9OKzMxGzewEMzuB4iS4V9nfd7kZ+E0zexdwNeEkuCpT59Fev+m049/Sd2lmP2p4uw6Y22tgZVPn0V6/6VRkkx2q2silwHe7Cycv6jra6zexDlWdqHMGhch+Y5Lry4HlAPPmzesoUKe6dDK6nMp3iaR3ATcBS83sxVZ13Nw7mEQ5VFXSPAq73B83HwntOFEOVQX+lsIyd11wke82s5Ho0TqVJIrv0sw+BnwsbmhOXfAZfyc5LjInOS4yJzme6pMpdXKTu8gypG5uchdZD6RqbabKZWvn83NrBV1kXZKyteklly3HVtA7/l2SMnO2l1y2HDN6XWRdkjJztpdcthwzel1kXZIyc/b8E4f53IfeyfDQLAQMD83icx96Z1uPuxwzer1P1iUrlizap+8DcTNnu81lSx1XN7jIuiTXzNkc45KZlfKLR0ZGbP369aX8bicNkja0yr7xPpmTHBeZkxzvk/WB3Gbg+00sc68kXSNpLBh8T0oXcrWYmIHfumMXxhsz8Gse3lp2aH0j1qGq5wILw8+pwPXh38rTayvU6zpkHYhi7gWWArdYMVRdJ2lI0lFm9lyUKEsixjpgjjPw/SbKoarAMPBsw/vxULYPVTtUNcY6YI4z8P0m1qGqalG23wRc1XyXMVoh31Mj3qGq48AxDe/nAtt6CSwHjh6axdYWguqkFcpxBr7fo90oh6oCdwIfl3QbRYf/lar3xyDeOmBOe2qUkW8W61DV7wDPAGPAjcDlkeMshV6yIXKljHyzWOZeA66IG1oe5NQKxaCM0a4vKw0YZYx2XWQDRhmjXV+7HDDKGO26yAaQfvcz/XHpJMdbMqctepnAdZE509LrBK4/Lp1p6XUC10XmTEuvE7guMmdaep3AdZFlwJqHt/K+z9/Dgk/9G+/7/D3ZpWb3OoHrHf+SyXEXnmZ6ncB1kZVMVTwAvUzg+uOyZAbBA+AiK5lB8AC4yEpmEDwA7WbGDkm6Q9JPJT0p6T1N1w+T9G1Jj0p6XNKyNOHWjzpm3zbTbsf/H4C7zezC4Fo6qOn6FcATZvY7ko4ARiV91cz+L2awdaVu2bfNTCsySYcCHwAuAQjCaRaPAYeoOL3rYOAlYHfUSDNn0Pe7mIp2HpfHAtuBf5L0sKSbJP1qU51rgV+nsMFtAv7SzF5v/qCqmXvbxfe7mJp2RDYTOAm43sxOBHYCn2qqswR4BDiaYt+Ma0MLuA9VM/e2S9k7Tue+YtCOyMaBcTN7MLy/g0J0jSwDVlvBGLAZOD5emHlT5lxXFVrRaUVmZr8AnpU0MaY+C3iiqdqWUI6ktwKLKHyYA0GZc11lt6Lt0O482ZXAVyVtpHgc/l2Tufdq4L2SNgH/AXzSzF6IH26elDnXVYUVg3bNvY8AzRvONpp7twFnR4yrUpS530WM/TpS4wvkkShrrivHffubcZFVnBx3DWrGRVYDcl8x8AVyJzkuMic5/rhMgK9j7ouLLDI55eznInYXWRdM9Z+XS85+TmL3PlmHTLdWmMsMfE7LTS6yDpnuPy+XnP1cxA4uso6Z7j8vl5z9FGLvNqXIRdYh0/3n5ZKzH1vsvaQUece/Q9pZK8xhBj72clMvAxoXWYdUYa1wgphi76WP5yLrghxaqn7TS0qR98mctuiljxfF3BvqnB5O9n1c0g/aDd6pBr0MaKKYeyUNAdcB55jZFklHdvg3OBWg225CLHPvhyncSltCnec7jsSpLbHMvccBsyXdJ2mDpItbfVBdzb3O1MQy984ETgZ+m8Lo+zeSjmv+oLqae6tGv83A7fTJWpl7m0U2DrxgZjuBnZLuBxYDT0WLdICJmbKT5aGqbZp7vwW8X9LMcADrqcCTUSMdUGI7xMvIzohi7jWzJ4G7gY3AQ8BNZvZYioAHjdiiKCM7I4q5N9RZCayMFJcTiC2KMszAPuOfObFTdspIRXKRZU5sUZSRiuQL5JmTIuuj3wv8LrKExJp6qHrWh4ssETm5hcqmdiLLxWuYizUuB2olspxaj5zcQmVTq9FlNxOXqdbxcrHG5UCtRNZp65FyU99crHE5UCuRddp6pFzHy8UalwO16pN1urVl6n5T1aceYlGrlqzT1sP7Tf2hUi1ZO9MTnbQeVdjUtw5URmQppieqZNStMpURWarJTe83pacyfTKf3Kwu0cy9od4pkvZIujBumN5JrzLttmQT5t7jKQwi++XvS5oBfAFYGy+8N/DJzeoSy9wLhQ/gm8ApEePbi3fSq0s7Hf9Gc+9iYAPFybw7JypIGgYuAM5kCpFJWg4sB5g3b17HwXonvZrEMvd+ieL4wT3NNzfi5t7BJJa5dwS4rTjnnjnAeZJ2m9maaJE6lWVakZnZLyQ9K2mRmY3SwtxrZgsmXku6GbjLBeZM0O5k7IS59wCKY5+XNRh7V015pzPwRDP3NtS9pMeYnJohMyvnF0vbgZ+X8suLfuPAnJHeQOq/+9fMbL8RXWkiKxNJ682suWWuPWX93ZVZu3Sqi4vMSc6giuyGsgMoiVL+7oHskzn9ZVBbMqePuMic5FRWZJI+K2lrOAXlEUnnNVy7StKYpFFJSxrKT5a0KVy7RmGxVdKBkr4eyh+UNL/hno9K+ln4+WhD+YJQ92fh3gP685d3jqRzwncxJql53Tk9ZlbJH+CzwCdalL8deBQ4EFgAPA3MCNceAt4DCPgucG4ovxxYFV5fBHw9vH4LxTLaW4DZ4fXscO0bwEXh9Srgz8v+Tib5nmaE7+BY4IDw3by9nzFUtiWbgqXAbWb2v2a2GRgD3i3pKOBQM3vAim//FuD8hnv+Oby+AzgrtHJLgO+b2Utm9jLwfeCccO3MUJdw78Rn5ca7gTEze8aKhNPbKP7evlF1kX1c0kZJX5Y0O5QNA8821BkPZcPhdXP5PveY2W7gFeDwKT7rcGBHqNv8Wbkx2d/QN7IWmaR/l/RYi5+lwPXA2yi2fH8O+OLEbS0+yqYo7+aeqT4rN0qPNWvfpZl9sJ16km4E7gpvx4FjGi7PBbaF8rktyhvvGZc0EzgMeCmUn950z30Ui8xDkmaG1qzxs3Jjsu+jb2Tdkk1F6GNNcAEwcTjFncBFYcS4AFgIPGRmzwH/Lem00Ke6mOIklYl7JkaOFwL3hH7bWuBsSbPD4/hsYG24dm+oS7h34rNy48fAwjAaPoBiYHNnXyMoe/TTw6jpX4BNFKeg3Akc1XDt0xQjqlHCCDKUj1CI8WngWt5Y8XgzcDvFIOEh4NiGe/4klI8ByxrKjw11x8K9B5b9nUzxXZ1Hcc7V08Cn+/37fVnJSU5lH5dOdXCROclxkTnJcZE5yXGROclxkTnJcZE5yfl/ynbAcPHJPm4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "\n", + "x = tuple(map(merc_x, lons))\n", + "y = tuple(map(merc_y, lats))\n", + "ax.plot(x, y, 'o')\n", + "ax.set_aspect(1.0)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJkAAAEDCAYAAAAm1qYrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAdbElEQVR4nO2de3Qc9XXHP1e7MtixAwa7kZEs/MAvqsY2CGzcJCWhhUDbUMqjhBAeDXWTBkh72iRNe8jpKee0p6Q5BUIDx3XTNqENwYYk9AVpSlLSYgM2tmPFxrGNgywhGRMeMciAtLr9Y2bNaDS7OzP7m53f7M7nnD1azfPu7Hfv/T3vT1SVnJwkaUvbgJzmJxdZTuLkIstJnFxkOYmTiywncXKR5SROqiITka+IyAsi0hfy+CtEZJeI/EhE/iVp+3LMIGm2k4nI+4DXgK+qak+NYxcB9wMfUNWXReTnVPWFRtiZUx+pejJVfQx4ybtNRBaKyMMislVEfiAiS91dvwP8raq+7J6bCywj2FgmWwfcpKpnAn8EfNndvhhYLCL/JyKbReSDqVmYE4li2gZ4EZHpwBpgg4iUNx/n/i0Ci4BzgS7gByLSo6qvNNrOnGhYJTIcz/qKqq4I2DcAbFbVUeCAiOzBEd1TjTQwJzpWhUtV/RmOgC4HEIfl7u5vAe93t8/CCZ/PpmJoTiTSbsL4OrAJWCIiAyLyMeAjwMdEZAfwI+Bi9/BHgJ+KyC7ge8CnVfWnadidE41UmzByWgOrwmVOc5JawX/WrFk6b968tG4fmZ0vHDr2fva0d/Cu6dORKse3Ilu3bn1RVWf7t4cSmYj8AXADoMBO4HpVfcOzX4A7gIuAEeA6VX262jXnzZvHli1bwn+CBrDgzi9W3NfpeX9OWyfr115Ke7GNYlshecMygog8F7S9pshEpBO4GThdVY+KyP3AlcA/eg67EKc5YRGwCrjb/Wsd1YQUxLSBySWKHQxxw7oHWHFGJ5sHDvLAFVeZMq8pCRsui8BUERkFpgHP+/ZfjNP/qMBmETlRROao6pBBW0MRVUR+gkQVxI7+IXb0DzHSNV7X/VqBmiJT1UER+WugHzgKfEdVv+M7rBM46Pl/wN02QWQishZYC9Dd3R3b6HqF5CWsqKqx4M4v8uzNf2jAmuYkTLicieOp5gOv4HT5XK2q93oPCzh1UtuIqq7D6Zukt7e3atuJSSGVMSGooGvm3qw6YcLlLwMHVPUwgIg8iNO/6BXZADDX838Xk0PqJI6OjnL1NzewbTiZqJqEqCqRe7PKhPkW+oHVIjLNrUWeB+z2HfMQcI3bDbQaeDVMeay90Mbqrrm1DgvNtIG2Ca8cOwhTJntCRDYCTwNjwDZgnYh83N1/D/AfOM0X+3CaMK6veV1gtDTO5oGDtQ4NxCYR5SGzOql1K3UtXaqr/vzzoUNlWqKaPvi2eF7rrGxDWWStHDJFZKuq9vq3p9bif3jk9aoCs0FUUci9WWXsiTkeGiWw6YPjk171kkStOOvYNmgxUUyIKCc6VnoyEyThpWpR9sC5N5uIlZ5spGs8cshshIimD45XLfznBGOlyMKQh77skP8sDZOHzMlY68nihMx6mXHg6LH3R+ZPbei9m5nUPJm0px/uZhw4OuHl3xeX3JtNxFpPZpp6ROMlL/xHJ7NPq9YXXc1LNZLcm6UssuIpI1X3Z7mbxqYO/LRp2ieRF9ztIdMiS7psVG+YzSsADqmLrFbItJG8ITgaqYusFkmWy4r7B+mZOYWrfrWHZT2dtU+og1b2Zk3dhHFk/tSqIW9p73z+cuPv095e4MNj43zm5nvZ3Tdo1IZ8nFkGPFkt6imXvXvNYtrbCxSKBYrFNpavPDX0uXFCZqt6s5rfkIgsEZHtntfPROT3fcecICL/KiI73MzUNcf4e0mrKWPbcy8zOlpizH3t2DZ5ln01T5iXzcIRZiLJHmAFgIgUgEHgm77DPgnsUtVfF5HZwB4R+WdVfcu0wSbZ3TfI5y67nXevWcwPH/8xu1+Obm6YHoBWD5lRY815wH5V9f/kFZjhTpmbjpPResyAfXVTq73smS0HuP/OR3hmy4GG2NOKITOqyK4Evh6w/S5gGc6E3p3Ap1R10k9XRNaKyBYR2VL62euRja1EPeWysYX11yrDhM1W7gEI/clFZArwIWBDwO4LgO3AKTih9S4Reaf/IFVdp6q9qtpbeOc7JuzLehdTlPJZq3mzKD+vC4GnVfVQwL7rgQfVYR9wAFgacFwq1AqZZW9W3B/cfBG25T+vCAQTRWQfJjhUgpPK4DwAEXkXsIQGZ6a2ZfhNNaG1asgM9alFZBrwK8CDnm0fL6cqAG4F1ojITuC/gc+q6otRjcliF1MQYTxaK4XMUC3+qjoCnOzbdo/n/fPA+WZNm0ySQ7LHFnZWDJdxqNS00YrNGS3jv20c+tMq3qypRFZvuayaN4sz7CevCDhYJ7IkmzJs8WbekN8K3sw6kaWNicZZL7k3a0GR2eLNWgkrRVZPU4Yt7WW1aKWQmY1vxEdaTQBxx/y3esjMpMjqxZaQ2SrerClFZmPIbGVvZt+34ZL0qAxbvJmXZvVm1oqsXmz0ZkG0Qqd583/CKsTxZvVM+G3VkNnUIsuiN2vGkGn1t5D10bJBtKI3s1pkjSCvACRPaiLrmTmnIffJYshsNqz/ZI0ImVG9Wb3Zflpt5GyqIlvWETQnxTxJeLM0szdmDSNpCtzjznX3/0hE/icJY1d2zOETvWezsmNiqM1aXyYEe7NmDZk1P5Wq7lHVFaq6AjgTZz3LCWkKRORE4MvAh1T154HLTRu6smMO915yOX+w+he595LLJwmtXuJWAJL0aM0SMk2lKbgKZ95lP4CqvhD2gmFCZvGUEVZ3zaW9UKDY1hZrxd8kKwAmhdaM3sxUmoLFwEwR+b6IbBWRa4JO9qYpOHz4cKQbbx44yGipxNh4KXDF3zQqAF6SmgPQDN4sdBI8T5qCz1W4zpk4nm4qsElENqvqj70Hqeo6YB1Ab29vpCWDtw0PcfU3N7C6ay6bBw6GXvHXy2udbS3ZGJo2ptIUDAAPq+rr7qTex4DlJgz0sm14iLu3PBlLYGGxwZv5Q2bWvZmpNAXfBt4rIkV3tvkqYHfYC4ctl9UiTMi0PWN2M2IkTYGq7gYeBn4IPAmsV9U+8+ZmAxNCa6YKQKhPoqojqnqyqr7q2XaPL1XBF1T1dFXtUdXbkzC2UZjoz4witGavAFjzc2mmkFkmD50O1ojMNkyNzqgnt1mzVABykTWAVvdoucgahCmhZdGbWSUy28plQSFzWU8nV350TaxlcmoJrVk7zZt62RvTLOvp5LY7r6a9WGB0rBRrmZwZB45aORo3SbL/M2kgy1eeSnuxQKHYFnmZnHrIegWgpUUWNWTu2PYco2MlxsZKjI2NBy6TE4ZWW0pHVCP1Uxujt7dXO29fHbhv9/C7ap4/9vy0mseEKc+E+VK9oljW08nylaeyY9tzda8oVylsBok/qJz57M1/WNf9TSMiW1W11789L5OFwLuk4e6+QWPLFVYqnwUlNc5yQuOmDpc2tf4nQVbKZqk+4Uu7zmfJjPmTtptqyjBJUjXCKO1nWW3OSNXqj5z6q9zac1Og0EyRVW/WTBWAVJ9uQQoUpEDPCYtind8s3qweshAyUxXZ2HiJkpboe3XvpH0m52Ta7s0qhcxm6QFI1eJ/6f93bun7EnuOxF/QNPdm9nuzVEX2wMB3qgrMVm+WhNCaeaRG9nxvAGmsLtcojxY2ZNrszawXWaPyZZSJUjazMXTaiLFcGO6xZ4lISUQuM29qdUwNAYqKSaE1awXASC4MABEpAH8FPGLaSJu9mU3YGjJN5cIAuAl4AAidB8M0zezNsoyRXBgi0glcAtwz6YyJx03IhfHt99wV8faNI6o3S7p8luUKQOgn6cmFsSFg9+04646Xql1DVdepaq+q9s6ePTu0kWGG/pRJy5tBXhGohKlcGL3AfSLyE+Ay4Msi8hsG7EuVOGWzJCcGZ9WbGcmFoarzVXWeqs4DNgK/p6rfMmBfLNL0ZpB7ND9GcmEkSZRQmQRxa5r1Cq2ZKgDGcmF4tl+nqhtNGRi3+SJtbwbJeLQshsxsNgg1mHrazfLQ2eQis8Gbgfmkx2EHNNrizZpaZCaptxcgaY9mczeTvZYZwqQ3a1R3kzcVQr0VABu8WT4lLiL1JDf2Tq2rRFAqhCdff2nScVmaNtf0niwsUb6cJCsCaaVCSJJMiKyeURhhZprHISmhBaVCyHrIzMOlh5Gu8UgF6HpDJ0yuQe7uG+QzN98bKhVCVkJmJjyZzZiodXpflciyN2tqTxYnVEb1ZqY59VcWcNufXE6xWGBstHYOtCx4s9Q9mc1jysJismnjjNPnUiwWKBbaKLabLfin5c1SF5mNxPECpoT29K6DTqG/5BT8Nw0PH9uX1U7zzITLZR2HIo3ISKpWWQ2/0OJUCvr2DfGZm5yC/6bhYfr2DUGN9jXbQ2buySqQ5mrAu/sGue9rjzsCc6lUG41KGiEzF1kFVnbM4Yb3n8Xy7ngrBMfxYn4BmV46Jy2aUmT1hsryUtQ3XrCG9WsvjS20KIQRVNRO9kq15EZ7s6YUWb1MXIq6wFkLuyKdH9WrVBOYf1+Y/k/byEUWwMSlqEs8tX8g9LmNCFuVPFqUmeaN9GY1a5cisgT4hmfTAuDz3uUGReQjwGfdf18DPqGqO0wa2kjKS1G/d0Y3T+0fYEd/uJWCTZTDKh2T5RG2NUWmqnuAFXAsFcEgk9MUHAB+SVVfFpELcdYZX2XY1sjNGPWwbXiIPVvCd8wnJbBmwEiaAlV9XFVfdv/dDEQqxHxg1jMRzbCLRgjM5JKGZRoVMo2kKfDxMeA/g3b40xTYTJL9l63iwcqYSlNQPub9OCL7bND+amkKTHqzRibFM1mTNHWubd4sSrdStTQFiMi7gfXAhar6UxPG2Y7NDaA2YSRNgYh048wu/6iq/tiEYWliak0mPybCZBKhNmlvZipNweeBk3ESrWwXkS3GLXVpdEK8ILJQk4wSMpMuXhhJU6CqN6jqzHJGxqCVwqrxqaXfjWZ1imRBYLaRt/j7MF2rTEJg9VQAKrF4461xzalJ04osjbTrfmz0YEE/oqTH3lklsrQbZW2e6u8nCQEn5c2y81Qzhi1eLGwFIElvlossAUwLzJsbI8n7JEUmRZZEM4apUJmEwG6782qu+51zue3OqycJLQxpVwAyKTJbScKz1MqNEfeejQyZucjqpOe0OVzzobM5+x0nJXL9oNwYUek5Ldp8BdPezLopcR+Y9QyPvrjUyLWKp4yE+nXGDZU9p83hrvJs74tX15ztHYdauTFqDWb02jhaKnHDugeODcJs1LS53JPVgX+299LzTguV1yIq5SlyUQXmtzHMfIXyj9KkN7POk2WJ8mxvUMbGxnl618EJ+/0iMFVmiyJgr42jpfFI8xVMkVmRmRyKHTfJSt++IW78iw2ccfpcnt51cMJk3CCCxBFVeFE9ZNnGntXB8xWCQubY89OM9phkVmS20LdvqKa4qhHF28UNwZuPHmLz96I3+yzeeCs/vuyWWPf0kpfJLKNSeS6uwGxYuzN9CxLGho7yOIRNjleNsAKr1mZmogJgjci8Y8rS7ihvBmzwYGXssSQDZGVMfxyBJenNcpG5NKJRstw70HNaMglcXutss8qDlTGVpkCAO4CLgBHgOlV92rCtk2jkjHKY6CGierUJvQNjJW78iw111Uqr2WYbNS1T1T3lsfvAmTgi8qcpuBBY5L7WAnebNjQtlncH9/uVvUbYL3dC70CxjTNOn2vMRlMCSypkRm0nC0xTAFwMfFVVFdgsIieKyBxVNfdTTYHl3XNYv/ZS2guT+/28lL/kat6tVu9AXOIKzF88SHJUsKk0BZ2A96kNuNsmECVNgQ0zys9a2OXkKQvZ71eNcsv7uo2PGwmV9ZS/gsqfI13jNXs+4nqz0J7Mk6bgc0G7A7bppA2q63Ay/tDb2ztpv208tX+A0VIJIFSeslorlNTbO+C9T1xqVXCC9tfbzWQqTcEA4C1kdAHPx7bKEnb0D3HDugc4a2FXpDxlSZKkwMIQp6spisgqpikAHgJuFJH7cPKSvdqo8ljSHeU7+oeaXlwrO+awumsumwcOsm04+LPW481CicyTpuB3Pds+Ds5McuA/cJov9uHUPq+PZU0TEGZRr6j5/pMW2L2XXH6scnP1NzdUFFpcTKUpUFX9pKouVNVfUNXEcmFknSDBVCvEJx0eJyZhbmN1V+2mlagVAHtb8AzTyI7yuMLwi60R5a+JSZjH2TxQuWkl7kQTq0XWbB3lYUVTb/NElAJ+OQnz32x+PFKojOLN8kGLDaIR3T5xa4/bhodCiytOBcBqT5YGpjrKG92XmMZaUGG9mVUii5unzPSMctNfWJKCixoe41A8ZeTYKw5WicwmbFnGrxqNstFb4I8jtFxkCZLk+C5bfgRhQqb1Ikuzo9yWL9KPrXZVwnqR5bxNI8pflajWRnbFo18BYMaMGe8I2p+LrAa2eA1b7PCz4qRO/ul9HwVg0aJFi4OOaRqR2ZB6PSlsEViQN1s1ex7tbYXyv0FDvppHZEmS1pecZngMyxOHf8LoeKn8b+AYwVxklmK7uMpsf2mQax/7GgB79+4NXI2m5bqVwuYs8xM3KUsUlnfP4ayFXfzgSH/dw20q2VqPeCvVzre/5KS0OnLkyOuB58W+YwMxmRjPVo5NWikW+N3Sqqqd1Wmkgm/U8OuWJ0lvtuKMTtqLzrguFN47ozvSysFJUu8wqbxMZgEjXeO+cV21J63EJeqPxMQ4vKbyZI2eUW6CchmpPK6rPNZ+T3/6XszUQM+wY/xPxFkwtQenmvrbqrrJs/8E4F6g273mX6vqPxix0DJMhkx/Idw7rmtaykHG5EjisJ/kDuBhVV0KLAd2+/Z/EtilqsuBc4EvuvM0I9PoZQnrGcJSD3HmP5qi1o/E9POoKTIReSfwPuDvAVT1LVV9xXeYAjPcxCvTgZeAMZOGmu4or0dc9QrA5jawJH5wYTzZAuAw8A8isk1E1ouIvyP0LmAZzoTencCnVHXSk4ySpqDRNMqbRRFYUmJstMjDiKwInAHcraorgdeBP/YdcwGwHTgFWAHc5XrACajqOlXtVdXe2bNn12e5hVTKAFTGBg9WzYakfmhhRDYADKjqE+7/G3FE5+V64EF3/uU+4ACQSutpPR3lUR6y/8sqN6beeP4a1q+9dILQ6umDNCnMNAQG4fKTDQMH3WR44KSP2uU7rN/djoi8C1gCPGvQTuuplAGo0d6rkjdNS2AQvp3sJuCf3Rrjs8D1vjQFtwL/KCI7cYZ7fFZVX0zC4KSJ27cZlAHIlMDCNptUyqeWtMCWdRzi4v+9sfI9wlxEVbcDvb7N93j2Pw+cH8fALOP98v0ZgDaNm13IKwxeb1r+v5od9QosbNEkU91KjZpRHvfh7+gfYv33nkpEYGG8YtmbjpXGGS2V+MGR/orHNkpg0GTdSjaQZg3S602rDReqR2BxKla5yOqkHDIbIa4w99g0PsimveZDZD219kyFy7CYGO9fT3OGrcQR2LKOQ3U/z6YUmY1kcY0nU5Nz8nBZhbjNGf5rmLyeCTtqYXrmV+ZElqWh2DZ4rzTFVaalwmWc8kXsZLwVzmuE8OKMMkly3qqVnuxTS7/LHc/8srHr+R9g0iNoi6eMsOKkTlbNnscTh39ybDaPd78tNGJStJUiM0FZSKZqmmHKUmXxlKfut7cVGB0vce1jX5sktDTwCv/NKYmvr3aMphUZJPcrDcp77/VO5an7xbY2QFk1e17qIisLf0qhjbHx93BL38vsOXKgIfduapFVI2rILHuzoLz3O9v2Tzj27an7yuj4OE8c/olZ42PwawtmMaXQRkEKqEDPCYtykdmKN+89KGuWdbBzz0SRlafuVyqTNQK/F+97dS9j4yVUoKQl+l7d2zBbMikyU80YcbzZU2/sZXR8NbW81PaXBhsurmrFgz1HDnBL35foOWERfa/uNe7FlsyYT2dnZ0fQvkyKLE3q8VKmy4hRKzZ7jhxIJEQumTGfW3tu4tGOr09afhJykcVqzojipZJsIrAlJ1vPCYsovp2jbBItL7IksUUESXPNvA8BzhpbQftbqsW/EqbFYGLkQlb49nvuOvb+0KFDgWuc5iIzTKuICyYKDGBwcHA46DgjuTDcY84FbgfagRdV9ZciWx0B0x3lJrqa0hRYpaHpSQwm8IurFmHLZOVcGJe5M5Ym9LG4Ivwy8EFV7ReRn4tkhaWkIRq/WKqJJMychyjXq3X+oy8ujSwwCCEyTy6M68DJhQG85TvsKpzJvf3uMS9EtsQC0vJE1cRievJMNdHVulccgUE4T+bNhbEc2IqT68KbH3Qx0C4i3wdmAHeo6lf9FxKRtcBagO7u7lgGh6X8wGwee2bDep5hbKg301IYkZVzYdykqk+IyB04uTBu8R1zJs4s8qnAJhHZrKoTsiGr6jpgHUBvb29gdbde/A/NtkGONggrCiZSeYURWVAuDH/ClQGcwv7rwOsi8hhOHrPAlNthiDOmzOYv0GbbADqOX0bXtBUMjGxn+I3dRvPE1RSZqg6LyEERWaKqewjOhfFtnEw+RWAKsAr4G2NWhqBWuSYtb2ZaXH4xmLrmb3Z/gYK0U9JR2tuON3LdMkZyYajqbhF5GPghMA6sV9U+o5YGUBaPjV4iCZv8Yniw/9NGhNY1bQUFaadNCrRJ5e6huBjJheEe8wXgC4bsCk3YLzOMN7NRrF68YgCla9qKukTWqNSpLdl3abuYKjEwsp2SjgJKSccYGNke6fxG5+Mt01Iiy6q4ygy/sZsH+z8dqkyWlqCCaCmRNQPDb+yeJC6bBBVELrKMYbuggshFZjFZFFQQucgSJkq7VrOIyk/Liuyi6f72ZPMcP+VMOmfdBjJlUrtWswoqiKYRWSWP0QgxVWLqcecg0o64jZy/Ne9LqdmSJk0hso7jl3F5922ItKN6FYMvXsEbb21NxZZFXYEjkFuaphDZeTPnuB6jCChTjzsnlMiOn3ImU487h6NvboolylxQ4ci8yC6avoujb05F3ZZw1TGOvrmp5nlOeel+1/uN1vR+uaDik1mRectab7y1lcEXr4jkld4uL032frmgzCIVpsolTm9vr27ZsqXmcUFjykwU5suerK1tat3XynEQka2q6h9IkT1PVo/Acg+VDpkRWVRx5YKyB+tF1nvSh+nmW7zhnx/lIxeVvVgvsjWzr53U9pULKlukVvAXkcPAc5X2d3Z2dnR0dHSCk8jj0KFDz1eaBh+SWUAml0dMiCSex6mqOmlJ5tRE1mhEZEtQzadVaeTzyBOu5CROLrKcxGklka1L2wDLaNjzaJkyWU56tJIny0mJXGQ5iZMpkYnIn4nIoIhsd18XefZ9TkT2icgeEbnAs/1MEdnp7rtTRMTdfpyIfMPd/oSIzPOcc62I7HVf13q2z3eP3eueO6Uxn9wsIvJB9zntExF/8hzzqGpmXsCfAX8UsP10YAdwHDAf2A8U3H1PAucAAvwncKG7/feAe9z3VwLfcN+fhJPv4yRgpvt+prvvfuBK9/09wCfSfiYxnmHBfT4LcJLj7ABOT/KemfJkVbgYuE9V31TVA8A+4GwRmQO8U1U3qfOEvwr8huecf3LfbwTOc73cBcB/qepLqvoy8F/AB919H3CPxT23fK0scTawT1WfVSdr5n04zyIxsiiyG0XkhyLyFRGZ6W7rBA56jhlwt3W67/3bJ5yjqmPAq8DJVa51MvCKe6z/Wlmi0udLDOtEJiLfFZG+gNfFwN3AQmAFMAR8sXxawKW0yvY451S7VpZo+OewbhSGqoZKrygifwf8m/vvADDXs7sLeN7d3hWw3XvOgJu87wTgJXf7ub5zvo/TmXyiiBRdb+a9Vpao9KwSwzpPVg23jFXmEqCcaO8h4Eq3xjgfWAQ8qapDwBERWe2Wqa7ByQpZPqdcc7wMeNQttz0CnC8iM91wfD7wiLvve+6xuOeWr5UlngIWuTXlKTiVnocSvWPatZ2INaOvATtxMjo+BMzx7PtTnFrTHtwapLu9F0eM+4G7eLuX43hgA04l4Ulggeec33a37wOu92xf4B67zz33uLSfSczneBFOPt/9wJ8mfb+8WykncTIVLnOySS6ynMTJRZaTOLnIchInF1lO4uQiy0mcXGQ5ifP/zauNAradx70AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "\n", + "x = tuple(map(merc_x, lons))\n", + "y = tuple(map(merc_y, lats))\n", + "\n", + "ax.tricontourf(x, y, tuple(datapoints.values()))\n", + "ax.plot(x, y, 'wo', ms=3)\n", + "ax.set_aspect(1.0)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJwAAAEDCAYAAADA/21vAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOydd3iUVdrGf2dakknvvQEBQm8CAgqKoljAtjbs3V3b2ll33V391rK6a3cVC/aCioiC2EUEgdBBCCGk997LtPP98SaTSTKZzCSTkITc1zVXZk57zyR3ntOe5z5CSskwhtFfUB3rDgzj+MIw4YbRrxgm3DD6FcOEG0a/Yphww+hXDBNuGP2KAUs4IcSbQogSIcQBJ8tfLIQ4KIT4XQjxQV/3bxg9gxio+3BCiJOBOuAdKeWEbsomAauAU6WUlUKIMCllSX/0cxiuYcBaOCnlL0CFbZoQYqQQYoMQYqcQYpMQYmxL1o3AS1LKypa6w2QboBiwhOsCK4DbpZTTgXuBl1vSRwOjhRCbhRBbhRBnHrMeDsMhNMe6A85CCOEDzAE+EUK0Jnu0/NQAScACIAbYJISYIKWs6u9+DsMxBg3hUKxxlZRyip28PGCrlNIIZAohDqMQMKU/OziM7jFohlQpZQ0Kmf4AIBRMbsleA5zSkh6CMsRmHJOODsMhBizhhBAfAr8BY4QQeUKI64FlwPVCiL3A78DSluLfAOVCiIPAT8B9UsryY9HvYTjGgN0WGcbQxIC1cMMYmhiQi4aQkBCZkJBwrLsxjB5i586dZVLKUHt5A5JwCQkJ7Nix41h3Yxg9hBAiu6u84SF1GP2KYcINo18xTLhh9CuGCTeMfsUw4YbRrxgm3DD6FcOEG0a/YphwTsJgMPDaa6+Rn59PU1MTw0eCPcOA3PjtLQwGA7t27WLixIl4e3v3uJ3GxkYyMjIICAhgxYoVPPLIIwCoVCrGjRtHXFwc06ZN49FHH3VX14c+pJQD7jV9+nTZG9x9990SkGq1WqpUKnnbbbdJg8EgLRaLNJvNduukpKTI/fv3SymltFgs8rXXXpN+fn4S6PS6++67ZVJSkgSkVquVJpOpV/0dagB2yC7+tsecXPZevSXc9OnTJSBvvvlmK0kWL14sExISpJ+fn7z//vtldXW1TEtLk88++6xcsmSJtdzJJ58sR48eLQF56qmnyrvvvltGRkbKmTNnSi8vL/nBBx9IKaUsLCyUnp6e8uqrr+5VX4cijivCvf322xKQy5Ytk7m5uZ2s04QJE+xarZCQEHniiSfKOXPmyHPPPVeuWLHCoeW65557pEqlkmlpaT3u61DFcUU4Pz8/GRoaKouKimR1dbVcsGCBlVTBwcHyySeftH6Oj4+XycnJMjc31+XnxMbGSkCmpqb2uK9DFccV4VrJtGTJEimllBs3brSm5eXlSbVaLQG5YcOGHj9DSilvuukmCcgHH3ywV+0MRTginFOrVCHEn4EbWv5w+4FrpZRNNvkCeA44C2gArpFS7mrJO7MlTw28LqV8wrnljOv4/vvvre/Xrl0LQEhICAsXLuTxxx8nOjqa5cuX4+XlxRlnnNFteyOe/4/d9FtnzOT0RYtYsWIF8+bNc0/njxN062IuhIgGfgXGSSkbhRCrgPVSyrdsypwF3I5CuFnAc1LKWUIINZAGnI4SWZUCXCalPOjomTNmzJA98YebOXMmKSlKoNZ1113HG2+80W2drkhlD/o8ZdtyUkw42ateJuPoUX4/fJggPz+X+zqUIYTYKaWcYS/P2X04DeAlhDACeqCgQ/5SFEkGCWwVQgQIISKBBCBdSpnR0pGPWso6JFxP0Uq2DRs2MG3aNGu6K6SyRSvBOuKHT9+nZPNmLrnzAW7c8BWfXXx5j9o/HtEt4aSU+UKIp4EcoBH4Vkr5bYdi0UCuzee8ljR76bPsPUcIcRNwE0BcXJyz/cdsNmMwGBj/2sv4L1pI9bc/sOy1V9BFR6OLiULl4dF9I3RNLlvU5xyhYs8Wag7vxW/sFPZrw2gsKnS6r8NwgnBCiEAUq5QIVKFEvl8hpXzPtpidqtJBeudEKVegSDkwY8aMTmW6slIl73xA/c5d6GKiMeTlA1D+2RqlUzotCU89breeMwSzRcWeLRR+9ylqL2+CTziFsDmLUKaukhHP/4eMO+5xqb3jFc4MqacBmVLKUgAhxGoUyQVbwuUBsTafY1CGXV0X6Q4hgUajkSs+/4Td3VgQoVaIY8jLRz9pIkIlqN+zT2nHYLSWc5VgtjDWVFL4/Wp8EscSe961qDTadu02xFh63PbxBmcIlwPMFkLoUYbUhUDHGf1a4LaWOdosoFpKWSiEKAWShBCJQD5wKdDthEcAWrWK2TGx3RIu8JyzqNuudCfo3LPQhoWiz1PRVFIAAjx7QTQAc1MjeeveR6gEkQsvaEc2WwxbOefQ7V9DSrkN+BTYhbIlogJWCCFuEULc0lJsPYq0QjrwGvDHlrom4DaUyPhDwCop5e/dPhMwmi1szcvtrigafz+EWg1A1ftrrJbMMywKz9Cobus7QnNlKRnvP0djQTbRZy1DFxjSq/aGMUAj72PGjpWzHnm4S+vWSqrGolxyPnsdU0MtAKFzzyBsTvf7a86gLusweWveQahUJJ10FX5hI6mL7vr/s3VYHbZy7tkW6VeUNtR3Ipu9OVhzebGVbAAB40/o8TN98hXCSIuFrB2rKUnfipd/BGPmX4eHT1CP2x1GewxIwtlDQ4ylE+n00YnW98EnnILO33litBLMFlJKio9soSR9K+Gj5xE7ZTFqjUe7Ol1ZueHFg3MYNISzB11AMImX3U7euvcoT/kJc0MdkYv+gErT+WvZI1gr6isLKMvYQXVRGo3VRXj6hRE/7VyESu1yn4YXD44xKAlXdSCFhoIsQmaeSs6aNzE31ivpv6fgkziGaD97moVtMJsMGJtq8fQJBqC6IJWiw78AEDV+IVHjT+0R2YbRPQZVTEO1vozynb+Q//WHVO79jcwPX7SSrRV5X71Hc11FFy0oKD78K3vXPk7m9k8pz95DYEybSHpwwlSkxYKxqd5BC/bROuT39CjteMCgsXDm+gYKnnoWS0ODNc1UV2237J61jzHr8qe7bCsofjK5e9dTkr6VkvSt7fKaakpJ+/kNMFqYctHf3NP5YVgxaCycoaAAS0MDGh9/a5p/8lSiF1/G6Fv/jn/kGMKSTgRA4+njsC1Pn2DGzL/ebt6RTW/TXF9Js6Ea38zGTvmO5oIwbOW6w6CxcCovLwB8RyRTuU+xSqFzz8QjUJEhi7niZnzyLSTMuABpMXfbXqwhgdgTH0VKSV1DETV1+ZjMTRzJ/gaAaeOu7aNvcnxjQBJOaO1YkRap/Mp9W1HpPPAdOR5dQOedfyEEQt3+a9mzVLbla+sLScvegNncDEBS/JkE+Y+wlmmqK6f06HaaastRa3Xop07BJ3GsNd9YV4PF2IxQa9D6BnT5LKPRyKFDhwgJCSEqqnenIIMVA5Jw9qCLirS+txiaiTnnCqfr1iZ6dSKd0dTIkexvKCjZ2S49PHgCcZFzlOdYTFTkHSBv79c0Vhej0wdgMRkoPbodfexI/EZPxlBRQsXuzdg6wai9vFEH+aP/3wrOmzqddevWERsbi9lsJjU1FYAJEybwySefMHbsWI4nDBrCNWfnWN/HLLnKbpm6aFW3cywAKS3sT/uYiuqjnfKSR54HQF5xCqkZa63p4UlzSDjhAixmE9mFm6jav52iH1YDgsDJJ6KPScRQUUJ97lFUHp7UZaZCvoUPU9MAKCsrw9PTk1deeYWvvvqKr776inPOOYeUlBQCAwNd+VUMagxYwmmiGjAV6Ns+BypDlcrHG31kfK/a3nv4QyvZkkecx6EMxX/O3zeOorJ9VFQfpaS8zccgYuzJxE09R3m+WkNizCnUzjwVY1U5Kp0HGm/fTs+oC2tGGo2Yq6vJffwpbG7P4eabb2bLli0sWLCAu+66i7fffrtX32cwYcASriOKX3kdAEtdPWmvPop3XBKBU+bgP2ZyNzXbQ0pJWeVhAEbGnmYlG0B1bQ7VtTkIVIyMO42EqJMQQkVtolendoQQDr1HfEo8aIjRovbWtyNbK+bMmcMll1zSLvDneMCg2RaR5vYrz/qcI+StfRtTQ51T9VtJI4RgytgrmTftHjLzN7Yrc88995Censn1Vz5LYvR8hHDPr6erLZIZM2ZQUFDAwYN9EuIxIDEoCCdNJowlpfgtOBnfObMB0MeMIPqsy1F7tRerceRC1IqQwCQ8PQIICRxtTXvzjTd5+umniY+PZfaJ47ttw5m5YndexieddBIADzzwQLdtDRUM6CHVOo9TqxEaDXXbdxD3r38QdN65CLUaj6PNGCpK8AgO71H7o+PPxM87mqlTZ3LZZcswGc2YzBb27u5S9d2tyMlRFkL+/v7dlBw6GJAOmJ4jo2Xck4ozcevCofClV2lKO0LUvXdR+ML/0IaGYMjLR6XzJPnOx9rVd2R9utqTmxCoY9Kc0ezOruTQgfxO+fbmcdC9RbV1WbL1IjEYDCQmJuLv78+uXbvw9PR02M5gwqBzwLQH76mTaUo7QsHTzwJYI7TUXnpH1ZxG6o5MUndkKh9GRjtdz5GPHNj3k2tsbOSiiy6ioKCAl156aUiRrTsM+DmcJko5rNePG4vaToS7Ru/TaUHhzDyuI0wukKwjnJnPQdviYfny5Xz99de8+uqrnHfeeT1+7mDEgCdcKzQBAUTdc0en9MbCHKfOTvsajkhnu3ioq6vj9ddf58orr+Smm27qj64NKAwawgGo/f0JPGdxp/SG/Eyn2+hqLga9s3LgnKVbvXo19fX13Hjjjb161mBFt4QTQowRQuyxedUIIe7qUOY+m/wDQgizECKoJS9LCLG/Ja9XN7YJIfCdNRMAr3HJaMPDAOzuxfVkWHUERw4AtuiOdLf+92liY2OZO3euO7o16OCMtshhYApAixpSPvB5hzJPAU+1lDkX+LOU0tbt9hQpZVmPO2lzzFW7bTsAXmOS8F9wPV45IFTuI5dpZDSao/m9ntN1JHzr4qE5K4e5ixfbPX04HuDqKnUhcFRK6Wij6jLgw553qWtYmpupXLcBgIrP11LxuXK4HrPkKvzHOI5jsIU975H+gqW5mc9Tth2TZw8EuGoaLsUBmVrkIM4EPrNJlsC3QoidLQpJXdW9SQixQwixw1xjP56g9IOPQUo8k0a1Szc3Ntgtfyxhb2g1FJcgm5vRhtq9u/a4gNMWTgihA5YAyx0UOxfY3GE4nSulLBBChAHfCSFSpZS/dKxoq57kOTK60260tFhoaBGpMdfWkvCfJ5BmM0KnwzvffoSVI3clR1aut4sHe5BSUvXealSeHgSefeZxG07oioVbDOySUhY7KNPJAkopC1p+lqDM/Wa62kmAxsy2YchYVEzWPQ+S968nAfotANnVYdiW7PXZR6jPSSfw7MVojmPFTFcI53BuJoTwB+YDX9ikeQshfFvfA4uAAz3paO3GPWiCAglZdok1zWvsmEEz+a7PTgOVirDYE491V44pnBWV1qPo9N5sk3YLgJTylZak81HUMW0nYOHA5y2k0AAfSCk3uNrJup2HadirOExKg5GE/z4JQji1Ou3psOpumJsawCKtenZwfEbpO0U4KWUDENwh7ZUOn98C3uqQlgG45iFpBw0706zvyz9ZTfknq4l77BHU3u45R+1L+ORbqApsoPboQfTRCS0+dsevBsmgOGkIvf5sPJNirJ9VXp6oPNtr9zbEWDDV11L8yzqnnTLB8cmDOyClJO/LdzE3NRA690yg/VHX8Ra/OmC9Rcy1DRjyS2k6WkDNDzsx5JZY8+Iee6TTcGppbubwy38HwG/0JDT6tmBoZ4NrnIFvZqPTJLWYjWTvWkt9zhEiF/0Bn/gkt/RhMGNAEs5c10jmTU8hTZ0P5QPOPN3u3C3noX8AoPH2Q+sfhNnQhFp3bN1+cvd8TcmR34gYczKBk2a3y7N1Wzqe5nIDk3CVtQrZ1Gq8Z4xBFxlM/c7DGHJLqNrwHVUbvkNotYQuuxT9xPGUffo50qgISJvqazj8oqIJMv6+/1rbPBaLh4rcfQTGTiR++hLqBslquq8xIAmn8vHCXFmLSqehfttB7J07SKMRQ2Eh9fsOUL9rd6f8mCVX931HHaChsgBDQxURY08GunfUPF4wIAmnCfQl9vGbUPvqyb7jeUzlbSpJSZ88QtMhIyqdjtL3P6Zhf9u2XszfluNd4dVu/uYs3G3lKvOVSKyAqK4j64/HYXXA/stpg/1R6bQEXThf2XPz0OJ70iRK31yPxt+fmi1b25HNc9RIzLW11HpVULF7M/ZiNdxlYbojZm1pFsVpm9EHROLp0xa76q6Fy2DGgLRwntq2Cz38T5+ByteL4uc/o3aTcpaqDval8svv0cXGYMjNA6Ap/Sg1v2y2Dq+BU+a4/Fx3WLma4nQO/bgCD30AI0+8zCXXqePByg1IwnWE7+zxeMSGU/zKGppScyh/7zs8EuLx9/OlpIVwan9/mo5mAOAZHtPlkZe7tkhat0ektGBoqKKptoyyjJ2UZe1Epw9g/Bl3ovX07rad402MekCGCQaMDZNh/3e73bzm7CIa9qYz94zL2XjbXVRVVXUqE//04/gUd32pW0/CCDuiojqD9JzvqKnLa5fu4RPM+EV3OCRbx6G9I+EGu5VzFCY4YOdwyRH2nVI84iMIXDKPKdHedskW89ADqLT2rydqhaO5nDObuqUVh9h1cGUnsgGMO/1PTlk2W/TmHrDBhkExpNrDS3c+BEBsbCyp6elcuebTdpeJ2LvXobeoqslmT+p7mMzWy7BJiD6ZhKiT2PL7ixgaqtF5Hb+uR85gUP5rWRqbKdunHOgLX1+nbh10BV1ZOaFSW8kWEz6Tk6bfx6i401GrPfAUylZMyqqHyNj2icPQxe7mkEP5fHVAW7jkiGIOFXXWDWk6ogxlmuAgxDXL2FNc1KlMzebfqMutIWxe57BC6Nniwd8nhtNOfLRTuhCC6eOvI79kBxWUUHp0G0IIEmde5HTbx8viYVBaOEO+EgBmKq+gMTWtXZ6xtIzMO++lfNVnlP72HYDdPbnu4OwBvZQSk6kJlUpDVNh0AqWy72YxGR3WO16t3IC2cF3BZ/Y4St9cB4B+wrh2eYXPv2R9H7T0HEp/+46y7T8x+ua/ovZs7z/X2y0Ss9nAgfTPKK04iE7ri5QWjKZ6fL2jSJz1B5fbOx6s3KAkXNW636zvzfX1aPz8sDQ3U/ruB5hrlNsFA89ZTMUXX7VVcvPhudHUyO5D71BTl0dEyGSaDNUIBIkxpxDoF0+duve/2qG4ETzgCWdvHqcJadFTU6nQ+PkhpSTnb48gmxXZ+9CrloHNMOo/fgZqD+eGSGNjLUc2v0dA1Fiixp1id19OSgs7DrxOQ1MZk8ZcRljQuE5lnPGbOx4P9Ac84exB5aVs6qq9PVFH1lP6+i9WskX/5X504WHtVM9DZixwvnEBtSVHqS05Sk3REaJ9JuDtGYKfTzRCqKirL6KwdA/1jSWMTjjbSrbi8gOUVhzCQ+eHl0cgEaGT8c103aN4qA+rA/akYf7rF1s/21o4Y2kVWX9U/Nz8z5hJ7S97sTQqZAtZdglqPz+8RifR8PshSl5fCYBXRCyJy+7s8lyz4zyusaaUfV892blfvvFU1eYAkvCwaJYuXk5GWiV5RdtJzfwSjdoLi8WIRZoQQsXMibfg6x3ZLemG2slDr04anBSzWSCEqLYp87BN3plCiMNCiHQhxIO9/TKF//nI+r7hQIaVbCpvPU1p6RT/7zXKV6+xkg2Uq8rz13/g9GrVyy+UMQtu6JReVZsNSJYtu4Lly+/nT3fPJzJWQ2rmlwCcOOU2Tpn1MEH+I5HSwrZ9L5Oa8SX6dPuX0HWFoXzy4JKFsxGzmWWrLyKEWADcK6U8x075NJQQwzwgBbhMSulQtrujhYM2K3fkD1Yu43fqNGp+3AWA5+gkmtKOWPM0oSGYSjvr53gEhxN15qXoo9rueuhqpSotFqTFjPZICeVVR6ipy8ciSqmoLMZobNv2UKm0TB5zOcEBigRFs6GOorK9VNZkUlaZhrdXCBGhk9GOGolvaCKqDgsKe/O4wWzl3Cm56oyYjS1mAukt4YIIIT4ClgJu0Yn3HB1rJZwt2QAr2fSTJqLy0FGXolxx1FxeTOW+re0I19X2iFCpECoV5uRoYjOV682TJ0TzxLOXc/jwIVaufIud2wpQmxPx0LVdDuKh8yE+ai7xUXMprzrCkexvOJrzPeR8j3/kWMYsuK6dJP/xtHhwlXCOxGxOFELsBQpQrN3vQDSQa1MmD5hlr3KL0M1NAF7hXXvs+p40mdpNe9FFh+I5ovMFaT6zTqBuW4r1s37ieHxnziB+wTJMjfUYayrxCI5w9B0d4tCBfB686wMmT42Hpsno1SHg4PLo4IAkggOSMBobSMveQGHhbooPbyZi7EkOn9Nx8TBUtkic/reyEbP5xE72LiBeSjkZeAFovd7F3uaX3TFcSrlCSjlDSjlDF9B5kt3qPeIxQrnkLfiyheTc/79O5fxOnkfUfX8m9Brl8jdzba01T+PljVd4DCpN7xbnhw7k89G7W+yqnXcFrVbPuJHnE+g3gsL932M2NbfLP168gd0iZiOlrJFS1rW8Xw9ohRAhKBYt1qZoDIoF7DE84pW5XOHTyuLBZ+5EhEaN18QRRN7xR3RRkXjEROM9ZTLqgAAMecrjuttq6G5Ic0fAtBCCkXELMRjryd3zda/bG4xwi5iNECJCtLjYCiFmtrRbjrJISBJCJLZYyEuBtfbasIWn2oMLYxYxxjexU55+4kjre6/keJpSc5BS4nfyZDxHjrBufVhq65BGA9JkcuEr9j0CfOOIjZhNcdqvlGfvcVi242p1KJyvOkU4GzGb1TZpt7QK2gAXAQda5nDPA5dKBSbgNuAb4BCwqmVu5xDRXmEsiz+bRyfc3o50yRHFNGcVofLxwmt8Ip5JMZiqaon9vxvxWzDVKrEPULdjJ5b6BusthDAwrBxAUvwZ+PvGkbFtFcamtiH/eBhWnSKclLJBShkspay2SXulVdBGSvmilHK8lHKylHK2lHKLTbn1UsrRUsqRUsp/OfM8gUAt1KiFmgn+7eUR6rb+jqWukZCrz6QuJRWPxEg8R3UWEPSZPRNddBQ1GzdR+PIKLE1NncocK6hUGsaNWIrFZGDX6n9SfGRLl3uEQ83KDci1uERispgxSzMHqttvdzQdzUcT7IdHfDjGkipUHu3dyVutnFqvJ+JPN6MND6PpcBoFz76IxWgcMFbOWx/GyNiFAGSlrCbtl5WYTc1D3soNSMLlN5bwQc46/nbgBQ7Xtt3BYGo00rA3Hd95kxTvD7MZU3lNl+2ovb2J+cv9BF14HsbCIhp/P+SW/rmLdIkxCxiz4HoCYyZQlX+Q8qzOCgL2MJit3IAkXJO5mc/yvm1HNgBpsoAEdaAPhrxSAHznd1Yvt53LAWiDFWm7qh9+Ano/lwP3kS4gKtnqO1eaYf8ai6F01DWovolQK9t6Yfoaan5QTg58507stp5+fDL6iRMwlVd0W9YVuIN0vpmNaD28CYqbRGONsuM0lIfVAUm4UT5xdtOrUhWNOGNdM1XrfkPl5YE2Ishu2VYrZzEaKX59JQ37D+A1tu1CXndYOXCfpdPpAxwG3gyVxcOAJJw9mA1mUv66AX20H1HzR6L20CiSXt04H9Tv3E3D/t8JOON0Qi692GHZnqK3pPPNbERaLCi+DgqGqpUbNISTJjPG2mbizkrGNzGIwPHhijeH0cFNgh5FVKxdhzYykoDFi1Dp2q9o3WXl3AGVWoPFbMDYbP9SFHsYjFZu0BBOo9eh9fMg9bVtfHXqK5Ttyif4klM7bYvYonbr71jq6wm98rI+l9fvrZXzC09CWszUlXXtiDMUFg+D6htM/PPJhM9NIOH8CUTc9QcCz3PscWHILUHl5YEuonNsayvcaeV6Qzp9sQEAi8lgTXNmWB1sVm5QxTTEnDaamNOUib+9AGlbGMurqdtyAP2UJITagf+Qm9FTya8A3zg0Ht4UHPyR4HjnL6obbBhUFs5ZmKrrKXpmFdJiIfiyhd2Wd/dcrieWTq3WERg9nqba8nbpHa3cYB9WB3fvu0DpyvU0pecTfstSdJHBnTaC+wM9IZ2+SYfF1Iyxsbb7wjYYTMPqkCOctFhoOpSNzwnJyhGYk+iLFaurpAsNVPSAK3L3OSw3mK3c4O25HZgqa8l7+E1MFTV4Tx/dLu9YWDlwjXR+PjF4e4V28h4ZSouHQbVo6A4Fj79Hc6Yi2yXNrm+c2tOUK9/1K+UpP+EVlYBXWDTeBm80Ht5odHqqCg7h6RdGaOJ0h+06s5BInhDN5KnxyA8y+OnXd6guTCUgKtnl7zDQMaQIZyxri/+sWvcb/gvbE0ET1YCpwLUL4Yp//gJpNmOsqaQm1b43R0jCtG73+RyRLnlCNP9+/gq0GjXnXjiZ0eO+I3vXlw4JZy9CfzAE2gypIVWoVVYZCENuCRaDfcms6p83UbbqM7tOjw0xFppKCzE3N9JUVoRHUDieYdGMu+dpPMNjOpX38g93elO5q+F18tR4tBo1ao2KoKAAZk2Zh6G+0uVhdTBg0Fo4eyI3HvHhGPJK8T9zJtrQAEpeWUtzViEhV52B95Qkq3Wr+Fy5Q9jS1IypooLAcxYr8RBC0JSZReFbL7Zr12/MFKpTd9NUrAgh+owYR8y5V+BbpOoU1NwT7N2djdFkVhxPTRaMzV5YzEYaa4rR+3cd0jgYdUiGlIULOHcupvIazFX1NOzLoHbLfoxFFRQ8/j7lH/1gtXiaoEAA6nfuojkzi8r1G8hZ/jCGwiJK32uLEwqafhLRZ11O5OkXUn1wJ1q/QJJufIi4869DrfOkIU7nch9rE72sr1YcOpDPy89+w+4dWbz87DcYG8IAqMpv7zA6FBYPg9bC2YP35FEEXTifis82AuAzezzBl55K+Uc/UvHZRmo2HiD8xusIOm8JJW++jdfY0TTn5NJ8VHH0zH/iaQA0IcEknn8LuoC2O4nrc9PxHzutXRr0TtSwlXQTRkXyxz+fgVatZq57u7oAACAASURBVOKUOLIyStmTGkFV/kGixp3So7YHKgashfti3ovdF7KDoItPwWviCEAJuNGGBRJ5zyVE3HYL0mCg+LWV6KKVYGqPhHii7r7TqqKpjQgn8OzFxDz0QDtile/ahDSZ8AiNtPvM3nqVTBsXi6ZlDqfRqJg8NZ7QoLHUlmVRmec4yM3entxAtnLuUk9aJoTY1/LaIoSYbJOXJYTY31LXvg+1GyFUKsJuPNf6uWr9VgC8kkYRsuxSTGVl5D36BABqHx+0oSGE33gdic89Tczy+whYtBChapsbmeprKf75S/TRiQQ5uE6pN6TbdTAXk8mMyWzGZLawd3c2cZFzQErSflnZLn51sC8euv0tSSkPSymnSCmnANOBBuDzDsUygflSyknAo8CKDvmntLRhV1HH3dCGByJa3Jbqd7dFfenHjiHi9lvxnjIJj4R49OM7K1d2ROW+rUiziagzLkal6f7CkdaXKziQXsj9t7/H2ys2cttjn7C9vgKtxovxoy4EIH3zezTVlXfTSnsMVCvnFvUk2zhUYCuKpEOfoytZfaFSEXnvpZSs+BKPhIh2e29eo0biNWpkpzr20BBjoS7rMF6RcXgEO/ZO6Q18Mxs5RD6HDuRb53W1iV6Yi9pclfaufZzg+KkExU3G3zSaxvi2264H02rVnepJrbgesBXOkMC3QggJvCql7Gj9gPbqSXFx9mMaXIH3lCQSX74bAFMP1UwmBQWzobyQuBnzXKrnyrDXcTPYVhvYb9Y8koUaU0wAtcVHKc3YQXn2blRqLYHT5hI290xUWtdXyscS7lJPai1zCgrhHrBJniulnIYihvMnIcTJ9uraqieFhoY6260+w9SISE6va6K5sZEX/nY/k+PsLxj6EkKlxm/2PIJiJhA/fSnTLvwHY0+9maDYSZSn/Ez6yqeoy1LuqRgsiwe3qCcBCCEmAa8DS6WU1gmHlLKg5WcJytxvZs+76zpcPcpqxeyYWEJb4ll3bN/OCSOdmyX0xrp1l65SqfGPSGLknMtIXngrQqUi+5NXKN36vdPPPNZwl3pSHIrQzZVSyjSbdG8hhG/re2ARcMBeGwMNW/NyOWfpUi699FIefvhvrF23vts67iCbs/ALH8nIa+7FZ0Qypb99i8VosFtuoFk5d6knPQwEAy932P4IB35tUVXaDqyTUm5wW++dQE/dknYXFXLlmk+ZcvF1+IZHs3HFfzHWdS0r0Z9ka4VKoyVo6jykyUzul+8MCj85d6kn3SClDGzdPmnd/pBSZrQoKk1uUVdySj2pFaeGpLpS3O3YXVTIu78dIHTx5VhMBgq+XWW3XF+QzZlyPvkWfEckE3bSYuqOHqSp1P6NigPJyg38f4lu0NVFvu5Aq8XwCA7Hd9QE6rPTkFJiMRmRFoVkx8KydYT/2KkA1KYfGPBWbmD3bgDBJ3400mSics8WDj3zAGUpP2GsrbJuyJZn7yFrx5puWnENzlo5rb8id1GW8jP1eRlu7YO7MeAJd6yH1VYETJqFLjCUwu8/A6AuM5XcD19l79rHKUnfSvrm9yhO+7XL+n1l3UDRDo6/+FaEWk32x/+jOb/zxuNAGVYHPOGOFToOTSq1hsjT2y7c1WsCaKxWhvPM7Z8CoNP7222rN2Rztq5PfBIjr7obKS1UvL2K+r37rcM+HLuYjo4YJpwL8IlPInKRouVWlqnIhWk9ffGPHINa64W9WwL60rJZ+9Uyj9T6BhB15iUYqsooefNtyj9Z3a7c6E8732bd3zguCOfO/27vuFHW9/6RY5l2wd8Jjp+C2diIPqD9aYS7yOZKO/6jJ6PRK7fiqLzanDx7ugHubgxowt051rkddHevVB2t9DwCQ5l63t8IiBpL3JSzsFjMZKYo87pIG2fJ/rBstmi1cjVp+zBUlhJ73rUELTm7U7ljbeUGNOEGKnR6f8YsuAF9YBRCCKRZuQuipji9z57pLIFFyy07Kp1Hn/WlNxgUhBsoK9WOqCo4xP71/7V+Dh1xAuAe65Y8IZpLr5xD8oTOVwI4gu/I8Qi1hrqjhzpZ6oEwrA4KwvUnXNk4zUr5HGNTLdETFzF+0e14eAe6jWz/fv4KrrlxAf9+/gor6bpr2yffgkqrQx87kpoj+7CY7IdJHsthdZhwvYBQa/ANTSRm4iJ8QuLdNm+zjVNtjXFwBSEzFmCsqaT0t+865R1rK3fcEM5dK9V2R1mmJsaNTmTCqEi3LhJa41RNJjMmkxLj0ApHz5kwKpIbTjmBufMXEDBhJmXbfkTstO99eqys3JAKE+wtXBlOJ4yKpDgsmIaqfOYmGGCED9kZdW7px6ED+dx/x3tMnhrP3t3Z1msybWNZpZQ0VBag1ujw9AtlbHww50zzoaLoCP+55FwMDXWseSSV/K8/JHLyndbFxLGGS1eQ9xdmzJghd+xQPJyeSz0NgB/LxnZbrztVzO6GE2cI12rhrloyE3X1IW65+WYAFi29gmrvNuVKd2+L2JLNYjaxY9VfkNK+40B4eDh3vfQ2L7+/itzP3yR07hn4XHx6uzKtFj/tor+5tZ/g+Ary42ZIdTd2Hcxl1qzZAERERBA+dn67fNsI+46R9q6iY12zobFLsgEUFxfz8v89jHfsSNSeXpRu/gZDgX3Xpf7GoLFw0L2V608LJ6Uk+9fXqasq4twb/kVmcc9uK+zOEnZFVFNzAwgwNtbSVFtGQHQyE5OiyTy4jh8//aBTeZW3nvjHHmmXpolqGLZwxxKuhNpV5u6nOPcwYeMW9ZhsYF9rxDa9K2g89Gh0erz8wwmMGY8QKrY2FlMYPRHvuLYrP0NmnQqApd7+oqm/Fw/DhOshGmuUa5j8I0Z3U9J59Gb4bQ2+Vuk8iL/4ZkJOPB2hVlN9SNG0C52zyG397A2OK8K58xA/OGEqCEHxkd/c1mZP0THSXwgV4fMWE3v+dZibGlF7eqHx6ew61TrF6E8rN6QI15fu5h0hhAApKTz4I2aT/Yip/oAjWQnfxGRGXPVntP7BFH77CXLL0X7smX24S8xGCCGeF0KktwjaTLPJO1MIcbgl78G++BL9jeIjW9jzxWPWz60OmF1hwqhIrloykwmj3BdM7ayGiUdgKHEX3ABA1sf/Q5pMbutDT+AuMZvFQFLL6ybgfwBCuR7vpZb8ccBlQojuFWS6QH8c4tfnHKFky7cYqtvuVpUWC9WHdpP5wQsc2PIaJUV7AUg66WoAyrN2UZK+lW0f3Meu1f/E0NCmNTxhVCQv/uUP3HTRXF78yx/cQjpXxXK0Pn7ELLkKAPOvae3y+ntYdYuYDbAUeEcqeyxbhRABQohIIAFIl1JmAAghPmope9DZB9459vt2WyN9CSklOWtXYmlsonTzBoJnnoIQAkP2YWqK8vENjaChvBhzkzIXLC7Zi3/yVIWMLVbO2FSLStOm99Gq/aZRqwDJtHGxHEjv+Z5YT2TBGmIs+JonoPLwpPbIfgIX9Ph/vtdwtfddidlEA7k2n/Na0rpKHzCQUmIoLqE2ZScF//4vlkZli0Oo1ZRv/4mKHRtJjAjlw48+ojAnizPveQRdkCKJWnN4D0FT5rVTVkpeeCsaXdsqs532m8nCroO59AQ9kQFriLFYt3qa4lXoJ42n5uiBTsNqf1o5py2cjZjNcnvZdtKkg3R77btVPakrdJTOL1/1GbVbFNFCta8vIcsuISRkMiqtBxZDMzedMY/bz5iLRq3CZLZw2txZZNTfTd6696k9sh+Nty8jr70fLBZ8izp/3QPphdz22CdMGxfLroO5PbJuPbVqHeE9ZTJ1KTtpPHwE/fhjcweEK0OqIzGbPCDW5nMMUADoukjvhBYZrxWgnDS40K8eozZlJ7VbtuJz4iy8J07AM2kUKp0WdcuJg9rDkx0Z+RjNyiXARrOZlKN5qLQ6Ypdeg6m+Bm3rdoNaDdjfOD6QXtjjYdRdZAPwGjsaodXSmNY14UZ/+mifnD60whXCdSlmA6wFbmuZo80CqqWUhUKIUiBJCJEI5KMMyZf3psPdoSuRwo4o/3wtNT//gkdCPMEXnodKa1/dcm9OITes+IwTRsaQcjSPvTkKcYQQbWRrQXcC063kcTZa351kA5gSEUm+SkWYXk/He7RNBfp+CSV0inA2YjY326TdAorGCLAeOAtIR1nFXtuSZxJC3AZ8A6iBN6WUjlWS+wk1P/8CQPiN13ZJtlbszSm0Es0d6I547iYaKOKKfLoGY3Mz/7zyaj5TWdhd1P8H+u4Ss5FSyj9JKUdKKSdKKXfYlFsvpRzdkueSmI09uGNrpDUy3W/+Sah9fHrdni26Iou9dHsLgb4gm7mhkf3/fY41n3/OPffcwwUXnM/smNhO5fpj8TAwvPL6Ec2ZhRQ+9yYqb298T5xlt4y9S976Er1RQO+ObNJiofSd92hKS+etd95h2bLLMZotbDqSRs2vW6j44it0UZF4xMeh9vFGHQL1u9LYM+pcJk6ciNrNt2kfN4SzNBspe/cban7ajcrLi8g7/ojQaqnffwBjUQlIif/ppzp9b5Yr6O09DvbgjGeLlJKq736g8dBhgi86n7Ueakq2bmFT2mE2PPAXjCWlADRnZWMoLEIaDNDirjZ16lQCAgKYN28eF110EcuWLUPjBq/h44Jw0myh6LlPqU85hPfMZFQeWkreeg9DXr71FwzgPWMq2qCgXj/PdvFwrMgGULdjF1XrvwHAIy6W3UWF7C4qpPqnjRhLSgm/6fp2q1VTVRX1u/ag8jWgDvBhSXMwP/74I9dccw2PPfYYK1euZM6cru+qcAZD6vC+FbaH+FJKSt74ivqUQ4ReexYqTx21m/Yh1Gr8F55C2LVXAqCfPLEd2Ww3TQcSXOmT2scbtb8/Ki9PCp59kaYs5YCo4WAq2sjIdmTTRDXgOU6H/6kLCFw6D7/5U/h5USxHjhxhzZo1mEwm5s+fz7PPPmv3FkZnMeQtXOPvmdR8p6xhKlZvxFxdj1dyPBG33K7kH1YuDtH2gXK6u62bq/8A+uSxxD3yN8z19eT/+xkKn3nBmue/aKHdOh23RoQQLF26lPnz53Pttdfy5z//mV9//ZU333wTPz8/l7/DoLRwrqxULY2K65A2OgRdVAjCU4f/4tnWfG1YKAhBY9oRGg+ntZO4Atf/yK1wJ9l6a23V3t6EXbUMj5GJ1rSARa6dTwcEBLB69Wqeeuop1qxZwznnnIPF4nqfBnxMA2D38N6V+AZLswGVR/sLNGyPt6p/3mS9QzXmoQcUEtrgWMqYuntYN1VWYSwpxWtMUqc8exu/U4KiWXXqde3S3njjDW644QY2bNjAGWec0anOcR/T0JFsnWBR9t31kyZ0Ihu4/4/uLPriuZrAALtks4cpQdG8ffKVndIvvvhihBBs3brV5ecfF4Szh9b/ZmmxUPXdj3iOTiLs2quOca8UDJQFy6zQBLSqzvtwvr6+jB8/nm3btrnc5qAgnLM6cT2HxFxVRc0vm2nKyOzjZznGsSRaxzDKbaVZGC0dT10VTJ8+nT179tjNc4RBQbiewNn4BqFSEXDG6RhLSqn4/Auqvv3Bbrn+IMJAsGq22FORz9W/vGs3z9/fn7o616Uthvy2iDPQxbT4hKpUhFx8Yb8+e3JcJCeMjGFTbU6PDtO7WtD0hLz2Fg17KvLtlg0NDaW2tpbCwkIiI513mx+0hDs1JNUpvRFnYMhTfqmx//grGv+u95bcfcY6OS6S12++EK1azc3mWVzx+SftSNefq2NXXZNycnLQ6/Uu78UN2SHVFRgKClH5eDskW19gyrRotGo1GpUKrUrNSb5x6PNU1ld/oTuydfQesVgsrFu3jrPOOgtvb2+XnnXcE87c0Ej9nn14jXYugt5d86yGGAtb83Ixms2YLGaMFsWb2F1wlrA9cbrctWsXBQUFLFmyxOW6g3ZIdQfUkfWU/PsLpMGA/8IF/fbcVtLuLirkis8/YXZMLFvzcjmc03+B3NBzJYKnnnoKT09PzjrrLNef2aMnDhI4cje3NDZT8tpX1O/YS8CZi/CeGQg09LkkaUcL2erBAUCMe+dt+jxVlxa5p2QrKSlh1apVLF++nOCWC4xdwZAmXFeo35VG0bOfYGlsJvjShQReMNel+j1dPPT3toe7yQZQVVUFwPjx43tUf1ATztmVqpSS+h2HMRSU0rgvg4Z9R/FIiCDkmsXoxye2K9sxjNBZtG5v2Aba2MJZsrlrJdwXZAMoLFS+W0BAQI/qD2rCOQOL0UTGNY8jDS0S8kLgv3gWIZefjsqzmzNWB7AlxuS4SF6/SdneMJrN3LDis3akG2gbur3BunXrUKvVzJs3r0f1hyThjLXNaLx1NBTWUPCvdUiDEeGpI+7JW9AE+6PycByl5SpOGBmjbG+oVdbPe3MKe0w0Z61cV1bVXdbN1sumurqa2bNnk5qayoIFC/D3t39zYndwNkwwAHgdmIASOX+dlPI3m/z7gGU2bSYDoVLKCiFEFlALmAFTV24r7sKuR78j79v2gi2BS+cRcoXzgnyuDqspR/M6BUv3tVXryqq6i2yNh7LJe/gNhFZDwgt38cQTT5CamsqVV17Jk08+2eN+O2vhngM2SCkvapF8aPfXkFI+BTwFIIQ4F/izlLLCpsgpUsqyHvfSCUgpKd6STeEvyo3IAclhVB8pI/CC+QRdOL+b2j1DqyXqGCz9m8X+cVBP2u4K9qxqV891lWzG0ipKXl0LgDSayLzlaZ4Arr76at566y2X2urUl+4KCCH8gJOBawCklAbAkQKfowj9PkF1ehl7//0TVYdK0PjomPnEWUTMbVsMHCpyfRLuqpVrDZbur/laR6u6qTbHbrmeLBKCivaTlV/aLm3hwoW8+uqrrne0A5z5S4wASoGVQojdQojXhRB2zzNaIvTPBD6zSZbAt0KInS2CNXYhhLhJCLFDCLGjtLS0q2J2kfX5fqoOKZq7QeMjCJvVd2I4juBusjlqr9WqPrNtM1es+cTuwX9PyDYmuICIkxJZ+PGV+I5o22dbt24dHh69v6HQGcJpgGnA/6SUU4F6oCsly3OBzR2G07lSymkoYjh/EkKcbK+ilHKFlHKGlHJGqJ2Alq584k4NScU7tm2JXrIth9KUNkksU5P9C86cgTN/sFZnyb6ybLbtd3z9Zsnnfzu2u4VsyRHFjA7MZ/Mda1h/+go8g/WETm9TVnMH2cA5wuUBeVLKVvfOT1EIaA+d9OOklAUtP0tQlDNn9qyrXWPUpVNZsulPzHxCuZC2NrOCgp/SWXvSS6w/fQXG4jb+m6rryfvnStKXPUpzVpG7u9IOhoJCCp5/CUNh3z6nI1whW3JEsdV3cOcj31F5QOnrdxe9Q8an+/AM8WbB25e6r2/dFZBSFgkhcoUQY6SUh1FUMDspWAoh/IH5wBU2ad6ASkpZ2/J+EfBIx7ruwO8vbeboR4oHanNlI1lr2zRzVHpPCv+7isbfMzHX1FvTi15cTfzTf3TYbk83gmu3p1D2/scANGXvRhe52OU2egJnydZKsubKBjbfvoa67EprXtSpozDVG/AfE8qoy6ai9XHfZb/OrlJvB95vWaFmANd2UE8COB/4VkpZb1MvHPi8RT5BA3wgpdzglp53gErX5nvfSjwABFSs/oW63w7gPWMsKi8PDLnFNGcVYcguIv//3kYXF4Ha25PApfMQmt5radRs2Ur5x4oEq35qEoFL5mEu6XWz3cJVsgHU5VS1IxtA2Ox44ha7x9ewI5winJRyD9Bx/+yVDmXeAt7qkJYBTO5595xH8o2zkWZJ+vu72qWrdRqqvtqCytuLyHsvRahVjA0v4si7O0l9bRsNe4/SsFeRk/cYFY2pogZMFvxOnYpoEXJxxcpVfPU11d8pbuqBF5xMyGWnudyGK3B1+OyI4MlRzH/zYqrTyxFCsPtf36PS9p3X2pA6aRh3y4nEnjmGjdevwmJQtgwiTkpE6+uB5cSTEGpVyy9dED4ngdTX2kcdFfzfO9b3xpJKQpa1v4HPHsz1DQidFqSk+vufrGQLiYtmwR+vYm9lm+Bnfwj+2UN38R3+SaH4J4Wy5S4lNtfc1HfS+kOCcLaH+L4JQZy26kryvk3DO9qfyJNHAEpgtO0vvrnS/qVqwZctxFBQTuWaTfjNn4IuRlkx21qoqRGRzI6J5dvffuPHRx9TjoA8PbE0tBHq5w3fMSJpFFf/8m6XcQF9hSlB0cwKTWBbaRbNul12yzSW1lFztJyyXflIiwVTnYHyPfn4jggi+jTn4lZ7giFBuI7wDPZm1GVT26V1/C8PnRHDpHvnk/7+bsye3niNS0AbFoj/GSdgqqyjduMeil74jOiHr0Ht7WmtNzUikvfO/wPvv/MOm//2DyyNTXiNT0QaTRgKJJa6Rh76618Zn5yMyWJmVmhCvxKuNXhZp1ZhsszjbwcqOVzbPvTxwIu/kvHx3nZpKp2auLOTGXfrHDSe7j1rtsWQJJwzEEKQsHQCCUsndHLS1Ib4o5+aRMPuI+Tc+xLRf70aXXQImqgGZkfF8stPP3HjDTcwZ+4cFv7zTt7L3Enug6+ClCRdcBr3PvhAi9u4hW2lWf3yfVr/oc6JmYxOrUIt1EgBE/yT2hGu8JeMTmQDmPnE2YSd0FkV0904bglnC3uewVH3X07dtoOUvrGO/Effwmt8Imp/H1Z67SPva0Vz7elnnuHer98h++mVyGYjMY9eDyOiuGnbKuuQ1pfWzd7c7ED1EUwWM1KAWZo5UH2kXb53tD8BY8OIXpjE7y9ttqZnf3HASjgpJfW5VTQU1dJc0YBvnSf3fH4P8+bN4/zzz+9VnweFmE0rHN1I09uQwa5c0Rt+z6T8w+8xVdRirqpDGk14R4Uxae4som9eymeLb0EaTUQ9uAzv6WPsttHTS+fs9cmZtsb4JjLBP4kD1Uc6DaetMDUa2XTTJ9RmtW2J6CP98ArzobGklobC2k51AgMDqaio6JTeEY7EbIYtXAu6in/Qj09E/383Asp/vmwyIDx1lAlB5rpvkUYT/mfOsku23t5u2NP6h2szuyRaKzReWk55V7nBoD6/muwvD9JYUktjcR2+I4JJumI6PglBLB2/CP3vJm77021MmTKlR/1p99xetzCEYDGaaD6aj6mqDkNuCZ4jo9HFhKLy8kDtq0cIgfDqvOvuO29iu8/9eY2mO+Ad7c+4W060m1fqW8fCkRMAuPXWW3v9rCFDuJ5E4pubTRx5dyfFW7JoKq+nuaoJLPanGNrIYPxPm442MhhDTjFNGYXUbz8EgDS1Cb4MNrI5whfzXgSgaYxy/1hqau+vLBgyhOsJDr26lYxP9qLSqYk9YwweQXpqw0ejCfJFGx5Ec0YBxtIqzHUN1O9Mo+zdb611tdEh1vceccpQ3N9kc6fcRUe0kg0gKysLgCA3CG4PKsK5+yrLpnLl2PfkFX/Ab2Sb71frXE4/aaQ1LXDJPJozFDcgbVgAal9lE1gaTQitpt/I1lFu1p78bE9IaEveVrKlpqbywgsv8O677+Lt7d3rFSoMMsK5G6EzYin4MZ2mioZ2hOuSPJGtB/u1La/eoa8uHO7YbkcCdvXcVqKtXbuWu+++m6NHlTPmSy65hHvvvZeoqKhe9+24IFzrL/ir36M59OpWVGoVAePCOPLeLjxDvfEb0fuhoif9GUjPa3Vw3b59O+effz6TJk3iL3/5C7feeisxMTFu68uQJ5ztLzs0LYXvv1MiunI3pKL19WDO8+fhGeyaAlBv+zHQcOfY72lubkan03HfffcRGRnJzz//3ONQQEcYUoSznYfY+wNX5DeBSrD4q+tpLK3DK8zHrc6FXfXJFfz6YR71lUZOvyUBlcq91zBFeCYTo59CXsMeipoOcefY75FS8tBDD/Hkk08SFxdHZmYmCxcu7BOywRAjXCu6+iPnp9YSnuiF1tcDre/AIlorPn3kMABfv5DBI7/MIy54PBRH0OCVTUnTEfzDPXp0H1iEZzIXxD2FWmgxSyOGRjObNm3izTff5K233mLp0qU0NzeTk5PDpEmTetR3ZzDkCOfoDy0QqNR9L4nXm+HziR3zeXDGRgAePvlX4NfOZVLm4+mjwWKWFKTVYWwyYzFLjmyr5OAv5Qhg9IlBTF4URnSyD0IIYvRTUAst69d9zd///nf27t2L2WxGrVbzwAMP8Pjjj/fJxXYdMeQI1xWa6kyUZjWg06s77V8NlPlVSWYD37+e1W251/64Fw8vNdn7a6ivbItKEwLCR3gjkXz/WhbfvZpFbGwsc+bMIeGyEF7O/R933HEHo0ePZvny5cyaNYtZs2ZhL0qur3BcEE5Kycq79lOS1cA1zyjHNL0lmZSS9JQqSjLqOfBjGSqNYPKiMCYuDMXLt+tf69qn0/nxjWxOuS6OploTCEjfVoneX0tFQRO1ZUqM+UlXxHDNfYv5/V0fnnvmeR78ywOU+23jlft+4GiKIpk1/Zxwkk8OwSdIy/mxTzJu3DjrirKsrIwvvviCb775hrVr1/Lxx0pAz7x58/jqq6/6bI7WHQaVtwg49hixB2OzmZV37ufgxnKW3DuKU6+Pd7k/1SXNbHwnl0W3JlCe28j65zLI3F1FQ7Xiih0a74XJIKksbEKjU7H49hGcen1cpyHKZLBw7+Sf2qV5+mqIHuuDxSwpTKvjgofGcMLSCGvdjhP9zN1VZK+K5YorruDCC51TXK+vr2fr1q3k5uZy/vnn9znZjmtvkd9/KuPgxnJmLInglOt6FpGfuauKH9/I5sc3svH01SAEjJkTRNwEP0ZMDyBukh9CQPa+Gn58I5sv/5NO5p4qAiM82fFlEZFJ3kSM8iEw0pOz7xrJumeVDdUL/zqak5Y5dnosajrEJQlttwAyFkVMwwV4e3uzcKH92wP7G+5ST1oAfAG0+sSsllI+0pJ3JooYjhp4XUr5hNt67wDb1xTy89s5VBU24Req4+J/jO3xpDg0oS3aKiDcg6v/O4HIJJ9O5RIm+3PtH3pWHgAAB5VJREFUcxP55d1cPn+8zfHR0qRj77cl7eZbAJNOD+vURt/funNs4Rb1pBZsklKeY5sghFADLwGno0Twpwgh1kopOwVSuxPfvJzJ1y9kWD/f+cEMdF7dx5ue5dPWrfV146zvf3hdsWx3fTiD8BF6h8QVQjD/qjhGJiTx9M3rAUjbl8PqnPs4kreHlC+KqKs0kjjVn4dP3tSTrzeo0RfqSbaYCaS3xKcihPgIWIqdyH13YvtnbVHH/uEeJE5tP2exJVZjozKH9fISXZZ5fGcpJ8/Tcd3kbKf74H3+Laz9Tzq33HILaqFRhsUEoGfCkUMGzlg4W/WkycBO4M4OEfYAJwoh9gIFwL1Syt+BaCDXpkweMMveQ1qUlW4CiIvrufqRJT+C8oI6/vnPf3DZZRdRWn0HoT72+Z2TZeK0k0rx8RXsOhhht8zmTc0UF1nIPOp8rGZSjBKLevjww65/gSEOd6kn7QLipZSTgReANS3p9sYeu8vi7tSTnMHWTwu4+7T38fHx4YILLmTUqNGMTuo8WTY0S77b0MRpJymyYHW1EkzX4amb3qlsWqoy78rKtE+4pJiCTq9hdA1nLJw99aR2hJNS1ti8Xy+EeFkIEdJS13YZFoNiAXuMrnzijM1mNn2gGNP9+3cSH5+IlCbKKjbxyku1HEkzsfRCL3JzzLz1Wj15ue2vZbzxmk28+OIzmNXL0fvuB8BikWz/TZk9XHSJfphMboBb1JOEEBFAsZRSCiFmoljOcqAKSBJCJAL5KHJel7v7S5iNFtbf+xsFqc3c9xdf1Pp7KK85kcbm33j15V957j/KNYvrv1RcpceO0/DsywH8fsDIay8rM4ONG39h4sTpREb58cpKHcnjtKz9+G5++O5+AJ5+8oj9hw/DJTi18SuEmIKyLWJVTwIuAUU9SQhxG3ArYAIagbullFta6p4FPIuyLfKmlPJf3T3P0cYvKJu/UkrKchopyWhgxxsH2b3TyCOP+3HpFW2uRjtTDFx2QTkBgYKnngvA319FaJiKqGi1daVZXDCWCaM/5JZb7kQIwcaNGzGbzbz99tvcc889aLVadu/e3S/njEMFjjZ+ldC3AfaaPn26dITb35km4yf7SZT5oATkI0/4y7TcSPnb7jC5+BxPGRunliqVknftjd4yLTfS+nKEffv2tWv37LPPdlh+GJ0B7JBd/G0H3UnD8uXLeeGJXYSE6Bg1WkNdrYU33wti1GhFD+PD9xr4+itl6LzoEi/++9RhoqOjUamc8xKZOHEiBw4cYNWqVcTFxbnFj38YNuiKicfy5cjC6XQ6GRISIq+66goJSJUKOWOmTn7wWbCsqamxWqZp06ZJs9nc23/WYfQAOLBwg+q+VCklBoOBsrIyPvjgI8aOHctf//owxYXhXH9FA/v27bOW/fbbb522asPoR3TFxGP5cmThHnjgARkcHCznz58vd+/eLaWUMjc3V2q1WqnX6yUgExISZHNzc2/+SYfRC+DAwh1zctl7dbdosIezzz5bAnLmzJkyJSXF5frDcB8cEW7IjDkrV67krrvu4uOPP2bGjD69zmsYvcCgW6V2hdDQUJ555plj3Y1hdIMhY+GGMTgwTLhh/H875/NSVRDF8c8XJVtVaptoURptXAVF1C4K1NxY0MJVUruifyDc+A+0iSApCKpNVqsIQoxqF1mL/LExn7QxXBRWtAqC0+KeV7fHUyx17n15PjAw78ycYWbel7kz3DsnKSG4ICkhuCApIbggKSG4ICkhuCApIbggKaW8eS/pI7D6K1J/z07g0wa2XyaKGOseM6t7MaWUgttoJL2x5b5I/c8o21jjkRokJQQXJGWzCu5G0R1ISKnGuin3cEFxbNYVLiiIEFyQlIYVnKRhSR8kvfXUlyu7LKkiaVZST85+UNK0l12V326W1CJp1O2vJO3N+QxKmvM0mLN3eN05992SZuSrR1Kvz0FFUm08mGJY7tvzsidgmCxKU629C5gEWoAOYB5o8rIJ4ChZkJ0nwEm3XwRGPD8AjHq+jSzSQBvQ6vlWL7sPDHh+BLhQ9JzUzEOTj72TLGLCJNBVdL8adoVbgX7gnpl9N7P3QAU4LGkXsM3MXlr2j9wBTuV8bnv+IXDCV78eYNzMlszsMzAO9HrZca+L+1bbKgu/YvNZFtOvGpuvUBpdcJckTUm6JanVbfVi0u32tFDH/oePmf0AvgLtK7TVDnzxurVtlYXl+l4opRacpKeSZuqkfuA6sA84ACwCV6pudZqyFez/4rPquHcFUso+lvrWlpmtKka+pJvAY/+5XEy6Bc/X2vM+C5Kage3AktuP1fi8IHsZvkNSs69ya457twGse2y+9aDUK9xK+J6symlgxvOPgAE/eXYA+4EJM1sEvkk64nuws2SR16s+1RPoGeCZ7/PGgG5Jrf7I7gbGvOy518V9q22Vhdd4bD4/QQ+QjbNYij61rOEUdheYBqbIJnJXrmyI7IQ2i59E3X6ITJjzwDV+v2nZCjwgO2BMAJ05n/NurwDncvZOr1tx35ai56TOHPUB73y8Q0X3x8zi1VaQloZ9pAaNSQguSEoILkhKCC5ISgguSEoILkhKCC5Iyk/jxQq/5JK0ZgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "gb_boundary = [(-2.6653539699999556, 51.617254950000074), (-2.6937556629999335, 51.59617747600004), (-2.71312415299991, 51.58661530200004), (-2.760487433999913, 51.579779364000046), (-2.7980850899999155, 51.56350332200009), (-2.816395636999914, 51.555568752000056), (-2.8587133449999556, 51.546128648000035), (-2.943348761999914, 51.54254791900007), (-2.9562882149999155, 51.54572174700007), (-2.9641007149999155, 51.552801825000074), (-2.969471808999913, 51.559881903000075), (-2.9746801419999542, 51.56297435100004), (-2.984038865999935, 51.55853913000004), (-3.0102432929999168, 51.53803131700005), (-3.0156957669999542, 51.53164297100005), (-3.0737198559999115, 51.50836823100008), (-3.0764867829999503, 51.50775788000004), (-3.088937954999949, 51.505072333000044), (-3.105620897999927, 51.49721914300005), (-3.1317032539999445, 51.48041413000004), (-3.1350805329999503, 51.47630442900004), (-3.1409399079999503, 51.46478913000004), (-3.1453751289999445, 51.45994700700004), (-3.1524145169999542, 51.45718008000006), (-3.1666560539999296, 51.45600006700005), (-3.1723933579999084, 51.45327383000006), (-3.1727188789999445, 51.453111070000034), (-3.160064256999931, 51.43183014500005), (-3.167144334999932, 51.41046784100007), (-3.1848038399999155, 51.39760976800005), (-3.204009568999936, 51.401597398000035), (-3.218861456999946, 51.402777411000045), (-3.289418097999942, 51.38422272300005), (-3.539173956999946, 51.398504950000074), (-3.557443813999953, 51.40509674700007), (-3.5753067699999406, 51.420436916000085), (-3.6047257149999155, 51.44570547100005), (-3.6631973949999406, 51.476223049000055), (-3.6769913399999155, 51.47703685100004), (-3.695423956999946, 51.47150299700007), (-3.717925584999932, 51.478583075000074), (-3.7376195949999556, 51.49087148600006), (-3.748036261999914, 51.50092194200005), (-3.7494197259999282, 51.50535716400009), (-3.747670050999943, 51.507025458000044), (-3.7445369129999335, 51.50763580900008), (-3.741851365999935, 51.50836823100008), (-3.7493383449999556, 51.52806224200003), (-3.7519018219999225, 51.53306712400007), (-3.758941209999932, 51.54677969000005), (-3.770130988999938, 51.56329987200007), (-3.782215949999909, 51.57664622600004), (-3.7902725899999155, 51.58197663000004), (-3.8077286449999406, 51.589178778000075), (-3.8169652989999463, 51.59650299700007), (-3.8326716789999296, 51.61554596600007), (-3.8416235019999476, 51.621527411000045), (-3.8548884759999282, 51.62384674700007), (-3.8867895169999542, 51.62140534100007), (-3.9623917309999115, 51.61562734600005), (-3.9766332669999542, 51.61188385600008), (-3.989979620999918, 51.60651276200008), (-3.998768683999913, 51.60028717700004), (-3.999908006999931, 51.59088776200008), (-3.9922582669999542, 51.58112213700008), (-3.9818009109999366, 51.571600653000075), (-3.974598761999914, 51.56297435100004), (-4.016184048999946, 51.56297435100004), (-4.016102667999917, 51.56037018400008), (-4.0208227199999556, 51.555853583000044), (-4.026519334999932, 51.554022528000075), (-4.029204881999931, 51.55927155200004), (-4.031971808999913, 51.56313711100006), (-4.0385636059999115, 51.56622955900008), (-4.046457485999952, 51.568426825000074), (-4.0531306629999335, 51.569240627000056), (-4.056304490999935, 51.56704336100006), (-4.065581834999932, 51.55756256700005), (-4.070220506999931, 51.555568752000056), (-4.0768123039999296, 51.55695221600007), (-4.087269660999937, 51.56191640800006), (-4.112131313999953, 51.565619208000044), (-4.121652798999946, 51.56598541900007), (-4.132191535999937, 51.56297435100004), (-4.142730272999927, 51.55695221600007), (-4.156809048999946, 51.54629140800006), (-4.1664119129999335, 51.54254791900007), (-4.176503058999913, 51.544256903000075), (-4.18773352799991, 51.54877350500004), (-4.1967667309999115, 51.54938385600008), (-4.200550910999937, 51.538763739000046), (-4.213368292999917, 51.539129950000074), (-4.272450324999909, 51.554754950000074), (-4.2899063789999445, 51.555568752000056), (-4.293324347999942, 51.55914948100008), (-4.29515540299991, 51.56195709800005), (-4.297352667999917, 51.569240627000056), (-4.278309699999909, 51.578192450000074), (-4.280832485999952, 51.58881256700005), (-4.2897029289999296, 51.601548570000034), (-4.2899063789999445, 51.61701080900008), (-4.255767381999931, 51.62384674700007), (-4.252023891999954, 51.62710195500006), (-4.241281704999949, 51.63934967700004), (-4.234730597999942, 51.644964911000045), (-4.228505011999914, 51.63743724200003), (-4.234730597999942, 51.63743724200003), (-4.234730597999942, 51.631293036000045), (-4.2278539699999556, 51.628119208000044), (-4.22101803299995, 51.62384674700007), (-4.1900935539999296, 51.63027578300006), (-4.139027472999942, 51.63231028900009), (-4.0912979809999115, 51.639878648000035), (-4.070220506999931, 51.66229889500005), (-4.0698136059999115, 51.66893138200004), (-4.070383266999954, 51.67430247600004), (-4.07054602799991, 51.67597077000005), (-4.0754288399999155, 51.677801825000074), (-4.087269660999937, 51.668850002000056), (-4.095448370999918, 51.66510651200008), (-4.106841600999928, 51.66425202000005), (-4.146351691999939, 51.66705963700008), (-4.200550910999937, 51.68585846600007), (-4.214955206999946, 51.679673570000034), (-4.293690558999913, 51.67226797100005), (-4.3152970039999445, 51.67747630400004), (-4.342355923999946, 51.69086334800005), (-4.3664444649999155, 51.70848216400009), (-4.379261847999942, 51.72687409100007), (-4.338042772999927, 51.72333405200004), (-4.319976365999935, 51.72483958500004), (-4.310454881999931, 51.733710028000075), (-4.328724738999938, 51.73297760600008), (-4.3471573559999115, 51.73578522300005), (-4.3625382149999155, 51.74286530200004), (-4.371815558999913, 51.754787502000056), (-4.368763800999943, 51.75698476800005), (-4.362904425999943, 51.76386139500005), (-4.358021613999938, 51.773138739000046), (-4.358225063999953, 51.782131252000056), (-4.365101691999939, 51.789048570000034), (-4.3714900379999335, 51.78595612200007), (-4.379261847999942, 51.77529531500005), (-4.384917772999927, 51.77187734600005), (-4.3929744129999335, 51.763739325000074), (-4.399159308999913, 51.76162344000005), (-4.409331834999932, 51.76316966400009), (-4.417876756999931, 51.76788971600007), (-4.426503058999913, 51.77529531500005), (-4.445790167999917, 51.77326080900008), (-4.449330206999946, 51.76630280200004), (-4.441395636999914, 51.75678131700005), (-4.426503058999913, 51.747300523000035), (-4.460764126999948, 51.73578522300005), (-4.4988907539999445, 51.73484935100004), (-4.574208136999914, 51.74115631700005), (-4.603423631999931, 51.73924388200004), (-4.639230923999946, 51.73318105700008), (-4.6453751289999445, 51.732123114000046), (-4.678212042999917, 51.71743398600006), (-4.680287238999938, 51.692694403000075), (-4.689442511999914, 51.69159577000005), (-4.69163977799991, 51.689886786000045), (-4.69163977799991, 51.685980536000045), (-4.693959113999938, 51.67841217700004), (-4.712310350999928, 51.650091864000046), (-4.721424933999913, 51.652044989000046), (-4.734934048999946, 51.65924713700008), (-4.741851365999935, 51.65607330900008), (-4.759185350999928, 51.644964911000045), (-4.8482966789999296, 51.64630768400008), (-4.86351477799991, 51.64411041900007), (-4.878977016999954, 51.63743724200003), (-4.887806769999941, 51.62995026200008), (-4.8957413399999155, 51.621079820000034), (-4.904774542999917, 51.61383698100008), (-4.923695441999939, 51.608628648000035), (-4.931996222999942, 51.59902578300006), (-4.941029425999943, 51.59650299700007), (-4.946034308999913, 51.59760163000004), (-4.956450975999928, 51.602769273000035), (-5.021595831999946, 51.61603424700007), (-5.0457657539999445, 51.62689850500004), (-5.0366104809999115, 51.63743724200003), (-5.0511775379999335, 51.65692780200004), (-5.100493943999936, 51.66469961100006), (-5.119740363999938, 51.67841217700004), (-5.113433397999927, 51.68528880400004), (-5.0366104809999115, 51.67841217700004), (-5.038726365999935, 51.68183014500005), (-5.04133053299995, 51.68939850500004), (-5.043446417999917, 51.692694403000075), (-5.028675910999937, 51.69293854400007), (-5.002552863999938, 51.68740469000005), (-4.988189256999931, 51.68585846600007), (-4.974598761999914, 51.687933661000045), (-4.941029425999943, 51.70014069200005), (-4.892648891999954, 51.706366278000075), (-4.868275519999941, 51.716782945000034), (-4.8580623039999296, 51.71832916900007), (-4.844838019999941, 51.71381256700005), (-4.844838019999941, 51.720038153000075), (-4.873402472999942, 51.73773834800005), (-4.879017706999946, 51.76203034100007), (-4.8625382149999155, 51.78237539300005), (-4.824330206999946, 51.788275458000044), (-4.824330206999946, 51.79572174700007), (-4.836008266999954, 51.790716864000046), (-4.864979620999918, 51.783270575000074), (-4.921294725999928, 51.78001536700003), (-4.933583136999914, 51.77529531500005), (-4.9172257149999155, 51.77533600500004), (-4.905181443999936, 51.771185614000046), (-4.900542772999927, 51.76211172100005), (-4.906239386999914, 51.747300523000035), (-4.8920792309999115, 51.73940664300005), (-4.895659959999932, 51.728176174000055), (-4.9105525379999335, 51.71820709800005), (-4.988189256999931, 51.70685455900008), (-5.009917772999927, 51.706366278000075), (-5.149240688999953, 51.718085028000075), (-5.166900193999936, 51.71381256700005), (-5.156971808999913, 51.69757721600007), (-5.1686091789999296, 51.68891022300005), (-5.1828507149999155, 51.68927643400008), (-5.180653449999909, 51.70014069200005), (-5.180653449999909, 51.706366278000075), (-5.230132615999935, 51.73004791900007), (-5.2495011059999115, 51.733710028000075), (-5.228138800999943, 51.73395416900007), (-5.213937954999949, 51.73574453300006), (-5.202870245999918, 51.74079010600008), (-5.191151495999918, 51.75104401200008), (-5.176828579999949, 51.75967031500005), (-5.1432185539999296, 51.76386139500005), (-5.125965949999909, 51.76850006700005), (-5.110259568999936, 51.778509833000044), (-5.107085740999935, 51.78807200700004), (-5.112294074999909, 51.81317780200004), (-5.113392706999946, 51.82880280200004), (-5.11750240799995, 51.84369538000004), (-5.125884568999936, 51.85602448100008), (-5.139637824999909, 51.86399974200003), (-5.146473761999914, 51.85716380400004), (-5.16437740799995, 51.86676666900007), (-5.2037654289999296, 51.87018463700008), (-5.221587693999936, 51.87767161700003), (-5.2358292309999115, 51.87103913000004), (-5.2914119129999335, 51.86399974200003), (-5.3109431629999335, 51.86399974200003), (-5.304269985999952, 51.867621161000045), (-5.297352667999917, 51.87018463700008), (-5.297352667999917, 51.87767161700003), (-5.300689256999931, 51.882025458000044), (-5.302561001999948, 51.88523997600004), (-5.300160285999937, 51.888332424000055), (-5.2905167309999115, 51.89199453300006), (-5.2905167309999115, 51.898138739000046), (-5.2983292309999115, 51.91095612200007), (-5.288929816999939, 51.91693756700005), (-5.252837693999936, 51.91864655200004), (-5.234201626999948, 51.923041083000044), (-5.204172329999949, 51.942287502000056), (-5.191151495999918, 51.946600653000075), (-5.16038977799991, 51.94944896000004), (-5.1195369129999335, 51.95892975500004), (-5.088042772999927, 51.97601959800005), (-5.085031704999949, 52.00185781500005), (-5.070790167999917, 52.00185781500005), (-5.070790167999917, 52.00804271000004), (-5.082753058999913, 52.01447174700007), (-5.081206834999932, 52.021185614000046), (-5.070220506999931, 52.02635325700004), (-5.053700324999909, 52.028509833000044), (-5.0266007149999155, 52.027411200000074), (-5.015044725999928, 52.02533600500004), (-4.961740688999953, 52.007513739000046), (-4.942534959999932, 52.007473049000055), (-4.913685675999943, 52.014837958000044), (-4.920521613999938, 52.028509833000044), (-4.9016007149999155, 52.02643463700008), (-4.863189256999931, 52.01699453300006), (-4.841420050999943, 52.014837958000044), (-4.83226477799991, 52.01898834800005), (-4.833851691999939, 52.02875397300005), (-4.8382869129999335, 52.04010651200008), (-4.838002081999946, 52.04901764500005), (-4.83039303299995, 52.05292389500005), (-4.796986456999946, 52.05646393400008), (-4.77757727799991, 52.064886786000045), (-4.7631729809999115, 52.075873114000046), (-4.7386775379999335, 52.100816148000035), (-4.720285610999952, 52.113348700000074), (-4.7065323559999115, 52.11347077000005), (-4.673451300999943, 52.09739817900004), (-4.675689256999931, 52.126939195000034), (-4.637521938999953, 52.13849518400008), (-4.513824022999927, 52.13568756700005), (-4.50226803299995, 52.138373114000046), (-4.495757615999935, 52.14350006700005), (-4.490956183999913, 52.150376695000034), (-4.484283006999931, 52.156317450000074), (-4.454701300999943, 52.16205475500004), (-4.4348038399999155, 52.170355536000045), (-4.415394660999937, 52.18154531500005), (-4.385568813999953, 52.20343659100007), (-4.371245897999927, 52.20929596600007), (-4.3547257149999155, 52.212103583000044), (-4.334339972999942, 52.21283600500004), (-4.315825975999928, 52.21629466400003), (-4.197132941999939, 52.279282945000034), (-4.1390681629999335, 52.33022695500006), (-4.10960852799991, 52.365301825000074), (-4.096262173999946, 52.387884833000044), (-4.0873917309999115, 52.430121161000045), (-4.0789688789999445, 52.45302969000005), (-4.067941860999952, 52.47361888200004), (-4.056548631999931, 52.48786041900007), (-4.0618383449999556, 52.49705638200004), (-4.064035610999952, 52.50918203300006), (-4.062570766999954, 52.52098216400003), (-4.056548631999931, 52.52944570500006), (-4.048491990999935, 52.530462958000044), (-4.0266007149999155, 52.52338288000004), (-4.016184048999946, 52.52195872600004), (-3.998768683999913, 52.52594635600008), (-3.9473363919999542, 52.549261786000045), (-3.9473363919999542, 52.556708075000074), (-3.9744766919999392, 52.55654531500005), (-4.025868292999917, 52.545355536000045), (-4.0531306629999335, 52.54242584800005), (-4.068470831999946, 52.550116278000075), (-4.1141251289999445, 52.58860911700003), (-4.125477667999917, 52.60390859600005), (-4.122222459999932, 52.62872955900008), (-4.105946417999917, 52.653509833000044), (-4.0848282539999445, 52.67267487200007), (-4.067128058999913, 52.68024323100008), (-4.063547329999949, 52.68309153900003), (-4.05882727799991, 52.696600653000075), (-4.056548631999931, 52.70066966400003), (-4.052723761999914, 52.70221588700008), (-4.041981574999909, 52.70465729400007), (-4.001088019999941, 52.72410716400003), (-3.988270636999914, 52.73427969000005), (-4.014719204999949, 52.73232656500005), (-4.031971808999913, 52.723944403000075), (-4.048817511999914, 52.721584377000056), (-4.125152147999927, 52.77830638200004), (-4.144357876999948, 52.802801825000074), (-4.149037238999938, 52.81207916900007), (-4.146229620999918, 52.82021719000005), (-4.128895636999914, 52.82363515800006), (-4.117339647999927, 52.83075592700004), (-4.1197810539999296, 52.84625885600008), (-4.127756313999953, 52.86172109600005), (-4.132191535999937, 52.86831289300005), (-4.131988084999932, 52.882473049000055), (-4.129872199999909, 52.88922760600008), (-4.123605923999946, 52.89325592700004), (-4.064035610999952, 52.919175523000035), (-4.071400519999941, 52.921087958000044), (-4.074574347999942, 52.92279694200005), (-4.0776261059999115, 52.926662502000056), (-4.0891007149999155, 52.918850002000056), (-4.100493943999936, 52.914129950000074), (-4.1105850899999155, 52.915676174000055), (-4.118560350999928, 52.926662502000056), (-4.144398566999939, 52.91478099200003), (-4.171620245999918, 52.91347890800006), (-4.228505011999914, 52.919175523000035), (-4.300689256999931, 52.905585028000075), (-4.317290818999936, 52.89935944200005), (-4.337310350999928, 52.89203522300005), (-4.406605597999942, 52.89252350500004), (-4.4272354809999115, 52.885972398000035), (-4.446197068999936, 52.87592194200005), (-4.4816788399999155, 52.850897528000075), (-4.477935350999928, 52.84833405200004), (-4.475493943999936, 52.84414297100005), (-4.491363084999932, 52.83820221600007), (-4.500965949999909, 52.82680898600006), (-4.501332160999937, 52.81391022300005), (-4.4891251289999445, 52.803168036000045), (-4.501942511999914, 52.794989325000074), (-4.509185350999928, 52.791449286000045), (-4.5164688789999445, 52.789496161000045), (-4.5285538399999155, 52.79047272300005), (-4.5424698559999115, 52.80068594000005), (-4.5639542309999115, 52.80524323100008), (-4.583078579999949, 52.81464264500005), (-4.594634568999936, 52.81679922100005), (-4.606516079999949, 52.81509023600006), (-4.61351477799991, 52.81110260600008), (-4.619211391999954, 52.80654531500005), (-4.626332160999937, 52.803168036000045), (-4.648589647999927, 52.79962799700007), (-4.704497850999928, 52.803168036000045), (-4.719309048999946, 52.79751211100006), (-4.733225063999953, 52.78750234600005), (-4.747425910999937, 52.78343333500004), (-4.762847459999932, 52.789496161000045), (-4.752512173999946, 52.79877350500004), (-4.7514542309999115, 52.80320872600004), (-4.755441860999952, 52.80931224200003), (-4.7492569649999155, 52.81427643400008), (-4.734934048999946, 52.83047109600005), (-4.596058722999942, 52.92841217700004), (-4.580962693999936, 52.93349844000005), (-4.562082485999952, 52.93451569200005), (-4.543527798999946, 52.937933661000045), (-4.523996548999946, 52.944240627000056), (-4.443430141999954, 52.98216380400004), (-4.423695441999939, 53.00263092700004), (-4.358225063999953, 53.02846914300005), (-4.349964972999942, 53.04148997600004), (-4.345692511999914, 53.059475002000056), (-4.343861456999946, 53.10106028900003), (-4.340891079999949, 53.11273834800005), (-4.334339972999942, 53.11676666900007), (-4.3276261059999115, 53.11469147300005), (-4.324696417999917, 53.10789622600004), (-4.320668097999942, 53.10150788000004), (-4.312245245999918, 53.109442450000074), (-4.304758266999954, 53.12099844000005), (-4.303618943999936, 53.12531159100007), (-4.263539191999939, 53.15452708500004), (-4.2523494129999335, 53.159409898000035), (-4.234527147999927, 53.16400788000004), (-4.221302863999938, 53.175034898000035), (-4.200550910999937, 53.20099518400008), (-4.17796790299991, 53.21759674700007), (-4.151519334999932, 53.22809479400007), (-4.122222459999932, 53.23346588700008), (-4.0906876289999445, 53.23517487200007), (-4.08234615799995, 53.23354726800005), (-4.074330206999946, 53.23065827000005), (-4.066883917999917, 53.22907135600008), (-4.054107225999928, 53.234361070000034), (-4.032297329999949, 53.24070872600004), (-4.008900519999941, 53.24445221600007), (-3.974598761999914, 53.261786200000074), (-3.8653051419999542, 53.289129950000074), (-3.8312882149999155, 53.289129950000074), (-3.841420050999943, 53.30744049700007), (-3.870757615999935, 53.32562897300005), (-3.8784073559999115, 53.337591864000046), (-3.859974738999938, 53.33633047100005), (-3.840565558999913, 53.33283112200007), (-3.822987433999913, 53.32656484600005), (-3.8101293609999516, 53.31708405200004), (-3.7905167309999115, 53.323431708000044), (-3.7688695949999556, 53.31915924700007), (-3.748199022999927, 53.307806708000044), (-3.7319229809999115, 53.29287344000005), (-3.7162979809999115, 53.28693268400008), (-3.6022029289999296, 53.28888580900008), (-3.5623266269999476, 53.29441966400003), (-3.372059699999909, 53.350897528000075), (-3.33031165299991, 53.35179271000004), (-3.2923884759999282, 53.34052155200004), (-3.2713110019999476, 53.33055247600004), (-3.262074347999942, 53.32050202000005), (-3.250803188999953, 53.312567450000074), (-3.122222459999932, 53.26227448100008), (-3.107533331999946, 53.25189850500004), (-3.0951228509999282, 53.23932526200008), (-3.0877579419999392, 53.23468659100007), (-3.0845434239999463, 53.23859284100007), (-3.0845434239999463, 53.25857168200008), (-3.0845434239999463, 53.275458075000074), (-3.09593665299991, 53.28713613500008), (-3.1111954419999392, 53.302801825000074), (-3.1354060539999296, 53.33380768400008), (-3.171538865999935, 53.36225006700005), (-3.185210740999935, 53.37726471600007), (-3.186350063999953, 53.39276764500005), (-3.175526495999918, 53.40273672100005), (-3.157297329999949, 53.40875885600008), (-3.1146541009999282, 53.41266510600008), (-3.0942276679999168, 53.41738515800006), (-3.058257615999935, 53.434759833000044), (-3.0355525379999335, 53.43374258000006), (-3.0121964179999168, 53.41669342700004), (-2.9529516269999476, 53.323919989000046), (-2.9351293609999516, 53.309475002000056), (-2.9105525379999335, 53.29633209800005), (-2.8814998039999296, 53.288397528000075), (-2.850575324999909, 53.289129950000074), (-2.849598761999914, 53.29120514500005), (-2.848378058999913, 53.29555898600006), (-2.8449600899999155, 53.300116278000075), (-2.837554490999935, 53.302801825000074), (-2.8286026679999168, 53.302435614000046), (-2.813384568999936, 53.297756252000056), (-2.8061417309999115, 53.296576239000046), (-2.789784308999913, 53.29743073100008), (-2.775502081999946, 53.29987213700008), (-2.7481176419999542, 53.30963776200008), (-2.753651495999918, 53.32245514500005), (-2.750884568999936, 53.33161041900007), (-2.743153449999909, 53.33852773600006), (-2.734486456999946, 53.34442780200004), (-2.7261449859999516, 53.34198639500005), (-2.7174373039999296, 53.34271881700005), (-2.708607550999943, 53.346136786000045), (-2.6997777989999463, 53.35179271000004), (-2.7141007149999155, 53.35236237200007), (-2.764393683999913, 53.34516022300005), (-2.775380011999914, 53.341009833000044), (-2.782378709999932, 53.32636139500005), (-2.799794074999909, 53.32103099200003), (-2.810332811999956, 53.32172272300005), (-2.843658006999931, 53.323919989000046), (-2.886463995999918, 53.33356354400007), (-2.924956834999932, 53.35000234600005), (-2.956939256999931, 53.37055084800005), (-2.980824347999942, 53.39276764500005), (-3.096587693999936, 53.54433828300006), (-3.101918097999942, 53.55805084800005), (-3.0994766919999392, 53.57200755400004), (-3.087635870999918, 53.58771393400008), (-3.021839972999942, 53.65281810100004), (-2.968658006999931, 53.69403717700004), (-2.9603572259999282, 53.69757721600007), (-2.9517309239999463, 53.70807526200008), (-2.9114477199999556, 53.725043036000045), (-2.899037238999938, 53.73541901200008), (-2.9848526679999168, 53.73607005400004), (-3.021473761999914, 53.745794989000046), (-3.049183722999942, 53.769517320000034), (-3.056385870999918, 53.80304596600007), (-3.044911261999914, 53.87848541900007), (-3.056630011999914, 53.90615469000005), (-3.040679490999935, 53.923529364000046), (-3.017567511999914, 53.93195221600007), (-2.925689256999931, 53.95270416900007), (-2.909250454999949, 53.95384349200003), (-2.896107550999943, 53.94773997600004), (-2.8885391919999392, 53.94603099200003), (-2.885365363999938, 53.950506903000075), (-2.881988084999932, 53.95652903900003), (-2.874175584999932, 53.96165599200003), (-2.865142381999931, 53.96548086100006), (-2.8579809239999463, 53.96759674700007), (-2.869252081999946, 53.97882721600007), (-2.8344620429999168, 53.99982330900008), (-2.830067511999914, 54.01601797100005), (-2.8475235669999392, 54.00836823100008), (-2.864857550999943, 54.00429922100005), (-2.895497199999909, 54.00234609600005), (-2.900298631999931, 54.00495026200008), (-2.9160863919999542, 54.026556708000044), (-2.91820227799991, 54.03432851800005), (-2.911284959999932, 54.03998444200005), (-2.9007869129999335, 54.044907945000034), (-2.8920792309999115, 54.050116278000075), (-2.872670050999943, 54.071600653000075), (-2.8588761059999115, 54.08100006700005), (-2.826771613999938, 54.08881256700005), (-2.815174933999913, 54.09878164300005), (-2.795969204999949, 54.12518952000005), (-2.8128149079999503, 54.139878648000035), (-2.8364151679999168, 54.16758860900006), (-2.8509415359999366, 54.18463776200008), (-2.854237433999913, 54.19407786700003), (-2.8328751289999445, 54.19904205900008), (-2.810292120999918, 54.21190013200004), (-2.7952367829999503, 54.22947825700004), (-2.795969204999949, 54.24872467700004), (-2.8028051419999542, 54.24872467700004), (-2.806630011999914, 54.233710028000075), (-2.8208715489999463, 54.22174713700008), (-2.850575324999909, 54.20774974200003), (-2.886382615999935, 54.19627513200004), (-2.904652472999942, 54.18764883000006), (-2.9126684239999463, 54.176988023000035), (-2.9203995429999168, 54.16205475500004), (-2.939198370999918, 54.15509674700007), (-2.9842016269999476, 54.15314362200007), (-2.997710740999935, 54.15957265800006), (-3.011341925999943, 54.17413971600007), (-3.017323370999918, 54.19009023600006), (-3.008168097999942, 54.20034414300005), (-3.015370245999918, 54.21190013200004), (-3.024484829999949, 54.221584377000056), (-3.035755988999938, 54.22597890800006), (-3.049183722999942, 54.22207265800006), (-3.044667120999918, 54.208319403000075), (-3.047840949999909, 54.19432200700004), (-3.053537563999953, 54.181301174000055), (-3.056630011999914, 54.17023346600007), (-3.0610245429999168, 54.16193268400008), (-3.090728318999936, 54.13947174700007), (-3.10765540299991, 54.11855703300006), (-3.117909308999913, 54.10883209800005), (-3.145253058999913, 54.100043036000045), (-3.147450324999909, 54.08869049700007), (-3.1443985669999392, 54.07514069200005), (-3.1453751289999445, 54.063788153000075), (-3.1805313789999445, 54.09284088700008), (-3.1897680329999503, 54.09788646000004), (-3.2057185539999296, 54.098537502000056), (-3.219553188999953, 54.100775458000044), (-3.2311091789999296, 54.105129299000055), (-3.240956183999913, 54.11212799700007), (-3.2381078769999476, 54.12759023600006), (-3.232533331999946, 54.14468008000006), (-3.233143683999913, 54.15916575700004), (-3.248402472999942, 54.16681549700007), (-3.248402472999942, 54.17365143400008), (-3.215199347999942, 54.17983633000006), (-3.206776495999918, 54.20892975500004), (-3.2090551419999542, 54.24274323100008), (-3.207386847999942, 54.263006903000075), (-3.2231339179999168, 54.25763580900008), (-3.231353318999936, 54.24721914300005), (-3.240956183999913, 54.22207265800006), (-3.232167120999918, 54.20254140800006), (-3.247141079999949, 54.19794342700004), (-3.270130988999938, 54.19912344000005), (-3.2860001289999445, 54.19721100500004), (-3.306792772999927, 54.19188060100004), (-3.3285212879999335, 54.204738674000055), (-3.3644913399999155, 54.24249909100007), (-3.394195115999935, 54.26439036700003), (-3.407378709999932, 54.27773672100005), (-3.412912563999953, 54.29376862200007), (-3.41038977799991, 54.30145905200004), (-3.405995245999918, 54.30963776200008), (-3.4041235019999476, 54.31854889500005), (-3.4114477199999556, 54.33274974200003), (-3.4134415359999366, 54.342962958000044), (-3.4163305329999503, 54.344916083000044), (-3.440174933999913, 54.35175202000005), (-3.474273240999935, 54.39350006700005), (-3.497710740999935, 54.40582916900007), (-3.5918676419999542, 54.48309967700004), (-3.608143683999913, 54.488267320000034), (-3.613189256999931, 54.49164459800005), (-3.6236873039999296, 54.50608958500004), (-3.6341853509999282, 54.512884833000044), (-3.6268204419999392, 54.520412502000056), (-3.616200324999909, 54.52757396000004), (-3.61156165299991, 54.52993398600006), (-3.5903214179999168, 54.56464264500005), (-3.5638321609999366, 54.64276764500005), (-3.5301407539999445, 54.68805573100008), (-3.5160212879999335, 54.712876695000034), (-3.5091853509999282, 54.72166575700004), (-3.500721808999913, 54.72597890800006), (-3.478871222999942, 54.730902411000045), (-3.4681290359999366, 54.73529694200005), (-3.455433722999942, 54.745021877000056), (-3.439564581999946, 54.76146067900004), (-3.4309789699999556, 54.780462958000044), (-3.440174933999913, 54.79743073100008), (-3.4075414699999556, 54.85602448100008), (-3.3879288399999155, 54.88336823100008), (-3.3644913399999155, 54.89980703300006), (-3.3449600899999155, 54.90253327000005), (-3.3333634109999366, 54.89728424700007), (-3.3227432929999168, 54.889878648000035), (-3.3064672519999476, 54.88617584800005), (-3.295725063999953, 54.88690827000005), (-3.254628058999913, 54.89980703300006), (-3.267323370999918, 54.905503648000035), (-3.317290818999936, 54.92031484600005), (-3.2914932929999168, 54.93667226800005), (-3.276519334999932, 54.943426825000074), (-3.213612433999913, 54.954413153000075), (-3.2010391919999392, 54.95221588700008), (-3.1936742829999503, 54.94863515800006), (-3.1879776679999168, 54.94448476800005), (-3.1801651679999168, 54.94082265800006), (-3.14281165299991, 54.93353913000004), (-3.122792120999918, 54.93268463700008), (-3.0395401679999168, 54.94717031500005), (-3.021839972999942, 54.954413153000075), (-3.090728318999936, 54.954413153000075), (-3.090728318999936, 54.96124909100007), (-3.0715225899999155, 54.96312083500004), (-3.0562231109999516, 54.968817450000074), (-3.040923631999931, 54.97247955900008), (-3.021839972999942, 54.968085028000075), (-3.021839972999942, 54.97553131700005), (-3.0462947259999282, 54.982123114000046), (-3.0502913779999403, 54.981510325000045), (-3.1354060539999296, 54.968085028000075), (-3.453846808999913, 54.981756903000075), (-3.470692511999914, 54.984442450000074), (-3.486236131999931, 54.989488023000035), (-3.501047329999949, 54.99249909100007), (-3.515288865999935, 54.98920319200005), (-3.5123591789999296, 54.98712799700007), (-3.511463995999918, 54.98688385600008), (-3.510894334999932, 54.985988674000055), (-3.5091853509999282, 54.981756903000075), (-3.5260310539999296, 54.97711823100008), (-3.5418595039999445, 54.98065827000005), (-3.57054602799991, 54.995428778000075), (-3.583607550999943, 54.968085028000075), (-3.5756729809999115, 54.95734284100007), (-3.5706274079999503, 54.937567450000074), (-3.5687556629999335, 54.916001695000034), (-3.57054602799991, 54.89980703300006), (-3.581695115999935, 54.88361237200007), (-3.598378058999913, 54.87799713700008), (-3.691761847999942, 54.88320547100005), (-3.7176407539999445, 54.880845445000034), (-3.739247199999909, 54.859808661000045), (-3.8101293609999516, 54.86627838700008), (-3.8078507149999155, 54.86107005400004), (-3.806792772999927, 54.86090729400007), (-3.803334113999938, 54.85887278900003), (-3.8123673169999392, 54.855169989000046), (-3.8198136059999115, 54.855902411000045), (-3.826079881999931, 54.85993073100008), (-3.8312882149999155, 54.86627838700008), (-3.819976365999935, 54.878566799000055), (-3.815052863999938, 54.87714264500005), (-3.8101293609999516, 54.87250397300005), (-3.8116348949999406, 54.88003164300005), (-3.813221808999913, 54.88312409100007), (-3.8169652989999463, 54.88617584800005), (-3.828846808999913, 54.874986070000034), (-3.8443090489999463, 54.86627838700008), (-3.839751756999931, 54.855902411000045), (-3.8374731109999516, 54.851996161000045), (-3.844105597999942, 54.85097890800006), (-3.8578995429999168, 54.84454987200007), (-3.823841925999943, 54.82469310100004), (-3.833607550999943, 54.82005442900004), (-3.885731574999909, 54.80646393400008), (-3.9641820949999556, 54.771918036000045), (-4.011708136999914, 54.76821523600006), (-4.042876756999931, 54.76947663000004), (-4.042876756999931, 54.77692291900007), (-4.046783006999931, 54.77802155200004), (-4.050200975999928, 54.778550523000035), (-4.053334113999938, 54.77997467700004), (-4.055775519999941, 54.782538153000075), (-4.05296790299991, 54.78546784100007), (-4.050160285999937, 54.78900788000004), (-4.049712693999936, 54.78998444200005), (-4.051747199999909, 54.800034898000035), (-4.0477188789999445, 54.81305573100008), (-4.049956834999932, 54.82322825700004), (-4.063588019999941, 54.82684967700004), (-4.064035610999952, 54.83152903900003), (-4.078602667999917, 54.82412344000005), (-4.09007727799991, 54.809759833000044), (-4.093495245999918, 54.792669989000046), (-4.083851691999939, 54.77692291900007), (-4.122954881999931, 54.77301666900007), (-4.173939581999946, 54.792303778000075), (-4.209136522999927, 54.826239325000074), (-4.200550910999937, 54.86627838700008), (-4.215402798999946, 54.861029364000046), (-4.2397354809999115, 54.843003648000035), (-4.255767381999931, 54.838324286000045), (-4.2707413399999155, 54.83942291900007), (-4.345285610999952, 54.86017487200007), (-4.3569229809999115, 54.86554596600007), (-4.3656306629999335, 54.87250397300005), (-4.375152147999927, 54.88690827000005), (-4.379872199999909, 54.89789459800005), (-4.386789516999954, 54.90477122600004), (-4.402902798999946, 54.90729401200008), (-4.409006313999953, 54.90302155200004), (-4.416818813999953, 54.89280833500004), (-4.423573370999918, 54.88035716400003), (-4.426503058999913, 54.86945221600007), (-4.4172257149999155, 54.84593333500004), (-4.4094132149999155, 54.831244208000044), (-4.402902798999946, 54.82469310100004), (-4.386708136999914, 54.82416413000004), (-4.372425910999937, 54.82184479400007), (-4.35960852799991, 54.81663646000004), (-4.347645636999914, 54.80731842700004), (-4.344471808999913, 54.79450104400007), (-4.353179490999935, 54.78310781500005), (-4.358143683999913, 54.77098216400003), (-4.343861456999946, 54.75641510600008), (-4.356516079999949, 54.741888739000046), (-4.353260870999918, 54.72089264500005), (-4.348133917999917, 54.70197174700007), (-4.3547257149999155, 54.693793036000045), (-4.360340949999909, 54.69159577000005), (-4.365305141999954, 54.68695709800005), (-4.371896938999953, 54.68227773600006), (-4.382394985999952, 54.68008047100005), (-4.405262824999909, 54.682074286000045), (-4.426503058999913, 54.687567450000074), (-4.4518123039999296, 54.69879791900007), (-4.46117102799991, 54.701239325000074), (-4.4967341789999296, 54.70062897300005), (-4.505604620999918, 54.70465729400007), (-4.563628709999932, 54.75641510600008), (-4.596669074999909, 54.77529531500005), (-4.714466925999943, 54.81785716400003), (-4.759592251999948, 54.82534414300005), (-4.781076626999948, 54.83307526200008), (-4.799631313999953, 54.86127350500004), (-4.821034308999913, 54.86664459800005), (-4.859120245999918, 54.86627838700008), (-4.88304602799991, 54.86009349200003), (-4.905873175999943, 54.84979889500005), (-4.925770636999914, 54.83738841400003), (-4.941029425999943, 54.82469310100004), (-4.9496150379999335, 54.81582265800006), (-4.953684048999946, 54.81000397300005), (-4.954823370999918, 54.804754950000074), (-4.954701300999943, 54.79743073100008), (-4.952870245999918, 54.78896719000005), (-4.9479060539999296, 54.777329820000034), (-4.940256313999953, 54.76703522300005), (-4.930165167999917, 54.76264069200005), (-4.923247850999928, 54.75185781500005), (-4.911936001999948, 54.728216864000046), (-4.8959854809999115, 54.70453522300005), (-4.867258266999954, 54.69013092700004), (-4.866932745999918, 54.68146393400008), (-4.872141079999949, 54.663316148000035), (-4.872425910999937, 54.65403880400004), (-4.872059699999909, 54.64923737200007), (-4.859120245999918, 54.63296133000006), (-4.880604620999918, 54.63621653900003), (-4.923491990999935, 54.649725653000075), (-4.944081183999913, 54.652777411000045), (-4.953684048999946, 54.65973541900007), (-4.959868943999936, 54.67552317900004), (-4.958973761999914, 54.69196198100008), (-4.947255011999914, 54.701239325000074), (-4.954823370999918, 54.707464911000045), (-4.958892381999931, 54.714056708000044), (-4.959055141999954, 54.72093333500004), (-4.954701300999943, 54.728501695000034), (-4.973378058999913, 54.729722398000035), (-4.981556769999941, 54.731634833000044), (-4.988189256999931, 54.73529694200005), (-4.992665167999917, 54.74433014500005), (-4.997059699999909, 54.75836823100008), (-5.003285285999937, 54.77130768400008), (-5.0130102199999556, 54.77692291900007), (-5.033192511999914, 54.782416083000044), (-5.1282445949999556, 54.848944403000075), (-5.157134568999936, 54.87909577000005), (-5.175526495999918, 54.91461823100008), (-5.180653449999909, 54.954413153000075), (-5.177601691999939, 54.99054596600007), (-5.170806443999936, 55.008693752000056), (-5.156727667999917, 55.01654694200005), (-5.1356095039999445, 55.01585521000004), (-5.124582485999952, 55.016791083000044), (-5.119740363999938, 55.01992422100005), (-5.115142381999931, 55.03156159100007), (-5.105213995999918, 55.02619049700007), (-5.095529751999948, 55.01508209800005), (-5.091867641999954, 55.00971100500004), (-5.076893683999913, 54.99555084800005), (-5.069488084999932, 54.986029364000046), (-5.064564581999946, 54.97553131700005), (-5.0637914699999556, 54.96458567900004), (-5.065256313999953, 54.940334377000056), (-5.06086178299995, 54.93113841400003), (-5.0475154289999296, 54.92031484600005), (-5.030995245999918, 54.911322333000044), (-5.013091600999928, 54.90961334800005), (-4.9955948559999115, 54.92031484600005), (-4.992298956999946, 54.924261786000045), (-4.988189256999931, 54.927720445000034), (-4.988189256999931, 54.93455638200004), (-5.0240779289999296, 54.97638580900008), (-5.029774542999917, 54.98550039300005), (-5.032500779999907, 54.99371979400007), (-5.033029751999948, 54.99526601800005), (-5.047027147999927, 55.01508209800005), (-5.0502823559999115, 55.02680084800005), (-5.0496720039999445, 55.04897695500006), (-5.047596808999913, 55.05573151200008), (-5.043446417999917, 55.06427643400008), (-5.0257869129999335, 55.08869049700007), (-5.018950975999928, 55.10224030200004), (-5.016184048999946, 55.12262604400007), (-5.007801886999914, 55.14118073100008), (-4.988270636999914, 55.15265534100007), (-4.947255011999914, 55.16791413000004), (-4.882394985999952, 55.21857330900008), (-4.877552863999938, 55.22089264500005), (-4.867258266999954, 55.22247955900008), (-4.865305141999954, 55.22565338700008), (-4.865589972999942, 55.236314195000034), (-4.864816860999952, 55.24135976800005), (-4.841949022999927, 55.275091864000046), (-4.838002081999946, 55.28400299700007), (-4.8372289699999556, 55.293850002000056), (-4.839751756999931, 55.31557851800005), (-4.838002081999946, 55.32501862200007), (-4.832508917999917, 55.33112213700008), (-4.7992244129999335, 55.354722398000035), (-4.781076626999948, 55.36351146000004), (-4.773101365999935, 55.36937083500004), (-4.767160610999952, 55.37905508000006), (-4.758778449999909, 55.40228913000004), (-4.7492569649999155, 55.413763739000046), (-4.71703040299991, 55.43048737200007), (-4.650502081999946, 55.448472398000035), (-4.626332160999937, 55.468410549000055), (-4.617787238999938, 55.49559153900003), (-4.626779751999948, 55.51972077000005), (-4.6507869129999335, 55.53705475500004), (-4.687163865999935, 55.544134833000044), (-4.66624915299991, 55.562201239000046), (-4.666493292999917, 55.56329987200007), (-4.6711319649999155, 55.584418036000045), (-4.692738410999937, 55.60521067900004), (-4.7219945949999556, 55.619208075000074), (-4.776519334999932, 55.632879950000074), (-4.808745897999927, 55.63361237200007), (-4.818104620999918, 55.63719310100004), (-4.810617641999954, 55.646551825000074), (-4.810617641999954, 55.653998114000046), (-4.868560350999928, 55.67560455900008), (-4.900990363999938, 55.69232819200005), (-4.920521613999938, 55.70856354400007), (-4.876332160999937, 55.735256252000056), (-4.861073370999918, 55.756740627000056), (-4.865305141999954, 55.79047272300005), (-4.8717341789999296, 55.802435614000046), (-4.8777970039999445, 55.81102122600004), (-4.882720506999931, 55.82135651200008), (-4.888661261999914, 55.864528713000084), (-4.888824022999927, 55.865301825000074), (-4.892648891999954, 55.89288971600007), (-4.886463995999918, 55.91966380400004), (-4.872141079999949, 55.937201239000046), (-4.849354620999918, 55.94822825700004), (-4.818104620999918, 55.95563385600008), (-4.799387173999946, 55.957912502000056), (-4.7857966789999296, 55.95697663000004), (-4.722320115999935, 55.94009023600006), (-4.705433722999942, 55.93846263200004), (-4.693959113999938, 55.94135163000004), (-4.6725154289999296, 55.93378327000005), (-4.505970831999946, 55.91909414300005), (-4.4816788399999155, 55.92829010600008), (-4.590606248999961, 55.941514390000066), (-4.630034959999932, 55.94627513200004), (-4.673451300999943, 55.96185944200005), (-4.724517381999931, 55.99835846600007), (-4.765044725999928, 56.007066148000035), (-4.78343665299991, 56.017645575000074), (-4.7992244129999335, 56.030951239000046), (-4.810617641999954, 56.04376862200007), (-4.8237198559999115, 56.07367584800005), (-4.824330206999946, 56.07851797100005), (-4.8391820949999556, 56.08063385600008), (-4.844309048999946, 56.07298411700003), (-4.843739386999914, 56.06297435100004), (-4.837554490999935, 56.05060455900008), (-4.790150519999941, 56.010199286000045), (-4.778920050999943, 55.99209219000005), (-4.785308397999927, 55.984035549000055), (-4.803618943999936, 55.982082424000055), (-4.828033006999931, 55.98232656500005), (-4.851551886999914, 55.98802317900004), (-4.862294074999909, 56.00214264500005), (-4.865386522999927, 56.02020905200004), (-4.866851365999935, 56.05833567900004), (-4.865386522999927, 56.06671784100007), (-4.826324022999927, 56.124212958000044), (-4.755441860999952, 56.188381252000056), (-4.750884568999936, 56.20270416900007), (-4.755523240999935, 56.20652903900003), (-4.7662654289999296, 56.20209381700005), (-4.7799373039999296, 56.191473700000074), (-4.837269660999937, 56.12441640800006), (-4.851673956999946, 56.112616278000075), (-4.873117641999954, 56.11200592700004), (-4.880604620999918, 56.11985911700003), (-4.878977016999954, 56.15053945500006), (-4.883168097999942, 56.16400788000004), (-4.893544074999909, 56.174261786000045), (-4.9070938789999445, 56.177069403000075), (-4.920521613999938, 56.16791413000004), (-4.909087693999936, 56.14996979400007), (-4.895253058999913, 56.11473216400003), (-4.8862198559999115, 56.08038971600007), (-4.889149542999917, 56.06484609600005), (-4.901926235999952, 56.06191640800006), (-4.904367641999954, 56.054348049000055), (-4.900054490999935, 56.03412506700005), (-4.900054490999935, 56.01459381700005), (-4.898019985999952, 56.001166083000044), (-4.892648891999954, 55.98973216400003), (-4.906402147999927, 55.98574453300006), (-4.921457485999952, 55.98867422100005), (-4.937489386999914, 55.993841864000046), (-4.954701300999943, 55.99656810100004), (-4.954701300999943, 55.98973216400003), (-4.942005988999938, 55.986314195000034), (-4.928863084999932, 55.98114655200004), (-4.918446417999917, 55.97333405200004), (-4.913685675999943, 55.96185944200005), (-4.917388475999928, 55.94745514500005), (-4.9272354809999115, 55.93768952000005), (-4.9387100899999155, 55.92963288000004), (-4.947255011999914, 55.92084381700005), (-4.952137824999909, 55.90912506700005), (-4.954986131999931, 55.89935944200005), (-4.95921790299991, 55.89012278900003), (-4.96898352799991, 55.87986888200004), (-4.983143683999913, 55.87103913000004), (-4.994740363999938, 55.86981842700004), (-5.026356574999909, 55.87372467700004), (-5.0424698559999115, 55.884751695000034), (-5.056752081999946, 55.91030508000006), (-5.0668025379999335, 55.938788153000075), (-5.070790167999917, 55.958685614000046), (-5.1108292309999115, 55.98895905200004), (-5.116037563999953, 56.00169505400004), (-5.123605923999946, 56.00991445500006), (-5.139637824999909, 56.00275299700007), (-5.123768683999913, 55.986314195000034), (-5.085682745999918, 55.93187083500004), (-5.078236456999946, 55.91095612200007), (-5.086537238999938, 55.901271877000056), (-5.105620897999927, 55.90497467700004), (-5.171538865999935, 55.935532945000034), (-5.180653449999909, 55.948431708000044), (-5.180653449999909, 55.96930573100008), (-5.190825975999928, 55.96173737200007), (-5.1996150379999335, 55.948553778000075), (-5.2057185539999296, 55.93451569200005), (-5.207915818999936, 55.92462799700007), (-5.212635870999918, 55.91714101800005), (-5.242054816999939, 55.89288971600007), (-5.218129035999937, 55.86469147300005), (-5.208159959999932, 55.849269924000055), (-5.201079881999931, 55.83148834800005), (-5.2193904289999296, 55.83144765800006), (-5.2631729809999115, 55.845770575000074), (-5.296701626999948, 55.85268789300005), (-5.307118292999917, 55.86041901200008), (-5.313384568999936, 55.88544342700004), (-5.319325324999909, 55.889105536000045), (-5.327219204999949, 55.89154694200005), (-5.3348282539999445, 55.89667389500005), (-5.3382869129999335, 55.90375397300005), (-5.3391007149999155, 55.91303131700005), (-5.3382869129999335, 55.93138255400004), (-5.336089647999927, 55.93919505400004), (-5.326161261999914, 55.95026276200008), (-5.323963995999918, 55.958685614000046), (-5.325754360999952, 55.967230536000045), (-5.3382869129999335, 55.99656810100004), (-5.313628709999932, 56.01235586100006), (-5.204497850999928, 56.11945221600007), (-5.146473761999914, 56.13312409100007), (-5.104603644999941, 56.15151601800005), (-5.0949600899999155, 56.15737539300005), (-5.0594376289999445, 56.203111070000034), (-5.043446417999917, 56.21629466400003), (-5.013295050999943, 56.22760651200008), (-4.974964972999942, 56.23700592700004), (-4.9400935539999296, 56.25141022300005), (-4.920521613999938, 56.277777411000045), (-4.938099738999938, 56.27098216400003), (-4.975087042999917, 56.24799225500004), (-4.991932745999918, 56.24298737200007), (-5.0327042309999115, 56.24115631700005), (-5.049549933999913, 56.23704661700003), (-5.064564581999946, 56.22931549700007), (-5.0754288399999155, 56.21698639500005), (-5.099436001999948, 56.18195221600007), (-5.1088761059999115, 56.174709377000056), (-5.228138800999943, 56.12921784100007), (-5.3109431629999335, 56.05805084800005), (-5.319935675999943, 56.05491771000004), (-5.338042772999927, 56.05410390800006), (-5.345692511999914, 56.051214911000045), (-5.345285610999952, 56.046128648000035), (-5.350209113999938, 56.03192780200004), (-5.356353318999936, 56.01976146000004), (-5.359364386999914, 56.020738023000035), (-5.3686417309999115, 56.009426174000055), (-5.390288865999935, 56.00568268400008), (-5.415028449999909, 56.00690338700008), (-5.43382727799991, 56.010199286000045), (-5.434559699999909, 56.014960028000075), (-5.434722459999932, 56.02362702000005), (-5.437123175999943, 56.03001536700003), (-5.444406704999949, 56.02757396000004), (-5.4479060539999296, 56.02228424700007), (-5.448231574999909, 56.016058661000045), (-5.447621222999942, 56.009426174000055), (-5.454986131999931, 55.95563385600008), (-5.45140540299991, 55.95343659100007), (-5.436431443999936, 55.94896067900004), (-5.430775519999941, 55.94818756700005), (-5.420806443999936, 55.92829010600008), (-5.416737433999913, 55.91681549700007), (-5.416005011999914, 55.907416083000044), (-5.4125056629999335, 55.899603583000044), (-5.400380011999914, 55.89288971600007), (-5.400380011999914, 55.886704820000034), (-5.407215949999909, 55.886704820000034), (-5.407215949999909, 55.87986888200004), (-5.402943488999938, 55.87872955900008), (-5.39289303299995, 55.87372467700004), (-5.3976944649999155, 55.87156810100004), (-5.402495897999927, 55.868353583000044), (-5.407215949999909, 55.86627838700008), (-5.35179602799991, 55.83242422100005), (-5.326771613999938, 55.808579820000034), (-5.317779100999928, 55.78302643400008), (-5.324574347999942, 55.769232489000046), (-5.3385310539999296, 55.76264069200005), (-5.372425910999937, 55.75641510600008), (-5.3875626289999445, 55.75031159100007), (-5.433461066999939, 55.72101471600007), (-5.4445694649999155, 55.71161530200004), (-5.4539688789999445, 55.70058828300006), (-5.46117102799991, 55.68813711100006), (-5.463612433999913, 55.67983633000006), (-5.466175910999937, 55.662176825000074), (-5.468617316999939, 55.653998114000046), (-5.490101691999939, 55.644598700000074), (-5.488270636999914, 55.640326239000046), (-5.484283006999931, 55.63572825700004), (-5.482289191999939, 55.632879950000074), (-5.4838761059999115, 55.61005280200004), (-5.474761522999927, 55.603949286000045), (-5.462635870999918, 55.60203685100004), (-5.454986131999931, 55.59194570500006), (-5.461089647999927, 55.57880280200004), (-5.476918097999942, 55.57489655200004), (-5.488758917999917, 55.56907786700003), (-5.482289191999939, 55.55027903900003), (-5.503529425999943, 55.52651601800005), (-5.509632941999939, 55.516791083000044), (-5.5106095039999445, 55.51146067900004), (-5.509632941999939, 55.49258047100005), (-5.5109757149999155, 55.484442450000074), (-5.514271613999938, 55.48387278900003), (-5.5187882149999155, 55.48517487200007), (-5.523264126999948, 55.48265208500004), (-5.545521613999938, 55.44916413000004), (-5.561512824999909, 55.435532945000034), (-5.5846248039999296, 55.427435614000046), (-5.5846248039999296, 55.421210028000075), (-5.572132941999939, 55.422308661000045), (-5.562082485999952, 55.41986725500004), (-5.553089972999942, 55.41453685100004), (-5.543690558999913, 55.40692780200004), (-5.527455206999946, 55.38434479400007), (-5.5266820949999556, 55.38027578300006), (-5.5149633449999556, 55.37368398600006), (-5.525054490999935, 55.358628648000035), (-5.557972785999937, 55.33185455900008), (-5.574370897999927, 55.32200755400004), (-5.594105597999942, 55.31313711100006), (-5.616281704999949, 55.30658600500004), (-5.6399633449999556, 55.303900458000044), (-5.649525519999941, 55.30516185100004), (-5.669097459999932, 55.31085846600007), (-5.6808975899999155, 55.31134674700007), (-5.691395636999914, 55.308579820000034), (-5.714019334999932, 55.29913971600007), (-5.725575324999909, 55.29706452000005), (-5.7545466789999296, 55.29734935100004), (-5.772287563999953, 55.30125560100004), (-5.782866990999935, 55.31354401200008), (-5.794667120999918, 55.35639069200005), (-5.796701626999948, 55.37909577000005), (-5.7914119129999335, 55.39862702000005), (-5.763417120999918, 55.41205475500004), (-5.725412563999953, 55.437567450000074), (-5.715646938999953, 55.44790273600006), (-5.7152400379999335, 55.46889883000006), (-5.720122850999928, 55.491522528000075), (-5.7219132149999155, 55.51386139500005), (-5.707753058999913, 55.54336172100005), (-5.712066209999932, 55.55072663000004), (-5.718861456999946, 55.55731842700004), (-5.721831834999932, 55.56460195500006), (-5.718129035999937, 55.57575104400007), (-5.694488084999932, 55.605536200000074), (-5.6733292309999115, 55.640611070000034), (-5.6694229809999115, 55.66071198100008), (-5.6808975899999155, 55.67446523600006), (-5.626535610999952, 55.70062897300005), (-5.61945553299995, 55.71198151200008), (-5.613189256999931, 55.725775458000044), (-5.5982966789999296, 55.74298737200007), (-5.581206834999932, 55.75763580900008), (-5.5678604809999115, 55.76386139500005), (-5.539173956999946, 55.77094147300005), (-5.504628058999913, 55.78937409100007), (-5.4735001289999445, 55.815659898000035), (-5.454986131999931, 55.845770575000074), (-5.551747199999909, 55.783636786000045), (-5.587473110999952, 55.76715729400007), (-5.599436001999948, 55.76422760600008), (-5.6126195949999556, 55.76386139500005), (-5.60578365799995, 55.77684153900003), (-5.6332087879999335, 55.78278229400007), (-5.64671790299991, 55.78750234600005), (-5.66038977799991, 55.79734935100004), (-5.667958136999914, 55.81102122600004), (-5.669016079999949, 55.83783600500004), (-5.67406165299991, 55.845770575000074), (-5.631988084999932, 55.88178131700005), (-5.625599738999938, 55.889837958000044), (-5.61937415299991, 55.90314362200007), (-5.6043595039999445, 55.91364166900007), (-5.586293097999942, 55.92332591400003), (-5.571034308999913, 55.93451569200005), (-5.593495245999918, 55.92796458500004), (-5.6275935539999296, 55.90534088700008), (-5.6537979809999115, 55.89760976800005), (-5.671701626999948, 55.88690827000005), (-5.6808975899999155, 55.886704820000034), (-5.687977667999917, 55.89337799700007), (-5.694162563999953, 55.90497467700004), (-5.696400519999941, 55.91596100500004), (-5.586822068999936, 56.01203034100007), (-5.57843990799995, 56.02448151200008), (-5.5826716789999296, 56.028957424000055), (-5.576649542999917, 56.032538153000075), (-5.571034308999913, 56.037543036000045), (-5.583892381999931, 56.040716864000046), (-5.596424933999913, 56.036810614000046), (-5.609852667999917, 56.03001536700003), (-5.625599738999938, 56.02448151200008), (-5.6317032539999445, 56.005926825000074), (-5.674875454999949, 55.977728583000044), (-5.67406165299991, 55.95563385600008), (-5.690785285999937, 55.93764883000006), (-5.694488084999932, 55.93451569200005), (-5.704497850999928, 55.936753648000035), (-5.707508917999917, 55.942572333000044), (-5.705881313999953, 55.949652411000045), (-5.701975063999953, 55.95563385600008), (-5.696441209999932, 55.98216380400004), (-5.659901495999918, 56.02326080900008), (-5.5846248039999296, 56.08466217700004), (-5.5815323559999115, 56.08828359600005), (-5.580067511999914, 56.09292226800005), (-5.5774633449999556, 56.096991278000075), (-5.571034308999913, 56.09902578300006), (-5.564605272999927, 56.098089911000045), (-5.556548631999931, 56.09589264500005), (-5.550689256999931, 56.09349192900004), (-5.550526495999918, 56.09218984600005), (-5.547840949999909, 56.09003327000005), (-5.5394587879999335, 56.08685944200005), (-5.531605597999942, 56.08633047100005), (-5.530100063999953, 56.09218984600005), (-5.534738735999952, 56.098537502000056), (-5.5414119129999335, 56.10248444200005), (-5.5475154289999296, 56.10488515800006), (-5.550526495999918, 56.10643138200004), (-5.55695553299995, 56.12221914300005), (-5.558705206999946, 56.13080475500004), (-5.554676886999914, 56.13739655200004), (-5.522531704999949, 56.16575755400004), (-5.515736456999946, 56.174709377000056), (-5.509632941999939, 56.188381252000056), (-5.5399063789999445, 56.18341705900008), (-5.562489386999914, 56.16791413000004), (-5.5826716789999296, 56.15058014500005), (-5.60578365799995, 56.139960028000075), (-5.599354620999918, 56.160589911000045), (-5.586415167999917, 56.18113841400003), (-5.569406704999949, 56.20026276200008), (-5.550526495999918, 56.21629466400003), (-5.5594376289999445, 56.22955963700008), (-5.547230597999942, 56.24017975500004), (-5.52562415299991, 56.247259833000044), (-5.50617428299995, 56.24982330900008), (-5.494740363999938, 56.253119208000044), (-5.4928279289999296, 56.26040273600006), (-5.4992569649999155, 56.267645575000074), (-5.512684699999909, 56.27094147300005), (-5.554269985999952, 56.26349518400008), (-5.5631404289999296, 56.26032135600008), (-5.572621222999942, 56.25385163000004), (-5.58234615799995, 56.24876536700003), (-5.592152472999942, 56.24982330900008), (-5.5980525379999335, 56.25861237200007), (-5.595570441999939, 56.26992422100005), (-5.5846248039999296, 56.29075755400004), (-5.57258053299995, 56.32807038000004), (-5.56273352799991, 56.341050523000035), (-5.543690558999913, 56.352850653000075), (-5.525217251999948, 56.34662506700005), (-5.498199022999927, 56.34833405200004), (-5.4481095039999445, 56.35968659100007), (-5.4481095039999445, 56.36591217700004), (-5.4721573559999115, 56.364935614000046), (-5.515370245999918, 56.35683828300006), (-5.5375056629999335, 56.35968659100007), (-5.517323370999918, 56.39276764500005), (-5.509632941999939, 56.40062083500004), (-5.498931443999936, 56.404730536000045), (-5.486073370999918, 56.40810781500005), (-5.4780167309999115, 56.41290924700007), (-5.482289191999939, 56.421128648000035), (-5.457020636999914, 56.44086334800005), (-5.423573370999918, 56.45001862200007), (-5.322865363999938, 56.45498281500005), (-5.242054816999939, 56.44220612200007), (-5.208729620999918, 56.44684479400007), (-5.18187415299991, 56.45966217700004), (-5.118519660999937, 56.50775788000004), (-5.085682745999918, 56.54877350500004), (-5.064564581999946, 56.56513092700004), (-5.086537238999938, 56.55849844000005), (-5.099598761999914, 56.54364655200004), (-5.1105850899999155, 56.52586497600004), (-5.125965949999909, 56.51048411700003), (-5.166900193999936, 56.49005768400008), (-5.190174933999913, 56.46865469000005), (-5.201079881999931, 56.462103583000044), (-5.243763800999943, 56.45921458500004), (-5.350168423999946, 56.47296784100007), (-5.378081834999932, 56.458970445000034), (-5.394276495999918, 56.46548086100006), (-5.4105525379999335, 56.50364817900004), (-5.42414303299995, 56.500067450000074), (-5.4359431629999335, 56.49115631700005), (-5.454986131999931, 56.46954987200007), (-5.468617316999939, 56.47573476800005), (-5.433338995999918, 56.52362702000005), (-5.427642381999931, 56.53782786700003), (-5.4037979809999115, 56.524603583000044), (-5.379261847999942, 56.519191799000055), (-5.3566788399999155, 56.51968008000006), (-5.3382869129999335, 56.52415599200003), (-5.2905167309999115, 56.54466380400004), (-5.265044725999928, 56.551214911000045), (-5.252552863999938, 56.556341864000046), (-5.242054816999939, 56.56513092700004), (-5.27562415299991, 56.553615627000056), (-5.286773240999935, 56.552069403000075), (-5.306792772999927, 56.552801825000074), (-5.3109431629999335, 56.552069403000075), (-5.327707485999952, 56.54466380400004), (-5.338693813999953, 56.542303778000075), (-5.360340949999909, 56.53221263200004), (-5.372425910999937, 56.53034088700008), (-5.384348110999952, 56.53343333500004), (-5.400502081999946, 56.54364655200004), (-5.413929816999939, 56.54466380400004), (-5.410878058999913, 56.552069403000075), (-5.407297329999949, 56.55532461100006), (-5.402699347999942, 56.55744049700007), (-5.396636522999927, 56.561712958000044), (-5.392689581999946, 56.566473700000074), (-5.3893123039999296, 56.57489655200004), (-5.386626756999931, 56.57880280200004), (-5.360707160999937, 56.60626862200007), (-5.351918097999942, 56.612941799000055), (-5.31086178299995, 56.63361237200007), (-5.304514126999948, 56.64016347900008), (-5.298451300999943, 56.64642975500004), (-5.317779100999928, 56.65387604400007), (-5.317779100999928, 56.661322333000044), (-5.309071417999917, 56.66425202000005), (-5.286773240999935, 56.674994208000044), (-5.261463995999918, 56.67332591400003), (-5.248199022999927, 56.67405833500004), (-5.218902147999927, 56.688666083000044), (-5.196441209999932, 56.688666083000044), (-5.153309699999909, 56.68121979400007), (-5.132639126999948, 56.68451569200005), (-5.093373175999943, 56.69904205900008), (-5.012806769999941, 56.70929596600007), (-4.9955948559999115, 56.71596914300005), (-5.1605525379999335, 56.69586823100008), (-5.238270636999914, 56.71662018400008), (-5.23851477799991, 56.72256094000005), (-5.228423631999931, 56.73647695500006), (-5.222075975999928, 56.741522528000075), (-5.154652472999942, 56.78229401200008), (-5.136382615999935, 56.79877350500004), (-5.119740363999938, 56.818426825000074), (-5.179066535999937, 56.78925202000005), (-5.187489386999914, 56.78115469000005), (-5.191761847999942, 56.774644273000035), (-5.202259894999941, 56.76911041900007), (-5.214670376999948, 56.76520416900007), (-5.224964972999942, 56.763739325000074), (-5.233469204999949, 56.76068756700005), (-5.237049933999913, 56.75336334800005), (-5.2389216789999296, 56.74445221600007), (-5.242054816999939, 56.73647695500006), (-5.255238410999937, 56.721584377000056), (-5.268462693999936, 56.71308014500005), (-5.283355272999927, 56.70937734600005), (-5.30101477799991, 56.70856354400007), (-5.3098038399999155, 56.70648834800005), (-5.319162563999953, 56.69749583500004), (-5.34015865799995, 56.693060614000046), (-5.348378058999913, 56.687201239000046), (-5.359364386999914, 56.674994208000044), (-5.388050910999937, 56.65521881700005), (-5.403879360999952, 56.64923737200007), (-5.4242244129999335, 56.64704010600008), (-5.434396938999953, 56.64288971600007), (-5.4487198559999115, 56.62457916900007), (-5.458119269999941, 56.620347398000035), (-5.470773891999954, 56.618394273000035), (-5.482574022999927, 56.613267320000034), (-5.493316209999932, 56.60639069200005), (-5.53343665299991, 56.57290273600006), (-5.599598761999914, 56.52903880400004), (-5.667388475999928, 56.498480536000045), (-5.67406165299991, 56.49689362200007), (-5.683013475999928, 56.50063711100006), (-5.694691535999937, 56.51386139500005), (-5.70539303299995, 56.51666901200008), (-5.721791144999941, 56.51850006700005), (-5.740834113999938, 56.52326080900008), (-5.7582087879999335, 56.52997467700004), (-5.770253058999913, 56.53782786700003), (-5.7551977199999556, 56.554022528000075), (-5.751047329999949, 56.56199778900003), (-5.749134894999941, 56.571966864000046), (-5.756662563999953, 56.571966864000046), (-5.793853318999936, 56.54328034100007), (-5.8543595039999445, 56.550482489000046), (-6.0034073559999115, 56.61871979400007), (-6.009836391999954, 56.62653229400007), (-6.008168097999942, 56.642279364000046), (-5.998036261999914, 56.64988841400003), (-5.983509894999941, 56.65281810100004), (-5.933583136999914, 56.654730536000045), (-5.899037238999938, 56.650824286000045), (-5.866851365999935, 56.64154694200005), (-5.8391820949999556, 56.62653229400007), (-5.831695115999935, 56.633978583000044), (-5.855620897999927, 56.64472077000005), (-5.865589972999942, 56.65143463700008), (-5.865834113999938, 56.661322333000044), (-5.75999915299991, 56.70075104400007), (-5.735503709999932, 56.702337958000044), (-5.672596808999913, 56.68414948100008), (-5.647368943999936, 56.68121979400007), (-5.5941462879999335, 56.68333567900004), (-5.564808722999942, 56.68764883000006), (-5.543690558999913, 56.69546133000006), (-5.636545376999948, 56.688666083000044), (-5.658558722999942, 56.690741278000075), (-5.708851691999939, 56.70856354400007), (-5.749989386999914, 56.714544989000046), (-5.859038865999935, 56.68121979400007), (-5.89679928299995, 56.675116278000075), (-5.907378709999932, 56.674994208000044), (-5.9203181629999335, 56.67796458500004), (-5.942738410999937, 56.686753648000035), (-5.955555792999917, 56.688666083000044), (-6.0248917309999115, 56.68569570500006), (-6.098622199999909, 56.696966864000046), (-6.123850063999953, 56.69562409100007), (-6.143544074999909, 56.684881903000075), (-6.161732550999943, 56.67820872600004), (-6.186594204999949, 56.68109772300005), (-6.2096248039999296, 56.68846263200004), (-6.222767706999946, 56.69546133000006), (-6.228179490999935, 56.70107656500005), (-6.232533331999946, 56.70652903900003), (-6.235340949999909, 56.71238841400003), (-6.236398891999954, 56.71906159100007), (-6.234486456999946, 56.728583075000074), (-6.229562954999949, 56.72907135600008), (-6.222767706999946, 56.72719961100006), (-6.215321417999917, 56.72964101800005), (-6.193470831999946, 56.74852122600004), (-6.1805313789999445, 56.75462474200003), (-6.026966925999943, 56.763739325000074), (-6.0148819649999155, 56.76703522300005), (-5.979888475999928, 56.78156159100007), (-5.965199347999942, 56.784857489000046), (-5.948231574999909, 56.782538153000075), (-5.937977667999917, 56.77692291900007), (-5.928537563999953, 56.769964911000045), (-5.913644985999952, 56.763739325000074), (-5.860910610999952, 56.75079987200007), (-5.8522029289999296, 56.746975002000056), (-5.853342251999948, 56.757879950000074), (-5.858143683999913, 56.768459377000056), (-5.8683975899999155, 56.77586497600004), (-5.886341925999943, 56.777411200000074), (-5.886341925999943, 56.784857489000046), (-5.874012824999909, 56.78571198100008), (-5.861805792999917, 56.78510163000004), (-5.850087042999917, 56.782456773000035), (-5.8391820949999556, 56.777411200000074), (-5.8246150379999335, 56.78758372600004), (-5.8020727199999556, 56.79181549700007), (-5.7766007149999155, 56.787990627000056), (-5.756662563999953, 56.784857489000046), (-5.831695115999935, 56.80536530200004), (-5.8508194649999155, 56.818019924000055), (-5.851185675999943, 56.82892487200007), (-5.837473110999952, 56.83661530200004), (-5.7338761059999115, 56.84479401200008), (-5.692738410999937, 56.85492584800005), (-5.66038977799991, 56.87299225500004), (-5.673573370999918, 56.87653229400007), (-5.692005988999938, 56.87531159100007), (-5.7084854809999115, 56.87055084800005), (-5.724354620999918, 56.85382721600007), (-5.744496222999942, 56.85415273600006), (-5.783924933999913, 56.85993073100008), (-5.775380011999914, 56.86994049700007), (-5.735503709999932, 56.89411041900007), (-5.7805883449999556, 56.89874909100007), (-5.874867316999939, 56.887152411000045), (-5.9211319649999155, 56.89411041900007), (-5.8875626289999445, 56.89911530200004), (-5.8522029289999296, 56.90033600500004), (-5.8522029289999296, 56.90770091400003), (-5.859852667999917, 56.91054922100005), (-5.8801163399999155, 56.92202383000006), (-5.8625382149999155, 56.93374258000006), (-5.851429816999939, 56.95425039300005), (-5.842518683999913, 56.977443752000056), (-5.831695115999935, 56.99713776200008), (-5.814116990999935, 57.00950755400004), (-5.786040818999936, 57.02057526200008), (-5.755238410999937, 57.026556708000044), (-5.729318813999953, 57.02383047100005), (-5.719878709999932, 57.017564195000034), (-5.699940558999913, 56.998114325000074), (-5.688303188999953, 56.98969147300005), (-5.67406165299991, 56.983587958000044), (-5.658558722999942, 56.97947825700004), (-5.625599738999938, 56.976629950000074), (-5.571278449999909, 56.98383209800005), (-5.523264126999948, 56.99713776200008), (-5.523264126999948, 57.003973700000074), (-5.540435350999928, 57.001166083000044), (-5.556507941999939, 56.996079820000034), (-5.571278449999909, 56.99331289300005), (-5.5846248039999296, 56.99713776200008), (-5.607085740999935, 56.98851146000004), (-5.628814256999931, 56.991888739000046), (-5.6498917309999115, 56.999660549000055), (-5.6703181629999335, 57.003973700000074), (-5.685536261999914, 57.00958893400008), (-5.681711391999954, 57.02240631700005), (-5.680043097999942, 57.03620026200008), (-5.701975063999953, 57.044907945000034), (-5.710926886999914, 57.044175523000035), (-5.731353318999936, 57.03900788000004), (-5.742339647999927, 57.03807200700004), (-5.752552863999938, 57.04059479400007), (-5.769602016999954, 57.04975006700005), (-5.780181443999936, 57.05174388200004), (-5.791127081999946, 57.05927155200004), (-5.776193813999953, 57.075832424000055), (-5.734486456999946, 57.10541413000004), (-5.722645636999914, 57.116441148000035), (-5.715646938999953, 57.12006256700005), (-5.703277147999927, 57.120754299000055), (-5.673695441999939, 57.11904531500005), (-5.663482225999928, 57.12372467700004), (-5.645863410999937, 57.12946198100008), (-5.620838995999918, 57.12409088700008), (-5.57843990799995, 57.10639069200005), (-5.558257615999935, 57.10040924700007), (-5.4598282539999445, 57.09979889500005), (-5.454986131999931, 57.10297272300005), (-5.447417772999927, 57.11017487200007), (-5.430775519999941, 57.11074453300006), (-5.41429602799991, 57.10822174700007), (-5.407215949999909, 57.10639069200005), (-5.400380011999914, 57.10639069200005), (-5.400380011999914, 57.11383698100008), (-5.420033331999946, 57.12067291900007), (-5.503895636999914, 57.11269765800006), (-5.527414516999954, 57.107489325000074), (-5.540638800999943, 57.10639069200005), (-5.5477188789999445, 57.11009349200003), (-5.573312954999949, 57.12787506700005), (-5.5846248039999296, 57.133693752000056), (-5.668446417999917, 57.147650458000044), (-5.6808975899999155, 57.157904364000046), (-5.673817511999914, 57.174994208000044), (-5.638824022999927, 57.202378648000035), (-5.625599738999938, 57.21625397300005), (-5.644154425999943, 57.23322174700007), (-5.620106574999909, 57.25214264500005), (-5.578236456999946, 57.26675039300005), (-5.543690558999913, 57.27090078300006), (-5.511586066999939, 57.25763580900008), (-5.480091925999943, 57.23700592700004), (-5.446278449999909, 57.22304922100005), (-5.407215949999909, 57.22992584800005), (-5.407215949999909, 57.23672109600005), (-5.448841925999943, 57.24209219000005), (-5.458119269999941, 57.24664948100008), (-5.47288977799991, 57.26121653900003), (-5.482899542999917, 57.268011786000045), (-5.49250240799995, 57.27090078300006), (-5.501942511999914, 57.27765534100007), (-5.4889216789999296, 57.29242584800005), (-5.464833136999914, 57.306626695000034), (-5.4406632149999155, 57.311835028000075), (-5.4406632149999155, 57.31928131700005), (-5.464995897999927, 57.32493724200003), (-5.4817602199999556, 57.31671784100007), (-5.494292772999927, 57.30442942900004), (-5.50617428299995, 57.298163153000075), (-5.523426886999914, 57.29515208500004), (-5.558461066999939, 57.28143952000005), (-5.57843990799995, 57.27765534100007), (-5.599436001999948, 57.27924225500004), (-5.637440558999913, 57.28900788000004), (-5.656971808999913, 57.29132721600007), (-5.7000626289999445, 57.28359609600005), (-5.720570441999939, 57.284491278000075), (-5.729318813999953, 57.298163153000075), (-5.7252498039999296, 57.30158112200007), (-5.701975063999953, 57.33234284100007), (-5.6937556629999335, 57.337103583000044), (-5.671986456999946, 57.34442780200004), (-5.663482225999928, 57.349676825000074), (-5.654367641999954, 57.353949286000045), (-5.647206183999913, 57.34992096600007), (-5.6414688789999445, 57.34320709800005), (-5.636545376999948, 57.33978913000004), (-5.613189256999931, 57.34198639500005), (-5.5012914699999556, 57.37099844000005), (-5.456654425999943, 57.39354075700004), (-5.4481095039999445, 57.42169830900008), (-5.46507727799991, 57.423895575000074), (-5.492054816999939, 57.40875885600008), (-5.5375056629999335, 57.373928127000056), (-5.563465949999909, 57.36310455900008), (-5.586659308999913, 57.36505768400008), (-5.610910610999952, 57.37140534100007), (-5.6399633449999556, 57.373928127000056), (-5.615589972999942, 57.382473049000055), (-5.607085740999935, 57.389105536000045), (-5.609201626999948, 57.397772528000075), (-5.617746548999946, 57.41010163000004), (-5.619618292999917, 57.41669342700004), (-5.624012824999909, 57.41640859600005), (-5.6399633449999556, 57.40802643400008), (-5.707183397999927, 57.35976797100005), (-5.732411261999914, 57.352769273000035), (-5.784575975999928, 57.34857819200005), (-5.807769334999932, 57.35492584800005), (-5.8248591789999296, 57.39435455900008), (-5.822255011999914, 57.39350006700005), (-5.817372199999909, 57.39520905200004), (-5.812855597999942, 57.398098049000055), (-5.8111873039999296, 57.40119049700007), (-5.813872850999928, 57.40452708500004), (-5.8231095039999445, 57.41233958500004), (-5.8248591789999296, 57.41547272300005), (-5.825266079999949, 57.428900458000044), (-5.821888800999943, 57.435532945000034), (-5.8111873039999296, 57.44220612200007), (-5.8215225899999155, 57.44546133000006), (-5.852528449999909, 57.450384833000044), (-5.859038865999935, 57.45270416900007), (-5.861195441999939, 57.46344635600008), (-5.870513475999928, 57.48078034100007), (-5.872670050999943, 57.49371979400007), (-5.869699673999946, 57.500881252000056), (-5.856068488999938, 57.51780833500004), (-5.8522029289999296, 57.52411530200004), (-5.8510636059999115, 57.538397528000075), (-5.851470506999931, 57.55109284100007), (-5.847075975999928, 57.55890534100007), (-5.831695115999935, 57.55882396000004), (-5.833851691999939, 57.563381252000056), (-5.837025519999941, 57.57477448100008), (-5.8391820949999556, 57.579291083000044), (-5.821400519999941, 57.583197333000044), (-5.803618943999936, 57.581366278000075), (-5.7863663399999155, 57.57518138200004), (-5.732574022999927, 57.54523346600007), (-5.715646938999953, 57.538397528000075), (-5.707020636999914, 57.542303778000075), (-5.68976803299995, 57.52789948100008), (-5.6808975899999155, 57.52411530200004), (-5.650868292999917, 57.51264069200005), (-5.6399633449999556, 57.511053778000075), (-5.645334438999953, 57.51666901200008), (-5.648304816999939, 57.52187734600005), (-5.650542772999927, 57.52680084800005), (-5.6535538399999155, 57.53156159100007), (-5.5815323559999115, 57.538397528000075), (-5.5402725899999155, 57.534491278000075), (-5.5168350899999155, 57.534857489000046), (-5.512684699999909, 57.54148997600004), (-5.543120897999927, 57.55536530200004), (-5.588368292999917, 57.56102122600004), (-5.632720506999931, 57.55768463700008), (-5.66038977799991, 57.544582424000055), (-5.694488084999932, 57.56631094000005), (-5.689198370999918, 57.56940338700008), (-5.6808975899999155, 57.579291083000044), (-5.714222785999937, 57.58270905200004), (-5.7316788399999155, 57.59829336100006), (-5.744252081999946, 57.61798737200007), (-5.762806769999941, 57.633978583000044), (-5.778146938999953, 57.63743724200003), (-5.7936091789999296, 57.63857656500005), (-5.8058975899999155, 57.642645575000074), (-5.8111873039999296, 57.65509674700007), (-5.805409308999913, 57.667181708000044), (-5.785023566999939, 57.67951080900008), (-5.790760870999918, 57.68854401200008), (-5.790760870999918, 57.69599030200004), (-5.753570115999935, 57.707464911000045), (-5.734486456999946, 57.70795319200005), (-5.704986131999931, 57.69013092700004), (-5.692494269999941, 57.691066799000055), (-5.68195553299995, 57.69871653900003), (-5.67406165299991, 57.70966217700004), (-5.685170050999943, 57.71141185100004), (-5.692290818999936, 57.716498114000046), (-5.698841925999943, 57.723089911000045), (-5.708851691999939, 57.72955963700008), (-5.720529751999948, 57.73338450700004), (-5.803822394999941, 57.743841864000046), (-5.80695553299995, 57.75462474200003), (-5.8020727199999556, 57.780585028000075), (-5.803822394999941, 57.792222398000035), (-5.801258917999917, 57.800441799000055), (-5.809925910999937, 57.82062409100007), (-5.8111873039999296, 57.833197333000044), (-5.807362433999913, 57.84393952000005), (-5.799956834999932, 57.85370514500005), (-5.789540167999917, 57.86200592700004), (-5.776519334999932, 57.86790599200003), (-5.751128709999932, 57.87335846600007), (-5.724761522999927, 57.87352122600004), (-5.698638475999928, 57.86908600500004), (-5.67406165299991, 57.86050039300005), (-5.677886522999927, 57.846909898000035), (-5.674794074999909, 57.82709381700005), (-5.667958136999914, 57.80695221600007), (-5.66038977799991, 57.792222398000035), (-5.650542772999927, 57.78180573100008), (-5.6373591789999296, 57.77423737200007), (-5.622141079999949, 57.77020905200004), (-5.60578365799995, 57.77049388200004), (-5.613270636999914, 57.77521393400008), (-5.617909308999913, 57.78021881700005), (-5.625599738999938, 57.792222398000035), (-5.613026495999918, 57.792629299000055), (-5.603260870999918, 57.791083075000074), (-5.5846248039999296, 57.784816799000055), (-5.591175910999937, 57.80442942900004), (-5.587025519999941, 57.81858958500004), (-5.5852758449999556, 57.83144765800006), (-5.598988410999937, 57.846869208000044), (-5.6375626289999445, 57.86635976800005), (-5.650380011999914, 57.87775299700007), (-5.6399633449999556, 57.88784414300005), (-5.6476944649999155, 57.88898346600007), (-5.6507869129999335, 57.89081452000005), (-5.6535538399999155, 57.89468008000006), (-5.643950975999928, 57.90420156500005), (-5.620757615999935, 57.92088450700004), (-5.6126195949999556, 57.92877838700008), (-5.598215298999946, 57.91901276200008), (-5.587310350999928, 57.91510651200008), (-5.550526495999918, 57.91510651200008), (-5.556263800999943, 57.88776276200008), (-5.527902798999946, 57.86758047100005), (-5.487049933999913, 57.85586172100005), (-5.454986131999931, 57.85370514500005), (-5.46117102799991, 57.86050039300005), (-5.449045376999948, 57.869126695000034), (-5.437123175999943, 57.897650458000044), (-5.427642381999931, 57.908270575000074), (-5.4149063789999445, 57.90814850500004), (-5.369496222999942, 57.89752838700008), (-5.355620897999927, 57.89126211100006), (-5.327504035999937, 57.87327708500004), (-5.293853318999936, 57.86204661700003), (-5.221587693999936, 57.846869208000044), (-5.236317511999914, 57.86078522300005), (-5.2475479809999115, 57.86701080900008), (-5.276763475999928, 57.87417226800005), (-5.320668097999942, 57.898504950000074), (-5.384917772999927, 57.914129950000074), (-5.39289303299995, 57.91819896000004), (-5.394398566999939, 57.923895575000074), (-5.396839972999942, 57.926214911000045), (-5.3973282539999445, 57.928900458000044), (-5.39289303299995, 57.935614325000074), (-5.386545376999948, 57.936428127000056), (-5.378977016999954, 57.93183014500005), (-5.3717341789999296, 57.93105703300006), (-5.366200324999909, 57.943060614000046), (-5.3471573559999115, 57.936712958000044), (-5.319162563999953, 57.91474030200004), (-5.297352667999917, 57.908270575000074), (-5.2860001289999445, 57.90875885600008), (-5.266957160999937, 57.91400788000004), (-5.2562556629999335, 57.91510651200008), (-5.2436417309999115, 57.91290924700007), (-5.22101803299995, 57.90403880400004), (-5.211293097999942, 57.90208567900004), (-5.198801235999952, 57.897772528000075), (-5.162261522999927, 57.87848541900007), (-5.1199845039999445, 57.86798737200007), (-5.0911352199999556, 57.84031810100004), (-5.070790167999917, 57.833197333000044), (-5.07648678299995, 57.83852773600006), (-5.083404100999928, 57.84756094000005), (-5.0893448559999115, 57.85724518400008), (-5.091867641999954, 57.86420319200005), (-5.0971573559999115, 57.87091705900008), (-5.197255011999914, 57.91787344000005), (-5.221587693999936, 57.92133209800005), (-5.221587693999936, 57.92877838700008), (-5.201893683999913, 57.92865631700005), (-5.193959113999938, 57.935980536000045), (-5.19554602799991, 57.94765859600005), (-5.204497850999928, 57.960150458000044), (-5.216704881999931, 57.96588776200008), (-5.2488907539999445, 57.96938711100006), (-5.2631729809999115, 57.976548570000034), (-5.292632615999935, 57.98061758000006), (-5.333892381999931, 58.00853099200003), (-5.359364386999914, 58.011379299000055), (-5.357167120999918, 58.01406484600005), (-5.3566788399999155, 58.014878648000035), (-5.351918097999942, 58.01752350500004), (-5.366932745999918, 58.02887604400007), (-5.386586066999939, 58.032538153000075), (-5.427642381999931, 58.03119538000004), (-5.424305792999917, 58.03554922100005), (-5.422352667999917, 58.03896719000005), (-5.419585740999935, 58.04205963700008), (-5.413929816999939, 58.04547760600008), (-5.413929816999939, 58.05231354400007), (-5.447010870999918, 58.08437734600005), (-5.428089972999942, 58.09796784100007), (-5.390044725999928, 58.09218984600005), (-5.366200324999909, 58.06598541900007), (-5.344309048999946, 58.075506903000075), (-5.322865363999938, 58.07172272300005), (-5.300770636999914, 58.07013580900008), (-5.276763475999928, 58.08641185100004), (-5.283070441999939, 58.08641185100004), (-5.278065558999913, 58.09625885600008), (-5.2787979809999115, 58.10537344000005), (-5.283558722999942, 58.11347077000005), (-5.2905167309999115, 58.12055084800005), (-5.276763475999928, 58.12055084800005), (-5.276763475999928, 58.127386786000045), (-5.297352667999917, 58.134833075000074), (-5.284087693999936, 58.14008209800005), (-5.255523240999935, 58.143784898000035), (-5.242054816999939, 58.14789459800005), (-5.242054816999939, 58.15534088700008), (-5.275054490999935, 58.15452708500004), (-5.290842251999948, 58.156317450000074), (-5.304798956999946, 58.162095445000034), (-5.297352667999917, 58.168402411000045), (-5.304798956999946, 58.17332591400003), (-5.313059048999946, 58.17731354400007), (-5.321888800999943, 58.18024323100008), (-5.331450975999928, 58.18203359600005), (-5.3293350899999155, 58.186712958000044), (-5.326161261999914, 58.198431708000044), (-5.323963995999918, 58.203111070000034), (-5.336822068999936, 58.203192450000074), (-5.346791144999941, 58.20685455900008), (-5.39289303299995, 58.24469635600008), (-5.3920792309999115, 58.261379299000055), (-5.375884568999936, 58.26422760600008), (-5.352894660999937, 58.25893789300005), (-5.31078040299991, 58.243394273000035), (-5.293853318999936, 58.24091217700004), (-5.276966925999943, 58.243394273000035), (-5.237294074999909, 58.25763580900008), (-5.2160538399999155, 58.261419989000046), (-5.194325324999909, 58.25999583500004), (-5.173207160999937, 58.25092194200005), (-5.165638800999943, 58.258246161000045), (-5.152251756999931, 58.264837958000044), (-5.138335740999935, 58.269598700000074), (-5.129383917999917, 58.27138906500005), (-5.11156165299991, 58.26825592700004), (-5.0812882149999155, 58.25409577000005), (-5.0676977199999556, 58.25092194200005), (-5.017730272999927, 58.253241278000075), (-5.002430792999917, 58.25092194200005), (-4.933583136999914, 58.22304922100005), (-4.943430141999954, 58.233587958000044), (-4.954823370999918, 58.23981354400007), (-4.982004360999952, 58.25092194200005), (-4.968861456999946, 58.25678131700005), (-4.940337693999936, 58.259466864000046), (-4.926747199999909, 58.26459381700005), (-4.990223761999914, 58.27142975500004), (-5.009917772999927, 58.27138906500005), (-5.018055792999917, 58.26862213700008), (-5.029367641999954, 58.25971100500004), (-5.040028449999909, 58.25775788000004), (-5.0501195949999556, 58.25991445500006), (-5.0707087879999335, 58.269232489000046), (-5.081654425999943, 58.27138906500005), (-5.096424933999913, 58.27676015800006), (-5.125965949999909, 58.30019765800006), (-5.1362198559999115, 58.305568752000056), (-5.137440558999913, 58.30927155200004), (-5.156361456999946, 58.32461172100005), (-5.160145636999914, 58.326605536000045), (-5.167795376999948, 58.33926015800006), (-5.171009894999941, 58.34666575700004), (-5.173207160999937, 58.353949286000045), (-5.153309699999909, 58.353949286000045), (-5.1634008449999556, 58.364569403000075), (-5.162912563999953, 58.37449778900003), (-5.155913865999935, 58.384466864000046), (-5.146473761999914, 58.394964911000045), (-5.145497199999909, 58.400051174000055), (-5.14671790299991, 58.40664297100005), (-5.146839972999942, 58.41242096600007), (-5.143055792999917, 58.41478099200003), (-5.135487433999913, 58.413763739000046), (-5.122222459999932, 58.40957265800006), (-5.116037563999953, 58.40859609600005), (-5.057972785999937, 58.38727448100008), (-5.016184048999946, 58.38812897300005), (-5.043934699999909, 58.400091864000046), (-5.0533748039999296, 58.40664297100005), (-5.0502823559999115, 58.41478099200003), (-5.0570369129999335, 58.42218659100007), (-5.066151495999918, 58.41714101800005), (-5.076161261999914, 58.414496161000045), (-5.086822068999936, 58.41388580900008), (-5.0980525379999335, 58.41478099200003), (-5.0980525379999335, 58.42218659100007), (-5.08812415299991, 58.421942450000074), (-5.085031704999949, 58.42218659100007), (-5.085031704999949, 58.429022528000075), (-5.091786261999914, 58.429754950000074), (-5.09601803299995, 58.43146393400008), (-5.105539516999954, 58.43650950700004), (-5.0501195949999556, 58.45380280200004), (-5.025542772999927, 58.447699286000045), (-4.9955948559999115, 58.43650950700004), (-5.105539516999954, 58.48737213700008), (-5.105620897999927, 58.505560614000046), (-5.103667772999927, 58.51422760600008), (-5.095855272999927, 58.518866278000075), (-5.042795376999948, 58.53546784100007), (-5.0279841789999296, 58.54409414300005), (-5.016184048999946, 58.55939362200007), (-5.0229386059999115, 58.55939362200007), (-5.015207485999952, 58.580064195000034), (-5.011586066999939, 58.60057200700004), (-5.004953579999949, 58.61774323100008), (-4.988189256999931, 58.62832265800006), (-4.859486456999946, 58.61322663000004), (-4.835926886999914, 58.60504791900007), (-4.818104620999918, 58.59292226800005), (-4.817941860999952, 58.587591864000046), (-4.81281490799995, 58.571966864000046), (-4.806752081999946, 58.55841705900008), (-4.803822394999941, 58.55939362200007), (-4.804595506999931, 58.54832591400003), (-4.807240363999938, 58.53961823100008), (-4.811634894999941, 58.53204987200007), (-4.818104620999918, 58.524644273000035), (-4.799794074999909, 58.532456773000035), (-4.791818813999953, 58.54165273600006), (-4.7899063789999445, 58.55174388200004), (-4.790150519999941, 58.562486070000034), (-4.785755988999938, 58.577053127000056), (-4.777088995999918, 58.583319403000075), (-4.771595831999946, 58.59039948100008), (-4.776519334999932, 58.60716380400004), (-4.758859829999949, 58.59910716400003), (-4.7280167309999115, 58.577460028000075), (-4.7113337879999335, 58.57306549700007), (-4.683257615999935, 58.56150950700004), (-4.670399542999917, 58.55939362200007), (-4.660023566999939, 58.555853583000044), (-4.659291144999941, 58.54755280200004), (-4.663238084999932, 58.538397528000075), (-4.6673070949999556, 58.53204987200007), (-4.6790258449999556, 58.52391185100004), (-4.714466925999943, 58.50560130400004), (-4.732411261999914, 58.480454820000034), (-4.751535610999952, 58.46161530200004), (-4.7609757149999155, 58.44798411700003), (-4.74242102799991, 58.44953034100007), (-4.682972785999937, 58.48456452000005), (-4.673451300999943, 58.48737213700008), (-4.6668595039999445, 58.50291575700004), (-4.650502081999946, 58.50995514500005), (-4.630441860999952, 58.514960028000075), (-4.612131313999953, 58.524644273000035), (-4.6010636059999115, 58.54193756700005), (-4.595122850999928, 58.56000397300005), (-4.584950324999909, 58.57416413000004), (-4.560536261999914, 58.57990143400008), (-4.517486131999931, 58.575506903000075), (-4.475493943999936, 58.565619208000044), (-4.426503058999913, 58.54637278900003), (-4.426503058999913, 58.53888580900008), (-4.427886522999927, 58.53530508000006), (-4.428700324999909, 58.53473541900007), (-4.426503058999913, 58.524644273000035), (-4.449940558999913, 58.510199286000045), (-4.464751756999931, 58.49201080900008), (-4.477650519999941, 58.47134023600006), (-4.4953507149999155, 58.44953034100007), (-4.478098110999952, 58.453558661000045), (-4.46117102799991, 58.46246979400007), (-4.43390865799995, 58.483628648000035), (-4.432728644999941, 58.487616278000075), (-4.4339900379999335, 58.49237702000005), (-4.4342341789999296, 58.49628327000005), (-4.430165167999917, 58.49799225500004), (-4.425933397999927, 58.49909088700008), (-4.385365363999938, 58.52240631700005), (-4.382394985999952, 58.524644273000035), (-4.343861456999946, 58.53888580900008), (-4.317005988999938, 58.54572174700007), (-4.306996222999942, 58.54637278900003), (-4.287180141999954, 58.54291413000004), (-4.2573136059999115, 58.52798086100006), (-4.234730597999942, 58.524644273000035), (-4.248931443999936, 58.53204987200007), (-4.238189256999931, 58.536444403000075), (-4.232248501999948, 58.54242584800005), (-4.227691209999932, 58.548163153000075), (-4.22101803299995, 58.551947333000044), (-4.209706183999913, 58.55292389500005), (-4.190785285999937, 58.54783763200004), (-4.1769913399999155, 58.54637278900003), (-4.16820227799991, 58.54938385600008), (-4.1605525379999335, 58.562567450000074), (-4.149322068999936, 58.565619208000044), (-4.111195441999939, 58.565619208000044), (-4.0902400379999335, 58.56207916900007), (-4.081450975999928, 58.561835028000075), (-4.070220506999931, 58.565619208000044), (-4.061512824999909, 58.57282135600008), (-4.048817511999914, 58.58958567900004), (-4.039784308999913, 58.59292226800005), (-4.030629035999937, 58.59406159100007), (-4.029042120999918, 58.59516022300005), (-4.027821417999917, 58.59271881700005), (-4.0092667309999115, 58.57330963700008), (-4.003773566999939, 58.57062409100007), (-3.981434699999909, 58.57306549700007), (-3.8957413399999155, 58.565619208000044), (-3.8101293609999516, 58.57306549700007), (-3.7669571609999366, 58.58372630400004), (-3.6983536449999406, 58.61115143400008), (-3.659901495999918, 58.62083567900004), (-3.597564256999931, 58.62714264500005), (-3.565500454999949, 58.626613674000055), (-3.542591925999943, 58.62083567900004), (-3.552479620999918, 58.61546458500004), (-3.556263800999943, 58.61399974200003), (-3.532053188999953, 58.60211823100008), (-3.504017706999946, 58.60333893400008), (-3.447010870999918, 58.61399974200003), (-3.3914688789999445, 58.60065338700008), (-3.364084438999953, 58.600816148000035), (-3.3508194649999155, 58.62083567900004), (-3.3677465489999463, 58.624701239000046), (-3.3860570949999556, 58.631740627000056), (-3.402251756999931, 58.64203522300005), (-3.412912563999953, 58.655585028000075), (-3.3900447259999282, 58.67177969000005), (-3.3748673169999392, 58.677069403000075), (-3.3582657539999445, 58.675482489000046), (-3.3543595039999445, 58.67015208500004), (-3.35179602799991, 58.66083405200004), (-3.34788977799991, 58.652044989000046), (-3.340565558999913, 58.648138739000046), (-3.3098852199999556, 58.648138739000046), (-3.244252081999946, 58.65900299700007), (-3.204090949999909, 58.66111888200004), (-3.1519262359999516, 58.64126211100006), (-3.118763800999943, 58.64109935100004), (-3.052886522999927, 58.648138739000046), (-3.0191137359999516, 58.640326239000046), (-3.025380011999914, 58.62213776200008), (-3.0444229809999115, 58.601629950000074), (-3.049183722999942, 58.58673737200007), (-3.060454881999931, 58.57843659100007), (-3.0754288399999155, 58.56037018400008), (-3.0845434239999463, 58.551947333000044), (-3.1107478509999282, 58.53864166900007), (-3.1180313789999445, 58.53204987200007), (-3.129261847999942, 58.51264069200005), (-3.1293025379999335, 58.49640534100007), (-3.1187231109999516, 58.484442450000074), (-3.0975235669999392, 58.47748444200005), (-3.0850723949999406, 58.47825755400004), (-3.073963995999918, 58.481675523000035), (-3.064442511999914, 58.48297760600008), (-3.056630011999914, 58.47748444200005), (-3.053334113999938, 58.46576569200005), (-3.0577286449999406, 58.45685455900008), (-3.066761847999942, 58.451157945000034), (-3.077056443999936, 58.44953034100007), (-3.0863337879999335, 58.41421133000006), (-3.129790818999936, 58.36928945500006), (-3.182769334999932, 58.32843659100007), (-3.2205297519999476, 58.305568752000056), (-3.2622777989999463, 58.292629299000055), (-3.34984290299991, 58.27610911700003), (-3.38499915299991, 58.26459381700005), (-3.438099738999938, 58.236029364000046), (-3.447010870999918, 58.22675202000005), (-3.454741990999935, 58.210150458000044), (-3.473459438999953, 58.193426825000074), (-3.515288865999935, 58.168402411000045), (-3.7350154289999296, 58.07217031500005), (-3.809193488999938, 58.05190664300005), (-3.8275040359999366, 58.04205963700008), (-3.8362524079999503, 58.03143952000005), (-3.8460994129999335, 58.01117584800005), (-3.851714647999927, 58.003892320000034), (-3.8605850899999155, 57.998928127000056), (-3.8856095039999445, 57.991400458000044), (-3.9173070949999556, 57.98745351800005), (-3.981434699999909, 57.96356842700004), (-3.990956183999913, 57.96039459800005), (-3.997670050999943, 57.954413153000075), (-4.001372850999928, 57.94611237200007), (-4.001942511999914, 57.935614325000074), (-4.018299933999913, 57.940619208000044), (-4.023060675999943, 57.943060614000046), (-4.016184048999946, 57.949286200000074), (-4.0301407539999445, 57.953192450000074), (-4.055775519999941, 57.95498281500005), (-4.0843806629999335, 57.964178778000075), (-4.0891007149999155, 57.960150458000044), (-4.0863337879999335, 57.95189036700003), (-4.0776261059999115, 57.943060614000046), (-4.062652147999927, 57.93695709800005), (-4.03148352799991, 57.93618398600006), (-4.016184048999946, 57.93219635600008), (-4.009429490999935, 57.92767975500004), (-3.988270636999914, 57.908270575000074), (-4.008941209999932, 57.88959381700005), (-4.013824022999927, 57.879339911000045), (-4.009348110999952, 57.86790599200003), (-4.025135870999918, 57.868068752000056), (-4.054839647999927, 57.874335028000075), (-4.070220506999931, 57.87417226800005), (-4.0793350899999155, 57.87026601800005), (-4.0969132149999155, 57.85736725500004), (-4.1049698559999115, 57.85370514500005), (-4.132923956999946, 57.85415273600006), (-4.190419074999909, 57.87006256700005), (-4.218169725999928, 57.87417226800005), (-4.298898891999954, 57.86277903900003), (-4.3209529289999296, 57.87103913000004), (-4.353179490999935, 57.89520905200004), (-4.3723038399999155, 57.90448639500005), (-4.392404751999948, 57.908270575000074), (-4.339588995999918, 57.86570872600004), (-4.307728644999941, 57.85146719000005), (-4.269398566999939, 57.846869208000044), (-4.229074673999946, 57.85724518400008), (-4.2082413399999155, 57.85919830900008), (-4.190581834999932, 57.85028717700004), (-4.173451300999943, 57.83901601800005), (-4.1497289699999556, 57.82982005400004), (-4.1334529289999296, 57.830145575000074), (-4.1390681629999335, 57.846869208000044), (-4.0750626289999445, 57.82318756700005), (-4.0399063789999445, 57.81818268400008), (-3.9835098949999406, 57.84235260600008), (-3.9514867829999503, 57.838324286000045), (-3.933705206999946, 57.82566966400003), (-3.9473363919999542, 57.81268952000005), (-3.914784308999913, 57.80768463700008), (-3.877674933999913, 57.81671784100007), (-3.8418676419999542, 57.83490631700005), (-3.813547329999949, 57.857123114000046), (-3.798451300999943, 57.866522528000075), (-3.786040818999936, 57.86542389500005), (-3.779449022999927, 57.85565827000005), (-3.782215949999909, 57.83942291900007), (-3.790028449999909, 57.83071523600006), (-3.92601477799991, 57.734808661000045), (-3.948841925999943, 57.72492096600007), (-3.975209113999938, 57.70327383000006), (-3.988270636999914, 57.69599030200004), (-4.00804602799991, 57.693793036000045), (-4.02367102799991, 57.69782135600008), (-4.0286352199999556, 57.70770905200004), (-4.016184048999946, 57.72333405200004), (-4.042958136999914, 57.73729075700004), (-4.077951626999948, 57.73029205900008), (-4.155344204999949, 57.692572333000044), (-4.168568488999938, 57.689439195000034), (-4.1939998039999296, 57.68854401200008), (-4.2592667309999115, 57.67869700700004), (-4.277821417999917, 57.68060944200005), (-4.294789191999939, 57.68016185100004), (-4.302154100999928, 57.66860586100006), (-4.30882727799991, 57.65485260600008), (-4.324045376999948, 57.64826080900008), (-4.33820553299995, 57.64508698100008), (-4.4031876289999445, 57.60952383000006), (-4.412180141999954, 57.60297272300005), (-4.4203181629999335, 57.592962958000044), (-4.428456183999913, 57.57754140800006), (-4.423451300999943, 57.57680898600006), (-4.409901495999918, 57.582464911000045), (-4.379872199999909, 57.58934153900003), (-4.365101691999939, 57.59723541900007), (-4.3510636059999115, 57.60736725500004), (-4.340809699999909, 57.617173570000034), (-4.328724738999938, 57.626288153000075), (-4.283111131999931, 57.64142487200007), (-4.2445369129999335, 57.66303131700005), (-4.201893683999913, 57.674994208000044), (-4.1937556629999335, 57.67552317900004), (-4.182240363999938, 57.67279694200005), (-4.169016079999949, 57.663763739000046), (-4.118723110999952, 57.65770091400003), (-4.096791144999941, 57.65810781500005), (-4.0807185539999296, 57.66498444200005), (-4.068104620999918, 57.672308661000045), (-4.0246475899999155, 57.687201239000046), (-4.009348110999952, 57.68854401200008), (-4.004505988999938, 57.67597077000005), (-4.025257941999939, 57.65521881700005), (-4.0541886059999115, 57.63572825700004), (-4.083404100999928, 57.62335846600007), (-4.118560350999928, 57.592962958000044), (-4.11546790299991, 57.58783600500004), (-4.112294074999909, 57.58413320500006), (-4.1088761059999115, 57.58144765800006), (-4.1049698559999115, 57.579291083000044), (-4.151356574999909, 57.57684967700004), (-4.170643683999913, 57.570746161000045), (-4.187489386999914, 57.55882396000004), (-4.178089972999942, 57.54954661700003), (-4.184925910999937, 57.548163153000075), (-4.207997199999909, 57.552069403000075), (-4.262603318999936, 57.552069403000075), (-4.262603318999936, 57.544582424000055), (-4.233957485999952, 57.54511139500005), (-4.220285610999952, 57.543402411000045), (-4.207997199999909, 57.538397528000075), (-4.226307745999918, 57.51544830900008), (-4.237456834999932, 57.50531647300005), (-4.248931443999936, 57.49746328300006), (-4.212798631999931, 57.492173570000034), (-4.1948136059999115, 57.49160390800006), (-4.173898891999954, 57.49746328300006), (-4.157622850999928, 57.50849030200004), (-4.150054490999935, 57.51504140800006), (-4.149322068999936, 57.51788971600007), (-4.126779751999948, 57.518866278000075), (-4.116200324999909, 57.52179596600007), (-4.097523566999939, 57.53668854400007), (-4.082997199999909, 57.54441966400003), (-4.067290818999936, 57.54995351800005), (-4.0531306629999335, 57.552069403000075), (-4.034982876999948, 57.55687083500004), (-4.046457485999952, 57.56785716400003), (-4.083851691999939, 57.58612702000005), (-4.056019660999937, 57.585150458000044), (-3.9643448559999115, 57.592962958000044), (-3.8682755199999406, 57.587876695000034), (-3.8374731109999516, 57.592962958000044), (-3.6848038399999155, 57.65444570500006), (-3.625152147999927, 57.66193268400008), (-3.632557745999918, 57.65094635600008), (-3.637684699999909, 57.64622630400004), (-3.6456192699999406, 57.64142487200007), (-3.632476365999935, 57.635646877000056), (-3.6196182929999168, 57.63621653900003), (-3.606068488999938, 57.63947174700007), (-3.590972459999932, 57.64142487200007), (-3.61156165299991, 57.66811758000006), (-3.5747777989999463, 57.66111888200004), (-3.55492102799991, 57.659857489000046), (-3.535755988999938, 57.66193268400008), (-3.521473761999914, 57.66779205900008), (-3.5054418609999516, 57.67865631700005), (-3.4959610669999392, 57.69135163000004), (-3.501698370999918, 57.702826239000046), (-3.491851365999935, 57.71312083500004), (-3.4828181629999335, 57.71401601800005), (-3.4730525379999335, 57.711004950000074), (-3.460682745999918, 57.70966217700004), (-3.447865363999938, 57.71246979400007), (-3.4212540359999366, 57.72138092700004), (-3.409169074999909, 57.72333405200004), (-3.2847387359999516, 57.72044505400004), (-3.2100723949999406, 57.69399648600006), (-3.0786840489999463, 57.66941966400003), (-3.034901495999918, 57.66860586100006), (-2.994496222999942, 57.67552317900004), (-2.932687954999949, 57.69961172100005), (-2.9160863919999542, 57.702826239000046), (-2.75804602799991, 57.702826239000046), (-2.7512100899999155, 57.70062897300005), (-2.741118943999936, 57.69086334800005), (-2.731068488999938, 57.68854401200008), (-2.719878709999932, 57.690619208000044), (-2.711537238999938, 57.69399648600006), (-2.7035212879999335, 57.69472890800006), (-2.6929418609999516, 57.68854401200008), (-2.658924933999913, 57.69745514500005), (-2.573394334999932, 57.68146393400008), (-2.541981574999909, 57.68235911700003), (-2.526112433999913, 57.66860586100006), (-2.5181371739999463, 57.67011139500005), (-2.5110570949999556, 57.677801825000074), (-2.497954881999931, 57.68235911700003), (-2.4800512359999516, 57.68121979400007), (-2.4328507149999155, 57.66811758000006), (-2.425526495999918, 57.67572663000004), (-2.4177953769999476, 57.674261786000045), (-2.4087621739999463, 57.669623114000046), (-2.398060675999943, 57.66811758000006), (-2.3865860669999392, 57.671576239000046), (-2.369496222999942, 57.680568752000056), (-2.360503709999932, 57.68235911700003), (-2.3410538399999155, 57.675848700000074), (-2.3289688789999445, 57.67405833500004), (-2.3235977859999366, 57.678941148000035), (-2.32054602799991, 57.68455638200004), (-2.313384568999936, 57.68992747600004), (-2.3040665359999366, 57.69399648600006), (-2.295643683999913, 57.69599030200004), (-2.274322068999936, 57.69383372600004), (-2.230132615999935, 57.67914459800005), (-2.209950324999909, 57.67552317900004), (-2.1840714179999168, 57.67845286700003), (-2.1243383449999556, 57.702826239000046), (-2.108143683999913, 57.70498281500005), (-1.9976700509999432, 57.702826239000046), (-1.9969376289999445, 57.69904205900008), (-1.990834113999938, 57.69037506700005), (-1.982167120999918, 57.68109772300005), (-1.9735001289999445, 57.67552317900004), (-1.961293097999942, 57.674709377000056), (-1.9447322259999282, 57.68256256700005), (-1.9324845039999445, 57.68235911700003), (-1.9256892569999309, 57.678168036000045), (-1.914214647999927, 57.66474030200004), (-1.8294571609999366, 57.61347077000005), (-1.820464647999927, 57.59634023600006), (-1.817005988999938, 57.578192450000074), (-1.8113907539999445, 57.56049225500004), (-1.7960098949999406, 57.544582424000055), (-1.7960098949999406, 57.538397528000075), (-1.8000382149999155, 57.52586497600004), (-1.7895401679999168, 57.514837958000044), (-1.7611384759999282, 57.49746328300006), (-1.7753800119999141, 57.496527411000045), (-1.7821345689999362, 57.48899974200003), (-1.7812393869999141, 57.48041413000004), (-1.7717179029999102, 57.476263739000046), (-1.7593481109999516, 57.47357819200005), (-1.7659399079999503, 57.46743398600006), (-1.7891739569999459, 57.45644765800006), (-1.8301488919999542, 57.42617422100005), (-1.8474828769999476, 57.40814850500004), (-1.849964972999942, 57.39435455900008), (-1.9544978509999282, 57.341131903000075), (-1.9802953769999476, 57.31928131700005), (-2.044667120999918, 57.22650788000004), (-2.068511522999927, 57.17462799700007), (-2.074126756999931, 57.15420156500005), (-2.0714005199999406, 57.13556549700007), (-2.052357550999943, 57.12742747600004), (-2.0493057929999168, 57.118841864000046), (-2.065256313999953, 57.10053131700005), (-2.0658259759999282, 57.09983958500004), (-2.156158006999931, 57.020697333000044), (-2.1869197259999282, 56.98468659100007), (-2.200103318999936, 56.94871653900003), (-2.1971329419999392, 56.94025299700007), (-2.1912328769999476, 56.93414948100008), (-2.186268683999913, 56.92674388200004), (-2.1863907539999445, 56.91453685100004), (-2.191314256999931, 56.90892161700003), (-2.209706183999913, 56.895819403000075), (-2.213693813999953, 56.890692450000074), (-2.219878709999932, 56.87262604400007), (-2.23460852799991, 56.861395575000074), (-2.2689509759999282, 56.84634023600006), (-2.295806443999936, 56.82526276200008), (-2.3198136059999115, 56.80158112200007), (-2.336089647999927, 56.79083893400008), (-2.3918350899999155, 56.771185614000046), (-2.4086807929999168, 56.762925523000035), (-2.4264216789999296, 56.751288153000075), (-2.4359431629999335, 56.74038320500006), (-2.4407445949999556, 56.73484935100004), (-2.4516495429999168, 56.69098541900007), (-2.4637345039999445, 56.67877838700008), (-2.4774063789999445, 56.66868724200003), (-2.487456834999932, 56.65387604400007), (-2.4875382149999155, 56.64606354400007), (-2.481271938999953, 56.63239166900007), (-2.480620897999927, 56.62653229400007), (-2.4861954419999392, 56.619574286000045), (-2.504058397999927, 56.60883209800005), (-2.514556443999936, 56.591498114000046), (-2.530018683999913, 56.58075592700004), (-2.623768683999913, 56.543402411000045), (-2.6409399079999503, 56.522365627000056), (-2.6613663399999155, 56.51422760600008), (-2.6997777989999463, 56.50364817900004), (-2.708729620999918, 56.49599844000005), (-2.7276505199999406, 56.46954987200007), (-2.737294074999909, 56.46702708500004), (-2.74437415299991, 56.46954987200007), (-2.752308722999942, 56.47361888200004), (-2.764800584999932, 56.47573476800005), (-2.819325324999909, 56.47129954600007), (-3.055653449999909, 56.45213450700004), (-3.0606176419999542, 56.45172760600008), (-3.099273240999935, 56.44188060100004), (-3.1339005199999406, 56.426947333000044), (-3.238189256999931, 56.36774323100008), (-3.280181443999936, 56.35789622600004), (-3.3234757149999155, 56.36591217700004), (-3.311512824999909, 56.35651276200008), (-3.294016079999949, 56.352769273000035), (-3.2515356109999516, 56.352850653000075), (-3.230620897999927, 56.35602448100008), (-3.188384568999936, 56.37018463700008), (-3.149566209999932, 56.37555573100008), (-2.950266079999949, 56.43187083500004), (-2.9399307929999168, 56.43854401200008), (-2.930653449999909, 56.44806549700007), (-2.909087693999936, 56.45571523600006), (-2.88499915299991, 56.45799388200004), (-2.867909308999913, 56.45184967700004), (-2.8500870429999168, 56.44204336100006), (-2.8147680329999503, 56.44041575700004), (-2.8028051419999542, 56.42796458500004), (-2.800892706999946, 56.40892161700003), (-2.808257615999935, 56.391058661000045), (-2.8216039699999556, 56.376166083000044), (-2.837554490999935, 56.36591217700004), (-2.8129776679999168, 56.36591217700004), (-2.809193488999938, 56.36286041900007), (-2.8047582669999542, 56.34910716400003), (-2.8028051419999542, 56.345404364000046), (-2.7914932929999168, 56.34247467700004), (-2.7826228509999282, 56.34162018400008), (-2.7752579419999392, 56.33942291900007), (-2.768625454999949, 56.33234284100007), (-2.6771541009999282, 56.32843659100007), (-2.655262824999909, 56.32217031500005), (-2.621205206999946, 56.30442942900004), (-2.613189256999931, 56.30190664300005), (-2.5768123039999296, 56.28392161700003), (-2.5768123039999296, 56.277777411000045), (-2.6301163399999155, 56.24852122600004), (-2.648345506999931, 56.22870514500005), (-2.672027147999927, 56.22239817900004), (-2.7202042309999115, 56.21629466400003), (-2.7835994129999335, 56.19196198100008), (-2.8061417309999115, 56.188381252000056), (-2.8307185539999296, 56.190741278000075), (-2.8920792309999115, 56.20888906500005), (-2.940052863999938, 56.209418036000045), (-2.9643448559999115, 56.20563385600008), (-2.9746801419999542, 56.19830963700008), (-2.982411261999914, 56.189113674000055), (-3.0355525379999335, 56.16791413000004), (-3.0910538399999155, 56.13226959800005), (-3.107533331999946, 56.12689850500004), (-3.127552863999938, 56.12287018400008), (-3.138295050999943, 56.112209377000056), (-3.152251756999931, 56.07851797100005), (-3.1635636059999115, 56.06386953300006), (-3.1783748039999296, 56.05809153900003), (-3.2484431629999335, 56.055975653000075), (-3.268381313999953, 56.05093008000006), (-3.3030492829999503, 56.037543036000045), (-3.342681443999936, 56.02716705900008), (-3.381825324999909, 56.02338288000004), (-3.420969204999949, 56.02488841400003), (-3.5825902989999463, 56.05174388200004), (-3.671498175999943, 56.050848700000074), (-3.710031704999949, 56.05809153900003), (-3.7454320949999556, 56.07221100500004), (-3.7464900379999335, 56.072780666000085), (-3.782215949999909, 56.09218984600005), (-3.8031306629999335, 56.107123114000046), (-3.817005988999938, 56.11225006700005), (-3.8374731109999516, 56.112616278000075), (-3.8374731109999516, 56.10643138200004), (-3.777699347999942, 56.08283112200007), (-3.769154425999943, 56.07514069200005), (-3.7608536449999406, 56.07245514500005), (-3.7264298169999392, 56.03803131700005), (-3.721424933999913, 56.03070709800005), (-3.712635870999918, 56.028998114000046), (-3.693470831999946, 56.03115469000005), (-3.6866348949999406, 56.03070709800005), (-3.6795548169999392, 56.025458075000074), (-3.674794074999909, 56.01870351800005), (-3.6682836579999503, 56.01276276200008), (-3.656239386999914, 56.010199286000045), (-3.599720831999946, 56.017238674000055), (-3.5773819649999155, 56.01703522300005), (-3.405425584999932, 55.98973216400003), (-3.3582657539999445, 55.98973216400003), (-3.340891079999949, 55.99445221600007), (-3.331044074999909, 55.99408600500004), (-3.320423956999946, 55.986029364000046), (-3.303456183999913, 55.97760651200008), (-3.121815558999913, 55.96930573100008), (-3.1147354809999115, 55.966131903000075), (-3.096831834999932, 55.95197174700007), (-3.090728318999936, 55.94818756700005), (-3.078236456999946, 55.94684479400007), (-3.0156957669999542, 55.950506903000075), (-2.9399307929999168, 55.96930573100008), (-2.9166560539999296, 55.98061758000006), (-2.900054490999935, 55.996161200000074), (-2.8828832669999542, 56.00849030200004), (-2.8579809239999463, 56.010199286000045), (-2.863636847999942, 56.02228424700007), (-2.8663223949999406, 56.02676015800006), (-2.8709610669999392, 56.03070709800005), (-2.8527725899999155, 56.03978099200003), (-2.823150193999936, 56.059759833000044), (-2.8028051419999542, 56.06484609600005), (-2.635121222999942, 56.05805084800005), (-2.615956183999913, 56.053168036000045), (-2.587554490999935, 56.030951239000046), (-2.569406704999949, 56.02448151200008), (-2.57835852799991, 56.00800202000005), (-2.583648240999935, 56.00275299700007), (-2.5695694649999155, 55.99994538000004), (-2.5440567699999406, 56.00267161700003), (-2.528960740999935, 55.99656810100004), (-2.5248103509999282, 56.00055573100008), (-2.514556443999936, 56.00576406500005), (-2.507923956999946, 56.010199286000045), (-2.4932755199999406, 56.00153229400007), (-2.4525040359999366, 55.985256252000056), (-2.4143774079999503, 55.97833893400008), (-2.3509415359999366, 55.94818756700005), (-2.307769334999932, 55.93500397300005), (-2.146839972999942, 55.917303778000075), (-2.1380102199999556, 55.91461823100008), (-2.132557745999918, 55.90643952000005), (-2.13109290299991, 55.89720286700003), (-2.1287735669999392, 55.88979726800005), (-2.1209610669999392, 55.886704820000034), (-2.0994766919999392, 55.88178131700005), (-2.080189581999946, 55.86937083500004), (-2.0228572259999282, 55.80548737200007), (-2.009673631999931, 55.79083893400008), (-1.8778376939999362, 55.69489166900007), (-1.8631892569999309, 55.67161692900004), (-1.8530981109999516, 55.65932851800005), (-1.8315323559999115, 55.65070221600007), (-1.8260798819999309, 55.64362213700008), (-1.8216853509999282, 55.636419989000046), (-1.8164770169999542, 55.632879950000074), (-1.8071182929999168, 55.63450755400004), (-1.8007706369999141, 55.63922760600008), (-1.7962947259999282, 55.644232489000046), (-1.7925919259999432, 55.646551825000074), (-1.781402147999927, 55.64565664300005), (-1.768625454999949, 55.641913153000075), (-1.7564998039999296, 55.63361237200007), (-1.7476700509999432, 55.619208075000074), (-1.7679744129999335, 55.619208075000074), (-1.7679744129999335, 55.612982489000046), (-1.7559708319999459, 55.60887278900003), (-1.720855272999927, 55.614569403000075), (-1.6991267569999309, 55.612982489000046), (-1.6308487619999141, 55.58510976800005), (-1.6308487619999141, 55.57827383000006), (-1.6363419259999432, 55.57168203300006), (-1.6346736319999309, 55.56439850500004), (-1.6276749339999128, 55.55711497600004), (-1.6171768869999141, 55.55027903900003), (-1.6308487619999141, 55.544134833000044), (-1.6308487619999141, 55.53729889500005), (-1.6222224599999322, 55.534084377000056), (-1.6029353509999282, 55.52362702000005), (-1.6029353509999282, 55.516791083000044), (-1.6113175119999141, 55.50804271000004), (-1.6063533189999362, 55.503241278000075), (-1.5963435539999296, 55.49990469000005), (-1.5893448559999115, 55.49567291900007), (-1.5849503249999088, 55.483710028000075), (-1.5813695949999556, 55.41665273600006), (-1.5831192699999406, 55.40692780200004), (-1.5882869129999335, 55.39057038000004), (-1.5891007149999155, 55.385199286000045), (-1.5893448559999115, 55.37653229400007), (-1.5833227199999556, 55.354722398000035), (-1.5585831369999141, 55.32892487200007), (-1.5558162099999322, 55.31134674700007), (-1.5570369129999335, 55.306626695000034), (-1.5589900379999335, 55.302069403000075), (-1.5619197259999282, 55.29779694200005), (-1.5657445949999556, 55.29364655200004), (-1.570057745999918, 55.28620026200008), (-1.5682266919999392, 55.27960846600007), (-1.5642797519999476, 55.27326080900008), (-1.5620824859999516, 55.26666901200008), (-1.5564672519999476, 55.25503164300005), (-1.5439346999999088, 55.24388255400004), (-1.5209854809999115, 55.229396877000056), (-1.5291641919999392, 55.21625397300005), (-1.5240779289999296, 55.21010976800005), (-1.514271613999938, 55.204779364000046), (-1.507964647999927, 55.194647528000075), (-1.510812954999949, 55.184759833000044), (-1.5175675119999141, 55.176214911000045), (-1.5221248039999296, 55.16746653900003), (-1.517933722999942, 55.157131252000056), (-1.5007218089999128, 55.141791083000044), (-1.4959610669999392, 55.13458893400008), (-1.492543097999942, 55.112982489000046), (-1.4837540359999366, 55.09170156500005), (-1.4800919259999432, 55.08539459800005), (-1.4762263659999348, 55.083644924000055), (-1.4632869129999335, 55.08030833500004), (-1.459584113999938, 55.07859935100004), (-1.458078579999949, 55.07575104400007), (-1.4547013009999432, 55.067572333000044), (-1.438303188999953, 55.042303778000075), (-1.4291886059999115, 55.033270575000074), (-1.4240616529999102, 55.02435944200005), (-1.4195043609999516, 55.011704820000034), (-1.412912563999953, 55.00031159100007), (-1.4015193349999322, 54.995428778000075), (-1.398182745999918, 54.992621161000045), (-1.3702286449999406, 54.97553131700005), (-1.3626602859999366, 54.96478913000004), (-1.3617244129999335, 54.958685614000046), (-1.3635147779999102, 54.95425039300005), (-1.3640030589999128, 54.94818756700005), (-1.3628637359999516, 54.92593008000006), (-1.3603409499999088, 54.91705963700008), (-1.3531388009999432, 54.91351959800005), (-1.355824347999942, 54.904282945000034), (-1.2967830069999309, 54.77993398600006), (-1.2754613919999542, 54.74843984600005), (-1.2404679029999102, 54.72166575700004), (-1.2250870429999168, 54.71503327000005), (-1.172230597999942, 54.701239325000074), (-1.172230597999942, 54.693793036000045), (-1.1926163399999155, 54.693793036000045), (-1.192453579999949, 54.68927643400008), (-1.1907852859999366, 54.68618398600006), (-1.1851700509999432, 54.68008047100005), (-1.1827286449999406, 54.67206452000005), (-1.1788223949999406, 54.66474030200004), (-1.172922329999949, 54.65835195500006), (-1.1647029289999296, 54.652777411000045), (-1.172922329999949, 54.644191799000055), (-1.1824845039999445, 54.63922760600008), (-1.2062882149999155, 54.63296133000006), (-1.203724738999938, 54.62571849200003), (-1.1988419259999432, 54.62156810100004), (-1.1918025379999335, 54.61977773600006), (-1.1821182929999168, 54.61928945500006), (-1.1793513659999348, 54.62091705900008), (-1.1784561839999128, 54.624212958000044), (-1.1769913399999155, 54.62677643400008), (-1.172230597999942, 54.62612539300005), (-1.1695857409999348, 54.62360260600008), (-1.1654353509999282, 54.61871979400007), (-1.1629532539999445, 54.61395905200004), (-1.1647029289999296, 54.61180247600004), (-1.1526586579999503, 54.61318594000005), (-1.1467179029999102, 54.618475653000075), (-1.1380509109999366, 54.646551825000074), (-1.1205948559999115, 54.63300202000005), (-1.1036270819999459, 54.624660549000055), (-1.0842179029999102, 54.620428778000075), (-1.042062954999949, 54.61709219000005), (-0.9934789699999556, 54.59813060100004), (-0.7879125639999529, 54.56077708500004), (-0.5629776679999168, 54.47736237200007), (-0.5346573559999115, 54.461004950000074), (-0.5228572259999282, 54.44708893400008), (-0.5217992829999503, 54.43805573100008), (-0.5235896479999269, 54.43024323100008), (-0.5204158189999362, 54.42007070500006), (-0.5099991529999102, 54.41156647300005), (-0.47679602799991017, 54.39720286700003), (-0.46275794199993925, 54.38898346600007), (-0.4477432929999168, 54.37319570500006), (-0.43057206899993616, 54.349310614000046), (-0.4184464179999168, 54.32404205900008), (-0.41803951699995423, 54.303941148000035), (-0.4145401679999168, 54.297308661000045), (-0.4090063139999529, 54.29075755400004), (-0.4011938139999529, 54.28563060100004), (-0.39073645699994586, 54.28351471600007), (-0.3948868479999419, 54.273138739000046), (-0.39757239499994057, 54.269191799000055), (-0.3892716139999379, 54.26406484600005), (-0.3704727859999366, 54.247707424000055), (-0.3627823559999115, 54.24249909100007), (-0.3220108709999181, 54.23607005400004), (-0.31191972599992823, 54.231634833000044), (-0.30011959499995555, 54.224676825000074), (-0.2770889959999181, 54.21775950700004), (-0.26960201699995423, 54.20766836100006), (-0.26256262899994454, 54.18109772300005), (-0.2603653639999379, 54.176988023000035), (-0.2338761059999115, 54.16046784100007), (-0.11143958199994586, 54.13157786700003), (-0.07551021999995555, 54.11212799700007), (-0.16392981699993925, 54.08340078300006), (-0.1946915359999366, 54.06232330900008), (-0.2194718089999128, 54.022772528000075), (-0.1974177729999269, 53.99481842700004), (-0.1686905589999128, 53.929348049000055), (-0.1511124339999128, 53.899318752000056), (-0.045155402999910166, 53.801214911000045), (0.13347415500004445, 53.642645575000074), (0.1492619150000678, 53.60960521000004), (0.13689212300005238, 53.57713450700004), (0.13119550900006516, 53.573431708000044), (0.1096297540000819, 53.56289297100005), (0.1313582690000885, 53.59369538000004), (0.1359969410000872, 53.610663153000075), (0.12020918100006384, 53.61810944200005), (0.09945722700007309, 53.622300523000035), (0.056162957000083225, 53.64126211100006), (0.034515821000070446, 53.64606354400007), (0.014821811000047092, 53.64325592700004), (-0.023915167999916775, 53.62885163000004), (-0.04503333199994586, 53.62555573100008), (-0.06940670499994894, 53.626939195000034), (-0.09227454299991678, 53.63104889500005), (-0.11261959499995555, 53.63751862200007), (-0.1300349599999322, 53.64606354400007), (-0.2253311839999128, 53.719916083000044), (-0.2603653639999379, 53.73541901200008), (-0.2956436839999128, 53.738796291000085), (-0.3051651679999168, 53.73969147300005), (-0.4311417309999115, 53.71430084800005), (-0.4496964179999168, 53.71430084800005), (-0.5104874339999128, 53.71430084800005), (-0.5444229809999115, 53.70945872600004), (-0.5515030589999128, 53.71116771000004), (-0.5762426419999542, 53.72565338700008), (-0.5791723299999489, 53.72797272300005), (-0.6370336579999503, 53.73200104400007), (-0.6583552729999269, 53.72797272300005), (-0.7264705069999309, 53.70062897300005), (-0.7173559239999463, 53.69867584800005), (-0.7085668609999516, 53.695746161000045), (-0.7001846999999088, 53.691839911000045), (-0.6924535799999489, 53.68699778900003), (-0.6774796209999181, 53.702826239000046), (-0.6498103509999282, 53.710598049000055), (-0.6195369129999335, 53.71185944200005), (-0.5961807929999168, 53.70807526200008), (-0.5554906889999529, 53.69049713700008), (-0.5447485019999476, 53.683579820000034), (-0.5299373039999296, 53.67767975500004), (-0.5140274729999419, 53.681301174000055), (-0.48631751199991413, 53.69448476800005), (-0.3072403639999379, 53.71426015800006), (-0.27936764199995423, 53.707098700000074), (-0.2603653639999379, 53.68699778900003), (-0.1886287099999322, 53.620428778000075), (-0.1440323559999115, 53.606634833000044), (-0.11318925699993088, 53.58462148600006), (-0.09593665299991017, 53.57713450700004), (-0.06094316299993352, 53.57396067900004), (-0.0466202459999181, 53.570379950000074), (9.199300006912381e-05, 53.53534577000005), (0.0959578790000819, 53.488348700000074), (0.11508222700007309, 53.48322174700007), (0.1340438160000872, 53.48061758000006), (0.15186608200008322, 53.475816148000035), (0.1678166020000731, 53.464504299000055), (0.17090905000009116, 53.457017320000034), (0.1731063160000872, 53.44676341400003), (0.17579186300008587, 53.43768952000005), (0.1814884770000731, 53.43374258000006), (0.1906030610000471, 53.43187083500004), (0.21949303500008455, 53.41950104400007), (0.21192467500009116, 53.41266510600008), (0.2293400400000678, 53.40477122600004), (0.24488366000008455, 53.39093659100007), (0.2561141290000819, 53.375067450000074), (0.26042728000004445, 53.36147695500006), (0.34213300900006516, 53.22630442900004), (0.35621178500008455, 53.18854401200008), (0.3566186860000471, 53.145738023000035), (0.3357853520000731, 53.093451239000046), (0.32984459700008983, 53.08649323100008), (0.31869550900006516, 53.083685614000046), (0.29883873800008587, 53.08120351800005), (0.2824813160000872, 53.07485586100006), (0.19304446700004974, 53.02008698100008), (0.17448978000004445, 53.01544830900008), (0.16081790500004445, 53.008978583000044), (0.08212324300006912, 52.938666083000044), (0.061167839000063395, 52.924994208000044), (0.03760826900008851, 52.919175523000035), (0.022146030000044448, 52.91258372600004), (0.008555535000084546, 52.89862702000005), (0.010264519000088512, 52.88646067900004), (0.04066002700005811, 52.88507721600007), (0.09253991000008455, 52.89252350500004), (0.10564212300005238, 52.88934967700004), (0.13347415500004445, 52.87518952000005), (0.14714603000004445, 52.87201569200005), (0.17090905000009116, 52.86212799700007), (0.22242272200008983, 52.813666083000044), (0.24675540500004445, 52.79572174700007), (0.2644962900000678, 52.80369700700004), (0.2856551440000885, 52.805568752000056), (0.32553144600007045, 52.803168036000045), (0.34180748800008587, 52.79743073100008), (0.36988366000008455, 52.77301666900007), (0.38453209700008983, 52.76837799700007), (0.38453209700008983, 52.77521393400008), (0.37924238400006516, 52.79083893400008), (0.39942467500009116, 52.80951569200005), (0.42554772200008983, 52.827378648000035), (0.4386499360000471, 52.840725002000056), (0.44402103000004445, 52.86505768400008), (0.45671634200004974, 52.89199453300006), (0.47234134200004974, 52.916449286000045), (0.48568769600007045, 52.93349844000005), (0.5202742850000845, 52.95526764500005), (0.5695906910000872, 52.96930573100008), (0.6233830090000652, 52.97565338700008), (0.6718856130000859, 52.97443268400008), (0.6643986340000652, 52.98187897300005), (0.6847436860000471, 52.986395575000074), (0.7067977220000898, 52.98322174700007), (0.7291772800000444, 52.97748444200005), (0.7504988940000885, 52.97443268400008), (0.8357039720000898, 52.97443268400008), (0.8754988940000885, 52.96816640800006), (0.9210718110000471, 52.95465729400007), (0.9684350920000497, 52.94749583500004), (1.013926629000082, 52.960150458000044), (1.0034285820000832, 52.96474844000005), (0.9915470710000704, 52.96747467700004), (0.9790145190000885, 52.968410549000055), (0.9660750660000872, 52.96759674700007), (0.9660750660000872, 52.97443268400008), (1.2746688160000872, 52.92918528900003), (1.3960067070000832, 52.89142487200007), (1.6442163420000497, 52.775824286000045), (1.6733504570000832, 52.75568268400008), (1.6970320970000898, 52.73102448100008), (1.7158309250000912, 52.68374258000006), (1.7341414720000898, 52.65460846600007), (1.747243686000047, 52.62518952000005), (1.7407332690000885, 52.60390859600005), (1.7468367850000845, 52.58852773600006), (1.7487085300000444, 52.568793036000045), (1.7475692070000832, 52.53278229400007), (1.7711694670000497, 52.48590729400007), (1.7671004570000832, 52.47695547100005), (1.7544051440000885, 52.46735260600008), (1.7292586600000845, 52.41559479400007), (1.7301538420000497, 52.405910549000055), (1.7278751960000704, 52.39630768400008), (1.6836043630000859, 52.32453034100007), (1.6518660820000832, 52.289129950000074), (1.6411238940000885, 52.28180573100008), (1.6305444670000497, 52.27045319200005), (1.6282658210000704, 52.24481842700004), (1.6308699880000859, 52.19977448100008), (1.6254988940000885, 52.18036530200004), (1.6074324880000859, 52.14594147300005), (1.6035262380000859, 52.127834377000056), (1.5892033210000704, 52.100816148000035), (1.5875757170000497, 52.08698151200008), (1.582286004000082, 52.08148834800005), (1.5036727220000898, 52.060980536000045), (1.4868270190000885, 52.04901764500005), (1.4720158210000704, 52.05621979400007), (1.4668074880000859, 52.04800039300005), (1.4638778000000912, 52.035142320000034), (1.4558211600000845, 52.028509833000044), (1.4489852220000898, 52.02496979400007), (1.4248153000000912, 52.00185781500005), (1.3548283210000704, 51.95404694200005), (1.3435164720000898, 51.94285716400009), (1.332286004000082, 51.94009023600006), (1.2644149100000845, 51.99437083500004), (1.2348738940000885, 52.00031159100007), (1.1852319670000497, 52.025091864000046), (1.1578882170000497, 52.028509833000044), (1.1578882170000497, 52.02167389500005), (1.1935327480000524, 52.00079987200007), (1.2143660820000832, 51.991441148000035), (1.2602645190000885, 51.984808661000045), (1.2707625660000872, 51.98151276200008), (1.2751570970000898, 51.976996161000045), (1.2744246750000912, 51.96088288000004), (1.2710067070000832, 51.95644765800006), (1.2507430350000845, 51.95962148600006), (1.2389429050000444, 51.958644924000055), (1.2176212900000678, 51.954331773000035), (1.2057397800000444, 51.95343659100007), (1.193207227000073, 51.955511786000045), (1.1652938160000872, 51.96702708500004), (1.1430770190000885, 51.966050523000035), (1.0944930350000845, 51.955959377000056), (1.0691024100000845, 51.95343659100007), (1.0954695970000898, 51.945746161000045), (1.2620548840000652, 51.939154364000046), (1.2819930350000845, 51.946600653000075), (1.278493686000047, 51.92792389500005), (1.1995548840000652, 51.87767161700003), (1.2122501960000704, 51.87164948100008), (1.2278751960000704, 51.86737702000005), (1.2644149100000845, 51.86399974200003), (1.2747501960000704, 51.870306708000044), (1.2822371750000912, 51.880560614000046), (1.2866317070000832, 51.88165924700007), (1.288259311000047, 51.860581773000035), (1.2763778000000912, 51.84479401200008), (1.2192488940000885, 51.811835028000075), (1.167816602000073, 51.790228583000044), (1.1354272800000444, 51.78172435100004), (1.0654403000000912, 51.77529531500005), (1.0466414720000898, 51.777044989000046), (1.0372827480000524, 51.78217194200005), (1.021332227000073, 51.80255768400008), (0.9887801440000885, 51.83026764500005), (0.9798283210000704, 51.84357330900008), (0.9770613940000885, 51.82461172100005), (0.9620874360000471, 51.813788153000075), (0.9251408210000704, 51.80255768400008), (0.8942977220000898, 51.78461334800005), (0.8869735040000819, 51.782131252000056), (0.8864038420000497, 51.776678778000075), (0.8834741550000444, 51.76471588700008), (0.8789168630000859, 51.75275299700007), (0.8737085300000444, 51.747300523000035), (0.8619897800000444, 51.74555084800005), (0.8459578790000819, 51.736761786000045), (0.8357039720000898, 51.733710028000075), (0.8234969410000872, 51.73383209800005), (0.8014429050000444, 51.73969147300005), (0.7917586600000845, 51.74115631700005), (0.7671004570000832, 51.739447333000044), (0.7208764980000524, 51.728176174000055), (0.6985783210000704, 51.720038153000075), (0.7142033210000704, 51.715277411000045), (0.7324324880000859, 51.713771877000056), (0.7492781910000872, 51.70848216400009), (0.7607528000000912, 51.692694403000075), (0.7890731130000859, 51.710150458000044), (0.8530379570000832, 51.71889883000006), (0.8835555350000845, 51.72687409100007), (0.9123641290000819, 51.741522528000075), (0.9300236340000652, 51.74359772300005), (0.9455672540000819, 51.733710028000075), (0.9474389980000524, 51.72524648600006), (0.9445906910000872, 51.71548086100006), (0.9404403000000912, 51.70799388200004), (0.9381616550000444, 51.706366278000075), (0.9401961600000845, 51.698431708000044), (0.9440210300000444, 51.69057851800005), (0.9518335300000444, 51.67841217700004), (0.9417423840000652, 51.673041083000044), (0.9379988940000885, 51.664496161000045), (0.9381616550000444, 51.64126211100006), (0.9347436860000471, 51.63589101800005), (0.9267684250000912, 51.630926825000074), (0.9114689460000704, 51.62384674700007), (0.9384871750000912, 51.624986070000034), (0.9480900400000678, 51.621527411000045), (0.9518335300000444, 51.61701080900008), (0.9244897800000444, 51.588324286000045), (0.8733016290000819, 51.559475002000056), (0.8282983730000524, 51.541856187000064), (0.8162541020000731, 51.537176825000074), (0.7712508470000898, 51.52826569200005), (0.6920679050000444, 51.536322333000044), (0.6643986340000652, 51.53506094000005), (0.6637475920000497, 51.53554922100005), (0.6505639980000524, 51.53579336100006), (0.6466577480000524, 51.53534577000005), (0.6440535820000832, 51.53506094000005), (0.6427514980000524, 51.53351471600007), (0.6233830090000652, 51.52204010600008), (0.6086531910000872, 51.51898834800005), (0.5952254570000832, 51.51862213700008), (0.5822860040000819, 51.51654694200005), (0.5688582690000885, 51.50836823100008), (0.5527449880000859, 51.51797109600005), (0.5472111340000652, 51.51772695500006), (0.5254012380000859, 51.516913153000075), (0.45606530000009116, 51.505560614000046), (0.45085696700004974, 51.49827708500004), (0.44800866000008455, 51.48822663000004), (0.4416610040000819, 51.47703685100004), (0.42847741000008455, 51.46710846600007), (0.41407311300008587, 51.46190013200004), (0.39918053500008455, 51.45840078300006), (0.38453209700008983, 51.453111070000034), (0.4484155610000471, 51.45994700700004), (0.45679772200008983, 51.46312083500004), (0.4614363940000885, 51.47016022300005), (0.46485436300008587, 51.47724030200004), (0.4695744150000678, 51.48041413000004), (0.5348413420000497, 51.49168528900009), (0.6948348320000832, 51.47703685100004), (0.7094832690000885, 51.47052643400008), (0.7219344410000872, 51.456284898000035), (0.7231551440000885, 51.44672272300005), (0.7131453790000819, 51.44122955900008), (0.6923934250000912, 51.439520575000074), (0.6565047540000819, 51.444525458000044), (0.6409611340000652, 51.44415924700007), (0.6093856130000859, 51.425116278000075), (0.5727645190000885, 51.419582424000055), (0.5545353520000731, 51.412176825000074), (0.5622664720000898, 51.40656159100007), (0.5691024100000845, 51.399603583000044), (0.5765080090000652, 51.39362213700008), (0.5859481130000859, 51.391058661000045), (0.6718856130000859, 51.391058661000045), (0.7129012380000859, 51.38422272300005), (0.7049259770000731, 51.39598216400009), (0.7003686860000471, 51.409816799000055), (0.7053328790000819, 51.41950104400007), (0.7264103520000731, 51.41901276200008), (0.7283634770000731, 51.406236070000034), (0.7392684250000912, 51.387925523000035), (0.7534285820000832, 51.371527411000045), (0.7644149100000845, 51.36440664300005), (0.9772241550000444, 51.34918854400007), (1.1009220710000704, 51.37323639500005), (1.4238387380000859, 51.39207591400009), (1.4482528000000912, 51.382879950000074), (1.4391382170000497, 51.35008372600004), (1.4355574880000859, 51.343736070000034), (1.430837436000047, 51.33779531500005), (1.4251408210000704, 51.33295319200005), (1.4186304050000444, 51.32965729400007), (1.3829858730000524, 51.329779364000046), (1.3776147800000444, 51.326239325000074), (1.3806258470000898, 51.304754950000074), (1.387868686000047, 51.28790924700007), (1.4043074880000859, 51.261379299000055), (1.4130965500000912, 51.22174713700008), (1.4047957690000885, 51.18353913000004), (1.3844507170000497, 51.151678778000075), (1.3571883470000898, 51.13100820500006), (1.2903751960000704, 51.116522528000075), (1.2629500660000872, 51.10325755400004), (1.2516382170000497, 51.10252513200004), (1.2299910820000832, 51.10370514500005), (1.2181095710000704, 51.10097890800006), (1.2082625660000872, 51.09467194200005), (1.1997176440000885, 51.087591864000046), (1.1920679050000444, 51.08258698100008), (1.1722111340000652, 51.077378648000035), (1.1067000660000872, 51.07636139500005), (1.0871688160000872, 51.07298411700003), (1.0669051440000885, 51.06439850500004), (1.027598504000082, 51.04165273600006), (0.9764103520000731, 50.99445221600007), (0.9664819670000497, 50.98273346600007), (0.9690861340000652, 50.95685455900008), (0.9798283210000704, 50.91815827000005), (0.9451603520000731, 50.909369208000044), (0.8698022800000444, 50.925116278000075), (0.8022567070000832, 50.93919505400004), (0.7624617850000845, 50.930894273000035), (0.6643986340000652, 50.870306708000044), (0.6241968110000471, 50.858710028000075), (0.4074813160000872, 50.829331773000035), (0.3702905610000471, 50.818793036000045), (0.36524498800008587, 50.81899648600006), (0.35425866000008455, 50.80963776200008), (0.34441165500004445, 50.79905833500004), (0.3422957690000885, 50.79515208500004), (0.3081160820000832, 50.780951239000046), (0.2710067070000832, 50.747381903000075), (0.23389733200008322, 50.74701569200005), (0.2141219410000872, 50.748928127000056), (0.16830488400006516, 50.759833075000074), (0.1573999360000471, 50.761053778000075), (0.12208092500009116, 50.76080963700008), (0.11304772200008983, 50.76414622600004), (0.09555097700007309, 50.775051174000055), (0.07703698000005943, 50.778998114000046), (0.034515821000070446, 50.780951239000046), (0.01754804800009424, 50.784857489000046), (-0.17316646999995555, 50.829006252000056), (-0.20612545499994894, 50.83104075700004), (-0.20889238199993088, 50.83010488500008), (-0.2331436839999128, 50.821926174000055), (-0.2696833979999269, 50.831284898000035), (-0.39757239499994057, 50.802069403000075), (-0.5689591139999379, 50.802069403000075), (-0.7327367829999503, 50.767279364000046), (-0.7415665359999366, 50.769232489000046), (-0.7498673169999392, 50.773871161000045), (-0.7582087879999335, 50.77708567900004), (-0.7675675119999141, 50.774725653000075), (-0.7731013659999348, 50.76601797100005), (-0.7662654289999296, 50.74713776200008), (-0.7709854809999115, 50.73688385600008), (-0.7899470689999362, 50.73004791900007), (-0.8128149079999503, 50.73476797100005), (-0.9041235019999476, 50.77187734600005), (-0.9114884109999366, 50.77781810100004), (-0.9058731759999432, 50.78803131700005), (-0.8924861319999309, 50.794623114000046), (-0.8636368479999419, 50.802069403000075), (-0.8636368479999419, 50.808254299000055), (-0.8736059239999463, 50.812933661000045), (-0.8931371739999463, 50.82534414300005), (-0.9046931629999335, 50.829331773000035), (-0.9095352859999366, 50.82599518400008), (-0.9217016269999476, 50.821600653000075), (-0.9289444649999155, 50.82282135600008), (-0.9190160799999489, 50.83616771000004), (-0.9297989569999459, 50.83999258000006), (-0.9391983709999181, 50.84324778900009), (-0.9707738919999542, 50.846991278000075), (-0.9948624339999128, 50.84707265800006), (-1.0018611319999309, 50.84711334800005), (-1.0207413399999155, 50.84365469000005), (-1.033558722999942, 50.82591380400004), (-1.0426326159999348, 50.80190664300005), (-1.0562231109999516, 50.78302643400008), (-1.0827530589999128, 50.780951239000046), (-1.1030167309999115, 50.79547760600008), (-1.0936173169999392, 50.812933661000045), (-1.0753067699999406, 50.83002350500004), (-1.069162563999953, 50.84365469000005), (-1.0873103509999282, 50.84979889500005), (-1.0881241529999102, 50.84975820500006), (-1.1498103509999282, 50.84666575700004), (-1.1647029289999296, 50.84365469000005), (-1.129709438999953, 50.825100002000056), (-1.1237686839999128, 50.818793036000045), (-1.1212052069999459, 50.79938385600008), (-1.1249080069999309, 50.788723049000055), (-1.1380509109999366, 50.780951239000046), (-1.1511124339999128, 50.78139883000006), (-1.1693416009999282, 50.78587474200003), (-1.1856176419999542, 50.79242584800005), (-1.1926163399999155, 50.79865143400008), (-1.1992895169999542, 50.807928778000075), (-1.231516079999949, 50.81891510600008), (-1.2551977199999556, 50.83193594000005), (-1.288156704999949, 50.839178778000075), (-1.3014216789999296, 50.84365469000005), (-1.3185929029999102, 50.85691966400009), (-1.338937954999949, 50.872707424000055), (-1.4492895169999542, 50.91205475500004), (-1.4664200509999432, 50.91815827000005), (-1.4664200509999432, 50.91193268400008), (-1.4564509759999282, 50.90875885600008), (-1.4379776679999168, 50.90131256700005), (-1.4256078769999476, 50.900091864000046), (-1.4011124339999128, 50.88117096600007), (-1.323068813999953, 50.82575104400007), (-1.3142797519999476, 50.812160549000055), (-1.3172908189999362, 50.80023834800005), (-1.3398331369999141, 50.79515208500004), (-1.4039607409999348, 50.79157135600008), (-1.4186905589999128, 50.788397528000075), (-1.4113663399999155, 50.78489817900004), (-1.4049373039999296, 50.780951239000046), (-1.4049373039999296, 50.774725653000075), (-1.4505102199999556, 50.76935455900008), (-1.4762263659999348, 50.76341380400004), (-1.4875382149999155, 50.75771719000005), (-1.491932745999918, 50.75726959800005), (-1.5247289699999556, 50.761053778000075), (-1.5571996739999463, 50.72329336100006), (-1.559396938999953, 50.71922435100004), (-1.5611873039999296, 50.71898021000004), (-1.5807185539999296, 50.722642320000034), (-1.6021215489999463, 50.731756903000075), (-1.6706436839999128, 50.74005768400008), (-1.672922329999949, 50.74005768400008), (-1.6930232409999348, 50.739935614000046), (-1.7150772779999102, 50.73578522300005), (-1.7535294259999432, 50.72284577000005), (-1.7717179029999102, 50.72011953300006), (-1.7974340489999463, 50.723171291000085), (-1.8350723949999406, 50.72768789300005), (-1.8574112619999141, 50.72695547100005), (-1.8773494129999335, 50.72284577000005), (-1.8963516919999392, 50.71629466400009), (-1.8968806629999335, 50.716050523000035), (-1.9138891269999476, 50.70742422100005), (-1.9291072259999282, 50.69586823100008), (-1.9400121739999463, 50.69082265800006), (-1.9443253249999088, 50.69765859600005), (-1.946115688999953, 50.707912502000056), (-1.9492895169999542, 50.713324286000045), (-1.9877009759999282, 50.72011953300006), (-2.01390540299991, 50.71893952000005), (-2.0219620429999168, 50.72011953300006), (-2.0254613919999542, 50.723863023000035), (-2.026193813999953, 50.72508372600004), (-2.0338435539999296, 50.73712799700007), (-2.038970506999931, 50.739935614000046), (-2.0480850899999155, 50.734808661000045), (-2.0826716789999296, 50.69896067900004), (-2.0695694649999155, 50.700100002000056), (-2.0577286449999406, 50.702826239000046), (-2.046620245999918, 50.70726146000004), (-2.0356339179999168, 50.713324286000045), (-2.0141495429999168, 50.688788153000075), (-2.0025121739999463, 50.681301174000055), (-1.984120245999918, 50.67853424700007), (-1.9674373039999296, 50.67865631700005), (-1.9527888659999348, 50.67658112200007), (-1.9458715489999463, 50.668850002000056), (-1.9529516269999476, 50.65184153900009), (-1.9382218089999128, 50.645819403000075), (-1.9324845039999445, 50.64443594000005), (-1.9672745429999168, 50.61709219000005), (-1.965199347999942, 50.60219961100006), (-1.9837133449999556, 50.59662506700005), (-2.065174933999913, 50.59552643400008), (-2.082183397999927, 50.59784577000005), (-2.1573380199999406, 50.62051015800006), (-2.3426407539999445, 50.63377513200004), (-2.377064581999946, 50.64752838700008), (-2.398345506999931, 50.64557526200008), (-2.435902472999942, 50.63751862200007), (-2.447621222999942, 50.62787506700005), (-2.4600723949999406, 50.60651276200008), (-2.465646938999953, 50.585150458000044), (-2.4564509759999282, 50.575506903000075), (-2.4312231109999516, 50.57025788000004), (-2.428700324999909, 50.55756256700005), (-2.4392797519999476, 50.54181549700007), (-2.45335852799991, 50.52765534100007), (-2.4595434239999463, 50.52765534100007), (-2.4603572259999282, 50.56549713700008), (-2.4835098949999406, 50.59039948100008), (-2.6929418609999516, 50.69281647300005), (-2.8648168609999516, 50.73379140800006), (-2.887318488999938, 50.734361070000034), (-2.94554602799991, 50.725816148000035), (-2.9627579419999392, 50.72329336100006), (-2.998199022999927, 50.708238023000035), (-3.021839972999942, 50.70648834800005), (-3.059722459999932, 50.713324286000045), (-3.071359829999949, 50.711004950000074), (-3.0941462879999335, 50.69896067900004), (-3.099232550999943, 50.69708893400008), (-3.115834113999938, 50.68797435100004), (-3.1254776679999168, 50.68528880400004), (-3.135894334999932, 50.68593984600005), (-3.1551407539999445, 50.69135163000004), (-3.1664932929999168, 50.69281647300005), (-3.1856176419999542, 50.690741278000075), (-3.2191462879999335, 50.68081289300005), (-3.2598363919999542, 50.67454661700003), (-3.271392381999931, 50.664496161000045), (-3.280425584999932, 50.65119049700007), (-3.2955623039999296, 50.63751862200007), (-3.368153449999909, 50.61709219000005), (-3.390736456999946, 50.61782461100006), (-3.4075414699999556, 50.62128327000005), (-3.420969204999949, 50.62946198100008), (-3.433338995999918, 50.64443594000005), (-3.446359829999949, 50.66828034100007), (-3.4504288399999155, 50.672308661000045), (-3.453277147999927, 50.67328522300005), (-3.455433722999942, 50.675441799000055), (-3.458607550999943, 50.67755768400008), (-3.4644262359999516, 50.67853424700007), (-3.467762824999909, 50.67641836100006), (-3.468902147999927, 50.67169830900008), (-3.467844204999949, 50.66697825700004), (-3.45531165299991, 50.657904364000046), (-3.4420466789999296, 50.62352122600004), (-3.433338995999918, 50.610256252000056), (-3.451161261999914, 50.59943268400008), (-3.4672745429999168, 50.585598049000055), (-3.4817602199999556, 50.56854889500005), (-3.494862433999913, 50.548163153000075), (-3.505970831999946, 50.520819403000075), (-3.505034959999932, 50.501206773000035), (-3.487456834999932, 50.459418036000045), (-3.509755011999914, 50.45848216400009), (-3.532134568999936, 50.454779364000046), (-3.549427863999938, 50.446519273000035), (-3.556263800999943, 50.43211497600004), (-3.5493057929999168, 50.41559479400007), (-3.531971808999913, 50.410223700000074), (-3.487456834999932, 50.41156647300005), (-3.487456834999932, 50.40477122600004), (-3.4974666009999282, 50.38735586100006), (-3.49828040299991, 50.383693752000056), (-3.5073136059999115, 50.382798570000034), (-3.5149633449999556, 50.37995026200008), (-3.520130988999938, 50.37482330900008), (-3.5269262359999516, 50.34979889500005), (-3.5388891269999476, 50.34442780200004), (-3.5545141269999476, 50.347642320000034), (-3.57054602799991, 50.35639069200005), (-3.577788865999935, 50.334051825000074), (-3.5991104809999115, 50.325832424000055), (-3.6215714179999168, 50.321926174000055), (-3.631988084999932, 50.31232330900008), (-3.6373591789999296, 50.29539622600004), (-3.6475723949999406, 50.27456289300005), (-3.653309699999909, 50.25104401200008), (-3.6456192699999406, 50.22601959800005), (-3.6606339179999168, 50.22101471600007), (-3.700917120999918, 50.21352773600006), (-3.7180069649999155, 50.21238841400009), (-3.740386522999927, 50.21588776200008), (-3.758615688999953, 50.22174713700008), (-3.774240688999953, 50.22296784100007), (-3.788970506999931, 50.21238841400009), (-3.826324022999927, 50.23419830900008), (-3.8841853509999282, 50.280462958000044), (-3.949940558999913, 50.31899648600006), (-3.9610082669999542, 50.322251695000034), (-3.9702042309999115, 50.320746161000045), (-3.995757615999935, 50.311428127000056), (-4.005604620999918, 50.30923086100006), (-4.011341925999943, 50.30695221600007), (-4.024769660999937, 50.29718659100007), (-4.032948370999918, 50.294907945000034), (-4.044056769999941, 50.29645416900007), (-4.054351365999935, 50.30036041900007), (-4.070220506999931, 50.30923086100006), (-4.067941860999952, 50.31281159100007), (-4.064035610999952, 50.322251695000034), (-4.086008266999954, 50.326239325000074), (-4.1082657539999445, 50.33661530200004), (-4.118723110999952, 50.35187409100007), (-4.1049698559999115, 50.37067291900007), (-4.141753709999932, 50.36904531500005), (-4.1527400379999335, 50.37067291900007), (-4.1655167309999115, 50.37636953300006), (-4.171457485999952, 50.382798570000034), (-4.175770636999914, 50.39085521000004), (-4.18382727799991, 50.40106842700004), (-4.191477016999954, 50.417629299000055), (-4.18390865799995, 50.431708075000074), (-4.1703181629999335, 50.44513580900008), (-4.159535285999937, 50.459418036000045), (-4.179432745999918, 50.45307038000004), (-4.189564581999946, 50.45368073100008), (-4.200550910999937, 50.459418036000045), (-4.203684048999946, 50.45140208500004), (-4.204741990999935, 50.44867584800005), (-4.2123917309999115, 50.441473700000074), (-4.222523566999939, 50.43797435100004), (-4.234730597999942, 50.43829987200007), (-4.234730597999942, 50.43211497600004), (-4.2202042309999115, 50.425848700000074), (-4.2161352199999556, 50.415716864000046), (-4.219715949999909, 50.40509674700007), (-4.228505011999914, 50.397365627000056), (-4.2414444649999155, 50.39468008000006), (-4.2899063789999445, 50.397365627000056), (-4.273019985999952, 50.38190338700008), (-4.216175910999937, 50.38776276200008), (-4.1937556629999335, 50.37689850500004), (-4.228505011999914, 50.37067291900007), (-4.228505011999914, 50.36383698100008), (-4.220122850999928, 50.365301825000074), (-4.200550910999937, 50.36383698100008), (-4.207997199999909, 50.35639069200005), (-4.180043097999942, 50.35639069200005), (-4.180043097999942, 50.35016510600008), (-4.191314256999931, 50.34756094000005), (-4.197987433999913, 50.342230536000045), (-4.199126756999931, 50.33539459800005), (-4.1937556629999335, 50.32843659100007), (-4.1937556629999335, 50.322251695000034), (-4.214995897999927, 50.323146877000056), (-4.225697394999941, 50.33539459800005), (-4.235096808999913, 50.34955475500004), (-4.2523494129999335, 50.35639069200005), (-4.337717251999948, 50.37067291900007), (-4.383697068999936, 50.36749909100007), (-4.456206834999932, 50.33820221600007), (-4.4953507149999155, 50.32843659100007), (-4.659820115999935, 50.322251695000034), (-4.659575975999928, 50.32062409100007), (-4.662709113999938, 50.31777578300006), (-4.667795376999948, 50.315334377000056), (-4.673451300999943, 50.31541575700004), (-4.687163865999935, 50.34271881700005), (-4.694325324999909, 50.343451239000046), (-4.700184699999909, 50.34088776200008), (-4.705555792999917, 50.337551174000055), (-4.7113337879999335, 50.33588288000004), (-4.731556769999941, 50.33466217700004), (-4.752105272999927, 50.33030833500004), (-4.763295050999943, 50.32208893400008), (-4.755441860999952, 50.30923086100006), (-4.755441860999952, 50.30174388200004), (-4.7623591789999296, 50.298041083000044), (-4.771636522999927, 50.29157135600008), (-4.779855923999946, 50.28432851800005), (-4.783355272999927, 50.27789948100008), (-4.7818904289999296, 50.27179596600007), (-4.776519334999932, 50.26508209800005), (-4.776519334999932, 50.26080963700008), (-4.788441535999937, 50.24209219000005), (-4.790150519999941, 50.23655833500004), (-4.800160285999937, 50.22955963700008), (-4.849720831999946, 50.23456452000005), (-4.868723110999952, 50.22943756700005), (-4.887318488999938, 50.21499258000006), (-4.904774542999917, 50.20844147300005), (-4.947255011999914, 50.19936758000006), (-4.960682745999918, 50.19049713700008), (-5.002430792999917, 50.14411041900007), (-5.014556443999936, 50.15656159100007), (-5.0203751289999445, 50.19196198100008), (-5.033192511999914, 50.19936758000006), (-5.05296790299991, 50.19578685100004), (-5.053618943999936, 50.18691640800006), (-5.051869269999941, 50.17552317900004), (-5.064564581999946, 50.16461823100008), (-5.064564581999946, 50.15839264500005), (-5.058501756999931, 50.155462958000044), (-5.043446417999917, 50.14411041900007), (-5.051869269999941, 50.144598700000074), (-5.058461066999939, 50.14272695500006), (-5.070790167999917, 50.13727448100008), (-5.08031165299991, 50.13271719000005), (-5.081613735999952, 50.12539297100005), (-5.080962693999936, 50.117173570000034), (-5.085031704999949, 50.10993073100008), (-5.093902147999927, 50.105536200000074), (-5.125965949999909, 50.09634023600006), (-5.114654100999928, 50.09662506700005), (-5.106068488999938, 50.09511953300006), (-5.091867641999954, 50.089504299000055), (-5.086903449999909, 50.089056708000044), (-5.075347459999932, 50.09048086100006), (-5.070790167999917, 50.089504299000055), (-5.068470831999946, 50.085150458000044), (-5.064930792999917, 50.07184479400007), (-5.06086178299995, 50.06903717700004), (-5.056507941999939, 50.060614325000074), (-5.069488084999932, 50.042181708000044), (-5.0980525379999335, 50.01439036700003), (-5.107289191999939, 50.013006903000075), (-5.127430792999917, 50.01544830900008), (-5.139637824999909, 50.01439036700003), (-5.146473761999914, 50.01056549700007), (-5.176136847999942, 49.987941799000055), (-5.18773352799991, 49.964504299000055), (-5.191151495999918, 49.95913320500006), (-5.200103318999936, 49.961371161000045), (-5.210357225999928, 49.96674225500004), (-5.240386522999927, 49.988348700000074), (-5.245228644999941, 49.99310944200005), (-5.2495011059999115, 50.000067450000074), (-5.253041144999941, 50.01264069200005), (-5.25226803299995, 50.020697333000044), (-5.252674933999913, 50.027777411000045), (-5.259755011999914, 50.03766510600008), (-5.2884008449999556, 50.067694403000075), (-5.304351365999935, 50.08026764500005), (-5.323963995999918, 50.089504299000055), (-5.384185350999928, 50.10797760600008), (-5.424712693999936, 50.11273834800005), (-5.458119269999941, 50.125881252000056), (-5.47484290299991, 50.13043854400007), (-5.495676235999952, 50.12962474200003), (-5.521839972999942, 50.12372467700004), (-5.540923631999931, 50.11347077000005), (-5.540638800999943, 50.09975820500006), (-5.5346573559999115, 50.08234284100007), (-5.5455623039999296, 50.06891510600008), (-5.563465949999909, 50.05963776200008), (-5.57843990799995, 50.054754950000074), (-5.61945553299995, 50.046210028000075), (-5.667388475999928, 50.04287344000005), (-5.705148891999954, 50.05231354400007), (-5.715646938999953, 50.08270905200004), (-5.705962693999936, 50.08348216400009), (-5.698801235999952, 50.08539459800005), (-5.694488084999932, 50.089504299000055), (-5.694406704999949, 50.095770575000074), (-5.697092251999948, 50.10053131700005), (-5.700306769999941, 50.103216864000046), (-5.701975063999953, 50.103176174000055), (-5.707386847999942, 50.12201569200005), (-5.70921790299991, 50.13263580900008), (-5.70539303299995, 50.13727448100008), (-5.7035212879999335, 50.140611070000034), (-5.684641079999949, 50.16152578300006), (-5.676747199999909, 50.16502513200004), (-5.647368943999936, 50.17206452000005), (-5.583607550999943, 50.19586823100008), (-5.549427863999938, 50.20351797100005), (-5.5109757149999155, 50.21946849200003), (-5.4891251289999445, 50.21979401200008), (-5.458119269999941, 50.20075104400007), (-5.437977667999917, 50.19432200700004), (-5.417388475999928, 50.202460028000075), (-5.402943488999938, 50.21735260600008), (-5.395863410999937, 50.22724030200004), (-5.39289303299995, 50.23655833500004), (-5.3875626289999445, 50.240301825000074), (-5.351918097999942, 50.240301825000074), (-5.3148494129999335, 50.253607489000046), (-5.200306769999941, 50.33075592700004), (-5.1635636059999115, 50.34723541900007), (-5.1498917309999115, 50.35016510600008), (-5.146473761999914, 50.35529205900008), (-5.145659959999932, 50.366888739000046), (-5.147043423999946, 50.37938060100004), (-5.153675910999937, 50.39948151200008), (-5.142404751999948, 50.40448639500005), (-5.12726803299995, 50.40521881700005), (-5.119740363999938, 50.40477122600004), (-5.0502823559999115, 50.42869700700004), (-5.0481664699999556, 50.43439362200007), (-5.038726365999935, 50.44790273600006), (-5.029774542999917, 50.486761786000045), (-5.0286352199999556, 50.507025458000044), (-5.025257941999939, 50.52423737200007), (-5.015614386999914, 50.53803131700005), (-4.9955948559999115, 50.548163153000075), (-4.975168423999946, 50.548163153000075), (-4.967844204999949, 50.55158112200007), (-4.954823370999918, 50.56122467700004), (-4.947255011999914, 50.56244538000004), (-4.941477016999954, 50.55695221600007), (-4.937123175999943, 50.54531484600005), (-4.9344376289999445, 50.53164297100005), (-4.933583136999914, 50.52024974200003), (-4.926869269999941, 50.52289459800005), (-4.924305792999917, 50.52448151200008), (-4.920521613999938, 50.52765534100007), (-4.902414516999954, 50.52057526200008), (-4.860951300999943, 50.519191799000055), (-4.844838019999941, 50.51406484600005), (-4.855824347999942, 50.527411200000074), (-4.87328040299991, 50.534084377000056), (-4.906239386999914, 50.54197825700004), (-4.921864386999914, 50.55487702000005), (-4.92023678299995, 50.564154364000046), (-4.915191209999932, 50.57249583500004), (-4.920521613999938, 50.58295319200005), (-4.920521613999938, 50.589178778000075), (-4.895659959999932, 50.585923570000034), (-4.821197068999936, 50.589178778000075), (-4.7924698559999115, 50.59520091400009), (-4.7766007149999155, 50.60984935100004), (-4.765044725999928, 50.62799713700008), (-4.7492569649999155, 50.64443594000005), (-4.755441860999952, 50.659369208000044), (-4.751942511999914, 50.67007070500006), (-4.741932745999918, 50.67487213700008), (-4.728138800999943, 50.672308661000045), (-4.657297329999949, 50.71112702000005), (-4.645578579999949, 50.723537502000056), (-4.637806769999941, 50.74115631700005), (-4.619007941999939, 50.754787502000056), (-4.577259894999941, 50.774725653000075), (-4.5501195949999556, 50.80955638200004), (-4.55492102799991, 50.897772528000075), (-4.543771938999953, 50.93919505400004), (-4.536854620999918, 50.94757721600007), (-4.5226944649999155, 50.972723700000074), (-4.5266820949999556, 50.98037344000005), (-4.530425584999932, 50.99469635600008), (-4.531320766999954, 51.008693752000056), (-4.526437954999949, 51.014960028000075), (-4.437326626999948, 51.014960028000075), (-4.4264216789999296, 51.01268138200004), (-4.4057511059999115, 51.00287506700005), (-4.3957413399999155, 51.00067780200004), (-4.337717251999948, 50.99664948100008), (-4.317290818999936, 51.00067780200004), (-4.302316860999952, 51.007513739000046), (-4.234730597999942, 51.05532461100006), (-4.2291560539999296, 51.06110260600008), (-4.224680141999954, 51.06708405200004), (-4.218495245999918, 51.07245514500005), (-4.207997199999909, 51.07636139500005), (-4.214263475999928, 51.086004950000074), (-4.226307745999918, 51.11322663000004), (-4.228505011999914, 51.120428778000075), (-4.2319229809999115, 51.12669505400004), (-4.249012824999909, 51.14288971600007), (-4.255767381999931, 51.15151601800005), (-4.222320115999935, 51.149725653000075), (-4.214833136999914, 51.15151601800005), (-4.208363410999937, 51.16229889500005), (-4.2098282539999445, 51.17283763200004), (-4.217274542999917, 51.18138255400004), (-4.228505011999914, 51.18622467700004), (-4.228505011999914, 51.19245026200008), (-4.152333136999914, 51.21161530200004), (-3.969471808999913, 51.22239817900004), (-3.931996222999942, 51.231350002000056), (-3.9131973949999406, 51.23338450700004), (-3.840891079999949, 51.23338450700004), (-3.818959113999938, 51.23607005400004), (-3.787098761999914, 51.24677155200004), (-3.769154425999943, 51.247707424000055), (-3.6397598949999406, 51.22638580900008), (-3.559315558999913, 51.22809479400007), (-3.434193488999938, 51.20978424700007), (-3.4043676419999542, 51.19204336100006), (-3.38499915299991, 51.18622467700004), (-3.2707413399999155, 51.18939850500004), (-3.198882615999935, 51.203558661000045), (-3.1627498039999296, 51.206732489000046), (-3.096750454999949, 51.20453522300005), (-3.057525193999936, 51.20815664300005), (-3.029286261999914, 51.220404364000046), (-3.021839972999942, 51.21356842700004), (-3.0355525379999335, 51.199286200000074), (-3.021839972999942, 51.19245026200008), (-3.004790818999936, 51.21312083500004), (-3.0013321609999366, 51.220404364000046), (-2.9995824859999516, 51.23322174700007), (-3.0015356109999516, 51.23969147300005), (-3.0049942699999406, 51.24506256700005), (-3.008168097999942, 51.25454336100006), (-3.0076391269999476, 51.29197825700004), (-3.0106095039999445, 51.310980536000045), (-3.021839972999942, 51.32282135600008), (-3.0024307929999168, 51.31907786700003), (-2.992176886999914, 51.321926174000055), (-2.992095506999931, 51.32204824400009), (-2.988392706999946, 51.33112213700008), (-2.9877823559999115, 51.34666575700004), (-2.9798884759999282, 51.35586172100005), (-2.965972459999932, 51.364935614000046), (-2.959584113999938, 51.374253648000035), (-2.9746801419999542, 51.38422272300005), (-2.9529516269999476, 51.398504950000074), (-2.9210098949999406, 51.39443594000005), (-2.8841853509999282, 51.41697825700004), (-2.816395636999914, 51.47361888200004), (-2.798573370999918, 51.48261139500005), (-2.780873175999943, 51.48908112200007), (-2.7612198559999115, 51.49286530200004), (-2.7376195949999556, 51.49408600500004), (-2.716420050999943, 51.49957916900007), (-2.6961563789999445, 51.51264069200005), (-2.6078181629999335, 51.60736725500004), (-2.599598761999914, 51.611395575000074), (-2.5892227859999366, 51.61424388200004), (-2.580433722999942, 51.61863841400009), (-2.5768123039999296, 51.62750885600008), (-2.57445227799991, 51.63572825700004), (-2.568959113999938, 51.644964911000045), (-2.562245245999918, 51.65338776200008), (-2.556385870999918, 51.65924713700008), (-2.499175584999932, 51.69676341400009), (-2.464995897999927, 51.725897528000075), (-2.4477432929999168, 51.73187897300005), (-2.404896613999938, 51.74115631700005), (-2.3885391919999392, 51.750433661000045), (-2.380767381999931, 51.76190827000005), (-2.3833715489999463, 51.77326080900008), (-2.398060675999943, 51.782131252000056), (-2.4024145169999542, 51.76357656500005), (-2.4203995429999168, 51.753119208000044), (-2.4434301419999542, 51.74843984600005), (-2.4632869129999335, 51.747300523000035), (-2.482085740999935, 51.74286530200004), (-2.495838995999918, 51.73200104400007), (-2.507964647999927, 51.71857330900008), (-2.5221248039999296, 51.706366278000075), (-2.581695115999935, 51.681708075000074), (-2.5911352199999556, 51.67536041900007), (-2.600209113999938, 51.66559479400007), (-2.6653539699999556, 51.617254950000074)]\n", + "fig, ax = plt.subplots()\n", + "\n", + "x = tuple(map(merc_x, lons))\n", + "y = tuple(map(merc_y, lats))\n", + "\n", + "ax.tricontourf(x, y, tuple(datapoints.values()))\n", + "ax.plot(x, y, 'wo', ms=3)\n", + "ax.plot(\n", + " [merc_x(coord[0]) for coord in gb_boundary],\n", + " [merc_y(coord[1]) for coord in gb_boundary],\n", + " 'k-'\n", + ")\n", + "ax.set_aspect(1.0)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "apd.aggregation", + "language": "python", + "name": "apd.aggregation" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Ch09/listing09-01-query_contextmanager.py b/Ch09/listing09-01-query_contextmanager.py new file mode 100644 index 0000000..5565acc --- /dev/null +++ b/Ch09/listing09-01-query_contextmanager.py @@ -0,0 +1,27 @@ +import contextlib +from contextvars import ContextVar +import functools +import typing as t + +from sqlalchemy import create_engine +from sqlalchemy.orm import sessionmaker +from sqlalchemy.orm.session import Session + +db_session_var: ContextVar[Session] = ContextVar("db_session") + +@contextlib.contextmanager +def with_database(uri: t.Optional[str] = None) -> t.Iterator[Session]: + """Given a URI, set up a DB connection, and return a Session as a context manager """ + if uri is None: + uri = "postgresql+psycopg2://localhost/apd" + engine = create_engine(uri) + sm = sessionmaker(engine) + Session = sm() + token = db_session_var.set(Session) + try: + yield Session + Session.commit() + finally: + db_session_var.reset(token) + Session.close() + diff --git a/Ch09/listing09-02-getdata.py b/Ch09/listing09-02-getdata.py new file mode 100644 index 0000000..1fb77d9 --- /dev/null +++ b/Ch09/listing09-02-getdata.py @@ -0,0 +1,15 @@ +import testing as t + +from apd.aggregation.database import DataPoint + + +# Partial code from apd.aggregation package + +async def get_data() -> t.AsyncIterator[DataPoint]: + db_session = db_session_var.get() + loop = asyncio.get_running_loop() + query = db_session.query(datapoint_table) + rows = await loop.run_in_executor(None, query.all) + for row in rows: + yield DataPoint.from_sql_result(row) + diff --git a/Ch09/listing09-03-count-datapoints.py b/Ch09/listing09-03-count-datapoints.py new file mode 100644 index 0000000..3be24f0 --- /dev/null +++ b/Ch09/listing09-03-count-datapoints.py @@ -0,0 +1,8 @@ +from apd.aggregation.query import with_database, get_data + +with with_database("postgresql+psycopg2://apd@localhost/apd") as session: + count = 0 + async for datapoint in get_data(): + count += 1 + print(count) + diff --git a/Ch09/listing09-04-plot.py b/Ch09/listing09-04-plot.py new file mode 100644 index 0000000..153aa47 --- /dev/null +++ b/Ch09/listing09-04-plot.py @@ -0,0 +1,17 @@ +from apd.aggregation.query import with_database, get_data + +from matplotlib import pyplot as plt + +async def plot(): + points = [ + (dp.collected_at, dp.data) + async for dp in get_data() + if dp.sensor_name=="RelativeHumidity" + ] + x, y = zip(*points) + plt.plot_date(x, y, "o", xdate=True) + +with with_database("postgresql+psycopg2://apd@localhost/apd") as session: + await plot() +plt.show() + diff --git a/Ch09/listing09-05-filtering.py b/Ch09/listing09-05-filtering.py new file mode 100644 index 0000000..7f567ef --- /dev/null +++ b/Ch09/listing09-05-filtering.py @@ -0,0 +1,13 @@ +from apd.aggregation.query import with_database, get_data + +from matplotlib import pyplot as plt + +async def plot(): + points = [(dp.collected_at, dp.data) async for dp in get_data(sensor_name="RelativeHumidity")] + x, y = zip(*points) + plt.plot_date(x, y, "o", xdate=True) + +with with_database("postgresql+psycopg2://apd@localhost/apd") as session: + await plot() +plt.show() + diff --git a/Ch09/listing09-06-multiplot.py b/Ch09/listing09-06-multiplot.py new file mode 100644 index 0000000..c628674 --- /dev/null +++ b/Ch09/listing09-06-multiplot.py @@ -0,0 +1,19 @@ +import collections + +from apd.aggregation.query import with_database, get_data + +from matplotlib import pyplot as plt + +async def plot(): + legends = collections.defaultdict(list) + async for dp in get_data(sensor_name="RelativeHumidity"): + legends[dp.deployment_id].append((dp.collected_at, dp.data)) + + for deployment_id, points in legends.items(): + x, y = zip(*points) + plt.plot_date(x, y, "o", xdate=True) + +with with_database("postgresql+psycopg2://apd@localhost/apd") as session: + await plot() +plt.show() + diff --git a/Ch09/listing09-07-more_filtering.py b/Ch09/listing09-07-more_filtering.py new file mode 100644 index 0000000..346da88 --- /dev/null +++ b/Ch09/listing09-07-more_filtering.py @@ -0,0 +1,21 @@ +async def get_deployment_ids(): + db_session = db_session_var.get() + loop = asyncio.get_running_loop() + query = db_session.query(datapoint_table.c.deployment_id).distinct() + return [row.deployment_id for row in await loop.run_in_executor(None, query.all)] + +async def get_data( + sensor_name: t.Optional[str] = None, + deployment_id: t.Optional[UUID] = None, +) -> t.AsyncIterator[DataPoint]: + db_session = db_session_var.get() + loop = asyncio.get_running_loop() + query = db_session.query(datapoint_table) + if sensor_name: + query = query.filter(datapoint_table.c.sensor_name == sensor_name) + if deployment_id: + query = query.filter(datapoint_table.c.deployment_id == deployment_id) + query = query.order_by( + datapoint_table.c.collected_at, + ) + diff --git a/Ch09/listing09-08-plot_with_helpers.py b/Ch09/listing09-08-plot_with_helpers.py new file mode 100644 index 0000000..fc0286a --- /dev/null +++ b/Ch09/listing09-08-plot_with_helpers.py @@ -0,0 +1,20 @@ +import collections + +from apd.aggregation.query import with_database, get_data, get_deployment_ids + +from matplotlib import pyplot as plt + +async def plot(deployment_id): + points = [] + async for dp in get_data(sensor_name="RelativeHumidity", deployment_id=deployment_id): + points.append((dp.collected_at, dp.data)) + + x, y = zip(*points) + plt.plot_date(x, y, "o", xdate=True) + +with with_database("postgresql+psycopg2://apd@localhost/apd") as session: + deployment_ids = await get_deployment_ids() + for deployment in deployment_ids: + await plot(deployment) +plt.show() + diff --git a/Ch09/listing09-09-async_groupby.py b/Ch09/listing09-09-async_groupby.py new file mode 100644 index 0000000..630a240 --- /dev/null +++ b/Ch09/listing09-09-async_groupby.py @@ -0,0 +1,67 @@ +import typing as t +from uuid import UUID + +from apd.aggregation.database import DataPoint +from apd.aggregation.query import get_data + + +async def get_data_by_deployment( + *args, **kwargs +) -> t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]: + """Return an Async Iterator that contains two-item pairs. + These pairs are a string (deployment_id), and an async iterator that contains + the datapoints with that deployment_id. + + Usage example: + + async for deployment_id, datapoints in get_data_by_deployment(): + print(deployment_id) + async for datapoint in datapoints: + print(datapoint) + print() + """ + # Get the data, using the arguments to this function as filters + data = get_data(*args, **kwargs) + + # The two levels of iterator share the item variable, initialise it with the + # first item from the iterator. Also set last_deployment_id to None, so the + # outer iterator knows to start a new group. + last_deployment_id: t.Optional[UUID] = None + try: + item = await data.__anext__() + except StopAsyncIteration: + # There were no items in the underlying query, return immediately + return + + async def subiterator(group_id: UUID) -> t.AsyncIterator[DataPoint]: + """Using a closure, create an iterator that yields the current + item, then yields all items from data while the deployment_id matches + group_id, leaving the first that doesn't match as item in the enclosing + scope.""" + # item is from the enclosing scope + nonlocal item + while item.deployment_id == group_id: + # yield items from data while they match the group_id this iterator represents + yield item + try: + # Advance the underlying iterator + item = await data.__anext__() + except StopAsyncIteration: + # The underlying iterator came to an end, so end the subiterator too + return + + while True: + while item.deployment_id == last_deployment_id: + # We are trying to advance the outer iterator while the underlying iterator + # is still part-way through a group. Speed through the underlying until we + # hit an item where the deployment_id is different to the last one (or, is not + # None, in the case of the start of the iterator) + try: + item = await data.__anext__() + except StopAsyncIteration: + # We hit the end of the underlying iterator: end this iterator too + return + last_deployment_id = item.deployment_id + # Instantiate a subiterator for this group + yield last_deployment_id, subiterator(last_deployment_id) + diff --git a/Ch09/listing09-10-new_get_data.py b/Ch09/listing09-10-new_get_data.py new file mode 100644 index 0000000..83c666b --- /dev/null +++ b/Ch09/listing09-10-new_get_data.py @@ -0,0 +1,35 @@ +import asyncio +import datetime +import typing as t +from uuid import UUID + +from apd.aggregation.database import DataPoint + + +async def get_data( + sensor_name: t.Optional[str] = None, + deployment_id: t.Optional[UUID] = None, + collected_before: t.Optional[datetime.datetime] = None, + collected_after: t.Optional[datetime.datetime] = None, +) -> t.AsyncIterator[DataPoint]: + db_session = db_session_var.get() + loop = asyncio.get_running_loop() + query = db_session.query(datapoint_table) + if sensor_name: + query = query.filter(datapoint_table.c.sensor_name == sensor_name) + if deployment_id: + query = query.filter(datapoint_table.c.deployment_id == deployment_id) + if collected_before: + query = query.filter(datapoint_table.c.collected_at < collected_before) + if collected_after: + query = query.filter(datapoint_table.c.collected_at > collected_after) + query = query.order_by( + datapoint_table.c.deployment_id, + datapoint_table.c.sensor_name, + datapoint_table.c.collected_at, + ) + + rows = await loop.run_in_executor(None, query.all) + for row in rows: + yield DataPoint.from_sql_result(row) + diff --git a/Ch09/listing09-11-database_fixtures.py b/Ch09/listing09-11-database_fixtures.py new file mode 100644 index 0000000..517f8df --- /dev/null +++ b/Ch09/listing09-11-database_fixtures.py @@ -0,0 +1,70 @@ +import datetime +from uuid import UUID + +from apd.aggregation.database import datapoint_table + +from alembic.config import Config +from alembic.script import ScriptDirectory +from alembic.runtime.environment import EnvironmentContext +import pytest + + +@pytest.fixture +def db_uri(): + return "postgresql+psycopg2://apd@localhost/apd-test" + + +@pytest.fixture +def db_session(db_uri): + from sqlalchemy import create_engine + from sqlalchemy.orm import sessionmaker + + engine = create_engine(db_uri, echo=True) + sm = sessionmaker(engine) + Session = sm() + yield Session + Session.close() + + +@pytest.fixture +def migrated_db(db_uri, db_session): + config = Config() + config.set_main_option("script_location", "apd.aggregation:alembic") + config.set_main_option("sqlalchemy.url", db_uri) + script = ScriptDirectory.from_config(config) + + def upgrade(rev, context): + return script._upgrade_revs(script.get_current_head(), rev) + + def downgrade(rev, context): + return script._downgrade_revs(None, rev) + + with EnvironmentContext(config, script, fn=upgrade): + script.run_env() + + try: + yield + finally: + # Clear any pending work from the db_session connection + db_session.rollback() + + with EnvironmentContext(config, script, fn=downgrade): + script.run_env() + + +@pytest.fixture +def populated_db(migrated_db, db_session): + datas = [ + { + "id": 1, + "sensor_name": "Test", + "data": "1", + "collected_at": datetime.datetime(2020, 4, 1, 12, 0, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + # Additional sample data omitted from listing for brevity’s sake + ] + for data in datas: + insert = datapoint_table.insert().values(**data) + db_session.execute(insert) + diff --git a/Ch09/listing09-12-parameterisation.py b/Ch09/listing09-12-parameterisation.py new file mode 100644 index 0000000..fba6e2b --- /dev/null +++ b/Ch09/listing09-12-parameterisation.py @@ -0,0 +1,34 @@ +import datetime +import pytest + + +class TestGetData: + @pytest.fixture + def mut(self): + return get_data + + @pytest.mark.asyncio + @pytest.mark.parametrize( + "filter,num_items_expected", + [ + ({}, 9), + ({"sensor_name": "Test"}, 7), + ({"deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd")}, 5), + ({"collected_after": datetime.datetime(2020, 4, 1, 12, 2, 1),}, 3), + ({"collected_before": datetime.datetime(2020, 4, 1, 12, 2, 1),}, 4), + ( + { + "collected_after": datetime.datetime(2020, 4, 1, 12, 2, 1), + "collected_before": datetime.datetime(2020, 4, 1, 12, 3, 5), + }, + 2, + ), + ], + ) + async def test_iterate_over_items( + self, mut, db_session, populated_db, filter, num_items_expected + ): + db_session_var.set(db_session) + points = [dp async for dp in mut(**filter)] + assert len(points) == num_items_expected + diff --git a/Ch09/listing09-13-configs.py b/Ch09/listing09-13-configs.py new file mode 100644 index 0000000..4b88d88 --- /dev/null +++ b/Ch09/listing09-13-configs.py @@ -0,0 +1,50 @@ +import dataclasses +import datetime +import typing as t + + +# Additional functions in main codebase + +@dataclasses.dataclass(frozen=True) +class Config: + title: str + sensor_name: str + clean: t.Callable[[t.AsyncIterator[DataPoint]], t.AsyncIterator[t.Tuple[datetime.datetime, float]]] + ylabel: str + + +configs = ( + Config( + sensor_name="RAMAvailable", + clean=clean_passthrough, + title="RAM available", + ylabel="Bytes", + ), + Config( + sensor_name="RelativeHumidity", + clean=clean_passthrough, + title="Relative humidity", + ylabel="Percent", + ), +) + + +def get_known_configs() -> t.Dict[str, Config]: + return {config.title: config for config in configs} + + +async def plot_sensor(config: Config, plot: t.Any, location_names: t.Dict[UUID,str], **kwargs) -> t.Any: + locations = [] + async for deployment, query_results in get_data_by_deployment(sensor_name=config.sensor_name, + **kwargs): + points = [dp async for dp in config['clean'](query_results)] + if not points: + continue + locations.append(deployment) + x, y = zip(*points) + plot.set_title(config['title']) + plot.set_ylabel(config['ylabel']) + plot.plot_date(x, y, "-", xdate=True) + plot.legend([location_names.get(l, l) for l in locations]) + return plot + diff --git a/Ch09/listing09-14-two_plots.py b/Ch09/listing09-14-two_plots.py new file mode 100644 index 0000000..e991f8c --- /dev/null +++ b/Ch09/listing09-14-two_plots.py @@ -0,0 +1,19 @@ +import asyncio + +from matplotlib import pyplot as plt + +from apd.aggregation.query import with_database +from apd.aggregation.analysis import get_known_configs, plot_sensor + +with with_database("postgresql+psycopg2://apd@localhost/apd") as session: + coros = [] + figure = plt.figure(figsize = (20, 5), dpi=300) + configs = get_known_configs() + to_display = configs["Relative humidity"], configs["RAM available"] + for i, config in enumerate(to_display, start=1): + plot = figure.add_subplot(1, 2, i) + coros.append(plot_sensor(config, plot, {})) + await asyncio.gather(*coros) + +display(figure) + diff --git a/Ch09/listing09-15-temperature_cleaner.py b/Ch09/listing09-15-temperature_cleaner.py new file mode 100644 index 0000000..305da0f --- /dev/null +++ b/Ch09/listing09-15-temperature_cleaner.py @@ -0,0 +1,51 @@ +import collections +import datetime +import typing as t + +from apd.aggregation.database import DataPoint + + +async def clean_temperature_fluctuations( + datapoints: t.AsyncIterator[DataPoint], +) -> t.AsyncIterator[t.Tuple[datetime.datetime, float]]: + allowed_jitter = 2.5 + allowed_range = (-40, 80) + window_datapoints: t.Deque[DataPoint] = collections.deque(maxlen=3) + + def datapoint_ok(datapoint: DataPoint) -> bool: + """Return False if this data point does not contain a valid temperature""" + if datapoint.data is None: + return False + elif datapoint.data["unit"] != "degC": + # This point is in a different temperature system. While it could be converted + # this cleaner is not yet doing that. + return False + elif not allowed_range[0] < datapoint.data["magnitude"] < allowed_range[1]: + return False + return True + + async for datapoint in datapoints: + if not datapoint_ok(datapoint): + # If the datapoint is invalid then skip directly to the next item + continue + + window_datapoints.append(datapoint) + if len(three_temperatures) == 3: + # Find the temperatures of the datapoints in the window, then average + # the first and last and compare that to the middle point. + window_temperatures = [dp.data["magnitude"] for dp in window_datapoints] + avg_first_last = (window_temperatures[0] + window_temperatures[2]) / 2 + diff_middle_avg = abs(window_temperatures[1] - avg_first_last) + if diff_middle_avg > allowed_jitter: + pass + else: + yield window_datapoints[1].collected_at, window_temperatures[1] + else: + # The first two items in the iterator can't be compared to both neighbours + # so they should be yielded + yield datapoint.collected_at, datapoint.data["magnitude"] + # When the iterator ends the final item is not yet in the middle + # of the window, so the last item must be explicitly yielded + if datapoint_ok(datapoint): + yield datapoint.collected_at, datapoint.data["magnitude"] + diff --git a/Ch09/listing09-16-chart_grid.py b/Ch09/listing09-16-chart_grid.py new file mode 100644 index 0000000..e59dcad --- /dev/null +++ b/Ch09/listing09-16-chart_grid.py @@ -0,0 +1,27 @@ +import asyncio +from uuid import UUID + +from matplotlib import pyplot as plt + +from apd.aggregation.query import with_database +from apd.aggregation.analysis import get_known_configs, plot_sensor + + +location_names = { + UUID('53998a51-60de-48ae-b71a-5c37cd1455f2'): "Loft", + UUID('1bc63cda-e223-48bc-93c2-c1f651779d69'): "Living Room", + UUID('ea0683de-6772-4678-bfe7-6014f54ffc8e'): "Office", + UUID('5aaa901a-7564-41fb-8eba-50cdd6fe9f80'): "Outside", +} + +with with_database("postgresql+psycopg2://apd@localhost/apd") as session: + coros = [] + figure = plt.figure(figsize = (20, 10), dpi=300) + configs = get_known_configs().values() + for i, config in enumerate(configs, start=1): + plot = figure.add_subplot(2, 2, i) + coros.append(plot_sensor(config, plot, location_names)) + await asyncio.gather(*coros) + +display(figure) + diff --git a/Ch09/listing09-17-sync_from_async.py b/Ch09/listing09-17-sync_from_async.py new file mode 100644 index 0000000..28cec82 --- /dev/null +++ b/Ch09/listing09-17-sync_from_async.py @@ -0,0 +1,10 @@ +import typing as t + +def add_number_from_callback(a: t.Callable[[], int], b: t.Callable[[], int]) -> int: + return a() + b() + +def constant() -> int: + return 5 + +print(add_number_from_callback(constant, constant)) + diff --git a/Ch09/listing09-18-wrap_coroutine.py b/Ch09/listing09-18-wrap_coroutine.py new file mode 100644 index 0000000..879a043 --- /dev/null +++ b/Ch09/listing09-18-wrap_coroutine.py @@ -0,0 +1,23 @@ +import asyncio +from concurrent.futures import ThreadPoolExecutor +import functools + + +def wrap_coroutine(f): + @functools.wraps(f) + def run_in_thread(*args, **kwargs): + loop = asyncio.new_event_loop() + wrapped = f(*args, **kwargs) + with ThreadPoolExecutor(max_workers=1) as pool: + task = pool.submit(loop.run_until_complete, wrapped) + return task.result() + return run_in_thread + +async def main() -> None: + print( + add_number_from_callback( + constant, wrap_coroutine(async_get_number_from_HTTP_request) + ) + ) + + diff --git a/Ch09/listing09-19-interactable.py b/Ch09/listing09-19-interactable.py new file mode 100644 index 0000000..c5f2573 --- /dev/null +++ b/Ch09/listing09-19-interactable.py @@ -0,0 +1,39 @@ +import asyncio +from uuid import UUID + +import ipywidgets as widgets +from matplotlib import pyplot as plt + +from apd.aggregation.query import with_database +from apd.aggregation.analysis import get_known_configs, plot_sensor, wrap_coroutine + + +@wrap_coroutine +async def plot(*args, **kwargs): + location_names = { + UUID('53998a51-60de-48ae-b71a-5c37cd1455f2'): "Loft", + UUID('1bc63cda-e223-48bc-93c2-c1f651779d69'): "Living Room", + UUID('ea0683de-6772-4678-bfe7-6014f54ffc8e'): "Office", + UUID('5aaa901a-7564-41fb-8eba-50cdd6fe9f80'): "Outside", + } + + with with_database("postgresql+psycopg2://apd@localhost/apd") as session: + coros = [] + figure = plt.figure(figsize = (20, 10), dpi=300) + configs = get_known_configs().values() + for i, config in enumerate(configs, start=1): + plot = figure.add_subplot(2, 2, i) + coros.append(plot_sensor(config, plot, location_names, *args, **kwargs)) + await asyncio.gather(*coros) + return figure + + +start = widgets.DatePicker( + description='Start date', +) +end = widgets.DatePicker( + description='End date', +) +out = widgets.interactive(plot, collected_after=start, collected_before=end) +display(out) + diff --git a/Ch09/listing09-20-genericised_plots.py b/Ch09/listing09-20-genericised_plots.py new file mode 100644 index 0000000..db8e1bc --- /dev/null +++ b/Ch09/listing09-20-genericised_plots.py @@ -0,0 +1,34 @@ +async def plot_multiple_charts(*args: t.Any, **kwargs: t.Any) -> Figure: + # These parameters are pulled from kwargs to avoid confusing function + # introspection code in IPython widgets + location_names = kwargs.pop("location_names", None) + configs = kwargs.pop("configs", None) + dimensions = kwargs.pop("dimensions", None) + db_uri = kwargs.pop("db_uri", "postgresql+psycopg2://apd@localhost/apd") + + with with_database(db_uri): + coros = [] + if configs is None: + # If no configs are supplied, use all known configs + configs = get_known_configs().values() + if dimensions is None: + # If no dimensions are supplied, get the square root of the number + # of configs and round it to find a number of columns. This will + # keep the arrangement approximately square. Find rows by multiplying + # out rows. + total_configs = len(configs) + columns = round(math.sqrt(total_configs)) + rows = math.ceil(total_configs / columns) + figure = plt.figure(figsize=(10 * columns, 5 * rows), dpi=300) + for i, config in enumerate(configs, start=1): + plot = figure.add_subplot(columns, rows, i) + coros.append(plot_sensor(config, plot, location_names, *args, **kwargs)) + await asyncio.gather(*coros) + return figure + +def interactable_plot_multiple_charts( + *args: t.Any, **kwargs: t.Any +) -> t.Callable[..., Figure]: + with_config = functools.partial(plot_multiple_charts, *args, **kwargs) + return wrap_coroutine(with_config) + diff --git a/Ch09/listing09-21-contours_and_scatter.py b/Ch09/listing09-21-contours_and_scatter.py new file mode 100644 index 0000000..a9ae67e --- /dev/null +++ b/Ch09/listing09-21-contours_and_scatter.py @@ -0,0 +1,14 @@ +fig, ax = plt.subplots() + +lats = [ll[0] for ll in datapoints.keys()] +lons = [ll[1] for ll in datapoints.keys()] +temperatures = tuple(datapoints.values()) + +x = tuple(map(merc_x, lons)) +y = tuple(map(merc_y, lats)) + +ax.tricontourf(x, y, temperatures) +ax.plot(x, y, 'wo', ms=3) +ax.set_aspect(1.0) +plt.show() + diff --git a/Ch09/listing09-22-get_data_config.py b/Ch09/listing09-22-get_data_config.py new file mode 100644 index 0000000..1d59534 --- /dev/null +++ b/Ch09/listing09-22-get_data_config.py @@ -0,0 +1,19 @@ +@dataclasses.dataclass +class Config: + title: str + clean: t.Callable[[t.AsyncIterator[DataPoint]], t.AsyncIterator[t.Tuple[datetime.datetime, float]]] + get_data: t.Optional[ + t.Callable[..., t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]] + ] = None + ylabel: str + sensor_name: dataclasses.InitVar[str] = None + + def __post_init__(self, sensor_name=None): + if self.get_data is None: + if sensor_name is None: + raise ValueError("You must specify either get_data or sensor_name") + self.get_data = get_one_sensor_by_deployment(sensor_name) + +def get_one_sensor_by_deployment(sensor_name): + return functools.partial(get_data_by_deployment, sensor_name=sensor_name) + diff --git a/Ch09/listing09-23-generic_config.py b/Ch09/listing09-23-generic_config.py new file mode 100644 index 0000000..05e930d --- /dev/null +++ b/Ch09/listing09-23-generic_config.py @@ -0,0 +1,36 @@ +import dataclasses +import typing as t +from uuid import UUID + +from apd.aggregation.database import DataPoint + + + +plot_key = t.TypeVar("plot_key") +plot_value = t.TypeVar("plot_value") + +@dataclasses.dataclass +class Config(t.Generic[plot_key, plot_value]): + title: str + clean: t.Callable[ + [t.AsyncIterator[DataPoint]], t.AsyncIterator[t.Tuple[plot_key, plot_value]] + ] + draw: t.Optional[ + t.Callable[ + [t.Any, t.Iterable[plot_key], t.Iterable[plot_value], t.Optional[str]], None + ] + ] = None + get_data: t.Optional[ + t.Callable[..., t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]] + ] = None + ylabel: t.Optional[str] = None + sensor_name: dataclasses.InitVar[str] = None + + def __post_init__(self, sensor_name=None): + if self.draw is None: + self.draw = draw_date + if self.get_data is None: + if sensor_name is None: + raise ValueError("You must specify either get_data or sensor_name") + self.get_data = get_one_sensor_by_deployment(sensor_name) + diff --git a/Ch09/listing09-24-custom_map_chart.py b/Ch09/listing09-24-custom_map_chart.py new file mode 100644 index 0000000..95b202c --- /dev/null +++ b/Ch09/listing09-24-custom_map_chart.py @@ -0,0 +1,36 @@ +def get_literal_data(): + # Get manually entered temperature data, as our particular deployment + # does not contain data of this shape + raw_data = {...} + now = datetime.datetime.now() + async def points(): + for (coord, temp) in raw_data.items(): + deployment_id = uuid.uuid4() + yield DataPoint(sensor_name="Location", deployment_id=deployment_id, + collected_at=now, data=coord) + yield DataPoint(sensor_name="Temperature", deployment_id=deployment_id, + collected_at=now, data=temp) + async def deployments(*args, **kwargs): + yield None, points() + return deployments + +def draw_map_with_gb(plot, x, y, colour): + # Draw the map and add an explicit coastline + gb_boundary = [...] + draw_map(plot, x, y, colour) + plot.plot( + [merc_x(coord[0]) for coord in gb_boundary], + [merc_y(coord[1]) for coord in gb_boundary], + "k-", + ) + +country = Config( + get_data=get_literal_data(), + clean=get_map_cleaner_for("Temperature"), + title="Country wide temperature", + ylabel="", + draw=draw_map_with_gb, +) + +out = widgets.interactive(interactable_plot_multiple_charts(configs=configs + (country, )), collected_after=start, collected_before=end) + diff --git a/Ch10/apd.aggregation-chapter10-ex01/.coveragerc b/Ch10/apd.aggregation-chapter10-ex01/.coveragerc new file mode 100644 index 0000000..e766c69 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10-ex01/.coveragerc @@ -0,0 +1,3 @@ +[run] +branch = True +omit = tests/* diff --git a/Ch10/apd.aggregation-chapter10-ex01/.pre-commit-config.yaml b/Ch10/apd.aggregation-chapter10-ex01/.pre-commit-config.yaml new file mode 100644 index 0000000..d3b6ec7 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10-ex01/.pre-commit-config.yaml @@ -0,0 +1,26 @@ +repos: + +- repo: local + hooks: + - id: black + name: black + entry: pipenv run black + args: [--quiet] + language: system + types: [python] + + - id: mypy + name: mypy + exclude: (?x)^( + (.*)/setup.py + )$ + entry: pipenv run mypy + args: ["--follow-imports=skip"] + language: system + types: [python] + + - id: flake8 + name: flake8 + entry: pipenv run flake8 + language: system + types: [python] diff --git a/Ch10/apd.aggregation-chapter10-ex01/CHANGES.md b/Ch10/apd.aggregation-chapter10-ex01/CHANGES.md new file mode 100644 index 0000000..8e424e5 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10-ex01/CHANGES.md @@ -0,0 +1,5 @@ +## Changes + +### 1.0.0 (Unreleased) + +* Generated from skeleton diff --git a/Ch10/apd.aggregation-chapter10-ex01/Connect to database.ipynb b/Ch10/apd.aggregation-chapter10-ex01/Connect to database.ipynb new file mode 100644 index 0000000..98a74f0 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10-ex01/Connect to database.ipynb @@ -0,0 +1,577 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "53635\n" + ] + } + ], + "source": [ + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.database import datapoint_table\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " print(session.query(datapoint_table).count())" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "53635\n" + ] + } + ], + "source": [ + "from apd.aggregation.query import with_database, get_data\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " count = 0\n", + " async for datapoint in get_data():\n", + " count += 1\n", + " print(count)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nO2df5RV5Xnvv88czuAZIhnGAMWJk1FK8cYMMOmk4KXXaiwlkahHIyFW1vKu5uptb1dbSjvtULnFZEEgkhC6bu+695L+olcWRQ0dTTASitqueoUuzIDERIpGRUcKNDhRYYRheO4fZ+9hz56999m/z95zvp+1Zp05++wfz373u9/nfd/neZ9HVBWEEEKIGw21FoAQQki2oaIghBDiCRUFIYQQT6goCCGEeEJFQQghxJMJtRYAAD7ykY9oe3t7rcUghJBc8cILL/y7qk5N+jqZUBTt7e04cOBArcUghJBcISJvpHEdTj0RQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+qej2JyF8B+ByAk6r6CWNbC4AdANoBvA7gC6r6jvHbKgBfAjAM4HdVdXcikhOSIr19/XjwiZcwMDgU6TxNxUrf7OzQRQDAlKYi1tx6HcqdrSPX2bj7CN4eGMSVzSV0L5498htJjiDlbq8LU5qKWDJnBp55+RTeHhjEh0tFnL8wPPKM/WCvB1lDqkWPFZEbALwP4G8tiuIhAKdVdYOI9ACYoqp/LCIfB7AdwC8BuBLAPwD4BVUd9rpGV1eX0j2WZJXevn50P3oIQxeTibRcLAg23jUXALBq52EMDl16XUrFAtbf2ZHZBmQ80NvX77vck6wLZj0I8qxF5AVV7YpdGBtVp55U9Z8AnLZtvh3AVuP/rQDKlu1/p6rnVPU1AK+gojQIyS0bdx9JTEkAwNCwYuPuI9i4+8ioxgoABoeGsXH3kcSuTRCo3JOsC2Y9yCJhF9xNV9XjAKCqx0VkmrG9FcA+y35vGdvGICL3A7gfANra2kKKQUjyvD0wWNNrpHH9esatfJ22J/0ssvqs4zZmi8M2R/WrqltUtUtVu6ZOTXwFOiGhubK5lMo13K6TxvXrmSDlnvSzyOqzDqsoTojIDAAwPk8a298CcJVlv48CeDu8eITUnu7Fs1FscOoDxUOxIOhePBvdi2ejVCyM+q1ULKB78ezErk0QqNyTrAtmPcgiYRXFEwDuNf6/F8Djlu1fFJGJInI1gFkA/iWaiITUlnJnKzYunYvmUjHyuZqKDSOeT0DF28U0YJY7W7H+zg60NpcgAFqbSzRkp0CQcneqC1Oaili+oG3k+OZScdQz9oO1HmQRP15P2wHcCOAjAE4AWAOgF8AjANoAHAOwVFVPG/s/AOA3AFwAsEJVv1dNCHo9EUJIcNLyeqpqzFbVu11+utll/3UA1kURihBCSHbgymxCCCGeUFEQQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhCRUEIIcQTKgpCCCGeUFEQQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhSNR8FIWHp7evHg0+8hIHBoTG/TWosYN0d/rO39fb1Y+PuI3h7YBBXNpfQvXh2bNnAvOQ0mdJUxJpbr0O5szWwLOb+/QODKIhgWBXNpSLOXxjG2aGLsdwDUElYXywIzg9fSkY2pamIJXNm4JmXT43I235FCft+8g6GVVEQwd3zr8LackdscvjFXu7WMq4FTvXA/tyr1RMrbveTZF1OiqoZ7tKAGe7GH719/eh+9BCGLrrXr0KD4BtLq6d/7O3rx6qdhzE4NDyyrVQsxJIm1I+cJsWCYNmnrsK3X+j3LYuT7Flk+YK2VJWFW7kXC1KTlKBe9cB87jv+5U1f9cR+rPV+4q7LaWW449QTSYSNu49UfamGLyo27j7i61z2hnZwaNjXsX7O7fflHxpWbN//ZiBZnGTPItv3v5nq9dzKfWjYX51ISx7g0nMPqiTMY633k2RdThIqCpIIbw8Mxraf2z5+rxH1+laGXUbgScqYBm73lRRe5VKLMqt2zSjlYz13XusJFQVJhCubS7Ht57aP32tEvb6Vgkig88QhYxq43VdSeJVLLcqs2jWjlI/13HmtJ1QUJBG6F89GscH75So0CLoXz/Z1rlKxMGpbqVjwdayfc1eT06RYqBh+g8jiJHsWuXv+Valez63ciwV/dSIteYBLz91vPbEfa72fJOtyklBRkEQod7Zi49K5aC4VHX+f1FjwZcg2z7X+zg60NpcgAFqbS7EYsv3IaTKlqYiNd83F2nJHIFmssgOXeqbNpSKaivG+fgKgsTC6MZvSVMTyBW2j5F04s2VEjoJI6oZswLnczTKuhQeQWz2wPnc/9cTpWOv9JFmXk4ReT4QQklPo9UQIISQTUFEQQgjxJJKiEJHfE5EfishLIrLC2NYiIntE5KjxOSUeUQkhhNSC0IpCRD4B4D4AvwRgLoDPicgsAD0A9qrqLAB7je+EEEJySpQRxX8AsE9Vz6rqBQD/COAOALcD2GrssxVAOZqIhBBCakkURfFDADeIyBUi0gTgFgBXAZiuqscBwPic5nSwiNwvIgdE5MCpU6ciiEEIISRJQisKVf0xgK8B2APgKQCHAFwIcPwWVe1S1a6pU6eGFYMQQkjCRDJmq+pfquonVfUGAKcBHAVwQkRmAIDxeTK6mIQQQmpFVK+nacZnG4A7AWwH8ASAe41d7gXweJRrEEIIqS1RExd9W0SuADAE4LdV9R0R2QDgERH5EoBjAJZGFZLUH1lLakNIPRNJUajqf3LY9lMAN0c5L6lvnJLIvHN2CN2PHQIAKgtCUoYrs0nmyFpSG0LqHebMJqlizR8tAOzqwGmblf6BQXz8v38vUK7pKU1FfHzG5Xju1dO+9rVOccU1Bba69zC2739zTJ5qr/zJ1t8+XCpCBBg4O+S436qdL2LQKJMGAa6/pgUvvf3emPzPZv5st/JvEODX56cfTdYtX/WSOTPw3UPHazIFubr3MLbtO+ZYH1tzkus6Lhg9lqRGXvJHm3mOAcSS13l172E8vO/YmO0LZ7bgB8d+5pg/GYBnWVn3W7njIPyrTX+kGXo8SN5yIJ282m7PzEpcedujkFb0WCoKkhoLNzyN/oynfDQx80e4ydvaXMJzPZ/2da6Zq54MlEqz2rWD7heGggheXX9L7Od1Iky9CFL+YfD7zJKWoxppKQpOPZFYqPQKD8JpRmhSYwHr7ujIfF5gK9VkDXIvQfMtx5lvPCxp5tAOcx9J1yW/95+nOh0FGrNJZHr7+rFih7OSAIAz54fxB48eQnOT/+xgtebK5lJseZ2D5luudu2g+4UhzRzaYe4h6RzTfu8/67mu44KKgkTGjyfS8EWFKnKRP9rMcxxXXme3fNQLZ7a45k+ulmvbul8SL3GaObSD5C0H0smr7ef+85DrOi6oKEhk/A6/fzY4NCp/tFPTYM/73FRsGJVb2v7dD1Oailg4s8X3vqahNK68zmvLHVi+oG1Mnupt913vmj/Znlu5uVTElKai436bls1DyVImDVJRQk75n8382YBz+TdIuoZswDtf9fIFbTXJq20+Mzf1lZdc13FBYzaJjF9jZK0Nf4SMN5gzm+QGP8PvQkPy0wWEkGSgoiCRKXe2YvOyeXCbEZrUWMA3liY/XUAISQa6x5JYMOfLCSHjD44oCCGEeEJFQQghxBMqCkIIIZ5QURBCCPGEioIQQognVBSEEEI8oXssyQT2JDFmxFm63BJSe6goSM1xShJjRpwFmCObkFrDqSdSc7bvf9Nx+/BF5sgmJAtwREFSx54L2itJjDUyrT3v9IJrpozKC91UbMDEYmEkr/RN104dlW8ZSDfncpbwys1t/h5HbvCgctifkVOebDNasD1Per0+y1rA6LEkVYLmzTYjzvrJYeyXNHIuZwmnMrfme3bLWR13OSWRM73enqUdRo8l45KNu4/4biisEWfdpqfCMDRcX1NaTmU+ODQ8UgYbdx8ZoySA+MspyLP3S709y1oRSVGIyO+LyEsi8kMR2S4il4lIi4jsEZGjxueUuIQl+cdvkiN7xNm4czjXS65jwP1eze1eZRFnOSVV5vX0LGtFaEUhIq0AfhdAl6p+AkABwBcB9ADYq6qzAOw1vhMCwF+O4dbmEl76ymdGTSfEncO5XnIdA+73am6PKzd4WDmyel5yiahTTxMAlERkAoAmAG8DuB3AVuP3rQDKEa9BxhF+c0HbiTOHcxo5l7OEU5lbyzmu3OBh5IhKvT3LWhFaUahqP4CvAzgG4DiAn6nq9wFMV9Xjxj7HAUyLQ1AyPvCbC9qOU95pe17opmLDqHPZ8y0D6eVczhL2MreXc1y5wcPI4ZQT277NLU96PT7LWhHa68mwPXwbwDIAAwAeBfAYgD9X1WbLfu+o6hg7hYjcD+B+AGhra/vFN954I5QchBBSr+TB6+lXAbymqqdUdQjATgD/EcAJEZkBAMbnSaeDVXWLqnapatfUqVMjiEEIISRJoiiKYwAWiEiTiAiAmwH8GMATAO419rkXwOPRRCSEEFJLQq/MVtX9IvIYgB8AuACgD8AWAB8C8IiIfAkVZbI0DkEJIYTUhkghPFR1DYA1ts3nUBldEEIIGQdwZTYhhBBPqCgIIYR4QkVBCCHEEyoKQgghnlBREEII8YSKghBCiCdUFIQQQjyhoiCEEOIJc2YTUidUy5udNfIm73iGioKQOsCer7p/YBCrdh4GgEw2vnmTd7zDqSdC6oBqebOzRt7kHe9QURBSB1TLm5018ibveIeKgpA6oFre7KyRN3nHO1QUhNQB1fJmZ428yTveoTGbkDrANADnxYsob/KOd0LnzI6Trq4uPXDgQK3FIISQXJGHnNmEEELqACoKQgghntBGYeGebz2P5149PfJ94cwWbLvv+hpKRAghtYcjCgO7kgCA5149jUWbnq2NQIQQkhHqZkRxdc8uWM32AuC1DUtGvtuVhMnRk2fQ29dPbwtCSN1SFyOKdpuSAAA1tvth1c4XY5eJEELywrhXFPd863nP3+ev21P1HINDF+MShxBCcse4VhS9ff2uU0omJ947n5I0hBCST8a1ovjjb/ubMpqz5qmEJSGEkPwSWlGIyGwROWj5e1dEVohIi4jsEZGjxueUOAUOwrkL/qaM3j03XH0nQgipU0IrClU9oqrzVHUegF8EcBbA3wPoAbBXVWcB2Gt8J4QQklPimnq6GcCrqvoGgNsBbDW2bwVQjukaNaW3r7/WItQVvX39WLjhaVzdswsLNzzN8iekhsSlKL4IYLvx/3RVPQ4Axuc0pwNE5H4ROSAiB06dOhWTGKOZNW1SbOdiZq30WLTpWazYcRD9A4NQVNJgrthxkMqCkBoRecGdiDQCuA3AqiDHqeoWAFuASvTYqHI4cfZ8fG6tWcisVQ/J5u/51vM4evKM428rHzmYi/uth+dEorO69zC2738Tw6ooiODu+Vdhbbmj1mI5EsfK7M8C+IGqnjC+nxCRGap6XERmADgZwzVCEWfj/uFSMbZzhWHOmqdGGd3Ha7J5L3fmi7WPiF+VRZueHaXozNEQML6eE4mGvZ4Mq+LhfccAIJPKIo6pp7txadoJAJ4AcK/x/70AHo/hGqFonBCf9++7g0OxnSso89ftcfTMGm/J5q994MlaixAJr9HQih0Hcc2qXZw+I1jde9i1npjKImtEGlGISBOARQD+q2XzBgCPiMiXABwDsDTKNcLS29fv2z3WD0mvzXaKXLu0qw0bdx/xXBTYn4EpsThY3XsYHwznYMjgQbXFnRcVHF2QzCoDLyIpClU9C+AK27afouIFVVO6Hz1YaxEccZq/fvTAMcfItdUaHqAS3DCvWMsi3yoiGH/02CEqijplde/hWosQinEbPbZaeKZJjQWcOZ/uQrvevn78/o6DI41i/8DgqO9hyGsD29vXj1U7D2NwqP4WO57P+ciJBKe3r39kNOlFVjt+uVYUUbxL1t3RMaahKhULng1Xe8+uSN4Jf/TYIccotvXIxt1HAiuJgmT1NQrO6t7DmTRaEm/CeCr5VRIAcM+CtjjEjJ3cKorevn50P3oIQ4YrTP/AILofPQQAOPCG95RNqdgwolDsiqbaA3XyTvCrsNiTvEQY28qwjp/ye3jfMSqKnBHWU+nBJ17yfY2s1oncKooHn3hpREmYDF1UPPjESxio4qG0/s45ACoGRXuD7lfzbzNedHtvge6Q/hAEH021NpeSEIWQqlTzVPJq4Ku1RyaTJxZCyZYGuVUUboXv56F4NeClYoOv/BNmI+emWFbsGL04jG6RowkzNmi/Il5FYe8hzpo2CXtW3hjqXEk8X7sn3MQJDfja5yudHC7oS5ft+98MdVy1fDhWXvzyZ0JdIw1yqyiSYv2dc3yPKqphTaGa5HqHepnvfu7V07GlpbUrCaCS9nbRpmerKguneeowLo/tPbuwfEGb47NzyuF+7sLFMXXTHMH+ae/hTDc0Tlz7wJNjXKInTyxk8j6qTXs6vYNOdcyNUjHbGR9EMzDv29XVpQcOHAh0jN80pnYmNAhe+eotnvvMXv09X2swFs5s8eXCmgavW/J/54Gwz880Z1frSVezG3ld36ssV/ceTsQP3q4wwpTPZQXBy+u863ZWcFISVtKsz15u2hMEeGX9Esxc9WRVZWGVOYgBGwA2L5sXqgMkIi+oalfgAwOSbTWWAF9fOrfqPubwvhppKYnNy+alcp08oMafGcLEacrHdL21BhX8/R0HY/FhT2qx1MP7jkWW74NhzY2ffrXFlVeH7EgExV5X7FzQitJecE2wtDpf/o5/A/bCmS2ZnzqsK0WxfEGbrweSlYfW2lwK3dPIMkHmbb1wC2Hi5HqrqDTGfmwJ7T27atLgxqGE8rjq1wlF+FFnEPy6afvpFFqV2ztn/Rmwly9ow7b7rve1by3JraJoLAT3qc/TPP5lBcFzPZ8eURILZ7bUWKJ4WN17uOpL1xDg0Tq52XoFg/TrqhhHDz8M7T27Umkg80LSSjvOwKGK4Cuv89Im5VZRTJoYzA4fdPomzlwWYbDPNVfrdeQl0Y+fHu+mLwR7VvZ79YoF6ddVEYindz5r2iQsz+giqlpyWYCOXpJK+8qYXa7NOtPsI9q0n32yQm4Vhd+hnUnQ6Zs9K2+sibKYPLEQypC38pHRiX7c5u+TIG4lFfRZ2UcJ1bybg8j386su9e4XbXo2iFgAKvVobbmDdiYbG+6qbiu08vC+Y7i6J/7ou92LZ8d6PqAyCvLTIXnwtutiv3ZS5NY9tiCS+ErdPStvxMINTyceoTUODw97rgZz/j5p+0aQBYdJ9QqDjBKAimJpbS75eq4XtGJTeeXk+55RfJ2YfnnjyP9mWcTlep13wriLKyrl94ePHsLXl87Nte1u1rRJuZI/tyOKtMI5JNHjsBIkflFTQF9r+/xrEtNTKz0WHNrZ5mMqx2xcJ8aYS8TOwOBQoOf63KunAysJANj/wKJR38udramMLPLg+RTFNnDhomLFjoNo79mF2au/F6ke1yKfS5SFnbUit4oiCFHmiMudrYnOMd89/yrf+371Tn9uuybWrHxOLqNxTE95zfK0WxRSb19/1dXY0y9vHGlc/booO+FnyjDpnr3bKLHc2Zr4GoGwtpVrH3hyxJje3rMr0URScdkGzl24iJWPhM+nXot8LnlTEkCdKIqongXmHHPcsYYWzmwJJFvQoap1sOLkBjg4NDzSM3P6i6Nnak5FVWuYly9oG9UDjzIs//f3g/f+42LWtEmZWPw4f92eQPtf3bNrzNqGD4Y1MWVx07VTYzvXRQ0/MhhPEYmTJLeKIu0HXO5sxXM9n8brG5Zg+YK2Mdf3WoK/edm8EUUjuLQ+Imn/aavBP0zPKU0X0ajK3JRzde/hwI4OcbF52TzfvcVJjcEDwF1WkJH6V40T750fZYj3YnXvYdfRXlJZB595+ZTj9rChLMJOZXlNYdMB4RK5NWb7ja+TxLTR2nKHY8O2uvcwtu07NvLSTWosYN0dHSO947SNV0HWI7hRLTLm9MsbQ83f24kaw+nhfcfQ9bGWmi04a7KErvfDujs6Ak9/mS7Ta8sdvu7zglZGCq9VGeHUoszcGvYPfATkdCLsVJabU0Nrc2kkuvScNU855qw3FUk9OCjkVlGsLXfgtVPvV128leaCFjcFUivsnlBh8WrEJxTiCY0ch4dWrV5YQXD7URAvKKvtxqSp2ICzPqMcz1+3Z+R4p4CGteBKlwb6yuYSbrp2amDlFdbppHvxbMcEZtbzVQtSeOCN0+NmRbwbuVUUQGURGlexJs+qnS+6NuJxrWx1Ok+YnBVpM6WpiDW3XhdKyZk91jCZGr8aIMqxOeL7+VW7cMFSoNbEO2nj1UCb924qND+E7WS4JTALcj6zc+inLPM6nZVrRQEAxQb3BVb1viI2rsjFg0MXMWfNU449K7eeYVCcpg7uWdCWekM2QTCqMfVi8sQC+v701yJf0ymBlp9j/vDRQ7jgc9gYtkOVVMNWrYE2R+dpdATDlL+dteUOPPPyKdd3oTXneUNya8w22bjUuSIH9SjKC1Oa/C/7H7oYX0Kdd88NY86ap8Zs7148G6VitOkn+1DfZG25I1VlP3liAa+sX+I7wX2t8yZ8fencWOxQXiTZsJkOIq9tWDIqrpkVPz4rWekQOr0LpWIBm5fNc72/vJB7RWEuYkrbo6hWrLn1OhQDxMl58ImXsHDD07Fc+91zw2MUT7mzFXoxuAFyQoOMPK/1d3a4vkRryx2hAkAGZfrljSMN/2sbloxaVW0nbJiVuCl3tmLTF+J3284S98yvrgSy0iEsd7Zi/Z0do9oir7qdJ3KbuKie6e3r95UbPAlam0t4rufTgbJ3AZWeVdiX5uqeXZFtFW6Z5LywZ5lbOLMl0x2QuKdpzGdda7ySHGU1I15apJW4iIoixzilywzLpMYCzpyvHpcf8O8S29pciiWvc9R4W+Mxp4cTQbOqVSNL5TZ/3Z4xda7elQSQE0UhIs0A/gLAJ1BxUPkNAEcA7ADQDuB1AF9Q1Xe8zkNFEZ6oqTmtaz06v/L9WBerxTU909vXj+5HD2EohL+vmcqyXohrVJH10ROpkJdUqH8G4ClVvRbAXAA/BtADYK+qzgKw1/hOEiLq/GxzU+NIr3HNrdclbhwNQ7mzFR+6LJyDXj0piTihkiBWQisKEZkM4AYAfwkAqnpeVQcA3A5gq7HbVgDlqEISb6I07tb1C6ZxNA4mT4xnIZ7JQIiRTpDkOOOFOAzbWfEiItkhyojiGgCnAPy1iPSJyF+IyCQA01X1OAAYn9OcDhaR+0XkgIgcOHXKOe4L8UeUFdj29QtxhcKOe+74wwGzgV1WkDFZAuuB7sWzfbv3OiHIjhcRyQ5RFtxNAPBJAL+jqvtF5M8QYJpJVbcA2AJUbBQR5Kh7/CbhccJp/UK5szWSUTQJ19GhYW8X3Cy4q2aBcmdr6JAS9apcSXWiKIq3ALylqvuN74+hoihOiMgMVT0uIjMAnIwqJPGme/Hs0A173F4tSTXYfj2ySGVE0PWxFnQ/etA1akHeVwrXgjChVsYLoRWFqv6biLwpIrNV9QiAmwH8yPi7F8AG4/PxWCQlrmQlzWaW4tg4Bb+rpymVOMJSkEuYib/M2FRm4i8g/ajQtSCq19PvANgmIi8CmAfgq6goiEUichTAIuM7SZhyZ6uvcAdW4ooFBSTvc98cwEZhugybAeXM4Hd5SBFKsolb4q9apFKtBZGaClU9qKpdqjpHVcuq+o6q/lRVb1bVWcZnPCvCSFX8hDuw4hYnKyiTJxYS71U9eNt1rr/ZkwBt3/+m435u2wmphluU5FqkUq0FuY/1RC6xttzhK180UHGB9Grcg3iWprE61ktWu/3CLTS135DVhNhp9gjGGVfgzSxDRTHO2LPyRixf0DbKRbKxIJjSVBwVNLHafP03fK6nSNPn3k131d9qCZI2Xn2Meph+yn0+CjKWODLtmT14a/DBYgMwrJV1G7UwELu9q2HHCfbAhrOmTfKd85rUFz/zCMBZD9NPVBTEFb+eM1nzMCqIOE4zWUceTtFvj548g0WbnqWyIGPwStBVCOpFkkM49UQikUUPIzdbhOLSfLJbiPQgodNJ/eCVk7sebF9UFCQS21xWALttTwOveEf1MJ9M4qfc2eoaU40jCkKqELfdICxWzxOv3p+bmyMh1XCLqcYRBSEJ0tvXj4UbnsbVPbuwcMPTVd0MvaLkWkcK5c5W19zi9iCIhJDq0JhNakJvXz9WPnJwpJfWPzCIlY9UQpC4GdC9ouTaDY1L5sxwDIx307VTfckWdgFh3tKnEuIHjihIYniNEP5k54tjGv6LWtnuhpftwT7YeOZl59D15na3EQdQcQkOg1Nq2udePY17vvV8qPMRkhU4oiCRcHNFBSrTQW4987MuYU3dtgPeUXLtEri5Mprb19x6neu5Bjx85r1wy18eNq951tyOawnLorZQUZBI3D3/KtfcB2EXIkWZ+jFpEOepKtNDJWrOjaAEvSd7LnTT7RgAuj7WUlfhrr3KIk1lIXB20nAznY0n5capJxKJteUOzxAafozUdpymn8wwz37o7etP1ENlde9hzFz1JNp7dmHmqid9rRkJ6pbrpnwf3ncMq3YeRv/AIBSXwl2P53hDXmWRJkE8/LK4vigKVBQkMl5Nr1tDZo/4asVp+skpzLMbXo1ykHDlToRtAOIM81DP4a7zwniLYExFQSJTrfF1asjW3RFsCB5k/YPXvlHXRnk1ACWPBB9JL8mqh3hDeWK8RTCmoiCROX+hek/f2pDNWfNUVfuAvYfuZ/3Dok3PVt134GzFUB12qsarAfjAwxCfRvMwnqef8obXau08PicqChIZL08lK6t7D6O9ZxfePVddsdhDgHQvno1S0X26CqjEabrnW8979q4/bIx+kpiqiWsxX9h57LBuvVlngstKS7ftWeDu+Ve5/pbHaUJ6PZHUCGJ8VADtPbtGvi+c2YL1d3ZUHYlUc0U1O3pJhPLwct8NQlgjbVi33jQJ4wl0wcUzwW17Flhb7nB9jnkMI0NFQXKBqQAmNRbGZLQLwjGz98wAAA/USURBVDvG1JNX2Og06e3rH+PqOl7JiptrEji5PzeXio7K+8MRHSpqAaeeSG547tXTgY3gdsy542oNcnvPrsBTQEGnFHr7+rFyx8FRrq4rU1zbkTZJeAKlOd8fdDW/m5liYHAolNt4LaGiIJFIu7JHndoxjdF+FqgF9XsPOqWwaueLsFt3/Fl78omXI0B7zy7MX7fH8fckwq2EYc2t17n+5jRyMEevTuRt/QsVBYlE3gxzQc2fQewFQY3Zgz6dAIJijco778vfR+dXvu87Qm8tOfHeeUdlEbSBToqgq9+r5akYHBrOjQMCbRQkMFaDZN6IKrFXmlU/xuw5a57y5fUVFqsDADC6Ie0fGET3o4cABG/00uLEe+fHbEs73EoUrDYnP3VtYHAolpA1SUNFQQLhFCE1r7jFg7Jz7QNP4orLL/N8+f00CkkrCT8MXVSs2vliphsmJwO/27PKkoesGWbGbwQBkxU7DuLAG6czbdCPNPUkIq+LyGEROSgiB4xtLSKyR0SOGp9T4hGV1Jrevv5xoyQA4Nfnt/na74NhHTE4e1FtGqHWSsJkcOhipqegVtgM/Ct2HHRV6HF5yAZNouVEkDAzdrIeByoOG8VNqjpPVbuM7z0A9qrqLAB7je9kHJCX4b9f4u7B5WEdg8kfPJL+s5w4IX6TaBz5qs2RQNRAi1HdrbMcByoJY/btALYa/28FUE7gGiRlstwDDYo1kdDyBf5GFX7x8tDJEsM1MC997fNzYp8qisNO5jQSCBNoMeq9ZdnmF9VGoQC+LyIK4P+o6hYA01X1OACo6nERmRZVSFJ78ubd5IU5fbZo07M4evJMrOf2conMGnbDt5VJjQWsu6MjVluGea6Nu4/EttgxajRgoHqSK79keKF4ZKKOKBaq6icBfBbAb4vIDX4PFJH7ReSAiBw4dco5bSXJDmmHHZg80TuuU1Tae3bFriTGE2fOD2PFjoOZH0nGMPMUCK/w+HGQ1fKOpChU9W3j8ySAvwfwSwBOiMgMADA+T7ocu0VVu1S1a+rU6gnvSW2JK+BdNVqbS3h9wxK8+OXPpHI94k2cdimrLSAukh7B2RvuqJEBqpHVdRWhFYWITBKRy83/AfwagB8CeALAvcZu9wJ4PKqQpPakEYOoVCyMuk7c9gNSW6J4BbkRhzHbi1WWbIs/v2pX4g4dWXWIiDKimA7gn0XkEIB/AbBLVZ8CsAHAIhE5CmCR8Z3knHJnKxbObIntfJuXzcPmZfPQ2lyCoDKSWH/n6DnxLPuVk+AkMX2ZtAHYXD3f3rMLF8axDaIaoY3ZqvoTAHMdtv8UwM1RhCLZZNt918eyKnvhzJYRhVDNWOqW0J7kj8YJDTh3If6wJUmvbM7y+oa0YKwnEoi15Q68uv4WvL5hSajjZ02bhG33Xe97/3sCTj8tX9CG1zcswfTLG4OKVhM2L5tXaxE8mRDjzE4SSgJIfk1I2PwgYfBKp1tLsikVyQVBlYUA2LPyxkDH+J1+EkMec/9F1/1coOvUiiyH0sgLUdaEZM3L6LIqWRxrBRUFSY3XQo5CqjF5YmHMudPsBY5n8jIvH7bBz5qX0UBG1+FQUZDQBHk5Gwvh5zCqhX5I2pV28sRCrIZ8k1nTJgHI/vRTHvjyd8I1+FnzMspq9jsqChKaIKu1H7prjN+Db772+TmuvyXtQrtwZgte/PJnsO2+62NVFtMvbxyZhit3tkZSpOMJQfCcIUC+VsR7kfYCQr9QUZDQ+HV3XL6gLdJcfLmzFZuXzRtl6GuQynnDuNCWig2jXHObS0XHF2H5grZRhvcwysLJDXjzsnnY/8CiUfs9dNdc11hB5jFhlGJrc2lk5JIHrmwu4Zt1PMLK6tQT81GQ0FzZXPJcZdtq5BKIw2Bb7mz1fZ5qU2Lr75wT6HxWtt13vWeMJDt+3YCtcZCseRisx5U7W0cUox8ZrM4GQWS2Eue02PIFbZ62I3PBZZiYUHHEfMoCaUVACAoVBQnNTddO9Xzxn+v5dIrSXKLalFhankZBG9kgymtSYwFnzruvcraPfESAoEtfNi+bF2tZmUrOXIcjAJoaCzh7fniMYjTLwm+irAdvc0+Xmiduujab4YyoKEhonnnZPZhjaw17RmkHMLQzpamINbdel6hCWndHh2c4CftalXvme/fmnUhC/rXljkDThX5GcFEUmt8sh2mxff+xTEYkoI2ChMarQa5lz8hr+J50bCAA6PvTX0t81OJ1fqc7XFvuCGTjSDp6b5xEKessKQmgNnlC/EBFQULj1SB7jTaSxiuAYdKxgdI0HLuN2tyey9pyh6/psMkTC3UTvbeWI988QUVBQuM1aqj19I8bcTQMXpnMgq48j0L34tko2Vby2iPw2jE9yOxeWK9vWDLyVy9KAog3KvKUpuK4jXhMGwUJjdeooZbeG27GbEE8DUNWpiv8eEq5HcfQIRXKna2xhA4vFmTELrVt/7HAjgMmWXVlpqIgofFyXUwjf4UbbqMZxfiLrVTvjX4aUyJOMc16+/pdFXQYxwFg9CLMrEFFQUJTEHGd869l4+W2viOu+Wi30OcZXVSbe7zq2aaEF+e5TSV5Kei15Y5AimJCg+DrS+dmWuFTUZDQeBmGk84R4EX34tlYtfPwqGxq1ebug+B21xmZkRp33D3/KseG15rXJCnCuqq6LS4MG02g1tCYTULj1UMPEgcqbsqdrVh/Z4dn9rwouLnYpuF6W4+Yrr1m+RZExoRXyRpuMudRSQAcUZAIdC+e7WoI9Bt6ISmSnLt3G0kl7XpbzwRdqBeEhTNbHFd/Rw0CmaTMacMRBQlNludUk8RtJEWf/HziFOxx4cyWTI9Y0oYjCkICkrQNhKQPlYI3VBQkEvXoARR2/QIheYWKgkSicUIDzl246Lh9PFPv6xdIdbzWWuQNKgoSCScl4bWdkHqgt69/1PRk/8AgVu08DCCftr3x3e0jhJAasHH3kVE2LAAYHBquqdt4FKgoSCTcMouNl4xjhITBLYxMVoNlViOyohCRgoj0ich3je8tIrJHRI4an1Oii0myyoO3XYeiLZxqsUHGTcYxQsLgFhQzq6lOqxHHiOL3APzY8r0HwF5VnQVgr/GdjFPKna3YuHTuqFXQGzMet4aQpAkTAj7LRDJmi8hHASwBsA7ASmPz7QBuNP7fCuBZAH8c5Tok29ADiJDRjDcX6qheT5sB/BGAyy3bpqvqcQBQ1eMiMs3pQBG5H8D9ANDWNj6TfRBC6pfx1IEKPfUkIp8DcFJVXwhzvKpuUdUuVe2aOrV2+ZUJIYR4E2VEsRDAbSJyC4DLAEwWkYcBnBCRGcZoYgaAk3EISgghpDaEHlGo6ipV/aiqtgP4IoCnVXU5gCcA3Gvsdi+AxyNLSQghpGYksY5iA4BFInIUwCLjOyGEkJwSSwgPVX0WFe8mqOpPAdwcx3kJIYTUHtEMJFsRkVMA3jC+fgTAv9dQnLBQ7nSh3OlCudPFr9wfU9XEvYEyoSisiMgBVe2qtRxBodzpQrnThXKnS9bkZqwnQgghnlBREEII8SSLimJLrQUICeVOF8qdLpQ7XTIld+ZsFIQQQrJFFkcUhBBCMgQVBSGEEG9U1fMPwFUAnkEl58RLAH7P2N4CYA+Ao8bnFGP7Fcb+7wP4c9u5lgF40TjPQx7XXAfgTQDv27avBPAj4xx7UfEhdjp+IiqhRM4CGATwrxa5hwG8B+AcKnGoMi83gJsAHLbIPQzgnqzLbfz2Z4Zs54zzZKm8bzDK9SKAtzC6fu8FMATgDLJXvx3lBvAxAAct9eTHeZA7B++lW3ln/b28AcAPAFwAcJftt68B+KHxt8xNhpH9q+4AzADwSeP/y1FpBD4O4CEAPcb2HgBfM/6fBOCXAfymtYCMgjsGYKrxfSuAm12uucC4rr2AbgLQZPz/WwB2uBz/3wD8LYBPohKH6tsWuc/nVO6HDHlbUGmQv5EDuX8TwOsA/sSQ8y0A38yQ3O0APg3guwDuwuj6/XcA/sb4LWv1xE3uuQC+Ycj7IQDvAPifOZA76++ll9xZfi/bAcxB5d28y7J9CSqdnwmGnAcATHY6h/lXdepJVY+r6g+M/99DpZfSikqCoq3GblsBlI19zqjqPwP4wHaqawD8q6qeMr7/A4DPu1xznxo5LWzbn1HVs8bXfQA+6iL27QD+lyH3YwB+xSL3hJzKbZb3XQC+B+BzOZD7k6hUxL9W1TMA/gmV3lQm5FbV11X1aRgrYG31uxOVURKQsXriIfc0VOrFVlRGeWcALM6B3Jl+L6vIndn30pD7RVRGQlY+DuAfVfWC8V4eAvAZp3OYBLJRiEg7Ki/QftgSFKFSSb14BcC1ItIuIhNQqQhXBbm+jS+h8mCcaEVlyAZVvYDKC/OLhtwC4Dsisg/A/BzJbZb3FwH8dU7kfhLAFAA/E5GPoNJDas6Q3KOw128Ap4FM1u9R2OT+OQC7UXke61HpwXqRFbmz/F6OwqUdzOJ76cYhAJ8VkSbjvbypmgy+gwKKyIdQmVJYoarvikggyVT1HRH5LQA7UNFw/w8V7RoYEVkOoAuVnqvjLja5fw7AfYbc76pql4hcA+BpVFGWGZIbRn6PDlQaAk8yIneviAwZ1z4F4HkAd2RIbiuXIT/124pdblXVOSJyJYBeWJ5NxuXO8nvpJXeW30s3Gb4vIp/C6PfygtcxvkYUIlJEpXC2qepOY/MJo4DMgqqaoEhVv6Oq81X1egBHABwVkYKIHDT+vuJDll8F8ACA21T1nLFtnXkOY7e3AFxlyL0TFaPk/zV++zcjsdJPUOkRvJ8TuU8A+C8A/h6VgGF5Ke9jAD6rqosAlGD00jMi98juAP4QtvqNyrxzFuu3p9xG/X4bwE9QGd3lQe4sv5decmf5vfSSYZ2qzjPeS0HFKcnzAM8/4yR/C2CzbftGjDY+PWT7/T9jrLV/mvE5BRXvjF+ocm27EacTwKsAZlU57rcB/G9D7icBPGK57iZDXjM6419mXW5LeR9DZZiYl/IuAPgfhrxzAPwbgI1ZkdtSv18B8F2H+r0Fl4zZmSlvN7lRmav+piHvFFR6i3+VA7kz/V76qCeZfC8t+/8NRhuzCwCuMP6fg4rn0wTPc/i4yC8DUFRcsQ4af7egMve5FxVNtBdAi+WY11HpOb6PSm/z48b27ai4df0IwBc9rvmQcZzpjvagsf0fUNHgphxPuBx/GSrDV0XFE+FHxv5/YPxvurP9KCdy3wJgHiqGsTyV9+2o9JjOoOI2uz9jcn8KlR6gojL0HrSU9/OoeOJcNMr9rhzI/QAqLpdW99g8lHfW30uvepLl9/JTxnFnAPwUwEuW99W8/j4A87x0gKoyhAchhBBvuDKbEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhCRUEIIcQTKgpCCCGe/H9DmsqiQBIg1AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from apd.aggregation.query import with_database, get_data\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "async def plot():\n", + " points = [(dp.collected_at, dp.data) async for dp in get_data() if dp.sensor_name==\"RelativeHumidity\"]\n", + " x, y = zip(*points)\n", + " plt.plot_date(x, y, \"o\", xdate=True)\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " await plot()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nO2df5RV5Xnvv88czuAZIhnGAMWJk1FK8cYMMOmk4KXXaiwlkahHIyFW1vKu5uptb1dbSjvtULnFZEEgkhC6bu+695L+olcWRQ0dTTASitqueoUuzIDERIpGRUcKNDhRYYRheO4fZ+9hz56999m/z95zvp+1Zp05++wfz373u9/nfd/neZ9HVBWEEEKIGw21FoAQQki2oaIghBDiCRUFIYQQT6goCCGEeEJFQQghxJMJtRYAAD7ykY9oe3t7rcUghJBc8cILL/y7qk5N+jqZUBTt7e04cOBArcUghJBcISJvpHEdTj0RQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+qej2JyF8B+ByAk6r6CWNbC4AdANoBvA7gC6r6jvHbKgBfAjAM4HdVdXcikhOSIr19/XjwiZcwMDgU6TxNxUrf7OzQRQDAlKYi1tx6HcqdrSPX2bj7CN4eGMSVzSV0L5498htJjiDlbq8LU5qKWDJnBp55+RTeHhjEh0tFnL8wPPKM/WCvB1lDqkWPFZEbALwP4G8tiuIhAKdVdYOI9ACYoqp/LCIfB7AdwC8BuBLAPwD4BVUd9rpGV1eX0j2WZJXevn50P3oIQxeTibRcLAg23jUXALBq52EMDl16XUrFAtbf2ZHZBmQ80NvX77vck6wLZj0I8qxF5AVV7YpdGBtVp55U9Z8AnLZtvh3AVuP/rQDKlu1/p6rnVPU1AK+gojQIyS0bdx9JTEkAwNCwYuPuI9i4+8ioxgoABoeGsXH3kcSuTRCo3JOsC2Y9yCJhF9xNV9XjAKCqx0VkmrG9FcA+y35vGdvGICL3A7gfANra2kKKQUjyvD0wWNNrpHH9esatfJ22J/0ssvqs4zZmi8M2R/WrqltUtUtVu6ZOTXwFOiGhubK5lMo13K6TxvXrmSDlnvSzyOqzDqsoTojIDAAwPk8a298CcJVlv48CeDu8eITUnu7Fs1FscOoDxUOxIOhePBvdi2ejVCyM+q1ULKB78ezErk0QqNyTrAtmPcgiYRXFEwDuNf6/F8Djlu1fFJGJInI1gFkA/iWaiITUlnJnKzYunYvmUjHyuZqKDSOeT0DF28U0YJY7W7H+zg60NpcgAFqbSzRkp0CQcneqC1Oaili+oG3k+OZScdQz9oO1HmQRP15P2wHcCOAjAE4AWAOgF8AjANoAHAOwVFVPG/s/AOA3AFwAsEJVv1dNCHo9EUJIcNLyeqpqzFbVu11+utll/3UA1kURihBCSHbgymxCCCGeUFEQQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhCRUEIIcQTKgpCCCGeUFEQQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhSNR8FIWHp7evHg0+8hIHBoTG/TWosYN0d/rO39fb1Y+PuI3h7YBBXNpfQvXh2bNnAvOQ0mdJUxJpbr0O5szWwLOb+/QODKIhgWBXNpSLOXxjG2aGLsdwDUElYXywIzg9fSkY2pamIJXNm4JmXT43I235FCft+8g6GVVEQwd3zr8LackdscvjFXu7WMq4FTvXA/tyr1RMrbveTZF1OiqoZ7tKAGe7GH719/eh+9BCGLrrXr0KD4BtLq6d/7O3rx6qdhzE4NDyyrVQsxJIm1I+cJsWCYNmnrsK3X+j3LYuT7Flk+YK2VJWFW7kXC1KTlKBe9cB87jv+5U1f9cR+rPV+4q7LaWW449QTSYSNu49UfamGLyo27j7i61z2hnZwaNjXsX7O7fflHxpWbN//ZiBZnGTPItv3v5nq9dzKfWjYX51ISx7g0nMPqiTMY633k2RdThIqCpIIbw8Mxraf2z5+rxH1+laGXUbgScqYBm73lRRe5VKLMqt2zSjlYz13XusJFQVJhCubS7Ht57aP32tEvb6Vgkig88QhYxq43VdSeJVLLcqs2jWjlI/13HmtJ1QUJBG6F89GscH75So0CLoXz/Z1rlKxMGpbqVjwdayfc1eT06RYqBh+g8jiJHsWuXv+Valez63ciwV/dSIteYBLz91vPbEfa72fJOtyklBRkEQod7Zi49K5aC4VHX+f1FjwZcg2z7X+zg60NpcgAFqbS7EYsv3IaTKlqYiNd83F2nJHIFmssgOXeqbNpSKaivG+fgKgsTC6MZvSVMTyBW2j5F04s2VEjoJI6oZswLnczTKuhQeQWz2wPnc/9cTpWOv9JFmXk4ReT4QQklPo9UQIISQTUFEQQgjxJJKiEJHfE5EfishLIrLC2NYiIntE5KjxOSUeUQkhhNSC0IpCRD4B4D4AvwRgLoDPicgsAD0A9qrqLAB7je+EEEJySpQRxX8AsE9Vz6rqBQD/COAOALcD2GrssxVAOZqIhBBCakkURfFDADeIyBUi0gTgFgBXAZiuqscBwPic5nSwiNwvIgdE5MCpU6ciiEEIISRJQisKVf0xgK8B2APgKQCHAFwIcPwWVe1S1a6pU6eGFYMQQkjCRDJmq+pfquonVfUGAKcBHAVwQkRmAIDxeTK6mIQQQmpFVK+nacZnG4A7AWwH8ASAe41d7gXweJRrEEIIqS1RExd9W0SuADAE4LdV9R0R2QDgERH5EoBjAJZGFZLUH1lLakNIPRNJUajqf3LY9lMAN0c5L6lvnJLIvHN2CN2PHQIAKgtCUoYrs0nmyFpSG0LqHebMJqlizR8tAOzqwGmblf6BQXz8v38vUK7pKU1FfHzG5Xju1dO+9rVOccU1Bba69zC2739zTJ5qr/zJ1t8+XCpCBBg4O+S436qdL2LQKJMGAa6/pgUvvf3emPzPZv5st/JvEODX56cfTdYtX/WSOTPw3UPHazIFubr3MLbtO+ZYH1tzkus6Lhg9lqRGXvJHm3mOAcSS13l172E8vO/YmO0LZ7bgB8d+5pg/GYBnWVn3W7njIPyrTX+kGXo8SN5yIJ282m7PzEpcedujkFb0WCoKkhoLNzyN/oynfDQx80e4ydvaXMJzPZ/2da6Zq54MlEqz2rWD7heGggheXX9L7Od1Iky9CFL+YfD7zJKWoxppKQpOPZFYqPQKD8JpRmhSYwHr7ujIfF5gK9VkDXIvQfMtx5lvPCxp5tAOcx9J1yW/95+nOh0FGrNJZHr7+rFih7OSAIAz54fxB48eQnOT/+xgtebK5lJseZ2D5luudu2g+4UhzRzaYe4h6RzTfu8/67mu44KKgkTGjyfS8EWFKnKRP9rMcxxXXme3fNQLZ7a45k+ulmvbul8SL3GaObSD5C0H0smr7ef+85DrOi6oKEhk/A6/fzY4NCp/tFPTYM/73FRsGJVb2v7dD1Oailg4s8X3vqahNK68zmvLHVi+oG1Mnupt913vmj/Znlu5uVTElKai436bls1DyVImDVJRQk75n8382YBz+TdIuoZswDtf9fIFbTXJq20+Mzf1lZdc13FBYzaJjF9jZK0Nf4SMN5gzm+QGP8PvQkPy0wWEkGSgoiCRKXe2YvOyeXCbEZrUWMA3liY/XUAISQa6x5JYMOfLCSHjD44oCCGEeEJFQQghxBMqCkIIIZ5QURBCCPGEioIQQognVBSEEEI8oXssyQT2JDFmxFm63BJSe6goSM1xShJjRpwFmCObkFrDqSdSc7bvf9Nx+/BF5sgmJAtwREFSx54L2itJjDUyrT3v9IJrpozKC91UbMDEYmEkr/RN104dlW8ZSDfncpbwys1t/h5HbvCgctifkVOebDNasD1Per0+y1rA6LEkVYLmzTYjzvrJYeyXNHIuZwmnMrfme3bLWR13OSWRM73enqUdRo8l45KNu4/4biisEWfdpqfCMDRcX1NaTmU+ODQ8UgYbdx8ZoySA+MspyLP3S709y1oRSVGIyO+LyEsi8kMR2S4il4lIi4jsEZGjxueUuIQl+cdvkiN7xNm4czjXS65jwP1eze1eZRFnOSVV5vX0LGtFaEUhIq0AfhdAl6p+AkABwBcB9ADYq6qzAOw1vhMCwF+O4dbmEl76ymdGTSfEncO5XnIdA+73am6PKzd4WDmyel5yiahTTxMAlERkAoAmAG8DuB3AVuP3rQDKEa9BxhF+c0HbiTOHcxo5l7OEU5lbyzmu3OBh5IhKvT3LWhFaUahqP4CvAzgG4DiAn6nq9wFMV9Xjxj7HAUyLQ1AyPvCbC9qOU95pe17opmLDqHPZ8y0D6eVczhL2MreXc1y5wcPI4ZQT277NLU96PT7LWhHa68mwPXwbwDIAAwAeBfAYgD9X1WbLfu+o6hg7hYjcD+B+AGhra/vFN954I5QchBBSr+TB6+lXAbymqqdUdQjATgD/EcAJEZkBAMbnSaeDVXWLqnapatfUqVMjiEEIISRJoiiKYwAWiEiTiAiAmwH8GMATAO419rkXwOPRRCSEEFJLQq/MVtX9IvIYgB8AuACgD8AWAB8C8IiIfAkVZbI0DkEJIYTUhkghPFR1DYA1ts3nUBldEEIIGQdwZTYhhBBPqCgIIYR4QkVBCCHEEyoKQgghnlBREEII8YSKghBCiCdUFIQQQjyhoiCEEOIJc2YTUidUy5udNfIm73iGioKQOsCer7p/YBCrdh4GgEw2vnmTd7zDqSdC6oBqebOzRt7kHe9QURBSB1TLm5018ibveIeKgpA6oFre7KyRN3nHO1QUhNQB1fJmZ428yTveoTGbkDrANADnxYsob/KOd0LnzI6Trq4uPXDgQK3FIISQXJGHnNmEEELqACoKQgghntBGYeGebz2P5149PfJ94cwWbLvv+hpKRAghtYcjCgO7kgCA5149jUWbnq2NQIQQkhHqZkRxdc8uWM32AuC1DUtGvtuVhMnRk2fQ29dPbwtCSN1SFyOKdpuSAAA1tvth1c4XY5eJEELywrhXFPd863nP3+ev21P1HINDF+MShxBCcse4VhS9ff2uU0omJ947n5I0hBCST8a1ovjjb/ubMpqz5qmEJSGEkPwSWlGIyGwROWj5e1dEVohIi4jsEZGjxueUOAUOwrkL/qaM3j03XH0nQgipU0IrClU9oqrzVHUegF8EcBbA3wPoAbBXVWcB2Gt8J4QQklPimnq6GcCrqvoGgNsBbDW2bwVQjukaNaW3r7/WItQVvX39WLjhaVzdswsLNzzN8iekhsSlKL4IYLvx/3RVPQ4Axuc0pwNE5H4ROSAiB06dOhWTGKOZNW1SbOdiZq30WLTpWazYcRD9A4NQVNJgrthxkMqCkBoRecGdiDQCuA3AqiDHqeoWAFuASvTYqHI4cfZ8fG6tWcisVQ/J5u/51vM4evKM428rHzmYi/uth+dEorO69zC2738Tw6ooiODu+Vdhbbmj1mI5EsfK7M8C+IGqnjC+nxCRGap6XERmADgZwzVCEWfj/uFSMbZzhWHOmqdGGd3Ha7J5L3fmi7WPiF+VRZueHaXozNEQML6eE4mGvZ4Mq+LhfccAIJPKIo6pp7txadoJAJ4AcK/x/70AHo/hGqFonBCf9++7g0OxnSso89ftcfTMGm/J5q994MlaixAJr9HQih0Hcc2qXZw+I1jde9i1npjKImtEGlGISBOARQD+q2XzBgCPiMiXABwDsDTKNcLS29fv2z3WD0mvzXaKXLu0qw0bdx/xXBTYn4EpsThY3XsYHwznYMjgQbXFnRcVHF2QzCoDLyIpClU9C+AK27afouIFVVO6Hz1YaxEccZq/fvTAMcfItdUaHqAS3DCvWMsi3yoiGH/02CEqijplde/hWosQinEbPbZaeKZJjQWcOZ/uQrvevn78/o6DI41i/8DgqO9hyGsD29vXj1U7D2NwqP4WO57P+ciJBKe3r39kNOlFVjt+uVYUUbxL1t3RMaahKhULng1Xe8+uSN4Jf/TYIccotvXIxt1HAiuJgmT1NQrO6t7DmTRaEm/CeCr5VRIAcM+CtjjEjJ3cKorevn50P3oIQ4YrTP/AILofPQQAOPCG95RNqdgwolDsiqbaA3XyTvCrsNiTvEQY28qwjp/ye3jfMSqKnBHWU+nBJ17yfY2s1oncKooHn3hpREmYDF1UPPjESxio4qG0/s45ACoGRXuD7lfzbzNedHtvge6Q/hAEH021NpeSEIWQqlTzVPJq4Ku1RyaTJxZCyZYGuVUUboXv56F4NeClYoOv/BNmI+emWFbsGL04jG6RowkzNmi/Il5FYe8hzpo2CXtW3hjqXEk8X7sn3MQJDfja5yudHC7oS5ft+98MdVy1fDhWXvzyZ0JdIw1yqyiSYv2dc3yPKqphTaGa5HqHepnvfu7V07GlpbUrCaCS9nbRpmerKguneeowLo/tPbuwfEGb47NzyuF+7sLFMXXTHMH+ae/hTDc0Tlz7wJNjXKInTyxk8j6qTXs6vYNOdcyNUjHbGR9EMzDv29XVpQcOHAh0jN80pnYmNAhe+eotnvvMXv09X2swFs5s8eXCmgavW/J/54Gwz880Z1frSVezG3ld36ssV/ceTsQP3q4wwpTPZQXBy+u863ZWcFISVtKsz15u2hMEeGX9Esxc9WRVZWGVOYgBGwA2L5sXqgMkIi+oalfgAwOSbTWWAF9fOrfqPubwvhppKYnNy+alcp08oMafGcLEacrHdL21BhX8/R0HY/FhT2qx1MP7jkWW74NhzY2ffrXFlVeH7EgExV5X7FzQitJecE2wtDpf/o5/A/bCmS2ZnzqsK0WxfEGbrweSlYfW2lwK3dPIMkHmbb1wC2Hi5HqrqDTGfmwJ7T27atLgxqGE8rjq1wlF+FFnEPy6afvpFFqV2ztn/Rmwly9ow7b7rve1by3JraJoLAT3qc/TPP5lBcFzPZ8eURILZ7bUWKJ4WN17uOpL1xDg0Tq52XoFg/TrqhhHDz8M7T27Umkg80LSSjvOwKGK4Cuv89Im5VZRTJoYzA4fdPomzlwWYbDPNVfrdeQl0Y+fHu+mLwR7VvZ79YoF6ddVEYindz5r2iQsz+giqlpyWYCOXpJK+8qYXa7NOtPsI9q0n32yQm4Vhd+hnUnQ6Zs9K2+sibKYPLEQypC38pHRiX7c5u+TIG4lFfRZ2UcJ1bybg8j386su9e4XbXo2iFgAKvVobbmDdiYbG+6qbiu08vC+Y7i6J/7ou92LZ8d6PqAyCvLTIXnwtutiv3ZS5NY9tiCS+ErdPStvxMINTyceoTUODw97rgZz/j5p+0aQBYdJ9QqDjBKAimJpbS75eq4XtGJTeeXk+55RfJ2YfnnjyP9mWcTlep13wriLKyrl94ePHsLXl87Nte1u1rRJuZI/tyOKtMI5JNHjsBIkflFTQF9r+/xrEtNTKz0WHNrZ5mMqx2xcJ8aYS8TOwOBQoOf63KunAysJANj/wKJR38udramMLPLg+RTFNnDhomLFjoNo79mF2au/F6ke1yKfS5SFnbUit4oiCFHmiMudrYnOMd89/yrf+371Tn9uuybWrHxOLqNxTE95zfK0WxRSb19/1dXY0y9vHGlc/booO+FnyjDpnr3bKLHc2Zr4GoGwtpVrH3hyxJje3rMr0URScdkGzl24iJWPhM+nXot8LnlTEkCdKIqongXmHHPcsYYWzmwJJFvQoap1sOLkBjg4NDzSM3P6i6Nnak5FVWuYly9oG9UDjzIs//f3g/f+42LWtEmZWPw4f92eQPtf3bNrzNqGD4Y1MWVx07VTYzvXRQ0/MhhPEYmTJLeKIu0HXO5sxXM9n8brG5Zg+YK2Mdf3WoK/edm8EUUjuLQ+Imn/aavBP0zPKU0X0ajK3JRzde/hwI4OcbF52TzfvcVJjcEDwF1WkJH6V40T750fZYj3YnXvYdfRXlJZB595+ZTj9rChLMJOZXlNYdMB4RK5NWb7ja+TxLTR2nKHY8O2uvcwtu07NvLSTWosYN0dHSO947SNV0HWI7hRLTLm9MsbQ83f24kaw+nhfcfQ9bGWmi04a7KErvfDujs6Ak9/mS7Ta8sdvu7zglZGCq9VGeHUoszcGvYPfATkdCLsVJabU0Nrc2kkuvScNU855qw3FUk9OCjkVlGsLXfgtVPvV128leaCFjcFUivsnlBh8WrEJxTiCY0ch4dWrV5YQXD7URAvKKvtxqSp2ICzPqMcz1+3Z+R4p4CGteBKlwb6yuYSbrp2amDlFdbppHvxbMcEZtbzVQtSeOCN0+NmRbwbuVUUQGURGlexJs+qnS+6NuJxrWx1Ok+YnBVpM6WpiDW3XhdKyZk91jCZGr8aIMqxOeL7+VW7cMFSoNbEO2nj1UCb924qND+E7WS4JTALcj6zc+inLPM6nZVrRQEAxQb3BVb1viI2rsjFg0MXMWfNU449K7eeYVCcpg7uWdCWekM2QTCqMfVi8sQC+v701yJf0ymBlp9j/vDRQ7jgc9gYtkOVVMNWrYE2R+dpdATDlL+dteUOPPPyKdd3oTXneUNya8w22bjUuSIH9SjKC1Oa/C/7H7oYX0Kdd88NY86ap8Zs7148G6VitOkn+1DfZG25I1VlP3liAa+sX+I7wX2t8yZ8fencWOxQXiTZsJkOIq9tWDIqrpkVPz4rWekQOr0LpWIBm5fNc72/vJB7RWEuYkrbo6hWrLn1OhQDxMl58ImXsHDD07Fc+91zw2MUT7mzFXoxuAFyQoOMPK/1d3a4vkRryx2hAkAGZfrljSMN/2sbloxaVW0nbJiVuCl3tmLTF+J3284S98yvrgSy0iEsd7Zi/Z0do9oir7qdJ3KbuKie6e3r95UbPAlam0t4rufTgbJ3AZWeVdiX5uqeXZFtFW6Z5LywZ5lbOLMl0x2QuKdpzGdda7ySHGU1I15apJW4iIoixzilywzLpMYCzpyvHpcf8O8S29pciiWvc9R4W+Mxp4cTQbOqVSNL5TZ/3Z4xda7elQSQE0UhIs0A/gLAJ1BxUPkNAEcA7ADQDuB1AF9Q1Xe8zkNFEZ6oqTmtaz06v/L9WBerxTU909vXj+5HD2EohL+vmcqyXohrVJH10ROpkJdUqH8G4ClVvRbAXAA/BtADYK+qzgKw1/hOEiLq/GxzU+NIr3HNrdclbhwNQ7mzFR+6LJyDXj0piTihkiBWQisKEZkM4AYAfwkAqnpeVQcA3A5gq7HbVgDlqEISb6I07tb1C6ZxNA4mT4xnIZ7JQIiRTpDkOOOFOAzbWfEiItkhyojiGgCnAPy1iPSJyF+IyCQA01X1OAAYn9OcDhaR+0XkgIgcOHXKOe4L8UeUFdj29QtxhcKOe+74wwGzgV1WkDFZAuuB7sWzfbv3OiHIjhcRyQ5RFtxNAPBJAL+jqvtF5M8QYJpJVbcA2AJUbBQR5Kh7/CbhccJp/UK5szWSUTQJ19GhYW8X3Cy4q2aBcmdr6JAS9apcSXWiKIq3ALylqvuN74+hoihOiMgMVT0uIjMAnIwqJPGme/Hs0A173F4tSTXYfj2ySGVE0PWxFnQ/etA1akHeVwrXgjChVsYLoRWFqv6biLwpIrNV9QiAmwH8yPi7F8AG4/PxWCQlrmQlzWaW4tg4Bb+rpymVOMJSkEuYib/M2FRm4i8g/ajQtSCq19PvANgmIi8CmAfgq6goiEUichTAIuM7SZhyZ6uvcAdW4ooFBSTvc98cwEZhugybAeXM4Hd5SBFKsolb4q9apFKtBZGaClU9qKpdqjpHVcuq+o6q/lRVb1bVWcZnPCvCSFX8hDuw4hYnKyiTJxYS71U9eNt1rr/ZkwBt3/+m435u2wmphluU5FqkUq0FuY/1RC6xttzhK180UHGB9Grcg3iWprE61ktWu/3CLTS135DVhNhp9gjGGVfgzSxDRTHO2LPyRixf0DbKRbKxIJjSVBwVNLHafP03fK6nSNPn3k131d9qCZI2Xn2Meph+yn0+CjKWODLtmT14a/DBYgMwrJV1G7UwELu9q2HHCfbAhrOmTfKd85rUFz/zCMBZD9NPVBTEFb+eM1nzMCqIOE4zWUceTtFvj548g0WbnqWyIGPwStBVCOpFkkM49UQikUUPIzdbhOLSfLJbiPQgodNJ/eCVk7sebF9UFCQS21xWALttTwOveEf1MJ9M4qfc2eoaU40jCkKqELfdICxWzxOv3p+bmyMh1XCLqcYRBSEJ0tvXj4UbnsbVPbuwcMPTVd0MvaLkWkcK5c5W19zi9iCIhJDq0JhNakJvXz9WPnJwpJfWPzCIlY9UQpC4GdC9ouTaDY1L5sxwDIx307VTfckWdgFh3tKnEuIHjihIYniNEP5k54tjGv6LWtnuhpftwT7YeOZl59D15na3EQdQcQkOg1Nq2udePY17vvV8qPMRkhU4oiCRcHNFBSrTQW4987MuYU3dtgPeUXLtEri5Mprb19x6neu5Bjx85r1wy18eNq951tyOawnLorZQUZBI3D3/KtfcB2EXIkWZ+jFpEOepKtNDJWrOjaAEvSd7LnTT7RgAuj7WUlfhrr3KIk1lIXB20nAznY0n5capJxKJteUOzxAafozUdpymn8wwz37o7etP1ENlde9hzFz1JNp7dmHmqid9rRkJ6pbrpnwf3ncMq3YeRv/AIBSXwl2P53hDXmWRJkE8/LK4vigKVBQkMl5Nr1tDZo/4asVp+skpzLMbXo1ykHDlToRtAOIM81DP4a7zwniLYExFQSJTrfF1asjW3RFsCB5k/YPXvlHXRnk1ACWPBB9JL8mqh3hDeWK8RTCmoiCROX+hek/f2pDNWfNUVfuAvYfuZ/3Dok3PVt134GzFUB12qsarAfjAwxCfRvMwnqef8obXau08PicqChIZL08lK6t7D6O9ZxfePVddsdhDgHQvno1S0X26CqjEabrnW8979q4/bIx+kpiqiWsxX9h57LBuvVlngstKS7ftWeDu+Ve5/pbHaUJ6PZHUCGJ8VADtPbtGvi+c2YL1d3ZUHYlUc0U1O3pJhPLwct8NQlgjbVi33jQJ4wl0wcUzwW17Flhb7nB9jnkMI0NFQXKBqQAmNRbGZLQLwjGz98wAAA/USURBVDvG1JNX2Og06e3rH+PqOl7JiptrEji5PzeXio7K+8MRHSpqAaeeSG547tXTgY3gdsy542oNcnvPrsBTQEGnFHr7+rFyx8FRrq4rU1zbkTZJeAKlOd8fdDW/m5liYHAolNt4LaGiIJFIu7JHndoxjdF+FqgF9XsPOqWwaueLsFt3/Fl78omXI0B7zy7MX7fH8fckwq2EYc2t17n+5jRyMEevTuRt/QsVBYlE3gxzQc2fQewFQY3Zgz6dAIJijco778vfR+dXvu87Qm8tOfHeeUdlEbSBToqgq9+r5akYHBrOjQMCbRQkMFaDZN6IKrFXmlU/xuw5a57y5fUVFqsDADC6Ie0fGET3o4cABG/00uLEe+fHbEs73EoUrDYnP3VtYHAolpA1SUNFQQLhFCE1r7jFg7Jz7QNP4orLL/N8+f00CkkrCT8MXVSs2vliphsmJwO/27PKkoesGWbGbwQBkxU7DuLAG6czbdCPNPUkIq+LyGEROSgiB4xtLSKyR0SOGp9T4hGV1Jrevv5xoyQA4Nfnt/na74NhHTE4e1FtGqHWSsJkcOhipqegVtgM/Ct2HHRV6HF5yAZNouVEkDAzdrIeByoOG8VNqjpPVbuM7z0A9qrqLAB7je9kHJCX4b9f4u7B5WEdg8kfPJL+s5w4IX6TaBz5qs2RQNRAi1HdrbMcByoJY/btALYa/28FUE7gGiRlstwDDYo1kdDyBf5GFX7x8tDJEsM1MC997fNzYp8qisNO5jQSCBNoMeq9ZdnmF9VGoQC+LyIK4P+o6hYA01X1OACo6nERmRZVSFJ78ubd5IU5fbZo07M4evJMrOf2conMGnbDt5VJjQWsu6MjVluGea6Nu4/EttgxajRgoHqSK79keKF4ZKKOKBaq6icBfBbAb4vIDX4PFJH7ReSAiBw4dco5bSXJDmmHHZg80TuuU1Tae3bFriTGE2fOD2PFjoOZH0nGMPMUCK/w+HGQ1fKOpChU9W3j8ySAvwfwSwBOiMgMADA+T7ocu0VVu1S1a+rU6gnvSW2JK+BdNVqbS3h9wxK8+OXPpHI94k2cdimrLSAukh7B2RvuqJEBqpHVdRWhFYWITBKRy83/AfwagB8CeALAvcZu9wJ4PKqQpPakEYOoVCyMuk7c9gNSW6J4BbkRhzHbi1WWbIs/v2pX4g4dWXWIiDKimA7gn0XkEIB/AbBLVZ8CsAHAIhE5CmCR8Z3knHJnKxbObIntfJuXzcPmZfPQ2lyCoDKSWH/n6DnxLPuVk+AkMX2ZtAHYXD3f3rMLF8axDaIaoY3ZqvoTAHMdtv8UwM1RhCLZZNt918eyKnvhzJYRhVDNWOqW0J7kj8YJDTh3If6wJUmvbM7y+oa0YKwnEoi15Q68uv4WvL5hSajjZ02bhG33Xe97/3sCTj8tX9CG1zcswfTLG4OKVhM2L5tXaxE8mRDjzE4SSgJIfk1I2PwgYfBKp1tLsikVyQVBlYUA2LPyxkDH+J1+EkMec/9F1/1coOvUiiyH0sgLUdaEZM3L6LIqWRxrBRUFSY3XQo5CqjF5YmHMudPsBY5n8jIvH7bBz5qX0UBG1+FQUZDQBHk5Gwvh5zCqhX5I2pV28sRCrIZ8k1nTJgHI/vRTHvjyd8I1+FnzMspq9jsqChKaIKu1H7prjN+Db772+TmuvyXtQrtwZgte/PJnsO2+62NVFtMvbxyZhit3tkZSpOMJQfCcIUC+VsR7kfYCQr9QUZDQ+HV3XL6gLdJcfLmzFZuXzRtl6GuQynnDuNCWig2jXHObS0XHF2H5grZRhvcwysLJDXjzsnnY/8CiUfs9dNdc11hB5jFhlGJrc2lk5JIHrmwu4Zt1PMLK6tQT81GQ0FzZXPJcZdtq5BKIw2Bb7mz1fZ5qU2Lr75wT6HxWtt13vWeMJDt+3YCtcZCseRisx5U7W0cUox8ZrM4GQWS2Eue02PIFbZ62I3PBZZiYUHHEfMoCaUVACAoVBQnNTddO9Xzxn+v5dIrSXKLalFhankZBG9kgymtSYwFnzruvcraPfESAoEtfNi+bF2tZmUrOXIcjAJoaCzh7fniMYjTLwm+irAdvc0+Xmiduujab4YyoKEhonnnZPZhjaw17RmkHMLQzpamINbdel6hCWndHh2c4CftalXvme/fmnUhC/rXljkDThX5GcFEUmt8sh2mxff+xTEYkoI2ChMarQa5lz8hr+J50bCAA6PvTX0t81OJ1fqc7XFvuCGTjSDp6b5xEKessKQmgNnlC/EBFQULj1SB7jTaSxiuAYdKxgdI0HLuN2tyey9pyh6/psMkTC3UTvbeWI988QUVBQuM1aqj19I8bcTQMXpnMgq48j0L34tko2Vby2iPw2jE9yOxeWK9vWDLyVy9KAog3KvKUpuK4jXhMGwUJjdeooZbeG27GbEE8DUNWpiv8eEq5HcfQIRXKna2xhA4vFmTELrVt/7HAjgMmWXVlpqIgofFyXUwjf4UbbqMZxfiLrVTvjX4aUyJOMc16+/pdFXQYxwFg9CLMrEFFQUJTEHGd869l4+W2viOu+Wi30OcZXVSbe7zq2aaEF+e5TSV5Kei15Y5AimJCg+DrS+dmWuFTUZDQeBmGk84R4EX34tlYtfPwqGxq1ebug+B21xmZkRp33D3/KseG15rXJCnCuqq6LS4MG02g1tCYTULj1UMPEgcqbsqdrVh/Z4dn9rwouLnYpuF6W4+Yrr1m+RZExoRXyRpuMudRSQAcUZAIdC+e7WoI9Bt6ISmSnLt3G0kl7XpbzwRdqBeEhTNbHFd/Rw0CmaTMacMRBQlNludUk8RtJEWf/HziFOxx4cyWTI9Y0oYjCkICkrQNhKQPlYI3VBQkEvXoARR2/QIheYWKgkSicUIDzl246Lh9PFPv6xdIdbzWWuQNKgoSCScl4bWdkHqgt69/1PRk/8AgVu08DCCftr3x3e0jhJAasHH3kVE2LAAYHBquqdt4FKgoSCTcMouNl4xjhITBLYxMVoNlViOyohCRgoj0ich3je8tIrJHRI4an1Oii0myyoO3XYeiLZxqsUHGTcYxQsLgFhQzq6lOqxHHiOL3APzY8r0HwF5VnQVgr/GdjFPKna3YuHTuqFXQGzMet4aQpAkTAj7LRDJmi8hHASwBsA7ASmPz7QBuNP7fCuBZAH8c5Tok29ADiJDRjDcX6qheT5sB/BGAyy3bpqvqcQBQ1eMiMs3pQBG5H8D9ANDWNj6TfRBC6pfx1IEKPfUkIp8DcFJVXwhzvKpuUdUuVe2aOrV2+ZUJIYR4E2VEsRDAbSJyC4DLAEwWkYcBnBCRGcZoYgaAk3EISgghpDaEHlGo6ipV/aiqtgP4IoCnVXU5gCcA3Gvsdi+AxyNLSQghpGYksY5iA4BFInIUwCLjOyGEkJwSSwgPVX0WFe8mqOpPAdwcx3kJIYTUHtEMJFsRkVMA3jC+fgTAv9dQnLBQ7nSh3OlCudPFr9wfU9XEvYEyoSisiMgBVe2qtRxBodzpQrnThXKnS9bkZqwnQgghnlBREEII8SSLimJLrQUICeVOF8qdLpQ7XTIld+ZsFIQQQrJFFkcUhBBCMgQVBSGEEG9U1fMPwFUAnkEl58RLAH7P2N4CYA+Ao8bnFGP7Fcb+7wP4c9u5lgF40TjPQx7XXAfgTQDv27avBPAj4xx7UfEhdjp+IiqhRM4CGATwrxa5hwG8B+AcKnGoMi83gJsAHLbIPQzgnqzLbfz2Z4Zs54zzZKm8bzDK9SKAtzC6fu8FMATgDLJXvx3lBvAxAAct9eTHeZA7B++lW3ln/b28AcAPAFwAcJftt68B+KHxt8xNhpH9q+4AzADwSeP/y1FpBD4O4CEAPcb2HgBfM/6fBOCXAfymtYCMgjsGYKrxfSuAm12uucC4rr2AbgLQZPz/WwB2uBz/3wD8LYBPohKH6tsWuc/nVO6HDHlbUGmQv5EDuX8TwOsA/sSQ8y0A38yQ3O0APg3guwDuwuj6/XcA/sb4LWv1xE3uuQC+Ycj7IQDvAPifOZA76++ll9xZfi/bAcxB5d28y7J9CSqdnwmGnAcATHY6h/lXdepJVY+r6g+M/99DpZfSikqCoq3GblsBlI19zqjqPwP4wHaqawD8q6qeMr7/A4DPu1xznxo5LWzbn1HVs8bXfQA+6iL27QD+lyH3YwB+xSL3hJzKbZb3XQC+B+BzOZD7k6hUxL9W1TMA/gmV3lQm5FbV11X1aRgrYG31uxOVURKQsXriIfc0VOrFVlRGeWcALM6B3Jl+L6vIndn30pD7RVRGQlY+DuAfVfWC8V4eAvAZp3OYBLJRiEg7Ki/QftgSFKFSSb14BcC1ItIuIhNQqQhXBbm+jS+h8mCcaEVlyAZVvYDKC/OLhtwC4Dsisg/A/BzJbZb3FwH8dU7kfhLAFAA/E5GPoNJDas6Q3KOw128Ap4FM1u9R2OT+OQC7UXke61HpwXqRFbmz/F6OwqUdzOJ76cYhAJ8VkSbjvbypmgy+gwKKyIdQmVJYoarvikggyVT1HRH5LQA7UNFw/w8V7RoYEVkOoAuVnqvjLja5fw7AfYbc76pql4hcA+BpVFGWGZIbRn6PDlQaAk8yIneviAwZ1z4F4HkAd2RIbiuXIT/124pdblXVOSJyJYBeWJ5NxuXO8nvpJXeW30s3Gb4vIp/C6PfygtcxvkYUIlJEpXC2qepOY/MJo4DMgqqaoEhVv6Oq81X1egBHABwVkYKIHDT+vuJDll8F8ACA21T1nLFtnXkOY7e3AFxlyL0TFaPk/zV++zcjsdJPUOkRvJ8TuU8A+C8A/h6VgGF5Ke9jAD6rqosAlGD00jMi98juAP4QtvqNyrxzFuu3p9xG/X4bwE9QGd3lQe4sv5decmf5vfSSYZ2qzjPeS0HFKcnzAM8/4yR/C2CzbftGjDY+PWT7/T9jrLV/mvE5BRXvjF+ocm27EacTwKsAZlU57rcB/G9D7icBPGK57iZDXjM6419mXW5LeR9DZZiYl/IuAPgfhrxzAPwbgI1ZkdtSv18B8F2H+r0Fl4zZmSlvN7lRmav+piHvFFR6i3+VA7kz/V76qCeZfC8t+/8NRhuzCwCuMP6fg4rn0wTPc/i4yC8DUFRcsQ4af7egMve5FxVNtBdAi+WY11HpOb6PSm/z48b27ai4df0IwBc9rvmQcZzpjvagsf0fUNHgphxPuBx/GSrDV0XFE+FHxv5/YPxvurP9KCdy3wJgHiqGsTyV9+2o9JjOoOI2uz9jcn8KlR6gojL0HrSU9/OoeOJcNMr9rhzI/QAqLpdW99g8lHfW30uvepLl9/JTxnFnAPwUwEuW99W8/j4A87x0gKoyhAchhBBvuDKbEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhCRUEIIcQTKgpCCCGe/H9DmsqiQBIg1AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from apd.aggregation.query import with_database, get_data\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "async def plot():\n", + " points = [(dp.collected_at, dp.data) async for dp in get_data(sensor_name=\"RelativeHumidity\")]\n", + " x, y = zip(*points)\n", + " plt.plot_date(x, y, \"o\", xdate=True)\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " await plot()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nO2de5wU1ZX4v3eaAQbUGZHXgOBoQsQX8pgoRFeTEDUKyMQH6C/+Vo0/XROzwbg+cEUZIsTnGtk1a1Y3UbLJqmgMChOTuGRN1kTMAhpMJEZFfM3wiDqjwgDzuL8/qmqmu6equp7dVdPn+/n0p7tv1+P0rap77j333HOU1hpBEARBcKKi1AIIgiAIyUYUhSAIguCKKApBEATBFVEUgiAIgiuiKARBEARXBpRaAIDhw4frurq6UoshCIKQKjZs2PBXrfWIuM+TCEVRV1fH+vXrSy2GIAhCqlBKvVmM84jpSRAEQXBFFIUgCILgiigKQRAEwRVRFIIgCIIroigEQRAEVwp6PSmlfgDMBnZorY82y4YBjwB1wFZgntb6A/O364FLgC7gG1rrX8QiuSAUkaYtTdzy/C207WsLdZyqTBUA7V3tANQMqmHhcQuZddisnvMs37icbbu2MXroaBZMXdDzmxAffuo9/16oGVTDaXWn8Zt3fsO2Xds4YOAB7Ova13ONvZB/HyQNVSh6rFLqJOBj4IdZiuJ24H2t9a1KqYXAgVrr65RSRwIPAccBY4D/Aj6lte5yO0d9fb0W91ghqTRtaWLRs4vo1J2xHL+yopKbT7gZgMbfNbKna0/Pb4Mzg2n8TGNiG5D+QNOWJs/1Hue9YN0Hfq61UmqD1ro+cmHyKGh60lr/Bng/r3gusML8vAJoyCp/WGu9V2v9BvAahtIQhNSyfOPy2JQEQEd3B8s3Lmf5xuU5jRXAnq49LN+4PLZzC/iq9zjvBes+SCJBF9yN0lq3AGitW5RSI83yscC6rO3eMcv6oJS6DLgMYPz48QHFEIT42bZrW0nPUYzzlzNO9WtXHve1SOq1jnoyW9mU2dq2tNb3aa3rtdb1I0bEvgJdEAIzeujoopzD6TzFOH8546fe474WSb3WQRXFdqVULYD5vsMsfwcYl7XdwUBzcPEEofQsmLqAASq+aDeVFZUsmLqABVMXMDgzOOe3wZnBLJi6ILZzC/iq9zjvBes+SCJB//GTwIXAreb7E1nl/6mUugtjMnsC8PuwQgpCKbEmF4vh9QSI11ORserXS73b3Qvi9QQopR4CPgsMB7YDi4FVwEpgPPAWcK7W+n1z+xuArwCdwJVa66cKCSFeT4IgCP4pltdTwRGF1vp8h59mOmy/DFgWRihBEAQhOcjKbEEQBMEVURSCIAiCK6IoBEEQBFdEUQiCIAiuiKIQBEEQXBFFIQiCILgiikIQBEFwRRSFIAiC4IooCkEQBMEVURSCIAiCK6IoBEEQBFdEUQiCIAiuiKIQBEEQXBFFIQiCILgiikIQBEFwJb78jkLZ07SlyTEr3JABQ7hpxk2eM3o1bWmKLfObm5wW2RnI/Mpibd+yq4UKVUG37qZ6YLXvLGheqFSVdOiOHLmzs6+NHjqaQ/Y/hN9v/z3dupsKVcG5nzqXRdMXRSqHF/LrvdRZ3uzug/zr7ifLodP/ifNejouCGe6KgWS46380bWli0bOL6NSdjttkVIZlJy4r+JA0bWmi8XeN7Ona01M2ODOYxs80hn7AvMhpUVlRyVkTzuKJ157wLIud7Elk/uHzi6osnOq9sqKSm0+4uegNp9t9YF33n/zlJ57uk/x9s/9P1PdysTLciaIQYuHUx06lZVdLwe1qh9byy3N+GehYXvYthFc5LawRgVdZ/B6/VFSoCv7wt38o2vnc6iWK6xqlPOB83b2Q/X+ivpeLpShkjkKIhW27tkW2ndM2Xs8R9vzZODUWccpYDII2gkFxq5dS1Fmhc4apn+xjp/U+EUUhxMLooaMj285pG6/nCHv+bCqU/SMTp4zFwOl/xYVbvZSizgqdM0z9ZB87rfeJKAohFhZMXcAA5e4rkVEZFkxd4OlYgzODc8oGZwZ72tfLsQvJaVFZUcm5nzrXlyx2sieRcz91blHP51TvlRWVkVzXqOSB3uvu9T7J3zf7/8R5L8eJeD0JsWBNzEXh9WRtE4enSCE5LbI9WKaMnOJZlmzZxeupF7t6L6XXk9N9kH/dw3o9xXkvx4lMZguCIKQUmcwWBEEQEoEoCkEQBMGVUIpCKbVAKfVHpdSflFJXmmXDlFJPK6VeNd8PjEZUQRAEoRQEVhRKqaOBS4HjgGOB2UqpCcBCYK3WegKw1vwuCIIgpJQwI4ojgHVa691a607g18CXgLnACnObFUBDOBEFQRCEUhJGUfwROEkpdZBSaghwBjAOGKW1bgEw30fa7ayUukwptV4ptX7nzp0hxBAEQRDiJLCi0FpvBm4DngZ+DvwB8BwxS2t9n9a6XmtdP2LEiKBiCIIgCDETajJba/19rfVUrfVJwPvAq8B2pVQtgPm+I7yYgiAIQqkI6/U00nwfD5wFPAQ8CVxobnIh8ESYcwiCIAilJWwIj58opQ4COoArtNYfKKVuBVYqpS4B3gKKG0RG6BckLamNIJQzoRSF1vpvbMreA2aGOa5Q3tglkWnd28qNv70RQJSFIBQZWZktJI7lG5fbZhLr6O5g+cblJZBIEMobiR4rFJXs/NFBaNnVwnE/Os5X1NWaQTVMPHAi67at87RttokrKhPY0nVLefQvj/aJ2OqWPzn7twMGHoBSira9bbbbLfndkp46USiOH308m9/f3CcSqhVJ1qn+FYp5h88rejRZp3zVp9Wdxs/f+HlJTJBL1y3lkVcesf2tdmhtKqK+RoVEjxWKRlryR1t5joFI8jo7NTjTR0/nxZ0v2uZPBlzrKnu76//nejTRPsfFzKHtJ285FCevtpuSsIgqb3sYJGe20O9IS/5oMHqMQCR5nY/94bG+UmkWOrff7YJQzBzaQe6LuPNqe71mpcjvnU2xFIWYnoRIaNrSxI3P3piTNMfCSlKU9LzA2RSS1c9/8ZtvOcp840EpZg7tIP8j7nvJ6/9P0z0dBpnMFkLTtKWJhf+z0FZJAOzu3M0Nz95A9aDqIksWnNFDR0eW19lvvuVC5/a7XRCKmUM7yH+IO8e01/+f9FzXUSGKQgiNF0+kLt2F1joV+aOtPMdR5XV2ykc9ffR0x/zJhXJtZ2+nUJ5l8Uoxc2j7yVsOxcmr7eX/pyHXdVSIohBC43X4/eG+D2n8TGOPbd2JSlXZ87kqU0VVpsrxuxdqBtUwffR0z9taE6WzDpvF0hOXUj2w2vZ3ryyavoj5h8/v6aVWqArmHz6f+0+7v6c+FIraobU9k6OzDpuV81v1wGpqBtXYbnfL39ySUycKxfTR03PktmSff/h81/pXqKJOZAO29Qy98oat/yBY18yJ7GtQDshkthAar5ORpZ74E4T+huTMFlKDl+F3RmXKZpguCP0NURRCaGYdNotb/+bWHJNRNkMGDGHZicvKZpguCP0NcY8VIsGylwuC0P+QEYUgCILgiigKQRAEwRVRFIIgCIIroigEQRAEV0RRCIIgCK6IohAEQRBcEfdYIRHkx/+3Is6Ky60glB4ZUQglxy5JjBVxtmlLU4mkEgTBQhSFUHIe/cujtuVduktyZAtCAhDTk1B08nNBuyWJyY5Mm593+rhRx+Xkha7KVDFowKCevNInHXxSTr5lKG7O5SThlpvb+j2K3OB+5ci/RnZ5sq3IuPl50sv1WpYCiR4rFBW/ebOtiLNechh7pRg5l5OEXZ1n53t2ylkddT3FkTO93K5lPhI9VuiXLN+43HNDkR1x1sk8FYSO7o6yMmnZ1fmerj09dbB84/I+SgKiryc/194r5XYtS0UoRaGU+qZS6k9KqT8qpR5SSg1WSg1TSj2tlHrVfD8wKmGF9OM1yVF+xNmocziXS65jcP6vVrlbXURZT3HVeTldy1IRWFEopcYC3wDqtdZHAxngPGAhsFZrPQFYa34XBMBbjuHaobU8/+Xnc8wJUedwLpdcx+D8X63yqHKDB5UjqccVegn79A0AqpRSA4AhQDMwF1hh/r4CaAh5DqEf4TUXdD5R5nAuRs7lJGFX59n1HFVu8CByhKXcrmWpCKwotNbvAncCbwEtQJvW+pfAKK11i7lNCzAyCkGF/oHXXND52OWdzs8LXZWpyjlWfr5lKF7O5SSRX+f59RxVbvAgctjlxM4vc8qTXo7XslQE9noy5x5+AswHWoFHgceAe7TWNVnbfaC17jNPoZS6DLgMYPz48dPefPPNQHIIgiCUK2nwevoC8IbWeqfWugN4HPgMsF0pVQtgvu+w21lrfZ/Wul5rXT9ixIgQYgiCIAhxEkZRvAVMV0oNUUopYCawGXgSuNDc5kLgiXAiCoIgCKUk8MpsrfXzSqnHgI1AJ/ACcB+wH7BSKXUJhjKJbhZSEARBKDqhQnhorRcDi/OK92KMLgRBEIR+gKzMFgRBEFwRRSEIgiC4IopCEARBcEUUhSAIguCKKApBEATBFVEUgiAIgiuiKARBEARXRFEIgiAIroiiEIQyoWlLE6c+diqTVkzi1MdOpWlLU6lFciVt8vZnQq3MFgQhHeTnq27Z1ULj7xoBEhmmO23y9ndkRCEIZUChvNlJI23y9ndEUQhCGVAob3bSSJu8/R1RFIJQBhTKm5000iZvf0cUhSCUAYXyZieNtMnb35HJbEEoA6wJ4OUbl7Nt1zZGDx3NgqkLEjsxnDZ5+zuBc2ZHSX19vV6/fn2pxRAEQUgVaciZLQiCIJQBoigEQRAEV2SOIpsVZ8Ibv+79fujJcOGTpZNHEAQhAciIwiJfSYDx/Z7jSyOPIAhCQiifEUXjgUB3VkEFNH7Q+zVfSVj89c+waSVMmhendIIgCImlPEYUjdXkKgmM743V3vZffWXUEgmCIKSG/q8oVpzp/vudEwsfo2NXNLIIgiCkkP6tKDatdDYpWXzcUhxZBEEQUkr/VhRPfN3bdreMj1cOQRCEFBNYUSilDldKvZj1+lApdaVSaphS6mml1Kvm+4FRCuyLrr3ettvbFq8cgiAIKSawotBav6K1nqy1ngxMA3YDPwUWAmu11hOAteZ3QRAEIaVEZXqaCbyutX4TmAusMMtXAA0RnaO0bFpZagnKi00r4TtHQ2ON8S71LwglIypFcR7wkPl5lNa6BcB8H2m3g1LqMqXUeqXU+p07d0YkRh7DPXg0eWXtt6I7luDOPcfD45dC29uANt4fv1SUhSCUiNCKQik1EDgTeNTPflrr+7TW9Vrr+hEjRoQVw54o3Vrb3onuWEEph172ijONRY52/PTviitLUMrhOgnhWXMVLBlmrOdaMsz4nlCiWJl9OrBRa73d/L5dKVWrtW5RStUCOyI4RzCibNyrSjcnDxieWdmT7m1vw+pvGJ/706pxN3dmnb9oMoHcc3yuorNGQ9C/rpMQjvz7RHfB+u8bn2ffVRqZXIjC9HQ+vWYngCeBC83PFwJPRHCOYGQGRnes9hJ6Rt050d4zq6O9f5nEbk55mku30dDjl8KSA2V0IRgjB6f7xFIWCSPUiEIpNQQ4Bci2CdwKrFRKXQK8BZwb5hyB2bTSu3usJ7oiPJYNdpFrp1xgKAK3RYFtb8crV7FYcxV0tZdainAUWtypu2V0ISRWGbgRSlForXcDB+WVvYfhBVVaVl1Ragns2bTSaPzb3oHqg2HmTfDCj+wj1xZqeABQsYhZFLLrgtJnWiwaT1whiqJcSfA8hBv9N3ps9z733wcOhX1FjuG0aSU8fhk9jWLb27nfA5HSBnbTSmOOpSPlo4ggdBW4N4X+R/6z70gyO37pDuERxrtk9t1QWZVblv89n7DeCU9cQd8bJaUNfVjWfsu/klCZeGQpBSntWZY9QTyVNq00TY4envX6r4QWMQ7Sqyg2rYRVX8v1tV/1NaO80MWrHGoM/ef8M1SPA5TxPuefC5/X8k7IPodXhSU9yV6CzK3omOeJikkK7dRlzz3HG9fNug/t2gI7nrrO+zkS6PEEaTY9PXUddHfklnV3GOXt77vvO+du433SvL62YmuysRDrf2Bc1J7egom4Q3pE4Xs0VT0uFkkEoSCFPJXcGvhC7ZHFII/5cUpAehWFU+V7uShuDXjlUI8L9cxGzkmxPH5p7nnELTKPACa3YYdFK0K+L/vwifD154MdK47rm+8JlxkEc+8xPuc7REinJF42PBhsv0L5cLK5/q1g5ygC6TU9xYU12oiC7MYjzvUO5WLvfuPX0TXI+UoCjO9ecqTb2am9jkSzaax2vnZ2Ody79hrnsQtvksZQ+TePNuog+5XU/1HI7Gl3He853qPnIkYHNcEorUs/mVpfX6/Xr1/vbyevaUzzqRgAN73nvs3NI72twTj0ZO83Qtw0pixUetDrZ3mFFOpJ27khZ2/rdn63ulxzVTzzC/WX5JovgtRPpgpu3BadTHFy82j3dTPFvJ/d3LRVJSz+q9EhKKQssmXON0kX4qz7A40KlVIbtNb1vnf0SfmNKBruLbyNNbwvRLGUxFn3F+c8qUDT05Ne/Q37EYblepvT674smpFXXJPQXiZFC9HVnp7RZaHFlY1FCpmTf6/kozsMpV13or/j+pnAPvTkxJsOy0tR1F/i7YIk5aJVjwvc00g0fuy2bjiFMLF1vdVGY+zFdOVmEoqTKJRQv/Gm6g4x6vSBVzdtL53CbOXmdQK7/hK48Elv25aQ9CqKIHGcEup6ZkumCr75x14lcejJpZUnKtZcVfih87News7N1i0YpNeeXhQ9/CBYtnrBIG6lHWlU6G7/sqakTUqvohi4n7/t/ZpvosxlEYR8W3OhXkdaQlt76fF+6Xv+jpn/Xysqnbf12tODaHrnwycavUYhl0yBxa3ZxKm0qw+O9njWPVM1rPC2XrZJCOlVFH4eePBvvvn686VRFoOqg03k/fTvcm3yTvb7OIhaSfm9VvmjhELhW/zIt2R472cvHlH5fP15o9co80y5zPWwuDWb9d837q+o7+mZN0V7PDBGQV7ap9Nvi/7cMZHedRQqE/9K3a8/bzR8cUdojcLDIz9Xg2W/j3t+w8+Cw7h6hX47DU9dZ8z/eLmuusOYU9n5F/covnbsV9v72aqLIG60/ZFA7uLaqL9VXzWcUtI8dzd8YqrkT++IoljhHOLocWTjxx7v19c63/4ah3nq8csdym0axPU/KHw8q3HNDAouUyHa3/d3Xd/4tX8lAXB13jqNSfOKM7JIg+dTmLmB7k7j/mqsNlzZw9zHpcjnEmZhZ4lIr6LwQxgb8aR58dqYp13kfVu/iwGzs/LZuYxGYp5yUdiN1b0KadNKCq7G3q+2t3H16qJshxeTYdw9e6dR4qR58a8RCDq3kr8ALs5EUlHNDXTtNcyuQe/jUuRzSZmSgHJRFGE9Cywbc9Sxhg492Z9sYYaqdm6AHe29PTO7VxQ9U8sUVahhrr8ktwce5r/uKl32XYZPTMbixzt9zq81Hth3bUNXe3zKYsKp0R1LdwcfGfSniMQxkl5FUewLPGme4a7a2GY0avnndzMLnXV/lqJRvesj4vafzrbdB+k5FdNFNKwyt+Rcc5X/OYuoOOt+773FgQFCNmSqeu+/QnzckjsR78aaqwCHfORxZR189Zf25UFDWQQ1ZbmZsMUBoYf0TmZPu8jbEDsOs9Hsu+wbtjVXmXZ408QycKiR98LqHRd78kpF0A8oFBlzv9pg9vt8Nq0sWD9tW6vYsWl/OndnGDCki5GTPqK6rr1XzvHTS7fgzApd75XZd/s3f1ku07Pv8vY/dYcxUmj8wH27UtSZU8PesTvY8YKaspycGqrH9UaXvmW8fc56S5GUgYNCehXF7LvgvdcKL94q5oIWJwVSKvI9oYLi1ohnIrqFCnhotW2touX3NehuI9ZT5+4BtPy+BqBXWZTsgVX+54/8eEFlz91YeI5y3G2Yoaz911xlRELVXcao2M8cWZRUH+zQQB9smKX8Kq+gTiczb+qbabGyKvd4haK6vrWuH62Itye9pidIxdL3fsHqK51/i2plq+1xetNCbt94QI+SsNDdiu0bD4jm/EGpGgZn3RdstGhNbNuZJRvbel/5SgL8KSZrxLdkuH3inVIw8yb7DJMzbzI6W3bmXTeCjtadEpj5Gh3e5d1ykVJzVnpHFBYVA50XWJX7itiKAGFO7OjYZQy/7XpWTj1Dv9iZDuq/0tOQde2z79M4lQdGVRomGy8Mqobr3gh/TrsEWl72WfVVw1XUC0HDgsTVsFn/1ynCrzU6L0Y4kyD1n8/su4x5F6dnoXpcqvOGpHtEAdDwXWwTkvv1KEoLfpb9d++LbiXr3jb7XAF2PUO/5A/1Lfz01KJgULURUtrrY1HqRDMN90YzD+VGnA1bj4NIa25cs2y8/L+kdAidRkln3e/8/1JC+hXFpHnG0L/YHkWl4vTb/AVEfOo6Yy1DFOxt66t4Js1zdJhxpWIAnob6s++CzEBUpf1JnMp9s19tb8Pf+EHuqup8goZZiZpJ8+BL/9a/U8ROu7jwNknpEEZhxkoo6U1cVM5sWuktN3gcVI8zekd2GeLcqKwK/tA01tC2dTDNz1eDzurbqG7GHN/WO5ntRn5iIC/kZ5k79ORkd0CiNtNY17rUuCU5GlRd+pFdCSlW4iJRFGnGLl1mUAYOhX1evGjw7hJbPS6avM5mvK2W/z2A1i1DDe9jBTWH7aL20x8W3r8/5vSww29WtUIkqd7unNj3nitzJQEpURRKqRrg34GjMR7frwCvAI8AdcBWYJ7W2tWRWxRFCMKm5sxe63HbodGOUqIyz2xaSdvyf6Bl3RB0V7a1VFPziQLKwkplWS5ENapI+uhJANKTCnU58HOt9UTgWGAzsBBYq7WeAKw1vwtxEdY+WzWst9d4+m3JDGkwaR47XhmbpyQAFK2vD6Vtq8tkejkpiSgRJSFkEVhRKKUOAE4Cvg+gtd6ntW4F5gIrzM1WAA1hhRQKEMbzJXv9wqR5/pMGOTEoWnt553tOowZFywaHtRR+kuP0F6KY2E6KF5GQGMKMKA4DdgIPKKVeUEr9u1JqKDBKa90CYL6PtNtZKXWZUmq9Umr9zp07Q4ghhFqBnb9+IapQ2BHbjlW1s+LRHTa3caaqb5bAcmDmTdi6i3umIjleREJiCLPgbgAwFfh7rfXzSqnl+DAzaa3vA+4DY44ihByC1yQ8dtitX5g0L9ykaByuo/vcstapZLirJoFJ84KHlChX5SoUJMyI4h3gHa21FS7zMQzFsV0pVQtgvpcw5nOZECa5UtReLTE12Hp3wGBx5YgVFt9tZb5dqBBREq60rV7Nq5+fyeYjjuTVz8+kbfXqUotUNAKPKLTW25RSbyulDtdavwLMBF42XxcCt5rvT0QiqeBMUtJsJiiOTcuSJbSufBS6uiCToWbeudQuXlxqsYpHFGEphB7aVq+m5cab0Hv2ANDZ3EzLjUYHrXrOnFKKVhTCej39PfBjpdQmYDLwbQwFcYpS6lXgFPO7EDeT5vmf1I4qFhTE7nOvamo8b9uyZAmtDz1sKAmAri5aH3qYliVLYpJO6O/s+M7dPUrCQu/Zw47v+IwanFJCKQqt9Yta63qt9SStdYPW+gOt9Xta65la6wnme4myyJQhXsIdZNPw3WjOO6g69t5r7Q3/6PibGjIk53vrykdtt3MqF4RCdLbYLzDtbG4usiSlIf2xnoReZt/lLV80GC6Qbo27n/UURVgd6za87zN/YY0k8nEqF4QCZFy87sphrkIURX/j68+bfvBZLpKZgWbU2aygiYVcIL2upyimz71ycPt0KheEiHBzQC8H81P681EIfYki05412sgOPlgxEHSnsW7Dyo5WTJ97p3AzAcPQvDZ7Nh2vvd7zvfKTn+CTa9YEOpbQv9Ftzt585WB+EkUhOOPRcyZxHkaZjL2ZKWvkka8kADpee53XZs8WZSH0YUBtrbNCyCQw7E3EiOlJCEUiPYyc5iK07rEn5ysJC6dyobwZ+U2XdMBlMPclikIIRevDj/gqLwYDxoxx/K0c7MlC9FTPmeM8FyYjCkEoQMTzBkHJ9jxx6/05uTkKQkGc7mkZUQhCfPgOieDi3ZQ9UqieM4eMwwK9AbUuKU4FQbBFFIVQEtpWr6b5uoXGBKHWdDY303zdQndl4TJKyZ9o3P/0L9put9/JJ3mSLShbL76YzROP6HltvdjnIkhBSCCiKITYcGtwW25aDN153und3Ua5A25zD/mjjY9//RvbzaxypxEHQMuybzufx4WtF19M+3Prcsran1snykJIPaIohHC4TOS5TRzr9nZf5VDA8yRvtOHkymiVj3IJCaJbW53P40K+kihUXoiWJUvYfNTRxujkqKPLOlaV1EVpEUUhhKJm3rmOvwVZiKSJKCRCAQ+VYkf89Puf3NyOyy3cdWJcsH1GBuhPyk0UhRCK2sWLXSeZ/TZkCnhryc19yq0wz15oW706Vg+VIA2AX7fc1ocedixvufGmnLmdlhtv6tfKwq0uiooPD7/EKLeIEEUhhKfAJLNdQ5Yf8TWbzMcf9SmzC/PshFuj7CdcuR1BG4AowzyUc7jrtNDfIhiLohBCU6jxtWvIapc04melhZ/1D27bhr3hXRuAqirnHWMOXFgO8YZSRT+LYCyKQgjP3r0FN8luyDZ/+jiar7nWdftFq17K+e5l/cNrs2cX3LbLDO4W2FTj1gC4jXiKsACxP5ufUoeLk0car5MoCiE0bp5K2bQsWcLmiUfAR4ZpyamPrYEfr8vNcTHym1eiBg92PX7Ha6+z9eKLXXvXyswrEIepJqrFfEHt2EHdehPPAIfYpU7lCcDNySONZkJRFELR8Dr5qDCURd3Cpp7X17YNp/bmbxXct5ArqnXDxxHKw9V91wdBJ2mDuvUWk0CeQJ2d/soTgFv05DSGkRFFISSSplVX8+AvlvLZtzcA8NvX3+dr24a7ToJ7octsTJMSyqOcXF37mydQNnbXzWnuTrlky0sqoiiExKEwbsxR7a1cu+EhfrbqappWXU3lM09Tu6Qx3MFN23Gh3v/miUf4bsD8mhTaVq+m+drrchv9cwIAABT/SURBVMOYXHudr2OkiTg8gYqpWP2u5ndqXHVra+o6BaIohFDEfbMrehXHtRseKjgJXhCzN+tlwZ3f3q5fk0LzTYv7TnIXOepuUXFxBNg88QheOelk25/jCLcSBL+r+btcTIFpW/8iikIIRTEn5iJxMPXppupnvsC3OcujE4Bfss1Zf54+g79Mn5EK01b3jh22yiKOcCtB8L2av0CeCr1nT2ocEJLrNiAklkWrXuKh59+mS2uampvT1dsI22N3SbM68ptXFhzxbP70cT1eX3GweeIROd91ayuWtJ3NzTRfbzS6xQ5h4pXuHTv6lFXPmRN+JFkk2lavZsd37jZGlx7uNd3aStvq1Ym9HhaiKARffPn+5/jt6+/3fN9ZVcOo9uR729iilKeHefOxkxlw0EHuD7+X48SsJDzR2UnzTYsT3TBlN7YDamuN+SSnaxXzQkY/WGFmvEYQsGi+5lp2b9xY2jzzBQjVGVRKbVVKvaSUelEptd4sG6aUelop9ar5fmA0ogqlZtUL7+YoCYAHjzydPZlK1/20+YqSKI5Xc958b+fau7dnwtmNgmaEUisJi/b2RJug3r3m2pwJ/reuvT72TIqrXniXE279FYcubOKEW3/Fqhfe9X0MP2Fm8km691cUVoPPaa0na63rze8LgbVa6wnAWvO70A+48pEX+5Q9M24ayyef49hwa+CMhjtpzwyMVBYFdONfYWRv77UH57XPmoZ1DBbN1xX/sVQDvd0D+fU9QHc5X+cI8lWveuFdrn/8Jd5tbUcD77a2c/3jL/lWFmHDqCQ5DlQc5uW5wArz8wqgIYZzCEXG7aH5wpv/W3D/f5l8duSjigrgw8oq3wrj/sX/2vO55vzzIpNH4+6hkyjyk0YVgdplS6EiWJPjqKwjiJ10xy9eob0j9zjtHV3c8YtX/B0orBkswXGgwioKDfxSKbVBKXWZWTZKa90CYL6PDHkOIQE4PTRLn/0eU//6WsFe9zPjpvk6n1dz1QEd7cxquNPzcRUw4cn/AODbV93FK6t+3qNowioyDXQWaVQRhdLNTtma//rz1GmRm6eq58xhzG23umcq9EnYaMBgjCD8lDvSj12bwyqKE7TWU4HTgSuUUoUTEpsopS5TSq1XSq3fuXNnSDGEuGl2eGjclIQGNg7/ZM53N3TWq+PAg7h92vmBzEuFGNneyssTj6DhZ/czqr2VCnrDhoQ5l7XmIw0UvBa7d9N8zbWJnsuA4vv3h40MUIik1neoetZaN5vvO4CfAscB25VStQDme19/N2Of+7TW9Vrr+hEjRoQRQygCY2pcQmjbYCmJRSde3lO2pm6G61zGh5lBXHrRdznyz5s59rlneWbcNM+jhR2D9vfcyCvsG/WwjU4QJRFUMRU6V6HjepU1SrdUyyso25YfthPgtqgtCvJNrqEjAxQgqesqAj8bSqmhSqn9rc/AqcAfgSeBC83NLgSeCCukUHquOe1w3/tkKwmAeyefzeq6GXQplTN6sJTKxWfdmnOeC6aP93yui05f3KMssl9+icNDy+1caTpuWOy8gqyRXGAimMx24/rHN/V83nzU0bGv50iqQ0SYdRSjgJ8qYwJnAPCfWuufK6X+F1iplLoEeAtwjrcrpIaGKWN5dP1bfdxj39hvJId+vCOnh6rNcjvunXw2904+m7vnTwaMuY/m1nbG1FRxy2mH0zBlbM+2SxuO4Ud54cbzyW5kLjo914vpZ6uuLvi/8tlZVcODR57ONRseSpUpKZ8uIEOy5HcKcWJdw0CyxjwB3N5hTPrnL2QsNwIrCq31FuBYm/L3gJlhhBKSyY8vnZGzKhtgaNe+Pg+4MsudOOETw3oUQrZisENhr4zAaGDW1M3w9R/c0BjrQp4ZN41nxk3rmai35IgSaxT1yQ+bqd63u+C2fs7/YWUV5826mTWrru6Zf0kCrfsNo+aj9/qU76yqYf89H1GljUbfr7xxr2xO8vqGYpGq6AtC6VnacAyv33IGW2+dBcAIh1XZTuUTRg7lx5d6b9y/PH08V3zhWt7Yb2Qfs9LquhncO/nsnO0vmD6erbfOYtT+/tdtaHK9sxadeDln+PCo8suiEy/niGWNBWXyQzfwvUmGR/rskLJriNS082+fOrXP4sw9mUoePPJ0zp57W+C6jntNSND8IIFwS6dbQiSEhxCYrbfO4plfLLUN4bGzqq/bogKevuqzvs5hmZ+u+IK7bVgBb5jKC+CUo0azY9D+jNz7kaceqgbumHa+L9miwEsco43DP1nQBVkDnaqCu6bOz1F2Hw4cUnDE4sacM2/jtcB752LJddHLTzGivbXHzJctr0ah/KrHEGtCVr3wLp99e4OjTEuf/V7gYwchM2hQUc/nFRlRCKGwC+Fh9RLzyW7Io+SAQZk+x/7RurccJ7jzmyFrdOK01mPj8E9GOjHuNodjx6ITL3edZLeOd+bc2/v8h+8dMzfwZHG3UnRGPDP+zLhpXHTaImY13MlFpy3qI++auumBVtsHdSv9zb/+BwtefKzHTXpUeyvXmDlQfrbq6h7TY7GwcronDVEUQmBWvfBuTwiP7VU1dAPbq2pYPvmcPg3AwExwS/mgAe636aYlX3T87aLTF3NGw505r9unnZ8j7+3Tzu9jwsrm9plXMGTG9ECyf5gZ1EdJvbHfSK74wrVMGDkUgDF33F7wOLMa7rRdU2K5FTuNuPwudMw+btMhwf5zGO6dfLbvOQoFvHlbMLPVmeufYHBXR06ZNa9TyJkhDg+5pGa/E9OTEBhrtbY1+evG7ef08XvwzG1nT7KNMwX+XGgtvMhrccInhplzKl9k68UXs/u5db4asvPmLLMtH7X/wB4zXPWcOTT/4w3Q0dFnu/as0drshjv56os/Ydab66jQmm6laDpkuquSC0Ncx3VDgeeovtkM+Kvtcq2COM2lecUyb4K/SXgnB4Wk9tyTKpeQApxWa+dzwfTxBb2b3GiYMpa750+mqrL3dq1QxnGXNhzj+3hVlRXcPX8yY2uqUEBNVaXtg3DB9PE5E+91DzzAkBn+TCN3z5+cc66xNVXcPX8yz99wSs52Y769rE8cpE4U90w+p2efC6aP597JZzN77h2c0XAns+feUbAxH1tTxa6jpzqawJLGmJoqxtx+m+/9dtjMiXnho8rgk8ea3hGr3/2cSKrpSUYUQmDG1FS5xsMZW1PFNXlrI4LSMGWs5+MUivp5y1mTfB0vm7oHHuBlDz71GvjroP09uwFb7p3ZeRjGfPNKHshy+2yYMrZHMdYtbCoow9aeeZvP86MT5+TY2/dVDGBgd2fBY1jrXaLggunjXdfFVFVmuOa0w6k262rHd+5mX3NzQRNQF4on6+fy2SBCBQzkl++a7XUS3jI9Du3aZ+sE4jtLYpEQRSEE5nMTR7g++L9d+PkiStNLoaifUSguJ6ymYseg/Wl98Ke+9q2eM8fzeoChAzPs2ue82OyETwzL+X7j31zex5pTaEHi3fMnR1pXlpKz1uEoYMjADLv3dTEmr1Nh1cWX73+Oa/7pEgai+yzqBEPh3T3lXBq+9n8DybR/CI+w7NHcmrrpzNn6nCfz0xVfuJbPvr2BBS8+ljM/sidTyftfupAJgSWKD1EUQmD++8/OwRzH+owNFSVeTWJx8eX/s5zFc46KVSEt+9IxjvM2QJ+1Kl8+vm9v3sl92PICuy4G+Zc2HOPLXPjjS2dQ9/odrnMzYRSaqqjw7V6rMeoum3snn82crc952hecXYX/p/kgXvclTXEQRSEExq1B/tzE0gV6dDOJZSJIndmtFBmHyVYFvHDTqaHPUYiGKWMdFYXdP7Qa52xlcdHpi3nwqSU9k7EWq+tm8OPj53FdZNKGxwr9YkcYhawKKAm7q7xj0P59wsVY2xbykspeq2PrVJHEiSNEUQghcGuQ3UYbcXPNaYc7NqJdEeQMaDrE3syggYGf/ETo43tlrEP9O0X6XdpwDPWHDMupG7sG74BBGVeX4/7EgDFjCmam8zpZvaZuhqP5qdBanaQjikIIjNscRanNP05EYRL7tylGz3Z2XqPwxn4jmbVmTejje+Wa0w7n+sdfysnOZk0IO2H1vrODMUblcJBGRn7zysgiwj78mfP42xmH8N7Dj1CR1SHZYbMCPW2IohAC4zZq8Ju/IkqcJrMVwcKl59OtnU0h8aw9tydoox/U46s/4iWEihcqM4rFc46idsqpfGZPfeBkd9YizKQhikIIjJtrbBQNclCcRjOaeD2eSkG5N/pxLwRTZLsZ97LqhXcdFbSd44AXshdhJg1RFEJgMko52vxL2Xg5zZ1E5YnllGwnKeG8+xtu99ldEa7zsKPm/PNsy90UtJc8KtkMqFDcee6xiVb4oiiEwLhNDK964d2S3fhBbPd+cAvOJ0TP+cePs214s/OaxEXt4r6T/V5wWlwYNJpAqZEQHkJg3HrohRa9xUnDlLHcctYxOWEzbjnrmMgaFScX2yhcb4W+LG04hgumj++p34xSfcKrJA0nmdOoJACUjsBdMCz19fV6/fr1pRZD8MmqF951XfRlZ9vtD7iFz+iv/7k/s/Xii2l/bl2f8qoZ06l74IESSOQdpdQGrXV93OeREYUQmCTbVOPEaSRVytXoQnDqHniAqrww8mlQEsVE5igEwSdxz4EIxUeUgjuiKIRQlKMHkCxaE8oNURRCKAYOqGBvZ994OQMLZKVLO+W+fkEojNtai7QhikIIhZ2ScCsXhHJg1Qvv5pgn321t5/rHXwLSObfXv7t9giAIJeCOX7ySM4cF0N7RVVK38TCIohBCUVNV6atcEMoBpzAySQ2WWYjQikIplVFKvaCUWmN+H6aUelop9ar5fmB4MYWk0njmUVRW5E5dV1YoGs88qkQSCULpcQqKWcpgmWGIYkSxANic9X0hsFZrPQFYa34X+ikNU8Zyx7nH5qyCviPhcWsEIW6uOe1wqiozOWVpdqEONZmtlDoYI7LyMuAqs3gu9OQ5XwE8A4lKliVEjHgACUIu/c2FOqzX093AtUB2AtlRWusWAK11i1JqpN2OSqnLgMsAxo8fH1IMQRCEZNGfOlCBTU9KqdnADq31hiD7a63v01rXa63rR4woXX5lQRAEwZ0wI4oTgDOVUmcAg4EDlFI/ArYrpWrN0UQtsCMKQQVBEITSEHhEobW+Xmt9sNa6DjgP+JXW+gLgSeBCc7MLgSdCSykIgiCUjDjWUdwKnKKUehU4xfwuCIIgpJRIQnhorZ/B8G5Ca/0eMDOK4wqCIAilJxGJi5RSO4E3za/Dgb+WUJygiNzFReQuLiJ3cfEq9yFa69i9gRKhKLJRSq0vRsamqBG5i4vIXVxE7uKSNLkl1pMgCILgiigKQRAEwZUkKor7Si1AQETu4iJyFxeRu7gkSu7EzVEIgiAIySKJIwpBEAQhQYiiEARBENzRWru+gHHAf2PknPgTsMAsHwY8Dbxqvh9olh9kbv8xcE/eseYDm8zj3O5yzmXA28DHeeVXAS+bx1iL4UNst/8gjFAiu4F24C9ZcncBHwF7MeJQJV5u4HPAS1lydwFfTrrc5m/LTdn2msdJUn2fZNZrN/AOuff3WqAD2EXy7m9buYFDgBez7pPNaZA7Bc+lU30n/bk8CdgIdALn5P12G/BH8zXfSYae7QtuALXAVPPz/hiNwJHA7cBCs3whcJv5eShwInB5dgWZFfcWMML8vgKY6XDO6eZ58yvoc8AQ8/NXgUcc9v8a8ENgKkYcqp9kyb0vpXLfbso7DKNB/qcUyH05sBX4R1POd4DvJEjuOuDzwBrgHHLv74eBB83fknafOMl9LPBPprz7AR8A302B3El/Lt3kTvJzWQdMwng2z8kqn4XR+RlgyrkeOMDuGNaroOlJa92itd5ofv4Io5cyFiNB0QpzsxVAg7nNLq31s8CevEMdBvxFa73T/P5fwNkO51ynzZwWeeX/rbXebX5dBxzsIPZc4F5T7seAk7PkHpBSua36Pgd4CpidArmnYtyID2itdwG/wehNJUJurfVWrfWvMFfA5t3fUzBGSZCw+8RF7pEY98UKjFHeLuC0FMid6OeygNyJfS5NuTdhjISyORL4tda603wu/wB80e4YFr7mKJRSdRgP0PPkJSjCuEndeA2YqJSqU0oNwLgRxvk5fx6XYFwYO8ZiDNnQWndiPDDTTLkVsFoptQ44PkVyW/V9HvBASuT+GXAg0KaUGo7RQ6pJkNw55N/fwPuQyPs7hzy5RwO/wLget2D0YN1IitxJfi5zcGgHk/hcOvEH4HSl1BDzufxcIRk8BwVUSu2HYVK4Umv9oVLKl2Ra6w+UUl8FHsHQcL/D0K6+UUpdANRj9FxtN8mTezRwqSn3h1rreqXUYcCvKKAsEyQ3Zn6PYzAaAlcSIvcqpVSHee6dwHPAlxIkdzaDSc/9nU2+3FprPUkpNQZYRda1SbjcSX4u3eRO8nPpJMMvlVKfJve57HTbx9OIQilViVE5P9ZaP24WbzcryKqoggmKtNartdbHa61nAK8AryqlMkqpF83XtzzI8gXgBuBMrfVes2yZdQxzs3eAcabcj2NMSv6H+ds2M7HSFowewccpkXs78P+An2IEDEtLfb8FnK61PgWowuylJ0Tuns2Bq8m7vzHszkm8v13lNu/vZmALxuguDXIn+bl0kzvJz6WbDMu01pPN51JhOCW57uD6Mg/yQ+DuvPI7yJ18uj3v94voO9s/0nw/EMM741MFzp0/iTMFeB2YUGC/K4DvmXL/DFiZdd67THmt6IzfT7rcWfX9FsYwMS31nQH+xZR3ErANuCMpcmfd368Ba2zu7/voncxOTH07yY1hq/6OKe+BGL3FH6RA7kQ/lx7uk0Q+l1nbP0juZHYGOMj8PAnD82mA6zE8nOREQGO4Yr1ovs7AsH2uxdBEa4FhWftsxeg5fozR2zzSLH8Iw63rZeA8l3Pebu5nuaM1muX/haHBLTmedNh/MMbwVWN4Irxsbv8P5mfLne3llMh9BjAZY2IsTfU9F6PHtAvDbfb5hMn9aYweoMYYerdn1fdzGJ443Wa9n5MCuW/AcLnMdo9NQ30n/bl0u0+S/Fx+2txvF/Ae8Kes59U6/zpgspsO0FpLCA9BEATBHVmZLQiCILgiikIQBEFwRRSFIAiC4IooCkEQBMEVURSCIAiCK6IoBEEQBFdEUQiCIAiu/H8KgxuCBe2ajgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import collections\n", + "\n", + "from apd.aggregation.query import with_database, get_data\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "async def plot():\n", + " legends = collections.defaultdict(list)\n", + " async for dp in get_data(sensor_name=\"RelativeHumidity\"):\n", + " legends[dp.deployment_id].append((dp.collected_at, dp.data))\n", + "\n", + " for deployment_id, points in legends.items():\n", + " x, y = zip(*points)\n", + " plt.plot_date(x, y, \"o\", xdate=True)\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " await plot()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nO2de5hU1ZXof6u7C+juIA3ysJuHRHQQFVDTRtQEJ2HUSQAlGRW8yTfEyeBkXtHkXhJUFFBUlEnUezPf3Gsmk5A7+QxqDLEhGXVIJsmMaXPxBWpLUIOK3QpRQYVG+rHvH+dUU1V9zqnzrDrVtX7f11917TqPVfucOmvvtdZeS4wxKIqiKIobNeUWQFEURUk3qigURVEUT1RRKIqiKJ6oolAURVE8UUWhKIqieFJXbgEAxo4da6ZOnVpuMRRFUSqKJ5544g/GmHFJnycVimLq1Kls27at3GIoiqJUFCLySinOo6YnRVEUxRNVFIqiKIonqigURVEUT1RRKIqiKJ6oolAURVE8KRr1JCL/AiwA9hpjTrPbxgAbganAbuByY8w79mfXAl8E+oAvG2MeTkRyRSkhm556ndUPPcf+7p5Ix2nIWGOzQz39AIxuyLBq4aksOmPiwHnWP7yTzv3dtDTVs/yi6QOfKckRpN8L74XRDRnmz2rmFy/so3N/N6PqMxzp7Ru4xn4ovA/ShhTLHisic4H3ge/nKIo7gLeNMetEZAUw2hjzdRE5BbgX+CjQAvw78EfGmD6vc7S2thoNj1XSyqanXmf5/c/Q059MpuVMrbD+0tkAXPvgDrp7jv5c6jO13PbZmal9gAwFNj31uu9+T/JeyN4HQa61iDxhjGmNXZgCipqejDG/At4uaL4E2GD/vwFYlNP+Q2PMB8aY3wMvYikNRalY1j+8MzElAdDTZ1j/8E7WP7wz72EF0N3Tx/qHdyZ2boVA/Z7kvZC9D9JI2AV3E4wxXQDGmC4RGW+3TwTac7bbY7cNQkSuAq4CmDJlSkgxFCV5Ovd3l/UcpTh/NePWv07tSV+LtF7ruJ3Z4tDmqH6NMfcYY1qNMa3jxiW+Al1RQtPSVF+Sc7idpxTnr2aC9HvS1yKt1zqsonhTRJoB7Ne9dvseYHLOdpOAzvDiKUr5WX7RdDI1TmOgeMjUCssvms7yi6ZTn6nN+6w+U8vyi6Yndm6FQP2e5L2QvQ/SSFhF8RCw1P5/KfCTnPYlIjJcRD4MnAT8NpqIilJeFp0xkfWXzaapPhP5WA2ZmoHIJ7CiXbIOzEVnTOS2z85kYlM9AkxsqldHdgkI0u9O98LohgyfnzNlYP+m+kzeNfZD7n2QRvxEPd0L/DEwFngTWAVsAu4DpgCvApcZY962t78e+AugF7jGGPOzYkJo1JOiKEpwShX1VNSZbYy5wuWjeS7b3wLcEkUoRVEUJT3oymxFURTFE1UUiqIoiieqKBRFURRPVFEoiqIonqiiUBRFUTxRRaEoiqJ4oopCURRF8UQVhaIoiuKJKgpFURTFE1UUiqIoiieqKBRFURRPVFEoiqIonqiiUBRFUTxRRaEoiqJ4oopCURRF8aRoPQpFCcump15n9UPPsb+7Z9BnjcNqueUz/qu3bXrqddY/vJPO/d20NNWz/KLpsVUD85Izy+iGDKsWnsqiMyYGliW7/ev7u6kVoc8YmuozHOnt41BPfyzfAayC9Zla4Ujf0WJkoxsyzJ/VzC9e2Dcg79Rj62l/+R36jKFWhCvOnszaRTNjk8Mvhf2e28flwOk+KLzuxe6TXNy+T5L3clIUrXBXCrTC3dBj01Ovs/z+Z+jpd7+/amuEb1xWvPzjpqde59oHd9Dd0zfQVp+pjaVMqB85s2RqhcVnTeZHT7zuWxYn2dPI5+dMKamycOv3TK2UpSSo132Qve4bf/uar/ukcN/c7xP3vVyqCndqelISYf3DO4v+qPr6Desf3unrWIUP2u6ePl/7+jm23x9/T5/h3sdfCySLk+xp5N7HXyvp+dz6vafP3z1RKnng6HUPqiSy++Z+nyTv5SRRRaEkQuf+7ti2c9vG7zminj+XPpcZeJIylgK375UUXv1Sjj4rds4o/ZN77Eq9T1RRKInQ0lQf23Zu2/g9R9Tz51IrEug4cchYCty+V1J49Us5+qzYOaP0T+6xK/U+UUWhJMLyi6aTqfH+cdXWCMsvmu7rWPWZ2ry2+kytr339HLuYnFkytZbjN4gsTrKnkSvOnlzS87n1e6bW3z1RKnng6HX3e58U7pv7fZK8l5NEFYWSCIvOmMj6y2bTVJ9x/LxxWK0vR3b2WLd9diYTm+oRYGJTfSyObD9yZhndkGH9pbNZu2hmIFlyZYejI9Om+gwNmXh/fgIMq81/mI1uyPD5OVPy5D1v2pgBOWpFSu7IBud+z/ZxOSKA3O6D3Ovu5z5x2jf3+yR5LyeJRj0piqJUKBr1pCiKoqQCVRSKoiiKJ5EUhYhcLSLPishzInKN3TZGRB4VkV326+h4RFUURVHKQWhFISKnAcuAjwKzgQUichKwAthqjDkJ2Gq/VxRFUSqUKDOKGUC7MeaQMaYX+CXwGeASYIO9zQZgUTQRFUVRlHISRVE8C8wVkWNFpAH4NDAZmGCM6QKwX8c77SwiV4nINhHZtm/fvghiKIqiKEkSWlEYYzqA24FHgX8DngF6A+x/jzGm1RjTOm7cuLBiKIqiKAkTyZltjPmOMeZMY8xc4G1gF/CmiDQD2K97o4upKIqilIuoUU/j7dcpwGeBe4GHgKX2JkuBn0Q5h6IoilJeohYu+pGIHAv0AH9rjHlHRNYB94nIF4FXgcuiCqlUH2kraqMo1UwkRWGM+bhD21vAvCjHVaobpyIy7xzqYfkDzwCoslCUEqMrs5XUkbaiNopS7WjNbKWk5NaPFqBQHTi15fL6/m5OueFngWpNj27IcErzSP7rpbd9bZtr4orLBLZy0w7uffy1QXWqveon5342qj6DCOw/1OO43bUPbqfb7pMagXNOGMNzne8Nqv+crZ/t1v81Av/t7NJnk3WrVz1/VjObn+kqiwly5aYd/KD9Vcf7cWKF1LqOC80eq5SMSqkfna1zDMRS13nlph38a/urg9rPmzaGJ1894Fg/GfDsq9ztvrrxafyrTX+UMvV4kLrlUJq62m7XLJe46rZHoVTZY1VRKCXjvHU/5/WUl3zMkq0f4SbvxKZ6/mvFJ30da9q1Pw1USrPYuYNuF4ZaEV667dOxH9eJMPdFkP4Pg99rlrQcxSiVolDTkxIL1qjwaZwsQo3DarnlMzNTXxc4l2KyBvkuQestx1lvPCylrKEd5nskfS/5/f6VdE9HQZ3ZSmQ2PfU612x0VhIAB4/08d/vf4amBv/VwcpNS1N9bHWdg9ZbLnbuoNuFoZQ1tMN8h6RrTPv9/mmvdR0XqiiUyPiJROrrNxhDRdSPztY5jquus1s96vOmjXGtn1ys1nbudkn8iEtZQztI3XIoTV1tP9+/Empdx4UqCiUyfqffB7p78upHOz0aCus+N2Rq8mpLF773w+iGDOdNG+N726yjNK66zmsXzeTzc6YMqlP9g2XnuNZPLqyt3FSfYXRDxnG7by4+nfqcPqkRSwk51X/O1s8G5/6vkdI6ssG7XvXn50wpS13t7DVzU1+VUus6LtSZrUTGrzOy3I4/RRlqaM1spWLwM/2urUneXKAoSjKoolAis+iMidy1+HTcLEKNw2r5xmXJmwsURUkGDY9VYiFrL1cUZeihMwpFURTFE1UUiqIoiieqKBRFURRPVFEoiqIonqiiUBRFUTxRRaEoiqJ4ouGxSiooLBKTzTirIbeKUn5UUShlx6lITDbjLGiNbEUpN2p6UsrOvY+/5tje1681shUlDeiMQik5hbWgvYrE5GamLaw7PeeE0Xl1oRsyNQzP1A7Ulf7EyePy6i1DaWsupwmv2tzZz+OoDR5UjsJr5FQnO5stuLBOerVey3Kg2WOVkhK0bnY246yfGsZ+KUXN5TTh1Oe59Z7dalbH3U9J1EyvtmtZiGaPVYYk6x/e6ftBkZtx1s08FYaevuoyaTn1eXdP30AfrH945yAlAfH3U5Br75dqu5blIpKiEJGviMhzIvKsiNwrIiNEZIyIPCoiu+zX0XEJq1Q+foscFWacjbuGc7XUOgb375pt9+qLOPspqT6vpmtZLkIrChGZCHwZaDXGnAbUAkuAFcBWY8xJwFb7vaIA/moMT2yq57mb/jTPnBB3DedqqXUM7t812x5XbfCwcqT1uMpRopqe6oB6EakDGoBO4BJgg/35BmBRxHMoQwi/taALibOGcylqLqcJpz7P7ee4aoOHkSMq1XYty0VoRWGMeR34B+BVoAs4YIx5BJhgjOmyt+kCxschqDI08FsLuhCnutOFdaEbMjV5xyqstwylq7mcJgr7vLCf46oNHkYOp5rYhW1uddKr8VqWi9BRT7bv4UfAYmA/cD/wAPAtY0xTznbvGGMG+SlE5CrgKoApU6Z85JVXXgklh6IoSrVSCVFPfwL83hizzxjTAzwInAu8KSLNAPbrXqedjTH3GGNajTGt48aNiyCGoiiKkiRRFMWrwBwRaRARAeYBHcBDwFJ7m6XAT6KJqCiKopST0CuzjTGPi8gDwJNAL/AUcA/wIeA+EfkiljK5LA5BFUVRlPIQKYWHMWYVsKqg+QOs2YWiKIoyBNCV2YqiKIonqigURVEUT1RRKIqiKJ6oolAURVE8UUWhKIqieKKKQlEURfFEFYWiKIriiSoKRVEUxROtma0oVUKxutlpo9LkHcqoolCUKqCwXvXr+7u59sEdAKl8+FaavEMdNT0pShVQrG522qg0eYc6qigUpQooVjc7bVSavEMdVRSKUgUUq5udNipN3qGOKgpFqQKK1c1OG5Um71BHndmKUgVkHcCVEkVUafIOdULXzI6T1tZWs23btnKLoSiKUlFUQs1sRVEUpQpQRaEoiqJ4oj6KHHZfeSXdv2kfeF9/zhymfve7ZZRIURSl/OiMwqZQSQB0/6adFxcsKJNEiqIo6aBqZhQdM06BXMe9CDM6nh94W6gksvS8+BIH2toYtXBh0iIqiqKkkqqYUXScPCNfSQAYY7X7oPPGVQlIpSiKUhkMeUWx+8orPT/fOff84gfp1rQBiqJUL0NaURxoa3M1KWXp37u3RNIoiqJUJkNaUXRdv9LXdh1nfTRhSRRFUSqX0IpCRKaLyNM5f++KyDUiMkZEHhWRXfbr6DgFDoI5csTfhu+9l6wgiqIoFUxoRWGM2WmMOd0YczrwEeAQ8GNgBbDVGHMSsNV+ryiKolQocZme5gEvGWNeAS4BNtjtG4BFMZ2jrBxoayu3CFXFgbY2dn1yHh0zTmHXJ+dp/ytKGYlLUSwB7rX/n2CM6QKwX8c77SAiV4nINhHZtm/fvpjEyCdz4rTYjrX3zrtiO5bizYsLFtC5/Gv0dnaCMfR2dtK5/GuqLBSlTERWFCIyDLgYuD/IfsaYe4wxrcaY1nHjxkUVw/kch+ILa+3t6ortWGGphlH27iuvpOfFlxw/6/x6ZVgxq+E6KdHpWrOGjlNPo+PkGXScehpda9aUWyRX4liZ/SngSWPMm/b7N0Wk2RjTJSLNQNniT+N8uMuoUbEdKwwdZ300z+ne29lJ1w03AgypVeOe4cz9/aUTJCQvLliQp+iysyEYWtdJiUbhfUJfH/vv/SEAzavSt8A3DtPTFRw1OwE8BCy1/18K/CSGc4RCMpnYjmXefTe2YwVl59zzHSOzzOHDQ8ok1jH79HKLEAnP2dDyr9Fxyqk6u1DoWrPG9T7JKou0EWlGISINwAXAX+U0rwPuE5EvAq8Cl0U5R1gOtLX5D4/1Q8KjWafMtaM/+1n23nmX56LA3s7OROUqFV1r1sAHH5RbjEgUW9xJf7/OLpTUKgMvIikKY8wh4NiCtrewoqDKSud115dbBEcOtLWx98676O3qoq65mfFfuYZ3HnzQMXNt0QcPgEhCkiZPbl8MysU1hOm87npVFFVKmv0QXgzd7LE9PZ4fS0MD5tChEgljcaCtjc6vfX3godjb2Zn3PhQV+oA90NZG1w03Yg4fLrcopafIvakMPQ60tQ3MJj1J6cCvolN4RIkuaV6zGhkxIq+t8H0hUaMTOq+73jGLbTWy9867giuJ2tpkhCkDlTqyrHbCRCr5VhJA05LFUUVMhIpVFAfa2ui89rr8WPtrr7NGqsUuXn09oxYupPnmm6hraQER6lpaaL75puIntqMTcs/hW2HpSHKAUL6Vvr74BSkTlWinrnZeXLDAum7Z+9DhWeBE1y23+j5HGiOeoIIVRdctt0Jvb35jby9dt9xa9EfYcpN1YUctXMhJP9/KjI7nOennWwPZjff/cCNwdLSgi8MCEmKKXdfSkoAgilKcKJFKZv9+fycZOTKoWCWjYn0Ubp3v56J4KoT6en/1J2yTkduUsnP51/LOo4qjgBAmt8zxU2IVoTCWPXPiNE7cvDnUsZK4voWRcDJsGM23rAUYFBChzvFk2X9foPXEAxSrh5PLjP/321DnKAUVO6NIiuxsIw5yHx5JrneoFnt392/aY3sgD1rwhFX21k+NdCc7tV8bdC4dJ89wvXZONdzNkSN0Lv+a4wy2ElPld8w+3erD3L+0fo8iZk+n6/jiggX+IhfBGqCmGDEpcKa2traabdu2BdrHbxnTQdTVMePZHZ6bvDBrtq81GPXnzPF/IyTMjBc6yi1CIEJfP9tkVWwk7RSGnLut1/m9+rJrzZpE/AtNVyzJs0+H6p/hw5nxzNMxSpUcHbNP91w3U8r72TNMu7aWGc89S8eppxVVFrkyB3FgA7SsvyPUrFBEnjDGtAbeMSBVN6Noua24Yyk7vS9GqZREy/o7SnKeisCYgZF01w03Os4wsqG3haPuOGZeSTmh/ThFi/LBB5UzuyyyuLJjxiklEaPwXhlEXx8dJ8+g/qNnBTrumwEc2PXnzEm96bCqFEXTFUt8XZC0XLS6lpbQI400E8Ru64VbChO30Nv99/7Ql+nKyySUJHEooSETTWVM+FlnAPyGafsZFOYqtz6fDuymK5Yw9bvf9bVtOalcRREij1NaQ88cGT48LxKr/pw5ZRYoHrrWrCn+o6vxf1s6hdl6JYP0G6oYywg/BFlbvWKRtNKONSu0MYFlrZRnUsUqitrGxkDbBzXfxFnLIgyFtuZio45KSW3tZ8Tbcvu6QMcc9F3r3IP5fIcqEs/oPHPiNJquWBL5OEOO4cN9b5qk0q5rbo71eNl7Rpqaim7rZ5u0ULGKwu/ULktQ882JmzeXR1mMHBnKkdf59RV5Nnk3+30SxK2kgl6rQbOEIgsbg8jXceppA//7iYgq5MTNm2letUr9TAW0rL050Pb77/0hHTNOif2eHv+Va2I9HlizID8Dkubrr4v93ElRsYqiFOkcTty8uSSLvGa80HH0L2wsdUF221KlIA+y4DCpUWGQWQJYisX3de3rY/eVV7Jz7vmuC67cqBl/tLjjqIULVVnkEOreNMYKBT5tZmpnzH7JnDitonyPlasoSpTOIYkRRx4BFJ4EjLUutL8mYZ5yqzrnFBqYXc3uRfbhKsOGRRPMA7N/f6Dr2v2bds9U725M/9Uv896XSllUQuRTJN9Ab6+lME6ewQuzZke6j8tRzyXKws5yUbmKIgBRbMSjFi5M1MbcdLn/ch3NARcD5lblcwoZjcU85VGno+PkGQMK6UBbW9HV2DXjxw88XP2GKDvhx2QYZoFcENzMh6MWLkx8jUBY38qgBXAJFpKKyzdgjhyh8+srQt/H5ajnUmlKAqpEUUSNLMjamOM2Q9WfMyeQbEGnqrkX1ykM0Bw+PDAyc/qLY2SaNUUVezA3XbEkbwQeZVre/4e3Qu8blcyJ01Kx+HHn3PMDbd8x45TBaxs++CAxZfGh8+fGd7D+/vAzgyGUkThJKldRlPgCDyQQfKHDmmEUnt/DLNSy/o6jisbOVNuy/o7E46dzHf5hRk6lDBGNqsyzcnatWRM40CEuWtbf4Xu0KA0NwU8wfPjR+68I/Xv35jnivehas8Z9tpdQ1cH3f/kr5w9CprIIbcryMGGrT+koFaso/JpskjAbNa9axYznns13Qj/1pHWunKyo0tAwsGAuSqba0MRQBKWYGSPXYRuFqCaw7GK6ci04Ezt1vV+a16wOfI5syLRvpdrX52uFczn6zPXBHrKQVVhTlpuVoK6l5aiZ0CWra3YAWA1UbPbY5lWr+GD37qKLt0q5oKV51ap0LaCJKY/XgbY214dgTV0dcVQT33vnXZGVZ9J+B1dEAvuPst/Vj8y5vpuBU9bXY3xmOd459/yB/bvWrLEyofb1QW1tIB9ZnNQ1NzvOcuuam/nQ+XMDK6+wQSfjv3LNoEqLMmJE3vGKRSIeevLJobMi3oWKnVFA8UVoSjx03uiu/OJa2ep4nJSWhcyltqmJljtuD6XksiNWJ7Nk7my1UElAsMCGbMRWx6mnORbeKQfjv3KNY4XJ8V+5huZVq5zNux6EHWS4FTALNDvMyuuDSp2BVGz22CwdM2e5LrAqzMg5FAiU3iGTYcaO7cH3c2LkSMeR1a5PzoslcqSupYWTfr41ry2pTK2e1Nb6D7126ZNS0XHazMHFu2ImyVxjxTL8gv/7Ng0BBF6/hbqWlkTqhmj2WJ+03HqLY3vQiKJKoTbIsv+envgWJr33nmOtAKeRYVAKp/pZgozUYmHkSGY896zvmUy5C8203HZroLxYYUjSl+bLb+fjWqQlRYrbLKll/R2l80smRMUriuwiplJHFJWLCddfhwRIiNh1y63s+uS8eE7+3nuDFM+ohQsJNSutq/M11W9etSpUAsig1IwfP/Dgn9HxvLeTPmSalbgZtXAhLbevG9IlYpuWLC66TVoGhHGYsdJKxZueqpEDbW103XJr4NQVcZA1ETlViPNCRowI/aPpmHFKZMd8GDNkYZW5+nPmpHoAEnfWWSdzYDnwLHJUZvNfuSmV6UkVRQXjVC4zLNLQgDl0yNe2NePH+0ppUdfSEktd56h+kKFY08OJoFXVipGmfts59/zB91yVKwmoEEUhIk3APwOnAQb4C2AnsBGYCuwGLjfGvON1HFUU4Ynq8JWGBprXrGbUwoX8bs45sS5Wi8s8c6Ctja7rr8ccyQ1aMIAPX4JdyrJaiGtWkfbZk2JRKc7su4F/M8acDMwGOoAVwFZjzEnAVvu9khBR7bO1TU0Do8YJ11+XuHM0DKMWLqT5Y73UNfQCZuDV+vOmmpREnKiSUHIJveBORI4B5gJfADDGHAGOiMglwB/bm20A/gP4ehQhlSKIhLbh565fCLIIrCguq1nDMmp8J6Muzv+OHT88zv7PZWYRoDjOUKGupSVyuHJaooiU9BBl+HgCsA/4rog8JSL/LCKNwARjTBeA/eoYPiIiV4nINhHZtm/fvghiKFEcvYWpD+JKhR277bh+9OBzLHmDpmkHcZxZDB8+qEpgNRA5Lb5IaqKIlPQQRVHUAWcC/2SMOQM4SAAzkzHmHmNMqzGmddy4cRHEUKKERzo9WKI6MBMJHe1zjnppPutdZizpys+79UJHVSoJiJgWf/hwZnQ8H69AypAgiqLYA+wxxjxuv38AS3G8KSLNAPZr8IovSiCijCLjjmpJbH3BkYPJHHcIMlB61WP9iVOqkGpVrr7Zfh/ceRqsbrJet99XbolKRmgfhTHmDRF5TUSmG2N2AvOA5+2/pcA6+/UnsUiquBKrbyECqcpjs/mr8MT3wPSB1MJHvgALvlluqUpGNmOxEhPb74O2L0OPnYjxwGvWe4BZl5dPrhIRNcTl74EfiMh24HTgViwFcYGI7AIusN8rCTNq4cLgSfRiXPGceMx9/Rj/227+Kmz7jqUkwHrd9h2rXVHCsPWmo0oiS0+31V4FRFIUxpinbT/DLGPMImPMO8aYt4wx84wxJ9mvb8clrOKNn3QHubjlyQrMyJHJj14/dbv7Z8Ma898/8T3n7dzaFaUYB/a4tL9WWjnKRPqC5pXQNK9a5ateNFghkJ4P9wApnkuyOtZrel/ovzAu2V/d2hWlGA5RdwNUga9CFcUQ48TNmwdV2iOTsbLO5iRNLBYC2bLuNl/nK23MvZtpLf11K5QhTBWYnyq2wp3iThyV9rKzjbzkg5mMVf/AmIHqaKWNuXdbLxJyHcm3zoY/vHD0/diT4e8ed99eqV66PbIQVYH5SRWF4orvyJm0RRhJrYuZKWfmUagkwHr/rbNVWSiDGTXJXSGIfzNtpaKmJyUaaYwwcvVFmKP25EIlkcWtXalu5t3o/lkV+L5UUSjR2PYvwdpLwajJ7p9VgT1ZSYBZl4O4PC51RqEoxYjZbxCW3MgTr9GfW5ijohTD9Lu064xCUZIjaEoEtxEd5M8UZl3uvkBv1KTgcipKlaOKQikP2++DH3/JdhAa6/XHX/JWFm4jOhjsaDz1M87bnXShP9nCsuFiWD3q6N+Gi8MfS1FSgioKJTm8Hrht1wyesps+q90NL99D4VqKXY84b5Zt90oJ8rOQ5VM2XAy//2V+2+9/qcpCqXhUUSjR8HLkeTmOe1yywbq1g7fvodAn4hbKmG33SgnSHTLrTKGSKNZejM1fhTVjrJnJmjHVnatK+6KsqKJQovGRL7h/5mMh0pbGBi6c1MKsqZO5cFILWxob4kmJUCxCpdQZP4N+J6+w42pLd52aEOyAmQGGkHJTRaFEY8E38Uyh4fEg29LYwLXjjqUrU4cRoStTx7XjjmXLL64fvHE2zbMftt+XbIRKmAdA0LDcbd9xb2/7cr5vp+3LQ1tZePVFSQkQ4Zca5RYPqiiUGPAIhXV7kA1r5IaxYzAFqdGNCDccM2zwcZzSPLvh9VAOkq7cibAPgDjTPFRxuuuKYYhlMFZFoUSn2MPX6UG24C56XOpnOLYHWf+Q5FoJrwdAptH5MyDxxIVVkG+oohhiGYxVUSjR6XWuZ51H7oPstinw4DLPzde2r81v8LP+4VtnF982m9wtrKnG6wHQc8hrx3DnC8JQNj9VGl5BHhV4nVRRKNHxilTKZfNXLbv+Bwe8txNh486N+W3zboRMvfd+f3jBCkX1Gl1n6wokYaqJazFfWDt22HXEKREAABUoSURBVLDetFPjkrvUrT0NeAV5VKCZUBWFUjoCOh9nbpg58Les61FY+D+L7+Q3FDUJ85Rn+G4Awjppw4b1lpIwgQD9vcHa04BX9uQKTCOjikJJJybfVNP+RrulLArLngYl+zBNSyqPagp1HWKRQHk4XTc3351XtbyUoopCSScODu32N9phwV0Rj2vbjouN/lePCv4AC2pS2H4fPPhX+aGuD/5VsGNUEklEApVSsca1mr/77YobFKiiUKIR4GY/d3ILM6dOHvgLjDFFneDFj2GPZv0suAs62g1qUmi7Bihc7+GRz6rS8QoEWD0K/uFk58+TSLcShqCr+b1MgRW2/kUVhRINn6Pocye38F5trTVTyP0LyOnHO5uMHFd4OxLwnEH8BUHNWX6DAIKSa866/cPWXyWYtt7vclYWSaRbCUPQ1fzF6lT0dFdMAIIqCiUwa9vXMvv7s5m5YSazR8PaMU1F9xlQElEQoU+ERS0T8pq3NDawomCF94pxxzJz6mSWTRhbcJCIYaquP37x58y+bcrRzLJJsHqUNevKmrO637YfprZpa9PfpF9ZFFLqdCtRyFXSftZMdL+d7uthk+L4MiWNLHt4meUrsOkXYeMxI/lpYwOPvdbpuI/76D4EIrw0LH/l9oqxYwYrIft9e3098yY1s3WPwwNIarxTl2e5+Tj40FjbtBShUNNtU4qHBidNf49l8krzw3f7fdZM9cAea5Y270b3a+VVo6TUZNPM+M0gkOXBZfBqe3nrzBchUi+LyG4R2SEiT4vINrttjIg8KiK77NfKc/Erjmx5eUuekhhAhPdqaweN9LOsGHds9NlEoSy5ysfr2CLsratznvV85Epf51o7ajizR8PMqZOYPXWy+wyqmBkhR0kU+muyf26mtVjpOZjqUeyi9pXMtPt75mhY1H6DR+6ueHw6W17ewoUPXMisDbO48IEL2fLyluAHCZJmppCUR3/FoY4/YYw53RjTar9fAWw1xpwEbLXfK0OAFb/2uJQOI32AeZOaY1cSiLBi3LFcOKnFl9kLe9Yz6CHvYwS3dkwTG48ZSb/tU8nOoOZNah68sQ97+bxJzcycOtnZX2Ob1maWQln8+EvJn6OQ2uFFN5l5/CTrPsrpk5eGZVwHIXHUq97y8hZWP7aaroNdGAxdB7tY/djq4MoiahqVFOeBSmLedgmwwf5/A7AogXMoJcbvj+bs4yflOZT31kWwbhoPc47ti9h4zEh/iijnIb928xeOtrd+0XM3x+Pbs5R5k5qZbc8EBpSQR4TOzOMnWf3h5ci3P0tcWZQj59Al3/I0Fc08fpJz37gMQoBYvsfdT97N4b7DeW2H+w5z95N3BztQVDNYivNARfVRGOARETHA/zHG3ANMMMZ0ARhjukRkfFQhlfLj60cjwiH7R551KIfGS0kUnDMQImz8wzZWAsseWEj7+7+HnFDdpv5+Vrz1DvMPHnJwhOcfZ+ChjxXUuvGYkcB7rHSwPpw7ucV/pJe9zazjJ7H9FeeQ27Vjmrj/mJH0Y432Lnv3PVa+vX/QdssmjKW9Pj/1ybQjR9jU+aa3Q31Yo7VmJU5fRvZYW28aNPp2VRI5bGlsYP7BgnxaUbMBA10HHfxXHu2uxGQGSyNRZxTnGWPOBD4F/K2IzPW7o4hcJSLbRGTbvn37IoqhJM0bB98IvlOYEFhjaO7pZd17ffGbrHKY988nW0qiwPSzv7aW68cdy8zjJ1kP2CL+j8L3G48ZyZbGBs48flKe7yFw1JcIRsRRWbmZwwrNcOdObjn6HfJMOcPcTTlZjhy0nKwJ+zK2NDb4UhKIcMPY6EohMlEzAxQjpb6jSIrCGNNpv+4Ffgx8FHhTRJoB7Ne9LvveY4xpNca0jhs3LooYSgk4rvG4eA/oMmNo/lALj/xlB/P/viPe8+VSMBsopC/COg+wnPc9NTWR14wgQnt9PWvHNOWZuNzMYdaMxmLZhLHuysnLlFNI1AWOuWSjguzZRDasmWxfFcEx/XzC6ygGmVyjZgYoRkrXVYRWFCLSKCIjs/8DFwLPAg8BS+3NlgI/iSqkUn6uPvPqeA9oDCP686fqI2pH5J1n8fTF8Z4zl2IPpiizmZhnQoWzh2K0TplYfDZEzGHLfiiICoolGi4GZ7YXax5bk/NmrKfiXNQyIW8WWXTW5kRKEztGmVFMAP5TRJ4BfgtsMcb8G7AOuEBEdgEX2O+VCmf+CfOZc9yc2I637vw7WH3+HTQ3NiMIzY3NrD53NfNPmD+wzco5K2M7X8Xi4tx1Y+bxk/jAzwhdhBVjx0R/sAXhwB6WTRgbPoULDivzE3YAd/fZim31KDA9rtvNm9TsEK3lw8RXIYR2ZhtjXgZmO7S/BcyLIpSSTr590bdZ276W+393P/0RHHdzjpszoBByFYMTgmBKUfQnLkL4ZELv63Z+v8cp2PalYcMGHuAj+/pcF1CGZdnESbRnCP89RejDGrlv6nzzaPv2+5JdQFhkfcNAdF+QaK0KI0XLGpVKYOWclTzz58+wY+kOq8FvdJLNtGOm8e2Lvu17+8unB3sALJ6+mB1LdzB+xHhLtoDylZodZ97Ijt0xlTEN6gtxmqnYf+/V1tpO5kw8sgHtw8L7fQawH755+bySXhNSJN9XMRNaIBOfZznd8qGKQgnNgLLwiSBs+symQPv4NT8Jwo6lOwa2/8Txn7A/iMlfkJTSsUfC6/a9lS6lZiuM06eWoW5Hsb7Oyee1bMLYSOanUCuwcyi63sVeHJo1t3mGXAPUFV+UWA5UUSjRCPAg3r50eyIijKwbOejYG3dujNWpXGsMtYnNUIT5Bw8xsq8vdcqijzIsAguwhqa9vt56+IYMK727/baisjitws86rn3N4nJmagPyupGt6Z4yVFEooQkyGstEMGEMq/G28z72ucdCH9sPI+tG8nTNNJ5+ZU/wB7nH9tOOmWb989l7ACyfQAWYy5Jmxyt7GN7f768f7Ifvll+Hq0PddWTwIsXC4++tq2PW8ZPY0tjAbHt9TJ7jOgi2vK6ktPqdKgolNEFSHNz8sZtDn+em89wfAomG0GI53h/73GOw9CH48Pms+8PbwR7kLg+S8SPGHzXDzbocai1luCOrjOJUFhWkfAQBhG2vvh5gJ+Hu4eFmPr4e8/bixxXjjqU/d31MBD5SkOom7aiiUELjd7X24umLi0Y3eTH/hPms+/g66muPjsQEYfH0xaFCaOtr61n38XUDobmjho2ixuGnsHj64nzH+9KHmD/+LBr8PnSNYd3H1+Wdq7mxmXUfX8fWxVvzt73kHwfWBOx4ZQ/r9r1Fc28vAgP7hFGKzY3NrJPKWdB6XONxAzOsOd3dvhXcG3Xh1lP4Vp8xKIfcYx2pqRmonbJ67JijyiKlpietR6GE5rjG4zzz4TQ3NnP1mVdHUhJZ5p8w3/dxipnEVp27KtDx8lj6EIe+d5qvTTMG32HA+XmQ9jC/7ljmn3VjXtjn/BPmDyjGmRtmFj1/brDBCh/bO7Hu4/Etg1o8fbHlO3JhYMGl3Vff3noTMz2sNLkcN8xHFuGUcrimhuvsvGjz6yLkR0sQVRRKaOZOmuv5w3/k0kdKKM1RipnE4lBcxagxhpvP9yjh6cSsy32vB2ioa+BQ7yHXzwsXRwZej2IM6+beHmtfZZVc7jqchroGunu7Oa7xuPxBhd0Xcx5eRnvXb4qO5q+ec20omZr6+9lfG+PqbmNCzTz6bdMWUz9D8ndncNT0pITmV3t+5fpZc6NDvYYSESqBYRzYvoCm4U3cGvNDtpAbz/Euu1q4ViXoehREEpE/dx3OjqU7ePxzj7N96XYeufQRx/N9+6JvF33wrvv4utCyrnj7AJm4/DdRjyPCda88FI8sMaOKQgmN1wN57iTfiYRjxyuBYU3CpTN37H6NXy/5deKzFq/ji4OLduWclYF8HCPrRhbfKCVE8n+9/z4373uL5p5exBjwG22VEP2kM1W5KgolNF4PZK/ZRtJ4JTCMknpkAK8R7tiTox/fJ26zNrfrsnLOSl8+h5F1IxMPOU4NoyYz/+AhHtnTyfbdr7HjlT1MO3IkXKSYCIvffa9iIsyCoIpCCY3XrKFs5p8ixGEScxqxD7T/3eORj++Xq8+8mhG1I/LaCjPwFpKNICuMwsqagnYs3VE9SgJg3mAT3qbON9mx+zXG9/YGeug3DW9i5Ql/Fqd0qUGd2UpovGYNsdevCICXMzuOdOluTmGTXJ0lR7Iml7ufvJs3Dr4x2CHssV8pHPoVwazLXVOHb93TxaKWCbw0vHhajUxNhhUfXQEnzEc2zAqdyHJgEWbKUEWhhMYrNDb2+hUB8JrNDLUHZLU/9J3Wv8SJVTL2wKD2LS9vcVXQl0+/3DMa0I28RZgpQxWFEpoaqXG1+Zfz4eW2vqOckVhKeLzus1s/fmuyJ2/9omOzl4JeOWdlIEVRJ3Ws/djaVCt89VEoofFyDEfNyhmFMLZ7Jb1c9keXObbn1jVJjAXfDLWbW4RZNg1+7t9Tf/5UqpUEqKJQIuA1Qg+SBypu5p8wn9XnrvasnhcFtxDbpENvq5VsaG+2f2ukZnB6lZThJnOlVm0Uk4JQrtbWVrNt27Zyi6EEZMvLW1jx6xWunwetV1EpeKXPGKrfeUiz4WL4/S8Ht3/4fCsZZIoRkSeMMa1Jn0eHQEpo0j5dTgq3mZT6QCoUOzNwHhWgJEqJOrMVJSBXn3k1qx9bzeG+wwNt6gOpcFQpeKKKQlECEnb9gqJUKqoolEgMqxnGkf4jju1DmWpfv6AUx2utRaWhikKJhJOS8GpXlGpgy8tb8syTXQe7WP3YaqAyfXvqzFYURYmZu5+8O8+HBXC473BZw8ajoIpCicSoYaMCtStKNeCWRiatyTKLEVlRiEitiDwlIpvt92NE5FER2WW/jo4uppJWrj37Wuok34JZJ3Vce3a4imOKMhRwS4pZzmSZUYhjRnE10JHzfgWw1RhzErDVfq8MUeafMJ+1H1ubtwo67XlrFCVphloamUjObBGZBMwHbgG+ajdfAvyx/f8G4D+Ar0c5j5JuNAJIUfIZaiHUUaOe7gK+BuTWTZxgjOkCMMZ0ich4px1F5CrgKoApU6ZEFENRFCVdDKUBVGjTk4gsAPYaY54Is78x5h5jTKsxpnXcuHFhxVAURVESJsqM4jzgYhH5NDACOEZE/hV4U0Sa7dlEM7A3DkEVRVGU8hB6RmGMudYYM8kYMxVYAvzcGPN54CFgqb3ZUuAnkaVUFEVRykYS6yjWAReIyC7gAvu9oiiKUqHEksLDGPMfWNFNGGPeAubFcVxFURSl/KSicJGI7ANesd+OBf5QRnHConKXFpW7tKjcpcWv3McbYxKPBkqFoshFRLaVomJT3KjcpUXlLi0qd2lJm9ya60lRFEXxRBWFoiiK4kkaFcU95RYgJCp3aVG5S4vKXVpSJXfqfBSKoihKukjjjEJRFEVJEaooFEVRFG+MMZ5/wGTgF1g1J54DrrbbxwCPArvs19F2+7H29u8D3yo41mJgu32cOzzOeQvwGvB+QftXgeftY2zFiiF22n84ViqRQ0A38LscufuA94APsPJQpV5u4BPAjhy5+4DPpV1u+7O7bdk+sI+Tpv6ea/drP7CH/Pt7K9ADHCR997ej3MDxwNM590lHJchdAb9Lt/5O++9yLvAk0AtcWvDZ7cCz9t9iNxkGti+6ATQDZ9r/j8R6CJwC3AGssNtXALfb/zcCHwO+lNtBdse9Coyz328A5rmcc4593sIO+gTQYP//18BGl/3/Bvg+cCZWHqof5ch9pELlvsOWdwzWA/kbFSD3l4DdwHW2nHuAO1Mk91Tgk8Bm4FLy7+8fAt+zP0vbfeIm92zgG7a8HwLeAf6xAuRO++/SS+40/y6nArOwfpuX5rTPxxr81NlybgOOcTpG9q+o6ckY02WMedL+/z2sUcpErAJFG+zNNgCL7G0OGmP+EzhccKgTgN8ZY/bZ7/8d+DOXc7Ybu6ZFQfsvjDGH7LftwCQXsS8B/smW+wHg/By56ypU7mx/Xwr8DFhQAXKfiXUjftcYcxD4FdZoKhVyG2N2G2N+jr0CtuD+PgNrlgQpu0885B6PdV9swJrlHQQuqgC5U/27LCJ3an+XttzbsWZCuZwC/NIY02v/Lp8B/tTpGFkC+ShEZCrWD+hxCgoUYd2kXrwInCwiU0WkDutGmBzk/AV8EevCODERa8qGMaYX6wfzEVtuAdpEpB04u4Lkzvb3EuC7FSL3T4HRwAERGYs1QmpKkdx5FN7fwNuQyvs7jwK5jwMexroet2GNYL1Ii9xp/l3m4fIcTOPv0o1ngE+JSIP9u/xEMRl8JwUUkQ9hmRSuMca8KyKBJDPGvCMifw1sxNJwj2Fp18CIyOeBVqyRq+MmBXIfByyz5X7XGNMqIicAP6eIskyR3Nj1PWZiPQg8SYncm0Skxz73PuA3wGdSJHcuI6ic+zuXQrmNMWaWiLQAm8i5NimXO82/Sy+50/y7dJPhERE5i/zfZa/XPr5mFCKSweqcHxhjHrSb37Q7KNtRRQsUGWPajDFnG2POAXYCu0SkVkSetv9u8iHLnwDXAxcbYz6w227JHsPebA8w2Zb7QSyn5P+1P3vDLqz0MtaI4P0KkftN4C+BH2MlDKuU/n4V+JQx5gKgHnuUnhK5BzYH/gcF9zeW3TmN97en3Pb93Qm8jDW7qwS50/y79JI7zb9LLxluMcacbv8uBSsoyXMHzz/7IN8H7ipoX0++8+mOgs+/wGBv/3j7dTRWdMYfFTl3oRPnDOAl4KQi+/0t8L9tuX8K3Jdz3m/a8mazM34n7XLn9PerWNPESunvWuB/2fLOAt4A1qdF7pz7+0Vgs8P9fQ9Hndmp6W83ubFs1Xfa8o7GGi3+SwXInerfpY/7JJW/y5ztv0e+M7sWONb+fxZW5FOd5zF8nORjgMEKxXra/vs0lu1zK5Ym2gqMydlnN9bI8X2s0eYpdvu9WGFdzwNLPM55h71fNhxttd3+71gaPCvHQy77j8CavhqsSITn7e3/u/1/Npzt+QqR+9PA6ViOsUrq70uwRkwHscJmH0+Z3GdhjQAN1tS7O6e/f4MVidNv9/ulFSD39Vghl7nhsZXQ32n/XXrdJ2n+XZ5l73cQeAt4Luf3mj1/O3C6lw4wxmgKD0VRFMUbXZmtKIqieKKKQlEURfFEFYWiKIriiSoKRVEUxRNVFIqiKIonqigURVEUT1RRKIqiKJ78f6S57F/6hNcgAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import collections\n", + "\n", + "from apd.aggregation.query import with_database, get_data, get_deployment_ids\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "async def plot(deployment_id):\n", + " points = []\n", + " async for dp in get_data(sensor_name=\"RelativeHumidity\", deployment_id=deployment_id):\n", + " points.append((dp.collected_at, dp.data))\n", + "\n", + " if points:\n", + " x, y = zip(*points)\n", + " plt.plot_date(x, y, \"o\", xdate=True)\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " deployment_ids = await get_deployment_ids()\n", + " for deployment in deployment_ids:\n", + " await plot(deployment)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAE0YAAAUsCAYAAAC9bUPVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdd7x0Z1Uv8N9KBwIJEAJSQ+9NihSBBJAqIL2HkCCCXq5cURD13ovYr6BwQakGCKFKByHIRQOitCAogjSBCKEESEIPIWTdP/a8Zt79zilzzpwzb/l+P5/5kL32fp5nzZk5w+eds/Z6qrsDAAAAAAAAAAAAAAAAAAAAAAAAsEz7LTsBAAAAAAAAAAAAAAAAAAAAAAAAAI3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAEaq6qiq6tHjuGXntZ2q6tTR8z912Tntjfyc92xV9bTxZ8WesL73HQAAAAAAAAAAwO5jE7VgS61hm9ey63OXvT4AAACwfhqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMRoAAAAw0wq7oq32OLeqzqyqz1bVKVX1R1V1n6o6aNnPBQAAAAAAAAAAANiYPaWesKruuEI+pyxwjaPXeO5HL2idY9dY56hFrAMAAAAAuyON0QAAAIBFOTjJZZJcI8ldk/xmkjclOaOq/qSqDl1mcnu7qnrpqOjpi8vOCdi7VNUXR58zL112TgAAAAAAAAAA7JaWVU94wgrxn6uqK2/RmmPH72bzAAAAAMAeR2M0AAAAYKsdkeTJSf6tqm697GQAAAAAAAAAAACApdiyesKqOjzJ/VY4vV+S4xa53iruX1WX2MwEVXW1JLdfUD4AAAAAsMc5YNkJAAAAAHuU7yf53ArnLprkUkkuvcL5qyQ5paru0N0f24rkAAAAAAAAAAAAgG2xu9UTPjzJIaucf3RV/V5394LWW8lFkzw4yYs2McfxSWox6QAAAADAnkdjNAAAAGAep3X30atdUFVXTHKvJE9KcvXR6UskeV1VXbe7f7w1KbIIa73OQNLdT0vytCWnMTe/3wAAAAAAAAAALMDuVk94wui4s3NzsaOS3CnJ/1vAWmNnJ7nk1PHx2WBjtKraL8mjRuGzMjSaYy+1p9aiAQAAAGyV/ZadAAAAALB36e4vd/fzktw4yRtmXHL1JL+0vVkBAAAAAAAAAAAA22m76gmr6iZJbjoK/3mS80ax4ze71gpeneQnU8e3qqrrbnCuuya54tTxOUnesdHEAAAAAGBPpDEaAAAAsCW6+/tJHp7k32ecfuQ2pwMAAAAAAAAAAAAswTbUEz5mvGSSZyd52yh+v6q65ALWG/tKkr8dxTbahG087pVJzt3gXAAAAACwR9IYDQAAANgy3X1ukj+acermVXWp7c4HAAAAAAAAAAAA2H5bVU9YVYckedgofGp3/2eSl43iB2do0LYVThwdP7KqDphngqq6dJJ7rzEvAAAAAOz15vpiDQAAAGADTpkR2y/JtZO8f6OTVtV+SW6a5Kgkl0lyqSTfSfKNJJ9L8tHuvmCj8y9SVV0hyXUy5HpYkotkyPWsJP+Z5MOToi+2QFVdJMktk/xUkiOTHJrkWxneK//S3f+xxPTWpaouk+RWSa6WIf9vJzkzyQe7+/Rl5rbVquqwDM/9mhl+f85NckaS98/z3Kvq8klukeH38NAMv39fTvKe7v7OgtPekKo6OMltk1w5yeWS/CTJ15N8PMnHuruXmB4AAAAAAAAAAGzWVtQT3i/JJUexkyb/+/YMdWKXmTp3QpLnbnCt1bwlyTeTHDE5vmySe0zi6/WIJAdNHf9rd3+kqhaT4QJU1f4Z6tiuk+QKSS6RZP8kZ08en0ry8d2lfnMR9pUa0Ko6KMk1MjzXy2V4bZPheZ6V4XX99DblckCSmye5fobfqQuSfDXJF5J8oLt/sh15rNfeUKcKAAAAuxuN0QAAAIAt1d3fqKrv5MICiR2OmHX9Wqrqdkl+JcnPZWiGtpKzqurtSf6ouz+5kbU2qqqOSHLfJHdOcocMBU6rOa+qPpCh2Or16y0IqqovJrnKCqevUlXraaJ0THefOmPuUzPkvsN7uvvoFfL4eJIbTIW+keQK3f3jdaw/U1U9NMkrR+Ff6e6/XOf4/TLs7PmIJLdPcsgq134hyWuTPKO7v7mxjLdGVR2d5LeS3ClDAeCsaz6Z5A+TvHKexllVdVySl4zCV+3uL24gz/G6v9vdT1tjzNOS/O/pWHfX1PlbJPmdDMWBM7/HrKr3JPnN7v7AKuvcK8lTktwmyawKwfOq6o1JnjzZJXbd1noOc8xzVJKnZfjcGH9W7vC1qnp+kmd29/fmXWO03qlZx+/3JK8vrDLVo6rqUWutt+NnUlWXyNDU7tCp06d29zFrJr2Kqnp2kv8+Ct+ku/9lM/MCAAAAAAAAALBYi64nnDhhdPyDJK+brHd+Vb0yya9Onb9JVd20uz+6iTV30d3nVdUrRmsdn/kaox0/Oj5x04ktQFVdM0MDujtm2PjxYmsM+XZVvStDTd4H51hnt6hF3K4a0NGaT8sCatE2sO5NkvxCkmOS/EySg9e4/htJ3pbhtV14bW5VXTbJbyY5LsnhK1x2ZlW9NsnTu/sbi85hvfaWOlUAAADYXc28mRIAAABgwWY18Vmp+c9MVXWtSaOz9yZ5cFZvipbJ+Uck+XhVvbiqViw4WKRJEdVXk7wwyYOydkFMMuzwePsMRQ//VlXX37oMt8S4udZlktxzk3MeNzr+UZJXrWdgVd0tyccz7Pp5l6xSbDJx1QyNsz5fVb+6xrXboqoOrqoXJfn7DE0AV/se73pJTk5ySlWtVXC226vB7yX5QJJ7Z/XNHe6Q5J+q6tdnzHNYVb0+Q2HhbTO7KVoy/P49OMknq+rOm0p+AybvuU8keVRW/1y8XIbmaZ+oqpttQ2oL193fyfBenXZ0VV13o3NOdto8dhR+v6ZoAAAAAAAAAAC7rU3XE+5QVVfN0NBp2htGGw++bMbQcTO1Rfmr0fE9q+rI9QysqpsnudFU6LzsWmuzrarq0lX1z0k+k+SPM9TjradG7bAkD0jygap6c1Wt1OBqbOm1iPtKDWhVXaeqPp3koxkast0+azRFm7hMkkdneJ4vqqr1jFlvTvdI8skkT8zKTdGS5Mgk/y3Jv1fVQxa1/jz2hjpVAAAA2N1pjAYAAABsh1kFCt9Z7+CqulOSDya5+wbW3i9DEdN7JjvJbbXbZPVGTmu5boZioG1v0LQJJycZ78j46I1OVlVXzLDT4rQ3dffZ6xj760n+JkOzsHldPMmzJo30NvMabsqkid87kjxmzqF3SfL2qtp/8Vltq+cn+Z2s/7vLSvKnVfXY/woMhXTvzrBL6XpdLMlbquoWc4zZlKr6gyTPSnLROYZdOcPn2R7ZHC3Drqhjj9vEfA/Nrv8f87xNzAcAAAAAAAAAwNbaVD3hyPHZdcPEk6YPuvujGRoYTXv4Vmy22t0fT/KRqdABSR65zuHHj47f0t3fWkhiG3fxJDfd5Bz3TvKhSV3gWnaHWsR9pQb0ckmutYnxlaHG8b1VtaHGhjtNVnWvJG/O2psmT7t0kldO1w5uh72hThUAAAD2BP7hDAAAAGypqrp6Zjf9+fw6x98ryeuTHDg6dV6Sv8vQMO1LSb6d5NAkRyW5Y5Lbja6/ZZI3VdXtu3tcOLNVfpLkn5N8IsmnknwrQwFXZdjh8ppJbpXkttm5CdShSV5dVTft7i+tMv8nk5wz+e8rJ7nk1LkfT86vZdbum3Pp7jOr6u1J7jMVvkdVHdndZ25gymOza1OsE9caVFV/nGFHvbGzkrwrQ8HZmUl+kKG47vpJ7pbk2qPrT8jwc/31ubJenBOz8y6mn87QKO1TGZ7LYRmKze6fXXejvH2S/5HkGVuf5uJNdkKcLlI6Pclbk/xbhud+eJKfSfLA7LpL7LOq6p0ZPg9enWS6cdhHkpyS5AtJvpvh53bHDEV30++1iyR5UVXdvLvPX9DTmqmqfi3Jb8049aNJru9N8pUMDduumuH36waTay6W5E1JXreVOWb4nP2XqePrZefP4rOT/Oc8E3b3J6rq1CRHT4WPraqndvcPNpDj40fH30ry1xuYBwAAAAAAAACALbbZesLRXPslOW4UPiPDhopjJyX506njwzNsuvjKedddhxOzc+3S8UmeudqASZO2h86YZ3fzvSQfTvLvST6boW7zu0kOylC/eL0MtW/XHY27ZpLXVNUdVqvL2l1qEadsdQ3o7uTsXPja/keG5/m9DDV1R2Sot7xLhlrVabdM8uIkD9rE2ldN8pxceL9zJ/mnJG9P8uXJ8ZUybK582+zcDLGSPL+qvtXdr99EDuuyF9WpAgAAwG5PYzQAAABgq91/RuzsDMUTq6qqq2YoSJpuxHN+kj9P8qfd/Y0Vhj6tqm6SodhiusDoVkn+OMmT1pH3Rp2X5A0Zdi78u+7+9loDquoqSf4oOxc2XTrJ85L8/ErjuvseU3O8NMmjpk5/pbtvMlfmm3Nidi5GOiDJI5L82QbmOm50/OUk/2+1AVV13+xabHJ2kt9MclJ3n7vCuEryC0men+TIqVNPqqr3dvdb5sh7EX4myY6dSL+W5AndPbP5VVU9JclfZCjemvbbVfUX3f3DrUtzy/zJ5H9/kOH39EXd/ZPRNS+qqt/O0DDxtlPxi2RoNPbpJHedxD6f5LHdPavY8TlVdfMMOzdOv/Y3ztB47VWbeSKrqaprJ/mDGafekSHfL8849zuT9/nzMjR2u2KSX9qqHJOku7+S5L8+R6rqi0muMnXJW7r7uA1M/dzs3Bjt8CQPyZzFnFV1syQ3H4VfstLvOwAAAAAAAAAAS7fhesIZ7pqhhmbayd19wYxrT85QO7j/VOyEbE1jtFdmaIS2ow7selX1M939wVXG3C9DDc0OZyT52y3IbSPOyfDze12Sf1rPxrRVdZskz87OtT23SfLErL3p51JrEbONNaC7ga8leWmSNyY5bYXfnf8yqbe8e5JnZWgKt8MDq+oBK9U6rsOTc+Hvy6eSHLfC78sfVtUtJzlPN9+rJM+rqvd09zc3mMOa9qI6VQAAANgjjLvdAwAAACxMVf1UZu9m9qq1CigmXpGdi31+kOSu3f3kVZqiJUm6+2MZCmneNTr1hKq60jrW3qhbdPf9u/uN6ymISZLuPr27H5bkaaNT96iq6yw8w63x9iRfH8WOm3eSqrptdi6YSZKXrfZ+qaojk7xkFP5skht19wtXa5LUgzdmKMAaN6P6o0lBynbaUdzz+SS3Wq1QqLu/l+Fn/M7RqcMzu4BwT3Bwht/zO3f382c0RUuSdPfXMxSMjXcBfUSSp0/++xNJbr1CU7Qd85yW2T+rR8+b+Jyelwtf6x1em+TnV2iKliSZvFfvkAuf90W2Jr0t96bs+vv2+A3MMx7TSV6woYwAAAAAAAAAANhSC6gnHDthRuykWRd299eya6OxYyabty5Ud5+TodHUtLXqkcbP5WUr1U5ts68kuXx3P6G737OepmhJ0t3/lOR2SU4ZnfrvVXXAGsOXVos4sa/UgH4oyZW6+6nd/aH1/A5O6i3fnmED2I+OTv/aJnLZUUv3iSQ/u1oTwe7+UIb31idGpy6TCzdmXbi9rE4VAAAA9ggaowEAAABboqqunqGo5TKjUz/IsDPeWuN/LsmtR+Hju/vv1ptDd5+X5IFJpneAOzCbK8BYa811FcKs4OlJPjx1XEmO31xG26O7z8+wQ+K0G1bVzeacalYB2LiYZOxXkxw2dfyDJHdbrcHUWHd/KclDRuHrJbn3eudYoB8neVB3n77Whd3dmf1+vuvCs9o+T+zu96910aSAcLx76EWTXCzJuRl+huPGabPmeV92LcA7pqrGjcsWoqpumOSYUfhzSY5dZ3HZp5McuxW5bZdJ0ea4gdnNq+rms66fpaoOy847rCbJu7r7c5vNDwAAAAAAAACAxdpsPeGM+Y5Icq9R+LTu/uQqw142niZbt4HiiaPjh1TVzE0Qq+qo7FpPtFbN3Lbo7vO6+4cbHHtukkdleI13uFKSu6wxbpm1iPtMDWh3/2Dys97I2LOzaw3bravqeptI6bwk9+vub61j/W8lud9kzLSHTz4btsLeVqcKAAAAuz2N0QAAAICFqKpDquoKVXXPqnphkn9NcqMZl/7iOgsBnjI6/ofufs28eU2KVJ49Ct933nm2w6TJ1ctH4Z9dRi4bNC7mSubYqbGqLprkQaPwe7v7P1YZc2iSXx6Fn9ndn1/vujt09z8mefcovIz3yiu7+yPrvXhSzPfPo/C8RWC7i88kefEc179+hfjL1yhyHHvd6PiAJDecY/w8Hjcj9qTu/tF6J+judyZ56+JSWooXZtfCtMfPMf5RGRrhTXv+pjICAAAAAAAAAGAhtqCecOzYJAeNYietMebNScZNr46rqq24x/LdSaY3xjwsyf1XuPbRGRpo7fDevWVzwMnGluNNK9dTE7nttYiLsBfUgK5bd/9bdq1b3MxzfU53f2aO9T+T5Dmj8MGZ432yXntpnSoAAADs9jRGAwAAAOZxh6rqWY8kP0zy5SRvS/KL2bVhzQ+SPLy7X7nWIlV1qSR3HIXnaZY09jej46tU1VU2Md9W+uzo+Ker6sClZDKnSSOqD43CD6uqg9c5xf2TXHwUW2uHxjsnOXwU+6t1rjfL+L1yh03MtVEv2sCY8c/9WotIZAleMikOW5dJYdGsHTrnfQ98dEbs2nPOsV53Hx1/Nbu+79bjBQvIZWkmRY9/PQo/pKrGv88r+aXR8RnZ85vFAQAAAAB7kUkTgDtV1QlV9ZSq+tWqemBV3XjZuQEAACzIttQTruD40fGPk7xqtQHdfW6S147CV0pylw3msNpaneSlo/A450yasj1qFJ7VFGxPNq6JvNVaA5ZUi7goe2wN6AbM/dquYiN1ky+cERvX5y3C3linCgAAALu9A5adAAAAALDX+26S1yR5end/aZ1jbpedd0BMkn/aRA5fmBG7aXbekXFLTHaKu32G3S6vl+TSSS6R5GKZ3bT+0NHxwUkum6FIbE/wkiS3nDq+VJJ7Z9cGSLM8enT8vXWMGxeEnNHdm3ldx++Vo6rq8O4+ZxNzzuOH2bWgaz3GO1nuX1WHdvf3FpDTdnrvBsb8Z5IbTh3/IMlH5pzjizNi623QtW5VdWSSq47Cb+7un2xguncm+X6Gz5I91XOTPHzq+KIZdvP9v6sNqqo7ZPg8nfai7j5/sekBAAAAANulqq6W5BZJbj7535/Ozjcwn97dRy0htblV1Q2S/K8k90pyyArXfDbD31Se2d3nbWN6AAAAy7aResKdVNWtklx/FH57d39zHcNflqFR27Tjk5yykVzW8JIM/z7cUQt5dFVdtbuna9TunGR6k9fvJnndFuSyMFV1hSS3yVATea0kh2WoibxIdq37TJLLjY6vvM6ltrsWcaZ9qQa0qq6eobnZjZJcPcPzvESG5zDrtR2/lut9bcc+1d2fnndQd3+mqj6RnT8PblFV+3X3BRvMZZa9rU4VAAAA9ggaowEAAABb7bQkz5mziOm2M2Kvn+wkuShHLHCuXVTVzZL8RoZCnItscrrDswcUxUy8KsmfZefnfFzWKCqqqqskOXoUfm13f3+N9cbvlUtW1cfWTnNF46KkZHivbFfByend/eMNjPv2jNhhGQq69iSf28CY746OT99Ag6zxHMnw81u0m82IzdvELUnS3edX1b8mufXmUlqe7v5AVX0kO/9cHpc1GqMlefzo+PwkL15kbgAAAADA1quqo5M8NUMztEstN5vNq6pK8j+TPC2zbxaeds0kf5jkoVX1sO7+ty1ODwAAYHexkXrCsRNmxE5az8Du/seq+lySa0yF71NVR6yzsdq6dffpVfV3Se40CVWGWrr/PXXZ8aNhr1lHzdxSVNUDkvxyhiZRsxqCrdd6N6zc7lrE8Tz7RA1oVe2X4XfqFzM0q9+MjW5GuqEauol/zs6N0S6eoWHfpzYx59jeVqcKAAAAewSN0QAAAIB5fD+zGxcdmOSSSX5qxrljkny4qo7r7letc50rzojdaJ1j1+vSC54vSVJVByb58wyNezZT/DNtKxo0bYnu/nZVvTHJw6bCd62qn+rur64y9LjsepPQS9ax5Pi9ctEkN17HuHlcOhtr2LURZ21w3KxmagduJpElOXsDY8bPfe45uvvHw/1qO9mKn9+RM2Jz73Q55VPZgxujTTw3O/+uX7eqju7uU2ddXFVHJrnvKPyW7j5ji/IDAAAAALbOTZLcZdlJLNCLsuvN+RdkuOn/i0kOSnK9DDfn7nDDJO+uqlt39+e3I0kAAIAF2q56wv9SVRdL8uBR+Kwkb5tjmpOSPH3q+KAkj0jyrHnzWYcTc2FjtCQ5rqp+t7svqKpLJvmFGdfvVqrq8klenuSOC5pyXfWQS6hFTLJv1YBW1XWTvCLJTRc05Uaf52Zr6MaOXCG+UXtbnSoAAADsERb1xQwAAACwbzitu28y43H97r58hj/MH5ddCwoOSvLyqrrXOtfZkqZlI5vdwW8Xk4KYv07yK1ns9y57WoOrcRHR/kkeudLFNXSkOnYU/mx3v28da11qztw2YuHvlVXManC2z+juRTz/3flnOGtHzG9vYr7NjN1dvDrJt0axx61y/QkZ/j9l2vMWmhEAAAAAsGw/SvIfy05iHlX1hOzaFO3VSa7c3T/T3Q/u7vt297WT3DLJR6euOzLJO6rqkG1KFwAAYFG2q55w2oOSXHwUe3V3nzfHHCcl6VFs/G+6RXlDknOmjq+cCxulPTzJwVPnPtXd79+iPDakqq6Q5NQsrilakhwwx7XbWYu4T9WAVtUNkrwni2uKlmz8eS66hm5Wnd5m7G11qgAAALBH0BgNAAAAWJjuPqu7X5bkJhlu9pi2f5KTq+qodUx1yQWntl2ekuQ+M+JnJPnLDLtK3jrJlTIUXhzS3TX9yLAj5p7u3UlOH8Uevcr1d0hytVFszR0aq+qi2bkwDHZ346LMZNg5d6M2M3a30N3nJvmrUfh+VXXZ8bVVtV+Sx47Cn83wmQMAAAAA7Jl+nORjSV6c5JeS3CzDd6mPWWZS86iqSyf5w1H4Od390O4+Y3x9d384ye2TfGgqfK0kT9y6LAEAALbfAusJp81qYHbSnHmdnqEh1LQbVNUt58xlPWudm+RVo/COWrrjR/ETF73+Arw0yTVnxD+W5I+S3DfJTye5XJJLJDloRk3k725i/W2pRZyyT9SAThrAvTbJZWac/sckT0vy80lunKGh+8WTHDDjub5sQSktuoZuVp3ehqhTBQAAgOWZp7s+AAAAwLp094+q6pFJLpudizwukaEBzp1mDrzQD0fH53T3bt0sraqOTPLUUfj8JL+R5Lndff46p9rjd33r7q6qlyX5X1Ph61TVrbr7AzOGjAuVfpL1Faudm+SC7Nz8/03dfd+5Eobt890ZsYttYr7NjN2d/GWSX8+Fv8sHZihiHd9IePckR41iL+ju8Q6+AAAAAMCe4WVJnj+5SXwnVbWEdDbsCUkOnTr+9yRPWm1Ad3+vqh6e5JMZvhNNkqdW1Qu6++ytSRMAAGA5FlBPmCSpqmsnue2MUx9Y0L8jj8/OTawX5SVJHj91fN+qOibJTadi5yd5+RasvWFVdc8kdx6Fz0xybHe/c46pNlwTuY21iPtaDehjk1x3FPuPJA/p7tPmmGdRz3XRNXSz6vQ2Sp0qAAAALMl+a18CAAAAML9JEcixSb4zOnXHqnrwGsO/OTo+vKoOX1hyW+PeSS46ij2lu581R0FMklxqgTkt00uTjJsVHTe+qKoOTXL/Ufhvu/uMtRbo7guSnDMKX3X9KbIIk90jWZ/x+zVJDtvEfJsZu9uY7ML7tlH4sVU1/v768aPjczN81gAAAAAAe6DuPntWU7Q90L1Gx8/u7h+vNai7P5fkTVOhSyS53yITAwAA2F1ssp5whxMWm9UuHlpV4xrATevuDyf5+FTokCQnjy57e3d/bdFrb9JDR8c/SXKvOZuiJZuviXxptrgWcWJfqgEdv7bfTXLnOZuiJYt7rouuoZtVp7ch6lQBAABgeTRGAwAAALZMd385O+/Ut8MfrtFM6eszYjdaTFZb5udGx2cnee4G5rnaAnJZuu7+QpJTR+GHVNUho9iDsuuOfS+ZY6nxe+VaVXXwHOP3ZbNuytpIk7NLbzaRfciZM2LX3sR819nE2N3N+PPyKknuvuOgqnY6nnhtd39rqxMDAAAAAPY+VXVoVd21qh5dVU+uqidV1SOr6uYzNm1YbZ6LJ2JdggYAACAASURBVLnJKDzPDeKnjI4fMMdYAACAPcom6glTVQdkaKy2lS6Rrft32bgm7vKj4xO3aN3NGNdEntLdH9rAPJuqidzGWsR9ogZ00kDu1qPwSd39xQ1Mt6jneq1NjJ1VfzerTm8z1KkCAADAEmiMBgAAAGy15yX5/Ch2tay+e+Os4plxQ5zdzZVGxx/s7vM2MM+44GRPNi4qOizJfUex40bHZyV5yxxrjN8rF0ly9Bzj92Xj3VeTobhvXtfYbCL7kI/MiN1sIxNNij1394aR8/h/ST49ij1+6r8fm12/z37elmYEAAAAAOx1Js3Q/i7D3yNOyXDj+Z8keUaSk5J8OMnXq+qPq+qS65jy8tn5u8vvz3kj8cdHx3dyYy0AALCX20g9YZL8fJLLjmJfS/Ivm3yMrZXHRr08yUr1hGcm+ZstWndDquqgJEeOwv+wgXn2T3LLBaS0HbWI+0oN6Pi7jGRjr+2RWVxjtA3V0K0w9rtJPrOJ+WZRpwoAAABLoDEaAAAAsKUmhSFPn3Hqt1e5seNdM2IPnjQC2l0dMTo+a94JquqIJMdscP3zR8f7b3CeRXp9dm2+9egd/1FVV09yu9H5V3T3j+ZYY9Z75RFzjN+XnTMjtpFCpTtsNpF9RXefmeQLo/C9q2oj39PeNbvucLrVtuxzprs7yV+OwnevqqtMdgQeF51+rLs/sKj1AQAAAIC9W1UdUVXvytAM7ZgkB65y+RFJnpLks1V1+zWmvtToeNZ376sZX39gkuvMOQcAAMAeY4P1hMnshmWP7u6bbOaRXRse3b6qFr5RZHd/M8nbVjj98u4e1+Us27geMtlATWSSeyQ5dJO5JNtTi7jsGtDtsqjX9sGbTWTKdavq2vMOqqprJbn+KPzh7r5gMWn9F3WqAAAAsAQaowEAAADb4eTsugPbFZP84qyLu/uMJB8Zha+aXXf02518f3Q8q3hkLb+S5JANrv/d0fEiiok2pbt/kOQ1o/CdqmrHzorHzRg23tlxLe9Mcu4o9tCNFMnsgz49IzbX7pyTHT2PX0w6+4x3jI4vn+SeG5hn5ufnFtvqz5mXJvne1PF+SR6bYXfX8Y6/z1vw2gAAAADAXmpyQ/sHk9x5dOq7SU7N8LeM1yU5Lcn0jbOXTvKuqrrrKtOfNzpe7Sb+WWZdf7055wAAANjTzFVPWFU/leTuo/DXM7tZ0UZyGduqeqgT54wv07geMtlYTeSvbTaRZNtqEZddA7pdNv3aTja6fMJi0vkvj9nAmFmfGeP6vEVQpwoAAABLoDEaAAAAsOW6+ydJfm/GqadW1UpFIH8wI/aMyQ5vu6Ovjo5vU1UXW+/gqrp+kqduYv2zR8eHV9UlNzHfooyLi/ZLcmxV7Zfk2NG5f+nuj84z+WQnzReOwvsneWVVXWSuTPcx3X1mki+Pwg+aNDtbr19JcrXFZbVPeP6M2DOq6qD1TlBVd05yn8WltG7jz5mFvvbd/Z0kLx+FT8iuRXTfSfLKRa4NAAAAAOydquqiSd6Ynb/P/HSSByS5ZHcf090P6e4HdvctMtyI/6Kpaw9KcnJVXWGFJb41Or7kKn/7muWnZsTcVAsAAOzVNlBPeFyGmrBpr5rMs1mvTnL+KPaoOWuo1uvtGf4dOP24bHd/cgvW2pTu/naSH4zCd5lnjqp6TJKjF5VTtrgWMcuvAd0u4+eZzPnaJvnfSa65gFymPWHS3H5dJteO68p+lGFzzoVSpwoAAADLoTEaAAAAsF1emeRTo9jlkzxu1sXd/cYkp43ChyV5x6SAZG5VdfGq+o2qesRGxq/hH0bHh2Yo/lhTVR2V5C1JDt7E+h+fEbvHJuZbiO5+f3Z93Y9LcqckVx7FN7rz5R9l110MfzrJGzfaHK6qrlJVz6mqG2wwpz3FeHfEKyd54noGVtWdkvyfhWe0l+vujyf5+1H4WkleMinSW1VVXTO7Ng/bLuPPmRtM7bq6KM8dHV82yc+OYid39/cWvC4AAAAAsHf60yTT3/W/I8lNu/v1s26g7+6vdvdjkzxpKnxEZt+wnwwbkEx/X7l/kpvPkd+tZ8QOm2M8AADAnmqeesJHz4idvIgkuvsbSd45I4+7L2L+0Vrd3V8bPc5c9DoL9L7R8dFVta6axKq6W5L/u8hktqEWcdk1oNti8p77zCj88Kq68XrGV9WjszUN4A5O8ob11HxOrnlDdv15v3LSxGwrqFMFAACAbaYxGgAAALAtuvuCJL8749RvVtVFVxj20CRnjWJXS/LBqvrtqlrzxpCq2q+qjqmq5yf5zwyNnC43R+rr9fokF4xiv1FVv1dVB6yS30OTvD/D80qS72xw/Q/MWP+ZVXWfqjpwg3MuyninxmskefYodl6SV2xk8u7+WpJHJenRqbsm+UhVPWK112CHqrpYVT24qt6Q5HNJ/luSWTuQ7k1ePCP2J1X1S1VVswZU1SFV9ZQMN48dnOTcrUxwL/XL2fXn9rAkb6mqK6w0qKp+Icl7c+Fn2A+3Jr0V/dPoeL8kf11V89zkt6rJDrjjxnFjz1/UegAAAADA3quqLp/kMVOhLyZ5QHev+d1qd/9ZkrdPhR5eVbv8fam7z0/yj6PwI9eZXyWZtZnPxdczHgAAYE+23nrCqrpDkmuOrvlUd39kgenMarJ2wgLn31O9dkbsNVX1gJUGTGrL/leSNye5yCS80ZrIWbayFnHZNaDbafzaHpjklKo6eqUBVXV4VT07yV/lwvuSF/Vcd9TS3TDJ+6rqlqvkcYsMTexuODr1jSRPWVA+u1CnCgAAANtvzX9oAwAAACzQa5P8TpLrT8Uum6FJ0DPGF3f356rqQRluPDlo6tTFkvx+kqdW1fsy3HDy1STnJLloksOTXCnDbmw/PTneUt39mao6Ocmxo1O/k+S4qnpdkn9N8r0kl0py7ST3TnL1qWt/kKEw43kbWP+rVXVKkukdGS+b5E1JzquqL2XYrW5clPGY7j5t3vXm9PIkf5hk/6nYdUfXvLW7v7XRBbr79ZOCqt8bnbrqZP1nVNWpSU7LUADz/SSXyPDeuEaSmye5UfaAHRsXqbs/VFVvTnKfqfD+GRpP/UpVvTFD8c15SS6T5GYZ3mNHTl3/xGhUNZfu/lRV/XaSZ45O3TPJ56rqHRmKt76aoUDwahleo+lirjOS/HWGn/92eXOGZpWXmor9TJIPV9V3k3wlMxrldfdN5lznL5Ics8K593X3x+ecDwAAAADYNz0uO/996Xe7+wdzjH9mLvy7y0FJ7pbkpTOuOznDTbA7PLqqntfdH1tj/idk15v7E43RAACAfcd66glnNSh7+YLzeHOGBk+XmIrds6qO7O4zF7zWnuSkJE/NzjWOh2bYSPGfk7w1Q23ZjzPUk90syc8nufTU9Z+cXLeohlVbVou47BrQbfbnGRpyTdfWXi7J31fVe5O8M0OD+Qsm8dskuXuG13+Hd2eoYRv/vDbi/yT5tcn810vygUlt8DuSfGlyzZUyfDdzuyTjTV87yeO7+xsLyGVF6lQBAABge2mMBgAAAGyb7r6gqn43u+429+TJDSLfnzHm3VV1uySvy1DYMO1iGW40uet43JL89yS3THKdUfyKWbt50Y+TPDBDYcxG/UaSO2T4uUw7KDsX30w7dIX4wkw1bbvnKpeduIB1fr+qvpKhqdJ4B73LJnnw5MHOHpfkFkkuP4rfMLvuqjj2p939gqrSGG1O3f1nVXVEhuLBaYckue/ksZLvJ/mFDIWE26a7z62q/5HkZTNOXzxDsd8ivClDQdv4Mz/Z/YsGAQAAAIDdx89N/fdPMvytaR7vS3J+Lqy1vV1mN0Z7dZKn5cK/xRyY5K1Vdbfu/sSsiavqwZmxadDEBXPmCQAAsEdaq54wQ/Or+4+HJXnFgvP4YVW9IclxU+EDMzR8Wunfbnu97v5xVT0ww7+PLzo6vWPT2tWckaFm8LgF5rTVtYjLrgHdFt19VlU9PMlbsnOTuSS5/eSxmn/L8Fz/fEEpfSHJw5O8YZJPZfge5nbrGNtJHtfdr19QLqsvpk4VAAAAts1+y04AAAAA2Ofs2DVv2mWSPGGlAd39oQxFNC/JUDyyUZ3k1CT/sIk5Vp68+9tJ7pzkA3MO/UqSO3f32ze5/icz3OTzuc3Ms0VWKzb6aoYdBjetu09Mcuskf7fJqc7NcCPTf246qd1cd38tyc9mvvfNeUl+vbufvDVZ7Ru6+7eS/I/MVwz35STHdPdpW5PV6rr7pCSPSfLdLVzjJ0leMOPUN5JsSwEbAAAAALBnq6pDktxsKvSlJEdU1VHrfWTYUOScqTlmbkLT3ednuHn3vKnwFZP8c1X9ZVXdtaquU1U3rKoHV9XbMvwN4sDJtV8eTXlOAAAA9h2r1RM+LLs25Hpfd5++BXmcPCN2whass0fp7o9m2Lj2q3MO/UCSW3X3Fxee1BbWIi67BnQ7TXJ9YJLvzDn0bUlu191nLzift2TYLHSe70XOSvLw7n7hInNZizpVAAAA2B4aowEAAADbqrs7ydNmnPr1qrr4KuO+2d3HJ7lGhl0YP5Gh0dlavpvkbzI0H7pqdx/T3R+cO/F16u4zMuyW99+SfH6Ny09P8j+TXKe737ug9d+fYbfCeyT5ywy7NX4lyfeSXLCINTborUm+ucK5kyaNkBaiuz/W3XdKcqskJ2XXG4pW8tUMBW6PSnK57n5od5+5qLx2Z939hSQ3SvJbWb2I7bwkr0ly0+5+5nbktrfr7mcluX6Sl2X1IrMzk/x+kut394e3I7eVdPdfJblCkkcneXmSj2bI74cLXGZW47cTu/tHC1wDAAAAANh7XS4XNh5LkqOSfGEDjyOm5rjUSotN/vb0iAw3tO5wUJLHJzklyb9nuNH/1UnuOXXNm5K8dDSdxmgAAMA+Y7V6wiS/NCM+q4HZIvx9kjNGsetU1W22aL09Rne/L8mNk/yfrP1v1tMy1N/dtrvXW7c3ry2tRVx2Deh26u43ZqgbfEFWr/26IMOmxPfp7nt195Z8d9Hdb0tyvSR/kdVr6b6R5LkZfu6v2opc1qJOFQAAALZeDd8dAgAAAOx5quoySW6WYYfISyc5NMn3MzRD+3KSTyU5vZf4BUhVXSvJLSc5XmyS35eT/Gt3f3pZee1rquoaGQpmLj15HJShWdy3M9zY9CnFJReqqhtlKGY7IsOuq99O8ukk7+/u7y0zt71ZVR2c5GeTXDnDTXsXJPl6hpvlPtbdy2xuuK2q6pVJHjoV6iTX6O61ig0BAAAAgL1AVR2d4ab0HU7v7qPmGH+zzN6AYTO+2N1XXWPdm2fYuOYWa8z14yR/mOQPJtc/ZurcE7v72ZtJFAAAALZCVe2f5OYZNoI8IskBGeo1v5DktO7+2hLT2xL7Sg3opHbtZ5JcO0ON5X4ZGuH9R5IPd/dZ25zPgRm+X7n+JJ8LMjQV+0KGOsaFbca7KOpUAQAAYLE0RgMAAAAAYLcxaXr5pSQHT4VP6e67LyklAAAAAGCbLaAx2q2T/NOC01p3DlX1c0nuneR2SS6f5PAkZyU5PcnfJHl5d39hcu37ktx2avjPdvc/LjBvAAAAAAAAAIA9ygHLTgAAAAAAAKb8YnZuipYkf7GMRAAAAACAPdY3R8d/29133a7Fu/tdSd611nVVdWCSm02Fzk/yz1uVFwAAAAAAAADAnmC/ZScAAAAAAABJUlUXS/Kro/Dnkrx9CekAAAAAAHuur4+Or7WULNZ22ySHTB1/sLt/uKxkAAAAAAAAAAB2BxqjAQAAAACwu3h6kiNHsWd19wXLSAYAAAAA2DN193eSfGIqdFRVXXNZ+azihNHxi5eSBQAAAAAAAADAbkRjNAAAAAAAlqqqLlVVz0jya6NTpyd50RJSAgAAAAD2fO8cHf/iUrJYQVVdPckDpkLnJHnNktIBAAAAAAAAANhtaIwGAAAAAMC2qqoXV9XHJo8vJ/lmkifNuPQ3uvu8bU4PAAAAANg7PC/J+VPHT6iq6y8rmWlVtX+S5yc5ZCr8+939wyWlBAAAAAAAAACw29AYDQAAAACA7XaNJDeePK6QpGZcc1J3//W2ZgUAAAAA7DW6+3NJXjIVOiTJ26vqevPMU1UHV9Vxa1xzwBzzHZjk5UnuPBX+UJJnzZMXAAAAAAAAAMDeSmM0AAAAAAB2NycnecyykwAAAAAAtlZVXbGqjho/klxudOkBs66bPI5YZYlfS/KvU8dXTnJaVf1BVV1plbwuUlV3rqr/m+RL2bnB2ix3q6rTquqXV5p30mDtvpN8Hjp16uwkx3b3T9ZYAwAAAAAAAABgn1DdvewcAAAAAADYh1TVqUnuMBX6YZIzkrw/yYndfeoS0gIAAAAAtllVfTHJVTY5zcu6+7hV1rhSkr9Ncp0Zpz+f5FNJzklyQJLDkhyV5BpJ9p++sLtrlTV+Pslbp0JfTvLJJGclOTDJZZPcNMnFRkO/leSe3f3BleYGAAAAAAAAANjXHLDsBAAAAAAA2Ld099HLzgEAAAAA2Dd095eq6hZJnp/k4aPTV5s81nLOnMtecfJYzT8mOba7Pz/n3AAAAAAAAAAAe7X9lp0AAAAAAAAAAAAAAGyV7v5edz8iyY2TnJzk7HUM+0qSVyR5YJLLrXHtJ5K8LMnX1kolyXsnc95OUzQAAAAAAAAAgF1Vdy87BwAAAAAAAAAAAADYFlW1X5IbJblekkslOTzJuUm+k+SLSf69u7+0wbmPSnLDJFdKcliGTYy/k+Q/knywu7+1uewBAAAAAAAAAPZuGqMBAAAAAAAAAAAAAAAAAAAAAAAAS7ffshMAAAAAAAAAAAAAAAAAAAAAAAAA0BgNAAAAAAAAAAAAAAAAAAAAAAAAWDqN0QAAAAAAAAAAAAAAAAAAAAAAAICl0xgNAAAAAAAAAAAAAAAAAAAAAAAAWDqN0QAAAAAAAAAAAAAAAAAAAAAAAICl0xgNAAAAAAAAAAAAAAAAAAAAAAAAWDqN0QAAAAAAAAAAAAAAAPj/7N15fFT1vf/x93cykw0SCJCwIzsoihtUQVzAurfWqkWtrbWLWpeuV722FtFqtdaqvfdqa7Uu1K3WqiAu2F8VFMUFQZQWUVH2NZAEsicz8/39cSBkJufMQiaZYfJ6Ph55JN/v+S6fcxLwjMx5BwAAAAAAAAAAAEg7gtEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApJ0/3QUA6WaM6SHp+FZd6yU1pakcAAAAAAAAAAAAAACA9siVNLhV+3Vr7c50FQMAAO/RAwAAAAAAAAAAAAAAWYL353USgtEA5w1Xc9JdBAAAAAAAAAAAAAAAQAf4mqTn010EAKBL4z16AAAAAAAAAAAAAAAgG/H+vA7iS3cBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAwGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIC086e7ACADrG/dmD17tkaOHJmuWgAAAAAAAAAAAAAAAPbZqlWrdNZZZ7XuWu81FgCATsJ79AAAAAAAAAAAAAAAwH6P9+d1HoLRAKmpdWPkyJEaN25cumoBAAAAAAAAAAAAAABIpab4QwAA6FC8Rw8AAAAAAAAAAAAAAGQj3p/XQXzpLgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACEYDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkHYEowEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIO4LRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKQdwWgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0o5gNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABpRzAaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgLQjGA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA2hGMBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACDtCEYDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkHYEowEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIO4LRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKQdwWgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0o5gNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABp5093AUBXZK1VOByWtTbdpQBAG8YY+Xw+GWPSXQoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACALoRgNKATWGvV0NCg6upqVVdXq6mpKd0lAUBcubm5KioqUlFRkfLz8wlKAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANChCEYDOlhdXZ02bdqk5ubmdJcCAElpamrSjh07tGPHDgUCAQ0YMECFhYXpLgsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAlvKluwAgm9XV1WndunWEogHY7zU3N2vdunWqq6tLdykAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAshTBaEAH2ROKZq1NdykAkBLWWsLRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHQYf7oLALKRtVabNm1qE4oWCARUXFys7t27KxAIyBiTpgoBwJu1Vs3NzaqpqdGuXbvU3NwccWzTpk0aMWIEf4cBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASCmC0YAO0NDQEBEkJElFRUUaOHAgQUIA9guBQECFhYUqLS3Vxo0bVV1d3XKsublZjY2Nys/PT2OFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALKNL90FANmodYCQ5AQMEYoGYH9kjNHAgQMVCAQi+nft2pWmigAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkK4LRgA4QHYxWXFxMKBqA/ZYxRsXFxRF90X/PAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEB7EYwGpJi1Vk1NTRF93bt3T1M1AJAa0X+PNTU1yVqbpmoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZCOC0YAUC4fDbfoCgUAaKgGA1PH7/W363P6+AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB9RTAakGLW2jZ9xpg0VAIAqePztb1lcPv7DgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2FcFoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANKOYDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaUcwGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIC0IxgNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQNoRjAYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg7QhGAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJB2/nQXgM5hjAlIOkbSEEn9JdVI2iTpA2vtmhTvNUzSYZIGSOouabOktZIWWWubU7kXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsgPBaGlijBkuaaKkCbs/HyGpqNWQtdbaoSnYp1TSTZLOk9TLY8wiSXdZa59p517nSvq5pEkeQyqMMU9JusFau709ewEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACC7EIzWiYwxJ0j6hZwwNNeQshTvd5qkRySVxRk6WdJkY8zjki6z1tYmuU93SQ9IOj/O0F6SLpd0tjHmO9baV5LZBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANnLl+4CupjDJJ2szglFO0HSbEWGollJSyQ9Len/SdoeNe1CSU8aYxL+uTDG5Eh6Sm1D0col/XP3Xkt3771HX0lzjDFTEt0HyGZDhw6VMablY8GCBekuCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACATkcwWmZolPR5qhYzxgyS9Kyk3Fbdb0kaZ62dYK2dbq09WdIgST+R1Nxq3Fcl3ZLEdr+VdHqrdrOkH0kaZK09ZfdeR0o6WNLbrcblSZptjOmfxF4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIUgSjdb5mScsk/UXSZZKOlFQk6Qcp3OMmSSWt2oskfdla+3HrQdbaRmvt/0qaHjX/58aYA+JtYowZLidYrbVvWGvvsdY2Re21QtKJigxH6y1pZrx9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkP0IRutcsyQVW2sPt9ZeYq2931q71FrbnKoNjDGjJH2nVVeTpIuttQ1ec6y1s3fXtkeeEgssmykp0Kr9iLV2Tox96iVdvLumPb6/O2ANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXRjBaJ3IWlsZK6AsRb4pKadV+1lr7WcJzLs9qj3dGJPvNdgYUyDp3DhrtGGt/VTS7FZdfjk1AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoAsjGC37fD2q/XAik6y1H0t6t1VXN0knx5hyiqTCVu23rbUrE6qwbU1nJzgPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWYpgtCxijOkn6dBWXUFJbyWxxIKo9mkxxp4aZ24sC+XUtsfhxpi+ScwHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAlvGnuwCk1MFR7Y+stbVJzF8U1R6XxF5vJ7qJtbbWGLNc0uFRe21NdA0AybPWaunSpVq5cqW2bdumxsZGlZaWauDAgZoyZYq6d++e7hL32fr167V48WJt2LBB9fX16tOnjw455BBNmDBBPl/7MkC3bdumhQsXatOmTaqvr9eAAQM0fPhwHX300e1e282KFSu0fPlylZeXa9euXerVq5f69++vKVOmqHfv3infDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyBcFo01ZDSQAAIABJREFU2eWgqPaqJOd/Hme91g5MwV6tg9EOkvRakmsASMD27dt166236rHHHlN5ebnrmNzcXE2bNk033nijjjrqqITWvfjiizVr1qyW9urVqzV06NCE5i5YsEBTp05tac+cOVM33nij53hjTMvXxx9/vBYsWCBJWrRokWbOnKnXXntN4XC4zby+ffvq+uuv15VXXpl0iNkHH3yga665RvPnz3dde9CgQbrssst03XXXye/368Ybb9RNN93Ucnz+/Pk64YQTEtprx44duuOOO/TYY49p48aNrmN8Pp8mT56smTNn6stf/nJS5wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+wOC0bLLyKj2uiTnr41q9zbGlFhrK1t3GmN6SerVzr2ix49Kcj6ABMyePVsXXXSRqqurY45ramrSvHnzNG/ePF166aW699575fdn9n8ibr31Vt1www0KhUKeY7Zu3aof//jHmj9/vv72t78pNzc3obXvuusuXXvttTHX3rBhg2bMmKGXX35Zzz77bNL17/HXv/5VP/rRj7Rr166Y48LhsN58802ddNJJ+ta3vqUHH3ww4fMBAAAAkN3qQ3Va3fCJmsKNSc3rE+inAXlD5DOxg6RDNqT1DZ+rKljRnjKzRq4vT8PyR6sgp1vK164J7dLa+s/UbJvbHMvz5WtYwRjl+wpSvm+qNIebtbbhM5UEeqt3oG+6ywEAANgv1IR2aUvjevXLG6zuOcXpLicjVTSXa0PjaoVt219kU5TTQwcUjJTfBFK+785gpbY2bdSQ/BHtug9vCNdrTf2nagjXp7C6jtM3d6D65Q6K+MVFbpz7/09VE4r975CFOd01uvDgVJYIAACAfRUOSrtWSsFaqfdEKc6/DwAAAAAAAAAAAAAAAKRLZqfeIFk9o9rbkplsra0xxjRIym/V3UNSZdTQ6H3qrLW1yezlUluPJOcDiOOhhx7SJZdconA48iGRESNG6KCDDlJhYaHWrVun9957LyIA7P7779e6des0d+7cjA1H+/3vf6/rr7++pT1mzBiNGTNG3bp10+bNm/XOO++ooaGh5fhzzz2nGTNm6Pbbb4+79p133qmrr766Tf9BBx2kUaNGKS8vT+vWrdPixYsVCoW0aNEiTZ8+Xccdd1zS53HDDTfo5ptvjugzxmjMmDEaNWqUioqKVFlZqffff1/l5eUtYx577DFt3rxZ8+bNy9jvEQAAAIDO8XrlS3p6218UVtuAgEQMyB2iqwbfqJ7+6Ax8x+bG9fq/DTeqKrijHVVmH598ml52iY4rOS0l61lr9fKOv+vFHX+TlY2xb44u7HeFJvU4MSX7ptKndct138bb1BCukySN7/4lfb//1Qr4CPUGAADw8tL2pzSv4mkFbVBGRueWfV9TS76S7rIyRsgG9fDmu7W0+q2Y47r5inTFoF9pWMGYlOwbtmE9te1+LayaJ0nKkV8X9f+xJhYn/29B7+5coMe23KOQgimprbMckD9KVw6a4RnW90ndcv15460Jhb0NzR+law+4I9UlAgAAIBnBOum9S6U1j7sfP/Q30kHXEZQGAAAAAAAAAAAAAAAyBmkq2aV7VHtffuV0vSKD0Yo6cJ/W3PZJmjGmTFJpktNGpGLvVLHBoFS+Id1lZL/SQTJZHCi1bNkyXX755RGhaIcddpjuvfdeTZ48OWJseXm5ZsyYoT//+c8tffPmzdMNN9ygW2+9tdNqTtTy5cu1cOFCSdJZZ52l2267TWPHjo0YU1lZqZ///Od65JFHWvruvPNOXX755Ro6dKjn2kuWLNF1110X0XfCCSfonnvu0bhx4yL6y8vLdcMNN+i+++7TG2+8oRUrViR1HrNmzYoIRfP5fLryyit19dVXa8iQIRFjrbWaM2eOfvKTn2jdunWSpFdffVUzZszQbbfdltS+AAAAALLHuoZVemrb/e1aY1PTOj26+X/1o8E3tjlmrdWfN95GKJqLsML627Y/a1jBGA3OH97u9VbUfaAXdjyZwL4hPbrl/zQ0f7T65w1u976p0hRu1J82/EaNdm9I+Uc17+nlHU/rzNIL01gZAABA5lpeszjiHtDK6ultf9HQ/FEpC/ja3/2z4tm4oWiSVBuu1h833qLfjnhYOab9//739s5XW0LRJCmkoB7ZfLeG5Y9Rn9y+Ca+zrWmTZm35Q7vrSYe1DZ/pqa336/sD2v4yocZwg+6Luv8HAABABmuqlF47Wap433vMh9dLDdulI+/qvLoAAAAAAAAAAAAAAABiyN5UoK4pOrBsX96JXC+pJMaaqdwn1pr76gpJM1O0VnqUb5CdzsMOHc38/ROp/9B0l9Fhvv/976upqamlPWXKFL3yyisqLCxsM7a0tFT33XefRo4cqWuuuaal//bbb9cFF1ygQw45pFNqTlRFRYUk6dprr9Xtt9/uOqakpEQPP/ywKisrNWfOHElSKBTSgw8+GBFGFu3KK69UMBhsaZ999tl66qmn5HcJ0SstLdWf/vQnDR8+XNdee622b9+e8DmsXbtWl19+eUs7Ly9Ps2fP1qmnnuo63hijs846S5MnT9YxxxyjVatWSZLuuOMOXXrppRo2bFjCewMAAADIHv+uWZKSdT6pW66GcL3yfQUR/duaN2lb86aU7JGtPqp5LyXBaB9Vv5fU+OU1izMqGO2TuuWuoQgf1bxLMBoAAICHl3c87dq/rOYdgtF2S+Y1T22oWp/Xr9TowoPbve/y2sVt+qysltcu1tTcryS+Tk3bdfYn/655XyEbUo7Jiej/1OP+HwAAABnIWmnRRbFD0fZY9Wdp/K+lQKreygkAAAAAAAAAAAAAALDvfOkuAB3KZtkcAAmYP3++li5d2tIuLi7WU0895RqK1trVV1+tr3xl78Mc4XBYd999d4fV2R5TpkzRbbfdFnfcb37zm4j2a6+95jl28eLFevfdd1va/fv310MPPeQaitbaNddco5NPPjluLa3dcccdqq/fmw959913e4aitVZWVqYnnniipR0KhTL2ewQAAACg4+0MVqZknbBCqgnuatNf1bwjJetns53BipSsUxVM7lrvDKVm31TZ6VF/qn5GAQAAss26hlVa0/Cp67Gq5sy610un6lBVUuNTdn/u8Voo2fvbZO/zM02jbVBjOPr3nUlVKbrOAAAA6ARrnpA2vZDY2FCdtHNFx9YDAAAAAAAAAAAAAACQIILRsktNVLtgH9aInhO9ZmfuA2AfzJo1K6J95ZVXasCAAQnN/e1vfxvRfvLJJ9XY2Jiy2lLl+uuvl88X/z9h48aN09ChQ1vay5Yt8xz75JNPRrSvuuoq9ejRI6F6ZsyYkdA4SaqtrdVDDz3U0h4+fLguu+yyhOdPnDhRxx57bEv7+eefT3guAAAAgOwStM0pW6vRtn3YvcHlAXhEStU1arQNadk3VRrD7vW7/VwBAABAer3qZc9j3EPtlexv2vK6L02W1/25W0hYLJl2374v3M4h2esAAACANKnfKi35cXJzPr6jbZ8NSxVLndA0G05NbQAAAAAAAAAAAAAAAHH4010AUopgNOmPkp5Ocs4ISXNStD+Qdm+++WZE+1vf+lbCc8eNG6cjjjhCS5culSQ1NDRoyZIlmjx5ckprbI+CggJNmzYt4fEHHnig1qxZI0mqq6tTTU2Nunfv3mbcokWLItrTp09PeI8pU6ZowIAB2rRpU9yxb775purr9z4wcu655yYU8tba1KlTtXDhQknS2rVrtW7dOg0ZMiSpNQAAAADs/7yC0XLkV64vt02/ldQQrnOd0+ASIBArrKvAV5hYkVmi2TYpaINt+lMWvJDkOqnaN1W86gnaoIK2WX4T6OSKAAAAMldtqFrv71roeTzT7vXSK7lotFQFdnkFmqUqGM3rNVu6WNkY59z259FrrE8+5fny2/S79QEAAKAT7NqHILP1/5Cq/i31PHj3Gp9Kb3xN2rXSaZceKx3zpFQ4MLW1AgAAAAAAAAAAAAAARCEYLbvsjGqXJjPZGNNdbQPLqhLYp9AY081aW5vEdmUJ7JM0a+02SduSmWOMScXWQEaorKzU559/3tLu2bOnDjzwwKTWmDx5ckswmiQtXrw4o4LRRowYodzcxB8WKSkpiWjv3LnTNRjtww8/bPm6Z8+eGjlyZFJ1TZgwQc8//3zccdHBdQMGDGgJbktU9Pl/8cUXBKMBAAAAXZBbUJckTe75ZV3Q94dt+q21+tGn5yistg9CuT3g7/Wwe2mgv24a/qckq92/PV/+uOZVtM3i97pGyfIKWPAbf4cGsqVKrOvQGG6QP4dgNAAAgD3e3vmqmm2T5/FUhXtlA2uTDUbr2ODiZNf3CqY+oeR0nVP2vaTr6igN4Xr9/LMLXI+5/Tx6XYcDux2mKwfdkNLaAAAA0A59p0pfWSEtvkLaMDvxeS8d4nzuNkyqXR15rHyhNHuQNPa/pG5DpZ6HSH0mSbLSJ3+Qts6XcntLPcdJRWMkhSVfrlT+llS/WSo5TBp6oVTQz1nPWon3bwIAAAAAAAAAAAAAABcEo2WXz6LaByQ5P3p8hbW2MnqQtXaHMaZSUuu0oSGSPm7HXtG1A9gH5eXlEe1Ro0YlHf43duzYiPa2bUllDXa46KCzeAKByIevm5ub24ypra1VQ8Pehzj2JWQs0Tnr16+PaP/0pz/VT3/606T3a62ioqJd8wEAAADsn4K27esbSQoY9xAqY4zyfAWqD7fNtk/mYfd8X3SufvbzOudGm5rgBa9gseKcElUEy9v0Z1pYRqyAiMZwg7rlFHViNQAAAJkrbMNaWDUv5phMC8Hdn6QiuNham8JgNPd68jLsNVWuyZORkVXbIDq3c/Z6PZJp5wUAAABJBf2lY5+V1j0tvX+V1FguHTxTskHpP7+JPTc6FK21lXfGnrvWo3/NY9IHV7sf8+VJg8+RAt2ljXOdIDVJ6n+qNPhsKbdE6neSlNvD6d/+rrTxBcnkSMMvds5110opv0wyfim/VKr8SFr9V0nWCWTrdUTsuqPVbZCaq6XiMZLxeY+zVqr+VNr8T8mGnPPoNji5vQAAAAAAAAAAAAAAQASC0bJLdDDZyCTnD49qr4iz1+SovZIJRoveK5m52a10kMzfP0l3FdmvdFC6K+gQlZWRWYY9evRIeo3oOZkWuuXzxXiT2T6qqqqKaBcVJf/AdnFxcULjduzYkfTa8VRXV6d8TQAAAACZzysYLcd4/y+/PF++RzBaMg+75ydYYfbwOudUBZR5BSz08PfyCEbLrLCMRut9HTKtVgAAgHT6uPYDlTdviTmG+6e93IK6YknFtWu2TbIKux5LNnjNa3yBrzDpujqSz/iUa/Jcg5/dzsHrOnfF14oAAAD7BWOkA6ZLfadJK38vjfultGtF/GC0zhZulNY+0bZ/8zznI5Z/3xR//ZV3OZ8Hny2FGpwws8IB0ohLpD5HSTYsrX1KWnadVLfOfY0BX5E2vRB/r6U/k3IKpeHfkXIKpKYKKdBDGvZtqaFcqt8obX/bOdZ9pFQ2xelv3imVHSfteN/5uvQYqfuw+PsBAAAAAAAAAAAAAJCFCEbLLv+Oao83xhRaa+sSnH9MnPWij7UORpskaW4imxhjukkan8ReXYrx+6X+Q9NdBvZT1kY+IGKMafeaqVgj0+Xl5UW0m5qakl4j0Tn7snY80d93AAAAAF2DVzCa3wQ85+T5Clz7kwtGc18jmyVz3ZJlrfVcp9hf4tqfbCBDR4t1HTKtVgAAgHR6verluGMIRtvLKxjNJ5/CLuFlsQJ7ExUr/NgtOCwWr3vhTHxNlecrUGPI5XWhyzl7XYc8k3nnBQAAgFby+0iH/db5uuQwaeCZ0sbn01tTOqx/NrL9xcPS5CekiqXSx7+LPTeRULQ9QnXSZ3+K7PvkfxKfv0fJ4dLYn0sDv+q0a1ZJ9ZulDXOkHYudALXaNXvH9zhIKj1WChRLvlyp21Cp71SpaETyewMAAAAAAAAAAAAAkEYEo2URa+1mY8xH2hs65pc0RdI/E1zihKh2rHfmz5N0aYy5sRyryJ+9D6y1W5OYD8BDr169Ito7d+5Meo3oOSUl7g9ht0coFEr5mu0RfY6VlZVJr1FRUZHQuD59+kS0Fy1apEmTJiW9HwAAAAAEbdC1P1YwWr7HA/huD+x7P8Sfn0B12cXrnFMR+hW0QYXl/jq52N/TtT/TwjJi1RMrWAIAAKAr2d60Vf+pXRJ3XCrCvbJdnq9A9eHaNv2puE9O5b1tQ9j995fl+wqTWqcz5PsKtCvU9t/Hknmt6PV6EwAAABlq8qPS0z3SXUX62bD01vnprsJb5QfS299OfPzOFc6Hm27DpCPulAZ/PTW1AQAAAAAAAAAAAADQgXzpLgAp91xU+7uJTDLGjJV0VKuuWsUOVHtFUut3PE/avUYiLo5qR9cMYB+VlpZGtD/99NOk1/jkk08i2mVlZa7j/P7IbM1g0P2BfDf7EjzWkXJycjRw4MCW9hdffKG6OveHVbwsX748oXF9+/aNaO/L9wgAAAAAJClom137YwWjeQV8uT387xUI0BUfdvc658Zwg6y17Vo7VvBFjxz3sPJMCxuLFRCXaSFuAAAA6fJG1cuyin/vGLRBz3v9rsbreiUT+JysWGs0JHlv63Xfnp+BYdOpeK3YFUO0AQAA9muBYumbVjr2WalodLqrQWeoXS0tPFvaMDfdlQAAAAAAAAAAAAAAEBfBaNnncUmhVu2zjTGjEpj331Htv1trPd/Zba2tk/SPOGu0YYwZLan1r5sLSnoigfoAJKCkpEQjRoxoaVdVVenjjz9Oao1FixZFtCdOnOg6rri4OKJdVVWV8B7/+c9/kqqpMxx99NEtX4fDYb3++usJz62oqNCHH36Y0NjJkydHtP/5z1gZlAAAAADgLWjdA6r9xu/aLyUXIOAVCNAVH3b3OmersJptU7vWjhVy1sPfy32ObVDYhtu1byrFCj9LRTgFAADA/q4p3Ki3d76a8HjCZXfzCCGOFVzcXrHWSCaguDnc7PmaLd9XmHRdHc07GK3tOXtdh674WhEAACArDP669NVPpNOWSQPPlHwByd8t3VWhI33yh3RXAAAAAAAAAAAAAABAXN5PSWK/ZK39zBgzS9L3dnflSnrEGHOiV9CZMeZrki5u1dUk6aYEtrtR0vmSArvbFxtjnrPWPu+xT76kh3fXtMeD1trPE9gLQIKmTJmizz/f+8fq8ccf1y233JLQ3I8//lhLlixpaefn5+vII490HVtWVhbRXrFihSZMmJDQPi+99FJC4zrTl7/8ZT3zzDMt7QceeECnnXZaQnNnzZqlpqbEHoQ/8cQTlZOTo1DIybB8/vnntW3btjbXEwAAAADiCXkGowVc+yUpz3g87G7dHnZ3DwTwCiHIZrHOuSFcr1xf3j6vHSt4odjf0/NYk21UvsmM70WsgIhG79+9AAAA0GUsrX5LteHqhMc3hhvULaeoAyvaP7jHonkHi6UkGC3G/WuzbVLYhuQzOfHXiXGPnImvqfI8w+YSD9HOxPMCAABAEkoOlY6fE9lnw1K4WcrJk2rXS3OGxF6j/ylSbolUu06yIWnIuVLP8dL8UzqubiRv62vSwnOl5l1SToFU0E/K7S11Gyw1bJdkpQGnS4Fi5+uCAc7nQHGchQEAAAAAAAAAAAAASB1fugvoaowxg4wxQ6M/JPWLGup3G7f7o0+cbWZKqmzVnizpX8aYsVG15BljfiTp6aj5d1pr18Y7F2vtF5L+J6r7H8aYq4wxrcPPZIw5UNKru2vZY4cSC2ADkISLLrooon3PPfdoy5YtCc39xS9+EdE+//zzlZfn/nD3EUccEdGeO3duQnu88soreu+99xIa25kuvPBCFRXtfcjoueee0yuvvBJ33saNG/XrX/864X1KSkp04YUXtrRramp09dVXJ1csAAAAAEgK2mbXfr/x/l0IeT6PYDSXAAGvB/nzMiSMqzN5XTcpduBBImKFN/Twl3TYvqkUKzwiFeEUAAAA+7vXq15Oajz3UA6rsGu/9+ua9t8je4V+7d0jse9NrHW8gt3SKbnXiu7XINbrJgAAAOynjM8JRZOc0Cwv3YZJ37TS1HnSMU9KJ78lnfKOdODVUv+TY+/xTa9I5ASUneB9zN9NGnzOvq+d7dY/I235f9LG56VV90srbpMWXyEtv0FaPlN6ZaL0whjphbHS08XS0z2kJ4zzsegi6dUT97bfvlja+IIU3v0LfUKNUuMOKdQg1a6Vdn4shWL80tEQr4EBAAAAAAAAAAAAAG15PyWJjvKmpAMSGDdQ0mqPY7MkXew10Vq7wRhztqRXJO0JKDtG0gpjzBJJX0jqIekISaVR01+QNCOB+va4TtI4Saftbgck/Z+kGcaYpZKqJQ3fvZdpNa9J0tettZuT2AtAAqZNm6bDDjtMy5YtkyTt3LlTF1xwgV566SUVFHg/vH733Xdrzpy9v/XTGKOf/exnnuMnTZqkwsJC1dXVSXKCxN5//31NmDDBc85nn32m73znO8meUqcoKirST37yE91yyy0tfdOnT9fs2bM1depU1zlr1qzR6aefrqqqqqT2uvHGG/XUU0+psbFRkvToo4+qf//+uvXWW5WTk5PwOitWrND27dt13HHHJbU/AAAAgOzgHYwW8JyT53N/XegWIOAVdtUVH3b3um5S/OCEeLxCBYyMuuf0SHpeOsSqJZMC3AAAANJhTf1nWtvwWVJz2nuPmS284hHyPV/XtP8eOd79a2O4QQU53eKu0xCu8zzmVX86JRqMZq31DtHOwPMCAABAipVOkcrfbNs/7rrY83ofLe14p23/2J+3r55jnpSe6+9+7KS3pJJDpeZq6fO/OHXnlUr5/aR/t/P3+V4Qkj78pbTidvfjx78g9TxYKhwsrXpA2jBbatwulRwmjbhEUlj68FfS1lfbV0e6rHk0sr16lvMRS6Cnc/6VyyRfQCo7Xlr/j8gxg8+RRv3QGRusltY/J1UskYyRhl4ojbzMCetrzVop3LQ3wC8clHy8NR4AAAAAAAAAAAAAsgH/+pulrLULjDFfl/SI9oafGUkTdn+4eVLSJdbaUBL7hIwx0yX9RdJ5rQ6VSTrVY9o2Sd+x1i5MdB+gK9myZYvWrFmzT3OHDh0qSXrwwQc1adIkNTU5v2lxwYIFOvbYY3XvvffqqKOOipizfft2zZw5U3/84x8j+q+99lqNHz/ec6+ioiKdd955evjhhyVJoVBIZ5xxhh599FGdfHLkb/psamrSrFmzdN1116miokIlJSWqrKzcp3PsSDNmzNCcOXO0fPlySdKuXbt04okn6txzz9X06dM1evRo5ebmat26dXrppZf0wAMPqK6uTvn5+TrllFMiguViGTZsmO6///6IkLjf/e53euONN/TLX/5Sp512mvx+9/9Er1mzRi+++KKeeeYZzZ8/XzNnziQYDQAAAOiimj2D0bz/l1+iD7tL3mEMXfFh9zzjfc7tDV/wvs75MQMTMiUsI2SDniF9EsFoAAAAb1S9lPQc7qH2cI9Gy/cVuvY32vZft3j32V4B0smsk4mvqbxee0SfR9A2K6yw69hMPC8AAACk2OBz2gajGb806Oux5w35hnsw2gEXxJ6XUygN+5a06v62x0b+UCroJ/WaKFUsjjzW7QCp5yHO14EiaezPnA9Jql3bvmC0HuOccK6BX3UPRsvvKw08Y2971GXOR7TRV3kHo522zDmHf5R41zHkPGndU+7Heh8lfel+qXCg9Ewf7zU6U3OVtG3B3nZ0KJokrX/G+XBT/pa0+IrE9ys7Xhr/a+f7tXW+1LBVsmGp15FSQX/n5za/zAlUa65xAtv8hVK3oVJuiRPGVr5IWvJTyeQ434+Rl0h9pznHWmuscMYEitse26Opyvl5zsl1Pw4AAAAAAAAAAAAAaINgtCxmrX3JGHOwpJvkhJZ5vUviHUm/t9Z6vKMg7j41ks43xvxD0n9JOtpjaIWkpyTNtNaW78teQFdwwQVx3vAVg7XOAyJHHHGE7rnnHv3whz9UOOw8nLBkyRIdffTRGjlypMaNG6f8/HytX79e7733noLBYMQ6J510km6++ea4+91888167rnnVFVVJUnatm2bTjnlFI0cOVLjx49XXl6etm7dqnfffVe1tbWSpH79+un222+PCAXLFLm5uXrxxRc1bdo0rVq1SpJzTZ9++mk9/fTTrnOMMbr33nu1bt26iGA04/Ump90uuugibdmyRb/4xS9avkfvvPOOzjzzTBUWFurwww9X3759VVBQoOrqam3fvl0rVqxoudYAAAAAELJB136/CXjOSfRhd8k78CtWWFe2CvgCypFfIbW95u0NrfCan+cr8Ayyc+a1L5AtVeLVkSl1AgAApENNcJfer37T9djYwkO1uv4T16At7qEcNslgtODu0N5Yr4niiX9/m9j9f0O4zrXfb/wK+Pa9vo7iFQYd/fMZ6/rkGe/XLwAAAMgSo6+UKpZKax512jkF0uQnpPzS2PNG/kDa+Ly07fW9fWN+4oRUSdJBv5BW3NZ23vibpR4HuQejDTnH+Xzk3dKCrzjBW5KUky9NuMcJL3PT7QD3MLVEHXC+87nPJCdEq3ZN5PGh30psndLJTo02Kng4p0AqGuWEdBUOkuo2tJ2bWyId9YATIub2b0VT/i51G+J8PeIH0ud/SaymbLLtdelfx6duvR3veAfRtTb0207gmr9Qat4lrX9WqlsfOabvNOfntP9p0ojvSatnSQ3bpb5TpdJjnHC1UINU/ZnzvS4YIMl4h64BAAAAAAAAAAAAQJYiGK2TWWuHdvJ+2yRdboz5iaRjJB0gqZ+kWkkbJX1grV2dor3+Iekfxphhko6QNEBSN0lbJK2V9Ja1tikVewGI75JLLlFJSYm++93vqqampqV/1apVLaFfbr73ve/pvvvuUyAQ/6GMgQMH6plnntFZZ52l6urquHsMGzZML76U+kb1AAAgAElEQVT4orZu3Zrk2XSewYMHa+HChbriiiv03HPPxRzbu3dvzZo1S2eccYb++7//O+JYUVFR3L2uvfZajR8/Xt/97ne1ZcuWlv66ujq99dZbCdVbUhLjN4MCAAAAyGpB2+zaHysEIM8j1Cz64XZrrecD77HCurJZvq9AteHqNv1uQRbJ8LzOJl85xi+/Cbh+r93C7NIhXh2EegAAgK5s0c5/ed63H9fzNG1qXKfGkEswWjvvMbOGey5azLDmxnCD/DkdF4yW6H14g+frqcwMmva6ptHXI9b5d8UQbQAAgC7HF5Am/1U69DdS7Won2MzfLf68QLE09RVpy7+kXSudULHSyXuPD/u29On/SsHavX25JdLQC6T8ftKB10gf37H32EHXSX1PdL4uPUY6/SNp04tSuMkJmyoeFbueCf8nvfE1qSHOe9iOnyu99U0puPvfBgafK439L+dr45NOeMlZp/ozp2/IeU6YWyLyy6T+p0ubXojsP+A8J1RLkkZfJS27ru3cA6+RAkXSwDOkDXMij5UeszcUbc/YjXPjnytSY09oYCxbX3M+b3pJWvKjvf3L48zrNVE67llp+7tS5QdS4WAnNC1Q7PxZDHR3xlUslWq+kHp/KfJnAQAAAAAAAAAAAAD2MwSjdRG7A8nmd9JeqyWlJGwNQPuce+65Ou6443Trrbfq8ccf1/bt213HBQIBTZ06VTNnztTkyZNdx3iZNm2a3nvvPV133XV6/vnnZW3bp1RKS0t18cUX61e/+pWKi4szOhhNkvr166dnn31Wb775pp588kktWLBAmzZtUkNDgwYMGKDhw4frG9/4hs477zz16NFDklRVVRWxxp7+eE499VStXr1aDz30kB544AF9+OGHrtdwj0AgoIkTJ+rkk0/WN7/5TY0aFeeNfAAAAACyUtiGFFbY9VjsYDT3ULPoh92bbZOsx/pd9WH3PF++azBaewPKvEIv9nyv8n0Fqgm1DdPIlMCxVAVHAAAAZJuwDWnhznmux0r8fXRI94l6rnyWFGp7PFPu9dLNeiSjxQtG65YT/5fXeM9PTfBvQ7jOtT/fV5h0TZ3B67Vi9P18o/W+Pl01RBsAAKBL6jbY+UhGTp4T5DXwjLbHehwoTfuX9OGvpKoPnZCnI+6SCvo7xw//nTTqcqlymVRyqNR9eNt6Rv0w8Vr6HCWdtkx653vS5pfdxxSPlQZ+RTpnm7Tj/d3nfEDbur/yiVS9SsrrLeX1SrwGSZr8mPTOxU6om3zS4HOkCX/ce3zot6WP75Qay/f25fWRhl/sfP2lB6T6rdKOd5x2z0OkyU9Encdo6ZTF0vtXSRufT64+ZJaKxdLsJP/cSc7PUW5P589P+cK2x7uPdAL56jdKhQc4P8s9D94dtla8d5y1kg1Ltlmq3+z8+cxp9Tow1CD58iRjkq8RAAAAAAAAAAAAAFwQjAYAabZmzZoOXb+srEx/+MMfdNddd2nJkiVauXKlysvL1djYqD59+mjQoEGaMmWKior2/SGRsWPHavbs2dq+fbtef/11bdiwQXV1derbt6+GDRumY489Vn7/3v/knHDCCTHDv6IlMzbaI488okceeWSf5k6ZMkVTpkxJaOyKFStavjbGqKysLOF98vPzdcUVV+iKK65QRUWF3nnnHW3evFkVFRVqbm5W9+7dVVZWptGjR2vs2LEqLMzMh2YAAAAAdJ6gDXoe8xvv/+XnFSAQ/fB/rDCrrvqwe57ntWtfaIXX/D375fnyVRPa5TIvMwLH4p2/V/AbAABAtvtP7VLtaN7memxKz1OUY3ISDqPqqvY1GK094t7fJri+1/16pgZNe4doRwWjxTj/rvpaEQAAACnS52jpxH95H+8+zPlIlYJ+0uRHpWf6uB/P3R1ylpMvlcV4/5gxUvE+/mLL3B7Scc9JwTrJ+CJDpiSpcIB08iLpo5lS1TKp56HS+Jv3Bsbll0qnvC3VrJbCzVLRKPdQqm6DpePnOMFWf/M74VboOtY8Gvt4zSrpP7+JPab7SKn2i7Y/O7m9nJ/DXZ/sbpdIQ86Txv1Cyu8r7fyPVP6mFKqXBn5VKj5QsiHJl+TjC6EGKRyUAt2TmwcAAAAAAAAAAABgv0YwGgB0ET6fTxMnTtTEiRM7bI8+ffronHPO6bD1M1Vtba2WLl3a0h49evQ+B8316tVLp59+eqpKAwAAAJClgrbZ85jfBDyP5RmPh91tg8I2LJ/xOe2YwWiZ+SB/R+uo0Aqva71nvzyTWJhdusSro73BFAAAAPur16tedu3PkV/H9DhJUuLBxV2XezBarNck7b4/t7HnJ7p+fbjOtT9zg9ESC4L2On+ffAqY3JTXBQAAAHSoPeFnbnoc1Hl1+GP8ksyikdIxj8een2hgnDHSuOulf9+ceG3tMeQ8qe/xUvMuadl1nbMnOkbNKvf+pgrno6VdKa26z/mI5vYz0PdEJzQtv0ySdUL+6tY763jp/SVp0NelwoFS+VtSU5VU+YHU6wgnmK3yQ+fP9shLpV6HS43bpZovpK0LpGC1tOU1qfcEadjF0sAznD2DtVLxWCmH17UAAAAAAAAAAABAJiEYDQCAdpo1a5bq6vY+4DJp0qQ0VgMAAACgKwjaoOexmMFoMR7Cb7KNyt8dwhXrYX+vgLBs5x1a0b7gL69rvWc/r+vdaDMjcCxeHe0NpgAAANgflTdt1orapa7HjiiarGJ/T0kx7vUIl5XkFYvmXDcjI+syor2hcg1xrn2i3xuvOjI3GM3rZ7Fe1loZY3a33c8/z5ffMgYAAADYbxgj9ZooVSxue2zYtzu/ns4w8Ez3YLS83lLjjtTtU3KYNOVve9sjL5PW/k3auULqfZR0wPmSL0cKNUn/uUXa+KITVlU2Veo5TnppfOpqQeba+mryc3a853xEq/40sr3pBe816tZJ65+Ns5GRDrpWql7lhPvZkFR2nBQOOu1ug6URP3BC1XJ7OWvuXOEEuxUOkvpMkkyOZPxSTn7sAEQAAAAAAAAAAAAArghGAwCgHTZs2KAZM2ZE9F100UVpqgYAAABAVxG0zZ7Hcoz3//KLFWrWGK5veUg/1sP+mfogf0eLFRTQHrGCBWLtmymBY/HOv73XBwAAYH/0RtU8z2PHlZze8jXBaPG4R6MZGeX58l3vidt77VJ1f+sdgJyZD0J7hWiHFVbQNitgciXFev3SNV8nAgAAIAuM/IH0XlQwWvGBUumU9NTT0XodKQ3/nvTFQ3v7ig+Ujn5E+ufRcn0dNvbn0sq72vb3Ptr5vOOdtsfG/DSyndtTGvXDtuNycqXxv3Y+Itb+knv4VY+DpTOWS5XLpHXPSKE6acg3pD5HS6+fKW2c23aOJA38qjThXql8obToQvcx8XQfKdWs2re52A9ZacXtkV1bX4tsf3DNvi/vy5XCTVJ+mTTgDCmnUPL5ndC1vic6IWzGSPVbnIC1hi1SyRFS7Rpp10qpaLQTQGiDzkduyb7XAgAAAAAAAAAAAGQogtEAAGjlmWee0ZIlS/Szn/1MpaWlMcd+8MEHOuecc1RRUdHSd+ihh2rq1KkdXSYAAACALi5WMJp/n4PRGlp97f4Qf4788ptAAhVmH68H/Ts6GM0riC5TwjLi1ZEpdQIAAHSWpnCj3t75quuxQXnDNDx/TEs7z2T2vV66WesRjGaM8ky+GtT2Xry9AcLxrn2i63sHo2VmgFh+nNeKAd+eYDT38yIYDQAAAPutEZdIwVpp5R+kxnKp71TpqAcl40t3ZR3DGOmov0iDviaVvykVjZSGTN8bXPbZnyLHFwyUxt8irf2bVL8p8tiI7znXLjoYzZcnDTqzfXUO/ZZ7MNqYHzufSw5zPiJq7e+93uirpG6DpYJveAejTfyT9O9fS/Wb2x47+mFp+MXO1407pGCNlN9Pyslz+p4wMU/H1Zf+LIWbpfevSn4u9n/hJudzwzbpi4cjj0W3E+XLlWSlkiOlgn7ShtlOf06B1Hea1HO8ZJulpkopWO8EvTVskfqfJo28ROp/irR1vlS7VtrxrtTjIKnHOGnA6W3/TmyqlIxfChTtW60AAAAAAAAAAABAAghGAwCglerqat122236/e9/r1NPPVUnnniiDj30UJWVlcnv96uiokLLly/XCy+8oLlz50Y8lJObm6tZs2alsXoAAAAAXUXQBj2PBWIEl8V6CL/1g/uN1j0MIFMf4u8MXqFy7Q5e8LjWe0IyvAIG2rtvqsSrozHcIGutjNmHh4IAAAD2Q+9XL1RduMb12PE9T4+4L/IM37WZca+XyfJ8BVKosk2/1/11ouIFHye6/v4WjOYV0ic559JdxZLiBzsDAAAA+x1jpLE/k8b8VLIhydcF3lZtjBNcFh1eduT/OEFnax53rkX34dJxcyR/gfTl16VFu8PKckukA6+WRvxAskFp57+lzx901ggUS8f83RnTHkO/KX32R2nXyr19PQ6WDrjAe06fY6RV97sfKz7Q+ewLSH0mSdvfjjxucqSBZ0qVH0qr7os65neCo/bI6+18RKw/NrLWPcbf7JxHdNjaAedLIy91vo4VjHZB2Kn1oxukyqVSqEE6/PfS+1d6z0HXtSdsLTqsMFQvbXrR+XCz+WXnI5Z+Jzl/rk2OtPbJvf09xjmhgf1Pcf6MGiOFQ87Pa7BG+vwhqWGrVDRKOvC/nL9XJCkcdNbi3w8BAAAAAAAAAAAQQxf4F3wAAJLX3NysuXPnau7cuQmNLygo0F//+lcdeuihHVwZAAAAAEhB2+x5zB8jGM0reEGKfMDd6yH+rvywu1eAgVcwQKLiXeuO2jdV4tURVkhB26yAye2kigAAANLHWqvXK19yPVbgK9TE4uMi+rzur+OFc3UVYYVd+41MjGvX3mC02PMTXb8hXOfaH+s1WTrFeq3XOqjP8/WL6bqvFQEAAJAljHECsLoyX0D6/+zdd3wc5YH/8c9s0aoXq1hWsS33btwwNrYxxWBMTSCUQAIJBFIuR5IjdwdJCKRwyd3lF3IJKZBASMhBOpcQSiAB23SI6QkYjLtxl9ykXWm18/vjsZBWO88WWbJW0vf9es1rd59nnjKzK2lmV/PdBXfB7G9DWxMUNHSGFhWNg9OegbYDECgAx2fKnSDM/zHMvBkOboCyY8DfC58HhMrhlNUmVKzxJdPvpM9AsNDepv598I9vwr6/x5dXnwoF9Z2Pp34BVp1rQt06jP8E5NfA1Oth5+PxIWez/gvyhiefb/158PrXE8tHXgCVi2DVOdC235SVTodjvtG5Ts0Z3oFVkz5n9n/lQjj50fi6wjHw+OmJbQCmfRleu8m7rvw4WLbKPFfrfgzh7dCy3QTRlU6Hoglm+1eeZd/WslnQ+GLn41AlRHbZ15fBYfsj3uX7XocXP2+WVO3f+n7qcQIFJmhw5IVwcB3sfcEEshVNhBGngi8H8kbAgbehYJRZcGDnY9C6D8rnmt8XAM1bYcdj4A+Z3wM5Jd5jxtqg6VXzO7Bkaufvt65cd+iEZ4qIiIiIiIiIiIiIiGQRfTojIiLSRWlpKX6/n/b29rTbHH/88dxyyy3MnTu3D2cmIiIiIiLSKVkwmj/JhTt+x0/QyaHNbU2o63qBu+1i/2y9iP9osF3obwsGSJdtX3cEomV7WEY6wRCRWJigT8FoIiIiMvhtCK9lc+Qdz7oFJSeT4wvFlfVVuNfg51jPTY70ODl1MFp6/dvWy/PlZzyno8EWyAzx+6RrSFq67UVEREREZIAJDTOLl2CRd3lulVl6U24FTL8h/fWDRXDKKvjbZ2DrHyHWCjWnw/w74terPQNO/iu8cye0NkLNChh7pakrqIfTnoVtD0LLNhh+YmfIUjITr4FtD8QHhk29HoonmOWcjbBzJQRLoWI++Lu8H1B3rncwWv159vFyyux1hWNMwFPM47PEmV8zdcXjYdY3vdtXLbX3DXD6GnPb3mqCojq25R6PMCmRTEUPwd6/maWr7Y/CW7ceWd8l06BiAQQKYc8zsPvpxHVC5VBzJpROg2izCf1b+73O+rpzYe53ze+XgtEmRC3aYgIFw7tgxDIT3JZM2wE48JYJnAwWH9k2iYiIiIiIiIiIiIiIDHIKRhMREeni3HPPZceOHTz00EM8+eSTvPrqq2zcuJG9e/cSDofJy8tj2LBhjBo1isWLF7NixQqOP/74/p62iIiIiIgMMcmC0QJOMGnbkC+XtvbEYLSuF7vbwr5swQ1Dge1C/yMNrbAFJnTsa3vgQ3aEZaQVjOa2UIj+sV9EREQGv5VND1jrlpSenlCmYLTkXFzPch9OnwQIx9wYETdVMFp6z02L9Tg/OwPEAk4QHz5ixBLq0gvRHrrniiIiIiIikkVC5bDw5xCLghsDv+VLW6oWm8VLsBhGXZjZuLmVsGy1CVQ7+A5ULobKBZ31OaVQd45324ZLTZDb1j90lk38jAlwsgmW2Ovy62DE6fH9AYQqoHJR6m0JFpoAt7amxLqyWZ33bfu2u7FXQKgK/v4f3vVnHQ6I+l/H3scHXdixEv6y1Lt+8e+h/lxzv+VdE1K390UonmRCqtpbTIBVfp3Zd2/fZgKvgsWwczWUTIUtv09ve2Tg2veaWZKJ7IH1d9nrt9xnlmQqFpqgxncfTm9e026AwrFQs9wETLZHYMv/Qds+GH6SCWHDgZJJ4Lrw7p/Na9xtN+GN9e8zr2+xa3kX9rwApdNNmONL/wbrf2bqSqbAsqcgJ8nvVRERERERERERERER6TcKRhMREemmvLycSy65hEsuuaS/pyIiIiIiIuIp6kY9y3348aX4x+eQL5eD7fsTyiNpXOxuCwcbCqwBZW7PgxcgdbBAXwQ+9KZ0tt8WtCciIiIymByINrHmwJOedZPzj6Eqpyah3HZ8reOnDt7BaDjJgtF6HirX6kZSrpNu/7bj9Ww9p3IO79OWWHNCnUK0RURERERkwPH1w7/HBwpg5PmZt/PnwuLfwq4nYd/rUH4slM9N3qZovAlQCu/sNociqDgO8muh8UVo3mzKfSGY90Pwh9KbU+0ZsOEXieWjk/w/5egPwYafJ5Y3XGa2yyZvhLmtXAS7nvDuF0x4EQ6e7xVUzI/vb+wVMNY+JPNu9S53XRMIt/o82PGY9zonPQJls+HBWdC8yXudJfdBtNmEL3U8B12N/AD4crz3sQx8u5/KbP3XvtLzsd46/FquXmYC1JpegdZGUzbmcvM7Ia/G/F7w50L0IOx/E8K7gJgJcYtF4NBmKBgJtWeaELEdj0GgEIonwLqfwObfmfJjf2h+Jve/AXueMeGC1ctM+GM22v8WvHwdbP6tfZ19f4fflMKKV0xwmoiIiIiIiIiIiIiIZBUFo4mIiIiIiIiIiAwwUbfNszzoBFO2DTmWgK+4YDRd7N6dNRjtCIIXXNdNEoxmxgs53vs8W8Iy0pnHkewjERERkYHiyX2PWgOMTyhb4VneF8eYg4lry0XD6ZNQuXTCh9PtP+wRMAbZG4wG5vXoHYymEG0REREREZE+5QvA8BPMktb6fph4Dbz8hfjyCZ+EQD4UT4QVL8O7f4a2/VB9MhSOSX8+026Anavjg7/GfMSMaTPpGtjyO4ge6iyrOsEEnhWOgec/SUKoWdEEEygHMPJC72C0hkvNbW6l2Y7tj8bXDz+pM1ztSDkO5JTBmCu8g9EKx0H1KeZ++bH2YLSaM8xzOvpiaA+b7coZBiXTwJ/Tud6Cn0PTyyYUz58L/nzAgUAehKqgZRs4Ptj9DLz7sAmpKptl9ltbkwnA2vaACZ7rGpLnFZrXXd4IE3Qlg8P2RxLL3vlp74/zzEfM0t38O6D+/RA9APv+AWXHmJ/ZTLQ2waGNUDw5/uekJ8K7TeDcWz8Ay/u1CVaeBedsOLJxRURERERERERERESk1ykYTUREREREREREZICxBS74ndRv99nCzSJu5wXu9mC0oXuxu22/HUnwQtRtI0a7ZTyzr20BA12fr/6UTmiHgj1ERERksIu57TzR9LBn3bBAJdMK5njWWY/NdfwEgNv9guku+mLfpRf6m3qdtlib9ZwtmwPE0gnqSxXsLCIiIiIiIkfJlOtM2NaG/wViUH9+fHBZThmMurBnfRdPgOUvwNb7IbzdhIGVz0veZtgcOGU1rP0eHFoPlUtg6r+bsLH8Wqg/Dzb/Jr5N1/mO+TBsuteEhHUYeQEMP7nz8XE/hZVnQuNL5nHpDDjuzp5tYzK1Z5igsvZu58Bd92fDhxO3B0x4mq/L57X+3M4wte4cxwRIlR2TfD7174NZ3/Sum3ytuW3eCsEiCBabx02vwwPTvNvM/DpMvR7cGLz2Vdj0K2g7CJXHmyC7muWw6v0mtE0kHc9+1Cw2TiA+oMyfBxULoGQKHNwA2+6PXz9UDgWjoe0AlM+H9hY4tAGKxsG4q6DieHDbYPtfIbIbgoWw/S+w7zXY8xzEvL9kLqlDG6FlB+QNz7ytiIiIiIiIiIiIiIj0GQWjiYiIiIiIiIiIDDBR1/ufeQNOMGVb24X4XUMAbIEAtvCBocC236JuG+1uNK1Quu6ShTaEHLOv7YEPPQ9k603pBE8cSXiciIiIyEDw2qG/sTe6y7NucelyfI7fs67jmK+7dqJE3ba0ju8HN+9gNAeHkNP7AcJphf6m0X+yY/VcX35Gczqa0gmbs4doD91zRRERERERkX7hODD+42bpC7mVMPYjmbUZNguO+4l33cK74ZXRsPWPECyFsVfAuI911geL4cRHYMv/wb7XoXwu1J4Fjq9znfxaWL4G9r9hyosmmP3Q23JKYcHd8NQlEIuYsuplMOVfO9cZscxsR1tTfNtRF/T+fNKRX5v8cVdlhwP8HR9M/7JZulvxUuf9/Wvh6Q+ZwKlgqQljm3o9vPh5eONb9nFGXQzbH4WI93tmMoR0/wKB9hbY8VezeInsMQvAgbWd5XtfgI339s0cAVq2KBhNRERERERERERERCTLKBhNRERERERERERkgGnv/s/DhwXSCOdK72J374v9beFgQ0GyC/0jsTD5/sKM+4y4yQITcg/f2gLZsiMsI63wiDTWERERERnIVjY+4FkecAIsLDnF2i7VMWbAP7SD0bxj0UwwWjqBz5lK79g2df/J5pDN51Tp7FPbPgpl8XaJiIiIiIhIFvCHYNZ/mcUmkAejL0rej+NAyeTenZuXkefB8KWw6ynIr4PSGeDrEnzvz4UT/gCrzoXWvaas7n0w9Yt9P7d05JTCsLkmSKqrYCkMPyGzvoonwGnPQtt+CBR2htXlVdvbzPpvmPwvnY9dF5o3wY7HTWhb5SKzDwHeuQueudy7n1NWQ9lMaN4Mr9wAm39rykPlMOV68AXBnwfEYOv9sO8fcPDtzLZPpEPLu/09AxERERERERERERER6UbBaCIiIiIiIiIiIgNMm9vmWZ5OSJbtgvWuF7jbLuQPOfbghsEuWYBBONbSs2C0JMELHSEZyQIGWmORfg/LSCcYIp11RERERAaqHa1b+UfzS551s4sWURQosbZNdYxZ4C864vkNbLZotPQCnzOVTqhaOgHF4ViztS7Xl9+juR0NtvO9roHOOlcUERERERGRISNUDnVn2eurFsP7t8PeNZBXAwX1R29u6Zj5dVh1DrSH48v8PTyHDxbHP85Psr1lM+MfOw4UjIIxlyWuO2yOvZ+icRAsgpIpsPg30NpkgtD8ocR1x12VWLb3RXhotnff026AGTfBr8ugrcl7nfMb4Tdl9vmN/hA0roF9r9vXkYHjiQvgQvv7eiIiIiIiIiIiIiIicvQpGE1ERERERERERGSAiVqD0VK/3WcLX+h6gbstTCBZcMNgZwtegJ6HLyQPRstLOW5PA9l6UzrbfiThFCIiIiLZbnXTQ9a6E0pXJG2bLARXx1DgWoLRHJwkwWg9D+VNd5+nCihOFrCW7Dnvb7bzva77xbZ/h/K5ooiIiIiIiAxhviBUzO/vWXgbcSqc+ixs+hVEm6HubBi+tPf6r15mtj/W7XPr8uOg6sT0+ymZAgUNcGh9fPmweZBXHV+WU5rZHLu3j6sbcbjPEnswWrLxpl5vguZcF+7xea/jC8FFYWjeCut+AgfXmSC40ZdAeAf8aaq9/1AlRHbZ66X3tbdA20EI9u/n7yIiIiIiIiIiIiIi0snyKYyIiIiIiIiIiIhkq3Y36lkecOwX53dIJ0Ag4npf7J7NF/H3teShFT0LX7AFJjj4CDo5aYzb/2EZttdKpuuIiIiIDESRWJin9/3Fs64+NIbRueOTtu+L8N0hwXGsx8lHFoyWXttkwWemvtmzPOAECPpSn7P1F9vrsWN7Y26MVjeSUVsRERERERER6UdlM2Dm12DO/+vdUDSA0DCY/xNwulyOMmweLP4N+Pzp9+P4YN73wZ/fWZZTBnNu6YU5VkGo3LtuxHJzO+la7/qqpfHrdTfqInPrOPbxqxab2/xamH4DLLgLJv6zmVPJFHu7QAHMv91ef8pKWPaEvb5gNHzQ+wsH3rPileT1ACMvSL3OYNP0an/PQEREREREREREREREulAwmoiIiIiIiIiIyAATdds8y9MLRrMFCIQ976fTdijIcULWulTBCDb2/ZyLc/if6JMFDPR03N4SdduIWkL6ulKoh4iIiAxWz+9fRYslBOuEshXvHdPZBJ0cHLzXOZKAr8HAde0XbzokC3wOJ22bTLr7PNXxbXiAnk8l26cArW4EF+99m+3bJiIiIiIiIiJ9oOFDcPYGOO6ncOKfYdlqEwKWqZrlcMZrMPdWOPZ2E9pVufDI5+fzw+gPJZYPPwkKR5v79efGh7t1GHWhuZ38L9A96L7mTCid3mXdi7zHH/+J5PMbfYl3+fSboGy2pZEDJVMhL8l+Lhpnbid9zrt++Mlm/uOutvcRqkgezlZ+rJlHtprwaXj/DsgbkVm79kN9Mx8REREREREREREREekRBaOJiIiIiIiIiIgMMNZgtO7/lO3BfrF7ZwiALXArWUjXYDn/xKEAACAASURBVOdzfIQc7+3veTBa6v2c44SyNiyjNRZJaz0Fo4mIiMhg5Louq5oe8KzL9xUyt2hxyj58js8awNvfIbj9zRbAZTjWIK4YMev5UioRN73j1lTH4bb6XF9+xnM6mlKFaCc7rs9VMJqIiIiIiIjI0FRQD2MugxHLwG//oqmUChtgwidh3JWQX9d785v1nyagLFAEvhyoPRsW/6azPr8OFt4Dvi5zH/sxGHuluV99Cpz4CIy8ACoXm9Cyxb+NH2Pcx8Hxd9ueMSZALZmGDyeW+XJg1MVmvw6bl1g/4lQIlUPBKCgc591v+bHmttYy/qgLzG1ejX1uBaPMPrMpGt85jpeL2uCCZnj/Lvs6ODD7Fnv1pM/BnP8xz0cyoy6CqqVQdgwc+yM4ZxPM/R/IrYLxn/QYNsklVFEFo4mIiIiIiIiIiIiIZJNAf09AREREREREREREMtMWswSjpfF2ny3cqyMEoN2NWoMEhvrF7iFfHpH2xDCAngZ/2dp1fY46wjK8Qhr6Oywj3fH7e54iIiIifeGdljfYEtngWbeg5GRyfOldCJrby8eYg0WyYDQfDrlJQpvDsRaCvpyMx0x3n6c6vg3Hmj3Ls/18yh6M1nL41r5/hnKItoiIiIiIiIhkMV8Q5n0f5nwH3Hbwe7yHMeoCqD0D9rwAReMgvza+fvgJZrEZfgKccD/8/T/gwDqoPB7m3AL+FO9PjTjVBHm9fD1E9kD+SFhwF+QfDixbeDc8dhoc2mAel0yBeT809x0HZnwVnr7UbFeHYDE0XG7uV51gAt7W/bizvvpUGH3p4fGXw6tf9p5bzZlmjNIZ0PRKYv3YK8GNwjt3JtaVTANfwCyBJO+Hjb4EiifZ66dcB7kVsOFeWHe79zqnrIaqRfY+pn7BPOfv/BTaW6D2HJhxI/y6xHt9BaOJiIiIiIiIiIiIiGQVBaOJiIiIiIiIiIgMMO1EPcsDvmDKtraL8cO62D2lXF8e+9sbE8ojPQz+8go7g8T9nK1hGemO39/zFBEREekLq5oe9Cx3cFhSujztfkK+PPA6xrQcKw4d9mA0cAg59osqI7EwRVgubkwi3UDfVMe3tn6yPxjNEqJ9eHuTnfcM9XNFEREREREREclyviCQ5LP0QEHy8LNUapabJVPjrjIhY+FdkDc8vq54Apz1Fux9AXw5JqTM1+Xyn9EXmRC3f/yXCS8rnQHTb4Ti8abe8cGxt5kgtL3PQ/FkGHFaZx/l82DM5SY0rKthc2Hip839hg/Bi5+Pry8cB1VLwI1Bfj00b46vH3NZ/OOJ18Cb30nc9rFXmDn486G92xcNlM6AUPnh/TAxsW2HgpH2OjDhbpOvNUtXeTXQsi1x/Ve+BMPmQdFYs/96gxvrvb66a9kO+16Hg+9A234TSld2jKl75yemvvoUs5+aXjP7snwetOyAyE4oGA3BosR+Y20mrC+nDPyHvwCk7QDseBxatoAThOhBs7SHoWAUFI4xQXfdgwVFRERERERERERERI6AgtFEREREREREREQGmGjMEozmpH67L9XF7snCALL9Qv6+Zt13PQytSDcwIVvDMtINhOtpcJyIiIhIttofbWLNgac866YUzKIyZ0TafaU6Ph+q3CTBaA5O0iCuiNvD4OJ0g39THIeHY82e5dl+PmWbX+S9EG0Fo4mIiIiIiIiI9DrHlxiK1sEXgIrj7G2rFpvF2rdjAt+8Qt8cB+bfAbXnwD/+0wRrTfosjLoYAvlmnUn/ApG98Nb3IXoAKhbAwl+YOTs+OOkv8OSF0PiiCTib8CmY9Ln4ccZ/CjbeC+EdnWXVp5hwNccH074AL3+hy7wCJuDNcczjspmQVwstW+P7LZ1ugtl6ImeYdzDawXfg/gmdcxx5oQn/Wv8z2P8G1J5p9lfN6bDhbnjjFvDnmHalx0DJZBMq1vIu7Hw8vu+RH4C8Oqg9A4afmF5YmhuDt38EW/4Ptj9iHo+7Gvx58OYt6W3r2u+mtx5A7dmw9Q+J5cPmwN6/pd9PXg2MWA5T/s0E/LVHYNuDsP8f0NoEB9aaELXqU6B0JjS9DIUNsOcFE/SWVw117zc/F+2t5uegr8LlRERERERERERERCSrKRhNRERERERERERkgIm6bZ7lASfJt1wfZrvYPeq20e5Gk4YBDPWL3UOWfZcsTC4Z277uPo49LKN/A8fSDo4Y4qEeIiIiMvg8ue8R2vEOK15SuiKjvrL1WK+/ufZcNHCcpCFj4R4ef6Z7XJ9qPVu97XwiW4Qc79di+L1gNO/9GnACaZ2LioiIiIiIiIhIlnEcqD/XLLb6Y26GGV+B9jAEC+Pri8fD6WsgvBtySsDn8R5R8Xg49Wl4+3YTiFV5vAlL6wi6mnq9Ccna/HsIFsHoS8w6783BB3O+DU9+ENzD78n68+CY/+oMT8tUoCD1OtsfNUtXm35tFi97nzeLTUe7N79tbstmQ+UiGHEaVC2CYHFimxf+Cd76QXzZ2z9KPfee8gpFg8xC0cCEzr1zh1mS+fs37HXPfzL+ccEoOPFhaG+Bkqner7Wu2iNwaBP4/JA/EnBN6F5PXzMiIiIiIiIiIiIi0i8UjCYiIiIiIiIiIjLA2ILR/E7qt/uSXYwfiYWTBjBk+4X8fc0WvtDT4C/bvu4ejmHb7/0dOBZx0xu/p8FxIiIiItmo3W1nddNDnnXlweFMLZiVUX/2Y72hfgxlT0ZzMKHQPnzEiCXU93Tfpdsu1XG47fg3z5ef8ZyOJltIX6sbIebG7IFvztA+TxQRERERERERGfR8AfAV2utzK5K3L2wwAWs29e83i83ID0DReNjyB/DlQN05UDI5+ZjJBJJsy9HSuMYsa/+nv2cyMBzaCPdP6nxcPBH2v9n52J8HbjvEWlP3lVsF4Z3J1ymbBSXTTFBf8QTY9zps/KW5bXwRChpMYF/NitQhbSIiIiIiIiIiIiLSYwpGExERERERERERGWCiHd+E3E3ASf0Pl7aL3cFcwJ8sxCrHCaWe3CBm23c9D17wDlRIDEbzHre/A8fSHT/dADURERGRgeDVg8/TFN3jWbekdDk+x59Rf/ZjzKF9DOUmDUZzcByHkC+XllhzQn3Pg4vTa5fq+N8aIJblQdO2IGgXlza31Xpcn+wcU0REREREREREpFeUHWOW3pA3onf6kf7TNRQNoD2D/51IFYoGJvys8UXY8HPv+kPrYdW5nY8X3A1lMyBYDE4QcsrgnTth2wPQsg0mfRaqToCCkenPU0REREREREREREQUjCYiIiIiIiIiIjLQRN02z/JgWsFo9ovxI7GwPazLycXn+NKb4CBlCwro7eCF7sEC9nH7Nxgt/eCIoR3qISIiIoPLyqYHPMsDTpAFJSdn3J+C0XrCAcy5Te8Go6UZ/Jui/7DHnMB+XJ8tkp0rJgvRzvbANxERERERERERkTijLoQNd/f3LGQwefrSFPUf7rxfOh1CFRA9BIEiCL8L+CBYBKUzoO59MOJUcJz0xj60GZo3mwC2QxuheBLUrDDtY+3gtoH/8OcQrfsgUAA+XUooIiIiIiIiIiIiA4PezRQRERERERERERlgbMFofif123224AUwQQC62N3Otu9s+ywVW7vugQnZGpaRSXCE67o46f7jroiIiEiW2h7ZwpvNr3jWzS1aRKG/OOM+Q44lBNcd2sFoLq61ruOo0naO0tMA4XT3ear+bfXZH4yW7FwxSYh2knYiIiIiIiIiIiJZp+YMmPBPsPZ7/T0TGYqaXrXX7X4a3v6Rue/PhfbD78nm15vwMwBfEEJVMGw2bP1j5uMHCqByCdScDi1bIX8kFI6F4olQONqEqfn8qftxXdj/pumvoD7zeYiIiIiIiIiIiIikQcFoIiIiIiIiIiIiA4wtGC3gBFO2zXFCODieQQORWNgaBpDtF/EfDUcreKF7OIZt3/c0kK23pBvM5hKjzW0lxwn18YxERERE+taqpgetdUtKV/Soz94O3x0skgWjdUSj9XaAcLrtUq3XYg1Gy894TkdTsnO+SKzFut06VxQRERERERERkQHFcWDud6FiAWz+vQmH2v10f88qfTnDIFQBgXwoPxbevi2z9mWzoXiC6UPhcNmrvcv7sR2haACxNvOa3bq1Z/1GD8G7D5ollfyRMGwOVC6C3U+BP88sW/8I4e3x6467Gnb81cw1VGmC1/LqoGAUDJsF4Z0Q3gFFE0zZwXfg4DoIlpoQuGGzzLZFdpvAtZxh5n7Ty2ZflEyFkilQdowJhxMREREREREREZEhQcFoIiIiIiIiIiIiA0zUjXqWpxOM5nN85Dghz1CucKzFGvJlCx0YSkJO74ZW2IIFuu/r3g586C2ZjB+JtZDjUzCaiIiIDFzhWAvP7H/Ms25U7nhG543vUb+2UKn+PtbLZo5zOBjNcnwecXt2fJ7ucb0t4Pi9emswWnYHiCU754voXFFERERERERERAab0R80C0DLDvh9tfd6+XUw6Vpw26HxRWjeBDtXmZCm6tPgzW97tysYBedsgFgUNv4Snv0oxFp7Pt+8WtOfr9tlYMmC0U5/CUpnQNt+EyYV6PblDXO/C64LTa/Cuh9D9CDUrIB37oJt93v3Oe+H8PzHvesuOAS/KrDP58y1sP5n8Nat0NoIReOhcCyEymHDL+ztpH80bzLLlt+nXvftH3VptznzwL6eqFgIs79tXkst20xoWm4V4Jjb6AETvLbjL3BwPQyba15zzVuAGOQOh8heyBsOweLOft0YOL6+n7+IiIiIiIiIiIikpGA0ERERERERERGRASbqtnmWpxOMBhDy5RFpT7yYP+KGk4R1ZfdF/EdDb4dWpBssEHJs4/Ys8KG3ZBIIF461UERpH85GREREpG89t38l4VizZ90Jpaf3uF97CG7/Huv1N9d1rXXO4Vvb8XlPgovb3aj1PCvT/m2vk2wPRvM7AQJO0HM/RGLhJOcv2b1dIiIiIiIiIiIiKeVW2utqz4JJ19jrbcFo+fXm1heAhkvMEovCX5fBzsczm1/1Mljw88RQNICp18PrNyeW170Pymaa+zkl9r4dB8pmwNz/iS/3CkarXgYjTvPuZ+SFicFrXQVLoHg8zPwqzPjK4dCqLmFUde+DJ863txfpbvdT8Of5vdtnoACih8z9ykWQVwP7/m7Ky2aCEzBhiWXHQMk0EwIX3mley4ECwAF/jglr84XAHzLhg3k1JojN5+8cy3Wh5V0TWrj/H6a+eGLvbUtrE7Rsh6Jx3r87REREREREREREBgC9syUiIiIiIiIiIjLARN2oZ3nASe/tvlxfHvvbGxPKw7EW60X+tsCGoaS3QyvSDaGzjuv2LJCtt2QSCNfT8DgRERGRbOC6LqsaH/SsK/AXMadoUY/7th9jDvXjJ3swWkc0Wm/uu946to26bdbztWwPRgOzT6PticFo4VhLkvMXnSuKiIiIiIiIiMgA5/igbBY0vphYN+qi5G2rlsDOVYnlEz3C1HwBWPQruK8WYim+qOHi2OG5OcnXq3ufdzBa/XnJ2yVTe6YJaQrviC8fdzUUjoYJ/wxruwSphcpNQBtA+bGw57nEPqff2HnfceJD0QCGLzUBUd33S/5IOGc93OMnYyc9Cn89JfN2oUqI7Mq8nQx8HaFoALueiK/b8+zRmUPVEhM02NoIhzZCy1bw55twtWAh5NVC8SSIRWDz700428R/horjoHUfvHw9bLynsz9fCKbfAFOu6/x94rqw7U+w+bfQvAVqzjB9OD7zM7hztSkvm2FC4LpqbQTHb36GY+1AzPzsioiIiIiIiIiI9AEFo4mISK/YtGkTt912GytXrmTt2rU0NjbS1tb5weSdd97J5Zdf3n8TFBERERERGUSirvc/yAac9P7RLFmAgC3kayBcxN/XugeWdehJQJnrutZ93f35sY1rC7E7WiJu+uMr2ENEREQGsnUtf2db60bPuoUlpxD05fS4b+sx5hA/fnKTBKM5fRCMlsmxdbJg5GT95PryM5pTfwg5uRziQEJ5xA3bQ7QdBaOJiIiIiIiIiMggMPZKeOFT8WVF46EyxRdjjL40MRgtpwxqVnivn1sJx94Oz14Jli9ZACd1IFqHYXNgxtfglS92lo35CIy6IL32Xvy5cMpqePajsPtpE8Q07Qsw8nDY2pxbTHjT9j+buoYPQWGDqas71yMYzYH69yUfM1QODZfDutvjyyd9zoQ1+UImCCpdEz4NxRPTX78rpwchbEsfhIPrTJhU44sQKITqk+HVGyG8s2fzkKFp5yrvsMVk3n3IXheLwMtfMIvN9kdhzWfN767WxC/aTClQCBM/A9O+BP4caDtofg7y66DpFdj6J/NzPP6TUFBvgtdClVA+14SquW7877zuj0VEREREREREZMhSMJqISD8bPXo0Gzd2Xkzz2GOPsXTp0v6bUA/cfvvtfPrTnyYSyeDDRhEREREREemxdss/xwac9N7uswcItFhDBGxthhJbOFwkFsZ1XZwM/ikv6rYRI+ZZ1z0cI9m4/SmT8XsSHiciIiKSLVY2PehZ7uCwuGT5EfVtO84Ox1oyPsYcTNIJRrMdJ/ckQDiTY9tk/YfbkwWjZX/YdLJzD9s+GgjbJSIiIiIiIiIiktL4T0DbPnjzOxDZY4K/FtxlwnySGXulCcN641sQPWTCuI7/JQSSfFHCmMtMaNYfxkKsNbF+5s3pz9txTGjZ6Etg7/NQMhWKJx95qFDxeFi2GtpbTdBR9zFHntcZlNbVhE/Djsdg+yMdK8Oc70DBqNRjzvuBWW/LfWb/NXwYxl5h6qZ9EV75UmKbmjNMKJTbHl/e8GHIHW4Cm6IHE9vl15nnrbv680wY3prPpp5vh8pFUGP5rKDpdXjr1vT7EulPPQlFA/Mz9vrXzJLM2z9K3VegCIJFULHA/D5t3moCJX05Zn7tERPe2HAZVBxr76e10fTV+BJED0DJNNOPiIiIiIiIiIgMKApGExGRI/LAAw9w9dVX47r2C1S6evzxxznxxBPfe/zlL3+ZG2+8sY9mJyIiIiIiMjhF3TbP8oATTKt99+CtDpFYi/Uif13sbt9vLi6tboSQk354XLLghe792IPsMg9k6029FR4hIiIiks32Rffy4oGnPeumFsyhImf4EfWf63gfY8ZoJ+pGCaZ5jD/YJAtG43Awmv28JvNQ3oxCf5Osm+y4N9eX5ELILGHbp+Ek54q2NiIiIiIiIiIiIgOK48DU62DKv0PscPBOuu1m3GSCuyJ7IK86vXb5dbDk/+Dx07v154fRF2c2d4DC0Wbpbd1D0VIJFsLSB2DP83BwHVQuhMIx6bX1+U3I27QvJNY1fAhe/w9ob+6yfg7M+k8YdxU8/3FoeRdyq2DOd6F8rlmn/jxYf1d8X/l1cMpqeGgOtO6Nrxt7JRRP8A5Gm/pF2PQrOLA2vnzc1fZtKpthrwuWQltTYnnNGbD4N3BwPYTKzTZ1aHzFbE97BEZdBFWLOutcF8I7IVRh5vinKd7jTv0izPwq7H8TGl+G3c+YAMBD62Hz7+zzFTkaogfMsvm3ydd76/sw4nTzM/Duw7BzFebzoySfL+UMg1n/DcNPhO2Pwr7XoOk1aNkG+/9h6qtPgeplUDrd/B3Iq4Xcit7cQhERERERERERyYCC0URE5Ihcd911caFoH/zgB7niiiuor68nGOy8WKeiQh8GiIiIiIiI9JY2azBaem/3JQvailgvdk8/9GuwSrYPwrGWjPZRxE0WmJBeMJpLjDa3lRwnlPa4vcn2WjnSdUVERESyyZNNjxCj3bPuhLIVR9x/smPIiNtCkKEZjJbsupWOXGD7eU3mx56ZHdvaA4rDsWaPFsZACBBLeq7oegfC6VxRREREREREREQGFcdJPxStK18w/VC0DjXLYc534OUvQPSgCbRa8DMoGJX5+NnEF4DKBWbpLQWj4OTH4G//DI0vmdCiWf8NJVPMUnuWCQXLrep8Exlg3q0mfGzLHwAXyo+D439hQuSWrYZnr4Q9z5n+p99onhOAmf8BL1/X2U/5cTDpszDhk/DsVbDjr5BfC5M+Bw2X2uddcyaeYU3D5sGI0+D1ryW2GXe1eQ2WTE6sK5sBZd/yHstxIO/wl7nk19nnNHypuS2eaJZRF3TWRZvh7dth52OQOwImX2uC7e6rM+FRXurfb9rl15twurzhUNAA5cfCc1ebwDWRvvDug2Z5T7Iv3cEEIT770eT1m35lllTKZpvfAfkjTUhjyxbYvxaCxeZn5uA6KDvG/K6qOgECRbDtftjzgqkrbIDKxSb00fEl9u+6cGij+bnOr/deR0RERERERERkCFAwmoiI9Nibb77JK6+88t7jFStW8Itf/KIfZyQiIiIiIjI0tLtRz/KAk15oQq7lgvxwrIVIzHKxu5P9F/H3Ndt+A6z7rSfrdw9MSD5uCzm+/gpGS3+bM90/IiIiItmg3Y2yet/DnnWVwWom5x9zxGMkDUaLhSn0Fx/xGAORm+TiFQdzUZstaKwnx5620C8vMdqJum0EnRyPsb0D1vwECPqyP+TOvk/t54rJzldEREREREREREQkhYn/DOM/Ac1bTDiXwm/sKo6F054BN5a4n7qGgnUVKIAl95nQNBwTPtcRnFYyBU59Ctpbwd/t/d6p/w41K2DnKhNyNPxECBx+L3TpH73n4CW/BsZcDu/c2WWuPpjyr1A+H9b/DJo3ddZVLoKa01P3m0qwCCqPh11PxpeHys0YNoF8mHSNWbqqXGQPi1r8W3t/x/wHPHmRd90FB83zAxBrh1ir2cfrfwFPW8LmVrwCudXw4udh/V2mLFgKE/4Jqk+G7Y/C2u9B277ONgUNJrytcIwZr3weRA/Bw8fa5y2SSuMas3jZtfrw7RP29juAdT+BZy5Pb7z682HYHDjwJuAzr+WcUvP3I2+EWWfnE7DzcROMWHs2hIaZ8i1/MIGSuVUw6iLTrruOn8FDG2D3UxAsMeGNwaL05iciIiIiIiIi0kcUjCYiIj32wgsvxD0+//zz+2kmIiIiIiIiQ0vUbfMsTzcYzRa+EImFCVsu5E8W2DBUJA+t8N5vNrb97DVOsnHDsRaK8PiHtaMgk8CJZNsrIiIikq1ePvgc+6J7PesWly7H1wsXqNmCqCDzY8zBxR6MRkcwmmM7r8l8v2XaJhILE/QlBqO1WPrJ9Q+M8DD7uWKLdR/pXFFEREREREREROQI+YJQ2NDfsxg4evLefG6Vva57KFqHshlmOdI5HHu7CWHb+icTTDb2is7ws1Ofgrd/BPv+ARXzTcCXr5cu9Zv5DVh5BrTtPzxnP8z6Fvh78OV7Yz7iHYxWfUrydiNOBV8IYpH48vJjO0PRAHx+6Pi8pPJ47758QRNyFiyEBT81S3fDl8L0L0PLdrOvA/lJJueQ/LOIo2T0pbDh7sTyQIEJcBMB2Pwbs3T32lcz6+f5T2Q+dv355vfHvteheAJE9prgyNY9EG2GfX83v+NireDPM7e5VRCq7Lxta4I9z0P0IFQtgRHLzXoH10PpNGhtAlyzbkd4pYiIiIiIiIgICkYTEZEjsGPHjrjHdXV1/TQTERERERGRoSPmthMj5lmXdjCa431RfsQNE3G9w65ykwQ2DBW9GYxmCxVz8BF04v/pNnlYRvrhZL0t4qa/zf05TxEREZGeWtn4gGd50MlhQcnJvTJGsuPsoXwMlTwW7XAwmi3Ey3JOk0w4w30dcVsopDix3BaMNkDOp2z7tDl2iDa3NaM2IiIiIiIiIiIiIoIJ/Zp8rVm6y6+FGV/pm3GrFsHyNbDlPhOwVXsGDJvTs76qTzahZIfWx5ePuzp5u5wys92vf72zzBeEaV+ytykcDcPmwt4X4strVphQtFR8QSioT73e1Ovg9ZsTy3OrILwzdft0lEw1YVI252yEgpGw8OfmcdsBaN4CeSMgpxTW3QHPXuHd1uv56HDMN6F0Jjy+3D72yAth0y/t9Sf80Yy/5ff2dWRo6BrItu81c7vz8fh1dvwl/f7e/I69LlAE0QPmfv5IqFgAw2YDDrjtEGszgWrRQ3DwbTjwlglZG3UxVBwLbQdNefMWaNkGG+81ZXtfMKGU9edBjeXnwnUPh7tlEB4Zi/ZemKWIiIiIiIiIeNKZt4iI9NjBgwfjHgeD6V2ALyIiIiIiIj0XdaPWuoCT3tt9tovyw7EW64X8ycK5hoqAEyTgBDyfg3AvBaOFfLk43b750hZk15Nxe0vUbUv6WuxuKId6iIiIyMC0LbKJt1pe86ybW7yYAn9Rr4wTdHJwcHA9osCG8jGU1/7oznZeE4mFcV034bg6mUyDjm3H4eFYs2d5ri8/o/77i22fHojuy7iNiIiIiIiIiIiIiPSzorEw+V+OvB9fEJatgueuhh2PmzCvyZ+Hkeenbjvjq1AyDbb+EXJKYPSHoHJB8jbH3wuPn25Cj8AEpc370RFvRpzas7yD0cb/E2y4Gw6sTawLlkJbU/pjjLwQNt0L+/7uUemYALS4/ougZHLn48Kx9r6X/A4ePtYERcV1G4CxV0LLu/a2s75lgvJswWjjroLaM03g1L2Wa4TGfRxm3ASvfsWEp0X2QNE4qDwe9rwAjWvs44vYdISiATRvgk2bkgf4Aex/A968JXXf635sllRyq81teHt8efUy8zM57ipYfxds+AVEdpu6k/4CFfPNz+PB9eA4sHMVtIehaglUHJd6XBERERERERHxpGA0EZEhwnVd1qxZwxtvvMHOnTuJRCJUVlZSW1vLokWLKCxM49tzuonFYn0wUxEREREREUkm6rZZ6wJOeoHVIV+uZ3kk1mINX9DF7kbIl0e0/UBCeaahFfYAusTnJugL4idAO4lBZBG3f8Iyemt7RURERLLV6qaHrHUnlK7otXEcxyHky/UM2uqvENzsYA9GczCBZ7bwZheXVjdCyPE+7/GS+fGt9/q252ygnE/Z9tm+6F57mwGybSIiIiIiIiIiIiJyBPLrYOmf2bgopgAAIABJREFUwI2B40u/nePA6IvMkq6isXDmG9D0GvhDUDTB9NObyudDw2Um4KhD6QwY/3Fz/9Ub4tcvGAXH3QWPLzdhRx1qz4a8anj7tsQxRn8QfAF4+frEusrjTeBcMhXzvcPYChrMXOvPg433xtfVnQuhYcn7HTYbcofb632hw7cBKJ0OTa8mrjPqQsitgnnfM4uXlneheYvpw58L/5vkORx3NbxtCb+rOgF2rrS3FelN3QPROmx/BHgE3v5hYt1fT07db+ViyK+H4klQNvPwz7/PBEYWTYCcMmjZZoLV/LnmZzyyG1obIb8G2iMmPHHbA4f7W2TCFWNR87N6aBPgQttB2Pu8uR15vvn9JCIiIiIiIjKAKRhNRGSQ2717NzfffDN33303u3bt8lwnJyeHk046iRtvvJH58+db+9qwYQMNDQ3W+hNPPNGz/M477+QjH/mIZ91NN93ETTfdZO3zscceY+nSpdZ6ERERERGRoSbqJoZjdUg/GM37wvUD0X24lgACW5jaUBNycjlEYjBapqEVmQbQhXy5NMcOevTTP2EZGQdHuEM51ENEREQGmnCshWf3P+ZZ15A7kZG5Y3t1vJCTS5jE46VMj7kGE3ssmgmTg+TnKJFYOKNzmN46ng/Hmj3LB0wwmmWe+9sb7W0yCKATERERERERERERkQEuk1C0Ix2nbEYf9u/AcXeYcLHdT5lgopHnm+ChqddBeAes+zHEIlA6Exb9GorHw8mPw1s/gJatMPwkmHwtHNpowoqat3T2P/EaE/A2/uOw7UHYtbqzzpcDU7+Yeo7+XJh6Pbz0r10nDtNvMPvn2NvBdWHL701V3Tkw/w5zPzQMhs2FvS/E9xmqNKFsTgCCJdC2L3HckR/ovD/mCljzmfj6wnFQtST1/PNGmKVD5eL4/dBh+k0mZM1m3g/hT5NTj9fdol+b53TnE/DCJ03AW6jChFMNmwsH3oSK46G92Tx3oXLzOBYx+/fZKzMfU8TG67Xf1/72afN7pOEywDGv//J50NpkAtOiB83vgmFzTfhaV64bH0gZPQSO3/QnIiIiIiIichQpGE1EZBC77777+PCHP8yBA4kXbHfV2trKQw89xEMPPcRVV13FrbfeSiCgPxEiIiIiIiLZKOq2WesCTnrncraAAK/grc42A+NC/r5mCzSIuJmFVtiCF2yhAvZgtP4Jy8g4GG0Ih3qIiIjIwPPsvsesx2tLSk/v9fFCvjzwCJ7qrxDcrOAmi0YzkgWfhWMtFFOa9nCZHq/aXh/W4/wBcj5lO99JFtA9ULZNRERERERERERERCSO44O6s8zSlS8A874Hs/8bWvdB3vDOuor5ZumqaByc+ixs+pUJSRt+ItQe7jOnDE56BN65E3auMmFkYy6DiuPSm+OUz0NhA2z+nQlUG3Ux1Jxm6oKFsOheaA+bz1UC3d6vP+YbsPJsE/zVsb2z/hN8h794s+5cWH9XfJu8EVCxoPPxxH+G1kZY+10TolZ5PCz4ec8C8mrP8g6HGnkBuO3ebXw5ZvtrzoRt9yfWVy2B3c9ArDW+3PGZIDaAqkWw4hWIHR7D509vvhUL4I1bzPbXnA6jLzX77h7Ltte9D5b8zozz9o9gz3OQO9wEseWNgMaX4PWvpTe2SG9pD5vXY28ac7l5ne9/w/xeyBthAtZ2PWF+VvJHmqA1X44JWswph433mt83FcdBw+VQMikxfM11TQBboCC+XERERERERIY0pd6IZJtYNP5bQqRv5NeZDysGsTvuuIOPfexjxGKxuPKxY8cyZcoU8vPz2bRpE8899xzt7Z0fItx2221s2rSJP/7xjwpHExERERERyULJgtH8RxiM1tttBiPbRf+ZhlbYgtRs+9kWUGALXuhrGW+vgtFERERkgHBdl1VND3rWFfpLmF10fK+PaTsGzDR8dzBxsQejOZh/hLcdI0PfH6/a1rcdn+f58jPqv7/07Fwx1AczERERERERERERERHpZ/5cyEvzffP8Gpj0GUs/IRj/cbP0xMjzzWLjt8yx+mRY/gJs+g3EwiaYrGsg26z/gn2vw94XzOOcMlj06/hrrRwHZtwI028wAUuBI/i8Y/wn4N2HYcdfOstmfLUzIKl4kgla6qr+/Wb/jfyAdzDaxM9A3m9g4//Gl49YHh9oB+kHonUomQLzb0ssL5sNjWsSy8d+tHOcCZ8EPhlfP/I8eOv70Lo3s3l4Of0l+Ns1sHNlZ1mwBGpWwMZ7Mu/P8ZtwupKp5rb789ATBQ0Q2Q3RA0fel2SXd34a//jA2s77W+6Lr1vzufjHO1fC37/Zs3Fzh0N4Bww/CUZdCIFCE4pY0AD5taa+PWJec74cwIG86p4FOYqIiIiIiEjWUOKNSLZp3gJ/aOjvWQx+Z6+HwtH9PYs+89JLL/GJT3wiLhTtmGOO4dZbb2XhwoVx6+7atYsvfelL/OhHnd8A8dBDD3HDDTdw8803x61bV1fH+vXr33t8yy238J3vfOe9x/fccw/HHZf4zTUVFRUsXboUgGeeeYaLL774vbprrrmGz3zG8gEQUF1dnWJrRUREREREhpaoG7XWBZ1gWn0kCxDozTaDkS0oINOAMluQgi14zRqW0U/BaJlub38FuImIiIhk6q2W13i3dbNn3fElpxD0pXfMnQl7+K6C0bx0BKMlC/HKOOjMzfR43nt923Gv7TnONpkGowWdHHxOhhcSiYiIiIiIiIiIiIjI0VEyGaZ/ybsutxJOfQaaXoLWRig/DoKF3us6viMLRQPT94kPwq4nTZBSxQIonX64fwcW/xYeWw7Nhz+nK58Ps28x90d+ADb8Arb/ubO/unOg9kyoXmaC37b8H+BC9Wmw8O4jm2syDR9ODEbLq4ERp6VuO+ZyeOP/Hdn4/lwomwmnPG4etzZCsNTsQ4BNvzLhZl4+aP/8LUHbAfh1sb2+ZKoJ1vNyfiPklJr70RYTkObPhUABrH6/CcjriWFz4cDb0NbUs/YysIV3mNsdfzVLJsZeATNvhtyq3p+XiIiIiIiI9CkFo4mIDEJXXHEFra2t7z1etGgRDz/8MPn5iR9EVFZW8sMf/pBx48bx+c9//r3yb37zm1x88cVMnz79vbJAIMDo0aPfe1xaWhrXV3V1dVx9V4WF5gOSDRs2xJWXlpZa24iIiIiIiEiiqNtmrQukGYyW6cXuPW0zGPVWaIUtSMEWQJdtYRmZb+/QDfUQERGRgWVl44Oe5Q4+FpWmcUFDD2RbCG626whGCzhB/ARoJzE8OtN9l/n63se3mR7nZ5tMA9wGynaJiIiIiIiIiIiIiIgHnx+GzTmK4wVh+FKzdFcyBc5+B/augWARFE80gWwAgTw44Q+w7QFofAnKZkHtWWb+vqAJVYseglgUckr6dhsmftoENK39HzNm6Qw4/pdmHqlM+BRsvAda3u0sG34i1KyAFz9vb9fV9JviH+eUxT+e9iV49cbEdmM+ml7/HYJF5jnZ93fv+pxS73KAYJfnIJAHgfrOxyNOtwejTbsBXvuKd92pT0PFcfFl79wFL3waogc6yyZfC2M+YuYe3mnGanwZdj4Oe//WuZ4vxwTIdQ+Ry683z2+sFRlE1v0Edq42gYJ5I/p7NiIiIiIiIpIBBaOJiAwyjz32GGvWdH77SHFxMb/85S89Q9G6uvbaa1m5ciX3338/ALFYjG9/+9vccccdfTpfERERERERyUxvBKNlevF6wAmk3fdgZ9t34V4KUrCFYtjKMx23t0RcBaOJiIjI4NPUtoeXDz7jWTe9cC7lwb75BulsO9bLBi6xJLXOe/dyfXkcih1IWKOvj1cjrvdzE441e5YPlACx3AwDsRWgLSIiIiIiIiIiIiIivcYXgIpjvev8Iah/n1m8BAr6bl5dOT445maYcRO07oPcivTbFo4xAV9v3wYH3oKKBTD+UybY652fwr7XO9f150N7t8+d/Pkw+oPJxxh1sQkXc7t91tbw4fTn2WHyv8IzlyeWVyw08971ZGJdyTRwnMTyDjWnw5rPJJbn10PJVHu7glGJZWMuM9t7aKOp9+fE1+dWQcOHzGLjutC8CXDMHBwH2iPwS8tnYKFyOOF+eOajsP8f9n4l+xxYC2/fDtNv6O+ZiIiIiIiISAYUjCYiMsjcddddcY8/9alPUVNTk1bbb3zjG+8FowHcc889/OAHPyAUCvXqHEVERERERKTnkgWj+Z303u4LOZldlJ/p+oOZ7cL/TIMUbCEXtv5tQQr9FTiWcXDEEA71EBERkYHjiX1/JmYJ5FpSenqfjZttx3rZwHXtdV2vpQj5cr2D0Xrp+NzG1r+tn1xf8i8wyhahDAPcBkrgm4iIiIiIiIiIiIiISK/yBTMLRetQMApmfj2+zF8Oy1bDujth32swbC6M/ShsfxRe+jfY/waUzoR5P4T8uuT9F0+Axb+HZ6+EyC4IFsOsb8HwEzKfa93Z4M+F9m6fi428AGpWgC8EsUh8Xf15qedXdQLsXBlfPu4qGH4iOH5w2+Pr8usht9q7P38OFI9PvS02jpMYuuYPQV4NtGxLXH/u96HiOCieaA9Guzhm+o3sgT3PwY7HIVQBvhzIKYNDGyBQCLEwvPyFxPb158Pm30DZbGhc0/Ntk0Q7HlMwmoiIiIiIyACjYDQRkUHmiSeeiHt86aWXpt126tSpzJ49mzVrzBun4XCYv/3tbyxcuLBX5ygiIiIiIiI9F3WjnuU+/PgcX1p92MK3emv9wcweWtE7QQq2fW0Lp+uvwLGMt9cNE3Njab9GRURERI62qNvGE01/9qyrCtYwKX9mn43dW+G7g0uSZDQ6k9Fs+663gs5sbP3bg9EGRoBYpsFoma4vIiIiIiIiIiIiIiIiHnLKYPLn4stqzzRLrM0EsaWr7myo3Q7NmyGvDnz+ns9pyR/giQ9A2z5TNu5qmPBPps9Fv4YnL+gMTqs5E6b8a+p+l9wHz10N2x4wwW1jPwZTrwfHB6MvgfU/i19/0mfjvznpaKg7B976QXyZPw9GnGbuj70CttyX2K5sdudcQ+VQc7pZbKZcB1vvh0PrTSBeZbfr9/43yXZ/0E1ef2GLeW62PwprPmdeDx1GXwIb700MoRvsWhv7ewYiIiIiIiKSIQWjiYgMIo2Njaxbt+69x6WlpUyePDmjPhYuXPheMBrA888/r2A0ERERERGRLBJ12zzLg076//wUcIL48BMjvX9s0cXunWz7ItMghYhrCUazBKBlW1iGLfAh4AStr9FWN0KuZftERERE+tvLB55lf7v3P0IvKV3epwGv1hBcyzHjUOAmCUZz4oLR+ja4uMBXxKHYgbTXtx0nD5RzqpCTYYh2huuLiIiIiIiIiIiIiIhIhjIJRevg+KBg1JGPPWIZnLcLml6B/FGQW9FZV3cWvH8n7H4GCkZC0YT0AsxySmHRLyHWbubZtc38n0D+SBM6FiyChstg/NVHvh2ZmnYD7H4aGl8yj31BOPY2yCkxj6uXQagCIrvj2zVcmtk4jmP2o03DZbD+rsTyydea27FXwLqfJNZXnwr+XLOMPB9qz4bILhPW5j/8+d6Mr8IfxniPO/ULMOMr8Ms8iLV6r3Pac7BzlQkbe/3r9m1IV+5wCO848n6SaWvq2/5FRERERESk1ykYTSTb5NfB2ev7exaDX35df8+gT+zatSvu8fjx43Ey/FaMSZMmxT3euXPnEc9LREREREREek/UjXqW+5303+pzHIeQL5eW2KG01s8dIBfxHw22gDJbAIKNLUjB1r/tOeivsAzb/EsCZexp834vIRIL67UkIiIiWWtl04Oe5TlOiONKTurTsbMtBDcb2GPR4vXGvnNd13o8Xxwo5VBresFoUbfNGhKcN0COg0O+UIbrD4ztEhERERERERERERERkR7yBWHYHO+6YJEJT+tRv36PsgDM/KpZ+lNeNSx7CnathpbtULUECkd31vtDcNJf4Inz4cBb4MuB8Z+Cidf07jxGnu8djDbyAnNbc6Z3MNqYy+Mf+3Mgvza+LK/GPm71ySa0bs534PlPJNZXHg/l88ziuvZgtJIpZj8+dxVs+pX3OufvhZyyzsdt+8GfB4c2mr4LG8zrItYOe56Dtd+FPc9C82aItZlrRCd+1gTVOQ7seQHW/9T0013rPvs2i4iIiIiISFZSMJpItvEF4t8oE8lAY2Nj3OOSkpKM++jeZu/evUc0JxEREREREeldtgvtA05m3wyZ68tLOxjNFjYwFFkDyjIORvNe3xYs0FuBbL3FFjRR7E8WjNYClHnWiYiIiPSnrZENvN3yumfdvOIl5PsL+3T8bDvWyw72aDSHzi8F6o1gtKgbJUa7Z11xoIx3Wzd79J/43CR7vgZKgJjP8ZPjhGh1I2mtr3NFERERERERERERERERGZQCeTDiVHt92Qw4ay0c2mxCuQJ98HlgzRkw9Yvw+tfMY8cHs79tAsmA/8/encfHUR72H//O7C3r9CFfMsjGF+bwgc0NxpyOCwRCEiAHOZq7JKGE8kubNnZ+ISRpaBNISEgoDTQl9JcmpKQOkNJgm9MhmBsbbIMNvvAtWedqj/n9MdjSaueZ3ZVWK630eb9e85LmeeZ55pnZtfyMtPMdTf4LNyStZ+jY5EukKe/L3XcgIk1cKu16OLM8MkYae4b7fcN7pWf/SnLSmdtM+UD395Ylo4bLpHCNNP2z3sFo4dFSqDazLFTtfq2anlluB6Rxp7mLn6kflSZfLK3yeO0Sze6xWLZ/HwAAAACAIYMrOAAYRhwn8yYRy++Xi3kqRh8AAAAAgOJJOUnP8qBV2DMQCrmBvVxu4i+FiNX/4AV3e1Mwmnf/pteg0EC2YjEGowVrPcv92gAAAAy2xw4+bKxbXLtswPdfrPDd4cTJMxjNdO4KCZXzO881Qe9gX6/+O1PmfmJ2Rd7jGWyFXSsSjAYAAAAAAAAAAIARbNSUgQlFk9zQsbnflN63RzrvUemKfdKsL3XX2yHp9F9KS/4gzfuOtPj30lm/dUPP8jHvu1J0QmZ/C38sBcLuemyidPp9kh3u3qbxo9KMz2f2M+2T3v03ftT9Wn+WFBmXXX/UB/2D1foqbPoMoyO9tFzavabvfae6pMShvrcHAAAAABSksLslAQBD2ujRozPWm5ubC+6jd5u6Ou8bPgAAAAAAgyPhJDzLg1aooH4KCTvjZvduxtAKJ//gBcdxjCFh5mA07/LOQQobMx1vtSE4QhrZwR4AAGDo6ki16ZlDqz3rjokdq4bo1AEfg2muR7CsQY8Px0csU6hc/ufOby5fHfCe33r17xfGVk5h01E7ppZUfn9jNF0fAQAAAAAAAAAAACiS6DgpusS7zg5IEy90l0LVnSi95wVp10Nu2NfEi6TqWZnbHP1BadJ7pP3PSFXTpVFHZ/dz7FeknSulzj3dZdM+KdXMfneMIems+6U1l0iJJrds3FnS3G8VPuZ8hMwPd9WrN7lLxvY10ugFkh11g+5qTpAsW5pwgRQZLXXulcJ10ssrpC13S6m4G/Z22r+5561lszTmZKlicu6xpbqk9relQ6+721fNcvfVsVMa1ej+Lbz5NSnVJlVOl0JVbj0AAAAAjFAEowHAMDJuXObTEzZu3FhwH6+//nrGen19fb/GBAAAAAAorqQxGK2wX/VFCwg7Ixitm+lcJJ2kkk4ir4C6pJNQWmlD/97BAuawjMEJGzPtt8KuVNAKeb5P/YIiAAAABsvaQ6sUd7xDtM6uXVqSMZjmgPF0pxzHkTUQT8ke4hzHMdb1PBvGebLhNfXc1idErcYQ/OvVf2e63dhP1K7IezyDrZDrP64VAQAAAAAAAAAAgDIWGy9N+7j/NqEqacJ55vqaOdKFa6Utv3BDv+qXSI0fytym/kzp8p3S/rVSZJzbZqACv8I1hW2faJZ2ryqszZ7HpAcazfUVDVKqQ4rvdwPOWjcX1n9P486S5nzVfQ3ssJTukgIRKdEqBSskWZKTlKyg5KSk1jek2EQ3qK51izT6JDfgzUuixW0fqsx/PJ173Nc61SE1XC7VHtf3YwMAAACAHAhGA4BhpK6uTsccc4zeeOMNSVJTU5M2bNigY489Nu8+nnrqqYz1RYsWFXWMI/HmHQAAAAAopmTaFIyWO5CrJ1P4gpdoAdsOd37nLZ7uVDCQ+3XwC14wBdaZXoOE06WUk1LACuTcbzGZjiFiRxWxo0qmst+nfscNAAAwGBzH0WNND3vWVQVqNK/y9JKMI2J5zwHTSinpJBSywiUZx1DiyC8YrfsD8qZ5ciEBwn4BvtWmYDSPNqZ9BhRUyC7sem0wFXKtWMi2AAAAAAAAAAAAAIapyqnSCV/33yYYk8YvGfixhAoMRhsI7du7v+9PKJok7X1cWvN4//robfwSqe0td3FSbtnML0pdTVK03g0/2/oLqW6eNOkvpMkXSzv+W3r15sx+XvoHaeaXpOpZUstGKZ2UGi5120XrJceRvO4ldRwp1S5ZASnAw7gAAAAAmBGMBgDDzJlnnnkkGE2S7r33Xt100015td2wYYPWrVt3ZD0ajeqkk04q6vgikUjGejweL2r/AAAAADDcpZT0LC84GM0q4GZ3Q1DDSOR3439nukOjAlU5+4g75uAF0+vit9+udKdigVE591tMfsFoUTumtlRLdhuHYDQAADC0vN7+knZ3bfesO6PmwpKFWeUK3w3ZIy8YzU/Pj01HDMHChQSjmea2lmxVBqqNbRzHyXggUIdhn9FAeYWHEaINAAAAAAAAAAAAoGwFIlLFUVL724M9kqFr96rsso0/zC47+IK7vPotc18bb8tc33R7YWMZc7I0+VLJDrqBaWMWSvWLpTJ6+BgAAACAgUMwGgAMM9dcc43uueeeI+s/+tGPdO2112rChAk52/7t3/5txvpVV12VFWTWX7W1tRnru3btKmr/AAAAADDcJZ2EZ3mwwA8BmAIEvHCzeze/c2EKVOit0yekwfS65NrvUAlGi9oxY5Ce33EDAAAMhjVND3mWW7J1Zu2FJRtH1GduHnc6VCnvcK7hzJHjU9sdRmYORss/lDdX6K9pfAmnS2Gr++9opjC2crueKiQYu5DrSgAAAAAAAAAAAAAoiakfkV69ebBHgXzsf8Zdept8qRSulWqOk0LV0oFn3UC39m3SpL+QImOlQExqeK9Uf45kWZJll3z4AAAAAAYWwWgAMMyce+65mjdvnl544QVJUnNzs66++mo9+OCDisXMN158//vf1wMPPHBk3bIs/fVf/3XRxzdt2jSFw2F1dXVJklatWqVEIqFQiBR/AAAAAMhHIm0IRivwV32F3MAeKbMb+QeS33kzBSFkb2cOaTD17xdOMBiBY6Z9Ruyo8f1SSDgFAADAQDuY2KeXWj0+XCvpxMqTNTo0rmRj8Z9jjtQ5lDkYzcojGK2QObJp26gd870W6kx3KGxHMta9+6nIeyxDQUHXigWEqAEAAAAAAAAAAABASZzwf6VEq7TxtsEeCfpqx+/Mddv/q/v7jT/s/j5UK4XrpMho92vG0rusx3qo2g1WAwAAADDkEIwGAEPMO++8o61bt/apbWNjoyTprrvu0mmnnXYkfGz16tU666yzdPvtt+uUU07JaLNv3z4tX75cP/7xjzPKb7zxRp144ol9GoefcDisM844Q6tWrZIkvf3227r00kv1uc99TjNmzFBFRebNIRMmTFA0yk0VAAAAAHBYSknP8qBdWOB0tICwM4LRuoWtiCxZcjyCGvINrTBtZ8lWyAp71vm9BnGn9GEZpmOI2DFjkMLIDfUAAABD0RPNf5CjtGfd4tr3lHQsvnO9ETqHSjvmYLQeuWhFCeU1BRy7ob+5gpFrj6x3pts9tyvk2mso4FoRAAAAAAAAAAAAQFmzA9LCW6UFt0g7Vkr7nnbDtFo2DfbIMJASTe7StqWwdpb9bqiaR6BaVshar/VgJaFqAAAAwAAiGA0Ahpirr766z22dd28SWbBggX70ox/pc5/7nNJp96aedevW6dRTT9X06dN13HHHKRqNatu2bXrmmWeUTGbeVH/BBRfom9/8Zt8PIofrr7/+SDCaJD388MN6+OGHPbddtWqVzjnnnAEbCwAAAACUm2TaEIxmFfarPr8b/Puz7XBnWZYidlSdHuEJXmVeTCENUTsqy/ABiYgdMfaX736LJekkjAF9ESvqE05R2nECAACYJJ2Enmx6xLNufLhBsyqK/+AYPyErLEu2Z1Bbqed6Q4c5GM3qkYxmmnt2OXGlnZRsK5BzT8bQXytXMFpmO9NrVW7BaFwrAgAAAAAAAAAAABgW7JA05XJ3OeZT0spZ3tud9ENp+mek302TOnZ4bzN+idS6RWrbOmDDxSBx0lLXAXcplBXMDlPLK2CtTgpUEKoGAAAA5EAwGgAMU5/+9KdVV1enT3ziE2ptbT1SvnnzZm3evNnY7pOf/KTuuOMOhUKhARvbxRdfrJtuuknLly9XKpUasP0AAAAAwHCUdBKe5UGrsOu4Qm7OL7cb+QdaxI55hh7kG/xl2s4U6iBJthVQyAor4XT1eb/FYgqOkNxgBFM4AsFoAABgqHi+5WkdSjV51p1du9QYVjtQusN327Pq/OZew5mTbzCa5RdcFlcsUJFzX3HHPD/3uxbqfU3g9fod7qecFBaMVl7HBgAAAAAAAAAAAGCEGnWUZEekdDy7bsJ5UiAszfyC9OLXvNuf96jkONILX5U23ialOqW6+dIp/yKNXtC93S8NnzeITZQu39m9vv4fpRf+j/e2l213A7feus/dX88xh+uksadJHTul8BgpEJV2/t7d3unxwNvq2W5Z8yvZ/QdiUorPcxaFk5Tie92lUHY4d6CaKWQtwEPMAAAAMDIQjAYAw9j73/9+nX322br55pt17733at++fZ7bhUIhLVmyRMuXL9fpp59ekrF97Wtf0+WXX65f/OIXeuqpp7Rx40Y1Nzero4NfqgEAAACAH1MwWsAq7Fd9hd3szh+o44m2AAAgAElEQVTQezKFL3iFpRWyXa7zHLVjSqSGejBazCcYbWSGegAAgKHnsaaHPMsjVlSnVi8p8Wje3bcxGI2/m/jxCy6LO52KKY9gNMM8NWJHFbRCCiiolJJZ9XEns52pn5idewxDSSFhZ4RoAwAAAAAAAAAAACgLgag05X1u2FhPdfPcEDFJmnSxdzDajM+7Xy1Lmv9d6YSvS+kuKVQjWXbmtpGxUtzjHs5jPpO5PuECSR7BaMEqN0TNsqXZ17lLPtIp96sdyK7r3CPteUyqminVHi81b5AePN67n+rZ0qHXvOtq5kjLXpGeu156/Qf5jQtm6S6pc7e7FCoQLTBQrcd6IFz8YwEAAAAGCMFoADDItm7dOqD919fX6wc/+IH++Z//WevWrdNrr72mvXv3Kh6Pa+zYsWpoaNCZZ56pqqqqgvtesWKFVqxY0eexzZkzR9/+9rf73B4AAAAARqKkk31DviQFrVBB/XCze9+Zzke+wV/G4AVD4NqRejuqllRzn/dbLH4BcBE72u/zAwAAMJC2d27RGx0bPOtOrj5HscCoEo/IZZoLjtQ5lCPHWGep+wnbfuHC+YbKmc7x4XltxI6qPd2as12HR7Cd2768rqcKuf4jRBsAAAAAAAAAAABA2Vj4I6ljp7RnjbtePUs68z/dwDNJqjtRmvYJ6c2fd7eJTZZmfyWzn+AoSYbPFjR+xDs0rPHqzPW6eVLVDKllU2b50Vdlh63lwysQ7bBovXTU+7vXYxPM2055n/Tqzd51jR91z9VJ33eD3faskZykNOtL0qijpWc+L22+w9z3pW9KO/5bWvdl7/rj/s4Nldv8M3MfcKU6pY5d7lKoQIUbkBbpFZ4W8ijLCFirlezCPqsOAAAA9BfBaAAwQti2rUWLFmnRokWDPRQAAAAAQD8knYRneWgAg9G42T2T6XzEnTyDFxxDMFqO12SoBI757S9qx4yhHn6BagAAAKWypulBY93ZdUtLOJJM5jnmyAxGk08wmoocjGaapx7uO2rHDMFoHb7rh5Vb0HS+14qWLIWtyACPBgAAAAAAAAAAAACKJDJaOn+11LpVSnVI1bO7Q9EOO+UuaeJF0u7VUmWjGwZWMSn/fcy+XtqxUmrd3F026zo3hK0ny5LO/p205mKp9Q23bOJSacEthR9XocJ1UqhGSmQ/qFdT3iftXiXtezq7rme42uRl7tLT1I/4B6ONapQmnO9dV3GUNPdb7vdjT5fWftx7u6kfk7bc41034QJ3jPEDUtfBXkuPMq/jHklS7VJHu9Sxo/C2wcpeYWl5BqyFav3D+wAAAAADgtEAAAAAAACAMmIKRgsWGoxmCK/y3LbMbuQfaKbzkW9AmWm7XAF0pv2WOnDMFPhgyVLICpvPz4gN9QAAAENFe6pVfz70mGfd9NgcTY40lnZAPZjCs0ZquKxvLJrVMxjNfK3S2e/5eezdr/kF/3am2z23K79gtPyuFSN2NOO1AAAAAAAAAAAAAICyUNlorrMs6egr3aUvRk2RLlorbfuN1LpFql/sBq15qZktXbJJOrTBDSqrmNy3fRbKst0AsTfuyiyvminVLZBmf0V64gPK+Mv9lCukqun+/Y49XQpWScmW7Lrx57nntmaONO4sae/jmfUzr+3+flSjeR+1J5jrZn9FmmQ41z2lU1KiyT887fDSO2TN69hGkmSru7S/XXjbUE1mWFrvgDWvkLXwaClU7b5nAQAAMCIRjAYAAAAAAACUEVMwWsAq7Fd9hdycH7YiBfU93PU3tMIULJbrNelvIFuxmPYXtiKyLdt4HKbjBgAAKJW1zY+qy4l71p1du8yzvFSGylxvqHAcv2i0bgEroJAVVsLpyqrLP7jYf35uCgrr3b/peqDsgtHyDNEuJGwbAAAAAAAAAAAAAEaMyBhp+mfy2/ZwWFipLfi+1LZNeud/3PXKadLZD7jjOeoK9/vNP5Xie6WJS6Xj/z53n5YlvXeL9JuxmeV2SDr2b7rXF/9O+vPnpR2/d4Owpn9WOvaG7vqxp7ghWonmzH4qjpKqZpj3H6rKPUZJsgPuaxQZk9/2PaUTUlfvUDWPQLXeZfEDUsr7YWsjRqLZXdq2FtjQksK1PoFqPgFrwSr3fQkAAICyRTAaAAAAAAAAUEaSTtKzPGiFCurHdHN/1nZWVDZP2sqQbzCCiWm7XK+JKXgg30C2Yok7pvEXFhwBAABQSmknrceaHvasqw7UaV7VKSUeUSbzHGqkhsuag9FsZV6fROyoEimvYLT8zp1pPn34NTGH1mW2MwejVeQ1jqEi3yA303kBAAAAAAAAAAAAAAxxoSrp3D+44WiJQ1LNsVLPzwo3XOIuhYqMka5KSK/9k7TrD1J0ohsSN35x9zbhWumM+yQnnbnPwwJRac6N0otfyyw//mvSmJO992sFpJrjCh9voeyQFB3nLoVKdeUIVPMJWEuN5M/fOt3no1BWwH2/hXqEpfkFqvUsC44iVA0AAGAIIBgNAAAAAAAAKCNJJ+FZPmDBaNzsnsV0TvINKMsVvGDe79AIHMsdHDE0AtwAAAB6er39Je1J7PSsO7P2woLn08U2VOZ6Q4U5Fi1bxI6pNXUoq7zfwcWW//y2dzvzPLm8rqnyv1bMbzsAAAAAAAAAAAAAwBA1akrx+7SD0pz/4y5+/B7afNzfSaMapbd/LQUi0tFXSw2XunXjzpL2Pp65/cSLpHBNv4Y94AJhKTbeXQqV6nSDweI+4WmmsnT2g+ZGDCclxfe7S2uBbe2QFKp1A9VCdVLNbGn656WxhnC+QqTi0r6npMhYN9CPB5gDAAAYEYwGAAAAAAAAlJGkk/QsD1qF/aov35vzo2V2E38pmM5JPM/gL2PwQo5zbdyvU9rAMdP4D4/PFJCQcLqUdlKyrcCAjQ0AAMBkTdODnuW2bJ1Zc2GJR5ONcNnezNFoljKfyHs4wKy3vOfnjv/8PGKZ5v/d7ZJOwhhiHSuza6p8rxXLLfANAAAAAAAAAAAAAFBGGj/kLr2d8Utp9TKp6WV3ffQi6ZR/Le3YSi0QlWIT3aUQjiOlOrzD07JC1jy2MXxmfURIJ6T4XneRpP1rpTfvdt9v486QxpwiVc+UAjEpOEoKVrpf7bBkWeZ+3/qV9Nx1Useu7rKTbpUmXCDVHJvf2BIt0p7H3PC2qunS3qeldFxqfUOKTpQmLXXLAQAAhgGC0QAAAAAAAIAyYrrZPmiFCuonYAUUssJKOP5PAjMFNIxkpnNiCgzL2s4UvGAIdMi931IHo3nv7/D4/ML04um4YoGKARkXAACAyYHEXr3c+qxn3dzKU1UbGlPiEWUzh+/mN8ccbhyfYDT1DkbrZ6hcX+e3Pfv321e5BYjlG45NiDYAAAAAAAAAAAAAoOQqGqT3vCgdet0Nhqqc5h9ENZJZlhSscJeKhsLaOo6UbM0OS+sdoNY7YC1xOFQtPTDHNNgO/NldTKxgZlDaka+jpP3PuOevt3VfNvcXGSPFGqT4HindJcX35x7jOkkTzpfmfls6sE5q3ybVnihN/gt3HJL7+qbj0rb/csPfxp4qjVmU2U/63XsW7MLuUQAAACgmgtEAAAAAAACAMpIyPH0raBX+q76IHVMilSsYjZvdezOdk/yDFwzBaDlC6Ez7LXVYRq7x+71n4ukOgtEAAEDJPd70sBx5f+Bycd17SjwabxHLMNczhOoOd45jDkbr/XlmY6hcHufOcRzj/PZwv8aA4h79d6bM1wIxu7zmvyErLEtWjnA6QrQBAAAAAAAAAAAAAIPEsqSa2YM9iuHNsqRQlbuMOqqwtk5aSrSYw9RMZfEDUqJZyvF5hSHNSbrHkGguTn/x/fmFofX2zv+6S2+BmBQZJ7W/7d3uwrXS/j9Lr39fan3TLas5Tjr2b6SjPuAGEsqRaua43zdvkNKdUuUxbvjaroelZJtUv1iqOqbwcQMAAPRCMBoAAAAAAABQRpJOwrM8aBX+NKaIHVVryv8Pr9zsni1iGYIR8gwoixsC1HKF0Jlei3wD2YrFPP53g9EM50caucEeAABg8CTSCT3Z7PFBP0kTw1M0I3Z8iUfkzRi+VeIQ3KHCL5TLUmYyWn/OXcLpMu4rkisYrce82G9OXm5h05ZlKWJHc15ncK0IAAAAAAAAAAAAAACyWLYUrnEXNRbW1km7oWKHg9JyBqr1WE8cGoijGV5SHeZQNEn6n1Ozy5pfldZ+3F0KMXqhVDFZsoLue6JqphSuk2Z8QerYKb34Nent/+duG6yUjvs7KTrBfS2j46TJl0qpTskKSJExUvN6qe0tafQCKdUubf6Z+5pH6qX6s6Sxp0nBCslxsp+6CAAAyhbBaAAAAAAAAEAZSRiD0Qr/VZ9fgNVh0TK7ib8UTOfEFBiW73a5ggXM+y1tWIZpf93BEeb3TL7nCAAAoFiea3nSGAZ8du17ZA2RD8LlE741svg9/bd3MJr3/DOfAGH/QDP3Ncln/u/3OkXtipzjGGoidizn+eNaEQAAAAAAAAAAAAAAFJVlu+FZ4TqpclphbdNJN1Std6Bawitkrdd6snVgjmckO/Csu/T2/A3ZZclW6cW/K96+Q7Xueygy+t33U6+vkdHeZYEKQtUAABhiCEYDAAAAAAAAykjSGIwWKrivfG5kzxXWNRIZgxGcTqWdtGzLNrZ1HMcYLJbr9ehP4EMxxR1DMJp1OBgtYmxb6rECAAA81vSQZ3nEiurk6nNKOxgfBKNlyj8Wze/c5Q4Q9ju/h/vNp//OdLvnNgEFFbILv1YbbPmEaHOtCAAAAAAAAAAAAAAAhgw7KEXGuEuh0olewWkHpd2rpA3fK/44MfASTe7StqWwdnaoV2Da6DwD1mrdtgAAoOgIRgMAAAAAAADKSMpJepb3JRgtnxvZ8wlPG2n8zluXE1fUMp+zpJNQWumC+/Wrj6c75TiOrBI9ocoUHnF4fLYVUMgKK+F0ebTNHU4BAABQLG93vqEtna971p1Ss0SxQEWJR2RmCsEt9VxvqHAKiEYzBhfnESrnNz893G9+wWje+4oGyvN6Kp9rxYjPdQ8AAAAAAAAAAAAAAEDZsENStN5dDpv0HqnhMmndddKBPw/e2FA66YTUudtdChWsMoeo+QWrBaukEfa5MAAACkEwGgAAAAAAAFAm0k7KGKrVl2C0fELP8rkhfqQxhVZIbviC33n1C17Ida5NgWtppZR0EgpZYd/2xWI6hp7jj9oxJVIEowEAgMG1pulBY93Zte8p4UhyM80x00qXdK43dJiD0axewWj5BJeZmALNevbrF1qXq59yDZrmWhEAAAAAAAAAAAAAAIx4406Xlj4jtWyW9r/71Q5LkbFSxRSp7kQp2SYlW92viVYp1eZdlmiVNt8x2EeEgZJscZf2twtrZwXMoWm5AtYCkYE5luEgnZT2PSUdeF6qmSONPVUKVkrxvVKoJvvcOWnJst1/px27pIpJUnCUuW/73ZiedEpS2g1XBAAMCILRAAAAAAAAgDKRdJLGuqBV+K/68rmRPWII4xrJ/M5bZ7pDNT5tfYMXcpxrv/3G050K2aUJyzAdQ8/xReyoWlLNWdsQjAYAAEqlPdWqZw897lk3I3a8JkWOKvGI/EWsoTHXGyrMsWiS1espqaZzF/eZex/ZxvGenwYUPBI+bQxGczqVdtKyLds8Ry7T6ym/MOhCtgEAAAAAAAAAAAAAACh7VdPdpb+6Dkpv/7/s8tN/KbVskl5e7t1u4e3SqKPcMKxHzvTeZuJF0mm/kLY/ID3z6ez6iilS7Vxp58q+jx/F56Sk+D53KVSgwiNEzSdY7XB5qMYNARuuWt6QnvigdPA573orIMUmSe3b/PupniUd8xk3IK1jl/TO/0iHXpe6DnhvHxkjTVwqVU6T9j/rBihOeZ/UcGn3+U51Sa98Q9rzuBSulWZ8Xpr07gNe0ynJSbj76Njlth+9wG3rOFLbFrcuFZcOrXdfz4bLpNjEvp0nACgTBKMBAAAAAAAAZSLpJIx1h2/aL0R+N7vnDk8baaI+5y1X8Ffc8QlGy3GufffrdKhS1b7ti8V0jD3HZ3pv+QXDAQAAFNPTzX9UwunyrFtct6zEo8ktmiN8t1RzvSHD8Y5Gs2RllfkFl+ViCk/LmNv6hNZ1OXFFrZg60+2e9bFARc4xDEV+1x6FbAMAAAAAAAAAAAAAAIB3Tf+MtO0/JSfdXRabLE25XNq92txu2selYIXbLjbRDU3qrfZEKTpOmv4p6ZhPukFrbW9LdXOlaH33do4jHXjWDeSqOV4KVUrxA9LeJ92wpdp50thTpa33SnvWuPvc9uvMfY09TQpWuWFxiWZp1x+kZJuU4nPiJZVqlzrapY4dBTa03FAur9C0XAFrgZhkZX9+a8hItEqrlkqtm83bOKncoWiSG0L2/Ffy33d8v/vvpqetv3C/BiulUFX2v90d/52739gkqWOnd91LX5fOfkByklKyQxp3hiTH3ZfjSJ17pJaNUvVs9+dDvnY+JL349264XN0CaeFt7/YtN3iu/W0pOkGKTXDfFyZdze5YTEF8Tto9z21vuT9XwjX5jxHAiEEwGgAAAAAAAFAmkk7SWDdQwWjc7J7N77zlCv7yC07Lda79gtNKGThmOoZIHuERpuAJAACAYko7aT3W9JBnXU1wtOZWnlziEeXmN8f0C9cdrhx5B6OpkGC0HKHFftv0nHv7ByN3KGrHjPPxfK65hqJ8ArIJ0QYAAAAAAAAAAAAAACjAhHOls34rvfotqWWzGzS08EdSICrVL3bDxpItmW3GneWGokluuNCiO6THL88MV7PD0tSPda9btlQ9y116syxpzKLMsshoqeESSZd0l838grscluqS7KA54OiwfWul3Y9KrVul2uOlUVOldFx64gPmNstelg6+KMX3SVv+zQ1j6qtQrXTsV6TIOKnrgNR1sPtrvOf6ATfMbURy3j0PBwtvakd6BKb1Ck3zC1gL17rvn4H29q/8Q9EGS7LVXfrCFIomuf9mHjnDu86yM39OTL7E/fkRqpLsd+89CkSldEra+4S072k38Gzbb6XOd7rbHXxOeuTMvo29p+pjpeh4ac9q8zbRCdLs66TwGCkQkYKjpPadUmSMNP5cN4Rx/5/c91X92W7g3Fv3Sa1bpNEnSXP+xm0DYFghGA0AAAAAAAAoE0knYawLWoX/qi+/m93L80b+gRSwAgpZYSWcrqy6XOELpnpbds5wO9+wjDxCH4qlP+ERcad04wQAACPXhvYXtDfxjmfdWTUXKdCHufNA85ubl3KuN9R5PW/UdO7yCQ82B5pFPb/3al8jqTPd7llfrkHTBKMBAAAAAAAAAAAAAAAMgIZL3aW3YEya/13pzz3CyIKV0tybstsv+YP07JekQ6+54WPzvifVHjew4w6E89tu7Knukq/Ri9xjqD3eXZ/9ZTcIqWWjG6QUGy/9Z62UaM5uO+YU6aK17ved+6R0l1QxKf99p7q6A8Jyhaj1rvN54P2wlo67oVmd3p/N8xWqNoSo+QWr1bn/DiyvT415OPh84eMarnqGoknSjv92l8FyaIO7+Ol8R3rhq/n192qv9Z0rpTf/VTr3Ee9QSABla+h94hsAAAAAAACAJ79gtL6EO+RzI3u53sg/0CJ2VImUVzCaf/iCX6iYleMPdiErLEu2HKWz6vIJfSiGpJNQSt5/yI1YucMjSjVOAAAwsq05+KBnua2Azqi9oMSjyY/fXG8kBqM5cgw12XNm0zVL0kko5SR9r5VM8/eeocT5hNaZXqNyvZ7KJyC7XI8NAAAAAAAAAAAAAABgSJrxeanmeDe8KFQtHfUB74CfCedLF6+X0knJLpO4kPHnSrsfzS6f9cXssopJmQFnM6+VXv1W9nYzPt/9fXRs4WMKhN3gtdj4wto5jpRsywxMix/IL2AtcajwcQ4XiUPu0ra1sHZWMDsszRSm1vTSgAwdZaJ9m7RytjT1Y1JwlBsON+4MafRJUrhWik7IP2QPwJBRJjMdAAAAAAAAAEmfJwuFrFDB/eVzI3s+4WkjUcSOqTWV/YfJXKEVpmCwfIIHLMtSxI6qM91e8H6LxS/YrOd7xfS+GYmhHgAAoLT2de3Wq23rPOvmVZ2qmuDoEo8oP0NhrjeUmILRLI9gtFzBZRWBSt96L5lzW/Nc/XD7Do/XTZKidoWx7VDWM/TYuA3XigAAAAAAAAAAAAAAAMVVf5a75KNcQtEkN6iodzBaqEZquDx322M+Jb1xp9S5p7usepYbHDcYLEsKVbrLqKMKa5tOSl1NPiFqPgFr6fjAHM9Q5yTd177n6w/42XJP9/eb78isO+dBaeJSAtKAMlJGsx0AAAAAAABgZEs6CWNdsA/BaPnd7J47sGskMp07v+AwSYr3IxhNcsPsvMMy/PdbLH6hHD2D9kzHMxJDPQAAQGk93vywMVRrce2yEo+mMKZgtFxzzJHE6/NIfgFdnemOfgejBayAQlZYCafLs3+3H+/XKJ8w6qEon9CziFWexwYAAAAAAAAAAAAAAIASm/pRqWO7tP67UuKQG2x2+i/dcLFcKhulC56UNtwiNb8qjV4kHf/3UrAMH1hoB6XoWHcpVLIjMzAt7hOidmT9gBvEZvg8HTDirF4mHfOX0sIfS4HwYI8GQB4IRgMAAAAAAADKRLGD0fK5ST+fG+JHItO5yxVQlk/wgh/TdqUKHPPbTySvYDRCPQAAwMBJpLv0VPP/etZNCh+l6bE5JR5RYaJ2TM0e5SNxDuU4aUNNdjKa33VNrnmyKXSud58RO6pEKjsY7XD/XoF2ucY2lOV3rViexwYAAAAAAAAAAAAAAIASsyzpuL+Tjr3RDe2KjiusfdV06eQ7BmZs5SIYk4KTpYrJhbVz0lKi2SM0LY+AtZT3Z6LKzqKfSH/+vHdd9SzpL9ZLlu2upxPSyyuk12+VUh1S/RJp3nekPyzybj/3ZmnOV6WWTdKh16Snr3HPd19M/ZjUcJm0c6W080E3RDDZJgWiUt0CKVwrJVqkvY/3rX+43rjLfV2nfniwRwIgDwSjAQAAAAAAAGXCLxgtYBX+q758wrjK9Ub+gWY6d6ZghcPijiEYzco3GM0UODYUgtGint/n2x4AAKC/1rU8obZUi2fd2XXLZFnZoVpDiWlOOBLnUI7hKaWWRzCaX0BXrnNnDC62egejxdSaOuTR3p3/5xuwVi5yhZ7ZCijYh2tQAAAAAAAAAAAAAAAAjGB2sPBQNPSPZUvhOnepnFZY21Q8OyzNFKLWu8xJDczx9MXEC6VgpZRsza6bfEl3KJok2SFp7rekE2+SUp1uIJ0k1S+W9qzJbj/l/W7wX/VMdxmzSHrH++GuOuUu6U9/6V13ZYcbgCZJUy7zP57OPdJz10tb73XXq2dLoVp37O3bpcar3fJEq7TxNv++vDRcLm3/rbl+yvukjl3SvqcL7/sw0/ksle33E4wGlAk+qQoAAAAAAACUiaST9Cy3FZDd848xecp1s7u7TX6BXSONKeDAFHx2pN4QmJDveTaFZeQKZCsW0/gtWQpbkSPr5mC00owTAACMTI81PeRZHrUrdHL14hKPpnDGOVSOOeZw5B2L5q3nPLS3XPNPY3Bxr9fCHFp3OBjNu5+oXeG7/6Eq1/VJxI4O+aBBAAAAAAAAAAAAAAAAAP0QiEixCe5SCMeRki3mMDW/gLWk94NR+2z8uW4g3NSPSpt+klkXqJBm/JV3O8vqDkWTpGNvkPY+kRn4NuX9UvWMzHaTLzUHo02+WLIC2aFx9Wd3h6LlI1ovnf7v7uI47lhN5n9X2ni7G2LWsVMK1UgtG6XWN723P365dOIK6eGF0oF13tuc9Rsp2SH9yuezcSfdJq37kmH8E6TzVkn3+dwDFaqREs3edXULpOmfkbb9RnrnEXMffkzHD2DIIRgNAAAAAAAAKBNJJ+FZHrJCfeovVzBa0Aoq2Me+h7u+Bn/FjYEJuUPqfPfrlCZwzBTA1jsYoa/BcQAAAH31Vudmbe3c5Fl3avWSvOdbg8k0Px+Z4bLe0WiWsj/EZVu2IlbUc67Z1+Di3u+XXKF1nel2z/p8wqiHolz/Xsrh3xMAAAAAAAAAAAAAAACAQWBZUqjaXUYdXVjbdELqasoMSzOFqGWUHXDb9jT2dOn0e93vF/xActLS1n+X0klp3BnSop9IlY35jWvyxdKSh6VNP5U6d0sTL5Lm3Ji9XcNl0rovK+vzb0d/yA00m329tOF73eWBqBtG1le5Hm4ZiErHfiWzrH2n9F+TvbcfNcX9OvNaae0nsusnLnW/Bn0+Pzbjr6RZXzQHox31fv9xW7Z00q3S2o9715+zUopNdI+tr8Fo8X19aweg5AhGAwAAAAAAAMpE0kl6lvc1vMx0c/+Reoub3U3MoRW5ghe863O9FoeZAghMgWXFZhy/FfVdP6xU4wQAACPPmoMPGuvOrn1PCUfSd8Zw2RxzzOHIKSAYTXLn0/GURzBazuBic/BvT36vTdJJGEOsY2UaIJbzWjHP6xcAAAAAAAAAAAAAAAAAyJsdkqLj3KUQjiOl2rtD02ITM/sIhKWT75BOuk2yg274VqEmnO8ufkZNcYPINtzSXRatl477qvv9vO9KdfOlnb+XIuOkqddIo+cXPpb+iI6XImOk+P7susPH13CZFLxWSrZl1k/9WPf345dIu1dl9zH1o+7XY/5SeuMuj/pr/McXHi1NOE+SpayAuegEd/yHtzM5+U7pmU+b63uH6AEYsvrw0xoAAAAAAADAYDDdbB+w+vb8A9PN/Ydxs7uZKRgtV/CXqd7UX/Z23q9JqcIy4o4p2C3Wa31wxwkAAEaW1tQhrWt5wrNuVsWJmhBpKPGI+oY5VN+Zzl1nn4OL85vfdqY7fK8B8p3nDzW5g9HK87gAAAAAAAAAAAAAAAAADEOWJQVHSRUNUt2J5mC1QLhvoWiFmPeP0tkPSDOvleZ+W7roGan2hO5xNl4tnf7v0knfL30omkVmrdIAACAASURBVCTZgcyAs8PGnyuNOtr9PlwrnfuoVDndXQ9Vu8d19JXd28+8NruPMadKY052v591XXZ42eRLpdEL3e8b3us9vhO/6b6Oky/Orpvxue7XL1jh3V5yg/GqZ5vru5rMdQCGlL7dMQkAAAAAAACg5FJO0rM82MdgtJAVliVLTu+nqLyLm93Non0MrTAHL+QXQmcKs4vnCGQrlnzHbxpn0kko5ST7HOYHAADg5enmPyrhdHnWLa5dVuLR9J1f+NZI4zje1yiW4UNp5lC5vgYXR3utm+bhnb77yBVGPVTluhY0XQ8BAAAAAAAAAAAAAAAAwIhmWVLDpe4yVM37rpTukrb8m5SKS5PeI53688xtxp4sXbpJ6tgtRca6gWo9TXmfdOavpNdvk9p3SBPOlxbc4h6/JNUeL134tPTGnVLrFql+sTTj8931R10pbX8gs087JDVc5n5/xn9I677kbhOqlqZ+XDr+a93bBqvMxxetl475tPT8V7zr03GpdavU9LK0f60UHiNNvUaKjpWctOQ42ccLYFBw9xkAAAAAAABQJhJOwrM8aIX61J9t2QpbEcUd77Crcr2JvxTMwQj+wQum+oiVX7CAXyBDKRjHn2dwhNtHpyoClUUdFwAAGLnSTkqPNT3sWVcbHKMTKheVeER9Zw73Ks1cbygxhTdbhu37Ok/ub/BvPN2hjpRfMJrPUymHsIjlfy1IiDYAAAAAAAAAAAAAAAAAlCk7KC38obTgB5KTlAIR87ax8ea6oz7gLibVM6X53/OuO/oqqWWT9OrNblBZZKx0xn1SbIJbH6yQTvkX6eQ7u8PUeqqb6wamJQ5llodHS7VzpYoGczCaJP1uauZ6723Do6WKKVL92e6+Nv5Yan7FDZSb9WVpwffdcXXuk+L7pMho6dBGN5Qt1S4l26TRC/3PLYCcCEYDAAAAAAAAykTSGIzW91/zRe2Y4qn8wgDQzRyMkCN4wRBCl++5HuywDHMwWqzXuvl4OtMdBKMBAICiebXtee1P7PasO6v2IgWs8nlqnymMKlf47sjiHY1mCurq9Dl3aSelLifuWdd7vm+a33amO3xfn3INmw5aQdkKKK2UZ32+wc4AAAAAAAAAAAAAAAAAgCHKDkgapM9YWpZ0wtelOTdKbW9JVTMky/bezksgIs34grT+O5nlM6+VAmEpNlE69xHp0Qv6Nr6uA+7S9GJ23eu3uku+Kqa4gWqxiVKkXho1RWr8iNS6xQ2Fa3ivW1eIdEJ69ovSsX8jVR1TWFugjBCMBgBDXHt7u5577jlt2rRJ+/btU2dnp2KxmMaPH6+ZM2dq/vz5CofDgz3MsnXOOedozZo1R9YdxxmQ/axevVpLliw5sr58+XKtWLFiQPYFAAAAYPhKpk3BaKE+9xmxY1LqoLkOnvyCEfyYAszyDUzoS+BDMZnG3/t8+L13ShXiBgAARobHmh70LA8oqDNqLizxaPrHGIJrCNcdzhx5/73GMgWjGYK6/Oae8bR3KJqUf/BvPN2pznS7Z11AwX5dqw0my7IUtWNqT7d61nOtCAAAAAAAAAAAAAAAAADot0BUqp7Vt7Zzb5Yi46S3/kOyQ9LRV0ozv9hdP/a04oyxv9q3uV87ezwE+I27ur//8+f73vfmn0on3SbN/CvvYDmgzBGMBgBDUCqV0q9+9Sv9/Oc/16pVq5RMJo3bRqNRXXTRRfrUpz6liy++uISjBAAAAACUWkre14f9C0bzvsE/V91I5xdQ5jiOLMNTaeKGALN8gwX6EvhQTPkHo5nfOwSjAQCAYtnbtUvr2573rJtfdZqqg7UlHlH/mOaEI3P+VFgwmilo2DcYzSdwrve8228ebgopjtox43VBOYjYUZ9gNK4VAQAAAAAAAAAAAAAAAACDyLKkY693Fy+BCqlymtT6ZmnHVWrrviRt+4106r+6xwsMI8T9AcAQ8+ijj2rOnDn60Ic+pEceecQ3FE2SOjs79cADD+iSSy7RokWL9Nxzz5VopIVpbGyUZVmyLEuNjY2DPRwAAAAAKEtJJ+FZHrT7E4xmDuQyhQvAHIyQVkpJx/ta3nGcvIPFTMyBD95hDMVmCo+IWJnjClsRcx8lGisAABj+Hm/6gxxDgNbi2mUlHk3/meaEI3H+5P2qSoZcNPO5c8znzu+89p53G0PrnA5zMFqgvK+n/K4HuVYEAAAAAAAAAAAAAAAAAAxpliU1fmSwR1Eae9ZIvz9B2vHgYI8EKCqC0QBgCPnGN76h888/Xxs3bswotyxLc+bM0YUXXqirr75a559/vmbOnJnV/tlnn9Vpp52mO++8s1RDBgAAAACUUCJtCEZTsM99+gVy5RvWNRL5BQGYAhYSTpfSSnvW5XuuzYEPnUo73n0Xkyn0ofe4bMs2hseZwtUAAAAK0ZWO6+nmP3rWNUQaNS02u8Qj6j/TXK8z3SnHMUaFDVPex2sZktH6EirnV9e7P2MwWrrTPEe2yjs8jGtFAAAAAAAAAAAAAAAAAEBZm3OjVLdgsEdRGoGINHr+YI8CKKq+3zEJACiq6667TrfeemtGWVVVlf72b/9WH/7wh3XUUUdltdm8ebPuvvtu3XLLLYrH45Kkrq4ufeYzn1FbW5uuu+66kowdAAAAAFAaSSfpWR60Q33u0y/gy69upPMLAog7HapUdXZ52hwIlm+wgN9r0uXEFR3g8AXTMXiNK2LHFE9lb+8XQAEAAJCvdS1PqC3d4ll3du0yWZZ3gNZQZprrOUor4XQpbEVKPKLBkzYGwZmC0czBZSadPnXhrGA0U/BapzrT7Z51sUCFsf9y4B+MxrUiAAAAAAAAAAAAAAAAAGCIC46SzntUWv9tac/jUmySVL9YClVL8X1S1wGp9U0pXCvtXi2lu6TWNwZ71H1z0g+l2MTBHgVQVASjAcAQcM8992SFop155pm677771NDQYGw3ffp03XTTTbrmmmt0xRVX6JVXXjlS95WvfEXz5s3TOeecM1DDHhZWr1492EMAAAAAgLylTMFoVt9/zed7s7uVX1jXSOQXUNZpCP7yC2XIN4TOL4Agnu4Y8DA7U6iZ1/soYkelVPa2fgEUAAAA+XAcR2sOPuhZF7MrtKj67BKPqDh8w3fTnQrbIycYTfIORjPF3ZnOnWluLpnn5yErrIAVyCgzzbMTTpfa062GMZV3eJjf+KN5BjsDAAAAAAAAAAAAAAAAADCowjXSvO8U3s5xpPZt0tpPSodekyJjpOh46Z1Hij/G/mp4r9T4ocEeBVB09mAPAABGuo0bN+raa6/NKDv99NP10EMP+Yai9TRz5kz98Y9/1LHHHnukLJ1O6yMf+Yj27dtX1PECAAAAAAZP0kl4lgetUJ/79AvSKvcb+QeSf0CZd8BC3DGHMkSsfIPR/MMyBpppH8ZgNM8+zOcBAAAgH1s7N+ntuPcT+U6rOc93zjSU+c0JSzHXG0ocYzCadzSa6brG77yZQ3+z+/J7TzUnDxY0pnLh937kWhEAAAAAAAAAAAAAAAAAMKxZljTqKOm8/5Uu3y4te1E669d96+uiP0tzvy1V9MgPmfVl6dxHpOP+XrIjUqg6u11kTO6+Ry+STvlXd7zAMBMc7AEAwEh3ww03qLW1+0nytbW1+s1vfqPKysqC+qmvr9evf/1rzZ8/X11dXZKkHTt26Jvf/KZuvfXWoo4ZAAAAADA4TMFoAavvv+bzu8Gfm93NQlZYlmw5SmfVdRoCFvxCGfIN7/ALVzDtt5jMwWjZ4+pLOAUAAEA+1jQ9aKw7q3ZpCUdSXL4huD4hu8OTdzCaDMFopmsX/2C0/of+SlJz8oBnedkHo/ldK1rlGT4IAAAAAAAAAAAAAAAAAECfBavMdWNPl/Y9lV1eO1cas9Bdjvtqdv2E86W53zT3+0ufwLPFv5cmnCcFIuZtgDJGMBoADKLXXntNK1euzCj7zne+owkTJvSpvzlz5uiGG27QzTfffKTsrrvu0ooVK1RXV9evsQ41mzdv1ksvvaQdO3aopaVFlmWpoqJC48eP19SpU3XCCSeooqJiwMcRj8e1Zs0abdmyRQcOHFB9fb0aGhp01llnDcj+d+3apT/96U/as2eP9u/fr8rKStXX12vRokWaNm1a0fcHAAAAYGgxBaMFrVCf+4xY5pv1o3mGdY1ElmUpakfVkW7PqjMFLJiCy2zZeb+GvmEZAxw45jiO8RgKCY8oRYAbAAAYvlqSzXqu5QnPutkVczU+PLnEIyoev7le5wgLlzXGohmeaOg393Qcx7Nd3DAv9Qo08ws5MwejDfzfqQaS3zETog0AAAAAAAAAAAAAAAAAGHEsSxp/nrT7j9l1J/9MWnWh1LEzs3zaJ/q3z/Boqcvjc4oTl0qTl/Wvb2CIIxgNAAbRrbfeKsfpvrVj7Nix+sQn+jexue666/S9731PiYR7s3xbW5vuvPNO3XjjjVnbfvzjH9c999xzZH3Lli1qbGzMaz+rV6/WkiVLjqwvX75cK1as8O3/sLfeest444okfexjH9Pdd9+dVR6Px3Xbbbfpzjvv1KZNm3zHFwgENG/ePF122WW6/vrrjSFl55xzjtasWXNkvefr4ae5uVlf//rXdffdd+vQoUNZ9VVVVbryyiv1jW98Q5MmTcqrT5NEIqG77rpLP/7xj/Xyyy8bt5sxY4ZuuOEGffKTn1QwyH/xAAAAwHCUdJKe5aH+BKP5hC9ws7u/iB0zBKN5ByyYgssidsz3OrmngBVU0Ap5huQNdOBY0kkqrZRnXdQjYM/03hroADcAADC8PdX8v8Z58eLa8v6AR8gKy5attNJZdaY55nBl+nuNJUMwmuU990wrpaST9LxmMob+evTld23UnDzoWe4XLFYO/K8VCdEGAAAAAAAAAAAAAAAAAIxAs6+X9qyWnB731zRcLtUeJ537R+nJq6SmF6VAhTTrS9KsL/Zzf38tvfQP2eXTP9O/foEyQGoKAAyihx9+OGP9mmuuUTgc7lef48aN0yWXXKL7778/Yz9ewWjlZNu2bbrooou0YcOGvLZPpVJat26d1q1bp6uuukrTp08v2lhefPFFLVu2TDt37jRu09LSon/5l3/R/fffr9/97nd93te6dev0wQ9+UG+++WbObTdt2qTPfvaz+slPfqKVK1dq8uTJfd4vAADlpjl5UK+2rdM78e0Dup+QHda02GzNrpirgBUY0H2NVK3JQ3q1bZ0OpZo1Z9Q8TY40DvaQMEy0JJv0Sts67YpvG+yhZAhYQTVGZ2jOqPkK2bmvB73CsCQp2K9gNPPN+uV+I/9AM507U/CXORitsFCBiB1VMpX9Xniy+X+0qf0VSZJlWZoUPkrHVZ6kykC1sS/HcfR6+0t6o2NDzsAy0/vv8Jiyy7zPzxsd63X/nruPrNcER2vOqPmaGJniu//dXTv0aus6NSU9nnQj9/06veI4zYgd5xs0V6p5Q6HCduTIPMO27D71sb1zqza0P6+WZHPebYJWSFNjszRn1DwFrOL+yeBgYp/Wtz2vuNOp40ctVH14YlH73xHfqvVtLyiRjmt6xRzNiB2fd8gggNxy/R8RtEKaFpulWRVzFbL7PhcBCpF2Unq86WHPutHBcTqhcmGJR1RclmUpYkc9w3cfb3pYr7W96NvetmxNjhyt40ctVCwwaqCG2S97unbp1bZ1OpjY57vdrq7Crt38rl1+u/duz2umzR3rPbf3mtuGrYix/4TTZeinvK+nCEYDAAAAAAAAAAAAAAAAAKCXycukJQ9Lm34qdb4jTbhQOu6rbl3NbGnZC1LnXilcJ9lFuEfjmL+U3vy51Nojb2Ls6dKk8n6YMJAPgtGAISblpNSU9L8RAP1XGxw76EEW27dv19atWzPKLrzwwqL0feGFF2YEo61du1aJREKhUHnenNbV1aWlS5dmhaKNHj1aJ5xwgsaPH69QKKSWlhbt2rVL69evV1tb24CMZf369TrvvPO0f//+jPLx48dr/vz5qq2t1e7du7V27Vp1dHTowIEDuvjii/W9732v4H2tXLlSV155pdrbM2+AmjhxoubOnavRo0erra1N69ev16ZNm47Uv/DCCzrllFO0du1aNTQ09O1AAQAoIzvjb+m2bct1KNVUsn0uqDpdn5h4fdHDQ0a6PV07ddu25TqQ3CtJ+q+9lj484a90es35gzwylLt34tt12/blakruz73xIJlVcYI+N/lrOW8uNwVT9efnkV+AADe7+zOdn850h2d53FBeaGBC1I6pLdWSVf5S6zNZZaOD4/TlKf9X4zwCqdJOWr/c/WM91fy/Be3fi2cwmuV9XLu6tmUFXfx2b0CfnHS9FlSd4dnmhZa1umvnLUop6T+Q/dKSuov1/nF/6RmQNRjzhkItqlqsayZ+qeDfXT3Z9Ih+ufvHcuT0ab/Hj1qoT0+6Ma+Qxnxs7dio27d/U21p9736X9Y9+sykr+r4IgXWPN38R/37O7fLUdot2C8trl2mD9Z/mnA0oAgcx9F9u+/QE81/yLntnFEL9NlJXy3azw/Azytt645cM/Z2Zu1FsodBiHnEjnkGo73Y+qe8+5gQbtCXGr6h2tCYYg6t315pfVZ37vxHY5BYPix5/z/vd+2yuun3Be3D6xrJtmxFrKjijn+YcE+xMg9G87tWJEQbAAAAAAAAAAAAAAAAADBiTTjfXUyi44q3r9hE6YKnpM0/lZpflcacLM34ghQwP/AVGC64gxsYYpqS+/QPb352sIcx7H1z2k81JjR+UMfw5JNPZpUtXFicG0NPOumkjPWOjg698MILWrRoUVH6z9ctt9yiFStWSJLOPPNM7dixQ5I0efJkPfHEE8Z2lZWVGes///nPtX79+iPrjY2Nuv3227V06VLZtp3V3nEcrVu3TitXrtRdd91VhCNxJRIJffjDH84IRZs4caJuvfVWXXHFFRljaW1t1T/90z/pW9/6lpqamnTjjTcWtK/169frqquuyghFW7p0qb7xjW/o5JNPztr++eef15e//GU9/vjjkqQdO3bo6quv1urVqxUIlP+NYAAA+Pnt3ntKHm7yXMtTWlh1tuZVnVrS/Q53K/fdl3GDuyNH/7H7Di2oOoMbbtEvv9v370M6FE2SXm9/WX9qXqWz697ju13S8Q6FClp9D8L2CxAoNLBrpDH9bIqnvcMSTOWFBtBFrPy3P5Dcq5X7/kOfmPTXWXWbO9YXJRRN8n6vFHJcaaV03zt3aG7lqVmBYGknpV/u/knuULR3rTq4UqdWn6sp0WlZdb/d+29DOhRNkv7cskYn1yzWcaMW5N2mM92hX+25s8+haJL0StuzWtfypE6tWdLnPnr6zd6fHwlFk9yfX/e+c7tuPuZf+x1c1pWO6z92/7Q7FO1da5oe1CnVS9QYm9Gv/gFIWzpfzysUTZLWtz2nZw6t0Rm1FwzwqADpsYMPeZYHraDOqBke78FihBO/07Vdjxz8rT5Q/6kijKg4HMfRL3f/pF+haJJfMFrxrl1Mr0HEjiqeyj8Yrdyvp/yvFQnRBgAAAAAAAAAAAAAAAACgJGLjpRO+PtijAEouO00GAFAS27dvz1gfP368xowZU5S+jz/++Jz7K4WxY8eqsbFRjY2NCga7sziDweCRcq9l7NixGf088MADGW0feeQRLVu2zDMUTZIsy9LChQu1YsUKbd26VUcffXRRjueHP/yhXnjhhSPrEydO1BNPPKEPfOADWWOprKzU8uXLdd9998m2bR08eDDv/aTTaV155ZVqa2s7UrZixQo99NBDnqFokjR//nw9+uijet/73nek7IknntC9996b934BAChHaSel19tfGpR9b2h7IfdGKMiG9uxzmnSSerPjtUEYDYaTcvn3ur79+ZzbJJ2EZ3l/gtFidoWxjlBCf6aAss50h2d53PEuLyToTJJigVEFbe/181WSXmt7saB+/Hi9V/zeW17a0i16u/ONrPId8bfUmmouqK/1bdn/ntx5Q/GOeSBt8Bi/nzc6NvQ7ZKQv+zXpTHfojY4NWeXNqYPa3bWj3/37He+GPH6WAsjt5dZnC9p+U8crAzQSoNuerp3GOfOCqjNUFawp8YgGRqFzKJNXCvx3PNDe6dpelMDqgOX97LdiXrtEDa+BqdykWK/lYIna3tcdIStsfB0AAAAAAAAAAAAAAAAAAACAYiAYDQAGyYEDBzLW6+rqitZ3NBpVJBLx3V85eeutt458P3fuXE2fPj3vtoFAQKFQ3wMCDkun0/rhD3+YUfazn/1M06ZN8213xRVX6Atf+EJB+7r//vv1yivdNxJ+8IMf1PLly3O2CwaDuueee1RfX3+k7JZbbilo3wDw/9m79zA56/r+/6/PHHZmctzNgUAJMWCMBAQRQQUMAaFgUBRRi1C/IlrlVxWlFbXW1hNopdJ+C/qzVdofWmurVRBPUMEDQUSI0SIIKIST4RSSzW4OuzOzc/j8/lg22Z293/fe95x39/m4Lq4rc99z3/dnDvchS+7nAtNNsVpU2Zc7su2h6q6ObHemqvqKhiq7A+cVqsNtHg1mklJ1REVf6PQwIrH2gfGsY16qgZvSD8wcHBgRWJF5rjKJeMGu2cYKIxSNMFq+Ejw9l4wXTFiVOyzW84cqu+W9nzQ9bmzMsiK7Sj2JzKTpq+bEG6ckDVUmn1/3BEybej2T96ditdCx64a49kQ4Hkx4frk5n2U973WQoM9xTL4J5/Ww726zXgMw2+0obYv1/GK12KKRAPvcOvg/5rx1vWe0cSSt9dyY13qWgfJ2VX21KetqhrDrgzgOyR0aOL0nkdFzss9ryjZWzTncmB79s0koaY51ujgk93wlAv5JyfPmTP4FTQAAAAAAAAAAAAAAAAAAAEAzEUYDgA6pDZX19vY2df216+vv72/q+jvlmWee6ch2b731Vj366KN7Hx977LF69atfHWnZj370o7HibFddddXePzvn9JnPfCbysvPmzdOFF1649/E999wzYdwAAMw0VnimHfIVYl3NVKza4apStdTGkWCmmU5hvSjHlbIP3h9Srv4gdDqR1qsWv6lmfSm9asm5da9ztsgmJwflJPt7V6gOBa/HCKxZXt57uhallkZ+vldVI35ysKbQhPNoyqUmfX/GrMyu1pHzXhJrfUHRrHpCWvmA97oZQa52iXvsasZnKTXvPRquBH/XJfs4Fkc+5PUWjAAhgHgGyvHCaNLkACfQTCPVon6x88eB8w7KHKKV2dVtHlHrrOtdr97U4obXU/blpsXImiHs/B3V3OR8nbroteb8Vy0+p6FotCQ9N7dGL5j74sB5r+h7jeYlF0Raz2mLztac5LyGxtJpc5Pz9ceLXjdhWsZl9cpFr+/QiAAAAAAAAAAAAAAAAAAAADBbNPavggEAXcs51+khNM2hhx6q++67T5K0ZcsWXXHFFbrkkkvaOobbbrttwuNzz40eCFi6dKlOO+00/eAHP5jyuUNDQ7rjjjv2Pj722GN18MEHRx+opJNPPlmXXnrp3sc/+9nPtHLlyljrAABguih6O6b1/DlHNBQKGrNt5Gk9U3py0vRmBUgwKizE0oyACmavsO/W6jlHKN2E40Rcg+UdeqL46KTpUUJIFV8OnN7ozf+nLHqt9us5UHfvuVOZRFYvnr9WB+dmTlyiVXJG0Mz63lkxCGs9lsXp/fT+FX+nX+z8sR4rbFZVFUlSsVrU5vy9gcsUqsPKJLI14wmOVy1OL9P+PQdOOY5lPQeGflcSLqF3/NEHdfvOH+uB4XsmfMc3D98XeB4POr9a+0ba9WhecoEGytsbWo8kPX/OkQ3vR/V4ZuQpbSs9NWl63ACr9VnmEnN1SO75k6bvKG3XUyN/iLyeuMKOvSU/0vD6CyHvT7NeAzDbBR1bJckpIa/qpOmeMBpa7Je7bjWP8ev6zphR/09kSc/+umTFZ3THzp/o0cKDgfvceBVf0e+GfxM4b6Dcr/mp5v5innpZ12Ipl9Lz5xwZuqxTQgdlD9FLFqzTspDr1BfMO0Z/edCntWn3bdo68nis8fW4jJ6bW6MTek9TTyIT+Jw/yqzQJSsu1527fqothYcDP5v5yV69YN4xetG842Jtv1u9ZsmbdVD2EN2759eam5yvlyw4ScuzKzs9LAAAAAAAAAAAAAAAAAAAAMxwhNEAoEMWLVo04fHOnTubuv7BwcHQ7U0n5513nq677rq9jz/wgQ/o+uuv1wUXXKAzzjhDBxxwQMvHsGnTpgmPX/rSl8Za/qUvfWmkMNodd9yhUmlf+OOQQw7Ro48+Gmtb1erEG3EeeuihWMsDADCdFEPiZO/8o79SLjm34W38dOD7+uYz/zppepSAEaILi5gQRkMjwvbVd/7RhzQnOa+Noxn1692361+f/PtJ08NCQmOs/aEZIcgj5h2jI+Yd0/B6ZpNMIhc43YpnFoxjXTZmGE2S+tJLdMaScyZMGyzv0F8/9DZzTAsjjvO4Ba+YtO56JV1Ka3tP19re0ydM/7tH/1Jbig9Pen6+Mvk9siJYS9MHaM3cF+rHA9+dvEzA/mSF6STpzw/8iBnAaKWbd3xb3972lUnT415nWJ/lc7Kr9O7lH500/c6dP9VXnr5y0vS4QTZL0Oc4phnn9bDjJfFaoHFVX9FgaUfgvL7UYu0ob2vziDDbee+1YfCGwHlzEvN0zPy1bR5R6y1KL418PVb1Vb3vgT9RRZMjygOl7VqRfW6zh1cX6/zdl1oaeL1Sr5W51VrZwsjzfj0H6Mwl57Vs/d3GOaej55+go+ef0OmhAAAAAAAAAAAAAAAAAAAAYBYhjAZ0md7UEl16yBc7PYwZrze1pNNDmBQqGxgYaNq6C4WCCoXChGmLFy9u2vrb7eyzz9bZZ589IY7285//XD//+c8lSatWrdLxxx+vE044QWvXrtWaNWuaPoatW7dOePy85z0v1vKrV0e7CWfLli0THn/961/X17/+9VjbqrVjR/BNjAAAzARh4YtMItuUbeSMWE2U/1AGSQAAIABJREFUgBGiK1Tsz5IwGhoRFvnJGlGrVrO2W6jm5b2Xc85cttTCMBrisz/L4O+dFeayzjXNGo8UHKqy4lXt2DesGFzQud063+eSc2KuJ/hzSSiptOuxhtpS9vjjXWdYxzrrs7TisWGh0ljjCRl/2U+OtsQV9v5wjQY0bldlZ2BgSRqNNRFGQ7s9XPi9Hi8+EjjvuIWv6EjctJskXEK96UXqLz0zad5gub8DIwpmxW479fcyAAAAAAAAAAAAAAAAAAAAAN2LMBrQZZIuqcXpZZ0eBtrgwAMPnPD46aefVn9/f1MCZvfee++U25tOnHP6xje+oY997GP6x3/8x0nRt82bN2vz5s3693//d0mjobQ3v/nNuuiiiyYF6OpVG65bsGBBrOUXLlwY6Xn9/c2/SWn37t1NXycAAN2iWC0ETk+7HiVcsinbaFawBOHCQiwlP9LGkWCmsQI5GZdt2nEirlwiOEjkVVXRF5R1dhjACgWmHD/m6wQraGaFvFodg8i4rJycvHykMdnBseDvaDPlktHPr9Y5IpvImefp4BBc8PufS8wJDRK2kvXZWxE9i3VdYh1vrOklP6KyLzUcWww7rzcjeBoWP+MaDWjcQGm7OW9ReqkUcIjyfvK5B2iWWwduMOet7V3fxpF0r97U4sAw2kA3hdGM6xvreg4AAAAAAAAAAAAAAAAAAADA7JXo9AAAYLY6/vjjJ03btGlTU9Zdu55cLqejjjqqKevulFQqpU996lN69NFHdcUVV2jt2rXKZDKBz928ebM+/vGP65BDDtE3vvGNNo+0MSMjzY9+cFMiAGAms2+qbU5gRgqP3lR9pWnbme3CAidlX27jSDDTWIGcrBFlaoewY5QVzhpTMfaHRiNGqI8dzzTCaFa8qknfR+dcSGgrXnCs1cygWcA4zYBbYm5IYC0oBNd9xwP7OsMOiwWxzqPZZPBnaYXRJDsgF2s8AWG6Mc0Io4XFz5oxfmC2GyhvC5yedj2al4z3CyOARu0qD+rXu28PnHfY3KO1X88BbR5Rd+pLLQmcHhY6bLdWXwsDAAAAAAAAAAAAAAAAAAAAmDkIowFAh6xYsUIrVqyYMO2mm25qyrpvvvnmCY9f+tKXqqenpynrHlOpdCYCsmzZMr3//e/Xrbfeqp07d+r222/XFVdcode+9rWaN2/ehOfu3LlT5557rq6//vqGt9vX1zfh8a5du2Itv3PnzkjPW7Jk4s1Ln/70p+W9b+i/L3/5y7HGCgDAdFKsFgKnZxLZpm0jLJZibR/xWdEbqTkBFcxeVizIihG1Qy4ZEiQKif1UfUVVVQPnEUbrDCsgVqzmVfWTPyszXtXE76Mda5u4be99aHCs1ewgWFDAzXrfcjEDa9bxoPUhOIs1/rIvq1SNfv6zX1vwZxkWILGCeXGEraNUbTwKHxY/C4umAYjGCimNhpdc4DwvfjkDWuP2nTerouA48Lre9W0eTffqTS0OnD5Y7v4wWjuivAAAADOVcy7lnHuJc+4C59wHnXN/45y72Dn3RufcC51zqU6PEQAAAAAAAAAAAAAAAKgHYTQA6KBXvvKVEx5/9atfVanUWPRh27Zt+u53vxu6nTGp1MR//1guB99cFGRgYCD+4Josk8nouOOO0/vf/35df/316u/v19e//nWtXr1673O893rve9+rajU4HhDVsmXLJjx+8MEHYy3/wAMP1LWdqMsBADBbFY2gS6aJN9WGxZPCAkaIJ18JCaj4xgMqmL3sm+87GEYL2XZY0Kfs7b+zpbi/rSOs75GX14gvTphW9iXzeNbMUJ8dRpt4ziz6ghmxaUecIlbQzIhgZRNzzLEWqnl5P/H1tSNMF1dYoKwQI1AWFo8LMickfteM65vhkLGHHcuiCjtWjviiKk3YBjCbDRghpb70YiOLBrRGxVf0s8EfBs5bnN5Ph889us0j6l596SWB0639uRPyxs9wOnktBgAAEMQ5d4hz7hzn3Gedc7c453Y55/y4/x7tgjE+zzn3JUn9ku6U9P9JulzSpZL+r6T/lnSXpF3OuZucc6/r2GABAAAAAAAAAAAAAACAOhBGA4AOet/73ifn9t1Ktm3bNl1zzTUNrfPKK6+cEFebO3eu3vGOdwQ+d8GCBRMeDw4ORt7OvffeG2tc419nq/T09Oicc87RnXfeqQMPPHDv9C1btuhXv/pVQ+s+5phjJjy+4447Yi1/5513RnrecccdN+G9uvnmmyfdyA0AAPYpVguB05sZdAm7QTcsyoF4aoM945WrxE1Qv7wRVGpmiCquHpdRwvixXFiQqOztkHbKpRseF+ILO9/UxrwKFfs418wYhB0Kqx2P/V3LJe1oVrNY+2DQuMKiXzkj8OVVVdFPvE7oxlBi2LateEjgc43AqPX+ZBI5OSNvFBYrjSrs+xV2LIu8/imuwcKuKwBMbUdpW+D0vtRSiTQa2uiePb80w15rF75SCZds84i6V18qOIw2WO7vmv/HYEVfO/l3MwAAgDHOuZOccz90zvVLekjS1yVdImmdpPkdHdw4zrmUc+6Tku6T9A5JC6ZYJCfpjyWd0+qxAQAAAAAAAAAAAAAAAM1EGA0AOuiwww7T+vXrJ0z70Ic+pK1bt9a1vvvuu0+f/exnJ0y74IILtGjRosDn77fffpOWj+qGG26INbZMJrP3z8ViMdaycfX29urss8+eMO2RRx5paJ0vf/nLJzz+r//6r8jLbtu2TTfddFOk5y5dulQvetGL9j5+4okndOONN0beFgAAs40Vvci4bNO2ERa9iRMsQbi8cYO01JyACmavbgwhOefM7YfFfsrejgQSRuuMbDIsalUTIgv5bHMh64nLiprVRgLDInzNDIya2zBec9C4rPN9Ljk3PE5Xs5wVp+tkjCNs23ECrNZ7ZL0/CZdQxpgXdk6OarjF5/WprsGsKCaAaAbK/YHT+9LB4SVJ8uqO8BJmllsHg382nnJpHb/w1DaPprv1phYHTi/7svZUdrV5NMGs83cn/24GAAAwzlGSTpMU/A9suoBzLifpO5L+VlJq3Cwv6beSbpD0n5K+++xjfusMAAAAAAAAAAAAAAAApi3CaADQYf/wD/+gOXP23fQxODios88+W3v27Im1nm3btukNb3iDRkZG9k474IAD9NGPftRc5uijj57w+Hvf+16kbf3whz/Uxo0bY42vt7d375+3b9+uUqm1cYtUKjXh8fgwWz1OPPFErVy5cu/jTZs26fvf/36kZT/5yU/Ger3vec97Jjy+5JJLYn8fAACYLYrVQuB0K/RRj7TrUVKpwHlxgiUIFxboKfkRcx4wFTuo1Nmb761YUVjMJywmlHLBxym0VpwoV3iIrHnfR2tMtees0FBbIjiu1ky5iOO0pkmjrzU0LDYpBhcc6+pkjCM8wBrtOsN7b75HVihPkuYYn/NwpfEwWtjYmxFGK0wRb+MaDWjMQGl74PRFqaVycsZShNHQXFtHntDvhn8TOO+Y+S/XvNSCNo+ou4WFCwfKwft0u9Vem41pR5QXAACgAUVJD3V6EM45J+nrks4YN7kg6ZOSDvLeH+G9f5X3/k+996/13h8haaGks55drrW/wRAAAAAAAAAAAAAAAABoMsJoANBhhx56qD73uc9NmHb77bdr/fr1evzxxyOt48EHH9Qpp5yi+++/f++0RCKhr371q1q6dKm53HHHHTchyvbtb39bmzZtmnJb559/fqRxjbdmzZq9fy6Xy/rpT38aabnh4WF97nOf0+7duyNva8+ePbruuuvM7dcjkUhMCpZdeOGFeuSRR0KXu+666/SFL3wh1rbe8pa36NBDD937+P7779frXvc6DQwMxFrPtm3bJr0PAADMNFbwKJPINm0bzjllk/EDRognLGDSjIAKZq9uDCFJdqzIGq8Uvi8kCaN1RMZlzUBMsUNhNCsUFjXUllBCadfTtPFYrNccdG63xppNzFE2JHJYu5x13WCd59sh4ZLKuODrFiseUmvEF1VVNXBeWDjO/gwav77Jh8TVSg2e10vVksq+HL59wmhA3UrVknZVgn8OGRZeApptw8CN5rwTe9e3cSTTw/zkQjPqPljub/NogpnXYh3+uxkAAMA4JUl3SfpXSRdKerGk+ZL+rJODeta7JL1m3OOnJB3tvf+Y9/6JoAW898Pe++9478+V9PZ2DBIAAAAAAAAAAAAAAABoFsJoANAF3va2t+nd7373hGm33XabDjvsMH3mM5/Rli1bApfbvHmz/uZv/kZHHHGE7rnnngnzLr/8cp1yyimh250/f77OOeecvY8rlYpe9apX6aabbpr03JGREV199dV62ctepq1bt6qvry/qy5MknXzyyRMeX3DBBfrCF76gX/3qV3r44Yf16KOP7v1v+/btE7b73ve+V8uXL9fb3vY2fe973wuNpG3cuFGnnHKKHnvssb3TXvayl2n16tWxxhvkve99r174whfuffzkk0/qhBNO0Le+9S1VqxNvQB4aGtInP/lJvelNb1K1Wo31fiWTSX3rW9/SggUL9k770Y9+pCOPPFL//M//HPr6d+zYoW984xs699xzddBBB+mqq66K8QoBAJh+it66qba5gZNWhkMwKiwyN1X8BAhj3XwfFgtqB+s4ZY1XCg+jpV264TEhPuec+VlOjnIFH+d6XEZJl2zamBodTy4xV84Fx96aydoHS35kwne96quTInPj1xEWp6t9jfZr7vDxwIi7Rb3OqDe6N8cMNDYhjNbC4GmU94VrNKB+O0MCSn0pO4zmWzEYzFqFal537PpJ4LwV2VVamWv85/0zTcIl1JteFDhvoLQ9cHq7mddiIaFbAACANvqKpAXe+xd579/hvf+S9/7X3nf+N7c451ZI+sy4SQVJp3rv7zcWmcR7/kcLAAAAAAAAAAAAAAAAppfgXxsNAGi7z3/+8+rr69OnPvUpeT96G9nu3bv14Q9/WH/913+tww47TAcddJD6+vrU39+vxx57TL///e8nrSedTuvKK6/Un//5n0fa7qWXXqpvf/vbGhwclCQ988wzOv3007Vq1SodeeSRymQy2rp1q+68804NDQ1Jkvbff39dfvnlOv/88yO/vje+8Y36yEc+oscff1zSaFSsNgY35vzzz9eXv/zlCdN27dqla665Rtdcc42cc1q1apUOOeQQ9fb2KpVKqb+/X7/97W/3rn/MnDlz9KUvfSnyOMOk02l97Wtf07p169TfP3qD4FNPPaU3vvGNWrZsmV784hdr4cKF2rp1q37xi18onx+9cXvhwoW6/PLL9c53vjPytg4//HBde+21esMb3qCdO3dKkh5//HG9613v0kUXXaQjjjhCK1as0IIFCzQ8PKzBwUE98MADk14/AAAznRVKySSyTd2OFUxpRjgEo8ICJo0GVDC75StDgdPDYkHtkEtYQaLg8UrhkcAUYbSOySbmBJ4Pao9rVgCy2VGuqDFPazzZZHPjopawfbBQyWteavQ7PeKL8kZuJ5uYszdOF+kzMM41nT4eZBNztFM7Jk2Pep1RCImLhn2/rNc9bBw3o/Lem8deqfHzepT3hWs0oH47ytvMeX3pJXY805NGQ/P8ctet5t8R1/Wub/Nopo/e1GL1l56ZNH0gJHjYLhVf1ogvBs7r9LUYAACAJHnvBzo9hhAfkTRv3ONPee/v69RgAAAAAAAAAAAAAAAAgHYgjAYAXeTSSy/VunXr9K53vUsPPvjg3unee91777269957Q5c/+uij9cUvflHHHHNM5G0eeOCBuvbaa3XWWWdp9+7de6dv3rxZmzdvnvT8gw8+WD/4wQ+0devWyNuQpFwup29/+9s666yz9MQTT8Ratpb3Xg8++OCE9yjIgQceqOuuu05HHHFEQ9sb7/DDD9ePfvQjnXHGGXrqqaf2Tt+6datuuOGGSc/v7e3Vd7/7XVUqldjbOvXUU7Vp0yade+652rRp097plUpFd911l+66664p19HX1xd7uwAATCfFaiFweibR3KhL1MgM6hf2Xpb8SBtHgpmmYAQUc8lOh9GM40oleLxSeEyIMFrnZI1zTu13zzrOZZv8XbTPWdHG0+xQmyVsH8xXhzRPC0b/HBLYGluHFaernWYFxDod48iZ36Fo1xlhEbCw75cVaCyEBBqjKPkRVWSHHBsNo0V5X8JicQDCDZS2B07PJeYqm8jJyQijAU3ivdeGgck/a5ekuYn5evH8l7d5RNNHX2pJ4PTBcvB+3U7W38uk9l1/AgAATEfOufmSzhs3aUjSlR0aDgAAAAAAAAAAAAAAANA2iU4PAAAw0amnnqr77rtPX/va13TKKacolQpvWGYyGZ155pn6zne+o02bNsWKoo15xSteoY0bN+q1r32tnAu+sW3p0qX6wAc+oLvuuktr1qyJvQ1JOuaYY3TffffpX/7lX3TWWWdp1apVWrBggZLJpLnMwoULtWHDBn3wgx/Ui1/84infD0l6/vOfr09/+tN64IEH9JKXvKSusYY56qijdP/99+uiiy7S/PnzA58zb948vfWtb9Xdd9+ttWvX1r2tVatWaePGjfre976nU089VZlMZspl1qxZo4suukg/+9nPdN1119W9bQAApgPrxtpMItvU7djRG6IbzRIWdSl7O64CTCVvBH46HUKytm+NVwqPCSUdv/+gU6LGM63jXLNDEFHPWdZ42rVvhG1n/Pk9LKIx9lrt0GBNGM0KJXbt8SDadYZ1PeLklHH2NdGcZHAYbbjBMFrYcUySStXGwmhR3peo7x2AyQaMgNKi9NLQ5bx8K4aDWeih/P16cuSxwHnHLTxFPYmpf0Y+W/WmFgdOt4KH7RT28xPr+hUAAACSpHMkzRv3+Frv/W7ryQAAAAAAAAAAAAAAAMBMwR2TANCFUqmUzjvvPJ133nkaGhrSr371K23evFnbtm3TyMiIMpmMli1bptWrV+voo4+OFMuayqGHHqrrr79e27dv14YNG/T4449reHhYy5Yt08EHH6y1a9dOiJKddNJJ8j7+zW4LFizQhRdeqAsvvDDS851zOvHEE3XiiSdKkvL5vO6991499NBDevrppzU0NCTnnBYsWKAVK1boyCOP1HOe85zI47nllltivwZpNNh21VVX6bOf/axuueUWPfLIIxoYGNDSpUu1fPlyrV27VnPn7rvBuN73Sxp9D1796lfr1a9+tQqFgu6880499thj6u/v19DQkObOnau+vj6tWrVKa9as0eLFwTc/AQAwExWrhcDpzb6pNpcIDofkK0Q3miXsJumwGBQQxnvftSGkXNKKadkRKCsSmFBSCcfvP+gU65xTe46wPttmh8hyRuxq8ni6N4w2PmoVdn4YOz/bcbp973nFV1T0xnWDsT+2ix12s48H49mRu5wZwB+dbwTZGry+Ga6Eh9EaPa/XBu8Cn0MYDajbDiOg1Jda8uyfgo8rhNHQLLcO3hg43cnpxN71bR7N9NKXXhI4fbDc3+aRTJYPua7pdLQaAACgy51c8/jmjowCAAAAAAAAAAAAAAAAaDPCaADQ5ebOnTshDNZqS5Ys0etf//q2bKseuVxOxxxzjI455phOD0WSlMlkdPrpp7dte9lsVuvWrWvb9gAA6HZWZCbT5DBaNhm8PqIbzVGqjpjBp7H5QD2KvmBGOjp9870Z06ojEph26aaMCfWxvku18c58NTgW1eyYp7W+QnVY3vu9oSwrftWuaGDSJdXjMhrxxUnzxp9frX0ioYTSrkeSHTYbv2wxJDqYa/JnEJc1/qjXGdbzrLDrmDlGRK/R65uplm80jBZ2nIzzHADBBsrhYTQ7twg0bmd5QP+7+xeB8w6f+2It6VnW5hFNL72p4F+aMlDun3Ad2Alh1wed/rsZAABAl3tJzeNfSJJzLifpdZLeJOlwSX8kqShpu6T/1WhA7b+897vbN1QAAAAAAAAAAAAAAACgeRKdHgAAAAAAAPXw3k+KzoxpdmTGCotYYTbEM1W8pNGACmavghF+ktoXf7K3Hz9IZAUEU4TROipqPLNQCT5nTBWvisv6bldVVcnvC01a3zUr0tUKVgRjfLTNHGdizt64h/WaowTWRtfV3M8gLmv8UeNeVuRuqusha7vDRsQvqqmWb/S8HiXcRrwWqN9AaVvg9L70kjaPBLPRzwdvUkXB17zrete3eTTTz1jAsFbZl7SnsqvNo5nIOjenXErpBH+fAQAACOKc65W0atykEUkPO+fWSbpX0tcknSnpEElZSQslPVfSGyR9UdIjzrn3tnXQAAAAAAAAAAAAAAAAQJMQRgMAAAAATEtlX1ZVlcB5GZdt6rassEjUYAnCTRUvsWJQwFRCQ0htjD8Fbj9CEKqWFRNKulRTxoT6RI1a5Y1YlBVWq5f13aodk7V/tDMamDP2wwlBM2OfGL9slPN02Lkm1+SgalzWZxY17mU9L5cMD76ZgcaQ41AU+cpUYbTGzutRrr/CjqUAwg2UtwdO3xdccoHzvXyLRoTZouIrum3nTYHzlqSXac3cF7V5RNNPX3qxOW+w3N/GkUxmnb87HagFAADocvvXPH5S0tmSfiLp4AjLL5Z0pXPuq87xQ2QAAAAAAAAAAAAAAABML/yDFwAAAADAtFSs5s15mSYHTqxITNRgCcJNFTgp+ZE2jQQzTXgIqbNhNCsIZcWzJKlixIRS3NPWUdY5p1Bznqp9PMaKU9XLioSNjmFYC9W398/By7dv3zADgROCZsHv2/hl7bDYvmXDQlntfM1Bosb1LHZoJPx6yAqn5atD8t7LueD4Ub3jGdPoeT3K9RfxWqA++cqwuf/0pUfDaM4IowGNunvPnWa8a23veiUcv+9rKvOTvUooGRiRHyhv10E6pAOjGmVfC3c2UAsAANDlemsez5P0H9r3y3Afk/T/SrpNUr+kRZJeLundklaOW+7NkrZKuqRZA3PO7SdpaczFntus7QMAAAAAAAAAAAAAAGDm465JAAAAAMC0VPR2GC2byDZ1W2ZwJSSygujyFTsEJUllX2rTSDDTWGGPhBLqcZk2j2Yi67hS8iOq+LKSAbGzkrEvpFy6qWNDPHaUa7jmcfCxbqp4VbPGMzqGcaEwY/9oZzQwSnjUigWOf9/MsNi484sV00q5lNKJninH2kpRv0MW63lTRfes962qqoq+oKyr77vZ6vN6WORuDPFaoD4D5e3mvEWpqe53980dDGadDYM3Bk5Pux4dv/CUNo9mekq4hHpTi7SjvG3SvIGSvX+3QzdEeQEAAKah2jDaknF//qak872f9D/L7nDOfV7Sv0t647jp73fOfcd7/7Mmje1dkj7WpHUBAAAAAAAAAAAAAAAAk/CrtQEAAAAA09L4uEutTJMjM7mkEVwhutEUYZ+lJJV9Wd4TWkB8YTffO+faPJqJwuJT1rHFigkRRuusnHHOqf3+5Y1j3VTxqrgyIXHQ8UFPK+7ZzjiFFYUbvw9Y54jx71vWOE+PX9ZaTzfEOKz3oVAJPz+OsUJhU0X3wr57U8XNQsdjxOzGNBpGixI94xoNqI8VRnNy6k0vGv2zcQnF1Toa8VRxix4Yvidw3jHz12pucn6bRzR99aWXBE4fKPe3eSQT2X83a+7PbwAAAGYY6992/lLSeQFRNEmS974g6bxnnzfe3zRxbAAAAAAAAAAAAAAAAEBLEUYDAAAAAExLxWrBnBcWhamHdaPuiC+q4itN3dZsNFVAxauqqnifEV+9saB2CAujWTGkctUKo6WaMibUxwprFWrOU+2KQSRcIlJwzApHWTHQVjDfu8r4oNnU75u1PxUivN6uOB4kgwNl+epQpDCodR6dKvoW9lk3EhYbnjKMVq573dLUQdXR5xBGA+oxUNoWOH1BsndciLWzcVnMTLcO3mjOW9e3vo0jmf76UsFhtEEjfNgueePvON0QqQUAAOhie4zpl3gf/gOWZ+f/Zc3k05xz+zVlZAAAAAAAAAAAAAAAAECLcdckAAAAAGBasqIYTgmlXU9Tt5VLBAdLRscxrLnJ+U3d3mwTJXBS8iUliT8hJiuMY0WI2iksAGBFjioKvtdtX6gEnWCFtcZ//7z3ZqivFd/HbGJO4LF1bEwVX9GIL5rLtosV5hq/D9iBwzmBfx5v/GdgHg9CzvHtYn2Hqqqq5EfU4zKhy1vn0am+W2GvvZEwWsH4zMaUfXDkMaqpgqrS6PfGey/nCDgBcQwY4aS+dHBoabwoIUcgSKGa1527fho4b2V2tVZkV7V5RNNbb2px4PSBUn+bRzKRHbsljAYAABAiKIz2mPf+1igLe+9vc849LOmQcZPXSfpmE8b2hTrW81xJ32nCtgEAAAAAAAAAAAAAADALcEcxAAAAAGBaKlYLgdOziWzTIxhWsEQijNYM+crUgZPRiIr9OQBBrLBP2D7dLlYQSrIjR1ZMKJUgjNZJVsyh7EsqVUtKJ9Iq+RFVVTGWb/73MZeYo0FNjl+M7RNWmGJs2Xaxg2b5cX+eej+2xlyo5lX1VSVcItJ6OiU8UDaknkR4GK3eY13a9SipVGB0MV8Juu82muEpwmWl6kjd65aiBVWrqkSKygGYaKBkhNFS+8JoTtbftQijoT4bd95iHtvX9a5v82imPytkOGiED9vFul4J+3sRAAAANBgw7Y6Y67hTE8Noa+ofzj7e+2ckPRNnGQL2AAAAAAAAAAAAAAAAiCPR6QEAAAAAAFCPonHjdKYlgZmQYEll6jgHwlk3SI9XrgYHoYAwVggpbJ9ul6RLKe16AufljahQydgPUo4wWieFxafGzlVhx7lWfB+nCo51SxjNDpoNjftz8Hk2l9z3vlmfgZfXiC9KkvIVKx7W+RhHeIB16uuMeo91zrkJ7+N4Uc7NlqmCp2U/OcTWzPXvfV4DrwGYrXYY4aS+9NI2jwSzhfdeGwZvDJw3L7lAR88/oc0jmv56U4sDpw+U++V95wKGdqS289diAAAAXewxScWaaU/FXMeTNY+DLxgBAAAAAADVtCxFAAAgAElEQVQAAAAAAACALkMYDQAAAAAwLRWrhcDprQijha2zYASMEF1YoGdM2RNGQ3x2CKn5x4l6WFEoa9xWTCjlUk0bE+ILizmMHd/CjnOt+D5a6xwbh/UdG122fXEKa1v5cTEwO6KRG/fnkM+gEv4ZdEOMI2wMYZ/VmEIDxzr7OFT/9c1UQbKKyqr6at3rjxKLG30eYTQgroGSEUZLLZly2c7lljCdPZi/V0+N/CFw3vEL/1jpRHBIGLY+I4xW9iXtqexq82j2sc7f3fJ3MwAAgG7kva9I+n3N5NpQ2lRqn5+tf0QAAAAAAAAAAAAAAABA+xBGAwAAAABMS9ZNtZlE8+/pSCfSSrl04Lx8xDgHbFMFVCSpRBgNdbCiOLnE3DaPJJgVQ7LGXSGM1pWyybB45ug5IixulUs2//tofrcqz44nLNQW8nqazYpyjd8HrLGOXzaXDAmLjcXgjPN12LLtkklk5eQC500V96r6ioo+OBYb5btlhtEaiIrlI0RjrePZVLz3kYNnUaJyAPbx3mugHBxGW5TeF0azjlek0VCPWwdvCJzulNDa3tPbPJqZoS9thwwHy/1tHMlE9t/NOn8tBgAA0OXurnncG3P52ud37qIQAAAAAAAAAAAAAAAAiIEwGgAAAABgWipWgyMg2URrgi5R4i2oTyFCuKRMGA11sMI+7Qw/hckaQSZr3NZ+YIUb0R5h552xc4R1rnBy6nGZ5o/J+I6PBaus8aRdT1u/T+Y+UBmW96OBHWus4+NvVghu/PIFI9YVtmy7JFxCGeN7NFWgzArFSlIuwjWRFU+LEjez5CtTL1vyI3Wte8QXVVU10nO5RgPi2VPZaV5r9KWihNGAeAbLO3TX7jsD5x0x7xgtTu/X5hHNDPOTC5VQMnCeFT9sB+vv/a36GQ4AAMAMUlsTPjzm8i+oefx4A2MBAAAAAAAAAAAAAAAA2oYwGgAAAABgWrJCIBmXbcn2rHDKVMESTC3Ke0gYDfWwojhW6LDd7OBi8PHN2g+SLtW0MSG+lEsr7XoC5+Wf/Syt41wmkVPCNf9HtFN9t6zxtHvfsM6tVVVU8iOq+qq5P4wfa4/LKGH8qHvsteaN9XRLjKPeAGvYOTSbCI6eRdluPkK0NEjFV1T0wfHa8cq+XNf641x3cY0GxBMWTOpLLzHnjfHyzRwOZoHbBn+oqiqB807sXd/m0cwcCZdUb2pR4LyBUgfDaNY1nRFpBQAAwF7fl1Qc9/hY51zwBV8N51yfpJfUTP5ZswYGAAAAAAAAAAAAAAAAtBJhNAAAAADAtFT07Q2cWOst1BkOwT5TRV8kqUQYDXWwojhWjKnd7ODiUOB0K4yWcummjQn1Mc8Rz34H2x3ps75be8djnLvavW+Evf58dVhFI6AhSdnkvmWdcyGveXQd1mvullBivQHWsIBZLsI1kRUjsY5DU4m6XL3B0zjXXVGuLwDss8MIJiWV0vxkb5tHg5mu4sv6+eBNgfOWpg/QoXNe2OYRzSxWzHCw3N/mkYwKC6d2S6QWAACgW3nvd0v61rhJGUnvibj4eySN/21Cj0n6bZOGBgAAAAAAAAAAAAAAALQUYTQAAAAAwLRkxVIyiWzg9EbZ4RCiG42K8h7WG1DB7NbtISRrHIVK8PGt7MuB09OE0TrODqONfpbtjvSZ361nx2GOJ9nefSMshFGoDoeeH2qXtdaVrww9uz4rqNodx4N6A6xh8a9sIvjaZbyc8Zx6w2hRw2X1ntfjXHdxjQbEM1AODqP1phcr4fb970TnXLuGhBnsrt13aGdlIHDeib3rJ3znEF9vanHg9IEOhdFCY7ddci0GAADQLs45X/PfSREW+1tJI+Me/7Vz7rgptnOcpL+pmfx33nsfb8QAAAAAAAAAAAAAAABAZ6Q6PQAAAAAAAOpRrBYCp2dCIiuNsKM3RDcaFeU9JIyGerQ7RhVXzohQWUEiaz9IEUbrOOs7NXZ8a3ekzxpP/tkohXXczbXoHGqxolzSaMis4iqRl7U/g7E4XfB+Ze2H7VZvgNWan3IppRNTHxvmWGG0iIGzWsMRg2r1ntfjXHdFjbQBGDVQCg6jLUotibQ899Yjjg2DNwZOT7seHbfwFW0ezczTZ+y31n7eauGx2+64FgMAAJAk59xyBf97yv1rHqeccyuN1ezx3jf1wst7/4hz7u+1L3SWkXSTc+6Dkv7V+30/aHHOpSS9XdIVknrGrWajpGuaOS4AAAAAAAAAAAAAAACglQijAQAAAACmpbHQSa1MItuS7VnxFmsciKbqK5HeQ8JoiKviKxrxxcB53RJCmiqmVcvaD5KOH/F1mh3PHItyGZG+Fn0Xp4p52tFAO1TWCplEVk5OXpNjOvnKkCqJsrls7Wu09utCdVgVX1bJjxjr6ZbjQX0BVmt+1M/S+g5aIbmpTBVyG1Oq87wedf1xnwtA2lHeFji9L10bWHKBzws6lgNBniw+ps35ewPnvWTBOs1JzmvziGae3vTiwOmD5f42j2RU2PVMu8O8AAAAU7hN0nMiPO9ASY8Y874i6a3NGtA4H5X0fElvfPbxPElfkPRp59wdknZIWiTpZZJ6a5Z9QtLrvTd+QAYAAAAAAAAAAAAAAAB0Ie6aBAAAAABMS8VqIXC6FRZplLXeesMhGGV9jrVKVcJoiCfs5vtuCSHlYofRgiNRKZdu2phQn6kid9Znan0HGh6PFQmr5OW9DxlPe8MUCZdQJpELHE+hmldFleDllFTa9UyYZn0G+epwaICzVZ9BXPbxIDweasW/on6W1nbrjYrlK9Gui8p1ntenCsXV+1wA0kBpe+D0vlRtGA1ozIbBG815J/aub+NIZq6+lB1G897LueDAYasUKvb1TLf83QwAAKDbee+9c+7/aDSAduG4Wb2SXhmy6EZJr/PeP9nK8QEAAAAAAAAAAAAAAADNRhhtFnHOzZf0cknLJS2RtFvSk5J+671/oInbSUs6QdIKSQdI2vPsdv7Xe/9os7YDAAAAYHazglqZloXR6guWIFzU8ErZE0ZDPGFBnG4JIYWFnIJY+wFhtM4zzxHPRiCsz7R1Mc/g8VRUVsmPKF+xxjO3JeMJkzXCaPnqkCpGDDCXnDMp6BEWGrRe79j2u0Hc48GYgvlZRjvO5YzPPGrgbNJyEYOx9Z7XrdcbPBbCaEAcA2UjjJZeOuFxe3NKmGnylWFt3HlL4LxDsofqoOwh7R3QDGUFDUt+REOV3ZqXWtDW8VjXBymXUjrREzgPAAAAk3nvi5L+H+fcNyV9SNIrJCWNp/9W0hWS/sN7H/zbBwAAAAAAAAAAAAAAAIAuRhhtFnDOnSDpbyWdIuMzd879RtK/SPqi997XuZ2lkj4h6RxJi4zn3C7pH73319azDQAAAAAYUzSCZNlEtiXbM4MrMQIdmKzVARXMXuEhpO4Io9nHleDjW9mIRKUcP+LrtGwyOK41FvyyIppWlKpRuZDYV6GaN8OBOeN1tFIuMUeD6p80vVDNq+qqgcsE7cN2wHR4ilBi+2NwQeq9zrDiX7lktNdlPa/oC6r4ipLOurfWGE/EoFq95/U4sTPitUB0FV/RzvJA4LzJgaXgNJpXXf9rCbPMnbt+qqIPjpyv61vf5tHMXL3p4DCaNBpBbHcYzTond8vfywAAAMZ471e2YRsN96a99z+W9ONn/63eyzT6i0vHfknqVkm3e+8fb3Q7AAAAAAAAAAAAAAAAQCdx1+QM5pxLS/qcpAsjPP2Fkv5Z0rnOuTd777fE3NZ6SV+WtN8UTz1e0vHOua9JutB7H+1OOQAAAACoUawG30ydCYnBNCKbDL5hN06gA5NZAahahNEQV1gIqVtuwLePK0Py3su5iffIWftByqWbPjbEkzXOPWPnCCtuZS3X+Hjs73ihOmyeu7IdiIRZY81XhlRJBMcAg8Jv5mdQCQ+jteq6Ia56rzOs1xb1uzUn5DMvVIc1Nzk/0nrGDEcMnpbqPK+HfZa1okbaAEg7yzvkFRyjXBQSWALi8N7r1sEbA+fNTy7UUfOOb/OIZq4FyYVKKKmqKpPmDZS36yAd0tbxNHq9AgAAgGDe+22SvtfpcQAAAAAAAAAAAAAAAACtQBhthnLOpTT6D59Or5lVknSnpMclzdVoEG3FuPknSrrZOXeC974/4rZOknS9pJ5xk72kX0t6WFKvpBdp9DdTjvlTSQucc2d574PvtgEAAAAAQ9VXVfTtDaMFRVikeIEOTJaPHFAZafFIMNNYMaGUSyud6I6QWM4IQlVVVcmPqMdlJkyv+OBIVMrxI75Os+Jehepo/NH6PuaSrQmRWd+t0THZobCw5VrF2mahmlfViPQEBdxyRlisUM1P6+PBVNcZ5ncrYuQu7DPPV4Zih9GiXhfVGzyNE6Qd2/8ATG1HaZs5ry81MYzm5Ixn+iaOCDPRA8P36OmRxwPnHb/wj7vmnDwTJFxSvalF2lGevG8PliL979+myhvn5G4JVgMAAAAAAAAAAAAAAAAAAADoPolODwAtc7kmR9GukrTMe7/We3+u9/413vvnPPu8h8c97/mSrnPOWXe37OWcWy7pOk2Mov1c0uHe+2O893/ivT9N0nJJ79NomG3MmZIui/vCAAAAAGDEF815GZdtyTaDIiwS0Y1GRX3/ykYQCrB0U/jJEhYuCooGWiGhlCMi0WlZI55ZfPYYZ30freUalUnY58J8SCisE3GKrBk0swNuQe+bHafrrhCcJWz8YRr9boXF+eJEyMYMV6IFT+sNo8UJ0kaNrwKQBsrbA6dnXHbS9YoVRiOLhqlsGLwhcLpTQmt7a/+XJhrVm1ocON3a31vJvl7pnmsxAAAAAAAAAAAAAAAAAAAAAN2FMNoM5JxbI+nimsnv996/z3s/UPt87/1Nkk7QxDjaiZLOibC5T0jqG/f4dkmneu/vr9lG0Xt/laQ/qVn+L51zz4mwHQAAAADYKyymFRaDaUTOCIyU/EjdcQ9Ej67wHiOufKX7b74PCxcFjb9EGK1rWYGtsWOcdawLi+M1IuGSZig0XxlSoRJ8Hs0ZkbJWCnvvrP04aJnQ9RjXDd10PLDGX6jmVfVVczn7PYr23Qp7D4brCIu1+rxuvd4gxGuB6AZKwaGkRemlivA7dIApDZS26+49GwPnHTnvWC1KL23ziGa+vvSSwOkD5f42j6T9kWAAAAAAAAAAAAAAAAAAAAAA0x9htJnpQ5r42f7Ie/+PYQt475+W9LaayZ92ziWtZZxzz5N0/rhJI5Le6r0vhGzneklfGTcpI+ljYWMDAAAAgFrFkNBFq26szYYERqzADKaWr0SLrhBGQ1xWEMeKD3VCLhlyXAmIB1j7QcqlmjYm1MeKS41FrazzVitjEFkjcranslMVlY3xtH//sN6DQnU4JKIxeZz2ZzCsghlK7J4YhzUWL68RXzSXazQ0kpwiohdXPmJMzQo9TiVO7Kw4RVQOwD4D5eAwWl8qOKwUxMs3aziYgW7b+UNVFXxMXtd7RptHMzv0phYHTh/sQBit0ZArAAAAAAAAAAAAAAAAAAAAgNmHMNoM45xzkl5VM/mKKMt67zdI+uW4SQdLOilkkfMkjQ+nXee9fzDCpi6vefwnzhl33wEAAABAgLAwWibRmr9e5JJ2YCRqBASTRQ2clKqE0RCPtV9asahO6HEZObnAefmA2FHFB8esUi7d1HEhPitCVazmVazmzVhMK0Nk1rqt+I3UmXCgFcTIV4YD9wNJygXsx3ZgLa9h63gwTUKJYYEyK4wWtr6oz63n+qbVwdM4Y/LyKlbN3+EBYBwzjJaeHEYb/d9QATxhNAQr+5J+Pnhz4LxlPQfq+XOObPOIZoc+I4w2ULKvBVvFDLmG/JwFAAAAAAAAAAAAAAAAAAAAwOxGGG3mOUzS+DtVRiTdEmP5/6l5/IaQ576u5vE1UTbgvb9f0p3jJs2VdFqUZQEAAABAkgohkYuMEUZpVFg8JWrcC5NFDZzUG1DB7GXtl50IP1kSLhESc5oYD6j6iqqqBj6XMFrnWZ+jl9dgeYe5XFDgq1lyxpjCYhjW62ilsH3A2o+DlgkLge00PoNWvv9xhb33YdcZVjwuzmdpHRetdYdp9Xk97jUX8Vogmh2lbYHT+1KTw2hAXHftvkO7KoOB807sXW/H9tCQoLChJA2W++XbHDKcDn83AwAAAAAAAAAAAAAAAAAAANBdUp0eAJpuec3jB733xRjL31Pz+FVBT3LO7S/pheMmlSX9PMZ2bpH00nGP10v6bozlgVljeHhYv/71r/Xggw9q+/btKhQKyuVyWrZsmVavXq0XvehF6unpacq2/vCHP+hLX/qSNmzYoAceeEADAwMqlfbdqHrNNdforW99a+CyGzdu1DXXXKPbb79dW7Zs0c6dO1Wt7rtp/5FHHtHKlSslSSeddJI2bNiwd167b8IBAADTX9G4qTbtepR0yZZsMyyMVk84BKOivneE0RCXFcMJ25c7IZeYG7gf1E4r+7K5DsJonRf2vRos99e1XKOsdQ+EjCeXsONirWIFzQrVvCpGDDDotYWFwAbKwTG4bjoehAdY7XOlNS9OaMT63AuVOsJoEZep97yer8QLnRGvBaKxjpPBYaXgiJUXP+NFsA2DNwROz7isXrbg5DaPZvboNcKGJT+iocpuzUstaNtYrOuVTkR5AQAAAAAAAAAAAAAAAAAAAEwPhNFmnkU1j4N/Bbut9vkHOecWeu931kx/Qc3ju733ce5Ku73m8eExlgVmvEqlov/+7//WNddco5/+9Kcql+0b4LPZrE4//XT92Z/9mV796lfXvc2rr75aF110kYrFOC1FqVwu613vepeuvvrqurcNAAAQV7FaCJyeaeFNtUmXVI/LaCSgPR0WLEG4qO9dyY+0eCSYaawYTpxYUDtYMYDaIFFYRCjl+BFfp2WT9YXRWvl9tNY9UAqO3zg5ZRLZlo3HYu0D+eqQKqoEzgt6bWFhMes1d9PxoMdllFBC1YAYnBURLVVHzGhinOhbzvj+DhuBSYv33oxS1ipV44fRqr6iog++BrQQrwWmNlItaqiyO3DeotTSSdOCs2hAsMcLj+qh/P2B845dsM4MpKJxwWHDUQPl7W0No+WNv5t1U6QWAAAAAAAAAAAAAAAAAAAAQHdJdHoAaLraO8UzMZcPev5hEaZtjrmdhyJsA5iVfvKTn+iwww7Teeedp5tvvjk0iiZJhUJB3/nOd3TmmWfq2GOP1a9//evY27zhhht04YUXxo6iSdJHPvIRomgAAKDtrOBRq4Mu1k27+QrRjXpFfe+s8AtgyVeC4zzddvO9FYOojfmE7QMpl27qmBCfFfeS7ChXQkmlXU+rhmR+1wfKwePJJHJKuPb/uDiXCN4HCtX8pEDgmKDXFhY5s+J03XQ8cM6Z47EiomFxUSt2Fvhc4zOIGjkbU/SFwLBbkHrO61YYNwzxWmBq1nlBCg8rAVHcOniDOe/E3vVtHMnssyC5UAnjnwKEhXtbwTofd1OkFgAAAAAAAAAAAAAAAAAAAEB3SXV6AGi62n/JfkDM5YOe/3xJv6iZtqrm8R9ibuexmseLnXN93vuBmOsBZpRPfOIT+sQnPiHv/YTpzjmtWbNGy5cv1+LFi7Vt2zb94Q9/0AMPPDDheZs2bdJxxx2nz3/+83rHO94Rebsf/vCHJ2zzvPPO09vf/nYddNBBSqf33WC/ZMnEG+G2bt2qf/qnf9r7uKenR3/1V3+lM844Q0uXLlUise+mm+XLl0ceDwAAwFSsMEZYmKYZcsk52lWZ/NcWohv1i/relX2pxSPBTGMFFOPEgtrBOm7V7hth+0DK8SO+Tsu4rJycvPykeVZwJpecI+dcy8aUTQZ/t0q+9vcqPPv8Fp9DLdZ2vbyK3jjfB+zHadejhJKqqjJpnvWauy3GkUvO0XB1z6TpVkS0NqA4XpzomxlGMwKTFitkF6RsfCZhwl6vuQzxWmBKVsBTknpTiydNcwo+dwWdAzG7DVf2aOOuDYHznptbo+XZle0d0CyTcEktTC0KvBYN2+9bIU7sFgAAAAAAAAAAAAAAAAAAAAAkwmgz0e9qHh/onFvuvX884vLHBUxbGDCtt+bxMxHXL0ny3u9xzhUkZWu201AYzTm3n6SlMRd7biPbBJrl4osv1pVXXjlh2vz58/XhD39Yf/qnf6oVK1ZMWmbz5s368pe/rCuuuELFYlGSNDIyone+850aGhrSxRdfPOV2f//73+vuu+/e+/iMM87Q1772tUhjvv766zUysu9G1ssuu0wf+MAHIi0LAADQiKIRPMq4bOD0ZrFu2q0n1IFRUcNoVtQGsOSrwUGfbrv53gwSxQqjpc15aA/nnLKJXOD5YKBc+3sMRrX6uxh3/dZ3sdXqeR9yATE155xyiTkaqu6Ose3OxOAs1nthnSvDrj/iRN+sYGTc65th47gbpJ7gadg1Q4/LaMQXA5aJF3cDZqMd5W2B0+clF6onkQmY07qoJ2aWO3b9NPDYLEnres9o82hmp77UkuAwmnF92gpVX4kVuwUAAAAAAAAAAAAAAAAAAAAASUp0egBoLu/905J+XzP5/0RZ1jk3V9LZAbPmB0ybV/M4uEoQrnaZoO3E9S5Jv43533easF2gIV/5ylcmRdFe/vKX67777tOHP/zhwCiaJK1atUqXXXaZ7r77br3gBS+YMO/973+/brnllim3vWnTpgmP3/CGN0Qed73L3nLLLfLe7/0PAAAgroIRRmt14MRavzUeTC1qdKXsyy0eCWYaa7+MEwtqB+u4kq/ECaPxuw+6Qcb4LAdLk2MUUuu/i3GDY52KhFlRrjBZI+IWN65Rz7ZbyTweGOfKQsU+h8b5PM1AYyVeVCzO8+s5r9ceF8frSwf/row812jAlAaM81RfanHMNfFzXuxT9VXdOnBj4LwFyV4dNf9lbR7R7NSbDt6Pg2JprRL285Kg2C0AAAAAAAAAAAAAAAAAAAAASITRZqr/qHn8QefcgRGWu1TSwoDpUcJowb/qO1ztv4SvXScwKzzwwAN6z3veM2Ha8ccfrxtvvFHLly+PtI7Vq1frxz/+sdasWbN3WrVa1Zvf/GZt3x5+g8vWrVsnPI66zUaXBQAAaESxGvxXkEwi29LtWhGbfDVeOAT7FCKH0ewoFFDLe28GdDoVf7JY8arafSMsIpRy6aaOCfWxzhED5f7A6XHDZXHFDU3kksFxrFar532wXlvc19zqzyAuK1BmnSutYFrGZZVwyRjbta5vop2j9z0/+vVQqY7zuvU+JJXS/GTQj7WlAtdowJSsQNIiIzjojPWQRcN4vx++W8+Ungycd0LvaVy/tklfakng9EHj+rQVwsJo3XYtBgAAAAAAAAAAAAAAAAAAAKB7EEabmT4vaee4x72SbgyLoznn/lLSxcbsaoRt1nPPC/fJAJIuueQS7dmzZ+/j3t5eXXvttZo3L14rcL/99tO3vvUt9fT07J32xBNP6NJLLw1dbvy2JSmdjn5DUiPLAgAANKLog2+szbQ4eGQGjCr2jb6wlaojobGn2ucCUZV9SRUFf7es8FCnWDGq2iBRWByQsER3sM4RVizKilE1S9zQRKeigT0uo0TMH1Nbry3+a+6uGIf1GViBMisUFjdyF/U4NJU4YbR6gqfWeLLJnB134xoNmNKO0rbA6VZQSc5KowH73Dp4Y+D0hBJau/D0No9m9upLLQ6cPlhqZxjNvp7otmsxAAAAAAAAAAAAAAAAAAAAAN0j1ekBoPm894POubdJunbc5CMk3e+c+xdJN0p6UlJO0lGS3i7p5eOe+7ik5eMeDwZsZk/N43runKxdpnad9fiCpG/GXOa5kr7ThG0Dsf3ud7/T97///QnTPvOZz2j//feva32HHXaYLrnkEn3605/eO+3f/u3f9PGPf1x9fX2By1SrUdqHwRpZthnuu+8+3XPPPerv79fAwICy2ayWLl2qNWvW6Mgjj1Qmk6lrveVyWRs3btTDDz+sbdu2qVgsaunSpVq5cqVOOOEEZbPZJr8SAAAQV7FaCJyeSbT2PJ1LGmG0mOEQjIoTXKknoILZK+y7lU12Jv5ksUJItceVsH0g6fgRXzeIGxZrdQgibnit1aE2i3NO2cQcDVej/Wgw5VJKJ3oC58V9Tzv1mi1WuLFQCT6mmaGwmN9FOyo2JO+9XMQIUt4YZ5Cyjx88NUNwiTkh12jRY23AbDVQDg4k9aWNMJrBe34XDkbtKG3T3Xt+GTjvhfNeqt50cKwLzddr7McD5e2xzvGNCLs+6LZrMQAAAAAAAAAAAAAAAAAAAADdg7smZyjv/XXOufdJ+r+SEs9Oni/pA8/+Z7lK0kJJ54+bNm3CaN77ZyQ9E2eZdvyjf8By5ZVXTrhhbMmSJbrgggsaWufFF1+sz372syqVRm+aHxoa0tVXX60PfvCDkqRHH31UBx98sLn8ySefHDj9mmuukaTQ8Vn70yOPPKKVK1fufXzSSSdpw4YNex/HuWluy5Yt+vu//3t985vf1NatW83n5XI5nXzyyTr//PP1+te/Xslkcsp133///brsssv0/e9/X7t27TLX+5rXvEaf/OQntXr16sjjBgAAzVWo5gOnxw2BxGUFV+IEvrBPnKBc2ZdbOBLMNGHfLSs81CnWeGqPK9Y+kFBSCZcInIf2ih3lMkJOzRJ3PK0OtYXJJaOH0cLGGTeu0cnXHMQKN1rXGXYoLN5xLpecFzi9orJKfkQ9Llp4fjhGhKye87odgpsTco0WfM0IYJT3XgOlbYHz+lJLA6c7Wf9PhTAaRv1s8IfyCv6lKif2ndHm0cxufangMFrJj2ioulvzkgtaPgbreiWplFIu3fLtAwAAAAAAAAAAAAAAAAAAAJieuGtyBvPeXyVpvaTfR3j6HknvlnSxpANr5j0d8PydNY+D75AxOOfmaXIYLSjABsxo//M//zPh8Vve8hb19PQ0tM6lS5fqzDPPDN3OdOS915tUPcUAACAASURBVGWXXaZVq1bp85//fGgUTZLy+bxuuOEGnXPOOdqyZUvocyuViv7iL/5CL3jBC/Sf//mfZhRtbL3f+MY3dPjhh+vKK6+s67UAAIDGFauFwOmZRLal27WiG3ECX9gnTlCu7EstHAlmmrDvVqsDinFZ4ylUasNowftAmphA17CiVubzWxzlijueuFGxZorzXoTtw7FjcDHfo1azrzOC4175ihUKa95nn48RO4tzPVSq47xuh+DmmK+hEGP8wGw0XN2jEV8MnNeXDg4qAWFK1ZJ+vvPmwHkH9Byk1bkXtHlEs1tfarE5b7DU35YxWJHSbDLHL68CAAAAAAAAAAAAAAAAAAAAYEp1egBoLe/9Tc65wyW9VtIZko6XtEzSfEnPSHpE0vWSvua9f1qSnHOH1qxmU8CqH6x5/JyYQ6t9/g7v/UDMdQDT2uOPP65HH310wrTTTjutKes+7bTTdN111+19fMcdd6hUKimdnp43zJfLZb3pTW/StddeO2ne/vvvryOOOEJLlixRsVjU1q1b9Zvf/EZ79uyJtO58Pq+zzjpLN91004Tp6XRaRx11lJYvX65MJqOnn35aGzdu1PDw8N4xXXzxxRoYGNDHP/7xhl8jAACIp2jcWJtpcfDIjm4QRqtHbfgpTMmPtHAkmGnCvlvdFkbLJecGTi/6gqq+ooRLSpLKvhz4vBRhtK4R97vV6u9i/EhYJ8No0d+LXCJ4n5GkXMzX0MkYXBBrPFbs0QyFNfF9yFeGtTC1KNJ6hivRI2Tlavwwmh2Cm2N+360YC4BRA6Xt5rxFqXhhNN/oYDAj/O+e27WnUvu7lUad2LueEFabLUj1KqGEqqpOmjdQ3q7lOrjlY7CuV1odCQYAAAAAAAAAAAAAAAAAAAAwvRFGmwW89xX9/+zdfZQkdX34+09VVz/OzM70zC4Py7LsCioBAYVFYIHFCIjL+cXEh9zk4rm/E0n8/WLIifeGXP3pzxuQHHz4eTw3JOolud5o4g1Jfh4fovcnETHyrCgPigIiyOOygLOzPTtP3T3dXd/7xzLLTPf3U13VD9XVM+/XORy3q7qrvtVdXVUza71X5Ksv/xfIcZzjRWTbqknPG2Oetzz10abHJ0Uc1quaHj8S8fXrVr1hZB+JuL7bVhTxUoO9Aefuu+9umbZr166eLPuss85a87hcLsuPf/xjOfvss2Xbtm3y1FNPHZn3l3/5l3LDDTccefxP//RPcu6557Ysc/PmwzfCvelNbzoy7Xd/93fl3nvvPfJ49XJX27Ztm3V6WFdffXVLFO3yyy+Xa6+9Vs4+++yW5/u+Lz/4wQ/kn//5n+WLX/xi4LKvuuqqNVG08fFxufbaa+X3f//3ZWxsbM1zy+WyfO5zn5OPfOQjUqlURETkuuuuk3POOUf27t3b4dYBAIBOVP2KdfqgIjNasATBorxvWhQKsNH2rayTOxIaS4p8wHGr4pelkBoVEZG6sUeEUg6/3kuKqHGHfke5oi5/kJGwoNhZs6BzfZTrgLSTSdz3R9uHtKCIdqyLvC8qgcagddifGyGMphzTggSF4NR4bYQIK7ARHaxPW6e74sq4V7TOc0T7vTppNIjcXvqWdXrWyckbN70p3sFAXCcl496klOqtEcRSfSaWMajn74QFqwEAAAAAAAAAAAAAAAAAAAAkS7Lu/EISXNz0+DbleT9reny64zgFY0zYO83Ob7O8DWtfSeRVH279l9vRW09+zJUdmwc7hn379q15fPTRR8vU1FRPlv26173Our6zzz5bPM+THTt2HJk+MTGx5nnHHHPMmvnNRkdHj/w5l8utmRf0uk7dcsst8ld/9Vdrpn3iE5+QD37wg+prXNeV3bt3y+7du+W6665rGeeKL3/5y/KFL3zhyOMTTjhBbrvtNnU78vm8XH311XLeeefJxRdfLJVKRYwx8id/8ify2GOPieu60TcQAAB0pOKXrdOzrv283yvajbuVRlmMMeI4g43vDpsoARUjvjRMQ1IJi1ohmfR4Tvj4UlxyAUGosr/UNozmJSzstJFFjVFFfX5U2YixiX6PJ3jd4ccaNM4o2zDIEJwmatxLD41E27askxNXXPGl9XeSUc7V0YKn0cNoZeX6L+cWJJeKFpUDcFip1hpLEhEZ9ybVmKweRsNG91zlSXmq8ph13hvH3yR55ViN/prwpuxhNOX732va728Gee0JAAAAAAAAAAAAAAAAAAAAIPkouKDZ7zc9/rztScaYF0TkoVWTPBG5IMJ63tT0+OYIrwXWhYMHD655XCwWe7bsXC4n2Ww2cH3D4rrrrlvz+A//8A8Do2jNJiYmrGE0Y8yaZXueJ9/4xjdCxd1WgmsrnnjiCfn6178eekwAAKB7Vb9inR41AhNVTokqNaTeUeBjo9NukNbUzHKfRoL1RovzRIkvxSUoYFReFUOqm7r1OZ6T7vmY0Bktnqk+v89xkJSTkoyTbf/Elw0yFJYPCAQ2C4poRNmGJMY4tLhX1VTEN42W6WUlmBZ12xzHUT+DciNCGC3Cczu5bqookba8W1A/+yixNmAjssWSREQm01siL8uI6XY4GHK3z35LnXfRxOUxjgSrFdP2fyVotj4Ty/q1yGoSr8UAAAAAAAAAAAAAAAAAAAAAJAdhNBzhOM4FsjZu9pgx5raAl3yt6fF7Qq7nZBE5Z9WkRRG5JcxrgfWkOVQ2MTHR0+U3L29mJp6bXHrpoYcekrvvvvvI47GxMfnkJz/Zk2V/73vfk5/97GdHHr/73e+W008/PfTrr7rqqjXBtW984xs9GRcAAGiv5tekIfZAUNZpDaL2UlD0hvBGdFECKiKdRVSwMVWU72OU+FJcgoIAq7dD2/8JoyVH1LhDHDGIYQmF5VLho3JBQbko26BFyAYp6DrDFhPVj3XRt017P7SYSbfPrXVwTi8rQdWcW1A/+5pZ5voBCFCq2cNoRc8eUgpCFm1jW2osyI/m7rDOe3X+VNma3R7ziLCi6E1Zp88qYcReqzTs5+9BRnkBAAAAAAAAAAAAAAAAAAAAJB9hNIiIiOM4BRG5sWnyf23zsn8Ukcaqx+9wHOfVIVb3wabH/90YUwnxOgAROI4z6CF07bvf/e6ax1dccYVs2rSpJ8v+zne+s+bx7/zO70R6faFQkDe+8Y1HHt955509GRcAAGivauw31YqI5AKCIr0QNmCEcKLG5OrGHsQDmpUb9n2r38eITqTdtBo3W/0dqftaGM3ry7gQXdT9K44YRJT4V1BwrN8iBc0CnhtpexN4PMgFxBtt50ztPNpJ9K2grDvKuTpK8LSTWFkl4Nge9H3SgiwAREpKGKmY1sNojgz/753Re98/9F2pmWXrvIuKl8c8Gqw2oYQOS7V4/jEd7Xclg4zyAgAAAAAAAAAAAAAAAAAAAEg+7pxcpxzH8YwJd8e44zijIvJNETl11eSvGGO+EvQ6Y8zjjuP8vYhc+fKkjIh80XGci7XQmeM4vykiv7dq0rKIfDTMOIH1ZnJycs3jQ4cO9XT5s7OzgesbBvfcc8+ax29605t6tuy77rprzePJyUl5+umnIy1jdaTt6aefFt/3xXVpjgIA0G9VX49bZN1cX9cdFN2IGvlC9Jhc3bffaA800/atQYafguTcgiw0Wn8mXL0dDbH/mkeLqiF+iQyj9Sg41m9R3oug9zlK7CyJMY6g8duOa9q1Ryf7lvZ+LEWInS350cJoxphIYX/92D7SNl47Kr0J7QPrzcHatHV6UQkpBTPdDQZDyze+3DH7b9Z5496knDF6Tswjwmpa6LBUPxD5XNwJPeSavEgtAAAAAAAAAAAAAAAAAAAAgOQgjLZ+/WfHcd4pIv8gIv/DGNNyd8vLQbR3isj1InLcqllPi8gfhVzPNSLydhEpvvx4t4jc6jjOHxhjfr5qXVkR+U8i8umm13/aGPNMyHUB60pzqKxUKvVs2ZVKRSqVtX3Cqampni0/Li+88MKax6eeeqryzOiee+65NY/PPffcrpbn+77Mzs4OZYAOAIBhU/WtHWYRiR6liSoovFZpEEaLKmpMrmZqfRoJ1puKElBMYghJ5HDEyBZGW/0dqSv7v+cSRkuKqPtXLoZQX5TzYhyhNk2U9y5onDl3pCfLGZSg8Vcaa49rvvHVWGw+wvtw5DXK/hg2Ylo3NamZ8AFTI0Z8aUgqwl9RqGEVNx8YviReC9j5piGz9YPWeYFhNCWiZAxhtI3q50s/kenaC9Z5F4y/RVIOfx09SEXP/ndDNbMsi/68jKb6Gw8dtp/NAAAAAAAAAAAAAAAAAAAAACQD/0/09csRkV9/+T/jOM5TIvKYiJREpCAix4jImSKSaXrdUyLyFmPMr8KsxBizz3Gcd4jIt1ct63wRecRxnPtF5EkRGX95XVuaXv7/icj/EXG71r1tRZEnP+YOehjr3rZi++f023HHHbfm8YsvvigzMzM9CZg9/PDDbdc3DGZmZtY8LhZ798E1L7sX5ufnCaMBABAD7aZaEZFsn8NorpOSnJu3joHoRnRBn6WNFoYCmpX9Rev0JIaQRPR41ergYs1XwmgOYbSkiBp3iGN/DDsmV1KSdpp/TRifKO9F0DblI1wHJDHGkXbT4jme1E29ZV7zca3qV8SIPULUSSi2oMTUtONpy/M6CMTWTC10LCcovJZ3RwK3mWs0wG6ucUh8aVjnTaab/zrnFY7Yw2jYuG4vfcs63ZWUXDDxlphHg2YTShhNRGS2NhNDGM1+Hk7qz2YAAAAAAAAAAAAAAAAAAAAAkoEw2sbgiMirXv4vyDdE5A+MMdNRFm6Muc1xnLeLyBfllfiZIyK7Xv7P5p9E5L3GGPtdNxuYl3Jkx+ZBjwJx2L17d8u0++67Ty677LKul33fffeteZzP5+X1r39918sdNMfp3U13y8v2m2m7YYz9hmQAANBbVb9ine6IG0vUJecWrEEv7WZf6MqNcLGVFYTREJYW3UtiCElEJJ/SgkSvHFdsoSQRES9kVAj9l0uFj1GlnUzoIFQ3wobC8qlCT3/mjiqXCv/dzAc8N8p3PKnHg5xbkIXGXMv05uNa0HWHdkwJXq/9NUshz9WdxMcOn9fD7aOVhh5Tzbl5STmeZJysLJtq62u5RgOsSjX9r4KKHn9JgXBmai/Jzxbvs857/di5Mu7xD4kM2rhXFFdc8cVvmVeqz8g22dnX9WvXCEm9FgMAAAAAAAAAAAAAAAAAAACQDO6gB4C+uUtEviwipTbPq4vIzSJyqTHmN6NG0VYYY74lIq8TkRvbrPMHIvIuY8wVxphod8AD68z27dtl+/bta6bdcsstPVn2d77znTWPzznnHMlk+h8J6bXNm9fegHfw4MG+LDuXy4nv+2KM6eq/HTt29Gx8AABApwWPsm4ulqhLTonMdBIE2eiihkpqhNEQkhbdyyf05nttXKu/Iw3CaImnnR9s4toXwwYnBh2miPJ+BL3PaTcT+jsRFFgbJO29aL7OCLruiLIvrigoMbWw5+qyH/1XvVrwMeo48i9H3bT9uNzgGg2wKdUPWKennYyMpMbU12k/cRnhH43YiO6c/bb62V80cXnMo4GN66Rkk1e0ztOOA71UUc7DnVyvAAAAAAAAAAAAAAAAAAAAANg4CKOtU8aYHxtj/icRmRKRk0XkHSLyJyLyERH5ryJylYhcKiKTxpjLjTG39mCdvzLGvE9EjhGRN4vIe0TkQy+v950i8ipjzHnGmK90uy5gvXjrW9+65vGXvvQlqdW6iz1MT0/LN77xjcD1DItjjz12zeNHHnmkZ8s++uijj/y5UqnIs88+27NlAwCA/qr6Fev0uG6qXYlvNNOCbdBFjcnVCaMhJO37mEtoCEmN+az6jmj7v+ek+zImROc5aUk74aLkcYXIwsa/Bh0NjPJ+aOfhqMsadAxOo42rOQwWJhQWhbYPLCmhyWZakDJI3V8O/dzAEFzq8DWgtr9HDbECG8XBmv3fySl6m9sEp/sfo8ZwqPnLcveh71jnHZvZLiflT4l5RNAUvc3W6bO1mb6u1zcNqRr773AGff0JAAAAAAAAAAAAAAAAAAAAINkIo61z5rDHjDFfM8b8tTHmemPMx4wxnzPG3GqMme/DOpeNMd8zxnzRGPOJl9f7VWPMU71eFzDs3v/+96+5yWx6elq+8IUvdLXMG264YU1cbWRkRN773vd2tcxBOf/889c8vu2223q27N27d695fMstt/Rs2QAAoL+qSvAo6+ZiWb8WYOskCLLRRQ2VEEZDWGXf/n1M6s332rgqhNGGTjZkpDOuSN+wRMLyEeKm7UKoYUOpcQVVo9LG1XzO1EJhrrihA31r19tdVEw77gapRTivB4XRVo6hYSKTAF5Rqh+wTi+m7QGl9kzng8FQun/+blls2P+a8aKJvW0Ce4hTMT1lna4dB3pFC9uLJDdaDQAAAAAAAAAAAAAAAAAAACAZCKMBwACdcsopsnfv3jXTPvjBD8pLL73U0fIeeeQR+dSnPrVm2nve8x6ZnJzseIyDdMkll6x5fNNNN8n8fG96jpdddtmax5///Od7slwAANB/2o21YWM03corN+9WlGAb7HzTiPyeEUZDGMYYdd8adPxJo8Z8Gu3DaCnH68uY0Jmwga8oIbBuhN3nBx0NzLkjEZ4bPNZ8yGUNeps1+ZR9/KuPByIilYY99pV3RzoK0RSU9S6FDJ4tKYHYoM8rynldC7SlncyR42CYyCSAV5Rq9iDSpLcl8HWO2I8xhjDahnPH7Les03NuXt44/qZ4B4NAE549eDjb5zBaUJw0qZFaAAAAAAAAAAAAAAAAAAAAAMlAGA0ABuzTn/60FAqv3Lg5Ozsr73jHO2RhYSHScqanp+Vd73qXLC8vH5l27LHHyp//+Z/3bKxxO/XUU+Wiiy468nhubk4+9KEP9WTZe/fulRNPPPHI4x/+8Ifyd3/3dz1ZNgAA6K+qsQePsk4ulvVrgQ+iG9FogbsgNZ8wGtqrmooa5khuCKn9caVu6tbnpJ10X8aEzoQNkUUJgXUjbHBi0NHAtJsWL2Tkr91Yh2WbNdr4m68ztNBILtVZZEQLylX9svjGb/t67TpoLDWuvkY7rtk0h+FWrB639t4FRVmAjeygEkQqpu0BJWC1ZypPyNOVx63zztn060SvEqaohNFKtZm+rjfo9yRhY7YAAAAAAAAAAAAAAAAAAAAANibCaAAwYCeffLL89V//9Zpp99xzj+zdu1f27dsXahmPP/64XHzxxfLoo48emea6rnzpS1+SLVu29HS8cWsOu332s5+VT3/606Fff+jQIalUWqMbnufJddddt2ba+973PvnqV78aeYy33nqrPPnkk5FfBwAAOlPx7WG0uG681kIqRDei6eT9qhvCaGivosRzRJIbQtKCbWV/8ciftf3fI4yWKGHPRfkBn7OaaXG+OIWJxXlOWtJu8D4fPk43+G220SIhzedNLTTSaQAyn7Kv14iRqnLttdrSquPVapu8CfU1NbOszmumbe/q75z23gWdF4CNbLamhNGUgFI79iwt1qs7Sjer8/ZM7I1xJAijmJ6yTi/VD4gx/fv2lgOuIYjnAQAAAAAAAAAAAAAAAAAAAAhCGA0AEuDKK6+Uq666as20u+66S0455RT5xCc+Ic8995z1dU888YR85CMfkdNOO01++tOfrpn3yU9+Ui6++OK+jTkub37zm+Xqq69eM+3P/uzP5G1ve5vcf//91tf4vi/f//735f3vf78cf/zx8uKLL1qfd8UVV8iVV1555PHy8rK8853vlHe/+93qskVEGo2GPPjgg/LRj35UTjnlFLn00kvl2Wef7WDrAABAJ6p+a/RURCTr5mJZvxYc0YIdsAt6v0bcMet0wmgIIyi6l4T4k40WaFodgiSMNhzCR7naR8B6IWyALQmRsDBjDTPOsN/z5B4P7O9D83lTO9Z1+lkGBdW06Nma8SjxsYI7Kq7y1xBRzuva9q4OuuVS9veOeC3QqubXZK4xa51XTAeH0RzHUeaQRtsoFhpzct/8ndZ5ry2cJsdmj495RGhHCx7WzLIs+Qt9W6/2c78rKUk7mb6tFwAAAAAAAAAAAAAAAAAAAMDw8wY9AADAYZ/5zGekWCzK9ddfL8Ycvolsfn5ePvShD8mHP/xhOeWUU+T444+XYrEoMzMz8swzz8hjjz3Wspx0Oi033HCDvO9974t7E/rmk5/8pDz77LPy5S9/+ci0b37zm/LNb35Ttm7dKqeddppMTU1JtVqVF198UR566CGZn58Ptewbb7xRSqWSfO1rXzsy7aabbpKbbrpJtmzZImeccYZMTU2J67oyNzcn+/fvl0cffVQqFXuQBQAA9N/qUNBqWkik17TgiBYEgV3Q+zXqjcvicuv1HGE0hBEU3UtC/MlGCxKVG0tijBHHcaRu6tbnpBx+vZckYfexvBJw6rXQ40nAdyNU9CzEc4Zpm23U64ym6x/tWNd5GE2P9ZUbSyJtGoxlJZ6WT41I2slI1bT+HiXKeT3M9Z+2DcRrgVaz9QPqPC2gtMIRLYyGjeL7h/5dambZOm/PxOUxjwZhTHhT6rxS7YCMpOxx8m5VlJ/7824hILIIAAAAAAAAAAAAAAAAAAAAAITRACBR/uIv/kIuuugi+aM/+iN5/PHHj0w3xsjDDz8sDz/8cODrzzzzTPmbv/kb2bVrV7+HGqtUKiX/8i//Iqeeeqpcf/31Uqu9cuPs/v37Zf/+/R0vO51Oy1e+8hX51Kc+Jddcc82a4Nn09LTceuutoZYxMqLfQAwAAHqr6tsDpVk3F8v6tQAb0Y1otIBKSjw1VlMjjIYQysp30RVXMk425tGEo4WMGlKXuqlJ2smoASHPaVMrQqzCRjpzARGqXgobyYorLho8hjDRs/bjDLvN2QRss412DmwOi2iB0U6Db/mU/jrtnB3mOXm3IJ6TVsJo9uBjlOWv/ry5RgPCKwWF0dLBYTTNyj/2gfXNN77cOXuzdd6ENyWnj74x5hEhjE1eURxxxYjfMq9Un5FtsrMv61XDpjFFggEAAAAAAAAAAAAAAAAAAAAML3fQAwAArHXJJZfII488Iv/4j/8oF198sXhecMMym83Kb/zGb8i//uu/yn333bfuomgrHMeRa665Rh577DF573vfK5OTk4HPHx0dld/6rd+Sr3/967J9+/a2y/7ABz4gTz31lPyX//Jf5IQTTmg7nrGxMbn88svls5/9rLzwwgty9tlnR9oeAADQuapyY21cgZN8yh6z0W74hZ32fuVTBUkroSctDAWspgVwcm5BHMeJeTThBAeJDm+PFhDyHP7dgyQJG3nIx3bOChfJ0s5tcQoz1jDRszBhsKyTk5STCjWuuOWU96H52KYe60J+5s08Jy1pJ2OdFyqM1rA/p5AaUY9TUc7rlYZy3bDq884rwUEtmAlsZAdr9jBawR1NRCwTyfXI4gNyoPaSdd6FE5cl9vy60aWclIx7Reu82fpM39Yb9LMZAAAAAAAAAAAAAAAAAAAAAAThzkkASCDP8+SKK66QK664QhYXF+X++++XJ554Qqanp2V5eVmy2awcffTR8prXvEbOPPNMyWazHa/r2muvlWuvvbaj1952222xvk5EZOfOnfK3f/u3cuONN8oDDzwgP//5z+XAgQOysLAgIyMjctRRR8nJJ58sp59+uqTT9qCG5phjjpGPf/zj8vGPf1yeeuopeeCBB2R6elpKpZK4ritjY2OydetWOfnkk+XVr361pFLc5AUAwCBU/Yp1elxhNC0UUPGXxBiT2PBS0miRkrxbEI8wGrpQbij7VoexoDgEhQEq/pJskgl1/9e+LxiMsJGHnBJw6rWwcZskRHBCRc9CxdPab0sStlejhd2az5tB59HO1z0itcZy67qV6Nna8difk3dHxHPTIo3WeTW/dV1Rl796v1Gv0ZSoGrCRler2MNpkenPb1zrCzzsb2e2zN1unp8ST3eOXxjwaRFH0NlsjaCUllNgL/bheAQAAAAAAAAAAAAAAAAAAALAxEEYDgIQbGRmRPXv2yJ49ewY9lERxXVd27dolu3bt6svyd+7cKTt37uzLsgEAQHcqvj1ukXVzsaw/r8RsfPFl2VQl68QzjmGnRVZyhNHQpYpy833YYNUgBIUBVmICehiNX+8lSdjgVj6mMFfK8STtZKRmggNU2rktTmECGWG+x6GeM4ShxJpZloapS+rl77wWGunmWJdPFWSuUWqZrq0rzHPy7oh4TsY6L8p5Xbv+Wx3Ly6fs+3HZXyReCzQp1aat0ye89mE0jRHT8WsxHA4svyiPLD5gnfeGsfNk3CvGPCJEMeFNWafPKqHEXhjGn80AAAAAAAAAAAAAAAAAAAAAJIM76AEAAAAAABBF1a9Yp4eN0XQraD3aTb9opQVOgsJoNZ8wGtrT4zzJvfk+G3RcaRzenoapW+dr3xcMRtj9LKcEnPohXHAsnnNo8BjajzPMtuRDRM+SHOMI+ixWH99Wjg3NujnWaYG8MGG0JSV4mk+NSFoJONaV45pNxdeDqq/82f7ercRrAbyipISQiukwYTR7ZJAw2vp3x+y/qZ/znom9MY8GUWnfb+140At6yHXw154AAAAAAAAAAAAAAAAAAAAAko0wGgAAAABgqFSVoFbWycWy/qDgSFmJlKBVWQmc5FMFSbv20FPdEEZDe1qgMMkhJNdx1TjASkygpuz/hNGSJex+lo8xBhEuOBZfqE0fQ28Cbr0KrA1K0GexOobWj2Od9r6UlejZCt/4avA0HxA8jXJeLwcs/5U/B7x3xGuBNUo1ewhp0tvS9rX2LBrWu2W/Kt8/9F3rvOOyO+TE/K/FPCJEVfSmrNNLtZm+rbPS0IPoAAAAAAAAAAAAAAAAAAAAABCEMBoAAAAAYGj4xpeqqVjnhYml9EIupd/AS3QjPC2gkutRQAUblxYoTHIISUSPA6xEBLX933O8vo0J0YU9F8UZgwgVE0vFvHdLFwAAIABJREFUF2pTxxBinGECbr0KrA1K0GdRXnWdUVauOfIB1ynt5FP291eLma6o+hUx4tuX6Y705LxeUY7tq79LQZ8r8VpgrYN1exitmN4c80gwLO6fv0sW/XnrvIsm9orjkMxLOu37PVufEWNMX9aph1yTey0GAAAAAAAAAAAAAAAAAAAAIBkIowEAAAAAhsayqarzsm4uljFknZw4Yr/pW4uUoJUWWckTRkOX9Jvvkx1G02JOKxHBuqlb52vfFwxG2MhDnKG+oKDniiSEA8MEvUJF3kI9Z/Dbqwn6LFaOBw1Tl5pZtj6nm23T1t0ujBY0P5/Sz+u1kOd1Y0yoEJwWdhMhXgusVm4sqd+JohcmjGb/WchIf8JKSIbbZ2+2Ts+7BTl700UxjwadmPCmrNOXTVWW/IW+rFMLogedswEAAAAAAAAAAAAAAAAAAABAhDAaAAAAAGCIVJWbakVEsiFjNN1yHEeNrhDdCK/cUAIn7oikuwyoYGMLE89JIi1mVG4sim8aYsS3zieMlixho1RxxTxF2kfP0k5GUo4X02h0Yd67cJG39qGNJB8PUo4naSdjnbcSIAsKsXYTudPeO+2c3Twum4I70nXwtGaWxZeGdd7q/SbjZInXAiGU6gfUeZPp9mE0x7F/z7B+PV3+hTxbecI679zxN8d6XYPOaWE0EZFSbaYv69SuEcLGhAEAAAAAAAAAAAAAAAAAAABsXIO/4w0AAAAAgJAqgWG0OCMzI9bARtD41osfzd0h3z/0XTWoMJraJKePvlHeXHybpJyUuhwtIpdz82J8ewAqbEAFG1vQvpVkWsyo4pelburq6wijJUuYcFfOzYsbcHzstXbBsTAhsTiECXqF+R6HCaWGDdgNSt4tSK2x3DJ95TqjEhAq6yqMllLCaAHhM5HDAUdNLiB4Gva8HjYE5zqu5Ny8co1GGA1YUapNW6c74gSGk9oypvPXItFun71ZnbdnYm+MI0E3xr1JccS1Bpdn6wdkm+zo+Tq135F0c70CAAAAAAAAAAAAAAAAAAAAYGMgjAYAAAAAGBpVv6LOizN6pK0rKAyyHtxRuln++Vd/E/icl+R5+WX5UfnV8n559zFXqc/TAiX51IjUTGsMRoQwGsLRAjpJiT9ptKBW2V8M3Pc9h1/vJUmYc1HcUa52Y0pKNDDM+xLme5x20+I56cDvTdLDaDm3IHON2ZbpK9cZQaGwMHE+jRYpCVpf0Py0kznyediEPa8HRc2a99+cW7COp902ABuJFjje5BUlFeK6wlGmk0Vbnxbqc3L//F3WeScXzpCjM8fFPCJ0KuWkZNwrymx9pmVeyTKtF/RodbKvxQAAAAAAAAAAAAAAAAAAAAAMnjvoAQAAAAAAEFbFL6vzsrGG0ew38QaNb9jV/Jp888BNoZ9/96HvyEvLz6vztUBJzs1L2snYx0AYDSFUGvq+lWRakKjil6Vu6urrtOAQBiPr5MRRkzGHaZ91v7QLT+RTyYgG5kMEvcJ+j9u9x3F/BlFpcbOV64ygyFc326aF58rKcXXFkhKGXVmedpyq+eHO60Hrb95e9VjaZhuAjeRgzR5GK3qbQy4h+DyH9eWeQ7eqIcs9E3tjHg26pX3PZ5VgYjd846u/I0n6z2YAAAAAAAAAAAAAAAAAAAAABo8wGgAAAABgaFT9inV62slIyknFNg4t3hIUKhl2jyw+IIv+fKTX3D93lzqvorxXebcgnuNZ52k35AOrad/DpMSfNFq8quwvBe772vcFg+E4TttQZ7tQWa+1C2UlJUwR5n0JG/1qt6y4P4Oo9FDi0pr/bXb4eqjzY4J+fWMPn7Wbv7I8z7WH0cKe17XtFWkN4wYdSwEcVlICSOHDaBrT5euRNL5pyB2zN1vnFb3Nctro2TGPCN2a8Kas00tKMLEb2u9vRJJ/LQYAAAAAAAAAAAAAAAAAAABg8AijAQAAAACGhnZjbdbNxToO7SbeoHDHsPvR/B2RX3P/vD2MVvOXpW7q1nl5d0Q8p7uACjauhmnIsqla5yUl/qTRQkjlxmKbMJr9+4LBabevhY179UrSxqMJ8x3NKeGuqMvKJ/x40C7uVW7ocdFuFFx7QLJmlqXm68chNUj58vLSXZ7XteXn3Ly4ztq/4tDibuv5Gg2ISgujTabDhdEccazTDWG0dedni/fLwfq0dd6FE5fFGidHbxTTShitPtPzdQWFVbXzNQAAAAAAAAAAAAAAAAAAAACsIIwGAAAAABgaVb9snZ6NOXCiBozWaXSj4pflpws/ivy6F5afk/3VZyzL09+nXCovaTdjnVfzlyOPARtL0L6VV4I/SaEFnyp+uU0YzevXkNChdnGqXCrec1a7mJgW4YpbyvEk42QDnxM2cJhPBX/fc23mD5oWbls5xmnHum4/y1zAcbISEDcpN+zzVkJr3QZPo2xvu6gcAJFSzR66KnrhwmiihNGw/txRutk63XM8OX/80phHg17QvuezfQijVZTf34gk5/oTAAAAAAAAAAAAAAAAAAAAQHIRRgMAAAAADA01jObkYh2HdhNvpbE+oxs/mb9XasYeJbts8p3y20f9gThKIOG+ubtapgXFSfLuiBp6qpt6iNFiIwuM7sUcUIxKDy4uBu77WnAIg9Mu9BB3pK9dqC3fJpwWp6D3Lu1kQu/v7b7vWngsKbRAWfnl6wztPNougtdO0L4QdO4uK9G0lfF0G0bT1m3bt7X9Pej8AGwkvvGlpASQiuktXS3bdPVqJM2vlvfLI0sPWue9YfR8GfMmYh4RemHCm7JOL9UOiDG9/RYHR6uTc/0JAAAAAAAAAAAAAAAAAAAAIJkIowEAAAAAhkZFCaPFHTzS1hcUDRlm983faZ2+KTUhv7H5Cvn14n+QE/OnWJ9z//xdLTdYB4fRCl0HVLBxlQPihHHHqKJSg4t+OXDfJ4yWPO3OSfGfs4LDE+3mxykozBXlfRumbbbJp+zbuhIY0UIj3UZGCgHHyaWGPX4moofRVpanBU9rIc/rWnjW9jlqn23Q+QHYSBYac+p1RdHbHGoZ9hyyCGm09eXO2X9T511U3BvjSNBLE2n793zZVNXzeae039+44krayfR0XQAAAAAAAAAAAAAAAAAAAADWH8JoAAAAAIChUTUV6/Ssm4t1HPmUPRyi3fg7zObrh+TRxQet884cu0BcJyUiIrvGLrA+Z7r2gjxXfXLNNC1wInL4s9RCTzWzHGbI2MC0WJCISE4JDSWFFjSq+mWp+fq+n1KCQxicdtGtuCN97YJi3ca0einovYvyvrXbpiRts01QKFFED4x2u11ZNy+OkjwKOr5q0bGV7dDiJ2GDp1G2V4vrrcdrNKATpfoBdV5RCSZh41n2q3LPoe9a5x2ffZXszL025hGhV4relDrvYE0/PnRCu3bIuQVxHD2xCAAAAAAAAAAAAAAAAAAAAAAihNEAAAAAAENEi1rEHUbTIjNlfzHWccThwfl7xBffOu/sTXuO/PkNY+eJo/ya4f75u9Y81gInOTcvrpMKCKjUwwwZG5i2b6WdjBrcSwotuGjEyKI/b53nSkpch1/vJU27EFm7+b3WLpbVLuQWp6CxRnnf2m1T3NcNUWnvw8p1hhYY7fazdB23o2scbV7h5eOadvwNG0ZTwyqWCJr2HqzHazSgEyUlfOQ5noylxkMtQwsaGTEdjwvJ8qO5O9Tj5p6JvUSthti4N6n+3D4bEE7shB5OTXawGgAAAAAAAAAAAAAAAAAAAEAycOck0GO2G0KM4YYgAMPN91tjKNwABwAYhKpfsU6P+8ZaLbqhhduG2X3zd1qnb04fLTtyrz7yeMybkNcWTrM+9/65u9b8XKTdZL/yvnqOZ51vxJeGaYQaNzYmNZ4zBDffB41xvn7IOj2d8NjbRpVLtQmjWWJO/dQultUunBanoO9BlPctaJuyTk5cJxVpXHFrd52hRSDzPdi38q490rjU0MNi2ryVZXUfRrNfX9k+Z+2zX4/XaEAnDtanrdMnvKkIsVXld4L8Nci6YIyRO2Zvts7LuyNr4tgYPiknJeNe0Tpvtj7T03VpP5tpQWgAAAAAAAAAAAAAAAAAAAAAWI0wGtBjrtv6tarVwt3kBwBJVa/XW6bZjncAAPRbVYlaZGOOHmnRjapfFt+0BkWH1cHatDxRfsQ6b9fYnpZQ6lljF9iXU5+Wpyu/OPK4XeBEC6iIhI+oYGMqN5Sb75XQT5IEjXGhMWedHvRdweAkLUTW7hwZd6gtSNB7F+V961VgbVC0bS03lsQYExCB7EEYTYmVaOsMmreyLC14Wjetv2uw0UJwtu3V3oNyQNgN2EhKtQPW6UVvS8wjQVI9VXlMnqs+aZ133vjFknGzMY8IvTbhTVmnl+r240On9PN38qPVAAAAAAAAAAAAAAAAAAAAAAaPognQY47jSCaTWTNtYWFhQKMBgN5oPo5lMpmWEAoAAHGo+hXr9LjDaFp0w4hRxziM7p+/S523a9OFLdNeP3auuJJquywtTpI7EkbLWOeLiNTMsjoP0KJ7w3DzfdAY5xuHrNO12BAGq12cqhfxqijSbjowohd3qC1IPiBaFuV9C1pOkrZXo21rQ+pSNzU9RNaLMJqyjCVfD4tp81aCj9r+F/acXlGjl61jVeO1piK+aYRaH7CeaeGjYnpz6GVovxE0YjoYEZLm9tLN6rw9E2+NcSTol6IWRqvN9HQ9+s9myb8WAwAAAAAAAAAAAAAAAAAAADB4hNGAPhgbG1vzeG5uTozhpiAAw8kYI3Nzc2umNR/nAACIi3ZjbdbNxTqOoOCKFisZRj+au8M6/bjsDtma3d4yfSQ1Jr828nrrax6Yv0d844uI/jmuxEzSrh7wqZt64JixsZW1OE/AdzYp0k5GUmIPnS0oYbQUYbREyrcJ8Q0izBW0ziTFKYLGEiVwGLyc5GyvJpfSt7XiL0lZudboxbZpyygrcbKavyx1U7POe+W8bg+e1n3761rWrW2v5dhum7ZCu/4ANpJSTQmjeeHDaFoajTDa8Juvz8qDC3db551SeIMcldka84jQD1oIUQsndqqfIVcAAAAAAAAAAAAAAAAAAAAA6x9hNKAPmoNBtVpNnn/+eeJoAIaOMUaef/55qdXW3qy8adOmAY0IALDRVf2KdXqUWEovBIVH1kt044Xqc7Kv+pR13tlje9TXnTV2gXX6bH1Gniw/KiJ6vGolZuIFxJ7CRlSwMWnfv2EIITmOowbc5utz1umeo0cEMTjt9rdB7I9B60xSnCJoLHl3JPRyehVYG5SgbS37S1JpBAdGu1FI2dddUc7dWrRs9bK0Y1XY2GmUsErQe7BertGAbmjho8n0lphHgiS6+9B31GPznuLemEeDfpnwpqzTZ+szPV2Pdv4ehmsxAAAAAAAAAAAAAAAAAAAAAIOn32kMoGO5XE7S6fSakND8/Lz88pe/lE2bNsno6Kh4nieuS5sQQPL4vi/1el0WFhZkbm6uJYqWTqclm80OaHQAgI2uqgQtsm4u1nEERTe06NewuW/+TnXeWZvs8TMRkTNG3yie41lvqL9//m45qXCqGlFZeV89J6Muv2aW1XmA9v1LUvgpSM7Ny0KjNYJmmyZCGC2psm1iD1oAr5+CAhR5JYQ1CL0KmvUqsDYoQdta9pfaBka7ob0/S2oYTb/uybnBwdOG1MU3vrhO8O9ItesG2/sUtA8dHivxJ2xcDVOXQ/WD1nlFJZRk44ijzOEfhhlmDdOQO2e/bZ036W2R142cFfOI0C9Fb7N1+mxtRowx4jjadzwaLeQ6DNFqAAAAAAAAAAAAAAAAAAAAAINHGA3oA8dxZOvWrfLss8+KMa/cDFSr1WRmZkZmZnr7r64DQFxWjm+9ujkKAICoqn7FOj1KLKUX0k5GXEmJL42WeRUl3jZMjDFy39wd1nkn5n9NptJHqa/Np0bklJEz5aGFH7bMe2D+bnnXUb+vvkcrN0inA2JPdVNT5wHt9q2k04JE841D1ulabAiDlW9zThrE/qit0xFHMk5ywteBYbQI0a/g5cR7zdCJoOuaufqs+OJb5/UiAqkdh8oNe5ys3NDDaIXUqIgERxzrpha4D/rGV8O4trEGvQdaoAXYKGbrB8Uo8bLJdPfRQLJow+1nC/dJqX7AOm/PxF5xnVTMI0K/TKTtYbSqqUjZXzxy/u6WGkQfQCQYAAAAAAAAAAAAAAAAAAAAwPDh7kmgTwqFgmzfvr0ljgYAw8pxHNm+fbsUCty4BAAYHC16lHVysY7DcRzJuwVZ9Odb5gUFQkREDtUPyrOVJ8VYoiY5Ny87cq+RjNs+UjNbPyjPVZ6UozPHyZb0MR2HS33TkH3Vp2S2fvDItFLtgEzXXrQ+f9fYhW2XuWvsQmsYbb5xSP699E05WPuV9XUrMZPggEq97fpFDsfdpmsvyIvL+0I9f8Wm1IQcnztRUiFu/F/2q/J05ReRYniuuLI9d5Js8ibaPrfmL8vTlcel7AfvU82Oy+4IjNd1quKX5enyL2TZVHu+7F45sPySdfqw3HyvxZAWG63HGpHg7woGp134bBAhMu07kHPz4jpuzKPRBX1X2wXnVguKn/UiHtZvrpOSrJOTqmkNwj6y+ID6ul5E97TPoFSftp7b91Wesj7fEffI9Vnayajrq5uaZET/TlT9ihpysh0z025GPMezXi88uvRj67VbGCnHkxNyJ8loalNHrweSoFSzR69ERIqePZTUSw3TkOcqv5S5xmyk123NnCCbM0f3fDzGGHlh+Vk5ULNfPx6V3ipHZ47bMP9AxO2z37JO95y07B6/JObRoJ+K3pQ670dzd0hRCadFdWjV7xhWG5ZoNQAAAAAAAAAAAAAAAAAAAIDBIowG9NFKHG3//v1Sq9UGPRwA6Fg6nZatW7cSRQMADFTd1KQh9ihWNkIspVdyqbw1rqFFshqmITe99Dn5/qHvBi437WTkPcf+qbx+7Fx9OS9+Tr4/98pyXls4Tf7zcR9Wo0qal5afl8/s+6jMKKGyZq64cubY7rbPe93oLkk7GamZ5ZZ5X5v+ovq6fGpEREQ8R/91hW2ZzcqNRbnx+Y/J4+WH2z7XZjxVlKu2XSPbcjvU5zw4f4988YW/DDUemwsn3iq/c9R/UoNEDy/cL5/f/ylrFCeMM0bPkSuPvVrSrh6jieIHh/5d/vHFz6nfwaQblpvvV74DzWwhRRERzyWMlkTt9rdBBFa080PSvhtB48m59u+HTVD8LGnbrMmlClKtt54DtHCNSG+ib3nlfT5Qe0lufP5jEZZTOLKvdxM8rfhL+jqUY2bOLchCY65l+rdm/iVwXWG8dfK35Tc2X7FhQklYX0r1aev0nJtXv082jmj7v/4PxOyrPCWf2XedzDVKodez2qkjZ8ofbP2AZN3eBLEP1Q/KXz/3Udm//Ezg87ZnT5Q/3naNjHrrO4r40vLz8vOln1jnnTV2wbrf/o1m3CuKI671Z4x/+dXf9n39UX9vAQAAAAAAAAAAAAAAAAAAAGBjst99C6BnCoWCnHjiibJz506ZmpqSTKY3N6UDQL9lMhmZmpqSnTt3yoknnkgUDQAwcFpwTER6doN8FFp8RAt43DF7c9somsjh8Nfn9/83OVQ/qC9nbu1yHlv6qXz1V19su+xm//fz/y10FE1E5OSR18uYN9H2eTk3L6eN7oo8npUbpF0nJa6krM+pm/bR6a9Of7HjKJqIyKFGSW58/noxxh53OFiblv9n/6c7jqKJiNw5+29yz6FbrfOWGgvyN/s/3nEUTUTkJwv3ys0zX+749au9WN0n//DiXw1tFE2kN7GgOESNBATFhjA4uVTyYg9aDCxp342g8eQjfD9Sjidpx/47uKRts6aTcfYi+tar92d1ZCkoeNruvF4OCKNpx8x+fsb/dvDL8pOFe/u2fKCfSrUZ6/SityXScqKGAX3jy//1/PUdR9FERB5efEC+eeCmjl/f7O9fuKFtFE1E5NnqL+X/fekzPVtvUt0xe7M676KJvTGOBHFIOZ5sCvFzfb8MS6QWAAAAAAAAAAAAAAAAAAAAwGDpdyQB6BnHcSSXy0kul5OjjjpKjDHi+756kz0ADJLjOOK6buSbHAEA6Leqr0eiosaEekG7mVcLeDwUIaLhiy8/W7hfzp+4tGWeFuN4aOFeuULeF3od08svhIoBrLZr7MLQzz1r7AJ5YP6eSMvPu69EVNJOWqqm0fKcMGG0XgRLDtanZV/1KTk+96qWeY8u/lh8aR1bVA8t/FAumHhLy/SHFx+Quuk+QvaThXvlbVve3fVyHlr4YdfLGLRhufl+9XcgjKDYEAYn6Jw0qCiX9h1I2ncj6L2LOta8W5BaozVgmbRt1kQdpyNOT0Kxq4NmXS1n1fiDIo7tzutacFZkcPv1Qws/lNePndvXdQD9cLA+bZ1eTG/uyfK1v+/YV31SSvUDXS//Jws/kHcddWXXy6n4ZfnF0s9CP//niz+RhqlLap1ed1X9ivzg0L9b523PnSQ78q+JeUSIQ9GbUmPs/TYskVoAAAAAAAAAAAAAAAAAAAAAg7U+/1/8QMI5jiOpVGrQwwAAAACGSlAYLZugMJoW8CjVZiItX4sH/GLpp9bpc41ZqZtaYHwkzPI1aScjZ4yeE/r5p46cJTk3LxW/HPo127I7j/zZc9JSNa2febuASs2vyUJjLvQ6g8zWZ+R4aQ2jzTVme7R8+2cwW4+2r0RdfvTl9GY8g7R630qyqOMclu3aaDwnLcdmjpcXlp9rmXd6hONoL2n7yrZcsvahCW9SRlPjstA4tGZ62snIUZmtkZa1LbtTHll6sHV6wrZZsy27U56u/CLS813H7Xq9x2V3iCOOGOnuH3RoPqdraqY1Xrdmvq/PzzhZdd3PVZ9sM8LOrYfzIjamUs1+bTjp9SaMpq+3N9+ZUm1GjDFd/2MOi435SJHjZVOVql+RQmq0q/Um1Y/mblfj3hdN7I15NIjL9txJ8nTl8djX64gjW7MnxL5eAAAAAAAAAAAAAAAAAAAAAMOn+zulAAAAAACIQTUgsJUbQBgtr4TRyg37TeVRAmGHn29fThBt3TaLjYVIy7508u2ST9m32SbjZuWyyXeFfv4pI2fK5szRRx57rj2iUvODw2gVfzH0OtvRAgHSZSym3fKjfI5BKn5ZfOP3YDm9Gc+gvLZwmhyT3TboYYRyxug5Mu5Nhnpuzi3IrrEL+zwidGqPJSSSEk/OH79kAKMRed3oWTKVPmrNtLSTkfPGLx7IeDSuk5ILJy5rmb57/BLJuPYIlubCibeKI2vjOTtyr5Ht2RO7GmNcdo9fHDp2KmLf5zox7hXl9aPndbUMz/Hk/PFLjzxOuxn1uXVTD1yWFkT1HE+NI+2euFQ8p3//JsywnxexcWlh5GI6Whit+djaTq++M740ZNlUu15Ou9CyTbexyKQyxsjtszdb5424Y3LW2AUxjwhxuWD8LZJ29PNzv7xhbLds8iZiXy8AAAAAAAAAAAAAAAAAAACA4dO/u4MAAAAAAOihql+xTnfEHcgNvTklElZWwlzadE0ncayyvyhjMh7quUtKGM0RR7Ju7sjjordFzh3/dbm4+LbI47l08u2SdtJyz6HvysH6r6zPGUuNy6kju+S3tvwva6ZrMZh2IYNyQIAu6+SsEZWqX7HGDirKZ2CMPYzgiCtZS7inYRpSM8utY1WWr+0rrrjWMJBvfGskwoiRql+JFLSzj8c+zpR4klYCdkkwmtokp46cJb+15T8OeiihjXqb5OrjPyZfm/4H+WX5EevnmnI8eVXuZLl88+8MTfBtI7qoeLmknJTcc+i78qvl/bI9d6JcOvl2Oalw6kDGk3Pz8qfHf0y+Nv338mT553JM9nh56+Q75YTcSQMZT5D/MPU/S87Ny31zd0rd1OXMsd2yd+q3Iy/njLFz5A+2/u9yW+l/SKl+QF5bOF3eseU9akwraXbkXyN/vO0auWXmK/J05XHxpWF93rGZ7XLBxFt6Grl7z9b/Taamj5KHFn4oc41S6Nc54soJuZPkLZPvkBMLv3ZkelCkrN4meFpTw2j6td+J+ZPlquP+XL598CvyTOUJMdJZJLRu6tbrDj2cCiRbqaaE0bxoYTSNFg/TvjPNP3ccWY4xUjX2n/3K/pL1NVG0Cy3brNcw2i/Lj8rz1aet884bvzhylBTDY1tup/zJto/KzTP/XZ6pPCENCQ6Vdmvcm5TTRs6Wt215d1/XAwAAAAAAAAAAAAAAAAAAAGD9IIwGAAAAABgKFSV4lXXtsat+y7v22JRtnA1Tt4axRESOyWyTF5f3WZbTGhBoFwVbaoSPry359jDacdkd8uEd/2fo5QRxHVfePPk2efNk9Khap2E02/u24voTPy+F1GjL9E8882fybOWJlulaxEELI5yYP1n+dPvHWqY/svigfGbfR61jNca07L/avr5r0x75vWP/15bpLy0/Lx996irrayr+UtdhNO09vWTyN+U3m4J26N7mzDHy3uM+MOhhoAcumLhMLpi4bNDDOKKY3ixXbr160MNoy3EcuXTy7XLp5Nu7XtYbxnbLG8Z292BUg/GawuvkNYXXxb5ez0nLO476PXnHUb/Xk+WlAv4aot15vW7soRbtOmHFa0dOl9eOnN5+cAHuPfQ9+fsXb2iZroVTgSSr+hVZ9Oet84rpLRGXZv/ZS7tG1q4lT8idJB844VMt02frB+XDv7zS+ppyY1EmvMmQ47Rrd9yx0cLIw+6O2Zut0x1xZM/EW2MeDeJ2YuHX5I8L1wx6GAAAAAAAAAAAAAAAAAAAAABg5Q56AAAAAAAAhFENCKMNQk4Jo9liWlpgS0Sk6G0OvZxKw/4evPKa8GG0xYY9jDZiCYcNQrrDMFrQe51z89bpWuQuahhNi0Roy/fFl2VTtazX/jlqy9H2xcPL6j7eUlYCMHl3pOtlAwDWP8dxOg6e1pWwrOf0/998yafs57lenFuBuJVqB9R52s+qBbXHAAAgAElEQVQjmqhJai36q13Date8ItF+3tF0EkYT9fp/eB2ql+TB+e9b550ycqZszhwT84gAAAAAAAAAAAAAAAAAAAAAAHgFYTQAAAAAwFDQbqjPOoMJo6kxrUbrzfpBQbNiOnwYrV0IYEmJndmfO2+dXnCTEUbTAiq1NiGDihLxyjo5cZ2UdZ4WZahEDJ84SiYiargsaogsOB7RfbxFj1nYQ3MAADTTgqftzutawEhbXi9p57llU5WGafR9/UAvlepBYbSpvq5bv7a1X8NmnKy4Yr9ut/2sFVUnYbT1l0UTuefQd6Qhdeu8iyb2xjwaAAAAAAAAAAAAAAAAAAAAAADWIowGAAAAABgKVb9inT6oOJMe02qNSAUFtoqePYxme40WqFrRLpy22pJvj6gVUskOo7ULGWghsFxKj4fpkTv7soz41umOYw+jBYbLbCE9bRuUfT3tZNR4RNS4m422X+UD3lMAAFbr9LyuhdO05fVSUNi02uaaDEgaLYw2lhqXtJuJtCwtBmyUfJh+bWv/jjmOo15n9iL62y7IaKNt27BqmIbcOftt67zN6aPllJEzYx4RAAAAAAAAAAAAAAAAAAAAAABrEUYDAAAAAAyFqrEHKLJuLuaRHKbfrN8akQq6gb+YtofRbFGuduGzJUtkS7PYsIfRRlJjoZfRT+kOAypRwwtB87RlGaWLYE9EBEfZooT08qkR+3qD4hFK3C0KLcgX9J4CALBap2G0uqlHWl4vBYZNI8RogSQ4WJu2TtcizYGUGLBG+1koKLJbcO3XvUs9+O61O+7YrLcw2kMLP5TZ+ox13oUTe8V1+OtjAAAAAAAAAAAAAAAAAAAAAMBg8f9sBwAAAAAMhapfsU7PuvmYR3JYXrlZv2aWpdEU8dBCV2knI6OpTdZ5ttdogaoVUSIdS0oYreCOhl5GP3UaUFHDCwFxEz1yp4TRlDCCo/yaJevk1HlRQnqB26DG3bqLR9RNTWpm2TqPMBoAIKzOw2j2c1AcYbSg81y5EXxNBiRNqX7AOr2Y3tLDtdivkXsaLu5B9Fc7rgTSyshD6o7Zb1mnp52MnDf+5phHAwAAAAAAAAAAAAAAAAAAAABAK8JoAAAAAIChoEXBcgMKowWttzlspcUA8m5BXc6yqbYE1sqN4MjVUpQwmq+E0VLJDqPV2gRU9PCC/nnpUbFoYTSN4zjq+pvXYYyRshJ8CNoGLR5RbhPTa6cSEH4JCrUBALBap+d1LZw26DBat+FRIG6lmhJG8zZHXpYjjnW61g7r5Pq8kLJHqKP8vKOpN/2MFUbU6/8ke6H6nDy29FPrvLPGLlDD3QAAAAAAAAAAAAAAAAAAAAAAxIkwGgAAAABgKFT9inV61s3FPJLD8q79Zn0RkUpT2EoPXRUCl9McWGt+3PL8NuG01RYbyQ6jpV178KTuBwdUtPc66H3Wo2La+20PI2iRiMPrV9bRNN66qUlD7LGGoG3Q427dxSO0kIVIcDAGAIDV0krITAufragp531teb2UdtNqgK3b8CgQt1JdCaOlo4fRotK+L8HX5/Z55R6E0bQgoxvwV6brKYx2x+zN6ryLipfHOBIAAAAAAAAAAAAAAAAAAAAAAHSE0QAAAAAAQ6Gi3FCfdfMxj+SwfEqPQjUHtbSx59y85ALGX2msfV1QpEpEZClkKKBhGuqyRtxkhNG0EEm7gIq2XbmU/j7rUTH7snzjW6c7jv5rlnzKHndoXkdQ/C5on9OWr4Xiwup0PAAArNbpeb1u7LFQTwmo9poWAW13TQYkiTFGSjV7GG3S610YTYuHNUejVwT9HFTQwmgRQtAa7biTdjLqa9ZLGK3il+Xeue9Z5+3IvVpOyJ0U84gAAAAAAAAAAAAAAAAAAAAAALAjjAYAAAAAGApVv2KdHnRDfT8Frbc5JlVWgmX5VEHyyk3/ttcFRapEwocCgp5XSA13GE17j4Le55wS+Co3lsSY8BEEJ2Cetr+E3VcOL0MPkWnL7zbcErTPDeq7BwAYPlrIrH0YzT5fu07oNS2e2u6aDEiSRX9elk3VOq+Yjh5Gc9Sr3tbrZmOM+n3RrsFF9ABvL757dV8Jo7l6GM22bcPoh4duU6PdeyYuj3k0AAAAAAAAAAAAAAAAAAAAAADoCKMBAAAAAIZCVbmBO+vmYh7JYSnHk4yTtc5rjlFpN5/n3ILkUuEDa5WGfTkrlgKiWqst+vPqvKSH0WptAipaCCwo4qVFT3xpSM0st0w3ahhBT6NpYbaw+8rhZQTEI5TldxuP0N7PtJORlON1tWwAwMahnteVQNGKuuU8HLS8XlPDow3CaBgepdoBdd6ktyXy8vQwWquaWRZfGtZ5HV3bhgxBB+kkuBihlZxYxhi5Y/Zm67zR1CY5a+z8mEcEAAAAAAAAAAAAAAAAAAAAAICOO1gBAAAAAJH9wws3yHTtxVjX+eLyPuv0bEDwqt/ybkGWG9WW6eWmWIYWp8q5BfGctKSdjDXA1RylKrcJn4UNBSwFPG8kNRZqGf2WVsIEWshgRfN7vyIovJALmFf2lyTjrg3gaWG0oEiEtv6WfUX5bBxxAvd1bRu6DaPp76c9VgEAgI2nxDTbndfrpm6drl0n9Fo+pYVNg2O1QJKU6vYwmisp2eRN9Gw9tivkoGvRoGtw9dq5y2tbET20rEWvDxv+MtoT5Udk//Kz1nm7xy+RtJuJeUQAAAAAAAAAAAAAAAAAAAAAAOgIowEAAAAAIttXfUr2VZ8e9DBERCTr5Aa27lyqIIcapZbpzUGz5scrVm74z7sFqTVaw2jNUap2EY524bQVS41563RXUgN9P1fzOgyjae91J+GFleWNS7FpavQwmh4uW2x6bB9/1s2L67jq8rVtqChhs7D093NwQUIAwPBJO/bgTrvzuhYw0q4Tek0734W95gKSoFSzh9EmvElxnVQP19R6jaxdS4oEX09qUcJefPe0405QGMxfB2G022e/ZZ3uiCMXTlwW82gAAAAAAAAAAAAAAAAAAAAAAAim31ELAAAAAMAQGGSgSYtRtcSulDjVSixLi2Y1hwTahQBqZllqfmtgrdmSv2CdXkiNiuPoca84dR5Gs8fj8ik9fhYUTbN9dkYLowW8d9r6m8fbaYgspyxfC62Fpb1ei1UAAGDT6Xldmx9fGC3c+RtIslLdHkYrpjd3tLygGHCzoO9K3tWvJ7V55UYfw2iBx5XhDqMdqh+UH8//wDrvdSO7ZCp9dMwjAgAAAAAAAAAAAAAAAAAAAAAgGGE0AAAAAMBQG0mNDWzdYWMZWuxqJZYVNmoVJsKx1CaeJiKy2LCH0UZSo21fGxctTFALCKgYYwLCYnr8LOvm1MCDbXnGKGG0gEiEtv7mz1gNkQWEIw7P708YTdvnBhkkBAAMH8/xrNPrph74ukGH0cJGcIEkO1ibtk4vep2F0TS2eHBQyCzr5tR5WoS3airSMI3og1tFP65k1NdoYeRhcdfsLeKL/X27qHh5zKMBAAAAAAAAAAAAAAAAAAAAAKA9wmgAAAAAgKGVdwuyM/+aga7fptxoDpoFx7q05TS/LigsEOU5S0oYreAmJ4ymBU+0kIGIyLKpii++dZ72HouIuI6rhr5sYTE9jKCH0fR9Ze3nVWloYTR9/CJBkb7uwmha+KXdeAAAWE07rwcFT0X0874WUO21sBFcIMlK9QPW6ZPpLZ0t0NGveZsFRXZdR/8ryqBrzW6vb7XjTiYgjDbMGqYud81+2zpvS/pYOblwRswjAgAAAAAAAAAAAAAAAAAAAACgPcJoAAAAAICh5Dme/Mdj3i8pxxvYGHIpJXbVFJMqBwQBRAKiWX5zYK19hEMLWa225CthtFSCwmhu9DCaLWK2QgubtJsfJbwQlIgIG1bRtkHb11Zo+1Dd1KTmB0dnglQa2r5LGA0AEF5aCQ7VzXLg67SAkRZa6zU1XquETIEkKtXsYbSit7mj5YXPorUPRGsK7og6rzlCHZUaXHT1MJpv7PHlYfCThXvlUKNknbdn4q2BgToAAAAAAAAAAAAAAAAAAAAAAAZlcHePAwAAAACG1p6Jy2W+MTuw9W9KFeXkkTNkKn3UwMYgEhDLaIpdVZRY2crr1WjWqpv+jTGhIl1LIcJoiw17GG0kQWG0tBI8CYp8BUVKtM9q9XxbLsAWKvPFHkZwAvrz+ZARPe0zbjv+gHBaxV+UtDsR+Hr9tZ3FLAAAWE0LmQUFT0VE6sp534spjKtHcAmjYTj4piGz9RnrvGK6szBaEGOMOM4r6TTtu9Lu2jYoChwmBB1EDaMpAcdhd3vpW9bpaScj541fHPNoAAAAAAAAAAAAAAAAAAAAAAAIhzAaAAAAACCyCybeMughJIIWh1p9s37Nr0nd1ANfr0ezXgkJLJuqGuRa85pG+1DAkhJGK7jJCaN1ElAJipQExRVEwsXpjjD2ZaxqQIRefs0sS8PUJfVy4EULPbSNRwTML/tlGZPOwmhqzKLN+wkAwGpayEy7RnplvhJGc+MJGOXdvHV6mFgtkARz9Vn1Z4ii12kYTb/oNWLEWTW/08hu3h1R53UdRlODi/afP0QOb9cw2l99Rh4vP2ydd/amPVJIUBgbAAAAAAAAAAAAAAAAAAAAAIDV3EEPAAAAAACAYaXdsP//s3evQZKlaWHfn5OXqszq7umunu7dZXeBXeEFA+Ky2l2WhWUGDCzM2FgXK5AEtqyLwxC6IFsKhxwmwjYKO8L2B4fsT3bYDiFHOPzFJqQIxw7Cus0uC5JASIAkECIwIUBcZnaqZ3q6srrzcvyhJ6ezqt/n5MlLZVX3/H5ftuu855aXOufNGvLPyWy08O88nDGPS+X7ebRtU/Rr0XGLUMDxLAmjXaIvxq8TRsue6yo6sV8NGo+Xx+kefz7zMEIeiWgKmy2+tifTUXGd5fGIfPxkg3jEujELAFiU3dfHDff1iPy+328IGG3TIJmjtZ2XwUV7bfJKOnbYXy+MVjXMec8alSLDsTz626266fz9uEUIukl23ek3BhefzDDay3deSseev/HiDs8EAAAAAAAAAAAAAABWI4wGAAAAaxp0hsXlo4Uv6zeFM+ZxqXQ/p4JZ7QIcoxahgHvTu8XlV7rXWh1jF/pVOUzQFFDJnutBZxhV1RxwyEJfi5G7uTpmxXU7DX9myeJ3Eadf2+wxZOG2uew9FJEHKdpIz0cYDYAV9DpJ8HT2oHG7LIzWq3obn1Mbw+T+OqnHMZ41R93gMjgav1pcvlftx5XOecz9TwfE0shuN5+7zg27y+PR68iuK3vJ54+IiFn95IXRRtPj+Aev/93i2AcHXxZfOPhduz0hAAAAAAAAAAAAAABYgTAaAAAArCn7sv6poFnDF/fncaksmrW4bVNgbdHx7M3l6yTxtIOGeNeuZcGTOmYxrafFsey5bhPxytYZzZaH5tpoij+MTr3O5eNl4ba5TtWN/WqwdP+rSmMWwmgArCALnk7qSeN2WRC1V5VDa9s2aJgb3S/EU+GyOZqUw2iH/VtLw8GZpq3O5sNKkeGIdnPJbH5+vOH8PA8u5mG0xx/Z5fcP3vi7cb8+KY49f/jijs8GAAAAAAAAAAAAAABWI4wGAAAAa8q+rH8yG0VdP/zyfFOUatAZnvrfs0bTdoG109s0hwLquo7j2d3i2EH3Wqtj7EJT8CSLGSw+X4vahBeydU6mj8cc6iSMUDVkIpribKdDeuV4RKu4WxLqa/veOauu6/Q5HXaF0QBoLwueZvf0ZePNAaPtGTaGTbcTT4Xz9No4CaP1bm2w1/ZBteyzUJu5bT4/Xz/6G5FfV/Y6+XUlm/9fVnVdx8t3Pl0cu9q9Hh+++g07PiMAAAAAAAAAAAAAAFiNMBoAAACsKfuyfh2zuF+fRET+xf39ahCdqhsRzUGrNoG1RcdLIh0P6vsxqSfFsYPu1VbH2IWmMNq4flBcngXA2kS8snVKz/v8NTmrqvJIRLfqxV61XxxbPO8sbNcm7pYFJtq+d84a1w9iFtO1zwcA5rL7elMYra7rdM7Sb5gnbFPT/S6LmcJlcjRJwmj9TcJoTU7Pk7P5eZu55EHyGWnZ551lLjq4uAu/NPon8VsPfr049o3Xvz36nd1cQwEAAAAAAAAAAAAAYF3CaAAAALCmLEQV8SiIlscAhkv3M4tZPKjvR0QezDpr2XrH0zfTsSudyxNG63fyMEEWSckCYG3CC9k6pdevjnIYLSIPozUdY/6azerp20G9s7J4Xpv9Z+/BZZqCL8OF9y8ALJOF0cYNYbRZTKOOWbK/3lbOa5mmOcRowzgT7EIaRuutH0arGua8Z+fJoyQS3fQ56tE65fnvpr972XVnryGMll2LLqvPHH26uLyKTnzTje/Y8dkAAAAAAAAAAAAAAMDqhNEAAABgTcNuUyzj+NT/njVYCF01RzfmgbU8UnV6/eZQwL2mMFr38oTRmoInk1k5ZpAFwNqFF5JoWXGf5TBaUyQiIn+/tHmN24TI0seQBCmWaXovtYnNAcBcPwmjTRrCaE3RtCy0tm3dqht71X5xrO3cDC7S0fiV4vKb/dvr77RqnvMuSiPRDZ+j5tIwWstgdCa77jRdV7Is8mV0NH41fvbNv18c+6qrH93stQcAAAAAAAAAAAAAgB0RRgMAAIA1NcWhTt6OXWWxruHCvxvCaG998X9Z8GzueEko4HiWh9EOLlUYLQ8TjOsHxeVpeKFFVCx7LUv7nK0bRltyjCyi9/D8ymGIU+uk4bX14hHNoTZhNADay+7rk3ocdV2+rzZF03YVRovI5wjrhkdhV8azB3F3+npx7LB361yOefbXOY1EtwkXL4kKryu7tux19tJtsuvUZfTjr/9YzGJWHHv+xos7PhsAAAAAAAAAAAAAAFiPMBoAAACsaa/aj07y0Xr0dhitHJdajAFkQavF7ZsiVYuOl0SwjqflMNp+NYhu1Wt1jF3oV3mYIIsZZIGSVuGFNFo2ilk9PbN0vTBaGlaZh9EaAittQmRNj2Edo4bI3n6L2BwAzGUhszrqmMXZ++xDk3qS7q/fEDDatizOlAVZ4bI4mnw+HdskjNY84300T67rOp2HtpvblsPATXPUNrLPEr2Gzx/Z/P+ymdTj+NydHyuOvav/3viyg6/e8RkBAAAAAAAAAAAAAMB6hNEAAABgTVVVpV/YP1kSu1qMAexXg6jSwNq9U/+7zGh6L+o6/+L+vend4vKD7tVW+9+VLKASkYdS0vBCQ3iuzTpn95s+vc2ViDQAMX+PnDS8xm3ibsvCa6vKo37D6FT+pARAe0339XESKZrMHjTsb3cx123fX2FXjiavpmOH/U3CaEsmvW+5X59EHbPi2Cbh4k1+92b1LP0ssdcQRqufkDDaP7779+KN6Z3i2HOHL5jDAwAAAAAAAAAAAADwxPB/AQ8AAAAbGHSHxeWPYlflL+4vxgCqqopBp7yf+fYn03Kk6qxpTGJc5yGR4yS+deXShdHy4MkkCahk8bhNomIRhTBaEnjoLPkzyyCJr70d0UtCZL2qH/1OHpSZy8Nr7aJ6j223wfMJAIuag6fl+3oWTFu2v23L7q/ZHA8ui6NxOYx2pXMt9juDcznmYkAsi+xGRPrZZ9GwWw5Qtw1Gl0yTKFpERK/z5IfRPnPnpeLyvWo/vv6Zb9nx2QAAAAAAAAAAAAAAwPqE0QAAAGADaYzqrS/sj5JoxvBMJCuPWs2jWe0DAFn8LCLieHq3uPyge631/nehU3WjE93iWBZ+y+IL2XPbdp1N4gunj5HFHeYRvfJx2px/RFN4rV1Ur+12bc8HAOaaAp+TWTmAlgXTInYbRssCTtkcDy6Lo8krxeWH/Vsb7rlqtdbJNP8dyaJnp9Zp+HxU1+uFypquK3tVUxjt8vuN+78avzz6Z8Wxr3vm+Ti4ZCFsAAAAAAAAAAAAAABoIowGAAAAGxgkX9ifR6VOkmjG2e3y/cyjWe3jVqNpHvK6N32zuPwgiXZdpH4SPcmCBtnjzp7btuucTE8/93WSRqiW/JklC6vMX+NREo/IgmqPr9cc6VtV2/cuACzTFDLL7uuTepJu028IGG1bOkebrhcehV05Gr9aXH7Y2yyM1i6L1hwPzObFi4ZJyGsakzSUvMzawcU1Q2y79PLRS+nYczde3OGZAAAAAAAAAAAAAADA5oTRAAAAYANZLGMeo8rjUqdjAMNutp/jU//bxnFDCOt4Vg6jXelea73/XcniBKVQyqyexv36pLh+Fgxb1O/sRa/qFcfOhsXqmBXXq5ZkIrLA2TyIlsXv2oQjmvafvQeXyUNtwmgArKYpODROw2hNAaPyPfs85HO09cKjsCuvTZIwWn+zMFqTxYBwNgetohP71WDpvprmnOv+/mXXm4iIvc5+OpbN/y+L0fRe/NQbLxfHvmT45fH+wQd2e0IAAAAAAAAAAAAAALAhYTQAAADYQBqjmj6MXGVBs7PbLYtarRK3Op6W42dNYwfdq633vyu9TjmiMp49eGxZFhWLyIMmZ2WRu7P7ruviarGki5aex8nb8bty4KH9+ZcDaiezUczq1WMOadSv2y7UBgBz/YYwWhZAG9eP3+8jIjrRiU7V3cp5tdF2fgCXzdG4HEa72bu94Z7zSW+bMNqgM4yqWjJxjoiD5PNRRMTxdL0wWnNwMb9OZdP/y+LvvfF30kj08zde3PHZAAAAAAAAAAAAAADA5oTRAAAAYANZJGoeuZoH0h7b7kzEKotajaZvhdGm7cNoWWAroiGM1rmEYbQkTlAKGjTFSbKgyVnDZL3H43blNEJnyZ9ZsvOYv15ZRG/QEIVYNOzm691fI97SNuoHAMs0BYeyUFG2vGlf5yGbH6wSrYWLcDQph9EO+89utN82UbOIprlky+hvQxx43d+/pjDaXrWXjtWXOI1W13V85s5LxbFnujfia699/Y7PCAAAAAAAAAAAAAAANieMBgAAABvIIlGj2XHUdZ1Gys5GrLL9nMyOY1ZP43590vqcRtM8jHZvVg6jXek+2WG0phhc6/hCy/DJbM0wQh5WGUVd12ngYZhE89ruPyIPUzTJzieL+AFApilmNk7DaJOV93Ue8rCpMBqX12h6L53LHfZu7eQcsrBz27nkfjVIw8PHDXP/Jk1htF5DGC0LI18G//z45+K3H/xGcewbb3z7zq+ZAAAAAAAAAAAAAACwDcJoAAAAsIGm2NW4fhCzmBXHzwYBht08unEyG610Tk2hgOPp3eLyg0sYRutXveLyUtDgZJo/R1nQpO16o8eiDuUwQhVV4/6z90odddyvTwrHmZ9XOZr3+Hr548zCGE2y913b5xMA5jpVJzrRLY5loaJsef+ShNHWubfCrhxNXk3HDvu3N9p304y3rh/Nk7O55NlAdHqcqsoj1Mm8eZnxrCmMll9bFh/XZfPynU8Xl3eiE5+8/h07PhsAAAAAAAAAAAAAANgOYTQAAADYwNnA2dxoei9GDcGMs5GNdD+z48b9ZMcumdXTdF8HncsXRutVe8Xl41IYLXlcvaoX/U55P2flcbrTz2edhdGq5jBaU1Cs6f2Snddj6zXuf/V4RPY+ajoOAGSyoFkWQBvPHhSX9zq7DaOl84Pp8aWOJfHO9tr4leLyKqq40bu54d6b57xzZ+fQc9nnnpK28/O2sutNxMPPDVnoOJv/X7TXxq/Ez735U8Wxr776dXHYv7XjMwIAAAAAAAAAAAAAgO0QRgMAAIANDLtXistPZsdprCvi8bjUsJPvZ9WoVRYKOG4ICFzpXlvpGLvQWyGgkkXFmmJkbdc9mY1O/ZxFULKQwlxT4OxkNkrfL20fQ7+zF72qVxxbJx5x9nG/fT4tQ20AsCi/r0+S5eWAUbaf85Ldh2cxjXFdjrfBRTuafL64/HrvZnST+eJ2PJonp3PJFebn2WekLOC7TNN15WHkuF307bL48Ts/FnXMimPP33hxx2cDAAAAAAAAAAAAAADbI4wGAAAAGzgbOJsbLQmanQ0CDDrD8n6mzYG1kuPpmystj4g4SAJvFymLfJWCBtlzlL0+q6x7NipWRzmMtiykkIUd5sfI4m6rPIa2cbc2spjaKucDAHO9TjloNp6V42JZMG3XYbSm+94691fYhaPxq8Xlh71bG++7KQa8OE/extw2i1CvE/2NiBgvCS5mjy2f/1+c8Wwcn3v9x4pj79l7f3zpwVft+IwAAAAAAAAAAAAAAGB7hNEAAABgA1mIalw/iHuzu8WxKqrY7wxOLcu+9H8yO06jApnjJBTQGEbrXFvpGLvQr/aKy0thtOw5yl6fVdZtGz1pikREPHw8neRPMaPZcZwkIb3txN1Wew/VdZ0+7lWeUwCYy4Jmpft60/Jdh9GyeG3E+nEmOG+vTV4pLj/sP7uzc8jmtqvMJbc1t51bdl15ksJo//jNn4i709eLY8/deCGqqvmzCQAAAAAAAAAAAAAAXGbCaAAAALCBpmjV0fjV4vL9zjA61emP5Fkg4EF9P+5Ny4G1zGhajnTcm5XDaJ3oNEY/LkoWPhkXggYnWwijpeGFM89nHbPiesvCaFVVxbBTDuCNpnkAb9DdPO6WvScy9+uTNACxSqgNAOa2FUbr7ziM1nTfaxtPhV3LPocc9m7v7BzycHH7zx353Hm9KOGy60rWEruMYbSXj14qLt+vBvHxZ75lx2cDAAAAAAAAAAAAAADbJYwGAAAAGxg2RKuOJuUgQSkG0BhYS/aTGc3KoYDjaTmMdtC9GlVWAbhAqwRURtNyeKHp9TkrC5CdjZ5skkXIjnF3eidmMS2OrRIiy8Joq4ZbTpLns+kYANCkX/WKyyf1pLi8FEKNyOcH52W/IeK0bpwJztud5PPDYf/WxvtuigEvBsSy+eewW46dlddNor9JdG2ZLIz26LqSldEuVxjt105+JX7l5BeLY193/ZtX+gwEAAAAAAAAAAAAAACXkTAaAAAAbKApEnU0LgcJhp3HYwCNYbRkP5njVcNonasr7X9X+jPjmQsAACAASURBVJ0kjDZ7PGhwksQRShG6TPYaPBZeSMIInWr5n1mGyfm8Nn6lYZttxCNWC7c0xSayuBsANFkleNq0fNdhtE7VSecTq4ZHYRdm9SwNK9/s3d7ZeWTzz9Xm5+V58Kpz27llwcUs+lZvlEbevs/ceSkde/7GCzs8EwAAAAAAAAAAAAAAOB/CaAAAALCBxjDapBy7KsUAmmJTWdggM5rei7oQ77o3vVtc/6B7OcNoqwRUspDXKlGx7LU8G12bxSzZQzmkcPoY5fNpeo23E4/IQ2clWWju4TGE0QBYXa/aKy4f1w+Ky/MwWm9r59RW2zkCXAZvTt+IST0pjh32b23hCPmcdzEgloUDmz4/nZXObafrhdGWXVeehDDa8fTN+AdvvFwc+9eGXxnv3f/iHZ8RAAAAAAAAAAAAAABsnzAaAAAAbKBbdWOv2i+OHY0/X1xeCks1xaaOxuVo1vXuYXH5LGZxvz55bPnxrBwQuPKEhdHGhaBBFiZZLSpWfg0m9TjGs3JEYdHyLFp+jOw1jogYdleJu5Uf76rhliyk1olO+n4HgCZZ0CwLOGUBo34SWDtP2f171fAo7MJr43KcOSLisLd5GK1qmvS+1Q+b1bO4n4TRVonsHiTz4HV/95ZdV56EMNpPvv6306Dk8zde2PHZAAAAAAAAAAAAAADA+RBGAwAAgA2lsatJOXY16D6+frfqpaGPbD+H/dvpOR1P3ywsu1tc96BzLd3PReonYbRS0GA0LccRhp1VomJ5pOFkISqXhRGqFn9myY6RvcZVVLFfDZbudy57vNnzk8lDcwdRNdYwAKAsC55moaJsebaf85Tdv1cNj8IuZPPKXtWPq91ndnIO92cn6Zy5ac7ddt1REnxeJr2udHZ/XVnHrJ7FZ+68VBy73j2Mr7329Ts+IwAAAAAAAAAAAAAAOB/CaAAAALChQbccoxrXD4rLs5BaGrVKvvh/syGMVtrmXiGWFhFxkJz/RVsloHIyGxXXHXSGrY83LATr5kYL+0/DaC16YdkxXp+8Vlw+6AxXCpFl+1813JKF1FZ5PgFg0SrB04iI8ezyhNGyuduq4VHYhTSq3Hs2OtXm/1mwinxuOp8nN809m+bcZx0kn49OZqOY1dPW+5lbdl2pkuenrsvz/137xeOfjVfGv1kc+8Ybn4pu1dvxGQEAAAAAAAAAAAAAwPkQRgMAAIANDVeMRQ2SuMaq0ambvYYw2vTxMNrxrBxGu9K9ttJxd2WVMFoWj1slvJBFTyIiThb2n4cRlgfMsmNksbUslpfJ3lurhtHy0Fz75xMAFvWqveLyLCSbBdN6nd2Hfwbd8hxt1fsr7MLR+JXi8sOGqPJqmua88zBaeS4Zsdp8smku33SMTHpdeSsolj2ybK6+a5+581JxeSe68ckb37HjswEAAAAAAAAAAAAAgPMjjAYAAAAbWjUWlcWxht3VIljXetejn0RGjguhsONpOYx20L260nF3JQujjQtBg22EvJrCdKOF/WdhhKpFGG3V98q23lujFcMt2wjNAcCiLGg2mU3Ky9OAUXl+cJ7y8OjqYSY4b0eTV4vLD3u3dnYO2VwyojlG/Pi6+eejpmNksuvKo89U5fn8ZQijfX78O/Hzb/50cexrr308bvRu7viMAAAAAAAAAAAAAADg/AijAQAAwIaavrBfkgW4VokEPNzPQRwkxx5NVwijdS5nGK2fhE/OBg0m9TjG9YPiuqs8p52qG/vVoDh2+vlcP4y26mu8aogsDaNNj6Ou2wcdthGaA4BFWdAsCxUtDxjtTh4eXT3MBOfttfH5htGa5rzz2WY2l+xEZ6Xf4abPWceFzzvLLAsu5o/t4sNon73zN6KOWXHsuRsv7vhsAAAAAAAAAAAAAADgfAmjAQAAwIYG3XLoLDPslr/gnwXT0v10DtJ9HZ8JddR1Hfdm5TDale7lDKP1Ou0CKifTcnghYvWQ1yAJkS3GHepNwmgrhs5WPv9k/WlM0hBESRZ6WTXsBgBzbYOnc+M0YNTb2jm1ld1fs/gTXKSjSTmMdrO/nTBaGyez4+LyYedKVNXyOfPb6zfMnUfJMZosu65k53bRWbTx7EH8xOv/b3HsC/a+KD40/ModnxEAAAAAAAAAAAAAAJwvYTQAAADY0LBTjpNlsgDaOvvJthlNT4etxvWDNDxy0LmkYbQkoDKenQmjNUQRVg2RZeGvxVBYXSdhtBaRh1VDZ6uGyLYVj8hic6uePwDMZff1bH6SLc/2c57S+cG0HBKFizKtJ/HG5Kg4dtg7/zDaPCA8mpbnnasGpbtVL/aq/eLYOr9/y64rWei4rmcrH2ubfubu5+LN6RvFsedufOdKsTkAAAAAAAAAAAAAAHgSCKMBAADAhlaNV2VxqdUjXlfioFsOox3PTocCjqdvpvs56F7OMFq/ZUClKfi1asgrW/9k9igUNg8+PG55kGDl0NnKsbymMFr7eES27qrvUQCYS4OnT0AYbZDc/xbnB3AZ3Jl8Pp2rHvZvb+UYWTzsoYfHzsLF60R2h8nnnVWiv3PZdaVf7b31rySMtvKRtuvlOy8Vlw86w/j49W/Z8dkAAAAAAAAAAAAAAMD5E0YDAACADa36Bf8sjrVyxKs7TMNZo+npsNW92d10P1e611Y67q5k4ZPzDKNlr83Z57NkeRYtYrBq6Kw7XGn9pvDaKvGWbN11YhYAENH+vr5s+aOA0e5k9791wkxwno7Gr6Zjh71bWzlGVS2f9Wa/G6tGgpu2WSX6O7csuNhJZ/QXl0b7lye/HL968kvFsY8/8y0x6Kz2eQEAAAAAAAAAAAAAAJ4EwmgAAACwoWF3xaBZ8uX+VUMBw86VGHbLoa3jM6GA44aw10Gyj4vWNqBykoQX9qr96FbdlY6ZvTaLx6hjVlynavFnluEWQ2cl+51hVEnQoU3cbS57ToUXAFhXf+Uw2qS4vFf1tnZObWX345PZKOr64oJJcNbRpBxGG3QOVv7Mso75b0M+l1wnjNYuBN3GeJaF0ebXlfI8ur7AMNrLRy+lY8/deGGHZwIAAAAAAAAAAAAAALsjjAYAAAAbWjlolkQJVg0FDDrDOOhcLY6NzoTR7k3vFtfbrwZpgOyiZQGVWcxiWk/f/nk0LYcXVn1dIvLX5mQ2evvfWRYhC5KdPqfVInSrrt+pOrGfxMtGSaBilXVXPR8AmGsbPJ0b1w9W2s95yuZodczifn2y47OB3GvjchjtZu/Wbk7grVBgNpdcJ7KbhaDPft5pI7vezK8r2Wz+osJob07fiJ+++9ni2JcefFV8wf4X7viMAAAAAAAAAAAAAABgN4TRAAAAYEOrB83K62dRrnw/wzjIQgHT06GA49mbyTEvb+iqKXyyGDU4ycILKz6fEXlMbTG8sEkYYdUYxDrxiGyb7HkqrpvE5tY5HwCIWD2MNpk1B4x2qSm2uhhPhYt2NCmH0Q772wujtYkBn0zLvxfrRHbz+Xn7ue1cdr3pd/Ye/qMqP7a6vpgw2t97/W+nkcjnb7yw47MBAAAAAAAAAAAAAIDdEUYDAACADTXFMs7qRCf2qv3i2CqBtf1qEJ2qm8YFzobQjqflMNqV7rXWx9y1tmG0LIqwyusyl70Gi9GTup4V16mq5X9m6VTd2K8Grc9nnXBd9p5oG4+Y1dO4X59s7XwAICK/r4+zMFo9Ke+ns/swWlNs9WyMFi7Sa+NXissPe7d3cvx5QHgxKrxo0F09spvObdf43UuvK29dn/Lo2+7DaLN6Fp+986PFsRu9Z+Orr358x2cEAAAAAAAAAAAAAAC7I4wGAAAAG1olaDboHERVlb9wv0rIax6oOkhCVcdnQgH3kjDaQedq62PuWr+zl44tRlROkuDXKq/LXPYatAkvZBmFs5riKo+tu8XHcDJtF0ZbjMA9vu/VYxYAEBHRT4Jmk0IYbVbPYhrlgFG/IZx6XgYN97+m+ybs2p3Jq8Xlh/1bWzxKPuudh9Gy34t1wsXDZO7cNvq7aFw/KC7vVb2IyMNou8+iRfzCvX8Ur4x/qzj2yeufim7V3fEZAQAAAAAAAAAAAADA7gijAQAAwIayL+uXNIU1VgusPdzPsFMOo53MjmNWz97++TgLo3UvbxhtHigomcweRVSyKELTc53JomWLcYc6SSNkIYWzVgrgrRGPyB5D23hE03qD5P0GAMv0kqDZ4j397WWFWNqy/Zyn/WoQVfKfU0az5fFU2JWj8eeLyw972wujtZnx5vPzdaK/SQh6jd+97Noyv67kYbRZcfl5evnOS8XlnejGN9741I7PBgAAAAAAAAAAAAAAdksYDQAAADaUfVm/uG43X7dpLDtmduw66ri/EPM6npXDaFcudRgtD58sRg1OpuXwwiqvy6NtsqjYo/DCpmG0VYIQ64TRsm1OWobRmtYbrhGbA4CIhjBaPSksu1xhtKqq0uDqYjwVLtL92Uncm90tjt3sby+M1kY2n1wvjJbMbZPPAE2ya0u/2lt5X+fp1Qe/Hf/03j8sjn342ifieu9wx2cEAAAAAAAAAAAAAAC7JYwGAAAAG+pXe9Fp+RE7i2osG8vWPWgImx0vxLzuTcuRhIPOkxlGG9cP3v73KAsvdFePeGWxhpPZKOr6YRBt/r+PqdqF0VaJnQ2624tHLMbdmpxM88DLOjELAIjI7+vTmMSsnp1aVoqlLdvPeds0PArn7Wj8ajp22NteGK0pBjwPCOfh4tXnkgdJPPq45dx2UXZt6VW9iIioqvJnuiyMfF4+c+el9JjP33hhp+cCAAAAAAAAAAAAAAAXQRgNAAAANlRVVQw75S/sn9UUltqvBq0Da8O3glkHDccdTR/FArJwQFNY7aL1q710bDFqcDIrh7zaviantym/PnXUcb8+efunkqZIxKljrBA7WycekcbdGoJni7KAWq/qRb+TvyYA0KTfEDSb1OPGn9vu5zxl99dREoCCXXtt8ko6dmOLYbRYMued1dOFefNp60R/B8mc/mR2Lw8WF9R1fSquvGgeXMwe2SrH2dSD2f34ydf/VnHsvXtfHF8y/IqdnQsAAAAAAAAAAAAAAFwUYTQAAADYgrZf8m8KXVVV1RhOO3W8t9Zrimwdz9589O/p3eI6V7rXWh3vIvSqXjq2GEw5SUJeg85w5WM2Pf/z0Fy9YRit7Wvcr/ai2/AcZLL3xGjWLtyShebanjcAlPS2FEZr2s95yu6vJy3vr3DejsavFpc/070R/c6ufm/qdC4ZETFcY36ehaAn9SQNnZVMY5KOzYPM2Xw+m/+fh39498fj3qz82e35wxejqtp95gAAAAAAAAAAAAAAgCeZMBoAAABsQdsv+S+LS7WNec0Da92qF/vVoLjO8fRRMOze9M3iOllo4DLoVN3oJH+6WIwgjJL4wnCNx9YUmptHHjYNozXF8U6vt95rk73HRklA7vH1yoGXtucNACXNYbTTwaKm2NFFhdHy+6swGpfD0aQcRrvRv7XV4zR1ueo6j+xGRAy2PD9f5ffv7HVmUe/tcFz24HYXRnv5zkvF5YPOQXzsmed2dh4AAAAAAAAAAAAAAHCRhNEAAABgC9p+yX9Z+GzYbbufR4GAbJt5CGtWT+MkiQZc6V5rdbyL0q/2issn9fjtf59My4+tbWTu9DZN4YWHz+emWYS2wbN1zv/h/suPoSlScXq97PkURgNgff3GMNr4zM8NAaMLCqPl91dhNC6Ho3E5jHazt90wWh4Pe6gpxts2Jn16m3zuPJq2C/9GRExm43SsV/UiIg8d7yqL9qujfxH/8uSXi2Nf/8y/sfbnAwAAAAAAAAAAAAAAeNIIowEAAMAWZLGMx9ZbEj5rvZ/FMFoSC5iHAkaz46iTr/MfdK+2Ot5FyeIn82BKXdcxSoIkbSNzi/aq/egkfy6Zh8XqelYcr6p2f2YZdLfzXkn3n7yH2oYj8jCaEAMA62sKmo3rB6d+bg4YXUwYLbsPCqNxWRxNymG0w/62w2hN6jiZ5jHedUK7TXPi7HNAydnrzKL5daWqsjDabtJon7nz6XTs+cMXdnIOAAAAAAAAAAAAAABwGQijAQAAwBa0/ZL/srhU6/0sxLUOkljA8exhCOve9M10Pwedyx5G6xWXT+qHwZRx/SBmMS2us07Iq6qqpaG5dNsohxTOWid+t4osHnG/PolZXX6uFo2m2wvNAcBcU9Bsfl/Pfj69n/Lc4Lzl4VFhNC6H18avFJcf9rYbRmua89ZRp7HAXtWLfmdv5ePtV4Ookv+cOZq1C/9GNF9X+tX8vJIwWhJG3qY3J2/ET9/98eLYv37wNfHuvfed+zkAAAAAAAAAAAAAAMBlIYwGAAAAWzDsto1dNcel1olmpSGvt0IBxw1htCvdSx5GS+IJ49mDiIgYJeGFiOXPdWbQLQfVTmajiHgYfChpl0XbXkQvM2zYbv4YmmQxi3XPBwAiInqdpjDa5NTP4/pBeR9VP6qq7R13u7K5Xpt7K5y3uq7jaPJqcexm//ZOzyWbn7edA5/1MFychQlXCaNN0rF5uPFiri4P/cTrfzONtz1344Udnw0AAAAAAAAAAAAAAFwsYTQAAADYgrZBs2VxqbbBgMXo10G3HAA7fisUcDwrh9E60Vk7ULAr80jBWfNoQBbxitgkLJaEF94KzdUxK45XLf/M0j5+t2bYrWG7ppDcsnXWPR8AiIjoVb10bDI7HQPKAkbZvGAXsjnTfH4AF+ne7G4aFDzs3drZedRxPpHdYfJ5Z5Xfvyw6FvHo+pTN57Mw8rbM6ml89vUfLY4d9m7FV1392LkeHwAAAAAAAAAAAAAALhthNAAAANiC9kGz5vWG3dUDa1mwah4KOJ6Ww2jD7pWoqqrV8S5KP4mozIMpo2ke+soCCstkr+XJbBQRsXEWofV7peV74bHtGvbf9HzNnUfMAgC60YsqyvOOs8GiLGB0kWG07P46nx/ARToav5qOHfZvb/VY2e/xQ3WMkt+JTSK7ebh4+dx2LgvHRTy6tmSP7LzDaP/03s/E58e/Uxz75I3viG7VPdfjAwAAAAAAAAAAAADAZSOMBgAAAFuwLHj29npLYlfto1mPwgIHSQDsePowjHZverc4fqVzrdWxLlKv2isun4cNsohXFVXsVftrHTN7DeahuSyN1qna/ZmlffxuvTBa03bZ87Uoi6dtErMAgKqq0rDZ2WBRHkYrB1N3IQ+ntg8zwXk5mpTDaJ3oxjPd61s9VnMYLeLk7TnzaZtEdrN56PzzThvZdSViMbpYfmznHUZ7+c5LxeXd6MU3Xv/2cz02AAAAAAAAAAAAAABcRsJoAAAAsAWDLcWu2gbWFsMCWShgHvI6nr1ZHM+CapdJFlCZhw1GSYxk0Bm2DpWdlb0G82BYXW8WRmgbGGv7Xjir3+mnz1v2fC06mY2KyzeJWQBARB42m9STMz+XA0b9JJi6C9l9+WQ2ilk93fHZwGlH43IY7UbvZnSq7s7Oo446RtNsLrne3DYiDwuvEiY8e52Z60bv7c8NVZVE3zac/zf5nQe/Gf/s3s8Ux37PtW+IZ3o3zu3YAAAAAAAAAAAAAABwWQmjAQAAwBa0jVgtW69tMGAxrpWG0aZvhdGmWRjtWqtjXaRlAZUshrBJeCGL3M2PVUc5jFBFElI4u/+WgbGN4hFpvOXe0m3T57Rl/A8AMsuCp3PjJIyWbb8LTffB+7OTHZ4JPO61ySvF5Tf7t7d/sCwe9pZsLpnFzdo4WBKCbmM8e1Bcvvh5I5vPn18WLeKzd15Kx547fPEcjwwAAAAAAAAAAAAAAJeXMBoAAABsQdsw2rLYVZtgQCc60a/23v75oHu1uN7xW6GAe0kY7UqnvN1lkgdUHoYNRucQRstey9GWwmj9ai+6UQ6+nTqPbjkA0Ub2+Eez0dJts+e07XscADJtw2hnf360/fL753lpug9m907YlaPxq8Xlh71bWz/WshnveczPB0kY7XjaPoyWXlc6j65LeRht1vo4q3gwux8/+frfLo69f/+D8bsGX3YuxwUAAAAAAAAAAAAAgMtOGA0AAAC2oM0X/bvRS4Mgq+xn2LkSVfXoS/sHSSjgZHYcs3oax7NyGC0Lql0miwG4ReO3wgYn0+1HvLLX4OStqFgWRlueiXhrrapqFcAbdIat9leSPf7s+Zqb1OMYvxWde/x8hNEA2Myy+/pcHkZrnkedp6b74IkwGhfsaJKE0fq3d3oedV2nvw+bzCUPkmDwKr972XUluy4tymb/m/rpu59NP6s9f+PFU5/5AAAAAAAAAAAAAADgnUQYDQAAALagTehq2D1Y+uX2NkGvQfd0MGuYhAIiIkaz4ziePrlhtCyAMg8bjLLwQovXI5O9BqPpvYf/qMtphFXCBW2iZ8MkeNdq/8njH83uNW53Mh01nI8wGgCb6VW94vKzwaI0YNRZHjA6L0337tEsv3/CLhyNkzBa79lzOFo+562jfjsmfNYmc8ls2+Np89x20aSeFJcvXpeq9LFtP41W13W8fPTp4tiwcyU+9sxzWz8mAAAAAAAAAAAAAAA8KYTRAAAAYAvaRKy2FcM6GwY4aNhmNL0X95Iw2pXOExBG6yQBldnDYMpJEkbbJLwwSLadRx6yLEIeUnjcOq/zKrJts1DFo/Hy8xmRPy8A0Nay4OnceFYOo2Xb70K/2otulOclJyvEmWDbZvU07kw+Xxw77N/a+vGWzXlHye9Dm89CmSwE3TR3PWtcPyguX7yuVFX5P5vWSRh5E7968kvxa/d/pTj2ievfGnud/a0fEwAAAAAAAAAAAAAAnhTCaAAAALAF+y2+6N8mLDXorr6fLBQQEXE8uxfHs3IY7aB7+cNo/WqvuHweUBklMYTNwgvl12k0exh5qGNWHF8ljNbuvbD9MNr8MWSy5zMif14AoK22YbSzPz/avhwm24WqqtJ52mhJeBTO0+uTo5gl89Obvds7Pps8xLtJZDeb2x4vmdsuyq8rC2G0ZNs6TSOv7+U7n07HnrvxnVs/HgAAAAAAAAAAAAAAPEmE0QAAAGALulU39qtB4zrZF/pXXeexMFrDNqPpvTiePrlhtCygMn4rbJCFF4adPBa3TBZtGNcPYlpPGrII7cNobSJjbd4LmewxjKZ5+CyiOYy2SWwOACIi+p1Nw2jl7XcluzefNNw/4bwdTV5Nxw77t7Z+vKYZbx11+vuwSWQ3m9vfn41iVpejcGdl15XTIebyo9t2GO3u5E78zN3PFce+/OBr4117793q8QAAAAAAAAAAAAAA4EkjjAYAAABbMljyZf8sVrWoW/Vir9pvXOdslKNTddN9/+hr/1eM6wfFsYPOkxtGm4cNRtN7xfFNIl6NobnZcUQSRuhU7cNoy94LnegsfR80ycITy8It2Xi/2otu1Vv7fAAgoiF4OnsywmhpeFQYjQv02rgcRtuvBuc038/nvNN6Eg/q+8WxNp+FMsNuOYzWFGI7a1JPist7C3PcKn1s2w2jfe71v5mez/OHL271WAAAAAAAAAAAAAAA8CQSRgMAAIAtWfZl/yxWtep+SgG2g045FvDPj38u3c+V7rVW53OR+kvCaCezUXE8iye00RRGO5keR11nYYT2YbSmY0Q8fA9UK4TWHt++/PiXhVtG0/L4MNkfAKxiWfD00c/lYFA2L9iVbI7WNswE5+FoUg6j3ejf2mg+uY5sbh6xfP7bpGku2jZMmMWiF69LWRhtm1m0WT2NH7/zN4pjN3u343df+cgWjwYAAAAAAAAAAAAAAE8mYTQAAADYkjaxq1b7WRJQKx1nnRDYQffqytvs2rKAymh2rzg+6AzXPmYpPDc3mh1HnaQRVslObCuil26fPP5l4Ygs7LLJ8wkAc23DaG0CRhchm+tlYVHYhaNxOYx22Hv2XI6XxcMi8rl5xKZhtIb5+TQ/5qKz15m5U2G0JCRX17NWx2jj59/86Xht8kpx7JtufGd0qu7WjgUAAAAAAAAAAAAAAE8qYTQAAADYkq2F0dbYz5XutVb7nquiioPOkx9GO5mNiuPDzuqhuEfbrhtGa/9nlmWv8SbhiIiIQfL4s/DZXBZOWye8BwBntQ2jtQkYXYRsLrfs/grn6SiJbN3s3z6fAzbUgJsigW0/C5U0RYOXhX/nJrNJcXm/s9vryst3Pl1c3qt68Q3Xv22n5wIAAAAAAAAAAAAAAJeVMBoAAABsybIv+7eNXa2zny87+OpW+577kuFX7DwCsI5+EkAZ1+OY1bO4n4TRBp3h2sfsVr3oV3vFsZOGMNoqloXGNglHPNx/efvR9DjqOj//LDS3yfMJAHPZfX1ST878fDnDaNn9VRiNi3Q0frW4/LB3a8dn0vy7MOiuP5/sVf10fj6a3Wu1jzbXlSqpvm1j/h8R8dsPfiN+8fhni2O/59on41rv+laOAwAAAAAAAAAAAAAATzphNAAAANiSLJYx1zYutSygVopmffL6t8cX7H1Rq/3vV4P4rlvf02rdi9ZL4m2Tehz3ZydppGBZeGyZ7DUYTY8jkmNmIYWSZe+FTcNo2fazmMa4fpBul8UsNj0fAIjIw2Zn701nQ2lzWVhtV7L74UgYjQv02qQcRrvZv30ux2ua82aRsn61t3HYcNgpz+9H03ZhtGwOvMsw2mfv/Gg69vyNF7dyDAAAAAAAAAAAAAAAeBr0LvoEAAAA4GmxLB7VNi61bL1SgO1a70b8+S/6r+MfvvHj8asnvxTTelbc9j3774sPX/2GeM/++1udy0XLAgqT2TiNeEW0j9Dl2x/EG9M7jy0/mR1HXSdhtKp9GG1Z/C4LP2xj/6PZcex19stj0/Jzuux8AaCN9L5ej0/9PD7z87LtdyWbX5zMRjs+E3hoPHsQb05fL44d9m6dyzGbw2hZZHezuXnEw/DxG9Ojx5YfJzG2s85eZ+ZOX1fOL4x2f3YSP/n63yqOfdH+l8QHBh/a+BgAAAAAAAAAAAAAAPC0EEYDAACALVkauyoEzdZZLwunXeleorFgUAAAIABJREFUi+cOX4jn4oVWx3kSZAGUcT1OwwsRm4fFBt2DiEI7YTQ7TsMITZGIs5ad36C7WTyi6b14MjuO63GYjhXPRxgNgC1oG0abzB6Ut+9cbBgtu7+Opu3CTLBtR5PPp2OH/fMJozXJIrvbmEtmv39NseRFk3pSXN5fuC7loePNw2g/9cZn0s8vzx++uFJkGQAAAAAAAAAAAAAAnnadiz4BAAAAeFosC6O1DQIsW2/ZcZ4m/YaASlMEYdA5n7DYSUMYLVYIoy0Ln20cdmt4jzTFW7JYQ9uoHwA06Sdhs7PBoixglIXVdiW7v57MRjs+E3joaPxKOnbY230YLZufb+Pzy0EyPz5uGSY8G2CcW7yupFm0DbtodV3HZ+58ujh20LkaH7n2yc0OAAAAAAAAAAAAAAAATxlhNAAAANiSwZJ4VNsgwLL13klhtCyAMqnHacSrG73oV3sbHTd7jkcNYbTOCmG0ZeGzTV/j/c4gquR8muItWcyibdQPAJpk9/XxmWBRFjDKgqm7koVCm2KtcJ6OJq8Wl1/pXou9zv65HDObY0ZEjGblSNmyz0ltZPto+/s3rh8Ul58Oo5X/s2keRm7nV0a/GL9+/1eLY5+4/q3n9loBAAAAAAAAAAAAAMCTShgNAAAAtmRbQbNlEap3UqQqC6jMYhbH07vFsUF3GFXVPlJW3EfyHJ9MjyOyMMIKxzzv+F2n6sSgMyyOZcGKh2PlsMQ7KcYHwPlJg6ez08GiLIyWbb8r2fzgQX0/pvVkx2cDeRjtZu/2js/kodE0i+yW56WrOEjCwsfTfG67aJL8jra5rmwaRnv5zqeLy6uo4rkb37nRvgEAAAAAAAAAAAAA4GkkjAYAAABbMky+rD/XNmg27C7ZT3fzsMCTot8QKrg7faO4fBvhuGG3vI/R7DjqrIsW7cNo+51B4/ggOf4qsuchi59FRJwkY++kGB8A5ycNo50JFo3rB8X1LjqM1hQKPZmNdngm8NBr41eKyw/7t87xqPmcN4/sNn++aSOf27YNo5WDi4ufN/L5/PphtDcmd+If3f3J4thXXPlw3N77grX3DQAAAAAAAAAAAAAATythNAAAANiSQac5WNY2aNa0n361d+FRkF1qeqx3J68XlzdFS9rKwgsns+OoY1YcWyWM1qm6ja/zNh5Dto+TaTlYUdd1nEzLUZfhkvc2ALTRq3rF5WeDRWdDaY+2v7xhtFFyf4XzdDT5fHH5Ye/8wmhV1RRGK0fKln1OauMgiUc3RX8XZWG0XoswWr1BGO1zr/9YTKN8TXvuxotr7xcAAAAAAAAAAAAAAJ5mwmgAAACwJcPky/oRqwXNhp18P9sIZj1Jmp6zN6flMFoWNVtFGhWbHadZhFXCaBHN57mVMNqK8Yhx/SCNNgwa3tsA0Fa/2isuXwwW1XWdBoz6FxxGa7p3n7SMM8E2HY1fKS4/zzBak+z3oOnzTVvZPkbTcoztrPHsQXF5r7MQRkuib3W9XhhtWk/js3f+RnHs2f674yuvfHit/QIAAAAAAAAAAAAAwNNOGA0AAAC2ZFuhq6Z1txH9epL0O3kA5W4SRttGVCx7nh9GxdYLI5x13q/zoDMsLs/CaCezUbqvYbIvAFhFFjwd14+CRbOYRp3ca9tGZs/LoJvfD4XRuAhHk1eLyw/7FxVGK88ns3npKvLob7sw2qQuB4BPX1eSMNqa8/+ff/On4s7k88Wx5258Z3Sq7lr7BQAAAAAAAAAAAACAp50wGgAAAGzJtkJXg27DfhrGnkZNAZS7k3IYbRtRsey1PJmO0jBCVa32Z5bGkN4WXudhpxyPyMItTVGJd1qQD4Dz0at6xeWLwaJxPW7Y/mLDaL2qH/1qrziWhUfhvIym99IQ2WHvYsJomW18hsnm521/9ybJtaW/cF2pkjDaumHkl+98OjnmXnzi+reutU8AAAAAAAAAAAAAAHgnEEYDAACALelXe9GJbnFs0Bm23k9TYK1p7GnUFEB5c1oOo20jKpbFG5riYVlGITPslsNlEXnUbBVZzGw0LccjsrDGw/N5Z73vADgf2X19Uo+jrh+GhyazyxtGi8jndFl4FM7La5NX0rGb/dvndtw8Hpbbxlwymx9P6nGMZw+Wbj+uy+u0ua6sk0X7rfu/Hv/8+OeKYx+59sm42n1mjb0CAAAAAAAAAAAAAMA7Q++iTwAAAACeFlVVxbB7EPemdx8bWyXWtVftRyc6MYvZY2NZ7Opp1a/20rE3JneKy7fxHGXxhtJr8shqkYimWN7+CiG9Vfd/b3a3+B69M/58w/kMNj4fAMgCRHXUMYtpdKMXkzoPo/U7Fx9GG3auxN1CnPX1yVHx/grn5bfu/3pxeRWduN67eW7HXSeMtpX5ecPnqdcmr7wdGht0htGtHv/Pn5N6Utx28brUqcr//6TGswcr/37/nTv/Tzr23I0XVtoXAAAAAAAAAAAAAAC80wijAQAAwBYNOuUw2ioxgKqqYtA5iOPZm4+NZcGup1WvEDWYu1+fFJdv4zkadq6svE1nxUhEdp771SC6VXfl4z+2/275MfzS8c/Hf/LL/17r/Qw6w+hs4XwAoN/Jg6fjehzdqjmM1jQv2JUsPPojr/xw/MgrP7zbk4GC673Drcwlt2m4hehv0/z8h/6/P/32v/erQXzFlQ/H977nT8dB92pEREzradRJ4DgLNi767Os/Gp99/UdXPOOyLx58KD4w/NBW9gUAAAAAAAAAAAAAAE+r8v/rcwAAAGAtWexqlTBaRMSwu539POk6VTc6K/75IguWnP8+Vg2jleMOg+S1X9W2InrvtPccAOenKWw2mT0Moo0bw2h5WG1XtnWfhvNy2Lt10afwmMEa0eGz2oaL79cn8Y/e/Mn4n3/jv3l7WVNwsb8QRqtWnM+v4/kbL5z7MQAAAAAAAAAAAAAA4EknjAYAAABblEWkVo1Upft5B8Y4eguxgjaG3S2EF9bYx6ohhSy+tq0Q2bb2s63AGgA03dPn4aK2AaOL4r7IZXfYP98w2jrxsGF383DxfmcQ1Qr/WfNfjP5JfH78OxERMa4fpOudvi6dbxjtSvdafOTaJ8/1GAAAAAAAAAAAAAAA8DQQRgMAAIAtut1/T3H5s/13r7SfW8l+bq24n6fBqs/dquuX7FeDuNq9vtI2N/u3V1r/9t75vsbZe3FV23g+ASAiYq/aT8fu1ycR0RxGWzWWeh7eiXMxnizv2Xv/ue6/V/Xj2grz5H61F9e6NzY+bqfqrPz799sPfiMiIib1JF1n8bry7Irz+VV9w/Vvi35n71yPAQAAAAAAAAAAAAAATwNhNAAAANiijzzzyceW9apefO21j6+2n2uP72ev2o/ffeWja5/bk+rD1z7Ret2bvdvxwcGXbnzMqqriI9e+sfX6Hxh8KA77t1Y6xlde+UjsV4PHlpde+3V8cPilcbO3edzho8980xbOBgAiBp2DdGw0PY6IiHFjGK239XNa1e+59o1RRXXRpwFFVXTiY888d77HqKr42qvt5+dfc/XjsdfJo4irWHWefDJ7eF2ZzNoFF7/m6tef2+/3oHMQ33Lj3zqXfQMAAAAAAAAAAAAAwNNGGO0dpKqqYVVVn6iq6k9UVfUXqqr6waqq/mxVVX+oqqoPVVW1lW97VFXVr6rqm6uq+qNVVf3Fqqr+dFVVv7+qqg9sY/8AAACX2Vdc+XD84Xd9Xww7VyIi4nr3ML7/fT8Yz/bfvdJ+PvrMJ+P33fqjMegMI+Jh8OvPvv+/jGu961s/58vuxWe/O77pxneeihaUvG//A/EDX/iXolNt588df+D2H4+PXXs+OtFtXO9Lhl8e3/++H1x5/wfdq/EDX/iX3n5v7FeD+K5b3xMff+ab1zndx3SqbvzAF/5QvG//A2ttv18N4t++9b3xsWvnG9cA4J1jvzNIo0NvB4ySMFonOtGpmu/Ju/DB4ZfFH33Pn4sr3WsXfSpwytXu9fi+9/2n8e699537sf7gu/5kfPTaN0U38lhhFZ346qtfF9/znj+1teP+m7f+cHzy+qdaRxLnwcXsuhIR0e88+ozxoYOvjH/3PX8mrnaf2exEz7jRezb+w/f+xbjRf3ar+wUAAAAAAAAAAAAAgKdVu28O8ESrquoTEfEfRcTvi4i9hlV/o6qq/y0i/oe6rl9b4zi3I+KHIuIPRcTNZJ2fiIj/vq7r/3vV/QMAADwpnjt8IT5541NxZ/JaHPZuxbod6k89+wfiW2/+3nhjchQ3es+uvZ8nXafqxh959/fHv3P7j8cr49+Mun58nau9Z+JGr/hRdG39Tj/++Hv/4/gjs++PVx/8dnGd673DjWJ1Hxx+afylD/5PcWfy+XimdyO6LSMPbb1r773xgx/4y3Fn8lq8OXmj9XadqhPv3nvv1s8HgHe2TtWJ/c7w7QjaotGSMFq/avrT9m59/Po3x8eeeS5eGf9mjGd5cAl2Za+zF7f7X7Czzwv9Tj/+xHv/QpzMRuk8+dn+7Rh2r2z1uN2qG9/znj8Vf/Bdf/LU54L/9V/9d/E743/12Prza824fpDu82x8+RPXvzU+/sy3bO33e7+zH8/23721eDMAAAAAAAAAAAAAALwT+HbrU6yqql5E/OWI+FMR0ebbMO+LiP88Ir6vqqo/Vtf1j65wrBci4ocj4l1LVv2GiPiGqqr+j4j4vrqu77U9BgAAwJOkU3XjZv/2xvvpVt047N/awhk9+fY6+/G+/Q/s/LiDzjDePzi/41ZVde6v8Y3eza2H4wBgHcPOQTGMdrIkjHY2XnTRHkZE33fRpwEX6rznyZmznwuu9a4Xw2iPgouTdF+la4vfbwAAAAAAAAAAAAAAuFjCaE+pqqqqiPg/I+IPFoZ/MSJ+ISJGEXE7Ij4aEYcL4++OiL9eVdXvbRNHq6rqmyPir0XE3sLiOiJ+JiJ+JSJuRMSHI2LxW97fGxHPVFX1++q6nrV8WAAAAAAAPMEGnYPi8nnAaDzLwmj+cwZQNuxcKS5fFlyMuHzRRQAAAAAAAAAAAAAAIKJz0SfAufkP4vEo2mci4qvquv7yuq7/QF3X31vX9aci4l0R8Sci4vWFdfci4q9WVXW96SBVVb0/In4kTkfRPhcRX1nX9Ufruv7ut47x/oj4cxGx+O2T74qI/2qNxwYAAAAAwBNomITRTqbNAaNeR7wIKBt0hsXloyVhtE50olt1z+28AAAAAAAAAAAAAACA9QijPb3+szM/fyYivq2u639ydsW6rid1Xf+ViPi2iLi/MPSuiPj+Jcf5oYg4XPj5J946zi+cOcb9uq7/x4j47jPb//mqqr54yTEAAAAAAHgKDLrlMNqygFGv2isuBxh2rhSXz4OL4/pBcbxXCS4CAAAAAAAAAAAAAMBlJIz2FKqq6qsi4gNnFv9AXSffKHtLXdc/HRH/y5nF39VwnA9FxL+/sOhBRPyxuq5PGo7x1yLiry4s2o+I/6LpvAAAAAAAeDoMO+Uw2snbYbRJcbxf9c7tnIAn26A7LC4fLbmuCKMBAAAAAAAAAAAAAMDlJIz2dPpdZ37+tbquf7bltn/9zM8falj3eyKiu/Dzj9R1/S9aHOO/PfPzd1dVNWhzcgAAAAAAPLkGneaA0bh+UBwXMAIyeXBxFBERk+T/b1DfdQUAAAAAAAAAAAAAAC4lYbSn05UzP//6Ctv+2pmfDxvW/f1nfv4rbQ5Q1/UvRMTfX1h0JSI+1WZbAAAAAACeXMPO2T9fP7QsYCSMBmQGSRhtHlxMrysd1xUAAAAAAAAAAAAAALiMhNGeTr915ufBCtueXfe10kpVVb0nIr5mYdEkIj63wnH+7pmfX1hhWwAAAAAAnkCDzrC4fDS9FxERk3pSHBdGAzJZGO3krTDaePagOO66AgAAAAAAAAAAAAAAl5Mw2tPppyLi/sLPX15VVfnbZo/7SGFfJb/7zM8/V9f1vZbHiIj4iTM/f+UK2wIAAAAA8AQadq8Ul5/MRhERManHxXEBIyAzzMJo04dhNMFFAAAAAAAAAAAAAAB4sgijPYXqur4bEf/7wqJBRPzJZdtVVdWNiD/z/7N370G2ZXV9wL+/3af7njN3YAaZGWAQGRkUmBJ5WoIgD8dIElO+5ZEyajQ+sICglq8KAYZoKkS0EsoiRKPySAoJQQQJhDg8FA1ItBBmBJIBh3dgiscwj3vvzNzbK390X+6hp0/3OX37nN2n7+dT1XX2Xnvtdb63qFpVQ+/+7i3DL58w/Yot5x+eOuCGj+yyHgAAAAAAh8yw2/4dHsfXN967cUe7fdvrqwqMgAmGK9sXo93WTmS9nZpYuGhfAQAAAAAAAAAAAACAg0kx2uH1y0k+Onb+b6vq2ydNrqrVJL+d5GFjw29L8toJt9x/y/nHZ8z3sS3nd6+qu824BgAAAAAAS2TUHd12/MT68SSZWGA0UGAETDDqti9GSzb2FvsKAAAAAAAAAAAAAAAsF8Voh1Rr7QtJnpjkvZtDoyRvqapXV9UPVtWDq+r+VfWoqvrZJNck+bGxJd6T5Adaa23CV1y45fyGGfPdkuTEluELZlkDAAAAAIDlMuxG247ftn486209J9dPbntdgREwyXCHYrTj68dyh2I0AABgBlV1v6p6SlX9elW9o6puqqo29vPRvjNuVVXnVdVHtuRsVfWyvrMBAAAAAAAAAMBeDPoOwPy01j5aVd+c5EeT/GSSRyR58ubPJJ9P8ptJfr21CX8psuH8LefH9xDxeJLh2Pld9rDGV6iqS5JcPONtl5/t9wIAAAAAsLvRytFtx1tabls/kZOTCow6BUbA9kY7FKOdWD82eV9RjAYAAGyqqick+ZUkj0zyVf2m2ZNfS3K/vkMAAAAAAAAAAMB+UYx2+K1s/tyWpCWpHeZ+Islzk/zBLqVoyZ2L0U7sIdvxJHfbYc29+Jkkz9uHdQAAAAAA2GfDbjTx2vH1WycWGK0qMAImGO5QjHb81ORiNPsKAAAw5qFJvqPvEHtRVY9K8qy+cwAAAAAAAAAAwH7q+g7A/FTVY5J8MMl/SPKY7P6/932S/H6Sj1fVP5vx69rsCfd0DwAAAAAAS2rUHZ147cT68dzRbt/22kCBETDBarc6cY84sX7MvgIAAJyN25J8pO8Qk1TVWpLfzZnnAm/uMQ4AAAAAAAAAAOwbxWiHVFVdmeTqJJeNDX8qyS8neViSC5OsJblnkr+f5OVJTm7OuzjJ71TVb1dVTfiKW7acj/YQc+s9W9cEAAAAAOAQGXaT/6/k4+vHcrKd3PaaAiNgJ8PuvG3Hj68fy8l1+woAADCVO5L8TZL/lOSnkjwiyV2SzPqC0UV6bpIrNo8/luQ/9pgFAAAAAAAAAAD2zaDvAOy/qro4yauSDMeG/zjJD7XWbtoy/bNJ3pLkLVX10iRvTHL3zWs/kY03Xr5wm685qMVoL0nymhnvuTzJ6/fhuwEAAAAA2MFqrWUlg5zKnYuKTqwfy8l2x7b3DcqvM4DJRt0ot5z60p3GT6wf32FfUYwGAAB82cuTvLS1dmLrhcnvFe1XVT0kyS+NDT09yTf3FAcAAAAAAAAAAPaVvyQ6nH4uycVj5x9K8uTtHtwa11p7d1U9JcnVY8PPq6rfb63dsGX61r8uuTgzqKrzc+ditBtnWWM7mzm3Zt0ty9l+LQAAAAAAU6iqDFdGufXUzXe6dvzU5GK01VqbdzRgiQ2787YdP37q1sn7SqcYDQAA2NBa+2LfGWZRVYMkv5czz3++qrX25qpSjAYAAAAAAAAAwKHQ9R2AufjBLecv3K0U7bTW2luTvHNsaJTkqdtMvW7L+X2nj7ft/C8s2wNmAAAAAADMbjShwOjE+rHcMaHAaFAKjIDJJhWjnVg/njva7dtes68AAABL7BeSPHzz+AtJnt1jFgAAAAAAAAAA2HeK0Q6Zqjqa5PItw2+dcZmrt5xv9ybJD245v/+M33G/LecfmPF+AAAAAACW0KQCo+Prx3JSMRqwB6OVyYWLJ9vJba/ZVwAAgGVUVQ9I8ryxoZ9vrd3QVx4AAAAAAAAAAJgHxWiHz4XbjH1mxjW2zr9omznXbjn/xqra/q9OtveYXdYDAAAAAOAQGk0oRjuxYzHaYJ6RgCW3t8JF+woAALBcqqpL8rtJjmwOva219rL+EgEAAAAAAAAAwHwoRjt8btxm7OiMa5y/5fyWrRNaa/8vyfvHhgZJHjvDdzxhy/mbZ7gXAAAAAIAlNbHA6NTkAqPVbm2ekYAlt5fCxdWyrwAAAEvnGTnzQtLjSX6qxywAAAAAAAAAADA3itEOmdbarUlu2jL8sBmXecSW889MmPe6Lef/dJrFq+qBSb55bOjWJP9zumgAAAAAACyz0coOBUbr2xcYDWp1npGAJTexcHH9WO6YUIxmXwEAAJZJVV2W5F+PDV3VWvtwP2kAAAAAAAAAAGC+Bn0HYC7ekeS7xs5/Msnbp7mxqu655d4keeeE6f8lyXOSrGyef19VfV1r7bpdvuaXtpz/19baiWnyAQAAAACw3BQYAfttNGFfOXHqWE7aVwAAgMPhd5Ic3Tx+X5Lf6CtIVV2S5OIZb7t8HlkAAAAAAAAAADicFKMdTq/OV5abPaWq/ntr7T/vdFNVHUnyyiTnjw3fkuQt281vrV1XVS9P8mObQ2tJXlZVV04qOquq707yo2NDtye5aqdcAAAAAAAcHpMKjI6v35r1nNr22qD8OgOYbLgyuXBxcjGafQUAAFgOVfXjSb5983Q9yU+01k72GOlnkjyvx+8HAAAAAAAAAOCQ6/oOwFz8QTbeCnlaJXlFVf37qrrXdjdU1ROTvDtnHqA67YWttS/u8F3PSzJ+/VuSXF1VD9yy/pGqemaS12y5/zdaax/bYX0AAAAAAA6R4YRitFtOfmniPYNanVcc4BAYdaNtx0/sUIy22q3NMxIAAMC+qKpLk7xobOjFrbX/3VceAAAAAAAAAABYBK9CP4Raa+tV9QNJ/iLJJZvDleRZSZ5RVe9P8ndJjif5qiQPS3LPbZZ6U5IX7vJdn6yq70vyliSn/4LkMUk+UFV/vfk9FyR5eJKLt9z+xiT/crZ/HQAAAAAAy2w0oRjt5lOTi9FWS4ERMNmwO7rt+In14+kmvCdK4SIAALAkXpLkws3jjyV5To9ZAAAAAAAAAABgIRSjHVKttQ9X1eOTvDLJI8cudUkeuvkz8fYkv5Pk2a21O6b4rndU1fcmeVnOlJ/V5vc+csJtr0ryE621U7utDwAAAADA4TFc2b4Y7ZZTN0+8R4ERsJNRN9p2/I52eyq17TX7CgAAcNBV1VOTfPfY0NNba7f2lWfMS5K8ZsZ7Lk/y+jlkAQAAAAAAAADgEFKMdoi11j5UVY9O8o+T/HSSRyUT/vpjw/Ekf5jkt1pr757xu95UVd+Q5KokT0lytwlT353kRa21186yPgAAAAAAh8Oo274YrWV94j2D8usMYLJhd3TitZa27bh9BQAAOMiq6qIkLx4belVr7c195RnXWrshyQ2z3FO102OLAAAAAAAAAADwlTzxf8i11k4meUWSV1TVBUkemeRrk1yY5EiSm5N8Mcm1Sa7ZnL/X77ohydOr6p8neUyS+ya5Z5Jbk3wqyXtba9efxT8HAAAAAIAlN5xQjLaTQa3OIQlwWIxWRjPfs1prc0gCAACwb16c5OLN4y8keXaPWQAAAAAAAAAAYKEUo51DWmtfSvLWBXzP7UnePu/vAQAAAABg+YwUowH7bNQdnfke+woAAHBQVdUDkjxtbOjfJTmvqi7b5dYLt5yfv+We9dbax882HwAAAAAAAAAAzJtiNAAAAAAAYGGGeyhGW+3W5pAEOCyOdKOZ71GMBgAAHGBb/yPnBZs/s/r+zZ/TvpQ7l6cBAAAAAAAAAMCB0/UdAAAAAAAAOHeMVmYvRhuU97wAk63UStbqyEz32FcAAAAAAAAAAAAAAOBgUowGAAAAAAAszLAbzXzPShQYATsbdbOVLq7W2pySAAAAAAAAAAAAAAAAZ0MxGgAAAAAAsDArNchaHZl6/qBWU1VzTAQcBsOV2YrRBrU6pyQAAABnp7X2N621mvUnyVVblnr5ljkX9vHvAQAAAAAAAACAWSlGAwAAAAAAFmrYTV9gtKq8CJjCaIZ9JUkGnb0FAAAAAAAAAAAAAAAOIsVoAAAAAADAQo1Wpi8wGihGA6YwS+FikgxqMKckAAAA26uqtuXnCX1nAgAAAAAAAACAg8gT/wAAAAAAwELNUmCkGA2YxmiGfaVSWfFrUgAAYExVfXW2f57ynlvOB1V12YRlbmmtfW4/cwEAAAAAAAAAwLnIE/8AAAAAAMBCzVJgpBgNmMashYtVNcc0AADAEvrzJPedYt69k1w/4drLk/zofgUCAAAAAAAAAIBzVdd3AAAAAAAA4Nwy7EZTz1WMBkxjtDJLMZp3RwEAAAAAAAAAAAAAwEGlGA0AAAAAAFioUXd06rmritGAKQy7WYrR7CsAAAAAAAAAAAAAAHBQeR06AAAAAACwUMOV0dRzFRgB0xh20+8rq7U2xyQAAMAyaq1dtoDvqDmv//wkz5/ndwAAAAAAAAAAwCJ0fQcAAAAAAADOLaPu6NRzB51iNGB3M+0rChcBAAAAAAAAAAAAAODAUowGAAAAAAAs1LAbTT1XgREwjdn2lcEckwAAAAAAAAAAAAAAAGdDMRoAAAAAALBQo+7o1HNXFaMBUxitTL+vKFwEAAAAAAAAAAAAAICDSzEaAAAAAACwUMNuNPVcBUbANGbZV1a7tTkmAQAAAAAAAAAAAAAAzoZiNAAAAAAAYKFGK0ennqsYDZjGqJtlXxnMMQkAAAAAAAAAAAAAAHA2FKMBAAAAAAALNexGU89VYARMY7Z9ReEiAAAAAAAAAAAAAAAcVIrRAAAAAACAhRp1R6eeq8AImMawO2/qufYVAAAAAAAAAAAAAAA4uBSjAQAAAAAACzXsRlPPXa21OSYBDosYiZDCAAAgAElEQVQj3TCVmmqufQUAAAAAAAAAAAAAAA4uxWgAAAAAAMBCjVaOTj13UKtzTAIcFl11OTJl6eKgBnNOAwAAAAAAAAAAAAAA7JViNAAAAAAAYKHW6kgqNdVcBUbAtEbdeVPNU7gIAAAAAAAAAAAAAAAHl2I0AAAAAABgobrqMuxGU81VYARMazh1MdranJMAAAAAAAAAAAAAAAB7pRgNAAAAAABYuGkLjFY7BUbAdEZTF6MN5pwEAAAAAAAAAAAAAADYK8VoAAAAAADAwk1bjDao1TknAQ6L4cq0hYv2FQAAAAAAAAAAAAAAOKgUowEAAAAAAAs3mroYbTDnJMBhMf2+ohgNAAAAAAAAAAAAAAAOKsVoAAAAAADAwg1XFBgB+2vYjaaaN6i1OScBAAAAAAAAAAAAAAD2SjEaAAAAAACwcKNOMRqwv4ZT7yuDOScBAAAAAAAAAAAAAAD2SjEaAAAAAACwcMNuNNW8VcVowJSmLVy0rwAAAAAAAAAAAAAAwMGlGA0AAAAAAFi4UXd0qnkDBUbAlIYr0xWj2VcAAAAAAAAAAAAAAODgUowGAAAAAAAs3LAbTTVPgREwrVE3bTHa2pyTAAAAAAAAAAAAAAAAe6UYDQAAAAAAWLjRytGp5ilGA6Y1nLoYbTDnJAAAAAAAAAAAAAAAwF4pRgMAAAAAABZu2I2mmqcYDZjWaMpitFX7CgAAAAAAAAAAAAAAHFiK0QAAAAAAgIUbdUenmrfaKTACpjOcshhN4SIAAAAAAAAAAAAAABxcitEAAAAAAICFG3ajqeYpMAKmNVqZshitW5tzEgAAAAAAAAAAAAAAYK8UowEAAAAAAAs3Wjk61TzFaMC0ht10xWirNZhzEgAAAAAAAAAAAAAAYK8UowEAAAAAAAs37EZTzVtVjAZMaTRlMZrCRQAAAAAAAAAAAAAAOLgUowEAAAAAAAs36o5ONU+BETCt1VpLl5Vd59lXAAAAAAAAAAAAAADg4FKMBgAAAAAALNywG001T4ERMK2qyqg7b9d59hUAAAAAAAAAAAAAADi4FKMBAAAAAAALt1prWclgxzldVtKVX2UA0xuu7F6MtqoYDQAAAAAAAAAAAAAADix/TQQAAAAAACxcVWW4MtpxjvIiYFajbud9JUkG9hYAAAAAAAAAAAAAADiwFKMBAAAAAAC9GHXn7XhdeREwq2F3dNc59hYAAAAAAAAAAAAAADi4FKMBAAAAAAC9GO5WjNYpLwJmM+xGu85RjAYAAAAAAAAAAAAAAAeXYjQAAAAAAKAXo92K0ZQXATPafV8ZpKoWlAYAAAAAAAAAAAAAAJiVYjQAAAAAAKAXQ8VowD4brthXAAAAAAAAAAAAAABgmSlGAwAAAAAAejHapcBotQYLSgIcFiOFiwAAAAAAAAAAAAAAsNQUowEAAAAAAL0Y7lpgtLagJMBhsfu+ohgNAAAAAAAAAAAAAAAOMsVoAAAAAABAL0YKjIB9ttu+smpfAQAAAAAAAAAAAACAA00xGgAAAAAA0IvhrsVogwUlAQ6L3fcVxWgAAAAAAAAAAAAAAHCQKUYDAAAAAAB6MVJgBOyz0Yp9BQAAAAAAAAAAAAAAlpliNAAAAAAAoBfDXQqMVhUYATMaKlwEAAAAAAAAAAAAAIClphgNAAAAAADoxWjXAqO1BSUBDovd9xXFaAAAAAAAAAAAAAAAcJApRgMAAAAAAHox3K3AqBssKAlwWAy70Y7XVxWjAQAAAAAAAAAAAADAgaYYDQAAAAAA6MVot2I0BUbAjEbd0R2vDzr7CgAAAAAAAAAAAAAAHGSK0QAAAAAAgF4MdylGW1WMBsxouDLa8brCRQAAAAAAAAAAAAAAONgUowEAAAAAAL0YrexcjDaotQUlAQ6LQa1mdYe9QzEaAAAAAAAAAAAAAAAcbIrRAAAAAACAXgy70Y7XBzVYUBLgMNlpb1lVjAYAAAAAAAAAAAAAAAeaYjQAAAAAAKAXKzXIWh2ZeH2gwAjYg1F3dOI1+woAAAAAAAAAAAAAABxsitEAAAAAAIDeDLvzJl5bVWAE7MGwG028phgNAAAAAAAAAAAAAAAONsVoAAAAAABAb0Yrk4vRFBgBe2FfAQAAAAAAAAAAAACA5aUYDQAAAAAA6M2wU2AE7K+d9pVV+woAAAAAAAAAAAAAABxoitEAAAAAAIDejBSjAftM4SIAAAAAAAAAAAAAACwvxWgAAAAAAEBvht1o4rXVToERMLsdCxftKwAAAAAAAAAAAAAAcKApRgMAAAAAAHoz6o5OvDYoBUbA7IY7FaPZVwAAAAAAAAAAAAAA4EBTjAYAAAAAAPRmuDKaeE2BEbAXo5XJxWir9hUAAAAAAAAAAAAAADjQFKMBAAAAAAC9GXVHJ15TjAbsxbCbXIxmXwEAAAAAAAAAAAAAgINNMRoAAAAAANCbYTeaeG1VgRGwByPFaAAAAAAAAAAAAAAAsLQUowEAAAAAAL0ZdUcnXlNgBOzFToWL9hUAAAAAAAAAAAAAADjYFKMBAAAAAAC9UWAE7Ldhd97Ea6v2FQAAAAAAAAAAAAAAONAUowEAAAAAAL0ZrRydeE2BEbAXo5XJxWgKFwEAAAAAAAAAAAAA4GBTjAYAAAAAAPRm2I0mXlNgBOzFsFOMBgAAAAAAAAAAAAAAy0oxGgAAAAAA0JsLBnfbdrxLl+HK5HIjgEnOX7lrugm/Bj1/5a4LTgMAAAAAAAAAAAAAAMxCMRoAAAAAANCbu6/eI/dau8+dxi8fPSjDbtRDImDZHemG+frzHnyn8UtWL81Fa/foIREAAAAAAAAAAAAAADAtxWgAAAAAAECvfuRez875Kxd8+fxug4vyQ/d8Ro+JgGX31Hv8dO6+esmXz8/rzs+PXfrzPSYCAAAAAAAAAAAAAACmMeg7AAAAAAAAcG77muHlueprX5KPHP9gulrJ/UdXZK070ncsYIldsnavPOeyF+f64/8nt7fb8vXnPTjDbtR3LAAAAAAAAAAAAAAAYBeK0QAAAAAAgN6NVo7mG85/ZN8xgEPkSDfMA48+pO8YAAAAAAAAAAAAAADADLq+AwAAAAAAAAAAAAAAAAAAAAAAAAAM+g4wi6p62+ZhS/K01toNe1znHkledXqt1tqV+5EPAAAAAAAAAAAAAAAAAAAAAAAA2JulKkZL8oRslKIlyfAs1hlurpWx9QAAAAAAAAAAAAAAAAAAAAAAAICedH0H2IPqOwAAAAAAAAAAAAAAAAAAAAAAAACwv5axGA0AAAAAAAAAAAAAAAAAAAAAAAA4ZM7VYrTB2PHJ3lIAAAAAAAAAAAAAAAAAAAAAAAAASc7dYrSLxo5v7S0FAAAAAAAAAAAAAAAAAAAAAAAAkOTcLUZ73OZnS/LpPoMAAAAAAAAAAAAAAAAAAAAAAAAAyaDvAGehzTK5qlaT3CvJdyT5F2OXrtnPUAAAAAAAAAAAAAAAAAAAAAAAAMDsDlwxWlWdmmZako9W1Z6/Zuz4DXtdBAAAAAAAAAAAAAAAAAAAAAAAANgfB64YLV9ZWrYf87bTNu//UJL/dhbrAAAAAAAAAAAAAAAAAAAAAAAAAPug6zvABG3O61eSv0ryj1prd8z5uwAAAAAAAAAAAAAAAAAAAAAAAIBdDPoOsI0/y+RitMdvfrYk70lyYso1W5LbktyY5INJ3t5ae+fZhAQAAAAAAAAAAAAAAAAAAAAAAAD2z4ErRmutPWHStapaz5nStKe01j6+kFAAAAAAAAAAAAAAAAAAAAAAAADAXHV9B9iD6jsAAAAAAAAAAAAAAAAAAAAAAAAAsL8GfQeY0VVjxzf2lgIAAAAAAAAAAAAAAAAAAAAAAADYV0tVjNZau2r3WQAAAAAAAAAAAAAAAAAAAAAAAMCy6foOAAAAAAAAAAAAAAAAAAAAAAAAAKAYDQAAAAAAAAAAAAAAAAAAAAAAAOidYjQAAAAAAAAAAAAAAAAAAAAAAACgd4O+A5yNqnpikm9L8rAklyS5IMnqjMu01trl+50NAAAAAAAAAAAAAAAAAAAAAAAAmN5SFqNV1ZOSvDjJ/ceH97hcO/tEAAAAAAAAAAAAwLSq6qIkt7XWbu47CwAAAAAAAAAAcHB0fQeYVVX9QpI3ZaMUbbwMre3hBwAAAAAAAAAAAFiAqrpvVb2iqm5M8tkkN1bVJ6vqV6tq1Hc+AAAAAAAAAACgf4O+A8yiqp6U5IWbp6fLzU6Xox1LcmOSO3qIBgAAAAAAAAAAAOeUqvqRJP9q8/TmJA9vrd02Ye43Jrk6yd3zlS9FvTTJryT5nqp6Qmvtc3OMDAAAAAAAAAAAHHBLVYyW5N9sfp4uRPtENorS3tha+3hvqQAAAAAAAAAAAODc87QkX52NZ/peukMp2iDJq5NctDnUtk5JckWS1yZ5/HyiAgAAAAAAAAAAy2BpitGq6vIkD8mZB6L+Msl3tNZu7i8VAAAAAAAAAAAAnHuqqkvy2LGh1+0w/YeTPCBfWYh2bZKT2XguMNkoR3tsVT2ltfbq/cwKAAAAAAAAAAAsj67vADN49OZnZePhqB9WigYAAAAAAAAAAAC9uCLJeZvHdyT50x3m/vjmZyX5UpJHt9Ye0lp7RJKHJ/lszpSmPX0OWQEAAAAAAAAAgCWxTMVol2x+tiTvba1d12cYAAAAAAAAAAAAOIddvvnZklzXWrtju0lVdc8kj9qc15L8amvtPaevt9ben+RZ2ShNqySPraq7zTM4AAAAAAAAAABwcC1TMVqNHX+4txQAAAAAAAAAAADAvceOr99h3uNypvTsZJLf22bO65J8afO4kjx0PwICAAAAAAAAAADLZ5mK0T41drzSWwoAAAAAAAAAAADg/LHjm3aY99jNz5bkXa21G7dOaK2dSvLesaH7n308AAAAAAAAAABgGS1TMdrfjh3fp7cUAAAAAAAAAAAAwOqU8x49dvyOHeZ9Zuz4rjOnAQAAAAAAAAAADoWlKUZrrV2T5NokleQRVXW3niMBAAAAAAAAAADAueqWseNtn+erqqNJHjo29Bc7rHdq7PjIWeQCAAAAAAAAAACW2NIUo236jc3PlSQ/32cQAAAAAAAAAAAAOId9buz4QRPmfHs2nvdLkpbkL3dY78Kx42NnkQsAAAAAAAAAAFhiS1WM1lp7eZLXJqkkv1hV/6DnSAAAAAAAAAAAAHAuunbzs5Lct6q+YZs5T938bEmuba3dtMN69x47/vw+5AMAAAAAAAAAAJbQUhWjbfqRJG9IMkjy+qp6QVVduMs9AAAAAAAAAAAAwP65NhsFZm3z/DeravX0xap6bJIfGLv+5kkLVdUgyRVjQ9fvb1QAAAAAAAAAAGBZDPoOMIuqeu7m4fuSfEuSi5L8iyQ/V1XvSvKBJF9Msj7Luq21F+xnTgAAAAAAAAAAADjMWmunqupVSZ6RjfKzK5O8v6r+OMkl2ShF65LU5vVX7rDcNyVZGzv/27mEBgAAAAAAAAAADrylKkZL8vyceXtkNo8ryXlJvm3zZy8UowEAAAAAAAAAAMBsfjXJP0ly183zByT5+s3j04VoLclrW2sf2GGd79n8bEk+3Fr74hyyAgAAAAAAAAAAS6DrO8A+OP3g1F7UfgYBAAAAAAAAAACAc0Vr7YYk35/kRM4UoX358ubYR5I8fdIaVdUlefLYve+YR1YAAAAAAAAAAGA5LGMxWu3jDwAAAAAAAAAAALBHrbW3JXlIklcnOZYzz+d9PslvJXlUa+3zOyzxXUnumzPP9L1pfmkBAAAAAAAAAICDbtB3gBk9se8AAAAAAAAAAAAAwBmttQ8neVqSVNVFm2Ofm/L265N879j5W/Y3HQAAAAAAAAAAsEyWqhittfanfWcAAAAAAAAAAAAAtjdDIdrp+e9L8r45xQEAAAAAAAAAAJbMUhWjAXCI3XhN8n9/Kzl1IvmaH0wu/c6kqu9UAAAAAAAAAAAAAAAAAAAAAAAsiGI0APr3mauTtz8paesb59e/InnwVcmDn9tvLgAAAAAAAAAAAAAAAAAAAAAAFqbrOwAA57jWkr965plStNP+9teSY5/sJxMAAAAAAAAAAPuiqi6sqvtU1df0nQUAAAAAAAAAADj4FKMB0K8b35fc9KE7j6/fnnziDxefBwAAAAAAAACAPauq76mq36uq66rqjiSfT/LRJH83Yf5lVfW4zZ9HLDIrAAAAAAAAAABw8Az6DnC2qmo1yaOTfGuSy5N8VZK7JElr7coeowEwjU//j8nXPv6a5AHPWlwWAAAAAAAAAAD2pKqelOTFSe5/emjKWy9P8idJWpLbq+rS1toX5xARAAAAAAAAAABYAktbjFZVR5P8bJJnJLl46+VsPCS13X1PS/Jrm6dfSPJNrbVt5wKwADdeM/na596V3Pb55MjdF5cHAAAAAAAAAICZVNVzkzw3G8/ubX1+r2WHkrTW2lur6oNJHpRkLclTkrx0fmkBAAAAAAAAAICDrOs7wF5U1Tcm+eskVyW5JNO/WTJJ/jjJ3ZNcluRhSf7efucDYAY3fWjytXYq+dQbF5cFAAAAAAAAAICZVNWzkjw/X/k84m1J/izJGzPd832vHjv+zn0LBwAAAAAAAAAALJ2lK0arqiuS/GmSr8tXvlny9Jsmd9RauyXJa8aGvn+/MwIwpba+czFaknzyjxaTBQAAAAAAAACAmVTV1yV5UTae42vZKET7xSR3b609Ickzp1zqDaeXTPKtVTXLy1IBAAAAAAAAAIBDZKmK0apqmI03SF4wNnxNkh9Pcr8kD8p0b5d8/djxlfsWEIDZHP9McurYznM+978WkwUAAAAAAAAAgFm9IMkgG8/tnUhyZWvtRa214zOu8/7N+5PkLtl4cSoAAAAAAAAAAHAOWqpitCTPSnJZNt4smSQvTvLw1trvt9Y+mjMPRu3m7ZtrVJKvrapL9jknwN7d+onkz5+cvO7eydWPTz7ztr4Tzc/xT+0+58QNye03zj8LAAAAAAAAAABTq6ojSb4rG8/itSTPaa29ay9rtdbWk3xwbOiBZ58QAAAAAAAAAABYRstWjPbMnClF+6PW2rM3H4iaSWvtliQfHRt60D5kAzh7J48lf/LY5OOvSY5/Ornhz5K3XZlc/8qktd3vXzbHpihGS5Kbr5tvDgAAAAAAAAAAZvWYJKNsvKD0WJKXnOV6nx47vvQs1wIAAAAAAAAAAJbU0hSjVdUVSe6djYeokuQXznLJj4wd3+8s1wLYH598Q3Ls43cef9cPJ3/01ckN71x8pnk6PmUx2o3XzDcHAAAAAAAAAACzumzzsyV5T2vttrNc76ax47uc5VoAAAAAAAAAAMCSWppitCQP3fxsSa5trf3dWa5349jxBWe5FsD++NirJl87/unk6scl17wg+ezbk7a+uFzzcmzKYrRPvXG+OQAAAAAAAAAAmNXFY8ef2Yf1ugnHAAAAAAAAAADAOWTQd4AZjD9Edd0+rDf+dsrz9mE9gLP3mT/Zfc41z9v4vPQfJt/6umRlbb6Z5un4/2fvvsPsLOv8j7/vaUlIIYUSCL1X6cIKCAKCggIWUHRXEVzLFt1V17KuhdV1159tXde2gmVVRBGkCdKb9F4iUhISkgAJ6ckkmUz5/v44MztnJqefM+fMmbxf13Wu8zz3/b3v5zuUk0nyzOd5sbS6xbdABKQ0sv1IkiRJkiRJkiRJkiSpVNn34I2rwX4zso5X1GA/SZIkSZIkSZIkSZIkSU2omZ6qOD7ruCtvVem2zDpeU4P9JKl67VNKr33xWnjuhyPXSz30lPjx270K1r80sr1IkiRJkiRJkiRJkiSpHK9kHe9Qg/0OyrO3JEmSJEmSJEmSJEmSpM1IMwWjLc063qoG++2WdbysBvtJUvVaxxevyTb3JyPTR730rC+9dvWfR64PSZIkSZIkSZIkSZIklWtu/3sCDk4pTax0o5TSocDWWUMPV9OYJEmSJEmSJEmSJEmSpObVTMFoL/e/J+CQajZKKc0A9s0aeq6a/SSpJiKga2nxumwrHoEVj41MP/XQazCaJEmSJEmSJEmSJElSk7ofWA0E0A6cV8VeH8s6nh8R86tpTJIkSZIkSZIkSZIkSVLzaqZgtLuBvv7jGSmlE6rY6zwyAWsAncCD1TQmSTXRtQx6Ostfd93BmVC1ZtS7ofRag9EkSZIkSZIkSZIkSZJGjYjoBX5P5l68BFyQUtqx3H1SSm8B3kUmYC2AX9WyT0mSJEmSJEmSJEmSJEnNpWmC0SJiBfBA1tCXUkopX30+KaVZwKcZvInqxojoK7xKkupgzTOVr33igtr1UU+960uvfeY7I9eHJEmSJEmSJEmSJEmSKvElMg88DWAqcFtKaf9SF6eUzgUu7l+fgA3At2vfpiRJkiRJkiRJkiRJkqRm0TTBaP2yb3g6CvhBOYtTStsCVwHTyNxEBfDN2rQmSVVa82zla5+8ALpX166XeiknGA1g2YMj04ckSZIkSZIkSZIkSZLKFhF/Br5D5n68AHYFHk4pXZRSOgXYZvialNKOKaXzU0r3ABcB47LWfyEiltTtC5AkSZIkSZIkSZIkSZI06jRVMFpEXAI82n+agPenlO5MKR1baF1KaWJK6UP9aw8mcwNVADdExF0j2bMklWzNM9Wtf+Gy2vRRT+UGoz39nyPThyRJkiRJkiRJkiRJkir1ceBGBsPN2oFzgWuBe/vHAEgpdQLzgP8BXp21BuB3EfH1ejUtSZIkSZIkSZIkSZIkaXRqa3QDFXg7mZulZvSfHw3cllJ6GXguuzCl9H1gL+AvGPpUyQQsAv6qTj1L0qZWPwPP/y9sWALbnZw5z2XaIdC9CtbOLbzffefDLu+C1nG173WklBuMtuj30NcNLe0j048kSZIkSZIkSZIkSZLKEhF9KaUzgO+RCUQbCDpLAyVZYxOyl2bV/Rj40Mh2KkmSJEmSJEmSJEmSJKkZtDS6gXJFxFzgTcDLDA062w44Jqs0AR8AjgfGD6tdCJwWEUvr1rgkZVv2IFz/apj9bzDnR/DHs2DBb3PXznozvOlpeP1dRTYNuOl46Oupdbcjp9xgtO6VsOSOkelFkiRJkiRJkiRJkiRJFYmIDRFxHvAOYDaDoWiblDI0EG0O8O6IeH9ENNFNL5IkSZIkSZIkSZIkSZJGStMFowFExP3AocB1DH2q5MB79s1T2XMJuBF4dUQ8XodWJSm3J78E3atKq528F7S0wdavgTc/W7h22b3w/M+r769eejfkHj/6kvxrFl09Mr1IkiRJkiRJkiRJkiSpKhFxaUS8CjgR+A/gj8ALQCfQDbwEPAp8Fzgd2CciftWgdiVJkiRJkiRJkiRJkiSNQm2NbqBSEbEYOC2ldBjwUTI3Um2Xp3wVcDPwnYi4vU4tSlJu0QeLriq9fvKeWcd7wHFXw+1vzl8//xLY/X2V91cvfd0QvbnnJsyCnc6GF36z6dyq2SPblyRJkiRJkiRJkiRJkqoSEbcCtza6D0mSJEmSJEmSJEmSJEnNp2mD0QZExEPAewBSSrsBOwIzgA5gKbAYmB0RfQ1rUpKydb5Qeu24rWD6IUPHtjkO2iZBz9rcaxbfAhtXQsfUynush971+efaJsC0Q3IHo21cMXI9SZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIapumD0bJFxFxgbqP7kKSCFt9Seu0+H4eW9qFj7ZPh0G/A/R/MvSZ64MXrYJdzKu+xHnoKBKO1jM8f7LZx5cj0I0mSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJElqqDEVjKbRIaXUDhwN7ARsB6wFXgQeiYh5DWxNarzVz8B955dWu+V+sM/Hcs/t8QGYfhj84fDc8y/fNPqD0XoLBKO1TYD2PMFo3QajSZIkSZIkSZIkSZIkjQYppYEnBAZwTkQsqXCfbYFfDewVESfWoj9JkiRJkiRJkiRJkiRJzcdgtDEopfRT4L012m5+ROxS4nW3Bi4A3gFMz1NzN/DNiLisRv1JzeX+D5Ree/j3oLUj//z0w2DPD8Oz3990bu6PoXs1zHoz7PJuaGktv9daWf8yPPc/MOciWPcCzDodDv0m9G3Mv6Z1AnTkCUbbuBIiIKWR6VeSJEmSJEmSJEmSJEmlOp5MKBrA+Cr2Gd+/F1n7SZIkSZIkSZIkSZIkSdoMGYymYtaXUpRSeiPwU2CbIqWvAV6TUvol8MGI6KyuPamJdK+BV+4srXbGq2Hb44rXTTsk/9yC32Zei66CYy5tTJDY2nlww5GwIethwIuuyrwO/Vb+da0ToGNa7rnohZ5OaJ9U01YlSZIkSZIkSZIkSZJUkYRhZpIkSZIkSZIkSZIkSZJqpKXRDZQjpXRASumW/tfNKaViIVy59ti2f+3APnuNRK9jyGXFClJKxwNXMDQULYCHgEuBG4Glw5a9G/hVSqmp/huUqtK1DKKvtNoZR5ZWN2Wf4jULLoOl95S2X6098cWhoWjZHv7H/OvaJkHH1Pzz6xZW1ZYkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkafRptlCqDwLHA8cBGyMiT9pOfhGxGOjO2ueva9jfaPEJYNcKXmcN2yeAHxe6UEppB+ByoCNr+C5g/4g4PCLOjoiTgR2Aj5L5Zz/gzcCXK/j6pObUs6b02hlHlFY3ucRsx+d/Xvq1a6W3KxPKVq62ydDSBu0FgtFuOArCBw1LkiRJkiRJkiRJkiSNEW1Zxz0N60KSJEmSJEmSJEmSJElSwzVbMNoZWcc/q2KfgbUJeEsV+4xKEbE0IuaV+wJOGrbVrRExt8jlLgCmZZ3fDZwUEU8N66krIv4LOHvY+o+llHau4MuUmk93GcFo00sMRuuYVrwGYG7BjMORsfgW6Flb/rqO/kC0ji3z13SvghWPVNaXJEmSJEmSJEmSJEmSRputso47G9aFJEmSJEmSJEmSJEmSpIZrmmC0lNJuwA79p33ANVVsdxzVuxAAACAASURBVDXQ23+8a0ppp2p6GwtSShOAdw4bvqjImj2B92YNbQTOjYgN+dZExBUMDbUbB3yhvG6lJlVqMFr7FJiyV2m1Le1kMh6LKaWmxhZeUdm6gWC01vEwbqv8dcsfrmx/SZIkSZIkSZIkSZIkjTav7X8P4MVGNiJJkiRJkiRJkiRJkiSpsZomGA04oP89gKcjYm2lG/WvfTpr6MBqGhsj3g5smXW+Ari8yJp3Aa1Z55dHxLMlXOurw87PTimNL2Gd1Nx6SgxG2/VcSCV+PKeUCRArpq+rtP1qJfpg4VWVre2YNng86/T8dT0+HFiSJEmSJEmSJEmSJGkUiXKKU0rtKaWdUkrvBz6bNfVEbduSJEmSJEmSJEmSJEmS1EyaKRht56zjOTXYL3uPnWqwX7M7f9j5LyNiQ5E1bxl2/pNSLhQRTwH3ZQ1NBE4uZa3U1LpLCEbb9gQ48PPl7VtKMBrAytnl7VuNZffDhpcrW9s+dfD40K/nr+upOB9TkiRJkiRJkiRJkiRJJUop9eZ7ZZcB8wrV5li7AXge+CEwJWuvCp/GJ0mSJEmSJEmSJEmSJGksaKZgtMlZx6tqsN/qrOMpeas2Ayml3YHXDhu+qMiamcBBWUM9wF1lXPa2YedvLGOt1Jx68gSjTdwVTrgJTn0cXncDjJtR3r6lBqMtvKK8favxSjkfB8Ok1sHjjmmZsLhcejorv4YkSZIkSZIkSZIkSZJKlQq8Sq0r9or+Pf4M/HbkvhRJkiRJkiRJkiRJkiRJo10zBaOtzzquRZBZdtBab96qzcN5DL1J7eGIeLTImgOGnT8eEeWkFN097Hz/MtZKzak7TzDa+G1g5okw9UBoac1dU0hLicFonfPK37tSa57JPb7tiXDmosJrezcMPW+fnLuuZ235fUmSJEmSJEmSJEmSJKkSUbykKgl4EHhTRHSP8LUkSZIkSZIkSZIkSZIkjWJtjW6gDEuzjneuwX47ZR0vq8F+TSml1Aq8d9jwRSUs3W/Y+XNlXnpOkf2ksacnTzBavuCvUrWWGIy2rkggWS2tfjr3+Jb7ZYLgCtnqL4aet07MXddTThajJEmSJEmSJEmSJEmSKnQH+YPRjut/D+B+YEOeuuEC6AJWAk8Bt0bEndU0KUmSJEmSJEmSJEmSJGlsaKZgtBf63xNwYEppRkRUFGiWUpoBvCprqI5pQaPOG4BZWefrgYtLWLfHsPMXclblN3/Y+YyU0rSIWFHmPlLz6M4TjNZWp2C0l66r7jqlWng1LLk999zkvaClyC89s04det4+KXddz9rye5MkSZIkSZIkSZIkSVJZIuL4fHMppT4GQ9PeERHl3kcmSZIkSZIkSZIkSZIkSUM0UzDavWSeENlBJhztb4F/rXCvvwFa+o97gLuq7q55nTfs/LKIWFnCuqnDzpeUc9GIWJtS2gBkJzptCVQVjJZS2gbYusxlu1dzTalk+YLR2qsMRmsZV3rt6mdgyl7VXa+QlbPhjtPzz0/ZO/M+9VWw8vEcBQmmHTp0qHVi7r16OitqUZIkSZIkSZIkSZIkSTWVGAxHkyRJkiRJkiRJkiRJkqSqNE0wWkR0pZTuBE7qH/pESul3EfFEOfuklA4A/onBG7HuiojNMl0npbQ18OZhwxeVuHzSsPP1FbSwnqHBaFWmQwGZ0Lsv1GAfqfZ68gSjtVX5n370ll57zd5wTh+kVN0185l/cf65lnaY8erM8azTcwejvX3Zpr21D/+46deztrIeJUmSJEmSJEmSJEmSVCsXZB2X8kBOSZIkSZIkSZIkSZIkSSqopdENlOnr/e9BJpjrupTSUaUuTim9GrgWmEjmKZXZe26O3gO0Z53PAW4vce3wpKINFVx/eJhanvQjaYzozhOM1l5lMFpfmf/73XQcbFhS3TXzWfFo/rltjoeOLTPH+38GtnvD4FzrFnDsZdAxbdN1bRNz72cwmiRJkiRJkiRJkiRJUkNFxAVZr9WN7keSJEmSJEmSJEmSJElS82uqYLSIuAG4jUyoWQDbA3eklC5KKb06pZSGr0kZR6SULgTuBHYY2A64MyKurU/3o9L7hp3/OCKiwr0qWVfptaTm1DNCwWi9ZQajvXInXH8kdM6v7rrDda+BFwt8pO73ycHjti3g+Gvh1CfhddfDmQtgx7fmXteWJzNx+UNQ8UeWJEmSJEmSJEmSJEmSqpVSaqp7ECVJkiRJkiRJkiRJkiSNfm2NbqAC7wQeBrYjE6zVBpzb/+pMKT0NrOifmw7sBQyk6gwEqiVgAXB2HfseVVJKRwH7Zw31Aj8tY4u1w84nVNDG8DXD96zE94BLy1yzO3BlDa4tFdadJxitrc7BaACd8+COt8AbH67u2tk9XL5t/vnpR8DMk4aOpQRT98+8CmmbmH9u1ZMw9cDS+5QkSZIkSZIkSZIkSVItvZBS+hFwYUQsanQzkiRJkiRJkiRJkiRJkppf0wWjRcSSlNIbgKuAXcgEnUEm7GwScNiwsf9bymAo2nPAGRGxpB49j1LnDzu/LiJeLGP9qAxG6/93Wta/15RS8SKpFnryBKO1NyAYDWDFI/DyLTDzhNzzfb0QPbBxOfT1wLitgIDoha5lmZqWdpiwPdx+OvSuz3+tAz9fWY8A7VPzzy2+zWA0SZKkRupeDa0ToaW10Z1IkiRJkiRJkqTG2B74PPDZlNI1wA8i4oYG9yRJkiRJkiRJkiRJkiSpiTVdMBpARDyZUjoM+C5wNtDCYBjakNKs4wT0Ar8EPhoRq0a80VEqpTQReMew4YvK3Gb4P7+ty+xhEpsGo60sswepuXTnCUZra1AwGsAtJ8Lu74fD/xtaxw2OL7gC7nxLdX1lm7B95Wu3OTb/XE/VeYqSJEmqxJo5cPe7YNkD0DEN9v4oHPA5MHhakiRJkiRJkqTNVRtwBnBGSul54IfATyJiaWPbkiRJkiRJkiRJkiRJktRsWhrdQKUiYkVEvAvYD/gW8ET/VBr2AngM+Dqwd0ScuzmHovU7C8hOYloMXFPmHs8OO9+5zPXD65dHxIoy95CaRwT05AlGa68yGK2vimA0gDkXwsP/OHi+6s+1DUUDmFjuR0SWcTPyz1UTCidJkqTK9HXDzcfDsvuBgI3L4YkvwLPfb3RnkiRJkiRJkiSp/jaSuU9v4CGmCdgN+A9gQUrpFymlYxrVnCRJkiRJkiRJkiRJkqTm07TBaAMi4pmI+HhEHAxsCewJHNX/2gOYEhGHRsQnI2JuI3sdRc4fdv6/EdFT5h5PDTvfo8z1uw07/1OZ66Xm0rseoi/3XFuVwWgd0/LPvelp2Oms4ns8+31Y8Vjm+KmvVdfPcFP2LRxuVoqZJ+ce7+uqbl9JkiSVb8kdsG7hpuPzL65/L5IkSZIkSZIkqdG2Bz4JPMfgg0yj/3gccA5we0rpiZTS36SUqrxRRpIkSZIkSZIkSZIkSdJY1zTBaCmlmSml07Ne04fXRMTaiJgTEff3v+ZGRGcj+h2tUkp7AcOfwHlRBVs9Oez8VSmlLcpYf3SR/aSxpXtN/rn2Ku/3POgrucd3+SuYshcc8xuYelDxfa47GC5OMPfH1fUz3LGXV79H6/jc470bqt9bkiRJ5Xnq67nHX7mrvn1IkiRJkiRJkqSGi4jlEfH1iNgbeD1wOdA7MN3/noD9ge8AL6aUfphSOrT+3UqSJEmSJEmSJEmSJElqBk0TjAa8Ffhd/+uXQFdj22la5w07/2NEPF3uJhHxEvB41lAbmwauFXL8sPPryu1Baio9IxiMtv2p0JZjj13ePXi8199Wd41K7fMx2HKf6vfJG4zmLwWSJEl1t3F5ozuQJEmSJEmSJEmjUETcHBFvB3YEPg8sIBOKBpmQtARMBN4PPJBSui+ldG5KKc+NIZIkSZIkSZIkSZIkSZI2R80UjDaVzI1RCXggIjob3E/TSSm1Au8ZNnxRFVv+btj5+0rsYx/gyKyhTuCGKvqQRr+edfnnWidWt/eE7eCEG2DL/QfPj7wItj9lsGa38+Cgr1R3nXJtc3ztrtkyLvd434ba7C9JkqTC+nrgyS/D9X8By+7PXxdRv54kSZIkSZIkSdKoFBGLI+LLwK7A6cC1ZILRyHpPwBFk7l97MaX0rf77yiRJkiRJkiRJkiRJkiRt5popGG15/3sALzWykSZ2KrBd1vka4NIq9vsl0Jt1/taU0p4lrPvUsPPfRITpRhrbetfnn2ubUP3+Wx0Fpz0Jb18BZy6C3c8bOt/SCvt/Bt4VsM1x1V+vmJmvh5NuhdY8gWblas3zYOBePzokSZLq4t73weOfg2X3Fq4r9H2vJEmSJEmSJEnarETGNRHxJjIhaV8BXiYTigaZewETmYemfgSYnVK6NaV0VkqprSFNS5IkSZIkSZIkSZIkSWq4ZgpGyw5Dm9iwLprb+cPOL4mIzko3i4hngZ9lDXUAP00p5UkwgpTSGcC5WUMbgQsq7UFqGoUCIlprEIw2oGMqpFS4Zud31u56+Rx3VW33yxew1ttV2+tIkiRpU53zYd4vS6vtqfi3mJIkSZIkSZIkaQyLiAUR8S/ATsDZwM3DSlL/67XAJcCClNKXU0o717dTSZIkSZIkSZIkSZIkSY3WTMFoj5B5QiTAXo1spBmllLYFThs2fGENtv4CsCLr/DXATSmlfYZdf1xK6e+BS4et/0ZEzK9BH9Loli8YraUDUp0/ind9D0x9Ven1bWVkUU7aDc5cAK158xErk2+/3g21vY4kSZKGWjsPHvkUg78dL8JgNEmSJEmSJEmSVEBE9EbEbyPi9WTuA/wGsIzMX0YEgwFp2wKfAZ5LKV2eUjqmUT1LkiRJkiRJkiRJkiRJqq+mCUaLiBeAe8nc9LR3SslwtPK8F2jLOn8yIu6vdtOIWAi8FdiYNXw08KeU0gMppV+nlP4ALAD+C2jPqrsG+Fy1PUhNIV8wWuuE+vYB0LYFnPIAHPqfhet2OhuO+gmcMPwBvVm23A+Ovw72/Sc45Bvwxkdgix1q2y9Ay7jc431dtb+WJEmSIAKe+BJcvTu88OvS1xmMJkmSJEmSJEmSSjcF2BLIfmJeZL0AWoEzgNtTStellHavb4uSJEmSJEmSJEmSJEmS6q2teMmo8jXg8qzjMxrYS7N537Dzi2q1cUTcllJ6C/BTYOv+4QQc3v/K5VfAX0dEb636kEa1nlEUjAbQ2gH7fBR2OgtuPBo65w2df+2VsMPpmeOVs/PvEwHbvyHzGkmt43OP924Y2etKqo3u1TD/N7DmGdj6WJh1GqSmyeeVpM3T0nvgic+Xv65nbe17kSRJkiRJkiRJY0ZKaQJwDvBBct9bloDu/tcWDAakJeAU4LGU0jsi4vd1aFeSJEmSJEmSJEmSJElSAzRVIkVEXAH8mMxNTm9KKX03pdRs4W51l1I6Gtgna2gj8ItaXiMirgUOAH4ArChQei/w9oh4V0R01rIHaVTrHWXBaAO22B7e/ByccDPs9xk4+tfwtmWDoWgAbYV6jAJzNWQwmtS8NiyBG4+B+/8anvoa3HE63Pd+iL5GdyZJKmTexZWt6/G3eZIkSZIkSZIkaVMppf1SSv8FvAj8iEwoWhqY7n+9BHwR2BnYHvg7YHb/XPS/tgB+k1LavZ79S5IkSZIkSZIkSZIkSaqfZgwV+yCwBvgo8CHguJTSN4CrImJZQzsbpSLiLgZvIhvJ6ywBPpxS+ihwNJkb1GYCncAi4JGIeH6k+5BGpXzBaAVDx+qkpRVmnpB55VIwvK1OwWgt43KP93XV5/qSKvfsD2HlE0PH5v4E9vgAbHVUY3qSJBX34rWVrTMYTZIkSZIkSSseh9lfga6lMP0QOPCL0Dax0V1JkhogpdQBnEXmPr/XDAz3v0fW+W3A94DfRURv1hbfA76XUnoj8DVgv/7x8cA/kglOkyRJkiRJkiRJkiRJkjTGNFUwWkrplqzTNcBkMjc7Xdg/vxBY0j9XqoiIE2vWpIiIjcCtje5DGlXyBaMVDB0bJUZDj63jc4/3bqhvH5LK98Tnc4+/8FuD0SRpNOusMNPaYDRJo0FfL0QPtOYJ2ZYkSZIkjZzVz8INRw7+Pd7im2HxrXDK/ZBaGtubJKluUkp7knkA6nuB6QPDZMLQov94LfBz4LsR8VSh/SLiupTSrcAfgUP7179+ZLqXJEmSJEmSJEmSJEmS1GhNFYwGHM/gkyJh8CapgadI7tj/CkozcLOVJI2ssRqMFnX6CG3J88PsfV31ub6k2ptzERz69UZ3IUkaLgKe/3nl63sNRpPUQH3d8PAn4PmfZn4Af7tT4KifwLgZje5MkiRJkjYfj35q04cbLX8IXroetn9jY3qSJNVFSqkVeAvwIeB1A8P975F1Phv4PvC/EbG21P0jYkNK6d+BS/uHdqy6aUmSJEmSJEmSJEmSJEmjUrMFo+VisJmk0a+Zg9FaOgpM1ukjuHV87vF1C+tzfUmVib78cx1T69eHJKl0L90A97638vXdJf/8kiTVRgSsnQOrn4FHPwmrZg/OLboa7nwbnHRbw9qTJEmSpM3KxlWw8He55xbfZjCaJI1RKaWdgQ8A5wHbDAyTualk4MGnvcAVwHcj4vYqLvenrOM8T9mTJEmSJEmSJEmSJEmS1OyaMRgtFS+RpFGmp4mD0VKBj91CoUe1lC8YDeCJL8EB/1K4T0mN8dz/5J8zGE2SRqdnvlPd+t7O2vQhSaXo7YL73g/zfpG/ZsntmdC0KXvVry9JkiRJ2lw9/vn8cwsuh0O+Wr9eJEn1NIfMPX0DN24MPGUvAS8B/wP8T0S8VINrrRt2DUmSJEmSJEmSJEmSJEljUFMFo0VES6N7kKSK9DZxMFpBdbrPdNzW+eee+Dxs93rY6qj69CKpNF3L4YEP559v37J+vUiSCls5GxZeARuWwIu/L23N9MNg+UObjvcYjCapjuZcWDgUbcBLNxiMJkmSJEkjbc1z8Ox/Fyio0wOXJEmN0ELmBpJgMCDtDuC7wO8iomcErpkwHE2SJEmSJEmSJEmSJEkas5oqGE2SmtacH+Ueb9uivn3UWtTpHtPph0DbxPxBG8//wmA0abRZeGXh+baJ9elDklTYgivgrrOhr7v0Ncf/AZ79LmAwmqQGm3dxaXWd80a0DUmSJEkSmd+jRYHws8550NsFrePq1pIkqa4SsBb4OfC9iJg9EheJiPlkgtgkSZIkSZIkSZIkSZIkjWHeJCRJI617bf651gn162NE1CkYrXU8bH1s/vlnv1ufPiSV7tnvFZ7v3VCfPiRJ+UUfPPT3ZYSiJTji+7D9KfkDLg1Gk1RPS+8urW79opHtQ5IkSZJU/IEp0Qdrnq1PL5KkensK+HtgVkT87UiFokmSJEmSJEmSJEmSJEnafLQ1ugFJGvNeuTP/XPvk+vUxEmaeVL9rTZhZv2tJqs7838DyBwvXGJwjSY23+mlYt7C02ld9Gfb/DKT+fPW2SbnregqEAktSLXUtK7121VP55/p6YeOKzHH7pEwwtyRJkiSpPJ0LYMXDxetWPwVTDxj5fiRJdRUR+ze6B0mSJEmSJEmSJEmSJEljS0ujG5CkMW/xLfnntn5t/fqoxt4fzTP+kfr10DGj8HznC/XpQ1Jxs79SvMZgNElqvGX3lV67/z8PhqIBtE3MXefnu6R6Wf1M6bUrH4NLp8Kjn4bejZmx3o1w/4fhsulw+daZ16VT4OYTMz/QL0mSJEkq3cIr88+1tMOs02HfT8LkPevXkyRJkiRJkiRJkiRJkiRJkppWW6MbkKQxLfrgqa/nn595Uv16qcbeH4UFv4N1WeFju50LW9bxie7jtio8f/2R8NaX6tOLpPw2rsgETxTTu27ke5EkbaqvN/M53dcN976veH3HdDjhJkhp6LjBaJIabf2i8uq7V8GfvpoJRDvsm/DwP8BzPxha09edCTe//nA480XoWQPLH4It94cJM2vXuyRJkiSNNYvyBKNN2Rve9Of69iJJkiRJkiRJkiRJkiRJkqSm1/TBaCmlg4HTgWOB3YHpwGQgImKTry+lNBWY0n/aFRGL69WrpM3Q0nvzz+3+19DaUb9eqjFpVzj5Hpj/K1jzHGxzHOx89qYBGSMpX/jGgA0vw7qFsMUO9elHUm6rny6tzuAcSaq/zvlw22mwanZp9ft8DPb6W5i026ZzbZNyr/HzXVK9dC2rbN3T34Ldz4e5P8tfs2EJXNKe+T1v9GXG9vk4HPK1+v4+WJIkSZKawcaVsPi23HM7nV3XViRJo1tKaQZwFnAksC2wHlgI3ARcHxEbG9ieJEmSJEmSJEmSJEmSpFGkaYPRUkoHAt8CXpc9XMLS1wG/7T/uTCnNjIh1te5PkoiAP38r//yMI+rXSy1ssT3s+/EGNlDCR/yL18Eefz3yrUjK78U/lFZncI4k1d99Hyg9FG2398Gh38g/ny+0tmdt+X1JUiU2VhiMBnDtASUUReb39QP+/A3Y6kjY6azKrytJkiRJY82qp+CPZ0P05J7f4cz69iNJqpuU0lbAq4CtgS5gLvBkxMCTBobUJuAzwD8DE3Js93fA/JTS30REiX/hLEmSJEmSJEmSJEmSJGksa2l0A5VIKZ0L3Esm5Gx4Uk5ssmCoK4EX+tdNBN5W6/4kiQi473xY8Nv8NT4hvTwTti1e0+fDg6WGWngVPHlBabU9nUODJiRJI6trObx8Y+n1+/5T4fm8wWgGX0qqk64qgtEqtfDK+l9TkiRJkkarZ38Iv98fVj2Ze36LHWHaIfXtSZI04lJKB6eUbgReAm4ELgYuAx4BFqWUPpVSas2qT8DPgC8BW5C5Zy/7fr+B812Aq1NK767H1yFJkiRJkiRJkiRJkiRpdGu6YLSU0tuAixj69MgELAAeZdOgtCH6n0r566yh02vdoySx9B6Y+5P88y3t0LFl/foZC2aelPnnVkjrFvXpRaq13g3w+Bfg5hPg3vfB8oca3VH5etbBHWeUsSCge9WItSNJGmbVnyieI55ly30Lz7cajCapwTYur/815/2y/teUJEmSpNFo/cvwyCco+OdNs06HVPD2DUlSk0kpvRO4HzgBaGUw1GzgtS3wFeCqlNLAfYkfBf6y/zgY/MVjYE1kvVqBH6eU9hvxL0aSJEmSJEmSJEmSJEnSqNZUwWgppe3IPEESBm+S+h6we0TsAry1xK2uHNgSOK5mDUrSgBevKzy/3Rvr08dY0jENdn1P4ZpiwWnSaBQBt54CT/4rLL4V5v4UbjoOlj3Y6M7Kc80+5a/pWlb7PiRJuW14qfTaPT5YvKZ9Uu7xnjWlX0eSquH3kpIkSZLUOAsuh561hWt2KOdhKpKk0S6ldATwc6CNoYFmAwbOE/AG4OMppcnAFxkahvYScA1wMfAHYAVDH4TaDnx7pL4OSZIkSZIkSZIkSZIkSc2hqYLRgM8DW5C5GaoPODsi/i4inu+fL/A44iEeALr7j2eklHatbZuSNnuzv1x4vmNqffoYa474QeH5znl1aUOqqSW3w5I7ho71dMIz/92YfiqxZg6sW1D+OsMsJKl+1j5fvGbA9qcVr2nfMvd47wbo7Sr9WpJUKb+XlCRJkqTGmf2VwvPtU2Abn1EnSWPM94FWhgagrSRzH96D/ccpa+4fgXOAKf3rlwFnRMQOEXF6RPxlRJwKbAN8ENjA4L1/J6SUdq/LVyVJkiRJkiRJkiRJkiRpVGqaYLSUUiuZm6UGbq76akRcVsleEdED/DlraJ/qO5SkLK3jC8+3G4xWkZa2wvOPfw6i1IxMaZR45ju5x5//WX37GNC7AZbeDyufKPz/U/TB8kdg+cPwxBcru1bX0srWSZLKV06A7HYnF68pFPTbvar0a0lSpbpXNua6i65pzHUlSZIkabToXgvrFxWu2f5UaO2oTz+SpBGXUjoSOJTB0LOlwFuBrSLiyIh4NbAV8BZgSX/dtsDH+rfoBk6KiKuH7x0RfRHxIzL3BQ4EqwGcNXJfkSRJkiRJkiRJkiRJkqTRrmmC0YCjyDxBMpG5Wer/VbnfwqzjHavcS5KGaptceL5QkISqs+yBRncglWfB5Y3uYNArd8E1+8INR8K1r4JbT4aNKzatW7coM/+HQ+EPh8G8X1R2vY3LqutXklS6tfNKqzt9DrSOK17XMS3/XK5fOySp1no6i9cc+K+1v+4z36v9npIkSZLUTB75p+I1O5w58n1Ikurpbf3vA/ftnRwRV0QMPmkrMq4ETgF6+of3IhN09ouIeLzQBSLiKuDW/msAHF7D/iVJkiRJkiRJkiRJkiQ1mWYKRtuj/z2AByJidZX7Za+fUuVekjRUX3fh+egpPK/8Dvr3wvNzLqxPH1ItrH6m8Hz0jXwP616EZ38A938YbjwGOucNzr18Ezz6z5uuuee9sGp2afuPm5F/rstgNEmqi1fugpeuK153+H/DpN1K27O9QNDvxpWl7SFJ1ehZV7zmwM/Bdm+o7XVL+TyVJEmSpLGkrxfm/wae+kbm/bkfFK5vaa/978UkSY12aP97AL+JiMfyFfYHoF3CYMAZwGUlXie7bv+yOpQkSZIkSZIkSZIkSZI0pjRTMNrWWccLarBfdtJIWw32k6SM7rXQXSQMYtIeheeV345vLTy//sX69CHVwqJrCs8//ImRvf7yR+C6g+GBD+f/Qaa5P4buNYPnG1fCkltL2//Af4U3PQ3bvDb3fNfS8vqVJJXviQsywZfFpDbY629L37dtIqTW3HMGo0mqh57O0urGbVX7a/s5J0mSJGlz0bsx82dLd70DHvlE5r2Y3c6Dji1HvjdJUj3tlXVc5C+5Abh22PnjJV5nIHAtAQWewCVJkiRJkiRJkiRJkiRprGumYLTIOs7z09dlmZ517E8zSqqdNc8Ur5lx+Mj3MVZN2avwfPTUpw81r+7V8Nhn4eYT4YG/gzXPNa6X9YsKzz/9LVhXpGa46IOnvwPX7AMXp8zr0U/DxlWb1j72z9D1SuH9+jbCpVMyU3VtCgAAIABJREFU+9z3flh4VeYaxUzeCw74Fxg3Azry3LPetaz4PpKkys25CJ74Ymm1O59T3t4pQcfU3HMbV5S3lySVK/qgd11ptTNeXfvrryz15zglSZIkqck9/Z+w7N7S63d8Oxz81ZHrR5LUKNmJl0+XUD+8ptS/GM5+staUEtdIkiRJkiRJkiRJkiRJGoPaGt1AGbJTO7avwX4HZB2byiGpdlYXuQd062Nh6oH16WWsmn44LH8w91xfd317UXPp7YKbjocVj2TOF98CL/wGTr4HJu9e/3561havWXQN7PGBTADNgL5eaMmTE3v/h2DOj4aO/emr8MKlcNpsaB0PfT2ZIImXri+v3zkXZV6lOPCLgz2P2yp3zUa/BZOkvCKGfvaX6/lfZAItS5HaYM8Pln+N9mm5Qy67zR6XNMJ615deu/M5mZDIjcsL142fCa/5BdxyUvE9bzoOzumr7nNakiRJkkar7L+DmPuT0te9bRmMm168TpLUjCZlHed4ItcmVmefRMSGEq+TXdde4prNSkppArAvsA+wNZl/N2uB5cCTwBMRPlFQkiRJkiRJkiRJkiRJza+ZgtFe6H9PwCEppfaIqCj9JqW0FzAra+jxapuTpP+z+s/55/b8Gzjka/XrZazq68o/t2p2/fpQ83nx2sFQtAFdr8BzP4RD/l/9++npLF7zwIcyL4CdzoJlD8KGxTDzRDjyQhi/TWau8wW47dT8/w+snQu/nlCbvov5i1/ALucMno+bkbuua2nucUnanEUfPP65zK9NvRth1pvhsP+E8VuXsUdkQjFLsc3xcNCXYeujy++1Y2ru8Y0Go0kaYaV8Hz1g/Fbwhofg3vfCkjvy1237usz32G94EB77bPEQ4aV3V/bZKUmSJEmj1ZI74eGPwcrHYOrBsNffFf57z2w7vMVQNEka27KfENBbQn0pNaNWSmk34Ajg8P73Q4HJWSXzI2KXOvZzKHAmcALwagqHxnWmlH4NfDsivCdSkiRJkiRJkiRJkiRJTaul0Q2U4R5gPRDABOCcwuUFfSTreHFEPF1NY5I0ROe83OM7vg2O+C60bVHXdsak3gLBaBsWwyv3ZEJFpOGe+2Hu8acaFFhYTqADwAuXQufz0LsOFl0NNx6bCb/p64HrDh4dwYDH/BZ2fffQsbzBaMtGvh9JajZPXACzv5L5jOxZA/Mvhnvek/m8L9XGFbDqydJqT7q18mCf9im5x7tXV7afJJWqZ1159ZN2gZNuhzc8DLu/H1qHBQZ3TIP9Pp05nn4YvO4PcMJNhfec+9PyepAkSZKk0ahnHbx8Czz1TbjptbD8QejrhuUPZAKmS7Xl/iPXoyRJdZBSOj6ldH1KaRkwB7gE+ARwHEND0erZ0/iU0hzgIeBzwNEUDkUDmAicBzycUvqPlFKxekmSJEmSJEmSJEmSJGlUamt0A6WKiK6U0s3Am/qH/i2ldFVErCxnn5TS0cAHyQSsAVxewzYlCdYtyj0+cef69jGW9RUIRgO48TUwZW847vcweff69KTm8NL1je5gqJ611a1f80wmPGfFw5kQnEYbvy1s/4ZNx8dtlbveYDRJGioC5v540/GX/pD5odQZR5S2T9fS2vaVT8u43OPRXZ/rS9p8lRswPGD6IXDkj+CQr8H8X8GyBzPfw+72Ppiy59DamSfChO1h/Yu595pzYWYvSZIkSWpWz/8S7vnL2uw1Ybva7CNJUuMcDJzc6CaGaQN2yzEewNPAC8BSYBJwwLDaVuBTwJ4ppXdERM8I9ypJkiRJkiRJkiRJkiTVVEujGyjTv/W/BzALuCGltE2pi1NKrwOuIvN1J6AX+Hqtm5S0mVtyW+7xCdvXtY0xrbdIMBrA6qfLe5K9FH31v2algQ7ZHv8XWDBKcl6PvBDaJm463jEjd33X0kwIkCQpo3cDrFuYe272v+Uez6VewWitHbnHezfW5/qSNl/Vfh/dMRX2/DAcdREc/JVNQ9EGTD2o8D6r/lRdH5IkSZLUKGueq10oGsDkPL+vkiSp+XUBcxrdBJn7HK8D3glsExH7RsQpEfHuiDgjInYHDgfuGLburcAX69uqJEmSJEmSJEmSJEmSVL2mCkaLiPuAS8iEmgWZm3n+nFL6XEppb3J8PSml1pTSiSmlS4CbgGlZ678dEfPq1b+kzcDCqyF6c89NmFXfXsayUn+44pW7YO28EW1FY0jXsvpfsxbBaLW23SmVrdvmeJj1ptxz4/IEo/V15Q8AkqTNUc/a/HMLryx9n1KD0aYfUfqeubTkCUbrMxhN0gjrrdP30X1FQrl/vz/0ddenF0mSJEmqpQW/q91e42fCtq+r3X6SJDVON/AocCHwQeAwYDLw/gb21AV8F9glIk6NiF9HRM6/CIqIh4ATgF8Nm/qnlNLOI9ynJEmSJEmSJEmSJEmSVFNtjW6gAucDewOHkAk3m0rmqYZfBIb89HVK6SlgV6B9YKh/TQLuBj5dj4YlbSb6euG+8/LPb7F9/XoZ6/b7JNx+Z2m1y+6HSbuMaDtqEp3zC8+vXwTjt65PLwMKBeA0wgFfgAO/AE9/Gx7+x/LWzjot/9ykXfPPvXgN7Pnh8q4lSWNVscDMNXNg8u7F9yk1GG3vj5RWl0++YLQwJEjSCOtZV5/r9G4oXvPUN2B//4hRkiRJ0ii28EqY9yugD3Z8O0w/DB79ZG32Hr8tnHATtDTjrSeSpDJF//tRKaVditTOzD5JKR1L5n69YmYWLxkxPwN+EBGb/KFgSqW0PiI2AHtERMlPG4uI3pTS+cAxwI79wx3A2cDXat+iJEmSJEmSJEmSJEmSNDKa7u7UiFifUjoFuITMEw4HbrpKwDgGg88SmQC1/1uaNXcDcHZE9Narb0mbgVf+WDiEYoLBaDWz7QkweU9Y82zx2rveATufPfI9aXRb/xJce1DhmnULYdrB9elnQLEAnHra6+/hVV/MHO/6VzD7y9C1rLS1HdNh53fmn5+wHUw9EFY+sencikfLblWSxqxivy4svBL2/VjxfbpeKV4zYRbscGZpfeXT0p57vHdj7nFJqpXeOgWjbXcyLL27cM2T/wq7vAsm7lSfniRJkiSpHM/+EB740OD5C5fWbu8dzoRjL4fGhcVIkuovAb+qYM1tZdQP3N9XVxGxot7XLCYieoCSQ9Gy1q1PKf0E+HzW8OswGE2SJEmSJEmSJEmSJElNpKXRDVQiIpYCrwc+BSxl8GaoyHrPftFfswr4LHBaRKyuW8OSxr71L8PNxxeu6ZhWl1Y2C21bwIm3wc7nlFa/fvGItqMmMPen0L2qcM3tb4Ybj4XlD9elJQB61tbvWvlM2RsOvAAO/ebg2LgZ8Pp7YNbpxddv90Z4/Z2wxQ6F62YcmXt848rSe5Wksa7YrwsLryhhj3Xw6Kfzz0+YBTu+DU6+B9onldffcC0ducf7DEaTNMJ6N9TnOju9o3hN73p4+r9GvhdJkiRpLFnxGFx/FFw6DW54DSy+tdEdjU0RMPvfRmbvg/4djvmtoWiStPnJfmBpsVf2vXulrvEXltp5ZNi5T3OUJEmSJEmSJEmSJElSU2lrdAOViogAvpZS+g5wDpmgtGPI3MSTHfi2ArgbuB74eUQUSUWRpDJFH9xyYvG61i1GvpfNyRbbw9EXwy7vygRaFTL/Ytj7H/zhjM3ZsgdKq3vlj3DzCXDqEzBxx5HtKSITXjNS9vs0HPzvla+fsiccdyVcsTOse2HT+SMvhN3PL32/9im5x7vXVNafJI1FPZ2F51+5EzYsgfHb5J5fOxduOy3/+l3eDa/5ReX9DWcwmqRG6e2qz3W23Ad2OzcTtFzIgsvgkK/5e05JkiSpFOsWwQ1/kQkZBlh6T+bveU59Eibt0tDWxpw1z8K6BbXf99BvwT7/UPt9JUnNIoqX1GSNqtMz7DzPX+pIkiRJkiRJkiRJkiRJo1PTBqMNiIgNwE/6X6SUEjCNzM08yyKiu4HtSdocLLkdVv2peF3r+JHvZXM08ySYMAvWL8pf8/DHYMHlcNzV0DG1fr1p9Fj4u9Jru1dl6vf+yMj1A/0/9JXn/u9tjoONK2HlY5XtvddHqgtFy7bjW+Dpbw8da2mHHc4sb5+2ybnHe1ZX1pckjUU9a4vXXL4tnLkQtpg1ONa7Ae7+K1jw28Jrpx9eXX/DGYwmqVH66hSMBnDkRZnvz1++GeblCZfsnAcrH4dpB9WvL0mSJKlZzfvlYCjagJ5OmP3lzAM5VDul/FlTJWYcMTL7SpJGsxcw3KzZ7DHs/KWGdCFJkiRJkiRJkiRJkiRVaNQHo6WUDgJOBvYDtuofXgo8BdwYEY9k10dEAMvr2qSk8kXAK3dlwqzWLcw8HX59/+uw78D0QxrdYemWPVhaXUoj28fmqnU8HPkj+OPZhX/A45U/wqOfhlf/oPieq/4EL/4h84M5Wx8D27zWf3/Nrn0KdJcRwFVK2GG1etblnzvsv2DKPnDZ9MwPhJVr/09X3tcme30WltwJKx7OnKdWOOL7/H/27js8ivNe+/h3dlWQRG+miI7pxQ2DjSvYuANuiUuKE6cnTk+cN8mJneqT3k5OihM7iePesA1umGLjgjumY3rvIARqSLvz/jHmSEgzszO7M7O70v25Ll1in/pDoN3ZlZ57Ke7mb53Cjvbt9Yczq09EpDXxep//1pfgnCahn8t/nDoUDaB8enp1OYkV2rcnlU8uIiFLRBiMZsRg8E3Wx6m/h8d6gploOW7r4wpGExERERHx4uAS+/b1/4AJf4VYPNp6WjO75y6ZKu4O3SYFv66IiOQ00zQHZrsG8e2aZrffyEoVIiIiIiIiIiIiIiIiIiIiIiJpytlgNMMwTgF+C5zlMuwOwzBeAb5umqbHZCIRyRkLprV8R3iAI+vzKxhtybezXYH0uQQuXwXPnAR1+53HbboXJvyvdbDdyYZ/w+s3g9nQ2Db0M1YQlNs8yW0lff0Fo6UTRuZX0iXMIV4M8SIovwo23eN/7Xa90q+rxVo9YNorsPtFqNkGPc+FDs3fXNqDwg727QpGExFptPNZb+O2zbKChUv7WuFAa/7obV7ZoPRrsxMrsm9PHg12HxGR5tyupcNU3NW6Ht49v2XfnoWRlyMiIiIikpc23+/cd3gtdBoRXS2tXRg/6xjxDYXXiYiI5DjDMCYAk5s1P243VkREREREREREREREREREREQkV+VkMJphGDOA+4B2gNGkyzw2pEnbWcBLhmHcYJrmrIhKFJFMGYYVVHRkXcu+6u3R15Ou5T/NdgVyTGm5FV728oecxzQcgaot0H6gfX/tPlj88Zbt6/4GA26AE84NpNRImSZsvAe2PwmFHWHQR+GE87NdVfSaBt150XAknDqacg1Ga2d9nvAnOLofdjztb23DSD3Gj3g76HNRZmsUOASjNSgYTUTk/2z8t/exs8qtYDI/IWRBPz4oGE1EsiWRpWA0gL6X2wejVa6KvhYRERERkXxTtcW9v3aXgtGCFPTPOnqeByO+HuyaIiIiEijDMAqBvzZrXmSa5hsB79MT6OFz2pAgaxARERERERERERERERERERGR1i3ngtEMwxgB3I8VigbHh6HZhaTxwdj7DMM41TRNnUIUyRelDsFoNXkSjLbhX7D0+9muQprqOz31mMrVzsFoj7n8zubO5/IzGO2978HKOxpvb/w3TH4Q+l+dvZqyoaHK5/iQg9FM0z3MIVZsfS7sAOfNgdq9VpDavtfh5Wvc1x5wQ3B1BqnQIRitXsFoIiIAVO/wP8dPAFn5TP/rp6JgNBHJFreQ4WM6DAtn787j7Ntr90DdASjuGs6+IiIiIiL5rmYnzD3bfUzdvmhqaSv8/mzETdcJcMGC4NYTERGRsPwSOLnJ7XrgyyHs8wXgthDWFREREREREREREREREREREREBIJbtAmz8BSvozPzgwwAagNeAh4CHP/hzPY1BaeYHc5q/26GI5LLScvv26jwIRtu9EBbflO0qpLl4MczY7D7m0Ar79n0p3hy3bm96NWXT0QpY/Zvj28wErPhJdurJpoZqf+N3vQCvfgzqK4OtY92dMGc0PNIVXrzceVy8+Pjb7XpY95ll/VPv0fuizGoMi1MwWrIOEgrQERGheku46/f/UPBrxgrt25P1we8lItKUW8jwMeN/Fs7eHUc49x1aGc6eIiIiIiKtwfq7Ur/+4fQzHElPUG8CU9QVLlgYzFoiIiISGsMwPgl8pVnz7aZpLslGPSIiIiIiIiIiIiIiIiIiIiIimcipYDTDMMYA59AYiAbwa6CXaZqTTdO8zjTND5umORnohfUOh01NNgxjXHQVi0hGSvrat9fkeDDaoVUw7/xsVyFOyvpDpzHO/bvm2bdvech93aMV6deULTuft0Knmju4BOoPR19PNiWq/M/ZdA8svCy4Gjb+B974jBWWUF8BRzY4j40V27e7hTAAdBwJA65Lv8YwFXZ07tu7KLo6RERyVc2OcNfvd1Xwa8aK7NuTCrwUkZDZPc9pqsdk6HNJOHuX9IECh9Dfnc+Fs6eIiIiISGtw4O3UY5bdDqYZeiltRn1AwWgXvgIFpcGsJSIiIqEwDONirDekbWo2cEcWyhERERERERERERERERERERERyVhOBaMBV3/w2cAKR/uyaZrfMk3zYPOBpmlWmKZ5K/DFJuMBQjjtLSKhKHUIRqvaHG0dfphJmDMq21VIKm7BH7vnQ0OzkCzThG2z3Nesz8NgtEPLnfvCDl/JJcl66yMde1+GtX8Npo71//A+1ikYrdAhgOGYS96BuENITbY5hUcArP97dHWIiOSq6hDDgftOh7jDY0smFIwmItniFox28q/gvGfCO7RvGND9DPu+VM8rRURERETasm2Pexu358Vw62grTBPe+Wrm63QeC51SvGmLiIiIZJVhGJOBR4HCJs0vAx82zdBSZ/8XGOPzY0ZItYiIiIiIiIiIiIiIiIiIiIhIK5RrwWgTPvhsAotN0/xTqgmmaf4FeAUrHA3g9JBqE5Gglfa3b6/aBDW7Ii3Fs5euzHYF4sXwr4Dh8BCXrINdLxzfdmgFHFnvvubRFhmduc/t91sPvBNdHdnWPAjPrzc/B/WHM69jz0Jv44wCiMWd+/tcZt9+0n9DvJ3vsiJT0su5b9/i6OoQEclVNSEGo/WaGs66TsFoiZpw9hMROSbhEMA4+CYY+Y3UgcKZKnc4v3doORxeF+7eIiIiIiL5ql1Pb+O2PRFuHW3FlocyXyNeAhP+kvk6IiIiEhrDME4F5gBN3yniDeAy0zSrw9rXNM09pmmu8PMBpPjFHBERERERERERERERERERERGRRrkWjDayyZ//5WPev5v8WW9XLJIvuk1w7tu7KLo6vHrzi7D9yWxXIV4Ud4VrXYKs9r12/O09L6Ve88DbkExkVlfUjh5w7nv1BtjxXHS1ZFNDAL/rOzvDyws/b8IcL3bvH/zxlm1GHAbc4K+mqBWUOfdVbYL1d0dWiohITqreYd/u9dCwEyMO/T+U2RpOYoX27TU7INkQzp4iImAFXtuJpbiWDkr5dOc+hTiIiIiIiNjrPM7buM0P+HtNXextfTz1mME3WW825GT6BuhxZmAliYiISLAMwxgHPA90atL8LnCRaZqV2alKRERERERERERERERERERERCQYuRaM1rnJn9/xMe/YWKPZGiKSy0r7Qvsh9n07no62llTW/A+s/d/U44bdYt9+yu+CrUdSKyiFftfY99XtP/521WZva27PswPuO59173/jM5CojaaWbGqoynyNmh1w8L305/v5OqcKc+h3DYy9HYwC63ZhJzj7USjrl3Z5kRnzX859b34e6l0CDUVEWru6vfbtncamv2ZRFzh3NpT0Sn8NN7Ei575ts8LZU0TapqrN8M434MUZsPIXUH/IflxUwWil5dDVIez93W9GU4OIiIiISL4xPb75TO0uOLQi3Fragj0LUo8Zcxuc+AX7vs7jw3tNSURERDJmGMYo4AWga5Pm5cA00zQrslOViIiIiIiIiIiIiIiIiIiIiEhwci0Yrem7F+53HNXSwSZ/7hBQLSIShZ7n2rdvvAcOrYq2FidbHoa3HQLPmjrxC9ZHQdnx7UVdod9V4dQm7oo62bc3D8qq2eFtvc0PZFZPlPYthiMb3MdUb4Fd86KpJ5sS1cGss+k/6c91Cm6wE08R5mAYMPY2uLYCLl0GV++D8hnp1xal0v7Ofck62PZkdLWIiOSaun327Z1G+V9r7A9hxma4ajf0uTizuty4BqPpPl1EAnJ4PTw7AVb/BrY/CUtuhZ3P2Y9NdS0dpH4znfvW/CG6OkRERERE8oXXYDSwrv0lM7V73Pv7XAbtB0LHYXDClJb9J342lLJEREQkc4ZhDAfmAT2aNK8GLjBN0+EHTiIiIiIiIiIiIiIiIiIiIiIi+SXXgtGa1uPjN6OPG5trfycRcdN7mn27mYBN90Vbi51EHbz8IW9jT/kNdBoBU16AE6ZCcTfofRFMXQBl/cKtU+zFy+zbN98PidrG2zuf9bbeloczrykqS2/zNm777HDryAWJmmDWWfUreOFcOPC2/7l+gtFi7byNKyiDzmMgVuC/nmwp7Ojev2NONHWIiOQip2C0zmOg/VB/a5WWQ1l/iBVmXpcbt2C0TfeEu7eItB1rfg91e72NjUUYjFbuEoy29DYwzehqERERERHJB76C0drAzy7CVuDyfnKFneCsJj/zOucJGHIzlPSBzmPhtD/BiZ8Pv0YRERHxzTCMocB8oFeT5rXAFNM0d2enKhERERERERERERERERERERGR4OVRkoaItErlM6G4h/0h5/1vRF9Pc2/dknqMUQDnzIL4Bwewu0+CqS+EW5d4U+AQjAbw2sfhrAehdp9zEImdZEPuB1GZJux/3dvYw++HW0suaBqC19zMrTDLR3Dhnpfg2dOsA0MdhkGn0RCLp55X6zHIARrvS1qjQpeDWCIibZ3T9UhxDxj3Q3j1I4DHkB23a6AguQWjiYgE5f0/eh8b5bV0x5FQNhCqNrXsq6+Amh1Q2je6ekREREREcl2ywfvY/W+AmQRD74mWNrfA/JlboaCk8XZhe5j49/BrEhERkYwYhjEIKxStT5PmDVihaDuzU5WIiIiIiIiIiIiIiIiIiIiISDj0m8Qikl3xYuh7mX1f8mi0tTR39CCsv9N9TL+r4eI3nf8Okl1uoSBbH4GanbD2T/7WPLIhs5qiULsb6g95G7t7PiQT4daTbYka+/ZYMZSWQ8fh/td8+Vp4ZjzMKoe9r7mP3XgPvHC297VjrTgYrUDBaCIithK10HDEvq+4Gwy8AabMhUEfs9pSHQqOLBjN5YCtiEgQ/AQnQLTX0oZhvSbgpC2EUIuIiIiI+GH6+FmEmYBVvwqvltbONKG+0r7vzPv1JiYiIiJ5yDCM/lihaE3f+W0zVijatuxUJSIiIiIiIiIiIiIiIiIiIiISHgWjiUj2lQ106EhGWUVL2+e490/6F5z9CHQ5KZp6xD+3UBAzCQfehTW/97dm7Z7MaopC5Sp/49f+OZw6ckWi1r493s76PPFuiJc2tvsJ76rdBS9eDg0O4WsVy+C1j3lfD6zAyNYq5WErI5IyRERyTt1+577i7tbnXlPhjH/BDSZcn4Bzn3KeU9A+2PqcOIWPiogEpWKpv/FRX0uP+5Fz37wpsPVxSGQ59D0f1eyG9f+A9XfB6t/Cxnvh8LpsVyUiIiIimfITjAaw5FZdB4IVcLblYVh6O7z9det5Rv1h9znJOjAdgqbL+tm3i4iISM4yDKMPMA8Y2KR5O1Yo2uasFCUiIiIiIiIiIiIiIiIiIiIiErKCbBdgw/zg8yTDMAZ6nNOr6Q3DMM7GR7KGaZoveR0rImFwyGjck+VvzT0LnfsKOsBgn2FHEj23YDSAd74KRw/6W7PhSPr1RMXvQaGtD8PwL4VTSy5wCm05FozW4wyYsQm2zYJYEfS+CJ6bCNVbvK1/9ADsfAb6XdWyb8vD/uuNteFgtM33weR7o6lFRCSX1O1z7jsWjNaCS855ZI8lLk+7DeWwi0iGDq2GZ0/1Nyfqa+mCUuh2Oux/w75/0VXQ9TSYMheKOkdbW77a+yosuKjlc+94iRUQ2v/a7NQlIiIiIpnzG4wGsOleGHtb8LXki6rNMG8qHFnf2Lbmt9BpFJw7G9oPcpjn8vONwo7B1igiIiK+GIZhNms63zTNhS7je2KFog1t0rzzg3kbgq9QRERERERERERERERERERERCQ35GIwGlinq+/PYO5CH+NNcvfrINI2xOLOfQffgy7jo6vlGNOE9f9w7h/00ehqkfSlCkY7vNb/mg2H06slSvWV/sZnO4QwbIla+/Z4SeOf2/WAoZ9uvN3zHNj0H+97LLoaupwEB5ekV+NxdbXLfI1cVZAiGA2gaiuU9Qu/FhGRXNJQ5dyXzmFVw3NOeGa6T3LuM5NQ+T50HBZNLdK6HdlgPT/b/6Z1kL5sIAy4DnpfmO3KJExL/8v/nE6jg68jla6nOgejARx4Cx7pAsNugZHfhLL+0dWWj16/2T6QPFEDb34e+s6AeFFj+5GNsOrXUF8BJ5wPg25yf50pSGYS1t0Ju+dDSW8YcjN0HhvN3iIiIiL5KJ1gtD2Lgq8jnyz57vGhaMccWgnLfwKTHH6WufLnzmt6eZ1eRESkjTIMoxz73yPs1ex2gcsbvh4xTdPlHXF81dMZmAuMaNJcBdwM1Pt401kATNPcFERdIiIiIiIiIiIiIiIiIiIiIiJRyNVAMBMr4MzvnGMiOgUuIoFINjj3bX0sO8FoS2517x/2xWjqkMykCkZz0uVkqNsP1Vta9tXnQTBasi7bFeQWx2A0lwCy4V/2F4wGwYSiAcdf0rQyXsJ9nugP19VDLFcvU0VEQuD0WAUQK7Zvb9fDeU5h58zq8aowxUHauWfC1IXQeUwk5UgrVbkWXjgHancd377hbph0Fwy+KStlSci9gnImAAAgAElEQVQStbDtcX9zOo1yD2wMy5BPwbq/pQ55eP+PVsDfpe9Bh6HR1JZvqrdD5Wrn/rr9sPdl6DXFun1oFTxzcuNz4E33wu6FcOY9oZcKwOJPwMZ/N95efxdMeQG6nx7N/iIiIiL5xumauXwmbJtl37d7HtQfgcL24dWVy3Y+49y3/Unnvg13OfelE8IvIiLSdrwMDPAwri+w0aHvX8BNAdVzEjCuWVsZ8HSa6+l3KkVEREREREREREREREREREQkb8SyXYAL0+dHOnNFJBeYSee+Qyuiq+OYimWw6pfO/ePvsA5cS+5LNxit/4ecgz7yIRjNLVzFSUN18HXkikSNfXu8xHlOtwkwZV449aRS2Ck7+0Yh7hDu09zeV8KtQ0Qk17iFeBoOZ1S6nALterZsL+0PHYcHV1sqZ97n3Fe3H9b8IbpapHVa+78tQ9EAMGHpDyCZIoxK/Nn7Ksy7AGb1h/kXQuX72amjck3qoLFjjALofy1MXZCdcN2up8CEv3gbm6iGp06E+wvgiYHw7rchWR9qeXmlelvqMUfWwXvfh/sMmDOqZTD4pv9YffOmBBhebePQquND0QAaDru/niQiIiLS1jld4/e+GPpd4zxv0VXh1JPrErVw9KBzf90+++fEqZ4npwq6FxERERERERERERERERERERERERERyQFZOC3oagsKLBNpe0r7OPfV7IyuDgDThKebv9lqM4M/EU0tEoA08z+HfQm2zbLvaziSfjlRSdSlHtNc3T4o6B98LbnALWzGTa8pcIMJtfvgsR7B1+WkqHN0e2VD/w/Blofcx2y6B044N5p6RERyQdLhsSrm8lgVi8OYH8BbXzq+fewPnMPUwlDUxb1//Z0w8W/R1CKtk1tgavVWOLIeOg6Lrp7WrGoLLLio8TlP9VZ49jSYvh7aRXg9DLBvceoxZz0C/a+2nsdHeb9nZ+inoL4C3v2Wt/FmAqo2WyFa1Vth8v3h1pcv3ILzj3njs97W2r0A5p4Fl62Csn6Z1WVn07327VsfgcRRiBcFv6eISNSObICa3VDSC8oGZv/xVkTyX7LBvt2Iw+jvWtdSdnbNtUJvu5wUXm25qG5/6jENlS1fm6na5D4nVph2SSIiIiIiIiIiIiIiIiIiIiIiIiIiIlHJqWA00zQHZrsGEcmCXhc490UdQrVrrnt/9zOg5IRoapHMJev9zzlhKhS2h8IO9v0NhzOrKQrJNIPRylprMFqNfXu8xNv8dt2hx2T3UI4gnTA1mn2yZeS3Ugejrf8HjL8j+gAOEZFsSTfEc9gXobQfbHnECkrrdy30vTT4+twUlEa7n7Q9Ttdyx1SuVjBaUJb/pOVz8IbDsOk/MOJr0dRgJq1wsdW/cR939uPQb6b151wJaRn5Teg8HhZM8zdv8wNQ0AFO/wsYaYZ7txZBvwbUUAUb7oKxtwW7LsDWR537HiqF0++EIQrWF5E8VbML5p4NR9Y1tpUNhClzocPQrJUlIq2AmbBvjxVAl/Huc9f+xbpmbku8BKMdPdQyGK1ytfP4XhdmVpOIiEgrF8XvLpqm6fkFTdM0FwI58gKoiIiIiIiIiIiIiIiIiIiIiEi02vhpOxHJCe0HQ8eR9n01O6KtZeN/3PtP+V00dUgwup6K798R7THZ+lzgEIxWnwfBaIk0gtG2zwHTDL6WXJBu2ExTp/wWirsHUw9AcTe45gAM/Ojx7f2vhf7XBLdPLup2Goz+bupxb381/FpERHJFJo9V5dPhzH/DpLujD0UDiHsIRks2hF+HtF7Jo+79bge+xbtkAtbfad934O3o6lh3Z+pQtFP/0BiKlmt6XwhXrEs9rrn1d8KSW4OvJ980VAW/pluAWSbcXhswE/D6J+HlD8O2J9N7ji4ikk2vXHd8KBpA1SZ46kRYcAm8ciOs+Bls+CfU7MxGhSKSr5yC0Yy4FRJ8+l+d5+5/M5yaclndvtRj6g+1bKva7Dy+rYXLiYiIiIiIiIiIiIiIiIiIiIiIiIhI3lIwmojkhtP+YN9ety+6A6TV22DTPc79Az8C3U+PphYJRrvu0OMsf3MG3mh9LszjYLSkQ7iKm2U/gLe+CGYy+HqyzTFspsT7Gt0mwKXLrNCZCX/OvKaZ26GoC5zxT5i6EE7+NUydD2feB7HCzNfPdeN/Ct0muY/Z8gDU7o2mHhGRbAvisSpbCjwEox09GH4d0nolUzwfVDBaMA6/79y36d7o6th8n3t//2th+C3R1JKuDkPgqjSuY1f9yvpoy8IIRqtYBttnB7+ul1q3PAQvzYC5k6HuQPA1iIiEoe4A7HnRuX/ns9bj9Xvfg8WfgNmjYLfLeBGRptyC0QCGfsZ57uE1rffNXZx4CUY7WtGyrWa7/djOY603qxIREREREREREREREREREREREREREckDCkYTkdxQ0se5r3ZXNDW8+QX3/vKZ0dQhwZr8AJQN8Db2jHug4zDrzwXt7cdsugcWXg6vfwpeuQGenQD3GfDC+fD+nyDZEEzdmUg3THDtn2H3wkBLyQmJGvv2eDt/65T0gsE3wYmfg37XpF/PkE9DvNj6sxGDE86FkV+HE86HWEH66+abY99rTsxkOAEGIiK5yDEYzedjVTbEPQSjeTnIK+IkedS9f8PdUBPRc8bWrGaHc19pv+jq2POSe/+A66OpI1PtusM1FVA+w9+8d78Fc8bAyl9Ag8PzmNas4Ug46y6+Kfivp59A8gNvw4qfBbu/iEhYanb6G19fAW98GpIOYUciIk2lCkYDOOsR+zENVdYbHLUlXl5Pafoz1K2zYPEnna89O44Kpi4REREREREREREREREREREREREREZEIKBhNRHKDWzBaze5oajjwlnNfURf/B5olN5T2gekbU4+7fDUM+kjj7cIOzmN3zIH1/4DN9zf+v9mzEN76Eiy6Ckwzo5IzlkwzGA1g+1PB1ZErwgibOfHzgOF/nlEAI7+Z/r6tSddTU4/Z92r4dYiI5AKncJV8CEYr8BCMtuOZ8OuQ1itVMBrA02Ogcm34tbRmRw8499UfiqaGnc+nHtNpdPh1BKWoE5z9OMzcBuc/B+c/D6XlqecdWgFLboV550PCw///1qShKpx16/bD7nnBrddQ7fw808mme6zwZxGRXGfW+59zeC3sfz34WkSk9fESjNZrqvP8vYuCrSfXHVqeeswr11lvlrPiDlh0pRUe7qS0b3C1iYiIiIiIiIiIiIiIiIiIiIiIiIiIhEzBaCKSGwo7OvclQjoY21QyAbUuAWyXLoVYQfh1SDgMA3qe69zfbSJ0HH58W3HP9Pba/hTsmpve3KA4HdAe8fXUc9f8LthacsGWh+zb4yXpr9lrCpz9KLQfat8/6ONw9mPQ5SQwYtbBri6nwJQXoOOw9PdtTfpdlXpM5Zrw6xARyQVhhHhGpahb6jFLvx9+HdJ6eQmGqtsPq38Tfi2tWd1+5776Sqg/En4Ni1JcH5b0hvZDwq8jSIZhhQ/0nga9L4STfu597v7XYdkPGm8nG2D17+Cp4fDkEFj6g/CCxLIlzL9PkCGddfv8z6ndAweXBFeDiEhYkmkEowHMnQwPlsAzJ8OmB4KtSaQ1OloBi2+Gx8vhuYmw8V5/87c8as17sBQeaAcPd4b5F0KFhyCtbPISjFbUGcoG2Y979Uao3Rt8Xblqx7Pexr3xWXjvu6nHlSgYTURERERERERERERERERERERERERE8odSfkQkNxgxK6QoUdOyr6E6/P3rK8BM2vdN/DuUlodfg4Rr1Hdg36stD/cZMTjtjy3Hl2ZwQOSdr8FlK9Kfn6lEnX17rBj6ToftT7rPP7weOgQcONBQBZWrrQNOnUZDrDD1HNOEqs0QK4K6Pdbfy4hDxxFQ2N7bvrsXgNlg31fgcQ0n/a60Pkzzg3o/uA8xYlYAwrExyQbAgFjcdpk2y8v9auXq8OsQEckFTsFosTwIRvPy+FbYIbz9kwk4sg7KBkK8OLx98k3VFuvrXtQl25VkLulwbdvcTo8HxsWeWzAaWEFQXq/B01H5fupQrGG35P81df9rYcUdcMhjYMXKn8Pwr0BBB1h8E2x9tLFv+Y+tsK3T/xJKqVnREGIAX5ChZOkEowEcWgVdTwmuDhGRMCQ9hNI6SdRa97evXm+FPPebGVxdIq2JacLCS2Hfa9btmu3w2kes174HXpd6/rYn4eVrjm9L1sGuF6yQwivWQrs03/glbE6v1RvNrvP7Xgbv/4/92HnnwSVL8/+5QSrJBqja6G3sxn95G6efdYqIiIiIiIiIiIiIiIiIiIiIiIiISB6JZbsAEZH/U1Bq357qcHQQ3A619poW/v4Svj4Xw9QFMOTmxrZBH4dLlkC3CS3Hl2QQjHZoJay/O/35mXIKj4i38xZMsum+4GoxTVj2I3i4Ezx7GjxzMjzSBTakOKhzeD08PQ6eHASz+lrznp8Ez02ARzrBe99zDjM8JlEL86Y493ce5//vY8cwrI9Y3Po4Fop2TKyg9R/SStcpv3Pvr9sLdQeiqUVEJJucgtHieRCMBlbAsZuwgo63z4bHesDsEfBIV1j163D2ySdVm+Hpk+CJAfBIN1h0DTTYhE/nC9P0Hs5RtSm//67ZlioYLRFyYPnO5937O46EEd8It4YoxArhotdhzH95n/N4H3i4w/GhaMes+ysc2RBcfdkW5us/h9cEt1aq7xcnr30EEhkEDomIRKH5m0qka9GVUB9i4KVIPju0vDEUram1/5t67rYn4KUZzv31lbDG5o1gcoWZsG83mr2XW7lLsOKhlbBjTnA15SqnELlMdDst+DVFRERERERERERERERERERERERERERCUpB6iIhIROKlgM3h0rAPYIN7MFpxt/D3l2j0mGx9TPx76rGl5Znt9fonYdfz0OFEqN4KBe1h0Meg62ktg7OClnAKRiuGAg/BaLueh7E+Durbqa+0wg1W/Qr2v358X0MVLL4JijpDuc0hLtOEl2ZaB8TsmElY8TOoWA5nP2YfOnb0oBXE5sQogD6XeP7rSEi8fC9UroEeZ4Rfi4hINuV7MNqoW2HZ7c79DVXW43uQ10BHNlrXC8cOVSeq4d1vQodhUH5FcPvkE9OEhZc3uYYyrSCldj1hgocD9rnI70Hwg0t03ZCuoymCnsIKrDJN2D0flnzbfdzZj0G8KJwaolZQCuN+BKO+Aw+VZb7egovh7Eeh89jM18q2hMP/s4Efsf4Pbnu8Zd+wL0O3063nmG73GXX7Ye9rwdxHuL2GlMrKn2f+fFtEJExuobSxQn/BaQ93gEl3Q68LMn+tVaQ12XiPffveRdbnhmrYvQCqt4ERs15rNxNQtQXW/in1+it+Ah2GQlEX6D0tt15bcAxGa/Yaf89zoLAz1FfYj3/rFqjZCV1OtsK+jFb4XnDJgIPROo2B9oODXVNERERERERERERERERERERERERERCRErfC3hEUkbxWU2rc3RBCMtvcV+/Z4iXNd0rqV9Ml8jc0PwPIfw4Z/wvv/A8+dDm98FpIOh3+CknQIV4kVQ2HH1PP3vgzb56S//+F18PRJ8PK1LUPRmnppJmx9rGX7wXecQ9Ga2v4kzCq3Drg3VbEMnhoORzY4z+15thXMJtnldBCuqcNrwq9DRCTb8j0YbeCNKQaYzn/HdG191P5xZJvNtUVbcXit/TXUlkes8Kl85BT462TumVC1OZxaWrtUQU9hPC9vqIYXr4D5F0Cixnnc+J9BpxHB759tBaXBBLEfXgtPj4cVd2S+VrY5BfAVlMGQT7ZsjxXDsC/CoBvh0qVwyu/gpP92Xn/umbD2r5nXmUkw2sZ/Zb6/iEiYnILP4iVw2Uo49Q/+1lv8CZg9ErY/nXltIq2F27XEkU3w/CR48XJ483PwxmesEPAlt3oLRTtm8U3w0gzrZxJHNmVYcICcXg9u/uYnsUIY+hnndaq3WF+f5yda9zNBh4jlAr9B4amM+Fqw64mIiIiIiIiIiIiIiIiIiIiIiIiIiIRMwWgikjviDgFkiQiC0Zbcat9e3D38vSU3xYuCOaTe3Po7Yeczwa/blFOARLwYDI8P/S9/CKq2+tt36yxYfDM8dSJUbfQ2Z9HVUF95fNuOZ73vWbsLFl5+fNsbn4O6ve7zJj/ofQ8Jj5cDa5Wrw69DRCTbnEJN8yUYrcNQOOMe9zFOYTfpevdb9u0b/hnsPvlky8P27XV7gw+mi0ryqP85Cy4Jvo624Mh69/5558GCi+HQysz2aaiGlb+E+wx4qAx2eAhkHvGNzPbMZT3OCWghE5Z+Hyo8BEznMseg0BLocymMvR2MD0IzirrC6X+BjsOs251GwoivwMhvQ0F75z3e/Bwsvd3//WLVVlj2Q3j1I7D61/7mNnVkffCPiSIiQXIKRosVWtf9w2+BGVug6wTvazYcgRcvgwaXIFSRtsTtzUve/or1xh9BqVgGK34S3HqZME0wk/Z9Rrxl25jve1t3479h2xPp15WrnO6P0zX4pmDXExERERERERERERERERERERERERERCZmC0UQkdxSU2bc3hByM5ra+gtHatqIQgtEA1v0tnHWPSToEo8XaQf1hb2skqp0DR+ws+zEsuhI23OV9zjGP9z3+9lKPB56O2b+4MUztaAXse819/Cm/hXY9/O0h4Sjrn3rMkQ3h1yEikm1O4SyxPAlGAxj0Ebh0qXN/QiEwWZWvITzpBKNVrmqdh+LDlGyAwymC0QB2PgdzRsPuF9PbJ1EL8y+EJd/2Pue8Z6zQ6tZq+C3BrWUmYWOKkMpclyrke+xtcOUOuOQ9mLHRPtzBMKDjcPd9lv8QXrzCe9jEkY0w90xYdjtsuheqNnub56Ty/czmi4iEyen6K1bY+OeyfnDRYrhspfVYPejj3tZ+fmLm9Ym0BoWdnPu2Pxn8fpvudw4ki5JbDXbBaIUd4FqPP8/Y8XR6NeUy08Obinh1yRLvb5ojIiIiIiIiIiIiIiIiIiIiIiIiIiKSI/QbsCKSO+Kl9u2JkIPRKtc497UfEu7ekttiBeGsu/0peOOz3kPKjknUwrvfhgdL4D7D+nhxOhx4p+U4O/FiaPCx55YHoWZ36nH1lbDip97Xba7hCDzaEyrXetvPzsJLrINVdfsB033s8K+kt4cEr89lEEsRdHH0YDS1iIhEYetj8PxkmDUAXvs41B2w2hM19uPjeRSMBlDsEjxasSK6Otoqu4Pkx7z1Je8BQLkknWA0gDc+F2wdrV3VJn+H7t/5Wnr7bJ8N+171Pj5WCN0mpLdXvjjhfDjnCSvIK9V1sRerfpEboRfpcgz5Lm78c7ue0GUcFHZ0XqfDsNR77XoBHiiCF86HJd+BuWfB7JHwyo1Qu/f4se//Caq3pV7Tq8rVwa0lIhI0p2vG5o9TRgw6jYQ+F8Oku72tXbEs83BJkdbA7TomDIlquD9u/TzhqeEwfxrsez3aGgDMhHOf0/PZwvbQeVzqtTfcBfVH0qsrVyUDDEbrMj64tURERERERERERERERERERERERERERCKiYDQRyR0FDsFoDSEHo70007lv7A/C3VvarnV/gxcvB9MlxKuhCmp2QaLOChOZMxpW/fL44LPtT8H8C44PFEu4HCbvc5m/Or0EF+xb7HyA3au6vTB7GGx/Mv013v5K6uC3S5eDYaS/hwSrsD2MSBGscbQimlpERMK27SlYdI312Fq9BTb+G+adbwXYNA9gOSZeEm2NmSooc+578TL/obDij1sw2pYHYfHN0dUSFKfrWoBupzv31e6CyveDr6e1qtnhb/zBd/1/fU0T1v7F35yBN0JxN39z8lH5dLh8NVxXBx+uzTwg7dUbg6krG5zCEP1+TToO9z52z0JY+XPY+4oVWLb5Ppg7GZJNgjtW/9rf/qnUbA92PRGRIDndFxuFznMMA6avh4IOqdd/73vW65xBBv6IiHeH34ddc2H+1OiDCt3CmA2XN6mZ4PF5xCvX+asn1/kJr3bT5/Jg1hEREREREREREREREREREREREREREYmYgtFEJHfEHYLREiEGozXUWMEUdow4dB4b3t4ie16CimX2fWv+CLP6w+O94cF28PQYOLLBfuzRg7DiZ423nULK4u2g9zT3Q0bNpQpJ2PsKLLjI+3qpvPGZ9Oeu+yvU7XPuv2QJdB6d/voSjvF3wMS7nPsVjCYircXaPwHNAlErlsKuF+DwGvs57QeGXVWwnK7nj9l8fzR1tFVuwWhgff2dQvhylVMwB8DZj7vP3fFMsLW0Zsl6/3N2Pu997KGV8FhP2D3P3x4n/cLf+NYgXgxX7XIf0/0M6Hqqc/+Wh8MPmA+LUxhivNjfOt0mZlbH4bWZhXan0lAT3toiIpkyHa4LUoVUth8Ml7wLQz7tPm7TvdbrnI92g033pVejSL5L5/r7mLKBx//cqvsZ6a3TUAXLbk+/jnSYCec+t+ezPTz+HXfMgQPv+KsplwUVIHni54JZR0REREREREREREREREREREREREREJGIKRhOR3FHgEKQQ5oHeytXOfX31LuoSgbdvafw/3lBjBQwsuhre/jIcPeB9nff/AKYJdQcg4XDIuqA9FHWG0/7gfd3qrdbn+iNWuMTGe6Dmg4P6Rytg/jTva2Wq9yXW38FJsh62PWXfFyuGLuPDqUsyYxgw5BNwpsNh2PpD0dYjIhKGhirY+Zx934KLIFFr39dxZHg1hSEWt4JYnWz4Z2SltEmG4d5vNsDWR6KpJShuwWgFpXC1SyjuoeXB19NapRPM8O43YOfc4++/qrbAhn/Bqt/Ae/8FS38Ai66FOaPdA4ztDP4ktOvhv67WoKgLTN8Ipf2bNBpw8q/hBhOmvQoXvwXdJtnPNxOwe0EkpQbO6Xs+VRhPcyec7/7c0Yt9r0HFcnj32+nNL+7m3Of0nF1EJBc4XRfEClPP7TAEJv4Nrk+mHltfCa/eCK9/yrp2WPtXqFjhr1aRfJVuMFpxd5i+AS5dal0X3mDCBS9CvCS99Tb8M7jwLS/SDUYD6HWBtz1W3OG9nlxnBvBv0/9a6H1x5uuIiIiIiIiIiIiIiIiIiIiIiIiIiIhkQUG2CxAR+T9xh2C0RIjBaIffd+4bdFN4+0p+KBsEh1aGu8eel+C502HS3dZBwIql6a/1/p+sQBInHYZan0/8PHQ/A1b+EjY7hFEds/LnMOB6eOW6xiDBWBGc/TjU7fX+/dn7Ihj6OTi8BpZ8x9ucpkp6w/lPW8ELz57q/O+y/Un79sIO/veUaBV1tm+vr7BC/1KFvYiI5KojG2G+xwO8zXUcEWwtUYiXOAe97XstmD0aFChjyy1E7JgjG8KvI0huf6dYkRWONuRTsP7vLfvdQrDleOkEMySPwoJp0HUCnDcbdr0Ar308mMP7RgyGfSnzdfJZ+4Fw6RLY+pgVSN3zHOg24fgxJ34e9i+2n//i5XB9wvpa5pNknX17rNjfOvFi6+uz6pfp17Lql5nNv/hd67lr3d6WfQpGE5FcFkRIpWFYwU1Pj0s9dv0/mk6E8T+B0d/1vpdIPjLTDEYbcEPL10hjhdbr9xvuSm/Nfa9Bz7PTm+tXJsFoA2+0nnOksvURWPVrGPkNf7XlonSeW53yWyjqar3hTZeToc8lel1dRERERERERERERERERERERERERETyVp6djhORVq3AIRitIcxgtLXOfeXTw9tX8kNUh/EPrbDC0TIJRQN4+xZ48wv2fQUdoKRP4+0uJ8G4H3lb95mTjg+WSB6FV2+AQ8u91zbx79BvJoy6Fdr18j7vmP7XWZ/j7eCS95zHVW2yby/s6H9PiVahQzBasl7BASKS3+ZNSS+MqmwQFLYPvp6wHT3o3m+ame/RcCTzNVojL4FxtTYBPbnMKSQJGoOSup5i37/3Zag7APWHYdWv4OUPwRufg13zYevjsPhmeOUGWPsXSLjs0xZkEmZ24E1477uw+BPBhKIBnPJ76HpyMGvls6IuMORmK9SheSgawKCPuM/f8nA4dYXJ6Xsx7jMYDWDsbZnVkq54KZz1EJT1g57n2o9J9VgpIpJNToGpsUJ/63QaA+2H+tzchPe+DwczfI1UJNelE0zc+yIY/2P7vpN/kX4tL5wDb38VDryT/hpeZRSM9lHvP69595tQ4eNnF7kqmcbzqxFfhcEfgzHfg76XKhRNRERERERERERERERERERERERERETymoLRRCR3FJTZtzdUhbfn3pft28tngqG7yDbvhClQNiDbVQSj44iWh2Ccvue8qD8EWx/zNrbTKCgtb7w9/qf+9yvp3fjnWAGM/La/+QUd/O8p0SpyCEYDeCuikEIRkaBtvNc5tDOVPpcEWkpkOpzo3h9EGEyi1r0/ncPDrUEyxdcFoHZP+HUEKXnUvt2IQeyDg/MdRzjPf7QbzBkF737LCola91eYPxUWXQUb7oLN98Obn4cXp0PCYa+2IJ1ghqbW/8P538qvS5fDcF37eWLE4Mz7nPvX3xVdLUFx+n8UK/K/VkEZnPY/mdXjV69pcOUO6H+tdTteYj9u478UyCgiucvxvthnMJphwOjvpFGAad1PirRmfq+/p6+H855xfvOP4m4w+nvp17Pm9/D8JNjxTPpreJFJMFosDqf9ES72GOD29Fgwk95ry0V+g6ebvjGOiIiIiIiIiIiIiIiIiIiIiIiIiIhIK6DUHxHJHfFS+/ZEdTj7NVTB7vn2fZ3HhbOn5Jd4EVzwknW4Od/1PKdlW7sToP2Q9Nc8ssHbuH7XHn+79zT/wYM9zjr+dmlff/MLFYyW89yC0TbcHUyQjohI1N79evpzB3w4uDqi1ONs9/66fZnvkahx72+rQQoNKb4uAHV7w68jSE5hZU1DkjqPAwz7cQDV21Lvs+t55+eGbUGmwWhBOWEKdB6d7SryS5+Lnfv2LICjh6KrJQhJh7CwWHF660UdMtp9IhR1arxd4BCMBrBrXvj1iIikw+m6IJ2QysGfhFN+AyU+X8db/Ru4z0BjXxoAACAASURBVGj8mD0SNj/kf3+RXOXn+nvoZ6H94JZvetLcwBsyr2nhpZB0CS/LlFuIeapgtGO6nARlA72N3b3A27hc5Tf0fcwPwqlDREREREREREREREREREREREREREQkSxSMJiK5o8AhGK0hpGC0ihXOB1D6Xh7OnpJ/yvrDlOfguobUQR+5bNgXW7YZBoz+f+HuW1oOI7/Rsm3Ip7yvccIU6D7p+Da/ByoLO/obL9ErdAlGA9j9YjR1iIgEpXob1O5Jf36+XncM+5L7gebqrZnvkSoY7fVPtc3ghGRt6jH5FjSadAhGMwob/1zcreW1Yjp2Pp/5GvnKzIFgNCMOJ/8q21Xkn6Iu0PcK+75kPex8Ntp6MuX0PR9PMxit/WAYcH369fgVb9fstksw2prfh1uLiEi6nO6LY4X27W4MA0Z8Da7cBtcehlFpvg5ZuRpe+TBs+Gd680VyjZ/r7+Ff9jau0ygovzK9epp6+RrnvoZqqN6e/tqmS+harMDbGoYBo7/nbeyuud7G5SrTJRittP/xt9sPhf4u/3YiIiIiIiIiIiIiIiIiIiIiIiIiIiJ5SMFoIpI74g7BaImQgtH2OLxbfEEZdD01nD0lf8XicOLns11FegZ/EtoPsu8bcjOcMwv6XR38vn0uh4vfhsIOLfsm/BlO/SP0vhgG3ADDv2Id3OpycuPHCefDuB/DeXOsA09NlfTxV0uBTQ2SWwpKoKirc3/VpshKERHJiGnCsh/BrH7przF9fcvHvnzR9WTr8d/J/Avgve9bX6d0pQpGA1j7p/TXz1cNHr4uTsHQucrpIHjzYI5BH818rzW/haW3g5nMfK18k3Q5cB+WE6ZCt0nQ5zLr+cDF71j3H+LfOU84921z6ctFiTr79lhR+mue8W/ockr68/2I+QhG29WGwxhFJLc5XS9mcl8MUNgexv8UzviP9Zphl5OtN0/wY5VCVKWV8Pq8bPBNVuCZV2c9CCf9HHpdaM2d9hrM3A7DbrGuvb3YNguObGxWbwO89WV4pDPMKofZI6Fiufe6jnELRnMLWG9u6Kfg7Meh31WAy2snK3/ufc1c5Pb/ZNprMPxr1s9QRn4TLlxkhYaLiIiIiIiIiIiIiIiIiIiIiIiIiIi0Ih7ffllEJAIFDsFoDSEFoy35jn17hxPBUG6k2Oh3FfS9ArY/lb0aSvpCzXZ/c4bf4t5fPsP6qN6WWYhLU6NuhZP+27nfiMHwL1kf6Sjr7298Uef09pFoDfmk8yHXRG20tYiIpGvzA7DstvTnn/wraD84uHqyoct4K+Sgept9/4qfQtlA6zBzOrwEox14N72181nSw2Nl9RY4vB46DAm/niA4BXbFmr2cNeRT8OYXMt9v+Q+tQOHBH898rXxiRhyYd119y39DSZ9hWCHea//csm/HHEgchXiGYTZujlbA7gVQvRWMAivoptvpVri4H2bSJQyxOP36YgVw5r0wZ2T6a3gVbx6M1s5+nIhILnMMRiu0b/fDMGDQjdbHMXPPgb2LvM0/tALW3Wm9jtmuZ+b1iGSLl2C0bqfDKb/1t26sEEZ92/po6rQ/WJ9X3AHvfTf1Ok8OhusaGq/nVv8a3v9jY3/lanh6LFx31N99Q1DBaAD9ZlofAI/1gtrd9uMOr4MOQ/2tnSucro2NAijtA6f+Jtp6REREREREREREREREREREREREREREIqbkHxHJHXGHYLRECMFoK3/h3NdhWPD7SesQL4azHoFzn4KR33YY4/D/OCiT7/c3vvsZ0Hm8t7Gl5TB9o/+amps63z0ULQglfaxAFa/0fZ0fhn7Wua9uX3R1iIhkYrWHg8sT74IPHYFzZ8MJU63HqbG3w7TFMPIboZcYieLu7v1bHkp/7QYPwWgNh60woLbEy9cFYPZwWP7TcGsJitPBeaNZqFasEKavD2bPxTdB3YFg1soXXoIZgqRQtOCVz7Rvr6+EA2+Ht+/BJTBnNCy6Ct7+Crz1RZh7Jrw003/IfdLlPjuWYbBbx+HRPCdsEYxW4jw2iIAhEZEwON0fGyHdb534eX/j3/gMzB4Bu+aHU49IFJyuv0v6wtgfwuQHrNfYg36zj0Efh4IO3sZu/Ffjnzf8037Mwsv97R9kMFpTbgFyT50Ippn+2tnkNShcRERERERERERERERERERERERERESklVIwmojkjgKnYLRaMJPB7ZOogyW3Ovd3OTm4vaT1iRdB38vh5J/D1AVQ2LGxr/xKuOYA9PF5IMir8XdAj7P8zZn4DzAM7+NL+/pbvykjBhe/Ayecn/4anvcynA//2+k4IrxaJDgdhjr3KRhNRPLBrhfgwJvuYwZ/EoZ8AgrKoO9lMPUFuGINjL0Nuk+Mps4opApG2zU3/bUTHgPAju5Pf498lKz1Ns5MwLIfwP63wq0nCKbDQfDmwWhgheYW9whm30VXBrNOvogyGK3XtOj2akt6nmc9rtipXBXOnqYJr38Gana07NsxGx7vA5Xve18vUefcFy/2X19ThgHnPG6FjYTJTzCaW5+ISDaZDtcFmYZUOhnwYRj2ZX9zjh6E+VPbXhCytB5O32fl02HsD6zvC6dru0yU9oFJd0Fxt9RjX78ZXpwBCy6FytX2Y3Y9DxUrvO8fVjBaqp/p3R+DRVfDax+HdX+HpEsducTx+bACdkVEREREREREREREREREREREREREpG1QMJqI5I64QzAaeA8/8GL3Avf+QR8Lbi9p3U44D67aAxe+DDM2wTmPWQe2h9xsP37KPJixBU78vLf1J90NF78N5z0DV++D0d/xF3I2czt0Gul9PECsEAo6+JsDUNofPlwLXSMMFvQTjOb36yDZ43QYVsFoIpLr9r0O8y9MPa7PxeHXkguCCqiy4/W5QV0bC0ZLeAxGAyt4ev3fw6slKI4HwW0OzRsxOPFzwey75yXY83Iwa+UDp69zGIZ+Krq92pJ4EXQcZd/3usPz00wdWuEeBlp/CJ473XsIY9Il3CaWYTAaQKdRMGMzTFsMA67LfD07zYPRXMcqGE1EcpRT2FgspCAeIwan/d56zfTc2f7ecOHFK8KpSSRsTsHEUQRe9b8GrlgH0163fu7gZvuTsDPFmKfHeH9jo7CC0Tp5eFOUrY/Bxn/DG5+Gl6+xQn5zndPztJhNULiIiIiIiIiIiIiIiIiIiIiIiIiIiEgrpGA0EckdBWXOfQ3Vwe1zaKV7f2mf4PaS1i9eDD0mQ9mAxrZ+M2HiXdB+CBgF0PNcuPx96DUFyvpZt70YfBN0PcUKUCnu5r2mrqdagWrp/l8u7up/zoUvh3dA0kmPydDuhNTjSvsd/+8jua24u317lMFo22fD/GkwewS8+QWor4xubxHJX8t+mHpMQXvo3UaC0coGhre2gtHsuYUK2Vn3V+8H2LMl6fMg+JjbYNStwez9zteDWScfOAUzZOqcWdDzPOt5QtkgOP2v0P/acPYS6OgSCFGxIti99r8FT49NPa7+EKz4qX3fkU2w6Gp4ehwsugYOvOO8TqworTJbrhOH7hPhzHth9Pes55MFZdDvauf7jo7Drf/HntZvFozmFlipYDQRyVWmw3VBUPfFTsr6Qd/L4JTfeZ+z63l4ajhseyK8ukTC4HT9HdXr60Wdofvp1s8dTr8z8/Xuj0Pl2tTjjh5w7sskGA3gCg/7H7NtFtwfg/kXeQ/xzQan58OGgtFERERERERERERERERERERERERERKRt0G/OikjuKCh17ksEGIx29KBz36j/F9w+0rYN+YT1kaxveaDJS0hXpzHOfQM/Cpvuse+b9hp0n+S9TjtFXaBqs/fx3SZahxejFiuA8T+D1292Hzfm+2AoCzZvtHMIRqveGs3+O56Fl2aCmbBuV66Bg0us8D/9PxIRN3tfTj1m3I+hsEP4teSCbqeFt7Zb0ExTR9taMJrDoWk3+9+yDsTnKtPnQfBYHE76bxh/BzQchlhx43PJwk7WY/nq38E7X0u994E3oaHKPcC7tQgjGK3PZdB3OpTPsH9OJMHr5BKMtuUh6OwhwNOLw+vguQnex2+b1bKt7gA8OajxdsUy2Pqo8xrxYu/7eWHEYPxPrMdlM2E9t6w7ABv+CbW7G8e1HwoXvwsFJdbfe+5Zx/c3V9jx+NvJOuexCkYTkVzlFLYb1WN5l3HWNcT2J72NP/y+9TrOuU9B38vDrU0kKNkORmtq6Kfg0HJY8/vM1pk9DGZsafw5Qd0B6+9T2AFME6q3wLwpzvOdwq+96jDUCqLf+az3Obuehz0L4JKl7tfS2eL0fDjTr5WIiIiIiIiIiIiIiIiIiIiIiIiIiEieULqDiOSOuEswWkNVcPtsf8K5r//Vwe0jAvaHmbqeBiW93ecNcQn7Gvpp+/aBH808FA2gqKu/8Z1dQtzCNuST7v2TH4Chn4mmFglG2SD79podsOO58Pdf95fGULRj9r0GB98Nf28RyW9uQb5lA+Dsx2D4V6KrJ9u6eghGW/yJ9AKZEjXextW1sWA0M42v5fMToXp78LUEpflj8jGpDoIbhhVQFC+2Qn+LujQGnLoFcjf3UHvY8C/v4/NVkMFoPc+BcT+x7vMMw2pTKFo0+riEwSz/UXD/zsvSCFjb8Uzjn2v3wqPd/M2PFfnf0wvDaLw/Ke4Kly6FoZ+zQjVGfAOmvWqFooEVtnHhK1Babr9WQRl0axYY5xQuBApGE5HclXAKRgs4pNLN2Y9aQbcdh3ufs+z20MoRCZzTc7dsXTeP/n7LgNd0bLgLanbDvKnW9d4jXeDRHvBod3hioPtcI575/ufN8T8nWQ8rfpb53mFwCj93CgoXERERERERERERERERERERERERERFpZRSMJiK5w+2AeoNL0IQf9YehYplzf9dTg9lHxE2sAE7+tfOBwm6T3AO/ekyGwTcd39b9DDjtD8HU5zcYreOIYPZN16S77ds7joQBH462Fsmc2/+nhRdD7b5w99/mEJ658hfh7isi+c00nQOcup8BMzZBvysbQ4LagtJ+qcds+Ce8e6v/tb0Go9VX+l87nzkdmk5l0VXB1hGkMA6CuwVy21l8Exx4O/39ckn1dtj6OOxeYN1vHWM6fJ27nAQF7b2tXX4lXJ+EC16EMd+DeEhBVuKsy7jGAEA7b34x8z2SDbD9Kf/zFl5qBaIBvHK9//nxiMJ42vWE0/8M5z8Dp/wK2vU4vr/DEJixBfpfe3y7EYPT/tSyzvIrnfdy+7cSEcmmZJ19e5SP7bECGP0duHw13GBa1xipHHgbqrfZ9x1aaV0DHXgn2DpF0uUUWGtkKRitXXcYlcZz8+b2vgqzymH3fOu2mYC6fXD0QOq5QQThGjGY8oIVWOvHpntg6W3w5hdg84OQqM28FgAzCQffg3V3wvbZ1s8nfc1XMJqIiIiIiIiIiIiIiIiIiIiIiIiIiLRt+s1ZEckd8RLnvoaqYPZ49jTnvvF3BLOHiBcDr4fOY61DQsmjUNwTDq+FjsOh/zUQb+c814jBxH9A/w/Bvteg4ygov8L/gR8nRV38je9xTjD7pqt8JsS/0DIkZeAN2alHMlPW3/r/73QAbddc6/snajU7o99TRPKHUygawEltNFjRMKxriqMH3cdteQhO/Y2/tb0GoyWP+ls33zkdrk9l/xtQsRw6jwm2niA4HgSPp79mOtfMK38OZz2U/p65YP3d8NYXG79/ekyG856FwvbO/3dK+8HU+fCITXByn0thwA1QvQU6jYK+09tW+GOumr4Jnuhv37fzuczXr1gK9YfSm7vlYeh7Geye53+uU6h4NhgGTH4QBlxvPR8v6mx9P3Q5qeXYLuOd13EKHhIRyTan+6ds3hcbBly2CuaMdB839xyYseH4tiXf+SDs/oNQ2ME3wcS7dN0i2eV0/R3LUjAawPCvwrLbnWsrv9K69ncLjd71fHp7d5sUXGhsr6lwyXuw9TGr3kQtrP976nnLf2R9Xvtn6/MVa6HD0PTrSDbAqx+BLQ82tpUNgHPnQOfR3tZwej4c0693iIiIiIiIiIiIiIiIiIiIiIiIiIhI26DfnBWR3BErsMLR7IIO6isyX79yDRx+37m/k8fDCCJB6Twm/QAKIwZ9LrE+glZsE3zgpKQvdHMJHIxCUWeY/AC8cj0kqq228pkw4mvZrUvSY8SgXW+o2mjfX7EUyEIwmg7MiliqtsKm/0D1Vuh5HvS/Vt8f4B5I1ZYPrI74Biz9vvuYmu2w7QnYOReKu8HAG6HjMPc5DR6D0dwObLdGToemvdj8YJ4Fo2XwfeUWyO1ky8PweDmc8msrnDif7veSCVj6X7CyWRD43lfgtY/COY+7BzMUdYHLV8P8C637foDO4+D0O6G0T7i1i39l/aBdL6jd1bKvegscPQRFnVr2JROw6V44+C6U9IITv2iF5jV3aGX6tVWuscL20pHO922YDAP6XWl9uI6LwdDPwLq/texLKBhNRHJUwiFcOJ7lkMpOI+D0v8FbX3IOQK7aCAeXQpdx1u3dC6yA26b+P3v3HSdXXe9//DWzfdN7L6SSBEJCIPTeI12QoldRwAJX9HcB9VqxYMGuV7nqtcBVUBSkd6T3ngBJCCSk9142m+zM/P445GY3O2f6zM7uvp6Pxzyy862f3cycPWfgvDP/T8Fjn68Hx+j6IcWsWkquHIPRKuvhgF/DC5e27qsdAEfcGpwDLX8QHj2psHsPO7uw63UbDROv3v181EXw5DnJz5HD3DU2uPYbdVFu/w3mqXOCzzqa27oQ7t0HJn0FJn4p+fl2c/EiXA9LkiRJkiRJkiRJkiRJkiRJ7UiB/vllSSqQmj7J2xvX5r/2on+k7h9U4Js5pPaqOotgtH2/Edzs3daGng5nr4BjH4HT5sERt0Fll7auSrkafm5437YlpaujhXYUgCIVy6a58MB0eP3LMO96ePo8ePHTbV1VeVh6V3hfZ75hdWyGr48nzoR5v4I3vgUPHAhrnks9Pr49s3UX3wrLHshsbEeQTzDa1oWFq6OQwm4EzytwMJHbtIal8PT58OxH89i7xOIx+NdxrUPRdllyexCQlggJZoi8H8zQfTycPh9OfBZOeR1OfsVQtHI24arwvs3zWrclEvDkWfDcx2Duz+C1L8E9k2BHkoD6TXNyr6thCWyem/28cVe0rzDCPfU5OHl73GA0SWUq7PgUrS5tHcmMuRTOXAK9poaPmf/H3V/P+034uDe+BffuC+teKVx9UqbCzr/bMhgNghCwZOcuYz69+3xs0InQZa/C7VndKwgpLKZ+h8Hp78Bxj2U3b9Et8NgMmPXt7ObNvKZ1KFpzb14Ltw9Nfr7dXGiAXif+nEmSJEmSJEmSJEmSJEmSJEmdShkkmUhSM9VFDEZLFVhx2F+hogxu7pLKQXWvzMbt9z0YfXFxa8lGVTcYeCx0G9O+b5xX6mC02v6lq6MFX1MSs38E21e0bHvnt7BxdtvUUy4S8dQBcW19Y3NbqukTnGdnY+cmmHVN6jHxHZmvN/Mr2e3fnoXdNJ2JxjWFq6OQErHk7fkEDoaFrWXqvT/DqifyW6NUlt4Jqx5PPeb5SzILoItWQt+DoddkiFYUrkYV3vjPh/dtej+YrGkbvHIl3BSBm6OtPy/Ztgj+0ev9/gq4uTL4+s1rw9c++eXUdS2+DV69OrPvobn9f5z9nHJSUZO8PWYwmqQyFRqMFnI8K7XafjD9t+H9c38WXKPFm2DR31KvtWM9vPGd4OsVj8Ajx8J9+8PL/wGN6wpXs7Sn0MCrNv78IFoJR98NQ88KwhBr+sDE/4R9vtZy3OFp3luZqu4Nxz4E1T0Ks14qlV1gwFFw6M3Zz5319eD4sH1V+rHb16Q+Z95l58bgfHvJneFjwsLPO3MAvyRJkiRJkiRJkiRJkiRJkjoVg9EklZeakGC0HXkGozWuhbXPh/ePOC+/9aWOpLp3+jEnvQiTvgQRTyVUBH0OCO9r2rb76+2rgkcsi4CcVBKJ8D7D9iRYGHLj63t/Lm0d5WbVk8EN9WE6+w2rA47Jfs7yB1KHfGUTALbu5cxuXu4Iwm6azkTj6sLVUUhh31M0j/dV15HhfWMvy2yNhVkG/rWVpSlust9l0xzY8m7yvrYOZlBuohXQY5/kfSsfga0L4d59Yc5PMlsvEQ8PKdxln69B7/3hlNezqzWdvf8jv/d7OQgLEoo3Bp9VFepaRpIKJey4FBb02BZSfW4E8MSZsHleZmst+WcQ+P2v42Hlo7D+VZj7U3jyrNSfE0n5CLumjZTB+XdNHzjyNjh3M5y9GqZ8t3Uwcvfxua9f1QM+tBUuTMA5a6H3tPzqzdbwc6HX/tnPW/koPHoKxNOcF69+Irtr8yfOgCUh/6iTwWiSJEmSJEmSJEmSJEmSJEnq5EwzkVRewoLRGvMMRpv7y/C+g36f39pSR1OTJhitblBw07tUTCPOT97etBXWz4Sbq+C2AcHjbzXw6tVBaEM+UgY+eNqsTi6RgKbNyfvm31DaWsrNsrtT93f2YKGKutzmbZkf3hfPMgBs09u51dDeZBMYt6fGNYWro5DC/q4jFcnbM9FjH+gyonV7z33hgP+CYR9Mv8a863Pfv1Te/T3M/1NmY1c9nry9HIIZlJs+05O3z/8j3DEy9TE2n/16TYbJ3y7cuiMvLNxabSUsSGjHeri1L9zWD2Z90/AdSeUj3pi8PSzosa2ctTy8b+ld8NwnMl/rhU+1blv1BCxNc60n5Srs2q2cPj+oqA7/hyKquucWgg5B8G1lfe515StaAcc/CntfCb0PzG7u+ldgUcg/GrDLtiXZ1/TE6clDKcOuh8vpdSJJkiRJkiRJkiRJkiRJkiQVkQkPkspLdRGC0RJxeOOb4f29puS+ttQR1Q1N3T/tlxDxFEJFVt0reXvjGnj4CEjscWPY7B/BnJ/mt2eqQJmwGwGlzmLH+vC+sMC0zmLjnNT90crS1FGuKmpzm7cpxc81kWUAWKq1OpJsA+OaK9dgtD1/3+8SyeN9FYkE57PR6t1tFfWw/0+CvoP/2LIvzM4yPfZtWwKvfQmevyT/tTr78as9G3JaafdrHowx9IzCrDn+/0HvaYVZqy2lCxLauQlmXROEGUpSOQgNRsvg/KiU6gZC/6PC+9c+l/8eS25r+TyRgA1vwsJbYOvC/NdX5xXbmry93AIIU8klDLf73jDh6sLXkq2q7rD/j+DkF+C87dBrauZzF9+Wur9hWW41vXBp67aw62Gv0yRJkiRJkiRJkiRJkiRJktRJmGoiqbzU9E7enuuN+k0NcM8+qcdkc9OD1Bl0GwPdJyTvO/DXMPyDpa1HnVNFffL25fcF4QHJLPjf/PaM78hvvtSRNSwP79u5KQii7ay2zEvdH6kqTR3lKprj97/2pfC+VEGWyXSWYLRsA+Oaa9oCse2Fq6VQwsLe8r0RfOhpcMqrsN/3YOoP4ZRXYODxQV9VNxj54fRrbH47vxqKYcH/wp1j4K0fFGa9zn78as/6HlS6vQYeD5Vddj/vkeYzmGQmfhEmfAH2+mgQsnHswzDtJ4WrsS1lGhC68K/FrUOSMhUL+WykogwDm8Z8qrjrL7hx99fxpiB49t594Onz4I6R8Ma1xd1fHVM8Bo3rkvfV9i1tLfnodxicsSi8P1IJXUYGj65j4MDrYcZMqKwrVYWZqaiBk54PArIzsfjW1NfO23IMRlt2XxC+2FzY9XA+QeGSJEmSJEmSJEmSJEmSJElSO+L/OSupvNQOTN6+5d3c1nvkaNg0O7z/yNshEsltbamjikTg8Fvg0ZOgodmNPPt9D8Z+pu3qUufSPFwhUxteD24gy/W4njIYzTxhdXINaW7sXPM89DukNLWUk/hO2JzmPDXfAKfOaumdsN+3k/cZjJZc2E3TmWpcA/VDC1NLoSRiydsLcSN4j4nBI5kp34dNc2HNM+HzN86B3tPyr6NQGtfCC5+CeGPh1sw12FBtr3YgVHYNQg+LbcgZLZ9HIjDhKpj9o8zmV/UMrjU76mcz0QyDhFY+Utw6JClTYecSmR7PSmnE+fDMhcVbPxEPAqxqegcBlvP/0LJ/5ldh4AnQd3rxalDHs2MdkEjeV9OOgtEAugyDczbAk2fDyn8FbbUD4OAbYPBJbVtbNqJVMOoiGHBc8L2sSxHUDnD3BOgyArqOglgjJJpg0S3BP/QR25ZbDY2rYfsKqBu0uy1hMJokSZIkSZIkSZIkSZIkSZI6NxMeJJWXbuOStzcsg52bs1vrxctg7Qvh/T0mwtAzwvulzqznPnD6Ajj+ySBA8OxVMOlLbV2VOpPK+tzm7Vif+56pgtE6alCDlKntK1P3L72zNHWUm60Lw29U3cUbVnOzYSZsmZ+8L93PfE+dIRgtHiP05vpMNa4pSCkFFXojeEVx963tD8c/DienuCF+9VPFrSFbi2+DWENh1zQYrf2KRKDb2OLvUz80CJHY0/DzMl9j0Akd+1y7ogyDhCQpldBgtOrS1pGJSAROnVvcPe4eHwQz7xmKtsvSO4q7vzqeVNdd7S0YDaC6Bxz7MJz8cnANddq89hWK1lyXYXDS88F/E0ll63uw6nGY/0dYeFMQiga5h6LtsmmP41nYZ9XFvh6WJEmSJEmSJEmSJEmSJEmSyoR3aEsqL93Hh/dtnge9psDmd2Ddy8Fj/StBCE6XkTD5O9BzUjB20zyYd33qvUZcWLCypQ6pohr6H97WVaizqsgxGK1hKdT0zm1uqmA0OnBYg5SJdGE7S+6AKd8rTS3lZPvq9GMMFoJBJ8Py+7Oft/RuGH9F6/b4zuzW2boAYtuhojb7GtqLTMPijnsMHjk6ed99U2HkR2C/7wY3hJeD0GC0EnycFa2E3tNgr4/Cghtb97/z38H7e/8fl8f7fPFt6cd0GwfHPAB37pXZmgY7tm/9DoP1r+Y+P1IZvAe7joa6wbDupZbnA30PgQN+BVVdW8/tMQmqesLODen3GfbB3GtsD2r7Zz72latg4hehtl/x6pGkipK2bwAAIABJREFUVOIxSMST95Vr0GP3cTD6Ynj398VZv3ENLH8AVj6avP/N78J+1xZnbxVXIg6xxiAMcNef8R2t25L1terfkXxOsrk7UpwfVfcp3fdfSJEI9N6/rasojEg0+G8ip86Bu/cu/PoH/xGe+3jyvkeOgRkzoee+wfOwfwCkukfh65IkSZIkSZIkSZIkSZIkSZLKkHc4Siov9cMgWhPcILKnZy6EhuWwc1PrvvWvwfIH4dTZ0GU4LLs39T7RKhj374WpWZJUeJU5BqNtW7b75rFspQraiURzW1PqKGJJzs2a2zQ7CKbtPrY09ZSLxjXpxxgsBOM/Dysezjy8a5cNbyRvzzYYLRGHrYs79usz05/JgKOgujfsWJe8/70/w8pH4ANvQnWvwtWXq3jIayZawvfV4A8kD0YDePuX0LQ5uLm9LcUaMwsfPPnlIMRqxiy4N4Pzpcq6/GtT2xl7efDaTfYZCsDoS+Dd/wmff+6m4LOZ6p7Z711ZBxOuhJlfSz2u11QYdk7267cntQMzHzvnx7D6aTjhKYhWFK8mSQqT7DP5XaJlGowGQbhvJsFoIy6EQ/8cXB/sWAuvfgEW3JB+3tv/lX+NuzSuDc6zO9vnTPGm9IFh+fZlG1KW7fVpsVV28fy7nHQfD4f/A54q8LlqtDoIMF79dPL+eyfDic8G55ANy5KPqelb2JokSZIkSZIkSZIkSZIkSZKkMuUd2pLKS7QCuo2FjUlCEDbNTT03tg3e+A4c9FtY82zqsacv8F9Vl6RyVtElt3kNS3PfM74jvG/9q7mvK3UEqW6Q32XpHdD9quLXUk4yCUaLVhW/jnI3+CQ45j741wnZzduxPnl7tsFoEAQf0IGD0bK5qb+mb3gwGgRh1Av+DOM/m39d+UrEkreXMnBw8ClQ2RWatiTvn/8nIAIH/U/bBVwsuT39mIEnBqFoAD0mQddRsGV+6jndJ+Zfm9pOj73hhKfhretg3Uu7jxN1Q2DE+TDmk6mD0SrrgDzCOSZ9JQh0WPhX2L4CmrZCVbcgiKSyC/Q/Cva9puMHgEUi2Y1f+xws+juMPL849UhSKimD0apLV0e2Mg0JGnlhcFyOVEBtfxj7mcyC0ZY/kF99AOtegWc+EoSKV/WESV+GCVdl/3sinUQiuF5KGhjWCLEdSdqKGVL2fn8iXtjvsyMy7Kr8DDqp8GtGq6D39PBgNIAHD0m9hq8VSZIkSZIkSZIkSZIkSZIkdRIGo0kqP93HJw9Gy8TSOyDx3xDfHj5m6o+hfkhu60uSSqOyPrd5Dcty3zNVMFrDctixAap75r5+udqyIAh+630AdBne1tWoXKV6f+zy3l+CG7s7ungTrHocYtth4c3px5cywKmcDTweqnunDuTa084NyduzCQHbZfvq7Oe0J5mExQ09M/izth9sfjv12AU3lEkwWsjfdbSE76uqbjDhapj1jfAx8/8I/Q6D0ReXrq7mVj+Tfszkb+3+OhIJXg9zfhI+PloTvG/VvvXcBw69Mbx//Odh7s9at4/6RP57RyIw5pLg0dmNuCCzc4Zd3v6FwWiS2kYsxXVfRU3p6shWJiFBwz4Ig2e0bOt7EOz1sczC0fKxfTXcP233850b4LUvwOJbYdjZ4WFiuYaUqX2qH9rWFWhPVV1h7ythzo8Lt2akCoaeDnN/mvsaBqNJkiRJkiRJkiRJkiRJkiSpk/AObUnlp/v43OduXwXLH4Ald4SPGfnh3NeXJJVGuQWjASy5E0Z9NPf1y00iEdyIO/tHu9smfQUmfzsIspCaizWmH7P+NVh2Hww+pfj1tJUt8+Hx02Hjm5nPiVYUr572Jlqd3fgdIcFomYSA7alxTfZz2pNMwuJ2BR1lchP1upfzq6dQ4iHfV6TE76uJXwxCjTbNCR/z/CUw5AyobYOb1FMF3Y35NOz7dagb1LI9XTDaXv8WBAGoYxt+TvJgtKFnlL6Wjmz0J7ILRlvzbPFqkaRU4imu+6LlHIzWJ3X/gdfDmE8m/6zj4D8G50VPnpXb3pFo6v5Nb8PdIf+9Y+3zwUOC4FpC5WfqD4MQs0S8MOtFq6Df4dB9AmyandsaBqNJkiRJkiRJkiRJkiRJkiSpkzAYTVL56bV/fvMfmxHe1+9wqBuQ3/qSpOKr6JLbvG1Lc98zXTDaq1d1rGC0Zfe2DEUDePNa6H8UDDqhbWpS+Up1g3xzj82AC+IdM1wvth3uHN3WVbRvFVmGKax7KXl7wmC0VsICxHaZ8AUYcmrwdXWa4IhdXroChp0FA47Jva5Nb8N7N8Ha54KwtX6HQd3QYM1hZ6c/VoQFvkVK/HFWRQ0cfR/cuVfqcY+dAie/WJqamgsLRht4Iky/Pnlf30Ohph80rk7SGYH9vluw8lTG+h4Kk78DM7+6u23CVTDktLarqSMacFz2c9a+BH0OKHwtKr1ty2DBDbBpLpBo62qk1HZuDu/L9ly+lKJVqfvHfCr8vDMSgWFnwr7XwKxrctg7TfjzC5dmv6Y6n2EfhPFXtHUVSiYSgVNeC0Lyt76X/3rRKohWwiE3wKMnwY712a9hMJokSZIkSZIkSZIkSZIkSZI6CYPRJJWfoadD/VDYtiR8TCSa27/Q7s0lktQ+VNbnNq9hWe57xtME7SQNDmnH5oUEpcz/k8Foai1dcGBz8/8Eoz9etFLaRKwR7hjR1lW0f9EcwhTe/jWMu6xlW7rjdTIdPRgtVVjcCU9Dv0N3P8/05/f2L4PH1B8GQUnZWvUEPHoKxLbtbltyR/DnvF/B6EvhoN+mXiMs8K3UwWgAXUfCmUvh9iHhY9a9BCv+BQOPLVlZxJvCb9Df873TXLQC9vk6vPzZ1n3n7wz61fFFIrDPV2DURbD+Veg5GboMb+uqOp5IBOoGQcPyzOc8cCAcejOMPL94dan4Ns6Bh4/o+Och6hzSBYC1tV5Tg99le+qyV3GDu1P9XLavDs6J1b5FKoJr2YqaJH9WJ++L1kBFdbOvQ+ZW1EGfA6HbuI4ZMN9R9NwXPvAmPHoirH66df+hf4G3fgAbZqZfa1eQY58D4YxF8PCRyY9dqdRkGHYuSZIkSZIkSZIkSZIkSZIktXMGo0kqP9EqOPZhePYiWPcCEIEeE6HX/tB7WvDotR/cfyBsmp3d2n2mF6NiSVKhVbRFMFoWwU8dwbJ7krcvvAkO+0tpa1H5izVmPvb5T2QXjBZvCm4gXfFQEHY04UoYfEr2NRbTO7+F7avauor2L5cwhde+AMPPgdr+u9vCwrJS6eiBJKl+Jl32CPXbsS67tV+9GrqNh6Gntd5zwY3w5rWwZX7QVjcEGpZmtu67vwseu+qr6gEDjoPJ34KqrkFbIpZ8brSNPs6qHxwEzT10WPiY5y6CMxeVrCR2rA8PDa9PE3A19jPQuArm/CwIsBtwDBz0B0PROqP6IcFDxZPL767XvxT8DmyrY56yl4jDnJ/A4tuCa9OtC9u6Iqlwcgk5LqV9vgpPfrB1e78U522FkOr47jEge/8XNJYiVCxaHRI0lkVfxgFn1Z4bK1BZD8c9Bq9eBe/+AZo2Q1VP2PfrMOICGHoWvHolzP8jxLaHrxOp2v11Vdfg+vLVK8P/AYtWdXSD7nvn9a1IkiRJkiRJkiRJkiRJkiRJ7YV3VUkqT93Hw0nPBjcUxpuCG2H2VNM3uzWHn9c6FECSVJ4qcwxG274SEgmIRLKf29mC0TqCxnXQtAWqe+2+cVbFEc8iGA1g6yLokiaQZ5dnPwoLb979fOUjcNRdMOTU7PYspoV/besKOoaKHMIUmrbCkjtgzKW72xI7s19n+8rs57Qn8RQ/k2hVy+fDPhgejhnmidPh+Meh/5HB79n4Tph9Hcz8WstxmYaiNdc8MGLDTFj3UrBXJAKJkKCJSBt+nNXvUDjyzuBnksy2xbBxNlR2CR6x7VDTBypqC1dDvCm4Vq6ohsa14eNq+qReJ1oRBNHt87XgZ5rL+ZOkzAw9MwiDzMbWhcFxsduYIAQRgjCNyvogTNL3bPl5+fPw9i/bugqp8CJRqKhr6ypSG3pWEPK68tHdbdEaGPfZzOb3PiC3fWPbIB5LHp6VT3h/0UVSB4MVIogsVeBY0j2r/d2m8hathGk/g6k/CsLz6wYGx0eAyjo48Ncw7efwwidh/p9C1tjj+rz5vPumwMa3Utcw7t8Le20pSZIkSZIkSZIkSZIkSZIklTGD0SSVt0g0POQk22C0Q/83/3okSaVR2SW3eYlYEHCWS/iOwWjtx7pX4LmLYMOslu3jPwdTf5z8hmTlJ9v3x5I7YHwGN6AvubNlKNouj58GR94BQ0OCh0pp+xpY82xbV9ExRHM4NgMsub1lMFqqELAwZR1KUABhAWLQOkRs0Am57THz67D/T+DFz8DaF3JbIxOrn4TlD8Dgk1MEo7XxcX7oaVA/LAhBS+aeia3b9vooHPBfUNUt931jjfD6l4PQnfhOGHwqjLwgfHy6YLRd9rw5X1LhDZ6RfTAawP3TgAiQaN037edB4I8hMuVhw5uGoqnj6nto+QeRRyJwxK0w5+ew/H6oGwz7fh16Tcls/sDjoKo77NyU/d5NW6C6R+v2Wdekn1vVE3pMTB04lk/YWFifobhS7qKVUD84pK8quFYMnRty7RWtghOfh1evhHd+m3zMtF/CuMuzq1WSJEmSJEmSJEmSJEmSJElqxwxGk9R+ZROMdvyT3uwtSe1JRX3uc5u25haMFjMY7f8suRP6HZZ5oEo+Eokg4KxhGVT3hqZN0HVU8NjT5ndh/Svw1IeSrzX358FNxZOvKWrJnVKsMbvxyYLRdmyA1U9B47rgtdVrCjxxRvgaT5wBp86B7uOzr3f9a7DyseA1NeBo6DI8s3k7N8Ga56BhRXCja+0AmPsLkoaRKHu5no8vuxe2LYH6ocHzXILR1r8KO9ZDda/caih3qX4me/7c64fCxP+Et76X3R6rHn8/oKcEFv09CEaLhwSjRcvg46wTn4Pbh2Q+fsGNUFEL03+T+55v/QDm/GT382V3B49kojX5nU9JKqzBM2DgibDiwRwmh5yHvPw5qBsCwz+YV2kqkHv3aesKpOKo7AZTvt/WVWSmulfweUAunwlU1MKU6+DFT2c/N1kw2tJ7g2uQVPa7FiZ9Ofv9JJW5FKGDqT4XqeoaXC/22AdevmJ3e2WX4L9x9p5auBIlSZIkSZIkSZIkSZIkSZKkdqAM7iSVpBxlGoxW2RX6HlLcWiRJhRWtgkgFJGLZz23aCjW9s5+XyCBoJ5GASIqb2zqKJ84AInD432D4ucXbp2krPHcxLPpby/ZIZXBz8ORvBs8TcXj9q5mF+Cy40WC0YohnGYy26nGIbQ9uLocgKO2JM7Pf9+694YIYRKKZjY83wdPnw+JbW7ZP/RFMuDL13DXPw5NnQcPyzOsbcQH0PgBeTbO23pciYK6iNnjNhLl9WHCD8JhPQiIkLCudW/vCEbfB0BSBfO1Vqp9JJMlHP/tdC/2PgqV3wrxfF6+uXM3/Q/A7YPWTyfuTfU+lVj8YJlwNs3+Y+Zx3fw/7fTe34NGmBph9Xebja/p0jnMWqb2oqIaj74X3/gLPfaxw68673mC0crBhVnbjR11UlDKkguu+Nww9C7qPa+tKSmPsp6DnvvDQYdnNa9rauu3d/0k958Rnoe/B2e0jqf2LZBAYP/6zwX/TXPJPiNbCmEuhbmDxa5MkSZIkSZIkSZIkSZIkSZLKTBncSSpJOartl9m44R+CaEVxa5EkFVYkApVdYOem7OcmuyF1l3gMlj8AK/8F9UNg9MVQ1T39vF0STZndwNYhJODZj8HA46G6V2GX3jIf3rsZZn41ZOsmeONbsHNzEIi16O+wbVFma29dAPGdQbieCie+I3n7gGNg5aOt2xNNQQDQuMuD9/HT5+e+980V0H1C8HXfg6HLSBh2VnDD+i5bF8GsbwZhSsm8ehW8dxP0mtKsMQ6rn4Eek2DQiUG4UTahaOOugAN+/v76BqNlpMe+sOqJ1u3R6iAY4L6pqee/8KngmBTPIMgymUQcnjoPzl4J1T1yW6PcrHkBltwOy+4OH5PseBiJwOCTgkfD8uCG63Jz+7DwvmiZfJw16uPZBaMlYvDSv8NhN2e/18pHMjtX2SWX8DVJxRWtgFEfDQIp1z5fmDVXPhL8fss0RFbFsf71zMd+aEtwrSupPPU7FMZ9Ft7+ZeZzYttat6U6vx7//wxFkzqrTD+v7HNA8JAkSZIkSZIkSZIkSZIkSZI6sTK5k1SSclA3JLNxE79Q3DokScVRUZ9bMFosJDQkkYCXLod3frO7bc5P4KQXoW5gEMKVTnxH5wrcijXAkjth1McKt+bqZ+DRk6BpS/qxc3+a2x4Lb4G9PpzbXCUXa0ze3nsarHoyCELb00v/HoT4dBkJse357b9pdss/3/wuHH4LDD0dVj4Ojxydfo31rwSPPW1+O4dQqAiMuSTLOWLEh4IwGBIt24efF4TWfWgr3JImKGTRreHBaEfeEbzmnrkwfH68EVY8CMPPzar0sjT/T/D8xUEgTiqRNCHRmQZO52P674LwtiV3FGa9dN9zqXTfG7qNhc3zMp+z8K/Qa2r216lLbs9ufLXBaFLZGnFB4YLRADa/C93HFm49ZW/b4szGHfeooWhSe1A7ILvxe4bXNiUJSmuu+/js1pfUzkTCuzrT58qSJEmSJEmSJEmSJEmSJElSnqJtXYAk5axucPoxR/zTG40kqb2qqMtt3v0HwFPnw4ZZLdtf+0LLUDSAbUtg1jeCrxfelH7tsDCejmzjW/mvEdsB8/4bHjoCHjoss1C0fLxgYFXBxXckb6/sCt1Gh8977Yvw9HlFqKcRXr0K1r+eWShaoY29DHruW/p927v+R8Ih/wv1Q4Pn0eogHGb69cHzyvogaCqVNc/SKlhtl+qeMOJ86DYu9RrblmRVdllqXAvPfTyDULRKiKS4KRugpn/h6kpm/OeCIMEDfhXUUwgNywuzTr4iERh2TvbzZl0D21elH7f6GXjsVPhHb3j399nt0efA7OuSVBrjr4B9vla49e6fCg8dGfxe2LqwcOsqMzs2wutfTj2mpl8QEjrg6JKUJClPVd2zG79nMNrmt1OP7zEhu/UldRwGo0mSJEmSJEmSJEmSJEmSJEkZMxhNUvtVPyS8b9RFcH4TDDuzZOVIkgqsojr3uYv+Bg8cBFsWBM/n/gJm/yj52Hd+C/NvaB2klkxnDEbL5Oeyp9j2lj+r1/8TXvwMrH6qcHWl279hZWn26izijcnbozXpg6yKZfM8uG9K6fftsQ/sd23p9+0o9vownLEIzlwC526Ew26Cyi67+7uMSD1/e4r39q4QsAlXpl6jYUXm9ZaT2PYgEC3eBLf2zWxONIMgstoiB6PVvX/dVj8E9vpoYdbsMakw6xTCxKuDwJtsxBpg4V+Dv0sIAu4ScUgkIB4LfoeteiIIE112D+xYn31doz6R/RxJpRGJwORvBZ9bjb44//WatsLqJ2H+n+D+A3M7Zig38SZ45NjUY87dDGctC0JCJbUPVd2yG79nMNrGOanHt9U1tKTSSBVOHjEYTZIkSZIkSZIkSZIkSZIkScpUBnfISlKZqhuUuj9aUZo6JEnFEcnzVDXWAHeOgklfhXd+k3rscxdltmZnDEZbfj9sXwO1GYTw7NwCz18MS+6ASBSGnwsjPwJzflL8Ovf0xjfhwF+Xft+OKhYWjFYNg04O/s47g0EnwaF/geoebV1J+xaJhIccpwtGq6gL74u+f4PxmE9CZVd45sPJx82+DhbeHBwjhpyavt62tmM9PPcJWHJ79nMzuem6JsOQtVwNOnH319N/C93Hw7J7g+fjPwfrXoY3swwb7Htw4erLV3UvOOk5mPkNeO/Pmc97+XPwyn9AIhac8ySaClfT6Iuhh4EbUtmLVkC3sYVds3E13DsFzlxY2HWV3Mp/wfpXwvvHfAqqupauHkmFUZltMNq2ls+X/DN8bO9p2YfqSuo4ogajSZIkSZIkSZIkSZIkSZIkSZmKtnUBkpSzilqoqE/eN/z80tYiSSq8Qt0o9uZ3goCAQojvKMw6bS2eTfhKAmZ+LbOhz30MFt0C8cYgmG7BjfDoiennFcO862HNC22zd0cU9tqvqAnC7/oclP8e9cPg4D9BpEzDbSd9BY65H2r6tHUlHVu6YLRUx/PmvzdGXghjPh0+dttiePw02PBGdvW1hacvzC0UDTJ7vVaGXFMVwqiPQ6/9dj+PVsDEL8DxjwWPYWfBuM9mt+aYT0HPyYWsMn9dR8Gh/wsXJlo+zgsJldwlEXv/zwKGovWeBgf8qnDrSSquwTNS99cPg3PWw/FPZr7mtkWw8rG8ylKGFt+aur/HPqWpQ1JhVWUZjBbb2uzr7cHnImGmfD8IipbUORmMJkmSJEmSJEmSJEmSJEmSJGXMYDRJ7duoj7duq+wKA44qfS2SpMKq7NrWFbQW39nWFRRGbHt24xfcAE3bUo9pXAdL7si9pmKY86O2rqDjiIeE+0RroKorHPcoTLgq9/WHngGnvAajPganvJ77Osn0PyoIb9v1qKjLfO7Ij8C4K+Coe2C/7xS2LiXXZWTq/g0zw/silS2f1/RNv9+8X6cf05a2LoTl9+c+f9BJ6cdUZhn8kE7X0TD2cjj873DQ79OPrxsQhP6kUzsQjrwjCP1qL2ESFdVw8svFW3/az2H/n8Koi2DUJ+DAX8MJTwehlZLahx77QI9Jyfv2/wl84C2o7gn9D4dpv8h83Xd+V5j6FG7rQnjnt6nH1A8uTS2SCivb8+OmZsFoS+8KHzfsbBh4fG41SWo/9vxsojmD0SRJkiRJkiRJkiRJkiRJkqSMpfg/cyWpHdj3Glj/Cqx5NnheURvcgF9R26ZlSZIKoNBBLYWQ6CjBaA3Zj3/7lzDxi+Fj1r8GiVh+dWWjsmsQ+LP41vAxi/4OjWuhpk/p6uqoYmHBaNXBn5V1MPWH0GUveOny7Nbe5xsw+Zrdz3tOgt4HwroXcyoVCMLQjvsXRJJkgSduhBcvg3f+O/UaZy6G+qGZ7Tf9d/DCpa3bR12U2Xzt1mVEVsMXNIzkjjWns6GpJ6ct68q0ns06MwpGuz4IkypXKx7Ob/6U76cf0+fA4L0c35HfXgDjPw/7/zj5ey+V6p5wwlPwxFnQuHqPvt7BNd7AY/Ovry303j8IWXzvz4Vfe8QFUNuv8OtKKp1IBA7+IzxxBjQsD9q6jAzOY7ru1XLs0NPh5SsyW3fhTTDiPBhyWvsJk2xvXrws/Zi6IcWvQ1LhVWX5eVTjut1fr3s1fNyIC3OrR1L7MvLDMPOrrdvrh6YOTZMkSZIkSZIkSZIkSZIkSZLUgv/3raT2rbYvHP94cMPR9uXQ/0io7tXWVUmSCqGqa3jfgdfDi58pXS27FCI0phxkG4wG8NqXoOtoGH5O8v7Z1+VXU7ZGnAdDz04djAZwa184aznUDSxNXR1V2Gt/VzDaLuMuC8I3MgmKABh9cctQtF2yDVVqrtdUOP6x8P5IBKZfH7yGHjkm+ZizV0Jt/8z3HDwDKrtA09aW7cPOzXwNBbIIRntu40HMmHU3G5qC8/9v/zzBHy+K89FD3n/9ZBKMBjDr27Dv17KttPi2vAfPX5L7/LNXBoFj6VR1g6FnwqJbct8L4NS50H1c7vP7HQanzYXVT0PDiqCttj/0OxxqeudXW1ub+kNYeifs3FS4NcdeZiia1FH0ORBOnQNrng/OgfodDhU1rcfVD4OKuszP5Z84A0ZfCgf9trD1Cja/C8vuTT+ubnDxa5FUeNkGo735HZj0peCacNOc8HFDTs2vLkntQ9eR0Gc6rH2hZfvw8wyslSRJkiRJkiRJkiRJkiRJkrKQx93mklQmolXQdzoMPcNQNEnqSCpTBKMN+yCMu6J0tewS31n6PYth41u5zXv1CxCPtWzbuQlevByWP5BfTZXdoH54+nHRahj5YZj2SxgyIwjJS+e1L+VXm8Jf+xXVrdvGfgb2/xlU9Ui95t5XwvSQoI5cg9H2+igc90hmYwccDcc/AV1H7doU+hwEZ7yXXSgaQP1gOOZB6PZ+KFTtAJj+m+A1quzUDsp46FcWfOf/QtEAEokIn705wc6mRNDQ54DMFpr1ddgyP5sqi6thBTz/Sbhzr/zWyeZ1fNDvg9+t0argMfRMGHF+5vMHnZJfKNou1b2CwIgxlwSPoae3/1A0CMI5J3+ngAtGYMr3CriepDZX1R0GnQADj0seigbB+VHfQ7Jb993fwd/qYf4NkEjkX6cCS+/KbJzhzFL7VJllMBrAg4fATRFY8s/k/cPPCz++S+p4jroLBhwbnL9V1AdhtVO+39ZVSZIkSZIkSZIkSZIkSZIkSe1KZVsXIEmSJCWV6kbUaDWMvhjm/wGatpSupo4SjDb3Z7nN27oA1r+6O2wokYAnzoKV/8ptvaoecNrbEKmEqm4Qb4Jb6sPHz5gZhFhVdtndNvbTMOaT8OgpsOLB5PMW3RIEqFXW5VanIBHy2o9UJW/f+3NBQFp8R3Dzd3wHNK4N/u4iFVBRl+am8EjmtfXaH054Aohm/3fc/wg47R1oWA4VtfkFMPU7FE6bC9vXQE0fiGTxPWi3aEVGwxrj1Ty64ZhW7Zu3w2NvwwkTge7jM9934S0wqQxCFHduhvsPgIal+a3T+8Dsxld1hSP+AU3bIBEPnq97FRb+Nf3cSAWMb4Ow0vZm7Kfh9a9A0+b81uk6Gk6dHQTYSep89r4SVj0WHKszFWuA5y6C7atg4tXFqqxz2fhG+jG1AzxWS+1VVQ7BaBtmpe4f/sHcapHUPtX2D4L7d2wMPm8yGFGSJEmSJEmSJEmSJEmSJEnKWrStC5AkSZKSquoa3hetgl6T4diHS1cPdIxgtMZ1sOKh3Oc/cCDM+WkQirb0rtxC0bqMhGEfhJNeDG4UrOkd/J2mC7WqG9IyFG2XSBTGXBI+L9YAKx/Jvk7tFm87yJnlAAAgAElEQVRK3h5NkbVdUR28j6NVwd9bl+FBYFh1z/Q3hKYKFZv+W+h/JPTYByZ+EU54Klg/1+C7SATqB+cXitZcbV9D0fI19jNph2xs6hHaN2dFYveTkf+W2Z5Lbs9sXDHt2Ah/755dKFq/w5O3Dz0jtxoq63f//u09FU58Drrvvbt/4Akw4w0Y//ngPTjoFDjqHhh8cm77dSbRKtjrI9nNqR8a/J6sHQC9pwVBoCc8bdCO1JkNmQFH3gWDToK6wVA3KPO5r30Bti4uXm2dybu/Tz9m8AeKX4ek4ohWQb8jCrtmtyxCmyV1HNU9DEWTJEmSJEmSJEmSJEmSJEmScpTiLnZJkiSpDQ06Cd78bvK+itrgz74HwYSrYfYPS1NTfEdp9imm9a9AIp7fGq/8B2xfCeteyW7ePl+Dyd9KPSZaHf5zruoePm/QyRCpgEQsef+S22HIqZnVqdYSIaGARQvnSREsNvIjMObSIu2rsrD3f8CSO1MGhG1qCj8edG1+z3HdwMz2XPs8vP3rIFCsfkiGhRbYMx/Ofs6oTwTBgMsf2N3WfQKM+VRhaup7EJw6u3X7tJ8WZv3OZvJ3YP6fgsDO5iKVcNjNMPycNilLUjszZEbw2GXVU/DYDGjanH7u3XvDeVuLV1sxNTXAhplAAvoc1HZBtOtfTz+mbhBMuLL4tUgqnv2uhYePLNx63cYWbi1JkiRJkiRJkiRJkiRJkiRJkjqBaFsXIEmSJCXV73CoH9q6feiZEGl2GlvKsKt4SDhUe1Ko7+GtH8CKhzIbO/YyOOru9KFoEITDhImm6KvqBnt9NLx/xSPp91ZyiXh4mF6qv6+8pAi62BWMqI6r2xg46YWUr6+NsR6hfV2aB6NV98x835cuh9uHwutfhUQi83mFsG0JLLsn+3lV3YLj60F/gDGfhv1/Bic+A7V9C1+j8lfTG85eAZO+GhzLolVBwOtJzxmKJil3/Q+Hk1+ECVelHxvbBhuTBF6Wu3WvwH37wYMHw4OHwAPTYVt4gGpRzfpm6v6uY+CU16DHxNLUI6k4+h8BtRmGLKdT1RMq6wqzliRJkiRJkiRJkiRJkiRJkiRJnYTBaJIkSSpPkSgcenNwA+ku3cbBAb9qOa7fETDpyy3bRl9SnJoSHSEYral0e03+NlyYgAN/BUM+kNmcVOFn6Uy5Lrxv63ulDzrqKBKx8L5iBaNFUlyqRlKEpqnjqB8M+3w1tHtjU3gwWn11s9dIVRbBaLu8eS2seDj7efnY8EaOEyPBcXP0x2H69bD357ILg1PpVXWH/b4N5zXA+Ttg6nXQe1pbVyWpves+Hqb+EI66JzjOpDLz66WpqVASCXj+Utg8b3fbupfgpc+WvpblD8KSf6Yec9rbUNu/NPVIKq6+hxRmnQHHFGYdSZIkSZIkSZIkSZIkSZIkSZI6EYPRJEmSVL76Hw5nzIej7oLjHoUZs4KwnOYiEdjvWjjtnSBI7ZTXYfpvi1NPfEdx1i2lVCFXhTT4AylDjUL1PiD3PWv7wonPhvcvfyD3tTuzeIpAwGhVcfbsOro466p9iVaHdm1IEYzWIgMxVcheKgtvym1erhqW5zbPEDRJUnNDZsBp82Cfr4WPWfwPmP3j0tWUr3Uvw/pXWrcv+SdsXVy6OmZ9Gx49KfWYg35viK/UkRTqXHvcZYVZR5IkSZIkSZIkSZIkSZIkSZKkTsRgNEmSJJW36l4w5FQYcDRUhIfk0G00jDwfek0Obkaf+KXC15IqIKq9SDSVZp9cf/4TrkrevtfHMptf2z+874VLs69HqV8z0cri7Dnu35O3D55RnP1UnqI1oV0bUwSjNcWbPUnEQ8eltOjW3OblatuS7OdUdoG+hxa+FklS+1bbHyZ/C3pNDR/z6lWw+Z3S1ZSPtc+H9y27uzQ1LPgLzPp6+nFV3Ypfi6TSqSpAMNr038CA4/JfR5IkSZIkSZIkSZIkSZIkSZKkTsZgNEmSJHVMoy4q/JodIRgtnkEw2oBj8tujz8HQ77Dc5g48HnpMatkWrYExn8xsfk3f8L5tS2Dn5tzq6sxSve4jVcXZs9cU6HfEHntFYexnirOfylNFbsFoseZZaN3H57Z30+bSBsZkErayp9GfhMq6wtciSeoYDvtr6v67xpamjnytezm8b/1rxd9/8e3w7EcyG1tpMJrUoVTnGYw2+NTgs4xIpDD1SJIkSZIkSZIkSZIkSZIkSZLUiRiMJkmSpI4p1zCcVDpCMFoilrq/y0g45iGY8gOo6p79+v2PgmMfzP3G32gVHP84jL4k+Dsc/AE45n7od2hm89OFEWyel1tdnVmqML1oZXH2jETg6Hth3Gehx0QYeCIceQcMObU4+6k8RatDuzbGwoPRmmKJ3U/6HQFVOQYa3DUWEon04/K14Y3U/X2mw4QvwJTrguDJ3gfAlO/D/j8qfm2SpPar+7j058ZrXypNLflY+2J4X+Oa4u0ba4QXPgVPnpX5nCqD0aQOJd9gtNEXF6YOSZIkSZIkSZIkSZIkSZIkSZI6oSLdxS5JkiR1QPEdbV1B/hIpQq4ilbDf9yBaARO/AGM+Cf/old36R9yWfyBATR846He5zU0XyLb4Vti5CbqOhi7Dctujs0mkCASMVBVv36qucMAvire+yl+0JrRra6xLaF/zXDQqqmHK9+DFz7Rct/f+sObZ9DXMux7GXZZBsXlY9I/wvn2/Cft+fffziVcXtxZJUscy7jJ46wfh/cvvhz4HlK6eTDWshK0LoKYfbHorfFwxg9Fe+iy8m+U1SWXX4tQiqW3UDsx97oBjYfCMwtUiSZIkSZIkSZIkSZIkSZIkSVInYzCaJEmSlKl4ioCo9iIRC+874Unoe/Du51U9sl+/OssgtVJ787vBA2D0JXDgfwdBcAoXTxGmF/WSUkVUER6MFk9EQ/ua9jzMjf00dN8bltwBlfUw/FzoNQWW3Q+vfQk2vB5ew0uXQ91gGHZmlsVnYcVD4X1Di7ivJKnjG/Xx1MFoM78W/I4cfk7pakolkYC3fwWv/L/Ugc67FCsYbecWeO9/s58X8dxY6lAGnRC8r/c8HtUNgpEfgZ0b4Z3ftp4XqYSj7w1CmiVJkiRJkiRJkiRJkiRJkiRJUk7C7ySWJEmS2rsJVxd2vQ0zC7teWwgLGOg6pmUoGkAkAt3HZ7d+JJJbXYWUaZDQu/8ThC689QOY+wvYurC4dbVXqUIpDH9QMUXDgwRiVT3D++JJGgccDdN+CvtdG4SiAQw+GWa8Bqe8lrqOJ8+ChpXp683VlvnJ22v6Qa/JxdtXktTxdR8P036ResxT58JLV8DG2aWpKZUFN8DLn80sFA2KF4y2aQ7Etmc3p6IOuo4qTj2S2kZ1LzjkxpbXvX0PhQ/MhqnXwfTfwGF/g2izQOfeB8CZS1KGPEuSJEmSJEmSJEmSJEmSJEmSpPQMRpMkSVLHNewcoIBBXfP/AItvL9x6bSERS94eDQm4GnFh8WoplhEXZD727V/Ca1+Clz8H906B1U8Xr672Kr4zvC9aVbo61PlEw8MEYtGuoX1NyYLRUum1Hww/L/WY5fdnuWiG4jthe0jo2iE3FmdPSVLnMv6zMO6K1GPe/iXcNxUW/7M0NSUz/0Z47uPZzWlcC4lsf/FnYNOc7OcMOR0q6wpfi6S2NfICOGMhHPZXOOFpOP4xqO6xu3/Eh+D0d+HQm+G4R+GEp6BuQJuVK0mSJEmSJEmSJEmSJEmSJElSR2EwmiRJkjquvtPh0L9ATd+W7ZVdcg90eumy4tx8XyrxpuTtkZBgtElfgbGX7Q4o6rlf0JbM2Mvzr68QRnwIBhyb/bydG+DVqwtfT3uXCHnNQPjrRiqEivBgtHi0S2hfLJdD9MF/SN3fsCyHRVPY8h48fjr8tRpIJB9TP6Swe0qSOq8RaQJAAeKN8OTZEGssfj172rkpCCrOViIGT5wJa1/Mv4Y1z8EzH4F/nQTP/lv28w/6n/xrkFSe6gcHx9F+hyb/LKl+CIw8HwYcnfIaRpIkSZIkSZIkSZIkSZIkSZIkZc5gNEmSJHVsIy+As1fCmYvhgljw5zkbYcabUFHXcmzdEDjldeh/ZPh6DcthwxvFrbmYwkKuIhXJ26MVcOCv4NwNcNZymPEaTPrP4GfVXEUdjLm0sLXm4/Bbcpu35tkgsKi59hyEVwjxneF9uQYMSpmIVod2xaJ14X25vGUr6+Ho+8L7m7bksGiIhuVw1xhYelfqcXseZyVJylXfQ4JHJh4+qri1JLP0niCkOKe5dwU1r3429/2X3QcPHwnv/QVWPJj9/HFXQFXX3PeXJEmSJEmSJEmSJEmSJEmSJEmS1ILBaJIkSer4IlGoH7r7z2gFdB8LJz4Dg06GLnvBiAvg+Meg1+TWgWl7um8/eORY2PxuScovqEQseXu0MvW8ilqoGxh8XdkFTnoeRpwf/OwGfwCOfQR67VfYWvNR0yf3uXfuBbd0gyfPhbsnwl+r4b5psOKRwtXXnsRDwvQg/etGyke0JrQrFqkN7WvKNctw8MlAJHlfId//s74ZfizepaIWqnsVbk9JUucWicAxD2Q2du3zsHNTcevZ07J785sfa4C5P819/pyfpA4DTqeqW+5zJUmSJEmSJEmSJEmSJEmSJEmSJLViMJokSZI6r15T4Jj74Iz5cNhN0G1M0J4ijOf/rHwUHj4KmrYVt8ZCCwu5ilRkt079EDjs5uBnd/Td0O+Q/GsrtOHn5T63aQss/gdsmh0EGK1/BR4/HTbOKVx97UUiRUhEpKp0dajzqUgVjJaiL9dgNAgCH5NZ+zw0rs1j4ffFm+C9P6cfVzswCLGRJKlQqrrB6EsyG7vulcLvn0jAlgWw+mmIbW/Zt/nt/Ndf9Pfc61r1RH571/bPb74kSZIkSZIkSZIkSZIkSZIkSZKkFgxGkyRJkvZU0yezcQ1LYcUjxa2l0BKx5O2RytLWUQqjPlbY9WLbgrC0ziYsTA8g2gFfNyof0erQrkSKYLSmfILRKruG9839eR4Lv2/WNdC0Nf24vmUYNilJav8qu2U2blOBw4CbtsKTZ8Odo+Chw+G2gbDi4d39jWsKs08uIaZNWyC+I/24ab+Eqh7J+wadkv2+kiRJkiRJkiRJkiRJkiRJkiRJkkIZjCZJkiTtKdNgNIA3v1u8OoohERJy1REDrgadDL2mFnbNjW8Wdr32IOw1QwQiXlKqiKJVoV0xwoPRYnkFo3UJ73vj27DuVXjz+/DKlTD3v2DrwszX3rkF3rw2s7Ejzs98XUmSMlWVaTDa3MLu+9Z1sOT23c93boR/nQDLHgieFyoY7ZUrs5+T6d6jPgqH3AgVtS3b9/8pdB+b/b6SJEmSJEmSJEmSJEmSJEmSJEmSQnXA9ANJkiQpTzV9Mx+7Y23x6iiGRCx5e6SitHWUQiQCh94E90wo3JqL/g6H3Vy49dqD+M7k7SlCq6Rii0XrQ/ua8gpG65q6//79Wz6f+VU46m7of3j6te/dJ7Maeu4Lg0/JbKwkSdnINBht87zC7vveX5K3P3Yy7PUx2LmpMPssuAEO+VN2czIJRqvsBlXdYejpcPp8WPkoxLZD/6Og2+icSpUkSZIkSZIkSZIkSZIkSZIkSZIUzmA0SZIkaU/ZBKO1t3CoeFPy9kgHvTSo7lHY9RIxSCSC0LXOItHJXjMqH11HBcfjPQNLKuqJ1w4MnRbLKxitS3bjd26Eh4+A0+ZBtzHh4zbNha0L069XOxAOvbn9/W6RJLUPVd0zG7f+FXjuYpj/h+B5RT0c/ncYMiP5+KYGeOsHsOpxaNoctFV2gwFHw9jLYcu74XstuCHj8jPSuBZq+gTn7Av/Cgvf/7069jIYeFyS8RkEozUPlKsbBCMvLFy9kiRJkiRJkiRJkiRJkiRJkiRJklqJtnUBkiRJUtmp7p352Eg7C68JDbmqKG0dpVLVs/Brzvxq4dcsZ/GdydsNblKxRaIw5tOt20d/glgiPJivKZbHnpX1uc27ayxsfie8f/FtqefPeAPOWg5nLYOek3KrQZKkdKI1mY1rWL47FA0gtg0e/wAs+EvrsYkEPHoSvPFNWPUYrHs5eKx6DGZdA3eOKkDhWXjr+0FNs66BZy6EpXcFv4f/dTy8d3Pr8Y1r06/ZPBhNkiRJkiRJkiRJkiRJkiRJkiRJUtEZjCZJkiTtKRHPfGy0unh1FEMiJDEoEh4y1K5V1kHvA5L3jb08tzXn/ASaGnKvqb0JC9OLdtDXjMrL5G/BlOug5+Tgse83YdrPicUToVNi4V3pxUNe75m4ayw8cixsmd+6b9m94fNGXBCEodUNhEgk9/0lSUpn5+b85r/5ndZtS++G1U+Gz2nKc8/m6galHzP7R/C3GnjjW637nrkQmra1bGtck37NSoPRJEmSJEmSJEmSJEmSJEmSJEmSpFIyGE2SJEnaU++pmY+taGfBaGGhPx055Gryt1sH2E35ARz4X7mtF9sOKx/Nv672Yvvq5O2RqtLWoc4pEoGJV8OM14PHvl+HSJQUuWg0heQ/ZiSWZ+jhykfhocMh1tiyfcf68DlDz8xvT0mSMtVnen7zN81pGSy2fRXM/Gp+a2ZjwPGZjYvvDO+7b0rL51sXpl+vymA0SZIkSZIkSZIkSZIkSZIkSZIkqZQMRpMkSZL21GUv6D4hs7HtLRwqEZIYFKkobR2lNPhkOOFpGHcFjP0MHHUPTPxCfms2rilMbeUskYC3roOXLk/e35HD9FT2YvHc+tKKFOBjkoblsPjW3c8TCdi2OHz84Bn57ylJUiZ67w81ffJbY1cw2qxvwe1DYcPM/OvKVEU1jL44vzU2z4N1L+9+vmlu+jlh11CSJEmSJEmSJEmSJEmSJEmSJEmSisJgNEmSJGlPkQgc/MfMxkbbWzBaU/L2SAcPuepzABzwczjw1zCkWQjRpC/ntl5Vt8LUVc5WPQ6vfTG8v72FAqpDSRV+1pRPMNrQM/KY3MwzH4YXL4d7JsF9+8HOTcnHjb0cqroWZk9JktKJVsKhN0G0Jvc1Yg2w/EGY9Q2I7yxcbZmIVsO+10DPffNb5/4DYO2Lwdeb5qQfv3NzfvtJkiRJkiRJkiRJkiRJkiRJkiRJyorBaJIkSVIyfQ+Cg29IP669BYolYsnbIxWlraNcDD8XiGQ/L58wifbivb+k7o+2s9e+OpR4IrwvVWhaWt0nQI+JeSzQzLxfw8a3YMOs8DGTv1mYvSRJytSgE+HMRXDIjTD+89nPjzXAnJ8Uvq5MRKuhfiic+BwcfV9+az0wHWZ9C7a+l35sWMCpJEmSJEmSJEmSJEmSJEmSJEmSpKIwGE2SJEkK031c+jGJncWvo7mdW2D2j+DxM+DFy2DbkuzmJ5qSt3fWkKteU+DQm6CqR3bz4juKU085efd/Uve3t1BAdSipws+a8glGi0Tg6HuDY0Ox1fSDmj7F30eSpD3V9oe9/g2Gn5P93LvHw/IHCl9TJqJVwZ+V9TD4ZOi+d37rzfoGkCJtdZemLfntI0mSJEn/n737jo/sru+F/zmSthfvet3WvdtUY7BxsE1wgiFwSR5aKAkhIaSQkEuAkHvTHi6hPJc0SCMJISEO3HATjAOEJJRQQzHFlBgwLtjGhV23NdtXqzbn+UO7rHZ2yhlpRpqR3u/XSy/p/OpXs6NBZ/DvIwAAAAAAAAAAAKAjTrIDAEAzK45pP2Zqf+/rOKisJf/5o8n9/3mo7c53J0+5Lll7ZrU1ak2C0ZZyyNXpz09OfU7yzdcn33xttTmLPRitrBAQcTCYAhbAVIunaKvQtErWnJY89WvJ3ruT5Ucly9YnYw8me++cDpIZWp6MrEtu+N/JDW+Y/T5zDXMBgLkaXr3QFXRmaPnh16tOTHbd1Pt9T3567/cAAAAAAAAAAAAAAAAAvm8Jpx8sbUVRnJ/kgiQnJ1mVZH+S+5PcmuT6siz3zmHtZUkuS3Jqks1J9iTZmuRrZVneMbfKAQDmUb8Fo9159eGhaEky/r3klr9IHv2mamuUU43bi+G51TbohoaTs168OIPRtnww+fqrk313Jkc9LHns3ybrz2k959a/br/uUg7TY8G1Cj+bczDaQWtOOfT1ik3THzNd8Ppk5fHJV142u/VPeOLsawOAbhgZ8GC0NafNz76n/9T87AMAAAAAAAAAAAAAAAAkEYy2pBRFsSHJy5O8ONOhZc1MFUXxX0muKcvy9zpY/9gkr03yvCRHNxlzbZI3l2X5z5ULBwBYKMuOmj583yoEaz6D0W76o8bt932i+hrlZOP2IbcGWXNqcvYvJbe+tf3YQQlG23FD8plnJLWJ6ev7P5185LHJ0+9Ilh/VeM5d1yTX/XL7tZdv7FqZ0Kla2byva8FoVZz335PxB5Nv/G7nc89+SdfLAYCODC9wMNrQiung0dGtFccvO/z6tJ9Ibr+q+3XNdOLTkmMu7e0eAAAAAAAAAAAAAAAAwGGkHywRRVE8J8lfJdlUYfhwksckOTlJpWC0oiiemuTvkxzXZuilSS4tiuJdSV5SluXeKusDACyIokiOvijZdm3zMfMVjFaWyfe+0rhv+391sM5U4/ZiuPOaFqOL/zI59tLk1rclD3y2+bhBCUb7xv86FIp20MSO5O5rkrN+7vD22kTyhRcnd/xDtbVPeGJ3aoRZaBV+NtnkZa5nHvGaZMMjky0fSEbvTfbekey6qfWci96SrDphXsoDgKZGFjAY7bxXJme8INl4YXL7O5L7Pp6sPnX6d/AHPtN4ztDyw6+PvyJZd26y+5bu13faTyTHPT458+eSIfdKAAAAAAAAAAAAAAAAMJ8Eoy0BRVG8JsnvNui6K8ktSR5IsjLJ5iSPSLKmw/WvSPL+JDNPppVJvprk9iQbklyY5JgZ/S9Isr4oimeUZdniSDsAwAI78amtg9Fq8xSMNrGrdf/4zmT5Ue3XqU02bi/cGiSZDsM744XJKc9OrtlwZKjYQYMQjDa5L7n7vY37vvjzyfE/lKw9M9lze7L1w8mXf6X62sc/MTnv5d2pE2ahVTDaVK2cv0IOOuWZ0x8H3fKXyVdf0fg15PQXJOe8dP5qA4BmhhcoGO2kH0se8+ZD12f97PRHknzpl5sHoxXLDr8eWpZc8vbkY4/vbn2P+r3kob/R3TUBAAAAAAAAAAAAAACAyqQfLHJFUbwqR4ai/WOSN5Zl+Y0G44eSPC7Js5P8SIX1T07y3hweiva5JL9QluWNM8atSPKSJH+U5OAJth9L8oYkv13x2wEAmH8rT2jdPzUPwWhTY8kn2/xqtvfOZPkj269VNglGG3JrcJiR1cnmpyZbPtC4fxCC0T799Nb9HzgrOfNFyZ1XJ1P7qq/7xE8lx146HUQBC6RV9tnUAuSiHeHclyabn5w8cG0ytTcZWj4dcHn0Rcmxl0+HMALAQhteuTD7nvEzzfuGV7ToW35k23GXJz++I7n9quSrr5x7bUmy6sTurAMAAAAAAAAAAAAAAADMivSDRawoiguS/N6MpokkP1mW5TXN5pRlWct0sNnniqKo8vx4bZKNM66vTXJlWZaHJYSUZTmW5M+KorgryftmdP1aURR/XZblnRX2AgCYfyOrW/ePbUsm9iTL1vauhruuTh78Yusxe+9INlYJRptq3F4Md1zWovcDVyX/vKlx33wE4s3F/geSez/Wftztf9/Zuhe/NTn+CbMqCbppqta8b7LJy9y8W3f29AcA9KuiSDY8ItlxxN/PSIqhpGzxP7j1hpYnx12R3Psf7cee8szW63Tat/yo5PxXJJsuST56afv921m1ee5rAAAAAAAAAAAAAAAAALM2tNAF0BsHQs3+LoeH372kVShavbIsJ9vscU6Sn5nRNJ7kRfWhaHVrvj/JO2Y0rUjymqo1AQDMu+E2wWhJ8h+XJJOjSVn2poab/qT9mL0Vc2ZrTX7Fq5SJu8SsODo5rkkI2NdfPb+1dKpKKFqnVhybnPHC7q8Ls9AqGK1VHwBQ56xfPLJt81Or3QfN9OM7kkf8r/bjHvI/p0PXmhle2byvWNZ67WMuSTY+qn0N7aw6ae5rAAAAAAAAAAAAAAAAALMmGG3xek6SR8+4/nhZlld1eY+fTDI84/q9ZVl+u8K836+7fm5RFC1OvAEALKCRCoEAO7+VXL06uWZD8pnnJPvv724N27/afsyDX2w/Zu9dyX0fb9xXDDduX+qGljfv6/a/czftv7e76534o8lTrqv28wDzoNYih3JSMBoAVHfef08uekuy4YJk9anJ2b+UPP6aZHJP9TVWn5qMrEo2Xth+7KrNbfpPbN7X6nfzZDpw7Yc/lpz+wmTlCcnRFyWX/mPyzK3Jyc9IVh7fvr7Vpybrzm0/DgAAAAAAAAAAAAAAAOiZkYUugJ55Sd31/+7BHs+su64UvFaW5Y1FUXwxySUHmtYkeXKSD3SxNgCA7hheVX3sxK7k7muSB7+UPP070wfz56o2UW3cHe9KfuAdyVCTgLOpseSjlzWfX7g1aKhV+MKd707Oe1nr+VNjyc4bkvXnz2+o2Ni2ua9x/quSR//R3NeBHphqEX7Wqg8AaODcX5n+mKuR1cmKY5OxB5qPaReMtv785n2Tu9vXsGJTcuk7j2z/wfcd2faddyWf/6kZDUXyiP/V/J4KAAAAAAAAAAAAAAAAmBddSGqg3xRFcXaSJ8xouiPJJ7u8xwlJLpjRNJnkcx0s8am666fOtSYAgJ6YTZjVvruS9x6XTI3Pff89d1Qf+8Bnmvdt+UCy77vN+x3+b6Js3rX71tZTb39ncs2G5MOPSa7ZmNz4pu6W1spcg9Eu/b/JhX/YnVqgB1qFn00KRgOAhfO4BqFkM7UNRjuved/UaOf1tHLGC5InfyE582eTc34leeInkrN+rrt7AAAAAAAAAAAAAAAAAB0bWegC6Ikfqrv+eFmWLRIdZuXhdddfL8tybwfzr627ftgc6wEA6I3hWQSjJcnYg8k3X59c8Pq57T92fz91sfoAACAASURBVPWxD3wuOf6Kxn0PXtd67u7bqu+zlLQKX2gVmrf9+uQLP3PoujaefO3Xkw2PSDY/uXv1zbTzW8k9H03Gv5fc+rbZr/OI1yWn/0T36oIemGpxh9sqNA0AqOiclybf/svO522of9u4ztqzWvevPCFZtiGZ2HFk37GXd15PO8dcMv0BAAAAAAAAAAAAAAAA9I2hhS6Annhs3fXnk6SYdmVRFFcVRfGtoih2FkWxtyiKO4ui+FhRFL9ZFMXpFfd4aN31rR3WWJ+8Ub8eAEB/aBV+1c7d75n7/hO7q4/9+v+b7Pr2ke1lmdz4h63nHuXXsYYm9zXvG17VvO+772/cfvf75lZPM7f+bfLBRyZffUXyzdfNYaEiOeOnulYW9EqtRfjZxNT81QEAi9bJz6g+dt3Zh75efXJy/A83Hnfs45PVJ7VeqyiSs3/+yPY1pyUbH1W9JgAAAAAAAAAAAAAAAGBgCUZbnC6qu77xQODZx5J8NMmLkjwkyfokq5OcmuSJSd6Y5JaiKP6iKIp2CSBn113f1WGNd9ZdbyqKYmOHawAA9N7wHILR9twxHUrWiS3/nnz+RckXXpxs/Ugysauz+f92bvLZ5yYfvzL52v9Mdt+WbPtC+3nrz+9sn6ViapbBaN/43cbtt751TuU0tG9r8qVfSMoupEFdfnWy9oy5rwM9NtXipXX/xPzVAQCL1uYnJY9+c7X7oYf8+uHXj3tncvTFh7cd/Zjksn+qtvfDX5Oc+pxD1+vOSa74cFL4vzMAAAAAAAAAAAAAAABgKRhZ6ALoic1116uTXJfkmApzlyV5aZLHFUXxtLIs72kybkPd9f2dFFiW5Z6iKPYnWTmj+agk2ztZp15RFMclObbDaWfNZU8AYJEbmUMwWm0smdybLFtbbfy335pc98uHrm+/Kjn2ss73ves905/v+3jynXckx/5g6/HrzkmOe0Ln+ywFky2C0YaWzV8drbz/pO6s89y9c3u+wzyaqjXv2zs+f3UAwKJ2/iuTs38p2XNbsuvm5LM/fuSYtWclxz/x8LbVJyVP+dJ0UPS+u5PVpyRrT6++77K104G9Yw8mY9uSdecmRTGX7wQAAAAAAAAAAAAAAAAYIILRFqf60LKrcigUbW+Styb5UJLvJlmT5IIkL05y+Yw5Fyb556IonlCW5USDPerTPUZnUedoDg9GWzeLNeq9NMlrurAOAMC04VVzmz/+YLVgtLKWfOO1R7Y/8Lm57b///uTua5r3H/v45HF/Xz28bamZahGMdvOfJee/osGc/b2rp96DX57dvGIkSS0ZWZcc/0PJRW8RisZAqZXN+27tKLYbAGhpZFWy4eHTH497Z/L5nz7Ud8KVyQ+8Ixle3nju2tM7C0Srt2LT9AcAAAAAAAAAAAAAAACwpAhGW2SKoliRZEVd88kHPn8ryVPKsry7rv+rSa4qiuJVSf5oRvvjkvxGkjc02Ko+OWM26Q+jSTa2WBMAYOEVQ3ObP7YtWXNa+3EPfjnZf+/c9pqNJ316/vccJJMtgtH2fie57e+Ss158ePu1L+xtTTPd94nOxj/rvmTlcb2pBebRVK11/7uvq+V5F8/x9RsAONwZL5z+AAAAAAAAAAAAAAAAAOghp4QXn+Em7TvTOBTt+8qyfFOSP65rfmVRFFUCy8qK9c11DgDAYNm/rdq4sft7W0cjF75p/vccNGWb9KXb/vbw6/3bku++t/WcqfG51TTTDW+sPnb5xmTFsd3bGxZQu2C0t3/W7SYAAAAAAAAAAAAAAAAAAAwiwWiLTFmW+5I0OiL+5lahaDO8OtMhagcdneSpDcbtqbteVa3ClnPq15yNv0zy8A4/nt6FfQGAxWz9ebOfu++uauPKBQjxWX3S/O85aC78g9b92z5/+PWuG9uHqX38h5LRe+ZWV5LsvTuZ2FF9/KrNSVHMfV/oA7U2L5kfu3F+6gAAAAAAAAAAAAAAAAAAALpLMNritLdB2zurTCzLcm+S99Y1X9FgaF8Go5VleX9Zljd08pHktrnuCwAscqc+/8i25Ucnz96WXPL25NJ3JcvWN577pV9Mtn+9/R7l1NxqnI1VgtHaOrFRRnALE7vbj9l2bfLhxyQPXDu7mg667e2djT/uirntB31kqk3+IAAAAAAAAAAAAAAAAAAAMJhGFroAemJHknUzru8ry/KODuZ/IcnPzrh+SIMxO+uuj+1g/RRFsTZHBqPt6GQNAIB58/DfSfbcntzxD0nKZNWJyRM+kKzYlJz14ukxt7wl2fb5xvO/+PPJeS9Ptv57suKY5IyfTjZddPiYhQhGW3vm/O85aNaclgyvTKb2Nx9TlklRTH89WSEYLUlG70k+fkVy7suSYjjZe2dy/BXJWb+YDA1XW+Obr6027qCzfq6z8dDHBKMBAAAAAAAAAAAAAAAAAMDiJBhtcbolySkzru/pcP7WuutNDcZ8u+76tA73qB//vbIst3e4BgDA/Bhallz6zuQxfzwdaHXUQ5Ni6PAxI+saz02S712XfP6nDl3f9jfJE/41OeHKQ21To92tuZ2jHp6sPnF+9xxUpzw7ueNdzfvLyaRYNv31RMVgtCSpTSQ3vfnQ9V1XJ/d9Mrns3YeC1pr5+muq75Mkpz43OfrRnc2BPlYr24/5yA1lfuRhbX6WAAAAAAAAAAAAAAAAAACAvjLUfggD6Ia667EO59ePX9lgzI1112d3uMeZddff6nA+AMD8W7Ep2fDwI0PRkmRZi2C0elP7k088KXnfycmXXzZ9Pbm3e3VWsfnJ87vfIBta0bq/Nn7o68kOgtEaues9yc5vNu67+/3JBx+V/N8i+ebrmq/x1P9KHvNnydqzkpXHJee9Irn4r+ZWF/SZqVr7Ma9+f4VBAAAAAAAAAAAAAAAAAABAXxlZ6ALoia/XXW/ocH79+AcbjKlPa3hkURSry7LcV3GPy9qsBwAwWDoJRjtodEtyy1uSXTdPh1h14gfekdz8p8n2r3a+b5Ic9bDZzVuKhpa37p8aS0bWTH89sWvu+9329uQxf3J42z0fTT777KRsE/S04YJk44GP814291qgT1UJRvvynUmtVmZoqOh9QQAAAAAAAAAAAAAAAAAAQFcMLXQB9MSHkpQzrs8simJlB/MfXnf93foBZVnek8MD2EaSXN7BHlfUXX+og7kAAP1nZBbBaAfd+9Hk1rd2NmfFMclZL579nuvPm/3cpaacaN1fGzv09cTuue9370ePbLv1be1D0ZLkjJ+e+/4wAKbK9mOSZNue3tYBAAAAAAAAAAAAAAAAAAB0l2C0Ragsy61JPj+jaVmSJ3awxFPqrj/TZNz76q5/tsriRVGcn+SSGU17k/xHtdIAAPrUsjkEo83GimOSM180y8lFsv4h3axmcZscbd0/NSMYbbILwWg7v5WUdalPd19Tbe65L537/tDnyrI84kekmXt29rYWAAAAAAAAAAAAAAAAAACguwSjLV5X1V3/WpVJRVE8PsljZzTVknywyfB3JZmacf2soijOqbDNb9RdX12W5f4q9QEA9K1l6+d3v5XHJCNrkif8W+dzT3xasuLo7te0WE21CUarzQhGm2gTjHb0Y5Infbb9nl/8+aQ21X7cTFd+Jhle2dkcGEC1iqFoSbJ1R+/qAAAAAAAAAAAAAAAAAAAAuk8w2uJ1VZIbZ1z/cFEULcPRiqI4LkcGql1dluVtjcaXZfntJO+Y0bQ8yd8XRdE0jaEoiqcnedGMpvEkr21VFwDAQBhZN7/7Ld904POGzude8rbu1rLYtQtGm6oYjLb+/OTyq5NjL0tWbW695u1/l9z+9uTrr0k+/az2NT76T5LjLm8/DhaBqVr1sffs7CBFDQAAAAAAAAAAAAAAAAAAWHCC0Rapsiynkrw8ycwj428qiuJPi6LYWD++KIork3wuyVkzmrcn+e02W73mwLiDLk3ysaIozq9bf0VRFC9L8p66+W8qy/LONnsAAPS/opjf/Zatn/48vKqzeatPbh/KxeHaBaPVxg99Pf5g4zGnPjd52reStWdOXxfL2u/7pZck33xd8t33tR535ouT81/efj1YJGodZJ1t3dm7OgAAAAAAAAAAAAAAAAAAgO4bWegC6J2yLD9aFMXLk/z5jOZfTfLLRVF8IcmWJKuSPCrJaXXTx5P8RFmW32mzx3eLonhWko8kWX6g+bIk3yqK4itJbk9yVJJHJzm2bvq/JXl1x98YAEA/GmsSiNUrB4PYhld3Nq9dyBdHahuMNpbc9KfJ7X+X7Ph64zHH//Dh4XlDyxuPm43jfrB7a8EAmKq1H3PQPYLRAAAAAAAAAAAAAAAAAABgoAhGW+TKsnxLURRTSf4oycHUjGVJHt9i2n1JnlWW5bUV9/hUURTPTPL3ORR+ViS56MBHI/+Y5BfKspyqsgcAQN9bqHCqkQ6D0c791d7UsZid8uPJg19q3n/DG5Ot/956jfXnH3599i8k//Ubc68tSTb/SHfWgQHRSTDavTvL3hUCAAAAAAAAAAAAAAAAAAB03dBCF0DvlWX5V0kemeQfkuxuMfTeJL+b5LyqoWgz9vhgkocneWuS7S2GfiHJj5dl+ZNlWe7tZA8AgL626ZJkZN387LVs/aGvVx7X2dxTntXdWpaC057Xur9dKFqSrD+vbs3nz76emTY/NVl1QnfWggFR6yDrbOuO3tUBAAAAAAAAAAAAAAAAAAB038hCF8D8KMvytiQvLIpiVZLLkpyc5IQk40keSHJ9WZZfn+Me9yf55aIoXn5gj9MO7LE3yZYkXyvL8jtz2QMAoG8Nr0gu+Zvk2hck5VRv97rwTTP2XVl93kP+R3LUw7pfz2K35tTkgjcm1//W7OYv25CsPL7Bmv9fcv3vzK22i98yt/kwgKZq1cfes7N3dQAAAAAAAAAAAAAAAAAAAN0nGG2JKctyNMnHerzHeJJP9nIPAIC+dNrzko2PSr70S8n9n+rNHsOrk1OfXX384/852f3t5NjLk2MuTYqiN3Utdg/7zdkHox3/hMaP+8N+OznhSdPPl+1f7XzdTY9N1p45u5pggHUajFaWZQqvfQAAAAAAAAAAAAAAAAAAMBCGFroAAABYVNafl1zwht6svWx9cvl7kuUbq8855VnJQ38jOfYyoWhztfrk2c3b/NTmfZsuTp706WRoeefrPnSWQW0w4Gpl9bETU8n4ZO9qAQAAAAAAAAAAAAAAAAAAumtkoQsAAIBFZ/mmuc0fXp1c8W/JxguT5RuS0XuTfXcnRz08GVl15PgVxyZjDxzZvvqUudXB4WoTs5u37qzW/SNrkrVnJbturL7mpkuSk35sdvXAgCs7CEZLktGJZMWy3tQCAAAAAAAAAAAAAAAAAAB019BCFwAAAIvOimPaj9lwQfO+/3Z9cvwPTYeiJcmqE5JNFzcORUuSR76+cftDfr19HVQ3tm1281ad2H7MU75ScbEiOe0nk8vfnQwNz64eGHC1ToPRxntTBwAAAAAAAAAAAAAAAAAA0H2C0QAAoNuWb2w/5ke+lGx+yuFtw6un29ed3dl+pz03WXfO4W1rz0xOe35n69DapsfObt6qk9qPGVmVnPHTrccMrUh+Yiq57F3JmtNmVwssAh3momV0oidlAAAAAAAAAAAAAAAAAAAAPSAYDQAAum1oODnxv7UeM7w8+cF/SS54Y3Li05IzX5Q86TPJpos732/5xuRJ1yYP+R/JCVdOf77yM8nK42ZVPk0c/8Ozm7dsfbVxJz+jdf+KTUlRzK4GWERqtc7GC0YDAAAAAAAAAAAAAAAAAIDBMbLQBQAAwKL0qN9Ltn6wcd9RD5/+PLw8edhvdme/lcckF/5Bd9aisfNfOf1vuv1r1edseGT1MLPNT05SJCkb9y/fWH1fWMRqTX5Emhkd700dAAAAAAAAAAAAAAAAAABA9w0tdAEAALAobXhE8v/c1rjvlGfNby10x4pNyZX/2dmc03+q+tiRNcnGC5v3Lzuqs71hkeowFy2jEz0pAwAAAAAAAAAAAAAAAAAA6AHBaAAA0Ctrz0ye+KnDA61OeXbysN9asJKYo2Xrqo8982eTc3+ls/Wf8IHmfa1C02AJqdU6G79fMBoAAAD0jU/cVOZX/6mWX39PLV+8vdP4cwAAAAAAAAAAAABgKRhZ6AIAAGBRO/4JybPuT773lWT1ycmaUxa6IuZqeHUyta9x3+YfSR7x2mTVCcma0zpfe/VJybkvS27588Pbi+HkjJ/ufD1YhDo9Mj063pMyAAAAgA79zWdqecn/OXRn/+efKPPuXxzKMy4sFrAqAAAAAAAAAAAAAKDfDC10AQAAsOgNL0+OfZxQtMXiob/ZuH3FpuTyq5NjLpldKNpBj35Tct4rptdLkg2PSH7w/ckxj539mrCI1DpMRhud6DRKDQAAAOi2qVqZ33nf4ffoE1PJq/+ltkAVAQAAAAAAAAAAAAD9amShCwAAABgoZ/5McutfJaP3HGpb/5DkKdclI2vmvv7QsuQxf5w8+s3J1Ggysnrua8IiUuvwvPToRG/q6Gej42W270uOW5eMDBcLXQ4AAADkc7cm2/Yc2X7D1mTrjjInbnD/CgAAAAAAAAAAAABME4wGAADQiTWnJk/6XHLTHyc7vpFsujh56G92JxRtpqIQigYNlB2OHx3vSRl9648/Wsvr/q3MztFk81HJX79wKD/6SIfLAQAAWFh3Ptj8jn7XaHLihnksBgAAAAAAAAAAAADoa4LRAAAAOrX2jOSiP1voKmBJqnWYjDY60Zs6+tG/Xl/mVe859ADdszN53l/XcuPrhnLqJuFoAAAA9KepTlPQAQAAAAAAAAAAAIBFbWihCwAAAACoquw0GG28N3X0o2u+cuSDMzqR/OV/OmEOAADAwmp1Z7pvCd27AwAAAAAAAAAAAADtCUYDAAAABkat02C0id7U0Y+uu6Pxg/MHHxaMBgAAwMJqFXS+d2z+6gAAAAAAAAAAAAAA+p9gNAAAAGBgdBqMtm+8N3X0o5vubd63e79wNAAAABbO/hbB5YLRAAAAAAAAAAAAAICZBKMBAAAAA6PsMN9r+97e1NGP1qxo3reUHgcAAAD6z54W4WdLKdQcAAAAAAAAAAAAAGhPMBoAAAAwMGodBqNt29PhhAG2alnzvt0tDqADAABAr+1tEX62d3zp3LsDAAAAAAAAAAAAAO0JRgMAAAAGRtlxMFpv6uhHy0ea9+0anb86AAAAoN7eFoHdrfoAAAAAAAAAAAAAgKVHMBoAAAAwMGqC0ZoaLpr37d4/f3UAAABAvVbhZ/vG568OAAAAAAAAAAAAAKD/CUYDAAAABoZgtObGJpv37RKMBgAAwAJqFYzWqg8AAAAAAAAAAAAAWHoEowEAAAADo+wwGG3naDI+2eGkAdUqGG33/qXxGAAAANCf9o41vy/dOz6PhQAAAAAAAAAAAAAAfU8wGgAAADAwarPI93pwT/fr6Eetg9Hmrw4AAACot69F+FmrPgAAAAAAAAAAAABg6RGMBgAAAAyMchbBaDtGu19HvynLsmUw2i7BaAAAACygyVrzvomp+asDAAAAAAAAAAAAAOh/gtEAAACAgVGbTTDavu7X0W8mp1qHxu0WjAYAAMACanXPOikYDQAAAAAAAAAAAACYQTAaAAAAMDBaBaONNHmXYykEo41Ntu7fJRgNAACAPjVVW+gKAAAAAAAAAAAAAIB+IhgNAAAAGBhli2C0jWsat+8YbTFpkWgXjLZXMBoAAAALqNWd+aRgNAAAAAAAAAAAAABgBsFoAAAAwMCoNTlJXRTJhlWN+3bs6109/aJdMFq7fgAAAOilVkHnk1PzVwcAAAAAAAAAAAAA0P8EowEAAAADo9lB6qEi2bC6cd+O0d7V0y/aBZ/tn2hxAh0AAAB6rNVd6WSzFHQAAAAAAAAAAAAAYEkSjAYAAAAMjGZnpYskG1Y17tuxr2fl9I3xtsFo81MHAAAANNIs6DxJJqfmrw4AAAAAAAAAAAAAoP8JRgMAAAAGRrNgtKGhZMPqomHfUghGG2sXjNamHwAAAHqpVTDaLffNXx0AAAAAAAAAAAAAQP8TjAYAAAAMjGYHqYeK5KjVjft2jvaunn7RNhhtYn7qAAAAgE7dfF+ydUeL5DQAAAAAAAAAAAAAYEkRjAYAAAAMjFqTc9JFknUrG/ft3r/4D1ePtQk+E4wGAADAQmp3Z37NVxb/vTsAAAAAAAAAAAAAUI1gNAAAAGBgNDsmPTSUrG8ajNazcvrG+FTrfsFoAAAALKSyTe7ZK94tGA0AAAAAAAAAAAAAmCYYDQAAABgYtVrj9iLJuibBaLuWQDBas8flIMFoAAAALCSxZwAAAAAAAAAAAABAVYLRAAAAgIFRa3KSeqhoHoy2ewkEo021OWE+KhgNAACABVRKRgMAAAAAAAAAAAAAKhKMBgAAAAyMZueoh4aS9Us4GK1Wa92/XzAaAAAAC0gwGgAAAAAAAAAAAABQ1chCFwAAAABQVbMAsCLJupVFGkWn7VoCwWhTbQ6YD3ow2te/W+aNHyzzlbvKDBfJRacXef3Ti5x+TLHQpQEAAFCBXDQAAAAAAAAAAAAAoCrBaAAAAMDAaHaQeqhI1q1s3Dc+mYxPllk+snhDtJoFxh00WUsmp8qMDA/eY3DjPWUu//1a9owdarv5vjIfuaHMja8byqa1g/c9AQAAAAAAAAAAAAAAAADQ2NBCFwAAAABQVa1sHI1WFMn6JsFoSbJ7f48K6hNTzRLjZhib7H0dvfAXnywPC0U7aNue5E8/XuEbBwAAYME1uZ0HAAAAAAAAAAAAADiCYDQAAABgYNRqjduHimRdi2C0XYs9GK3J4zLT/one19EL197W/PT8e7/qZD0AAMAgcPcGAAAAAAAAAAAAAFQlGA0AAAAYGM0OUrcNRhvtSTl9o1a2P2I+iMFotVqZm+9t3v+te5Jv3+d4PQAAQL+rcNsKAAAAAAAAAAAAAJBEMBoAAAAVPbC7zJs/WsvvvK+WD33DaVYWRq3JU68okg2rms+7b1dv6ukXU7X2YwYxGO3u7clom7r/5XqvRwAAAP1OMBoAAAAAAAAAAAAAUNXIQhcAAABA/7vzwTKX/34tW3YcbCnziiuLvPm58raZX80OUg8VybKRIsetS+7ffWT/1p1lkqKntS2kZoFxM7ULGOtHtz/Qfsxnbinz60/ufS0AAADMXpVctInJMstGFu+9OwAAAAAAAAAAAABQjRPsAAAAtPWGfy9nhKJN+9OPl7n+7irHWqF7mgWAFQfOTZ+4oXH/lu29qadfTNXajxmf7H0d3bZvvP2Ym+7tfR0AAAD03iAGegMAAAAAAAAAAAAA3ScYDQAAgLY+d+uRaVRlmbzxQ4LRmF/NgtGGDgSjndQsGG1H4/bFotnjMtP4VO/r6LbJCoFvt29Lxie9FgEAAPSzssJtW5VwbAAAAAAAAAAAAABg8ROMBgAAQFs33du4/eovCyNifjU7SH0wGO3EDUXD/q07FvdzdapCgNj4ZO/r6LaJCmFuU7Xktgd6XwsAAACzV+WufHSi52UAAAAAAAAAAAAAAANAMBoAAAAwMGpNTlIXB/LQNh/VuH/bnt7U0y8WbzBatUC7Ox/scSEAAADMSbOg85l27+99HQAAAAAAAAAAAABA/xOMBgAAwJzs3l8tuAi6odlB6qEDwWhHrWrcv2esN/X0i2aBcTONT/W+jm6bqFjzlh1ehwAAAPqZYDQAAAAAAAAAAAAAoCrBaAAAALRUtjm5es/OeSoE0jwArDgQjLZ2ZeP+xX64eqrWfsz4ZO/r6LbJisFoW3f0tg4AAADmpkqc9a7RnpcBAAAAAAAAAAAAAAwAwWgAAAC0NNYmTOkegUTMo2Y5fUMHgtHWrWjcv9iD0ZoFxs00NlnlGHp/magYjLbF6xAAAEBfa5O7nyTZOTp4960AAAAAAAAAAAAAQPcJRgMAAKCl0fHW/ffsdGiV+dMsAOz7wWgri4b9e8Z6VFCfmKq1HzPeJuSwH1UNRrtnh9chAACAQbdrkYeaAwAAAAAAAAAAAADVCEYDAACgpdGJ1v337Z6fOiBpHoxWHMhDW7uicf/+iWRyavGGZ1UKRqsYMtZPqgajbdnR2zoAAACYmyp35ILRAAAAAAAAAAAAAIBEMBoAAABtjI637t81Oj91QJKUTU5SDx0IRlu3svnc3Yv4gHWzwLiZxid7X0e3TVYIfEuSrYLRAAAA+lqz+/mZvMcEAAAAAAAAAAAAACSC0QAAAGhjf5swpV2LOGyK/tMsAOxALlrLYLQ9Y10vp29MVQgQG5/qfR3dNlGx5vt2JxOTFU7ZAwAAsCAqBaN5jwkAAAAAAAAAAAAAiGA0AAAA2hgdb92/a3R+6oAkaXaOeujAOxxrVzSfu31f18vpG80C42YabxNy2I+qBqOV5XQ4GgAAAP2pSpS195gAAAAAAAAAAAAAgEQwGgAAAG2MTrTu371/fuqAJKnVGrcPFdOf161sPvcPP1LlGPZgmmryuMw0iMFokxW+r4O2bO9dHQAAAMxNWeGWfNfo4r1vBwAAAAAAAAAAAACqE4wGAABAS6PjrfsdWmU+1Zo83Q7komXNiqQoGo/5/G2L97na7HGZaWwAg9EmpqqP3bqzd3UAAAAwN1XuyHcJ3wcAAAAAAAAAAAAAIhgNAACANkYnWvc7tMp8anaQeujAOxxFUaRsMmjZcE9K6gtTtfZjxjsIGesXnQSjbduzeIPvAAAAloJdowtdAQAAAAAAAAAAAADQDwSjAQAA0NLoeOuwIcFozKdakwCwYsbXTzy/8Zgdi/iAdaVgtMne19FtnQWj9a4OAAAA5qZZiPlM3mMCAAAAAAAAAAAAABLBaAAAALSxv02Y0q5FHDZF/2l2jnpoRjLaK65s/HbHjn3dr6df1CocMB/EYLRJwWgAAACLQpVgtJ3eYwIAAAAAAAAAAAAAkowsdAEAAAD05I0k1wAAIABJREFUt7GJ1v279s9PHZA0DwAbmpGFtmF14zFjk8n+iTIrlxWNBwywqVr7MeMdhIz1i4kOan5QMBoAAEDfqpCL5j0mAIAOFEXx6CTnJDnpQNOWJLeUZfm1hasKAAAAAAAAAAC6QzAaAAAALTULojpo12hSlmWKYvGFTdF/ak0CwGY++5oFoyXJ9r3J5g1dLakvtPs5TZKJyd7X0W2THQWjVTlmDwAAwEIoK9yy7R1Lpmplhoe8xwQALJyiKM5McnGSiw58fnSSdTOG3FmW5ekLUFqKoliW5FVJfj7JWU3G3Jrkb5O8uSzLNn/+CAAAAAAAAAAA+pNgNAAAAFpqF7g0WUv2TySrls9PPSxtzZ6OM89Mb1jVfP6O0cUZjDbVJDBuprEBDEab6CAYbdue3tUBAADA3FSNst69v3XgOQBALxRFcUWS38p0GNrRC1tNY0VRnJPknzId1NbK2Ul+L8lziqJ4flmWt/a8OAAAAAAAAAAA6DLBaAAAALTULhgtSXaOCkZjfjR7PhYzg9FaHKDesa+79fSLKj+n45NVj6H3j8kKgW8HCUYDAAAYfLtGBaMBAAviUUmevNBFNFMUxQlJPprktLquW5PckKRI8rAkZ83oe0yS/yiK4gfKsrx/XgoFAAAAAAAAAIAuEYwGAABAS1MVgol27U9OOKr3tSx27/piLVdfV2aoSJ7/2CLPu3hooUvqO2WTbK+hGcFoq5cnI0ONQ7UWazBalZ/T8ane19FtE1PVw9wEowEAAPSvZvfz9XaO9rYOAIAOjSX5bg4PHJtXRVEMJXl/Dg9FuyfJi8qy/I+6sU9JclWSEw40nZHkfUVRXF6WVX8jAwAAAAAAAACAhScYDQAAgJZqFY5J7HJodc5+/8O1/NZ7Dz3Y/3J9ma07annlk4SjzdTs+TgzGK0oimxY3Tgo695dZZLiyI4BVyU/bP9E7+votokOwtx2jiYTk2WWjSy+f18AAIBBVzWGY9f+3tYBANDCRJIbknw5yXUHPn8jyWVJPrmAdb0gySUzrr+X5NKyLO+oH1iW5YeLorg0yVeSbDzQfGmS5yX5px7XCQAAAAAAAAAAXeN0NQAAAC1VCkZzaHVO9k+U+YMPH/lAv/FDZcYnK54cXiKaPR+Luiys0zc1Hnfzfd2tp1/Uau3H7BzAAMNOgtGS5Hv7elMHAAAAc1P13Q3h+wDAAnlHkvVlWV5YluUvlGX5trIsv1qW5YL+yZGiKIaTvLau+dcahaIdVJbld5L8Wl3zG4qi8N+KAgAAAAAAAAAwMPzHLgAAALRUJXDJodW5+dpdyfYGgU7b9iTf3DL/9fSzsslJ6qG6YLTzTygajrv5nsUZNDdV4dvaMYChYZMdBqNt29ObOuhvd2wrc/3dZXbsW5w/3wAAsBg0u5+vt2u/3+sBgPlXluX2siz78c8AXZ7kjBnXW5L8Q4V5/+fA2IPOSnJpF+sCAAAAAAAAAICeEowGAABAS7UK51EdWp2bm+9r/vjd0qJvKWr2fCzqctDOPaHxuJvu7W49/aJKgOGOAQwwnOg0GG13b+qgP9VqZX7pH2o5+3dqufD1tZz527X881e8ZgIAQD+q+pv6rn6MIwEAWDjPrLt+Z1mWbd85PzCmPkDtWV2rCgAAAAAAAAAAekwwGgAAAC1VCkYbwMClfnLr/c37bmnRtxSVTZ6PQ/XBaMc3Hnf39qRstsgAq/JzumPf4H3vHQej7elNHfSnq64t87ZPl99//u/Ylzznr2vZtnuwnucAALAUVL0d3ek9JgCAmZ5Sd/2pDubWj33qnCoBAAAAAAAAAIB5JBgNAACAlqoELjm0Oje3tQg/u/ne+atjEDR7PtYHo52ysWg4bt/44ny+1mrtx0xMJaPjva+lmzoPRhOItZT8ycca/3sf96rawIUAAgAA04TvAwBMK4piRZKz65q/0MES19Zdn1MUxfK5VQUAAAAAAAAAAPNDMBoAAAAtVQlG2ztgYUv9Zu948wf5pnuE+8zU7PlY1OWgnbih+RpbdnSvnn4xVfFpsmPADphPVgh8m2n7vt7UQf+588EyN2xt3v+l78xfLQAAQHtVs4t37e9tHQAAA+S8JMMzru8vy3JX1ckHxm6b0TSc5Nwu1QYAAAAAAAAAAD0lGA0AAICWahWCifaM9b6OxWxyqnnfzfcltSrpdEtEs4PUQ3XBaJuPar7Glu3dq6dfTFUMENsxYMFhEy1+NhoRjLZ0fHNL6/73/ZfXTQAA6CdVf0PfNWCB3gAAPXR23fVds1ijfs45s6wFAAAAAAAAAADm1chCFwAAAEB/m6pwcnWvYLQ5aRX+tG88uXt7ctqm+aunnzXLiCvqgtGWjxQ5bl1y/+4jx27ZUSYpjuwYYFXD83YO2AFzwWg0s2+8df/HvlUmz5qfWgAAgPaaBZ3X271fyDEAwAEb6q7vn8Ua9XNa/FmZ6oqiOC7JsR1OO6sbewMAAAAAAAAAsDQIRgMAAKClWq39GMFoczPZ5jG+Y5tgtIOaHaQeapBzdtKGxsFotz3Q3Zr6QZUAwyTZtb+3dXRbs2C04aFkqsHPzY69DtAvFeNtnvSjE/NUCAAAUEnVu7VBC/QGAOihtXXXs/lNqX7OulnWUu+lSV7TpbUAAAAAAAAAAOAIQwtdAAAAAP2tVuHk6t4xYURzMdkk/OmgLTs8vgc1ez42CkY75/gGjUluumfxPZ5VAgyTZGzAwqKa/WwcW38c7IAdDtAvGeOTrfvbva4CAADzq1nQeT3BaAAA31f/Tvhs/vRJ/W9XTd5dBwAAAAAAAACA/jKy0AUAAADQ36oFo/W+jsVsom0w2vzUMQiaPR+LBhlo55/QeOxN93avnn4xVfGA+f7JMknjwLh+1Oxn47j1yb27jmzfvq+39dA/xtoEo23ZkZRlmaLRiwMAwCzcen+Zj9xQZvlI8rRHFDlxg98zoBce2L3QFQAA9K3Z/NWXxfeXYgAAAAAAAAAAWBIEowEAANBSlWC0PYLR5mSy1rp/q2C07yubPB+HGmQSPGRz47Hfvj+ZnCozMrx4ggxqbZ5DB41N9LaObmsajLaucfv2vb2rhf4y3iYYbd/4dFDe0Wvmpx4AYHH71+vLPO9ttew/8Pv0xtVlPvKKoVx0+uK5p/j/2bvzODnqOv/j7+qZyT2TmyQT7isBRBQvZFlF8b5W8WQFj3VX/Hlf6wEKKKIoiAouIMqxIIeCgghyiBwLBJCbJCSTkJPMlbmnp+fsru/vj84wPTP1ra7q6e6p7n49Hw8e6a5vVfWn6/h2VZHvO0Ch2e7nJ2ruIeQYAABgj74J72fnsI6Jy0xcZ64ulnRjyGUOkvSXPH0+AAAAAAAAAAAAAAAAyhzBaAAAAAAAX0GC0RLDha+jnBGMFpztePQaLn3YCkfS5AVGUtKWNmnV8ryWNq1SAQeYD2UJk4oa27mxtNZ733b1F7YeRMewJTQv06ZW6ZgDC18LCuOxrUYX3WtkJL3jCOnkYxzCMQAA08J1jb5w3VgompS+7nztj125l1VNX2FAiQl426qhJCHHAAAAe0Q2GM0Ys1vS7jDL8GwPAAAAAAAAAAAAAAAAYcSmuwAAAAAAQLS5WUK7JKlvsPB1lLORLAE/Td1Bhw+XP9uWiMUmD6g5dJnkMVmStKE5fzVFQSrAeSppXJhDKbCdG0vmeU/vHkgHV6D8DQU4lhtaOBZK1V3rjV5/rqvr/ml0/T+NPnml0Xf+zP4EAEyPR7dJu7q8235yR8ALcQAyIS7nCIgHAACQJPVMeL80h3XsNeE9V1oAAAAAAAAAAAAAAAAoCQSjAQAAAAB8BckYSgwXvo5ylswSjNaRKE4dpcAW1OcVgDarxtEBS7zn31BmgUlBs8CGkoWtI99swWh71XpPN0bqJaixIgxn6TclaWNL4etA/hlj9KXrJ3f2F91r1B4vr74bAFAaHttq//05/WajFMG8QCBhzhSC0QAAACRJmye83y+HdUxcZuI6AQAAAAAAAAAAAAAAgEgiGA0AAAAA4CtlCaLK1DdU+DrKWTLLNm7vK04dpcCWOeB4BKNJ0mErvKfv7MxPPVER5DyVpMGRwtaRT8YYezBanX25rv7C1INoGQ4Q8tfYVfg6kH9P7ZRe2D15+uCI9PCW4tcDAEB/liDwtY3FqQModSZEMlpTD4GDo7a2GTW0EMIIAECFapCU+ZR8L8dxLP9syGSO49RJyvznY1IiGA0AAAAAAAAAAAAAAAAlgmA0AAAAAICvIOMuh5NSMsUAzVzZwp9GdSbEANg9bFshZglGW1bn3dBZZmFzQQ+PoQBhUlHh952WzrPscEndBKNVhOEs/aYkxQfpN0vRX56x77e1jexTAEDxZQsCb48Xpw6g1IUKRusuXB2lIj5o9JYLUjr4dFeHneHq8DNcPd/E9TAAAJXEGDMkaeI/FfD6EKs4dsL7zXvWCQAAAAAAAAAAAAAAAEQewWgAAAAAAF9BA5cSDKXIWTJLwI9rpK7mTpm7rpO56dcyL24uTmER5Lre020xWYvneU/vSJTXYOKUZbtMVErBaH6Bgbb9KkldBKNVhKGR7PPE+V0qSbc+a++ft7YVsRAAAPZoyxKqXErX2ECpaO6Z7gqm3xevM7p349j7zbulj13myoRJmAMAAOXgzgnvjw+x7MR575hSJQAAAAAAAAAAAAAAAEAREYwGAAAAAPAVNBitjwCanCUDhFq1f/WjMj/6tMyvviFzylEy/7ix8IWVkJjlCcfiud7TO7KEG5SaoOfpYIAwqajwC0abXSPVzvJu60oUph5Ey3CWQElJ6h0ofB3Ir94Bo+d22dsf304IBACg+Fq6/X9/yi10GSiUMGdKc5bzrtwZY3T72snbYF2T9OjWaSgIAABMp5snvD/FcZyqbAvtmefkLOsCAAAAAAAAAAAAAAAAIotgNAAAAACAr6CBS4nhwtZRzvwCoEa192Rs4FRK5rzPywxXXhqd7Xh0LPPbgtEaWvNSTmSkAoTrSdJQsrB15JPfeVFTJS2c493W1V/ZA+grxUiAYzk+WPg6kF8vdvm3r2+SGlqicY4/vt3o89e6+vClKf32QVfGRKMuAED+9We51y230GWgUMJcLjX1FK6OUjCSkjotod9XP8p1JwAAFeZBSdsy3u+tyYFnXk6WtDLj/RZJD+exLgAAAAAAAAAAAAAAAKCgCEYDAAAAAPhyAwYu9RFAk7NkgG3cVrXX+AmJXmn9Y4UpKMJsx6NjSUZbPM+7YXBE6imjAK2gAYbDJRSMlvQJRqv2DUYrTD2IluEAgZLxysuOLHmNWYLRJOmwMwJemBTQAw1GbzzP1aUPGP3pKenUa4w+f135/KYAAMbLdt3RYQkvAjBemKulHR0FK6Mk+IXIbdnNdScAAKXMcRwz4b/j/eY3xqQknTlh8gWO4+zv8xn7S/rFhMnfM8ZM/4M1AAAAAAAAAAAAAAAAICCC0QAAAAAAvvwGY2ZKDBe2jnLmFwA1qqlmxeSJax/JfzERZzscY5YnHIvm2td17p3lM5g4aIDh4Ehh68inEZ/zoqbKvm8JpqgMQyPZz984gZ0lp6knWL/81I7p7b9/dpc7qT+97P+MmrvL53cFADAmW7gw159AMEGfL0lSc4/UO1C511Z+4eebdxevDgAAKo3jOHs7jrP/xP8kLZ8wa7XXfHv+W1KA0q6VlPkv5SyStMZxnLd5fIe3S3pE0sKMyWsk/aEAdQEAAAAAAAAAAAAAAAAFQzAaAAAAAMCX32DMTImhwtZRzvwCoEY1VtdPnjhrdv6LiTjb8RhzvKevmG9f11+eKZ9B1qmAX2UoWTrfOVsw2mJbMFpfYeqpBMYYbWw2aukxMmFSC6bBcIB+Mz4ouUF/xBAJjV3B5rt/0/Tu1zvWTZ5mjHTZgxxvAFCOsl13dBOMBgQS9hajobUwdZQCv9uYlp7i1QEAQAV6SNI2j/+unzDfSst82ySdn++ijDGupA9I2pkxeYWkuxzH2eQ4zs2O49ziOM5mSXdqfJDbdkknmqg/8AUAAAAAAAAAAAAAAAAmIBgNAAAAAOAraKZMH8FoOXFdE2gbN1WvmDwx0Zv/giIu5XpPtwWjHbTUvq6NLVJjV3mMBXIt22WioZHC1pFP2YLRFs3z3uldifLYp8W2qdXo2HNdHX6mq/r/dvW+X7uR3pbDyWDzJYYLWwfyq7E72HwbWwpbR66eb5ruCgAAhZDtuiM+GN1rJiBKwp4pDS2Ve275xZYMBbwXAgAA5cUY0yzprZKentB0iKT3S/o3SQdPaHtK0luNMRUcOQsAAAAAAAAAAAAAAIBSRTAaAAAAAMCXLYhqosRQ+AGrfYNGtzxtdNG9rtbuqswBr0G3b2N1/aRpprstz9VEn2tJkbMFozmOo+v+09IoaUdnPqqafkEDDAdLaAB10ufcqI5Ji+d6t3UkClNPOXNdo89c5eqxbWPTbl8rfePG6PbLQYPR4oOFrQP5tWV3sGNuU0RDMoaT0awLADA1foG9khQnJBwoiLb4dFcwfYLe4wMAgMpijNkk6XWSvitpq8+sW/bMc4wx5oVi1AYAAAAAAAAAAAAAAADkW/V0FwAAAAAAiLaggzH7Qg4Gb+01escvXT27a3SK0S8+6ugrJ1RWhne2QfajmmtWTJ7Y3ZHfYkqA7Xi0BaNJ0kdf4+jff+e9YHuZDLQOep4OjRS2jnzyOzdqqqTF87zbOvoKU085e2Sr9PCWydNvetLo0pONZlT7nGDTZChgMFrvgFS/oLC1IH8aWoPNtyngfIVgC+iUgh+XAIDSki2QtY8gViAQEzLsKzFcmDpKQdhtBQAA8sMYs38RPmNKD1uNMSOSzpV0ruM4r5J0qKTRf1mnSdImY8yTU6sSAAAAAAAAAAAAAAAAmH4EowEAAAAAfPkFgGRKhAxG++mdJiMULe0bfzT66KuNls+PXghPoSTdYPN1xzySfXra81tMCbAdjlU+eXqO42jvhdKurslt7X1GUukfb4GD0UootCdrMNpc77aORGHqKWcX/sP7AOobktr7ohksNhwwVLKlV1rtkSuJ6EkMGe3sDDZva1waSRrVTENon1/fFPS4BACUlmz9ezzkvTBQqcJmfYV9zlROgt7jAwCAyrYnAI0QNAAAAAAAAAAAAAAAAJQln2HDAAAAAAAEH4zZF3LA6m8emLxi10i3PFNZoz/9AlYyxWPzJk/sastvMSXAdjzGsmTjLPHYfFI69KkcBD1PB0cKW0c+ZQ1Gm+e909v7JGMqqx+Zqq3t9u3VEdFzZDhgyF9TN8dCqdi8O/i8xqRD76aDXzjOUAn1sQCA4LJdd8QHi1MHUOpst2nVlr+xEPY5UzkhGA0AAAAAAAAAAAAAAAAAAACVjmA0AAAAAICvoIMxE8Ph1jtgCQ+56uHKGv2ZdIPNF6+qk6sJQVAdzfkvKOKswWhZnnAstQSjbQoRxBNlbsDjyHbeRVHSJ3yoOibtVevdNpKSOhOFqalc1VTZ26IaHjgUMBitsbuwdSB/NjaH+/2frn3rF47jF5oGAChd2fp3gtGAYGzBaPNmeU9PVHAwWras72Sqsp6dAQAAAAAAAAAAAAAAAAAAoPIQjAYAAAAA8BU0GK1nIPg6E0P2lWYLuCo3fuFPEyVic8dP6OmQGa6skcK2ALCY4z191JJa7xmueMjIZBtxXAKCnqf9IQMMp9OIXzBalbRivr29uSf/9ZSzlE+wXkdEQ+b8wqkyNRGMVjIaWsPNP1371q9vCnpcAgBKi1/fL6WvsVNBL8iBCmY7S+bN9J5eSvev+ZatS6nk0DgAAAAAAAAAAAAAAAAAAABUhgobbg4AAAAACCvo+O7OvuADwVt77W1VWQKuyk22QfaZemN1kye2N+WvmBJgOx6zBaMtnmdve3Bz7vVERdDztJQGT9vOjeqY5DiOlnmcDqMIRgtnwCdwoD1E315MwwH7ToLRSsemkMFojd3Tc2z6hZ8NEYwGAGXHGBMo+LKUrrOBqKmd5T29bzCa9yLFkO2bV3JoHAAAAAAAAAAAAAAAAAAAACoDwWgAAAAAAF+uG2y+tnjwdfoGo1XYnWoy4PaVpHjMI92rvTl/xZSAXIPRDlhsbzvr1hA7IaKCBqOV0uBp27lRXZX+c0a1oyWWwLvmnsodQJ+LQZ+wj/a+4tURRpCAEklqi3MslIqOkCF8nYkCFZKFXygfwWgAUH6SAcNY44OFrQMoB8ZyuTdvpvf0RAndv+ZbtmdxlbxtAAAAAAAAAAAAAAAAAAAAUBkqbLg5AAAAACCsoIFLYcJzdvuEqFVaqEjQgfaSFI/VTp64e1f+iikBuQajfeCV9hnu3ySdWeLhaEHP06QrjSRLIyhqxHJu1FSNvV4x33ue5p7811POBnwG1XdENBgt6G9FxzSFZyG8sL//0xVAY+ubpOCBfQCA0uEXiJmJYDQgO9udqDUYbahgpURetnv8St42AAAAAAAAAAAAAAAAAAAAqAwEowEAAAAAfKUC5kW1hQjPae21j/CstBAbv4CViXq9gtEat+SvmBJgDUbL8oRj/yWO3neUvf3s24ye3lkagWFe3BC5bv0+IVhRYut7qjP29fI673nCBDVCGhyxt0U1GC1oAFWl/aaUMr/j0Mt0BdD4HXuN3dLQSOn+lgAAJgt6zVEq19jAdDKWyyRbMFpfBYd/ZbuiTNDnAAAAAAAAAAAAAAAAAAAAoMwRjAYAAAAA8GULopqoq19KpoLN3Nprb9veLnX3V06oSDJEoFWfRzCaeXFzHquJPlsAWMzJvuxZ7/N/DPK/j5TucRf0PJVKJ7TB9p2cjH29pNZ7x0c1zCuqBn0CPzoS0TsvjDEaDhgq2dGXnh/RNxQweGbUtAWjZTn2TrzE5ZgDgDISNMh6IGTAJ1CJrMFos7zv6xIVHIyWLfy8krcNAAAAAAAAAAAAAAAAAAAAKgPBaAAAAAAAX0EDl4xJh6MFsTtub0u60h3rSj9Q5KkdRm8+P6W6L6W077dT+uofXA0MT/5eYYLReqsmB6Op0oLRLIdGkGC0Q/fyb7/k/tI97lIhjqPSCUbz3h+Z+3rxPO9l2/tKd18WmzFGAz7HRHsEQ+ZSrj1UYaKhZOkc85XOFoxWU+U9PT44Ped5toCcO9ZJtzxTnFoAAIUXNIyV6w0gO9vV29yZ3tMTFXxeZbvS9buHAwAAAAAAAAAAAAAAAAAAAMoBwWgAAAAAAF9Bg9EkqTMRbL7dvf7tv7zHyARNvYmghhajV5/j6v5NUt+QtKtLuvAfRp+9ZvJ3yhawkqmjatHkic3bc66zFE0lGG3OTEf7Lba3j6SkxFBpHndhztNSCW2wdQGZ+3qJJRitI4JhXlGVTPkfP1EMRrMFaNlwPJSGoRHv6Us9MkElKT5YuFr8DAc4/s66NURaJQAg0oL0+xIhRUAQtnu82lne03sGpFSYm90yku1r93sE7wMAAAAAAAAAAAAAAAAAAADlhGA0AAAAAICvMGNQE0PB5rvxSf+VPr5detlZrja3ltZAT9c1+tZNrg47wzsQ5drHjLbsHv+dkiGC0Zqrl0+e2N0mkwyZElTCphKMJkn/9gr/GZ/cEbKgiCjHYLQg+9oWjBbFMK+oGrCEUY2KYqhY0ICSUS1ZwjgRDbbAO9t5HuVgtLWNKumAVwDAmKDXHYQUAblbMd97esqV2uLFrSUq3Cw5u6VyXw8AAAAAAAAAAAAAAAAAAADkimA0AAAAAICvbIMxMyWyDMw0xui6x4KtcEOztOr7rjY0l84A8yseNjr/bv96b3lmQjBaiO3bXL1i8kRjpK7W4CspcSnL9ooFfMLxrbc7OsxjM456z0UhdkiEVFQwWsa+XjzXex6C0YIbzBKM1jsoDSej1Q8PhwiUlKT7GqJVP8Zbu8vo8odcNXZ7t1uD0QKGsebbSMDjL4qhggCA8IJed2QLmwUg2a7K915gX6bJco1Y7rLdwZTKfT0AAAAAAAAAAAAAAAAAAACQK4LRAAAAAAC+wgQuJXxCSgaGjT7yG1cnXx4uoOaIM11dfH9phFVd/Uj273bfxvHzBA1YkaQmr2A0SWpvDr6SEmcNy3KCLV+/wNGj37U/DukbkoZGSi9EqSyD0WwheBn7esk87x3f1R+9MK+oyhaMJkmdicLXEcZwMtz8D23mWIiqs29zddQPXf3X1fZ9tNRynvcOFKoqf0EDcpp6ClsHAKA4gt6vlco1NjCdjOWSb2mto2rLbbotPLfcZbvHp88BAAAAAAAAAAAAAAAAAABAuSMYDQAAAADgK0zg0ieucPWPDd4L/PEJoz89lVsNX7zOTAoUixpjjNY2Zp9vQ8v498lQwWj13g0dBKMFDUaTpNpZjt59pL39hbZwNRWKMUa/f9TVKZe7+u+bXD3fZD8HbCFiXkplAHWQfb1ivn35LRHZj1E3ECAYrb2v8HWEMRQyGK0tXpg6MDVP7zT6wV+z/7Yvnuc9PT6Y54ICChq62NhV4EIAAEURNJA1yDUVAG9VMfu9XVN3tJ8FFYotRG4UfQ4AAAAAAAAAAAAAAAAAAADKHcFoAAAAAABfqRCBS+190tt+6eqKhyYvdNOTUxvMesIFrh7fHt0Bsa29Us9A9vm2d0iDI2PfIxli+zZVr/Bu6Gjxnl6GbAFgYYLRJOnrb7U/EtkQkZy5L11v9IkrjK59zOjndxsd8xNXj271PgfCBBgmhqN7HmUKEox20FL7vt9YOafFlAyWYDBa0ICSUfGhwtSBqblyjQnUdy2t9Z4+MCL1DhS/PxsJGGjaWKEhHgBQboJed5RK+DAwXUyWpK+VC72nN/cUoJgSkO06mT4HAAAAAAAAAAAAAAAAAAAA5Y5gNAAAAACArzCBS5JkjHTGrUbJ1PgFb1879Vq+9ocQKWJ50Dtg9L1bXB10WkqvPSflGfg2KmgIkzHSptax90EDViSpr6pW8di8yetsj0iSVxEECcsK4k2r7Qtc7rN+Ln3tAAAgAElEQVSfi+XFTqOL7x//ZfuGpGPPdT0HlIc5T+ODU62uOGzfycnYdTNrHB241Hu+jS2EEgUxECAYrSNqwWgh+k2pdI75SvO7B4Odo4cus7c9uytPxYQQNCCnqUJDPACg3AS9zh4gpAjw5ZeL5khaOvlRhySpO0AAfTkiGA0AAAAAAAAAAAAAAAAAAACVjmA0AAAAAICvsMFoktTULW0ImdV1w2ezJ1ut2ZIOjCqWL11v9OO/GW1rl57YIf3n1Ub/c593aNa29uB1vdg59npigFw2TdUrJk/sIBitKocnHO9/hff0u9ZLm1unN1Tr7uftn//zv1d2MNrEELxVltCkrW35radcDQUIRmvvi1bIXJCaM/VWaJhClCWGjAYD7sdDlzlaMMe77amdxT82gwbzbaMPAoCyEPQ6m5AiwJ/fqeQ40oI53s+EevoLU0/U+QXJSfQ5AAAAAAAAAAAAAAAAAAAAKH8EowEAAAAAfOUSjCZJG1rGFhwY9l/J8jrpA69w9LbDs693v++42t1b+CCUZ180uubRyZ9z8f3en93YHXzdPQNj60h656xZNVbXT57YTjDaxLCsIFavsC+06vuu3FwP/jy453l722l/NjITRkmHKbW3VILRLOfGxH2972Lv/djcHa0wr6gKcux0JApfRxhBg6lG9Q1p0jmD6dUU4jdzdo109L7ebU/vzE89YYwEPP4apjlgEwCQH0EvIQZCBrcCGOM4Ut1s77bu/sq8psp2nzZAMBoAAAAAAAAAAAAAAAAAAADKHMFoAAAAAABftnCibDZkZHWdfbv/iM6LToqpptrRrz4W01612dd9xJljoVWPbTW67jFX/9yW38Gyv7jHe30bmqX+ocltYUJeegbGXgcNWBnVXL1i8sSOlnArKWHWYLQcnnActty//bIHp28A9rxZ9rakK8Uzws2MMYEDG6Txy0aZ7StNDEZbucB7vjBhhZUsSDBae1/h6whjOBluftdI/QQHREqY38yZ1dIr9/UOQHxqR/H76aDHX0MLgXwAiqO7P30/dMvTRh199Dv5FnSLElIE+PO7LHIkLZjj3dY94D293GW7jMz2DxAAAAAAAAAAAAAAAAAAAAAApa56ugsAAAAAAERbkNAcL5tax17f9qx9JU+cHtPR+6UDT1Ytd7T5nJhe/SNXm3fb192RkI7+kasj6h1d/8/RdRt95jhHl53iyHG8A1TCuHu9veaOhDRn5vhpTd3BN1TmwN5kyOC5Jq9gtKatMsmknOryv823BfVNDMsK4rAVjvyiDq591Ohzbwy/3nzoyxJe1pmQ6manX4fN3YmXyMDyoCF4tmC0pp781lOughw/HSUejCalAwHnzsw+H4qjqSd4xzWzRjp6X++2DS3ScNJoRvXUf/eDGg4YaNrVL7XFpb3qClsPgMr2xHajEy5w9wTfGtUvkG79wtj9FaYu6P1wPyFFgC/fYDRHWjDbu627vzD1RF22vofgZwAAAAAAAAAAAAAAAAAAAJS7WPZZAAAAAACVLNdgtBc7xxYc9AmxmThov3aWo3VnxfThV/kP5n9ulzJC0dIuf8io6lRXH/+dq9884CqVa/GShnxqbvcICWrqDr7unoxgqpGAASujmms8gtH6eqS1a8KtaAqM68rc9ye5554q99LvyXS0FO2zrWFZOWQ/HL5CmuGTJffwFsmETR3Lk2yhQV0Zg8PDHubxwdIIbQgagle/wHvnt8WloZHS+K7TKcjx0zMQre3o1z/b9GYJG0RxNYb4zZxZLR250vs8T7lSS5FDEFMhAk0bWrPPAwBTccrlo6FoaU3d0lduCJm8DF9BbwfiXGsAvrKdSgvmeE/vLpFg73wjGA0AAAAAAAAAAAAAAAAAAACVjmA0AAAAAICvXLPFMkNPeiwDWV9W7z29ptrRH06N6Ten5JB2pXRg2v+71ujDl7o5B1v5BZ94BaPt7Ay+7sztkQwZjNY0Y2/P6WbN7eFWNAXmZ/9P5ox/l26/Srr2PJlPHi2zY2NRPjufwWhzZjr6/PH+C976bPj15kO242lKwWhD4euZDkH39coF9nW09OavnnIV5PjpjVgYwXDKu+hqnyedhJVES5gw0ZnV/ud5c5GD0cL0uRtbohUqCKC8NHUbzwDGh7dIW3bT/+RL0H6/uz/7PEAl83s04zjSgtne9+aVem5le5RFMBoAAAAAAAAAAAAAAAAAAADKHcFoAAAAAABftoHgPznR0YeOti/X1K2XQslswWg/PtH/tvS//jWm1+wfoEiLW56Rqk51dcjpKX3rJleDI8FGtSdTRr0+ITodfePX05Uw2h0PXldmyFDSJ4DNy721J3g3PPTXnEPgwjD3/CEdiJapp0Pm+l8U/LOl/AajSdK5Jzr6zHH2hT9wsavz73bl5poQmIP+IZM9GC0x9tovxM9L1EKubILu63qfwKTGEOFLlSpQMFrEQsVsx/yCOfZlSuW4rxTNIc7NWTXpfTurxru9qdjBaCH63IaWwtUBAH7XOY9uIxgtX4LeYnVzrQH48juVHNmv5XsHVdT78ajI9pUJRgMAAAAAAAAAAAAAAAAAAEC5IxgNAAAAAODLFkCzZJ70x89V6eFve99aDiWljj5pcMRoOOm9jgWzs3/+3V+d+q3rljbp/LuN/uVcV+ubjJ7bZfR8k1Ey5T3StDPhOfkl7X3j3ze0hqunp3/sc0dS4ZbtNLVqq1oyuWHXFmlnQ7iVBWTiXTKbnpF59iGZH3zCe6ZH7izIZ09kDcvK8TCZUe3ot5+IaWmtfZ5v3WR09u3FG4i9eXf2AIaujGMo7BjxeMRCrmyCBqPNny3NmeE9bxPBaFmVYjCareYZ1dK8md5t/9xeeWEKUdbYHXx/1FRJjuOofr53e1OIdeVDmE97MUvIJQBMxWxLYKQkbQ55fwK7oNfa3f2FrQMoZ45jD0YzJvszmnKU7ZnAwEhx6gAAAAAAAAAAAAAAAAAAAACmC8FoAAAAAABf2cKJ9l1kX7axW+oZsLfPDxCMNn+Oo+bz83P7+vSL0pFnuXrFD1297CxXS77m6ppHJie/7Y77r6dtQjDac7vChbJ0Z2yTZMhgNEm6cNEXvBseuzv8ynyYRK/cM0+Weddymc+8TuaLJ9hn7myRiRc+hcq1BPVNDMsK6/hD/Vfwg78avbC7OOE7G1uyf05XRvBC2GC0qIVc2di+l+NMfO+ofoH3vGHClyqV7ZzK1OvTj08HW81VjnTU3t5td6zlWIiSoKGFc2emz3FJWmEJRmvuyVNRAYXpc+ODHHcACsevP3phd/HqKHfZwolGdfVLJujMQAXyOz0cScvr7O1NRb7ei4Js15z9w8WpAwAAAAAAAAAAAAAAAAAAAJguBKMBAAAAAHxlC6JaVmcPpcoWjLZgTrAaltU5evr7+b+F7R2UPnml0X9c5eo7f3Z18u9c/eQOVy//gX9S0I6O8e//FjJwpy0jeC1p+aiFqU7r8n9ecpLndLN1fag6bIwxMs88KPOOpdK9NwZfcOemvHy+n2xBfbk694PZV/CqHwVIkMqDiceXl87E2OsgwVaZSiW0IUwI3kpLMFrQ8KVKFiTkKWphetZ+ICa99yjvc3ltY2kc94XSO2B04xNGtz5j1JmY3u1gjAkcbjF3xtjr+gXe+7bY53mYPjcesXMHQHnx+w1v6a3c37x8CxqImXKlxFBhawFKmW8wmuP/bKkS7+sIRgMAAAAAAAAAAAAAAAAAAEClIxgNAAAAAODLNhizas8dZXWVo+XzvefZ1WV8Q57mzw5ex1H7ONrww8Lcxl61xuhndxpd90+j02/OPvK9oWVsHmOM7m/wnm+/xd7TG7vHAnpGUt7zvGLwWfvna1+1VC2b3LDDUkgIZmRY5jsnynzpLeEX3rFxyp+fTaGC0Q5Y4ui0d/mvJD4obWwufMhEY4BB3139Y6+DhjWMGhwpjdCGMPs6KoFJpSjI4TM4Ig0noxOwkvIJzTvmQO9joatfau8rYFER9vROowO+6+qjl7l6/8Xp8M+ndkzf/uxMpI+pIObNHHu9whKA2NxT3O8Sps+NWqgggPJi+z2UxofoYmrC/Mp0+4SCA5Uu27lUXeVoWZ13W2N3dO5FiiVbpnP/cGUHPwMAAAAAAAAAAAAAAAAAAKD8EYwGAAAAAPAVJJxob0tYSWO3dPrN3iP2HWd84EkQq5Y7uuurMS2eG265fGtoHRuAmhiyB5985jjvgJ7+Yal3z6D5pCXQoMYk9bed77XW0FhTP3nijo2hB8Y+ttXoC9e5+tZlzXr2Z+fLvLlWWvO3UOsYZXZOPZgtG79ApKn6/rsdffx1/is6/ExXL+wOt40f2mz0lRtcffkGVw9uzr5sU4BB391TCEaTpLYSCIiyfa2Yx9OseksfdO1jhsHiWbg+oSqZeiMU9OH3u7R6uX25jS2FqSfqPnmFOy5Msalb+vINAXd8AWxqDT7v3IzrhHpLCGtzz9TqCStMnxsnGA1AAfn1R5n9PqYm6LWSNP4aHcB4frdlzp7bcNt9XSUGXge55gwaNgwAAAAAAAAAAAAAAAAAAACUIoLRAAAAAAC+ggSjrVzoPU9jt7SlzbutbpYUyyHN6q2HO9p+bkz3fzOmWz4f07qzYhq+JKa1Z6Xf//zDeUjIyqK7X2qLp1+3+wRMHXOAvZbGPQN7kynv9mqT1FsS91qXb6taMnlivEvavsFe0AS/fdDV6891dcn9Ruc/sZeO2fT/dNu8dwZefpIdG3NfNiDr8ZiHJxwzaxxd/R+Obv+S/8pe9SNXT+8Mloxz7WOujj/f1UX3Gv36XqM3ne/q6kf80xUaAwz67kqMfX4uwWi7e8MvU2y2EAqvbmOlZQC9JH3rTwSj+Ql6/NgCIKeDreaqmLS0Vlowx7t9S1vlHQvN3UbrmiZPX7NF2tY+PdujoTX452ae7ysswWjFDsogGA1AVPgFdnUlildHuQvza9nJdges/M6l0Us+231dU5GDcKMgSL73AMFoAAAAAAAAAAAAAAAAAAAAKGMEowEAAAAAfAUJoqpf4B0A1tRl5FiywXoGcq9p7kxHbzjU0fte4ejwekfVVY6OqE+//9pbY7r1izGtWpb7+oNoaE3/6ReMduTe9rbRIJcRWzCakorJaK9kq2d7e81S7wUfus3+oRkau4xOvWb8zh2KzdKZS88MNfh/nBChbLmyB/XlJxDPcRy980hHbz3MPk98MB2O1hb331LJlNFpfzbjanaNdPrNRsmU97LGGD26NXudXf3j1xlWm89xGxVBQhlH1fsEo/38bqMlX0vpw5emtL5p/Ep39xp94TpXR5yZ0nE/TenOdZUXnOUGGXGv0ghGiznpc3gfS1hnJYbE7Oy0tz26dXqO940twedNZoT+2K412vuk4WTxvkuoYLShwtUBAJbLSUnp320T8Dce/sJsxuYetjlg43cujd7Or/B5tlRpglxz9g8Xvg4AAAAAAAAAAAAAAAAAAABguhCMBgAAAADw5bre0zODqFZaQole7Bof4JTpW+/IT5CVl/e83NGGs6vkXlalR79bmFvfhpb0KFVbMFpVTFo6T1pa692+rSO9fNKyfWvMiCRpabLds71t79d4TjcNT1kqHm+fb3t/8LOzXq7m6hXeCzmOnGuekfOd32jAmaX1Mw7TgDNrrH3XFpmmbYE+P1dhwrKm4n8+nv24WfYNV/FB+2jlDc3pc2Cixm5pfZP3Mv95dbAB350ZAU+2c9RPtlC3KAizr1daBtCP6kxIf3pKetP5rjr60it2XaMPXOzqkvuNNjRLa7ZI77rQ1QMN0d82+RQ05Kl3CmGW+Zbt2Fg4x7vd9ntUzvz274s+oWmFtN37Z81Talwwmn2+HR251xNWmD53OCkNjVRWnwKgeLL1R1MJosaYoCGyUvo6H0B4o3dztmdLTT1FKyUyCEYDAAAAAAAAAAAAAAAAAABApSMYDQAAAADgK0g4kW3w6vomyTaO/KOvLlwwWqbXHuDoye/F9KGjx0+vnSUdtbf/sm89zN7W0Jr+0xYwtWSeFIs5Omip9/Kb9yyfTHm3V5tkej0p7wSZ9mUv815wZ4P39Az/c59/ikLDjEMmT3z3p+X8YaOSe6/W5xpP1OJDm3XUQU9q4apWfWuvc5RUVXq+h2/L+vlTYQ/qy+/nHLyXo6oAT03mf9nVbx/0Lmp9k30k8zqPtmTK6MYnggUvZAY8+Q2YnjvTe3pbPNDHTKswwWh+gUmZ2vukn92VXvHX/mj0yNbJ87zp564GKyjIKHAw2mBh6wgjlaUfWGAJRuuuwICYxJC9bXsRw8QyNfcEP78yw0P3Xyw5lr5+9De5GML2DvEInTsAyku23/Bv3GhkQoR6wVuYTUgwGmDndy6NXuPVz/dub/QIHC93QfoegtEAAAAAAAAAAAAAAAAAAABQzghGAwAAAAD4yhZAI0krF4ZPpVoyL8eCcvDKfR398XNVci8b+6/nwio9fUaVei+M6Yj68fN/9g2O3MuqdNfXqnTKMd7fbVdn+s/2Pu/PHP1+h+zlvfzm1vQo1xFbMJpGg9G8k2vaZ9Z7Tte252WSSe82SfFBoy9d7z/CdtOMQ8e9d367RrHvXCpnxf764e1Gv31iroZj6cStpFOjCxZ/TbMOi+v3dSep78G/+657qsKEZU1V0FWeeo3R2be5Gk6OL25Lm32ZrR5tW9qkPp8Qo0zdA5K7Z2P4hWIsq/We3mY5bqPE9r28gpFsA+i9nHeXUWuv0UX32jfct/5UOSEitrDBiXoHorNNrP3AniedC+Z4n73diQIVFGF+YQmbWqdnnzb3BJ83Mzx09gxH+y3ynm9jS/G+S9AwwVHxgP06AISVrT+68mGjm58uTi3lLEy/30wwGmDldyq9FIy2wPs6vjWeDhKvJEH6nqkEo7mu0VM7jK59zNXWtsratgAAAAAAAAAAAAAAAAAAACgNBKMBAAAAAHwFCaJauSD8ehfPza2efJs3y9FT34vpik85+smJju7+akyXnjx2u1xv+W5NPekNszvu3f5SMNoy7/bNu9N/2oLnakw63Gxpqt2zfVtqqfeCknTNudam6399t325PRpmHDL25u0fl7P6VS+9/f2j9gGzn1p5ueYP3qzH14dIvQnJdjxWFeAJxxsPzT7PqDNvNXrDz1x19I0VOLqPvTyxffIX2dAc/POMkXoH0699g9HqvKe3W47bKLEFdnmF4M2scTRnRvB1/+QO/4Hf1z9mKmbgfdBv2TNQ0DJCsR0bVXuOjQVzvNu7IxTuViyJYft33thSxEL2MMaoKURoTHLCvl613Hu+hiJ+l6BhgqOidO4AKC+2+4hM594RstPCJGGuHhq7K+9aAwjKBDg9bM+WjAkXrlsOgvQm/TkG8A4njU76rdGrz3F1yuVGB5/u8nsBAAAAAAAAAAAAAAAAAACAyCEYDQAAAADgyzbgPjOIKmww2pwZ0pyZHulG06Sm2tGnjo3p2++I6S2Hj69rxXzvZUYH5W7Z7T1cdXldej37L/ZeviOR/nNi6Muo6j3BaPuO7PRsf7BxrnpqFnm2mSvOlhmanMRitqzTrU8lvT8wwyWLTk2/eP075Xz9Vy9N7+k32tGRdXH911UjSvmldU1BkKC+fPnE68Ot9J/bpaVfd18KPWuL27fB3zdI/UPj2ze2hNtmXf3pP3MJRvOrLSrC7usz3hN8f134D//v35GQ1mwJvLqSFvRUHQ3iiwLrsbHnd2nBbO/2rkRh6omyhE9YQlO31FvksLj4oNQ/HHz+idcgB+/lfZ43dhXve4T9edvaVpg6ACBIf/TEDqmJsK4pCROIWYnXGkBQfj3R6BXePt6POCT5B4+XoyB9z8BIbuu+8mGjG58cv0dOu9nomRf5vQAAAAAAAAAAAAAAAAAAAEB0EIwGAAAAAPBlDe6qGns9b5aj+ZYgGi9L5k2tpmJasfUBz+nN3UbGGG1s8V5u1fL0n/O7t3u298TTyTAjSe+Bp9VKB5idkLjPs30k5eifh3/SUrWkJ+6dNMn96xVaM/t19mVG1+3M0IVf2i7npzfLmVP7Up37fzdYKsBzPQv16NZAs4aWLRApnz54tJPTsfraH7u6+Wmj7n77PIMj0lMTMu8aLMeSTeee4AVbeKEk7VXnHSLU1hfus6ZD2H196hvym453yzOVMSg8aNhH7+SsxWljO+ZHQ/MWzvVu747QdyiWRJYQsi1FDu1a1xRu/tfsP/69LYi1qSencnISNhgtbOglAAQVtD+6fS390FSE2XpdPtf/QKUzPieTs+c6fsEcR0trvec59ZoQKYVlIEgfnxjKrX//n/u8l/v9o/xeAAAAAAAAAAAAAAAAAAAAIDoIRgMAAAAA+LIF0FRPuKO0hZV4KZVgNDMyrOV3XejZlhh21BVPatNu72VX7wlGq7vvas/2QTNDg2v+bg2eqzEjkqSjB5/W0qT3hzx1wAfsxW/fMO6teeE5td5yk7qrFtqXyfDd+/dS31D6dWLIaM4XXfWECBX6+h/Hf7G71xu9+fyU6r+Z0ht+ltK1j+U2qNkW4hTLbyaWJGnOTEf/998xvf7A8Mt+8BJXj2QJh5sYlnPD4+EGIXftCUbzGzC9rM57+u54qI+aFraB87Z9PX+Oox+9P38Hwi/vMXLDJiCVoKBfsXewsHWEYQ3NGw1UsAR1VmJYSX+WYLS2IvcFd6wLd0599S3jLzbqLdcajV25VhRe2G5hU2th6gAAv3DcTH97rvyvZwopTL9fiSGsQD5k3sWNPkuZaEub1BavnP4syDcN8oxmzRajt/8i/Sxm2TdSOvrslDWs+IK/V872BQAAAAAAAAAAAAAAAAAAQPQRjAYAAAAAsHJdYx0IXgnBaNqyVvWd663ND/z0NxpOeretWu7IGKP56++1Lt992qc1kvTewFUmvWJH0uFDGzznOb3h1TJKD5iNx+Zp0Jn5UpvZ0TD2unm7zKdfo4/tfY21lomGktI1jxo932R05Flu4OCFUY9vTw/ANf1x3ft0n97xK1f3b5JaeqWHXpBOudzoqjXple7uNdrVFWwAbrZApHxbvcLRw9+p0uDFMX3lhPx+yMaWsdebWo2GLMeSzWjIky0sTpKWW4LRih2GlItc9vXHXpPfffSBi3ML8CslQcM+4iUQjFa153dp0Vzv42B3r6x9brlKDPm3t/cVd3us2+X9eXsvlOpmjZ927EHScQePn7Zygfe+7UhIQyPF+S5hg9F2dFTWMQegeIL2R0/uDL/uzoTRhmajrW1GxpZWWyHCfP3EUOVdawBB+Z1LTsYl3qHL7Pd0f322cs4vv/v8UdmCn5950eiN57n6+4b0s5i2uPTMi/mpDwAAAAAAAAAAAAAAAAAAACg0gtEAAAAAAFZ+YVhVE4PRFgYPJFo8r0ApVvm2o0F7jzSq2ox4Nt+62Z7wdugySR3Nmp9oss7TE6vTyBbv0LNqM5aStXp4k3UdFx57lQ4+aIMWrtqt/Q/epIsXnppu2LJWkmSM0baPv1Wv3/8BPTTnOOt6vHzxOqOXneVqe0eoxV5y3E9dDb1rb73lktme7Z/7vdGrzk5p+Tdd7fttVwefltKjW/0HOhc7GG3UjGpHF3zE0UUnOZpZnZ91NrSMfZmL7g0/wLurP72MXyjGsjrvDdM/LPUPRXtQeS77er/F+a3hr89JPf3R3k5TFTRUpXcgOtsh27Gxv+U4SLrSthz7s1K0vd3ox3/z32/tfUUqZo/Gbu/pnznO0f3/HdOn/8XRvx4infYuR3d+JabqqvEnfL1PCOuNTxYpGC1kXmJHkbcxgMoRtD/a1SX1DQbrIxu7jI4/L6UlX3N1xJmuDj7d1fJvuvpTkfrYKAobiNkzUJg6gFLndyplBqO95+X2G74711VOXxTkm3Zn6W/OuT18yD0AAAAAAAAAAAAAAAAAAAAQFXkaygsAAAAAKEdJnwGU1VXj3/uFlUy02J4nFilmZ4NqlNTBw1u0cebqSe1/qX2P53L7LpLmznRk1jVovttrXX9P1Xwl21ukuYdPaqvRWDDaEUPPW9fxja6PSDPSr9url+rLy3+h1UMb9eZND8jc/r9yXVdv3/d2bZlxkHUdhTT3kHZr23BSevrFsfdb26W3XOBq509jWjR38mBoY+xDgwsdjCZJjuPoC29y9IU3Sade4+q3D05tUPbGlozXzfZ17b9YnuF0Xf3pP/2D0extbX3SfjOzFDmNcglGq4o5elm9tM6eRxja3zdIH3pV/tYXNYGD0QYLW0cYtsH9o8fGIcvS4QpeXcbG5j3BlWXOGKN3X5Q9BaHYwWhNPd7TVy6QXrGPo8s/6d+Z77MwHczqdQycfZvRx19n5DiF/UHw+Sny1JEoTB0AECaw6+s3Gh29r/8CxkhfuG7yPG1x6cO/cfXsGTEduXeJBFznUdh+v3tAWlJbmFqAUhb0XHr3kfa2zbvzU0spCNLHd/fb2wZHjO5YF+4zi/FcBQAAAAAAAAAAAAAAAAAAAAgqNt0FAAAAAACiyxY+I0nVE+4oV4YIRltSIsFo2tEgSVo1vMmzubtqoef0VfPSYWjmzI+rzu2VY7w3ZE+sTiOq8WyrNmPBaCf23hK4ZEn68ZJvpz//3M/qtCt3T1somiQZJ9yjh/5h6eanvUcA+w0MjhX5CcdvTonpzq/E9I235T5yeFt7erCyZA8LkqSDlnpP79wTtpNzMFo8S4HTzBqMlmVff+y1+R3Nfe/GqQXgRZ2bPTtLktQ7UNg6wsgWmjerxtEBi73naWgt7/056vRbjDY0Z5+vmMFoKdeoxRqMFuy8nTfL0VsO827bvFt6YkeOxYVgO4Js1zadCf9gTwDIld+92kS/e9Do89f6/+cVipbpqkcqsy8LE0An+QcVAZXM71TKvBKsrrKH5frdN5ebIPdpfv3N49vTz1fCqOJvjgAAAAAAAAAAAAAAAAAAACBC+OutAAAAAACrpF8wWtX490FDTaPm5OkAACAASURBVKQSCkbbmQ5GO3xoQ6jF9t9xn8yWdVJPh2IyqnW9E6h6q+Yr6VR7ttWYkZdeL0+1hvr8++cer46qRdo441Cdt+SbWef/9b/nHiT12cX/1LWNn8h5eS8bW7yn+w0MjuU3CyuQtx3h6LwPxeReVpVTQJprpBd2p183WwZ4n/MBRwvneLd19Y+tx2bRXPvg5sgHo1n2d7Yt/dUTHJ34yvzV8djW8g4BCfrtekogGC3zWD/QEijY2pv/eqKmd8Do3DuC7dmOIgajtfba9119iHDVs95rf6T93K7Cn6+2vmlprff0oWT4UAoACCJsYNdUPbipvK+JbMJmWxKMBnjzO5ecCTd5+yz0vutri0tDI5XRFwX5lt399rnWN4XfTpnPVZ550ej7f3H17T+5WrOlMrY5AAAAAAAAAAAAAAAAAAAAooVgNAAAAACAVTJlb6uecEe5cmHw9ZZCMJpJpaRdL0iS3py4L9SydZ1bZK4656X3813vJJ6u2AKNODWebdVKjnv/kZeFSyVaM/sYfX75hVnn++dpMZ38uvChXld+ytH2n8R0yVf31msHHg+9vJ+mbu/pKZ+xuNMRjJbpvA/F9Kljwxfx0AtGA8PGGqDw+gMdLZjrvd6uRHqD+AXGVcfs51tbX7QHN9vCPrLt6zkzHd34uZgazo7pxlNj+peDgn3em1Z5T3/6xbFtXY6Chqr0Dha2jjBsx3zmsbFknveB0pkoQEER88qzfTqFCXIJTMiVrW+XwgWjve5AR4ev8G5rsARr5pPtnFnqc21TzAA6AJXDDZvYNUVP7JA6In79WAhhv3F3hMJkgSjxDUab8N7v+VJLBQQdS8H6eL8gRlvgvJ/RfwDhjrVGx/zE1Tm3G513l9Ebfubq948Gv8cAAAAAAAAAAAAAAAAAAAAA8oFgNAAAAACAVdJn3GPVhDvKvUMEo61cMM0pVkG0bJdGhiVJx/Wv0Uw3eCpQrdsn3f/nl94vTbZ7f0T1MiVicz3b5rrjR7gurg13C/+BfW7S/819g+88f/hsTK/e31HdbEcXfCT7PnEc6V8Okjb8MKZPHhvTvosdOcv2Uf3b3h6qtmwau7wHAPsFgE13MJokXXqyo2+8zVHtrODL3PqMUXOPvX3FfHuw2WjQjl+wVcyxh/XsjgercbpYg9EC7GzHcXTIMkcffJWjTwYMrPvSm+3n2PHnl+8gcL/zKlNvhEI+7MfG2OtF3l1r2Qa67Ogw+vffuop9NqVt3j85np5vlra2FWeb2ILRaqqkxZb9ZfPq/b3P64aWwn8X2/HnF/ra6RNaMd2MMfrD466O+2lKrzknpXPvcDU4Em47/v5RV286P738mbe6SvolmQLIm6Dhpvn0q39U3vkddjv3DVXeNgKmyplwaVc/3z6vX9huOQmSfdnlc42Zy3Vx1Z798J0/uxrOyOp3jfTfNxm50/HDAwAAAAAAAAAAAAAAAAAAgIpVPd0FAAAAAACiyy8YrXpChtDSeelwk5FU9vWuXj61uopiR8NLL2uU1MHDW7R+1hGBFq1L9Y57vzzZ4jlfS/Vy9cbqvNfhjl/H4vn5u4V3ZDR0SZWqq8ZGH3/lBEd/W2t0z4bJ81/wEUcnvdbRvJnS3JmTw2hmfeGHWvqVNrVVL81LfY2Wgc6+AWARiH6fUe3ovA85+umJRv+3WXrzz7MnTt3bIK1ttLf7BaO1Bw1Gq/VuayvVYLSQIXjvOtKR5D+A+/PHO3rVfvb2tY3SI1uMXn9QBBL48izo2PaBEWkkaVRTPf3bIGU5tTKPjcWW86Yzkf96pltPv9ExP3HV2pt9Xi9P7DA6cGnh92tjt/fBVr8gWOBhpkOXeU9vaA1bVXi2c2bRPEeOYzxDLBq7pFfsU9i6ghoYNoo56fNlJCX98Umj/7hqrOgndxhtaZN+/mGpdlY6aNLP7x509dlrxi+/rU26+jPT31cA5c72e1hID22uvFCcIOFEmRJDhakDKHV+p9LEy4262dLcmd7n0/aO8rwvmyjIfVq3T3j1hubwn1kVk1p6jOczitZeac0W6bhDwq8XAAAAAAAAAAAAAAAAAAAAyAXBaAAAAAAAK7/B9tVV49/HYo5WzJd2dvqvc2mttHheCQxi3dkw7u0hwy8EDkardfvGvV9hCUZrrl6u3ph3alVdanxq1eK6amULdwqq7SubVF11+LhpjuPoL1+I6Zy/Gd3zvFHPgHTQUunUN8b03qP895dTu1Bvn3GXfu++JS/1NXZ7BzBlCwCLiljM0fGrpGfOiOmc212tf3yLulJz1FyzYtK8w0npl/d4n2hLa6W62Y6WzPP+4oGC0WLS0lrvYLCoB6PZQijC7uv6BY5WLfMPTLropPRK62ZJvYPe83z/L67u+XqVd2MJCxqMJknxIWlRBJ4m2mquyghIXDzXe56OMgxG+5/7Tc6haJLU4P0TlXdNPd7T6+eHX9fq5d792pY2aThpNKOAAX6u5QCsqZL2Weh9HdTQavRuTe8PlTFG5/zN6Iy/ZD/pL3/I6PKHjF69n3TRSTG97kB77Rf+Y/L6rvun0U8/aLRiQYR+nIEyZPs93KtWOvWNjv7+vFFXDr97RtImy3XT5t3h11fqwlwrSVIfwWiAJ7+QwYlXDI7j6MAl3iHitv6p3AQJZezuT1/jTQyyTQyZrM/mvFTFpB6fsLUdnUbHTfM1LQAAAAAAAAAAAAAAAAAAACpHBIYyAgAAAACiKpmyt1XHJk9buSB7MNrq5VOrqVjM1ufHvT90eFPgZWvd8YlTyy3BaI019YpX1VnWkZFyM2uO9lnkHQITxkx3UE8ffokWHfFNz/bZMxz96P2OfvT+8Os+7bMH6/eXTqm8lwyOSA++IL159fjppRKMNurlezu64aQemd8fKVeO9j94s5pq6ifN94Dl0Bo9V5bM89737X3pQdDZtsuSed5t7X35CdorFNv3ymVff+JYR6ff7L3Cx06LvTSQ/LJPOPrYZd7z3btRuuVpo9kzpDev0qTgvlIVJuyjd0BaZAkcK6Ygx8Ziy3Ef1WC0jj6j53ZJ65uMDljiaN9FUmdC2rzbqG62dOxBjvZeOPmY60wYfe+WYDvxA6+Ubn568vRiBaM1dnlPr18Qfl2rLNcSKVfa2iatnpxDmTd+x9/q5d7XQRuLtI39/PzvwULRMj2xQ/rwb1ytOyumutmTj7+RpNG6psnLuUb645NGXzmhPPpJIKps/dHsGdIP3hfTD96X+7q//kdXv7xn8gc0dkt9g0bzZlXO+R0knChTgmA0wFPYu89Dl3kHo20ukWC0+KDRA5ukBbOl1+wvzawJ128GuU8bSUn9w9LcmeOn5xoe194n3fSk/YNdn388AQAAAAAAAAAAAAAAAAAAAMg3j2HsAAAAAACkJX0GPVZZgtGy+ddDoj+I3vR0SHdcPW7acf1rAi8/MRhthSUYbdOMQ6zrqMtcx8w5euvhgT/e6qup67T6696haFO1+uiDtGvV2frB7h/kZX1/f37yYNxSC0aTJLWlE2NiMnpv3+2hFl21PP2lbMFmSTcdVOU3ODnmSEtrLaXFvadHhS2EIpbD06xPHONo3szJ0z9znKPX7D928Hzk1THtZdleknTiJa7e+StXq89w9XxTtIPlggoVjDZYuDrCCBSMNte7U+hMSG6YL10EDzQYHXGmqxMucPXlG4ze+2tXR/3Q1Zt+7uqz1xh97DKjg093ddWa8Sf7/Q1GS74WLJ3gxZ/GdOgy723S0Fqc7dHc4/059QvCd+AHL7X3+w0FDsvwO/4OXe5d1KaW6T3mrnzY1bduyq2GXV3SlWu8l437hP/kGsgBILiU5ScgH9fFX3yTfSXPeQQVlbOwlw2J4cLUAZQ6v5BBx6PLOcRy7bqpSNeuU/HwC0b7fMvV+37t6g3nuXrtj101dYerO2jf090/eVrDFK49v+8TpBux2ygAAAAAAAAAAAAAAAAAAACUOYLRkFeO49Q4jnO84zifcBzn247jfMFxnA84jrP/dNcGAAAAlCvT0yFz9blyf/k1ud85Ue7F35W581qZVGrK6/YLRqv2uKOsX5h9FP67j4xqglWacV2ZEw+cNP3N/fdrjpsItI6JwWgrk97pAd1VC63rqHN7x97MmqPaWY5OfePUtt0pb5w9peWzWfHl03T6ERt1Us8NU17XhmaPYLQsAWCR1N700sv3xf8aatEDnXSgni3YTJIeekH6xBX2DVMVkzXoK+rBaEHCr4JaudDRZac4mp9xCrzvKOnXJ01e2VPfz/64bFu79F9XuzJ+o/tLRJiv0DNQuDrCCBIEYztvUq7U3pf/mnLlukafvsrV7izn43BS+o+rjGKfTekVP0zp33/r6s0/zx6KNmeGdO1/Olq50NHq5d7zNLSoKMdyh2W7L6sLv66ZNY72WeTd1tpb2O/i1zfZtvFG73zUvNnYbPTD21x9+kpX59/tqisxVuTd640+879T2yY//Kv38n0+YYnxiPQXQDnL57XSRPstlmbXeLfdsa70r3/CCPsT6dc3ApXMNxjNY9qhy7znbWgtzrVrrlzX6MOXuuNCpdc2St+8MVzNQb9it8c1V6HudwhGAwAAAAAAAAAAAAAAAAAAQDFVT3cByD/Hcc6SdOYUVvG/xphPhfzMpZJ+IOmjkjyHJTqOs0bSBcaYP02hNgAAAAAZTNM2mf98vRTvGpv48O0yknTPDdJ5t8pxch8ZbwufkaTqqsnTVi7Ivs5D9sq5nIIzxsiccZI0PHk0+ywzpLf13aNb6v4t63pq3fGjUFcPNYSupS6VkZIzK53mdNHHHP3mgdxGoh46tEmrD7OMLM4Tp2aGnHP+qO88sknXXzm1dXmFyPgNwo1FNfo9Ixjt+P7/U22qV/GqYClAC2/6icwB79CSV73LOs97f+0fjOQ4zp6AqMkbry1C4VBe/ILwcvGx18b0lsOM1jZKC+dKr9jHu2+sX+Do7UdId633X98jW6VnXpReuW9+6yy2MIPbu/sLV0cYQYJg6ufbl2/slvbKIYyrEB7bJm3vCLfMc7uk53Zl33G3fjGmYw6QltSmN8yq5Y68+oK+IampW1ppz+rMiy7L8bNwTm7rWzpP2uGx7QodfGcLqYjFpFXLvLfx7rjUlTBaODf/KZ73Nxi999euEkNj0359r9Gj342poUV6x6+m3pl29aevkSZeU8aHLAtI6h0kOQMoNNu1UlUerourYo6OXyXdsW5y25oXKuv8DhsE1D9cmDqAUud3Knk9tjrUcl0VH5Rae6XlPtf70+npF6WW3snTb3jc6PefMYoFTK8M2vd0eeT39xYooJFgNAAAUIqMMXLd8vhHTgCUFsdxFIvFpvR3NQAAAAAAAAAAAACg0hGMhilzHOedkq6SlC3e4FhJxzqOc62kU40xHn9VGwAAAEAY5uLvjg9Fy/TY3dK9N0knfDjn9SdT9rZqjwH32YLRZlRLi+flXE5BmVRK5vwvSg/cYp3nfTMe1y0KEowWH/f+gJHtqjHDGnFmBK6nzs0YSTsznRpTXeXols/H9P6Lw4ecfHDgr3Je9rnQy+XiyNcfqptmGn3o0tzDWDa1Sv1DRnNmjv1lcb9BuFVR/TvlbWPBaDPNsE5I3BcoXE+SFg63yVxymuZe/U4tq0sP/g5jdLz1Uss5Fx+UBkeMZtVEc+NZw6+mEPaxpNbRm1Znn+9lKx3dtT77QKmbnjR65b7R3H5BhRnc3txjJE3/97XVXJURMrBXXToYxivgs6k7OoF2Da2FGZB35nsdvefl4/fVKp9szI0tpReMtsTStxU6GM0vmG/1cvtyDa3SMQfmv57Tbx4fiiZJOzul4893tak1f5/T1S8tmjt+Wp9P6EbvQP4+G4C3IEGhU/GWwxzdsW7yh9zXIPUOGNXNLu41wTWPuLpqjdHgiPSeoxx9++1O4IChqQj7S91HMCQQmmcwms//dd7UGt1gNK9+c1RnQlpSG2w9QXM7uj2uuQhGAwAAlcwYo8HBQcXjccXjcQ0Pk14NYHrNmDFDtbW1qq2t1axZswhKAwAAAAAAAAAAAIAQ8vDvxqOSOY5zvKRbND4UzUh6UtKNkv4uqX3CYh+XdL3jOBx/AAAAwBSYvh7p4dv857n7uil9RtIn16rK44p+74X+f5G3fr6i+5d9b7xQuu0K31neffK/BgoaqHXHp7JUK6VDhl8IVc5s8//Zu+/wKKr9DeDvmU0DQgoJhA7Su14EVEQFARuKyvXaC9ixYa8/FRuK2JVrV7Bju4IdUVAQEZEi0ovUhISE9J6d7++PJZBk58zObDbJAu/nefIkO6fM2dnZKZucN1Vmt8bsT40ZfYTCBYOsBxHfCNj4mIE4T/WElJYVu3DbcSVQTeJcjaE2xvRX8L5qoPy0t7BrfTvkr22GMXn/c9VH34eq74B2k3BrE5ZVlyQztdrj3qWrHbeNN3OBrWuhdm3ByZ3dZ4vvC0azmXidVccBQrVR12EfduzCjapyEp4W7kwX+YWpOXU3Djd0Y656HPAYCq00YQk7c8LnddtTB/82oEVT4KYT/d8oiU0UWmiOB3UV0FbJNAU5umC0JsG9qZNjrdvVxTatyu7Y1DoBiI22Lt+8O7TbuMIryMgT/LbZujyUoWgAkJbrvyzfJnQjI983EXVPoUCcJnsQkStW4Z9A6K6V+rTRd9TiNhOFpfX33n7lZxOXvS2Yuw74bTNw3/8E49+vn/W7uVYCgELOuSeyZHc5YHW0SW6q/EJZK62v42vX2oi2+bd0u13cfzsNIcsp8q+YW0cBtU6Ph6Xlgp3ZvAYkIiKi+ldUVIRNmzZhy5YtyMrKYigaEYWFsrIyZGVlYcuWLdi0aROKijS/LCEiIiIiIiIiIiIiIiIiIj9hOm2YQuwCAIe5+LrdSadKqbYAPgcQVWXxrwB6i8gAETlXRE4C0BbABADlVeqdAeDRWjwnIiIiIiJa/ANQUW5fZ+E3kKL8oFdhF4wWYXFH2beN/UT8NglBD6VOybZ1kKl321dKaoXmJ52Gw9vaVzPEiwSvf3rQgOI/XY2p2maMblStbNpYhYfPVGhZJefs9H7AmocNdGqusOLRRhjbYTOGGH9jrPE9Fp74IxJvuN/V+kNBKQWjzWFI9mahkZRgdL59kF9N/2QC/2Tun0hrG4wWpnl7qBGM1qNsneOmCV5fCo2c1xNnfHml61VXhkTFN9LXsQu1aWgNGYx2cm9lGf5Y09JtwC/rD+zJ3k4n3APAzjAJRvM63Dd055xweR6AddhUbaTEAX/cZ2jDxnShf2t3hXYcNeWX6Pe1xMbWywNJirVenplfxyFvmu6V8p332jezLg/Va71ul+CYx72IGm+i5e0u03pqIc3ifVNQ6r+s0uo0oM0dJpJvMdHhbhNf/XVgHyuJwpHueOTkGsYJu6DYsgqg6Y0mLnjNREFJ3b+/n5vjv45pCwVZBXW/brdrsDs2Eh3Kgnm3dkuxXh7qANhQionUl2XkOe/H6X1atsV8+nxNMNqxnZ2v34ruPqxSSbngsrdMNLvZRLu7TLS/y8QHv9ff9SoREREd2oqKirBt2zaUlwf4vSkRUQMqLy/Htm3bGI5GREREREREREREREREROQQg9EODbtEZIuLr0yH/T4EILHK44UARojImqqVRKRURF4AcG6N9rcqpToE/7SIiIiIiA4NYpqQVYshi76rFnImCxyGTM35OOh1V3j1ZREe/2WJTRSO76pv0zYx/NKrRARyUb+A9dQrPwMAerayfw7NvHvggf/Ez9EFXzseU8/SNdUXxFRPjYmMUPi/UQZSn/LAfM33NesGD1rG+8bWIUnhrfu64pdXDsdbr5yGjhdfCqUaaNu3777vx3PzPsXgooWumn+xrEowms182nAMRhMR4I851Zb1KHUTjLY/hWZkwRxEm+5SzCq3SZxNMFpeGAejSQMGo7VNVLjnVGcrGvqUCa+bdLEgFJcJvlkpmLdOUFYR2nW5GXpqTngEG+mOBTX3jbaJ1vW2OP3kqx7sCnEwWuoUA+2a6ffdbi2ty9bvqtvX1iqwoVKwwWjJmmC0P7cF159Tgfa/lvHW5YGC0QpLBT+sFrz/u4nVqdavR0m5oOcDJn7/x+FgXYj0AEfafFKblus/pvwAYUi79oZ/7MgGzpqqf15EFJy6DpFtkwA0jbGvM2OJ4Nr36va9XVAiliFI5V7gf8vq/rji9jKvkMFoRJZ093eAL2DWSrcUzbVrevheU5RV6Mt2Fzjvx257VevT4n8h5Gmu0Y7sqHDT8OBPEqUBMkZu+FDw7iJB8d56O3OAS94SzN8Qvq8XERERHRwqQ9HE6UUUEVEDEhGGoxERERERERERERERERERORTR0AOgA5NSqiuAy6osKgMwVkS0U6pF5Aul1PQq7aIBPAjg8jobKBERERHRAU6yd0MmXgwsnedbEJ8E3PsG1ODTgGU/O+tjynVAcitfG5e8QQRRnfUvhXnrrScfHNPZ9RDqnLz5UMA66pbnoFr60kK6tbSvm+zNslw+smAOYjxelHgtEuVqOKXg++oLYoJMjQkHLdoCjZoAxYWIQjnmbj0J0+MvwaTku5DricO4nOloYhbhkeb3WTafs0Zwy0jfz3ahBOEWjCalJZDHrwLKqicj9CldhQRvNnI8msSmKhLM/Sk6sVKIC/I+xrSESx2PoXKbNInS18kP42A0UzOJqb5e64fPNDDoMMHol2wOhHtd977g1UvqZmB/bBGc8py5L1iqT2tg5g0GDksOzfrchH3szAlcpz7o5rd5avwLiE7NFQD/yuEUpLB5d+jG8s/jRsAQzB6ac9iy7YBpCow6eoPVRTBakiYYLT0PeOYHE7eOrJv/CRIoiKhVvPV+ZxeCt2K74MypJrbtqVwiuOo4hVcuVvte04w8QcvbAx+PnDi6E3DUYQptEn3nAQXgkqMVOrdQMK62TsXdbBEoWOAi/McU4O2FginnhNkJm+gAprtXC9Wh3DAUzh2g8OYC+3PVJ38KXrpQkNC4bt7fhWX6sg0ZdbLKatzOq3dzbCQ6lNgGo2mWd21hvXz5dt9E8gYLgLdhd4+dkS/QP9vqnN6npVpcY+YVW9eNbwRMPEPhpF4Kp7/o/rqy1Cb0rbxC8OkS/0GLADP+EBzXNfxeKyIiIjo4iAhSU1P9QtEiIyMRFxeH2NhYREZGhuW1IxEd3EQE5eXlKCgoQF5eHsrLy6uVpaamonPnzjw+ERERERERERERERERERHZYDAaBetCAFVn838uIhsctJuM6oFq5yqlrrMLVCMiIiIiOpTJczfvD0UDgNwsyF1nA7e/BGSmOu/nrrOBb9Khmia4Wn+FZp5khAHtH+meeYTCzTOsZ3CeeUR4/WGvbFgBTH88cMUBJ+77sXcr68CTSkmaYLQm/x6HER4PvvrLflXHFv2Kibsfrb4w+sANRlNKQdp3B9YtBQB4YOLy3Om4PHd6tXq6YLTVaft/PpCC0fDNdODHj/0WR6ICpxTMxkfx5wXsIt5bfYbzYxkPYFV0T/zRaKCjIVRuE8NQaBpjPUE7L4zvxrXhQ3WTdWTp9H4KP99h4JxXTOzO19d7fb7g0bMEzZuGdkcUEfznFbNaqNTfqcBNH5r48sbAIYvO1uG87p7CkKyy1nT7Rs3TUrcU63rr0sMjSCG7UPDbZvs6bROBj642MHO54OnZYvncYyKBVy5W6JAU+Pn00pzDducDi7f4ArPqgl0wWkKQp7iWcfrz8e2fCIZ2E/TvEPrXOFAwWst46/K03OoNswsFb/4q2J0PTPnev9PX5wteny+4daTCfacpPDArdCF6C+/WHz9O7wfLa5XZqwQPnlF9mdtwzadnC6ac464NEenVx7XSo2cFDkYr9wLHPG7i9MMVTu6lMKJXaI+9RTbBaHl5pQAahXR9NbkNRrMbL9GhzO6tpLss76m5dt22B1iVCvRpE5KhhVS+TTii3T1lTU4PPWk5/jVzNcFocTG+z2hO6wv89yKF6953d4ArKdeXZRboP1/4cU34BFMTERHRwaekpKRa2BAANG3aFG3atGnwz3+JiCIjI9G4cWM0b94cO3fuRH7+/hvD8vJylJaWIiYmpgFHSEREREREREREREREREQU3upxKikdZM6u8fhtJ41EZA2A36ssagLgpFANioiIiIjoYCJ//Qr89Kl12VM3uO9vzGGu21R4rZd7bO4mOyQpXHaM/2SDS49xFtpSX2Ttn5DLBwWuePgQqPbd9z0c2t3++SdHWcyCHTUWxoRncKSDgJZ5W0eiidRIkIk+wP8gukOPgFVmbh9juXxrFlBY6ptEaxuMFmafcIhFKFql/iXLArZvbBYiCtUn86R4M/DLluGYv2Uo3k69Em+fss22j6phcU01u1B+SfhOUDY1wYz1HYJ3XFeF9Y8YeONS+xWn3KYZcC2sTvNN+q/p65XA9j2hee3s3lc15diEW9WnQMFUlbqlWL9mOUXAxowQDyoIgybp95mXLlSYfbOBtQ8bGNxZYfK/Dax52MDsm33ff7vbwPRxCp+PN7B5koFLj3F2EBzSBYjW/KuMmcvr7niQrQnVaxoDRHiCe1N3b2lfPuAxE+UVoX9Ogfa/VppgtB3Z+3/emCE44mETd34qlqFoVT3zgyDpFhOv/RKa55ISZ19+Qjfr12PRP0BmfvUxFNgEfxBR3dMdj4I8rFpKiVMomhr4HLMu3Rd+eNJzJh75KrTXRIU2x5rcn2dDMtP0FULAzbUSABQzGI3INV1ehd3nL7NWhOe9bJ4mlAwAMlwEo+nuh2tKzbEYgyagLK5KjmRCEJmSpRX6MrtQyEIeF4mIiKgOVQ0ZAnwhRAxFI6Jwo5RCmzZtEBkZWW15Xl5eA42IiIiIiIiIiIiIiIiIiOjAEGbThulAoJRqCeDwKosqAPzqoot5NR6fWtsxEREREREdjGTK9aHtsKQIsmWNqyYVmomYER77ds+cqzB2sIJSvgmuYwcreNMYbgAAIABJREFUPHNueExCkIwdMB8ZB7lqcODKR50E9chH1RYlxSoc31XfJPmoQcCxo3wPIqOA8yZA3foCAKB7iv3qLsz9EJZbKTI68FjDmOrQPWCdHqXrtGXr033fbYPRwmP32m/FAm1Rd2NnwObNKzItl0eiAscUL8YluR/gkj3TcctI/ROvGhYXpw1GCziUBuM0/Ko+xDdWuHyIgfFD7Vd+3fsmREI3Qd9qknslJ0EAO7IF49420ftBLwY/4cXTs014a2xYN2EfBaVAhbfhAwi8DkPzerfW9/HGgvp9HhVeweTvTLS90wvjat/Xpt3WddslAuNPUBjRS6Fx9P4n1TXFt6zbznkYOPUMXPTucJy5cjJSom3SF2qIjVEYrsmqrNNgtCLrvhMbB99n5+aB68xaEXz/Otpj095jbvtm1seJfzL3v3+mfC/Ynm1Zrc5dfqz9cWxUX+tyEeD71dWffHG5ZVVb4RzISXSgCXQ8CpWYSIUNjxoY0sVZ/Ue+EqTnhe69bhuMVhYBefeJkK3LittnUmITHER0KLO7TdJdnTRronBsZ+uyb1aG5zVFgc099ortzsfs9D4tLdd/mS6cLb5KGFpiE/c31iU21352wWghvEUmIiIi8lMzGC0uLo6haEQUlpRSiIur/p9Lah7DiIiIiIiIiIiIiIiIiIioOgajUTD61Hj8l4gUumi/sMbj3rUcDxERERHRQUcKcgGXIWaOLPreVXVd+ExEgLvJxCYKb401UDLV9/XWWAPNgph0GWqSkwkZNxCY/UHAuurrNBhPfQmV6J+8cuYR+ufSvEVTGE98DjW3AGp2NowbnoSK8gWb9WgVIIyk4FvrAk+AJLpw1z5wMFrH8q2INq1nEK/d5ZtFq9sfgfAKRpO5n9mW9xxxdMA+WlekBl7R/FloHqsvNqtsr6aaYLS8AzAYrSHnNL1wvv3KX/lZcM//JGThaHaTy5dssW+bWyToO9HE9N8Ea9KARZuBOz4V3PJx8MFoQHjsM7oxe2qcm5o1URjU0bruc3MEa9Lqb4b++PcF93wutmF3lU7rp7ST92TxD5CbTwEW/wCsXAh5/UHIY1f41zNNSJFvQo2U+3YkKS2GpG/HGZ2sB7F2F7A+vW62SY4mnKE2wWhREQpdW9jX+ebv0D8f3du78jzUTROCWmECW7J8P3/pINiwLiQ2DhyM1r0l0CnZuuzPrdUf24Vj6Pyy3n0bIrLmNCg0FDq3UPjlTg/O6Be4boUJ/LgmdMc5u+uhHCMe+OkziGlzo1BLbrsuq4BfEC2RU1JRASl1Hnp7IAn2XXHG4dYHtZWB88YbhF0I7MJNQIHDkFin2ysjHyiv2F9bRJCr2YXiYvZvy4RG1nXslNoEP9oGo7lfFREREZEjIoKysuoXIrGxNr80ISJqYDWPUWVlZSH9h0tERERERERERERERERERAcbBqMdGq5RSs1RSu1USpUopfKVUluUUj8rpR5TSh3nsr9eNR5vdNl+U4D+iIiIiIhoW92kRsjX01zVrwgyGK1SZIRCZEQYJVbNegPI2xOwmnr6K6i4ZtryMf0VoiKsy0b09D1fFREJFVG9Up/WQNtE63bx0V6cUjDbutCjWdmBoueRAat4YKJb2QbLsrW7fN/t8gXCKhjt+dv0hWPvw2HX3oDkAHNz2jgJRtu8Cn2LlmuLqwZYxWmC0fLDIORKR/d6N+Rr7TEUfrnD/gD45HeChAkmXvm59gEddpPq1/6+BrLbPw1gd77g6EleJN5sWk6If+knwZIt+/t1G/aRU+Sufl0wNTuH1b4xpr/1DlPuBW74wKzzCSemKbj6XRNvLnC+nvMG+I9ZigthPnYF5LbT/RvM+xwy83VfPRHI+09BRreFnJwM87hoyIlNfd9HJEDO6YLTn+6vXffM5XWzPbI1/1KhNsFoADDaJqgUAN7+NfTPJ9CxqYt/nuo+G9KBvGLBrryQDwsAEBsNtNNcZ1w4SOGXOw10bmG/zZRSOL6bdZ1Xfq7+5IMJRvt+NSd5EYWK06DQUBrWw9mF2MVvSrWgntootAnbSY9IAXJ2Axv018S1pXsWjaP0bYI5PtKhTbxemC/cBjmjNeSU5jBvOx2Sk9nQwwopu8tuu/Dr/u2tC/NLgApv+F1X5Jfal78419mY3dynVb22LCnXf5YXVyUMLSGI63C7Y5tdMJpdyD0RERFRbZgWF02RkZENMBIiImciIvx/5291LCMiIiIiIiIiIiIiIiIiIh8Gox0azgcwHEBrANEAYgF0AHA8gHsB/KKU+kMpNcJhf11qPN7mcjxbazxOUkpppuwRERERER2itq0Lrl3zNsCJ/9GXb1kDyc5w3J1ukmldTravS7J8fuBKY66FGjTStkrbRIWJZ/hPzv13f+CEbvp2ER6FJ/+t/ILllAImn5iJeFOTlHKAB6OplPZAl34B63Uvsw4EnL3Ktx/a/V14uASjSWYqkJVmXdg0Eery++HxGDi9n/2AW5dXCUaLTdDWG/b8UEfjaqoJRsuzCM4KF+EYjAYAQ7oqJDWxr5NfAlz3vmDc2yZScwJPfDdNwapUwYeLTSzavD9IpMBmUv268hSYF/XzC/b6zysmFm+xX9+gSfsDwewCB62ERTCabt+wODddc7xCSpx1/bnrgA8X122YwtsLBW/Md7eOod2r7+RSXAi54ijgu/e0beSpGyDFhcA370BeuQ/IzdLWbVWxC4OKF1uWBbM9TFMwf4Ng4SZBYal1+2zNfpMY4L0UyM3DFTol29epGgQYCrr9rzLQo3G00oagrs8QbHB+GebKqL5A7gsGtk72wHzN/+u9Kw30bu3sANo1xXp5STmwLUuqPXZrQ3r4BZgQHah018Z1ea10Wl/nnR92r4lXfzaxOrV273vduQUAUiNa+YLLNv1dq3XY0R33m0Tr2xTbBAQRWZE3JgKfvAQU5AIV5cDiHyB3j2noYYWUbTCaTTu7AK+8MAz6tgqnrurzpc6OiW6OnKk5+3+22yZVA9ObN3Wxgr3KKvRldsFoPCYSERFRXbH6pxfKLnWXiKiBGRa/yKrrf+BDRERERERERERERERERHQgO0CnslMdGABgtlLqMRX4L4Rqzsh2NZ1PRAoA1Pyz7Hg3fRARERERHexk/fLgGsY1g5r4LtB/qL7OrDcdd1ehmWwf4XE3rLDxxxz78q6HQ938nKOu7j7VwA+3GLh5hML4oQofXKnw0dUGPAGSCM4fZGDh3QbuPU3h0mMUbj9JYf6dBq4aqE8bUgd4MBoA4LjRAat0L7UORvv9H+Dhr0zbACerQKSGIA+P1RcOHL5vUs5ZR9jvJ21HDgcuvA1qwjNQX2wFeg60rBcjNslZVcQ1sl5ffhhOJK/UEGEfTm2a5GyHm/6boO2dJl6ep0/1KywVjHnZRN+JJi56QzD4CRNDnjSRliO2r0+OJxH/VCRDzuoIKfSFKm5IF/yywdlzWLI3tt51MFoYhOl5Xewb8Y0Vppyj32lu/0SQW1Q3k05yigRXveOu751PVt+3ZNkvkLM7AtsdvLA/fAj56i1H6xmd/5Xl8uXbgW9XOh/z1ixB/0dNnDDFxJDJJo542MTSrf7tdYF6CY1r94Zuk6iw7AEDZ9hkb776S4iD0Rzsf900wWIb0oGNGaEdzzUnKEwfp/DF9UbIJn52a6Hv56W5VYPR3D+XqsEdRFQ7mgzrOr1W6pai0Eaf2VtNag4w/n1Bn4kmrnzHDHqSZ2HGbm1ZidEIuUY8JNhgcQd0w24cpW9THERwJB3ifpzhv2zV75AdG+t/LHXE7ghgdwljF4wWDqHNNe0ptC//c6vvPiEQN/dpqbn7f7YLZotvtP/nZk0UurRwvg4AKLa59rMLRiss40R/IiIiIiIiIiIiIiIiIiIiIiIiIiJyL0ymDVMd2QngdQBXARgCoBeAHgCOBXAjgO9r1FcA7gUwKUC/sTUeBzMltmabIP4vtT+lVAulVG83XwA6h2LdREREREShIiLAr9aBJQE1bw2lFNSVE/X9L/jScXfaYLQD8G5SSgMnQKl7XncVKjK8p8Iz5xqYeqGB8wcFDkWrNKCjwqNnGZg2zsCT5xgY3FkBkTYz6w+CYDTlIBjt8NK/tGUTZwlW7NBPpI0Jg00kqZuBZT9ry9XNz+77eWQv+zCFHoP7wBg/Ceqc66GiY6COP1Nb992dYy2XD+q4/2fdZPKM/PCdnKwbWTgEo8U1UvjqRucHwus/EPSd6EXENV6cMMWLXzfuf3Yv/iSYtaJ6/T+2AG3uNHHXZ/avz5exo4A9u4DPXgYArNjheEhYvt3Xt9v56eEQPqALCdDtGxcdpXBCN+uyXXnAA7Pq5n1w68fO+20UCbx72lakfPYIzGcnQN5/CuYbEyE3jQT2Bt8FIlOuB/5e5KiuLhgNAEa9aMLrMIlhxDMm/qqy323aDVzznn/4TbYm/CHRJujCqaYxCm9epn8/rkoNcTCag/2viyZYbEO6IN3Zy+lI0VQDL19k4JJjnF+DOHF4O33ZrBVVg9Hc952WG7gOETnTUCGy/xngfgVvLRBMnev8eCy/z4Y59S6U3n42XpyRals3NaIVsM06YDkUdMd9BqNRqIjXC6RttS777r16Hk3dsbvvsA1Ga6QvC4d7k5qyHYxpp4OgWN0x3kpqzv6Nm2fzW/u4mOqPzwwQ2F5Tgc3HakVl+hfYawKlFa5WRURERERERERERERERERERERERERExGC0g9RiACcDaCciV4vIGyLyq4isEZF1IrJQRF4SkVMADASwoUb7u5VS+hnX/sFogdMF/NX8s+yafQbrOgB/u/yaGaJ1ExERERGFxuZVQOo/QTVV/Yf6fuhztL7S2j8hu3c66s97MAWjPXKZfYUjhwFd+tXPYKxERuvLjANwg9fUpR/QsoNtlVMKZiPRu0dbPn2h9UTbRpFA4+iGT8uSr6frC4eOgUpsse9hoyiF64Zaj7llHHBSrxoLTx+n7XpM/hfo2sh/ZvV5A/f33zreuu3ObP2QG5o2fChM3g6n9VX4doLzwaxK9T2n+RuA45408fBXvgPsjD+CD22a33gIAEC+9e17O3Oc97V2l++7w/yrfXI0AVf1STdmj+blUEph6oWG9tw1da5g2bbQP68fVjvr85NrDGwc+QUueK4PMO0x4PNXIK/cB0x/PORjqtSzbC26lG3Uli/cFLiPV342sWm3//I/t/r296qyC637CEUwGgAkN9WfA9btgl9QW204CUbrlmJdZ+NuIEuzLSrFRgPbJwc+tvx+r4GYyLo59+mC3QBgfTqwNs23EYIJRsssAErLG/44QnQwcHs+DJWbhwd37LnpI0FGXuD3v/nyvZDbz0DpjP/imIz7sSLG/h5te2RbYNu6oMbkhO4UYhuMVlY3Y6GDVIXNCbXg0EgUtTuqxNkFowXzr7vqUFmFoLA0cL3M/MB13FwtpVb5OCDP5rf2sTWC0W4YphDtImTebnsXBTjuOdkuREREREREREREREREREREREREREREVYXJVFIKJRH5RkRmi4MZfyKyBMDRANbXKHpCKeVxukq3YwyyDRERERHRoWH+rODbHjcagC8ERr0wW1/v168ddVfhtV4e4fRuIUzInI+Bn7/QV+g/FOr/3oZSDRiu5bGZjWpXdoBQSgHHnWFbp7EU49GMidryv3ZYL09WuTDHD4X5wIWQZT/XYpS19NU0fVnzNn6LHhqtcOVxCpFV3k//agfMvd1AVET1fVElJAP/ucGy62gpwyfld2JQR9/j2GjgrlMUbh6xv482idbD2plWAPPifjDvPAvyS3jlhpuaYEaj4TPw9jm5t8L7VyokBxH3PnGWwLjaixWa/dqJddHdfD/s2IT8vBLcMsP5xy3r9gYbuQ1GKwiDCe1Ogqlq6tVa4daTrCuYArz4U2g+qsotEtz1mYn+j3ix0z+vsJpLjlbYPcXE2cseRsrTFwJezUm3DigAZ+Xp3/OzVthvDxHB9R/o6/y9s3pZdpF1vcQmtqtx5csbrD/qzi4CdjsIn3DKyf53WLL1vpaaA2QV6PvulAzMusFAm0SF2TfrP7p/41KFgR3r9mC4cqJ+/ZX7R3EQwWgAsCsvuHZEVF0w58NQaJ+k8PWNwf16seXtJvJL/AcuInhzgYkTb9+EfosuQKcua9GkRw6WxxwesM9NUZ2Bresge8OlKryC+2eaMK72wrjaixa3evHVX8Gf53Xb2TYYLcjjIx2ivDY7TEmYJX/Vgt270O6jGI+h0DTGuixHc43ZUHTXvDXttrkerOTmPi2tSn5enmaXaRrj25ZVdUhS+N91Btrt/bwg0PnDbnszGI2IiIiIiIiIiIiIiIiIiIiIiIiIiEKNwWgEEdkD4AJU/5v0HgCGaZrU/HNtm//VrVWzjYM/ASciIiIiOjRIsMFox42Gattl30P1rxOAw3pZr2PBl/ZjKPHNdqzQBBN5griblNJiOMhvDjlZ8iPkoUv0FfoPhfH891DJrepvUFaiNDN9AaB9t/obRx1Se4P77FyZ85a2LKvQenly3j/A378Bcz+D3HY65M+5wQ4xKFJcCEn9B9izS1tH9TjSb1mjKIXXLjGQ94KBDY8a2P2MgT/v96B7S+vZyOr6J7X991n1AX4bn4WCFw2kP23g8TFGtaC/1vHWfWZLLIq3bQV++xZy37mQ7z/QrqO+NVTYh1sXDPJt8yfG1P/ANkZ1RjkiYELhpIkZrtpu2u37fiAGo3mDDM27f5TaN+m/pp/W1v78ZJqCk58zMeV7wfLt+nrPnqdQNNXA9MsNJD53BTB9Uq3XHYxb9ryoLVuyxX57bMkC7E7p62vsjtpgtMa2q3FlYEd92ebM0K1He2yqcm3UJsG6TmkFsDHDuoNT+wAbJ3kwtLtvRx7RS+HGE/136hcvULh8SN1/rN+7tcLgztZllftHSZDBP6kBQgOJyJlgz4ehcGpfhfJXDBS8aCD7OQN/3Of8uDTiGRNZBdWPhY9/K7jqHcG8vI5YHd0L2yLbO+5vY9Teg9WnLwEA/vOKice+3t9/ZgEw+iUT0xeaKC5zf77Xne9sg9ECBAQRVVNus8OUhlnyVy3U5uOgBM1vonOKwuv/cO3RfGZR07hpmgN4FW62V1ru/sq5xdYN4zQfOZ3SR2HLEwZ2PGkg61n7Y3mOTU5foGC0cLiPJCIiIiIiIiIiIiIiIiIiIiIiIiKiAwuD0QgAICJLAcyusfgUTfVwDkb7L4A+Lr/ODNG6iYiIiIhqTdK3AeuXBdVWTXjaf+GQM6wrL50HKcr3X/8Xr8E8+zDISc1gXns8KnanWzaPcHE3KTs3wbxuGOTkJMiYTpAZzztvHALy+kTbcjX6yvoZSACqUROg91H+BU0TgYEj6n9AdaHvsUCLtrZVPDBxccHHrrpNqqiSeFNeBvl0ajCjc03StsC8YTjk1OaQ83rYV7Z5DaMjFTq3UEiKtU+xUB4P1FRN6JtpQp67BY2jFRpF+ffTRhMGBQCpEftDAeXdybZjqE+68CEVZsFoAKCUwp2nGJj87/odXLmKwj9RHfFjk2H4vaCNq7Y79wYTuQ1GKwyDCe3BhuY1iVZ46EzrSrvyUOvwzts/FSzeErjejcMUYiIVZNPfwJwZtVpnbaR4M3DjHuvj5bo0+7CGtWn2fa9O3f+ziNgEo4XuPdO8KRATaV2Wlhuy1cB0EETUWhOMBgArd1ov79Xaf1tMOUfh2fMUBnUEju0MvH+lwvgT6u84M6yH9bo+Xer7rgtGu2KIwn+O1I8zlK8H0aFMdz4MJsQ6GB5DoXG0QnxjhSM7KPx6l4GTewdu98cWoPmtJtre6cWXKwQv/mTi/74I/hy8PqorAECmTcK6XYKZK6zrjZsmSJhg4rTnvcjIc74+XU2PAqIjrMuKgwyOpENUhc0OU3JoBKMFurpJ0ITpfrkivILRdNe8NRWWwi8gsiY392lVQ2fzSqzrxNn8Nl8phdYJvuO5nZwi/T1ToGC0QgZGEhERERERERERERERERERERERERGRSwxGo6q+q/G4n6Zezalrzd2sRCkVC/9gtByrum6JSIaIrHLzBWBTKNZNRERERBQS6duBVh1dN1N3vwaV0t5/uS4YrbwM+L16NrLM/Rzy9I1AZqpvxuqq31Hxv9ctmzsNRpOyUsiNI4GVCwGvF8hMhbx0J+S795x1EAQpKYIsnw9ZswTy9yJg9WL7BsP+XWdjcUtd8wgQU2XGr1JQ4ydBRWiSXg4wKiICasIzgEeTILBXi1JNaoxGsjer+oIFX7odmiuSuhky9zPIud2BFQt8+7ady+6FSnR166zX9xigbRfrsp8+haRutixqHa/vMj2ixf4HW9dCcrP0letRsOFXDemOkw08NLp+B7guqjt+bTTYdbuCUiC/RLQhTzoNPaG9wiv4/R/rMidBMD1bWr8+ZRVAbnHw40rNETw3J3B6Qf/2gGEoiAjk9QeCX2HbzsG1O+ZUqE837ns4Kv8by2q78g3kFOmfz9pd9s/1h9WCCq+vTkEp4NXsZ4makItgKKXQSnOsS8sNXWiGrqeqx6aWcfoQR10oWLMm/suiIhQmDDew6F4P5t/lwQWDDBj1eBDsnqIve/VnUxuAcdRhwIxrDHTWnPpSc8IrxIToQBVu10rHdFb4doIH301wdrOYmgOcOdXEhI9qd0zYF/JbUoQF6yts65Z7ge9WAWe85PwCyC6st1GUdVkxA4DIDbtgtNJaXKCGGbt3eqDw6+RY6+UzVwAfLzFRVhEe1xZ7Cp3XXbLVvjzoYDTNLhMX47w/nXKv/vgWKBgt5+DJ+CMiIiIiIiIiIiIiIiIiIiIiIiIionrCYDSqakuNx7pZ2xtqPO7gcj016+8RkWyXfRARERERHZRUv2OhZqyFmvYn1BUPAt3+FbhRoyZQoy6zLutxJJDUyrJI/vyp+uNvpvnVeTZmnGXbCE/gYQEA/loA7PYPuZIfPnLYgTuyfD7kwj6QG0dArj4WMv4E2/rqvRVQRvjcGqt/nQD12q9Qlz8AXHgb1Es/Qp1xeUMPK6TU8WdCvboAuOh24PgzLeskeDWpMRp+wWh1yJx6N+S8npAHLnTcxrjywZCtXykFHDdaWy7n9YSI/wzqJtFAjCZfL8uTXH3BtvW1GWLIhFvYh1P3n27gp9sMDNj76UenZPv6tbU2qhvWRXcLqu3ObF8OphsFpUGtKiR2ZAsGPGYiv8S63Mm+kRKnL0vPC25cADDjD2cb8tguCpKbBblxBPDr1+5XNHA41B1ToaYthZrwtKum6ooHoZ74HCqlHdTVjwAAupfp3+/rdun7Wr7dfl3ZRcD8vZ8gZtsERCRahIHVhi4Ybdby0IVl2AXkVIrwKKQ0dddvUoi3RSh0baF/U41/X7BFc/qtPN/oXo9Ud6d5ItLQXis18O3NSb0V1j9af4PI8iT5fvBWYPVGZyfzP7YAf+90dm7QXSsZCmikub4uLg+PkCY6QFTYJEr9Maf+xlHH7O47AgWjHdlBX+H81wTd7zfx++aGf9/tKXQ+hnd+s6/r5j4tqxAoLvM10IU9x9f8l2VBSs+3Xh4oGC2roOFfHyIiIiIiIiIiIiIiIiIiIiIiIiIiOrCEz+xvCgc1/1Ra9yfSa2o87uJyPZ1qPF7tsj0RERER0UFNKQXVuQ/U2HthvLkI6pbn7Ou/tVhfZhjA0adYF37/AczXHoD50p2Qn78AFn1frXhJTH+kRra2bOpxeDcpbz5sXbD4B2cduCAlRZDHrrAMYrOibn0eqkOPkI+jttRhvaDG3Qdj/CSofsc29HDqhOr+LxjXPgbjsY+Bwaf5lSeaOa76a12R6rdMvN6gx6djvnwv8NGz7hqdeE7Ix6E0gXL7fPmmfxulkBxrXT2zMkxiL1n4TbBDCynTtF4e7sFoADC0u8Li+zwwX/Ng4yQPXruk7ga9Lro71kXpg9GePU+/7tRcwO309MKCUsjnL8Mc0wnmdcMgv31rGcZXFyZ8ZOKvHfpyJ0EwLWzCqmoTjLYqzVm90W13QU5vDaxY4Hod6p7XYTzzDdToK6GiY4Ax1zlve+vzUGPv3R8GesGtwPBz0aYiFU3MAss2a6dMhnn5UTCfuh7y9qOQDSsAAF5T8M3KwK/5zBW+OtlF+jqJjR0/BUd0QVyzVwOmLkHIJafHpraJ7vptkxB+B7ceLYFIp2G4VcRE+p5La81zSnN3miciDW8YXyt1aaHw5mX1M5BMT9K+65nSHOcn8zlrnJ0X7AIx9cFojodBBFTY7zBSHiBx6iAQ6Ghxej/7GluzgLFvmyiraNjwLbvr3po+XCy216duL103Z/q+52lCpONinPUzcbT9tn70a+uBFQfYTTOtbzmIiIiIiIiIiIiIiIiIiIiIiIiIiIi0GIxGVSXXeJypqfd3jcf9lFJupjHWnNlfsz8iIiIiIqpq9FVAp97WZWdeCdXWPqtYtdOUlxQB704GZjwP+b/z/Iq/iz1J22eE07vJEhezQmvrt2+BXVud1R15PtTZ19bteMiZlh38FsV7c111MazwZ/+FxaGddSsfPQd88LTrdmrU2JCOAwDQ+yjbYplyPSQ7w2+502A0vPck5Nevgx1dyOgmgodD2IdbVx5nYNtkAy9fpHDTcIW7T9U/iZcuVPhugoHnz1d4bUw+Xkm7HlPS70JKRbpl/b+je2FjVGfLssfPNDFhuIFmTazXtW2PaEOedAp+nw959mZfCOXKhZA7z4JMvLjOw9EKSwWzVtjXcbJvNI5WiI22LsvIdz+uSqnZgZ9/35KVOOGemv8vwBn16Qao0y6tvswwoKb9Gbjx6Cv8znkqIgLqwXfgmfA0upVttGy2Nh3AhuXAzDcgbz0CueoYyPcfYH06kFUYeLULNgQORkvQ/VuGIKXE6XeCJQ4vEQJxemzq3tL5wSrCAI51+68n6kF8Y4WOSYHr1VQZFKQLqkvLbdjQEqKDhe545AmTi6XzBii0jAt23je8AAAgAElEQVRdf31LVlouLzViULT3V1Rp6c7vP52e93WXOIYCYnTBaAd/jhWFUkWFffkyi/vdA5Dd2V8FOGwNcXCdtC4d+KGB/xXXHgfXyFXZXZ+6vb1at8v3PV8TjNa0kbNzwzn97et9skQs7/0KS+0HzGA0IiIiImpoHTt29P1zsr1f8+bNa+ghERERERERERERERERERERUQAMRqOqas6sTrWqJCJpAP6qsigCwBAX6xla4/G3LtoSERERER1yVEQE1CMfAq06Vi849VKoCc8G7qB5m6DWm+FpoS37V3uHk+1tZnLKb6G9FZCnb3JcV51zQ0jXTcFTCTUzuoFSpUkt0hhQYhEMVBQ46UBS/4H5yDiYx0X7vq44GuZlR8KccDLMe86BrPrdV++XmZCpd7kaE2IToG5/CWrQSHftHFBKQb29xLaOjG4HqbENdMFouyP8XwP5790Qt4lZIaY7ehgH6KdZbRMVrjnBwHPnGZh0toGvbjTQOmF/eaNI4NGzFK49XuGk3go3nmjgip67cGXO27hlz4t4JGOiZb9LGg1AkWGdfDY4bgcAoEMz6zGtT9eHqugUVnj8F/70KfDrV+46cmlDBuANsEt6HO4bKZqQlvS84MOaUgPkOTYyi/Bm2jUwbCMhLBxxvC8ULaW9ZbHq3AfqwXeAFu20XajzJlgvVwo4+1p0F+tEhvVRXasv8Hohj47D9uXrHA196TbgkjdNjHnZ+oWLjQYiI0Ib3jOwo77snd9CE8blNBitW4rzPgcdBiQ0Do8go5oW3eP+oFsZFKR7r4VDMMY/mYLL3jJx7BNe3DzDRGoOw9rowKO7VAuTXDQ0jlb4+qbaXbhFG17cVvAyStY0xYydF2vrVQb9pu0pd9x3WYAsqkq6475SQBPNbUsRg9HIjYoAO8zWtfUzjjpWmxxlw1CYd3vg40morveCZRcIbGX7Hn2Z2/u0dem+BrlF1g3jYpz106u1wpc36Ld1QanvPrKmQMe9cLj+IyIiIiIiIiIiIiIiIiIiIiIiIiKiA8sBOpWUQk0pFQNgTI3F82ya/K/G43EO19MD1QPYCgHMdtKWiIiIiOhQptp3h/HxOqjvdkN9uhHqxzwY974OFRkVuHFyq6DWWab0fY8d7DQYTZ9iI3ePgcz9zO2wrPta8CWQm+ms8jGnQvUaGJL1UgjEJ/kt6la23nHzm7JehOXeGCAYTVL/gYwbCMz+YP/C9cuAzX8DS+cBC76EXHs85N0nIfed62gs6s6Xod7/C2rGGqiv06DOvMrx83BLdekLHDvKto7cMBzi9e57nBxr/b7N8vgHo2HbemCbs/CjuuIm7EPKSrX92JU1pNP6KmyfbGDL4wbWPWIg53kD955mwKj6BPdk7PvxyJKlrteR+M9iAECPVtav/bpd4nrCfYFhnbAn377rriOXrn03cFCf0yCYFk2tl6fnuRhQDf/YnII8UoE3U69B/5LlgTs65WKoX0qgPlkP9XUajBd/0IaiVVIjzoP6aDXU3a/5Fx59ClT77vq2Hg+6tbYIuwOwLrqb5fK0qZNtx1PV+78LcjQBEYmNHXfj2Jj++p3gv/MEi/+pfViGNiCnRuhdj5bOk4k6JoVJipGFxCYKL5zvbnyVwWhJmkDOrMJaDipI+SWCknLB3zsFRzxs4t1Fgt82Ay/8KBj+tIkcTZBIICIC0+3BlCgEvA6DGhvSv9orrJzo7leRL+y6BasHvI21jxjIfSkST753HSJnrELyhwu1bbIiklCqorBSDnO8nrQAoaaVdGFOCkATzS1zQXheflK4qrAP9JPtG+ppIHXLLhjNyWHr+G4K/9JnAQMAfl7fsOfkbJfXOFmF+rG6fRrrd/m+55VYl8c3ct7XqH4KD43WvyrLtvkPrjBAMFoWg9GIiIiIiIiIiIiIiIiIiIiIiIiIiMglBqNRpbsAtKny2Avga5v67++tU2mMUqqrw/VU9bGIaP5Em4iIiIiIalJN4qBS2kFFRTtvlNw6qHWVqUjL5d1SfBPcHdElG+0tkxnPBzGy/aSoAObk8ZB7znHW4D83QD3yYa3WSSEW7x/KNcBFANSjuydaFxQGCEb7dGrA8DQAkNfudzaQgcOhzrgcqn13qNadoIy6/8hFTfrUvsKGFZDXH9j3UBdQs9sqGG1v+4akmwheNexDvp4G89xukJEJMMefANmyZn/Z3M98ZSPiYV41GLL2zzoesXtKKbRPUuiaohAZ4X9clZfv3fdz79LVaGRqEqY0EpZ+BQDonmJdvnaX+wn3RYYmzeqXmZAAoQ7B2pUrWLwlcD2nQTApcdbLgwlGy8gTnPKcF/maT7c8UoGftwzHufnOgkDVeROglIJq2QEqrpnjcajIKKhRl0E98hFw5DCgUx/g/FugHp0RsG2P/tYhMhsjO6MC/qFpaREtHY/LTpcWIemmmqYxCsfbfEL54KzAAXuBaI9NU8bDPL0NzFfvh3i9GNDReZ9tEms9rDp1/TCFNy51nrQUHeH7ntREE8hZz8EYizYL+k30Iv4mE42vN9HvIdPvPbsuHZi53H2Qyp9bBcOeMhE13kS7O72Y8Uft9zEip9yEyDak3q0VFl6fi5YVu/zKUirS930NLlqIdzKvw/XjeqP7VVegW4pCVISCMgyo1ochMbmp9rllepLwW6OjUKgJcLWSmuPsPW93TRobY11WyGA0ciPQNfTBEoxmU6YcHreG97SvmJEPR/cNdSXbJujMil1YrF2QnJV16b4GumC0OBfBaABw/+n6zzR25vgvC3TcyyxgiCwREREREREREREREREREREREREREbkT0dADoNBSSl0CYLaIpLtocxWAB2ssniYiW3VtRGSDUmo6gMv3LooCME0pNVwXdKaUOhPA2CqLygA85HScREREREQUpBZtg2pWpqIslx/X1cVMewkQDrHqdxcjqtKtCLB9PeS6YUBuVuAGHg/UA+9AnegwQI3qT3yS36JoKcNxhfMxv8lxtk07lm1BYym2Lty5Ceg9yG+x7EkH1i0FPnkxqOFaatfVUfhQqCnDAJ74DHL3v/WV3n8K8p8boZJaonlT6yrbI62PEfLwZVAjzw/BSIOjC6FQq3+HRGUA2RmQp27YX/D3IshNJwEfrvKFwj1w4f6ytX9CbjkVeO8vqKTQhDqFgmTt8u2Ppf4fpcjiH4A1f+x7HAEvjihZgd8aH+O4/8SlsyAFueiasRKAf7ud2YLerazbRkcApRX+ywvsAke2bwQO6+l4fE61v8tZ0JDjYLR4Batohm173E3WFxFc8LqJuev0dVZu7o9uZRuddXjW1VBd+rkaQ01q6NlQQ8921ab7MX2AH/2fe5kRjS2RHdClfHO15btCFIw2oGPdJPcM7a7wywbr1/L7VUBOkSChcfDr1gYRmeVAbibw3pMQpXDY1Q+jVytgdVrgPtskBD2ceqGUwuVDFI7rKjh2sonMAMFmSXmbIX/tQrPNAHC0X3lBKVBaLoiOrLv0psJSwYodwKpUwTXvOntv/7EFuGyw83XkFgnOnGoidW84yM4c4ILXBS2aCob1UNhTKFi6FejeEmjXLMySquigoAvN8YTZv0SSjX9h0Cs3YseGRfYVz70Jxo2vaos9hkJiY+sgoT2eZihW7lJ/duU6q6c7giil0CTKukYBg9HIjfIy+/LtDq8lw5xd0JfTYLQeDi5DZy4XHN2pYc67e9zlWGOPTTCa2wDr9Xv/MiBP8xFJnCbI0c6InsCcNf7LV6UCc1YL+rYFUuJ827oowG6c7XLbEBERERERERERERERERERERERERERMRjt4HMFgFeVUp8A+BjAPBGx/LNqpdQAAPcCqDlbcieA/3Owrgf3tk3c+3gwgDlKqStFZG2V9UQDuBrA0zXaP20XvkZERERERKGhYhpDOvcFNq101a5cRVouj/S46MRu5mtlFa8XyuO8UykrhUy6EvjxY2cNzr8Zatg5UL0GOl4H1aOE5paL78l6MmAw2jl5n2nL5JGxQGEe1NnX7F/2+cuQF+8AKsqDGakldd3jwJlXQTXWpI7VMXXs6ZA+RwN/2wRNLPoeGHUZulhvaqyP6govDHjgn/YjmWlQyZrkrDrm1YQPqTkfQT55xbowOwNYPAfyyxf+ZQW5wK9fAaOvDN0ga0E+fgHy33sAr0X6mMbAkj8dB6NFmyVoJCWQSVcieVssYNEuv0RQYVqHBsQ1Anbn+y8vVI31K926NuTBaDuzBRXOctEcB8F01rwX1u1y1r7Skq2wDUVLqshE57LN+gpVqIfeB4bZhBzWoe4p1kFxALAuuptfMFpaqILROtRNYMV/Big8/JX++uOSN018eaObi5nqdD0bVcNgv30XcuVE/Ku9wuq0wNdCbRIOjNCsrikKy+438OavgrVpwEd/+D+3LmUb0f76fhAAzaJ7AZ2WWPaVVQi0rqNAuDmrBZe+ZWJXnrt2ny0VvHRh4HqVXpsv+0LRqpo618SGDIXrP5B957LxQxWeP08hwnNgvNZ0YNCGyIbJbiZFBZA7zwJWzA9ceeBwqBueDFgtKdY6GC3T4x+2HIhVP1a0gZgKaKIJGgoUEERUjTfA/Wn6NkhpMVS0u/C/cGN3ReT0sNW9pf66tdKsFYLHxzgdVWhlOzyuVMqyCZvVfZzWJBootAhf3FMIZOYLcjXBaPGN3J8cWidYb+9pCwXTFvqW3zdK4eHRCoUBjnvFofsYhoiIiIiIiIiIiIiIiIiIiIiIiIiIDhEMRjs4NQJw6d4vUym1AcAWALkAvACSABwOIMWi7R4Ap4hIwKmgIrJDKTUGwPcAovYuPhbAaqXUnwA2A4gH0B9AzSmnXwG4393TIiIiIiKioA053XUwWpmKslwe5eZO0vQGrlNRBnicT/CVaY85DkVTX+6ESkh23Dc1gOatLRfHee3TTI4t+hV37HnWto48cxNw5FCo9t0hG/+CPHtz0MP0k9QK6vPNUIbDJKY6pCZ9AhndTlsuOzZCAeihmUReasRga2R7dCrf4t9400qgnoLRSssFny8TLNnqmwS+Os26XqxpP9tcPnoWWL3Yuuy796EaOBhNVv8BefcJYMFXrtseWbzUcd1Ec29az/xZSIj5F3CYxVhgICe7GL6PkqqLjbYORisyAgSjhdjUeYFDpSoZDuf6d2th/V7YugcoLhM0inLW0RfL7Md2esG3loGD1StdDnXnf6EaMMWmcbRC+2bAtj3+ZeuiumEUvqu2LMOjSZZzaWDHkHTjp3drhUlnK9z7P+vX5+uVwLYsQfuk4La5Noio6j6VmQoU5qJVfLyjPusqIKwutElUeOB037a7b5TgjEfSscXr2ycSvNl4f+dl+8JNkiuytP1kFQR+3hl5gpkrfOFjJ/VSOKZz4Ncsv0Qwdpr7UDQA6G71abmNh7603hk+XwZ8XuP48PI8Qf/2wBVDwiSxivYxTV+AnVd8AVhe8YWzVvsKsMx03Ub827rswxRgyVbrfTAMLk8BADL5GmehaADUk7McnQuTY4H16f7LszxJiJESV+PbU+h7LTwBLiB0Z3ulgCbWt8woLHV+/ULkKLh7xyagc5+6H0sDcXop3Ls1EGHANjh5TRqwPl3QLaX+z7m68K/YaKDAMsxMf6zQXXP2bOkLaLayLh3I0xwK44LI1Wvl4FL2sa8FRx+mAgZCMjCSiIiIiIiIiIiIiIiIiIiIiIiIiIjcYjDawc8A0H3vVyA/AhgrIjucdi4i85RSZwOYhv3hZwrAgL1fVj4EcJWIOEhIICIiIiKiUFBnXgWZ/rirNtpgNI+LTswAgTCAbxJwtLMZmrJzE/DuZEd11d2vMRTtAKDikyCdegObV1VbHiv68Kv7B6Xi3umnIhIVAfuX2R8BY++DjBtY67FWpS6+PSxC0QBAJbYA5uRCRmhmLYvvfdjNJvBlfVRX62C07RuAo06q/SADKCgRnPaCiQUbA9ftUhagUobNxxqb/3Y3sBCTz/4Lef5WX/JbEHqWOQ8eS/Rm7/s5wZujrZedkQurYDRd0Eex0RgCwCpmQP7+zXJ5sMa/b+LVn0MfjNa9pfVyEWDTbqBPG2f9zFyuH5uC4KY9L9m2V09+AXXMqc5WVsd6tNQEo8X28/0bhSoyPbU/tyY1ATok1bobrbtPNTB/gxffat7y7y4S3DcqyGA0zaWNUTMELycTbRKdBaM1bxrUUBpcr1bAii1HYR6OQJmKxkkFP6CJFO0rb+a12Kn2yrLPuMSGdMHIZ819++VDXwqmnKNw20n2597PlvqC1Opaep64Dvi46h3BOf0F8Y3d7XsiYhm8VZtALb8yyzZiH/7lcL124/QfiyDgWB0sq9YuQP2DkScM8vdk1e/AT586qqum/QkV4ezXlUlNrJdneZKqXfs4YQqQUwQkxQauZ8VQQJNo6zKrACQirYrA97XYsfGAD0azuwVyethKaKwwpr/Cx0vs7xFmLhfccXL9Hwx155UWTa2PCxkWQdSVdMeeVvFA0xgg3yIAbdk20Y6haYx+XTptHIb3TltoojDAcY/BaERERER0qBARLF26FGvXrkVGRgZKS0vRvHlztGnTBkOGDEFsbIAPIsLY9u3b8ccff2DHjh0oLi5GcnIy+vbtiwEDBsCo5e9MMzIyMH/+fKSmpqK4uBitW7dGp06dcPTRR9e6byurV6/GypUrsXv3buTl5aFZs2Zo1aoVhgwZgqSkOvzlBRERERERERERERERERERucJgtIPP8wB2AjgWQAcH9QsBzAYwVUR+DGaFIvKNUqoPgIcAnAcgUVN1EYCnROSzYNZDRERERETBU83bQEaNA75+23GbMhVpuTzKzZ2kOEgbKA88O1IyUyHvTgY+f8XRatXlDwCnXuKoLoWBY071C0brVroB8d4c5Hqqz8RtGgPc0XO9o1A0AMCKBcB374ZqpD5HnwKcdW1o+6wlFR0Dad8N2Lbev9DryyWPjVFoFQ+k5fpX2RnpnwQlAF7/qxm+Tfe1v/FEA8N7Wk8uX7RZ8NT3JgrLgFP6KIw/QSEqwlf3l/WC134R/J0qEAG6tgCuH2ZgWI/9fb27SByFogFAjzKL51hVZqq+LEmTiBVi4vUC370HeeLq/QsTWwDZGbXqt1vpBsd14737X+gE0+JF32tPESyTCHRBHwBQqqIRIxYz3xd9DynKh2pc+5Snjxa7C0UDAKdzYzolAx7DOrhg3S5nwWjr0wWr0/Tl73SeicPXrLQubN4G6p7XoAaOcDbgetCtpcLs1f7be32/84H8e6vtu7sjah+MNqw7oFTdhlXcfpKBb/+2vg75coXgvlHO+yqvEEz/TfDJEsGuPOs6Rs1rntwstIrv7Kh/XdBPuJLtGyCTxwMr5qMJgFH4zrJeFMrR1JuHfE+cX1lmgf06HvtG/ML67v5cMHawIClWv+98tDi44EkAyC12Xvfrv4JbT+LNJjoluwv+0gWjEOk0dHavpG6GXHu8o7rq/96GchH25Hv/+78psjzNEGV1bRJAZkHgYDRdmJNSQKzmeilQQBBRNQ4+E8HunXU/jjoWZDa0n1cvViguE3y9Un+OvOszwR0nh2Z9bujG064ZsDnTf/mGdH1fuu1lKKB7CrBkq3/ZcpuMcN3xys6AjtbH3Jo+Wxq4LwajEREREdHBLjMzE5MmTcJ7772H3bt3W9aJiorCiSeeiIkTJ+Koo45y1O/YsWMxffr0fY//+ecfdOzY0VHbefPmYdiwYfseP/jgg5g4caK2ftXP7E844QTMmzcPALBw4UI8+OCD+Omnn2Ba/OeQlJQU3Hfffbj++utdh5gtW7YMd9xxB+bOnWvZd9u2bXHNNdfg7rvvRkREBCZOnIiHHnpoX/ncuXMxdOhQR+vKysrClClT8N5772HnTuv7bMMwMHjwYDz44IMYMSJ8fodDRERERERERERERERERHSoauDpERRqIvI/EblIRDrCF1A2BMAFAG4GcC+A/wNwA4CLAPQHEC8iY4INRauy3gwRGQ+gJYATAYwDcA+AmwD8G0AnETmGoWhERERERA1H3TEV6DnAcf3yUASjOUlyqLCfHSm5WZBrjnMeivbpRqhx90E1dCIAOaY6+YchRKEcV2e/4bd8/FCFJmU5zjvfsgYy+8PaDK+6Y06FMWUmVEQYZs2362q93PTu+7FNgnWVnRGt4YWBArU/nee2FpMxfte5mLUCmLUCGPmsiWkLTZRVCPKKBbJ3pvbXfwkGP2Hi82XA96uAW2YIrnrHV/bDasHIZ018sFjw1w5g5U7g82XAiGdNfLty//HhK4cBM80qspDszXJU11JC8+DbuiCv3V89FA2odSgaAMRKIdo1KnRUN9Hc/z6pGpJW0x6xTgOxC0YrVo20ZXLjyMCDC2BPoeDCN9wnJxiarKTKfVUqygEAkREKnRpZb5N16eLXzsrM5fqybZMNXBDzq3Vhp95Qn20Kq1A0AOihyQxcm2FAzVi777EJhSxPkmXdRzMegAdey7KqlALuOa3uz9FDu+vLFm8BduU638du+1Rw9buCH9bo6xioGYyWiXaJgcPfPAYQr39LhR1J2wK5sA+wYr6j+knePZbLswrst/87v/mXe03gC5v3XnGZYF6A7Ew7boLRZq0IPt1lcyawNQvYkQ2k5gDpeb5wpuwiIK/EF6hUUg6UexmKRsGJacDLVMnPgZzX01FdddNTUCdf6Kp/XYhZlqcZio3GlmWDOur7y3JwWWUXTqS7XipgMBq5sfca1Y7YhT8fIOxOaW7ycuMbK8y8wYPMZw3ceYq+4Ys/OQjqDzGr4GUA6NHKepxZhUBmvvWW0V0DKAV0b2nd35pU/VaOsf6Iz9ZRh7lvo1NUZn9/RURERER0IPviiy/QqVMnPPvss9pQNAAoKyvDd999h6OPPhrXXHMNKioc/hOoBjRp0iQcf/zxmDNnjmVwGQCkp6fjpptuwjnnnIOyMuepyM888wwGDhyIH3/8Udv3jh07cP/99+OEE05AerpNunQA77zzDjp16oTJkydrQ9EAwDRNLFiwACNHjsQll1zi6vkQEREREREREREREREREVHocZb4QUxEckTkVxH5SESeF5HHReQxEZkqIh+IyDIRCTxb0d06y0RkrohME5EnRORFEflcRP4J5XqIiIiIiMg95fFATf4COOtqoFMf4IjjoZ79FjjJejJ6mYqyXB7lcbFSJ5MeywP8QfG37wAZOwL3c+woqPdWQKW0czY2Ch/tu1kunrT7ATwR+yGOaAcM7Ag8eY7C42croEAf8uTHMByHtwAA+g8FDj/Of3mH7sBFt0M98pHzvuqb0nzMI/snE+iC0R5u/n+I7lmAhB670aHLBrwTfxFeTbzKr97l0wQx15lImGDCc83/s3ff8U3V+x/HX9+ke9CWtoyydwGZiiKCIkNRZAiK4p4o4h7g1qu/K6I4roqgXlCc14kILtyKqCiKomyQPbso3W3y/f0ROtKeb3LSpgP8PB8PHuSc70yanJyc9vuOG8ckF6OeqbpY4ZUfNSu2ah5b4qbY4sqD1nDX++Xt1ttcy9C34Dd7FU3y7YWK1YTeux1ef6x6jUPDIC6x/F9YhFexuu9lurSNNjT2luDKLLsdgosY10HLerkO64SRKOu3AADyHT5SnNb/hrZzzPbhuIeqF2LgrPAS0Hu3475nIu5B4egTIzz/nxyDe1A47ufvpfMe6+Cy9Zuy+Gy1xjHJVfYcd0xy8eVa7/czUzDace2gZYKP41THXqhAkh/qSJem1nPafxDSSqLghJEAZDoTcCnrxJ1huV/yqftGhqRCjxaefa0SyoMuHAqGpMKyaQ76tK79x0ApxYq7zZe/7QYyrt2tmfWV/7pVgtGy0jm6DcT4CBkESIwGhynVrwHSL9wfUH1jMJqPw7HbRxrY56vN7T5fA0U1WEtoNxituETzmY95CFHfTuhY+8cU/cf3uK8ahHtoHO7zjkL/8gU6cx/69Ka22qvbn4Ozrg143CRTMFpIErnKOhgttbki0hAIlGZ9euTF9JFWKfMxPleC0UQgXP6D0UjbXfvzqGW+Lg9V5/Q4PkpxUX9zw0c+qfsQLlMwWrfm5jZr91jvN83eoaCNdU4xm8z5C9UKzVRKccmA4LynaA2FDT/zQQghhBBCiIDNmzeP8ePHc/Cg90WGDh06MGrUKM455xyOP/54nE7vX7A///zzjBo1qkGHo82cOZO77roLl8vzi74uXbowevRoJk6cyODBg4mI8P4d1oIFC7jnnnts9f3YY49xyy23lPVdqlu3bowZM4YJEybQv3//ssdt2bJlTJgwoUp9O+69914uvvhisrOzy/YppUhNTWXUqFGcd955nHbaaSQne3+50quvvsrpp5/eoH9GQgghhBBCCCGEEEIIIYQQQghxpKvH740XQgghhBBCCFHXVEIy6panvXcefTK6uBC+etdrd7EhGC00oGA0G+E2Jb4XAeuV/kOt1H9/QHXpa3dWoqExBKMp4Nb9M5n6+AVe+3VuAMFoGTYTt0JCUR/uRkXF2u+7oXEaXpwVFgmkJCjMS6w9doa24LKUF2o8nXsXulniIzhm5XbYvF/TMgG2pNvr8/ScT2o2qZysmrW347uF1Wqmbn0GNaZqGF1lqWluPl/jf5F/gsv7vsa7D5DjtP/8jg4zP1cKlJ+kp+8+gPHX2B6rom/WaZ8L+n0pzZbSbjf6XxfBqmXWFV+ZQecmD/Ehp1cp+uS3Al5eVfW9a9jjblb/y0Fqc8XebM0Pm627HtP70CRMwWgxcf7uRr1IbWYuu/JlNwsGjUZ//yFpTkMKA5Bcsp9jNs7n5BdmNZjwtz6tFanNrAMnFv+hucIiB7Oy+T9oWzmvjsqvlwNphIUoZoxXTHnd3IEp5Kch0kWF8NkbAbVp7LI+wPsKRsvyEVAWYQg3Aljwm/lxdjpg8XUOTu2u+PQvzWn/qfo6zy4ArbXf5++OLMi3kWEjRH04uQuM7FG7Y+iMvXqme70AACAASURBVOgpQ8p3bN+Avqnqe6qJ+t9qVIsO1Ro70ZAPm+5sTJ7DOhgtKgwSY2BHZtWytByN51OHma9womhDkGyOBKOJQPgLiwfYv7P251HLfJ1OVffMsWtzaN0YtlnksO7Mgqw8TXxU3Z2XmrJdU+IUjSI02QVVy7ZmaAZaPAKmkDWlzIHn+3yEPfo6h/Kli4/PCYGa9ZXmllMaxucEIYQQQghdUgL7a/YFH8Km5JaokCPzz5RXrlzJ5MmTcbvLT+B79+7NrFmzGDBggFfd/fv3c8899/Dcc8+V7fvkk0+49957eeihh+psznatWrWK777z/I5+7NixTJ8+ndTUVK86mZmZ3Hzzzbz00ktl+x577DEmT55M27ZtjX2vWLGC22+/3Wvf4MGDeeaZZ+jevbvX/v3793PvvfcyZ84cvv32W1avDuwbK+bPn8+DDz5Ytu1wOJgyZQq33norrVu39qqrtWbhwoXccMMNbNu2DYAvvviCe+65h+nTpwc0rhBCCCGEEEIIIYQQQgghhBBCiOA4Mv/iQAghhBBCCCGEbUopuP9VdKVgtCKsV02GBfJJ0l3zYDS2rfdd3newhKId5lRUrHmR9JY16LyDXoFlOt1m2FkgBo87vEPRAJTDen+FgELTAura8PGf/uss+kMzorsyLvquKNKdx9kH36vZpExhVUGiC/LQ/7klsEb9hqIumIrqO9hW9S5N7XUbXykYLc51gB2hLW1PK8pH9lm+ivTZVq/6AVXNYLRHPrXxZDDIK82U+OULcyjaIV2KNlju3xdifoBnfa15eqLiizXmoKyx/oLRYuvwRRiAlHiICbcOcvngdyg5fwzOmGnsdyUZ+0h2pYEugW8Xwklja3G2gRnVS7F2T9Uf2GerIb9IExnmO5zhrV9spKIBjkphsDorDQVMHuzgh01uXv3Jup/EwykYbd4DAbdJMgSjpf29C7A+Jq3Zbe4v3BDqsStL89Iy88/ql7sc9Grl+VnHGQ5hLrfnNRAbYR4fIC3Hd7kQpZyOQ/9UhduH/jmUuczXPoehLDpccWJnOP845fe4VlN6TGv/lawMHoe66UlUY5snMxYSY6yDW9OcieQ6rFPTosM9IZTWwWj+x/T1kTY63Ho+uRKMJgLh75oIwM7NtsI7GzJfQbPVvVtKKUb1Usz6yrrzL9bA+KOr13d1mD7XOh3QqjH8tatq2U6LY5PvvhQt4v0HnldW3WC0lCDmOs/5RnPLKcHrTwghhBCiRvbvQE/oUt+z+EdQb62D5m3rexq14vLLL6eoqDzseuDAgXz66adERVUNb09OTmbOnDl07NiR2267rWz/jBkzmDhxIj161HLSfYAyMjwJ1FOnTmXGjBmWdRISEnjxxRfJzMxk4ULPlwa5XC7mzp3rFUZW2ZQpUygpKSnbHjduHG+++SYhFgF6ycnJzJ49m/bt2zN16lTS0tJs34etW7cyefLksu3w8HDef/99RowYYVlfKcXYsWMZMGAAJ5xwAhs3bgTg0UcfZdKkSbRr18722EIIIYQQQgghhBBCCCGEEEIIIYJDgtGEEEIIIYQQQqAcDvSQs+HLt8v2Fakwy7phzgA61jYCboqLjEX6YBZstw6vKaXOuzmACYmGSj3wOvre8yzL9BM3oe76b/mO5UuCO3j77qir/x3cPuuDw/DidLvKbtZlMJodN72paTPZ/yr4MHchz+y5keYle2o2YO4BtNuNchhC5GpA79uBPu8o+w0cDtSUGagJ1wc0Tmoze4vgE9zeK+wbuzICGifaVzCaw3cwGvnVSw06WKD5Ym21mgKw6e8DuGc/Cq8/5rduJ0Mwmi9LN3ged6tAA4BOTSC1eWkwWpZlHRUTxGSBIFJK0bMlLNtkXf793nhOmjqbtCfetSyPcucSpfMB0HefA1/noZyBnDDUnlE9FY9+WvU1k18MS1bDmN7BGUdVfl3u+rvs5sPjlTEYrUPy4RFwovNy4LWZAbdLNBx70n9bic6JtXxNTHndfP4YaQj1GDvL3ObdyeWhaOAJSDLZkgY9/GRIph30XX44Ucp/MFeVIK4AgrwclmXKO+grgPAvf/u82inzmJbzrEZIma/Hx+E4PF7bgdK/fFmtdurfb6FOHFPj8U2v3zxHNOnOxpZlUWHmdum5/sc0nXU5HJ5QUSv5xeBya5xH6PNABJmdYLS922DLGmjXrfbnUw9q8kqZMc4cjHb2c27cz9fdOanbcMBwOjyfxa0+R+wy5Cn7CllrmRD43KobjNYiIfAQNpNN+4PSjRBCCCGEEA3CV199xa+//lq23ahRI958803LULSKbr31Vr755hsWL14MgNvt5oknnmDevHm1Ot/qGDhwINOnT/db79///ndZMBrAl19+aQxG+/nnn/npp5/Ktps3b868efMsQ9Equu222/j8889ZssT+74gfffRR8vPzy7afeOIJYyhaRU2aNOH111/n2GOPBTxhb0888QRPPfWU7bGFEEIIIYQQQgghhBBCCCGEEEIEhwSjCSGEEEIIIYTwqBRgUqysV02GBfJJUttYPPnr19C5aiqJPpCOPiPFd9sufeGYYQFMSDRYx59mLvv1q7KbOjcbNv9V8/Hik1GX3AktO0DvE1HhfoKeDgemsC93+YrqlLjgLGgOpnGzzWE2T+y5hXj3AQblLaVt8baaD+Z2ewKrGlkHZ1SXXv0z+paRUJjvu+KZV6Fad4bIWOhxvOd2gFKb2asX7/JeYZ9SsjugcaKsszEByFcRvhunVy/AbslfUFRSraYANFv0CKQ/bqtul8LAg9F+3wFaa9btsX4dHdO2QqRDjiHhIKaBpRNWcN5ximWbrO/bwpWaweeMY3/eSbCwanlySZrXtn7oCtQ9L9bGNAN2fAdIjLYOvznzWTdFsx2EOM1xHBk2QnMAFJWOZdvWld1MiVdMOEbx1i9VH9+Jxx4moTnfWvzgbTCFMqY7G8M3C2DkJV773W7NHzvM/Vk9QwuKNb8b2kSEwimVMmTaNIZQJxS7qtZfu8dGMFpOYO+lY3t7jg/xUf6Cv5StUC5z+FfgIWVKHSbPP9Eg6MIC9E0+ztlNjhkSlFA08BzPTXaEWr94o1Z+RlLz4VgdQdJsZLmago4UvoNk84og1s8pkxCAvWA0gJXfHtbBaHYuD1VHVLjiqBT40xBePOcbN1efFPxgbCu+wsxS4q0DxnZlWj8wxr4UtAgwGE0pz7lPdaQ0zFxnIYQQQggh6t38+fO9tqdMmUJKip/fax/y8MMPlwWjAbzxxhvMnj2b8HAfFxrqwV133YXDxhcNde/enbZt27JlyxYAVq5caaz7xhtveG1fe+21xMXZ++Bxzz332A5Gy83N9Qqba9++PVdddZWttgD9+vVj0KBBfPfddwB88MEHEowmhBBCCCGEEEIIIYQQQgghhBD1QILRhBBCCCGEEEJ4OLxXSRYp61ScysFoWmtY9iF60TwIj0INPbt84bvbHHhU1n7WNNS5N3puf78Y/fGrkHcQfv7cd8Ou/VB3z0U5q7m6UzQoKiIKHRYBRQVVC/ftQBcVosLCIXNfcMa7aBpq/DVB6avBcBheCxVehy0auYDD4zUzPOczrsucHfyOl38Gw86pcTfa5YJ3Z6F/+Bh++dJvffWv11BDzqrxuCnxEBMOOYW+6yW4sry2mwcYjBYe4lnAb7UgP9/hJ0hw23q01gEH7iz6w39aQqsE2J5pXXZqzme2x2rq2kuboq1sDWtjuw3AvoOwxpD71uVQaJ3WGg4aJhndcJMFrj5Rce3r1j+DRb9rnjgH0kjAKtAh2eUdjMaS19FDxqNOOKMWZmpNp+1CP30bfPmOZ8ewc1DXP4YzIZmRPRUv/2B938ImuxnZA07prmgUAQt+0+w7CEe3Udw+QnHAT95hKYeu9GLZsRHtcpWdpzwzUZFToPnoT09xowiYPk4xvFvDDqbSBzPRL/4fvP1MtdqbgtEOOOPQSxejKgWjWQXYVZRrcezbsNc65Azg6NYQHe79GIeGKDoke0LQKlu3V+OJOzLzN8eKXrtCMfHYugljEaLWLZhTrWbq3peDNoWkGHPZnhDr9NioXz6i8elHA1WThNJtBB2awpyU8pyTmeQWSjCasEfv2Wqv3vYNft6hGjZfr7aa5nQe117x5y7rEa55TXPZCZqwkNp/9ExBig7l+RxnZZchT9l07HE6IDkG4iKxfZ4aEVL9MNRAQ9iEEEIIIYT4p1i6dKnX9gUXXGC7bffu3enbty+//vorAAUFBaxYsYIBAwYEdY41ERkZyZAhQ2zX79q1a1kwWl5eHjk5OcTEVL2Qs2zZMq/tCRMm2B5j4MCBpKSksGuXIRm7gqVLl5KfX/6h6ayzzrIV8lbRySefXBaMtnXrVrZt20br1q0D6kMIIYQQQgghhBBCCCGEEEIIIUTNSDCaEEIIIYQQQggP5f3HwEUq1LJamLPSYsr3n0c/fn3Zpv7ybbh+Jurs68BtSKmoRGfugx8+QU+/0t5cux2LmvNttRd2igZqwvXw6iPWZe/NhnNv9ITeBMMp5wWnn4bE9Af9FYPRYko4XILROhdtrJV+9b8ugl4DUcktatbPvy+Dz/5nq6669pGghKKBZ0F7ajP4xU9+QrzbO5irRYn/hSJe42hNZKh1AFuB8hOMlp8D6bshKSWgMZdtsl79f8UgxayJit0HoFVjWLgSxs32DqEakLeMHoV/2h5LAddkzmFa0+kBzfH1nzRrDBlzqaV5LKt/htxs60qxhkSEBsDhULx4ieLSl6r+HDanQdpBzf4c67aJrvQq+/Tt4+GpJag+JwV7qt7jFBdB+m702Z29Cz5/E/3jp/DmGkb1TDAGowF8uAo+XOVd/uNmzXPf+A/MKeWgUjBacRHs2QItOgCQFKtYfL2T9BzN3mxPkJ7T0bDPY3ReDvrSY2HvtsAaxiV5zgEPZhLvsk77yHLGe14rlezMsqhcQV5R1X3r9prrP3q29XtjajPrYLTN+32PD5BmeB1U1iYRzuzTsH/GQgRCfzQ/sAYxcaj3t6HCg5cO1jg68DbR7lwS9/wBVH0/svN69hV0FO0jGM1fiK0QcOhayMIX7FXevqF2J1PLTEFfUPNgtCknK+YuNQ/wzXoY3q1mY9hhFSoNnjAzUzDaHkMwmqkvh8Nz3n5qd8Vbv9g7V42wvrxnS2xEcM9lqhOgLYQQQgghREOTmZnJpk2byrbj4+Pp2rVrQH0MGDCgLBgN4Oeff25QwWgdOnQgLMz6S9SsJCR4pyofOHDAMhjt999/L7sdHx9Px44dA5rXMcccwwcffOC3XuXgupSUlLLgNrsq3//NmzdLMJoQQgghhBBCCCGEEEIIIYQQQtSxwL4CSwghhBBCCCHEkcvpHZZUpKz/2Dm0QjWdm42ec1eVOvq1x9AlJaANKzkry0pHvzLD9lTVuMmykPIIpC6921imZ01D5+XAso9qPs6tz6DiEmvcT4PjMASeVQgobBRWQozrYNCGjIuEHi3gkbMU718T3MtMvQt+91+puj55rdpN9bZ1uM9oYTsUDUCdc0O1x7PSp7X/419SiXdQVUqJIc3LQL0xk8gS6+dKvsNGwMnfqwMa72CBZuM+67JTuylCQxStExVKKcb2USy4xsGgTtA+CSYn/8wH28fjwH6IFUPO5hb9BvGuTP91K7jlbfMYR7dWaK3RVw+yrqAUdDgqoPHq2vBu5udWk1vczDMETiSXWKdJ6etPQW/8Iyhzq9L3ljW4rx2KHp5QNRStVE4WLPwvp3Sv3hglNk9jwCIYDWDruiq7EmMU3VJUgw9FA+DjlwMPRQPU+MmoZ76AgaOIi7M+nzzgaAQZe9A53mkgu/wEo+UWVn0Ort1jfl32b2/9OKfEW+/PyPV/HPEVpNQuCVrEw8RjFcumOYgIPQx+zkL4obdvwH1u18De29t3R72yMqihaAAhTkV8VGBtotx5JG1bbllmJxjNFOakFET7WB+cK8Fowo4lb9ivu2197c2jDvgMRqth371bKUb2MJef+3wAJ3U26MUv4j67M+7TmuK+eST60PmSy0eQYmPDsetAvvV+U1/OQx+7B3exP9+aBKMFW7G9708QQgghhBCiQdu/3/t6eKdOnQL+vXVqaqrX9r59hl+Q1JPKQWf+hIZ6f/AoLi6uUic3N5eCgoKy7eqEjNlts337dq/tG2+8kXbt2gX07+67vX9vnZGREfB8hRBCCCGEEEIIIYQQQgghhBBC1ExIfU9ACCGEEEIIIUQD4fAONTIFo4VV/CT57ULIswjOSd8NOzb4Xvla0YE02LHRXt0OPWDYOfbqisOKCgtHt+oE2zdYlutz/Xzb+plXwYLnfNcZPA415spqzrCBU4ZgMneFReCuEtoU7+AvZ2ApQZdlvcTzu69BTXoQkltAi/bQqRcqwnt19xc3Oxj6eM0XnSvt5vScT2rcj4l+/h5o3w2at4O2XVEOc6ibLimGdb9B1n7ISkM/PMn+QDHxqDnfBGHG3kb1Urzwne/ja6LLe4FGSvGugMZwFOQSWZAJobFVyvJVpN/2+qclqH7DbI+3aqe5rI/FOpfRqfmMDvkDMveh7zzb9jg4Q1D3vYI6eRxaa1YNaUuHDmsocoTb78NC1+bQoYlCvzbTXKnfMFRCkxqNU9uax0GjCMgusC7PMYS8JLnSjH3qS/vBR3tRsfEBz0cX5sPqn2HvdgiPhLDyn5O+fZy9Pj59ldgLpzJ5sGL21wGE5wXIYRUGu209DDi91sasCV1cBDs2eUJs23WrsnBPFxag33oq8I5btIdRl6OSmqOmv0PjDRoerfrY5DuiKFRhuDZt5PfovnRuCsmxip1Zvn9GVs/B9Xus647pZe4nMcZ6f0auz+EBSM+xnuMVgxTPXyjfRSOOHLqkBNb9ag78NGnSCvXSiloLsm4SC1l59utH6TwS9/4JLaqWpdsIRnMbPtM6FMT4yH3LLbI5QfGPpt/8j/3Ku/5G52ajohvV3oRqQV6h5uct8P0m83t8MA4Xb1zpoNH11p9FM/PgnoVupp6qiI2o2WB62UfoGVeX7/j5c/R1w9GvrzZeAnM6IC5SgUWQc3YBaK2rHDNdho/VpcFoLROs+7NS02C0/u3hx80166NUQXGl64pCCCGEEPUluSXqrapfaiBqQXLL+p5B0GVmen/hSlxcXMB9VG7T0EK3HD5+b1ZdWVne34oRG1v190/+NGpk7zNxenq6/0oBOngweF88JYQQQgghhBBCCCGEEEIIIYQQwh75s1MhhBBCCCGEEB4Op9dmsbJeORlWoZr+frG5v7RdkJtta2j946e26gGoF5ahnE7/FcXh6fjTjMFoZPr+tnQ1cBTaRzCauu1ZGHlJDSbXwDlNwWiu8tuuEkblfMhfEdbBaO2T4IyCz/h7tyd5Js51gGG5X3J+9hvAoUCxip74CHXM0LLNQZ2gQzJs2l+1767N4bUrHPR90H9w2mk5n9LU5fvnXVP69vGeGx17wsPvoZq2qlpn9c/oO86CDEPqji9xiaj//oBq1qaGM61qaCpEh0OuIaQKINHlvegjpWR3QGM4cBPpzrcsK1A+UkBKLf8soPFW7bBe1B8bAW0Tvffpbxei/+9SyLeRYFTqpDOhSUvUkLNQR/UHQClF8zHjuGLpizzb+Go/Hfg2upcnyEB//LKxzuEQyqiUIrUZLN8SWLtkH8FoACyeBxNvDqhP/e1C9F0TApuIla3rcD9+PU9f/wSzv655dyYOqh7b9LZ11E4sUM3ov1ej778QNv/p2dFrEPzrVVRiM0/5+pXoy4+z1Zea+xP89SN6zQpUmy4w4oKyfgDifOQoPh9/ObfP7kHhoQDP64cq4v3kLlod99busT5+dGlufvQbR1vvT7cVjGa9P8kQtibE4Ujv3uI5Bm/4PfDGp11Qa6FoAP3aKtbvtR90Ge3OJUSXWJYdyLcOJKrIFHSkgPAQT0Ca26LO5v2aAR0a4ruAaFD2+0gHtrLhd+gdYFhhPXrrFzcXz9MUWr8EywTjmBEToZh9vmLya9Yv2n9/qHnqC828ix2MP7r64+kX7qu6c/cW3Ms+AqwDcR0KGhnOcYpdUFhSNbzMZXVgAZyHpt4igMzhyBoGo13QX/Hj5uAEDBcUmx8LIYQQQoi6pEJCoHnb+p6GOEzpShcLgvGZpjavpTQU4eHeX1BTVBR4qrzdNtXp25/KP3chhBBCCCGEEEIIIYQQQgghhBC1L/hf6yWEEEIIIYQQ4vBUIWzMhQOXss7SDju0WxcXwS9fGrvTH79qf+zXHrVVTb2zARUaZr9fcdhRF99R/cbHDIVxFuFGkdGo6e+gRl9+ZIfqKcNlHl0hrKekmFvSn+SEvO+rVOuYUMSnNzp44p6+LNgxgQU7JvDS7iu5IPsNY7CPvul03LPvRKd7gsNCnIoXhm8lIaTAq975od/wx5Zj6fXLc6y4aCPNwwypMoc8vvc2n+Xqtlk4viuEo473Wc+WjX+gH72mym5dUoK++5zqhaIB6v1ttRKKBhAZphhhnW0HQKMICD3tPK99KaeeGtAYDtxE6gLLsnyHjWC03VsCWiSyLcN6/1Ep4HCUPwN15n70/RcEForWYwCO//sfjutnloWilVIXTOXhfXdxXN5PZftCdDGXZJkDzqyMPrgYvXc7bF1nXSEkFAaMDKjP+tKjZeALsJIHneizXD97B9rl8lnHq376nuCEopVa8Byc15Wvx6wKXp+VWAWjsW19rY1XHbqwAP3Jq+iL+pSHogH8/h16bBvcs25HvzbTdigaSkGbVNSZV+O48wXU+bd6haIBPoPObmr2GIXu8vflp77QPLDY93GjcjCa1pp1e63rdmlq7ifRFIzm++0JgDQJRhP/AHrmtdULRet5AirAIMxAndEzsPpR7nzi3Acsy0rckO9nnazpqORweBYtR4dbl180TxbLilqw/rf6noFtW9M1E1/wH4oWTOf0U4T4+OuHgwVw9nNulv9dvdene+fffL0rjocSp/JW7HjyVPmJjmut+WfjdHg+o5kcsMijdhnyxEvz0FMCCEarHLoWqEsHBC+goaA4aF0JIYQQQghRbxo3buy1feCA9XUHXyq3SUhIqNGcrLgCuCZfFyrfx8zMzID7yMgw/DKpkqSkJK/tZcuWobWu0b9LLrkk4PkKIYQQQgghhBBCCCGEEEIIIYSoGetV7kIIIYQQQggh/nkc5cEUxcq8arI0GI3Nf0Jutrm/Ja8HaWIe6p2NqKatgtqnaHhUo8Zw83/Qj98QeFuHA258Es64DNb8jN6zDZV6NHQ9BpXcohZm28CYQt8qLnxwlZDgzuKzrafzQ9RxrAzvhVs56Fy0gZPueJJGTdoBTdAXToNXZtgb9/XH0K8/BrO+gl1/c+LDk/iLBL6MHky6M5G+Bb/SP385CtCP30Av4A9HPGe0WsBPUVXDd3avb02yK808XngknDweAHXezeg7z7Y3T1+Wf4bOSkPFV1go8ft3sH9ntbpTc39ChdTuZbfRvRTv/mq9oD+7ABx3voAeOwl2/Q0tOxCdejQJN7rIzLPXv0IT4bZYoQ/kVwgAICwcigqrVirIg7yDEN3I1ni7DeuGWiZUWoT/zQIo9pNgUom6wBy0p5KaE33N/Xw3awhfRJ9MujORPgUraVW8g/lxF6BNgYMVNCvZQ7//TkD/10fAwugrav05ESyXDFDMXRpYWESToadC+A3w5n+MdfSkE+C5pbYeBz22FkIFd29l4MPHcd6AZbye2Tvo3Sur6JwGFIym03ahbzkDNv9lrvS/J4wBQJaatUGF+w5KjI8KpEP/DlY63OzN9oScWEltZg7xSIxWWMUdZeR6wtaUMrc1BaOZwtaEONzoXZth+We26qr7XoHIKM/5Rtuu0Gdwrb/f9W1t/fo1ida5ON3mhcBZ+RBlCDcDcBvCiUqPEqZjEEBeoSYqPHiBQuLIok1PLl9t1v1mDK1uaBau1ASQkxwU8VGKAR3g2w2+6/Wf7mbpNAcDOgT2aN40L4un23xatn10/q98tH00ia4MXCu+Ae6ybOdQEOcjLDY7H5pW+tjkLxgtOQZCnVBsI+egpsFokWGKt69ycPZzgT9nKyuow6A8IYQQQgghaktycrLX9vr1gV8HXrfO+0tWmjRpYlkvpNJ1lpIS+yfV1Qkeq01Op5MWLVqwc6fnd2+bN28mLy+PqCj7F5FXrbL35SdNm3p/a8b69es5/vggfNmSEEIIIYQQQgghhBBCCCGEEEKIOuV/ZZ8QQgghhBBCiH+GCuEvRSrMWC3k67dx3zYafUUd/vFwn5MkFO2fZOxV1W6qlEJ16oUafQWOSQ+gThzzzwhFA6/XsBddYfGyy7NgIoxiTspbyg2Zs7gp42lG5nxCbFR5sJoadk7Aw+spJ6P/fRm4Smji2s+52W8zJXMOxx8KRasowZ3F11uHc23Gszi1Z069Cv7gx78H+g5FA9TMRajYQ98qP3BUwPO0nryG377B/eRNuO8Yj/u5e9DvzAq8n6hY1J3/RXUOfuhSZSN7+l/Er7r1Qw2b4AkIBFrE2+8/0ZVBlLZOUct1VEj/adLS3EnaLtvj7T5gnZrQvMKcdV4O+rHrbPdZSg043XeFCdfjQDM890vOzX6bLkUbiNL5dCraaKv/Mw5+hMNPQIu69hG70613J3RUPH+hCihAITkW1OTp4OuxXv8bfPwyOn0P7gcuwT0o3PNvxmT0gfSyavrHT2owe/+e+fFUzuqY7r9igNxWl9oz9+G+9zz0ht+DPl6g9FtP+w5Fq45ux/qtEhPuCQMJln3ZnuCyUjuzzHU7JJvLEmOs95e4fYccaa2NwWhJMYdLVI0QZlpr9N3n2m/QuTfqhDNQZ1+H6jesTkJA2yaWBwPZEeXOI95tSGDFE8765OduRj/j4sqX3fyd5v2ebnqHt3NsMx0vhAAgc1/gbdb/Fvx51JKtGfUz7oJr7B0gBs5w45jkYshMJflFWQAAIABJREFUF2t3+09w+22b5untPb32rYjsy7MJnusX7gLrUGnwHLMa+QhGO2DR1F8wmsOhaJXgc8plahqMBhBlvkwYkILi4PQjhBBCCCFEfUpISKBDhw5l21lZWaxZsyagPpYtW+a13a9fP8t6jRp5pyhnZfm4IFrJX38F+XpwEPTv37/sttvt5ptvvrHdNiMjg99/t3etfcCAAV7bS5YssT2OEEIIIYQQQgghhBBCCCGEEEKIhkOC0YQQQgghhBBCeDjLQ5GKlXnVZOjrD8OPn9bFjMqoSQ/U6XiifimloN+wwBod1d9/nSOdw2m93+0qv+3y8U3yzvIgC9W+O5w0NkgTsxZKCU/uvZW961uxbUMHlv89gGMKfjU3aNYG9U0+qveg8nkqhXr9z6DMR997Hrz7LCxdDK8+AksX2W6r3l6Pmv8r6sPdqNMuDMp8/GkcrWjayLpsZA/r/SkBBKN1KVxHjDvXsizPEVW+0cRHaGX6Htvj7TKs5UmJ8/yvi4vQkwZYV/JBvfiL/zoOB+rWZ6rsn5I5x9YYo3IW+67QujMqNEhJAnXkikEOsp9y0NtmJmlSDCinE/Xwe9C4qbGefuNx9Pj28Nkb5TsXz0Of3wNd4Ani0x+9XL1JN24KJ53pt1oj90H+t6gV+2fC8ts1v0wtpmcQ8jOj3IYwjK/eRU8Zgl7j/7lYG3RxEbq4CL54K7gdO0NQ46/xW83hUMT5CAIJVH4xZFd4qE3HjlCn53lp0jjaXLbbnJ/EwQJPeJoVX+MJcbjQ/70fAglzTGlXa3MxCQ1RtEuyXz/anUe8y7xoeOhjLm5+S7P4D5i7VNPrX25W7yoPSXIb8pKUjWC0Ah+n3kLw10+Bt9m2Dl1UGPy51IJ0m8GA4UHOU0yIVsy92H5Y6dfrodt9bn7Zoskv8v7nqnAAeHuF9cHgg1hPWLdr51bjGE4HxEaY55BtEcrqMhx7KgZDdm1u7rOiiCA8xmFB+jlJMJoQQgghhDhSDBw40Gv7tddes912zZo1rFixomw7IiKCo48+2rJukyZNvLZXr15te5yPPvrIdt26MmyY9+9/X3jhBdtt58+fT1FRka26Q4cOxVnhbx8++OAD9u2rRkC5EEIIIYQQQgghhBBCCCGEEEKIeiXBaEIIIYQQQgghPCqEKhUpc4BLmLb3B8fBomYuQkno1T9P5z4BVVejLq+liRxGHIbLPO4KCS4ul3Ud8ApGA1B3vwhnTQnCxHyLdx8gpWQ3TgxJMwAjLkQ9vxRlcR9Vq06o57+vxRn6cfZ1qGZtUO27o0LMoZK14f/GWi/4H97Nen9KvP2AgC5FG4g2BKPlOCqk/0REQaPG1p3s22l7PFMQUfNDwWh88TZsXWe7PwB1+X2ojoaUuMpOOKPKLjvBaIklaQzN/cp3pXbd7M2hgQlxKm4cZu85kxzr+V8pBb7CAbdvsD4OHUhHD09AvzMLvno38MmOuQL1vzWoB99AXfeorSYJI6Poe3E0vS+NY9nSFG6JWEjbhOol2IS5C+lZuMpcIT8H/fbT1eq7uvSKr3Bfcgx6SCx6SCzs2xG8zvuchJr5AarH8baqm0IcqyvhRjd3LnCTX6TZmWWdGtI8zhPKZtIi3hxqtNHH+rg0HyEvEowm6ov+43vcU4bgPq0J7sv7o1f/XL1+CvLgf0/ab3DMkDo/9ynVt7X9c5oonUeELiDU8Dk2u8C7r5xCmLmk/NiiDeFEPg4xZfLq9qOzOMzoHz4JvJHbDTs3B38ytSA9x/DiqeT49sEf+5IBnnC0+Cj/dUsd+5Cb6Gu9/8Vd7yZ6iovkm1w8/LH1/fktojcacBWbE78cCpwORUy4dXm2Rb6uy/Dx2Fnh2NOlmb1jYUQQDtWhhhz2QOXLcVEIIYQQQhwhLrroIq/tZ555hj177H1ZzB133OG1fe655xIebv2BoW/fvl7bixbZ+1KfTz/9lOXLl9uqW5fOP/98YmNjy7YXLFjAp5/6/0K2nTt38sAD9r9ILSEhgfPPP79sOycnh1tvvTWwyQohhBBCCCGEEEIIIYQQQgghhKh3EowmhBBCCCGEEMKjYjAa5lWTdRmMpp5bijrulDobTzQcamDVkCKfThpbOxM5nDgMK5XdFUKIXD5CfyoFW6iIKBw3PI56dKE5dK2OqDtfQCU0MZd3PQbOv60OZ3RIYnPUpXfV/biHXDJAcUIH732pzeC8Y03BaPb6beQ6QJIrjWh3nmV5rqqQMOAMgaQUy3r696W2xssp0MawoZR4hS7MR7883VZfXkbbD0xUSc1Rkx6ssv/XzccS68o2tnt4391E6ELffQ8aY3seDU3X5v7DFsJCIC6yfFtNvLna4+n/BNhWKdRd83DcOgsVGY1SCjXherhwWkDdRBRkMeO3iWzc1ofHzvJd96zeLpzKOxjjX/sfIFIX+G74e90FOOrNf6FvHAGbfIS1VUf341Bf5+F4agnqmKG2m9k99gTi4Y81932g2bzfuryFnzEjwxSt4q0TR9bvNQe5bMsw9ynBaKI+6P070VPHwh/fQ84BWP8b+qqB6F3VCE7atAqK/BzLSkVGoy69O/AxguSMnvbrRrnzUEC8K8t2my/Xlh8H3IZDQmm44oju5n7yimBftmbVDk1Grr2QKPEPsmGlsUjd8Lj5M9j29bU0oZorLNYs/1vz7XrN32n+60eEwr2jgv9ZUynFpSc4yHjSya2n2A9SrCyvCPKLId06L7rMzpAWuH382YXzUFGjSOvyA/lVjw/GYLQKw3Rt7ntepSJCq/8YlOpo/jgekILq5RALIYQQQgjR4AwZMoTevXuXbR84cICJEyeSn2+RfFzBE088wcKFC8u2lVLcdNNNxvrHH388UVHlv5NZsGABv/zyi88xNmzYwMUXX+zvLtSL2NhYbrjhBq99EyZM4KuvzF9As2XLFoYPH05Wlv1rOwD333+/V+DcK6+8wrRp03D5+hIpC6tXr+bbb78NqI0QQgghhBBCCCGEEEIIIYQQQojgkGA0IYQQQgghhBAezvJQpQhdyLkH3mRc9gLOcPzIqd3h5Mh1nJD3vTEoJ+g69oTUo+tmLNHwdDvWdlX15Ceo6Ea1OJnDhGnhvLvCimpfwWjOEMvdqv8I1LyfYcwVNZhczSjlfyG3uqAOg9E69IBL7kK98hsqNqHuxq3E6VB8drOD2ecrLhmgeGCM4qc7HSTFWj9e/oKCSrUt3ooCot3WaWW5jugKkwiBrsdYd/TLF7bGW7/XXNZ+57foce1h+wZbfZXpNRDVuGlATdSFU1GPLYbWncv29Sz8k5//HsDN6U9w+sGPOS3nE07L+YQrM+fy2dYRXHrgZd+dxsTDCSMDm3sD0sXGQ9i1mfdrVMUlohbvqp0Jjb4cddm9MGg0jLkC9Z8lqBHnV6mmRlxQJezRlh2buOG3a2kUYV0c5i7k2cXdWd7paa7JmMPFWa+wcPs4bs14wn/fGXvQuvZDcfS639AX9w1+x6MuQz31GcppCOH0oUV8zcM4rMxcopm5xPox9RXGprVGv/hvOm23XmznKxht7R7rssRoiIuqnfsphC/6tZmQWzXAU5/TNfBjjq9QtA49UPe9AiMuhIk3o+Z8h+p5QoCzDZ5Bney93iLc+TjxnAvHuw7Y7n9bBqQd9Dx+poexdAYje5rncvu7btre4abXA25aT3Mzd6kh6Uj842itYds668LhE1FnTYHmba3LtzXMYLSlGzTt73TTf7qbwTPdrN5trjs0FW49RfH9NAeDu9Tu++eM8YrTjqrVIVgb1hmXMp8jOQ7dxThDMFq2xeHXTjBa68b2HruocP91/EmJVxzbtub9FBTXvA8hhBBCCCGCYc+ePWzZsqVa/0rNnTuXsLCwsu2vv/6aQYMG8dNPP1UZLy0tjSlTpnDzzd5fDjJ16lR69jQnwMfGxnLOOeeUbbtcLkaOHMmSJUuq1C0qKuKFF16gf//+7N27l4SE+vv9lS/33HMPPXr0KNvOzs5m6NChTJgwgXfeeYc//viDtWvXsmTJEm688Ua6d+/OmjVriIiIYMwY+19E065dO55//nmvfY888ggDBw5k0aJFlJSYf2e6ZcsWZs2axZAhQ+jevTtffvll4HdUCCGEEEIIIYQQQgghhBBCCCFEjVmveBVCCCGEEEII8c/jKF/E2dS1j1d3XerZSBqE44bPcT81D359us6mo6bNQZmCnsQRTzkc6IvvhPkP+a/cd3Ctz+ew4DAsxHZX+OZzH3/kbwpGA1AdjkLdOgtunYUuKUafHFPNSdYeFROHbtYG9mytvTEmP4Q675Za6786IkIVV52kuOok/3VT4hXgPyRl/q7LAYjW1kGYOZWC0VT/EegPX6pace82dEkxyk9AlSmEKDxE0/LxiXAww++cvSQ2R13/WGBtDlHHDke9tgoAveA59OPX07F4M4/su6t6/U2bg4qJq1bbhqBRpKJJLOw7aK7Tp3XVQAYVl4iecD289VRQ56POnIzq2AN/ERCqdWeY/BD62Tt8B0JaWTyPn09N4qitd1KswryKXtp1BY0PbqPxwtsJ+J6VFMOBdIhPCrSlTzptN/zwsSfQ6LhT0Ff0D2r/ADRvg2Pq7Oo3txnKGEytE308S75fjJ73AB2aPYVVfOOe7elAE8um6/ZYd9klIR/95lxIbAaDxqDCDel6QgSR1hrefdZc4aOXYeTF9jssLjIWqdueRXU/FjVsQgAzrD2tEiAyFPL9BOxEVQj1TnBnBjTG5fPdLLzWidtw6lT6UfWKgYrr3rCutHRj+e28Ipj0imZQJ03nphKk+I+3fyfk51oWqfGTPTdadYadm6uU623r/Z4L1bX8Is3EF9zstpE/+MaVinP61d21HqUUH1zr4NQn3Xy5tnbGWBfehR6FfxnLS8PMTOG72flV95mC0RwVfvh2g69jghCMBjDnQs/juP/QZ4OEKFhyk4NeLWHsLDcf/em/j4JiDQ3uGSyEEEIIIf6JJk6cWO22pWH0ffv25ZlnnuHqq6/GfehLilasWEH//v3p2LEj3bt3JyIigu3bt7N8+fIqQVzDhw/nwQcf9Dvegw8+yIIFC8jKygJg3759nHrqqXTs2JGePXsSHh7O3r17+emnn8jN9XzWbNasGTNmzODiiwO4NlRHwsLC+PDDDxkyZAgbN3ounmitefvtt3n77bct2yilmDVrFtu2bWPhwoVe+3256KKL2LNnD3fccUfZz+jHH39k9OjRREVF0adPH5o2bUpkZCQHDx4kLS2N1atXlz3WQgghhBBCCCGEEEIIIYQQQggh6pcEowkhhBBCCCGEAEAph3Vcjj60GjM7wGCamjjqeFTq0XU3nmiQ1BmXoP0Fo/Ub6veP3v8xTEGC7gorqn0FBPkIRqtIhYTCiz+jL+3nu96jCyEvBz3zWjhoCKJo1sYTNJafg559p63xfRpxAbz075r3Y2Xc1Q0uFC1QdhbOR7tzyhb1R7utwxpyKwWj0aqTdWdaQ8ZeaNLS55gb91vv7xiRifNgut85lwmPRN39IvQ5ERWXaL+dybBzYNY0KLRIKrBBTX8HNXBUzedRz/wFo/Vtbb1fjZ2EfvfZwIPJTNp2hQ5H2a6uJlwP/UfAqh/QD08KaKgOnz5CpvoPC2LH8F7sWAbk/8CE7HdpUbIr0Fl7S98T1GA0vfI79N3neALXapGa93ON2tsN7QimEzuZzw30d4sASHKlWZan787EFIy2wRDk2OXPt9CfTfVsdOoFj7yPSkqxP2EhqmPvNp/F+uFJcOJoVGyCvf58BaN1PzaQmdU6h0PRpRms3O67XsWQ15Ti3RBpf4zSUDNtCEYrPcqEhyoSoyHd+rTJi9Yw73vNw+Pk88s/3vYN5rLWncv///ETi7bra2dONbDoD81Om2vGk2Lq/vnvdCg+u8lBj/vdrN4d/P7Xh3XCpQxB5ZSHmZmC0Q5YBaMZjj3OCh/77Z5jRQcpGK13K8Xqfzn4eh2UuDXDuioSD/08F13n4Kt1sGm/pn87xRlPu9lucRmgwE+gpRBCCCGEEIebK6+8koSEBC699FJycnLK9m/cuLEs9MvKZZddxpw5cwgN9f3FMgAtWrTg3XffZezYsRw8WH6x3jRGu3bt+PDDD9m7d2+A96butGrViu+++45rrrmGBQsW+KybmJjI/PnzGTlyJNOmTfMqi42N9TvW1KlT6dmzJ5deeil79pR/80VeXh7ff/+9rfkmJNi8viaEEEIIIYQQQgghhBBCCCGEECKo6u7rmIUQQgghhBBCNGxOwyJOt8vzf3otrB41iYyqu7FEw9Wklf86ccELmDnsOUyv4QrBaKaAMl/tLaiOPVF3/te6sEV71H9/QPUfgRpyFmrRTnM/F92OOvOqoAWOqQunwekXQ2lYnum4Vp2+r388aH3Vly7Nyhflm/Qu+L3sdozdYLRkH+E/+/0HSWUYgkRa7QksjEn951PU4DODE4oGqNh41MxF/isOGg09BpRvh0eibnv2iAhFA0iK8V3et431k0q16oS6dz7ExNV8Eu2PQs1YEHAQpmrdGTXyYjjlvICHjNCFTMx+i7d3nsdNGU/bD0Xz9fwL4rmU1hp93bCghaKp+16Bxk29dzZuhnr6c1QNf4atG9d9AMrwrj4K164AIKnEEIyWZ/61iSn0pX3R5vKNDb+j35nlb4pC1Ny+Hf7rvPOs/f5MQZYx9ZBuaEOXpv6PLVHO8vuUUhLYMTgzD3ILNW5DOFHFc6pYQ9iRlc9XGzoU/yyZhmTgmPiyMENVGpBW2bb1aFNiXz355E/7dRP9nFvWFqUUS6c5GNUz+H2vDeuM28efXZSGmcUZwhmzC6ruc7mr7qvYF0CjSIgK8z+/mCAFowEkxijGH604p5+jLBQNPI/vkFTFlYMc9GipiDBkO0gwmhBCCCGEOBKdddZZbNq0iRtuuIGkJPPvLUNDQznllFP4/vvvmTt3rq1QtFJDhgxh+fLljBkzxnidPDk5mdtuu42VK1fStauvC6QNQ7NmzXjvvffKAtK6detGfHw8ERERtG/fnmHDhvHcc8+xadMmRo4cCUBWlvcF2rg4e9euR4wYwd9//82sWbPo3bu33981hIaGMmDAAO6//37Wr1/PDTfcUL07KYQQQgghhBBCCCGEEEIIIYQQokZC6nsCQgghhBBCCCEaCFMokutQMJqdhffBkrGv7sYSDZZyONAde8LGP8yVghSAdCRQyoHl8njtWVGtiwrRt4+zbuxwoByB5eer0y6EIWd5gn4y9wMKGiVAy45eCwqU0wlzvkNfPci7gzapMOKCgMb0O6ewcNQdz6OvexR2bITWndGjW0Fhfs36ffEXz/04zMVGKLqnwCpzVh2phevLbkfbDUaLTYCwCCiyWNGf5j9MKivPen+Cy0eQX2Vd+kK3Y+3Xt0n1HgTPfIG+dqi5zhmXogacjk7bDZn7oE0qKiyI6QP1zFcwmlLQs4WP8iFnwYljYMvaqq/DkFD0Z2/Am//xOb6a+xOqc+8AZmzRxyV3ope8XqM+bI1z+X1w/q3oIbHWFYJwLqVdLtAa/WSQF2INHuf5eW1bB7kHIToWWncJ+L3BSpem/usE05heEBXuY2HboeN5kss6VC5NN0Jrbbk4zhSM1rKk0oH1m/fh6n/bmq8Q1Za+x28V/eXbqEvvstdfcZH1/lAbqTv1oEsz/3WiW7eGnXGQc4AUuwGXFazfi/X5NeU5vGAvmKjUr9sCnoY4Eh2wDuckvsICelMwWnYG/L0a2ncP/ryq6fft9oPa/IXu1qb4KMXCa53szdbsyoIQB+RVOvS5NAycYUglM1gf3hmXjWC02EiF1VEl2+Ljqp1gNKUULeJhg59LaMEMRrPLGIxmyOAUQgghhBCitm3ZsqVW+2/SpAlPPvkkjz/+OCtWrGDt2rXs37+fwsJCkpKSaNmyJQMHDiQ21nDt2IbU1FTef/990tLS+Oabb9ixYwd5eXk0bdqUdu3aMWjQIEJCyv8kfPDgwQEFa9ckhPull17ipZdeqlbbgQMHMnDgQFt1V69eXXZbKUWTJk1sjxMREcE111zDNddcQ0ZGBj/++CO7d+8mIyOD4uJiYmJiaNKkCZ07dyY1NZWoKPkiNyGEEEIIIYQQQgghhBBCCCGEqG8SjCaEEEIIIYQQwsMUfOF2oUtKYNff5rbtu0OPAbDwheDMpcA6jEf886hL70bfNcFcHmf+5vV/HFNwV2m44YovfbSt3iUiFR4JKe09/3zV634szFyEnvsAZO2H7sehrnoQVUtBGyomDlKPBkD7+dZ3n47qj5r0AKpjjyDNrP4tv9NB5BTzQv8uRevKbhuD0VSFxSBOB0opdHIK7NxctfJ+Hylsh2TlWS+2iXcd8NsWgBEXoK5/zDLEKBhUr4HwwBvoeydWLYxLhKOHeOolNYek5rUyh/rUOMY6wAGgSSzERPh+3FVIKJheQ517Q/uj0NOvtG577SM1DkUDUK06wayv0LeOgvycGvdn1G8oKjQM3fUYWPNLlWL98+eoMy4NqEtdmI9+ZQbMn16zuTVrA8cMhcXzqpb1OQlVumCubdeajWOhfbInxMMU8BFs5/TzcywoKQYg0RCMlu5IwJ2+D2eSd6JbYbEmzfD0aV6823vHjo3GcLV/Iq2153zEXeGfy3Dba9t96F+AbUpva3fAbXTZuAGMU7FMuw1z9XM/vOZq6sNi258ta+z/oA6zYLRUG8FoyXFO1PPfo5++jZTN2QGP8dcujdtw7HJUeHmbAoCsKAW5hZpoXwGO4siXnWG9v2IwWseenus0Vk/C7z9sUMFoWQHkUCdG+69T25o2UjRtZC7fPdPBTXMz+XJVAQcccQC0Ld5K85LdfB09uEr97aGtyHaaOyw9XsRFWpdn51c91zYGo1U6dLRL8h+MFt2QgtGK63YeQgghhBBC1DWHw0G/fv3o169frY2RlJTE+PHja63/hio3N5dff/21bLtz587VDppr3Lgxp59+erCmJoQQQgghhBBCCCGEEEIIIYQQopZIMJoQQgghhBBCCA+HIVTJ7YK9W8tCJCpTL/6C6tgD7Xajv/sAMvbWeCpq7FU17kMcIQaN9l2eaCMR4Z9CGcINtRutNfq1mea21QxGC4Q67hTUcafU+jhVxj3/NvTcfwXebtKDqAun1sKM6ld4qOKSAYqXllkHXXUpWl922xSMluOIKd8ofe4kWQej6S2r8Rf7kZVnvT/ObQ5GUzMWoAbU3aIVdfI4uP159MOTvPdf+wgqPKLO5lEfkmLMZfGGcAe7lFJw+kXQbyj6oj6QU+FnPuB0mHB9zQaoOFbPAaglVYOw3E/fBm89FZxB2qR6/m/Z0TIYjS/fQd85N6DnjH7hPnjzP9WfU7djUbO/QR0KwHXHNYaK7wdhEaiL76h+/zaEhSg6JMP6mp8i2jLhGD9HnTxPulmSIRjNrZxkbdxMYqVgtN0+shpblOyqunP1cnTnPrDhd8jJsgj8MgRgGQOxyutqY/hWxW1TuJeP/f7m4TWujbmXbovDQ4khGC0kgNSvOpTa3BzcWSolXqFadUI98j5t1mp4PLCExs9Wm0eomHvo6/hQmdaefsf2CWgq4gijs9KsC+ISy26q2AR0jxPg9++qtl//m99z7Lp0sMBevagwiAxrSDP3pnOzYeMfNCkq4NX3RlYp3xzals4dV1u2XRfW2div89BH9UaGU8Bsi8fPGIxW6WN/p6aKJat9Hwtj6iGIUYLRhBBCCCGEEME2f/588vLKf6F0/PHH1+NshBBCCCGEEEIIIYQQQgghhBBC1AUJRhNCCCGEEEII4eE0BKO5XLBjo7ldyw4AKIcDfdqF3mEb1VUP4UmiYVJKwXub0ePaW1fof2rdTqghcxiC0bZvQJ93lO/XsSlU7Ugw4HSwCkYbNxnem21u161f7c2pnl18vHUwWrzKZcilI1HR49APTyJaWwejFToiKMFJCK7yYLT4ZOvBFv4X3aQVXDjN83quRO/dTtbag+DoUnU+rizLLtW85ahOvQz3rvaokRdDq07oj+YDCjXyYlSPI3/hjc9gtKjgjKGSW8Brq9D/exKy0lDd+sEZl1k+Z4JNXfsIeuMf8OvXNesooQkqJs7TZ6tO5qieL97yhMHZoDP3wTvP1Gha6unPy0LRANRV/wedeqN/+BgaNUadej6qS+2n86Q2q5tgtDUPOHA4/Dxv9m4DINEQjAawf/N2Evt7v753Wh+SAEgp2V1ln776RN/zEKKhKTYEo4WG1e08bOrW3H+dlPjy2yd0DHyMD1dpUg05zI5qBqMBfPynZmyfhhsOJerAAcN7UFyS93bvQZbBaHz9HnrvdlTTVsGfWzXkFNqrlxhdu/OoCf3us+hnphq/FACgTfE2wt0FFDqqJpytDu9qbFd6vGhkCBU+kF91n8twMlk5GK1LU+t6FUXXw2E8wvBXKBKMJoQQQgghhKiOHTt2cM8993jtu+gie9fZhRBCCCGEEEIIIYQQQgghhBBCHL6O4FWvQgghhBBCCCECYgpG0m5I22NdltgcFVGeiqIumApdj6nZNC67F9WuW436EEcWldwCdeszUCkgR133KKpJy3qaVQNkCkbLzvAdigaQnxP8+QTqkrus94+/pmb9duoFF0z13tdvqCccqEtf6zYx8dBrYM3GbcBO6qK4Yaj36yksBGZfEUP0hEkQFg5AI9dBYx9ZzkNJI2XBaInGuvqF++Dnz6vu37IGfVZHskrCLdvFu6umjKhP0+slFK1s/J4DcNz+HI7b5/wjQtEAkmPNZcEKRgNQjZviuGY6jjtfQI2dhAqpm+/0UEqhHv8IBp5RtTA2AfX05zBotP+OOvYov92uu7Ga/u4D23PTbz/jCaitjvZHoRZuQ4V5v76UUqihZ+O4ex6O62fWSSgaQOem1Q8AWrexO2dmv++33kNnKro08z2OXrqo7HaTkv3Gepu3VD3+bN5vnVAS7c6hkTvn4DNdAAAgAElEQVTb7/yEqC963W9oO8eSEkMwmjM0uBMKkrAQxYRjfL/mkyuEe4aFKO44LbBjUUYuLNtkXVaT7M6/dhnjM8U/xYE06/1x3ufUqk3V8OBS+v4LgjmjaitxadthV74Cd+uT/vNH9JM3+QxFA3DipkPxZsuynSEtzO0OfVSPMwSjZRdU3edy++6rVNfm/g9GMVVz3GpdpCGMTYLRhBBCCCGEEADvvvsud955J/v3m6/Rlvrtt9848cQTycjIKNvXq1cvTj755NqcohBCCCGEEEIIIYQQQgghhBBCiAagblaXCSGEEEIIIYRo+JxO6/1uF2SnW5fFJ3ltqpg4mPUVLF8CW9ZC01awYxN67r8sm6tpc+CU82Dlt7BzM/Q8AdXhqJrcC3GEUmOuhD4nwa9fe8L6+pyEatu1vqfVsDgMr+HDhDpxDHr+Q6C9gyLUSWNr1q9SqKseRJ88Hv76EVp2hD6DPaFLs75ED4uv2mbCdaiQhhkCEixPnOPg3H6aHzZrosNhWFdFu6RDi+oPJX0kuQyBDcA+ZzJJrvTyYLS4JGNdAP3BXNSxw8u3P3oZPf1KALKccZZt4l1ZXtvqmumoqAaapnAES4lTgHWAS/gRcnVZOZ3w0Duw4ivYsBKKiyE5BY4djkpsBgW5fgPN1KkVwkmOH2GuuPJbtNYoP4k6+qOX4ZUZgdwNjxEXoAaNhuNOQYUb0jfqQWqz6rftUPw3/9t5AW8fHM8FLeZXKe/ZEl6+zEHPlv6DQfQrj5TdjtL5tCjeyc7QqkEm67YVcHqlfRv2WffZqWgTNchHEqLW6Sv6Q1Qs+qj+qF4DoecJ0LUfKrxSUk6xIRgt1JBu0wDcPFzx1i/mkLG2id6vzv8bq/jfz5q/K53ixLmyKFah5DmibY9dsedOTczHCCtrdmPrvUAcwTKsnzCqUjAarc3BaPz5I3rfjnoPC88ptF83sQGeyuviIvTkk2zXTy7ZDxa5zvtCko1tHIde6o0irM+rD+RXbWM3GK1/e885eWGJcXii6+EwHhFqfV8LfMxTCCGEEEII8c9x8OBBpk+fzsyZMxkxYgRDhw6lV69eNGnShJCQEDIyMli1ahWLFy9m0aJF6Aq/OwwLC2P+/KrXiYUQQgghhBBCCCGEEEIIIYQQQhx5jpCla0IIIYT4f/buOzyqKv/j+OfMTHoggSSU0HuVJoiAIIK42FgLKthWdC3outZ117ViXV3Xsquua8Gy9rVXXAvqCvpDsaBrwUWaSi+hhbQ5vz8Gkgxz78ydSSb1/XoeHnLP+Z5zv0kmk5lJ7icAANSYW6hSRYVs0UbnuT0v2pVkUlKlMYeF/kmy3y6UnILROvaQDj0ldDF4tbAcwI3p3Fvq3Lu+22i4fL7YNQ2Y6TVYuvxB2Vt+IxVvkzKyZGbeKDPU+0XqUffvPUTqPSR8LC1D+scHsjf8Wlr+bSgQbPJJ0gm/q5VzNnQjuxuN7O4QyGFCt6WCKMFo6wL5Uqkqg9FMy9Yu0Vm7vPe8Xp/1Nz2de5xKUlvo1y88ovGSgjIq8jkHo+UEi8IHeuwV7QxIksLI7MBKO1wydBojY4w0fELo355G/kJm5g2y910llZeFz/n90vEXS5OmVe2VliGddb3sPZdF7rWtSNqwWspv79qL3bC6Mjgwrvfh0vtkDjk57nV1oU8794C9aJ5beawkya+gpm35lzKDxZpReK+K/LkK2DJd0f0TXf6HMZ7Chezm9dLXC8L7Kv3OMRht8cZU2c3rZaqFAC/+qVRSZGhmz9L/xfleAfVgx1ZpwZuyC94MHaekyvYdLg0aLTNojLTX6Mj7t90acDDaPt2M7phmdN6TkfcvxkhDOu05ZvTmBT6d8mBQH+z60j1062u6b9VMndX+Tr3U4nDP506vdncwY4zRH5/3fh+3aYe0dqvUtqXnJWhCbDAo/bTEeTJvj8cHXfqEvgbdggt/XirVczDa1p3eawtzG04YoK2okF68V/a28+Nal1/h/IcD1vrdg9F2h5m1ynSeLyqWyiusAv6qj49rMNoeH8KsNKMJfaXXv3I9vbLT3eeSJd0lZ7zE5VsNAAAAgOaprKxML7/8sl5++WVP9RkZGXrkkUc0ePDgJHcGAAAAAAAAAAAAAGgICEYDAAAAAIS4BaMFK6Qtzhd+qmXrmNuavnvLDhojLZoXPn7WDZ5CLAB45PY13IiYg6ZLE6ZKK7+XOvYMBS0m+5z9R0gPLZTWrpTSMmTy2iX9nA3erpC9dFuiFhVbtNUfmdqx3r8rLGhXMJpy8iNqqvt7qzN07k9nSz+Fjp/s8oZm/3y6Jm/7t6xxDvXLrdgjGK1rP+/vA2pNtGC07SV110d9MsZIx18kHXGGtHmdlFcobd0orflR6tZfJjM7ctGhp0hOwWiStOK76MFoR3SJv8fTr2mwoWiS1DfBu9b9d7wfdjxl2ytas7iTvkvtrW5ly5RZeJiM2c/bZt9+EtlXyWK9kxUZhvdDoEsoRG30IZVjy5YXSYq8r+tZ6hJug7rh94ceA/n8oe9fvmrH1ef80eb8oVDQsPE9j/d4O2KdL3qdzy9Tfc6Y2HtHvO0Lfx+r1dh/XCF99aH3j1tZqfTlfOnL+bKP3RLqJ8slpSvQcIPRJOncCT6VlAd1yTPhwWRTBkmd8yKfb3YvMHrvdz4t3yD5X39QHe6dKUkaWPLfuILRstKq3j6m/zb98fmsuPp+9zur40bwfLhZWrtSKil2nuvSJ+zQpGfKHjVTeuoO5/oNq2u5ufhti+PxYO+2yesjHtbaUDj2vx/3vqh9V5l/fq78+7dKX0ROrw20cV3q2/Wlnt/CrZ9QYGJBtXnXYDSHp06HDzZ6/Sv3cMbsNNeppElz+S2UnQSjAQAAAJCUm5srv9+viooKz2vGjBmj22+/XcOHD09iZwAAAAAAAAAAAACAhoRgNAAAAABAiGswWlDastF5rmUrT1ubm56XvfP30hfvS4FUmRMulsb9MsFGATjyOYdLNTYmkCJ161/H5wxIhd3q9JwNWrWgsoKK9Y7BaOv8BaHSXcFoL2/po8u7LdCaQBtN2P6url13tbqXLZMklZhUXZ//h4g9Ti28L2obnctWVh106iUVdIj3PUEtaJHuHtqyo7QOG2kATGYLKXNXYkVaoZRf6F6bmy+bkycVOYTLLvtGGjbecZ39vzfib+zQU6STLol/XR3KyzbKy5I2bPe+Zu/iT5UT3BIxHlCFBpR+EzpY/7P3DZd/FzHUsfxHx9IN/nxpxQdhwWg/r90ppUTWdi1b7r0HKXQb2jPEq3rwVayArLAAL5cwLsc99gjVclljItZEOY/jHj6XXj2u8e1a5yE0zDSRxz614ubnZQ+pQbirtdK2Iue5FIcbfgNz4YFGmanSX9+2MpIOGmB009Hu37+MMeqaL9kTZ8gu/0B64zH1Lvk+rnNmVcuL6/7xP3V8UY4ez5nuef30+6xOebBCfl8o6Ciw5/9+yW/C3w74w2sc11XOmbB1Ps/rInvYfd7IHkz0PV3Xxeil2vvu8zXB8DiH70eVOveOGDIzb5R1C0ZbsbiWmkrc1p3ea/u0rd/Pp138uewdF0YE90fVopU0bH+Z826VSctQfsc06YvIELI1UYLRdoeZ5Ttk6e62flt4MFrQJefM94/LZEuGyxxwdOXYYYOMzn7MPRitnUvuZTKlu3zr2Fnm3icAAACA5uOII47QmjVrNGfOHM2bN09ffvmlli9fro0bN2rnzp3KyMhQ69at1aVLF40dO1aHHHKIxowZU99tAwAAAAAAAAAAAADqGMFoAAAAAIAQt2CBYIVU5BaMludpa5OdI/OHexJsDIAnbuGGXvQaUnt9oPEzVYEF+RXr9YO6R5SsC+SH3vD59ebXVke8NVRKDw09lXOsvk7rpwVLxyhF5foqbYBWB+ILa2lVsVFtKtbuOodP5tdXy5gmGIzRSKQFpJLyyPEzxvE5iapzH+nL+RHD9uO3ZI6aGTleXiZ78ZT4znHUWfJd4BKW0sD0bSfNWxI53raldMxwozvfqQrKSLGlumL99bE3jSMYza6MDI/JL3cIrpO0PpAnu+I7lZRZfb5Syv3qTa0K7O9Y2758lXTkmdLz/4jZgzn9GpmTf++5Z8CzjBaxaxIVSI1dU898PqOzxxudPT6+dcYYmctnKyip/3v/jWttdlrV90D7zjM6oSgzrmA0yfl7a+2pi/Ch5J/DmERC4eIJd5MCPlNZ66tRGF2085qqt/8r+bImKC1YoiEli9QyuDX0zrZuJ5MVmWBl/H7ZoftLn70XMWdnXyMz47Ja/7gX7bD6abPUvUBKT4n+eG9bifd9+7WvYWM1YDeslj1tpPcF086X75ybIobdws12+LJct/LZoCS/8txLtH5b+HFF0LnOv36l7JW3Sre+KjPiQElSx1ZGQztJn62MrD9uuKmXgEH3YLS67QMAAABAw5WXl6cTTjhBJ5xwQn23AgAAAAAAAAAAAABooAhGAwAAAACEuIUqBYPSFufQCJPTOokNAYiLcQk39GKYc9gLmqlqAWQF5esdS9b5C0Jv+P26463Iq/a/TN9LT+Qcp5OLHtN3qb3jbqFPyWIZSTrkVzKTT5QZOi7uPVB7Lphk9KfXI8NPDhtEMFpUA/d1DEbTJ+/IlpfLBPZ4ef6dZ2JuaS57QPabT6QtG2XG/VLa/8haajb5jhpmNG9J5O3o1mONpo0wGt1devmNpWq56E2dWPSYRhUviL3p+p9lrY0ZnGhLiqUX748Yz69wCUbz5+nB/3XSuecHdwV4TJRcTtFh5kUyh4+VBu0ne/2pUnmUxI/0jKh9AokygUDyIqoCLuk2TYj54/0a2vsu6S3va7LSqh18OV99UjrXel+QrJXKrVTuEhJVS2dJ5uYO55godZ4oSQrYMv124526ae1l0V9fyXdPFLNLvpLpMbBWugwGrW56w+qKF6yCVmqfI912nNGxw92fa27Y5joVZlDHeg5GO7pHXPVOoWiSooabue41/xVp4i+VkWqUlSZtdwiTiwhGc7lZ+m2FJMnOvq4yGE2STt3P6NwnIhedul/9PF53C0YrJhgNAAAAAAAAAAAAAAAAAAAAHtXgilkAAAAAQJPidwtGq5A2rnWey8lPXj8A4uP2NRxLarrMry6t3V7QuPmqXjJ0Cw3a5M8NveEP6O1vnbc5tfA+HdHxX7ox/5K4WxhY8rXMqVfKd+m9hKI1ABceaDSia/jYLccYdWpNMFo0ZsyhzhM7d0hrlkcM2/dfiL7h8RfJTD5Rvgtul++qR2QOOFrG13he4v/1WKMJfcPHLpkcCkUzxmjaPj49ut/numv1ed5C0SSptETauil23bN3Ow63drmP2+HL0un6/a5QtOgKR4+UMUbmwGPlm7tN5t0dUka2c/FQgkiRRB17us/1GiLtO1nKzol/39ZtE++pkTA+n/zHnqvZLf7ueU32rmA0uysMsXPZSrWsKEpGe2jCyk2Kbs27QA/lnCylR0nc6uAe6mUfubHW+nl5kXTZ86FQNElaVSRNu9dq6Xr38Li3vokdLJefLd1+nC9mkGlts+Vlsm89reCMEVJFubdFuQUy9zkE2+5S0CL+98H3zxsq33YLVlu/LfzjWOESBuhXKBhNX30ou3FN5fiZ44x+MSC8duZ4o0n9G1YwmpfHVgAAAAAAAAAAAAAAAAAAAIAkBeq7AQAAAABAA+FzCVUqKZa2b3Gey2+fvH4AxMckFo5jXl0lk55Zy82gUasWWJBb4Rw4tMnfSpL0xY62KomSMfBKC5dgqBhOLHpMyvhlQmtR+/JbGL17sU/vfCstXW81vo/RwA6EosXUe6j73IrFYSEntmSn9F6UYLQDj5Nv5g3u841Ai3Sj13/r01vfSN+vtRrT02hYZ4WHpKSkxr/xsm+kQWOiltgnb3ccdwt/9Mpvy9WmdXjPxu+XPWia9OL94cVd+kg9B9XofEBU+x8pPfbnyPGMbJm/vyeTli5bUSEt/a/0xQeyi+ZJX8yTNqyKuq0Ze3iSGm54fjWxpc57dou2+lvGrM3aFYymNSskST5Z7b/jP3q5xWFJ7BBN1YstDteMjBWu82bCVNmHrneefOcZ2X4jZKadX+M+/vmhcxpXjz8GVfGPyGCzYNDqlUXOwWi/HCxNGWKUGpAm9jVql1PHoWib18uec0DoMZdH5re3SAceJ9OqjWtNYQL5kr4liyrfzs+WVmyMrFm/LfzYNRjNVpuY96p0+KmSpIDf6LXf+vTvr6WVG60GFBqN6lF/j9fTXX4LhWA0AAAAAAAAAAAAAAAAAAAAeEUwGgAAAAAgxC0YzS0UTZLyOySnFwDxc/sajubwUwlFQ6RqIXu5wSLHks2+UCLAtEWTav30bcrXaL/iD6X042t9byQuI9Xo0EGSRCCaVyYjS7ZNJ2ntysjJld/L7jtZev2fsnMelT57L/peR56VpC7rVkrA6OC9pIPdbkcpac7jUdj5r8lECUaz81+TNq11nKtpMFq77Ar5fJHvi5l5o+zan6QPXw8NdOolc+OzEYEyQG0yp10p+/MP0txnw8dveUkmLT30tt8fCujrOUjm6LNlrZVWLZW+mCf7xTxp0QfSyu9DC9MyZGZcLjPyF3X9rtSfUQfrzAfu1y15F8Yszd59d7Wt6vnyIz+fqlZ9nO9vOpWt1MqUTrXRJZqgn1I6SBlZrvOmW3/ZXkOk7z93nLd3/V4aNVmmS9+w8Y3brW75t9VD86xWb5H26Sp1yzc6clgooOrVRdL6baFgs06tjZ77zL1H/5lBnTLaaHwf6aR9jYwxWrhCWuX8dEEn7OvT1L3r5/ueLS2RPTy+16vMba/LDJ8Qs65Dq/j78Skoa62MMcrPdq7xGozmU9WEnfeKzK5gNCkUNvuLAVJDeLyenuI8TjAaAAAAAAAAAAAAAAAAAAAAvCIYDQAAAAAQ4vPFrtlTfvva7wNAYuL9Gs7IlvnVpcnpBY1btdtSq4pNjiVF/hztMBlauqNFrZ46PVisL3/YO3QQcLmaHmhMOvdyDEazKxZLd1woPXt37D16DZb2GpWE5hqg1PiD0fTV/7lO2X8/IXvtKa7zrSo2yRjJ2vhPK0mFrZ1DSU1WS5mbX5DdsFratlnq3IdQNCSdSUmVueZx2XU/ST/9ILVuK7XrIhPl68oYIxV2lwq7yxx8kiTJblorbV4v5bWTadm6rtpvEEyrAk1ps1y3VMSuzdr9YS0prhxrEdymx388Scd3/GdY7eCdi7Rg6WitDbTR9yk9VDH5JAUnn6KKoFQeDAUglVdIFdZWe3vX/9VqwuqDUeb2WB8M28s61tbWectdwpwQXbFJl9Ldg9EkyVz9iOwJg1zn7YmDpfd3Vn6/KdphNXhWUD9trqpZsExasMzqqU8cd4jZ50PzrR6aL/3fUumu441e+sJ5TWpAuwK66p61Vva8+AIdzT3vywwY6am2VaaUFpBKyj3ubYOhmLIdW6WslsrPNnL6WG/wHIxW7Q7q47dli7fLRAnVqy+uwWgeP24AAAAAAAAAAAAAAAAAAAAAwWgAAAAAgJB4Q5XSM6XsnOT0AiB+PudwFkeDx8qcMUumbefk9YPGq1p4T25FkWPJJn8rvZs5TmU2jttdFOnBYo0sXqA71lykvIqNtbIn0CB06iV98k7k+Iv3ed7C3D6n+YRqpabHv2blYsdhW14ue3f0AFD/6MnqkyZ9uzr+00pSu9bRf8Ri8tpJee0S2xxIkCnoIBV0SHx9qzZSqza12FHjMmpCX3V6baVWpnSKWpeVuuuN0uKw8WO2PqvinzN0U97FWhfI10Hb3tJf1vxefgXVvny12pevlp6fJz1/VmLh5I1AUEYV8qvC+FWuwB7/h8Yr5Fe5CVT9b3wRtVU1vsraisr/q/aqXLd7Tn6VG+fzO+0VeY7IfsP3ruo3GNGvw/smf2V9iUlTqS8yrLDYZEgZ2dE/sJ16S936S0u/dq95/C/SCRdLkm543YaFotWme9+3uuQXVi997hyMNqGP1CK99h+72OLtsg/Mkt57QZJkDj1FOvkPMtW+luzsa6WvPvS2YadeMr+52XMomhQKlCzMlZau91bv3x1kVrRBymqpPJdP84Zt4R/LCpecOr+tFoxWulP6+C1p3C+9NVOHXIPRyuq2DwAAAAAAAAAAAAAAAAAAADReBKMBAAAAAELiCVWSpNZtm09IB9AYeAxWMKddJXPKH5PcDBo1U3Vbygk6B6Nt9uXo8/TBCZ/ijtUX6pxN90gTj5XefjrhfYCGznTuLZdcC2/rr3tKpmXrWuunwUuJDIuJaeMa2a2bZFq0Ch//cr60YVXUpebkS3Xw10bfrk7ss1SYy2NhoKnxTfm1bn5whqZ3fDRqXdbuu6uS8GA0I+lXRY/qV0XR10uSgsHEmmzgfJJ8qpBLLlKz9mTLY3Rih4cjxot96VJGZtS1xhhp5g2ylxzhWmPvuUw6bIY+29xaf36jJo9AoqsISne/a/XlT87zhw9OzvdHe+0p0n9eqjp+YJZUViJz+izZYFD6eoH00PWe9jJXPCRz0PSE+ugQTzCarRaMVthN+S7BaOu3hR9XuNw9VAat7WLnvSrTIIPRjOTwKJhgNAAAAAAAAAAAAAAAAAAAAHjVNP8UOQAAAAAgfv44g9GyWianDwCJ8RpuOHRccvtA41ctZC+3YrNjyU5fhhal75XQ9nsXf6qzNt0rc+XDMmdck9AeQKPRqXfN1o84sHb6aCwSCUaTpBWLI4bsBy9HX3PA0TID9tE+XRM7pSQV5iS+FkDDZNLSdezlJ+nN5ZOj1gX8u4KfSnbWQVdoKjKCzreXYpMhpWfFXG9GHSxzzROu8xXy6eJbF2v49ckP3YsWvFbbwWg2GFTw8mlhoWiVXnpAdslXsoe0lZ25v6f9zG9vSTgUTZJ6tvH+/vm063OxeoUk1TwYzYYHo2n+a7IVFc7F9Sjd5c/zEYwGAAAAAAAAAAAAAAAAAAAArwhGAwAAAACE+F2uWnSTlpmcPgAkxufxZZ4ufZPbB5qAqgv9c4NFrlULMkY4jh+zt3tQQPfSH/TUT8cr8M9PZSZNkwo6SOku30+aWyAUmqYufRJfO/oQmUyX9IymKjU1sXXLv5Mk2fIy2bnPyr75pPT0X93r+wyTueAOSVKH3MTDW3oUJLwUQANmRh+iA3a8r72LP3Wc7+lfU3VQUlxHXaEpSLfOt5diX4ZMhrfv+eaAo6R9I4P7PksbrPFd3tRtq/apUY81Nayz1LFV7QWj2fJy2cuPk9573rlg8zrZU/aWtm/xtuGMy2WOObdGPfVu6712d5CZveE0SVJ+tvPHpnowWjDoHjrn1x4haJvXSf/9yHtDdSQ9xXm8pFyy1v39AwAAAAAAAAAAAAAAAAAAAHaL86p3AAAAAECTFYgziCI9Izl9AEiMl2C0nDyZ3Pzk94LGrdptqVXFZteyFSmdHcd/MUB68BSfZt/1np7+1Khr6XJ1LVuugSX/1YHb31GrZz6TKeggSTIpqbKjD5HeeSZ8kz7DZNp2qvn7AtS3tp2ldl2k1cvjXmqO/W0SGmrgUtISWmZXLJY2rpGdub/089LoxWOnyFz5sMyuUMbC3IROKUk6bFDtBb8AaFjMSz/q6Bm3amHGsIi5X256RrbsLJmUVILREJeMoPPtpdykqFw+uWRJRTA3/Et2QovK42vzL9WsgitqocOaO3xwLYaiFW2Q/c1Eadk3tbKf+dtbMkPG1nifvu2MJG/hXj4FQ2/s3CEbDLoGoxUVSzvLrNJTjF7/yn2/3UFrYT57Xxo0xlM/dcUtGE0KhaNFmwcAAAAAAAAAAAAAAAAAAAAkycMVswAAAACAZiEl3mC0zOT0ASAxxsPLPN0GJL8PNH7Vbkt5FRviXt63vVFmmtE5543Vu0Of0UOrz9DV66/TVL2rVrc+VRmKVnm6i++SBlcLKOjaT+a6JxNuH2hIjDHS6IPjX3jQ8TJ7H1D7DTV0qemJrVv+rexfL44diibJXPjXylA0SWqfk9gp92mxWi0zCEYDmirTqkAXHlChUzY/EjZ+9JbndM3Pl0mfvRcacAtG67GXzNPfSQNHJblTNCbptsR1bsfa9Z73MSmpMjf8S5J0R6tzaiUU7aXf+DR5gGRq+K3tl0OqNrClJbLP3KngVScoeP8s2TUrQuOb1yt45yUKjk0L/bvnMtnvv1Dw7ksVvOoE2RfulS0vk73vytoLRbvn/VoJRZOkoc750I78qhZktmVj1McdS9ZJO0qsTn046G2/Xey/7vTeUB3JiPIS486yuusDAAAAAAAAAAAAAAAAAAAAjVegvhsAAAAAADQQgTiD0dIIRgMaFL8/ZokZeVAdNIJGr1oaQobdqdblG7QxkOd5eZ+2u7bx+2Uu+pvsGddIq5ZL3QfKBCJfjjQtcmXufCsUlFCyU+rUKxQmBTQRZvShss/dE9+a8/6SpG4auNS0xNZ9+JpUERkUEsHvl1q3DRvKSDVqnWm1cUd89ztn9FkhqUPMOgCNV8rZ1+n+l/J109o/6su0AepX8p3aVqwNTf5vkbTPJKnUJegqLUOmfVfp7rnSysWhupKdUvG2OusfDU/m+nTpOee5km6D49rLjJ2iO3pfr4v8F3iq/2Dp/rqr9Uw9kTMtYi7bFOvQvbJ02CC/Nm63WvRj6DH94wusfveM9dzTwQOlIZ1C309tebnsH46SPn6rct6+/oh0w79kLzlS2ri6auFjt8g+dktV3TvPSB++Ln36rudzu0rPlHl9rUwgpeZ77dIlz2hiX+ntb2PX+my1kLMNq9W9S578PqnCIfvs21XS92ukdVvd9/Nbh4VF62VfekBmymmxG6ojXfOkJ88wSg8Ypaco7F92gg/3AAAAAAAAAAAAAAAAAAAA0LwQjAYAAAAACEmJMxgtnWA0oEExvtg1e41Kfh9o/Hzht6UO5T97DkbLz5byssPDhUyLVlKLVjHXmqpv4mMAACAASURBVLadvfcINCZD94+vvms/T18zTVJK9KQMc9pVsg/MipzwEoomSS3zZHyR3y+HdTF66xtvW+w2rhcBjkBTZ1JSZfuNUN4XH2j8jv+Ezdm//1EadbBsSbHz4rSM0B7GSJ37JLtVNBKZa630nEOwlaTiAePi2mtLsdWVqedIHr4FFn/TUikqlzbKMRjtwKJ/S990kvqPUOsso/G7brLnTQz97yUc7djhRv84sdr3xi/+ExaKJkla+6Ps2QdIpTtjNz3/tdg1HphTr6jVULTdbp7q097XOX8uq/NX/wRtWKWU/Pbq7ivR98G2EbXH/CPO/aqx914pHTbD8XFOfcjNNDp2OI+VAAAAAAAAAAAAAAAAAAAAkLiG8ZuxAAAAAID6F++Forsu9AbQQPj9sWuycpLfBxq/PUL2CstXeV7at11tNwM0fiY1TTrp997rf/XHUJBOcxTt8Wh2rjTt/Jo9Bs1xDnm84rD4flRyyuZH1KNH68T7ANB4+N3/xpQ9+wDpx/85T6alJ6khNGYZUb7N7cwpjGuv17+y2lYRO+D++ZXHhELRJO2782OdtPnRsPnM4HZdsuEv0oI3I9YG/EYXHeTTwsujf5+cOd7oyTN8ysmsevxin7zdudhLKFpt6dBdOurspGw9tLNRew9Pr32qFiq3YbXstaeo96aFCZ/Xb12S8IrWSz//kPC+AAAAAAAAAAAAAAAAAAAAQENDMBoAAAAAICQl9gW1YdIzk9MHgMQYDy/zZLVIfh9o/Hzht6UO5T97Xtq7XTMNcwJi8J1xjac6c9trMgcem+RuGi5jjLTvZOe555fKpGdK/fdJ/AQ5+Y7DY3sZjUv52nFu9I75mrV2liZte1OHb31Fd646T/euminlxxdgA6CRihY+vG2z9PbTznMEicNBRpSXXYrLvO9TEbSafp+NWde/5Gsdvu3VsLF7V52t+34+S0dseVG/3jRbnywdpX12fiL7wCzXfYZ2NjpqqPt57jre4bnoR3Ni9pdUx5wrc/9HMkkMKezXPnZN9SAz+84z0v/9W13KViR8Tr9cgtEkaevmhPcFAAAAAAAAAAAAAAAAAAAAGhr3P3MOAAAAAGhe4gxGMwSjAQ2LL0pow26ZBKPBi/Bws8Iy78FofdvVdi9A02Hu/1D216Pc5295WWb4xDrsqGEy594su/hzaePq0EBKqswfH6h67Nm5l/TZe4ltnpvnOvWvAa9o4kdBfZU+sHKsXflq3b36txpY8rW0oVpxVkuZzOzEegDQuHh5jO0klWA0RMpIcZ8rLvW2x6fLrU6eHfRUO2fF4RFjKSrXjKJHNKPokYg5u/J7mU69HPeafYpPyzcGtXB51Vh+tvTqbxvW32EzVzwkc9D0OjlX77ZG73wbPaAuLMhsV1hc+/JVCZ+zetBahO1FCe8LAAAAAAAAAAAAAAAAAAAANDQEowEAAAAAQgLxBaMpjQu9gQbF5+GCdILR4MUet6WCivWel/Zpa2IXAc2U6TNMUaMz8gvrqpUGzXTuIz28MBQesmOrtPcBMl36Vs136h394xhNjnswWn73TvrwyXF6scXh+jqtn7qWLtfh2151vg/Mb59oBwAaG3+CP0rl+TIcpEcLRiuLvf4PzwV18xxv3wUf+PkMFcYZwGWPHyi9v1PGRD6mb5lhNO/3Pr3wudVXP0mdWkuHDzJql9PAHv+PnVJnp+rdNnaNz0aG2HUo9x48vaewoLU9bduS8L4AAAAAAAAAAAAAAAAAAABAQ0MwGgAAAAAgJCXOYLT0zOT0ASAxJkYwWmqaTLxf52ie9ghGy48jGG0AuU5AdDl5UtEG5znuoyuZ3Hxp8onOk90HJL5vt/7uk90GKMPu1LQt/4q9UbfEewDQyCQcjJZeu32gSTDGKD1F2ukQglZcGn3th0us51A0Y4OatP3tBDqU7Lh02YnHygzbXzp0hozfXzmXGjA6drjRscMT2jrpzNk3ymRk1dn5QqHQ0T8nTkFm7eMMrKvOKkoQ3fai8Nr1P8v+/TLp34+HBg4/VWbyiTKDxiR+/s/el333WSkYlBl/lMzeByS8FwAAAAAAAAAAAAAAAAAAABBNjCtmAQAAAADNRiDOMI40gtGABqXaBeuOMlrUTR9oAsIvts8v9xaM1rut1C0/Gf0ATYgvyn01wWje7DVaSstIbO34o9zneg6Scgs8bWMOPzWx8wNofKLdb0eTSjAanGWkOI8XO4SlVffwh95C0STpsG2vqbAG4Vt6+2nZP58je9UJie9RHyafVKen6902do3PBiPGOpT9nPA5U2yUG8q2qmA0+/NS2SO7VYWiSdLLs2XPPVD2nWcSOrd980nZ838hPXeP9MK9shccLPvqwwntBQAAAAAAAAAAAAAAAAAAAMRCMBoAAAAAICTgcnWum3SC0YAGxcR4mSczu276QOPnC78t5Vds8LTsoAFGxpjYhUBzRjBajZn0TGn0IfGv+9NzMvmF7vN+v7T/EbE3atNRZp9JcZ8fQCPlDyS2jmA0uMh0+Xa/vcQ9+CwYtLr3/djBaC3TpVO6LdOj5jr3ouxcmQc/ibmXJOm95xUcmyb74HWy5eUxy+1n7yn4mwMVnN7f2/61KZAi5eTV6Sm75oc+5tH4VREx1r1sqVKDJXGfr035GnUrW+Y6bzdXBVrbv//RuSgYlL3qBNnS+M5vrZW97yopGKw+KHv/1bLWe2gfAAAAAAAAAAAAAAAAAAAA4BXBaAAAAAAASbvCIPxRwjr2lMaF3kCDEuvrN7NF3fSBxs8kFow20D1vCMBu0QJ2AgSjeWVmXBH/olEHx9735D9I2bnuBbkFMrMXxH9uAI1XPM+RqzGEXcJFdprz+PZS9zWH3xl0n5QU8ElvXuDTxtt9mn1pD7V4/GOZd7bKnH1jRK054xqZnntJIw703LOdfa3sPS5BW7trfviv7AWHSF/8R/pxiee941LQwX0ur72Mr25/9cHvMzooRgZcuo0MIEu3JZq4Y27Udf3bR45dtv4m+RQlhOzRmyVJdsdW6T8vRd3fHtNLdueOqDVhVn4vrVoWOb7+Z2nxZ973AQAAAAAAAAAAAAAAAAAAADwiGA0AAAAAUCWeQI60jOT1ASB+JsbLPFkt66YPNH7GhB3mV6z3tKxfexO7CGju/FHuq1NdklIQwXTrJ/Pwp94XTJrmKSzFtOko8+AC6YgzpIGjpH0mST0HSWOnSEefLfPgxzI5eTXoHECjEy3QMppASu32gSYjy+Xb/badzuNl5VbvLXbf74gh0vuX+DSxn5HPV/V43KSkStMukLn5BWn/I6T9j5S55SWZI88Mzd/ycnyNP3u37JaNrtP2vqukivL49oxHZgupZWv3+XyHJLE6MHV49OdAA3d+5Tg+ZesrUde9fZFPz870aZpvro7c8oL+9eN0nbPpnpj92PU/Sx/Oif252LhGdlIrBe/6g2wwevCeJCnK516b1sZeDwAAAKBWrFixQpdffrnGjh2rtm3bKjU1VcaYyn8PPfRQfbcIAAAAAAAAAAAAAECtSfC3+QEAAAAATVJKqlRS7K02NT25vQCIT6zQhszsuukDjd8e4UFptlStyzdoYyB6GFD/+skiABoXn999Lp6AWsh0HyCdfo3sfVdGL2zXReaUy7zv266LzEV/q2F3AJqMRIPRUrhPh7Nsl2C07aXO4ys3STtc5kZ2k5472/2xhTFGGnWwzKiDI+d8PumON2QvnSrt2Bqrbam8TPbP54RC1vqPkCnsXjllt26WPogzaK26vQ+QFs6NXpPfPnqIbOu2iZ+/Bo4aajSoo9WiH53nD9v2muv4TJc9jx1u1Lal0ZFDpV/6rpd+mu+9oS8/lH3/Re/1T94mW7xVGrK/VNhNpv8I5zpr3fcwBGQDAACg4evatauWL19eeTx37lyNHz++/hpKwH333adzzz1XJSUl9d0KAAAAAAAAAAAAAAB1whe7BAAAAADQbMQTyEEwGtCwBGIFo7Womz7Q+Dlc2D66+KOoSwYWSnnZXBAPxBQ1GC2l7vpoKk66ROrQPXK8dTuZs66XuewBmfs/lOncu+57A9A0+BL8UWpKlAAnNGtZbsFoLte1rypy3+vs8TV7/G2GjZd5eKHMebdKLVrFXvDuc7KzTpY9YZDsc3+XJNlNa2UPqVkomRn3S6lNx+hF+YXRv66ycmrUQ6ICfqO7jvfJ5/Cp6NiiTIedNNZxXfvy1Tqu6OmIcaOgHj2t2mYV5XH1Y688Xnr32bjW6MX7ZWedJHvmfgpePk02GIxvPQAAAICke+2113TmmWd6DkV79913ZYyp/Hf11Vcnt0EAAAAAAAAAAAAAAJKAYDQAAAAAQJUUgtGARivW129my7rpA42fQzDakVtfjLrkiKGEogGeRAlGM4mG7zRjxhiZ2+dI/fepGuw3XObud2ROuFhm8okyOXn11yCAxs8fI3zYTTzPrdGsZLncNLYlEIx24r41fwxu2nWRmXqOzF/f9L6ovEz2tvMVHJsmO6VTjXtQQQeZPz0XvabHQCk1SjBaZnbN+0jQmJ5Gj59ulF4t47Z9jvTEzDRlTj9H5qUfpaH7R6z7y5rfa9z29yuPB+z8rxam/UYBf+LBaJKkmgSbvfe89MrsyPGoffBcEAAAAEi2Sy+9VNbayuPjjz9eb7/9thYvXqylS5dW/ps6dWo9dgkAAAAAAAAAAAAAQO1K8Lf5AQAAAABNUiAlds1u0S5IBVD3/DG+fuvxQnE0MiYynOmwba/Jb8tVYZxfTjySYDTAm0QDduDKtOsi3fO+tOQrKTVVKuwuE89jWgCIJkqgZVQBgtHgLDvdSLIR4ztcg9EiayWpR0EoILS2mJ57yQ4eK33xn1rb07P8Qpleg6W3imR/O0n6ekH4vD8gM/kk2fuvdt8js0VSW4zl2OE+HT7I6uNlUmpAGtJJSk8JfX5MqwLp9jnSj99Lq5ZL3fpLc59Vuzsv0dsrJuvr1H4qMykaWPJfBTr3CN/YLZDM56tZAFoU9um/yUz5dfhgmcsNVEosvA0AAACAZ999950WLVpUeXzIIYfoscceq8eOAAAAAAAAAAAAAACoG5FXOQIAAAAAmq+UOC7eTk1PXh8A4hcrBKaeLxRHI+KLfMkwr2KjJm6f61jes03own8AHvgTDNhBVMYYmZ57yXTuQygagNqVaKBlPM+t0axkutw0tpc6B6CtLnKub59TSw1VY254WjrwOCknv/Y3j6agMHT+tHSZO96QjjxTys6VjJF6DZa5+QWZ3kOiBvSbBvB8NyPVaFxvo327m8pQtN2Mzxd6nDLyIJk2HaWCDqFxSQNKv9GQkkUKqEJasTh8U7fQsb0nJOE92GX5t7KrloWPle50ry+NEpoGAAAAoMY++eSTsOOpU6fWUycAAAAAAAAAAAAAANQtgtEAAAAAAFUCBKMBjVaM8AWTmV1HjaDRM8Zx+Jp1s5QaLIkovelon4zLGgB78BGMBgCNCsFoqGXZLi+lbHPJnVrlEozWrmXt9FOdadlavqseke+Vn2Se+rb2T+DEH5Bata3qIT1Tvgv/KvPqKpk3N8s3e4HMPpNCk6kZ7vs0tue7+e1dp+xn71cduASjmf0Ocwy0rjXffRZ+HC38rMx5zlZUyG5aK7t9Sy02BgAAADQ/a9asCTvu2LFjPXUCAAAAAAAAAAAAAEDdIhgNAAAAAFAlnou30whGAxqUQEr0+awkXDmPpsk4v2Q4fOenmr9sf524+TEN3/mpjtnb6N/n+3TkUELRAM8IRgOAxsWf4P12rMfmaLayXF522V7qPL66yDqOt8tN7mNwU9hNatOpdjbrOUgaMNJ5buRBMg5fZ8bnk9nzdadWBe7naGzPd/MLXafs3y+tOnAJRlNKmszjX9VyU9Us3yMYr8QluU+SSiPn7DefyJ42UnZKJ9nDChW88xLZiopabhIAAABoHrZt2xZ2nJLCaw4AAAAAAAAAAAAAgOYhwT9zDgAAAABoklLSvNemEowGNCj+GBdCZLaomz7Q+Pnc/5bCkJJFemjV6VJOnnxn/lyHTQFNgznmN7LX/CpyolOvum8GABCbP8EfpcYTOo5mJdvlZZdtJc7jq4qcx9vn1E4/0ZirHpY9Z0LNNsnOkTnnT1KPQbLnTpSWf1c117qtzOnXeO+noFDOMXFqfM938wul1DSp1OET/8N/ZXfukEnPlNzCxPwBqV3XUHhjEgLH7PLvFBa95xB+VjVXIrt1s/TxW1JmtjRgpOwZY6rmy8ukp+6Q/eBlaeo5MlN/U+v9AgAAAA2FtVaffvqpvv32W61du1YlJSUqKChQhw4dtN9++yk7OzvuPYPBYBI6BQAAAAAAAAAAAACg4SMYDQAAAABQxevF2z5f4heIA0iOQIxgtIz4L7ZAM2Xcg9EqpWclvw+gKRpzqJSWIZUUhw2bSdPrqSEAQFQ+f2Lr4gkdR7OS5RaM5pA7VV5h9cWPzvV1Eow2aIzsxGOlt5+Ob93jX0nzXpXS0qXRh8i07RyauO9D6Z1nZJd9I9OpV2guv733jfOi1GY2rue7JjVNtnMf6X+LIidLiqVvPpGGjpMqyp038Adk/H7ZvPbSWpcbSU2sXBx+HCUYzf7nJeneK6Vtm6Pv+dMPsndcRDAaAAAAmqT169frhhtu0KOPPqp169Y51qSmpmrChAm6+uqrNXLkSNe9li1bpm7durnOH3DAAY7jDz74oGbMmOE4N2vWLM2aNct1z7lz52r8+PGu8wAAAAAAAAAAAAAA1AeuYgcAAAAAVIkVrLRbarqMMcntBUBcjN8vG60gs0VdtYLGzsv9ewbBaEAiTGYL6abnZf94jLRja2jwgKOlE39Xv40BABwZfyD6Y2w3XkPH0ezkZDiPb9oROfb8Z+77tGtZN6/JmEv+Llu8TZr/mrcF+0wKhZ5NOz9yr4ws6dBfKeHOs6OkwXkJd25gzJ9fkj2yq/PkhlWh/6MEo0mSug9ITjBa0fqwQzvvFffaj9+q/fMDAAAAjcgLL7ygk08+WVu3bo1aV1paqjlz5mjOnDk644wzdNdddykQ4Fe4AQAAAAAAAAAAAABww0/VAQAAAABVvF68nZqe3D4A1D6C0eCVz0OoAMFoQMLM3gdIL/8kffep1KajTNtO9d0SAMCNP8EfpQYIRoOz/GwjOcTtbdohlVdYBfxVsWFPfRx03ad9lIyw2mQys2Vuel526TfSzu2hIK6iDdJn78teN2OPYiMz4/LkNZNf6D6X1TJ5500Sk99etmNP6cf/RU4WbQj9HyMYzRx2quxHb0Q/0fQLpSduja+5rUWVb9oHr5M+eSe+9W68PNcEAACoC8FyaUcSAmYRKbOj5Gu6v6Y8e/ZsnX766QoGw5+/9ejRQ/3791dmZqZWrFihBQsWqKKionL+3nvv1YoVK/Tyyy8TjgYAAAAAAAAAAAAAgAt+og4AAAAAqEIwGtB0ZWTWdwdoLIyXYLTs5PcBNGEmNU3aa1R9twEAiCXREB+vz63R7ORHeRi9cbvUplq+13Ofudf2bVd7PXlhuvWrOmjTUfrF8VLXvrK3Xyh9/7nUuq3MWdfLDNw3eU10HyjltZc2rAofb9FK6jk4eedNppw8x2A0u/ZHGSlKMJpfkmT2P0L2qLOk5+5xPYXJzZftPlD64SvvfW3brOCvR4WCfAEAAJqiHT9KL3Wr7y6ahylLpeyu9d1FUnz++eeaOXNmWCjakCFDdNddd2n06NFhtevWrdMVV1yhf/zjH5Vjc+bM0ZVXXqkbbrghrLZjx45aunRp5fHtt9+uO+64o/L4iSee0L77Rj73ys/P1/jx4yVJH330kaZPn145d9555+n88893fV/atavjJ5kAAAAAAAAAAAAAAHhAMBoAAAAAoErAazBaWnL7AFD70jLquwM0FsbErkknaA8AADQD/gR/lBpIqd0+0GREC0Zbv60qGO2zFda1rn97KS3Fw2P2JDN9hsn8/d26O5/fL514sewdF4WPH3+RTKCR/tpDy9bO44//Rfbgk6RtRc7z1e6bzIwrZKMEoykjW+bE38lee4pk3W9XEQhFAwAAAKI67bTTVFpaWnm833776Y033lBmZuTPTwoKCnTPPfeoZ8+e+t3vflc5ftNNN2n69Onaa6+9KscCgYC6du1aeZybmxu2V7t27cLmq8vODj3pXLZsWdh4bm6u6xoAAAAAAAAAAAAAABqqRvobwgAAAACApEjxGoyWntw+ANS+VILR4JHxxa7JiJLoAAAA0FT4/Ymt8/rcGs1OXoxgtN0ufS7oWvfQDA+P15soM/U3Uqu2su/8SyorlZlwjMzkE+q7rcTl5LlO2ZOGuK+rHgSXkxe6zykrda7NyJKZNE3Kain72sPSey8k2GwNtG4rtWoj+ZrvbRcAAABNy9y5c/Xpp1Vhwi1bttRTTz3lGIpW3cUXX6z33ntPr7zyiiQpGAzqtttu0+zZs5PaLwAAAAAAAAAAAAAAjRG/eQoAAAAAqBIgGA1ostIIRoNHXi5WzyQYDQAANAP+BP/GFMFocJGeYpSd5jy3OxittNzqwx+ca3xG6tMuOb01FmbiMfJd/7R8N7/QuEPRJGlbUWLrqoVZG2Ok/PbutbtCrc3oQ+S77imZ659O7JyJOnSGfC+ukO+hT+SbvaBuzw0AAAAkycMPPxx2fM4556iwsNDT2j/96U9hx0888YRKSkpqrTcAAAAAAAAAAAAAAJoKgtEAAAAAAFVSUrzVEYwGND4Eo8ErY2LX5BYkvw8AAID6lnAwmkvyFSAp3yVjeN1WK0n6z/fS1p3ONT0KpBbpHh6vo1EwvYcmttDnDz/O7+Bem54Zfpzo/VqCzCV31+n5AAAAgLrwwQcfhB2feOKJntcOGDBAw4YNqzzeuXOnFi5cWGu9AQAAAAAAAAAAAADQVBCMBgAAAACoEkj1VpfisQ5Ag2H8/thFgCSZ2C8Zmtz8OmgEAACgnu0ZPuQVz5kRRZ5LMNrm4tD/ryyyrmvfOJ8f7zcpPfdKbJ1vj9tB6zbutRl73OD6DfcWhl1T7bvKPPixzJ69AgAAAI3cpk2btGTJksrj3Nxc9evXL649Ro8eHXb88ccf10pvAAAAAAAAAAAAAAA0JXX754ABAAAAAA2b14u3AzydBIAmy8uF67kFye8DAACgvvkTfO7rNXQczVJuhvP45h2h/z9c4hyMdvQwqWt+HQRaoe7sOzmxdXuGWecXutdmZIUvbd1WduRB0kdvJHbuaG3NekzauUPq1EvqPVQmLb3WzwEAAFArMjtKU5bWdxfNQ2bH+u6g1q1bty7suFevXjJxhg/37ds37Hjt2rU17gsAAAAAAAAAAAAAgKaGK9kBAAAAAFW8BqP5U5LbBwCg/ni5gCc3P/l9AAAA1DefP7F1AZ4zw12OWzBasWSt1WKX6+En9ScUrakxKanSdU/JXn5cfAv3CLM2bTrKOU5PUmpa5HmvflT25rOlea9IJcXxndtJ594yt74q07ZzzfcCAACoC76AlN21vrtAI7Vp06aw45ycnLj32HPNxo0ba9QTAAAAAAAAAAAAAABNEcFoAAAAAIBKJpDqfiFldQGeTgJAk2V8sWtatUl+HwAAAPUtwee+xufh8RSarZxMIzm8+lK0Q1q/Tdq8w3ld//YEozVFZv8jZPedLH00J45Fe9wWBo5yr82JDLU2WS1lZj0qW1YqPf1X2Xsui33O7gPle3ihbHmZVLpTKi2RMrJl0tK99w0AAAA0AdaGP58zXv7YTAy1sQcAAAAAAAAAAAAAAE0Nv5UPAAAAAKiSkuqtzp+S3D4AAPXHS5BHbuTF9QAAAE2OP4FgtBETa78PNCm5mc7jm3dYLV7jvq532+T0g/pnbnwmzgV7PGcbMFJq3yWyrvsAmSjP3UxKqjRhqhSI/TqfmXJa6P9AikxmC5ncfELRAAAA0Cy1bt067LioqCjuPfZc06pVqxr1BAAAAAAAAAAAAABAU0QwGgAAAACgiocLIeOqAwA0QiZ2SQ7BaAAAoBnw+eNeYs65OQmNoCnJzXAeLyqWFq+xjnM5GVJBiyQ2hXplAikyLyyXuvbztmCPMGvj98v85s9SalrVYGq6zG//Evvc7bvKnHpl9KLeQ6WDT/LWGwAAANDEFRQUhB0vXrw47j2+++67sOM2bdrUqCcAAAAAAAAAAAAAAJqiBP7MOQAAAACgyUpJ9VZHMBoANF2+GH9LISdfpvoF9wAAAE2VP85gtBETZXoMTE4vaDJyM53HNxdLi9c4z/VuKxnjIcAYjZbJayfd/6Hs5AKpvCxGceRzNjPul9L9H0kfvi4Fg9L+R8h06uXt3CddIg0aLfvRG9Ibj0nrfgpNtOkk8+urpInH8hwQAAAA2KVVq1bq0aOHlixZIknavHmzvvnmG/Xr5zHoWNL8+fPDjkeMGFGrPfL8EQAAAAAAAAAAAADQFBCMBgAAAACoEvAYjObn6SQANFkOF9mHyW9fN30AAADUN198wWjmpN8nqRE0JbkZzuObd0jfr7GOc73bclF7c2DSMmRP+r304HXRC13CrE23/lK3/omde/B+MoP3k868NqH1AAAAQHOy3377VQajSdJjjz2m666L8Th+l2+++UYLFy6sPE5PT9fee+9dq/2lpYUHG5eUlNTq/gAAAAAAAAAAAAAA1IUYVzkCAAAAAJqVFI/BaAGC0QCgyTIxQhcKCuumDwAAgPoWTyh4597S4LHJ6wVNRm6m8+PtdVuleUscp9SrbRIbQoNicvI8FPFrHgAAAEB9Ovnkk8OO77zzTq1evdrT2ksvvTTseNq0aRFBZjWVm5sbdrxq1apa3R8AAAAAAAAAAAAAgLrAb8wCAAAAAKp4DkZLSW4fAID644vxkmEewWgAAKCZiBWMlpMfqhk2Xua212ViPY4CJBXmOo+XB6U1W5zn9uoQI7wYTUdOfuwa7msAAACAejVhwgQNGTKk8rioqEjTp09XFVSUYwAAIABJREFUcXFx1HW33XabXnzxxcpjY4wuuOCCWu+ve/fuSk2t+rn/3LlzVVZWVuvnAQAAtcdaq29XWd3xdlB/fiNY3+0AAAAAAAAAANAgxPFnzgEAAAAATV7AYzBarIvDAdSPbv2lpV9HjnfoXve9oNEyxshGK8hvX1etAAAA1K/UNPe5fSbJ/PklqaxUJi297npCo9enbXz1qQFpYt/k9IIGKKd17BpDMBoAAABQE6tXr9ayZcsSWtu1a1dJ0gMPPKBRo0aptLRUkvTuu+9q7NixuuuuuzRy5MiwNevXr9dVV12lu+++O2z8kksu0aBBgxLqI5rU1FSNGTNGc+fOlSStWLFCU6ZM0VlnnaVevXopMzMzrL5du3ZKT+e1DQAA6tqWYqs3v5be+Nrq3/+1WrExNJ6XJV04ycrv4w9mAAAAAAAAAACaN65kBwAAAABUSUnxVuf3WAegTpkTL5G99pTI8V9fXcedoNHz+aSg818hNtkt67gZAACAetK5j/tcRpaMzycRioY4ZacbdWwl/bjJW/3EvlLLDC6AazZy8mPX+AhGAwAAAGpi+vTpCa+1NvSnZYYNG6Y777xTZ511loK7fp6ycOFC7bvvvurZs6cGDBig9PR0rVy5UgsWLFB5eXnYPpMmTdK1116b+DsRw4UXXlgZjCZJc+bM0Zw5cxxr586dq/HjxyetFwAA4Gz+EumYf0T+XsaG7dKnK6QRXeu+JwAAAAAAAAAAGhJ+YxYAAAAAUCWQ6rGOYDSgQdr/SGnEgeFjIw6Uxk6pn37QeJkowQtpmXXXBwAAQD0yuflSx57Oc/1G1HE3aEr6tvNeO2UwoWjNSkGH6M/HpNjzAAAAAOrE6aefrqeeekrZ2dlh4//73//04osv6qmnntL8+fMjQtFOPfVUvfrqq0rx+kfLEnDYYYfpuuuuk9/vT9o5AABAzYzrJaUFnOfOeMT5D9kBAAAAAAAAANCcEIwGAAAAAKiS4jEYze/yW1kA6pVJS5e58VmZWY9Jx18kc/WjMn96TiYto75bQ2NjorxsmE4wGgAAaD7Mib9znhh5UN02gialTzvvwVajehCC1ZyYVgXSsPExirhNAAAAAA3F1KlTtWTJEp133nnKz893rUtJSdFBBx2kefPm6YEHHkhqKNpul112mRYtWqQ//OEPGjdunNq1a6eMDH5mCABAQ5GZZjSul/PcFz9KvjMqNPKGCp37RFAfLrGy1tZtgwAAAAAAAAAA1DOuZAcAAAAAVEnzFnZjAsn/RW0AiTFp6dKEqTITptZ3K2jMfASjAQAASJImnyQtmi+99nDo2B+Q+c1NMj0H1W9faNT6tvNe27MgeX2gYTIX/U32+IHuBdGerwEAAACIsGzZsqTu36ZNG91+++269dZbtXDhQn377bdat26dSkpKlJ+fr44dO2q//fZTixYt4t776quv1tVXX51wb/3799eNN96Y8HoAAJBcBw0wevMb98Czj5dJHy+z/8/enUfLddV32n92zXcepCvJlmTLxgg8QGyMwRiS2C95ISFkaKATArwMTQIhhMQdIAkdXmKMkyYJazUm6SyGJoZOdwhTAoSX0A6TAYMbTAPG4NmWZE1X0p2nqlvDfv/YV7rz1ZV0Bw3PZ61aVWefffb5nVOnbg23zrf4r1+NvP0XAzf/ij+aIEmSJEmSJEk6dxiMJkmSJEma1tG9vH4Go0nSWW6JL9MWm9auDEmSpHUWslnC2z5I/I3/CAd2wZOvJnRtWu+ydIZ78pYALH6y21Hbu6C56Ilu55qw/YlLHx3BYDRJkiTpdJTJZLjmmmu45ppr1rsUSZJ0hvj5KwJv/dTxPysGuOX/i7zqWZEnbPIzY0mSJEmSJEnSucFvzEqSJEmSpnVsWF6/bHZ165Aknb5KzetdgSRJ0poLOy4lPOsXDEXTinjaBRCWce7azs2rX4vOQBm/5iFJkiRJkiSdDS4/P/DkLcvv/7UHlxeiJkmSJEmSJEnS2cBvzEqSJEmSprV0LO/kylx+9WuRJK2f2uTi84oGo0mSJEmnoqslcOPPHT8Z7Ymbl5GepnNP8GsekiRJkiRJ0tnia29Z/ud9R0ZXsRBJkiRJkiRJkk4zfmNWkiRJknRMyGSgrev4HQ1Gk6SzW6Ox+LySwWiSJEnSqXrPS44ferZz8xoUojPPcn7UQJIkSZIkSdIZYVN74P53ZXhCz/H7Dk2sfj2SJEmSJEmSJJ0u/MasJEmSJGm29u7j98kajCZJ56xS03pXIEmSJJ3xQgg8//Kl++zcfPzwNJ2Dgl/zkCRJkiRJks4mOzcHfvLODN/9kwyf+93FP/8zGE2SJEmSJEmSdC7xG7OSJEmSpNk6Nhy/Tza3+nVIkk5Pxeb1rkCSJEk6K5zXsXjwWSbAtRevYTE6c2T8mockSZIkSZJ0tsnnAldfGHjhUwOvvm7hz46HDUaTJEmSJEmSJJ1D/MasJEmSJGm25rbj98nlV78OSdLpqWQwmiRJkrQSLtq4+LxrdkB3y+LBaTqHBb/mIUmSJEmSJJ3N2psWbh+aiGtbiCRJkiRJkiRJ68hvzEqSJEmSZisUj9/HYDRJOncZjCZJkiStiOdeunjw2b+7ylA0LSJ4bEiSJEmSJElns45Fg9HWtg5JkiRJkiRJktaTwWiSJEmSpNnyywhGy+ZWvw5J0mkpGI4pSZIkrYhrL4KtnQvP++WfMvxKi8j4NQ9JkiRJkiTpbGYwmiRJkiRJkiRJBqNJkiRJkuZaTjBazmA0SZIkSZKkU5HJBP7yJfMD0P7DcwJPPs9gNC0i+DUPSZIkSZIk6Wy2WDDa4Pja1iFJkiRJkiRJ0nryTHZJkiRJ0mzLCkbLr34dkiRJkiRJZ7mXXhNoLgRu/VKDcg1e9LTAm24wFE1LyBiMJkmSJEmSJJ3NOpoCEOe1949BjJEQ/AxZkiRJkiRJknT2MxhNkiRJkjRboXD8PlnfTkqSJEmSJJ2qEAK/ciX8ypXZ9S5FZ4pgMJokSZIkSZJ0NtvSvnD7aAUOj8CmReZLkiRJkiRJknQ28RuzkiRJkqTZ8sXj98nlV78OSZIkSZIkSbNl/JqHJEmSJEmSdDbbuXnxeQ/0rl0dkiRJkiRJkiStJ78xK0mSJEmaLV84fp+swWiSJEmSJEnSmgt+zUOSJEmSJEk6m/W0QWfzwvMe7I1rW4wkSZIkSZIkSevEb8xKkiRJkmbLF4/fJ5tb/TokSaeflvb1rkCSJEmSzm0Zv+YhSZIkSZIknc1CCOzctPC8Pf1rW4skSZIkSZIkSevFb8xKkiRJkmYJywlGy+VXvxBJ0umnvWu9K5AkSZKkc1vwax6SJEmSJEnS2a6jaeH2an1t65AkSZIkSZIkab34jVlJkiRJ0myFwvH7GIwmSeema35uvSuQJEmSpHNbxq95SJIkSZIkSWe7XHbh9prBaJIkSZIkSZKkc4TfmJUkSZIkzZYvHr9PLrf6dUiS1s8v/YcFm8PL3rzGhUiSJEmSZglhvSuQJEmSJEmStMpyi5ztVWusbR2SJEmSJEmSJK0Xg9EkSZIkSbMtJxgtazCaJJ3NwiveCj1bZze++HcIW5+wPgVJkiRJkpLg1zwkSZIkSZKks10uu3C7wWiSJEmSJEmSpHOFZ7JLkiRJkmYrLCMYLZdf/TokSesmnH8xfOAb8OVPEHsfJ1z1s/DTv7zeZUmSJEmSMgajSZIkSZIkSWe7XCYAcV57rb72tUiSJEmSJEmStB4MRpMkSZIkzZY3GE2SBKFnK7z0PxLWuxBJkiRJ0jEh+C5NkiRJkiRJOtvlsgu31xprW4ckSZIkSZIkSevFYDRJkiRJ0mz5wvH7ZH07KUmSJEmSJEmSpLNXCOEi4ErgfKAVOADsBr4VY6yuY13dwNOBi4BOIABDwF7guzHGg+tVmyRJkqSVkV3k9xFq9bWtQ5IkSZIkSZKk9eKZ7JIkSZKk2ZYTjJbLr34dkiRJkiRJkiRJ0hoLIbwE+APgWYt06Q8hfBx4R4zxyBrVFIBfB94IPOc4fb8PvB/4uxhjbQ3KkyRJkrTCctmF2+uNta1DkiRJkiRJkqT1klnvAiRJkiRJp5l88fh9sgajSZIkSZIkSZIk6ewRQmgNIXwM+CSLh6IBdANvAO4NITx/DeraAnwZ+BjHCUWbchXwAeCuEMIlq1mbJEmSpNWRXeRsr5rBaJIkSZIkSZKkc0RuvQuQJEmSJJ1mCssJRvPtpCRJkiRJkiRJks4OIYQs8HHgBXNmHQa+DwwBTyCFjoWpeZuBz4YQfi7G+M1VqqsH+Crw5DmzqlN17QYawDbgaqA0o8/VwFdDCM+JMe5ejfokSZIkrY5cduH2usFokiRJkiRJkqRzxCK/ISJJkiRJOmc1tx+/Ty6/+nVIkiRJkiRJkiRJa+PdzA5FqwJvArbFGJ8fY/y1GOPVwBXAt2f0KwKfCSGct0p1vZf5oWjvn6rrmVN1vTTG+BzgvKntmBmVsA34wCrVJkmSJGmV5BY526tWj2tbiCRJkiRJkiRJ68RgNEmSJEnSbBfshKaWxeeHQMgu8pOUkiRJkiRJkiRJ0hkkhHAx8Ptzmv99jPFvYoyTMxtjjD8BnsvscLQNwJ+uQl07gJfNaf7PMcY3xBgPze0fYxyMMb6N+dvy/BDCM1e6PkmSJEmrZ9FgtMbC7ZIkSZIkSZIknW0MRpMkSZIkzRIKRbjyZxbvkMuvXTGSJEmSJEmSJEnS6vpTYOY/wD4SY/zsYp1jjBPAq4GZoWmvnQpYW0m/NGe6F3jnMpb7r8A9xxlLkiRJ0mkst8jvltbqa1uHJEmSJEmSJEnrxWA0SZIkSdJ87d2Lz8vm1q4OSZIkSZIkSZIkaZWEEJqAl8xp/ovjLRdjfBD4zIymHPCyFSwNYG7Q2u0xxsrxFooxRuBf5jQ/ccWqkiRJkrTqcouc7fWFe+H7eyKTtbi2BUmSJEmSJEmStMY8m12SJEmSNF++uPi8XH7t6pAkSZIkSZIkSZJWz/OB5hnT344x3r/MZW8Dfm3G9IuAW1aqMKBlzvTeE1j28TnTXadYi3TWGh8f5//8n//DQw89xJEjRyiXyzQ1NbF582Z27tzJVVddRaFQWJF17dmzhw9+8IPccccdPPjggwwMDFCtVo/Nv+2223j1q1+94LLf+c53uO222/jWt77F448/ztDQEI1G49j8xx57jB07dgBw/fXXc8cddxybl/ISJUnSmSSXXXze1bc0aC3C+34j8OrrFklQkyRJkiRJkiTpDGcwmiRJkiRpvqW+2J01GE2SJEmSJEmSJElnhZ+fM/21E1j2G0CN6e9hXhVC2Bxj7F2JwoCDc6ZLJ7Ds3L79p1iLdFap1+t84hOf4LbbbuOrX/0qtVpt0b6lUonnP//5/OZv/iYvfOELT3qdH/rQh3jTm95EpVI5oeVqtRq/8zu/w4c+9KGTXrckSTrzZMPS80cr8NqPRn5qW+SqC47TWZIkSZIkSZKkM5DBaJIkSZKk+XJLBaP5VlKSJEmSJEmSJElnhSvmTH97uQvGGMdCCD8CrprRfDmwUsFo35gz/bQTWPbqOdPfPcVapLPGV77yFd7whjfw4IMPLqt/uVzms5/9LJ/97Gd5+tOfzgc+8AGe9rQTeTjCF77wBV7/+tcTYzzhev/kT/7EUDRJks5Btcbx+8QIV9/S4JZfDRRz0NUMEcgEKOagszkQIxwcjtQbsL0r0D+ebk/WoJBLbddeDE0Fw9UkSZIkSZIkSacXz2aXJEmSJM2XLy4+L5dfuzokSZIkSZIkSZKk1XPpnOmHT3D5R5gdjHYZ8JVTqmjal4EHgCdNTf90COGpMcZ7lloohLAVePGMpirwsRWqSTqjvfOd7+Sd73znvICyEAKXXnop27ZtY8OGDRw+fJg9e/bMC0+7++67edaznsXf/M3f8Fu/9VvLXu/b3va2Wet82ctexmtf+1q2b99OPj/9//eNGzfOWq63t5f3vve9x6YLhQJ//Md/zAte8AJ6enrIZDLH5m3btm3Z9UiSpNPfPXuXH6j69s8s1ndu+0L9Ils74V/elOHK7YajSZIkSZIkSZJOHwajSZIkSZLmyxcWn5fzraQkSZIkSZIkSZLObCGEbqB7TvOeExxmbv8nnnxFs8UYGyGE/0AKWisCGeBTIYTnxRh3LbRMCGEz8BmgeUbzLTHG/StVl3SmuvHGG7n11ltntbW1tfG2t72Nl7/85VxwwQXzlnn44Yf5yEc+wnve8x4qlQoAk5OTvO51r2NsbIwbb7zxuOt94IEHuOee6TzDF7zgBfzP//k/l1XzZz7zGSYnJ49N33LLLbz1rW9d1rKSJOnMdtUFgc/fs/xwtFOxbxBe9XcNfvCODCEYjiZJktZHoxEJAV+PSJIkSZKO8Wx2SZIkSdI8IV9c8PchAcj6VlKSJEmSJEmSJElnvM450+MxxrETHOPQnOmOU6hnnhjjt0IILwT+AeghBa/dE0L4MPBFYDcQgW3Ac4HXARtmDPEB4F0rWVMIYdNULSfiCStZg3SiPvrRj84LRXvOc57Dxz72MbZt27bocpdccgm33HILr3zlK3nxi1/Mvffee2zem9/8Zq688kquv/76Jdd99913z5p+yUtesuy6T3bZr33ta8tehyRJOj096+IAi3+Db8X9aB9c+58b/PwVgQDs6Yf//u1II8LPXw5HRqGrGbpaAs0FyGQgTpXXXoLmAkxUodaAfBZKORguw8GhyCWbApkAlRq0N8HeARiZgJ1b0vJjFSjkoKUAoxUo5uDaiwPPv9xgFEnS4sYrkb+/K/IvP4zs6YfJOjQi1BvpuqMJrtoeeO6lUMwFclnIBMhmYKwSOTAEh0dgfBLqESpVGByHliIcHonUG9BahHwuPTcCNBVgSwf0tKZxchkIIT1PDo6n9Y5PQu9w5JkXBTIZ6G6G7d2BzmZoNKB/DA4MRXb3Ty/fPPUcmMvA/sE0VqmQnhsv3AAHh2BgPG1bSzE93w6OwWQ98r3dabt+7rJwrKamPAxOpOfY0XJk7wA8eiQ9V+/YkPpM1tPz9fmdacx6A3b1wcRk2sZGAx45DDs3wyWbAyMTUK2n/ZL2RWCkHDk0AvsGoJSHC7rTfm/E9DqhMXUZKad1V2pQrUMg1ZfLpNcAlWqaPzSRXlc8ZSu0lVLb3oG0f7e0w9hk2qYQ0n4EuOJ8uPz8wK9cCT+1PTA8AZ3N0+NO1tN6K1Prz4R0P5anphsNGC5H7juQXv/0jUbK1VTno0fSvu5qTnU9chgOjaTbF26A8zrgkk2B8ztTrfsGoFaHwYnIdx5L+2THhvSaqDH1uqlWnz6W6o10HI2W0zFwxda0T/vH0vHQ1Qyb2gOXbErb31pM6+tpg/sPpnEu6UmvvfYPpX0yPhmPratcTcdOrQH3H0jHy2Xnh2P3TT6baizmUl2tpbRtMcKOjYHLz0/HY0dT6lPKw4GhtP8na+n20ERa57auwAXdaTvy2VT/WCWtZ3N76jtSTvf9ldtTv/sPphqbCulYyGamH1czr7OZtD0HprYFOPaYDGH6diaTbmdCas+E2bfnXs9qm7P8QmMZ2idJkiStD89mlyRJkiTNVygsPi+XX7s6JEmSJEmSJEmSpNXROmd64iTGmLtM20nWsqgY45dCCJcCNwIvBy6aun3jEovdD7wjxvjJla4H+B3gT1dhXGlVPPjgg/zu7/7urLbrrruOf/3Xf6W1de6fgYXt3LmTL3/5y1x//fXcd999ADQaDV7xilfwgx/8gI0bNy66bG9v76zppYLYVnJZSZJ0ZvvZnSno4979a7fO7+6C7+6aH8b2xR/PnDqZsLaTW6a9BC97ZqBcTSEzh0ciE1XY1AYXbgiMT6bwksMjKTylEVMISimXgk4KuRTusq070FZKAR6TdXjscDwW9HI0rCUToG8sBeRctDEF0mQzKXwjE1IQSXMBeochl03LDE2koI8t7bChJYW1DIxPh+7EqXCeo0EihVwad6Kawkc6m6dDP0r5dD1amQ4O6WhKASl/9ZLA1i5DOCRppsla5Pr3NLh799L97tkb+ei34dTCRk9u2X/+/szlVj/s9L99Y3nreHD2Rw0LvtZ4aMZPQRwchq8/tNDY89t29S2rhCUNl+HOR+a3Dy3yye29++He/ZGP371wTSth/+Ds6eFyCpX90T64/SdLr3NP//LX8/3Hl7OfT20bZx+XSznR9axdoO96WzBsjRSmdiIha4sGty0x1moFvmVCWHLMcFJjrmR9J7uvlt6uZdUyZ8yhien3JfksdDUHWoopZLE+9fr/aEDn9O04r32yDud3BJ53OZTygUYjjZnLQDGfXvvHGBmtpHUXsun4OzQV6NmIqR5I8za2pvcUY5XU1tEcODwSuXffVOhkU3ovUmtEelrT+6NsZvq9S72R3qd0NsElm9J7o3v3pfU8/cIUkD1TvRHZP5jq7WiCfYPpr8CevvQ3MpuBkXIkn4XWYmC4HGkrBdpLs0NMq3X40b5ItZ7e041Pwq4jaTuO1relI91+5BBUaik88pkXp/DGGFPAYrmW3vsdvR1jGq+9lLa9rRjS9ay2FAiZzfheS5Kk053BaJIkSZKk+XIGo0mSJEmSJEmSJOmsNjcRqXwSY8w9JW95KUsn7uh3PSvL6Pst4CbgS6tUi3RGectb3sLo6Oix6c7OTj796U8vOxTtqE2bNvGpT32Kq666isnJSQD27dvHu971Lm699dZFl5u5boB8fvn/bz+VZSVJ0pmtqRD419/P8I7PRb5yf2R7F7z9FzP83Z2RT9x9bgRPDJfh/Xcstq0nsg8W7vvI4YV7HxlduH0hI2V4+NDx+52MxwdS0MsdD0buvSkzL4xAks5l/+VL8bihaJK0GhoRiFBf70JW1Nn6/mIttmvlgzfbSymgeXzyFIY+ifUuJZ9NIWalPDTlUyD0ia9v5e6PhQM7l1PDfC3FqbC00lRw2lRoWntTCpCb3QbtpbBAWxonBN+zSZK0GgxGkyRJkiTNVyguPi/rW0lJkiRJkiRJkiSddU7mrIxVP7MmhPBbwH8BWpa5yHXA7cC9IYTfjjHeuWrFSae5+++/n89//vOz2t797nezZcuWkxrvsssu4y1veQt//ud/fqztwx/+MDfddBNdXV0LLtNoNE5qXae67Er4yU9+wo9+9CP6+voYGBigVCrR09PDpZdeylOf+lSKxSW+V7CEWq3Gd77zHR599FEOHz5MpVKhp6eHHTt28OxnP5tSqbTCWyJJ0plpa1fgw6+afWL1cy+FG54En/lB5Mf7oTZ1cvrYJLQWU1DD4ZF0En0+CyHAZG2dNkAr4sAQ/N2dkd+9AfrG0kn3gxOwuQ3yucBkLXJgKB0LG1vTm9QHDqa+h0ciTQV48pbAkdEUZpDLQDGXjpn+schoJbXHqWPnyChcfSF0NAXqDWjESLmajqULuwOVWjq+6g0Ymojcsy8da8MT8Hh/ZGAculugqzlQKkDfSCQCm9oDuQxkM9DRlLZttAIXbYRrLwp8b0/k8X44PAqDY+mt9iOHoVKD518eaMQURHdeBzQVIJDmPXYkHeMb21INh4bTNm1shV+5MvArVwYOjUD/1L5rRHiwFwo5ODIaGZqAickUZJDPpkC+GNM21hpQyqWxmgppfZO12dfDZegfhSduTmMf3TdHL0f75rKwbyBtVyEH3S2B8UqkuzVtW62e+hVyUMxDcyHtpyOjabsyIe3vah02tAQ2tMJEFXqHIk2FQDaT7sdyNVLMBc7vTPs6E9L9PVqByTp0N8P/fVng2ZcY2nCmiDEeC9mo1SMTVdh1JB1z5WoK6wikY3F8Mh2HMU5fl6spsGNwPIWYhJDaW4vp+Mpm0jFeb6TH10g5PQ7z2dSn3kiPhVo9HWMHhqBSi/S0pcd0vZHGmKimxxikdUCq6+h0tQ5jlVRPT1tapphLj830tyb9/ao30vPa8AR0Nqf2C7pTzRHYsSHV9uFvnq0hPpKkc93wyfyEzyqrTiUBlqvpcjYZq6TLgaG5c04spDuEFJR2NDTtWNBaCdpKgbZ5bSlkrb1pbtvU+x1D1iRJOsaz2SVJkiRJ8+WX+AJzzl+hliRJkiRJkiRJ0hlvdM5000mMMXeZuWOekhDCnwC3zGm+G/hb4BvAfqABbAGuBV4H3DDV7wrgjhDCa2OMH13Bsv4W+OQJLvME4LMrWIO0LLfeeisxTp+otHHjRl7zmtec0pg33ngjf/VXf0W1ms4AGxsb40Mf+hB/+Id/CMCuXbu46KKLFl3+hhtuWLD9tttuA1iyvsVOhnrsscfYsWPHsenrr7+eO+6449j0zH1wPI8//jh/+Zd/ySc/+Ul6e3sX7dfU1MQNN9zAq171Kl784heTzWaPO/Z9993HLbfcwuc//3mGh4cXHfeXf/mXufnmm9m5c+ey65Yk6WTFx34CBMJFl653KcuSzQRe/7OB1//s0v2qtUg+N/u1w8RkCtT54r2RV3zYQJkzyVs/FXnrp+bfZz1tKezoaFDB4lYqB/xExpnbd6lllx73/oMnd7z+yz2R3/zvp+uxHudcn8yyy52e7ebPp/ndLSkEAqZD00pToWwT1RSy1VKA5zwxheS1FNO8o8v0j8VjYVn7BlOIVXdLCngbraS2egMKWajH6bC4Yg62dEyHdzUiNBrTt+uNFM5VjynYraNpOpwL0nQuk8InxiqpfbSctnqylsYYLqfbT9qcQr8mqtPLj0/CoeEUONFegs3tsKktzZuoptoHxuD8Tnji5sBl58GmtsBIJdI7PB0Qdng07a9aPQXfNeXTOsu1FBgyOXU9PpkC+OpT69/cDtmQgg3HKpHzOgMTkzBaTqF+I2XYPwR9U2GGldM23PJ0fWxJkiStvTj1GnS4nF4Hz5m72FILtmYz88PS2pumgteawry2FK4WFmhLr70NWZMknekMRpMkSZIkzZcvLD4vazCaJEmSJEmSJEnrOTk3AAAgAElEQVSSznindTBaCOH/At41p/km4OY4P+Vo19TlH0MIrwPeDwQgC3w4hPBwjPHOlagrxngIOHQiy3jShdbLF7/4xVnTr3zlKykUlvhf+DL09PTwS7/0S/zTP/3TrPUcDUY7U8UY+bM/+zPe9a53MTk5edz+ExMTfOELX+ALX/jCvGC2uer1Om95y1t43/veR6PROO64H//4x/n0pz/Ne97zHn7/93//RDdFkqTjiof2wpc+TvzwzTBZhpZ2+MxuQql5vUtbMXND0QCaCoGmAvza0+F9X458Z9fa16WVdXhkvSvQmax/bPZ039jCfT72nZUPwNrVt/y+ewdOfj0P9KbLQobL0DsMDy3yCce9++H2n5xKgN3xrObYkiRJOlPVGykAe3B8obknFrKWz84IWJsRmtZeCrTOazsaxBam+88IaCss8DmDJElrwWA0SZIkSdJ8+eLi83K+lZQkSZIkSZIkSdIZb2jOdHMIoSXGuMCpwIvaNGd63u/An4I/I4WbHfXRGOM7j7dQjPGDIYTtwNunmrLArcDTV7C2M1atHk/ppGot37YuyGXX70SZvXv3smvXrlltz3ve81Zk7Oc973mzgtHuuusuqtUq+fyZ+SNjtVqNl770pXz605+eN2/Lli085SlPYePGjVQqFXp7e/nhD3/I6OjyciAnJib41V/9VW6//fZZ7fl8niuvvJJt27ZRLBY5ePAg3/nOdxgfHz9W04033sjAwAA33XTTKW+jJEkA8ftfJ952C/zg6zAza3hsmPjaZ8LffIXQ1bN+Ba6yODoEfQfIdm3iK2/u5NZ/a3DXrsDYZDpZenwSJmtQqcEPHp+97JM2w4ZW2NQGzYX0Gi8EKFcjvcNQyEEpBxNVKFehlIf9g2nMXDZNdzfD/qEU5rW9G2p1aCmm60aEnxxYh50iSTqrvP8VgU99L/Kl+2a3ZzPQWkxP//WYAkfyWbigO1329EPfaHpeuuw8uGBDIJ+FoQkYLUPvcKRSg7FKGqvemB6n3kiBIT1taf6djyyv1p426GlNz5sT1fS8el4HDIzBo0dm1z00kaafug22tKfn2KGJFIFSzKXn51oDmvLQVIBGAzqaoL05bUcpB90tabyxCoxW4J69keYC7NwcqMdUx8GhSC4DI2XIBOgdgc1tsKE1BaQU85AN6Xl7oppCUoq59FyeyaTXEZCWzYS0TZmQXge0ldIHnYdG0jYV89NhLYUcFHOB/rHInv70WqGtlO6P5gK0FKBcg919cGg4tT9yOPKNh07teAkBcplU4xN6YOdmaC0GNrWnfdtSSLX2jaX901RI+68RU11DE/B4f6RvNL3e2daZQmN29UWyGdjSHjivM61rU1va/7lM6lupputHDsMPH49pPzbggu5AMZ/uw/sOpM8x+8fS/p5bO8x+SduUT6/jGnF6+gk9qdbeEajW0/HT2QwTkzA4AcMT0NWc7oOBcXjsyIntw6OPB0nS6alaT89j80OQlwrnXXheMbdIkFpToHVeuBq0lcICbemynv87kiSdeTybXZIkSZI0X26JL2xnfSspSZIkSZIkSZKkM1uMsS+EMAB0zWi+ALhvkUUWcuGc6VM8HS8JIWwFrp3TfNxQtBneDbwZaJqavjqE8NQY4z0rUd+ZbO8AXPyfPFtvLTz65xl2bFy/9d95553z2p7+9JXJB7z66qtnTU9MTPCDH/yAa665hm3btvHYY48dm/fe976XW2+99dj0xz72Ma69du7DGzZuTDvr+uuvP9b20pe+lP/9v//3semZ4860bdu2k9qOo9785jfPC0V7wQtewE033cQ111wzr3+j0eCuu+7iH//xH/nIRz6y5NhvfOMbZ4WidXR0cNNNN/Ha176Wtra2WX0nJib427/9W97+9rdTLpcBuPnmm3nmM5/JL/zCL5zk1kmSNEO1At+/Y+F5ex4k/vI24q++DiYrMNwH9To0tcLAoZQ+0bWJ8LP/jnDDi1aspBgj3P89uPfbxEN74fB+woVPJpbHoNhEyOag1AytnTAyAK0d0LUJJkZhZBAGj0BXT0rFaGpJP4gaGzA6BCODxN7dcHAPPHYfHJpOOysBfwTQvQWe91LCb91MKCzxY6prZHdf5K/+V+SbD6cgkPM7UkjJ4AR88+EU0Lap7WhQSqC5yLHAl3ItBXMEUkjH4/2RpnxqbzRS4Ee9AQeGUrjIBd3Q1ZxO1K41oG80hbFsboNrLgqEkMJpKlMhL22lFDLTWkwBL8PlFCoyPpmCRNpKKVgEUttENQWq5LJToTeTKXTnyGhk55bAhpa03rEKHJkK47ntzki5uujukSQt4ZOvz/DiqwOv+5n0/HpgKD1HbGyFENY2fCPGeGydk7X0t/1oWFg2MxWQdZxAkEYjEoFs5lwKDjnxbe0djjzUm56HxyZT2FyY2s/F3OxLLguD4ynQbEsHlPJnzr6NMfJg7/Rrjgu60/F0eGR6W3vaTv1YjzHyo31w775IPhtoKqQgm3w2vY7a3D79+uVJW1LoTaMR2TeYgvFqjbSPJ6pw0cbUb/8gnNcJl/TAwWF49HAK6qnU0njbuqZCCxtp+ZnXR2/X6inQrbtlOgwuMuN2TNONmG7PvF6oLZJeH868PXf5BZc7qTHjiY85p6aF6lup5ZfalrjAWMeWm/obtS77fIWXnzvWyZj5933m7WxIwZFH/+QfHD658c9UIaR9Wsilx/3R/Xs0OPPofVLMpfDsXCb1a8rDvftT32IuhZbuH4Le4enlN7SkfqWpy8zbMcJIJQV9Dk+k924j5engSJ2cSi097xwemTtnsR27+A5vLswOS2svTYWulcKx8LTpNmifap/dlt6fZ86p10qSdG7ybHZJkiRJ0nxLfclpqdA0SZIkSZIkSZIk6cxxH3DdjOlLOLFgtIsXGG8lXDln+tEY42PLXTjGOBZCuAu4YUbzM4FzPhhN5469e/fOmt68eTMbNmxYkbGvuOKKBdd3zTXXkMvl2LFjx7H2zs7OWf22bNkya/5cra2tx26XSqVZ85Za7mTdfvvtvO9975vV9u53v5s/+qM/WnSZTCbDddddx3XXXcfNN988r86jPvnJT3Lbbbcdm77wwgv52te+tuh2NDU18eY3v5lnPetZPPe5z6VcLhNj5Pd+7/d44IEHyGQyJ76BkiTN9LQbUhBY/8HF+3zmg0sOEb/8CXj9LYRXvPWUy4nVSeI7Xwl3/PPs9kVur4r+g/CP7yX2HyL8v7cdv/8MsV6HRj19n3DwcApqO/9iGOmfDm4b7odiE2zeDhvOB6bSBvoPpvnjIzAxli7DfVzQd5C/zmThsrZ0f1102ZqH2aynZ17U4NW3eba+JJ2oi7O9vOAbt9L43L4UbprJsqXUDLkCcXyYODYCLe0wNgy1agoTLRThwG5o64Tx0XR99Lktm4Mj+4EI2TxUJ6HUlAJTi1MpmF09afrwXii1pOe7fAE6U/B5HBsm9Gwlf9kzyG/YAn0HoFKGoT4Y7p/9fD86lFJe6jVCezexPA7jI4Rsjgakeob70nNnow5NbSnwdbg/BaI2tabrfY/CxvOgrzfVkc1CrQZbnwAP/xAKpbR8rZqCVtu709gToylcNV+E8WHY+0ja9tzU9ux/DHbfn7bvBa9Mz+UT43B4H9RrKbi1tSPt4wO7UnBrvZa2iZCuj14KpdQvNqBjYwqALTal+6AynvZv34F0X1UraazKRKq5Vk1hsY36VOppkZ62LnrqNSiWpu+/Rn327UYd6g1iSxsdnT10bN4OIUPj6GuMRj3V25j6MYWRgVRnvQb33gXdm+Dya9P+nrr/UqpPBtq6p7ZzSiaT9sXYcNpf+WLax7XJdN1oTK+vfvS6loJsx4Zgw5a0b4+Oc8GTCBddBlsuYGf35rS/hmqwvwa1KheWJ2B0EM7bARvPIx7ck+prNGbs90xa/8Ah4lB6fFCZSP36DsL2S9J2VCZg4BBXVCa4oqkVymPp2C41pWVCSPfHwKH0+q86SWPqvt5ar6Vw4WolbUeukI7LEHjyxGjaHx0b2N7cyvZIegxOltNjIpOZPk4yIa1r41YolgjXvwg6NqT7vjqZjpsYob+XeGgvYdO2tM+6NqVxZqZaHbsdZ0/PvV5O37m3T3acuMAr/VOp61jKFBDmtGVOcp3H7bNAfae6nccbbznrnNEnHq/PQvt4xvWxQDgCjRiIMdIgEDM5stlAMZ+l0dSajslalWwum/7eZnPpsZHNTV9mTWfJ/v0vzt/uKR961j10jB+g0dJJpWUDBWpsyo/TnJmkQoFGtQqZDDtaxskXcsRaDRp1+icL9B4uM1ZpkG9ro5Zvolxop1TI8JSWw5yfH2GYZpoH99EysIdKI0ulPEnjyEHquSKN5g4aA0fIDRzksZYn0t9opVQe4MLKboY6L+CBrmugtYPYtZl97U+iXM9Ao0FbY4Se7AitXe3Q1Eq2VqaVca7oGCJfK1MsD5KrjlOu5yiWB2mQIVz0ZEJlgpDJQHsX5PLEzs3EiTEyI33pPjq8P/1tqlVhdJD4wPfTc9BkBZ74U4TLnwlbL05/b6qTMDZC3DX1r7lMBqoVQltX+tswI3Azxsh4PcdILcdwLc9wNc/IsescI7UCw7X81PwCI9Xc1PRUv1nXhUXvRy3P+FTIeO+8sMATD1lrzU7Snp2kLTtJey5dt2UnyYbIUK3IcL1AyOXpLlXZ1p3h4s4qV5b2siE7znjrFvbX2jk8UOWi2m66myOPNzYyXoXNrQ1am3I82lvl4GQrFErkMpFaI1Cv16k1MtTzTdQi1Kt1apk89RhoCxM0F+BArZ09IwU68jV+6RnNvOTqsO6fb8RGIz1PZ7LQ3JZei4wPp+fgkQHo2EhoaSdWJ9PrgnoNHn8ovSaA9JlPeze0tK/ptsRGI4X9T4ylv6f5ArR2Eto6j7+wpLOCwWiSJEmSpPnySwSjFZsWnydJkiRJkiRJkiSdOe5ldjDas4B/Wc6CIYQW4KkLjLcS5n6Te4nkhkXNXWbjSdYinZH6+/tnTXd1da3Y2KVSiWKxSKVSWXR9Z4qbb7551vRv//ZvLxmKNtfc4LejYoyzxs7lcnzuc59bVrjb0cC1P/zDPwTg4Ycf5jOf+QwvetGLll2XJEkLCbkc8bn/Hj7516c0TvzA24n9vYTOHigUoLk9BXlUJ1Nww8bz0wmmPefDob2pPZNNoSOH9hJ7H08nbH/lU7D34RXaulN0+z/QuP0fYMuFKVhi68WEHZcSa1VCNkccOpJqHTicTlQfPDQdHrJcISwcgHAc8eIr4NF7ob2b8Kq3QaNOHB8lNE+F0wz1pZNis7l00m6tmgJAzrsQrvxpQs/WE17nvBqG++HIAThvB6GpZeE+MaZ15/KzThCOjUYK/qhOpoCTo4b60v4MwKZthOY2uppPudQl5bORan3+ycuZAI0Zd01TPlLKQ4ZIvQFj1UCtDpFAJkSa85FcJjJYzh5bZmtnpCnXYFtH5NKtWcargdHhcfpG4fAIPLF1hGypyGQo8OhQkR8fzM6rA2BDC/S0waGhOhtKNTaWakyUazRqNbL1KiOhmdFajiJVag0gZNhSnGBLW51iU4GvP97Mkcnlf8d1e3uVbIBGJksx06CzNUuDQFMe7j8II2XY2AqFHBRz6bqQTbfzWegfh4ExqNRgSwec3wG5LGQDZDOQywYKWegfi0xUodZID51sBs7rCNQbMfXJpUOhfzxSyKZ91jeW9kc+CxtbA81FGC3DaCUei3hobwrks9P3X60OtUbkwBBU69BWgskafPM0+VOjs0Muk47llZTPQr0x+2/Rcm2u9XLbrt+geO9dK1vUCjiZqMtTjsd87Cfz275/x6mOmlQn4bP/bWXGOlnjI7OnD+5e/XWODMDuB1Z/PQCjQ7OnH75n9YNyv/ullR9zsjL/vhrqS5fl2PcoAPE7/7ZkN+NktRqmIh1Z6icaZs47kePwxk3/mfdu+P157ZdW7uM1f3ftCYw07Xxg/s94zHb0n0MRKExdFtK9QNtTTqqq6fUdPTNt0X2WyRAajeXtx4d+QPzCR5e13oU0T102L2ddS2gQGMu0MJxpZyTTynCmneFMG6PZNoYzbYxk0vVwpo3RTBvD2em2kaPLZNP1WKb1+CvUkkbrBUbrywyrO3D0xkKfE+xYmYLm/Ys3z//4QQQiT2I3bYzTzjhtjFNikjIF2sIEO3mcPHXy5WGuOng7143fRZ5aCmtt7YShIxwLrs0Xpl8zZDLTn8+EkM75bOuCXC71naykz6NGB2d/jpPLp88w5ohHx1nq85t8gdi1eToouDIBHd0paO2H30yfgeQL6fOxo0Gw2akQyfYNad7R0Nujl0Y9fUYyMZrW0dqRPp+arMCRfWmchWp92vWE17ydcOVPL+vekXRmMhhNkiRJkjRffokPBZvb1q4OSZIkSZIkSZIkafV8EXjdjOnrT2DZn2b2dzC/H2PsXYmigME50wufeb+0uWdTjJ5kLdIZaW5Q2WIBXiers7OT3t7ph3xf3zJP7DyN3HPPPdx5553Hptva2viLv/iLFRn7q1/9KvfeO50V+fKXv5ynPnVuluTi3vjGN/KOd7yDcrkMwOc+9zmD0SRJKyI87zeIpxiMBsAn//rsDGI4uDtd7vvuse1bse08iVA0IIWiAQz3E//6rdPDLXe1MB2clsunE3O7p06Fr9emw9TqtXQy78RYCrIbH0lBKAuNB+lE4YsuTyf8jgxMB320dhCLzVAemw5Em2mxk487e+huPBm2/q9Ft+WLu38RgH35reRjGiMQGcp0sLl+iAaBQpzkssp9bK/uJRCphjyD2U5aGmN0NIYhm6XcyBGIFPKBsdhES32Y0GikE65rkwuG3kWgRo4cNWZGqw1l2mlvDDM/bu349uXOZ3d+O531IXZUd9McJ9JJ3JWJkxhtWo0s95SewlCmndZslc1Pv4ruOExvpUh9cpLOyX56hh8h7HtkwfuCfCHti+zUieRtnel+e84LCa0dUK8T9z8Kux6E3j1pmUwG9k+d6J3NpeM9l0/HQK6QThZvbk3XE6NpvYeK6Vgrj0N/L4wMwuDhdCxCGmvTNqiU0zEbYzrxPGQgTiWsNRrpNgE2bEnL1Krp+JysQF85Hcu9u3hspMi3mp7FUOtWWijTUumnVBvhcNsT2M8Gzht5hCx1vld6Gn/f8TI21PvJ0CBPnQsyhxjPt1PMNBgPTWRqFY40WtnQGODi7GGqjUA15OkplOmoHKZ54ggtjXFaKaddUhkjW6+SaW7mUKabMiUyIZIZGyTT1UP2p64jU2oiMzpIGB2gqTIAITARC9TLZTK1KvlGhTFK9MZOamQphiq5WCOWJzhSbaapMU42l6VYyHA3TybbqLGxvI/O8YN05yboLNQglyOTzdCaq1PMRfZmtnB/ZTMxBFor/TTFCfLUOBK6uCt3JY9mtlOJOVoKkVIOMtlAUy6SpUFXrkxrZpKxWpZ8pkExGylm6hRr45RyDYotzZSydUpU6Qhj5GsTlAcGuH34idxduXDWIdccKjw99yjPiPfSGifozFdoClWKpRwjjRIj9QKhMk5LuZ8L9n+b3p4riG3dDOa72XzhZrqf/TNsKZVpG+slOzZAKBQI+QIBGKtliUB26DDnVQ/Qn+0m09YB+Tzn9TRRHR5i93gro9lW6mTY1Ohj71CGA+NFtrdN8qS2YXLNLeRCg3y9QmFigGyIVIutxI4ectsuZiQ0U29AcyEdepAO16N/9iu1yOBYpFgdZWOhTN+BAeoxUGnupqm7ky1dOTKZQLUW6RtLYY2lPNRrDe49GBgvR0Ym6jy4r8Zgvcjw0AQtP/w3Cnsf4JLJR3jJyD/R1vBjL0nS6e8vD/2nBYPRXjt42zpUc5o40cDt00CGSFtjdEVef9TIMpppPRawNh2aNiNgbSpEbWTRILbUVs4sPyBa6+MBLlx4xswPOIrAhW8B4Nnjd3J55T5GMy1szB2hFMucVzvIwdwWHuq4hEoo0tYYoRryfLo9/f/kZ8a+zrbaPrKxTrE6SQyBkdZWNjb10dYYmfp8YJRqKNCX7SYfa+RijR3VXWyop/+r1UKOC6p7yMUak6HIWKaZ/mw3dTKUMyWOZDcwmO2iMZyhZXCMWshR6J+kQYbHNr2BQKS1MUopVviZyjfYk99Oo5Gh0cgwOtBCjhqbaoe5oPo4hVilszFAV32QOu1Mlgo8WriIkUwb2ZE6IUa6mgeZCCVGM60MZDupkSOGQFt9hI5Hhhl/5z9x5AUXMNC2nVw2hVv2DsMjhyPDEzA+CQeGoLMZJiahuwU2t8P+wbTrWwop6HxrZyCbSWHNh4YjD/RCSxGa8ikcvZibfs/TiLC7D34yFbaXz8KmNtjWBWMVqE+9H2oupLDyYh62d6WQ6UMjsG8QJqrQVoQjoyk8/TXPDrQWU9h6/xgcnAo839ye+sYIwxPQNHXK7/gkPPdS2NAS2DcYeegQHBqGf3zdUtGe0pnJYDRJkiRJ0nz54uLzmv1FCkmSJEmSJEmSJJ0V/hcwARw9W+BZIYQnxxjvX8ayr54z/c8rWNf+OdNPCiE0xxjHT2CMp82ZPniKNUmaIYSTiX44vXz5y1+eNf2yl72M9vb2FRn73/7t32ZN//qv//oJLd/c3MwznvEMvv71rwPwjW98Y0XqkiSJJz0Nrr4BvvfV9a5Ea6k6OR1QNjoEu+479TFjnA5tm2l0KF0Ws1AQF8DgYc7LL34i+7PH7+Tnxk/8uM3HGs21GUFj9Tol6un2JLRSmZ43WV50nADkqc1r72gMn3BNR22t7Wdrbc7b31MMRQPIUedp5R9MN3z128D89PBFzTxeAPqn3k4/8qO1DUSs1+HA7qkaTj2H/SLgoupumHuXzTlcXzX0P3hf7x+c8vqW7RDwwNqt7kTUSSeUZ1m5wI6bp8b9cfEy+rNdPHHykfmPg+MZ/dfp298D/mn5i86NDC8Cl89pu+Q4Y0Rmn5TcDtDZkyYmy9PBfTFCbFBq1Omo14/13zyvqB4am7aRrUywqVpJy1cqMNDLs082VFOSpNNQhsijD+3kVed/mDubr6O9Mcwb+9/P7/X/1/UuTeskR53OxhCdjSFg3ymNVSWXwtSyM0LVMu2MHgtbmxGqNjV/5Fi42uwgtmoorMwG6pTc2fxs7mx+9gkt8/WWn1mlak7ORzv/n7VZ0XfheBH6vVPvhYfLsGvObx090Hv85ZdSraews31zf/pshu/tXnqMv/jiia//E3fD3Lo/8IpIR/OZ/z9MaSaD0SRJkiRJ8y0VjNZkMJokSZIkSZIkSZLOfDHG8RDCp4CZ38r+I+A1Sy0XQtgJ/LsZTTXgH1awtHuAAaBraro0VeMHlrNwCOGFwNY5zd9cseqkM0B3d/es6aGhJcIpTsLg4OyzG+au70zwrW99a9b09ddfv2Jjf/Obs//kdHd3s2vXrhMaY2ZI265du2g0GmQy/tK9JOnUhBDg7bcRX//TcOjx9S5HmmVHdQ9PLd/DPaWnzpu3c/LhdahIOretZCDa3HGfWlkgWPFMNnj41JY9leUlSTqDXFDby1f3PJ+x0ExTnCCzttG7OovlqdHdGKC7MXDKY1VCgeHMdJjayLFwtekAtWPX2dn9RqbC1Y621YNxNtJaeugQPH3HelchrSyfSSRJkiRJ8+Xzi84KzW1rWIgkSZIkSZIkSZK0qm4CXgoc/QfZq0MI/xxj/NxCnUMIJeA2YObPpX84xvjIUisJIcw9u+WGGOPXFuobY6xPBbb91ozmd4cQ7owxLnnmbAjhAuD9c5rvjDEeWGq5c8W2Lnj0zw1WWgvbuo7fZzXNDSobGDj1k4GOKpfLlMvlWW0bNmxYsfHXyoEDs/8sXH755Ss29uOPzw6aufbaa09pvEajweDg4BkZQCdJOv2EjecRPv0w8ch+4if/Bnofh0Z9ukO1ArsfgO7N8MN1yBfeeRXECBOjMDYM5fFUU74AxWYYHYRadbp/vgDVyXS71AzN7ZDNQjYHLe2w8yrCRZfCjkthw3lwz53EW/9g7bdLy/LHR/6Kl237+3ntLxn+9DpUI0mSJGk1tMTx9S5BWlQxTtJTP0JP/cgpjROBcigxnGmfClGbDlVLwWrToWujU0Fqaf5CbW3E4P/3pON5+FDk6TvCepchrSiD0SRJkiRJ8+ULi89ralm7OiRJkiRJkiRJkqRVFGN8NIRwK/CWGc2fCiH8AfDBGOPk0cYQwqXAfwOum9G3D3jnKpR2M/AKoGlquhP4VgjhPwF/F+Pss2ZCCAXgN4D3ABvnjPW2VajvjJTLBnbM3Ts6K23dunXW9MGDB+nr61uRALMf//jHx13fmaCvr2/WdFfXyqXZzR17JYyMjBiMJklaUWHj+YQ3/PmSfWJ1kvjqq2HPg2tT0++9h/Dv33TcfrFWhWyOENKJjnFkAAiEts7jr2TnlVCZIH7oT6FeO8WKV0A2l76TWGqBI/vXu5p192sjn6b/QDc3bnkPtZAnE+vcdPhdPG/sS+tdmiSd/i6+HPJF2HpxChONEWIjPdeUmiBXILR2EIf6YGwEQkjhqI06dPZMPy+2dqTn1EYDcvkUNFqZgLERYnkstQ8cgslyGhugUITxUTi8H+77bpo3UwiQyabrrk0pgDWTTfMq49B3MLXHmPr0bE31TIxCUyu0dUJ7d1rf+Ggav3tzClAd7oORIRgbSsvmCjB0JN3e9+hUfaXpmi57Blx2DQwPpPVVxtO8GKGlIwWstnWlgNbxEfjG59K6N22DzdvTvh0fhpHB1DY09RlAsQk6NqRlW9oJLe1AnLof0iX296Z9P3QkjX20tuZWGDyStrm9Gy6+nJArQPcmqNeIvY+n/Z4vpNdApea0bL2e2mpVyGTSPs1m0/XM20cOEI/uJ6Z+vyJOXTcaMHh4uv6WdqhNwoHdcHhfuk+fcAWcf3H68fkDu9Jx0dYNXT1puaPK42m/1ibTsh0b0kyITZMAACAASURBVDE5MpD2VS6f7sPMVIjtVH0hk0mv55paCe3d0NRCPLgH7r8bHvg+DPfPPp6y2VR/ozH/cVBqhtbO6f3OVL9MFto60ryBQ6nWYgk2X5iOs0IpLVsopuX6DqZjqrkdOrrT/Z7NQlMbtLan4N6Bw/8/e3ceZ9ld1wn/86u1u6v39JI0WToJwZAQNuMy4AMqKEYeZH1kBpwRQVScBR/hUXFhURllEJ8HBQcHWRwEZHBhGR1FeAgOZJAJwQlZYJIQkgnZOp2kt3R39fKbP051ddWt6u6quvfWrbr1fr9e59V9zj3n9/vdc3/3c6tOnfpWsnFLytk7m1N6163Na79xS7JlR/OaDI8277GHdyXjh1MPH0yOjKeMrErWb2rm3IkxHjua+oG3NOd4Nus3N18zpiZloJm3hx6Z/n6b+Pp48t9p/y/d3Wfqvp3a54x9Tmlu0cY1y/gWsk+n25vTPpm5fqp2pu5z8EDzfjh4oHlfP/xA817ZsKWZ30ePNPl1Yjl6pMmnaestj8/FwMDs7/NTWb22eT/PZt2mic+WI01+H9jbfLat3ZisWdfk1Oq1yWVXNu/3kVXJHV9LbvrS3PvvhpHRZPzwzO3DI02+DI80Yx1dlaQkd38j2Xx2k9cznKJQUOv8ON32U+27VNqeT3+nanu+bZym7ZLmh5yrk2yf3Hf/xDLlD7fMoe2a5EBdnX1lLHuzJnszln1ZM7nszdiMbUeO1mw5dE8GjhzMAwObc8Po5bl+1eNPMd4ze+Kh/5GRejhD9WgG67EM5cS/x1JSs2twS/YMbMhQjubm0ccuuB9oxy3393oE0HkKowEAADA/m7b3egQAAAAAAADQSb+U5PIkV02sDyf5/SS/Vkq5Lsm+JBcleXKm/5bAeJLn11qn3L3fGbXWu0opL03y0SQTvyWZdRPj+nellC8nuTvJ8SRnJ7kyydpZmvqVWut/7fT4YKl7ylOeMmPbtddem2c961ltt33ttddOW1+9enWe+MQntt1ur5VT/gLT/I2Pj595p3mqJ35hGQAWURkeSd7196nv+83kxi81v8S+Zl3zy+lHx5tfJN+zO9m/p/ll7D0PLLyvn3xj8vyfmdu+Q9N/ybusm1+B0/LS1ybf94Lk5i+n3vSllHMfnaQmD+9OPfxIcvO1yT23N4VLtpzTFPLYuC1lx87meW7ZkWx7VFPQ48h4UzxjYKI4xcatTdGKo0eaogHHjzeFNR6892RhjPWbm1/KX7MuZWR02tjqF/4q9Qv/ObnvfzV93fSlpqjAngeac3/2BU3BkgN7ThbBGBxufiF+aLh5LR5+INn/8LzOyVLyMw+/Oy/d++HcMHpZHnv469l4fE+vh9R7o6ub13j/nmaObd3RvPcOHmiKOAAr22XfmfIHV6cMDp5535yyvEhHj60HDzRFyY4fa4p7bdjSfF2xwi303HfiikXnrnp0R+v4pq7Xwweb/wwOTSuOmyT1wN5k9z3JkSPJ5m0pm7Z1faynMpdzfKZ9ynNe3lwD2r+nKZ47ONR8bTe2fsbXjbBc1WPHknu/2RQrW702ueV/NN9PXfS45nPjvjuT9WelbNqa+si+5PCh5v0wurr53mpgIGXz9tSjR5vvi8bWT36PWMcPJ1/7clNQ7MLLJnosKaOrFjbWWpMbvph867bm+7nVY82YR0ab7wUHBpvvk4eGJ4tXZmAwWbsh2bil+V5u9Vhy/11NQcXR1c2+j+xrCrQ9eF9TnG3jlpPFFA8fbL7OP/v8lA3NHzqpD9yTfPWa5nvJx313ytSilKwY6yeWhfyZmhPvl/27bsuRkbUZ2rw1I8cPZfTYoTxy4HDuGl+XgbF1Gd+zN2vGH865Zw2l1GMZGD+Ysmlrc/1h7DHNfB9Zlex7sCnat2pNM6dPFEfdd19zvePwzfnmdV/Pn9y0IffWTdkxciAbBg9n37Hh7Ds2kvvH1+Ta/dvz1QNbU5f8VyksJ7ft6vUIoPMURgMAAGCmrec2f3XqoZYy8SOjyXc+szdjAgAAAAAAgC6otR4rpfxokj9K8uIpD21L8kOnOOz+JD/ezaJjtda/LKU8N8l7MvHH1CesTvI9Zzj8QJJfqrW+o1vjg6Xs/PPPz/nnn58777xzctunPvWpjhRG+7u/+7tp69/1Xd+VkZHl98vNW7Zsmbb+4IMP5lGPWsivFM3e9t13350kWbVqVR555JGOFl4DgMVU1m1K+Tdvm9O+9fjx5hfZ9+9piqHU48l5lzS/rP7IgWTHhSlr1qbee0fyxb9tfoH2in+S8qiLu/wsZio7Lkp2XJTyjP9r+vZudLZpa5Ir5rRreeqzU5767La7rPffldx9e1Og7djRZnloV+rtNzav0eq1TfGAiQIjGRpullVjzes2uropxnbsWHLsaOo3v5Zy7qNTDx2YLIhXLrys+YX/E0XgNpyVPHBPUkpTxG10dfML08MjzS/873uoKRQ3PJqctb0pOHf0aFMU4f5vNfufe3FyYG/WHxnPU8YPNX0NDjW/WL1hSzK2bqLgwEThgYHBpnDCoUeacSRN20fGmzGMH0oOHZwoXHe4KVB38ECz35q1zfEDA0lKcnB/MydH1zRtD48mIyPJ0Ehz7+iJIgV7H0q+dm2yZ3fqoUeaQj/nPSZZt7E5H+OHmuWBe5rCBY9+fPLQrua81tqcgxNFD46ON30myV23Jvv3Jhs2N8dt3JKUgaYQ2qo1KQMDp3699+9p2l491jyXq/889SufS47Xpo/hkeb8jq5uiiisWpNsO68psLZmfVNI78jhk3Pl2LHk4IHUv/9Y89o9sr8Z84nzVQaStetTrnhqsv28Zk4dO3ry34OPpD50f8rGrc25O3igKWpxcH9z/k+0c2BP8vDu5jW74NLknjua12jz9qbAxYYtyeBQ6pHDzfMbP3Ty2InxlDKQ+sje5nU5fqyZZ+s2J2vXN/NvZFXK6rHmvA8ONoUskmbfgcFm3h/cn+zfk/rVa5JHXZxy0eMmCg0+3BTaSW2KbBx+pNn3kf1NkZodO1PO3pkMjzSFefbvaR7b9qiU9Zua99PAYPMaHDvWjCc19b9/JvnMf5r+Ig4OJWdNFGLctLUplHFw/8TrurbZtv28iRd8omjy+KFmXp91dsrY+tQ9u5tjJopFlo0T3/McGU/GD6c+eG8zF1KasRzc37x3Vq1O2X5+6u57k6/+t+Tm/z6/wJl4XkmasR4Zb4p9JM28WzXWzM39Dzf9DQ6dfD3H1ic7H9sUobzthuY9tPOxzRw7fqzZ98H7ki/+zcT7dt3Jtudr89nNa3hg78KOX4oGB5MnPi3l1z8056Joi6WsHksePbfPPjiT0xUAKmPrmyzpI6WU5uuKEzZt7d1goAvK4GAy9XvAy75j+g4XXHpy3zXrms//E7acc/KxoaHme5CpbY+MJo+f+UdDFjzWUpIr/kmztOPE13EnzLOIY9lyTvJ9L2xvDKxoJ94v66a9Z4aTrMvYpuTbTmzavjHJxhnHzzC6Y/r6+s3N9zJTXHjx4/JrZ2jm0JGakcFkYKDkjt01f/blmr+7qebevcna0eSsseT+fcmBw8ldDzfrG9ckj9lesnFN8tW7aj5/68n2HrM9+fYLSr56V80Nd0/v6zt3JoMDyQP7k90HktXDyc6zktHh5KEDyb7DybHjyaEjTZ8DJVk13Cyb1jT/JsnYSNPGbbuSi7YmOzYkR48nDz/S7HPdyR/LpZTk3I3Nv0eONf2OH03GRpM1I8neg8nho9PHOTyYnL85+ebuZjwnnLMh2bH2SEZuuTY1JfsG1mXf4LoczVBG6+FsOfZABurxjNUD2XZ0Vw4MjOXhgQ3ZeeSOlNQMpObSw19LTcn9Q1tTUrPu+P7sHViXvQMbcqQMZSA1ZWI5UNbkWBnMjiN3Z8ux3TlcRrNvYG2OlaEcK4O5ZvV3Z9vR+3PloetysKzKhuN7M1SPZuz4gQznaPYOrMv9g1tTy0BGjx/K/omxHi8D2Xx0d/YNrs8fbnrl5PMbrEez5djubBg4mNF6OAP1eIaPH87WI/fn9qHzc7CsTi0l/2vo3Kyqh3K4jGZ1PZiakk3HHs6jx2/NJUduy9Mf/WNpbiWA/qEwGgAAADOUgYHU57w8+Y+/Pf2BH3hJ88MzAAAAAAAA6CO11v1J/mkp5c+SvCbJd59i1weTfCTJG2qtXf+by7XWvyqlXJbkp5O8IsmZKibcl+QDSd5Ra72j2+ODpeyHfuiH8h/+w3+YXP/ABz6Q3/7t387w8PCC29y1a1c+8YlPzOhnOTrnnHOmrd9000254orO/NL29u3bJwujHTp0KHfeeWcuuOCCjrQNAEtZOVGsaOOWZjmh9ZfVz74ged5PLfLoVpay7dwZv5ScLLzwW2n5t6Muflx7x194WWfGMVfbzp0s9jPn8zHLazHDzscueEhl7YbpG5754pRnvnj2nefT7rNesvBjz7DeTlvzfbwT/XRyDOXZL0ve+IHUR/YnI6NNkcIOaHeMUx+v44eTe25vCrolTbGzA3tOFiYZP5xs3ZFyzs4Z7dRam0KFQ8MzCkTXWlNKafYZP9w8/wUUka4P3JNc89fJ+MHmj2FvP695nw0MNsXChkdPFpBLmrEMNwW967FjTVG4h+5vCjgceqQpvjY41LQzNlHg8PDBZp99DyUXXZ6sWZ8yONgcf/3nU//mg815WbU6Zdt5E8eub/ovAyeLCKY2+20+uykcNzTUFIzb+2DT7923p+76VlP4adO25jmU0hSTGxqeKCK4rykId9bZTZHILec0Bfe27GgKxgAAwDK0avjk9wIXnFXymh8sec0Pdqbtg+NNcbR1o8m3nZ1F/eM1d+6uTVG0TTP7PXqsZnCg2X7seM2ufU2xtGM12bwmWbsqGRxojnnoQM0D+5tCaaPDJfXo8dTve8aiPY9ue+e9r87+MpZDA6ty1rHdc/6++sR3erPtX7ZdmeRJnRkgLBEKowEAADCr8pNvTEbXpH7qg81finvac1N+8k29HhYAAAAAAAB0Ta31z5L8WSnlwiRPTrIjyViSe5PckeQLtdbxBbS74LvNa60PJvmtJL9VSjk3ybcnOSfNnywvSfYk2ZXkK7XWW0/ZEKwwr371q/Pud7+7+YXzNEXN3ve+9+WnfmrhRUje/va358iRI5PrY2NjeeUrX3maI5aupz71qfnoRz86uX711VfnxS9uv3hEkjzlKU/JV77ylcn1T33qU8v2PAEAAN1R1qzt9RBOqYyMJhdcurBjS0kmipDN+tiJf0dXLXx8W85JfuQVCzt2cDBZu6FZkqZ45/bzpu80tDZZszbZtHX245/09JQnPX1B/U+aUjBx8Uo0AADAyrB6pOQ7dvam7/PPOvVX+EODJx8bHCg5e8Mpd82msZJNYyfXy9Bw6tqNyf6HOzHMJWFtPZC1xw7M65jTfv/0zZuTb1MYjf4y0OsBAAAAsDSVUlL+xS9m4E+uz8CHbsjAz7w5ZUh9bQAAAADoqme/bPbtq8dm3w4AdEWt9fZa65/XWn+/1vrbtdb311o/u5CiaB0e11211o/XWt81Ma7fqrX+Qa31o4qiwXSXXXZZrrrqqmnbfvEXfzH33Xffgtq76aab8ta3vnXatp/4iZ/I5s2bFzzGXnrmM585bf1DH/pQ9u3b15G2n/WsZ01b/6M/+qOOtAsAAAAAAMAKtXNhBaxXinr7Tb0eAnScwmgAAAAAAAAAAEtEecGrZt/+8tcv8kgAAGD5e9vb3pY1a9ZMrj/88MN5wQtekP3798+rnV27duVFL3pRxsdP1kY855xz8vrXL9+v0y+//PI8/elPn1zfu3dvXve613Wk7auuuioXX3zx5PqXvvSlvPe97+1I2wAAAAAAAKw85ap/3ushLG133NzrEUDHDfV6AAAAAAAAAAAANMpjnpj6E7+avO83T278zh9Inv/TvRsUAAAsU5deeml+//d/P694xSsmt11zzTW56qqr8uEPfzjnnnvuGdu45ZZb8sIXvjA333zylwkGBgbygQ98IFu3bu3KuBfL61//+jzjGc+YXH/nO9+ZCy+8MK95zWvmdPyePXsyOjqaVatWTds+NDSUX//1X89LX/rSyW2vetWrsnHjxrzgBS+Y1xg//elP56KLLspFF100r+MAAAAAAADoI895Rcq+h1P/0+8lD96XlJJsPz85+4Lk7m8kA4PJhrOSoeHkyHjz+DdvTradm5z/mGTtxmTN2uSBe5KH7k+OH09WjyXrNycH9iaP7E/2PJAcPtg8tn5zctb25K7bknu+2YzhrHOafY4emT62gYHmmNkMDjaP1dq5czE0nIytb577zsem7Hxs8tgrO9c+LBEKowEAAAAAAAAALCEDL/+11Kc9L/nqNcnOxyZX/JOUoeFeDwsAAJall7/85bnuuuvyzne+c3Lb5z//+Vx22WX55V/+5bz0pS/NeeedN+O4W2+9Ne9///vzO7/zOzl8+PC0x97ylrdMKyi2XH3/939/XvOa1+Rtb3vb5LbXvva1+dznPpc3vOEN+fZv//YZxxw/fjz/8A//kD/90z/N+973vlx//fXZuXPnjP1e8pKX5DOf+Uze+973JknGx8fzwhe+MC95yUvy8z//87O2nSTHjh3L9ddfn0984hP5yEc+kptvvjmf/exnFUYDAAAAAABYwUopyUtfm7zkNcme3cn6zSkDA13vt9aa1DprX/X48eT4saYo25HDTYG1gcGmGNrAYDI8mjIymnr4ULLvwWTjtpShptRT3b8n+fwnm0JtQ8PJ8EgyPJqMjCZDI8mq1U3xsxNF1dZvbgq/bdqWMjLa9ecNS4HCaAAAAAAAAAAAS0x59BXJo6/o9TAAAKAvvOMd78imTZvy5je/ufnlhST79u3L6173uvzyL/9yLrvsspx33nnZtGlTdu/enTvuuCNf//rXZ7QzPDyct7/97XnVq1612E+ha97ylrfkzjvvzEc/+tHJbZ/85CfzyU9+Mjt27MgVV1yRs846K4cPH869996b66+/Pvv27ZtT2+9617vy0EMP5S//8i8nt33oQx/Khz70oWzdujVPeMITctZZZ2VgYCB79+7N3XffnZtvvjmHDh3q+PMEAAAAAABg+SulJBu3LG5/pcz+2MBAcqJg2ujqZpltv9FVyeiO6dvWbkh+6Mc6OlboNwqjAQAAAAAAAAAAAAB97Td+4zfy9Kc/PT/7sz+bW265ZXJ7rTU33nhjbrzxxtMe/+QnPzl/+Id/mCuvvLLbQ11Ug4OD+chHPpLLL788b37zm3PkyJHJx+6+++7cfffdC257eHg4f/7nf563vvWtecMb3jCt4NmuXbvy6U9/ek5tjI2NLXgMAAAAAAAAACw/A70eAAAAAAAAAAAAAABAtz3zmc/MTTfdlA9+8IN5xjOekaGh0/+N6dHR0TznOc/Jxz/+8Vx77bV9VxTthFJK3vCGN+TrX/96XvnKV2bz5s2n3X/t2rV53vOel4997GM5//zzz9j2L/zCL+T222/PL/3SL+WCCy4443jWrVuXH/7hH8473/nO3HPPPfmO7/iOeT0fAAAAAAAAAJa3Umvt9Rigp0oplye54cT6DTfckMsvv7yHIwIAAAAAAAAAWJgbb7wxj3vc46Zuelyt9cZejQcAOn2P3tGjR3PLLbdM23bJJZecscAVzObAgQP58pe/nFtvvTW7du3K+Ph4RkdHs3379jzmMY/Jk5/85IyOjvZ6mIvu+PHjue666/K1r30tDzzwQPbv35+xsbFs27Ytl156aR7/+MdneHh4we3ffvvtue6667Jr16489NBDGRgYyLp167Jjx45ceumlueSSSzI4ONjBZ9RbcgsAAAAAAAD6g/vzFo+fptJRpZThJE9Ncn6Sc5LsT3J3kq/UWr/Zw6EBAAAAAAAAAAAAwKSxsbE87WlPy9Oe9rReD2VJGRgYyJVXXpkrr7yyK+1feOGFufDCC7vSNgAAAAAAAADLn8JoK1gp5U+TvLhl8x211p0LaGtrkjdNtLf5FPtck+R3a61/Pt/2AQAAAAAAAAAAAAAAAAAAAAAA6G8DvR4AvVFK+ZHMLIq20LauSnJDklflFEXRJjwlyZ+VUv6klDLWib4BAAAAAAAAAAAAAAAAAAAAAADoD0O9HgCLr5SyMcm/71Bb35vkY0lGpmyuSa5L8o0kG5M8KcmWKY+/NMn6Usrzaq3HOzEOAAAAAAAAAAAAAAAAAAAAAAAAlreBXg+Annhbkh0T/9+30EZKKecm+YtML4r2hSSX11qvrLX+aK31B5Ocm+TVSY5M2e85SX5zoX0DAAAAAAAAAAAAAAAAAAAAAADQXxRGW2FKKc9M8vKJ1aNJXt9Gc29KsmnK+jVJnllrvXnqTrXWw7XW30vyoy3H/3wp5YI2+gcAAAAAAAAAAAAAAAAAAAAAAKBPKIy2gpRSxpK8e8qm303yjwts65IkPz5l03iSl9VaD53qmFrrx5L88ZRNo0nesJD+AQAAAAAAAAAAAAAAAAAAAAAA6C8Ko60sv5Vk58T/v5HkjW209ZIkg1PW/6LWesscjntLy/qPllJWtTEOAAAAAAAAAAAAAAAAAAAAAAAA+oDCaCtEKeUpSf7llE0/XWs92EaTz29Zf99cDqq13pzkH6ZsGkvyg22MAwAAAAAAAAAAAAAAAAAAAAAAgD6gMNoKUEoZTfLenHy9/7jW+uk22js7yROmbDqa5AvzaOLqlvWrFjoWAAAAAAAAAAAAAAAAAAAAAAAA+oPCaCvDG5N828T/dyV5TZvtPa5l/fpa64F5HH9Ny/rlbY4HAAAAAAAAAAAAAAAAAAAAAACAZU5htD5XSnlyktdO2fRztdbdbTZ7Wcv6rfM8/rYztAcAAAAAAAAAAAAAAAAAAAAAAMAKozBaHyulDCV5b5KhiU1/U2v9UAeafnTL+p3zPP6OlvWzSimb2hgPAAAAAAAAAAAAAAAAAAAAAAAAy9zQmXdhGfulJE+Y+P+BJK/qULsbW9bvn8/Btdb9pZRDSVZN2bwhyUPtDqyUsi3J1nkednG7/QIAAAAAAAAAAAAAAAAAAAAAANAehdH6VCnlsiS/OmXTr9Vav9mh5te2rB9cQBsHM70w2rqFD2ean03yhg61BQAAAAAAAAAAAAAAAAAAAAAAwCIZ6PUA6LxSykCS9yQZndj05SS/18EuWgujHVpAG63F1FrbBAAAAAAAAAAAAJimlDJjW621ByMBmJvjx4/P2DZblgEAAAAAAADQUBitP706yXdP/P9okp+stR7rYn8LuaPIXUgAAAAAAAAAAADAvAwMzLz19ciRIz0YCcDcHD16dMa22bIMAAAAAAAAgMZQrwdAZ5VSLkrym1M2/W6t9R873M3+lvXVC2ij9ZjWNhfqD5J8dJ7HXJzk4x3qHwAAAAAAAAAAAOiSUkpGRkYyPj4+uW3//v1Zs2ZND0cFcGr790+/TXpkZCSllB6NBgAAAAAAAGDpUxitj5TmJ+TvTnLi7p5vJHljF7pasoXRaq33J7l/Pse4sQAAAAAAAAAAAACWj3Xr1mX37t2T63v37s3WrVvdDwgsObXW7N27d9q2devW9Wg0AAAAAAAAAMvDQK8HQEe9Msn3T1n/6VrrwS70s6dlfet8Di6lrM3MwmgPtzUiAAAAAAAAAAAAYEVoLSp05MiRfOtb30qttUcjApip1ppvfetbOXLkyLTt69ev79GIAAAAAAAAAJaHoV4PgI5605T//3WSW0spO89wzNkt60OzHHN3rXV8yvotLY9fMMfxnWr/B2utD82zDQAAAAAAAAAAAGAFWrVqVYaHh6cVG9q3b19uu+22rF+/PmvXrs3Q0FAGBvz9YGBxHT9+PEePHs3+/fuzd+/eGUXRhoeHMzo62qPRAQAAAAAAACwPCqP1l9VT/v/DSW5fQBuPmuW4JyX5xynrN7c8/uh59nFRy/pN8zweAAAAAAAAAAAAWKFKKdmxY0fuvPPO1Fontx85ciS7d+/O7t27ezg6gNmdyK5SSq+HAgAAAAAAALCk+VN4LMQNLeuPL6WsmcfxTz1DewAAAAAAAAAAAACntGbNmpx//vkKDAHLQikl559/ftasmc8t1wAAAAAAAAArk8JozFut9Z4k10/ZNJTke+bRxPe2rP+XdscEAAAAAAAAAAAArCwniqMNDw/3eigApzQ8PKwoGgAAAAAAAMA8DPV6AHROrXXjfI8ppXxvks9O2XRHrXXnHA79yySPn7L+E0k+NYf+Lk3yXVM2HZjLcQAAAAAAAAAAAACt1qxZk4svvjiHDx/O3r17s2/fvoyPj/d6WMAKNzIyknXr1mX9+vUZHR1NKaXXQwIAAAAAAABYNhRGY6E+mORXkwxOrL+glHJJrfWWMxz3iy3r/6nWeqjjowMAAAAAAAAAAABWhFJKVq1alVWrVmXbtm2pteb48eOptfZ6aMAKU0rJwMCAQmgAAAAAAAAAbVAYjQWptd5SSvnjJC+f2DSS5P2llGecqtBZKeW5SV42ZdN4kjd1daAAAAAAAAAAAADAilJKyeDg4Jl3BAAAAAAAAABgyRno9QBY1t6Q5KEp609J8ulSyqVTdyqljJZS/nWSj7Yc/7Za6x1dHiMAAAAAAAAAAAAAAAAAAAAAAADLwFCvB8DyVWu9q5TygiR/m2RkYvNTk9xUSvlykm8k2ZDkyUm2thz+n5P82mKNFQAAAAAAAAAAAAAAAAAAAAAAgKVNYTTaUmu9upTy/CTvz8niZyXJlRPLbD6c5JW11mPdHyEAAAAAAAAAAAAAAAAAAAAAAADLwUCvB8DyV2v96ySPS/KuJA+dZtcvJnlRrfUltdYDizI4AAAAAAAAAAAAAAAAAAAAAAAAloWhXg+A3qq1Xp2kdKCd+5O8qpTy6iRPTXJBkrOTHEjyrSRfqbXe3m4/AAAAAAAAAAAAAAAAAAAAAAAA9CeF0eioWut4ks/2ehwAAAAANQ/O7gAAIABJREFUAAAAAAAAAAAAAAAAAAAsLwO9HgAAAAAAAAAAAAAAAAAAAAAAAACAwmgAAAAAAAAAAAAAAAAAAAAAAABAzymMBgAAAAAAAAAAAAAAAAAAAAAAAPScwmgAAAAAAAAAAAAAAAAAAAAAAABAzymMBgAAAAAAAAAAAAAAAAAAAAAAAPScwmgAAAAAAAAAAAAAAAAAAAAAAABAzymMBgAAAAAAAAAAAAAAAAAAAAAAAPScwmgAAAAAAAAAAAAAAAAAAAAAAABAzymMBgAAAAAAAAAAAAAAAAAAAAAAAPTcUK8HAEvAyNSVW2+9tVfjAAAAAAAAAABoyyz3PYzMth8ALCL36AEAAAAAAAAAy5778xZPqbX2egzQU6WUH0ny8V6PAwAAAAAAAACgC55ba/1ErwcBwMrlHj0AAAAAAAAAoE+5P69LBno9AAAAAAAAAAAAAAAAAAAAAAAAAACF0QAAAAAAAAAAAAAAAAAAAAAAAICeK7XWXo8BeqqUsiHJ06ds+l9Jxtto8uIkH5+y/twkt7XRHsB8ySFgKZBFQK/JIaDX5BDQa3IIWApkEdBrKzWHRpKcN2X9c7XWPb0aDAC4Rw/oQ3II6DU5BPSaHAJ6TQ4BS4EsAnpNDgG9tlJzyP15i2So1wOAXpsIl090qr1SSuum22qtN3aqfYAzkUPAUiCLgF6TQ0CvySGg1+QQsBTIIqDXVngOfaXXAwCAE9yjB/QbOQT0mhwCek0OAb0mh4ClQBYBvSaHgF5b4Tnk/rxFMNDrAQAAAAAAAAAAAAAAAAAAAAAAAAAojAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8pjAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8pjAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8pjAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8pjAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8N9XoA0Id2JXlTyzrAYpJDwFIgi4Bek0NAr8khoNfkELAUyCKg1+QQAPQnn/FAr8khoNfkENBrcgjoNTkELAWyCOg1OQT0mhyiq0qttddjAAAAAAAAAAAAAAAAAAAAAAAAAFa4gV4PAAAAAAAAAAAAAAAAAAAAAAAAAEBhNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnhno9AGYqpQwmeXSSy5LsSLIhyeEkDyW5Lcm1tdYDHe5zOMlTk5yf5Jwk+5PcneQrtdZvdrKvxVJKuTzJE5NsTTKa5N4kdyX5Qq31UC/HtphKKZuSXJ7kkiSbk6xK8nCSXUm+XGu9rYfDm6GUcmGa121HkrVJ7klyR5Jraq1Hejm2lUQOdYYcasghFkoWdYYsasiiU/ZjfpyGHOoM86yx3HKIpUEOdYYcasih6Uop56U5F+cm2ZJkdZLxJHuS3JnmnOzq3QiXBjnUGXKoIYdYKFnUGbKoIYtYCDnUGXKoIYdmZ34AveAzvjNkeGO5fca7N2ZpkEOdIYcacoiFkEOdIYcacuiU/ZgfpyGHOsM8ayy3HGJpkEOdIYcacmg69+fNnSzqDFnUkEUshBzqDDnUkEMshBzqDDnUkEOzW9bzo9ZqWQJLmsD8uST/Oc039/U0y9Ek/yXJszvQ79Ykf5Bk92n6+0KSF7bZz0VJXpzkrUmuTrK3pY9vdug8rkvyK0m+dZrnszfJB5Jc3MPXu2vnI8lwkmcleUeSG84wl+rEufr1JGf3+D3woiTXnGacuyfm6pYFtH2mc3CmZWcvz80ivgZyqDPnUQ7Joalt7uxABk1dXtbLc7RIr4Ms6sx5lEWyaNnPjx6+BnKoM+dxWcwzOdSz+TGW5HuS/N9JPpjkfyY53tLXy3p1Hnq9yCE5JIe6dj4uSfJvk3w2zQ81znQ+apLrkvzLJKO9Oic9eh3kUGfOoxySQ7O1P5fsOd2ys1fnpgevhSzqzHmURbJoars7O5BDU5eX9eocLdLrIIc6cx7lkBxa9vPDYrH01+IzfmVluM/4WcftHr0eL3JIDskh9+j1epFDckgOuT+v14sckkMrOYcWcX64P+/050cOdeY8yiE51Nq2+/Pmd75kUWfOoyySRbO1P5f8Od2ys1fnZpFfBznUmfMoh+TQ1HZ3diCDpi4v69U5WqTXQQ515jzKITm07OfHGZ9HrwdgqUnyoTY+0D6ZZPsC+70qyX3z6OtPkozNo/3vTfK3Z/hQ6NgbM8l3panCOdfncyDJqxbxde76+Zg4Bw8ucC49lOTHejD/1yb58DzGeW+SZ82zj4W+v04sOxf7vPTgdZBDckgOdSGH0vlvZF+82OdnkV8LWSSLZFEXsmg5zY9eL3JIDq3EHFrM+ZHmwvFX01yQPlNfL1usc7CUFjkkh+RQ9+ZHkp9s4/319STftVjnpJeLHJJDcqi786ON99eJZedinZdeLrJIFsmirp2PnR3IoalL316vjhySQ3Joxc8Pi8XSn4vP+JWR4T7jTzlm9+gtgUUOySE55B69Xi+RQ3JIDrk/r8eLHJJDKzGHFnN+xP15czlHckgOyaEuzY+4P28+50oWySJZ1MX50cb768Syc7HOS68WOSSH5FDXzsfODmTQ1MW1ajk0l/egHJJDy3J+zGcZCkvBY06x/VtJbkkTrkNpqv49IcnAlH3+zyR/X0p5eq313rl2WEr53iQfSzIyZXNNU2X9G0k2JnlSki1THn9pkvWllOfVWo/PoZsnJvnBuY6pHaWUZ6apBjra8tAdSa5P8yY8N82bd3jisTVJ/qCUMlBrfeciDHMxzsfWJJtm2T6e5uL2vWkqpp6V5MqJf0/YmOQDpZRttdbf7fI4kySllMEkH0nywy0P7UrylYmxXpxmLpaJx7Yn+Xgp5Zm11s8vxjhXCDnUJjk0SQ51zyNpKlr3M1nUJlk0SRbN3s9ymB+9JofatEzmmRyabtHmR5KXJNmwSH0tV3KoTXJokhw6s5rmIv+taX6w8Eiav5h7YZLLc3J+JM178zOllGfXWj+32ANdZHKoTXJokhyiHbKoTbJokizqnn6/Xi2H2iSHJsmhWSyT+QH0J5/xbVomGe4zvsUyuzem38mhNsmhSXKoe1zzkEOnJYcmyaHZ+1kO86PX5FCblsk8k0PTuT9vaZFDbZJDk+TQmbk/79RkUZtk0SRZxELJoTbJoUlyqHtcq5ZDpyWHJsmhWSyT+TF3va7MZqlJcm1OVtG7Lsm/SnLxKfZ9VJI/zMzqe/81SZljf+dmZtXDzyd5bMt+o0n+TZo3/dR9/+0c+/m5WcZZkxxKc0GjIxUL01RPba2KeGuSH5hl301Jfr9l32Oz7duF17nr5yPNB/mJNvYleU+SZyRZPcu+Jcnz04RX65i6fj4mxvDWln7HJ+b/SMt+lyW5pmXfB5KcM8d+ph73xYk5M59laDHORy+XyCE5JIe6kkNpvvE6U8acavl8S3/vX4xz0sslskgWyaKufU20XOZHrxc5JIdWYg4t1vyY6OvhU/R11yyPvazbz30pLnJIDsmhrs6PVyT5WpqvvZ6dZNNp9t2Y5OfT/ABkav/fSrKh2+ekl4sckkNyqOtfD01ty7XqU58nWSSLZFF3zofr1XM/V3JIDsmhFT4/LBZLfy4+41dGhvuMn3W87tFbIkvkkBySQ13JobjmMZ/XQg7JITnUpa+Hlsv86PUih+TQSsyhxZofE325P+/M50gOySE51L354f68uZ8rWSSLZFF3vyaa2pZr1bOfIzkkh+RQd86Ha9VzP1dySA7JoRU+P+b1nHo9AEtNkv+eptrelfM45mdnmfD/dI7HvqfluC8kWXWa/Z83yxvrgjn083MTof+VJO9O8lNJnpymYuD3dvCN+eGWtm5Jsu0Mx/xCyzE3Jhns8uvc9fMxEdz3JXlNkrE5HnNWkpta+r85c/xCoI3zcVFmflHw3NPsvzozf9D4rjn2NfWYq7v5vJbrIofkkBzqbg4tYGyPSnK0pa//o5vnYyksskgWyaLuZdFymR+9XuSQHFqhObQo82Oir4fT/KWFv0ryponztH3isatb+npZN5/3Ul3kkBySQ12dH8MLOOaJSfa3jOEXu3k+er3IITkkh7r+9dDUtq7u5vNazosskkWyqLtZtICxrbjr1XJIDskh88NisfTn4jN+ZWS4z/gZ/bpHbwktckgOyaHu5tACxuaax9yOkUMn+5FDJ/uQQ8t0fvR6kUNyaIXmkPvzltAih+SQHHJ/3lJYZJEskkXu0ev1IofkkBxyf16vFzkkh+SQ+TGv59TrAVhqkuxc4HF/1jK5/moOx1zS8sF4OMklczju/S19vXcOx2w61QdCB4PqojQVB6e29T1zPPb/bznu5V1+nRfjfGyda2C3HPeEWc7jd3T5fPxxS3/vm8Mxj5mYsyeOOZLkojkcN7Wfq7v5vJbrIofkkBzqbg4tYGy/0jK2/9nNc7FUFlkki2RRd7JoOc2PXi9ySA6t0Bzq+vmY0t4p/4Ju3Hh14jzsXOBxckgOtbYjhzo3vl9vGcMXF3sMi/x8dy7wODkkh1rbkUOztze1rau7+byW8yKLZJEs6s75aGNsK+56tRySQ3LI/LBYLP25+IxfGRnuM35Gn+7RW0KLHJJDcqi7ObSAsbnmMffj5JAcam1HDi3T+dHrRQ7JoRWaQ+7PW0KLHJJDcqg756PN8a2o+/MmnvPOBR4ni2RRazuyaPb2prZ1dTef13Jd5JAckkPdOR9tjM216rkfJ4fkUGs7cmiZzo/5LAOh52qt31zgoe9sWf++ORzzkiSDU9b/otZ6yxyOe0vL+o+WUlad7oBa60O11kNzaLsdz06mzeMv1lo/P8djf6dl/Sc6M6TZLcb5qLXuqrUeWMBx/yNJ63mby3xakFLK6iQvatncOsdmqLX+zyQfm7JpKM2cpk1yqC1yaHofcqhNpZSSmXPhPZ3sY6mSRW2RRdP7kEXTLZv50WtyqC3LZp7JoRl9Lsb8ONHXPYvRz3Imh9oih6b3IYc6569b1h/dk1EsEjnUFjk0vQ85xILJorbIoul9yKI2rdTr1XKoLXJoeh9yaLplMz+A/uQzvi3LJsN9xp+0lO+NWankUFvk0PQ+5FCbXPOYNzkkh1r7kEPTLZv50WtyqC3LZp7JoRl9uj9vCZFDbZFD0/uQQ52zou7PS2RRm2TR9D5kEQsih9oih6b3IYfa5Fr1vMkhOdTahxyabtnMj/lQGG15+0rL+upSysYzHPP8lvX3zaWjWuvNSf5hyqaxJD84l2O77Gkt6387j2M/k2R8yvpTSinntD+kZat1Pu3oYl/PSrJmyvp/q7V+bY7Hts7ZF3RmSCyQHJJDnSSHGk9PcvGU9aNp/mIdpyaLZFEn9WMWmR/dJ4fMs05azByif8ghOdRJcmi6B1vW1/VkFEufHJJDnSSHWChZJIs6SRY1XK+eHzkkhzqpH3PI/ACWK5/xMryT+vHn0XSfHJJDnSSHGq55zI8ckkOd1I85ZH50nxwyzzqpH6+90n1ySA51khyazv15cyeLZFEnySIWQg7JoU6SQw3XqudHDsmhTurHHOrL+aEw2vJ2dJZtI6fauZRydpIntBz/hXn0d3XL+lXzOLZbzm1Zv2GuB9ZaDye5dcqmgSyN59QrrfPplHOpA36oZf3qeRz7XzN9rE8qpWxve0QslBySQ50khxqvaFn/q1rrvR1svx/JIlnUSf2YReZH98kh86yTFjOH6B9ySA51khya7oKW9bt7MoqlTw7JoU6SQyyULJJFnSSLGq5Xz48ckkOd1I85ZH4Ay5XPeBneSf3482i6Tw7JoU6SQw3XPOZHDsmhTurHHDI/uk8OmWed1I/XXuk+OSSHOkkOTef+vLmTRbKok2QRCyGH5FAnyaGGa9XzI4fkUCf1Yw715fxQGG15e3TL+tEkD5xm/8e1rF9faz0wj/6uaVm/fB7HdsvmlvWH53l86/5XtDGW5a51Pt3Txb5a5+J/m+uBE3P2qy2bl8JcXKnkkBzqpBWfQ6WUDUle2LL5PZ1ou8/JIlnUSf2YReZH98kh86yTFjOH6B9ySA51khya7l+0rH+2J6NY+uSQHOokOcRCySJZ1EkrPotcr14QOSSHOqkfc8j8AJYrn/EyvJP68efRdJ8ckkOdtOJzyDWPBZFDcqiT+jGHzI/uk0PmWSf147VXuk8OyaFOkkPTuT9v7mSRLOokWcRCyCE51EkrPodcq14QOSSHOqkfc6gv54fCaMvbi1rWr621Hj/N/pe1rN86616ndtsZ2uuF8Zb10Xke37r/UnhOi66Usj7JD7Rs/lIXu3xsy/pizsXzSynvK6XcWEp5qJQyXkq5b2L9T0opP1VKaQ18Tk0OyaGOWGE5dDr/LMnqKev3JPkvHWq7n8kiWdQRfZxF5kf3ySHzrCN6kEP0DzkkhzpCDk1XSvmXSX5syqajSf6/Hg1nqZNDcqgjVlgOuVbdebJIFnXECsui03G9ev7kkBzqiD7OIfMDWK58xsvwjujjn0fPxnWPzpJDcqgjVlgOnY5rHvMnh+RQR/RxDpkf3SeHzLOO6ONrr3SfHJJDHSGHpnN/3rzJIlnUESssi1yr7iw5JIc6YoXl0Om4Vj1/ckgOdUQf51Bfzg+F0ZapUsraJK9o2fyXZzistWLhnfPs9o6W9bNKKZvm2Uan7W5ZP2eex7fu/21tjGU5++kka6as70mXqutPfJPY+o3ifOdi6/6XzOPYC5O8LE0Ib0wynGTbxPpLk/xhkjtLKf/vxPuMU5BDk+RQZ6ykHDqd1vfUH9daj3ao7b4kiybJos7o1ywyP7pIDk0yzzpj0XKI/iGHJsmhzljROVRKGSulfFsp5cdLKZ9L8o6WXV5Xa72+F2NbyuTQJDnUGSsph1yr7iBZNEkWdcZKyqLTcb16HuTQJDnUGf2aQ+YHsOz4jJ8kwzujX38ePRvXPTpEDk2SQ52xknLodFzzmAc5NEkOdUa/5pD50UVyaJJ51hn9eu2VLpJDk+RQZ6zoHHJ/3sLJokmyqDNWUha5Vt0hcmiSHOqMlZRDp+Na9TzIoUlyqDP6NYf6cn4ojLZ8/VaSs6esP5zkj85wzMaW9fvn02GtdX+SQy2bN8ynjS64uWX9u+d6YCnl/CQ7Wjb3+vksulLKziS/1rL57bXW1mqQndI6Dx+ptR6YZxutc7fTr9tYkp9L8uVSyuUdbrufyKGGHGqTHGqUUq5IcmXL5ve02+4KIIsasqhNfZ5F5kd3yaGGedamHuQQ/UMONeRQm1ZaDpVSNpZS6tQlyf4kX0vy/iRPm7L7/iQ/VWv9nR4MdTmQQw051KaVlkNz5Fr13MmihixqkyxquF69IHKoIYfa1Oc5ZH4Ay5HP+IYMb1Of/zx6oVz3mBs51JBDbZJDDdc8FkQONeRQm/o8h8yP7pJDDfOsTX1+7ZXukkMNOdSmlZZD7s/rOFnUkEVtWmlZNEeuVc+NHGrIoTbJoYZr1QsihxpyqE19nkN9OT8URluGSinPT/KvWjb/Sq31wTMc2lqt+OACum89Zt0C2uikz7Wsv7CUsmbWPWf6F7Ns6/XzWVSllJEkH8n05/3NJP+ui932ah4eTXJ1kl9N8iNJnpzmrzY9Kclzk/xOZn4x85gkny6lXLCAMfY1OTSNHGrDCsuhM2mtVP25WuutHWi3b8miaWRRG1ZAFpkfXSKHpjHP2tCjHKIPyKFp5FAb5NAp3ZfkV5JcWGt9d68HsxTJoWnkUBtWWA65Vt1hsmgaWdSGFZZFZ+J69TzIoWnkUBtWQA6ZH8Cy4jN+GhnehhXw8+ipXPfoIDk0jRxqwwrLoTNxzWMe5NA0cqgNKyCHzI8ukUPTmGdtWAHXXukSOTSNHGqDHDol9+fNgSyaRha1YYVlkWvVHSSHppFDbVhhOXQmrlXPgxyaRg61YQXkUF/OD4XRlplSyhOS/MeWzZ9K8u/ncHhrcLdWp5yL1uBubXOx/VWaap4nbEzyxjMdVEo5L8lrZ3losJSyujNDWxb+KMl3Tlk/luTHF/DXkOajF/PwV5M8qtb6fbXWN9daP1lr/Uqt9dZa6z/WWj9Ra/1/klyQ5LeT1CnHnp3kL0opZQHj7EtyaAY51J6VkkOnNfGF9I+1bFbd+zRk0QyyqD39nkXmRxfIoRnMs/b0IodY5uTQDHKoPXJodtuT/EySV5VS1vd6MEuNHJpBDrVnpeSQa9UdJotmkEXtWSlZdFquV8+PHJpBDrWn33PI/ACWDZ/xM8jw9vT7z6NPcN2jg+TQDHKoPSslh07LNY/5kUMzyKH29HsOmR9dIIdmMM/a0+/XXukCOTSDHGqPHJqd+/POQBbNIIvas1KyyLXqDpJDM8ih9qyUHDot16rnRw7NIIfa0+851JfzQ2G0ZaSUcn6aiTg1LO9I8mO11jr7Uae1WMd0Ta11X5K3t2x+bSnl1ac6ppRybpK/SbLhVM12aHhLWinlN5L885bNr6u1/v0iD6Xr83Dim9fW6t2z7Xeo1vq6JP+65aEnJ/ln8+mzX8mhmeTQwq2kHJqD5yY5a8r6nv/d3v3HWpMX9B3/fJctIIJSi0AVdSn+wlBSFFMBTTcUDNSAsqAQmoYVtLbYJrVt0pSadGsbTNNo7R+NUotiKdBSBEREQMSVVuOvZlGoW0oqawVd5JdF9vey3/5x7tN77px75sycHzNzzrxeyflj5p4zZ57zfJ/33Od7J9+b5A17fo+ToUWrtGh7c2iR8bF/OrTKONvehDrEEdGhVTq0vRl36NNJHr30eEwWc0DXJfnXST529rwvSfIDSd5XSvn6Ec5zknRolQ5tb04dMle9X1q0Sou2N6cWdWC+uiMdWqVD25tDh4wP4Fi4xq/S8O1N6BrvHr0jokOrdGh7c+pQB+Y8OtKhVTq0vTl0yPjYPx1aZZxtb0Id4ojo0Cod2t6MO+T+vB1p0Sot2t6cWmSuen90aJUObW9OHerAXHVHOrRKh7Y3hw6d6vi4euwToJtSysOT/EKSL17afWuSp9daP3b5q1Z8prG9zcp8zdc0jzmGlyd5Zs5XZixJfqSU8rwsVkd9bxYrcX7R2fP+ds4vfh9O8qilY91Za11Z6bOUck3Xk6m13tLr7EdQSvl7Wax6veyHa63/quPrr+n6Xpd8HpMfh7XWf1tK+eYkz17a/dIkr93n+xwbHWqlQz3p0IqXNLZfW2ttriJNtGgDLeppZi06+PiYCx1qpUM9jdwhjpQOtdKhnubcoVrrfUluueRLNyV5Uynl+5P8yyR/52z/lyZ5VynlKbXW9w9zltOkQ610qKc5d6gLc9XraVErLepJi1aYr+5Ah1rpUE8z65C5amDSXONbucb3NLOfR/dm3uNyOtRKh3rSoRXmPDrQoVY61NPMOmTOY090qJUO9TSzuVf2RIda6VBPc+6Q+/N2o0WttKinObeoC3PVl9OhVjrUkw6tMFfdgQ610qGeZtahk5urtjDaESilfEGSdyX5yqXdH0/ytFrrB3sc6iTDXWu9u5RyXZK3JXn80pe+8eyxziey+MbhHUv7/mTNcz/U45RKj+cOrpTy3Ul+uLH7R2ut/6DHYXb5PI5lHP5gLv5H9htKKQ+tta4bIydNh9rpUD86dFEp5UuSPL2x+5XbHu+UaVE7Lepnbi0aaHycPB1qp0P9TKBDHCEdaqdD/ehQu1rr7Un+binlniTfd7b785L8h1LK1235G4aOng6106F+dKgzc9UNWtROi/rRoovMV3ejQ+10qJ+5dchcNTBlrvHtXOP7mcA1/ljGoXmPJTrUTof60aGLzHl0o0PtdKifuXXInMd+6FA7HepnAh3iCOlQOx3qR4fauT9vPS1qp0X9aFFn5qqX6FA7HepHhy4yV92NDrXToX7m1qFTnKu+auwToF0p5fOTvDPJX1za/aksVrL8Hz0P938b21/Y81wenNVwT2Ig11o/kuTJSV6R5J4OL/mlJE9Mcltj/617PrVJKaX8jSQ/losx/ckk3zvgaTTH4YNKKZ/b8xgPb2wfYhz+Rhb/1q64X5KvOcD7TJ4OdaND3ejQpa7Pxe/JfrvW+t93ON5J0qJutKibubbI+NiNDnVjnHUzkQ5xZHSoGx3qRod6+SdJ/nBp+wlJnjbSuYxKh7rRoW50qBdz1Uu0qBst6kaLLnV9zFe30qFudKibuXbI+ACmyDW+Gw3vZiLX+KndG7OOeY8zOtSNDnWjQ5e6PuY8WulQNzrUzVw7ZHzsRoe6Mc66mUiHODI61I0OdaNDvbg/b4kWdaNF3WhRL+aqz+hQNzrUjQ5d6vqYq26lQ93oUDdz7dCpjQ8Lo01YKeUhSd6e5OuWdn86yTNqre/d4pDN1S+/rOfrm8//ZK31U5c+cwS11ttqrX8ryVdlMSHyS0k+nOSOJH+a5OYkP5XFKqp/tdZ6S5LHNg7zW4Od8MBKKS/IItLL/+5fk+S7hlxBv9b6iVz8D2KSfGnPwzTHYp+VXTuptd6X5P80dvf6ZucU6FA/OtROh1aVUkqS72zstrp3gxb1o0Xt5t4i42M7OtSPcdY3m3gKAAARjElEQVRuKh3iuOhQPzrUTof6qbXekeTNjd3PGONcxqRD/ehQOx3qx1z1OS3qR4vaadEq89Wb6VA/OtRu7h0yPoApcY3vR8PbTeUaP6V7Y9qY91jQoX50qJ0OrTLnsZkO9aND7ebeIeNjOzrUj3HWbiod4rjoUD861E6H+nF/3jkt6keL2mlRP+aqF3SoHx1qp0OrzFVvpkP96FC7uXfolMbH1WOfAJc7+200b0vyDUu7P5PkmbXW39jysDc3tr+85+v/QmP7d7c8j4OqtX4oycvPHps8qbH962uOWS7bfyxKKc9N8uosVqm+4r8kedHZf9h62cPncXMWK0xe8eVZHZ9tmmOxz2v7uKOx3VzR9aTp0PZ0aJUOrfXUJI9e2r4ri2+qOaNF29OiVVp07hDj41Tp0PZ0aNUEO8QR0KHt6dAqHdraBxrbff/NHDUd2p4OrdKhrc16rjrRol1o0SotWst8dQsd2p4OrdKhc+aqgbG5xm/PNX7VBK/xU7k3ZpNZz3vo0PZ0aJUOrWXOo4UObU+HVunQOXMe3enQ9nRo1QQ7xBHQoe3p0Cod2tqs789LtGgXWrRKi7ZmrlqHtqJDq3RoLXPVLXRoezq0SofOncJc9VWbn8LQSimfk+StSb5xafftSb6l1vqrOxz6/Y3tx5dSHtTj9U/ZcLyjcraq6lMbu395jHM5pFLKs5O8LhcXQnxzkhfWWj87zlmtjJ1mINc6+6bm8RuOty8Pa2x//EDvMzk6NAwd0qEkL25sv7HW+sktj3VytGgYWqRFG95nFuNjHR0axlzG2UQ7xMTp0DB0SIc6uKex/YBRzmIEOjQMHdKhDmY7V51o0VC0SItivnotHRqGDulQm7mMD2BYrvHDmEvDJ3qNn/zPo8/Mdt5Dh4ahQzoUcx5r6dAwdEiHNrzPLMbHOjo0jLmMs4l2iInToWHokA51MNv78xItGooWaVEH5qp16KB0SIdirnotHRqGDulQmymPDwujTUwp5YFJ3pLk2qXddyZ5dq31Pbscu9b6R0l+Z2nX1bl4cdjk2sb2z+9yPhPw1CTXLG3/cq31gyOdy0GUUv5aFitX/pml3T+X5Pm11nvHOaskydsb29f2eO035eJF6KZa60d3PqOGUsrDsrqK6x/u+32mSIcGpUPjGb1DpZSHJrmusfuVfY9zqrRoUFo0ntFb1MHJj491dGhQJz/OJtwhJkyHBqVDbPKoxvYhvu+aHB0alA6x1pznqhMtGpgWzZj56vV0aFA6RJuTHx/AsFzjB3XyDZ/wNX7yP4+e87yHDg1Kh8YzeofMeaynQ4PSofGM3qEOTn58rKNDgzr5cTbhDjFhOjQoHWKTWd6fl2jRwLSItcxV69BAdGjGzFWvp0OD0iHaTHZ8WBhtQkop90/yxiRPW9p9V5Jvq7X+4p7e5k2N7e/seG5fneQvL+26Lck793ROY/lHje1XjHIWB1JKeXqSn05y/6Xd70zy3Frr3eOc1f/3jiR3LG0/6WyMdXF9Y7s5pvflBbnYyI8muflA7zUZOjQ4HRrPFDr015M8cGn7liTv3vJYJ0WLBqdF45lCizY56fGxjg4N7qTH2cQ7xETp0OB0iE2+ubE9icn9Q9KhwekQbWY5V51o0Qi0aN7MV19ChwanQ7Q56fEBDMs1fnAn3fCJX+OP4efRs5z30KHB6dB4ptAhcx6X0KHB6dB4ptChTU56fKyjQ4M76XE28Q4xUTo0OB1ik9ndn5do0Qi0iDbmqs/p0OHo0LyZq76EDg1Oh2gz2fFhYbSJKKVcneT1SZ65tPueJM+rtb5jj2/1miSfXdq+rpTyFR1e1xzEr6+13rm/0xpWKeVFSZ6+tOu9Waz8eBJKKX8lyc/k4jdI787im4C7xjmrc7XW25O8obG7OcZWlFK+Mslzlnbdm+S1ezy1K+/ziCTf39j9s7XWuu/3mhIdGpYOjWsiHXpxY/snTr0zXWjRsLRoXBNpUdv7nPT4WEeHhnXq42zqHWKadGhYOsQmpZRvSfLExu6fGeNchqJDw9Ih2sx1rjrRoqFpETFfvUKHhqVDtDn18QEMyzV+WKfe8Klf44/g59GznPfQoWHp0Lgm0iFzHg06NCwdGtdEOtT2Pic9PtbRoWGd+jibeoeYJh0alg6xyRzvz0u0aGhaRBtz1To0BB0i5qpX6NCwdIg2Ux8fFkabgFLK/bII6rcu7b43yfNrrW/d53vVWj+Y5KeWdt0/yatKKQ9c85KUUr41F3/jzd1J/tk+z2tXZxe+rs+9LsmPL+26N8mLa6337v3ERlBKeVKStyb5nKXd70nyrFrrHZe/ahQ3ZPHNyRXXl1Keve7JZ2P0J3Nxhc5X1lr/d8trvqqU8qw+J1VKeWQWn98jlnbfneQH+xzn2OjQ7nTonA5tVkr5S0m+dmnXfUle1fc4p0aLdqdF57To0tcaHxvo0O6Ms3NH1CEmRId2p0PndOhcKeWJpZTnbH7myuu+PsmrG7vfU2t9337ObHp0aHc6dE6Hzpmr7keLdqdF57RoM/PVq3Rodzp0TodWGR/AWFzjd6fh547oGn9D3KM3GTq0Ox06p0ObmfNYpUO706FzOnTpa42PDXRod8bZuSPqEBOiQ7vToXM6dM79ef1o0e606JwWnTNX3Z0O7U6HzunQZuaqV+nQ7nTonA6tOrXx0fkPw0H9RJLvaOx7WZKbSinX9DzWrR1WmvynWfwGmz97tv3kJO8qpXxXrfV/XnlSKeUBSf5mkh9qvP6Haq2/3+VkSimPyuXj7JGN7atb/qyfqbV+fMNbva+U8nNJfjrJr9da77vkXB6X5B8neWHjSy+rtd604fh7cejPo5TyhCQ/n+TBS7s/kOR7kzy8lNLndO+std7a5wV91Fp/r5Tyb5L8w6Xdbyil/P0k/67WeveVnaWUxyb591mM1Ss+kc3fQPz5JG8ppbwvyX9M8qazb15WlFIekuRFWazs/YjGl/9FrfX3OvyxjpkO6ZAOLey7Q+u8pLH9jlrrH2x5rFOiRVqkRQuHatFRjI+R6ZAOza5DyXDjo5Ty4CQPW/Pl5oTyw1re68NTmlzbMx3SIR26aF/j41FJ3lhKeX8WP0B7c5IP1Hr5b1kqpXxNku9J8tLGed15tu+U6ZAO6dBF+xof5qr70SIt0qKL9j0+msxXr9IhHdKhi2Y5PoCT5Bo/k4a7xp9zj97k6JAO6dCCe/TGo0M6pEML7s8bjw7p0Ow6lLg/b2J0SId06CL3541Di7RIiy5yj97wdEiHdOgi9+cNT4d0SIcumuX46KzW6jHyI0nd4+Paju95bZK7Gq+9L8lvJvnPSd6e5I8vOf7PJrlfjz/bLXv4M72qw/t8fOn5f5rkV7P4R/qaJO9sOY9/PvDf9UE/jyx+o9G+xtKNA3we90vytkve+6NZXIBen+S3zsbm8tfvSvJNHcd589h/kuS/ZTHB9uokbzp7j3vWfA6vGLsRA41NHdIhHTpAh9a85wOyuFFi+XjPHbMBU3nscexokRbdsMexdOMAn8cgLTqW8THmY4/jRocmPs4O/Xnk+Do01Pi4fk+fyTVj9+KAfxc6pEM6dJjP49suef6nz8bHW7K4AeL1Sd6V5NY1x789ydPG7sQAfxc6pEM6dJjP49pLnm+uev3npUVapEUHHB+N9zRfffnnokM6pEPGh4eHxwk+9thk1/iJN/zQn0eO7xrvHr2JPPY4bnRIh27Y41i6cYDPwz16E3nscdzokA7dsMexdOMAn4f78yby2OO40aGJj7NDfx45vg4NNT6u39Nncs3YvTjg34UO6ZAOHebzcH9ev78PLdIiLTrM53HtJc83V335Z6VDOqRDBxwfjfc0V33556JDOqRDxkfnx2UryTEDtdYbSynPSfKqJF94trskeeLZ4zKvS/LdtdbPHv4Md/LgJE/a8JxPJXlprfU/DXA+rFFr/Wwp5Tuy+M1Kz1/60sOTPGPNy/44yYtqrf91y7f9/CRP6fC825J8X631x7d8HzbQIR2agpE69JwkX7C0/bEsJvoZgRZp0RSM1CLjYyJ0yDiDsemQDs3YQ7J5fFzxa0m+p9b6Owc8n9nSIR2aMXPVE6JFWjRj5qsnQod0aMaMD+CkucZr+BS4R2/edEiHpsA9evOmQzo0Be7PmzcdMs5gbDqkQzPm/rwJ0SItmjFz1ROhQzo0Y+aqJ0KHdGjGjn58XDX2CTCeWuvbkjwuyY9lMVDX+bUkz6u1vrDWetsgJ9ffjyS5KYtVOdv8QZIfSPKYqf6jnJta62dqrS9I8u1ZjLV1PpnkR5M8rtb69o6HvznJy5P8SpI7Or7mfyV5WRa/4cR/Yg9Mh3RoCg7cocu8pLH96lrrPTscjx1pkRZNwUAtMj4mSoeMMxibDunQDLw7i9+K+7okH+74mtuTvCHJs5I82U1Xh6VDOjQD5qqPgBZp0UyZr54QHdKhGTE+gFlxjdfwKXCP3rzpkA5NgXv05k2HdGgK3J83bzpknMHYdEiHZsD9eUdAi7RoBsxVT5wO6dBMmaueEB3SoRk5qfFRaq1jnwMTUEq5fxarHn9ZkkdmsbrxR5LcVGv90Jjn1kcp5fOSPCHJo7NYqfOBWfwH5iNJfrvW+rsjnh4dlFIeneRrk3xRks9NcmuS30/yK7XWu3c47lVJviLJY5J8cZKH5nx8fCrJHyX5zVrrx3b6A7A1HWIqDtUhjoMWMRWHbJHxMW06BIxNh5iDUsojkjw2i3H+55I8KMk9ST6d5BNJ3p/kA0fwm31Okg5x6sxVHwctAsamQ8yB8QHMkWs8U+EevfnSIabCPXrzpUNMhfvz5kuHgLHpEHPg/rzp0yJOnbnq6dMhYGw6xBycyviwMBoAAAAAAAAAAAAAAAAAAAAAAAAwuqvGPgEAAAAAAAAAAAAAAAAAAAAAAAAAC6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADC6/wfh0VgquWOTFwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 5), dpi=300)\n", + " configs = get_known_configs()\n", + " to_display = configs[\"Relative humidity\"], configs[\"RAM available\"]\n", + " for i, config in enumerate(to_display, start=1):\n", + " plot = figure.add_subplot(1, 2, i)\n", + " coros.append(plot_sensor(config, plot, {}))\n", + " await asyncio.gather(*coros)\n", + "\n", + "display(figure)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAE0YAAAUsCAYAAAC9bUPVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdd5h1Z1kv/u8dAqEEEnoRSIBIVUA6AiYRPDSlKr0EIgiCla6IAVEPR1DPQQRF6aKIQEDqT8HQu1IUBUKJEECQloSSEHL//lj7lXnX7Cl7z57Z8877+VzXXGQ9az1l773WzsXMN/dT3R0AAAAAAAAAAAAAAAAAAAAAAACAZTpk2QsAAAAAAAAAAAAAAAAAAAAAAAAAUBgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAYKSqjq6qHv2csOx17aSqOmX0+k9Z9pr2Iu/zga2qThp/VxwI87vvAAAAAAAAAAAObgdq7gUAAAAAODgojAYAAAAAAAAAAAAAAAAAAAAAAAAs3aHLXgAAAACwO1XV0Uk+M0OXs5OckeSbST6V5F+SvCfJG7r7nEWvDwAAAAAAAAAAAFaqqsqQeztqdOr7SY7q7tN3flUAAAAAAMzikGUvAAAAANgzDkty6STHJLltkscnOTnJ6VX1tKo6fJmL2+uq6gVV1St+PrvsNQF7S1V9dvQ984JlrwkAAAAAAAAAYOQ2WV0ULUnOl+SEnV0KLEZVHTfK7XRVHbfE9cgrwgJ5pgAAAGA1hdEAAACA7XapJI9N8q9VdfNlLwYAAAAAAAAAAIA968R1zj24qmrHVgIAAAAAwFwOXfYCAAAAgAPKt5Kcusa5Cye5RJJLrnH+qCRvrKpju/tD27E4AAAAAAAAAAAADk5VdYkkd1nnkqsmOS7JP+3IggAAAAAAmIvCaAAAAMAsPtDdx613QVVdMcnPJHlUkquNTl8syd9V1bW6+3vbs0QWYaPPGUi6+6QkJy15GTPzfAMAAAAAAAAAe9T9khw2auskteL4xCiMtnQHau4GAAAAANgZhyx7AQAAAMDe0t2f7+5nJ7lekldOueRqSX5hZ1cFAAAAAAAAAADAHvfg0fEnszrDdreqOmKH1gMAAAAAwBwURgMAAAC2RXd/K8l9k/z7lNP33+HlAAAAAAAAAAAAsEdV1Y0ybOa50ouSvHDUdqEk99mRRQEAAAAAMBeF0QAAAIBt093fTfL7U07dqKousdPrAQAAAAAAAAAAYE86cXTcSV6c5A1JvrzBtQAAAAAA7CKHLnsBAAAAwJ73xilthyS5RpJ3zztoVR2S5MeSHJ3k0kkukeSMJF9JcmqSf+nu8+Ydf5Gq6oeSXDPDWo/IsOvoGUm+luQ/k7x/UkSObVBVF0pykySXT3KZJIcn+WqGe+XD3f2pJS5vU6rq0kluluSqGdb/zQyBzfd292nLXNt2q6ojMrz2H87w/Hw3yelJ3j3La6+qKyS5cYbn8PAMz9/nk7y1u89Y8LLnUlWHJblFkisnuVyS7yf5ryQfTfKh7u4lLg8AAAAAAAAAYFea5IPuPWp+275sSVW9NMmvrjh3w6q6Xnd/eJvXdf4MuaVrJ7nkpPm/kvzzLHNX1cUy5F6ukeTIJN9K8qUk7+zuzy900avnvmSSmya5WpKLZcgtfSG7NHdVVVdMcr0MmcJLZyiQ95UkX0zynp3ICVXVDye5YZIfSnJYhqzaF5K8o7u/vt3z70VV9SNJjsmQ/7tkkm9n+Fw/myF/+b1tnt+zPP+8u+WZvF6SK2bIDp6T5Ivd/eJN9pcB3gZVdYEkN8rwPFwqw/flGRlyse+dYZxjMjyb++6xs5P8d4Z86Hu6+zsLXjoAAAA7RGE0AAAAYFt191eq6owMQYqVLjXPeFV1qySPSPJTGYqhreVrVfX6JL/f3R+bZ655VdWlktw1yW2SHJvksht0Oaeq3pPkT5K8YrMF3arqs0mOWuP0UVW1mSJKx3f3KVPGPiXD2vd5a3cft8Y6PprkR1Y0fSXJD20lbFRV907y0lHzI7r7TzfZ/5Ak901yvyQ/keSC61z7mSR/m+Tp3f3f8614e1TVcUl+I8mtMxQUnHbNx5L8XpKXzlI4q6pOSPL8UfNVuvuzc6xzPO+Tu/ukDfqclOS3V7Z1d604f+MkT0xyh6zxe8yqemuSx3f3e9aZ52eSPC7JjyepKZecU1WvSvLY7v7P9dY862uYYZyjk5yU4Xtj/F25z5eq6jlJntHdZ806x2i+U7KJ53uyrs+sM9QDq+qBG8237z2ZBPtOzxAu2+eU7j5+w0Wvo6r+b5JfHjVff7vDywAAAAAAAADArvGzGYrVrPTC0T//6uj8g5P8yjyTTTI9/zRq/p8c1mQDv99Mcv8kF11jjE8keep6hXmq6roZ8jN3ylAwZto1707ymO5+52yvYn1VdWx+kFs63xrX/HOSZyf5y1k3/FtU7mYy1mWS/FqSn0lynXUuPbeq3pvkWUleNuvGq+tlpCZ5tQcm+fXsn6Vb6fuT3M4T18s7rZjvpIzeo5F/qtrwLXthd5+w0UWbsZ15xTXmu26G5/a2Sa6wzqVnVdU/JnnaZt7X0RzH5QB/ljeRw9vWZ3mN8XbDM3mRJL+U5CEZNqSdZupndqBngDe6r2cxZY0bfqdslE2tquskeWySuye5yJQhXphk3cJoVXWVDN+3d8jan2+SfLeq3p7kj7r7DeuNCQAAwO4z9T+mBAAAAFiwaUV81ir+M1VVXX1S6OxtSe6Z9YuiZXL+fkk+WlV/UVVrFsZapMnuol9M8udJ7pGNAxFJcoEMxbv+Nsm/Tv7ofyAZBxguneSOWxzzhNHx2Un+ejMdq+p2ST6a5EVJ/lfWKYo2cZUMhbM+XVVzhR0XraoOq6rnZgin/FTW/z3etZO8JMkbJ2GeA1oNfifJezIEwdbb3OHYJO+qqkdPGeeIqnpFktckuUWmF0VLhufvnkk+VlW32dLi5zC55/4tQzByve/Fy2UonvZvVXXDHVjawk1293zJqPm4qrrWvGNOdnx+wKj53YqiAQAAAAAAAMBB5cTR8beT/N2+g+7+UJKPjK65X1VNLVC0FVV1tyQfS/KLWaOQ0sTVk7yoqv52vI5JfuZJSf45yc9ljUJKEzdP8vaq+o2trfx/5j5fVf1JklMyZK+mFlKauEGS5yZ526RIzY6qqgtU1VOSfDrJ47N+AaZkyCHdIsOGnR+eFKtaxDqumOQdSZ6XtYuiJcN7eesk766q313E3HtRVV2+qv4qyYeSPCjrF0VLhk0a75LhfT25qjbKlm52HZ7l2efcLc/kTTN8dr+f9YtmTet7MGaAd0xVPTHDs/2ATC+KtlH/i03u648neWQ2/nwvmCGD+/qqentVXXnWOQEAAFgehdEAAACAnXDklLYzNtu5qm6dYfev288x9yEZgm9vrarNBBS26sezfiGnjVwryXuWUaBpC16S5HujtgfNO9gkKDZ+/Sd399c30ffRSV6XoVjYrC6a5I8nhfS28hluyaSI3xuS/PyMXf9XhvDGegGmA8FzMuyOudnfXVaSP6iqh/5PQ9WRSd6c5G4zzHuRJK+pqhvP0GdLJgHHP05y4Rm6XTnD99kBWRwtw66YYw/bwnj3zup/xzx7C+MBAAAAAAAAAAeQqjomQ0GalU7u7jNHbS8cHV8iQzGlRa7lfhkKsh0xQ7efy1BQa98YlaFA0ZOzfiGj/aZO8rtV9cgZ5l09yDD3S5I8Ysaut8yQZ5mpANFWTIpf/X9JfitzFNfJUMDsnVX1M1tcx1UzbAB58xm7/kZVPXUrc+9FVXW9JO9Lcp+svRHmeu6cIX959S2uw7M8+5y75Zn8iQzF4OYtgHUwZoB3xKSg2e9kzve3qo5K8s4M9/X55xjilkneV1U3m2d+AAAAdt7S/gNPAAAA4OBQVVfL9KI/n95k/59J8oqs/iP2OUnekqFg2ueSfDPDzn9HJ/nJJLcaXX+TJCdX1U9097iI13b5foad/v4tyX8k+WqGgnCV5GJJfjjJzTLseLeyCNThSf6mqn6suz+3zvgfS/KNyT9fOcnFV5z73uT8Rs7axDXr6u4vV9XrM4SK9rlDVV2mu788x5APyOqiWM+bduFKVfW/kzxuyqmvJfmHJB9M8uUMO8IemWE3wtslucbo+hMzvK+PnmnVi/O8JMevOP54hkJp/5HhtRyR5MeS3D2rdyP8iSS/luTp27/MxauqX0ny0BVNpyX5+yT/muG1H5nkphlCZBcbdf/jqnpThu+Dv0mysnDYB5O8MclnkpyZ4X37ySR3yv732oWSPLeqbtTd5y7oZU1VVb+eZNrunmdP1vq2JF/IEBK7Sobna9+OshdJcnJW7Gy8Tc5J8uEVx9fO/t/FX0/yn7MM2N3/VlWnJDluRfMDquoJ3f3tOdb48NHxV5O8fI5xAAAAAAAAAIAD04OzuoDSuAhakvxVkv+T/QsUnZjkZQtax42S/N6KtXwjyeszFM36coZcyrWS3CNDxm2l+1TVyd398gx5khNXnDstyWsz5Ge+miE/c5PJOOP8zNOq6rXd/dk5X8OjktxrxfGZSV6d5P1J/msy9zUz5JauNOp7pSRvqarrd/c3so0mmya+c7KWsX9N8tYMmb1967hMhsJld8iweeY+hyd5eVXdors/OMdSLpoh1/VDk+NO8q4k/5ghU3NWkktnyAfeNckFR/2fUFV/393vXWP8L+UH2Z3Dk1xtdP5T2Tj/N1O2ZwPbmlesqhsl+acMr3Wl85K8PcN7+5nJGi6U5IpJjk1y6+z/XP9whg1Gb9jd39zEmsY8yzM+y7vombxckldm/2ftfRkKtp2W4X24fIYc3M9tYryDIgO8Qx6S/Qv1nZUh1/vODPfkIRme6eMzvO/7mRRFe29WZ2aT4TN+Z4as7deTXCDD5/zjGTbkPmzFtZdN8rqqukF3n7a1lwQAAMB2q+5e9hoAAACAXaiqjs4QIlnprd193IzjPDbJ00bNX09yqe4+b4O+V8kQKjhyRfO5Sf4oyR9091fW6Xv9JH+R/YsjJckfdvejNpj36Kx+7Q/q7hes12/S9xNJPppht723bCZYM/mD/e8nuffo1Ou6+6c36j8Z4wVJHrii6bTuPnozfdcY75QMoaF91v3sq+pOGYIzKz2qu/9wjrk/kSEwss/nkxy13v1SVXfNEGhZ6etJHp/kRd393TX6VYadX5+TIWyz0p27+zUzLn8mU97n7+YHoZwvJfml7p5a/KqqDk/yrAyF5Fb6RpIrdPd3Npj7hCTPHzVfZZ4wVVWNf8n45O4+aYM+JyX57VHz2RlCKN/OEM56bndPC7lcNkPBxFuMTv15hnDLMybHn07y0O5+8xpruFGS12X1Z3+f7v7r9da/1mvo7g13Kq2qayT5UFaHHd8wWe/n1+h31yTPzg/CPd/JELSbdf5TMsPzvaLfZ5MctaLphd19wkb9poxz96wu6nZid29YAHE0zg2TfGDU/PTufsysawIAAAAAAAAADjxVdb4MhZ+usKL5C0muNC1rVFWvy1CIZ5/zklx11uIoVXVchgJOK+3LvSTJM5M8aVpRoao6LEO25RGjUx/PkAN6d4YCMRvlZy6XIT/z46NTf97dv7CJ13BSVmd3VmaXnp/k19d4DYdk2LzxqVmdf3lBdz9onvk3k3uZ9H1VhszXSu+arHetImP7ijf9Voa1r5zrs0mu291nbjDvOCO18v16b5Jf7O5/XqPv0Rk+rxuMTr2pu2+33ryT/sdl9T13fHefslHf7bANecWLZ8iKjsd4fpKTunvNAm+TzXufleS2o1Ov7O67bzDvcfEsb+lZnoyzW57J7+cHRfI+kuRh3f3uNfpecFqudC9kgBf5fTFPZnCNbOrKz+Y5SZ7Y3V9do/9+n01VXSDJO5LceHTpa5M8trv/fZ21XC7JHyS53+jU+5PcfNozCQAAwO5xyMaXAAAAAMynqi6f5NFTTv31RkXRJv4q+xdF+3aS23b3Y9cripYk3f2hDEGRfxid+qWqGu9wt0g37u67d/erNrvbYHef1t33SXLS6NQdqmraDnq70esz7Nq20gmzDlJVt8j+RdGSIUixXlG0y2R1iOKTGYIxf75WUbQk6cGrMuzyOC5G9fuTwmk7aV+46NNJbrZWUbQk6e6zMrzHbxqdOjLDTo4Hon1F0W7T3c9ZK3TS3f+V5Kcz7MC50v2SPGXyz/+WIbgytSjaZJwPZPp7talA1xY8O6uDZH+b5KfXKoqWJJN79dj84HVfaK1rd7mTs/p5e/gc44z7dJI/m2tFAAAAAAAAAMCB6PbZvyhakrxknazRC0fHh2SOjNMa9hVS+pXu/uVpRYiSpLvP7u5HZnXm5xpJ/n6yprOS/OQG+ZkvZcjPjHN096qqeTMl+/Is/7u7H7zOazivu5+R5OcybHS60glV9RNzzr+hqnpoVhdg+tMkt1yvAFOSdPc3Jpuqnjg6dXSSX5xjOfver9cmOW6tomiTuT+b5KeyOmP3U1V15Tnm3muelf2Lon0/yf0m9+GaRdGSpLs/leG7YJwhvFtV3XSOtXiWB5t6lnfZM7mv8NY7k9xqraJok7nXypUerBng7bbvs3lUdz98raJoydTP5qSsLor2+O7+mfWKok3G+lJ33z/Jk0enbpzkZzdeNgAAAMukMBoAAACwLSa78L0xyaVHp76dYWe0jfr/VJKbj5of3N1v2ewauvucDIGN/17RfP4kv77ZMWa12SDEGp6SYReyfSrJg7e2op3R3edm2CFvpR+tqhvOONS0glTjwNLYryQ5YsXxt5Pcbr0CU2Pd/bkk9xo1XzvJnTY7xgJ9L8k9NrMTbXd3pt/P490vDyS/ul4gaZ9JWOvpo+YLJ7lIhh0v79Hd48Jp08Z5R4bvqpWOr6px4bKFqKofTXL8qPnUJA/YTMHI7t63o+gBaxLyGxcwu1FV3WizY1TVEVm9w+Y/dPepW10fAAAAAAAAAHDAGBfTSZIXrXP9q5OMCwQ9qKoW9d/YvbS7/98mr/2tKW2Xmfzvr2xUUChJuvvrSZ4xar5Yhg1F53VKdz9hMxd292uTPHXKqV/ewvxrqqpDk/zGqPmN3f2ISY5qU7r7+Un+YtT8a1V12LTrN/DZDAW81ty8c8W8X8vq4jyHZCiYdtCqqmskueeo+Te7+682O8bk8/+FJOMiSY+fc1me5cG6z/IufSa/meSe3X3GHH0P2gzwDnlFd//hLB2q6uJJfmnU/Jzuftos43T3SVm90fa83w8AAADsEIXRAAAAgIWoqgtW1Q9V1R2r6s+TfCTJdadc+pBNFqx63Oj47d39slnXNQkp/N9R811nHWcnTIIgLx4133IZa5nT86a0nbDZzlV14ST3GDW/bbKj41p9Ds/qnQGf0d2f3uy8+3T3O5O8edS8jHvlpd39wc1e3N0fSzLebXTWgnS7xSeyOuC0nles0f7iyfuyWX83Oj40yY/O0H8WD5vS9qjuPnuzA3T3mzLsKnog+/Mk54zaHj5D/wdmKIS30nO2tCIAAAAAAAAA4IBRVZdJcsdR8z9397+t1WeSzxhn0I5KcusFLOn7WV0gaE3d/f4k/znl1Mez8UaSK41zL0lygxn6j81a1OxpScZ5wDtX1eW3sIa13CvD57VPZ3XBnM16yqT/PpfN6o1cN+PJMxZS+psM98pKB2rWa1Eek/3/O9fPZPWGmRvq7u8l+b1R8+3n2CDTs/wDGz3Lu/GZ/MPuPn3ONWzJHsgAb6fzkjx6jn6PSHL4iuOzsjpfvllPGR1fv6qOnnMsAAAAdoDCaAAAAMAsjq2qnvaT5DsZQhGvTfKQrC5Y8+0k9+3ul240SVVdIslPjppnKZY09rrR8VFVddTUK5fvk6PjG1TV+ZeykhlNClG9b9R8nxl27bt7kouO2jYKBt0myZGjtr/c5HzTjO+VY7cw1ryeO0ef8ft+9UUsZAmeP+NOkZ/OsMPj2Kz3wL9MabvGjGNs1u1Hx1/M6vtuM/5sAWtZmu7+cpKXj5rvVVXj53ktvzA6Pj0HfrE4AAAAAAAAAGDzHphknKt64Sb6vWhK24lbX07+sbtPm7HPh6a0zZqf+VSSM0bN8+Ze3tPdH52lQ3d/N6sLAR2aIde1aD87Oj6lu0+dZ6Du/lyS8WudNSv2rSQb5iFH8349qzOC25VT2vWqqpLcbdT8gu4eF4/brNePjg9LctMZx/As/8BGz/JueyY70zf43UkHbAZ4m72luz87R7/xPfby7h4/J5v1riTfGLUtIyMMAADAJimMBgAAAGy3MzMUNbvmZoqiTdwqSY3a3rWFNXxmStuPbWG8Tauqw6vqDlX1+Kp6UVW9rqreXlX/XFUfGv8k+ZPREIdl2PnuQDEuZHaJJHfaZN8HjY7PyurCSWPjUMLpc4SSVhrfK0fPUKhpEb6T1UXONuNTo+PzVdXhU6/c3d42R5/xbpvfTvLBGcf47JS2hX/uk52KrzJqfvWcQb43ZQhXHsjG33cXTvKAjTpV1bFJrj1qfm53n7uohQEAAAAAAAAAu96DR8fnJvnrjTp197uyunDNXSabeW7FPLmXaTmnty9gnHlzLyfP2e+VU9puNudYU00KaN1q1LyVTGGyOis2a6bwPd19zhzzjrNeR8wxxl5x3SQXH7XN/bl299eyeqPNWT9Xz/L+pj7Lu/SZPLW7P7/FNeznIMwAb5d/mrVDVV08yY+Omrfy/XBeVj9jO5IlBwAAYD6HLnsBAAAAwJ73gSTPnOzmtlm3mNL2iqra9O55m3CpBY61SlXdMMljMhQFu9AWhzsyyULDGtvor5P8YfZ/zSdkgwJnVXVUkuNGzX/b3RsVfhrfKxefhEvmNa2Y2KWyepe47XJad39vjn7jMFcyBObO2uJ6dto8u0WeOTo+bY4CWeMxku0JHN5wStusRdySJN19blV9JMnNt7ak5enu91TVB7P/+/KwJP9vg64PHx2fm6EAJwAAAAAAAABwEKiqWyS55qj5Dd39lU0O8aIkv7Pi+LAk903yzC0saxG5l0WNM2/uZa4cS5KPJvlekvOvaJuWk9mKa2XYpHOlB1bVT29hzCuPjmfNFI4L7G3WOOt1MBdGm5YVfWZVnb2FMS88Op71c/Usb+5Z3o3P5D9vYe79HMQZ4O0yz2dz8ySHjNqeUFWP3MI6jhkdb2uWHAAAgK1RGA0AAACYxbcyPaxx/gy79l1+yrnjk7y/qk7o7g135Jy44pS2626y72ZdcsHjJUmq6vxJ/ihD4Z7xH+TndcAEn7r7m1X1qiT3WdF826q6fHd/cZ2uJySpUdvzNzHl+F65cJLrbaLfLC6Z+UJK8/janP2mFVM7/5S23e7rc/QZv/aZx+ju7w0bWO5nO96/y0xp+/gWxvuPHMCF0Sb+JPs/69eqquO6+5RpF1fVZZLcddT8mu4+fZvWBwAAAAAAAADsPidOaXvhDP1fnOQp2T+vdGK2VhhtEbmXRY0zb+5lrhxLd59dVZ9N8sMrmqflZLZiWqbwimu0z2vWTOGisl4HYs5rUaZ9fuOih1s16+fqWd7cs7wbn8kvb3XCgz0DvI3m+Wym3UtX3epCRrYlSw4AAMBiLOr/mAMAAAAHhw909/Wn/Fynu6+Q4Q/EJ2Qo1rPSBZK8uKp+ZpPz7MQfmre6g9sqk0DEy5M8Iov9vcuBFnwaFzQ7X5L7r3VxDRWpHjBq/mR3v2MTc413HNwOC79X1jEtIHXQ6O5FvP7d/B4eOaVtvAPsLLbSd7f4myRfHbU9bJ3rT8zw75SVnr3QFQEAAAAAAAAAu1ZVHZ7kHqPmryd57WbH6O7Tkpwyar5eVd1wC0tbSGZlQfmZeS0yxzItJ7MVuzFTuJtzSgeKPfu5HgTP8m787M7YymQywNtqns9mN95jAAAA7CCF0QAAAICF6e6vdfcLk1w/Q7Gblc6X5CVVdfQmhrr4gpe2Ux6X5M5T2k9P8qdJ7pfk5kmulCEscsHurpU/SY7fsdVunzcnOW3U9qB1rj82q3dxGxdXW6WqLpzksNmWBkt10Slt39rCeFvpuyt093eT/OWo+W5VddnxtVV1SJKHjpo/meE7BwAAAAAAAAA4ONwryUVGbS/r7rNnHOeFU9pOnG9Je8YicyzTcjJbcaBmClmfz3V77MSzvBs/u3O32F8GePvM89nsxnsMAACAHXToshcAAAAA7D3dfXZV3T/JZbP/H/kvlqEAzq03GOI7o+NvdPeu/gN3VV0myRNGzecmeUySP+nuzf5R/4Dffay7u6pemORJK5qvWVU36+73TOkyLpr2/SQv2sRU301yXvYv/ioagZ8AACAASURBVH9yd991pgXDzjlzSts4qDuLrfTdTf40yaPzg2f5/BmCxr83uu72SY4etf1Zd/e2rg4AAAAAAAAA2E2mFS97WFU9bAFj37uqHtXd4/zaweIiSc7YQt+VpuVktmLaZ3KX7n71gudhZ037XC/e3d/Y8ZXsLTvxLO+pZ1IGeFeado9dv7s/vOMrAQAAYCkO2fgSAAAAgNlNQgAPyOpwxU9W1T036P7fo+Mjq+rIhS1ue9wpyYVHbY/r7j+eIRCRJJdY4JqW6QVJxsWKThhfVFWHJ7n7qPn/6+7TN5qgu89LMg5AXWXzS2QRqur8y17DAWRaYO+ILYy3lb67RnefluS1o+aHVtX499cPHx1/N8N3DQAAAAAAAABwEKiqaye52TZOcWSSu23j+LvdInMsiy5sNc4UJrJie8G0z/XonV7EHrQTz/JeeyZlgKdbZj50r91jAAAAzEhhNAAAAGDbdPfnkzxpyqnf26CY0n9NabvuYla1bX5qdPz1JH8yxzhXXcBalq67P5PklFHzvarqgqO2e2T1DoPPn2Gq8b1y9ao6bIb+B7PvTWmbJ8Ryya0u5CDy5Slt19jCeNfcQt/dZvx9eVSS2+87qKr9jif+tru/ut0LAwAAAAAAAAB2jRP3yBy71dXn6VRVF8jqYlbTcjJbcSBmCtmYz3V77MSzvNc+u72UAV5UNjRZbqG3vXaPAQAAMCOF0QAAAIDt9uwknx61XTXrB8jeN6VtXBBnt7nS6Pi93X3OHOPcfBGL2SXGBc6OSHLXUdsJo+OvJXnNDHOM75ULJTluhv4HszOmtF1sjnGO2epCDiIfnNJ2w3kGqqpDs7dCPv+Y5OOjtoev+OeHZvXvs5+9rSsCAAAAAAAAAHaNyUac9x81n5Pkw1v8+dpozOOqajcUtlmGuXIsGTIs46I703IyW/GRJN8dtd1uwXOw8w7ErOiBYCee5b32TO6lDPBCsqFVdcUk482Qd9J7p7T5fgAAADiIKIwGAAAAbKtJMOApU079ZlUdtka3f5jSds9JIaDd6lKj43FgbkNVdakkx885/7mj4/PNOc4ivSKrAxYP2vcPVXW1JLcanf+r7j57hjmm3Sv3m6H/wewbU9rmCXUeu9WFHCy6+8tJPjNqvlNVzfN72tsmucjWVzWTbfue6e5O8qej5ttX1VGTYPO4mOaHuvs9i5ofAAAAAAAAANj17pTk0qO2V3X39bfyk+SJozErKzJOB5m7zNnvblPaFprr6O7vJnnHqPnyVXXrRc6zi41zO8lyM4KLyhG9K8m3Rm13rKqLzzkeg21/lvfgM7mXMsB7Ihva3aclOXXUfJOquvoy1gMAAMDOUxgNAAAA2AkvSfKJUdsVkzxk2sXdfXpW7zJ3lSQnLHxlizMO54xDEpvxiMy/u9qZo+PD5xxnYbr720leNmq+dVXt21nvhCndnj/jNG/K6l0H711V15hxnIPRx6e03WSWAarqfEkevJjlHDTeMDq+QpI7zjHO1O/Pbbbd3zMvSHLWiuNDkjw0yV2TXHZ07bMXPDcAAAAAAAAAsLuNN1VLhlzaVr0syTmjthPm3OjuQHfzqrrOLB0mm6Pef9R8bpJ/XNiqfuDVU9pO2oZ5dqNxbidZbkZwITmiyca7bxw1XzTJo+YZj/+xU8/yXnom91IG+PTsn8NLZsyGTjx0C2tYlPE9dkiSJy1jIQAAAOy8g/EXtAAAAMAO6+7vJ/mdKaeeUFVrhQB+d0rb03fxTl9fHB3/eFVdZLOdJyGUJ2xh/q+Pjo/cJbsmjgudHZLkAZPg4ANG5z7c3f8yy+Dd/d9J/nzUfL4kL62qC8200oNMd385yedHzfeYFDvbrEdkvp0ED2bPmdL29Kq6wGYHqKrbJLnz4pa0aePvmYV+9t19RpIXj5pPTPJLo7Yzkrx0kXMDAAAAAAAAALtXVf1Qkv81av5KVhdUmll3fy2rN7q7YpLbbnXsA9T/nfH6x2Z4v1Z6dXeP83SL8JdJvjRqu2VVPW4b5tptxrmdZLm5rUXmFadlRR9bVbecczwGO/Es76Vncs9kgLv7vCQfGjXfsaqO2OwYVXWnJD8xz/wL9oys3jz5vlV1z2UsBgAAgJ2lMBoAAACwU16a5D9GbVdI8rBpF3f3q5J8YNR8RJI3zLqT3T5VddGqekxV3W+e/ht4++j48CS/vZmOVXV0ktckOWwL8390StsdtjDeQnT3u7P6cz8hya2TXHnU/rw5p/n9rN6t7wZJXjVvMKSqjqqqZ1bVj8y5pgPFONR55SS/upmOVXXrJP9n4Sva47r7o0n+adR89STP38xOw1X1w1ldPGynjL9nfqSqrrTgOf5kdHzZJOOQ40u6e7yjJQAAAAAAAACwdz0ow2aJK72su89d0PgvmdJ24oLGPtDcuqqeupkLq+r2SX5ryqn/t9glDbr7O5leROv3quqR845bVberqj+df2U74nNJvjlqW2Y+cGF5xclmqq8YNZ8/Q/5vrsJMVXVYVT20qn5tnv57xLY/y3vsmdxrGeBxNvRCSTZ7P1w3qzdFXopJYb5nTTn1vKq6+zxjVtX5quqeVTXt3gUAAGAXURgNAAAA2BGTHciePOXU46vqwmt0u3eSr43arprkvVX1m5vZvayqDqmq46vqOUn+M0Mhp8vNsPTNekWS80Ztj6mq36mqQ9dZ372TvDs/2L3xjDnnf8+U+Z9RVXeuqvPPOeaijAMSx2T1boTnJPmreQbv7i8leWCSHp26bZIPVtX91vsM9qmqi0zCDq9McmqSRya54DxrOoD8xZS2p1XVL1RVTetQVRec7Oj4hgxBnvFufGzsF7P6fbtPktdMdjieqqrukuRt+cF32He2Z3lretfo+JAkL6+qGy1qgu7+WFYXjht7zqLmAwAAAAAAAAB2t0mG5UFTTk0rZjavv8/qolN3qqpLL3COA8G+PMtvVtVz18rnTTJ5v5rklRkKWK30gu5+2zau8VlJXj1qOyTJM6vqVVV1vc0MUlVXqarHVdVHMuSg5irAtVO6uzPkDFe6TVX9flVdZglLWnRe8ReSfGbUdqkkb66qP6iqTWU+q+qmVfWMJJ9N8mdJrjbHWvaCnXyW98ozudcywC9I8v1R2yOr6slrvZ5JwbATk7wjySUyZHLPmWPuRXtikveN2i6c5O+q6i+qalPPeVX9SFU9JcknkvxNkk3dmwAAACzPhv9BKAAAAMAC/W2GP1BfZ0XbZTMUCXr6+OLuPrWq7pHk9UkusOLURTLsXPaEqnpHkncm+WKSb2T4Y/eRSa6U5AaTnyMX/kpWr/UTVfWSJA8YnXpikhOq6u+SfCTJWRkCA9dIcqfsH7z5dpLHJXn2HPN/saremP13iLtskpOTnFNVn0vyrawuHvbz3f2BWeeb0YuT/F7237X1WqNr/r67vzrvBN39iqp6UpLfGZ26ymT+p1fVKUk+kOQrGd6Li2W4N45JcqMk183Wduw74HT3+6rq1UnuvKL5fBkKTz2iql6VoUjcOUkuneSGGe6xlWG6X41CVTPp7v+oqt9M8ozRqTsmObWq3pBhB8ovZtip8aoZPqMfXXHt6UlenuH93ymvzlCs8hIr2m6a5P1VdWaSL2RKobzuvv6M8zwryfFrnHtHd0/bHRMAAAAAAAAA2JuOzw8Kzuzzye5+76Im6O6zq+rlSX5+RfP5k9wvyR8tap4DwJMybDyaDO/FParq5CTvT/LlDFmraya5e5IrT+l/WpJf284FdndX1f0yFO4ZF7W5S5K7VNWHk5yS5JNJ9mXSjsxQaOu6GTJQ43vqQPC8JLcbtT0+w+a0X8yQ6zl3dP413f2kRS9k0XnF7v5qVd0pw+e6sojXoUkeneSXq+rdGTaV/HySr2fI+h2Z5PJJfixDBvBgK2a4lh17lvfKM7nXMsDd/YWqemZW5wuflOS+VfWKJP8+WfMlM2QT75j974enZdjg+qhZX88idfd3q+quGYrHXWl0+sQMn88Hkrw1Q1HEr2XIwR6ZIet6/QzfD2tuWgsAAMDupDAaAAAAsGO6+7yqenKGAmkrPbaqnt3d35rS581Vdaskf5fVf9C+SJLbTn52g19OcpMMgZGVrpiNixd9L8nPZQgZzOsxSY7N8L6sdIGsvfPh4VuYb1NWBDbuuM5lz1vAPE+tqi9kKKp0wdHpyya55+SH/T0syY2TXGHU/qPZvxDXNH/Q3X9WVQqjzai7/7CqLpXkCaNTF0xy18nPWr6VITT209u0vKkmAaNfS/LCKacvmiHstQgnJ/lcVn/nJ3OExgAAAAAAAACAA9qJU9pesg3zvCT7F0bbN/fBVBjt6RmKx9xjcnyxDEWCxoWCpvl8kp/s7m9s09r+R3efNckUPj9DYaex62V1gaa94BVJ3pzk1lPOXX7yM/ahbVzPQvOK3f2vVXXjJK9M8iNTxjx28sPGdvRZ3kPP5F7LAP9mkttk9fN0tSSP3WAtL5v0v/cG1+2ISaG3m2RY10+MTp8vwwavN93xhQEAALCtDln2AgAAAICDzr5d01a6dJJfWqtDd78vyQ0yhCa+t4W5O8Ouc2/fwhhrD979zQwhgvfM2PULSW7T3a/f4vwfS/JTSU7dyjjbZL3CZ19M8qZFTNLdz0ty8yRv2eJQ303yN0n+c8uL2uW6+0tJbpnZ7ptzkjy6uzcKx7CO7v6NDDtrzhKG+nyS46ft8rgTuvtFGULAZ27jHN9P8mdTTn0lQ8ATAAAAAAAAADgIVNWRSe425dRfbcN0b8vqrNB1quqgKbTS3Z3kvklm3STxnUmO7e5PL35V03X3md39s0kenuT0LQ73nxmyibtad5+X5GeTvHTZa0m2J6/Y3Z/MUNzoDzNsHrkVH0iypUzmgWoZz/JeeCb3Wga4u7+d5Lgk75ulW4bCeveZfOfsGpOs662TPDHJ17Y43L9n9SbfAAAA7DIKowEAAAA7ahK4OGnKqUdX1UXX6fff3f3gJMdk+KP7v2X4A/xGzkzyugzFh67S3cd393tnXvgmdffpGXYje2SSjcIhpyX5rSTX7O63LWj+d2fYre4OSf40yTsyhC7OSrLMkMLfJ/nvNc69aFIIaSG6+0PdfeskN0vyogyFpDbjixl2fn1gkst19727+8uLWtdu1t2fSXLdJL+R4X1YyzkZdtz7se5+xk6sba/r7j9Ocp0kL0xyxjqXfjnJU5Ncp7vfvxNrW0t3/2WSH0ryoCQvTvIvGdb3nQVOM63w2/O6++wFzgEAAAAAAAAA7G73TXLBUdu7u/tTi55okmubVnDtxEXPtZt197nd/fAMxYHekvUzZ/+S5CFJbrWTRdFW6u7nJLnqZB3/mM1tUHhehrX/QZLjkxx9oGShuvsb3X3fDBnBk5K8Nsmnknw9W9t0dt71LDyv2N3f7u5HJTk6w2v8QJLN5Au/m+Ge/Y0MGasbb7VQ1YFsWc/ygf5M7rUMcHd/NcktMhSsW+/fnd9P8oYkt+jux+y2omj7TO7r301yVJJHZXh/ztlE13OTvCvJU5LcpLuvPdkkFgAAgF2sht/ZAgAAABx4qurSSW6Y5NJJLpnk8Ay7BJ6ZoRjWfyQ5rZf4C5CqunqSm0zWeJHJ+j6f5CPd/fFlretgU1XHJLl2hvvkkkkukCEo8s0kn0nyHwdLEbTNqKrrJrlekksluXCG9+njGYKlZy1zbXtZVR2W5JZJrpzkchmCTP+V5CNJPrRbw0bboapemuTeK5o6yTHLCtECAAAAAAAAAByMqupSGTaovFqGfN4ZGTZe/JftKFC3VVV1gQyZwitmyD5dPENBnDMzbOz5iSSf6O5FbgDINquqI5LcOMllMuT/jsiwieOZGYpGfTzJpxe5QeuBoqpOSvLbK9u6u6Zct5Rn+UB/JvdaBnjyem6Y4Vm6aIbP4VNJ3tXdX1vm2uZVVRdOcqMkV8jw/XBkkrMzvLYvZ/h+OLW7N1NADQAAgF1EYTQAAAAAAHaNSdHLzyU5bEXzG7v79ktaEgAAAAAAAAAAwK6z2cJoAAAAAAeaQ5a9AAAAAAAAWOEh2b8oWpI8axkLAQAAAAAAAAAAAAAAAGBnKYwGAAAAAMCuUFUXSfIro+ZTk7x+CcsBAAAAAAAAAAAAAAAAYIcpjAYAAAAAwG7xlCSXGbX9cXeft4zFAAAAAAAAAAAAAAAAALCzFEYDAAAAAGCpquoSVfX0JL8+OnVakucuYUkAAAAAAAAAAAAAAAAALMGhy14AAAAAAAAHl6r6iyQ3mhxeKskVktSUSx/T3efs2MIAAAAAAAAAAAAAAAAAWCqF0QAAAAAA2GnHJLneBte8qLtfvhOLAQAAAAAAAAAAAAAAAGB3OGTZCwAAAAAAgJGXJPn5ZS8CAAAAAAAAAAAAAAAAgJ116LIXAAAAAADAQe87SU5P8u4kz+vuU5a7HAAAAAAAAAAAAAAAAACWobp72WsAAAAAAAAAAAAAAAAAAAAAAAAADnKHLHsBAAAAAAAAAAAAAAAAAAAAAAAAAAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdIcuewGwbFV1RJJjVzR9Lsk5S1oOAAAAAAAAAMBWXCDJlVYcv7W7v7msxQCAjB4AAAAAAAAAsEfI5+0QhdFgCFy9etmLAAAAAAAAAADYBndO8pplLwKAg5qMHgAAAAAAAACwF8nnbZNDlr0AAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgKU7dNkLgF3gcysPTj755BxzzDHLWgsAAAAAAAAAwNxOPfXU3OUud1nZ9Lm1ruX/Z+/Owyyr6nvh//bpmrrpEehmVJtJQKIiyhtoGkRARcwbjfGS+JKHaHzVKDF4fRH1GgbjjUOccm/kxuGiYDSGoIISofFGmVFB0NgJIIJAM3dDz0ONZ71/dHdRw9nn7FN1qs6pU5/P8/RD77X3GvbuemBteq3vBmCaWKMHAAAAAAAAAMx41udNH8FoENE/8uDQQw+No446qlljAQAAAAAAAABopP7alwDAlLJGDwAAAAAAAABoR9bnTZFSswcAAAAAAAAAAAAAAAAAAAAAAAAAIBgNAAAAAAAAAAAAAAAAAAAAAAAAaDrBaAAAAAAAAAAAAAAAAAAAAAAAAEDTCUYDAAAAAAAAAAAAAAAAAAAAAAAAmk4wGgAAAAAAAAAAAAAAAAAAAAAAANB0gtEAAAAAAAAAAAAAAAAAAAAAAACAphOMBgAAAAAAAAAAAAAAAAAAAAAAADSdYDQAAAAAAAAAAAAAAAAAAAAAAACg6QSjAQAAAAAAAAAAAAAAAAAAAAAAAE0nGA0AAAAAAAAAAAAAAAAAAAAAAABoOsFoAAAAAAAAAAAAAAAAAAAAAAAAQNMJRgMAAAAAAAAAAAAAAAAAAAAAAACaTjAaAAAAAAAAAAAAAAAAAAAAAAAA0HSC0QAAAAAAAAAAAAAAAAAAAAAAAICm62j2AGA2SilFuVyOlFKzhwIwTpZlUSqVIsuyZg8FAAAAAAAAAADqZo0e0KqszwMAAAAAAACoTTAaTIOUUvT29saWLVtiy5Yt0d/f3+whAdTU1dUVCxYsiAULFkRPT4+FWAAAAAAAAAAAtCRr9ICZxvo8AAAAAAAAgHyC0WCKbd++PZ544okYGBho9lAA6tLf3x/PPvtsPPvss9HZ2Rn7779/zJs3r9nDAgAAAAAAAACAYdboATOR9XkAAAAAAAAA+UrNHgC0s+3bt8eaNWssuAJmvIGBgVizZk1s37692UMBAAAAAAAAAICIsEYPaA/W5wEAAAAAAACMJhgNpsjuBVcppWYPBaAhUkoWXwEAAAAAAAAA0BKs0QPaifV5AAAAAAAAAM/paPYAoB2llOKJJ54Yt+Cqs7MzFi5cGPPnz4/Ozs7IsqxJIwTIl1KKgYGB2Lp1a2zevHnUF3V3//vtkEMO8e8wAAAAAAAAAACawho9YKayPg8AAAAAAACgNsFoMAV6e3tHLVSIiFiwYEEccMABFioAM0JnZ2fMmzcvli5dGo8//nhs2bJl+NzAwED09fVFT09PE0cIAAAAAAAAAMBsZY0eMJNZnwcAAAAAAABQXanZA4B2NHKBQsTOBQwWXAEzUZZlccABB0RnZ+eo8s2bNzdpRAAAAAAAAAAAzHbW6AHtwPo8AAAAAAAAgMoEo8EUGLvoauHChRZcATNWlmWxcOHCUWVj/z0HAAAAAAAAAADTxRo9oF1YnwcAAAAAAAAwnmA0aLCUUvT3948qmz9/fpNGA9AYY/891t/fHymlJo0GAAAAAAAAAIDZyho9oN1YnwcAAAAAAAAwmmA0aLByuTyurLOzswkjAWicjo6OcWWV/n0HAAAAAAAAAABTyRo9oN1YnwcAAAAAAAAwmmA0aLBKX2jLsqwJIwFonFJp/JTBFykBAAAAAAAAAJhu1ugB7cb6PAAAAAAAAIDRBKMBAAAAAAAAAAAAAAAAAAAAAAAATScYDQAAAAAAAAAAAAAAAAAAAAAAAGg6wWgAAAAAAAAAAAAAAAAAAAAAAABA0wlGAwAAAAAAAAAAAAAAAAAAAAAAAJpOMBoAAAAAAAAAAAAAAAAAAAAAAADQdILRAAAAAAAAAAAAAAAAAAAAAAAAgKbraPYAmB5ZlnVGxAkR8fyI2C8itkbEExHxi5TSww3u66CIODoi9o+I+RHxZEQ8EhG3p5QGGtkXAAAAAAAAAAAAAAAAAAAAAAAA7UEwWpNkWXZwRBwbEa/Y9c9jImLBiEseSSktb0A/SyPioxHxRxGxZ841t0fE51JK35lkX2+OiPdHxPE5l6zPsuyKiLgwpfTMZPoCAAAAAAAAAAAAAAAAAAAAAACgvQhGm0ZZlp0cER+OnWFoFUPKGtzf6yLisohYVuPSFRGxIsuyb0bEu1JK2+rsZ35EfCUi/rjGpXtGxLsj4k1Zlv1pSun6evoBAAAAAAAAAAAAAAAAAAAAAACgfZWaPYBZ5uiIeE1MTyjayRFxdYwORUsRcVdEXBkR/ycinhlT7ayI+FaWZYV/LrIsmxMRV8T4ULR1EfHDXX3dvavv3faJiO9lWbayaD/QzpYvXx5Zlg3/uvHGG5s9JAAAAAAAAAAAAJjxrM8DAAAAAAAAgJlHMFpr6IuIBxvVWJZlB0bEdyOia0TxbRFxVErpFSmlM1NKr4mIAyPi3IgYGHHd/x0R/72O7j4ZEWeMOB6IiPdGxIEppdfu6uvlEfE7EfGTEdd1R8TVWZbtV0dfAAAAAAAAAAAAAAAAAAAAAAAAtCnBaNNvICJ+GRH/OyLeFREvj4gFEfH/NrCPj0bEkhHHt0fEaSmle0delFLqSyn9z4g4c0z992dZ9oJanWRZdnDsDFYb6b+klL6QUuof09c9EXFqjA5H2ysiLqrVDwAAAAAAAAAAAAAAAAAAAAAAAO1PMNr0ujwiFqaUXpZSekdK6csppbtTSgON6iDLssMi4k9HFPVHxFtTSr15dVJKV+8a227dUSyw7KKI6BxxfFlK6XtV+tkREW/dNabd3r4rYA0AAAAAAAAAAAAAAAAAAAAAAIBZTDDaNEopbagWUNYg/09EzBlx/N2U0m8K1PvUmOMzsyzrybs4y7K5EfHmGm2Mk1K6PyKuHlHUETvHDAAAAAAAAAAAAAAAAAAAAAAAwCwmGK39/MGY468VqZRSujcifjaiaI+IeE2VKq+NiHkjjn+SUrqv0AjHj+lNBesBAAAAAAAAAAAAAAAAAAAAAADQpgSjtZEsy/aNiJeOKBqMiNvqaOLGMcevq3Lt6TXqVnNL7Bzbbi/LsmyfOuoDAAAAAAAAAAAAAAAAAAAAAADQZjqaPQAa6nfGHP8qpbStjvq3jzk+qo6+flK0k5TStizLVkfEy8b09XTRNoD6pZTi7rvvjvvuuy/Wrl0bfX19sXTp0jjggANi5cqVMX/+/GYPccIeffTRuPPOO+Oxxx6LHTt2xN577x0vfvGL4xWveEWUSpPLAF27dm3ccsst8cQTT8SOHTti//33j4MPPjiOO+64SbddyT333BOrV6+OdevWxebNm2PPPfeM/fbbL1auXBl77bVXw/sDAAAAAAAAAABgcqzPmxjr8wAAAAAAAACoRDBae3nRmOMH6qz/YI32RjqyAX2NDEZ7UUT8uM42gAKeeeaZ+PjHPx7f+MY3Yt26dRWv6erqilNOOSUuvvji+N3f/d1C7b71rW+Nyy+/fPj4oYceiuXLlxeqe+ONN8arXvWq4eOLLrooLr744tzrsywb/v0rX/nKuPHGGyMi4vbbb4+LLroofvzjH0e5XB5Xb5999omPfOQjcc4559S9SOoXv/hFfOADH4gbbrihYtsHHnhgvOtd74oPfehD0dHRERdffHF89KMfHT5/ww03xMknn1yor2effTY+/elPxze+8Y14/PHHK15TKpVixYoVcdFFF8Vpp51W170AAAAAAAAAAADQeNbnWZ8HAAAAAAAAQOMJRmsvh445XlNn/UfGHO+VZdmSlNKGkYVZlu0ZEXtOsq+x1x9WZ32ggKuvvjrOPvvs2LJlS9Xr+vv7Y9WqVbFq1ap45zvfGZdcckl0dLT2fyI+/vGPx4UXXhhDQ0O51zz99NPxl3/5l3HDDTfEP//zP0dXV1ehtj/3uc/F+eefX7Xtxx57LC644IK47rrr4rvf/W7d49/t61//erz3ve+NzZs3V72uXv0wVQAAIABJREFUXC7HrbfeGq9+9avjT/7kT+LSSy8tfD8AAEB72zG0PR7q/XX0l/vqqrd3576xf/fzo5RV36gylIbi0d4HY+Pg+skMs210lbrjoJ4Xxtw5ezS87a1Dm+ORHb+JgTQw7lx3qScOmnt49JTmNrzfRhkoD8Qjvb+JJZ17xV6d+zR7OAAAM8LWoc3xVN+jsW/382L+nIXNHk5LWj+wLh7reyjKafxG+QVzFsUL5h4aHVlnw/vdNLghnu5/PJ7fc8ik5uG95R3x8I77o7e8o4Gjmzr7dB0Q+3YdOCoYoZKd8//7Y+tQ9b+HnDdnfrxw3u80cogAANAyrM+zPg8AAAAAAICJGxxKcfeaiMXzIg5bFjXXrQGzS2v/rTr1WjzmeG09lVNKW7Ms642InhHFiyJiw5hLx/azPaW0rZ6+KoxtUZ31gRq++tWvxjve8Y5xX1M85JBD4kUvelHMmzcv1qxZE3fccceoBUZf/vKXY82aNXHNNde07OKrz3zmM/GRj3xk+Pjwww+Pww8/PPbYY4948skn46c//Wn09vYOn7/qqqviggsuiE996lM12/7sZz8b55133rjyF73oRXHYYYdFd3d3rFmzJu68884YGhqK22+/Pc4888w46aST6r6PCy+8MD72sY+NKsuyLA4//PA47LDDYsGCBbFhw4b4+c9/Puprot/4xjfiySefjFWrVrXsnxEAADA9btpwbVy59n9HOcYHBBSxf9fz4y+ed3Es7hibgb/Tk32Pxt8/dnFsHHx2EqNsP6UoxZnL3hEnLXldQ9pLKcV1z/5L/ODZf44UqUq/c+Ksfd8Txy86tSH9NtL921fHFx//RPSWt0dExEvm/1/x9v3Oi86STUMAAHmufeaKWLX+yhhMg5FFFm9e9vZ41ZLfa/awWsZQGoyvPfn5uHvLbVWv26O0IN5z4F/FQXMPb0i/5VSOK9Z+OW7ZuCoiIuZER5y931/GsQvr/7ugn226Mb7x1BdiKAYbMrbp8oKew+KcAy/IDev79fbV8aXHP14o7G15z2Fx/gs+3eghAgBA01mfZ30eAAAAAAAAE/cfj6d47d+V48lNO49XHhpxzV+UYtE84WjATv62tr3MH3M8kU9O74jRwWgLprCfkSr1U7csy5ZFxNI6qx3SiL4bJQ0ORqx7rNnDaH9LD4ysjRes/PKXv4x3v/vdoxZdHX300XHJJZfEihUrRl27bt26uOCCC+JLX/rScNmqVaviwgsvjI9//OPTNuaiVq9eHbfccktERLzxjW+MT3ziE3HEEUeMumbDhg3x/ve/Py677LLhss9+9rPx7ne/O5YvX57b9l133RUf+tCHRpWdfPLJ8YUvfCGOOuqoUeXr1q2LCy+8ML74xS/GzTffHPfcc09d93H55ZePWnRVKpXinHPOifPOOy+e//znj7o2pRTf+9734txzz401a9ZERMSPfvSjuOCCC+ITn/hEXf0CAADtY03vA3HF2i9Pqo0n+tfEPz75P+O9z7t43LmUUnzp8U8IRaugHOX457VfioPmHh7P6zl40u3ds/0X8a/PfqtAv0Pxj0/9fSzveWHs1/28SffbKP3lvviHx/4m+tJzm6B+tfWOuO7ZK+P3l57VxJEBALSu1VvvHDUHTJHiyrX/O5b3HNawgK+Z7ofrv1szFC0iYlt5S/yvx/97fPKQr8WcbPJ///eTTT8aDkWLiBiKwbjsyc/HQT2Hx95d+xRuZ23/E3H5U3836fE0wyO9v4krnv5yvH3/8WEFfeXe+OKY+T8AwExifd40auM1etbnWZ8HAAAAAADAxKWU4vf+/rlQtIiIWx+IOPeKFJe9TTAasFN7rjiYvcYGlk1kJfKOiFhSpc1G9lOtzYl6T0Rc1KC2mmPdY5HOtNlhqmX/8uuI/ZY3exhT5u1vf3v09/cPH69cuTKuv/76mDdv3rhrly5dGl/84hfj0EMPjQ984APD5Z/61KfiLW95S7z4xS+eljEXtX79+oiIOP/883O/MLlkyZL42te+Fhs2bIjvfe97ERExNDQUl1566bgvQI50zjnnxODg4PDxm970prjiiisqfvVx6dKl8Q//8A9x8MEHx/nnnx/PPPNM4Xt45JFH4t3vfvfwcXd3d1x99dVx+umnV7w+y7J44xvfGCtWrIgTTjghHnjggYiI+PSnPx3vfOc746CDDircNwAA0D7+Y+tdDWnn19tXR295R/SU5o4qXzvwRKwdeKIhfbSrX229oyHBaL/ackdd16/eemdLBaP9evvqiqEIv9r6M8FoAAA5rnv2yorlv9z6U8Fou9TzzrNtaEs8uOO+eOG835l0v6u33TmuLEWK1dvujFd1/V7xdraOb2cm+Y+tP4+hNBRzsjmjyu/Pmf8DAMwY1udNm3Zeo2d9nvV5AAAAAAAATNydD0esWT++/Os/SXHZ26Z9OECLKjV7AEyp1GZ1gAJuuOGGuPvuu4ePFy5cGFdccUXFRVcjnXfeefF7v/fcZo5yuRyf//znp2yck7Fy5cpCX2L8m7/5m1HHP/7xj3OvvfPOO+NnP/vZ8PF+++0XX/3qVysuuhrpAx/4QLzmNa+pOZaRPv3pT8eOHc/lQ37+85/PXXQ10rJly+Kf/umfho+HhoZa9s8IAACYepsGNzSknXIMxdbBzePKNw4825D229mmwQp/CzMBGwfre9abhhrTb6Nsyhl/o35GAQDazZreB+Lh3vsrnts40FpzvWbaMrSxrusbNj/PeReqd35b7zy/1fSl3ugrj/3eWcTGBj1nAACYqazPe471eQAwC6QUUR5o9igAAAAAaDM/WC1yBqhNMFp72TrmeO4E2hhbZ2yb09kPMAGXX375qONzzjkn9t9//0J1P/nJT446/ta3vhV9fX0NG1ujfOQjH4lSqfZ/wo466qhYvnz58PEvf/nL3Gu/9a1vjTr+i7/4i1i0aFGh8VxwwQWFrouI2LZtW3z1q18dPj744IPjXe96V+H6xx57bJx44onDx9///vcL1wUAANrLYGrcwtO+NH6ze2+FDfCM1qhn1Jd6m9Jvo/SVK4+/0s8VAAARN228LvecOdRz6l32lDcvrVfe/LxSSFg1rTZvn4hK91DvcwAAgHZjfd5zrM8DgDZ33/+I+P5BEf+yIOLHr43Y/lizRwQAAAAAwCxS/TNbzDSC0SL+V0RcWWedQyLiew3qH5ru1ltvHXX8J3/yJ4XrHnXUUXHMMccMf9Gyt7c37rrrrlixYkVDxzgZc+fOjVNOOaXw9UceeWQ8/PDDERGxffv22Lp1a8yfP3/cdbfffvuo4zPPPLNwHytXroz9998/nnjiiZrX3nrrraO+RvnmN7+50CKykV71qlfFLbfcEhERjzzySKxZsyae//zn19UGAAAw8+UFo82JjugqdY0rTxHRW95esU5vhQCBamFdc0vzig2yTQyk/hhMg+PKGxa8UGc7jeq3UfLGM5gGYzANREfWOc0jAgBoXduGtsTPN9+Se77V5nrNVV80WqMCu/ICzRoVjJb3ztYsKVKVex7/85h3bSlK0V3qGVdeqQwAAGYy6/NGsz4PANrUg1+LuPt9zx0/9cOIf3tVxO/dG1GyFQ0AAAAAgKnn/0a3l01jjpfWUznLsvkxPrBsY4F+5mVZtkdKaVsd3S0r0E/dUkprI2JtPXWyLGtE19ASNmzYEA8++ODw8eLFi+PII4+sq40VK1YML7yKiLjzzjtbauHVIYccEl1dxTeLLFmyZNTxpk2bKi68+vd///fh3y9evDgOPfTQusb1ile8otDXIccujNt///2HF4YVNfb+f/vb31p4BQAAs1CloK6IiBWLT4u37PPn48pTSvHe+/8wylEed67SBv+8ze5LO/eLjx78D3WOdmb7/rpvxqr147P4855RvfICFjqyjikNZGuUas+hr9wbHXMEowEA7PaTTT+KgdSfe75R4V7tIKV6g9GmNri43vbzgqlPXnJG/OGyP6t7XFOlt7wj3v+bt1Q8V+nnMe85HLnH0XHOgRc2dGwAANBqrM8bz/o8AGhTD39zfNnWByKevTNi6fHTPx4AAAAAAGYdwWjt5Tdjjl9QZ/2x169PKW0Ye1FK6dksyzZExMjVDM+PiHsn0dfYsQMTsG7dulHHhx12WN3hf0ccccSo47Vr68oanHJjF1LV0tk5evP1wMDAuGu2bdsWvb3PbeKYyCKmonUeffTRUcfve9/74n3ve1/O1cWsX79+UvUBAICZaTCNf7+JiOjMKodQZVkW3aW5saM8Ptu+ns3uPaWxufrtL++e+1JjghfygsUWzlkS6wfXjStvtbCMagERfeXe2GPOgmkcDQBA6yqnctyycVXVa1otBHcmaURwcUqpgcFolcfT3WLvVF1Zd2SRRYrxQXSV7jnvfaTV7gsAAKaC9XnjWZ8HAG3q6R9VLl99ccQp10/rUAAAAAAAmJ0Eo7WXscFk9X1OLeLgMcf31Ohr5CfqDq3Qfz191VO3vS09MLJ/+XWzR9H+lh7Y7BFMiQ0bRmcZLlq0qO42xtZptUU9pVKp4W1u3Lhx1PGCBfVv2F64cGGh65599tm6265ly5YtDW8TAABofXnBaHOy/P/l113qyQlGq2eze0/BEbaPvHtuVEBZXsDCoo49c4LRWissoy/lP4dWGysAQDPdu+0XsW7gqarXmD89p1JQVzWNeHYDqT9SlCueqzd4Le/6uaV5dY9rKpWyUnRl3RWDnyvdQ95zno3vigDADGV93vRpwzV61udNjPV5ANBG0mCzRwAAAAAAwCwhGK29/MeY45dkWTYvpbS9YP0TarQ39tzIYLTjI+KaIp1kWbZHRLykjr5mlayjI2K/5c0eBjNUSqM3iNT7NcpKGtFGq+vu7h513N/fX3cbRetMpO1axv65AwAAs0NeMFpH1plbp7s0t2J5fcFoldtoZ/U8t3qllHLbWdixpGJ5vYEMU63ac2i1sQIANNNNG6+reY1gtOfkBaOVohTlCuFl1QJ7i6oWflwpOKyavLlwK75TdZfmRt9QhffCCvec9xy6s9a7LwCASqzPYzKsz5sY6/MAAAAAAAAAqJdgtDaSUnoyy7JfxXOhYx0RsTIifliwiZPHHFdbmb8qIt5ZpW41J8bon71fpJSerqM+kGPPPfccdbxp06a62xhbZ8mSypuwJ2NoaKjhbU7G2Hsc+2XPIop+uXPvvfcedXz77bfH8ccfX3d/AAAAgzlf4a0WjNaTswG/0ob9/E38PQVG117y7rkRoV+DaTDKUfk9eWHH4orlrRaWUW081YIlAABmk2f6n47/3HZXzesaEe7V7rpLc2NHedu48kbMkxs5t+0tV/5+WU9pXl3tTIee0tzYPDT+78fqeVfMe98EAIB2Yn3exFifBwAAAAAAQFEppVnxcSGgtlKzB0DDXTXm+G1FKmVZdkRE/O6Iom1RPVDt+ogYueL5+F1tFPHWMcdjxwxM0NKlS0cd33///XW38etf/3rU8bJlyype19ExOltzcLDyhvxKJrKwaSrNmTMnDjjggOHj3/72t7F9e+XNKnlWr15d6Lp99tln1PFE/owAAAAiIgbTQMXyasFoeQFflTb/5wUCzMbN7nn33FfujZTSpNquFnyxaE7lzVCtFjZWLSCu1ULcAACa5eaN10WK2nPHwTSYO9efbfKeVz2Bz/Wq1kZvnXPbvHl7TwuGTTfiXXE2hmgDADD7WJ83MdbnAQAAAAAAAFAvwWjt55sRMfJTb2/KsuywAvU+OOb4X1JKuSu7U0rbI+LbNdoYJ8uyF0bEH4woGoyIfyowPqCAJUuWxCGHHDJ8vHHjxrj33nvrauP2228fdXzsscdWvG7hwoWjjjdu3Fi4j//8z/+sa0zT4bjjjhv+fblcjptuuqlw3fXr18e///u/F7p2xYoVo45/+MNqGZQAAAD5BlPlDTAdWUfF8oj6AgTyAgFm42b3vHtOUY6B1D+ptquFnC3q2LNyndQb5VSeVL+NVC38rBHhFAAAM11/uS9+sulHha8XLrtLTghxteDiyarWRj0BxQPlgdx3tp7SvLrHNdXyg9HG33Pec5iN74oAAMw+1udNnPV5AAAAAAAAANRDMFqbSSn9JiIuH1HUFRGXZVmWuwo5y7I3RMRbRxT1R8RHC3R3cUSM/Fz5W7Ms+/0q/fRExNd2jWm3S1NKDxboCyho5cqVo46/+c1vFq577733xl133TV83NPTEy9/+csrXjv2S5X33HNP4X6uvfbawtdOl9NOO23U8Ve+8pXCdS+//PLo7y+2Ef7UU0+NOXPmDB9///vfj7Vr1xbuCwAAYLeh3GC0ztw63Tn/i6gvVdrsXjkQIC+EoJ1Vu+fJBn9VC15Y2LE491x/6ptUv41ULSCiL//bCwAAs8bdW26LbeUtha8XjLZT5Vi0/GCxhgSjVZm/DqT+KKeh3POjx5I/R27Fd6ru3LC54iHarXhfAAAwFazPmxjr8wAAAAAAAACoh2C0aZZl2YFZli0f+ysi9h1zaUel63b92rtGNxdFxIYRxysi4t+yLDtizFi6syx7b0RcOab+Z1NKj9S6l5TSbyPif4wp/naWZX+RZdnI8LPIsuzIiPjRrrHs9mwUC2AD6nD22WePOv7CF74QTz31VKG6H/7wh0cd//Ef/3F0d3dXvPaYY44ZdXzNNdcU6uP666+PO+64o9C10+mss86KBQsWDB9fddVVcf3119es9/jjj8df//VfF+5nyZIlcdZZZw0fb926Nc4777z6BgsAABARg2mgYnlH1pFbp7uUE4xWIUAgbyN/dzb7NrvnPbeI6oEHRVQLb1jUsWTK+m2kauERQj0AACJu2nhdXdebQ+2UolyxPP+9ZvJz5FrBx0X/bKq1kxfs1kz1vStWfgbV3psAAKCdWJ83MdbnAQAAAAAAAFAPwWjT79aIeKjCr2+Nue6AnOseiojPVOsgpfRYRLwpIkZ+Hu2EiLgny7I7syy7IsuyVRHxaET8z4joHHHdv0bEBXXcz4ciYuRK/s6I+PuIeDTLsuuyLPuXLMt+HhH/GaND0foj4g9SSk/W0RdQwCmnnBJHH3308PGmTZviLW95S+zYUX0jx+c///n43ve+N3ycZVn81//6X3OvP/7442PevOc2blx11VXx85//vGofv/nNb+JP//RPa91CUyxYsCDOPffcUWVnnnlm3HDDDbl1Hn744Xj1q18dGzdurKuviy++eNSCtn/8x3+MD37wgzE0NFRXO/fcc0/cfPPNddUBAADaR34wWmfF8oiI7lLlULNKAQJ5YVezcbN73nOLqB2cUEteqEAWWcyfs6jues1QbSytFOAGANAMD+/4TTzS+5u66kx2jtkuUk55T+57zeTnyLXmr8WD0bbnnssbfzMVDUZLKeWHaLfgfQEAwFSwPm9irM8DAAAAAAAAoB6C0dpUSunGiPiDiFg3ojiLiFdExJkR8dqIWDqm2rci4o9TSoX/5n/XtWdGxBVjTi2LiNMj4r9ExMt39b3b2oh4Q0rplqL9wGzy1FNPxcMPPzyhX7tdeuml0dXVNXx84403xoknnhg/+9nPxvX3zDPPxDnnnBPvf//7R5Wff/758ZKXvCR3nAsWLIg/+qM/Gj4eGhqK17/+9fHDH/5w3LX9/f3xla98JY477rh4+umnY8mSJfU8kmlzwQUXxItf/OLh482bN8epp54aZ555Znz729+OX/3qV3HffffFD3/4w3jf+94XRx11VNx7773R09MTb3jDGwr3c9BBB8WXv/zlUWV/+7d/GytXroxrrrkmBgcHc+s+/PDDcckll8Qpp5wSRx11VPz4xz+u/0YBAIC2MJAbjNaRW6foZveI/DCG2bjZvTvLv+fJhi/kP+eeqoEJrRKWMZQGc0P6IgSjAQDcvPHauuuYQ+1WORqtpzSvYnlfmvxzqzXPzguQrqedVnynynv3GHsfg2kgylGueG0r3hcAAFRifV7zWJ8HAAAAAAAAQFH5uySZ8VJK12ZZ9jsR8dGI+KOIyFvp8NOI+ExK6TsT7GdrRPxxlmXfjoj/LyKOy7l0fewMULsopbQu5xqY9d7ylrdMuG5KOzeIHHPMMfGFL3wh/vzP/zzK5Z2bE+6666447rjj4tBDD42jjjoqenp64tFHH4077rhj3EKfV7/61fGxj32sZn8f+9jH4qqrrhr+IuPatWvjta99bRx66KHxkpe8JLq7u+Ppp5+On/3sZ7Ft27aIiNh3333jU5/6VEt+mbKrqyt+8IMfxCmnnBIPPPBAROx8pldeeWVceeWVFetkWRaXXHJJrFmzZtwXPas5++yz46mnnooPf/jDw39GP/3pT+P3f//3Y968efGyl70s9tlnn5g7d25s2bIlnnnmmbjnnnvq/volAADQvoZS5U0bHVlnbp2im90j8gO/qoV1tavOUmfMiY4YivHPfLKhFXn1u0tzc4PsdtabXCBbo9QaR6uMEwCgGbYObo6fb7m14rkj5r00Htrx64pBW+ZQO6U6g9EGd4X2VnsnqqX2/LbY/L+3vL1ieUfWEZ2liY9vquSFQY/9+az2fLqz/PcXAABoJdbnNY/1eQAAAAAAAAAUJRhtmqWUlk9zf2sj4t1Zlp0bESdExAsiYt+I2BYRj0fEL1JKDzWor29HxLezLDsoIo6JiP0jYo+IeCoiHomI21JK/Y3oC6jtHe94RyxZsiTe9ra3xdatW4fLH3jggeFFRZX82Z/9WXzxi1+Mzs7amzIOOOCA+M53vhNvfOMbY8uWLTX7OOigg+IHP/hBPP3003XezfR53vOeF7fccku85z3viauuuqrqtXvttVdcfvnl8frXvz4++MEPjjq3YMGCmn3t/urn2972tnjqqaeGy7dv3x633XZbofG26tc9AQCAqTeYBiqWVwsB6M4JNRu7uT2llLvhvVpYVzvrKc2NbeUt48orBVnUI/c5Zz0xJ+uIjqyz4p91pTC7Zqg1DqEeAMBsdvumf8udt5+0+HXxRN+a6BuqEIw2yTlm26ici1Y1rLmv3Bsdc6YuGK3oPLw3932qNYOm857p2OdR7f5nY4g2AACzm/V5E2N9HgAAAAAAANWkFFHjGznALFFq9gCYHiml/pTSDSmly1JKn0wp/X1K6buNCkUb09dDKaXv7Orjk7v6vEEoGky/N7/5zfHggw/GueeeG3vvvXfudZ2dnfGa17wmbrvttrj00ksLLbra7ZRTTok77rgj3vCGN+R+hXHp0qXxgQ98IH75y1/GkUceWfd9TLd99903vvvd7w4vwHrRi14Uixcvjp6enjj44IPjtNNOiy996Uvx4IMPxutf//qIiHFfily0aFGhvk4//fR46KGH4pJLLomjjz665pcsOzs7Y8WKFXHxxRfH/fffH+eee+7EbhIAAJjRymkoylGueK56MFrlULOxm90HUn+knPZn62b3vGc32YCyvNCL3f0VDSholkYFRwAAtJtyGopbNq2qeG5Jx97x4vnHFp6fz1YpJxmtVjDaZPQ1KPi3t7y9YnlPaV7dY5oORd93+lL+85mtIdoAAMxu1udNjPV5AAAAAAAAANTS0ewBAMx2Dz/88JS2v2zZsvi7v/u7+NznPhd33XVX3HfffbFu3bro6+uLvffeOw488MBYuXJloS8o5jniiCPi6quvjmeeeSZuuummeOyxx2L79u2xzz77xEEHHRQnnnhidHQ895+ck08+OVKqvJmlknquHeuyyy6Lyy67bEJ1V65cGStXrix07T333DP8+yzLYtmyZYX76enpife85z3xnve8J9avXx8//elP48knn4z169fHwMBAzJ8/P5YtWxYvfOEL44gjjoh581pz0wwAADB9BtNg7rmOLP9/+eWHbI3e3F4tzGq2bnbvnqKAsrz6u/vrLvXE1qHNFeq1RuBYrfvPC34DAGh3/7nt7nh2YG3FcysXvzbmZHOmLHy3XTQnGK3G/LZg+3nz9VYNms4P6RsTjFbl/mfruyIAAK3P+rzarM+zPg8AAAAAAACg1QhGA5glSqVSHHvssXHsscdOWR977713/OEf/uGUtd+qtm3bFnfffffw8Qtf+MIJL2Tbc88944wzzmjU0AAAgDY1mAZyz3VknbnnurOcze6pN8qpHKWstPO4ajBaa27kn2pTFVqR96x399edFQuza5Za45hsMAUAwEx108brKpbPiY44YdGrI6J4cPHsVXljfrV3kknPz1P1+kXb31HeXrG8dYPRigVB591/KUrRmXU1fFwAADCTWJ83dazPAwAAAAAAAJh9Ss0eAADMdJdffnls3/7cBpfjjz++iaMBAABmg8E0mHuuajBalU34/alv+PfVNvvnBYS1u/zQiskFf+U969395T3vvtQagWO1xjHZYAoAgJloXf+Tcc+2uyueO2bBiljYsTgiqsz1hMtGRF4s2s7nlkVW8dxkQ+V6azz7on82eeNo3WC0vJ/FHZFSGnFc+f67Sz2RZZX/TAAAACbL+jwAAAAAAACA2UcwGgBMwmOPPRYXXHDBqLKzzz67SaMBAABmi8E0kHtuTtaRe65aqNnIjfvVNvu36kb+qVYtKGAyqgULVOu3VQLHat3/ZJ8PAMBMdPPGVbnnTlpyxvDvBaPVUjkaLYtsyp5do+a3+QHI8+oe03TIC9EuR3nU+2f++8vsfE8EAACmnvV5AAAAAAAAALOTYDQAGOE73/lO/Lf/9t9i3bp1Na/9xS9+ESeddFKsX79+uOylL31pvOpVr5rKIQIAAFQNRuuYcDBa74jfV97EPyc6oiPrLDDC9pO30X+qg9HyguhaJSyj1jhaZZwAANOlv9wXP9n0o4rnDuw+KA7uOXz4uDtr7bles6WUE4yWZdGdTU2AcK1nX7T9/GC01gwQ65nku6JgNAAAoCjr8wAAAAAAAAAoIn+XJADMQlu2bIlPfOIT8ZnPfCZOP/30OPXUU+OlL31pLFu2LDolexdaAAAgAElEQVQ6OmL9+vWxevXq+Nd//de45pprRm3K6erqissvv7yJowcAAGaLwTSYe66zSnBZtU34Izfu96XKYQCtuol/OuSFyk06eCHnWe8OycgLGJhsv41Saxx95d5IKUWWZdM0IgCA5vr5lltie3lrxXOvXHzGqHlRbvhuao25XivrLs2NGNowrjxvfl1UreDjou3PtGC0vJC+iJ33Mj8WRkTtYGcAAIBarM8DAAAAAACgmsqfVAVmI8FoAFDBwMBAXHPNNXHNNdcUun7u3Lnx9a9/PV760pdO8cgAAAAiBtNA7rmOKsFoecELEaM3uOdt4p/Nm93zAgzyggGKqvWsp6rfRqk1jnIMxWAaiM6sa5pGBADQPCmluGnDtRXPzS3Ni2MXnjSqLG9+XSuca7YoR7lieRZZlWc32WC06vWLtt9b3l6xvNo7WTNVe9cbGdSX+/6Szd53RQAAYGKszwMAAAAAAACgmlKzBwAArWTx4sUxZ86cuuqccMIJcfPNN8eb3/zmKRoVAADAaNWC0eZk+d9CmJPNyQ2oGrnBPW+zf6tu4p8OeRv984IBisp71rsD0Vo9LKNIMESrhLgBAEy1h3vvj0f7flvx3PGLTo2uUveosqkK92p/We67yWTnybWD0Yq1n3fd3NK8usc0HfICmSNGP5ORIWlF6wMAAIxkfR4AAAAAAAAAReTvkgSAWeiNb3xjPP3007Fq1aq47bbbYvXq1fHII4/E+vXro7e3N+bOnRt77rlnvOAFL4gTTzwxzjjjjDjhhBOaPWwAAGCWqRaM1pF1Vq3bXeqJgaH+ceUjN7vnhX3lBTfMBnkb/ScbWpEXmLD7WecHPrRGWEahYLS0I+bHwmkYDQBAc9208drccyctft24MsFo1aVIFctLkU1JgHA5laMv1QpGK/ZnsyN3nt+aAWIdWWeUohTlKI87VyxEe/a+KwIAAPWxPg8AAAAAAACAIgSjAcAYe+21V5x11llx1llnNXsoAAAAFQ2mwYrlpZgTpaxUtW53qSe2Dm0eV95XYLN7XjjYbJAbUJYmHrwQUTtYYCoCHxqpyP3nBe0BALSTLYMb4+4tt1U8d+S8o2NZ1/7jyvPm1+ZPu1UORousWjDaxEPl+lNfzWuKtp83X2/Vd6ps1zPdUd4+7pwQbQAAoNGszwMAAAAAAACgluq7JAEAAACAljOYBiqWd2adNet2ZzkBX6OC0Wx2Hys3GG0SwQsppSrBaDv7684qP/NWCcsoMo7JPCMAgJnitk3/lhtg/MolZ1Qsn4o5ZjtJeblokU1JqFyR8OGi7fdWCBiLaN1gtIhqP49CtAEAAAAAAAAAAACYXoLRAAAAAGCGyQtcmJN11KybF27Wl57b4J4fjDZ7N7vnPbfJBC8MpoEox1BOfzufdV7AwMg/r2YqEtoh2AMAaHflNBS3bry+4rk9O5bG7+zx8orncufm5k8REZEiJxktpubZFQv9rX3NQHkg952tlQPEigT11Qp2BgAAAAAAAAAAAIBGEIwGAAAAADPMYBqoWN6Rddasm7cRf2QIQF4gQF74wGyQ99wG00AM5YQe1FIttKE72/ms8wMfJh7I1khFgicmEx4HADAT/Me2u2L94LqK505cfHqUsjkVz+2e8401FIO5c/7ZpXIwWhZZdGeNDxAuFPpboP1qc/We0ry6xjSdioTN5Ydoz953RQAAAAAAAAAAAAAaTzAaAAAAAMwweUFcHVlHzbrFNrtX3uyfFw42G1Tb6F8kQKFivVQtMKFn1z/zAtlaIyyjUHjEBJ8PAMBMcdOGayuWd2QdsWLRabn1pmKO2U4qx6LtDEYrEvhcr2Jz29rtVxtDK79TFXmmec+ou4XvCwAAAAAAAAAAgJkj5S0eBGYdwWgAAAAAMMMM5ARidWSdNevmbVgfucE9byN/d5Yf3NDuqgUYTDR8oVrwwu6QjGoBA/3lvgn120hFgiGKXAMAMFM93f943Lv9lxXPHbNgZSzoWJRbdyrmmO0lf3VTkcDnehV55kUCinvL23PP9ZTm1T2u6ZL3vjcy0Nm7IgAAAAAAAAAAAADTQTAaAAAAAMwweRvxO7KOmnXzwhdGbnDPCxOoFtzQ7vKCFyImHr5QPRhtbs1+WyEso8i9TyacAgCg1d2ycVXuuVcuPqNq3WohuOZQESknGC2LrEow2sTnyEWfea2A4mrz9Gp/5s2W97438rnkPd/Z/K4IAAAAAAAAAAAAQOMJRgMAAACAGWYoDVYs78g6a9YtEiDQlypvdm/lTfxTrXpoxcTCF/ICE7IoRWfWVaDf5odl5P2s1HsNAMBM1FfujZ9s+lHFc8/rPjiW9xxWtf5UhO/OClmWO0+eXDBasbq1Aop7y9srlndkHdFZqv3O1ix5P4+777ecytGfKofCVftZBgAAAAAAAAAAAIB6CUYDAAAAgBlmMA1ULC8WjJYXINBb8fdF6s4GXVl37rlawQh58p9zT2RZNvz7RvfbKINpIAZzQvpGEuoBALSrOzffHDtyQrBeueSM4Tldns6sK7KofM1kAr7aQUop91wW1QKfe6vWraboM681v+2doe9T1Z5pRER/6osUlZ9tq98bAAAAAAAAAAAAADOLYDQAAAAAmGFyg9FKRYLR8ja7PxcCkBe4VS2kq92VslJ0Z5Xvf+LBaLWfc1fW3bJhGf3lvkLXCUYDANpRSilu3nhtxXPzSvPjFQtOrNlGKSvlBvA2OwS32fICuHbKcoO4ylHOfV+qpS8Vm7fWmofnne8pzat7TNOpVoh2tXl9j2A0AAAAAAAAAAAAABpIMBoAAAAAzDAD5ZxgtOioWTcv3Gt3CMBQGswNEpjtm91rBQXUK6/eyD+jVg7LKNp/s8cJADAVfrvjvnis7+GK545fdGp0lSrP4cbKm2PP9nDZasFopciip0po88SDi4s981rt95a3Vyxv9fep/PedHbv+mf98ZnOINgAAAAAAAAAAAACNJxgNAAAAAGaYoRisWN5R6qxZN28zfq/N7jXlh1ZMMHgh5QSjjXnOrRqWUbT/Zo8TAGAq3LzxuorlWWRx0uLTC7eTG0aVM1ecPfKD0SKy6M7yQ8YmOv8sGqhWq/28dlo/GC0nRHvX/VZ775nt74oAAAAAAAAAAAA0Rqq2fBCYVQSjAQAAAMAMM1jOCUbLOmrWrbXZvVoYQKtv5J9quc9ugqEVRQMTWjUso2gg3ESD4wAAWtXmwY1x95bbK5570R4vi6Vd+xVuq9b8fLZKVYLRssiqBnH1pQkGFxcN/q0xD+8tb69Y3urvU7WCoAWjAQAAAAAAAAAAADBdBKMBAAAAwAwzmAYqlndknTXr5m12H0wDMZQGq4YBzPbN7nkBZdXC5KrJe9Zj+8kPy2hu4Fjh4IhZHuoBALSf2zb9nxiKymHFJy0+o662WnWu12xVv/iYZVVDxnonOP8sOq+vdV3e+bz3iVbRnVX+WewdDkar/Fw7so5C76IAAAAAAAAAAAAAUJRgNAAAAACYYfKC0eZkHTXrVtuM31furRrA0Oob+adaXvjCRIO/8p712HCMvOfe7MCxvlSs/4kGxwEAtKKhNBS3bFxV8dxenfvEUXu8rK728ud6s30OlZ+MlsXOUOhSznKHiT67ovVqzcPz5r9zS/PqHtN0ygvp6099UU7l/MC3bHa/JwIAAAAAAAAAAADQeILRAAAAAGCGGUyDFcs7ss6adfM2u0fs3MBfLcSqK+uuPbg2lvfsJh68UDlQYXwwWuV+mx04VrT/ogFqAAAzweqtd8bGwWcrnjtp8elRyubU1V7+HHN2z6FS1WC0LLIsa/izK1qv1vw/N0CsxYOm84KgU6QYSP258/pq75gAAAAAAAAAAAAAMBGC0QAAAABghhlMAxXLOwsFo+Vvxu8r9+aHdWU9Ucpm9/9OzAsKaHTwwthggfx+mxuMVjw4YnaHegAA7eWmjddWLO/IOuP4RafW3Z5gtInIIiL/3Wbi8/OCwb812u8tb69YnjevbxXV3hWrhWi3euAbAAAAAAAAAAAAADPP7N7JCAAAAAAzUF4w2pyso2bdvOCFiJ1BADa758t7dnnPrJa8emMDE1o1LKOe4IiU0hSPBgBg6j3V91j8evuvKp57xYKVMX/Owrrb7M5ywr3S7A5GS5E/f8x2/TM/GG1i8/Oiz7xW+3nnWz8Yrdq7YpUQ7Sr1AAAAAAAAAAAAAGAiBKMBAAAAwAyTF4zWkXXWrNuVdUc2HCUwWl+5NzcMoNU38U+H6QpeGBuOkffsJxrI1ihFg9lSlGMg9U/xaAAApt7NG6/LPXfS4jMm1Gajw3fbRbVgtN3RaI0OEC5ar9Z1O3KD0ebVPabpVO2dr6+8I/e+vSsCAAAAAAAAAAAA0GiC0QAAAABghhlMgxXLiwSjlbJSdGXdFc/1lnfkhnzlhQ7MJt1ZY0Mr8oIFxj7rRgc+NEo9/U80PA4AoFX0lnfETzffUPHcC3oOi+VzD5tQu3mhUs2e67WyLNsVjJYzP+9LE5t7Fp3X5wUcD5/PDUZr7QCxau98fd4VAQAAAAAAAAAAmAbVPqsKzC6C0QAAAABghhlMAxXLiwSjRUR054UvpN4qYV2tvYl/OjQ6tKJosEB3ltdvc8PG6gmEm2h4HABAq7hj803RW95e8dwrF79uwu3mh+DO7vlTSvlLm7Jd/8ybn09k7jmUBnPfs+ptP+/npNWD0eZkHbnvlH3l3irvL619XwAAAAAAAAAAAADMPILRAAAAAGCGGUyDFcs7so5C9asFCORt8s8LbJhNGh1aUTSELrffNLFAtkapJxBuouFxAACtIKUUN2+4ruK5PeYsiJcvWDnhtvPnmLN9/lTtm487o9Ea+ewaNbcdTAO572utHowWkf9Me8s7qry/eFcEAAAAAAAAAAAAoLEEowHQEGvWrIm/+qu/ihNPPDH22Wef6OrqiizLhn9ddtllzR4iAABA2xhMAxXLO7LOQvWrBQjkhXzNhE38U21sYNluEwkoSynlPuuxfz55/eaF2E2XvlS8f8EeAMBM9uCOe+KJ/kcqnlux6LToLHVNuO3cOeYsnz+lKsFo2RQEo9Uzt64WjFytnZ7SvLrG1AzdWX4oc26Idk4dAACgsazPAwAAAAAAAGA26Wj2AABmu+XLl8cjjzy3meaGG26Ik08+uXkDmoCvfOUr8d73vjf6+vqaPRQAAIBZYSgNVizvyIr97778AIEduSECeXVmk7xwuL5yb6SUIsuywm0NpoEoR7niubHhGNX6baZ6+p9IeBwAQKu4aeN1FcuzyOLERadPqu28eXZveUfdc8x2UiQYLW+ePJEA4XrmttXa7x2qFozW+mHT1d498p7RTLgvAABmN+vzAAAAAAAAAGDmKTV7AADMbNdee228613vKrzo6sYbbxz1pcqLL754agcIAADQhgbTQMXyjqyzUP2xwVu79ZV35G7yt9k9/7mlSNGf6tuMVC14oTsbHY6RH2S3M5CtWRoVHgEA0Mo2Da6PX2z5ScVzR+3x8ti7a59Jtd+TVZ5jlmMoBnMCkWeDasFosSsYLf+9pv5Q3rpCf6tcW23e21OaV9eYmiHvmfZWeVfMqwMAADSG9XkAAP8/e3ceJldx2Hv/V71M94xG0khoAwQIIbFjFiMQIDYvAhTsxEsMxH68hmAnuRdCiK95c21JFwfj1yQ2tnFsEwK8jzEh18bGwSDHxpJAYMAIsACJ1QgQCC1IM0gz0z291PuHNKPpnlOnz+npvb+f5+FBp+qcqurTrVGdmarfAAAAAAAAAADaUazeAwAANLerr766YBP2X/zFX+hzn/ucDjroIMXj+zbkT5s2rR7DAwAAAICWlHEGowX7dp9f0Fbaudnd+5p24ncPUvnBUPcobf0CE4IFo1nllbFD6jCJwP1WkuuzMt5zAQAAGslDvb9WXjnPurOnLBl3+35zyLQdVFzBwo9bjk8umtmTi+bzXBN+7hlubrsnoNgMD2SUVH7AeV0zBIj5Pita70A4nhUBAACA6mJ9HgAAAAAAAAAAAACgHRGMBgAo2/PPP69169aNHC9ZskS33357HUcEAAAAAO0hZ7Oe5TETLDQh6diQn8oPKp13bHY3jb+Jv9pc902S876Vc35xYIJ/v4PqiNQrGC34aw57fwAAABpBzmb1YN+vPOumx2fpqK4Txt2HbzBaPqXu6KRx99GMrE8ymtGeQDJX0Fg5c09X6JeXvHLK2ozipsOjb++AtahiikcaP+TOfU/dz4p+zysAAAAAxof1eQAAAAAAAAAAAACAdhWp9wAAAM3r8ccfLzj+6Ec/WqeRAAAAAEB7ydqMZ3nQYDRX+EI6n1LKsZHfL7ChXfiHVnjfNxfXffbqx69fv3aqLUzgRD3HCQAAUK4/7H5MfdkdnnVn9pyviBn/j9tdQVRS+Dlma3EHo2k4GM24nmvC37ew17jmwoOOdpLR5ggPcz8rDjrvEc+KAAAAQPWwPg8AAAAAAAAAAADtxvotHwTQVghGAwCUbcuWLQXHs2fPrtNIAAAAAKB95G1OeeU96wIHoxnvTflpm1Laem/wT/oENrSLSgajuYIUjCKKm46ifv3CMoKHk1Va2gZ/zfUcJwAAQLlW77zXszxuOnTa5PdWpA+/eXY7z6H8Y9H2BqO5QrwczzR+UiHvtWsu7HouaJbnKdc9Hcj3K2OHQl0DAAAAYPxYnwcAAAAAAAAAAAAAaFcEowEAyrZ79+6C43g82AZ8AAAAAED5sjbrrIuZWKA2XJvyU/lB50Z+v3CudhEzcec9TlUoGC0RScoYU1jmCLIrp99KydqM72exWDuHegAAgOb0Zvo1vTj4jGfdyZPO1IToxIr0EzcdI0Ffxdp5DmV9o9H2cD3XpPMp2ZC/MjJs0LFrHp7KD3iWJyNdodqvF9c93ZXtC30NAAAAgPFjfR4AAAAAAAAAAAAAoF0F2ykJAGh61lo98cQTeu6557R161al02lNnz5dBx54oBYtWqTu7u7Qbebz+SqMFAAAAADgJ2szzrqYCbYhJhFJepan84PO8AU2u++RiHQqm9s1pjxsaIU7gG7sexOPxBVVTDmNDSJL2/qEZVTq9QIAADSqB3tXOOvO7llSsX6MMUpEkp5BW/UKwW0M7mCz4SA5V3izldWQTSthvJ97vISf33qf73rPmuV5ynXP+rI73Nc0yWsDAAAAqo31eQAAAAAAAAAAAAAAVA7BaADQ4rZv365rr71WP/rRj7Rt2zbPczo6OvSe97xHy5Yt06mnnupsa+PGjTr00EOd9eeee65n+S233KLPfOYznnXLly/X8uXLnW2uXLlS55xzjrMeAAAAANpN1o4NxxoWPBjNe+P6rmyfrCOAwBWm1m4SJql+jQ1GCxtaETaALhFJaiC/26Od+oRlhA6OsO0c6gEAAJpNKj+oR99Z6Vl3aPIIHZw8rKL9JUxSKY2dL4Wdc7USdyzanjA5yf8ZJZ1PhXqGqdR8PpUf8CxvmmA0xzjfye10XxMigA4AAABoRazPAwAAAAAAAAAAAACg8iL1HgAAoHp+/vOfa+7cufrmN7/pXHQlSUNDQ1qxYoUWLlyoyy67TNmse5M9AAAAAKC+sjbjrIuZYL8HwRUQ4BW8te+a5tjIX22uQIO0DRda4QpecIUKuN6zeoVlhA5Ga+NQDwAA0Hwe7VvpnK+d1XNBxftzzbXrFYLbEKxfNNoefsFnlQo6C9u+c57fJM9Trucdv4DuZnltAAAAQDWwPg8AAAAAAAAAAAAAgOoItlMSQO3ks9LApnqPovV1zZYirf0l8N///d916aWXKp/PF5QfdthhOvroo9XV1aXXXntNjz32mHK53Ej9D3/4Q7322mv6r//6L8VirX2PAAAAAKAZ+QWjRccZjFbpa1pRpUIrXEFqrvvsCigIG/hQKaFfL8FoAACgSVhr9UDvfZ513dHJOmniGRXv0xmCGzJ8t5VYuYPRjIwk9xxZqv581XW+a37eGekK1X69lPesmKjCSAAAAKqI9Xm10+Jr9FifBwAAAAAAAAAAAABA9fATdaDRDGySfnFovUfR+j74itQ9p96jqJqnnnpKX/jCFwoWXZ1wwgm68cYbdfrppxecu23bNn35y1/WD37wg5GyFStW6Ctf+YquvfbagnNnz56tV155ZeT4W9/6lm644YaR4zvuuEMLFy4cM55p06bpnHPOkSQ98sgjuuSSS0bqLr/8cl1xxRXO1zJr1qwSrxYAAAAA2kvWZp11cRMP1IZfgEAlr2lFrqCAsAFlriAFV/CaMyyjTsFoYV9vvQLcAAAAwnpx8BltHnrds+6Mye9TPBJszh2GO3yXYDQvw8FofiFeoYPObNj5vPf5rnmv6z1uNGGD0eKmQxETrdJoAAAAqoT1ebXTwmv0WJ8HAAAAAAAAAAAAVId79SCAdkMwGgC0oM997nMaGhoaOV60aJF+9atfqatr7G+jnz59ur7//e9r3rx5+od/+IeR8q9//eu65JJLdNxxx42UxWIxzZkzZ+S4p6enoK1Zs2YV1I/W3d0tSdq4cWNBeU9Pj/MaAAAAAMBYWZtx1sUCBqOF3exe7jWtqFKhFa4gBVcAXaOFZYR/ve0b6gEAAJrL6p33eZYbRbSo57yq9NloIbiNbjgYLWbiiiqmnMaGR4e9d+HP957fhp3nN5qwAW7N8roAAACASmN9HgAAAAAAAAAAAAAA1RWp9wAAAJW1cuVKPfHEEyPHkyZN0p133um56Gq0q666ShdeeOHIcT6f1ze/+c2qjRMAAAAAUJ5KBKOF3bweM7HAbbc6171LVShIwRWK4SoP22+lpC3BaAAAoPX0Zt7WH3Y/4ll3XPfJ2i8+oyr9NtpcrxFY5X1qzcifXPPzas9X09b7vUnlBzzLmyVALBkyEJsAbQAAALQj1ucBAAAAAAAAAAAAAFB9BKMBQIu57bbbCo7/5m/+RgcccECga6+77rqC4zvuuEPpdLpiYwMAAAAAjJ9fMFrUxAK1kTDhNuWHPb+VuTb+hw1ScIVcuNp3Bj7UKXAsdHBEG4d6AACA5rGm77+VdwRyndVzQdX6bbS5XiOw1l1n9uWiVX1+7uJq39VOMuIfkNAoEiED3Jol8A0AAACoJNbnAQAAAAAAAAAAAABQfQSjAUCLWbNmTcHxJz7xicDXHnPMMTrppJNGjlOplNauXVuxsQEAAAAAxi9rs57lEUUVMcG+3ecKD6jU+a3MHVpRmSAF1712hdPVK3As9Ou1KeWtd8gIAABAI8jajNb0/rdn3Yz4ATqy6/iq9V2pcK/W4pOMpn3JaK57V6mgMxdX++5gtOYIEAsbjBb2fAAAAKAVsD4PAAAAAAAAAAAAAIDqIxgNAFrIzp079fLLL48c9/T06KijjgrVxumnn15w/Pvf/74iYwMAAAAAVEbWZjzL4yYeuI2YiSuiaODz2ey+j+tehA1SSFtHMJojAK3RwjJcgQ8xn8/hkE1XazgAAADj9oddj+qd3E7PurN6zg8cQlwOZwiuY87YDqxPMJopCEarbnDxhMjEUOe75snN8kyVMCFDtEOeDwAAADQ71ucBAAAAAAAAAAAAAFAbsXoPAECRrtnSB1+p9yhaX9fseo+gKrZt21ZwPH/+fBljHGd7O/LIIwuOt27dOu5xAQAAAAAqJ2uznuVRE/xbfcYYJSJJDeb7A52fbJJN/LXgCihzBSC4uIIUXO273oN6hWW4xj85NkVvZ7y/l5DOp/gsAQCAhrW69z7P8g6T0MLJ76lq340WgtsI3LFohSpx76y1zvn8pFiP+od2BWo/azPOIOvOJpkHJyKJkOc3x+sCAAAowPq82mnBNXqszwMAAAAAAAAAAAAAoDYIRgMaTSQmdc+p9yjQpHbu3FlwPHny5NBtFF+zY8eOcY0JAAAAAFBZro32MRMP1U4y0hk4GM0VNtCOnAFloYPRvM93BQtUKpCtUlxBE5OifsFog5KmVHFUAAAA5XkjvVEvDT7rWbdg0lnqinZXtf9Gm+s1Bnc0mtG+0IFKBKNlbVZ55TzrJsWmaPPQ6x7tj31v/N6vZgkQi5ioOkxCQzYd6HyeFQEAQFNifR7GgfV5AAAAAAAAAAAAAADURqTeAwAAVI61hZtEwv42Si+VaAMAAAAAUDk5m/Usj5lwvwMhzAb2ZtnEXwsJM/7ghT3nu4LRvNt3vQdhA9kqxRmMFusJfQ0AAEC9PbBzhbPu7J4lVe+/UuG7rcQGDEZz3bswoXJ+93lyzDvY16v9VM7dTmekK/B46i3csyLBaAAAAGgvrM8DAAAAAAAAAAAAqsu6lw8CaDMEowFAC5k6dWrBcV9fX+g2iq+ZMsV7wwcAAAAAoD4yNuNZHjPxUO2ECTtjs/s+ztAKGzx4wVrrDAlzB6N5l6fqFDbmer2THMERUnsHewAAgMY1mOvXY++s8qw7rPMozU4eWvUxuOZ6BMs6jAoNSBhXqFzwe+c3l58U9Z7ferXvF8bWTGHTrmee8Z4LAAAAtALW5wEAAAAAAAAAAAAAUBsEowFAC5k+fXrB8QsvvBC6jeeff77geMaMGeMaEwAAAACgsrLOYLRYqHaSIcLOCEbbx3UvsjbrfG/GnptRXnlH+97BAu6wjPqEjbn67Yp0O0P6/IIiAAAA6uWRd1Yqbb1DtM7qOb8mY3DNAdP5lGyb/upDv9dtRv3ZOU92vKee5/qEqE12BP96tZ/KDzjbSUa6Ao+n3sI8//GsCAAAgHbD+jwAAAAAAAAAAAAAAGqDYDQAaCFTpkzRYYcdNnLc29urDRs2hGrj4YcfLjhesGBBRcY2zBhT+iQAAAAAgFM27wpG8w6jcnGFL3hJhji31fndN79AhaDnuQLrXO9Bxg4pZ3OB+q0k12tIRJI+IW7BwykAAABqwVqrB3pXeNZNjE7WCd2n12QcCeM9f8orFzh8t9VY+QWj7Vvm4JonhwkQ9gvwneQKRvO4xtVnVDHFI65Z5bAAACAASURBVOGe1+opzLNimHMBAACAVsD6PAAAAAAAAAAAAAAAaoNgNABoMYsWLSo4vv322wNfu2HDBq1du3bkOJlM6t3vfnfFxiZJiUSi4DidTle0fQAAAABodTllPctDB6OZEJvdHUEN7chv479foMJoaes+z/W++PU7VIfAMb9gNGc4hSUYDQAANJbnB9Zpy9Amz7ozJi+uWZhVJcJ328noLf7uUN7gwWiue2wUUXd0kvMaawvD2wYdfSajzRUeRog2AAAA4I/1eQAAAAAAAAAAAAAAVB/BaADQYj75yU8WHH/3u9/VW2+9Fejaq6++uuD44osvHrNQarx6enoKjjdv3lzR9gEAAACg1WVtxrM8FjK0wRUg4IXN7vv43YugoRV+AWqu96US/VaSq89kpNMZpBc0OA4AAKBWVvfe51luFNGinsU1G0fSZ27uF6rbyqysT+2+aDR3MFrwOXI5ob9WVhk7VNSOIxityZ6nwgRjh3muBAAAAFoF6/MAAAAAAAAAAAAAAKg+gtEAoMW85z3v0QknnDBy3NfXp0suuUSDg/4bZ775zW/q7rvvHjk2xujv/u7vKj6+uXPnqqOjY+R45cqVymS8N/UDAAAAAMbK5B3BaIqFaifMBvZEk23krya/++YKQhh7njukwdW+XzhBPQLHXH0mIknn56UeAW4AAAAuOzPbtW73Y5517+o+RVPj02s2Fv85ZrvOodzBaCZAMFqYObLr3GSk0/dZqPg6dztdgcfSCEI9K4YIUQMAAABaBevzAAAAAAAAAAAAAACovnC7JQEAVffWW29p48aNZV07Z84cSdLNN9+s0047TUNDe35T/apVq3TmmWfqxhtv1Kmnnlpwzfbt27V06VJ973vfKyj/4he/qHe9611ljcNPR0eHzjjjDK1cuVKS9Nprr+mDH/ygPv/5z2v+/Pnq6ircHDJr1iwlk2yqAAAAAIBhOWU9y2OReKh2kiHCzghG26fDJGRkZD2CGoKGVrjOM4oobjo86/zeg7StfViG6zUkIp3OIIX2DfUAAACNaE3fr2SV96w7u+eCmo7Fd67XpnOovHUHo43KRatIKK8r4HhP6G+pYOSekeNUfsDzvDDPXo2AZ0UAAAC0OtbnsT4PAAAAAAAAAAAAAND4CEYDgAZzySWXlH2t3btJ5KSTTtJ3v/tdff7zn1c+v2dTz9q1a7Vw4ULNmzdPxxxzjJLJpF5//XU99thjymYLN9W///3v1zXXXFP+iyjhyiuvHFl4JUkrVqzQihUrPM9duXKlzjnnnKqNBQAAAACaTTbvCEYz4b7V57fBfzzntjpjjBKRpFIe4QleZV5cIQ3JSFLGGM+6RCThbC9ov5WStRlnQF/CJH3CKWo7TgAAAJeszeih3l971s3smK0juiq/Md1P3HTIKOIZ1FbruV7jcAejmVHJaK6555BNK29ziphoyZ6cob+mVDBa4XWu96rZgtF4VgQAAECrY31eIdbnAQAAAAAAAAAAoJH4/V5VAO0lUu8BAACq49JLL9Wdd96p7u7ugvKXXnpJd999t+688049/PDDYxZdffazn9Uvf/lLxePxqo3twgsv1Fe/+lVFo6U3owAAAAAACmVtxrM8ZsI9x4XZnN9sG/mrbbzBX67zXO1KUsREFTcd4+q3UlzBEdKeYARXOALBaAAAoFE8uet3eifX61l3Vs/5zrDaahkO3/XiN/dqZTZoMJrxCy5LB+orbd3zc79noeIgtFR+wNlOMwkXjNZcrw0AAACoJNbnAQAAAAAAAAAAAABQPQSjAUAL++hHP6qXX35Zl19+uaZNm+Y8Lx6Pa/HixXrooYd08803V3XR1bB//Md/1Lp16/SlL31JZ511lmbNmqXOTjZPAAAAAEAprmC0qImFaifcZvfg57YDV/hCcTCCi+u8UvfZFcrQWMFonYR6AACAhvdA732e5QmT1MJJ59Z4NHv7Jly2LH7BZWkbbP7pmqcmIknFTFxReT9rFbfvaqcz0hVoHI0iTNgZIdoAAABod6zPAwAAAAAAAAAAAACgOsLtlgQAVNzGjRur2v6MGTP0rW99S//yL/+itWvX6rnnntO2bduUTqc1bdo0zZ49W4sWLdLEiRNDt71s2TItW7as7LEdffTR+trXvlb29QAAAADQjrI261keM+E20bDZvXzugLJxBi84AtdG6iNJ7cr1ld1vpfgFwCUiyXHfHwAAgGralHpFLw9u8Kw7ZdI56oxOqPGI9nDNBdt1DmVlnXVGZuTPfuHCQUPlXPd4eF6biCQ1kN9d8rrB/IBnO2GevRpBmOc/QrQBAADQDFifx/o8AAAAAAAAAAAAAEDzIRgNANpEJBLRggULtGDBgnoPBQAAAAAwDlmb8SyPVzEYjc3uhVz3I20DBi9YRzBaifekUQLH/PpLRjqdoR5+gWoAAAC1srr3XmfdWVPOr+FICrnnmO0ZjCafYDRVOBjNNU8dbjsZ6XQEow36Hg9rtqDpoM+KRkYdJlHl0QAA0FyMMYdKOkHSAZK6JW2W9Kqkh611fGO3vH7iks6QdLCk/SXtlvSmpCettRsr1Q+AcFifBwAAAAAAAAAAAABA5RCMBgAAAAAAADQRVzBaLGwwmiO8yvPcJtvIX22u+xE0oMx1XqkAOle/tQ4ccwU+GBnFTYf7/rRtqAcAAGgUA7nd+v07D3jWzes8Wgcm5tR2QKO4wrPaNVzWNxbNjA5Gcz+rpMY9P+/c+/9gwb+p/IDnec0XjBbsWTERSRa8FwAABGWMmStpgaST9/7/JEkTR53yqrV2Tplt+00jgji0nGAxY8xHJV0p6TTHKTuMMXdK+oq1dnu5gzPGTJe0XNJFkqY6znlY0r9Ya39abj8AAAAAAAAAAAAAAABAvRGMBgAAAAAAADQRVzBa1IT7Vl+YzfkdJhGq7VY33tAKV7BYqfdkvIFsleLqr8MkFDER5+twvW4AAIBaeaTvtxqyac+6s3qW1Hg0hRplrtcorA2WaRI1UcVNhzJ2aExd8OBi//m5KyisuH3X80DTBaMFDNEOE7YNAIAx5hxJV2tPGJpnoFczMsZ0S7pJ0sUlTp0q6QuSPmyM+ZS19ldl9HWBpFslzShx6umSTjfG3C7pMmttf9i+AAAAAAAAAAAAAAAAgHojGA0AAAAAAABoIlmb9SyPmXiodlyb+8ecZ5KKmEiotltd0GAEF9d5pd4TV/BA0EC2Sklb1/jDBUcAAADUUt7m9UDvCs+6SdEpOmHiqTUeUSH3HKpdw2XdwWgRFT6fJCJJZXJewWjB7p1rPj38nrhD6wqvcwejdQUaR6MIGuTmui8AADicIGlxvQdRScaYqKQ7JRUn7G6T9KSkPkmHSTpRktlbN1PS3caY91lr14To6xxJP5fUMarYSnpC0h8l9eztZ9qo+o9LmmSM+TNrbT5oXwAAAAAAAAAAAAAA1FOwX6sKoB0QjAYAAAAAAAA0kazNeJZXLRiNze5juO5J0ICyUsEL7n4bI3CsdHBEYwS4AQAAjPb8wDptzbzpWbeoZ3Ho+XSlNcpcr1GEWdiUiHRqd+6dMeXjDi42/vPb4uvc8+TmeqYK/qwY7DwAAEpIS9qkPQFilfaopItDXrMpxLnXqTAULSPpSkk/tNaOpLYaY46W9G+STttblJD0c2PMcdbazaU6McbMlnSXCkPRHpJ0qbV2w6jzEpIuk3S9pOHJ7QckfVXS/xPidQEAAAAAAAAAAAAAAAB1RzAaAAAAAAAA0ESyNutZHjPhvtUXdHN+ssk28deC656kAwZ/OYMXStxrZ7+2toFjrvEPj88VkJCxQ8rbnCImWrWxAQAAuKzuvdezPKKIFk1eXOPRjEW4bDF3NJqRKTgeDjArFnh+bv3n5wnjmv/vuy5rM84Q684me6YK+qzYbIFvAICGkJH0rKTHJf1+7/+flnSGpJVV6C9lrd1YhXZljJkr6fKi4j+31t5dfK61dr0x5r2S7te+cLT9JC2V9PkA3S2XNGXU8cOS3mdt4STGWpuW9G1jzGuSfjaq6kpjzA+sta8G6AsAAAAAAAAAAAAAAABoCJF6DwAAAAAAAABAcK7N9jETD9VO1EQVNx0lz3MFNLQz1z1xBYaNOc8VvOAIdCjdb62D0bz7Gx6fX5heOp+uypgAAAD87Mhs09O7H/esO757oXri+9V4RGO5w3eDzTFbjfUJRlNxMNo4Q+XKnd+Obt+vr2YLEAsajk2INgAgpNskTbLWnmitvdRa+0Nr7RPWOr7Z2fiWShr9DdlbvULRhllrByV9WtLQqOLP7Q1YczLGzJf0qVFFQ5I+XRyKVtTXz7Xnfg9L7B0vAAAAAAAAAAAAAAAA0DQIRgMAAAAAAACaSM5mPctjJha6rSAb9JttE38tuO5J8OAFRzBaiRA6V7+1DssoNX6/z0ytQ9wAAAAk6cHeFbLKe9adPeWCGo/GW8I45nruzIuWZq07GM0U5qK5Q+UC3DtrrXN+O9yuM6B4VPupnHue2xnpKjmORhI3HTJF4XNeCNEGAIRhrd3pF+bVTIwxnZI+WlT89VLXWWtfkPTzUUUxSX9R4rK/kBQddXyXtfbFAMMsHs/HjCnxWxkAAAAAAAAAAAAAAACABkIwGgAAAAAAANBEsjbjWR4z8dBtBdnIzmb3sRKOPYRBA8pc4WClQuhc70XQQLZKcY9/bzCazx7Ldg32AAAA9ZPJZ/RQ32886/bvOEjzO4+t8Yi8OcO3ahyC2yisfILRikK7xnPvMnbI2VeiVDDaqHmx35y82cKmjTE8KwIA4O88SaOTT39nrX0u4LW3FB1/uMT5HypxvSdr7QZJj44qmiBpcZBrAQAAAAAAAAAAAAAAgEZAMBoAAAAAAADQRDLOYLRY6Lb8AqyGJZtsE38tuO6JKzAs6HmlggXc/dY2LMPV377gCPdnJug9AgAAqJQndj2k3bk+z7qzei6QMcazrtaChG+1F3cwmsYEo3nPP4MECPsHmu15T4LM//3ep2Sky1nXqIKEufGsCABoY+cXHa8Kce2DkrKjjk80xsz0OtEYM0vS8aOKspIeCtFX8bguCHEtAAAAAAAAAAAAAAAAUFcEowEAAAAAAABNJOsMRouHbivIRvZSYV3tyBmMYFPK27zvtdZaZ7BYqfdjPIEPlZS2jmA0MxyMlnBeW+uxAgAAPNB7n2d5wiR1yqRzajsYHwSjFQoei+Z370oHCPvd3+F2g7Sfyg94nhNVTPFI+Ge1egsSos2zIgCgjR1bdPy7oBdaa/slPV1UfEzAftbtvT6ohwP2AwAAAAAhNMYvGwEAAAAAAAAAtD6C0QAAAAAAAIAmkrNZz/JygtGCbGQPEp7Wbvzu25BN+16btRnl5R2eVur98AtksNYvOqKyXOERw+OLmKjipsNxbelwCgAAgEp5LfWyXkk971l36uRz1RntqvGI3FwhuLWe6zUKGyIazRlcHCBUzm9+OtxusGA0776S0eZ8ngryrDgcjAwAQAM72BhzizHmWWPMTmPMkDFmy97jHxlj/soYM7WMdo8qOn4p5PUvFx0f7TivuLxa/QAAAABACO33/WoAAAAAAADUVhsumQTgQDAaAAAAAAAA0CTyNucM1SonGC1I6FmQDfHtxhVaIZUOX/ALXih1r5OO4IG8csrajO+1leR6DaPH7w6nIBgNAADUzuree511Z/VcUMORlOaaY+aVr+lcr3G4VzaZomC0IMFlLq5As9Ht+oXWlWqnWYOmeVYEALSIQyV9WnsCwXokxSXN2Hv8cUk/kPSaMeabxpjuIA3uDVIrDlN7LeS4is+f7zhv3jj7ebXoeD9jzJSQbQAAAAAAAAAAAAAAAAB1Eav3AAAAAAAAAAAEk7VZZ13MhP9WX5CN7AlHGFc787tvqfygJvtc6xu8UOJe+/WbzqcUj3T4Xl8prtcwenyJSFK7cn1jziEYDQAA1MpAbrcef+dBz7r5ncfqgMTBNR6Rv4RpjLleo/D7hY/GFAWjOe5dqdBiSUpb7/lpVLGR8GlnMJpNKW/zipiIe47cpM9TfmHQYc4BAKAJTJB0haQlxpgPW2ufLXF+T9HxgLW2P2SfW4uOXd9OLO6r+Dpf1trdxpiUpNGTpcmSdoZpx4sxZoak6SEvO2y8/QIAAAAAAAAAAAAAAKB9EIwGAAAAAAAANImszTjrhjfthxFss3vp8LR2k/S5b6WCv9LWJxitxL327dcOqluTfK+vFNdrHD0+12fLLxgOAACgkn7Xd78ydsiz7uwpS2o8mtKSJcJ3azXXaxjWOxrNyIwp8wsuK8UVnlYwt/UJrRuyaSVNp1L5Ac/6zmhXyTE0Ir9njzDnAABQJ1lJayT9RtI6SZsk7ZLULelgSWdK+qSkGaOuOVzSb4wxC621r/q03V10XM43u4qvmVjlvkZPZlx9hfXXkpZWqC0AAAAAAAAAAAAAAABgDILRAAAAAAAAgCaRtVlnXbWC0djsPpbffSsV/OUXnFbqXvsFp9UycMz1GhIBwiNcwRMAAACVlLd5PdB7n2fd5NhUHd99So1HVJrfHNMvXLdVWXkHoylMMFqJ0GK/c0bPvf2DkQeVjHQ65+NBnrkaUZCAbEK0AQAN6n9Luslau9VR/5SkXxhjvqw9wV7/S/smGLMk3WWMOdlaR0rr2LCy0hOOsYonDsVtVrqvKQH6AgAAAAAAAAAAAAAAABpKpN4DAAAAAAAAABBM1macdTET/ncgBNvs3pwb+aspaqKKmw7PulLhC676iCIlw+18wzIChD5UynjCI9K2duMEAADta8PAU9qWecuz7szJ5ylaxty52vzm5rWc6zW6sbFo7nsXJDzYHWiW9Pyz6/pUfsCzvlmDpglGAwA0K2vtP/mEoo0+L2WtvVrS/yiqOknSJWG6DDO+cVxT674AAAAAAAAAAAAAAACAumq8Fd8AAAAAAAAAPPkFo5UT7hBkI3uzbuSvtkQkqUxuaEx5ukT4gl+omDFeMQ/7xE2HjCKyyo+pCxL6UAlZm1FOWc+6hCkdHlGrcQIAgPa2eue9nuURRXVGz/trPJpg/OZ67RiMZp0ZHmPnzK5nlqzNKGezvs9Krvn76FDiIKF1rveoWZ+nggRkN+trAwBgNGvtjcaYxZI+OKr4ryX92HHJ7qLjcv5BLL6muM169BXW9yT935DXHCbp7gr1DwAAAKBu/Nc1AAAAAAAAAABQKQSjAQAAAAAAAE0ia70DqSQpbuKh2wuykT1IeFo7SkQ6tTv3zpjyUqEVrmCwIMEDxhglIkml8gOh+60Uv2Cz0Z8V1+emHUM9AABAbW0f2qJn+9d61p0wcaEmx6bWeETBNMJcr5G4gtGMx6a7UsFlXdFu33ovhXNb91x9+PpBj/dNkpKRLue1jWx06LHzHJ4VAQCt42sqDEZbaIzpsdb2epxLMJoka+1WSVvDXFPql0IAAAAAaBauX2oBAAAAAAAAAEBlReo9AAAAAAAAAADBZG3GWRcrIxgt2Gb3cvbbtT7XvfMLDpOk9DiC0SR3mJ2r3UrzC+UYPTbX62nHUA8AAFBbD/atcIZqnd2zpMajCccVNFVqjtlOvPI0/AK6Ss/PSwejRU1UcdPh275rPh4kjLoRBQk9S5jmfG0AAHh4TNLOUcdRSUc7zu0rOu4yxkwI2d+MomOvADavvqaH6cQY062xwWiuvgAAAAAAAAAAAAAAaAhE8wMYRjAaAAAAAAAA0CQqHYwWZJN+kA3x7ajcgLIgwQt+XOfVKnDMr59EoGA0Qj0AAED1ZPJDerjvN551B3QcrHmdrnyLxlDvENxGYm3eUTM2Gc3vuabUPNkVnFbcZql5eCo/EKidZhHsWbE5XxsAAMXsnonHa0XFniFk1tq3VRiiJkkHh+zykKLjFx3nFZcXXxe2nx3W2uKxAwAAAAAAAAAAAAAAAA2JYDQAAAAAAACgSfgFo0VNLHR7QcK4mnUjf7W57p0rWGFY2jqC0UzQYDRXWEYjBKMlPf8c9HoAAIDxWrtrjfpzuzzrzpqyRMaMDdVqJK45YTvOoazjdz4aj2A0v4CuUvfOGVxsioPR/EPrggasNYtSoWcRRRUr4xkUAIAGVvyPud8/hhuKjueF7Gtuifaq1c/6kNcDAAAAAAAAAAAAAAAAdUMwGgAAAAAAANAksjbrWR5RVBET/lt9pTa77zknWGBXu3EFHLiCz0bqHYEJQe+zKyyjVCBbpbjGb2TUYRIjx+5gtNqMEwAAtKcHeu/zLE9GunTKpLNrPJrwnHOoEnPMVuQdi+Zt9Dy0WKn5pzO4uOi9cIfWDQejebeTjHT59t+oSj2fJCLJhg8aBAAgpGlFx9t9zn2m6Pi0oJ0YYyZIeleJ9lzl7zLGhJlcnBGwHwAAAAAAAAAAAAAAAKDhEIwGAAAAAAAANImszXiWx028rPZKBaPFTEyxMttudeUGf6WdgQmlQ+p8+7W1CRxzBbAVByOUGxwHAABQrldTL2lj6kXPuoWTzg0836on1/y8PcNlvaPRjMaGcUVMxB1cVmZwcfHnpVRoXSo/4FkfJIy6EZX6+9IMf58AAAjKGDNN0tyi4jd9LllRdHxOiO7OlBQbdfyktXaL14nW2s2S1o0qiklaFKKv4nF5pwgDAAAAAAAAAAAAAAAADYhgNAAAAAAAAKBJZG3Ws7zc8DLX5v6ResNmdxd3aEWp4AXv+lLvxTBXAIErsKzSnOMvCqJwBVPUapwAAKD9rN55r7PurJ4LajiS8jnDZUvMMVuRDRGMJo0nuNgd/Dua33uTtRlniHVnkwaIlXxWDPj8AgBAk7hYhesot0ja4HP+rySNnkScZow5MmBfny46/lmJ84vrPxOkk73jOXVUUb+k/w5yLQAAAAAAAAAAAAAAANAICEYDAAAAAAAAmoRrs33UxMpqz7W5fxib3d1cwWilgr9c9a72xp7nCnyoTVhG2rqC3TqLjus7TgAA0F52597R2l1rPOuO6HqXZiVm13hE5WEOVT7XvUuVHVwcbH6byg/6PgMEnec3mtLBaM35ugAAKGaMmSnpfxcV/5e11julVZK1dkDST4qK/1eAvg6X9KFRRVlJPy5x2e2ScqOOP2yMmV+qL4/x/Ke1jm/sAQAAAAAAAAAAAAAAAA2IYDQAAAAAAACgSeRs1rM8VmYwWtx0yMg469ns7pYsM7TCHbwQLITOFWaXLhHIVilBx+8aZ9ZmnJ9jAACAcv2u735l7JBn3dk9S2o8mvL5hW+1G1cWiTHeSxzcoXLlBhcni45d8/CUbx+lwqgbValnQdfzEAAA9WKMOcIY84GQ18ySdI+kmaOKhyR9LcDlyySN/i0WnzbGfNCnr6SkWyR1jCq+2Vr7sl8n1toXJd02qqhD0q1723P19aeSPj2qaEjScr9+AAAAAAAAAAAAAABoFO5fZQag3RCMBgAAAAAAADSJjM14lsdMvKz2IiaiDpNw1jfrJv5acAcj+AcvuOoT7r2MAfv1D2SrFOf4AwZH7GmjNmMFAADtIW9zeqB3hWddT2w/Hde9oMYjKp873Kv95k9WjmA0x/nlzpPHG/ybzg9qMOcXjNbl23+jShj/Z0FCtAEA5TDGzDbGzCn+T9KsolNjXuft/W+ao/n9Jf3CGLPOGPNFY8x8n3FMNMb8raSnJJ1cVP1Va+0fS72WvefcUFT8E2PM3xpjRoefyRhzlKT7JZ0+qvhtBQ8rWypp56jj0yX9xhhzZFE/CWPM/5D0f4uu/2dr7asB+wIAAAAAAAAAAAAAAAAaQqzeAwAAAAAAAAAQTNYZjFb+t/mSkU6lc8HCALCPOxihRPCCHd+9rndYhjsYrbPo2P16UvlBdUW7KzouAADQvp7tf1JvZ7Z41p3Zc56iJlrjEZXPFUZVKny3vXhHo7mCulI+9y5vcxqyac+64vm+a36byg/6vj/NGjYdMzFFFFVeOc/6oMHOAAAUWSPpkADnHSjpFUfdbZI+7XPtcZK+Lunrxpg+Sc9I2i5pl6RuSQdJOl7e6yZ/aK29JsD4hn1J0jGSLth7HJf0HUlfNsY8sbfPuZJOUuEkZkjSh6y1m4N0Yq3dZIz5sKRfSRoOXTtD0npjzFpJf5Q0eW8/04suv0fSl0O8JgAAAAAAAAAAAAAAAKAhEIwGAA1uYGBATzzxhF588UVt375dqVRKnZ2dmjlzpg4//HCdeOKJ6ujoKN0QPJ1zzjlavXr1yLG1tir9rFq1Sueee+7I8dKlS7Vs2bKq9AUAAACgdWXzrmC0eNltJiKdUm6nuw6e/IIR/LgCzIIGJpQT+FBJrvEX3w+/z06tQtwAAEB7eKD3Xs/yqGI6Y/LiGo9mfJwhuI5w3VZm5f3zGuMKRnMEdfnNPdN571A0KXjwbzqfUio/4FkXVWxcz2r1ZIxRMtKpgfxuz3qeFQEATWKy9gSIldIv6e+stTeFadxamzPGfEzSv0m6aFTVDEnnOy7bKulT1toHQ/a1yhjzIUm3al/4mZF08t7/vNwh6VJrrXfSKYARrM+rLtbnAQAAAAAAAAAAAADKQTAaADSgXC6n//zP/9Qtt9yilStXKpvNOs9NJpM677zz9Jd/+Ze68MILazhKAAAAAECt5eT9fDi+YDTvDf6l6tqdX0CZtVbGeAc2pB0BZkGDBcoJfKik4MFo7s8OwWgAAKBStg1t1vr+Jz3rTpx4mibFemo8ovFxzQnbc/4ULhjNFTTsG4zmEzhXPO/2m4e7QoqTkU7nc0EzSESSPsFoPCsCABrOBknXSjpb0kmSgnyz7QXtCRq7yVq7vZxOrbW7JV1sjPmJpL+XtNBx6g5Jd0paaq3dVmZf9xpjjpW0XHuC2KY4Tn1E0vXW2p+W0w/QLlifBwAAAAAAAAAAAABAYyMYDQAazG9/+1t94Qtf0AsvvBDo/FQqpbvvvlt33323Tj75ZP3gBz/QSSedVOVRhjdnzhy9+uqrkqRDDjlEGzdurO+AAAAAAKAJZW3GWIaAlgAAIABJREFUszwWGU8wmnuPoCtcAO5ghLxyytqs4h5hddbawMFiLu7AB+8whkpzhUckTOG4OkzC3UaNxgoAAFrfg72/knUEaJ3ds6TGoxk/15ywHedP3u+q5MhFc9876753fve1eN7tDK2zg+5gtGhzP0/5PQ/yrAgAKIe1dk4V294i6R8lyRgTkTRf0mGSDpTUIykpaVDSTkmbJf2+3IAyR/8/kfQTY8yh2hPMdoCkCZLekvSqpIestUMV6GerpC8YYy6XdIakQyTNktQv6Q1JT1prXxlvP0CrY30eAAAAAAAAAAAAAACNj2A0AGggy5cv1/Lly2Vt4XYPY4yOOuoozZ49W/vtt5+2bdum1157bczirMcff1ynnXaavvvd7+rSSy+t5dABAAAAADWQyTuC0cbxbT6/QK6gYV3tyC8IIJ0fVNwjrC5jh5RX3vOaoPfaHfiQUt7mFTGRQO2UyxX6UDyuiIkoYZKeQWqucDUAAIAwhvJp/a7vfs+62Yk5mtt5ZI1HNH6uuV4qn5K1VsY4UsFaknc0mnEko5UTKudXV9yeMxgtn3LPkU1zh4fxrAgAaFbW2ryk5/f+V+u+X5FU9WCyvSFrK6vdD9CKWJ8HAAAAAAAAAAAAAEBzIBgNABrEFVdcoRtuuKGgbOLEibr66qv18Y9/XAcffPCYa1566SXdeuutuv7665VOpyVJQ0ND+qu/+iv19/friiuuqMnYAQAAAAC1kbVZz/KYRwhXUH4BX3517c4vCCBtB9WtSWPL8+5AsKDBAn7vyZBNK1nl8AXXa/AaVyLSqXTOIxjNJ4ACAAAgqLW71qg/v8uz7qyeJU0ZIuaa61nllbFD6jCJGo+ofvLWOxhNzmA0d3CZS8qnrmNMMJoreC2lVH7As64z2uVsvxn4B6PxrAgAAIDmw/o8AAAAAAAAAAAAAACaR6TeAwAASLfddtuYRVeLFi3S+vXrdfXVV3suupKkefPm6atf/arWrVunY489tqDu7//+77Vq1apqDbllrFq1Stbakf8AAAAAoJHlXMFopvzff+C72d0EC+tqR34BZSlH8JdfKEPQEDq/AIJaBI65+vD6HLk+W34BFAAAAEFYa7V6572edZ2RLi2YdFaNR1QZvuG7bTeH8v6ZjSvuzj33dM+RXfc0bjoUNdGCMtd8PWOHNJDf7RhTc4eH+Y0/GTDYGQAAAGgUrM+rH9bnAQAAAAAAAAAAIAx+pARgGMFoAFBnL7zwgv72b/+2oOz000/Xfffdp9mzZwdq4/DDD9f999+vo446aqQsn8/rE5/4hLZv317R8QIAAAAA6idrM57lMRMvu02/QK5m38hfTf4BZd4BC2nrDmVImKDBaPUNy3D1ESYYrRYBbgAAoLVtTL2o19Ive9adNvm9vnOmRuY3J2y3YDTrDEbzjkZzPdf43Td36O/Ytvw+U33ZnaHG1Cz8Po88KwIAAKCZsD4PAAAAAAAAAAAAAIDmQzAaANTZVVddpd279/0m+Z6eHv30pz9Vd3d3qHZmzJihn/zkJ+ro6Bgpe+ONN3TNNddUbKwAAAAAgPpyBaNFTazsNv02+LPZ3S1uOmQc315NOQIW/EIZgoZ3+IUruPqtJHcw2thxlRNOAQAAEMTq3nuddWf2nF/DkVSWbwiuT8hua3L9ykfvYDTXs4t/MNr4Q38lqS+7w7O86YPR/J4VTXOGDwIAAKA9sT4PAAAAAAAAAAAAAIDmU/6OSQDAuD333HO65557Csquu+46zZo1q6z2jj76aF111VW69tprR8puvvlmLVu2TFOmTBnXWBvNSy+9pHXr1umNN97Qrl27ZIxRV1eXZs6cqUMPPVTHHXecurq6qj6OdDqt1atX65VXXtGOHTs0Y8YMzZ49W2eeeWZV+t+8ebMeffRRbd26VW+//ba6u7s1Y8YMLViwQHPnzq14fwAAAAAaiysYLWbiZbeZMO7N+smAYV3tyBijZCSpwfzAmDpXwIIruCyiSOD30Dcso8qBY9Za52sIEx5RiwA3AADQunZl+/TErjWedUd2Ha+ZHQfWeESV4zfXS7VZuKwzFs24gtHcc09rred1ace81CvQzC/kzB2MVv2fU1WT32smRBsAAADNgvV55WN9HuvzAAAAAAAAAAAAAKCeCEYDgDq64YYbZO2+rR3Tpk3TZz7zmXG1ecUVV+gb3/iGMpk9m+X7+/t100036Ytf/OKYcz/96U/rtttuGzl+5ZVXNGfOnED9rFq1Sueee+7I8dKlS7Vs2TLf9oe9+uqrzo0rkvSpT31Kt95665jydDqtb3/727rpppv04osv+o4vGo3qhBNO0J/92Z/pyiuvdC6COuecc7R69eqR49Hvh5++vj595Stf0a233qp33nlnTP3EiRN10UUXafny5TrggAMCtemSyWR0880363vf+56efvpp53nz58/XVVddpc9+9rOKxfgnHgAAAGhFWZv1LI+PJxjNJ3yBze7+EpFORzCad8CCK7gsEen0fU4eLWpiipm4Z0hetQPHsjarvHKedUmPgD3XZ6vaAW4AAKC1Pdz3G+e8+OyeJTUeTWXFTYciiiiv/Jg61xyzVbl+XmPkCEYz3nPPvHLK2qznM5Mz9NejLb9no77sTs9yv2CxZuD/rEiINgAAAJoD6/O8sT6vEOvzAAAAAAAAAAAAAKDx8FNZAKijFStWFBx/8pOfVEdHx7janD59uj7wgQ/orrvuKujHa+FVM3n99dd13nnnacOGDYHOz+VyWrt2rdauXauLL75Y8+bNq9hY/vCHP2jJkiV68803nefs2rVL//Zv/6a77rpLv/jFL8rua+3atfrYxz6mP/7xjyXPffHFF3XZZZfpX//1X3XPPffowAMPLLtfAACaTV92p57tX6u30puq2k880qG5nUfqyK7jFTXRqvbVrnZn39Gz/Wv1Tq5PR084QQcm5tR7SGgRu7K9eqZ/rTanX6/3UApETUxzkvN19IQTFY+Ufh70CsOSpNi4gtHcm/WbfSN/tbnunSv4yx2MFi5UIBFJKpsb+1l4qO+/9eLAM5IkY4wO6DhYx3S/W93RSc62rLV6fmCdXh7cUDKwzPX5Gx7T2DLv+/Py4HrdtfXWkePJsak6esKJ2j9xkG//W4be0LO716o3u8OzPhnp1LyuYzS/8xjfDV+1mjeE1RFJjMwzIiZSVhubUhu1YeBJ7cr2Bb4mZuI6tPMIHT3hBEVNZX9ksDOzXev7n1TapnTshJM1o2P/irb/Rnqj1vc/pUw+rXldR2t+57GBQwYBlFbq34iYiWtu5xE6out4xSPlz0WAMPI2pwd7V3jWTY1N13HdJ9d4RJVljFEikvQM332wd4We6/+D7/URE9GBiUN07IST1RmdUK1hjsvWoc16tn+tdma2+563eSjcs5vfs8vPtt3q+cz00uB6z/O95rYdJuFsP2OHHO009/MUwWgAAABoBazPC471eazPAwAgGH4eCwAAAAAAAACoDYLRgAaTszn1Zv03AmD8emLT6h5ksWnTJm3cuLGgbPHixRVpe/HixQULrx555BFlMhnF4825OW1oaEjnn3/+mEVXU6dO1XHHHaeZM2cqHo9r165d2rx5s9avX6/+/v6qjGX9+vV673vfq7fffrugfObMmTrxxBPV09OjLVu26JFHHtHg4KB27NihCy+8UN/4xjdC93XPPffooosu0sBA4Qao/fffX8cff7ymTp2q/v5+rV+/vuA3dD711FM69dRT9cgjj2j27NnlvVAAAJrIm+lX9e3Xl+qdXG/N+jxp4un6zP5XVjw8pN1tHXpT3359qXZkt0mSfr7N6OOz/kanT35fnUeGZvdWepO+vWmperNvlz65To7oOk6fP/AfS24udwVTjefrkV+AAJvd/bnuTyo/6FmedpSHDUxIRjrVn9s1pnzd7sfGlE2NTdflB/0fTfcIpMrbvH685Xt6uO83ofr34hmMZrxf1+ah18cEXfxsW1SfPeBKnTTxDM9rntr1iG5+83rllPUfyNvSuVMu1Eenf84zIKse84awFkw8W5/c/3+G/t7VQ72/1o+3fE9Wtqx+j51wsi494IuBQhqD2Dj4gm7cdI3683s+qz83t+mvDviSjq1QYM3v+u7Xj966UVb5PQVvS2f3LNHHZlxKOBpQAdZa3bHl+1rT96uS5x494SRddsCXKvb1A/DzTP/akWfGYot6zlOkBULME5FOz2C0P+x+NHAbszpm63/OXq6e+H6VHNq4PbP7cd305v/rDBILwjg23fk9u6zq/WWoPryekSImooRJKm39w4RH62zyYDS/Z0VCtAEAQDNjfV7t1HuNHuvzgmN9HuvzAAAIrryfRwMAAAAAAAAAEBY7uIEG05vdri//8bJ6D6PlXTP3B9ovPrOuY3jooYfGlJ18cmU2hr773e8uOB4cHNRTTz2lBQsWVKT9oK6//notW7ZMkrRo0SK98cYbkqQDDzxQa9ascV7X3d1dcHzLLbdo/fr1I8dz5szRjTfeqPPPP1+RSGTM9dZarV27Vvfcc49uvvnmCrySPTKZjD7+8Y8XLLraf//9dcMNN+gjH/lIwVh2796tf/7nf9Y//dM/qbe3N/RvBF2/fr0uvvjigkVX559/vpYvX65TTjllzPlPPvmkLr/8cj344IOSpDfeeEOXXHKJVq1apWi0+TeCAQDg52fbbqt5uMkTux7WyRPP0gkTF9a031Z3z/Y7Cja4W1n9x5bv66SJZ7DhFuPyi+0/auhQNEl6fuBpPdq3UmdNucD3vKz1DoWKmfI32vgFCIQN7Go3rq9N6bx3WIKrPGwAXcIEP39Hdpvu2f4f+swBfzem7qXB9RUJRZO8PythXldeOd3x1vd1fPfCMRvl8janH2/519KhaHut3HmPFk56jw5Kzh1T97Nt/19Dh6JJ0u93rdYpk8/WMRNOCnxNKj+o/9x6U9mhaJL0TP/jWrvrIS2cfG7ZbYz20223jISiSXu+ft3+1o269rB/H3dw2VA+rf/Y8oN9oWh7re69V6dOOldzOuePq30A0iup5wOFoknS+v4n9Ng7q3VGz/urPCpAemDnfZ7lMRPTGZNb4zNYiXDit4Y26dc7f6Y/n/GXFRhRZVhr9eMt/zquUDTJLxitcs8urvcgEUkqnQsejNbsz1P+z4qEaAMAgObF+rzaqfcaPdbnsT7PD+vzAAAAAAAAAAAAGhPR/ACGjf1pNQCgJjZt2lRwPHPmTO23334VafvYY48t2V8tTJs2TXPmzNGcOXMUi+3L4ozFYiPlXv9NmzatoJ2777674Npf//rXWrJkieeiK0kyxujkk0/WsmXLtHHjRh1yyCEVeT3f+c539NRTT40c77///lqzZo3+/M//fMxYuru7tXTpUt1xxx2KRCLauXNn4H7y+bwuuuiigt+quWzZMt13332ei64k6cQTT9Rvf/tbffjDHx4pW7NmjW6//fbA/QIA0IzyNqfnB9bVpe8N/U+VPgmhbBgYe0+zNqs/Dj5Xh9GglTTL39f1A0+WPCdrM57l4wlG64x0OesIJfTnCihL5Qc9y9PWuzxM0JkkdUYnhDrf6+urJD3X/4dQ7fjx+qz4fba89Od36bXUy2PK30i/qt25vlBtre8f+/dpz7yhcq+5mjZ4jN/Py4Mbxh0yUk6/Lqn8oF4e3DCmvC+3U1uG3hh3+36vd0OAr6UASnt69+Ohzn9x8JkqjQTYZ+vQm84580kTz9DE2OQaj6g6ws6hXJ4J+fe42t4a2lSRwOqo8f7db5V8dkk63gNXuUul3st6SUa8nzvipsP5PgAAAACNhPV5rM9zYX0eAAAAAAAAAAAAADQ+gtEAoE527NhRcDxlypSKtZ1MJpVIJHz7ayavvvrqyJ+PP/54zZs3L/C10WhU8Xj5AQHD8vm8vvOd7xSU/fCHP9TcuXN9r/vIRz6iv/7rvw7V11133aVnntm3kfBjH/uYli5dWvK6WCym2267TTNmzBgpu/7660P1DQBAs0nn08rabF367s+/U5d+W1Xe5tSf2+VZl8oPeJYDQWTyQ0rbVL2HEYjr78Borq95sXFsSj8wcahniMDBicOUiIQL7Go3rmCEtCMYbTDnXd4ZDReYMK/z6FDn9+d2ydqxvzMnbNiYy8HJeeqIJMaUz+sKN05J6s+N/fd1t0dZ6XbG/n1K51N1mzeEtTvA14OC87OVeS/LuddevN7HYYMV+Hfd77NbqdcAtLsdmW2hzk/n01UaCbDPA70rnHVn9yyp4Uiq67CQcz2Xndntytt8RdqqBL/5QRhzO4/0LO+IJHRIcn5F+pjXdYyjPPh7E1HUOdZmMbfzCEU8lpTM7xobAAEAAAA0ItbnBcf6PNbnAQAAAAAAAAAAAECjIRgNAOqkeCFUT09PRdsvbu/tt9+uaPv1snXr1rr0+8ADD2jjxo0jxwsWLNCFF14Y6NqvfOUroRZ/ffvb3x75szFG1113XeBru7u7ddlll40cP/300wXjBgCg1biCZ2phMEdYVyWl8+7gqkw+U8ORoNU0U7BekK8rWev99yFmyt9wEo/E9Sf7XVzUXkx/Mu2SsttsF8no2EA5yf25S+X7vdtxBKy5LOo5T1Nj0wOfb5XXkB0bWJOqwL+jMRMb8/kZNid5uN7VfUqo9rxCs8oJ0hr0uNeVCOSqlbBfuyrxXkqVu0cDOe/PuuT+OhbGoM/rTTkCCAGEszMbLhhNGhvACVTSUD6t3/Xd71l3UGKu5iQPr/GIqufsngvUE9tv3O1kbbZiYWSV4Pfvd1ATohP1vql/6qz/k/0uGldotCQd1nmUjp3wbs+690z5oLqjkwK1s3jqh9UV7R7XWOptQnSi3j/1QwVlCZPU+VM/UqcRAQAAAOGwPq88rM/zx/o8AAAAAAAAAAAAAKiN8a0KBgA0LGNMvYdQMUceeaTWr18vSXr99dd1/fXX66qrrqrpGNasWVNwfMklwQMCpk+frsWLF+uXv/xlyXP7+/v1yCOPjBwvWLBAhx56aPCBSjr33HN1zTXXjBw/+OCDmjNnTqg2AABoFmnrDtM6ouu4cQUFDds29Ja2Zt4cU16pABLs4RfEUokAFbQvv8/W4V3HKV6BrxNh9WZ36I30xjHlQYKQcjbrWT7ezf/vnfqnmtFxoNbtflSJSFLvnnimDu1snXCJaul0BJq5PneuMAhXOy77xWfo7w/+mn7Xd79eTb2kvHKSpHQ+rZcGn/W8JpUfUCKSLBqPd3jVfvGZmtVxYMlxzOw40PezEjERXXrAF/Vw3/16YeDpgs/4SwPrPf8d9/r31fV3I2461B2dpJ3Z7eNqR5KO6HrXuP8elWPr0GZty2weUx42gNX1XnZGJmhu5xFjyndktmvz0GuB2wnL72tvxg6Nu/2Uz/2p1GsA2p3X11ZJMorIKj+m3BKMhir7/TsPOL/Gnz1lSUv9TGRaxyxddfB1eqTvt9qYetHz79xoOZvTcwN/8KzbmX1bE2OV3fhfLtdcLGZiOqLrXb7XGkV0UHKuTpl0tmb6zFOP7T5ZVx50rR7ftUZbhjaFGl+HSeiwzqN0Rs9idUQSnucckDhYVx38df3/7N17mCRlfff/z92H6e49zuzBhbAgkg1hQVAR5LiAwUeyRCNBExT9RdFEEg1KHjzEmCdBRH8STX6BeBkTkwtMHhONgogGImhgUQiQ1RAUEFg5CArr7uzMsrvTPdOH+/fH7MxO99zf6qqePs3M+3VdXBdd1VV197FqZqvec+/zt+vp0uPB12Z5elAvXnaCXrbslETb71e/vuYtOjR/hB7c+30tTS/XK1acpfX5w3s9LAAAAKAvLKSfRTk/j/PzAAAAAAAAAAAAAKDfEEYDgB5ZtWpV3e3du3e3df2jo6OR25tPLrzwQt1www3Tt9///vfrxhtv1EUXXaRzzz1XBx98cMfHsHXr1rrbJ510UqLlTzrppFgnXt1zzz0qlw+EP4444ojEf1GyVqu/EOfHP/5xouUBAJhPxiPiZO/8hT9SIb10ztu4feQb+vLP/37W9DgBI8QXFTEhjIa5iPqsvvMXPqgl6WVdHM2k7++5W3//sz+fNT0qJDTF+jy0IwR57LITdOyyE+a8nsUklyoEp1vxzJLxXZdPGEaTpKHsGp275oK6aaOVXfrjH7/dHNPKmOM8ZcWvzFp3q9Iuo02D52jT4Dl10//fJ/+3nh5/fNb9i9XZz5EVwVqbPVgbl75E3x65afYygc+TFaaTpN8/5MNmAKOTbtv1VX11x+dnTU96nGG9li/Mb9C71//prOn37r5dn3/u6lnTkwbZLKHXcUo79utR35fEa4G5q/mqRsu7gvOGMqu1q7KjyyPCYue915bRm4PzlqSW6YTlm7o8os5blV0b+3is5mt676O/papmR5RHyjt1WP4X2z28llj776HM2uDxSqsOLxypwzsYeX7BwMF67ZoLO7b+fuOc0/HLT9Pxy0/r9VAAAACAxDg/Lz7Oz3sy0bY4Pw8AsLgtnDgsAAAAAAAAAKC/EUYD+sxgZo0+esTf9noYC95gZk2vhzDrRKiRkZG2rbtUKqlUKtVNW716ddvW323nn3++zj///LqTr+666y7dddddkqQNGzbo1FNP1WmnnaZNmzZp48aNbR/D9u3b627/0i/9UqLljzwy3kU4Tz/9dN3tL37xi/riF7+YaFuNdu0KX8QIAMBCEBW+yKXybdlGwYjVxAkYIb5S1X4tCaNhLqIiP3kjatVp1nZLtaK893LOPom03MEwGpKzX8vw+84Kc1n7mnaNRwqHqqx4VTc+G1YMLrRvt/b3hfSShOsJvy4ppZV1A9ZQO8oef7LjDOu7znotrXhsVKg00Xgixl/xs6MtSUU9PxyjAXP3fHV3MLAkTcaaCKOh2x4vPaJnxp8Izjtl5a/0JG7aT1IupcHsKg2Xfz5r3mhluAcjCrNit736uQwAAACLF+fndU+vz9Hj/Lz4OD+P8/MAAIjP93oAAAAAAAAAAIBFgjAa0GfSLq3V2XW9Hga64JBDDqm7/dxzz2l4eLgtJ0g9+OCDTbc3nzjn9KUvfUl/9md/pr/8y7+cdVLZtm3btG3bNv3jP/6jpMkTsd7ylrfokksuadtf4mw8MW7FihWJll+5cmWs+w0Pt/8ipT179rR9nQAA9IvxWik4PesGlHLptmyjXcESRIsKsZT9RBdHgoXGCuTkXL5t3xNJFVLhIJFXTeO+pLyzwwBWKDDj+DVfL1hBMyvk1ekYRM7l5eTkAyciJwuOhd+j7VRIx9+/WvuIfKpg7qfDIbjw819ILYkMEnaS9dpbET2LdVxifd9Y08t+QhVfnnNsMWq/3o7gaVT8jGM0YO5GyjvNeauya6XAV5T3XASDzrlz5GZz3qbBzV0cSf8azKwOhtFG+imMZhzfWMdzAAAAQKdwft7iwfl58XF+3txwfh4AAAAAAAAAAAAAtF+q1wMAgMXq1FNPnTVt69atbVl343oKhYJe+tKXtmXdvZLJZPSxj31MTz75pD71qU9p06ZNyuVywftu27ZNl19+uY444gh96Utf6vJI52Ziov3RDy5KBAAsZPZFte0JzEjR0Zuar7ZtO4tdVOCk4itdHAkWGiuQkzeiTN0Q9R1lhbOmVI3Pw1wjRmiNHc80wmhWvKpN70fnXERoK1lwrNPMoFlgnGbALbU0IrAWCsH13/eBfZxhh8VCrP1oPh1+La0wmmQH5BKNJxCmm9KOMFpU/Kwd4wcWu5HKjuD0rBvQsnSyC1KBuXq+Mqrv77k7OO/opcfrBQMHd3lE/WkosyY4PSp02G2dPhYGAAAAgEacn5cM5+e1jvPzAAAAAAAAAAAA2od/egEwhTAaAPTIYYcdpsMOO6xu2q233tqWdd922211t0866SQNDAy0Zd1TqtXeREDWrVunyy67THfeead2796tu+++W5/61Kf0ute9TsuWLau77+7du/WmN71JN95445y3OzQ0VHf7+eefT7T87t27Y91vzZr6i5c+/vGPy3s/p/+uu+66RGMFAGA+Ga+VgtNzqXzbthEVS7G2j+Ss6I3UnoAKFi8rFmTFiLqhkI4IEkXEfmq+qppqwXmE0XrDCoiN14qq+dmvlRmvauP70Y611W/bex8ZHOs0OwgWCrhZz1shYWDN+j7ofAjOYo2/4isq1+Lv/+zHFn4towIkVjAviah1lGtzv+gsKn4WFU0DEI8VUpoML7ngPC/OQEBn3L37NlUVjgOfObi5y6PpX4OZ1cHpo5X+D6N1I8oLAAAAYHHi/LzWcH4e5+cBAAAAAAAAAAAAQD8gjAYAPfSrv/qrdbf/6Z/+SeXy3KIPO3bs0E033RS5nSmZTKbudqUSvrgoZGRkJPng2iyXy+mUU07RZZddphtvvFHDw8P64he/qCOPPHL6Pt57vec971GtFo4HxLVu3bq624899lii5R999NGWthN3OQAAFqtxI+iSa+NFtVHxpKiAEZIpViMCKr79f7Ubi4d98X0Pw2gR244K+lS8/TNbxmXMeegc633k5TXhx+umVXzZ/D5rZ6jPDqPV7zPHfcmM2HQjTpEoaGZEsPKpJeZYS7WifMOfCepGmC6pqEBZKUGgLCoeF7IkIn7XjuObsYixR32XxRX1XTnhx1VtwzaAxWzECCkNZVcbWTSgM6q+qu+MfjM4b3X2BTpm6fFdHlH/GsquCU63Ps+9UDR+h9PLYzEAAAAACx/n580N5+cBAAAAAAAAAAAAAHqFMBoA9NB73/teOXfgUrIdO3bo2muvndM6r7766rqTt5YuXarf/d3fDd53xYoVdbdHR0djb+fBBx9MNK6Zj7NTBgYGdMEFF+jee+/VIYccMj396aef1ve+9705rfuEE06ou33PPfckWv7ee++Ndb9TTjml7rm67bbbZl3IDQAADhivlYLT2xl0ibpANyrKgWQagz0zVWrETdC6ohFUameIKqkBl1PK+LXBplxvAAAgAElEQVRcVJCo4u0LdTIuO+dxIbmo/U1jzKtUtb/n2hmDsENhjeOx32uFtB3NahfrMxgaV1T0q2AEvrxqGvf1xwn9GEqM2rYVDwne1wiMWs9PLlWQM/JGUbHSuKLeX1HfZbHX3+QYLOq4AkBzu8o7gtOHMmsl0mjooh/s/S8z7LVp5a8q5dJdHlH/GsqEw2ijleG++TcGK/ray5/NAAAAACx8nJ/XXpyfBwAAAAAAAAAAAADoFsJoANBDRx99tDZv3lw37YMf/KC2b9/e0voeeughffKTn6ybdtFFF2nVqlXB+7/gBS+YtXxcN998c6Kx5XK56f8fHx9PtGxSg4ODOv/88+umPfHEE3Na5+mnn153+1/+5V9iL7tjxw7deuutse67du1avexlL5u+/dOf/lS33HJL7G0BALDYWNGLnMu3bRtR0ZskwRJEKxoXSEvtCahg8erHEJJzztx+VOyn4u1IIGG03sino6JWDSGyiNe2ELGepKyoWWMkMCrC187AqLkN4zGHxmXt7wvppdFxuoblrDhdL2McUdtOEmC1niPr+Um5lHLGvKh9clxjHd6vNzsGs6KYAOIZqQwHpw9lw+ElSfLi4lG0352j4d+NZ1xWp658VZdH098GM6uD0yu+or3V57s8mjBr/93Ln80AAAAALHycn9cZnJ8HAMBixh/RAQAAAAAAAAB0B2E0AOixv/iLv9CSJQcu+hgdHdX555+vvXv3JlrPjh079IY3vEETExPT0w4++GD96Z/+qbnM8ccfX3f761//eqxtffOb39R9992XaHyDg4PT/79z5866v5rZCZlMpu72zBO/WnHGGWfo8MMPn769detWfeMb34i17BVXXJHo8f7BH/xB3e33ve99id8PAAAsFuO1UnC6FfpoRdYNKK1McF6SYAmiRQV6yn7CnAc0YweVenvxvRUrior5RMWEMi78PYXOShLlig6Rte/9aI2pcZ8VGWpLheNq7VSIOU5rmjT5WCPDYrNicOFYVy9jHNEB1njHGd578zmyQnmStMR4nceqcw+jRY29HWG0UpN4G8dowNyMlHcGp6/KrJUzL3YhjIb22j7xU/1o7H+C805YfrqWZVZ0eUT9LSpcOFIJf6a7rfHYbEo3orwAAAAAFjfOz+sMzs8DAGCx4t+EAAAAAAAAAADdQRgNAHrsqKOO0l//9V/XTbv77ru1efNmPfPMM7HW8dhjj+nss8/Www8/PD0tlUrpn/7pn7R27VpzuVNOOaXupK+vfvWr2rp1a9NtvfWtb401rpk2btw4/f+VSkW33357rOXGxsb013/919qzZ0/sbe3du1c33HCDuf1WpFKpWSdEXXzxxU3/0uUNN9ygz3zmM4m29du//ds66qijpm8//PDD+o3f+A2NjIwkWs+OHTtmPQ8AACw0VvAol8q3bRvOOeXTyQNGSCYqYNKOgAoWr34MIUl2rMgarxT9WUgTRuuJnMubgZjxHoXRrFBY3FBbSill3UDbxmOxHnNo326NNZ9aonxE5LBxOeu4wdrPd0PKpZVz4eMWKx7SaMKPq6ZacF5UOM5+DeZ+fFOMiKuV57hfL9fKqvhK9PYJowEtK9fKer4a/j1kVHgJaLctI7eY884Y3NzFkcwPy9Mrzaj7aGW4y6MJM4/FevyzGQAAAICFj/PzonF+HufnAQAAAAAAAAAAAEA/IowGAH3g7W9/u9797nfXTfvud7+ro48+Wp/4xCf09NNPB5fbtm2b/uRP/kTHHnusfvCDH9TNu+qqq3T22WdHbnf58uW64IILpm9Xq1X92q/9mm699dZZ952YmNDnPvc5nXzyydq+fbuGhobiPjxJ0itf+cq62xdddJE+85nP6Hvf+54ef/xxPfnkk9P/7dy5s26773nPe7R+/Xq9/e1v19e//vXIk7Duu+8+nX322Xrqqaemp5188sk68sgjE4035D3veY9e8pKXTN/+2c9+ptNOO01f+cpXVKvVX4C8b98+XXHFFXrjG9+oWq2W6PlKp9P6yle+ohUrVkxP+9a3vqXjjjtOf/M3fxP5+Hft2qUvfelLetOb3qRDDz1U11xzTYJHCADA/DPurYtq2xs46WQ4BJOiInPN4idAFOvi+6hYUDdY31PWeKXoMFrWZec8JiTnnDNfy9lRrvD33IDLKe3SbRvTXMdTSC2Vc+HYWztZn8Gyn6h7r9d8bVZkbuY6ouJ0jY/Rfsw9/j4w4m5xjzNaje4tMQONbQijdTB4Gud54RgNaN3uiIDSUMYOo/lODAaLVqlW1D3P/0dw3mH5DTq8MPff9y80KZfSYHZVcN5IeWdwereZx2IRoVsAAAAAaBfOz+P8vJk4Pw8AAAAAAAAAAAAA+l/4z0YDALru05/+tIaGhvSxj31M3k9eRrZnzx596EMf0h//8R/r6KOP1qGHHqqhoSENDw/rqaee0iOPPDJrPdlsVldffbV+//d/P9Z2P/rRj+qrX/2qRkdHJUk///nPdc4552jDhg067rjjlMvltH37dt17773at2+fJOmggw7SVVddlegvU/7mb/6mPvzhD0//lc2f/exns042m/LWt75V1113Xd20559/Xtdee62uvfZaOee0YcMGHXHEERocHFQmk9Hw8LB++MMfzvornkuWLNHf/d3fxR5nlGw2qy984Qs688wzNTw8eYHgs88+q9/8zd/UunXr9PKXv1wrV67U9u3b9Z//+Z8qFicv3F65cqWuuuoqvfOd74y9rWOOOUbXX3+93vCGN2j37t2SpGeeeUbvete7dMkll+jYY4/VYYcdphUrVmhsbEyjo6N69NFHY/8VUwAAFgorlJJL5du6HSuY0o5wCCZFBUzmGlDB4las7gtOj4oFdUMhZQWJwuOVoiOBGcJoPZNPLQnuDxq/16wAZLujXHFjntZ48un2xkUtUZ/BUrWoZZnJ9/SEH5c3cjv51JLpOF2s18DY1/T6+yCfWqLd2jVretzjjFJEXDTq/WU97jHjezMu77353SvNfb8e53nhGA1o3a7KDnPeUHaNHc/0pNHQPv/1/J3mz4hnDm7u8mjmj8HMag2Xfz5r+khE8LBbqr6iCT8enNfrYzEAAAAAiwfn5x3A+XmcnwcAAAAAAAAAANCvOCsZwBTCaADQRz760Y/qzDPP1Lve9S499thj09O993rwwQf14IMPRi5//PHH62//9m91wgknxN7mIYccouuvv17nnXde3V863LZtm7Zt2zbr/i960Yv0b//2b9q+fXvsbUhSoVDQV7/6VZ133nn66U9/mmjZRt57PfbYY3XPUcghhxyiG264Qccee+yctjfTMccco29961s699xz9eyzz05P3759u26++eZZ9x8cHNRNN92karWaeFuvetWrtHXrVr3pTW/S1q1bp6dXq1Xdf//9uv/++5uuI+lfDgUAYL4Zr5WC03Op9kZd4kZm0Lqo57LsJ7o4Eiw0JSOgWEj3OoxmfK9Uw+OVomNChNF6J2/scxrfe9b3XL7N70V7nxVvPO0OtVmiPoPF2j4t04rJ/48IbE2tw4rTNU6zAmK9jnEUzPdQvOOMqAhY1PvLCjSWIgKNcZT9hKqyQ45zDaPFeV6iYnEAoo2UdwanF1JLlU8V5GSE0YA28d5ry8js37VL0tLUcr18+eldHtH8MZRZE5w+Wgl/rrvJ+rlM6t7xJwAAAABInJ8XF+fncX4eAAAAAAAAAAAAAPRaqtcDAADUe9WrXqWHHnpIX/jCF3T22Wcrk4luWOZyOb32ta/V1772NW3dujXRSVdTfuVXfkX33XefXve618m58IVta9eu1fvf/37df//92rhxY+JtSNIJJ5yghx56SJ/97Gd13nnnacOGDVqxYoXS6bS5zMqVK7VlyxZ94AMf0Mtf/vKmz4ck/fIv/7I+/vGP69FHH9UrXvGKlsYa5aUvfakefvhhXXLJJVq+fHnwPsuWLdPb3vY2PfDAA9q0aVPL29qwYYPuu+8+ff3rX9erXvUq5XK5psts3LhRl1xyib7zne/ohhtuaHnbAADMB9aFtblUvq3bsaM3RDfaJSrqUvF2XAVopmgEfnodQrK2b41Xio4JpR1//6BX4sYzre+5docg4u6zrPF067MRtZ2Z+/eoiMbUY7VDgw1hNCuU2LffB/GOM6zjESennLOPiZakw2G0sTmG0aK+xySpXJtbGC3O8xL3uQMw24gRUFqVXRu5nOdvs6FNflx8WD+beCo475SVZ2sg1fx35IvVYGZ1cLoVPOymqN+fWMevAAAAANApnJ9Xj/PzOD8PAAAAAAAAAAAAAPoRV0wCQB/KZDK68MILdeGFF2rfvn363ve+p23btmnHjh2amJhQLpfTunXrdOSRR+r444+PdTJOM0cddZRuvPFG7dy5U1u2bNEzzzyjsbExrVu3Ti960Yu0adOmupOezjrrLHmf/GK3FStW6OKLL9bFF18c6/7OOZ1xxhk644wzJEnFYlEPPvigfvzjH+u5557Tvn375JzTihUrdNhhh+m4447TC1/4wtjjueOOOxI/BmnyhLBrrrlGn/zkJ3XHHXfoiSee0MjIiNauXav169dr06ZNWrr0wAXGrT5f0uRz8JrXvEavec1rVCqVdO+99+qpp57S8PCw9u3bp6VLl2poaEgbNmzQxo0btXp1+OInAAAWovFaKTi93RfVFlLhcEixSnSjXaIuko6KQQFRvPd9G0IqpK2Ylh2BsiKBKaWVcvz9g16x9jmN+wjrtW13iKxgxK5mj6d/w2gzo1ZR+4ep/bMdpzvwnFd9VePeOG4wPo/dYofd7O+DmezIXcG8wG5yvhFkm+PxzVg1Oow21/16Y/AueB/CaEDLdhkBpaHMmv3/F/5eIYyGdrlz9JbgdCenMwY3d3k088tQdk1w+mhluMsjma0YcVzT62g1AAAAgMWJ8/MO4Pw8zs8DACAZ+9+gAQAAAAAAAABoJ8JoANDnli5dWnfiUaetWbNGr3/967uyrVYUCgWdcMIJLf3lzU7I5XI655xzura9fD6vM888s2vbAwCg31mRmVybw2j5dHh9RDfao1ybMINPU/OBVoz7khnp6PXF92ZMq4VIYNZl2zImtMZ6LzXGO4u1cCyq3TFPa32l2pi899OhLCt+1a1oYNqlNeBymvDjs+bN3L9an4mUUsq6AUl22GzmsuMR0cFCm1+DpKzxxz3OsO5nhV2nLDEienM9vmm2/FzDaFHfk0nuAyBspBIdRuNSF3TS7sqI/nvPfwbnHbP05VozsK7LI5pfBjPhi7JHKsN1x4G9EHV80OufzQAAAACA8/PqcX4e5+cBABCNP5YDAAAAAAAAAOiOVK8HAAAAAABAK7z3s6IzU9odmbHCIlaYDck0i5fMNaCCxatkhJ+k7sWf7O0nDxJZAcEMYbSeihvPLFXD+4xm8aqkrPd2TTWV/YHQpPVesyJdnWBFMGZG28xxppZMxz2sxxwnsDa5rva+BklZ448b97Iid82Oh6ztjhkRv7iaLT/X/XqccBvxWqB1I+UdwelD2TVdHgkWo7tGb1VV4WPeMwc3d3k0889UwLBRxZe1t/p8l0dTz9o3Z1xG2RQ/zwAAAAAAAAAAAAAAAAAAAACoRxgNAAAAADAvVXxFNVWD83Iu39ZtWWGRuMESRGsWL7FiUEAzkSGkLsafgtuPEYRqZMWE0i7TljGhNXGjVkUjFmWF1Vplvbcax2R9ProZDSwYn8O6oJnxmZi5bJz9dNS+ptDmoGpS1msWN+5l3a+Qjg6+mYHGiO+hOIrVZmG0ue3X4xx/RX2XAog2UtkZnH4guOSC8718h0aExaLqq/ru7luD89Zk12nj0pd1eUTzz1B2tTlvtDLcxZHMZu2/ex2oBQAAAAAAAAAAAAAAAAAAANCfCKMBAAAAAOal8VrRnJdrc+DEisTEDZYgWrPASdlPdGkkWGiiQ0i9DaNZQSgrniVJVSMmlCGM1lPWPqfUsJ9qvD3FilO1yoqETY6heSgsKqzWbmYgsG6c4edt5rJ2WOzAslGhrG4+5pC4cT2LHRqJPh6ywmnF2j5533rgqNP79TjHX8RrgdYUq2Pm52coOxlGc0YYDZirB/bea8a7Ng1uVsrxz9rNLE8PKqV0cJ4VPewW+1i4t4FaAAAAAAAAAAAAAAAAAADQX+ZwOQOABYYzyAEAAAAA89K4t8No+VS+rdsygysRkRXEV6zaIShJqvhyl0aChcYKe6SU0oDLdXk09azvlbKfMANoZeOzkHHZto0LydlRrrGG2+HvumbxqnaNZ3IMM0Jhxuejm9HAOOFRKxY483kzw2Iz9i9WTCvjMsqmBpqOtZPivocs1v2aRfes562mmsZ9Kda2Qzq9X4+K3E0hXgu0JiqctCqztsnSnIGAudkyektwetYN6NSVZ3d5NPNTyqU0mFkVnDdS7nUYrfdRXgAAAAAAAAAAAAAAAAAAAADzB2E0AAAAAMC8NDPu0ijX5shMIW0EV4hutEXUaylJFV+R5089oAVRF98757o8mnpR8Snru8WKCRFG662Csc9pfP8Vje+6ZvGqpHIRcdCZQU8r7tnNOIUVhZv5GbD2ETOft7yxn565rLWefohxWM9DqRq9f5xihcKaRfei3nvN4maR4zFidlPmGkaLEz3jGA1ojRVGc3IazE7GlqxDKI7WMRfPjj+tR8d+EJx3wvJNWppe3uURzV9D2TXB6SOV4S6PpJ79s1l7f38DAAAAAAAAAAAAAAAAAAAAYGEgjAYAAAAAmJfGayVzXlQUphXWhboTflxVX23rthajZgEVr5pq4nlGcq3GgrohKoxmxZAqNSuMlmnLmNAaK6xVathPdSsGkXKpWMExKxxlxUA7wXzuqjODZs2fN+vzVIrxePvi+yAdDpQVa/tihUGt/Wiz6FvUaz2XsNhY0zBapeV1S82DqpP3IYwGtGKkvCM4fUV6cEaItbdxWSxMd47eYs47c2hzF0cy/w1lwmG0USN82C1F42ecfojUAgAAAAAAAACS4N+KAAAAAAAAAADdQRgNAAAAADAvWVEMp5SybqCt2yqkwsGSyXEQ3pirOIGTsg8HoYAo1ufTihB1U1QAwIocVRWOCR0IlaAXrLDWzPef994M9XXi/WjH2ibHUPVVTfjxRMt2ghXmmvkZsAOHS4L/P9PM18D8PojYx3eL9R6qqaayn2i6vLUfbfbeinrscwmjlYzXbEpljvv0ZkFVafJ9EycqB6DeiBFOGsqGQ0sz8ZlDq0q1ou59/vbgvMPzR+qw/IYuj2h+G8ysDk4fKQ93eST17NgtYTQAAAAAAAAAAAAAAAAAAAAAsxFGAwAAAADMS+O1UnB6PpWXc+39y5RWsEQijNYOxWrzwMlcIypYnKywT9RnulusIJRkR46sz0EmRRitl6yYQ8WXVa5NvmZlP6Gaqsby7X8/FowxTX0movZd1rKdYAfNijP+v/nn2BpzqVZUzddir6dXogNlMSJgLT62rBtQWpnwOqt7m27XMtZkzOVa89hblDhB1ZqqsaJyAOqNlI0wWuZAGM3J+lmLMBpac9/uO8zv9jMHN3d5NPOfFTIcNcKH3WIdr0T9XAQAAAAAAAAA6Ef8mxAAAAAAAAAAoDsIowEAAAAA5qVx48LpXEcCMxHBkmrzOAeiWRdIz1SpEUZDclYIKeoz3S1pl1HWDQTnWSGksvE5yDjCaL0UFZ+a2ldFfc914v3YLDjWL2E0O2i2b8b/h/ezhfSB5816Dby8Jvy4JKlYteJhvY9xRAdYmx9ntPpd55yrex5nirNvtjQLnlZ8peV1x1n/9P2I1wKJ7TLCSUPZtV0eCRYL7722jN4SnLcsvULHLz+tyyOa/wYzq4PTRyrD8r53F6vZkdreH4sBAAAAAAAAAAAAAAAAAAAA6D+E0QAAAAAA89J4rRSc3okwWtQ6S0bACPFFBXqmVDxhNCRnh5Da/z3RCisKZY3bigllXKZtY0JyUTGHqe+3qO+5TrwfrXVOjcN6j00u2704hbWt4owYmB3RKMz4/4jXoBr9GvRDjCNqDFGv1ZTSHL7r7O+h1o9vmgXJqqqo5mstrz9OLG7yfoTRgKRGykYYLbOm6bK9yy1hPnus+KCenfhJcN6pK/+XsqlwSBi2ISOMVvFl7a0+3+XRHGDtv/vlZzMAAAAAAAAAAAAAAAAAAAAA/YUwGgAAAABgXrIuqs2l8m3fVjaVVcZlg/OKMeMcsDULqEhSmTAaWmBFcQqppV0eSZgVQ7LGXSWM1pfy6ah45uQ+IipuVUi3//1ovreq+8cTFWqLeDztZkW5Zn4GrLHOXLaQjgiLTcXgjP111LLdkkvl5eSC85rFvWq+qnEfjsXGeW+ZYbQ5RMWKMaKx1vdZM9772MGzOFE5AAd47zVSCYfRVmUPhNGs7yvSaGjFnaM3B6c7pbRp8Jwuj2ZhGMraIcPRynAXR1LP/tms98diAAAAAAAAAAAAAAAAAACgf3hOSwawH2E0AAAAAMC8NF4LR0Dyqc4EXeLEW9CaUoxwSYUwGlpghX26GX6KkjeCTNa4rc+BFW5Ed0Ttd6b2Eda+wslpwOXaPybjPT4VrLLGk3UDXX0/mZ+B6pj8/n/JssY6M/5mheBmLl8yYl1Ry3ZLyqWUM95HzQJlVihWkgoxjomseFqcuJmlWG2+bNlPtLTuCT+ummqx7ssxGpDM3upu81hjKBMnjAYkM1rZpfv33Bucd+yyE7Q6+4Iuj2hhWJ5eqZTSwXlW/LAbrJ/7O/U7HAAAAAAAAAAAAAAAAAAAAADzG2E0AAAAAMC8ZIVAci7fke1Z4ZRmwRI0F+c5JIyGVlhRHCt02G12cDH8/WZ9DtIu07YxIbmMyyrrBoLzivtfS+t7LpcqKOXa/yvaZu8tazzd/mxY+9aaqir7CdV8zfw8zBzrgMspZfyqe+qxFo319EuMo9UAa9Q+NJ8KR8/ibLcYI1oaUvVVjftwvHamiq+0tP4kx10cowHJRAWThrJrzHlTvPjTbEjmu6PfVE3V4LwzBjd3eTQLR8qlNZhZFZw3Uu5hGM06pjMirQAAAAAAAAAAAAAAAAAAAAAWN8JoAAAAAIB5adx3N3BirbfUYjgEBzSLvkhSmTAaWmBFcawYU7fZwcV9welWGC3jsm0bE1pj7iP2vwe7Hemz3lvT4zH2Xd3+bEQ9/mJtTONGQEOS8ukDyzrnIh7z5Dqsx9wvocRWA6xRAbNCjGMiK0ZifQ81E3e5VoOnSY674hxfADhglxFMSiuj5enBLo8GC13VV3TX6K3BeWuzB+uoJS/p8ogWFitmOFoZ7vJIJkWFU/slUgsAAAAAAAAAiMv1egAAAAAAAAAAgEWCMBoAAAAAYF6yYim5VL4j27PDIUQ35irOc9hqQAWLW7+HkKxxlKrh77eKrwSnZwmj9ZwdRpt8Lbsd6TPfW/vHYY4n3d3PRlQIo1Qbi9w/NC5rratY3bd/fVZQtT++D1oNsEbFv/Kp8LHLTAXjPq2G0eKGy1rdryc57uIYDUhmpBIOow1mVyvlDvxzonNc7IK5u3/PPdpdHQnOO2Nwc917DskNZlYHp4/0KIwWGbvtk2MxAAAAAAAAAEBcvtcDAAAAAAAAAAAsEpleDwAAAAAAgFaM10rB6bmIyMpc2NEbohtzFec5JIyGVnQ7RpVUwYhQWUEi63OQIYzWc9Z7aur7rduRPms8xf1RCut7t9ChfajFinJJkyGzqqvGXtZ+DabidOHPlfU57LZWA6zW/IzLKJtq/t2wxAqjxQycNRqLGVRrdb+e5LgrbqQNwKSRcjiMtiqzJtby3nMRDOLbMnpLcHrWDeiUlb/S5dEsPEPG59b6nHdadOy2P47FAAAAAAAAAAAAAAAAAAAAAPQXwmgAAAAAgHlpKnTSKJfKd2R7VrzFGgfiqflqrOeQMBqSqvqqJvx4cF6/hJCaxbQaWZ+DtONXfL1mxzOnolxGpK9D78VmMU87GmiHyjohl8rLyckH/qJ0sbpP1VTFXLbxMVqf61JtTFVfUdlPGOvpl++D1gKs1vy4r6X1HrRCcs00C7lNKbe4X4+7/qT3BSDtquwITh/KNgaWXPB+oe9yIORn409pW/HB4LxXrDhTS9LLujyihWcwuzo4fbQy3OWRTIo6nul2mBcAAAAAAAAAAAAAAAAAAADA/JDq9QAAAAAAAGjFeK0UnG6FRebKWm+r4RBMsl7HRuUaYTQkE3Xxfb+EkAqJw2jhSFTGZds2JrSmWeTOek2t98Ccx2NFwqpFee8jxtPdMEXKpZSLiMpZYauU0sq6gbpp1mtQrI1FBjg79RokZX8fRMdDreco7mtpbbfVqFixGu+4qNLifr1ZKK7V+wKQRso7g9OHMo1hNGButozeYs47Y3BzF0eycA1l7DCa992PGJaq9vFMv/xsBgAAAAAAAAAAAAAAAAAAAKC/ZHo9AHSPc265pNMlrZe0RtIeST+T9EPv/aNt3E5W0mmSDpN0sKS9+7fz3977J9u1HQAAAACLmxXUsgIrc2VHb6KDJYgWN7xS8YTRkExUEKdfQkhRIacQ63NAGK33zH3E/giE9Zp2LuYZHk9VFZX9hIpVazxLOzKeKPlUIfh5Ldb2qWrEAAvpJXLO1U+LiNNZj3dq+/0g6ffBlJL5Wsb7nisYr3ncwNms5WIGY1vdr1uPNzwWwmhAEiMVI4yWXVt32wXvBcRTrI7pvt13BOcdkT9Kh+aP6O6AFigraFj2E9pX3aNlmRVdHY91fJBxGWVTA8F5AAAAAAAAAAAAAAAAAABgcer+n4AF0K8Ioy0CzrnTJP0fSWfLeM2dc/8j6bOS/ta3+KfCnXNrJX1E0gWSVhn3uVvSX3rvr29lGwAAAAAwZdwIkuVT+Y5szwyuJAh0YLZOB1SweEWHkPojjGZ/r4S/3ypGJCrj+BVfr+XT4bjWVPDLimhaUaq5KkTEvkq1ohkOLBiPo5MKqUEmqwYAACAASURBVCUa1fCs6aVaUTVXCy4T+gzbAdOxJqHE7sfgQlo9zrDiX4V0vMdl3W/cl1T1VaVdOtZ6pscTM6jW6n49SeyMeC0QX9VXtbsyEpw3O7AUTqN5TkFADPc+f7vGfThyfubQ5i6PZuEazIbDaNJkBLHbYTRrn9wvP5cBAAAAAAAAAAAAAAAAAAAA6D+pXg8AneOcyzrnPivpu5LOUXQI7yWS/kbSHc65Q1vY1mZJP5T0+zKiaPudKukrzrn/65zrj6sOAQAAAMxL47XwxdS5iBjMXOTT4Qt2kwQ6MJsVgGpEGA1JRYWQ+uUCfPt7ZZ9C3Xrrc5Bx2baOC8nljX3P1D7CiltZy819PPZ7vFQbM/dd+R5EwqyxFqv7zHhmKPxmvgbV6DBap44bkmr1OMN6bHHfW0siXvOo580yFjN4Wm5xv55kTHEjbQCk3ZVd8grHKFdFBJaAJLz3unP0luC85emVeumyU7s8ooVrRXqlUgrHTUcqO7s8mrkfrwAAAAAAAAAA+kn4j+gAAAAAAAAAANBuUaEszGPOuYykr2syiDZTWdK9kp6RtFSTQbTDZsw/Q9JtzrnTvPfDMbd1lqQbJQ3MmOwlfV/S45IGJb1M0syrZ94saYVz7jzvffhqGwAAAAAw1HxN4767YbRQhEVqLRqCA6zoTaOyn+jwSLDQWDGhjMsqm+qPkFjBCELVVFPZT2jA5eqmV30leP+M41d8vWbFvUq1yfij9X4spDsTIrPeW5NjskNhUct1irXNUq2omhHpCQXcCkZYrFQrzuvvg2bHGeZ7K2bkLuo1L1b3aWl6eaz1TIl7XNRq8DRJkHbq8weguV3lHea8oUx9GM2ZF7vMjroCMz069gM9N/FMcN6pK/9X3+yTF4KUS2sws0q7KrM/26PlWP/821ZFY5/cL8FqAAAAAAAAAEAS/JsQAAAAAAAAAKA7Ur0eADrmKs2Ool0jaZ33fpP3/k3e+1/33r9w//0en3G/X5Z0g3Ou6Z9ycc6tl3SD6qNod0k6xnt/gvf+t7z3r5a0XtJ7NRlmm/JaSVcmfWAAAAAAMOHHzXk5l+/INkMRFonoxlzFff4qRhAKsPRT+MkSFS4KRQOtkFDGEZHotbwRzxzf/x1nvR+t5eYql7L3hcWIUFgv4hR5M2hmB9xCz5sdp+uvEJwlavxR5vreiorzJYmQTRmrxguethpGSxKkjRtfBSCNVHYGp+dcftbxihVG4xIYNLNl9ObgdKeUNg02/pMm5mowszo43fq8d5J9vNI/x2IAAAAAAAAAAAAAAAAAAAAA+gthtAXIObdR0qUNky/z3r/Xez/SeH/v/a2STlN9HO0MSRfE2NxHJA3NuH23pFd57x9u2Ma49/4aSb/VsPz/ds69MMZ2AAAAAGBaVEwrKgYzFwUjMFL2Ey3HPRA/usJzjKSK1f6/+D4qXBQaf5kwWt+yAltT33HWd11UHG8uUi5thkKL1X0qVcP70YIRKeukqOfO+hyHlolcj3Hc0E/fB9b4S7Wiar5mLmc/R/HeW1HPwVgLYbFO79etxxtCvBaIb6QcDiWtyq5VjL+hAzQ1Ut6pB/beF5x33LITtSq7tssjWviGsmuC00cqw10eSfcjwQAAAAAAAAAAAAAAAAAAAADmP8JoC9MHVf/afst7/5dRC3jvn5P09obJH3fOpa1lnHO/JOmtMyZNSHqb974UsZ0bJX1+xqScpD+LGhsAAAAANBqPCF106sLafERgxArMoLliNV50hTAakrKCOFZ8qBcK6YjvlUA8wPocZFymbWNCa6y41FTUytpvdTIGkTciZ3uru1VVxRhP9z8f1nNQqo1FRDRmj9N+DcZUMkOJ/RPjsMbi5TXhx83l5hoaSTeJ6CVVjBlTs0KPzSSJnY03icoBOGCkEg6jDWXCYaUQL9+u4WAB+u7ub6qm8HfymYPndnk0i8NgZnVw+mgPwmhzDbkCAAAAAAAAAAAAAAAAAAAAWHwIoy0wzjkn6dcaJn8qzrLe+y2S/mvGpBdJOitikQslzQyn3eC9fyzGpq5quP1bzhlX3wEAAABAQFQYLZfqzI8XhbQdGIkbAcFscQMn5RphNCRjfS6tWFQvDLicnFxwXjEQO6r6cMwq47JtHReSsyJU47WixmtFMxbTyRCZtW4rfiP1JhxoBTGK1bHg50CSCoHPsR1YK2rM+j6YJ6HEqECZFUaLWl/c+7ZyfNPp4GmSMXl5jdfMv+EBYAYzjJadHUab/GeoAE8YDWEVX9Zdo7cF560bOES/vOS4Lo9ocRgywmgjZftYsFPMkGvE71kAAAAAAAAAAAAAAAAAAMDixGnJAKYQRlt4jpY080qVCUl3JFj+3xtuvyHivr/RcPvaOBvw3j8s6d4Zk5ZKenWcZQEAAABAkkoRkYucEUaZq6h4Sty4F2aLGzhpNaCCxcv6XPYi/GRJuVREzKk+HlDzVdVUC96XMFrvWa+jl9doZZe5XCjw1S4FY0xRMQzrcXRS1GfA+hyHlokKge02XoNOPv9JRT33UccZVjwuyWtpfS9a647S6f160mMu4rVAPLvKO4LThzKzw2hAUvfvuUfPV0eD884Y3GzH9jAnobChJI1WhuW7fMbQfPjZDAAAAAAAAAAAAAAAAAAAAEB/yfR6AGi79Q23H/PejydY/gcNt38tdCfn3EGSXjJjUkXSXQm2c4ekk2bc3izppgTLA4vG2NiYvv/97+uxxx7Tzp07VSqVVCgUtG7dOh155JF62ctepoGBgbZs6yc/+Yn+7u/+Tlu2bNGjjz6qkZERlcsHLlS99tpr9ba3vS247H333adrr71Wd999t55++mnt3r1btdqBi/afeOIJHX744ZKks846S1u2bJme1+2LcAAAwPw3blxUm3UDSrt0R7YZFUZrJRyCSXGfO8JoSMqK4UR9lnuhkFoa/Bw0Tqv4irkOwmi9F/W+Gq0Mt7TcXFnrHokYTyFlx8U6xQqalWpFVY0YYOixRYXARirhGFw/fR9EB1jtfaU1L0loxHrdS9UWwmgxl2l1v16sJgudEa8F4rG+J8NhpXDEyovf8SJsy+jNwek5l9fJK17Z5dEsHoNG2LDsJ7SvukfLMiu6NhbreKUXUV4AAAAACOH8PAAAgCT4gycAAAAAAAAAgO4gjLbwrGq4Hf4T7LbG+x/qnFvpvd/dMP3FDbcf8N4nuSrt7obbxyRYFljwqtWq/vVf/1XXXnutbr/9dlUq9gXw+Xxe55xzjn7nd35Hr3nNa1re5uc+9zldcsklGh9P0lKUKpWK3vWud+lzn/tcy9sGAABIarxWCk7PdfCi2rRLa8DlNBFoT0cFSxAt7nNX9hMdHgkWGiuGkyQW1A1WDKAxSBQVEco4fsXXa/l0a2G0Tr4frXWPlMPxGyenXCrfsfFYrM9AsbZPVVWD80KPLSosZj3mfvo+GHA5pZRSLRCDsyKi5dqEGU1MEn0rGO/fMSMwafHem1HKRuVa8jBazVc17sPHgBbitUBzE7Vx7avuCc5blVk7axqXuiCJZ0pP6sfFh4PzTlxxphlIxdyFw4aTRio7uxpGKxo/m/VTpBYAAADA4sP5eQAAAK0iuAoAAAAAAAAA6I5UrweAtmu8UjyXcPnQ/Y+OMW1bwu38OMY2gEXpP/7jP3T00Ufrwgsv1G233RZ50pUklUolfe1rX9NrX/tanXjiifr+97+feJs333yzLr744sQnXUnShz/8YU66AgAAXWcFjzoddLEu2i1WiW60Ku5zZ4VfAEuxGo7z9NvF91YMojHmE/UZyLhsW8eE5Ky4l2RHuVJKK+sGOjUk870+UgmPJ5cqKOW6/+viQir8GSjVirMCgVNCjy0qcmbF6frp+8A5Z47HiohGxUWt2FnwvsZrEDdyNmXcl4Jht5BW9utWGDcK8VqgOWu/IEWHlYA47hy92Zx3xuDmLo5k8VmRXqmUcSpAVLi3E6z9cT9FagEAAAAsLpyfBwAAAAAAAAAAAABA/8v0egBou8Yz2Q9OuHzo/r8s6T8bpm1ouP2ThNt5quH2aufckPd+JOF6gAXlIx/5iD7ykY/I+/q/pOSc08aNG7V+/XqtXr1aO3bs0E9+8hM9+uijdffbunWrTjnlFH3605/W7/7u78be7oc+9KG6bV544YV6xzveoUMPPVTZ7IEL7Nesqb8Qbvv27fqrv/qr6dsDAwP6oz/6I5177rlau3atUqkDF92sX78+9ngAAACascIYUWGadiikl+j56uwfW4hutC7uc1fx5Q6PBAuNFVBMEgvqBut7q/GzEfUZyDh+xddrOZeXk5MP/GVkKzhTSC+Rc65jY8qnw++tsm/8uwr779/hfajF2q6X17g39veBz3HWDSiltGqqzppnPeZ+i3EU0ks0Vts7a7oVEW0MKM6UJPpmhtGMwKTFCtmFVIzXJErU4zWXIV4LNGUFPCVpMLN61jSn8L4rtA/E4jZW3av7nt8SnPeLhY1anz+8uwNaZFIurZWZVcFj0ajPfSckid0CAAAAQKdxfh4AAAAAAAAAAAAAAPMDV00uPD9quH2Ic2699/6ZmMufEpi2MjBtsOH2z2OuX5Lkvd/rnCtJyjdsZ05hNOfcCyStTbjYL85lm0C7XHrppbr66qvrpi1fvlwf+tCH9OY3v1mHHXbYrGW2bdum6667Tp/61Kem/5rkxMSE3vnOd2rfvn269NJLm273kUce0QMPPDB9+9xzz9UXvvCFWGO+8cYbNTFx4ELWK6+8Uu9///tjLQsAADAX40bwKOfywentYl2020qoA5PihtGsqA1gKdbCQZ9+u/jeDBIlCqNlzXnoDuec8qlCcH8wUmn8OwaTOv1eTLp+673Yaa08D4VATM05p0JqifbV9iTYdm9icBbrubD2lVHHH0mib1YwMunxzZjxvRvSSvA06phhwOU04ccDyySLuwGL0a7KjuD0ZemVGkjlAnM6F/XEwnLP87cHv5sl6czBc7s8msVpKLMmHEYzjk87oeariWK3AAAAANBJnJ8HAAAAAAAAAAAAAMD8kWp+F8wn3vvnJD3SMPn/ibOsc26ppPMDs5YHpi1ruB2uEkRrXCa0naTeJemHCf/7Whu2C8zJ5z//+VknXZ1++ul66KGH9KEPfSh40pUkbdiwQVdeeaUeeOABvfjFL66bd9lll+mOO+5ouu2tW7fW3X7DG94Qe9ytLnvHHXfIez/9HwAAQFIlI4zW6cCJtX5rPGgubnSl4isdHgkWGutzmSQW1A3W90qxmiSMxt8+6Ac547UcLc+OUUidfy8mDY71KhJmRbmi5I2IW9K4Rivb7iTz+8DYV5aq9j40yetpBhqryaJiSe7fyn698XtxpqFs+G9lFDlGA5oaMfZTQ5nVCdfE73lxQM3XdOfILcF5K9KDeunyk7s8osVpMBv+HIdiaZ0S9fuSUOwWAAAAADqF8/MAAAAAAAAAAAAAAJhfCKMtTP+34fYHnHOHxFjuo5JWBqbHCaOF/9R3tMYz4RvXCSwKjz76qP7gD/6gbtqpp56qW265RevXr4+1jiOPPFLf/va3tXHjxulptVpNb3nLW7RzZ/QFLtu3b6+7HXebc10WAABgLsZr4R9Bcql8R7drRWyKtWThEBxQih1Gs6NQQCPvvRnQ6VX8yWLFqxo/G1ERoYzLtnVMaI21jxipDAenJw2XJZU0NFFIh+NYndbK82A9tqSPudOvQVJWoMzaV1rBtJzLK+XSCbZrHd/E20cfuH/846FyC/t163lIK6Pl6dCvtaUSx2hAU1YgaZURHHTGeri8FjM9MvaAfl7+WXDeaYOv5vi1S4Yya4LTR43j006ICqP127EYAAAAgIWL8/MAAAAAAAAAAACA+YPzkgFMIYy2MH1a0u4Ztwcl3RIVR3PO/W9JlxqzazG22cq+hf0RIOl973uf9u7dO317cHBQ119/vZYtS9YKfMELXqCvfOUrGhgYmJ7205/+VB/96Ecjl5u5bUnKZuNfkDSXZQEAAOZi3IcvrM11OHhkBoyq9oW+sJVrE5Gxp8b7AnFVfFlVhd9bVnioV6wYVWOQKCoOSFiiP1j7CCsWZcWo2iVpaKJX0cABl1Mq4a+prceW/DH3V4zDeg2sQJkVCksauYv7PdRMkjBaK8FTazz5dMGOu3GMBjS1q7wjON0KKslZaTTggDtHbwlOTymlTSvP6fJoFq+hzOrg9NFyN8No9vFEvx2LAQAAAFi4OD8PAACgnfi3IgAAAAAAAABAd2R6PQC0n/d+1Dn3dknXz5h8rKSHnXOflXSLpJ9JKkh6qaR3SDp9xn2fkTTzz8qNBjazt+F2K1dONi7TuM5WfEbSlxMu84uSvtaGbQOJ/ehHP9I3vvGNummf+MQndNBBB7W0vqOPPlrve9/79PGPf3x62j/8wz/o8ssv19DQUHCZWi1O+zBsLsu2w0MPPaQf/OAHGh4e1sjIiPL5vNauXauNGzfquOOOUy6Xa2m9lUpF9913nx5//HHt2LFD4+PjWrt2rQ4//HCddtppyufzbX4kAAAgqfFaKTg9l+rsfrqQNsJoCcMhmJQkuNJKQAWLV9R7K5/uTfzJYoWQGr9Xoj4Dacev+PpB0rBYp0MQScNrnQ61WZxzyqeWaKwW71eDGZdRNjUQnJf0Oe3VY7ZY4cZSNfydZobCEr4X7ajYPnnv5WJGkIrGOEMqPnnw1AzBpZZEHKPFj7UBi9VIJRxIGsoaYTSD9/wtHEzaVd6hB/b+V3DeS5adpMFsONaF9hs0PscjlZ2J9vFzEXV80G/HYgAAAAAWJs7PmxvOzwMAAAAAAAAAAAAA9ApXTS5Q3vsbnHPvlfT/SUrtn7xc0vv3/2e5RtJKSW+dMW3ehNG89z+X9PMky3TjpH/AcvXVV9ddMLZmzRpddNFFc1rnpZdeqk9+8pMqlycvmt+3b58+97nP6QMf+IAk6cknn9SLXvQic/lXvvKVwenXXnutJEWOz/o8PfHEEzr88MOnb5911lnasmXL9O0kF809/fTT+vM//3N9+ctf1vbt2837FQoFvfKVr9Rb3/pWvf71r1c6nW667ocfflhXXnmlvvGNb+j555831/vrv/7ruuKKK3TkkUfGHjcAAGivUq0YnJ40BJKUFVxJEvjCAUmCchVf6eBIsNBEvbes8FCvWONp/F6xPgMppZVyqeA8dFfiKJcRcmqXpOPpdKgtSiEdP4wWNc6kcY1ePuYQK9xoHWfYobBk33OF9LLg9KoqKvsJDbh4F7aNJYiQtbJft0NwSyKO0cLHjAAmee81Ut4RnDeUWRuc7mT9mwphNEz6zug35RW+aPuMoXO7PJrFbSgTDqOV/YT21fZoWXpFx8dgHa+klVHGZTu+fQAAAADg/LxJnJ8HAADah38TAgAAAAAAAAB0B1dNLmDe+2skbZb0SIy775X0bkmXSjqkYd5zgfvvbrgdvkLG4JxbptlhtFCADVjQ/v3f/73u9m//9m9rYGBgTutcu3atXvva10ZuZz7y3uvKK6/Uhg0b9OlPfzrypCtJKhaLuvnmm3XBBRfo6aefjrxvtVrVH/7hH+rFL36x/vmf/9k86WpqvV/60pd0zDHH6Oqrr27psQAAgLkbr5WC03Opzv7laCu6kSTwhQOSBOUqvtzBkWChiXpvdTqgmJQ1nlK1MYwW/gxkiQn0DStqZd6/w1GupONJGhVrpyTPRdRnOHEMLuFz1Gn2cUY47lWsWqGw9r32xQSxsyTHQ+UW9ut2CG6J+RhKCcYPLEZjtb2a8OPBeUPZcFAJiFKulXXX7tuC8w4eOFRHFl7c5REtbkOZ1ea80fJwV8ZgRUrz6QJ/vAoAAABAV3B+XnycnwcAAAAAAAAAAAAA6CeZXg8AneW9v9U5d4yk10k6V9KpktZJWi7p55KekHSjpC9475+TJOfcUQ2r2RpY9WMNt1+YcGiN99/lvR9JuA5gXnvmmWf05JNP1k179atf3ZZ1v/rVr9YNN9wwffuee+5RuVxWNjs/L5ivVCp64xvfqOuvv37WvIMOOkjHHnus1qxZo/HxcW3fvl3/8z//o71798Zad7FY1Hnnnadbb721bno2m9VLX/pSrV+/XrlcTs8995zuu+8+jY2NTY/p0ksv1cjIiC6//PI5P0YAAJDMuHFhba7DwSM7ukEYrRWN4acoZT/RwZFgoYl6b/VbGK2QXhqcPu5LqvmqUi4tSar4SvB+GcJofSPpe6vT78XkkbBehtHiPxeFVPgzI0mFhI+hlzG4EGs8VuzRDIW18XkoVse0MrMq1nrGqvEjZJVa8jCaHYJbYr7frRgLgEkj5Z3mvFWZZGE0P9fBYEH47713a2+18W8rTTpjcDMhrC5bkRlUSinVVJs1b6SyU+v1oo6PwTpe6XQkGAAAAAAkzs9LgvPzAAAAAAAAAAAAAAD9hjDaIuC9r0q6Yf9/kZxzh0paP2PST733Pw3c9eGG2xsSDuuIhtsPJVx+wapUvZ4hEddx64ekTLq3F+Dcdddds6adcMIJbVn3y1/+8rrbxWJR999/v0488UStX79eTzzxxPS8v/qrv6r7y4r/8i//opNPPnnWOtesmbwQ7qyzzpqe9sY3vlH33nvv9O2Z651p/fr1welxXXbZZbNOujr33HN1+eWX68QTT5x1/1qtpnvuuUdf/OIXdd1110Wu+93vfnfdSVcrV67U5Zdfrne84x1avnx53X2LxaI+85nP6E/+5E9UKpUkSVdccYVOOukkbd68ucVHBwAAWjFeKwWn9yoyYwVLEC3J82ZFoYAQ672Vc/np0Fi/KER8b5VqRS1JL5MkVXw4IpR2/HqvXySNO3Q6ypV0/b2MhEXFzhpF7euTHAdk3UDffX6s95AVFLG+6xK/F41AY9Q2wvdNEEYzvtOiRIXgzHhtgggrsBjtquwITk8ppZWZoeA8J+v36qTRIG0ZuTk4PefyesWKs7o7GCjl0lqZWaWRyuwI4khluCtjMPfffRasBgAAwOLC+Xnd0+tz9Dg/Lz7OzwMAAAAAAAAAAAAA9Jv+uvIL/eDshtt3GPf7YcPt45xzS7z3ca80O63J+hatZ0akI/549l9uR3s9/vGUDl/T2zE888wzdbfXrVun1atXt2XdL37xi4PbO/HEE5XJZHT44YdPTx8cHKy730EHHVQ3v9GyZcum/z+fz9fNi1quVbfeequuueaaummf+MQn9MEPftBcJpVK6dRTT9Wpp56qK664YtY4p3z5y1/WtddeO337hS98oe644w7zcRQKBV122WU65ZRTdPbZZ6tUKsl7r/e85z165JFHlEqlkj9AAADQklKtGJyeS4X3++1iXbhbqhblvZdzvY3vzjdJAipeNVV9Vek+i1qhP9nxnPjxpW7JRwShirWxpmG0TJ+FnRazpDGqpPdPKpcwNtHp8URvO/5Yo8aZ5DH0MgRnSRr3skMjyR5bzuWVUko1zf6dZJJ9dbLgafIwWtE4/sunliifThaVAzBppDw7liRJKzOrzJisHUbDYvd06XE9UXokOO8VK89SwfiuRmcNZlaHw2jG57/drN/f9PLYEwAAAOD8vO7p9Tl6nJ8XD+fnAQAAAAAAAAAAAAD6Ef9CjEbvaLj996E7ee+flfTAjEkZSacn2M5ZDbdvSbAssCDs2rWr7vbQ0FDb1p3P55XL5SK3N19cccUVdbd/7/d+L/Kkq0aDg4PBE6+893XrzmQyuummm2KdPDZ1QteUbdu26cYbb4w9JgAAMHfjtVJwetIITFJ5I6pUVaWlwMdiZ10gbSn7iQ6NBAuNFedJEl/qlqiAUXFGDKniK8H7ZFy27WNCa6x4pnn/DsdB0i6tAZdrfsf9ehkKK0QEAhtFRTSSPIZ+jHFYca9xX1LNV2dNLxrBtKSPzTlnvgbFaoIwWoL7tnLcVDIibYXUEvO1TxJrAxajUCxJklZl1yZel5ef63Awz20Zvdmcd+bguV0cCWYayoYLBKOV4a5s34qs9uOxGAAAAICFh/Pz4uH8PAAAkAx/RAcAAAAAAACd5TktGcB+hNEwzTl3uurjZo947++IWOSrDbcvirmdoySdNGPSPkm3xlkWWEgaT4Rq/MuQc9W4vuHh7lzk0k4PPPCA7rrrrunby5cv11VXXdWWdd9+++364Q9/OH37zW9+s4477rjYy7/73e+uO6Hrpptuasu4AABAc+VaWVWFA0E5F/5L1O0SFb0hvJFckoCK1FpEBYtTyfg8JokvdUtUEGDm47De/4TR+kfSuEM3YhDzJRSWT8ePykUF5ZI8BitC1ktRxxmhmKj9XZf8sVnPhxUzmet9yy3s04tGUDWfWmK+9mU/wfEDEGGkHA6jDWXCIaUonH+wuI1V9+q/nr8zOO+XCsfoF3KHdXlEmDKUWR2cPmqEEdutVA3vv3sZ5QUAAACweHB+XnOcnwcAAAAAAAAAAAAA6FeE0SBJcs4tkfTZhskfbrLYFyRVZ9w+3zn3SzE21/in5P7Ve1+KsRyABJyb/3+N6dvf/nbd7QsvvFArVqxoy7pvu+22utsXXHBBouWXLFmiV7ziFdO3v/Od77RlXAAAoLlxH76oVpLyEUGRdogbMEI8SWNyFR8O4gGNitXwe6vT3xGtyKayZtxs5mekUrPCaJmOjAvJJX1/dSMGkST+FRUc67REQbOI+yZ6vH34fZCPiDeG9pnWfrSV6NsSY9tJ9tVJgqetxMpKEd/tUZ8nK8gCQBoxwkhDWTuM5jT/f++M9vvP3d9W2U8E5505dG6XR4OZBo3Q4Ui5OxfrW78r6WWUFwAAAADahfPzonF+HgAACxV/LgcAAAAAAAAA0B1cOblAOecy3se7Ytw5t0zS1yUdM2Py9d7766OW894/5pz7vKS37580IOk659zZVujMOfc6SW+bMWlC0kfijBNYaFatWlV3e/fu3W1d/+joaOT25oO777677vZZZ53VtnV/97vfrbu9atUqPfnkCQR+aQAAIABJREFUk4nWMfMksCeffFK1Wk2pFM1RAAA6bbxmxy1yqbw5rx2iohtJI19IHpOr1MIX2gONrPdWL8NPUfKpJdpbnf0z4czHUVX41zxWVA3d15dhtDYFxzotyXMR9TwniZ31Y4wjavyh7zXr2KOV95b1fIwliJ2N1ZKF0bz3iS4ctL/blzaN1y5Tey7kAxaaXeUdwelDRkgpGhfBLFY1X9Odo/8enLcys0ovWXZSl0eEmazQ4UhlZ+J9cSvskGv/RWoBAAAALDycn9cc5+cBAAAAAAAAAAAAAPoVYbSF62Ln3Osl/aOkf/Pez7q6ZX8Q7fWSPibpkBmznpT0rpjb+TNJvyFpaP/tUyV9yzn3O977H83YVk7SOyX9RcPyf+G9fyrmtoAFpfFEqJGRkbatu1QqqVSq7xOuXr26bevvlmeffbbu9jHHHGPcM7mnn3667vbJJ588p/XVajWNjo7OyxPcAACYb8ZrwQ6zpORRmqSiwmulKmG0pJLG5Mq+3KGRYKEpGQHFfgwhSZMRo1AYbeZnpGK8/zMpwmj9Iun7K9+FUF+S/WI3Qm2WJM9d1DjzqaVtWU+vRI2/VK3/Xqv5mhmLLSR4HqaXMd6PcSOmFV9W2ccPmHp51VRVOsE/UZhhlVQhMnxJvBYIq/mqRiu7gvMiw2hGRMl7wmiL1Y/G/kc7ys8G552+8tVKO/45upeGMuF/Gyr7Ce2r7dGydGfjofPtZzMAAAAACwvn5zXH+XkAAAAAAAAAAAAAgH7FmegLl5P0yv3/eefcE5IekTQiaYmkgyQdL2mgYbknJL3ae//zOBvx3j/jnDtf0jdnrOs0SQ85574n6XFJK/dva23D4t+Q9H8SPq4Fb/2Q9PjH+Yt2nbZ+qPl9Ou2QQw6pu/3cc89peHi4LSdIPfjgg023Nx8MDw/X3R4aat8L17judtizZw8nXgEA0AXWRbWSlOtwGC3l0sqnCsExEN1ILuq1DLHCUECjYm1fcHo/hpAkO141M7hYrhlhNEcYrV8kjTt04/0Yd0wppZV1jb8m7J4kz0XUYyokOA7oxxhHNpVVxmVU8ZVZ8xq/18ZrJXmFI0T/P3t3HibJXd95/vOLzKzKrOrqrupDRyO1JCRAlhCHEAaE1LKRhGg9BnN5PBaPx4Y16wfjGWaN1zasxwJ7AWMW7zDGDHgZG5tBuwwPYJtdZAO2dSFA6DBgJIMEultHH1Xd1VWZWZkZv/2jVa2srN83MvKKzKx6v55HjzojMiN+eUZkVcS7ugnFThkxNevzdN31ugjE1nwtdSwnKbxWiqYT7zP7aEDY0cYRxWoE520vtP4652lO4TAaNq8b578cnB4pp0tmX5nxaNBq1gijSdJC7VAGYbTwdnhUv5sBAABgc+D4vOwM+xg9js9rj+PzAAAAAAAAAAAAAACjijDa5uAkPfOp/5L8raRf8d4f6GTh3vsbnHOvk/QpPR0/c5Iueuq/kP9b0lu99+GzbjaxfM7pzJ3DHgWycPHFF6+bdvvtt+uqq67qedm33377msulUkkveMELel7usDnXv5PuVlbCJ9P2wvvwCckAAKC/qnElON0pyiTqUoymgkEv62Rf2MqNdLGVVYTRkJYV3RvFEJIklXJWkOjpz5VQKEmS8imjQhi8Yi59jKrgJlIHoXqRNhRWyk319Tt3p4q59O/NUsJ1O3mPj+rnQTGa0rHG0XXTWz/XkvY7rM+U5PWGb7OcclvdTXzs+HY93Wu00rBjqsWopJzLa8JNasVX19+WfTQgaL5m/ypoLs8vKZDOodoT+pel24PzXjDzUm3Lc6LysG3LzylSpFjxunnz9UM6TWcNdP3WPsKo7osBAABgc+D4vM2D4/M6x/F5AAAAAAAAAAAAAIBRwZ+927hukfQ5SfNtrleXdL2kK733P9tpFG2V9/7Lkp4r6eNt1vlNSW/03l/jve/sDHhgg9mzZ4/27NmzZtpXvvKVviz7q1/96prLL3nJSzQxMfhISL/t3Ln2KMTDhw8PZNnFYlFxHMt739N/Z555Zt/GBwAAbFbwaDIqZhJ1KRqRmW6CIJtdp6GSGmE0pGRF90ojevK9Na7m90iDMNrIs7YPIVm9FtMGJ4Ydpujk8Uh6nAvRROr3RFJgbZisx6J1PyNpv6OT1+KqKSOmlnZbXY47/1GvFXzsdBylp6Ju1uu43GAfDQiZrx8MTi+4CU3nZszbWd+4vDgpdTO6eeHvzef+stmrMx4NQiKX09b8XHCe9TnQTxVjO9zN/goAAAAAdIrj89rj+DwAANC54f3RNQAAAAAAAGwO/K0cAKsIo21Q3vt/9t7/G0k7JJ0r6fWS/oOk35X0v0l6u6QrJW333l/tvf9aH9b5pPf+bZJOkfQKSW+W9K6n1vsGSc/03r/Me//5XtcFbBSvetWr1lz+9Kc/rVqtt9jDgQMH9Ld/+7eJ6xkXp5566prLd999d9+WffLJJ5/4d6VS0UMPPdS3ZQMAgMGqxpXg9KxOql2Nb7Sygm2wdRqTqxNGQ0rW+7E4oiEkM+bT9B6xXv95VxjImNC5vCuo4NKd9JRViCxt/GvY0cBOHg9rO9zpsoYdg7NY42oNg6UJhXXCeg0sG6HJVlaQMkk9Xkl93cQQXO74PqD1eu80xApsFodr4b+TM5ff2SY4zckuOK4Wr+jrR74anHfqxB6dUzov4xHBMpffGZy+UDs00PXGvqGqD/8MZ9j7nwAAAAA2D47PS8bxeQAAAAAAAAAAAACAUUUYbYPzx/3Ae/9F7/2feO/f571/v/f+Y977r3nvFwewzhXv/T957z/lvf/Dp9b7Be/9/f1eFzDu3vGOd6w5yezAgQP6i7/4i56W+ZGPfGTNwVvT09N661vf2tMyh+XlL3/5mss33HBD35Z98cUXr7ncr78GCgAABq9qBI8mo2Im67cCbN0EQTa7TkMlhNGQVjkOvx9H9eR7a1wVwmhjZzJlpDOrSN+4RMJKHcRN24VQ04ZSswqqdsoaV+s20wqFRYpSB/rWrre3qJj1uZuk1sF2PSmMtvoZmiYyCeBp8/WDwelzhXBAqT3+NNtmc8fi17XUCP+a8bLZfW0Ce8jSXGFHcLr1OdAvVtheGt1oNQAAAICNh+PzknF8HgAA6By/EwIAAAAAAAAAZIMwGgAM0Xnnnad9+/atmfbbv/3beuKJJ7pa3t13360PfehDa6a9+c1v1vbt27se4zBdccUVay5fd911WlzsT8/xqquuWnP5k5/8ZF+WCwAABs86sTZtjKZXJePk3YoRbENY7BsdP2aE0ZCG9958bQ07/mQxYz6N9mG0nMsPZEzoTtrAVychsF6kfc0POxpYjKY7uG7yWEsplzXs+2wp5cLjb/48kKRKIxz7KkXTXYVopoz1LqcMni0bgdik56uT7boVaCu4iROfg2kikwCeNl8LB5G253cl3s4p/BnjOQlm07lp4cvB6cWopJ/c9lPZDgaJZvPh4OHCgMNoSXHSUY3UAgAAANh4OD4vGcfnAQAAAAAAAAAAAABGFWE0ABiyD3/4w5qaevrEzYWFBb3+9a/XsWPHOlrOgQMH9MY3vlErKysnpp166qn6vd/7vb6NNWvnn3++LrvsshOXjx49qne96119Wfa+fft09tlnn7h822236c///M/7smwAADBYVR8OHk26YibrtwIfRDc6YwXuktRiwmhor+orZphjdENI7T9X6r4evE7BFQYyJnQnbYiskxBYL9IGJ4YdDSxEBeVTRv7ajXVc7rPFGn/rfoYVGinmuouMWEG5alxW7OO2t7f2g2Zy28zbWJ9rIa1huFXN47Yeu6QoC7CZHTaCSHOFcEAJaPZg5T49ULk3OO8lW3+a6NWImTPCaPO1QwNdb9LPSdLGbAEAAACgHzg+z8bxeQAAAAAAAAAAAACAUUUYDQCG7Nxzz9Wf/MmfrJl26623at++fXrkkUdSLePee+/V5ZdfrnvuuefEtCiK9OlPf1q7du3q63iz1nrg2J/+6Z/qwx/+cOrbHzlyRJXK+uhGPp/X7//+76+Z9ra3vU1f+MIXOh7j1772Nf34xz/u+HYAAKA7lTgcRsvqxGsrpEJ0ozPdPF51TxgN7VWMeI40uiEkK9hWjpdO/Nt6/ecJo42UtNui0pC3Wa2sOF+W0sTi8q6gQpT8mk8fpxv+fQ6xIiGt200rNNJtALKUC6/Xy6tq7Hs1W276vGq2NT9r3qbmV8x5raz72/yesx67pO0CsJkt1IwwmhFQaiecpcVGddP89ea8vbP7MhwJ0pgr7AhOn68flPeDe/eWE/YhiOcBAAAAyBLH5yXj+DwAAAAAAAAAAAAAwCgijAYAI+Atb3mL3v72t6+Zdsstt+i8887TH/7hH+rhhx8O3u6+++7T7/7u7+qCCy7Q9773vTXzPvjBD+ryyy8f2Jiz8opXvELvfOc710z7zd/8Tb3mNa/RHXfcEbxNHMf6xje+oXe84x06/fTT9fjjjwevd8011+gtb3nLicsrKyt6wxveoDe96U3msiWp0Wjorrvu0nvf+16dd955uvLKK/XQQw91ce8AAEA3qvH6g6olaTIqZrJ+KzhiBTsQlvR4TUczwemE0ZBGUnRvFOJPIVagqTkESRhtPKSPcrWPgPVD2gDbKETC0ow1zTjTvs9H9/Mg/Di0bjetz7pun8ukoJoVPVszHiM+NhVtUWT8GqKT7bp1f5uDbsVc+LEjXgusV4trOtpYCM6bKySH0ZxzxhzSaJvFscZR3b54c3Dec6Yu0KmTp2c8IrRjBQ9rfkXL8bGBrdf63h8pp4KbGNh6AQAAACCE4/NsHJ8HAAAAAAAAAAAAABhF+WEPAABw3Ec/+lHNzc3pfe97n7w/fhLZ4uKi3vWud+nd7363zjvvPJ1++umam5vToUOH9OCDD+oHP/jBuuUUCgV95CMf0dve9ras78LAfPCDH9RDDz2kz33ucyemfelLX9KXvvQl7d69WxdccIF27NiharWqxx9/XN/97ne1uLiYatkf//jHNT8/ry9+8Ysnpl133XW67rrrtGvXLj3/+c/Xjh07FEWRjh49qv379+uee+4J/pVLAACQjeZQUDMrJNJvVnDECoIgLOnx2pLfpqWV9ftzhNGQRlJ0bxTiTyFWkKjcWJb3Xs451X09eJ2c48d7oyTta6xkBJz6LfV4RuC9kSp6luI643SfQ8z9jJb9H+uzrvswmh3rKzeWpTYNxrIRTyvlplVwE6r69T9H6WS7nmb/z7oPxGuB9RbqB815VkBplZMVRsNm8Y0j/6iaXwnO2zt7dcajQRqz+R3mvPnaQU3nwnHyXlWM7/2laCohsggAAAAAg8PxeTaOzwMAAAAAAAAAAAAAjBrOnASAEfIHf/AHuuyyy/Rrv/Zruvfee09M997r+9//vr7//e8n3v7CCy/UJz7xCV100UWDHmqmcrmcPvvZz+r888/X+973PtVqT584u3//fu3fv7/rZRcKBX3+85/Xhz70IV177bVrDqg6cOCAvva1r6VaxvS0fQIxAADor2ocPgB6Mipmsn4rwEZ0ozNWQCWnvBmrqRFGQwpl470YKdKEm8x4NOlYIaOG6qr7mgpuwgwI5V2bWhEylTbSWUyIUPVT2khWVnHR5DGkiZ61H2fa+zw5Avc5xNoGtoZFrMBot8G3Us6+nbXNTnOdUjSlvCsYYbRw8LGT5Tc/3+yjAenNJ4XRCslhNMvqycTY2GIf6+aF64PzZvM79LwtP5nxiJDG1vycnCJ5xevmzdcP6TSdNZD1mmHTjCLBAAAAABDC8XlhHJ8HAADS4w9fAAAAAAAAYLA4KhnAqmjYAwAArHXFFVfo7rvv1mc+8xldfvnlyueTG5aTk5N69atfrb/5m7/R7bffvuEOulrlnNO1116rH/zgB3rrW9+q7du3J15/y5Yteu1rX6u//uu/1p49e9ou+7d+67d0//3363d+53d0xhlntB3PzMyMrr76av3pn/6pHnvsMb34xS/u6P4AAIDuVY0Ta7MKnJRy4QOurRN+EWY9XqXclApG6MkKQwHNrABOMZqSc6N5cGZykOj4/bECQnnH3z0YJWkjD6XMtlnpIlnWti1LacaaJnqWJgw26YrKuVyqcWWtaDwOrZ9t5mddyue8Vd4VVHATwXmpwmiN8HWmctPm51Qn2/VKw9hvaHq+S0Zw0ApmApvZ4Vo4jDYVbRmJWCZG191Ld+pg7YngvEtnrxrZ7etml3M5bcvPBect1A8NbL1J380AAAAAYJg4Pi+M4/MAAEA6nJYKAAAAAAAAAMgGZ04CwAjK5/O65pprdM0112hpaUl33HGH7rvvPh04cEArKyuanJzUySefrGc/+9m68MILNTk52fW63vOe9+g973lPV7e94YYbMr2dJJ111ln6sz/7M3384x/XnXfeqX/913/VwYMHdezYMU1PT+ukk07Sueeeq+c973kqFMJBDcspp5yiD3zgA/rABz6g+++/X3feeacOHDig+fl5RVGkmZkZ7d69W+eee66e9axnKZfjJC8AAIahGleC07MKo1mhgEq8LO/9yIaXRo0VKSlFU8oTRkMPyg3jtdVlLCgLSWGASrysrZo1X//W+wXDkTbyUDQCTv2WNm4zChGcVNGzVPG09vdlFO6vxQq7tW43k7aj3a97WrXGyvp1G9GzteMJX6cUTSsfFaTG+nm1eP26Ol1+8+vG3EczomrAZjZfD4fRthd2tr2tE993NrMbF64PTs8pr4u3XZnxaNCJufzOYARt3ggl9sMg9lcAAAAAoF84Ps/G8XkAAAAAAAAAAAAAgFFAGA0ARtz09LT27t2rvXv3DnsoIyWKIl100UUD+wucZ511ls4666yBLBsAAPSmEofjFpNRMZP1l4yYTaxYK76qSZfNOMadFVkpEkZDjyrGyfdpg1XDkBQGWI0J2GE0frw3StIGt0oZhblyLq+Cm1DNJweorG1bltIEMtK8j1NdZwxDiTW/ooavK/fUe94KjfTyWVfKTeloY37ddGtdaa5TiqaVdxPBeZ1s1639v+ZYXikXfh2X4yXitUCL+dqB4PTZfPswmsXLd31bjIeDK4/r7qU7g/NeOPMybcvPZTwidGI2vyM4fcEIJfbDOH43AwAAALA5cXxeGMfnAQAAAAAAAAAAAACGKRr2AAAAAAAA6EQ1rgSnp43R9CppPdZJv1jPCpwkhdFqMWE0tGfHeUb35PvJpM+VxvH70/D14Hzr/YLhSPs6KxoBp0FIFxzLZhuaPIb240xzX0opomejHONIei6aP99WPxta9fJZZwXy0oTRlo3gaSk3rYIRcKwbn2shldgOqj797/BjtxqvBfC0eSOENFdIE0YLRwYJo218Ny38nfk8753dl/Fo0Cnr/W19HvSDHXId/r4nAAAAAAAAAAAAAAAAAAAAgNFGGA0AAAAAMFaqRlBr0hUzWX9ScKRsREqwXtkInJRyUypE4dBT3RNGQ3tWoHCUQ0iRi8w4wGpMoGa8/gmjjZa0r7NShjGIdMGx7EJt9hj6E3DrV2BtWJKei+YY2iA+66zHpWxEz1bFPjaDp6WE4Gkn2/VywvKf/nfCY0e8FlhjvhYOIW3P72p723AWDRvdSlzVN478Q3DeMybP1Nmln8h4ROjUXH5HcPp87dDA1llp2EF0AAAAAAAAAAAAAAAAAAAAAEhCGA0AAAAAMDZiH6vqK8F5aWIp/VDM2SfwEt1IzwqoFPsUUMHmZQUKRzmEJNlxgNWIoPX6z7v8wMaEzqXdFmUZg0gVE8tlF2ozx5BinGkCbv0KrA1L0nNRbtrPKBv7HKWE/ZR2Srnw42vFTFdV44q84vAyo+m+bNcrxmd783sp6XklXgusdbgeDqPNFXZmPBKMizsWb9FSvBicd9nsPjlHMm/UWe/vhfohee8Hsk475Dq6+2IAAAAAAAAAAAAAAAAAAAAARgNhNAAAAADA2FjxVXPeZFTMZAyTriin8EnfVqQE61mRlRJhNPTIPvl+tMNoVsxpNSJY9/XgfOv9guFIG3nIMtSXFPRcNQrhwDRBr1SRt1TXGf79tSQ9F6ufBw1fV82vBK/Ty32z1t0ujJY0v5Szt+u1lNt1732qEJwVdpOI1wLNyo1l8z0xl08TRgt/F/IaTFgJo+HGheuD00vRlF689bKMR4NuzOZ3BKev+KqW42MDWacVRE/aZgMAAAAAAAAARh1/LAUAAAAAAACDNaC/9wpgDBFGAwAAAACMjapxUq0kTaaM0fTKOWdGV4hupFduGIGTaFqFHgMq2NzSxHNGkRUzKjeWFPuGvOLgfMJooyVtlCqrmKfUPnpWcBPKuXxGo7GleezSRd7ahzZG+fMg5/IquIngvNUAWVKItZfInfXYWdvs1nGFTEXTPQdPa35FsRrBec2vmwk3SbwWSGG+ftCct73QPozmHCe7bDYPlH+ohyr3Bee9dNsrMt2vQfesMJokzdcODWSd1j5C2pgwAAAAAAAAAAAAAAAAAAAAgM1r+Ge8AQAAAACQUiUxjJZlZGY6GNhIGt9G8e2jN+kbR/7BDCpsyW3V87b8pF4x9xrlXM5cjhWRK0Yl+TgcgEobUMHmlvTaGmVWzKgSl1X3dfN2hNFGS5pwVzEqKUr4fOy3dsGxNCGxLKQJeqV5H6cJpaYN2A1LKZpSrbGybvrqfkYlIVTWUxgtZ4TREsJn0vGAo6WYEDxNu11PG4KLXKRiVDL20QijAavmaweC051cYjipLf4024Z148L15ry9s/syHAl6sS2/XU5RMLi8UD+o03Rm39dp/Yykl/0VAAAAAAAAAMCw8TshAAAAAAAAAEA2CKMBAAAAAMZGNa6Y87KMHlnrSgqDbAQ3zV+v/+fJTyRe5wk9qh+V79GTK/v1plPebl7PCpSUctOq+fUxGIkwGtKxAjqjEn+yWEGtcryU+NrPO368N0rSbIuyjnK1G9OoRAPTPC5p3seFqKC8KyS+b0Y9jFaMpnS0sbBu+up+RlIoLE2cz2JFSpLWlzS/4CZOPB8habfrSVGz1tdvMZoKjqfdfQA2EytwvDU/p1yK/QpnTOcUmI3pWP2o7li8JTjv3Knn6+SJZ2Q8InQr53Lalp/TQv3QunnzgWn9YEerR3tfDAAAAAAAAAAAAAAAAAAAAMDwRcMeAAAAAAAAaVXisjlvMtMwWvgk3qTxjbtaXNOXDl6X+vpfP/JVPbHyqDnfCpQUo5IKbiI8BsJoSKHSsF9bo8wKElXisuq+bt7OCg5hOCZdUc5MxhxnPdeD0i48UcqNRjSwlCLolfZ93O4xzvo56JQVN1vdz0iKfPVy36zwXNn4XF21bIRhV5dnfU7V4nTb9aT1t95f87O0zX0ANpPDtXAYbS6/M+USkrdz2FhuPfI1M2S5d3ZfxqNBr6z3+YIRTOxF7GPzZySj/t0MAAAAAAAAAAAAAAAAAAAAwPARRgMAAAAAjI1qXAlOL7gJ5Vwus3FY8ZakUMm4u3vpTi3Fix3d5o6jt5jzKsZjVYqmlHf54DzrhHygmfU+HJX4k8WKV5Xj5cTXvvV+wXA459qGOtuFyvqtXShrVMIUaR6XtNGvdsvK+jnolB1KXF7z/1bH94e6/0yw92/C4bN281eXl4/CYbS023Xr/krrw7hJn6UAjps3Akjpw2gW3+PtMWpi39BNC9cH583ld+qCLS/OeETo1Wx+R3D6vBFM7IX18xtp9PfFAAAAAAAAAAAAAAAAAAAAAAwfYTQAAAAAwNiwTqydjIqZjsM6iTcp3DHuvr14U8e3uWMxHEarxSuq+3pwXimaVt71FlDB5tXwDa34anDeqMSfLFYIqdxYahNGC79fMDztXmtp4179MmrjsaR5jxaNcFenyyqN+OdBu7hXuWHHRXsxFYUDkjW/olpsfw6ZQcqnllfocbtuLb8YlRS5tb/isOJuG3kfDeiUFUbbXkgXRnNywemeMNqG8y9Ld+hw/UBw3qWzV2UaJ0d/zBWMMFr9UN/XlRRWtbbXAAAAAAAAAAAAAAAAAAAAALCKMBoAAAAAYGxU43Jw+mTGgRMzYLRBoxuVuKzvHft2x7d7bOVh7a8+GFie/TgVcyUVoongvFq80vEYsLkkvbZKRvBnVFjBp0pcbhNGyw9qSOhSuzhVMZftNqtdTMyKcGUt5/KacJOJ10kbOCzlkt/vxTbzh80Kt61+xlmfdb0+l8WEz8lKQtyk3AjPWw2t9Ro87eT+tovKAZDma+HQ1Vw+XRhNRhgNG89N89cHp+ddXi/fdmXGo0E/WO/zhQGE0SrGz2+k0dn/BAAAAAAAAAB0g98VAQAAAAAAAACyQRgNAAAAADA2zDCaK2Y6Dusk3kpjY0Y3vrP4LdV8OEp21fY36OdO+hU546C324/esm5aUpykFE2boae6r6cYLTazxOhexgHFTtnBxaXE174VHMLwtAs9ZB3paxdqK7UJp2Up6bEruInUr/d273crPDYqrEBZ+an9DGs72i6C107SayFp2102ommr4+k1jGatO/Tatl7vSdsHYDOJfax5I4A0V9jV07J9T7fGqHlyZb/uXr4rOO+FW16umfxsxiNCP8zmdwSnz9cOyvv+vouTo9Wjs/8JAAAAAAAAAAAAAAAAAABGC8clA1hFGA0AAAAAMDYqRhgt6+CRtb6kaMg4u33x5uD0rblZvXrnNfrpuZ/R2aXzgte5Y/GWdSdYJ4fRpnoOqGDzKifECbOOUXXKDC7G5cTXPmG00dNum5T9Nis5PNFufpaSwlydPG7jdJ9DSrnwfV0NjFihkV4jI1MJn5PLjXD8TLLDaKvLs4KntZTbdSs8G3oerec2afsAbCbHGkfN/Yq5/M5UywjnkCUOQdhYbl74O3PeZXP7MhwJ+mm2EH6fr/iquT3vlvXzm0iRCm6ir+sCAAAAAAAAAGSJ3wkBAAAAAAAAALJBGA0AAAAAMDaqvhKcPhkVMx1HKRcOh1g5YW0NAAAgAElEQVQn/o6zxfoR3bN0V3DehTOXKHI5SdJFM5cEr3Og9pgerv54zTQrcCIdfy6t0FPNr6QZMjYxKxYkSUUjNDQqrKBRNS6rFtuv/ZwRHMLwtItuZR3paxcU6zWm1U9Jj10nj1u7+zRK9zkkKZQo2YHRXu/XZFSSM5JHSZ+vVnRs9X5Y8ZO0wdNO7q8V19uI+2hAN+brB815c0YwCZvPSlzVrUf+ITjv9Mln6qziczIeEfplLr/DnHe4Zn8+dMPadyhGU3LOTiwCAAAAAAAAAAAAAAAAAAAAgEQYDQAAAAAwRqyoRdZhNCsyU46XMh1HFu5avFWx4uC8F2/de+LfL5x5mZzxY4Y7Fm9Zc9kKnBSjkiKXSwio1NMMGZuY9doquAkzuDcqrOCil9dSvBicFymnyPHjvVHTLkTWbn6/tYtltQu5ZSlprJ08bu3uU9b7DZ2yHofV/QwrMNrrcxm5qKt9HGve1FOfa9bnb9owmhlWCUTQrMdgI+6jAd2YN8JHeZfXTG5bqmVYQSMv3/W4MFq+ffQm83Nz7+w+olZjbFt+u/m9fSEhnNgNO5w62sFqAAAAAAAAAAAAAAAAAAAAAKOBMyeBPgudEOI9JwQBGG9xvD6GwglwAIBhqMaV4PSsT6y1ohtWuG2c3b54c3D6zsLJOrP4rBOXZ/Kzes7UBcHr3nH0ljXfi6yT7Fcf17zLB+d7xWr4RqpxY3My4zljcPJ90hgX60eC0wsjHnvbrIq5NmG0QMxpkNrFstqF07KU9D7o5HFLuk+TrqjI5ToaV9ba7WdYEchSH15bpSgcaVxu2GExa97qsnoPo4X3r0LPs/Xcb8R9NKAbh+sHgtNn8zs6iK0aPxPk1yAbgvdeNy1cH5xXiqbXxLExfnIup235ueC8hfqhvq7L+m5mBaEBAACATnGMHoCNhuPzAAAAAAAAAAAAAGAtwmhAn0XR+rdVrZbuJD8AGFX1en3dtNDnHQAAg1Y1ohaTGUePrOhGNS4r9usPWB5Xh2sHdF/57uC8i2b2rjsQ+0Uzl4SXUz+gByo/PHG5XeDECqhI6SMq2JzKDePkeyP0M0qSxniscTQ4Pem9guEZtRBZu21k1qG2JEmPXSePW78Ca8Ni3ddyY1ne+4QIZB/CaEasxFpn0rzVZVnB07pf/7OGECsEF7q/1mNQTgi7AZvJfO1gcPpcflfGI8Gour/yAz1c/XFw3su2Xa6JaDLjEaHfZvM7gtPn6+HPh27Z2+/Rj1YDAABgPHCMHoCNhuPzAAAAAAAAAAAAAGAtfmMK9JlzThMTE2umHTt2bEijAYD+aP0cm5iY4C9SAgCGohpXgtOzDqNZ0Q0vb45xHN2xeIs576Ktl66b9oKZlypSru2yrDhJ8UQYbSI4X5JqfsWcB1jRvXE4+T5pjIuNI8HpVmwIw9UuTtWPeFUnClEhMaKXdagtSSkhWtbJ45a0nFG6vxbrvjZUV93X7BBZP8JoxjKWYzssZs1bDT5ar7+02/SKGb1cP1YzXusrin0j1fqAjcwKH80VdqZehvUTQS/fxYgwam6cv96ct3f2VRmOBIMyZ4XRaof6uh77u9no74sBAABgPHCMHoCNhuPzAADjg+0TAAAAAAAAACAbhNGAAZiZmVlz+ejRo/Kek4IAjCfvvY4ePbpmWuvnHAAAWbFOrJ2MipmOIym4YsVKxtG3j94UnP6MyTO1e3LPuunTuRn9xPQLgre5c/FWxT6WZD+PqzGTQmQHfOp+/V/KBlaVrThPwnt2VBTchHIKh86OGWG0HGG0kVRqE+IbRpgraZ2jFKdIGksngcPk5YzO/bUUc/Z9rcTLKhv7Gv24b9YyykacrBavqO5rwXlPb9fDwdN6HL7dunVb9zfw2R6atsra/wA2k/maEUbLpw+jWSe7EEYbf4v1Bd117OvBeedNvVAnTezOeEQYBCuEaIUTuzXIkCsAAACwimP0AGwUHJ8HAAAAAAAAAAAAAOsRRgMGoPWAhFqtpkcffZQDrwCMHe+9Hn30UdVqa09W3rp165BGBADY7KpxJTi9k1hKPySFRzZKdOOx6sN6pHp/cN6LZ/aat3vRzCXB6Qv1Q/px+R5JdrxqNWaST4g9pY2oYHOy3n/jEEJyzpkBt8X60eD0vLMjghiedq+3Ybwek9Y5SnGKpLGUounUy+lXYG1Yku5rOV5WpZEcGO3FVC687oqx7baiZc3Lsj6r0sZOOwmrJD0GG2UfDeiFFT7aXtiV8Ugwir5+5KvmZ/PeuX0ZjwaDMpvfEZy+UD/U1/VY2+9x2BcDAADA+OAYPQAbAcfnAQDGD/vbAAAAAAAAGCx+5QtglX2mMYCuFYtFFQqFNQcqLC4u6kc/+pG2bt2qLVu2KJ/PK4poEwIYPXEcq16v69ixYzp69Oi6g64KhYImJyeHNDoAwGZXNYIWk1Ex03EkRTes6Ne4uX3xZnPei7aG42eS9PwtP6m8ywdPqL9j8es6Z+p8M6Ky+rjm3YS5/JpfMecB1vtvlMJPSYpRScca6yNooWkSYbRRNdkm9mAF8AYpKUBRMkJYw9CvoFm/AmvDknRfy/Fy28BoL6zHZ9kMo9n7PcUoOXjaUF2xjxW55J+RWvsNoccp6TV0fKzEn7B5NXxdR+qHg/PmjFBSiJMz5nAEwjhr+IZuXvj74Lzt+V167vSLMh4RBmUuvzM4faF2SN57OWe9xztjhVzHIVoNAACA8cExegDGFcfnAQAAAAAAAAAAAEB7hNGAAXDOaffu3XrooYfW/AXKWq2mQ4cO6dCh/v7VdQDIyurnW79OjgIAoFPVuBKc3kkspR8KbkKRcorVWDevYsTbxon3XrcfvSk47+zST2hH4STztqXctM6bvlDfPXbbunl3Ln5dbzzpfzIfo9UTpAsJsae6r5nzgHavrVFnBYkWG0eC063YEIar1GabNIzXo7VOJ6cJNzon1iSG0TqIfiUvJ9t9hm4k7dccrS8oVhyc148IpPU5VG6E42Tlhh1Gm8ptkZQccaz7WuJrMPaxGcYNjTXpMbACLcBmsVA/LG/Ey7YXeo8GkkUbb/9y7HbN1w8G5+2d3afI5TIeEQZlthAOo1V9ReV46cT2u1dmEH0IkWAAAABsXByjB2Aj4vg8AAAAAAAAAAAAADiOsyeBAZmamtKePXvWHXgFAOPKOac9e/ZoaooTlwAAw2NFjyZdMdNxOOdUiqa0FC+um5cUCJGkI/XDeqjyY/lA1KQYlXRm8dmaiNpHahbqh/Vw5cc6eeIZ2lU4pesDo2Pf0CPV+7VQP3xi2nztoA7UHg9e/6KZS9su86KZS4NhtMXGEf3j/Jd0uPZk8HarMZPkgEq97fql43G3A7XH9PjKI6muv2prblanF89WLsWJ/ytxVQ9UfthRDC9SpD3Fc7Q1P9v2urV4RQ9U7lU5Tn5NtXrG5JmJ8bpuVeKyHij/UCu+2vdl98vBlSeC08fl5HsrhrTUWP9ZIyW/VzA87cJnwwiRWe+BYlRS5KKMR2NLeq+2C841S4qf9SMeNmiRy2nSFVX164Owdy/dad6uH9E96zmYrx8IbtsfqdwfvL5TdGL/rOAmzPXVfU0Tst8T1bhihpxCn5mFaEJ5lw/uL9yz/M/Bfbc0ci6vM4rnaEtua1e3B0bBfC0cvZKkuXw4lNRPDd/Qw5Uf6WhjoaPb7Z44QzsnTu77eLz3emzlIR2shfcfTyrs1skTz9g0J6DeuPDl4PS8K+jibVdkPBoM0lx+hznv20dv0pwRTuvUkaafMTQbl2g1AAAAxgfH6AHYSDg+DwAAAAAAAAAAAACeRhgNGKDVA6/279+vWq027OEAQNcKhYJ2797NQVcAgKGq+5oaCkexJjuIpfRLMVcKxjWsSFbDN3TdEx/TN478Q+JyC25Cbz71N/SCmZfay3n8Y/rG0aeX85ypC/Srz3i3GVWyPLHyqD76yHt1yAiVtYoU6cKZi9te77lbLlLBTajmV9bN++KBT5m3K+WmJUl5Z/+4IrTMVuXGkj7+6Pt1b/n7ba8bsi03p7efdq1OK55pXueuxVv1qcf+c6rxhFw6+yr9/En/sxkk+v6xO/TJ/R8KRnHSeP6Wl+gtp75ThciO0XTim0f+UZ95/GPme3DUjcvJ96vvgVahkKIk5SPCaKOo3ettGIEVa/swau+NpPEUo/D7IyQpfjZq99lSzE2pWl+/DbDCNVJ/om8l43E+WHtCH3/0/R0sZ+rEa72X4GklXrbXYXxmFqMpHWscXTf9y4c+m7iuNF61/ef06p3XbJpQEjaW+fqB4PRiVDLfTyFO1uvfPvn8kcr9+ugjv6+jjfnU62l2/vSF+pXdv6XJqD9B7CP1w/qTh9+r/SsPJl5vz+TZ+vXTrtWW/MaOIj6x8qj+dfk7wXkvmrlkw9//zWZbfk5OUfA7xmef/LOBr7/Tn1sAAAAAaXCMHoCNgOPzAAAjhegwAAAAAAAAAGAEhM++BdA3U1NTOvvss3XWWWdpx44dmpjoz0npADBoExMT2rFjh8466yydffbZHHQFABg6KzgmqW8nyHfCio9YAY+bFq5vG0WTjoe/Prn/j3SkftheztG1y/nB8vf0hSc/1XbZrf6vR/8odRRNks6dfoFm8rNtr1eMSrpgy0Udj2f1BOnI5RQpF7xO3bc/oeULBz7VdRRNko405vXxR98nbxzkd7h2QP9t/4e7jqJJ0s0Lf6dbj3wtOG+5cUyf2P+BrqNokvSdY9/S9Yc+1/Xtmz1efUR/9fh/GdsomtSfWFAWOo0EJMWGMDzF3OjFHqwY2Ki9N5LGU+rg/ZFzeRVc+Gdwo3afLd2Msx/Rt349Ps2RpaTgabvtejkhjGZ9Zg7yOf67w5/Td459a2DLBwZpvnYoOH0uv6uj5XQaBox9rP/66Pu6jqJJ0veX7tSXDl7X9e1b/eVjH2kbRZOkh6o/0n9/4qN9W++oumnhenPeZbP7MhwJspBzeW1N8b1+UMYlUgsAAIDxwzF6AMYRx+cBAMYTf0QKAAAAAAAAAJAN+4wkAH3jnFOxWFSxWNRJJ50k773iODZPsgeAYXLOKYqijk9yBABg0KqxHYnqNCbUD9bJvFbA47sdRDRixfqXY3fo5bNXrptnxTi+e+xbukZvS72OAyuPpYoBNLto5tLU133RzCW6c/HWjpZfip6OqBRcQVXfWHedNGG0fgRLDtcP6JHq/Tq9+Mx18+5Z+mfFWj+2Tn332G26ZPaV66Z/f+lO1X3vEbLvHPuWXrPrTT0v57vHbut5GcM2LiffN78H0kiKDWF4krZJw4pyWe+BUXtvJD12nY61FE2p1lgfsBy1+2zpdJxOri+h2OagWU/LaRp/UsSx3XbdCs5Kw3tdf/fYbXrBzEsHug5gEA7XDwSnzxV29mX51u87Hqn+WPP1gz0v/zvHvqk3nvSWnpdTicv64fK/pL7+vy59Rw1fV26D7ndV44q+eeQfg/P2FM/RmaVnZzwiZGEuv8OMsQ/auERqAQAAMJ44Rg/AuOD4PAAAAAAAAAAAAABob2MexQ+MOOeccrncsIcBAAAAjJWkMNrkCIXRrIDHfO1QR8u34gE/XP5ecPrRxoLqvpYYH0mzfEvBTej5W16S+vrnT79IxaikSlxOfZvTJs868e+8K6jq1z/n7QIqtbimY42jqdeZZKF+SKdrfRjtaGOhT8sPPwcL9c5eK50uv/Pl9Gc8w9T82hplnY5zXO7XZpN3BZ06cboeW3l43bzndfA52k/Wa+W04mi9hmbz27Ult03HGkfWTC+4CZ00sbujZZ02eZbuXr5r/fQRu8+W0ybP0gOVH3Z0/chFPa/3GZNnysnJq7eTRVu36ZaaXx+vWzM/tudPuElz3Q9Xf9xmhN3bCNtFbE7ztfC+4fZ8f8Jo9nr7856Zrx2S977nk0WXGosdRY5XfFXVuKKp3Jae1juqvn30RjPufdnsvoxHg6zsKZ6jByr3Zr5eJ6fdk2dkvl4AAABsXhyjBwAAAAwC4WEAAAAAAAAMFn/7CsCq3s+UAgAAAAAgA9WEwFZxCGG0khFGKzfCJ5V3Egg7fv3wcpJY6w5ZahzraNlXbn+dSrnwfQ6ZiCZ11fY3pr7+edMXaufEyScu56NwRKUWJ4fRKvFS6nW2YwUC+nWAn7X8Tp7HJJW4rNjHfVhOf8YzLM+ZukCnTJ427GGk8vwtL9G2/PZU1y1GU7po5tIBjwjd2hsIieSU18u3XTGE0UjP3fIi7SictGZawU3oZdsuH8p4LJHL6dLZq9ZNv3jbFZqIwhEsy6Wzr5LT2njOmcVna8/k2T2NMSsXb7s8dexUCr/murEtP6cXbHlZT8vIu7xevu3KE5cL0YR53bqvJy7LCqLmXd6MI108e6XybnB/E2bct4vYvKww8lyhszBa62drO/16z8RqaMVXe15Ou9BySK+xyFHlvdeNC9cH501HM3rRzCUZjwhZuWTbK1Vw9vZ5UF44c7G25mczXy8AAAAAAAAAAAAAAAAAAACA8TO4s4MAAAAAAOijalwJTneKhnJCb9GIhJWNMJc13dJNHKscL2lG21Jdd9kIozk5TUbFE5fn8rv00m0/rcvnXtPxeK7c/joVXEG3HvkHHa4/GbzOTG6bzp++SK/d9YtrplsxmHYhg3JCgG7SFYMRlWpcCcYOKsZz4I0/O+EUaTIQ7mn4hmp+Zf1YjeVbr5VIUTAMFPs4GInw8qrGlY6CduHxhMeZU14FI2A3Crbktur86Rfptbv+3bCHktqW/Fa98/T364sH/ko/Kt8dfF5zLq9nFs/V1Tt/fmyCb5vRZXNXK+dyuvXIP+jJlf3aUzxbV25/nc6ZOn8o4ylGJf3G6e/XFw/8pX5c/ledMnm6XrX9DTqjeM5QxpPkZ3b8gopRSbcfvVl1X9eFMxdr346f63g5z595iX5l9/+qG+b/P83XD+o5U8/T63e92YxpjZozS8/Wr592rb5y6PN6oHKvYjWC1zt1Yo8umX1lXyN3b979v2jHgZP03WO36WhjPvXtnCKdUTxHr9z+ep099RMnpidFyuptgqc1M4xm7/udXTpXb3/G7+nvD39eD1buk1d3kdC6rwf3O+xwKjDa5mtGGC3fWRjNYsXDrPdM6/eOE8vxXlUf/u5XjpeDt+lEu9ByyEYNo/2ofI8erT4QnPeybZd3HCXF+DiteJb+w2nv1fWH/ocerNynhpJDpb3alt+uC6ZfrNfsetNA1wMAAAAAAAAAAAAAAAAAAABg4yCMBgAAAAAYCxUjeDUZhWNXg1aKwrGp0Dgbvh4MY0nSKROn6fGVRwLLWR8QaBcFW26kj68tx+Ew2jMmz9S7z/w/Uy8nSeQivWL7a/SK7Z1H1boNo4Uet1XvO/uTmsptWTf9Dx/8TT1UuW/ddCviYIURzi6dq9/Y8/510+9euksffeS9wbF679e9fq3X+kVb9+qXT/2P66Y/sfKo3nv/24O3qcTLPYfRrMf0iu0/q59tCdqhdzsnTtFbn/Fbwx4G+uCS2at0yexVwx7GCXOFnXrL7ncOexhtOed05fbX6crtr+t5WS+cuVgvnLm4D6MajmdPPVfPnnpu5uvNu4Jef9Iv6/Un/XJflpdL+DVEu+163YdDLdZ+wqrnTD9Pz5l+XvvBJfjWkX/SXz7+kXXTrXAqMMqqcUVL8WJw3lxhV4dLC3/3svaRrX3JM4rn6LfO+NC66Qv1w3r3j94SvE25saTZ/PaU4wxr97kTYoWRx91NC9cHpzs57Z19VcajQdbOnvoJ/frUtcMeBgAAAAAAAAAAAAAAAAAAAAAERcMeAAAAAAAAaVQTwmjDUDTCaKGYlhXYkqS5/M7Uy6k0wo/B07dJH0ZbaoTDaNOBcNgwFLoMoyU91sWoFJxuRe46DaNZkQhr+bFirfhqYL3h59FajvVaPL6s3uMtZSMAU4qme142AGDjc851HTytG2HZvBv833wp5cLbuX5sW4GszdcOmvOs7yOWTpPUVvTX2oe19nmlzr7vWLoJo8nc/x9fR+rzumvxG8F5501fqJ0Tp2Q8IgAAAAAAAAAAMDo23u9GAAAAAAAAAADjZ/BnDwEAAAAA0AfWCfWTbjhhNDOm1Vh/sn5S0GyukD6M1i4EsGzEzsLXXQxOn4pGI4xmBVRqbUIGFSPiNemKilwuOM+KMlQ6DJ84IxPRLlzWGvfrNESWHI/oPd5ixyzCoTkAAFoVXCEYI2q3XbcCRlZAtZ+s7dyKr6rhG8oZ+xXAKJqvJ4XRdgx03fa+bXgfdsJNKlJOsRqBZQ0njLYRT/259chX1VA9OO+y2X0ZjwYAAAAYDOfcnKTzJT1L0nZJRUkLkg5IusN7/6MhDq8nzrmCpJdL2iPpVEnHJO2XdJf3/oEhDg0AAADAhtfpn9EBAAAAAAAAAKA7hNEAAAAAAGOhGleC04cVZ7JjWusjUkmBrbl8OIwWuo0VqFrVLpzWbDkOR9SmcqMdRmsXMrBCYMWcHQ+zI3fhZXnFwenOhQ/8SwyXNZY0m9++Zpr1erFe6wU3YcYjOo27BcdovK5KCY8pAADNut2uW+E0a3n9lBQ2rcblkdlnAtKwwmgzuW0qRBMdLcuKAXsjH2bv24bfY845lXJTWgqEnPsR/W0XZAyx7tu4aviGbl74++C8nYWTdd70hRmPCAAAAJuNc+6Zkl4s6aKn/n+hpJmmqzzovT+zi+UWJL1C0qsl/ZSOR9GSrr9f0n+T9DHv/eMdrus9kq7tdIxN/tJ7/8ud3sg5t0vSeyX9vI7H3kLXuVXSH3vvP9/D+AAAAAAAAAAAAAAAAIChIowGAAAAABgLVR+Ogk1GxYxHcpwVhQpFpJJO4J8rhMNooShXu/DZciN9GG2pEQ6jTedmgtOzVugyoNJpeCFpnrUsb3QRrL+HmhRl6ySkV8pNh9ebFI8w4m6dsIJ8SY8pAADNug2j1X29o+X1U2LYNF4ijIaxcrh2IDjdijQnMmLAFuu7UFJkdyqaDu7bLncQgra0+9wJ2WhhtO8eu00L9UPBeZfO7lPkooxHBAAAgM3AOfdTkt6l4zG0YNCrx+W/RNL1kuY6uNluSf9J0r93zv177/1/7/e4+sk5t0/SpySd1OaqF0u62Dn3GUm/6r3v/csUAAAAAAAAAAAAAAAAkDHCaAAAAACAsVCNK8Hpk1Ep45EcV4rCkaqaX1HD15VzT3/ltkJXBTehLbmtwXmh21iBqlXtwmnNlo0w2lQ0GpGPbgMqZnghIW5iR+6MMJoRRnAKBwQmXVFOkbziwDrSh/QS70MUDqNVeoxH1H1NNb8SnEcYDQCQVvdhtPA2KIswWtJ2rtwoS4MfAtA38/WDwelzhV19XEt4H7mv4eI+RH+tz5VEVhl5TN208OXg9IKb0Mu2vSLj0QAAAGATeYGkVw5w+bsUjqKtSPqepMclHZG0Q8fjbDuarjMr6dPOuZO89388wDF27amw3F9Lmmia7CXdKenHOn4fXiipuYD9JklbnXOv9d6v/wUFAAAAAHRlY/3eBAAAAAAAAKOHn0ABWEUYDQAAAAAwFqwoWHFIYbSk9Zbj5TXBMysGUIqmzOWs+Oq6wFq5kRy5Wu4kjBYbYbTcaIfRam0CKnZ4wX6+rOCYtSwrjGZxzqkYlYIRtNZ1eO9VNoIPSffBikeU28T02qk07NsnhdoAAGjW7XbdCqcNO4zWa3gUyNp8zQij5XcGpydxcsHpVjusm/3zqVw4Qt3J9x1L3dc7vk2n+/+j7LHqw/rB8veC8140c4kZ7gYAAAAGqCrpEUln93GZxyT9D0nXSbrVe7/mB93OOSfptZL+s6Q9TbM+7Jz7nvf+q12s8xckfbPDMabinDtN0he0Nor2dUlv9d7f03S9SUm/Kun/0NNJ91dL+t8lvbuDsQEAAAAAAAAAAAAAAABDRxgNAAAAADAWqnElOH0yKmY8kuNKUfhkfUmqNNaG0ezQ1VTicloDa2UjKvD0etKHApYaox1GK0Th4Ek9Tg6oWI910uNsR8WsxzscRrAiEcfXPxUMo7WOt+5raigca0i6D3bcrbd4hBWykJKDMQAANCsYITMrfLaqZmz3reX1UyEqKO8KwTH2Gh4FsjZfN8Johc7DaJ2y3i/J++fheaH96U5ZQcZIkWLFwXkbKYx208L15rzL5q7OcCQAAADYpGqSvi/pdknffur/35P0ckn/1IflPynpjyR93HtvfoHw3ntJX3TO3STpZkk/0TT7vzjnznvqOp143Hv/QKcDTum9kuaaLt8q6Qrv/ZpfnHnvqzo+/ockfbFp1m845z7hvX9wQOMDAAAAAAAAAAAAAAAA+i4a9gAAAAAAAEijYpxQPxmVMh7JcaWcHYVqDWpZYy9GJRUTxl9prL1dUqRKkpZThgIavmEuazoajTBavsuAinW/ijn7cbajYuFlxT4cTHDO/jFLKReOO7SuIyl+l/Sas5ZvheLS6nY8AAA063a7XvfhWGjeCKj2mxUBbbdPBowS773ma+Ew2vZ8/8JoVjysYkai7f3zKSuM1kEI2mJ97hTchHmbjRJGq8RlfetouDVxZvFZOqN4TsYjAgAAwCbzl5K2eu9f6L1/q/f+z7z3d3rf5ocD6X1L0jO99x9OiqI1894fkvQL0ppK8rmSLurTmHrmnHuWpF9qmrQi6Zdbo2jNvPd/reOP96pJSdcOZoQAAAAANqSOW9EAAAAAAAAAAPQfYTQAAAAAwFioxuFzPJJOqB+kpPW2xqTKRrCslJtSyTjpP3S7pEiVlD4UkHS9qdx4h9GsxyjpcS4aga9yY1m+gwP9XMI86/WS9rVyfBl2iMxafq/hlqTX3LDeewCA8WOFzNqH0cLzrf2EfrPiqe32yYBRshQvasVXg/PmCp2H0Zy517t+v9l7b75frH1wyQ7w9uO9V4+NMFpkh9FC920c3XbkBjPavXf26oxHAwAAgM3Gez+fFPPqw/IPpA2itdzuO5JuadWc6psAACAASURBVJn80/0ZVV9cIynXdPkL3vt7U9zugy2X/41zrti/YQEAAADYvJKOkAIAAAAAAAAAoH8IowEAAAAAxkLVOIF7MhrOeRw5l9eEmwzOa41RWSefF6MpFXPpA2uVRng5q5YTolrNluJFc96oh9FqbQIqVggsKeJlRU9iNVTzK+umezOMYB/4Z4XZ0r5Wji8jIR5hLL/XeIT1eBbchHIu39OyAQCbh7ldNwJFq+qB7XDS8vrNDI82CKNhfMzXDprztud3dbw8O4y2Xs2vKFYjOK+rfduUIegk3QQXO2gljyzvvW5auD44b0tuq1408/KMRwQAAACMlLtaLu8eyijCXtdy+S/S3Mh7f4+kbzVNmpb0yn4NCgAAAAAAAAAAAAAAABg0zmAFAAAAAHTsrx77iA7UHs90nY+vPBKcPpkQvBq0UjSllUZ13fRySyzDilMVoynlXUEFNxEMcLVGqcptwmdpQwHLCdebzs2kWsagFYwwgRUyWNX62K9KCi8UE+aV42VNRGsDeFYYLSkSYa1/3WvFeG6cXOJr3boPvYbR7MczHKsAACAkb8Q0223X674enG7tJ/RbKWeFTZNjtcAoma+Hw2iRctqan+3bekJ7yEn7okn74Oa+c4/7tpIdWrai18eNfxntvvLd2r/yUHDexduuUCGayHhEAAAAwEhp/QHESOwgO+dOkfT8pkl1SV/vYBE3SHpJ0+V9kv6295EBAAAAAAAAAAAAAAAAg0cYDQAAAADQsUeq9+uR6gPDHoYkadIVh7buYm5KRxrz66a3Bs1aL69aPeG/FE2p1lgfRmuNUrWLcLQLp61abiwGp0fKDfXxbJbvMoxmPdbdhBdWl7dNcy1TOw+j2eGypZbL4fFPRiVFLjKXb92HihE2S8t+PIcXJAQAjJ+CC59P3G67bgWMrP2EfrO2d2n3uYBRMF8Lh9Fm89sVuVwf17R+H9nal5SS9yetKGE/3nvW505SGCzeAGG0Gxe+HJzu5HTp7FUZjwYAAAAYOee0XH5sKKNY77ktl7/rve/ki9GtLZfP73E8AAAAAKCN8AdlAAAAAAAAAADjwT6jFgAAAACAMTDMQJMVo1oXuzLiVKuxLCua1RoSaBcCqPkV1eL1gbVWy/Gx4PSp3BY5Z8e9stR9GC0cjyvl7PhZUjQt9Nx5K4yW8NhZ628db7chsqKxfCu0lpZ1eytWAQBASLfbdWt+dmG0dNtvYJTN18NhtLnCzq6WlxQDbpX0XilF9v6kNa/cGGAYLfFzZbxP8DlSP6x/XvxmcN5zpy/SjsLJGY8IAAAAGB3Oua2SrmyZfFsXi/pV59zXnHOPOucqzrlF59wDzrkbnXPvc85d2sUyz2u5fF+Ht/9Rm+UBAAAAAAAAAAAAADBy/HgfugugjwijAQAAAADG2nRuZmjrThvLsGJXq7GstFGrNBGO5TbxNElaaoTDaNO5LW1vmxUrTFBLCKh47xPCYnb8bDIqmoGH0PK88dPVpEiEtf7W59gMkSWEI47PH0wYzXrNDTNICAAYP3mXD06v+3ri7YYdRksbwQVG2eHageD0uXx3YTRLKB6cFDKbjIrmPCvCW/UVNXyj88E1sT9XJszbWGHkcXHLwlcUK/y4XTZ3dcajAQAAAEbOr0pq/gHAEUn/1MVy/q2kyyXtljQpaYukMyTtlfRuSTc5577tnLuig2We03L5oQ7H9GDL5R3OubkOlwEAAAAAAAAAAAAAAAAMBWE0AAAAAMDYKkVTOqv07KGuP6TcaA2aJce6rOW03i4pLNDJdZaNMNpUNDphNCt4YoUMJGnFVxUrDs6zHmNJilxkhr5CYTE7jGCH0ezXytrnq9Kwwmj2+KWkSF9vYTQr/NJuPAAANLO260nBU8ne7lsB1X5LG8EFRtl8/WBw+vbCru4W6Ox93lZJkd3I2b+iTNrX7HX/1vrcmUgIo42zhq/rloW/D87bVThV5049P+MRAQAAAKPDOXempP/UMvkj3vuVAa3yIklfcc69z7lUX65mWy4/2cnKvPfHJFVaJm/rZBkAAAAAAAAAAAAAAADAsOSHPQAAAAAAALqRd3n9u1PeoZwb3lfbYs6IXbXEpMoJQQApIZoVtwbW2kc4rJBVs+XYCKPlRiiMFnUeRgtFzFZZYZPm+aHbdxJeSDqLKW1YxboP1mttlfUaqvuaanFNBePxbKfSsF67hNEAAOkVjOBQvc15xlbAyAqt9ZsZrzVCpsAomq+Fw2hz+Z1dLS99Fq19INoyFU2b88qNZU3nZjoYxVpmcDGyw2ixD8eXx8F3jn1LRxrzwXl7Z1+VGKgDAAAANjLn3ISkz0pq/oLxgKQ/6nBRj0r6sqTbJN0j6bCkWNIOSRdK+hlJVzWvWtK7dfwP2r6rzbJbf2nTTam9LKnYdLn7L1RNnHMnSeq0uH12P9YNAAAAIAvWH40EAAAAAAAAACA7hNEAAAAAAB3bO3u1FhsLQ1v/1tyczp1+vnYUThraGKSEWEZL7KpixMpWb29Gs5qiG977VJGu5RRhtKVGOIw2PUJhtIIRPKnFdhgtKVJiPVfN80O5gFCoLFY4jOBkRwVKKSN61nPcdvwJ4bRKvKRCNJt4e/u23cUsAABoZoXMkoKnklQ3tvv5jMK4dgSXMBrGQ+wbWqgfCs6bK3QXRkvivZdzT6fTrPdKu33bpChwmhB0EjOMZgQcx92N818OTi+4Cb1s2+UZjwYAAAAYKZ+U9JNNlxuSfsl7n/ZLx206Hjz7qvfeKgbcKumjzrmLJF0n6VlN837HOfdN7/3fJKyj9Zc2lZRja1aWNJewzG79mqRr+7QsAAAAAGOlkz+jAwAAAAAAAABA9wijAQAAAAA6dsnsK4c9hJFgxaGaT9avxTXVfT3x9nY06+mQwIqvmkGuNbdptD9nZ9kIo01FoxNG6yagkhQpSYorSOnidCcYpzi5hOP+rOXX/Ioavq7cU4EXK/TQNh6RML8clzWj7sJoZsyizeMJAEAzK2Rm7SM9Pd8Io0XZBIxKUSk4PU2sFhgFR+sL5neIuXy3YTR7p9fLyzXN7zayW4qmzXk9h9HM4GL4+4d0/H6No/3VB3Vv+fvBeS/euldTIxTGBgAAALLknPsDSb/YMvld3vub0i7Dex+uEIeve7tz7qWSviHp2U2z/tA59/967xtpF5V2nT3eBgAAAAAAAAAAAAAAABi6aNgDAAAAAABgXFkn7FfictO/7XDGalzKXs7Tt02KfjVbThEKWI6NMNoInRjfTRjNeqydIk26YuL67Djd+sfTDiPYkYiksFnzc1tplIPXaR+PsOdXeohHdBuzAACgmbVdryVs1yV7u19ICBj1U9HYR0u7XwYM2+H6AXPeXKG7MJpL2OdtVQ5FhtU++ptzOXP/fTlFCDqJ9blTSAwujmdH4MaF6815l81eneFIAAAAgNHhnPuPkn63ZfIfe+8/NMj1eu8PS/oFrf2Cca6kn064Wesvc8IF92Sttwn/gggAAAAAUhvP35sAAAAAAAAAAMZPftgDAAAAAABgXBWj8Dko5aaT9ZPCGatxKXM5a4JZ6QIc5RShgKXGYnD6dG4m1TqyUHDhMEFSQMV6rItRSc4lBxys0Fdz5G6VVxy8bpTQn7fid9Lx53ZLbqsk+z5Y4bZV1mtIsoMUaZjjIYwGAOhAPjKCp/FK4u2sMFreZfOrjZKxfa37mmpxTQXjfgGjYr52MDh9wk1qOhrEvv/aE2HMyG6u/bn8pdy0qvXKuulJ4ek0rM+VCeP7hyTFfvxO8Ck3lnXbkRuC884qPkenF5+Z7YAAAACAEeCce6ukP26Z/F+99+/MYv3e+zudc1+RdFXT5FdJ+ppxk1EOo31M0uc6vM3Zkv6mT+sHAAAAAAAAAAAAAGxQ43fkLoBBIYwGAAAAAECXSrlw7GpN0CzhxP3VuJQVzWq+bVJgrdly3P6clmUjnjaVEO/KmhU88YrV8A3lXG7dPOuxThPxsq5TjtuH5tJIij+U1zzP4fVZ4bZVkctp0hVV9evjEWlfOyFmzIIwGgCgA1bwtO7ribezgqh5l02QrJiwb1SNy4TRMPLm6+Ew2lxhZ9twsCXpVq0HIYQiw1K6fclSNKUFHVo3fbnH/XM7uGiH0cbx8Irbjt4Q/G4gSZfNXZ3xaAAAAIDhc879oqSPa+3Xmr+Q9PaMh/J3WhtGe17CdY+0XN7VyYqcc1u0Poy20MkyLN77JyU92eF4+rFqAAAAAAAAAAAAAAAAbBLRsAcAAAAAAMC4smJalbgs74+fPJ8UpSpGpTX/b1VupAusrb1NcijAe6/leDE4byo3k2odWUgKnlgxg+bHq1ma8IJ1nUpjfczBG2EEl5CJSIqzrQ3pheMRqeJuRqgv7WunlffefExLOcJoAID0rOCptU1vNz85YNQ/pcSwaX/iqcAgHa4ZYbT8zh6Wmv5Eduu7UJp9W3v/vPvor2R/rkxE9ueKtf8/qrz3unHhy8F5W3Lb9MItF2c8IgAAAGC4nHP/VscjaM3HSn5G0q/41V/mZOeBlstJsbN7Wy6f0eG6Wq9/2Hs/3+EyAAAAAAAAAAAAAAAAgKEgjAYAAAAAQJesk/W9YlV9RZJ94v6kKypyOUnJQas0gbVmy20iHSu+qrqvB+dN5bakWkcWksJoNb8SnG4FwNJEvKzrhB536zwp5+xIRM7lNeEmg/Oax22F7dLE3azARNrXTquaX1GsRtfjAQBglbVdTwqjee/NfZZCwn5CPyVt76yYKTBK5utGGK3QSxgtydr9ZGv/PM2+5JTxHand9512hh1czMIPy/+ix1ceCc57+bYrVYiy+QwFAAAARoFz7g2SPi0p1zT5c5J+yXsfD2FIrT9QsKvs0j0tl8/pcF3PbLl8d4e3B/D/s3enQZLmeWHff08eVZnV09NdPd27y+4Ci/CCYLmWXViWXWbAwMKsjThEIAksDEISWEjIlsIhh7EtobAjbEfIIfmVFLZD4AhZEZKFpAhpZ8ESYvYAZC4BkjiNkGDFMbNTPdPdldWdx+MX1dmdnf38nnzyrOruzydiYjqfO68n/1lV+U0AgCfWo/WlMQAAAAAAPJ6E0QAAAGBFWYgq4n4QLY8B3P+sS7adSUziTnk7IvJg1rxFyx2Pb6bzLrTOTxit28rDBFkkJQuANQkvZMtU3X9l+sd/eRitbh/T+2xSju8F9eZl8bwm288eg4vUBV/6rbrPagHAg7Iw2rAmjDaJcZRR/fnkTtHZyHEtUjeGGKwZZ4JdSMNondXDaEXNmHd+nDxIItF176PuL1M9/l33uZedd/ZqwmjZuei8+tDRByqnF9GKL7n8VTs+GgAAODtFUfyBiPjbETH7g4R/EBHfXJZl9beCbN/8G7LqN26n/uXc5c8pimKZby15z4LtAQAArKD+76MAAAAAAGBThNEAAABgRf12XSzj+IH/z+vNhK7qoxvTwFoeqXpw+fpQwK26MFr7/ITR6oIno0l1zCALgDULLyTRssptVofR6iIREfnjpcl93CREll6HJEixSN1jqUlsDgCmukkYbVQTRquLpmWhtU1rF+3YK/Yr5zUdm8FZOhq+VDn9Svfa6hstmn/YJY1E17yPmkrDaA2D0ZnsvFN3XsmyyOfR0fDl+Lmb/7xy3mc/9c717nsAAHiEFEXx/oj4uxExO9j/xxHxh8oy+faV3XjX3OV/ny1YluVvR8TPz0zqRMR7l9jXl85dfmGJdQEAAAAAAAAA4EwJowEAAMCK6uJQJ/diV1msqz/z75ow2t0P/i8Knk0dLwgFHE/yMNrBuQqj5WGCYXmncnoaXmgQFcvuy6ptTlYNoy3YRxbROz2+6jDEA8uk4bXV4hH1oTZhNACay17XR+UwyrL6dbUumrarMFpEPkZYNTwKuzKc3Ikb41cr5x12rm5ln/NP5zQS3SRcvCAqvKrs3LLX2kvXyc5T59FHXv3hmMSkct5zl9+/46MBAICzURTFV0bE34uI2YH+D0fEHyzL5BcMO1AURS8ivmFu8o8uWO3vz13+9ob7+v3xYITtVpzeBgAAAGt6dH5vAgAAAADAo00YDQAAAFa0V+xHK3lrPbgXRquOS83GALKg1ez6dZGqWccLIljH4+ow2n7Ri3bRabSPXegWeZggixlkgZJG4YU0WjaISTmem7paGC0Nq0zDaDWBlSYhsrrrsIpBTWRvv0FsDgCmspBZGWVMYv519tSoHKXb69YEjDYtizNlQVY4L45GH0/nrRNGqx/x3h8nl2WZjkObjW2rw8B1Y9QmsvcSnZr3H4/KB3xG5TA+er26c/C67hvj0w8+Z8dHBAAAu1cUxXMR8Q8jojcz+Uci4uvKsrx9Nkd1z1+IiDfNXB5HxD9esM7furvc1DcURfHWhvua9XfKsjxpsB4AAAAAAAAAAJwLwmgAAACwoqIo0g/snyyIXc3GAPaLXhRpYO3WA/9fZDC+FWWZf3D/1vhG5fSD9lONtr8rWUAlIg+lpOGFmvBck2Xmt5vevPWViDQAMX2MnNTcx03ibovCa8vKo379aBV+pARAc3Wv68MkUjSa3KnZ3u5irpt+fYVdORq9nM477K4TRlsw6L3rdnkSZUwq560TLl7nuTcpJ+l7ib2aMFr5iITR/sWNn4jXxtcr5z17+LwxPAAAj72iKN4dEf8oIma/2eNDEfE1ZVmu9g0i1fv5o0VRvH7Jdf5ERPzFucnfX5blv61bryzLX42IH5iZtBcR318URS9ZJYqi+NqI+LaZSXci4vuWOV4AAAAAAAAAOCs1H40EnjC7+/QQAAAAPIZ67X7cmjwcG7sfu6r+4P5sDKAoiui1+pXxs+n6J+Nmn9kZxyiG5Z3YK/Yr5x8n8a0L5y6Mlv/IYpQEVLJ43DpRsYjTQNhsOC4LPLQW9Od7SXztXkQvCZF1im50W3lQZioPrzWL6j203hq3JwDMqg+eDuPBzyufyoJpi7a3adnrazbGg/PiaFgdRrvQuhj7rfTz82uZDYhlkd2I09DuIv12dYC6aTC6yjiJokVEdFqPfhjtQ9dfqJy+V+zHFz39ZTs+GgAAeFhRFG+O6r9XfMPc5U5RFG9JNnOzLMuH3vAURfH2iHghImZ/2fHLEfHdEfG6omgWeb7rpCzL36mZ/x0R8TeKovi7EfF3IuJHy7KsfLNSFMU7I+K/joivn5v1sYj4bxoez1+8u/7h3ctfHBH/pCiKP16W5S/N7Gs/Iv5kRPyVufX/yqIAGwAAAAAAAAAAnDfCaAAAALCGNEZ19wP7gySa0Z+LZPVbB5Uf8p8G1pYJABxPbsVeKwmjjR+OuEVEHLQvNt7+LrSKdrSiHZMYPzRvWN6pXCeLL2T3UdNlTm/7awu3sXgfWdxhGtGrvo+bHH9EXXitWVSv6XpNjwcApuoCn6PJMKJdMf2chNGygFM2xoPz4mj0UuX0w+7VNbfcLCZwMs6fI1n07IFl0ujvcZRlGUtGDSKi/ryyV9SF0c6/j93+jfi1wb+unPeFTz/3QOgZAADO0Eci4pMbLPemiPg3ybwfiIhvq5j+tRFxaW7ap0fELzQ9uBkvRsSXLlimHxHfeve/SVEUvxoRvxERr0bEOCKeiYjPjYjXV6z7SkR89YL42j1lWf5WURTfEBE/FBHTNy/viYh/XRTFT0fEr8fpdf/8ePiXGf8oIv7bJvsBAAC4p3wUfjsCAAAAAMDjThgNAAAA1tBLPrA/jUqdJNGM+fXy7UyjWc3jVoPxrbjcuVI579b4ZuX0gyTadZa6RTdulw+H0bKgwWBcHRbLbtumy5yMH7ztyySNUERrwT6qwyrT+3iQxCOyoNrDy9VH+pbV9LELAIvUhcyy1/VROUrX6dYEjDYtHaONVwuPwq4cDV+unH7YWS+M1jRHVhcPzMbFs/pJyGscoxiWd2KvqA5B11k5uPgIfPjnxaMX0nnPXn7/Do8EAACeSK04jbB9eoNl/2lEfFtZlr+1zA7KsvzRoii+PiK+P+7Hz4qIeOfd/6r87Yj4E2VZ8YsWAACAlS3/5TUAAAAAALCK+k/sAgAAALWyWMY0RpXHpR6MAfTb2XaOH/h/E8c1IazjSXUY7UL7YuPt70oWJ6gKpUzKcdwuTyqXz4Jhs7qtvegU1f34+bBYGZPK5YoFf/iXBc6mQbQsftckHFG3/ewxuEgeahNGA2A5dcGhYRpGqwsY7e47X/Ix2mrhUdiVV0ZJGK27XhitzmxAOBuDFtGK/aK3cFt1Y85Vn3/Z+SYiYq+Vh9ay8f95MRjfip987cXKeZ/a/4x4c+8tuz0gAAB4/P21iPi/IuLfNlz+VkT8/Yj4irIsv2LZKNpUWZYfiIjPioi/HhFHNYv+RER8Y1mW31yWpR9gAAAAAAAAAADwSNrdp4cAAADgMZTGqMankassaDa/3qKo1TJxq+Nxdfysbt5B+6nG29+VTqsbVQ2C4eTOQ9OyqFhEHjSZ12sdxM3xawu3XZYPLXJqwReiZsdxci9+V/35pObHXx1QO5kMYlJOolUs18dPo37tZqE2AJjq1oTRsgDasHz49T4iohWtaBXtjRxXE1kEt27sAefB0bA6jHalc23NLeeD3iZhtF6rH0WxYOAcEQfJ+6OIiOPxrbjUubJwG/Pqg4v5eSob/p8XP/HaP0sj0c9dfv+OjwYAAHJlWb5li9v+SxHxl7a1/bl9/f04DZ1FURSXI+JtEfGJEfH6iDiI0y+rvR6n8bJfjIifL8tyvKF9/15E/GdFUfzZiHhPRHxyRLwhTuNrH4uIny3L8t9sYl8AAAAAAAAAAHCWhNEAAABgDVkkahq5mgbSHlpvLmKVRa0G47thtHHzMFoW2IqoCaO1zmEYLYkTVAUN6uIkWdBkXj8Joz0ct6tOI7SiPjyWHcf0/soier2aKMSsfjtf7vZkUDu/+riaRf0AYJG64FAWKsqm121rG/ppGK352AzOwtGoOox22H1mre02iZpF1I0lG0Z/a+LAqz7/6sJoe8VeOq88x2m0sizjQ9dfqJz3dPtyfN7FL9rxEQEAwJOlLMvrEfHRM9jvnYj4Z7veLwAAwPn/ShkAAAAAAB4X9Z/YBQAAAGplkajB5DjKskwjZfORqmw7J5PjmJTjuF2eND6mwTgPo92aVIfRLrQf7TBaXQyucXyhYfhksuIf+OVhlUGUZZkGHvpJNK/p9iPyMEWd7HiyiB8AZOpiZsM0jDZaelvbkIdNhdE4vwbjW+lY7rBzdSfHkIWdm44l94teGh4+rhn716kLo3Vqwmjn+QM+v3z88/G7dz5WOe89l79y5+dMAAAAAAAAAAAAAFikPL9/ngucI8JoAAAAsIa62NWwvBOTmFTOnw8C9Nt5dONkMljqmOpCAcfjG5XTD85hGK1bdCqnVwUNTsb5bZQFTZouN3go6lD9k9ciitrtZ4+VMsq4XZ5U7Gd6XNXRvIeXy69nFsaokz3umt6eADDVKlrRinblvCxUlE3vnpMw2iqvrbArR6OX03mH3WtrbbtuxFvO/IVCNpacD0Sn+ymKPEKdjJsXGU7qwmj5uaU8x3958eL1D1ROb0Ur3nvpq3Z8NAAAAAAAAAAAAACwnnP8p7vAjgmjAQAAwBrmA2dTg/GtGNQEM+YjG+l2Jse128n2XWVSjtNtHbTOXxitU+xVTh9WhdGS69UpOtFtVW9nXh6ne/D2LLMwWlEfRqsLitU9XrLjemi52u0vH4/IHkd1+wGATBY0ywJow8mdyumd1m7DaOn4YHx8rmNJPNleGb5UOb2IIi53rqy59fox79T8GHoqe99Tpen4vKnsfBNx+r4hCx1n4/+z9srwpfj5mz9ZOe9znvrCOOxe3fERAQAAAAAAj4fz+bsRAAAAAB4fCz6GBxARwmgAAACwln77QuX0k8lxGuuKeDgu1W/l21k2apWFAo5rAgIX2heX2scudJYIqGRRsboYWdNlTyaDBy5nEZQspDBVFzg7mQzSx0vT69Bt7UWn6FTOWyUeMX+97x1Pw1AbAMzKX9dHyfTqgFG2nW3JXocnMY5hWR1vg7N2NPp45fRLnSvRTsaLm3F/nJyOJZcYn2fvkbKA7yJ155XTyPGj9RcWH7n+w1HGpHLec5ffv+OjAQAAAAAAngyP1u9TAAAAAAB4dAmjAQAAwBrmA2dTgwVBs/kgQK/Vr97OuD6wVuV4fHOp6RERB0ng7Sxlka+qoEF2G2X3zzLLzkfFyvRbUReE0ZKww3QfWdxtmevQNO7WRBZTW+Z4AGCq06oOmg0n1XGxLJi26zBa3eveKq+vsAtHw5crpx92rq697boY8Ow4eRNj2yxCvUr0NyJiuCC4mF23fPx/doaTYXz01R+unPeGvTfHpx189o6PCAAAAAAAAAAAAAAANkcYDQAAANaQhaiG5Z24NblROa+IIvZbvQemZR/6P5kcp1GBzHESCqgNo7UuLrWPXegWe5XTq8Jo2W2U3T/LLNs0elIXiYg4vT6t5Ecxg8lxnCQhvc3E3ZZ7DJVlmV7vZW5TAJjKgmZVr+t103cdRsvitRGrx5lg214ZvVQ5/bD7zM6OIRvbLjOW3NTYdmrReeVRCqP9i5s/FjfGr1bOe/by81EU9e9NAAAAAAAAAAAAAADgPBNGAwAAgDXURauOhi9XTt9v9aNVPPiWPAsE3Clvx61xdWAtMxhXRzpuTarDaK1o1UY/zkoWPhlWBA1ONhBGS8MLc7dnGZPK5RaF0YqiiH6rOoA3GOcBvF57/bhb9pjI3C5P0gDEMqE2AJjaVBitu+MwWt3rXtN4Kuxa9j7ksHNtZ8eQh4ubv+/Ix86rRQkXnVeylth5DKO9ePRC5fT9ohfvevrLdnw0AAAAAADAk+P8/d4EAAAAAIDHkzAaAAAArKFfE606GlUHCapiALWBtWQ7mcGkOhRwPK4Oox20n4oiqwCcoWUCKoNxdXih7v6ZlwXI5qMn6/x5X7aPG+PrMYlx5bxlQmRZGG3Z+5MAfQAAIABJREFUcMtJcnvW7QMA6nSLTuX0UTmqnF4VQo3Ixwfbsl8TcVo1zgTbdj15/3DYvbr2tutiwLMBsWz82W9Xx86ql02iv0l0bZEsjHb/vJKV0c7XB3x+8+TX49dPfqly3hde+tKl3gMBAAAAAAAAAAAAAMB5JIwGAAAAa6iLRB0Nq4ME/dbDMYDaMFqynczxsmG01lNLbX9Xuq0kjDZ5OGhwksQRqiJ0mew+eCi8kIQRWsXiH7P0k+N5ZfhSzTqbiEcsF26pi01kcTcAqLNM8LRu+q7DaK2ilY4nlg2Pwi5MykkaVr7Subaz48jGn8uNz6vHwcuObacWBRez6Fu5Vhp58z50/YV03nOXn9/hkQAAAAAAAAAAAADAZp2vv9wFzpIwGgAAAKyhNow2qo5dVcUA6mJTWdggMxjfirIi3nVrfKNy+YP2+QyjLRNQyUJey0TFsvtyPro2iUmyheqQwoP7qD6euvt4M/GIPHRWJQvNne5DGA2A5XWKvcrpw/JO5fQ8jNbZ2DE11XSMAOfBzfFrMSpHlfMOu1c3sId8zDsbEMvCgXXvn+alY9vxamG0ReeVRyGMdjy+Gf/vay9WzvsP+m+LN+5/8o6PCAAAAAAAePycn9+NAAAAAADw5BJGAwAAgDW0i3bsFfuV846GH6+cXhWWqotNHQ2ro1mX2oeV0ycxidvlyUPTjyfVAYELj1gYbVgRNMjCJMtFxarvg1E5jOGkOqIwa3EWLd9Hdh9HRPTby8Tdqq/vsuGWLKTWilb6eAeAOlnQLAs4ZQGjbhJY26bs9XvZ8CjswivD6jhzRMRhZ/0wWlE36L37GZlJOYnbSRhtmcjuQTIOXvW5t+i88iiE0X781R9Jg5LPXX5+x0cDAAAAAAA8eZr8hRQAAAAAAKxPGA0AAADWlMauRtWxq1774eXbRScNfWTbOexeS4/peHyzYtqNymUPWhfT7ZylbhJGqwoaDMbVcYR+a5moWB5pOJmJymVhhKLBj1myfWT3cRFF7Be9hdudyq5vdvtk8tDcQRS1NQwAqJYFT7NQUTY92842Za/fy4ZHYReycWWn6MZT7ad3cgy3JyfpmLluzN102UESfF4kPa+0dn9eWcWknMSHrr9QOe9S+zA+7+IX7fiIAAAAAAAAAAAAAABgO4TRAAAAYE29dnWMaljeqZyehdTSqFXywf8rNWG0qnVuVcTSIiIOkuM/a8sEVE4mg8ple61+4/31K4J1U4OZ7adhtAa9sGwfr45eqZzea/WXCpFl21823JKF1Ja5PQFg1jLB04iI4eT8hNGysduy4VHYhTSq3HkmWsX6vxYsIh+bTsfJdWPPujH3vIPk/dHJZBCTctx4O1OLzitFcvuUZfX4f9d+6fjn4qXhb1fOe8/l90W76Oz4iAAAAAAAAAAAAAAAYDuE0QAAAGBN/SVjUb0krrFsdOpKpyaMNn44jHY8qQ6jXWhfXGq/u7JMGC2Lxy0TXsiiJxERJzPbz8MIiwNm2T6y2FoWy8tkj61lw2h5aK757QkAszrFXuX0LCSbBdM6rd2Hf3rt6jHasq+vsAtHw5cqpx/WRJWXUzfmnYbRqseSEcuNJ+vG8nX7yKTnlbtBseyaZWP1XfvQ9Rcqp7eiHe+9/FU7PhoAAAAAAODJdD5+bwIAAAAAwONPGA0AAADWtGwsKotj9dvLRbAudi5FN4mMHFeEwo7H1WG0g/ZTS+13V7Iw2rAiaLCJkFddmG4ws/0sjFA0CKMt+1jZ1GNrsGS4ZROhOQCYlQXNRpNR9fQ0YFQ9PtimPDy6fJgJtu1o9HLl9MPO1Z0dQzaWjKiPET+8bP7+qG4fmey8cv89VfV4/jyE0T4+/L34hZs/VTnv8y6+Ky53ruz4iAAAAAAAAAAAAAAAYHuE0QAAAGBNdR/Yr5IFuJaJBJxu5yAOkn0PxkuE0VrnM4zWTcIn80GDUTmMYXmnctllbtNW0Y79olc578Hbc/Uw2rL38bIhsjSMNj6OsmwedNhEaA4AZmVBsyxUtDhgtDt5eHT5MBNs2yvD7YbR6sa809FmNpZsRWup53Dd+6zjivc7iywKLubX7ezDaB++/kNRxqRy3rOX37/jowEAAAAAAAAAAAAAgO0SRgMAAIA19drVobNMv139Af8smJZup3WQbut4LtRRlmXcmlSH0S60z2cYrdNqFlA5GVeHFyKWD3n1khDZbNyhXCeMtmTobOnjT5YfxygNQVTJQi/Lht0AYKpp8HRqmAaMOhs7pqay19cs/gRn6WhUHUa70t1MGK2Jk8lx5fR+60IUxeIx873la8bOg2QfdRadV7JjO+ss2nByJ37s1f+nct4n7H1SvLX/th0fEQAAAAAA8Fhb4ssXAQAAAGDT/HgKmBJGAwAAgDX1W9VxskwWQFtlO9k6g/GDYatheScNjxy0zmkYLQmoDCdzYbSaKMKyIbIs/DUbCiuTn642iTwsGzpbNkS2qXhEFptb9vgBYCp7Xc/GJ9n0bDvblI4PxtUhUTgr43IUr42OKucddrYfRpsGhAfj6nHnskHpdtGJvWK/ct4qz79F55UsdFyWk6X3tUk/c+OjcXP8WuW8Zy9/9VKxOQAAAAAAgPX4vQQAAAAAALshjAYAAABrWjZelcWllo94XYiDdnUY7XjyYCjgeHwz3c5B+3yG0boNAyp1wa9lQ17Z8ieT+6GwafDhYYv/8G/p0NnSsby6MFrzeES27LKPUQCYSoOnj0AYrZe8/s2OD+A8uD76eDpWPexe28g+snjYqdN9Z+HiVSK7/eT9zjLR36nsvNIt9u7+KwmjLb2nzXrx+guV03utfrzr0pft+GgAAAAAAAAAAAAAAGD7hNEAAABgTct+wD+LYy0d8Wr303DWYPxg2OrW5Ea6nQvti0vtd1ey8Mk2w2jZfTN/e1Zp8n2ovWVDZ+3+UsvXhdeWibdky64SswCAiOav64um3w8Y7U72+rdKmAm26Wj4cjrvsHN1I/soisWj3uy5sWwkuG6dZaK/U4uCi610RH92abR/d/Jr8Rsnv1I5711Pf1n0Wsu9XwAAAAAAAAAAAAAAgEeBMBoAAACsqd9eMmiWfLh/2VBAv3Uh+u3q0NbxXCjguCbsdZBs46w1DaicJOGFvWI/2kV7qX1m983sPsqYVC5TNPgxS3+DobMq+61+FEnQoUncbSq7TYUXAFhVd+kw2qhyeqfobOyYmspej08mgyjLswsmwbyjUXUYrdc6WPo9yyqmz4Z8LLlKGK1ZCLqJ4SQLo03PK9Xj6PIMw2gvHr2Qznv28vM7PBIAAAAAAICIs/xCGQAAAAAAnizCaAAAALCmpYNmSZRg2VBAr9WPg9ZTlfMGc2G0W+MblcvtF700QHbWsoDKJCYxLsf3Lg/G1eGFZe+XiPy+OZkM7v07+/O+LEj24DEtF6FbdvlW0Yr9JF42SAIVyyy77PEAwFTT4OnUsLyz1Ha2KRujlTGJ2+XJjo8Gcq8Mq8NoVzpXd3MAd0OB2VhylchuFoKef7/TRHa+mZ5XstH8WYXRbo5fi5+68eHKeZ928NnxCfufuOMjAgAAAAAAAAAAAACA3RBGAwAAgDUtHzSrXj6LcuXb6cdBFgoYPxgKOJ7cTPZ5fkNXdeGT2ajBSRZeWPL2jMhjarPhhXXCCMvGIFaJR2TrZLdT5bJJbG6V4wGAiOXDaKNJfcBol+piq7PxVDhrR6PqMNphd3NhtCYx4JNx9fNilchuPj5vPradys433dbe6T+K6utWlmcTRvuJV38kjUQ+d/n5HR8NAAAAAAAAAAAAAADsjjAaAAAArKkuljGvFa3YK/Yr5y0TWNsvetEq2mlcYD6EdjyuDqNdaF9svM9daxpGy6IIy9wvU9l9MBs9KctJ5TJFsfjHLK2iHftFr/HxrBKuyx4TTeMRk3Ict8uTjR0PAETkr+vDLIxWjqq309p9GK0utjofo4Wz9Mrwpcrph51rO9n/NCA8GxWe1WsvH9lNx7YrPPfS88rd81Mefdt9GG1STuLD1z9YOe9y55n4nKfeteMjAgAAAAAAnhxn86UxAAAAABDhp1PAfcJoAAAAsKZlgma91kEURfUH7pcJeU0DVQdJqOp4LhRwKwmjHbSearzPXeu29tJ5sxGVkyT4tcz9MpXdB03CC1lGYV5dXOWhZTd4HU7GzcJosxG4h7e9fMwCACIiuknQbFQRRpuUkxhHdcCoWxNO3ZZezetf3esm7Nr10cuV0w+7Vze4l3zUOw2jZc+LVcLF/WTs3DT6O2tY3qmc3ik6EZGH0c7ijyt+8dbPxkvD36mc995L74t20d7xEQEAAAAAAEQ0/wspAAAAAABYjzAaAAAArCn7sH6VurDGcoG10+30W9VhtJPJcUzKyb3Lx1kYrX1+w2jTQEGV0eR+RCWLItTd1pksWjYbdyiTNEIWUpi3VABvhXhEdh2axiPqlusljzcAWKSTBM1mX9PvTauIpS3azjbtF70okl+nDCaL46mwK0fDj1dOP+xsLozWZMSbj89Xif4mIegVnnvZuWV6XsnDaJPK6dv04vUXKqe3oh3vufy+HR8NAAAAAAAAAAAAAADsljAaAAAArCn7sH7lsu182bp52T6zfZdRxu2ZmNfxpDqMduFch9Hy8Mls1OBkXB1eWOZ+ub9OFhW7H15YN4y2TBBilTBats5JwzBa3XL9FWJzABBRE0YrRxXTzlcYrSiKNLg6G0+Fs3R7chK3Jjcq513pbi6M1kQ2nlwtjJaMbZP3AHWyc0u32Ft6W9v08p3fjX9166cr57394rvjUudwx0cEAAAAAAAAAAAAAAC7JYwGAAAAa+oWe9Fq+BY7i2osmpcte1ATNjueiXndGldHEg5aj2YYbVjeuffvQRZeaC8f8cpiDSeTQZTlaRBt+v+HFM3CaMvEznrtzcUjZuNudU7GeeBllZgFAETkr+vjGMWknDwwrSqWtmg727ZueBS27Wj4cjrvsLO5MFpdDHgaEM7DxcuPJQ+SePRxw7HtrOzc0ik6ERFRFNXv6bIw8rZ86PoL6T6fu/z8To8FAAAAAAAAAAAAAADOgjAaAAAArKkoiui3qj+wP68uLLVf9BoH1vp3g1kHNfsdjO/HArJwQF1Y7ax1i7103mzU4GRSHfJqep88uE71/VNGGbfLk3uXqtRFIh7YxxKxs1XiEWncrSZ4NisLqHWKTnRb+X0CAHW6NUGzUTmsvdx0O9uUvb4OkgAU7Noro5fSeZc3GEaLBWPeSTmeGTc/aJXoby8Z059MbuXB4gplWT4QV541DS5m12yZ/azrzuR2/Pir/7Ry3hv3Pjk+tf+ZOzsWAAAAAACAh+32C2UAAAAAAHhyCaMBAADABjT9kH9d6Kooitpw2gP7u7tcXWTreHLz/r/HNyqXudC+2Gh/Z6FTdNJ5s8GUkyTk1Wv1l95n3e0/Dc2Va4bRmt7H3WIv2jW3QSZ7TAwmzcItWWiu6XEDQJXOhsJoddvZpuz19aTh6yts29Hw5crpT7cvR7e1q+dNmY4lIyL6K4zPsxD0qBylobMq4xil86ZB5mw8n43/t+Gnb3wkbk2q37s9d/j+KIpm7zkAAAAAAAAAAAAAAOBRJowGAAAAG9D0Q/6L4lJNY17TwFq76MR+0atc5nh8Pxh2a3yzcpksNHAetIp2tJIfXcxGEAZJfKG/wnWrC81NIw/rhtHq4ngPLrfafZM9xgZJQO7h5aoDL02PGwCq1IfRHgwW1cWOziqMlr++CqNxPhyNqsNol7tXN7qfui5XWeaR3YiI3obH58s8/+bPM7M698Jx2ZXbXRjtxesvVE7vtQ7iC55+dmfHAQAAAAAAAAAAAAAAZ0kYDQAAADag6Yf8F4XP+u2m27kfCMjWmYawJuU4TpJowIX2xUb7OyvdYq9y+qgc3vv3ybj6ujWNzD24Tl144fT2XDeL0DR4tsrxn26/+jrURSoeXC67PYXRAFhdtzaMNpy7XBMwOqMwWv76KozG+XA0rA6jXelsNoyWx8NO1cV4m8akH1wnHzsPxs3CvxERo8kwndcpOhGRh453lUX7jcGvxr87+bXKeV/09H+48vsDAAAAAACA5ezuS2MAAAAAYF7px1PAXcJoAAAAsAFZLOOh5RaEzxpvZzaMlsQCpqGAweQ4yuQP1g7aTzXa31nJ4ifTYEpZljFIgiRNI3Oz9or9aCU/LpmGxcpyUjm/KJr9mKXX3sxjJd1+8hhqGo7Iw2hCDACsri5oNizvPHC5PmB0NmG07HVQGI3z4mhUHUY77G46jFanjJNxHuNdJbRbNybO3gdUmT/PzJqeV4oiC6Pt5q8rPnT9A+m85w6f38kxAAAAAAAA1Kv/Eh0AAAAAANgUYTQAAADYgKYf8l8Ul2q8nZm41kESCzienIawbo1vpts5aJ33MFqncvqoPA2mDMs7MYlx5TKrhLyKolgYmkvXbfiHf6vE75aRxSNulycxKatvq1mD8eZCcwAwVRc0m76uZ5cf3E712GDb8vCoMBrnwyvDlyqnH3Y2G0arG/OWUaaxwE7RiW5rb+n97Re9KJJfZw4mzcK/EfXnlW4xPa4kjJaEkTfp5ui1+KkbH6mc9/sPPjdev/emrR8DAAAAAAAAAAAAAACcF8JoAAAAsAH9dtPYVX1capVoVhryuhsKOK4Jo11on/MwWhJPGE7uRETEIAkvRCy+rTO9dnVQ7WQyiIjT4EOVpt+HuqmIXqZfs970OtTJYharHg8ARER0WnVhtNEDl4flneptFN0oirP5BvJsrNfktRW2rSzLOBq9XDnvSvfaTo8lG583HQPPOw0XZ2HCZcJoo3TeNNx4NmeXUz/26j9J423PXn5+x0cDAAAAAAAAAAAAAABnSxgNAAAANqBp0GxRXKppMGA2+nXQrg6AHd8NBRxPqsNorWitHCjYlWmkYN40GpBFvCLWCYsl4YW7obkyJpXzi4Y/Zmkev1sx7FazXl1IbtEyqx4PAEREdIpOOm80eTAGlAWMsnHBLmRjpun4AM7SrcmNNCh42Lm6s+MoYzuR3X7yfmeZ518WHYu4f37KxvNZGHlTJuU4PvzqByvnHXauxmc/9QVb3T8AAAAAAEBz2/29CQAAAAAATAmjAQAAwAY0D5rVL9dvLx9Yy4JV01DA8bg6jNZvX4iiKBrt76x0k4jKNJgyGOehryygsEh2X55MBhGx/p/3NX6sNHwsPLRezfbrbq+pbcQsAKAdnSiietwxHyzKAkZnGUbLXl+n4wM4S0fDl9N5h91rG91X9jw+VcYgeU6sE9nNw8WLx7ZTWTgu4v65Jbtm2w6j/atbPxMfH/5e5bz3Xv6qaBftre4fAAAAAAAAAAAAAADOG2E0AAAA2IBFwbN7yy2IXTWPZt0PCxwkAbDj8WkY7db4RuX8C62LjfZ1ljrFXuX0adggi3gVUcResb/SPrP7YBqay9JoraLZj1max+9WC6PVrZfdXrOyeNo6MQsAKIoiDZvNB4vyMFp1MHUX8nBq8zATbMvRqDqM1op2PN2+tNF91YfRIk7ujZkftE5kNxuHTt/vNJGdVyJmo4vV123bYbQXr79QOb0dnXjPpa/c6r4BAAAAAAAAAAAAAOA8EkYDAACADehtKHbVNLA2GxbIQgHTkNfx5Gbl/Cyodp5kAZVp2GCQxEh6rX7jUNm87D6YBsPKcr0wQtPAWNPHwrxuq5vebtntNetkMqicvk7MAgAi8rDZqBzNXa4OGHWTYOouZK/LJ5NBTMrxjo8GHnQ0rA6jXe5ciVbR3tlxlFHGYJyNJVcb20bkYeFlwoTz55mpdnTuvW8oiiT6tub4v87v3fnt+Ne3fqZy3udf/OJ4unN5a/sGAAAAAACotMXfjQAAAAAAQFPCaAAAALABTSNWi5ZrGgyYjWulYbTx3TDaOAujXWy0r7O0KKCSxRDWCS9kkbvpvsqo/uO/IpKQwvz2GwbG1opHpPGWWwvXTW/ThvE/AMgsCp5ODZMwWrb+LtS9Dt6enOzwSOBhr4xeqpx+pXtt8zvL4mF3ZWPJLG7WxMGCEHQTw8mdyumz7zey8fw2P/rz4esvpPOePXz/FvcMAAAAAACwimZ/HwUAAAAAq9LtB6aE0QAAAGADmobRFsWumgQDWtGKbrF37/JB+6nK5Y7vhgJuJWG0C63q9c6TPKByGjYYbCGMlt2Xgw2F0brFXrSjOvj2wHG0qwMQTWTXfzAZLFw3u02bPsYBINM0jDZ/+f76i18/t6XudTB77YRdORq+XDn9sHN14/taNOLdxvi8l4TRjsfNw2jpeaV1/7yUh9EmjfezjDuT2/Hjr/5I5bw3739K/L7ep29lvwAAAAAAAAAAAAAAcN4JowEAAMAGNPmgfzs6aRBkme30WxeiKO5/aP8gCQWcTI5jUo7jeFIdRsuCaufJbABu1vBu2OBkvPmIV3YfnNyNimVhtKbfiFoURaMAXq/Vb7S9Ktn1z26vqVE5jOHd6NzDxyOMBsB6Fr2uT+VhtPpx1DbVvQ6eCKNxxo5GSRite22nx1GWZfp8WGcseZAEg5d57mXnley8NGtbXzr3Uzc+nL5Xe+7y+x94zwcAAAAAAAAAAAAAAE8SYTQAAADYgCahq377YOGH25sEvXrtB4NZ/SQUEBExmBzH8fjRDaNlAZRp2GCQhRca3B+Z7D4YjG+d/qOsTiMsEy5oEj3rJ8G7RttPrv9gcqt2vZPxoOZ4hNEAWE+n6FROnw8WpQGj1uKA0bbUvXYPJvnrJ+zC0TAJo3We2cLe8jFvGeW9mPC8dcaS2brH4/qx7axROaqcPnteKtLrtvk0WlmW8eLRByrn9VsX4guefnbj+wQAAAAAAFjftr5SBgAAAAAAHiSMBgAAABvQJGK1qRjWfBjgoGadwfhW3ErCaBdaj0AYrZUEVCanwZSTJIy2Tnihl6w7jTxkf96XhxQetsr9vIxs3SxUcX9+9e0Zkd8uANDUouDp1HBSHUbL1t+FbrEX7agel5wsEWeCTZuU47g++njlvMPu1Y3vb9GYd5A8H5q8F8pkIei6seu8YXmncvrseaUoqn9tWiZh5HX8xsmvxG/e/vXKee++9OWx19rf+D4BAAAAAAAAAAAAAOBRIYwGAAAAG7Df4IP+TcJSvfby28lCARERx5NbcTypDqMdtM9/GK1b7FVOnwZUBkkMYb3wQvX9NJicRh7KmFTOXyaM1uyxsPkw2vQ6ZLLbMyK/XQCgqaZhtPnL99evDpPtQlEU6ThtsCA8Ctv06ugoJsn49Ern2o6PJg/xrhPZzca2xwvGtrPy88pMGC1Zt0zTyKt78foH0nnPXv7qje8PAAAAAAAAAAAAAAAeJcJoAAAAsAHtoh37Ra92mewD/csu81AYrWadwfhWHI8f3TBaFlAZ3g0bZOGFfiuPxS2SRRuG5Z0Yl6OaLELzMFqTyFiTx0Imuw6DcR4+i6gPo60TmwOAiIhua90wWvX6u5K9Np/UvH7Cth2NXk7nHXavbnx/dSPeMsr0+bBOZDcb29+eDGJSVkfh5mXnlQdDzNXXbtNhtBuj6/EzNz5aOe8zDj4vXrf3xo3uDwAAAAAAYDmb/9IYAAAAAABYljAaAAAAbEhvwYf9s1jVrHbRib1iv3aZ+ShHq2in2/7gK/93DMs7lfMOWo9uGG0aNhiMb1XOXyfiVRuamxxH9sd/raJ5GG3RY6EVrYWPgzpZeGJRuCWb3y32ol10Vj4eAIioCZ5OHo0wWhoeFUbjDL0yrA6j7Re9LY338zHvuBzFnfJ25bwm74Uy/XZ1GK0uxDZvVI4qp3dmxrhFet02++Gfj776T9Ljee7w/RvdFwAAAAAAwGY1//soAAAAAFiFbD8wJYwGAAAAG7Low/5ZrGrZ7VQF2A5a1bGAXz7++XQ7F9oXGx3PWeouCKOdTAaV87N4QhN1YbST8XGUZfbj1eZ/+Fe3j4jTx0CxRGjt4fWrr/+icMtgXD2/n2wPAJaxKHh6/3J1MCgbF+xKNkZrGmaCbTgaVYfRLnevrjWeXEU2No9YPP6tUzcWbRomzGLRs+elLIy2yT+umJTj+Mj1H6qcd6VzLT7rwjs2uDcAAAAAAAAAAAAAAHg0CaMBAADAhjSJXTXazoKAWtV+VgmBHbSfWnqdXVsUUBlMblXO77X6K++zKjw3NZgcR5mkEZbJTmwqopeun1z/ReGILOyyzu0JAFNNw2hNAkZnIRvrZWFR2IWjYXUY7bDzzFb2l8XDIvKxecS6YbSa8fk43+es+fPM1ANhtCQkV5aTRvto4hdu/lS8Mnqpct6XXP7qaBXtje0LAAAAAAAAAAAAAAAeVcJoAAAAsCEbC6OtsJ0L7YuNtj1VRBEHrUc/jHYyGVTO77eWD8XdX3fVMFrzH7Msuo/XCUdERPSS65+Fz6aycNoq4T0AmNc0jNYkYHQWsrHcotdX2KajJLJ1pXttOzusqQHXRQKbvheqUhcNXhT+nRpNRpXTu63dnldevP6ByumdohNffOkrdnosAAAAAAAAy6v+uykAAAAAANg0YTQAAADYkEUf9m8au1plO59+8DmNtj31qf3P3HkEYBXdJIAyLIcxKSdxOwmj9Vr9lffZLjrRLfYq553UhNGWsSg0tk444nT71esPxsdRlvnxZ6G5dW5PAJjKXtdH5Wju8vkMo2Wvr8JonKWj4cuV0w87V3d8JPXPhV579fFkp+im4/PB5FajbTQ5rxRJ9W0T4/+IiN+987H4peOfq5z3+RffGxc7lzayHwAAAAAAAAAAAAAAeNQJowEAAMCGZLGMqaZxqUUBtapo1nsvfWV8wt4nNdr+ftGLr7n6zY2WPWudJN42Kodxe3KSRgoWhccWye6Dwfg4sm8+zUIKVRY9FtYNo2XrT2Icw/JOul4Ws1j3eAAgIg+bzb82zYfSprKw2q5kr4cDYTTO0Cuj6jDale61reyvbsybRcq6xd7aYcN+q3p8Pxj094j4AAAgAElEQVQ3C6NlY+BdhtE+fP2D6bznLr9/I/sAAAAAAAAAAAAAAIDHQeesDwAAAAAeF4viUU3jUouWqwqwXexcjj/3Sf9D/PRrH4nfOPmVGJeTynXfsP+mePtTXxxv2H9zo2M5a1lAYTQZphGviOYRunz9g3htfP2h6SeT4yjLJIxWNA+jLYrfZeGHTWx/MDmOvdZ+9bxx9W266HgBoIn0db0cPnB5OHd50fq7ko0vTiaDHR8JnBpO7sTN8auV8w47V7eyz/owWhbZXW9sHnEaPn5tfPTQ9OMkxjZv/jwz9eB5ZXthtNuTk/jxV/9p5bxP2v/UeEvvrWvvAwAAAAAAYDM286UxAAAAAACwDmE0AAAA2JCFsauKoNkqy2XhtAvti/Hs4fPxbDzfaD+PgiyAMiyHaXghYv2wWK99EFHRThhMjtMwQl0kYt6i4+u114tH1D0WTybHcSkO03mVxyOMBsAGNA2jjSZ3qtdvnW0YLXt9HYybhZlg045GH0/nHXa3E0ark0V2NzGWzJ5/dbHkWaNyVDm9O3NeykPH63/45ydf+1D6/uW5w/cvFVkGAAAAAAA4O36nAQAAAADAbrTO+gAAAADgcbEojNY0CLBouUX7eZx0awIqdRGEXms7YbGTmjDaMn/4tyh8tnbYreYxUhdvyWINTaN+AFCnm4TN5oNFWcAoC6vtSvb6ejIZ7PhI4NTR8KV03mFn92G0bHy+ifcvB8n4+LhhmHA+wDg1e15Js2hrdtHKsowPXf9A5byD1lPxjovvXW8HAAAAAAAAAAAAAPCYWPdvd4HHhzAaAAAAbEhvQTyqaRBg0XJPUhgtC6CMymEa8WpHJ7rF3lr7zW7jQU0YrbVEGG1R+Gzd+3i/1YsiOZ66eEsWs2ga9QOAOtnr+nAuWJQFjLJg6q5kodC6WCts09Ho5crpF9oXY6+1v5V9ZmPMiIjBpDpStuh9UhPZNpo+/4blncrpD4bRqn9tmoeRm/n1wS/Fb93+jcp577705Vu7rwAAAAAAAAAAAAAA4FEljAYAAAAbsqmg2aII1ZMUqcoCKpOYxPH4RuW8XrsfRdE8Ula5jeQ2PhkfR2RhhCX2ue34XatoRa/Vr5yXBStO51WHJZ6kGB8A25MGTycPBouyMFq2/q5k44M75e0Yl6MdHw3kYbQrnWs7PpJTg3EW2a0ely7jIAkLH4/zse2sUfIcbXJeWTeM9uL1D1ROL6KIZy9/9VrbBgAAAAAAAAAAAACAx5EwGgAAAGxIP/mw/lTToFm/vWA77fXDAo+Kbk2o4Mb4tcrpmwjH9dvV2xhMjqPMumjRPIy23+rVzu8l+19Gdjtk8bOIiJNk3pMU4wNge9Iw2lywaFjeqVzurMNodaHQk8lgh0cCp14ZvlQ5/bB7dYt7zce8eWS3/v1NE/nYtmkYrTq4OPt+Ix/Prx5Ge210PX72xo9XzvvMC2+Pa3ufsPK2AQAAAAAAdm+9L5QBAAAAAICmhNEAAABgQ3qt+mBZ06BZ3Xa6xd6ZR0F2qe663hi9Wjm9LlrSVBZeOJkcRxmTynnLhNFaRbv2ft7Edci2cTKuDlaUZRkn4+qoS3/BYxsAmugUncrp88Gi+VDa/fXPbxhtkLy+wjYdjT5eOf2ws70wWlHUhdGqI2WL3ic1cZDEo+uiv7OyMFqnQRitXOMDPh999YdjHNXntGcvv3/l7QIAAAAAAAAAAAAAwONMGA0AAAA2pJ98WD9iuaBZv5VvZxPBrEdJ3W12c1wdRsuiZstIo2KT4zSLsEwYLaL+ODcSRlsyHjEs76TRhl7NYxsAmuoWe5XTZ4NFZVmmAaPuGYfR6l67TxrGmWCTjoYvVU7fZhitTvY8qHt/01S2jcG4OsY2bzi5Uzm905oJoyXRt7JcLYw2Lsfx4es/VDnvme7r420X3r7SdgEAAAAAALZqxd+NAAAAAADAJgmjAQAAwIZsKnRVt+wmol+Pkm4rD6DcSMJom4iKZbfzaVRsM3/8t+37udfqV07Pwmgnk0G6rX6yLQBYRhY8HZb3g0WTGEeZvNY2jcxuS6+dvx4Ko3EWjkYvV04/7J5VGK16PJmNS5eRR3+bhdFGZXUA+MHzShJGW3H8/ws3fzKujz5eOe/Zy18draK90nYBAAAAAADOznJfHAkAAAAAAKsSRgMAAIAN2VToqteu2U7NvMdRXQDlxqg6jLaJqFh2X56MB2kYoSiW+zFLbUhvA/dzv1Udj8jCLXVRiSctyAfAdnSKTuX02WDRsBzWrH+2YbRO0Y1usVc5LwuPwrYMxrfSENlh52zCaJlNvIfJxudNn3uj5NzSnTmvFOkHeVYLo714/QPJPvfi3Ze+fKVtAgAAAAAAAAAAAADAk0AYDQAAADakW+xFK9qV83qtfuPt1AXW6uY9juoCKDfH1WG0TUTFsnhDXTxs2e9D7berw2URedRsGVnMbDCujkdkYY3T43myHncAbEf2uj4qh1GWp+Gh0eT8htEi8jFdFh6FbXll9FI670r32tb2m8fDcpsYS2bj41E5jOHkzsL1h2X1Mk3OK6tk0X7n9m/FLx//fOW8d1x8bzzVfnqFrQIAAAAAAAAAAADA4221rzQGHkedsz4AAAAAeFwURRH99kHcGt94aN4ysa69Yj9a0YpJTB6al8WuHlfdYi+d99roeuX0TdxGWbyh6j65b7lIRF0sb3+JkN6y2781uVH5GL0+/HjN8fTWPh4AyAJEZZQxiXG0oxOjMg+jdVtnH0brty7EjYo466ujo8rXV9iW37n9W5XTi2jFpc6Vre13lTDaRsbnNe+nXhm9dC801mv1o108/OvPUTmqXHf2vNQqqr9Paji5s/Tz+59d/0fpvGcvP7/UtgAAAAAAAAAAAAAA4EkjjAYAAAAb1GtVh9GWiQEURRG91kEcT24+NC8Ldj2uOhVRg6nb5Unl9E3cRv3WhaXXaS0ZiciOc7/oRbtoL73/h7bfrr4Ov3L8C/Ff/tofbbydXqsfrQ0cDwB0W3nwdFgOo13Uh9HqxgW7koVHf/Cl748ffOn7d3swUOFS53AjY8lN6m8g+ls3Pv++f/Pd9/69X/TiMy+8Pb7lDd8dB+2nIiJiXI6jTALHWbBx1odf/WB8+NUPLnnE1T6599Z4S/+tG9kWAAAAAADA7pVnfQAAAAAAADwhqr/6HAAAAFhJFrtaJowWEdFvb2Y7j7pW0Y7Wkj++yIIl29/GsmG06rhDL7nvl7WpiN6T9pgDYHvqwmajyWkQbVgbRsvDaruyqddp2JbDztWzPoSH9FaIDs9rGi6+XZ7Ez9788fgbH/sf702rCy52Z8JoxZLj+VU8d/n5re8DAAAAAAAAAAAAAAAedcJoAAAAsEFZRGrZSFW6nScwxtGZiRU00W9vILywwjaWDSlk8bVNhcg2tZ1NBdYAoO41fRouahowOiteFznvDrvbDaOtEg/rt9cPF++3elEs8WvNXx38y/j48PciImJY3kmXe/C8tN0w2oX2xXjHxfdudR8AAAAAAADrK8/6AAAAAAAAQBgNAAAANula9w2V05/pvn6p7VxNtnN1ye08Dpa97ZZdvsp+0Yun2peWWudK99pSy1/b2+59nD0Wl7WJ2xMAIiL2iv103u3yJCLqw2jLxlK34Ukci/FoecPem7e6/U7RjYtLjJO7xV5cbF9ee7+torX08+9373wsIiJG5ShdZva88syS4/llffGlr4hua2+r+wAAAAAAANiu7X7RDAAAAAAATAmjAQAAwAa94+n3PjStU3Ti8y6+a7ntXHx4O3vFfnzWhXeufGyPqrdffHfjZa90rsWn9D5t7X0WRRHvuPiexsu/pffWOOxeXWofb7vwjtgveg9Nr7rvV/Ep/U+LK5314w7vfPpLNnA0ABDRax2k8wbj44iIGNaG0TobP6Zlff7F90Thj/05p4poxRc8/ex291EU8XlPNR+ff+5T74q9Vh5FXMay4+STyel5ZTRpFlz83Ke+aGvP717rIL7s8n+8lW0DAAAAAAAAAAAAAMDjRhjtCVIURb8oincXRfHHiqL480VRfG9RFH+mKIo/VBTFW4ui2MinPYqi6BZF8aVFUXxrURR/oSiK7y6K4uuLonjLJrYPAABwnn3mhbfHH37dd0a/dSEiIi61D+O73vS98Uz39Utt551Pvze+7uq3Rq/Vj4jT4NefefNfioudSxs/5vPu/c98U3zJ5a9+IFpQ5U37b4nv+cS/HK1iMz/u+IZr3x5fcPG5aEW7drlP7X9GfNebvnfp7R+0n4rv+cS/fO+xsV/04muufnO86+kvXeVwH9Iq2vE9n/h98ab9t6y0/n7Riz9w9VviCy5uN64BwJNjv9VLo0P3AkZJGK0VrWgV9a/Ju/Ap/U+Pb33Dn40L7YtnfSjwgKfal+I73/Rfxev33rT1fX3j674j3nnxS6IdeaywiFZ8zlNfGN/8hj+1sf3+R1f/cLz30vsaRxKnwcXsvBIR0W3df4/x1oO3xX/yhj8dT7WfXu9A51zuPBN/8o1/IS53n9nodgEAAAAAAAAAAADgcVOWZ30EwHnR7JMDPNKKonh3RPznEfF1EbFXs+jHiqL4PyLir5Vl+coK+7kWEd8XEX8oIq4ky/xYRPwvZVn+vWW3DwAA8Kh49vD5eO/l98X10Stx2Lkaq3ao3/fMN8SXX/naeG10FJc7z6y8nUddq2jHH3n9d8UfvPbt8dLwtyt/uPlU5+m43Kl8K7qybqsb3/7G/yL+yOS74uU7v1u5zKXO4Vqxuk/pf1r85U/563F99PF4unM52g0jD029bu+N8b1v+atxffRK3By91ni9VtGK1++9cePHA8CTrVW0Yr/VvxdBmzVYEEbrFnU/2t6td1360viCp5+Nl4a/HcNJHlyCXdlr7cW17ifs7P1Ct9WNP/bGPx8nk0E6Tn6mey367Qsb3W+7aMc3v+FPxTe+7jseeF/wv//7/zl+b/jvH1p+eq4ZlnfSbc7Hl9996cvjXU9/2cae3/ut/Xim+/qNxZsBAAAAAAAAAAAAAOBJ4NOtj7GiKDoR8Vcj4k9FRJNPw7wpIv67iPjOoii+rSzLDy6xr+cj4vsj4nULFv3iiPjioij+VkR8Z1mWt5ruAwAA4FHSKtpxpXtt7e20i3Ycdq9u4IgefXut/XjT/lt2vt9eqx9v7m1vv0VRbP0+vty5svFwHACsot86qAyjnSwIo83Hi87aaUT0TWd9GHCmtj1Ozsy/L7jYuVQZRrsfXByl26o6t3h+AwAAAAAAZCq+0RIAAAAAALZAGO0xVRRFERF/OyK+sWL2L0XEL0bEICKuRcQ7I+JwZv7rI+IfFkXxtU3iaEVRfGlE/IOI2JuZXEbEz0TEr0fE5Yh4e0TMfsr7WyLi6aIovq4sy0nDqwUAAAAAwCOs1zqonD4NGA0nWRjNrzOAav3Whcrpi4KLEecvuggAAAAAAAAAAAAAAES0zvoA2Jo/Hg9H0T4UEZ9dluVnlGX5DWVZfktZlu+LiNdFxB+LiFdnlt2LiB8oiuJS3U6KonhzRPxgPBhF+2hEvK0sy3eWZflNd/fx5oj4sxEx++mTr4mI/36F6wYAAAAAwCOon4TRTsb1AaNOS7wIqNZr9SunDxaE0VrRinbR3tpxAQAAAAAAPJrKsz4AAAAAAAAQRnuM/ddzlz8UEV9RluW/nF+wLMtRWZZ/MyK+IiJuz8x6XUR814L9fF9EHM5c/rG7+/nFuX3cLsvyf42Ib5pb/88VRfHJC/YBAAAAAMBjoNeuDqMtChh1ir3K6QD91oXK6dPg4rC8Uzm/UwguAgAAAAAALKc46wMAAAAAAOAJIYz2GCqK4rMj4i1zk7+nLJNPlN1VluVPRcT/Njf5a2r289aI+E9nJt2JiG8ry/KkZh//ICJ+YGbSfkT8xbrjAgAAAADg8dBvVYfRTu6F0UaV87tFZ2vHBDzaeu1+5fTBgvOKMBoAAAAAAAAAAAAAAJxPwmiPp983d/k3y7L8uYbr/sO5y2+tWfabI6I9c/kHy7L81Qb7+J/mLn9TURS9JgcHAAAAAMCjq9eqDxgNyzuV8wWMgEweXBxERMQo+d6grvMKAAAAAAAAAAAAAACcS8Joj6cLc5d/a4l1f3Pu8mHNsl8/d/lvNtlBWZa/GBH/fGbShYh4X5N1AQAAAAB4dPVb8z++PrUoYCSMBmR6SRhtGlxMzyst5xUAAAAAAAAAAAAAOE/K8qyPADgvhNEeT78zd7m3xLrzy75StVBRFG+IiM+dmTSKiI8usZ8fnbv8/BLrAgAAAADwCOq1+pXTB+NbERExKkeV84XRgEwWRju5G0YbTu5UzndeAQAAAAAAWJZPpQIAAAAAsBvCaI+nn4yI2zOXP6MoiupPmz3sHRXbqvJZc5d/vizLWw33ERHxY3OX37bEugAAAAAAPIL67QuV008mg4iIGJXDyvkCRkCmn4XRxqdhNMFFAAAAAAAAAAAAAAB4tAijPYbKsrwREf/nzKReRHzHovWKomhHxJ+em/wDyeKfOXf51xof4Kn/b8H2AAAAAAB4zPRa1d/hMZicfu/GsLxTOf//Z+/uo2W/6/rQvz+z9z6ZyQnkgSQECoaQgFBBwdDLIqlXEBaoqxcFEbiUXmJv1dorpVeWFttqROtawq3epe2yVsviwStoxSAtRdMFQos8yC1QkCb0hgBBeTAKCSYn5yTn4Xv/2HM8k8mevWf2mZnf7L1fr7Vmze/h+/t+Pr/FWt9wZs+8fxsCjIAJ+mtbB6Pd247lVDs5MXDRugIAAAAAAAAAAAAAAKtJMNr+9aoknxvZf21VPWvS4KraSPKrSZ48cvgPkvzOhEuuGtv//Iz93Ta2/5CqunDGOQAAAAAA2EMGvcNbHj926miSTAwwWhdgBEww6G0djJZsri3WFQAAAAAAgBm01nUHAAAAAACQ9a4bYDFaa1+tqmckuSGbYWeDJDdW1VuTvDXJp5IcTXJxkqcl+cEkXz8yxYeTvKC1iX/RuGBs//YZ+7u7qo4l6Y8cPj/JHbPMAwAAAADA3tHvDbY8fu+poznVTuXEqRNbnhdgBEzS3yYY7eipe3JcMBoAAAAAAMCcVNcNAAAAAABwQAhG28daa5+rqqcmuS7JDyS5OskLh69JvpLkF5L8X61N+KXIpvPG9o/uosWjuX8w2oN2Mcf9VNWlSS6Z8bIrz7YuAAAAAAA7G6wd3vJ4S8u9p47lxKQAo54AI2Brg22C0Y6dumfyuiIYDQAAAAAAAAAAAAAAVpJgtP1vbfi6N0nL9o9n+ZMkP5nkN3cIRUseGIx2bBe9HU1y4TZz7sY/SHL9HOYBAAAAAGDO+r3BxHNHTx2ZGGC0IcAImKC/TTDa0ZOTg9GsKwAAAAAAAAAAAACwWlrXDQAro9d1AyxOVV2b5OYk/zrJtdn5f+9HJnl9ks9X1d+bsdxu/tviv0cAAAAAAAfIoHd44rljp47meLtvy3PrAoyACTZ6GxPXiGOn7rGuAAAAAAAAAAAAAADAHiMYbZ+qqmcmeVeSR40c/kKSVyV5cpILkhxKclmSb0/yxiQnhuMuSfJrVfWrVVUTStw9tj/YRZvj14zPCQAAAADAPtLvTf4o+eipe3KindjynAAjYDv93rlbHj966p6cOGVdAQAAAAAAmI/WdQMAAAAAABwQ6103wPxV1SVJ3pKkP3L4PyR5aWvtL8eG/1mSG5PcWFW/kuQdSR4yPPf9SW5N8potyqxqMNovJ/ntGa+5Msnb51AbAAAAAIBtbNShrGU9J/PAoKJjp+7JiXZ8y+vWy58zgMkGvUHuPvm1Bxw/duroNuuKYDQAAAAAAAAAAAAAAFhFfkm0P/1IkktG9j+V5IWttWPbXdRa+1BVvSjJu0YOX19Vr2+t3T42fPzXJZdkBlV1Xh4YjHbnLHNsZdjneK879XK2ZQEAAAAAmEJVpb82yJGTdz3g3NGTk4PRNurQolsD9rB+79wtjx89eWTyutITjAYAAAAAAPBAresGAAAAAAAgva4bYCG+d2z/NTuFop3WWnt3kveNHBokefEWQ28Z2798+va2HP/V1todM84BAAAAAMAeM5gQYHTs1D05PiHAaL0EGAGTTQpGO3bqaI63+7Y8Z10BAAAAAACYVXXdAAAAAAAAB4RgtH2mqg4nuXLs8LtnnOZdY/tP3WLMzWP7V81Y49Fj+zfNeD0AAAAAAHvQpACjo6fuyQnBaMAuDNYmBy6eaCe2PGddAQAAAAAAAAAAAACA1SQYbf+5YItjX55xjvHxF28x5pNj+99YVVv/6mRr1+4wHwAAAAAA+9BgQjDasW2D0dYX2RKwx+0ucNG6AgAAAAAAAAAAAAAAq0gw2v5z5xbHDs84x3lj+3ePD2itfSnJJ0YOrSf5mzPUePrY/u/NcC0AAAAAAHvUxACjk5MDjDZ6hxbZErDH7SZwcaOsKwAAAAAAAAAAAACwSlrrugNgVQhG22daa0eS/OXY4SfPOM3VY/tfnjDubWP73zfN5FX1uCRPHTl0JMl/mq41AAAAAAD2ssHaNgFGp7YOMFqvjUW2BOxxEwMXT92T4xOC0awrAAAAAAAAs/KrVAAAAAAAlkMw2v703rH9H5j2wqq6LMlzxw6/b8Lw30hycmT/+VX1mCnK/OOx/X/XWjs2ZYsAAAAAAOxhAoyAeRtMWFeOnbwnJ6wrAAAAAAAAAAAAAACwpwhG259+a2z/RVX10p0uqqpzkvx6kvNGDt+d5MatxrfWbknyxpFDh5K8oar629T4riTXjRy6L8mrd+oNAAAAAID9YVKA0dFTR3Lqfs/iOGO91hfZErDH9dcmBy5ODkazrgAAAAAAADxAa113AAAAAAAAgtH2qd9M8vGR/Urypqr6xap62FYXVNUzknwoybPGTr2mtXbHNrWuTzJ6/pok76qqx43Nf05VvTzJb49d//Ottdu2mR8AAAAAgH2kPyEY7e4TX5t4zXptLKodYB8Y9AZbHj+2TTDaRu/QIlsCAAAAAADYh6rrBgAAAAAAOCA8Cn0faq2dqqoXJHl/kkuHhyvJP0zyw1X1iSSfSXI0yUVJnpzksi2memeS1+xQ60+r6vlJbkxy+hck1ya5qao+MqxzfpJvTnLJ2OXvSPITs90dAAAAAAB72WBCMNpdJycHo22UACNgsn7v8JbHj506mt6E50QJXAQAAAAAAAAAAAAAgNUkGG2faq19uqq+NcmvJ3nKyKlekicNXxMvT/JrSf5Ra+34FLXeW1XPS/KGnAk/q2Hdp0y47C1Jvr+1dnKn+QEAAAAA2D/6a1sHo9198q6J1wgwArYz6A22PH683ZdKbXnOugIAAAAAAAAAAAAAAKtp60eksy+01j6V5GlJXpbkg9kMPNvO0SS/keSa1toPttaOzlDrnUmekORXktyxzdAPJXlBa+0lrbUj084PAAAAAMD+MOhtHYzWcmriNevlOS/AZP3e4Ynn2oQ/j1lXAAAAAAAAAAAAAABgNfnG/z7XWjuR5E1J3lRV5yd5SpIrklyQ5Jwkd2UzyOyTSf54OH63tW5P8kNV9Yok1ya5PMllSY4k+UKSj7XWPnsWtwMAAAAAwB7XnxCMtp312lhAJ8B+MVgbzHzNRh1aQCcAAAAAAAD72dYPpAEAAACAefEJFHCaYLQDpLX2tSTvXkKd+5K8Z9F1AAAAAADYewaC0YA5G/QOz3yNdQUAAAAAAAAAAAAAAFZTr+sGAAAAAACAg6O/i2C0jd6hBXQC7Bfn9AYzXyMYDQAAAAAAYCut6wYAAAAAAEAwGgAAAAAAsDyDtdmD0dZrfQGdAPvFWq3lUJ0z0zXWFQAAAAAAgFlV1w0AAAAAAHBACEYDAAAAAACWpt8bzHzNWgQYAdsb9GYLXdyoQwvqBAAAAAAAAAAAAAAAOBuC0QAAAAAAgKVZq/UcqnOmHr9eG6ny5HFge/212YLR1mtjQZ0AAAAAAAAAAAAAAABnQzAaAAAAAACwVP3e9AFGG8KLgCkMZlhXkmS9Z20BAAAAAAAAAAAAAIBVJBgNAAAAAABYqsHa9AFG64LRgCnMEriYJOu1vqBOAAAAAAAA9qvWdQMAAAAA7HPNR1DAkGA0AAAAAABgqWYJMBKMBkxjMMO6UqmsRTAaAAAAAAAAAAAAAACsIsFoAAAAAADAUs0SYCQYDZjGrIGLVbXAbgAAAAAAAPaq1nUDAAAAAAAgGA0AAAAAAFiufm8w9VjBaMA0BmuzBKOtL7ATAAAAAACA/cqDZwAAAAAAWA7BaAAAAAAAwFINeoenHrshGA2YQr83SzCadQUAAAAAAAAAAAAAAFaVYDQAAAAAAGCp+muDqccKMAKm0e9Nv65s1KEFdgIAAAAAAAAAAAAAAJwNwWgAAAAAAMBSDXqHpx673hOMBuxspnVF4CIAAAAAAAAAAAAAAKwswWgAAAAAAMBS9XuDqccKMAKmMdu6sr7ATgAAAAAAAAAAAAAAgLMhGA0AAAAAAFiqQe/w1GM3BKMBUxisTb+uCFwEAAAAAADYjdZ1AwAAAADsc81HUMCQYDQAAAAAAGCp+r3B1GMFGAHTmGVd2egdWmAnAAAAAAAAe5hfngIAAAAAsAIEowEAAAAAAEs1WDs89VjBaMA0Br1Z1pX1BXYCAAAAAACwX1XXDQAAAAAAcEAIRgMAAAAAAJaq3xtMPVaAETCN2dYVgYsAAAAAAAAAAAAAALCqBKMBAAAAAABLNegdnnqsACNgGv3euVOPta4AAAAAAAAAAAAAAMDqEowGAAAAAAAsVb83mHrsRh1aYCfAfnFOr59KTTXWugIAAAAAAAAAAAAAAKtrvesGAAAAAACAg2Wwdnjqseu1scBOgP2iV72c0xvk2Kl7dhy7Xv5ECgAAB0VVbSS5NsnXJXlYkruTfDHJx1prn5tzrSuSPCnJw5Ocl+RLSW5L8oHW2vE51lnaPQEAAAAAAAAAQBd86yO3vQAAACAASURBVB8AAAAAAFiqQ3VOKpWWtuNYAUbAtAa9c6cMRhO4CAAAXamqRyf5G0meMnz/5iQPGhlyW2vtUXOoc0mSVyd5UZKLJoz5QJJfaK39zlnWekGSH0nytAlDvlpVv5XkJ1trf3EWdZZ2TwAAAFvb+e+7AAAAAAAwD35NBAAAAAAALFWveun3BjkqwAiYo37v3KnGrdehBXcCAACMqqqnJ/nxbIahbRnoNed635HkDUku3WHoNUmuqarfSPKDrbUjM9Y5L8mvJXnxDkMvSvJDSZ5fVS9rrd04S51hraXcEwAAgPAzAAAAALrk0yngNMFoAAAAAADA0vV7504VjLbRE2AETGcwdTCaP5ECAMCSPSnJs5dRaBjC9rtJRj9QaEk+muQzSS5I8uQkF4+c/9tJHlxV391aOzVlnbUkv5XkO8dO/XmSjyX5WpIrh7VqeO6hSd5eVc9qrf3hqt0TAADAzmrnIQAAAAAAMAe9rhsAAAAAAAAOnv7UAUYbC+4E2C/6a9OtKxs96woAAKyIe5PcOq/JquoRSW7I/QPE3p/kG1prT2mtvbC19uwkj0jyiiTHR8b9L0n++Qzlfi73D0U7nuTlSR7RWnvOsNbVSZ6Q5IMj485J8rtV9bAVvCcAAAAAAAAAAFgJgtEAAAAAAIClG0wdjLa+4E6A/WL6dUUwGgAAdOB4kv+W5N8m+cEkVyd5UJK/N8car05y4cj+B5I8q7V28+ig1tq9rbVfSvLCset/pKou36lIVT06myFko763tfavWmv3jdW6Kckzc/9wtIckuX6nOkNLuScAAAAAAAAAAFglgtEAAAAAAICl668JMALmq98bTDVuvQ4tuBMAAGDMG5M8uLX25Nba97fWfrW19tHW2vF5FaiqxyR52cih+5Jc11o7Numa1trvDns77ZxMF1h2fZLRDyze0Fp7+zZ1jia5btjTaf/7MGBtoiXfEwAAAAAAAAAArAzBaAAAAAAAwNINeoLRgPnqT72urC+4EwAAYFRr7Y7twrzm5CVJ1kb2b2it3TLFda8Z239hVfUnDa6qQZIX7DDHA7TW/r8kvztyaD2bPW9nKfcEAAAAAAAAAACrRjAaAAAAAACwdP3eYKpxG4LRgClNG7hoXQEAgH3peWP7r5/motbazUn+aOTQ4STP3uaS5yQZ/cfHB1trn5qqwwf29Pwdxi/rngAAAKbUum4AAAAAAIADQjAaAAAAAACwdIPe4anGrQswAqbUX5suGM26AgAA+0tVXZbkm0YOnUjy/hmmeO/Y/ndsM/bbd7h2O+/LZm+nPbmqHrrVwCXfEwAAAAAAAACshCabHxgSjAYAAAAAACxdvzeYapwAI2Bag960wWiHFtwJAACwZE8Y2/9Ea+3IDNd/YGz/G2ao9cFpiwx7+uMpay3zngAAAEb45SkAAAAAAN0TjAYAAAAAACzdYO3wVOMEowHT6k8djLa+4E4AAIAl++tj+5+e8fpbd5hv1OOXVGuZ9wQAADCl6roBAAAAAAAOCMFoAAAAAADA0vV7g6nGCUYDpjWYMhhtw7oCAAD7zVVj+5+f8frbxvYfUlUXjg+qqouSXHSWtcbHP2bCuKXcEwAAAAAAAAAArCKPQwcAAAAAAJZu0Ds81biNngAjYDr9KYPRBC4CAMC+c8HY/u2zXNxau7uqjiXpjxw+P8kdO9S5p7V2ZJZaW/R2/oRxy7qnmVXVpUkumfGyK8+2LgAAAAAAAAAAB4dgNAAAAAAAYOn6vcFU4wQYAdMarE0ZjNY7tOBOAACAJTtvbP/oLuY4mvuHiD1ogXVGbVVnnrV2uqfd+AdJrp/TXAAAAAAAAAAA8AC9rhsAAAAAAAAOnsHa4anGCUYDptXvTReMtlGeHQUAAPvMeIjYsV3MMR48Nj7nMussuxYAAMCUWtcNAAAAAABwQAhGAwAAAAAAlq7fG0w1bkMwGjClwZTBaAIXAQBg39vNL/VX+Zpl1wIAAAAAAAAAgE55HDoAAAAAALB0g97hqcYJMAKmtVGH0staTuXktuOsKwAAsO/cPbY/XRr79teMz7nMOsuuNatfTvLbM15zZZK3z6k+AACwSE3GMgAAAADd8ekUcJpgNAAAAAAAYOn6vel+zyvACJhWVWXQOzdHTt217TjrCgAA7DuC0c6u1kxaa7cnuX2Wa6pqHqUBAIDO+f/2AAAAAAAsR6/rBgAAAAAAgINnow5lbYfnt/Syll75UwYwvf7auTuO2RCMBgAA+83XxvYvmeXiqjovDwwRu3OKOudW1eFZaiW5dIo6W9Va1D0BAAAAAAAAAMDK8WsiAAAAAABg6aoq/bXx3+fen/AiYFaD3vbrSpKsW1sAAGC/uWVs//IZrx8f/9XW2h3jg1prX0kyfvzrzrLWeO+Tji/kngAAAAAAAAAAYBUJRgMAAAAAADox6J277XnhRcCs+r3DO46xtgAAwL5z89j+VTNe/+ix/ZuWWGt8vkXV2e6eAAAAAAAAAABgpQhGAwAAAAAAOtHfKRitJ7wImE2/N9hxjGA0AADYdz45tv+NVbX9hw73d+0O82137mnTFqmqw0m+ccpay7wnAAAAAAAAAABYKetdNwAAAAAAABxMg52C0YQXATPaeV1ZT1UtqRsAANhabf6f0h9N0h85/KbW2ufOct4rkvydkUP3tNb+xdnMuRe01r5UVZ/ImdCx9SR/M8l/mnKKp4/t/942Y38/yQ9sc+12viX3/87mx1prf7bVwCXfEwAAwJRa1w0AAAAAAHBACEYDAAAAAAA60ReMBsxZf826AgDAnvCSJD+XM78ov+FsQ9GSpLX22ap6YpLnnz5WVZ9prd1wtnPvAW/LmRCxJPm+TBEiVlWPS/LUkUNHdrjuxiRHkwyG+0+rqse11j41RY/Xje2/bYfxy7onAACAEcLPAAAAAADoXq/rBgAAAAAAgINpsEOA0UZ5vgswm4HARQAAVlxV9ZL89OndJLckedkcS1yX5Nbh3JXkZ+c49yr7jSQnR/afX1WPmeK6fzy2/+9aa8cmDW6t3ZPkrTvM8QBV9dgkzxs5dCLJm3e4bCn3BAAAML3qugEAAAAA9rkmtx8YEowGAAAAAAB0or9jgNGhJXUC7Bc7ryuC0QAA6NyzklyRpA1fPz4M25qL1tqRJK8aOfTYqvq2ec2/qlprtyR548ihQ0neUFX9SddU1XdlM0jutPuSvHqKcj+V5PjI/nVV9dxt6vSTvH7Y02mva63dul2RJd8TAAAAAAAAAACsDMFoAAAAAABAJwYCjIA522ld2bCuAADQvZeObH+ktfa2eRdord2Q5CMjh/72vGvMqqoeUVWPGn8luWxs6PpW44avi3coc32SO0b2r0nyrqp63Fgv51TVy5P89tj1P99au22ne2mtfSbJL44dfmtV/XDV/VPeq+rxSd497OW0r2T6sLKl3BMAAAAAAAAAAKyS9a4bAAAAAAAADqb+jsFo/owBzGbndUUwGgAAnfv2ke3XLbDO65JcnaSSfOcC60zrD5NcPsW4v5bksxPOvTHJdZMubK39aVU9P8mNSU4HlF2b5Kaq+kiSzyQ5P8k3J7lk7PJ3JPmJKfo77VVJviHJdwz3N5L8yyQ/UVUfTXJXkkcPa9XIdfcleV5r7UvTFFnyPQEAAAAAAAAAwErodd0AAAAAAABwMA0EGAFzNlizrgAAsLqq6vIkF48cescCy43OfWlVPXKBtVZGa+29SZ6X5M9HDleSpyR5YZLn5IEBYm9J8uLW2skZ6pwczvdbY6cuzWb43ffmTDDdabcn+a7W2vumrTOs9d4s4Z4AAAAAAAAAAGBVCEYDAAAAAAA60d8hwGhDgBEwo77ARQAAVts3Dd9bkltba19YVKHW2p8m+fTIoSctqtaqaa29M8kTkvxKkju2GfqhJC9orb2ktXZkF3Xubq29OJshaB/aZuhXk/zrJE9orf3+rHWGtZZyTwAAANtrXTcAAAAAAMABsd51AwAAAAAAwME02DHA6NCSOgH2i53XFcFoAAB06pKR7S8uod4Xk1w13L50CfUmaq09asn1bk/yQ1X1iiTXJrk8yWVJjiT5QpKPtdY+O6dab03y1qq6Isk3J3l4ksNJvpzktiTvb63dN4c6S7snAADgIBN+BgAAAABA9wSjAQAAAAAAnejvFGDU82cMYDb93mDb8xuC0QAA6NaFI9tfXkK90RoXLKHeyhkGkr1nSbU+m2ThwWTLvCcAAID7q64bAAAAAGCfa3L7gaFe1w0AAAAAAAAH02CnYDQBRsCMBr3D255f71lXAADo1KGR7WV8d2+0xjlLqAcAAAAAAAAAAHDWBKMBAAAAAACd6O8QjLYhGA2YUX9tsO15gYsAAHTsnpHtS5ZQb7TGPRNHAQAAAAAAAAAArBDBaAAAAAAAQCcGa9sHo63XoSV1AuwX67WRjW3WDsFoAAB07Msj25cvod5ojT9bQj0AAAAAAAAAAICzJhgNAAAAAADoRL832Pb8eq0vqRNgP9lubdkQjAYAQLduHb5Xksur6qpFFaqqK5M8aovaAAAAAAAAAAAAK00wGgAAAAAA0Im1Ws+hOmfi+XUBRsAuDHqHJ56zrgAA0LGPJ7kvSRvuP3eBtb57ZPt4kv+2wFoAAAAcCG3nIQAAAAAAMAeC0QAAAAAAgM70e+dOPLchwAjYhX5vMPGcYDQAALrUWrsvyX9OUsPXj1XV5GTfXRrO+aPZ/MV6S/JfhrUBAABge034GQAAAAAA3ROMBgAAAAAAdGawNjkYTYARsBvWFQAAVtxbhu8tySVJXruAGj+X5NJshq8lyZsXUAMAAIADp3YeAgAAAAAAcyAYDQAAAAAA6Ey/J8AImK/t1pUN6woAAN17c5IvDbcryd+vqn8yr8mr6lVJ/o9sBq8lyZ9FMBoAAAAAAAAAsAe0nYcAB4RgNAAAAAAAoDMDwWjAnAlcBABglbXW7kvy49kMRWvD95+pqt+sqgt3O29VXVBVb07ysyPztiT/ZFgTAAAAAAAAAABgTxCMBgAAAAAAdKbfG0w8t9ETYATMbtvAResKAAAroLX2piRvz/3D0b43yS1V9dqqesy0c1XVVVX12iS3JHnRcK4M5/0PrbU3zLN3AAAAAAAAAACARVvvugEAAAAAAODgGvQOTzy3XgKMgNn1twtGs64AALA6/k6SP0jylJwJR7soySuTvLKqvpTkw0luTnLn8JUk5ye5IMnjk/xPSR4+PD4aiFZJPpLkpQu/CwAAAAAAAAAAgDkTjAYAAAAAAHSmvzaYeE6AEbAbg7XJwWgb1hUAAFZEa+3uqnpmkjckeV42A82SMwFnD0/yXcPXJDWyPXr925O8rLV299waBgAAgL/6pycAAAAAACxWr+sGAAAAAACAg2vQOzzxnGA0YDf6vcnBaNYVAABWSWvtrtba9yR5ZZKj2Qw1ayOvDI9t9crY2EpyLMmPtdae11r7y2XdBwAAAPuJ8DMAAAAAALonGA0AAAAAAOhMvzeYeG5DgBGwCwPBaAAA7DGttf87yeVJfjbJnbl/AFqb8Bodc+fw2stba/9i2f0DAABwUNTOQwAAAAAAYA7Wu24AAAAAAAA4uAa9wxPPCTACdmO7wEXrCgAAq6q19pUkP1FVP53kqUm+Ncm1Sf5akouSPGQ49KtJvpLki0nen+Q/J/mj1tp9S28aAAAAAAAAAGCOWuu6A2BVCEYDAAAAAAA6I8AImLd+79yJ5zasKwAArLjW2vEkfzh8AQAAAAAAAAAAHDi9rhsAAAAAAAAOrsHa4YnnBBgBuzFYmxyMJnARAAAAAAAAAAAAAABWm2A0AAAAAACgM/3eYOI5AUbAbvR7gtEAAAAAAAAAAAAAAGCvEowGAAAAAAB05vz1C7c83ksv/bXJ4UYAk5y39uD0JvwZ9Ly1By+5GwAAAAAAAAAAAAAAYBaC0QAAAAAAgM48ZOOhedihRz7g+JWDx6ffG3TQEbDXndPr57HnPvEBxy/deHguPvTQDjoCAAAAAADYK1rXDQAAAAAAgGA0AAAAAACgWy972D/KeWvn/9X+hesX56WX/XCHHQF73Ysf+vfzkI1L/2r/3N55+bsPf2WHHQEAAAAAAAAAAAAAANNY77oBAAAAAADgYPu6/pV59RW/nFuP3pxereWqwV/Pod45XbcF7GGXHnpY/tmjfimfPfo/cl+7N48994np9wZdtwUAAAAAAAAAAAAAAOxAMBoAAAAAANC5wdrhPOG8p3TdBrCPnNPr53GHv6nrNgAAAAAAAAAAAACAKbSuGwBWRq/rBgAAAAAAAAAAAAAAAAAAAAAAAADWu25gFlX1B8PNluR/ba3dvst5HprkLafnaq09cx79AQAAAAAAAAAAAAAAAAAAAAAAALuzp4LRkjw9m6FoSdI/i3n6w7kyMh8AAAAAAAAAAAAAAAAAAAAAAADQkV7XDexCdd0AAAAAAAAAAAAAAAAAwMHRum4AAAAAAIADYi8GowEAAAAAAAAAAAAAAAAwT034GQAAAAAA3TuowWjrI9snOusCAAAAAAAAAAAAAAAAYOVV1w0AAAAAAHBAHNRgtItHto901gUAAAAAAAAAAAAAAAAAAAAAAACQ5OAGo/3Pw/eW5ItdNgIAAAAAAAAAAAAAAAAAAAAAAAdZa113AKyK9a4bOAszLWVVtZHkYUmeneSfjpz643k2BQAAAAAAAAAAAAAAAAAAAAAAAMxu5YLRqurkNMOSfK6qdl1mZPvf73YSAAAAAAAAAAAA6FpVXZ3kiiT3Jrm5tfbpjlsCAAAAAAAAAADYlZULRsv9Q8vmMW4rbXj9p5K89SzmAQAAAAAAAAAAgLmoqn6Sh48cuq21NvFho1X13CS/lOSRY8c/mOQHWms3LaRRAAAADqDWdQMAAAAAABwQva4bmGDRn5RXkv+a5G+11o4vuBYAAAAAAAAAAABM45VJbhm+3pPk1KSBVfXCJDdkMxStxl7XJPmjqrp60Q0DAACwnwg/AwAAAACge+tdN7CF/5LJn6J/6/C9JflwkmNTztmS3JvkziQ3J3lPa+19Z9MkAAAAAAAAAAAAzNl3ZzPYrCV5XWtty+/SVdWFSf5NNh+O2oavGp4+fc3hJDdU1de31qb9rh0AAABMUDsPAQAAAACAOVi5YLTW2tMnnauqUznzpa0XtdY+v5SmAAAAAAAAAAAAYIGqapDkSTnzHbl3bDP85UnOz5lAtC8kuSHJiSTPT3L5cNwjkvzDJK9dQMsAAAAAAAAAAABz1+u6gV3weBEAAAAAAAAAAAD2mycmWcvmd+SOtNY+us3Yl+ZMKNr/SPKE1torWmuvHM7z/w7HVZLrFtYxAAAAAAAAAMCctLbzGOBgWO+6gRm9emT7zs66AAAAAAAAAAAAgPm6Yvjektw0aVBVPS7JVcNxLclPtta+dvp8a+3uqnp5kg8ND319VT2ytfYni2kbAAAAAAAAAABgfvZUMFpr7dU7jwIAAAAAAAAAAIA956Ej21/aZty3DN8ryV1J3jY+oLX24ar60ySPGB76xiSC0QAAAAAAAAAAgJXX67oBAAAAAAAAAAAAIOeObN+1zbhrh+8tybtbaycmjPvkyPbXnU1jAAAAsPnPUAAAAAAAWDzBaAAAAAAAAAAAANC9Gtne2GbcNSPb79tm3FdGth+8q44AAAA4YISfAQAAAADQPcFoAAAAAAAAAAAA0L27RrYfutWAqrosyVUjhz6wzXzro5eeRV8AAAAQ/7QEAAAAAGBZ1ncesrqq6hlJvi3Jk5NcmuT8bP+kzK201tqV8+4NAAAAAAAAAAAAZvCF4XsleeKEMd85sn1vko9uM98FI9tHzqIvAAAAAAAAAACApdmTwWhV9Zwkv5T7P/lyt48daWffEQAAAAAAAAAAAJyVT4xsX1RVz2mt3Tg25vuG7y3Jh1trx7eZ79Ej21+eR4MAAAAAAAAAAACL1uu6gVlV1Y8meWc2Q9FGw9DaLl4AAAAAAAAAAADQudbarUluyeZ32yrJL1fVFafPV9Urk1w7csnbJ81VVefl/g8evXW+3QIAAAAAAAAAzJcwIOC09a4bmEVVPSfJa4a7p8PNToej3ZPkziTbPQETAAAAAAAAAAAAVtW/zeZ35FqSK5J8qqo+nuTSJI/Mme/MHUvy/2wzz9Nz5rt1J5L89wX1CwAAAAAAAAAAMFd7Khgtyc8N309/uetPsvklsHe01j7fWVcAAAAAAAAAAABw9n4xyfcl+fpsfk9uI8nVORNydvqBor/QWvvzbeZ53sj4j7fW7l1MuwAAAAAAAAAAAPO1Z4LRqurKJN+UzS9qJckfJXl2a+2u7roCAAAAAAAAAACA+Wit3VdVz0ny+0kePzxcOfMw0UryO0munzRHVZ2X5Hty5rt2715YwwAAAOwvre08BgAAAAAAFmzPBKMledrwvZKcSvK/CUUDAAAAAAAAAABgP2mt/UlVPSnJ303y3CSXD099KsmbW2s37DDFdUkePLL/H+feJAAAAAAAAAAAwILspWC0S4fvLcnHWmu3dNkMAAAAAAAAAAAALEJr7XiSfzN8zep1SX59ZK6vzasvAAAAAAAAAACARdtLwWg1sv3pzroAAAAAAAAAAACAFdVaO5rkaNd9AAAAAAAAAAAA7Eav6wZm8IWR7bXOugAAAAAAAAAAAAAAAAAAAAAAAADmbi8Fo/33ke1HdtYFAAAAAAAAAAAAAAAAAAAAAAAwN6113QGwKta7bmBarbU/rqpPJnlCkqur6sLW2h1d9wUAAAAAAAAAAACLVlWPSPLoJBcleVCSaq29qduuAAAAAAAAAAAA5mvPBKMN/XyS1ydZS/LKJP+s23YAAAAAAAAAAABgMarq8iT/Z5LnJrl8iyEPCEarqm9J8ozh7h2ttX+5uA4BAADYX1rXDQAAAAAAwN4KRmutvbGq/laS70nyY1X1/tba73XdFwAAAAAAAAAAAMxLVfWS/EySH83mg0Rri2GTfq3+F0l+6vT5qnpna+3WBbQJAAAAAAAAAAAwd72uG9iFlyX599kMdXt7Vf10VV3QcU8AAAAAAAAAAABw1qpqI8nvJ3lVtn746aRAtM2Trd2c5D05E6b2krk2CAAAAAAAAAAAsEBbfWlqZVXVTw43P57kmiQXJ/mnSX6kqj6Y5KYkdyQ5Ncu8rbWfnmefAAAAAAAAAAAAsEuvS/KsbAagtWwGnL0vm2Fn9yX551PM8TtJnjHcfnaSn5l/mwAAAAAAAAAAAPO3p4LRkvxU7v+0y9Nf+jo3ybcNX7shGA0AAAAAAAAAAIBOVdUzk7w0Z74b9+kkL2mt/dfh+cszXTDaf0zyr4Zz/I2q6rfWji2mawAAAAAAAAAAgPnpdd3AHJx+KuZu1DwbAQAAAAAAAAAAgLNw/fC9ktyW5JrToWizaK3dluTO4e5GksfNpz0AAAAAAAAAgMVou00QAvadvRiMVnN8AQAAAAAAAAAAQOeq6qIk1+TMw0Jf0Vr7i7OY8qaR7ceeTW8AAAAAAADA/8/enYfZWdd3H39/ZyYLBAgh7Ci7yC7ghkUKCIorWhdcerkA1qV1aa1a21oRa/WxdXnaurUa3K2KIiAF2UFEWWSRgAghEEgCSci+LzPzff44Z545OZlz5pw525zJ+3Vd93Xu33p/x+BJZuY+n1uSJEnt0tfpAup0WqcLkCRJkiRJkiRJkiRJkiSpBV7I8MNOl2TmZQ3uVxqqtmeDe0mSJEmStgeZna5AkiRJkiRJkqTuCkbLzJs6XYMkSZIkSZIkSZIkSZIkSS2wT/E1gd81Yb81Jec7NWE/SZIkSZIkSZIkSZIkSWq5rgpGkyRNYCtnw0NfhoGNsP8bYN9XQESnq5IkSZIkSZIkSZIkSWqX3UrOVzRhvx1Kzrc0YT9JkiRJkiRJkiRJkiRJajmD0SRJnbfoWrjhTMjBQvvR78IxF8Axn+hsXZIkSZIkSZIkSZIkSe2zuuR85ybst1fJ+fIm7CdJkiRJkiRJkiRJkiRJLdfT6QIkSdu5TPjd+4dD0Ybc/y+wfkFnapIkSZIkSZIkSZIkSWq/p0rOn9HIRhHRCxxf0vVkI/tJkiRJkiRJkiRJkiRJUrsYjCZJ6qyVv4fVf9y2f3AzzL+4/fVIkiRJkiRJkiRJkiR1xuziawDPjIinNbDXy4Adi+cJ3NpIYZIkSZIkSZIkSZIkSZLULl0fjBYRkyLiTyPiHyPiwoi4JCKui4jrOl2bJKkGT/yy8tjjF7WvDkmSJEmSJEmSJEmSpA7KzAeAhcVmAH87ln0iogf4h6Ftgd9n5srGK5QkSZIkSZIkSZIkSWqd7HQBksaNvk4XMFYRMQ34G+B9wB7lw1R4r4uINwP/UmwuB56bmb4vSlKnrJxdeWzpb2HTMpgys331SJIkSZIkSZIkSZIkdc4PgI9SuAfufRFxRWZeU+cenwFOLGl/o1nFSZIkSZK2Z378SpIkSZIkSZLUHj2dLmAsIuJY4E7gAmBPCjeB1eoXwEzgQOB44MXNrk+SVIfVf6w8lgOw8PL21SJJkiRJkiRJkiRJktRZ/wqspvBp817g0oh4Vy0LI2L3iPg28BGGP62+CLiwBXVKkiRJkiYkw88kSZIkSZIkSZ3XdcFoEXEkcBPwDAqBaEM/cQ9qCEjLzLXARSVdr2t2jZKkGuVg9WA0gAWXtKcWSZIkSZIkSZIkSZKkDsvM5cAHGL43birwtYiYExGfBc4qnR8Rz4uIt0bE94C5wFsZvpduADgnMze382uQJEmSJE1Uo35sS5IkSZIkSZKkpujrdAH1iIipwOXAdIYD0WYD/w7cAEwBHqhhq0uBc4vnpze5TElSrTYsgoH11ecs/U17apEkSZIkSZIkSZIkSRoHMvO7EXEo8HEK98kFcAjw0bKpAfy2rJ0la/4+M69ufcWSJEmSJEmSJEmSJEmS1Dw9nS6gTh8ADmQ4FO0/gBMy81uZOQ/Yipk/qAAAIABJREFUWOM+NzB889dBEbFnk+uUpLFbNx9+fTb8fD+49hRYdH2nK2qdDQtHn7NxCWxe2fpaJEmSJEmSJEmSJEmSxonM/ARwDsP3xA3dM1cafjZ0D1yUzAlgM/D2zPx82wqWJEmSJEmSJEmSJEmSpCbptmC09zN8g9clmfnXmTlY7yaZuRaYV9J1RBNqk6TG9a+Ha14Ij18EG56AJb+C60+HR78HmaOv7zbrawhGA1gzp7V1SJIkSZIkSZIkSZIkjTOZ+R0K97Z9lUJA2lAAWrB1INpQ3yDwXeCIzPxeG0uVJEmSJEmSJEmSJEmSpKbp63QBtYqII4H9is0EPtLglnOBg4rnBwM3NbifJDVuwWWw/vFt+3/7NrjnY3DSj2DPk9tfV6tsqDEYbeVsmPnc1tYiSZIkSZIkSZIkSZI0zmTm48D7IuKjwAuLx9OBmcBkYCmwGPgNcF1mruxUrZIkSZIkSZIkSZIkSaPJ7HQFkrpB1wSjAccVXxO4LzMfaXC/0hvApje4lyQ1x2P/U3lswxNw7Z/CMRcUwtH2PAWip321tcL6GoPRFl4Oh5zb2lokSZIkSZIkSZIkSZLGqcxcD1xdPCRJkiRJkiRJkiRJkiYcQ9MkDemmYLQ9Ss7nNGG/TSXnOzZhP0lq3KJrRp8z+/zC674vh5N/Dr2TW1tTK214orZ5i68v/As2orX1SJIkSZIkSZIkSZIkSZIkSZK03fKTp5IkSZIkSZKkzuvpdAF1mFpyvqnirNpNLzlf04T9JKlxk3apfe4TV8DD/9W6Wtqhv8a33y2rYMOTra1FkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJktRR3RSMtrTkfPcm7HdwyfmyJuwnSY3rnTr6nFKPfKs1dbRL/4ba567+Y+vqkCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiR1XF+nC6jDouJrAMc3slFEzASOKOl6uJH9JKkpMmHT0tHnlVpxN6z4Pcx4VmtqarWBOoPR9n5R62qRJEmSJEmSJEmSJEkahyJiEvAC4GTgEGA3YGeAzDy9g6VJkiRJkiRJkiRJkiRJUtN1UzDab4BBoAeYGREvyszrx7jXuRQC1gDWAb9rQn2S1JhNy6B/Xf3rrjwO3jwIEaPPHW8GNtY+d/UfW1eHJEmSJEmSJEmSJEnSOBMR04C/Ad4H7FE+DGSFdW8G/qXYXA48NzNHnCtJkiRJkiRJkiRJkiRJ401PpwuoVWauAO4o6frniPpTgCJiP+BjFG4KS+CazBxsTpWS1IA1D4197ewLmldHOw1sqH3uQ//ZujokSZIkSZIkSZIkSZLGkYg4FrgTuADYk+EHgdbiF8BM4EDgeODFza5PkiRJkiRJkiRJkiRJklqla4LRiv695PxE4Ov1LI6IvYDLgBkM3yj2xeaUJkkNWjNn7GvvuwC2rG5eLe1STzAawLLftaYOSZIkSZIkSZIkSZKkcSIijgRuAp5B4T63HBqihoC0zFwLXFTS9bpm1yhJkiRJksaBNQ/DrefBlcfDbX8Bax/tdEWSJEmSJEmjyjGOSdq+dFUwWmb+CLin2AzgnRFxc0ScXG1dREyLiPcU1x5H4X0wgasz85ZW1ixJNVvzUGPrH/9Zc+pop3qD0R78v62pQ5IkSZIkSZIkSZIkaRyIiKnA5cD0ku7ZwHnAwcAR1BCOBlxacn560wqUJEmSJI0sE+7/LFzxLPjfo2H2pyAHO11V/dKPnnaN9Qvh2lPhkQthxT0w95tw7Smw4clOVyZJ0taW3Aw3v67w76TffQA2ryz0b1wCt78X/vcY+PUbYdkdna1TkiRJkjSu9HW6gDF4PXArMLPYPgm4MSIWAQ+XToyIrwGHAS8ApjD89MwAFgJvbVPNkrSt1Q/Bo98t/ABvn5cU2iOZcTxsWQVrH6m+323nwYFvgd4pza+1VeoNRlv4vzC4BXomtaYeSZIkSZIkSZIkSZKkzvoAcCDDD0H+D+BDmYVP00fEATXucwPD98odFBF7ZuaSJtcqSZIkSRry+3+EP3x2uD37fNi8Ap79pc7VpInt8Ytgw8Kt+9bPh/k/h8P+sjM1SZJUbumtcMOZw58jXHkvLP0tnHYVXHcarPpDoX/VffDElfDiX8OMYztXryRJkjSerX0E7v4IPPUb2PVoOOofYa9TO12V1DI9nS6gXpn5CPBKYBFbB53tA7ywZGoA7wJOBaaWzV0AvCIzl7atcEkqtex3cNXz4P5/gbnfgF+/Aeb/dOS5+70KXvkgvPiWUTbNwtN+BvubXW3r1BuMtmUlLPlVa2qRJEmSJEmSJEmSJEnqvPczHIp2SWb+9VAoWj0ycy0wr6TriCbUJkmSJEkaSQ7C3P/etn/urMKDwaVWuOtvRu7/3V+1tw5Jkqp5+BvbfoZw+e/gvk8Ph6IN6V8Dj36nfbVJkiRJ3WTT8kKeyPyLYeMiWHQt3PhyWH5npyuTWqbrgtEAMvN24ATgSgpBZzB8M1iWHJSNBXAN8LzMvLcNpUrSyO77Z9iyqra5Ox8GPX2wx5/Aq+ZUn7vsVnj0e43X1y4DG0fuP+lHldcs/EVrapEkSZIkSZIkSZIkSeqgiDgS2I/he+I+0uCWc0vOD25wL0mSJElSJSt+D5uWbdvfv8YHg0uSpO3bIxeO3P/gl0bu/+MXW1eLJEmS1M2evArWz9+6b2ADPPqDztQjtUFXBqMBZObizHwF8Fzg+8AiCjeEjXSsBi4GTsvMMzNzUWeqliQKT4NaeFnt83d+Rsn5oXDKKMFgj1UJFRtPBrdADow8tsN+sP/ZI4+tur91NUmSJEmSJEmSJEmSJHXOccXXBO7LzEca3G9lyfn0BveSJEmSJFUyuHlsY5IkSZIkSZJUi9veOXJ/pdBhaQLo63QBjcrMO4G3AUTEwcDTgZnAZGApsBi4PzMHO1akJJVa93jtc6fsDrsdv3XfnqdA307Qv3bkNYuvh80rYfKuY6+xHQY2VB7r2wFmHA+P/2Tbsc0rWleTJEmSJEmSJEmSJElS5+xRcj6nCfttKjnfsQn7SZIkSZIkSZIkSZIkqd0G1ne6Aqntuj4YrVTxCZmNPiVTklpr8fW1zz38b6Fn0tZ9k3aGE74At7975DXZD09cCQe+eew1tkN/lWC0nqmVg902rxy5X5IkSZIkSZIkSZIkqbtNLTnfVHFW7aaXnK9pwn6SJEmSJEmSJEmSJEmS1HITKhhN40NETAJOAvYH9gHWAk8Ad2fmvA6WJnXe6ofgtvNqmzv9SDj8QyOPHfou2O3Z8MvnjDy+6NrxH4w2UCUYrW8HmFQhGG2LwWiSJEmSJEmSJEmSJGlCWlpyvnsT9ju45HxZE/aTJEmSJE142ekCJEmSJEmSNMFllR9BVRuTtH0xGG0CiohvA29v0naPZeaBNV53D+AC4I3AbhXm/Ab4Ymb+rEn1Sd3l9nfVPvc5X4XeyZXHd3s2POO9MOdr2449ciFsWQ37vQoO/HPo6a2/1mbZsAge/m+YOwvWPw77nQUnfBEGN1de07sDTK4QjLZ5ZeFfsxGtqVeSJEmSJEmSJEmSJKkzFhVfAzi+kY0iYiZwREnXw43sJ0mSJEmSJEmSJEmSJEnt0tPpAjTubahlUkS8DLgPeC8VQtGK/gT4aUR8PyKmNaE+qXtsWQNP3Vzb3JnPg71OGX3ejCr3wM7/Kdz6drjljZ2LxV07D658Fsw+vxCKBrDwMvjFofDkVZXX9e4Ak2eMPJYD0L+u6aVKkiRJkiRJkiRJkiR12G+AweL5zIh4UQN7nUshYA1gHfC7RgqTJEmSJEmSJEmSJEmSpHbpqmC0iDg6Iq4vHtdFxJ5j2GOv4tqhfQ5rRa0TyM9GmxARpwKXAKV/HgncCVwEXAMsLVv258D/RERX/TcoNWTTMsjB0ecBzHx+bfN2OXz0OfN/Bkt/W9t+zTb7k7Bxychjd/1N5XV9O8HkXSuPr1/QUFmSJEmSJEmSJEmSJEnjTWauAO4o6frniIhK8yuJiP2Aj1G4hyuBazJrvWlFkiRJkiRJkiRJkiRJkjqr20Kp3g2cCpwCbM7MCmk7lWXmYmBLyT5/0cT6xosPAweN4XhD2T4JXFjtQhHxNOBiYHJJ9y3AUZn5nMw8OzNfAjwN+CCF/+2HvAr49Bi+Pqk79a+pfe7M59Y2b+casx0f/V7t126WgU2FULZ69e0MPX0wqUow2tUnQubYa5MkSZIkSZIkSZIkSRqf/r3k/ETg6/Usjoi9gMuAGcBQqNoXm1OaJEmSJEmSJEmSJEmSJLVetwWjvbrk/DsN7DO0NoA/a2CfcSkzl2bmvHoP4IyyrW7IzEdGudwFFG6iG/Ib4IzMfKCspk2Z+R/A2WXrPxQRB4zhy5S6z5Y6gtF2qzEYbfKM0ecAPFI147A1Fl8P/WvrXze5GIg2eXrlOVtWwYq7x1aXJEmSJEmSJEmSJEnSOJWZPwLuKTYDeGdE3BwRJ1dbFxHTIuI9xbXHUXgoZgJXZ+YtraxZkiRJkiRJkiRJkiRJkpqpa4LRIuJg4GnF5iBweQPb/QIYKJ4fFBH7N1LbRBAROwBvKuueNcqaZwBvL+naDLwjMzdWWpOZl7B1qN0U4Pz6qpW6VK3BaJN2gV0Oq21uzySGH+5bTS1zmmzBJWNbNxSM1jsVpuxeed7yu8a2vyRJkiRJkiRJkiRJ0vj2emAZhWAzgJOAGyNiIfDd0okR8bWIuA54CvgKsNfQEPAE8Na2VCxJkiRJ27UcfYokSZIkSZIkSapZ1wSjAUcXXxN4MDPXjnWj4toHS7qOaaSwCeL1wPSS9grg4lHWvAXoLWlfnJlzarjW58raZ0fE1BrWSd2tv8ZgtIPeAVHj23NEIUBsNIObatuvWXIQFlw2trWTZwyf73dW5Xn968a2vyRJkiRJkiRJkiRJ0jiWmY8ArwQWUQg4y+LrPsALS6YG8C7gVGBq2dwFwCsyc2nbCpckSZIkTQCGvEmSJEmSJKm1ssqPoKqNSdq+dFMw2gEl53ObsF/pHvs3Yb9ud15Z+weZuXGUNX9W1v5WLRfKzAeA20q6pgEvqWWt1NW21BCMtteL4JhP1LdvLcFoACvvr2/fRiy7HTYuGtvaSbsOn5/w+crz+secjylJkiRJkiRJkiRJkjSuZebtwAnAlRSCzmD40+lZclA2FsA1wPMy8942lCpJkiRJ+v/ftkmSJEmSJEmSpGbopmC0nUvOVzVhv9Ul57s0Yb+uFRGHAH9a1j1rlDV7A88q6eoHbqnjsjeWtV9Wx1qpO/VXCEabdhC86Fp4+b1w2tUwZWZ9+9YajLbgkvr2bcRT9bwdlIne4fPJMwphcSPpXzf2a0iSJEmSJEmSJEmSJI1zmbk4M18BPBf4PrCIwqftRzpWAxcDp2XmmZk5xifaSZIkSZIkSZIkSZIkSVJn9XW6gDpsKDlvRpBZadDaQBP262bnsvXjae7KzHtGWXN0WfvezKwnpeg3Ze2j6lgrdactFYLRpu4Je58+9n17agxGWzdv7Neo15qHRu7f63R4wXfhkv0qrx3YuHV70s4jz+tfO7baJEmSJEmSJEmSJEmSukhm3gm8DSAiDgaeDswEJgNLgcXA/Zk52LEiJUmSJEmSJEmSJEmSJKlJuikYbWnJ+QFN2G//kvNlTdivK0VEL/D2su5ZNSw9sqz9cJ2XnjvKftLE018hGK1S8FetemsMRlu/sLHr1GP1gyP3Tz+yEARXze4v2LrdO23kef31ZDFKkiRJkiRJkiRJkiSNbxGxM3BQSdfc8odVZuYjwCNtLUySJEmSJEmSJEmSJEmS2qin0wXU4fHiawDHRMTMsW5UXHtsSVcb04LGnZcC+5W0NwA/rGHdoWXtx0ecVdljZe2ZETGjzj2k7rKlQjBaX5uC0Z68srHr1GrBL2DJTSOP7XwY9IySybnfy7duT9pp5Hn9a+uvTZIkSZIkSZIkSZIkafx6M3B38bgdmNLZciRJkiRJkiRJkiRJkiSp/UZJpxlXbgU2AZMphKP9FfCpMe71lwyHwvUDtzRcXfc6t6z9s8xcWcO6XcvaS+q5aGaujYiNQGmi03RgRT37lIuIPYE96lx2SCPXlGpWKRhtUoPBaD113AO7+iHY5bDGrlfNyvvhV2dVHt/lmYXXXY+FlfeOMCFgxglbd/VOG3mv/nUj90uSJEmSJEmSJEmSJHWn3SncGwdwR2Yu72QxkiRJkiRJkiRJkiRJktQJXROMlpmbIuJm4Ixi14cj4ueZObuefSLiaOAjQBa7bsnM7TJdJyL2AF5V1j2rxuU7lbU3jKGEDWwdjNZgOhRQCL07vwn7SM3XXyEYra/B//RzoPa5lz8T3jwIEaPPHYvHflh5rGcSzHxe4Xy/s0YORnv9sm1rm1T+dlPUv3ZsNUqSJEmSJEmSJEmSJI1Pq4qvCSzoZCGSJEmSpO1U5uhzJEmSJEmSJElqsZ5OF1Cnzxdfk0Iw15URcWKtiyPiecAVwDSGn6z5+corJry3AZNK2nOBm2pcW55UtHEM1y8PU6uQfiRNEFsqBKNNajAYbbDO//tdewpsXNLYNStZcU/lsT1PhcnTC+dH/T3s89Lhsd4d4eSfweQZ267rmzbyfgajSZIkSZIkSZIkSZKkieXJkvPJHatCkiRJkiRJkiRJkiSpRapF8xvbL2lIVwWjZebVwI0UQs0S2Bf4VUTMiojnRUSUr4mC50bEN4GbgacNbQfcnJlXtKf6cemcsvaFmWN+tMtY1vn3kbYv/S0KRhuoMxjtqZvhqufDuscau265LWvgiSpvqUd+dPi8b0c49Qp4+X1w2lXwmvnw9NeOvK6vQmbi8jt9GpUkSZIkSZIkSZIkSZpI7is5P6hjVUiSJEmSJEmSJEmSJElSB/V1uoAxeBNwF7APhWCtPuAdxWNdRDwIrCiO7QYcBgyl6gwFqgUwHzi7jXWPKxFxInBUSdcA8O06tlhb1t5hDGWUrynfcyy+ClxU55pDgEubcG2pui0VgtH62hyMBrBuHvzqz+BldzV27dIaLt6r8vhuz4W9z9i6LwJ2PapwVNM3rfLYqvtg12Nqr1OSJEmSJEmSJEmSJGmcysyHIuJe4Fjg2IjYLzMXdrouSZIkSdJofOC3JEmSJEmSJEnN1HXBaJm5JCJeClwGHMjwbw+CQgDas8v6/v9ShkPRHgZenZlL2lHzOHVeWfvKzHyijvXjMhit+Gda159rRIw+SWqG/grBaJM6EIwGsOJuWHQ97P2ikccHByD7YfNyGOyHKbsDCTkAm5YV5vRMgh32hZvOgoENla91zCfGViPApF0rjy2+0WA0SZKkTtqyGnqnQU9vpyuRJEmSJEmSJGmi+E/gGxTuc/sU297nJUmSJEmSJEmSJEmSJEkTWtcFowFk5n0R8WzgK8DZQA8jP16ltC+AAeAHwAczc1XLCx2nImIa8May7ll1blP+v98eddawE9sGo62sswapu2ypEIzW16FgNIDrT4dD3gnP+TL0Thnun38J3PxnjdVVaod9x752z5Mrj/U3nKcoSZKksVgzF37zFlh2B0yeAc/8IBz9T2DwtCRJkiRJkiRJDcnMWRHxGuAVwDsi4sHM/NdO1yVJkiRJqsb7piRJkiRJkiRJaqaeThcwVpm5IjPfAhwJfAmYXRyKsgPg98DngWdm5ju251C0ojcApUlMi4HL69xjTln7gDrXl89fnpkr6txD6h6Z0F8hGG1Sg8Fogw0EowHM/Sbc9TfD7VV/bG4oGsC0et8iSkyZWXmskVA4SZIkjc3gFrjuVFh2O5CweTnMPh/mfK3TlUmSJEmSJEmSNFG8Gfg5hfvfPhsRV0XEaR2uSZIkSZIkSZIkSZIkSZLaoq/TBTQqMx8C/hYgInYC9gKGUnSWAoszc12Hyhuvzitrfzcz++vc44Gy9qF1rj+4rP2HOtdL3WVgA+TgyGN9DQajTZ4BG5eMPPbKB+Hej8PjF1XfY87X4NB3w4xnwQP/1lg95XY5onq4WS32fgksunrb/sFNje0rSZKk+i35FaxfsG3/Yz+Ew/6y/fVIkiRJkiRJkjSBRMSFxdPVwBoKD8A8AzgjItZQeEjokuJYrTIzy+8ZkyRJkiRpBNnpAiRJkiRJkiRJ6p5gtIjYG3heSdevM3N56ZzMXAusBea2s7ZuEhGHAS8s6541hq3uK2sfGxE7Zub6GtefNMp+0sSypcq9qJMaDEZ71mfgtndu23/gW2GXw+CFP4ErjoOVv6++z5XHNVZHJSdf3PgevVNH7h/Y2PjekiRJqs8Dnx+5/6lb2luHJEmSJEmSJEkT0zvY+lPoCUTxfBe2vfdrNFHcw2A0SZIkSZIkSZIkSZIkSV2hp9MF1OG1wM+Lxw+ATZ0tp2udW9b+dWY+WO8mmfkkcG9JVx/13XR3aln7ynprkLpKfwuD0fZ9OfSNsMeBfz58fthfNXaNsTr8QzD98Mb3qRiM5l8FkiRJbbd5+ehzJEmSJEmSJElSM2XJIUmSJEmSJEmSJEmS1LWyyt0P1cYkbV+6KRhtVwpPrwzgjsxc1+F6uk5E9AJvK+ue1cCWPy9rn1NjHYcDzy/pWgdc3UAd0vjXv77yWO+0xvbeYR940dUw/ajh9vNnwb5nDs85+Fx41mcau0699jy1edfsmTJy/+DG5uwvSZKk6gb74b5Pw1UvgGW3V57nTx0lSZIkSZIkSWqGaOIhSZIkSWo575uSJEmSJEmSJKmZ+jpdQB2WF18TeLKThXSxlwP7lLTXABc1sN8PgI8DvcX2ayPiGZk5Z5R1f1fW/klmmm6kiW1gQ+Wxvh0a33/3E+EV98HmlTBpOkTZfa09vXDU3xeOa0+FJTc1fs1q9n5xIaytWXqnjtw/4FuHJElSW9x6Dsz7/ujzBjZA346tr0eSJEmSJEmSpInroE4XIEmSJEmSJEmSJEmSJEmd1E3BaKVhaNM6VkV3O6+s/aPMXDfWzTJzTkR8Bzi32DUZ+HZEnF4p6CwiXg28o6RrM3DBWGuQuka1YLTeJgSjDZm86+hzDnhT64PRTrmsufv1Thm5f2BTc68jSZKkba17DOb9oLa5/esMRpMkSZIkSZIkqQGZ+Vina5AkSZIk1StGnyJJkiRJkiRJkmrW0+kC6nA3kMXzwzpZSDeKiL2AV5R1f7MJW58PrChp/wlwbUQcXnb9KRHxfuCisvVf8GY+bRcqBaP1TIZo81vxQW+DXY+tfX5fHVmUOx0Mr5kPvVPrr6uaSvsNjJjBKEmSpGZZOw/u/juGvx0fRf+Ys7clSZIkSZIkSZIkSZIkSZIkSZIkSZIkib5OF1CrzHw8Im4FXgA8MyIOy8yHOl1XF3k7W/9535eZtze6aWYuiIjXAlcBk4vdJwF/iIg7gUeA6cAJwB5lyy8H/qnRGqSuUCkYrXeH9tYB0LcjnHkHzPka3PXXleftfzbs+zLY5Qi4+sSR50w/Eo7/Aiy+HqbuDYe+Eybt0vyae6aM3D+4qfnXkiRJEmTCfZ+G+z4JOVj7OoPRJEmSJEmSJEmSJEmSJG13anzwpCRJkiRJkiRJqknXBKMV/Rtwccn5qztYS7c5p6w9q1kbZ+aNEfFnwLcZDj8L4DnFYyT/A/xFZg40qw5pXOsfR8FoAL2T4fAPwv5vgGtOgnXzth7/00vhaWcVzlfeX3mfTNj3pYWjlXqnjtw/sLG115XUHFtWw2M/gTUPwR4nw36vgOjpdFWSpGqW/hZmf6L+df1rm1+LJEmSJEmSJEmSJEmSJKlNDHmTJEmSJEmSJHVeVwWjZeYlEXEhcC7wyoj4CvDBzOzvcGnjWkScBBxe0rUZ+H4zr5GZV0TE0cAFwBuBGRWm3gp8PjN/1szrS+PewDgLRhuy477wqodhyU2w6FqYcRzsfQZM2W14Tl+1Gtv0S0+D0aTutXEJXH8GrJxdaD/wb3DwOfD8bxqOJknj2bwfjm1d/7rm1iFJkiRJkiRJkqStRMRBwHHAvsBOwJPAY8BvMnNLJ2uTJEmStl/R6QIkSZIkSZKkrlEtpcLYfklDuioYrejdwBrgg8B7gFMi4gvAZZm5rKOVjVOZeQtt+C1LZi4B3hsRHwROAg4A9gbWAQuBuzPz0VbXIY1LlYLRqoaOtUlPL+z9osIxkqrhbW36Z2XPlJH7Bze15/qSxm7Ofw2Hog155Ftw6Ltg9xM7U5MkaXRPXDG2dQajSZIkSZIkacW9cP9nYNNS2O14OOaT0Det01VJkia4iPg28PYmbfdYZh5Y5VqN3jBzUGbOq3dRRLwe+BDwggpTlkfEj4FPZObSBuqTJEmSJEmSJEmSJEmSOqqrgtEi4vqS5hpgZ+BI4JvF8QXAkuJYrTIzT29akSIzNwM3dLoOaVypFIxWNXRsnBgPNfZOHbl/YGN765BUv9mfGLn/8Z8ajCZJ49m6MWZaG4wmaTwYHIDsh94KIduSJEmSpNZZPQeufv7w7/EWXweLb4Azb4fo6WxtktQlIuJtTdwuKdxLtwpYBPwxM3248ugq3OjTGRGxE/AN4E2jTN0NeC/w2oh4e2Ze1fLiJEmSJEmSJEmSJEmSpBboqmA04FQKN2sNSSCKB8DTi0etN29FHXMlaewmajBau+6V7anwYfbBTe25vqTmmzsLTvh8p6uQJJXLhEe/N/b1AwajSeqgwS1w14fh0W8XPoC/z5lw4rdgysxOVyZJkiRJ2497/m7bhxstvxOevAr2fVlnapKk7vNtWndP27qIuAP4DvDjzPTGi5H9rNMFDImIXuDHwMvLhp4C7qYQencIcDzD91HuBVwaEWdk5q/bVaskSZIkSZIkSZIkSZLULN0WjDYSg80kjX/dHIzWM7nKYJvegnunjty/fkF7ri9pbHKw8tjkXdtXhySpdk9eDbe+fezrt6xtXi2SVItMWDsXVj8E93wUVt0/PLbwF3Dz6+CMGztWniRJkiRtVzavggU/H3ls8Y0Go0lS/WL5V3KCAAAgAElEQVT0KXXbicLDSU8FPhsR52Tm1S24Tid8GPjkGNY9B7iopJ3AhXWsvw14U53XrOeGl//D1qFoW4APAf+dmZuHOiPiSOCbwAuKXVOASyLimMx8ss76JEmSJEmSJEmSJEmSpI7qxmC0VtzwJUmt1d/FwWhR5W23WuhRM1UKRgOY/c9w9Mer1ympMx7+78pjBqNJ0vj00H82tn5gXXPqkKRaDGyC294J875fec6Smwqhabsc1r66JEmSJGl7de8nKo/NvxiO/1z7apGk7ld6E0RW6C9X/nS7keZmydg+wJUR8YHM/Er9JY4vmbkUWFrvuoj4WFnXDZn5SB1bbMzMefVetxYRcTDwwbLuN2TmpeVzM/MPEXE6cB3D4WgzgfOB97SiPkmSJEml2vTAcUmSJEmSJEmSthNdFYyWmT2drkGSxmSgi4PRqmrTL3Cn7FF5bPYnYJ8Xw+4ntqcWSbXZtBzueG/l8UnT21eLJKm6lffDgktg4xJ44n9rW7Pbs2H5ndv29xuMJqmN5n6zeijakCevNhhNkiRJklptzcMw58tVJrTpgUuSNDGcU3zdGfgEhXCroPBmeitwB/A4sBqYDOwGHAOcDOxdXJvAj4FfAjsAuwJHFuccwNYBaV+KiAcy8/qWflXjUETsALyprHtWJ2qp4HxgUkn72yOFog3JzA0R8Q5gNoX/NgDOi4h/rTPsTZIkSdL2LA15kyRJkiRJkiR1XlcFo0lS15r7jZH7+3Zsbx3N1q5feu52PPRNqxy08ej3DUaTxpsFFe/FLuib1p46JEnVzb8EbjkbBrfUvubUX8KcrwAGo0nqsHk/rG3eunktLUOSJEmSROF7tKwSfrZuHgxsgt4pbStJkrpVZn4nIp4BXEYhFA3gG8CnM3N+pXUR0QO8Gvg8cBDwBuCBzPxU2byXA/8OHEIhIK0P+AJwfJO/lG7weqD0qV4rgIs7VMtWiqFtry/r/txo6zLzoYi4BDi72NUHvAX4dHMrlCRJkrS16HQBkiRJkiRJkiRNKD2dLkCSJrwtayuP9e7Qvjpaok3BaL1TYY+TK4/P+Up76pBUuzlfrT4+sLE9dUiSKstBuPP9dYSiBTz3a7DvmZUDLg1Gk9ROS39T27wNC1tbhyRJkiRp9Aem5CCsmdOeWiSpy0XEjsAlwDOBfuDNmfnuaqFoAJk5mJk/B44Ffk3h3sDzI+IdZfOuAE4A7i7pPjYiXty8r6JrnFfW/kFmjpdfZp8JlD5x8beZ+cca136rrP3a5pQkSZIkSZIkSZIkSVLjskpMRbUxSdsXg9EkqdWeurny2KSd21dHK+x9RvuutcPe7buWpMY89hNY/rvqcwzOkaTOW/0grF9Q29xjPw1v7odnvKfQ7ttp5Hn9VUKBJamZNi2rfe6qByqPDQ7AxqWFw/BeSZIkSRqbdfNhxV2jz1td5fszSVKpTwFHUHha3ecy8yf1LM7MdRSCsJYDAXw5IvYom7MGeD2F4LWhW4pf0mDdXSUiDgH+tKx7VidqqeClZe0b61h7M4U/2yHHR8ReDVckSZIkSZIkSZIkSZIktYnBaJLUaouvrzy2R/n9lePUMz9Yof8D7ath8szq4+seb08dkkZ3/2dGn2MwmiR13rLbap971D9AlPwIoW/ayPN8f5fULqsfqn3uyt/DRbvCPR+Dgc2FvoHNcPt74We7wcV7FI6LdoHrTi98oF+SJEmSVLsFl1Ye65kE+50FR3wUdn5G+2qSpC4VEX3A24rNTcDnxrJPZi4F/qvY3AF4ywhzHgUuohCeBnDSWK7Vxc5l+GsHuCsz7+lUMSM4uqz921oXFsPxZpd1H9VwRZIkSZIkSZIkSZIkSVKbGIwmSa2Ug/DA5yuP731G+2ppxDM/CDvuv3Xfwe+A6eX3YLbQlN2rj1/1/PbUIam6zSsKwROjGVjf+lokSdsaHIDld8HS2+DWc0afP3k3eOldELF1v8Fokjptw8L65m9ZBX/4XCEcDeCuv4aHvw5bVg/PGdxSCDe/6jmF98vNK2HRdbBhUfPqliRJkqSJaGGFYLRdnglv2gynXArHfw5mHNfeuiSpO70Q2B1I4PZiwNVYXV1y/poKc64qvgbwtAau1VUiohd4e1n3rDFut39EfCsi7o+IFRGxOSIWF9vfj4h3RcRuY9j3iLL2w3Wun1vWPnIMNUiSJEmSJEmSJEmSJEkd0dfpAhoVEccBZwEnA4cAuwE7A5mZ23x9EbErsEuxuSkzF7erVknboaW3Vh475C+gd3L7amnETgfBS34Lj/0PrHkY9jwFDjh724CMVqoUvjFk4yJYvwB23G7u05XGp9UP1jbP4BxJar91j8GNr4BV99c2//APwWF/BTsdvO1Y304jr/H9XVK7bFo2tnUPfgkOOQ8e+U7lORuXwI8mFb7nzcFC3+F/C8f/W3u/D5YkSZKkbrB5JSy+ceSx/c9uaymSNEGUPrXuiQb3erLk/IAKcx4oOZ/R4PW6yUuB/UraG4AfjnGvg4pHqT2Lx5HAnwNfjIhvAP+UmWtH27AYpFYepvZ4nXWVz39GneslSZIk1SU7XYAkSZIkSZIkSRNK1wajRcQxwJeA00q7a1h6GvDT4vm6iNg7M9c3uz5JIhP++KXK4zOf275ammHHfeGIv+1gATW8xT9xJRz6F60vRVJlT/yytnkG50hS+932rtpD0Q4+B074QuXxSqG1/aN+lkeSmmPzGIPRAK44uoZJWfi+fsgfvwC7Px/2f8PYrytJkiRJE82qB+DXZ0P2jzz+tNe0tx5Jmhj2KTkf5Qlyo9qx+BrA3hXmrCg5n9Lg9brJuWXtn2XmyhZebxrw18DLI+K1mTnaL2x2LWuvz8x6f8m+pKw9vc71FUXEnsAedS47pFnXlyRJktRqhrxJkiRJkiRJkjqvK4PRIuIdwFeAqRRu3Cr9qXtSPT3nUgpPQzyAwg1HrwO+15JCJW2/MuG282D+TyvP8Qnp9dlhr9HnDG5ufR2SKltwGdx3QW1z+9cV3iujllxbSVLDNi2HRdfUPv+Ij1QfrxiMZvClpDbZ1EAw2lgtuNRgNEmSJEkaMue/4I73UvFDkjs+HWYc39aSJGmCWF1yfmSDex1Vcl7pySZTS843NHi9rhARewCvKuueNYat+oFfA9cC9wILgDXATsD+wMnA24A9S9YcBlwbESdm5mNV9t6prD2WP5vyNTuPYY9K/hI4v4n7SZIkSROA98NKkiRJkiRJktRMPZ0uoF4R8ToKNyLtUNoNzAfuYZTfJmTmIPDjkq6zml2jJLH0t/DItyqP90yCyU17EOv2Ye8zCv+7VdO7Y/Vxabwa2Aj3ng/XvQhuPQeW39npiurXvx5+9eo6FiRsWdWyciRJZVb9gbqe5Dn9iOrjvQajSeqwzcvbf815P2j/NSVJkiRpPNqwCO7+MFV/3rTfWT4cRZLGZkHxNYCDI+L5Dez11uJrluxbbu+SOU81cK1u8jag9AaUucBNde7xcWC/zDwtM/8lM3+RmXdn5sOZeU9mXpaZH6Hw8Nb/w9Z/ae4NXBxR9S/K8mC0jXXWB9sGo5XvKUmSJEmSJEmSJEmSJI1bXRWMFhH7AN8pNoduFvoqcEhmHgi8tsatLh3aEjilaQVK0pAnrqw+vs/L2lPHRDJ5Bhz0tupzRgtOk8ajTLjhTLjvU7D4Bnjk23DtKbDsd52urD6XH17/mk3Lml+HJGlkG5+sfe6h7x59zqQKn53pX1P7dSSpEf5bUpIkSZI6Z/7F0L+2+pyn1fMwFUlSiZuALRTujQvgqxFR91PiIuKNwEsYvsfumgpTTyg5n1fvdbrUOWXtCzOzjqfLQDEMbUkN8zZm5t8D7y8bOgF4cz2XrKe+BtZIkiRJGjP/CS5JkiRJkiTVqtpv6ev7Db6kiayrgtGATwA7UrjpaxA4OzPfl5mPFsdrfXu7g8INZAAzI+Kg5pYpabt3/6erj0/etT11TDTP/Xr18XXz2lKG1FRLboIlv9q6r38dPPTlztQzFmvmwvr59a8zzEKS2mfto6PPGbLvK0afM2n6yP0DG2FgU+3XkqSx8t+SkiRJktQ593+m+vikXWBPn1EnSWORmauByyncH5fAccBVEfH0WveIiHdSePjoULhaAt+vMP3MkvPfj6XmbhIRJwJHlXQNAN9u9XUz8yvAZWXdf1llSXkC6Q5juGz5mlFSTevyVeDoOg9TUyVJkiRJkiRJkiRJklSzrglGi4heCk9JzOLxucz82Vj2ysx+4I8lXYc3XqEkleidWn18ksFoY9LTV3383n8yAljd56H/HLn/0e+0t44hAxth6e2wcvYocduDsPxuWH4XzP7k2K61aenY1kmS6ldPgOw+Lxl9TrWg3y2rar+WJI3VlpWdue7CyztzXUmSJEkaL7ashQ0Lq8/Z9+XQO7k99UjSxPRhYGNJ+yTgDxHxtYh4UUTsUr4gIg6LiHdHxB3AfwGTGQ5Fm5WZs0dY83TgVIYfRnpzc7+Mcem8svaVmflEm6792bL2iRFR6Rcu4zoYLTOXZOb99RzA3GZdX5IkSRqfotMFSJIkSZIkSZI0oXRNMBpwIrALhd8WbAH+tcH9FpSc1/xETUmqSd/O1cerBUmoMcvu6HQFUn3mX9zpCoY9dQtcfgRc/Xy44li44SWwecW289YvLIz/8gT45bNhXqWHi49i87LG6pUk1W7tvNrmnTUXeqeMPm/yjMpjI/3dIUnN1r9u9DnHfKr5133oq83fU5IkSZK6yd0fGX3O017T+jokaQLLzEeBc4HBoS5gGvAu4BpgRUSsiIjHI2JRRGwAHgC+Cjyb4UA0gNuAD1W41Mco3D8YwKbi3hNWREwD3ljWPauNJdwOlP4SpRc4ssLc8qfQ7Fisvx57lrU79LQJSZIkSZIkSZIkSZIkqX7dFIx2aPE1gTsyc3WD+5Wu3+YpmpLUkMEt1cezvz11TETPKn+Abpm532xPHVIzrH6o+ngOVh9vhvVPwJyvw+3vhWteCOvmDY8tuhbu+Ydt1/z27bDq/tr2nzKz8tgmg9EkqS2eugWevHL0ec/5Mux0cG17TqoS9LvZz9VIaoP+9aPPOeafYJ+XNve6tbyfSpIkSdJEMjgAj/0EHvhC4fXhr1ef3zOp+d+LSdJ2KDN/BPw5sIatg86ieEwHnkYh/GpKSX8WjwCuAl6WmZWeMvA94LTicXKVeRPFG4DSJx0uBi5v18UzcxB4vKx7jwpzl7F1iBrA/nVe8oCy9pw610uSJEnabuXoUyRJkiRJkiRJarFuCkYrvQlofhP2K00a6WvCfpJUsGUtbBklDGKnQ6uPq7Knv7b6+IYn2lOH1AwLR7nH+q4Pt/b6y++GK4+DO95b+YNMj1wIW9YMtzevhCU31Lb/MZ+CVz4Ie/7pyOObltZXrySpfrMvKARfjib64LC/qn3fvmkQvSOPGYwmqR36a/yM5pTdm39t3+ckSZIkbS8GNhd+tnTLG+HuDxdeR3PwuTB5eutrk6TtQGb+BDga+AkwQCHsDIbDz0qPIQHMA96ZmS/LzFVV9r81M28qHne24EsYb84ra383s+1PNtxQ1t6hytwHytr13mxU/jSc8v0kSZIkSZIkSZIkSZKkcaubgtFKb+Cq8OnruuxWcu6nGSU1z5qHRp8z8zmtr2Oi2uWw6uNtv2dVXWfLavj9P8J1p8Md74M1D3eulg0Lq48/+CVYP8qccjkID/4nXH44/DAKxz0fg80j3O/++3+ATU9V329wM1y0S2Gf294JCy4rXGM0Ox8GR38cpsyEyTNHnrNp2ej7SJLGbu4smP3J2uYe8Ob69o6AybuOPLZ5RX17SVK9chAG1tc2d+bzmn/9lfc2f09JkiRJGo8e/L+w7Nba5z/99XDc51pXjyRthzJzQWa+CTgA+CDwY+BBYBmFsLT1wELgFuALwMuAQzPzws5UPD5FxGFA+ZNkZnWglPInOVR7mth9Ze0X1HqRiJgGHDvKfpIkSZIkSZIkSZIkSdK41U3BaKWpHfs2Yb+jS85N5ZDUPKsfrD6+x8mw6zHtqWWi2q1KsNzglvbVoe4zsAmuPRXu/wwsvh7mfAWu/hNYM7cz9fSvHX3Owsshc+u+wYHK829/D9z5ga3fi/7wOfjlCTCwsbi+vxAQ9+RV9dU7dxb8P/buOzyO8l77+PdRtST33jEYXDBgmunV9N4J7QQSckIaSU4K5KSQHt4USM9JQghJCL33YmxjbIPpxtjYYNx7r2qWtM/7x1jRSp6Znd2dmS26P9elS7tP/UkYbZu5Z9a1wcYe+AMnNAegsuOx3bvt0lMwERFPHf/2p2vJv51AyyBMGex3Q/p7lPdyb29S9riIRKylPvjYva6Eit6px3UZCBNfCrbmSydm/3daREREREQkXyV/BrH4ruDzLtkExz8EFT3Cr0lERLDWrrHW/t5ae6W1dn9rbX9rbYW1tpu1dri19nhr7TettS9YqzevXHy6w/0Z1toUB/iEyxjTF9inQ/NqnynPd7h/UhrbHQ+UJd1/11q7Lo35IiIiIiKSNr0UExERERERERERCcrv3TS90yYirQopGG357u8GOMQYU57pQruvADkkqWlONoWJiLSzfYF3335fgJM7HrcoaUs0evdtmxdfHVJ4Vj8LW95t39a4AT7+S27qaa5NPebNz8F9JXCvgRmXwxP7wEPdYdr50LC+bVztcnjmAFh0h/s6OxfDA1XOOveXw0M9iOyl4dH/hhFXtt2v7OM+rtHv4tciIp2UTcB734FH+8GD3WHm1dCwIfW8dmtYJxQziP4nwakvQ79j060UKnq6t+9SMJqIRCzI8+hWXfrCmW9D/xP8xw04GQaeAme+BYPOSL3uxleD1yAiIiIiIlII1k+H5yfAg1Xw/BGw+F/+n3smG3oRVAYIpRYREckBY0wp8MkOzXfmoJQraH+85jpgvs/4F4Dkq0QcbYwZE3Cv6zrcfyzgPBERERERERERERERERERERGRvFBIwWiv4RzoY4Eq4Er/4b6+nHR7XdxXfxSRIle71L192CUw4Y9QVh1rOUWpxScYrWEdbHjNCRUR6cgrAG3+L+Oto1U6gQ4Ayx+C2iXQUgernoJJxzvhN4lmeO7g/AgGPO5h2Pvq9m2ewWiboq9HRKTQvP9DmPcz529k8w5Ydi+89knn731Qu7bAtrnBxp46NbNQNIDy7u7tTdszW09EJKjmuvTGdx0Bp06DM9+BkZ+B0qr2/RW9YP9vObd7H+YEmk98yX/Nxf9IrwYREREREZF81FwHa6fA/NvhpRNg81uQaILNb8Ksa4Ov02NcdDWKiIhk72xgUNL9HcBDcRZgjBkAfLdD81PWen8AZK2tAx7u0HxzgL1GARclNTUD9wYsVUREREREMmZyXYCIiIiIiIiIiIiISFEpmGA0a20jMBnn0wID/NQY0zPddYwxxwI34ASsWeDRMOsUEaFulXt7zV7x1lHMEj7BaACTjoFn9ocdi+KpRwrHmhdyXUF7zTuzm7/jIyc8Z+YnnBCcXOsyAAafuWd7ZV/38QpGExFpz1pY/Pc929c875yUGlTjxvBq8lNS6d5um+LZX0Q6r3QDhlv1PgSOvAMuWg0T/gT7fBr2/184/XXodVD7sQNPgarB3mst+ltmNYiIiIiIiOSLJffAgzUw5RR49+vZrVU1KPUYERGR3Lm+w/37rbUZvclojBltjDkvzTkDgaeBAUnNu4BbA0z/AZD8wct1xpjzffbqAtwFVCQ132mt1QE0IiIiIiIiIiIiIiIiIiIiIlJQCiYYbbef7v5ugSHAi8aY/kEnG2NOBp7E+bkN0AL8KuwiRaSTW/+ye7vfCdWSnpYUwWgA2z9M70r2IjYR/56ZBjokm/NdWJEnOa9H/g3KavZsr+jjPr5xoxMCJCIijpYGqFvp3jfvp+7tbuIKRiutcG9v2RXP/iLSeWX7PLqiJ+z3eTjqTjj4Z9B9P/dxPcf7r7Ptg+zqEBERERERyZUdH8Nr14S3XjeP11UiIhIqY0y5MeZYY8wnjTFfNcZ8zxhzS67rymfGmAHAOR2as7nqwSDgSWPMHGPMTcYYzwdBY0w3Y8yXgNnA4R26f2KtXZxqs91jftuh+WFjzJeMMe0+qDHGjMW58OwxSc2bgB+m2kdERERERMJQRMfD6theEREREREREREREckDZbkuIB3W2teNMfcDV+B8anA4sMAY82vgQZwrKbZjjCkFTgL+G7gMJxCN3fN/a61dGn3lItJprHwKbIt7X9WQeGspZt32g4a1qcdtmAk7l0LXEVFXJMWgcRN06RfvnmEEo4Vt0Bmw5oX05/U/CYac695X6RGMlmh0AoBqhqW/n4hIMWre6d238ong6wQNRus9Ifiabko8gtESCkYTkYi1xPQ8OpEilPuZcXDFLigpj6ceERERERGRsKx4LLy1ugyEASeHt56IiOzBGHMc8A3gdKDSZciPXOacCVy+++5ma+03oqswr11L+2Mk51pr3whh3QOBnwM/N8ZsA+YCG4EdQFdgGDAe9+Mz/2qt/XEae30LGAectft+OfB74HvGmHd277kPcChtx0aCcyzlRdbaNWnsJSIiIiIiIiIiIiIiIiIiIiKSF0pyXUAGrgfexTmIxwI9gR8AH+z++g9jzHygFniRtlC01kuXvIpz0JCISDgSLfD6p737qwfHV0ux2/+m4GM3hXE8qxSF2mX+/fWr4qkjmV8ATi4c8H046Tk49Nfpzx3S8SLbSbru7d23+un09xIRKVapAjN3LAq2TtBgtNFfDjbOi1cwmm3Kbl0RkVSa6+LZp6Uh9Zj5t0Vfh4iIiIiISDZWPgEzroAZl8OyB533mGan8Vmbny4DYOJLUFJQ1+QTESkYxpgaY8w9wDTgPKALzvFvyV9e5gH/hRMM9j/GmPERl5uvPtXh/p0R7NEDOBa4ALgGuBA4jD1D0WqBz1prb0hncWttC07I3QMduvoDZ+IcF3kY7f89rAcusNZOT2cvERERERHJht9LNBERERERERERERERSVfBBaNZa+uBM4AptA86MzhXxEy+PxqooO0TBrv79ovAObsPGhIRCceGGf4hFFUKRgvNgInQbb9gY2d+ItpapDDUr4FnUxznXbcynlqSpQrAidOoG+GgH4AxsPd/QWWf4HMresNeV3j3Vw2Cnge6922ZnVaZIiJFLdXjwsongq3TuCH1mKohMPTCYOt5KSl3b2/Zld26IiKptMQUjDbo9NRj5v4IapdHX4uIiIiIiEgmFv4FXrkQlj8Ayx9yPjd7at9w1h56IVy0BnqOC2c9ERFpxxjTHefCn1fgfna9dWlr67R2BfBs0lyfD3SLkzHmWGBMUtMu4N9ZLjsf+BkwE6gPOOcj4NvACGvtHZlsaq3daa29AicEbZbP0M3A/wEHWGufz2QvERERERHJlO/LNBERERERERERERERSVPBBaMBWGs3AqcBNwMbaR981vo9+YvdY7YB38EJRdseW8EiUvzq18Lkk/zHVPSKpZROoawaTnkZ9roy2Pj6dZGWIwVg8T+gaZv/mGnnwaTjYfM7sZQEQPPO+Pby0n00HPhDOPT2trbKPnDaazDk/NTzB50Fp02H6qH+4/oc6d6+a2vwWkVEil2qx4WVjwdYow5mf8u7v2oIDLsETn8NyrumV19HJRXu7QkFo4lIxFoa4tlneICg7ZZ6+PB30dciIiIiIlJMtrwHLxwFD/WCF4+BdVNzXVFxshbm/TSatcffCsc97FxsRUREovIwkHz1qV3A3cCngetwD0vr6LGk26eFVlmBsNbOtNaapK/K3ccdZrPmOmvtd6y1xwFdcYLXzgE+C9wE3AJ8E/jM7vb+1trR1tpbs9179/4PW2uPBvYBLgW+DPwv8ClgIjDIWvsFa22Aq+iIiIiIiIiIiIiIiIiIiIjkhvW5zoBfn4h0LmW5LiBT1loL/NIY83vgSpyDt44DBtM+8G0LztUzXwDuttamSEUREUmTTcCUU1KPK62OvpbOpHowHHsvjLjKCbTys+xeGP1VnZzRmW16M9i4DTNg8kQ4+32oGRZtTdY64TVR2f9bcPCtmc/vvh+c+AQ8vhfULd+z/8i/wcjrg69X3t29vWlHZvWJiBSj5lr//g3ToWE9dOnv3r9zMbx8jvf8EVfDMf/OvL6OFIwmIrnS0hjPPj3GwD7XOUHLflY8Aof8Uq85RURERESCqFsFLx7thAwDbHzN+Zzn7LnQdUROSys6OxZC3Yrw1z301zDmq+GvKyIi/2GMuRQ4lbYLgr4GfMJau3J3/14Bl3q+dUlgvDGmq7U2D67eVRystQngw91fce+9BFgS974iIiIiIuJHxwyIiIiIiIiIiIiIiISpJPWQ/GatbbDW3mWtvcpaOxwoB/riBKRVWmv7WGvPs9b+QaFoIhKJ9dNg2wepx5V2ib6WzmjgqVA1xH/MO1+Dl06AXVvjqUnyz8rHUo9p1bQtvfGZaqmn7Tj2DvqfCD3HZ772qC9nF4qWbNhFe7aVlMPQC9Nbp6ybe3vz9vRrEhEpVs0BzkV6dIBzAnGylgaYfhk8ORK2L/Ce2/vw7OrrSMFoIpIriZiC0QCOvBOOugtGXOM9pnYpbJ0TW0kiIiIiIgVt6T1toWitmmth3k9yU08xC/JeUyb6TIhmXRERSfbtpNtzgdNaQ9HSYa1dC6zffbcEGBtCbSIiIiIiIiIiIiIiIiIiIiIiIpHL+2A0Y8x4Y8w3jTF3GWOe2v11lzHmJmPMIR3HW8dma+1aa21TLmoWkQCshfUzYNkDMP82ePtrMOMTMOk42PxurqtLz6a3go0zugpUJEq7wJF3QFlX/3EbZsDsbwVbc9sHMP92mPtTWDfN+fcqha28e3rjg4QdZqu5zrvvsN/BGW9AWU1ma48L+G890FrfgV6Htt03pTDh/6CyT3rreP03aNqReW0iIsWmuTbYuLe+1P7+3KxeMQcAACAASURBVB/DiodTzxt6fvo1+Skpd29P6KW4iESsJcZgNFMC+1wHx9wNl2xyng+7WRFDuLKIiIiISDHYMtu9fdGdkGiJt5ZiZyP4fVb2hT5Hhb+uiIj8hzFmEHBwUtON1lqfD5dTSr6iyn5ZrCMiIiIiIiK+iul482L6WURERERERERERESkUJXlugAvxphDgV8Dx/kMu9UYMxP4mrU2YDKRiOSNqafveUV4gJ2LoPceuYf5a/ZNua5ABp8F586H5w6Gxk3e45beAxP+5JzY7mXxv+D168E2t7Xt+1knCMpvnuS3qiHQtD34+KDBNNlI+IQ5lFZCaQUMvRiW3p3+2l0GZl7XHmv1g9NnOiGB9Suh/4nQbd/01ynv5t6uYDQRkTZrng82buXjULcKqoc44UAf/j7YvJq9M6/NTUmFe3tiV7j7iIh05PdcOkqVvZ3nw+um7Nm3/uXYyxERERERKUjL7vPu27EQeoyJr5ZiF8VnHWO+DiUegdEiIhKWo3d/t8AKa+0rWa63Oel2mle/EhERERERERERERERERERERERyY28THgxxlwATMcJRTNJX/8ZkvR1HPCKMebCuOsUkSwY4wQVualbFW8t2Zj701xXIK2qhzrhZX6ad0Ltcu/+ho0w69r2oWgAH/8V1k/PvsZcsNYJe5t+Kcz6NKybmuuKcqPjf9NUmndGU0cy32C0Ls73CX+EwWenv7Yxqceko7QLDD4DRl6fWSgaQJlHMFqzgtFERP5jyb+Cj318KNxfCQ90Cf63NOzHBwWjiUiutOQoGA1gyLnu7dvnx1uHiIiIiEgh8vuMBqBhbTx1dBZhf9bR/yQY87Vw1xQRETfJV8F6L4T1kh8QuoawnoiIiIiIiLgK+dgsEREREREREREREZFOLu+C0YwxY4D7gCqcTwbs7i9oH5Bmk766APcaY8bGW62IZKXaIxitvkCC0Rb/E+Z8N9dVSLIh56ces32Bd9+j/bz71ryQfj354L3vOGFvKx6BxXfBlNNg+SO5rip+zbVpjo84GM1a/zCHkkrne3k3OOkZuHg9XLgCjns49dp7XRVOjWEr9whGa1IwmogIAHWr05+TTgDZ0AiyxBWMJiK54hcy3KrbqGj27nmQe3vDemjcHM2eIiIiIiLFoH4NTDref0zjxnhq6SzS/WzET+8JcOpUKPV4P0hERMLUI+n29hDWSw5DawhhPRERERERERERERERERERERERkcjlXTAa8GecoLPW0DMDNAOvAQ8CD+2+3UT7kLQuwF/iLlZEslA91L29rgCC0da9DLOuy3UV0lFpJVywzH/Mtnnu7Rvf8J/XuCGzmnJp11ZYcHv7NtsC836Sm3pyqbkuvfFrX4JXPwlNYRxnnuTjO+CZcfBwb5h2rve40sr297v0c/5m1gxPvcegM7KrMSpewWiJRmhRgI6ICHXLo11/+OXhr1lS7t6eaAp/LxGRZH4hw63G/yyavbuP8e7b9kE0e4qIiIiIFINFf0/9/ofXZziSmbAuAlPRG059OZy1REQkiC1Jt3t4jgpucNJtJfuLiIiIiIhExua6ABERERERERERkYKhd9NEJIi8CkYzxhwAnEBbIBrAbcBAa+2x1torrLWfsNYeCwwEftlhiWONMQfFV7GIZKVqiHt7fZ4Ho22bD5NPznUV4qVmOPQ4wLt/7WT39uUP+q+7a2vmNeXKmhed0KmOtsyGph3x15NLLbXpz1l6N7x8Tng1LPk3vPFZJyyhaSvsXOw9tqTSvd0vhAGg+1jY64rMa4xSeXfvvg3T46tDRCRf1a+Odv1hF4e/ZkmFe3tCgZciEjG31znJ+h0Lg8+KZu+qwVDmEfq75oVo9hQRERERKQab30495v0fgNXhTqFpCikY7bSZUFYdzloiIhJE8lXbxmWzkDGmEjg4qWllNuuJiIiIiIiIiIiIiIiIiIiIRE1HEYpIq7wKRgMu2f3d4Pyt+rK19pvW2i0dB1prt1prbwa+mDQeIIKzvUUkEtUewWi1y+KtIx02Ac/sn+sqJBW/4I91U6C5Q0iWtbDycf81mwowGG3bXO++qMNX8kmiyfnKxIYZsPAv4dSx6M7gY72C0co9AhhanfUOlHqE1OSaV3gEwKK/xVeHiEi+qoswHHjI+VDq8diSDQWjiUiu+AWjHfIrOOm56E7aNwb6Hu3el+p1pYiIiIhIZ7bysWDj1k+Lto7Owlp456vZr9PzQOiR4qItIiIStnd2fzfACGNMNn+ILwFa38xvBmZlU5iIiIiIiIj4MbkuQERERERERERERESkqORbMNqE3d8tMMta+8dUE6y1fwZm0vYpwhER1SYiYase7t5euxTq18ZaSmCvXJTrCiSI0V8B4/EQl2iEtS+1b9s2D3Yu8l9z1x4ZnfnP+uQhb37Hu6/YdAzCS9ebn4OmHdnXsf7lYONMGZSUevcPPse9/eD/B6Vd0i4rNlUDvfs26vh7ERHqIwxGG3hKNOt6BaO11Eezn4hIqxaPAMZ9roOxX08dKJytoRe4t2+bCzs+jnZvEREREZFC1aV/sHErn4i2js5i+YPZr1FaBRP+nP06IiKSFmvtEiD5Tab/zWQdY0wl8J3WZYE3rbVZfnguIiIiIiIi3nyO2y44xfSziIiIiIiIiIiIiEihyrdgtLFJt/+Zxrx/Jd3W5YpFCkWfCd59G6bHV0dQb34RVj2Z6yokiMrecJlPkNXG19rfX/9K6jU3vw2Jluzqituuzd59r14Fq1+Ir5Zcaq7Lfo2ns3x64RdS11FppX//Ptfu2WZKYa+r0qspbmU13n21S2HRXbGVIiKSl+pWu7cHPWnYiymF4Zdnt4aXknL39vrVkGiOZk8REXACr92UpHguHZah53v3KcRBRERERMRdz4OCjVt2f3rvqYu7FY+lHrPPdc7Fhrycvxj6HRNaSSIikpbWD08NcI0xxuVDYm/GmBLgDtofi5fyAqUiIiIiIiIiIiIiIiIiIiIiIiL5It+C0Xom3X4njXmtY02HNUQkn1UPga4j3ftWPxtvLal8+AdY+KfU40bd6N5+6G/CrUdSK6uGYZe69zVuan+/dlmwNVcV2Anua57373/js9DSEE8tudQcwkWv61fDlvcyn5/O7zlVmMOwS+HAH4Apc+6X94DjH4GaYRmXF5sDvufd9+bnockn0FBEpNg1bnBv73Fg5mtW9IITn4aqgZmv4aekwrtv5ePR7CkinVPtMnjn6zDtAvjgF9C0zX1cXMFo1UOht0fY+7vfiKcGEREREZFCYwNefKZhLWybF20tncH6qanHHPB92O8L7n09x0f3npKIiATxW2A9YHGOh7vTGPMzY0x1qonGmP2BF4Grd8+3wMfA/dGVKyIiIiIiIs7LNxERERERERERERERCUu+BaP1SLq9yXPUnrYk3e4WUi0iEof+J7q3L7kbts2PtxYvyx+Ctz0Cz5Lt9wXnq6ymfXtFbxh2cTS1ib+KHu7tHYOy6lcHW29ZAR0nvHEW7FzsP6ZuOaydHE89udRSF846S/+d+Vyv4AY3pSnCHIyBA78Pl22Fs9+HSzbC0Asyry1O1cO9+xKNsPLJ+GoREck3jRvd23vsn/5aB/4QLlgGF6+DwWdmV5cf32A0/U0XkZDsWATPT4AFt8OqJ2H2zbDmBfexqZ5Lh2nYhd59H/4uvjpERERERApF0GA0cJ77S3Ya1vv3Dz4Huo6A7qNgwMQ9+/e7IZKyREQkGGttHXAtkMAJNisBbgbWGGPuA9olWxpjPmGM+Z4xZjowBzgZ54x8AzQCV1prbYw/goiIiIiIiIiIiIiIiIiIiIiISFbyLRgtuZ40joxuNzbffiYR8TPodPd22wJL7423FjctjTDj8mBjD70deoyBiS/BgFOgsg8MOgNOmQo1w6KtU9yV1ri3L7sPWhra7q95Pth6yx/Kvqa4zPl+sHGrno62jnzQUh/OOvN/BS+dCJvfTn9uOsFoJV2CjSurgZ4HQElZ+vXkSnl3//7Vz8RTh4hIPvIKRut5AHTdN721qodCzXAoKc++Lj9+wWhL7452bxHpPD78LTRuCDa2JMZgtKE+wWhzvg86z1REREREpL20gtE6wWcXUSvzuZ5ceQ84LukzrxOegJHXQ9Vg6HkgHP5H2O/z0dcoIiK+rLUv4ASgtYajgXPB0MuBbyQNNcC9wA+AY2h/7FwzcL219p2o6xUREREREREdJyAiIiIiIiIiIiIiEqYCStIQkaI09EKo7Od+kvOmN+Kvp6O3bkw9xpTBCY9D6e4TsPseBae8FG1dEkyZRzAawGvXwnEPQMNG7yASN4nm/A+ishY2vR5s7I6Poq0lHySH4HV04Qp4PI3gwvWvwPOHOycMdRsFPcZBSWnqeQ0Bgxyg7W9JMSr3ORFLRKSz83o+UtkPDvohvHoNgQ+e83sOFCa/YDQRkbB89PvgY+N8Lt19LNSMgNqle/Y1bYX61VA9JL56RERERETyXaI5+NhNb4BNgNE10TLmF5h/4Qooq2q7X94Vjvxb9DWJiEjarLV3GGMWAfcAA2j/QUHybZN03+6+vxH4hLV2ahy1ioiIiIiIiIiIiIiIiIiIiARlfU6V9OsTkc5FRxKLSG6VVsKQc9z7ErviraWjXVtg0R3+Y4ZdAme+6f0zSG75hYKseBjq18DCP6a35s7F2dUUh4Z10LQt2Nh1UyDREm09udZS795eUgnVQ6H76PTXnHEZPDceHh8KG17zH7vkbnjp+OBrlxRxMFqZgtFERFy1NEDzTve+yj4w4iqYOAn2/qTTluqk4NiC0XxOsBURCUM6wQkQ73NpY5z3BLx0hhBqEREREZF02DQ+i7AtMP9X0dVS7KyFpu3ufcfcp4uYiIgUGGvtFGBf4CZgBU7oWccvkm5vAn4EjFQomoiIiIiISJxM6iEiIiIiIiIiIiIiIhJYWa4LEBGhZoRHRyLOKva06hn//qP+Cft8Mp5aJDN+oSA2AZvfhQ9/m96aDeuh+6js6ora9vnpjV/4fzD6S9HUkg9aGtzbS7s434+8C6acCi11zv2ybtC8I9jaDWth2rlw4Uooq9qzf+v78FqafydKizgYLeXJVjooREQ6qcZN3n2VfZ3vA09xvo7+p3N/1dMw7Tz3OWVdw63Pi1f4qIhIWLbOSW983M+lD/oRLLjNvW/yRDj+URh8DpRWxFtXoatfB6ufBowT+l3ZH/oeCd32zXVlIiIiIpKNdILRAGbfDMMu1vPApu2w5gXYOs+53f94GHiq//vtiUawHkHTNcOiqVNERCJlra0FfgX8yhgzCjgOGAb0ASqAjcA64FXgHWt17WQREREREZH46aWYiIiIiIiIiIiIiEiY8jEYrfXTgKOMMSMCzhmYfMcYczxpJGtYa18JOlZEolDi3rw+x/9rrn/Zu6+sm0LRCoFfMBrAO1+FXVvSW7N5Z+b1xGXHx+mNX/FQkQejeYS2tAaj9TsaLlgKKx+HkgoYdAa8cCTULQ+2/q7NsOY55wStjpY/lH69JZ04GG3ZvXDsPfHUIiKSTxo3eve1BqPtweM5NMT4WOLzstv41CciEsS2BfD8YenNifu5dFk19DkCNr3h3j/9Yuh9OEycBBU9462tUG14Faaesedr79IqJxx0+GW5qUtEREREspduMBrA0nvgwO+HX0uhqF0Gk0+BnYva2j78NfTYH058Grru7THP5/ON8u7h1igiIrGz1n4EfJTrOkRERERERCQdBXbhYOVti4iIiIiIiIiIiEgeyMdgNHDe9b8vi7kvpzHekr+/B5HOoaTUu2/Le9BrfHy1tLIWFt3p3b/3f8VXi2QuVTDajoXpr9m8I7Na4tS0Pb3xuQ4hjFpLg3t7aVXb7S79YN//brvf/wRY+u/ge0y/BHodDFtmZ1Zju7q6ZL9GvipLEYwGULsCaoZFX4uISD5prvXuy+RkVRPTgXR9j/LuswnY/hF0HxVPLVLcdi52Xp9tetM5kb5mBOx1BQw6LdeVSZTmfC/9OT3GhV9HKr0P8w5GA9j8FjzcC0bdCGO/ATXD46utEL1+vXsgeUs9vPl5GHIBlFa0te9cAvNvg6atMOBk2Ps6//eZwmQT8PEdsG4KVA2CkddDzwPj2VtERESkEGUSjLZ+evh1FJLZ324fitZq2wcw9ydwlMdnmR/83HvNIO/Ti4iIiIiIiIiISMgUNCYiIiIiIiIiIiIikq6SXBfgweIEnKXzZZO+0p0rIrmUaPbuW/FofHUkm32zf/+oL8ZTh2QnVTCal16HQLXHyepNBRCMlmjMdQX5xTMYzSeAbPSX098njFA0oKgPfggS7vPEcP/HBRGRYuT1WAVQUune3qWf95zyntnVE1R5ihNpJx0DW+fGU4sUr+0L4cVjYd7PYO0kJ4Bo8d9h6hmw+B+5rk6i0tIAKx9Lb06P/f0DG6My8jNgAgRxffR7eHos7Pg4+poKVd0q2L7Au79xE2yY0XZ/23znd7rwj7D0Hnj9MzDrusjL/I9Zn4I3PwfLH4QPf+v8rdroE5InIiIi0tl5BaMNvdB7zrrJ0OQSnNtZrHnOu2/Vk959i//u3ZdJCL+IiIiIiIiIiIgEoFOTRERERERERERERETClK/BaNA+6CzIVyZzRSQf2IR337Z58dXRauv7MP+X3v3jb3VOuJb8l2kw2vDLvYM+CiEYzS9cxUtzXfh15IuWevf20irvOX0mwMTJ0dSTSnmP3Owbh1KPcJ+ONsyMtg4RkXzjF+JpPA6Y63UodOm/Z3v1cOg+OrzaUjnmXu++xk3w4e/iq0WK08I/QcNalw4Lc26BhMeJ9ZKZDa/C5FPh8eEw5TTY/lFu6tj+oXdoQkemDIZfBqdMhZKyaOty0/tQmPDnYGNb6uCp/eC+MnhiBLx7EySaIi2voNStTD1m58fw3nfhXgPP7L9nMPjSfzt9kyeGGF7tYtt8WPKv9m3NO/zfTxIRERHp7Lye4w86E4Zd6j1v+sXR1JPvWhpg1xbv/saN7q+JU71OThV0LyIiIiIiIiIiIhnSKUoiIiIiIiIiIiIiImHKwdmCvpajTwNEOp/qwd599WviqwPAWnj2IP8x+3wqnlokBBnmf476Eqx83L2veWfm5cSlpTH1mI4aN0LZ8PBryQd+YTN+Bk6Eqyw0bIRH+4Vfl5eKnvHtlQvDL4flD/qPWXo3DDgxnnpERPJBwuOxqsTnsaqkFA64Bd76Uvv2A2/xDlOLQkUv//5Fd8CRf42nFilOfoGpdStg5yLoPiq+eopZ7XKYekbba566FfD84XD+IugS4/NhgI2zUo857mEYfonzOj7Ov3tu9v0MNG2Fd78ZbLxtgdplTohW3Qo49r5o6ysUfsH5rd64Idha66bCpOPgnPlQMyy7utwsvce9fcXD0LILSivC31NEJG47F0P9OqgaCDUjcv94KyKFL9Hs3m5KYdy3nedSbtZOckJvex0cXW35qHFT6jHN2/d8b6Z2qf+ckvKMSxIRkXgZY0qAA4DxwHCgH1CFc2xdPbAe51i794B51lodcyciIiIiIiIiIiIiIiIiIiIiIkUjr4LRrLUjcl2DiOTAwFO9++IOoVo7yb+/79FQNSCeWiR7iab05ww4Bcq7Qnk39/7mHdnVFIdEhsFoNcUajFbv3l5aFWx+l77Q71j/UI4wDTglnn1yZew3UwejLboTxt8afwCHiEiuZBriOeqLUD0Mlj/sBKUNuwyGnB1+fX7KquPdTzofr+dyrbYvUDBaWOb+ZM/X4M07YOm/Ycz/xFODTTjhYgtu9x93/GMw7ELndr6EtIz9BvQcD1NPT2/esvuhrBsc8WcwGYZ7F4uw3wNqroXFf4cDvx/uugArHvHue7AajrgDRipYX0QKVP1amHQ87Py4ra1mBEycBN32zVlZIlIEbIt7e0kZ9BrvP3fhn53nzJ1JkGC0Xdv2DEbbvsB7/MDTsqtJRERiYYw5AbgBOAvoEXDaFmPMM8Ad1toZkRUnIiIiIiIiPvLk+AUREREREREREZEC4Hf5N10aTkRadfKz7UQkL3TdB7qPde+rXx1vLUv+7d9/6G/iqUPC0fsw0v6Qud+xzvcyj2C0pgIIRmvJIBht1TPF+yoh07CZZIf+Gir7hlMPQGUfuHQzjPiv9u3DL4Phl4a3Tz7qcziM+3bqcW9/NfpaRETyRTaPVUPPh2P+BUfdFX8oGkBpgGC0RHP0dUjxSuzy7/c74VuCS7TAojvc+za/HV8dH9+ROhTtsN+1haLlm0GnwXkfpx7X0aI7YPbN4ddTaJprw1/TL8AsG37vDdgWeP3TMOMTsPLJzF6ji4jk0swr2oeiAdQuhaf2g6lnwcyrYd7PYPE/oH5NLioUkULlFYxmSp2Q4CP+4j1305vR1JTPGjemHtO0bc+22mXe4ztbuJyISIExxuxvjJkKTAWuAHriHPAQ5Ks3cA0wzRjzkjFGV5MQEREREREREREREREREREREZGCpmA0EckPh//Ovb1xY3wnkNathKV3e/ePuAb6HhFPLRKOLn2h33HpzRlxtfO9vICD0RIe4Sp+3r8F3voi2ET49eSaZ9hMVfA1+kyAs993Qmcm/F/2NV24Cip6wdH/gFNehkNug1OmwDH3Qkl59uvnu/E/hT5H+Y9Zfj80bIinHhGRXAvjsSpXygIEo+3aEn0dUrwSKV4PKhgtHDs+8u5bek98dSy7179/+GUw+sZ4aslUt5FwcQbPY+f/yvnqzKIIRtv6Pqx6Ovx1g9S6/EF45QKYdCw0bg6/BhGRKDRuhvXTvPvXPO88Xr/3HZj1KXh6f1jnM15EJJlfMBrAvp/1nrvjw+K9uIuXIMFou7bu2Va/yn1szwOdi1WJiEheMsZcDrwBnEBb2Jl1+Wrl1tc6byLwtjHmkrjqFxEREREREWj/sq3QFdPPIiIiIiIiIiIiIiKFSsFoIpIfqgZ79zWsjaeGN7/g3z/0wnjqkHAdez/U7BVs7NF3Q/fdF04u6+o+Zund8PK58PpnYOZV8PwEuNfASyfDR3+ERHM4dWcj0zDBhf8H614OtZS80FLv3l7aJb11qgbCPtfBfp+DYZdmXs/I/4bSSue2KYEBJ8LYr8GAk6GkLPN1C033FBcpt4loAgxERPKRZzBamo9VuVAaIBgtyIm8Il4Su/z7F98F9TG9Zixm9au9+6qHxVfH+lf8+/e6Mp46stWlL1y6FYZekN68d78JzxwAH/wCmj1exxSz5p3RrDvruvB/n+kEkm9+G+b9LNz9RUSiUr8mvfFNW+GN/4aER9iRiEiyVMFoAMc97D6muda5wFFnEuT9lOTPUFc8DrM+7f3cs/v+4dQlIiKhM8ZcBtwLVNM+EK016AxgA/ARMAsnQG0hsDFpTPI8gBrgPmPMRfH8FCIiIiIiIiIiIiIiIiIiIiIiIuFSMJqI5Ae/YLT6dfHUsPkt776KXumf0Cz5oXownL8k9bhzF8De17TdL+/mPXb1M7DoTlh2X9u/m/Uvw1tfgukXg83xVbISGQajAax6Krw68kUUYTP7fZ62Y9DTYMpg7Dcy37eY9D4s9ZiNr0Zfh4hIPvAKVymEYLSyAMFoq5+Lvg4pXqmC0QCePQC2L4y+lmK2a7N3X9O2eGpY82LqMT3GRV9HWCp6wPGPwYUr4eQX4OQXoXpo6nnb5sHsm2HyydAS4N9/MWmujWbdxk2wbnJ46zXXeb/O9LL0bif8WUQk39mm9OfsWAibXg+/FhEpPkGC0Qae4j1/w/Rw68l32+amHjPzCudiOfNuhekXOeHhXqqHhFebiIiExhgzGrgL5xi+5EC07cBvgHOAvtbagdbasdbaY6y1R1lrx1hrBwD9gPOA3wE7aB+QVgb80xizX9w/l4iIiIiISOeUwXHFIiIiIiIiIiIiIiLiScFoIpIfyrt797VEdGJsskQLNPgEsJ09B0rKoq9DomEM9D/Ru7/PkdB9dPu2yv6Z7bXqKVg7KbO5YfE6QXvM11LP/fA34daSD5Y/6N5eWpX5mgMnwvGPQNd93fv3vhaOfxR6HQymxDmxq9ehMPEl6D4q832LybCLU4/Z/mH0dYiI5IMoQjzjUtEn9Zg5342+DileQYKhGjfBgtujr6WYNW7y7mvaDk07o69heornh1WDoOvI6OsIkzFO+MCg02HQaXDwz4PP3fQ6vH9L2/1EMyz4DTw1Gp4cCXNuiS5ILFei/HnCDOls3Jj+nIb1sGV2eDWIiEQlkUEwGsCkY+GBKnjuEFh6f7g1iRSjXVth1vXw2FB44UhYck9685c/4sx7oBru7wIP9YQpp8HWAEFauRQkGK2iJ9Ts7T7u1auhYUP4deWr1c8HG/fGDfDet1OPq1IwmohInvoDUE1bIJoFfggMs9Z+zVr7nLV2i9dka+0ma+0z1tqvAsOAH+9eo1VX4PeRVS8iIiIiIiJJcnxhbRERERERERERERGRIqOUHxHJD6bECSlqqd+zr7ku+v2btoJNuPcd+TeoHhp9DRKt/b8FG1/d8+Q+UwKHuxwHXJ3FCSLv/A+cMy/z+dlqaXRvL6mEIefDqif95+9YBN1CDhxoroXtC5wTnHqMg5Ly1HOshdplUFIBjeudn8uUQvcxUN412L7rpoJtdu8rC7iGl2EXOV9294EMrX9DTIkTgNA6JtEMGCgpdV2m0wryd3X7gujrEBHJB17BaCUFEIwW5PGtvFt0+ydaYOfHUDMCSiuj26fQ1C53fu8VvXJdSfYSHs9tO1oT8IRxcecXjAZOEFTQ5+CZ2P5R6lCsUTcW/nPq4ZfBvFthW8DAig9+DqO/AmXdYNZ1sOKRtr65P3bCto74cySl5kRzhAF8YYaSZRKMBrBtPvQ+NLw6RESikAgQSuulpcH5e/vqlU7I87ALw6tLpJhYCy+fDRtfc+7Xr4LXrnHe+x5xRer5K5+EGZe2b0s0wtqXnJDC8xZClwwv/BI1r/fqTYfn+UPOgY/+iyAqkQAAIABJREFU4D528klw1pzCf22QSqIZapcEG7vkn8HG6bNOEZG8Y4w5FjiFtlC0HcDF1trJmaxnrd0BfN8YMx14FKjZve5pxphjrLWvhlO5iIiIiIiIpM/kugARERERERERERERkYJTkusCRET+o6zavT3VydFh8DupdeDp0e8v0Rt8JpwyFUZe39a297Vw1mzoM2HP8VVZBKNt+wAW3ZX5/Gx5hUeUdgkWTLL03vBqsRbe/xE81AOePxyeOwQe7gWLU5yos2MRPHsQPLk3PD7EmffiUfDCBHi4B7z3He8ww1YtDTB5ond/z4PS/3ncGON8lZQ6X6bDwQslZcV/klamDv2Nf3/jBmjcHE8tIiK55BWMVloAwWjgBBz7iSroeNXT8Gg/eHoMPNwb5t8WzT6FpHYZPHswPLEXPNwHpl8KzS7h04XC2uDhHLVLC/tnzbVUwWgtEQeWr3nRv7/7WBjz9WhriENJOZzxOhzwveBzHhsMD3VrH4rW6uO/wM7F4dWXa1G+/7Pjw/DWSvX/i5fXroGWLAKHRETi0PGiEpmafhE0RRh4KVLIts1tC0VLtvBPqeeufAJeucC7v2k7fOhyIZh8YVvc202Ha7kN9QlW3PYBrH4mvJrylVeIXDb6HB7+miIikq0v7P5ucMLRbsg0FC2ZtfYl4IakdQE+n+26IiIiIiIikg2beoiIiIiIiIiIiEgn4veOmd5NE5FWCkYTkfxR6hGMFvUJ2OAfjFbZJ/r9JR79joUj/wZXWefr6H9AzwPdx1YPzW6v1z8NM6+EObfArE/BWzfCpjedcIeotXgFo1VCWYBgtLUpQgmCaNoOyx+GF4+G97/f/oSn5lqYdZ1zEpcba+GVC50TxFz7EzDvZ/DKRZDwOJFq1xZ4Zpx3faYMBp8V6EeRCHUMkXOzPcQAAxGRfFXowWj73+zf31wb/nOgnUuc5wu7tjj3W+rg3W/AyqfC3aeQWAsvnwtb32ttcIKU3i3gMKl0TwTfMjuaOjqDXSmCnqIKrLIW1k6G2Tf5jzv+USitiKaGuJVVw0E/gstD+p1OPRO2vh/OWrnW4vE7GXENDL3IvW/Ul+Hof+8ZptFR4ybY4BJAkgm/95BS+eDn4dQgIhIVv1DakvL01nqoGyz+B9StzKokkaKz5G739g3Tne/NdbDqGVj4F/j4DicE/INfwJtfcl4HpzLvJ86FSVY+6f1+Q654BqN1uLBI/xOgvKf3Om/d6Px+Nr6R+gIqhSoRcjBajwOg6z7hrikiIlkxxlQC5+Ecy2uBR6y194e1vrX2PuARnHA0A5xvjCmSN9hERERERETyVYBjYkVEREREREREREREJDAFo4lI/ijzCEZrjiEYbcNM9/bSKu+6pLhVDc5+jWX3w9wfOycAfvQHeOEIeOMG7zCvsCQ8TnYqqYTy7qnnb5jhnHiVqR0fw7MHw4zLYNPr3uNeuRBWPLpn+5Z3vEPRkq16Eh4f6pzgnmzr+/DUaNi52Htu/+OhwufEKomH14lwyXYoGE1EOoFCD0YbcXWKATb8k7FXPOL+OLLS5blFZ7FjoftzqOUPxxPOGwWvwF8vk46B2mXR1FLsUgU9RfG6vLkOpp0HU06FlnrvceN/Bj3GhL9/rpVVhxPEvmMhPDse5t2a/Vq55hXAV1YDIz+9Z3tJJYz6Iux9NZw9Bw79DRz8/7zXn3SME6CRrWyC0Zb8M/v9RUSilGhyby+tgnM+gMN+l956sz4FT4+FVc9mX5tIsfB7LrFzKbx4FEw7F978HLzxWScEfPbNsPCPwfeYdR28coHzmcTOpVkWHCKv94NLOgSjlZTDvp/1XqduufP7efFI5+9M2CFi+SDdoPBUxvxPuOuJiEgYjgK60nbW/O0R7HFb0u2uwNER7CEiIiIiIiL/UaDH57gp1GONRERERERERERERKSoKBhNRPJHqUcAWUsMwWizb3Zvr+wb/d6Sn0orwjlJvaNFd8Ca58JfN5lXgERpJZiAD/0zLofaFentu+JxmHU9PLUf1C4JNmf6JdC0vX3b6ueD79mwFl4+t33bG5+Dxg3+8459IPgeEp0gJ6xtXxB9HSIiueYValoowWjd9oWj7/Yf4xV2k6l3v+nevvgf4e5TSJY/5N7euCH8YLq4JHalP2fqWeHX0RnsXOTfP/kkmHombPsgu32a6+CDX8K9Bh6sgdUBApnHfD27PfNZvxNCWsjCnO/C1gAB0/nMMyi0CgafDQf+AMzu0IyK3nDEn6H7KOd+j7Ew5isw9iYo6+q9x5ufgzk/SP/vYu0KeP+H8Oo1sOC21OO97FwU/mOiiEiYvILRSsqd5/2jb4QLlkPvCcHXbN4J086BZp8gVJHOxO/iJW9/xbnwR1i2vg/zfhLeetmwFmzCvc+U7tl2wHeDrbvkX7Dyiczryldef48ztc914a4nIiJhaA0ps8B8a+2ssDfYvWbyG3oKRhMRERERERERERERERERERERkYKhYDQRyR9lNe7tzREHo/mtr2C0zq0igmA0gI//Gs26rRIewWglXaBpR7A1Wuq8A0fcvP9jmH4RLP578DmtHhvS/v6cgCc8tdo0qy1MbddW2Pia//hDfw1d+qW3h0SjZnjqMTsXR1+HiEiueYWzlBRIMBrA3tfA2XO8+1sUApNThRrCk0kw2vb5xXlSfJQSzbAjRTAawJoX4JlxsG5aZvu0NMCU02D2TcHnnPScE1pdrEbfGN5aNgFLUoRU5rtUId8Hfh8uWg1nvQcXLHEPdzAGuo/232fuD2HaecHDJnYugUnHwPs/gKX3QO2yYPO8bP8ou/kiIlHyev5VUt52u2YYnDELzvnAeaze+9pga794ZPb1iRSD8h7efaueDH+/pfd5B5LFya8Gt2C08m5wWcDPM1Y/m1lN+cwGuKhIUGfNDn7RHBERidO4pNszI9xnhseeIiIiIiIiEjqT6wJERERERERERERERIqKjoAVkfxRWu3e3hJxMNr2D737uo6Mdm/JbyVl0ay76il444bgIWWtWhrg3ZvggSq41zhf086Hze/sOc5NaSU0p7Hn8gegfl3qcU3bYd5Pg6/bUfNOeKQ/bF8YbD83L5/lnFjVuAnnoto+Rn8lsz0kfIPPgZIUQRe7tsRTi4hIHFY8Ci8eC4/vBa9dC42bnfaWevfxpQUUjAZQ6RM8unVefHV0Vm4nkrd660vBA4DySSbBaABvfC7cOopd7dL0Trp/538y22fV07Dx1eDjS8qhz4TM9ioUA06GE55wgrxSPS8OYv4v8iP0IlOeId+Vbbe79IdeB0F5d+91uo1Kvdfal+D+CnjpZJj9LZh0HDw9FmZeDQ0b2o/96I9QtzL1mkFtXxDeWiIiYfN6ztjxccqUQI+xMPhMOOquYGtvfT/7cEmRYuD3PCYKLXVwX6nzecJTo2HK6bDx9XhrALAt3n1er2fLu0LPg1Kvvfjv0LQzs7ryVSLEYLRe48NbS0REwpR8MEqUD87Ja+sAGBERERERkUilOH5ZRERERERERERERETSomA0EckfZR7BaM0RB6O9cqF334G3RLu3dF4f/xWmnQvW50Pw5lqoXwstjU6YyDPjYP4v2wefrXoKppzaPlCsxedk8sHnpFdnkOCCjbO8T2APqnEDPD0KVj2Z+RpvfyV18NvZc8Hoimx5o7wrjEkRrLFrazy1iIhEbeVTMP1S57G1bjks+RdMPtkJsOkYwNKqtCreGrNVVuPdN+2c9ENhJT1+wWjLH4BZ18dXS1i8ntcC9DnCu69hLWz/KPx6ilX96vTGb3k3/d+vtbDwz+nNGXE1VPZJb04hGno+nLsArmiETzRkH5D26tXh1JULXmGI6f5Ouo8OPnb9y/DBz2HDTCewbNm9MOlYSCQFdyy4Lb39U6lfFe56IiJh8vpbbMq95xgD5y+Csm6p13/vO877nGEG/ohIcDs+grWTYMop8QcV+oUxG5+L1EwI+Dpi5hXp1ZPv0gmv9jP43HDWERGRKAxIuh3lA3Py2gMj3EdERERERER86dhlEREREREREREREZF0KRhNRPJHqUcwWkuEwWjN9U4whRtTCj0PjG5vkfWvwNb33fs+/D08PhweGwQPdIFnD4Cdi93H7toC837Wdt8rpKy0Cww63f8ko45ShSRsmAlTzwi+XipvfDbzuR//BRo3evefNRt6jst8fYnG+FvhyL979ysYTUSKxcI/ssdVQbfOgbUvwY4P3ed0HRF1VeHyej7fatl98dTRWfkFo4Hz+/cK4ctXXsEcAMc/5j939XPh1lLMEk3pz1nzYvCx2z6AR/vDusnp7XHwL9IbXwxKK+Hitf5j+h4NvQ/z7l/+UPQB81HxCkMsrUxvnT5HZlfHjoXZhXan0lwf3doiItmyHs8LUoVUdt0HznoXRv63/7il9zjvcz7SB5bem1mNIoUuk+ffrWpGtP/cqu/Rma3TXAvv/yDzOjJhW7z7/F7P9gv4M65+Bja/k15N+SysAMn9PhfOOiIiEoXkKwJE+YFo69oG6B3hPiIiIiIiIuLL50LaIiIiIiIiIiIiIiLiSsFoIpI/yjyCFKI8oXf7Au++IbqKusTg7Rvb/o031zsBA9Mvgbe/DLs2B1/no9+BtdC4GVo8TrIu6woVPeHw3wVft26F871ppxMuseRuqN99ov6urTDl9OBrZWvQWc7P4CXRBCufcu8rqYRe46OpS7JjDIz8FBzjcTJs07Z46xERiUJzLax5wb1v6hnQ0uDe131sdDVFoaTUCWL1svgfsZXSKZkUV5a1zbDi4XhqCYtfMFpZNVziE4q7bW749RSrTIIZ3v06rJnU/u9X7XJY/E+Yfzu89z2YcwtMvwyeGecfYOxmn09Dl37p11UMKnrB+UugenhSo4FDboOrLJz+Kpz5FvQ5yn2+bYF1U2MpNXRe/8+nCuPpaMDJ/q8dg9j4GmydC+/elNn8yj7efV6v2UVE8oHX84KS8tRzu42EI/8KVyZSj23aDq9eDa9/xnnusPAvsHVeerWKFKpMg9Eq+8L5i+HsOc7zwqssnDoNSqsyW2/xP8IL3woi02A0gIGnBttj3q3B68l3NoT/NsMvg0FnZr+OiIhEJTkJPspgtOQPW33ewBcRERERERERERERERERERGJj/W5loBfn4h0LmW5LkBE5D9KPYLRWiIMRtvxkXff3tdFt68Uhpq9YdsH0e6x/hV44Qg46i7nRMCtczJf66M/OoEkXrrt63zf7/PQ92j44JewzCOMqtUHP4e9roSZV7QFCZZUwPGPQeOG4P9/DjoD9v0c7PgQZn8r2JxkVYPg5Ged4IXnD/P+77LqSff28m7p7ynxqujp3t601XkFmyrsRUQkX+1cAlMCnsDbUfcx4dYSh9Iq76C3ja+Fs0ezAmVc+YWItdq5OPo6wuT3M5VUOOFoIz8Di/62Z79fCLa0l0kwQ2IXTD0dek+Ak56GtS/Ba9eGc/K+KYFRX8p+nULWdQScPRtWPOoEUvc/AfpMaD9mv8/Dplnu86edC1e2OL/LQpJodG8vqXRv91Ja6fx+5v8y81rm/zK7+We+67x2bdywZ5+C0UQkn4URUmmME9z07EGpxy66M3kijP8JjPt28L1ECpHNMBhtr6v2fI+0pNx5/37x3zNbc+Nr0P/4zOamK5tgtBFXO685UlnxMMy/DcZ+Pb3a8lEmr60O/TVU9HYueNPrEBh8lt5XFxHJb8lveGT4BCGQ5AeVAInHIiIiIiIikrGiOluzmH4WERERERERERERESlUBXZ2nIgUtTKPYLTmKIPRFnr3DT0/un2lMMR1Mv62eU44WjahaABv3whvfsG9r6wbVA1uu9/rYDjoR8HWfe7g9sESiV3w6lWwbW7w2o78Gwy7EPa/GboMDD6v1fArnO+lXeCs97zH1S51by/vnv6eEq9yj2C0RJOCA0SksE2emFkYVc3eUN41/HqitmuLf38YBwA278x+jWIUJDCuwSWgJ595hSRBW1BS70Pd+zfMgMbN0LQD5v8KZlwOb3wO1k6BFY/BrOth5lWw8M/Q4rNPZ5BNmNnmN+G9b8OsT4UTigZw6G+h9yHhrFXIKnrByOudUIeOoWgAe1/jP3/5Q9HUFSWv/xdL0wxGAzjw+9nVkqnSajjuQagZBv1PdB+T6rFSRCSXvAJTS9LMT+hxAHTdN83NLbz3XdiS5XukIvkuk2DiQWfA+B+79x3yi8xreekEePursPmdzNcIKqtgtP8K/nnNu9+ArWl8dpGvEhm8vhrzVdjnk3DAd2DI2QpFExERERERERERySt6v05EREREREREREREJF0KRhOR/FFW497eXBvdnhtmuLcPvRCM/kR2egMmQs1eua4iHN3H7HkSjNf/c0E0bYMVjwYb22N/qB7adn/8T9Pfr2pQ2+2SMhh7U3rzy7qlv6fEq8IjGA3grZhCCkVEwrbkHu/QzlQGnxVqKbHptp9/fxhhMC0N/v2ZnDxcDBIpfi8ADeujryNMiV3u7aYESnafON99jPf8R/rAM/vDu990QqI+/gtMOQWmXwyL/w7L7oM3Pw/TzocWj706g0yCGZItutP7v1W6zp4Lo/XcLxBTAsfc692/6O/x1RIWr39HJRXpr1VWA4f/Ibt60jXwdLhoNQy/zLlfWuU+bsk/FcgoIvnL829xmsFoxsC4b2VQgHX+TooUs3Sff5+/CE56zvviH5V9YNx3Mq/nw9/Ci0fB6ucyXyOIbILRSkrh8N/DmQED3J49EGwieG35KN3g6eQL44iIiIiIiIiIiEgeCuFikiIiIiIiIiIiIiIinYxSf0Qkf5RWu7e31EWzX3MtrJvi3tfzoGj2lMJSWgGnvuKc3Fzo+p+wZ1uXAdB1ZOZr7lwcbNywy9rfH3R6+sGD/Y5rf796SHrzyxWMlvf8gtEW3xVOkI6ISNze/Vrmc/f6RHh1xKnf8f79jRuz36Ol3r+/swYpNKf4vQA0boi+jjB5hZUlhyT1PAjfq+rWrUy9z9oXvV8bdgbZBqOFZcBE6Dku11UUlsFnevetnwq7tsVXSxgSHmFhJZWZrRd3yGjfI6GiR9v9Mo9gNIC1k6OvR0QkE17PCzIJqdzn03Do7VCV5vt4C26He03b19NjYdmD6e8vkq/Sef697w3QdZ89L3rS0Yirsq/p5bMh4RNeli2/EPNUwWiteh0MNSOCjV03Ndi4fJVu6PsBt0RTh4iIiIiIiIiIiIiIiIiIiIiIiIiISI4oGE1E8keZRzBac0TBaFvneZ+AMuTcaPaUwlMzHCa+AFc0pw76yGejvrhnmzEw7n+j3bd6KIz9+p5tIz8TfI0BE6HvUe3b0j2hsrx7euMlfuU+wWgA66bFU4eISFjqVkLD+sznF+rzjlFf8j+huW5F9nukCkZ7/TOdMzgh0ZB6TKEFjSY8gtFMedvtyj57PlfMxJoXs1+jUNk8CEYzpXDIr3JdReGp6AVDznPvSzTBmufjrSdbXv/Pl2YYjNZ1H9jryszrSVdplw73fYLRPvxttLWIiGTK629xSfn/Z+++49uq7/2PvyR5z9jZibP3TsgCwl6BkJCEUUZ7KWW1hZb2Fkq5LaW0QCfQ9Wtp6aXQCaVlBMIegbASRgIJIZNMZyfO9oot/f744uulc3SOdDT9fj4eesQ63/WxI8lHsr5vhT9ux+eD4f8NcyvhokMwMsrXIQ+ugrcuhvUPRTdeJNW4Of8edoOzfqUjoWJudPW09OaF1m0N1VC9Nfq5Qzaha/4sZ3P4fDDqe8767njJWb9UFbIJRivo2/p60WDoa/N/JyIiqSz02b/H+ny+k+JxAaYm8xsUERERERHpWEKRu4iIiIiIiIiIiIiIiGMO32UsIpIAAYtgtMY4BaPtsvi0+KxCKJ8YnzUlffkDMOSrsPuNZFfi3sAroWhA+LZBV0FuF9jwN9jymLfr9poJxz4A2cXt2ybfB6VjYNszkFMOeV3hyGY4srG5T04nE4o24iaz4aml/F7uaskKU4Oklqx8c1uorwrf3vK2ISKSykIh+PgOWP6D6Oc479P2v/vSRfkEOPsDeG58+PZXzzCbmMfeEf33GCkYDWDt76Df56KbP101OPi5WAVDpyqrjeBtgzkG/BfseSe2tVb/0oTpjrkNfB3scwSCNhvu46X76dBwxATbZZfCyO9A2djE15EJTpoHD1vcZivnQb+LE1tPLBrrwh/350Q/53F/hYOrYd+S6Odwyu8iGG1HBw5jFJHUZnW+GMtjMUB2EYy7C0pHwaZHoGYr1O02gdJOrbwbBl4RWx0iqcDp87KBV5jAM6dO+Bes+iXseBkKesPgL5sArU9+Cnvfg72LIs9R+SQc3tD67wnBBljyLVj3B1N7yXA44d/QabTz2sA+GM0uYL2twVebv2ls/BtseQLLjYaf/AzG/9RViSnF7nZy1jvmMXH/h+bvmcNvNM+tREQkXfmAh+O8RuizdURERERERERERERERERERERERNKGgtFEJHVkWQSjNcQpGO3DW8IfLx7S8TbCizN9zofes2Dr08mrIb+32TjoxrCv27dXzDaX6kp4sk/0tbU08jv2m458fhj2NXOJRmFfd/1zOkW3jiTWoCvNhq5wGmsTW4uISLQ2PRJbKNqEu6FooHf1JEPZOCiosA45WHEXFPY3m5mj4SQYrWppdHOns6CD35XVm+HQp1A8KP71eMEqsMvf5uWsQVfDe9fFvt7HPzQBAAO/GPtc6SSU4MC8S462/z+U6Pl8JsR77X3t27Y9A431EIgxzMZO/X7YuQCqt4AvC8omQOcpJlzcjVDQJgwxN/r6/Flw/D/gmRHRz+FUoG0wWl74fiIiqcwyGC07/HE3fD4Y8HlzafLSSc4/iOLAClj3J/M6Zl632OsRSRYnwWidp8Axv3Q3rz8bRt5sLi1N+o35d8VP4KPvRp7nqYFwSUPz+dyqe2DNb5vbD66CZ8fAJfXuHhu8CkYD6DPHXAAe7wG1O8P3O7QOige7mztVWJ0b+7KgoBdMvDex9YiISDwlIrTMIklUREREREREREREREREREREREQkdSn5R0RSR8AiGK0xDsFon/zcuq14qPfrSWYI5MIJ/4GTn4YRN1v0sbgde2Wayw+L7nIcdBrnrG9BBZy3wX1NbZ3+qn0omhfye5lAFad0v04Pg79s3Va3J3F1iIjEYpWDjctT/wyfOwwnz4fup5vfU2Nuh7MWwYgb415iQuR2sW/f/Gj0czc4CEZrOGTCgDoSJz8XgPnD4OO74luLV6w2zvvahGr5s+G8T71Zc9EVUFflzVzpwkkwg5cUiua9ijnhjx89CFUfxG/dfR/CM6PgjfPhg2/A+9fDS8fDwjnuQ+6DNo/Z/hiD3UqGJeY5YbtgtHzrvl4EDImIxIPV47EvTo9bQ77qrv+718L84bDj1fjUI5IIVuff+b1hzA9h2iPmNXavP+xjwBchq9hZ3w1/af56/UPh+7w20936XgajtWQXIPf0EAilaQ6M06BwERHJFKE4X0RERERERCQhMukpWCZ9LyIiIiIiIiIikorsXoHSq1Mi0kTvnBWR1JFlFYxWC6Eg+DzKcmysgw+/Y91eNsGbdSQzBXKg90xz6XUOLJxtNpsDVMw1wWVvXAjb5nu/9rifQNcT3I2Z+gD4XHzAdEFvd/O35PPD9PehPAH3IZ/PbP5f/Stn/UuGx7ce8UbxYOs2BaOJSDrY8TJUvWffZ+CVMOhL5uve55pLJooUjLbjpejnbnQYAFa/F/J7Rr9OugnWOusXaoTlt0HP6dB5UnxrilXIYiN422A0MKG5uV2hbnfs674xF854PfZ50kUig9F6nJW4tTqSbqdAViE0HGnfdnAldD3O+zVDIVh8LdRsa9+2bT480QumvwslDgPJGuus2wK50dXYxOeDk56AV8+Cmq2xzWXHTTCaXZuISDKFLM4LYg2ptNLvYtizCNb8xvmY+n3w6ulwcZ15rVYk3VjdzyrOgzG3xW/dgl5w7J/hva9A3V77vouvgsp55rnCwVXh++x4EfavgE6jnK0fr2C0SH/Te9gPfc6HrCLoeiIM/BL4Y1gvUSyfDytgV0Qkg2xG7+MVERERERHpQFy8lzvVuXlfuoiIiIiIiIiIiIhIDBSMJiKpI2ARjAYm/CCr0Jt1di6wbx9wuTfrSObrfgqcvwuq3oeCCijsZ44Puip8MNppr0DxEPjkJ7D2vsjzH/sgdBoLtbug82TI7eyuvjlbzWYnN/zZkFUMDYfcjSvoC+etM+MTxU0wWumI+NYi3hl6Q/jNsApGE5FUt2cxvHpm5H69zo5/Lakgt2v85nYajFbXwYLRGh0Go4EJnv70f9M4GC3MJnafH4Z8BT6+I/Z1dy2EXW9CN5ehxOnK6uccD4OvTtxaHUkgB0pGhg/nXHwVDLrS+zUPrLAPAz16AF6YAqe97OyxJlhv3eaPMRgNoHQkzN5knr+v/hVseiT2OdtqG4xm21fBaCKSohotHo/j9Zqfzw+Tfg0jboL9y2DVPZFfv2/y+iw47YX41CUST1bBxIkIvOp7IfQ4Aw6ugfoqeO0c675bn4o837Oj4dJGZx9sFK9gtFIHH4qy5XHz74a/wrZn4MTHU3/jntXzNL/e3iEikilCoVD/ZNcgIiIiIiIiiZRB2dihDPpeRERERERERERERCSlOXiXsohIgtgFnzVUe7fOgU/s290GSUnHFsiFrtOaQ9EA+syBqX+GokHgy4JuJ8PMNdDjNCjsY647MfAKKD/GBKi4CUUrnwhnfxD9bTm33P2YM99MbCgamJ97XvfI/Qr6tP7/kdSW2yX88UQGo22dD6+eBfOHw3vXwdGDiVtbRNLX8h9G7pNVBD07SDBaYf/4ze0mGK0jsQsVCmfdH01AWioLutwIPvoHMPI73qy95FvezJMOrIIZYnXSk9DtFPM8oXAATPkj9L0oPmsJlNgEQuxf4e1ae9+HZ8dE7ndnMFE6AAAgAElEQVT0AKy4K3zb4Y3wxgXw7Fh440KoWmI9jz8nqjLbzxOALlPh+H/AqO+Z55NZhdDnAuvHjpJh5nbsaP42wWh2gZUKRhORVBWyOC/w6rHYSmEf6H0uHOPwQxAAdrwITw+Dynnxq0skHqzOvxP1+npOJ+gyxfzdYcqfYp/v4QAcXBu5X32VdVsswWgAsxys36TySXjYD69ON+e1qcrq+bBPwWgiIiIiIiIiIiIiIiIiIiIiIiIiItIx6J2zIpI6sgqs2xo9DEar32fdNvJ/vFtHOrZBXzKX4NH2G5qchHSVjrZu6/9fsPFv4dvOege6HOu8znByyuDIJuf9O081mxcTzZ8F434Mi6+y7zf6VvApCzZt5FkEo1VvScz6256HhXMg1GiuH1wN+z404X+6HYmInd1vRu4z9g7ILo5/Lamg86T4zW0XNNNSfUcLRrPYNG1n7/tmQ3yqCrncCO4PwPifwrifQMMh8Oc2P5fMLjW/y1f9Cpb8d+S1q96DhiP2Ad6ZIh7BaL3Ohd7nQcXs8M+JxHulNsFomx+FTg4CPJ04tA5emOy8f+WT7Y/VVcFTA5qv718OWx6zniOQ63w9J3x+GHen+b0cajTPLeuqYP1DULuzuV/RYDh7KWTlm+/7pRNat7eVXdL6erDOuq+C0UQkVVmF7Sbqd3nZWHMOsfUpZ/0PrTGv45z8NPSeGd/aRLyS7GC0lgZfDQc+htW/jm2e+UNh9ubmvxPUVZnvJ7sYQiGo3gyvnGY93ir82qniwSaIfvvzzsfseBF2LYBzltmfSyeL1fPhWH9WIiIiIiIiIiIiEj+hULIrEBERERERERERERHJKEp3EJHUEbAJRms44t06W+dZt/W9wLt1RCD8ZqbySZDf037cIJuwr8HXhD/e/79iD0UDyCl317+TTYhbvA260r592iMw+NrE1CLeKBwQ/njNNtj2QvzXX/eH5lC0JnvegX1L47+2iKQ3uyDfwn5w4uMw7BuJqyfZyh0Eoy36UnSBTI01zvrVdbBgtFAUP8sXp0L1Vu9r8Urb38lNIm0E9/lMQFEg14T+5pQ1B5zaBXK39WgRrP+L8/7pystgtG4nwdg7zWOez2eOKRQtMXrZhMF8/CPv/p+XRxGwtu255q9rd8Njnd2N9+e4X9MJn6/58SS3HGYsg8FfMaEaw2+Es942oWhgwjbOfAsKKsLPlVUIndsExlmFC4GC0UQkdTVaBaN5HFJp58THTNBtyTDnY5bfHrdyRDxn9dwtWefNo25tH/AajfV/hpqd8Mrp5nzvP2XwWFd4rAvM628/1heIff1TnnE/JngUVvw49rXjwSr83CooXERERERERERERFKcL9kFiIiIiIiIiIiIiIikHQWjiUjqsNug3mATNOHG0UOwf7l1e/lEb9YRsePPggn3WG8o7HysfeBX12kw8IrWx7ocB5N+4019boPRSoZ7s260jn0w/PGSEdDv4sTWIrGzuz29djbU7onv+pUW4Zmf/Dy+64pIeguFrAOcuhwHszdCn7nNIUEdQUGfyH3WPwRLv+N+bqfBaEcPup87nVltmo7kjfO9rcNL8dgIbhfIHc6iK6Dqg+jXSyXVW2HLE7BzQetPKQ5Z/JzLxkNWkbO5K+bCpUE443UY/T0IxCnISqyVjW0OAAznvetjXyPYAFufdj/utRkmEA3grUvdjw8kKIwnrxtMuQ9OfQ6OuRvyurZuLx4EszdD34taH/f5YdLv2tdZMdd6Lbv/KxGRZArWhT+eyN/t/iwYdQvMXAWXhcw5RiRVH0B1Zfi2A5+Yc6CqJd7WKRItq8BaX5KC0fK6wMgonpu3tftteLICdr5qrocaoW4P1FdFHutFEK7PD6e9bAJr3dj4N1j2A3jvOtj0L2isjb0WgFAQ9n0E6/4EW+ebv0+6Gq9gNBERERERERERkcwSitxFRERERERERERERERa0TtnRSR1BPKt2xqOeLPG85Os28b9xJs1RJzofyl0GmM2CQXrIbcbHFoLJcOg74UQyLMe6/PD1Aeg7+dgzztQMhIqZrnf8GMlp8xd/64nebNutCrmQOC69iEp/S9LTj0Sm8K+5vZvtQFtx0vm/pNoNdsTv6aIpA+rUDSA8R00WNHnM+cU9fvs+21+FCbe625up8FowXp386Y7q831kex9F/Z/DJ1Ge1uPFyw3ggeinzOac+ZPfgYnPBr9mqng0wfh/eub7z9dp8Epz0N2kfVtp6APnP4q/CdMcHKvGdDvMqjeDKUjofd5HSv8MVWdtxHm9Q3ftv2F2OffvwyOHohu7OZ/Q+9zYecr7sdahYong88H0/4F/S41z8dzOpn7Q9n49n3LxlnPYxU8JCKSbFaPT8l8LPb54NyV8MwI+34vnQSz17c+9uEtn4Xdf7bZaOAVMPXPOm+R5LI6//YnKRgNYNg3Yfnt1rVVzDXn/nah0TtejG7tzsd6Fxrb43Q45yPY8ript7EWPv3fyOM+/pH5d+195t9Za6F4cPR1BBvg7S/A5n81HyvsByc/A51GOZvD6vmwX2/vEBERERERERERSV0ZFH4WyqDvRUREREREREREUpLdS1B6eUpEmuidsyKSOvxZJhwtXNDB0f2xz39wNRxaY91e6nAzgohXOo2OPoDC54de55iL13LDBB9Yye8NnW0CBxMhpxNMewTeuhQaq82xijkw/L+TW5dEx+eHvJ5wZEP49v3LgCQEo2nDrIhxZAts/DtUb4Fup0Dfi3T/APtAqo68YXX4jbDsVvs+NVuhch5sfwlyO0P/z0PJUPsxDQ6D0ew2bGciq03TTmz6V5oFo8Vwv7IL5Lay+d/wRAUcc48JJ06nx71gIyz7PnzSJgh891vwzn/BSU/YBzPklMHMVfDqmeaxH6DTWJjyJyjoFd/axb3CPpDXA2p3tG+r3gz1ByCntH1bsBE2/gP2LYX8HjDkehOa19aBT6Kv7eBqE7YXjWjut/Hk80GfueZi288Pg6+Fdfe3b2tUMJqIpKhGi3DhQJJDKkuHw5T74f2vWQcgH9kA+5ZB2VhzfecCE3Db0vqHzGX0beYxuqB3PKsWCS8Vg9GyCmDS7+Hda9q35XWHEx8z50DbX4QF071du8/53s5XPAhGfrv5+sAr4I0Lw58jW3l6iHnuN/CK6P4G8+aF5rWOlo5sgmdHw6jvwchbwp9vtxSMw/NhERERERERERERSaI0eq9JJOn0vhkRERERERERERERSWseffyyiIhHcjuHP163N/a5N//Hvr2nx5s5RNJVjotgtDE/MJu9k63iPDh/B5z2CsxaCyc+DlmFya5KotX3Iuu26srE1dGK3sghwsHV8MIU+Oi7sPY+eOtieO8rya4qNWx92rqtI29YHeLw9rFwDqz9HXz8I3hhMuxZZN8/WOts3i2PwbYXnPXNBLEEox3Z5F0dXrLaCB5T4GCUHxlSsxXeugTeuTyGtRMs2Aivnt4+FK1J5ZMmIC1kEczg+yyYoWQYnLceznoHzvkIzl6iULRUNuIm67ZDa9sfC4Xgjbmw6Iuw+lfw4S3wzCioDxNQf3BV9HXVVMKh1e7HDb0hvd9U3fnY8MeDCkYTkRRl9fjkz0lsHeEMvgbmVELZBOs+6x9s/nrtH637ffwjeHYMVC3xrj4Rp6zOv5MZjAYmBCzcucvgrzSfj/U8CwoHeLdmTpkJKYynrtPgvHVw+mvuxm1+FF6bAcvvcDdu2e3tQ9FaWnEXPFkR/ny7JcsAvQ78OpOIiIiIiIiIiEhai/L9KqkolEHfi4iIiIiIiIiIiIiktBRIMhERaSEnjsFodoEV0x6BQAps7hJJBTllzvqN+wkMuiq+tbiRXQw9ToPiwem9cV7sg9HyuiWujlZ0mxJh5d1Qu6P1sXX3w4GVyaknVYSC9gFxyd7YnEy5nc15thtHD8Ly2+37BOudz7fse+7WT2dWm6adqNvjXR1eCjWGPx5L4KBV2JpTG/8OuxbGNkeibH0Kdr1u32fx1c4C6PxZ0OVYKBsL/oB3NYr3hn3Tuu3gZ8FkDdWw5Eb4pw8e9rd/vaR6M/yn7LP2ADycZb5ecZf13Gd/YF/Xlsdh6bedfQ8tHXOP+zGpJJAb/nijgtFEJEVZBqNZPJ4lWl5XmHK/dfvqX5nnaMEG2Pwv+7nq98HHd5qvd7wCr5wGzx0DH3wL6qq8q1mkLcvAqyS/fuDPglPmQ8VcE4aY2xlG/g+M/n7rfidEuG85lVMOp70EOaXezGcnqxC6nwzHP+x+7PLbzOND7a7IfWv32J8zNzl6wJxvVz5l3ccq/LwjB/CLiIiIiIiIiIiIiIiIiIiIiIiIiEiHomA0EUktuRbBaPUxBqPV7YW9i63b+10c2/wimSSnPHKf6e/BqFvAp1MJiYPOk6zbGqqbv67dZS6NLgJy7Nh9ip3C9kRgk8XG141/T2wdqWbXG2ZDvZWOvmG1+6nux2x/wT7ky00AWNUHzjYvZwKrTdNO1O32rg4vWX1P/hjuV0X9rduGXOdsjk0uA/+SZavNJvsmB1fB4U/DtyU7mEGi4w9A6ejwbTtfgSOb4NkxsOpeZ/OFgtYhhU1Gfx/Kj4FzPnJXayTDvxXb/T0VWAUJBevMa1VePZcREfGK1eOSVdBjMti9bgSwcA4cWutsrsonTOD3q2fAzgWwbyms/iW8Mdf+dSKRWFg9p/WlwPl3bmc46XG46BCcvxvG/7h9MHLJsOjnzy6Fzx2By0Jw4V4onxhbvW71vQjKjnE/bucCWHAOBCOcF+9e6O65+cLZUGnxoU4KRhMREREREREREUlD+tuCiIiIiIiIiIiIiIiXlGYiIqnFKhitLsZgtNW/tW6b+kBsc4tkmtwIwWj5Pc2md5F46ndJ+OMNR2DfMng4Gx7vbi7/yoWl3zahDbGwDXzQabN0cKEQNBwK37b+L4mtJdVsm2/f3tGDhQL50Y07vN66LegyAOzgmuhqSDduAuPaqtvjXR1esvq/9gXCH3eidDQU9mt/vNMYmPT/oM8FkedYe1/06yfKpw/A+oec9d31evjjqRDMINHpPCX88fUPwrz+9o+xsaxXNhbG3uHdvP0v826uZLEKEqrfB491gce7wvIfKnxHRFJHsC78caugx2SZu926bevTsOhK53O9++X2x3YthK0RnuuJRMvquVsqvX4QyLH+oIjskuhC0MEE32YVRF9XrPwBOGMBDL8Ryie7G7tvCWy2+NCAJtWV7mtaeF74UEqr58OpdDsRERERERERERERF/ThvCIiIiIiIiIiIiIibinhQURSS04cgtFCQfj4h9btZeOjn1skE+VX2LdP/C34dAohcZZTFv543R54+UQItdkYtvJuWPXL2Na0C5Sx2ggo0lHU77NuswpM6ygOrLJv92clpo5UFciLbtxBm59ryGUAmN1cmcRtYFxLqRqM1vb3fRNfDPcrn8+cz/pzmo8FCuCYe03bsQ+2brNyNEUf+6or4cNbYPHVsc/V0R+/0lnvWYldr2UwRsVsb+Yc9t9QPtGbuZIpUpDQ0YOw/HYTZigikgosg9EcnB8lUn4P6HaydfveRbGvUfl46+uhEOxfAZsehSObYp9fOq7GI+GPp1oAoZ1ownBLhsOIb3tfi1vZJXDM3XD2u3BxLZRNcD52y+P27TXboqvp3WvaH7N6PqznaSIiIiIiIiIiImlKH5YlIiIiIiIiIiIiIuKWUk1EJLXkloc/Hu1G/YYaeGa0fR83mx5EOoLiwVAyInzb5N9D3wsSW490TIGC8Me3P2fCA8LZ8LfY1gzWxzZeJJPVbLduO3rQBNF2VIfX2rf7shNTR6ryR/n9733fus0uyDKcjhKM5jYwrqWGw9BY610tXrEKe4t1I3jFLDhnKYz7CUz4BZyzBHqcYdqyi6H/5yPPcWhNbDXEw4a/wVOD4ZOfeTNfR3/8SmddpiZurR5nQFZh8/XSCK/BhDPyOzDiZhhwuQnZOO1lmHivdzUmk9OA0E2PxLcOERGnGi1eGwmkYGDT4C/Hd/4Nf23+OthggmefHQ1vXQzz+sPHd8V3fclMwUaoqwrfltclsbXEous0mL3Zut2XBYX9zaVoMEy+D2Ysg6z8RFXoTCAXpi82AdlObHnM/rlzdZTBaNueM+GLLVk9H44lKFxERERERERERETEMQW5iYiIiIiIiIiIiEjy6Z2zIpJa8nqEP3740+jme+UUOLjSuv2kJ8Hni25ukUzl88EJj8KC6VDTYiPPuJ/AkK8mry7pWFqGKzi1/yOzgSzax3XbYDTlCUsHVxNhY+eexdD1uMTUkkqCR+FQhPPUWAOcOqqtT8G4O8K3KRgtPKtN007V7YGCCm9q8UqoMfxxLzaCl440l3DG/xQOroY9b1uPP7AKyifGXodX6vbCu1+GYJ13c0YbbCjJl9cDsopM6GG89Z7d+rrPByNugpV3Oxuf3ck818zU12b8DoOEdr4S3zpERJyyOpdw+niWSP0ugbcvi9/8oaAJsMotNwGW6//cun3ZrdDjTOgyJX41SOapr8JyM1luGgWjART2gQv3wxvnw85XzbG87nDsX6DX9OTW5oY/GwZeAd1PN99LlU1QO8D8EVDYD4oGQmMdhBpg86Pmgz4aq6OroW431O6A/J7Nx0IKRhMREREREREREUk7bT8AIVNl6t/3RUREREREREQkoexeTusoL7WJSGRKeBCR1FI8NPzxmm1w9JC7ud67Dva+a91eOhIqZlu3i3RknUbDeRvgjDdMgOD5u2DULcmuSjqSrILoxtXvi35Nu2A0vZFDOrranfbtW59KTB2p5sgm642qTbRhNTr7l8Hh9eHbIv3M2+oIwWjBRmL+pNa6PZ6U4inLjeCB+K6b1w3OeB3OttkQv/vN+Nbg1pbHobHG2zkVjJa+fD4oHhL/dQoqTIhEW30vdj5HzzMz+1w7kIJBQiIidiyD0XISW4cTPh/MXB3fNeYPM8HMbUPRmmydF9/1JfPYPe9Kt2A0gJxSOO1lOPsD8xxq1tr0CkVrqbAPTF9s/iZi58hG2PU6rH8QNv3ThKJB9KFoTQ62eTyzeq063s+HRUREREREREREJE4y6O/i2pUqIiIiIiIiIiIiIgmiHdoiklpKhlm3HVoLZePh0Dqo+sBc9i0xITiF/WHsndBplOl7cC2svc9+rX6XeVa2SEYK5EC3E5JdhXRUgSiD0Wq2Qm55dGPtgtEy6U0pItGIFLZTOQ/G/yQxtaSS2t2R+yhYCHqeDdufdz9u63wYdkP748Gj7uY5sgEaayGQ576GdOE0LO701+CVU8K3PTcB+n8Bxv3YbAhPBZbBaAl4OcufBeUTYcDlsOGv7dvX/cHcv4+5JzXu51sej9yneCic+gI8NcDZnAp2TG9dp8G+pdGP92WZ+2DRIMjvBVXvtz4f6HIcTPodZBe1H1s6CrI7wdH9kdfpc0H0NaaDvG7O+y65CUZ+B/K6xq8eERE7wUYIBcO3pWrQY8lQGHQVfPpAfOav2wPbX4CdC8K3r/gxjLsrPmtLfIWC0FhnwgCb/g3Wtz8Wrq1de334MeHG1tucH+V0Ttz37yWfD8qPSXYV3vD5zd9EZq6C+cO9n//YB2HRl8K3vXIqzFgGncaY61YfAJJT6n1dIiIiIiIiIiIikgAKExMRERERERERERERcUs7HEUktRT0AX+u2SDS1tuXQc12OHqwfdu+D2H7izBzJRT2hW3P2q/jz4ahX/OmZhER8V5WlMFo1duaN4+5ZRe04/NHN6dIpmgMc27W0sGVJpi2ZEhi6kkVdXsi91GwEAz7Jux42Xl4V5P9H4c/7jYYLRSEI1sy+/bp9GfS/WTIKYf6qvDtG/8OO1+Bc1dATpl39UUraHGb8SfwftXr3PDBaABrfgsNh8zm9mRqrHMWPnj2BybEasZyeNbB+VJWfuy1SfIMud7cdsO9hgIw6Gr49H+tx1900Lw2k9PJ/dpZ+TDiRlj2fft+ZROgz4Xu508neT2c9111D+x+C858E/yB+NUkImIl3GvyTfwpGowGJtzXSTBav8vg+L+b5wf1e2HpzbDhL5HHrfl/sdfYpG6vOc/uaK8zBRsiB4bF2uY2pMzt89N4yyrU+XcqKRkGJ/wH3vT4XNWfYwKMd78Vvv3ZsXDWO+YcsmZb+D65XbytSURERERERERERDyk8DMRERERERERERERES9ph7aIpBZ/AIqHwIEwIQgHV9uPbayGj++EqffDnnfs+563QZ+qLiKSygKF0Y2r2Rr9msF667Z9S6OfVyQT2G2Qb7J1HpTcFP9aUomTYDR/dvzrSHW9psOpz8GrZ7obV78v/HG3wWhggg/I4GA0N5v6c7tYB6OBCaPe8HcY9vXY64pVqDH88UQGDvY6B7KKoOFw+Pb1DwE+mPq/yQu4qHwycp8eZ5lQNIDSUVA0EA6vtx9TMjL22iR5SofDmW/BJz+HqvebHyfye0O/S2DwtfbBaFn5QAzhHKO+ZwIdNj0CtTug4QhkF5sgkqxC6HYyjLk98wPAfD53/fcugs3/hv6XxKceERE7tsFoOYmrwy2nIUH9LzOPy74A5HWDIV91Foy2/YXY6gOoWgJvf8GEimd3glHfhRE3uf89EUkoZJ4vhQ0Mq4PG+jDH4hlS9ll7KOjt95mJFHaVenpO935OfzaUT7EORgN48Tj7OXRbERERERERERERSVMe/01ARERERERERERERKQDUDCaiKSekmHhg9Gc2DoPQn+AYK11nwn3QEHv6OYXEZHEyCqIblzNtujXtAtGq9kO9fshp1P086eqwxtM8Fv5JCjsm+xqJFXZ3T+abPyH2did6YINsOt1aKyFTQ9H7p/IAKdU1uMMyCm3D+Rq6+j+8MfdhIA1qd3tfkw6cRIWVzHH/JvXFQ6tse+74S8pEoxm8X/tT+D9KrsYRnwblv/Aus/6B6HrNBh0VeLqamn325H7jP1R89c+n7k9rLrXur8/19xvJb11Gg3H/9W6fdg3YfWv2h8feGXsa/t8MPhqc+no+l3q7JyhyZrfKBhNRJKj0eZ5XyA3cXW45SQkqM8F0GtG62NdpsKALzoLR4tF7W54fmLz9aP74cObYctj0Od86zCxaEPKJD0VVCS7AmkruwiG3wir7vFuTl82VJwHq38Z/RwKRhMREREREREREUlToWQXICIiIiIiIiIiIiKSdrRDW0RST8mw6MfW7oLtL0DlPOs+/T8f/fwiIpIYqRaMBlD5FAy8PPr5U00oZDbirry7+dio78HYO0yQhUhLjXWR++z7ELY9B73OiX89yXJ4Pbx+HhxY4XyMPxC/etKNP8dd/3qLYDQnIWBt1e1xPyadOAmLawo6crKJuuqD2OrxStDi+/Il+H418jsm1OjgKus+i6+G3rMhLwmb1O2C7gZ/BcbcBvk9Wx+PFIw24L9MEIBktr4Xhg9Gq5id+Foy2aAr3QWj7XknfrWIiNgJ2jzv86dyMFpn+/bJ98Hga8O/1nHsg+a86I250a3t89u3H1wD8y3+3rF3sbmIgHkuIalnwi9MiFko6M18/mzoegKUjICDK6ObQ8FoIiIiIiIiIiIiIiIiIiIiIiIiIiLSQSgYTURST9kxsY1/bYZ1W9cTIL97bPOLiEj8BQqjG1e9Nfo1IwWjLb0ps4LRtj3bOhQNYMVd0O1k6HlmcmqS1GW3Qb6l12bApcHMDNdrrIWnBiW7ivQWcBmmUPV++OMhBaO1YxUg1mTEzdB7pvk6J0JwRJP3b4A+c6H7qdHXdXANbPwn7F1kwta6ToP8CjNnn/MjP1ZYBb75EvxyViAXTnkOnhpg3++1c+Ds9xJTU0tWwWg9zoIp94Vv63I85HaFut1hGn0w7seelScprMvxMPZOWHZr87ERN0HvWcmrKRN1P939mL3vQ+dJ3tciiVe9DTb8BQ6uRp8CLynv6CHrNrfn8onkz7ZvH/xl6/NOnw/6zIExt8Py26NYO0L487vXuJ9TOp4+F8CwG5JdhYTj88E5H5qQ/CMbY5/Pnw3+LDjuL7BgOtTvcz+HgtFERERERERERERSWCb9PTCTvhcRERERERERERERSVcKRhOR1FNxHhRUQHWldR+fP7pPaNfmEhGR9JBVEN24mm3RrxmMELQTNjgkja21CEpZ/5CC0aS9SMGBLa1/CAZ9KW6lJEVjHczrl+wq0p8/ijCFNb+Hode1Phbp8TqcTA9GswuLO/Mt6Hp883WnP781vzWXCb8wQUlu7VoIC86BxurmY5XzzL9rfweDroGp99vPYRX4luhgNICi/jBnKzzZ27pP1fuw41XocVrCyiLYYL1Bv+19pyV/AEbfBh98vX3bJUdNu2Q+nw9Gfw8GXgH7lkKnsVDYN9lVZR6fD/J7Qs1252NemAzHPwz9L4lfXRJ/B1bByydm/nmIdAyRAsCSrWyC+V3WVuGA+AZ32/1canebc2JJb76AeS4byA3zb074Nn8uBHJafG0xNpAPnSdD8dDMDJjPFJ3GwLkrYMFZsPut9u3H/wM++RnsXxZ5rqYgx86TYfZmePmk8I9ddnIdhp2LiIiIiIiIiIiIiIiIiIiIiIiIpDC7aH7F9otIEwWjiUjq8WfDaS/DO1dA1buAD0pHQtkxUD7RXMrGwfOT4eBKd3N3nhKPikVExGuBZASjuQh+ygTbngl/fNM/Ydo/EluLpL7GOud9F1/pLhgt2GA2kO54yYQdjbgRep3jvsZ4Wnc/1O5KdhXpL5owhQ9vhr4XQl635mNWYVl2Mj2QxO5nUtgm1K++yt3cS78NxcOgYlb7NTf8FVbcBYfXm2P5vaFmq7N5P/2TuTTVl10K3U+HsT+C7CJzLNQYfqw/SS9nFfQyQXMvTbPus+gKmLM5YSVRv886NLwgQsDVkK9C3S5Y9SsTYNf9VJj6Z4WidUQFvc1F4iea310f3WJ+BybrMU/cCwVh1b2w5XHz3PTIpmRXJOKdaEKOE2n0rfDGBYn/YfoAACAASURBVO2Pd7U5b/OC3eO7HgPc+7+gMZtQMX+ORdCYizbHAWc5OjcWI6sATn8Nlt4En/4ZGg5BdicYcxv0uxQq5sLSG2H9g9BYaz2PL7v56+wi8/xy6Y3WH2DRro5iKBke07ciIiIiIiIiIiIiSRLSVk4REREREREREREREbe0q0pEUlPJMJj+jtlQGGwwG2Hayu3ibs6+F7cPBRARkdSUFWUwWu1O8wYSn8/92I4WjJYJ6qqg4TDklDVvnJX4CLoIRgM4shkKIwTyNHnnctj0cPP1na/AyU9D75nu1oynTY8ku4LMEIgiTKHhCFTOg8HXNB8LHXU/T+1O92PSSdDmZ+LPbn29zwXW4ZhWFp4HZ7wO3U4yv2eDR2Hlz2HZ91v3cxqK1lLLwIj9y6DqfbOWzwchi6AJXxJfzup6PJz0lPmZhFO9BQ6shKxCc2mshdzOEMjzroZgg3muHMiBur3W/XI728/jD5ggutHfNz/TaM6fRMSZijkmDNKNI5vM42LxYBOCCCZMI6vAhEnqPpt6PvgmrPltsqsQ8Z7PD4H8ZFdhr2KuCXnduaD5mD8Xhn7d2fjySdGt21gNwcbw4VmxhPfHnc8+GMyLIDK7wLGwa+bod5ukNn8WTPwVTLjbhOfn9zCPjwBZ+TD59zDx1/DutbD+IYs52jw/bznuufFw4BP7GoZ+zdvnliIiIiIiIiIiIuIthZ+JiIiIiIiIiIiIiHhKwWgiktp8fuuQE7fBaMf/LfZ6REQkMbIKoxsXajQBZ9GE7ygYLX1ULYFFV8D+5a2PD/sGTLgn/IZkiY3b+0flPBjmYAN65VOtQ9GavD4LTpoHFRbBQ4lUuwf2vJPsKjKDP4rHZoDKJ1sHo9mFgFlJ6VACD1gFiEH7ELGeZ0a3xrLb4Jh74b2vwt53o5vDid1vwPYXoNfZNsFoSX6cr5gFBX1MCFo4z4xsf2zA5TDp/0F2cfTrNtbBR981oTvBo9BrJvS/1Lp/pGC0Jm0354uI93rNcB+MBvD8RMAHhHkD/cRfm8Afhcikhv0rFIommavL8akfRO7zwYmPwapfw/bnIb8XjLkNysY7G9/jdMgugaMH3a/dcBhyStsfX3575LHZnaB0pH3gWCxhY1ZtCsUViZ4/Cwp6WbRlm+eKlmMtnnv5s+GsxbD0Rlh3f/g+E38LQ693V6uIiIiIiIiIiIiIiIiIiIiIiIiIiEgaUzCaiKQvN8FoZ7yhzd4iIukkUBD92IYj0QWjNSoY7f9UPgVdpzkPVIlFKGQCzmq2QU45NByEooHm0tahT2HfEnjzc+HnWv1rs6l47O1xLblDaqxz1z9cMFr9ftj9JtRVmdtW2XhYONt6joWzYeYqKBnmvt59H8LO18xtqvspUNjX2bijB2HPIqjZYTa65nWH1b8hbBiJuBft+fi2Z6G6EgoqzPVogtH2LYX6fZBTFl0Nqc7uZ9L2515QASP/Bz75ibs1dr3+WUBPAmz+twlGC1oEo/lT4OWssxbBk72d99/wVwjkwZQ/Rr/mJz+DVfc2X98231zC8efGdj4lIt7qNQN6nAU7XoxisMV5yAffgPze0PeCmEoTjzw7OtkViMRHVjGM/2myq3Amp8y8HhDNawKBPBj/c3jvK+7HhgtG2/qseQ5iZ9xdMOq77tcTkRRnEzpo97pIdpF5vlg6Gj64ofl4VqH5G2f5BO9KFBERERERERERERERERERERERERERSQMpsJNURCRKToPRsoqgy3HxrUVERLzlzwZfAEKN7sc2HIHccvfjQg6CdkIh8NlsbssUC2cDPjjhX9D3ovit03AEFl0Fm//V+rgvy2wOHvtDcz0UhI9udRbis+GvCkaLh6DLYLRdr0NjrdlcDiYobeEc9+vOHw6XNoLP76x/sAHeugS2PNb6+IS7YcSN9mP3LIY35kLNduf19bsUyifB0ghzy2dsAuYCeeY2Y+XJPmaD8OBrIWQRlhXJY13gxMehwiaQL13Z/Ux8YV76GXcXdDsZtj4Fa38fv7qitf7P5nfA7jfCt4f7nhKtoBeM+Das/IXzMZ8+AON+HF3waEMNrPy58/65nTvGOYtIugjkwCnPwsZ/wKIvejfv2vsUjJYK9i9313/gFXEpQ8RzJcOhYi6UDE12JYkx5MvQaQy8NM3duIYj7Y99+r/2Y856B7oc624dEUl/PgeB8cO+bv6mWfkE+PNg8DWQ3yP+tYmIiIiIiIiIiEic6YM5RURERERERERERETcSoGdpCIiUcrr6qxf38+BPxDfWkRExFs+H2QVwtGD7seG25DaJNgI21+Ana9CQW8YdBVkl0Qe1yTU4GwDW0YIwTtfhB5nQE6Zt1MfXg8bH4Zlt1os3QAf/wiOHjKBWJv/DdWbnc19ZAMEj5pwPfFOsD788e6nws4F7Y+HGkwA0NDrzf34rUuiX/vhAJSMMF93ORYK+0OfuWbDepMjm2H5D02YUjhLb4KN/4Sy8S0OBmH321A6CnqeZcKN3ISiDb0BJv36s/kVjOZI6RjYtbD9cX+OCQZ4boL9+He/bB6Tgg6CLMMJBeHNi+H8nZBTGt0cqWbPu1D5JGybb90n3OOhzwe9pptLzXaz4TrVPNnHus2fIi9nDfySu2C0UCO8/zWY9rD7tXa+4uxcpUk04WsiEl/+AAy83ARS7l3szZw7XzG/35yGyEp87PvIed/PHTbPdUUkNXU9HoZ+Hdb81vmYxur2x+zOr4f9t0LRRDoqp69Xdp5kLiIiIiIiIiIiIpJmMij8LJRB34uIiIiIiIiIiIiIpK0U2UkqIhKF/N7O+o28Ob51iIhIfAQKogtGa7QIDQmF4P3rYd0fm4+tuhemvwf5PUwIVyTB+o4VuNVYA5VPwcAvejfn7rdhwXRoOBy57+pfRrfGpkdhwOejGyvhNdaFP14+EXa9YYLQ2nr/aybEp7A/NNbGtv7Bla3/XfFjOOFRqDgPdr4Or5wSeY59S8ylrUNrogiF8sHgq12OEfp9zoTBtH0TYN+LTWjd547AoxGCQjY/Zh2MdtI8c5t7+zLr8cE62PEi9L3IVekpaf1DsPgqE4hjxxchJNpp4HQspvzJhLdVzvNmvkjfc6KUDIfiIXBorfMxmx6Bsgnun6dWPumuf46C0URSVr9LvQtGAzj0KZQM8W4+ca96i7N+py9QKJpIOsjr7q5/2/DahjBBaS2VDHM3v4ikGZ91U0d6XVlEREREREREREQyl8/mdVARERERERERERGH7LL5ldsvIk38yS5ARCRq+b0i9znxCW00EhFJV4H86MY9PwnevAT2L299/MObW4eiAVRXwvIfmK83/TPy3FZhPJnswCexz9FYD2v/AC+dCC9NcxaKFot3FVjluWB9+ONZRVA8yHrch9+Bty6OQz11sPQm2PeRs1A0rw25DjqNSfy66a7bSXDc36Cgwlz355hwmCn3metZBSZoys6ed7D8dNWcTtDvEigeaj9HdaWrslNS3V5Y9CUHoWhZkd+MmNvNu7rCGfYNEyQ46XemHi/UbPdmnlj5fNDnQvfjlt8Otbsi99v9Nrw2E/5TDp8+4G6NzpPd1yUiiTHsBhj9fe/me34CvHSS+b1wZJN384oz9Qfgo+/a98ntakJCu5+SkJJEJEbZJe76tw1GO7TGvn/pCHfzi0jmUDCaiIiIiIiIiIhIB5ZBOzm1K1VEREREREREREREEkTBaCKSvgp6W7cNvAIuaYA+cxJWjoiIeCyQE/3Yzf+CF6bC4Q3m+urfwMq7w/dddz+s/0v7ILVwOmIwmpOfS1uNta1/Vh/9D7z3Vdj9pnd1RVq/Zmdi1uoognXhj/tzIwdZxcuhtfDc+MSvWzoaxt2V+HUzxYDPw+zNMKcSLjoA0/4JWYXN7YX97MfX2ty3m0LARtxoP0fNDuf1ppLGWhOIFmyAx7o4G+N3EESWF+dgtPzPnrcV9IYBl3szZ+kob+bxwshvm8AbNxprYNMj5v8STMBdKGjeOBpsNL/Ddi00YaLbnoH6fe7rGnil+zEikhg+H4z9kXndatBVsc/XcAR2vwHrH4LnJ0f3mCHRCTbAK6fZ97noEMzdZkJCRSQ9ZBe76982GO3AKvv+yXoOLSKJYRdO7lMwmoiIiIiIiIiIiIiIiIiIiIiIiIiIiFMOdsiKiKSo/J727f5AYuoQEZH48MV4qtpYA08NhFG3wro/2vdddIWzOTtiMNr256F2D+Q5COE5ehgWXwWV88Dnh74XQf8vwKp7419nWx//ECb/PvHrZqpGq2C0HOh5tvk/7wh6Tofj/wE5pcmuJL35fNYhx5GC0QL51m3+zzYYD74Wsorg7c+H77fy57DpYfMY0Xtm5HqTrX4fLLoSKp90P9bJputchyFr0ep5VvPXU+6HkmGw7Vlzfdg3oOoDWOEybLDLsd7VF6ucMpi+CJb9ADb+3fm4D74BS74FoUZzzhNq8K6mQVdBqQI3RFKePwDFQ7yds243PDse5mzydl4Jb+ersG+JdfvgL0N2UeLqERFvZLkNRqtufb3yCeu+5RPdh+qKSObwKxhNREREREREREQks4WSXYCIiIiIiIiIiIiISEbxJ7sAEZGoBfIgUBC+re8lia1FRES859VGsRV3moAALwTrvZkn2YJuwldCsOz7zrou+iJsfhSCdSaYbsNfYcFZkcfFw9r7YM+7yVk7E1nd9gO5Jvyu89TY1yjoA8c+BL4UDbcd9T049XnI7ZzsSjJbpGA0u8fzlr83+l8Gg79i3bd6C7w+C/Z/7K6+ZHjrsuhC0cDZ7TXL4jmVFwZ+CcrGNV/3B2DkzXDGa+bSZy4M/bq7OQd/GTqN9bLK2BUNhOP/BpeFWl8utgiVbBJq/OxfD0PRyifCpN95N5+IxFevGfbtBX3gwn1wxhvO56zeDDtfi6kscWjLY/btpaMTU4eIeCvbZTBa45EWX9ea10WsjP+pCYoWkY5JwWgiIiIiIiIiIiIiIiIiIiIiIiIiIiKOKRhNRNLbwC+1P5ZVBN1PTnwtIiLirayiZFfQXvBosivwRmOtu/4b/gIN1fZ96qqgcl70NcXDqruTXUHmCFqE+/hzIbsITl8AI26Kfv6K2XDOhzDwi3DOR9HPE063k014W9MlkO98bP8vwNAb4ORnYNyd3tYl4RX2t2/fv8y6zZfV+npul8jrrf195D7JdGQTbH8++vE9p0fuk+Uy+CGSokEw5Ho44d8w9YHI/fO7m9CfSPJ6wEnzTOhXuoRJBHLg7A/iN//EX8Mxv4SBV8DAK2Hy7+HMt0xopYikh9LRUDoqfNsx98K5n0BOJ+h2Akz8jfN51/3Jm/rE2pFNsO5++z4FvRJTi4h4y+35cUOLYLStT1v363M+9DgjuppEJH20fW2iJQWjiYiIiIiIiIiIdFyhULIrEBERERERERERERFJOzbvzBURSQNjbod9S2DPO+Z6IM9swA/kJbUsERHxgNdBLV4IZUowWo37/mt+CyO/Y91n34cQaoytLjeyikzgz5bHrPts/jfU7YXczomrK1M1WgWj5Zh/s/Jhwi+gcAC8f727uUf/AMbe3ny90ygonwxV70VVKmDC0E5/FXxhssBDf4X3roN1f7CfY84WKKhwtt6UP8G717Q/PvAKZ+OlWWE/V9031PRn3p7z2N/QiVnbipjYqUWjo2C0+0yYVKra8XJs48f/NHKfzpPNfTlYH9taAMO+CcfcE/6+ZyenE5z5JiycC3W727SVm+d4PU6Lvb5kKD/GhCxu/Lv3c/e7FPK6ej+viCSOzwfHPggLZ0PNdnOssL85jyka0LpvxXnwwQ3O5t30T+h3MfSelT5hkunmvesi98nvHf86RMR72S5fj6qrav66aql1v36XRVePiKSX/p+HZbe2P15QYR+aJiIiIiIiIiIiIukvo8LPMul7EREREREREREREZF0pXffikh6y+sCZ7xuNhzVboduJ0FOWbKrEhERL2QXWbdNvg/e+2riamniRWhMKnAbjAbw4S1QNAj6Xhi+feXPY6vJrX4XQ8X59sFoAI91gbnbIb9HYurKVFa3/aZgtCZDrzPhG06CIgAGXdU6FK2J21CllsomwBmvWbf7fDDlPnMbeuXU8H3O3wl53Zyv2WsGZBVCw5HWx/tc5HwOMVwEoy06MJUZy+ezv8Gc/9/x6xAPXhHk8uM+u/04CUYDWH4HjPm+20rj7/BGWHx19OPP32kCxyLJLoaKObD50ejXApi5GkqGRj++6zSYtRp2vwU1O8yxvG7Q9QTILY+ttmSb8AvY+hQcPejdnEOuUyiaSKboPBlmroI9i805UNcTIJDbvl9BHwjkOz+XXzgbBl0DU+/3tl6BQ5/Ctmcj98vvFf9aRMR7boPRVtwJo24xzwkPrrLu13tmbHWJSHoo6g+dp8Ded1sf73uxAmtFREREREREREQkM+i1ThERERERERERERFJkBh2m4uIpAh/NnSZAhWzFYomIpJJsmyC0fpcAENvSFwtTYJHE79mPBz4JLpxS2+GYGPrY0cPwnvXw/YXYqspqxgK+kbu58+B/p+Hib+F3jNMSF4kH94SW21ifdsP5LQ/NuSrcMyvILvUfs7hN8IUi6COaIPRBlwOp7/irG/3U+CMhVA0sGlR6DwVZm90F4oGUNALTn0Rij8LhcrrDlP+aG6j4k5eT8ddv7fhzv8LRQMIhXx8/eEQRxs++8TSzpOcTbT8Nji83k2V8VWzAxZfC08NiG0eN7fjqQ+Y363+bHOpmAP9LnE+vuc5sYWiNckpM4ERg682l4rz0j8UDUw459g7PZzQB+N/4uF8IpJ02SXQ80zocXr4UDQw50ddjnM376d/gn8VwPq/ZNinkyfZ1qed9VM4s0h6ynIZjAbw4nHwTx9UPhG+ve/F1o/vIpJ5Tn4aup9mzt8CBSasdvxPk12ViIiIiIiIiIiIiDf0t2cREREREREREfGA3atMIdtWEelIspJdgIiIiIhIWHYbUf05MOgqWP9naDicuJoyJRht9a+iG3dkA+xb2hw2FArBwrmw89Xo5ssuhVlrwJcF2cUQbIBHC6z7z1hmQqyyCpuPDfkKDL4WFpwDO14MP27zoyZALSs/ujoFQha3fV92+OPDv2EC0oL1ZvN3sB7q9pr/O18AAvkRNoW7+FTJsmPgzIWA3/3/cbcTYdY6qNkOgbzYApi6Hg+zVkPtHsjtrE/GjJY/4KhbXTCHBftPbXf8UC28tgbOHAmUDHO+7qZHYVQKhCgePQTPT4KarbHNUz7ZXf/sIjjxP9BQDaGguV61FDY9EnmsLwDDkhBWmm6GfAU++h40HIptnqJBMHOlCbATkY5n+I2w6zXzWO1UYw0sugJqd8HIb8erso7lwMeR++R112O1SLrKjiIYbf9y+/a+F0RXi4ikp7xuJri//oB5vUnBiCIiIiIiIiIiIqKNnCIiIiIiIiIiIiIirvmTXYCIiIiISFjZRdZt/mwoGwunvZy4eiAzgtHqqmDHS9GPf2EyrPqlCUXb+nR0oWiF/aHPBTD9PbNRMLfc/J9GCrXK7906FK2Jzw+Dr7Ye11gDO19xX6c0CzaEP+63ydoO5Jj7sT/b/L8V9jWBYTmdIm8ItQsVm3I/dDsJSkfDyO/AmW+a+aMNvvP5oKBXbKFoLeV1USharIZ8NWKXAw2llm2rdrR4I2H//3K2ZuWTzvrFU/0B+HeJu1C0rieEP14xO7oasgqaf/+WT4CzFkHJ8Ob2HmfCjI9h2DfNfbDnOXDyM9Dr7OjW60j82TDgC+7GFFSY35N53aF8ogkCPfMtBe2IdGS9Z8BJT0PP6ZDfC/J7Oh/74c1wZEv8autIPn0gcp9e58a/DhGJD382dD3R2zmLXYQ2i0jmyClVKJqIiIiIiIiIiEiHovAzEREREREREREREREv2exiFxERERFJop7TYcWPw7cF8sy/XabCiG/Dyl8kpqZgfWLWiad9SyAUjG2OJd+C2p1QtcTduNHfh7E/su/jz7H+OWeXWI/reTb4AhBqDN9e+ST0numsTmkvZBEKGLdwHptgsf5fgMHXxGldSQnDvwWVT9kGhB1ssH48KGq55zi/h7M19y6GNb83gWIFvR0W6rG3P+9+zMArTTDg9heaj5WMgMFf9qamLlNh5sr2xyf+0pv5O5qxd8L6h0xgZ0u+LJj2MPS9MClliUia6T3DXJrsehNemwENhyKPnT8cLj4Sv9riqaEG9i8DQtB5avKCaPd9FLlPfk8YcWP8axGR+Bl3F7x8knfzFQ/xbi4RERERERERERERERERERERERERERERkQ7An+wCRERERETC6noCFFS0P14xB3wtTmMTGXYVtAiHSidefQ+f/Ax2vOSs75Dr4OT5kUPRwITDWPHbtGUXw4DLrdt3vBJ5bQkvFLQO07P7/4qJTdBFUzCiZK7iwTD9Xdvb14HGUsu2wpbBaDmdnK/7/vXwZAV8dCuEEvwJrtWVsO0Z9+Oyi83j69Q/w+CvwDG/grPehrwu3tcoscsth/N3wKhbzWOZP9sEvE5fpFA0EYletxPg7PdgxE2R+zZWw4EwgZeprmoJPDcOXjwWXjwOXpgC1dYBqnG1/If27UWD4ZwPoXRkYuoRkfjodiLkOQxZjiS7E2TlezOXiIiIiIiIiIiIiIikqQS/F0lEREREREREREREJAMoGE1EREREUpPPD8c/bDaQNikeCpN+17pf1xNh1HdbHxt0dXxqCmVCMFpD4tYaewdcFoLJv4Pe5zobYxd+Fsn4n1u3HdmY+KCjTBFqtG6LVzCaz+apqs8mNE0yR0EvGH2rZfOBButgtIKcFreRbBfBaE1W3AU7XnY/Lhb7P45yoM88bg76Eky5D4Z/w10YnCRedgmMuwMuroFL6mHCz6F8YrKrEpF0VzIMJvwCTn7GPM7YWXZbYmrySigEi6+BQ2ubj1W9D+9/PfG1bH8RKp+w7zNrDeR1S0w9IhJfXY7zZp7up3ozj4iIiIiIiIiIiIiIpLaMen9iJn0vIiIiIiIiIiIiIpKuFIwmIiIiIqmr2wkwez2c/DScvgBmLDdhOS35fDDuLpi1zgSpnfMRTLk/PvUE6+MzbyLZhVx5qde5tqFGlsonRb9mXhc46x3r9u0vRD93Rxa0CQT0Z8dnzaJB8ZlX0os/x7Jpv00wWqv3GNqF7NnZ9M/oxkWrZnt04xSCJiIiLfWeAbPWwujvW/fZ8h9YeU/iaopV1Qewb0n745VPwJEtiatj+R2wYLp9n6kPKMRXJJN4da499Dpv5hEREREREREREREREUkF+puoiIiIiIiIiIiIiCSIgtFEREREJLXllEHvmdD9FAhYh+RQPAj6XwJlY80bL0be4n0tdgFR6SLUkJh1ov35j7gp/PEBX3Q2Pq+bddu717ivR+xvM/6s+Kw59Gvhj/eaEZ/1JDX5cy2bDtgEozUEW1wJBS372dr8WHTjolVd6X5MViF0Od77WkREJL3ldYOxP4KyCdZ9lt4Eh9YlrqZY7F1s3bZtfmJq2PAPWH5b5H7ZxfGvRUQSJ9uDYLQpf4Tup8c+j4iIiIiIiIiIiIiISKpo9amVIiIiIiIiIiIi0bF7mUkvQYlIEwWjiYiIiEhmGniF93NmQjBa0EEwWvdTY1uj87HQdVp0Y3ucAaWjWh/z58Lga52Nz+1i3VZdCUcPRVdXR2Z3u/dlx2fNsvHQ9cQ2a/lhyFfjs56kpkB0wWiNLbPQSoZFt3bDocQGxjgJW2lr0LWQle99LSIikhmmPWLf/vSQxNQRq6oPrNv2fRj/9bc8Ce98wVnfLAWjiWSUnBiD0XrNNK9l+Hze1CMiIiIiIiIiIv+fvfuOl7Os8///uk5NTnovhAQSQu9VAghSpLgrRVDBhthx7bvquiqiu2v5Ka5lbasifBcLIGADpCiKFKlK7ySUBEJCek6Sc2au3x+TbOZMZu65p50y5/V8POaRXP2TcHKYOXPP+5Ykaejyk5ySJEmSJEmSJFXMYDRJkiQ1p2rDcJI0QzBazCSPj9oBXnU97PtlaB9b+f5Tj4Sjr6v+g78t7XDsn2DeO3P/DWe+Bl51LUxZkG59uTCCNY9XV9dwlhSm19LWmDNDgKOuhp0/AON2h+mvhlf+Crb7h8acp8GppaPk0KpM6WC03kzehYRTjoD2KgMNfjO/fy5KXPlA8vikg2G3j8O+X8kFT048EPb9Euz/1cbXJkkausbuXP658fK7+qeWWiy/s/TYxmWNOzezEe54D9x8avo17QajSU2l1mC0ee+oTx2SJEmSJEmSJGmIMPxMkiRJkiRJkqR6atCn2CVJkqQmlN000BXULiaEXIU22OeL0NIKu38cdno3XD6hsv2PuKL2QIDOSXDI/1S3tlwg27O/hJ7VMHoejNq+ujOGm5gQCBjaG3du+2g48JuN21+DX0tnyaF1mVElx/Jz0WjtgH2/CHe+r+++E/eHZbeVr+Hx78LO56YotgbPXF56bK/zYa/Pbm3v/i+NrUWS1Fx2Phce+nLp8SXXwqQD+6+etLpfhHVPQ+cUWP1Q6XmNDEa76wPwZIWvSdpGN6YWSQNjxPTq1047GmaeVL9aJEmSJEmSJEmSJEmSJEmSJEkaZgxGkyRJktLKJgREDRUxU3rsuJth8iu2ttvHVb5/R4VBav3twf/MPQDmvRMO+l4uCE6lZRPC9Fp8SakGai0djJaNLSXHegu/zc1/L4zdFZ77FbR1wewzYMK+sPha+NsnYeXfS9dw1/th5EzY/pQKi6/AC9eXHpvVwHMlSc1v7tuTg9Hu+0zu/5GzT++/mpLECI/9N9zzkeRA5y0aFYzWsxYW/r/K1wWfG0tNZcZxuX/Xhd+PRs6AHd4MPavgiR9suy60wVFX50KaJUmSJEmSJEmSAIjlp0iSJEmSJEmSpD5Kf5JYkiRJGup2+5f67rfyvvruNxBKBQyM3qlvKBpACDB2l8r2D6G6uuophHMn4gAAIABJREFUbZDQkz/MhS489GV49JuwblFj6xqqkkIpDH9QI7WUDhLItI8vPZYt0jntKDjg67DPf+RC0QBmngAn/Q1O/FtyHTefCt0vlq+3WmufKt7fOQUm7N24cyVJzW/sLnDAN5Pn/OUMuOuDsOrh/qkpydMXwd0fSBeKBo0LRlv9CGQ2VLamdSSMntuYeiQNjI4JcOjFfV/3Tl4Ar3kY9vsKHPx9OOwX0JIX6DzxQDjlucSQZ0mSJEmSJEmSpEEvGuQmSZIkSZIkSRp4BqNJkiSpeW1/OlDHoK6nfgzPXlW//QZCzBTvbykRcDXnrMbV0ihzzkw/97Fvwd8+CXd/CK7eF166pXF1DVXZntJjLe39V4eGn5bSYQKZltElx3qLBaMlmbAPzH5D8pwl11a4aUrZHthQInTt0Isbc6YkaXjZ5QOw8weT5zz2LbhmP3j2yv6pqZinLobb317Zmo3LIVb6P/4UVj9S+ZrtXgttI+tfi6SBtcOZcPIiOOzncNwtcOxN0DFu6/ic18Nrn4QFP4Nj/gjH/QVGThuwciVJkiRJkiRJ0kAaJmFig+HmuZIkSZIkSZKkYcFgNEmSJDWvyQfDgkugc3Lf/rZR1Qc63XVuYz5831+yvcX7Q4lgtD3+DeafuzWgaPw+ub5i5r+/9vrqYc7rYdrRla/rWQn3/kv96xnqYomvGSj9dSPVQ2vpYLRsy6iSY5lqvkW/4sfJ492Lq9g0wdqF8KfXws87KHlRZNd29T1TkjR8zSkTAAqQ3Qg3nwaZjY2vp1DP6lxQcaViBv58Ciy/s/Yalt0Ot74Z/nA83PaWytcf8sPaa5A0OHXNzH0fnbKg+M+SuraDHd4I045KfA0jSZIkSZIkSZLUFOIwCYCTJEmSJEmSJA04g9EkSZLU3HY4E057EU55Fs7M5H49fRWc9CC0juw7d+R2cOLfYeorS+/XvQRWPtDYmhupVMhVaC3e39IKB/03nLESTl0CJ/0N9vjX3N9VvtaRsNO76ltrLQ6/tLp1y27LBRblG8pBePWQ7Sk9Vm3AoJRGS0fJoUzLyNJj1fyTbeuCo64pPd67topNS+heAr/ZCZ7/TfK8wu+zkiRVa/KhuUcaNxzZ2FqKef53uZDiqtb+JlfzS7dVf/7ia+CGV8LCS+CF6ypfv/MHoX109edLkiRJkiRJkiRJanKGiUmSJEmSJEn5kvL3zeaXtIXBaJIkSWp+oQW6Zm39taUVxs6HV98KM06AUTvCnDPh2Jtgwt7bBqYVumYfuPFoWPNkv5RfVzFTvL+lLXld6wgYOT33+7ZRcPxfYc4bc393M18DR98IE/apb6216JxU/dpf7wiXjoGbz4Df7g4/74BrDoAXbqxffUNJtkSYHpT/upFq0dJZcigTRpQc6602y3DmCUAoPlbPf//3n1/6e/EWrSOgY0L9zpQkDW8hwKt+n27u8r9Cz+rG1lNo8dW1rc90w6Nfr379IxckhwGX0z6m+rWSJEmSJEmSJEmSmoOf1pQkSZIkSZIkqa4MRpMkSdLwNWFfeNU1cPJTcNhPYcxOuf6EMJ7/8+If4YYjoXd9Y2ust1IhV6G1sn26toPDfpb7uzvqtzDl0Nprq7fZb6h+be9aePZyWP1wLsBoxT3wp9fCqkfqV99QERNCIkJ7/9Wh4ac1KRgtYazaYDTIBT4Ws/yvsHF5DRtvlu2Fhf9bft6I6bkQG0mS6qV9DMx7Z7q5L99T//NjhLVPw0u3QGZD37E1j9W+/zOXVV/X0j/XdvaIqbWtlyRJkiRJkiRJkiRJkiRJkiRJktSHwWiSJElSoc5J6eZ1Pw8v3NjYWuotZor3h7b+raM/zH1bfffLrM+FpQ03pcL0AFqa8OtGg0dLR8mhmBCM1ltLMFrb6NJjj36jho03u/9z0Luu/LzJgzBsUpI09LWNSTdvdZ3DgHvXwc2nwa/nwvWHwxXT4YUbto5vXFafc6oJMe1dC9lN5ecd8C1oH1d8bMaJlZ8rSZIkSZIkSZIkSZIkSZIkSZIkqSSD0SRJkqRCaYPRAB78z8bV0QixRMhVMwZczTgBJuxX3z1XPVjf/YaCUl8zBAi+pFQDtbSXHMpQOhgtU1Mw2qjSYw98AV6+Fx78EtzzMXj027BuUfq9e9bCg/+Rbu6cN6bfV5KktNrTBqM9Wt9zH/oKPHfV1nbPKvjDcbD497l2vYLR7vlY5WvSnj33rXDoxdA6om///l+HsfMrP1eSJEmSJEmSJEnS8BHjQFdQoaFWryRJkiRJkiSpGTVh+oEkSZJUo87J6eduWt64OhohZor3h9b+raM/hAALfgq/261+ez5zGRz2s/rtNxRke4r3J4RWSY2WaekqOdZbUzDa6OTxa/fv277v03Dkb2Hq4eX3vnrPdDWM3wtmnphuriRJlUgbjLbm8fqeu/CS4v03nQA7vg16VtfnnKcvgkN/UtmaNMFobWOgfSzMei289il48Y+Q2QBTj4Qx86oqVZIkSZIkSZIkSVKzGSZhYiEMdAWSJEmSJEmSpGHCYDRJkiSpUCXBaEMtHCrbW7w/NOlLg45x9d0vZnJ3bxxOF/fEYfY1o8Fj9Nzc9+PCwJLWLrIjppdclqkpGG1UZfN7VsENR8A/Pg5jdio9b/WjsG5R+f1GTIcFPxt6/2+RJA0N7WPTzVtxD9z+Dnjqx7l2axccfhlsd1Lx+b3d8NCXYemfoHdNrq9tDEw7Cua/H9Y+Wfqspy9KXX4qG5dD56Tcc/ZFP4dFm/+/Ov9cmH5MkfkpgtHyA+VGzoAdzqpfvZIkSZIkSZIkSZIkSZIkSZIkSZK20TLQBUiSJEmDTsfE9HPDEAuvKRly1dq/dfSX9vH13/O+T9d/z8Es21O83+AmNVpogZ3eu23/vHPIxNLBfL2ZGs5s66pu3W/mw5onSo8/e0Xy+pMegFOXwKmLYfwe1dUgSVI5LZ3p5nUv2RqKBpBZD396DTx9ybZzY4Q/Hg8PnA9Lb4KX7849lt4E938Ofj23DoVX4KEv5Wq6/3Nw61nw/G9y/x/+w7Gw8Gfbzt+4vPye+cFokiRJkiRJkiRJklSxONAF1E9soj+LJEmSJEmSJGlQMxhNkiRJKhSz6ee2dDSujkaIJRKDQumQoSGtbSRMPLD42Pz3V7fnIxdAb3f1NQ01pcL0Wpr0a0aDy96fh32/AuP3zj32Oh8O+AaZbOkL7DK1XHuXLfH1nsZv5sONR8Pap7YdW3x16XVzzsyFoY2cDiFUf74kSeX0rKlt/YP/vm3f87+Fl24uvaa3xjPzjZxRfs7DX4VfdMIDn9927NazoHd9376Ny8rv2WYwmiRJkiRJkiRJkqRyDAyTJEmSJEmS0kr6aZo/aZO0hcFokiRJUqGJ+6Wf2zrEgtFKhf40c8jV3l/YNsBu3y/DQd+ubr/MBnjxj7XXNVRseKl4f2jv3zo0PIUAu/8LnPT33GOvz0JoISEXjd4S+Y+pZGoMPXzxj3D94ZDZ2Ld/04rSa2adUtuZkiSlNeng2tavfqRvsNiGpXDfp2vbsxLTjk03L9tTeuyaffu21y0qv1+7wWiSJEmSJEmSJEmSJEmSJEmSJElSfzIYTZIkSSo0akcYu1u6uUMtHCqWSAwKrf1bR3+aeQIcdwvs/EGY/z448new+8dr23PjsvrUNpjFCA99Be56f/HxZg7T06CXyVY3Vlaow49JupfAs7/c2o4R1j9bev7Mk2o/U5KkNCbuD52TattjSzDa/Z+Hq2bByvtqryut1g6Y947a9ljzOLx899b26kfLryn1GkqSJEmSJEmSJEmSJEmSJEmSJElSQxiMJkmSJBUKAV5xYbq5LUMtGK23eH9o8pCrSQfCgd+Ag74D2+WFEO3xqer2ax9Tn7oGs6V/gr99ovT4UAsFVFNJCj/rrSUYbdbJNSzOc+ub4M73w+/2gGv2gZ7VxefNfz+0j67PmZIkldPSBgt+Ci2d1e+R6YYl18H950G2p361pdHSAXt9DsbvVds+1x4Iy+/M/X71I+Xn96yp7TxJkiRJkiRJkiRJw1wc6AIqNNTqlSRJkiRJkiQ1I4PRJEmSpGImHwKvuKj8vKEWKBYzxftDa//WMVjMPgMIla+rJUxiqFh4SfJ4yxD72ldTySZce5cUmlbW2N1g3O41bJDn8e/Aqodg5f2l5+x9fn3OkiQprRmvhlOegUMvhl0+XPn6TDc8ckH960qjpQO6ZsGrb4ejrqltr98fDPd/HtYtLD+3VMCpJEmSJEmSJEmSJG0RDROTJEmSJEmSJKmeDEaTJEmSShm7c/k5safxdeTrWQsPfxX+dDLceS6sf66y9bG3eP9wDbmasC8s+Cm0j6tsXXZTY+oZTJ78YfL4UAsFVFNJCj/rrSUYLQQ46urc94ZG65wCnZMaf44kSYVGTIUd3wKzT6987W93gSW/r39NabS0535t64KZJ8DYXWvb7/7zSHWn8961tZ0jSZIkSZIkSZIkSZIkSZIkSZIkqSJ+kl2SJEkqpXNy+TmZDY2vY4uYhT/9Ayz909a+Rb+AE+6E0XPT7ZEtEYw2nEOudngjzD4DHvgCPHB+ujXNHoyW5u6VW4IppAGQSfgSTQpNS2XUHDjxXlj3LHSMg/axsHE5rFuUC5Jp6YC2MfDgf8KD/179ObWGuUiSVKvWroGuoDItHX3bI2fC6kcaf+6skxt/hiRJkiRJkiRJkiQNCSmuLZQkSZIkSZIkqQ6GcfrB8BZC2BXYB5gFjAQ2AEuBJ4C/xxjX1bB3O3AYMBuYAawFFgP3xhgX1la5JElSPxpswWiLLu0bigaw6WV47L9h/6+l2yNmiveH1tpqG+paWmHeOc0ZjPb81XDfZ2D9Ihi3Bxz8Qxg7P3nNE98vv+9wDtPTgEsKP6s5GG2LUdtv/X3npNwj3z5fgBHT4O4PVLf/9GOqr02SpHpoG+LBaKPm9M+5O7y5f86RJEmSJEmSJEmS1JzS3KhUkiSpGfk8SJIkSSUkPVX0aaSkLfwk+zASQhgPfAg4h1xoWSmZEMLfgMtjjF+qYP8pwPnAG4CJJebcClwQY/xl6sIlSZIGSvu43Ifvk0Kw+jMY7ZGvFu9/8Q/p94i9xftbfGnAqNmw03vhie+VnztUgtFWPgg3nwLZnlx76Z/h9wfDyQuhY1zxNc9cDne+r/zeHRPqVqZUqWzCDzfrFoyWxi7/BJuWw/2fq3ztTu+pezmSJFWkdYCD0Vo6c8Gj3YtTzm/v255zJjx1Yf3ryjfzNTB5QWPPkCRJkiRJkiRJktQE/LSmJEmSJEmSJEn1ZPrBMBFCOAP4LjApxfRW4ABgFpAqGC2EcCLwE2BqmakLgAUhhEuA98QY16XZX5IkaUCEABMPhGW3lp7TX8FoMcLLdxcfW/G3CvbJFO8PrZXX1IwO+g5MWQBP/ABe+kvpeUMlGO3+z24NRduiZyU8eznMe0ff/mwP3H4OLPzfdHtPP6Y+NUpVSAo/6y3xba5h9joPxu8Nz/8aul+AdQth9SPJaw78Noyc3i/lSZJUUtsABqPt8hHY8U0wYT946iJ48Ubomp17Dv7SzcXXtHT0bU87CsbsDGseq399c86EqUfA3HdAi6+VJEmSJEmSJEmSJEmSJEmSJEmSpP5kMNowEEI4D/hckaFngMeAl4ARwAxgL2BUhfsfBVwF5H8yLQL3AE8B44H9gMl5428CxoYQTokxJnykXZIkaYDNPDE5GC3bT8FoPauTxzetgo5x5ffJ9hbvD740AHJheDu+BbZ/HVw+fttQsS2GQjBa73p49oriY399J0x7FYyeC2ufgsXXwl3vT7/3tGNglw/Vp06pCknBaJnsANx9dftTc48tHvsO3PPh4t9DdngTzD+3/2qTJKmU1gEKRtvuH+GAC7a257099wC4432lg9FCe992Szsc8iO44Yj61rfvl2D3T9R3T0mSJEmSJEmSJEnD2ABczyRJkjQo+DxIkiRJklQ90w+aXAjhY2wbivYz4IsxxvuLzG8BDgVeBxyfYv9ZwBX0DUW7BXhXjPHhvHmdwHuArwJbPsH2j8C/A59K+ceRJEnqfyOmJ49n+iEYLbMR/ljmqdm6RdCxd/m9YolgtBZfGvTR1gUzToTnf118fCgEo/355OTxX8+DuWfDokshsz79vsfcBFMW5IIopAGSlH2WGQzvn+98Lsx4Nbx0K2TWQUtHLuBy4oEw5fBcCKMkSQOtdcTAnLvj20qPtXYmjHVs2zf1cDh9JTx1IdzzkdprAxg5sz77SJIkSZIkSZIkSRpGBsNFS3USm+jPIkmSJEmSJEkaskw/aGIhhH2AL+V19QBnxRgvL7UmxpglF2x2SwghzdfH+cCEvPatwLExxj4JITHGjcA3QwjPAFfmDX00hPD9GOOiFGdJkiT1v7au5PGNy6BnLbSPblwNz1wKy/+aPGfdQpiQJhgtU7w/tFZcVtN7xYXwy0nFx/ojEK8WG16CF24oP++pn1S270Hfg2lHVlWSVE+ZbOmx3hLf5vrdmJ1yD0mSBqsQYPxesHKb+2dAaIGY8D/cQi0dMPUoeOG68nO3PzV5n0rHOsbBrh+GSYfA9QvKn1/OyBm17yFJkiRJkiRJkiRJkiRJkiRJkiSpai0DXYAaY3Oo2Y/pG373nqRQtEIxxt4yZ8wH3pbXtQk4uzAUrWDPq4CL8ro6gfPS1iRJktTvWssEowFcdwj0djfuLnmP/Ff5OetS5sxmSzzFS5WJO8x0ToSpJULA7vtM/9ZSqTShaJXqnAI7vqX++0pVSApGSxqTJEkF5r17274ZJ6Z7HZTv9JWw12fLz9vt47nQtVJaR5QeC+3Je08+BCbsW76GckZuV/sekiRJkiRJkiRJktSUGnSdrCRJkiRJkiRJBQxGa15nAPvntW+MMV5Y5zPOAlrz2lfEGB9Pse7LBe3XhxASPvEmSZI0gNpSBAKseggu7YLLx8PNZ8CGpfWtYcU95ecs/2v5OeuegRdvLD4WWov3D3ctHaXH6v3fuZ42vFDf/Wb+A5xwZ7p/D1I/yCZcX9drMJokSent8k9w4Ldh/D7QNRt2ei8ccTn0rk2/R9dsaBsJE/YrP3fkjDLjM0uPJT03h1zg2tE3wA5vgRHTYeKBsOBncOpimHUKjJhWvr6u2TBm5/LzJEmSJEmSJEmSJCmtRt10V5IkabDzeZAkSZIkqQZtA12AGuY9Be3/bMAZpxa0UwWvxRgfDiH8FThkc9co4NXAr+tYmyRJUn20jkw/t2c1PHs5LL8DTn4698H8WmV70s1beAm84iJoKRFwltkI1x9Wen3wpUFRSeELi34Bu3wgeX1mI6x6EMbu2r+hYhuX1b7Hrh+D/b9a+z5SA2QSws+SxiRJUhE7vz/3qFVbF3ROgY0vlZ5TLhht7K6lx3rXlK+hcxIsuHjb/ldeuW3f05fAbW/O6wiw12dLv6aSJEmSJEmSJEmSpFIM/ZAkSZIkSZJSS/ppmj9pk7SF6QdNKISwE3BkXtdC4I91PmM6sE9eVy9wSwVb3MTWYDSAEzEYTZIkDUbVhFmtfwaumAqnLIbWhGCtNNYuTD/3pZth2lHFx57/Nax/rvRaP/xfQsKPUNY8kbz0qYvhzvdAZkMuYG2f/4TdPlbf8kqpNRhtwU9hzhvrU4vUAEnhZ70Go0mSNHAOvRhuOrH0eNlgtF1Kj2W6q6uplB3fBGN2gie+D61dMPv00q+nJEmSJEmSygghtAOHAbOBGcBaYDFwb4xxYZ3P2hHYF5gJjAaWAIuAW2OMKe+8JUmSJEmSJEmSJEmSJA1eBqM1p1cVtG+Mse63n9mzoH1fjHFdBetvLWjvUWM9kiRJjdFaRTAawMbl8MAXYJ8v1Hb+xqXp5750S+kP8i+/M3ntmifTnzOcJIUvJIXmrfg73P62re3sJrj3n2H8XjDj1fWrL9+qh2DJ9bDpZXjiB9Xvs9fnYYcz61eX1ACZhFe4SaFpkiQppfnnwuPfqXzd+MIfGxcYPS95fMR0aB8PPSu3HZtyeOX1lDP5kNxDkiRJkiQ1hRDC54Dzatjiohjj2RWeOQU4H3gDMLHEnFuBC2KMv6yhNkIIpwMfBQ4tMeXlEMIvgM/GGGu8k5IkSZIkSZIkSZIkSZI0cFoGugA1xMEF7dsAQs6xIYQLQwgPhRBWhRDWhRAWhRBuCCF8MoSwQ8ozdi9oP1FhjYXJG4X7SZIkDQ5J4VflPHtZ7ef3rEk/975Pw+rHt+2PER7+/5LXjvPpWFG960uPtY4sPfbcVcX7n72ytnpKeeKHcPXecM+H4YHP17BRgB3fXLeypEbJJoSf9WT6rw5JkprWrFPSzx2z09bfd82CaUcXnzflCOjaLnmvEGCnd27bP2oOTNg3fU2SJEmSJEn9IIRwIvAA8D5KhKJttgC4PITwvyGEUVWcMzqE8DPgMkqHorG5hvcBD4QQjq/0HEmSJEm1SLjTY+LYYDTU6pUkSYOXzyskSZIkSdUzGK05HVjQfnhz4NkNwPXA2cBuwFigC5gNHAN8EXgshPDfIYRyCSA7FbSfqbDGRQXtSSGECRXuIUmS1HitNQSjrV2YCyWrxPO/g9vOhtvPgcW/h57Vla3/7c7wl9fDjcfCvR+HNU/CstvLrxu7a2XnDBeZKoPR7v9c8f4nvldTOUWtXwx3vAtiHdKgDr8URu9Y+z5Sg2USvrVu6Om/OiRJalozjoP9L0j3emi3f+7bPvRimHhQ376JB8BhP0939p7nwewztrbHzIejroXg2xmSJEmSJGnwCCEcBVwFTM3rjsDd5ALMrgeWFSx7E/CzENL/oCOE0Ar8AnhjwdBLwHWbz7qHvp8wnAb8KoRweNpzJEmSJEmSJEmSJEmSpMGkbaALUEPMKGh3AXcCk1OsbQfOBQ4NIbwmxrikxLzxBe2llRQYY1wbQtgAjMjrHgesqGSfQiGEqcCUCpfNq+VMSZLU5NpqCEbLboTeddA+Ot38x78Hd75va/upC2HKYZWf+8xluV9fvBGevgimvDJ5/pj5MPXIys8ZDnoTgtFa2vuvjiRXbVeffV6/rravd6kfZbKlx9Zt6r86JElqart+BHZ6L6x9ElY/Cn85fds5o+fBtGP69nVtByfckQuKXv8sdG0Po3dIf2776Fxg78blsHEZjNkZQqjlTyJJkiRJkoavM4EUd5H6P2vTTAohzAKuADryum8B3hVjfDhvXifwHuCr5K7LA/hH4N+BT6Ws6UvASXntHuCjwA9ijP/3rkgIYXfgh8Chm7s6gatCCHslXAMoSZIkSZWp9GbBkiRJkiRJkiRVyWC05lQYWnYhW0PR1gHfA64BngNGAfsA5wD5d4jcD/hlCOHIGGNPkTMK0z26q6izm77BaGOq2KPQucB5ddhHkiQpp3Vkbes3LU8XjBazcP/52/a/dEtt529YCs9eXnp8yhFw6E/Sh7cNN5mEYLRHvwm7frjImg2Nq6fQ8ruqWxfagCy0jYFpr4IDv20omoaUbML1dU9UFNstSZIStY2E8XvmHodeDLe9devY9GPhFRdBa0fxtaN3qCwQrVDnpNxDkiRJkiSpei/EGBc2YN/zgQl57VuBY2OMfd4ojDFuBL4ZQngGuDJv6KMhhO/HGBclHRJCmAt8qKD7jBjjrwrnxhgfCiEcA9zI1nC0SeSupXtvij+TJEmSpIYxTEySJA1XPg+SJEmSJFXPYLQms/kuk50F3bM2//oQcEKM8dmC8XuAC0MIHyN3d8otDgU+Qe4OlYUKkzOqSX/opu8FYqZxSJKkwSe01LZ+4zIYNaf8vOV3wYYXajurGsf9uf/PHEp6E4LR1j0NT/4Y5p3Tt//WtzS2pnwv/qGy+ae9CCOmNqYWqR9lssnjv7gzyxsOqvH7tyRJ6mvHt+QekiRJkiRJw1gIYT7wtryuTcDZhaFo+WKMV4UQLspb10kusOycUms2Ow9oz2v/pFgoWt453SGEs4H7gS1p9u8IIXwlxvhUmbMkSZIk1cTQD0mSJEmSJEmS6slPCTef1hL9qygeivZ/YoxfA75e0P2REEKawLJq3sXxnR9JktT8NixLN2/j0sbWUcx+X+v/M4eaWCZ96ckf9m1vWAbPXZG8JrOptpryPfjF9HM7JkDnlPqdLQ2gcsFoP/qLLzclSZIkSZIkSVJDnEXfa/SuiDE+nmLdlwvarw8hjCg1OYQwEji9zB7biDE+BlyV19VGrmZJkiRJkiRJkiRJkgaFmPDxv6QxScOLwWhNJsa4Hij2EfELkkLR8nyGXIjaFhOBE4vMW1vQHpmuwsQ1hXtW4zvAnhU+Tq7DuZIkqZmN3aX6teufSTdvIF6pd23X/2cONft9JXl82W1926sfLh+mduOroHtJbXUBrHsWelamnz9yBoRQ+7nSIJAt8y3zhof7pw5JkiRJkiRJkjTsnFrQvjDNohjjw8Bf87pGAa9OWHI80JXXvi3G+EiqCret6bSU6yRJkiRJkiRJkiRJkqRBwWC05rSuSN/FaRbGGNcBVxR0H1Vk6qAMRosxLo0xPljJA3iy1nMlSVKTm/3Gbfs6JsLrlsEhP4IFl0D72OJr73g3rLiv/BkxU1uN1RhpMFpZM4tlBCfoWVN+zrJb4doD4KVbq6tpiyd/VNn8qUfVdp40iGTK5A9KkiRJkiRJkiTVWwhhOrBPXlcvcEsFW9xU0E56M/KEMmuT3Eyuti32CyFMq2C9JEmSpHoaiBvn1mSo1StJkgatIfc8SJIkSZI0mBiM1pxWFrRfjDEurGD97QXt3YrMWVXQnlLB/oQQRrNtMFph3ZIkSYPDnv8GO7wFCLn2yJlw9HXQOQnmnQM7nAXj9ii9/q/vhKcvgVvOgrs+CMvv2nbOQASjjZ7b/2cONaPmQOuI5Dn5b9b1pghGA+heAjceBfd8DO79OPzlDfD4dyFbwdfBA+ennwsw7x2VzZcGMYPRJEmSJEmSJEnSANizoH3f5huRplV456Sk2cPnAAAgAElEQVSEN5m3Oeu2tIdsrun+Cs6SJEmSVCtDPyRJkiRJkiRJqqu2gS5ADfEYsH1ee0mF6xcXtCcVmfN4QXtOhWcUzn85xriiwj0kSZL6R0s7LLgYDvh6LtBq3O4QCjKG28aUXv/ynXDbm7e2n/wfOPI3MP3YrX2Z7vrWXM64PaFrZv+eOVRt/zpYeEnp8dgLoT33+56UwWgA2R545IKt7WcuhRf/CIf9AkJIXnvfeenPAZj9epi4f2VrpEEsm+I6wt8/GDl+jzL/liRJkiRJkiRJUjN7Twjh0+RuDDoJ6AGWA4uAvwDXxhhvrmC/3QvaT1RYz5Nl9stXeDPTas7ar+CsP1S4hyRJkiRJkiRJkiRJkjQgWspP0RD0YEF7Y4XrC+ePKDLn4YL2ThWeMbeg/VCF6yVJkvpf5yQYv+e2oWgA7QnBaIUyG+APx8GVs+CuD+TavZXcSLwOZry6f88bylo6k8ezm7b+vreCYLRinrkMVj1QfOzZq+DqfeGnAR74fOk9TvwbHPBNGD0PRkyFXT4MB323trqkQSaTLT/nM1elmCRJkiRJkiRJkprZG4FjgJlAJzCa3A09Xwl8CvhzCOHOEMKxpbfoo/AauWcqrGdRQXtSCGFC4aQQwkRgYo1nFc6fX+F6SZIkSSoixR0tJUmSJEmSJEmqg7aBLkANcV9Be3yF6wvnLy8ypzCtYe8QQleMcX3KMw4rs58kSdLQUkkw2hbdz8Nj34bVj+ZCrCrxiovg0W/AinsqPxdg3B7VrRuOWjqSxzMboW1U7vc9q2s/78kfwQH/1bdvyfXwl9dBLBP0NH4fmLD5scsHaq9FGqTSBKPdtQiy2UhLS2h8QZIkSZIkSZIkaag6ELguhPBF4NMxxqRP+RdeV7e0koNijGtDCBvoe6PSccCKMuesjzFWeqetwtrGVbi+pBDCVGBKhcsqfENckiRJGmqSXkoYJiZJkoYrnwdJkiRJkqpnMFpzuobcTwy2fPp7bghhRIxxQ8r1exa0nyucEGNcEkK4D9h7c1cbcDhwXcozjipoX5NynSRJ0uDUVkUw2hYvXA9cX9mazskw7xy4q8pgtLG7VLduOIo9yePZjVt/37Om9vNeKPK18MQPyoeiAez41trPl4aATMr3yJethaljG1uLJEmSJEmSJEkadJ4HrgbuAB4GXgaywCRgf+AfgOPz5gfgU0AL8K8J+44uaHdXUVs3fYPRir3RXK9z8tXwhvY2zgXOq+N+kiRJkiRJkiRJkqRhJOmWZYm3M5M0rLQMdAGqvxjjYuC2vK524JgKtjihoH1ziXlXFrTfnmbzEMKuwCF5XetIH6gmSZI0OLXX8zryFDonw9yzq1wcYOxu9aymufWW+ZxBJi8YrbcOwWirHtr2JzfPXp5u7c7n1n6+NMjFGFP/cHPJqsbWIkmSJEmSJEmSBpU7yAWebR9jfHeM8YcxxltijA/HGB+NMd4aY/x2jPEE4CDg8YL1nwwhnJywf2FgWdobleYrfPOxcM/+PEeSJEmSJEmSJEmSJEkalAxGa14XFrQ/mmZRCOEI4OC8riy5u2cWcwmQyWufFkKYn+KYTxS0L40xVnPxliRJ0uDRPrZ/zxsxGdpGwZG/rXztzNdA58T619SsMmWC0bJ5wWg9ZYLRJh4Ax/2l/Jl/fSdkM+Xn5Tv2ZmgdUX6eNMRlK7jjw+KVjatDkiRJkiRJkiQNLjHGq2OM18VY/hYrMca7gFcAjxUMfSmE0Jr2yEprHORrJEmSJDXEEHt6nvaulZIkSWX5vEKSJEmSVL22gS5ADXMhuTC03Ta3jw4hfDTGeEGpBSGEqWwbqHZpjPHJYvNjjI+HEC4Cztnc1QH8JIRwTKmgs8131Dw7r2sTcH65P4wkSdKg1zamf8/rmLT51/GVrz3kB/WtpdmVC0bLpAxGG7srHH4pjJ4LI2dA95LSc5/6MUw+BNY/DyvvL1/j/v8FUw8vP09qApls+rlLVkUgNKwWSZIkSZIkSZI0dMUYXw4hnAncxdY3FHYFXgXcUGTJ2oL2yCqOLVxTuGd/nlOt7wCXVbhmHvCrOtYgSZIkDTKGfkiSJEmSJEmSVE8GozWpGGMmhPAh4FqgZXP310IIc4DPxRhX5M8PIRwLfJfcBUhbrAA+Veao84BTgQmb2wuAG0II74wxPpK3fyfwbuBrBeu/FmNclP5PJkmSNEiFfg7eaR+b+7W1wmvgu2blQrmUXrlgtOymrb/ftLz4nNmvh8N+vvXrJLSXP/eO96Srb+45sOuH0s2VmkC2gmsIF69qXB2SJEmSJEmSJGnoizHeE0K4Djg+r/sEDEYrKca4FFhayZrQ3++nS5IkSZIkSZIkSZIkaUgzGK2JxRiv3xyO9q287g8C7wsh3A48T+4CqH2BOQXLNwFnxhifLnPGcyGE04DfAx2buw8DHgoh3A08BYwD9gemFCz/LfCZiv9gkiRJg9HGEoFYjbLlwvHWrsrWlQv50rbKBqNthEe+AU/9GFbeV3zOtKP7hue1dBSfV42pr6zfXtIQkMmmn7vEYDRJkiRJkiRJklTetfQNRtu7xLzCdx4Kr4dLFEIYzbaBZStTnNMVQhgVY1xXwXFTU5wjSZIkSRWq4K6WkiRJkiRJkiTVwGC0Jhdj/HYIIQN8FdiSmtEOHJGw7EXgtBjjrSnPuCmEcCrwE7Ze7BWAAzc/ivkZ8K4YYybNGZIkSYPeQIVTtVUYjLbzBxtTRzPb/nRYfkfp8Qe/CIt/l7zH2F37tnd6F/ztE7XXBjDj+PJzpCZSSTDaC6u8EE+SJEmSJEmSJJW1sKBdKvDs8YJ24c1Iyymc/3KMcUXhpBjj8hDCCmBCXvds4OEaziqsXZIkSVI9xYTrlJLGJEmSmpnPgyRJkiRJNWgZ6ALUeDHG75K7i+X/AmsSpr4AfA7YJW0oWt4ZVwN7At8DtrlYK8/twOkxxrMqvIOlJEnS4DbpEGgb0z9ntY/d+vsRhTf6LmP70+pby3Aw5w3J4+VC0QDG7lKw5xurryffjBNh5PT67CUNEdkK3h9fvLJxdUiSJEmSJEmSpKbRXdAeWWJeYTDZThWeM7eg/VDC3HqfVUmomiRJkiRJkiRJkiRJkjSg2ga6APWPGOOTwFtCCCOBw4BZwHRgE/AS8PcY4301nrEUeF8I4UObz5iz+Yx1wPPAvTHGp2s5Q5IkadBq7YRD/gdufRPETGPP2u9reeeOSL9ut3+BcXvUv55mN2o27PNF+Pu/Vre+fTyMmFZkz/+Av/9bbbUd9O3a1ktDUCabfu6SVY2rQ5IkSZIkSZIkNY3JBe1lJeY9UNDeO4TQFWNcn/Kcw8rsVzi2IK99KPCbNIeEEEaRu5Fq2rMkSZIkSZIkSZIkSRoU4kAXIGnQMBhtmIkxdgM3NPiMTcAfG3mGJEnSoDTnDTBhX7jjvbD0psac0doFs1+Xfv4Rv4Q1j8OUw2HyAgihMXU1uz0+WX0w2rQji/+97/EpmH5c7utlxT2V7zvpYBhdeKN3qflVGowWYyT4vU+SJEmSJEmSJJV2SEF7cbFJMcYlIYT72Bo61gYcDlyX8pyjCtrXJMy9Fnh3wtokR9D32tB7Y4wvVrBekiRJ0rDmR08lSVK9+LxCkiRJklS9loEuQJIkSWoqY3eBff69MXu3j4XDL4OOCenXbH8a7P4JmHKYoWi16ppV3boZJ5Yem3QQHPdnaOmofN/dqwxqk4a4bAXvj/dkYFNv42qRJEmSJEmSJElDWwhhBHBaQfdNCUuuLGi/PeU5u9I3gG0dyYFqvwe689qHbt4jjbML2oU1S5IkSaq7pIuaDASRJEmSJEmSJKlSBqNJkiRJ9dYxqbb1rV1wzB/g9BVwVoRTl8Dxd8CpL8B2J207v3NK8X26tq+tDvWV7alu3Zh5yeNto2B0mTmFJh0C2/1jdfVIQ1ys8DrB7ir/6UqSJEmSJEmSpGHhE8B2ee0M8LuE+ZdsnrPFaSGE+SnPyXdpjHFDqckxxvXA5WX22EYIYWfg1LyuXuCnKeqTJEmSJEmSJEmSJEmSBg2D0SRJkqR665xcfs74fUqPnfR3mPYq6Bifa4+cDpMOgraRxefv/YXi/bv9c/k6lN7GZdWtGzmz/JwT7k65WYA5Z8Hhv4CW1urqkYa4bKXBaJsaU4ckSZIkSZIkSRo8QghvCSFMq3DNu4DzCrp/EmNcVGpNjPFx4KK8rg7gJyGEEQnnnAycnde1CTg/RYmfA/JvAXN2COG1CeeMAC7cXNMWP4oxPpniLEmSJEkqr9K7WkqSJEmSJEmSVCWD0SRJkqR665hQfs7xd8CME/r2tXbl+sfsVNl5c14PYwpuQj56Lsx5Y2X7KNmkg6tbN3K78nPaRsKOb02e09IJZ2bgsEtg1JzqapGaQKWX1nX3lJ8jSZIkSZIkSZKGvHcAT4cQLgohvCaEMKrUxBDCgSGEK4AfACFv6Hng0ynOOg9YkddeANwQQti14JzOEMIHgMsK1n8tKXxtixjjU8A3CrovDyH8UwghP/yMEMJuwI2ba9liOekC2CRJkiQ1lGFikiRpuPJ5kCRJkiSpem0DXYAkSZLUdFpaYeZJsPjq0nNaO+CVv4JHLoCX/gIjpsDOH4CJ+1d+XscEOO5WePgrsOJemLAf7PJhGDG1+j+DtjXtaFh2W+Xr2semmzfrFHj64tLjnZMghNLj0jCRzVY232A0SZIkSZIkSZKGjZHAWzc/siGEx4GFwCogA0wC9gGmFVn7MnBCjPGFcofEGJ8LIZwG/B7YElB2GPBQCOFu4ClgHLA/MKVg+W+Bz1TwZ/oksAdw4uZ2O/At4DMhhHuANcDczWflv5m4CTg1xrikgrMkSZIkVSsa+iFJkiRJkiRJUj0ZjCZJkiQ1wr5fKh2MNm7P3K+tHbDHJ+tz3ojJsN9X6rOXitv1I7n/pivuTb9m/N7pw8xmvJrcZxVKXCDVMSH9uVITy1Z4DWH3psbUIUmSJEmSJEmSBrUWYJfNj3JuBM6OMT6XdvMY400hhFOBn7A1/CwAB25+FPMz4F0xxkwF52RCCK8Hfgi8IW9oKnBCiWVLgbfFGG9Oe44kSZIkSZIkSZIkSZI0mLQMdAGSJElSUxq/F7z2yeJj25/Wv7WoPjonwbF/qmzNDm9OP7dtFEzYr/R4+7jKzpaaVKX3Vu3uaUgZkiRJkiRJkiRpcPkG8FNgUcr564ArgWNjjMdWEoq2RYzxamBP4HvAioSptwOnxxjPijGuq+KctTHGNwJnbN6rlJeB7wJ7xhivrfQcSZIkSQIgVnqFliRJkiRJklSZpB9B+eMpSVu0DXQBkiRJUtMaPReOuQn+fDL0rMr1bf862ONfB7Qs1aB9TPq5c98OO7+/sv2P/DVcNav4WFJomjSMZLOVzd9gMJokSZIkSYPGHx6JXPW3SEcrnHFA4JC5YaBLkiRJTSLGeCW5oDNCCOOBPYDtgWlAF7mbyK4kF2D2MHBfjDFTh3OXAu8LIXwIOAyYA0wnF7z2PHBvjPHpWs/ZfNblwOUhhB2B/YGZwCjgBXKBcLfEGDfV4yxJkiRJlfKTnJIkSdvweZAkSZIkqQYGo0mSJEmNNO1IOG0pvHw3dM2CUdsPdEWqVWsXZNYXH5txPOx1PoycDqPmVL5313aw8wfgsW/17Q+tsONbK99PakKVvj3e7cd/JEmSJEkaFP7n5izv+X9bX9l/6w+RX7y7hVP2MxxNkiTVV4xxJXBLP5+5CfhjP531NFCXsDVJkiRJkiRJkiRJkiRpMGoZ6AIkSZKkptfaAVMONRStWez+yeL9nZPg8Eth8iHVhaJtsf/XYJcP5/YDGL8XvPIqmHxw9XtKTSRbYTJad493GpMkSZIkaaBlspF/u7Lva/SeDHzmV9kBqkiSJEmSJEmSVDmvxZIkSZIkSZIk9Y+2gS5AkiRJkoaUuW+DJ74L3Uu29o3dDU64E9pG1b5/Szsc8HXY/wLIdENbV+17Sk0kW+Hnpbt7GlPHYNa9KbJiPUwdA22tYaDLkSRJkiSJW56AZWu37X9wMSxeGZk53tevkiRJkiRJkiRJktRcDFWVJEmSJFXPYDRJkiRJqsSo2XDcLfDI12Hl/TDpINj9k/UJRcsXgqFoUhGVvj3evakhZQxaX78+y+d/G1nVDTPGwfff0sI/7O2HyyVJkiRJA2vR8tKv6Fd3w8zx/ViMJEmSJEmSJNVd0lVNBoJIkiRJkiRJklQpg9EkSZIkqVKjd4QDvznQVUjDUrbC6wS7expTx2D0m79HPnbZ1r+gJavgDd/P8vDnW5g9yXA0SZIkSdLglPEzgZIkSZIkSZIkSZIkSZIkSZLytAx0AZIkSZIkSWnFSoPRNjWmjsHo8ru3/cvp7oHv/MlPmEuSJEmSBlbSK9P1w+i1uyRJkiRJkiQNfl5rJEmSJEmSpMZK+gmUP52StIXBaJIkSZIkacjIVhqM1tOYOgajOxcW/8v5yrX+OFiSJEmSNLCSgs7Xbey/OiRJkiRJkiSpIRLv9ui1O5IkabjyeZAkSZIkqXoGo0mSJEmSpCGj0mC09ZsaU8dg9MgLpcfWbPDCAkmSJEnSwNmQEFxuMJokSZIkSZIkSZIkSZIkSZKkfAajSZIkSZKkISPx5qpFrFjXmDoGo1GdpceG09+DJEmSJGnwWZsQfjacQs0lSZIkSZIkSZIkSZIkSZIklWcwmiRJkiRJGjKyFQajLVtb4YIhbGR76bE1CR9AlyRJkiSp0dYlhJ+t2zR8XrtLkiRJkiRJ0tDmz3MlSZIkSZIkSf3DYDRJkiRJkjRkxIqD0RpTx2DU0VZ6bHV3/9UhSZIkSVKhdQmB3UljkiRJkiRJkjQ0JFzUVOkFT5IkSc3C50GSJEmSpBoYjCZJkiRJkoaMrMFoJbWG0mNrNvRfHZIkSZIkFUoKP1u/qf/qkCRJkiRJkiRJkiRJkiRJkjT4GYwmSZIkSZKGDIPRStvYW3pstcFokiRJkqQBlBSMljQmSZIkSZIkSZIkSZIkSZIkafgxGE2SJEmSJA0ZscJgtFXdsKm3wkVDVFIw2poNw+PvQJIkSZI0OK3bWPp16bpN/ViIJEmSJEmSJKkMrzOSJEn14vMKSZIkFZf0GcFKPz8oqXkZjCZJkiRJkoaMbBU/2Fy+tv51DEbJwWj9V4ckSZIkSYXWJ4SfJY1JkiRJkiRJ0tCQdFGTn+SUJEmSJEmSJKlSBqNJkiRJkqQho5o7Pqzsrn8dg02MMTEYbbXBaJIkSZKkAdSbLT3Wk+m/OiRJkiRJkiRJkiRJkiRJkiQNfgajSZIkSZKkISNbTTDa+vrXMdj0ZpJD49YYjCZJkiRJGkBJr1l7DUaTJEmSJEmSpKGhmrtaSpIkSZIkSZJUBYPRJEmSJEnSkJEUjNZW4qccwyEYbWNv8vhqg9EkSZIkSYNUJjvQFUiSJEmSJElSjRIDwwwTkyRJw5XPgyRJkiRJ1TMYTZIkSZIkDRlJ1xBOGFW8f2V387+pXi4YbZ3BaJIkSZKkAZT0yrzXYDRJkiRJkiRJkiRJkiRJkiRJeQxGkyRJkiRJQ0a2xCepQ4DxI4uPrVzfuHoGi3LBaOXGJUmSJElqpKSg895M/9UhSZIkSZIkSZIkSRrkkt5gliRJkqT/n707j5MkrevE/42q6pmenu6Zhjm7BxFW5VLExWN11/VC3V113RWXdf0puL91d3FFXFAXDxRQVA7RVTxAEGRBhlNADmFGLndgmIFhDmaG6Z6h566qvrvuMytj/6iu6equiMiIqsysyMz3+/Wa11THE5n5zbgy4sl4PsnAEIwGAAAA9Iy877mHkoi9u7LbJuY7V09dtAo+W1h2gwAAAADbp+iqtJGXgg4AAAAAQPcJIgEAAACgw4q6oHRPAWsEowEAAAA9I2+sdBIRey/IbpuY61g5tbHUMhitO3UAAABAlqIblRor3asDAAAAAKAzjOQEANjAeRAAAABbIBgNAAAA6Bl5wWhDQxF7dyWZbYMQjLbYKhitRTsAAAB0UtH97ncf6V4dAAAAAAAAAAAAAED9CUYDAAAAekbeQOqhJOLiXdltk/Odq6cuWgajLXenDgAAAKjq4JGIsQm/FA4AAAAAUH/6cgGAbnDOAQAAgGA0AAAAoIc0c77nTiJiz87stumF/v9yfLFF8JlgNAAAALZTqyvz936x/6/dAQAAAIB+po8TAGAj50gAAGxNs5nGTfen8abPNOOO0TTS1DkmDJKR7S4AAAAAoKy8rsuhoYiLcoPROlZObSytFLcLRgMAAGA7tboX6QXvSuMXn9GdWgAAAAAAustgTQAAAAB6S/rRt0X6sb+JmJuO5F/8SMSzfzWS4eGu1rDSTONn3pzG1Z9f619L41d+MIlX/XhEkiRdrQXYHoLRAAAAgJ7RbGZPTyJiT04w2tQABKPlLZc1gtEAAADYTob9AQAAAAAAAFBKmq7eHA4AwLZIP/CGSP/w+Wf+feCLEUcfiuRFr+tqHVffuD4UbdVrrk3jh56axPc8saulANtkaLsLAAAAACirmTOSeijJD0abHoBgtJUWI8znBaMBAACwjVLJaAAAAAAAPUKHLgAAAMAgS9/75xsn/v1bI52b7modr/hodj/V//6HZlfrALaPYDQAAACgZ+Tddjc0FHHRAAejNVv05y4IRgMAAGAbCUYDAAAAAPpaYSeoDlIAYED5ohgAoOekczMRDxzY2LDSiPjke9v3OiXaDhzObv/Ql9pWBlBzI9tdAAAAAEBZeQFgSUTs2ZlEVrfo1AAEo620uG+g14PRvvRwGq/4+zS++GAaw0nEtzwuiZf/uyQed2my3aUBAABQgtvdAQAAAAAAAABggKTNiEgiEuM+oKc0V/LbZqe6VwdACEYDAAAAekjeQOqhJGLPzuy2pUbEUiON80b698uUvMC4NY1mRGMljZHh3lsGd42n8Z2vasbM4plpB4+kcc2dadz1O0Nxye7ee08AAAAAAAAAANBzUj+DAQB0g3MOgJ7WmIu46XkRD38wYmRXxOOfE/GNL49Ihra7MgCgxzh7AAAAAHpGM+fmuiSJuCgnGC0iYnqhQwXVxEqJ7/8XG52voxP+/FPpWaFoa47PRPzJJ9z4AAAA0AuMlQMAAAAAAAAAgAHw2Z+MuPctEUsnI+Yejrjz9yO+9NLtrgoA6EGC0QAAAICe0WxmTx9KIvYUBKNN9XswWs5yWW9hufN1dML1h/JHz7/vZiPrAQAAeoGrNwAAAACgvxX0gvrlCABgYDkPAhg4iyciRj+0cfp9b3V9DABUJhgNAAAA6Bl5X4O0DEab70g5tdEs8QVRLwajNZtpHDyc3/7l8Yh7jvhyDAAAoO7c1wgAAAAAAAAAAH3ugXdF5sifuQcjlie6Xg7AwHCTJn1KMBoAAAClHJtO44/+oRkvfn8zPnq7jhK2RzNn00uSiL0X5D/uyFRn6qmLlWbreXoxGO2hUxHzLer+u9scjwAAAOrOPTcAAAAAAL1Chy4AsN2cjwD0rGbBABA3EAEAFY1sdwEAAADU3wMn0vjOVzVj9JEf50jjBd+fxB/9R3nbdFfe9yBDScSOkSQu3xNxdHpj+9hkGhFJR2vbTnmBceu1Chiro3uPtZ7nurvT+JUf7HwtAAAAbF6Z2xqXG2nsGOnfa3cAAAAAoJ8Z3A0AsJFzJAAAADbPCHYAAABa+t2PpOtC0Vb9ySfSuO0hX1bSXXkBYMnpcdP792a3j57qTD11sdJsPc9So/N1tNvcUut5DhzufB0AAAB0Xi8GegMAAAAAtOYeOwAAAHhk4A9ARKQFXWZFbeSx0OhPgtEAAABo6bNf2dgxkqYRr/ioDhO6Ky8Ybej09yNX5QWjTWRP7xd5y2W9pZXO19FujRKBb/cej1hqOBYBAADUWZkblcqEYwMAAAAAAADQ5yRhAAAAEILRAAAAKOHA4ezp777Jl450V9733GvBaPv3Zv+CzNhEf2+rKyUCxJYana+j3ZZLhLmtNCMOHet8LQAAAGxemavy+eWOlwEAAAAAwJb09z1YAAAAAADUh2A0AAAAoGc0c+6tS07noe27OLv9+Exn6qmL/g1GK3cz5QMnOlwIAAAAW1LmB72nFzpfBwAAAABARxR1gpbpIAUA6EfOgwAAANgCwWgAAABsyfSCLyzpnrzvx4dOB6NdfEF2+8xiZ+qpi7zAuPWWVjpfR7stl6x5dMJxCAAAoM4EowEAAAAAAAAAAAB0gFBi+pRgNAAAAAqlLTpFxie7VAhEfgBYcjoYbffO7PZ+H1y90mw9z1Kj83W0W6NkMNrYRGfrAAAAYGvK3HIzNd/xMgAAAAAAaMUgSgBg2zkfAQAAQDAaAAAALSy2CFMaF0hEF+Xddzd0Ohhtz/nZ7f0ejJYXGLfeYqP3bhJYLhmMNuo4BAAAUGtlxtFNzvfedSsAAAAAwCr9mwAAAAD0AaH5QI0IRgMAAKDQ/FJx+/ikzi66Jy8A7JFgtJ1JZvvMYocKqomVZut5llqEHNZR2WC08QnHIQAAgF431eeh5gAAAADAoHJfCwAwqJwHAbCOsCVgnaIjgqPFZlhq9CfBaAAAABSaXy5uPzLdnTogIj8YLTmdh7b7/Oz2heWIxkr/dvCVCkYrGTJWJ2WD0UYnOlsHAAAAW1PmilwwGgAAAAAAAABCHQAAtpNzMaA+BKMBAABQaH6puH1qvjt1QET+D8QMnQ5G27Mz/7HTfTzAOi8wbr2lRufraLdGicC3iIgxwWgAAAC1VuYHX/UxAQAAAADUnYGxAAAAAAB0h2A0AAAACi20CFOa6uOwKeonLwDsdC5aYTDazGLby6mNlRIBYksrna+j3ZZL1nxkOmK54cZLAACAuioVjKaPCQAAAADoWUWdoO5pAQAGlfMgAICeU+ZmP4AuEYwGAABAofml4vap+e7UARH5X48Pne7h2H1+/mNPzbW9nNrIC4xbb6lFyGEdlQ1GS9PVcL8/ECEAACAASURBVDQAAADqqcytUvqYAAAAAAAAAAAAAKoSaEd/EowGAABAofnl4vbphe7UARERzWb29KFk9f97duY/9g+u6d8OvpWc5bJeLwajNUq8rzWjpzpXBwAAAFtT5kckp+b797odAAAAAKB36KsFALZZmS+YAQDoDOdiQI0IRgMAAKDQ/FJxu0GrdFMzZ3M7nYsWF54fkSTZ83zuUP9uq3nLZb3FHgxGW14pP+/YZOfqAAAAYGvKXJFPCd8HAAAAAAAAAACA7SMYDagRwWgAAAAUml8ubjdolW7K61odOt3DkSRJbv/rjuGOlFQLK83W8yxVCBmriyrBaMdndLwDAAD0sqn57a4AAAAAAGCTigaMGkwKAAwq50EAAABsgWA0AAAACs0vFX8hKRiNbmrmBIAl6/5+xpOy55no4wHWpYLRGp2vo92qBaN1rg4AAAC2psz97vqYAAAAAAAAAACgXwnMhJ7QpXBbvzPQZhYafUowGgAAAIUWWoQpTfVx2BT1k9dFN7QuGe0F35/d3TEx1/566qJZou+yF4PRGoLRAAAA+kKZe24m9TEBAAAAANSbAZYAQFc45wDoWUmS3+aaEgCoSDAaAAAAhRaXi9unFrpTB0TkB4ANrevh2Lsre57FRsTCcn9+kbLSbD3PUoWQsbpYrlDzCcFoAAAAtVXmalwfEwAAAADQu/rzniQAAAAABo1+LqA+BKMBAABQKC+Ias3UfETqVzvokmZOANj635TJC0aLiDg129ZyaqPVfhoRsdzofB3t1qgUjOY4BAAAUFdluo5mFyNWylzgAgAAAAD0FP2eAMCgch4EwHo+FwA6xzGW/iQYDQAAgEKtxqM2mhELy92pBfI2x6F1yWh7L8h//MR8W8upjZWcwLj1FnswGG25QjDa8ZnO1QEAAMDWlL3lZnqho2UAAAAAAAAAUHtCHQAAtk2ZX0EF6BLBaAAAABRqFYwWETHZp2FT1E/e9pisD0bblf/4ibn21lMXZfbTpUbvdUw3SgS+rRGMBgAA0Pum9DEBAAAAAGyz3rvHCAAAgF7gehMAqGZkuwsAAACg3lZKBBNNLURceXHna+l3b7+xGe/+QhpDScR/+rYkfuJb5ZmfK+9HJ4bWBaPtOi9iZCg7VKtfg9HK7KdLK52vo92WV8p/8SUYDQAAoL7K/oik8H0AAAAAoDcVdYIa+A0ADCrnQQAAPafszX4AXSAYDQAAgELNEn1ZUwatbtmrPtaMX3/fmYX9d7elMTbRjBf+gHC09fK2x/XBaEmSxN5d2UFZh6fSiEg2NvS4MvlhC8udr6PdliuEuU3ORyw30tgx0n/rFwAAoNeVvVdqaqGzdQAAAAAAAAAAANtA2BJABznG0p+MrgYAAKBQqWA0g1a3ZGE5jVd/bOOCfsVH01hq6JRaL297TM7JwnrcJdnzHTzS3nrqotlsPc9kDwYYVglGi4g4OdeZOgAAANiasr0bwvcBAAAAAOrMvWwAQBcIzgEA2D5dOhcrehmng8AawWgAAAAUKhO4ZNDq1tzyYMSpjECn4zMRd4x2v546y+vYHDonGO1JVyaZ8x0c78+e0ZUSb2uiB0PDGhWD0Y7PdKYO6u3+42nc9lAaE3P9uX8DAEA/KHuj0tSC83oAAAAAoAcZrQkAAAAtuHaG3mBfBepjZLsLAAAAoN6aJfqyVgetZgdR0drBI/kL+e4jaTz9qy3bNXnbY3LOInrCldnzHTjc3nrqokyA4UQPBhguVw1Gm+5MHdRTs5nGz1+dxl9dl0Yzjdi7K+KNzx6KH/9mx0wAAKibsrdKTS10tAwAAAAAgO4TmgYADCrnQQCcxecCQMc496ZPDW13AQAAANRbqWC0HgxcqpOvHM1vu7ugbRDl9dENnRuMdkX2fA+dikj7sKOvzH46Mdd7771yMNpMZ+qgnv76+jTe8H/TR7b/ibmIZ/1lM45P99Z2DgAAg6Ds5eikPiYAAAAAAAAAAADYHj029gzob4LRAAAAKFQmcMmg1a05VBB+dvBw9+roBXnb47nBaF/1qCRzvrml/txem83W8yyvRMwvdb6WdqoejKbzfZD88cez1/flv9zsuRBAAABglfB9AAAAAIBt5p4LAGDbOR8B6EuuNwGAigSjAQAAUKhMMNpsj4Ut1c3sUv5CPjCu43+9vO0xOScHbf/e/OcYnWhfPXWxUnIzmeixAeaNEoFv652a60wd1M8DJ9K4cyy//fP3da8WAACgtbL3NU4tdLYOAAAAAIDOcI8XAAAAAH1AiCFQI4LRAAAAKNQsEUw0s9j5OvpZYyW/7eCRiGaZdLoBkde3OnROMNq+i/OfY/RU++qpi5WSAWITPRYctlywb2QRjDY47hgtbn//rY6bAABQJ2XP0Kd6LNAbAAAAAKA19zAAAIPKeRAA6/lcAOgcx1j6k2A0AAAACq2U6BOZFYy2JUXhT3NLEQ/1YZDXZuVlxCXnBKOdN5LE5Xuy5x2d6L+OvrLheZM9NsBcMBp55paK2z/+5f7bzwEAoJeV/RHJ6QXn8gAAAAAAAACDzffGAADbpuzNflt9mU22AYNFMBoAAACFms3W8whG25pGi2V8//Hu1NEL8vpWh5KN067amz3voWPtq6cuygQYRkRMLXS2jnbLC0YbzunRmpjV9T0ollps9PPLXSoEAAAopezVWq8FegMAAAAADBb35gAAALBZrikBgGoEowEAAFCoWaLfeXZR5/RWNHLCn9aMTli+a/K2x6xgtK+7ImNiRBwY77/lWSbAMCJiscfCovL2jct2Z0+fMIB+YCw1ittbHVcBAIDuKvsjkoLRAAAAAICeVNgJ2n/3KgEAlOM8CACg9ziHA+pjZLsLAAAAoN7KBaN1vo5+ttwyGK07dfSCvO0xychAe9KV2fMeONy+eupipWSf80IjjYjswLg6yts3Lr8o4vDUxumn5jpbD/Wx2CIYbXQiIk3TSLIODgAAm/CVo2lcc2ca541E/PBTk9i/13kGdMKx6e2uAAAAAAAAAAAAaLuyv6wIbC/7ao+y3uhPgtEAAAAoVCYYbUYw2pY0msXtY4LRHpHXtzqUkUnw5H3Z895zNKKxksbIcP8EGTRbbENrFpc7W0e75Qaj7cmefmq2c7VQL0stgtHmllaD8h59YXfqAQD624duS+Mn3tCMhdPn04/alcY1LxiKb3lc/1xTQKeVvVdqfFLIMQAAAADA9jKIEgDYZsI4APqU4zsAUM3QdhcAAABAvZUJRptd6nwd/UwwWnl522PWcOkn78seRL28EnHoWPtqqoOVkt8PLbYIk6qbvH3jsj3Z6/bUXAeLoVaWckLz1rv7SOfroHNuvDeNn/6rZvzUXzXjbZ9rRupGJwC2SbOZxvOuPhOKFrF63vltv18ynRiIiPK3NS42XNsBAAAAAL3Id9oAAAAA9AFjN4AaEYwGAABAoWaJsd4zC52vo58ttwj4GZvQobgmb0kMDW0MynrCFREZkyMi4q7x9tVUByslMxnWhzn0grx949Ld2dMn5leDK+h/iyW25YOHbQu96po70/iOVzbj6s+n8Y7Pp/Ezf53Gr73P+gRge9xwX8TDp7LbXvFR4WhQVpV7pQTEAwAAAAB9xWBSAGBQOQ8C4Cw+FwA6xrk3fUowGgAAAIXKZAzNLnW+jn7WaBGMdmK2O3X0grygvqwAtJ07knj8pdnz39VngUlls8AWG52to93ygtEu35M9PU0jpgQ1DoSlFsfNiIgDhztfB+2Xpmk8/x0bD/Z/+sk0jk/317EbgN5w4735nz8vfn8aK4J5oZQqe4pgNAAAAAAAAIBB5l4MAIBtI2ALqBHBaAAAABRayQmiWm9msfN19LNGi2V8fKY7dfSCvMyBJCMYLSLiyfuypz94sj311EWZ/TQiYmG5s3W0U5qm+cFoF+U/7tRcZ+qhXpZKhPyNnup8HbTfzQ9GfOXoxukLyxGfPdT9egBgrkUQ+O2j3akDel2Ve6XGJt1YtebeY2kcPCyEEQAAAACoCQNjAQAA2CzXlMA6RYcEhwtgjWA0AAAACpUZd7nUiGis6HHarLzwpzUnZ8MA2NPylsJQTjDaFRdlN5zss7C5spvHYokwqbooek+X7c5Z4RExIRhtICy1OG5GREwvOG72or+7NX+93T5qnQLQfa2CwI9Pd6cO6HWVgtEmOldHr5heSOP7/2glvvbFzXjyS5rxlJc048tjzocBAAAAoL703wEAbOQcCQCg9ziHA+pDMBoAAACFygYuzbYYLE6+RouAn2YacWr8ZKTXXB3pe/8s0ofu6U5hNdRsZk/Pi8m6ZHf29BOz/dVJu5KzXM7VS8FoRYGBees1IuKUYLSBsLjcep5pn0s96YO35R+f7z3WxUIA4LRjLUKVe+kcG3rF+OR2V7D9fuHqND554My/7zka8Z/e0IzUT2ECAAAAQA/SrwcAAACujwE6yTGW/jSy3QUAAABQb2WD0WYWIy7e1dla+lWjRKjV8Rf8RDz68HWr/xh+UcRv/Z9InvGszhbWQ4Zyot8vuTB7+okW4Qa9pux+ulAiTKouioLRLtgRsWdnxPTCxrZTs52rifpYahEoGRExNd/5Omivqfk0vvRwfvsX7vdFDQDdd3ii+PNnNXQ5L6oZWFPlTG68xX7X79I0jY/cvnEZ3DEWccO9Ed/xNdtQFAAAAAAwQAa7jxYAqAPnIwAA28aPdwI1kjNsGAAAAFaVDVyaXepsHf2sKABqzfHJdQt4ZSXSP/j5SJcWO1dUTeVtj3kxBHnBaAePtKWc2lgpEa4XEbHY6Gwd7VS0X+wYjnhUThDjqTkd8INgucS2nBWcR709dKq4/c6xiIOH67GPf+H+NH7+7c141utX4o3XNSP15R9A35prca3bb6HL0ClVTpfGJjtXRy9YXok4mRP6/dYbnHcCAAAAQC35zhgAAABacO0MPUE/F1AjgtEAAAAo1CwZuDQjgGbTGiWW8bHhy8+eMDsVceeNnSmoxvK2xyQnGe2S3dkNC8sRk30UoFU2wHCph4LRGgXBaCOFwWidqYd6WSoRKDk9eNmRPW+0RTBaRMSTX1LyxKSD/vFgGt/9B814/T+m8bc3Rzz3bWn8/NX985kCwNlanXecyAkvAs5W5WzpgRMdK6MnFN1Xduio804AAAAA6D369QCAQeU8CGDw5AzuiRC2BNBRjrH0J8FoAAAAFCrb7zy71Nk6+llRANSasR37Nk68/XPtL6bm8jbHoZwejkdfmP9cr/xY/3T4lQ0wXFjubB3ttFywX+wYzl+3gikGw+Jy6/13WmBnzxmbLHdcvvmB7T1+v/qa5obj6Rv+bxrjE/3zuQLAGa3ChZ1/QjlV7mscn4yYmh/cc6ui8PN7jnavDgAAAAAAAAAAAAaMEEOgRgSjAQAAUKhoMOZ6s4udraOfFQVArRkd2b9x4s4L2l9MzeVtj0M5Pyqz7+L85/q7W/uno3al5FtZbPTOe24VjHZJXjDaTGfqGQRpmsaB8TQOT6aR1vyLjKUSx83phYhm2Q8xamH0VLn5Pn339q7Xj96xcVqaRrzhOtsbQD9qdd4xIRgNSql6iXHwSGfq6AVFlzGHJ7tXBwAAAADARr4XBwC6oOb3sAKwWY7vwBl1H7cE1INgNAAAAAqVzZSZEYy2Kc1mWmoZj43s2zhxdqr9BdXcSjN7el4w2tdclv9cBw5HjJ7qj07UZs5yOdficmfraKdWwWiP3p290k/N9sc67ba7j6Txz1/ZjKe8tBn7/1czfvTPmrVelkuNcvPNLnW2DtprdKLcfAcOd7aOzfry2HZXAEAntDrvmF6o7zkT1EnVPeXg4cHdt4ru91oseS0EAAAAAHTb4PZpAgAAANBHahBYtv0VAHUhGA0AAIBCeUFU55pdrN7lNLOQxgduSeNPP9mM2x8ezC6rsst3dGT/hmnpxLE2V1N/zZwUubxgtCRJ4ur/mtMYEQ+cbEdV269sgOFCDw2gbhTsGyNDEZdcmN12YrYz9fSzZjONn31LM26878y0j9we8cvvqe9xuWww2vRCZ+ugvQ4dLbfN3V3TkIylRj3rAmBrigJ7IyKmhYRDRxyb3u4Ktk/Za3wAAAAAoEfUYDApAMC2cB4EwHo+FwA6xzGWPiUYDQAAgEJlB2POVBwMfmQqjX/56mY883XN+J/vTONpv9OMP/lEyZSwPtJqkP2a8R37Nk6cONHeYnpA3vaYF4wWEfET35rfeLxPBlqX3U8XlztbRzsV7Rs7hiMu2Z3ddmKmM/X0s8/dG/HZQxunv/eLaW2DnhZLBqNNzXe2Dtrr4JFy891dcr5OyAvojCi/XQLQW1oFss4IYoVSqt5zM7vUmTp6gfuTAAAAAIBtpZMSANh2zkcAALaPczGgPgSjAQAAUKgoAGS92YrBaK/6WBq3PXz2tF9+dxqHJwer86xRMgtuYmjvxomTx9tbTA/I2xyHC3o4kiSJxzwqu+34TH9sb6WD0XootKdlMNqF2W0nZjtTTz977SeyN6CZxYjjNQ2aWyoZKnl4qrN10D6zi2k8eLLcvEemI5a3KbSv6NhUdrsEoLe0Or5PV7wWhkFV9eytaj9TPyl7jQ8AAAAAAAAAAL3DTTEAQDWC0QAAAChUdjDmTMUBq3/5jxufuJlGfODWweroLgpYWW96aPfGiaeOtbeYHpC3PQ4lxY+7NGPxRdQ39KmqsvvpwnJn62inlsFou7NX+vGZiNQv11Zy7/H85XWipvvIUsmQv7EJ20KvuOdo+XnTdPtC74rCcRZ76BgLQHmtzjumF7pTB/S6vMu0kZw7Fqr2M/UTwWgAAAAA0It07AEAbOQcCWDwOPZDzzMmC6gRwWgAAAAUKjsYc3ap2vPO54SHvOWzg9V51miWm296+KJoxjlBUCfG219QzeUGo7Xo4bgsJxjt7gpBPHXWLLkd5e13ddQoCB8aGYq4fE922/JKxMnZztTUr3YM57fVNTxwsWQw2uhEZ+ugfQ6MV/v83651WxSOUxSaBkDvanV8F4wG5eTdK7V7Z/b02QEORmt1X1ljZbD6zgAAAACg9+nTAwAAANfHAJ3kGEt/EowGAABAobLBaJPz5Z9zdjH/SVsFXPWbovCnc80OXXj2hMkTkS4N1kjhvACwoSR7+ppL92TP8ObPpJH2wS9ZlN1P5yoGGG6n5aJgtOGIfRfnt49Ptr+efrZSEKx3oqYhc0XhVOuNCUbrGQePVJt/u9Zt0bGp7HYJQG8pOvZHrJ5jr5Q9IYcBlreX7D4/e3ovXb+2W6tDyiCHxgEAAAAA2813IgBAF/TBvd0Ag6tgcI/jO/QG+ypQIwM23BwAAICqyo7vPjlTvtPryFR+23CLgKt+02qQ/XpTQxdtnHh8rH3F9IC87bFVMNolu/Pbrrtn8/XURdn9tJcGT+ftGyNDEUmSxBUZu8MawWjVzBcEDhyvcGzvpqWSx07BaL3j7orBaKMT27NtFoWfLQpGA+g7aZqWCr7spfNsqJs9O7OnzyzU81qkG1q980EOjQMAAACA2jJgFAAAAIB+0KVurqKX0dUGrBGMBgAAQKFms9x8x6bLP2dhMNqAXak2Si7fiIjpoYx0r+Pj7SumB2w2GO3xl+S3veyDFVZCTZUNRuulwdN5+8bI8Or/zxtJ4tKcwLvxST3gVSwUhH0cn+leHVWUCSiJiDg2bVvoFScqhvCdnO1QIS0UhfIJRgPoP42SYazTC52tA/pB3o1Ku8/Pnj7bQ9ev7daqL26Qlw0AAAAA9Cb3LgAAA0qiBQBn8bkA0DmOsfSnARtuDgAAQFVlA5eqhOccLQhRG7RQkbID7SMipof2bJx49OH2FdMDNhuM9mP/NH+GT98d8dIeD0cru582mhHLjd7o6FzO2Td2DJ/5e9/F2fOMT7a/nn42XzCo/kRNg9HKflac2KbwLKqr+vm/XQE0ecemiPKBfQD0jqJAzPUEo0FreVeiucFoix0rpfZaXeMP8rIBAAAAALqhN+4tAgAAAKAT9A0B9SEYDQAAgEIrJfOijlUIzzkyld9BNmghNkUBK+eaygpGGz3UvmJ6QG4wWosejsddmsSPPi2//eUfTuOWB3u347ZZIddtriAEq07yjj0j69b1lRdlz1MlqJGIheX8troGo5UNoBq0z5ReVrQdZtmuAJqibW90ImJxuXc/SwDYqOw5R6+cY8N2yvsh8LxgtJkBDv9qdUY565gDAAAAAAAA9DX34QH0J8d3AKAawWgAAAAUyguiOtepuYjGSrmZj0zlt91/PGJibnA6uxsVAq1mMoLR0ofuaWM19ZcXADaUtH7sy360uBvk/3yud7e7svtpRO+ENuS9p2Tdur50T/aKr2uYV10tFAR+nJit336RpmkslQyVPDGzOj/1t1gyeGbNtgWjtdj2nvm6pm0OoI+UDbKerxjwCYMoNxhtZ/Z13ewAB6O1Cj8f5GUDAAAAAPXle2IAAAAA+oDxEECNCEYDAACgUNnApTRdDUcr4+h0flujGfHRO3q/A+3mB9L4vtesxEXPX4nH/upKvOBdzZhf2vi+qgSjTQ1vDEaLQQtGy9k0ygSjPeHy4vbXfbp3t7uVCttR7wSjZa+P9ev6kt3Zjz0+07vrstvSNI35gm3ieA1D5laa5b9nWWz0zjY/6PKC0XYMZ0+fXtie/bxVQM5H74j4wK3dqQWAzisbxup8A1rLO3u78Pzs6bMDvF+1OtMtuoYDAAAAAGrIYFIAYGA5DwJgHdfHAJ3jGEufEowGAABAobLBaBERJ2fLzXd0qrj9jz+eRtrDnTEHD6fxLb/XjE/fHTGzGPHwqYjXfiKN//62je+pVcDKeieGH71x4vj9m66zF20lGG3X+Ul89SX57csrEbOLvbndVdlPeyW0Ie8QsH5dX5oTjHaihmFeddVYKd5+6hiMlheglcf20BsWl7OnX5aRCRoRMb3QuVqKLJXY/l72wQpplQDUWpnjfoSQIigj7xpvz87s6ZPzEStVLnb7SKu3PZcRvA8AAAAAAADQP3wnCgCwbXp4TCfQfwSjAQAAUKjKGNTZxXLzveeLxU/6hfsjvuFlzbjnSG91pDWbabzovc148kuyA1HefmMah46e/Z4aFYLRxkeu3Dhx4likjYopQT1sK8FoERH/7puKZ/ziAxULqol+DEYrs67zgtHqGOZVV/M5YVRr6hgqVjagZM3hFmGc1ENe4F3efl7nYLTbR6OnA14BOKPseYeQIti8fRdnT19pRhyb7m4tddFskbPbK9f1AAAAADBYBuS7At+FAwAAsGmuKQGAagSjAQAAUKjVYMz1ZlsMzEzTNK6+sdwT3jUe8cTfasZd473T8f3mz6bxmmuL6/3ArecEo1VYvuMj+zZOTNOIU0fKP0mPW8lZXkMlezhe9K+SeHLGYlzzI39aYYXUyEAFo61b15dcmD2PYLTyFloEo00tRCw16nUcXqoQKBkR8amD9aqfs93+cBpv+kwzRiey23OD0UqGsbbbcsntr46hggBUV/a8o1XYLJB/W+Nj9uY/ZiznHLHftbqC6ZXregAAAAAAAGDQuX8TgPV8LkBP6FIwftHLyObfDAuN/iQYDQAAgEJVApdmC0JK5pfS+I9/2YyfflO1Tpavf2kz/uLTvRFW9dbPtX5vnzpw9jxlA1YiIsaygtEiIo6Pl3+SHpcblpWUe/z+vUnc8Ov53SEzixGLy73XEdiXwWh5IXjr1vWlu7NX/Km5+oV51VWrYLSIiJOzna+jiqVGtfk/c49toa5e/uFmPO13mvHf3pq/ji7L2c+n5jtVVbGyATljk52tA4DuKHu91ivn2LCd8m5UumxPEiM5l+l54bn9rtU1vmMOAAAAAPSaXrtvodfqBQAAAKB99A0B9SEYDQAAgEJVApee8+ZmfOKu7Ae8+6Y0/vbmzdXwC1enGwLF6iZN07h9tPV8dx0++9+NSsFo+7MbTghGKxuMFhGxZ2cSP/zU/PavHKtWU6ekaRp/c0Mznv2mZvyv9zbjy2P5+0BeiFiWXhlAXWZd77s4//GHarIe626+RDDa8ZnO11HFYsVgtGPTnamDrbnlwTR++0OtP9sv2Z09fXqhzQWVVDZ0cfRUhwsBoCvKBrKWOacCsg0P5V/bjU3Uuy+oU1r92qVjDgAAAAAAANDXWn1pCkBvcnwHACoSjAYAAEChlQqBS8dnIn7wj5vx5s9sfNB7v7i1Duxn/FEzvnB/fTvBj0xFTM63nu/+ExELy2feR6PC8h0b2ZfdcOJw9vQ+lBcAViUYLSLil34gv0vkrprkzD3/HWk8581pvP3GNP7w2jS+/RXNuOHe7H2gSoDh7FJ996P1ygSjfc1l+ev+wODsFluy0IPBaGUDStZML3amDrbmr69PSx27LtuTPX1+OWJqvvvHs+WSgaajAxriAdBvyp539Er4MGyXtMVNjVc9Knv6+GQHiukBrc6THXMAAAAAoIYM7gYAAACgH+jnAmpEMBoAAACFqgQuRaz2fb3kg2k0Vs5+4Edu33otL3xXhRSxNpiaT+M3P9CMr/mNlfi231vJDHxbUzaEKU0j7j5y5t9lA1YiImaG98T00O6Nz3m8JkleXVAmLKuM731S/gPeVLCeu+Whk2n8xafPfrMzixH//JXNzAHlVfbT6YWtVtcdee8pWbfqzt+RxD+5LHu+A4d1xJcxXyIY7UTdgtEqHDcjemebHzR/dV25ffQJV+S33fZwm4qpoGxAztiAhngA9Juy59nzQoqgUNF9UklEXLaxqyMiIiZKBND3I8FoAAAAANBnDCYFAAaV8yAAzuJzAaBjnHvTpwSjAQAAUKhqMFpExNhExF0Vs7re+d9bJ1tdf2g1MKpbnv+ONH7/79O473jETQ9E/Ne3pvHnn8oOzbrvePm6Hjp55u9zA+RaGRvZt3HiCcFow5vo4fj335Q9/Zo7I+45sr2dgdd+Of/1//AfBjsY7dwQvCfmhCbde6y99fSrxRLBlfGueQAAIABJREFUaMdn6tU5Xqbm9aYGNEyhzmYX01gouR6fcEUSe3dlt938YPe3zbLBfPc5BgH0hbLn2UKKoFjRrpQkEXt3ZfcJTc51pp66a3V/kmMOAAAAAAAA0N/qdd8qAMBAEbAF1IhgNAAAAAptJhgtIuKuw2ceOL9U/CRXXhTxY9+UxA8+pfXzfvWvNePoVOc72G57KI233bDxdf7i09mvPTpR/rkn5888RyM7Zy3X6Mj+jROPC0Y7NyyrjCfty3/QE3+rGc3Nbvxt8PEv57f9xvvSSM/pZK5S6lSvBKPl7BvnruvHXpK9HscndMSXUWbbOTHb+TqqKBtMtWZmMTbsM2yvsQqfmRfsiHj6Y7PbbnmwPfVUsVxy+zu4zQGbALRH2VOI+YrBrcAZSRJx0QXZbRNzg3lO1eo6bV4wGgAAAACwbQaz3xYAAIB2cE0JAFQjGA0AAIBCeeFErdy1Lqvr5R8p7rz+058cih0jSfzJfxqKy/e0fu6vf+mZ0Kob703j6hub8fn72ttB/r8/nv18d41HzC1ubKsS8jI5f+bvsgEra8ZH9m2ceOJwtSfpYbnBaJvo4XjylcXtb7hu+7502b0zv63RjJheF26WpmmlH+OY7pFgtLy3dG4w2lV7s+erElY4yMoEox2f6XwdVSw1qs3fTCPmBAfUSpXPzPNHIv7pY7MDEG9+oPvH6bLb38HDAvmA7piYW70e+sAtaZyYcdxpt7JLVEgRFCs6LUoiYu+u7LaJ+ezp/a7VaWSrHyAAAAAAALaDfjsAAAAA+kCXxkEUvYqeNmDNyHYXAAAAQL2VCc3JcveRM39/+Lb8J7npxUPx9K9eDTx54pVJ3PN7Q/Etv9uMe47mP/eJ2Yin/24zvn5/Eu/4/Npzp/Gz35nEG56dRJJkB6hUce2d+TWfmI3Ydf7Z08Ymyi+o9QN7GxWD58aygtHG7o200YhkpP8v8/OC+s4NyyrjyfuSKOoqffsNafzcd1d/3naYaRFednI24qILVv+u2t883SMDy8uG4OUFo41NtreeflVm+znR48FoEauBgBee33o+umNssvyB6/wdEU9/bHbbXYcjlhppnDey9c/9spZKBpqemos4Nh1x+UWdrQcYbDfdn8Yz/qh5Ovg2jf17Iz74vDPXV2xd2evhOSFFUKgwGC2J2HtBdtvEXGfqqbtWxx7BzwAAAADQa3yPAAAMKudBAKzjR6cBOsgxlv401HoWAAAABtlmg9EeOnnmgQsFITbnDtrfszOJO142FM/65uLB/F96ONaFoq1602fSGH5uM37qr5rxl//YjJXNFh8RiwU1H88ICRqbKP/ck+uCqZZLBqysGd+REYw2Mxlx+/XVnmgL0mYz0k/9bTRf+dxovv43Iz1xuGuvnRuWtYnsh6fsizivIEvus4ci0m364qVVaNCpdYPDq27m0wu90dFZNgRv/97slX9sOmJxuTfe63Yqs/1MztdrORYdn/NMtQgbpLtGK3xmnj8S8dSrsvfzlWbE4S6HIK5UCDQ9eKT1PABb8ew3rYWirRqbiPif76yYvEyhspcD0841oFCrXWnvruzpEz0S7N1ugtEAAAAAgG1loDoAsO2cjwD0rqLBPY7v0Bvsq0B9CEYDAACg0GazxdaHnkzmDGT9hv3Z03eMJPGu5w7FXz57E2lXsRqY9j/ensazXt/cdLBVUfBJVjDagyfLP/f65dGoGIw2dt5jMqen13+k2hNtQfrq/xHpS/6/iI+8JeLtfxDpzzw90gcOdOW12xmMtuv8JH7+e4of+MHbqj9vO7TanrYUjLZYvZ7tUHZdX7U3/zkOT7Wvnn5VZvuZqlkYwdJKdtEjBT2dwkrqpUqY6Pkjxfv5eJeD0aoccw8c9oUg0DljE2lmAONnD0UcOur40y5lj/sTc63ngUFW1DWTJBF7L8i+Nh/UfatVV5ZgNAAAAACoI9/PAAAAANAHhOYDNSIYDQAAgEJ5A8Ff8cwk/sPT8x83NhGPhJLlBaP9/jOLL0v/278cim99XIkic3zg1ojh5zbj6168Ei96bzMWlst1zDVW0pgqCNE5MXP285yaTePodPm61ocMNQoC2LJ8cs8zshs+86FNh8BVkX78XauBaOtNnoj0Hf+7468d0d5gtIiIVz4ziZ/9zvwH/9hfNOM11zajudmEwE2YW0xbB6PNnvm7KMQvS91CrvKUXdf7CwKTRiuELw2qUsFoNQsVy9vm9+7Kf0yvbPeDYrzCvrlzx+q63bkju32s28FoFY65Bw93rg6AovOcG+5zQ0K7lL3EmnCuAYWKdqUk8s/lpxaiq9fjddHqLQtGAwAAAAAAAHrD4H3fC0ARnwsAneMYS38SjAYAAEChvACaS3dHvPvnhuOzv5p9abnYiDgxE7GwnMZSI/s59l7Q+vWvfcHWL10PHYt4zbVp/ItXNuPOsTS+9HAaXx5Lo7GS3eFzcjZz8iOOz5z974NHqtUzOXfmdZdXqj32ZLonjg1furHh4UMRDx6s9mQlpdOnIr371khv+0ykv/2c7Jk+97GOvPa5csOyNrmZnDeSxBufMxSX7cmf50XvTePlH+le5+A9R1sHMJxatw1VHSM+XbOQqzxlg9EuviBi13nZ844JRmupF4PR8mo+byRi9/nZbZ+/Xwd/nYxOlF8fO4YjkiSJ/Rdnt49VeK52qPJqD7UIuQTYigtyAiMjIu6peH1CvrLn2hNzna0D+lmS5AejpWnrPpp+1KpPYH65O3UAAAAAAO3ingUAAAAAekTZXxUG6ALBaAAAABRqFU702EfnP3Z0ImJyPr/94hLBaBfvSmL8Ne25fL3loYinvqwZ3/Q7zfiGlzXj0hc2422f25j8dnS6+HmOnROM9qWHq3X4TaxbJo2KwWgREa999POyG268tvqTFUhnp6L50p+O9IeujPRn/1mkv/CM/JlPHo50uvMpVM2coL5zw7Kq+p4nFD/Bb38oja8c7U7H7oHDrV/n1LrgharBaHULucqT976S5Nx/J7F/b/a8VcKXBlXePrXeVMFxfDvk1TycRDztMdltH73dtlAnZUMLLzx/dR+PiNiXE4w2PtmmokqqcsydXrDdAZ1TdDz6ytHu1dHvyt7bcWouInUjCOQq2j2SiLjyovz2sS6f79VBq3POuaXu1AEAAAAAsJHvQwCALnAPBkB/cnwHACoSjAYAAEChVkFUV1yUH0rVKhht765yNVxxURK3/Fb7L2GnFiJ+5q/T+C9vacavva8ZP/1XzXjFR5vxjb9dnBT0wImz//33FQN3jq0LXmvkvNSjVk7mPv59l/5k5vT03jsr1ZEnTdNIb70u0n99WcQn31P+gQ/e3ZbXL9IqqG+zXvnjrZ/gm3+3RIJUG5y7fWU5OXvm7zLBVuv1SmhDlRC8q3KC0cqGLw2yMiFPdQvTyz0ODEX826dl78u3j/bGdt8pU/NpvOemND54axonZ7d3OaRpWjrc4sLzzvy9f2/2uu32fl7lmDtds30H6C9Fn+GHpwb3M6/dygZirjQjZhc7Wwv0ssJgtKS4b2kQr+sEowEAAABADxrgexIAAADgDNfH0PP0cwE1IhgNAACAQnmDMYdPX1GODCdx5cXZ8zx8Ki0Mebr4gvJ1PO2rkrjrdzpzGfuW69N49cfSuPrzabz4/a077w4ePjNPmqbx6YPZ8331JdnTRyfOBPQsr2TP800Lt+W/fjw2Dg9fsbHhgZxCKkiXlyL9tWdG+vzvr/7gBw5s+fVb6VQw2uMvTeI3fqj4SaYXIg6Md75zd7TEoO9Tc2f+LhvWsGZhuTdCG6qs67oEJvWiMpvPwnLEUqM+X2ysFITmffs/yd4WTs1FHJ/pYFE1dsuDaTz+15vxE29oxr//i9Xwz5sf2L71eXJ2dZsqY/f5Z/7elxOAOD7Z3fdS5Zhbt1BBoL/kfR5GnB2iy9ZU+ZSZKAgFh0HXal8aGU7iiouy20Yn6nMt0i2t7iubWxrs4GcAAAAA6Dn68+gE2xUAvcDnFQBn8bkAnFF0qug0chMsNPqUYDQAAAAKlQknekxOWMnoRMSL3589Yj9Jzg48KeOJVyZxzQuG4pILqz2u3Q4eOTMAdXYxP/jkZ78zO6Bnbili6vSg+UZOoMGOtBF//+C/za1hdMf+jRMfOFB5YOyN96bxvKub8aI3jMdtr35NpN+3J+L6v6/0HGvSB7cezNZKUSDSVv3WDyfxU/+s+Ime8tJmfOVotWX8mXvS+J/vbMYvvrMZ193T+rFjJQZ9T2whGC0i4lgPBETlva2hjN6s/TnHoLffmBos3kKzIFRlvakaBX0UfS496cr8xx043Jl66u5n3tw8K0xxbCLiF99ZcsV3wN1Hys974brzhP05Iazjk1urp6oqx9xpwWhABxUdj9Yf99masudKEWefowNnK7osS05fhudd1w1i4HWZc86yYcMAAAAAANW51wYA2G7ORwAAto1xWECNCEYDAACgUJlgtKselT3P6ETEoWPZbRftjBjaRJrVDzwliftfORSf/pWh+MDPD8UdLxuKpdcNxe0vW/33Hz6rDQlZLUzMRRybXv37eEHA1Lc/Pr+W0dMDexsr2e0jaSO+f/aTuY8/NnzpxonTpyLuvyu/oHO88bpmfMcrm/G6T6fxmpsuj2+/+3/Eh3f/m9KP3+CBA5t/bEm522MbejjO35HEW/9LEh95fvGTffPvNuOWB8t18r79xmZ8z2ua8aefTOPPPpnG976mGW/9XHG6wmiJQd+nZs+8/maC0Y5OVX9Mt+WFUGQdNq7KGUAfEfGiv9UhX6Ts9pMXALkd8moeHoq4bE/E3l3Z7YeODd62MD6Rxh1jG6dffyjivuPbszwOHin/uuv39305wWjdDsoQjAbURVFg16nZ7tXR76p8Wp603CFX0b60dsqXd1031uUg3Dooc1/ZvGA0AAAAAKiZwbsnAQAAACoRtgQAVCQYDQAAgEJlgqj2780OABs7lUaSkw02Ob/5mi48P4nvekISP/pNSTxlfxIjw0l8/f7Vf7/wB4big78wFE+8YvPPX8bBI6v/LwpGe+pj8tvWglyW84LRohFDkcbljSOZ7cd3XJb9wM98OP9F1xk9lcZz33b2yl0c2hkvveylm79Nr0Io22blB/W1JxAvSZL4N09N4geenD/P9MJqONqx6eIl1VhJ4zfel55VczONePH702isZD82TdO44d7WdZ6aO/s5qzpWsN3WRZlQxjX7C4LR/vDaNC594Uo86/UrcefY2U96dCqN513djK9/6Up856tW4mN3DN4Xbc2SXy72QjDaULK6D39VTljnIIbEPHgyv+2Ge7dnez9wuPy8jXWhP3nnGsdnIpYa3XsvlYLRFjtXB0DO6WRErH5up24gaosqi3F80jKHPEX70trl/L6CvqVBU+acc26p83UAAAAAAAAAAEA1RWN7Bu8+IOhN9tXeZL3RnwSjAQAAUKjZzJ6+PojqqpxQoodOnR3gtN6L/nV7gqyy/Mg3JnHXy4ej+YbhuOHXO3Ppe/DwamdRXjDa8FDEZbsjLtuT3X7fidXHN3KW7450OSIiLmscz2w/9phvzZyeHrw5p+KzfdWvZr/wbTu/McZH9mU/KEkiedutkfzaX8Z8sjPuPO/JMZ/sPNP+8KFIx+4r9fqbVSUsayv+/KdabzdX/HIzphfyOw3vGl/dB841OhFx51j2Y/7rW8t1Qp5cF/CUt48WaRXqVgdV1vVVOQPo15ycjfjbmyO+9zXNODGz+sTNZho/9hfNeN2n07hrPOL6QxE/9Npm/OPB+i+bdiob8jS1hTDLdmu1bTxqV3Z73udRPytavw8VhKZ10v3ZH2uZVs4KRsuf74ETm6+nqirH3KVGxOLyYB1TgO5pdTzaShA1Z5QNkY1YPc8Hqlu7msvrWxqb7FoptSEYDQAAAAD6je+N6QTbFQC9wOcVAAAAmycYDQAAgEJlwonyBq/eORaRN478J76lc8Fo633b45P44m8OxX94+tnT9+yMeNpjih/7A0/Obzt4ZPX/eQFTl+6OGBpK4msuy378Pacf31jJbh9JG6vPs5KdIHP8im/IfuCDB7Onr/PnnypOUTh43tdtnPjD/38k7zoQjcc8KX5u9JlxyRPG42lf88V41BOPxIsu/71oxPDqfJ/9cMvX34r8oL72vs7XXp7EcIlek4t/sRlvvC67qDvH8r/MvyOjrbGSxntuKncDwPqAp6IB0xeenz392HSpl9lWVYLRigKT1js+E/Hqa1af+IXvTuNz926c53v/sBkLAxRkVDoYbaGzdVSx0uI4sDcnGG1iAANiZhfz2+7vYpjYeuOT5fev9eGhj7skIsk51q99JndD1aPDdI32HaC/tPoM/+X3pJFWCPUiW5VFKBgN8hXtS2vnePsvzm4fzQgc73dljj2C0QAAAACAbeH7JwCgK5xzAPQnx3foCfp/gBoRjAYAAEChVgE0ERFXPap6KtWluzdZ0Cb808cm8e6fG47mG878N/na4bjlJcMx9dqh+Pr9Z8//378rieYbhuOaFw7Hs789+709fHL1/8dnsl9z7f193eXZj7/nyGon4XJeMFqsBaNlJ9ccP39/5vS478uRNhrZbRExvZDG899R3EF593lPOOvfyRuvj6Ffe30k+x4Xv/ORNN5404WxNLSauNVIdsQfXfLC2Pnk6fibi34yZq77h8Ln3qoqYVlbVfYpn/u2NF7+4WYsNc4u7tCx/Mfcm9F26FjETEGI0XoT8xHN0wujKBTjij3Z04/lbLd1kve+soKR8gbQZ/mDa9I4MpXGn34yf8G96G8HpxM/L2zwXFPz9VkmuceB0z2de3dl770Tsx0qqMaKwhLuPrI963R8svy868NDLzgvia9+dPZ8Bw53772UDRNcM13yuA5QVavj0V9/No3339KdWvpZleP+uGA0yFW0Kz0SjLY3+zz+yPRqkPggKXPs2UowWrOZxs0PpPH2G5tx77HBWrYAAAAA0Dn62gAAAADoA4LRgBoRjAYAAEChMkFUV+2t/ryXXLi5etpt984kbv7NoXjzf07iFc9M4toXDMXrf/rM5fL+nPc2Nrm6YI5OZ7c/Eox2RXb7PUdX/58XPLcjXQ03u2zleGb7fSuXZT8wIuJtr8xtesefXZv/uNMOnvd1Z/7xr34qkid98yP//Jsb8js3//NVb4qLF94fX7izQupNRXnb43AHeji++wmt51nz0g+m8V2vbsaJmTMFrq3jLDfdv/GN3DVe/vXSNGJqYfXvwmC0i7KnH8/ZbuskL7ArKwTv/B1J7Dqv/HO/4qPFnfTvuDEdmIH3Zd/l5HxHy6gkb9sYPr1t7N2V3T5Ro3C3bpldyn/PBw53sZDT0jSNsQqhMY1z1vUTr8ye72AX30vZMME1ddp3gP6Sdx2x3is/WvGgxQZVzh5GJwbvXAPKKnOfVF7fUppWC9ftB2WOJnObDOBdaqTxk29M41t+rxnPflMaX/vips8LAAAAAIBeZJAyAD3B5xUA67iOAeggx1j6k2A0AAAACuUNuF8fRFU1GG3XeRG7zs9IN9omO0aS+M//fCh+9V8Pxfc/5ey69l2c/Zi1QbmHjmZ3Gl150erzPO6S7MefmF39/7mhL2tGTgejPXb5wcz260YvjMkdj85sS9/88kgXNyaxpIfuiA/e3Mh+wXVe9+jnrv7xHf8mkl/6k0emT86l8cCJlg+P//aW5VgpSuvagjJBfe3ynO+o9qSfvz/isl9qPhJ6dmw6fxn8w10Rc4tntx84XG2ZnZpb/f9mgtGKaquLquv6JT9Sfn299hPF7//EbMT1h0o/XU8ru6uuBfHVQe62cfpzae8F2e2nZjtTT53NFoQljE1ETHU5LG56IWJuqfz8556DfO3l2fv56KnuvY+qH2/3HutMHQBljkc3PRAxJqxrS6oEYg7iuQaUVXQkWjvD+6rsLo6IKA4e70dljj3zy5t77r/+bBrv+eLZa+Q33p/GrQ/5vAAAAACAzumx/jcD1fuD9QgAAABsRpf6FIpeRq8GsEYwGgAAAIVyg7uGz/y9e2cSF+cE0WS5dPfWauqmfff+Y+b08Yk00jSNA4ezH/fEK1f/f/HE/Zntk9OryTDLjeyuupFYDTB7xuynMtuXV5L4/FN+JqfqiLjpkxsmNT/05rj+gn+W/5i1507Oi9c+//5IXvX+SHbteaTOx/16uVSAL00+Km64t9SslbUKRGqnH396sqlt9dt+vxnvvyWNibn8eRaWI24+J/PuYM62lOfk6eCFvPDCiIjLL8oOETo2U+21tkPVdf3c72pvOt4Hbh2MbvSyYR9TG7MWt03eNr8WmveoC7PbJ2r0HrpltkUI2aEuh3bdMVZt/m993Nn/zgtiHZvcVDmbUjUYrWroJUBZZY9HH7ndcWgrqiy9UwXn/zDoim5gSk6fx+/dlcRle7Lnee7bKqQU9oEyx/jZxc0d3//8U9mP+5sbfF4A0H+SJBlOkuSJSZL8WJIkz0uS5DeSJPnlJEn+S5Ik350kSU5PYm9IkuTx697bryZJ8pzT72vHdtcGAAAAALAlAj4B+pTjOwBQjWA0AAAACuUF0Iycc0WZF1aSpVeC0dLlpbjymtdmts0uJXFquhF3H81+7JNOB6Nd9Km3ZrYvpOfFwvX/kBs8tyNdjoiIpy/cEpc1sl/k5sf/WH7x99911j/Tr3wpjnzgvTEx/Kj8x6zz65++PGYWV/+eXUxj1y80Y7JCqNAvvfvsN3btnWl832tWYv+vrMR3vXol3n7j5gY154U4DbU3EysiInadn8T//V9D8R3/pPpjf/x1zfhci3C4c8Ny3vmFal/ynDodjFY0YPqKi7KnH52u9FLbIu+ehrx1ffGuJH7337dvQ/jjj6fRrJqA9P/Yu+/wKKr9DeDvmU2DkEAgkFAEpEvRaxdFRcEuqFy71+5Pr+1i16tXxYINe+/itVwLKmJBEQuCqKACSgu9hkAI6SFt5/v7YwnZ7M6ZndnsbjbJ+3keHjIzZ86cnZ2+e95thpy+xJLK6LbDDW1oXl2ggiaoszWGlVSECEbLj/GxYPpid/vUdaMbXmx001xrbC4Mt0XuuT0srNganXYQEdmF4/r78s+Wfz0TTW6O+60xhJUoEvzv4uqepQRanQ/kl7ae45mTV+rkGc3c1YLjnvA9i8m60Yv97vNqw4of/6b1rF8iImrZlFI9lVLXKaU+B7ADwHIAHwN4FsBEAI8CeA3ADwCKlVLTlVInhbksaeS/3mEu93Sl1FwAa/xe20MA3tz1uvKUUs8rpTLDqZ+IiIiIiMLE8A4iIiIiIiIiImoR+JyLiOIHg9GIiIiIiIhIyzRF2xG8NQSjYfVf6LZjiXbyrIdfQnWt9bSB2QoigvZLvtPOX3T7xaiptV7BHvFVrAAMrlpmWeaOnAMg8D1uLDXaoVIl754m63Pq/96yDnLxgTi7x1vatgSqqgXe+kWwNFcwbILpOHihzvx1vg64UlGK7xaU4finTPywAsgrAeasAs5/TTB5rq/SbSWCTYXOHpqGCkSKtEFdFX66zYPK5w2MHxXZhSzPq/97xVZBlWZb0qkLedKFxQFAtiYYLdZhSOEI570++8DIvkenPR9egF9z4jTso7QZBKN5dp2XOqZabwfbSqA95rZU5VX207eXxXZ9LN5kvbweGUB6SsNxh/YFRvRrOK57B+v3tqAcqKqJzWtxG4y2vqB1bXNEFDtOj0e/b3Bf945ywbItgjX5AmnlnXjcvPzyqtZ3rUHklN2+pPwu8QZk6e/pPlvUevYvu/v8OqGCnxduFBw5ycQ3y3zPYvJLgYUbI9M+IiKieKWUehfAegBPADgJgOYJ+W4eAMcD+Fwp9ZlSKivKTWwUpVQ7pdT/AHwIYLhN0Y4ArgSwWCl1XEwaR0RERERE9lr55y0ULdyuiIioGeB1EBERNcDzAhFR1PDam1ooBqMRERERERGRll0YlicwGC3DeSBRp3ZRSrGKtPU56FGzGQlSYzl52kp9wtuALAAFW9C+PFdbpthIR81q69CzBKlPyRpUvUJbx9OHTka/vsuQMXAbevdbgeczrvBNWP0XAEBEsPa8YzC89yzMaTtCW4+Va94VDJ1gYl2Bq9l2G/GwiaoTe2D0C20sp//zbcH+93mRfZOJnrea6He7F7+ssX8IF+tgtDpJCQqPn6nwzDkKyQmRqTMnr/7FPPOd+4ePhRW+eexCMbLSrVdMRTVQURXfDzzDea97dYpsGz77EyiuiO/11FhOQ1VKdsbPegi1bfTWbAe1JrA2zONZc7Ruu+CBL+3ft+1lMWrMLpuLrMdfOkLhh5sNXHyYwuH9gdtPVPhqvIEET8MdvptNCOuHv8coGM1lXmJBjNcxEbUeTo9HmwqBskpnx8jNhYKRk7zIvN7EkLtN9LvDRPZNJj6K0TE2HrkNxCzeGZ12EDV3druSfzDayXvrb/i+Wtx6jkVOXmlRiOPNxC/ch9wTERG1AAM04zcD+AHA+wA+ArAAQOCZ8mQAPyqlsqPWukZQSnnga//ZAZPyAcyALyztDzS8lMgC8KlSyt2HQ0RERERERNRCtJ7n6kRE1BLxPEZE1CIxtIeoeeC+SkRxJEJdeYmIiIiIiKglqrXpQJngaThsF1YSqJM+TyyuyIYcJKIW/apXY3nyoKDpn6adbDlfz45AarKCLM5Be7NEW3+xpz1qt+cBqYODpiWiPhhtSNVSbR03Fp4JJPn+3p7QGf/KfgKDqpbj6BWzIF+8CdM0cVzPL7A6qa+2jmhK7b9dO626FliwsX54zXZg9OMmNjxsoGNqcGdosXmwGu1gNABQSuHqoxSuPgq44i0Tr8xu3IPe5Xl+f2/R19W7EyzD6QorfP/bB6Ppp+WXAb2SQzSyCYUTjOYxFIZ2Axbr8whd+2YZcPr+kasv3jgORquMbjvc0HXur9s2+mf5whWsDhnLt+wKrmzhRAQnPRM6BSHh++xxAAAgAElEQVTWwWi5xdbju3cA/raHwmsX2h/M98jwBbNabQP3fS4472CBUtE9Ibj9jK+gPDrtICJyE9h1w4eC/XrazyACXP1ucJn8UuCMl0wsusvAsB7NJOA6gtwe94t2Aplp0WkLUXPmdF86aZh+2sptkWlLc+DkGF9UoZ9WWSOYvtjdMmPxXIWIiCjGFgB4HcB0EVkdOFEp1R3AXQAu9xs9AMCHSqkjxO4DCWu/Iji0LJRNLso+BOBEv+EaADcAeFlEqutGKqUGA3gVwPBdo5IBTFVKDRORLS7bR0RERERErrSWDqOt5XUSERERERERERERUVNjMBoRERERERFp6cJnACDBaDjc3UUwWmYzCUbD+hwAwMDqFZbBaEWeDMvZBrYrAZABufs8pJslUGJClBFUrthIRw0SLetIkPpgtHElU/Gv7CccN/uBzFtx9IZZkIcux+2d78XqzKYJRQNg+brtVFQDnywQXDoiuEeuXcdgw91iGu2l8w38fT/BN8sEj80I7wt/a7f7OiunJCptWBAA9O1sHYy2Y1fYTtjBaKVAr07O2toUtMFoId7rsw9S+M/UyH0J87vlgtP3b7k9xM3Q2VkAgJKd0W2HG6FC81ISFfbs5AtbDJSzVQC03Pezzh1TBcscdHOMZTCa1xTkaYPRnL0n7VIURu8FfL0keNrKbcBv64EDe4ffRid0R5fMdtbrc0e5L6gu2oFtRNT62N2rBXq1kYG+ADD5Z8FjZ7S+Y5mbADrAPqiIqDWz25X8jywJHl9Y7qVvBs9hd9/c0ji5T7M73sxf53u+4oYnxs9ViIiIokQAfAFggoj8ZltQZDOAK5RSiwA85zdpBICzALznctmVIrLO5TyOKKX6ABgfMPoMEfk0sKyILFVKjQLwLerD0ToBuBvAP6PRPiIiIiIiImoqDKkjIiIiIqLmhvcxRM2C698Ro/jA941aJn69lYiIiIiIiLRq7YLRPA2HnYaaAM0oGG2DLxhtcNUyV7P1Xv89ZPVioLgABgRpZqlluRJPe9Qq68zyRKnZ/Xe2d6ur5f+QOhIFno5YnjQAkzJvCln+2XPDDzi4vNM8vLP5grDnt7I8z3q8XcdgowkyGo4dojDpdAPmyx7ceKz7BpgCrNrm+3uLpoP3xNMUMtpaTyusqK9Hp2OqvnNzvvVmGTd073eoNX3dKIVx+0auHb+uadkPhp2+uuJmEIzmv6336WxdZmtJ5NsTb0p2Ch6a7uydLYhhMNrWEv17181FuOqEMfpH2n9uiv7+qjs2dU6zHl9V6z6UgojICbeBXY01e0XLvibScfvdDgajEVmz25cC82P3yLC+68svBapqWsexyMmrLKrQl1qS6349+T9XWbhRcOenJm79yMTc1a1jnRMRUYtxhoicHCoUzZ+IPA/go4DR50e2WY12N9DgV3YmW4Wi1RGRnQAuAuD/VOrSXQFrRERERETUJJrbc7bm1l6yxE7MREQUF3g+IiIiImp2YvRMwW4pfKxBRHUYjEZERERERERatV79tISAO8ruGc7rbQ7BaOL1AptWAQCOLv/e1bzpO1ZDJk/cPdzetE7iKTQ6oEYlWk5LQG2D4TOHukslmtvmEFyV/XTIcvNuN/CPg92Her1xkcK6Bw28cF0PHLRzvuv57eQWWY/32jzUbIpgNH+TTjdw0aHuGzFnlWBntWgDFIb3UeiQal1vYblvhdgFxiUY+v0tvyy+nxLrwj5CvddtkxU+/KeBnPsMfHiFgcP6OlveUQOtxy/YWL+uWyKnoSolldFthxu6bd5/28hsZ72h7CiPQoPizL732RwUAoQTmBAu3bEdcBeMdnAfhcFdraflaII1I0m3z3S2ubaJZQAdEbUeZow/8f9tPVAQ59eP0eD2FRfFUZgsUTyxDUYLGLZ7vpTXCoKOAWfHeLsgRl3gvJ26H0CY/pfgkAdNTPxCMOlrwRGPmHj7F+f3GERERE1JRNaFOetzAcNHNbIpEaOUagPg9IDRD4eaT0RWAJjqNyoBwLkRbBoRERERERERERFRFLW+76gQEbUOPL4TERGROwxGIyIiIiIiIq1am36PnoA7yh4ugtG6d2jiFCsn8tYBNdUAgBEVc5FsOk8FSjPLgB8+3j3cuXa79SISslBupFpOSzUb9nDtlObuFv60Pabgx9QjbMu8f7mBA3orpLdRePzM0O+JUsBhfYFl9xq48FADPTspqKw90O3Y41y1LZTNhdYfdtgFgDV1MBoAvPgPhRuPVUhLcT7PtIWCLcX66V3b64PN6oJ27IKtDKUP69lW6qyNTUUbjObgzVZKoX+Wwt/3V7jQYWDdtUfr97GRj7bcTuB2+5W/kjgK+dBvG/V/d7Q+tLbYQJf1BYJzXzFhXO7FWutTjqWlW4A1+bFZJ7pgtEQP0Enzfukc0Nt6v87Ji/5r0W1/dqGvO2xCK5qaiOD9+SZGPOzFgRO9eGi6icoad+vx7V9MHPWob/67p5motUsyJaKIcRpuGklPfdv69m+367msqvWtI6LGUgGXdt3a68vahe22JE6yLwttrjHDuS727HofbvvYRLVfVr8pwM1TBGZTnHiIiIhiZ0HAcBullIso/6g6DkBbv+GfRWS5w3nfCBgeF5kmERERERGRpRj/qA0REREREREREVF08DkXEcWPhKZuABEREREREcUvu2C0hIAMoc7tfOEmNd7Q9Q7Kbly7YmJ9zu4/E1GLftWrsSRliKNZ070lDYaza/Msy+UlZKPESLeuw2xYR6f2kbuFVxBUveBBgqe+9/H4UQpf/iWYuSy4/ONnKpxzkEK7ZCA1OTiMJuXqe9F5fD7yEzpHpH2bNR2dbQPA4iD6PSlBYdLpCg+PE/y4Ejj6sdCJU9/lAH9t1k+3C0bb7jQYLc16Wn5zDUZzGYJ34jCFUA/lrxqpsH8v/fS/NgM/rxYM7xsHCXwR5rRv+84aoKZWkJjQ9OvAq9m1/LeNTpr9Zkd55NvT1IorBIc8aGJrSeiyVn5bL+jTOfrv6+Yi642tWwdngYf+BmRZj8/Z6rZV7un2mY7tFJQSy++6by4E/rZHdNvl1M5qgaF8+0uNF/jgd8Elk+sb/ft6wep84LEzgLQUX9CknVdnm7j8rYbzr80H/ntp0x8riFo63fkwmuasbH1fdHDbh6m8KjrtIGru7HalwMuN9DZAarL1/rSuoGXelwVycp9WZBNevWyL+2V6DCCvWCyfUWwtAeauBkb0d18vERFRM1FrMS4p5q2wdnzA8A8u5p0N32ur+4BpX6VUlojE4CkaERERERERRR3D+IiIqFng+YqIiPzwPoaIKIp4jKWWicFoREREREREpGXX2T7B03DYMBS6tgc27LCvs3Ma0KldM+jEuiGnwWD/6lWOg9HSzLIGw101wWhbErJRYlinVqV7G6ZWdUpPQKQeUOWPX4EEz+AG45RS+PRqAxO/FMxcKijeCfTtDFxxpIEx+9i/XyotA8clfY23zdERad/mIusAplABYPHCMBRGDgQW3mVg4hcmlsxfjUJvW2xJ7BpUtroWeHKm9Y7WOQ1Ib6OQ2c76hTsKRjOAzmnWwWDxHoym+8zL7XvdrYPCwCz7wKRnzvFVmp4ClFRal7nzUxMzb/BYT2zGnAajAUBpFdAxDp4m6trs8QtI7JRqXaagBQajPfeDhB2KBgA51qeoiMstth7frb37ugZlWx/XVucD1bWCpCgG+JmaDTDRA+yRYX0dlLNVcBKa9kQlIpj4peCuT0Pv9K/NEbw2R3BAL+CZcwwc3Eff9qe/Da7v3XmCh/8u6Nohjk7ORC2Q7nzYJQ244kiFb5YKCsM47wmAFZrrppXb3NfX3Lm5VgKAMgajEVmy+05j4BWDUgp9Mq1DxHXHp5bGyXdAiyp813iBQbblVRLy2ZwVjwEU24Strd8hGNHE17RERERR1C9guBbA9qZoiIWhAcM/O51RRMqVUn8B2Ndv9BAAreSqioiIiIgonrBTIjUFbndERNSMMTiHiIiIqOnYXYvxOo2IYiwOujISERERERFRvKr16qclGMHjuncIHYw2KLtxbYoVWbO0wfCA6hWO500zGyZOZWuC0TYndkOpJ11Th1/KTUpb7NHROgTGjWSzEgsGv4COQ26ynN4mSeH+UxXuP9V93bdf3g9vv9io5u1WWQPMXgUcPajh+OYSjFZn7x4K751TDHl7GEwo9O63ErmJ3YLKzdJsWnX7SmY76/d+e5mvE3So9ZLZznra9rL4fhite13hvNcXHKpwxyfWFf56u7G7I/nLFyic/bJ1ue+WA1MXCNokAUcPRFBwX3PlJuyjZCfQURM4FktOto1Omu0+XoPRCsoEf24CluQK9sxU6NkR2FEOrNwmSG8DHNpXoUdG8Da3o1zwn6nO3sTT9gU+WRA8PlbBaJsLrcd36+C+roGaawmvCazJBwYF51BGjN32Nyjb+jpoeYzWsZ3HvnEWiubvt/XAGS+ZWDzBQHqb4O2vplawODd4PlOAD34XjB/VMo6TRPFKdzxqkwTcM9bAPWPDr/uGD0w8OTN4AZuLgLJKQbuU1rN/u/3+RjmD0Ygsub37HJBlHYy2splEeJRWCmatADq0AQ7sDSQnujtuOrlPq/ECFdVAanLD8eGGx20vA6b8rl+wafPjCURERC3A6QHDv4mI27NfT6XUGwAOAtANQCqAQvgC1hYA+BHAFBFxG2G6V8DwKpfzr0bDYLTBAL5zWQcRERERETkS39/DiZzW8jqJiIiIiIgo8nhPSURERO5YdGMnIiIiIiIi8qm16fbh0QSjhXJ4//jvRC/FBcD0/zYYN6JiruP5A4PRumqC0VYk9dfWke5fR3JbHDPY8eK1rvO+i0E3WIeiNdag/fpi08D7cM+2eyJS3zdLgz/waG7BaACAfF9ijAHBmLIvXM06MNv3onTBZrWmL6jKrnOyoYDOaZqmlVqPjxe6EAojjKdZFxyi0C45ePylIxQO7F2/8Zx5gIEumvUFAONeMHHCUyYG3WViaW7L+FDOVTBaZfTa4YajYLRU64PCjnLAdPOiY2BWjmDI3SZGPW7iX+8JxjxrYp97TRz1mInL3xKc/bKg3x0mJs9tuLP/kCPIvN5Z/8yNDxsYkGW9TnK2xmZ9bCm2Xk63Du4P4P0664/7OVEOy7Db/gZkWzdqRV7TbnNv/GTilinhtWFTIfDGXOt5S23Cf8IN5CAi57yaU0AkrouvOUpfyZ8WQUUtmdvLhvLq6LSDqLmzCxlUFoec/ppr1xUxunZtjJ9WCfa4xcTYZ00cMcnEQQ+YyC1y126nx56iiuBxOY249rzTJkg3zm6jiIiIIkYp1Q7ApQGjPwmjqj0BXARf8FgHAIkAuuwaPg/ASwA2KKWe2LVMJ23rCKBjwOgNLtsVWF7/wRQRERERERERERERERFRVPELKETNgu2vCnM/jltufw2aqJlgMBpFlFIqUSk1Uil1gVLqVqXU1Uqp05RSvZu6bURERERELZUUF0D++xDMJ6+Heds4mM//G/LVOxCvt9F12wWjJVjcUXbLCN0L/6Rh8Zpg5SOmCRnXJ2j80RU/oK1Z7qiOwGC07rXW6QFFngxtHelmSf1ASlukpShccWTj1t35R7Zp1PyhdP3X7bhjyHKcU/xeo+tatsUiGC1EAFhc2p67+8+xpZ+5mrWP8gXq6YLNAGDOKuCC1/UrxmNAG/QV78FoTsKvnOqeofDy+Qrt/XaBsfsAz54TXNkfd4Z+XLZ2O/B//zUhLeChsZuXULwzeu1ww0kQjG6/8ZrA9rLItylcpim4eLKJbSH2x+pa4JLJAuNyL/52rxfnvmLi6MdCh6K1TQLeuUyhe4bCoGzrMjl5iMm2XKBZ71np7utKTlTYI7BL6C5bS6L7WuyOTbp1vNw6HzVilm8R3Pu5iYvfMPHoDBOF5fWNnLFEcOmbjVsn935mPX+ZTVhiaZwcL4haskheKwXq1Qlok2g9bfri5n/944bbU6TdsZGoNbMNRrMYNyDLumzO1thcu4bLNAVnvGg2CJX+azNw04fu2uz0JRZZXHNF636HwWhERNSCPQjA/6lOEYBXo7SsVADXAfhdKTXEQfnAnyOqEBFnH1TV2xYw3N7l/EREREREFAlx/FzTWnNrb2sV6n3i+0hERHGg2V0HERERERERUTxJaOoGUOQppSYAuLsRVbwpIhe5XGZnAPcAOAvBv1RZV2YugMdF5KNGtI2IiIiIiPxI7lrIZcOB0sL6kT994ftKy8z3gEnToFT4PeN14TMAkOAJHtc9sIuGhf5dwm5O1IkI5K5zgOrg3uwpUoVjy2ZiavopIetJMxv2Qh1UleO6Lelev5ScFF+a0zNnK7w0K7wPiAdUrcCgvTQ9iyNEJSZBTfwAt/28Av97o3F1WYXI2HXCNeI1+t0vGG1kxY9I85ag1OMsBShjyoOQPY9H5v4nasuMedY+GEkptSsgKnjl5cdROJQVuyC8cJx9kIHRewn+2gxkpAJ/28P62Nitg8JxQ4Cvl9jX9/MaYOFGYN+ekW1nrLnp3F5UEb12uOEkCKabTfe+zUVAlzDCuKLh17XAugJ38/y5CfhzU+g3bto1Bg7ZE8hM862YgdkKVseCsiogtwjors/qjIhCzfaT0Ta8+jq3A9ZbrLtoB9/pvqdlGMDALOt1vK0UKCwXZKRGPsXzhxzBmGdNlFfVj3v2O8Ev/zaQkwcc/1TjD6aFFb5rpMBrytIqzQwASir5hTaiaNNdK3kicF3sMRRGDgSmLw6eNndV69q/3QYBVVRHpx1EzZ3drmT12GqA5rqqtBLYWgJkx2mcx4KNQF5J8Pj35gvevlRgOEyvdHrsKbSIRSmJUkAjg9GIiKglUkqdBuCagNF3iMgOF9XUApgDYCaAPwFsAlAKoB2AngAOB3ABAP9PxwYAmKmUOkRE1tvU3S5gOJwo+sB5bH6KxTmlVBcAnV3O1jcSyyYiIiIiIiIiIqLWgB9QEhE1XzbHcAZmEjUPdvtqBPfjGC2GiJq5eO02TM2IUuoEAIsBXAlNKNouhwKYopR6WymVGpPGERERERG1cPL8vxuGovn7dQbw3ZRG1V/r1U9LsLijDBWMlpQAdArsxhEnxOuFPHIVMGuqtszYpPmO6kozSxsM71mzDonirod8uunXkzbZlxqT4FGYelV4t/J/3/kZ1NCDw5rXrWHDB2DKPxv3yGHFVqCiquFTTLtOuJ7IZ81ERn59MFqyVGNU+feOZ82ozoe8cDtSkwRZYYQ41fW37qzZ50orgcqa+H1SrA2/asSmlZmmcNQgpQ1FqzO0u7MNasrv8bv+nHLTuX1LcXy8Xl2bPX4hA13S9cEwuUVRaFSYcrZGZ53ePUbh5L3V7lA0ABhok41pFUYZaZEORsvUHNuiHYxmF8w3KFs/X87W6LTnjk8ahqIBwIYdwMhHTRz1WOQSJq3evzKb0I2ScLrpEpErToJCG2P0XtYVfZ8DlOyM/TXBWz+bGPWYF4c95MWD002YMUrocbuUMgZDErlmGYxmE6q/IkrXVZEwfbH+GLDDIsRMx+mXuoosrrkYjEZEROSMUmofAP8NGD0DwAsuqvkPgO4icpSITBSRz0RkgYisEpGFIjJNRG4G0AvAQ2h4i5EN4GNl/+tGgU/AwjnTB14xROpTuqvg+76gm3+fRmjZRERERERxig/RiIiIiIiIiHh/TNQSMLGMiOIHg9GoUZRSIwFMRcNftRQAvwP4EMA3ALYHzHYegP8ppbj9ERERERE1gpQVAz99bl9mxruNWkatTZ6GVeBMjwz7Xvjd2gP2fTya0IdPA5+/blvkpH8c7ihoIM1smMqSAC/6V69y1Zw24tdXJaU+NWbs3xTOOci6Ee3bAKsmGkj3NExIya7Nw42HV0KlhpGuFaZx+yl4XzJQc+LryFuxB0qXd8S4kk9c1THsnoYboF0n3MaEZUWTbM9tMDykaqnjedubxcD65VB563BcXxc9qHfZHYyWpi9TEOUAocaIdtiHHbtwI39fL2n+D/RNF7lJ8RIopmuz/3HAYyh0bW9dbnNR/LxvbsIRnOqSBvzr6OAdJSNVoYvmeBCtgLY6piko0gWjpYa3U2e2s54vGuvUn92xqVsHoF2y9fQ1+ZFdx7VewbYSwc9rrKdHOjBkS3HwuFKbrrjbSgERwY5ygfDDT6Ko8OrOhxG6VrILiu1yo4nyqtjt2y/OMnHhG4Lvc4Cf1wB3fCK48p3YLN/NtRIAlLvLwyZqNewuB6yONplpCh01P7O1IsrXro2RnKCflu/i/ttpCFlRRXDB4igF1Do9HlbVCDYX8hqQiIjim1KqJ4Av0DAkbD2Af4iLk9iuMLRtDspVisi/AVwbMGk/AOc4XR7C60XCkzIREREREVGLxVs+IiIiIiJqbngfQ0QUPTzGUssUp92GKcLOAbCni383OalUKdUDwMcAkvxG/wRgiIgcICJnisixAHoAGA+gxq/cGAD3N+I1ERERERHRvG+A2hr7MnO/hFSUhr0Iu2C0BIs7ymHd7Tvid+8QdlOiSjbkQJ67zb5Qp67ofOyJ2KeHfTFDvOjgDU4POmDn767a1GA1JrdpMG3yRQr3nqKQ7ZdzdvLewLJ7DfTprLDo/ja4qNcajDAW4yLja8w9+ltkXHOnq+VHglIKRvc9kektQBupxNhS+yC/QGu3A2u31z+Usw1Gi9O8PQQEow2qznE8awevL4VGztoLYz67zPWi60Ki2rfRl7ELtWlqTRmMdtwQZRn+GOiPDcCPK5r3g2OnHe4BYHOcBKN5HW4bunNOvLwOwDpsqjGy0oH5dxjasDFd6N/yvMi2I1BppX5by2hrPT6UTu2sx28vjXLIm6Z6pXznvZ4dradH6r3OyRMMf9CLpCtNZN/kMq2nEbZY7DdlVcHj6izdAnS/2UTm9SZ63Wbi8z+b97GSKB7pjkdOrmGcsAuKra4F0q41cc7LJsoqo79/PzkzeBmT5woKyqK/bLdLsDs2ErVm4eytA7Ksx0c6ADaSUhL107aVOK/H6X1aoUX4cKkmGO2wvs6Xb0V3H1anskZw4esmOl5nYo9bTfS81cS7v8buepWIiMgppVQX+H7os7vf6DwAx4hIfjSXLSLPAZgWMPoqm1kCo1VtnvZrBc4Txz+XQkRERETUkvHzUmoC/AELIiKKCzwfERG1OrwXIWr+7PZj7uNEFGMMRmsd8kRknYt/2x3Wew+ADL/huQBGi8gy/0IiUiUiTwM4M2D+G5RSvcJ/WURERERErYOYJmTJPMgvXzUIOZM5DkOmZn4Q9rJrvfppCZ7gcRmpCkf018/TIyP+0qtEBHLe3iHLqRdnAQD26mr/Gjp6d8CD4I6fY8u+cNymvaqWNRyR0jA1JjFB4T8nGch91APzZd+/add4kN3e17ZenRRev6M/fnxxH7z+4ono/Y8LoFQTrfueA3f/eWbJFBxaMdfV7FMX+AWj2fSnjcdgNBEB5s9sMG5QlZtgtPoUmmPKZiLZdJdiVrdO0m26SpXEcTCa7ll5LN7rHhkK/z7B2YJGPmrC6yZdLAw7qwVf/iX4IUdQXRvZZblpem5RfHyAoTsWBG4bPTKsy61z+uQrBvIiHIyWO8nAHh312+6AbOtpK/Ki+95aBTbUCTcYLVMTjPb7hvDqcyrU9pfd3np6qGC08irBN0sF7/xqYmmu9ftRWSPY6y4Tv6512FgXEj3A/jZParcUB7epNEQYUt6u8I9NhcCpz+lfFxGFJ9ohst07AGkp9mXe/03wz7eju2+XVYplCFKNF/hkQfSPK24v88oZjEZkye67ULrHFQOyNNeuW+P3mqK6Vj8t30UEidPvjuVb/BZCieYabf/eCv8aFf5JoirEbzNc8z/BW78Idu4qt7kIOP91weyV8ft+ERFR66OU6ghgJoABfqO3w/d9t5UxasaDAcOHKKV0PysUz8FozwMY6vLfKRFaNhERERERNSV2fiUiIqKY4DUHEVHLxOM7ERERucNgNAqLUqo/gAv9RlUDuEhEtF2qRWQqgDf9RiUDuDs6LSQiIiIiahmkMB9y/QmQfx4OufkUyJkDIXO/9E1cMMtZHZOuqp/HJW8YQVSn7qvvZDm8b1jNiCp57Z6QZdT1T0Jl+9JCBmTbl830FliOP6ZsJlI8Nklzfo4v+7rhiJQwU2PiQZceQJtUAEASavD9+mPxcu6V6F29DhneHbih4AncmT9RO/vMZX7BaDafgcRbMJpUVULuuQCobpiMMLRqCTp4Cx3V0cGsT9FpJ+U4p8RdyGHdOklN0pcpjeNgNFPzRcpYvdf3nmJg2jXOHp1d9U70PqCbv07Q4xYTJz9j4ujHTBxwv4m12yO3PDdhH5uLQpeJBd13bD0Bb1efzvEfpLAmP3JtWfugETIEc5DmHLZgI2BGMeAvGsFonTTBaFtLgMe/sbmAaaRQQURd21u/B3YheIs2CobcbeK4J02c/5pg6AQTV7xl+gI2d9lWImh7dWRe1yF9gPGjFB45XeHOkxXuOllh6T0G5t9hkXq7yxqLQMEyF+E/pgBvzI2ffY+oJdDdq0XqWskwFM48IHRlH/4uKKqI3v5dXq2ftnJb1Ba7m9u+PW6OjUStiW0wmmZ8/y7W4xduRIPrpHhid4+9rdR5m51emudaXGOW7LQu274N8MSZCp9fG95XRKpsQt9qagVTfgtutAjw/vz4fK+IiKj1UUq1BzADwDC/0YUAjhGRJTFsyrxdy63jATBYUzbwbN9WKZXqcnmBV1URecorIttEZImbfwBWR2LZRERERERxK06fWxIRERERERHFFu+PiZo9PuciojjCYDQK17nwfTGrzscOfznz4YDhM5VSKZFrFhERERFRyyJPXgf88UP9iOICyK2nQT59Bdie67yeW0+DlLrv61Cr6WyfYEAbvnLK3/Sd5+2mNQVZuQh488HQBQ84evefQ7rav4ZOmmC01L9fjNFD9IEjdfrzLNQAACAASURBVA6r+AkT8u9vODK5+QajKaWAngN3D3tg4pLiN7Fq9WDkr+iBR7bdgbu364PRlm6p/7s5BaPhyzeBb4ODzBJRi+PLZjiqor23YZ+nidvuwoE75ztuQt06MQyFNM2dd0lcB6NZjzdi+DTr5L0VZt1soHOafblXZgvyXXRyd0pEcMaLZoNQqcW5wL/+F7nQJzefV+woj9hiG0W3bQSelgZkWZfL2RofQQqF5YKf19iX6ZEBzLnVwM3HKe1xLiURmHyxQq9OoQ+EgzXnsPxSYN66kLOHzS4YrUOYp7jsdP3rvelDwR/ro/MehwpGy25vPX1LccMZC8sFj84wcetHJva9z8SGHQ3LvzJb4LnCxE0fmigsF9w1LXKvZ+5tHjxxloGbjjVwz1gDE8Ya6NvF9wJO3tt6nhlLgpfvNlzzsRlNv98RtSSxuFa6/9TQ55YaLzD8QRM3TzExc2nk9/MKm2C0kpLop5C5vWSway9Ra2a3K+myfffSXLtu2AEscf5ILKZKbQ5L+aXO63F66NlSFFyyWBOMlp7ie0Zz4jCF589z/xClskY/bXuZ/vnCt8t4DUhERE1PKZUG4CsA+/uNLgFwvIgsjGVbRMQEsCFgdGdN2QI0DFEDgJ4uF9krYNjJ9/uIiIiIiKi1i4PvVJADId8nvo9ERBQPeD4iIiI/vN8kIooiHmOpZWIwGoXrtIDhN5zMJCLLAPzqNyoVwLGRahQRERERUUsif/4EfDfFetqj17ivb9yeruep9VqP99jcTfbqpHDh8OAOlhcMdxbaEiuy/HfIJQeFLrjPCCi/YK+RA+1ff2aSRS/Yky6CMf5x7N8r9Ov/Yf0xSJWABJnkZp4n3WtQyCKfbhxnOX59AVBe5XswZxuMFmdPOMQiFK3OfpULQs7f1ixHEhr2Os7ybsOP60Zh9rqReCP3MrxxfGDfqYb8Q5R0wWillfH70NPUZH/FOgTv8P4KK+4z8OoF9gvOujFyYWV1lm5BUFgSAHzxF7BxR2TeO7v9KlCRTbhVLIUKpqozIMv6PSuqAFZti3CjwnDQA/pt5tlzFWZcZ2D5vQYO7avw8N8NLLvXwIzrfP//fJuBNy9W+PhKA2seMHDBcGcHwRH9gOQE62mfLoze8aBQE6qXlgIkeMLbqQdm208/YKKJmtrIv6ZQ219XTTDaJr8urKu2Cf52r4lbpggmfW3fxse/EXS63sTLP0bmtWSl208/coD1+/HLWmB7QABkWfTziIjIhu54FOZh1VJWukLFc6HPMTlbfeGHxz5p4r7PI3tNVG5zrCmeNQOyfYu+QAS4uVYCgJ0MRiNyTReMZvf8Zdqi+LyXLdGEkgHANhfBaLr74UC5Fr+BoAsoS29T/3eHNtZl7FTV6qfZhUKW87hIRERNTCmVCuBLAIf4jS4DcIKIzGuaViHwqsHu7LwsYLify2X1CVEfERERERHFRHw+0yQiIiKKWwzOISJqxuyO4Ty+EzULdtdivE4johiLs27D1BwopbIB7OM3qhbATy6q+CFg+ITGtomIiIiIqCWSSVdHtsLKCsg6d/0dajUdMRM89vM9fqbCRYcqKOXr4HrRoQqPnxkfoWiybRPM+y6G/N+hoQsffCzUfe81GNWpncIR/fWzZB58EHDYSb6BxCTgrPFQNzwNABiYZb+4c4v/B8u1lJgcuq1xTPUaGLLMoKoc7bQVW33/2wajxcfmVW/RHO2kgcbmkLN3rt1uOT4RtRi+cx7OL34X5+94E9cfo3/h/mFx6dpgtJBNaTJOw69ioX1bhUtGGLhypP3Cr3rHhETwIb9VJ/c6ToIANhUKLn7DxJC7vTj0IS8em2HCG7Bi3YR9lFUBtd6m/xDD6zA0b0g3fR2vzont66j1Ch7+ykSPW7wwLvf9W51vXXaPDODKIxVGD1Zom1z/ovpn+cYN2PwDDnxuDM57axRO+ethZCXbpC8EaJeiMEqTVRnVYLQK67oz2oZfZ9/OoctMWxR+/TraY9OuY27PjtbHibXb6/efSV8LNhZaFou6Sw6zP46dNMx6ugjw9dKGL35njWVRW/EcyEnU3IQ6HkVKSqLCyvsNjHDY9f6+zwVbSyK3r9sGo1UnQN56KGLLsuL2lVTaBAcRtWZ2t0m6q5OOqQqH9bWe9uVf8XlNUWZzj71oo/M2O71P21IcPE4XztbeL24lI9X9jXWlzbWfXTAavwdHRERNSSnVBsDnAEb4ja4AcJKIzG2aVgEAMgOGrT8Q8FkcMDzc6UJ2hcLtHaI+IiIiIiKKGD4MIyIiIiIiIiIicooxikTkBIPRKBxDA4b/FJFyF/MHfrFsSCPbQ0RERETU4khZMeAyxMyRX752VVwXPpMQ4m4yI1Xh9YsMVD7n+/f6RQY6htHpMtKkaDvk4gOBGe+GLKu+2ALj0c+gMoKTV075m/61dO6SBuOhj6G+L4OaUQjjmkegknzBZoO6hggjKZtuPcETIoku3vUMHYzWu2Y9kk3rHsTL83yPM3XbIxBfwWjy/Ue20/cafUjIOrrV5oZe0Oxp6NxOP9n0W19pmmC0kmYYjKaa8L1++mz7hb84S/DvTyRi4Wh2nct/W2c/b3GFYNgEE2/+LFi2BfhlDXDzFMH1H4QfjAbExzaja7Mn4NzUMVXhoN7WZZ+cKVi2JXYflVz5juDfH4tt2F2dE/dWUJoNXeZ9A7nueGDeN8BfcyGv3A2ZeGlwOdOEVJT6/q7xbUhStROydSPG9LFuxPI8YMXW6KyTIk04Q2OC0ZISFPp3sS/z5eLIvx7d7l13HhqgCUGtNYF1Bb6/P3MQbBgNGW1DB6MNzAb6BHbN3eX39Q2H7cIxdH5c4X4eIrLmNCg0Evp2UfjxFg/GBHant1BrAt8ui9xxzu56qMhoD3z3EcS0uVFoJLdVV9ciKIiWyCmprYVUOQ+9bU7C3SvG7GN9UPsrdN54k7ALgZ27GihzGBLrdH1tKwVqautLiwiKNZtQekr9uuzQxrqMnSqb4EfbYDT3iyIiIooIpVQKgGkARvqNrgQwVkR+bJJGAVBKZQLoEzDa7gOBrwKGR7pY3OEAEvyGF4jIVhfzExERERERUVzjE1giIiIiIopDdn0p+At7RM0E9+Nmie8NtVAMRmsdrlBKzVRKbVZKVSqlSpVS65RSs5RSE5VSh7usb3DA8CqX868OUR8REREREW2ITmqEfDHZVfnaMIPR6iQmKCQmxFFi1bRXgZIdIYupxz6HSu+onT5uP4WkBOtpo/fyvV6VkAiV0LDQ0G5Ajwzr+done3F82QzriR7NwpqLvfYPWcQDEwOqV1pOW57n+98uXyCugtGeulE/8aI7sOc/r0GmTaAZAHR3Eoy2ZgmGVSzUTvYPsErXBKOVxkHIlY7u/W7K99pjKPx4s/0B8JGvBB3Gm3hxVuMDOuw61S//dRkkPzgNIL9UcMgDXmRcZ1p2iH/2O8Fv6+rrdRv2UVThrnw0mJqNw2rbGLef9QZT4wWuedeMWIidjmkKLn/LxGtznC/nrAOC2yw7y2FOvBRy48nBM/zwMeTTV3zlRCDvPAoZ2wNyXCbMw5MhR6f5/h/dAXJ6P5z82H7aZX+6MDrro1DzkwqNCUYDgLE2QaUA8MZPkX89oY5N/YLzVHdbuRUo2SnIK4l4swAA7ZKBPTTXGecepPDjLQb6drFfZ0opHDHAusyLsxq++HCC0b5eyg/biCLFaVBoJB01yNmF2D9ekwZBPY1RbhO2szUhCyjKB1bqr4kbS/cq2ibp5wnn+Eitm3i9MJ++ETKmG+T4zjBvPBlStL2pmxVRdpfdduHX+/W0nlhaCdR64++6orTKfvoz3ztrs5v7NP9ry8oa/bO8dL8wtA5hXIfbHdvsgtHsQu6JiIiiRSmVBOBjAKP9RlcBOFVEvm2aVu12Nhp+Z3MrALtfSvoagP+T3uFKqUEOl3VRwPAnDucjIiIiIqJIY6dEahLc7oiIKA7wOoiIiIiIiIgagcForcPZAEYB6AYgGUA7AL0AHAHgdgA/KqXmK6VG66tooF/A8AaX7VkfMNxJKaXpskdERERE1EptyAlvvs7dgaPP0E9ftwxSuM1xdbpOptHsbB9NsnB26ELj/gl10DG2RXpkKEwYE9w59+/7AUcO0M+X4FF45O8qKFhOKeDho7ejvalJSmnmwWgqqyfQb++Q5QZWWwcCzlji2w7tOgbHSzCabM8FCrZYT0zLgLrkTng8Bk7e277B3Wr8gtHaddCWO+qpkY7alaYJRiuxCM6KF/EYjAYAI/ordEq1L1NaCVz1juDiN0zkFoX+UodpCpbkCv43z8Qva+qDRMpsOtXn1GTBPG/voGCvM140MW+d/fIOeqA+EMwucNBKXASj6bYNi3PTFUcoZKVbl/8+B/jfvOh+6eaNuYJXZ7tbxsiBDTdy2VkOufRg4Ku3tfPIo9dAdpYDX/4X8uIdQHGBtmzX2jwctHOe5bRw1odpCmavFMxdLSivsp6/ULPdZITYl0K5bpRCn0z7Mv5BgJGg2/7qAj3aJittCOqKbYKVzi/DXDlpGFD8tIH1D3tgvhz87+3LDAzp5uwA2j/LenxlDbChQBoMu7VyK7/oRhQpumvjaF4rnTjMeeV73m7ipVkmluY2br/XnVsAIDehq687x+rFjVqGHd1xPzVZP89Om4AgIivy6gTgw2eBsmKgtgaY9w3ktnFN3ayIsg1Gs5nPLsCrJA6Dvq3Cqf19/IezY6KbI2duUf3fduvEPzC9c5qLBexSXaufZheMxmMiERHFmlIqAcAHAE7wG10D4HQR+bppWuWjlMoC8J+A0Z+Jza83iEgFgCkBo291sKwBAE7zG1UL4F2HTSUiIiIiIrLBz3yJiIgoFnjNQUTUfNkdw3l8J2oW7L7wx+BbIoqxZtqVnaLgAAAzlFITlbL7XW4AQGCPbFfd+USkDEDg17Lbu6mDiIiIiKilkxULw5sxvSPUhLeA/Ubqy0x7zXF1tZrO9gked82KG/Nn2k/vvw/UdU86quq2Ewx8c72B60YrXDlS4d3LFN673IAnRBLB2QcZmHubgdtPVLhguMJNxyrMvsXA/x2oTxtSzTwYDQBw+NiQRQZWWQej/boWuPdz0zbAySoQqSnIvRfpJx44CnW33Kf+zX476XHMKODcG6HGPw41dT2w14GW5VLEJjnLT3ob6+WVxmFH8jpNEfbh1OoHnG1wb/4s6HGLiRd+0Kf6lVcJxr1gYtgEE+e9Kjj0IRMjHjGxpUhs358iTwbW1mZCTu0NKfeFKq7cKvhxpbPX8Nuu2HrXwWhxEKbndbFttG+rMOl0/UZz04eC4orofDBTVCH4v/+6q3vzIw23LVnwI+S03sBGB2/sN/+DfP66o+WMLf3ccvzCjcD0v5y3eX2BYL/7TRw5ycSIh0387V4Tf6wPnl8XqNehbeN26O4ZCgvuMjDGJnvzpR8jHIzmYPsboAkWW7kVWLUtsu254kiFNy9WmHq1gdCPdZ0Z0EVfz7Pf+wejuX8t/sEdRNQ4mgzrqF4rDchS6K7P7G0gtwi48h3B0AkmLvuvGRTm6lT5tnzttEqjDYqN9pBwg8Ud0DW7bZJ+np1hBEdSK/ft+8HjlvwK2bQq9m2JErsjgN0ljF0wWjyENgfaUW4//ff1vvuEUNzcp+UW1/9tF8zWvk393x1TFfp1cb4MANhpc+1nF4xWXo2wzwFERERuKaU8AN4BcIrf6FoAZ4mI9QOx8JYzUCk1xuU82QA+B+D/5KgawIMOZp8AX7hbnYuUUtoPXZRSKQDeAOB/5/KaiKx23GAiIiIiIgoDn4MREREREREREVELYPt9Lz4DI6LYipNuwxQlmwG8AuD/AIwAMBjAIACHAbgWQOCvYCoAtwN4IES97QKGw+kSGzhPGL9LHUwp1UUpNcTNPwB9I7FsIiIiIqJIERHgpzD7Z3TuBqUU1GUT9PXP+cxxddpgtGZ4NylVoROg1L9fcRUqMmovhcfPNPDcuQbOPih0KFqdA3or3H+qgckXG3jkdAOH9lVAok3P+hYQjKYcBKPtU/WndtqEaYJFm/QPT1PiYBVJ7hpgwSztdHXdE7v/PmawfZjCoEOHwrjyAajTr4ZKToE64hRt2bc2X2Q5/qDe9X/rOpNvK43fB9K6lsVDMFp6G4XPr3V+ILz6XcGwCV4kXOHFkZO8+GlV/at75jvBtEUNy89fB3S/xcStH9m/P5+1OwnYkQd89AIAYNEmx03Cwo2+ut32T4+H8AFdSIBu2zjvYIUjB1hPyysB7poWnf3ghg+c19smEXjrxPXI+ug+mE+Mh7zzKMxXJ0D+dQywK/guFJl0NbD4F0dldcFoAHDSMya8DpMYRj9u4k+/7W51PnDF28HhN4Wa8IcMm6ALp9JSFF67UL8/LsmNcDCag+2vnyZYbOVWwVZnb6cjFc8ZeOE8A+cPd34N4sQ+e+inTVvkH4zmvu4txaHLEJEzTRUie8YB7hfw+hzBc987Px7LrzNgPncrqm46Dc+8n2tbNjehK7DBOmA5EnTHfQajUaSI1wtsWW897au3Y9ya6LG777ANRmujnxYP9yaBCh20abODoFjdMd5KblH9yi2x+dQ+PaXh8CkhAtsDldk8Vquo1r/BXhOoqnW1KCIiosZ4HcCZAeNuB7BAKdXb5b8Ui/rrdAUwTSn1p1LqFqVUf11BpVSaUuoaAAvh++FSf/eLyJpQL2pXmacCRk9RSl2jlGpwd6KU2gvAtwAO9RtdAOCeUMshIiIiIiKqF7/fJyJ/Id4n/mgFERHFBZ6PiIhaHwYqERE1DR5jqWVqhl3ZyYF5AI4DsIeIXC4ir4rITyKyTERyRGSuiDwrIscDOBDAyoD5b1NK6XtcBwejhU4XCBb4tezAOsN1FYDFLv99GqFlExERERFFxpolQO7asGZV+430/TH0EH2h5b9D8jc7qs/bkoLR7rvQvsD+RwH99o5NY6wkJuunGc1whQfqtzeQ3cu2yPFlM5Dh3aGd/uZc6wd0bRKBtslNn5YlX7ypnzhyHFRGl92DbZIUrhpp3ebsdODYwQEjT75YW/W40qno3ya4Z/VZB9bX36299bybC/VNbmra8KE42R1OHKYwfbzzxizJ9b2m2SuBwx8xce/nvgPs+/PDf/A8u+0IAIBM9217m4uc17U8z/e/w/yr3Yo0AVexpGuzR/N2KKXw3LmG9tz13PeCBRsi/7q+Weqszg+vMLDqmKk458mhwOSJwMcvQl68A3jzwYi3qc5e1cvRr3qVdvrc1aHreHGWidX5weN/X+/b3v0VllvXEYlgNADITNOfA3LyEBTU1hhOgtEGZFmXWZUPFGjWRZ12ycDGh0MfW3693UBKYnTOfbpgNwBYsRVYvsW3EsIJRtteBlTVNP1xhKglcHs+jJTrRoV37PnXe4JtJaH3f/OF2yE3jUHV+89j+LY7sSjF/h5tY2IPYENOWG1yQncKsQ1Gq45OW6iFqrU5oZa1jkRRu6NKul0wWjg/3RVF1bWC8qrQ5baXhi7j5mop1+9xQInNp/btAqJdrjlKIdlFyLzd+q4Icdxzsl6IiIgi5AKLcY8AWBvGP5sP2nYbBuBhACuUUkVKqTlKqalKqbeUUp8opX4DsAPAMwACnxi9LCL3uXhttwGY7jecuKvejUqp6UqpD3YtbwkahqJVAzhNRLa4WBYREREREUUcPyMlIiIiIiIiIqJmwq7/BYPYiSjG4qQrKUWSiHwpIjPEQY8/EfkNvi9yrQiY9JBSyuN0kW7bGOY8REREREStw+xp4c97+FgAvhAY9fQMfbmfvnBUXa3XenyC07uFOCEzPwBmTdUX2G8k1H/egFJNGK7lsemNajetmVBKAYePsS3TVnbi/m0TtNP/3GQ9PlMVw7xyJMy7zoUsmNWIVjbS55P10zp3Dxp1z1iFyw5XSPTbn/bdA/j+JgNJCQ23RdUhEzjjGsuqk6UaH9bcgoN6+4bbJQO3Hq9w3ej6OrpnWDdr85YymP/YG+Ytp0J+jK/ccFMTzGg0fQbebscNUXjnMoXMMOLeJ0wTGJd7sUizXTuRkzzA98em1SgtqcT17zt/3JKzK9jIbTBaWRx0aHcSTBVocDeFG461LmAK8Mx3kXlUVVwhuPUjE/vd58Xm4LzCBs4/RCF/konTFtyLrMfOBbyak24UKACnluj3+WmL7NeHiODqd/VlFm9uOK2wwrpcRqrtYlz57BrrR92FFUC+g/AJp5xsf3tmWm9ruUVAQZm+7j6ZwLRrDHTPUJhxnf7R/asXKBzYO7oHw78m6Jdft33sDCMYDQDySsKbj4gaCud8GAk9Oyl8cW14Hy9m32SitDK44SKC1+aYOPqm1dj7l3PQp99ypA4qwsKUfULWuTqpL7A+B7IrXKrWK7jzUxPG5V4Yl3vR5QYvPv8z/PO8bj3bBqOFeXykVsprs8FUxlnyVyPY7YV2j2I8hkJaivW0Is01ZlPRXfMGyre5Hqzj5j5ti19+Xolmk0lL8a1Lf706KXxylYE9dj0vCHX+sFvfDEYjIiICALQHcBiAUwD8A8CpAPYHEPgBTzmAy0XkCjeVi4gXwJkA3g+Y1AXA8QDO2LU8/7P6NgCniMhsN8siIiIiIqIwsVMoERERUeTw2oqIqPlioBIROcTDBRE5wWA0gojsAHAOGn4nfRCAozSzBH5d2+a3urUC53HwFXAiIiIiotZBwg1GO3wsVI9+uwfVvkcCew62Xsacz+zbUOnr7VirCSbyhHE3KVU74SC/OeLkt28h95yvL7DfSBhPfQ2V2TV2jbKSpOnpCwA9B8SuHVGkdgX32bms6HXttIJy6/GZJWuBxT8D338EufFkyO/fh9vEsMjOckjuWmBHnraMGrR/0Lg2SQovn2+g5GkDK+83kP+4gd/v9GBgtnVvZHX1I9r6hy55Fz9fWYCyZwxsfczAg+OMBkF/3dpb11ko7bBzw3rg5+mQO86EfP2udhmx1lRhH26dc5BvnT80LvYNW5XUFzVIgAmFYydsczXv6nzf/80xGM0bZmjenSep3Z3+A323vPHnJ9MUHPekiUlfCxZu1Jd74iyFiucMvHmJgYwnLwXefKDRyw7H9Tue0U77bZ39+lhXYP9B04qAzVEbjNbWdjGuHNhbP23N9sgtR3ts8rs26t7BukxVLbBqm3UFJwwFVj3gwciBvg159GCFa48O3qifOUfhkhHRf6w/pJvCoX2tp9VtH5VhBv/khggNJCJnwj0fRsIJwxRqXjRQ9oyBwicNzL/D+XFp9OMmCsoaHgsfnC74v/8KfijpjaXJg7Ehsafj+lYl7TpYTXkWAHDGiyYmflFf//YyYOyzJt6ca2Jntfvzve58ZxuMFiIgiKiBGpsNpirOkr8aoTGPgzpoPokuqoivbz7t0DyzCHTxZM0B3I+b9bWluL5w8U7rGdM1j5yOH6qw7iEDmx4xUPCE/bG8yCanL1QwWjzcRxIREUXYMgAPAPgJgNM02xUAbgfQW0ReCWehIlImImfDF4L2i03RHQBeADBURL4KZ1lERERERETUDIR8mBxfz9GJiIiIiIh4n0LUTDCxrJnie0MtE4PRCAAgIn8AmBEw+nhN8XgORnsewFCX/06J0LKJiIiIiBpNtm4AViwIa141/rHgkSPGWBf+4wdIRWnw8qe+DPO0PSHHdoT5zyNQm7/VcvYEF3eTsnk1zKuOghzXCTKuD+T9p5zPHAHyygTb6WrsZbFpSAiqTSow5ODgCWkZwIGjY9+gaBh2GNClh20RD0z8o+wDV9V2qvVLvKmphkx5LpzWuSZb1sG8ZhTkhM6QswbZF7Z5D5MTFfp2UejUzj7FQnk8UM9pQt9ME/Lk9WibrNAmKbie7powKADITagPBZS3HrZtQyzpwodUnAWjAYBSCrccb+Dhv8e2cTUqCWuTeuPb1KPwa1l3V/Nu3hVM5DYYrTwOOrSHG5qXmqxwzynWhfJK0OjwzpumCOatC13u2qMUUhIVZPViYOb7jVpmY2R5t+HaHdbHy5wt9mENy7fY1700t/5vEbEJRovcPtM5DUhJtJ62pThii4HpIIiomyYYDQD+2mw9fnC34HUx6XSFJ85SOKg3cFhf4J3LFK48MnbHmaMGWS9ryh++/3XBaJeOUDhjf307I/l+ELVmuvNhOCHW4fAYCm2TFdq3Vdi/l8JPtxo4bkjo+eavAzrfYKLHLV58tkjwzHcm/jM1/HPwiqT+AACZ/ABy8gSfLrIud/FkQYfxJk58yottJc6XpyvpUUBygvW0nWEGR1IrVWuzwVS2jmC0UFc3HTRhup8tiq8v8eiueQOVVyEoIDKQm/s0/9DZkkrrMuk2n+YrpdCtg+94bqeoQn/PFCoYrZyBkUREFCMioiL47web5WwVkTtEZASAdvD9AOlJAC4HcAuAuwDcDOCyXeO7iMhAEXlQRBod4S8iU0RkOIA+AE4H8C8A/wZwMYCjAXQVkatEJL+xyyIiIiIiokiJr+eZRERERDHD4AwiolaIx34iIiKKHAajkb/AX4jcW1MusOtaZzcLUUq1Q3AwWpFVWbdEZJuILHHzD8DqSCybiIiIiCgitm4EuvZ2PZu67WWorJ7B43XBaDXVwK8Ns5Hl+48hj10LbM/1fQi55FfUfmL9o/VOg9Gkugpy7THAX3MBrxfYngt59hbIV287qyAMUlkBWTgbsuw3yOJfgKXz7Gc46u9Ra4tb6or7gBS/Hr9KQV35AFSCJumlmVEJCVDjHwc8mgSBXbpUaVJjNDK9BQ1HzPnMbdNckdw1kO8/gpw5EFg0x7dt27nwdqgMV7fOesOGAz36WU/7bgokd43lpG7t9VVuTehSP7B+OaS4QF84hsINv2pKNx9n4J6xsW1gTtJA/NTmUNfzlVUBpZWiDXnSaeoO7bVewa9rrac5CYLZK9v6/amuBYp3ht+u3CLBkzNDf4i7X0/AMBREBPLKXeEvsEffri6bOgAAIABJREFU8OYbfgLUlFW7B08q/dKyWF6pgaIK/etZnmf/Wr9ZKqj1+sqUVQFezXaWoQm5CIdSCl01x7otxZH7gF1Xk/+xKTtdH+KoCwXrmBo8LilBYfwoA7/c7sHsWz045yADRgwPggOz9NNemmVqAzAO3hN4/woDfTWnvtwifuGBKBLi7VppeF+F6eM9+Gq8s5vF3CLglOdMjH+vcceE3SG/lRWYs6LWtmyNF/hqCTDmWecXQHZhvW2SrKftZAAQuWEXjFbViAvUOGO3p4cKv85sZz3+00XAB7+ZqK6Nj2uLHeXOy/623n562MFomk0mPcV5fTo1Xv3xLVQwWlHLyfgjIiIKIiKmiOSIyJci8oqITBKR+0TkURF5bdf4qASUichaEflIRJ4RkYdEZLKIfC8ivCshIiIiIiIiIiKiZi4+PgcmIqJI4/GdqHmw2VcZfEtEMcZgNPK3LmBY12t7ZcBwL5fLCSy/Q0QKXdZBRERERNQiqb0Pg3p/OdTk36EuvRsYsG/omdqkQp10ofW0QfsDnbpaTpLfv2s4/OXkoDJPpFxsOW+CJ3SzAAB/zgHyg0Ou5Jv3HFbgjiycDTl3KOTa0ZDLD4NceaRtefX2Iigjfm6N1b5HQr38E9QldwHn3gj17LdQYy5p6mZFlDriFKiX5gDn3QQccYplmQ5eTWqMRlAwWhSZz90GOWsvyF3nOp7HuOzuiC1fKQUcPlY7Xc7aC2LxkDk1GUjR5OsVeDIbjtiwojFNjJh4C/tw6s6TDXx3o4EDdj396JNpX76xlicNQE7ygLDm3Vzo/jOJsqqwFhURmwoFB0w0UVppPd3JtpGVrp+2tSS8dgHA+/OdrcjD+ilIcQHk2tHAT1+4X9CBo6Bufg5q8h9Q4x9zNau69G6ohz6GytoD6vL7AAADq/X7e06evq6FG+2XVVgBzN71BLHQJiAiwyIMrDF0wWjTFkbuwze7gJw6CR6FrDR39XaK8LqIhP5d9DvVle8I1mlOv3XnG937kevuNE9EGtprpSa+vTl2iMKK+2PXiAJPJ98f3losXeXsZD5/HbB4s7Nzg+5ayVBAG8319c4afumDXKi1yayYPzN27Ygyu/uOUMFo+/fSFzj7ZcHAO038uqbp97sd5c7b8N+f7cu6uU8rKAd2Vvtm0IU9tw/8ybIwbS21Hh8qGK2grOnfHyIiIiIiIiIiouhrLc/BWsvrJIoR0wvUlDV1K4iIiIiIIoj3jURERBQ58dP7m+JB4FeldV+RXhYw3M/lcvoEDC91OT8RERERUYumlILqOxTqotthvPYL1PVP2pd/fZ5+mmEAhxxvPfHrd2G+fBfMZ2+BzJoK/PJ1g8m/peyH3MRulrN6HN5Nymv3Wk+Y942zClyQygrIxEstg9isqBueguo1KOLtaCy152Coi++AceUDUHsf1tTNiQo1cF8Y/5wIY+IHwKEnBk3PMItc1detNjdonHi9YbdPx3zhduC9J9zNdPTpEW+H0gTK7fbZa8HzKIXMdtbFt9eFSewic78Mt2kRZZrW4+M9GA0ARg5UmHeHB+bLHqx6wIOXz49eo3OSByInSR+M9sRZ+mXnFrv/2LG8rAry8Qswx/WBedVRkJ+nW4bxRcP4/2fvvqOjqP42gD93Nj2BJIQapAjSBQTBgqIodqzYey9YsPdeXhV7w94rVn4o2LuIiCi9hd7SSEIS0pOd7/vHElJ27uzMZjdswvM5h0N25rYtc3dmd+bZKSYWbtKvdxIE09EmrKopwWhLspyVO363bMix6cCCma77ULe/BuOpr6GOvwQqNg4Yf6Xzujc8C3XBHXVhoGfeAIw9DV1rMpFoWp9cufzxSTAv2hfmE1dB3noIsnIBAMBrCr5eFPg5n7bAV2Zrmb5MaoLju+CILojr+6WAqUsQcsnp3LRbqrt2u6ZE3uTWvzMQ7TQMt564aN99Sdfcpyx3b/NEpOGN4H2lPToqvHF+8wwkz5O2Y3+mstD5m/mPy5y9L9gFYuqD0RwPgwiosX/BSHWAxKlWINBscewQ+xLr84EL3jJRVbNzT6q02+9t7KM5Yrt/6nbXdU2e7/9iTYh02zhn7dx3vP1j/dAM64GVB3iZ5vF6LiIiIiIiIiIiIqIwCPRhMsMImkVlATB3IvDNMODPM4E8/fm8DYgA824FPm8PfJYC/DgGKPM/D5KItsv+EfjlKN82893+wKpXd/aIiIiIKBjNdN0BETWR7bbK7ThicY6lVorBaFRf+0a38zTlFje6PUQp5eYyxsZX9jduj4iIiIiI6jv+UqDXIOt1J1wCtZt9VrHqpllfUQa8Nwn4+FnIXaf7rf426Qhtm1FOjyYrXFwV2lR/fQNkr3dW9vAzoE66IrzjIWc69/BblOwtctXEIaW/+S8sD+1VtzLlGeDDJ13XU+MuCOk4AACD9rVdLY9fBdma67fcaTAa3n8M8ueMYEcXMroLwSMh7MOtS0Yb2DDJwEtnK0wcq3Db0fo78cJZCt9ea+DZMxReHb8NL2ddhcdzbkWnmhzL8otjB2JVTG/LdY+cYOLasQbaJVr3taFAtCFPOiV//wF5+jpfCOWiWZBbToTcd07Yw9FKKwVfLrAv4+S1kRCrkBRrvS53m/tx1crcGvj+D65YhINvb/x7Ac6oz1ZCHXNew2WGAfX2v4ErH3+x33ueioqCuvddeK59En2rVllWW54DYOV8YNrrkDcfhFy6P+S7D5GRA+SXBu525srAwWgpup9lCFKntvoXwVyHuwiBOJ2b+nV2PllFGcABbn96ohkkJyj0TAtcrrHaoCBdUF1WEb9wIwoF3XzkiZCdpdNHKHRuG7r2BlcsslxeacShbPtXVFk5zo8/nb7v63ZxDAXE6YLRWn+OFYVSTY39+nkWx7stkN27vwowbR3oYD9pRQ7ww07+Ka4CB/vI9dntn7o9vFqR7ft/myYYrU28s/eGU4bbl/t0rlge+5VW2g+YwWhERERERERERLTLa3EXJba08RLtJDXlwM9jgYznga3zgfVTfLe3zg9cd+kkYNljQHUhIF4g9zfg58Na4HxB1AxyZwK/jgOyvgMq84H82cCcy4GMyTt7ZOQI5zUiol0O92mJWj6b7Tjc1w4RETXGYDSqr/GV1ZY/NSEiWQAW1lsUBeBAF/2MaXT7Gxd1iYiIiIh2OSoqCurBj4AuPRuuOPo8qGufDtxAh65B9Zvr6ahdN6y7w4vt7T4I+yu0hwLy5ETHZdUpV4e0bwqeSmmc0Q1UKk1qkcaICotgoLLASQeSuRbmgxfCHB3r+3fxfjDP3xvmtUfCvP0UyJK/feV+nwaZfKurMSEpBeqmF6D2OdxdPQeUUlBvzbUtI8d3gzR6DHTBaFui/J8DefE2iNvErBDTzR5GC/00a7dUhcsPNvDM6QYePsnA9GsMpKfUrY+PBh46UeGKgxSOGKRwzaEGLh6QjUsK38L1Bc/jwdz7LNudGz8CZYZ18tmotpsAAD3aWY8pI0cfqqJTWuPxX/jzZ8Cf09015NLKXMAb4CXpcfja6KQJackpDv4LmswAeY7xZhneyLochtuTfPY6yBeK1qm75WrVe0+oe98FOnbTNqFOv9Z6uVLASVegn1gnMmTE9Gm4wOuFPHQhNs5f4Wjo/20Azn3DxPiXrJ+4pFggOiq04T0je+rXvftXaL6AcxqM1reT8zb32R1ISYiMIKPGZt/uftKtDQrSbWuREIyxNk9w/psmDnjUi+s+NpFZyC9oqeXR7apFSC4aEmIVZkxs2o5brOHFjSUvoWJZG3y8+Rxtudqg36yCasdtVwXIoqqlm/eVAhI1hy1lDEYjN2oCvGDWL2+ecYRZU86FMgyFX28KPJ+Ean8vWHaBwFY2FujXuT1OW5Hjq1BUZl2xbZyzdgamK3x1tf6xLqn0HUc2Fmjei4T9PyIiIiIiIiIiIiKikMv9zT8EraYEWP1m4LobPvZfVrwMKFocmrERtSZr3gJMiy+kVr7c/GOhZsTzuYiIWifO70REROROC72UlEJNKRUHYHyjxb/aVJna6PaFDvvpj4YBbKUAvndSl4iIiIhoV6a694PxyQqob7dAfbYK6qdiGHe8BhUdE7hy+y5B9Vml9G1fMMppMJo+xUZuGw/55XO3w7Jua+ZXQFGes8L7Hw01cGRI+qUQSE7zW9S3KsNx9Yn5z8Py1RggGE0y10IuHAl8/2Hdwox5wJrFwH+/AjO/glxxEOS9xyB3nuZoLOqWl6A+WAj18TKoGVlQJ1zq+H64pfYYDBwwzraMXD0W4vXuuN0+yXq7zff4B6NhQwawwVn4Ubi4CfuQqkptO3brdqZjBitsnGRg3SMGVjxooPBZA3ccY8CofwcLcnf8uXfFf677SF07BwDQv4v1c78iW1xfcF9iWCfsyTfvuWvIpSveCxzU5zQIpmMb6+U5xS4G1Mham7cgj9TgjczLMbzCwa/BHnUO1O8VUJ9mQM3IgvH8D9pQtFrqsNOhpiyFuu1V/5X7HQXVvZ++rseDvukWYXcAVsT2tVyeNXmS7Xjq++BvQaEmICI1wXEzjo0frn8RvPirYM7apn+Zrg3IafRFff/OzpOJeqZFSIqRhdREhefOcDe+2mC0NE0gZ35pEwcVpG0VgopqweLNgr0eMPHebMFfa4DnfhKMfdJEoSZIJBARgel2MiUKAa/DoMadaVh3hUX3ufsq8rns67F0xFtY/qCBohei8dj7VyL64yVo/9EsbZ38qDRUqhgskt0d95MVINS0li7MSQFI1Bwyl0Tm7idFqhr7QD/ZuLKZBhJedsFoTqatg/oqDNNnAQMAfsvYue/JW13u4+SX6sfq9m5kZPv+L66wXp8c77ytcUMU7j9e/6zM2+A/uNIAwWj5DEYjIiIiIiIiIqJdAr8zpOYW4DXXlF8tIWfm3Wy9POP5wHUbB6rVWv5M8OMhaq3WT7FeXrTY9jx1IiIi2ll4LELU4tl9phDCzxtsuwlZL0TU0jEYjWrdCqBrvdteADNsyn+wvUyt8UqpPg77qe8TEdGcok1ERERERI2pxLZQnbpBxcQ6r9Q+Pai+qlS05fK+nXwXuDuiSzbavk4+fjaIkdWRshKYkyZAbj/FWYVTr4Z68KMm9UkhluwfyjXCRQDUQ1vus15RGiAY7bPJAcPTAEBevdvZQEaOhTruIqju/aDSe0EZ4f/IRT38mX2BlQsgr92z46YuoGaLVTDa9vo7k+5C8PphHzLjbZin9YUcngJzwsGQdcvq1v3yuW/dYckwLx0FWf5vmEfsnlIK3dMU+nRSiI7yn1flpTt2/D2ociniTU3ClEbKf9MBAP06Wa9fnu3+gvsyQ5Nm9fs0SIBQh2BlFwnmrAtczmkQTKe21suDCUbLLRYc9YwX2zSfbnmkBr+tG4vTtjkLAlWnXwulFFTnHlBt2zkeh4qOgRp3PtSDU4C9DwF67QmccT3UQxa/LttI/+HWITKronujBv6haVlRnR2Py84eHUPSTANt4hQOsvmE8t4vm34inHZuenwCzGO7wnzlbojXixE9nbfZNbXJwwqrqw5ReP0850lLsVG+/9MSNYGczRyMMXuNYMh9XiRPNJFwlYkh95t+2+yKHGDafPdfn/67XnDIEyZiJpjodosXH//Dky2p+bgJkd2ZBqUrzLqqCJ1rsv3WdarJ2fFvVNksvJt3Ja66cBD6XXox+nZSiIlSUIYBlb47Utu30d63PE8a/orfF6WaAFcrmYXOtnm7fdKkOOt1pQxGIzcC7UO3lmA0m3XK4bw1doB9wdxtcHTcEC5bbYLOrNiFxbo9d2xFjq+CLhitrYtgNAC4+1j9ZxqbC/2XBZr38kp4mhoRERERERERERERtUIla3b2CIh2DV6b8yYZAtkC8DkiIqL6+L5ARBQ+nGOpdYra2QOg0FJKnQvgexHJcVHnUgD3Nlr8tois19URkZVKqXcAXLR9UQyAt5VSY3VBZ0qpEwBcUG9RFYD7nY6TiIiIiIiC1HG3oKpVqRjL5aP7uLjSPtAvcS3528WI6jUrAmzMgFx5CFCUH7iCxwN1z7tQhzoMUKPmk5zmtyhWqjC69A/8kTjatmrPqnVIkHLrlZtXA4P28VssBTnAiv+ATx38KqNT3fo4Ch8KNWUYwKOfQ247WV/ogycgp14DldYZHdpYF9kYbT1HyAPnQx1+RghGGhxdCIVa+jckJhfYmgt54uq6FYtnQyYeAXy0xBcKd89ZdeuW/wu5/mjg/YVQaaEJdQoFyc/2vR4r/T9KkTk/AMv+2XE7Cl7sVbEAfyXs77j91P++hJQUoU/uIgD+9TZvFQzqYl03NgqorPFfXmIXOLJxFbD7AMfjc6r7rc6ChhwHoyUrWH3gv6HA3ZcAIoIzXzPxywp9mUVrhqNv1SpnDZ54GdQeQ1yNoTE15iSoMSe5qtNv/z2Bn/zve5URi3XRPbBHdcOTOLNDFIw2omd4knvG9FP4faX1c/ndEqCwTJCSEHzf2iAisxooygPefwyiFHa/7AEM7AIszQrcZteUoIfTLJRSuOhAhdF9BAdMMpEXINgsrXgNZGE22q0BgP381pdUApXVgtjo8KU3lVYKFmwClmQKLn/P2bb9zzrg/FHO+ygqE5ww2UTm9nCQzYXAma8JOrYRHNJfoaBU8N96oF9noFu7CEuqolZBd26vJ8J+EklWLcQ+L1+DTStn2xc8bSKMa17RrvYYCqkJ1kFCBZ52KFfuUn+yi5yV080gSikkxliXKGEwGrlRXWW/fqPDfckIZ3c9gtNgtP4OdkOnzRfs12vnvO8WuMuxRoFNMJrbAOuM7WcGFGs+ImmrCXK0c9gA4Mdl/suXZAI/LhUM3g3o1Nb3WJcFeBlvdfnYEBERERERERERtT68KJGIiCg8TMDixz+pFWDoHRFRC2Yzh3N+J2r5uB0TUTNjMFrrczGAV5RSnwL4BMCvImJ5WrVSagSAOwA0vlpyM4C7HPR17/a6qdtvjwLwo1LqEhFZXq+fWACXAXiyUf0n7cLXiIiIiIgoNFRcAqT3YGD1Ilf1qlW05fJoN98fO/iwS7xeKI/zRqWqEvLwJcBPnzircMZ1UIecAjVwpOM+qBmldLBcfHv+YwGD0U4p/ly7Th68ACgthjrp8rplX7wEef5moKY6mJFaUlc+ApxwKVSCJnUszNQBx0L23A9YbBM0Mfs7YNz52MP6oUZGTB94YcAD/7QfycuCaq9JzgozryZ8SP04BfLpy9Yrt+YCc36E/P4//3UlRcCf04HjLwndIJtAPnkO8uLtgNcifUxjZMW/joPRYs0KxEsF5OFL0H5DEmBRb1uFoMa0Dg1oGw9s2ea/vFQl6DtdvzzkwWibtwpqnOWiOQ6C6a3ZFlZkO6tfa+562IaipdXkoXeVs1+GVfd/ABxiE3IYRv06WQfFAcCK2L5+wWhZoQpG6xGewIpTRyg8MF2//3HuGya+uib4k+F0LRv1w2C/eQ9yyX0Y1l1haVbgfaGuKS0jNKtPJ4V5dxt440/B8ixgyj/+922PqlXoftUQCIB2sQOBXnMt28ovBdLDFAj341LBeW+ayC52V+/z/wQvnBW4XK1X/5AdoWj1Tf7FxMpchas+lB3vZRPGKDx7ukKUp2U819QyaENkI+RlJmUlkFtOBBb8EbjwyLFQVz8WsFhaknUwWp7HP2w5EKt2rGgDMRWQqAkaChQQRNSAN8Dxac4GSGU5VKy78L9IY7dH5HTa6tdZv99a68sFgkfGOx1VaG11OK/UyrcJm9V9nJYYC5RahC8WlAJ52wRFmmC05Hj3bw7pKdaP99uzBG/P8i2/c5zCA8crlAaY98pD9zEMERERERERERFR5NpVLgrdVe4nERG1DHxfIiIiijx8fyYiIqIQYjBa6xQP4Lzt/0yl1EoA6wAUAfACSAMwFEAni7oFAI4SkYCXgorIJqXUeADfAYjZvvgAAEuVUv8CWAMgGcBwAI0vOZ0O4G53d4uIiIiIiIJ24LGug9GqVIzl8hg3R5KmN3CZmirA4/wCX3n7/xyHoqmvNkOltHfcNu0EHdItF7f12qeZHFD2J24ueNq2jDw1Edh7DFT3fpBVCyFPXxf0MP2kdYH6Yg2U4TCJKYzUw59Cju+mXS+bVkEB6K+5iLzSiMP66O7oVb3Ov/LqRUAzBaNVVgu+mCeYu973XdjSLOtySab91eYy5Wlg6Rzrdd9+ALWTg9Fk6T+Q9x4FZk53XXfv8v8cl001t6f1/PElUuKGAbtbjAUGCreWw/dRUkNJsdbBaGVGgGC0EJv8q/MvRg2H1/r37Wi9LawvAMqrBPExzhr63zz7sR1b8o1l4GDDQhdB3fIi1E5MsUmIVejeDthQ4L9uRUxfjMO3DZblejTJci6N7BmSZvwMSld4+CSFO6ZaPz8zFgEb8gXd04J7zLVBRPVfU3mZQGkRuiQnO2ozXAFh4dA1VeGeY32P3Z3jBMc9mIN1Xt9rIsW7FR9sPn9HuEn7mnxtO/klge93brFg2gJf+NgRAxX27x34OdtWIbjgbfehaADQz+rTchv3f2X9YvhiHvBFo/nhpV8Fw7sDFx8YIYlVtINp+gLsvOILwPKKL5y1wb8Ay0zXdcS/rss2TAHmrrd+DUbA7ikAQCZd7iwUDYB67EtH74Xtk4CMHP/l+Z40xEmFq/EVlPqeC0+AHQjdu71SQKL1ITNKK3liF7ngJLh702qg957hH8tO4nRXeFA6EGXANjh5WRaQkSPo26n533N14V9JsUCJZZiZfq7Q7XMO6OwLaLayIgco1kyFbYPI1eviYFf2/2YI9ttdBQyEZGAkERERERERERERURgEDBvgd1ZEtCvgXEdERNSy8L2bqEWw/cyB23HEYjAltVIMRmv9DAD9tv8L5CcAF4jIJqeNi8ivSqmTALyNuvAzBWDE9n9WPgJwqYg4SEggIiIiIqJQUCdcCnnnEVd1tMFoHheNmAECYQDfRcCxzq7QlM2rgfcmOSqrbnuVoWgtgEpOg/QaBKxZ0mB5kujDr+7eJxN3vHM0olETsH35fgpwwZ2QC0c2eaz1qXNuiohQNABQqR2BH4sgh2muWhbfdtjXJvAlI6aPdTDaxpXAvkc0fZABlFQIjnnOxMxVgcvuURWgUK7NxxprFrsbWIjJ5y9Cnr0h6A+bB1Q5Dx5L9W7d8XeKt1BbbmtuEayC0XRBH+VGAgSAVcyALP7LcnmwJnxg4pXfQh+M1q+z9XIRYPUWYM+uztqZNl8/NgXBxIIXbOurx/4Htf/RzjoLs/6dNcFoSUN8P6NQT56n6e+taYlAj7QmN6N129EG/ljpxTeaTf692YI7xwUZjKbZtTEah+AV5qFrqrNgtA5tghrKTjewC7Bg3b74FXuhSsXiiJIfkChlO9a381q8qLbLt8+4xMocweFPmztel/d/JXj8FIUbj7B/7/38P1+QWrjlFIvrgI9L3xWcMlyQnODutScilsFbTQnU8ltnWUfsw78c9ms3Tv+xCAKO1cGyBvUClG+NPBGQvydL/gZ+/sxRWfX2v1BRzr6uTEu0Xp7vSWuw7+OEKUBhGZCWFLicFUMBibHW66wCkIi0agIf12LTqhYfjGZ3COR02kpJUBg/XOGTufbHCNPmC24+svknQ937Ssc21vNCrkUQdS3d3NMlGWgTB2yzCECbt0G0Y2gTp+9Lp6vD8N63Z5koDTDvMRiNiIiIiIiIiIh2eS3tosSWNl4iItqF8T0r4nG/gohoF8S5n4iIiEKHwWitz7MANgM4AEAPB+VLAXwPYLKI/BRMhyLytVJqTwD3AzgdQKqm6GwAT4jI58H0Q0REREREwVMdukLGXQjMeMtxnSoVbbk8xs2RpDhIG6gOfHWk5GVC3psEfPGyo27VRfcAR5/rqCxFgP2P9gtG61u5EsneQhR5Gl6J2yYOuHlAhqNQNADAgpnAt++FaqQ++x0FnHhFaNtsIhUbB+neF9iQ4b/S68slT4pT6JIMZBX5F9kc7Z8EJQBeW9gO3+T46l9zqIGxA6wvLp+9RvDEdyZKq4Cj9lSYcLBCTJSv7O8Zgld/FyzOFIgAfToCVx1i4JD+dW29N1schaIBQP8qi/tYX16mfl2aJhErxMTrBb59H/LoZXULUzsCW3Ob1G7fypWOyyZ7657oFNPiSd+uoAyWSQS6oA8AqFSxiBOLK99nfwcp2waV0PSUpylz3IWiAYDTrMJe7QGPYR1csCLbWTBaRo5gaZZ+/bu9p2HoskXWKzt0hbr9VaiRhzkbcDPo21nh+6X+j3fGkDOAbXc0eO1uiWp6MNoh/QClwhtWcdMRBr5ZbL0f8tUCwZ3jnLdVXSN45y/Bp3MF2cXWZYzG+zxF+eiS3NtR+7qgn0glG1dCJk0AFvyBRADj8K1luRhUo423GNs8bf3W5ZXY9/F/X4tfWN9tXwguGCVIS9K/dqbMCf5kiqJy52VnLAyun9TrTPRq7y74SxeMQqSzs7N7JXMN5IqDHJVVd70F5SLsybf9+28U+Z52iLHaNwkgryRwMJru/FylgCTN/lKggCCiBhx8JoItm8M/jjAL1bnur5yjUF4lmLFI/x556+eCm48MTX9u6MbTrR2wJs9/+cocfVu6x8tQQL9OwNz1/uvm22SE6+YrOyN6Ws+5jX3+X+C2GIxGREREREREREREREREYcHQrVaMzy0RUevE+Z2oRbDbz+Y+OBE1MwajtTIiMhXAVABQSqUAGASgG4BOABIAGAAKAWwFsAzAQhHxhqDfXAATlFLXoi6UrTN8wWubAcwTkbVN7YeIiIiIiIKnbp4MWbMIWDbXUfnqUASjOUlyqLG/OlKK8iGXjwZyba7wrEd9tgqqUzdHZSkyqF57+n29EYNqXLb1dTze/qYGyyeMUUisKnT+dci6ZZDvPwrFMH32PxrGY/8LXXuh1K2PdTCaWXfY3zVFE4wWlQ4vDJSreCRJKQDgxo6T8Fz2aUDBxMzBAAAgAElEQVS2r8yXC0y8eYHCWfsoVFT7QuqUUpixUHDcC3WBQN8tEfy3HnjnIoUflgqOfd5Edb1PHhZtBqbONzH9agNHD/aF20x3GDDTriYf7b35jspaSukQfF0X5NW7gQ+fbLiwiaFoAJAkpegWX4qN5YFTlFLNwh1/1w9Ja6xAklwHo5WreOtgNAByzeFQb8wOOD47BaWCs153/2WJoclKEhEopSA11VBR0YiOUugVX4SVpcl+ZVfkCGofkNp6VqbN149vwyQD6e/+ab2y1yCot/8NeyiYW/01mYHLcw2oj5dDjmgHADChkO9Jsyz7UO49uLfjvfDCY9uXUsDtx4Q/tWdMP/26OeuA7CJB52Rnz8ONnwle+Nn+NWmgcTBaHrp1Dhwm4TGA5HhHw4gIkrUOcpaLECNvgWUwWn5J3bZm5d2//B83rwn8b77g4gOt65VXCX4NkJ1px00w2pcLgv9C1yoYhSiU4nbiN3+yrRBy+gBHZdXEJ6COPMtV+7oQs3xPO20Q7D49ffO+Zb3SwH3ahRPp9pdKGIxGbtRUBywieZk275otg907p5td4+QEhWlXe1BYJnj0W8Fj31q3/PzPJq45tHmTIq2ClwGgfxeF3zIsQh1LgbxtgvZt/B8A3cdpSgH9OivMXe9fYFmm/lGOs/6Iz9a+u7uvo1NWZX98RURERERERERE1DrwolCKNHxNEtGugHMdERFRxGFoElHL10zBaJwtiMiJnfy78RROIlIoIn+KyBQReVZEHhGR/xORySLyoYjMC0UoWqM+q0TkFxF5W0QeFZHnReQLhqIREREREe18yuOBmvQ/4MTLgF57AnsdBPX0N8AR1hejV6kYy+Ux9nknDTn5sKvaPhgN37zrLBTtgHFQ7y9gKFpL1L2v5eKHt9yDR5M+wl7dgJE9gcdOUXjkJAWU6EOe/BgGsOAP5+WHjwGGjvZf3qMfcPZNUA9Ocd5Wc1Oaj3mk7ursrinWRR7ocBdiB5Qgpf8W9NhjJd5NPhuvpF7qV+6itwVxV5pIudaE53ITxmXeBqFotd6bLfh3veDJ7xuGou0YkgB3/q+uXkaO/V2rNbxinrOCOuUO0i+aSHI2+oeiORUdAySn1f2LiWuwWt37Lvr1DByKBgCp3q07/o6CF0nebZblSg3rhJEE67cAAEC5YZPilDEP4jDIUmffhzWJAgF46m0CkrMR5t1nwhwdCzkozvf/IUkwR8fCfPUe9M22Di7LWF2IH5YKjMu8O17jxmVe/Ly84fuZLhht392B3VJt5qk9hkZkGEC/TtZj2rINyKtJAA4YBwDY6kmFV1kn7hxW+jO+M6/Dof2BwV19y7ql1gVdGAo4tD8w61YDw7qH/zFQSuHfu/QffzsNZFyeJZj8S+CyfsFohfnYuweQZBMyCABpiYChS/WLQPLafa7Kp3kLLJfbhRGZNsG6Py7V1/txGVBV43Rk/pwGo1XXCH6wGQfRznbAHuGfU2ThnzAvHw1zbDLMs/aEzP0JsjUXckwnR/XVba8Ap1ztut/2umC0qPYoVQmW6/p3UYjXBALlWe8eNaA7pFVKP8eXMhiN3PAGDkZDXlb4xxFmdh8PBbN7nJKgcN5++oq6wLRw0gWjDeyir7M823q5bvSGAnpY5xRj9RZ9P8GEZiqlcMGo0LyniACVTdhPIyIiIiIiIiIiIiIrvHy4deLzSuQOtxkiIqIWhaFpROQQp4tg8EGj1mkn/m48ERERERERNTeV2gHqxucbLtz7EEh1JfDL5w0WV2uC0aJdBaM5CLepsb8IWOYHDrVSr/8F1W+401FRpNEEoykAN215Arc8dU6D5VLqIhitwGHiVlQ01IwsqIQ2ztuONB7NxumtSyZLT1UI9EHn5uiuuCj9tSYP555pJr63CY6ZvxFYs0WwWyqwLt9Zm8eUfNu0QZUUNq2+E39MC6qauukFqBP8w+ga659n4sdlgT+sTvU2vK8pZhFKPM5f34kx+tdKhQqQ9PTHl8DJVzruq77fVojtBf12arOlxDQh958HLJplXfC9Sejb8WHMwDF+q76dV4F3F/m/dx32lIml9xvo30Uhp1jw1xrrpk/Ya/sgdMFoScmB7sZO0b+zft2l75qYOvp4yJ8zkOfRpDAA6FCzBSNWvYNDXpscMeFvw7or9O9sHTgxfaHgEosczMbe+UscfalmNN5eivIQE6Uw6WSFqz7UN6AL+YlEUlUJ/PCRqzrtvNYTvF0wWqFNQFmcJtwIAKbO0z/OHgOYfo2BIwcpfLdEcPSz/tt5cQUgIgFfv5sKgXIHGTZEO8Mh/YBxg8PbhxTkQK46tG7BxpWQ6/3fU3XUlKVQXXsH1XeaJh8239MOZYZ1MFpCDJCWBGza6r8ur0TgO+rQswsnStQEyZYwGI3cCBQWDwBbNod/HGFmtzsV7J7jgC5A93bABosc1s2FQGGZICWh+fZLddmu6ckKbeMExRX+69YXCA60eAR0IWtK6QPPc23CHu32oez0szlOcGvyL4Ibj4iM4wQiIiIiIiIiIqLmx4sSiVonbttEOx3TEloAPkdERLsezv1ELZ/Ndsx9cCJqZgxGIyIiIiIi2sUppYD73oc0CkargvVVkzFujiTNpgejYUOG/frhYxiK1sKphDb6j0zXLYOUbWsQWCb5DsPO3BgzvmWHogGAMqyX1wso1F1AHQ7fLA5c5quFgqMGKe1F3/XFm2U4ddsXTRuULqwqRKSiDPLsje4qjRwLdc4tUMPHOCrer5OzZlMaBaMle4uwKXo3x8NKsMk+K1fxtnVl0V9QQQajPfadgxeDRlltpsTcn/ShaNv1q1ppuTw3Sv8AT/5V8PyZCj8t0wdlnRgoGK1NM26ELqSnAEmx1kEuXy4Aas4+AZ6kW7HF217bRgdvHiA1wO/TgINPDONo3TluqMLybP8n7IelQHmVID7GPpzhk7nOvrgzGoXBSmEeFIAJYwz8tdrE+39bt5PWkoLR3nzAdZ32mmC0vLWZAKznpGVZ+vZiNaEemYWCt2fpn6u5dxoY2s33XCdrpjCv6dsG2sTp+weAvBL79US1PMb2f6re39v/GUq/zm6ZoVmXGKtwUF/g7H1VwHmtqeSE7sFVHDMe6vpnoNo53JmxkJZkHdya50lDqWGdmpYY6wuhtA5GC9yn3SFtYqz1eEoZjEZuBPpMBAA2r3EU3hnJ7M6FCvZuKaVw3FCFyb9YN/7TMuDkvYNrOxi641qPAXRrByzJ9F+32WJusm9LoWtK4MDzxoINRksPYa7zy78JbjwidO0RERERERERERFFnl3lotBd5X4S7Swt9/sgop2D70utF59bIqLWifM7ERERucNgNCIiIiIiIoIyDMihpwI/f7pjWZWKsSwb43HRsDgIuKmu0q6SbYXARuvwmlrqrBtcDIgilXrgQ8g9Z1muk6evh7rz9boFc74Pbee9BkFd8X+hbXNnMDQbp+nd8WdzBqM5cf3Hgh4TAp/MFWNW4oXs69ClJrtpHZYWQUwTytCEyDWB5G6CnLWn8wqGAXXVJKjTJrrqp39nZxfBp5oNr7Bv5y1w1U+iXTCaYR+MhvLgUoO2VQh+Wh5UVQDA6rVFMF96HPjwyYBl+2iC0ezMXOl73K0CDQCgT0egf5faYLRCyzIqKYTJAiGklMKQ3YBZq63X/5mTgoNveQl5T39uuT7BLEWClAMA5K7TgV/LoDxudhjC57ghCo9/57/NlFcD3y8FTtgrNP2oxttl5todfz56stIGo/Xu0DJOaJWyEuCDJ1zXS9PMPfnz5kNK2lhuE1d9qN9/jNeEepw4WV/n8wl1oWiALyBJZ10eMDhAhmTeNvv1LYlSgYO5/IK4XAR5GZbrVMOgLxfhX4GWNain9H1ajjOIkDK7x8cwWsa27ZbM/Tmoeur/PoE66IQm96/bfsuMROR72lmuS4jR18svDdynbq/LMHyholbKqwGvKfC00tcBhZiTYLScDcC6ZcDuA8M/np2gKVvKpPH6YLRTXzFhvtp8+6SmZsLwGL5jcavjiExNnrJdyNpuqe7HFmwwWtdU9yFsOqu3hKQZIiIiIiIiIiIiItohwOe3dr9aQiHC7wOJdjon56kTERFRM7M7FuFxClGLYPeZAj9viGB8bqh1YjAaERERERER+TQKMKlW1ldNxrg5knTyYdd/vwJ9/VNJpCgfcmy6fd1+w4ERh7kYEEWs/Y/Wr/vvlx1/SmkxsGZJ0/tL6QB1wR3Abr2BvQ6Cig0Q9NQS6MK+zLoTP9KTI+9DzvEv6U9MeTr7RqSYRRhdNhM9qzc0vTPT9AVWtbUOzgiWLP0HcuM4oLLcvuBJl0N17wvEtwEG7+/726X+nZ2VS/E2vMI+vSbLVT8J1tmYAIByFWdfOT+4ALvvlwBVNUFVBQB0/uoxIP8pR2X7VboPRluwCRARrMi23o5G9Kx3smOJJuEgKcLSCes5a1+FWaut79u0+YIxp4/HlrKDgWn+6zvU5DW4LQ9fAnX3W+EYpmv79wbSEq3Db0560UTVSwaiPPoTVQschOYAgEKjuWzDih1/pqconDZC4ZO5/o/vmfu0kJNkf7d44h3QhTLme9oBv00Fxl3QYLlpChZu0rdn9QqtqBYs0NSJiwaOaJQh06MdEO0Bqr3+5ZdnOwhGK3H3XnriXr75ISUhUPCXchTKpQ//ch9SplQLef1RRJDKCsj1NvvsOiMODUkoGuCbz3U2RVtvvAnzf0D7LofDagbJc5Dlqgs6UrAPki2rAtoE2GUiAuAsGA0A5v/eooPRwnUuVEKswp7pwGJNePHLv5m44uDQB2NbsQszS0+xDhjL3Gr9wGjbUkBXl8FoSvn2fYKRHpm5zkRERERERERERBR2kXd+ERERkTW+Z0U+PkdEREREREQUPAajERERERERkY/R8CrJKmWditM4GE1EgFkzIF+9CcQmQI09te7CdzPwL3HJ5FuhzrjO9/ef0yHfvA+UbQP++dG+4oCRUHe9AeUJ8upOiigqLgESEwdUVfivzN0EqaqEiokFtuaGpr/zboU6+cqQtBUxDM22UG877NrWC6BlbDOHl/yAa7a+FPqG5/wAHHZ6k5sRrxf4fDLkr2+AuT8HLK/u/wDq0FOa3G96CpAUC5RU2pdL9RY2uN3FZTBabJTvAn6rC/LLjQBBghsyICKuA3e+Whj4BJhuqcDGrdbrjiz5wXFfnbw56FG1HutjejiuAwC524Blmty3fttD60QE2KYZZGLkJgtccZDC1R9aPwdfLRA8fTqQh1RYnajUwdswGA3ffwg59GSoA44Nw0itSV4m5PmbgZ8/8y047HSoiU/Ck9oB44YovPuX9X2LmWBi3GDgiEEKbeOAqfMEuduAvXso3HaUQlGAvMNaRuNfH920CuL17thPeeFMhZIKwdeLfavbxgGPjFc4fGBkB1PJtq2Qtx4CPn0hqPq6YLQiTzJk5nSoRsFoVgF29ZVazH0rc6xDzgBg7+5AYmzDxzg6SqF3B18IWmMrcgSBftE50Bjr++AShTP3aZ4wFqKwm/pyUNXUPe+GbAjtk/TrsqOs02MT5n6NdsfsDcA/SSjfQdChLsxJKd8+mU5pJYPRyBnJXu+s3MaVAd6hIpvd1tbUnM59eykszrTu4coPBBcdIIiJCv+jpwtSNJTvOM5KpiZPWTf3eAygQxKQHA/H+6lxUcGHoboNYSMiIiIiIiIiIiIdBoIQUT3h+kUZol0St6dWi3MlEVHLZTeHc34nahlst1Vux0TUvHhFDhEREREREfmohoeIVSrasliMp9HFlP97FXLbycCfM4CfP4XceRrk0+d960xNSkUjsjUX8vW7vnZ+mxo4FG3gPlCv/AHVvZ+j9qmFOG2ift0XvoAsef7m0PR1xFmhaSeSGJqPeeoHoyXVNNNgmq5v1aqwtCv3nwfZsrnp7fzfRb7Xo5NQtKsfC0koGuC7oL2/de5HAylmw2CurjWZ7voRQbz12wAqVIBgtPISIN9dEBsAzFpt/QXJJaMVKl80sO4RA+seNfDFBP/X+qiyWRhcudhxXwrAlVvdB7x8+Ldgmeau7Xhelv4DlBZbF2qjSUSIAIah8NYF1oEJa/KAvG2CLSXWddO8+X7L5LaTIfN+C+UQLUl1FSR7PeSk3etC0QDgx48hZ+0JKS7AcUPsgyBmLAKunSK48G3BlwuA2WuAyb8Idr89cMBrLQONylZXAdnrdtxs30Zh+kQPtjxlYPF9BvKfMTBhTGR/PC9lJZAL93EfipbcHmjjS9FI8VqnfRR6UnzbSiObCy0K11NW5b9sRY6+/OOnWj/Gunl0zRb7/gEgT7MdNNYjDThpWEuOsCFqSL5+x12FpGSoH4ugUjuEbAztEt3XSTRLkZa90HKdk+3ZLugo0SYYLVCILRHg+ywE015zVnjjyvAOJszszpNqajDaVYfYN/BbRtPad8oqVBrwhZnpgtGyNcFourYMw7fffuQg5w9anOa4zok2caHdlxGe3EpERERERERERK0ZP/+iiMPXZOTic0MUMnz/JSIiIiIiImrVIvvKKyIiIiIiImo+Hk+Dm1UqxrJYdL1iUloMeflOvzLywZOQmhpAHAaKFOZD3pvkeKhq/ASopl45SxFHXXiXdp1MvhVSVgLM+rrp/dz0AlRyWpPbiTiGx3p5vYDCtjE1SPJuC1mXyfHA4K7AY6co/O/K0H7MtFfFgpC218C3HwRdVTasgHlsV+CHKY7rqNOvDbo/K8O6B57/2tc0DKpKr3EXVKY+egLxNdavlXIjLnADa5e66m9bhWBVrvW6IwcqREcpdE9TUErhxGEKU680MLoP0Ks9MKHDP/hy48kw3Jw0eOipuFE+Qop3a+Cy9dz4qb6PvbsriAjkitHWBZQCeu/pqr/mdvhA/Wur440m3pxpff871FinScnEIyCrrMNomkrWLYN59VjI4amQU/taFyopBKa9jiMGBddHjfNcNP9gNABYv8JvUVqSwsB0BY/RAvZjvnkXyNngupo6eQLUCz8BBx6H5GTr/ckioy1QkA0paZgGkhkgGK200v81uDxbv13u18v6cU5PsV5eUBp4HrELUtq9PdA1BThzH4VZtxqIi24BzzNRALJxJcwzBrh7b+81COq9+VCxDvYZXIjyKKQkuKuTYJah/YY5luucBKPpzqFWCki0nuIAAKUMRiMnvv/IedkNzZTuFSa2wWhNbHuvbgrjBuvXn/Gqi506B2T6WzBP7Qvz6E4wbxgH2b6/5LUJUmynmbuKyq2X69rybD/sHuPidwKaEowWatXOfj+BiIiIiIiIiIiIiJxgGFDLxeeOKIS4PREREUUeu/dnvncTtQh2x60hPKZtpm52HXzQqJWK2tkDICIiIiIioghhNAw10gWjxdQ/kvx9GlBmEZyTnwVsWun8A5WiPGDTKmdlew8GDjvdWVlqUVRMLKRbH2DjSsv1csYA+wZOuhyY+op9mTHjoU64NMgRRjilCSYz610E7q1Bj+pNWOJxlxJ0UeHbeDXrSqjLHgQ6dAW69gL6DIWKa3h19083GBj7VNMvOldi4piSb5vcjo68ejfQayDQZXeg5wAoQx/qJjXVwIp5QOEWoDAP8uhlzjtKSoF6+bcQjLih44YqvPaH/fya5i1ocDu9OtNVH0ZFKeIrtgLRbfzWlav4gPXl7++hRh7muL9Fm/XrhnX3X3Z8/3IcH7UQ2JoLueNUx/3AEwV173tQh4yHiGDRoT3Ru/cyVBmxztuwMKAL0LujgnzwhL7QyMOgUjs2qZ9w65IMtI0Diius15doQl7ae/O0bcqFI4Gvc6DapLgej1SWA0v/AXI2ArHxQEzd8yS3jXfWxnfvo825t2DCGIWXfg3fFz2GVRjshgxg1DFh67MppLoK2LTaF2K7+0C/wFmprIB88pz7hrv2Ao67GKp9F6hHPkO7lQI87v/YlBsJqFQx8K5ehQWJw9G3E9ChjcLmQvvnyOo1mJFtXfaEofp20pKslxeU2nYPAMgvsR7jJaMVXj2Xv0VDrYfU1AAr/tMHfup07Ab19r9hC7Lu2AYoLHNePkHKkJazGOjqvy7fQTCaqTmmNRSQZJP7VlrlcIC0S5OPn3VeOHMtpLQYKrFt+AYUBmWVgn/WAX+u1r/Hh2K6+OhSA20nWh+Lbi0D7p5m4pYjFdrENa0zmfU1ZNIVdQv++RFyzeGQD5dqPwLzGEByvILViZ3FFYCI+M2ZXs1hdW0w2m6p1u1ZaWow2n69gNlrmtZGrYrqRp8rEhERERERERER7Sp4USIRNcA5gShk+B4b+fgcERERERERURPwtFMiIiIiIiLyMTwNblYr6ysnY+oVkz+n69vLywRKix11LbO/c1QOANRrs6A8nsAFqWXa/2htMBq25tpWVQceB7EJRlM3vwiMu6AJg4twHl0wmrfub28NjiuZgSVx1sFovdoDx1b8gLVZvuSZZG8RDiv9GWcXfwRge6BYfU9/DTVi7I6bo/sAvTsAq7f4tz2gC/DBJQaGPxg4OO3oku/QyWv/fDeV3Hay7489hgCPfgHVqZt/maX/QG4/BSjQpO7YSU6Dev0vqM49mjhSf2P7A4mxQKkmpAoA0rz5DW6n12S56sOAiXiz3HJdhbJJAak15wdX/S3aZH3yS5s4oGdaw2Xy+zTIQxcC5Q4SjGodfBLQcTeoQ0+B2nM/AIBSCl1OGI9LZr6FF9tdEaABe8cP9QUZyDfvasu0hFBGpRT6dwbmrHNXr4NNMBoAYPqbwJk3uGpTfp8GufM0dwOxsn4FzKcm4vmJT+OlX5venI4B/7lNNqxAeGKBmkbWLoXcdy6wZrFvwdDRwP3vQ6V19q3PmA+5eF9Hbak3/gaWzIYs+xeqRz/gqHN2tAMAyTY5iq+mXIzbXhqMyu0BnhPHKqQEyF20mveWZ1vPH/266B/9donWy/MdBaNZL2+vCVsjaokka51vDl65wH3lo88JWygaAIzsqZCR4/yk2USzFFFSY7muqNw6kKg+3fm5CkBslC8gzbQos2aLYFTvSHwXoIiyxSYd2MrKBcBeLsMKd6JP5po4/01BpfUmuEMo5oykOIWXzlaY8IH1Rvt/MwTP/SR483wDJ+8dfH/y2r3+C7PWwZz1NQDrQFxDAW01+zjVXqCyxj+8zGs1sQDwbB96VxeZw/FNDEY7Zz+F2WtCc7FCRbX+sSAiIiIiIiIiIqIWguEmRPUEuz3Y1eM2RuQOt5nWi88tEVHLZTOH85iSqIXgdkxEkUNzxSwRERERERHtcuqFjXlhwKuss7Rjti+W6ipg7s/a5uSb9533/cHjjoqpz1ZCRcc4b5daHHX+7cFXHjEWGG8RbhSfCPXIZ1DHX9y6Q/WU5mMeqRfWU1ONG/OfwQFlf/oV2yO1Ct9dZ+Dpu4dj6qbTMHXTaXg761KcU/yRNthHrj8G5kt3QPJ9wWFRHoXXDl+P1KiKBuXOjv4NC9ftg6FzX8G/561ClxhNqsx2T+XcbLte3TwZxh+VwJ7725ZzZNVCyONX+i2WmhrIXacHF4oGQP1vQ1hC0QAgPkbhKOtsOwBA2zgg+uizGixLP/JIV30YMBEvFZbryg0HwWhZ6yAuvvDYUGC9fM90wDDqXoGydQvkvnPchaINHgXjoSkwJj6xIxStljrnFjyaeyf2Lft7x7IoqcYFhfqAMyvHb5sOydkIrF9hXSAqGhg1zlWbO8vg3dwHRXQYfZDtennxdojXa1umQfn87NCEotWa+gpw1gD8esKi0LXZiFUwGjZkhK2/YEhlBeTb9yHnDasLRQOABX9ATuwBc/JtkA+ecByKBqWAHv2hTroCxh2vQZ19U4NQNAC2QWfXd34SlWbd+/JzPwkemG4/bzQORhMRrMixLtuvk76dNF0wmv3bEwAgj8FotAuQJ64OLhRtyAFQLoMw3Tp2iLvyCWY5ks0iy3U1JlBeZV9fNysZhi/MKTHWev15b/LEDwqDjHk7ewSOrc8XnPla4FC0UDp9pEKUzdkP2yqAU18xMWdtcNunuXktfs1MxsNpt+CTNiejTNXt6HiX658bj+E7RtMpssij9mryxGvz0NNdBKM1Dl1z68JRoQt5rKgOWVNEREREREREREQRiN8NUHML9JrjazJi8SJyohDi9kREREREFHJ2x608piWiZmZ9lTsRERERERHteoy6YIpqpb9qsjYYDWsWA6XF+va+/zBEA/NRn62C6tQtpG1S5FFt2wE3PAt56lr3dQ0DuO4Z4NiLgGX/QLI3QPXfGxgwAqpD1zCMNsLoQt/qhxF5a5BqFuKH9cfgr4R9MT92KExloG/VShx8+zNo23F3AB0h594KvDfJWb8fPgn58Elg8i9A5loc9OhlWIJU/Jw4BvmeNAyv+A/7lc+BAiBPXYuhABYaKTi221T8neAfvpOV0R0dvHn6/mLjgUNOBgCos26A3HGqs3HamfMDpDAPKqV93bIFfwBbNgfVnHrjb6io8H7sdvxQhc//s/5CobgCMO54DXLiZUDmWmC33kjsvzdSr/Nia5mz9hUEcabFFfoAyusFACAmFqiq9C9UUQaUbQMS2zrqL8s6rwS7pTa6CP+3qUB1gASTRtQ5+qA91b4LEq+8D39MPhQ/JR6CfE8ahlXMR7fqTXgn+RyILnCwns412Rj5+mmQ122+4Dn+krC/JkLlglEKb8x092VVx7FHArHXAh8/qy0jlx0AvDLT0eMgJ4YhVDBrPQ58dF+cNWoWPty6V8ibV1Yn2UVQMJrkZUJuPBZYs0RfaMrT7k4V7NwDKtY+KDElwU2DgW1rNN3kFPtCTqz076wP8UhLVLA6MbKg1Be2ppS+ri4YTRe2RtTSSOYaYM4Pjsqqe98D4hN8+xs9BwDDxoT9/W54d+vtVydRSuEx9eGcheVAgibcDABMTThR7Syhm4MAoKxSkBAbukAhal1E9+Kyq7Ninja0OtJMmy/Nfv5TSoLCqN7A7yvtyze4V0AAACAASURBVO33iImZtxoY1dvdo3n9m4V4vsd3O27vXf4fvt54PNK8BfD++xuAOy3rGQpItgmLLS4HOjU6bAoUjNYhCYj2ANUOsoebGowWH6Pw6eUGTn3F/Wu2sYpmDMojIiIiIiIiIiKipuAFrkThZfeZe0v5NogoQjCUgYiIKPLYvj/zvZuIKHw4x1Lr1DKuxiMiIiIiIqLwqxf+UqVitMWifv0U5kvvA7O/05YJuWEHMxRtV3Li5UAQwWgAfEEmfYYCfYbueqcI6QKcpN6JVF7fVcgxqMbBZTNxcNnMuuoJdcFq6rDTIU6D0Wq7ueqQHX93xBacUfyptmyqWYhf1x+Omzs9ipdSL4NXRWFoxUK8knWlfSgaAPXEV1BtUn03DjzO1Ri1RIB5v8FcMBPI2QD0HAisW+a+nYQ2UNc9DdU39KFLjY0bEjgURA0cCQwcueN21xQ4DkZL8xYgQawLlxr10n867gZsWm3dSF6mi2A06/vSJaXubykrgTx5jaP26lOjjrEvcNpEGJNvxeGlPzdY3KdqFTJi+wZs/9htX8MI9Fxc/VjAdiLFAXsovHquwsQpgopqZ3U6tAHUhEcgG1cCs762LpQxD/jmXcioYyCTbwN++Mi3/NiLoK54CCo5DQAgs78Nwb3Qe2H2kagatxSfrUoLabsmLObgrbkw7zkL6txbofoMDWl/bsknz9uHogVj4D4BiyTF+sJAzBB9x5Zb3DC4bHOhvmzvDvp1aUnWy2tMX8hRW014iYhog9HaJ+1yex7UCokI5K4znFfouxdU98DvlaHUM80XDKQLDWoswSxDvOjTy7KKgE/mmvh5uaBTW4U7jlHYvX3d9qybvgwHm3xeCdDdJnSNdnFbc93XyZgX+nGEyfqCndPv1CsNpF0feII4cJKvzJi+wItnG+jfxX6jnrdB8PzGIQ2W/Rs/HC+mXo678x6BWVEOaLZ3j6HftwCAIos86kDBaIah0C0VWGN/+Ayg6cFoAJCg/5jQFafHF0RERERERERERK0PL0okap2CPE+AQU5EIdT0H/ehcOOcR0RE9fF9gahFYMAhEUUQzRWzREREREREtMvx1IUiVSv9VZPRHz7avKFoANRlDzRrf7RzKaWAkYe5q7TnfuEZTEtieKyXm966v7cHo1ny1OXnq16DgINPDNHArEWjBs/k3IScjG7YsLI35qwdhREV/+krdO4B9Vs51F6j68apFNSHi0MyHrnnLODzF4GZ04H3HwNmfuW4rvo0A+qd/6BmZEEdfW5IxhNIu0SFTprMsXGDrZenp1gvt9KvcgWSzFLLdWVGQt2NjjahlfnZjvvL1IQbpSf7/pfqKshloxy3V0u9NTdwGcOAuukFv+VXbX3ZUR/HlUy3L9C9L1R0iJIEmsklow0UP2dgL4eZpO2TAOXxQD36BdCuk7acfPQU5ORedaFoADD9TcjZgyEVviA++frd4AbdrhNw8EkBi7U1t2HKV92w5Qlgzm2CubdUY0jX4LqsL8G0SLQAgF8+h1x1KGRZ4NdiOEh1FaS6Cvjpk9A27ImCOvnKgMUMQyHZJgjErfJqoLjeQ62bO6I9vtelTrtE/bqsIv26bRW+8DQrdv0RtRTy+n3AygXOK6TvHrax6ERHKeze3nn5RLMMKV59iuLYJ7244RPB9IXAGzMFQ+83sTSz7qQNXbCjcnCNQ4XNrjcRlvztvs6GFZCqytCPJQzyNUGijcWG+GfcUhMV3jjf+UVIv2YAA+81MXedoLyq4T9vvQng03+tJ4Mv2/jCur2b12v78BhAmzj9GIotshu9mrnHU+/sjgFd9G3WFxeCxzgmRM8Tg9GIiIiIiIiIiKh140WhFGEYvhXB+NwQhQznulaMzy0RUcvFOZyIiIhCh8FoRERERERE5FMvVKlK6QNcYqSqOUazg3riKyiGXu16+g5zVVwdd3GYBtKCGJqPecx6CS5er3UZoEEwGgCou94CTrkqBAOzl2IWIb0mCx67X+476lyoV2dCWdxH1a0P1Kt/hnGEAZx6DVTnHlC9BkFF6UMlw+GhE60v+D98oPXy9BTnAQH9qlYiUROMVmLUS/+JSwDatrNuJHez4/50QURdtgej4adPgfUrHLcHAOrie6H20KTENXbAsX6LnASjpdXkYWzpL/aFdh/obAwRJsqjcN1hzl4zHdr4/ldKAXbhgBtXWs9DRfmQw1Mhn00Gfvnc/WBPuARqyjKoBz+CuuZxR1VSxyVg+PmJ2OvCZMyamY4b46ahZ2pwCTYxZiWGVC7SFygvgXz6fFBtB0v+/QXmBSMgh7aBHNoGyN0UusaHHQz1xJdQg/d3VFwX4his1OtM3DHVRHmVYHOh9ckTXZJ9oWw6XVP0oUarcvV959mEvDAYjXYWWfgnzKsOhXl0R5gX7wdZ+k9w7VSUAVOecV5hxKHNvu9Ta3h35/s0CVKGOKlAtOY4triiYVsllcAT39fNLbpzqG2mmB3KmvfQmVoY+etb95VME9i8JvSDCYP8EmcnOO7fK/R9XzDKF46WkhC4bK19HjaReHXDf8kTTSRe5UWH67149Bvr+zMvbi8IAG+1PvHLUIDHUEiKtV5fbJGv69UcHnvqzT39OjubC+NCMFVHa3LY3SrnvEhEREREREREREQUOgwDasH43BGFDrcnIiKiFoXHMUQtg922yu04gvG5odaJwWhERERERETkUz8YDfqrJpszGE29MhNq3yOarT+KHOpA/5AiWwefGJ6BtCSG5kpls14Ikdcm9KdRsIWKS4Bx7VNQj0/Th641E3XHa1CpHfXrB4wAzr65GUe0XVoXqAvvbP5+t7tglMIBvRsu698ZOGsfXTCas3bbeovQ3puHRLPMcn2pqpcw4IkC2qdblpMFMx31V1Ih2rCh9BQFqSyHvPuIo7YaON55YKJq3wXqsgf9lv+3Zh+08RZr6z2aexfipNK+7dEnOB5HpBnQJXDYQkwUkBxfd1udeUPQ/cmzLusqBXXnmzBumgwVnwilFNRpE4Fzb3XVTFxFISbNOxOrNgzDk6fYlz1lLy88quEXRvdveQDxUmFfcUHzBTjKmiWQ644CVtuEtQVj0L5Qv5bBeO57qBFjHVdzOve48eg3gnu/FKzZYr2+a4A+42MUuqVYJ45k5Oi/ENxQoG+TwWi0M8iWzZBbTgQW/gmUFAEZ8yCXHwjJDCI4afUioCrAXFYrPhHqwrvc9xEixw5xXjbBLIMCkOItdFzn5+V184CpmRJqwxWPGqRvp6wKyC0WLNokKCjlyQbUyMr52lXq2qf0x2AbM8I0oKarrBbMWSv4PUOwNi9w+bho4J7jQn+sqZTChQcYKHjGg5uOcB6k2FhZFVBeDeRb50XvsDmqK0yb0y4821e1jbdeX1TuPz9og9HqdTOgi/24asVFB/8Y1NpDfzjuSkVwOcRERERERERERERERK0LLyInCiFuT5GPzxER0a6Hcz8ROWM3W3AmIaJaUTt7AERERERERBQhPHWhSnFSiTOKPkaVikFVShdUD9gPVWtWoCpfH5QTcnsMAfrv3Tx9UeQZuI/jouqZb6ES24ZxMC2E7sJ5s94V1XbBaB7rj4nUfkcBb/4DmfoSMO31JgwweEoFvpBbnXMz5IPHm2E0AHoPBkYfD3XaNVBtUpunTwseQ+GHGwy8M0vw91qgVwfg2rEKbeKsH69AQUG1elavhwKQaFqnlZUaifUGEQUMGAGsWexfcO5PjvrLyNGv67X5d8hNZwDFNmlEVoYeCNWuk6sq6txbgH7DfOFcG3yBE0MqF+OftaPwaurFWB7TH7L9tbhb9WacVvwpDin73b7RpBTggHHuxh5B+jl4CAd0briNquQ0YHom5FjrwLwmOf5iqPZdISvnA+06Qo09HWrYQX7F1FHnQD56Cqipdtf+ptW4dt7VuD/uBRRbZAPFmJV4cfpQ3H7olXhjdgxKjUSM3zYVx5R8G7jtgmyIiKP5rClkxTzIJfuFvuHjLoK67hkojyaE00bXFIVwfDX5xPf6Nu3C2EQEePth9Nk4EhuS/APe7ILRlmdbr0tLBJITwvvcElmRD54ASv0DPOX0AcDvFe7mHLtQtN6Doc65BfL390BqB6ijzoHqZZMIFmaj+zibV+LMcnjg2xdO8RZhS5SzZJ8NBUDeNkH7Nkp7TULtIztuiMK3S6wL3fa5ibnrgYpqICEGePYMhYsP5G9W0fb3og0rrFcefibUKVdBPnsB2GwRcrghMoPRZq4UnP6qiayiwGXH9geGdVc4cx+FYd3D+/456WSFJZmCbywOV0JleUxfDK3UB9Ia2+9icjyQaZHRaLXf6SQYrXs7Z3NhQmzAIgGlpyjs0xOYs65p7VS43D0nIiIiIiIiIiJqPXgpJxHVxzmBKGQYNNh68bklImqlOL8TtQh2+2LcTyOiZsZgNCIiIiIiIvIx6oIuOnlz8X7mhb4b7UfDuPZHmM+9Cfz3fLMNR936MpQu6IlaPWUYkPPvAN55OHDh4WPCPp4WwdCE1Zjeur9r3AejAYDqvSfUTZOBmyZDaqohhyQFOcjwUUnJkM49gOz14etjwsNQZ90YtvaDERetcPnBCpcfHLhsusNwoncyLwYAJIp1EGZJo2A0td9RkBlv+xfM2QCpqYaKirbtTxdCFBsl2O2pM4FtLkPR0rpATXzSXZ3t1D6HQ33gCzWQqa9AnpqIParX4LHcO4Nr79aXoZKSg6obCdrGq/9n777Do6jzP4C/P7ObnpCEJAQCoZPQixQFBRQsqKBiwQYKnqJYz3L208N6ep5n1xPFdnbsXRF7+WEFESlKlR4ggZC6u9/fH5u22ZnZmc3uZnfzfj0PD9n5lvkkszM7u5l5Bx0ygO17jfvohVlIZg7UtIuBl+4LaT0ydQ6k9yAEis+QrkXAnNugHrrGPBBSz9vz8d0RuRi4/lrUSqJP05Obz0b7vRvQ/o2rYfs7c9UCZTuBrFy7I02pki3AN+95A432Pzw8oWidukG78uHgh1sMZQylrjkmz5Kv3oaafxN6dbwPevGNWzfuBKAfnrRyq/6UxdmVUC8+DuR0BMYeC0lKtl0zkV1KKeCVh4w7vPs0cPSZ1iesrTFskr89BBkwCnLoNBsVhk9hNpCSAFQGCNhJbRLqne3ZbWsdf3nKgzcudMBjcOpU/1b17IMEFz2v3+nL3xu/rqgBZj+jMLaPQlE+gxTbvB2bgMp9uk1ywhzvF4VFusFoasOqgOdCkVZZo3DqPGuhaM+fIzh5ZOQ+6xERvHmhhiPu8WDRivCsY2VSMQZV/2rYXh9m1s7g9GBPpf8yo2A0rcnGtxp8nR6CYDQAeGSG9+e4o+69QXYq8OGlGoZ0AY570IN3LYTPVdUqIOqewURERERERERERCHSZm4KbSvfZywItC24rcIv2J+x2ThuNyJ7uM8QERFFnTbz/piIiIgigXeYExEREREREQBAxOAtoqq7G3OPzWCalhg4GtJ3eOTWR1FJJs8M3GnkRIjwploAjekMzXma3FFtFhBkEozWlDgTIE98F7jfv96AzH0WyMg27tSxG+Sy+yBzLATgWTFpemjm0XP8eVEXimaXlRvn0zzlDTf1p3n0wxr2NQtGQ2Ef/cmUAnZtC7jO33foL++dvBuOvTsDjm+QlAK5+QXIUz9AioZaH2fk0JOBpJSgh8vtCyAHT215Ha2sQ4Z5+35d9ZfLcbMtH1cs6d4P6DXQcneZdjHk6Z8gVz9qe1W9PrgTu1fm45lNMzF1z+v417arsH51b0zb+4rtuXzsNEjVCpL6+QuomcOh7pwDdc+lUKcOCOn89WR+4GO+GauhHaE0ro/xuYH64i0AQK67RLd95xbj8KTVBkGOxctegnrgSqi5Z0DNGQdVstlGtURB2rbBtFn9czbUXhthYGbBaANGWZ8nAjRNUNwxcL+mIa8FtVtsraM+1MzoGq36o0xSgiAnTb9Pc0oB87/iRV8EYONq47auRb7/+41dFfp6WuitpQqbSq31zU2P/Pt3hyb46FIN/TuFZ/5ViX3gFoOgcjSGmRkFo5XpBaMZHCocTd72Wz3HSgtRMNrQQsHyuRpePlfD8+cIVt2iYXg3gdMheOsiDQsv0/DfGYIlN2goNPgYoCpAoCURERERERERERFFCd7EThRe3MeIQoj7ExERUWzhazdRbDDZVyP4nlbx/bM9/HlRnGIwGhEREREREXk5DG7i9Li9/++0dyN5i6SkRm5dFL06FAbuk5kb/jpihWa0DzcJRjMLxzAar0N6D4Zc+5h+Y+eekMe+gRwwCTLhRMhbm4znOeNqyNRzQxY4JjOuAo46E6gPyzM6rgUz98V3h2yu1lLcsfGmfCNDq5Y0fJ1uNRgtr8B4wh2Bw4F26a8GhVvthTHJvR9ADp4KycyxNc5wvowsyF1vBe449hhg0JjGx0kpkL89BDloSkjqaG256ebt+3XTf1JJYR/IDU8B6ZktL6LnQMgdr9kOwpSuRZCjzwQOP832KpNVNU7d8xJe3nQaLt11Pzq7LAZdmT3/QngupZSCuuhQoMxGeKAJufEZoH2+78L2HSH3L4S0cBt2bR/5AJTD+pk0rvgBAJDrMghGqzD+tYlR6EvPmjWND1YvgVrwYKASiVpu+5+B+yx4yPp8RgG66a2QbmhBcX7gY0uqo/F7KnDZOwbvrgD2VSt4DK4RaHpOlWEQdqRn4XJedEAAdhskA6dnQeqCpcUoGG3Dqqi72Of9Zdb75gQ4twwXEcGXV2mYMjj0c69ILILH5LKL+jCzTIPM5T1V/svcHv9lTecCgHYpQGpi4PrSQxSMBgA56YIThgtOHqkhp0nInYhgQl/BOWM1DOoiSE7QH89gNCIiIiIiIiIiarOi7HNdImptPCYQhQxfY6MftxERURvEYz9RzDM9h+M+TkSR5WztAoiIiIiIiChKGIUiueuC0azceB8qu7ZHbl0UtUTToHoPBn5fatwpRAFI8UBE0/94WXnvqFY11VBXH68/WNMgmr38fDlyBjDhRG/Qz+4dAARolw106e0TXiQOB/DIF1DnjfWdoFtfYNJ0W+sMWFNiEuSaR6Eu+hfw5+9A1yKoYwqB6sqWzfvE997vI8ZlJAsGFAC/GGfVoW/1qoav06wGo2VkA4nJQI3OHf0lgcOkSiv0l2e7TYL8miveD+g/ynp/i2ToWOCBj6EunGjcZ/IsyJijoEq2ALu3A936QhJDmD7QysyC0USAwZ1N2iecCIw7Fli3wn8/dCZAffQ88OK9puuXx/8PUjTURsU6c8y8FurD51o0h6X1/OVG4PQroCZk6HcIwbmUcrsBpaDuuaTFc/k4+Hjv9tqwEti3F0jLALoW235t0FOcH7hPKB07BEhNMglMqjue57r1Q+VKVDsopXSD+IyC0bq4mh1YP3sdOO9WS/USBW3n1oBd1KKXIbOuszZfbY3+8gQLqTutoLhj4D5pXbsCmzKB8jIUWA24bGLVNuPLN5oeIqwEE9X7cYPtMigelemHcyKrSfC3UTDanl3A2uVAzwGhrytISzZav9ApUOhuOGWlCt640IFtexQ2lwJODahoduhzK+CgOwxSyQysSiqC20IwWkaKQO+oskfn7aqVYDQRQecsYHWAj9BCGYxmlWEwmkEGJxERERERERERUXzgTaEUZRhEEwFB/qE4Zfa7iMj/8Tmi2Gbvd3sUS/g6RkQUu0yO4XyfQkQ28JBBRACD0YiIiIiIiKieUfCFxw3lcgGb1xqP7TkAGDQGeGNeaGqp0g/jobZHZl0Pdd004/bMXMO2NscouKs+3PCHRSZjg/uISJJSgIKe3n9m/QaMAu56C+rxm4DSHcCA/SHn3gwJU9CGpGcCfYcDAJROsI1lAw+AzL4J0ntQiCprfYuv1ZBygfHFQMU1Kxu+NgxGk9TGBw4NIgKVVwBsWuPfeYdJClud0gr931ZkucsCjgUATJoOufjfuiFGoSBDDgJueh7qhlP9GzNzgOETvP1yOwG5ncJSQ2tqn64f4AAAHTKA9GTzn7s4EwCjfahoKNBzINTt5+iPvfDOFoeiAYAU9gEe/ATqiilAZXmL5zM0ciIkIRGq3wjgt+/9mtV3CyGTZ9maUlVXQj1zB/DU7S2rrWM3YMRE4O35/m3DxkOcda8D3fu1bD06euZ5QzyMAj5C7eSRAY4FrloAQI5BMNpOLRuendvhyPVNdKuuVSgxePp0qt3iu+DP3w3D1doipZT3fMTT5J/b4Gufx566fzbH1H+tPLbHqIb12lhP0zblMag1wPfhU6vRHDqPA1n3m/UNFWPBaH0tBKPlZTogj34Fdf/fULBmj+11/LpZwWNw7NKa7N5GAUB6RIB91QppZgGOFP/27NJf3jQYrfdg7+c0ek/Cr96JqmC0Uhs51DlpgfuEW347QX474/Ytd2m49PHdWPRLFcq0TABA99r16OTagk/TDvbrvzGhEHscxhPWHy8yU/Tb91T6n2sbBqM1O3T0yA0cjJYWTcFotZGtg4iIiIiIiIiIiCi+8e7g2MVtRxQyTEogIiKKMXztJooJZufZETwH5xHDLv7EKD4xGI2IiIiIiIi8NINQJY8b2La+IUSiOXnie0jvQVAeD9QXbwK7trW4FDnu3BbPQXFi7DHm7TkWEhHaCjEIN1QeKKWgnr3LeGyQwWh2yP6HQ/Y/POzr8Vvv6X+Denyu/XGzb4bMuDIMFbWupATBzDGCJ7/W/8C7uGZVw9dGwWjlWnrjg/rnTq5+MJpatzzg3zEtrdBfnukxDkaTO16DjDkqwMyhI4ccD1z9KNQ/Z/suv/BOSFJyxOpoDbnpxm1ZBuEOVokIcNQZwMiJUGcMA8qbbPMxRwHTLm7ZCpqua/AYyIf+QVie+/8GvHRfaFbSra/3/y69dYPRsGgB1LWP23rOqHk3Ai/eG3xN/UdBHv4MUheA68lsDzR9PUhMhpx5TfDzW5DoFPTKA1a1/BTRkmkjAhx1KrzpZrkGwWgecaD09zXIaRaMtsUkq7Gza7P/wuWLoYqGAauXAOWlOoFfBgFYhoFYjX2VYfhW08dG4V4mywPV4bNeC7XXP6bY4DIIRnPaSP2KoL6djIM76xVkCaSwD+TO19FthQLutpfQ+NFy4zU0zT00Oz40p5R33uOG2SqF4owqLdFvyMxp+FIysqEGHQgs+cJ//KqfAp5jR9LeKmv9UhOBlMRoqtyX2rcH+H0pOtRU4X+vHu3XviahO4p6L9cduzKxyHBeR91b9XYGp4B7dH5+hsFozd7298kXfLjc/FiY3gpBjAxGIyIiIiIiIiIiIiIywSAnohDi/kRERBR1eL5LRBZFSf4aEUU5BqMRERERERGRl8MgGM3tBv783Xhcl14AANE0qCNn+IZtBKsVwpMoOokI8OoaqON76nc44IjIFhTNNINgtI2roU4baL4fG4WqxYMxRwF6wWjHzwFefdh4XP+R4auplZ05Wj8YLUv2YcKsoyFpx0P9czbSlH4wWrWWDBcccMLdGIyWlae/sjceg+pQCMy4yrs/N6O2bUTpir2AVuxfj7tUd0qZvxjSZ4jBdxc+cvSZQGEfqHefAiCQo8+EDBod8ToizTQYLTU065C8zsCzv0C9cA9QWgLpPxKYfJbucybU5MI7oX5fCvz4acsmyu4ASc/0zlnYx/iSu49f8obBWaB2bwcWPNCisuT+hQ2haAAg594C9BkK9c17QLv2kCNOhxSHP52nb8fIBKP9dpMGTQvwvNm2AQCQYxCMBgA71mxEzgG++/cm/UMSAKDAtcVvmTpvnHkdRNGm1iAYLSExsnVY1L9T4D4FWY1fH9jb/jre+UWhr0EOsxZkMBoAvLdM4bhh0RsORRFQZvAalJnr+3joWN1gNHz6KtS2jZD8wtDXFoTyamv9ctLCW0dLqFcegnrgSsM/CgAA3Wo3IMlThWrNP+FseVI/w3H1x4t2BqHCZZX+y9wGJ5PNg9GK8/X7NZXWCofxZIOrUBiMRkREREREREREbRfv5KTWwOdd9OK2IQoZpiXEgGC3EbctEVF84vGdKCZESWIZT/eJCADi+K5XIiIiIiIissUoGEl5gJKt+m05nSDJjakoMv1KoN+IlpVx1g2QHv1bNAfFF8nrDLniAaBZQI5c9C9Ihy6tVFUUMgpG27PLPBQNACrLQ1+PXTOv019+wvktm7fPEGD6lb7LRk70hgMV76c/Jj0LGHJQy9YbxcYXCy6Z6Ls/JTqBh89OR9q02UBiEgCgnXuv4RyljrqkkYZgtBzDvmrejcB3C/2Xr/sN6sTeKHUl6Y7L8vinjMgHO1slFK1h/YPHQLv6v9CufqRNhKIBQF6GcVuogtEAQNrnQzv/dmjXzoMcNxvijMzf9BARyN3vAgdN9m/MyIbcvxAYe0zgiXoPavy6xwDDbuqLNy3Xpl5+wBtQG4yeAyFvbIAk+u5fIgKZeBK06+dDu/iuiISiAUBRfvABQCt/H4Cpe14P2O+2qYLijubrUV++1fB1B9cOw35r1vkff9bs0P/NapqnHO08ewLWR9Ra1MqfoKwcS1wGwWiOhNAWFCKJTsG0Eeb7fF6TcM9Ep+CaI+0di3btA77+Q7+tJdmdv27mlRptXlmJ/vJM33Nq6eYfHlxP/WN6KCsKmsutLIddmQXutia17Fuoey41DUUDAAc86FW7Rrdtk7Oz8bi6t+qZBsFoe6r8l7k95nPV69cp8MEo3T/HLexSDMLYGIxGRERERERERERxrc3cqdlWvs8Y0Gaec/GI244odLg/ERERRR++PhMREVHoRObuMiIiIiIiIop+Dof+co8b2LNTvy0r1+ehpGcCD34CLP4QWLcCyC8E/vwD6vG5usPlqkeAw08Dfv4c2LQGGHwgpNfAlnwXFKfk2HOAYeOBHz/1hvUNGw/p3q+1y4oumsE+HCNk3LFQT93md9GejD+uZfOKQM69GeqQE4BfvwW69AaGHewNXXpwEdShHzoXrAAAIABJREFUWf5jpl0EcUZnCEio/OdkDaeMVPhmjUJaEnBoP0GP3Lqb6uuSPnLdBoENALY78pDr3tkYjJaZa9gXANSbj0NGHdb4+N2noW4/BwBQ6sjUHZPlLvV5LOffDkmN0jSFOFaQKTD6BXVSnHy6LA4HcNsC4IdPgNU/A7W1QF4BMOowSE5HoGpfwEAzOaJJOMnoScYdf/4cSilIgEQd9e7TwDN32Pk2vCZNh4w9Btj/cEiSQfpGK+jbMfixvWrX4oVN0/Hy3hMwvfNTfu2DuwBPn6VhcJfAwSDqmTsbvk5VlehcuwmbEvyDTFZuqMJRzZat3q4/Z5+aP9CCfCSisFNnHwCkZkANPAAy5CBg8IFAv5GQpGZJObUGwWgJBuk2UeCywwQvfW98EVX3HN+985bjBC98p7C22SlOprsUtZKACi3N8rqbztyng/ExQs9vW2DptYDi2C79J4w0C0ZDV+NgNCz7Fmr7n60eFl5ebb1vThSeyqvaGqg54y33z3PtAHRynbc78wzHaHW7ertk/fPqskr/MVaD0Q7o6T0nr3YZrh5prXAYT07Q/16rTOokIiIiIiIiIiKiaMKb2ImsCXJfYagdUQhxfyIiIoopPBcmihEm+2oE92MeMuziD4ziU5zcukZEREREREQtZhSq5HZDle3Sb2t+0y4ASUgEDpzs/QdArfgB0AtG69ILOHqm92bwJmE5REakaxHQtai1y4hemha4TxSTPkOA65+AuutCoLIcSEmDzLkdMsz6Teqm8xcNBYqG+i5LSgH++yXUbWcD61d4A8EmzQBO/1tI1hnt9u8p2L+nTiCHeJ9LeSbBaDucuUANGoLRpF1784/QP3sN7829Hy9lnYzqxAyc/frTOBiAB4IyTT8YLdNT5rug1yCzNVCYFPhnBzaoMMjQiUUiAoyY4P3X3P5HQObcBjXvRsBV69vmcACnXQEcdkrjXEkpwHm3Qj1ynf9c5WXAzq1AbifDWtTOrQ3Bgba+h2vmQY46w/a4SCjuaBywZ+bVjdMAAA54cMqel5HqqcSsgkdR5siCU9Xi7z2/x/VXH2gpXEiVlgDLF/vWVbNSNxht1a5EqNISSJMQ4FWbagD4h2b2rvnd5ndF1Aoq9gKLP4Ja/JH3cUIiVN8RwOAxkMEHAoPG+B/f6kVxMNqoHoJ7TxFc8oL/8UUEGFrYfJngo0s1zHzCgy/rdt2j976LeVvm4LxOD+DNjCmW153c5HAw60DBta9ZP8btrgC27wXy21keQnFEeTzApj/0G3OanR90K/bug0bBhZvXAq0cjLa3ynrfgqzoCQNUbjfwxqNQ//mrrXG5bv0/HLDdYRyMVh9mlp2q315WCbjcCk5H48/HMBit2Y8wLUkwoS/w3jLD1SM92bgtXJINcsarDV5qiIiIiIiIiIiIiIjaFrPfLfImZiJbmJQQA7iNiIjaHh77iYiIKHQYjEZEREREREReRsFoHjewR//GT7RrH3Ba6TscavCBwNKvfJefd5ulEAsisshoH44hcvipwIQTgY2rgS69vUGL4V5n/5HAkz8A2zcCSSmQnI5hX2fUqwvZS1bVyHDvwV6Hf2pHiaMuLKguGA2ZuX59mno4ezYu2nQ+sMn7+IVuH2D+5nMwqfxDKNEP9ctyNwtG697P+vdAIWMWjLavOnJ1tCYRAU67HDhuNlC6A8gpAPbuArb9CfToD0lN9x909ExALxgNADasNA9GO66b/RrPuSlqQ9EAoG+Qh9bxFZ/7PD6m/G1sW1WIlYlF6FG7DqkFkyFykLXJVnzvX1f1KixK8w/DW+Ps5g1RG3NUw7J168sA+B/retcYhNtQZDgc3nMgzeF9/dKaPG7a5jBrc3hDQX2WN3/c7Gu/cZp5P80BadomEnhuv6813++xSR/1378Dy76x/nOrrQF++Rr45WuoZ+/y1pNmkNLljN5gNAC4aIKGapcHVy7wvZjqmMFA1xz/95s98wSf/U3D+p2A470n0PnROQCAgdW/2gpGS0tq/Pqk/uW49rU0W3V/ulLh5JF8P9wmbd8IVFfqt3Ur9nkoyalQx88BXrxXv//OrSEuzr5yG+eDRfnhq8MOpZQ3HPvD56wP6tQd8szPyH1sL7DEv3m7s4PhUK1uV8/NMKrHG5iY16TdMBhN563TlCGC95YZX1CanmTYFDZJBlehVDEYjYiIiIiIiIiI4hqDjija8HkXvbhtiEKH+1PcYugdEVGc4vGdKCaYnotFbj/mEYOIAAajERERERERUT3DYDQPsGeXflu7bEtTyx2vQT1wFbDkc8CZCDn9CmDcsUEWSkS6NP1wqVgjzgSgR/8Ir9MJFPSI6DqjWpOgsjx3iW4w2g5HnrdrXTDaW3uKcX2Pxdjm7IAJ+z7FzTv+gZ616wAA1ZKIW3Ov9pvjrIJ5pmV0rd3Y+KCwD5DX2e53QiGQkWwc2lJRE8FCooCkZgCpdYkVSQVAboFx36xcqMwcoEwnXHbdb8B+B+uOU//3gf3Cjp4JzLjS/rgIykkX5KQBO/dZHzO88kdkevb4LXfCjQE1v3kflGy2PuH6lX6Lurj+1O2605ELbPjSJxht8/YqIMG/b/fa9dZrALzPoeYhXk2DrwIFZPkEeBmEcenO0SxUy2CM+I0xWY/uHJpBrRbHaHXjLISGSZyc+4TEna9BHdWCcFelgPIy/bYEnSd+lLnsUEFqInDfxwoC4PABgjtOMH79EhF0zwXU9FlQ678EPngWRdWrba0zrUleXM/vnsFpZZl4LvNUy+NPnacw8wk3HJo36MjZ/H8H4BDfr50O3z664xraxGecZnmcfw316/WvQcznNBwXoJYm37umxWF4nM7rUYOuRX6LZM7tUEbBaBtWhaio4O2tst63OL91t6da9TPUvZf5BfebysgG9hsPueRuSFIKcrskAUv8L7faZhKMVh9mlquTpVuvpNw3GM1jcEWX9t/roKpHQA45oWHZ5MGC8581vgSso0HuZTglG7x0VNXyUjUiIiIiIiIiIiKi0OFnrq0vyN99MOyHKIS4PxEREUUdnu8SxT7ux0QURRiMRkRERERERF5GwQIeN1BmFIyWY2lqSc+EXP1IkIURkSVG4YZW9Bkaujoo9knjRXu57hKsQU+/Ljucud4vNAc+Wq5w3MJhQLJ30YuZ07A8qR8Wrz0QCXBhWdIAbHXaC2vJdu9CB/f2unVokLP/AZE4DMaIEUlOoNrlv3z2OG4TU12LgV++9lusvlsIOX6O/3JXLdQVx9hbx/HnQbvUICwlyvTtCHz1h//y/HbASSMEDyxq/AVqgqrB30tuDTypjWA0tdE/PCbXpRNcB6DEmQO1YSWqaxV+3ghkLfsIW5zjdft2cm0Bpp4LvPbfgDXIOTdBzrjKcs1ElqVkBO4TLGdi4D6tTNME5x8sOP9ge+NEBHL9fHgA9P/sV1tj05MaXwPVogU4vSzVVjAaoP/aGjqRuCgl/OsQCSYUzk64G+DUpKGv1qIwOrP1SuPXvwJa2gQkeaoxtHop2nn2er/Z9h0haf4JVuJwQA0bD/z0mV+bmn8TZNZ1If+5l1UobCoFeuYByQnm53vl1dbn7dephYW1gNq5Feov+1sfcMpfoV1wh99io3CzCi3NcCpNeQA4kGPcBSXlvo/dHv1+jpKNUDfcDdz9DmTkoQCALtmCYYXATxv9+588QlolYNA4GC2ydRARERERERERERERRSez37PxWhwiW5TBL9aIiIgoSjFsiSjmRTA0jflsNvEHRnGKwWhERERERETkZRSq5PEAe/RDIySzfRgLIiJbxCDc0Ir99MNeqI1qEkCW5yrR7bLDkef9wuHAvQv9Ly76JXkQns88GWeUPYuViUW2SyiuXuW9zO+oMyGTpkOGjbM9B4XOpYcJ/vme/y9JJg/mxZimBh6gG4yG7xdBuVwQZ7OP5xctCDilXPc41G/fA3t2QcYdC4yfGqJiw+/4/QRf/eH/PLp7muCUkYIxPYG3PliLdks/wvSyZzG6cnHgSUs2QykVMDhRVVcCbzzmtzzXbRCM5sjBE78X4qK/euoCPCYaXnvcec7lkCljgcEHQd16FuAySfxITjGtkyhY4nSG73Ihp0G6TRyRax/DsKIHgYXWx6QlNXnwy9coTuga8rrIe42GSwGusF7LHukQuYlA14kAAKeqxcW7HsAd268z/3wl1zhRTP2xDNJrYEiq9HgU7vhA4e+vK3gU0CkT+M/JgmkjjN9r7iw3bPIxuEsrB6Od0MtWf71QNACm4WaGc339NjDxWKQkCtKSgH06YXJ+wWgGT0uHcgMA1PxbGoLRAOCsgwQXPe8/6KyDWud83SgYrZLBaERERERERERE1FbxpkRqDXzeRS8GORGFEI91UY+vR0REbZDJsZ+vC0SxwWxfDeF+bLqakK2FiGJdC+6YJSIiIiIiorjiMApGcwO7tuu3ZeaGrx4issdoHw4kMRly5jWhrYVim9b4kaFRaNBuR5b3C4cTH6/Qn+asgnk4rsvLuD33StslDKxeDjnrBmjXPMpQtChw2aGCkd19l911kqCwPYPRzMiBR+s3VFUA29b7LVafv24+4WmXQyZNh3bpPdBufBpyyAkQLXY+4j97rGBCX99lV07yhqKJCE4ZpeF/B/2MB7deYi0UDQBqqoG9uwP3e+Uh3cXtDY5xFVoazsFVdaFo5grG7A8RgRw6Ddon5ZBPK4CUdP3OwxhESmHUpbdxW5+hwAGTgPRM+/O2zw++phghmgbHtIswP+Nhy2PS64LRVF0YYtfajWjnLgtHeRTHXJKAu3MuxZOZZwDJJolbnY1DvdTTt4esnreWAte95g1FA4AtZcApjyqsLTG+xGjhb4EvP8pNB+45WQsYZBpqylULtfAleGaNBNwua4Oy8iDzdIJt6+Rl2P8etGdua/jaKFitpNz35+g2uB/KAW8wGpZ9A7VrW8Pyc8cJjhjg23fOwYLD+kdXMJqVcysiIiIiIiIiIqLY1UZu1+RN7FGE2yJ2cdsRhQxfl+IYty0RERFRW8czQiICAGdrF0BERERERERRQjMIVaquBPbt0W/L7RS+eojIHgkuHEfe2QJJTg1xMRTTmgQWZLn1A4d2O7IBAEsq8lFtkjHwdoZBMFQA08ueBVKODWoshV5uhuDTKzQsWgGsLVE4uFgwsDND0QIqGmbctmGVT8iJqq4CPjMJRjv0ZGhzbjNujwEZyYL3Ltaw8Ddg9XaFA3sL9usK35CUhET7E6/7DRh8oGkX9cI9usuNwh+tcigXOrT3rVkcDqjDTwHeeMy3c7dioPfgFq2PyNT4qcCz//JfnpIOefgzSFIylNsNrP0VWPIl1NKvgCVfATu3mE4rY6eEqeDoc+bEdrjklT3Y62gXsG9aXTAatm0AAGhQGF/xBd7KmBzGCilevZExBbNSNhi2y4QToZ68Vb9x0QKofiMhp/y1xXU8841+Glevaz1w/9c/2MzjUXh7qf6lR8cOAY4ZKkh0AhP7CjpmRjgUrbQE6oJDvOdcFsnFdwGHngzJ7mDYpyCIfEntj6UNX+emAxt2+fcpKfd9bBiMppo0fPUOMOUsAIDTIXj3Yg0fLgc27lIYUCAY3av1zteTDa5CYTAaERERERERERFRrOBtp0ThxX2MKHS4PxEREUUd0+BSvnYTxQaTfZXhxFGM24biE4PRiIiIiIiIyMsoGM0oFA0AcjuHpxYiss9oHzYz5SyGopG/JiF7WZ4y3S6lmjcR4JSlh4V89R1c23BQ5TdA8mkhn5uCl5IoOHowADAQzSpJSYPqUAhs3+jfuHE11AGTgPeegXr/f8BPn5nPNfW8MFUZWQlOwZGDgCONnkcJSfrLTaiv34WYBKOpr98Fdm/XbWtpMFrHdDc0zf97kTm3Q23fBHzznndBYR/I7a/4BcoQhZL85QaozWuAT17xXX7Xm5CkZO/XDoc3oK/3YMgJ50MpBWxZCyz5CmrJV8DSL4GNq70Dk1Igs66H7H9EpL+V1jP6SJz7+GO4K+eygF3T6w9X5Y3vl5/efBayi/WPN4W1G7ExoTAUVVIc2pTQGUhJM2yXHv2h+gwFVv+s264evAoYPQnSra/P8l37FO76UOHJrxS27gFGdQd65Aqm7ucNqHpnKVBS7r0QprC94NWfjGt0nOvBzDGCg4uBGQcIRAQ/bAC26L9dwOkHaDhxeOu87qmaaqgp9j6vkv+8BxkxIWC/ztn269HggVIKIoLcdP0+VoPRNDQ2qK/ehtQFowHesNkjBgDRcL6enKC/nMFoRERERERERERERBRfgrzhmDeRE4UQ9yciIiIionjFt89EBDAYjYiIiIiIiOppWuA+zeV2Cn0dRBQcu/twSjrkzGvCUwvFtibPpWz3bt0uZY5MVEgK1lZkhHTVyZ5K/LJmuPeB0+BueqJY0rWPbjCa2rAKuPcy4JWHAs/RZwgwaHQYiotCifaD0bDs/wyb1IfPQ90807A9270bIsH/0rSgvX4oqaS1g9z5OtTOrUB5KdC1mKFoFHaSkAi56TmoHZuATWuA9vlAx24Qk/1KRICCnkBBT8iRMwAAavd2oLQEyOkIadc+UuVHBcnOwzEd1uMud+C+afU/1urKhmUZnnI89+cMnNblGZ++Q6qWYvHaMdju7IDVCb3gnjQDnkkz4fYALo83AMnlBtxKNfm67v8mfXz6e0zamo33+MyldPuGar0ugzAnMlcpyUCycTAaAMg/noY6fbBhu5o+BPi8quH1pqxCYchcDzaVNvZZvA5YvE7hxe91ZwhY55NfKzz5NfB/a4EHTxO8uUR/TKITdQFdkaeUgrrEXqCjPPI5ZMD+lvpmpwJJTqDaZXFu5fHGlFXsBdLaITddoPez3mk5GK3JAeq7j6Eq90FMQvVai2EwmsWfGxERERERERERUfzhXZzUGvi8i17cNkQhw6SEGBDsNuK2JSKKXWbHcB7fiWKC6Xk292MiiiwGoxEREREREZGX3VCl5FQgPTM8tRCRfZp+OIuuIWMhs+dC8ruGrx6KXU3Ce7LcZbpddjuy8WnqONQqG887E8meSuxfuRj3brscOe5dIZmTKCoU9gG+X+S//I15lqeQe95vO6Faicn2x2xcpbtYuVxQD5kHgDrGTEJxErBiq/3VAkDH9ua/YpGcjkBOx+AmJwqS5HUG8joHPz67A5DdIYQVxZbRE/qi8N2N2JhQaNovLbHui5pKn+Un7X0FlZtTcEfOFdjhzMXh5Qvx721XwQEPOrm2opNrK/DaV8Br5wUXTh4DPBC44YBbHHDB2ex/73I3HHCJs/F/0fz6NvbRGvq6G/5vnKthXH0bHHCJ/vr15vJfh3+9vnM31uvxq1fne4OjoX+1JKFG8w8rrJQUICXd/AdbWAT06A+sXW7c57l/A6dfAQC47T3lE4oWSo9+rnDlEQpv/qx/gdOEYiAjOfTnLqpyH9Tjc4HPXgcAyNEzgTOuhjTZl9T8m4Fl31ibsLAP5MI7LYeiAd5AyYIsYG2Jtf6O+iCzsp1AWjvkGGzmneW+P0u3wbVjDtUkGK2mCvhuITDuWGvFRJBhMFptZOsgIiIiIiIiIiKKKAazUKTxORfDeIM5UehwnyEiIiIiilf86IOIAAajERERERERUT07oUoA0D6/7YR0EMUCi8EK8pcbITOvDXMxFNOk8bmU6dEPRivVMvFz8pCgV3Hv1stwwe5HgInTgI9fCnoeomgnXYtadPmd3PIipF37kNUT9RL8w2IC2rUNau9uSEa27/JfvgZ2bjEdKmdcgyOXC1ZsDW4rFWTxXJgo3mjHnI07n5iFU7v8z7RfWv3hqto3GE0AnFn2P5xZZj4eAODxBFdklNMAaHDDIBepTXuh3UmY3vkpv+WVWjKQkmo6VkSAObdBXXmcYR/1yHXA5Fn4qbQ9/vVB+K4IcnuAhz5V+GWTfvuUIeF5fVQ3zwS+eLPx8eNzgdpqyDlzoTweYPli4MlbLc0lf38ScvipQdXR2U4wmmoSjFbQA7kGwWgl5b6P3QaHh4agtTrqq3cgURmMJtC7CYXBaERERERERERERERE4J3dRCHF/YmIiCj6mLw+81yYKDaY7avcj6MYtw3Fp/j8U+RERERERERkn8NmMFpau/DUQUTBsRpuOGxceOug2NckZC/LXarbpUpLwdLkQUFNP7zyR5y3+1HIDU9BZt8U1BxEMaOwqGXjRx4amjpiRTDBaACwYZXfIvXlW+ZjDjkBMmAURnUPbpUAUJAZ/Fgiik6SlIxp18/AR+snmfZzOuqCn6qrIlAVxYsUj/7zpVJSgOS0gONl9JGQm543bHdDwxV3r8KIW8MfumcWvBbqYDTl8cBz/Sk+oWgN3nwc6o9lUEflQ80Zb2k+ufiuoEPRAKB3B+vfn4a6bbF1AwC0PBhN+Qaj4et3odxu/c6tKNngz/MxGI2IiIiIiIiIiIgokngzbPgF+zsRbhuikGEoQwzgNiIiIiKi4PBMkogABqMRERERERFRPYfBXYtGklLDUwcRBUez+DFPt77hrYPiQONFe1meMsNei1NG6i4/abjxRX89a9bgxU2nwfnMj5DDTgHyOgPJBq8nbS0QiuJTt+Lgx445CpJqkJ4RrxITgxu3fiUAQLlqoT55BeqjF4CX7jPuX7wf5NJ7AQCds4IPb+mVF/RQIopiMuYoHFLxOYZX/qjb3tuxrfFBdWWEqqJ4kKz0ny+VWgokxdprvhxyPHCAf3DfT0lDcHC3j/CfLaNaVGNL7dcV6JIdumA05XJBXX8y8Nlr+h1Kd0DNHA7s22NtwlnXQ066qEU1FeVb71sfZKZu+wsAIDdd/2fTNBjN4zG+nMuBZiFopTuAX7+1XlCEJCfoL692AYo3pxARERERERERUdwy++wrnj4Xi6fvhaiVmH5WHto/QEMU91T4/2gUtRL+XpGIKHaZHsN5fCeKCWb7cQjP00yPFjxcEFEdm3e9ExERERERUdxy2gyiSE4JTx1EFBwrwWiZOZCs3PDXQrGtyXMp211q2G1DQlfd5UcMAJ6YqWH+g5/hpR8F3WvWo3vtegys/hWH7luE7AU/QfI6AwAkIRFqzFHAogW+kxTvB8kvbPn3QtTa8rsCHbsBW9fbHirTLg5DQVEuISmoYWrDKmDXNqg544HNa807jz0GcsNTkLpQxoKsoFYJAJg8mBckE8UrefNPnDDrbvyQsp9f27G7F0DVngdJSGQwGtmS4tF/vrgkAS5oMMiS8iO3vQw1IaPh8c2512Bu3t9DUGHLTRkSwlC0sp1QF04E1v0Wkvnk/oWQoWNbPE/fjgKrF2lqqLsRo6oCyuMxDEYrqwSqahWSEwTvLTOerz5ozcdPnwODD7RUT6QYBaMB3nA0s3YiIiIiIiIiIiIisop3CMcuBjkRhQ6PhURERLGFr91EscEsGC2CVfCQYQ9/YBSnLNwxS0RERERERG1Cgt1gtNTw1EFEwRELH/P0GBD+Oij2NXku5bh32h7et5MgNUlwwSVj8emwBXhy62z8o+QWnIhPkX33iw2haA2ru+JBYEiTgILu/SC3vBB0+UTRRESAMUfaH3j4aZDhh4S+oGiXmBzcuPUroO67InAoGgC57L6GUDQA6JQZ3CpHZWxFuxQGoxHFK8nOw2WHuDGz9Gmf5SfseRU3bb4O+Okz7wKjYLRegyAvrQQGjg5zpRRLklW1YVvF9hLL80hCIuS2lwEA92ZfEJJQtDcv1DBpACAtfGk7dmjjBKqmGmrBA/DceDo8j82F2rbBu7y0BJ4HroRnbJL33yPXQa1eAs9D18Bz4+lQrz8K5aqFmndD6ELRHvk8JKFoADBMPx9alwNNgsz27DI97/hjB1BRrXDWU8Y3Q/nMV0e9/ID1giIkxeQjxqrayNVBREREREREREREQeJNlEThxX2MKIS4PxEREUUfvj4TERFR6DhbuwAiIiIiIiKKEk6bwWhJDEYjiioOR8Ausv/hESiEYl6TNIQUVYX2rp3Y5cyxPLw4v24ahwNy+f1Qs28CtqwHeg6EOP0/jpSMLMgDC71BCdVVQGEfb5gUUZyQMUdDvfqIvTGX/DtM1US5xKTgxn3zLuD2Dwrx43AA7fN9FqUkCtqnKuyqsHfcmV28AUDngP2IKHYlnH8LHnszF3dsvxa/JA1Av+qVyHdv9zb+vhQYdRhQYxB0lZQC6dQdeOgTYOMqb7/qKqCyPGL1U/RJLUkGXtVvq+4xxNZcMvYY3Ft0Ky53XGqp/5drx+PB9nPwfOYpfm3pUomjB6Vh8mAHdu1TWPqn95z+ucUKf1tg/ULFIwcCQwu9r6fK5YK6+njgu4UN7eq9p4HbXoa6ciqwa2vjwGfvgnr2rsZ+ixYA37wH/Pip5XUbSk6FvLcd4kxo+Vx1uuUIJvYFPl4RuK+mmoSc7dyKnt1y4NAAt0722YotwOptwI69xvM5lM7AshKoNx+HHPOXwAVFSPcc4IXZgmSnIDkBPv/SgzzdIyIiIiIiIiIiimkMQaLWwOddBAT7M+a2IQoZHuuiH7cRERE1xdcFothgtq9GcD/mEYOIAAajERERERERUb0Em8FoyQxGI4oqogXuM2h0+Oug2Kf5Ppc6uzZbDkbLTQdy0n3DhSQjG8jIDjhW8rtar5Eolgwbb69/936W9pm4lGCelCF/uRHq8bn+DVZC0QCgXQ5E83+93K+bYOFv1qaoN64PAxyJ4p0kJEL1G4mcJV/i4IovfNrUw9cCo4+Eqq7UH5yU4p1DBOhaHO5SKUakblfAqzrBVgAqB4yzNdeeSoUbEi8ALLwEVv7WDglwAbugG4x2aNmHwG+FQP+RaJ8mOLjuKXvJRO//VsLRpo0Q/Hd6k9fGJV/4hKIBALb/CXX+IUBNVeCiv343cB8L5Ky/hzQUrd6dJ2oYfov+tmzK0XQD7dyChNxO6KlVY7Un36/vSf+1OV8T6tEbgMmzdM9zWkNWqmDaCJ4rERERERGML+8QAAAgAElEQVQRERFRW8NbNSnS+JyLXdx2RJYFDF3g/hS/uG2JiGIXj+FEFBrMUiQiAIiOK2OJiIiIiIio9dm9UbTuRm8iihIOR+A+aZnhr4NiX7OQvQLXFstD+3YMdTFEsU8Sk4AZV1nvf+a13iCdtsjsfDQ9Czjlry07B83UD3n8+2R7vyqZWfo0evVqH3wdRBQ7HMZ/Y0qdfwjw5+/6jUnJYSqIYlmKyctcVWaBrbneW6ZQ7g4ccP/axpO8oWgADqj6DjNK/+fTnurZhyt3/htY/JHfWKdDcPnhGn643vx1cs7Bghdma8hMbTx/US/co9/ZSihaqHTuCRx/flimHtZV0MnC22ut6YWeO7dC3TwTRbt/CHq9DmWQhFdWAmxeE/S8REREREREREREREQUQaZ3dvOubyJfDEYjIiKKL3ztJooJfN8ao7htKD4xGI2IiIiIiIi8EgLfUOsjOTU8dRBRcMTCxzxpGeGvg2Kf5vtc6uzabHloUcc2GuZEFIA2+yZL/eQ/70IOnRbmaqKXiAAHTNJve20tJDkV6D8q+BVk5uouHttHMC5huW7bmIqvMXf7XBxW/hGm7H0bD2y5BI9umQPk2guwIaIYZRY+XF4KfPySfhuDxElHisnHLpW11udxexROnRf4Apb+1csxpfwdn2WPbjkf8zafh+P2vIGzd8/H92tHY1TV91CPzzWcZ1hXwfHDjNfz4Gk670W/fT9gfWF10kWQx76FhDGksF+nwH2aBpmpRQuA//sQ3Wo3BL1OBwyC0QBgb2nQ8xIRERERERERERFRPOLNsK2KN5EThYbpvmShnYiIiCKPr89EFCI8nBARABj/mXMiIiIiIiJqW2wGowmD0Yiii2YS2lAvlcFoZIVvuFlBrfVgtL4dQ10LUfyQx76BOnu0cftdb0FGTIxgRdFJLroTatXPwK6t3gUJiZBrH2889+zaB/jps+Amz8oxbHp5wNuY+K0Hy5IHNizr6NqKh7ZejIHVy4GdTTqntYOkpgdXAxHFFivn2HoSGYxG/lISjNsqa6zN8eN6hTPmeyz1fX/DFL9lCXBhVtnTmFX2tF+b2rgaUthHd675MzWs3+XBD+sbl+WmA+9cHF1/h03+/iTk8FMjsq6ifMGiFeZXXvkEmdWFxXVybQl6nU2D1vzsKwt6XiIiIiIiIiIiIgoBhiARtUFmf0BSmbTzmEBkXaD9hftT9AtyGzEFg4gohpkcw3l8J4oNZvtqCPfjCK2GiGIcg9GIiIiIiIjIy2kvGA1JvNGbKKpoFm5IZzAaWdHsuZTnLrE8tDjf7II/orZNivczv8wrtyBSpUQ16VoMPPWDNzykYi8w/BBIt76N7YVFwV/SmGkcjJbbsxDfvDAOb2RMwfKkfuhesx5Tyt/RPwbmdgq2AiKKNY4gf5XK98ukI9ksGK028PirX/XgzvetvQo+vnk2CmwGcKnTBgKfV0HE/5y+XYrgq6s0vP6zwrJNQGF7YMpgQcfMKDv/H3tMxFZVlB+4j6b8Q+w6u6wHTzfnE7TWXPmeoOclIiIiIiIiIiIiso53pUYN3iEc3ZQyyUXjtiOyLsD+ovP7OCIiIiIiig9890xEAIPRiIiIiIiIqF6CzWC05NTw1EFEwZEAwWiJSRC7+zm1Tc2C0XJtBKMNYK4TkbnMHKBsp34bj9ENJCsXmDRdv7HngODn7dHfuLHHAKSoKpyy5+XAE/UIvgYiijFBB6Mlh7YOigsiguQEoEonBK2yxnzsN38oy6Foojw4bN/HQVQIqHHJUBOnQfYbDxw9C+JwNLQlOgXTRgimjQhq6rCT82+HpKRFbH3eUGjzbaIXZNbJZmBdU8rwDioA+8p8+5Zshnr4OuDD57wLppwFmTQdMvjA4Nf/0+dQn74CeDyQg4+HDD8k6LmIiIiIiIiIiIhiidqyDvjqHaC2Ghh9JKR7v1auKNx42ylRy5ntR2ZtUfZHaYhaW8DgM75mERERRZ9gz4WJKHqY7KsM+45i3DYUnxiMRkRERERERF5Om2EcSQxGI4oqTW5Y15WSEZk6KA74XmCX67IWjFaUD/TIDUc9RHFEMzlWMxjNmkFjgKQUoLrS/tiDjzdu6z0YyMoDSncEnEamnGV/3UQUm8yO22YSGYxG+lKMgtF0ljX11DfWL1iZXP4uCloQvoWPX4L6+CVg8ULILS8EP0+kTZoR0dUV5Qfuo+ncqNG5dnPQ60xQJk+U8sZgNLV5LdTJfX3b35oP9c6TwI3PQCacaHvd6qMXoG6ZBXi835N6Yx5w1X8hR59pey4iIiIiIiIiIqJYopZ9C3X5ZKBir3fBozcAt7wAOXBy6xZGFBBvhm1dZjeRBwp6IqJGgY5lPNZFPQZnxL23lii8uUQhMwU4dZRgeDeGfBKRGb4uEMUEs3O4CJ7f8VSSiABAa+0CiIiIiIiIKEo4E+z1T2YwGlFUkQAf86SmR6YOin2a73Mp173T0rDDBwhEeEEDkSkGo7WYJKcCY46yP+6fr0JyC4zbHQ5g/HGBJ+rQBTLqMNvrJ6IY5Qjyb0wxGI0MpBq83O+rNr6Cx+NRePTzwFf4tEsGZvZYh//JLcad0rMgT3wfcC4AwGevwTM2CeqJW6BcroDd1U+fwXPhofCc2t/a/KHkTAAycyK6yu653p+5GQfcfst61q5Foqfa9vo6uLahR+06w3ZV2hhorR6+Vr+TxwN14+lQNfbWr5SCmndjQyha3UKox/4BxavPiIiIiIiIiIgozqn7rmgMRQMAVy3UXRfpfDZm9lkZP0ejcODzqvUFe6M4tx2RZYF+F8XfVcUxbttYcMf7Hhz7oAePf6lw90cKB93hwcLl3HZEbR5fn4mIiCiEGIxGREREREREAOrCIBwmYR3NJfFGb6KoEmj/Tc2ITB0U+yS4YLSBxnlDRFTPLGDHyWA0q2TW3+0PGn1k4HnPuBpIzzLukJUHmb/Y/rqJKHbZeY/chDDskgykJ+kv31djPGbKAx7jRgBODfjoUg277tEw/5peyHjuO8iivZDzb/frK7NvgvQeBIw81HLNav7NUI8YBG3V91nzK9SlRwFLvgD+/MPy3LbkdTZuy+kE0SJ76YNDExweIAMuWfkHkCWrakys+MR0XP9O/suuK7kDmtnF//+7EwCgKvYCX7xpOr86qQ9UVYVpHx8bVwNb1vkvL9kMrPrJ+jxEREREREREREQxRu3ZBfz2nX9DyWbg1/+LfEFEFEMYjEYUGoH2F+5PRK2lskZh7lu++2C1C5j7lvk1DkTUxjE0jSg2REnYN48YNvEYS3GKwWhERERERETUyE4gR1JK+OogIvskwMc8ae0iUwfFPhGfh7nuEkvD+nWSwJ2I2jqHybE60SAphfxIj36Qp360PuCwUyyFpUiHLpAnFgPHzQYGjgZGHQb0HgyMPQY44XzIE99BMnNaUDkRxRyzQEszzoTQ1kFxI83g5b68Sn95rUvhs1XG8x03FPj8Sg0T+wk0rfF8XBISgVMuhdz5OjD+OGD8VMhdb0Kmnuttv+ste4W/8pD3BkADat6NgNtlb047UjOAdu2N23N1ksQi4MQR5u+BBlYt011+zN63Tcd9fLmGV+ZoOEX7BFP3vI6X/zwVF+x+JGA9qmQz8M37gbfFrm1Qh2XD8+DVUB4LF6WbbHvs3h54PBERERERERERUazau9u47c/fG7/2uICa0vDXQ2QHb4ZtZSY/f24bIhsYjEYUrV77SaGq1n/5V38ALjf3TaK2jccAIiIiCp0gr+YnIiIiIiKiuJSQCFRXWuubmBzeWojInkChDanpkamDYl+z8KAkVYP2rp3Y5TQPA+rfOlkERLFFcxi32QmoJUjPAcA5N0HNu8G8Y8dukJnXWZ+3YzfI5fe3sDoiihvBBqMl8JhO+tINgtH21egv37gbqDBo278H8Or5xucWIgKMPhIy+kj/Nk0D7v0A6poTgYq9gcoGXLVQ/7rAG7LWfySkoGdDk9pbCnxpM2itqeGHAD98Yt4nt5N5iGz7/ODX3wLHDxMM7qKw9E/99snl7xoun2Mw57QRgvx2gqnDgGO1W4FNX1sv6JdvoD5/w3r/F/4DVbkXGDoeKOgB6T9Sv5/ZDVrCgGwiIiIiIiIiImqrxPvZ2ZLrgNUPAbVlxl0ZgkTU9pju98G2EbVBgV5DW/s1tnYvsOVDYN86IH8C0H5Y69YTlYLdRjweRru1Jn9z2cPNR0SGeIAgiglm59kRPAdv7dN9IooOWuAuRERERERE1GbYCeRgMBpRdHEGCkbLiEwdFPt0bmwfU/mt6ZCBBUBOOm+IJwrINBgtIXJ1xIsZVwKde/ovb98Rct6tkOsehzz2DaRrUeRrI6L4oAX5q9QEkwAnatPSjILRqvWXbzG5j+78g1t2/i37HQx56gfIJXcDGdmBB3z6KtTcM6BOHwz16sMAALV7O9RRLQslk3HHAh26mHfKLTDfr9IyW1RDsJwOwYOnadB0NkWXjFpMnjFWd1wn11acXPaS33KBB//7S5PJ3C5b9agbTgM+fcXWGLzxGNTcGVDnHgTP9adAeTz2xhMREREREREREbVlK+8Blt9uHooWb3hHahThtohuJp+3cz8isiHQ/tKK+1PVduDD0cCXJwI/XQG8vx+w4j+tVw9RFOFLHVFbx4MAEVnD2HAisoLBaERERERERNQogcFoRDEr0P6b2i4ydVDs0wlGm7r3DdMhxw1jKBqRJSbBaBJs+E4bJiKQe94H+o9qXNhvBOShRZDTr4BMmg7JzGm9Aoko9jkChA8bsfPemtqUNIOnRnkQwWjTD2j5Obh07AY58QLIfR9ZH+SqhfrPX+EZmwR1TGGLa0BeZ8g/XzXv02sgkGgSjJaa3vI6gnRgb8Fz5wiSm2TcdsoEnp+ThNRTL4C8+ScwbLzfuH9vuwrj9n3e8HhA1a/4IelCOB3BB6MBAFoSbPbZa8Db8/2Xm9bB94JERERERERERNSGrff/Awjxgbeexgdux/Az+YzcNBGG24bIugD7S2umLy27FSj71XfZj5cBFZtbpx6iKOLhSx0RGeIBgigmmJ1nR/AcnGGrdvEHRvEpyKv5iYiIiIiIKC45EwL3qWd2QyoRRZ4jwP7bijeKU4wR/3CmyeXvwqFccIv+x4lTGYxGZE2wATtkSDp2Ax75HPhjGZCYCBT0hNg5pyUiMmMSaGnKyWA00peeLNC7+KTCMBhN/0KVXnnegNBQkd6DoIaMBZZ8EbI5LcstgPQZAiwsg7r4MGD5Yt92hxMyaQbUY/8wniM1I6wlBjJthIYpgxW+WwckOoGhhUBygnf7SHYecM/7wJ+rgS3rgR79gU9eQccHrsTHGyZheWI/1EoCBlb/CmfXXr4TGwWSaVrLAtBMqJfuhxxztu/CWoMnKBBceBsREREREREREVFcUMDOb1u7CCKKWsEGo/EaLCIfAZMQwvM7M0tW3ae//I/HgEE3RLYWoijjbsVdk4iiAJOMiIiIKIT873IkIiIiIiKitivBxs3bicnhq4OI7AsUAtPKN4pTDNH8PzLMce/CxH2f6Hbv3cF74z8RWeAIMmCHTIkIpPcgSNdihqIRUWgFG2hp5701tSmpBk+NfTX6FwRuLdPv3ykzRAU1Ibe9BBx6MpCZG/rJzeQVeNeflAy59wNg6rlAehYgAvQZArnzdUjRUNOAfomC97spiYJxRYIDekpDKFo90TTvecr+h0M6dAHyOnuXAxhQ8xuGVi+FE25gwyrfSY1Cx4ZPCMN3UGf9Cqgt63yX1VQZ968xCU0jIiIiIiIiIiKKdSH7AxW8KZzCgGEDUSDI8DNuOyIbAuwv0bg/bX6vtSuIMkFuo2jctmSZh5uPiIzw+E4UI6LjPS2PGEQEMBiNiIiIiIiImnIyGI0oZgUIX5DU9AgVQjHP4MLem3bMRaKn2q/rHSdokJBdDEwU5zQGoxERxRQGo1GIpRt8lFJukDu1xSAYrWO70NTTlLRrD+3Gp6G9vQny4orQr0CPwwlk5zfWkJwK7bL7IO9sgXxUCm3+Ysiow7yNiSnG88Ta+93cToZN6qfPGx8YBKPJQZN1A61DZuVPvo/Nws9q9duU2w21ezvUvj0hLIyIiIiIiIiIiIiIKEaY3ijOW7uJrAu0v0Tj/hSNNRFFFoPRiNo6ngsTxTyGGEanQNuF243iFIPRiIiIiIiIqJGdm7eTGIxGFFWcCebtaWG4c57ik+h/ZDii6kd8vW48ppc+ixFVP+Kk4YIP/6ph6jCGohFZxmA0IqLY4gjyuB3o3JzarDSDj1321egv31qmf6FKx6zwnoNLQQ+gQ2FoJus9GBiwv37b/odDdPYz0TRI88+dsvOM1xFr73dzCwyb1MPXND4wCEZDQhLkuWUhLqqJ9c2C8aoNkvsAoMa/Tf32PdRf9oc6phBqcgE8D1wJ5XaHuEgiIiIiIiIiIqII4M2EFNP4/G1dJj9/5YlcGUSxLuBrMY91RNGIwWhERETxLHIv9PxojogABqMRERERERFRUwlJ1vsmMhiNKKo4AoQvpGZEpg6KfZrxR4ZDq5fiyS3n4Ntdx+LFczVM7MdQNCI75KQL9RsK+0S2ECIissbhDG6cndBxalPSDT52Ka/WX76lTH95p8zQ1GNGbnyq5ZOkZ0Iu+Cfk9leAbsW+be3zIefcZL2ePOMwsZh7v5tbACQaPBnW/ApVVeH92ihMzOEEOnYPPrwxALV+pe8CnfCzxrZqqL2lUIsWQH37PtTe3VCzDwT++MXb7qoFXrwX6vSBUAseCEu9REREREREREREYeNheBERBcvs7m3e2U1kXYD9JSqTEnhNpY+o3EYUCmZb1s3TaKI2jufCRDHP7ByO53dEFGFBXs1PREREREREccnqzduaFvwN4kQUHs4AwWgp6ZGpg2KfWPhbCslp4a+DKB4deDSQlAJUV/oslsNObaWCiIjIlBZk6JCd0HFqU9KMgtF0cqdcboUlf+r3j0gw2uADoSZOAz5+yd6455YBX70DJCUDY46C5Hf1Nsz7Bli0AGrdb5DCPt623E7WJ84x6ZsaW+93JTEJqmsx8PtS/8bqSuC374Fh4wC3S38ChxPicEDldAK2GzxJWmLjKt/HJsFo6os3gUdvAMpLzefctAbq3sshJxoEBRMREREREREREUUjFapEh3i6YTSevpdYx20R1UxvFOe2I7IsYOgC96f4xW0byzzcfERERBQCPKUgIoDBaERERERERNRUoGCleonJEOFftCKKJuJwmH/om5oRqVIo1lk5vqcwGI3o/9m78zhZ9oK++99fbb3NPnPOnDnn7vdyd9Z4lYsQhAsRCUFF8EV4IAoxL01iXPCRPElMhMgrbnGL0fgQn4fogxrQKK5IAsqDyEXhEZDlwt3XM2ebfaanl6r6PX9Uz9Jzuqt7eqaX6f68X68+3V31q6rfdFX9qqpP/b7dCZMfl37y92T/9Ruk4kYy8GXfJr35h/tbMQBAQ8b1Oruxot3QcYycyVzj4SvFq4f93mebz+fMRG++kzHv+C+y25vSJ/+kvQm+9pVJ6Nkbf+DqeeUK0t//js5/H30sJQ2unXDnAWN++g9kv/WGxiOXFpPnlGA0SdJNd3UnGG3tSt1b+5d/1Lzspz9y/MsHAAAAAAAABkV8XMFoJ0zLEBqcCKzHPkv5/AlNAw6BYDRgUKX93/+onkYDqEk73+U6BTgZerQf01wcFtdHGE0EowEAAAAA9rTbeTvIdrceAI4fwWhol9NGqADBaEDHzN95mfSHz0hf/Rvp9DUy89f2u0oAgGbcDv8r1SMYDY3NjRk1uvlkpSiFkZXn7t06/P5PN79TeCElI+w4mfyYzE/+nuxjD0ilrSSIa21J+uzHZd/91gOFjcxbf6R7lZk723xcYaJ7y+0SM7cge80t0tMPXz1ybSl5bhGMZl7zNtlPfTh9Qf/w7dJv/ezhKrextvvSvvfd0mf+7HDTN9POtSYAAAAAAAAwSOiBCSBVSiSMTUuEoW0B2tdif+FYDQykmF0TAAAcg1an+9ZaGdObH5kF0D/ceQoAAAAA2EMwGjC8cvl+1wAnhWknGG2s+/UAhpgJMjLPvpdQNAAYdJ2G+LR7bY2RM5dyGr28Vf/+dz/bvOztZ46nPu0yN94hc8fXyGRyMqevkfnGN8n86v3S3fdKmZy0cIPMO98nc/cLu1eJm+6WZheuHj4+Ld3y3O4tt5smZxsOtpeeTl40DUZzJUnmpd8ive57UhdhpuaSz+4wNlcVf9e9il+Skf2/f+xw0wIAAAAAAADDJE4LNjoEQlvQFWxXgy1t/XQ6DhhBLY+h7DODr9N1xLo9yQhGA0Yd57vAUOvh91x8pQZAIhgNAAAAALCf124wWqa79QBw/DK5ftcAJ0U7v5iSJWgPAACMANfrbDrPP956YGikBaNd2dx7/dknm9/Rc+eClPH7/yuH5rYXyPkvH5PzkVU5H/iqzMtf393lua7Mm//3q4e/6YdkvA731X6bmGk8/Dd/RvbxB6TNtcbj97VN5q3/Nn0ZuTGZN/9we9d5+331bw5XHgAAAAAAABhGNiUYjZ6ZANJCHdLaiE7HASOpRUhp2rEaQFelHbEidk0AANADXEIDo+GE3iEMAAAAAOgKv91gtGx36wHg+AUEo6FNpo3fUsilJDoAAAAMC9ftbLp2r60xcmbbDEb7V7/b/C7h//bW0f3tM/P675Wm52X/7LelakXm5W+QedX/1u9qdW5ytuko+5bnNZ9ufxDc5GzS5lQrjcvmCjKvfKNUmJD9k1+T/t8PdljZI5iZl6ZPS87obrsAAAAAAAA4oWISHXCS0Tu4v9I+/07HASOoZdIB+wwwiGJ2TWDEcb4LnHip5+G9249pMQ7g+ggjimA0AAAAAMAej2A0YGhlCEZDm9rprJ4nGA0AAIwAt8P/SiUYDU1kfaOxjLRZvnrcTjBaJbS6/9HG0ztGuu1M9+p3Epj73iBz3xv6XY3jsbnW2XT7wqyNMbJzC9LiE43L1kKtzYteLfOiV8t+/Pdl/823d7bcTvz9t8r5P36ld8sDAAAAAAAAjlMcNR/XsiMigNHWYSdy2hbgADr+n3yso2FlUsYRjAagKc53ARwjWhRgNPCTvAAAAACAPb7fXjmC0YCTh2A0tMuk3a5QM3Wq+/UAAADot46D0TLHWw8MlbkmGcOXN5LbdP7iIWmj1LjMzaek8Wwb5+s4Ecytz+9sQsetfz93rnnZbL7+faftWofMO365p8sDAAAAAAAAjlUcp4w8TNfLYeqmOUx/ywlHoMBgS1s/9rjaFmAUtNgnaAuHF+v2RCMYDRhxtOHAyZd6Tdu7fZzmBIBEMBoAAAAAYD8vaK+c32Y5AAPDuG7rQoAkmdZfGZqpuR5UBAAAoM8Ohg+1i2tmpJhtEoy2up08/9HfNr+b58M/wH/vD5Vbnt3ZdM6B7WDmdPOyuQMb3B1f014Y9lEt3CDz3k/LHKwrAAAAAAAAcJKkhheljTvp6HU6HFiP/dVpJ3LWG1CnZRIC+wwwiFLzhQGMOI7dwInQo2C01MUccfrhRHA0RlNvfw4YAAAAADDY2u287XE5CQBDq52O61Onul8PAACAfnM7vPZtN3QcI2kq13j4ajF5vv+RxjenfNsLpBvmehBohd554as6m+5gmPXc2eZlc4X6SWfmZb/u70mf+nBny06r1rt+QyoVpWufJd36fJlM9tiXAQAAAAAAAPRUaqIDaQ8A0nQYfkYnZuAAOv4Dgypt74vYNYERRyMA4HjQmgCQJH6eFwAAAACwp91gNNfvbj0AAP1j2ghbmJrrfj0AAAD6zXE7m87jmhnNTTYLRtuWrLV68FLj8a+8k1C0YWP8QObd7z/8hAfCrM3pa5qXDTJXL/ed75Ne/gYp02RjPKzrbpX5nYdkXv56mVf/I5ln30soGgAAAAAAAIaDTQs/o2sm+o1tsP9S/u+m4/aD9QrUa7VPsM8MPMLrRlJqvjCA4Zfa9nNcAE6GkxHoPUBVAdBFHf7MOQAAAABgGBkvaO9rZo/LSQAYWqaN31KYPt39egAAAPRbh9e+xuG3qdDcZN6o0Y1Da0Xpyqa0Wmw83Z0LBKMNI/PSb5F94aukT/3pISY6sC3cfW/zspNXh1qbwoTMu94nW61IH/hPsr/yb1ov86a75fza/ycbVqVKSaqUpdwYAWgAAAAAAAAYbqmJDofoeUkvTWAEddiJPDVQDRhBLY+hHGOHF+t20KXdwRCz+gAAwDFodTnAKQcwGrgrHwAAAACwxw/aK+f63a0HAKB/2gnymLq6cz0AAMDQcTsIRrvnvuOvB4bKVL7x8NWi1YMXm09363x36oP+Mz/+O4ec4MA1211fJy1cf3W5m+6SSbl2M34gvfz1ktf6ez7z2n+cPHu+TH5cZmqOUDQAAAAAAAAMv7SAIsKLMOgI5OuBDsPPUrtus96Aeq2SEPp0PKaNBVIRjAaMuk7PkwEMjI6vadFdBEdjNBGMBgAAAADY00ZHyEOVAwCcQGm/41YzSTAaAAAYAY576EnMP/+pLlQEw2Qq13j42rb04MXGN6ZM5qRT412sFPrKeL7MB5+QbrijvQkOhFkb15X53p+WgszewCAr830/03rZCzfIvO3fpRe69fnSN72lvboBAAAAAAAAwyROC0aLelcPACcQwWjA8RjUjv/sq0AagtEAAMBxaJWlSNYiMBo6+JlzAAAAAMDQ8oP2yhGMBgDDy2nxWwqTczL7O9wDAAAMK/eQwWj33Cdz893dqQuGxlS+8fDVbenBi43H3TovGdNGgDFOLDN7RvrV+2VfdUoKqy0KX33NZv7uN0u/+inp/g8lnTVf+i0y1z6rvWW/5R3Sc14k+6kPSx/+DenyM8mI09fKfNePSvd9O9eAAAAAAAAAGE1xSvhZHB5iRvTSRBfQ+3fApayftHXHegXqDWoSgk0JT8UBna4j2sNBl7aGInYRYMQRBHO2JPEAACAASURBVAyceFy3AhggBKMBAAAAAPZ4bQajuVxOAsDQatDJvs7cQm/qAQAA0G/O4YLRzFv+ZZcqgmEylWs8fLUoPXSx8U1Dt84TijYKTCYn+5Z/Kb333ekFm4RZmxvvlG68s7NlP/fFMs99sfTdP9bR9AAAAAAAAMBQilMSHWxKaNqJR+fX4cC66qvUfYWgCKB9rfYJgtGAQRRzOAPQDNeUAA5hQK8G+qdlGzpynwhGRItejgAAAACAkeK3GYzmEYwGAEPLtAhdOHW2N/UAAADot8OEgl93q/Tcl3SvLhgaU/nG59uXN6S/fKTxNM+a72KFMFDM5GwbhbjNAwAAAAAAAOiJtNCTeJiD0QAcXVrAYFqgEp2YgToD2/GfYDQg7U5jgtGAEUf4GXDype3Hx7iPp8aG05QAqOGOWQAAAADAnraD0fzu1gMA0D9Oi68MZwlGAwAAI6JVMNrkXFLmBd8g83Mfkml1HgVIOjvVeHgYSxfXG4979rkW4cUYHpNzrcvQ1gAAAAAAAAC9EacFo4W9qweAkye1B3dvOpgDw6HFPtGvfcYSkNo+2rVRlHYaDWDUcVwATobBuG5ttSguoYHRcIifOQcAAAAADD2vzWC0Vp3DAfTHjXdKj3356uHnbup9XXBiGWPS/8txbqFXVQEAAOivINN83Ne+Uuan/0CqVmQy2d7VCSfebfOHKx940n23d6cuGECTM63LGILRAAAAAAAAgJ6wacFohwlEoZcmuoHtarClJcJ0GJoGjKRW+0S/gtFIfeo6Ui5OtJjVB4w4GgEAAHB8uGMWAAAAALDH99sr57ZZDkBPmTe/o/Hw73pnT+uBIeA0/9rQjE30sCIAAAB9dN1tzcflCjKOQygaDm0sa3TNdPvl77tdmsiZ7lUIg2VyrnWZlOs1AAAAAAAAAMcoTgk9sWHv6gF0gkCZHkj5/5u0zz91HGFLQJ2WbdkABqMZ/m8XoyFt74s4nAFoiusU4CSwqefhvduPW14NjFyT0uIPHr0PBCOCO2YBAAAAAHu8oM1yBKMBA+ml3yrd84r6Yfe8QnrJa/tTH5xcaTfnZPK9qwcAAEAfmak56ZpbGo+7454e1wbD5PYz7Zd97XO5cX6knDrXurMEnSkAAAAAAACA3kjrTBhHvasHgAHVaUfxwehgDpwMg9rxn9QnIE47VeZwBow4GgEAvUFrA4wGgtEAAAAAAHv8NoPRXK+79QDQEZPJyvz4/5B5129Ib/ohmXe+T+Ynflcmk+t31XDSmJSvDbMEowEAgNFh3vzDjUd83d/rbUUwVG47036w1b03E4I1Ssz0KekF39CiENsEAAAAAAAA0BNRSviZJRAF/Ub338HWYfhZ30KegEHVap/o0/GY84D2ddyu0R4OujhlNyAYDUBTnO8CJ0PavtrD/ZgmA4BEMBoAAAAAYL9Me2E3xvO7XBEAnTKZrMzLXy/nn/4HmfveIBNk+l0lnEQOwWgAAACSpFe9RXr1d+y9dz2Z7/8ZmVue07864cS7/Uz7ZW851b16YDCZH/rF9AJp12sAAAAAAAAAjk9a6EkcHmI+J6wXZ2p9T9jf0ivbF6Snflda+/IAre9BqceI6rgTOesNqNMqgKxfbW5avQbmOAB0V1r4GcFowIjjWAigR2hugNHg9bsCAAAAAIABMjnTXjmC0QBgyJnmozK53lUDAACgz4zryvyr98j+wx+UFh+Xbv87MtOn+10tnHC3nzFqp2PLtdNSPpNybo6hZK59VvrWYQhGAwAAAAAAAHoiTgs9iVJvrcAIefg90l9/9977a18vff1vSg73WI62TsPP6NUN1Gu1TwxgMBowIqK0DGF2EQBNcb6LPrIx9121q+Ow7+NdDMFnBw3o9RHQZbTcAAAAAIA9k7PtlXPd7tYDADC4svl+1wAAAKDnzA13yNz7TYSi4Vi84DrJtNFh7tb57tcFJ5DDbR4AAAAAAABAT6SFnpD2AEnaeLg+FE2Snvod6cFf7k99MEA67EROr2+gXst9ol/7DOcBQJyy+0UczoARRxAwBsz5D0t/eo/0gYL0kZdKK5/vd43QpkG9GgDQW9wxCwAAAADYU5hsr3Olx68ZAsBQCyvNx2UIRgMAAACOYrpg9AOvaJ2M9qz5NtLTMHr45VIAAAAAAACgN9LCz2x0iBnRTXNoPfprjYd/9ee7v2wCtAZb6vohKAJoX4t9ol9tYVp4Kg7odB3RHg66tGA0MoQBAANj6TPSx18rLX9GikrSpY9LH32ZVDzf75oNOAK9AQwO7pgFAAAAAOwyjiONT7cuSDAaAAy3tLsSsgSjAQAAAEf1H1/fOvTs1vkeVAQnTzs/agAAAAAAAADg6NJCTw4VjIah9dWfazx86/GeVqMxOir3V1on8rS0GNYbUK/VPkEwGtAvqcFoHM6AEUegEgbIE/9diiv1wyor0vk/6k99TooB2VdbVWNAqtk7Lf/gUftAMCq4YxYAAAAAUG9ipnUZl2A0ABhZ2Vy/awAAAACceMYYfeNd6WVunW8dnoYRZLjNAwAAAAAAAOiJlB+VszHBaABS/h+n0/CzkevVDbQwqEkIBKQCBKMBAE6Gr/xM4+F//d29rccw4boVQI9xxywAAAAAoN7kbOsyrtf9egAABlMm3+8aAAAAAENhYbJ5hxnHSC+8qYeVwcnhcJsHAAAAAAAA0BNpwUYEoqDv6Ijcf2nroNNxaYFqwChq1db1qy1kX20fx6thFaXsBmnjAIyA1NAkjgvAiTAg+3HLqwGaFGAkcMcsAAAAAKBefrx1Gc/vfj0AAIMpSzAaAAAAcBxunGs+7p4bpJlC8+A0jDDDbR4AAAAAAABAT0Qp4WeHCkYbpl6aw/S3DDl6B/dZyueftm5Yb8ABAxqMlhaeavg/3mNBezjw4pRVFLP+AAAAABwT7pgFAAAAANQLMq3LEIwGAKOLYDQAAADgWNx3R/Ob4r/1+dwwjyboTAEAAAAAAAD0RlroSXyYYLSThiAL4MhSA2E6HQeMoFbhSmnH6m7q13KBARKnnSpzOANGHOe7wIk3IIHeLS8HelONAdLqAxm9TwSjgWA0AAAAAEA9v41gNNfrfj0AAAPJEI4JAAAAHIsX3iidm2o87rXPJfwKTTjc5gEAAAAAAAD0RFragx3mYDQAR0cwGnA8Wu0TfdpnCEYDUsPPCEYDAADtOOrVMTlgwGjgjlkAAAAAQL12gtE8gtEAAAAAAACOwnGMfur1Vwegve3FRrcvEIyGJgy3eQAAAAAAAAA9kRZ6cphAFHppoisGNCwIibT9vtNxwChqtU/0bZ8hGK1tHa8j2sNBlxqMxi4CjDjOd4ETb0CuW2kyAEgSPdkBAAAAAPXaCkbzu18PAAAAAACAIffGe4zygdEvfCRWKZRe9wKjf/EyQtGQwiEYDQAAAAAAAOiJtEQHG/WuHgBOoLTe252OA0bRgIZAHiYgFRhSUcpuEHE4A9AUDQSA4zN6LcqAXh8BXUYwGgAAAACgXhC0LuNyOQkAAAAAAHBUxhh98/Okb36e2++q4KQwBKMBAAAAAAAAPZEWekIwGoBUBKMBx2NAO/6nniOwH2M0xCmbelq+MIARwLEQGAIp+3EP93FaEwCSxB2zAAAAAIB6fqZ1Gc/vfj0AAAAAAAAA1HO4zQMAAAAAAADoibREh7RAFKAXCBsYAKb5qNTQJAKVgLa12if6ts9wHgCk7X5poWkARgFBwAB6g0toYDRwxywAAAAAoJ4ftC7jEowGAAAAAAAA9JzhNg8AAAAAAACgJ1LDi6LDzOjIVRkY9Dg9QVhX3ddp4ANBEUD7Wu0TfdpnCEg9hE7XEe3hoEsLPyMYDQCAEy71+5/eHej5GgqARDAaAAAAAOAgP9O6jOt1vx4AgMFTmOh3DQAAAABgtDnc5gEAAAAAAAD0RJQSfjbMgSj0Om0fnxWaSds2UscNcdsCdGRQg9EOE5AKDKc45ZBFMBow6jo8FwYwODq9pu2xAapKb7T8g0ftA8Go4I5ZAAAAAEAd004wmud3vyIAgMEzMd3vGgAAAADAaDPc5gEAAAAAAAD0RGonUAJR0MLI9c5FvbT13+k4YAS1akv7FSZIiCGgKGX3jNhFAADAMeAKGYBEMBoAAAAA4KAgaF2GYDQAGE33vKLfNQAAAACA0eZwmwcAAAAAAADQE3FKogOBKJAkY5qP6/o20iosiO7D/dVh+BnrDTigVVvap32G84BDoF0bVmmnyjGrHRhtqee0NBDAiZD6YwHHtx8fdTG0KMBo4I5ZAAAAAEA9P9O6jOd1vx4AgP75B29rONi86Yd6XBEAAAAAQJ20jnYAAAAAAAAAjk9a6ImNDjOjI1cFJ5Ct9rsG6KeOe3fTXgB1WqUh9C1MMOUcgf/LOx4ERQ68tPAzgtEAAMBxGNjLAQA9RTAaAAAAAKBeO8FoLsFoADDMzJt/WDp1rn7gt/0zmXM396dCAAAAAICE4TYPAAAAAAAAoCfitGC0lHGAJMVhv2uAvuo0/Ixe3UC9VvtEn/YZzgMAxSlJJGmn0QBGAee7wMnXadg3uoukOIwmerIDAAAAAOoFbQSjeX736wEA6Btz9ibp//wL6aMfkL34lMzzXyq95LX9rhYAAAAAwCEYDQAAAAAAAOgFmxZ6QiAKpPQOp7bbwWh0du2/DgMfUrcb1itQb0A7/nMeAChK2Q1iDmcAmuF8F8AhtGoyaFGA0UAwGgAAAACgnk8wGgBAMqfOSW/8QZl+VwQAAAAAsMsYrtIAAAAAAACAnoiPKRiNjt+jKa72uQJsd13XccBZp+OAEdTyGNqvfSbtHIH9uE7Hnwef46BLCz9LC00DMAI4FgInH/sxgAHCTwkDAAAAAOr5QesyLjnbAAAAAAAAAAAAAAAAAIAhFUdpI3tWjd4jtOlY2LDfNUDXpe0PaW0E+xjQvgENRksNSB3mcwRgT1owWto4AKOOBgI9RLjXidfyamDkVvGAXh8BXUYwGgAAAACgXjvBaJ7f/XoAAAAAAAAAAAAAAAAAANAPcUqwiU0LTQMkxdV+1wDdlhaMlNY7O3U6ApWAei069vcrCYH9GEg9VSYYDRh1NAIYEASWdy71mrZ3+/joBZ8BaIRgNAAAAABAPT/TuoxLMBoAAAAAAAAAAAAAAAAAYEgReoKj6HYH7Ja9g+k93H1pn3E3xgEjaFDbOs4RgNTwM4LRADRFyhF6icDyzvUoGC11MUecHsDw8PpdAQAAAADAgAnaCUbjchIAAAAAAAAAAAAAAAAAMKTi4wo9ad5L05aK0sUnpZXL0ulz0vz1Mq57iHljYNEBewR02FG8Rx3MgeHQYp/oWwhZ2jlC1LtqnAgdtmu0hwMvStkNCEYDRh2NAAZEtwPL0XW0Ju2pxL6WqzNaupTXLbNWGd/0u0rAsaInOwAAAACgXn6idRnP7349AAAAAAAAAAAAAAAAAADoh9SwlaMFsdj7PyT7mz+rX3v8euWiol6z+SfK223pOV8vvfv9MtOnjjR/HI21VltlKfCkwOuwM2m81wHb1sJdjKFj6lBJDe3pxjjgZKqEVhfWpLGsVKpK41lpLFPfJpaqVuXqTrsruU5tXMtwrD7tM6nhZ/0KaxtO1loVK1LW37ddYCCkhZ+lhaYBGHWc76J3SuWq3NiT7xCQdngnI9B7cGrSuTCyurwhXdmUKpEURlIYJ+dTxYpU3rf5bhddPf3k2/VM5Zy+tHWXHtm+SVeqc9qIan2B75e++E7pzrN9+VOAriEYDQAAAABQ77pbpVxB2t5qPN4YfpUSAAAAAAAAAAAA6CNjzI2SnifprKQxSYuSnpD0SWtttZ91AwAAAIZCnJLokBqIkjJZHMv+zPdKf/B/KZKjH7nlvVr0FzQWbej5pc9pZnlF629/UCunjIwx8kwsV1aeiZVxIq1WfW2Fniqxo63IUyUymvCqunlsU+cKZc1kQ02PuZo/ldWZ+YLmZ7MaGws0kXN0ekLK+sMbKBLFVo9clr50XrqyaRXHUmST1RhbqRpJz6xKTy9bXd6U1rYl3036807nJWOSzqYX16Unl5POpzuMkRwjGVk5+1/b8zKyyjolZZ2SYusosq5iOYo+NaVYFYWx0VbFyGrvszeyMkYykhyz93qnlDF7rzNurNlMVVk32p1Wkow9LYWfrpWz9eOMlf4qK8WPSrXxxiYfhjFWMo528ohM7R+z7++c87Z17VhJ1+S3lR0f15lzE7r92oxuvWFM3vikHG847x+11uriurRZrh++XUm2ncsbSThPKZQ2S9Lywz8lx8SKraOVcEqr4bSsNXJNJPfSs2Xyse5/xKoUSi+7zShwpfWSldl8jdy165JyJpJnQmWdbW1HeYX+nKpPRAojq82SVdaXpnLJOt3te24lu6/7985wa+1ur3Bb+7d+GklxLBvV2i/XlY1jqVqRjW0SBmltMj6sJK9lJOPImuRZjpss29pkGlkpilSNjbZjX55j5TpJoODpSUc3zvu64ZqCnnU20JnJJNhoLCPlg+EOCiyWrRbXpNVtyXWStmbn8ZVF6W+fScY7RvIcyXOlTC0QbG1burwhrWwl6891kjAo10nKViOpWLGKk9UgqwPPbQxb207auiubSfu4U7esJ03lkzZxZ9NxjbS0lXTK99ykDq4j5fykztVap/1qlOw7lTApu9P+RnGs1W3nqs8o64SaDqqqxkbFyFMxqu/mPOaHOjse6WzhOTpb/nUtZBZ1Njivs5nzOhss1p7PK9e3YLS0c4TOEqGstXrokvTAorRatJodM6pG0nbFqlRN1teF9WTdrW8n20AYS3EYKYqlami1WZYiaxRb7W4jyevkCLEzfLtqtFxMxvuuFLhJYJ0knV8z8t3kc61GyX5ayEinx7V7DHSM5Dg7x7Fk2/3sU3vt0b03WnkmSgaUv17a+vPDfyBfuUXr4boeXs1oK/RkZDXnb2vGL6tiHW2EgULryDOxPMfKN7Gm/IrmM9tayG7rTLakhWlXZ07ndfrMhKbnp3V60tGp8SOEng65OLZaLyXrNR9IfovPKS0YLW1cM6Wq1fp20obEtv65EknLW8n52cFxca29ObjIRpkt9kCphmUaTtdZuZM0/7brMILzv7AufWXRqrhZlmtDZZ2qZr2STmUr8p1kq0qOs6b+GCxz4Bi8N16SrjuT1Rvum9P1c8N1bm2t1Xo5p+3yfHJdZF1F1lXFBnq6fI0WH3q+VtZizRSk2TEj1ySf0TOrybn40mYyn4mcNJFNjjPFSnIcvLKZfH7ezrmLn5TNeNJ2VVotJsfQAcpsQp9cWJc+84Rk7ZSkkiTJVSjHxHJNJEexPBNq8vORpgvJuW0+kM5MGmX95Jw38JLzI99Nzn8dU/9cCKRckGx/Gc+okEkCrXaCrWztemynHdg9f985T4utbFRVXKnIGkdPr3mKjaNrZoyscevP5WOruLwtWyrKRnHyPo5l41iVSqzl9arCyKrgx5rKxnpiK6/xnKOiNyZXkbxCQUE20KlxozOT0sKk0ZkJaWFSGssO9nlRq/35uPb3jZLVlc3kmsiY2jVN7bomiqX1benSRnJNX6pKG6XauflqrMvrsaphrCiKFYeR4p3zcRmVYk/lSqTxwGo6b3fPnSuR0VLR1cNLrhY3rr5eai4r6adSS1xZqUhnM0f6PIBBQzAaAAAAAKCOCTKyz/u70v0falzA83tbIQAAAAAAAAAAAACSJGPM6yW9XdK9TYosG2PeL+nfWWuv9K5mAAAAwMlgP/J+2Z9/e5Lo4bi1ZA+n9mz23j/9cPOZPPx56do2l/eF+2X/4LVSpSz9zcd2h/95/qVa9BckSZvuuP6i8JK9iVbb/3tWwqyeKI1LqWf/SUjLtNnUvL+lqUykuVxVp8akXD6QF/jyAk9e4CtXep7yV35IgVNRYCqa8NY1460o65QUZAvKPmFVCJLOwTshObkgCTvy3aOFHVlrtVpMQqieWZWeWbG7r8+vWi1v7XV6fexK0glVkm6blx5fSoLNusHapDOstP9vM0oyqqXNaPzqiVLiqndCEqQkwCbNZigtlYMmY0+lTnsk6/tef7Z+1HR8RePaVsZEKrhVzQYljfuR8hlH4zlH2SAJ4ZsaczU5ESiTDRTkA40VAs1MeMoVssoErrK+NDuWbDueIznO8XXILletLqzvbDvJ9nNxXdoqRVqrhSWslR0VK0bVMNbWdqSHrxitlA7T1fIHm4+6Iu2P2fjAZ/b31r6l9mjiGWknKq838t2Z7dOSvrTzpj4oylWkCaekca+qvG81HVQ1nalqMhNrvOArN5ZVNp/R9JiryQlP2cBVLpBmC0YTub0gp7FMEojh7wvH8Nzj+dyKZavza9IzK9L5Nbu7LW2UpHJV2qokQXnhvmCwpU1pcU1aLx1LFfbpbrpHJUweW+UkBO14Ne7kX4o9Labsb5tVTw8ue3pw+bSkNzUtV/jLonyzuRuONeaFyrp2d5vIebFybrR3nHONfE8az+yE0RnlMo7GxgJlMt7uuJmCUeDtBV+4+wLhJnPSVNFVWDkl31RVcLcUOHuNvo1jXVhN2qArm9KFteT10pZUqiZhi8tbVmtFq+1yrPVS8tlf3jLaKO//vNpd70cL1CmHyWNjXyjkTiDajq2y9NiB0Mg09z9mtNd1faH2OKS1+rdWRpereV2uNm+znipJX9hIm2nSFnkKNe6UNReUNeZHKvixxrJSNnCUDRzNTbo6NZ1RYTwj33eVqQWjFIIk9GQnJCXwktCemcLgBD5GcXK8u7QhLa4mYULFShLS+dhiRV96sqIrG1aKQimKJMfRetnR4nZGq9VA8b599oy7plsyS7p9cktnphzNz2Z05kxBC2cnNTOTT23rDuYLP7Fk9cdfsPrbp6wuX95UtL2tqFxRqRSqUol0sVrQQ9VTsk3aDGAwZGqPY/Il6R0flZ43u6pX3mmUy3rKZhwVcp6yWXc3jNRzpHxgNDuWBDFlakGzOX/vemznPOg426HNktXfPiM9uWT11EpyHuQ60qnx5PpocU26sCZd2tgLj96uSg9dki5vvL/F3O2BZ6D7InmKrFTdt9mtr0hPrewv1ek22el0fu3RzvxytcdRXL3vFZyKFrLbmshKhZyjsaxRoXhZk1++Q9Onfkw5W1LWljQeb6oQbykfF1WIr1fuAaup2mnZwe+IxrPJ46ht0lPL0m/9dfpn++MfsnrBdVanJ8zuddrimnR+Odb5K2UtrsRa3HAURlYZJ1beDZUzFYXVWNU4CShbrI5rLe70szVKzsfTzsl7G+m09JlPS3e9uKfLBLqNYDQAAAAAwNUmZpqPc7mUBAAAAAAAAAAAAHrJGDMm6b9KemOLojOS/qmk1xljvsNa++GuVw4AAAA4Scrb0toRM4QP07dzeVH61NWn5b812erU/vit2DGtVMakiqQNSZcalXpR7dHEX8XNx0nyTaSCFynrxfKcvY764zmjwDPyHFsbbjUWJK+LVaP1kvSli65Wyof/4davXjz0JDiCFWdaK5pO3sSSSrVHahjNQVdvR44iZVTVuCkpMJECJ1beqSrvhrvbjO9IWd8q7yfbl2uSzteB76gUSl9cyuvJ7YKuhIUmy20UuOI0GY5uieRqJS5opaKkPWoZxtV+eEbWCZVxIuWcUGNeKN/dCbUycl2jjCflfemjTyWBhm9+7paymSQksxK7euDJsh5a8rRabRZIiEGyFR8IyaocZW62yetGXiVpcfddxpSUd4sadzdUjMd05Q/Tj5WJnRAF9FooTyuxp5VSITl+pWp/uyg4FY25FQWuVeBYTWYiTWcjZfzkHCif8zSWkTImVN63Gg9iZTKOctNTGit4ygdGWV+azu8Fz07lkuOcWzvmuU7yvhDsBYo+sWT1p18I9Rsf39Zfnc+pGjc7pjULX2nsQjSpC8VJfaKo/Zt7W378Q1alxx+Uokh/fvGUPrc2vW/smHbCZQFIn1sa1+f+4uDQg+1N63Mg18TKuLECV8q4tTbGk3zPKBcYGSNN5aWxrCPPd+W7Ru6BoFlrpYcuShfXrT71aKxKxDkyMOy24kAPFwOpuH/omDR9Y/OJQkk/l36+65pYGScJL/aMVeBZjde+A/JcyfMcea7Rp59ufm7y6/e3bvt++WPNrhWNpGzL6YfRUgffqwGDjt7sAAAAAICr+Sm/ZOLxBQkAAAAAAAAAAADQK8YYV9L7Jb36wKjLkj4raU3SzZKer72IhnlJv2+MeYW19hO9qiuAAWZrHUPMYZJcAAAYQlHU7xpo22T1u+Pf3O9qdEXVulqtulL1wIjVvlQHJ0gsV9tytW2zSZ/mdnKFgANKsadS7GlNmbZCst73+YMhevmG5YA0ZZtVOcxqJUz5YXIMva040FYc7J0DFVOLH2DVTvDRDkeRxkxZZeurLF9JwGezUND++LkHbu53FYCREllHxdBRMUzeX2zZBrVqcwhFA9C5yDoqRo608xVcRbpwqHMjdGq5Qsg3hg/BaAAAAACAqwUpX4K4BKMBAAAAAAAAAAAAPfQTqg9Fq0p6u6T3WGt3u/kaY+6U9KuS7q0Nykj6oDHm2dbaxV5VFgNi6dPSY7++995aKSpKlVXJ8SR/UsrOS8G05GQkx5ecIHm4gWT8vdc7w/eXaTTMeNrtyGlt+6/3D4tKycPGko0k1Z5tLMWhFG4kzzaqHx+HUrgpxVVp7UvJ3xluSPlrJK+wN4+d6cJiEhAWVa6el42TR7SdPJIPsP6zbDps//AW0+y8bjhtq/H75x1J4VZ93RXvvd75u6Ni7e+sMY6SLEVTC0tzas9mb5xxJS+fvN75nGwkVVb25pO/LtkOjJs8HE/yxpLtYXc+Kc/GlTKzUvZ0Ml1cldys5I1LXi4Zr1q5nfJuNlmvO9ueV5DiSm3YvroYtzZ+rMHfWwuIIyju6OIwWW/7t5GdbS4q7dvX4/rng8PCrdr6tlJUrs38KPtRl/fRqLzXTpSXOjCgMwAAIABJREFUpNx80nZ2zErVjaRd9sdVv62afdvqwe34wDa98964yT7hZmvteXZv33S82j7q1fYZ9gOMGHsMaUtH7CP+R2Ov1oY7cfR6AAAAYOTEcrVuCXIEAABAvaUywWgYPgSjAQAAAACu5qUFo3EpCQAAAAAAAAAAAPSCMeYmSd9/YPAbrLW/f7CstfbLxpj7JH1Ue+Fos5J+VNL3dLWiGDzrD0oP/ud+1wKDbH8ojG1eTNW19PkUnzyW6vRfs6CpfQFqTpCEZNkwvbxxrh5XulS/uMINtWBBPwmBqwt085JlSUk4nBxdFeaVFvR1VchXs+HtlI2TILzS5b1wvf1Bg3FVisvCCeb4kltIQtT8CcnNJAFvXiEJLXQytSC1fdunP5YM391ePcnNJduD4+9tG9lTSYDcbmDjvgBHW5VKV6TylSSEM5jZW5YTSMGUlDmVhF5KybD9wZhxJQml8ydrgW8H9sVGYYh1w9zk7zDeXpm68QeCHB0/Caxzs5KbT/aHuFoLmHP36i1Hctxer8XREEfH99nGjYLRrORqr+lv9HBrD0kmn3bwPMCRlLG7mZCy0h3VB/Q9K+/Rb4+/TkveXMd/CgAAAAAAAIDh49mqcvG2zL7/0zkzdkELwQXdlHtEdxW+rOsyT2rOX9Ksv6Tpj61p7s6flnRX/yoNdAG92QEAAAAAV/Mzzcd5R/l1WwAAAAAAAAAAAACH8KOS9v8H3X9rFIq2w1q7bYz5TklfkLTza0j/2BjzU9baR7tXTQA46Wx92FijvJuodHyL23r8+OYFHEVcleJVqboqbT/T79oMB8fX1aGJOvB+X+hiXdkD5dys5GT3jWvBWinaSgLb3FwtqHF/yNtOcGPt2c0mgXOytWEHyu9M43i1ADp338NJnt1sEqQnSdsXpa1HpYk7pLEbDyzvwLydIAmZk62F59l9IXq196XL0pd/ItlObZgs48wrk2C8uJqE45UuSXFp7+/fbc93Hqp/b60UVWX+SXXvc9ufh9cF5gYr87Zq3bDn6PP6peif6ef0dv2v9VfpE6sv0lJlWjlTVN4pata9Is9ECq2r0PoqxVmV4qymnFVNOJvKmJKypqzACXW+sqDHSjfoSjij1XBSy+GMLoTzWgwXVFHKfYBDylGka92nlFFFjonlmlCOsXJMLM+t6obs43pW/mFNByuq2EBGVivhtBzFyjhlTXprujbzlBYy57XpZLTh5rTuZrXlZrTpBdp0s9p0M9p0M9pyM9pyMqpGGUWRJ+PEMrLJs4lljJUxsTyvLMdJAvmsTTa45LSj/nUyTpI1srX3YTWjcmlcsXX2NmkZyRpNV4q6c+2y5subu9Na7T3vvm4wbrfMgXHlOKPzlQU9Xb5W58sL2o5zerJ0nSK6IGrGLGnWWVbWKSnnbmsmvyxrjYyxmnTXNO0vyzdVRdZVJFer1WktVha0Fk4o55b0rNxDmvRWJUmRdRXLUWRdVeKMtuOcCu6WfFORZ0J5JlTWKasUZ7QRje92gt7fGdqYBsMavN4pVzfsYDkrGbsX4JgchkzyemeafcHKe/NJyjk2VsHZUhR5qlpPxSirJ6vX6vHKjXq0eqO27NgRP/3hci5+WneWH1BGZYXyFBpPRZNXxQQajzc0Fy9pzl6RZyNFxlUoV5FxVZWvkslqLl5SoFJtL689HCtjrYxN1vnucLPv2bEysVXObmtel3TKXlJgqqoaT1Xjq+jltWqmtGKmku3GSOvOhObskqbMqiK5Co2n0PG05RQUGXd3e/XcUDmnqJy7LVdRrf2N5CqSZ0L9TeUFqiijyPX0TZMf1mo8qY14TBm3oqzZ1nSwrLxXVNV4KjtZXaqe0vnyWZ0vn9ViZUHnK2d1vrygxcqC1qPJfq/Cvrjb/aLOOItacC5oxluW71blulHyMJFcJ9KYtynfrcpYK8fdOxY5iuXsvDaxfKeq2WBFgVNRJQ5UijPajMa0Gk7p+x/+haZ1ePP8+/TiyU/Iyii2jmI5+hcP/WLT8v/2+h+Ta6KO/2bHxrou84RuzD6urbigi9XT2ogmlHVKKrhbCkxFUewpjD2Vo4yuVE7rQnlei9UFXajM60J1XovhGa3FUx3XAYPFtaFcm7QtjmI5NparSEZWjr06/Hj/8a7ZsMZlrtawnO10/kcYZrs3/07/xiPN/xiXeaR12aIeRlZnwgvJcTpa0mV3TkverGI59cfj/Y/aedT+x1PeNfpc9rkNajU6Jpw1FapbqhpfK2Z6d3heRZ3TeU1rWTmVtKgFhcaTr6oyKmtaKzqly/JVVdX4qhpfm2ZMrkJVTKCcU9K4u6EZd1m+qo0X3uZXK313Eup5EuooyQ0i3Tr9oG7JPbJ7nRZZV7F1VLG+lp+a0Xo8qbLJaNWd1OXsKVUqvqoVX2Wb0ZYd25tOyXSRXIXytBkXVLYZlW1yPVeM8wpMRb6pyjXJcWr//u+Y+Ko2oRjntRQ3Dsufcy5r1l3am17xzjcIe++NlatIU86qPlJ6Repn8WL/E7oYz+tCPK8NO9GFT3v4OTbSdLSinC0pF29rLrqiM+FFzUeXlIuLchTLtZEc2dpzLN9WFdiK1t0JLbszsjIK5Sljy8rHW5qM13R3+cu6PnxCp8PLKtgteUrOdzwTykkuyvdkJOcfNWnjJMUFV8Zsdf/DAHqMbyUBAAAAAFfzg+bjPC4lAQAAAAAAAAAAgG4zxuQkvf7A4J9sNZ219kFjzAclfXttkCfpTZLefbw1BAAAwFXi5p3TRsblv+zevC/8ryPPwkgD0ZvKuFJGJb1m+oN6zfQHj33+1kqb0ZiKcV4r1WldqJzRYuWMLldPaSWc1uXKnJaqc6paX5F1FVpPVetrKyqoFGdUsYFKcVYr4bTWwklVbco9hV1gFOu0f0nnMs/oXOa8zmae0Zngot71+I82neZnb367vvvse5RzW4eZWkkrflZPFqZ1PjeuVT+nNT+jNT+nz/oZfdyfVbyblhdJKtYeiVzt0bgLc+9sSprfXNJrn3lAt24udWUZ5TjQA1t36JnKOVViXxUbaDvKqRRntRZNark6o2Kc01Y0ps1oTOU4o2KU13I4rY1oXNU4CfdbDadUttmu1DFNzinqXOYZnQ0WNeWtKu8mHZYnvVVNeBu7ndfng4u6Nf+Qbsw+Jkf14SpZp6RZf6ntnErsiayji5V5bcfJNrMeTmg9mtBaOKFilNdmNKalcFYr1SmtR5N129BSOKONcFxluxPaNN16gV0w5a3obHBe5zLnNesvKeuUlHW2NeZuyTdVeSaUb6oquFtaCBZ1NrOohWBRc/6VpOO79VSuBeDN+kua9Zf78nf00zfrD49tXpthQYuVBT1TPqfNaExV6ym0nio20EY4rooNVLW+qrGvrbig7SiXBFjUjnXlOKutqKBKHKhsk21tK8qran2V44zWokmtVKd3gzOsjpacOudf1kKwqNP+ZeXdojJOWVPeiqa9VRXcLY27Gyq4W/qeB3+l6Tz+53O+Ua+Y+eiR6tEuI6vve/g/NRz36pk/0RvnP1A3LOds67u++qtXlb0z/yW968Z3daWOhxXGrlbCaV2qntZydUZbUUFr0UTt+JXXRjietD020FZU0OXKaV2pzqlifVXiQNtxTuvRhLajnLbikxv0+Lyxz+o2/6u6LfOgAqeinZQNR5HOTTyj08FlzXpLUuxpKZzVI9s364ubd+h8ZUFL1RktVs5osbqgbZvvvA7B5/Q1wWfkmVCBEynvVRSMbSjrlHRz9nHd5l+W70ZyHCvXsbXnWK4Ta9pbVd4tSYolVZScn+0LnG52kG4QstXcYcoe1iDUo0t1ONRnfBiD8Jntm7cxkuPuvm68xbWux+VNV//PxTfrgeLtKsdZFaO8NqJxleOMSnFWG9GYqtZXaD1F1lXV+loPJ1SMC8f1Bx1KwdnUddkndW3maVkZXaqckiSdCS5qIbOo+eDibrBccoxb1d2FL+lscD4JSlUtwNNEmvTWNOmt9+XvABo61e8KSD/xxDv0rx/7D3XDfuT6d+vf3/jOQ83n3Cef1GLlbMNxB88lt6J88h1ROQmTvVQ9ra2ooM1oTBvRuLaivFbD6eQavnYdsx6Oqxgn12/FKN+Xa/v9vmHsY6paX8U4p0fLNymUp8BUFJiKTnuXteCd11lvUWe98zrrnlfO3VY5Ts7lKllPvlcLJS8GmgrPJwH52QuqWl/OTBLy7IRGrvHkulY5r6wZf1WOo9p5R60ipvaPkSQrlUtSaas+zGzntetK2bwUb8vs/ADEMXNeFsleV2xdEDhhBuCrfAAAAADAoDF+pvlX8i6XkgAAAAAAAAAAAEAPfKOk/T3N7rfWfqXNad+rvWA0SXqdCEYDAAAARoYx0ri3qXFtaj64pNsLXz3S/KxV0uk0yms7zimsBdFUra/NaEylOKtKnISpbUaF3c781VqoyEY0vjtsJyRoMyoosq62ojFl3W09u/BFPafwBd2Ue1QLwaJ85+qOon+9fo8+tPzqhnW86Zq/0eMT45LGG44vO66ezk/qyfyUnihMacPvb0fe4/LI2Kx+/rYXa7KyLefAnZ/GSjOVoq4vrur6rVVdV1zVqfJWXR9dK2nLDbQaZLXpBbINYh6yk+f1nPAxTVVLKoSVjmOCynGgShzsBhgthbMqxVlV42TbSALWCrsBRUlQX7Zue9uK8irbzG5YRGS9ZB7W143Zx3R34Yu6LvuUzgbndTZzXhPuOoFmfeSaWGczi8cyr8g6u21NOc5oI6qFYMX+brBjMc6rHCfhRltxobaNJIFYv/D09+nJ8vUN5z3urus1s3+sWf+KnlP4gp6Vf3h3Gyq4dCzvp5LjadXPat3PKNoNrFzTvNY0X3vnx5GmqiVNVkvybdxsVh2xVrvb0FZc0Fo4qZVwWhlTVmg9bUTj2ojGtRpO6lLltPJuUbfkHtFdhS9pxltueCxr5Oef/n59pXhHw3G+c3zBu7GkTS+jNT+rbdfTWFjRVLWkXFSVkTTlrTaddtrfG2clbbu+vvbcn8t/qKxqnKkr++2nf/vY6nxUnhPpVHBFp4IrR57XTju0P/RzJZyuBayNaTvO7YXLVqe1Fk3W2qxAxbiwex61Ewy5E8a2Ewq5FRU6Dhp5TuHzGnO39Mn1F9UNv2f807r/BS+SY44eHGWttB5N6Ep1To9s36xLlVM6Xzmr+9fulTFW096yilFh9zMoxVmdDc7r6yb+Sv9g7o90ffbJo1XgeHdv4PCio8/iVCC9/dqfP/R05Xhvv9oJAj14vZWcZ/vajnPajMbqzrslaaUWcpScR9dCRWvTVa2vxcoZXanO6ebso3rFzEf0mtk/1j3jnz6W9gNAY++47qd1Jrig/7r4T2Rl9NYz79XbFt576Pm4pnkDlQSi7im4Rd2ce1Q35x499HJ2FKOcyrXzv51r9qpNrstWwymthlO16/jkPDoJmC3sXsfvfC+0HM5oK8pruTqrDy2/Sp4J9ZLJT+gPll7bdNmPvfCmo59TdMoqPQPTUf3/7NeJpGjj2Kt0kMl0HmILDCp6swMAAAAArhak/Lqj5/euHgAAAAAAAAAAAMDoetWB9x87xLR/ISnU3n2izzfGzFtrLx5HxQAAAACMFmOkwFQVOGua0lpPlrnqZ/X5qTN6rDCjlSCnNT+rBx4/LS03Lv8/br9FhbHZntRtEK0FuYbDlzN5PTw+t/s+F1Z0zfaaQuNqrRY2FDpu28tx41iTtQCiiWMJISrXHpK0F7rjSpqJYy2UNvT1V56QF3e2nKqSv821sdzUHsytxZJC0/iz2nY9rflZrQVZrflZrfrJc7nJjxF7cayJsKyJ2uc4US1rslrSeFiWFx89fMLIHntAVL+5JlbBLe4GlZ3R4b7iyDol/fOHfqnhuD9/3n16wfhnj1zHYWclVY0jNQhQbKbqOFr3M1r3kvZm3c9qrfYcN0gtjGW06QVarbX7zfahZgphRZPVkqYq28lztaTJSklT1e3d17movbAySbt/qqNQ41rTeLCma9ReEIOVVFF77WujUMrdKjihKrW2xxqp7Hi7n+H+z3PL9WUbfKZV42jdz2q11j7F5up4Sz8ONVUp6TH3JqnJzzJ8/Loz+tLZr0/auCCrqpOsm5fm/rP+7E+/T3GU9DG4+fq/lvPyv9J7dI+8LrdD+bCqid1jUnn3+JSNQx1Hjo+jWJ7dm9FOO5Ss1jWdyRz/V63FKKfIurWwtXFFcndDHiPrqmp9LYcz2o6yCpyqCu6W7sg/oNPBZUnS/1x+pf794/9Wq+GkXjT1l/rRG9+l0Gkv0rTVsdIYadJb16S3fqQwFWBQ7M+32WmHrdn3WtLOgcDIyrPxIY6Ax6NqHFkZGTdSzt1STluaziwdej4H27M0SXCyr3U/q6/4c3XHkC2vcV8zY+1u2ObkvmPvRLUst83ldi5ZY461MrXX5CLjpHCM1Xcu/Lq+c+HXjzQfk3L8Dkyl6bhO5d1t5d3tY5/vju/56i/pPYvf3XDcmeBC15Y7iNK+h9jPs1HHIfbAoCMYDQAAAABwtSZfVifjCEYDAAAAAAAAAAAAeuDuA+/vb3dCa+2WMeYLkp6/b/Bd0iF7DePkKlwrXfu6+mFORgqmJRtK5SWpdFEKN6W4IkUVyVaT1/vfR2Wl//x5Hzi+ZFxJTvJsXKm62nIyLbxKcoKkvJuRbCy52b1hxtk3XycZ7uWT91LS+3PXvte7wxuMbzhNo2lbjW+xbK+QrF/j7NV/5yEnKefmkr9JVrK1bn823vc+3hu+M86GUriVLNO40iffpKae++OSPy7F1WS7slGT+cf1y4/LUulSsj1GpWTdhMVkHlG5Vj7am5+NkjpF3et0gwFgXPVkP2q2X6eNNyZpQ9OM3Zw+fr/NR5qP88Zqn8W+/VY68L7JOBvtGwYAJ4OVdCE7rs9PndHnpxb0RGH6qjKNQnR2ZDJbXazd8Nj2Aj00fqrj6SPH0XImr+VM/hhrle73rrnryPNIwhrKu8FIO+E5hbByVXCClVRy/STcrBYCsRMi1yhQaFDlwqqmqrVwqNrfPB6W5RxDOIXRXgDVzvwDGx290l1078Snmo67Ift47yrSIyXH2wvpC7Iquoe7/zsyjtb8jFaD3G7Q3/4wrEG15QXa8gKdz030uyqHcvHzY1Kx8bhfvPPr9N/nO2+321F1PF3OjulSvtC0zEPTU1rZF7S545bbP6lz131BlxZv1djEZc3MPaXzJq/z6t1xopsahe2NVSupASTHJ649qpIkz8b6/9m783jJ8ro++J9f3bpLr/d2T3fP9Cw9PdMzMMzgDMIExhlAlE0kiqABxW0QlxA1atBgngSRPGqSx0fNo9FHY1BMFMWgAhoVFyQoIxhZwi7MwGzAMFsv0/tdTv6o27fr1l36LlV17vJ+v16nb51T5/zOt06d+lTd6qrv3Tl+OteN3znTVPNcI7MjgyO5Z+tYTl96X1721Nfk3m1jOdEcyk/mlmXtcc+ZE7ni5NFcPj1dcepoRsdPpySZTMnRweEcHdySo0MjOdYcXvS1Wa+ca1ZVlY75ZHpZafsNuX29tmZX082vZjXFKud+y25fr8xtnlU69tm23sw+Z/bRUU/Hesl8jbgy0+Sw6lhv1j47jsF86y12DOZb78LHYP7btvgxmHvbltKM7EK3rX29C92uObd/Fedtc2oyA1WVZjWZ5lTr50BVpTk1mWZ1bn4qg1NTGaim0qym0pya/llNZaDtcvvyUs1ukfmJnXvzkbH9KVW1qnrbbZs4m9Gzp2aal42Nn87g1OT069zWa4Zjg8M5OjiyrMbJa1GZbpLWqDqaplVpWz7dRK2q0phzXfvyKq22sK11zi2bO98xdtt1jY7xZq/bXu+5/XTUNM/2i92mxWqYtd/FrutcPt/tXaimWTV01j+930Vuby+b202mzJznR4a21PZc1k0lydlFHrNDje43Ruu1b7r4zfM2Rrti+N4Mr8Pbs5gqyUPD23Lv1rE8PLx1+ne41mutI8t4H+J1H/2LXHzG+2JsTGv7XQgAAADqMTS88HXL/MtbAAAAAAAAwIo8oWP+zmVuf1dmN0a7Psk7V1UR68e+Z7ambpiaPN80bXK6cVo1fv7y1NlWM6xqPDn3lZVS5l6eb9msy2k192pua2tU1sispmUDW6abfXW4+3eSO75p8dvx5X+YrPEvcK95izVGu+a7k+Hd/avlXOOnyVOtRmoDQ62f1URr+dRk6/LUmVYjtfYmUue2n9NUquO6zuUTJ843zVto+87LD70n+dTPz38bDrw02XNrWyO5tulcQ7qpM20bdDbrKt1dvtB6ze3JyN5kcDQzzQjbp8HtSZluWNhoW94YaTUXbG/Qd+5naX2dcOZnSqtRYTXV2ufAIn/Qby04fnfy9qsWvv5rl/GU/dYrkpP3z3/d8+5Ixr5kWaXNqKpk8uT57J48Of1YOPfYmGxdN/HYdDPCx5Lx4+fzfvxYqwFcNZFMTZw/N6fOTjfVnGgba7w1dqPZug8nT08/Xkpbprc3tJz+OTSWDO9pbX/2yPS+p5tynnm4NTW3thpiVpPT2zbPjzcw3Npu6szcx965xoztj8v2ZVPj083jYG061mx9SbcuE9PNcI52NMM50RyaaTDQC6cGBvPI8MINWZIkZeEKmoP1fjm2JNmW4TTan9/aX/eeW6ltvlEGsiPDGX34AzMNpkbHT2fH+JkMVFXrefa230mSTFYTee+xd+bDx/+u3zdtQ6hKyWODI3lscCT3bYxePRd0qjmYU83BfKFPDaK2TJzN6PiZNHv8HDs4NTXT0GP07OmZ5m9bJ8bnbXJ3ojmUo4MjefTiU9nzyc/n4ROXzlrnyv0fzi/feOPM/NaJ8Vx+6miuPHEkV548kr1nTnSlMcN4aeTo4EhOLbNB2Xij0dbg7Hwun1jgD12PNwZydHAkp5e5H9auRqN/r1svueyT89cwMJ7RXQ8suN2WrY/lykPv71VZtVrLzfZKVWXbxNk0UuVYl147Pjy8LQ8Pb8sHd53Pyu3jZ9JIlceaw11r0ATr1URjIBNJzvSpRUc3H3MzeZbRro25VrUa8JVMiax1aznN7ea/bnbjtiQ50RzOscGN+Vx2ornw++lvPHRT/vSiC7+OGZmcyL4zJ/LMhz672FsvfXFg+KO5ePgL+eKZ/bOWf9Wlb8/9W3Zmz5mTGZmaqKm6CztbBnJkaCRn5vk/ySrJ4aEtuXvbrtyzbSz3bh3LyUXuP0BjNAAAAOYzuEhjtAX+Ix0AAAAAAADojlLK7iSdHYbuXeYwnetfu/KK2NQaA0kGWk2L1up/F1/ynAuvoylabzUv0MSk20ppNUhq7EgGd7SWDe3qbw1LcelXJ3f951ajqHaNoeSpv9JqDMX6M9CnZkWreVyda0qWPj8214uqajV5a2+YNt/PqkoylRz+UPJXz59/rC//o2T4ounH+bmma0tovjjrusxdt7253XKMH281k2sMtWpvvx0zP6enieOtBnNl4Pyymds+dX7dmSaTU9MN8dp+ThxL7n/bwvXsvrljzOp8A72p05ndOLExu3FiabTWO/6Z1lgH/kkyvLeVnWWw9Vgc2ddq4HjBBqznLmeB6xqtx0xjsK2hY1uj1jRa1zW3JZ3tccpAq4nf+GOt+YGRVnPBieOzj2P75clTycSpuefC9DH6u/GP5PfP/q/l3febxA03/lnu/czNc5bvHF24WctqNdLIzuaujDZ3Z7S5KzsHdmWsuXvWstHm7uwY2JlGGVj+Do7fnbxvgYabQ2eT7edv75N23JK7T30qf/jwm/KJkx9a2Q2CHjnVHMqpNf6F7qc+/w35s7f/SCYmWq/nRrYczc3P/m+5f+vs1+Wf2rl35vKWibOtBmmnT6SxjPaQZ6cblJ1raLZYswJItXCDjkajf00ftm47kv2XfyxfuP+GWcsPXPWBDA6eWWAr6lKVkuOLfe+jS/qxDwBop7ld9zy8bUsmti7t/yHu3LEnd+y5sscVLc0z9v10/vSt/yrHH2v9bnbVte9N9YL35KcGvyKNaipXH3801x97MDcc/WIuP3WsK82sO1VJHh3akvu2juX+LTsX/J3u9EAzR8/9YYHBLTnlu7fQVf6HHwAAgLkGF/nPd39BDAAAAAAAAHqt8xPqJ6uqOrHMMR7smB9dRT2wto3sSR7/Q8k//FzdlWxeDV/yn9fg9uTgtyZ3/ers5Vd+k6Zo69nAli4OtshXtgY0NeuZUloNwZbqkucmY1+SHPnI7OX7nplc9sLu1rYevWmR8/irNlFzr+bW85eHVvnS+9Gp5KFNdOyW4bIDH8ng4KmMj8/O4quued+Kx9w7uD/7h69oNTkbmN3sbLS5O9sHdqys4dlSNbcva/WDWx6X77/ix3PnyY/l7Q+/KXee+liPCoON58BVH8rLXvGDue/umzIwMJ4rDn4oW7cdXXSbU82hfHLnvnxyZ5+KhA6Ngf41RkuS57zwZ/Onb/1XeeiL1yRJ9l/28Tzreb/U1xoAAOiOfr+W7JY9++7JN3/Xq3L4kcszsuWxbN12ZOa6qdLInTv25M4de/L2y67PaIZzfS7KNRlLM6XtDxBUrT/4UBrJPW9eeGe7n5zsvC6ZOpvx8SP5fDmV+4YGc3/jTE5lvPc3thu+8i+S5t5kZO+F14V1RmM0AAAA5lrsr/o0/SoJAAAAAAAAPdb5zfhTKxijc5sdK6xlRillX5LlfqL60Gr3C0vy5J/RGK1OZZGmOJvdzf+p1YDpnt9JUiUHXpo82bm6rvWrMdrg8hrl0EOlJE/9L8m7vyY5Pd17dusVyc2/WG9dsAk1B8/meV/7/+Qdb/+XmZhujnb5gQ/nqbe+JY0s3ryspGS0uSsHRg7lypFrc+XINTkwcihbB2rO2xXm/TVbb8gPXfETeXj8gdxz+s5MVHO/7Hxy6njuO/2Z3HP60/ni2ftTLWHcRjWVlIEkjZllVaZSLWlrWPt27HygV20BAAAgAElEQVQo19/4F3WXwQrMn/NVpjLV91q6riycsQON/jaz2Lb9SL7+W16TY0f3ptGYzPYdj/Z1/wAAdE+jz68lu6mUKrv33HfB9Y7mTP42n8/f5vPTG+b8z3NvbVx98wVG+VRr3ZmvzZ5Zbrn12nZFMnRZ3VVAT/g2OwAAAHM1Bxe+bsCvkgAAAAAAANBjnd+MP72CMTobo3Xj2/7/LMnrujAOdJ/GXKxVA0PJzb+QPOXnk1RJaVxwE9a4xiKfq+mmrjZgY9X2PDX5x/+QPPjXSaOZ7H16MrjqvrPAElw6dGWesO2m7B7cl9Hm7owe2J3mrSfy8XuGcmD3YK7f/6SU8qa6y1y5xiJ/yHaxBppJSinZO7Q/e4f2X3A3pz//R7nv72/PPVvHcnhoS4anJjI6fjpjZ0+3fo6fzo7xMxlIldz628nBb5zZdqqazGOTx3J04tEcmXgkRycO58jEIzk+cSxVDxoSHZl4NB898fddH7cfGmlkZ3NXxpoXZbS5O9sHdqR03I9VqpyeOpVjE4dzdOJwjk0eyempkzVVDP2ztbE9O5tj2dncldGBXRlujMxeoaqS05/PyNkTGdv2uIzuvDGjzd3Tj6ddGWwMzTvu6alT0/n0aI6MPzJz+ejEI9M/W/NTmezDrey+xsD8zSxKGtkxMDpzTHcOjKZZ5v6uUtLIjubo9LHcPXNMtzS25bHJI+eP3UTr2J08+0hy+gvJnmay5ZKknP/uwNaB7TPjnMu5HQNjOfnR1+XoXb+UI0MjOTK4JUcHR3J8cChVSrL/q5JtB1Z3EO78z3MWTZaSx5rDOXbxbTk6eTiPTRzZGE3yANaYHQOt55DR5q7sGBhLs8z9Ttl4NZ5jE4dnnndPTh2voVJgPgMLvJYEWC98mx0AAIC5hhb5oM1iTdMAAAAAAACAXqj6tA0AvVJKLtTchHWim40YFxtLE721Z2gsufxr6q4CNrySkqu3XJebtj8tN25/WvYt0PTryif2ubBe6VOD35HmWK49/kiuPf7IhVdubp012ygDGW3uymhzVw7kUI8qnOvI+CM5MrGEei+gSnJq6kSOTjdqONfY7ejEozkzdWbebQbL4HQDiPONhEabu7JtnkZnSTJQmtON0HamsYLn8LNTZ3Js4nCOTz6Wbvw6f7Y6k6MTh9saRLWaHp2cPLHqsZNksprQ0G0d2dbYke3N0TSy9HOzJNneHJ3VAGuseVF2DoxloAwsfZzSyPaBndk5MLZgY7PVGmlsycjQZbl46LIF15mqpnJ8usHjZLWE5hBVlZy4Jzn7SDJ6QzIwcuFtVuHPB/flyALX/eCB12Zs2/mGXwOlmZ3NXdk+sHNZ98V8djf2Zvfg3lWNkSSjAzsyeupoDpw6OvfKa38uufgrVreDd37vwtc97b1JWvfxicljOTpxJBPV2cXHmziV/OWz5r9uZF/y5X+YJDkzdXomQ49OPpoj460sPT3V+fco+qHKqamTOTZxZNEmfxcN7suVI9fkyk/8aq44eSQjk/Oc789/3zyjJ0cnHs39Zz6b+898Nved/kwOTzy84H6a08+TQ2WxBq+LqKaSk/cmE23Nk4Z2J1v2ZynvnZTpf0sp5y+3XUopHUvaLpW29dqvWWCs8+MtbayZf0v7CB3rzbqubdwyd+kFryvz3JZzl0qZ97r2/c+ppMyz/jzXzRq3LDDWYvdFxzYL3xeN1rXz1HXB++GCdS10P8weKUmmMpWJajwT1Xgmq4npy7N/zl2+0HUTmWy7PFGNZ6qav7HjlsbWHNr6hHzp9i+b9/qlas+z9teGE9V4djbHZl7rjg6cf9072tydnc2xDMzTCO1Czk6dydGJR3Ni8rFV1b0UVVr3T1VNpUo163KVKlPVZNvlqVSZXq+aXntm3am2dapU1VRrrOnL58euZi0/f/nc8qk5l+fse7rGqentWkumZi7PqqOjxql51pl7m8/vq1XL5OwaZ7abezvbb8+5ujaqVT+XrQVHP5qJC/z+uVCTXdaWkpKLhy7LRYMXz2pmvFDD9U67mnv6VCn0n8ZoAAAAzDW4yJt6w/4aLQAAAAAAAPTY8Y75lfwnXec2nWMCAADMqzk1mdHx0xk7ezqjO56QsV1Py86BXSv6UvxyjDZ35/Fbn5gdzbGe7mdT6mh2tvi623pXxzKMDV6UscGL6i6jL4Yaw9kzdEn25JK6S1mW01Oncqyt0dxjk8dSVb3s017lZFuTuyMP/VWODo7k+GKfe06yY2B0TqO7LY2t6Wy+M5XJfOHMvbnn9J154Oz9qdZIz/nBMtTWnGz3TKOSRuY2xWqURnYMjE03NNudnc1dGWqs42YPXdIojexsjmXncp5ftj6+dwV1aC7S6Oqa7YeyfWSNN9lerCHHQH+eUxqlkR3NsaW9hqimkpMLtaLbnmx5XFdr66apaionJ4/n2OThHJ04nGMTh3OmOpOLmntzYOSa7GiOtlZ812sWHmSR2/ekHbfMXD4+eSz3n/5sHhp/IANlIGPNi2YyaGtj+0wzqpXfmPHkgXcmxz6e7P5Hyd7b+tYwFuitocZw9g7tz97M3+Sa9WVu87bOBmtzG8bNadDWNn++udu5y53N3dqbwc1u2DZfk7jFmtu1jz3c2DL9PHZRxgZ3Z1tjx+qfy+r2plb9bzx7asH/BH7J5/93Rpqnky/96WSe93Q+d+buvPfYO1PSSLWBG+GtNRcNXtxqZjtyba4cuSYHRg5lpOE7uzAfjdEAAACYa3CRv8i1dUf/6gAAAAAAAIDNaa02RvulJP99mdscSvK2LuwbADagdf7lO0iS0ScmRz86d/nup/S/lg3iy8demNtGn9vfnR75WPLntyVpJdPw1MT5hHrKS5N9r+xvPXTfwDIaoy1nXTa1kcaWjAxtyb6hS+sp4O6PJ/e+OROlZLy0NQm76KnJV/5ZkmSwMZRmGVz20KenTuW+05/JvafvzOfO3J0zU6eXtX0pjewc2DXTROjczx3N0TSySBOpecYZLiPrv2kDKza03r8FvpzGnMs1OLqy7RZr5LbGNUoj25s7s725M5cOX9nTfW0f2Jnrtt2U63JTb3bQGEwufX5rAmDNKqWkZKDVlNdL0rVl3zOTB9+96CrPf/gf0mxMJhe9ZMF1vm3/P8/41NlMVOPdrrDrHhl/KB8/8YF87MQHctepT2RqkQbD3bR3cH8uGbo8zXmayw2UZnY2d2X0+GRGf/EnM3rkTEaPnM7242dTzvXafvZL0/jh/zSzvubVsHTr/VdiAAAAemGxv5y2dXv/6gAAAAAAAIDN6WjH/NZSyraqqk4sY4x9HfNHVllTqqp6MMmDy9nGF3dhAynNpJqouwrYWK78xuTj/77uKmB1nvAjyXu/fe7y6364/7VsEIONwQxm+U18VmV4TzLleX7NOfAN3RtrOY1petnEBrrp0CuTe9+cZlWl2f67yqHvSQa2rWrokcaWXLv1hly79YZVFgmrMzhw4XVqV1ULX9dc3WMxSXLTv0v+97+au/xJ/2H1YwMArFfX/fAFG6MNlMlUD2+5YE+7wcZQBjPUvdp65PKBbbl85GCed9FLcmryZP7h5IfzsRPvz12nPpGTk4v8N/rpLyaZmv+6kf0zF0uSnc1duXz4qlw+clWuGL46lw0fzJYlNJCvpu5J9XffN/+VE400Vvk7KmxWGqMBAAAw12KN0bZojAYAAAAAAAC9VFXVI6WUw0l2tS0+kOQTyxjmyo75T6+6MGBzu/kXkv/1qrnLH/8D/a8FNopDr5y/Mdr1P9r/WmClDnx98plfTx581/llFz87ufxFtZXECgxsqbuCze2G/yv52E/NXX7tPK+9VmoJX+Jd0bpQp4u/Mjn0Xcldv3p+2eUvTq58WX01QZet+z860I3GaAdfnvzDf5xuaDFt25XJFS9Z/dhzrPPjfc7Wy5OT99ddBQDQS/uf13oPbjFTSfXpXRvlFc4sWwa25kk7bsmTdtxy4ZXf/XXJ/W+b/7qXL9Lkdzmaa7+xHKxHjboLAAAAYA0aXPivTZatO/pYCAAAAAAAAGxanU3Qrlnm9ldfYDyA5bn8RcnQrtnLGoPJwW+upx7YCHZckzzxtbOXjd2YXPdD9dQDK9Hcljzrj5NbfqPVLPPL/mvyrD9KmhptrSuDowtft/vJ/atjs3rc9yc7nzB72TXfnYzd1L19NJfR7Kwx0L39Qi81BpKn/kry3L9JnvxzybPfmTz9d5OBRf5ANNB9izU/60azzW0Hkuf8dXL1K5JdX9pqiPicv05G9q5+7E6X/ePuj1mHm/7d/Ms14QaAjWNguPUe3NDuBVep/qiZfHF7H4tao677F/MvP/TK7u1jyO+h0AvNugsAAABgDRpcpEP9li781SYAAAAAAADgQj6a5Na2+S9L8odL2bCUsi3JjfOMB7ByW/Ynz/6r5O+/P3nk75KxJyY3/kRy0T+quzJY3278t8n+r0oe/J/J9kPJpS9IBv3hQtaZ5pbk6m9L8m11V8JKNbcmF39l8sV3zl4+ckmy58vqqWkz2XJJq7HTfb+fPPapZO8zWo1ZSunePgZGlr7u0EXd2y/0WinJ3ttaE1CPK74+ef8/n7t86+WLN01bjp3XJrf8WnfGSpLrXp188mfmLr/2Vd3bR50u+5pk21XJic+eXzY4mlzl9ToAbCgDI0lzcOHrP99I9lf9q2et2nNbsufW5OE7zi9rbu/ua7/mIt/HBVZMYzQAAACWZ9fFdVcAAAAAAAAAm8GfJvnutvlnLWPbZ2T2Z0Q/WFXVF7tRFKxpo09Mjs7TA3DfM/tfy0a166bkue9OqqmkNOquBuqz43GtxjWdDn7Lysbbe2trAqjTU/5j8s7nJKcfbM03hpOnvcFzfr8M706u+c7ejV8aySXPTR7488XX2/uMZGi0d3UAsPFsvTS55DnJA38xe/lV39bdJp/d9PgfSO5/a3L8rvPLDn1n672ljWBoNHnuXycffm3yyPtat+v6H01Gn1B3ZQAA/dcYSL7iHcnHfip56N3J9muSx39/svsp3dvHoMZo0AsaowEAADDX3suTXfuSww/OXj40nDz1OfXUBAAAAAAAAJvLO5KcSrJlev7LSinXVVX1ySVse3vH/B90szBYs65/TfK33zp3+XWv7n8tG50GKWx2T3h18nffM3f5tf+0/7UAdMvYlyRf/ZHkC+9IJk4k+5+XbL+67qropht/Innk75Lxo/NfP7w3ufkX+lsTABvDM34ved93JZ//46S5Nbnq9uTG/7vuqha27YrkeXck9/xucvzOVlP9y1+8dhu5rcTWy5Jbfq3uKgAA1obB7cmTfqp34zcHezc2bGIaowEAADBHaTRSfc13JP/138++4rkvT9m2s56iAAAAAAAAYBOpqupkKeUtSdq7PL0mySsW266U8rgkL25bNJHkTd2vENagA/8kufd3k8/9YduylyWXvqC+moCN6apvTz73P5LPvf38suteney5tb6aALphZF9y1TyNZtkY9jw1+ar3J/f9fnL2cHLZC5OtB5IH/ixpjLSa4Y3srbtKANajwZ3J09+cTE0kZWB9NBgb2Zc8/vvqrgIAoLequgvYHEopixzqdfDaGNYojdEAAACYV/nOH0+Gt6b6s99KpqaSZ74o5TtfX3dZAAAAAAAAsJn8eJJvTHLuT0zfXkr5g6qq3j7fyqWUkSS/nmSobfEbqqq6q6dVwloxMJw84/eSL/x5cviDye6bk0uenTR8ZBrosnN58/AdyZGPJHtuSXY9eX18+R+AzW3HoeT6H5m97NAr66kFgI3HezAAAAB0SaPuAgAAAFibSikp3/aaNH7zw2m86aNp/NOfTGn6j0oAAAAA6KkX3j7/8i3b+loGALA2VFX1mST/X8fit5RSvq+U0t78LKWUJyT5yyS3ti1+JIm/fsTm0hhMLvvq5In/Orn0+b6QC/ROo5nse2byuO9Ndj9FUzQAAGBFXnHb/L9LjAzOuxgAAGZ8yy2Lvy9dvvVf9qkScsmV8y4uX/MdfS4ENg6N0QAAAAAAAAAA1ojyklfNv/w7fqzPlQAAa8iPJvmTtvnBJL+Q5L5Syp+UUn63lPL3ST6W2U3RziZ5cVVVX+hfqQAAAADAcnzrLWXePss/8nzNlwEAWNwrnz7/a8bXPvSTyeBQ8oyv7XNFm9izXzp32Z5Lkxue1v9aYIPQGA0AAAAAAAAAYI0oj3tS8op/M3vhU5+bvPh76ikIAKhdVVWTSV6a5M0dV+1L8lVJ/kmSpyRp/9T7g0leVFXVX/elSAAAAABgRfaPlfzat89ujvbs65LXaIwGAMAFXL235Ke/YfbrxltP3pEfOvlfUn7yd1N27aupss2nvPLHkud+U9KYbuV06VUpP/vHKQMD9RYG61iz7gIAAAAAAAAAADiv8R2vTfXMr0s+ckdy8AnJl3xZSnOw7rIAgBpVVXU8yTeWUt6S5NVJbllg1UfTaqD2uqqqHupXfQAAAADAyn37rY089/oq7/5UlUP7Sp58IBloaIwGAMCFvfp5jbzgiVXe/ekqh7YczTOGhjJ8/adThobrLm1TKYNDKT/2xlQ/9HPJkYeTy69JKV7Tw2pojAYAAAAAAAAAsMaUa74kueZL6i4DAFhjqqp6S5K3lFKuSvLkJJcm2ZbkgST3JHlPVVVnaywRAAAAAFiBS8dKvvGpGicAALB8119acv2lJcmuJE+ru5xNrezYlezYVXcZsCFojAYAAAAAAAAAAACwjlRV9dkkn627DgAAAAAAAAAA6LZG3QUAAAAAAAAAAAAAAAAAAAAAAAAAaIwGAAAAAAAAAAAAAAAAAAAAAAAA1K5ZdwFsLKWUwSS3JTmQZH+S40k+n+SDVVXdXWNpAAAAAAAAAAAAAAAAAAAAAAAArGEao21ipZTfSfKyjsX3VFV1cAVj7U3y+unxdi+wzh1Jfraqqt9b7vgAAAAAAAAAAAAAAAAAAAAAAABsbI26C6AepZSvzdymaCsd6wVJPprkVVmgKdq0W5O8pZTym6WUbd3YNwAAAAAAAAAAAAAAAAAAAAAAABtDs+4C6L9SyliS/79LYz0ryVuTDLUtrpJ8IMlnkowl+dIke9qu/+YkO0spX1dV1VQ36gAAAAAAAAAAAAAAAAAAAAAAAGB9a9RdALX4mSSXTl9+bKWDlFIuT/L7md0U7T1Jbqiq6uaqql5aVdXzklye5AeSjLet9zVJfmKl+wYAAAAAAAAAAAAAAAAAAAAAAGBj0RhtkymlPCfJd0zPTiT5sVUM9/oku9rm70jynKqqPtG+UlVVZ6qq+vkkL+3Y/l+UUq5cxf4BAAAAAAAAAAAAAAAAAAAAAADYIDRG20RKKduS/Grbop9N8qEVjnVtkm9vW3Q2ye1VVZ1eaJuqqt6a5DfaFg0ned1K9g8AAAAAAAAAAAAAAAAAAAAAAMDGojHa5vLvkhycvvyZJD++irFenmSgbf73q6r69BK2+w8d8y8tpYysog4AAAAAAAAAAAAAAAAAAAAAAAA2AI3RNolSyq1Jvrdt0fdUVXVqFUO+uGP+15eyUVVVn0jyvrZF25I8bxV1AAAAAAAAAAAAAAAAAAAAAAAAsAFojLYJlFKGk/xazt/fv1FV1V+sYrxLktzUtmgiyXuWMcS7OuZfsNJaAAAAAAAAAAAAAAAAAAAAAAAA2Bg0RtscfjzJ46cvP5Tk1asc74kd8x+uqurEMra/o2P+hlXWAwAAAAAAAAAAAAAAAAAAAAAAwDqnMdoGV0p5cpIfblv0g1VVPbLKYa/vmL9zmdvfdYHxAAAAAAAAAAAAAAAAAAAAAAAA2GQ0RtvASinNJL+WpDm96E+rqnpTF4a+pmP+3mVuf0/H/EWllF2rqAcAAAAAAAAAAAAAAAAAAAAAAIB1rnnhVVjHfjTJTdOXTyR5VZfGHeuYf3A5G1dVdbyUcjrJSNvi0SSHV1tYKWVfkr3L3OzQavcLAAAAAAAAAAAAAAAAAAAAAADA6miMtkGVUq5P8m/aFr22qqq7uzT89o75UysY41RmN0bbsfJyZvlnSV7XpbEAAAAAAAAAAAAAAAAAAAAAAADok0bdBdB9pZRGkjckGZ5e9P4kP9/FXXQ2Rju9gjE6m6l1jgkAAAAAAAAAAAAAAAAAAAAAAMAmojHaxvQDSW6ZvjyR5Durqprs4f6qPm0DAAAAAAAAAAAAAAAAAAAAAADABtWsuwC6q5RydZKfaFv0s1VVfajLuzneMb9lBWN0btM55kr9UpL/vsxtDiV5W5f2DwAAAAAAAAAAAAAAAAAAAAAAwApojLaBlFJKkl9NsnV60WeS/HgPdrVmG6NVVfVgkgeXs03rsAEAAAAAAAAAAAAAAAAAAAAAAFCnRt0F0FXfleQr2+a/p6qqUz3Yz9GO+b3L2biUsj1zG6MdWVVFAAAAAAAAAAAAAAAAAAAAAAAArGvNugugq17fdvmPk9xZSjl4gW0u6ZhvzrPN56uqOts2/+mO669cYn0Lrf9oVVWHlzkGAAAAAAAAAAAAAAAAAAAAAAAAG4jGaBvLlrbLX53ksysY47J5tvvSJB9qm/9Ex/XXLHMfV3fMf3yZ2wMAAAAAAAAAAAAAAAAAAAAAALDBNOougHXpox3zN5ZSti5j+9suMB4AAAAAAAAAAAAAAAAAAAAAAACbjMZoLFtVVV9I8uG2Rc0kT1/GEM/qmP+T1dYEAAAAAAAAAAAAAAAAAAAAAADA+qYx2gZSVdVYVVVlOVOSr+gY5p551vvQPLv7g475VyylxlLKdUme1rboRJI/W/KNBAAAAAAAAAAAAAAAAAAAAAAAYEPSGI2V+q0kk23zLymlXLuE7V7TMf+7VVWd7l5ZAAAAAAAAAAAAAAAAAAAAAAAArEcao7EiVVV9OslvtC0aSvLGUsrIQtuUUl6U5Pa2RWeTvL4nBQIAAAAAAAAAAAAAAAAAAAAAALCuaIzGarwuyeG2+VuT/EUp5br2lUopw6WU70/y3zu2/5mqqu7pcY0AAAAAAAAAAAAAAAAAAAAAAACsA826C2D9qqrq/lLKS5K8I8nQ9OLbkny8lPL+JJ9JMprkyUn2dmz+R0le269aAQAAAAAAAAAAAAAAAAAAAAAAWNs0RmNVqqp6VynlxUnemPPNz0qSm6en+fx2ku+qqmqy9xUCAAAAAAAAAAAAAAAAAAAAAACwHjTqLoD1r6qqP07yxCS/nOTwIqu+N8k3VFX18qqqTvSlOAAAAAAAAAAAAAAAAAAAAAAAANaFZt0FUK+qqt6VpHRhnAeTvKqU8gNJbktyZZJLkpxI8rkkH6yq6rOr3Q8AAAAAAAAAAAAAAAAAAAAAAAAbk8ZodFVVVWeT/FXddQAAAAAAAAAAAAAAAAAAAAAAALC+NOouAAAAAAAAAAAAAAAAAAAAAAAAAEBjNAAAAAAAAAAAAAAAAAAAAAAAAKB2GqMBAAAAAAAAAAAAAAAAAAAAAAAAtdMYDQAAAAAAAAAAAAAAAAAAAAAAAKidxmgAAAAAAAAAAAAAAAAAAAAAAABA7TRGAwAAAAAAAAAAAAAAAAAAAAAAAGqnMRoAAAAAAAAAAAAAAAAAAAAAAABQO43RAAAAAAAAAAAAAAAAAAAAAAAAgNppjAYAAAAAAAAAAAAAAAAAAAAAAADUrll3AbAGDLXP3HnnnXXVAQAAAAAAAACwKvN87mFovvUAoI98Rg8AAAAAAAAAWPd8Pq9/SlVVddcAtSqlfG2St9VdBwAAAAAAAABAD7yoqqq3110EAJuXz+gBAAAAAAAAABuUz+f1SKPuAgAAAAAAAAAAAAAAAAAAAAAAAAA0RgMAAAAAAAAAAAAAAAAAAAAAAABqV6qqqrsGqFUpZTTJl7ctui/J2VUMeSjJ29rmX5TkrlWMB7BccghYC2QRUDc5BNRNDgF1k0PAWiCLgLpt1hwaSnJF2/z/rKrqaF3FAIDP6AEbkBwC6iaHgLrJIaBucghYC2QRUDc5BNRts+aQz+f1SbPuAqBu0+Hy9m6NV0rpXHRXVVUf69b4ABcih4C1QBYBdZNDQN3kEFA3OQSsBbIIqNsmz6EP1l0AAJzjM3rARiOHgLrJIaBucgiomxwC1gJZBNRNDgF12+Q55PN5fdCouwAAAAAAAAAAAAAAAAAAAAAAAAAAjdEAAAAAAAAAAAAAAAAAAAAAAACA2mmMBgAAAAAAAAAAAAAAAAAAAAAAANROYzQAAAAAAAAAAAAAAAAAAAAAAACgdhqjAQAAAAAAAAAAAAAAAAAAAAAAALXTGA0AAAAAAAAAAAAAAAAAAAAAAAConcZoAAAAAAAAAAAAAAAAAAAAAAAAQO00RgMAAAAAAAAAAAAAAAAAAAAAAABqpzEaAAAAAAAAAAAAAAAAAAAAAAAAUDuN0QAAAAAAAAAAAAAAAAAAAAAAAIDaaYwGAAAAAAAAAAAAAAAAAAAAAAAA1K5ZdwGwAT2U5PUd8wD9JIeAtUAWAXWTQ0Dd5BBQNzkErAWyCKibHAKAjclzPFA3OQTUTQ4BdZNDQN3kELAWyCKgbnIIqJscoqdKVVV11wAAAAAAAAAAAAAAAAAAAAAAAABsco26CwAAAAAAAAAAAAAAAAAAAAAAAADQGA0AAAAAAAAAAAAAAAAAAAAAAAConcZoAAAAAAAAAAAAAAAAAAAAAAAAQO00RgMAAAAAAAAAAAAAAAAAAAAAAABqpzEaAAAAAAAAAAAAAAAAAAAAAAAAUDuN0QAAAAAAAAAAAAAAAAAAAAAAAIDaaYwGAAAAAAAAAAAAAAAAAAAAAAAA1E5jNAAAAAAAAAAAAAAAAAAAAAAAAKB2GqMBAAAAAAAAAAAAAAAAAAAAAAAAtdMYDQAAAAAAAAAAAAAAAAAAAAAAAKidxmgAAAAAAAAAAAAAAAAAAAAAAABA7TRGAwAAAAAAAAAAAAAAAAAAAAAAAGrXrLsA5iqlDCS5Jsn1SS5NMprkTHZQCE0AACAASURBVJLDSe5K8vdVVZ3o8j4Hk9yW5ECS/UmOJ/l8kg9WVXV3N/fVL6WUG5I8KcneJMNJHkhyf5L3VFV1us7a+qmUsivJDUmuTbI7yUiSI0keSvL+qqruqrG8OUopV6V1v12aZHuSLyS5J8kdVVWN11nbZiKHukMOtcghVkoWdYcsapFFC+7H+bEIOdQdzrOW9ZZDrA1yqDvkUIscmq2UckVax+LyJHuSbElyNsnRJPemdUweqq/CtUEOdYccapFDrJQs6g5Z1CKLWAk51B1yqEUOzc/5AdTBc3x3yPCW9fYc77Mxa4Mc6g451CKHWAk51B1yqEUOLbgf58ci5FB3OM9a1lsOsTbIoe6QQy1yaDafz1s6WdQdsqhFFrEScqg75FCLHGIl5FB3yKEWOTS/dX1+VFVlWgNTWoH5g0n+KK1f7qtFpokkf5LkhV3Y794kv5TkkUX2954kX7/K/Vyd5GVJfjrJu5Ic69jH3V06jjuS/Oskn1vk9hxL8t+SHKrx/u7Z8UgymOT5Sf5Tko9e4Fyqpo/Vv01ySc2PgW9IcscidT4yfa7uWcHYFzoGF5oO1nls+ngfyKHuHEc5JIfaxzzYhQxqn26v8xj16X6QRd05jrJIFq3786PG+0AOdec4rovzTA7Vdn5sS/L0JD+U5LeSfCrJVMe+bq/rONQ9ySE5JId6djyuTfJTSf4qrf/UuNDxqJJ8IMn3Jhmu65jUdD/Ioe4cRzkkh+YbfynZs9h0sK5jU8N9IYu6cxxlkSxqH/dgF3Kofbq9rmPUp/tBDnXnOMohObTuzw+TybSxJs/xmyvDPcfPW7fP6NU8ySE5JId8Rq/uSQ7JITnk83l1T3JIDm3mHOrj+eHzeYsfHznUneMoh+RQ59g+n7e84yWLunMcZZEsmm/8peTPYtPBuo5Nn+8HOdSd4yiH5FD7uAe7kEHt0+11HaM+3Q9yqDvHUQ7JoXV/flzwdtRdgKlKkjet4gntD5NcvML9viDJF5exr99Msm0Z4z8ryTsu8KTQtQdmkqel1YVzqbfnRJJX9fF+7vnxmD4Gj67wXDqc5FtqOP+3J/ntZdT5QJLnL3MfK318nZsO9vu41HA/yCE5JId6kEPp/i+yL+v38enzfSGLZJEs6kEWrafzo+5JDsmhzZhD/Tw/0nrj+CNpvSF9oX3d3q9jsJYmOSSH5FDvzo8k37mKx9c/JHlav45JnZMckkNyqLfnxyoeX+emg/06LnVOskgWyaKeHY+DXcih9mnDvl8dOSSH5NCmPz9MJtPGnDzHb44M9xy/YM0+o7cGJjkkh+SQz+jVPUUOySE55PN5NU9ySA5txhzq5/kRn89byjGSQ3JIDvXo/IjP5y3nWMkiWSSLenh+rOLxdW462K/jUtckh+SQHOrZ8TjYhQxqn7xXLYeW8hiUQ3JoXZ4fy5maYS143ALLP5fk02mFazOtrn83JWm0rfOPk7y7lPLlVVU9sNQdllKeleStSYbaFldpdVn/TJKxJF+aZE/b9d+cZGcp5euqqppawm6elOR5S61pNUopz0mrG+hwx1X3JPlwWg/Cy9N68A5OX7c1yS+VUhpVVf1iH8rsx/HYm2TXPMvPpvXm9gNpdUy9KMnN0z/PGUvy30op+6qq+tke15kkKaUMJHlzkq/uuOqhJB+crvVQWudimb7u4iRvK6U8p6qqv+lHnZuEHFolOTRDDvXOybQ6Wm9ksmiVZNEMWTT/ftbD+VE3ObRK6+Q8k0Oz9e38SPLyJKN92td6JYdWSQ7NkEMXVqX1Jv+daf3Hwsm0/mLuVUluyPnzI2k9Nv+ylPLCqqr+Z78L7TM5tEpyaIYcYjVk0SrJohmyqHc2+vvVcmiV5NAMOTSPdXJ+ABuT5/hVWicZ7jm+wzr7bMxGJ4dWSQ7NkEO94z0PObQoOTRDDs2/n/VwftRNDq3SOjnP5NBsPp+3tsihVZJDM+TQhfl83sJk0SrJohmyiJWSQ6skh2bIod7xXrUcWpQcmiGH5rFOzo+lq7szm6lKkr/P+S56H0jyfUkOLbDuZUl+JXO77/11krLE/V2euV0P/ybJEzrWG07yz9N60Lev+1NL3M8PzlNnleR0Wm9odKVjYVrdUzu7It6Z5LnzrLsryS90rDs537o9uJ97fjzSeiI/N8ZjSd6Q5NlJtsyzbkny4rTCq7Omnh+P6Rp+umO/Z6fP/6GO9a5PckfHug8n2b/E/bRv997pc2Y5U7Mfx6POKXJIDsmhnuRQWr94XShjFpr+pmN/b+zHMalziiySRbKoZ6+J1sv5Ufckh+TQZsyhfp0f0/s6ssC+7p/nutt7fdvX4iSH5JAc6un58cokn0zrtdcLk+xaZN2xJP8irf8Aad//55KM9vqY1DnJITkkh3r+eqh9LO9VL3ycZJEskkW9OR7er176sZJDckgObfLzw2QybczJc/zmyHDP8fPW6zN6a2SKHJJDcqgnORTveSznvpBDckgO9ej10Ho5P+qe5JAc2ow51K/zY3pfPp934WMkh+SQHOrd+eHzeUs/VrJIFsmi3r4mah/Le9XzHyM5JIfkUG+Oh/eql36s5JAckkOb/PxY1m2quwBTlST/K61uezcvY5t/Ns8J/41L3PYNHdu9J8nIIut/3TwPrCuXsJ8fnA79Dyb51STfneTJaXUMfFYXH5i/3THWp5Psu8A2/7Jjm48lGejx/dzz4zEd3F9M8uok25a4zUVJPt6x/09kiS8EVnE8rs7cFwUvWmT9LZn7H42/vMR9tW/zrl7ervU6ySE5JId6m0MrqO2yJBMd+3pGL4/HWphkkSySRb3LovVyftQ9ySE5tElzqC/nx/S+jqT1lxb+R5LXTx+ni6eve1fHvm7v5e1eq5MckkNyqKfnx+AKtnlSkuMdNbyml8ej7kkOySE51PPXQ+1jvauXt2s9T7JIFsmi3mbRCmrbdO9XyyE5JIecHyaTaWNOnuM3R4Z7jp+zX5/RW0OTHJJDcqi3ObSC2rznsbRt5ND5/cih8/uQQ+v0/Kh7kkNyaJPmkM/nraFJDskhOeTzeWthkkWySBb5jF7dkxySQ3LI5/PqnuSQHJJDzo9l3aa6CzBVSXJwhdu9pePk+h9L2ObajifGM0muXcJ2b+zY168tYZtdCz0hdDGork6r42D7WE9f4rbv7NjuO3p8P/fjeOxdamB3bHfTPMfxH/X4ePxGx/5+fQnbPG76nD23zXiSq5ewXft+3tXL27VeJzkkh+RQb3NoBbX9647aPtXLY7FWJlkki2RRb7JoPZ0fdU9ySA5t0hzq+fFoG2/Bv6AbH7w6dxwOrnA7OSSHOseRQ92r79921PDeftfQ59t7cIXbySE51DmOHJp/vPax3tXL27WeJ1kki2RRb47HKmrbdO9XyyE5JIecHyaTaWNOnuM3R4Z7jp+zT5/RW0OTHJJDcqi3ObSC2rznsfTt5JAc6hxHDq3T86PuSQ7JoU2aQz6ft4YmOSSH5FBvjscq69tUn8+bvs0HV7idLJJFnePIovnHax/rXb28Xet1kkNySA715nisojbvVS99OzkkhzrHkUPr9PxYztQItauq6u4VbvqLHfNfsYRtXp5koG3+96uq+vQStvsPHfMvLaWMLLZBVVWHq6o6vYSxV+OFyazz+L1VVf3NErf9fzvmX9GdkubXj+NRVdVDVVWdWMF2/ztJ53Fbyvm0IqWULUm+oWNx5zk2R1VVn0ry1rZFzbTOaVZJDq2KHJq9Dzm0SqWUkrnnwhu6uY+1ShatiiyavQ9ZNNu6OT/qJodWZd2cZ3Jozj77cX6c29cX+rGf9UwOrYocmr0POdQ9f9wxf00tVfSJHFoVOTR7H3KIFZNFqyKLZu9DFq3SZn2/Wg6tihyavQ85NNu6OT+Ajclz/Kqsmwz3HH/eWv5szGYlh1ZFDs3ehxxaJe95LJsckkOd+5BDs62b86NucmhV1s15Jofm7NPn89YQObQqcmj2PuRQ92yqz+clsmiVZNHsfcgiVkQOrYocmr0PObRK3qteNjkkhzr3IYdmWzfnx3JojLa+fbBjfkspZewC27y4Y/7Xl7Kjqqo+keR9bYu2JXneUrbtsWd2zL9jGdv+ZZKzbfO3llL2r76kdavzfLq0h/t6fpKtbfN/+3/au/dgafK6vuOfHyD3y6oIiAhLUAmKGhAT8RI3BiyIJcgl3pVVvF8qmphKoaRCNGIuXquSUqIoipdIEBQFgRBdMBqvtQgoElFBUZY74i677C788secfc6cnjNzpmd6unu6X6+q80f3M9PT5zzf5z3n+Z2uPrXWP9nyuc2ZfXw3p8SOdEiHuqRDC5+Z5AFL2zdn8RvrWE+LtKhLU2yR+Tg8HTJnXeqzQ0yHDulQl3TorHc2tu8yyFmMnw7pUJd0iF1pkRZ1SYsWrFe3o0M61KUpdsh8AMfKe7yGd2mKP4/m8HRIh7qkQwvWPNrRIR3q0hQ7ZD4OT4fMWZemuPbK4emQDnVJh85yfd72tEiLuqRF7EKHdKhLOrRgrbodHdKhLk2xQ5OcDzdGO243n7PvtuseXEq5V5JPbDz/N1u83lWN7Ue3eO6h3Kex/Zptn1hrfV+S1y/tulXG8TkNpTlPa2epA49qbF/V4rm/kbPn+pBSyj33PiN2pUM61CUdWnhyY/uFtdZrOjz+FGmRFnVpii0yH4enQ+asS312iOnQIR3qkg6ddb/G9t8Mchbjp0M61CUdYldapEVd0qIF69Xt6JAOdWmKHTIfwLHyHq/hXZriz6M5PB3SoS7p0II1j3Z0SIe6NMUOmY/D0yFz1qUprr1yeDqkQ13SobNcn7c9LdKiLmkRu9AhHeqSDi1Yq25Hh3SoS1Ps0CTnw43RjttHNbZvTvL2DY9/cGP7VbXW61q83m81tj+uxXMP5UMa2+9u+fzm4z9+j3M5ds15evMBX6s5i/932yeezOyrG7vHMItzpUM61KXZd6iUcrckT2jsfmYXx544LdKiLk2xRebj8HTInHWpzw4xHTqkQ13SobO+vLH964OcxfjpkA51SYfYlRZpUZdm3yLr1TvRIR3q0hQ7ZD6AY+U9XsO7NMWfR3N4OqRDXZp9h6x57ESHdKhLU+yQ+Tg8HTJnXZri2iuHp0M61CUdOsv1edvTIi3qkhaxCx3SoS7NvkPWqneiQzrUpSl2aJLz4cZox+2Jje3fr7V+YMPjP7ax/fpzH7Xen11wvCHc2Ni+XcvnNx8/hs+pd6WUuyZ5ZGP37x7wJR/U2O5zFu9bSvmJUsoflVLeVUq5sZTylpPtny6lfE0ppRl81tMhHerEzDq0yRclucPS9puT/GpHx54yLdKiTky4Rebj8HTInHVigA4xHTqkQ53QobNKKd+Y5EuXdt2c5AcHOp2x0yEd6sTMOmStuntapEWdmFmLNrFe3Z4O6VAnJtwh8wEcK+/xGt6JCf88+jzWPbqlQzrUiZl1aBNrHu3pkA51YsIdMh+Hp0PmrBMTXnvl8HRIhzqhQ2e5Pq81LdKiTsysRdaqu6VDOtSJmXVoE2vV7emQDnViwh2a5Hy4MdqRKqXcOcmTG7uff8HTmncs/MuWL/vGxvaHllI+uOUxuvaOxvaHt3x+8/EP3ONcjtnXJrnj0vbf5kB31z/5T2LzP4ptZ7H5+I9u8dz7J7kyiwhfluSDktzjZPtLkjwjyV+WUn7g5N8Za+jQJTrUjTl1aJPmv6mfrLXe3NGxJ0mLLtGibky1RebjgHToEnPWjd46xHTo0CU61I1Zd6iUcqdSygNLKU8qpbw8yX9tPOQptdZXDXFuY6ZDl+hQN+bUIWvVHdKiS7SoG3Nq0SbWq1vQoUt0qBtT7ZD5AI6O9/hLNLwbU/159Hmse3REhy7RoW7MqUObWPNoQYcu0aFuTLVD5uOAdOgSc9aNqa69ckA6dIkOdWPWHXJ93u606BIt6sacWmStuiM6dIkOdWNOHdrEWnULOnSJDnVjqh2a5Hy4Mdrx+p4k91rafneSH7vgOZc1tt/a5gVrrdcmuaGx+25tjnEAr21sf8q2Tyyl3DfJvRu7h/58eldKuTzJv23s/qFaa/NukF1pzuF7a63XtTxGc3a7/nu7U5JvSfIHpZSP6/jYU6JDCzq0Jx1aKKV8fJKHNXY/c9/jzoAWLWjRnibeIvNxWDq0YM72NECHmA4dWtChPc2tQ6WUy0opdfkjybVJ/iTJs5L846WHX5vka2qt3zvAqR4DHVrQoT3NrUNbsla9PS1a0KI9adGC9eqd6NCCDu1p4h0yH8Ax8h6/oOF7mvjPo3dl3WM7OrSgQ3vSoQVrHjvRoQUd2tPEO2Q+DkuHFszZnia+9sph6dCCDu1pbh1yfV7ntGhBi/Y0txZtyVr1dnRoQYf2pEML1qp3okMLOrSniXdokvPhxmhHqJTyuCTf1Nj9HbXWd17w1Obdiq/f4eWbz7nLDsfo0ssb208opdzx3Eeu+vJz9g39+fSqlHLbJD+fs5/3G5L85wO+7FBzeHOSq5I8Ncljkjw0i9/a9JAkj03yvVn9ZuZjkryslHK/Hc5x0nToDB3aw8w6dJHmnapfXmt9fQfHnSwtOkOL9jCDFpmPA9GhM8zZHgbqEBOgQ2fo0B50aK23JPmOJPevtf7o0CczRjp0hg7tYWYdslbdMS06Q4v2MLMWXcR6dQs6dIYO7WEGHTIfwFHxHn+Ghu9hBj+PXmbdo0M6dIYO7WFmHbqINY8WdOgMHdrDDDpkPg5Eh84wZ3uYwdorB6JDZ+jQHnRoLdfnbUGLztCiPcysRdaqO6RDZ+jQHmbWoYtYq25Bh87QoT3MoEOTnA83RjsypZRPTPJTjd0vTfLDWzy9Ge7m3Sm30Qx385h9e2EWd/O8xWVJnnbRk0opH5nk2875o1uXUu7QzakdhR9L8g+Xtt+f5Ek7/DakNoaYw6cm+Yha6z+ptX53rfWXa61X11pfX2t9Za31BbXWf53kfkn+Y5K69Nx7JXleKaXscJ6TpEMrdGg/c+nQRiffSH9pY7e7e2+gRSu0aD9Tb5H5OAAdWmHO9jNEhzhyOrRCh/ajQ+e7Z5KvS/L1pZS7Dn0yY6NDK3RoP3PpkLXqjmnRCi3az1xatJH16nZ0aIUO7WfqHTIfwNHwHr9Cw/cz9Z9H38K6R4d0aIUO7WcuHdrImkc7OrRCh/Yz9Q6ZjwPQoRXmbD9TX3vlAHRohQ7tR4fO5/q8C2jRCi3az1xaZK26Qzq0Qof2M5cObWStuh0dWqFD+5l6hyY5H26MdkRKKffNYhCXY/nGJF9aa63nP2ujvp5zMLXWv0vyQ43d31ZK+RfrnlNKuU+SFye527rDdnR6o1ZK+a4kX9bY/ZRa6yt6PpWDz+HJf16bd+8+73E31FqfkuSbG3/00CRf1OY1p0qHVunQ7ubUoS08NsmHLm3/bZLndvwak6FFq7Rod3Nokfnong6tMme7G1GHOCI6tEqHdjfjDr0nyf2XPh6QxRrQ45P8QJK3nTzuI5N8Z5JXl1I+eYDzHCUdWqVDu5tTh6xVd0uLVmnR7ubUoi1Yr96SDq3Sod3NoUPmAzgW3uNXafjuRvQe7xq9I6JDq3Rod3Pq0BaseWxJh1bp0O7m0CHz0T0dWmXOdjeiDnFEdGiVDu1uxh1yfd6etGiVFu1uTi2yVt0dHVqlQ7ubU4e2YK16Szq0Sod2N4cOTXU+bjP0CbCdUso9kvyvJB+xtPuaJI+stb7t/GetuLaxvcud+ZrPaR5zCE9P8uic3pmxJPnBUsoTs7g76iuzuBPnvU8e9/U5ffN7U5L7LB3rhlrryp0+SymXb3sytdY3tDr7AZRSviWLu14v+/5a63/Z8vmXb/ta53w9Rj+Htdb/Vkr57CSPWdr9DUl+tsvXOTY6tJEOtaRDK57c2P7ZWmvzLtJEiy6gRS3NrEUHn4+50KGNdKilgTvEkdKhjXSopTl3qNb6gSRvOOePrk7y/FLKU5P8pyTfdLL/vkleVkr5tFrra/o5y3HSoY10qKU5d2gb1qrX06KNtKglLVphvXoLOrSRDrU0sw5ZqwZGzXv8Rt7jW5rZz6Nbs+5xPh3aSIda0qEV1jy2oEMb6VBLM+uQNY+O6NBGOtTSzNZe6YgObaRDLc25Q67P248WbaRFLc25RduwVn0+HdpIh1rSoRXWqregQxvpUEsz69Dk1qrdGO0IlFI+JMnLknzM0u63J3lErfVPWxxqkuGutd5YSnl8khcl+YSlP/r0k4913pHFNw4vWdr37jWP/YsWp1RaPLZ3pZSvTvL9jd0/XGv9Vy0Os8/X41jm8Hty9j+yn1JKuazWum5GJk2HNtOhdnTorFLKRyZ5ZGP3M3c93pRp0WZa1M7cWtTTfEyeDm2mQ+2MoEMcIR3aTIfa0aHNaq3vTfLNpZSbknzrye67JvmpUson7fgbho6eDm2mQ+3o0NasVTdo0WZa1I4WnWW9ejs6tJkOtTO3DlmrBsbMe/xm3uPbGcF7/LHMoXWPJTq0mQ61o0NnWfPYjg5tpkPtzK1D1jy6oUOb6VA7I+gQR0iHNtOhdnRoM9fnradFm2lRO1q0NWvVS3RoMx1qR4fOsla9HR3aTIfamVuHprhWfauhT4DNSil3S/LSJB+/tPtdWdzJ8o9aHu5vG9sf1vJc7pzVcI9ikGutf53kU5M8I8lNWzzl15M8LMl1jf3XdHxqo1JK+bIkP5KzMf2JJN/Y42k05/COpZQ7tTzGPRrbh5jD383i39otbp3kYw/wOqOnQ9vRoe3o0LmuzNnvyf6w1voHexxvkrRoO1q0nbm2yHzsR4e2Y862M5IOcWR0aDs6tB0dauU7kvzN0vZDkjxioHMZlA5tR4e2o0OtWKteokXb0aLtaNG5roz16o10aDs6tJ25dsh8AGPkPX47Gr6dkbzHj+3amHWse5zQoe3o0HZ06FxXxprHRjq0HR3azlw7ZD72o0PbMWfbGUmHODI6tB0d2o4OteL6vCVatB0t2o4WtWKt+oQObUeHtqND57oy1qo30qHt6NB25tqhqc2HG6ONWCnlLklenOSTlna/J8mjaq2v3OGQzbtf3q/l85uPf2et9V3nPnIAtdbraq1fl+SBWSyI/HqSNyW5PsnfJXltkp/M4i6q/7TW+oYkD2oc5vd7O+GelVK+MItIL/+7/5kkX9XnHfRrre/I2f8gJsl9Wx6mOYtt7uy6lVrrB5L8ZWN3q292pkCH2tGhzXRoVSmlJPmKxm53927Qona0aLO5t8h87EaH2jFnm42lQxwXHWpHhzbToXZqrdcn+cXG7kcNcS5D0qF2dGgzHWrHWvUpLWpHizbTolXWqy+mQ+3o0GZz75D5AMbEe3w7Gr7ZWN7jx3RtzCbWPRZ0qB0d2kyHVlnzuJgOtaNDm829Q+ZjNzrUjjnbbCwd4rjoUDs6tJkOteP6vFNa1I4WbaZF7VirXtChdnRoMx1aZa36YjrUjg5tNvcOTWk+bjP0CXC+k99G86Ikn7K0+9okj661/u6Oh31tY/ujWj7/7zW2/3jH8zioWutfJHn6ycdFHt7Y/p01xyzn7T8WpZQnJHl2FnepvsX/TPKkk/+wtdLB1+O1Wdxh8hYfldX53KQ5i22e28b1je3mHV0nTYd2p0OrdGitz0py/6Xt92XxTTUntGh3WrRKi04dYj6mSod2p0OrRtghjoAO7U6HVunQzl7X2G77b+ao6dDudGiVDu1s1mvViRbtQ4tWadFa1qs30KHd6dAqHTplrRoYmvf43XmPXzXC9/ixXBtzkVmve+jQ7nRolQ6tZc1jAx3anQ6t0qFT1jy2p0O706FVI+wQR0CHdqdDq3RoZ7O+Pi/Ron1o0Sot2pm1ah3aiQ6t0qG1rFVvoEO706FVOnRqCmvVt7r4IfStlHKHJL+S5NOXdr83yefUWn9rj0O/prH9CaWUO7Z4/qddcLyjcnJX1c9q7H75EOdySKWUxyT5uZy9EeIvJvniWuv7hzmrldlpBnKtk29qPuGC43Xl7o3ttx/odUZHh/qhQzqU5Csb28+rtb5zx2NNjhb1Q4u06ILXmcV8rKND/ZjLnI20Q4ycDvVDh3RoCzc1tm83yFkMQIf6oUM6tIXZrlUnWtQXLdKiWK9eS4f6oUM6tMlc5gPol/f4fsyl4SN9jx/9z6NPzHbdQ4f6oUM6FGsea+lQP3RIhy54nVnMxzo61I+5zNlIO8TI6VA/dEiHtjDb6/MSLeqLFmnRFqxV69BB6ZAOxVr1WjrUDx3SoU3GPB9ujDYypZTbJ3lBkiuWdt+Q5DG11lfsc+xa65uTvGpp121y9s3hIlc0tn91n/MZgc9KcvnS9strrX860LkcRCnln2Vx58oPWtr9wiRfUGu9eZizSpK8uLF9RYvnfkbOvgldXWt9y95n1FBKuXtW7+L6N12/zhjpUK90aDiDd6iUclmSxzd2P7PtcaZKi3qlRcMZvEVbmPx8rKNDvZr8nI24Q4yYDvVKh7jIfRrbh/i+a3R0qFc6xFpzXqtOtKhnWjRj1qvX06Fe6RCbTH4+gH55j+/V5Bs+4vf40f88es7rHjrUKx0azuAdsuaxng71SoeGM3iHtjD5+VhHh3o1+TkbcYcYMR3qlQ5xkVlen5doUc+0iLWsVetQT3RoxqxVr6dDvdIhNhntfLgx2oiUUm6b5HlJHrG0+31JPq/W+r87epnnN7a/Ystz+/tJ/tHSruuSvLSjcxrKv2lsP2OQsziQUsojk/xCktsu7X5pkifUWm8c5qwueUmS65e2H34yY9u4srHdnOmufGHONvItSV57oNcaDR3qnQ4NZwwd+pIkt1/afkOSX9vxWJOiRb3TouGMoUUXmfR8rKNDvZv0nI28Q4yUDvVOh7jIZze2R7G4f0g61DsdYpNZrlUnWjQALZo369Xn0KHe6RCbTHo+gH55j+/dpBs+8vf4Y/h59CzXPXSodzo0nDF0yJrHOXSoxYhGTgAADKBJREFUdzo0nDF06CKTno91dKh3k56zkXeIkdKh3ukQF5nd9XmJFg1Ai9jEWvUpHTocHZo3a9Xn0KHe6RCbjHY+3BhtJEopt0nynCSPXtp9U5In1lpf0uFL/UyS9y9tP76U8tFbPK85xM+ptd7Q3Wn1q5TypCSPXNr1yizu/DgJpZTPTPJLOfsN0q9l8U3A+4Y5q1O11vcmeW5jd3PGVpRSPibJ45Z23ZzkZzs8tVte555JntrY/cu11tr1a42JDvVLh4Y1kg59ZWP7x6femW1oUb+0aFgjadGm15n0fKyjQ/2a+pyNvUOMkw71S4e4SCnlc5I8rLH7l4Y4l77oUL90iE3muladaFHftIhYr16hQ/3SITaZ+nwA/fIe36+pN3zs7/FH8PPoWa576FC/dGhYI+mQNY8GHeqXDg1rJB3a9DqTno91dKhfU5+zsXeIcdKhfukQF5nj9XmJFvVNi9jEWrUO9UGHiLXqFTrULx1ik7HPhxujjUAp5dZZBPWxS7tvTvIFtdZf6fK1aq1/muQnl3bdNsmzSim3X/OUlFIem7O/8ebGJP++y/Pa18kb37aPfXySH13adXOSr6y13tz5iQ2glPLwJL+S5A5Lu1+R5HNrrdef/6xBPC2Lb05ucWUp5THrHnwyoz+Rs3fofGat9c82POeBpZTPbXNSpZR7ZfH1u+fS7huTfE+b4xwbHdqfDp3SoYuVUv5Bkocu7fpAkme1Pc7UaNH+tOiUFp37XPNxAR3anzk7dUQdYkR0aH86dEqHTpVSHlZKedzFj1x53icneXZj9ytqra/u5szGR4f2p0OndOiUtep2tGh/WnRKiy5mvXqVDu1Ph07p0CrzAQzFe/z+NPzUEb3HPy2u0RsNHdqfDp3SoYtZ81ilQ/vToVM6dO5zzccFdGh/5uzUEXWIEdGh/enQKR065fq8drRof1p0SotOWaveng7tT4dO6dDFrFWv0qH96dApHVo1tfnY+pPhoH48yec39n17kqtLKZe3PNY1W9xp8t9l8RtsPvhk+1OTvKyU8lW11j+55UGllNsl+Zok39d4/vfVWt+4zcmUUu6T8+fsXo3t22z4XK+ttb79gpd6dSnlhUl+Icnv1Fo/cM65PDjJU5J8ceOPvr3WevUFx+/Eob8epZSHJPnVJHde2v26JN+Y5B6llDane0Ot9Zo2T2ij1vrnpZQfSvJtS7ufW0r5l0n+e631xlt2llIelOTHspjVW7wjF38D8eFJXlBKeXWSn07y/JNvXlaUUu6S5ElZ3Nn7no0//g+11j/f4tM6ZjqkQzq00HWH1nlyY/sltda/2vFYU6JFWqRFC4dq0VHMx8B0SIdm16Gkv/kopdw5yd3X/HFzQfnuG17rTWNaXOuYDumQDp3V1XzcJ8nzSimvyeIHaL+Y5HW1nv9blkopH5vka5N8Q+O8bjjZN2U6pEM6dFZX82Gtuh0t0iItOqvr+WiyXr1Kh3RIh86a5XwAk+Q9fiYN9x5/yjV6o6NDOqRDC67RG44O6ZAOLbg+bzg6pEOz61Di+ryR0SEd0qGzXJ83DC3SIi06yzV6/dMhHdKhs1yf1z8d0iEdOmuW87G1WquPgT+S1A4/rtjyNa9I8r7Gcz+Q5PeS/HySFyd56znH/+Ukt27xub2hg8/pWVu8ztuXHv93SX4ri3+kP5PkpRvO47t6/rs+6Ncji99o1NUsXdXD1+PWSV50zmu/JYs3oOck+f2T2Vz+8/cl+Ywt57x57Hcn+T9ZLLA9O8nzT17jpjVfh2cM3YieZlOHdEiHDtChNa95uywulFg+3hOGbMBYPjqcHS3Soqd1OEtX9fD16KVFxzIfQ350ODc6NPI5O/TXI8fXob7m48qOviaXD92LA/5d6JAO6dBhvh6fd87j33MyHy/I4gKI5yR5WZJr1hz/vUkeMXQnevi70CEd0qHDfD2uOOfx1qrXf720SIu06IDz0XhN69Xnf110SId0yHz48OFjgh8dNtl7/MgbfuivR47vPd41eiP56HBudEiHntbhLF3Vw9fDNXoj+ehwbnRIh57W4Sxd1cPXw/V5I/nocG50aORzduivR46vQ33Nx5UdfU0uH7oXB/y70CEd0qHDfD1cn9fu70OLtEiLDvP1uOKcx1urPv9rpUM6pEMHnI/Ga1qrPv/rokM6pEPmY+uP8+4kxwzUWq8qpTwuybOSfNjJ7pLkYScf5/m5JF9da33/4c9wL3dO8vALHvOuJN9Qa/0fPZwPa9Ra319K+fwsfrPSFyz90T2SPGrN096a5Em11t/Y8WXvluTTtnjcdUm+tdb6ozu+DhfQIR0ag4E69LgkH7K0/bYsFvoZgBZp0RgM1CLzMRI6ZM5gaDqkQzN2l1w8H7f47SRfW2t91QHPZ7Z0SIdmzFr1iGiRFs2Y9eqR0CEdmjHzAUya93gNHwPX6M2bDunQGLhGb950SIfGwPV586ZD5gyGpkM6NGOuzxsRLdKiGbNWPRI6pEMzZq16JHRIh2bs6OfjVkOfAMOptb4oyYOT/EgWg7rObyd5Yq31i2ut1/Vycu39YJKrs7gr5yZ/leQ7kzxgrP8o56bWem2t9QuT/PMsZm2ddyb54SQPrrW+eMvDvzbJ05P8ZpLrt3zO/0vy7Vn8hhP/iT0wHdKhMThwh87z5Mb2s2utN+1xPPakRVo0Bj21yHyMlA6ZMxiaDunQDPxaFr8V9+eSvGnL57w3yXOTfG6ST3XR1WHpkA7NgLXqI6BFWjRT1qtHRId0aEbMBzAr3uM1fAxcozdvOqRDY+AavXnTIR0aA9fnzZsOmTMYmg7p0Ay4Pu8IaJEWzYC16pHTIR2aKWvVI6JDOjQjk5qPUmsd+hwYgVLKbbO46/H9ktwri7sb/3WSq2utfzHkubVRSrlrkockuX8Wd+q8fRb/gfnrJH9Ya/3jAU+PLZRS7p/koUnuneROSa5J8sYkv1lrvXGP494qyUcneUCSj0hyWU7n411J3pzk92qtb9vrE2BnOsRYHKpDHActYiwO2SLzMW46BAxNh5iDUso9kzwoizn/0CR3THJTkvckeUeS1yR53RH8Zp9J0iGmzlr1cdAiYGg6xByYD2COvMczFq7Rmy8dYixcozdfOsRYuD5vvnQIGJoOMQeuzxs/LWLqrFWPnw4BQ9Mh5mAq8+HGaAAAAAAAAAAAAAAAAAAAAAAAAMDgbjX0CQAAAAAAAAAAAAAAAAAAAAAAAAC4MRoAAAAAAAAAAAAAAAAAAAAAAAAwODdGAwAAAAAAAAAAAAAAAAAAAAAAAAbnxmgAAAAAAAAAAAAAAAAAAAAAAADA4NwYDQAAAAAAAAAAAAAAAAAAAAAAABicG6MBAAAAAAAAAAAAAAAAAAAAAAAAg3NjNAAAAAAAAAAAAAAAAAAAAAAAAGBwbowGAAAAAAAAAAAAAAAAAAAAAAAADM6N0QAAAAAAAAAAAAAAAAAAAAAAAIDBuTEaAAAAAAAAAAAAAAAAAAAAAAAAMDg3RgMAAAAAAAAAAAAAAAAAAAAAAAAG58ZoAAAAAAAAAAAAAAAAAAAAAAAAwODcGA0AAAAAAAAAAAAAAAAAAAAAAAAYnBujAQAAAAAAAAAAAAAAAAAAAAAAAINzYzQAAAAAAAAAAAAAAAAAAAAAAABgcG6MBgAAAAAAAAAAAAAAAAAAAAAAAAzOjdEAAAAAAAAAAAAAAAAAAAAAAACAwbkxGgAAAAAAAAAAAAAAAAAAAAAAADA4N0YDAAAAAAAAAAAAAAAAAAAAAAAABufGaAAAAAAAAAAAAAAAAAAAAAAAAMDg3BgNAAAAAAAAAAAAAAAAAAAAAAAAGJwbowEAAAAAAAAAAAAAAAAAAAAAAACDc2M0AAAAAAAAAAAAAAAAAAAAAAAAYHBujAYAAAAAAAAAAAAAAAAAAAAAAAAMzo3RAAAAAAAAAAAAAAAAAAAAAAAAgMG5MRoAAAAAAAAAAAAAAAAAAAAAAAAwODdGAwAAAAAAAAAAAAAAAAAAAAAAAAbnxmgAAAAAAAAAAAAAAAAAAAAAAADA4NwYDQAAAAAAAAAAAAAAAAAAAAAAABicG6MBAAAAAAAAAAAAAAAAAAAAAAAAg3NjNAAAAAAAAAAAAAAAAAAAAAAAAGBwbowGAAAAAAAAAAAAAAAAAAAAAAAADM6N0QAAAAAAAAAAAAAAAAAAAAAAAIDBuTEaAAAAAAAAAAAAAAAAAAAAAAAAMDg3RgMAAAAAAAAAAAAAAAAAAAAAAAAG58ZoAAAAAAAAAAAAAAAAAAAAAAAAwODcGA0AAAAAAAAAAAAAAAAAAAAAAAAY3P8H9Ry3/pQ2KlkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor, Config\n", + "\n", + "async def clean_magnitude(datapoints):\n", + " async for datapoint in datapoints:\n", + " if datapoint.data is None:\n", + " continue\n", + " yield datapoint.collected_at, datapoint.data[\"magnitude\"]\n", + "\n", + "TemperatureConfig = Config(\n", + " sensor_name=\"Temperature\",\n", + " clean=clean_magnitude,\n", + " title=\"Ambient temperature\",\n", + " ylabel=\"Degrees C\",\n", + ")\n", + " \n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 5), dpi=300)\n", + " configs = get_known_configs()\n", + " to_display = configs[\"Relative humidity\"], TemperatureConfig\n", + " for i, config in enumerate(to_display, start=1):\n", + " plot = figure.add_subplot(1, 2, i)\n", + " coros.append(plot_sensor(config, plot, {}))\n", + " await asyncio.gather(*coros)\n", + "\n", + "display(figure)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAE0YAAAUsCAYAAAC9bUPVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdd5h1Z1kv/u8dAqEEEnoRSIBIVUA6AiYRPDSlKr0EIgiCla6IAVEPR1DPQQRF6aKIQEDqT8HQu1IUBUKJEECQloSSEHL//lj7lXnX7Cl7z57Z8877+VzXXGQ9az1l773WzsXMN/dT3R0AAAAAAAAAAAAAAAAAAAAAAACAZTpk2QsAAAAAAAAAAAAAAAAAAAAAAAAAUBgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAYKSqjq6qHv2csOx17aSqOmX0+k9Z9pr2Iu/zga2qThp/VxwI87vvAAAAAAAAAAAObgdq7gUAAAAAODgojAYAAAAAAAAAAAAAAAAAAAAAAAAs3aHLXgAAAACwO1XV0Uk+M0OXs5OckeSbST6V5F+SvCfJG7r7nEWvDwAAAAAAAAAAAFaqqsqQeztqdOr7SY7q7tN3flUAAAAAAMzikGUvAAAAANgzDkty6STHJLltkscnOTnJ6VX1tKo6fJmL2+uq6gVV1St+PrvsNQF7S1V9dvQ984JlrwkAAAAAAAAAYOQ2WV0ULUnOl+SEnV0KLEZVHTfK7XRVHbfE9cgrwgJ5pgAAAGA1hdEAAACA7XapJI9N8q9VdfNlLwYAAAAAAAAAAIA968R1zj24qmrHVgIAAAAAwFwOXfYCAAAAgAPKt5Kcusa5Cye5RJJLrnH+qCRvrKpju/tD27E4AAAAAAAAAAAADk5VdYkkd1nnkqsmOS7JP+3IggAAAAAAmIvCaAAAAMAsPtDdx613QVVdMcnPJHlUkquNTl8syd9V1bW6+3vbs0QWYaPPGUi6+6QkJy15GTPzfAMAAAAAAAAAe9T9khw2auskteL4xCiMtnQHau4GAAAAANgZhyx7AQAAAMDe0t2f7+5nJ7lekldOueRqSX5hZ1cFAAAAAAAAAADAHvfg0fEnszrDdreqOmKH1gMAAAAAwBwURgMAAAC2RXd/K8l9k/z7lNP33+HlAAAAAAAAAAAAsEdV1Y0ybOa50ouSvHDUdqEk99mRRQEAAAAAMBeF0QAAAIBt093fTfL7U07dqKousdPrAQAAAAAAAAAAYE86cXTcSV6c5A1JvrzBtQAAAAAA7CKHLnsBAAAAwJ73xilthyS5RpJ3zztoVR2S5MeSHJ3k0kkukeSMJF9JcmqSf+nu8+Ydf5Gq6oeSXDPDWo/IsOvoGUm+luQ/k7x/UkSObVBVF0pykySXT3KZJIcn+WqGe+XD3f2pJS5vU6rq0kluluSqGdb/zQyBzfd292nLXNt2q6ojMrz2H87w/Hw3yelJ3j3La6+qKyS5cYbn8PAMz9/nk7y1u89Y8LLnUlWHJblFkisnuVyS7yf5ryQfTfKh7u4lLg8AAAAAAAAAYFea5IPuPWp+275sSVW9NMmvrjh3w6q6Xnd/eJvXdf4MuaVrJ7nkpPm/kvzzLHNX1cUy5F6ukeTIJN9K8qUk7+zuzy900avnvmSSmya5WpKLZcgtfSG7NHdVVVdMcr0MmcJLZyiQ95UkX0zynp3ICVXVDye5YZIfSnJYhqzaF5K8o7u/vt3z70VV9SNJjsmQ/7tkkm9n+Fw/myF/+b1tnt+zPP+8u+WZvF6SK2bIDp6T5Ivd/eJN9pcB3gZVdYEkN8rwPFwqw/flGRlyse+dYZxjMjyb++6xs5P8d4Z86Hu6+zsLXjoAAAA7RGE0AAAAYFt191eq6owMQYqVLjXPeFV1qySPSPJTGYqhreVrVfX6JL/f3R+bZ655VdWlktw1yW2SHJvksht0Oaeq3pPkT5K8YrMF3arqs0mOWuP0UVW1mSJKx3f3KVPGPiXD2vd5a3cft8Y6PprkR1Y0fSXJD20lbFRV907y0lHzI7r7TzfZ/5Ak901yvyQ/keSC61z7mSR/m+Tp3f3f8614e1TVcUl+I8mtMxQUnHbNx5L8XpKXzlI4q6pOSPL8UfNVuvuzc6xzPO+Tu/ukDfqclOS3V7Z1d604f+MkT0xyh6zxe8yqemuSx3f3e9aZ52eSPC7JjyepKZecU1WvSvLY7v7P9dY862uYYZyjk5yU4Xtj/F25z5eq6jlJntHdZ806x2i+U7KJ53uyrs+sM9QDq+qBG8237z2ZBPtOzxAu2+eU7j5+w0Wvo6r+b5JfHjVff7vDywAAAAAAAADArvGzGYrVrPTC0T//6uj8g5P8yjyTTTI9/zRq/p8c1mQDv99Mcv8kF11jjE8keep6hXmq6roZ8jN3ylAwZto1707ymO5+52yvYn1VdWx+kFs63xrX/HOSZyf5y1k3/FtU7mYy1mWS/FqSn0lynXUuPbeq3pvkWUleNuvGq+tlpCZ5tQcm+fXsn6Vb6fuT3M4T18s7rZjvpIzeo5F/qtrwLXthd5+w0UWbsZ15xTXmu26G5/a2Sa6wzqVnVdU/JnnaZt7X0RzH5QB/ljeRw9vWZ3mN8XbDM3mRJL+U5CEZNqSdZupndqBngDe6r2cxZY0bfqdslE2tquskeWySuye5yJQhXphk3cJoVXWVDN+3d8jan2+SfLeq3p7kj7r7DeuNCQAAwO4z9T+mBAAAAFiwaUV81ir+M1VVXX1S6OxtSe6Z9YuiZXL+fkk+WlV/UVVrFsZapMnuol9M8udJ7pGNAxFJcoEMxbv+Nsm/Tv7ofyAZBxguneSOWxzzhNHx2Un+ejMdq+p2ST6a5EVJ/lfWKYo2cZUMhbM+XVVzhR0XraoOq6rnZgin/FTW/z3etZO8JMkbJ2GeA1oNfifJezIEwdbb3OHYJO+qqkdPGeeIqnpFktckuUWmF0VLhufvnkk+VlW32dLi5zC55/4tQzByve/Fy2UonvZvVXXDHVjawk1293zJqPm4qrrWvGNOdnx+wKj53YqiAQAAAAAAAMBB5cTR8beT/N2+g+7+UJKPjK65X1VNLVC0FVV1tyQfS/KLWaOQ0sTVk7yoqv52vI5JfuZJSf45yc9ljUJKEzdP8vaq+o2trfx/5j5fVf1JklMyZK+mFlKauEGS5yZ526RIzY6qqgtU1VOSfDrJ47N+AaZkyCHdIsOGnR+eFKtaxDqumOQdSZ6XtYuiJcN7eesk766q313E3HtRVV2+qv4qyYeSPCjrF0VLhk0a75LhfT25qjbKlm52HZ7l2efcLc/kTTN8dr+f9YtmTet7MGaAd0xVPTHDs/2ATC+KtlH/i03u648neWQ2/nwvmCGD+/qqentVXXnWOQEAAFgehdEAAACAnXDklLYzNtu5qm6dYfev288x9yEZgm9vrarNBBS26sezfiGnjVwryXuWUaBpC16S5HujtgfNO9gkKDZ+/Sd399c30ffRSV6XoVjYrC6a5I8nhfS28hluyaSI3xuS/PyMXf9XhvDGegGmA8FzMuyOudnfXVaSP6iqh/5PQ9WRSd6c5G4zzHuRJK+pqhvP0GdLJgHHP05y4Rm6XTnD99kBWRwtw66YYw/bwnj3zup/xzx7C+MBAAAAAAAAAAeQqjomQ0GalU7u7jNHbS8cHV8iQzGlRa7lfhkKsh0xQ7efy1BQa98YlaFA0ZOzfiGj/aZO8rtV9cgZ5l09yDD3S5I8Ysaut8yQZ5mpANFWTIpf/X9JfitzFNfJUMDsnVX1M1tcx1UzbAB58xm7/kZVPXUrc+9FVXW9JO9Lcp+svRHmeu6cIX959S2uw7M8+5y75Zn8iQzF4OYtgHUwZoB3xKSg2e9kzve3qo5K8s4M9/X55xjilkneV1U3m2d+AAAAdt7S/gNPAAAA4OBQVVfL9KI/n95k/59J8oqs/iP2OUnekqFg2ueSfDPDzn9HJ/nJJLcaXX+TJCdX1U9097iI13b5foad/v4tyX8k+WqGgnCV5GJJfjjJzTLseLeyCNThSf6mqn6suz+3zvgfS/KNyT9fOcnFV5z73uT8Rs7axDXr6u4vV9XrM4SK9rlDVV2mu788x5APyOqiWM+bduFKVfW/kzxuyqmvJfmHJB9M8uUMO8IemWE3wtslucbo+hMzvK+PnmnVi/O8JMevOP54hkJp/5HhtRyR5MeS3D2rdyP8iSS/luTp27/MxauqX0ny0BVNpyX5+yT/muG1H5nkphlCZBcbdf/jqnpThu+Dv0mysnDYB5O8MclnkpyZ4X37ySR3yv732oWSPLeqbtTd5y7oZU1VVb+eZNrunmdP1vq2JF/IEBK7Sobna9+OshdJcnJW7Gy8Tc5J8uEVx9fO/t/FX0/yn7MM2N3/VlWnJDluRfMDquoJ3f3tOdb48NHxV5O8fI5xAAAAAAAAAIAD04OzuoDSuAhakvxVkv+T/QsUnZjkZQtax42S/N6KtXwjyeszFM36coZcyrWS3CNDxm2l+1TVyd398gx5khNXnDstyWsz5Ge+miE/c5PJOOP8zNOq6rXd/dk5X8OjktxrxfGZSV6d5P1J/msy9zUz5JauNOp7pSRvqarrd/c3so0mmya+c7KWsX9N8tYMmb1967hMhsJld8iweeY+hyd5eVXdors/OMdSLpoh1/VDk+NO8q4k/5ghU3NWkktnyAfeNckFR/2fUFV/393vXWP8L+UH2Z3Dk1xtdP5T2Tj/N1O2ZwPbmlesqhsl+acMr3Wl85K8PcN7+5nJGi6U5IpJjk1y6+z/XP9whg1Gb9jd39zEmsY8yzM+y7vombxckldm/2ftfRkKtp2W4X24fIYc3M9tYryDIgO8Qx6S/Qv1nZUh1/vODPfkIRme6eMzvO/7mRRFe29WZ2aT4TN+Z4as7deTXCDD5/zjGTbkPmzFtZdN8rqqukF3n7a1lwQAAMB2q+5e9hoAAACAXaiqjs4QIlnprd193IzjPDbJ00bNX09yqe4+b4O+V8kQKjhyRfO5Sf4oyR9091fW6Xv9JH+R/YsjJckfdvejNpj36Kx+7Q/q7hes12/S9xNJPppht723bCZYM/mD/e8nuffo1Ou6+6c36j8Z4wVJHrii6bTuPnozfdcY75QMoaF91v3sq+pOGYIzKz2qu/9wjrk/kSEwss/nkxy13v1SVXfNEGhZ6etJHp/kRd393TX6VYadX5+TIWyz0p27+zUzLn8mU97n7+YHoZwvJfml7p5a/KqqDk/yrAyF5Fb6RpIrdPd3Npj7hCTPHzVfZZ4wVVWNf8n45O4+aYM+JyX57VHz2RlCKN/OEM56bndPC7lcNkPBxFuMTv15hnDLMybHn07y0O5+8xpruFGS12X1Z3+f7v7r9da/1mvo7g13Kq2qayT5UFaHHd8wWe/n1+h31yTPzg/CPd/JELSbdf5TMsPzvaLfZ5MctaLphd19wkb9poxz96wu6nZid29YAHE0zg2TfGDU/PTufsysawIAAAAAAAAADjxVdb4MhZ+usKL5C0muNC1rVFWvy1CIZ5/zklx11uIoVXVchgJOK+3LvSTJM5M8aVpRoao6LEO25RGjUx/PkAN6d4YCMRvlZy6XIT/z46NTf97dv7CJ13BSVmd3VmaXnp/k19d4DYdk2LzxqVmdf3lBdz9onvk3k3uZ9H1VhszXSu+arHetImP7ijf9Voa1r5zrs0mu291nbjDvOCO18v16b5Jf7O5/XqPv0Rk+rxuMTr2pu2+33ryT/sdl9T13fHefslHf7bANecWLZ8iKjsd4fpKTunvNAm+TzXufleS2o1Ov7O67bzDvcfEsb+lZnoyzW57J7+cHRfI+kuRh3f3uNfpecFqudC9kgBf5fTFPZnCNbOrKz+Y5SZ7Y3V9do/9+n01VXSDJO5LceHTpa5M8trv/fZ21XC7JHyS53+jU+5PcfNozCQAAwO5xyMaXAAAAAMynqi6f5NFTTv31RkXRJv4q+xdF+3aS23b3Y9cripYk3f2hDEGRfxid+qWqGu9wt0g37u67d/erNrvbYHef1t33SXLS6NQdqmraDnq70esz7Nq20gmzDlJVt8j+RdGSIUixXlG0y2R1iOKTGYIxf75WUbQk6cGrMuzyOC5G9fuTwmk7aV+46NNJbrZWUbQk6e6zMrzHbxqdOjLDTo4Hon1F0W7T3c9ZK3TS3f+V5Kcz7MC50v2SPGXyz/+WIbgytSjaZJwPZPp7talA1xY8O6uDZH+b5KfXKoqWJJN79dj84HVfaK1rd7mTs/p5e/gc44z7dJI/m2tFAAAAAAAAAMCB6PbZvyhakrxknazRC0fHh2SOjNMa9hVS+pXu/uVpRYiSpLvP7u5HZnXm5xpJ/n6yprOS/OQG+ZkvZcjPjHN096qqeTMl+/Is/7u7H7zOazivu5+R5OcybHS60glV9RNzzr+hqnpoVhdg+tMkt1yvAFOSdPc3Jpuqnjg6dXSSX5xjOfver9cmOW6tomiTuT+b5KeyOmP3U1V15Tnm3muelf2Lon0/yf0m9+GaRdGSpLs/leG7YJwhvFtV3XSOtXiWB5t6lnfZM7mv8NY7k9xqraJok7nXypUerBng7bbvs3lUdz98raJoydTP5qSsLor2+O7+mfWKok3G+lJ33z/Jk0enbpzkZzdeNgAAAMukMBoAAACwLSa78L0xyaVHp76dYWe0jfr/VJKbj5of3N1v2ewauvucDIGN/17RfP4kv77ZMWa12SDEGp6SYReyfSrJg7e2op3R3edm2CFvpR+tqhvOONS0glTjwNLYryQ5YsXxt5Pcbr0CU2Pd/bkk9xo1XzvJnTY7xgJ9L8k9NrMTbXd3pt/P490vDyS/ul4gaZ9JWOvpo+YLJ7lIhh0v79Hd48Jp08Z5R4bvqpWOr6px4bKFqKofTXL8qPnUJA/YTMHI7t63o+gBaxLyGxcwu1FV3WizY1TVEVm9w+Y/dPepW10fAAAAAAAAAHDAGBfTSZIXrXP9q5OMCwQ9qKoW9d/YvbS7/98mr/2tKW2Xmfzvr2xUUChJuvvrSZ4xar5Yhg1F53VKdz9hMxd292uTPHXKqV/ewvxrqqpDk/zGqPmN3f2ISY5qU7r7+Un+YtT8a1V12LTrN/DZDAW81ty8c8W8X8vq4jyHZCiYdtCqqmskueeo+Te7+682O8bk8/+FJOMiSY+fc1me5cG6z/IufSa/meSe3X3GHH0P2gzwDnlFd//hLB2q6uJJfmnU/Jzuftos43T3SVm90fa83w8AAADsEIXRAAAAgIWoqgtW1Q9V1R2r6s+TfCTJdadc+pBNFqx63Oj47d39slnXNQkp/N9R811nHWcnTIIgLx4133IZa5nT86a0nbDZzlV14ST3GDW/bbKj41p9Ds/qnQGf0d2f3uy8+3T3O5O8edS8jHvlpd39wc1e3N0fSzLebXTWgnS7xSeyOuC0nles0f7iyfuyWX83Oj40yY/O0H8WD5vS9qjuPnuzA3T3mzLsKnog+/Mk54zaHj5D/wdmKIS30nO2tCIAAAAAAAAA4IBRVZdJcsdR8z9397+t1WeSzxhn0I5KcusFLOn7WV0gaE3d/f4k/znl1Mez8UaSK41zL0lygxn6j81a1OxpScZ5wDtX1eW3sIa13CvD57VPZ3XBnM16yqT/PpfN6o1cN+PJMxZS+psM98pKB2rWa1Eek/3/O9fPZPWGmRvq7u8l+b1R8+3n2CDTs/wDGz3Lu/GZ/MPuPn3ONWzJHsgAb6fzkjx6jn6PSHL4iuOzsjpfvllPGR1fv6qOnnMsAAAAdoDCaAAAAMAsjq2qnvaT5DsZQhGvTfKQrC5Y8+0k9+3ul240SVVdIslPjppnKZY09rrR8VFVddTUK5fvk6PjG1TV+ZeykhlNClG9b9R8nxl27bt7kouO2jYKBt0myZGjtr/c5HzTjO+VY7cw1ryeO0ef8ft+9UUsZAmeP+NOkZ/OsMPj2Kz3wL9MabvGjGNs1u1Hx1/M6vtuM/5sAWtZmu7+cpKXj5rvVVXj53ktvzA6Pj0HfrE4AAAAAAAAAGDzHphknKt64Sb6vWhK24lbX07+sbtPm7HPh6a0zZqf+VSSM0bN8+Ze3tPdH52lQ3d/N6sLAR2aIde1aD87Oj6lu0+dZ6Du/lyS8WudNSv2rSQb5iFH8349qzOC25VT2vWqqpLcbdT8gu4eF4/brNePjg9LctMZx/As/8BGz/JueyY70zf43UkHbAZ4m72luz87R7/xPfby7h4/J5v1riTfGLUtIyMMAADAJimMBgAAAGy3MzMUNbvmZoqiTdwqSY3a3rWFNXxmStuPbWG8Tauqw6vqDlX1+Kp6UVW9rqreXlX/XFUfGv8k+ZPREIdl2PnuQDEuZHaJJHfaZN8HjY7PyurCSWPjUMLpc4SSVhrfK0fPUKhpEb6T1UXONuNTo+PzVdXhU6/c3d42R5/xbpvfTvLBGcf47JS2hX/uk52KrzJqfvWcQb43ZQhXHsjG33cXTvKAjTpV1bFJrj1qfm53n7uohQEAAAAAAAAAu96DR8fnJvnrjTp197uyunDNXSabeW7FPLmXaTmnty9gnHlzLyfP2e+VU9puNudYU00KaN1q1LyVTGGyOis2a6bwPd19zhzzjrNeR8wxxl5x3SQXH7XN/bl299eyeqPNWT9Xz/L+pj7Lu/SZPLW7P7/FNeznIMwAb5d/mrVDVV08yY+Omrfy/XBeVj9jO5IlBwAAYD6HLnsBAAAAwJ73gSTPnOzmtlm3mNL2iqra9O55m3CpBY61SlXdMMljMhQFu9AWhzsyyULDGtvor5P8YfZ/zSdkgwJnVXVUkuNGzX/b3RsVfhrfKxefhEvmNa2Y2KWyepe47XJad39vjn7jMFcyBObO2uJ6dto8u0WeOTo+bY4CWeMxku0JHN5wStusRdySJN19blV9JMnNt7ak5enu91TVB7P/+/KwJP9vg64PHx2fm6EAJwAAAAAAAABwEKiqWyS55qj5Dd39lU0O8aIkv7Pi+LAk903yzC0saxG5l0WNM2/uZa4cS5KPJvlekvOvaJuWk9mKa2XYpHOlB1bVT29hzCuPjmfNFI4L7G3WOOt1MBdGm5YVfWZVnb2FMS88Op71c/Usb+5Z3o3P5D9vYe79HMQZ4O0yz2dz8ySHjNqeUFWP3MI6jhkdb2uWHAAAgK1RGA0AAACYxbcyPaxx/gy79l1+yrnjk7y/qk7o7g135Jy44pS2626y72ZdcsHjJUmq6vxJ/ihD4Z7xH+TndcAEn7r7m1X1qiT3WdF826q6fHd/cZ2uJySpUdvzNzHl+F65cJLrbaLfLC6Z+UJK8/janP2mFVM7/5S23e7rc/QZv/aZx+ju7w0bWO5nO96/y0xp+/gWxvuPHMCF0Sb+JPs/69eqquO6+5RpF1fVZZLcddT8mu4+fZvWBwAAAAAAAADsPidOaXvhDP1fnOQp2T+vdGK2VhhtEbmXRY0zb+5lrhxLd59dVZ9N8sMrmqflZLZiWqbwimu0z2vWTOGisl4HYs5rUaZ9fuOih1s16+fqWd7cs7wbn8kvb3XCgz0DvI3m+Wym3UtX3epCRrYlSw4AAMBiLOr/mAMAAAAHhw909/Wn/Fynu6+Q4Q/EJ2Qo1rPSBZK8uKp+ZpPz7MQfmre6g9sqk0DEy5M8Iov9vcuBFnwaFzQ7X5L7r3VxDRWpHjBq/mR3v2MTc413HNwOC79X1jEtIHXQ6O5FvP7d/B4eOaVtvAPsLLbSd7f4myRfHbU9bJ3rT8zw75SVnr3QFQEAAAAAAAAAu1ZVHZ7kHqPmryd57WbH6O7Tkpwyar5eVd1wC0tbSGZlQfmZeS0yxzItJ7MVuzFTuJtzSgeKPfu5HgTP8m787M7YymQywNtqns9mN95jAAAA7CCF0QAAAICF6e6vdfcLk1w/Q7Gblc6X5CVVdfQmhrr4gpe2Ux6X5M5T2k9P8qdJ7pfk5kmulCEscsHurpU/SY7fsdVunzcnOW3U9qB1rj82q3dxGxdXW6WqLpzksNmWBkt10Slt39rCeFvpuyt093eT/OWo+W5VddnxtVV1SJKHjpo/meE7BwAAAAAAAAA4ONwryUVGbS/r7rNnHOeFU9pOnG9Je8YicyzTcjJbcaBmClmfz3V77MSzvBs/u3O32F8GePvM89nsxnsMAACAHXToshcAAAAA7D3dfXZV3T/JZbP/H/kvlqEAzq03GOI7o+NvdPeu/gN3VV0myRNGzecmeUySP+nuzf5R/4Dffay7u6pemORJK5qvWVU36+73TOkyLpr2/SQv2sRU301yXvYv/ioagZ8AACAASURBVH9yd991pgXDzjlzSts4qDuLrfTdTf40yaPzg2f5/BmCxr83uu72SY4etf1Zd/e2rg4AAAAAAAAA2E2mFS97WFU9bAFj37uqHtXd4/zaweIiSc7YQt+VpuVktmLaZ3KX7n71gudhZ037XC/e3d/Y8ZXsLTvxLO+pZ1IGeFeado9dv7s/vOMrAQAAYCkO2fgSAAAAgNlNQgAPyOpwxU9W1T036P7fo+Mjq+rIhS1ue9wpyYVHbY/r7j+eIRCRJJdY4JqW6QVJxsWKThhfVFWHJ7n7qPn/6+7TN5qgu89LMg5AXWXzS2QRqur8y17DAWRaYO+ILYy3lb67RnefluS1o+aHVtX499cPHx1/N8N3DQAAAAAAAABwEKiqaye52TZOcWSSu23j+LvdInMsiy5sNc4UJrJie8G0z/XonV7EHrQTz/JeeyZlgKdbZj50r91jAAAAzEhhNAAAAGDbdPfnkzxpyqnf26CY0n9NabvuYla1bX5qdPz1JH8yxzhXXcBalq67P5PklFHzvarqgqO2e2T1DoPPn2Gq8b1y9ao6bIb+B7PvTWmbJ8Ryya0u5CDy5Slt19jCeNfcQt/dZvx9eVSS2+87qKr9jif+tru/ut0LAwAAAAAAAAB2jRP3yBy71dXn6VRVF8jqYlbTcjJbcSBmCtmYz3V77MSzvNc+u72UAV5UNjRZbqG3vXaPAQAAMCOF0QAAAIDt9uwknx61XTXrB8jeN6VtXBBnt7nS6Pi93X3OHOPcfBGL2SXGBc6OSHLXUdsJo+OvJXnNDHOM75ULJTluhv4HszOmtF1sjnGO2epCDiIfnNJ2w3kGqqpDs7dCPv+Y5OOjtoev+OeHZvXvs5+9rSsCAAAAAAAAAHaNyUac9x81n5Pkw1v8+dpozOOqajcUtlmGuXIsGTIs46I703IyW/GRJN8dtd1uwXOw8w7ErOiBYCee5b32TO6lDPBCsqFVdcUk482Qd9J7p7T5fgAAADiIKIwGAAAAbKtJMOApU079ZlUdtka3f5jSds9JIaDd6lKj43FgbkNVdakkx885/7mj4/PNOc4ivSKrAxYP2vcPVXW1JLcanf+r7j57hjmm3Sv3m6H/wewbU9rmCXUeu9WFHCy6+8tJPjNqvlNVzfN72tsmucjWVzWTbfue6e5O8qej5ttX1VGTYPO4mOaHuvs9i5ofAAAAAAAAANj17pTk0qO2V3X39bfyk+SJozErKzJOB5m7zNnvblPaFprr6O7vJnnHqPnyVXXrRc6zi41zO8lyM4KLyhG9K8m3Rm13rKqLzzkeg21/lvfgM7mXMsB7Ihva3aclOXXUfJOquvoy1gMAAMDOUxgNAAAA2AkvSfKJUdsVkzxk2sXdfXpW7zJ3lSQnLHxlizMO54xDEpvxiMy/u9qZo+PD5xxnYbr720leNmq+dVXt21nvhCndnj/jNG/K6l0H711V15hxnIPRx6e03WSWAarqfEkevJjlHDTeMDq+QpI7zjHO1O/Pbbbd3zMvSHLWiuNDkjw0yV2TXHZ07bMXPDcAAAAAAAAAsLuNN1VLhlzaVr0syTmjthPm3OjuQHfzqrrOLB0mm6Pef9R8bpJ/XNiqfuDVU9pO2oZ5dqNxbidZbkZwITmiyca7bxw1XzTJo+YZj/+xU8/yXnom91IG+PTsn8NLZsyGTjx0C2tYlPE9dkiSJy1jIQAAAOy8g/EXtAAAAMAO6+7vJ/mdKaeeUFVrhQB+d0rb03fxTl9fHB3/eFVdZLOdJyGUJ2xh/q+Pjo/cJbsmjgudHZLkAZPg4ANG5z7c3f8yy+Dd/d9J/nzUfL4kL62qC8200oNMd385yedHzfeYFDvbrEdkvp0ED2bPmdL29Kq6wGYHqKrbJLnz4pa0aePvmYV+9t19RpIXj5pPTPJLo7Yzkrx0kXMDAAAAAAAAALtXVf1Qkv81av5KVhdUmll3fy2rN7q7YpLbbnXsA9T/nfH6x2Z4v1Z6dXeP83SL8JdJvjRqu2VVPW4b5tptxrmdZLm5rUXmFadlRR9bVbecczwGO/Es76Vncs9kgLv7vCQfGjXfsaqO2OwYVXWnJD8xz/wL9oys3jz5vlV1z2UsBgAAgJ2lMBoAAACwU16a5D9GbVdI8rBpF3f3q5J8YNR8RJI3zLqT3T5VddGqekxV3W+e/ht4++j48CS/vZmOVXV0ktckOWwL8390StsdtjDeQnT3u7P6cz8hya2TXHnU/rw5p/n9rN6t7wZJXjVvMKSqjqqqZ1bVj8y5pgPFONR55SS/upmOVXXrJP9n4Sva47r7o0n+adR89STP38xOw1X1w1ldPGynjL9nfqSqrrTgOf5kdHzZJOOQ40u6e7yjJQAAAAAAAACwdz0ow2aJK72su89d0PgvmdJ24oLGPtDcuqqeupkLq+r2SX5ryqn/t9glDbr7O5leROv3quqR845bVberqj+df2U74nNJvjlqW2Y+cGF5xclmqq8YNZ8/Q/5vrsJMVXVYVT20qn5tnv57xLY/y3vsmdxrGeBxNvRCSTZ7P1w3qzdFXopJYb5nTTn1vKq6+zxjVtX5quqeVTXt3gUAAGAXURgNAAAA2BGTHciePOXU46vqwmt0u3eSr43arprkvVX1m5vZvayqDqmq46vqOUn+M0Mhp8vNsPTNekWS80Ztj6mq36mqQ9dZ372TvDs/2L3xjDnnf8+U+Z9RVXeuqvPPOeaijAMSx2T1boTnJPmreQbv7i8leWCSHp26bZIPVtX91vsM9qmqi0zCDq9McmqSRya54DxrOoD8xZS2p1XVL1RVTetQVRec7Oj4hgxBnvFufGzsF7P6fbtPktdMdjieqqrukuRt+cF32He2Z3lretfo+JAkL6+qGy1qgu7+WFYXjht7zqLmAwAAAAAAAAB2t0mG5UFTTk0rZjavv8/qolN3qqpLL3COA8G+PMtvVtVz18rnTTJ5v5rklRkKWK30gu5+2zau8VlJXj1qOyTJM6vqVVV1vc0MUlVXqarHVdVHMuSg5irAtVO6uzPkDFe6TVX9flVdZglLWnRe8ReSfGbUdqkkb66qP6iqTWU+q+qmVfWMJJ9N8mdJrjbHWvaCnXyW98ozudcywC9I8v1R2yOr6slrvZ5JwbATk7wjySUyZHLPmWPuRXtikveN2i6c5O+q6i+qalPPeVX9SFU9JcknkvxNkk3dmwAAACzPhv9BKAAAAMAC/W2GP1BfZ0XbZTMUCXr6+OLuPrWq7pHk9UkusOLURTLsXPaEqnpHkncm+WKSb2T4Y/eRSa6U5AaTnyMX/kpWr/UTVfWSJA8YnXpikhOq6u+SfCTJWRkCA9dIcqfsH7z5dpLHJXn2HPN/saremP13iLtskpOTnFNVn0vyrawuHvbz3f2BWeeb0YuT/F7237X1WqNr/r67vzrvBN39iqp6UpLfGZ26ymT+p1fVKUk+kOQrGd6Li2W4N45JcqMk183Wduw74HT3+6rq1UnuvKL5fBkKTz2iql6VoUjcOUkuneSGGe6xlWG6X41CVTPp7v+oqt9M8ozRqTsmObWq3pBhB8ovZtip8aoZPqMfXXHt6UlenuH93ymvzlCs8hIr2m6a5P1VdWaSL2RKobzuvv6M8zwryfFrnHtHd0/bHRMAAAAAAAAA2JuOzw8Kzuzzye5+76Im6O6zq+rlSX5+RfP5k9wvyR8tap4DwJMybDyaDO/FParq5CTvT/LlDFmraya5e5IrT+l/WpJf284FdndX1f0yFO4ZF7W5S5K7VNWHk5yS5JNJ9mXSjsxQaOu6GTJQ43vqQPC8JLcbtT0+w+a0X8yQ6zl3dP413f2kRS9k0XnF7v5qVd0pw+e6sojXoUkeneSXq+rdGTaV/HySr2fI+h2Z5PJJfixDBvBgK2a4lh17lvfKM7nXMsDd/YWqemZW5wuflOS+VfWKJP8+WfMlM2QT75j974enZdjg+qhZX88idfd3q+quGYrHXWl0+sQMn88Hkrw1Q1HEr2XIwR6ZIet6/QzfD2tuWgsAAMDupDAaAAAAsGO6+7yqenKGAmkrPbaqnt3d35rS581Vdaskf5fVf9C+SJLbTn52g19OcpMMgZGVrpiNixd9L8nPZQgZzOsxSY7N8L6sdIGsvfPh4VuYb1NWBDbuuM5lz1vAPE+tqi9kKKp0wdHpyya55+SH/T0syY2TXGHU/qPZvxDXNH/Q3X9WVQqjzai7/7CqLpXkCaNTF0xy18nPWr6VITT209u0vKkmAaNfS/LCKacvmiHstQgnJ/lcVn/nJ3OExgAAAAAAAACAA9qJU9pesg3zvCT7F0bbN/fBVBjt6RmKx9xjcnyxDEWCxoWCpvl8kp/s7m9s09r+R3efNckUPj9DYaex62V1gaa94BVJ3pzk1lPOXX7yM/ahbVzPQvOK3f2vVXXjJK9M8iNTxjx28sPGdvRZ3kPP5F7LAP9mkttk9fN0tSSP3WAtL5v0v/cG1+2ISaG3m2RY10+MTp8vwwavN93xhQEAALCtDln2AgAAAICDzr5d01a6dJJfWqtDd78vyQ0yhCa+t4W5O8Ouc2/fwhhrD979zQwhgvfM2PULSW7T3a/f4vwfS/JTSU7dyjjbZL3CZ19M8qZFTNLdz0ty8yRv2eJQ303yN0n+c8uL2uW6+0tJbpnZ7ptzkjy6uzcKx7CO7v6NDDtrzhKG+nyS46ft8rgTuvtFGULAZ27jHN9P8mdTTn0lQ8ATAAAAAAAAADgIVNWRSe425dRfbcN0b8vqrNB1quqgKbTS3Z3kvklm3STxnUmO7e5PL35V03X3md39s0kenuT0LQ73nxmyibtad5+X5GeTvHTZa0m2J6/Y3Z/MUNzoDzNsHrkVH0iypUzmgWoZz/JeeCb3Wga4u7+d5Lgk75ulW4bCeveZfOfsGpOs662TPDHJ17Y43L9n9SbfAAAA7DIKowEAAAA7ahK4OGnKqUdX1UXX6fff3f3gJMdk+KP7v2X4A/xGzkzyugzFh67S3cd393tnXvgmdffpGXYje2SSjcIhpyX5rSTX7O63LWj+d2fYre4OSf40yTsyhC7OSrLMkMLfJ/nvNc69aFIIaSG6+0PdfeskN0vyogyFpDbjixl2fn1gkst19727+8uLWtdu1t2fSXLdJL+R4X1YyzkZdtz7se5+xk6sba/r7j9Ocp0kL0xyxjqXfjnJU5Ncp7vfvxNrW0t3/2WSH0ryoCQvTvIvGdb3nQVOM63w2/O6++wFzgEAAAAAAAAA7G73TXLBUdu7u/tTi55okmubVnDtxEXPtZt197nd/fAMxYHekvUzZ/+S5CFJbrWTRdFW6u7nJLnqZB3/mM1tUHhehrX/QZLjkxx9oGShuvsb3X3fDBnBk5K8Nsmnknw9W9t0dt71LDyv2N3f7u5HJTk6w2v8QJLN5Au/m+Ge/Y0MGasbb7VQ1YFsWc/ygf5M7rUMcHd/NcktMhSsW+/fnd9P8oYkt+jux+y2omj7TO7r301yVJJHZXh/ztlE13OTvCvJU5LcpLuvPdkkFgAAgF2sht/ZAgAAABx4qurSSW6Y5NJJLpnk8Ay7BJ6ZoRjWfyQ5rZf4C5CqunqSm0zWeJHJ+j6f5CPd/fFlretgU1XHJLl2hvvkkkkukCEo8s0kn0nyHwdLEbTNqKrrJrlekksluXCG9+njGYKlZy1zbXtZVR2W5JZJrpzkchmCTP+V5CNJPrRbw0bboapemuTeK5o6yTHLCtECAAAAAAAAAByMqupSGTaovFqGfN4ZGTZe/JftKFC3VVV1gQyZwitmyD5dPENBnDMzbOz5iSSf6O5FbgDINquqI5LcOMllMuT/jsiwieOZGYpGfTzJpxe5QeuBoqpOSvLbK9u6u6Zct5Rn+UB/JvdaBnjyem6Y4Vm6aIbP4VNJ3tXdX1vm2uZVVRdOcqMkV8jw/XBkkrMzvLYvZ/h+OLW7N1NADQAAgF1EYTQAAAAAAHaNSdHLzyU5bEXzG7v79ktaEgAAAAAAAAAAwK6z2cJoAAAAAAeaQ5a9AAAAAAAAWOEh2b8oWpI8axkLAQAAAAAAAAAAAAAAAGBnKYwGAAAAAMCuUFUXSfIro+ZTk7x+CcsBAAAAAAAAAAAAAAAAYIcpjAYAAAAAwG7xlCSXGbX9cXeft4zFAAAAAAAAAAAAAAAAALCzFEYDAAAAAGCpquoSVfX0JL8+OnVakucuYUkAAAAAAAAAAAAAAAAALMGhy14AAAAAAAAHl6r6iyQ3mhxeKskVktSUSx/T3efs2MIAAAAAAAAAAAAAAAAAWCqF0QAAAAAA2GnHJLneBte8qLtfvhOLAQAAAAAAAAAAAAAAAGB3OGTZCwAAAAAAgJGXJPn5ZS8CAAAAAAAAAAAAAAAAgJ116LIXAAAAAADAQe87SU5P8u4kz+vuU5a7HAAAAAAAAAAAAAAAAACWobp72WsAAAAAAAAAAAAAAAAAAAAAAAAADnKHLHsBAAAAAAAAAAAAAAAAAAAAAAAAAAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdIcuewGwbFV1RJJjVzR9Lsk5S1oOAAAAAAAAAMBWXCDJlVYcv7W7v7msxQCAjB4AAAAAAAAAsEfI5+0QhdFgCFy9etmLAAAAAAAAAADYBndO8pplLwKAg5qMHgAAAAAAAACwF8nnbZNDlr0AAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgKU7dNkLgF3gcysPTj755BxzzDHLWgsAAAAAAAAAwNxOPfXU3OUud1nZ9Lm1ruX/Z+/Owyyr6nvh//bpmrrpEehmVBkFJCqivIGmQQRUgnkjMV4SL3mIxleNEoPxRdQYBuONQ5zyJnLjcFFITAxBBSUKeq8yo4IMsZNGGQSaubvpeajxrPeP7i5qOPucfapO1Tl16vN5nn7ovfZae62zq55m7aq1vhuAaWKNHgAAAAAAAAAw41mfN30Eo0FE/8iDww47LI4++uhmjQUAAAAAAAAAoJH6a1cBgClljR4AAAAAAAAA0I6sz5sipWYPAAAAAAAAAAAAAAAAAAAAAAAAAEAwGgAAAAAAAAAAAAAAAAAAAAAAANB0gtEAAAAAAAAAAAAAAAAAAAAAAACAphOMBgAAAAAAAAAAAAAAAAAAAAAAADSdYDQAAAAAAAAAAAAAAAAAAAAAAACg6QSjAQAAAAAAAAAAAAAAAAAAAAAAAE0nGA0AAAAAAAAAAAAAAAAAAAAAAABoOsFoAAAAAAAAAAAAAAAAAAAAAAAAQNMJRgMAAAAAAAAAAAAAAAAAAAAAAACaTjAaAAAAAAAAAAAAAAAAAAAAAAAA0HSC0QAAAAAAAAAAAAAAAAAAAAAAAICmE4wGAAAAAAAAAAAAAAAAAAAAAAAANJ1gNAAAAAAAAAAAAAAAAAAAAAAAAKDpBKMBAAAAAAAAAAAAAAAAAAAAAAAATdfR7AHAbJRSinK5HCmlZg8FYJwsy6JUKkWWZc0eCgAAAAAAAAAA1M0aPaBVWZ8HAAAAAAAAUJtgNJgGKaXo7e2NLVu2xJYtW6K/v7/ZQwKoqaurKxYsWBALFiyInp4eC7EAAAAAAAAAAGhJ1ugBM431eQAAAAAAAAD5BKPBFNu+fXs89dRTMTAw0OyhANSlv78/nnvuuXjuueeis7Mz9t9//5g3b16zhwUAAAAAAAAAAMOs0QNmIuvzAAAAAAAAAPKVmj0AaGfbt2+P1atXW3AFzHgDAwOxevXq2L59e7OHAgAAAAAAAAAAEWGNHtAerM8DAAAAAAAAGE0wGkyR3QuuUkrNHgpAQ6SULL4CAAAAAAAAAKAlWKMHtBPr8wAAAAAAAACe19HsAUA7SinFU089NW7BVWdnZyxcuDDmz58fnZ2dkWVZk0YIkC+lFAMDA7F169bYvHnzqDfq7v737dBDD/VvGAAAAAAAAAAATWGNHjBTWZ8HAAAAAAAAUJtgNJgCvb29oxYqREQsWLAgDjjgAAsVgBmhs7Mz5s2bF0uXLo0nn3wytmzZMnxuYGAg+vr6oqenp4kjBAAAAAAAAABgtrJGD5jJrM8DAAAAAAAAqK7U7AFAOxq5QCFi5wIGC66AmSjLsjjggAOis7NzVPnmzZubNCIAAAAAAAAAAGY7a/SAdmB9HgAAAAAAAEBlgtFgCoxddLVw4UILroAZK8uyWLhw4aiysf/OAQAAAAAAAADAdLFGD2gX1ucBAAAAAAAAjCcYDRospRT9/f2jyubPn9+k0QA0xth/x/r7+yOl1KTRAAAAAAAAAAAwW1mjB7Qb6/MAAAAAAAAARhOMBg1WLpfHlXV2djZhJACN09HRMa6s0r93AAAAAAAAAAAwlazRA9qN9XkAAAAAAAAAowlGgwar9Ia2LMuaMBKAximVxk8ZvJESAAAAAAAAAIDpZo0e0G6szwMAAAAAAAAYTTAaAAAAAAAAAAAAAAAAAAAAAAAA0HSC0QAAAAAAAAAAAAAAAAAAAAAAAICmE4wGAAAAAAAAAAAAAAAAAAAAAAAANJ1gNAAAAAAAAAAAAAAAAAAAAAAAAKDpBKMBAAAAAAAAAAAAAAAAAAAAAAAATScYDQAAAAAAAAAAAAAAAAAAAAAAAGi6jmYPgOmRZVlnRJwYES+MiP0iYmtEPBUR96aUHm1wXwdHxDERsX9EzI+IpyPisYi4I6U00Mi+AAAAAAAAAAAAAAAAAAAAAAAAaA+C0Zoky7JDIuK4iHjVrv8eGxELRlR5LKV0UAP6WRoRH42I34+IPXPq3BERn0spfWuSfb05It4fESfkVFmfZdlVEXFxSmndZPoCAAAAAAAAAAAAAAAAAAAAAACgvQhGm0ZZlp0SER+OnWFoFUPKGtzfb0XEFRGxrEbV5RGxPMuyf46Id6WUttXZz/yI+EpE/EGNqntGxLsj4k1Zlv1RSukH9fQDAAAAAAAAAAAAAAAAAAAAAABA+yo1ewCzzDER8bqYnlC0UyLi2hgdipYi4u6IuDoi/ndErBvT7JyI+EaWZYW/L7IsmxMRV8X4ULS1EfHDXX3ds6vv3faJiO9kWbaiaD/Qzg466KDIsmz4z0033dTsIQEAAAAAAAAAAMCMZ30eAAAAAAAAAMw8gtFaQ19EPNyoi2VZdmBEfDsiukYU3x4RR6eUXpVSOjul9LqIODAizo+IgRH1/u+I+B91dPfJiDhzxPFARLw3Ig5MKb1+V1+vjIjfiIifjKjXHRHXZlm2Xx19AQAAAAAAAAAAAAAAAAAAAAAA0KYEo02/gYi4LyL+V0S8KyJeGRELIuL/aWAfH42IJSOO74iI01NK94+slFLqSyn9XUScPab9+7Mse1GtTrIsOyR2BquN9N9SSl9IKfWP6WtVRJwWo8PR9oqIS2r1AwAAAAAAAAAAAAAAAAAAAAAAQPsTjDa9royIhSmlV6SU3pFS+nJK6Z6U0kCjOsiy7PCI+KMRRf0R8daUUm9em5TStbvGtlt3FAssuyQiOkccX5FS+k6VfnZExFt3jWm3t+8KWAMAAAAAAAAAAAAAAAAAAAAAAGAWE4w2jVJKG6oFlDXIf4+IOSOOv51SerBAu0+NOT47y7KevMpZls2NiDfXuMY4KaUHIuLaEUUdsXPMAAAAAAAAAAAAAAAAAAAAAAAAzGKC0drP7445/lqRRiml+yPiZyOK9oiI11Vp8vqImDfi+CcppV8WGuH4Mb2pYDsAAAAAAAAAAAAAAAAAAAAAAADalGC0NpJl2b4R8fIRRYMRcXsdl7hpzPFvVal7Ro221dwaO8e22yuyLNunjvYAAAAAAAAAAAAAAAAAAAAAAAC0mY5mD4CG+o0xx79IKW2ro/0dY46PrqOvnxTtJKW0LcuylRHxijF9PVv0GkD9Ukpxzz33xC9/+ctYs2ZN9PX1xdKlS+OAAw6IFStWxPz585s9xAl7/PHH46677oonnngiduzYEXvvvXe89KUvjVe96lVRKk0uA3TNmjVx6623xlNPPRU7duyI/fffPw455JA4/vjjJ33tSlatWhUrV66MtWvXxubNm2PPPfeM/fbbL1asWBF77bVXw/sDAAAAAAAAAABgcqzPmxjr8wAAAAAAAACoRDBae3nJmOOH6mz/cI3rjXRUA/oaGYz2koj4cZ3XAApYt25dfPzjH4+vf/3rsXbt2op1urq64tRTT41LL700fvM3f7PQdd/61rfGlVdeOXz8yCOPxEEHHVSo7U033RSvec1rho8vueSSuPTSS3PrZ1k2/PdXv/rVcdNNN0VExB133BGXXHJJ/PjHP45yuTyu3T777BMf+chH4rzzzqt7kdS9994bH/jAB+LGG2+seO0DDzww3vWud8WHPvSh6OjoiEsvvTQ++tGPDp+/8cYb45RTTinU13PPPRef/vSn4+tf/3o8+eSTFeuUSqVYvnx5XHLJJXH66afX9VkAAAAAAAAAAABoPOvzrM8DAAAAAAAAoPEEo7WXw8Ycr66z/WNjjvfKsmxJSmnDyMIsy/aMiD0n2dfY+ofX2R4o4Nprr41zzz03tmzZUrVef39/3HDDDXHDDTfEO9/5zrjsssuio6O1/xfx8Y9/PC6++OIYGhrKrfPss8/Gn/3Zn8WNN94Y//qv/xpdXV2Frv25z30uLrzwwqrXfuKJJ+Kiiy6K66+/Pr797W/XPf7d/vEf/zHe+973xubNm6vWfx0p0gAAIABJREFUK5fLcdttt8VrX/va+MM//MO4/PLLC38eAACgve0Y2h6P9P4q+st9dbXbu3Pf2L/7hVHKqm9UGUpD8Xjvw7FxcP1khtk2ukrdcXDPi2PunD0afu2tQ5vjsR0PxkAaGHeuu9QTB889InpKcxveb6MMlAfisd4HY0nnXrFX5z7NHg4AwIywdWhzPNP3eOzb/YKYP2dhs4fTktYPrI0n+h6Jchq/UX7BnEXxormHRUfW2fB+Nw1uiGf7n4wX9hw6qXl4b3lHPLrjgegt72jg6KbOPl0HxL5dB44KRqhk5/z/gdg6VP33kPPmzI8Xz/uNRg4RAABahvV51ucBQCOkgf6IR1ZFlEoRh7605s/mAAAAAABgNmjt36pTr8VjjtfU0ziltDXLst6I6BlRvCgiNoypOraf7SmlbfX0VWFsi+psD9Tw1a9+Nd7xjneMe5vioYceGi95yUti3rx5sXr16rjzzjtHLTD68pe/HKtXr47rrruuZRdffeYzn4mPfOQjw8dHHHFEHHHEEbHHHnvE008/HT/96U+jt7d3+Pw111wTF110UXzqU5+qee3PfvazccEFF4wrf8lLXhKHH354dHd3x+rVq+Ouu+6KoaGhuOOOO+Lss8+Ok08+ue7PcfHFF8fHPvaxUWVZlsURRxwRhx9+eCxYsCA2bNgQP//5z0e9TfTrX/96PP3003HDDTe07NcIAACYHjdv+H5cveZ/RTnGBwQUsX/XC+NPX3BpLO4Ym4G/09N9j8ffP3FpbBx8bhKjbD+lKMXZy94RJy/5rYZcL6UU1z/3b/G95/41UqQq/c6Jc/Z9T5yw6LSG9NtID2xfGV988hPRW94eEREvm/9/xdv3uyA6SzYNAQDk+f66q+KG9VfHYBqMLLJ487K3x2uW/Hazh9UyhtJgfO3pz8c9W26vWm+P0oJ4z4F/GQfPPaIh/ZZTOa5a8+W4deMNERExJzri3P3+LI5bWP/vgn626ab4+jNfiKEYbMjYpsuLeg6P8w68KDes71fbV8aXnvx4obC3g3oOjwtf9OlGDxEAAJrO+jzr8wCgEdIj90f64FkRTz+6s+DwYyI++++RLVnazGEBAAAAAEDT+W1te5k/5ngir5zeEaOD0RZMYT8jVeqnblmWLYuIen8DdGgj+m6UNDgYsfaJZg+j/S09MLI2XrBy3333xbvf/e5Ri66OOeaYuOyyy2L58uWj6q5duzYuuuii+NKXvjRcdsMNN8TFF18cH//4x6dtzEWtXLkybr311oiIOOuss+ITn/hEHHnkkaPqbNiwId7//vfHFVdcMVz22c9+Nt797nfHQQcdlHvtu+++Oz70oQ+NKjvllFPiC1/4Qhx99NGjyteuXRsXX3xxfPGLX4xbbrklVq1aVdfnuPLKK0ctuiqVSnHeeefFBRdcEC984QtH1U0pxXe+8504//zzY/Xq1RER8aMf/Sguuuii+MQnPlFXvwAAQPtY3ftQXLXmy5O6xlP9q+Ofnv67eO8LLh13LqUUX3ryE0LRKihHOf51zZfi4LlHxAt6Dpn09VZtvzf+/blvFOh3KP7pmb+Pg3peHPt1v2DS/TZKf7kv/uGJv46+9PwmqF9svTOuf+7q+J2l5zRxZAAArWvl1rtGzQFTpLh6zf+Kg3oOb1jA10z3w/XfrhmKFhGxrbwl/ueT/yM+eejXYk42+d///WTTj4ZD0SIihmIwrnj683FwzxGxd9c+ha+zpv+puPKZv530eJrhsd4H46pnvxxv3398WEFfuTe+OGb+DwAwk1ifN43aeI2e9XnW5wFAI6SUIv3Vuc+HokVEPHhfpL95d2Sf+GazhgUAAAAAAC2hPVcczF5jA8smshJ5R0QsqXLNRvZT7ZoT9Z6IuKRB12qOtU9EOttmh6mW/duvIvY7qNnDmDJvf/vbo7+/f/h4xYoV8YMf/CDmzZs3ru7SpUvji1/8Yhx22GHxgQ98YLj8U5/6VLzlLW+Jl770pdMy5qLWr18fEREXXnhh7hsmlyxZEl/72tdiw4YN8Z3vfCciIoaGhuLyyy8f9wbIkc4777wYHBwcPn7Tm94UV111VcW3Pi5dujT+4R/+IQ455JC48MILY926dYU/w2OPPRbvfve7h4+7u7vj2muvjTPOOKNi/SzL4qyzzorly5fHiSeeGA899FBERHz605+Od77znXHwwQcX7hsAAGgf/7n17oZc51fbV0ZveUf0lOaOKl8z8FSsGXiqIX20q19svbMhwWi/2HJnXfVXbr2rpYLRfrV9ZcVQhF9s/ZlgNACAHNc/d3XF8vu2/lQw2i71PPNsG9oSD+/4Zbx43m9Mut+V2+4aV5Yixcptd8Vrun67+HW2jr/OTPKfW38eQ2ko5mRzRpU/kDP/BwCYMazPmzbtvEbP+jzr8wCgIR76xc4/Y/38R5EGByLr6Jz+MQEAAAAAQIsoNXsATKnUZm2AAm688ca45557ho8XLlwYV111VcVFVyNdcMEF8du//fxmjnK5HJ///OenbJyTsWLFikJvYvzrv/7rUcc//vGPc+vedddd8bOf/Wz4eL/99ouvfvWrFRddjfSBD3wgXve619Ucy0if/vSnY8eO5/MhP//5z+cuuhpp2bJl8S//8i/Dx0NDQy37NQIAAKbepsENDblOOYZi6+DmceUbB55ryPXb2abB9Q25zsbB+u71pqHG9Nsom3LG36jvUQCAdrO696F4tPeBiuc2DrTWXK+ZtgxtrKt+w+bnOc9C9c5v653nt5q+1Bt95bHvO4vY2KD7DAAAM5X1ec+zPg8AJum26yqX926P2LF1escCAAAAAAAtRjBaexn7m4+5E7jG2DaVfpsyXf0AE3DllVeOOj7vvPNi//33L9T2k5/85Kjjb3zjG9HX19ewsTXKRz7ykSiVav8v7Oijj46DDjpo+Pi+++7LrfuNb3xj1PGf/umfxqJFiwqN56KLLipULyJi27Zt8dWvfnX4+JBDDol3vetdhdsfd9xxcdJJJw0ff/e73y3cFgAAaC+DaaBh1+pL4ze791bYAM9ojbpHfam3Kf02Sl+58vgrfV8BABBx88brc8+ZQz2v3jdt5c1L65U3P68UElZNq83bJ6LSZ6j3PgAAQLuxPu951ucBwOSkZ5+ocrLen5ACAAAAAEB7qf6aLWYawWgR/zMirq6zzaER8Z0G9Q9Nd9ttt406/sM//MPCbY8++ug49thjh99o2dvbG3fffXcsX768oWOcjLlz58app55auP5RRx0Vjz76aEREbN++PbZu3Rrz588fV++OO+4YdXz22WcX7mPFihWx//77x1NPPVWz7m233TbqbZRvfvObCy0iG+k1r3lN3HrrrRER8dhjj8Xq1avjhS98YV3XAAAAZr68YLQ50RFdpa5x5SkiesvbK7bprRAgUC2sa25pXrFBtomB1B+DaXBcecOCF+q8TqP6bZS88QymwRhMA9GRdU7ziAAAWte2oS3x88235p5vtblec9W38a9RgV15gWaNCkbLe2ZrlhSpymce//2YV7cUpegu9Ywrr1QGAAAzmfV5o1mfBwCTsLZKMNrQ0PSNAwAAAAAAWpBgtPayaczx0noaZ1k2P8YHlm0s0M+8LMv2SCltq6O7ZQX6qVtKaU1ErKmnTZZljegaWsKGDRvi4YcfHj5evHhxHHXUUXVdY/ny5cMLryIi7rrrrpZaeHXooYdGV1fxzSJLliwZdbxp06aKC6/+4z/+Y/jvixcvjsMOO6yucb3qVa8q9HbIsQvj9t9//+GFYUWN/fy//vWvLbwCAIBZqFJQV0TE8sWnx1v2+ZNx5SmleO8DvxflKI87V2mDf95m96Wd+8VHD/mHOkc7s3137T/HDevHZ/Hn3aN65QUsdGQdUxrI1ijV7kNfuTc65ghGAwDY7SebfhQDqT/3fKPCvdpBSvUGo01tcHG9188Lpj5lyZnxe8v+uO5xTZXe8o54/4NvqXiu0vdj3n04ao9j4rwDL27o2AAAoNVYnzee9XkAMAlrn8w/l8av7QAAAAAAgNlEMFp7eXDM8YvqbD+2/vqU0oaxlVJKz2VZtiEiRq5meGFE3D+JvsaOHZiAtWvXjjo+/PDD6w7/O/LII0cdr1lTV9bglBu7kKqWzs7Rm68HBgbG1dm2bVv09j6/iWMii5iKtnn88cdHHb/vfe+L973vfXX3N9L69esn1R4AAJiZBtP455uIiM6scghVlmXRXZobO8rjs+3r2ezeUxqbq9/+8j5zX2pM8EJesNjCOUti/eDaceWtFpZRLSCir9wbe8xZMI2jAQBoXeVUjls33lC1TquF4M4kjQguTik1MBit8ni6W+yZqivrjiyySDE+iK7SZ857Hmm1zwUAAFPB+rzxrM8DgEnY9Fz+ufLQ9I0DAAAAAABakGC09jI2mKy+16lFHDLmeFWNvka+ou6wCv3X01c9bdvb0gMj+7dfNXsU7W/pgc0ewZTYsGF0luGiRYvqvsbYNq22qKdUKjX8mhs3bhx1vGBB/Ru2Fy5cWKjec89V+QX2BG3ZsqXh1wQAAFpfXjDanCz/R37dpZ6cYLR6Nrv3FBxh+8j7zI0KKMsLWFjUsWdOMFprhWX0pfz70GpjBQBopvu33RtrB56pWsf86XmVgrqqacS9G0j9kaJc8Vy9wWt59eeW5tU9rqlUykrRlXVXDH6u9Bny7vNsfFYEAGYo6/OmTxuu0bM+b2KszwOAHNs2558bEowGAAAAAMDsJhitvfznmOOXZVk2L6W0vWD7E2tcb+y5kcFoJ0TEdUU6ybJsj4h4WR19zSpZR0fEfgc1exjMUCmN3iBS79soK2nENVpdd3f3qOP+/v66r1G0zUSuXcvYrzsAADA75AWjdWSduW26S3MrltcXjFb5Gu2snvtWr5RS7nUWdiypWF5vIMNUq3YfWm2sAADNdPPG62vWEYz2vLxgtFKUolwhvKxaYG9R1cKPKwWHVZM3F27FZ6ru0tzoG6rwXFjhM+fdh+6s9T4XAEAl1ucxGdbnTYz1eQCQo6/KzzRT5Rc4AAAAAADAbCEYrY2klJ7OsuwX8XzoWEdErIiIHxa8xCljjqutzL8hIt5ZpW01J8Xo7717U0rP1tEeyLHnnnuOOt60aVPd1xjbZsmSypuwJ2Ooxd5gNfYzjn2zZxFF39y59957jzq+44474oQTTqi7PwAAgME0WLG8WjBaT84G/Eob9vM38fcUGF17yfvMjQj9GkyDUY7Kz8kLOxZXLG+1sIxq46kWLAEAMJus6382/mvb3TXrNSLcq911l+bGjvK2ceWNmCc3cm7bW678/rKe0ry6rjMdekpzY/PQ+N+P1fOsmPe8CQAA7cT6vImxPg8AJqDcWv8/BwAAAACA6VZq9gBouGvGHL+tSKMsy46MiN8cUbQtqgeq/SAiRq54PmHXNYp465jjsWMGJmjp0qWjjh944IG6r/GrX/1q1PGyZcsq1uvoGJ2tOThYeUN+JRNZ2DSV5syZEwcccMDw8a9//evYvr3yZpU8K1euLFRvn332GXU8ka8RAABARMRgGqhYXi0YLS/gq9Lm/7xAgNm42T3vM/eVeyOlNKlrVwu+WDSn8maoVgsbqxYQ12ohbgAAzXLLxusjRe2542AazJ3rzzZ596uewOd6VbtGb51z27x5e08Lhk034llxNoZoAwAw+1ifNzHW5wHAeKmvxs8zy+XpGQgAAAAAALQowWjt558jYuSrYd6UZdnhBdp9cMzxv6WUcld2p5S2R8Q3a1xjnCzLXhwRvzuiaDAi/qXA+IAClixZEoceeujw8caNG+P++++v6xp33HHHqOPjjjuuYr2FCxeOOt64cWPhPv7rv/6rrjFNh+OPP3747+VyOW6++ebCbdevXx//8R//Uaju8uXLRx3/8IfVMigBAADyDabKG2A6so6K5RH1BQjkBQLMxs3ueZ85RTkGUv+krl0t5GxRx56V26TeKKfWWQRdLfysEeEUAAAzXX+5L36y6UeF6wuX3SUnhLhacPFkVbtGPQHFA+WB3Ge2ntK8usc11fKD0cZ/5rz7MBufFQEAmH2sz5s46/MAYIwtNYJMy0PVzwMAAAAAQJsTjNZmUkoPRsSVI4q6IuKKLMtyVyFnWfbGiHjriKL+iPhoge4ujYiRryt/a5Zlv1Oln56I+NquMe12eUrp4QJ9AQWtWLFi1PE///M/F257//33x9133z183NPTE6985Ssr1h37pspVq1YV7uf73/9+4brT5fTTTx91/JWvfKVw2yuvvDL6+4tthD/ttNNizpw5w8ff/e53Y82aNYX7AgAA2G0oNxitM7dNd86PiPpSpc3ulQMB8kII2lm1zzzZ4K9qwQsLOxbnnutPfZPqt5GqBUT05b97AQBg1rhny+2xrbylcH3BaDtVjkXLDxZrSDBalfnrQOqPciq2GbHaHLkVn6m6c8Pmiodot+LnAgCAqWB93sRYnwcAY/zq3urnh1rnZWkAAAAAANAMgtGmWZZlB2ZZdtDYPxGx75iqHZXq7fqzd41uLomIka+PWR4R/yfLsiPHjKU7y7L3RsTVY9p/NqX0WK3PklL6dUT8f2OKv5ll2Z9mWTYy/CyyLDsqIn60ayy7PRfFAtiAOpx77rmjjr/whS/EM888U6jthz/84VHHf/AHfxDd3d0V6x577LGjjq+77rpCffzgBz+IO++8s1Dd6XTOOefEggULho+vueaa+MEPflCz3ZNPPhl/9Vd/VbifJUuWxDnnnDN8vHXr1rjgggvqGywAAEBEDKaBiuUdWUdum+5STjBahQCBvI383dns2+yed98iqgceFFEtvGFRx5Ip67eRqoVHCPUAAIi4eeP1ddU3h9opReWNf/nPNZOfI9cKPi76tal2nbxgt2aq71mx8j2o9twEAADtxPq8ibE+DwBGS1+5pEYFwWgAAAAAAMxugtGm320R8UiFP98YU++AnHqPRMRnqnWQUnoiIt4UESNfj3ZiRKzKsuyuLMuuyrLshoh4PCL+LiI6R9T794i4qI7P86GIGLmSvzMi/j4iHs+y7Posy/4ty7KfR8R/xehQtP6I+N2U0tN19AUUcOqpp8YxxxwzfLxp06Z4y1veEjt2VN/I8fnPfz6+853vDB9nWRZ//ud/nlv/hBNOiHnznt+4cc0118TPf/7zqn08+OCD8Ud/9Ee1PkJTLFiwIM4///xRZWeffXbceOONuW0effTReO1rXxsbN26sq69LL7101IK2f/qnf4oPfvCDMTQ0VNd1Vq1aFbfccktdbQAAgPaRH4zWWbE8IqK7VDnUrFKAQF7Y1Wzc7J533yJqByfUkhcqkEUW8+csqrtdM1QbSysFuAEANMOjOx6Mx3ofrKvNZOeY7SLllPfkPtdMfo5ca/5aPBhte+65vPE3U9FgtJRSfoh2C34uAACYCtbnTYz1eQAwxvpnq58v1/f/LQAAAAAAaDeC0dpUSummiPjdiFg7ojiLiFdFxNkR8fqIWDqm2Tci4g9SSoV/g7Kr7tkRcdWYU8si4oyI+G8R8cpdfe+2JiLemFK6tWg/MJs888wz8eijj07oz26XX355dHV1DR/fdNNNcdJJJ8XPfvazcf2tW7cuzjvvvHj/+98/qvzCCy+Ml73sZbnjXLBgQfz+7//+8PHQ0FC84Q1viB/+8Ifj6vb398dXvvKVOP744+PZZ5+NJUuW1HNLps1FF10UL33pS4ePN2/eHKeddlqcffbZ8c1vfjN+8YtfxC9/+cv44Q9/GO973/vi6KOPjvvvvz96enrijW98Y+F+Dj744Pjyl788quxv/uZvYsWKFXHdddfF4OBgbttHH300Lrvssjj11FPj6KOPjh//+Mf1f1AAAKAtDOQGo3Xktim62T0iP4xhNm52787yP/Nkwxfy73NP1cCEVgnLGEqDuSF9EYLRAABu2fj9utuYQ+1WORqtpzSvYnlfmvx9qzXPzguQruc6rfhMlffsMfZzDKaBKEe5Yt1W/FwAAFCJ9XnNY30eAOyUhoYiNq+vXqlc+edwAAAAAAAwW+TvkmTGSyl9P8uy34iIj0bE70dE3kqHn0bEZ1JK35pgP1sj4g+yLPtmRPy/EXF8TtX1sTNA7ZKU0tqcOjDrveUtb5lw25R2bhA59thj4wtf+EL8yZ/8SZR3/VL07rvvjuOPPz4OO+ywOProo6Onpycef/zxuPPOO8ct9Hnta18bH/vYx2r297GPfSyuueaa4TcyrlmzJl7/+tfHYYcdFi972cuiu7s7nn322fjZz34W27Zti4iIfffdNz71qU+15Jspu7q64nvf+16ceuqp8dBDD0XEznt69dVXx9VXX12xTZZlcdlll8Xq1avHvdGzmnPPPTeeeeaZ+PCHPzz8NfrpT38av/M7vxPz5s2LV7ziFbHPPvvE3LlzY8uWLbFu3bpYtWpV3W+/BAAA2tdQqrxpoyPrzG1TdLN7RH7gV7WwrnbVWeqMOdERQzH+nk82tCKvfXdpbm6Q3c52kwtka5Ra42iVcQIANMPWwc3x8y23VTx35LyXxyM7flUxaMscaqdUZzDa4K7Q3mrPRLXUnt8Wm//3lrdXLO/IOqKzNPHxTZW8MOix35/V7k93lv/8AgAArcT6vOaxPg8Adnnu6Yih/KDOiIgoD03PWAAAAAAAoEUJRptmKaWDprm/NRHx7izLzo+IEyPiRRGxb0Rsi4gnI+LelNIjDerrmxHxzSzLDo6IYyNi/4jYIyKeiYjHIuL2lFJ/I/oCanvHO94RS5Ysibe97W2xdevW4fKHHnpoeFFRJX/8x38cX/ziF6Ozs/amjAMOOCC+9a1vxVlnnRVbtmyp2cfBBx8c3/ve9+LZZ5+t89NMnxe84AVx6623xnve85645pprqtbda6+94sorr4w3vOEN8cEPfnDUuQULFtTsa/dbP9/2trfFM888M1y+ffv2uP322wuNt1Xf7gkAAEy9wTRQsbxaCEB3TqjZ2M3tKaXcDe/VwrraWU9pbmwrbxlXXinIoh659znriTlZR3RknRW/1pXC7Jqh1jiEegAAs9kdm/5P7rz95MW/FU/1rY6+oQrBaJOcY7aNyrloVcOa+8q90TFn6oLRis7De3Ofp1ozaDrvno69H9U+/2wM0QYAYHazPm9irM8DgIh45rHadYYEowEAAAAAMLuVmj0ApkdKqT+ldGNK6YqU0idTSn+fUvp2o0LRxvT1SErpW7v6+OSuPm8UigbT781vfnM8/PDDcf7558fee++dW6+zszNe97rXxe233x6XX355oUVXu5166qlx5513xhvf+MbctzAuXbo0PvCBD8R9990XRx11VN2fY7rtu+++8e1vf3t4AdZLXvKSWLx4cfT09MQhhxwSp59+enzpS1+Khx9+ON7whjdERIx7U+SiRYsK9XXGGWfEI488Epdddlkcc8wxNd9k2dnZGcuXL49LL700HnjggTj//PMn9iEBAIAZrZyGohzliueqB6NVDjUbu9l9IPVHyrn+bN3snnfvJhtQlhd6sbu/ogEFzdKo4AgAgHZTTkNx66YbKp5b0rF3vHT+cYXn57NVyklGqxWMNhl9DQr+7S1vr1jeU5pX95imQ9Hnnb6Uf39ma4g2AACzm/V5E2N9HgCz3pona9dJlddsAAAAAADAbNHR7AEAzHaPPvrolF5/2bJl8bd/+7fxuc99Lu6+++745S9/GWvXro2+vr7Ye++948ADD4wVK1YUeoNiniOPPDKuvfbaWLduXdx8883xxBNPxPbt22OfffaJgw8+OE466aTo6Hj+fzmnnHJKpFR5M0sl9dQd64orrogrrrhiQm1XrFgRK1asKFR31apVw3/PsiyWLVtWuJ+enp54z3veE+95z3ti/fr18dOf/jSefvrpWL9+fQwMDMT8+fNj2bJl8eIXvziOPPLImDevNTfNAAAA02cwDeae68jyf+SXH7I1enN7tTCr2brZvXuKAsry2u/ur7vUE1uHNldo1xqBY7U+f17wGwBAu/uvbffEcwNrKp5bsfj1MSebM2Xhu+2iOcFoNea3Ba+fN19v1aDp/JC+McFoVT7/bH1WBACg9VmfV5v1edbnATDNerfVrlMemvpxAAAAAAAz1rotKbb0PX+8dH7E/J7qLwmCmUYwGsAsUSqV4rjjjovjjjtuyvrYe++94/d+7/em7Pqtatu2bXHPPfcMH7/4xS+e8EK2PffcM84888xGDQ0AAGhTg2kg91xH1pl7rjvL2eyeeqOcylHKSjuPqwajteZG/qk2VaEVefd6d3/dWbEwu2apNY7JBlMAAMxUN2+8vmL5nOiIExe9NiKKBxfPXpU35ld7Jpn0/DxVb1/0+jvK2yuWt24wWrEg6LzPX4pSdGZdDR8XAADMJNbnTR3r8wBoO/0Ffo9eLk/9OAAAAACAGeeex1Kc+9VyrHp6dPnX357Ff/9NwWi0F8FoADBJV155ZWzf/vwGlxNOOKGJowEAAGaDwTSYe65qMFqVTfj9qS96doVwVdvsnxcQ1u7yQysmF/yVd69395d3v/tSawSO1RrHZIMpAABmorX9T8eqbfdUPHfsguWxsGNxRFSZ6wmXjYi8WLSd9y2LLFKFGpMNleutce+Lfm3yxtG6wWh534s7IqUUWZbtOq78+btLPcN1AAAAGs36PADaTqFgtKGpHwcAAAAAMKNs3pHi1M+WY7NlpswSpWYPAABmsieeeCIuuuiiUWXnnntuk0YDAADMFoNpIPfcnCz/XQjVQs1Gbtyvttm/VTfyT7VqQQGTUS1YoFq/rRI4VuvzT/b+AADMRLdsvCH33MlLzhz+u2C0WipHo2WRTdm9a9T8Nj8AeV7dY5oOeSHa5SiPev7Mf36Znc+JAADA1LM+D4C21N9fu45gNAAAAABgjG/fm4SiMasIRgOAEb71rW/FX/zFX8TatWtr1r333nvj5JNPjvXr1w+XvfyA4QheAAAgAElEQVTlL4/XvOY1UzlEAACAqsFoHRMORusd8ffKm/jnREd0ZJ0FRth+8jb6T3UwWl4QXauEZdQaR6uMEwBguvSX++Inm35U8dyB3QfHIT1HDB93Z60912u2lHKC0bIsurOpCRCude+LXj8/GK01A8R6JvmsKBgNAAAoyvo8AIhI/QV+BlwuT/1AAAAAAIAZZeWTzR4BTK/8XZIAMAtt2bIlPvGJT8RnPvOZOOOMM+K0006Ll7/85bFs2bLo6OiI9evXx8qVK+Pf//3f47rrrhu1KaerqyuuvPLKJo4eAACYLQbTYO65zirBZdU24Y/cuN+XKi/CbdVN/NMhL1Ru0sELOfd6d0hGXsDAZPttlFrj6Cv3RkopsiybphEBADTXz7fcGtvLWyuee/XiM0fNi3LDd1NrzPVaWXdpbsTQhnHlefPromoFHxe9/kwLRssL6YvY+Vnmx8KIqB3sDAAAUIv1eQAQEYWC0YamfhwAAAAAwIzy6LrKL5yFdiUYDQAqGBgYiOuuuy6uu+66QvXnzp0b//iP/xgvf/nLp3hkAAAAEYNpIPdcR5VgtLzghYjRG9zzNvHP5s3ueQEGecEARdW611PVb6PUGkc5hmIwDURn1jVNIwIAaJ6UUty84fsVz80tzYvjFp48qixvfl0rnGu2KEe5YnkWWZV7N9lgtOrti16/t7y9Ynm1Z7JmqvasNzKoL/f5JZu9z4oAAMDEWJ8HwKxWKBit8s9HAQAAAIDZ65F1zR4BTK9SswcAAK1k8eLFMWfOnLranHjiiXHLLbfEm9/85ikaFQAAwGjVgtHmZPnvQpiTzckNqBq5wT1vs3+rbuKfDnkb/fOCAYrKu9e7A9FaPSyjSDBEq4S4AQBMtUd7H4jH+35d8dwJi06LrlL3qLKpCvdqf1nus8lk58m1g9GKXT+v3tzSvLrHNB3yApkjRt+TkSFpRdsDAACMZH0eAETBYLShqR8HAAAAADCj5AWjffR3snjjMdn0DgamQf4uSQCYhc4666x49tln44Ybbojbb789Vq5cGY899lisX78+ent7Y+7cubHnnnvGi170ojjppJPizDPPjBNPPLHZwwYAAGaZasFoHVln1bbdpZ4YGOofVz5ys3te2FdecMNskLfRf7KhFXmBCbvvdX7gQ2uEZRQKRks7Yn4snIbRAAA0180bv5977uTFvzWuTDBadSlSxfJSZFMSIFxO5ehLtYLRin1tduTO81szQKwj64xSlKIc5XHnioVoz95nRQAAoD7W5wFARAyMX7MxTnn8z+oAAAAAgNlrw7YUm3KWSJ5yRBZ7dAtGo/0IRgOAMfbaa68455xz4pxzzmn2UAAAACoaTIMVy0sxJ0pZqWrb7lJPbB3aPK68r8Bm97xwsNkgN6AsTTx4IaJ2sMBUBD40UpHPnxe0BwDQTrYMbox7ttxe8dxR846JZV37jyvPm1+bP+1WORgtsmrBaBMPletPfTXrFL1+3ny9VZ+psl33dEd5+7hzQrQBAIBGsz4PgFmvv8DPGQWjAQAAAAAjPLIu/9zBe0/fOGA6Vd8lCQAAAAC0nME0ULG8M+us2bY7ywn4GhWMZrP7WLnBaJMIXkgpVQlG29lfd1b5nrdKWEaRcUzmHgEAzBS3b/o/uQHGr15yZsXyqZhjtpOUl4sW2ZSEyhUJHy56/d4KAWMRrRuMFlHt+1GINgAAAAA0VKFgtKGpHwcAAAAAMGP8OicYrasjYv9F0zsWmC6C0QAAAABghskLXJiTddRsmxdu1peeX3ibH4w2eze75923yQQvDKaBKEflxcy773VewMDIr1czFQntEOwBALS7chqK2zb+oOK5PTuWxm/s8cqK53Ln5uZPERGRIicZLabm3hUL/a1dZ6A8kPvM1soBYkWC+moFOwMAAAAABfQVCUYrT/04AAAAAIAZ45F1lddUvmjPiFIpm+bRwPQQjAYAAAAAM8xgGqhY3pF11mybtxF/ZAhAXiBAXvjAbJB33wbTQAzlhB7UUi20oTvbea/zAx8mHsjWSEWCJyYTHgcAMBP857a7Y/3g2ornTlp8RpSyORXP7Z7zjTUUg7lz/tml8iKeLLLozhofIFwo9LfA9avN1XtK8+oa03QqEjaXH6I9e58VAQAAAKBu/X2165Qrv2QNAAAAAJidHllXufzgvad3HDCdBKMBAAAAwAyTF8TVkXXUbFtss3vlzf554WCzQbWN/kUCFCq2S9UCE3p2/TcvkK01wjIKhUdM8P4AAMwUN2/4fsXyjqwjli86PbfdVMwx20nlWLSdwWhFAp/rVWxuW/v61cbQys9URe5p3j3qbuHPBQAAAAAtZ0AwGgAAAABQn0fXVV5VedDe2TSPBKaPYDQAAAAAmGEGcgKxOrLOmm3zNqyP3OCet5G/O8sPbmh31QIMJhq+UC14YXdIRrWAgf5ygcXSU6xIMESROgAAM9Wz/U/G/dvvq3ju2AUrYkHHoty2UzHHbC950WjFAp/rVeSeFwko7i1vzz3XU5pX97imS97z3shAZ8+KAAAAANAA/QV+jlkuT/04AAAAAIAZ45F1lcsP3nt6xwHTSTAaAAAAAMwweRvxO7KOmm3zwhdGbnDPCxOoFtzQ7vKCFyImHr5QPRhtbs1+WyEso8hnn0w4BQBAq7t14w255169+MyqbauF4JpDRaScYLQssirBaBOfIxe957UCiqvN06t9zZst73lv5H3Ju7+z+VkRAAAAAOpWKBhtaOrHAQAAAADMCOVyikefq3xOMBrtTDAaAAAAAMwwQ2mwYnlH1lmzbZEAgb5UebN7K2/in2rVQysmFr6QF5iQRSk6s64C/TY/LCPve6XeOgAAM1FfuTd+sulHFc+9oPuQOKjn8KrtpyJ8d1bIstx58uSC0Yq1rRVQ3FveXrG8I+uIzlLtZ7Zmyft+3P15y6kc/alyKFy172UAAAAAYIz+6i9fiIiIcnnqxwEAAAAAzAhrt0b0Vd5KFgfvnU3vYGAaCUYDAAAAgBlmMA1ULC8WjJYXINBb8e9F2s4GXVl37rlawQh58u9zT2RZNvz3RvfbKINpIAZzQvpGEuoBALSruzbfEjtyQrBeveTM4Tldns6sK7KoXGcyAV/tIKWUey6LaoHPvVXbVlP0ntea3/bO0Oepavc0IqI/9UWKyve21T8bAAAAALSUQsFoQ1M/DgAAAABgRli/Lf/cfoumbxww3QSjAQAAAMAMkxuMVioSjJa32f35EIC8wK1qIV3trpSVojur/PknHoxW+z53Zd0tG5bRXy6wWDsEowEA7SmlFLds/H7Fc/NK8+NVC06qeY1SVsoN4G12CG6z5QVw7ZTlBnGVo5z7vFRLXyo2b601D88731OaV/eYplOtEO1q8/oewWgAAAAAUFx/gZ9FCkYDAAAAAHbZWPkdvhERsaS1lybCpAhGAwAAAIAZZqCcE4wWHTXb5oV77Q4BGEqDuUECs32ze62ggHrltRv5NWrlsIyi/Td7nAAAU+HXO34ZT/Q9WvHcCYtOi65S5TncWHlz7NkeLlstGK0UWfRUCW2eeHBxsXte6/q95corkFr9eSr/eWfHrv/m35/ZHKINAAAAAHUrFIxWnvpxAAAAAAAzwoacYLSOUsS8rukdC0wnwWgAAAAAMMMMxWDF8o5SZ822eZvxe212ryk/tGKCwQspJxhtzH1u1bCMov03e5wAAFPhlo3XVyzPIouTF59R+Dq5YVQ5c8XZIz8YLSKL7iw/ZGyi88+igWq1rp93ndYPRssJ0d71eas998z2Z0UAAAAAKCqlVDAYbWjqBwMAAAAAzAgbt1deU7lkj4gsy6Z5NDB9BKMBAAAAwAwzWM4JRss6arattdm9WhhAq2/kn2q5926CoRVFAxNaNSyjaCDcRIPjAABa1ebBjXHPljsqnnvJHq+IpV37Fb5Wrfn5bJWqBKNlkVUN4upLEwwuLhr8W2Me3luu/GrGVn+eqhUELRgNAAAAABpgoL9YvXJ5ascBAAAAAMwYGyovS4zFrb0sESZNMBoAAAAAzDCDaaBieUfWWbNt3mb3wTQQQ2mwahjAbN/snhdQVi1Mrpq8ez22n/ywjOYGjhUOjpjloR4AQPu5fdP/jqGoHFZ88uIz67pWq871mi3l56JFZFnVkLHeCc4/i87ra9XLO5/3PNEqurPK34u9w8Fole9rR9ZR6FkUAAAAAIiIgb5i9cpDUzsOAAAAAGDG2JgTjLZk3vSOA6abYDQAAAAAmGHygtHmZB0121bbjN9X7q0awNDqG/mnWl74wkSDv/Lu9dhwjLz73uzAsb5UrP+JBscBALSioTQUt268oeK5vTr3iaP3eEVd18uf6832OVR+MloWO0OhSznLHSZ674q2qzUPz5v/zi219gqkvJC+/tQX5VTOD3zLZvdzIgAAAADUpb/g7/nL5akdBwAAAAAwY2zIC0bbY3rHAdNNMBoAAAAAzDCDabBieUfWWbNt3mb3iJ0b+KuFWHVl3bUH18by7t3EgxcqL3geH4xWud9mB44V7b9ogBoAwEywcutdsXHwuYrnTl58RpSyOXVdL3+OObvnUKlqMFoWWZY1/N4VbVdr/p8bINbiQdN5QdApUgyk/tx5fbVnTAAAAABgDMFoAAAAAECdNuYsW1w8N5vegcA0E4wGAAAAADPMYBqoWN5ZKBgtfzN+X7k3P6wr64lSNrt/nJgXFNDo4IWxwQL5/TY3GK14cMTsDvUAANrLzRu/X7G8I+uMExadVvf1BKNNxM6FPHnPNhOfnxcM/q1x/d5y5Vcz5s3rW0W1Z8VqIdqtHvgGAAAAAC2lr2gw2tDUjgMAAAAAmDE2bqv8stnFe0zzQGCaze6djAAAAAAwA+UFo83JOmq2zQteiNgZBGCze768e5d3z2rJazc2MKFVwzLqCY5IqfIvYQAAZpJn+p6IX23/RcVzr1qwIubPWVj3NbuznHCvNLuD0VLkzx93v98wPxhtYvPzove81vXzzrd+MFq1Z8UqIdpV2gEAAAAAYwz0F6uXylM7DgAAAABgxthQ+X2tsbi1lyXCpAlGAwAAAIAZJi8YrSPrrNm2K+uObDhKYLS+cm9uGECrb+KfDtMVvDA2HCPv3k80kK1RigazpSjHQCq4uBsAoIXdsvH63HMnLz5zQtdsdPhuu6gWjLY7Gq3RAcJF29WqtyM3GG1e3WOaTtWe+frKO3I/t2dFAAAAAKhDf8Hfsw8NTfFAAAAAAICZYmNOMNqS1l6WCJMmGA0AAAAAZpjBNFixvEgwWikrRVfWXfFcb3lHbshXXujAbNKdNTa0Ii9YYOy9bnTgQ6PU0/9Ew+MAAFpFb3lH/HTzjRXPvajn8Dho7uETum5eqFSz53qtLMt2BaPlzM/70sTmnkXn9XkBx8Pnc4PRWjtArNozX59nRQAAAABojILBaFEWjAYAAAAA7LQhJxhtsWA02pxgNAAAAACYYQbTQMXyIsFoERHdeeELqbdKWFdrb+KfDo0OrSgaLNCd5fXb3LCxegLhJhoeBwDQKu7cfHP0liuvLHn14t+a8HXzQ3Bn9/wppZR7Ltv137z5+UTmnkNpMPc5q97r532ftHow2pysI/eZsq/cW+X5pbU/FwAAAAC0lMLBaOWpHQcAAAAAMGNszFm2uGReVvkEtAnBaAAAAAAwwwymwYrlHVlHofbVAgTyNvnnBTbMJo0OrSgaQpfbb5pYIFuj1BMIN9HwOACAVpBSils2XF/x3B5zFsQrF6yY8LXz55izff6UH4y2OxqtkfeuUXPbwTSQ+7zW6sFoEfn3tLe8o8rzi2dFAAAAACiscDDa0NSOAwAAAACYEcrlFJtyti0tnje9Y4HpJhgNgIZYvXp1/OVf/mWcdNJJsc8++0RXV1dkWTb854orrmj2EAEAANrGYBqoWN6RdRZqXy1AIC/kayZs4p9qYwPLdptIQFlKKfdej/365PWbF2I3XfpS8f4FewAAM9nDO1bFU/2PVTy3fNHp0VnqmvC1c+eYs3z+lKoEo2VTEIxWz9y6WjBytev0/P/s3XmcHGWB//Hv09Mz3TO5JmQSAkRICDcIGOW+AiIgouuBB14rIovXeqDrrusB7LreirqKJyJe/EBAUYFwbQj3lQDhNiSThDNkkkyume7p7np+f0wmme6pp7qqr+nj8369eJG6nnq6qqf7qern+Vas/nsgJYw7lNkZou3YBgAAAEBl0T8PAIAmMTQUbj3rVbceAAAAAAAAABrCppRkHV0qp9Z/t0SgLPHxrgAAtLrZs2dr1aodg2kWLlyo+fPnj1+FSvDLX/5S//qv/6p0Oj3eVQEAAACAlpCzWd/5cRPudp87QGDQGSLg2qaVuMLh0l5K1loZY0KXlbUZefLvyFwYjhG03/EUZf+lhMcBAADUi0X9N/rONzI6bsppZZXtamenvMHIbcxmEiYYzdVOLiVAOErbNqj8VC4oGK3+w6aDrj1cx6gRXhcAAABaG/3zAABAXRkKeS8yl6tuPQAAAAAAAAA0hA0D7mXdBKOhycXGuwIAgMZ2ww036Lzzzgvd6er222/Pe1LlhRdeWN0KAgAAAEATytqM7/y4aQ+1fWHw1oi0N+gc5M9gd/dxs7IastEGIwUFLyRMfjiGO8huOJBtvFQqPAIAAKCebcyu18Ob7/VdduCE16qnY+eyyk8a/zamp5yyjkDkVhAUjKZtwWju65roobyRQn8D1g1q9yZj9d8DyXVMUwHXiq5tAAAAAFQG/fMAAGgyYYPRPILRAAAAAAAAAEjrtriXddN9D00uPt4VAAA0ti9+8Yt5g7Df+9736pxzztGrXvUqtbfvGJDf09MzHtUDAAAAgKaUcQajhbvdFxS0lXYOdvffppUEHYOUNxjpGKVtUGBCuGA0K08ZO6QOkwi930pyvVfKXRcAAKCe3N1/izz5D0A7YerpZZcf1IZM20G1K1z4cdMJyEUzw7loAdc10due0dq2wwHFZqQio6Q896MZGyFALPBa0foP2ORaEQAAAKgu+ucBANBkciEfiEEwGgAAAAAAAABJq9b5z++ISztNqG1dgFojGA0AULJnnnlGS5cu3T59+umn6w9/+MM41ggAAAAAWkPO+neUjZtwoQlJx4D8lDeotOcY7G7qfxB/tbmOmyTncStl/cLAhOD9DqojNl7BaOFfc9TjAwAAUA9yNqs7N97ku2x6+0zt33Vo2fsIDEbzUprYNrnsfTQiG5CMZjQcSOYKGiul7ekK/fLjKaeszajddPjs2z9grU1xtcfqP+TOfUzd14pB1ysAAAAAykP/PAAAmlDYYLSw6wEAAAAAAABoaivX+fen3GMnKRYb+4BXoJnExrsCAIDG9dBDD+VNn3nmmeNUEwAAAABoLVmb8Z0fNhjNFb6Q9lJKOQbyBwU2tIrg0Ar/4+biOs5++wnab1A51RYlcGI86wkAAFCqR7c8oI3Z9b7Ljus+TTFT/s/triAqKXobs7m4g9E0EoxmXNc10Y9b1G1cbeFBRznJtsYID3NfKw46jxHXigAAAED10D8PAIAmFDoYzatuPQAAAAAAAAA0hJXr/OfP6altPYDxQDAaAKBka9asyZueNWvWONUEAAAAAFqHZ3Py5N8BNnQwmvEflJ+2KaWt/wD/ZEBgQ6uoZDCaK0jBKKZ201Gw36CwjPDhZJWWtuFf83jWEwAAoFSLNtzgO7/ddOioKa+vyD6C2tmt3IYKjkXbFozmCvFyXNMESUU81q62sOu6oFGup1zHdMDbqowdirQNAAAAgPLRPw8AgCYUOhgt5HoAAAAAAAAAmtrKPv8elXtMMzWuCVB7BKMBAEq2ZcuWvOn29nAD8AEAAAAApctad+fXuImHKsM1KD/lDToH8geFc7WKuGl3HuNUhYLRErGkjMn/ccIVZFfKfislazOB78VCrRzqAQAAGtOL6dVaNvi477LXTT5OE9omVWQ/7aZje9BXoVZuQ9nAaLRhruuatJeStcW3z98mWrva1Q5PeQO+85OxrkjljxfXMd2c3Rh5GwAAAADlo38eAABNKJcLuR7BaAAAAAAAAACklev858/uqW09gPEQbqQkAKDhWWu1ZMkSPf3003rllVeUTqc1ffp07bbbbjr22GM1ceLEyGV6nleFmgIAAAAAgmRtxrksbsINiEnEkr7z096gM3yBwe7DErFOZXObx8yPGlrhDqAbe27aY+1qU1w5je34nLbjE5ZRqdcLAABQr+7sX+BcdkL36RXbjzFGiVjSN2hrvEJw64M72GwkSM4V3mxlNWTTShj/6x4/0du3/uu7zlmjXE+5jtnG7Hr3Ng3y2gAAAIBqo38eAAAIJWzgmRcyQA0AAAAAAABA07LW6okX/ZfNnlbbugDjgWA0AGhyfX19+vrXv67f//73Wrt2re86HR0dOumkk3ThhRfqiCOOcJa1cuVKzZkzx7n8xBNP9J1/2WWX6eyzz/ZddtFFF+miiy5ylrlw4ULNnz/fuRwAAAAAWk3WujvJhg9G8x+4vjm7UdYRQOAKU2s1CZPUVo0NRosaWhE1gC4RS2rA2+JTzviEZUQOjrCtHOoBAAAaTcob1P2bFvoum5PcV7sn51Z0fwmTVEpj20tR21zNxB2LNhwmJwVfo6S9VKRrmEq151PegO/8hglGc9RzU26De5sIAXQAAABAM6J/HgAAiCRs4FnYADUAAAAAAAAATev/PejuTTl7mqlhTYDxERvvCgAAqucvf/mL9txzT1188cXOTleSNDQ0pAULFujII4/Ueeedp2yWH1IBAAAAoF5lbca5LG7CPQfBFRDgF7y1Y5vGGMhfba5Ag7SNFlrhCl5whQq4ztl4hWVEDkZr4VAPAADQeO7fuNDZXju++40V35+rrT1eIbh1wQZFow0LCj6rVNBZ1PKd7fwGuZ5yXe8EBXQ3ymsDAAAAqoH+eQAAICobNvCMYDQAAAAAAACg5f1kobsv5ZyeGlYEGCfhRkoCqB0vKw08P961aH5ds6RYc38E/vrXv9a5554rz/Py5s+dO1cHHHCAurq6tHr1aj3wwAPK5XY8eeoXv/iFVq9erb/97W+Kx5v7GAEAAABAIwoKRmsrMxit0ts0o0qFVriC1FzH2RVQEDXwoVIiv16C0QAAQIOw1uqO/ht9l01sm6J5k46p+D6dIbgRw3ebiZW7M4/R8FMOXW1kqfrtVdf6rvZ5Z6wrUvnjpbRrxUQVagIAAFBF9M+rnSbvo0f/PAAAUJKwAakEowEAAAAAAAAtr3/AvWzGpNrVAxgv/KIO1JuB56W/zhnvWjS/t/RKE2ePdy2q5pFHHtHHPvaxvE5Xhx56qH7yk5/o6KOPzlt37dq1+spXvqKf//zn2+ctWLBAX/3qV/X1r389b91Zs2apt7d3+/QPfvAD/fCHP9w+fcUVV+jII48cU5+enh7Nnz9fknTffffprLPO2r7s05/+tD7zmc84X8vMmTOLvFoAAAAAaC1Z6+782m7aQ5URFCBQyW2akSsoIGpAmStIwRW85gzLGKdgtKivd7wC3AAAAKJaNvi4Xhp6znfZMVNOVnssXJs7Cnf4LsFofkaC0YJCvCIHndmo7Xn/9V3tXtc5rjdRg9HaTYdipq1KtQEAAKgS+ufVThP30aN/HgAAKFnYwDMvV3wdAAAAAAAAAE3tyZf8509ISLGYqW1lgHFAMBoANKFzzjlHQ0ND26ePPfZY3XTTTerqGvs0+unTp+tnP/uZ9tprL/3bv/3b9vnf+ta3dNZZZ+nVr3719nnxeFyzZ8/ePt3d3Z1X1syZM/OWjzZx4kRJ0sqVK/Pmd3d3O7cBAAAAAIyVtRnnsnjIYLSog91L3aYZVSq0whWk4Aqgq7ewjOivt3VDPQAAQGNZtOFG3/lGMR3bfWpV9llvIbj1biQYLW7a1aa4cho7kDDqsYu+vn/7Nmo7v95EDXBrlNcFAAAAVBr98wAAQMnCBqOFXQ8AAAAAAABAU7pnufsBsz9/P6FoaA2x8a4AAKCyFi5cqCVLlmyfnjx5sq688krfTlejff7zn9cZZ5yxfdrzPF188cVVqycAAAAAoDSVCEaLOng9buKhy252rmOXqlCQgisUwzU/6n4rJW0JRgMAAM2nP7NOj265z3fZqye+TtPaZ1Rlv/XW1qsHVl7A0h0delzt82q3V9PW/9ykvAHf+Y0SIJaMGIhNgDYAAABaEf3zAABAWUIHo+WqWw8AAAAAAAAAde1rf3f3o3zVTgSjoTUQjAYATebyyy/Pm/7EJz6hXXfdNdS23/zmN/Omr7jiCqXT6YrVDQAAAABQvqBgtDYTD1VGwkQblB91/WbmGvgfNUjBFXLhKt8Z+DBOgWORgyNaONQDAAA0jrs23izPEch1fPcbq7bfemvr1QPrftChzKj+PNVun7u4yneVk4wFByTUi0TEALdGCXwDAAAAKon+eQAAoCwEowEAAAAAAAAIYcET7mVTG6NLIlA2gtEAoMncddddedPvf//7Q2974IEHat68edunU6mUFi9eXLG6AQAAAADKl7X+nWRjalPMhLvd5woPqNT6zcwdWlGZIAXXsXaF041X4Fjk12tT8qz7aTUAAADjLWszuqv/Zt9lM9p31X5dh1Rt35UK92ouAclo2pGM5jp2lQo6c3GV7w5Ga4wAsajBaFHXBwAAAJoB/fMAAEBZwgaehQ1QAwAAAAAAANA0rLW65Umrz/0pePxNN8FoaBEEowFAE9mwYYOWL1++fbq7u1v7779/pDKOPvrovOkHH3ywInUDAAAAAFRG1mZ857eb9tBlxE27YmoLvT6D3XdwHYuoQQpp6whGcwSg1VtYhivwIR7wPhyy6WpVBwAAoGyPbr5fm3IbfJcd331a6BDiUjhDcB1txlZgA4LRTF4wWnWDiyfEJkVa39VObpRrqoSJGKIdcX0AAACg0dE/DwAAlC1s4BnBaAAAAAAAAEBLyXlWH/y11WxCGWAAACAASURBVKk/8HTxLUEPl5WmEoyGFhEf7woAKNA1S3pL73jXovl1zRrvGlTF2rVr86b33ntvGWMca/vbb7/98qZfeeWVsusFAAAAAKicrPXv/Npmwt/qM8YoEUtq0Nsaav1kgwzirwVXQJkrAMHFFaTgKt91DsYrLMNV/ynxqVqX8b+XkPZSvJcAAEDdWtR/o+/8DpPQkVNOquq+6y0Etx4Ed+nZoRLHzlrrbM9Pjndr69DmUOVnbcYZZN3ZIO3gRCwRcf3GeF0AAAB56J9XO03YR4/+eQAAoGxerrLrAQAAAAAAAGgKNz8h/eH+cL0nuzqqXBmgThCMBtSbWFyaOHu8a4EGtWHDhrzpKVOmRC6jcJv169eXVScAAAAAQGW5BtrHTXukcpKxztDBaK6wgVbkDCiLHIzmv74rWKBSgWyV4gqamNwWFIw2KGlqFWsFAABQmhfSK/Xs4BO+yw6bfLy62iZWdf/11tarD+7OPUY7QgcqEYyWtVl58h9kODk+VS8NPedT/thzE3S+GiVALGba1GESGrLpUOtzrQgAABoS/fNQBvrnAQCAsuX8H4ZX8noAAAAAAAAAmsJfl4Z9pKwiP7wJaFSx8a4AAKByrM1v7FSiQUOjCAAAAADqS876d36Nm2jPQIgygL1RBvHXQsKUH7wwvL4rGM2/fNc5iBrIVinOYLR4d+RtAAAAxtsdGxY4l53QfXrV91+p8N1mYkMGo7mOXZRQuaDjPCXuH+zrV34q5y6nM9YVuj7jLdq1IsFoAAAAaC30zwMAAGUjGA0AAAAAAABAgWzO6soHwwWjvWNelSsD1BGC0QCgiey000550xs3boxcRuE2U6f6D/gAAAAAAIyPjM34zo+b9kjlRAk7Y7D7Ds7QChs+eMFa6wwJcwej+c9PjVPYmOv1TnYER0itHewBAADq12Buqx7YdLvvsrmd+2tWck7V6+Bq6xEs6zAqNCBhXKFy4Y9dUFt+cpt/+9av/KAwtkYKm3Zd85S7LgAAANAM6J8HAADKRjAaAAAAAAAAgFEeWmnV8TFP/QPh1v+3U4mKQuvg3Q4ATWT69Ol50//4xz8il/HMM8/kTc+YMaOsOgEAAAAAKivrDEaLRyonGSHsjGC0HVzHImuzznMzdt2MPHmO8v2DBdxhGeMTNubab1dsojOkLygoAgAAYLzct2mh0tY/ROv47tNqUgdXGzDtpWRtuCcANpug121G/dvZTnacU991A0LUpjiCf/3KT3nuXknJWFfo+oy3KNd/XCsCAACg1dA/DwAAlC1s4JmXq249AAAAAAAAAIy7nGf1tkv8xxcVeuuh0mMXxnT4HFN8ZaBJEIwGAE1k6tSpmjt37vbp/v5+PfXUU5HKuOeee/KmDzvssIrUbYQxNLQAAAAAoBxZzxWM5h9G5eIKX/CTjLBusws6bkGBCmHXcwXWuc5Bxg4pZ2vfIdr1GhKxZECIW/hwCgAAgFqw1uqO/gW+yya1TdGhE4+uST0Sxr/95CkXOny32VgFBaPt6ObgaidHCRAOCvCd7ApG89nGtc82xdUei3a9Np6iXCtGWRcAAABoBvTPAwAAZQsbjBZ2PQAAAAAAAAAN665l0gv9wess/nJM3i/adO3H23TgrvwWiNZCMBoANJljjz02b/oPf/hD6G2feuopLV68ePt0MpnUa1/72orVTZISiUTedDqdrmj5AAAAANDscvLv/Bo5GM1EGOzuCGpoRUED/4MCFUZLW/d6rvMStN+hcQgcCwpGc4ZTWILRAABAfXlmYKnWDD3vu+yYKafULMyqEuG7rWR0tx53KG/4YDTXMTaKaWLbZOc21uaHtw069plsa6zwMEK0AQAAgGD0zwMAAGUJHYxW+wekAQAAAAAAAKitKx50P0RWkiYmpH13rlFlgDpEMBoANJkPfvCDedM//vGP9fLLL4fa9otf/GLe9Hve854xHaXK1d3dnTf90ksvVbR8AAAAAGh2WZvxnR+PGNrgChDww2D3HYKORdjQiqAANdd5qcR+K8m1z2Ss0xmkFzY4DgAAoFYW9d/oO98opmO7T6lZPZIBbfOgUN1mZhXU2WdHNJo7GC18G7mU0F8rq4wdKijHEYzWYNdTUYKxo1xXAgAAAM2C/nkAAKAsYQPPCEYDAAAAAAAAmtbiVVZHfD2nX9wRHIx2zrFGXQkTuA7QzAhGA4Amc9JJJ+nQQw/dPr1x40adddZZGhwMHjhz8cUX67rrrts+bYzRZz/72YrXb88991RHR8f26YULFyqT8R/UDwAAAAAYK+M5gtEUj1ROlAHsiQYbyF9NQcfNFYQwdj13SIOr/KBwgvEIHHPtMxFLOt8v4xHgBgAA4LIh06elWx7wXXbwxMO1U/v0mtUluI3Zqm0od2cfEyIYLUob2bVuMtYZeC1UuJ27nK7QdakHka4VI4SoAQAAAM2C/nkAAKAsuWxl1wMAAAAAAADQUF7eaDX/u54eXFl83e++k1A0tLZooyUBAFX38ssva+XKlSVtO3v2bEnSpZdeqqOOOkpDQ8NPqr/99tt13HHH6Sc/+YmOOOKIvG36+vp0wQUX6JJLLsmb/4UvfEEHH3xwSfUI0tHRoWOOOUYLFy6UJK1evVpvectb9NGPflR77723urryB4fMnDlTySSDKgAAAABgRE7+nV/jsfZI5SQjhJ0RjLZDh0nIyMj6BDWEDa1wrWcUU7vp8F0WdA7StvZhGa7XkIh1OoMUWjfUAwAA1KO7Nt4kK8932Qndb6xpXQLbei3ahvJswFMQR/XzqUQoryvgeDj0t1gwcvf26ZQ34LtelGuvesC1IgAAAJod/fPonwcAwLgiGA0AAAAAAABoaX+432pruvh6u3ZLbTGC0dDaCEYDgDpz1llnlbyt3TZIZN68efrxj3+sj370o/K84UE9ixcv1pFHHqm99tpLBx54oJLJpJ577jk98MADymbzfzh9wxveoP/+7/8u/UUUcf7552/veCVJCxYs0IIFC3zXXbhwoebPn1+1ugAAAABAo8l6jmA0E+1WX9AA/3LWbXbGGCViSaV8whP85vlxhTQkY0kZ4/+jRSKWcJYXdr+VkrUZZ0BfwiQDwilqW08AAACXrM3o7v5bfJft3DFL+3ZVfmB6kHbTIaOYb1Bbrdt69cMdjGZGJaO52p5DNi3P5hQzbUX35Az9NcWC0fK3c52rRgtG41oRAAAAzY7+efnonwcAQI3lcuHW80KuBwAAAAAAAKChPPpcuPU+9wZC0YDYeFcAAFAd5557rq688kpNnDgxb/6zzz6r6667TldeeaXuueeeMZ2uPvzhD+v6669Xe3t71ep2xhln6Gtf+5ra2ooPRgEAAAAA5MvajO/8uIl2HRdlcH6jDeSvtnKDv1zrucqVpJhpU7vpKGu/leIKjpCGgxFc4QgEowEAgHrx8OZ7tSnX77vs+O7TnGG11TISvusnqO3VzGzYYDQTFFwW4pGKktLW3T4PuhYqDEJLeQPOchpJtGC0xnptAAAAQCXRPw8AAJQk5/8QspLXAwCgjj2/weqTf/QU+5fc9v/OudzT4y+4fwsEAAAAgGbX2xfumujdhxGMBhCMBgBN7Mwzz9Ty5cv16U9/Wj09Pc712tvbdcopp+juu+/WpZdeWtVOVyO+9KUvaenSpfqP//gPHX/88Zo5c6Y6Oxk8AQAAAADFuILR2kw8UjnRBruHX7cVuMIXCoMRXFzrFTvOrlCG+gpG6yTUAwAA1L07+m/0nZ8wSR05+cQa12bbvgmXLUlQcFnahmt/utqpiVhScdOuNvlfaxWW7yqnM9YVqh71IkrYGSHaAAAAaHX0zwMAAJERjAYAaBFrNlkd9Q1Pl9yeP+D/srutjv2Wp8eeJxwNAAAAQGvqXVd8nQWfjmnXboLRgGijJQEAFbdy5cqqlj9jxgz94Ac/0Pe//30tXrxYTz/9tNauXat0Oq2enh7NmjVLxx57rCZNmhS57AsvvFAXXnhhyXU74IAD9I1vfKPk7QEAAACgFWWtf+fXuIk2iIbB7qVzB5SVGbzgCFzbvjyW1ObcxpL3WylBAXCJWLLs4wMAAFBNz6d6tXzwKd9lh0+er862CTWu0TBXW7BV21BW7oEQRjs6+wSFC4cNlXMd45F2bSKW1IC3peh2g96AbzlRrr3qQZTrP0K0AQAA0Ajon0f/PAAA6grBaACAFvGbe6xe6Pdftikl/ej/rH75QQb5AwAAAGgtqYzVi45rpe+90+gthxjN6ZFiMa6XAIlgNABoGbFYTIcddpgOO+yw8a4KAAAAAKAMWZvxnd9exWA0Brvncx2PtA0ZvGAdwWhFzkm9BI4F7S8Z63SGegQFqgEAANTKov4bnMuOn3paDWuSz93GbM1gNAUEo6nCwWiudupI2clYpyMYbTBwekSjBU2HvVY0MuowiSrXBgAAAGgc9M8DAAChhA088zxZa2UMAyABAI3pxseCfu+T/ni/1S8/WKPKAAAAAECdWLPJvey0g4zmzuB+IDAawWgAAAAAAABAA3EFo8WjBqM5wqt8122wgfzV5joeYQPKXOsVC6Bz7bfWgWOuwAcjo3bT4T4+LRvqAQAA6sVAbose3HSH77K9Og/QbonZta3QKK7wrFYNlw2MRTOjg9Hc1yqpstvnndv+Hy74N+UN+K7XeMFo4a4VE7EkgzIBAAAAAACAqMIGo0lSLifFGfZVa9Za3fi4dM9yq71nSG+fZzQpyb1QAIjq6ZeDlw9mhj9zV6+X/vKI1bI1w/OnTpBev5/R/H357G11fCcDAIBSZHNWNz0h3bvCav9dpDPnGSXaaUOgfvT7dzOUJPVMrF09gEbBHXIAAAAAAACggbiC0dpMtFt9UQbnd5hEpLKbXbmhFa5gsWLnpNxAtkpx7a/DJBQzMefrcL1uAACAWrlv4/9pyKZ9lx3ffXqNa5OvXtp69cLa4CfIj2gzbWo3HcrYoTHLwgcXB7fPXUFhheW7rgcaLhgtZIh2lLBtAACanTGmTdJekg6QtKukKZLSkjZIWi7pIWvt1grvs13SMZJ2l7SLpC2SXpT0sLV2ZSX3BQAAAKCCcrkI62YJRqsxa63O+73Vr+7ccY/6B7da3fzZmKZPYhA1AIRlrdUrm4uv97dHpbN/42lDQTDA/1xv9eU3Gf3XP8WqU0HUPWutzv2d1a/v2vGd/MPbrG7+TEw9fCcDAACHbM7q/ZdaXfXQjjbEzxdZXf+pGAGrqBuF1z+jdTdWV0OgJrhDDgAAAAAAADSQrPV/enDctEcqxzW4f8x6JqmYoYPRaGGDEVxc6xU7J67ggbCBbJWStq76RwuOAAAAqCXPerqjf4HvssltU3XopCNqXKN87jZUq4bLuoPRYsq/PknEksrk/ILRwh07V3t65Jy4Q+vyt3MHo3WFqke9CBvk5jouAAC0CmPM7pLeLulkScdJmhywes4Yc4ukH1trry9zv9MlXSTp3ZJ2cqxzj6TvW2uvKWdfAAAAAKog59/nw5cXIUQNFbF4lfJC0STp0eelS263uuDNDKAGgLDWhghFk6Szfulp0P85sfqfG6zOOdZqj2l8/raiB3qVF4omSY88J/10kdVXzuA9AQAA/N38pPJC0STprmel399n9bH5tCFQH/odwWgTElJ7nPcpUIgRjQAAAAAAAEADyVr/nkBVC0ZjsPsYrmMSNqCsWPCCe7/1EThWPDiiPgLcAAAARntmYKleybzou+zY7lMit6crrV7aevXCHYs2lju4rMzgYhPcvi3czt1ObqxrqvDXiuHWAwCgGRlj/ihplaSLJb1JwaFoktQm6TRJfzfG/M0Ys3OJ+32jpMclfUyOULRtjpZ0tTHm98aYCaXsCwAAAECVRAlGi7IuKuKaJf53p698MMpdawDA8xvCrecKRZMka6UFj/P526r+/Ij/ub96Me8JAADgdvOT/m2Fz/2JNgTqx4YB//fj1MZ6/ipQM/HxrgAAAAAAAACA8LLWv+Nr3ES71Rd2cH6ywQbx14LrmKRDBn85gxeKHGvnfm1tA8dc9R+pnysgIWOH5NmcYqatanUDAABwWdR/g+/8mGI6dsopNa7NWITLFnJ3RjPKfyriSIBZodDtcxvcPk+Y4sFrWZtxhlh3Ntg1VdhrxUYLfAMAoML2ccx/QdIySWs03DdzT0mHKP8BtmdIusMYc4K19uWwOzTGzJf0F0kdo2ZbSUskrZDULek1knpGLX+fpMnGmLdaa72w+wIAAABQRV6EpjnBaDX3rQX+96afLrh625Kyum+FlMlJR82VuruM73aeZ/XkS9KTL1lZK+030+jVu0mxmNHmlNX9K6RpE6Utaekfa6w8KyXi0sCQFDNSsl06aT+jWVP9yweAUm1OWd27XPKsdNSe0hTH51ip+iv0E+eKvsqUgx2stXr2FenR56WcZ7XndKPXvEqKt9XXd823Hd/Jj72w4985z2rp89KKtdK8PaQ5PfX1GgAAQO396Db/NkQqI12z2CrrDS/frdvosNlSop32A2pvw4D/fILRAH8EowEAAAAAAAANxDXYPm7aI5XTZtrUbjqUsUOB67kCGlqZ65i4AsPGrOcKXnAEOhTfb62D0fz3N1K/oDC9tJdWZxu/2AAAgNpan1mrx7Y85LvskIlHqrt9Wo1rNJY7fDdcG7PZ2IBgNBUGo5UZKldq+3Z0+UH7arQAsbDh2IRoAwCw3cOSfi3pRmvt8sKFxpjdJH1V0r+Mmr2PpD8ZY4631hZ9PLkxZpaka5Ufina3pHOttU+NWi8h6TxJ35U0csP4zZK+Juk/o7woAAAAAFUSJbPYy1WvHojsukes/ulQo1uftHrHzzxt3nb7viMu/eZDRu85PJa3fv+A1Tt+6mnhM6PnWh09V/rYfKOP/t5qazrMnq0+f4rRN99uFIsxYBtA+a5favXuX3ga2NZtMBGXfndOTGe+tnKfMf2Ogf5RrSQYraLSGasPXWZ15UOjb0laHbCLdP2nYtpjWmN8z2xNW21JS2f8r6fFq3bM/8CRRpf+s6m7kDcAAFA73V3utug7fz76nozVrKnSDZ+K6aDdaDugtlzv0W6G2QC+YsVXAQAAAAAAAFAvctb/icBxE/0ZCGEG6DfaIP5acB2T8MELjmC0IiF0rv3WOiyjWP2D3jO1DnEDAACQpDv7F8jKf7DZCVPfWOPa+EsYR1vPEarb7ILyQUxBXzRnqFyIY2etdbZvR8p1BhSPKj+Vc7dzO2ON1WOp3XTIqHiHP0K0AQAtzkq6XtJh1tp51tof+4WiSZK19gVr7XmSPlGw6FhJ7w65v4skTR01fY+kk0eHom3bV9pa+yNJ7yrY/nxjzB4h9wUAAACgmqKEneX8+4egOp54MTi3+m2XeNqw1epdv9gRiiZJQ1npg7+2WrMpf/uL/mYLQtGG3bNc+sClYUPRhn33ZqsbHw+/PgC4bBrMD0WTpHRWev+lnvo2F83vD61/oDJl9fZVrk6QfrqoMBRt2JMvSZ/8Y4Tw1nG2cp30uatsXiiaJP3uPqufLeI9AwBAK5vVHX7d5zcMt4NDPMcKqKgNjmC0qY3VzRCoGYLRAAAAAAAAgAaStRnf+XHTHrmsMAPZGew+VsI4ghFCBpS5wsGKhdC5zkXYQLZKcdd/WzCa4/hIrRvsAQAAxk/Gy+jujbf6Ltul41Xau/OgGtfInzN8q8YhuPXCKiAYrSC0q5xjl7FDzn0ligWjjWoXB7XJGy1s2hjDtSIAAMW901p7hrX2obAbWGsvkXRNwewPFNvOGLO3pH8eNWtI0oesdd9os9b+RdLlo2YlJF0Qtq4AAAAAqsiLEDqS9e8fgur466PFB0J/4Rqrfp/Bq1lPunZJ/vZ/WlzZgdVXPshAbQDlu+ExmxeKNmIoK10X4nMwrP4KdWfr7atMORh2lU8o2ogbHx8OzqsHqUxwPZatka592H+dv1XwfQwAABrPblOLrzPa0uelf6ypTl0Alw1b/ed3dxV/mCnQighGAwAAAAAAABpIxhmMFo9cVlCA1Yhkgw3irwXXMXEFhoVdr1iwgHu/tQ3LcO1vR3CE+z0T9hgBAABUypLNd2tLbqPvsuO73yhj6qMzSZjwrdYS1GG9MBjNv/0ZJkA4ONBs+JyEaf8HnadkrPEe5RgmzI1rRQBAK7PWrixx058UTJ8YYpv3SmobNX2ttXZZiO2+VTD9LmNC3BAGAAAAUF22csFoGwesXuy38jwCQCrh+Q3F17nhMfexHj2QekvK6sX+ClRqlN/fz3kGUL5lr7iXPfJc5fbjFyJZinVbpc0pPv8qZVlA6IdnpRV1EkS3en3w8ruXW6UczaS7l1e+PgAAoHFMSkTfJqiNDFTDynX+1zg7T65xRYAGQTAaAAAAAAAA0ECyzmC09shlhRnIXiysqxU5gxFsSl6RTszWWmewWLHzUU7gQyWlrSMYzYwEo7l/Uax1XQEAAO7ov9F3fsIkdfjk+bWtTACC0fKFj0ULOnbFA4SDju9IuWHKT3n+ozvaFFd7LPq12ngLE6LNtSIAACV5uGC60xjTXWSbtxVMXxZmR9bapyTdP2rWBEmnhNkWAAAAQBXlcuHXzfj3D3niRavD/iennT7radYXPPWc7+lLf/YISCtTmBCfl/yfwyJJ+uFtVqnM8DlgUDWAenX9Uvd3xU8WWp3xo5z6Npf/fbKxgj9x9tZJWFej25yyWrc1eJ3v3FQfbYli5/x7N9dHPQEAQP3JRLjtMmJlH20L1JarvTunp7b1ABoFwWgAAAAAAABAA8nZrO/8UoLRwgxkDxOe1mqCjtuQTQdum7UZefIPTyt2PoICGayt3Q9yrvCIkfrFTJvaTYdj2+LhFAAAAJWyOrVcvalnfJcdMeVEdbZ11bhGbq4Q3Fq39eqFjRCN5gwuDhEqF9Q+HSk3XDCa/76SbY15PRXmWnEkGBkAAETid3PX/0aaJGPMTEmHFGx/d4T93V4w/cYI2wIAAACohiIPW8uTGdv/YGvaav53PC1eJY3cOu4fkL5xo9V3CAkpS/9A+cfvk1cMl3HWLyOc5wg2pzjHAEq3JWX1wMrgdW54XHr7T8v/DKtkMNqKtZUrq5WFCZi74gGre5aP/3dNbxnhJOTEAgDQ2oZKCEbrXVf5egAug0PWGbw/p6fwkbEAJILRAAAAAAAAgIbh2ZwzVKuUYLQwoWdhBsS3GldohVQ8fCEoeKHYsU46ggc85ZS1/k+KrgbXaxhdf3c4BcFoAACgdhb13+Bcdnx3fWVCuNqYnryatvXqh7vHuikIRgsTXObiCjQbXW5QaF2xcho1aJprRQAAqmavgumspKAhiQcVTC+11m6NsL97CqYPjLAtAAAAgGrwygtGu+4Rq3WOq4JL7yIJpBwbBsov44r7rbakrP6xpvyy/IQJtQEAlz8/HO574q5npadfKu87ZcPWyn0nlROShR3Cfodcdvf4H+9yvu9SGSmVGf/XAAAAxkemhGC0VbQ3UUOr17uXzempXT2ARkIwGgAAAAAAANAgsjbrXBY38cjlhRnInnCEcbWyoOMWFKxQbHmxYx2031oGjrlew+j6lRNOAQAAUAkDuS16aNOdvsv27jxIuyZ2r3GNgiVMfbT16kVQdzNjCoLRHMeuWGixJKWt/7FtU3x7+LQzGM2m5NnhQYzONnKDXk8FhUFHWQcAAIxxZsH0Q9baoFSEAwqmn424v+VFygMAAABQa16EEbqZoTGzlr7gXv3ZV6TBIQbzlqq/AsFogxnpzmXll+OyYm31ygbQ/IK+Q8auW973yQv9ZW2ep3dd5cpqZWED5h57fvzbEivLDALdWPxnYgAA0KSG3MNtnAghRy2tD3gM2m7dtasH0Eiij5YEAAAAAAAAMC6yNuNcNjJoP4pwg92Lh6e1mmTAcSsWWpG2AcFoRY514H7toCZqcuD2leJ6jaPr53pvFQuOAwAAqJR7N96mjB07aEySTph6eo1rU1yySPhurdp6dcP6d7g3MmPmBQWXFeMKT8tr2waE1g3ZtJKmUynPf8RcZ1tX0TrUo6BrjyjrAACAHYwxEyWdUzD7z0U226tgenXE3a4qmJ5mjJlqrd0QsRwAAAAAFWCtdd779JVJj5n17QXB269cJ+2/S9SaQZI2VCAYTZLe9L9B+dfleWaNlXzukxey1uqHt1n94g6rp18enjenR+rulF6/v9GFbzbqShgtesbqh7d5euwFybPSXtOlDx1jdNbhsaq9BgDjp3dt+O+g5Wul/gGrr/7V6o5/WG0e9bPbvjtLHzkuprfPG/48um+F1fdv9vTI81Ju20fg6vWVq/d9y8c/qKsR+J2vA3aRzjshpi0pq/OvCnccH1gpxf4lp50nS10dw/NGh4XsvpPUtu1rYk6P9L4jjM4+prLfGyvXlXfON2yVdm6xn9cBAMCwTIQ8+hErCeJFDQ34d2mVtKP9DSAfwWgAAAAAAABAg8ha9yNsqhWMxmD3sYKOW7Hgr6DgtGLHOig4rZaBY67XkAgRHuEKngAAAKgkz3q6o/9G32VT4jvpkImH17hGxQW1MYPCdZuVlauze4RgtCKhxUHrjG57BwcjDyoZ63S2x8Ncc9WjMAHZhGgDABDZNyTNHDXdL+lXRbYpfCb0K1F2aK3dYoxJSRr9xT1FUlnBaMaYGZKmR9xsbjn7BAAAAJpClFA0Scrkj5T87s3FA7dWrCUYrRTW2ooFo1XTF6+1+vfTiq/3+autLr4l//02Emrz8HNWD/RaXfiWmE79gZc3aLy3T7rlKauNg54+egLhaECzWdFXfJ0Ry9ZIJ37X06PPj13W2ycteMLT5Wcb7TvT6KTveUq5n/datodWSRsHrKZ0FQ+GbFWZrNUJ3xkOuhytt0+6/rHSAjvXbPKfPzr0rrdP+r+nrdZt9fT5Uyr3vdEb4b3q55olVl96E+8XAABa0VAJwWgbBmhvonZcwWhdHZIxvAcBPwSjAQAAAAAAAA0iLliMLgAAIABJREFUa909iOIm+q2+cIPdG3MgfzW1mTa1mw5l7NhfJYqFL7iWxxQrGm4XGJYRIvShUsoJj0jb2tUTAAC0rqcGHtHazMu+y46bcqraSmg7V1tQ27yWbb1659f1x3XswoQHuwPNkr7/9tt+iqSU5z9irlGDpglGAwCgsowxb5P0yYLZX7LWrvdbf5SJBdOlJOYOKj8YbVIJZRT6uKQLKlAOAAAA0Fq8iKNzRwWjZXNW37u5eLBab5+V/51UBEllpCHHswr//PGYDvAJmzvzZ2MDaIIcMku69uMxZUe9DaZ0SlvSUrJdmtolZb3hgbDv/rmnax/2L+epl6z238V9jjcNWv3s9uD3yh3LpLN+mR+KNtp3brI673jLgFygiVhrtWJt+PV/c0/x75zv3mx1yCxVLBStI+7+LL7uUasPHsVnksuNjyvSd1Klff9mq8+83ireVv452pKy6ttSXhnfuNHqS28quyoAAKABua5zPz7f6NOvN9r3K/6hsSvXSYd0VbFiwDZb0/7XWhMSNa4I0EB4fAMAAAAAAADQIIKC0UoJdwgzkL1RB/JXm+vYpYuELwSFihXrUNpuOmQct3TDhD5UQtZmlJN/D7SEKR4eUat6AgCA1rZoww2+82Nq0zHdb6hxbcIJauu1YjCalWuwxdg2s+uaJWszylnH6IltXO330aHEYULrXOeoUa+nwgRkN+prAwCg1owxh0j6bcHsmyX9NMTmhcFopTQMCxs8hWUCAAAAqBXPf/CtUya9/Z+9fdKaTcU3eTnEOhjrxX73sr1nSHvvbMb8d/Re0cJf5k6X5vTklzFjstGe04127Tbq7DCalDRqixkdOddd9v29wWFF966QBkOEFAW9n8K+3wA0jg0D0qYK/+T42AvSrU8VD1AL67QD3cseXFmx3TSle1dU7jyU4uVN0qp1lSurXMng59MCAIAm5graPWBXaU6PFHek6/T2Va9OwGgDQ/7zuzpqWw+gkdTfo7ABAAAAAAAA+MoGDOpvN9F7c4QZyB4mPK0VJWKd2pIb2wunWGiFKxgsTPCAMUaJWFIpbyDyfislKNhs9HvFHRzXeqEeAACgtvqG1uiJrYt9lx066UhNie9U4xqFUw9tvXriCkYzPsFoxYLLutrc2R9BwcU7/u1uq49sP+hz3iQpGWvMR4mODj12rsO1IgAARRljdpd0vfLDyFZJer+1tpTRirXaBgAAAEA12PxgtP+d+jH1ts/WYKxLA7FObTUTtCU2QT25ddopt0Gb7n2tzGpPbTFpzaZwTft+/1uVGOWuZVZ/W2p1/wqrF/qlNx9iNCWgy8bujp8Vzpxn9PNF4S+5ZveED1J7xzyjL1ztX/btz0gn7GN15YNWT78sjVxdela67hGrLWnfzSLr7ZNmTqlMWQDG34q11Sm3koGc//O2mP76qH+IKN9vwf766PjfAtz7y55uPT+mk/aLFhxaqBLnev1WadOg1eTO8uoCAAAaTybnP7+jTYq3Gb1qJ/8QtHf/wtOKr8e021TaDyiftVY3PCbd/KRV/4C03y7Su183HI6/1RGMNoFgNMCJYDQAAAAAAACgQWSt+5Gu8RKC0cINdi8e2NWKXMcuKDhMktJlBKNJw2F2/mEZwfutlKBQjtFBe67X04qhHgAAoLbu3LjAGap1QvfpNa5NNK5gtGJtzFZifPqeBQV0pbzBsoPR2kyb2k2HMnZsr6SRc+Nqj4cJo65HYULPEqYxXxsAALVijJkh6RZJu42a/bKkN1hrww5F3VIwXcoXcOE2hWWW4hJJf4q4zVxJ11Vg3wAAAEDjyuWPzv39lPdpcec89/rPSXouWtDJRm4nB/rZIk+f+KPV6KjqH9zqPsbTJ0kTk/6Dok/aT/r304y+tSDcOZrTE76ecwJC1H57r9Vv761+AM53b/Z0zcfaqr4fALWxom/8g7NcjJG+906jA3c1OmKOdH/v2HX6B+q3/uPt70utnnqp9O2nTZDWba1MXU7+vqdvvcPo306NlVzGhgqF4K1cJx08qzJlAQCAxjGU9Z/fvu3ydk6PfzBaJie96t89PfVfMe07k3A0lOcL11h97+b8a5jv3mS14DMxDTiC0boIRgOcSr/CBAAAAAAAAFBTlQ5GCzNIP8yA+FbkOnbFAsrCBC8Eca1Xq8CxoP0kQgWj0QsbAABUT8Yb0j0bb/VdtmvH7tqr84Aa1yiaUtuYzcha/6fBS2M7ngVd1xRrJ7tC5wrLLNYO9wu0K1a3ehbuWrExXxsAALVgjNlJ0q2S9hk1u0/SydbaZRGKqstgNGvtK9baJ6L8J2l5ufsFAAAAGl7Bfc9OW6Hkj1E2bCU4xmVwyOqL1+aHohUzZ5p7mTFG33h7TG96dciyAsLO/Hzm5PEdiP3nhyXP4/0ENIsVjpj+2QGfc+X48XuNfvXB4M+xyz5kdMW5Rqu+GdNnTh4e5nzaQf7bVCosq9lYa/WFq12/q4bz/Ldj6ohXqEKSvnitLSvIrr9C59ov8AQAADS/oZz//JH2zh7TgtuoYcPPAZfevrGhaNLwNc1//c3T1rT/dhMSVa4Y0MAIRgMAAAAAAAAaRFAwWpuJ3jslTBhXow7krzbXsXMFK4xIW0cwmgkbjOYKy6iHYLSk77/Dbg8AAFCuxZvv0tbcZt9lx089XcbU99McXW3CVmxDWfl3MjM+wWhBAV3Fjp0zuNgUBqMFh9aFDVhrFMVCz2JqU7yEa1AAAFqBMWaKpJsljR4av0HSG7YFhEWxsWB6esS6TNTYYLT+iHUAAAAAUClefnDJBMcDF8rR33rP2QjtvhXSxojHZ8/pxX9XeP3+4X57mNMTbd/VCiuK4pk1410DAJWywhESdeCu0q7dld3XxIT0sROMPnxs8NDlfz46pncfFtOsqTs+R6d2+a9LMJq/59ZLT79c+vbdXVKi3Wj+PsXXDcuz0i1Plr59/2BlwkhWriPUBACAVpRxBKO1tw23OYtdm//mHtoQKM8tT7rfQzc/KW12dGfs6qhShYAmQE9VAAAAAAAAoEFkbdZ3fkxtipnoz0AoNth9eJ1wgV2txhVw4Ao+277cEZgQ9ji7wjKKBbJViqv+RkYdZsdjatzBaPTCBgAA1XNH/42+85OxLh0++YQa1yY6ZxuqSBuzGUXpYja6HVqoWPvTGVxccC7coXUjwWj+5SRjjtEbda7Y9Ukilqz7oEEAAMaDMWaSpAWSXjtq9iZJp1lrHymhyGUF03tE3L5w/fXW2g0l1AMAAABAJXj5o3O7qhCMRnCMW29f9MHNs0OEmZ12oNH5Re5qz+mR9t052r5PO8hIV47vgOzePmn/Xca1Cg2nf8DqzmXSpKR05J5Ssr20e+nPrbe6b4W0987SwbtJsVj93pPfsHX4Na/ZPPx+7WiTjphjtO9M8VtClVhr9dgL0uJVVtltmZs7TzI6bm9p6oQdx3z1Oqu7l1sl240e7PX/PJkz3WhTyurFCkbpn3Zg6ee+2/HTWj/fb2N4ntWfHynve+Kfj6rO3+jXb/DUPzhcdiIuHT7baOoEadE/rB5eLa3dIu2xkzRzirRnj9Gu3dKS1VYDQ9Kld1bmu6/XEQYIAFFZa/X4C9LCZ6xe2igds5fRSftKXQnaOUA9GvIfbqOOtuH/v/Ego69eF9zeGByy6uzgbxzheZ7V0hekJaus/vPP7vdXJictW+O/fALBaIATwWgAAAAAAABAg8jajO/8dtNeUnnFgtHiJq54iWU3u1KDv9LOwITiIXWB+7W1CRxzBbAVBiOUGhwHAABQqlWpZ7UyVZgbMezIySeGbm+NJ1f7vDXDZf07ABmN7XQWMzElTNK3rVlqcHHh+6VYaF3KMYAxTBh1PSr299IIf08AANSaMWaCpBskHTlq9hZJb7TWPlBisU8VTO8Vcfs9C6afLLEeAAAAACrB8/Imu2zlU14IjnFbUUJAypwQwWj77WL0iRONfrLQ/752e5v07XfEIgdb7bOz0QePMvrtveMXjjYcJsdg8LDu+IfVWy/xtv8d7r+LdMOnYtpjWrRj+KPbPH32Kiu77dS/Y5702w/H6nJg/m1PWb3jp542jfk5xurj841++B6prY5D3RpROmP14cutrnig8LPBanJSuvbjMZ20n9HFt3j6/NUj7yP358iePdLmQaM7l1Xus+bLZ0R/wOuIqV1GfvUl+DPfQNrqrF96+tvS0svYs0f6zMnF/z6PmSvdvXzH9MzJUkdcWr3evc2jz0vn/W70eQx6f5X+3jv9IKlnkv935Y9us/rBu0suGgAkDX/vnvVLT3/Je/SNVVtMeuyCmPbbhXYOUG8yOf/57duC0ebtLh08S1r6vLuMVeuk/QgJR0ipjNX7f+Xp2ofDrf/4i/7zCdwE3AhGAwAAAAAAABpE1vo/wqbU8DLX4P7tyw2D3V3coRXFghf8lxc7FyNcAQSuwLJKc9bfJAOnR9SqngAAoPUs2nCDc9nx3W+sYU1K5wyXLdLGbEY2QjCaNNyeTud8gtGKBhe7g39HCzo3WZtxhlh3NmiAWNFrxZDXLwAAtApjTKekv0s6dtTsAUlvstbeU0bRjxdMH2yM6bI2dHrCMUXKAwAAAFBLXv7o3AmOBy6Ug2A0t5WlBKOFDLT60XuMTjnAaOEzNu8c7L6T9NbXGB36qtIGt172ocoFo33trUb9A1Lflvz5sZj067v899FbwjFrVTnP6gOXennn/6mXpM//ydOfPtoWupxla6w+c2X++bhmiXTCPlafPKm+Bklnslbvv9QvFG3YJbdbnXKA0VsOrW29mt3v7vMLRRu2KSW9/1eebjk/ps/9Kdxnx549RptTlQtFO/sYo4Nnlf5endrlPz+VGQ4cSLbX19/BePnpIltWKJok3ffFmHomFT+ef/hITItXS3c9azV3uvSu1xpNSEgTPukV3baSpnRK5x5n1LdF6uqQjp4rvet1Rt9c4H7/9vZZzenhPQOgdD9eaAtC0YblPOkTf/R02+fCt/MA1MaQIxitY1uqjjFGt342phmfc7dlVvQRjIbwfnmnDR2KJrkDhrs6KlMfoBkRjAYAAAAAAAA0CNdg+zZT2m0+1+D+EQx2d3MFoxUL/nItd5U3dj3/c1KrsIy0dQW7dRZMj289AQBAa9mS26TFm+/yXbZv18GamZhV4xqVhjZU6RKxpOTTsS1VcnBxuPZtyhsMvAYI286vN8WD0RrzdQEAUA3GmKSkv0qaP2p2StJbrLV3lFO2tfYlY8xSSQdvmxXXcPjazSGLmF8wfWM59QEAAABQJps/6LazCsFogxlpIG3VlSAEpFBvX/Tgnzk94dYzxujNh0hvPqSyx90Yo3m7S0tWl1fO2ccY/efpMefyXM7T5T4BbCtLOGat6sGV0nMbxs7/66NSOmOVCBnmdO3D/sf8miVWnzypjApWwd3LpTWbgte5erHVWw7l86iSrl4c/Hf58ibpc1eFD6zac7q0JV1urXY4fu/ytu92BKNJ0rot0m5Tyyu/WVyzpLzP55P3V14omg0obkJCettrjN72mvy/5ZP3l259qqxqRPL2eUbfPnPsd9mcHnflr1li9flT+AwCULqbn3B/xix8RurbbEOFTAKojZxnne2a9lE5htMmBpczfP+Av22Ec02Ra7SwCEYD3AhGAwAAAAAAABpEzmZ958dLDEZrNx0yMrLyvxnPYHe3ZImhFe7ghXAhdK4wu3SRQLZKCVt/Vz2zNqOczZYc5gcAAODn3o23KWOHfJed0H16jWtTuqDwrVZjHb3UjPEfuOUOlSs1uDhZMO1qh6cC91EsjLpeFbsWdF0PAQDQaowxHZKulXTyqNlpSW+11t5Wod38WTuC0STpbIUIRjPG7CfpiFGztobZDgAAAEAVeflBNRNs5YPRJGnVemn/XapSdEPr7Yu+zR7TKl+PqI6aa7RkdXmDbN97+PCAbtvfJ3VNkulI5C2fPWGrpLFpRKUcs1Z1kyM0I5OTVq+X9t55eJB+b5+UHfWgl50nS1Mn7Bhw/7Xr/ctZ9I8d/35hg9XmUd139pgmdXa4B+1vTVu9vHE46C8WKz64f90Wq7Wbd0xP6ZQ2+vwUcvezxd+Xz64lXK9Uo89zZ4e0+07DYYlPvFh825ufDL+fOT3ShISRHP0HozpqbnkBErtMcS9btZ5gtK1pq+fWS/etKK+cw+eEP0+ugIYPH2N061O1+xs/Yo7//CPnuN+/y9dWrz4AWsODq4KXP7NG6plUm7qgOGutVq+XBv27kKEFpP2H2kiSOkYNXTDG6A37S7c4Ql65FkYUdyyrTDnT+T4BnBh9BgAAAAAAADSIjM34zo+b9pLKi5mYOkxCaesfdtWog/hrwR2MEBy84FqeMOGCBYICGWrBWf+QwRHDZaTU1VbkUUsAAAAheTanO/oX+C7rjk/TqyceVuMalc4d7lWbtl49cYU3u7rol9pOLjf4N+0NajAXFIwW8Fj7OpYwwdeChGgDACAZY+KSrpL0xlGzM5LOtNbeVMFd/UHSlyWNPMf87caYva21xbpY/3vB9FXWOm4EAwAAAKgNL5c32eVVJxitt49gtEKDQ1Yvb4q2zev3k+Jt5QX8VMLH5xv97l6rTY4rugkJ6UNHG/1kof999cNnS/MnrZB3zvukfzwsdSRl3/xhmU9+R3pltexX36fZL+8n7fqrMduuYDB4KI8+Z3XR39zhQL190o2Pe7rgr3ZMwJgx0vx9pCvOjamrQ9qadu/n/562Ove33phB+h1x6X1HGP30fUYd8R3v2YG01Ud+a3X1YqusJ03tkr75DqNzj/N/CM3qdVbv/oWn+3uLvuTQ7lsxHFBhzPj/LTWKe5dbfeBSb8zf38zJw3/vL/RXbl87Tx4ORZuTkN5zmNH/e7B4yNWMSdIrm/2XvWOetM/O5Z3rnSZIk5LKC/8bsWKt1dFlBq81qq1pqw//xurPDw//PRdz2/kxvf2nnm+o4bQJ0j8flX8cg/5Ek46uqW99jdFeM6yefaV4fSrhHfP8Kzl3hrvyK/sIZwRQnslJqT/gsu2Ffit3TxbU0k1PWH3kcq+ibSU0l/a2/OnzT4nplqf8G1a0IRDGvcut3vXzEI3zkGbXQTg/UK8IRgMAAAAAAAAaRNYZjFb6bb5krFPpXLgwAOzgDkYoErzgGHsY9liPd1iGOxits2Da/XpS3iDBaAAAoGKe2Pqw1mXW+C47rvtUtZk232X1yBVGVSx8t7X4dyh1BXWlAo6dZ3Masv4jjArb+672bcobDDw/jRo2HTdxxdQmTznf5WGDnQEAaFbGmDYNB5b906jZWUnvttb+vZL7stYuM8ZcLunD22Z1SPqNMeb1rqAzY8w/SfrQqFlDki6qZL0AAAAAlMDLHyw5wdtaclG7dQ+HmDy/Yeyy3j4G5xdauS76Nj98j394VK3tv4vRnV+I6ds3WS1etSMQp81I8/YwOv8NRq/dw+j4va3e9ysvLzDnX08y+tpbrMzZb5Je3JZ2NZSSrrlE6p4ue9PvpeeXa3an/z3fjYPShq1WUyfwfnIZHLJ6/feDB0L/6DZPNzzuv8xaaeEz0pk/87THtODjfLJjP0NZ6bK7raZ2Sd99544yPnWlzQu62jAgnfc7qz17rF6/f/6+rLV60/96euLFwCqU5Pf3WX3gKN5DYazfavWGiz0NDI1dFjXcMYw9e3b8+7cfNjpwV+nGx63uWe7e5u5/j+l/brB6cKVVOjs8b/pE6dSDjL54Wvnn2RijOT3S0ufHLisMBWwln/ij1Z8Whwvo2GOadOJ+2747Flg9tO27o71NOmKO0edPMdp758LPAHd5rmDDZLvRvf8R0+f/ZHX5vTsK2GuGNDhU2RC/Gz4V07SJ7vfX195q9OW/jH0RK1v4PQOgMgqDlAq18ndTPents3rz/3qhwkPRujoK/p5PPdDomLnS3T5tX/62UUzQtVupit0TAFoZwWgAUOcGBga0ZMkSLVu2TH19fUqlUurs7NTOO++sffbZR695zWvU0dEx3tVsWPPnz9eiRYu2T9ugu7lluP3223XiiSdun77gggt04YUXVmVfAAAAAJpX1nMFozkeyxdCItYp5Xx6ysodLoDgYIQgrgCzsIEJpQQ+VJKr/oXHI+i9U6sQNwAA0Bru6L/Bd36b4jpmyik1rk15nCG4jnDdZmbl/3uNcQWjOYK6gtqeac8/FE0KH/yb9lJKef6PB25TvKxrtfFkjFEy1qkBb4vvcq4VAQDQryW9q2Def0p62BgzO2JZL7sCzka5QNLbJE3dNn20pFuNMR+x1j49spIxJiHpXyR9r2D771lrV0WsF9Ay6J9XXfTPAwBgFJs/SrvLlv47/zF7Gb200TqC0UoutmmVckxmT6t8PUr16llGvzsneIDsO19n9M7XjU1usI/cKTsSijZ6/qU78rPnZNyXjL190tQJESrbYv6+VFpfJOPQFYo22l3PSnc9W15b+fJ7rL5zppUxRqmM1f97wL+8y+8ZG4y2eJWqEoomSb+4w+oDR1Wn7Gbzp4dsRQfWF7Pn9B3vg3ib0ZfeZPSlN0ntH80p5wgWmTvD6Ncfqu6A/TnTCEYbbSBtddVD4T8f5u8zfH4O2s3ot0W+O0ZMKfGnv2kTjS472+iys/PnP/6C1cEXVS6d5pi9gpfvPcNIPr8vr1o/fB/CFe4GAMUMZYOXlxLAjMr7w/2WUDQU5Rd0eM5xRncvH9uG6OVvG0Vcvbjy1271dB8KqDcEowFAHcrlcrrqqqt02WWXaeHChcpm3VfQyWRSp556qj7ykY/ojDPOqGEtAQAAAAC1lpP/9WF5wWj+A/yLLWt1QQFlQZ1p0o4As7DBAqUEPlRS+GA093uHYDQAAFApa4de0pNbH/Zd9ppJR2lyvLvGNSqPq03Ymu2naMForqDhwGC0gPyRwnZ3UDvcFVKcjHU2dCf7RCwZEIzGtSIAoOV90Gfet7f9F9WJkm4PWsFa+7wx5u2SbpI0ks50jKQnjTGLJa2QNEXSPEnTCzb/u6SvlFAvoKnRPw8AAIyLXC5vssvx0IXRJielTT63Mt9/pNHVi6U7l429l7qyrzpBpI2sN+Ix2WuG1JVo3Pu7o9nbry26zq7ZF9XhpTUUS4xZ1tsnzdujGjVrDo+/WD9/b+u2Si9vlHbpllb2yTlI2y+ArZqv48WNVSu66TxepXA6l4N285//vXcafebKse+Js4+pzefi7B7/kKtW/X5b0Sel/J+n6+vVs6Lv41Ovj+nqJWMTZY6ZG70sSdqzR+rqcH8ORTF7mjQpGfzem93jPz+V2fG5CAClGMoFL1/Vot9N9ebJGreh0HgScelVO42dP2eaf7uzf0DqH7Dq7mqO+wKovEpfu02fJM2YVNkygWYSG+8KAADy/d//Z+++46Oq8v6Bf86dmcxMGqmEThIpgnRBpCiwKM2yigVRf7ZddW3oKutaHttaVldcF3tZH2Ctu4+AulgRBQUFDE1pQiAJEEJIL5NMvef3x0CSydxzc6e37/v14kXm1jN37tx77txzPvebbzB06FBceeWVWL16tWqjKwCwWq34+OOPccEFF2DcuHHYunVrmErqm/z8fDDGwBhDfn5+pItDCCGEEEIIITHJyZVbuOilQILRxIFconABIg5GkOGCkytfy3PONQeLiYgDH/x/krQvROERRuZZriTm3Vi2bRlhKishhBBC4t/39V+CCwK0pmTMCXNpAieqEyZi/UnYdFTQ3ky47bh426lt1871bmFoHW8VB6PpYvt6Su16kK4VCSGEkPDjnK8FcDGAqg6DGYCxAC4HMBPeoWjvA7iCc95F1x1CEgu1zyOEEEJIxHDPwJEUDcFoT1zk/aNon0xg5lB3UIiSj3f4Vbq4VlLt2/S/nxwfnZ959VFg+StdTieBI99RpjjuIIU9qPpBIWQskt7bzHHbezKGPuIdcHRSaY27DdNr62RM+KsLuX904fb3Qvc+DtUCTld0badotXp3+LaTyQBcPV75WDf/DIbkJM9hjImnD7YCQchVSU1YVh91fDmHmQ3A/HG+f04TTgFO6fzLItxBrP5INjLMPyM4+8sNGs7JBYI6EeA+5hFCiL/s6j8d0zEmTFZu4/jNIhe63+2uu+b+0YU+97pwyasu7K3g+PQXqmsSdReNYkhRCD8X1TsBYH1xCAtEYt6aPcE97lw/iUGS4uO3KEJCgYLRCCEkijz22GM455xzsG/fPo/hjDEMHToUM2bMwPz583HOOedg0KBBXvMXFRVhwoQJePPNN8NVZEIIIYQQQgghYeSQBcFo0Pu9TLVALq1hXYlILQhAFLDg4HbIUG54qHVbiwMfrJC5uFFjsIhCHzqXS2KSMDxOFK5GCCGEEOILu2zDjw1rFMf1Meaj0HxqmEsUOFFdzypbwXmiNeJTfr9MkIzmT6ic2rjOyxMGo8lWcR2ZxXZ4GF0rEkIIIdGHc/4ZgGEAXgNQpzLpRgCXcs6v5JxbwlI4QmIEtc8jhBBCSETJnr97mrl6MFou6nDbNIZnL2XISwd0EjB5ALB2oQSDngk78Lpk4MDxRPtNWV2pSrhXVorn3w+ex7BwRux3RuWtFvA/TNE8vSgYzddQuURisXGs2RvpUnj604ccr67t+vv/m+dk3Poux6YSoMYCtNgDW6/EgCRB8zWXDBxW+xWDAAAqGzn2Vfo+38Duvs8zrBfw9d0SemcqH+ty0xjWLpQwoo87EK0wB3j7BoZpp4YrGE15PYdrAYcz8c5vpTXa3vOwXsCaeyT0zPD9c9JJDN/cI2HaYEAvAT3Sgb/OZbjpbP8/85fmM/xuMkOq+PmqqrJSgD/PYnhgdtdlyE4FUgTr0br9CCFEiU1DMFritecJrxVbOS55VcbafUB1s7vuWmMBjtYDK7cBQx+R0UTN0olAqhH4f2cy/O91yvWJ3pmAQac874UvyWiy0vebeKtq4thToT5NqtEdRq3FvLEMT/w29n+HIiSU/O9LzY9AAAAgAElEQVQxSQghJKjuuusuLF682GNYWloa7r//flx11VXo16+f1zzFxcVYunQpFi1aBJvNBgCw2+246aabYLFYcNddd4Wl7IQQQgghhBBCwsPJle+w6iWNv5orUAv4UhuX6NSCAGy8FalI9x4ui++8ag0WUPtM7NwGU4jDF0TvQalcRskMm8t7erUACkIIIYQQrbY0rYdFblIcd3bGHDAWe41FRHU9DhkObkcS87PVeAyShQ1HRcFo4uAyEavKuCSvYDRR8JoVVlm586JZlyxcfixQD0aja0VCCCGJjXMescom5/w4gFsYY3cCmASgP4AeACwAygFs45yXRKp8hEQzap9HCCGEkIiTXR4vU2T1HON8uRyM5eCeGQx3n8thdQDmpPbLEXdwjPJvqS9+y/GPebH3O3moHBSEez1yAcND5zEcb3KH/+SmApIUJ9tt3Uqg8pDmyQscpYrD1ULlEt3yrbG7bdbt63oakaPPSl7DTgYfpS9QfqjjwSoIwxyJ29sb/duf1i6U8O8ijrv/I55/60MSepxoymY2AN2Suz7Ojc1n2P6wDq127nHuCQfRviJzd8heYW5YixNxooDKU3sA3y6UkG4C7E5tn6uavlkMa+7RwergMOoR8P12o4HhzWsYXr2Ko7rZPSzdBEgSwDlg1LvPubUWDrvTHYSWpGew2DiarED3NO3nZMYY8rOBXUe9x1HAJyEkEPYugtGsDqCyEejRLTzlSUSL1/j/0PD3b2SYMihOru+IX7JTAINevA/oJIZ+WcCBKuXx/1fEccNk2oeIJ7Vrt3d+x3DleAkumcPpAs5/Ue4yUP29G1lMtnUlJJwoGI0QQqLAsmXLvBpdTZ48Ge+//z769OkjnG/AgAF44okncM011+CSSy7Bzp0728bdc889GDVqFKZOnRqqYseFtWvXRroIhBBCCCGEEKKZSxSMxvz/mU+1szvTFtaViNQCyqyC4C+1UAatIXRqAQQ2uTXkYXaiUDOl/cgomQCX97RqARSEEEIIIVpwzrGu7jPFcWYpGePSzw5ziYJDNXxXtiJJSpxgNFFnPlETING2E9XNAXH93MCSoGOejwMV1bMd3I4WuVlQptgOD1Mrv0ljsDMhhBBCQodzbgfwbaTLQUisoPZ5kUPt8wghhJAOuGeH7p7OY6qTD3IeBDASgDvww5zkOX5gd/G8O8tjN7ApFKqVf8ZFvyx36Eo8BhnwPT/5NH2+vVRxOAXKiG1OwFjyKYOAHt3EHba7pwHHFZ5rVFLNIb7LQwDgJz/3p25mYGB3cVBmkh4Y0sMdUuWPQEPR7pzOsHiNd9nOHSKeRy1Er6Q68YLRRAGVZxYy5KW7P5/OdYRAmPzcV0T0OvXzbFaK5/pSjAwpftwWL8hRDkYrrfF9WYQQAgCyzOHUkMlVWkPBaKEiyzygOve4fKZadyUEAAbniYPRfioDbpgc3vKQ6Kd27Ta4h/uYo5MYdBIwqAfDmr3i3+iG9w48kJiQROAd0U8IISSs9u3bh9tvv91j2MSJE/H555+rNrrqaNCgQVizZg2GDGn/ZViWZVx99dWorqY7UYQQQgghhBASL5zcoThczwx+L1MtSCvWO/KHknpAmXLAgo2LQxmMTGswmnpYRqiJ1iEMRlNchng7EEIIIYRoUWrdj0O2A4rjJnSbrlpnimZqdcJw1PWiCRcGoyk3BBJd16htN3Hor/ey1PapBmedT2WKFWr7I10rEkIIIYSQWELt8wghhBASNWTPXvUFjjIMte0WTn655SPVxfXMEHec3HjQt6LFO4tNeXiaKX46n3KnE/yTtyBP7wb5LCOw4jWf5i9wlCoOL61xBxKQdodrOR5fJeOVtYm3XS4bq/6dEQVaHaTLpjbHGjie+kzGZa+5MPcVF+76t4wNxRwHBeFXagw6dyDW9CFAZrLyNBePYn6HogXDNROU1/37s8TdmlOMDN3TlMeV+LGdYp0o2CtfJUAuEfXPVt7XyhJwnyGEBIdd4cHQSkQBlqJpX10r45Z3ZSz4QMaOw3SMOolzjvc3y7hhqYzrl8hY9oOMow2ATfmZ8poU5sbP9R4JncvHifeT19dxNFmj+3u6fj/HXf+WccUbMp77SkZ9C8eROvc168lrjvtWyPjlSHS/j1iidk0ypp/n6ytU9i8AuLyLa2xCiJs+0gUghJBEt3DhQjQ3tz+CKCMjA8uXL0dqaqpPy+nevTs+/PBDjB49Gna7HQBQXl6Oxx9/3Otpl4QQQgghhBBCYpMoGE3H/P+ZT62DP3V2FzOwJDBI4PB+HJhVELCgFsqgNbxDLVxBtN5gEgejeZfLn3AKQgghhBAt1tV/Jhx3VsasMJYkuFRDcFVCduOTqAGRcmMg0bWLejBa4KG/ANDgrFUcHvPBaGrXiiw2wwcJIYQQQkhiovZ5hBBCCIkasnfP+v8cuRIz+32KckNvj+H3Vf8Nc5pXdbnIZy9l+NOH3r+nttjdne7zc6iDJQA0C4LRUo3hLUeocM7BH7oCWP9fv5chCkazOYGKBqB3pt+Ljiv7KzmmLpJR0RDYckb1BbYfDk6ZQsGoB84bDvz3Z8Bx4tB17QSGGyerH1MKcxk2lXgfk0qqQlHK2HOohmPKIhllHkFXHC99w+FP/mCSHmCMwWQAPvyDhLmvymjocEvx9P7A8/Miex4Y3Y/hlasYbn+v/T0unMFw6enq8xXkAMebvIcnYsheieA9F2SHtxzRThTMWCIIliOEkK7YNQZy3f0fjivOEC2D4/v9wOc7OT7fybGnwnP8q2s5Pl8g4ZyhdN1223scr61rrxAt+xHon+1/kNNTF9M2JdpcNZ7huiXifW3qszK+XSgh3Rx9+9Q7G2Vct6S9nv2fIuDhj90vWj26HbmvOT69Q8KUwdH3PmKNqH55y1QGxjy37+QBwJMXMzy40nsfmzsauPtc+jwI0YKC0QghJIL27t2LVas8b1g+/fTT6NGjh1/LGzp0KBYuXIinnnqqbdhbb72FRx99FJmZ8XUnqri4GD///DPKy8vR1NQExhiSk5ORl5eHgoICDB8+HMnJgkeeBJHNZsO6detQUlKC2tpadO/eHX369MFZZ50VkvVXVFRg06ZNOH78OGpqapCamoru3btj3LhxKCwsDPr6CCGEEEIIIdFFFIymZwa/l2lk4s76Jo1hXYmIMQaTZEKr3OI1ThSwIAoukyBp/gxVwzJCHDjGORe+B1/CI8IR4EYIIYSQ+NXkbMDWpvWK405NHom8pN6K42KBWl3PmmDhssJYNCYKRhPXPTnnivPZBPVSpUAztZAzcTBa6O9ThZLae6YQbUIIIYQQEiuofZ7/qH0etc8jhBASArL3g9dOte/DgeJTUWQag3JDbyRxB8Zat6Cn8xjAmPD3zZPOGcIg+kX1oY853v4ddbB0OHlbsFNnKXESjIafN2gPRTtzJtic6zyH1RxFwYtPCGcpqaZgtJOe/5p3GYp2zhDg6z3q03x+p4SeC72PCSe98zuGKYMYPtnBcdt7yt/xu89l+Ptq/8MiOhvQHXjqYgndzMD4AiDdzNDQwlFU5h7XP7vr40m+IKippDp45YxlL6/lnULR3NRC0V65iuHWd5UnsHQIfZx2KsPRZyVsKgGqm4FBecCwXoAkRf488IcpEuaPc+9Lw3oDeeldl6kgRzlkrzTBgtHqLNwj7K6jAgo/9ZCfrVwnKqsBZJlHxXeBEBJbtAajHWsEWu0c5iT3ceZwrTsE7fNfONbsFYc0A4BLBu5dLmPrUF0QShy7Dhz3DEU7SanepNXsYXTcJ9roJIb3fs9w5T+V69zbDgPvb+a4eUp07VMumePBld4By63K3Y3QYgce+6+MbwYn9vEmUM1WjiqFAGcAmDvaex9hjOH+2Qy/m8SxqQQ43sSRZgJO78dQmCtuC0kI8UTBaIQQEkGLFy8G5+21zpycHFx//fUBLfOuu+7Cs88+C4fDXXu1WCx48803ce+993pNe91112HZsmVtr0tKSpCfn69pPWvXrsW0adPaXj/yyCN49NFHVZd/UllZmWpl7dprr8XSpUu9httsNrzwwgt48803sX//ftXy6XQ6jBo1ChdddBHuvvtuYSOoqVOnYt26dW2vO34eahoaGvDwww9j6dKlaGxs9BqflpaGefPm4bHHHkOvXr00LVPE4XDgrbfewiuvvIJffvlFON3AgQOxcOFC3HDDDdDr6RRPCCGEEEJIPHJy5bushkCC0VTCF6izuzqjZBYEoym3RhIFlxkls+abGjqmh54ZFEPyQh045uROyFBuLWxSCNgT7VuhDnAjhBBCSHz7oeFrYb14SsacMJcmuAwsCRIkyPDuCCOqY8Yr0f0aBkEwGlOue8pwwcmditdMwtBfhWWpXRs1OOsUh6sFi8UC9WtFCtEmhBBCCCGxgdrnKaP2eZ6ofR4hhJCw4cohSHq4cKb1J8D6U6fpOWBrBUziMNCCHPHq9lRQEBEAWOzicSlJ4StHKPFv/k/ztOz/3Qc2YqLn/K0WZC6+B+muBjTqunnNU1LNMXkgddYFgC93df29Gtab4es94ukyk93BUFkpQK3Fe/zLVzJcOV4CAMwaBojCD88fEdxgtJF9gEtP9/ycuyUzTB+ifRmFucrDDyZYmJXIGpX9QuRclQDMMztlN5uTGKYO9qNgYeDrvpQvOL+V1yfWua28XjyuvyCIMFGJghkdLqCigQI+CSG+swvClZU8+xVHs5Xji50cO4/6tp4dRwC7kyNJn7j17TV7g39+V7tWJqSz/BxxnRsAvt7DcfOU8JVHi/2VwGHlJmtC6/YDNgeH0ZC4x5tAlahc24quhwGgezrDBSMBCNo+EkLU0V1ZQgiJoC+++MLj9TXXXIOkpMDuruXm5uKCCy7AihUrPNaj1PAqlhw+fBgzZ87Enj1dPDrnBJfLhS1btmDLli244oorMGDAgKCVZceOHZgzZw6OHhX/StHU1IR//vOfWLFiBT755BO/17VlyxZcfvnlOHjwYJfT7t+/HzfffDNeffVVrFq1Cr179/Z7vYQQQkisaXDWYZdlC47ZjoR0PQYpCYXmU3Fq8kjoGD0lIRSanY3YZdmCRlcDhqaMQm9jfqSLROJEk7MeOy1bUGE7HOmieNAxPfJNAzE0ZTQMUtfXg0phWACgDygYTdxZP9Y78oeaaNuJgr/EwWi+hQoYJROcLu99YUPDV9jfshOA++kxvZL64bTU05GqSxcui3OOX1t+xoHWPV0Glon2v5Nl8h6mvH0OtO7GiuNL215302dhaMpo9DT2VV1/pb0cu5q3oN5ZqzjeJJkxIPk0DDSfptrhK1z1Bl8lSca2eobEJL+WccRaij0t29Dk7OLxxB3omQEF5sEYmjIKOhbcWwZ1jmrstmyDjVsxLGUsuif1DOryy22l2G3ZDodsw4DkoRhoHkZPTiIkiLo6R+iZAYXmwRicPBIGyf+6CCG+kLkL39d/oTguS5+L4aljw1yi4GKMwSiZFMN3v6//AnstO1Tnl5iE3sb+GJYyFmZdSqiKGZDj9grssmxBnUO9B0yF3bdrN7Vrl5VVSxWvmYpbdytOr1S3TWJG4fIdXLlXXawHTVMwGiGEEEIIiQfUPk87ap9H7fMIIYSEgcuHnvUntVpUg9HSzeL7o2U1vq8uHlls4nEp4p9+Y8uK17RN1y0HGOJ9L4WZU8Ayu6PAUYYduhFe40toXwIAyDJX7QR90tAumkZcMNL9vb30dIY3vvPsfC+x9vGAO+hnaE9gd4XnMgZ0B6YMAsb2B4rKxOsy6IBZpwH//bnrcp83IvD2FgWCQIHqZqDJypFmSuw2Hb4GxBl07oCwOcOAz3Z6jz93aPxuz9xU5eH13rdR45ra+81NC185YoFaAE5JNQWjEUJ8Z1N+ZqOiRz/xP9iLc8ClnKGdMEqDfL2RnaJ+rUxIZ6f3A7qnAceblMcXlQF/X+3+oibpgLH5DGfkA5IUuf3Mn+8N58ChWmBgXvDLkyhEvwnoJKAv1TcJCRkKRiMkyri4C/VOehRGqGXocyIeZHHkyBGUlpZ6DJsxY0ZQlj1jxgyPhlcbN26Ew+GAwRCbndPsdjtmzZrl1egqKysLw4cPR15eHgwGA5qamlBRUYHdu3fDYlF4dE4Q7N69G9OnT0dNjedVQ15eHkaPHo2MjAxUVlZi48aNaG1tRW1tLc4//3w8++yzPq9r1apVmDdvHlpaPH/J7tmzJ0aOHImsrCxYLBbs3r3b4wmd27dvx/jx47Fx40b06dPHvzdKCCGExJCjtjK8cPgRNLpUHosVZGPSJuL6nncHPTwk0R23H8ULhx9BrbMKAPBRFcNVPW7DxG7nRLhkJNYdsx3BC0ceQb0zelvpDU4ejj/0frDLzuWiYKpAjkdqAQLU2V2daPtY5VbF4TbBcF8DE0ySGRaX9523n5s3ew3L0ufizr5/Qa5CIJXMZbxX+Qp+aPjap/UrUQxGY8rvq8J+2CvoYmWVDjf0uhtj0iYpzrO9aSPeOroILnTR0qAGmJZ5Pi7N/Z1iQFYk6g2+Gpc2Bdf0XODzb1cb6lfjvcpXwFWeWKVmWMpY3NjrXk0hjVqUtu7Dy0ceh0V276sfsWW4qdd9GBakwJofG9bgnWMvg+NEi5AaYErGHFze/UYKRyMkCDjneL/yNaxv+LLLaYemjMHNve4L2vGDEDU7LVvarhk7m5wxE1IchJgbJbNiMNqO5k2al9EjqQ8W9HkMGYboekz4zuYivHn0b8IgMS2Y4KmJatcua+s/9WkdStdIEpNgZCbYuHqYcEfmGA9GU7tWpBBtQgghhMQyap8XPpFuo0ft87Sj9nnUPo8QQkiYcD96u1stAHJVJ3nyYoYHV3rfJ66xUBARADTHeTAa5xrbCOj0YHf9HcwguKfXMx/5jaXYYfIORiulSygAwFENz6hLMwG9MpTDwU56cI77O3nfLIY1ezgOdLj19cgFDH0y27+zjDE8P0/C3FfltpA/swH4xzwJjDEsukzChS/JaBTcvnjiIoZLxjD8Ui6rdpw/Zwhw+emBHysKuwgmGpHA1ec6C/c51Cs/G9BJDE9cLKGoTPYIahjVF7h9Wvwe3zMEmaB1iRaMptzcECYDYDLE7+fvj4xkIN0ExeNhaQ3H5IG0vQghvrH7EIwWKNn/XLW4cCjIXTwK1S+hCfFi0DMsvoJh/pvKX8ayGmDh/3UcxzH/DIYl1wFJ+sjUMd7e6N+BY9ZiGfuekKCLYKhbLCupUd7ufTMBvY62KSGhQj24CYky9c5qPHTw5kgXI+49Xvg6sg2RjbTdsGGD17CxY4PTMfT000/3eN3a2ort27dj3LhxQVm+VosWLcKjjz4KAJg8eTLKy8sBAL1798b69euF86Wmej7aY8mSJdi9e3fb6/z8fLz88suYNWsWJEnymp9zji1btmDVqlV46623gvBO3BwOB6666iqPRlc9e/bE4sWLcckll3iUpbm5Gc899xyefPJJ1NfX+/xE0N27d+OKK67waHQ1a9YsPPbYYzjjjDO8pt+2bRvuvPNOfP/99wCA8vJyzJ8/H2vXroVOF/sdwQghhBA1K6uWhT3cZGvTDxibdjZGpZ0Z1vXGu1XV73t0cOfg+KDyNYxJm0QdbklAPql+J6pD0QDg15ZfsKnhW5ydOVt1OidXvsuqZ/53tFELEPA1sCvRiI5NNlm5taFouK8BdEamffpaZxVWVX+A63v90WtccevuoISiAcr7ii/vS4YL7x97DSNTz/TqKCdzF96rfLXrULQTvq1bhTPTf4O+pkKvcSur/hXVoWgA8FPTOpzRbQpOSxmjeR6r3Ir/HH/T71A0ANhpKcKWpg04s9s0v5fR0fKqJW2haID7+PXusZfx1Cn/G3BwmV224YPK19tD0U5YV/8ZxqdPQ755YEDLJ4QAJdZfNYWiAcBuy1ZsblyHSRnnhrhUhADf1X2uOFzP9JjULT72wWCEEx+zH8HqupW4rPvvg1Ci4OCc473KVwMKRQPUgtGCd+0i+gyMkgk2l/ZgtFi/nlK/VqQQbUIIIYTELmqfFz6RbqNH7fOofZ4aap9HCCEkImR/gtG6ToC5YpxyMBrg7rw7rLfvq40nFrVgtHh47s+urh+swv7wJHDmLLBThokn6lWAguoSxVEHK50A4mFjBUZLQFxBjjuwSGTuaGBgnvteR34Ow8b7JXy8neNIPTD9VIZJA7zvg5w7lGHbQxL+u4ND5sD5IxgG93BPd/Yghm0Pu8d1DFjLTgVmDGU4s9A93eYHJHy8g+OXcqBjlp5RD5xRwHDhyOB06O+TCegkwKVwuEv0YLSDfgQMngz1GNWXYetD7n2luAo4vZ97P0g3x2/H+8xk5YBBX8PlYl2dRfn8nhHbtyFDgjGG/Bzg5yPe49SCIQkhRCScwWhas47jVZkgaMhfBTnxW0cioTNvnIQai4zb39O2P76/meO84cCV48O/v8kyx/ub/fvelFQDX+0CZg8PcqESRInguq5AJSScEBI4CkYjhJAIOXLE85e2vLw8ZGdnB2XZw4Z537A6cuRI2Bte5eTkICfHXZvT69tPOXq9Hvn5+ZqX8/HHH3vMu3r1agwYMEA4PWMMY8eOxdixY/HQQw9B9ucmsoIXX3wR27dvb3vds2dPrF+/HoWF3h2tU1NT8cgjj2DYsGG4/PLLUVdXp3k9sixj3rx5Hk/VfPTRR/HII48I5xk9ejS++eYbzJs3r+1ppOvXr8e7776La665RvO6CSGEkFgjcxd+bfk5IuveY9lOwWhBtqdlu9cwJ3fiYOteDE0ZHYESkXixx+K9b0Wj3S3bNASjORSHBxKMZpYEj1eEOPiLuIkCyqyy8qMabVx5uC9BZwBg1qX4NL3S8RUA9lp2+LQcNUr7itq+pcQiN+GQ9QAKzIM8hpfbytDs0vDY3Q52W7Z5BaO56w3Be8+htMeyzadgtAOtewIOGTm53mAEo1nlVhxo3eM1vMFVh0p7OXoYA2vpqvZ+97Rso2A0QoLgl+Yin6bf37qTgtFIyB23H8Xulm2K48akTUKavluYSxQavtahRHY2F0VVMNox+5GgBFbrmHITh2Beu5gEn4FJSvYpZDdYn2WkmCTl6w4DSxJ+DoQQQgghhEQTap+Xr3k51D6P2ucRQggJE9nl+zwtzV1O0icDkBggK/SJLaVgNFhUbqWnGMNXjlDh6z5SHc9ueQrsynu6XlDPfBRsKVMcVVJhBwWjASXVXXc8L+wiGK17umen+exUhhsmd92RfkB3hj+eqzxdQQ7Dgunqy8hJY/idhvUESq9j6J+lHAJ2sIoDggfgJIJDtb7P0zHUo1cGwy1TE2f7ZQhuszXbAIeTwxCEIL9YUK/c3BCZvjUfTBgF2crBaP58/wghxBbEYLR0EzCyL/D9fuXxStdyieRIkJ93TQFFxF8XjGCag9EAYOU2jivHh7BAAj+XBzb/im0cs4cnRn062EqqlPePfApkJCSkvB/jRQghJCxqaz1/VcvMzAzask0mE4xGz7t0ndcXS8rK2m+wjRw5UrXRVWc6nQ4Gg/8BASfJsowXX3zRY9gbb7yh2Oiqo0suuQS33nqrT+tasWIFdu7c2fb68ssvV210dZJer8eyZcvQvXv3tmGLFi3yad2EEEJIrLHJNjh5GB/F0oFFbozIeuOVzF2wuJoUx1nlBHvEGwkqh2yHjVsjXQxNRN+BjkTHPH0AndJ7GwsUQwT6GU+BUfItsCvRiAITbIJgtFaX8nCzzrfAhAHmoT5Nb3E1gSs8TszXsDGRfqYBSJK8WwsPSPatnABgcXmfX5sVhnW9HO/vk022Rqze4KtmDccDj+mdwfks/dnWSpQ+x5Nag3BeV9t3g/UeCEl0tY6qrifqwCbbQlQSQtp9V/+FcNyUjDlhLEloneJjXU+kzlkNmQenY3owqNUPfFFoPlVxeJJkRH9TcMJRBySfJhiu/bORoBOWNVYUmgdDUmhSMjDZOwCCEEIIIYSQaETt87Sj9nnUPo8QQkiYiH6zZQyQBN27LOJ7o7ylGfzXrdBbG9FHUNUpq0nMHvaccxys4mhs5bAIbmMZdEBSPATrHClWHz/5Ak2LYSMnId9RqjjucIsZdmdi7ksdlWp4/sukAQymBHy2CLdZwX/dBr77JxRkKKcRlgT+/JyYVmfx/TuUyKEemSrN6RoEYWHxqF7QzCojwZ53yzkHP7QPfE8ReMlu8NpK8OKfwXf/5PEvT1Zu6+LP948Qktg4F19HaDWiD3DvLIa1CyVU/V3CP+aJIz0UmnjHrcZWjtJq7tGuvc6iMoMfJg+Ig+s8EhG9M4B8H56vc8C3ZraaNLRwbCnjsNjEB4aDAa73oCDci3StRCEEHHCHpBNCQicBf2ojhJDo0LkhVEZGRlCXn5GRgcrKyrbXNTXxcRfh+PHjEVnvd999h9LS0rbX48aNw/nnn69p3ocffhivv/46HA6HpulfeOGFtr8ZY3j66ac1lzM1NRU333wzHn/8cQDAL7/8gtLSUp+eAEoIIYTEElHwTDi0uiisK5hssji4yiFrq0cRoiSWgvW0HFecXPn7oGf+dzgxSAacl30Fllct6bA8Pc7Lme/3MhOFSafcwki031ll5Tu3ooA1kckZM/FT43eodWq7q8Uhw85tMDLPoDtrEM6jeqbHedlXKI7LNw3CiNQz8HPzZs3LUwrN8idIq1VhWwcjkCtcfD12BeOzBIK3jVpc4lYKouOYL1pV3q9VEEBICPFNncZzTDtqKEFCyy7b8GPDGsVxfY2FyDcNCnOJQmdKxmxsaVqPemdg93Wc3AmLqxFp+uDef/KX2vlbqxRdGs7J+q1w/HnZ8/DG0acDCsM9xTwEw1JOVxz3m8wL8XPzZk1BrDOy5iJZl+p3OaJBii4N52ZdjC9rl7cNMzITZmVdEsFSEUIIIYQQoh21z/MPtc9TR+3zCCGEBEQWBKPp9IA5FWiq8x7X7B2MxqzU87MAACAASURBVF0u8BcXAh+9DrhcgCSh/4itOATv38q1BDnFm1+OcFzymozi44DEAFlwGyvF+/lvMYdXHgLW/1c8wfTLwfppvIcy9hwU2O8Vjn5ljQN3zUzysYTxRdQB+qR+WcA1ExiqVJ6FF293VTnnwDvPgi99ArC700MKerwEZN7gNW1Jgne+r/fjVllhTuKGemSoNKerawFy0sJXlkiqEwWj+dbcMKbxXZvBH54PHD/S5bQZuY8BOX/yGi7ajoSQ+MM5R6sdaLS6/zW0Ao2tJ1638hP/t49rEgxvbAWcPj6LMM0EnDMEmD2MYdYwhj6ZnudxxsR1IdE1SzxxujhufY9j6QYOp+wOEVp+i4SB3d3b3Ren5IoDqc7IB2bR8/6InySJ4cHzGG78l7Yv5fbD7uMOY4HX2+1Ojpvf5nh7I4fMAb0E3DqN4bnLGHSS5/JLAwzB7+ralijjnAsDvxM51JqQcKBgNEIIiVPBqEhHi1NPPRW7d+8GABw+fBiLFi3CwoULw1qG9evXe7yeP197QEBubi5mzJiBTz/9tMtpLRYLNm7c2PZ63LhxKCgo0F5QANOmTWtreAUA33//PTW8IoQQErdsXPwL+ODk4QEFBZ1UZT+G446jXsODFUBC3NSCWIIRoEISl9q+NSh5OAxBOE74qt5Zi3JbqddwLUFILkEHfz0L7Ge+6Vm/Rfek3vi5eROMkgmnp52FAnP8hEuEilkQaCba70RhEKLliGQbuuOefn/Fjw1rUGYthgwXAMAm21DcuktxHqvcAqPkGYymFB7mXn4eeiT17rIceUm9VfcViUm4sde9+KFhDfa1/OKxjxe37FY8jyudX0XfDQNLQqouHXVO77tzviwHAAYnjwj4e+SP4/YKVDkqvIb7GsAq+izNUgoKzYO9htc6qlFhP6R5Ob5SO/Y6uPKTgX1hVdk+wXoPhCQ6pWMrADBI4PBu9cXjrgk/iTY/NX4nPMZPyZwTV/dEcpJ6YGG/p7Gx4RuUWvcrfuc6cnEX9rbsUBxX56yJmmA0UV1Mz/QYnDxCdV4GCX1NhTgjfQryVOqpw1LH4u6+T6GoaT0q7V03jO8oiRlxinkIJmXMQJKk3Buul7EfFvZ7Bpsav8Vh60HFzyZNl4FhqWMxOnWCT+uPVhfmXI2+pkLsat6KFF0azkifij6m/EgXixBCCCGEkKgQT9ei1D6P2ucRQggJE9mlPFySgLQM5WA0pWEfvgQsf6XDcmXkV27G9xne9+7LqhPrHo7TxTH7BRlH692v1QIGUuIg44s/cLl45KDRYA8t1bwsptMhf9okwLspAQDg7uU6XDyWo392/NSDfVWq8n1aMJ3hzzMZctMYmqwJ9L377mPwNx7yGJTvKFWc9GCCd76v9yOYqTA3+OWIFZkqzen8CZmLVaL9JjM5MY7FvNUCfs95gKXrB1cBQKarXnF4HTUnIyTqcc7RYncHkjW0BZmdDDjjXsM9As06BaC5fAw088f9sxnWF3MwAOMKGOYMY5g0AEjSi4/PksqhOxFqj09/wfHP79vf6cFqYPZiGbOH+3ZO654GFD0o4bFVHP/42r28dBMwqi9w1iCG+2Z5h0gR4ovfTZaQm8rx7iaO4uPufazFDvxaqTz9q+s4bp0a+D73l1Ucy35s/444ZeCFNRwFOcCd0zsHowW2rsN17t9P9Dr6rviiuhmw2JTHFSRwqDUh4UDBaIQQEiFZWVkerxsavJ/mFIj6es8f8zqvL5ZceeWVWLFiRdvrP/3pT/joo49w/fXXY86cOejZs2fIy1BUVOTxevz48T7NP378eE0NrzZu3Ojx5MrCwkKPJ2FqIXd6mtiBAwd8mp8QQgiJJTaVcLKbet0Hsy4l4HV8W7cK/3f8n17DtQQYEe3UQkwoGI0EQu27elOvPyNZlxrG0rhtbfoB/zz6N6/hakFCJ4m+D8EIghyeOhbDU8cGvJxEYpTMisNF4ZlWwbHO5GMwGgBkGnIwJ2eex7B6Zy0eOOD9xNWTZeqmsZwT0n/jtWx/6ZgeZ2XMxFkZMz2G/7X0bhy2HfSavtXlvY1EIVi5hp4YkjISa+o+8Z5H4fskCqYDgFt6PygMwAil1bUrsbJqmddwX+sZos+yv2kAbuvzsNfwTQ3fYtmxxV7DfQ1kE1H6HE8Kxnld7XhJ4bWEBE7mLtQ7ahXHZeqzUesUPG6RkBDhnGNd/WeK45KlVIxNOyvMJQq9LEOu5vqYzGXcue9yuOAdolznqEY/0ynBLp5fROfvTH2uYn3FX/nmQcgPYchz96SeuCDnypAtP9owxjAmbRLGpE2KdFEIIYQQQgjxGbXP047a55X6tC5qn0cIIcRvsqCHvqQDUgUPuWj2rsPwL9/zGtbfoZxmFWhn2Vjz7a9oC0XrSkr4mwgEFS/dA+zbJhzP7n4BTKfzaZkpAwYi72AlKvV5iuPf38xx3+zE7ewr+j79Yx7DgulS22tT+J/TGTH8K+/jUaG9RHHa0mr3fb94Cpn2RYMfzVkKc4JfjliRanQHyCgFXNYmUMhVnUU5Kqeb780NY9OGTzWHogFApiwIRqMm/4SEDOcczbYOIWYe/3OvkLOmjsPbgs/cf6uFGkeT5CTgyYulrifsRK0GJLpUjCcfbvH+gI81Aks2+PbBF+QA3ZIZ/n45w99VcqIJCcSFoxguHNX+rT1Sx9Hvz8pf1Hc2ctw6NfB1vrtJ+bvwzkaOO6d7Dgs0BN8lA0fqgPwEvt7wR4lK2HcBbUtCQoqC0QiJMhn6HDxe+HqkixH3MvSRr2F0bghVV6fwNCc/Wa1WWK1Wj2HZ2dlBW364zZ07F3PnzvVofLVhwwZs2LABADBgwABMnDgRkyZNwllnnYUhQ4YEvQyVlZ5xzgMHDvRp/kGDtHXCOXz4sMfrDz74AB988IFP6+qstla5EyMhhBASD9SCL4ySKSjrMAvCarQEGBHtrC7xZ0nBaCQQaiE/JkGoVaiJ1muVW7ts/OUIYTAa8Z34s1Te70TBXKJzTbDKAygHVYnCq8Lx3RCFwSmd20Xne7Mu2cflKH8uEnQwsMg8Clpcft/qGaJjneizFIXHqgWV+lQelfI7uXdoi6/Utg/V0QgJXKOrQTFgCXCHNVEwGgm3g9ZfccSm3IFiQrffRCTcNJpITEKGIQs1juNe4+qd0dPjTRR2G6nrMkIIIYQQkriofV74RLqNHrXP047a51H7PEIIIWHCBb3dmQSkKQej8aY6jw70XJaB/du9pqNgNLcPftLeOXho6LNfQ+vQPvE4QxLQf7Dvyxw4CgWrSoTBaH/9nOO+2b4vNh44XRyHBZcU+dmebb3UgtHiLhKsbK/XoD7OI4qTtjqAVjuQnKC39nwNRsvPdod+JCpJYshNAyoVMrEO1XLE4bdJ0RFB2GdO+J8HHBG8dI9P02e6lA/UFIxGiDdZPhFo1inMrOFEcFnn0LImK9DQyr0D0KwAj5FAs2A5tYd/86llwybCJvxZuYrosz6ZwVkOIb7o1fnp9B1UBOGZPBYbR5ng95stZd4B01p/6zklFzggaO5bUk3BaL4qEQTSmQ1AXnqYC0NIgqFgNEKijI7pkG1QvolA4kvv3r09Xh87dgw1NTVBaSC1a9euLtcXSxhj+Pe//41HHnkEf//7370alRUXF6O4uBj/+te/ALgbYl199dW44447gvYkzs4N49LTfaulduumcuXTQU1N8O8+NzU1BX2ZhBBCSLSwyVbF4QaWBIn59rRDkWAFlhB1akEsDm4PY0lIvBEF5BiZKWjHCV+ZJeVAIg4ZNm6FiYmDAURBgXpGP/NFgijQTBTkFeowCCMzgYGBK9wi9y1wTHkfDSazTvv5VXSOMElm4XlaOQhOefubpeSIPY1W9NmLQvRERPUS0fFGNNzB7XByR8Bhi2rn9WAEnqqFn1EdjZDA1TnEjzXLMuQCCoconmgt3EhYfVf3mXDcWRkJ2vumkwx9tmIwWl00BaMJ6jei+hwhhBBCCCGhQu3zEge1z9OO2ucFhtrnEUII0czlUh4uSUCqcjAamuvBW5rAX/gTsOlLoPqo4mT9HWWKw6ubgWYrR6op/gNkOOdYskH7PatrJ0ohLE0YlOwWjzvnCrBUbfUjD6OnoMDxPjbiTMXRTcrNNeNeUSnHFW/IcAmyDQs6dSY3xXAzLr51Lfj/Pg78uhVwnXiYVlYPYNJ5YLc+DWZsf2AxX7UEKPvVaxmZLkGSE4DalsQNRqtv8e2e+k1nx99xm3/+NviSJ4CKUuUJxkwFu+kvYKeNB+AOh1MKRisRN2mIO1uUT+/oH5xL8ei3Y71Pk2cIjj8NrYBL5tBJ8fe9IonHJXM0Wz1Dy7zCzE7839AKNLVyj2nbgs5siRdoFizXTvTvWKJ2CJLj/LNwuoL3BjMSODiWRI4kMYzooxzwV1YDHKrh6HciMHt/Jccf/y3jh4NAix3ITgFmDGV4fh5T3H+LSjkueElwsXnC1kPA6f3df3PO8Ut512VO0nO8da0Ol7wqo0ahWX9JNce0BAkbDpaDguuQghxErC8KIYkihn9qI4SQ2DZx4kSvYUVFRZg5c2bAyy4qKvJ4bTabMWrUqICXG0l6vR5PPvkkFixYgHfeeQcff/wxNm/eDJvN5jVtcXExHn30UTz//PN4/fXXMW/evAiU2D92e/BDP6hTIiGEkHgm7lQbnIAZQD30RuauiAUrxRu1gBMnd4axJCTeiAJyTIJQpnBQO0ZZXS2q412C70OgIUbEP+LwTEEwmii8Kkj7I2MMJsmseExVHiYOHAs1YaCZQjmFAW5SikrAmlIQXPQdD8T1DHGwmBLRedSkU/4sRcFogDtALk3vRwNpj2WENhhNLfxMFIBHCNGuzqn8iDgDS0Kqjh5rRsKr0VmPrU0/KI4bmjIG3ZN6hrlE0SlTr/z4RrWgw3ALdV2YEEIIIYQQQjqj9nm+ofZ5/qP2eYQQQjQTnTMknTgYrakB/N6LugwGyRcEowHA019wPHFR/HfQfPlb7efksf2B346K7W3C//mocBxb+JJfy2SShJTxZwN7/SxUHCo+zjF1kYwWlWpkfqfbNMYYbcbF924Bv+d8wNmpXUflIWDFq+BV5WBP/Z972s/fBn/mD4rLUQtGq7MAfTKDVuSY0iB4RuJ1ExmONXCs2we0OoC+mcCNZzP8eVZsH6M641++B/7U79Un2roWfMEM4K2NYPlDUJDDsKnE+9heGj23QEPq+/3i81r/7PjaP5Rwawuw/Tuf5smUxcefhlYgK/TPiyVEyCVzNHkEmZ0MKuNeYWaNrUBTx6CzDsObvX+qI2HSPxu4dSrD7dP8OwarZebE+8+LonqQPzKpmRGJkGXXSxj9uHKA2ci/yKh8TkKzDZj0jIzq5vZxFQ3Ash85dldwbLxf8gjQKj7OMe05GZYuju3jnpTR/KKEZCPDqp/Vp2VcxljrFjzQaz3OHrQQBTlQDkaLnuetxgxRQHPnsHRCSPBRMBohhERIv3790K9fPxw6dKht2FdffRWUhlerV6/2eD1+/HgkJSUFvNyOXKInVoVYXl4e7rnnHtxzzz2w2WzYunUrfvjhB3z//fdYs2YNmpvbrxgaGhowf/58GI1GXHTRRQGtNzPT8+5LY2MjcnNzNc/f0NCgabqcHM8a8FNPPYX7779f83oIIYSQRGOTlR9BaJRMisP9oRaWYpOtMOvoLmkwiEJvgOAEqJDEJQoLEoURhYPacaNVbkEGshXHydwFGco3UygYLTJEAWI2uRUylyExz6cLC8Orgrg/mqRkQbiY5zDOuWrgWKiJA8G0hboB7u3vW8Ca6HgQ+iA4EVH5ndwJh+yAQdL23Ra/N+XPUi2ApFW2IA0BBqOpBLs55MA7namFn6mFphFCtBEFKbmDl5RbaHHEeessEjE/NKyGC8rhwFMyZoe5NNErQ698DVHvjJ5eAcKQ2gjWxQghhBBCCCHxjdrn+Yfa5xFCCCEhJCu3+YAkAWmCYLRt64C6410uuo+jHBJ3QVZ4yOfL33I8EdipOia85EMw2sMXSF1PFMV4yR7xyPOuA0sy+r3szOxU1fE2B4fREP+BPCct2cBVQ9GyU4A0k+f20EmxuX34x//0DkXr6PtPwCsPgeX1A1/+inCyTLlOOK4ugZt01Ave+2m9gP+9Tgeni8PuBJKNsbn/dEVtn/Fgt4J/uhTstme8QgdPOliVGO0TFn0pqDfAHc4T99Z9pHlS9vI3QH01Mh/9k3CaOgsFoxH/OF3uQDPPMDOgsZW3B5ZZT4aZtQ/3CECzosvQGxJaaSYg3QSkm93/dzvxf5qZeQ83A+km1jbs5PhuZngEGvlKrYoY78FowawDZtKxnETIKSq3KxpagX/9yGFzwiMUraOfSoHNJcD4wvZhS3/gms8PK7dzXDWe4bmvxHXE0v0DkeuqgpHbgUMSePVVKMjJQ1FZ4oYNB1NptfLBOj8nPq/hCIkmFIxGCCERNGvWLLzxxhttr99++208/fTTMBj879BeVVWFTz75xGs9SvR6z9OA06ncuUhJXZ34ZkW4GI1GTJgwARMmTMA999wDu92OlStX4uGHH8a+ffsAuDt6L1iwABdeeCEkyf8bmHl5eR6v9+/f71PDq5Pl8XU9WucjhBBCEpVNEOhiDGKnWrXwpFa5hYLRgqTVpRKgwoP/1G6SOMSd7yMYjKaybrVAHycXX7PpGf3MFwmi/YiDw85tMLH285GTO4THs2AG9YnK1DkEzcatwhCbcIRT+BRoJgjBMknJwrJa5VZwzj0aIYQjmM5XagFlVtkCgyRo/N6JWnickmSV8DvRsnzRohKMpnYs00rtWGnnNri4Ezo6LhLitzpBkFKmIVsQi0ZIaLi4C9/Xf6k4LtvQHaeljAlziaJXpkG5V4Do+xwJrYLfcCJZFyOEEEIIIYTEP2qfFxhqn0cIIYQEmSwIPmUSWHqW8h18DaFoAJAEB1LlZjTqvB+CZXMCsswhxWhYkxZNVo59ldqnz4/1QJlftwhHsb4DA1r0BSOAZzeIx1c3A70zxePjzRaFDuQdDe6hPDwrBahVaDpx9ZlR/D1U2a/a7NsOnt0LKN4hnMTI7TDLLWhVuAeUyMFoRwVZzpknNpNex6D3zraMC9zlAvb8pH2GD/4B3PYMCgTBaCU1wSlXtDui8rNA3wQ4DvNft2qbUJKA/CFAYy2yXbXCyY42AKd0D1LhSExwOHlbKFmjR6gZdweWdQgta1IafuJ/tYBUElqMAWnG9lCy9gAzhrROAWdeYWYd5kk1IiquhdQy1eQ4D0YTBcT6I4Oev0giJNXE0DsDKK9XHv/05xyTBqgfa4rKOMYXtk/T1fWmx7ylwFXjgeNN4ml6OY9COvnrkiwDB35G/+xzFacVhXwRsRJBU8xCwXULISR4qGcQIYRE0J133ok333wT/ESkd1VVFZYsWYKbbrrJ72UuXrwYDkf7U1pSUlJw4403Kk6bnp7u8bq+XlAjV7Br1y6fyhVIGrpWSUlJmDdvHmbOnIlhw4ahvLwcAHD48GFs2bIF48aN83vZY8eOxccff9z2euPGjZg4caLm+Tdt2qRpugkTJoAx1rZPrF692qsjNyGEEELa2WSr4vBgBrqoddBVC+Ugvukc2NORUw48QIUkrlZBoFIwg6h8lcSMkCBBhvfTWtQCiZxc/EROPfO/Aw/xn9r5xupq8RhvdYmPc8EMgxAHhXnuW6KwMQBhCf0UfQeVyqUW+mUWBHxxyLBxq0c4XTQGJaqtu1VuRRo0BqMJAkZF28comcHAFMPx1MJKtVLbv9SOZZqX30UdzCq3IkWXFvB6CElUtY4qxeGZ+lyAotFIGP3S/JMw2OusbrMgsTjtGeCHTL1y65p6Z03U3GOwCoJTI3ltRgghhBBCCIl/1D4vuKh9HiGEEBIg7t1OBAAg6YC8vgEvfkLrJnyZOsNruNUBHGsEemm7/RyTynwMyYn2YDT+4+fg364AjpYAO753D5xyMdhNj4H1Gwx+5IB45mmXBLTuCYONMMmtsAranzS0JlYwmqjj80lXjFOuR141nuHFbzzbZPTsBowvCFbJQqCirMtJ+D8fBTtlGOASBD2ekOmqFwSjcSTiPecWG0eVIMCgX1YCbI/qcp9nkf/xR+SfdiuAQq9xVU1As5Uj1RRf287h5Hh5Lcemg+6AnG2HxdMaDfH13hVVlGqb7oxzwdKzgPQspMtNyHDVoV7nfaIqreY4a2ACbLc4trWMY8kPHNVNwKxhwDUTGL7ZC7z/E8eB4xzNNs9Qs9bAmykSP0kM7QFlpg5/mxnSToaZeYxn7SFnHYLNUpKiI9AsWNTeSrzHEwUzGC2TmhmRCLriDIbnvlL+xh6sBg52ETb23FccK7e5oGPAqH4MX/pwG+iDnzh+KXehWJCfn+5qaA9FO6miLOHDhoNlSxnHAeWm1SjIiZ9zFSHRioLRCCEkgoYOHYrZs2fjs88+axv25z//Gb/97W+9nkyoxe7du/Hss896DLv++uuRlZWlOH337p6POti9ezfGjh2raV0dy6yF0Whs+9tms/k0r68yMjIwd+5cvPjii23DSkpKAmp4NXnyZI/X77//Pu6++25N81ZVVeGrr77SNG1ubi5Gjx6NrVvdT7YoLy/H559/jjlz5vhWYEIIISRBiMK0jMwUtHWohd60qoR5Ed+0CjpIA8EJUCGJKxqDkBhjMEnJaJGbvcaphf04uTgkkILRIsOkUwu1akEG2lvSqn22ZpXl+EoUatY5JFAthC+YAaPCdQjes1K5ROd7sy5FPZxObtUUThfJMA61dfsSwCraRqLtIzEJRsmsuA61c7JWLSE+r3dVB2t1tVAwGiEBqHMqt3jINOTALiv/tqsUtEhIoL6r/1xxuJ4ZMLHbOWEuTXTL0Cv34HJyJ5pdjUjTdwtzibyJzt+RvDYjhBBCCCGExD9qnxca1D6PEEII8ZMsCkaTgB79A178GxW3ov/AYsVxB6soGO2knFREdZgOX/Eq+PN3eY9YtxJ83UpgSRGw7Cnh/KxXYMlbktmMNYfOwqT8dYrj6xOoyaRL5ihV2bduOpvhD1OU96Wn5zKUVHOs+tn9uncG8OkCCbooDffgTfVAs4Yg54O7wOcN6XKyTFcdjhp6eQ2vDbxJSkw6VCse1z/KgxqDgX/4iu8zLX8F+V98C/Tbojj67Y0ct0yNzu+TP2SZ48KXZU3hGMtvkUJfoGhQUdr1NIPHgP359fbX1/8P8tcewnalYDQK/4hp3+7lOO9FGdYTTQ//XQTc9W+ORivAqclS0EhMKbQM6HYi0KxjaJl7PPMKM0s3ASnG8DzEIdaobRHRpWK8qAtiMFpGMu1bJHIevYBhzR6O7SoBtmpKa9rrJKv3+HYCq2x0/xP5z5ErvYbxY2UoGMCgFL94tB6wOjhMiRC4G6Dv93NMeVZ8oBaFzxFCgoeC0QghJMKee+45rF27Fi0t7qu7+vp6zJ07F19++SVSU1M1L6eqqgqXXnop7HZ727CePXvi4YcfFs4zZswYj9f//e9/cc0113S5ri+//BKbN2/WXDbA3RjqpOrqajgcDhgMoeu4r9d7nuI6Nvzyx9lnn438/HyUlpYCAIqKirBq1Sqcf/75Xc77l7/8xeMpoV25/fbbccMNN7S9XrhwIc4++2yf9gdCCCEkUdhkq+JwYxADXQwsCTro4YJ3IJEvgSVEnVpAj4PbheMI6Yo4UCmyne9NklkxGK1zeFVHamFCekY/80VCV6FcHakHkQVvfxSVqfM5SzWoTVIOVwsms8ZyioYB7veqGizmagH07Z3RRIFfkQzjUA9g1VbP4JwLt5EoKA8AkqUUxflaXIG3QlUrezCC0axdhLdRHY2QwNQ5lB97nqXPRaVd9CRnamVIgqvSXo69LTsUx41Nm4xUfXqYSxTdMg3i1jV1zuqoCEazCq51whHKSwghhBBCCEls1D4vNKh9HiGEEOIH2aU8XJKAHv18W9bAkWC3/hVoagB/eD4AoJfzKLq56tGg805AK6nmmDwwfju7ltVqv1cVzQFx3OkAX/Kk+jRP/U48ct6dAZeBMYYzsAc67oRLoT1SfQLdjj9aDzgEX9sv7pQw4zTxd8qcxPDJ7TqU13FUNwPDewNSlIaiAdAWQOSDTLlOcXgwQzFiSZlKMFpf5Zzt+PLB837N1s+yHxJckKHzGnfvco5bpgZYrijywwFoCkUDgNN9rDLEIs65+Lg062qw6ZcBvQqBvgM9wpfYmKnov7oM200jvWYrPWYDQPemY9VTn7WHop3UkEBhrV3RSScCzdqCzE7+fSLQrENomTvIjHUKOHP/nZxEgWahJKnkWsZ7y7v6Vt/e4Wm9gF1HlcdFc5WaxL8UI8PWh3SY8bwLX++JdGk8jbL97D2wokw1tKusBhjcI3Rlihd//Uw9vZKC0QgJvQSJByeEkOh16qmnejw5EQB++OEHzJ49G0eOHNG0jP3792P69OnYs6e9Ji1JEt5++23k5uYK55swYQKSk9s7/65cuRJFRUVdruvaa6/VVK6OhgxpfyqM0+nEt99+q2m+lpYWvPjii2hqatK8rubmZqxYsUK4fn9IkoTbb7/dY9jNN9+MkpIS1flWrFiBV17x7ekm11xzDU499dS213v27MHFF1+Mujrlm0MiVVVVXtuBEEIIiTeiwCOjZAraOhhjMOmUb4SqBRgR36gFmAQjQIUkrmgMQgLEYUWi8gLq3wUdBaNFhJGZwATP8LJFKBhNFBSmNahNggQDSwpaeURE71np3C4qq0lKhkkl5LDzfKJ6g+g8Hw4S08HIlOstovCQzuzcBhnKN9zUguPEn0Hg9ZtWlXA1R4DndYfsgJN7B9Z6rJ+C0Qjxm0N2oNGl/DukWvASIcG2ru5z4bizM2aHsSSxIU3XDTrBM9HqndHx6GthXSzC12aEEEIIIYSQ+Eft89RR+zxqn0cIISSMZEFHSkkHZPcEkrQHjbKL/IdRgwAAIABJREFUbgIbOx0YP6N9GIACR5ni9AeVn4sTNyoatE87OC+Ke9KX7gHqq9Sn2a/8YBkAYL0KglIMZk5Blks5yam+Jd5jG9qp7Vfj8rUto3cmw8i+LLpD0YCgB6NlCe45H/PhuxpPKhqUvzd56YDJEOX7RoB4i/Zrzc4McCLPeVxxnNMFyHL8HI/W7tP2XpL0QO/MEBcmGjTWAoJ9h13wO7AzZ4H1G+Qd4NQzH/3tynWhsmP0kO5Y5ZI51uyNdClCQy8B2SnuQJVRfYGzBwLnjwCuPIPh5ikMf5rJ8MRFDC9cwbD0eoYVt0j4+m4Jmx+QsPdxCRWLJFhekmB/VUL18zoc/KsO2x/WYd2fdPjvHTq8+3sJr10t4W+XSvif8yQsmC7h2okSLh7NMH0Iw7h8hsE9GHpmMKQYGYWihZja1o2jU5qiykbfpp94inhrDcwLsDCEBMFLV0qIpkNmmqsR2S6FNoKVh9A/WzxfSZz/VhQMnHOs3Scen53iDhwlhIQW9ZgkhJAocMMNN2Dr1q14+eWX24atX78eQ4cOxQMPPICrrroKffv29ZqvuLgYS5cuxaJFi2Cz2TzGPfPMM5g+fbrqetPS0jBv3jwsWbIEAOByuXDeeefh7bffxowZMzymtdvtWLZsGe677z7U1tYiMzPTp4ZA06ZNw9KlS9teX3/99XjwwQcxfvx4ZGZmQuoQeZ6amoqcnJy29S5YsAD/8z//g0suuQQXX3wxpk6dirS0NMX1bN68GXfccQfKytp/yDzzzDMxaNAgzWUVWbBgAd5++23s2OG+mXj06FFMmjQJL7zwAubOnevxHiwWC5577jk88cQTkGXZp+2l0+nw4YcfYuLEiWhsdF/1f/311xgxYgQeeOABXH311cL3X1tbi9WrV+Ojjz7CypUrceaZZ2Lu3LkBvnNCCCEketm4qFNtcANOTFIyLC7vG6zBCA4hbmohc12FnxCiRtT5Xi0sKBxExylReQH1YDQDMwRcJuI7xhhMklkxhMk7lEv5OJfEjNAx76da+ku0b2ktj1lKCUvjBtF30MHtcHIH9Cf2aZnLXiFzHZdxMpyOKzwvrfN7FL/nCB8PdMmwOa1ew7XWM/wN3UsWBjQGIRgthIGnWrYL1dEI8V+DSoBSpl4cjBbnbbNImFnlVmxs/EZxXD/TAOSbA/+9P95ITEKGIQs1Du+OAXWO6GjBJKyLqQTdEkIIIYQQQkiwUPs8ap/XEbXPI4QQEjGyS3k4Y2A6HfiEOcC6lV0vR5KAiXPcsyanetynKbCXYLtppNcs8d7Ztd6HW8QXjgpdOfzBZRnYuhbYUwT+7YeBLWzSeUEpE0zJyHA1oErf3WtUg7hpU9yx2MTjukXuGXyhUaEeSOyrvg7lEOrS6sS8syw6RuWmhrccEVF+MKDZ8+2lqND39BpucwLHm4Ae3QJafNTQGhhzwQhAF+1Bi8FwTDncDADQK188LqcX+svliqO+OZQKm4PDGOdhhPGo3Lcc+7BI0rvrAummE/9O/m1mSDOdGOcxniG983AzYNSDwshiDK+uADavBlc7TonY0gHcrjiKx3kVydfr0ZF9gbH9gaJOm3lgdyBfJeSJkHAZlMcwZSBUA7P8NbovcLTBt0DBC5tXKYcvlu2FycDQs5ty8HdpDYd6bCOpbASsKl0fLhxF24+QcKBgNEIIiRIvvfQSMjMz8eSTT4KfuJJtamrC/fffjwceeABDhw5F3759kZmZiZqaGpSVleHXX3/1Wo7BYMDixYtxyy23aFrv448/jpUrV6K+vh4AcPz4ccycORMDBgzAiBEjYDQaUVlZiU2bNsFisQAAevTogWeeecanJ1NedtllePDBB9uesnn06FHcdtttitNee+21Ho20AKCxsRFLlizBkiVLwBjDgAEDUFhYiIyMDOj1etTU1GDnzp1eT/FMTk7GG2+8obmcagwGA959911MmTIFNTXuDoIVFRW47LLLkJeXh9NPPx3dunVDZWUlfvzxR7S2uu/6devWDc888wxuuukmzes67bTTsHz5clx66aVoaHBfcRw5cgS33nor7rjjDgwfPhz9+vVDeno6WlpaUF9fj3379ml+iikhhBASL0RBKUbJFNT1iAJTghEcQtzUAkwCDVAhia3VZVEcrhYWFA5mSRRIpFxeQD0kUE/BaBFjkpIVzwedj2uiAMhgh3KJ9m2t5THpwtNyU+07aHW1IlXv3qft3KYYenZyGWrhdF7vWXCuifTxwCQlowHeT1rWWs+wqoSLqu1fovfdIjhuasU5Fx57gcDP61q2C9XRCPFfrVP8BPpMQ464MV68t84iYfVT43fCa8QpGbPDXJrYkaHPVg5GUwk8DBcXd8LOlXsPRbouRgghhBBCCEkc1D6vHbXPo/Z5hBBCIkSWlYefCP9kNz0GvqcIOH5YdTHslqfAcnq1v779b+Av3QsAKHAohxsdrIrvezkNGm8R/3YkcOmY6Om0yp0O8L9cC3y7PCjLY3n9grIcmFLQTVboNQ2gPpGC0ezKw80GQIqzYCL+8n2BL6R3YVsIluhYFO8hjSKiYLSMOL9Nxh128BsnBrSMl47dhdMLNymOK6uJn2A0tSDGjp64SOp6ojjAv3xPeUSSEcjqIZyP6XTITxFXCn7znIxPF0jISI6vY3i8+2RH8OqxJkOnILMTf3c7EWjWMbTMPZ55hZmlm0ABewmK79wI/ueLgUbv9r5aMH1vYKByMJocx5drnHMs2eDbG8xMBp6fJ+HCl2TUnTispxiB1/+fRGGCJGoUdmdYuy/4X96XrpRwrBG48k0ZNnH3ofZy2A/i4aonlUc2N4BXlaMgp4diMFqiXp/54tNfxJ9xRjLw0Hl0TCIkHCgYjRBCosjjjz+OKVOm4NZbb8X+/fvbhnPOsWvXLuzatUt1/jFjxuD111/H2LFjNa+zd+/eWL58OS666CI0NTW1DS8uLkZxcbHX9AUFBfj0009RWVmpeR0AYDabsXLlSlx00UUoL1d++oJWnHPs37/fYxsp6d27N1asWIHhw4cHtL6OTjvtNHz99deYM2cOKioq2oZXVlbis88+85o+IyMDn3zyCVwuwRO+VJxzzjkoKirC/PnzUVRU1Dbc5XJh+/bt2L59e5fLyMzM9Hm9hBBCSCyxyVbF4UYpuKEuWkNmiP/UtqWDC1oYEaKBVRCgaNZFOhhNcFxxiVsPqoUJUTBa5JgE55zO+57oOGcK8r4oPmdpK0+wg9pE1L6DrbIFqUh3/60SsHVyGaJwus7DRAFikQ7jMAv3IW31DLUQMLX9SxTQaFUJaNTCwe1wQXwnNtBgNC3bRS0sjhCirs6h3NLBLKXA9P/Zu+8wN6qzbeD3kbRFu+tt7gXvrgGDDRgwpmNDDJjQQkgIJEA+SDAlkISQhIQ3gQQICeQl8AIJPdQQWgqE3rHpNiVgG2NsbK+Ne9tdb9FqJc35/pC36jyjGXVp7991+fJq5syZI2maZs7c4/FD8elwlGZaa8xtij3XDgDlniHYb8hhGW5R/qjxDTMObw5nvweT9LsMyNzxJxEREREREcD+eU6xfx775xERUZpoKRjNCwBQ43cD7p0HzH8ZetWSmGKqogqY+hWoifv0HzH9a8COYLQJXY3GWRT6za4tAfONql/fBzh2L4WN24ED6hWOnAR4cynQ6s2nUxeKdu5VKakHAOAvR9V2IRhtEF2Ob+s0L1flJRluSJrpptgH77g2bAwwaf/eYLSuVcZiq7YB4YiGz5tD62EGSIGChR6MhrlPAhGbNIed9wLKhgC1I4HmLcAnb8YUmRJcKE7euFXjwAmFsSxJ+7G+Vl7rQd3Qwni/drTWwD/+bB45cjyUxz4crq5WA+bbC/DuCuCOuRqXHVv4n2Mh+fGj7kJnHjpHodKvjAFoxT5+95Q4fdMlCYeiAYBHeEg0UNjPJH13hftpqv0Kh+6isOC3Hrz8mUYwBBw/RWFcDddhyh31Q+3H33GmwphqhWUbNbZ1AJ0h4IaX7Ff2IyYCB+8cXc4XXenBi4u1MdAMlgYevBaTuz7DrLZXUGM1i3Xqv/wSDeMfxDvLY+fdWODnilLh3Afl72zFHxi4S5QpDEYjIsoxRx11FBYvXozHH38c9957L+bOnYtwWD4RXFJSglmzZmH27Nk48cQTE0q8njlzJubPn4/LLrsMTz31VM8TMfsaPnw4zj77bFx++eWorKx03fEKAKZNm4bFixfjkUcewQsvvIBFixZh06ZNaG9vFzsmVVVVYe7cuXj22Wfx6quv4pNPPrH9PABgt912w1lnnYWLL74YZWWpv1Kwzz774LPPPsMVV1yB+++/v1+HtW4VFRU45ZRTcPXVV2OnnXbCnDlzEprXLrvsgvnz5+PZZ5/FzTffjDfffBPBoP2jQCZNmoSjjjoKp556Kg499NCE5ktERJQvpBtrSzylKZ2PHHoziHr5pJldqEtYO3jMBZEgIAT8ZDsISZq/1F7APkzIq3iaL1uchmdK27lUB0E43WdJ7cnUumE3n777d7sQje736veUoclUz4BwLDEoMWe3B86OM6TjEQWFEiUfE5V5zcFoHUkGo9ltxwAgZCUXjObkc3H62RFRrCYhQKm2aLjtdNqm4xaRG8sDn2GdcKPEwVVHothTYHeapFC1z9zbSgo8zCS78yfS8SsREREREVG6sH9ef+yfx/55RESUQZYQ5Nkn4ENVDQWO/ra7R9WMGBetw7JQH2o0FlnbDHSGNEqLCvOGTSl0aK9xCudOtw9QySb95lOpq2xMQ+rqKqtAdbM5GG3L1k4AhZ7mFNUuPM+10ILR8O4L8rjakcA2B79N6nbrtww2hFYai0UsYMN2YNwgyxduES6VVfsLc5vcTb/1tDxy6hHw3Pxiv0HWWfsBKxb1G6YATPJvwWeB2IdErdqailbmhnihk7XlGBShaACAjavlcaPr405eP6oUaJTH/+djjcuOdd0qypL2oLv+SN/aT+H0A3P32I/yl968Fvj8o6TqUDb96yLhCAo18uOFRe77FXaHx46tUTj7kEGy/6O8U1crj/v+YQrnzejeH0WXYa01bntdI2DTjb47FA0Adh6hcOEI8/KvP/8IesvvnDX0i09QP9U8auUW9vu10xmSP5/Jo8FQNKIMKsyjJCKiPOfz+XD66afj9NNPR3t7Oz788EN88cUX2Lx5M7q6ulBSUoKRI0di4sSJmDp1KkpKkr+ysvvuu+PJJ5/Eli1bMHfuXKxZswYdHR0YOXIkGhoaMH36dPh8vbuNI444wthBK57Kykqcf/75OP/88x2VV0phxowZmDFjBgAgEAjg008/xfLly7Fhwwa0t7dDKYXKykqMHz8eU6ZMQV1dneP2JNohqqqqCrfccguuv/56zJkzBytXrkRTUxOGDx+OcePGYfr06Sgv773BONHPC4h+BieccAJOOOEEdHZ2Yt68eVi1ahW2bt2K9vZ2lJeXo6amBrvssgsmTZqEoUPjRE0TEREVkKBlfqRTqm+q9XvMwSGBCEM3UsXuJmm7MCgiO1rrnA1C8nulMC05BEoKCfTAC4/ihfxskfY5A/cR0neb6iAyvxB2Fdue3A1G6xtqZbd/6N4/y+F0vZ95REcQ1MJxg7A+Zoq0PeqMyNuDvuSQO7/tDXpiIFuSxzcdEftgtGT36wMD74xlGIxGlLBtQoBSja+7k7HQ0YLBaJQibzQ/bxyuoDCjmr2T7dQUxd4MAADN4ezfERCwOa7Jdmg1ERERERENTuyf14v989g/j4iIMsiyzMOT7POhfEXQO+qeIIQRAUDjFmD30UnNKmdJgTLVaXw2h27ZGg3wiUSAMfXA6AZXIbp66wbg5UdS0xiPB5iSwsDW8bth9OoNxlGrNgZRyMFoWmus2AxENNAu5OVWFFAwmt6wCvrpe8Tx6nuXQ9/wo/gVTT4AanR9z1XjUWE5TG1be+EHo23arrFoHaA1UFYMbNhu/q1SVbirUtS6FeIote/hsQNH18UEowHAeGzEZ4i9FtqY/cugKdMUp6vTzN0y046csFZebjBp/7iT14wbib2XLMAnpVOM41dk/7li5MJKl99XHU/ZULrYbZscsgtG0+EQCjXyY1PsMy/iGlOd+nYQpdqMiQpKaZguS5ywV+y5AaUUDp8IvPCpXOcRuzk8p+Bmm7R5HeqF/aPb/exgYxfE7PaYQ3d2AEs/BiJhYJcpUEO4oSNyozCPkoiICkh5eXm/jkfpNmzYMHzzm9/MyLwS4ff7MW3aNEybNi3bTQEQfSLoMccck7H5lZaW4vDDDRcAiIiIBikpZKYkxcFopV5zfQzdSI2Q1SUGPnWPJ0pEUHeKIR3ZvvleDNNKICSwSBWlpE2UGGlZGhjeGbDMYVGpDvOU6uu0OqC17umEK4VfZSo00Ku8KFYl6NKxvUj77l+ldcIDD4pUMQA52KzvtEGb0EF/ir8Dt6T2Oz3OkMpJwa7dyoQQvWSPb+JNn2wwmt120k0ZIjJrCtsHo/H5ZpROLeEm/Lf1XeO4Pcr3w7DikRluUX6p9pl72zSFt/Y7DswGu+ODbP82IyIiIiIiYv+8/tg/j/3ziIgojbQQjObxJl/39y4H7rsGdaHVUNqCNoStXfh3C6/+zJPV88XpIgajpeEUtA6HoW/5KfDEnf1HNEwGbnoBqtb+eoYOdkJfey7w6uOpa9RJ50KNGJey6tR3LkH96zcbx63cloLlNUdtaNE46VYL7zfalysvzkhz0kpv3wb969OAj9+wL3jSucAHrwJzn7Qtpr55IbBqSc/r6kizWFZaXwtBV1jj3Ac1/vaes9DmdGyjcoXWGvjsA7nACd+LHTa63li0PtQIYI+Y4XfM1bjtjISal3Ps1ouKEuBnswbHg3O1ZUFffZY4Xn3jgviVjKnHFVv+gFPGPWocvbkVaA9qlJcU3vFQIXpnubsQ/Hrz8+SIkvfJW0lX4ZF+D0LO0C4Ebo/9fJ7CD9GlwlA3VGH2YQp3v9l/X3XYLsDX9jZPc9mxHsxdaiFg6Ep/+ETgyN2dzVu/+4Lzhgba0FC6HcCQmFFb24HWTo0hpTwuMrELjvvDyc6Pz/UTd0Df8nMgvOOLVwr69J9DnXc1lGdwHOcTJYvBaERERERERJSXtNYxoTPdUh0yIwWLSMFs5E688JJkA1Ro8OoUgp+AzIU/yfN3H0gkBQj6GIyWVU7DMzsj5n1GvPAqt6Rl24KFkO5CsSoxtq+bFNKVDqWeMnRFYoPR+oa2ie30lPV01pbes5OAtWhdqf0O3JLa7zTcSwq5i3c8JM23Qwjxcyre9Mnu150EtzG8lihxTaHNxuE1Rew5SOn3dvNLiMB8zHt49bEZbk3+6Q4wHCisQ2iLbMcQX1WGW9RL2jf7lA9FHv6eISIiIiIiIiIiokEiEjEPT8FNkOpr50Dfdw1KdBfGhdfiy6KdYsrMWQq88hlw9OSkZ5dzmoVufFX+NNzc+9TdsaFoALByMfT1F0Jd+y/byfXf/ugsFO3AWUBRCbBlHbDkw+iwvacDfYPtqoZCHXQMcPzZztvvgBo5Hg1qo3Hc6nY/whENn7fwbpye/UD8UDQAKC9Je1PSTt90SfxQtFN/HO2bc+XfgSfvhL75p2JRNXQUdFdvf95ihFBmtaPD0CenqYC7dPzpJeehaABQU8DBaHjxYXGUuuJ+qGGjY4ePrjc+Bnd821Kg9HhjXcs2auw6Mv+3R9J6MbYaePEnHkwek//v0ZHX/glsM+9/MHJ83PBRAMCoOny99Sncs+48nDPmLmORxq3AHmOSaCdlzAUPuQxGGzpI1hXKOP3XK80jyiuBXfdxVIfqkAOGdQEnozV3uFuPx9cCXg/XZcoPd5ypsH898OKnGp0h4NBdFH5ylIJHWIZnTFR48xce3Pu2xuJ1GhrAkFJg+q4KP54pT9eX1hp44W+u2lkfXg1T0DAANG4B9kpdznpBWbFF3n7tvZOz7ZT+dD70jRcPGKiBv18P7LIXcNRpyTSRaNBgMBoRERERERHlpbAOw4K5s1iJKk3pvKRgEaeBJWQvXniJFAZFFI9tEFIGw5+M85eCkGzC3KQwIa/iKb5schpqFRDCoqRgtURJy1Z3m4o9JT1/m2QyNNDvLcP2SFPM8H6BZsI64e+zDjvZT9vta/wpDlR1S/rOnIZ7SeX8XvvANzGg0WY75EQgEi8YLbn9upPjL7ttKRHZawqbH3HWG7hkvpivjd2TiZyL6AjeannJOG5Y0UhMKt83wy3KPzVFQ8VxzeGtWQ1Gk/bf2Q6oJSIiIiIiIiIiIsooLdzsrpIPRkPtKKC4BOgKor6r0RiMBgCPzNc4enJh3WQejmi0mp+viuo0dIHQr9iEmr3zHHRbC1SFzTn5Vx6NOw/12GdQYyYk0LrUqZ9QC7TFDo/Ag7XNQJ18WSIvbW3TeOFTZ2XzPRhNBzuBuU/ELafG7RL93+cDTrlIDkYbPnbH/+MArw+IRPuFVEdahGA0Dem6c757ZL676+bV2e2ylFb65UfkkXseZB4+qs44uL5pARCbowYA+M8nGj+fld/Lk2VpbBf2Y/edPYhC0QBou33k5P2dVTK6HgBwesujOHf07bBUbBDRyi0MRssHW1rd90WqL7DjE8oNeuOX8shpM+G55jFH9Xj/+zFwuzCPAu571+yyO28Dn99KeUQphdnTFWZPdz7N1DqFqXVJHN8t/a/rScZ9+Bi8nqsRMZyWWslgNNFKc3dqHLaL8zrsjm/1y49CMRiNyJEUnD0nIiIiIiIiyrygJTzmEUBJigNOpJAYp4ElZC9ewElId2WoJVRo7IOQshuM5heC2aTwLACICGFCPgajZZW0z+kcsJ8a+LqbFE6VKCkkLNqG+EFhdsFqqSYGBPZrp/lz6zutHCzWO61dUFYm37OJ03A9iRw0Yn88JAWnBaz26NOkEpTu/bqT4y+G1xIlJhDpENefmqJojyNVoB3UKfsWtM1Dc3ircdz06mPhScVNYQVuiLcaHpifLiuFHmaKfCxcwHd7EBEREREREREREQ0UMT8EFL7k+30oj6cnUGZqp3yT7OcbCu+G+zWxz2PrMbwiDTNc+I48zrKAVZ8bR+lQF3RHK7BupX39VcOAEeOTaGBqjB0p96XYZv+8tLy0aC1gOVw9yovz95qptizgy2VAVzB+4YkDHlx02sXGYupbP4z+7/MBo3qX3RrDwxIB9+EY+SJiaSzd6G6a6rL8XZbi2rJeHjfCHN6JMQ3Gwft2fChWtcp8iTmvbO8EpK5aNQXynKl4fdG01tDhELBysVhG7TbV2cxqRwLFpShCGOPCa41FVm4pvOOhQqG17lleFq1zN21lKTBheBoaRbTafHwPAGrnvRxXo2z6PlmRwtsuRSyNYEijyeWxX1KBUUQFTofDwBcLXE/ne/I27FRlPie1cmvhbX8SobVGeMC2eOVm82fTMEx4wLRlQXcF+/2zO761278QUX/sQU5ERERERER5KajlYLRST2lK5yUGrtiErJBzgYh9T6mwDmWoJVRopGAPDzwoVtl9dKe0XQnpLjEALSSsCz5VlLJ2kXtyKFfHgNfmbV288KpUtSfahj5BYcL6kcnQQCfBo1JYYN/PTQwW67N/kcK0fMqHIk9x3Lamk9NlSCKVixe6J31uFiwEtfAYUgfSvV+3C7nrxvBaosTYBSfV+uL1HGTnCErO3ObnjcOLVDEOqToyw63JTx7lQbWv1jiuKZTtYLTsh/ISERERERERERERZZ0UjOZN0QPxRtcDAM5pvl8ssjK7p4vTwi4Up25o6uaj13wB6weHxy930VegW5t7X7/wd1hn7g09cwj0McPk9JtuXz8vGjCVZTVjR4jj3IYb5IPlwg3PJmXZ7XaWEN20CdavvgX91eHQ35sWf4JJ04DJ+/cbpE74HlA8oG9uRRUw6/Te1zu2QwBQbTXDZK15cN5b1wyEhM28pLpAL5VprYGNq80jxzTI27gdAZ8DTez6QpxXSwFsj+y2qdV5/pwp/cVCWBfNhD6qGtb3D4Se/3L/8ZEIrNt/BT2jFPorFfbhocecLo/rQykFjIyG79V3NRrLFOLxUL6zLI0rn7JQf5kF7/kWPOdFMPMGy1Uds6crlBYxUInSYPkiedxxZzmuxmOT6JHMw4xzzcbtGt+4LYKaiy34L7KwbJPzaf1FwDmHcT0mGkivWgLrx7OgZ9VAX3e+WE59/wrziM4O1IdWGUcN9uOirrDGxY9aGHNpdJt10B8iePuL6DZZ+mwahvV/rVubYP32TOjjR0EfWdnvHz58XZ75muXQG79M0TshKmwMRiMiIiIiIqK81DfcZaCSFIfM+L1C4ApDN1LC7rsEgLAOF9TFHsocu5vvlcruRTO78Clp2yKFCTEYLbv8wj5n4PIXELZ18cKr3CqxCQftG+gphXtmMpxCCoXruw5I+4i+n1upsJ/uO61UTy6EcUifQ2fEfv/YTQoKixe6Z7fsxQs3s22PEGbXLdlgNCehZzxGI0qMFIymoFBdFA1bkg6heLROyVgf/BJLOxYax00bMh3l3iEZblH+qikaZhzeFM7uo9Ll32Z53pOfiIiIiIiIiIiIyI2IcK00xcFok7uW4PLNfzAW2bAdCHQV1pWdVdvM76e6DKj0p6Z/kO5og77wK8Ci9+IXjoShf3lydLo3n4L+/feBVUviTzdiJ6hzr5JvZM4w39g6DIlsN45r+mJFhluTfrMfdL5elOdZMJq2LOiffBV48ykg0GZfuHo4MOt0qBuejelfp+onQd30ArD3dKCyFtj/SKjb5kANHdVbaExDb1WRFuMsbnipsLZB3RIJFMj30CtRWzPQbt5+qF/9VZxMVVQBQ2qM486pM4ejNXXk//LUbBeMlv2ubQnTTZugfzgTWPA20NUJLPsY+hdfh/78o94yt10GPHxD3LrUr/4KNWyM85mPGg8AaBACQBq35P9yU2iufkbj6mc0vmxyP+3Ow4GbadqDAAAgAElEQVTLj1f44zcZpkTpoW/9pXlEiR9qRxCjE3b3LlhWYWyXLEvjqBstPPkx0Ba0L/vr4xVm7AqUFkX/HT4ReO1nHkwcyXWZqC/d2hw9H/HfuUCoSy5Ytzvw7UuAGnPIecP6d4zDB/tx0YUPa/z5NY2N24GIBcxvBI660cLSjRorhS6XfYPRtNbQl54EvPYPoM38G9iO/s5k6HA4scYTDSLZf4QEERERERERUQKCVqc4zi4UJhHSjbpdOoiIjsCrvCmd32ATL0BFw4KFCLw8jUEuJRoWlAl2wWidkQAqvJUxw8OWFIzGdSObpGCtzgH7qUyFQXiUB6UevzEIrG9YlBQcJYWBpoP42UX6BprF/9yk9anTwfvNie2B1xxQFrDaobWOG+Qo7Ufjhb7ZfdcBqwPmbobxdcQNRkvu4l28QNVoGQajESWiKbTZOLzSW90niJUdjyj13mh+Xhx3eM2xGWxJ/qvxmYPRmoXgw0wJCIGvuRBSS0RERERERERERJQpOiJcK01RMJoaXd/zMJvTtz+Ka4b/yliucSswaXRKZpkTVgk3qtbVpnAmbzwJNG1yXn7hO9DLF0H/525n5YeOhudf5tCfrBlVh2qrBa2GPkxNb70BnLBzFhqVHpu2u7sRvLw4TQ1JlwVvAys+jV9uyqHw3PqabRG118FQf3lFHj+6oWc7VBOR022+3KaxU21hXXtemUCgQD6HXtnasFoeN6rOftrR9UBr7LIzJrwewC4xw+1CxfKF3Xuoyn7XtsS9/GhsQF4kDP3MfVC7TYUOdQHPPeCsrkOPdzfvkdHlrE4KRsvuc8VoAMvSuPMN59vQE6cA//kh792gzNBrl8sjDzvRVV0ej0eeT4EEo731BfDpOmdlj9tT4XcnyZ8JEe3w+j+B7dvil9vvCCh/OXD6T6FvvSxmdH1gOWB4Pm0iAc+FYntA4+/vxW5/g2Hgple0eJw+YXif37LLFwKfzku8EaEu4P2XgYPZT5bIDo8YiIiIiIiIKC9JoRgKHhSp1PY88XvMgSXRdhTAVfUscxJwEtLCE1OJbEjrpxRClEl2AQBSyFEE5g6yvUEllA1SsFbf5U9rLQb1pWN5lMPaom2I6Ai6tPlRXJkMp5CCufquA3LAYZnx7776fgfi9sBmH58p0jJkwUJI2zzZaQdpPxpv2bJ771KQnBOdwnfWLZzkPj1eoCoQXW60LoyOIkSZ1CQEJ9UUmYOW+uI6R4nqtAKYt/1147j60okYXxrbuZ1k1b6hxuFNoez27JbDbgv1bg8iIiIiIiIiIiIig7AUjJaiYIfRDT1/1oVWQ2nLWKyxwG563dxmHj4u0aeBGeil/3U/0bKPgWWfOCtbt5v7+tNt3M5isFVzU2H1mfxsvbvydebLMblr2cfOyo2uT35eY3q3Q/VCIBEALFiT/KxyTSKBAgUbjGYX3DBsjP20I3cyDq4JmT/gQtgcSe9hSCng8+ZvgKD+x1/MI568K/r/+kagrSV+RTUjgCHuduqqbiIAoCHUaBw/mANActGG7cDG7fHLddt9dP6uF5SHli0QR6m63V1VZfeQZKtAgtH++6Xz91Gb/e7bRHlBL3X2e06N33Fe4aTzosdPA9gdFw3W/r+fb4yGoJk89Yn8mYzvG8Tv9LyPHYffMdFglprHihARERERERFlWNDqNA4v9ZTaXjRIhBRYAkRv7i33Gh6bQI4FIvEDTqIhKvn86DPKBinYx26dzhQpEAqQQ46kMCGfh8Fo2SSFOYR1CCErhCJPEUK6CxYiwvSpXx79njI0Izb8onudsAv19GcwnEIONAv0+Tv+eiy1udMKwNIWPMrjqJ5ssQ8oa0exp8R2+kS3dUWqGF74jKGLgYjQc9yBjjjBZSErftibHSeBqhYiCOkuFCv7z46I+msSOhLX+HqD0RSk31qDs2MEJW9+yxxx2354NZ+C55YUZNgsBB9minS8Yve7iIiIiIiIiIiIiKjgRKRgtBT1+xhT3/Nnie7CmPB6rC0aG1Ns5VYNiNd88k+L0AWitjyF73HJR64n0Xf/Fti20VFZNet01/WnmxpSg6qI+Qbfps0OgmzySHP8bgg9in3ACVPSu/7o91+Bfv4hYM0y5xP5ioFJ06C+81OoYaN762prgb7l587qSHEw2jdan8Q1w39lLPb0Ao3j0/w5ZlpjAs8pqsp+t6X0CAj9jvzlUPHCQCtrjYOru8wfsJv1N1c1d5j7W9TEuZSqtQaevgf6+ot6B06aFv2/shbYsBoYXQe0uF04FTBhT6iTZkN11+eCXt8I/djNwAY5HNE671Cgw2H/tFnfcX9fwMxvAbdehvquRuPolgDQ1K5Rk8pjhTz339Uat83RWLRWo7wEmL6rwqWzFMpK0v8ZuQ2qO+NAfm+UQetXyuOOPs1VVR6PPK5QQomWbHBeNu/CholSSFsW8J+7oN95HmjpsyP0FgGT9oP69iVQI8ZFh33u4HyErwg44hsAAOUvhz7gaODFv/crUi8Eo7UFga1twLBBeFuk3YMD1jXL44buuPVDd3ZAX3de0u3Qf70SOOUiqPJKd9N98Br0cw/GnDtQ5/wG6sBjkm4XUS5hMBoRERERERHlpaBw43RJWgJmbAJLIgGAmURJkW6Q7itshYAUPRyVBg8pCMlunc4Ur/KhSBUjpGMDggJCqFDIEoLRFDdC2WQXPhW0AijyFNlu59KxPMYLHMuVYDQ50Ky9z9/m/b3f2/u5Sd+BhkaXDqJU+RGISOFh2Q/jsA9gDaAqzvSJbuuUUvB7y9EWie2w7GTfLIkXeBrWQmf/FNXfU87qiBsqR0T9bROCk2qKhme4JTRYaK0xt/l547gKbyWmDjk0wy3Kf9U+c6/BpvBWaK1THiTvlBxSm/1jMSIiIiIiIiIiIqKMkYLRfCm6tWtAqFF9qNEcjJbdZ2mknBQoU5WiU9C6fTuw8B33E25aE7+M1wd8+xLg2O+6rz8DanadAKyLHd7iqYJe/D7U5P0z36g0aBKWoYEqSoB/XODBuJr0XW/Rr/0T+qrvApblfuKF70C/8R/grregakZABzuhf3ik48lVKoLRxk7o+XNKcJFY7K43NM6drrFfXeGE26zc4j7QxOspnPffT0Do2+OviD9thbmnVE3QHDTZ5KwbUU5rErppVccLRrvlZ8A/b+0/8LMP+r9etSSxRn32PvTLjwA3Pgu192GOJ9MbVkFfMCN+MOjAdkpmfgvq3Kscz7+bGjEOGkBDSA5nu+MNjf85tkDXQZfmrdA48kYLHX26M7+2ROOlTzXe+IUn7duqS//pbJ9XXgLcfobClHH83ihz9PpGcZwat4urupRNMppl5X8wmmVp3DnX2fsYXQWUFnFdpsFL3/BD4Kl7zCMXvQs95wngzjejx89LPrSvrLIW6rcPQg0d1TtsVF1MsfrQarGKW+do/PbEwbdOrtqWyG+46DGJjkSgLzk2sd/uBvqHRwJ3vAlVUuqs/Ov/hr7yDPP8tzelpE1EucQmX5aIiIiIiIgodwWtTuPwdASj2dXZKQQYkXN2AT3dwtocCEVkRw5Cyo1HLUqhUFK7pTAhn+KzD7LJLsyhe/tmt51Lx/Io1dndDmkZi06buXAKaV6BPmFocoiGv8/fNt9BxP47yIUwDrs22H1X3TqT2NbJ26HEj2/ihapFEIalE78IKIXlxZZLPNyNaLBqCgnBaL5hcafN/65ZlA3LAp9ifZe5w80hVUejyFOc4RblvxohGC2sQ2iLbM9wa3pJ++9c+W1GRERERERERERElBFSMJo3Rf0+htQA5ZU9Lxu6Go3FGhMI78llzcIl5JpUdQd45TFxlLroj8C0me7qUwrq1teg7nwL6vlN8FxwjW1IQjZVD680Dm/yVkPfdUWGW5M+ToOVmm/24Jg90nuzuH7g2uRurN6wCnjuwejfbz4FLF/ofNoUBKOpITXRbdEOZzb/XSx70yuFtS0qtNDJpATazMNL42+YVZ/lp6+qzk3mWYWAYCi/l6VE9mO6aVNsKFqqdXVCP3Kjq0n0f/4aPxTNqWP/HzxXPQRVkuA15Un7Y0x4HYoMDy8GgCuezO/lJpVueKl/KFq3d1cALy9O77zDEY33VsQv9+HlHmz7Pw/OPCg3j5mogK1vNA8/abbrquwO+bXO/23SG8ucl22I3x2RqGDpTWuAZ+6zL7R5LfDM/bbnI3DaxVAPfAT11BqoA47uN0qNjg1GGxXegBJtvg/zqqfzfxuUiMYEfsPVlEUfTo8PXgEWvScXPPrbULfP7fcPZ/9aLv/FAuCtpx23Qz+Y5LkDojzDXwFERERERESUl6Sbaks8ztLx3SjyFMGniozjAg7DOUgWL0AFAEIMRqMESKE4fk95hltiJoUhSe2OMBgtJ5V67cIzo/sIu3Arvzf1y6O4bEV2tMcuqM3m/aSaFMrVdx2Q2tp3Wr/XJlisOwxO2F/bTZspJZ5SKJg7zsYL97J0BEHhIqWTZUsMRksiVCzgIDRW2p7Fo7V2HHjmJFSOiHpprdEUNl/lry3q7Ykkba8YjUaJeKP5OeNwBQ+mVx+T4dYUhpoiuedgc3hrBlvSn/zbLPvHYkREREREREREREQZk+ZgNKUUMHbnntf1oVXGcoUW3tMsXBquTlH3B/3JW/LIvQ6BmvF1dxWOHA815VCoyftD+XOjD5Okdqi5fet9o6I3ahcIKZSor5m7Ax5PmkPRWpuBFYuSr2fB29H/P3nT3YRj6pOeNwBg+NiePxtCjWKxN5YWzjVmrTXWt7ibZv/6tDQlNwSEvkP+ivjTVlQZB9e2rxEncfvZ55qE9mPzXk5LW2LY7QNTUd6G+uoZyVVQUQUPNEaHNxhHe1Q0lIvsw4zeXJbez+gLc+ZhP3uOAfYdr1DkS+9+mMhoq3kbokbGhg7Fo2yOJS0r/7dHb7jYXkwYxvWZBrGF7zoKtNIL3ur5bWeijv4O1IQ9oLze2JEjx8cM8kBjTGi9sS6PAkLh/N8OubW51f003eHF+mP74161x4FQex7U/9+UQ2yn0QucHUvr9u3RIDWiQYTBaERERERERJSXgpY5BKTUk55AFyfhLZSYTgfBJWEGo1ECpGCfTAY/2SkVApmkdkvrgRTcSJlht9/p3kdI+woFhWJVkvo2Cct4d2CV1J4iVZzR5UlcByIdPU8/k9raN/xNCoLrO32nENZlN22meJQHJcJyFC+gTAqKBQC/g2MiKTzNSbiZJBCJP21IeBJnPF06CAvOnm7EYzQid9oiLeKxRo3PSTAakTvN4W34uHWecdxeFdMwtGhEhltUGIZ4q+CBobMTIIYfZoL0uz9d53CIiIiIiIiIiIiIclIkYh6eomA0AFAzTur5WwokGjTBaKnqDrBupTxu9/2AQ48HPC5uz+vzHeW68cPM1xzmlB8BbFjd07cj3zU56F5w8r6910n1p/OgH/wj9PN/g96+LXUNWbciNfW88xysM6cAT97lbrphY+OXcWLPA3v+PKn1abHYl01AV4HcfN8WBCJCd5YG4blGx+6Z+WvvOhyGfutpWHdeAeu2/4F++VHojgTSAOJJJhhtSI1x8PjWz8VJPt/opFG5S96PycuI/vzDNLVmgLYW6Aevg96xL9Sf/xfWNd+HdeYU6Pt+D71pDbTW0B/NgfXzE4GF76RmvtXDgb3sgyPiGlINANgjuNg4OmwBa5uTm0UhaA9qbLLZDKT7uNFJ/V/fl32VKIvahPTNqqGuq1LKZrteAMfVjS62FydP5XpNg5de8oGzgh+8Brz8qDx+173lcaPN4Y1TgguNwy0d/X022LQF3W97u4PR8MGrciGlgMNOiB2+93T7/cf8V2D95RfR4+wBgcN6wdvR4Q9eB33v71y3myjfMRiNiIiIiIiI8pIUBFKiStMyPyk4JV5gCcXn5DNkMBolQgrFkYIOM00OXDRv36T1wKtS10GW3POpIhSpYuO4wI7vUtrOlXj88KjUn6KNt2xJ7cn0uiHtWy1EENJdsLQlrg9921qsSuARTnV3v9eAUE+uhHEkGsBqtw8t9cR/srQ034CD0FKTiI4gqM3htX2FtfAk9DjcHHfxGI3IHbvApJoioad2Hxr53zmLMuut5hdhwXwD2IzqYzPcmsLhUV5U+2qN45pCWQxGk47phJBWIiIiIiIiIiIiooIUEa6TpjAYDd/4Qc+fdaFVxiJNHUBLR+Fc22kWnidmFyjjyvpG8/DDT4byeqFGjIP60fXRG1/j2W0q1JmXpqZdGTBhmPye/q/iXKBpUwZbkz7NcZ7/dtyewNmHRD8L/dD10BfMgL77N9B/mA193qHQ6xuTboMOdkLPPjjpenqskkOkJMprDsJzXc/51/T8vU9wAU7e/qRY9uTbnD0cL9dJwVYAcOvpHuw64JlQ03cFLjkqs4EguisIffmp0P9zCvDQ/wKP3Ah99VnQF82ETvG6rANt5hF+B9cGd4RZDVTZugbDhFy1Y2+20J5AqEGuaBb2ybYBn5YQtpoG+u7fQn9vf1i/OR169kHAi38HVn0Ofe/V0N/cGfqHR0JffAww76XUzNDrg/rl7VBF5j6ZjlVUAQBu2XCJWOTxD/J3uUmVxq324x99XyNipe9zWrnVvu5Dd8789pKoHykYTdhf2fF45GXZSuN6limNW5y9h7MOVjhxSpobQ5Sj9JfLgEdvSr6imadA2QW0j9jJeI7ipg0/EycptBB9J9qD7qepKQf0vBeBJXJQsbroj1Ajx8cOLy6B+sXtcuVrvgAeuzl6nP3DI2Hd/VsAgPXXK6O/2+69Gvru3wKP3+K+4UR5jndNEhERERERUV4K6swGnEj1diYYHEK94oW+AECIwWiUACkURwpjyjQ5cNHc204KRvOpopS1iRJT6vEjFOmKGd69fct0SJ+0bPW0R9h3ZXrdsHv/AasDxULgHACUenunVUqh1FOGDiu2U113CIf0nnMlKDHRAFa7ADO/g2MiKYxE2g7F43S6RANP3Rx3OTm+IKJe24TAJC98GOJ135GLyE5Eh/F2s7lT9PCi0di9zOZphhRXTdEwbAtvjhneHI7TozlN7IJTcyWkloiIiIiIiIiIiCgjMhCMpoZUA9c8Bn35aWjoahTLNW4F9s6Ny+VJCUc0WoVnd1Wn4BS0DrQD2zYax6mvn9v79yk/BA44GvjvG+bwBI8HmLAnsM90qJL8OTc+Ybg87tKRf8T3Vn6M2tqRmWtQmjQH5BCHOT/34JCdAZ9XQW9ZB333b/oXWLsC+qH/hbr0tuQa8YYcHobq4VDf/knMYL15LfCvJOebBqqyFnrETsCmLwEAD6w7B09Uft1Y9vlFwMdfauyzU36H3jTZdFGZOh744HIP5nwOLN2oMXW8wqG7AMW+DL/nN58C3n42dvgXC6D/dRvU7CtTN69Oof+Qk2C0CqF/QqgLE4Za2NJmDoB4eL7GudPzczmSlh/bYLRNa93PaPIBUDNOEkfru38DRITAtY5W4PV/mccteDv+vHfdB9jvCKhqYccS6oLu7ICq2w3Y7ytQI8bFrzOeHctSQ2gVyq02tHtik/V++S+NS49Jflb5zEkIyqufAbP2SM/8G23m/9JPPJi+K1BSlJ/rNuU/rTXQLgSjlVe6rs8uxEjr/A9GWyl0S6ofClxwuEJJEXBgg8KBDdF+30SDkb7/DympRx1/tv34omLo4WOBTWv6Dd8pvBaVkRZs91bFTLNyiwYwuNbNtgSC0arLAH3TT+UCp10MddrF4mg14yTggt9D3/Hr+DN78DrofWcAD1zruH3qgt8Du7D/LRUeBqMRERERERFRXgpa5mC0Ek9pWuYnB4cwdCNZTj7DRANUaHDL9SAkqR2dEfP2LazNHWSLGIyWdaUeP1ojsRe/u0O5Mh3SJy5bO9ohtseb2XXDLgij0+pARAmdwg3Tlnr8xmC0QKR9R31SoGpubA8SDWC1C/8q9cTvTOgXyiQajOY0uCzR/bqb4y4eoxG50xQ29zSsLhoKj+rtlMVOSZQKH7e+h5ZIk3HcjOpj+y1z5F61b6hxeFOWgtGk8zdA7hyLEREREREREREREWVEWLhO6vWmdj477QoAGBdeC58OIWzoV7JyC7D3TqmdbTa0yKeg7QNlnFrfKI8b09DvpRq/GzB+txTMNHc0DLMf/9gHGj/YLzNtSacmoYvEFScozJjY5/rouy8AlhVb8PV/A0kGo+l3n5dHNkyGOuPnscM3r4VOVTDarvukpp5udRN7gtHKdAAjwxux0WcO0XtmQQEEo9l0s6kui4agnbg3kM2gAf3Oc/LIt58FZl+Zupl1SMFoscFUMYbID26bUBnAfJj7Oj27QOPc6U4al3uahS5ONXb7sfWNruejDjrGvC3ZQT9xJ7Bxtet6Hc379rlQJfb9+1O9dqiKanTHDO0eXIoP/VON5Vo7NYaU5vc2KBnREBR7Ty/QmLVHej6jNeauIzjzQIWjJg/e74VyRKDNfOwHyEGeNjweeZnWVn4Ho2mtsVZYn286zYOv7cP1mUhrDbxjCCpOxOj6+GVG1cUEowHAxK5l+MA/LWa4k7DUQtOeQDBardUMrPlCHK8OcpC6u9chjuenb/ix47LY7yu2x/tE+YzBaERERERERJSXgpb5UY8lNiEryRADSxi6kTQnnyGD0SgRmQ6jcssvhFBJgUTSeuBjMFrWSctU9/Yt0yF9UnsCO0IppO2uP037UIkUygVEg8wiSngCpWFa+TvoDqczr1fSephpiQawSuN9yociT/xtQ5kUjOYw4GygDoeBaonu190cdzkNaSOiqKaQuVdDrS/O3Q47FMJTKylz5jabb+woUsU4uGpmhltTeGqE9VZaz9PN7ngmV36bEREREREREREREWVERHg4mC/F/T5G1QEAvLAwPvQlVhRPiCkSDcHI/5vTpTAZIEXBaOtWmId7PMCIAkiWi6O8RKGsGOjoMo//9/Ja/CCzTUqLZiFgb2AokX7mPnPB1iboYACqxH2/G93RBix8B3j5UbGMmnakecSwMcD4icDqpa7nGzOPMy9Nuo5+9jgIeP/VnpdHtr+Gh6u+YyxaCDfgS8tQWXE0FC0nrG+Ux61bCa116h6UFoh9uCUAwB//IY8YPlYcNXPoOjyKXY3jPljlpGG5SVp+pP2Y1hpYvtD9jPaLcy1+2kzg2fvd1xvP3ofFDUVLi4qqnj937VomBqM1bgH2GpepRuWeRgfPV2t0EJ6WqOYOc90jKp3XoVubgMXvA0GbxFyiRGzfJo/rs41xym4/m+e5aGgLAmEhQ26U+4+KqKDoriCw5EPgy6VAW0vyFY6qA8buHL/cznsCC96OGdwQajQGo63KzjNXs6pdONdh5/Cy5fJIXxEw+YD4ley2bzRgs605flmbELaBxHMHRAWAwWhERERERESUl7qDTgYq8aTn4qkU3iK1g5yxdMTRZ8hgNHIroiPo0uZHeORKEFK8MK2BpPXAq3iKL9vk8MzuUC4hpC9Ny2K8ME85NNBB57MUKvGUQkFBI/aKfiDSjohH6BSO2PcordedVgciOoyQNl+5ypUwjkQDWKXxTr9LaRmUguTiiRfk1i2U4H7daf1uyxIRsC282Ti8pmhgwJK5g5ZpW05ksi64Cl8EPjWOO6DycJR5HTwlnGxVFw01Dm8OZ6f3kt3xTKaDeYmIiIiIiIiIiIiySgpG86a234cqq4CuHg40b0Z9qNEcjFYgN7xKYTIAUJ2CU9D69X+bR4zcCSrVgXY5yueRx73aXJe5hqRRk3ApIyaUyC40an0jUD/J1Xz1G/+B/vWp8QuecLZxsFIKOPdq6CvPlLcvA1UNBWpGAI2f9Q7b8yDgsBOdTe+Q+uaF0Pf/vuf1pVtvFIPRVm3N/2vNTUKwT0oCGlNlfaM8rqMV2LQGGJmiwEcxGC3+tWBVXgldWWsMozmt/EOcJwSjrWsGrn3ewmVfVakLeMuQJqGbVrU/9n3ojjbonx7nfiaHnQDsdbBtEXXaT6DffhZoNvcfSUiJH+rsX6euPjeGVPf8efXmq/Bo1WnGYnOWauw1Lr+WmVRyEnqWzgBLt8GAA+kn7oC+6RLAEhKZiNIlgWA0eDxQ2oJWsQfYOs+T0dIeWE2Up/Ti96Ev+wbQtCk1FXo8UOdeBeWx+aG+g/p/l0E/cWfM8PquRmP5h+drPDQ72Qbml3bz7Waiw0a14Li7Z4nj1ewrocqGxK1HlfiBc66Avvln7hpgZ6ddgePPTl19RDkm/laPiIiIiIiIKAcFrU7jcClYJFlSvYkGh1CU9D0OFLIYjEbu2N18nytBSH7XwWjmDmw+NTg6WuayeCF30ncqLQNJt0cKCYsEoLW2aU9mgyk8yoMSm1A5KdjKAy+KVHG/YdJ3ELA6bAM40/UduCVvD+zDQ6XPyOl3Kc030VCxQMTZcVE4wf16vKC4RMsSEdAUMvdirPENDEYjSs7c5ufFcTOqj81gSwpXjU8ORtM68x0pOyPy8Uyu/DYjIiIiIiIiIiIiyogMBaMBAEbXAwAaulYZRzsJwcgHdjfgVybZBUJbFvDSw+aRoxuSqzyPxMsXam0SApDyiBRKVFM24M1bEbmS9Y2u5qmbtzgKRVNX3A9VO1Ief8TJUH951fF81a/+CvXnV6AuvBY45gyoH10PddOLUMUljutwNJ/qYcC4nXte7xX8FBdtu91YtjGNgTuZIm2LanLkUpjuCgJb1tmXueFHqZthp/kDUX6HD+3csQ8bqHzzF3j2R/Lt0L9+QuPNZc5mkSuCIY2A0I2qxvBx6QevBT6dJ9anHl0M9et7gGPOAA45Djj621CX3gr1u8fiBsaphklQd74JpDDITN0+F2razJTV50qf0KIJoUaUCP3VL360MI6JEuUk9KxxK9LW10DafjoJuNXLF0HfeDFD0Sg7yhMIRlPRR0mbWFnoz5NKUtAwkJrAaqJ8pCMR6MtPcxSKpv6+MH6F3/gB1M0vQc0yB07H1DlsDFAV28EBIjoAACAASURBVP+3PrRanOb9xvzeFrnVJgSjDS0HTpjS++/UaQo3fTOC5z6cijIt94VUZ/zc8bzVKT+E+tPTwEmzo8ftLoPWY+q7fS5UzfCk6iDKZWk4e065Sik1BMBhAMYBGAagFcA6AIu01ktTOJ8iAIcCGA9gNIC2HfP5r9a6MVXzISIiIiKiwU0K1JICVpIlh97YB5aQPafBK2HNYDRyxy4QJ1eCkOyCnEyk9YDBaNkn7iN2hEBI32n6wjzN7YkgjJDuQiAitcdh57MUKvX4jetrwGpHRAgD9HvLYjpq2QUNSu+3e/65wO32oFun+F062875he/cacBZzHQOA2MT3a9L79fcFgajEbnRFBaC0Yr6XygfvM/IpVQIRDowv2WOcdyE0t2xU+mEzDaoQEmBhiHdhfZIKyp8lRltj3R84FM+FHmKjeOIiIiIiIiIiIiIClKmg9E+ex/1oUbjaCchGPlACtOoLAW8niSvbC2eL49jMFqP5/6zEKedfXBmGpMGtqFEA7tebN0gV7RBvrnc6M2nnJXbbd+4RdSeB0HPPAV47Z/x6xvdEA0t+85P03/td+JUYM3ynpcz2+fg1tofxBRbvQ2IWDr5dTaLtgrdZXImCGSjg+Vz8fupm19ACEx0E4z2+Uexw9c3Yo8x9pM++r7GjIn5syxts+lqZVx+Xv2HPEFxSXQdH7sz1FfPTKg9akwD1Dm/gfXFAuCtpxOqo6eu2VdC7bp3UnUkpaK638uDAvMwt/xwY9GN2zVGVubPcpNKTo4JO7qATa3AyDR0NZCO5aqcBKO9ZrM+EKVTcQlUSan76ZQHHliw4I0Zpa38DiOyC6yuzo3bNogyb+E7wOa18cuN2wUY0wB4PGLYp7rg965Ct3pMmga890K/QdJ5IiB6LL1//eA4JgqFNUJC9vm/fuCJ+U2h334Jevt6ucIEjr/VgbOgDpwVrf/Fh6Gv+Z7rOgAAXzsHqsr8MF2iQsFgtEFAKXUogCsAHAnhO1dKfQLgDgB36gTju5VSwwFcBeA0ALVCmXcA3Ki1/lci8yAiIiIiIuoWFALJSj0JXGRwQAxccRHQQbHSHaBCg5d9EFJuXGGTtyvm7VtYCInyKZ7iy7ZSr7kXRnfglxSiKYVSJctvE/bVaQXE4EC/8D7Sye8pQzO2xgzvtAKwlPninmkdlgNMO+IEJWY+DM4k0eMMKfzL73X2vqRyQd2JiI7Aq2I7YNi2x2GgWqL7dTdhZwyvJXIuoiNoCTcZx8UGLJk7PWjhaZZEfc3b/jqC2hxyfnjNsRluTeGqLjIHowHREMRMB6NJ++Rc+V1GREREREREREREg48OdsaGthSXAFBAVyfgrwA624HSMqiSFF5Hz3QwGoD60Crj6MatgNY65qFk+aY5YL5GVRPnkrlubQbKK6E8HrnQ6qXiKDVpPyfNKwjxlpBla4IZaUe6NNt0Legb4qC7gsCmNXLhoLs+Cvpft8UvVFkLjHH2YCH11TOh4wWjDakBxmbuQUVq0rR+oTXSDfhhC1jXDOxkvBMxP6yO7foEID0hQibasoDt26Iv/OU9+66e4Us+jF9JWzN0JALldddXqF87WpuASARo324u4K9wVtGOfViM9Y0YWwOMrgLWt5iLLNuYX30XVm+Txw1cfnSwE9hg3q8DACZOtd+vuaAm7Q+dZDAaZpyUkrYkrKKq38s9g4vFYLRlGzO3vuaSpnaNFoe7r5Vb0hSMJsy/uqz3CESHQ0CbYaVf8WnqG0TkxK77JDadUlBCHzurQIPRyoqBYl9+/+YkSpjNOYV+Jk2D8hVBT9xXPm7fPcFzEKPrYgbt2/mJWDzfjqWd6gprBMPAkNLe7VF7l1y+osQwMM73qRL9jrolcZ5J7TZ4zlHR4JWaX7qUk5RSRUqpOwC8BeAY2Afh7Q3gdgBzlFI7JTCvYwEsAvADCKFoOxwC4J9KqYeUUrlx1yEREREREeWloGW+mbrEJgwmGaVe8w27bgI6KJYUADUQg9HILbsgpFy5AV/errTDlFsvrQc+VZTSdpF7pcK+p3sfIYVbSdMl3x55Ge+0OsR9V2kWQsKktgYi7WJ4pin4TfwOIvbBaOk6bnAr0eMM6b05XbbKbL5zu89N0uEw8DSU4H7dTZuchrQREdAS3gYNcxhlrU3AEpEbWmu80fy8cdwQbxX2qTgkwy0qXJXeKngMT5cFosFomZbs8QoRERERERERERFRyr34d+gTx/b/d8ww6GOGRv8+qgr6hDHQR1XDumgm9NrlqZlvJGIenoZgNLXj5lcpiKg9CGxuTflsM066Ab9aOAWtX3gI1rcmQh83Evpr42D95RfQwvei7cJnjjzVZUvzV7zsvGdWD81MQ9KkyaZrQc2Orhy6Kwh96dfsK5KCDw30oveA5QvjFzz5fKiiYmeV7n80ULd7/PqKTXd4p8kxp/d7WRdaLRa95638vgG/cau5/fXD0hsEoi0L1p1XQH9tXL/9mfWDw2H98mTo40dHh119VvzKImHg1ccTa8fT98I6ZVfo40ZBnzgWWLfSXNBhMJqSgtEWvgPPk3fgRzPlz/XVJcDf3jX3f8hFC9eal52yYmD4kAED1wuf6w7q1B+lqFUAjj0zGqaYqP2PgmqYnLr2JKKiut/LH26TAymldbjQrXDRfWDlltR/Rp0hjU6hG2F1GaA7WmH99kzoY0fEHrufOBZINryPKEHq5AsSnFDBo837qHzfCjV1CIHVuXHLBlHG6VVLoK+/MH5BX1HPNkV9SziW22UKsK853DUe03H1iMhmsfzKzHctTKvmDo1v3RFBzcUWqn5sYe+rInhneXR71WaT8V4+4Gez1hr6tv+RJ6gZARz97aTaqsbvBhz0VfcTDh0NzDwlqXkT5YM0PFaEcoFSygfgaUQD0foKAZgHYA2AckQD0cb3GT8DwMtKqUO11sLzCmLmdQSAJwH0PduqAXwEYAWAagD7Auh798wZACqVUl/XWjiSJyIiIiIiEljaQlBnNhjNFMICJBYaQr2k0JuBQtrmcQxEBlKYkE8VociTG0FifiEQyoKFkO5Csep/Rj2izR3ofIqn+LJNCvfqtKLhj9Ly6PemJ4hMWraibZKDwuymSxdpnp1WAJYQ0mMKcPMLwWKdViCvtwfxjjPEZcthyJ3ddx6ItKPcO7CHnT2nx0WJBp66CaTtXv+IKL5tIbmjQ42vfzCaEp8Jn+/dsyjdlnYsxIauNcZxh1QdnTP75ELgUV5U+2qxLRy7bjeHHF3+TamAsE/OlcBqIiIiIiIiIiIiIlsL3ob+0dHAY0ucBxRJhOAklYZgNOy4+bWhSw73+unjGg/NTm9oT7o1C5eFqw2noPW8F6F/f07vgJatwGM3Q/uKoC74fewE64XPbvf9oCqq3Dc2T8VbQuZjMrZva0Vlrbv+BblCWoaA3uVI/99PgI/m2FfkMBhNb1oD/ZP4Nzuri64DTvuJozoBQPl8wF9ehf7TRcDcJ/uPHDEO6psXAt/5qeP6UkHVjIAe09ATklVttaA60oRmb2zY0tXPaJy2v8ak0fm5TZICBBrS/RyyB64FHvrf/sMiYWDRewlVp393NrDnQVBjGpxP88Z/oP/3B84Klzq8Pmgzf/1/P8EvflOLV3Y/Ba8tMZc56z6N4UM0vrpn7i9P5/1NCNUbCqgByZT6uvPFetSv74X6yjdT1i41fCxw2+vQd14BLH4f6NrRZ7+tObZwRXX/4V87B+pHf0pZWxI2pH8w2q4hOei20EJAnDr7Pue3dafjM2qx2wf7AX3ld4F3zQ/gs1VaBviSPG4nGkgpYMIeUCedC5Vo+I3yQAl97KxIfve9c/O7jKjQ6UA79EVH2heqGgpM3AfqjEuh9joYAKBmfQdQCvqJO4HGz4CKSmDqTKiLroXyeBJrzGjzcfX9G8/H2SPvjBm+cks0BGzgcWi+OvVOC6981vt64VrgyBssfP47D55eIG93Bwaj4R9/tp2PumMuVGVtEi3dUc81j0aPv997AWga0Pcz0NZ73sFXBFQPB/Y6GOrCawfVOSoavHjXZOH6I2JD0W4BcKXWuqnvQKXULAC3A5iwY9BuAP6tlDpCa217NK2UGgfg3+gfivY2gHO11p/1KVcC4HwAfwLQfWfDiQCuAfArF++LiIiIiIgIXVqO5i9RpWmZpymEBWDoRrKcfn5hIRCKSJJLwU8Su+CigNWOYk//M+pSkJBPMUQi20qF8Mzgjm2ctDxK0yWrxCPvCwM2QWHZCKcoFQPNOmDB/FRm0+cmh9PlVhCcxK79dpJdtuzC+dyEkHXriDgLPE00GM1NIK3T8FUiAprC5t6LJao05nhFCkbL765ZlAlzm58zDlfwYHr1wEualKxq31BjMJq0vqeTfLySO8diRERERERERERERLY2r43elDj9a8nVIwUnpTEYbWRkI/xWBwKGc7KPf6Dx0OzUzzqTmoTLwtWGS+b66XvNhV98GPr8a2Jv/F3faC6/z3SnzSsIteXA1jiX3//9+Cc4+4LDMtOgFJOWIa8HqCiJ3tSOlx+JX5HDYDS8/CgQjNNn8vCTob59ibP6+lDVw6Cuecz1dGk1bSbw1D09L+tDq/GxIRgNAB54V+O6b+TfDfhdYY21hqwoAGgYlr73o7WGfvqe+AXdevFh4Hu/dt4OadtqUlbhrNyOfZjo6Xvwp0tPxdTfyaFO97xl4at7ep23LQs2tMg9LQaG6mmtgU/nmQsPHQ311TNS2LIoVT8J6tp/przejCkuBYqKgVDvg7m/1vo0nhpyYkzRwRiMprXGp+ucl0/HZ9Rs0xWwqmN9YqFoANQfn4CaekRijSJKJ6XgER4YbZ/kkPvc/C4jKnhvPgW02Ow4v/tLeM672jhKHf3txMMXTYTj6p0DnxuHd3QBm1uBEZWpa0K2rNyi+4WidQuGgYfmafzjA5tgtAH5qvqZ+8Sy6oLfQ42ZII53Q5X4oX78J+DHORAyTJRjEoyHpFymlJoEYOBjIX6mtb54YCgaAGitXwJwKIAVfQbPAHCag9ldBaDvGcl3ABzVNxRtxzyCWutbAJw6YPqfKqXqHMyHiIiIiIioh12Yll0YTDL8QsBISHclHO5BzkNX+BmTW4FI7t98bxdcZGp/iMFoOUsK2OrexknbOrtwvGR4lFcMCg1E2tEZMe9H/UJIWTrZfXbSemyaxrYe4bghl7YHUvs7rQAsLXfikz8jZ8uW3WfQkUCwWLr369L7NWF4LZFzTSFzJ4zaouEF8+Q3yq6m0BYsaJtvHDelYn/UFg3PcIsKX02R+fHzTeGtGW5J5kOCiYiIiIiIiIiIiNJi+aLk65CCk3xpCEYbOR5Q0UfeVFnbzc3R0UCffLamydz+2grDNa65T5or2bIOCBiuj29YZSyuRg2uW6B+c2L864ULVufvQ0+/FJahYRWIXitduzx+kBkAHXbWD0IvXxi3TDoCjrJF1U/q93pycLFYduGa/Nwerdoqh5kMDLdKqe3bosGdKeZkGe1nhYv9Y7zAs26j6oBSm35dyxdil+FAsc3uc8Ea583KlkU2X9/uowdse1tsrvNWp3NBy19KKWBASEV9V6OxbOOW/Nz+JCPQFb9MX6u2pv4zsgtGq974aWKVKgXU7Z7YtETpphSU8PhRK8+T0ZqFw+Wa9HSTJ8pp+osFtuNVw+QMtQTAaPP5i4Yu8/kOAGjMfPfCtLD7PbBwDdBp8xO+sk+3Rh3qAhoNCWvdMvl9Eg1iDEYrTL9E/+/2Fa31jXYTaK03APj+gMF/UEqJ0fhKqV0BnNVnUBeAs7XWnTbzeRLAA30GlQD4rV3biIiIiIiIBgraBF2k68baUpuAESlghuILRJyFrjAYjdySAnGk8KFs8HtttiuG8ABpPfCpNHSQJVekcKnuUCtpv5XOMIhSIeSsLdKCCMwdUrMRFCZ9Bp1Wh02IRmw75e+gA51iUGLuhHFIbdHQ6NJBcbpkg0a8cUL03Ao4DFOTgh7jcRN2FowTKkdEvZrC5mC0Gp/zzrNa6LRFBABvtbwIS3ji6eHVx2W4NYNDtW+ocXhzFoLRkg1yJSIiIiIiIiIiIsoFroNiTKTgJG/q+32o4hJg+FgAwMnb/2Mso3U00CefPDzPwnE3RzDlygi+d5+FF4TMjPoBp8l1JGJfcaCtf/lwCNgs3EXrNNinQBy/l0JFiX2Zm7ZMz0xj0mCl+VJpb6DV2hXOKpKCDwf65C378dXDgQNmOasrH8z8Vr+XZ7Y8LBaV1udcZxccMHBblCpaa+jbf5Weyt9/xXk7Ql3Ow9l23w9q7M6OiqriEuDI0+QC27ehPNKKU6bKwY3LNgHtwdzux/DsQrl9Zx084L2tbxTLqlnfSU2DCpA6qv9y1BBqNJabsxSIWLm9vKTaApe5itL+MhlSkJJHAeVvPJ5YpQccDTV0VOKNIkon5YFH6NOq83wb1CIEHVb744cs69ZmWLf8HNbsg2GduTesq8+CXvReiltIlBy9djms686HddZ+sM7YK/rvzL1hXfld6E/nRctoDf3UX4FHbCJdKqqAQ0/IUKsBDKkByitjBo+MbITfa/4Nu2Jzfm+Pui3bJL+Pxz7Q+HyjedzQcsDr6bPt2vSlnIQNAPsflWALicgNBqMVGKWUAnD8gMF/cjKt1nougPf7DGoAcITNJKcD6Buc9m+t9TIHs/rjgNenKiXcfUdERERERGRgF4xW4knPzwu/Vw4YcRoCQrGcBpyELAajkTvSeimFRWVDsSpB9Nm8sQKGsKOINl988KmilLaL3JNCqIJWAEErIIbFpDOITKpbCr8BshMcKAViBCIdxvUAAPyG9VgOWAugQ9oe5ElQol1AmRSMZlef07KJHN+kO/DUTZs0NIKW+AwPIupDDEYrig1Gi16GMsjzp1ZS+oR1CG83v2wcN7J4LHYrm5LhFg0ONUIwWlMoDb2V4xCDXG3OsxARERERERERERHlnDn/hg4mef1RCk5KQzAagJ4Ar+s2/VoscuXT+XON55ZXLZx5j8YLnwKL1gEPvKvRJXykDQMvc738qH3lnQOuRW/6ErCEB3ENsmC06jKFV37qwYQ4z1S67vn8fHCZHIwWvS6qL7cJZ+pLCj7sQ2/dAGwSAvcAoLQM6uYXo6FQBUINHQVU1va8ntX+Kg5vn2ssqzWwbGP+bJO6rdxibvPISsBfHD8MJBH6ziuAZ+9PS93oaIVe3+is7MbVzvoK7HUI1LX/ctUMdfENwOQD5ALrG3H7mQp1NuFzU39nQedoX4bF6zRuflVu255j+y87+i+/kCv79iWpalbh+e4v+72sD60Si85+IDeXlXTYuF3jkOvc7bdXb0t9eFxzh7m+6pIw1AsPuqtMKWD/I6GuuD/5hhGli1JQQn/yPM9FQ5O0PsfpyqxDXdAXfQX4x5+Bzz8CVi0BXn4U+idfhV74bhpaSuSe3vgl9AWHR4+/VywCVi+N/lu1BHj1cegfz4Je9B70PVdDX3+RbV3qphegyioy03Ds6O9rOIehANR3mCNhTv9rnm+QdvjFPxN7H09c2D9+Sd9/rVhW3fU2VFFxQvMhIncYjFZ4JgPoe7q5C8AcF9O/MOD1KTZlTx7w+j4nM9BafwZgXp9B5QAK6HEWRERERESUbp02IRclQjBKsuzCU5yGe1EspwEniQao0OAlrZfZCH6SeJTHJsypf3iApSOwYO6IwGC07JO+Rw2N5vA2cTpTwFeq+IU22YVhSO8jnezWAWk9Nk1jFwTWInwH6fz83bL77O2OM6TwODffpbRdlOq2k+79uttjLobXEjmzLbTZOLzGF+fuBiIHPm59D9sjzcZxM6qPlcP2KCmmYEMAaA5vzXjn/3z4bUZERERERERERESDzBEnQz3wEdSPrnc33YK3kptvloLRynUHRoU3GIs8Ml/nbGhMXxFL439fdN7O7lCrbvreq+0nCAy4Pr5eDk7ByPGO21EoDmhQ+OIPXly7x8dimRtf1ugK5/6yNJAUatUwDNCtTc4rktbvvp59QBylLrsLnpeboCbs4Xye+eK4/9fv5bWbrhCL/tHFep4rGreah8cENKaI7mgF/nVr0vWoG56R5/GPvzirZIO8rVR/fTe6r316LTy3vQ41bLS79vnLoW6bIxdYtxJDShU+uly+PXrZJuC9Fa5mmzG3zZGX9W9O7f9aRyLAgrfNhcdPhPLwFnGJ8nqBY87oeW0XjPbAuxrrm/NvG5SIB991/z5DEWCti92iE81C98TqkNznFoedEN22DPz37Hp4bnwOqsomLZEo2zweMRgtH36T2RHX53hdmd9+Fli5OHZ4MAD9xB1Jt4soFfQz9wHN5j62AICuTui//TEa8GdDXXYX1G5TbcukhRDubndctK09v7dJX2xKvP27jxow4IW/mQtWD4eaNC3h+RCRO2k6e05ZNG7A62Va66CL6RcOeH28qZBSahSAvfsMCgMQzrAYzQFwYJ/XxwJ4ysX0RINGR0cHPvroIyxbtgxbtmxBZ2cn/H4/Ro4ciYkTJ2LfffdFcXFqEmVXr16Nu+66C3PnzsXSpUvR1NSEUKj3RtX77rsPZ599tnHa+fPn47777sM777yDL7/8Ei0tLbD6PCVp5cqVqK+vBwAcccQRmDu39ykv+f7DnYiIiDIvKNxUW6SK4VXetMzTLhgtkeAQinL62TEYjdySwnDs1uVs8HvKjevBwGFhLXeeYzBa9tktV81hofdbnOmSJdXdZNMevyfOo7nSQAo067QCiAhhgKb3ZhcE1hQ2h8Hl0vbAPoBV3ldK49wEjUjfe2ckgWA0h9Mkul8PRNwFnTG8lsgZaTtpDlYyh1hpodMW0dzm54zDS1QpDqr8SoZbM3hUC8GGId2F9kgrKnyVGWuLdLySjVBeIiIiIiIiE/bPIyIiGnxUZS1QWQtdWQv8+VLnEy75CNj/qMRnnKVgNAAYE1qPDb6Bd3dGbWsHhlakpwmpsmorsM78HBajCQNPk7e12E/QOeBatBT2Uz0cqizHP6w0mv7/2Tvv8DiK849/5+5kFVvWqdiW5CbZFOMCprjSTDPYtFBCaIGYEpKQEAjwA0IzpgdIgACBQOi9mF4N2BhjwJhusI2LzlWSbVmy6p3ubuf3hyzpyrxzu6eruvfzPDz4ZmZn506zu7O773xmlAP4SZ23rblDQjSmPLFt6ilrifntlSUAVn5rviJf5DgIuXwJnTluivl9pRmirCLobfJIL22qWlGdfvcuLmKNyoriOC0Qtep7wN3DmOWBQ4ARY+n81T+Yq4eSSBYOjIn0QdjtkOWVwOYqxb5dHbvqK1DcF6gjQooWr5GYMjL1FutavIbu6yMGhLS3ViPrHDA4Ri3qxfQr6PpnZbsLNumHQcw1WOICjh+foHYlEZ2YT0dNIzAsht6xBiK0z+nRyGd2Hd87JaJMhiBgI+KiDSP9xkCB1FNitAihzPLHxXTmz5qxM8MkEl0/7WSxOkYyiCEje96WaBis3u+u7avxLrHJN+uAw0fHr0nxRjfW1mETwc/HtLL0YvUzNoZh4gOL0XofRSGfLTz6V5YfKoQokFKGvgUIffr1g5TSyqy00FEA340yTAB+vx8vvvgiHnvsMcyfPx8+Hz0BPicnB0ceeSTOO+88HHPMMVHv8+GHH8Zf/vIXeDxWXIqAz+fDn/70Jzz88MNR75thGIZhGMYqHsOtTM+O46Rau7Cjj8hGu8I9rROWMHrM/nZe2R7nljC9DUqGY0UWlAgoGUCokEgnEXIIfsSXbHLs0YnR4tkfqbrrvepoPAGBbFtO3NpDQR0DbUYL/PAr81TfTScWo75zKp0P+ohs2GCDoQh6oCSiXqOdlCZakb7lEv23lRBMUkgpSSllKF7DuhjNkH54pHoMSMHyWoaJTLvhQYu/SZlX5BgQlpZ64cJMKrPR7cKatuXKvAn9DyYFqUzPUYsNO6j3bUuoGK2NuDdLJUktwzAMwzAMwzCZB8fnMQzDMAwDAKKkDHLsFGDZ56bKS68nqncl0t0KfPSiWuwCxE2MFigjOrTlY3yTu7eynKsu9cVoP24yXzYnCyjtdqBANjUAusmsQJgYTVa71OXKhptvSC9k4vgSDHqhFrWOQcr8dXXpJUZrcktSpjSiRACrXOYro8SHgVASKQAYuqv5faUbAZJGACj2byeLfq35iVIVV5160n0F/boOACB9XmDBXMhlXwD9iyCmzoQYtW/E/cnXY3BvePAJHddAKv/bT2Dccn7Hv5d+BLQ1A0eeATHtRIjxB3a3pdql3r40hufKsgrl9VN+txDiN38FAJy4j8DDn6q/zeUvSxw1VmJMeWpFO3y3gc47aZ+QtmrOHeKg42PUol5MfmHXP/vJFhzV/AHeyZ+hLNpxPKdWX4klNTskXvpaYh0d0oqB+R2yU5WjqSHGoXjv/qg+bgs8W8htxLQTY9sIhkkkQkAQC1ik47oWtY0SLy2VWLaZvl8rjBQatHE1ndfG8b9MivD1/J7XUVIOjJnc83qiQEw7AfL5f4Wln9D4Gu4t+rNym3Xb03tMVEXIqyMxpBAQIuB7b3bRhfeZFt1OGIaJCluyG8DEnNCZ4tkWt1eVVzk9Q9M0o08la0zsg2Eyko8//hijR4/G6aefjnnz5mmDrgDA7Xbj9ddfx7HHHosJEybgm2++sbzPd955BxdccIHloCsAuPrqqznoimEYhmGYhEMJj+ItdKEm7bb5+aF7tJj97SjxC8NQtPnVUWupNvmekkGEynx0x4BDZMW0TYx1KLkXQEu5bLAjS/SJV5PIvl7vU7cn25YLm0j84+Jcm/oYcBttYYLATlTfTSc5o+R0qXQ+EEKQ7aEkojq5KCU7U5Yl/gZmJWedeKRbKXZTEc11nRLj6mB5LcNEhrouAHqxEsOYYWEDvRLiQU51oDETG/rbC2AjQgF04t54QF2PU0lSyzAMwzAMwzBMZsHxeQzDMAzDBCIuvx8YOMRc4cdu6hDZWEA2j2HnewAAIABJREFU74C86AjI2y6gC8VJjBYoI7p2261kMVeUE0YTxfYWiRMeMPcuGgAqikMmsn70YuSN2kLej1MSmljKftIQ+4AyPFN7Lpn/z3nm/06pgG6ydGWJRvqkIsJ9BQCgdr06/dd/Ce6zvY0QMRoA/LPmMmVRjw9YvSW9zCBUP6rUvG6X3nbIK0+EvOEs4JUHOq4vFxwA+f6z2n0Z918JzHu+B60FMHYyxFlXAgDE+XPocu8+2fHf1k1A8w7glQcg/3I45LN3dZd56nb1toq/edSUVarTF70FubLj/nzO8frjZ8LNBt7+IXX61Xcb6LYcNgqYUBGcFvSbh3IsfU5mOhD9CoI+/6tWff4BgEteSJ1+Emt+qZWYcLOBvz6v/45FfQEn8Sq/vjV2v889HxlYuEqd5/TvUGcceQbEiDExawPDJBxbx/LJKqRMr3H06i0Sk24xcNHzEv9dSJ8bnHn0NVp624HFdGwZPBz/yyQf45HZPa+kb3+Iax6FcMTp2U8kRk9UJh/Qtpjc5OpX03tMdMOb0bX/yXOC4y3ly/eRZcV510e1D4ZhooPFaL2P0Ej2Movbq8rvrkjbJeQz8XSWJPQtQbEQolBZkmEyiBtuuAGHH344fvnll6B0IQRGjx6N6dOn47TTTsPhhx+O3XbbLWz7pUuXYsqUKZYDoa666irIAK346aefjo8++gi//PILqqqquv47+eSTg7arra3F3Xff3fW5T58+uO666/DFF19gzZo1QdsOGWLyhTHDMAzDMIwJKDGGTkwTCyjJCEs3osfsb+eT1oIKGYYSKFqRBSUC6rwVemzojgGHSNJLEqaLbJEDQayKQwlncu15cQ1qzLGr+5ZXhq6rsLN8nK+hFNR+JSQ8krjeK47jLNEHNtiV5anvnGoyDur8RElEQwWKgViRvpFiNEIwSUGJ7FT4iL+JDt33JbdheS3DRIQSeAKA01EclkZd7yS9ljSTobT6m7Gk8RNl3sjcPTAkpyKxDcowbMKOAkeRMk933McDK7JbhmEYhmEYhmGYeMPxeQzDMAzDhCJGjIF46juIO9+A+MdrEM/8oN9AN3FbxbtPAsuX6ss44rQgXoCYpq9sxcj2NcpirrrUfs/z8KfW2hcqI5J3/SXyRu6QZ9k1LEZTIWw2TCvYgD08y5X5H68A/EZq96dA1m5VpztswJBCANUu85X59WI02dTQIZdSIKadYH4/6YhCknVUywdk8UtfTB8xSFu7RG2jOq+iWBMXtvgd4MuQ38AwIO+9FNLvV24iN60Bnv9XlC0FMOMsiPvnQ9w7D8K580R5wDGWq5GPzIZs3A65eS1dqCx250qhkazJR24AAAzqL3D9sfTv7fYCl79sBN2XJ5OLnqP7+GOzbEExhdLvB5bMUxcetS9EVvwWZu015AdPWR7prcLJja+Qxbc2pUY/iTW3vSuxqSFyOZsAnEQoaUOMQvEa2yT+PlcjUjKI6+Xf7o1NAxgmaQgIIsbOSJ/hDwDg9vck1m+PXK5QFxq06C39xu6WlLl2M5mJ3FYNPEFL5s0iXlgBse8hMWhRlPsXAjjqt+HpAE5qnKvcZksT0OpJz+OvJ6LtSQFOZikl8N7T6oJDRkLk5Ue9H4ZhrMOzJnsfK0I+DxZCDJFSbjS5/RRFWoEizRnyeYvJ+gEAUspmIYQbQE7Ifuqt1BOKEGIggAEWNxvZk30yTKy4+OKLcc899wSl5efn46qrrsIZZ5yBYcOGhW2zevVqPP7447jzzju7VpNsb2/H73//e7S0tODiiy+OuN+VK1fihx+6X+DOnDkTzzzzjKk2v/baa2hv757IetNNN+Hyyy83tS3DMAzDMExP8BDCo2yRo0yPFdSk3WhEHUwHZsVolNSGYSjaDLXQJ9Um35NCIktitDgFyDKmEUIgx5arvB7U+0LXMegg3n3Rav1UX4w30fwOuQqZmhACubY8tBhNFvadHBkcBfVbUNdK3fjDivSNFLJZHN+0EuddFdEIT3Vjhj4iG+3So9jGmtyNYTKR7T51tH8/ewH62LIVOb14pXImpnzROF95bgaAg50zE9yazKTQUaKU9FLj03hgSL8l2S3DMAzDMAzDMEw84fg8hmEYhmEoRF4+MOnIrs9yn2nANwuUZeX9V0AcdLzpuuXn70UuZI/T1K6S8g7pmq/j/WxlexXW9AmfPuNK3GPjqHhvmbVJrRUlAUIZj/oZdRhtIe+Wq13KYjpBT8ZQVoHxG7/H8uw9lNnLNgF7DU1wm6Kkapu6bw0rAhx2AWNzlfnKfBHiICjZHtDrhXsiOxeyqBTYXtOVNty7niy/mhDWpSK682eopDEQ+dnb6ozG7cDaZcCue4XnUXKsTnbfB1j5DZktTr0YYsSY4MRozmneduDrBUADPZVUxLJPl1fQeV/Ng/T5IBwO7D5IX82Kmo6/l+7vkigoOZXDBpSFzuKt+pmuiK9J5ugXPjV6D0/oFOxuPloucerE3hcb867J8dTwYpDCx/oYTZdYuApo01w2C/0K25JzAERev9g0gGGShc0GGyFGSzf/1zs/mmuwUxMaJL98X7+x398xxmYJKJMsln7U8zqOOxeiIHyB4kQjyiuUZ59hmvuyxWuAw0fHr03x4v2fojuhDnYC2VkBY8BN6sUFAADlI6LaB8Mw0cNitF6GlLJGCLESwO4Byb8FEFFJKoToC+BERZZKWRl6F6m2EuhpQ7AYLRZqzD8BuD4G9TBMQnniiSfCgq4OOOAAPPfcc9qVHHfZZRfcdNNNOOuss3DSSSdh2bJlXXmXXnopxo8fj2nTpmn3vXRp8ApUoatOxmPbBQsWmN4HwzAMwzCMCjchRou34ISqn2oPExmz0hWf1K+oyDChUMelFVlQIqDOK21+K2I0fsSXCmQTYrQGb7iMAoh/X7QqHEuWJIyScunIISRuOXZrYrRo9h1PyPMBca10++lrqJW/Jylo9FuTilkpH811PfS8GEhh1gDUtoevDdLGYzSGiUg9cZ0qdFgNxkiz6CwmrhjSwML6d5V5/e1OjM+fnOAWZSbOrGJAMd9LJUuLF7rnJSrZLcMwDMMwDMMwTLzg+DyGYRiGYSxhs9F5JkVJ0ucDVn0HfPVh5MJ2u8mGWUPY7ZCDhgKb1gIAKogJry5CDpUqrLUoSQqS3tTSk3yDcHe/75btHmDbZnW5st4tsDJFeSUOWzkfzxWcqsyu2pb6YjQpJVZvAW59V933RwzY+Y+dx44p/BHiIKpd6nRHFlBcZn4/6Up5RZAYLVuzUO66uo6/kRCpKyba2iSxeA3w/BJ1HxICGFqoqWCzpm+1NSuTZYTrj5h1NeSNs4AWhdFo4BBg+KjwbXL7Qu65P/DDZ9q6w9ry6RtAyw66wMTDLdWnZZ9pdJ7fD2zZAJRX4pBRAg6bhM+gi983X+LaowFnXvL6lt+QqNK8rrXbQtqm6Stiv8Ni1KpezoDBYUlHtHyIGwdcrSyeTnJGs7R4JCk7C+XwPQQpPGqIQSje5gaJf7ynOVABHNqyIDxx4hE93znDJBshIIgYO8NI7XuyQNraJao1w4BABjs1mdWuyBW4W0yJ0WRrM/DTF0BdTcSyTIZROhwYMwkiCsGe3LCqx7sXE6f3uI6YMPEI4NEbw5Knt3yIfxWrFwCqqpNIx4WU10YZGlkRGjKtuf8Sex8c3U4YhokanjXZO3kaQODV6f+EEE9KKTdF2O5GAOEKdHNiNJPLqATRBiDwMR8ru5mM5JdffsGf//znoLSpU6fi3XffRb9+5g6L3XbbDR999BGmTZuG5cuXAwAMw8CZZ56J7777DiUl9JIWtbW1QZ91gV6x3JZhGIZhGKYneAz1LUi2LUeZHisoiU2bYU0cwnTjNi1Gi7CiIsMEIKUkBTrJkj9RUPKq0GNDJxFyiKyYtomJjlxbHhoQvgxovU+9NKhVcZn19ljr67l2tRwr3kTzO1Dfzep3jvffwCqUoIy6VlLCtGyRA5swHzhPj2+sLfFoZTzkjeK6Tv0OdjiQby9ALcLFaG4eozFMRChBUlHWAGU6FeaQPqFZTCJY2foDtnjVE4b2d07n8WuCKHSo3w01EOPTeKATo6XaWIxhGIZhGIZhmN4Lx+cxDMMwDGMZoRGjmUDWb4G84gRg+dLIhYEOg068KKsIEKO5lEXe/rFjIr4tVMaSArT7JDY2WNumsjjge3y/yNxG7oD30Vs2AJJ4+1XKYjRRVoFTGm/EeeUPKfOf+sLAr/aOj+wvFvj8En9+TuK/C+k3nBUlAnJ7LbDDwozqSGI0StI3cAhEnOSIKUVZBbDsi6Ck22uvwhWDbg0r2toObNgODLO6lleCePoLA+c+IeH102UGO4HsLM05dcsGOs9HxNQ8fze9zf5HA1NmQlxwI+Q//xqcZ7dD/OFmsp+J82Z3XLMIIZuSec9ps0X5CPN1RUAUDYI89WLy+8vrTgf++xkG9bfh7zMF5rxFH9v/mtdx7L/wextmjkvONU/XvgfOCG+TXDCXruwItaCSCaGsIixpStuXZPHrXpf4/YESA/un3rgoWlwmQwTGDwXOniqweA0hRrMWThjGv+YZuPQlfYTR0U3v4LCW+WHp4szLe7ZzhkkJBGxSLQaU1P1HCmL2nNI3GyghHr9Lvx/4ZkHkStytQL7ONgvIn5Z0jGWsjN2ZzGLAYOCe9yGG7mp6E1m/BXjytp7td99DgKkze1ZHrBg9Edh1fIfAPwCljHQnFzwlcdoEiX456TUmilb+7wwNZdSJqY8/L6p9MAwTPT17Ws+kKvcBCPTtOgG8K4QI15vvRAjxNwBqpSegV3B3EM1VIn1G6gwTRy677DI0N3c/QHY6nXjllVdMB111MnDgQLz88svo06fbXLxp0ybceGO4xTeQwH0DQFaW+QlJPdmWYRiGYRimJ3ikemJtdpyFR6TAyB+DJZAyEK/RrpU9hZZlGLP4pBd+qPsWJR5KFpSMKlRIpJMDslgiNaCuEZQsipJRxQqroolkSQP7iGzYLD6mpr6b9e+cWjIO6m9ACcooUZhVyZ3Z81AkrIjRohGeUu3JsefScjceozFMRLZ71UvdUkKluE7MYXoNCxveVabbYMOBBUcmuDWZS6FDPVukwZtIMRo9nki1sRjDMAzDMAzDML0Xjs9jGIZhGMYyESRF0q+x4QCQD11rXooGAHW1kctES4AMpMK7jiw2b3n8mtAT1m+nHWUUlQGvueQ//mhqG9kW8L672kUXVMhVMo6ySuTJNkxtXazMfvVbwG+k7nSxl77WS9EAYEQJIP9FTbEjoGRWO5HVxPGXKbI9xbFzauNLZPFLXjQzlTHx1OyQmPW4XooGABUaqZv0+YAt4Yv/deENj5WVNfT5G+WVEDe9CGGzQZzwB4h/fwicenGHNOuMyyEe+ARCI9ASex8E8fBnEOdcR+/DCr+7Ojb1BGC78HY6c+U3wFfzAACzj7PhnYv0cWgtHuD0hw20ehJ/nlpfJ3GjRoz2632D4zGklMC859WFx06GyE2tWNiUpaAYyA1+BiQA/KH+v+Qm17yeutexaKiK4Arae2iHmG/+pTYU9RVw5qljg3oiRvtxo4woRbNLH17eeCqyQuO/jzkHonJ09DtnmFTBZoMgtAopPHwOI9I5pZPKYkBQsYafvGquErf+xCMNA3LOWSxFY/Rs3QR5w1mWNpH/vZ7OnDoT4uVVEH+4GTjitI5xd+B/R8+CuPIhiDvegMjqQ9eTQIQQEP9ZEJZuh4FfNb5ObvfPD9Po5LQT6hx19dECN/2Kjn8OXStAUmK0keMgIggbGYaJPY5kN4CJPVLKBiHEOQBeCUgeB2C5EOJBAO8C2AwgF8B4AOcCOCCg7EYAgcvKqdZXCV0GIJqZk6HbWFhagOQBAPSTUTUjAdBXbYaJIytWrMBbb70VlHbbbbehtLQ0qvpGjx6Nyy67DLfccktX2v/+9z/Mnj0bhYXqgZZhRP/CoCfbxoKff/4ZP/74I+rq6lBfX4+cnBwMGDAAe+yxB/bcc09kZ2dHVa/P58OSJUuwdu1abN26FR6PBwMGDEBFRQX2339/5OTkxPibMAzDMAxjFY/hVqZn2+J7nc61E2I0i+IQpgMrwpVoBCpM5qLrWzn25MifKCgRUuh5RXcM2AU/4ksFrIrF4i2CsCpei7eojUIIgRxbHloNc48GHcKBLJv6JaHV3zRZ35mCEje6/epzGikKs9gXaalYC6SUdGBCWHkr13XrwlNSBGfL04zRzMvaGCZTqfepBUmFWYQYjSCdVq1k4st271b80PyVMm+vfpPgzErRpd17IU7iOK73bbN0je8JuvFBqo3FGIZhGIZhGIbpnXB8Xs/g+DyGYRgmYxERFvfaupGUGUkpgfmvKPNI8p3WyltAlFV2Tb0frhGjvfCVxJFjUm+BHLOT7gPpFKMFyc4i4Q4UoxG/U9EgiOzUijtKCuUVAIDRnhVYnDdVWWTxGuDAXRPYJgu8/HXk95qVJQB++tJaxf4IC8RSYqsMke2JsoowDUiZrxpZsh1eER4H9JUrIc2yzGvfSfhN3KZVlmjOp1s2ADrBpkqy98lrZHHxu6shHN3xg2L8gRDjD4zcyMA6ho8CZl0N+f2nwNfzLW0bVle8+vQeE4Dl6vfQcv5ciEkdC3QdNVbglP0EXlxKH+uN7g4h6PHj49JSkrnf0m0qzAMKQmVUq76nKxu+R4xa1fsRQkCWVQBrlwWlj2hfS27z0lKJh85MzDv1RLB+u7rvDS0E1t0eLgR2Eq/yG1qjjw16ycT195ptt4ZL0QCIPdXjDYZJO4SADeqBRDrF3lVtM9fWSk34ofzoRXM7iyBGw6rvAUpexDCBrPwGsmEbhDNyXKyUElhAP9cRk6ZDDBoGnHEZ0mmkILJzIUvKgW2bg9IrvfQx9PJSieuOiXfLYouLWDN214HAGZMErnlNfQ6bWBny16x2qSsaOS7qtjEMEz08a7KXIqWcK4T4K4B/Aeh8K5MP4PKd/1HcC6AAwNkBaWkjRpNSbgGwxco2veUBBZOe3HPPPUE3rSUlJZg1a1aP6rz44otxxx13wOvteBje0tKChx9+GP/3f/8HAHC5XKisrCS3P+SQQ5Tpjz32GABo20cdT1VVVaioqOj6PG3aNHzyySddn63cuG/YsAH/+Mc/8NJLL6G2ll4dKzc3F4cccgjOPvtsnHTSSbBHWLkLAJYvX46bbroJb731FhobG8l6jzvuOMyZMwe77bab6XYzDMMwDBNb3EabMt2qCMQqlHDFiuCL6caKUM4nIwQOMUwAur5FiYeSBdWe0PMKdQzYYIctUkAukxAsS7kIkVOssNqeeIvadOTazYvRdO20KtdI5ndWQYkbqXEGLQqzdp7LtfdTpvvhg1e2o48wN7Gt1YKELJrrOi2Cy9OM0dRjRoZhOpBSot67VZlX6BigTBdkKEf6BGcx8eXThvchiSC+gwpnJrg1mU2hQx3I5ZXtaDGa0M/eP+5toMYrdjjgEFlx3z/DMAzDMAzDMAzH53XA8XkMwzAMYxFbhDiM6nWkGA31W4DWJmv722eatfJWCBDUjPX8TBZbuzU13/WYnXTfyahSoLDvzjFTtcv8hl5P1z8lJbCi/uaZRkWHjGdS2xI8UniOssiqWokDd03NuVq/0EPcLiYMl0CD+j0qSZRiNJEp/WrM5LAkGyQk8f65rhkJW+jHCmb6DwBU6HwL1S79xgoxmty4mi4/ZqKZJpljzKQei9Fi2p7QegkxGjauCfo4qRJ4cam+utVbJJBglcUqzYzXySMUiZvWKBI7EPH6nXsrZcPDxGiT22gB5o62jvNQSX68G5YYthNhfWUF4WnSMOD0N6BjinkwDT2YLrHaxIzvSW1L1BmjJ0S/Y4ZJKQQEEWOX5PUxLLHWpLx68kjNdbZ2g7lKIonRNqwyVw/DAEDjdsCEGA0NW4HmHXT+mEmxa1Oi6V8YJkabTF1/AazZKlPyvoyioVWS45XKEgG7TWDqyA6Zeygn7hPyHSnpYjn9/o9hmPjBsyZ7MVLKewHMALDSRPFmABcCuBjA4JC8GkX50Cu6eoYMgRCiH8LFaCoBG8P0at57772gz2eddRb69Alf7cQKAwYMwLHHHqvdTzoipcRNN92EXXbZBffdd5826AoA2tra8M477+A3v/kNNmzQ3yj7/X5ccsklGDt2LJ599lky6Kqz3hdeeAFjxozBPffcE9V3YRiGYRim53gMtzI92xbflaMp6YYVwRfTjRWhnE8qVsFjGAJd34q3QNEqVHvc/lAxmvoYyGKZQMpASa3I8nGWclltj1WpWCyx8lvojmHLMjiLv1G8occZarlXm58ShcXub99mQXZmZTzkjeK6Tovg8sjv4LbQfobJRFqNZrRLjzKvMMtEAAjDhOA1vPhsxzxlXlmfodgtd2yCW5TZFDqKybwGL7E0YoyhJKU59ty0CZhiGIZhGIZhGCa94fg883B8HsMwDMMEEGmBumqXMlm2NEKeGy7/0TLjLIgC+nlujwkQo+Ubzcgm4u6qTE5uTzRUuyaPAH43Nfw582XTA9KqiUmsKtrbA7ZzqcsE/JaZjMjOBfoV4NeNr5Bl5tEOvqTi2ibx02Z9mVP2E6g0NgLedn3BUCKJ0aop4d4wa/tJU0TlHsr0S+rUY/42L1BL3zYkjWe+NCdrrNCc1uUDV+k3VojRKLEeAIhhu5tqkxnE0b8D8gujr+CAYyCGj4pZewIRx59PZ37/adDHMycLpfApkMtflli2KbFSUJdG9nnx4eFjD7nsC7qyQ0+ORZMyB8U1fErblxgp6IvCQwtTUxobDZQgpDBk/VX5ygOQxw2B85nrleXrezBdIpLsNs9owWEtCjHjfofG7bzCMAnHZoNNqg1oFy2shM+fHucd3fWskwH5wNlTNHFBK78xtzM3HQMspYS85Vxz9TAMALOL/8pXHqAzR4wBdts7Ru1JPOLsv4elHdP8Dlm+zStQ86/ZkH5/PJsVM3TPtjrv0f52hA2hYYvH7AnsURaS+Mu3ynoEi9EYJik4kt0AJr5IKT8QQowBcDyAmQCmAhgEIB/AFgBVAF4D8IyUsgYAhBChd4oqR36oRtfqEhWh5bdLKest1sEwac3GjRvhcrmC0qZPnx6TuqdPn465c+d2ff7iiy/g9XqRlZWeE+Z9Ph9OPfVUvPJK+Muz0tJSjBs3DiUlJfB4PKitrcX333+P5uZmU3W3tbXhV7/6FT744IOg9KysLIwfPx5DhgxBdnY2ampqsGTJErS2tna16eKLL0Z9fT1mz57d4+/IMAzDMIw1PMTE2uw4C49o6QaL0aIhVPykwystBhoxGY2ub6WaGC3X3leZ7pFuGNIPm7ADAHxSHTznYDFaymC1b8W7L1qXhCVTjGb+t8i1qY8ZAMi1+B2SKYNTQbWHkj2SorAY/g5t/lYUOIpM1dPqNy8h8xnWxWi0CC6P7O+UjIVhmA7qvXQUQJHDmhgtPcKymHjzbfNiNPvVqyUe5JzBIqwE09/hhA02GAgPqqz3bcMQxD9IhxqvxFsSzDAMwzAMwzAMA3B8nhU4Po9hGIZhQrDpxWiyZh1UT7zlLecB2yJYlwIQ580GzrjcUtMsU14R9PGFTWfgV0PDr/kbG4B2n0QfR2o9y3cRr7MqSwQeOlNg10HAq99IlPQDzjnAhpP3DRSjuczvyBuwmBAlICq1Om2q9yKu/h/6XXUyDmhdhEV5B4Tlv7BU4qlzJRz21OlPhiGx1xy1iKKTa48RuGamgLzsArrQaX8DnvtneLpKZrUT2bwDaG5QZ2ZQvxLnzYZ8ZHZQ2iXb/407Si5Tlq/aBpRGkFslkpodElubzJWtLFH3ffnpG+QE+y5UUr5ql7KoOFctL4oWUV4JPDAf8olbgeVfAZvWBhcoKgUcivteZwkwaTrErGti2p6gtlXsAZx/A+TD6u8sv18EsVfH+WhAvsDiK224/g2JJz+noxkOudPAuttsyMtOzLmKEjUcvgdwxOjgNkgpgRfvVW8wYgxE3/4xbl3vRpRVhMW1CABfNxwPZ8FXym2ufV3iNxMkdhmYOteyaGkgQuicud3fTS58HfLuSzrS+6uvWVQ9Zogk4V29ejTsitgGcftr0e+UYVINISCIKLsWnx2z35S46Vepf85Zu5XO22UgMKlSYPaxAuVOYjw073nzO3Nr5hu99hAtM87OBQp4YdiMxPDTz2Vk5ChXWfUz8MStZL7472fpHQN5yEnA9WcEJWXLdvywZh/sOVItLLzqi0o8WnAzxLnXJaKFPYIab2TZgXJnx79P3Efg9Qtt+M8CA7WNwPQxAtcfEzIW/+A5eicszWeYpMBitAxASukHMHfnf1qEEEMBDAlI2iSl3KQoujzk8y4WmzUi5HOKrgeSeHx+iY2siIs7QwqR9Jcsn332WVjafvvtF5O6991336DPbW1t+O677zBhwgQMGTIEVVXdqx/dfffdQSsrPvfcc5g8OXylqpKSjhvBadOmdaWdeuqp+PLLL7s+B9YbyJAhQ5TpZrn00kvDgq5mzpyJ2bNnY8KECWHlDcPAF198geeffx6PP/64tu4LL7wwKOiqoKAAs2fPxrnnnov8/Pygsm1tbXjggQdwzTXXwO3uWC1rzpw5mDRpEmbMmBHlt2MYhmEYJho8xMqVyZLMUMISRo+V342SQjGMCqpvZYucLtFYqpCrOW+5jTbk2fsBAHxSHTxnF/x4L1WwKneIt5TLav3JlITpZGeh6K71VsYBWaJPyh0/VB+ihCLUuc5yXyQEjbp9qMtaEKMR5zQdOhEcKa+1IGFlmExku08dpWSDDQUO9SrQQjnNB2A1GgMAn9SrVw/MFjmY2H9aYhvDwCbsKHAUod4XHvFT76tLSBvI63eKCasZhmEYhmGYzILj8xJHsmP0OD7PPByfxzAMwzAhCL0YTSWokTvqgM/eorepHA3bkxFkOPHAOQDIyeuaUD6iXT2ekBIAWK/HAAAgAElEQVRYv71jInsqUbVN/Q6qohjIcghcNUPgKmKYIDe7zO8ocEJ9tVqMJsoyR2AVkbKOxVcmt36pFKMBwIfLgaPGJrJRehatBprUYacAgOo7bRjUv+P+xfh6vrpQvwIIZ4n6zahfE99Ys57Oy6R+NWy3sKQB/q3oazSjxdYvLK9qm8SUkakjHXhuifl34hXF6nT5zpORN/YHx9RIKcnzEobuarpNZhEVe0Bcb6KdyWD/YwBKjPbaf7vEaAAwvFjg8VkCIwcYuP4N9d+urgV460eJU/aLfz+TUsJFvKI970DF/n/5jq5s9KTYNCqTICSU/WpXYtTuwIoa9WZPfSFxw3Gpcx6KloYW9THgDAgblO880Z3uV4vR6ls6+rJVIUyLR2JLBLHkQL8ihmnsZIg+2Zb2xTCpjNCI0QDgsc8kbjze+jGWaKjr2ROzBH47JcK9NAD5+sPmd6YRo2nHVcfMgu3if5nfD9NrkNtrIY8fRmSaEKO9/wydWTkaIju9Y96EEJDDdwfWrQxK36N9BXJsPriN8LkVr+cfC3x4EJAGYjRXnfpvPLwYsNu6z63H7ClwzJ70vDL55qP0TsrjvxgtwzDhpNbMLyYVOCzk8wKi3LKQz3sKIfKklGZnmu0fob6MZWM9MOLv+lVImJ6z9hYbKpIsfN64cWPQ50GDBqG4mHj6bZGxY8PfIG3cuBETJkyAw+FARUVFV7rT6QwqV1paGpQfSr9+3S8ccnJygvJ020XLBx98gHvvDV7l4rbbbsMVV1xBbmOz2TB16lRMnToVc+bMCWtnJy+99BIee+yxrs/Dhw/HggULyO+Rm5uLSy+9FFOmTMFhhx0Gt9sNKSUuuugirFy5ErYIq4MxDMMwDBM73IZ6yaFsm/q6Hyuoibtuf1tUL/oyHSsCFQkDfumHPcWkVkxqQstzzMuXEkWORgjVZrRGFKM5UkzslMlYlVFZLW+VbIuyiXi3R79v823VtdPKd0imCI7CqtyLFo1Y+27ZIgc22GAoVly0cq22Jjy1LkZrI8Z/ObY85NitSeUYhumg3qteHq3AUUTKZGkxGpPpbHCvRZV7pTJvYsE05BLnaia+OB3FajEacfzHGur5TTLHngzDMAzDMAzD8XmJI9kxehyfZw6Oz2MYhmEYBZGuOdWu8LR1KwC/n95mRHIMUUIIyL4FXRPKK7yEXAdA1bYUFKMRk+4rzYwzq9USOCVeDwBAetqAump1GUKqkpHsnAi8p4eeCvbjJomjxqbOu8UXl9KT4LPswMCdzl7Z0khXkl8I2IlYLZ8mDqLGpU63O4Dicnq73obiGBIAKttdWJYTfo6sSszrLNP8uMlcuYLcDlG4krUmpk8GihoBYHst0E5Y/coqzDWqt6CTENRuUCaPHSygW+jtx03AKbFxqGup2QG4idNEZYniXFn1E1mXGDE6Rq3KIKi+4/dhbHErVtSo31//tKl3LBLYoH5tD2dg2GbA+clpqMVoPgNobQf6WnSVrYuwbtv05nnqjBFjrO2IYdKAEd4qrO0zQplXvQPY3gIUh/tiUwavT2IHcU4ZUmhy7E/db6lo9yiTpZTAWt21MoUMzUxi0c3pM3NZ1/SrZD3XiTmlw8PEaAJALjxwK9RDbSIXxsY1EGkwZ3Jbszp9iFOdTrKdsOYCQEkG3cMzTArBb4iZUM4N+fyIqpCUshrADwFJDgDqZT7UTAv5/K6FbRmmV7B9+/agz4WF1JNv6+Tk5CA7O/gpU+j+0oU5c+YEff7DH/6gDboKxel0KgOvpJRBdTscDrzxxhumgsc6A7o6Wb16NV577TXTbWIYhmEYpud4DPVLfqsSGKvkEFIlP3xRCT4yHWqCNIVXtkcuxDCg5TxW5EuJQicwaguQIfmkelVRh8iKeZuY6KDkmWT5OMtB7MKOPsJ8BEoyRWG5GkFgKDqJhpXvkIoyDkru5ZFuGDI8gL6NEKZZ/W5CCPJv0Oa3IEazUDaacZObkLTl2vLIv70VWRvDZCIqWRIAFGUNsFyXNBU1wvRmPml4h8w72DkzgS1hAinMUs8Ma/BFiDyOEZRkNRXHYgzDMAzDMAzD9D44Ps8cHJ/HMAzDMApEJDFauFxMfviCvsqZZ/WkRT3j8FO6/pkn2zDIV6ss9oJGHJUMmt0SW5vUeUqJTCifvW1+ZzvFaKhdT5fJNAGRBpHbFxACxze9SZa56e3U6k/LNHKbLDu6J3hXu8hyYsZvaTGaXx3bBQCoIYSEAwdDODJoUUziGKKEjXPeSp0+JKXE44vNteesKQIOe/g5Svp8wGYTwsZQyR7VfwCgLLOEjSJXE2NGnL9njgUG9ac3uzlB5ypK9AkAFQqHu3StoDc47BQ6j1GjuYbPqlhL5qWaoDFaGogQusKdr+2lzwds6V5gwOnfYbkuHZF+x1kNTyjTxYwkjp8ZJk6c0vSKNj8Vzzten8S1rxvY90Y/Jt5CLzpTaCIUXLY2AxvXWNi5WoyGuhpaHAsAh5xkfh9ML0P3rEA/7pOGAXxO607E0WdH2aYUgxgX/cq+WJnebstGjaNUf8ylCNQ4pUhxfpLtHhgPXgNj1gQYJ1TCOHUPGDefC7l5LVBDPBsaNAyCF/BhmKTARx7ThRDiAATLzVZKKRdoNnk15PMsk/sZBWBSQFILgA/MbMswvYnQQKjQlSF7Smh9dXWJmeQSS3744Qd89tlnXZ/z8/Nx++23x6Tu+fPnY9my7tUMzjjjDOy5556mt7/wwguDArreeOONmLSLYRiGYZjIeA0v/FAHkWQL9UrUsUInvWHxhnWsCFSA6CQqTGbiJo5HK/KlRKETAgR+D6r/sxgtdbAqd0iEDCJdRGE5dvNSOZ1Qzsp3oCRkyUQ3zlDJROlznfXvRv0elMykp2W9UVzT2wihao4tj/zbe2U7jx8YRkO9Vx1JVehQi5R0pE5IOpMMWv3N+KpxoTJv19wxKM8eluAWMZ0UOhRR9AAaCDFirHH71dfvZEp5GYZhGIZhGIbJHDg+LzIcn8cwDMMwBJEmOW7dCOntXuBRrvgaePUhsri48iGIiUfEqnWWEeffEPS5ot2lLPfoIolv16fOWx+dFKAywussuWEVIC18F+/O98oK6V0Xg/h9RyDijjfQV7biwJZPlflNbuDhT2lxQiKRUmLhKjpfBM6d14mrfnsl4CBitUJlVoH7p/pVaQW9r95IQTGgEFtVel3K4l4/cP/81OhD17wW+XyS1wc4/0CBO04mZAzvP21uZ76QBYSrXepyOXmA0/qiZ+mOuPF5dca2zUHX5k6yswTmX6q/rt/9Yfz72QVPqffRNxso6afIeOYOdUVFpRBFg2LXsAxB9O0P9C9S5h351Mk4cFf1djqhXTpRT0xxcHa+tt+6EfB3L9xa6G8g63rrB+tjxapt9Db/rLkMv26aG5YubngGYuxky/timFTnnMancdOW68j8VBSjnfWoxM1vS3y7Afh+I13OGSEUXEoJee5EazsPHRd11vX4TeQm4s43IfJj+y6ASSOERowW4RmB/OdFdOZ+h0JMODzKRqUWghCj3VpPH1c3l1wJtFmb/5cMKDFaQZ5CXH396R1j7tU/ANs2A5vWAu89DXn6OFICJ2Y/FcvmMgxjARajMQAAIUQegAdDkq+OsNkzAPwBn08UQhCPAYIIXUruRSll6mtCGSbNELoBfJrw0UcfBX0+/fTT0b+/ZqkOC8ybNy/o829+8xtL2+fl5WHixO4b8U8/Vb/QYxiGYRgm9nikelItAORohCKxwKzAiDGHVZmcT2pWVWSYANr86r4V73NENGTZski5WeAx4jMoMVoGrRqa4ljtX4mQQViRf+mEY/HGktBMU9bS903B80GORt6oumZS19FopG95xL6tXKutCE+jkZW5Ned23fFECVkYhgHqCTFSYRY9k0RoV9RjMpXPd3wEr1QHoh1cODPBrWECcRKiw3pvYiK4qWclyZTyMgzDMAzDMAzDxAqOz9PD8XkMwzBMWiMiTLWSEtiyofvj3NCpOAEccCzE0b+LTbuiRGTnAsVlXZ8pCREAPLAg9cVoNgEMLdRvK1+819rOvJ6O/9cQAqviMojs+C7amnZU7AEAOK75LbLIXR+kRn9a+Is+vyjwtUW1S12ovBLC4QDsRKyWXxPbWLtenV46XN+wXoYQAlBMwqdkjUBHH5JWJIdxoK1d4r75dBuePlfAdasN9Xfb8NBvbejjUN8ryqcJ0VUovpC+RIn1yip6xX2pZYbvrk43DGDzWmXWqDKB+0+nf6t/zpMwjPj1M69P4qfN6rzK4vDnC3LNMnVhADjC2r01EwB1zq1djzkz1efwhlagoTU1rmU9gZKEdInRql3B6QYtRvvH+1GI0YjwhANaF+Gi+gfCMw79NcShJ1veD8OkBULgyro7satHbe3ViQSTwbo6iRe/Ntemgkhh2Su+BjausdYAhfQUAPD6I+r03H5AEqXkTAoQpRhNtjQCrz9MVzvr2p60KrUoq1QmF9d8j3y7R5n3UOH5gDsdxGjqv3FhSKiiXP8LsIh4lqG7tx+yS5QtYximp/DMyV6KEMIhpbkZ40KIfgDeBDAmIPkVKeUruu2klKuEEE8AOGdnUh8AjwshDqNEZ0KI4wH8LiCpHcANqrIM09spKgpeaWDHjh0xrb+hIfghVOj+0oHFixcHfZ42bVrM6l60aFHQ56KiIrhcLkt1BAaBuVwuGIYBW6QVwhiGYRiG6TEeg5ZbZNviG3ykk25YlXwx1mVyPoN4scEwIVB9K5niJx05tjw0+8PvCQO/hx/qxzyUVI1JPCkpRouRcCzeWPktdL+zFdlZKso4dO1XndeosUc0fYv6PVotyM5aDWtiNCmlpQBN+tzeN6K8th9iM5GPYXob271blemFhEhJT2oFZTGJw5AGFja8p8wrcBRhr36TEtwiJhBKdFjv22b5WhwNtMg19SS1DMMwDMMwDMP0Pjg+LzIcn8cwDMMwBGauN9UuYPDIjn///CVdLlUmTZZVAHXVAIBd21eTxb5cmzrvfKrq1G0ZWgRkEeKh7o2XW9vZzgn3stqlzlfInDKeknLAkaXtT7/UdkxMduYlV970RZW+X19+ZHf75OYqdaHOPuAgYrX8fnoHhNhKlGWWGA1Ah5ho7U9BSbo+5KoDtjYBA5MY9rGiBmhSzpLsYO9hAsOKTfTx1mZzOwwRgMhqok9mmFivC933/uxtYPgoZdZugwSouIaN9UD1DmBwBOlmtFBSKAAYotrnz0vI8iJVxhXpSOkw4JdvlVmVnrUAdlPmueqA8akXamgaw5DYQUy9KOy8Ple7gtJzpFqKAgB+w3obtjSq0yvaCfHjkJHWd8Iw6cLOOJ1KrwursncNy9ZdM5LB2z9KnUsqiP6RQoF+0tw3U3jDF2GWujFV0cDMFMcy3UQpRgu9Rwlj8Ijo2pOKDBqqTBbedgzKakGTP1uZ39bYhrzSeDas5zQQYx5n6Fju56+sV57bFygotr4dwzAxgcVovZcLhBAnAXgSwNtSyrDZLTuFaCcBuBnA4IAsF4A/mdzP9QBOAND5GGYqgA+FEOdJKVcE7CsbwO8B3BWy/V1SSuIOlmF6N6GBUPX19TGr2+12w+0OfvJeXJx+A67q6uqgz2PGjCFKWmfDhg1BnydPntyj+gzDQENDQ1oGuDEMwzBMuuEx6AgDq1Iaq+jEa24/i9GsYlUm55XhLzYYRoWbECimoggJ6JAYqcRogceIj+j/DhuL0VIFq/0rJwGiPivXxUSI2iis/Ha6dubY+saknmSha7/bH3xeM6RBymJzLfwOXdsQ/dGsxNQnvfBK8wJTCQkDftgtvKIgxSq2XK34kuW1DKPGkH40+LYr87RiNCJwJNmrdDPJY0Xr99jqrVbmHVAwHXbBr6OTSaFD/W7IK9vRYjShnz2+s0jS7d6MYRiGYRiGYZjeBcfnRYbj8xiGYRiGwGaPXGazCwAgDQNYt5IsJg49OUaN6iFlFcCyzwEAJzfOxY0DrlYWW7YZuO51A6dNFNijLLkTyqu2qdMrzQy7ql3WdubdKQAhBFbIRIFVBITdDlk6DIdv+lhb7sdNwIHhzoeEsnqLPv/EfQL6+roV6kLllR3/txPvvnya2MYaol8NGqZvWG9EIbU6tHWBdpOfq5MrRnNpBCWjy4BRJuQA0uMGtteY2p/0exF09qX6T4YKG0VuX8hR+wIrvg7Lk//5e4fc9MgzIQoHBOUdtCuQZQe8hMPw0c8krj0mPte9b9fT8RSnTAjfp6xdT1d20PGxaFJGIg47BXLh68q88qZVyLLvpuwfVduA8Wp/SFrQ5AYMogt2SkJUUtAS31ZscwwIS9/UAPj8Eg67+eOloVXdgCK/Om5JHHKS6boZJu0QHRLuSq9Lmf3yUon/nJHA9kTgh43myvXPAew2/XmBFBDrtvG1I6xWamwEAPseYnkfTC9DK8bTxLg2N9B5ex0IUZziRjArFNDvWA7qW4XVbnW+a4sXo9Ue2bhT3yLxxOcS36wLH887+wJH7CFwwt5APbHGuzN0Sk21y3ojSoezeJFhkghHovdeBIBDdv4nhRBVAFYCqAeQB6AUwD4A+oRsVwVgupQywmPfDqSUG4UQJwJ4P6Cu/QH8LIT4GsBaAAU79xV6J/wWgGstfq9ez5BCYO0tvKJdvFGuqJBgBg8eHPS5pqYGdXV1MQmQ+umncDtx6P7Sgbq64DcIhYWx+8OF1h0LmpqaOPCKYRiGYRIANakWALLjLEazCTtybLnKNrB0wzq6v6UKSgzFMKG0Geon2qkoQgJoeVWgcNFrEGI0wWK0VMGq3CER/dFsm2ywI0uEPiZMHFZ+C913yrUwDkhFGUeWLQsO4YBP+sLyQs9rHsMNSbygjUYUm0fI1KjzaVi5KASxXuk1LcvRiddybX2135nHaAyjptG/AwbUEb9FWeGBjZ2I8FAjJsP5pP4dZboNdhzgnJ7g1jChOAkxGgA0eOsSIEZTX4dT9d6MYRiGYRiGyQw4Pi9xJDtGj+PzIsPxeQzDMAxDYIs8XpQ16yAAyKtPoQtNOxEYtW/s2tUTyiu6/jmmfTlO2/E8nis4VVn0prcl7v5Q4q2/2HDQbsl7N+Tapn4nXlESYcK9tx3YSszgrxwNVP0cnt4pRqMm2StkTgyAsgrkbFyDd9Yfi5nD3lQWOfgOAw332NA/Nzl9yTAk/reIngD/xCyBcmdH22S7B/h6vrKcKNspRnMQsVr+8FgPAJAtjUCjWvySicI9UVYRFu2SIz14b93ROGr428ptDr3LQOO9NvTLSU4fos5FAPDMeTZzk+N1oqtQvCHxMdUuZTGRgf2nEzHtREiFGA0A5P1XAq8+BNz3EcSA7vv0LIfAvEtsmHanodzu+jcknHkG/nJobJ8ZbW2SOO1hug/9drKi/zxxK1leFA2KRbMyk4NPILPsW9ZhWBGwZmt43rWvGThhbxPS3BSlQROqX9j52v7J28LyXth0Bg4b/kFYut8ANtQDlZo1F0OpJ8L3Cg21hEbssqf5yhkm3dg5bqhodymz61qAl7+WOHnf1IjR++9Cc4ulFkQIW5ZSAi/9my6w+z7Aym/C09s94WnVtGBN/Cn8fMZkGppjR7f4b0sjXeMV/+lBe1KQfPo90D9KXsWjdernWP/5xol/HxCvRtFsa5KYdqeBn9Vr9wIAHvpE4i+HCnLc4wwJVZSPzrHekAwVUzNMqsBitMxAABix8z8dbwA4T0qpuIWnkVIuEEKcAOBxdMvPBID9dv6n4jkA50spCc9+5uKwC1RYeDDApC9Tp04NS1u6dCmOPPLIHte9dOnSoM+5ubkYP358j+tNNrG06ba3qyfT9gSpuzFiGIZhGCZmeAy3Ml3AlhCpS44tTyn0oib7MjRtfnOylU5YjMaYhZLupaIICQBy7ZSQqPu8ohIlAYDDpFSIiT85dvMyqizRx7QQqieYFYXl2vOSuoJNjt38sZmrKWvlGE/V80GOLQ/N/vCXq6HnNd24gzqn6Per3qbV5LU6GvlYx3XdXB91++kIrRxbLuzCgT4iG+0yPAiCx2gMo6beS78KKnTwSwrGHHXeWixrWarMG58/GQUOnqicbAochbDBBgPhAf71vjoMQWVc90+NEVJ1LMYwDMMwDMNkBhyflzlwfJ51OD6PYRiGYXYiTEhRql2Q61cCi9QyKAAQl92X1HfxgYTKiO6ovYoUowFAsweY/YaBjy9Lngikaps6fQS9xk8HtevpCc9TZhBitJ1xadUu5WaCJ8CqKe94zzC95SOU+mpQ4yhVFnv6S4k/TUvOsbDgFzrvyhkCv50ScLwvfJ0u3NkH7ES8j4+IbazRCLEyUbhHHEuHt85HeU4rNrvV75Ce+0ri/AOT04eqCOfzAbsAew012SYrYrSAviQNg+5DZfF9z5fSHHIS8ODVdP7mKsi5D0JccGNQ8kG7CYwcoJZfAcC1r0mcu79EXnbs+tojGjHjlBGA3Ra8L1ntois79ZLYNCpDEXY75D7TgG8WhOXJahcqS9R94+dqoN0n0ceRGmM6qzRoQuecuYCsWq7M28f9Hbmda5s1MRrVBqdfIUabfrr5ihkmHdkp4a70usgiV75i4MS9bbDZknve2VRv/llsqHQoDJX0rJOz/w788q06z6d4xryZEKMNGgbRN74LRDJpgO4ZjO79QpNa1onS4RBDd+1Zm1KNPPo4cbZUo9y7GZuzysPy7l9WjnulTPhzrkcWSa0UrZN/f0z/fQvzutss12seEujIxPt3hkkheNm73ssiAC8BqI9QzgfgXQBHSCmPtypF60RK+Q6AsQAejLDPLwCcLKU8XUppbQY8w/Qyhg0bhmHDhgWlffBBuEk/GubNmxf0edKkSejTJ/6SkFhTUhL8lGz7dmKlnB7WnZOTA8MwIKXs0X8VFRUxax/DMAzDMDSU8CjblpOQB2w5hGQmGiFIpmNVVOJlMRpjEkq6l5uik++pdgUeI34Wo6U81PVBRaL6olnhRLLFFFZ+D93vnGXrY/qY0AnWkgn1W4SOM3TjDit9sZM8QqZm9lrdZlh/1EsJH622I3en1I3qx21+HqMxjIp6n3omSZbog772fHI76o5Lhq3rzWQCnza8T/7tD3bOTHBrGBU2YUd/h3qVR+o8EEvcxHU4mvEKwzAMwzAMwzCMVTg+LzIcn8cwDMMwBGYmoFe7gK8+ovPz8oH+KbSASIiMaJC/FnkR3vN+sgpwe5PzDkhKSYrRIoo4qInyAMSw3dQZXg+k3w/Ub1Hnlw5Tp2c4IkDMtKf7R7LcBz8l713i+5p97zc8REi0VHNM75TAwUHEpfiJGIiadep0ux0YMITeX29FIxkcY6wh85LZh9ZtU+9791IL8co6QV4ogQKQbZtp6V4GT8wX5ZXAqH31hb76UJk8bjC9SaMbWOKKvl0qdH23skTRh5Z+TJYXZZn7N48Z1Dmo2oXhxfQx/d2GuLQmIdRrQucKcgF8NU+Zl280o5iIKXDVWTsnU21wGjvCE7mfM72ejnONToy2dhstiU4kn/xi/lgviBQGtER9XQYAMXgE0CdbnekNF6OREtHBIyI0gskIohWjNSuuSQDg7H0rLQmHo+OZlYrGOgzz0vcuW5vi1CgNHy7v+b1gkLxRd9+vgcfiDJNcWIzWS5FSfielPAVAMYBRAE4EcBGAawBcDeBCAEcAKJJSzpRS0qNK8/vcIqX8I4BSAIcCmAXgqp37PQnACCnlFCnlKz3dF8P0Fo466qigz0899RS83p7JHrZu3Yo33nhDu590oaysLOjzzz8rVmeKkkGDBnX92+12Y/16Cy8aGIZhGIZJKh7DrUxP1KTaTvlGKJSwjaGxKpPzsRiNMQl1POakqAiJlPkEHCNU/3eIrLi0ibGOQ2QhS5ib9JQoEZlZ+VeypYFWfg/qOmy1rmTL4CiodoWKwcyIwqxA9YFWQjQZCiWk1OEzFCu5UfXrRHD2jjEg1d+tilgZJlPY7lWvk1PoKIkgnE7PFXCZ2OM12vHZDnWAbFmfYdgld3SCW8RQFDrUAVoNXmJ5+xhhSD88Uv0MJ9njT4ZhGIZhGIZhMgeOz9PD8XkMwzAMQyBMTLX66Ut6QjYATJmRkEU+TRMiAhEAjmrWS2OlBNbF91EySV0z0OxR5ylFMoFUu9TpRaVAP6c6z9sOuDXvvantMp3J3ePgGc3vkcWSKXao2kpPoj50VEhCtYuuaLfxHf+3U2I04j6DEqOVDO6YkJ5pjBxHZs1on0/mrVW/3k4Ia6OVNAagle6FEihCo/oPAJRXmK+zFyKOOlNfYOU3yuQZ4/TXkM9Wx1bCt5rwbQLATMXhIHV/80nTe96gDEdQYrSfl2Kmpm98vjZ9FwtsIELn+mUDWQ6hHc9WEGIUq9d1qg1Of0NYmpgyw1rlDJNu7LxH3Mv9AwoUx0Ana5I49umkzkJY8GCn/vqqvXeeeATgIOLvfYo4Y6oujYCXySC0z2Ho67lsJo7HfgU9a0+qkq9eaBU76jCx7Stys2Tc27tisM8hAV9Xez7SUVrR84YwDBM1LEbr5cgOVkopX5VS/ltKebOU8hYp5QNSyg+llDF3c0op26WU86WUj0spb9u537lSSnrZFYbJUP76178GvfDcunUrHnvssR7Vec899wQFb/Xt2xfnn39+j+pMFvvvv3/Q5wULFsSs7qlTpwZ9jtVqoAzDMAzDxB8PITzKtuUkZP+UgC0aIUimY1VUwmI0xixtxIq2qTr5nmqXm8VoaUe2SUlnoiR96SIJy7UgN40kQjUrSk2UUNUqVLtCr5mUKMwGm2lBX/B+eyYVo867OrwWrus6MVrnOdSMZJJhmG7qiVVdC7OiXeEufYNAmej4uukztPjVrxkPdqbYZK8MpzCrWJlOnQdiBSW2B1JXWs0wDMMwDMMwTO+D4/P0cHwewzAMwxDYTE61euEeMkuc/fcYNSZGDBgC2O1BSdduuwWDfHK0aE4AACAASURBVLXazWbea8BvJP490Mcr6X1Wqh97d0FOci2vABxEnI3XA7Rp3nvnWF+gLBMQI8d2/fusHc+Q5aq2AVIm530iJbXKzwGceSHvszYT097GTobo7DtUH/L7lMmk5Kh0uDq9lyPs9g75hYKza/5LbvftBsDjTXwfamuX+GmzOq8iwrmoE/nErcDHL5vfaaDMe7NLXaZfAQQlM8gUjj8fGDdVW0S+9O+wtNMmCBy4K73Nta9LPLfE6GnrAAD1LRKbaOcNTtxH8U69mhajicEjY9CqDIeS5myvwdEeWmB4yQsSLy6NTb9INPWt6nOns/OVfbWL3LbCq86zIs71eCXaiDBBlRgNoyear5xh0pGd95oO+PFg9Z/JYkfdY6DVk9x4vHoLobfDIo2Lqmm9hCguBbKIuGfVIifE+IiUXzIZhiZmUXdP2rJDnd5bJemU8G1HHa6uu53cbNqdBry+xJ2bDENiQ33P6rDbgMGBf8bn746uIj7HMExSYTEawzBMEhk9ejRmzAg22V9xxRWordW/YKT4+eefcccddwSlzZo1C0VFRVG3MZkcfvjhQZ+fffZZNDXFxud45JFHBn1+5JFHYlIvwzAMwzDxh5pYa1ZG01Nyicm7bkLYxqgxpN/yb8ZiNMYMUkqybyVb/kRBynz8kcVodpGBK4emMGYFX1ZEYD3BbJ9PtjQwx2Y+gDjSd8o1WVeyvzNFrl3d/sDzAQC4/eqIg1xb36hENHnEfltNCs9aCUGs7u9l5bpOCdqyRJ+u86AZySTDMN3Ue9UzAIocA7TbCSJwRLIYLeNY2PCOMj3HlouJBdMS2xhGi9OhFh42xFmMppOTpqqklmEYhmEYhmGY3gfH5+nh+DyGYRiGIRA9nGp13LkQlXvEpi0xQjgcwMChQWnjPD9hSdX+uLvmb+R2VduAd5fFu3XhnPpf9bunnCyglJi/20W1S51eVgH0yVbneT2AR/NuOTc1YwxSgjMuBwAUGI14f91MZZFmD1DXnMhGdUOJ0e49Nfi9p/R5gS0blGXFmZd3f7ATsVp+v1r+RkmOyjJTjAYA4jT1Oaegfi3e+r2H3O4/nyT+nfQ/59H7rCiJHJ8jV30P+chsazv1BcTTsFiPRDiyIO79AOLc68ky8t7LIOu3BqX1yxF4/2L9df7cJyR2EDIpK1w5l67jm2ttyMlS9CHqb376pT1uDwOt0MJx5XE4dHf6b3b2oxJN7vSLjWkghjeFJsRow73q/uiqM/87NGimCjiNEAnNzLN5ET4mA+ju479umotcTWzNI4uSe86hzh8qhkcSoxHXN/Hnf3T8w0GJ0YLHhlJK/f0ew+iuIzoxWhMhRusb6QFEmkJJlnfUodi/HUO96ntjjw945ZvEnZuqdwBef8/qGFoIOOwd/YIUl5shg+/hGSYVYDEawzBMkrnrrruQl9f9oqyhoQEnnngimputvfnZunUrTj75ZLS3t3ellZWV4brrrotZWxPNmDFjcPDBB3d9bmxsxFVXXRWTumfMmIGRI7tXy1iyZAkeffTRmNTNMAzDMEx88Uj1G7JskZOQ/VOCD5ZuWIMS3OnwGixGYyLjkW5SzJG6IqTI5xWfVK8qmiWIVUiZpGBWRGZFBNYTzAonki0NzLJlwWFS8heprenynSmo9oeOMyjRSI49OskIJZTzGG0wZOTVLqlxUL6dfiFMnddUhIrhOglsN/Xb6aQsDJPJbCeESIVZaoESwwSyzr0aLvcqZd6k/oew9CrFKCTEaPVeC8s4R4HuOYlZmS3DMAzDMAzDMEws4Pg8Go7PYxiGYRgCW8+mWomxU2LUkBijmCg+2LcZf65/EPtX0O9v5yZw0isAtPs0IqJiRBZmVLvU6WUVQBYhRvP7gVbN+DCHn2tTiPKKrn+Pbl9BlquK72sJJfUtkhQ6jBgQ0o+2bAAMIj6irLL733ZNrJZfcRxt2aguO2gYXU9vJ6DPhDLGrp6ADwDv/Jh4Oci7y/Tno0jIT16zvlNf9z2nrCV+DxZ/AOiQo+G3V9DCQgBY/HZYUk6WwKXT6WuJ26v/25tl8Rq6jl2oNesocQzL8GKDTmjh96PSRov0PT7g/Z/i0KY4U0esi+rMiyAYAlBJiNGqLKzBphMrFfobgj6L8kqiJMP0IkLuZY5reossmuj7sFAsidGK6Ouq9PuBSGOaPpQYrT34c3MD0Ebct/H4iAGiF6NR9235vVSM1o/4Xq0dC+eM9dCDnkSem5Zt7nkdQfdti96MrpK8fFomxzBMQmAxGsMwTJIZNWoU/v3vfwelLV68GDNmzMDGjcRgOoRVq1bhsMMOw/Lly7vSbDYbnnrqKQwYQD0tTQ9CA8fuv/9+3HXXXaa337FjB9zucOmGw+HAnDlzgtL++Mc/Yu7cuZbb+OGHH2Lt2rWWt2MYhmEYJjrchlqMlqiJ15RIhaUb1ojm9/JJFqMxkXET8hwgdUVIlLCtzeiOSKD6v4PFaCmF2WtRbpKvWaFQcr5EYkYW5xBZyLLp+7x5OV3yv7MKShISet2kRCPRCiBz7er9Skh4iLFXIK2GOoKqv8NJbuOV7WReKNT3DTzmqN9Od11gmEymwUuI0QiBUiTSb01cpicsrH+XzDvIOSOBLWHMUJilnpVR79vWEegcJ9o0YwiW5zEMwzAMwzAMk0g4Pk8Px+cxDMMwjALRw6lWYyfHph2xpnI0mbV/MW24+GlzYt8EbdhO5w01Mw91s0uZLMoqgCxiwj0ANNXTebksRiMJEBCU+mqQQ7wfWLs18W8U12rELSNCX4sS/QYAECgk0gmYfIr4riZ1hxbFpXQ9vZ2BQ0kB5ZAW9eJMALCpgcyKG7p9lvY3U8Ea6zsN7EdE/0HRIOv19lKE3a697sqN6r/B/iP1ks3VW3vULADAZk3/6ZcTvn/Z7gG2EfYHjVCQsUBxGaCRb03N0T97eGJx5AVGU411hJi0tL8AGrYCbYQ5DcDwdrUYbVODXmQbSL0mdM8ZIkZL2TE0w8SSkDHQ/m2fk0VjcS3qCQ2t5sfvEyo0mds2qcfJQPe9hIO4T/OFxBk3am4WM3l8zXQThRhNetzAyq/V1fVW4V6x/n5iamtqnJvmr+z5c4SKku4+ITdF+Z6pdHhkST/DMHGFxWgMwzApwDnnnIMLL7wwKG3RokUYPXo0brvtNmzYoDZir169Gtdccw3GjRuHH3/8MSjv9ttvx2GHHRa3NieKQw89FJdeemlQ2mWXXYbjjjsOX3+tvtkwDAOff/45/vrXv2Lo0KGoqalRljv99NNxzjnndH1ub2/HSSedhDPOOIOsGwD8fj++/fZb3HDDDRg9ejSOOOIIrF+/PopvxzAMwzBMNHiM8KBqAMi25SRk/5RwhBJ2MGp0v1dfW74yncVojBl00r1UkD+poARNgSJIFqOlB+alXIkJmDUrYEsFSZiZtpppp9njPHXPB+rfIfS6SZ3rov1b6oRqlPQsqD2EfCzP1g824jWEles69X0DhW45dvVvx/JahgnHa3jRGBpcuJPCLL0YjX65z2q0TKHZ34ilTZ8q83bPG4ey7KEJbhETCUp46JXtaDWIVVRjAHXfb4MdWUIz8YxhGIZhGIZhGCYOcHweDcfnMQzDMIwCQthjFjF01xg1JLaI0y4h884f9B2Z95ULuO51I66LbQTiIgQeAHDD8fq/jWxtBnYQNqyyCiArm964kRCjCQH0SUxsYloSMFFcAKj0upTFTntYJlyy9/ka9f6yHUBZQUhitUtdSeFAiLx+3Z8dmlgtvy88rWmHumw+vdBcb0c4sjrkaKq87xbikN3V2y2vRsLOQ0CH9IcSCh23F2CzmZgY/+EL1nfsDRCANBFmrXwzlsjMQZz2Nzrz6X9AusPfWx49DthrCL3Zda9LeLzR97cdrZIUQv1xGtF3ateTwo4gQSMTNUIIiDP/j8w/qfoJ7fYLaXdjyuLapu5TFc0rII/TxHeUVaDCqxajSakX2QbSQBwHdulDXxkSl7j3weYqZZi0JvgacNoOeqywuQH4Ym3yYvLe/8l82YH96XGRfPoOesPOewlKYO0NEaM1E2NrgMdHzE50Y3TieProxfC+1sm4qT1uUSoiymhRLAD8bsdTZN53G4BVtYk5Ny1Yod6P08J0ieGBa8q+82R0DWFJMcMkHc0yBQzDMEwiue+++1BYWIibb76562F9U1MTrrrqKvz973/H6NGjMXToUBQWFqKurg7r1q3DypUrw+rJysrCPffcgz/+8Y+J/gpx4/bbb8f69evx0ksvdaW9+eabePPNN1FeXo5x48ahuLgYHo8HNTU1+OGHH9DU1GSq7gcffBD19fV49dVXu9KeffZZPPvssxgwYAD22msvFBcXw2azobGxEZs3b8by5cuVq1wyDMMwDJMY3MSKgpRIJNZQwhFKCMKo0f1e/RwFaGkPH8+xGI0xg066lwryJxWUkKjN3wopJYQQ8ElF4BwAu+DHe6mE2T6WSwicYo3p9qTAsWFKemaiTDp9ZxXkOCNk/EOd66IXo9GyvjZ/KxDBwdhGyNNy7X2RJfrAI8Ofo1i5rpsZ/1HfgeW1DBNOg49eGp0SKHUitIEjTCbw+Y6P4ZXqQKCDnDMT3BrGDE5HMZlX7932/+ydeZwcRd3/P9UzszuzV3ZzX2R3E44gZzgEAyRyyX0piKIi8Mij4K2PeAuiiA94iwieqMAjigry45I73EICAQkhQHZyTpJNsvc5M12/Pza7mZ2pb3XP7szs7M7n/XrllZ2qPqpnqquru7/1LlQGzHLy0dIr3PdHnArOoEgIIYQQQggZExifJ8P4PEIIISQNJzDiVdUn/zeHBcktasY86LIw0J95nZ3f8Rp++oFT8Nk/mwedfvdejYYpwCVH5//5bnSHPMD2yPke+49F5bxZDUCfpY/RIYjRwnyubWXGvAF53K4+dmN/FK+X72tc9D0/dhG91kEoWJjv8zNCfW6cmim10rGoeSMp4jcAQMASq5UmRtNaA51CvSphMRqAAcnTFoNw546f4po/fB+Lv2/+7X7+qMZnji9M/fnWP+W26Ltnews09dv/kTOnzQGOPw/4808y85Ip8TRCu6RKvf6koY46DXrfw4HXXzDm6198GeqLPx+WFgoqPPElB7WfdcXtfv0ujR+cN7L6ZpN8fvkkYZumc2IQitFyhjrjEujrLzdK6Koe+xOw783iuh29QEevRnV4/PQLmoS62PD4L+SVysLAfkeg4ZF/ytvdDiyY7r3/1m5zW1qXbBkegXTQMVCjlBMTMi5Iq+d1bisejZ6I4xoeMi6++Psuum5wECkrbLvT2q3R4zPE99cXWqRob70C3PUrc2Z1HVTVLltxUBCjJdIKId2zKQVU1niUlJQEtnt3w7Vfaw197aXm5asmAfP3z1HBioz0+9z07MQW/HHTxbhwzu+N+Ude66L5R44/WfQIaevWeFHoHp99sMItz/iTszXsCp3UO7YA3f7ea2XAvjghYw5HThJCSBHxne98B0uXLsXll1+ON9/cPY2A1hqvvfYaXnvNrtk+5JBDcPPNN+Owww7Ld1ELSiAQwB133IH99tsP11xzDeLx3Te0mzdvxubNm0e87VAohL/97W+4/vrrceWVVw4LqGpubsbDDz/saxuVlfIAYkIIIYTklj7XHJxU7hRmVkZJwEbpRnZIApUAgqKsJk4xGvFBj3AuOnBQpiyzvo4hksgoiQQSOo6QKhMFQkHlYSsiBcWvpDNskVDlEr+SrELJRe1l8CM98y6n32MuL4JjNiFdA9PFIpJgdKTCt0hAXk+6ZvtZJuJUIKhCghjNLHzMZvupvzf7aIT4p8UmRgvZxWgShZyZm4wdrnbxZOv9xrza4BQcWPXOApeI+KEmWAcFBxqZQf0tiR2YC/sMkCNFFJsWSBJMCCGEEEIIISYYn2eG8XmEEEJIGqORMsxdkLty5INDjwWezXzWr2NNOPEEBUB+5/On5zQuOTqPZduFJJN5Z4OPlWNN5vRAAJi+B7AlKq/bvtOcHmY/xIYKlUFPmwts2wAAaIxHxWVjbcAjq4GTCzC2fL1FsDff9Eo0FjUvnI0YLV3c0NMFJJPmZatKXGw1qwF4eZkxq771NQDvMObd+pzGZ47PX7FSufNFuQ41yPMSDaEfuFXMU1/9FfSrz5ozU+7H0NlqXqa6zrsAJYY6/SJoQYyGh/4M/dkfQwWHn781EYUfvV/hC38x/9Z/ek7j+nP1iOSYTUJYRtAB5kg/X0wwP0yeAVXOd6w55bxPA3/5mTFr6ew2PLF5krjq3S9rfPjI8SFG641rbBaakfq4RcQ3qx6Y3YgK3YPpia3YFpyRsciAyNb7e2gRQvdq3bbhCVNneW6LkAmB4Zryzt4Xravc9yrwvkPzVSBpn/5jAWfWWMRoD94mr5jSz1ahMvOdaDxt8s6ONtNSQOUkyhXJAFmK0bBK6D8CwP7vggqMXJxf1HiI0QDgmO6nxLyWbuDpt4Fj9sphmdJ48i3AFZqicxZlI0bbVSceu3PEZVEUoxEy5vAqTwghRcYJJ5yAVatW4bbbbsPxxx+PYNDusCwvL8cZZ5yBu+++Gy+++OKEC7oaRCmFK6+8Em+88QYuvfRSTJ482bp8VVUVzj77bNx1112YN2+e57avuOIKNDU14Stf+Qrq6707qdXV1Tj11FPxi1/8ArFYDIcffnhWx0MIIYSQkdMnDKwtlOAkEjAHOkkDfokZ6fuKBCoQEkRPkhiKkFQkAU7YKd7ZW+1CooHjkQRCQcV5D4oJv5KHSMGuWf4kWdK1rZD4Kasf6ZkfMVi5CiOgivNFZVj4HtLbNrGt8/mbpxNUIYSUecY1X2K0pHmZikCl2E5lc13vTQr9hpTfOyIIByVhJiGlzM64OQK3wqkqClkmKV5Wda3A9vhWY94xtScV7fW11AmoACYFzdH1rQnLVOWjxHZvRgghhBBCCCFjCePzzDA+jxBCCElBjWKo1YIDcleOfCANfo1F0TgVqLbMTfp6LB8FymSdIJNpmOoj7icWNadP32NAiGORnOmd5ncgCPO5tieTpw/9eWDfq9ZFX48VZsKlVZb6esBcQ12KRc0Lp58ztvuHZFp8V0eLvGx1aYvR1F4Hinkztsl1aFtHPkpjZoclXKYq7KM9ir4u5zXuByVJ9lLrUQfFaL5ZINcpdLUD2zcZsw4ytQe7aO4AdnSOrDhN281t3bzJQMAx71NvEURVFDHkHGXpr1061S4osl1fio11lnAAm8gUU2ZB7TlwTtXH1xsXkUS26bQKwytqk2lyoypZRkfIxCLzGhDWfVhY3S6usapA/edU1srzrg4j6ABH2OZjtPWHUtvikDl+GfG+4Z+l/nU12xCyi2zFaJY6qhYtyUGBihQfYrTZiRimJprF/FWb89s2PbravP1ZkzzanTTqd0mtta098sLH90UIyS8cOUkIIUVIMBjEBRdcgAsuuABdXV1Yvnw53nrrLTQ3N6O/vx/l5eWYMWMG9t57bxxyyCEoLy8f8b6uuuoqXHXVVSNa9/HHHy/oegDQ2NiIX/3qV7jpppuwYsUKrF69Gtu3b0dnZycqKysxffp0LFy4EAceeCBCIbNQQ2LmzJm49tprce2116KpqQkrVqxAc3MzWlpa4DgOqqurMXv2bCxcuBB77bUXAhPV9kwIIYQUOX1urzG9UGI0SRTQ63ZD65HNDFaKSJKSiFOBIMVoZBT0JIW6NUJZUCGwiQF63W7UoFas/9L5QsYGv5KHsCBwyjV+5TbFIMHxJT3zJU/zPpZiOF4JSeyWft20XUdHvu9KxJP9GemS9Gx4eczLRJxKBJ0QYJgAOe5m7ivb7afWG7GPJkjVCCllWhLmyKXJIdPU6MNRPmZ7JROXJ1rvN6YHEMTiSScWuDQkG+qCU40StBZBlJgL8tFfIYQQQgghhJBcwfg8GcbnEUIIIQCcEYrRDj8BqsgHS6pZDTAOLX3xUZSHFD66WOGGR82DT7d1AN19GhXl+X1fFN1h3v/gYFYbetUL5ozB38UmE9q+2ZweGfvJ5ood9d7LoL/3MQDAue1/x5enX4PWgPm7/s69Gp8vwGslSUoEABcfZajDm5uMy2ac05LMCgASafFdnW3m5QCgqrTFaDjhfOBn/2POu+ZiLDrhXLy0KfN+YP1OINaqMas2v+1QS5dGmxBucrrFvzWM5x4Qs9TUWdAeYjSdTMp1iAKhTN5xODCrHoiZ5WL6qo8ANzwCFRx+H7t07wEpaIc5NB1NO4Cp1dkXp0mQRjXawjIoRisc7z4HuPZSY9aZrXdhSuXxohzx+/drXHN28Y8XeGy1xvE/csV8SXgGYKDvs/g0AEBjfxQvRDJl9VGfoQYtwvdYm0yTG1H4SEoF4V7z0sa1+OIrBxvzrvynxh0vJPH+wxW+caqCIwg2c0mrz/mI33eIwtRqQfgZ7weee1BcV51+8e4PohgtLc5YEqOVet+apGA7PzLvEXUsKi9+2kWjLEsRM2kKEKkCemQLcAAuLmm9BddN/ZIxf+XGfBVugMffMN/TH7dQYZLPoSABB5hbB2itgbt/M/LCFPmzPkJKAYrRCCGkyKmsrMSSJUuwZMkEtguPAMdxcNhhh+VtBs7GxkY0NmahDSaEEEJIweh1zdEG5Y5lusocEhFkNi5c9Os+lKvClGO8I0lWwhSjkVHSKwy+9yusGgtsYoBBmYAsRuPjvWLCr3ArUiAxV0AFEVJliGu7gEq6thUSP4IMP+exr2XGoSgxrvuR1AkEdp3zkmhkNG1dJFCB9vSAI8u+/CwTcSoRVOaAhWyu61L/L1WWFwmY63GP20V5LSFptMTNs7jVBr3FaBLaPISGTCC292/Bqq4VxrxF1e/CpCCDVIuZ2qB5tFirIErMBePx3owQQgghhBBSmjA+zwzj8wghhJQ0amRiNPWd/8txQfLAbPn6q994CT8892A0NWvc+6p5megO4B2z81S2lH2YaPAQo+lEAnj4DnPmrIHjVuVh6LJyoL8vc5lmQYxWzufanpz8YWCXGG2S247H152Ig+e/aFy0tRu45RkXFy0eoYDQJ02WVyB7zxgeP6B7uoCWbeaFZzcM/xy0yIF3Ca2GkMQNQMnLG1TddOgZ84CtZjHP79Z9FIuCtxrz5n/NRecNDgJ5lIJI7RAA3PBB77qrm1aJeeorNw/8IYmg3V2zD3ZZxHoUCGWglAJuehL6rHnmBV57Hvq6y6G+9uthyY6j8Nq3Hcz7slkg9bE/uFh5ZfbS7nWCnLFhqqXeClI3zKIYLdeoimrohYcCq5dn5FU8+Fs8/ZefY+GV8vrfu0/j66cVbyza82s1Tv6pLEWbFY8hrA19oUHKKwb6TJNnoD5urpeSyDadVkEyWesOb+MUhY+kVBDiWD+7YLUoRgOAVTHgqn9qtHQBPz4//+2PJIgFgLoKIOkC7z1E4YYPymUZFCcbOf79UAcu3v05KIjREsPj37UkjWXfiAxiixXXhmuXJKad3Qg1yYedfZyilIKe1QCs/Y91ue80f1sUo930hMYvLshPfP6OTo2XN5jz3r0PUB5SiISAHo+hCHPrgGBAwf3dd0ZXIIqKCRlz8vsUkRBCCCGEEEIIyTF9rnlaLr8ymtFi24806JdkIglObGK0uEsxGvFGlvMUb5Biua1dSQ4cT1InjPnS+ULGBr/1LCwInPKBP+FYYa6h9jJ4l9PPsUR8SM+KWcZh+y1S27fBtiGd0bR1kiDPjxitWxCeRgKVCAkCx4TQrpnodWWh6u6/zd/doLyWELKbFkGEVBfyI0YTZnikGG3Cs6z1AfF3XlJ7SoFLQ7JFOr+l9iAXyCLXse97EkIIIYQQQgghhBBCiBVnhGK0ypocFyQPzGoQs/TtP0QoqPC3y+Tjt8mCckF/QmNTqzmvYYrHYNvnHxSzVKrcShJSbd9kTo+M/WRzxY5SClhwwNDn/ftW4dvbvi0u/9OH8/9usUmQEn34CEM9kgbDA5nnTMAyiWUiLb5REqOVR6DKyuXtlApLzhKz5r/1gJjXlwAekr1jOUES64UCwBwf3g3955/ImY37DfzvCLKtQcGeTaxXXdpiPQk1eQaw9yJ5gfv/CN2a+ePOrVPYZ4Z5lVc3AYlk9m2WVIcabWEZQlukKGLID0eeLGbtteFR3PwRud9xw2MaSbd442RuekIjnpTzG+JR+wbCu2Ly9jkEjYIYzSYgTaVNCD2sS6Z1+NiukVJBEAgppX0Jz37zlEZXX/7bn7Zu8z7+e4lC848c7PiJg99d5KCiXIgl3LFFllYDUOd/dnhCSBCjxdMmBpf6R5QrkkFyJUZbcnZuylPM+JDvBuDiq9v/V8x/bm0uC7Sbp9+S845bOPAbT/IRgtgwBdCJOPD3m0ZemKpJUOynEDLmUIxGCCGEEEIIIWRc0ScItcpVuCD7twlHegRJCcmkRxCcRAIVCDlm0VNCU4xGvJEEhcUsQnKUI8oBBmUCcaH+U4xWXPitZ5ECyiD8CcfGPog3VwK3XAnWxgrbb5EqQ8tHWyd9Lz2C9GwQV7ui8DRiEZ5mc13vsWx/99+W747yWkKG0RI3RydODk7zXLd457sl+aTf7cOzbY8Y8+aUN2BBZN8Cl4hkS13QPINlSzx/I9h6k7IQnRBCCCGEEEIIIYQQQooZpSxDrcqF99Yf/EJ+CpNr5syX82JNAICyoMIegvgnuiO/g/DX7zSPVQaABo85fvQbK+TMPfbe/bc0oLV5szk9zOfavpi397CPe/e/KS76yiagL57fuiQJW4z1aHOTeWHHAWbMG54WtMRqJdMsNNuFOlUzWd5GCaHS6kwqlbobc8s7xPwXovmuP+bt108BAo6Pt+br18h5cxcM/C9J9gbFaDu2yNtgHZKZOc+ev/IpY7JNeLfB4qgzobVGk/AatsH82ha6v09uM3xIK0j22NogrF6BfWbI5/rWdmBjlvWikHi1kXv3W2wjABDe1d+trkO9fTKEzAAAIABJREFUIEaLtQG9Pq7l7b3mZard9uEJNcLJQchEQ7rX1Nra7gzS1QestnQRckWrOeQHkyKA4yjv/tCbL8t5SmXel0r32T1p8cvStbKafSOyi2zFaDFBTJsqV5+oWMT5qezTJ9/bvLguP/dl63eatzu3DmicOvAbT/Yx/KVhihqQ37WNYvLYaXNGvi4hJGdQjEYIIYQQQgghZNzgahd9uteY50eWkgvCATnQidIN/0gClXCOBCqkdJEEhcUsQgJkOcCgRFCq/0FlmYWUFBy/16JCyiB8ycQChRO1iWXwUU4/ArdcCdbGCttv0ZPSz+gR+hwRSz/Fi0jA/P1KMtNB+txeaLjmbTqVObmu9wpte+q5ZPtdKa8lZDg7E+aX/HUhj9EkpGRZ3vEUulzzwIOltadA2QKKSFEgnd+tiR3Q0gizUSKLXIu3L0YIIYQQQgghhBBCCCEABmRIEid8wJisjn9/ngqTW1RFtZy5Zf3Qn5KE7FO3azz9Vv6ERFHLWNV6r7HuwoBmAMCRJ+3+u0oQoyWEd9jhsZ9sbjygTjh/2OdTOh8Ul9UaiOZv7hYAshhtvmmuqFjUvPC0uVDpIjRJZgVk1CG9WdjuTEqOAABLz7aK5s6reEHMW7M1HwXajVR/Gv16e2JRMUsNSs1EMdouwV5KmzyMyhqoqkk+C1J6qPdcYF9gq/l7ff9h8jvvnz6S3XVve+eAuMbEoMjBb7kAsM3IF4tPFbP0hjU4ak+g2jJnu63PMpZorT2vse9v/6t9gcG+T9UkNMaj4mLrfFzLpXOhMj2ewEtqSMhEQYqxcl0ctxCYZrldG8TPuTda2gQxWq3fEOWtG+S8d564uz80iNS36WwdHtcUixoXU5SIkl3Y4xiH9+l0vB9o3mhetAT6X8qnGO30zvvEvCvu1HmRnrcIYf9zU2TG9T7uzeqnAPrvvxxdYSprRrc+ISQnUIxGCCGEEEIIIWTc0K+Ft2MAyh3L28ccUq7CUDA/LJUkJSQTSbISoRiNjBJ58H1xi9EkmdOgRDChE8Z86XwhY4NfyUMhRX02oecgxSAO9CP08iV587XM2B+vhO23GGwPkjqBuO43LjOaY5P27SVGs+VHAvJ1Pe7zuq619iWCk8RuAOW1hKTSk+wWz4m6oB8xmvleSCO/M3KTseWJ1vuN6RGnAofXLC1wachIqA2aI4H6dR+63c687FMSotuu2YQQQgghhBBCCCGEEFIUKHmolVp8CnDR13cnOA7U538Ctc+iAhQsN6iv/86c0bINum/g2W7DFHkw8THXufjri/l5NxTdYd7ujBqgotxjopZY1Jy+18FQkZRn09kKhSJ8ru2LY84E6vcZ+lilu3D3hveKi69tzl9RWru1OJC60VC3dSxqXtg0UNwi8kIyLb4rm+2WIKpuOtS3bxPzr0z8Ssy77XmNpJtPSaN52w2S1CoF3dcD7IgZ89RXbt79IRAwb2CwHm0RZI8zKA+ysuQsa7ZuM9tkPna0/Nv+7BGN791nnjTShCTWA4BGKSwjFpVXKgExx1igKmuA+oXmzAduhaNdPPIFuU/4zbv914lC0twBdJtDCwEAVzVfjfd0PWzdhgrvismrrsO8uCw3stX1QaSyVKbHHLKek1JBkDbpVc+jLKjwj8sdTPG4/Vgn3DPlklahLz3J51yI+gefEvPUFQZJkSSvjvcD/b0D29Sa/WsyOtInD922ITNtkJkNeS/OmOPzvKl12zA9YTZT9yWAM29wEU/ktl1qleSMKW2Qn3uz+jX3A3+9QcxXn77euzDh4h13QkgpQTEaIYQQQgghhJBxQ58wqBYAyn3KaEaLUkqUrlC64Z+epCA4cSoRGqVAhZQ2fuQ5xYgkM+pJdsHVSWiYgygoRisu/EqpCiXzBLylZyFVhoCyzGZbIPx8d/4kb94BycXcHgRUECFVZswbFJDZRKyjkdxJ3510zU4vl4kKp3LUwtO47oeLpDEvtd6UqXLKawnxQUtCjkqcHPIWo9ln1CMTkWjPGqzvfcuYd+Sk4wraryEjRxKjAUBLPD9TyUp9BL8yYUIIIYQQQgghhBBCCBkzHMtQq0AQzn99C+r/bYa64RGoe7dAvfeywpUtF+z3Tjlvl4inXn6sDAD41t3uwMD0HBMVHlk3eJQHgCgRUqd9dHhCdV12hSrnc20/KKWgrvzTsLTTOh/A1ITZgLZWEE/lgqylRLGoeeHZjZlpAUuMTSItDkLaLsUNQ6glZ0Fd8k1jXtWW1fjx+fL76YdW5atUQJPQFolSq1QkoRkAHLB4999SXdolRtPSdmZSjGbDM6YhZv5eHUfh8AZ5te/dp9He46/dkiSf4dCA6NOI9HtPngnF61DeUGf+l5z54iM4rEHhgDnm7KfeAhLJ4ptE0HYNfLXq0/jG9u8LEXYp7KpzqmoSwroPs+ObhX15H39Xnzm9UqfE80WqgEl+OnuETACk69Q/fwsAWLxAYdP1Dp7+snxPKt0z5ZI2H1IiCd1qaYiOOw9q+tzMdEmMBgAdrQP/t24HeoR4ZVO/nZQu0nmW/gxD6BcCKI0+9yz/582lLYJgH8BDrwNPrMlFgXYjyRnrKnf/tn7uzeqXGUSMg+x1ELC3j0kOwpTlE1IMjP2IN0IIIYQQQgghxCe9VjFaISUzlUbBhq18E4UX2pfh2bZHRKFCVaAGB1a9E8fVnYmAEma0gyyRCzsRaNcsgPIrUCGlja1uFTOSzKjX7UFCJ4x5AMVoxYYfcVfYicCxtI+5xks45kckVgj8CL38nMd+RKl+BXZjRcSpQDyZOVXiYD+j1yIqG5UYLSCI0SziM2BA4CgRtghP/V7X/YrgHOUg7ESEPhrFaIQM0hI3DzxQUFZxkid5GPhCioMnWu8X85bUnlLAkpDRMCk4GQqOUbjcmtiOuWjI+T6lZySj6a8QQgghhBBCCCGEEEJIQbBJVXZJ09SkKcBBRxeoQDlm+h5y3pb1QP1CzJ9m38QbW4ENO4F5OXZYrBPFaHaFh07EgeaN5syZ9cM/V03KrlCR4oirGBcYhAT79q3Gk8HMCrXW4ksYLZIUJhQA5pi8eJubjMsrk8DMJkZLpsV4xaL+t1vKNOxrTt+yDo1T5PfQD7+ucfL+uZ/YS2uNqFCHfInRYlFzulLD2yOpLg3Gz26PmfNnWNpwMsDJHwEe+JM5LxYVV5s/VeGFqLnOdfcDzzcBJ77De/dSG9QwRRa3aUnMMavenE5yw5z5YpZe/hjUEe/BntOBVzeZl3k9Bhxg8PuMJc83metwJAQs3PaUv42Ed73Trx24fjfEo9gcmp2xmE3CNkhXZhgkAKAiNZ5vVgMnaiSlQ5k85klrDaUUyoIK71oAXLRY4ZZnMs/p9YKAM1ckkho7hLDgSREf5+orT8t5Uj+42kOMNnUWsEPoGwGZ93yktFHKHM+aniaJaeumQ5XCc4DZDb4XbYxHrflPvKlxwjtydy1v7Ta3c5NShonMn6oA2NvDhs435Mw5C4Cgj7FYpVAXCBkHWKYxIYQQQgghhBBCios+t1fMK6T0SNqXTQwyEVjWcj9+H/sRVnevxNb+TcZ/b/e8jn80/wF/3nqTdVuSoCQSqBRFTxSjET9IAp1ikT9JSEKtHrfLWveDivMeFBN+rkWFlnJ5lalYpIF+vhc/53HICXkKA4tdjCaVb7CfYROF+ZHzSUiSEtv+bPkhVWb9Pfxe121Ss/T6K353FKMRMoQkOK4J1iHgo18hhS5QizYx6Uy0Y3mHOTB2YcVBmFEmTI1Mio6ACmBS0DTSB2hJ5GcqWVlaXdx9MUIIIYQQQgghhBBCCEHAMtmZM/6HYanyMDBlljlz63oAwMn7eQ9oXbczl6UaILrd/Nap3ktGtG3jbplQOumD76vNz8slVLi4Y46KCVVZk5E2XxhA/eOHtPh7j5YmqR5NAQLO8LqttZZFSQZxg3IcuR1IEaPpzjago8W8nEEgV9JIgoz+Prx72jZxtX8L8p/RsrUd6BFCWhqn+hjsH4ua06fOhior3/3ZEa41g/Woo9WcX+thriRQx5whZ66X5QinH2Tf7idudXHXSxrtPfa6J8mirGK9WNScTtFLflm0VM6LRQEApx0gn/ePrC6+aJnH3zCXadE8QEkCvnQG+z6HHw9AlqH4uY53C2K0ytTJWrMQsxAy7olUyXmtwy8gDcJ14+6VQDyRv/ZnYwuQFG6t9pjsYwOxqJiljjrNnGETo3Xu6hNJfSMAqPVjryUlgyjbHH7e6FjUvFiJ9L9URbXvZU/qegiOTor5b8Ry2ya1CmH/dSlhh8cv9N5OfXy9mKeOOs2fGC3MWEdCioHx/0SeEEIIIYQQQkjJ0Ov2iHnlBRWjmR9s2co33om7cdyz/Xbfyz/d9hC29gtTZEEWlISdCEKqzFwGitGID3qTct0qZiQhUa/bg4ROGPMAeAqgSGEpV2EoURkzgPRb5wsv8UQkUBwBvBEfQi+/57HXd1zo3yBbJLnZYD/DJvkazbFJ4rkeoV0dpFsQww5uT2qn4q6/67pt/+nHK7alHsdASCmxM26OwK0L+g0O4gytpcQzbQ+LIssltacUuDRktEjneasgTBwNrnbFZyTFfm9GCCGEEEIIIYQQQgghUJahVra88cTMecZkfet1A9mTFK460/5e6A/P5n4wflSYy6NhiseKWyyij7RBzapqUnaF4iDYrFCf/P6wz43xJnHZfb/l4s7lua9HX7rTvM1GUz1q3wl0d5g3JAm7pMHTyZT3arGoUDpQAJOO9D0DqF5+H+YKLsOn3gKeW5v7+iNJrQAPsdUu9J+uM2ekCxYCwsRlQ2I0s1hP2cQhZIDFpwIGUSMAoH0n9PbNxqxzD1E4/UB5s03bgff+0sVh17hY2yzXPUkW1SCI9bTWwCN/MW+sRMQcY4WqqJZlsY//Hdp1ccERcn/oC3/RuPU5wR40BiRdjcfXmPPePa8L6JcnqB/Grr6PmjITANDQb+5n3bkCcF17O9zVZ06vSI2BZD0nJYS64kY5c/mjwz7WWyRkZ9zgorM3P3I06Z4M8HFfBkDb7s32P9KcXhYGQuYxREN9Ikk6HKmC8iM3IiWEcO3WaeeMJAydVTrXJXXJN30tNyuxBdds+5aYf+cK4Jm3c9cmSWK02pTHM5Mq1LDP6Vw2/QU52vnIk4Bj3wcEhXYnFcryCSkKJsgTeUIIIYQQQgghpUCfa34hF1JlCCjLTJ05RpK32EQl451VXSvQ5QoBQALL258S83qF7yriVCCozAEf0oB8QlKRzsNikT9JSPKqHrfbWvel84WMDUopT1Gnl6gs13iJsopFTOHne/Er/fLaVqF/g2yRRYndw/5PZ6A/NPI2Qe7fmMVnXvmD2ws65oADv9d16XiBTDGurS0lhAzQIgiQ/IvRJIpvFlwyOlydxLLW+415dcGpOKDq8AKXiIyW2qA5OrFFECaOBun5DVD8fTFCCCGEEEIIIYQQQgiBYxlqZcsbT8wwi9EQWwfdM/AO+Fun24/1d0/pAZlLjuiLa2xuM+c1TPGYvEca0DxpKlRF1fC0qiylQpHijjkqOo5937CP8/tlMVpfAvj4n1z0xnNXj7a2y9sySoliUXljksBMElolUia/3CwcdzAETJ0j77MUqZkMVFQbs/T1l+Pqs+Tz/1O3515I1CRIrSrLgalVxqwhdHcn0CxMKJwugJPqkZsc+L9TaBCrBVMcGUIFQ1A3Pynm659fYUwvDyn8/TIHVeX27b+1Dfjm3RYxmiCUEcV6K+VYa1VCYo6xQl16lZy5/FGEQwpH7ykvctltGh15khNly8oNskjk3bUb/G+ofHdMnvr4d9EQlyVHj66WN5N0NfqEeaEr9O6CKosgk5AJx4IDxCx99UeHfa633AP9axXw+2fy0/ZIfaHJlUBNxMekqrGoOf20i6GUeX2llNzHGewTiX0jSmNJGkI9yxCjSRK/UhJ2Lj3H96Jf2vljHD1TOA8BXH6bm7NnRC1Cf6YuLezws8fLbdJHYY59RXkE6tq/QZVHgKCPcRd8JkRIUTBBnsgTQgghhBBCCCkFpIG15U64oOWQBvHaxB3jnRc6lmW9zvIO88v6uNuPhDa/6Yw4lQiq0QlUSOmS1En0a/P0YsUif5KQREg9yS4PMRpnOCo2vOqaX7lXrii28kj4OUfDgrgr221Firw98JJ79SRluehoqHDML+7iuh9xV26HRCHlru2FRnldl7YfdiJw0mZjl+RuE7mPRki2SGK0ySF/YjQlzKGmKUabcPynazl2JpqNecfUnlRQOTnJDXUhQYyWsEz1OkJsYlXpek0IIYQQQgghhBBCCCFFg7KJ0SbI83GbaGX5o0N/VnuE5a3ekqPyAFi/M3Oc8iAN5kfcQ2hpQLPpOLOVCpXzuXZWTJ0zIP/aRWNcFqMBAwOel63J3e7vfUV+bzl/miExFjUvXFYOTJ5pzpOEVsmUmMjmjeZlZuwBFZgg7UiOUEplSsNSaKg2xwMCwIr1wIaduX1X3STMKdQ4BaLMY4iU9jOD9GOURJuD9aijxZxP+Yc/ZjbIeW++LGYFAwqfOs5b+nLXSxqum1n3XFeLYjRJ8qmX3S3vqJTEHGOFpf0Z/G32nC7Xia4+4OHXc12okbFivbk9LAsCi9Vr/jeUKpWd1YCGeFRc9B8vy21wd7+8i8rUeD6K0UgJoZQC6heaM7WGTiaHPnrdA931Un7i9TYIXRCv8gwRixqTlSQdHqRqkjm9s3Xgf6lvJK1HSpdRitFKStg5U5DmC5wwPSbmvbJRFgRnS1uPOX1SmpzxwLlyH61x+wpzxrmfhBp8ZhH0HoulwhSjEVIMUIxGCCGEEEIIIWTc0Oean26VF1hwIgqMJqh0o9ftwaudL2S9Xqx/Azb3ZT4stslJwoEIQk6ZMS/uWt6QEgJ73YoIwp9iQRI+9bo9HmI0H7OUkILiJacKBwp7zfKSiUkSrkITUEGUKft0m34Fh5GA/XwPe+SPNZK4bbCNk9q60f6WYUs72WuRm/QkzXmDorXRCk+zOV4vqRwhBGiJm0VXdUF/YjQIYjQy8VjWYp4xL6iCOGrSiQUuDckF0nnemgcxWq/w/AYonv4nIYQQQgghhBBCCCGEiNjENzZp2jhCHXS0nLl5t8jq8nfb3w29tS1XJbIPoK33GoQfi5rTZxgG+VZnOXA+UtwxBsWGCgSAxO54gIN6X0VNss26ztrtuZM6vGV+HQoAWLKXoT5vFsRtM+uhJHFVQBg8nSpG6xbiLCb5fS9bYsxuFLMOKVtnbZbftvzmI6FJaIsa/fx0m94Ws9TBae2uRbCn+3qBfvNE0qiiGM0Pqtxi9tweg1751MA/gxBj6d7ecRE9cWBLe2Z6rA3oN88bLdehzWvlHb3jcM+ykFGy8FA5b9PAb7N0b/sm1jYXx2SCawWx48Fzgcg2Sz1LJVQG7HPI7s+zGnBYryAWgf3Yu2SvJSpT4xFLSUBDCABMEeS7ALB909Cf8ybb74Ny3QcapEXoxs6s8V5Xay3fm3md61Ifp2NAjKY7hXuKbMXXZOIj3jzsvmbp/j5g+2bzYjaR/ARDVVRntXyta+gAp/B2jp4RdQp9iJq0IRbH7gOEDbfn+80GJsdeMW5jmPjOhxgNEcY6ElIMTIwn8oQQQgghhBBCSgJRjKY8pqbMMdIg3t7kxJRurOx4HnFtlpKdNPl9OG/6x6AEQcKL7U9lpNnkJBGnUhQ9JbQQLUDILqzSvQILFLNFFi52Weu+JBwiY4eX6KHQkj4vUVvEQ5xWSGzfXUiV+a7vXue7JB4rFiRBWc+ufoZ0HfWS4Hlhqwu2a3ePIE0bLM9oxWjSvk11W6rvtusDIaWEq120CAKkupBpenT/FEeIJ8kV2/o3Y1X3S8a8RVVHoTrIYPvxSG3QHC3ZEt8+EJiYQ+zS6uLpfxJCCCGEEEIIIYQQQkjWSKKk8cbh8iQo+om7hv7++BKFMsucfWf9wsXydbl5xhzdYd7OjBogUuYhqTGIbQCYB99nO3A+zOfa2aI+dtXQ3xW6B1fs+KF1+X++nLv3FFFBCgMAR87PTNOxqHlhm7hBElqlCOF0r2CUYH0yklpn0qluieJbp8ttwEd+6+b0XVdUEPU1TPWWZen7b5UzDzl2+OegJEZLAh0t8nYo//DPh75kTu/phP7U8QP/ztsb7ieWQO/YMpR9wr7AUQu8N3/VPZl1ZeVGeXlRjBaLiuso/t55R1VUy23zrv7FuYcq7Ddb3saX7tSIJ8Y+cubXy8xlmD9NQd/3B38bef9nhktSZtWj2u1ERIgBePA1eVPdlvnQK3TK9ihGIyWG+u+r5cw3dsdrOY7CN0+T+x/rdwK98dy3Pa1CyE9dpY8JVVu3Az1CP9jrXK82x6PpzgExmtg/qspSfE1KAKGupt4zbF0//HMqM0tHjAYAOPO/fC9am2y15r/nJy7e3Dq6dime0IgnzXkVZWnlqVD4/AnDf29HAd84sQ9q5xYYSW2LnIB3gcKU5RNSDEyQJ/KEEEIIIYQQQkqBXkGMVmjhkbQ/mzRkPPNix5PG9JpALc6YegGOrTsdCyLvMC6zvOOpjKATuxitYtQCFVK69FjkhIWWUWWLKFx0e6x1n2K04sPrmlT4a5Y9oNIrv5DYxFzZfG/j6ZhNRALmYx0UjEiikdFKRios7WR3UghUgCxGG9yeJDyN+7yuS+JZ0+8o/ba26wMhpURnsl3sV9QF/c1MLoc3jX2AJ8kdT7Y+IOYtrTulgCUhuaQ2ZD7P+3WfeD0fKdLzGwcOQqrMmEcIIYQQQgghhBBCCCFFg02woybGMCwVDALHv9+c+crT0PEBk0XDVIXVV9uP+bSfuejPgQxEElo1mOf9GE4sakxWsxsyE7MdOB8p7pijouT0i4d9/MqOH+C2TReKiz/wGnImlFnbbN7OF9+joJThbWcsat6QTdwQFOK1kimTX/YKcQoUoxlR8/eTM2NRXHmG3A5tagX+79+5e1/dJLRFotRqF7qzDVj7H3PmKRdCpYs1pUH4yQTQYREOCNIQkok65+P+FnzteehrdgshAo7Cvz7v4OqzFE7cV17tN09qrNwwvO6d/nPXuGxNGKgznP5aayBmlnuqb97iWXSSG9TXfmvO2LIO2nVRWa7w5BX2/tD1/xrbuJmt7Ro7hNf+9dW9wKa18sqHvBtYchbUV38N9fHvDs+rnQaEK/D7zZeKqz+8ynzsXX3yLisHYyBrJkNV1sgLEjIBUfsdIebprw+/R7vkaAf/+z45Yu/rd+VDjGbe5iQ/YdySsBrwlk1VCX2cwX5RZ1t265HSxXTfBwx/1jOaujrBUOd/1veyTp93jOHZN45OXN1lEatWGsIOv3u2wi0XK7x3EXDhuxQe/JyD8575H3kjqff6kvQ8FYrRCCkKJsYTeUIIIYQQQgghJUGf7jWmlzvhgpYjEjA/2JIG/o5nOhJteL3rJWPeIdVHw1EDwRmHVR9tXKY5HsOGvuEvUyXBCTDwW0qip7i2POEkBLIsCADCgmioWJCERn1uD+KuXPcDgnCIjB1e0q1CS/q8hGKjlWnlEtt3l8335nVMxXTMJmyiREAWjI72uMqdCJSgPLK1r5J0bPA4JPmJX+FpNscryfUmYh+NkJHQkpCnR68ThEmk9Oh3+/BM2yPGvD3K56MxvE+BS0RyRV1QHjm2My63DyNB6juEnQrzoCNCCCGEEEIIIYQQQggZL6SLbcYxqn6hnPnvh4b+bJiqcNFi+dnutg7g4ddHX551O8zpjVPtz5V1vB9o3mTONA1oznbgPAfBZk/ddKCsfFjS+e134ivbrxNXeeyN3Ox63U5z+j4zhBU2NxmTlU2MFhCEVomUOIheYcA465PMgUcZk/UuadS5h8ir3v58bqQgrquxQahDXm0RnntQzFKNBruWNAg/mQA6bWK0Ons5yG6mzvYnOwCAFx+Bbtk29DFSpvCN0xw8+PkADpgjr3ZbSt2zSUIbpsL8nrRtB9DTaV7J1g6R3GISqQJAvB/YEQMA1FYofO8cuR24LUft0Ei5Z6Wl/u18WcxTn7oOzk8fhHPNX6BOvTCjniqlgFkNaIjLApnbBTmlVWwyOHkb6zkpVfY6WMzSPcP7kZctldse27k/UlqEcOE6P93YWNScXhYGpsy0rysJrAf7RVL/iNJYko4vMdp68zKTZ0CVF/e4o5wzw78IrqpfuFlK4fUY8JLw9frBKlYtz0xTSuHCdzm487IAbrnYwfH7KvneTClgxrzdn/3cK0SKe9wJIaXCxHkiTwghhBBCCCFkwiNJLQotRpMkMz2u9+wH442XOp6BC/MMZofXLBn6e1H1u6CExwzLO54a9lkSnISdCBwVsAhUEsZ0QgaR6lZIlYnCvWJBEi5qaHS5HcY8BwE4E2Qm4omEl4jMKz/XeMmyvERuhcRW1my+N69jKnS/IVuk72GwnyEJRkf7WzrKGVEfR8qr2NWuSe2vXzGaKFYxSNCk72Ai9tEIGQktgvgoqIKoDgiBRWlIQiONsQ3wJLnjhfZlYru5pPYUSq3GMZOCk8X79laLOHEkyOLUEgscI4QQQgghhBBCCCGETDwcQYg0Htn7IDlv/XBL1aJ5wnK7WL1l9O+KojvM26iX5/0YYNuG4QOcU5nZkJlW6e+92BDlxR1jUIwoxwECmbECi3plMcvrOahDWmtsF/xCc+sy33Fp1wW2CiO2Z8+XdxQU4tCSKfGNvcIEbuHiidMpOkwiQwDYMiDjWVQvv6dcvSU3RWjrARLmcFnM9fKRbZGlQUb5iW0QfrtgigyGgFITNYwCFQgACw7wt7DWwIY3jVmHzJPr3hspbdcOof0BgFrpZ4tF5ZUojCoctu86tvvcXmSpC29uBZLu2MXORIVmAwAW9ayQM/de5L3xWQ1Y2CcbTLe0mY+72yJGC+vegT+mzfbePyETkVkWEVEsOuxjVVhue6S+72hoFbqx4rUslVjUnD5SP1xEAAAgAElEQVSr3jvmTJK/drQO/z+dbMXXZOLjR4zWLgi+pszKfXmKHJXFM4/FyVfg+AgfHc0zIqtY1SBGS0drLf++WkOlStz9iNEqqr2XIYTkHY6cJCTHmDrnWnrJQggh4wTXzXy7wwFwhBBCxoI+t9eYXuiBtZJ0QxK3jWde7HjSmD41NAMN4b2GPlcHa7FPhTmAYHn7U8Pui6RB9oPfa1CZHy5quEjqpK9yk9JElOeMg8H3tjJ2JNqM6aEil72VKuGAhxjNIHPKJ16yLC9xWiGxnQfZfG+2YypXYTiquAPVvfoZkgQykoO6FXHMksbupCwWk/IGtzV6MZq5f2X6naXffiL20QgZCTsTzcb02uCULGSrUtDIyMpEigutNZa13m/MiziVw+TYZPwRUAFMCpqDCFsTlijpESDdm0lCaEIIIYQQQrKFMXqEkIkG4/MIIWQc4UygYVhHnCRm6Ru/OqyP/cHDFWotr6T/568a37/fHVW/XBJ6NHiJ0WJROc8gHFDBYHYDWykhGhmnXpiRdFqn+T0UADzz1uh32dkHJAWpVZ2p/m7fDMSFUdc2SY40eDqREgfRZ35XQjGaBUkQ8tjfAAAfOVLuH6/dDhx8dRJrm0f3bEASgQBCHUpBd7TImYe8OzPNJtpsFSY1qq7jfUKWqHM+7n/h6Gpj8qVL5O/8nleAj/7ORVu3ttafTx+X2X/Qz94P/d9HmVcoCwNTZlqLS3JIdZ3YN9D3/XHo7xP2lTeRcIGNlmYg37QKlx0AOLTtWTnzoKO9Nz6zHlVajh+U6n5Xnzm9wu2CMxhoVOVlnSRkYqLO/5yYpx/5S0baewWHYWs38OrG3L4bkdoT2/3gIHrlU+YMH7JPVSUIrNe8NPB/p1mMpqopRiPpSH233eeKlkR7pVqf3nOBr8Wm9mzEOT6cqh/+rcbPHhnZMyKp/wAAlWU+NtDaDPQKDdnJHxn+2Y8YrXqyj50SQvLNBHoiT0hx4BhedMXj/gb5EUJIsZJIJDLSTO0dIYQQkm/6BKlFeYGlR5J0o8/tgauFyJpxyM54M97qWWXMO6x6SUaAxaHV5pejOxPNiPauGfrsJTiRBCqAf4kKKU16ksLge0H0U0zYytiZbDem284VMnYUm4jM6xpZaFGbDdt3l833livB2lghHWtPshtaa4sEMgdiNEFWIu3Tlje4LUl4mtCZzxpMSCI40/FK30GPRexGSCnREjcHT9cFpxW4JKRYaep9Axv61hrz3jXpeJQ5PqbcI0VNbdA8eqwlIQyuGCHy9ZuDxwghhBBCSG5gjB4hZKLB+DxCCBlH+J5spvhRwRCw+FR5gT//eOjPqdUKT11hP/av/UPje/eNbFB+b1xjszAuuWGqhwQots6cXjcdSpJQVWUx2Lks7H9ZMoT66Ncy0sK6D8d3PmJc/q/LNeKJUUqtLFKYOlM4RCwqrzC7Qc4LCjFbyZQ+XY8Qp0AxmoiaKYjRAOiNb2FuncLvL5Lbg1c2Akde66Kzd+T1yFaHPGUggqwDBx0NZerb2wbhi2K0EhU1jAJ1+sVQX/gZUL+P57L6+suN6YsXKHzoCLnu/ek5jTNucNFiqT+nps07rV95Bvqr75NXmFVPCV4BUUrJ0p57fw/91isAgICj8PrVcn/oi38ZuzEEUvt19sGA2hI1Z575X+b2KQ2167v5wdYrjPktwiWvq8/cHlekxhNUCyIkQiY46sDFcuYfvw+9/o1hST96v3yuHnS1i57+3MnRpOtZXYX9uqT7+4BnBRGyDzEaqgVRYmcbdHcnIImssrm3I6WB1IdKlXR1tZmXKdH+tvrEd/0t2NGKP17i4ONLvfupn7tD48bHcyxG8xO+ujkqZqnLrhme4EuMVpp1gpBiY+I8kSekSFBKoaxsuHK0s7NzjEpDCCG5Ib0dKysr40N2QgghY0Kf22tML7QYTZJuaGixjOOR5R3CjC0ADqs5JiPt4Ooj4cA8i13qtiQ5SXhIjCZP4xDXwgyNhECW7o2Hwfe2MnYkzS9eJNkQGVu85FS5kFdlQ8gJWSV6hRa12YhYpGXZfG+27RTT8UpIx5pEAgkdl0VkuRCjCdvodmWxmJQ3KHyU6p/fa3qvKL3MLKsor9W9cHXS1/4ImchI4qO60FTf25Dn0svtzJNkbHiiRQhOA7Ck9uQCloTkizpJjBbfkdP9yPdmxd8XI4QQQggh4wPG6BFCJhqMzyOEkHHEBBNXqgOPEvP0P24a9vkdsxWuOcd+fbrxcQ2ts39vtH6nnNdgfrQ9hN4iiNEskqWsBrZSjDYyaqcaJWBLuuWYxPv+M7pd2qREtabQrFjUvHDVJChJzADIg6dTxWh95ncloqyPWM9Zfc/vAADnLLK3Qds7gb+tGPm7a1sdmuQVgijJOvbY25xuGYSv24R3d7Z6SUTUOR+Hc+srUI93Qz3eDRxzpris3rbRmH75u+1176m3gGVrzHWvLAiE08Kn9D9/AyQtsUx+BDIkt1i+c33Pb4f+3memQp3QlP/9pRyXKQtau831r2GqEgUhat/D/W18diMAYJoQd9RqvuShWwgPrEyJf7RebwmZ6Njuxe79w7DPc+qAoOVW9J8rcxO7l3Q1OoThUJ6S2GfuE7OULzGa5R5t2V2yhLaKgkWShh8xWqcgRqss0fo0ZZYsAE+lsxWRMoVffshB8mYHnzrO+xlRtnQJ/YegA5QFfbwziUXN6eEKoG768DRfYjT2VQgpBibWE3lCioTq6uphn9vb20f0cocQQooBrTXa29uHpaW3c4QQQkihkAbWljuFDT6yCVckWcl45IX2Zcb0OeUNmF0+LyO9MlCNfSsPNq6zouMZuHpgJizpdxyUmYQc+YFqQmfOlE3IID2SnMdyzhYLIVWGAMwP1jsFMVqAYrSiJOIh4hsLMZdtn8Ukp7CVJRvBoX07xXO8EuGAfKy9bjd6hL5GLo5N2kaPICeLu/1I6Lgxb/d13Sw8Tbjm9TL2LR2voW03pQ0i9T8IKSVa4oIYLehfjCap0ShGG/90JFrxUufTxrx3VCzC9LLZBS4RyQeSCFESJ46UfIpcCSGEEEIIGYQxeoSQiQLj8wghZJzhmCeNHLfU7yPnxdZBd7QMS9p3pn0QaqwN2CKML7YRtTymnjfZY+VY1JxuG3xflYUYrbz4J2QsRpRSRiHUvv2rxXVWrB/dPV2LPOebWWITi5oX9hI3SAPGEymxjT1CYShGk5knCMQA4O1XAQA1EYXZHqfvzctGXo9ahfDfmjAQcDwG4UuyDknyEbBcT1qFRjEbqSPJQAUCUIEAMM9y7XvrFWOyl6QTAB5/w1z3aiPIFF+v8TBo2cpI8oOtT7Tm5WEfp1bJi3b2js3zSUlOVhvsB9qENsWvgG/XcrWuuZ2T2k5JbFKpU66RFBqRUkaSpwIZ14mAo7D3DHnxFetzU6ROQYoGeEtite3aZuvnDTIjc3zS0LZff0HuX1NaRNLxJUajaC8V5TjA9LneC6YI5ZRSWDjTvvjrMaCnP7u+UVefOb2y3OcGYlFz+sz6zD657Z4MGLj3j1T63DEhJJ9QjEZIHkgPSIjH49i0aRMDrwgh4w6tNTZt2oR4fPhg5ZqamjEqESGEkFKnzzU/ac9GlpILbOKRiSLdiPVtwMa+JmPe4dVLxPUOrT7amN6a2IG1Pa8DkOVVgzKToEX25FeiQkoT6fwbDyIkpZQocOtItBvTg8rHrCyk4HjVt7Goj7Z9FpOcwlaWiOP/pVKuBGtjhe1Ye9xu9CbtgtHRUBEw77tXuHZL0rLUbUltlV/ZaTZiFdt3MFH6aISMBkl8NDk0rcAlIcXI020PiW3zkrpTClwaki9qg+aI/daEMOv8CJGu3+OhL0YIIYQQQsYPjNEjhEwEGJ9HCCHjEGeCDcM6/ER7/ubosI8n7y8IplL43v3Z98mjO8zrzKwBImUeMqLYOnP6rHp5Hb9yIaVkCRbxRJ14fkbaKZ0Pist/5/9p7OwahdRKCAuoLAeCSELf8VO4Xz4H7iePg/vJ46B/9x3zCl6imIAQ35hMedfWJ8RTUIwmomwD8Z//19D9/gffaW8Tnls78jK0dAtiKz8/W4dZrqAkEaNUjwBZYpSN1JGIqBM/IObpG78CnUxmpM/04ciQpDTp102dSABNq6zbspWR5Ad1guU7T+sPnXGQ3A5Fc/vq3TctwmWnLrFTXsmvGG3mQJ+qNmlu5/oSZumJJDapSI3jo9CIlDCmvvIQLz4K7brDki44Qm57rn9Q44o7XWxqGd37EUloCACV5jmSdxOLynle950AsPBQOe9Ns7gUAMWxxIDHMwQA6DSPzxH77qXATMszlEHS5PnnHqIQ8nCLZds36uozt2N+xWh6nSBjN/R7lFJ2OVp1XaZMjRAyJlieoBBCRko4HEYoFBoWqNDR0YG3334bNTU1qKqqQjAYhDPRXooRQiYErusikUigs7MT7e3tGUFXoVAI5eV+9cqEEEJIbukThBblTrig5bBJNyTp13jjxY4nxbxDa8zyMwA4qOqdCKqgcUD98o6nsWfFfqJEZfB7DSr5rUlcW962kJJHOv+KSfxkI+xE0JnMfMliSgMoRitWyj1kD5IAL5/YBBQRQYQ1FuRKaJYrwdpYYTvWHrfbUzA6GqTvp1sUo8n9nrBjF54mkYCrXTjK/oxU6jeYvidbHRooK+VPpHRJ6gTahGDHOkGUZEKJQSMcdD6eSeoknmw1D0KZHJyG/SstgWdkXFEXnGpMb43vgNY6Z4E8ksh1PEirCSGEEELI+IExeoSQ8Qrj8wghZJwzwQZEqvIw8MsnoC9baszXv7kK6vq7hz6HQwr3fsbBe290scUczoJfPKYxtcrFlWf474tLA2UbzI+1h7PFLEZTtkG9fgc7l4U5CHY0nPdpYMObwD2/G0qK6F4s7n4Gz1QsNq5y9P+6eO6rDmoi2X/votQqAuhvfgB46h5/G/ISxQiyPJ2I736b2itY2sLFH7cylqhPXQd9wxXGPH3zN6A+cQ2+fYbCD/9lfz/9i8dcfPLY7J8HtEpiIT+vuDrNwiBR1mEbgN8qiNEo/sgJasH+coTDujegr7kE6lt/GL6Oj2vB9k5zerpYT3/ePjGZ+tKNUDY5DMkLas8DoE/8APDQnzMzd26B7u2G2iW3/O7ZCj96yFyLvnefxu2XFr7vILVfk16615zhOIBNSJmCqq6FrqpFXb/Qzu3afyQt/L9bCPmvSI05rPJhHSRkgqIOPRb6oGOAleZxO/q6y6G+ctPQ5/95j8I37pL7QD/4l8YdL2g8+1UHs2tH1g5JQkPAh5QoFjWnH3osVJn3s07lONDHvx945C+ZmW+tlFdkO0LSkfptqRMriX33Eq5PM+Z5L9PXA93fN3ROT69RuPuTDs69yRWv+//7gMYtF/tvkyRBo6ecERgQHD94mzlTus8PBAGDGBkA778IKSIoRiMkDyilMHv2bKxfv37YDJTxeBw7duzAjh1jpH4nhJBRMti+8QUvIYSQsaLP7TWmZyNLyQUhVQYHAbjIfPjVK8jbxhNaa7zYvsyYtyCyL6aEpovrRgKVeEflIXil898ZeSs6nsa50/9L/I4GB0iHLLKnhI6LeYR41a1iRxISdSTbjOmSbIiMLRGPa9JY1EdpnwoKZap4BtZYxWhZSL/s2ylsn2Ek2Po17YlWuHCNebmQQErtUE/SHDnVk5TFaBWBKgB2iWNCx6110NWuKMY1ldX2HUiCFkJKhdbETmghtHdyaPTSQGrRxjf/6XwRLQlzcP2S2lPgKI9p/ci4oTZkHkHWp3vR43YNXb9HiyhEHwNJMCGEEEIImbgwRo8QMhFhfB4hhBQLljcfE1C8q/Y/EnrOfGDT2szM5x6Adl2olOM+cr7CxuscBD9hfncNDAzK/8KJGtVhf9e0dZIYbYp9fd3XC2zfbM60ya38DnYuK+yErRMNFQxBXfFLuK88Dax7Yyj9g+1/EcVoq7cAt/9b4xNLs+8PiVKrYA/wpE8pGgDlJUaThFbJlMlke4V4ijDflVg5SJ60F7f9APqCL6KiZjI+cLjCn1+Q2+rv3qvx38dohILZ1aNWIbQkXWxlpMMc4ycOpncs72DbJDFanY+CEF+c/GHggVvNeQ/9GfqjX4WqX5iTXaXWH/32f4CXzfHZAKD+usYu9iR5RV3yTWiTGA0AYuuAxn0BDIhi66eY+y9/fkHjto/lblIyv4hitJfvM2dM3wNKEH0amdWA2qat8v57gFlpzZ0oNtEphWW7Rkoc9bkfQV98uDnz3t9DX/w1qF2yorKgwq8vVLj0j3IfaEML8JunNL51+sjaIElsBAAVXlKiWNSYrI471/f+1ZEnQZvEaD1yrDLbEZKBLzGa0HevLGEx2kwfYjQA6GoDynaPKTx5f4XWnzoou8z8jOiPz2r8/iL/fSNJ0OgpZwSAFx8Ws8T7/EAQgLBTti+EFA0cPUlInqioqMC8efMyAq8IIWS8opTCvHnzUFHBl3GEEELGDkl6VK4KG4CklELEqUCX25GRZxOEAEBbYifW966FNkhNwk4EDeG9UeZ4P7FrTezEht61mFE2B9NCM0f8AtXVSWzsa0JrYudQWkt8O5rjW4zLH1Z9jOc2D6s+xihG60i24dGWe7Azvs243qDMxC5QSYh5qWit0RyPYUv/Rl/LD1ITqMUe4QUI+Bj43+/2Idq7JisZngMH88J7oiboPXNE3O1HtPdN9Lj2OpXOnPIGq7xupPS6PYj2rEG/tkwFNMZs7ze/dB8vg+8lGVJXMrOtAeznChk7vMRnYyEik86BsBOBo4onaNt2rnoJ51Kxyc9yIQ/LN44KoFyF0aczhbCrulaI6+VCuif9Bi2JZuO1fWNvk3F5BWeofxZScjREQsdRBvmc6HN7RZGTqc0MOWUIqqCxv/B698vGvpsfAiqI+vCeqArUjGh9QoqBlrgQOA2gLmgWJeWSpE5iQ+/baE/Ks8eamF1Wj6llM3JeHq01Yv3rsT1u7j9OD83GjLI5JTMA9YlWcyBsUIWweNIJBS4NySd1wSli3gvty1AniNOypS3lGUMq40VaTQghhBBCxg+M0SOETCQYn0cIIeOEInrHnlNm1pvFaACwJQrMnj8syXEUzjoIuHuleZWuPmDFOmDpPv52H91u7s/Xy4+1B9i6Xs6bJYtlVHWdv4l/yot/8rVxwT6HDhOjze8X6toulq0BPrE0+91saTen18XN7y1E5sy35weEmK14SlxdnxBTyDplZ3ajPf/1F4AjTsL5HmK0re3AG1uB/edkt/stgh+hzqOLruP9QLtgeJTEaAHLsN4287aUtC2SNWr2fPt1YOVTQJoY7ZPHKvziseyfP9VVpMQdWKRoiFQCM3wKKUh+mDFvQKZies4YaxoSowHA3FpZ7Lq1HZhZQK9Ke49GjzDveF2yxZwxLcsGcspM1L21Wsze0gbsO2t4miRYqkidaK2K7RopcbyEvK88A5y4+9qwYJqC1xSmy9aM/F2JJDQE7FIi3dcD7BTkiV7HmEq2clClgEhuJoEkEwgPMZp2XVlEXFW6YjQ1u9Hfc5IdW4G64ePVggGFI+cDzwm3+s0dwHSfIfiiWNVLzghAv/SknCnda9ruy0q4PhBSbFCMRkgeGQy82rx5M+Jx4ekCIYSMA0KhEGbPns2gK0IIIWNKQseRhFmKVZ6FLCVXhAMRo1xDkmQldRK3b70Rz7Y9Yt1uSJXh4llfwMHVR8rb2XIjnm3fvZ19Kg7Ax+d8TZQqSWzt34QbNn4bOwRRWToOHBxSbZ6pMZX9qw5DSJUhrjOfSP6j+RZxvUigEgAQVPLjCtM20+lJduGmTd/Dmz2veS5rYlKgDp+ceyXmhhvEZV7qeAa3xH7iqzwmjqk9GedP/29RSPRa53L8ZvP1RimOHw6qOgKXzPoiQo6Pp78+eK7tUdy25UbxHCx2xsvg+8FzIB2TSBEAgg7FaMWIV30bC8GKdH0otnPDVp6wYz4/TNjkZ8V2zBLhQAX6EpnXAElcA+RG+hYRvuft8a24adP3sthOxVBdH43wtNcVprKE3GaGnQp0JjOjne/bcYd1X344efJ5OGPqBSUjSiITi5ZEszE97ETE88mEglT/5ZCIjb1NuGHj1WiXgi092K/yEHxs9hUod3IjxG5L7MTPN3wbm/vXWZebV74An5p7JaqCE1uKuLV/E1Z3m0ctHVp99IQ//lJjUrAOCo7xHuOObb/K+/6zfW5BCCGEEEKIHxijRwiZCDA+jxBCxhEB78kWxyPqyJOglz9mzly/JkOMBgBnLVK4e6X8jmhVTGPpPv7erUYFsUij13wesaicN8MyqN7v4Naywk9+NxFRS86C/tftQ5+XdD+F2mQLWgN1xuXvfXVkMoeoMLZ9D22eJFZkkYeVLSK8X+1NmQA1Lkw+yjplRdVMhj7oGGClMKB9cxQAcPxCIBwCei2PAdaMQIzWJEga95js0ZZtXW8WKQHAdEF0ZRuA3ykY2igQyh3HnAH87moxW2+OZkRHnHXQyMRoe0xO2W4sKi949BmMSRpjVKgMevoeRvGq/vmXgHe8E6p2oHNy7EKFp98214em7YUVozXJcyViXnyDOePAo7Lah3rXyYg89wCmJpqxPTjNUAaNY9POmm7hUliZOmE4hY+kxFGVNdCHHgtI92Kx6LCPixcAU6uA7Z3yNh9dDby0XmPRvOyvKdJ5qxRQbjOSxKJyXjayM4vc2kioHMqZoPJyMgo8Ylx3xIC4MA5s+h55KdG44IiTBu5Rkh5jxmJNwJ4HZCQv3VvhubXmvtG/Vml8+Eh/bVKX1H/wcysdi8p5hx1nTrfdl1G8SEjRwKs9IXmmoqICCxYsQGNjI6ZMmYKystwMSieEkHxTVlaGKVOmoLGxEQsWLGDQFSGEkDFHEo4ByNkA+WyQ5COSwGNZ6/2eUjRgQPz1m83XoS1hnqVwWev9w6RoAPBG96v4+7ZbPLedzq83XedbigYACysPRnXQ+wVk2InggKrDsi7P4ABpRwXgwBxEmNDeA1r+3nzLiKVoANCWbMFNm66BFgJVdsab8dvNPxyxFA0Anmx9AM+0PWzM60524ubN145YigYAKzufx/07/jri9VPZ0rcRf9zys3ErRQNyIwsqBNlKAmyyITJ2hAPFJ3uQZGDFdm7YyhPJ4vwIqCBCyvwMrtiOWWIk5cyF9C1X30+qZMkmPPW6rvdYxGhSm5nP3/iBnX/Fys7n87Z9QvJJS9w8mqTOEKxoI9sgXFe7+OWma0YsRQOA17pW4J7tt3sv6JM/xH7qKUUDgPV9b+PWrTfkbL/FyrLW+8W8pbWnFLAkpBAEVBA1Pu7r88V4kdQSQgghhJDxB2P0CCHjEcbnEULIOEWYBHHcc/bHxSz9pbOguzMnEP3A4QpnHSRv8pO3a2zv8BbI9PRrxAQHUMMUj3dTW4R3PlNmQZVbYgqrzUKuDMoKH5c4ITnq9GEfI7oXv4x9Wly8oxe47XnzRJI2JKlV/VpznJ4JddWtUOUeMSphQYzWMxDjoJNJwBXKH6IYzQv1mR+IefqXXwMAVIUVfvURe/tw7k0uOnuzk1hJcqFRSRolwYczAtGm37aLeKL2PBD40JfkBW67PiPpuIXAx47JXjLTMCXlwx0/lcv0sSuz3jbJA7MazOkb34I+Yw509HUAwBUnyXXhN0+NTPA5UqS2K6hczElsNuapC7+c3U5OuxgA0BDPlMYBQJMhLKmrz/w9VKbGBFL4SAjUpzKvOYPoXw+/NpQFFW7+iGOXlAE49LsufvJw9v3pLmF4TGWZR9xgLGpOVwqYIUhiTUyZbZcUpRPiuyBiQKqrg+PDtpivZQCAmVnU1wmGqpsG9dkfyd/fILGoMflrp8rrXfg7jX+85K9/lBcx2vQ9oCqqzXm2Nke69yeEFJwsegeEkJGilEI4HEY4HMb06dOhtYbruuIge0IIGUuUUnAchzONEEIIKTr6XFkSla1MKBdIg3klgccrWUg0XLj4T+dyHFV7YkaeJON4pfN5XIDLfO+juT/mSwaQymHVx/he9tDqo7Gi45msth9xdj80DKkQ+nQyYxk/YrRcCEt2Jpqxsa8Je4QzZzt9vetluMgsW7a80vlvHF37noz017pWIKFHLyFb2fk8zpz2oVFv55XOf496G2PNeBl8n3oO+MEmGyJjh+2aNFZSLukcKLZzw/bdZVvWiFOBeDLzDX2xHbNEtuVUUDkRxaYKzUa1nZTy2ySOXtd1STgLjF29fqXz3zi4+si87oOQfLAz0WxMrwt5RXD7Q3rfsbFvLVoSlqlpfbKy8zmcO/2SUW+n1+3Bmu7/+F5+dddKJHUCgQna7+pze/Fc26PGvHnhPdEQ2bvAJSKFoC44RZSx55vxIqklhBBCCCHjE8boEULGC4zPI4SQcY4zMcVoKlwBvdfBwJsvmxe47w/AuZ8alhQOKdx5mYMpn3PRLoT2/fwxjW+fab/mrbc8sm7weJWlY0L8myQiGqRqkj1/EIrRcoIKBqEXnwo8c99Q2nkdf0d77HJ8fNaNxnUu+r3GexdpRMr895lEqVV/1N8GwhVQx5/nvVxEeN/R2zXwf1wYyQ0AQcobvFB7Hwx9xHuA5/+VmdnTCd3RAlVdhw8f6eCIRo19vilLP/70nMZl7/ZXhxJJLbZHjVNHJgfA5BlQYaG+ZCP9GKSaAqFc4nziu3DffBn490PGfL1+DdS83e/MHUfh5g8DFy1WOO6HLvp9hvkO1h/dtEpe6PzPQs3OjFcmY8DsRuDlZWK2/s23ob77Z1SFFRbOBFZvyVzm909r/OZCXbD7fkkMOq+8HQEY2sg582U5iIAqD0NX1qAhHsWLkUMz8qOGa3C3IFiK6F0xgYEAEKFwhBC15wHQJ34QeOj/jPl620ao6XOHPp+zSOH1qx386GGNGx6V3398+W8aHzpCY1q1/7aou9+8vQqvLmwsak6fNgeqzL8YWLQrXUIAACAASURBVAWD0NPn2qWzqVA6TEx4idG2CmK0SBVQMzk/ZRonqHM+DixaAqx4HPrHnzMuo2NRmL7h6rDCntOBt7aZt/3J21yccaCDYMDeJkn9h0o/zwZiUWOyuuhr8jo2YbV0708IKTgTM4qfkCJHKYVAYAQzOxBCCCGEEFLC2MRo5UUkRpMEHi1xw1RIFiR5wJruV43p7clWJHTcKh/xs32JkCrDQVVH+F5+v8pDEXYi6HV7fK8zt7xx6O+gCqFPZ/7mXgKVuBtHZ7Ld9z5ttCZ2YA9kBhq0J1tztH3zb9CayK6uZLv97LeTm/KMJal1q5jJtpzj5bhKjaAKYVbZHoj1b8jIOzCLdjSXSHVlbri46lBtcDKqApPQmRw+FXRIlWF62eystjW3vBGrul/KTC+yY5aYW96IaO+arJZ3cjAz+ZzyBigoaIxusGj6NV0iroW3l4P5rpxfpswBDXPLG7Ghb61HCUfORLguktKkJW7uG04O5kaMJu83N+dMS3wHtB590GhXsiMryXG/7kOf24uKQNWo9lusvND+hCj3Xlp7SoFLQwrFvPCeiPa+WfD9KijMLvcYiEYIIYQQQkgOYYweIYQQQgjJCzl4L1u07LGXKEbTT94DlSZGA4CAo3DRUQo/e8T8jvmelRrfPtO+26jlddI8rzHJsag5fVaDfb0qn3Kh8sLHJU5Y5mTG4R3X9Zi4eNIFnnwTeM9+/jbf2auxvdOc1xCP+tvIYcf5Wy4sSFx6BsVolliILMQQJc3Cw8xiNAB44RHguHMBAHvNULhoscItz5jboH+u1Ljs3f52ubFloN6ZaPSSNG6OmjNsbVFwJGK0uuzXIVbU0nOgBTEanrkXmDd8MjGlFBYvAH54nvr/7N13eBzF/T/w9+zd6Yok6+RuuUm2sXGhGJteDMGGQKhOIAmEGkIKCakkkMYvvZPeviGEkEYgQEJCTQi9JxTTYmywbGNkY2zJRbqTrszvD+ns0918ZndPp9NJfr+ehwdpZ3d2fNrbnbudeS8+8idv46t2HT8P3ya3Y9a+nuqiwacmNdtHzj1yG3QmAxUIYPYEczAaAKx6A5g9YTBaWOw1YVh7s7PJXDB1r9J2NGo0moWwUVM4W6cUbJIbp1IXZ2g8UR81ZyG0EIyGR+8ATn1fv0XNYxW+dhqswWipDHDn8xrnHOr9fdYp5PvWunRhdVurucDtc5nJxOneg9HYtyYTt2C0N14zl0+cxusSANU8F2ieC/3ys8BtvyleYdWz4razLcFoG7cDT7YCh8607186D0VdAhp1106gw/wAaeu5yBZYHWYwGlG1GMHfyBMREREREdFI0m0J2IoMQTBaVAhGS2TMk8r9BIT1rm+ux0bat0lnRhgFJFg2+nREA96/1Ktxwjh+9Ds8rz+v9gCMrdl9BzjomENUUll7MFoy2+l5n26kgAAMMCzGrX4/f0ebZDaBrJafhui9nvK0Z6jMie2DieEp7itWgf3qDkZD0NtTZiJODIvrjxzkFlGpjjIEiQQQxOENS4egNcCCukUYExrfb1lI1eDQhmOHpD0SRwVwZPz4ouWHNSxFjePv5vWR8bdCFTyPqDkyG9PCLnfTqsRhDcd6DjsFzMdcKRqCjdi/7tAB1RFUQRzesGzX7yFHvhOZ1vZHp0qBqEEVFG8+HxZfhqAavGfCDPfrIu25pGDkxpC/YLTCc6ubcr1nssigR1uerO6RW9CyyUDDIquV1hr3d9xhLKt16rGo/ogKt4gq5YiG4xBSbo9yLb+F9YdhVJBPsSciIiIiIiIiIqJhzhm54btq0dFyYdsasegtc+T7R8+sB1a/oaG1fL+l1RCkAQCTGoBIqH/deuc26P/8G/rRO6BXPgVseMVc6USXB3V4DRfiRPuyUQccXbRsemodZvTIDz7790r7sZPPFrDX4jUYzWNwg5KC0ZJ990ZTlvuawcrfoxmOrOej1/ufj96yt7zqSiGwyGSN5Tm0bsFoJYU0lnI9qWvwvw3ZHbBELBJDXgAcY7n2FZowqq++DZYHPe7PsaBVw3C96ifVA2xpAwAcNlM+DmznlHLbKTx7fkyPkExSSlARANTF0ZxaZywyXYfFgKXcWP96jh8g2mXRMWKRdD2qjygsdvnY86rPc1GXEGgYE7qwevMG6MfvBp550LxCqcFoXgW9j7OmPYl0fe79bKl3CImijePNy/dQasY8c8GKh6GT5nHBx+xt7yOv3OT++b6z27yOFNCo33y97zz0gFxpU7NcZnvIVlT47E9EFTd4s4OIiIiIiIiIyqg7a75rp+AMyYTeiBASlhCCuaTlklLCsRLZTtTD28CHLiEYTUEh7ER2/d4YHIdDGo7BsY0uj+40WDb6dIRUCI9suwdb0+abq/WBBsyvXYzTxp3Tb7kUBuMWZJCwBNCFVcQYotKdTRrDDpLC30AabKXgIGwI7snoDFK6+C6R9DeWjhUHjjEYKKuzxpAIDY3ubNJXoJ25PeZ2BhBESAiwqwZ1gVGYX7sIp407d6ib4lldcBQ+OfXruGXzdXgl8aLx7xpQQcyI7I0Tx75z2AS+7YmWNJ6IgArgkW334I2e1zEtMhPLRp+OWTGPj7Ets4gTxSemfh23bP4tXk38DxPDU/HW0W/H9MisIWmPzUlj3o2IE8V/tj+ItE7jgPrDcMKYM3zXs1/9wbio6TLc134b2tNvYk5sXywfd8GweZJTc3Q2PjzlSty95Sa0Jlchi4xxvUk103BE/Liyhtxd0PRxjNk8Hit2PoHtmXbP2yk4mB6ZheNGL8fM2Nxdy20hZWmXwNOUGIwm9/1mRvfGJZO/iLu23oS1ydXQKC0kNK3Txn6HHJxKVN3aU0IwWtBfMJpECg+T3jOFnzt21aM1urX5s18i22Xcxg+3oGWTkRqM9kriJWzobjWWHdpwrO9QUho+pkRacOmUL+GOLTdgbXI1MrAHlQ5UQ3A09qk9EKeMO3tQ90NERERERERERERUEY4z1C0YPMeeCXznEnNZ21ro7gRUuPgBpicsABwFZIVbKrM/n8WS2cBNH3Qwurb4nr0UaNU8ZvfPWmvg+u9D/+JzQNb9HrBym0zvNVyoZmD3pijPIcUPfHOg8aXNX8Y5k681bvLtOzWee03j+osd1Efs4z2kAJqATmNq6jVPTVRNLZ7WQ1QYj5fsG/dnC0arYTCaJ/sfJRbpW34J9Z7Ldv2+fKHCucI93dYtwAMvaxw123280BohpHFMLVyPv5KC0QIlTOv1GupInqkps+QRATf/Avj4D41F85oUzjlE4XeP2ccTKAWMivQGNuAf18jr+QmBocG1z6HAlFnAa6vlddpagfFTcNGRCpffbD4Gzr46i81XORUZrygFGdUmzBdHz9e7QvVxNL/eaix6vQNIpnS/UFsxYEn3jfWvYzAaUY6ata98Pbr++8AHvmYsuvJkB8t/nkXKPMQYP7pH48qTvbejUzqfFHRhdXcS+hvvA+65wV5hCdc3NWm699F6IY5vIwPp2pubB7ZTCEZjYGd/C4UAYa2BG34MnPuZoqLzD1O4+kGNlZvMm154rcZe4zUOnyX3j8TzUMHbXfd0Q3/zYuCf14t1Aej9Hm/8VLnc8rlMRQY2F4+IyofBaERERERERDQsJIXAq7BjDrsabFHH/AWXqZ0ZnTYGYwHAxJop2NhTPPAmaQgQcAsF68p4D1/rypqD0SaHm/HZ5u97rsfGUQ7eMvoUvGW0/1C1UoPRTK9bztdmXo1YoK5o+TfXfgrrksU3sKUQBykYYWZ0b3xi2teLlr/Y+TR+8tqXjG3VWhcdv9KxvnjUUTh/0seKlm/q2YAvrTEPSkxmuwYcjCa9pktHn4pTCwLtaODG1kzE+yZ/eqibQWVwRPx4HBE/fqibsUtjaCwubPrkUDfDlVIKy0afjmWjTx9wXQvrD8PC+sPK0KqhMTu2ALNjCyq+36AKYfn487F8/PllqS9guQ3hdl1Pa3NQi9RPyJlTuy/m1O7r3jiLx7fdi99uLB7cKAWnElWz7mwSndkdxrLG0DiftZk/e0l9ZKkvOT0yC5+e/p2i5R3prfjsKxcat0lkOhEPjvbYTjO3846J16fQDzcPdNxhXK6gcFT8rRVuDVXazNhcfDh25VA3g4iIiIiIiIiIiGj4USM3GE3VjgJ+ei/0JccYy/X/fRHqI8X3d0JBhZe/6mDW5+TAsvtfBj51o8Y15xffa1orBaONzVv32Yegf3aF/R+Qr6nZXu51wjOD0cpGBYPQRy8H7ru53/J3b78Bl4//GjaEJhu3u+N54It/0/j+O92C0cz39KakNiAoPIyuyDiPD6mM1JqXJ3LBaMJMbgAIMhjNC6UU9CnvBW79dXHhG+uhd7RD9YWExcIK91/mYMl3zOego7+bRddPnX5hPSavCuF6LV6eNdbWalysyhmM5jhArN7fNuSJuvgr0P/3BWOZfm011BTzw0d/c77C/S9rrNsq190QBRxHIfvtD8n7v+SbvtpLg0spBfz6cejjx8grtbUC+x2B0bUKcycBL7UVr7K1E7jlaWD5AYPV0t06u83XwNpO80PNMan0YLSW1Ati8dotwJyJ+e0yr1ebe4C416Baoj3F2ZcBfyj+vIVMBnrzBqhxxf3lt+2r8MBlDg79prkf1N4FbN6hMa7e23wrMdCwsAv75x+4h6LBpS8k8ROmVsNgNDJwDUbbZi5nYGd/M/cBRo0Gthd3dvWvvgic9UmoYP/PNGPqFB76jINxn5C/Hzr1p1ls+LaDsPD5TOw/FJ6HbviReygaAIybAhW0zDuwfS5jMBpR1Ri538gTERERERHRiNJtCUYbChEhGM0UpiUFbAFAY9A8asK0TTJjfg12b+M9GK0zYw5GqzUEhw2FUInBaLbXOuIUP7EUkEPu/AajSSERUv1ZZNGji7+1lf6OUj3Ssdhb18DDWxJCAEzUEQZ4ERER5VFKlRx4mhaCZYNq8J/5Eg2Yr3PluLYSVVp7ShjBDfnziMRvJLUU+iv1YaU+L+Dv846klGA0eH8G5bCxLd2Op3c8aiybV3sAxtZMNJYREREREREREREREe0RbA9NcUb4NKxZlgdQPXanWNQ8Bgi73Ma94T8amWzxa7t2i/n1np6XR6I9TLrvx20yfbQOCATc62EwWnlNm21cfN6231k3u/5J9/t1a4Rbos2pVtdtdxnb5G09KRgt2TeewBaMxvAGz9TUveTCB27t9+sClz/dP1903986IaSxZaz9LrnuTgAdm82FtjAQx8M5KF9dHGqkX4OGSpMlJOrffxGLHEfhK6faj4/GGKB3dACP32XZ/wy3FlKFqZjLWPq2tbt+PGCafAxc/4QcClJOUoBILG1+iKL13GRTF8f01DqxuPBa3CkFLOXG3zGAhqgfNdlyPSgIF8538AyFH79bPhfd/JT3sW9iIFFBF1b/68/eKhzsYDSGDpOJWzDajnZzOQM7+1GOAyw8Sl7hmfuNi8fUKVx6rHxO2toJ/PMluVqp/1B0HvL6PZHbecgajMY5c0TVgt+GEBERERER0bAgTagPq6EZfCSGaWWKJ+vbAs0aQ96D0dyCALqEsDPzuuabnTGnOoLRpACVlEuQQVII8QqrCBxlHkgihTIkfQafKCEmwm9wmd8gMnt4xMDDW+QwC3PQHBERUSEp8NTtui4FGEn1lZN0nevR3choj0+TJqoS7WlbMJrlCbdlIPdtzX3YGhWGA3O/3fRZy69SgtFGXiwa8Mi2fyKDtLFsSfyECreGiIiIiIiIiIiIiGgYkSbYjhDWIJBtQmoQesNhFrnMX+/qATYY5h9vEW4BNeXPSV73sr3yfEoB46e6rKKA+Hj3uhpGe98vuVJzDjAuX5x4yrrdpu3Ati77XbvWN83lLam1xuVF6uL2YMB8USkYre9gtgWjMbzBuzmLxCK9vv85obFWYYblmWArN7nf9d3SaV6nqSC3R2sNncy7D245N2KcJbHNb8hZrN7f+uTd3uZzEwBol+vP5EZ7vyAeBfD6q0DWEpA1e39rHTREjjhJLNJtrbt+tvV/Vm4qX3NsxAARLYwhLzUYLT4OEd2NSak2Y/GagmtxlxSMlmtXPYPRiPqZu1gs0utXWTddPF2+Hr1ofssaycFou+vXmQywxkPqLAA0NXvfec4kH8FoDB0mE7dgtJ3bzJsxsLOIOmiZXGjpJy92eRuv3Ch/PhPPQ3kfpbXWwOoV9p3kWPr6AFyC0eS5ekRUWQxGIyIiIiIiomGhO5s0Lh+qcCY5TKs4RMoWsNUYNI/GMG0jBVTluAWn5evKmkPUYoHqDkZzCzKQgsAiAfkLSTnkzlyXhnmAghK+QLcGl5mC9KR/g3Csh1SNGB7hN9zNRDquopbXlIiIKF+p13UpOE2qr5xswabdLn0yomojBaPVBxoQcvwNvJfCgLUQHyb3bc3vMaWU2M8sR+ivWyCjifRvG64yOoMHO8xPox4bmoB5tS4DQYiIiIiIiIiIiIiI9mQjPBgNAHDM283Lt22BXv2cuNlH3uL+2vzqoeL7Lh3CLaDG/Oypp+5zrXuXcZOhvEyQ9xAKokoNDiGzQ08AmlqKFp+w807M6llt3XT1ZnvVrUI2VXOq1VvbTn0fVNjjQ3qlydGJXDCaMJMbYHiDH/sdIZc9fFvRokuPlc9Bn/6LxrPr7fd93c5FOp1G9seXQZ88BXpZI7Lv2Q/6gb+JwQoAgPpGsUgpZZ+EX0gK5KMBU5NnyoV3/QH60TvE4rjLEPbGWkDf+BN5hSNOhproIwCGKkYt/6Bc+K/rd/149sHyuee5DcA1D1lC8cpEDBAxjf+ui0OVGEim+gKOpGvrw3mX8kxWIykM0dnVLgbQEPWjbCG9t/wSOm1+CCYAHFTcxd7lx//WuPDaLBI97mPgElKgYf4Qwyf/6VoPgN5+ztjJ3tbNN3YyEDDPjSkSHPyxxDQcSdfmXDBah7mYgZ3FjjtLLNLPPSqWLV+oMEX+KITL/qLxUpv5nCQHNOb90iE/LLqQOukC+woMRiMaFhiMRkRERERERMNCtzYHUIQdj4NRykyerF98E9E2gb8xZA5GM4VyuQWfdRlCtiSdGXMwWm2gOp4qFyoxQMVv8IKtTKpLC/eEpK/PbaFsfoL0ogHzwBZreIQQ7uaHFMhne02JiIjylRqMltbmgRyVCEazBpv6CKMlqgZbU+ZZAlJIs5XPyT7SZyFbyG7MMfd7u8rw3nM775iMtGC0FTufQEfaPDPkyPgJcBRvHxMRERERERERERER7cnUB74qlukLFkN3mx9w+s4DHfzhIoWDLZPyv3abxvMbdt970VqjXRjeFI/23pfSTz/g3uh8XgNmvISeMRitrFSoBupn9xUtDyGN+1uX4h3bbxK3PetXcrCM1hprhHnRLT2txe348p+A8z4LTN0LmLEA6n1fhrr4y27N300KqMqkoVM9QEpIlACAoL8HV+3JlOMAp11sLmx9CXpHe79Flx5rv8951HeyeHOHfO+3Q3hGXi74Sv/scuCGHwHb+g62tf+D/vw7gUdul3fqFvrjNfQDACIMRhtM6pJvimX6irdDr3zKWNbgEozWkNoK3PUHeb//7/ee2keVpw5cChy41FyY6oFuawUAjKtXuOZ8eSzNRddp3PL04I476ZSCjEzjvw0BpZ719YtahGC0Pz6hkcn2/lulcKX8dikGoxEVO+8KsUj/8vNimVIKn1gmn4uufUTjgmvdz0WdQnhaLhhN79wGfdmprvUAACZMhfLT1+mjgkFg/BRvK4cYOkwG0hjX3ESwHUKwMa9LRVQkBux/lLnwX3+Gzpo/p8fCCo9cbv98duS3s9iRLD7nSP2a2vDuv6u+Vv7eqp93fwJq+t72dRxLOxlOTVQ1OLKdiIiIiIiIhoXurHlAVdhxuas8SKLCZP2U7kGmIMRDCroKqRrUBUYZy0zbSAFVOX5COrqEYLSYU+e5jsFUaoCKGLxgCTeRQ+6EYDQhGEEJX7OEVUQs8xOkZ/03iOFuAwuPSOsUUtr8zTKD0YiIyKvSg9HM16BKBKPZrnOJjL1PRlRt2tPmWQCNoXFl3Iu5j1zW4OIyhP5K5xUrKRl5mHqgwzwwP6RqcGjDWyrcGiIiIiIiIiIiIiIiqjrjptgflmMJAXr3QQ4evSKARZZsst88svveS6IHSGXM6zX2Dc/TN/7Y1tpiXoPRmprd15k0gPAQMlJjJkJd8aui5RMyb+D6DedgZmy7cbtVbwDpjPm+XXsXsN08vBTTU2sNC+fAuehKOH98Hs5v/wt17md6Q7i8sgVUJTuBVLe5LBAoKRxiT6ZmL5QL77mxaNE3lsvnrh1J4E9Pyvd+24Whlo0x9Abe3f7b4kKtof90lXnDcBSqxiWsIxC0l+fjpPzBZQtMyGSgb7vWWBR3GUbb+MZLcuFBy6DCQ/NwcPJGvf2DcuGduwPvjptnf8jgrx6Qwz3LoVO47NSaxpAPJPS1b9vpqXXiKvf0HfJSqEm/dtU3lN4WohFKzVggF952LXTa/LBhANh/qr3um57S2GwJiQWALiloMZfte9/N9p3kG8j5ZqLHbd36WrRncgtG29luLq/jdclo/yPlsmfkIPspjQpfO13uI23t7D0v5ctmNZLC1ILa/Izxu6+X25RHveUd7ivZgs3DnDNHVC0YjEZERERERETDghQKFhmiYDTbfguDraQwgKgTE+vp0d1FAWuJjD3kqstPMFpWCEYLVHcwWsolQEUOXpD/XnKomL9gNIlSStx/4T601kgIgQ+2f4MUHpFwCdNzk7QEv9iC2oiIiPKVel2XgtOGOhhtoMGjRJXWnhKC0YJjfdelYB6oIGWHldI/jwXMA7r9fN6RpLU8OEzit/9fzdq612Nl13PGskX1R4jB3UREREREREREREREe5SjTjUvr4kAtSN/oqwK1QBTZonl+pUVrnXMmyRPfl2xfve9l3bLc3HiudtJGw3BVjYeJ+Cr5rn2FUI1QBOD0QaF5bWfpDeLZa8J89fXmG+HAgBaCoPRasID/7tGLOPmEp3yxOoQgxt8a5knFunVxeci27kHAJ59TS7rEIZKxmMKaGsFOs2hfdi+1by8Lm5tCwAg4GP8i+24o4FzuyasMl/7Rrnkmo3etkYutIWxUXWwHBf5/aGJo3pDFCW2c085SEFGtdrQ0XI71m0mTAMAzO9+UVzlmb5+nhTW1tuuXDBaY+ltIRqpbO/RHe3AG+vFYrd+UCYLvPC6ffdi0GJfN9bU/xIN5HwzfY639YI17uvQnkd6K2gN3Z0EeoQDvd5D/30PpCyfyeByTpjvcl56puCUtkMIPAeAur5+t9ZaDiPPFwgAk2e6r9dt+WIqWh3zK4mIwWhEREREREQ0THRnzd9whZ2heVpW1JGfvpYsCLaSg65i1noKA9YKfy9a3yU4LV9nprqD0UKOecBHOmsPUJFea9vrLIeKSa+3ORhBCono3b+wj4L2pnUKGZjDGmz/BjncbWDhEVKQBWAPjCEiIsoXEoLMpOCznJRw3ZfqK6eQExID2AYaPEpUae1pIRgt5D8YzS/p/WLvn5vLEmUIRpMCGR3LLdORFIz2QMcdYtmSxhMr2BIiIiIiIiIiIiIiouqlJkwD5i4uLjjuLChnz5iGpY4/Wy5c9azr9uccIo+juud/wFm/yuLe/2kxiAjoDRjRqR5P+8unJk33tuLhJwF1lqC7o06DilXHWLoRx/T+6nPBK98Sy5ZelcVzrxXfu5OC0cLZJCal2/ovXLIcaqABU1H5XieSlmA0Bjf4N+8guezFJ4sWHT8fGF8vb3LNQxrHfi+Db92ZRTqz+1hKpjSSwhCWxhh6g9H88hKsUOMjLC9iOe5owNSkZmC/I+QVnn8UOpMpWhwKql1hMSYt256X93n8WT5aSENB2cI07v8r9JregDDHUTjb0vdp2wZ0pwZv7IkUZBQzjLNRy95Z8n5UqAaI1uGkHbeL6zy/off/Ulhbb7v6OoC2fhjRnqplHjDFcu5paxWLFk4D5jfZq//g7/v3gQpJ791Yrhvr47OZOq7065z182g+P30p2oOIyWjAzg55MwZ2mh0mjyvV6162bnr8fGCs5WuVH92j8cE/ZNH6Zu95yRaevyuEdusmoNvDOP7D3gbl5TNZwjIumWF5RFVjz/hGnoiIiIiIiIa9pDChPuxEjcsHWzQgD44pDNSS2h5xoohY2p/M9N/OFlIFAF0egwIyOiPWVetUx2AuKYjELUBF+ndFAvLrLIeKmevK6qxxuVLy1yzRgHlQSuE+bOF3tmNOql8KivOq1PYQERHlK/W6ntbmsNCgEKBablIIqFufjKiaaK3RnjLPBBgdLF8wmhQeVhganWP7HBSTgtF8BEFLpPNOSMmTEEZKMFoym8Dj2+81ljVH9sL0yKwKt4iIiIiIiIiIiIiIqHqpr/8FmH9w7y+BALDkdKiPXTW0jaqksy+Tyx65Hbrb/JDTnKXzFJbOlcuvf1LjuB9k8fvH5Psw8RigP36CW0uLTfQWjKaitVBX3W5e/9AToD71E//7Jk+UUsCpFxnLzt32e3G7V98Ejvx2cTha6xbzcTQ9tQ5Owb0+9ckf+WytgS2gKtElB6MxuME35TjAKe81F656BnpH/2CDmqDCXR+zT5e9dyVwxc0a7/n17mOjwzIMJB4D9Pc+4rnNu9R5mEQf8nFM2AL5qCzU/5PPPwCgrzSHtISD8jbNO140F5x0IdScA7w2jYaQev9XxTL9oaN3haN9a7nCflPkev74xOCMPelJa6TNw9pRawpGm773gPanvvEX1OlOLEo8ZSz//eMamawWw9r6tcvLeZJoD6OUgvrBnWK5/u6Hrdve+mEH+0+V61+5CTj7avl8JL13a8OATnYBKx6WK8+J1UN99mqoeQe6rytQCw4Blr3bfcUQg4fJQAnBaNolGI2BnUYqEgNmLDAX/u1X0Fo+p4RDCnd/3P757Jf3axz6zSzWaYENLgAAIABJREFUb7WH58f7hhzrG3/s1mTgwKVQV/yf+3oA0LVDLmMwGlHVYDAaERERERERDQvdWfNgKtuE+sFk229hmFRCCCyLBmKICpP+TdvZQqoA70EBtvVigeEdjCa9RrbXOSIEfCUyXdYvaQvJz/qSjxevx0pvHXIQmVT/QINbbMfcUL33iIho+JGCzNyD0czlUj+h3KTwVLc+GVE16czuQI82j1hqDPkPRlO2p+kVLtFafL9IfXBADuAtx3svnRWC0RzbIKmREYz2xLb7xNDuo+LyU/2IiIiIiIiIiIiIiPZEauwkOL94AOpv66Bu2wjnq9dDhfecsTIqGIT6pGWy6YO3utbx3TPsU9YyWeBbd5rvw4SDQGTdc8CzD7nup8ikZs+rqrmLoW5YCfXnl6Cufqz3v9va4Hz7r1CcFD2o1KJjzcsBLO5+WtxuexL40b/7HzdrzM+JQnNqbf8F7/woVO0oP800swVUJTuBlJAoEWRwQynU4qVy4b+uL1q031SFWz7kPmX2hv9ovLyp91iyBqOFeoC2Vtf6iniZRO8nLI/BaINOjZ0E9Yfn5BXuvwV6wytFi3vMz30EAMzoWWPe13mX+20eDZUFh8hlO7dB3/RTAEC0RuGhz8jnnitvHZyxJ/YAsoKT2wnnDnyHM+YDAM7Y/hdxlVueBjqFjFAAiOq+sSvsaxEZqQnTgLmLzYWvrYbukd/4LWMVnvpCAAe3yPXf+F+NlRvN56Qu4b0bqwFw3y1ype/6WO9nqeuehrp9E9QJ58jreqTe+wX3lRiMRia2YLQdtmA0hmBJ1NGny4UugYn7T1W47kLbbDtg03bg6oc02i1TIuO5YcV/+K64jrr6Uai/b4Bz1W1Q9Y3Wfe5iCUbbk74HJKp2DEYjIiIiIiKiYaFbmMAddiIVbkmvgAqiRpkHJRSGUUmTzyNODJGA94C1ZMby+AMAXZZQrXydWfmLu2oPRku5BKhIQWC2EC8p9CSLDFK6+O6OFoMR5C9rpWA2r8dKbx2W8Aih/oGGR0ivZ0jVIKAsj7kjIiLKI17XhYCinLThOmyrr9zE4NEMg9Fo+GhPCbMAAIwOjvNdnxyMViyle5BFxlhWUt/WYxC0TSmBiz6ykquW1hoPdNxhLKsLjMKi+sMr3CIiIiIiIiIiIiIiouFBjZ5QniCl4WjKTLFIP/eI6+YtY+X5yG7iMZQWihYMAeOn+NpEKQXVNANqzsLe/0aN9r9f8s9yfM1Kvmzd9OHV/W/gbdxmvqE3PbWu3++qyZIQ4YMKhnqPNZNkJ5ASEiVqGNxQkskzxCL93KPG5bPGe6s6dyy1bZPXadxiPx5FXibih3wEo0UYjFYRE6YBgYBc/txjRYsOEk4tjtKYll5fXBAIAuP8XatoCE2abi//29W7fqwNK9QJb2spbGigbPXGdP8xbspHeKwoPg6IxDAzZQ79A4Dbn9Niu6LZLji5cfgMoCGSTZgml61b6br5UbPtH8Ruedrcf5ZCDWtrFPQK+fOZOvKU3s9SLfOgbNdRPyZMAxyXGBQ/fSnac9iC0XYKwWiBIBCRx7Tu8Zrkz2RY4f790Kzx7l8OPbJao0OYTlcXBoIB1RsMKf19J8+AmnMAVNznA6OzWX/rE9GQ4AxWIiIiIiIi8u26th9ic2pjRfe5sec14/KwJfBqsEWdGHoyxU9cSRSEZUjhVBEnhqAKIaRqjAFchaFUCZfgM69BAV2W9WoD9Z7qGGwhIZhACjLIKXztc2zBCxFLWSLbhRqn/w0TKRjNFhIh7b/oWBH+NgrKeqxL/4aBBqPJrycH2RARkXdBIUzT7bqe1uZHqkr9hHKLBqRgU3tYLVE1aU+bg9EcBDAqWL4BhqYesq0vauuDi33nAfZtATloWQq97jX8k9FWJ17E6z3rjGWHNSxFyOEkDCIiIiIiIiIiIiIiKrDvEXLZzT+H/tA3oMLyeKb6iMJx84C7XvC/68YYoNta/W94+Em9oVVU/WbuAzS1AK8XB6ucvuNvuL7hneKm/9sIrNuiMW1M73i9dmE45JjMlv4LyhEIkxOpNU+qT3QBqeIxpQCAIO/JlWTWvnLZ+lXGxfMmAXMmACs32at+9c3c/833hMfUArEtraXdMZ4w1X2dGu9hHirKMZuVoMIR6ENPAB76h7Fc33o1cPxZUHmBDCcsUPj3/4qPkpPHrkHY9FDICVPLFxpDg2/s5N4wzLQ8zk1rveuYmDYaeLGteJ2tncCK1zT2nVJiaqwgaRl+Fy0c41aG66BSCnpSM5auvUdc596VGsfPN5fV5s+F8BIgSbSHUktOh77vZnPhxrX2/hGA5QsVvnOX3IN54GWNy08oXi6FGsZqAKxfLe9w3sHW9pRCBUPQ46f2/nsl7F+TkXSt1cBOIRG5vrFf/44KHPpWsUj/+QfAWZ+09m8PbAYmx4ENQi4dAKzYALR3ms9bjbkhxRvXyk86nneQXDkRDXsuUalERERERERExV7rXoNXEi9V9D9TcBgAhFWkwv/63SIB84T9wkCzwt9zchP+vYZmuYVwuAWn5XRldhiXOwgM6euZL1hiMJr0WpcSvCDX5z8YTQ4u6yz43dz+sBOFo+SvcaR/Q1IINvNKfj2HLpCQiIiGn5AyDz5wu65LAUZSP6HcpOud1z4XUTVoT5mD0eLB0XBUOQfaFveRpb4kYO9PSqGE5XjvSecdWzBYdgQEo93fcbtxuYLCkfHjK9waIiIiIiIiIiIiIiIaDlRNGNj3cLFcf/R4aGlScZ8fvNNB8xj/+47HALS1yiuMnlC8bMosqA993f/OaEgox4G64lfGslN3/B3nd1xn3b75iiyeWtt7H69DGFbZmGnvv6CcwWhSSFVipxyMFvIegkW7KccBjj3TXPi//0Iniu8jK6Xw6/MdjHbJEvvabb3H0BrzbXW0jAX0H77rp7m72+DleKvxMV43Io9zpfJSH/62XPjcI9A/+Hi/RR86WuHEBf1XmzUe+PajJ5vrmDh9gC2kSlKBgHvQ4cqndv34mwvksd77fzmLR18p7xiUbvNzRwGgOJivqbk8O53UjPrsTpy57UZj8dotwPOvmzetzY0lqglDhatjzgJRVTp6uVik//wj180ParGX32kIr85ktRi2GHO6gWceMBcefBxU0Pzw5AFz60/5CJmlPYgUcKY1sENI5qprGLz2jABq1GigdpS5cNsW6M+dAW0JkQ04Ctde4KDecunfvAN4aaO5LN73UUjf9Qe5jbY+PBENewxGIyIiIiIiomFtKAOaxECzwrArIZwqF5YlhWYVBgm4BQGkdA9SWeExLXm6sjuNy2OBuqp5ykXpwWjmUU5RIcQOsIemmf52WgpGs7x20v4L21tqEJkU0icFrXklbS+FVRAREZmUel2XyisXjObt+k1UzdrT5hHcjaGxJdVnCwMuZHuvRB25PymVJTKDGIxmPa8M72C0bemteGbHY8ayBbWLMSZkmDhEREREREREREREREQEQJ3+AbnwhceBO+zhVXMmKjx7pYO/f9jf9LVGWzDaWZ+EunEV1A/vgvro96Au/S7Ud2+FuuYJqKYZvvZDQ0vtfyQw/+Ci5UFk8Ku2D+D2Wb+1bv/5v2YBAO3CELl4tiC4r5zBaFJIVbITSAljIULyw5rITh1/llwoTI4/bKbCyq84uPH9DmosWR0rN2q0CsFozWM08Lz5XqsrL8ebn2MiwjGblaImzwROvlBe4eafQ7/y/K5fozUKf73EwaOXO/jxuxVu+4iD/17yJmam1pi3n+SSVkPVx+X9rK/66K6fD5hmr+qKm7NlaNBuUogRAER0sv+CcoXy9dXz400fF1e5bYV5rE1M91206+LlaQvRCKWCQWC/I82FzzwAncnYt1fK2v8BgJc39X+fJizTkGLP3iPv65SL7DsaCJfzr2LwMJmUEoxWz+uSG3X+Z+XCh28DHjE/vDfn2LkKq77q4LMnymOQv3e3uf+QC0bDdd80bxgfB2UK0CeiEYPBaERERERERDSs1Qbqh2zfXsMypLCrXFiW11ArLyEcXS7haQDQmTEHo9UG6ly3rRQpmCBlCVDRWluCxeTws7ATEQMeTPVpLQSjWUIipP0X/o3FIDJLcERv+eAEo0nH3FAGEhIR0fATVOYRFmlteWQlhj4YzWsILlE125rabFzeGCwtGE1iCg+2BZmFHfnRb1IIb7dOIqPtg7rcyOcVecC5FIw8XDzUcTeyML9uSxpPrHBriIiIiIiIiIiIiIhoWGmyh7foR+9wraI+ovC2fRUOn+l9t/GYEoPRVMs8qJow1AFHQ73jw1BnfATq4OOhogwNGpb2XmRcrAAse+EnqJdvK+LuF4GetEaHMESuMdO++5fRE6HCZRzzJoVUJTqhU93mMgY3lG5is1ikH79LLBtTp/D2RQo/eKc8tvP25zReazffE25RGz03sUhTs/s6fo4JnuMqSs2Yb1/hsTv7/RoMKBw8Q+GSYxycsI9C3QpLgIyXY4Oqi1vQ4Zbd54qAozDDMiTngVXAjmT5xqEkLcPv+gWjhWqAsU1l2afqez3GZLZi/+SzxnWeWW/etjY3rr2uoSxtIRrRJlnCDNe84Lr5h462PwD19uf6n4s6bcFoz98nF5YzfLiAcqubwcNkYglG0zuFYDRel9y5hPvqR++0lgPA+FEKnz7e+8OZcxpjgN62RV5hio8vnArttb95ebR65lcSEYPRiIiIiIiIaBiLOjG0RGcP6f5NEpnCQDN7WJdUT+F2tmABP+t0CcFoMad6vriTAk+kIAMA6NHdyML8JC3pNQYARzli0JcpWEwORpC/oJWPlf5/r2RGCkaT2w/YQvoGFowmBb+4tYeIiCifdF23BZ4C8nVfClAtN68huETVrD1tfrT16NC40iqUBo0Y2EJ2HSXforT1NQfav5XOOzWWYLThLKPTeKjDPBFgXGgS9o7tV+EWERERERERERERERHRsLLXfkCDJd3jFfcJ+TnL5nu/zxQPdgM7t5kLB3HiPVWeOnCpXPbqC1g6V942q4EHVwHbhFv4DZm8Yyg+psQWCoSQKp3sAlJCqkSoMmMdRqRplnHCG9e5br50rnz+WbMF2CoMu52Q3uRat1EgAIyf6r5e2JL8V6jGx7o0cIuPtRbrtlb79q+vKbluqj62axUA4I310OndCWVL59n7POu2lqNVvZKW4Xc1Ou96NGEalFOmOIG84NzFif/62jSaG/dT31iethCNYGrRMXJhW6vr9mcssp+L/vSERk9697yYTiHbFwBqt7wqF7a4hIkOhNv5d+ykwds3DWPSsa8BKRiN1yV3+x0BBC2fadss/d88o6L+g9Fs4fkAgJkLfNeZo878iHn5R79Xcp1EVH4MRiMiIiIiIqJhKaiCOHfiRxFQwSFrQyQghF0VhEklLIEAgCU0K1sYsOYewiEFWeXrygrBaIEqCkZz/AejmULMcqRgE7dyP8ELtq9nvQarSP8G6VjLkY6htE4hlbWHztgkM9Kxy2A0IiLyLiQEDqW15RFzkAOMpKC1chPDa4UgU6Jq1J4yB6M1Bi0TWCz8DElwC4iWxBz5SdeFIdR+iYGLjhyMltXm8OXh4Nmdj2Nbpt1YdlT8rdaAOiIiIiIiIiIiIiIiIhWqgbr4y/IKWzdCP3anp7ref5SPYLSdr8mFDEYbWQ4+HgibH2oKAJ+t/wfCliGiy74v38trzO6e9K4+elVJzRNFhHueiU4gJaRKhMLlbcMeRAUCcjDG6hXQafsYyVnj5fNP65saHcLQ3PgdP/faxP7GT4GyhQbk+DkmQiPzYV/VSjXPBU66UF7hb7+ybm8NTpu7uJQm0VA6/CRgvyPt69zww10/fnKZwljLkPyHVkkP6PavWzj9hbPJ/mN8ytl/mjh914/NqVZfm9bqvnE/dQ3law/RSHXM28Ui/fBtrpsfMgN4xwFy+ZOtwNwvZrFyY+85qcsynDf28uPmgn0OgwoO4nyueQfay/nZkEykh/9qLQew87rkSsXHQp17ubxCW6vnuq44wV84WjwG4Il/iuXq/M/5qq+fJacD+xzWf9m8g4Cjl5deJxGV3dDNHiciIiIiIqJh66j4idiREZ6UUAGjAo3Yu3Y/jAmNH7I2AJawjIKwq6QQVpbbXgzNypv0r7X2FNLV5SEYrTNjDkarraJgtJAQeGIL+bKFlEh/q/xyU1yAKagsC/NgKmXJn496DNGT/sau7bcEpyWznQg5cev28ralhVkQERHlk4LMbIGnAJAWrvvBCgXjyiG4DEaj4SGrM+hIbzGWNYZKC0az0VpD5Q0qkd4rbn1bWyiwlyBoGzEYTQhwHO7ub7/duDykanBoA59CTURERERERERERERE7tQp7wWSndA/vsxYri87FfhnO5QUFNVnwiiFq89VuOg69zCQ+L+vMReEaoCxTa7b0/ChgkHgd89AnznHWL7wl2dixXWbMOcb9b7rjuePcV24pNQmmkWFhz0lOwEnYC5jsNWAqPOugH7yX+bCP/8QOPtT1u2/eprC5/9afP55ZTPQLgwDiWeF4IRFx0DtdwT0NV8xl09qsbZlFz/BaDUM1qs09emfQf/vP8DqFcZyvX4V1NS9zBu3tZqXn/HhfuMqaHhQNWHgqtuAG38M/Qtz8Ib++WeBE86FahyHvSYoPPUFB9M+Yx5v/sE/aLy/TJelZNq8PKKT/RdMmm5esRR5QUQtfoPRcuN+6kob1060J1HhKPTcA4GXniwuvO1a6M/8wnpNUUrhTxc7ePaLWax6w7zOmjeBC6/N4uHLA+gUsn2BvPdu4T4u/ILtnzBgSinoeQcBLz5hXqHJY5+L9iy2YLQd5ofM8rrkjbrg89BvbAD+YfjOZtN66EymN9TaxfuOVPjGHd6DYuNRQP/kSnNhwxioAXxPpKK1wHdvBf71Z+iX/gs1a5/ePl2seuZXEhGD0YiIiIiIiKgER8SPG+omVAUpHCp/sn4qm0Jam+865raXQ7N2j7bo0d1iIFe/bTLuQQFdQjBazKmeL+5KCVCxhZTYwhUAb+F0uwjfv9rGKkj1p3QPMjqNQF/AixT04BoeYSlPZBOoR2lf1IthFi6vJxERUT4pyEzqI+0uF4LRnMoMFo465qdSewmrJaoG29Md4meIxmCpwWhyp1dDQ+WVlxqyG3WESQQoQzCaGLgoP61bSx8Aqtzr3WuxKvGCsezAUUchVkXB2EREREREREREREREVOVOOBcQgtEAAE/8EzjqVNdqDmxWEAdf5YmntpoLJkyDcuSHV9IwNWFab2hYqsdYPGvlP3Bwy7vx+Bp/1TbmgtGa55Y/iCgi3NPs3AFEzGMNfIVgUbG8IJ5C+sFboVyC0VqEW+QvtcnbxDNCcELzXGDBIfKGlrb24yfsjMdPxSmlgLMvg/7SOeYV7r0JOPdyc9nGteY6m2aUqXVUaaomDJz9KejffxvYKYQmPvg34JSLAABTGhUOnwk8/Ip51R1JjfrIwK9NyZS5XxXR/ROOlNfARg9UfRy6Lg7s7MD0HvOxLonlxhLVNZStPUQj2vS9zcFoAND6EtAyz7p5wFG48mSF9/xa/gz26KvA+q0aXeauOAAgqhPmgkoEk+17uByMFh83+Pun4ccWjCZcwxWD0TxTb/8gtCkYLZMGNr8GTHQPY53SCAQcIOM+RRJAQeh5ob0XeavEQsXqgVMugurrxxFR9eG3wUREREREREQlkibsJ7OJvJ/l4IxcuJRcz+5tbaFf+bo8BAV0ZYVgtCqaGF9KMJr0Wis4CKuIdX9yOF3x6ykHI8g3qG3BZvl/22TGfNPIPTxCLk8OIDyi1DALIiKifNJ1PWW5rgPydT9kCTAqp4jQR/PaLyMaalvTm8WyxlBpwWjK0uctlDCFDMM99DegAmL/vctDELSNdN4JWQMXh2cw2v0dd4hlS+InVrAlREREREREREREREQ03Kn6ODB1L3mF9as81TN7AhD3MOyoUQojGjfZ035oeFGOA+y9WCzX61fh4Bn+w2NGZbf3/uBhYrZvceF+6xvrgZQwFoLBVgMztkkue9OSbtZn4VT/x1CjMAFfzTsI2Gt/IGB+UKCaKx/P/fgJRgtW5iGCVGCuHLSg1682L0+nes8FJpMG4XxElWV5fxceEy1j5fNO65vlaU5SuOSEC4LRPAc2ehXrnXPQkvIXjFar+8YS1TeWtz1EI5SyXIe8fgY7qMW9D7TqDaBTCEaL6gQcafzc+Kme2jAQ6i3vMBcccHT5w49phJCOCw3sFAK26hmM5pnt83Wbt35BMKCw2Ee3OJ7YKBfO2s97RUQ0bDEYjYiIiIiIiKhEEcf8ZL9E3mR9W3BGLlxKrKdfYJa3AI6Eh6CAzswO4/LaQL2nfVRCSJkHcdgCVKTXOuJEXW96SEFf+SF3ORrmx1I4lq9ZpPA7oP/fVvo3SMFtOdIxBMiBFF6I7WEwGhER+RB0hMDTrOURc5CD0YLKPLC03KLC9TWtU0hl7aFuRNWgPWUeRVmjwqh1BqPv338AlBiyG5D7rjnRgHt4dCmk80qN8PkDALJ6+AWjJTJdeGLbfcaylsgcTI3wKdREREREREREREREROSPetfHxTL9xD891REOKVxyjPvk9YbMNnMbzrvC035o+FFnXioXXvdNXDz6CdT6yJBqyHQgkBvn19Q8oLaZKClgpq0VSHWby0KVeQjcSKUcB1h0jLlw0zroNS9Zt997ksLBLf72GReC0bDkNKj4WOCt7ykuG9sEHHumtx34CcvzE6JGZaMmz5QL21rNy99YD2TN44wxyedBSFVHnfERufDem/r9+um3yn2eA7+exfbEwMejdKfNyyPZZP8FZQ5GU2d/CgAwPvMGoj7G8sT6Hvat6hrK2h6iEWvpO8Ui/aNPeapi1niFU11yg678WxZdPeZzUkyanzTnAKhgBcby7r0I2O+I/suUgjrTcj6mPZs0d0xrYIf5uwbUMRjNK1XXIAac6t9+3XM9H1vqPdgwvkUOglSnX+y5HiIavhiMRkRERERERFQiabJ+v0Azy82+XLiUFJqVv60tYC1fV3an+zrCzYmYJbyr0qTAE40sMjpjLJNeay8hXtI6iax70JwXtvCHRL+/s3l/UnBbjqMCCKuIa/1+iWEWDEYjIiIfpMDTtBZGZvWRAlGDqjKDhSOWvlG3ITyVqNq0p83BaI2hsSU/LdG2VeHQKFPIMOCtLyn1z7sG2D+XAxdtT9cefsFoT2y/D906aSxb0nhihVtDREREREREREREREQjgTrlvUC0zlz41H3QPUIYVIEvn6Jw1Zn2e1WNWXMYkZJCkWjYU0efDkyfI5bv/fWluO/cDag3D5Er0pgXaCWGmA1EkxButHkD0GV+cK2vECwyUh+9SizT5+4PnbI/oO/Lp/qbSms6F6nf/Acq3DseVH3qp1AXfhHYa//e0KFl74b6xQPeA39qPB7QABCy3dOmwaQu+Za5oK1VWL5Wrmzi9IE2h4aYOvSE3pAek03roNs37/p1wWS5v9OTBs75tRCg50NSeLZnpHDMyKQyH3unXASgdxxRc8pyzBeI5cYS1TOAhsgLNWo0MHUvc+GmddD/vN5TPddf7FjDGh9+Bbj5KXNZrTbPJ1Gf+omnfQ+UUgrqO7cCZ3wYaJkHHHgs1Ddugjr8pIrsn4YhWzDaznZzWT0DO32RPmP/917o//zbUxXvPNDBje93EPcwNa3hHz8yF0TroCZM87Q/IhreGIxGREREREREVCJpsn4ym4DWvZPnbaFUESfa7/+FEhlvAWv9t7EHBWit0ZU1D7yJBeo97aMSbIEnUphB/uuVz0vwgrROMlMc5qCFYARliYmwhbP1D9Izh0d4CncTgvq8HjuFtNbiaxoNMBiNiIi8kwJPpWu6W7k9wKh8otZg0/KEpxINpq0pIRgtOHYAtXoPVJM+C3np28r989JDfwH5vFLjyOcVqf9frbTWuL/jdmNZXaABC+sOq3CLiIiIiIiIiIiIiIhopFDnf1YufOxOb3UohY8tdTC1UV4nnjEEo8090FP9NHypMy+VC9MpLFxxLf77eW9TIePZbbt/mSSEmA2ENBFca+C11eYyBlsNnFuolMt5aOlcYMlsb7tydAb1hWNtIzFg5oJdv6pgEOqCz8G55nE4N6yE88VroSZM9bYDAMpPWF4Ng/WGzDThoHlzgzmMr63VvH58HFRMCBilYUWd/gG58N839vv1GDnzE/94Dti4bWBjUqRgtLDOC6yNxID4uAHtp5AKhoC+IBI/wWi1uTF3dQxGI/Js/yPFIv2P33iqIhxS+OZyB2csksf+3fAf8/koJs1FGYzwYYGK1sK59HtwrnsazlW3Qx3+tortm4YhKRitayeQyZjLeF3yx/L+17df57maty9S2HyV4xqA3mj6jggADn2r530R0fDGYDQiIiIiIiKiEkmT9TWy6O570pI0cT+sInBUAIA90MpLwFq+LpeQjh7djbROG8tigeq54W4LRktp81P9pAAwLyFe0jqm1z33NymkpC/QAQRUEDXKPDAlv91SsJ2XcDcpYMLrsVMopXuQhfmLfy/tISIiypGu67ZgNK212GcJWfoJ5WS73klhpkTVpD0tBKOFBhKMZtO/nyz1z730JWPCZyS3zztuhjpwsRJeTjyPjT2vGcsOb1iGkFOZcygREREREREREREREY1AM+bLZa++ULbdGCe9VnDiPQ2RFsvxBQCvPo9po4E6D/lQ8Uz77l/cwrRKYTse168yL/cTgkVGKlprf+1dzkNKKXzlVG/Tacdm3ix+bNjE6dZxor7V+LhPzeNn6EjHXDYLvLG+aLFuaxXqGYRzEQ0NS39Iv/p8v9/nT5bPGVoDL7w+sKZ4Ckab1Fzec1devQAwP+m9D7gruLSeATREXqkyfgabP9n//muluSijRvuvjKgizNc83bXDuBwAEBs1SG0ZoWznpTX+zksBR+HQGfZ1xma2GJer5nm+9kUb22FZAAAgAElEQVREwxeD0YiIiIiIiIhKJAVRAbsD0eQwgKhrPVlk0dN3Y1IKzCrktl5XZqdYVutUTzBayJEHfEghKVIAmJfgBWkd099PQ3o6l/2msbSP3N8sqzO7AvUKSeF5XuqXjkE3tsCXaN7xS0RE5EYKRktZgtGyyEAjK9QXLEu73Nj6EIkBhjMRVYIYjBYsPRhNWfq8hf3khBASbfsctXsdc/93oO896bxTYwlGk85F1eqB9tuNyxUcHBk/vsKtISIiIiIiIiIiIiKiEWXxsWKR/uN3y7abUdntRcvUae8rW/1UpRYcAkzdSy5/4G8IvfwfnHWwe7hLPLNt9y9NzQNvWwEVjgJjJvnbKDRyHtY0lNQJ54pl+rpvuG5/xF4K7zrQ/RianlpXvLDcAY01Ee/rMhht6FjCFfW75iH76y9Dp/PGIrz0H/PKDPgcOeYcIJfd+mvodSt3/XreoQq2TLJXNktj0r3pNg+pRySbNx59sI69vnrP2fZHONr8IO5CU1N9YYJ1DEYj8uzYM+Wyjs3QXfL8oELv8dCPLhTVhjGAsxcOTuAiUTlIx2bC8l6Juo9ppd3Uce+WC1evgO7plssN9pogn0/CThoT0xvNhcdb2kFEIwqD0YiIiIiIiIhKFA3YwjK6+v2/UCQv6MoeupELWJNDqvqvbw8K6LQFowWqJxjNFniSzprDDKQAMG/BC0JombFO801oW0gEIB8vXv7GXoLIxH+DEEjhxnYseQmbIyIiygkJwWhpSzCaLTRNClort4AKoEaZB5Z67ZsRDaX21Gbj8tGhcaVX6mNAkxgSbfkclSMGo3kMjJZI5x3beWVgQ1Arqz31Jp7d+bixbJ+6xQP72xMRERERERERERER0R5PBUPAwceZCxOd0Lf+uiz7CRgeXKMWLilL3VS9lFJQ3/uHdR196TJ8f+GzOOcQ+33LxmxH7w91DVD1jeVqYn8+g2YUg63K45zPyGU93dC3/NK1it+cr3DWQfZjqKWntXhhucOF/BwTNTx+hoqK1gKN4+UVrv0a9P87BwCguxPAk/8yr8dgtBFDKQWc8RGxXH/waOjX1wAAFk1XuP598jT+D/x+YKNSksIQu4jOCySxhPsNhOo7puf3vISbXnsXmlKvu26zK3SyrmFQ2kQ0EqnG8VCfu0Ze4eafe65rxjiFr53uL9Cs1jAGUH3+N77qIKooaYxr0jKvKmIer0pmasos6+cy/Ym3+aqvxfKs5+mhDjjSHL6mGb72Q0TDF4PRiIiIiIiIiEpkC4dK7gq7ksK6onk/W4LR+ib+uwWe5XS5BAV0ZeVgtFhVBaPJwQQp3WNcLgYveAgVk/6WpjqzpQajuexDCtHrbZ/7F+1SwITXY6e4XbagNgajERGRd9J1Pa1T0Np8XbWFplUqGA2Q+wilBo8SVUoq24Md+U9Bz9MYtIwiGIDCt7MYEu0luNglVLhU0rmlxpGfzi6dp6rRQ9vuRtYwUQgAlsRPrHBriIiIiIiIiIiIiIhoJFIHLhXL9J++Nzj3VhYdU/46qSqpSc1QP/23vEJ3AuG//hS/vdDBN5bL4/UaMn3BaIMUBgPAf8hRqHJjHUYyFQxCffR7YrmX81A4pPD7ixxccYJ8DLWkWov3PZTBaAzWG1pu55L7b4F+bTXw4K3iKmowz0dUcWq/I+TC7Vuhb//trl/PWKxw5mL5fLOhvfS+UzJtXh7OC0Yr+7krJ6/ek3fehrWrZ+G97fawpGmp9b0/1MUHp01EI9XSMwHHHAmir/umr6ouPtJvMFrBXBSlgMkMI6IqJgWjJSzzqiKcH+WXOuW9cuGzD0KvedFzXc1j5PPSdGw0F7zlDM/1E9Hwx2A0IiIiIiIiohLVqDAc4aN1YlcwmjlcKj8MQAq0yt/eFlKVr8slBKsrYw5GC6sIAiroaR+VEFJyMIEUZiAFlHgKXhBDyxLI6kzB0tKC0cRglVwwmiVgxUsQme3fUIqEJWQv7CFsjoiIKEcKMtPQyKLwOtsrrYVRWwBClgCjcpPCmaRAVqJq0Z7eIpYNJBjN3uPd3U/WWov9UG99W3MwsK2P6oX0WSJo+fwh9f+rTVqn8HDH3cay8aEmzIntW+EWERERERERERERERHRiGSbBP/aK8A2+T5VvsuFQKJ9kyuKF05s9lQnjRCTZ9rLX3gMALDvZPnuZVO6rfeHxvHlalURNXUvfxsw2Kp8psySy9rWAluEyfMF5jfJZbN6XjHs1+XY9Csc8b5ukMF6Q8p2zOW8+CT0848NrA4aPlyvVY/3+3WW5XL0ZGvpzejqNi+P5o/ZaWopfQc2k/qH/SkARyQeFlcfm96MWt035q6ewWhEfqhgCKgfbS5M90BnzQ/SNBldCzT6yIAqCkYb2wRVw34tVTExGM08lw4AEOb8KN/GTgZs54KCvpDNXpZ+0uye1eaCidM8109Ewx+D0YiIiIiIiIhKpJQSJ+wnXcKu8sMAwioCJQasdfb7v5tEptP6tLvOzA7j8ligzlP9lSIFqAByUIoYvGAJnvOyTmG94svr8vAcKQAid4wkLX9jL+FubsFrfsmhflE4il8pERGRd7brekoIKUpneyz1VS7MtdzXV6JKaU+/KZY1hgYSjObtiZHdOgkN84CrgQQXD+S9l9VZ8bNEjSUYTQ+TYLRndjyG7bkn3xc4qvEE9uGJiIiIiIiIiIiIiKg8Fh9rL29r9VTNafsr43zlM7f/pWiZKgjeoJFNjZkI7HeEvML6VdCZDI7ZWw51OGnn7b11LTltEFrY5+jl/tYPVe4hcCPewqOtxfqLZ0E//YBrNW/bRyFiGNJSk+3GyTtvKy44cKnHBnrk9ZioCUNJAQ9UEeoY9/e7/v7HgBVyKBT2P7KMLaIhN3MBYAvIfPWFfr+esUh+D//03qx17L9NR5d5u3h22+5fJjWXVLcrQ73Te9aKqzfmxrREa3tDnojIn9n7mZeneoAtbZ6rUUrhHZZzUqF+5xNg8M4pRGUjHN9JYexpJMa+dglUMAgccYpYrv97r+e6FkwG5kwwl7399V+b989gNKI9CkfAExEREREREQ1AJGB+MsTusCvzl6f5YQBKKUQccz257ZMZc0hVoQzSSGk5SKRLCN+qrbpgNDnwJC0EqEjhcQMJFQMMwWhCwIPj8jVLRAhf2xWiJwSRBVUIIcf9BrAcvOYtVK9ouwG8nkRERPnsgafm67oUmOZWX7lJ11epj0dULdpT5mC0WqceYcfHU6d9yA8Qk0J2AYifffJFA+YAaq+B0SYZIRQNAILO8A9Ge6DjDuPyGhXGIaOOqXBriIiIiIiIiIiIiIhopFKRGNS3bhHL9Q0/8lTPpLjCby9QCOQNuTopcRc+tvXHxStPZDDankZd9lNruf7MaYiEFP74Pgd1od33AZXO4qdtl2J2z+reBSeeN3htbJnrb4NQeHAasgdS4QjUd/8ur/DcI9CXLoO+0XA+ydMQU/jdhQ7CecNVa7LduKbtYozNbOm/8uyFUGH3e92+eD0meOwMvcPeBrzjEvs6OzuAVc+ayw44mkFQI4xSCuoL18orbN0E3bF77M5+U+XAlXv+B3z6ptLGprQLQ9ji+Q/WG6x+1NimooDH5pQcjKZzoTN18cFpD9EIpz5l6R/f/SdfdX3lVIWDmr2t25BhMBoNM1LIWWKneXnEPFaV3KkPf0su/Nefof/3X2/1KIXfvdfB+Pr+yz+3ZAeO7LjHvNEEBqMR7UkYjEZEREREREQ0AGIYVd+E/YQQmhEtCMmSQ61yoVneAwCk8DMA6MrsMC6PBeqNy4eKowJwEDCWScFvUviC9Np6XWcg4Qv99yGFO+RC9Mz78dJ+wBa85i1Uz+t2XttDRESUYwv4TGfNAWhSYBpQ2WA0KcBJ6uMRVYv29Gbj8sbQ2AHW7O3JeMmM/B6RQs/6rWP5fFTqU3Jt55UaZQtGq34buluxOvGiseygUUsQq7IgbCIiIiIiIiIiIiIiGt7UYScCoyeYC//1Z8/3c95ziIPXv+Pglg85eOZTnbi5dTkiurt4xUkMRtvTqOl7Q938qrzC43dDr3oWx89XaD3lbtyy/h24/rWzsX7VTLy/4+redeoaoELyfcCycAtKysdwq7JSBx8HjJtsXUf/6kroLvOY2Zy3L1JY/y0HN3/QwY1L/ovW1bPxru03Fu/v9PcPqL1GNR4fahYc5OOYXKlAAOrS70H98fmSQp3USRcMQqtoqKm5i6F+dLdYrv/wnX6/X3iEPObmqn9qrN3if4RKhxSMlu0LRquLQ9UPThCZcpyiUJKmdJu4vs6NOaprGJT2EI14k5qBiHlMnf7F53xVNX6UwoOfdvBey3kpZ9f5JIeh1VTtxGA0YV6Y8L4id2rcZOCMj4jl+pqveK5rcbPC6q85uOOjDn7/XoVXvu7gS69+XB6xzHMR0R6FwWhEREREREREAxARJuznQqWSQmhG4XZyPbnQLO/hVomMHOTVmTE/5SImhHYNpZAQeiIFGkj/bum19bpOMtP/tddCNIJy+ZpFClbJ/Y0TQniEFKhWvJ49pM8vr8cuERGRG1uQmXRdT+u0cTkAhCwBRuUm9tEypQWPElVKe+pN4/LG4MCC0bzFotnDA6V+cb6oEOSVQVoMSnZTcuBiiUFslXR/+x1i2VHxEyvYEiIiIiIiIiIiIiIi2mPstZ9ctuEVz9WMq1c4dX+FfdQaONIjazjhdc80tskenvJ4bxhNY/cbOHnn7XjHjlswMbNpd/kgBcHkU5Oava882CFte6I5C+3liU7guUdcqxlbr3DaQoXT267D+Iz5IWTw87f2qsZjWJ7X9WhQKaWgpu4Fde5n/G88GMcPVYeW+XLZy8/0+3WGZciO1sDdL5YQjCYMYYtntvX+MNjHXkH9QWQQFcYMXdDx294fony4H1EplFJA0wyxXHf7G9MaCiq860APwWi580muHbymUbVjMFpFqelz5MIn/wWdyXiuqy6icPx8hbMOdtAyVgFr/yevPHGaXEZEIw6D0YiIiIiIiIgGQArLyIVRyeFS/cMAogGpnq5+//eiyxKE1ZU1B6PVBuo9118pUjiBKSglqzPo1knj+lJgWL6QU4OgChrLCoPFNLLG9ZRLTIQUcJYLRJPC77wER9jql45BN3JQG7/4JyIif2yBQykxGM0WYGS+Zg8GuY9WWvAoUaVsTQvBaKGBBaPZ5AcIS31QBQdh5f7Ua1ufs9T3n3S+AYAaRx5ILvX/q0Ui04knt99vLJsZnYspkebKNoiIiIiIiIiIiIiIiPYIauESufD1Nf4rbGs1Lw+GgDGT/NdHw55SCjjoOLFc//X/oLt2ADs7zCvUNQ5Sy/I0tXhfl8FoZacsx0eOfu4x7xXazl0LDvFej1chj4FnPHaqi4fjrghDZEYsFbeMw3nqvn5hIG+dbx9nvnaL//23C0PEGzN918amZv+V+mGo//yO3xlXXb7jr70/JEsb105EAKbuJZdtXOu7ukPlnLVd4tn+wWg4aKnv/RBVlnC9TTIYbVAcaDknpFPAm6+XXrflvKZi1TcHkogGD4PRiIiIiIiIiAZADKPK9IZcSYFmhdu5hVr5CbfqypjDz2xlsUD1PX0p6JhDVFLZnqJlUqgYIAeaFJJC7grr1tIDuVwemCO1I7kr/M78Rbv39psD1JLZBLLaf5iDGOoX8BbURkRElBOyBKNJAWgpXXy9BwAHDhwVKEu7vPDaPyCqNu0pczDa6OC4AdYsd3q9BKNFnGjvBAYXMeHzEQB0ZUoLRrMHLsrnKf/P462sx7bfK4ZEL4mfWOHWEBERERERERERERHRHuPU94lF+pMnQafM93zFbe65wVwwYSpUoHL3iKm6qPOukAs3rYN+9wLop+4zl9fHB6VN/UxiMNqQOv4sYP7B9nV++3Xov1/jrb62VvPyyTOgwoMwbrLGazCax/WoItTMBcCpF3nfoCYCjJ4weA2iobf8g2KRvuwU6K7esfsHTFe44HB5zMzXb/c3QiWV1ujsNpc1ZPuC0SZO91WnX8pwHfz41h9iek//IJOPbP0pZves7v2lc/ugtoloJFMf+oZYpr94NnTW35yRWFjh82+zj+VryPQPIVbjJvvaB1HFSeNTE8I8u4g8VpXcqaYW4JT3iuX6y+dBi5PwZLprB7DNnBqrLvyi7/qIaHhjMBoRERERERHRAEghUbmQq1xAWtF2BSFWUqhVItMXjJbxHowmBWwBlmA0pwqD0YRwAlOggS2cRAo0KRQV1isOtzN/Keu4fM0itSP395JC9CKWUIh80YC8XncJ4S1eQ/2IiIjc2AKHpKAiabmtrsEg9Q/8hNYSDYX2tDkYrTE0ZkD1egk1A2x9SY+hv5Zw4FLff7ZgtBolT0LQVRyNprXGAx13GMtGBeLYv34QnlpOREREREREREREREQEQNU1ADP3kVe4+0+e69LZLPDvv5gLBznQg6qbmjEfOPNSeYWtG4HH7zaXVSQYrdn7ugy3KjsVq4f64V1Ql/+fdT393UugN2+wr5PNApvWmffz/q+V3EYrr8FoXtejilGf/AnUlz1e5yZN9zzWgoYndfKFcuGT/wJu+tmuX68+V2HWeHn1N3d4H6OyzTI0PJ7Z1ts2P9epUoyZWLRoRqoVj7YehR9u/AQ+seX7+Ov6t+OqTZftXqFz2+C2iWgEU00tgBTW+urzwNP3+67zE8vs16jc+QSwB7MRVQ2p3yUFB0YGIQB5D+Nc9jO5cMXDvf/51bZWLnvr2f7rI6JhjcFoRERERERERAMghUQlsl3QWoshZYUhVlI9yWwXsjqDbp303KZERg5G68yag9FqA8M7GM0WBuc5fMFj8Em2xGAEOVglAa21GPAQFULzvNYPyMEUNlJ7pBA/IiIiiS3MLCUGo6V91zUY5GBTBqNR9UpkOsW+XGNwbEXaIAU7e+1LhlVEDB7usvT9bWzBaEFLMJoUjFwNVnatwKYe8wD+w+PLKn7OJCIiIiIiIiIiIiKiPUzLPLFI33ez93pWr5DLJjZ7r4dGJLXv4aVtWDf4wWgqVgc0eLwHy2C0QaHCUai3nQecd4W8UjYLPHirvaI3XwdSPeaypuaS22fl9ZjgsVN1lFJQxywHxk12X3mwg6lo6LmEuOb3iZRSuPQtcgjR31d4H6PSYQtGy3b0/jDYx9+EacbF4zObcUn7L/DtNz6Hk3begX7/4kVvGdw2EY10sxeKRfrem3xXF7MNmwPQkM0LM+RnMxoO/AbShr3NNyMXe+0vFvn6fiinbY15eSAAjJvivz4iGtYYjEZEREREREQ0ALawq5TuQRbmp0oUBgJEA3LoRjJruXNpYAsK6MrsMC6PVWEwWkgFjcv/P3v3HSbJVd9t/3uqu2e6J+zMbNDuKq4kJFACBYQkkHclgoRkko2JIhkcCA8YY4IJNvYLGAfA5sEIv4Bfg7EJxg/2izESIIIQGGwRTJBF1kqAVkLSzmyY6d7t7jrPH7O92zNzftVVHad37s916dJOneqqM6m7uqf6rlDQoFK3v0ZW0CTteuUVUYfwH52dkl9At35WvLwO+EpgP415haN5K9ezP08rjJHE+rlL+/UEAKAhcpEi5YJjVqjIWl5YJWG0dh5bgX6Zrd1rjs0UNnW07aQjXu+PHCdbx5LLA9HmfpyzI9TGcXMr1TgpjGbftzR/XqvNjXOfDC6PFOnSqSv7PBsAAAAAAAAAALDWuHMusQfv/En6Df3cXted9ZAMM8JR6cwLpaiNt0Cu39z9uYScc3G69U45q7fzWOPc2cnfB/+zHydvYNdOe6xXYaGRYrr18lwQa9Vq8XMnSe6slPcRGFpuYioxFrv8mOihp9pn3/z4nvT73X/AHlvXeL/Ahi3pN9iOMx4sjWa74La76hk9mgywRiQ9B/vpDzNvbiSf/B6Y6XpTGG1rcggSWB2yhtGyPY7BkPS8+Jb/yr69XTvDy485Xi4ffq8hgKMXYTQAAAAAADqwPHDWUK7Pq5wQzFge2TC3Ey8kbsfad0js6+a2xqLVF0bLu/DlZ6qhMJrxeeVdXoWoxWVsDrHjdEu/nt4Ko7W4skhSUCzp58Wa14r1ErefPR5h/Rwl7QcAAIsVNLMCaNU4fBXefNTfkz3N44P6wqqOJWFt210NnyXp5DSdX9/h1tOdNLL8GLrBet4Tkvb4PC3r/kZafN5ghY6t4/9B2129R9/ef3Nw7IETD9FMIeWV6QEAAAAAAAAAANr1qKfaY3f8QP7276Xbzl077bGH/1qmKeHo4zYdJ12ZPaLijj25B7MJ7OcpL2290pNeLFdKdxEptOnCR0mnnWuPf/Qd8uWEvzXv2hlePr5OmpzpZGa2wmi69QijrVruSS+WRhK+jzPHSL/87P5NCAPjnv5ye3D/Hvl9c4c/PO9Ee9U/+aTXwVq681TmE8Jo4/7Q/d3kdKpttcsVx6SnpngcbPbgR/ZmMsAa4R73PHvwG1+Q/9Dbunpu67p475EPthBGwxBo8b6uFQrp3m+GZO4Jz7cHb71Z8fO3y9/909Tb87t2hge29ud5PoDVhTAaAAAAAAAdKOXCJ6tU4gUz1iWtjEuVIns7WaNWVihgISEgMJ6bzLSPfshnCKhYUbGkGFnadStxecnH1h+KrJBCQ1LgrBKXzZ+XtJ9DIRpR3oWvfNFOPGL55314PilDbQAANLMf12vG8nDAyNpOr1iPw7HqqvpwvA0YtNnafcHlU/n1yhnHi91x5DjZPJbMcHxuPUeyAr6tJN2vLEaOM54QM2Bfmvu0vOLg2I7pq/s8GwAAAAAAAAAAsBa5yRm5P/moOe6f82D5WvhvwkvWu+v28MBpD5IbX9fu9HAUca/6G7nnvynbjbZu68lclnPn/pLcOz+XvM6L/6Ivc1nLXC4n947PJK7j3/YSe3DXzvDyY09uedHctiUFtZrlevl3fnTCnXOJ3Ns/vRjxPOE06fhTF//bdoZ09bPl/ubGxbgjjnru0dfI/c7b7BWajnWcc3rxw+37lVf/S2dhtJyvaaRxXluvwo5N3PNen37lU86SGy32bjLAGuCOO1Xut95gjvtrXy194WNd219e9cV/lMalqQ1d2y7QM1mP3YkQd4U7+Qzpma+yV7jlP+Vf+fj04cZdO8PL+/Q8H8DqQhgNAAAAAIAOLA+cNZRbBM2WBwGKUSm8nXpyYC1kob4/03JJGjMCb4NkRb5CQQPra2R9f7Ksuzwq5mW9ENsijGaEHRr7sOJuWT6HtHG3NKyYWpb5AADQkI/CfziuxuG4mBVM63cYLelxr53HV6AfZqv3BpfP5Dd2vO2kGHDzcXI3jm2tCHU70V9JqrYILlqfm338PzjVuKov7/l0cGzLyPE6feycPs8IAAAAAAAAAACsWWdfbI/VqtLXk4NRkqRdRhjtzAvbmxOOOi6Xk7vm5dIjnpz+Rn18w7R74MPswYmp3oW1sIQbXyf3ur+zV/jcP8tXwn/L9tb9UC9/jnJ5KUrx9l5iDauaO/tiRX/8j4o++F1FH/qfxf8+8N+KXv1uuWNPGfT00E+/8nz793XXziUfnr7Z3swHvuJTRUPmjWt6jsULR86AGet9YNY5J/3yc9KtvGFrT+cCrBkXXZE47K/7QPf3uXUbx7QYDll/TgsjvZnHGuQufWzyCj+5RfrBN9NtzHh+5gijAWsSYTQAAAAAADpghaiq/qDm433BMSen0Wjp1Y6sN/1X4gUzKmBZMEIBiWG0aDLTPvqh4MIvMIfCaNbXyPr+ZFk3bfQkKRIhLX4+kfFSTDleUMUI6XUn7pbtZ8h7b37eWb6mAAA0WEGz0ON60vJ+h9GseK3UfpwJ6LXdtXuCy2cK/btio3Vsm+VYslvHtg2t7leGKYz23/v/Q/vqe4Jj26ev4iQ0AAAAAAAAAADQP9ObpPUJdY/b/qf1Nu4y3vC6+aQ2J4WjlTvl7HQr5nLSMSf0djLLPf43govd01/e33msdacmXETqYEW687bw2Fz47+zadFznczI456TCaOsVCaMBQ8HlctJm47Fn2bHOOcfZ53Xcu1+6J/wWhCXmD4TPZxn3h86rmZhanFMfuFNTPj6PFluvA6C14+8njST8Pu1M8Rwsqy08N8NRKs3xONI58fTWobnbbm25Ge/9iqjsYYTRgDWJMBoAAAAAAB1IilbNVu8NLh+NSorc0qfkViDgoD+g+XqKv242KdfDkY75OBxGixQlRj8GxQqfVANBg0oXwmhmeGHZ19MrDq7XKozmnFMpCgfwynU7gFfMdR53s34mLAd8xQxAZAm1AQDQ0K0wWqHPYbSkx7208VSg36znITP5TX2bgx0uTv+8wz52bi9K2Op+xWqJrcYw2o2z1wWXj7qiLlp3eZ9nAwAAAAAAAAAA1jLnnPSYXzfH/TtfJb/7bnvcezOMpq28+R7LXPFUaSTFG9ePOV4un+/9fJq4q5+z8o+OI6PSFU/r6zzWOne/c6TTzjXH/ef+OTywP3xhKq1b34VZJSCMBhxdjHCQf8crlhwPXXo/aTrhdOzPfq/1uSrzB8LLxxsX+5yYbrmNrnnkU9KtN7L63q8ADCM3NiE94sn2Crtul6/VurtTwmgYFlkvKtsq5IXU3MSUdPmvJa9kvf7TbO9uacF4HyX3RcCaRBgNAAAAAIAOlBKiVbO1cJAgFANIDKwZ27GU43AoYKEeDqON5SYWT1BbZbIEVMr1cHgh6fuznBUgWx496SSLYO1jX31OserBsSwhMiuMljXcUjG+nkn7AAAgScGFTziu+fDJF6EQqmQfH/TKaELEqd04E9Brc8bzh5nCxo63nRQDbg6IWcefpVw4dhZe14j+GtG1Vqww2pH7FauMtrrCaD+t/EQ/qXwvOPaQqcsyPQcCAAAAAAAAAADoBvfcP0wc9y/YIX+gEh7cc59UNv72yhtesYzbcpLc2z4pTc4kr7j15P5MqIk780K5N35EOu6UxQUnnyn3l9fLbT6h73NZ6/eQ2FsAACAASURBVNxbP2EPvv9P5H/83ZXL982GtzUx1aVZGUaKrdchjAYMjy3bzKHm46EocvrWH9pv77/mvV53700+X2X+YHj5kTBaj++/mriZY+T+4H2tV0xznwcgFfd775DOeLC9wnV/3939Ea3GsMj43jiXJ4zWTe6V10qPfqY57tOE0XbttMeO3ZZ1SgCOAoTRAAAAAADoQFIkarYaDhKUopUxgMQwmrEdy0LWMFo0kWn7/VKIjDBavDJoUDHiCKEIncX6HqwILxhhhMi1fpmlZMxnd/WehNt0Ix6RLdySFJuw4m4AACTJEjxNWt7vMFrkIvN4Imt4FOiH2MdmWHl9flPf5mEdf2Y7Pg8fB2c9tm1oFVy0om++ozRy931x7jpzbMf0VX2cCQAAAAAAAAAAwCKXy8n91hvsFe68TfqyESpKelMsYTQEuAddKveJO5NX2rqtL3NZzm1/vKIP3yp3w5yiv/+m3AMfOpB5rHVuZpN03g5z3H/8PSsX7t8TXrlVhK9TI6Ot18mFL0YIYPVJDActOx46Yb3T6Zvt1T/w1RZhtAPh5WONc8B7ff+13GW/2jpGM5riPg9AKm60KPdXnzLH/Qff2t0dJoQfgVUlYxgt1fE4UnOjJUWvfa/0q88Pr7BrZ+uN7DJeJxoZldZvaXdqAIYYYTQAAAAAADqQGEarhWNXoRhAUmzKChtYyvV5+UC8a76+L7j+WG51htGyBFSskFeWqJj1vVweXYsVG1to/QJ60ZhP0ve4O/EIO3QWYoXmFvdBGA0AkF3eha+oVfXhS1faYbT+n+yZ9hgBWA321/eq5mvBsZnCxi7swT7mbQ6IWeHApOdPy5nHtvX2wmit7leGIYy2UN+v/9p7Y3DsfqWzdOwobw4CAAAAAAAAAAADcuLpicP+1q+FBxLf8JpQC8Ga5qJIOuUse/yE0/o4m8D+R9Of84ceOeF+9titX1+5bN9seN2Jqe7Mx5IqjNbfiwgC6MDxCfc9kvytNy/5+LRj7HVvvi15V/Ph0+403rjg4Lr+htHcyKhUbHHe/kixP5MB1gg3NiHlcuHBhf2pt/PcS8Pnzb149zuPfLD5hCxTAwYoYxgtz7F2LzjrmGjXztY3nr07vPyYExZfCwCw5vCbDwAAAABAB3IupxEXPjFhtnpfcHkoLJUUm5qthqNZU7nwHyxjxTrgKyuWL8ThgMD4kIXRqoGggRUmyRYVC38Par6qahyOKDRL8/K5tQ/reyxJpVyWuFv4880abrFCapEi8+cdAIAkVtDMCjhZAaOCEVjrJevxO2t4FOiH3dVwnFmSZvKdh9ESL6Z3qB8W+1gHjDBalsjumHEc3O7vXqv7lWEIo31lz+fMoOSO6av6PBsAAAAAAAAAAIAmD3mUNL7OHr/hI+Hld+0ML998Im94RSL38CfZg5c/sX8TwaqU+PNx681LLj7sDx6QDoT/xq3JHoeFSinO3833/yKCANp0yaOlUsJ537d/f8mHT3qwfSLOR7/uddce+5yV+QPh5eP+0Hk1m0+059Erp5+XPE4YDei+E4xA9e675CvpzrN73APD90VP3fNPRz7oc2wRaFviSa4Bhf6fl74mbDEu8rtrp/xt/5N8231z4eVTGzqaEoDhxSvEAAAAAAB0yIxd1cKxq2Ju5fo5lzdDH9Z2ZgqbzDkt1Fde4WWhvi+47lg0aW5nkApGGC0UNCjXw3+0KUVZomJ2pKHSFJWzwgguxcss1j6s77GT06hL/0dg6/O1vj4WOzQ3Jpf1DwUAAMgOnlqhImu5tZ1esh6/s4ZHgX6wjivzrqCJXMIbUbroQFwxj5mTjrnTrls2gs+tmPcr0XBc8S/2sb44d11wbCo3o3MnL+7zjAAAAAAAAAAAAI5wpXG5N3zIXuHeO+Vv+KcVi/1dt4fXt95ECzQ85Xek7Y9fuiyXl3vNe+WOPXkwc8Lqcf5l0oMuNYf9215y5IP9xhvvJWliuntzCkkVRhuOv2kDkNzYpNz/80F7ha9cJ187cv7KNRc5jSa0D+//B7HuuC98Do4ZRjt0Xo3b2v9jKffKdyaPj6a/4DmAdNyr32OO+RdetiQGa3nsg6TXXH3kPSLOx3rrXa/QRZWbj6zU62MioFuyvt8pTxitJ7ZuM4f8s86Tv+U/7XHr+dnEVIeTAjCsCKMBAAAAANChYi4co6r6g8HlVkjNjFoZb/xfnxBGC91mPhBLk6QxY/6DliWgUonDV+srRun/gFoKBOsayk3bN8NoKV4/t/axp7Y7uLwYlTKFyKztZw23WCG1LF9PAACaZQmeSlI1Xj1hNOvYLWt4FOgHM6qc36DIdf5nQSf72LRxnJx07Jl0zL3cmPH8qBKXFft66u00tLpfccbXJ83JYf3wvYVv6Z7qruDYw6avUM5xlXAAAAAAAAAAADBY7sJHyr30L81x/+4/kI/jpQt3GWG0AcQ8MFxccUzujR+R+9Ati/9/y8fl/u3nclc9c9BTwyrgnJN75bvsFf713fK/+Nniv5PCaJM9joAUU/wNnTAaMFTcxY+We9nb7RW+ev3hf+Yip39/iX0+z76KdO2N4fNWyuG3KWi8cd5OQpCkZ44/Lfk+ayT9xcIBpHTKWfbYD78l3fq1lptwzumNT4i069lf1aduv1p3/+AE/c7sstDhOEEiDImsYbSR0d7MY61rEbv373+zPbjPCqMRaATWKsJoAAAAAAB0qJQxFlU04hpZo1Pr8wlhtPrKMNpCHA6jjecmM+23X7KE0ax4XJbwghU9kaRK0/btMELrF9CtfVixNSuWZ7F+trKG0ezQXPqvJwAAzfIufEUtKyRrBdPyUf/DP8Vc+Bgt6+Mr0A+z1XuCy2cSosrZJB3zNsJo4WNJKdvxZNKxfNI+LOb9yqGgmPWZWcfq/fbFueuCyyPldOn0lX2eDQAAAAAAAAAAgGHbGfbYrp3SnT9ZuuzeO4Orus2E0dCac07u+PvJ7XiC3EVXyvU6YoXhsvnE5DDCN25c/L/1xnup92G0sYnW6xBGA4bPKWebQ/7mzy5ddWPypv72pvB5K/sPhJePNc5537ItecM94KJI2nyCvcLY6nzPAjDMXHFMmjnGXuFrn0u9rWPq9+oRC1/Q+nh26UBpQi7PRTsxLDKG0fLh89vRGTcxJa1bb6/w9c+tDOc3WOFqnu8DaxZhNAAAAAAAOpQ1FmXFsUq5bBGsyfyUCkZkZCEQCluoh8NoY7kUJ1YMgBVGqwaCBt0IeSWF6cpN27fCCC7FC+hZf1a69bNVzhhu6UZoDgCAZlbQrBbXwsvNgFH/T/a0w6PZw0xAr83W7g0un8m3OIuyi6xjSSk5RrxyXfv5UdI+LNb9ypHnVOHj+dUQRruv+gt9Z3/46p3nTl6k6XzCCSQAAAAAAAAAAAD9dPYl0sioPb5r59KPrTe8Tvfv71sAjk5utChdcLk57q/9ffnvfV3aNxteIZeTSj0+vzbN9gmjAcPnjAvtsY+9S/FfvlTxG58r//G/1YnVOxI3dZ9xisyccWr4dLxn8R9TG1JMtAceerU9lnCfDKADl1xlDvnP/7O8T3n+mxWLJUaEYZIURg4pEEbrmYT7Jh08IO2+Kzxm3RdNcF8ErFWE0QAAAAAA6FDSG/ZDrABXlkjA4nbGNGbsu1zPEEaLVmcYrWCET5YHDWq+qqo/GFw3y9c0cjmNumJwbOnXs/0wWtbvcdYQmRlGqy+k/4OWuhOaAwCgmRU0s0JFrQNG/WOHR7OHmYBe213tbRgt6Zi3cbRpHUtGijL9Dic9z1oIPN9ppVVw0f7cBh9Gu2nuU/IKXx1v+3TCCaUAAAAAAAAAAAB95kaLci9/pznu//39Sxfw5nsAPeSe/yZ7cPYX8r/5UPk/vCY8PjEjlzWskFWx9TmZLhe+GCGA1cuNjErbzrBX+Ni7pE/9o/xfvFB68un6zW0/StzebfeuPHdlzrim53T90LHVgI6l3FN/Vzrx9JUD17xCLrQcQMfcs15lD/7o2/J//kL5er31hqxo9cRUexMDBoEw2qrhnv1qqWSfB+xf8+Tw+9yM14kcrxMBaxZhNAAAAAAAOlTMhUNnllIu/MKeFUwztxONmdtaWBbq8N5rPg6H0cZzqzOMlo/SBVQqdeMvu8oe8ioaIbLmuIPvJIyWMXSWef7G+nXVzBBEiBV6yRp2AwCgIW3wtKFqBoz6f7Kn9fhqxZ+AQZqthcNo6wvdCaOlUYnDl6QtReOZThpPOnYuG/tI0up+xZrboLNo1fig/mPPZ4JjW0dO1Gmls/o8IwAAAAAAAAAAgGTuqmdKo8a5cJ/9J/l48YIwPo6l+b3h9XjDK4AucPc/X3r4ryWvVA6fW6vJPkRASinO382Fz7kBsLq5Z7wy9brPvfE3Esdf/MGVF9ObM06dmY73SPmCNBK+WHivuWOOl/ubm+Re817pSS+WnvNauf/9GbnffsNA5gOsBe64U6Vn/b69wif+P+mr17fcjt+/JzwwwXMzDBHCaKuGO+E0uY98317h1pulb3955XIz0sh9EbBWEUYDAAAAAKBDpci+gkGIFUBrZzvWbcr1pWGrqj9ohkfGolUaRjMCKtV4WRgtIYqQNURmhb+aQ2HBK1LIDik0yxo6yxoi61Y8worNZZ0/AAAN1uO6dXxiLbe200vm8UE9HBIFBqXua9pbmw2OzeR7H0ZrBITL9fBxZ9agdM7lNeJGg2Pt/P61ul+xQsferzy5tJ++se/L2l8PvyFo+/Sje3+FcgAAAAAAAAAAgHb80uPssR9+a/H/83sk41ws3vAKoFvcOQ9t74aTM92dSIBLE0bL9/8iggC6YOtJqVc9+cCPE8e/e+fKZXPGNT2n6nuliemBnk/iJqflrnqmope8RdHz/lDuvO2c3wL0mHvABYnj/sZ/bb2ReSuM1odYLNAtWR9v8oTResnNbJJOOdscX37f5L2X9twXXpmAPrBmEUYDAAAAAKBDWeNVVlwqe8RrXGO5cBhtIV4aClioG1e0kzSWW51htELKgEpS8CtryMtavxIf+etxI/iwUusX0DOHzjLH8pLCaOnjEda6WX9GAQBoMIOnQxBGKxqPf83HB8BqMFe7zzxWnSls6so+rHjYosV9W+HidiK7JeP5Tpbob4N1v1JwjRNbjDBa5j11141z1wWXF6OSLpq6vM+zAQAAAAAAAAAASMc98GHmmL/hw/K33Srd/n17A7zhFUC3POjS9m7XjwhIKcXf0fP9P1cGQBfc70GpV91Qv09njIcvhihJd+yWvn671665xbNYqjWv+QPhdafiOSJGwFp01kVSLiGmetstrbexzwqj8dwMwyRjGK1AGK3nzk14PnbHsteF9s1KC/vC627Y0r05ARgqhNEAAAAAAOhQ1jf4W3GszBGvXMkMZ5XrS8NW87HxwqCk8dxkpv32ixU+6WUYzfreLP96hqR5+byYNXSWK2VaPym8liXeYq3bTswCAAAp/eN6q+VHAkb9Yz3+tRNmAnpptnqvOTaT39iVfaS5eqv1u5E1Epx0myzR34ZWwcXIPKIfXBrtjsqPtLPyg+DYResuVzHK9nwBAAAAAAAAAACgbx71VHvsw38l/6xz5V+ww16HN98D6BJ32oOkSx+T/YaTM92fzHKlFBc2JowGDCU3NiGNpTtH30l6zXFfSlznwjfFOu6Vsbb/eV0//IW93nR9D2E0YA1y6zdLj/8Ne4XvfV3xe/9I3iecC7d/Lryc+xQMkxTnuC5RGO3NPHCY+5Xn24P/+Wn5/3PtkY937bTX3bqtSzMCMGwIowEAAAAA0KFSLmPQzHhzf9ZQQCkaVykXDm0tLAsFLCSEvcaMbQxa2oBKxQgvjLhR5Vwu0z6t703zPrzi4DouxcsspS6GzkJGo5KcEXRIE3drsL6mhBcAAO0qZA6j1YLL8y7hinY9Yj0eV+Jy8kkiQJ/N1sJhtGI0lvk5Szsavw32sWQ7YbR0Ieg0qrEVRmvcr4SPo/0Aw2g3zl5njm2fvqqPMwEAAAAAAAAAAMjGTUxJZzy4/Q2M8+Z7AN3j3vBhud9+Y7Yb9SMCQhgNOKq51/5t6nWfVvqK3v/rrWMuX/qR9Jh3hM9ll6TpeI6IEbBGuZf+lXRJwjll73+zdP0/2OP794SXTxKtxhDJHEbr/wW71xq37Qzpma8yx/1f/a781z67+MGu28MrjYxKG7Z2f3IAhgJhNAAAAAAAOpQ5aGZECbKGAopRSWNR+KSI8rIw2nx9X3C9UVc0A2SDZgVUYsWq+/rhj8v1cHgh6/dFsr83lbh8+N9WFsEKki2dU7YIXdb1Ixdp1IiXlY1ARZZ1s84HAICGtMHThqo/mGk7vWQdo3nFOuArfZ4NYNtdDYfR1uc39mcCh0KB1rFkO5FdKwS9/PlOGtb9TeN+xTqaH1QYbX99r76276bg2Olj52jr6Al9nhEAAAAAAAAAAEBG7YbRxibl8v2/aBaAo5fLF+Se8Qq5v//v9DeanOndhBqKKc5zzXF/CAytjcemX3f/Xj3jYqdSitPjdt5nj03X9xCYBdYo55zcC96cuI7/9Aftwf1z4e0SW8QwyRpGI0LcF+4hj0oc95/60OI/7toZXmHziXIRaSRgreK3HwAAAACADmUPmoXXt6Jc9nZKGrNCAfWloYCFeL+xz9UbukoKnzRHDSpWeCHj11OyY2rN4YVOwghZYxDtxCOs21hfp+C6RmyunfkAACBlD6PV4uSAUT8lxVab46nAoM3WwmG0mUL3wmhpYsCVevj3op3Irn18nv7YtsG6vylEh674Z5wQ4/1gwmhf3fM5MxK5Yzrhyp4AAAAAAAAAAACrhDvt3PZuON2nC/8AWHuOPVkam0y1qpuY7vFkJI2va71OjlgDMLROOStdAFGS9s/JOadzO7hOnvOx1sV7pekN7W8EwHBrdaxz+/ftsf17wsv7cUwEdE3GMFphpDfTwFInn5kcfL79e5Ikv2d3eHzTcT2YFIBhQRgNAAAAAIAOJcUylosUacSNBseyBNZGXVGRy5lxgeUhtIV6OIw2nkt3gscgpA2jWVGELN+XBut70Bw98T4OruNc65dZIpfTqCumnk874TrrZyJtPCL2dR3wla7NBwAAyX5cr1phNF8Lbyfq/8meSbHV5TFaYJB2V+8JLp/Jb+rL/hsB4eaocLNiLntk1zy2beN3z7xfOXT/ZEff+h9Gi32sm+auD45N5zfogRMX9XlGAAAAAAAAAAAAbbj8idK69dlvt3Vb16cCAJLkRovS1c9Kt/JkHyIgkzOt18kTRgOGlSuOSVdek27ln/9YkvTbOzIGXZqsi/cqkpfbenLb2wAw3Foe69zzc8W/9xj5O29bObZ/LnwbwmgYJsYFck1RrjfzwBJuasPia0SWW29W/EfPlH76w/B4P56bAVi1CKMBAAAAANChLEGzYjQmZ7zQmiXk1QhUjRmhqoVloYB5I4w2Fk2k3me/FSL7yhvNEZWKEfzK8n1psL4HacILaV8+T4qrrFi3i59DpZ4ujNYcgVu57ewxCwAAJKlgBM1qgTBa7GPVFQ4YFRLCqb1STHj8S3rcBPptrnZvcPlMYWMX92If9TbCaNbvRTvh4pJx7Jw2+tus6g8Gl+fd4lXorDBa/7No0q3z39Q91buCY5dOXaGc42QcAAAAAAAAAACw+rnxdXLXfl46d7tUsM8FW4GYB4Aeci/6c2n741uv2I8ISJo3+BNGA4aae+lfSk/6X9LMMdJUwjk8P/yWfL2uZ10S6a+f3l4cbbq+Z/EfRGaBNc296M+lS66yV/ivz8i/4DL5hSPvMfJxLM3vDa8/MdXlGQI9lDWMlsv3Zh5Ywf3+u6XjT7VX+Ow/STf+S3hsIkVQGsBRizAaAAAAAAAdst6sH5IU1sgWWFvcTikKh9Eq8YJiHx/+eMEKo+VWbxitESgIqcVHIipWFCHpa22xomXNcQdvpBGskMJymQJ4bcQjrM8hbTwiab2i8fMGAEAreSNo1vyYfnhZIJbWaju9NOqKcsafU8px63gq0C+z1fuCy2fy3QujpTnitY/P24n+GiHoNn73rPuWxv2KHUaLg8t76ca564LLI+X0sOkr+jwbAAAAAAAAAACA9rmTHqDoHZ+R+/Tu9Lch5gGgh1w+L/fH/yhFLd5amyZa1qnJFG/wzxNrAIaZyxcUveStcv//HXIf/6ncy95ur/yNz0uSXnhZpA//VvY42nR8KIy25aR2pgrgKOHyebk3fDh5pd13SV/42JGP5/dK3riEaD+OiYBuIYy2arnRotxbP9HejScJNAJrGWE0AAAAAAA6ZL1ZP7huzl43aczap7VvL68DTTGvhTgcRhtf1WE0O3zSHDWo1MPhhSzflyO3saJiR8ILnYbRsgQh2gmjWbeppAyjJa1XaiM2BwCAlBBG87XAstUVRnPOmcHV5ngqMEgH4orm433BsfWF7oXR0rCOJ9sLoxnHtsZzgCTWfUvBjWTeVi/de/Bu3TL/9eDYeZOXaCrPle8AAAAAAAAAAMDwcfmCdPWz06180v17OxkAa57LF6Rii3NM00TLOlUck/ItzoVpNQ5gKDjn5KJIOuYEe6Uf/Pfhf15ySvYw2lR9bvEfmxP2AWBNcKNFaWtyJNF//xtHPtg/Z684QZAIwyTj4ycR4v465gRpNPv70lw/npsBWLUIowEAAAAA0KGCG1GU8im2FdVoNWatO5YQNltoinnN18ORhLFoOMNoVX/w8L/LVnghl/3FUivWUInL8oeugOOtK+GkvLJIlthZMde9eERz3C1JpW4HXtqJWQAAINmP63XVFPt4ybJQLK3Vdnqt0/Ao0Guz1XvNsZl898JoSTHgRkDYDhdnP5YcM+LRCymPbZtZ9y15t3hii3Ph53RWGLlXvjh3nbnPHdNX9XUuAAAAAAAAAAAA3eQe9ZTWK01MSRdf2fvJAMCZFyaP9yEC4pxrHWAjjAYcXR78cHPI/81r5d//Zvn9e3TCeqdL75dt09PxnsV/EA8BIEkPf3Ly+Mfepfj3HqP49c+Qf9Pz7PUmprs7L6CXUr6v67AcYbR+cvmCdPkTs9+QQCOwphFGAwAAAACgQ845laIWV447JCksNeqKqQNrpUPBrLGE/ZbrR2IBVjggKaw2aAU3Yo41Rw0qcTjklfZ7svQ24e+Pl9cBXzn8UUhSJGLJPjLEztqJR5hxt4TgWTMroJZ3eRUi+3sCAECSQkLQrOariR+n3U4vWY+vZSMABfTb7to95th0F8Nora6mF/t603HzUu1Ef4vGMX0lnreDxQHe+yVx5WaN4KL1mWXZT6cOxgf0lT2fDY4dO3KSTi2d2be5AAAAAAAAAAAAdN0FD5d7/pvs8akNcn/2L3Kj2S+ICQBZuZf/dfIK/QoLTbaIjRBrAI4qbrQknXqOOe7f+0fy/+sR8gv79YHnRTr72PTbnqrvkUZLciOjXZgpgGHnnvMaaccTklf6r89In/uo9K0v2euMEyTCECGMtuq5l7xFOm9HthsRaATWNMJoAAAAAAB0Qdo3+SeFrpxzieG0Jfs7tF5SZGsh3n/k3/V9wXXGc5Op9jcIeWe/wNwcTKkYIa9ilP0EuaSvfyM05zsMo6X9HhfciHIJXwOL9TNRjtOFW6zQXNp5AwAQku9SGC1pO71kPb5WUj6+Ar02W703uHxdblqFqF+/N948lpSkUhvH51YIuuZrZugspK6aOdYIMlvH89bxfy98fd+XNB+Hn7vtmLl68WrhAAAAAAAAAAAAQ8o5J3fNy+Wuv0fu7Z+Se8vH5d7yb4v/vfvLcv96h9wDHzboaQJYK7ZsSx6f6FMEpNWb/HODOVcGQO+4Rz4leYUff0f63Ed10ganb70+0nW/ky4FMB3vIRwC4DBXHFP0xo/IvehP299IaUIuTzgKQ4Qw2qrnJmfk3v4p6VdfkP5GrWLSAI5q3FMDAAAAANAFad/k3youVYxKS4Jm9v4Wt5NzeY26og74yop1FupHgmHz9fA2rdDAahC5nCJFihWvGGuOIJSN+EKpjc8tKTTXiDx0GkZLiuMtXa+97431M1Y2AnIr1wsHXtLOGwCAkOQw2tJgUVLsaFBhNPvxlTAaVofZWjiMNl3Y2NX9JJ0z4r0d2ZWkYpePz8vxgkaidFe4XX4/0yx/OBxnfXL9C6PdOHddcHkxGtOF67b3bR4AAAAAsnHOnSLpQkkPPvT/8yU1X5nmdu/9tja33emTkpO99zs73AYAAAAAdJUbXyedf9mgpwFgjXO5nPyWk6S7bl85ODkjl+/TOSqt3uRfGOnPPAD0z9ZtLVfx131A7jG/LuecHvGAdC8TT9X39C/qCGB4PPDS9m/LfQqGTsYwWpTrzTSQyDknXXC5/Mfele4GhF+BNS1dJhoAAAAAACRK+yb/YouAWimXdjtHAgHWbRohrNjXVTGiHeO5yeDy1aLgwid01Hz18L8r9fDn1uprHb5NUnhh8evZ6TuQ0gbP2pn/4vbDn0NSpGLpetbXkzAaAKB9hcQwWnXZxwkBowGF0ezHV8JoWB1mq+Ew2vp8d8NorU4aSYrxpo1JL72NfexcrqcL/0pSLa6aY3m3eB0pK3TcryzazvIPdUflR8Gxi9c9vO3nBwAAAAB6wzl3mXPuU865+yT9WNKHJb1c0g4tjaIBAAAAAABgtdrxhPDyi6/s3xwmZ5LHi5y7CRx1LnxE63W+/eXD/8zn0kVepuO51rFFAGvP6edJG49t77aE0TBskq7+u1wUyUXkdgbmgsvTP9fZfEJv5wJgVeOeGgAAAACALrBiGSvWaxE+S72d5jCaEQtohALK8YK88Xb+sdxEqv0NihU/aQRTvPcqG0GStJG5ZiNuVJHxckkjLOZ9HBx3Lt3LLMVcd35WzO0bP0NpwxF2GI0QAwCgfUlBs6o/uOTj5IDRYMJo1uMgYTSsFrO1cBhtptDtMFoSr0rdjvG2E9pNOia2ngeELL+fada4iXEGQwAAIABJREFUX3HGCTHWc6lu++LcJ82xHTNX9WUOAAAAADI5V9IVktYPeiIAAAAAAABoj3vay6RTz1m6cOs2ud94ff8m0SpiVGrvXFIAq5dbt14azXZe9t8/t3XoZbq+Rxpf1+60ABylXD4v9/J3SCPF7DeeILaIIZMljJbL924eaMmNr5N76V9JuVzyivlC+3FHAEcF7q0BAAAAAOiCtG/ybxWXSr2dprjWmBELWIgXQ1jz9f3mdsai1R5GC790UfOLwZSqP6hY9eA67YS8nHMqReOaj/etGGsVFnNK9wJ6O/G7LKx4xAFfUezrilzyi8blevdCcwAANCQFzRqP69bHS7czmD9r2OFRwmhYHXZX7wkun8l3N4yWdMzr5c1YYN7lVYhGMu9v1BXlFMlrZZy4HKcL/0rJ9ysF15iXEUYzwsjdtL+2V1/b96Xg2APGHqTNI8f1fA4AAAAAuuaApJ9JOrUH2/5PSU/NeJuf9WAeAAAAAAAARwW3YYt07Rekm2+Q//F35LadIV34CLnJmf5NotW+ipy7CRyN3PPfJP/2lyWu4w9U5EYXQ0ZXn+OkFhf3m473EDECEOQe9hjpA9+Uf8oZ2W44MdWbCQG9QhhtqLhffrZ05kPkr32V9NVPhVdav0Uuivo7MQCrCvfWAAAAAAB0QSmXNnaVfIJCO9Esa5uNUMBCQhhtPLfKw2jRiELds2p8UJJUNsILUuuvtaWYKwXDaJW4LGkx+BCS9uXzbkX0LKWE21XissZafM+tmEW78wEAQJLyUVIYrbbk46o/GN6GK8hl+YN1F1nHeo3jA2CQvPeard0bHFtf2NTXuVjH52mPgZdbDBePaSFe+ZymVbi42fL7mWaNcONg7l0W/ceeG8x42/bpq/o8GwAAAAAZVCXdIulrkm4+9P/vSHqYpM/3YH8V7/3OHmwXAAAAAABgzXJjE9KOJ8jteMJg9j85nZw6KhFGA45KW7e1XufuO6QTT5ckzYxJk0VpX8Vefao+J03cvzvzA3DUcceeIn/NK6R//Iv0NyK2iKFDGG3YuJPPkF78F/JWGO34XlyPDMAwIY0IAAAAAEAXpA2atYpLpQ0GNEe/xnLhkx4WDoUCQhEBSYoUtR0o6JdGpGC5RjTAinhJnYTFwl+TRmjOKw6Ou5Qvs6SP37UZdku4XVJIrtU67c4HAABJyjv7j8e1eGkMyAoYWccF/WAdMzWOD4BBmo/3mUHBmfzGvs3DqzeR3ZLxfCfL758VHZOO3D9Zx/NWGLlbYl/XTXuuD47N5DfqnIkLe7p/AAAAAG17v6R13vvzvPe/6b1/t/f+G94nPAEBAAAAAAAAlpucsceck0aK/ZsLgP45+2KpMJK4iv/E38nfd5ekxYsLjiWvrun6HiJGABK587Znu8HkVG8mAvRKlgtwR7nezQPZHHc/adNxwSF3wcP7PBkAqw1hNAAAAAAAuiB90Cx5vVIue2DNClY1QgEL9XAYrZQbl8vyou8AFIyISiOYUq7boS8roNCK9b2sxGVJ6jiLkPpnJeXPworbJWw/6evV0IuYBQAAOeXljKtwLQ8WWQGjQYbRrMfXxvEBMEiz1XvNsZnCpq7uy/o9XuRVNn4nOons2uHi1se2DVY4Tjpy32J9Zr0Oo90y/w3dV/1FcOzS6SuVc5x8AwAAAKxG3vtZ731l0PMAAAAAAADAkEsKo5UmVv15vgDa46Y2SE/+neSVPvQ2+SecpPj118gfqOjPnph8fzAdz8lNEkYDkODBj5Ae9Evp1ye2iGGT5dg5Z1/0G/3lcjm5X3/dyoGtJ0m//Oz+TwjAqsK9NQAAAAAAXdAqeHZ4vRaxq/TRrCNhgTEjALZQXwyjzdf3BcfHo8lU+xqkvAtf2qoRNrAiXk5OI260rX1a34NGaM5Ko0UuXX8+ffyuvTBa0u2sr1czK57WScwCAADnnPKuEIwTLV9mh9EG9ycNO5yaPswE9MpsLRxGi5TTulx3r9iYHEaTKoePmZfqJLJrHYc2nu+kYd2vSM3RxfDn1usw2o1z1wWX55TXw6Ye1dN9AwAAAAAAAAAAAAAGLCliVGjvPFgAw8H99hukU86Sf8Nzklf83D/Ln3CanvLs1+s5f2efxzJd3yNNdPdcIQBHF5fLSW/9hPR/3in/rS9JP/qO9Iuf2utzn4JhQxhtaLnHPlc65jj5Gz4q3Xen9IAHyz3xhXIbtgx6agAGjHtrAAAAAAC6oNil2FXawFpzWMAKBTRCXgvx/uC4FVRbTY5ECpZqhA3KRoykGJVSh8qWs74HjWCY952FEdIGxtL+LCxXiArKu0Iw/mB9vZpV4nJweScxCwAApMWwWSiMVvO1ZR+HA0YFI5jaD9bjciUuK/Z1RS7X5xkBR8xWw2G06fz6vv5senmV69axZHvHtpIdFs4SJlx+P9OQU/7w8wbzKtsdHv8n+cXBXfqf+W8Ex86ffKjW5bniJgAAAAAAAAAAAAAc1SZn7LHqgf7NA0DfOeekK54m/9Xrpc98OHnlGz6i0d/4o8RV1sV7pQnONQGQzI0Wpaf/ntzTf0+SFL/00dLXPx9emfsUDB3CaMPMXXSl3EVXDnoaAFaZ9t4hDAAAAAAAlkgbsWq1XtpgQHNcywyj1Q+F0epWGG0y1b4GKe/CLzQ3wgZWDKGT8IIVuWvsyyscRnApX0BPGxjrKB5hxlvmW97W/JqmjP8BAGBpFTxtqBphNOv2/ZD0OHggrvRxJsBKu2v3BJevL2zq/s5aXE3POpa04mZpjLUIQadRjVdGGaWlzzes4/neZdGkm+auM8e2z1zdwz0DAAAAAAAAAAAAAFaF6YS/7S/s6988AAyMO/281ivdeZv8wQN63IPCw2dVblFOsTSxrruTA3D023KSPUYYDcOmxTmuS+S4KDYADAPCaAAAAAAAdEHaMFqr2FWaYECkSAU3cvjjsdxEcL2FQ6GAeSOMNh6Fb7ea2AGVxbBBuQdhNOt7We5SGK3gRpRT6yuLlHLhAEQa1udfjsstb2t9TdP+jAMAYEkbRlv+8ZHbD+7KXEmPg9ZjJ9Avs9V7g8tn8hu7vq9WR7y9OD4vGmG0hXr6MJp5vxIduV+yw2hx6v1kcTA+oK/s+Vxw7PjRk3VK8f492S8AAACAoXaic+7vnHO3OOdmnXMHnXN3H/r4H5xzv+WcWz/oSQIAAAAAACCDDVsGPQMAg3bF01rHh7yXvnq9XnBZJOdWnsv+m3N/u/gPIkYAsjrmeHtscqp/8wC6IUMXTbnBnZcOAEiPe2sAAAAAALogzRv9c8qbQZAs2ylF43JNV7EYM0IBlXhBsa9rIQ6H0ayg2mrSHIBrVj0UNqjUux/xsr4HlUNRMSuMlvYVdOecSrkx7a/vbTGPUqrthVifv/X1aqj5qqqHonMr50MYDQDQmVaP6w12GC35OKqXkh4HK4TRMGCzNSOMVki4qnQPeO/N34dOjiXHjGBwlt89637Ful9qZh39d+pr+24yn6vtmL56yXM+AAAAADjk5EP/NTvm0H9nSrpG0tucc++R9Afe+/CTjg45546RlPVJ56m9mAsAAAAAAMCwc8717O/SAIaDW79ZuvYL8u94ufSNz0v1enA9/9on64pP3KmPPi3Wn/3tj/Wt0QfqAQe/r+fNvU8vmv2bxZUmiBgByMatm7GPRYgtYthkOe+SMBoADAXurQEAAAAA6IJSLkXQLDfW8s3taYJexdzSYFbJCAVIUjle0EJ9eMNoVgClETYoW+GFFN8Pi/U9KNfnF//hw3/2yRIuKEallmG0khG8S7V94/Mvx/OJt6vUywnzIYwGAOhM3oX/JLE8WGQGjKLWAaNeSQqWlmP78RPoh9mqEUbLb+jB3uxjXi9/OCa8XCfHktZtF+rJx7bNar4WXN58v+TMz637p6B773Xj7CeDY6VoXBeu2971fQIAAABYM8YlvVTS1c65X/Xe39KDfbxQ0ut7sF0AAAAAAAAAWJPcyWfIve3fJUnx40+Udt8dXvGGj+hXzr9MT9i5IzxOxAhAVusSzjMctc+dBVYlwmgAcNSJBj0BAAAAAACOBmkiVklBjSzbWR4GGEu4Tbk+r3kjjDYeDUEYLTICKvFiMKVihNE6CS8Ujds2Ig9WFsEOKazUzvc5C+u2VqjiyHj46ynZXxcAANJqFTxtqMbhMJp1+34ouBHljGvNVDLEmYBui31dc7X7gmMzhY1d31+rY96y8fuQ5rmQxQpBJx27Llf1B4PLm+9XnAv/2dQbYeRO7Kz8QD898JPg2CVTj9BINNr1fQIAAAAYajVJX5D0OkmPk3S+pNMknSfp8ZLeIukXy25zuqQbnHMn9W+aAAAAAAAAaMvTXhZe/msv6u88AKwO284wh/wPvyXtm7NvSxgNQFbnXxZeXhiRNp/Y16kAnSOMBgBHG8JoAAAAAAB0wWiKN/qnCUsVc9m3Y4UCJGkhntdCHA6jjeVWfxit4EaCyxsBlbIRQ+gsvBD+PpXjxciDVxwczxJGS/ez0P0wWuNzsFhfT8n+ugAAkFbaMNryj4/cfnB/gHbOmcdp5RbhUaCX9tRmFRvHp+vzm/o8GzvE20lk1zq2XWhxbNvMvl9pCqMZt/VmGrl9N8590hzbPv3oru8PAAAAwFB7naTjvPeXe+/f5L3/N+/9N733P/Le/7f3/uPe+1dIOknSn2rp9V22SPqYc1kujQ4AAAAAAIB+c1deE16+41f6PBMAq4G74mn24L+/T/5Fl4fHRkblRou9mRSAo5bbuFW6IHC/ctGVcmOr/z1HwBJZ/iyaJ4wGAMOAMBoAAAAAAF2QczmNuuQ/JFpv6M+6zoowWsJtyvV5LdSHN4xmBVSqh8IGVnihFNmxuFasaEPVH1Td1xKyCOlfQE8TGUvzs2CxPody3Q6fSclhtE5icwAASFIh6jSMFr59v1iPzZWEx0+g12Zr95pjM4WNXd9f0hGvlzd/HzqJ7FrH9gfismIfjsItZ92vLA0xhz+7bofR9tXm9I19Xw6OnTF2ro4ZObar+wMAAAAw3A7F0H6RYr2K9/7Vkl68bOh8SQnvomvLtZLOzvjf47s8BwAAAAAAgKOGO/VsuT98v1Q89Lf1sUm5l/1vuXN/abATAzAYVz1LKrVxLvz4VPfnAmBNcH/wPunsi48sOP8yude8Z2DzAdqWJYyWI4wGAMOAe2sAAAAAALqkmBvTgVrFHk8Rusq5vEbcqA76A+Y6y6MckcupGI0FIwTX7/5nVf3B4HbGouENozXCBuX6fHC8k4hXYmguXpCMMEKU4QX0Vj8LkSKNuNHU21vOCk+0CrdY4wU3opzjZSQAQGfM4Gk8HGE0MzxKGA0DtLsaDqONumKPjvftY966r5nPY9I8F7KUcuETPRshtjTB55qvBZfnm45xnfm5dTeM9uU9N5jz2TFzdVf3BQAAAGDt8d6/0zl3haTHNS1+oaQPdnEfv5DUMtbWzGV5EwIAAAAAAMAa5B71VOnyJ0o/+5F03KlyhZHWNwJwVHJRJP3RP8i/6ley3XCCMBqA9rgNW+TedaP8vXcufryRi3tiSBFGA4CjTjToCQAAAAAAcLRo9WZ/K1aVdTvFwHbGonAs4PsL3za3M56bTDWfQSq0CKNV4nJw3IonpJEURqvUF+S9FUZI/wJ60j6kxZ+BTt4kVDR+HlqFW8r18HjJ2B4AAFm0Cp4e+TgcDLKOC/rFOkZrFR4Femm2Fg6jTRc29v1N59axudT6+DdJ0rFo2jChFYtuvl+ywmjdzKLFvq4vzX0qOLY+v0lnj1/Qxb0BAAAAWMPevOzji51z0wOZCQAAAAAAAFJz+YLctjOIogGQjj81+20meBkYQGfcxmOJomHIZThvNsr1bhoAgK4hjAYAAAAAQJekiV2l2k6LgFpoP+2EwMZyE5lv02+tAirleD44XoxKbe8zFJ5rKMcL8kYaIUt2olsRPfP2xuffKhxhhV06+XoCANCQNoyWJmA0CNaxnhUWBfphthoOo83kN/Rkf1Y8TLKPzaVOw2gJx+d1e5/Nlt/PNCwJoxkhOe/jVPtI4zv7v6bdtXuCY780/WhFjhNtAAAAAHTFf0mabfo4J+nMAc0FAAAAAAAAAJDVCadL287IdpuJqd7MBQCAYZHlgsI5ztcEgGFAGA0AAAAAgC7pWhitje2M5yZTbbvByWksGv4wWiUuB8dLUfZQ3JHbthtGS/8yS6vvcSfhCEkqGp+/FT5rsMJp7YT3AABYLm0YLU3AaBCsY7lWj69AL80aka31hU292WHCOSNJkcC0z4VCkqLBrcK/DbW4FlxeiPp7v3Lj3CeDy/Mur4dOPbKvcwEAAABw9PKLhec7li3u0RNFAAAAAAAAAEC3OefkXnGtNDmT/kaT072bEAAAwyBTGC3fu3kAALqGMBoAAAAAAF3S6s3+aWNX7Wzn/mMPTLXthlNLZ/Y9AtCOghFAqfqqYh/rgBFGK0altveZc3kV3EhwrJIQRsuiVWisk3DE4vbDty/XF+S9PX8rNNfJ1xMAgAbrcb3ma8s+Xp1hNOvxlTAaBmm2em9w+Ux+Y59nkvy7UMy1fzyZdwXz+Lwcz6faRpr7FWdU37px/C9Jdx/8ub638K3g2PmTl2oyz1V7AQAAAHTV8hf8eaEfAAAAAAAAAIaIe+BD5f7x23Kv/4D0jFe2vsEE554AANY4wmgAcNQhjAYAAAAAQJdYsYyGtHGpVgG1UDTr0qlHaevIiam2P+qKeuzGp6dad9DyRryt5qs6EFfMSEGr8Fgr1vegXF+QjH1aIYWQVj8LnYbRrNvHqqvqD5q3s2IWnc4HAADJDpstf2xaHkprsMJq/WI9HpYJo2GAdtfCYbT1hU092V/SMa8VKSu4kY7DhqUofHxfrqcLo1nHwP0Mo900d705tmP66q7sAwAAAACaLC9mh59AAgAAAAAAAABWLTdzjNwjn6zot9/QOnw2ThgNALDGuQz5HMJoADAUuLcGAAAAAKBLWsWj0salWq0XCrBN5qf1shPfpK/v/ZJ2Vn6guo+Dt90yepzOm3iotowen2oug2YFFGpx1Yx4SekjdPbtx7S3PrdieSVekPdGGC3DlUVaxe+s8EM3tl+OFzQSjYbH6uGvaav5AgCQhvm47qtLPq4u+7jV7fvFOr6oxOU+zwRYVI0Pan99T3BsJr/8/e/dkRxGsyK7nR2bS4vh47312RXLF4wY23LL72calt6v9C6MdiCu6Ct7PhscO3H0VG0rntbxPgAAAACgwTm3UdIpyxbfOYi5AAAAAAAAAAC6ZOs26YffMofdpmP7NxcAAFajscn06xJGA4ChwL01AAAAAABd0jJ2FQiatbOeFU4bz01q+8xV2q6rUu1nGFgBlKqvmuEFqfOwWDE3JgXaCeV4wQwjJEUilms1v2Kus3hE0s9iJV7QlGbMseB8CKMBALogbRitFh8M3z4abBjNenwt19OFmYBum63dZ47NFHoTRktiRXa7cSxp/f4lxZKb1XwtuLzQdL9kh447D6PdvPeL5vOXHTNXZ4osAwAAAEAKT5XUfDn0uyXdOqC5AAAAAAAAAAC6oUUYTVu39WsmAACsSm5iKv0Zn4TRAGAoRK1XAQAAAAAAabQKo6UNArRar9V+jiaFhIBKUgShGPUmLFZJCKMpQxitVfis47Bbws9IUrzFijWkjfoBAJCkYITNlgeLrICRFVbrF+vxtRKX+zwTYNFs9R5zbCbf/zCadXzejecvY8bx8ULKMOHyAGND8/2KmUXrsIvmvdcX5z4ZHBuLJnTB5KWd7QAAAAAAmjjnNkt63bLF/+Z9p89uAAAAAAAAAAADteWk5PGtJ/dnHgAArFaTM+nXJYwGAEOBMBoAAAAAAF1SbBGPShsEaLXeWgqjWQGUmq+aEa+c8iq4kY72a32NywlhtChDGK1V+KzT7/FoVJQz5pMUb7FiFmmjfgAAJLEe16vLgkVWwMgKpvaLFQpNirUCvTRbuze4fDw3qZFotCf7tI4xJakchyNlrZ4npWFtI+3vX9UfDC5fGkYL/9nUDiOn85Py9/SzAzuDY5dMPaJn3ysAAAAAw805d3/n3GMz3maLpE9I2ty0+KCkN3dzbgAAAAAAAACA/nNbtyWv0GocAICj3cRU+nWjXO/mAQDoGjKWAAAAAAB0SbeCZq0iVGspUmUFVGLFWqjvC44VcyU5lz5SFtyG8TWu1BckK4yQYZ+9jt9FLlIxKgXjcVawYnEsHJZYSzE+AEDvmMHTeGmwyAqjWbfvF+v44KA/oLqvKef4kwv6ywqjrc9v6vNMFpXrVmS31PG2x4yw8ELdPrZtVvO14PI09yudhtFunPtkcLmT0/bpR3e0bQAAAACD5Zw7XuFzMLcs+zjvnNtmbGa/9z70BG+rpI87574j6R8k/Yv3/ofGPCYlPVvS67Q0iiZJb/Te/8TYNwAAAAAAAABgWJxxoT120gPkxib6NxcAAFajyZn0646Fz0sFAKwuvEsHAAAAAIAuKRlv1m9IGzQr5VpsJ9d5WGBYFBJCBfvqe4PLuxGOK+XC2yjHC/JWF03pw2ijUTFxvGjsP4tiNGaE0cLBCkmqGGNrKcYHAOgdM4y2LFhU9QeD6w06jJYUCq3EZY3nJvs4G0DaXb0nuHymsLGHe7WPee3Ibucnj1jHo0nR32ZWcLH5+YZ9PN9+GG1vbU7f3PeV4NiZ4+dp08jWtrcNAAAAYFX4kqSTUqx3nKTbjLH3S3pOwm3PkfRnkv7MObdH0ncl3Stpn6QJSSdIepDC54K+23v/hhTzAwAAAAAAAACsdmdeKJ19sfTdr64Yck9+8QAmBADAKjM5nX7diQzrAgAGhjAaAAAAAABdUoySg2Vpg2ZJ2ym4kYFHQfop6XPdV9sTXJ4ULUnLCi9U4gV5xcGxLGG0yOVUjEqqxOXgeDc+h1I0ptnA8ko9HKzw3qtSt+azdmJ8AIDeybvwnySWB4uWh9KO3H71htHK9QXCaOi72dp9weUz+d6F0ZxLCqOFI2WtnielMWbEo5Oiv82sMFo+RRjNdxBG+/KeT6uu8H3a9umr294uAAAAgDVrStLDUqw3L+l3vffv6fF8AAAAAAAAAAB94pyT3voJ+WtfLd18g7R3Vtr2ALnHPk/u6mcNenoAAAxehjCayxJRAwAMDGE0AAAAAAC6pGS8WV/KFjQrRfZ2uhHMGiZJX7P99XAYzYqaZWF9nRfDaGFZwmjS4jx7GkbLGI+o+oNmtKGY8LMNAEBaBTcSXN4cLPLemwGjwoDDaEnHGJWUcSagm2ar9wSX9zKMlsT6PUh6fpOWtY1yPRxjW64aHwwuz0dNYTQj+uZ9e2G0uq/rprlPBcc2FDbrrPHz2touAAAAgDXjVkl/ImmHpPMlpalO/0DS+yS9x3t/b++mBgAAAAAAAAAYBDc2Kffyvx70NAAAWJ0mMsTOsqwLABgYwmgAAAAAAHRJUiwjS+gqad1uRL+GSSGyAyj7jDBaN6Ji1td5MSrWXhhhuVI0pjndl2n/WRSj8HukrDCaFWmTpJKxLQAAsrCCp1V/JFgUqy5vPNamjcz2SjFnPx4SRsMgzNbC73GfKQwqjBY+nrSOS7Owo7/pwmg1Hw4AL71fMcJobR7/f2f/zZqrhY/3t08/WpHLtbVdAAAAAKuH935bD7d9t6TXSpJzLpJ0mqRTJR0naVpSUVJZ0qykXZJu9t6HC9oAAAAAAAAAAAAAcLQbm5QKI1I1fDHdJSZnej8fAEDHCKMBAAAAANAl3QqaFXMJ20kYOxolBVD21cJhtG5ExazvZaVeNsMIi+9LSi8xpNeF73MpCscjrHBLUlRirQX5AAC9kXfhP0k0B4uqvppw+8GG0fKuoIIbWRJya7DCo0CvlOvzZohsJj+YMJqlG89hrOPztL97NeO+pdB0v+KMMFq7YeQb5z5p7HNEl0w9oq1tAgAAAFibvPexpO8f+g8AAAAAAAAAAAAAsIxzTn7zidLPftR65cnp3k8IANCxbO/YBQAAAAAApoIbUaRccKwYlVJvJymwljR2NEoKoOyvh8No3YiKWfGGpHiYlVGwlHLhcJlkR82ysGJm5Xo4HmGFNRbns7Z+7gAAvWE9rtd8Vd4vhodq8eoNo0n2MZ0VHgV6ZXftHnNsfWFTz/Zrx8Ns3TiWtI6Pa76qatz6yn6hoKGU7n6lnSzaXQd+pu8vfDs4dsHkpZrIrWtjqwAAAAAAAAAAAAAAAAAAADAde3K69SYIowHAMMgPegIAAAAAABwtnHMq5cY0X9+3YixLrGvEjSpSpFjxijErdnW0KrgRc2xvbS64vBtfIyveEPqeHJEtEpEUyxvNENLLuv35eF/wZ3Suel/CfIodzwcAACtA5OUVq66c8qp5O4xWiAYfRitF49oXiLPuqc0GH1+BXrnrwM+Cy50iTeXX92y/7YTRunJ8nvB8anftnsOhsWJUUs6t/PNnzdeCt22+X4pc+HpS1fhg5t/vz899whzbPn1Vpm0BAAAAAAAAAAAAAAAAAAAgha3b0q03wQVuAWAYEEYDAAAAAKCLilE4jJYlBuCcUzEa00K8f8WYFew6WuUDUYOGA74SXN6Nr1EpGs98myhjJMKa56grKudymfe/Yvu58Ofwg4Xv6BU/embq7RSjkqIuzAcAgEJkB0+rvqqcSw6jJR0X9IsVHv3YPe/Tx+55X38nAwRM5We6cizZTaUuRH+Tjs//+LYXHf73qCvqzPHzdM2WF2ksNyFJqvu6vBE4toKNzW7ac71u2nN9xhmHnVQ8TdtKp3VlWwAAAAAAAAAAAAAAAAAAADjCHX8/+VYrRZE0fUw/pgMA6FD40ucAAAAAAKAtVuwqSxhNkkq57mxn2EUupyjjyxdWsKT328gaRgvHHYrG9z6rbkX01trPHACgd5LCZrV4MYhWTQyj2WG1funW4zTQKzP5jYOewgrFNqLDy6UNFx/wFX1z/1f0//78Tw/Oha74AAAgAElEQVQvSwouFprCaC7j8Xw7dkxf1fN9AAAAAAAAAAAAAAAAAAAArEnbH996nfN2yI1N9H4uAICOEUYDAAAAAKCLrIhU1kiVuZ01GOPIN8UK0ijluhBeaGMbWUMKVnytWyGybm2nW4E1AACSHtMb4aK0AaNB4XERq91MobdhtHbiYaVc5+Hi0agol+HPmj8sf1f3VX8hSar6g+Z6S++XehtGG89N6oLJS3u6DwAAAAAAAAAAAAAAAAAAgLXKHXuy3Ev/UnLGOaG5vNwr3tnfSQEA2pYf9AQAAAAAADiabCps0Y/Kt6xYvqGwOdN2Nha26OcHdgaWZ9vO0WBDYbN2Hbwj0/qdGnVFTeSmtL++J/Vt1hc2ZdrHppEtweXd+h5vKoS3n1U3vp4AAEjSiBs1xw74iqTkMFrWWGovrMVjMQyXLSPH93T7eVfQZG5K+1IeJxfciCZz0x3vN3KRNhY2657qrtS3ufvgz7WhcIxqvmau03y/siHj8XxWD516pArRSE/3AQAAAAAAAAAAAAAAAAAAsJa5J75QetgvS9/+D+muO+Tvvl0qTcid+0vShY+SGy0OeooAgJTSX1odAAAAAAC0dMH/Ze/O4+yu63vxvz5nlpyTCSQBEsImhB0RAUVQca1KXapWtO5XRa9LW5dbrVWrrVWrVm9rl9vFq7+6XrVqRVGLdUMEpSIugCAqsoY1SICQZLJM5vv7Y0IZJuecOTOZcyYz83w+HueR+X4+78/n8w7JfDmTmfM6ez5ip7H+0p8T9jhlavvssfM+g2VRHjB00rR7m6tO3ONhHdfu1b8iq+tH7vKZpZQ8eI9TO64/pH5Elg/sM6Uzjh16cBaVnf8xvdmf/XSsbhyZvfp3PdzhpD0fOQPdAEBSry1uOTe8fVOSZFvbYLTZf6+XB+1xakpavIMYzLKSWh6y56O6e0YpOWFJ58/Pj19ySgZrrUMRp2Kqz5M3j47dV0ZGOwtcPH7JQ7v2+V2vLc5jl/1OV/YGAAAAAAAAAAAA4F5l1cEppz0v5UVvSu2N/5zaq9+f8oinCkUDmGMEoy0gpZRGKeVhpZSXllLeUEp5aynlNaWU55RSjiilzMirPUopA6WUx5RSXlRKeVMp5Q9LKc8opRwyE/sDAADszu4/dGKeu/KVadSGkiRL+5bnVQe8NXsP7DulfU7a8xH53X1elHqtkWQs8Os1B/5F9uhfOuM97+6evPez88hlT7xPaEEzByw6JK896J2plZn5547TV5yRh+zx6NTS17busMYxedUBb53y/ov7luS1B73zv/9uLCr1PHWf5+eUPR8znXZ3Uit9ee1B78gBiw6Z1vpFpZ6n7fOCPGSP7oZrALBwLKrVW4YO/XeAUYtgtFpqqZX2/0/uhdWNo/KiVa/LUN8es90K3MeSvqV55QFvzr6DB3T9rGetfFlO2uOR6UvrsMKSWh645OQ8f9UfzNi5T9nnuXnE0tM6Dkm8J3Cx1X0lSQZq936NccTiY/PCVa/Okr49d63RCZb1751X7P+mLBvYe0b3BQAAAAAAAAAAAACA+aqzVw4wp5VSHpbkfyX53SSDbUpvLKX8a5K/r6pq3TTOWZHkHUmek2SvFjUXJPlAVVVfmOr+AAAAc8Wjlj8pj1h2Wu4cWZfl/ftkujnUp+19eh6319OzfuSOLOvfe9r7zHW10pfn7fuqPHPFGblt282pqp1rlvTvmWX9Tb8UnbaB2kDO2P+P8rzRV+U3W29tWrO0f/kuhdWtbhyZd67+YO4cuT179i9LX4chD51aObh/3nrI3+XOkXXZMLK+43W1Usu+g/vPeD8ALGy1UsuiWuO/Q9DGG54kGG2gtPun7d46Zelj8pA9H5Xbtt2cbaOtA5egVwZrg1kxsF/Pvl4YqA3kpfu/IZtHh1s+T957YEUafUMzem5f6cvzV/1BnrXyZff5uuD/u+n9Wbvtpp3q77nXbKu2ttxzYvjyw5Y+Lqfs+dgZ+/xeVFuUvQf2nbHwZgAAAAAAAAAAAAAAWAi8unUeK6X0J/m7JH+QpJNXwxyQ5M+TvLKU8pKqqv5zCmc9KcnHkqycpPThSR5eSvlUkldWVbWx0zMAAADmklrpy14DK3Z5n77Sl+UD+8xAR3PfYG1RDlh0SM/PrdcaObDevXNLKV3/M17Wv9eMB8cBwHQ0aoubBqNtniQYbWJ40WwbCxE9YLbbgFnV7efJrUz8umCP/qVNg9HuDVwcablXs3uLz28AAAAAAAAAAAAAAJhdgtHmqVJKSfKZJM9qMv2LJFckGU6yIslJSZaPm983yVmllKd3Eo5WSnlMki8lGRw3XCX5SZKrkyxLcmKS8a/yfkGSPUspv1tV1WiHvy0AAAAAAOawem1x0/F7Aoy2jbYKRvPtDKC5Rm2o6fhkgYvJ7he6CAAAAAAAAAAAAAAAJLXZboCu+Z/ZORTtvCTHVVV1TFVVp1dV9YKqqk5LsjLJS5PcNa52MMnHSylL2x1SSjkwyZm5byja95McW1XVSVVVPXvHGQcmeV2S8a8+eWqSv5zG7w0AAAAAgDmo0SIYbfP29gFG/TXhRUBz9Vqj6fjwJMFotdTSV/q61hcAAAAAAAAAAAAAADA9gtHmrz+dcH1eksdXVXXZxMKqqkaqqvpokscn2TJuamWSV01yzjuSLB93fcGOc66YcMaWqqr+IcmzJ6x/fSnl4EnOAAAAAABgHqj3NQ9GmyzAqL8MNh0HaNSGmo7fE7i4rdradL6/CFwEAAAAAAAAAAAAAIDdkWC0eaiUclySQyYMv7aqWryibIeqqn6U5MMThp/a5pwjkrx43NDWJC+pqmpzmzO+lOTj44YWJXl7u74AAAAAAJgfGrXmwWib/zsYbaTp/EDp71pPwNxW72s0HR+e5L4iGA0AAAAAAAAAAAAAAHZPgtHmp0MnXK+pquqSDteeNeH6iDa1z0/SN+76zKqqruzgjPdNuH52KaXeSXMAAAAAAMxd9Vr7AKNt1dam8wKMgFZaBy4OJ0lGWrxv0ID7CgAAAAAAAAAAAAAA7JYEo81PQxOub5jC2jUTrpe3qX3GhOuPdnJAVVVXJLlw3NBQktM6WQsAAAAAwNzVqE385+sxkwUYCUYDWqm3CEa7J3Cx5X2l5r4CAAAAAAAAAAAAAAC7I8Fo89MtE67rU1g7sXZds6JSyqokx48bGkny/Smcc+6E6ydNYS0AAAAAAHNQvdZoOj68fWOSZKQaaTovGA1opVUw2uYdwWjbRrc2nXdfAQAAAAAAAAAAAACA3ZNgtPnpoiRbxl0fU0pp/mqznT24yV7NPGDC9aVVVW3s8IwkuWDC9bFTWAsAAAAAwBzU6BtqOr55dDhJMlJtazovwAhopdEqGG37WDCawEUAAAAAAAAAAAAAAJhbBKPNQ1VV3Z3kE+OG6kleNtm6UkpfkldPGP54i/L7T7j+dccNjrlqkv0AAAAAAJhn6rXm7+ExPDr2vhvbqq1N5wcEGAEt1PuaB6NtqTZntNreMnDRfQUAAAAAAAAAAAAAAHZPgtHmrzcnuXbc9ftLKY9vVVxKGUjyoSQnjhs+J8kXWiw5fML19VPs77oJ13uXUpZPcQ8AAAAAAOaQRm2o6fjm0eEkaRlg1C/ACGihUWsejJaM3VvcVwAAAAAAAAAAAAAAYG7pn+0G6I6qqtaVUh6b5MyMhZ01kny9lPLvSf49yS+SDCfZJ8nDkrwyyVHjtvhhkmdVVVW1OGLZhOu1U+xvQyllc5L6uOGlSe6Yyj4AAAAAAMwd9Vqj6fiW0eGMVqMZGR1pOi/ACGil3iYYbXh0U7YJRgMAAAAAAAAAAAAAgDlFMNo8VlXVtaWUU5K8JMkrkjw4ybN3PFq5PckHkvzvqmrxSpExSyZcD0+jxeHcNxhtj2nscR+llJVJVkxx2WG7ei4AAAAAAJNr9A01Ha9SZcvo5oy0CjCqCTACmmu0CUbbPLqp9X1FMBoAAAAAAAAAAAAAAOyWBKPNf307HluSVElKm9o1Sf48yb9NEoqW7ByMtnkavQ0nWd5mz+n4gyRvn4F9AAAAAACYYfVao+Xc8OjGlgFGAwKMgBbqbYLRhre3DkZzXwEAAAAAAAAAAAAAgN1TbbYboHtKKacmuSLJvyQ5NZP/eR+U5KNJri+l/M8pHldNvcNprQEAAAAAYI5q1IZazm0eHc62amvTuX4BRkALA7WBlveIzaOb3FcAAAAAAAAAAAAAAGCOEYw2T5VSHpfkW0kOGTd8Y5I3JzkxybIkg0lWJXliko8nGdlRtyLJh0spHyqllBZHbJhw3ZhGmxPXTNwTAAAAAIB5pF5r/U/Jw6ObMlKNNJ0TYAS0U68tbjo+PLopI6PuKwAAAAAAAAAAAAAAMJf0z3YDzLxSyookn0lSHzf8lSQvrKpq/YTyW5N8PcnXSykfTPLVJHvvmHt5kquSvK/JMbtrMNo/J/n8FNccluSsGTgbAAAAAIA2Bspg+tKf7dk5qGjz6KaMVNuarusvvp0BtNaoNbJh+107jW8eHW5zXxGMBgAAAAAAAAAAAAAAuyOvJJqfXp9kxbjrXyR5dlVVm9stqqrqB6WU5yT51rjht5dSPlpV1doJ5RNfXbIiU1BKWZKdg9HunMoezezoc2Kvk/Wyq8cCAAAAANCBUkrqfY1s3H73TnPD21sHow2UwW63Bsxh9dripuPD2ze2vq/UBKMBAAAAAAAAAAAAAMDuqDbbDdAVvzfh+n2ThaLdo6qqbyc5f9xQI8lzm5ReOeH64M7ba1q/rqqqO6a4BwAAAAAAc0yjRYDR5tFN2dYiwKi/CDACWmsVjLZ5dDjbqq1N59xXAAAAAAAAAAAAAABg99Q/2w0ws0opQ0kOmzD87Slu860kjxx3fUqTmismXB8+xTMOnXD98ymuBwAAAABgDmoVYDQ8uikjgtGAaWj0tQ5cHKlGms65rwAAAAAL0tY7ko3X7zw+dL+kNphsW5809ut9XwAAAAAAAAAwjmC0+WdZk7FbprjHxPp9mtRcNuH6gaWUxVVVberwjFMn2Q8AAAAAgHmo0SIYbXPbYDTfzgBam17govsKAAAAsIBsvSu54PnJTV9LUrWvXXZ88sgvJHtMfJ9mAAAAAAAAAOiN2mw3wIy7s8nY0BT3WDLhesPEgqqqbk5y6bih/iSPmMIZj5lw/bUprAUAAAAAYI5qGWC0vXWA0UBtsJstAXPcdAIXB4r7CgAAALCA/PDlyU1nZ9JQtCS585Lk3CclVQe1AAAAAAAAANAFgtHmmaqqNiZZP2H4xClu8+AJ17e0qPvihOszOtm8lHJ0klPGDW1M8o3OWgMAAAAAYC5r9LUJMBptHmDUXwa62RIwx7UMXBzdlG0tgtHcVwAAAIAFY9v65IYvTW3N3Vcmt1/YnX4AAAAAAAAAYBKC0eancydcv6LThaWUVUmeNmH4/Bbln0qyfdz16aWUIzo45k0Trj9XVdXmDlsEAAAAAGAOE2AEzLRGi/vK5u2bMuK+AgAAACx0d1+ZtHhTirZu+PLM9wIAAAAAAAAAHRCMNj99dsL1c0opL5xsUSllUZJPJlkybnhDkq83q6+q6sokHx83NJjkY6WUepsznp7kJeOGtiZ5x2S9AQAAAAAwP7QKMBoe3ZjR+7wXx736S383WwLmuHpf68DF1sFo7isAAADAAnHNJ6e3bsNVM9sHAAAAAAAAAHRIMNr89G9JLhl3XZJ8opTy96WU/ZotKKU8NskPkjx+wtT7qqq6o81Zb08yfv7hSb5VSjl6wv6LSimvSfL5Cev/pqqq69rsDwAAAADAPFJvEYy2YeSulmv6y0C32gHmgUat0XR8c5tgtIHaYDdbAgAAANg9rPtJ8su/n97a6z83s70AAAAAAAAAQIe8Ffo8VFXVaCnlWUm+n2TljuGS5LVJXl1KuTTJ1UmGk+yV5MQkq5psdXaS901y1g2llNOTfD3JPa8gOTXJz0spP95xztIkD0qyYsLyryb5s6n97gAAAAAAmMsaLYLR7t7eOhhtoAgwAlqr14aajm8eHU6txftECVwEAAAAFoQrP7hr6++4OFl+wsz0AgAAAAAAAAAdEow2T1VV9etSyqOTfDLJSeOmaklO2PFouTzJh5P8r6qqtnVw1rmllGck+VjuDT8rO849qcWyzyR5eVVV2yfbHwAAAACA+aPe1zwYbcP2u1uuEWAEtNOoNZqOb6u2pqQ0nXNfAQAAABaEdRft2vrbLxKMBgAAAAAAAEDPCUabx6qq+kUp5WFJnp/kVUkemrR49ceY4SRnJvnHqqp+MMWzzi6lPCDJO5I8J8nyFqU/SPLXVVV9YSr7AwAAAAAwPzRqzYPRqoy2XNNffDsDaK1eG2o5V6VqOu6+AgAAAMxLN5yV3PDlZPjmseu7rmhde8L7k4v/pP1+P3xFcvl7kqX3T6oqGdmQ3Hb+2Nzx702OeGUy2OpHhgEAAAAAAABgevzE/zxXVdVIkk8k+UQpZWmSk5KsTrIsyaIkdye5I8llSX62o366Z61N8vullNclOTXJwUlWJdmY5MYkP62q6ppd+O0AAAAAADDH1VsEo7XTXwa60AkwXzT6GlNeM1AGu9AJAAAAwCy6/L3JJX/aWe2Bz0iO+eOk1JKfvjFpES6fJNl47dhjokveklz/ueTx5yUDS6bRMAAAAAAAAAA0JxhtAamq6q4k3+7BOVuTfKfb5wAAAAAAMPc0BKMBM6xRG5ryGvcVAAAAYF7Zdndy+bs7rz/pH5JSkmPekBz20uScJyTrfjz1c+/4aXL5XyYn/NXU1wIAAAAAAABAC7XZbgAAAAAAAFg46tMIRhuoDXahE2C+WFRrTHmNYDQAAABgXrn9wmRkY2e1tUVJY/97rweXJ4e/cvpn//x9yfAt018PAAAAAAAAABMIRgMAAAAAAHqm0Tf1YLT+0t+FToD5oq/0ZbAsmtIa9xUAAABgXth6V3L9F5ILX9H5mgN+JykTfoR8/yfvPDYVX9wvWfOlZNvd098DAAAAAAAAAHYQjAYAAAAAAPRMvdaY8pq+CDAC2mvUpha6OFAGu9QJAAAAQI+s/1XytROS7z0r2XhNZ2saByQPfOfO44sPSI5/z671c/4zkq8/JNl43a7tAwAAAAAAAMCC55VEAAAAAABAz/SV/gyWRdlabemovr8MpJTS5a6Aua7etzh3bb+j4/r+MtDFbgAAAAB64OI3JxuvbV+z9AHJ/k/a8fH9k/2fktRXNK+9/5uSlY9NLv6TZO13p9fT+l8ml749edjHprceAAAAAAAAACIYDQAAAAAA6LF6bXG2bu8sGG1AeBHQgUZt8ZTq+2vuLQAAAMAcNrotufErk9cd8NTkhPd0vu8+Jycnfyj56lHT7+2GLyVVlXjDCwAAAAAAAACmSTAaAAAAAADQU42+xVm//Y6OavsFowEdqE81GK34NikAAAAwTaPbk/VXJNvuSqrRGd68JKUv6R9K+hYlm9c2L9t8a1KNTL7dykdPvYUlhyWNA5LhG6e+Nhn77zJ8c7J4/+mtBwAAAAAAAGDB8xP/AAAAAABAT00lwEgwGtCJxhTuKyUlfb5NCgAAAEzH2vOSb00jbGw2rDg1WfX4qa+r9SUPeFty0e9P/+wvHZA8+P8kR716+nsAAAAAAAAAsGD5iX8AAAAAAKCnphJgJBgN6MRUAxdLKV3sBgAAAJiXtq1Pvv3Y2e5icqtOS1Y+Kjn69WMhZ9NxxKuSxv7JdZ9NNl6T1FclBzw16asna85MUiVb70xu/XbrPX78mmT5A8d6AQAAAAAAAIApEIwGAAAAAAD0VL3W6LhWMBrQiUbfVILRfIsUAAAAmIYbzkqq0dnuor29T05+6+szs9eBTxt7THTI8+79+MuHJxuuar3HtZ8SjAYAAAAAAADAlNVmuwEAAAAAAGBhadSGOq4dEIwGdKBem0owmvsKAAAAMA1X/stsdzC55SfuXuet/0Vv+gAAAAAAAABgXvF26AAAAAAAQE/V+xod1wowAjpRr3V+Xxkog13sBAAAAHZDo9uTn709ueYTSaklB56enPBXSZ+vkZvaeH1y0R8ma7+bjNw92910rvQnh7+it2ce8apkzReSVM3n156XfLq0Xr/02OSo1yWHv7wr7QEAAAAAAAAwN9VmuwEAAAAAAGBhadSGOq7trwlGAyY3pfuKwEUAAAAWmkvenFz+7mTTmmTjdckv/za56JWz3dXuafuW5JuPSG766twJRSt9yd4nJ4/9WrLXg3p79qrHJY/89+mvv+vy5IevSK7++Mz1BAAAAAAAAMCc1z/bDQAAAAAAAAtLvdbouFaAEdCJqd1XfIsUAACABaQaTa76yM7j1/y/5IT3J/UVve9pd3bjl8cC5KbqoNOTUz83vTNHtyafW9y+5og/TB78983nSknKLL5X9kGnJ0+5PPmPY6e/x6/+KTn0xTPXEwAAAAAAAABz2ix+FxwAAAAAAFiIGrWhjmsHBKMBHWj0dX5fEbgIAADAgrJ5bbJ13c7j1Uiy5gu972d3t+4n01u3+iVJrW96j/5GsuTw9vsvPab1+tkMRbvH0Oqktmj66++8OBndPnP9AAAAAAAAADCn7QbfCQcAAAAAABaSeq3Rca0AI6ATU7mvDNQGu9gJAAAA7GaqkdZza8/vXR+7s6pKrvpocv4zk5//1dTXDyxL9jtt13o45AWt52oDyf1+b9f277b+RnLQ6dNfP7otWX/FzPUDAAAAAAAAwJwmGA0AAAAAAOipRt9Qx7WC0YBONGpTua/0d7ETAAAA2M2MtglGu+7TybYNvetld/WTNyQXvjRZc+b01j/260nfol3r4di3JIe8cOfxgaXJo85K6it3bf9eOOkfk30fO/31Zx+XjGycuX4AAAAAAAAAmLP81D8AAAAAANBT9Vqj41oBRkAnpnZfEbgIAADAAlK1CUZLkjX/nhz6kp60slvavDb51f+ZvO6YP0n2f9K916WWDC5Plh479vGu6luUPPyTyYM+kGy+JamqpNqWLDs+qc2RfyNdtFfyuHOSTTckd/96bOw3FySXvLXzPa7//ML++wgAAAAAAABAEsFoAAAAAABAjzVqQx3XCjACOlGvLe641n0FAACABWXb3e3n1353YQdR3XbB5OFxSbLfbyf7Pqbr7aS+Yuwxly0+cOyRjIXHTSUYbaH/fQQAAAAAAAAgiWA0AAAAAACgx+q1Rse1A2Wwi50A88WiWj0lJVWqSWvdVwAAAFhQNq1pP7/h2p60sdsYHUlu/npyw1nJHT9J1v148jWL9k5WnNr93uajZcclQ6uTjdd0Vr+hwzoAAAAAAAAA5jXBaAAAAAAAQE81+oY6ru0vA13sBJgvaqWWRbVGNo9umrS2v/gWKQAAAAvIxusnmb+uN33sDkaGk+89K7np7M7X1BYlJ38o6VvUvb7ms1JLTvlQct4zkpENk9dvvLbrLQEAAAAAAACw+/NT/wAAAAAAQE8NlkUpKalSTVorwAjoVKO2uMNgNIGLAAAALCCb1kw+P7o9qfX1pp/ZdP1npxaKdvKHklWPT5as7l5PC8Gqxye/c0Vy8zeT4RuTxQcm29YnP37dzrWb1iSj25Kaf78BAAAAAAAAWMi8mggAAAAAAOipWqmlXmtkWIARMIPqtcUd1fWXwS53AgAAALuRTde3n69GkuGbkqGDetPPbLrxK53XHv/u5PCXd6+XhWbxgclhZ9x7fedlzeuq0bFwtCWH9qYvAAAAAAAAAHZLtdluAAAAAAAAWHg6DTAaqAkwAjrT6DgYzXtHAQAAsABsujG58ezkun+bvHbjtV1vZ9YN35ysObPz+n1/q3u9kAwd0npuwzU9awMAAAAAAACA3ZNgNAAAAAAAoOc6DUbrLwNd7gSYL+p9nQYuuq8AAACwANx6bvLdp3RWu/a7XW1lVo1uSy54YfLF/Ttfc8DTkr1P6V5PJANLkkUrms8JRgMAAAAAAABY8ASjAQAAAAAAPdfoOBitv8udAPNF5/cVwWgAAABwH5f+2Wx30D1X/E1y7ac6q73f7yUn/VPyyC8kpXS3L5Ilq5uPbxSMBgAAAAAAALDQeTURAAAAAADQc/U+AUbAzKrXGh3V9ZfBLncCAAAAc9Cmm5LF+892FzNvzZmd1z7ic93rg50NrU5u/+HO4xsEowEAAAAAAAAsdLXZbgAAAAAAAFh4GjXBaMDMqnd8X/HeUQAAALCTu3812x10x92/7KzumDd2tw92tmR18/E7f9bbPgAAdldVlYxsnO0uAAAAAABmhWA0AAAAAACg5+q1Rkd1A4LRgA51GrjovgIAAABNbLx2tjuYWWvPT84+Idm2fvLavsXJYS/rfk/c19Ahzcfvuiw565Dkl//Qy24AAHYf1WhyyduSL+6ffG5J8pUjk2s/PdtdAQAAAAD0lGA0AAAAAACg5xq1oY7q+gUYAR2q93UWjOa+AgAAwIJQ+pK+xn0fex7Tun7DtT1rres2XJuc++Tkzksmr131hOTx5yZ7HtXtrphoyerWcxuvS378uuSqj/auHwCA3cXP3plc/u5k8y1j13dfmVzwguSmr89uXwAAAAAAPdQ/2w0AAAAAAAALT73W6KhOgBHQqUat02C0wS53AgAAALuBQ5479pjo/Gcla76w8/jGa7veUs/8/L3JyIb2NU++LFl2bG/6obmhNsFo9/j1/00OO6P7vQAA7C6qKrnqQ83nrvpwsv9v97YfAAAAAIBZUpvtBgAAAAAAgIWn0TfUUZ1gNKBT9Y6D0bx3FAAAAAvY0CHNx+dLMNrm25JrPjF53eDy7vdCe0MHT15z56Vj4SAAAAvF5rXJ8M3N5275dm97AQAAAACYRX7qHwAAAAAA6Ll6rdFRnWA0oFONDoPRBtxXAAAAWMhaBaNtuKanbXTNlf+SbN88ed3gsu73Qnt9g0n/kmRkQ+ua7cPJ5luTxqre9QW74pZvJ7/+cLL+ipDAke0AACAASURBVPuOb7sr2XjdfceWHZ+c/MFkn4f2rj8Adn+3ntN6btudybYNycCS3vUDAAAAADBLarPdAAAAAAAAsPA0akMd1Q3UBBgBnal3GIwmcBEAAIAFbcnq5uPDNySj23rby0zbvjm58p86q+3r7I0b6LJHf2Xymiv+uvt9wEy44cvJd347uf6zyZ2X3vcxMRQtSe68JPnGw5K15/W+VwB2T5tuTC54fvuasx+QVKO96QcAAAAAYBYJRgMAAAAAAHquXuvshYcCjIBONfo6DEarDXa5EwAAANiNDR3SfLwaTdb9pKetzLhrP5VsXttZbSnd7YXOLH3A5DW/+Jvu9wEz4fL3JtX2qa8T/gfAPX76x5PXbLxOqCYAAAAAsCAIRgMAAAAAAHqu0TfUUZ1gNKBT9VpnwWgDpb/LnQAAAMBubMkhSVqEgl32zl52MrOqKvnFBzqrXfbA7vZC5xbtnQwsnbxuZFP3e4FdsX1rcvuF01t741dmthcA5qY7Lk6u+7fOam/7Xnd7AQAAAADYDfipfwAAAAAAoOfqtUZHdQOC0YAONToMRhO4CAAAwILWP5SseHhy2/d3nrvp7GTt95KVj+h9X7ti45rkh69M7vp5Z/X7P6m7/dC5UpKDnplc/ZH2dec+JVn5yGTVaXPv7yfz0y3fTm49J9l659j1yIYk1fT3++Grkr56sufRyfbhZMu6ZNVvJfs+dufakU1jwTmXvyfZeE0yuFey5zHJsuPGPt7vCcnKR02/FwB6b8M1yddOnFo9AAAAAMA8JxgNAAAAAADouUZtqKM6AUZApwbKYGrpy2i2t61zXwEAAGDBO+ZNyW1Paz536VuTx507Flg1F6z7SfKd3062/Kaz+hWnJsf+aXd7Ymoe+M5k3Y+SOy9tXbP23LHHZe9Kjn9PcuxbetUd7OziNyc/f9/M7vnr/7vz2OV/mdz/LckJ77l3bOudybcefd/Ply2/SW47f+xxz7rj3pEc9+cz2yMA3XHb95NvTjH4dcPV3ekFAAAAAGA3UpvtBgAAAAAAgIWnXmt0VCfACOhUKSWN2uJJ69xXAAAAWPAO+J1k74c2n1t7XnLLN3vbz6645G3tQ9EOembytGuSh38qefx5Y6FvA3v2rD06sPiA5LQfJL/1rc7qL/3zZPiW7vYErdx91cyHorXz8/cmG6659/qqj7QPEbzHZe9INt3Yvb4AmDkXv2nqazZeM3kNAAAAAMAcJxgNAAAAAADouYEymL70t62ppS+14lsZQOfqfZMHow0IRgMAAGChKyU54T2t5y/506SqetfPdI1uS275Rvuao1+fLDkkOeT5ycpHJrX2/ybJLOlvJKsel6x89OS11Uhy8yR/7tAtN/9n78+84cv3fnz95ztbU436PAGYC7bemdz2/amv27Rm7LkwAAAAAMA85rv7AAAAAABAz5VSUu9rZOP2u1vWCC8CpqpRa0xa0+/eAgAAAMm+j032fVxy67d3nlv34+SGLyYHnd77vjo1Mpxc95mk2t66Zu+HJise3rue2HWrnpCs/e7kddf9W3LI85Kaf+chyfYtye0XJrXBJCUZ3ZLsfXLSV98xvzVZd1Gycc2un3XLN6dWv+z45M5Ldu3Mn/5xUt937OPbf9D5unU/Sg47Y9fOBqC77rys/fxJ/5T86A93Hq9Gk43XJ3sc1p2+AAAAAAB2A4LRAAAAAACAWdGoLW4bjCa8CJiqem1o0hr3FgAAANjh+Hcn32gSjJYkl7wtOeDpSa2vtz114vYfJd99SrJ5bfu6kz/Ym36YOYe/PLn2k8n6X7avu/lrydnHJY/5WrJkdW96Y/d0x8XJuU9Ohm++73h9VfKYs8fC0c59UrLxut73tuTw5NFfTn5wRnLrOdPfpxpJLnje1Ndd+c/JsuOSI141/bMB6J7f/CD51iNbz9//LcmhL24ejJYkt35HMBoAAAAAMK/VZrsBAAAAAABgYarXFred768JLwKmpl5rTFojGA0AAAB22OeU5MCnN59bf0Vy3ad7208nqtHk+8+ZPBTtaVcly4/vTU/MnPrK5AkXJCf+TXLwJEFQ63+Z/FDg04JWVcn3n7tzKFqSbL5lbO6/XtybULSlxyYHPWvscfBzkxP/d3LaBcnQ/cYC/E7+v8nyB913TW0wOeiZycpHd6+vi35/8qBBAHpvdHvyvWe3rzn+3Un/UFLft/n8D18+830BAAAAAOxG+me7AQAAAAAAYGFqTBaMJrwImKLJ7yv9KaX0qBsAAFg4ytgT7TcmqY8b/kRVVdfu4r6rk/yPcUObqqr6613ZE5jgge9KbvhykmrnuUvfntzvOUnfYM/bamndT5INV7ev2fuUZMmhvemHmbdor+SY1499vM/Dkx+/pnXtLd9MtqwbW8PCc9dl7UO/7v5V73o5+o+Sw17WfK5vMDn8FWOPZrZvST5bbz43E677XHLcn3VvfwCm7vYLk01rWs/v96Tknu9nDa1ONt/avM7zIAAAAABgHhOMBgAAAAAAzIq6YDRghtX73FcAAGCWPD/JX+XeZKUzdzUULUmqqrqmlHJcktPvGSulXF1V1Zm7ujeww7LjkoOfl1z36Z3nNl6TXP2vyRG/3/u+mhndnqw9d/K6vU/peiv0yD4PnaSgSu7+dbLo5J60QxdVVbJ5bbJo72TbXcn2zZOvWfPF7vfVqb134e9g36LkIf+SXNSle+3dV3ZnXwCmb/0v2s/vM+757NKjk9t/0Lxuw1WTB6ONjiTVSNLXxRBOAAAAAIAuEIwGAAAAAADMisYkAUYDxbcxgKlpCFwEAICeK6XUkrzznsskv0ry4hk84iVJjk9y+I7rdycRjAYz6YHvSK7/bFJt33nusnclq1+c9Lf/mrurRkeSn74xufojybb17Wv7h5IjXtmbvui+vR6crHx0sva7rWu+cUpy+q1JfWXv+mJmXfWR5NI/S4Zvmu1OpmfVE8ZCJnfFoS9Nrv1Uctv3Zqan8a79ZPLwT8z8vgBM3ej25OI3Jb/4m9Y1g8uTQ8+49/qYNyZXf6x57c/+InnMf7Q4ayT58euSa/9fsn1Lsv8Tk4d+LBlcNs3mAQAAAAB6qzbbDQAAAAAAAAtTfdIAo8EedQLMF5PfVwSjAQBAFzw+yeok1Y7HW6qq2jRTm1dVtTHJm8cNHVlK+a2Z2h9IssfhyWEvaz43fHNy5T/3tp+JfvYXyS//bvJQtAN/N3n8ecnS+/ekLXqglLGwj6P+V/u67z6tN/0w8276WnLhy3obilYbSOr77vpj6bHJ0a9PHnXWrvfUNzi2z+Gvuu94s3MXrdh5/arT2u+//spd7xGAXXfZu9qHoiXJEy5Ihu5373W757Y3nZ3c/M3mcz/9k7Hn8dvWJ6NbkhvOSs5/5tR7BgAAAACYJf2z3QAAAAAAALAwNQQYATNssvvKgPsKAAB0wwvHffzjqqq+ONMHVFV1Zinlx0kevGPoBUnOmelzYEF7wJ8lV398LDRhosvfmxz+imRgz973VVXJVf86ed2Rr01O+vvu90Pv9Q8lD/7b5O4rk5v+o3nN7Rcmd16WLHtAb3tj13Xy+T3TDvq95NRP9f7cySzaKzn5X8Ye03Hj2cl3n9J87ppPJMe/a/q9ATAzrv5I+/mj/ihZevTO4/s/eSwErdWe+z3hvmNVlVz/bzvX3npOMnxL0ljVWb8AAAAAALOoNtsNAAAAAAAAC1N90mA07+8CTM3k9xXBaAAA0AVPHPdxN9NN7tm7JHlyF8+BhWnxgckRf9B8buu65IoP9Lafe2z5TbL5lsnrBGLNf8uOaz9/58960wcz69bv9P7M+Xq/WHZs67m7fH4AzLqtdySb1rSvaXUvb/c8qNlzoK13JMM3N6+//vPtewAAAAAA2E0IRgMAAAAAAGZFQ4ARMMMafe4rAADQS6WUg5PsM27oq108bvzeK0spB3XxLFiYjn1L0r+k+dxl70juuLh3vYxuTy5/b/LFVZPX9g8l93tW93tidq1+UVLa/Oj7Bc9PfvjKZPPa3vXE1Gy4NvmvlyRfPTo5a/XYY+u63vZQ+pNDnt/bM3tl6ODWczeclVSjvesFgJ3dck77+f4lyUHPbD53yP9ove6uy5Oq6ryPanvntQAAAAAAs0gwGgAAAAAAMCvqkwQYDQgwAqaoLnARAAB67fgdv1ZJrqqq6sZuHVRV1Q1Jfj1u6IRunQULVn1FcvQftZ7/2onJltt708sPX5Fc8qeTB/nscWTyW+ckg8t70xezZ+kxyaPOal/z6w8l33hYMrKxNz3RueFbx/5srvl4sv6XycZrxx69tPh+yWP/s32A2Fz3oL9tPfej1/auDwDua/jm5Httgnz3OCJ53DnJ4LLm88uOTe7/5tbrb/nmhIEpBKUBAAAAAOym+me7AQAAAAAAYGFqTBpgNNijToD5YvL7imA0AACYYSvGfXxTD867KcnhOz5e2YPzYOE5+g3Jr/4x2XpH8/lrP50c9Zru9jB8y1h4UjulP/ndNUljVXd7YfdywO8kR7567O9oKxuuTq7/QnLoi3rXF5O75hPJ5lumvu4Rn0+WHT95Xf/ipBoZ+7j0JyObdp5ffMDUz59r9jqp9dyV/5Q88B3Jor171w8AY65u89x2YM/kqb+afI8jX5P8/K+az132rmS/0+69rrZPrT8AAAAAgN2QYDQAAAAAAGBW1CcLMKr5NgYwNfVao+38gGA0AACYacvHfTyNtJMpG3/Gsh6cBwvP4NLk/m9KLn5z8/nf/Ff3g9Fuv2jyMIf9nyQUbaHa44jJa37zX4LRdje/+a/prVv5qKQuC7Vjexzefn7dT5L9ntCbXgC4V7v/D654RGd7tHvuu+W2+16PjnS2JwAAAADAbqw22w0AAAAAAAALU2OyYDQBRsAUNWpDbef7a+4rAAAwwwbHfdyLn0ccf8aiHpwHC9ORbYLPrvtMctPXZ/7M7VuSqz6SXPiK5LynTV5/v9+b+R6YGw46ffKaX38w+Ux/ctm7k613dL8n7mv85/MFLxp73Pa9qe+z8jFC0aaqsSpZ8cjW87/8h6SqetcPwEK36Ybk5/87ufHLrWs6fV5baklfizcIWv/LZP2v7r2uBKMBAAAAAHOfYDQAAAAAAGBW1CcJRhsQjAZMUb3VC0J2ELgIAAAzbtO4j1f04LzxZ2xqWQXsmv7FyVGvaz1/7hOTS/9i5s7bvjn5zhOTC1+WXPXhyesPPSM5+Lkzdz5zy+IDkwe+a/K6anty6duSrxyZDN/S/b4YM/Hz+dpPjj223Da1fYZWJyd/sDs9zncnf6j13E1fTX7yht71ArCQ3fXz5D8fklz8J61ragPJIS/ofM9HfL713FePSm6/aOxjwWgAAAAAwDwgGA0AAAAAAJgVjb72wWj9ZbBHnQDzRX8ZyECbe4dgNAAAmHHjk2YO7sF548+4tQfnwcJ1wO+0n7/83cnwDH0arjkzWXvu5HW1geQpVySn/OvYxyxcx76189otv0muFLDVM51+Pt/j2Lclp3xk7PGwTyYP/WjyuO8kT7k82fOorrU5ry09OjnwGa3nf/m3yYare9cPwEJ1+XuSzZOEsz7u3Kk9r93nYe3nL3nb2K+j7YLRqs7PAwAAAACYRYLRAAAAAACAWVGvNdrO95f+HnUCzCft7i0DgtEAAGCmXbXj15Lk4FLK4d06qJRyWJJDmpwNdMOSQ9vPVyPJrefMzFk3/Wdndcf+2VjgTykzcy5zVylJfWXn9Vd/tHu9cF83f31q9Ue8MjnsjLHH6hcmh74k2fcxSX/77x8wiaX3bz9/8zd60wfAQnZzB89xJ3vOPdHg8mRgaev5284f+7VqF4wGAAAAADA3CEYDAAAAAABmRV/pz2BZ1HK+X4ARMA2N2lDLOfcVAACYcZck2Zqk2nH9tC6e9bvjPt6W5OIungUMrU72OLJ9zZX/lIxs2rVztqxLrv1kZ7X7P2nXzmJ+OfgFndduur57fXCvajRZ84XO65c+IGkc0L1+FrL9nth+/uqPJSPDPWkFYEHZekdyw5eTm76WbLm9fe3yE5LGqqntX0r758TbN4/9OioYDQAAAACY+wSjAQAAAAAAs6ZeW9xybkCAETAN9Vqj5ZxgNAAAmFlVVW1N8t0kZcfjT0oprdOKp2nHnm/MWABbleS8HWcD3VJKcuJfJ7XWb2yQ276f/PteyfpfTe+Mm7+ZnHVIZ7WrX5zs9eDpncP8dPQfJUsO67z+yg92rxfGQhLPe0YysrGz+r56cuL7x+41zLwVpyYHP7f1/O0XJl87Idlwde96Apjvbvl28qWDkvOenpz75Pa1fYuTE943vXOOfVubySqpqqQSjAYAAAAAzH2C0QAAAAAAgFnT6GsdjCbACJgO9xUAAOi5z+z4tUqyIsn7u3DGXyVZmbHwtST5dBfOACY68KnJEy9qXzO6JfnRq6e+9+i25L9emIzc3bqmvio58rXJI89MHvpRAUrc19BByWk/SE76x2Tfx+be/0W0cNHvJ5tv60lrC9KVH0xu/HLr+f2elBx6xtjjge9KfvtHyf5P6l1/C00pycM/1T488O5fJT/+o971BDCfjW5LvvfszgJCj3tH8sQfJfudNr2zlh2bPLzdl8RVMioYDQAAAACY+/pnuwEAAAAAAGDhqtcEGAEzq919ZcB9BQAAuuHTSd6dZFXGUmleVUq5saqq98zE5qWUNyf5w4wFr5Ukt0YwGvTOsuOSB30g+cnrW9fc8s1k6x3J4PLO9117frJ5bfuax30nWXp053uy8NT3SY78w7HH1juTf5/k7+CNX0kOe2lvelto1nyh/fyDPuDzuddKLTnmDclFf9C65qb/SEY2Jf2t/00VgA6sPT/Zum7yuqHVyXF/vuvnDd2v9Vw1mlSC0QAAAACAuU8wGgAAAAAAMGsagtGAGSZwEQAAequqqq2llLck+VjuDS97VynlgUl+v6qqO6azbyllWZJ/TvKccftWSf60qqqtM9E70KF9Tp285pZvJUsfkCxZnfTV7x0f3ZZsWZc09h0LaRi+JRndOhZQ1U59ZbLHYbvWNwvL4LJkz2OS9Ve0rrn5G8mhZySjW5IN17TeZ+tdGftfTpLFByYDe8x4u/PGtg3JpjXJby5oXePzefbs8/D289X2sc+FZcf2ph+A+WrNmZ3VrZjkvtyxWuspwWgAAAAAwDwhGA0AAAAAAJg19Vqj5dxATYARMHVtAxfdVwAAoCuqqvpEKeUZSZ6ee0PMfi/J40spH0ny4aqqruxkr1LK4UlekeSMJHvl3kC0KslXqqr62Mz/DoC29n5IsvzE5I6ftq753rPHfq0tSg57WfLgv0su+8vkF3+TjGyc+plH/3Hi63im6v5vSn7wktbz13927DEVpS858OnJQz8mIG28bRuSH5yR3PDFsXCtdnw+z57lxyf7PTG5+T9b15z9gOTBf58c9dre9QWwUB31upnZp5TWc+c8LjnyNa3nq9GZ6QEAAAAAoMsEowEAAAAAALOmURtqOddfvFAKmLp6u2A09xUAAOim/5HknCQn5d5wtL2SvCHJG0opNyf5YZIrkty545EkS5MsS3JMkpOT7L9j/J5Xet+z14+TvLDrvwtgZ6UkT/h+8rnWX3P/t9EtyZX/PBaWNHzz9M576EeTQ18yvbUsbIe+eCy87Pxnztye1fZkzZlJrf7/s3ff4XFddf7H32ekkVXcbcklbrHTnR7SExISUigJoZelZhd2YYEsS1nI0kLgt7CFXcrCshD6AqEEUoFU0kmB9B7HvUlx72rn98fISI7vHc2MZkYa+/16nvvo6nzPPeer2BnZ8tzPhZP/r3zr1rr73gdLfzn4vPkXwyEfrXw/Svfi38BjX4BHL02f86eLoGUOzDi/am1J0l5nv7/LBQ6XRSa91HFH7kjT21WmHiRJkiRJkiSpsgxGkyRJkiRJkiRJw6axrim1ZoCRpFI01aXfpJ31dUWSJEmqmBjj5hDCmcD3gVeTCzSD/oCz6cCr+o40YcD5wOuvBN4RY9xctoYlFac+/ed4iUoNRZt/saFoGpqZr4Hj/hfufU951136S+j6FmRHl3fdWtS9BZb8vLC5h36qsr1ocHWj4PDPweo/QMft6fMW/sBgNEmqpNlvKN9aIU8w2mBid/n6kCRJkiRJkqQKGsJPQiVJkiRJkiRJkoamKdOSWjMYTVIpGjPpwWi+rkiSJEmVFWPcFGN8LfBhYBu5ULM44KBvLOngBXMDsB34WIzx1THGjdX6OiSl2Pcdld9j/OGV30N7vvFHlH/N3k7Y/Gz5161FmxZA747B5405AOoaK9+PCjPY6+uGx6rThyTtiXo7B58zbn759htKMFqvwWiSJEmSJEmSakP9cDcgSZIkSZIkSZL2Xo2ZptRa1gAjSSVoMhhNkiRJGnYxxv8MIfwQ+AfgfcCEgeWUy8KA83XAN4CvxBifr0yXkoo270JY+IPKrT+qFfY5v3Lra+8x6VgYfxisf6S86/72qN3HRk3afSzTAJOOg8O/AOPLGIIynLatggc+Bh23wZbFhV0z768r25OKM+9CePabEHuT6xufgmVXw4zzqtuXJO0Jutbnr8+4ABrbClpq2faFXP38T1iy/Vm62T3ELBsamFs3lfNGtTBlx5bie40Go0mSJEmSJEmqDQajSZIkSZIkSZKkYdOUaUmtGWAkqRT5Ahd9XZEkSZKqJ8a4BvhUCOFzwPHAacDJwD7ARGBnksxaYA2wArgTuBW4J8bYWfWmJeXX9mI4+Wdw55vKu27IwMTj4MTvQ3363+ulgoUAL/k93P1OWHV9ZffasSZ5fNmVsPoP8PKHoWVWZXuotJ7tcMPJsPm5wuaPmgz7vxcO/khl+1JxJh4Np/4GbssTQHnb+XD6dTD9ZdXrS5L2BJ3r8tdP/FFBy7R3ruQ/lnyCHXF73nl/7l7DsweewsefuJXxXfnn7sZgNEmSJEmSJEk1wmA0SZIkSZIkSZI0bAwwklRujZnm1FrW1xVJkiSp6mKMXcAdfYekWjf7jbmjexv07oCeHfC7Y2Db8tLWO/abMOetkB1d3j6lpmlwxu+h465cqFea5lnQ2wnbV5W/h64N8Nz34LDPlH/talp2ZWGhaOPmw5k354LRQqbyfal4M86D1z4Pv5qcPueprxiMJknF6lyfv17gn3XvWP/7QUPRdtqYbeTB8dM4vWNhQfP/otdgNEmSJEmSJEm1wX9xlCRJkiRJkiRJw6apriW1ZoCRpFI01aUHoxm4KEmSJElSmdQ3QcN4aJoCYw8sfZ3pLzcUTZU1bn7+kK6xB8L8iyu3/5p7K7d2tTx/T2HzWk+FxjZD0Ua6hom5I82a+6rXiyTtKfKFBB92ScHLLNr+dFHbLm0eV9R8AKLBaJIkSZIkSZJqQ/1wNyBJkiRJkiRJkvZejZmm1JoBRpJK0ZgxGE2SJEmSpKqa/UZYfXPx1006AVpmlb8faaCGcTDtZbDi2uT67Dfm6n/+EMSe8u/fcSfcdsHu443TYMb5MP1l5d+z3Bb9qLB5s99Y2T5UHiHkfq2e+WZyvXMtdG02tFKSCtW9DbatTK/PflPBS7V35lknaetSwkh7DUaTJEmSJEmSVBt8HJMkSZIkSZIkSRo24+onJI5nyNBYlx5uJElpRteNJZPyz6Cj68ZWuRtJkiRJkvYCc98Fcy8s7pq6Zjjxh5XpR3qh4/4Hxh+2+/i8d8O+74Dm6XDijyHTUP69uzbAsit3P579H/jDy+Hxfyv/nuW08Eew4/nB5x3+eWg7rfL9qDyO+AI05wmm3LK4er1IUq3bsii9dvBHYewBBS2zvXcbG3vWFbV1d6auqPkAxK7ir5EkSZIkSZKkYVA/3A1IkiRJkiRJkqS916TsFKY1zGRl59Jdxuc1HUxjpmmYupJUy0ZlGjmg+TCe3PrQLuNt2elMbpgyTF1JkiRJkrQHy2ThhMvgsE/D2gcgdvfXenZA73bIjoXYC91bYNwhMPFFkPFtzKqS5hlw7gOw/mHYvABCPUw8Blpm9s+Z8ybY5+Ww5j4Ysx+0zIbt7XBFAT9POuar0LMdHvxY8b09+jnY/72QHV38tZXW2wMPXZxe3+c82O89MOk4aGyrXl8auoYJcN4zcPmo5PqWxTB+fnV7kqRatf7h9Nrhlxa8TEfnytTa3MaDeG77k7uNd4XkBwXl1ds9+BxJkiRJkiRJGgF8R4EkSZIkSZIkSRpW75j2D3x92efY3LMBgAn1k3nr1PcPc1eSatmbpvwdX1v2GdZ0tQPQnBnNhdM/PMxdSZIkSZK0h2uZnTukkShTBxOPyh1psmNh6pn9nze2wfGXwT1/nX/tue8qPRitezOsuWfXfUeKTU/D1mXp9YM/Bm2nVK8flVddQy40MOnXeOvi6vcjSbUo9sLjX0yuNc+AupQAygTtnSsSx+tDPXObkoPRujMlBKNFg9EkSZIkSZIk1QaD0SRJkiRJkiRJ0rCa1TiPS/b9Bgu2PUEm1LFf0yE0ZAp/k7gkvVBbwzQ+OeerLNz2FJ1xBwc0H0Zjpmm425IkSZIkSVKtmf5yCHUQe5LrU14C2dG5Y9LxuZCzYq28fmQGo21emF7LjoNJx1WvF1VGy+zkYLTl18L+761+P5JUa5b+CtY9mFxrO72opdq7ViaOT85OTf238+5QQjBar8FokiRJkiRJkmpDCT8BlSRJkiRJkiRJKq+muhYOHf0iDmk5ylA0SWUxKtPIQS1HcPjo4wxFkyRJkiRJUmmapsLhn0+uNUyEI77Y//lR/54LDCvWE/8KT329tP4qafNz6bVjvwF1DdXrRZXRPDt5fMW18NCnqtuLJNWa3h54+NPp9YP+oajlOjpXJI63NUynPmQTa92ZuqL2ACAajCZJkiRJkiSpNtQPdwOSJEmSJEmSJEmSJEmSJEmSJI1I8z8ObafB6ptgxxrIZKFlDuxzHrTM7J/Xdgq87EFYfg1sfnb37ZH24AAAIABJREFUdVbdABseT97jzxfBzFdD8z4V+RJKsmVh8njDBJjzlur2ospoSQlGA3js87nfkxOPrl4/klRLll8NG59Mrs18DUw8pqjl2jtXJo63ZqeRTQtGC5mi9gAMRpMkSZIkSZJUM2oqGC2EcHPfaQTeHGNsL3GdKcBPd64VYzyzHP1JkiRJkiRJkiRJkiRJkiRJkvYwrSfmjsGMngMHvj+59uDF6cFosReWXQkHvK/kFstuc0ow2j7nV7cPVU6+YDSApVcYjCZJaVbdkFIIcNjnil6uvWtF4nhbw3R6Y09irauUYLReg9EkSZIkSZIk1YYSfgI6rE4HTuv72DiEdRr71th5SJIkSZIkSZIkSZIkSZIkSZJUGW2n5q8v/ims/TP0bK9OP4PZ/Fzy+Oi51e1DlTPY78nNC6rThyTVorTXyJmvhfHzi1pqa89mNvdsTKy1ZadRH7KJte5MCbcFRoPRJEmSJEmSJNWGWgtGAwjD3YAkSZIkSZIkSZIkSZIkSZIkSQWbejZMOj693nEH/O4Y+MV4eOyLEGP1enuhGGH9Q8m10ftWtxdVzrhDcgE+aRb/DLa3V68fSaolK3+fPD7puKKXau9cmVprbcgTjBbqit6L3q7ir5EkSZIkSZKkYVCLwWiSJEmSJEmSJEmSJEmSJEmSJNWOTB2cedPg83p3wEOfgGVXVr6nNM98M73WYjDaHuXkn8GYA9Lrd721er1IUq1YeUN6rYQA0Y6uFYnj2dDA+PpJZDMpwWiZEm4LjN3FXyNJkiRJkiRJw2BvDUarH3DuT3QlSZIkSZIkSZIkSZIkSZIkSZVV3wInfL+wuYt+XNFWSt67hMAXjWCZejj2v9Prq26Abauq148k1YIFl6XXRs8tern2zpWJ463ZqWRChvqQEowWSrgtsLez+GskSZIkSZIkaRjsrcFokwecbxm2LiRJkiRJkiRJkiRJkiRJkiRJe48JRxU2b8Pjle0jn23JAS0ANE2rXh+qjnGH5a9vfKo6fUhSrdj8XHptzAFFL5cajNYwHSA1GK0rU8JtgVtXFH+NJEmSJEmSJA2DvTUY7cV9HyPgT3QlSZIkSZIkSZIkSZIkSZIkSZU34XCYfOLg8zY+ATeeBluXVb6ngXq7Ycui5Nr4IyDsrbcg7MGapsDM16bXtyyuXi+SNNJ1boC19yXXQgayo4tesqMr+da2toZcGGlaMFpvyNCb2Edd+mZbFua+10uSJEmSJEnSCFfL/yoZi5kcQsiGEGaFEP4G+OcBpUfK25YkSZIkSZIkSZIkSZIkSZIkSSlOvxZmvR7qx+Sf134bXH8S9GyvTl8AT301vXbiD6vXh6or369tWlCeJO1tYoQbT02vn3ZdScu2d65MHG/LTgcgmxKMBtCdFIJ22rX5w9Ge/lpR/UmSJEmSJEnScBhxwWghhJ60Y+A0YFG+uQnXbgcWAt8Cxg5Y66oqfnmSJEmSJEmSJEmSJEmSJGkQIYRjQgivCyGcF0LYb7j7kSSprBomwCk/h9etg1ctyj9361JYVsW3vD/1X+m10XOr14eqq74ZZlyQXDMYTZJy1j0A6x9Jr489oOglN/dsZGvv5sRaW0MuGK0+XzBaJuHWwOnnwOvWp2/66KVF9ShJkiRJkiRJw2HEBaORCz1LOwqdN9gR+9Z4Evhl5b4USZIkSZIkSZIkSZIkSZL2XiGExhDC3AFH3SDzzw8hLALuBS4HfgM8FUK4I4RwSBValiSpejJ10DwLGibmn7fgsur0A9C1MXk81EN2dPX6UPW1zEke37K4qm1I0oi19v70Wl0zNM8sesn2zhWptbaGaUD+YLSukHJrYHY0NO2TXOtcDzvWFtyjJEmSJEmSJA2H+uFuIEVk9yC0cgrA/cAbY4xdFdxHkiRJkiRJkiRJkiRJkqS92YeBz/WdLwPmpE0MIbwB+AnJD1M9CbgnhHB6jPFPFehTkqThEQLMfjM889/pc1ZdDz8J0DABOtf1j9c1Q8/W3PmUM5IWh/GHwry/yX1Ms+L3sORyWPcgdG1InjPxRYN+KapxacFoa+6Bm86E+tHQdioc8H6oaxzaXjHCc9+FlddD41SYdyFMOGJoa0pSpW1emF6b9XrIFH+bXnvnysTxUaGRsXUTAMjmCUbrzqQEowG0ngRLfpFQiLDydzDnLcW0KkmSJEmSJElVNRKD0W4jF4yW5LS+j5Hc0yC3F7hmBHYA64EngFtijLcPpUlJkiRJkiRJkiRJkiRJkjSoC8iFnEXgshhj4vsDQwgTgG8Bmb65Ax+wuvOaFuCKEMKBMcZC3z8oSdLId+S/5A9G22lgKBr0h6IBrL45+ZrVN8GC78IZN8Lk43avP/ttuPc9g+994g8Gn6PaNnpO8nj3lv7fX8uvguVXwxk3Q6au9L3u/VtY8O3+zxd8B864HlpPLn1NSaq0x7+YXjvmP0tasqNrReJ4a8M0Qsj9lbg+XzBayPNafML3UoLRgLv+Cma9oaQwN0mSJEmSJEmqhhH308sY4+lptRBCL/1vcHpjjHFJVZqSJEmSJEmSJEmSJEmSJElFCSE0AUfS/76/a/JM/wAwjv5AtOXAFUA38Bpgdt+8GcAHgX+tQMuSJA2P7BiYdi6s/F1l1u/eBE98CU791a7jvd3wyGcHvz7TAGP2q0hrGkFa5hQ2r/02WHU9TH9ZaftsXrhrKBrkQv4e+xc4Pd8fFyVpGG14Ir128MegYUJJy7Z3rkwcb2uY9pfzfMFoXZlM+uL1LTD3nfDc95PrK34LM84roEtJkiRJkiRJqr48P/0cscLgUyRJkiRJkiRJkiRJkiRJ0jA7DKgj976/LTHGP+eZ+1b6Q9GeAg6NMV4UY/xw3zr39c0LwDsr1rEkScNl7jsru/7qW3Yf2/QMbFsx+LUtcyDU4q0HKkqhwWiQ/PupUMt+kzy+4lqIMbkmScOt/Q/ptdFzSl+2M/n7cGt2+l/O6zPpwWjdg31/nnJmem0or+WSJEmSJEmSVGH1w91AkS4ZcL5+2LqQJEmSJEmSJEmSJEmSJEmD2bfvYwQeT5sUQjgI2K9vXgQ+HWPcsLMeY9wcQvgA8Me+oQNDCDNjjEsr07YkScNg2tnk8j8rFAzVuQ4e+iSEAbcQbFlY2LUzXlWZnjSyNIyDttOg/dbB524u8PdOkhW/Ta/t6IDGttLXlqRKWfun9Nr0V5a0ZIyRjq6VibW2hml/Oc+GIQSjTX95em3Lc/mvlSRJkiRJkqRhVFPBaDHGSwafJUmSJEmSJEmSJEmSJEmSRoApA86T7/bOObXvYwA2Ab9+4YQY470hhGXAjL6hwwGD0SRJe46GCXDsN+G+v6vcHo99ofhrJhwJB324/L1oZDr6y3DLubmAsnyW/hJ6eyBTV979Ny8yGE3SyLP+MVhwWXq9ZWZJy27q2cD23m2Jtbbs9L+cZ6gjEIgJ4andg70Oj5oILfsmh6EuuxJ6uyFTU7cXSpIkSZIkSdpLDPJYCEmSJEmSJEmSJEmSJEmSpJI0DzjflGfeyX0fI3BTjLE7Zd6jA85nDaUxSZJGpP3/Fl7+CBzwwdLDoeZ/EkIZAk4O/TSc+is46w5omjL4fO0ZJh6d+z14wvdzv5dmXJA+d/VNpe3RszW9lhTcI0nD7cF/Sq/N/+eSl23vXJFaa2uY9pfzEAL1IZs4rysUcGvg4Zek11ZcN/j1kiRJkiRJkjQMDEaTJEmSJEmSJEmSJEmSJEmVEAacJ9/FnXPSgPPb88xbM+B8bEkdSZI00o0/FF70FTh/UWnXH3EptMweWg/7vj0XojLzNVDfMrS1VHuapsDcd+R+Lx34wfR5y35T2vqbF+WpGYwmaYTp2Q4rf5teb5lT8tIdXSsTxxszzYyuG7fLWH1K6Gl3poBbA1v2Ta+V+louSZIkSZIkSRVmMJokSZIkSZIkSZIkSZIkSaqETQPOpyRNCCFMBfYbMHRXnvUG3gkeUmdJkrQnqG+CSScUd83+78t9nHL60PZuG+L12nNMfFF6bcFlsP353cc3L4KNT0GMu9d6dsC2Felrrvxd8nWSNFy2LIbYm15vO63kpVd3Jr8etmWnEcKuf+WtD8lZ492hgFsDJx6dXlv6a+jtGXwNSZIkSZIkSaqymg5GCyG8JIRwaQjhmhDCvSGEp0IIzxV5LBjur0OSJEmSJEmSJEmSJEmSpD3Q8r6PATgsZc7LB5zvAP6cZ73xA863DKEvSZJqw2GfhkxyEMpuRrXCgR/MnR/4IWiYWNqe4w+DWa8v7VrtebJjIDs2udbbCVe0wj3vht4u2LEGbjgFrtoXrjkIrjsMtizd9ZoNjwF5gs/ab81dt3lRub4CSSpdjHDve9Lrs94IY/cvefmOtGC0hum7jWVDQ+Lc7kzd4BvVN0PTPsm1rvVw5UxYc//g60iSJEmSJElSFdUPPmXkCSGcA3yVXZ8SWerTH32ckCRJkiRJkiRJkiRJkiRJ5ffwgPOJIYRzYoy/f8Gcd/V9jMC9McauPOvNHXC+qhwNSpI0ok1/GZx5Kyz8AWx6JhcqtX11rjZ6Low5AOoaYfQ82P+9MGZerjZ+Ppx9Nzz7LVj3IMSewfeqa4LJJ8KBF0F2dOW+JtWe4y+DO/KE5S34Dow7BNpvh447+8c3PJa77pw/9o/d9VeD77fhMbjzzXDO3aX3LEnlsPJ30H5bev3knwxp+faulYnjScFo9SE5KLUrZArb7Nhvwm3nJ9e2rYRbXwEXLCs8kFWSJEmSJEmSKqzmgtFCCB8FvrjzU/qDzUoJOCs1TE2SJEmSJEmSJEmSJEmSJOURY1wQQniG3ENQA/CNEMJLY4wLAUIIHwZOHnDJlWlrhRBGs+vDVBdUoGVJkkae1hNzR7HGHgBH/0f5+9HeZ/S+g89Z8N1ceN8LrbkHti6D5hkQI2x8srA91/wRNi8sbG9JqpRFP02vtZ4KhYaSJYgx0tGZHIzWmp2221h9SL4FsDtTYA+j5+avb2+HVTfB9HMLW0+SJEmSJEmSKqymgtFCCOcAX+r7NPYdO8PNtgLrgXxPi5QkSZIkSZIkSZIkSZIkSdXzHXLv+4vAvsCTIYSHgDZgJv3vA9wO/DjPOqfT/37BbuCxCvUrSZKkgcYeBHXN0LM1fc6GR9Nrq2+F2W+Aro3F7bvxqfzBaDFCCOl1SRqqjU+k1yYeM6SlN3SvpTPuSKy1NUzfbaw+ZBPndhcazjZmHmTH5n8t3vikwWiSJEmSJEmSRozSH00xPL7Y93HnG6GWAe8H5sQYR8cYZ8QY9y32GLavRpIkSZIkSZIkSZIkSZKkPdtXgCf7ziOQBY4BZtEfdBaBL8cYO/Ks8+oBcx+KMeUOckmSJJVXfQvMu7D06+9+K/ysAX41ubjrHv9i8viin8K18+Hno+Hmc2DzotJ7k6Q0z3wL1t6fXp/3N0Navr1rRWqtrWHabmPZTEPi3IKD0eoaYb/3DNLUbYWtJUmSJEmSJElVUDPBaCGEecAR5N7UBHAPcGiM8RsxxiXD15kkSZIkSZIkSZIkSZIkSUoSY+wEziEXjrYzCC3Q/17AAFwBfCZtjRDCaOC1A665qSLNSpIkKdnR/wXzL84F61RL+62w4re7ji2/Fu56C2x4HHq2wqrr4YZToGd79fqStOdb+CO47+/S64dfCuPnD2mL9s6VieMtmTG01I3Zbbw+1CfO78rUFb7pkV+CQ1P/6g3Lfg09nYWvJ0mSJEmSJEkVVDPBaMCJfR93viHq7THGTcPYjyRJkiRJkiRJkiRJkiRJGkSMcSlwJPBe4LfA48AT5ALRXhdjfH2MsTfPEu8ExpJ7/2AArq1ow5IkSdpVpg6O+AK8YQtkGqq37zP/s+vnz35r9znblsPya6rTj6S9wzPfzF+f89Yhb9HeuSJxvLVhWuJ4fcgmjneHIm4NDBk4/LNw+OfT56y4rvD1JEmSJEmSJKmCaikYra3vYwQeiDE+M5zNSJIkSZIkSZIkSZIkSZKkwsQYu2KM34oxviLGeGjf8boY4xUFXH4ZMGHnEWO8o7LdSpIkKVHIwNiDqrffugd3/Xz51cnzFlxW+V4k7R1i3P21Z6D60dA8Y8jbdHStTBxvKzYYLVPCrYHjDkmv5fvaJUmSJEmSJKmKaikYLQw4f3bYupAkSZIkSZIkSZIkSZIkSVUTY9wWY9yw8xjufiRJkvZq+76tvOvNe3d6besSuONNsOxquP+i9Hmrri9vT5L2XlsWQs+29PrsN0GmfsjbtHeuSBxvy05PHE8NRgsl3Bo47dz02ubnil9PkiRJkiRJkiqgloLRlg84rxu2LiRJkiRJkiRJkiRJkiRJkiRJkvZGB/4DzH5z+dY7/FI44gvp9SWXw23nw9NfTZ8Te6FnR/l6krR36u2Bq+al1yefBEf/59C3ib10dK1KrLU2TEscz6YEo3VlSrjFrr4J2k5Prm1ZWPx6kiRJkiRJklQBtRSM9tiA85nD1oUkSZIkSZIkSZIkSZIkSZIkSdLeKFMPJ/1f+dZrGA8HXjT0dZZdOfQ1JO3dVt2Qv37WHZAdPeRt1nU/T3fsSqy1NUxPHK9PCUbrDiXeGjjr9cnjGx6D7q2lrSlJkiRJkiRJZVQzwWgxxkeAR4EAHBNCmDDMLUmSJEmSJEmSJEmSJEmSpBKFEGaEEF4cQrgghPC2EMLbh7snSZIkFSAEGH/E0Nepa4S6UVDfAtmxQ1ur/bah9yNp75bvdWT8EbnXvjLo6FyZWmvLTkscTw1Gy5R4a+DoucnjnevgmW+UtqYkSZIkSZIklVH9cDdQpP8AvgfUAR8GPjm87UiSJEmSJEmSJEmSJEmSpEKFEGYDHwLOB2YnTPlhwjWnAi/p+3RdjPFrletQkiRJBZlxAax/aGhrZMf1nzfPhA2Plb7WM/8Nm56GcYf2j9U1wKTjYPorc+eSlE/H7em1ma/Je+nWns08vPlelu9YTCTmnbtqx9LE8TF142iqa0mspQajhRKD0VpPyYVT9mzfvfbAR2HSCdB2SmlrS5IkSZIkSVIZ1FQwWozxByGEVwKvBT4WQrgzxvjb4e5LkiRJkiRJkiRJkiRJkiSlCyFkgEuBj5J7OGpImJZ29/jzwGd31kMI18UYF1SgTUmSJBXqoItg9c35g4QG0zC+//y4b8MNJw2tp1U35I4XmnImnHYV1DcPbX1Je67n/wgdd6TXD/xgamlNVztfXfoZOrpWDqmFtobpqbVspszBaNnRsN974an/TK7feCocfxnMu7C09SVJkiRJkiRpiEr86eewegdwFblQtytDCJ8LIYwf5BpJkiRJkiRJkiRJkiRJkjQMQghZ4HfAx0l+oGtaIFquGOMTwC30h6m9pawNSpIkqXgNE+CMG+GMm+Cof4d9zhvaepNeVJ6+kqy+CRb/tHLrS6p9D3w0vXbMV3YNcnyB69dcMeRQNIDW7LTUWn1IDkbrytSVvuH8j0N9S3r9zx+C7q2lry9JkiRJkiRJQ5D0BqMRK4Tw6b7Th4CTgMnAPwP/GEK4G3gcWAf0FrNujPFz5exTkiRJkiRJkiRJkiRJkiT9xWXAS8kFoEVyAWe3kws76wQ+X8AavwJe0nd+NnBp+duUJElSUeoaYOoZueOAv4fLm4q7vnlm/3kmm/t869Ly9rjT8mtg3l9XZm1Jta1zPXTckV4fs3/eyx/Zcl9Z2mhrKD4YrTtkSt+wsQ0OvAge+3/J9a6N0H47TD+n9D0kSZIkSZIkqUQ1FYwGfJZdnwy58w1SzcAZfUcpDEaTJEmSJEmSJEmSJEmSJKnMQghnAm+l//1+zwJviTHe31efTWHBaNcCX+9b49gQQmOMcXtlupYkSVLR6hqh9VTouH3X8cwoaBgH29t3v2bKmbt+3jK7csFo6x+Bpb/OndePhsnHQ3ZsZfaSVFs2L8xfn3xSaqmzdwfru9eUpY2Dmo9MraUGo2WGEIwGcPBH4On/hq4NyfUn/wNiD0w6Fhpbh7aXJEmSJEmSJBVhiD/9HBF2PkGyFKGcjUiSJEmSJEmSJEmSJEmSpF18pu9jABYDJ+0MRStGjHExsL7v0yxwUHnakyRJUtkc9lmoa9p1bP7F8KL/hlC/6/jYA2Huu3Ydq2RQ2eYFcPtrcsctZ8OvWmHRTyq3n6TaseqG9Nphn8uFO6Z4vmtVWVo4esxJzG7cL7WeGowWhnhrYMMEOOnH6fVVN8Ctr4Ar2uDRL0As9RY+SZIkSZIkSSpO/eBTRhzDzCRJkiRJkiRJkiRJkiRJGuFCCBOBk+h/+OlFMcbnh7Dk433rARwAPDiEtSRJklRuU8+As+/OBY51roN9XgEzXpWrNe0DSy6HrUth0vG5ULTG1sLXDvUQu3PnDRNz6z73vdJ77e2Eu94KradCy8zS15FU+x78p/TaYZ/Ke2l758rE8UCGQ1uOGXTrprpm9m86lBPHnUEI6bfMZdOC0TJDDEYD2OeVMGZ/2PRM/nkPfxJaT4IpLxn6npIkSZIkSZI0iFoLRvMnp5IkSZIkSZIkSZIkSZIk1YZTgJ13abfHGK8a4noDQ9XahriWJEmSKmHCEbnjhVpPzB15rz0aVlyXXHvTDggvCADasQaWD+WPmBGW/hIO+tAQ1pBU07YsSa9NPXvQyzu6ViWOT85O4b0z/rnUrnZTnxKM1hXqyrPB7DfBo5cOPm/x5QajSZIkSZIkSaqKmgpGizHeOtw9SJIkSZIkSZIkSZIkSZKkgkzr+xiB+8uw3qYB56PLsJ4kSZJGklmvhcc+v/v45BN3D0UDmPvOIQajAWvu7T/v2Q5dA/7ImamHhglDW1/SyLbxqfTahCMHvbyjc0XieGvDtMTxUqUFo3VnEl4bSzHpuMLmbXq6PPupcD3bc0f9GMjU5c4zoyAE6OnMfa9K+h4pSZIkSZIk1biaCkaTJO3B1j8CT3899480s14P01+R+4caSZIkSZIkSZIkSZIk1aqJA87XlWG9pgHnXWVYT5IkSSPJhCOh7XRo/8Ou4wdelDx/+itg9H6w+dn+sUwWpp4NK64tbM/FP4PlV0P3Fsg0QG/nrvWWOXD4pbDvWwv8IiTVlDX3pNf2/7tBL+/oWpk43pqdWmpHiepD8i2A3eUKxJp2Low9GDY+kX/e6lvg2e/Afn9Tnn2VbsH34J4Lk2vZsdC1EeqaciFpc98JR/1bLiRNkiRJkiRJ2kP4OABJ0vBbdSP89kh49n9h4Q/h1vPg0UuHuytJkiRJkiRJkiRJkiQNzcYB52PKsN6UAedry7CeJEmSRprTr4H9/x7G7A+tp8LJl8PsNybPrWuAs++EOW+Dln1h6lnwkt/DaVfDMV+BiS+C7PjcUdeUvAbkQtFg91A0gC2L4O63wcobhvylSRphYoSHP5Vcqx8No/cddImOzlWJ460N04bS2W6yoSFxvDtTRyzHBpl6eOltsO87oGV2/rn3vhuW/rocuyrN8mvSQ9EgF4oG0LMNutbDU/8FD11cnd4kSZIkSZKkKvExAJKk4RUj3P8BiL27jj/2BZh3ITTPGJ6+JEmSJEmSJEmSJEmSNFQdA873H8pCIYQ64KgBQyuHsp4kSZJGqPoWOPbrhc9vbIOTfrj7+IEfzB07LfkF3PGG0vta8B2Ydlbp10saedY/kl6bccGgl3f1drKu+/nEWmu2vMFo9SGbWusOGbIvvB+jFI2T4cTv587XPwLXHZ4+d8F3YOarh76nkj377eKvWXAZHPEvkKkrfz+SJEmSJEnSMMgMdwOSpL3c+odg45O7j/d2wtIrqt+PJEmSJEmSJEmSJEmSymXnXeYBODCEMJQn5L0MaO47j8Afh9KYJEmS9jLjDh3a9esfLk8fkkaO9Q+l18bNH/Ty57tWE4mJtbaGMgejZfIHo5Xd6HmQGZVezxcqp6FbflXx13SuhW3Lyt+LJEmSJEmSNEzqh7uBoQohZIETgVOBecBEYAxAjPHMYWxNklSIFb9Lry35xa5PapMkSZIkSZIkSZIkSVLNiDE+EUJYDuxDLhztw8CHil0nhJABLt65LPBQjHF92RqVJEnSnm/cwTDxWFh7X2nXb3wSenZAXZ6gIO2ZOjfAI5dAx23QvRm2LIae7blaYxs0TNh1fmYUTDoODrsEmqdXv18VZtmVcPfb0+tz3jLoEh1dKxPHAxkmZdtK7SxRfUi/BbA7k4Hesm4H9c0w6/Ww6MfJ9a1LYfm1sM8ryrzxHqbjTnjqq31BcuX+RUpw/UmwbUXuvHkmnPBdmPrSyu8rac+w5n548su5QOBxh0J2NCz4LrwwBHTGq2Deuwf/HrD4clj4Y+jZBjNfA/u/F0KoWPuSJEmSpD1PzQajhRBayL1B6v1A6wvL7Pa37b9c92bgC32frgWOjTEmP55DklR5+Z4U9PzdsGMNjJpUvX4kSZIkSZIkSZIkSZJUTv8HfIzc+/reH0K4LsZ4Q5Fr/D/ghAGff7tczUmSJGkv8uLfwJ1vhI47Srv+hpPh3PvL25NGtt4uuPHU9Pe8b2/PHS+0/mFYcS284gloGFfZHlW8hT+Gu9+WXq9vgZZZgy7T0ZkcjDYx20p9yJbaXXJLedbrDpmy7vUXx34zFya58ank+q2vzL2uznhVZfavde23wc1nQW9n9fbcGYoGufC6m8+C064xwE7S4NbcBzeelgsxA9jwWPrcZVfCsqvglMtzIZpJnvkfuO+9/Z+vvikXLnvUl8rXsyRJkiRpj1ehn3xWVgjhcOBPwCVAG7k3TBXqamASMAc4Cjir3P1Jkoqw8cn0WuyB5ddUrxdJkiRJkiRJkiRJkiSV278CG8k97LQOuDKE8J5CLgwhTA4hfB/4KP0PS10FfLcCfUqSJGlP1zwdzrodXvZAadev/ROse7i8PWlkW35N/geB57NtJTzzzfL2o/J4/Iv56/v9bUHLtHclB6O1ZqcW29GgsqEhtVaxYLTsaDhnkDDIxw24SfXkl6sbipbmiX8b7g4k1YKnvtLBKQYhAAAgAElEQVQfilaQCI+lfD+NMfm15+mvQ/fWktqTJEmSJO2dai4YLYRwCHArsD+5QLSdb3YKFBCQFmPcDPxiwNBry92jJKlAsTd/MBrAst9UpxdJkiRJkiRJkiRJkiSVXYxxLfBB+t/v1wh8M4TwTAjhX4DzB84PIRwXQnhbCOFHwALgbfS/P7AHeFeMcQTcWSxJkqSaNe4wqGsq7drn7ypvLxrZhvrrvfK35elD5dO5ATY8ln/OmP0KWqqjMyUYrWFasV0Nqj5kU2tdmbqy7/cX2dHQOCW9vuYe6O2q3P61rGOEfL9ovzV3744k5dNxZ/HXrPszdCeEqW1fBZuf2328Zyusvrn4fSRJkiRJe6364W6gGCGERuAaYBz9gWiPAF8BbgFGAU8UsNSVwIV952eWuU1JUqG2rcr9UDMf3zwgSZIkSZIkSZIkSZJU02KMPwwh7Ad8ktx7/wIwD/jYC6YG4O4XfB4HXPOJGOP1le9YkiRJe7RMHcx4NSz+SfHXPvu/sPZP0DwTZrwKJhxR/v7Ub+2fYNnVuXCmGRcUHFg1JKtuhJU3QOdaWP2Hoa3VfhusvB6mnV2W1lQGWxYOPmfGBQUt1dG1KnG8LVuJYLT0WwC7Q6bs++1i5mvhmW8k12JvLvxm7IGV7aHWdG2CHR3D3UW/2y6Afc6H2W+A7Njh7kbSSLJpASz5OWxZVNr191wI9aMh1MGEI2HWG3KvgWm2JX/vlCRJkiQpSU0Fo5F7auQc+kPRvgr8Y4y5xxaEEGYXuM4t9L9Rat8QQluMsb3MvUpSabYshQc+nHvSwpj94NDPwNQzhruryti2fPA529uhcz00jK98P5IkSZIkSZIkSZIkSaqIGOOnQwgLgG8ATfS/DzAMON/5OewaiLYDeE+M8UdValeSJEl7uqO+BBsegfWP7Doe6uHwS+GhTyRft+6B3AHw2OfhpJ/ArNdVtte91cIfwx/fkQteAnj0Ujj9d9B6YuX2fPjTuX3K6ZZz4Ogvw0EfKu+6Ks3mAoLRmgYPNuuOXaztSg6+am2oRDBaNr2XTIWD0Q77LLT/ATY8nly/9lB4w2aoG1XZPmpFjHDj6cPdxa6WX507nv4anHETNE4e7o4kjQQdd8EfXg5dG0pfY/HPdv38yf+EI780tL4kSZIkSepTa8FoH6D/DVC/iTH+QymLxBg3hxAWAfv2DR0MGIwmafh1b4UbToGtS3Kfb1sBN58JJ/4Q5rwVQsh/fa3ZWkAwGsCmZ2DSsZXtRZIkSZIkSZIkSZIkSRUVY/xBCOEW4GPAu8gFpEF/GNpAAegB/g/4bIxxUVWalCRJ0t6heQaccx88/0fY+ERuLDse2k6F5n2gcx088a/51+jtggc+AjNfA6HCwUR7m95uuP8D/aFoAF0b4cF/grNuq8yeW5fDY18o7dpDPgHPfgs61ybXH7oY5l4IDeNK70/lMVgw2uGfL2iZNV3tRHoTa63ZKgejVfr1p7EVzn0ALk8JPovdudAtQyJz1twL6/6cXAt18KKvkfxjkASd63Pfj5r3gUxD7vvO1qXQMAEaxsPWZRCyuV+j+98/+HrrH4YF/wvzLy74y5G0B3vo4qGFoiXZ9DQ8+rn0euwu736SJEmSpD1azQSjhRAOAfbp+zQCHx3ikgvoD0abC9w6xPUkaeiWXdUfijbQ3W+HBz8OJ/8s94/te4ptBQajrX/EYDRJkiRJkiRJkiRJkqQ9QIxxCfD+EMLHgFP6jpnAJKABeB5YDdwF3BRjXD9cvUqSJGkPVzcKppyWO15o7IGFrbFlMWx4AsbPL29ve7tVN0JXwl8FOm7PPYy8vrkCe96waxBbMQ68CDY9BUuvSK73bIf2W2HG+aX3p/LYMkgw2uh989f7tHeuTBwPBCZnpxTb1aAyIUMd9fSwe6BMV6au/5MpZ5R9bwDqGmDScbnQryQrrjMYbacVv02vNc+E/d9bmX0LCUaD3K+VwWiSurfm/mxSCeseSK+VO4hNkiRJkrRHq5lgNODIvo8ReDTG+NwQ1xv4LyQ+ckXSyLD4p+m1bSvgxhfDYZfkwtHaTqv9J4ttLTAYbfk1MO/CyvYiSZIkSZIkSZIkSZKkqokxbgWu7zskSZKkkWXqS4FA7haWQTz4T9B6ErS+GCYfD5lsf61rM6y+Ofeg6MY2CHWwfRW0zIFp58CoSRX6AmrcxqfSaz3byhuM1rMD1twDj1xS2vUTjoSmKTDjNenBaABLfwWd63Lno1qh9WRo8HamqtucJxgt1MGUMwtapqMrORhtQv1kspmGUjobVH2opyfuHozWPfC+kkM/XZG9AZh2bnow2srfQ4wQQuX2rxWrb06vTTu3cvvOeRss+tHg8zruhCW/hMknQfP0yvUjaWSKETY+AYvy3MNYSSt/Dwd9GHo74fk/wtalufFQBwQYfxiMP7T275mUJEmSJJVFLQWjtQ44f6YM6+0YcF6BR8VIUglW3TD4nEc+k/s4/eVw6q9zT96pVdtWFDZv9c3+I5kkSZIkSZIkSZIkSZIkSZKk6miZBQd/BJ74t8Hnrrg2dwA0z4Kz786FzTx/D1x/Qv5rT70CZr566P3uafK9bzwWEFZXqE0L4A8vg00l3qZU1whH/EvufPabYMG3of3W5LkLf5g7dsqOzd0PMPWM0vZW8WJv//+rSeb/cy7krgAdncnBaK0NU0vprCD1mSw7erbvNt6d6QuPmfX6XOBepez/Xnj0c8m1bSvg7nfA8d+p7XtchiL2wp//ETpuT59z8Icrt//8jxcWjAZwx+uBAMd8BQ78QOV6kjSy9GyHu98JSy4fvh5W3wJXtOV66dmWPGf6K+GUn0F9S3V7kyRJkiSNOLUUm9044HxH6qzCDXysyqYyrCdJQ5cdW/jcFdfBs9+qXC/V0F3gy2/XBtiW/A+HkiRJkiRJkiRJkiRJkiRJklR2R/0rvPgqOOD9MPst0FhA4NHWJfDgx3IBOXe9ZfD5d7weOjcMvdc9Tr7bnXrLt8197xs8FG3c/Nyv/8EfgZfeBmfdAQd/FA79NJxzL0w/NzcvUwdnFPCg9J26NsKdb4LertL7V3FWXJde2/ftcPglBS/V0bUqcbw1O63YrgpWH7KJ493TzoGTfpI7MvUV25+mqXD8Zen1RT8qPJhrT7T8WnjqK+n1Qz4BY/ar3P7jDoFXLYGDP1bgBRH+9EHY8GTlepI0sjz7ncJC0Y78Irz4ylxgaKbve092HLSeAs0zYMoZuT8bzXxdaX10rksPRQNYcQ089dXS1pYkSZIk7VEq+NPOsnt+wPnkMqw3d8D5mjKsJ0lDV9c4+JyBnvtebT+dpTvPDzFfaOOTuSenSZIkSZIkSZIkSZIkSZIkSVI1zDgvdwDc+Vew+CeDX7P0V3DgRbD5ucHnxh5Yfg3s+1dD63NPE0J6LfaUZ4/OdbCqgCCzee+Ggy7adaz15OS5mSwc+il49NLCetjRAe23wtSXFjZfQ7Pop+m1/d9X1FIdnckPfm9tqFwwWjYtGG3Om2H8WRXbdxcTjspfX/ILmPfX1ellpFnyi/z1ySdUvoeWmXDUl3JHz3a4vGnwa5b8Ag77VOV7kzT8lg7yOgUw6Xg45J9y5zPOhyM+nz439sLlzdC7ozz9DbTk5zD/E+VfV5IkSZJUU2opGG3nozQCMMhPUfMLIUwCDh4w9OxQ1pOksogRdjw/+LyB1j0A6x6CCUdUpqdKy/d0hxfa+CRMPaNyvUiSJEmSJEmSJEmSJKkqQghZ4ETgVGAeMBEYAxBjPHMYW5MkSZLSTT6hsGC0nu3w1FcLX/fJf4fWEyHUQfNMCJnSe+zalHtYdyY5QGmP0Ntd+rVdmyAzCuoaYNMCIA5+TbFhRpNPLG7+yt/DuEOhaWru8+3t0L0ZGibkDpXPloXptfGHFrxMT+xmTVd7Yq01W7lgtPqUYLSu2FmxPXcz9iDIjoOuDcn1jruq18tIs+np9FrIwMQXVa8XyH0vmHA0rPtz/nmrroe5b899/+nakAuNbJoB9OaCKOtbqtKutIsYYduKCgRuhb7XsPXQND33/8merGvjrvcqbszzOrVTMX/uCRmYfDy031Z8b4NZ92Du9YgAnWsHmZyBlllD+zO0JEmSJGlEqqVgtLuAXiADTAohnBFjvLnEtS4kF7AGsAW4vwz9SdLQ7FgD3VuKv+63R8Kbe/M/FWuk6tle+NyNT1auD0mSJEmSJEmSJEmSJFVcCKEF+BDwfqD1hWVSUglCCG8GvtD36Vrg2BhjAQkGkiRJUhnNeQs8/iXYtnzwuYt+XPi66x6Eq+blzkdNgsMugQP+vrjetq2Cu94C7bdCXRPMfRcc/V+QqStunREjz3vjYwnBaNtWw11/Be235ILRJh4NHXcOfl3rqTDpuOL2mnoWjD8C1j9U2Pwn/j13JJl4LJzyMxg9t7gelOz5u5PHs+OKCn9a09VBLz2JtbaG6gejdceuiu25exNNcOAH4dFLk+vdm+Cq/eCkn8DkIv/fqWVblsCae9Lrc94GzdOr189OB38U7npz/jkdd8CVc9Lr018JJ/3QoEZVz+Kfw4Mfzx9mWQ6ZLMx6Axz37dxr255k4J97Ym/h19WPgf3+tri9DvpI7nWkmH0K9cuJhc9tmADzL4aDPlyb91hKkiRJkhLVTAR2jHEdcN+AoUtDKP5vqCGEfYCPk3sDVQRuiLESf+uWpCLlezrMYB65pHx9VFPPtsLnPv21yvUhSZIkSZIkSZIkSZKkigohHA78CbgEaCNv0sFurgYmAXOAo4Czyt2fJEmSNKhRk+Dsu2HuOysXVLVjDdz/flj6m+Ku+8MrYHVf+EX3Fnj66/DIpyvTYzXku12ot4RgtNsugNU35f779GwbPBRt/BG5YI2X/K74cI1MPbz0D3DA+2HcodA8K3fUjy6+77X3wU1nQm9yCJeKsPTX6bWTLy9qqY6ulam1ydmpRa1VjBERjAa58MZ5706vb14AN58BO9ZWr6fhFCPccEp6ve00OP471etnoDlvglOvgGnnlr7GimvgzkHC1aRyWX1rLtCr0qFoAL1dsOj/cn/u2tPcdn7/n3sKNeuNcNbtMO7g4vaacR68+GqY/gpomd3/557mWVDXWNxaQ9G5Dh74KCz+afX2lCRJkiRVXM0Eo/X5yoDzE4D/KebiEMIU4CpgAv1vqvpyeVqTpCHa9Ezp1z56CXRtLF8v1VJMMBrAmvsr04ckSZIkSZIkSZIkSZIqJoRwCHArsD+59+7FnSUKCEiLMW4GfjFg6LXl7lGSJEkqSMtMOOF7cP6Cyu7z3HcLn7vhCVj3593HF/64fP1UXZ6/JsQig9E2PAlr/lj4/GnnwssfhKP/Heqbi9trp4bx8KKvwSsegQsW546DPlTaWlsWQfsfSrtW/Z75ZnqtyKDDjs7kYLTx9ZNoyIwqaq1iZFOD0UoICxyK/8/efYfHUd1tH/8eraolW5Z777gXsKm2AYNN7wkQAk+AUEMq6SEJLaQ8SQhvypMQkkACCaEaTHXoBowxNsXghnvvkqtsWdqVzvvHSPFqvbN1drQr3Z/r2ks7c86c81Pbnd2duccY5/8jltB+WP+4P/W0tMp34cAG9/bj7ncCE1tK34vglJlw8gupj7HlJTiw0buaRKKxFj78VvLP8+la9wiEkjy/LZvtWQJV85Lb5nM1MPlRqBiX2py9z4Ypz8MFaw/t91y4zhn3cgujfpTauKlYlcQ+tIiIiIiIiGS9nApGs9Y+CixoXDTAdcaYt40xJ8bazhhTaoz5UuO2R+IcVGWBl621cS7zIiLik33L09t+/XRv6vBTssFoy36bmTpEREREREREREREREREREREJCOMMcXA80B52OqFwLXAIGAECYSjAc+E3Z/qWYEiIiIiIqnqdXbmxt69KPG+buFDB9ZDfa039fguxkuEhmByQ215Kbn+Hcck19+PcZP5e5DoYoU6lfZPaqgdwejBaF0LeiQ1TrLyXYPRkvyf8EJBh/g/t7byd7t7oXtbQQco7edfLbF0HJ3e9ttne1OHiJuNM6IHvWZafQ1Ur/Z/3kxJ9rG3/VAIFGemlibdT83s+OH2tJHnHhERERERkTaiBS83kLKLgblA58blScAsY8xWYGV4R2PMvcBQ4ASgiENXmjTAJuALPtUsInK4vcthzUNwcDv0PN1ZjqbiKAjuif8m63vXwoDLIZC5Kwx5LtlgtE0vOB9k50X/QE9EREREREREREREREREREREss7XgQE4x+4B/B74lrW2AcAYk+gZ6G9w6Pi/gcaYbtba7R7XKiIiIiKSuMHXwuYXMzP2/jXw8iTAgglA9SqoCQtjKunpfK2JHtD0X3W7oaR7ZmrMJBMjGM2GoKEelvzCCVGp2Rx7rHg/o2bzBmDglYn3T0avc6GoK9TuSH7bD2+Gpb+EDiNgyI3Q/1Lv62vNrIW9S6O3FXWGQGFSw+2o2xp1fdfCnslWlhS3YLSgrcvovK4GXQsLb3NvX/FHJ6Bx5Peh6yT/6vLL/nXw8Y9g7cPufQZ8IXvOfyntBz1Og62vpLb9nM/Dojuh+ykw7hdQWB5/G5F4DmyGj2+B7W87+z4t5dWTmp+PVzoABlwBR3w59j5JNln7KCz7LVS9l9x2g6/JTD3huk9xAmJjBUl65eA2CNVAfknm5xIREREREZGMy7lgNGvtamPMucDTQE8OHejUEwi/tIYBbgi7T1jfjcC51tpKX4oWEYlU9T68Ps0JPANY9Vf3vr3Pg9G3QtU8eCXWh0EWXp0Cp70NeTny8J5sMFpwN2x/C3roor8iIiIiIiIiIiIiIiIiIiIiOeJrHApFm2GtvTmVQay11caYtcDAxlUjgDYXjGaMKcC5oGw/nOMmq4HNwEfW2rUtWJqIiIhI29P3MzDhD/DB1zIzfuUc97ZEw76CORqMRowQkoYQzP8SrPqb99Oe9Ax0HO39uOAEdEybBXO+ALs+TH77mi3Obdvr0FAHA//H8xJbrXWPured+HTSw+0IRv//61rQMsFooYZQRud1NeqHENoLS+9277PpOdjyMkx7E7oc519tmVZbBS8dDwejh+T91/jf+FNPoiY/Bu9eBVv+Aw3B5Lff+6lzq3wXzngf8gLe1yhtR3AfvHw8HNjQ0pVA3c7myzVbnL/zul0w+sctU1MyVv8D5n4xuW0KyuGIm2DEdzNSUjMmD05+znn82f4Wh94qBkoHQmnfxvUeWf4HGPk978YTERERERGRFpMjyTnNWWvnGWPGAw8AZzWtjvjabBOcT0UM8ApwlbU2zjuPIiIZtOiuQ6Fo8bQf6gSddZ0I562A545w71s1F9b8EwYn+WZmS6k/GH39pEfhncuit216TsFoIiIiIiIiIiIiIiIiIiIiIjnAGDMS6N24aIF0z7RbxaFgtEHAm2mOlzZjzCDgGODoxq/jgfZhXdZZawd4ME9X4E7gc0Anlz5zgHustdPTnU9EREREEjTsqzD0KxDaB6H90YNm8kvB5ENhubMc3AvWOseTh/bDCyMzV1/drsyNnVExgtEObnECQLx26mvQ41Tvxw1XPhLO+gDqdjvH/X/w9dTGWXq3gtGSsfhn7m0dRiQ1VIOtp7JuW9S2boUtFIxmUwi48kJeAI76NVQcBXOucO/XUAvL/691BaOtfTh+KNqoH0OgyJ96ElVYASc/C6EDsG8lzByX2ji7FsC216Dn6d7WJ23L+scTC0Wb+gaUDUpvrmf6p7bdst/CiO9BoDC9+TNtaQIhjAOvhLF3NS4YKOnlb7hhaX8nIDa479D+aaAdFHdx7jeEnAC1R+LUdME656sNwbNDiHo6+ZJfKhhNRERERESklcjJYDQAa+024BxjzATgG8BUnKsfRrMHeA34g7W2xQ+EEpE2zjbApmcT798+LAit/RDnCglvnufef92juRGM1hAEWx+9raQ39LvUeZM70p7Fma1LRERERERERERERERERERERLxyZONXCyyy1q5Oc7zdYffL0xwrZcaYKcAtOGFoUUPKPJ7vLOAfQLc4XScCE40xDwM3Wmv3Z7o2EREREQGMgYIOzi0RTf2agtKKu8PB6EFLaavbHb9PNjIxgtGq5jlhGF6rSDEgKBWFHdO7WPjujyFUA/kl3tXUmtVWubcVdU5qqJ3BSuqJ/vfXtSCzwWgFeVkWjNYkkXC5qnmZr8NPle/F7xN+LlC2yW8HFWOhqAvUVqY2RtU8BaNJeirnxu/T71LoPiX9ubqcAJXvJr9dbRVUr4by4enXkCnBatizKH6/iiOhtF/m64mnoL1zi5TXeKr74Oth1V+jb9vnwubfQ0E5BKPs69YfdEKIY+1PioiIiIiISE7I2WC0JtbaD4Ar4b9XXuwLdAYKgUpgG7DYWtvQYkWKiITbvz7xvkVdoNNRzdd1OxnyyyBUHX2bba87H2AXdky9Rj/U17i35Zc4Vw2KFoyWs1ctExEREREREREREREREREREWlzuobdX+HBeLVh99t5MF6qjgR8Ofu3MYRtBs4xkU0s8CGwGugIHAV0CWu/AuhgjLlQx06KiIiI5IB+l8Dy/8vM2It+Aqv/7gTfbHvdCWUb/1sY+IVDARTZyFr3tn1evLSI0OvspAOy0tZhBJSPhD1LUtt+9qVOuBFA2SAnPCby3AOB0AE4uDV6W+nApENTdgS3uLZ1KeyR1FjJyjfRg9GCti6j88ZVcSSUDYHqle599i2Hd6+CrpNh4FUQKHTvmwt2L4jdnlcEfc7zp5Z09LsEVtyb2rarH4TdC2HrK855Pv0ugZLeENoPHUfDoKsTDwyVtmfLy7Dqb7H75BXBmDu8ma/fJakFowGsfgCO+pU3dWTC/rUJdDLQ97OZrsQb/S5xD0brd2nz5YpxsP3Nw/vVH4Btb0CPU72vT0RERNq2fatg7cON7+XEeO/K5EOnCc7roqKMX2NLRKRVy+JPMZLXeDXJdK8oKSKSWdteT7zv8G9D5FV9CtrD+N/AvBujb2NDsHkmDPh86jX6IRQjGC2v2D3YLVevWiYiIiIiIiIiIiIiIiIiIiLS9hSH3a917ZW48rD7+zwYz2u1wEZgsBeDGWP6AE/RPBTtHeB6a+3SsH5FwI3A3UDTwUbnAT8FfuhFLSIiIiKSQWN/Ars/ge1veT925btAWBBIcC+8dw1sfBpOmgEmz/s5vWDr3du8DkYrHwlH/8HbMRNhDEz8N8w6C2rcw7ZcbX6++fKn98CJ06H3ud7U11qse8y9bdK/kx5uR13031WHQAXFeSVJj5cMt2C0kA1ldN64jIHJj8Ksc+DgNvd+ax5ybuseg1NmHn6uTK6o2xU70DBQDBMfhsIK/2pK1difOuFmO2Ynv231yuZheOufaN6+6n6YNis3fg7iryW/ggXfj90nrwgmPw7lI7yZ84iboHIurH88+W2X/hra9YNhX/WmFq8lEq57/ANQ2i/ztXihxzQY9WNY/NPm64d8yQlNC3fsX+H5odHHeX0qnPqawtFERETEOzs/gNdPc14TJmLdv2HVX2Dqm1DSPbO1iYi0Yq0qGE2ygzGmAJgE9AN6AtXAZuAja+3aFixNpOXtXQ7vXZtY3/KRMPxb0duG3OAkBf/n6OjtW1/N/mC0+hjBaPklUOASjBZUMJqIiIiIiIiIiIiIiIiIiIhIjqgMu9/Fg/EGhd2v8mC8dASBxcD7wPzGrwtxjp17w6M57gTCzyCeA0yz1h4M72StrQV+b4xZDzwd1vQtY8x91tp1HtUjIiIiIplQWAFT33DCaWYe6c+cm56DbbOyNywilWC0bifBEJeLjzeprXLCmAo6OMtlg6BiPAQKY2+XKRXj4PzVUPke1Gxy1hX3cM4l2LUA6nbCnCsSG6uhDhbcAr3OcYKqxDH/Jve2ivFJD7cjGD0YrWthj6THSpZ7MFow43PH1WkCnL/GCeybfWnsvtteg00vQN8L/anNayvudW8b9k0YcxsUupwPk22KOsHUWbBnkRP2VlgBJT1h33KorQTb4ITZVc1Lfuzdn8Dqh2D4NzwvW3JY3R5YeEfsPkO+BOPvhvxS7+YNFMOkR2HsXVC9Ckp6O/sTDWHXcVj8M/fQww++Dt1PgY6jvKvJC9bCyvti9ykfBYOu9qUcTxgD4+6CI26ELa+ADUKP06B0wOH7N+2HOL/b+oNRh+KTW7N3X1dERERyz6K7Eg9Fa7J3mbO/Nua2zNQkItIGKBitFTLG/AO4yqPh1llrByQ4b1ecA7E+B3Ry6TMHuMdaO92j+kRyy7wbEu979J9if8DaaYJzxYpoH6qsfsC5mlfv82DAFZAXSL5Wr9RshZV/ca72cmA99D4fxt/jfPDqJlDi/kFQ3W7njVt9WCsiIiIiIiIiIiIiIiIiIiKS7bY2fjXAUekMZIzpDIwIW7UynfHS9CDw58iAMgDj0TEtxpgjaH4cYB1wdbQ5m1hrZxhjHgzbrgi4HbjGk6JEREREJHNMnhOS1ft82PSsP3Oufyx7wyJiBaOF9kdf3/UkGHB5ZurJpEAxdD/58PUlZzpfV94H299KbKw9i+DgVifYSKCh3v1vqV2flALxdgS3Rl3ftSDzP/OCbA5GA8gvgb4XO2FGbv+nTba8lLvBaNvfdm8b+pXcCUVrkhdwnn8qxh1aF36/XT946/zUxl77sILRpLnKOVBfE7vPETd5G4rWxBjoMNS5AVSMbd6+eaZ7MBoWFt0Jkx/3vq50HIz+nNTMsBz9H2zXBwZ/MXYfY5yQW7ffW+UcCFZDQZn39YmIiEjbYq0T2pqKrS8rGE1EJA15LV2AZL047zQ5jDFnAYuAm3AJRWs0EXjSGPMvY0wG3qESyWLBfbAjxgcg4TofG/3DzUgVMY4X3fAkzL0K3vmcs8PdEqrXwsxxsPB2JxQNnA/qnxvifJDlJlDiXGkmGlsf/0MyEREREREREREREREREREREckGc4CGxvudjTHppC5cgxOwBrAfeD+dwoi/y6YAACAASURBVNJhrd0VK6DMI5cD4VdDfMpauyKB7X4ZsXypMabYu7JEREREJKN6ne3fXCv/Agvvci7UveNdaAj5N3c8sYLR3JQN9L6ObJDs38S6x5xAMIGajWBd/q5L+6c05I66LVHXdyvMfDBafrYHo4ETUtPzrPj91ufw3+m+GDntZYP8q8Mv3U+GQLvUtt05H6pXe1uP5K7qtbDwJ7H7tOsH5aN8Kecwvc6J3b7+CfjgZtjzqT/1xFOzBRb/b+w+JgC9z/WnnpYS7/e2f60vZYiIiEgr1BB0grGX/wmW3g31B1IbZ8c7sOp+2L3Y2/pERNqInApGM8aMNsa83nh7zRjTLYUxujdu2zTO0EzU2opMj9fBGDMFmAGE/z4s8AHwBPAKUBmx2RXAI8aYnPobFElLbRXYhvj9ADofl1i/DsPj99kwHSrfTWw8ry28Aw5uj9724Tfdt8svi32VnAMb0ypLRERERERERERERERERERERDLPWrsLmB+26i5jjHHr78YY0xv4Ac5xaRZ4xdpED8TJWRdFLP89kY2stUuB98JWlQKne1WUiIiIiGTYgCug64nx+5X0hE7HpD/fwttg/pfhlYnw5rkQrE5/TC8oGO2QwddDpwmJ9//wm/D2RRBK8YTd1mTzf9zbjv5T0sM12AZ2BLdGbeta0HLBaMFsCkYDGHMHFPeI3aduF7z9mdz7Ow3ug2qXYLSBVznBcK1NQQc4MjKDPQnPDoZPf+tdPZKbVtwLzw2GqrnuffIKYfw9kBdw75NJfS+CnmfE7rPsd/DCCPj4VrDWn7qi2TADnh0Ey38fu9/o2519xtZs2M1QNti9/bVTsyv8V0RERHJD3S5nP+LVk+D9r8CC76U33nvXwYuj4aPvt+x+pIhIDspv6QKSdCMwBefAppettS5pO+6stduMMUGcA30scD3wXS+LzALfAe5IYbujcYLMmljggVgbGGP6AE8BhWGr3wGubzzAqqlfEc7v726g6Z3484CfAj9MoVaR3BPal3jfzgl+SN0+wWzHNf+ErhMTn98L9bVOKFuy8ttDXj4UxAhGe/l4uHhX6/zQSERERERERERERERERERERKR1+R3w78b7xwN/xjmWLCHGmO7As0BF4yoL3ONlgdnGGNMDGBe2KoRzXF6iZgHhV2Y8C+dnKCIiIiLZrqAMTn0Z1k+HqnnQUAeBIigb5LTvXQ7lI6DvZ5zgoU3PQeVcqN0O5MGWmZBfCt2mAAbWPQrB3YnNveUlJ7hkZBacYpNKMFrpAM/LyApFnWDqLOfY/J3vHwr32DAdandE32bTc7DyrzD8G76VmZXmf8m9rWJs0sPtDlURcgkh61roRzBa9NMA3WpqMR1HwZkfwIanYNFPYvydPgur7odhX/O3vnR8crt729Cv+leH34Z9FTofDZtnwsHG0zlX/jnx7T/8JvQ5/9BzmbQtBzbC+1+FeNc4OPN96DjGn5qiCRTByc/B+idhzuWx+y7+KfS5wPm/8FvoAMy9CuoPxu43dRZ0P9mXklpUu15w5nx4slP09todsPEZ6PdZf+sSERGR3Lbk17Bjdvx+eQUw6Frnfqga1v4rdv+lv4Li7jDiW+nXKCLSRuRaMNoFYfcfTGOcB3GC0QzOVRWz4FMb71hrK4HKZLczxvwgYtUb1trVcTa7k0MHnAHMAaZZa5u9s2KtrQV+b4xZDzwd1vQtY8x91tp1ydYrknOCSQSjJXr1rsKK+H0AVj8Ax96b+Pxe2Pa6sxOfrMLGQLTCcvc+wT2w6yPoND612kRERERERERERERERERERETEF9baR40x38MJ+jLAdcaYkcAPrbVvu21njCkFvgDcDnTDCUQD56KqyYSE5aLREcufWGv3J7H9nIjlUWnWIyIiIiJ+ChTDwCucWzx9zndubspHwQdJhA5teDI3g9FMANr1zUwt2aCgDAZd5dya1GxyAtDcbJjetoPRgjHOZeh8bEpD7qjb4trWtaBHSmMmI98URF2fdcFo4ATVDPsqdD0B/hMjOGjD9NwKRtv2mntb2UD/6mgJXY53bk2SCUYDJyhvxHe8rUlyw4YZ8UPRRv2wZUPRmuQVwIDPQ6AE3r4odt8N01smGG3b6xDcG7tP7/PaRihak8IK6HYybH8zevuG6QpGExERkeRseDKxfqUDD+U31B+MH4wGsOB70PkY6HZi6vWJiLQheS1dQKKMMYOAPo2LDcDzaQz3HND0KclAY0y/dGprDYwxJcBlEavvj7PNEUDYpyrUAVdHhqKFs9bOoHmoXRHOgWsirV+iwWgFHaDD0MT65hXgHC8aTyJ9PLZxRmrbNQWjBYqhqIt7v50fpja+iIiIiIiIiIiIiIiIiIiIiPjtYqCKQ+Fmk4BZxphNwEPhHY0x9xpjXgN2AH8Eujc1AZtxwtJau5ERyyuT3H5VnPFEREREpK3oc15y/fetgF0Lmt/2b8hMbbE0hJLrb+shLz8ztWSrrpNjt+94G6yN3ac127/Ova1sUEpD7ghGD0YrC5RTEihNacxkFOQVRl0fasjCYLQm5aOgoKN7+/Y3c+vvtGaTe1thJ//qyAaDr0uu//on4cDGzNQi2W3f8vh9ukzKfB3J6HMBVIyP3Wfvp/7UEmlfAm8Tds2yn6cfYu0XJfIzExERkdzVUA+h/VBbBQc2Oc/9uxdB3e7kxqmvdbbbu9x5fywR4ftdgWLodEz8bWw9vPM52PHu4e/Bhd/qdkP1mkMhw9Y673XU1yb3fYmI5Lhcete/6QqIFlhmrY1x6Y7YrLXVxphlHDrYZwywPs36ct3FQHnY8i7gqTjbXA4EwpafstYm8iz/S5oHql1qjPlyrEA1kVYhlGAw2sCrwSSYW2mMs6NcXxO7X4PPO7m2ATY+m9q2hRWH7vc+H1Y/EL1fKJmL4IqIiIiIiIiIiIiIiIiIiIhIS7HWrjbGnAs8DfTEOQ7QNN7vEdbVADeE3Ses70bgXGttpS9Ft6whEcvJHt8YmQDQ2RhTYa3dlUZNIiIiIpKLSvvDwCthzUPx+wLU7YKZRx2+vsMIOHE6lI/wtj43tj65/qNvz0wd2WzgVbDs97GDmp7qDpOfgO4n+1dXtlgY429i9K0pDfnhvjlR13ct6BF1vdfyTUHU9SGbZJCgnwLFMOLb8EmMn/nTveDEJ7M/yKdut3OifTSDrnbO72lLhn4NVv0t8f5V78GMvlA+2nk+6TA0c7VJ9lj7KCz/Q+w+nSZAz9P9qSdRxsBxf4NXT3Y/H3DjDFj+Rxj6FX9rq14Tu72kl7OP0NYMuR4W/yx62875TjBjuz7+1iQiItKW2AaoP9h4qzl0v+EghGqcr5Fthy3XHNrGrS1aX9ewcAPdpzjvixR1jl3/kl/Bgu8n9z3nlzmvi8KNugVmX3wozMxNzRZ4ZWKC87SHI26CdY/AgQ3O6+yRP4DRt7W916Ei0iblUjBa/7D7kVczTMUqDgWj9fNgvFx3bcTywwkElV0Usfz3RCay1i41xrwHHNe4qhQ4HUgxRUkkRwQTCEbrfiqMuS25cRMJRgPYvRg6jkpu7FRVzYODW1PbNvxqQOPvjhGMlnI+poiIiIiIiIiIiIiIiIiIiIj4zFo7zxgzHngAOKtpdcTXZpvgBKIZ4BXgKmttigek5JyOEcvbk9m48eKxB4HisNXlOBdMTYsxphvQNcnNBqc7r4iIiIik4bgHoOMY+Oi7qY+xdym8cTqcvwbyfDgVKdlgtGFfz0wd2aykO5wxF+ZcAdvfit6ndgfMOhMu2ADFXfytryXteAc2THdvLx/p3uYi2FDHpwc+jtrWrbBX0uOlIt9E/98L2jpf5k/Z6B87oWKf/iZ6+8Gt8PppcNEmKKzwt7ZkfHCze9voJM8Dag0qxsJZH8O8G6FqbuLb7VkEb5wB562EvEDm6pOWt2sBzPl87D4jvw+jfuTPvkWyOh0F096Al44HtwDK978K7Y/wN9htf4xgtCNugpG3QIk/gZ1ZpbQ/HPsXmHdD9PbXp8G5n/pbk4iIiN9sA9TXphYwlkww2WFhZwehIRtfl1rY9gbMvhSmvubebeOziYeilY8Ekw8VR8Hwm6HiyObtfS+CKTOdEOk9S2DP4tTLbxLaB0t/dWi5/iAsvANKB8KgK9MfX0Qky2XhOwau2ofd3+PBeHvD7nfwYLycZYwZDJwUsfr+ONv0AMaFrQoB7yQx7SwOBaOBc6CbgtGkdXO7QkTpQDjur1DcDTqMTP6N/UBx/D7gXInCr2C0Hck8HEQwYd9/YYUTFrft9cP7hfanPoeIiIiIiIiIiIiIiIiIiIiI+M5auw04xxgzAfgGMBXo6dJ9D/Aa8Adr7Zs+lZgtyiKWE7hq4mFqaB6M1t6tY5K+DNzu0VgiIiIi4oe8AIz4jnN7ug/UbEptnAMbYfss6DHN0/KiSjYYLZvDlDKpXR84+QV4Isbufv1BWP84DP2yf3W1tDX/dG/rOjmlIRfv/9B9yAJ/AmjyTUHU9SEb9GX+tIy53T0YDZyT7Dc8BYOv9a+mZG1+Ifp6E4B2ff2tJVtUjIUz3m2+bsMMePui2NvtXws7ZkP3kzNWmmSBWI/FACf8Ewb+jz+1pKrTBDj1ZXjtVPc+ax7yNxit2iUYbexPYfSP/KsjG8XaR927DPYshfIR/tUjIiJtk7XQUOt9GNlhfaO0ZWU4WRbY9gYcrHQPjA8PHYulsBOck0DQWc/Tm+8fzvsSrLwvsTmSseYhBaOJSJuQS8Fo4Qf2eBFkFv6uf5KfmLQ61+BcVbPJh9baBXG2GR2x/Im1NpmUojkRyz6lNYm0oKBLMFpxN+gxNfVx8xIMRtu/NvU5krVvefT13afCCQ/BjN7u29YfbL5c4PIhbag6tdpEREREREREREREREREREREpEVZaz8ArgQwxgwC+gKdgUKgEtgGLLbWNrRYkS0rMhjtYNResdUA4ekQkWOKiIiISFs04tvw4bdS337PkuwLRut6IhgTv19rVVAGZYOgerV7nz0JnLjbmsT6fjuOS2nILXUbXNv6FA9MacxkFZjCqOsbaKDB1pMXfpH6bFPQHkoHwn6XQB9wHl+ylW2A4N7obSYf8nLpFM0Mq0jwf2zvEgWjtXbxnnsqjvSnjnSVj3ICEN32Tfx87LLW/fzAMn+ei7Jau75OWG7drujtexWMJiLSZvw3nCyBgLFQTVgoWYxgskT7NtS29Hcvh7FQszF6MFr1atjxTmLDJPpaJ9KE38LO92HnB6lt72bba96OJyKSpXLpXbfKsPv9PRivX9j9Kg/Gy0nGmABwVcTq+xPYdGTE8sokp14VZzyR1ifkEozmFvyVqECCwWgHUryyVyr2Lou+vnykEwQXS5cTmi8HSqP3CyWTxSgiIiIiIiIiIiIiIiIiIiIifjPGtAfCz8pbFXkBTmvtaiDGGfwCWJ+2EREREZHWrv/l8MmtqR+L/cE3YOV90O8yGP0jMHne1tckmWC0ITdkpoZcMuQGWPAD9/aV98Gah6CgHLqfCuPviX5CcGsQOgA7Zru3D/5iSsNWBre6to0qHZ/SmMnKNwWubSEbojCbg9HA+Tv9+Bb39k/vgYFXQcVY/2pKxO7F8O4XoKEuevuAK/ytJ9uVDYQep8HWV2L3m/9l2PISHHU3tB/iT23ivWA1fPB1WP33Q+vyG7P5Y+1rdDkBOo7ObG1eKe4GfS6CDU9Gb9/1EWx6EXqfnfla9i6DUHX0ttIBmZ8/2+Xlw+BrYend0dvf/ixMfhz6XeJvXSIikll7lsJH34OquU4wmQ05X0XC1UcJrFv3GLxzWeJjDLkxtbkDxTD5SXjpaKj1ONbm8YiMivB9RZMHgXYQKIGukxpfew32dn4RER9k6BOIjFjf+NUAY4wxnVMdqHHb8HdJfUwLyjpnAr3DlmuAfyewXeQ7juuj9nK3LmK5szGmImpPkdYi6BKMlu9TMNqWmenNk6iNz8H2N6O3tR8a/0o4kW8EF7hcrNbtjVwRERERERERERERERERERERyRafBz5qvM0Dilq2nJwReWBMSQpjRG7j1cE2fwJGJ3m7wKO5RURERCRdJd1h2pvQ6WhINURpzxJYeBt8+B1vawuXaDDa0f8HA/8nc3XkihHfgzF3uLfbeuf4+5pNsPaf8NrJ0JBE+FwumXWWe9vQr0KnCSkNWxXcHnX9uLLjCJg450h4JD/GPEHrEtqVTUZ+H0bfHrvPK5Oheq0v5STkwEZ4ZZITfOTmyF/6V0+umPwE9PvcoYAsNxufgZdPgIOV/tQl3nvzvOahaOA834SqiZnZf/JzGS3Lcyc8CGWD3NvfPAe2vpbZGhpC8MII9/ayge5tbcm4X8Run30prJ/uTy0iIpJ5BzbDyxNh8/NQW+nsgygUTaKJDLpe/2TioWilA+CYe6H/51Kfv2wAnDYHup4IXr6H0LTv/d998DC2wVlXuwM2znBee9Xu9G5uERGf+PPOqzfmArVAIU442leAn6Q41pc5FAoXAt5Ju7rcdU3E8nRr7e4EtusYsRz9HX4X1tpqY8xBIDzRqRzYlcw4kYwx3YCuSW6maFPxh1swWkGawWh5SRwvunc5dBia3nyx7F4Mb53v3t5hmPO141jY/UmUDgYqIq6WFCiNPlaqVykTEREREREREREREREREREREb90wTneD2C+tVZHWycma4PRrLXbSfJ4QWNM/E4iIiIi4p9OE+DM+dAQhLwCsBaCe2kWYLL017D457HHWfVXGHcX5Lsc752ORILRKsbD0K94P3cuMgbG3A7lo2H2xfH771kCW1+FXmdkvjY/7VkC299ybz8i9b+XquC2qOuHthuT8pjJyjcFrm0hG/StjpQZA2PvgNJ+8N610fuE9jkhS2Pv9LU0V6sfhOAe9/b8Uijq7F89uaKwHCY/6gQ5ffQdWPY79761lbDu3zDs6/7VJ97Y9TFsn5X8dme+n3v/N/ntYOoseKafe5/l/wc9pmauhq2vuLcFiqG4R+bmziV5+TDoGlj9gHuf5b+Hfp/1ryYREcmcNQ9CMJFYDGl5BgIlkF8CecXO/kug2FkXeT8vRlu0vuFjzjySqAG9DbXNl2O9Rol0wZq0vvP/6jAUTnvLCe9zC/Cb0ffwgDOv1O6AdY/ovTQRyTk5E4xmra01xrwNTGtc9R1jzNPW2oXJjGOMGQ18l0PPaO9Ya9tkuo4xpitwXsTq+xPcPPKSDTUplFBD82C0NNOhACf0Ls7lQ0RaSMglGC0/zT/9RK+GBfD8MPh8g/OBUias+7d7W14BdD7Wud/7/OjBaBdXHV5bgcsVYjK1Yy8iIiIiIiIiIiIiIiIiIiIiXmk6e9gCG1uykBwTedZ1UhcLNcaUcXgwms4MEREREZHm8hpDloxxQmzCdRwbf/tQNexdBp3Gx++brESOkS+NEU7SVnUYnnjfnfNbXzBa1Xz3trxCKBuQ0rD1NsTOYGXUts4F3VIaMxUFuR6M1qTDsNjtO9/3p45E7IzxNwXQ/ojMnZ/TGuTlQ+fj4veL9b8r2WvD9OS3MXlQNtj7WvxQ0ssJQwy5nIqc6ceuqhjjtx+qx6JwHYbGbq963wkG1s9MRCT3Vc1r6QpyjHEPGGu6Hy+0LGrfOGMGisHk+/PcGyiKHjpWHxaMZi3smJ3YeMO+6U1d4Zp+NtF0PwU2Pef9nE302ktEclDOBKM1uhsnGM3iBHPNNMZcbK2dm8jGxphjgSeBUpyrUNrGMduqK4Hwd8VXAW8muG1kUpFLLGlMNUBFjDFFWpegSzBaQZrBaA1J/vu9ejKc+CQUZ+ADuF0L3Nu6TTn0gfmoW5w3fLf8x1kOtIOJ/4TCisO3c7uCmILRRERERERERERERERERERERLLdlrD7hS1WRe5ZEbHcP8ntI/vvtNbuSqMeEREREWlrep0D+WXxj9l+eSIc8ycYdLUTduIVG4rfZ+AXvJuvtSgf6YTaRbuIeaRPboXh33Q/Xj+X1B+EFffCh99y79PnQvcTj+PYFazE0hC1rUtBj5TGTEV+nvvL6lAi/zPZovPx0K4fHFgfvX3zizD7MueE8MHXQV7A3/oAdi+CNQ/Cxmdi9+t/mT/15LLe58YOkwJY+y8o7e/8vlMMMBQfhQ44j7mL7kp+255nQmFH72vyQ14A+l0Kq/8evf3ARidwI1Dk/dxbX4OFt7m367GouX6XwoIfuLfXH4CNM6DvRf7VJCIimZFouFW2iRYcFjVkzCVwLK8Y8hMMMQvvm1fQ+oNB81yC0RrqnK/bZ8PyPyQ+Xv/PeVNXwvNdltlgtDUPOq/R+l2cuTlERDyWU8Fo1tqXjTGzgCk4oWa9gLeMMf8E7gPmW2tt+DbGGAMcDdwIfAEnCMw23t621r7o2zeQfb4YsfxA5M8vCalsl+pcIrkplKFgtGg76LHseBteOg6mzXI+OPBKcJ/zAZSbkd87dD+/HUx5EfYsgZpN0OloKOoUfbt8l8zEnR/o6gwiIiIiIiIiIiIiIiIiIiIi2W1R2P2BLVZF7lkasTwkye0HRSwvSaMWEREREWmLCsrgpBnw9mchuMe9X0MtvHctbH8TTnjQu/ltffw+fRRmcRhjYNJjMOts2L8mfv/XToVpb6YcGJYVGoLw+mnxT4g/OokTnyNUBre5tnUuyMAF613kG/fTAIMNQd/qSFteAE56Gv4zwb3P+sec29ZXYPIT/p43smMOvHFG/GDI/pfDsJv9qSmXFbSHE5+G2RdDcK97v8U/g1V/g2lvQYeh/tUnyak/6Dx3VL2X/LYVR8Kxf/G+Jj8ddTdseh5qd0Rv3/Qs9LvE2zlXPQDvXRe7z/AYwaBtUdlAOOGf8G6MEN23PwOTn4R+n/WvLhER8db+DVBbmfr2foWRHdZWqPPiM8ktULy+FtY/Ae98PrH3nEweHHUPdDnO2/ri6X8ZVL0Py/5f5uaYfQmM+hGM+2nm5hAR8VBOBaM1ugz4EOiJE6yVD1zdeNtvjFkG7Gps6wQMBZpSdUzjegNsAC71se6sYow5HhgVtqoe+EcSQ0S+u1uSQhmR28R5xzghfwKeSHKbwUCcS3iIeCDoEoyW73MwGsD+tfDWRXDWh+nNHV7DU93d2zsdAz2mNV9nDHQc5dxiiXUFqj2LoOOYxOsUEREREREREREREREREREREd9Ya5cbYz4BxgJjjTG9rbWbWrquHLAoYnmsMaadtfZAgttPijOeiIiIiEh8PabCZ7bBzvfhlcmx+655CEb+AMpHeDN3vJNUu5+iE4ndlA+H81bA7gVwYLNz8fOVf47et2oebJgBAy7zt0YvbXohfija8G9DceoBZm7BaB0CHSnK8y9ULt8UuLaFbJ1vdXii03g4/V14+YTY/TZMh50fQOej/akLnICueKFokx6D/m32tMTk9TzNeT5Z9FPn5+vm4DZY9js45o/+1SbJ2fhM4qFoJz176H7ZIGcfweRlpi6/FHWCC9bC4y7nus3/irfBaA0h+ORWnFOiXUz4HQSKvJuztRj4P9DnQngixnmbn9wKfT+jfUoRkVy16C73tnE/h25TogecBYohr0iP/62V235RQy0s+kVioWhTXoQuE6Gw3NvaEmHyYMI9MOoHTkBacC/kt8OJxwHqaxrD9QLNt1vzD9jwVOLzLP01DP8mFHX2qnIRkYzJuWA0a+12Y8yZwLPAAA69qjc4AWgTItb9d1MOhaKtBC6w1m73o+YsdW3E8kxr7eYkts/KYLTG32lSv1ejHVfxS8glGK2gBYLRAHZ9BFtfhx6nRm9vqAcbgrqdzhupRV0A6+z011Y5ffIKoKQXvHm+szPtZsxtqdUIUNDRvW3bLAWjiYiIiLSk4F4IlDpXcBQREREREREREREREYnuD8BfcY7d+wmHH7smEay1W8IC5cA51nMy8HKCQ0yJWJ7pUWkiIiIi0tYEiqDrJBhyI6y8L3bfra95F4zWEOdE1dKB3szTWuUFoNME5wbuwWgA217L7WC0ba/H79N+cFpTuAWjdS6IcXH5DCiIGYwW9LESj7Qfmli/ra/6F4xmLWx7I36/bidlvpbWJlAMA6+MHYwGzmOSZK+tCf5+xv0M+pyX2VpaSn47KO4BB7ce3hbaB/W13gWV7V0GNXFO+dU+kbuCMigfBXsWR2/fu9T5PZb09LcuERHxxu6F7m2Dr4Pirv7VItkjz2U/rHqNs28VT1Fn6HWWtzWlorgb9D478f771yUXjNZQ54TM97kg+dpERHyWkxHr1tpFOAFoj3Io7MyG3f7bleaBaA3AQ8Ax1tqlftacTYwxpcDnIlbfn+QweyKWk9o7NMaUcXgw2u4kaxDJLUGXYLT8FgpGA3h9Krx3vfOma7gNM+DRfHisGJ7uBc/0g8fbOVe0eKIDPDvQuc3oA4/kwdZXYs9T0iv1Grud6N4W7yo8IiIiIpIZ+1bBS8fBEx3hqW6w8CfOAUEiIiIiIiIiIiIiIiIRrLX3Ay/gHMN3tTHmey1cUq54OmL5i4lsZIwZDhwXtmo/iQeqiYiIiIhE1zuBcJMPvg7b3vTmOCIbJxgtkXrE0X0K5Je6t6/6m3MCbS6yDbDmoTidDPQ6J61pqlyD0bqlNW6y8ghgXE4FDNmQr7V4oqgTdJkYv9+in8CBOMFAXrAWNkyH+prY/TodAyU9Ml9Pa9T+COgwLHafvctg6T1QOVfHpWajyjmJ9etzUWbraGkdx0RfX38wscDORG1/M3Z7fqnzPC/u4u0zfvxjqF7rSykiIuKh4D6omuverlC0tiuvMPr6RXcmtn2fC72rxU+9U3jfY/XfYfHPYfVDULPF+5pERDySk8FoANbaXdbay4GRwP8DmmJdTcQN4GPgbmCYtfZqa21kqFdbcwkQnsS0DXg+yTFWRCz3T3L7yP47rbW7khxDJHdY61z1IZqCNIPRGtIIRgPng8wPv3loec+n8LbHb0CXJvsQEaaos3tbOqFwIiIiIpKahiC8NgWq5gEW6nbCupZEtwAAIABJREFUwtthxb0tXZmIiIiIiIiIiIiIiGSvz+MEfRngF8aYl4wxp7RwTdnuYSA8DeIzxpgjEtju+xHLj1trdZCNiIiIiKSn5xnQ/7I4naxzXNG7V6YfZhMrGK3vxamd8NlWFbSHCb+L3ef54bDxGX/q8Up9Lcz+HATjnCI29idQ2i+tqSpdgtG6FPgbjmWMId/kR20L2qCvtXhm/D1Q2Cl2n/oaeGEEbHsjc3U0hJzHrtmXxO5X0BEm/L/M1dHaGQMT/hA7rBHgo2/DyyfA/JucAETJDtvegD2L4/cb+X0oH5H5elrSMTGOmZ51NlSvTn+Ojc/C+19xbzd5zvN7uucltnbDboaO49zbVz/g7AdteMq/mkREJD3Va+H5GPsaY+/yrRTJQoGi1LfNL4VRP/KuFj+VDYQxdyS3zcZn4OMfwdyrnP+pbXFCeUVEWkj0d0NziLV2OfBtAGNMGdAdaErRqQS2WWv3t1B52eraiOWHrE360iBLI5aHJLn9oIjlJUluL5Jb6mvc34zPT/MNyMIKOLg9etu5y+CTH8P6J2KPseJeGHIjVIyDpb9Or55IHUbEDjdLRI/TYWuUC9c21KY3roiIiIgkb/tbcGDj4evX/RuGftn/ekREREREREREREREJKsZYx5ovLsX2IdzUc9pwDRjzD6cC59ub2xLlLXWRh4H16pYa1cYYx4ErmlcVQj8wxgz1S3ozBhzAXB12Ko6IMFLoIuIiIiIxJCXDxMfhoFXw6wzY/dd+y/oMQ0GXZX6fG7BaKUDYPJjThiIJG7wtXBgMyy8LXp7/UF473roeRYECv2tLVXrn4QNT7q3l4+E4x6ALselPVWVSzBa54JuaY+drHxTQNDWHbY+FGVdTuhyHJz9CWx+IXYIVnAvvHcDnLfcCdfy2qbnnceuWI65F3qdA6V9vZ+/Lel5Gpy9EFb/HRbFCa1YeR/0uwR6TPWnNnFnLcyN81Zcnwtg+Heg22R/ampJ7QdD52MbLzIdxce3wqSHUx+/IQjvXRe7z5kfQcXY1OdoK0q6w2mz4YkY52821MK8G5zH+HTCVERExB+f3Ao1m9zb+3/ev1ok++Sl8FxeMd5536T/ZVAUJ7g7m4253bmwwbbXAQPdp0JxF3h2cPxtg3tg/o1wztLMvOYWEUlDzgSjGWN6AMeGrZptrd0Z3sdaWw1UA6v8rC2XGGOGApHvLt2fwlCLIpbHGmPaWWsPJLj9pDjjibQuwRjHbaZ7ZYZxP4/+ZueAL0CHoTD5cXjxSNj9cexxZh6ZXh1uTvTgigmB4ujr63UxWxERERHfLb07+vod7/hbh4iIiIiIiIiIiIiI5IqrARu2bIGmI6o7cPjxbPGYxjFaNBjNGNOH6Mdg9ohYzjfGDHAZptpaWxljmtuBi4CKxuWJwKvGmOustZ+G1VIE3AD8JmL731hr18UYX0REREQkcSYPep0Bx/4V5l0fu++iu2DAFU6gWircgtF6n6tQtFT1Od89GA2gdgdUvgvdT/avpnRsnBG7/Zj7PAlFO9hQQ3X93qhtXQojX/5lXoEpoCbK+pAN+l6LZ9r1hiE3QFEXePuz7v2qV8KexdBxtPc1bHw6dnvHsXDEl7yft60qGwhj7oSlv45/XtCGpxWMlg32LIH9a9zbz/oIKjJ0Xlq26nOBezDaxhlOmFyqoRI75jjPy24GXqVQtGQUlEHv82HTs+59aqtgx2w93oiIZDtrY78WNHlQ2s+/eiT75CUZ9t7rXJjyXGZqaQldjndu4cbe5QQKxrN3Gez9FMpHZKY2EZEU5dKnAZ8Bnm68PQzUtmw5OeuaiOXZ1tplyQ5ird0CfBK2Kp/kDlCbErE8M9kaRHJKKIPBaL3OhvwoYwy44tD9oV9Jb45UDf8WlA9PfxzXYDQ9FYiIiIj4rm5n/D4iIiIiIiIiIiIiIiKx2bBbrpoNrIlyeySiX2+XfmsAlyvSOKy1G3GOnawLWz0JWGKMmW+MecwY8x9gA/B7oCCs3/NAAke5i4iIiIgkqdtJ8ftUr3ICb7a/7dx2LYCGUOJzWJe+JpD4GNJchxFQ1DV2nw3Tk/s9tZSG+tgnw+eXeRbQU1m3zbWtS0E3T+ZIRr4piLo+5PY/k0u6TIz/P775BecxZf9652911ydQ+R7U7Up93oOVsOah2H0SedyT5BgDXRP4ua75B+xeBLYh4yVJhIYQ7F4IwWrY+YF7v8IK6DDSv7qyRa+z3dvqD8Cm552LTtftTn7sne/Hbu+WIyGm2SSRn9nWVw49x4iISHaq3QGhavf2LhMhL/prJmkjAkXJ9W8Lr/WS2XesXpW5OkREUpRLwWgdca70aID51tr9LVxPzjHGBIArI1bfn8aQkZfD+GKCdQwHwi+7sh94OY06RLJf6IB7W6A0vbFLesKpL0P5qEPLx93vXI2ryaBrYNzP05snWd2meDdnnssLkYY4V4YREREREW80hGDRT+GlE9yvbgbO1VdEREREREREREREREQOZzy8tSnW2lnARcCOsNUGOBq4FDgDiEw3eAS4zFpb70eNIiIiItLGdBgK/S+P3+/jH8KrJzm3mUfBU91g80uJzbF3WfT1Jj/xOqW5QCGM/nHsPsv/ANO7wuaZ/tSUiu1vwdM93cPzAEZ8DwrKPJmuMrg16vo8AnTM7+LJHMlwC0YL2qDPlWRASQ844iux+yz4gfOY8kx/eLQAZo6Dl4+HJzvB3GugIYmfQ6gGZl8GT8UJDCzqAkO/lvi4krhRP3A/X6hJaD+8OAZm9IWq+f7UJbDxOZjeBV4cC0+0h7lXufcdfZvzHNPWVBwJ3ae6t791Prwy2Xl8mndTYsGjDUF473r46DvufcpHQb9Lkq+3rRt4JZQNit1nyS8PPcf851ioib4PICIiLWjhHbHbR/3IlzIki8V7fRGudAAMirGf21p0nQw9piXW983zYO/yzNYjIpKkXApG29n41QJbWrKQHHY20DNseR/wRBrjPQyEHzj1GWPMEQls9/2I5cettUo3ktatvsa9Lb8k/fG7HA/nLIKLd8GFm2DwNc3b8wIw6ha43PpzVYgep8G0N5JPVnYTKI6+vl4PHSIiIiK+mPtF+ORWqJobu1+s/V4REREREREREREREWmrBmbgFucsttbFWvsiMBr4M7ArRte5wMXW2st18VkRERERyagTHoIJv4de5ya+Td0ueOs8OLg9dj9rYZ/LSZgmkPh8crhhX4cTn4rdJ7gb3roAarb5U1Mygnth1tlQu8O9z5AvwZhbPZuyKhj977VTQRcCLfD36BaMFmoNwWgAE34Lx/41tW1X/x2W3p14/0V3wvrHYvfpMBxOf9cJhBTvdT8Fpr0Fg6+P37dmM8w6S+cR+eHAJnj7IgjuSaz/8JszW082OyWRwFcLK/8My34fv+un98Cqv8Xuc9psz8I/25TiLs7j+cjIU5td7JwP71yW2ZpERCQ5uxbAinvd26e9Db3O9K8eyU55CQT2lg2CEd919g2Ku2W+ppZmDJz8PBz5v9DzTOhyAhR0dO//1gXOe3MiIlkil4LRwsPQSlusitx2bcTyo+kc/GStXQE8GLaqEPiHMcYlwQiMMRcAV4etqgPuTLUGkZwRKyAi4EEwWpPCjs4Oaiz9fXhT7uRnvR3PLWCtvtbbeURERETkcPvXwdqHE+sb0vk1IiIiIiIiIiIiIiLSnLV2XSZuWfB9DbDWmjRvVycx33Zr7U1AD+BU4IvALcDXgc8Cg6y1J1hrp2fi+xURERERaSYvAMO+BlOeg/NWgEnw9KSGIKx/InafXQvc2xSMlr6+FzknAMeSyO+pJWx8Nv4xaqN+6OmUlcGtUdd3Kejh6TyJys9zCUZraCXBaMbAkOtg8HWpbZ/osY6J9j3pWWg/JLVaJDFdjoXj/gJnzIvft7YKtryc+ZraunWPga1PrO+AL2S2lmyXF4Dy0Yn1TeQxJ16fEd91zh2U1BR3cwJBRt6SWP/tb8HBGGGsIiLir1jPk+WjoNtk/2qR7OWWR9AkrwDOXQ5H/QpKWuZ1fYsIFDkBsafMhNPnQJ8L3Pvu/RR2fehfbSIiceRSMNpHQFO0pC6zkCRjTHfgnIjVceLjE3I7za9AORF41RgzPGL+ImPM14DIT0Z+kw0HqYlknFswWl5h4h8Ce2XgldBxbOL985PIoiwbBBdugIBrPmJq3MbTlV5EREREMqt6LXz0fQ69HI9DwWgiIiIiIiIiIiIiIiIZZa2ts9a+Ya39h7X2f621f7DWPmWtXdPStYmIiIhIG9V+CPS/PPH+e5aCbTweyUY5LmnvUvdty0cmV5tEVzE+fp+9jb+naL+jlrJnSez24m5Q0svTKauC26Ou71zQzdN5ElVgXILRbCsJRmvSKYG/0Wj2LIaG0KG/XbdbcB8c2Bh7rMIKKO2fWh2SvA7DIVASv1+s5wjxxpJfJN6301GZqyNXVCT4M9j7KdgG98elhnrYuyzOXCk+NkpzCT/HWKjZnNFSREQkTLTnx3B7YuwH6jlSmuTFCUbrOM4Jt23r4u0Pxfp/ExHxWX5LF5Aoa+16Y8xc4ARgmDFmqLV2eUvXlUOuovnve5G1NoFLKcRmrd1ojPkM8BJQ2Lh6ErDEGPMBsBooB8YDXSM2fx64Nd0aRHKCWzBaIm/aey2/HZwxH1bcCx/e7N6v36XQ6yzoMAJePj56n/KRcNRvYNvrUNzDuTJPQQfva3Z7IdJQ6/1cIiIiIuJ8gLDop7DoDudD+EQpGE1EREREREREREREREREREREpO0ZeydsfAZC++L3XfFHWH2/c5HsQAm06wtHfAmG3QzGQHWMzN+eZ3pXc1vW90Io6Q01m9z7rPiTcwPnvIFh34AhN/hTX6Rts2DBLVA1N3a/ITd5foJzZXBr1PWdC7p7Ok+i8l2C0YKtLRit/2Xw8Y+gblfy2z4a/WeUtMHXQ6Awfj/xRkF7GHgVrPxz7H4LfuAE2425U4EGXqs/CB/cDLWVifUvKE8uGLW1OuJGWPdw/OOt6w/AI2n8zZb0gj4XpL69HNL7PGf/88CG+H1nHgkTH4EBl2W+LhGRtmrFfTD/S4evD5RA10kw5iew9Few+QX3MVrqtapkn7w4r+GO+LI/dWS7/pfDJ7dBcE/09ne/AAvvhCHXw4jvOu/XiYi0kLyWLiBJv3a5L/F9MWL5fq8GttbOAi4CdoStNsDRwKXAGRweivYIcJm1tt6rOkSyWiiLgtHA+XBm+Dfgwk1QOuDw9pOegcmPwaCrIb/MfRxrodeZcNSvYMS3MhOKBhAojr6+/mBm5hMRbwX3wsq/wUffg43PJRewIyIiLaPyXVh4W/KP2aHqzNQjIiIiIiIiIiIiIiIiIiIiIiLZq2wQnPISdD4eTH78/k3HgdfXwL7l8OG3YNnvnXX710bfpv1QKO7iSbltXqAYTn8Hep6VWP89S2DejbDq75mtK5pdH8Mbp8cPRRvzExhzm6dTW2upCm6P2taloIencyXKLRgt1NqC0Qor4LQ50H2q+/kkmVLSG0b9GMb93N95BY7+PQz/tvM7iGXxz+DjH/hTU1vy7lWw8r7E+lYcBafNhpKWCYnMKl0nwUnPQqcJYDJ0unbn4+C0dyC/hc5DbG0CRc7fb6+zIb80fv85n4dNz2e+LhGRtmjV/dFD0cB5v2Drq/DKRNg4w32MAVdAt8mZqU9yT6DIva24GwyOjFxpo4q7OPuXsVSvhAXfh6WK9RGRlpVTwWjW2hnAAzihW+caY/5oTCKfmLRtxphJwPCwVXXAv7ycw1r7IjAa+DMQ63Icc4GLrbWXW2v3e1mDSFarz7JgtCbtesF5K+HU12DkLTDpMfhsFfQ5/1CfmG+a2oyXCCgYTSSXHdwOr0yGedc7L4DfOh/eu07haCIi2W7tv1PbLqSXeSIiIiIiIiIiIiIiIiIiIiIibVLXE+CMd+GyWrgsBBMfTm77FX90vlavid7e84z06pPmSvvDKS/CxEcS36bpd+SnVX+DhjihX8feB2Nu9TyQZm/9boK2Lmpbl4Juns6VqDYTjAZQPhymvgqX7nceU3qemfk52/WDizbCuLsgL5D5+aS5vAIYfzdcuAHG/SJ235V/hfpaf+pqC2q2wvrHE+tbUA5nfQgdR2e2plzS+xw48324LOjcAu28Gzu/PZz+LpQN8G5MgdJ+MOUFuGSv8xwT7xzPFff6U5eISFuz/E/pjzH0q+mPIa1HXqF727j/9a+OXNBxFAz7Rvx+y/8I1qc8CRGRKHIxVOxGYB/wDeBLwMnGmN8Az1prq1q0sixlrX0HJ0wu0/NsB24yxnwDmAT0B3oA+4FNwEfWWpdPqERaObdgtGy4UkNeAHqc6tyiifnGnk87snkuCc0N+hBDJOutuA92L2y+bvXfYcgN0OX4lqlJRETi2/xiatspGE1ERERERERERHZ9Aot/DrWV0OkoGHNHYldbFxERERERERGR1sHkOWewlI9Mbrt9KyBYDftdTjspG5h2aRJFMr+nXR9DQ72/gVE7P4jfp8PwjExdGdzm2taloEdG5oynoC0FozVpekzpMBy2/Cezc5WPyuz4khhj4oduBffA/rXQYZgvJbV6299MvG+HEZmrI9eZPOfWYRjs+sibMctHOP8TkhlNzzFu53422fmhL+WIiLQpDSHYlebjq8mD9kd4U4+0Du36urdl6L2DnPb/2bvv8Diqe//j76Nmyb33XrCNbYwNphubTiB0QighIZWUm/IjJIGEm5BcEkKSG0hCSGghhBog9GqqaTaYYoptjLstNxV3SZa02vP7Y6SrlTWzO7s7O7srfV7Ps49Wc86c+dqWV7M7cz7Hz99J7Xpo2AZd+mW+HhERF3kVjGaMeSnm291AD2B/4Lbm9nKgornNL2utPS6wIgVrbQPwcrbrEMkpXh+OJVpNIBfkQo2Fpe7bm/aGW4eIJO+jn7tvX/+QgtFERHKZ182FiSgYTURyQbQJbAQKPUK2RUREREREJHN2rYB5h7Zex9v6Imx9GU5627khVUREOiVjzBcDHM7i3B+4E9gCfGKtlqgWEREREclJvac7oVs7l/rf58Ee3m3dFIyWEb2nQa+psPPjxH1tBJ4/AgpiwrmKusOA2TDp/0FR1+DqqnzDWYy5akH8fl1HQv8jgztujGqPYLQuppRuhXF+VjOoyLhPBWzsyMFoLUZfCMtvyPAxLsrs+OLf4BOgS39nERYvT06CCd9yFm3vc2B4tXU0lQvgjfP999f/k8RGXxRcMJr+vnPD3i3w2rkw7qsw9DPZrkZE8pmNwqp/wKanYceHsGdVa9u4rzsLz3UdmrXyQpXMZwVehnxGYU3S1tBT4f3LwTa13d59HPQ/NDs15bIR58C734doQ/x+1e/A0JPCqUlEZB95FYwGzMW5samFxcnjbok8H9H88Hujk0mir4hI6jpqMFpY95UWeExmj9aHc3wRCd6q22HmH7JdhYiI7MtaWHNX6vs3KRhNRLIo2gjvXQ5r/ulMwB9yEhx2hy52ioiIiIiIhGnxT9ovbrTtXdj8nCYJiIh0bv8kc/fp1RhjFgF3Av+21upmEhERERGRXGEMzH4E5p8Guz9Nf7zuo9MfQ9ozBo5+BOZ/FnYtT9y/+u322zY/B5ueguNfhYIApqptfBJePcsJYoun22iY8zgUFKZ/TBdVDVtct/cvGYwxxrUt04pMiev2SGcIRus3Cw65Bd75bvBzSUwhTP6xE74muaGwC8x9Gl49E+o2efdb8TdY8y849gUt3J6KzfOc39O+GJjwbSeMTuKb+D3nd+qq20j9Y1EDE77p/J1LbtjwH+dx6O0w7ivZrkZE8tU734UVN7m3rboVNjwEpy6BsiHh1hW2SB08Mz39cQ77R/pjSMfScwIc9QAsuAQiu51t3cfBnCe0oKOb0gFw9ONOUHLjDu9+r5wM526Dkj7h1SYi0izfgtHcKNhMRHJfPgejFbhfOHOE9BJcWOq+vbY8nOOLSGps1LutpHd4dYiIiH+b58HCL6W+f+Oe4GoREfHDWmelrF2fwuIfw84lrW0bn4DXzoHjX8laeSIiIiIiIp1Kw04of8S9besrCkYTERFoXQA1SN1xFlydC1xrjPmytXZeBo4jIiIiIiKp6LkffPYTJxjttXPaXtdPVrcxwdUlbfUYD6cug90roG6zs+3VM+NPit1X1QLY9AwM9xuwE8fH1yQORTv6MRh2mhPsliHVjRWu2/sVD8zYMRMpMsWu2ztFMBrA+K/DmIth+wfOIh0FRYBxfl5sivNbCoqg9wFQ3CPQUiUA/WbBmRvgwZ4QibNwb6QGlv4Ojn44vNo6io+vgWhD4n7Hvwq9p2keiF8FxXDoLXDgb51zn5a5NW99DfasdN/n2Oeh5TXeFEDvqQqeyFUf/wrGXqJwFRFJXt1W71C0Fg3bYdXtMPWqcGrKlg0BnLeZIijN3nszyWEjzoZhp8P2xVDUHXpOzOhnB3lv6ElwTiXs+Aienendb809MPG/wqtLRKRZPgaj6beOiOSfSB4Ho8U72Y8XehQkr2A0gI/+x3mTrzclIrln5S3ebbogJiKSmz79S3r7N8W58UREJGhN9c6NQmvv9u5TMd8JTeu5X3h1iYiIiIiIdFYf/ty7bcPDMOO68GoREZFcFHtjh/XYvq99ZzS79bUxbUOAZ4wx37PW/jX5EkVEREREJCOMcSahjv0KvP/D1MYo7AolvYKtS9oyxrm/ouUeix7jYds7yY1RMT/9YLRIHVS/Fb+PKYQhJ2V8DkFV4xbX7f2LB2f0uPEUGfepgJFoJwlGA2d+Sf9Ds12FhMUUOKEG6+6L36/ilVDK6VCaGqDqjcT9xn0NBs7OfD0dUZe+bf/uDvglvHlR+36lg2Hw8eHVJempWec8uiu0V0SSVP22v34rb+74wWhBnLsd8Mv0x5COq6AI+h2c7SryR0ER9J0BQz4Dm59x71MxX8FoIpIVeRWMZq1VhLaI5KemPA5GiyvFFXWS1WWAd9tHP4chJ0D/w8KpRUT8qd8Gi77l3V6sm1NERHLGjiVQ/ijsrYBNT/nbp+9BsO3d9tvjrcgnIhK0VbfFD0VrsXmegtFEREREREQybfdKWHFjnA4hLbgkIiK56svNX3sAPwf64QSZRYGFwCJgPbALKAH6AtOA2UDLbHML/Bt4FigDegP7N/cZRduAtOuNMcustS9l9E8lIiIiIiLJGX566sFopQODrUUSG3FW8sFom5+BxcWwaxlsfRlK+sGwU2HYaU7gi0kwLSzaCCt85FwPPQUKuyRXWwqqGytct/crzt7PY3FBsev2RtuJgtGk8xl+RuJgtIbtUP4EDP2MM6lfWkXqnNfn3Sug22ho3AUbHoHqhWB9XL8ZfmbGS+w0hpwMBV0gWt92u/6O88+u5QpGE5HkRff661dbDouvhB4TnPc+ZdkLZs6Y3SvTH0O/P0WCN+JM72C0DQ/B4p9Crykw7BQo6RNubSLSaelTHhGRMKy61X17Uddw6wiaDSkYre8MKOrmHbSx5m4Fo4nkmvLH4rcXdQunDhERiW/Do/DGec4NZX7Nfbb55jMFo4lIlq2911+/mrUZLUNERERERERw3qPFmzxTsxaa6kOZrCgiIrnHWnunMWYC8DhOKBrArcA11toNXvsZYwqAM4A/AGOAzwHLrLW/2qffKcCfgHE4AWlFwP8CMwL+o4iIiIiISDp6jIfpv4YPfpb8vof9I/h6JL4J34ZNz0Lla/732bnUebRo3AWf3ug8Rl0Ah98FBYXu+0Zq4dUzYcvz8Y/RdSQceJ3/mlIUsY1sj1S5tvUvHpTx43spMiWu2yMKRpOObPhZMPI8WP9A/H6vng6jLoQj7kocxNhZNGyHl09xQtBSMfYSJ8xLgtGlLxx8Iyy6tPW6Wq+pMPWq7NYlyXvlM/C53VDcPduViEg+iUb89136W+dr6SA45jnoMz0zNWVDUz1UvJLeGFP/G3rtH0g5IhJj9Bfg7Uu925de63ztPg6OfV5BsSISCgWjiYhkWuMe77bCsvDqyIiQgtEKS2HAbNj8rHv7ir/CrHgr0ItI6FbcFL+9yecKByIikjk2Cu9+N4lQNAOzboKhJ8Gaf7p3UTCaiISp6k1//eo2ZrYOERERERERSbxgio3C7hXQe2o49YiISE4xxnQFHgUmAo3AxdbaBDNZwVobBR4xxswDngGOAn5hjFlvrf1nTL+njTGvAa8ABzZvPsAYc4K1NsGMehERERERCdWUn8LQU+HlE2Fvhf/9+h+RuZrEXUlvZ5Lr1ldg+3tgm1rbdnyUOKBoX+vucybYDjvFvX3tPYlD0Y56AAYfDyV9kjt2CrY1VmE95kv0Lx6c8eN7KTLFrtsVjCYdWmEJHHkf7PcdqHwTPrjSu++6e6H/oTDxe+HVl8tW/C21ULTRF8P4b8CAI8GY4OvqzMZ/DQbOhq0vQ9lQGHSswrXy1Zo7ndclERG/fM/dibF3Kyz+CRzjMbc6H8V7Lzn6YjjkZifcdcvzUNu8vlK0AXZ8CF1HwNivQF+tjSSSEUVd4dgX4KXj4/fbswo+vgYOuz2cukSkU1MwmohIpsVbIam4R3h1ZMLgBCe2QSrL3sVDEUnSugdg2zvx+yg4R0Qk+3Yth9pyf30PuAamXNm6gl6RxwX4SJxQYBGRINVX+++7c5l3W7TJuXAKzs1FhaXp1SUiIiIiItIZ1WxwJkYmsmuZgtFERDqvXwGTcVbgu85PKFosa22NMeZs4BOgL3CjMeYpa21lTJ/dxphzm/u03Bd5IqBgNBERERGRXNNnOhx6B8w/1V//siFQ2CWzNYm7wi7OQppDT2q7veK15IPRADY+5h2MtvGJ+PsOOApGfi75Y6aoqnGLZ1u/4oGh1bGvIuM+FTBiIyFXIhIyUwADj3Yeq26FPau9+y65FsZ9HYrKwqsvV5U/nvw+A46CI/4VfC3SqudE5yG5o88M2P64iqP7AAAgAElEQVR+cvuUP65gNBFJTqphxpvnQaSu45zbxHvvN/ky589ZVAZjvxReTSLSqsd4f/02PgYoGE1EMq8g2wWIiHR4W1/ybhtwdHh1pGPi9z22h7iCSkm/+O0168OpQ0QSW/KbxH0UjCYikn3Vb/nvO+WnraFoAEXd3Pvp9V1EwrLrU/99d3wAD/aGxVdAU4OzrakB3v4W/KcvPDzAeTzYE148zpnQLyIiIiIiIv6VP+bdVlAMw06HyT+GHhPCq0lERHKGMaYI+GLzt/XAdamMY62tAm5u/rYMuNClzxrgQcA0bzoylWOJiIiIiEgIBh7tfQ/SvgYdm9laJHl9D4KiFBaJX3mL83nirhWwcylseBQ2PAIbn4KdS+LvO+i41GpNUXVjhev2noV9KCnIXlBfsSl23R6xDSFXIpJFiX4v7N0Cr57uvMZsfh4ad4dTV7ZE6qDyTajbAnsrYdNzzmvrhkeSu1e4hX7vSmc0+cfu23tO8t5nyzznHGb3SrA2M3WJSMcSTTEYDQtr74FNz0Ld1kBLyoqqBd5tvaaEV4eIuOs6ErqPS9yvvho2POycD218CioXtM7XEREJkPsyESIiEgwbhWV/8G4ffHx4taRj4vedD8RrY8LHxl4CvUJc0b1L//jtzx0KZ28OpxYR8daw3QmeSKSpNvO1iIhIe9Em53U62ggLv5y4f0lfOPYFMKbtdgWjiUi21W1Mrn/jTlh6nXOh5aA/wns/gJV/b9sn2uiEmz93MJy5CSK7Ydu7zgXWssHB1S4iIiIiItLRbPQIRus5ET77Sbi1iIhILjoK6A9Y4G1rbToXE+YBVzY/PxP4k0uf53BC0wwwPI1jiYiIiIhIJhV3hylXwQdXxu9X0gcm/yicmsS/oq4w7efwfgr/Nq+emfw+3UbB+K8nv18aqhq3uG7vVzww1Dr2VeQRjNZoUw1ZEMlDky6D8kehvsq7z5YXnEeLQ26G8d/IfG1h2/AwvPkFaKoLZrxuo2H8pcGMJZJPhp8G/Q6D6oWt23pOhjlPwBPjvfeb/1nn68A5MPth6NI3s3WKSH6LRlLf9+2Y90MTvg0H/RkKCtOvKUzRRnj7Uqgtd2/ve7Cz+J6IZJcxcMD/wIIvODkZ8bx2TtvvS/rA7Edg0JzM1ScinU7eB6MZYw4ETgdmA+OAvkAPwFpr2/35jDG9gZ7N39ZbaztANK6I5Kyqhd5t474OhSXh1ZKO7mPgxAWw7j5nFYOBc2DUee0DMjIp0Ypge7c4b4i76p5WkazatdxfPwXniIiEr2YdvHJq4pU1W0y6DPb7DnQf276tqLv7Pnp9F5Gw1Fentt/y62HcV2H1nd599lbA/cXOe96WCzmTfggzfh/u+2AREREREZF80LADtr7i3jbyvFBLERGRnDUy5vmmNMeKXTFvlEefZTHP+6R5PBERERERyaQpV0CvybDmbtjwkLOIY8M2p633NBh6Coz9CvTcL7t1irvJl0OPiVD+CNQ2L3C3ZV7wxxl8Ahz+r9AXtatudJ9u1r84u4vrFRn3OSgRm0bIgki+6TUZTnoLVt4KS3/rb5+3L4X+hzu/XzqKus3w+nlgm4IZb+ovYMI3tYiodE5F3eDYebDyFqh+G/pMh3HfgNL+cNzL8OIx8fevmO8Exh52ezj1ikh+ShhmbHDWGUpgxU3Qd6ZzT3w+WfE3WH2Hd/uBPs/rRCTzRl8AZUNh3f2w+1PY+pK//Rq2w6tnwFmbnFB9EZEA5G0wmjFmGnA9EPuO0s/MxGOAh5qf1xhjBltra4OuT0QEa+GT673b+80Kr5YgdB0Kk3+YxQJ8vMRveib0laBEZB+bnvXXT8E5IiLhe+sb/kPRxn4ZZv6vd7tXaG1kT/J1iYikoiHFYDSAp6f66GSd9/UtPvlf6H8ojPxc6scVERERERHpaHYua55w4zHhbviZ4dYjIiK5akjM8wSr4iXUcve0AbxmaG6Ped4lzeOJiIiIiEimDT/DeUh+Gn6a82hxbwYWnDvsjqyE9FQ1eASjlQwMuZK2ioz7VMBIwpAFkQ6m+1g48FqY+H14fCw01SXeZ939HSsYbf1/ggtFm/wjOODqYMYSyVfFPdznTvaZ4W//9f+GQ26BgsJg6xKRjiPqcc7e92A4eZHz/LnDoXph4rHW3pd/wWjr7o/f3n1MOHWIiD+D5jgPgMfGQM1af/s17oTNz8KIszNWmoh0LgXZLiAVxphLgIU4IWf7fmqeKAr3MWB9837dgHOCrk9EBGvhra86K1d50QrpySkblLhPtCHzdYiIt/LH4eNf+usbqWkbNCEiIplVvw22PO+//+QfxW/3DEZT8KWIhKQ+jWC0VJU/Fv4xRUREREREctWKm+GpKbDzY/f2riP8TxIQEZGOblfM8/3THGtKzHOv1VpKY577mBErIiIiIiIigRlxbrDjlQ1xHllQ3Vjhur1/cfghbbGKTbHr9ojVXArppMoGw4Rv+eu75DfQuAua6jNbU9AitU7d0Sbna8tj2e+CO0bQr98iHUlJL+g+PnG/SA3s3Zz5ekQkf3ktOhcbftzvYH9j7fqk9ZwgGlBQaiZFI7DjI+/2LgOg68jw6hGR5PSblVz/6kXO+xgRkQDkXTCaMeYc4HagLHYzsAFYTPugtDastVHg3zGbTg+6RhERqhbA6ju82wuKnQ/FxL/Bxzt/b/EUdo3fLpKrmvbCh7+AF4+FhV+Gbe9mu6LkRWrh1WRW7LNO8reIiIRj51IS54jH6DU5fnuhgtFEJMsatoV/zLX3hH9MERERERGRXFS3Bd6/nLifNw07HUzc2zdERKTzKG/+aoCxxphD0xjr4uavNmbcfQ2O6VOZxrFEREREREQkWft9O+Dxvgsm/KlvdU011ER3u7b1Kx4YcjVtFXkGo0WwWrRaOqspP/UXWgTwYC94sAe8MAd2rchsXena9Aw8NRUe6ObUfX9Rc/3Nj9oNwRyn32HJBx2IdDYTv++v3+o7M1uHiOS3aKP79th50+O+DoWl7v1i1W1sPSf4Tz9nTmouhhBVLYR/l8H9xRDxWvMI2O87UFDk3S4i2TXhO2AK/fdf+lvnfcwTE6H88czVJSKdQl4FoxljhgAt7wxbPq29CRhnrR0NnO1zqMdahgTmBFagiEiLTc/Ebx/ymXDq6EhK+sCYL8bvkyg4TSQXWQsvnwQf/wq2vgyr/+lcZKt+J9uVJefJScnvU18dfB0iIuIumdWnxl+auE9xd/ftEfebwUREAqdzSRERERERkezZ8HD8G1YBhiezmIqIiHRw84FGnPv9DHCTMSbple+MMZ8HTqT1vsHnPbrOjHm+NtnjiIiIiIiISBoGHQNznkpvjMKu0Hs6zPwj7H9FMHUlqapxq2dbv+JBIVbSXlFBiWdbxEZCrEQkh3TpB8fOg9EX+esfbYSKV+GFo3IzQARg23sw/zTYuSSzxxn3VTj2OS12I5LIxP+CWTdBn5nOuYqXD6+CXZ+GV5eI5Bc/wWh9DoBjX4BBx0FxL38haY07nTmpCxLMvw5bzXqYdzg07Y3fb8K3YOrPw6lJRFIzaA7MeRIGHg1FPZzzocKuYBIEGu7+FF49I//my4tITsm36NSfAy3vGpuA8621/4lp97u0xSKcm62KgX7GmDHW2jXBlSkind6Sa+K3l/QOp46OZtbfYdXt3u01a0MrRSQwFfOdi2qxIjXw6Y1w+D+zUlLSdq9KbbWh+mroMS74ekREpL09SbzlHXpq4j7Fvdy3N+2Fpnoo7OL/eCIiqVAwmoiIiIiISPYs+U389uKeMFBr1ImIiMNau8sY8yRwFs79fQcCzxljLrTW+rrQbIz5GnAjreFqUeBuj+4nxTz/IOXCRUREREREJDXDToEL95neda/PwJ1Dbobx3wi+piRVN1a4bi+gkD5F/UKupq3iOJOOI7aRYrTYvHRS3cfAEXdDnwPh/R/522dvBZQ/BqMvyGxtqVj1D7BNwY139OMw/LTgxhPpjCZ8y3kAPDMDti9277f6n3BgguupItI5+QlGAxhwJBz3gvM8UgsPdPM3fvkjULcVyrIb5vx/1tzlo5OBmTcopFUkHww92XnEWvZHeP+Hiff95Ho48p7M1CUiHV5BtgvwyxhTCFyAc3OTBa7bJxTNN2ttBPgkZtOk9CsUEYmRKIW7WMFoKSlIkOf54X+D9ZuRKZIjPv2L+/Y1d4ZbR4umvVD1Nuz4KP7/JxuFbe87KxF9dHVqx6qvSm0/ERFJXjIBskNOTNwnXtBv407/xxIRSVXjjuwcd+OT2TmuiIiIiIhIrmjcA3Ub4/cZegoUloRTj4iI5IvLgdjl4I8Elhpj/maMOdYY03PfHYwx+xljLjXGLAJuBkpwQtEscLu19iOXfUYAc2ldYPW1YP8YIiIiIiIikpIBs/31G3RsZuvwqapxi+v2fsUDKDCFIVfTVpHxDj6LWI+gBZHOZMjJifvE8go2yrYdQeb9G+g3K8DxRISe+3u3Bfr/V0Q6FBtx3x4n/JiirtBtjM/xo7BzSfJ1ZcrS3ybu02O87i8RyWe94pwTxdr6kvIfRCRlCRJmcsphQMsNUA3A79IcrxyY1vx8RJpjiYi0VdTDCRfyEi9IQtJTvQj6H5LtKkT82/BwtitoVfkGvPmF1vCcwcfDUQ9ASZ+2/Wo3wssnpf9BWUN1evuLiIh/e9b663f6Kijskrjfvr8bYjVsh9KB/o4nIpKqSE3iPtN+BR/9PNjjfnoTDPtssGOKiIiIiIjkk/d/lLjP8DMzX4eIiOQVa+0aY8xXgLtwFnO1QDfgG80PjDG7gN04AWi9mr+CE4ZG8z4GeAu4zONQV9C6WOxe4PlA/yAiIiIiIiKSmjFfhMoE2dX9D3cmxeeAzfUbXLf3Kx4UciXtxQtGa7QNIVYikqN6TYE+B/oPPFv2O2jYBpN+CL0mZba2aBMsvwE2PQP1lW3buvSDvgdBUz1Uvw3VbwV33CEnQtng4MYTERhzMay7171t09Owazn0nBhuTSKS+6IeQcYF3uf4gPOa8/Gv/B3jpeNg1Pkw/lIYNDep8gJRtdC5337nRxDZk7j/6IszX5OIZM7g46BsCNRtjt9v7xZ4ehqYQigscz4DmvIzKO0fTp0dSd1mWPIbqHoLovXt26ddDSPOCr0skUzKp2C0lk+3LbDIWrsrzfFi92+34qSISFq83qC28Er2lsSmXwsfXOndvuo2BaNJ/tj1afx2GwVTEL9Pumo3wcbHYfsHsPLvbdu2vACLfwqH/K3t9gVf8h+K1qUf1HsEoHltFxGRYFW+AZufSdzv4Buh+1h/YxbHCfpt2OFvDBGRdERqE/eZ9t9Q9SZsfja44/p5PRUREREREelIok2w4T9QuwG6jmh/LWFfBcUw5ORwahMRkbxirb3fGBMFbsG5X69lSeiW4LNezY92u8b0ew4431rrtXLCXcADzc/3xOknIiIiIiIiYRr3FdizGpZe697e/3A46qFwa/IQtVEW7HrRta1/jgejRTRPRQSMgaMfgxfmtC4Yn8iq25xrIScuyGyQ0VtfgTX/8m7f+nLwxxw4Fw6/K/hxRTq7oSfDgCOd+/TdzDscTlwIPfcLty4RyW2pBqNNvQrqNsHqO8A2JT7Ouvth/UPOOdGwU5KvM1UVr8NLx7sH9bgZfylMiTNXXERyX0ExHDMPXjsHdieYLx87J736Ldj0FJz8LhT3yGyNHUl9tXOeWbPOu0/D9vDqEQlJPgWjDYh57r70RnKiMc/z6e9BRHJd4x5oTBAG0T03VjLKSyPOjh+MVrcpvFpE0rXxyfjt710OB/0xc8ff9j68fFL71YZirf4HzPhd65vLhh1Q4fOC27RfwX7fhtfOhopX27fXVyVfs4iIJOejX8JHVyfuZ4pgv+/4H7eom7NKg9tFFQWjiUgYIj7nM3bJwAoyDTugJE5ApIiIiIiISEfR1OBMHKpe6H+fsV+BErdMGxEREbDWPmCMeRP4A3A2rfftWZfuJubrGuDX1tp/JBg/iV9aIiIiIiIiEhpTAAf+Bqb9HGo2QFMdFBRB6SAnHKBscLYr/D+f1n7k2da/OPt1FscNRvMIWhDpbLqNhDPWOIvIN9VC4y5n7sZHv/Dep2E7fHoTHPynzNRUsw7WBBxQdvK7rc+LujffU2ehxwSINoCNQukAz91FJE0z/gjzDnVva9gOK/6e2TlhIpJ/vM7X45zjA07w0KG3wszrYfcKwMIHP4u/eLiNwLLrwg1G++QP/kPRpv3SeX8oIvmv91Q4bbnznqe+Gp47xF+I4+4VsP5BJ0xf/Flzd/xQNJEOKp8CwWJvfioMYLy+Mc81a1tEgpMo0Rag38GZr6OjSrRSglY5kkQad8HS66BqIfScDJN+AD2yFFZYtzF++/LrYfIPoesw/2PaKHz6V1jxV9i13Nm2/09g/yvbT0T64KfxQ9HAuSD2YE/n+bivwoCjnWMk0mM/ZzUCY6Ckn3uf+urE44iISOpW3e4vFA1g1AXJjW2MEwrk9lqulQVEJNNs1LlhzY9+h8Dau4M9/o4PYeDRwY4pIiIiIiKSi5bfkFwo2ohz4cDrMlePiIh0CNbacuB8Y8wQ4FzgCGA60B/oDdQD24F1wELgBWCetdYtPE1ERERERETySWEp9JyQ7SriWlm31LNtQEn2g9GKFIwm4l/Xoa3PI3vAO/fQUfl65mqpfBP3tQFSNPh46DszuPFEJHndx8Zvr3ojnDpEJH9EPeY+F/iM+yjuDn1nOM/7HhQ/GA2gagFEm6AgiFgOH5I5lxp2aubqEJHs6DbKeUy6DJb93t8+la8rGC0ZmXzPKpLD8ikYLTa1Y6hnL/+mxjxXKoeIBKcliMjLgNnQe1o4tXRUfQ+Gbe+4t0V1MU/iaKqHF+bC9ved77e+BOsfgBMXQI9x4dcT2ZO4z8YnYfw3nACaFvE+kHr7m7Dq1rbbll7nJGefusS5oSAacYIkNj+XXL2rbncefky7urXmLv3d+zToFExExJO1bV/7k7Xmbnjra/76miKYcGnyxyju4x6M1qjscRHJsKY6/31HXeCERDZsi9+vdDAccTe8dHziMV+YAxdE03udFhERERERyVWx1yBW3+F/v3OqoUvfxP1ERESaWWs3A39pfoiIiIiIiIjkhMqGzZ5tk7vNCLESdwpGE0lR/8OhdBDs3erdZ9cnsOg7bbdtexdq10P/I6F0YOt2UwC9D4ARZ0MXl4Xkd6+CdfdDUTcY9XnYszqYP0eLEWcHO56IJK+0PwycAxXz3dur34at82HQnHDrEpHc5TX3ucD7HN/TiLNhya8TH++N82DYGTDyHOe8JEhVC2HTs1D5GlS/BZEaf/t1Gw19sv/eSkQyZPRF/oPRVt8BZcNgyIkwcHZm68pVteWw4RFo2A5DTob+h4CNQvnjznvKipeh+3jocyBseCjb1YpkRT4Fo61v/mqAGcaYYmtT+8TWGLMfMCxm04fpFici8n92feLdNuHbMMPnyZx4i9Z7t+1cEl4dkn82Pd0aitaivhJW3gwzfhd+PX4+7Fn0TecBMPJzUP2OczFu8HFw6G2tF9dq1sMrp3j/H9izGv5dFkzdiRx+N4y+oPV7twt9APVV4dQjIpJPbBQ+/G/nd1NTAww7DQ66AUoHJDGGdUIx/Rg4F6ZfAwOOTL7Wkt7u2xsUjCYiGeb3oik4N56c/C4s/BJUvOrdb9Axzjn2ye/ABz9LHCJc9WZqr50iIiIiIiK5quI1eO8y2PEB9D4Q9vuv+Nc9Yw0/S6FoIiIiIiIiIiIi0iFUNroHo/UvHkRpQUj3YsdRaLynAjYqGE3EW0ExHHYnvH6u9wL3TbWw4ib3Nq8J6Euvg+NehG6jWretvR8WXAw24ny/5Br3hYhTNfwsGHNJcOOJSOoOvhGenubd/uJcmPZLmPbz0EoSkRzmdb4eJ/zYU9+Z/vpteNh5fPpnOGZecPd2LP8zvPv91PY97J9OyKyIdEx9psMB/+PMj/RjyTXOY/pvYMqVma0t12x7H14+sXWu/UdXO+eXFa/A+gdb++2tcOYwiXRS+XTWsACoAyxQBlwQv3tc34t5vtVauzydwkRE2qhZ6759xDkw669Q1DXUcjqkpjjBaHu3QuUCJ1REZF8rb3bf7jd9OmjJBDqA80amZo1zwW3jE/D8bCf8JhqBZw7MjWDAox6CMRe13eYZjBbgxT0RkY7io1/Ckt84r5GR3bDuXljwRef13q+G7bDzY399j3859WCf4p7u2xt3pTaeiIhfkdrk+ncfDcfPh5Pfg3Ffg8J9blIt6QP7X+E873sQHPMsHPtC/DFX/zO5GkRERERERHJRpBa2vATL/ggvHA3b3nFWDN62yAmY9qvXlMzVKCIiIiIiIiIiIhKiyoYtrttP6ntuyJW4KzAFFHmEo0UUjCYS39CT4LSVMCPA+SN7VsHSmPEa98B7P2gNRYP05k0MPgHmPAUnLXJCRE58C456EIqyH9QoIkDvqc7/z3g+/iXUbgynHhHJbVGP8/WCFILRAIp7+++77V1YdVtqx9lXww5Y/BP//addDeO/AYfcAmdXwKA5wdQhIrlr6lVw6lI45FaYeYPzGpDIhz+Huq2Zry2XfHhVaygaABbe+U7bUDQ/hp/p/D3PvAH6HRpoiSK5wHuZiBxjra03xrwIfLZ506+NMY9ba3ckM44x5kjgUpyANYCHAyxTRMT7g6rY1T8kPdE4wWgAzx8BPSc6H/73GBdOTZIfNj+X7Qra8lppyK/dnzrhOdvfc0Jwsq10EAw9uf32Lv3d+ysYTUSkLWth9T/ab9/8rDMptd8sf+O0+UAsgwq6uG/XzVUikmnJBgy36DsDDr3VubFt3X1Q/Y5zDjv2y9BzQtu+g4+DsqFQt8l9rFW3OWOJiIiIiIjkqzX3wIIvBDNW2ZBgxhERERERERERERHJopqm3dREd7u2DSjJnc9Bi0wxkdjQpWYRr6AFEWlVNggm/j/44Kfe4STJ2vR06/Mtz8PeACfzH3QD9Nrfed7v4ODGFZHg9J4av91Gnfls474STj0ikrui7c/hAfAIPk6oIMn9Nj0F+/84tWPF2voyNO3117eoB0z7RfrHFJH802uy8wDY9j6svCV+fxuBLfNgzMWZry0XRBvbvpdMx0E3KMdEOrS8CUZr9mucYDQLDAPmGWM+a62t8LOzMeYY4CGgADBABPhDhmoVkc6q4hX37WVDQy2jQ2tKEIwGsGu5s5L9Ca9nvh7pGGwUTEG4x0w10CHWh1elP0ZQDr0Nirq1317Sz71/fZUTAmRMZusSEckXTXuhtty9bcmv4ehH/Y0TVjBaYYn79qaGcI4vIp1XuufRJb1hwrdgQoJ+vad7B6MB7FzaetOZiIiIiIhIPtm9MrhQNIAeid5giYiIuDPGFAOHAOOAvkAPwFhrf5XVwkRERERERKRTqmzY7Nk2sDi3gtGgrt32iBY1FfGnoBAGHecsXByE2g2w9j7AwLLfBTMmQNeR0GNicOOJSGYUlsKA2VD5mnef9Q/BmC8mH2KUDbXlUP2287zvLOg2Irv1iHQkXufrBcWpjZfsXNidy2Dt/e5tvSZD72lgm2Dbu7Bnrfc4yZxDlfRJqkQR6aB6T4PSQYlDpJdcCz32g74zU39tzFU2CjuXOPOQrIWG6uDG7joyuLFEclAevItqZa19yxhzP3A+TjjawcAnxpjrgQeAdrOvjTGFwFzg68DncALRaN7/T9batZmvXEQ6jfInnDd+bsqGhVtLR9ZjAuzdkrhf5RvOG/DuozNdkXQE9dVQOiDcYwYRjBa0ISc5K5Eka+BcGPZZ97YuHsFo0XrnA3N9SC4i4ojs8W4rf8z/OH6D0frO8j+mmwKPYLSogtFEJMOaQjqPjiYI5X5qCpzf0PEuuIiIiIiISMe34ZHgxiodDIOOCW48ERHpFIwxRwGXAycCXVy6tAtGM8acDJzX/O02a+3lmatQREREREREOqPKRvdgtGJTQs+i3JnQ7wSjtdeoYDQR/6b9AqrehMZd6Y9lI/Dmhantu9934dO/tN9uCuHAa50QNxHJfQf8Cl45FZpq3ds3PwPPHgxzn4auQ8OtzS8bhcVXtg94nHQZzPh98gFMItJeNOBgtGTVV8KbF3i3lw115gP5nZPkx/4/CW4sEclfBUUw/Vp466s4MT8edi2DeYdBz0kw95mOkw/RsANePQsqXgl+7J6TwZjE/UTyWF4FozX7KjARmIHzqtcbuLr50Wb2tTFmGTAGaDkjNM37GOBN4IowChaRTiLaBG99xbs9Vz+0ykf7/xjmx1lFIVb12x3nxFfSU7MufnvdxiwEo8UJwMmGqb9wLvAt/xO89/+S23fYqd5t3cd4t216EiZ8K7ljiYh0VIkCM3evgh7jEo/j9yLExO/56+fFKxhNN1eJSKZFPG4cCVrT3sR9lv0vTNFHjCIiIiIiksPKH4O19wFRGHEu9D0IFv84mLFLB8GxL+THyuYiIpITjDHdgFtwFkaF1kVOY3ndCb0EuBgoaB7rLmvtB4EXKSIiIiIiIp1WZYP74u0DigdTkENhIEXG/TPZiO7dE/Gv/2Fw0tuw9l7YubR9+4aHMl/DxB/AzD/CwKNhy/NQv83Z3m0UjDgHBhye+RpEJBiD5jqvKU9P9e6z4wN49/sw+8HQykrKxqfah6IBfPJHGDAbRpwZfk0iHU3gwWgBB+HUbQp2PIBe+wc/pojkp3Ffhh7jnQU9l18fv++uT2DRN+GYZ8OpLdM++mVmQtEARn0+M+OK5JC8uzvVWltnjDkJuB84ltYboQzO6pEtwWcGJ0Dt/3aNaZsHnGetbQqrbhHpBCpfjx9CUaZgtMAMOhZ6TIDdKxL3fePzMOq8xP2kY6vbDE9Pj9+nthz6HBhOPS0SBeCEab/vwgFXO8/HXAxLroH6an/7lvSFUed7t5cNgd7TYMdH7du2L066VBGRDivR74Xyx2DyZaxdtZsAACAASURBVInHqa9M3KdsGAxP8+Kk18WXpgb37SIiQfFaUS9oQ050VgWN5+NfwegLodvIcGoSERERERFJxoqbnZvEWqwP8Cb74WfC7Ie14qSIiPhmjOkJvAZMpXWB01gt9/a5stZuMMY8DZzW3Pd8QMFoIiIiIiIiEpiKxs2u2weUDAm5kviKjfuipgpGE0lSz4lwwC/d2+4N4fpHt9HOdZaR5zoPEclvvafArL/Bom9599n4ODTVQ2GX8Orya/0D8dsUjCaSPhtx3+4RfNwhdOQ/m4gkb+Bs59F9DLz7vfh9N8+Dhu1Q0iec2jJp/b8zN7ZeZ6UTyMufcmttlTHmBODy5seAlqZ9vrZoCUrbAfwe+J1C0UQkUHVb4MW58ft0hBOvXFHUFY57Bd6/HNbdl7h/3VYoG5TxsiSHrf4nNO6M32f+aTDgKDjoT9B3ZihlEdkTznHi6TkRRl0IU37auq1LPzhhgfN/bOPj8fcf8hmY+QfoOjx+v36HugejNexIvmYRkY4q0e+F8kcTB6NFamHxFd7tZcOcVe5mXg/F3ZOvMVaB+81VRBWMJiIZ1rQ3nOOM/Dx8dHX8Pk11sPzPzjmxiIiIiIj4s/0DePtS2LUcek2G6b+GQcdku6qOx1pY8uvMjD39Wpj8I4WiiYhIsh4CptF6b18D8ADwMhAF/uljjEdwgtEATgCuDLZEERERERER6cwqGzyC0YpzKxityLgvaqpgNJEAjTof1t2f2WP0PzSz44tI+Pol+H8dbYDaDdBjfDj1xNNUD427oLR5ev7uT737bn8/nJpSsbcKoiHdVyySrojH4uAF7uf3HUJH/rOJSOoSnTMBYKFqIfSe1rqpdFBuva407oai7u730DXscOaKRuqgzv3zpkAU5GVklEhS8van3Fprgd8bY/4CXIBzo9NRwFCgIKbrduBN4DngLmttglQUEZEk2Si8dFzifoVdM19LZ9J1KBx5L4y+0Am0imfdvTDxB5qc0ZlVL/LXr/J1ePFYOOUj6DYiszVZ6/1hVhD2vwIOvDb1/XtOgDmPwaOjoHZ9+/ZDb4NxX/U/XnFP9+2Nu1OrT0SkI4rUxG+vfA32VkDpQPf2PavhlVO99x99ERxxd+r17UvBaCKSLU314Ryn1yQYe4kTtBzPhv/AjN/rPaeIiIiIiB+1G2He4U7IMEDVAuc6zykfQ/fRWS2tw9m9wrmpPmgzr4dJPwh+XBER6dCMMecCx9MairYA+Ly1try5fZTPoZ5tGRKYbozpbq3NgRXJREREREREpCOobNziun1giYLRRDqd/b7r3BcWjfl/1WsqTP8NvHamM5csHf2P8BkGICJ5pe8MGHQsbH3Ju8+8w+D0tekvcp6qxj3w1tecRduj9dBtNHQfC9Vve++z6xOYd6QzF6H7mNBKjWvzPFj0bdizKtuViKQv5ZCfOPeuT/4xLPtdiuMGSIE9IuKm3ywYMNuZKxnPK6e0/b6oG4y6AA6+EQq7ZK6+RCpeg7e/7iwM23UEzPgDjDrPadvxESz4UnjBskavs9LxFSTuktustXuttXdYay+01o4EioH+OAFpXay1/ay1p1lrb1QomohkRMV82Lk0cb/C0szX0hkNPh7KhsXv895l8MLRTrqudE7lj/jv27gzuf6paqqj9Z7vfQycA72npz72ft9LLxQt1oiz2m8rKIbhZyY3TlEP9+2RXcnXJCLSUUV8zNt5eJAzgThW01547XPw+DjnoqOXvgenV9++FIwmItkSDSkYDeDQ2+GwO2D0F7z71KyFHR+GVpKIiIiISF5be09rKFqLSA0suSY79XRkfj5rSkW/WZkZV0REOrqfxjz/GDihJRQtGdbaLUBF87cFwOQAahMRERERERGhrqmGPU3u084GFOdaMJr7pNdGBaOJBGfAEXDM8zD0VOg5CcZ9HY6fD8NPg6OfgMEnQulgKB3k/ogVu73nZCd07ZjntBCnSEc15wmY+P+82+urYeEloZXTzsIvw/p/t96LW7M2fpBbi6o34cVjINqU0fJ82bXcWVBeoWjSUXgEH6dl3FfgiPtg4Nw45ys+zkVMoff++57zuO6vwB4RcWEMHPOMMxe+ZxKX/CM1sOo2JzciW2o2wEvHO+cj4Cxc+sbnofJNaNwNzx/tPxStdFD7+Zl+X19b6HVWOoGc/yk3xkwHTgT2xwk8A6gClgHPW2vbvCpYay2wLdQiRSR51kLlG1C3EWrLnXCHuubHQX9x0vHzRfU7/vrpA+vMKCyFQ2+F18+LP8Gj8nVYfAUc8vfEY+5cCpuedSbmDDgKBh6tf798V9wTGpMI4PITdpiuSK1320F/di6e/aev80YtWVOuSL2udmP9zEmv3v6e870phFl/gy79khunuKf79sbd6dUnItKR+H3Nf+e/4OiYEM+P/wc2PJR4v+Gnp1aXF69VaaK6uUpEMqwpxGA0UwBjL3EeB/0JHh4I1uWmjg2PQJ80wo1FRERERDqL7Yvdt6+6HWbdDAWF4dbTkbm9d0lXl/7Q77DgxxURkQ7NGDMEODBm03ettXEumCf0CTCw+fkEYFEaY4mIiIiIiIgAUNm4xbNtQEluBaMVG/dFTSMKRhMJ1qA5zmNfw05xHiIiboq6wkF/hMrXYJvHvNPyR52AtGTnZqWrvhrKH0ncz0vNOtj6Igw5MbiaUrHmLrCR7NYgEqSCDMR9mCIYfb7z8PLkZNj1SfxxBh0Dxz4fv8+9BYD1rkNExE1RNzj4T87zl0+Gzc/533fNXTDzeih0/3wko9beA9GG9ttX3wEDZkPjDn/jdBsDZ6z21/eNi2Ddve5tmfgdIpJjcvan3BgzE7geOCpOt2uNMW8Al1lrfSYTiUjOePnE9ivCg5PUnk/BaIt/nO0KZOhn4LPL4JkDnQ/ovKy9B2bd5Exs97L6X/DWV9t+ODb+G04QVLz9JLeVDUsuGC2VMLJkReOEORR2cd6QDT8b1t6V/Nilg1Ovq91YA+DEN2DrfKgrh4FzoMf45Mcp7uG+XcFoIiKtNj/rr1/5o06wcNdhTjjQ8r/426/bmNRrc7PvigQt3D7cExEJUrxz6Uzq0tc5H3ZbGa/ildDLERERERHJS+vu827bvQJ6TQqvlo4uE9c6Jv1Q4XUiIpKKw5u/WmCDtfbVNMeLXTQ15FljIiIiIiIi0lFVNmx23V5kiuldlFtvP4s8FjVVMJqIiEgO6TXFOxjNNjlhRAOODLemncvSX2Br7b3ZD0bb8WF2jy8StO5jgx/TT1BOrymJg9F6Tcl8HSIivaYmF4wW2e0EtvackLmavCz7nfv2VbdBcS//4/Se6r9vvNdSo3v5pOPLybMJY8wZwL1AKWBimlriYmO3HQW8aoy50Fr7aEgliki6jHGCivasbN9WuzH8elL18a+zXYG06DrcCS97/TzvPpE9ULMeuo92b99bBQu/1H77yltg1IXuK73kOmud5OONj0NxTxhzsZPS3tkkuwpEZE9m6ogVNxit1Pk666/QUA2bnk5ubGMS90lGYSkMPSm9MYo8gtEiCkYTEfk/a/7lv++jw51gsmRCyIL+/aBgNBHJlqYsBaMBDPusezDarmXh1yIiIiIikm9q1sdv37tFwWhBCvpax8C5MOmyYMcUEZHOInZlrw8CGC/2l1z3AMYTERERERERobLRPRitf/EgCnJsgfUi4z4dMBJN8p55ERERyZyxl8CaO73bnz+q7fcTvg0H/I+ziG+Q6rfBh/8NFa/Czo/TH2/Nnc5j1AUw9SrotX/6Y/pV8Tp88kfY+ER4xxTJtNJBMPDo4Mf1eM/Qxtgvw4b/xBsExnzRx8Gsd5OfOkRExnzR+R0f7/VkXy8c7dxv2GL0RTDzeigdkF4tVW/Bst/D9sXugbIN2733Xfl3/8cZ+2X/feO9lup1VjqB3PpkFjDGTALuA8pwAtAsbQPRWmZy25hHKXCvMWZyuNWKSFq6DnPfXpcnwWir74QPr8p2FRJr2OmJ+8RLMH84zsluMknDueSDnzlhbxv+A6vvgJdOgPXxPqzooCI1SfbPcDCatfHDHAq6OF+Le8Dcp+DsCjhzAxz1UOKxR10YTI1BK/YIRmtUMJqICAC1m5LfJ5kAsuFnJj9+IgpGE5FsiRcy3KLHfpk5du8D3LfvrXBuHhEREREREXd1m+H52fH71FeFU0tnkey1kXj6zoLjX4ZCj8+DRERE4otdFnlXAOPFhqHtDWA8ERERERERESobtrhuH1A8JORKEisyxa7bG63u3RMREckZg+bCYXf477/iJicsLcjFg6ONzpgrbgomFC3Wuvtg3pGwe2Ww43qpfANeOg7KHwnneCJh6DMDjnsFCkuDH9sUJu4z7FQ4+K9Q4hLIWDYEjnoQ+s5Mr44CBfaIiA99DoDZDzuvPX7t3edznLX3wLzDIVKXeh3V78CLc51Mhj2roGZt+0c8fu7XK+kDB/0JRpzlv654r6V6nZVOIBd/yv+OE3QWG4bWCLwDbGj+fjhwEFBC23C0m4EMxOKKSEZ0He6+vTYPgtG2vgILL8l2FbKvwi5wxjp4bJR3n51LYOjJ7bdXvR1/7PrK9GrLhoYdzQnJMWwTLLkGRp6TnZqyJVKbXP8tL8CbX4RZN0Jxz+DqWHkrLL/BCb+Jt4JHYZe237ckVHdzX4msjSEnpV5fJnkFo0XroalBk6lERGrXZ3b8kecFP2aB+81VRBuDP5aISCw/N31M/01mjt1zknfbzqUw8CjvdhERERGRzmzVPxJ//rFzCXBuKOV0CkEtAlPSF45/JZixRESks4pdMrmXZy//hsY812oFIiIiIiIiEojKRvf7tAeU5E8wWsTq3j0REZGcMvYSWPcAbH7GX/9dy2DTUzDi7GCOX/6YM2amNO5w5srNuC5zx2jxyQ2JF3A/6iHoMz3ztYgEobg3lPbP3PjGZ4TIft+GCd+EmvVgI862gi7O/H9jwqtDRGTEmTD8DKjbCE0x66O9/nnY/p6/MfasckJUR1+YWg2f/qXtsYMy848w7DQntLLbKDAFye3v8TmQ06bXWen4cuqn3BgzFSfYzOIEoFngf4HfWGu379O3N3AlcHnM5iONMQdYaz8MqWQRSUfZMPftdTkejLZzGbx4TLarEC/dRkKvqd6rGGx5ESb/sP329Q/EH7dhR/q1hW3zPCd0al/bF0Pjbu+gqo6oyUfK8r7W3gU1a+CE14KpYc3d8PY3Wr9vjPMzVdDFfXu8EAaAnpNh1PnJ1xaGeAFzla/B4OPCq0VEJBfVbcrs+EFdHI1V4BFqmeiCo4hIutze58QacCQM/Uxmjl02FIp6QGR3+7bNzykYTURERETEy7Z3E/f56GqY+vNgbqwUaAwoGO2EN6CoazBjiYhIZxW7Et2UdAYyxnQBDozZVJ7OeCIiIiIiIiItKhs8gtGKB4dcSWLFxv3ePQWjiYiI5KAeE/wHowGsvjO4e/8rApoTF8/mZ8IJRqtakLjPwNlQOjDztYjkg4IkIkRMAXQfnZk6FNgjIskwxglmjNVriv9gNIBVt6cejObnfCMV/Y+EHuNT3z/ea7peZ6UTSDJKMOPOaf7aEor2PWvtj/YNRQOw1u6w1v4E+E5Mf4AMzPYWkYzo6hGMVrMu3DqSYaPw1P7ZrkISiffh39aXILJPSJa1UP5o/DHjhVjlKq9wOMh8+EouiTY6j1RUvg4rbg6mjlW3++/rFYyWKMzuM+9BoUdITbYVxal91W3h1SEikqtqMxgOPOx0KPT43ZIOBaOJSLbEC0ab8QeY+0zmJu0bA/0Pd29L9L5SRERERKQzK3/EX7+K+Zmto7OwFt77Qfrj9J4GvRIs2iIiIpJYy13KBhhtjEnnl8s5QMsFigiwMJ3CRERERERERADqo3vZ2dRu6hoAA0qGhFxNYkUek14jNhJyJSIiIpLQyHOT67/xcfj0Jmjclf6x480tDMqOj9pv2/gUvHsZLP091GxIb/ztH8DiK6AuwXyLgXMViiYSK1eCcpIJaBMRcTPyc8n13/oSvPlF5/Ha5+Cx0fDyKc4c/yaXuUjb3oMProI3LoLdKwIpuY1uo6HfwemNEe81Xa+z0gnkWjDarOavFlhorf1roh2stX8H3sC5cQrgkAzVJiJB6zrSfXvNWqjbEmopvr16VrYrED8mft9JKXcTrYctL7TdtnMJ7FkVf8wG9wudOc1a77ZtSaQj57t9g/CSteib0Lg7/ToqXvHXzxRBQaF3+9BT3bcf+FsoLE26rNCUxVktrUr3qouIJLxQl47Bx2VmXK9gtKa6zBxPRKRFk0cA49hLYPIPEwcKp2v4Ge7bd34Mu1dm9tgiIiIiIvnK7w3I5Y9lto7OYv0D6Y9RWAaz/p7+OCIi0ulZa9cAsR+cXZnKOMaYLsDPWoYFFllr07whQERERERERAQqG7znrwwszsVgtGLX7RGb4mLiIiIikjkDjoKpv0hun3e+A8/Phvrq9I4dRjAawJ7Vrc8XXwHzPwvLr4fFP4bnZsGOJamNu/FJeO5QWHpd/H7dxsAhurYtnZAx3m25EpRT4P7eRUTEt2GnwsQkFwhde5fz2PAQ1KyDzc/AW1+Dl0+Cpr2t/dY/6JxrLPk1rLs32LoBuvSDI+7xzrzwK95req4EYYpkUK4Fo02OeX5nEvv9K+a5lisWyRf9Znm3Vb4WXh1+LfqOk7gvua9LX/hcnCCrqgVtv694NfGY296FaFN6dYWtYZt325sXwqbnwqslmyK16Y/xZJqnF/FC6vZV2CV++9gvtd9mCmHUhcnVFLaibt5tNWth1R2hlSIikpNqN7lvT3fVIlMII89LbwwvXhco6jZBVCtPikgGRV1WaQEoSHAuHZThp3u3KcRBRERERMRd7wP89Vt3f3KfqYu7DY8k7jP2EmexIS+nr4YBRwRWkoiIdHotF4QN8AVjjMuFb2/GmALgVtreX5hw0VURERERERERPyob3e/fK6CQPsUDQq4mMa9gtEbrsdigiIiIZI8xcMDVcMqHye2340NY9Y/Uj7u3EvZWpL7/8fPhxLdg5g2J+77/E+drzQZY+rt96tgKS69N/vjWwuKfeN8z3GLuM3DqEug5MfljiHRkuRKUkyt1iEj+MgVw0PVw2gonZOzQf0Dv6amNVTG/9b46G4X3fwTWxxzIWX93jtvyiKelz9xngrv/Lt5raa4EYYpkUK4Fo/WOef5eEvu19DX7jCEiuazrMOg+zr1t09Ph1pLI8hthxU2J++33Xfftfj4AkmAVdYUR57q37btaQs06f2NuzLMJ7pufjd/+9jfaJht3VJEAFoiu2wTbP0h9/2T+nhOFOYw4F6Zd3fpGprgXzP4PdBuRcnmhmfrf3m2LvgWNcQINRUQ6uvpK9+29pqU+ZkkfmPMklA1OfYx4Ckq828ofzcwxRaRzqlkH7/0Q5p/h3DDRuNO9X1jBaF2HQ1+PsPf3Lw+nBhERERGRfGN9Lj6zdwvsTHG1aGlV8XLiPlN/ARO+7d7We3rmPlMSEZHO6k9ABWBx7vG73RjzG2NM10Q7GmP2B+YBFzXvb4GVwP2ZK1dEREREREQ6k8qGLa7b+xcPotAUhlxNYsXG/d69iJ/JvCIiIpIdvac59/cnI9HcwHjSve5e2BX6HwKT4iy21WL3p87X8sdwPsLfx9p7kj9+bTnsXBq/T+lgGHoyFJUlP75Ih2DiNOXI+xgFo4lIUHqMh9EXwrgvw9SrUh9nXfNtBrs+9ZcvUdwLJlzqHLfl4TVXvmxIa5+hJ0Nxz9TrjBXvtVSvs9IJ5NpPea+Y59WevdrbHvO8R0C1iEgYBs6BPavab19zF0z+MfSa3L4tbOsfhHc9As9iTfi281j9j7ZBTCV9YcTZmatPvJX0ct++b1BWnfsKT+2suz9//i2rFsKe1fH71K6HLS/CsFPDqSlbmmqDGWft3dAnxRRpr+AGN4UJwhyMgWm/gMmXw5410HNS/iQ6dx3p3Rath/LHYcxF4dUjIpJL6qvct/faH7a+mNxY034JYy9xPkwrcF8ZMhBxg9Eeh5EeIbUiIsnYvQrmHd4aILnxce++ic6lgzTiTNi2yL1t+Z9h4vfCq0VEREREJB/4DUYD57y/99TM1dIZJFr5e+ip0H2083zQsbD1pbbtEy7NSFkiItJ5WWtrjTFfAp7EWcy1APgJ8B1jzNPA+tj+xpjPA/sBJwKH48zsaJndsRe4wFrrMrtKREREREREJHmVjZtdtw8oGRJyJf4UeUx6jdjGkCsRERGRpAz5DKy713//rS/Bir85c8f6HZZcANiOj5OvL1Yy9+TuWQ0rb4EPf+bdZ9F/QY8JUNwD+s50FpDf+TFsexdsBGo3OfcVdB8NZcNg01OJjzv0FP81inQ2Jk5oWpjyZd6riOSXwcc7gWCpBMRvfBx2/n/27js8jure//h7dleSVVzl3ns3pts0B2x6MaYGCEloCSUhjSTkF3IhnRsCCUlubgoJkBB6B5tmbAOmmG7ce+/dkiVb0u7O749BV21mdnZ3Zov0eT2PHmvnnDnnK1lazc7O+cxSqFrnrX9hp5bb+l0Mi37RcvuAK5Kvxwu351I9z0obkGs/5aFGnydxZXSTviHHXiKSe3qdbgWJNWfGYN0jMN7moCCTYjXw9qXe+h75O+uEz+TX4bOfwL750OVoOPwuKO0XbJ1iL1xqv339ozDxfgi3sx57vXvChif9qSsTFtzhrd/m6W0gGO2gP+MsvRt2f2D9rnc5Krl9kwlGC7Xz1i9Smn8LwxKlW2+ZoWA0EWm7nILROo2FsqFwYJX3sUr6QqlLGKVf3ILR1j0Ex/87+BpEpPVb/oeGULREQhkMRus7DT5zuIBjwR0w/ObceUNZRERERCQXJBWMNh3G/Di4WtqCSHuIVtq3FXSEExu95zXpefjkO7DlZSgqh6E3wLAbM1OniIi0KaZpvmoYxk3A/9JwjV97oPmFOQbwSLPH9SFoUeBa0zQ/CbJWERERERERaVt21DoEoxXkajCa/Q1TFYwmIiKS48beZoWdHdrmfZ8Pb7L+7TASTn654QZYiexfnHR5TbitFWguegA+SHDzrZV/Tq+e5or7wOhb/R1TRPxnKPZDRAJQ2AmOuAs++V5q+88Y7b1v2GbNf+fDYOjXrWDYemVDYcS3U6snEYeA/IRtIq2EfspFJLv6ToOibvaLnHd/kPl6mvvo5sR9jAhMeq4hBb/rRJjyerB1iTcRh2A0gPe+Cic+Dod2OQeR2IlHcz891zRh9/ve+lauCLaWXBA75Nw2bSM8l0Rw4Y634JWjrQVD7YdDxzEQCife75DHIAdI7o4a+aagfbYrEBHJXU7HI0Xd4LCfwbtX0rDmJwG3YyA/JfNmp4hIqlb8yXvfTB5LdxgFpQPt7xJTtw8OboGSPpmrR0REREQk18WTuDvj7g/AjOviyHSE7BfFAdZ7I43vJF5QBhP+EXxNIiIigGma9xmGsRp4GOhB0zc/Gn/eOAzN/PzxLuCLpmnOyUStIiIiIiIi0nbsrHMIRivsmeFKvIk4nANWMJqIiEiO6zgazvwINjwJ22bBttcgXutt34pl8OktcNLT3vrvX+TcNvhqa13cop9D7KB9n0zerDhZR94LAy6F4twMsRUREZEMGPld6HIULPoF7HwbyidC2SCrbc0D/s0TsglGAzjmr9D7bNgxF8oGQ/9LoV1X/+ZtzO06SgWjSRugn3IRya5wEfQ5B9Y82LLN60mdoNTuhdX3uffpdxGM/Ql0PjwzNUly3EJBNj4FB7c2TeP14sAa6DA8vbqCdmg71O331nf7bIjHvIV75Su3E7QlfaHDCKhYntyYb19i/duuJ5z0DHQ7zrnv2ofgva94HzuXTxynK6JgNBERW7FD1l2S7BSVQ/dJ0K4HrP239WGErMXBTjIWjOaywFZExA/JBCdAZo+lDcM6J7DsHvv2yhUKRhMRERERacyMJdd36d0w+ofB1dOamSbUVdi3Hf+obmIiIiJZZ5rmbMMwhgI3At8E+jt0NT7/dxfwv8A9pmlWZqBEERERERERaUNq4zXsi+62betekJthGxHD/tq9uriC0URERHJeSR8Y+R3ro15dBTzZMfG+m16w1h6EHQI66pkm7HMIRjvmLzDsBuvz9Y/Bvs/s+zW+WbERATPJa3qD0u9CGPntbFchIiIiuaD7JJg8s+X23e/D/iX+zBEutt9uGND3fOsjm0KKjJLWTz/lIpJ9pQMdGlzCHjJh8wz39on/gsFJhB1J5rmFgphx2PMpLP9DcmMe2pH7wWgVS5Prv/IvMOKbwdSSC2KH7LfXnwSe8ADMPhVi1dbjSHuIeryW+tA2ePNcmLYJIjYvbvYtTC4UDZqeOG5tEi62MhK0i4i0UjX2F1UBUPT5nQJ6TrE+jvuX9XjzdHjzPPt9ImX+1ufEKXxURMQv+xYk1z/Tx9KH/dw5GG3WZCtEufc5EC7MbF357uB22DIdMKzQ76Lu0HUCtB+a7cpEREREJB3JBKMBzL/VuqC5rR8H1lXA1ldh32Lr8+4nQc9T3c+3x2ucL0ov7RdMnSIiIkkyTbMKuBu42zCM4cCJQD+gHCjECkPbDrwLfGKappmtWkVERERERKR121W33bGtW2FuBqMVOASjRU0Fo4mIiOSlgg7QcSzsdwgzq2dGYdd70GEk1FVa7xsXdIRISdN+B7dC3T77MTqOafjcCDnPFWp07evhv4FPb3GvLVO6HpftCkRERCTX9TjVx2C0HF/zb4SzXYFI4HIxGK3+IqaJhmEM9LhPz8YPDMM4iSSSNUzTfMtrXxEJgsMJlB1Z/tXc8YZzW6S9QtHygVswGsAn34HavcmNGT2Qej2ZUrkquf4bn2zlwWgOoS31wWjdjoPz18Gm56yTtr3OgFcnQPUGb+PX7oGtL1sLtJrb8GTy9YZy/EVSOhIFo61/BE54ODO1iIjkkppdzm31wWgtuL0Jmam/JS4vu93er5MFkAAAIABJREFUJBUR8WL/MnjlqOT2yfSxdKQEyo+F3R/Yt8+9ELocbd2BprBTZmvLVzvfhTlntHztHS62wkH7X5KdukREREQkfckGowGsexjG3eF/Lfmiaj3MmgIHVjdsW/576DgavjAdygY57Ofy/kZBB39rFBER8YFpmiuAFdmuQ0RERERERNqmnbVbbbeHCNGloFuGq/EmomA0ERGR1mf0rfDelxP3mzW55baBV8KEfzQEd2yf47y/52C0RtfkDrwclv0ODm5OXF+QinvDIK3pFRERkQSG3Qhr/wV1+9Mfy8jFSKZGcr0+ER/k6k+5ATyaxr5vJNHfJHe/DyJtQ8gliXTvZ9B5fOZqqWeasPqfzu2DPJxkkuxLFIxWuTL5MaOVqdWSSXUVyfXPdghh0GKH7LeHixs+b9cNhn6t4XH3SbDuP97nmHsRdD4c9s5PrcYmdbVLf4xcFUkQjAZQtRFK+wVfi4hILolWObelsljV8JwTnp6uE53bzDhUrIAOwzNTi7RuB9ZYr892f2gtpC8dCAMug16nZbsyCdKC/0p+n8YXa2RKl6Ocg9EA9nwET3WG4TfDqO9Daf/M1ZaP3r/WPpA8dhA+vBH6nA/hRnchPLAWlt5j3dmwxykw6Cr380x+MuOw6j7YPhuKe8GQa6HTuMzMLSIiIpKPUglG2zHX/zryyfwfNw1Fq7d/CSz6JUx0eC9zyW+cx/Rynl5ERERERERERESkDdlZZx+M1qWgm2MAWbYpGE1ERKQVGnQlxOvg/WuS33fdf6CoHI6613r83pX2/Yp7Q1GXRhvcgtEaXatZ3AtOexuW3Al7PoXaPVDY+fM1jGbLfVNZs5nIkOtg7O3Qrrv/Y4uIiEjr0nHk58cud8G6h9IbK1PrNFMVUlSStH65+lNuYgWcJbtPvRx/dhGRJuJR57aNz2QnGG3+re7tw7+RmTokPYmC0Zx0PgJqdkP1hpZtdXkQjBavyXYFucUxGM0lgGzEt5ILRgN/QtEA2xPCrYWXcJ/n+8NldXoxJiJti9PfKmh6p6XG2rncibKgU3r1eFWQYCHtzONhyhvQaWxGypFWqmIlvD4JDm1run3NAzDxfhh8VVbKkoDFDsGmZ5Pbp+No98DGoAy5Dlb9PXHIw4o/WQF/Z38G7YdmprZ8U70ZKpY5t9fshp1vQ8/P73a4fym8fETDa+B1D8P2N+D4NN+48mre1bD23w2PV98Pk1+HrsdmZn4RERGRfON0zNx3Gmx6zr5t+yyoOwAFZcHVlcu2vuzctvkF57Y19zu3pRLCLyIiIiIiIiIiItKK7azdZru9W0GvDFfinVMwWpw4MTNG2MjQTeVERETEX4OvSi0YDazrGY/8HVRvdO7T/AbEbkEfoWbHG2UD4di/JVfTIz4t9T/8NzD6h/6MJdKqKE5DRMRRp7Fw/L+tD4BoFTw/EGp2ZbUs3xlaiy+tn0ucc9aZSX6ksq+I5AIz7ty2f3Hm6qi3byEs/a1z+/g7rQXXkvtSDUbrf6lz0Ec+BKO5has4iVb7X0euiB203x4udt6n/BiYPCuYehIp6JideTMh7BDu09zOd4KtQ0Qk17iFeDq92dj5SPu7HZX0hw4j/KstkeMfcW6r2Q3L/5i5WqR1Wvm/LUPRADBhwe0QTxBGJcnZ+S7MOhWe6w+zT4OKFdmpo2J54qCxekYE+l8CU+ZkJ1y3y5FwzF+99Y1Vw4vD4NGI9YbKpz+07u4nlupNifscWAWf/cS6WGbG6JbB4Ov+Y7XNmuxjeLWN/UubhqIBRCvdzyeJiIiItHVOx/i9zoR+FzvvN/fCYOrJdbFDULvXub1ml/1r4kSvkxMF3YuIiIiIiIiIiIi0MTvrttpu71aYu8FoBQ7BaABRU9eiiIiI5C3DgG4npbZv7V44uA32L3Hu0+WoZhtcIgbcQtO8Gv7N9McA6HSYP+OIiIhI2xUphVGpBK3meAilgtGkDci1n/INKLBMpO0p6e3cdtD+TabAmCa8lOBEyeCrM1OL+CDF/M/h34RNz9m3RQ+kXk6mxGoS92muZhdE+vtfSy5wC5tx03MyXGHCoV3wTDf/63JS2Clzc2VD/0thwxPufdY9BD2+kJl6RERyQdzhb1XI5W9VKAxjb4ePmr1ZOO52f96E9Kqws3v76vtgwt8zU4u0Tm6BqdUb4cBq6DA8c/W0ZlUbYM4ZDa95qjfCK0fD1NXQLoPHwwC75iXuc+JT0P8i63V8Jp/37Ay9Dur2wac/8NbfjEHVeitEq3ojnPBosPXlC7fg/HofXO9trO1zYOaJcM5SKO2XXl121j1sv33jUxCrhXCh/3OKiGTagTVwcDsU94TSgdn/eysi+S8etd9uhGHMj61jKTvbZlqht50PD662XFSzO3GfaEXLczNV69z3aX5XbxERkQwyDCMEjAXGA/2BbkAx1vWCB4EdWNcPfgYsNk1T1xGKiIiIiIhI4ByD0QpyNxgtkiAYrYgE18mLiIhI7hpyHeycm9q+VeuhYpn72I0ZKa699GrwVdZNsr1cH+qkdAD0PNW3kkRERKQNG34TrH3QPUi2hVy4ftqlhlCuRUaJ+C+nfspN0xyY7RpEJAvcTkxkOoRq20z39q7HQXGPzNQi6YuncLejHlOgoAwK2tu3RyvTqykT4ikGo5W21mC0g/bbw8Xe9m/XFbqd4B7K4aceUzIzT7aM+kHiYLTV/4Txd2Y+gENEJFtSDfEc/g0o6QcbnrKC0vpdAn3O9r8+N5GSzM4nbY/TsVy9imUKRvPLol+2fA0erYR1/4GR381MDWbcChdb9jv3fic9C/2mWZ/nSkjLqO9Dp/Ew5/Tk9lv/GETaw7F/Df4Ck1zn9zmgaBWsuR/G3eHvuAAbn3Zue6IEjr0PhihYX0Ty1MFtMPMkOLCqYVvpQJg8E9oPzVpZItIKmDH77aEIdB7vvu/Kv1rHzG2Jl2C02v0tg9HcLnLveVp6NYmIiKTIMIxJwPXAWUBHj7vtNQxjBnCfaZpvB1aciIiIiIiItGl18Tr21O2ybetW2DPD1XiXKBhNRERE8tigL0PtblhyFxzalty+H98Mez52bm8/pOnjoK9b7XKUdc3vJ7c0vRapsUiZdf1ouARi1Y1qC1vr+Sb+S4EfIiIi4o9IKZzyKsy7Fna8AfHabFeUPkPHSdL66adcRLKvbDB0GAUVS1u2HdyS2VrW/se9/ch7M1OH+KPLUVgpuEncRLjbCda/EYdgtLo8CEaLpRCMtnkGdD4id0IF/JRq2ExjR/4e3jjbCpDzQ1E5nLcSPvo2rHuoYXv/S6D/xf7MkavKj4YxP4bFv3bv9/F34ISHM1OTiEi2pfO3qu9U6yNbwh6C0eJRvRkpqUt0krliGZDF34HWIh6D1ffZt7ldIOG3VfclDkU76o8NoWi5ptdpcN4qeDHJ0JjV90FhRzjit8HUlS+iVf6PufHpYILR3M4NmDF4/xrY+goM/BL0OgPCRf7XICISlHcua3khYtU6eHEY9DoTCrtApzFQ3Nt6jivulZUyRSQPOQWjGWHrYutj/wYfXG/fZ/eHwdWVq7y8H1G3v+W2qvXO/dtauJyIiGSdYRijgT8Dk+o3JbF7F+BK4ErDMOYAN5mmucLnEkVERERERKSN2xPdgUnctq17Qe8MV+OdgtFERERaMcOwbmg84jvWOoNIMTzi8fS62zW/A6+0myylEpNSv94hetD6Wsw4HNrZ0N6um3XNQDxqtYUKoGanFZimm7iLiIiI30r6wuRXrWOTugprW7gdPNUpu3WlSms2pQ0IOM5ZRMSjo/9ov71mV2ohT6mo3tQ0oKi5gVdC12MzU4v4o11X6HZicvsM/JL1b0EeB6PFHcJV3Cy8HT76hnUCsbVxDJsp9j5G+TFw9kKY+AAc85f0a5q2GQo7w3EPwpQ34Ih7YMpsOP4R6wRuazf+V1A+0b3PhseanugWEWnN/PhblS1e3mys3Rt8HdJ6xRO8HqxYlpk6WrtKl/WE6zIYVrv+Eff2/pfAiJszU0uq2g+BC1M4jl16t/XRlgURjLZvIWye7v+4Xmrd8AS8dT7MPAFq9vhfg4hIEGr2wI43ndu3vmL9vf7sNph3NUwfDdtd+ouINOYWjAYw9OvO+1YuBzOJm+C0Bl6C0Wr3tdx2cLN9307jrJtViYiIZIhhGJcCH2CFohk03NWu+Uc9u7b6/SYDHxuGcVGm6hcREREREZG2YUftVtvtBgblBT0yXI13EZfrzeviCkYTERFpFQzDChIDOPy/0x+v/fCW24bdaN+3uE/68zVX/7UYISju0fBhfB5zEIpAuND6utt1VyiaiBejfmC/vf2wzNYhIpKPIsUNxyORUud+RgaCZBNxq8FQMJq0fgpGE5HcUOxyN51D2zJTw4c3ubf3nZaZOsRfJzwGpQO89T3uIejw+Um+SJl9n3UPwRvnwvvXwTtXwCvHWHddeP0UWPFn6+4E2ZZqmODKv8D2N3wtJSfEDtpvD7dLbpzinjD4Khh2A/S7OPV6hnwNwkXW50YIenwBRn0PepzStpKZO9icUG/MjAcTYCAikoscg9GS/FuVDWEPbzh6Wcgr4iRe696+5gE4mKHXjK3ZwS3ObSX9MlfHjrfc2wdcnpk60tWuK1y8D/qen9x+n/4AZoyFJXdZd59pa6IHghl33lX+fz+TCSTf8zEs/rW/84uIBOWg/cIPR3X74IOvQdwh7EhEpLFEwWgAJz5l3ydaZd3gqC3xcj6l8XuoG5+Dedc4H3t2GO1PXSIiIh4YhnEJ8AhQQtNAtPqgM4CdwApgHlaA2kpgV6M+jfcDKAUeNQzjgsx8FSIiIiIiItIW7Ky1v2amc6QrBTl8s+sCw7m2qKlgNBERkVan/yXpjzHg0pbb+pxnfzP3IdekP5+IBG/AF+0DcZxCD0VExF4+r+3P59pFPFIwmojkBrdgtIPbM1PDno+c2wo7J7+gWXJDSW+YujZxv3OXwaArGx4XtHfuu2UGrP4nrH+04edmxxvw0Tdh7oVgms77ZkI8xWA0gM0v+ldHrggibGbYjTRcr50EIwKjvp/6vK1Jl6MS99n1bvB1iIjkAqdwlXwIRvNyJ6YtLwdfh7ReiYLRAF4aCxUrg6+lNavd49xWtz8zNWx9LXGfjmOCr8MvhR3hpGdh2iY45VU45TUo6Zt4v/2LYf6tMOsUiHn4+W9NolXBjFuzG7bP8m+8aLXz60wn6x6ywp9FRHJdKoskKlfC7vf9r0VEWh8vwWg9pzjvv3Ouv/Xkuv2LEvd55zLrZjmL74S5F1jh4U5KArijt4iIiA3DMEYAD2Bdl9g4EK0CuBc4B+hqmmZP0zRHmaZ5vGmaE03THGmaZg+gG3Ae8EegkqYBaRHgX4Zh6Db3IiIiIiIi4ouddfY3ZOxW2CvDlSQnomA0ERGRtqVsMEx0eT/Yiw4jWm4rKIMvvACRsoZtfc+HMbelN5eIZEZxTzjxSQgVNWwb+GUYfnP2ahIRkcyyC8gUaWUUjCYiuaGgg3NbLKCFsY3FY3DIJYDt7AVKTM1nhgHdv+DcXj6h5cm9ou6pzbX5Rdg2M7V9/eK0QHvk9xLvu/xef2vJBRuesN9ud0cLr3pOhpOehrKh9u2DvgonPQOdDwcjZC3s6nwkTH4dOgxPfd7WpN+FiftULA++DhGRXBBEiGemFJYn7rPgJ8HXIa2Xl2Comt2w7HfB19Ka1ex2bqurgLoDwdcwN8HxYXEvKBsSfB1+MgwrfKDX6dDrNDj8N9733f0+LLy94XE8CsvuhRdHwAtDYMHtwQWJZUuQX4+fIZ01u5Lf59AO2DvfvxpERIIST3GRxMwT4PFiePkIWPeYvzWJtEa1+2DetfBsX3h1Aqx9OLn9Nzxt7fd4CTzWDp7sBLNPg30egrSyyUswWmEnKB1k3+/dL8Ghnf7Xlau2vOKt3wfXw2c/TtyvWMFoIiKSMf8DlNAQiGYCPwP6mab5PdM0XzZNc6/TzqZp7jZNc4Zpmt8B+gG/+HyMemXAnwKrXkRERERERNqUnbVbbbd3K1AwmoiIiOSYwVfBxftg0nMw8V/J7TvsJue2nqfCRTvh1Ddh6hpr/HCRc38RyS39psHFu2HKbDh/Axz/b62FFxHxlZHtAtwZioyS1k9HNiKSG4yQFVIUO9iyLVod/Px1+8CM27dN+AeU9A2+BgnW6B/BrndbLu4zQnC0zTWzJWksEPnku3DO4tT3T1esxn57qAj6TIXNL7jvX7ka2vscOBCtgopl1gKnjmMg5Pxm7P8xTahaD6FCqNlhfV1GGDqMtO5I4cX2OWBG7dsiHsdw0u8C68P8/Brs+ucQI2QFINT3iUcBA0Jh22HaLC/PqxXLgq9DRCQXOAWjhfIgGM3L37eC9sHNH4/BgVVQOlBvwDZWtcH6vhd2znYl6Ys7HNs2t9XjgnGx5xaMBlYQlNdj8FRUrEgcijX85vw/pu5/CSy+E/Z7DKxY8hsY8W2ItId5V8HGpxvaFv3CCts69q+BlJoV0QAD+PwMJUslGA1g/1LocqR/dYiIBCHuIZTWSeyQ9Xz77uVWyHO/af7VJdKamCa8cTbses96fHAzvHelde574GWJ99/0Arx9cdNt8RrY9roVUnjeSmiX4o1fguZ0rt5odpzf5xxY8T/2fWedDGctyP/XBonEo1C11lvftR4veNd7nSIikgGGYZwATKEhFK0SuNA0zVmpjGeaZiVwh2EYc4FngNLPxz3NMIzjTdN815/KRUREREREpK3aWecQjFaY28FoYSOMQQiTlmtg6hSMJiIi0noVdoS+51ufb3oONj3rbb+ywe7t4XbQfVJ6tYlI9kRKoccp2Zt/wGWwXjdUFZFWquep2a4AOo5zbnMJzxdpLRT/JyK5I1Jivz3R4mg/uC1q7Xl68PNL8HqfCVPmwJBrG7YN+iqcNR/Kj2nZvziNYLT9S2D1A6nvny6n8IhwO2/BJOse8a8W04SFP4cnO8IrR8PLR8BTnWFNgoU6lavhpcPghUHwXB9rv9cmwqvHwFMd4bPbnMMM68UOwazJzu2dDkv+67FjGNZHKGx9GM3Sn0OR1r9IK1VH3uveXrMTavZkphYRkWxyCkYL50EwGlgBx26CCjrePB2e6QbTR8JTXWDpPcHMk0+q1sNLh8PzA+Cpcph7MURtwqfzhWl6D+eoWpffX2u2JQpGiwUcWL71Nff2DqNg5C3B1pAJoQI4430Y+1/e93m2NzzZvmkoWr1Vf4MDa/yrL9uCPP9Tudy/sRL9vjh570qIpRE4JCKSCc1vKpGquRdAXYCBlyL5bP+ihlC0xlb+b+J9Nz0Pb53v3F5XActtbgSTK8yY/Xaj2b3c+roEK+5fAltm+FdTrnIKkUtH+dH+jykiItLSTZ//a2CFo12faihaY6Zpvg5c32hcgBvTHVdERERERETatpgZZXfdDtu2bgU9M1xN8gocFr5GFYwmIiLSNvQ513vf3ucEV4eIyIjv2m8ff2dm6xARSUfj/In/Y8Cgr2S8lBZ6ToHCzi2395gC4cLM1yOSYQpGE5HcEXYIRgt6ATa4B6MVlQc/v2RGtxNgwj/gCtP6OO5B6OSQklvSN7253r8G3rkcFtwO866Gj26G3R9a4Q5BizkFoxVBxEMw2rYEoQRe1FXAhqfgteNg4R1NFzxFq2DeVdYiLjumCW9NsxaI2bbHYfGv4a0LIO6wkKp2L8wY41yfEYHeZ3n6UiRAzUPk7FT4GGAgIpKr8j0YbfSt7u3RKv+PgQ6stY4Xavdaj2PV8On3YdOL/s6TT0wT3jgX9n1Wv8EKUvo0j8Okkl0Ivnd+MHW0BbUJgp6CCqwyTdg2C+b/0L3fSc+0npP1kRI47OdwqU/f0zlnwr6F/oyVbTGH78nAK6HvBfZtw78Fx/2nZZhGczW7YadNAEkq3M4hJbLkN/7UICISFLdQ2lCSdxR7sj2seRCqN6VVkkirs/Yh++0751r/Rqth8wxY+TdYdZ8VAr7kLvjwm9br4EQW/9K6McmmF5zPN2SLYzBasxuLdJ8EBZ2cx/noZuv7s+uDxDdQyVdxn4PROo5NfAdwERGRNBmGUQSchxVcZgJPm6bp263hTdN8FHgaKxzNAKYahtFKThqKiIiIiIhINuyu20kc+/PM3Qt7Zbia5EUUjCYiItK2DbjMCsNIZNT3oePI4OsRkbar/BgY9o1m2ybAsBuyU4+ISCrG/heUDmq67YjfQrtu2amnsVAEjv1b02sti8rhyLuzV5NIBiVYMSYikkERh2C0aAaC0Xa+Y789XOxcl7Ruxb3TH2N9s2t8V/wPDPkaHPMXCIXt9/FD3GGxU6gICjok3n/n29bCqz4p3g2ichXMPh2q1rr3e2sanPQ09Luw6fa9nziHojW2+QV4ri+cs6hpgOG+hTBrCtTsdN63+0lQ6LKwSjLDaSFcY5XLodtxwdciIpJN+R6MNvBLsPCnLh1M62uMFPs358an7f+ObHoG+p7n3zz5pHKl/THUhqfg6D97CyTNNU6Bv05mHg/nr4PSAYGU06olCnoK4nV5tBrevhS2zHDvN/7XrfOCjEiJ9TqmJkEoXSKVK+Gl8TD+VzDm//lTW7Y4BfBFSmHAF2HTs023h4pg+Degw3DociRsfc16PTz/R/bjzDwejvkrDLs+vTrTCUZb+y8Y91/pzS8iEqS4wyKJcDGcvQC2vAwff8v7ePOuhkgZnPA49DnbnxpF8p3bscSBdfDW1PSDb+ddZf3baRxMegHKBqY3nl+czgc3f78kVABDvw5L77LvX70BPvz8wslBX4EJ/7Qu/GlNkg0KT2Skw515RURE/DURKPv8cxP4XQBz3ANc9PnnZcBxwJsBzCMiIiIiIiJtwM66rY5tXQt6ZrCS1CgYTUREpI2LlMDJL8HmF2H3+y1viFjQEXqcDD1OyUp5ItKGGAYc/Sfod4G1Vr/jKOh1FhSUJd5XRCRXlA6AMz+EzdOtm0L3PBW6Tsh2VQ36XwIdRsPWlyHS3sqAKOmb7apEMiKU7QJERP5P2CGALJaBYLT5t9pvL+oa/NySm8KFTcO2/LL6PuugM0hOARLhIjA8/ul/+1Ko2pjcvBufg3nXwovDEoei1Zt7EdRVNN225RXvcx7aBm+c23TbBze4h6KBtRhTsi/uYXFXxbLg6xARyTanUNN8CUZrPxSOe8i9j1PYTao+/YH99jUP+jtPPtnwpP32mp3O4Xu5rvkb9F7MOcv/OtqCA6vd22edDHPOhP1L0psnWg1LfguPGPBEaeJQNICRt6Q3Zy7rNsmngUxY8BPY5yFgOpc5BoUWQ++zYdxPG+5wU9gFjv2rFYoG1hvoI78No35oBfA4+fAGWPDT5J8XqzbCwp/Bu1fCsnuS27exA6v9/5soIuInp2C0UIF13D/iZjh/A3Q5xvuY0QPw5jkQPehPjSL5zu3mJR9/O/1QtMb2LYTFv/RvvHSYJphx+zbD5kYyY3/ibdy1/4ZNz6deV65yej5O1eCr/B1PRETEXv3drkxgqWma8/ye4PMxG5+k1B22REREREREJGW763bYbu8UKacwVJThapIXMexvGhL1++YbIiIikrvChdD/IjjiLjjq3qYfh/1MoWgikjmGAT2nwLjbrfAehaKJSD4qKofBX4Wxt+VWKFq9TmNg1Pdh2PUKRZM2RcFoIpI7IqX226MBB6O5ja9gtLatMIBgNIBVfw9m3Hpxh2C0UDuoq/Q2RqzaOXDEzsJfwNwLYM393vep92yfpo8XeFzwVG/3vIYwtdp9sOs99/5H/h7adUtuDglGaf/EfQ6sCb4OEZFscwpnCeVJMBrAoCvh7AXO7TGFwGRVvobwpBKMVrG0dS6KD1I8CpUJgtEAtr4KM8bA9jdTmyd2CGafBvN/6H2fk1+2LtporUbc7N9YZhzWJgipzHWJQr7H3QEXbIGzPoPz19qHOxgGdBjhPs+in8Gb53kPmziwFmYeDwt/Cusehqr13vZzUrEivf1FRILkdPwVanS3+dJ+cMY8OGeJ9bd60Fe9jf1aDl4gIJINBR2d2za/4P986x51DiTLJLca7ILRCtrDJR7fz9jyUmo15TI/F62dNd/7TXNERETSM6bR5+8EOM/bDnOKiIiIiIiIJKUqVmG7vVOkS4YrSU3EKLDdXpfKNVciIiIiIiIiIiIiOUhXwIpI7giX2G+PBRyMVrHcua1sSLBzS24L2d9FKW2bX4QPrvceUlYvdgg+/SE8XgyPGNbHm1Nhzyct+9kJF0E0iTk3PA4HtyfuV1cBi3/lfdzmogfg6e5QsdLbfHbeOMtaWFWzG+sG1C5GfDu1OcR/vc+BUIKgi9q9malFRCQTNj4Dr50Azw2A974KNXus7bGD9v3DeRSMBlDkEjy6b3Hm6mir7BaS1/vom94DgHJJqhfpfXCDv3W0dlXrklt0/8l3U5tn83TY9a73/qECKD8mtbnyRY9TYNLzVpBXouNiL5belRuhF6lyDPludBfmdt2h82FQ0MF5nPbDE8+17XV4rBBePwXm/whmngjTR8E7X4JDO5v2XfFnqN6UeEyvKpb5N5aIiN+cjhmb/50yQtBxFPQ+EyY+4G3sfQvTD5cUaQ3cjmOCEKuGR8PW+wkvjoDZp8Ou9zNbA4AZc25zej1bUAadDks89pr7oe5AanXlqriPwWidx/s3loiIiLvGF9gEecDReGxd1CMiIiIiIiIpq4rZn1suDbfPcCWpKXC41iRq5uF1YiIiIiIiIiIiIiI2FIwmIrkj4hCMFg04GO2tac5t424Pdm5pu1b9Hd48F0yXEK9oFRzcBrEaK0xkxhhY+tumwWebX4TZpzYNFIu5LCbvfU5ydXoJLtg1z3kBu1c1O2H6cNj8QupjfPztxMFvZy8Cw0h9DvFXQRmMTBCsUbsvM7WIiARt04sw92Lrb2v1Blj7b5h1ihVg0zyApV64OLM1pitS6tz25jnJh8JKctzuag3sAAAgAElEQVSC0TY8DvOuzVwtfnE6rgUoP9a57dA2qFjhfz2t1cEtyfXf+2ny31/ThJV/TW6fgV+CovLk9slHfafCucvgshr44qH0A9Le/ZI/dWWDUxhist+TDiO8993xBiz5Dex8xwosW/8IzDwB4o2CO5bdk9z8iRzc7O94IiJ+cnoudrjbvNVmwNTVEPGwQOSz26zznH4G/oiId5UrYNtMmD0l80GFbmHMhstNao7x+DrincuSqyfXJRNe7ab3uf6MIyIi4k2PRp8HebDReOyeAc4jIiIiIiIirVx1zP56tpJQfgSjRRzew4v6dY5ZREREREREREREJMsUjCYiuSPsEIwWCzAYLXrQCqawY4Sh07jg5hbZ8RbsW2jftvxP8Fx/eLYXPN4OXhoLB9bY963dC4t/3fDYKaQs3A56ne6+yKi5RCEJO9+BOWd4Hy+RD76e+r6r/gY1u5zbz5oPncakPr4EY/ydMOF+53YFo4lIa7Hyz0CzQNR9C2Db61C53H6fsoFBV+Uvp+P5eusfzUwdbZVbMBpY33+nEL5c5RTMAXDSs+77bnnZ31pas3gKd4nd+pr3vvuXwDPdYfus5OY4/K7k+rcG4SK4cJt7n67HQZejnNs3PBl8wHxQnMIQw0XJjVM+Ib06KlemF9qdSPRgcGOLiKTL6e7xiUIqywbDWZ/CkK+591v3sHWe8+lyWPdIajWK5LtUjr/rlQ5s+r5V1+NSGydaBQt/mnodqTBjzm1ur2e7efwat8yAPZ8kV1Mu8ytActgN/owjIiLiTeO7HAT5Jm/92AbQJcB5REREREREpJWrih2w3V4aLstwJamJOKwJiDq95yciIiIiIiIiIiKSZxSMJiK5I+IQpBDkgt6KZc5tfXQXdcmAj29u+BmPHrQCBuZeBB9/C2r3eB9nxR/BNKFmD8QcFllHyqCwExz9R+/jVm+0/q07YIVLrH0IDn6+UL92H8w+3ftY6ep1lvU1OInXwaYX7dtCRdB5fDB1SXoMA4ZcDcc7LIat25/ZekREghCtgq2v2rfNOQNih+zbOowKrqYghMJWEKuTNQ9mrJQ2yTDc280obHwqM7X4xS0YLVICF7mE4u5f5H89rVUqwQyf3gJbZzZ9/qraAGv+BUt/B5/9Fyy4HeZeAjPGuAcY2xl8DbTrlnxdrUFhZ5i6Fkr6N9powBH3wBUmnP4unPkRlE+039+MwfY5GSnVd06/84nCeJrrcYr7a0cvdr0H+xbBpz9Mbf+icuc2p9fsIiK5wOm4IGR/t/km2g+BCX+Hy+OJ+9ZVwLtfgvevs44dVv4N9i1OrlaRfJVqMFpRV5i6Bs5eYB0XXmHCqW9CuDi18dY86F/4lhepBqMB9DzV2xyL7/ReT64zffi/6X8J9Doz/XFERES8a5xuH2QwWuM3kF3elBARERERERFxVx23D0YryZtgNPv38OoUjCYiIiIiIiIiIiKthP3tIUREsiHsEIwWCzAYrXKFc9ugq4KbV/JD6SDYvyTYOXa8Ba8eCxMfsBYC7luQ+lgr/mwFkjhpP9T6d9iN0PU4WPJbWO8QRlVvyW9gwOXwzmUNQYKhQjjpWajZ6f33s9cZMPQGqFwO83/kbZ/GinvBKS9ZwQuvHOX8/7L5BfvtBe2Tn1Myq7CT/fa6fVboX6KwFxGRXHVgLcz2uIC3uQ4j/a0lE8LFzkFvu97zZ46oAmVsuYWI1TuwJvg6/OT2NYUKrXC0IdfB6n+0bHcLwZamUglmiNfCnNOhyzFw8nTY9jq891V/Fu8bIRj+zfTHyWdlA+Hs+bDxGSuQuvskKD+maZ9hN8Luefb7v3kuXB6zvpf5JF5jvz1UZL/dSbjI+v4s/W3qtSz9bXr7n/mp9dq1ZmfLNgWjiUgu8yOk0jCs4KaXDkvcd/U/G+8I438JY37sfS6RfJTqYqQBV7Q8RxoqsM7fr7k/tTF3vQfdT0pt32SlE4w28EvWa45ENj4FS++BUbckV1suSuW11ZG/h8Iu1g1vOh8Bvc/SeXUREcm0xidxglyB3fgPpYcUZxERERERERF7VbFK2+2l4fy47rzAsH8PL2p6uI5MREREREREREREJA/k2eo4EWnVIg7BaNEgg9FWOrf1nRrcvJIfMrUYf/9iKxwtnVA0gI9vhg9vsm+LtIfi3g2POx8Oh/3c27gvH940WCJeC+9eAfsXea9twj+g3zQYfSu06+l9v3r9L7P+DbeDsz5z7le1zn57QYfk55TMKnAIRovXKThARPLbrMmphVGVDoKC/LjzZBO1e93bTTP9OaL2d+ps87wExh2yCejJZU4hSdAQlNTlSPv2nW9DzR6oq4Sld8Pbl8IHN8C22bDxWZh3LbxzBaz8K8Rc5mkL0gkz2/MhfPZjmHe1P6FoAEf+Aboc4c9Y+aywMwy51gp1aB6KBjDoSvf9NzwZTF1BcvpdDCcZjAYw7o70aklVuAROfAJK+0H3L9j3SfS3UkQkm5wCU0NJZg10HAtlQ5Oc3ITPfgJ70zxHKpLrUgkm7nUGjP+FfdsRd6Vey+uT4OPvwJ5PUh/Dq7SC0b7s/f2aT78P+5J47yJXxVN4fTXyOzD4KzD2NuhztkLRRERERERERERERBJwCkYrCeXHdXsRI2K7PerXNTwiIiIiIiIiIiIiWaZgNBHJHZFS++3RquDm3Pm2/fa+08DQU2Sb12MylA7IdhX+6DCy5SIYp985L+r2w8ZnvPXtOBpK+jY8Hv+r5Ocr7tXweSgCo36Y3P6R/LhzV5tW6BCMBvBRhkIKRUT8tvZh59DORHqf5WspGdN+mHu7H2EwsUPu7aksHm4N4gm+LwCHdgRfh5/iDncvNUIQ+nzhfIeRzvs/XQ4zRsOnP7BColb9DWZPgbkXwpr7Yf2j8OGN8OZUiLXhO6WmEszQ2Op/Ov9fJevsRTBCx36eGCE4/hHn9tX3Z64Wvzj9HIXs73DsKlIKR/9PevUkq+fpcMEW6H+J9ThcbN9v7b8UyCgiucvxuTjJYDTDgDE/SqEA03qeFGnNkj3+nroaTn7Z+eYfReUw5rbU61n+B3htImx5OfUxvEgnGC0UhqP/BGd6DHB7aRyYce+15aJkF601vjGOiIiIiIiIiIiIiCRkmiZVMfsbdJaF8+O684hh/x5e1EzzWiARERERERERERGRHKHUHxHJHeES++2x6mDmi1bB9tn2bZ0OC2ZOyS/hQjj1LWtxc77rPqnltnY9oGxI6mMeWOOtX79Lmj7udXrywYPdTmz6uKRPcvsX5Mcb1G2aWzDamgf8CdIREcm0T7+X+r4DvuhfHZnU7ST39ppd6c8RO+je3laDFKIJvi8ANTuDr8NPTmFljUOSOh0GGPb9AKo3JZ5n22vOrw3bgnSD0fzSYzJ0GpPtKvJL7zOd23bMgdr9mavFD3GHsLBQUWrjZTpktOsEKOzY8DjiEIwGsG1W8PWIiKTC6bgglZDKwdfAkb+D4iTP4y37HTxiNHxMHwXrn0h+fpFclczx99DroWxwy5ueNDfwivRreuNsiLuEl6XLLcQ8UTBavc6HQ+lAb323z/HWL1clG/o+9vZg6hARERERERERERFppWrMQ8SxPy9ekufBaHUKRhMREREREREREZFWQsFoIpI7Ig7BaNGAgtH2LXZegNLn3GDmlPxT2h8mvwqXRRMHfeSy4d9ouc0wYMz/C3bekr4w6paW24Zc532MHpOh68Sm25JdUFnQIbn+knkFLsFoANvfzEwdIiJ+qd4Eh3akvn++HncM/6b7gubqjenPkSgY7f3r2mZwQvxQ4j75FjQadwhGa3xRX1F5y2PFVGx9Lf0x8lUuXAxphOGIu7NdRf4p7Ax9zrNvi9fB1lcyW0+6nH7nwykGo5UNhgGXp15PssLtmj12CUZb/odgaxERSZXTc3HIflGFK8OAkd+FCzbBJZUwOsXzkBXL4J0vwpoHU9tfJNckc/w94lve+nUcDX0vSK2ext6+2LktWg3Vm1Mf23QJXQtFvI1hGDDmNm99t8301i9XmS7BaCX9mz4uGwr9Xf7vREREMsv8/N+JhmFMCuIDmJDNL1BERERERERah6pYpWNbabgsg5WkzikYLWo6vOcnIiIiIiIiIiIikmc8XmUsIpIBYYdgtFhAwWg7HO4WHymFLkcFM6fkr1AYht0IO+dmu5LkDb4GygbZtw25Foq6wtqHYOPT/s7b+1yY+E8osLlr1jF/gY7jYMsMKOwC7bpB1QaoWtfQp7CTFYo26vvWgqfGinsnV0skP+7c1aZFiq2fhdo99u2NfzZERHKZacKiX8DCO1IfY+rqln/78kWXI+DMj+Hlw+3bZ59qLWI+7Bepf42JgtEAVv4ZBlya2vj5Kurh++IUDJ2rnBaCNw/mGPRl2PVeenMt/70VpjvudjDa2H0E4i4L7oPSYwpEq6xgu4KOMPpW6HxY5utoDSY9D486/Mxueh4GfDGz9aQjVmO/PVSY+pjH/RsqlsPeT1Ifw6tQEsFo29pwGKOI5Dan48V0nosBCspg/K+g4xhY/xgc3Aw1O61Aaa+W3g2Dr0qvDpFc4PV12eCrrMAzr058HJb9Hra9DiV9YOj1VoDWkv+G3R/C7nmJx9j0HBxY2/T9hHgUPvkerPqrVXuHkXDik9BprPfawD0YzS1gvbmh11nvaax7CDY+S0P2SjNLfgOH/3dSJeYUt5+T09+znhP3zbfezxx5i/XaSkREJHcYwKMBz2F+Po+IiIiIiIhISqpjBxzbSvIkGK3A4eZGUbebb4iIiIiIiIiIiIjkEQWjiUjuiDgEo0UDCkab/yP77e2Htb2F8OJNvwuhz3mw+cXs1VDcx1o4mIwRN7u39z3f+qjeBM/1S722xkbf6r7oyAjBiG9aH6ko7Z9c/8JOqc0jmTXkGmtBl53YoczWIiKSqvWPpReKdsTdUDbYv3qyofN4KOnrHHKw+FdQOtBazJwKL8Foez5Nbex8Fvfwt7J6A1SuhvZDgq/HD06BXaFmp7OGXAcf3pT+fIt+ZgUADP5q+mPlEzPDgXmX1bX8P5TUGYYV4r3yLy3btsyAWC2E0wyzcVO7D7bPgeqNYESg8xFQfqwVLp4MM+4ShliUen2hCBz/MMwYlfoYXoWbB6O1s+8nIpLLHIPR7BdVJMUwYNCXrI96Myd5vxHF/sWw6j7rPGa77unXI5ItXoLRyo+FI3+f3LihAhj9Q+ujsaP/aP27+E747MeJx3lhMFwWbTieW3YPrPhTQ3vFMnhpHFxWm9xzg1/BaAD9plkfAM/0hEPb7ftVroL2Q5MbO1c4HRsbESjpDUf9LrP1iIiIJCcToWUO6agiIiIiIiIi3lTFKm23GxiUhEozXE1qIoZDMFq+3TxTRERERERERERExIGSf0Qkd4QdgtFiAQSjLbnLua39cP/nk9YhXAQnPgVfeBFG/dChj8PPsV9OSPLGyl2Pg07jvfUt6QtT1yZfU3NTZruHovmhuLcVqOKVfq/zw9DrndtqdmWuDhGRdCzzsHB5wv1w6QH4wnToMcX6OzXup3D6PBh1S+AlZkRRV/f2DU+kPnbUQzBatNIKA2pLvHxfAKaPgEW/CrYWvzgtnDeahWqFCmDqan/mnHcV1OzxZ6x8kemLIRWK5r++0+y311XAno+Dm3fvfJgxBuZeCB9/Gz76Bsw8Ht6alnzIfdzlOTuUZrBbhxGZeU3YIhit2LmvHwFDIiJBcHo+dlhUkbZhNybX/4Ovw/SRsG12MPWIZILT8XdxHxj3MzjhMescu983+xj0VYi099Z37b8aPl/zoH2fN85Nbn4/g9EacwuQe3EYmHmameI1KFxERCR3mQF/iIiIiIiIiKTFKRitOFRKKJ3z1hnkFIxWl+mbJIqIiIiIiIiIiIgERFfOikjuiDgFox0CMw6GT1mOsRqYf6tze+cj/JlHWqdwIfQ51/rofRa8db612Byg7wVWcNnci2HLdP/nHn8ndDsxuX0m/BOMJG7GXNInufEbM0JwxkfQJQO/Q4ZhLf5ffq+3/h1GBluP+KP9UOc2BaOJSD7Y9jrs+dC9z+BrYMjV1ud9zrE+WqNEwWjbZqY+dsxjAFjtbijulfo8+SZ+yFs/MwYLb4deZ0D50cHWlC7TYSF482A0sEJzi7pBzc705517AZz6Zvrj5ItMBqP1PD1zc7Ul3U+GSClEq1q2VSyFbsf5P6dpwvtfh4NbWrZtmQ7P9oYzPoAOHgPJYjXObeGi1GqsZxgw6VmYfToc3JzeWG6SCUZzaxMRySanRRLphlQ6GfBF2DUPVvzR+z61e2H2FPhijXWuViTfOP2e9Z0K424Pbt6S3jDxfvjwBqjZ7d73/Wth0/PWa4WKZfZ9tr0G+xZDpzHe5g8qGC3Re3qPhqDfhRApg24nweCrIZQHC9ocXw8rYFdERHLaBhRaJiIiIiIiInmiKn7AdntpuCzDlaTOKRgtqmA0ERERERERERERaSUUjCYiuSPsEIwGVvhBpNSfebbPcW8f9BV/5pHWr8fJcOEO2PMRlPSF0gHW9iHX2gejTZ4F7YfBkjth5V8Sjz/xAeh0GBzaAeXHQFF5cvVN22wtdkpGqAAi7SFqfxcsRyX9Yeoqa/9MSSYYreOoYGsR/wz/lv1iWAWjiUiu2/U+zD4tcb/eZwZfSy4o6hbc2F6D0WraWDBazGMwGljB06v/kcfBaDaL2I0QDLsBFv0i/Xl3vAU73obuSYYS5yun73MQhl6XubnaknAhdBhtH875/rUw5Br/59y/2D0MtG4/vHosTH7d23NNvNa5LZRmMBpAx9Fw/nrr9fvye2H9Y+mP2VzzYDTXvgpGE5EcFXN4Pg7qnJ8RgqP/AKO+D/sWwLJ7Ep+/r/fmeTD51WDqEgmSUzBxJgKv+l8MPU+FihVQuwfeOMu57+YXEo/30li4PObtxkZBBaN19HBTlI3PWP+u/TdsmQEnPZPcDWWywel1WkiXd4iISO4yTXNgtmsQERERERER8ao6Zn+tfEm4fYYrSV2BgtFERERERERERESklfNwlbKISIa4BZ9Fq/2bZ/8S9/Zkg6SkbQsXQbcTGkLRAPpNgwn3Q9kQMCLQ/Qtw7groORlK+1mPvRh8FXQ50gpQSSYUrctRcObHqf8sF3VJfp/T3s5sKBpY3/d2PRL3K+nX9P9HcltRV/vtmQxG2zwdZp8O00fChzdBXUXm5haR/LXwZ4n7RMqgVxsJRisdGNzYyQSjtSVuoUJ2Vv3NCkjLZfEkF4KPvQNG3+rP3J98z59x8oFTMEO6Jj0H3U+2XieUDoJj/wb9LwlmLoEOLoEQ+xb7O9fuj+ClcYn71e2Hxb+ybzuwDuZeBC8dBnMvhj2fOI8TKkypzJbjhKHrBDj+YRhzm/V6MlIK/S5yfu7oMML6OfY0frNgNLfASgWjiUiuclok4ddzsZPSftDnHDjS400QALa9Bi+OgE3PB1eXSBCcjr8zdX69sBN0PdZ63+HY+9If79EwVKxM3K92j3NbOsFoAOd5mL/epufg0RDMPsM6rs1VTq+HDQWjiYiIiIiIiIiIiPihKnbAdntpqCzDlaQuomA0ERERERERERERaeV05ayI5I5IiXNbzMdgtNq9zm2j/59/80jbNuRq6yNe13JBk5eQro5jndsGfhnWPWTfdvp70HWi9zrtFHaGqvXe+5dPsBYvZlooAuN/De9f695v7E/AUBZs3mjnEIxWvTEz8295Bd6aBmbMelyxHPbOt8L/9HMkIm52vp24z2G/gIL8uaNkWsqPDm5st6CZxmrbWjCaw6JpN7s/shbE5yozyYXgoTAc/t8w/k6IVkKoqOG1ZEFH62/5snvhk+8mnnvPhxCtcg/wbi2CCEbrfQ70mQp9z7d/TST+6+gSjLbhCejkIcDTi8pV8Oox3vtveq7ltpo98MKghsf7FsLGp53HCBd5n88LIwTjf2n9XTZj1mvLmj2w5kE4tL2hX9lQOPNTiBRbX/fME5u2N1fQoenjeI1zXwWjiUiucgrbzdTf8s6HWccQm1/w1r9yhXUe5wsvQp9zg61NxC/ZDkZrbOh1sH8RLP9DeuNMHw7nb2h4n6Bmj/X1FLQH04TqDTBrsvP+TuHXXrUfagXRb33F+z7bXoMdc+CsBe7H0tni9Ho43e+ViIiIiIiIiIiIiABQ7RCMVhJWMJqIiIiIiIiIiIhIrlC6g4jkjrBLMFq0yr95Nj/v3Nb/Iv/mEQH7xUxdjobiXu77DXEJ+xr6NfvtA7+cfigaQGGX5Pp3cglxC9qQa9zbT3gMhn49M7WIP0oH2W8/uAW2vBr8/Kv+2hCKVm/Xe7D30+DnFpH85hbkWzoATnoGRnw7c/VkWxcPwWjzrk4tkCl20Fu/mjYWjJbKBW2vTYDqzf7X4pfmf5PrJVoIbhhWQFG4yAr9LezcEHDqFsjd3BNlsOZf3vvnKz+D0bpPgsN+aT3nGYa1TaFomdHbJQxm0c/9+39emELA2paXGz4/tBOeLk9u/1Bh8nN6YRgNzydFXeDsBTD0BitUY+QtcPq7VigaWGEbp70DJX3tx4qUQnmzwDincCFQMJqI5K6YUzCazyGVbk562gq67TDC+z4LfxpYOSK+c3rtlq3j5jE/aRnwmoo198PB7TBrinW891RneLobPN0Vnh/ovq8RTn/+k2ckv0+8Dhb/Ov25g+AUfu4UFC4iIiIiIiIiIiIiSamKV9puLw3nz41PnYLR6hSMJiIiIiIiIiIiIq2EgtFEJHe4LVCPugRNJKOuEvYtdG7vcpQ/84i4CUXgiHucFxSWT3QP/Op2Agy+qum2rsfB0X/0p75kg9E6jPRn3lRNfMB+e4dRMOCLma1F0uf28/TGmXBoV7Dzb3IIz1xyV7Dzikh+M03nAKeux8H566DfBQ0hQW1BSb/EfdY8CJ/emvzYXoPR6iqSHzufOS2aTmTuhf7W4acgFoK7BXLbmXcV7Pk49flySfVm2PgsbJ9jPW/VMx2+z50Ph4jHu+D2vQAuj8Opb8LY2yAcUJCVOOt8WEMAoJ0Pv5H+HPEobH4x+f3eONsKRAN45/Lk9w9nKIynXXc49i9wystw5N3QrlvT9vZD4PwN0P+SptuNEBz955Z19r3AeS63/ysRkWyK19hvz+Tf9lAExvwIzl0GV5jWMUYiez6G6k32bfuXWMdAez7xt06RVDkF1josXgpcu64wOoXX5s3tfBee6wvbZ1uPzRjU7ILaPYn39SMI1wjB5NetwNpkrHsIFtwBH94E6x+H2KH0awEw47D3M1h1H2yebr0/mdT+CkYTERERERERERERCVJVrPUGo0UVjCYiIiIiIiIiIiKthK6cFZHcES52botW+TPHK0c7t42/0585RLwYeDl0GmctEorXQlF3qFwJHUZA/4sh3M55XyMEE/4J/S+FXe9Bh9HQ97zkF/w4KeycXP9uk/yZN1V9p0H4ppYhKQOvyE49kp7S/tbPv9MCtG0zrd+fTDu4NfNzikj+cApFAzi8jQYrGoZ1TFG7173fhifgqN8lN7bXYLR4bXLj5junxfWJ7P4A9i2CTmP9rccPjgvBw6mPmcox85LfwIlPpD5nLlj9AHz0jYbfn24nwMmvQEGZ889OST+YMhuesglO7n02DLgCqjdAx9HQZ2rbCn/MVVPXwfP97du2vpr++PsWQN3+1Pbd8CT0OQe2z0p+X6dQ8WwwDDjhcRhwufV6vLCT9fvQ+fCWfTuPdx7HKXhIRCTbnJ6fsvlcbBhwzlKYMcq938xJcP6aptvm/+jzsPvPQ2EHXwUT7tdxi2SX0/F3KEvBaAAjvgMLf+pcW98LrGN/t9Doba+lNnf5RP9CY3tOgbM+g43PWPXGDsHqfyTeb9HPrX9X/sX697yV0H5o6nXEo/DulbDh8YZtpQPgCzOg0xhvYzi9Hg7p8g4RERERERERERERP1THDthuLwl7vIlgDihQMJqIiIiIiIiIiIi0crpyVkRyRyhihaPZBR3U7Ut//IrlULnCub2jx8UIIn7pNDb1AAojBL3Psj78VmQTfOCkuA+UuwQOZkJhJzjhMXjncohVW9v6ToOR381uXZIaIwTtekHVWvv2fQuALASjacGsiKVqI6z7D1RvhO4nQ/9L9PsB7oFUbXnB6shbYMFP3Psc3AybnoetM6GoHAZ+CToMd98n6jEYzW3BdmvktGjai/WP51kwWhq/V26B3E42PAnP9oUj77HCifPpeS8egwX/BUuaBYHvfAfe+zJMetY9mKGwM5y7DGafZj33A3Q6DI69D0p6B1u7JK+0H7TrCYe2tWyr3gC1+6GwY8u2eAzWPQx7P4XinjDsG1ZoXnP7l6ReW8VyK2wvFan83gbJMKDfBdaHa78QDP06rPp7y7aYgtFEJEfFHMKFw1kOqew4Eo79O3z0TecA5Kq1sHcBdD7Merx9jhVw29iaB62Psbdbz9ElfYKsWsReLgajRUrg6P+FD77Wsq1dDzjpaesYaOtrMOcMf+fud6G/47UfAqN/0PB48FUw92L7Y2QnLw6zXvsNviq192Devtg619FY1Xp4aSyMuQ1G/8j+eLuxeACvh0VERERERERERETk/1Q5BKOVhvInGC3i8N6CgtFERERERERERESktfDp9ssiIj4pKrffXrM7/bE3POXe3svnxRwi+aowiWC0cXdYi72zre9UuHAbTJ4F562Ek56BSGm2q5JU9b/Eua16U+bqaCKPAlBEglKxHF49Fj77Maz8C7zzRfjwhmxXlRs2v+jc1pYXrA7z+PPx1jRY+WdY9HN49RjYNc+9f/yQt3E3Pg1bXvXWtzVIJxitar1/dfjJaSF4WoGDZmq7HdwM71wG730ljbkzLB6D2VNahqLV2/ScFZDmdDFk/V1lO4yAqWvg9PfgrM/gzE8UipbLRn3fua1yZcttpglzL4B5X4Xl98L8H8GMMVBrE1BfsSz1ug5ugsrlye83/BfDx+AAACAASURBVFv5FUbYXPlE++1xBaOJSI5yen4KFWa2DjtDvwbTNkHnI5z7rHmg4fOVf3Put+jn8NI42POJf/WJeOV0/J3NYDSwQsDsjl2G3tBwPNbrdCgd5N+chZ2tkMIgdTsBpq6CKW8kt9+GJ+CNs2HhL5Lbb8FPW4aiNbb4V/BcX/vj7cYcA/Ta8HkmEREREREREREREZ+Ypkl1vNK2rSTcPsPVpC5iOAWjRTHNFK+REhEREREREREREckhOZBkIiLSSGGAwWhugRUnPAbhHFjcJZILCjt76zf+ThhybbC1JKOgPfScDO2H5vfCeXEPRmvXPXN1NKGfKRGW3g2HtjXdturvsH9pdurJFWbcPSAu2wubs6mo3DrOTkZdBSz8qXufeK338Rbcltz8+cxp0bQXNbv8q8NPZsx+ezqBg05ha16t+w/seCu9MTJl8wuw4033Pu9f5y2ALhSBrhP/P3v3GeZWfedt/JY0fdx7t3HFBoyNwfTeHXpCKMmmV9iQPEvabsqm955N2M1uCmwCaSS0UBIILfSOKabZuPfumfF4RtLz4uB101GXRtLcn+vS5dG//kbWaCTNOV/BwJkQjRWvRhXftI+F9215I5isux2evBKujcB10X3fL2lfAn8c+EZ/DK6rC75+/qvha5/xRPq6lv4JnvpEdt/D7g75bu5zKkmsMXV73GA0SRUqNBgt5PGs3JqGwtyfhfe/9IPgNVqiG5b8Lv1aOzbCc18Jvl51F9x1Etx2CDzxL9C5oXg1S3sLDbzq4fcPonVwwi0w5vwgDLFxMMz4Vzjwc3uOOybDz1a2GgbBSX+Dhv7FWS+dulYYfjwcdV3uc+d/Pnh82L4m89jt69I/Z96pa3PwfHvZTeFjwsLPe3MAvyRJkiRJkiQVyY5kJ90h78O2xvqUuZr8hQWjAaHfnyRJkiRJkiRVE4PRJFWWxpBgtB0FBqN1rof1j4T3j7+osPWlWtIwKPOY0x+DAz4NEZ9KqAQGHxre192+6+vta4JLPIeAnHTSfTqaYXsSLA458fX1X5e3jkqz5v7ghPowvf2E1eEn5j5n5R3pQ75yCQDb8ER2Jy/XgkIOZutcW7w6iinse4oW8HPVZ0J435TLsltjcY6Bfz1leZqT7HfasgC2vZa6r6eDGZSfaAz6H5i6b/Vd0LYYbj0IFnwvu/WSifCQwp0O/BwMOgTOfCa3WjPZ/18K+3mvBGFBQonO4L2qYr2WkaRiCXtcCgt67Anp3jcCuO882PpKdmst+3MQ+P33U2D13bDxKXjp+3D/+enfJ5IKEfaaNs3JS2XTOBiO+xNcuBUuWAuzvrZvMHK/afmvX98f3toGlybhLeth0JzC6s3VuAth4CG5z1t9N9x9JiQyPC9ee19ur83vOxeWhXyok8FokiRJkiRJklQybfGtoX2tsb5lrKQw9WmD0TweQZIkSZIkSVL1M81EUmUJC0brLDAY7aUfh/cd/vPC1pZqTWOGYLTmkcFJ71Ipjb84dXt3G2x8Fq6rhz8NDy6/a4SnPhGENhQibeCDT5vVyyWT0B1yMNDCq8tbS6VZcUv6/t4eLBRrzm/etoXhfYkcA8C2vJxfDdUml8C4vXWuK14dxRT2fx2JpW7PRv8DoXX8vu0DDoJD/wPGvjnzGq9clf/+5fLaz2Hhr7Ibu+be1O2VEMyg/Ayem7p94S/hxgnpH2ML2W/gTJj55eKtO+HS4q3VU8KChHZshOuHwJ+GwvwvGr4jqXIkOlO3hwU99pTzV4b3Lb8ZHn5P9ms9+sF929bcB8szvNaT8hX22q2S3j+INYR/UER9v/xC0CEIvq1ryb+uQkVjcMrdsP+VMOiw3OZufBKWhHxowE7ty3Kv6b5zUodShr0erqT7iSRJkiRJkiRVqbTBaNHqCUarSxuMVsCxZJIkSZIkSZJUIUx4kFRZGkoQjJZMwHNfDO8fOCv/taVa1Dwmff+cH0PEpxAqsYaBqds718Gdx0JyrxPDXvwOLPh+YXumC5QJOxFQ6i12bAzvCwtM6y02L0jfH60rTx2VKtaU37wtaW7XXA/aSrdWLck1MG53lRqMtvfv+50iBfxcRSLB89low662WAsc8r2g74hf7tkXpqtCH/val8HTn4ZH3lf4Wr398auajT67vPvtHowx5tzirDnt/8GgOcVZqydlChLq2gLzvxCEGUpSJQgNRsvi+VE5NY+AYceH969/uPA9lv1pz+vJJGx6Hhb/HtoWF76+eq94W+r2SgsgTCefMNx++8P0TxS/llzV94NDvgNnPAoXbYeBs7Ofu/RP6fs7VuRX06Pv37ct7PWwr9MkSZIkSZIkqWDt8W2hfc2x1jJWUph0wWhdBqNJkiRJkiRJqgGmmkiqLI2DUrfne6J+dwf85cD0Y3I56UHqDfpOhn7TU/cd9lMY9+by1qPeKdaSun3lbUF4QCqL/rewPRM7Cpsv1bKOleF9XVuCINreatsr6fvTHHzUK0Tz/P7XPx7ely7IMpXeEoxWyMFs3dsgvr14tRRLWNhboSeCjzkbznwKDv46zP42nPkkjDgl6KvvCxPelnmNrS8XVkMpLPpfuGkyvPDN4qzX2x+/qtmQw8u314hToG63g4L7Z3gPJpUZn4Lpn4T93hGEbJx0J8z5XvFq7EnZBoQu/m1p65CkbMVD3huJVWBg0+QPlnb9Rdfs+jrRHQTP3nogPHAR3DgBnvtqafdXbUrEoXND6r6mIeWtpRBDj4Zzl4T3R+qgdUJw6TMZDrsK5j0Ldc3lqjA7sUY4/ZEgIDsbS69P/9q5Pc9gtBW3BeGLuwt7PVxIULgkSZIkSZIkCYC2ROpgtOZoC7FIrMzV5K8uzXvG3WEfwCFJkiRJkiRJVcQjZyVVlqYRqdu3vZbfenedAFteDO8/7gaIRPJbW6pVkQgc83u4+3To2O1EnoO/DlM+3HN1qXepy+MT1zY9E5xAlu/jetpgNPOE1ct1ZDixc90jMPTI8tRSSRJdsDXD89RCA5x6q+U3wcFfTt1nMFpqYSdNZ6tzHbSMKU4txZKMp24vxong/WcEl1RmfQO2vATrHgyfv3kBDJpTeB3F0rkeHv0gJDqLt2a+wYbqeU0joK5PEHpYaqPP3fN6JALTPw4vfie7+fUDgteatfreTDTLIKHVd5W2DknKVthziWwfz8pp/MXw4KWlWz+ZCAKsGgcFAZYLf7Fn/7OfhRGnwpC5patBtWfHBiCZuq+xioLRAFrHwls2wf0XwOq/B21Nw+GIq2HU6T1bWy6i9TDxXTD85OB72ZAmqB3glunQOh76TIR4JyS7Ycnvgw/6iLfnV0PnWti+CppH7moLO2HNYDRJkiRJkiRJKlh7fGvK9pZY3zJXUpj6NB962F3Ih2xKkiRJkiRJUoUw4UFSZek7NXV7xwroSv0HqFCPXQbrHw3v7z8Dxpwb3i/1ZgMOhHMWwSn3BwGCF6yBAz7d01WpN6lryW/ejo3575kuGK1WgxqkbG1fnb5/+U3lqaPStC0OP1F1J09Yzc+mZ2HbwtR9uX6aZW8IRkvECT25Plud64pSSlGFnghe4k9mbRoGp9wLZ6Q5IX7tP0pbQ66W/gniHcVd02C06hWJQN8ppd+nZUwQIrG3cRdlv8bIU2v7uXasAoOEJCmd0GC0hvLWkY1IBM56qbR73DItCGbeOxRtp+U3lnZ/1Z50r7uqLRgNoKE/nHQnnPFE8Brq7FeqKxRtd61j4fRHgr+JpNP2Oqy5Fxb+EhZfG4SiQf6haDtt2evxLOy96lK/HpYkSZIkSZKkXqAtnvqD5lqjfcpcSWHqIuF/w+tOpvuwaEmSJEmSJEmqDp6hLamy9JsW3rf1FRg4C7a+ChueCC4bnwxCcFonwMyvwIADgrFbXoFXrkq/1/hLi1a2VJNiDTDsmJ6uQr1VLM9gtI7l0Dgov7npgtGo4bAGKRuZwnaW3Qizvl6eWirJ9rWZxxgsBCPPgJW35z5v+S0w7Yp92xM5fppl2yKIb4dYU+41VItsw+JOvgfuOiF1322zYcLb4eCvBSeEV4LQYLQyvJ0VrYNBc2C/d8Cia/btf/U/g5/vQ75bGT/nS/+UeUzfqXDiHXDTftmtabBjdRt6NGx8Kv/5kbrgZ7DPJGgeBRse3/P5wJAj4dCfQH2Kg4L7HwD1A6BrU+Z9xr45/xqrQdOw7Mc++XGY8SloGlq6eiQpnUQckonUfZUa9NhvKkx6L7z289Ks37kOVt4Bq+9O3f/81+Dgr5Zmb5VWMgHxziAMcOe/iR37tqXq26d/R+o5qebuSPP8qGFw+b7/YopEYNAhPV1FcUSiwd9EzloAt+xf/PWP+CU8/O7UfXedCPOehQEHBdfDPgCkoX/x65IkSZIkSZKkXqYtvjVle0us2oLRwo9Z6sr1w0clSZIkSZIkqQJ5hqOkytIyFqKNwQkie3vwUuhYCV1b9u3b+DSs/Cuc9SK0joMVt6bfJ1oPU/+5ODVLkoqvLs9gtPYVu04ey1W6oJ1INL81pVoRT/HcbHdbXgyCaftNKU89laJzXeYxBgvBtI/BqjuzD+/aadNzqdtzDUZLJqBtaW3fP7O9TYYfDw2DYMeG1P2v/xpW3wVveh4aBhavvnwlQu4z0TL+XI16U+pgNICXfwzdW4OT23tSvDO78MEznghCrObNh1uzeL5U11x4beo5Uy4P7rup3kMBmPQ+eO1/wudfuCV4b6ZhQO571zXD9Cvh2c+lHzdwNox9S+7rV5OmEdmPXfBdWPsAnPoPiMZKV5MkhUn1nvxO0QoNRoMg3DebYLTxl8JRvw5eH+xYD099EhZdnXney/9ReI07da4Pnmf3tveZEt2ZA8MK7cs1pKzSTgaqa/X5dyXpNw2O+SP8o8jPVaMNQYDx2gdS9986E057KHgO2bEi9ZjGIcWtSZIkSZIkSZJ6obZE6mC0PrF+Za6kMHVpjk3sTuZ4jJ0kSZIkSZIkVSDP0JZUWaIx6DsFNqcIQdjyUvq58XZ47itw+M9g3UPpx56zyE9Vl6RKFmvNb17H8vz3TOwI79v4VP7rSrUg3QnyOy2/Efp9vPS1VJJsgtGi4Z/K2GuMOh1OvA3+fmpu83ZsTN2eazAaBMEH1HAwWi4n9TcOCQ9GgyCMetGvYdpHCq+rUMl46vZyBg6OOhPq+kD3ttT9C38FRODw/+m5gItlN2QeM+K0IBQNoP8B0GcibFuYfk6/GYXXpp7Tf3849QF44Vuw4fFdjxPNo2H8xTD5A+mD0eqagQLCOQ74TBDosPi3sH0VdLdBfd8giKSuFYYdDwd9ofYDwCKR3MavfxiW/AEmXFyaeiQpnbTBaA3lqyNX2YYETbg0eFyOxKBpGEz5cHbBaCvvKKw+gA1PwoNvD0LF6wfAAf8G0z+e+++JTJLJ4PVSysCwTojvSNFWypCyN/qTieJ+n7XIsKvKM/L04q8ZrYdBc8OD0QD+emT6NbyvSJIkSZIkSVLB2uOpjwNqifUpcyWFiUQi1EXq6E5x7JjBaJIkSZIkSZJqgcFokipPv2mpg9GysfxGSP4nJLaHj5n9XWgZnd/6kqTyqGvJb17Hivz3TBeM1rESdmyChgH5r1+pti0Kgt8GHQqt43q6GlWqdD8fO73+m+DE7lqX6IY190J8Oyy+LvP4cgY4VbIRp0DDoPSBXHvr2pS6PZcQsJ22r819TjXJJixuzHnBv01DYevL6ccuurpCgtFC/q+jZfy5qu8L0z8B8/89fMzCX8LQo2HSe8tX1+7WPph5zMwv7fo6EgnuDwu+Fz4+2hj83Kq6DTgQjromvH/ax+ClH+zbPvE9he8dicDk9wWX3m78Jdk9Z9jp5R8ZjCapZ8TTvO6LNZavjlxlExI09s0wat6ebUMOh/3emV04WiG2r4Xb5+y63rUJnv4kLL0exl4QHiaWb0iZqlPLmJ6uQHur7wP7XwkLvlu8NSP1MOYceOn7+a9hMJokSZIkSZIkFawtJBittcqC0QDqIg0pg9G6/LuRJEmSJEmSpBrgGdqSKk+/afnP3b4GVt4By24MHzPhbfmvL0kqj0oLRgNYdhNMfEf+61eaZDI4EffF7+xqO+AzMPPLQZCFtLt4Z+YxG5+GFbfBqDNLX09P2bYQ7j0HNj+f/ZxorHT1VJtoQ27jd4QEo2UTAra3znW5z6km2YTF7Qw6yuYk6g1PFFZPsSRCvq9ImX+uZnwqCDXasiB8zCPvg9HnQlMPnKSeLuhu8ofgoM9D88g92zMFo+33T0EQgGrbuLekDkYbc275a6llk96TWzDauodKV4skpZNI87ovWsnBaIPT9x92FUz+QOr3Oo74ZfC86P7z89s7Ek3fv+VluCXk7x3rHwkuEgSvJVR5Zn87CDFLJoqzXrQehh4D/abDlhfzW8NgNEmSJEmSJEkqWHt8a8r2lmjfMldSuLpIfcr2VGFpkiRJkiRJklRtDEaTVHkGHlLY/HvmhfcNPQaahxe2viSp9GKt+c1rX57/npmC0Z76eG0Fo624dc9QNIDnvwrDjoeRp/ZMTapc6U6Q39098+CSRG2G68W3w02TerqK6hbLMUxhw+Op25MGo+0jLEBsp+mfhNFnBV83ZAiO2OnxK2Ds+TD8xPzr2vIyvH4trH84CFsbejQ0jwnWHHtB5seKsAP0ImV+OyvWCCfcBjftl37cPWfCGY+Vp6bdhQWjjTgN5l6Vum/IUdA4FDrXpuiMwMFfK1p5qmBDjoKZX4FnP7urbfrHYfTZPVdTLRp+cu5z1j8Ogw8tfi0qv/YVsOhq2PISkOzpaqT0ulKfAALk/ly+nKKpT/b4P5M/GP68MxKBsefBQV+A+V/IY+8M4c+Pvj/3NdX7jH0zTLuip6tQKpEInPl0EJLf9nrh60XrIVoHR14Nd58OOzbmvobBaJIkSZIkSZJUsLbEtpTtrbHq+xDBupDjqLrzOcZOkiRJkiRJkiqMwWiSKs+Yc6BlDLQvCx8Tieb3Ce2eXCJJ1aGuJb95HSvy3zOR4SCAlMEhVeyVkKCUhb8yGE37yhQcuLuFv4JJ7y5ZKT0i3gk3ju/pKqpfNI8whZd/ClMv27Mt0+N1KrUejJbuQLZTH4ChR+26nu3t9/KPg8vsbwdBSblacx/cfSbE23e1Lbsx+PeVn8Ck98PhP0u/RljgW7mD0QD6TIDzlsMNo8PHbHgcVv0dRpxUtrJIdIefoL/3z87uojE48PPwxEf27bu4K+hX7YtE4MDPwMR3wcanYMBMaB3X01XVnkgEmkdCx8rs59xxGBx1HUy4uHR1qfQ2L4A7j6395yHqHTIFgPW0gbOD32V7a92vtMHd6W6X7WuD58SqbpFY8Fo21pji34bUfdFGiDXs9nXI3FgzDD4M+k6tzYD5WjHgIHjT83D3abD2gX37j/oNvPBN2PRs5rV2BjkOPgzOXQJ3Hpf6sSudxizDziVJkiRJkiRJKSWTSdriqT8wqDXWt8zVFK4+kvpDhAxGkyRJkiRJklQLDEaTVHmi9XDSnfDQu2DDo0AE+s+AgYfAoDnBZeDBcPthsOXF3NYePLcUFUuSii3WE8FoOQQ/1YIVf0ndvvhaOPo35a1FlS/emf3YR96TWzBaojs4gXTV34Kwo+lXwqgzc6+xlF79GWxf09NVVL98whSe/iSMews0DdvVFhaWlU6tB5Kku01a9wr127Eht7Wf+gT0nQZjzt53z0XXwPNfhW0Lg7bm0dCxPLt1X/vv4LKzvvr+MPxkmPklqH/j01eT8dRzoz30dlbLqCBo7m9Hh495+F1w3pKylcSOjeGh4S0ZAq6mfBg618CCHwQBdsNPhMN/YShab9QyOriodPL53fXMp4PfgT31mKfcJROw4Huw9E/Ba9O2xT1dkVQ8+YQcl9OBn4X737xv+9A0z9uKId3ju48Bufu/oLE0oWLRhpCgsRz6sg44a/C5sQJ1LXDyPfDUx+G1X0D3VqgfAAd9HsZfAmPOh6euhIW/hPj28HV2Pzmtvk/w+vKpK8M/wGKfOvpCv/0L+lYkSZIkSZIkqbfrSu4IDQ1rqcJgtDqD0SRJkiRJkiTVMM+qklSZ+k2D0x8KTihMdAcnwuytcUhua467aN9QAElSZarLMxht+2pIJiESyX1ubwtGqwWdG6B7GzQM3HXirEojkUMwGkDbEmjNEMiz00PvgMXX7bq++i44/mYYfVZue5bS4t/2dAW1IZZHmEJ3Gyy7ESa/f1dbPgdtbV+d+5xqkkhzm0T3Ovht7JvDwzHD3HcOnHIvDDsu+D2b6IIXvwXPfm7PcdmGou1u98CITc/ChseDvSIRSIYETUR68O2soUfBcTcFt0kq7Uth84tQ1xpc4tuhcTDEmopXQ6I7eK0ca4DO9eHjGgenXycaC4LoDvxccJvm8/xJUnbGnBeEQeaibXHwuNh3chCCCEGYRl1LECbpz2zleeJj8PKPe7oKqfgiUYg193QV6Y05Pwh5XX33rrZoI0z9SHbzBx2a377xdkjEU4dnFRLeX3KR9MFgxQgiSxc4lnLPBn+3qbJF62DOD2D2d4Lw/OYRweMjQF0zHPZTmPNDePQDsPBXIWvs9fp893m3zYLNL6SvYeo/F/e1pSRJkiRJkiT1Qm3xraF9rdE+ZaykOMKC0boMRpMkSZIkSZJUAwxGk1TZItHwkJNcg9GO+t/C65EklUdda37zkvEg4Cyf8B2D0arHhifh4XfBpvl7tk/7KMz+buoTklWYXH8+lt0I07I4AX3ZTXuGou1079lw3I0wJiR4qJy2r4N1D/V0FbUhmsdjM8CyG/YMRksXAhamokMJiiAsQAz2DREbeWp+ezz7eTjke/DYh2H9o/mtkY2198PKO2DUGWmC0Xr4cX7M2dAyNghBS+UvM/Zt2+8dcOh/QH0Bnywb74Rn/i0I3Ul0waizYMIl4eMzBaPttPfJ+ZKKb9S83IPRAG6fA0SA5L59c34YBP4YIlMZNj1vKJpq15CjKj+IPBKBY6+HBT+ElbdD8yg46PMwcFZ280ecDPX9oGtL7nt3b4OG/vu2z/9C5rn1A6D/jPSBY4WEjYX1GYor5S9aBy2jQvrqg9eKoXNDXntF6+G0R+CpK+HVn6UeM+fHMPXy3GqVJEmSJEmSJO2jLb4ttK81VjvBaO3xrWzt3vzGmDqaY3kely1JkiRJkiRJPchgNEnVK5dgtFPu92RvSaomsZb853a35ReMFjcY7f8suwmGHp19oEohkskg4KxjBTQMgu4t0GdicNnb1tdg45Pwj7emXuulHwYnFc/8QklL7pXinbmNTxWMtmMTrP0HdG4I7lsDZ8F954avcd+5cNYC6Dct93o3Pg2r7wnuU8NPgNZx2c3r2gLrHoaOVcGJrk3D4aUfkTKMRLnL9/n4iluhfRm0jAmu5xOMtvEp2LERGgbmV0OlS3eb7H27t4yBGf8KL3w9tz3W3PtGQE8ZLPlDEIyWCAlGi1bA21mnPQw3jM5+/KJrINYEc/8r/z1f+CYs+N6u6ytuCS6pRBsLez4lqbhGzYMRp8Gqv+YxOeR5yBMfhebRMO7NBZWmIrn1wJ6uQCqNur4w6xs9XUV2GgYG7wfk855ArAlmfQse+1Duc1MFoy2/NXgNks7BX4UD/i33/SRVuDShg+neF6nvE7xe7H8gPHHFrva61uBvnINmF69ESZIkSZIkSerF2hNbQ/taaigY7Y4N13PHhuv/7/rwhjG8Zei7OaBPmY7/kiRJkiRJkqQiqIAzSSUpT9kGo9X1gSFHlrYWSVJxReshEoNkPPe53W3QOCj3ecksgnaSSYikObmtVtx3LhCBY34H4y4s3T7dbfDwe2HJ7/Zsj9QFJwfP/GJwPZmAZz6bXYjPomsMRiuFRI7BaGvuhfj24ORyCILS7jsv931v2R8uiUMkmt34RDc8cDEsvX7P9tnfgelXpp+77hG4/3zoWJl9feMvgUGHwlMZ1tYb0gTMxZqC+0yYG8YGJwhP/gAkQ8KyMrl+CBz7JxiTJpCvWqW7TSIp3vo5+Ksw7HhYfhO88tPS1ZWvhb8IfgesvT91f6rvqdxaRsH0T8CL385+zms/h4O/ll/waHcHvPit7Mc3Du4dz1mkahFrgBNuhdd/Aw+/s3jrvnKVwWiVYNP83MZPfFdJypCKrt/+MOZ86De1pyspjykfhAEHwd+Ozm1ed9u+ba/9T/o5pz0EQ47IbR9J1S/k5LQ9TPtI8DfNZX+GaBNMfj80jyh9bZIkSZIkSZLUS7TFt6Vsb4o2E6uEY5JyVJ/Ne8/A6h3LuGr51/jU+G8ztinFBxdLkiRJkiRJUgWqvndtJWmnpqHZjRv3VojGSluLJKm4IhGoa4WuLbnPTXVC6k6JOKy8A1b/HVpGw6T3Qn2/zPN2SnZndwJbTUjCQ++EEadAw8DiLr1tIbx+HTz72ZCtu+G5L0HX1iAQa8kfoH1Jdmu3LYJEVxCup+JJ7EjdPvxEWH33vu3J7iAAaOrlwc/xAxfnv/d1Meg3Pfh6yBHQOgHGnh+csL5T2xKY/8UgTCmVpz4Or18LA2ft1piAtQ9C/wNg5GlBuFEuoWhTr4BDf/jG+gajZaX/QbDmvn3bow1BMMBts9PPf/SDwWNSIosgy1SSCfjHRXDBamjon98alWbdo7DsBlhxS/iYVI+HkQiMOj24dKwMTriuNDeMDe+LVsjbWRPfnVswWjIOj/8zHH1d7nutviu75yo75RO+Jqm0ojGY+I4gkHL9I8VZc/Vdwe+3bENkVRobn8l+7Fu3Ba91JVWmoUfB1I/Ayz/Ofk68fd+2dM+vp/0/Q9Gk3irb9ysHHxpcJEmSJEmSJElF1xbfmrK9Nda3zJUUR10Ox8omiPPYlvsMRpMkSZIkSZJUNSrkTFJJykPz6OzGzfhkaeuQJJVGrCW/YLR4SGhIMgmPXw6v/teutgXfg9Mfg+YRQQhXJokdvStwK94By26Cie8s3pprH4S7T4fubqWuyAAAIABJREFU1J+6t4eXvp/fHot/D/u9Lb+5Si3embp90BxYc38QhLa3x/85CPFpnQDx7YXtv+XFPf99/mtwzO9hzDmw+l6464TMa2x8MrjsbevLeYRCRWDy+3KcI8a/NQiDIbln+7iLgtC6t7bB7zMEhSy5PjwY7bgbg/vcg5eGz090wqq/wrgLcyq9Ii38FTzy3iAQJ51IhpDobAOnCzH3v4PwtmU3Fme9TN9zufTbH/pOga2vZD9n8W9h4OzcX6cuuyG38Q0Go0kVa/wlxQtGA9j6GvSbUrz1lLv2pdmNO/luQ9GkatA0PLfxe4fXdqcISttdv2m5rS+pykTCu3rT+8qSJEmSJEmSVKHa46mPXW2J9ilzJcUxuH5YTuNX7VhWokokSZIkSZIkqfiiPV2AJOWteVTmMcf+2RONJKlaxZrzm3f7ofCPi2HT/D3bn/7knqFoAO3LYP6/B18vvjbz2mFhPLVs8wuFrxHfAa/8J/ztWPjb0dmFohXiUQOrii6xI3V7XR/oOyl83tOfggcuKkE9nfDUx2HjM9mFohXblMtgwEHl37faDTsOjvxfaBkTXI82BOEwc68Krte1BEFT6ax7iH2C1XZqGADjL4a+U9Ov0V4DB3d1roeH351FKFodRNKclA3QmNvBcTmb9tEgSPDQnwT1FEPHyuKsU6hIBMa+Jfd5878A29dkHrf2QbjnLPjjIHjt57ntMfiw3OuSVB7TroADP1e89W6fDX87Lvi90La4eOsqOzs2wzP/ln5M49AgJHT4CWUpSVKB6vvlNn7vYLStL6cf3396butLqh0Go0mSJEmSJElSj2tLpP4Q5dZY3zJXUhyz+xxFJN2HduwlLBhOkiRJkiRJkiqRwWiSqlfL6PC+ie+Ci7th7HllK0eSVGSxhvznLvkd3HE4bFsUXH/pR/Did1KPffVnsPDqfYPUUumNwWjZ3C57i2/f87Z65l/hsQ/D2n8Ur65M+3esLs9evUWiM3V7tDFzkFWpbH0FbptV/n37HwgHf7X8+9aK/d4G5y6B85bBhZvh6GuhrnVXf+v49PO3p/nZ3hkCNv3K9Gt0rMq+3koS3x4EoiW64foh2c2JZhFE1lTiYLTmN163tYyG/d5RnDX7H1CcdYphxieCwJtcxDtg8W+D/0sIAu6SCUgmIREPfoetuS8IE13xF9ixMfe6Jr4n9zmSyiMSgZlfCt63mvTewtfrboO198PCX8Hth+X3mKH8JLrhrpPSj7lwK5y/IggJlVQd6nM86WXvYLTNC9KP76nX0JLKI104ecRgNEmSJEmSJEnqaWHBYC2xPmWupDgmt8zgn0ZcQZ9Y/6zGtyUMRpMkSZIkSZJUPbI4Q1aSKlTzyPT90Vh56pAklUakwKeq8Q64aSIc8Fl49b/Sj334Xdmt2RuD0VbeDtvXQVMWITxd2+CR98KyGyEShXEXwoS3w4Lvlb7OvT33RTjsp+Xft1bFw4LRGmDkGcH/eW8w8nQ46jfQkN1BRAoRiYSHHGcKRos1h/dF3zjBePIHoK4PPPi21ONe/BYsvi54jBh9VuZ6e9qOjfDwe2DZDbnPzeak68YsQ9byNfK0XV/P/Rn0mwYrbg2uT/sobHgCns8xbHDIEcWrr1ANA+H0h+HZf4fXf539vCc+Ck/+CyTjwXOeZHfxapr0Xuhv4IZU8aIx6DuluGt2roVbZ8F5i4u7rlJb/XfY+GR4/+QPQn11Hjwv9Wp1uQajte95fdmfw8cOmpN7qK6k2hE1GE2SJEmSJEmSelpbfGvK9tZojn8jqiBH9D+Ruf2OZ13XarqTwXHOz217nBvWXbPP2PaQ71+SJEmSJEmSKlG0pwuQpLzFmiDWkrpv3MXlrUWSVHzFOlHs+a8EAQHFkNhRnHV6WiKX8JUkPPu57IY+/E5Y8ntIdAbBdIuugbtPyzyvFF65CtY92jN716Kw+36sMQi/G3x44Xu0jIUjfgWRCg23PeAzcOLt0Di4pyupbZmC0dI9nu/+e2PCpTD5Q+Fj25fCvWfDpudyq68nPHBpfqFokN39tS7kNVUxTHw3DDx41/VoDGZ8Ek65J7iMPR+mfiS3NSd/EAbMLGaVheszEY76X7g0ueflopBQyZ2S8Tf+LWIo2qA5cOhPireepNIaNS99f8tYeMtGOOX+7NdsXwKr7ymoLGVp6fXp+/sfWJ46JBVXfY4nvcTbdvt6e/C+SJhZ3wiCoiX1TgajSZIkSZIkSVKPa4tvS9neEqvuD72KRqIMaxjJqMZxjGocx+jG1MfhtcW3kUwmy1ydJEmSJEmSJOXHYDRJ1W3iu/dtq+sDw48vfy2SpOKqq8CDDBJdPV1BccS35zZ+0dXQ3Z5+TOcGWHZj/jWVwoLv9HQFtSMREu4TbYT6PnDy3TD94/mvP+ZcOPNpmPhOOPOZ/NdJZdjxQXjbzkusOfu5E94OU6+A4/8CB3+luHUptdYJ6fs3PRveF6nb83rjkMz7vfLTzGN6UttiWHl7/vNHnp55TF2RP+20zySYcjkc8wc4/OeZxzcPD0J/MmkaAcfdGIR+VUuYRKwBzniidOvP+SEc8n2Y+C6Y+B447Kdw6gNBaKWk6tD/QOh/QOq+Q74Hb3oBGgbAsGNgzo+yX/fV/y5OfQrXthhe/Vn6MS2jylOLpOLK9flx927BaMtvDh839gIYcUp+NUmqHnu/N7E7g9EkSZIkSZIkqce1xbembO8TK/IxVD2sJeT7SRBne6KjzNVIkiRJkiRJUn7SHJkrSVXgoC/Axidh3UPB9VhTcAJ+rKlHy5IkFUGxg1qKIVkrwWg5HtQQ74CXfwwzPhU+ZuPTkIwXVlcu6voEgT9Lrw8fs+QP0LkeGgeXr65aFQ8LRmsI/q1rhtnfhtb94PHLc1v7wH+HmV/YdX3AATDoMNjwWF6lAkEY2sl/h0iKLPDkNfDYZfDqf6Zf47yl0DImu/3m/jc8+v592ye+K7v52qU19SdVhlnUMYEb153Dpu4BnL2iD3MG7NaZVTDaVUGYVKVadWdh82d9I/OYwYcFP8uJHYXtBTDtY3DId1P/7KXTMABO/Qfcdz50rt2rb1DwGm/ESYXX1xMGHRKELL7+6+KvPf4SaBpa/HUllU8kAkf8Eu47FzpWBm2tE4LnMX3223PsmHPgiSuyW3fxtTD+Ihh9dvWESVabxy7LPKZ5dOnrkFR89Tm+H9W5YdfXG54KHzf+0vzqkVRdJrwNnv3svu0tY9KHpkmSJEmSJEmSyqI9sS1le0usAj/MuQCtab6f9sRWmmMtZaxGkiRJkiRJkvLj0beSqlvTEDjl3uCEo+0rYdhx0DCwp6uSJBVDfZqDDA67Ch77cPlq2akYoTGVINdgNICnPw19JsG4t6Tuf/FbhdWUq/EXwZgL0gejAVw/BM5fCc0jylNXrQq77+8MRttp6mVB+EY2QREAk967ZyjaTrmGKu1u4Gw45Z7w/kgE5l4V3IfuOjH1mAtWQ9Ow7PccNQ/qWqG7bc/2sRdmv4YCOQSjPbz5cObNv4VN3cHz/y//MMkv35XgHUe+cf/JJhgNYP6X4aDP5Vpp6W17HR55X/7zL1gdBI5lUt8XxpwHS36f/14AZ70E/abmP3/o0XD2S7D2AehYFbQ1DYOhx0DjoMJq62mzvw3Lb4KuLcVbc8plhqJJtWLwYXDWAlj3SPAcaOgxEGvcd1zLWIg1Z/9c/r5zYdL74fCfFbdewdbXYMWtmcc1jyp9LZKKL9dgtOe/Agd8OnhNuGVB+LjRZxVWl6Tq0GcCDJ4L6x/ds33cRQbWSpIkSZIkSVIFaItvTdneGqvAD3MuQLqgt7b4NgbXDy9jNZIkSZIkSZKUnwLONpekChGthyFzYcy5hqJJUi2pSxOMNvbNMPWK8tWyU6Kr/HuWwuYX8pv31CchEd+zrWsLPHY5rLyjsJrq+kLLuMzjog0w4W0w58cwel4QkpfJ058urDaF3/djDfu2TfkwHPIDqO+ffs39r4S5IUEd+Qaj7fcOOPmu7MYOPwFOuQ/6TNy5KQw+HM59PbdQNICWUXDiX6HvG6FQTcNh7n8F91Hlpmlk1kM/s+gr/xeKBpBMRvjIdUm6upNBw+BDs1to/udh28JcqiytjlXwyAfgpv0KWyeX+/HhPw9+t0brg8uY82D8xdnPH3lmYaFoOzUMDAIjJr8vuIw5p/pD0SAI55z5lSIuGIFZXy/iepJ6XH0/GHkqjDg5dSgaBM+PhhyZ27qv/Tf8rgUWXg3JZOF1KrD85uzGGc4sVae6PE56+euRcG0Elv05df+4i8If3yXVnuNvhuEnBc/fYi1BWO2sb/R0VZIkSZIkSZLU6+1IdNKVTP0hsS3RNMcsV6GWaGtoX3t8WxkrkSRJkiRJkqT81fV0AZIkSVJK6U5EjTbApPfCwl9Adxn/QF8rwWgv/SC/eW2LYONTu8KGkkm473xY/ff81qvvD2e/DJE6qO8LiW74fUv4+HnPBiFWdbsdsDHlQzD5A3D3mbDqr6nnLfl9EKBW15xfnYJkyH0/Up+6ff+PBgFpiR3Byd+JHdC5Pvi/i8Qg1pzhpPBI9rUNPAROvQ+I5v5/POxYOPtV6FgJsabCApiGHgVnvwTb10HjYIjk8D1ol2gsq2GdiQbu3nTiPu1bt8M9L8OpM4B+07Lfd/Hv4YAKCFHs2gq3HwodywtbZ9BhuY2v7wPH/hG62yGZCK5veAoW/zbz3EgMpvVAWGm1mfIheOYz0J36U2ez1mcSnPViEGAnqffZ/0pYc0/wWJ2teAc8/C7YvgZmfKJUlfUum5/LPKZpuI/VUrWqzyMYbdP89P3j3pxfLZKqU9OwILh/x+bg/SaDESVJkiRJkiSpIrQn2kL7WmN5/I2ogkUjMZqjrXSk+J7b4gUevyRJkiRJkiRJZRLt6QIkSZKklOrTfPpatB4GzoST7ixfPVAbwWidG2DV3/Kff8dhsOD7QSja8pvzC0VrnQBj3wynPxacKNg4KPg/zRRq1Tx6z1C0nSJRmPy+8HnxDlh9V+51apdEd+r2aJqs7VhD8HMcrQ/+31rHBYFhDQMynxCaLlRs7s9g2HHQ/0CY8Sk49R/B+vkG30Ui0DKqsFC03TUNMRStUFM+nHHI5u7+oX0LViV3XZnwT9ntueyG7MaV0o7N8Id+uYWiDT0mdfuYc/Oroa5l1+/fQbPhtIeh3/67+kecCvOeg2kfC34GR54Jx/8FRp2R3369SbQe9nt7bnNaxgS/J5uGw6A5QRDoqQ8YtCP1ZqPnwXE3w8jToXkUNI/Mfu7Tn4S2paWrrTd57eeZx4x6U+nrkFQa0XoYemxx1+ybQ2izpNrR0N9QNEmSJEmSJEmqIO1pAsFaYmmOWa5SfULC3gxGkyRJkiRJklQt0pzFLkmSJPWgkafD819L3RdrCv4dcjhM/wS8+O3y1JTYUZ59Smnjk5BMFLbGk/8C21fDhidzm3fg52Dml9KPiTaE3871/cLnjTwDIjFIxlP3L7sBRp+VXZ3aVzIkFLBk4TxpgsUmvB0mv79E+6oi7P8vsOymtAFhW7rDHw/67H7OcfOI7PZc/wi8/NMgUKxldJaFFtmDb8t9zsT3BMGAK+/Y1dZvOkz+YHFqGnI4nPXivu1zvl+c9XubmV+Bhb8KAjt3F6mDo6+DcW/pkbIkVZnR84LLTmv+AffMg+4sDly+ZX+4KPwTsCtadwdsehZIwuDDey6IduMzmcc0j4TpV5a+Fkmlc/BX4c7jirde3ynFW0uSJEmSJEmSJEl52ZYmEKy1BoPRWmJ9oWvVPu1tiW09UI0kSZIkSZIk5S7a0wVIkiRJKQ09BlrG7Ns+5jyI7PY0tpxhV4mQcKhqUqzv4YVvwqq/ZTd2ymVw/C2ZQ9EgCIcJE03TV98X9ntHeP+quzLvrdSSifAwvXT/XwVJE3SxMxhRtavvZDj90bT3r83x/qF9rbsHozUMyH7fxy+HG8bAM5+FZDL7ecXQvgxW/CX3efV9g8fXw38Bkz8Eh/wATnsQmoYUv0YVrnEQXLAKDvhs8FgWrQ8CXk9/2FA0Sfkbdgyc8RhM/3jmsfF22Jwi8LLSbXgSbjsY/noE/PVIuGMutIcHqJbU/C+m7+8zGc58GvrPKE89kkpj2LHQlGXIcib1A6CuuThrSZIkSZIkSZIkKW/t8dSBYI2RJuoipfqQ2J7TGk0d9taeJiBOkiRJkiRJkiqJwWiSJEmqTJEoHHVdcALpTn2nwqE/2XPc0GPhgH/bs23S+0pTU7IWgtG6y7fXzC/DpUk47Ccw+k3ZzUkXfpbJrG+F97W9Xv6go1qRjIf3lSoYLZLmpWokTWiaakfLKDjws6Hdm7vDg9FaGna7j9TnEIy20/NfhVV35j6vEJuey3NiJHjcnPRumHsV7P/R3MLgVH71/eDgL8NFHXDxDpj9LRg0p6erklTt+k2D2d+G4/8SPM6k8+zny1NTsSST8Mj7Yesru9o2PA6Pf6T8taz8Kyz7c/oxZ78MTcPKU4+k0hpyZHHWGX5icdaRJEmSJEmSJElSQdpCAsFaY33LXEl5tMRSB6O1hQTESZIkSZIkSVKlMRhNkiRJlWvYMXDuQjj+Zjj5bpg3PwjL2V0kAgd/Fc5+NQhSO/MZmPuz0tST2FGadcspXchVMY16U9pQo1CDDs1/z6YhcNpD4f0r78h/7d4skSYQMFqiT0nsM6k066q6RBtCuzalCUbbIwMxXcheOouvzW9evjpW5jfPEDRJ0u5Gz4OzX4EDPxc+Zukf4cXvlq+mQm14AjY+uW/7sj9D29Ly1TH/y3D36enHHP5zQ3ylWlKs59pTLyvOOpIkSZIkSZIkSSpIeyJ1IFhYgFi1Cwt8C7sdJEmSJEmSJKnSGIwmSZKkytYwEEafBcNPgFh4SA59J8GEi2HgzOBk9BmfLn4t6QKiqkWyuzz75Hv7T/946vb93pnd/KZh4X2Pvj/3epT+PhOtK82eU/85dfuoeaXZT5Up2hjatTlNMFp3YrcryUTouLSWXJ/fvHy1L8t9Tl0rDDmq+LVIkqpb0zCY+SUYODt8zFMfh62vlq+mQqx/JLxvxS3lqWHRb2D+5zOPq6/NTxGXeq36IgSjzf0vGH5y4etIkiRJkiRJkiSpYG3x1IFgrb0sGK0tvrXMlUiSJEmSJElSfgxGkyRJUm2a+K7ir1kLwWiJLILRhp9Y2B6Dj4ChR+c3d8Qp0P+APduijTD5A9nNbxwS3te+DLo8oCNn6e73kfrS7DlwFgw9dq+9ojDlw6XZT5Upll8wWnz3LLR+0/Lbu3treQNjsglb2dukD0Bdc/FrkSTVhqN/m77/5inlqaNQG54I79v4dOn3X3oDPPT27MbWGYwm1ZSGAoPRRp0VvJcRiRSnHkmSJEmSJEmSJBWkLb4lZXtLtDb/1tsSEvjWHhIQJ0mSJEmSJEmVxmA0SZIk1aZ8w3DSqYVgtGQ8fX/rBDjxbzDrm1DfL/f1hx0PJ/01/xN/o/Vwyr0w6X3B/+GoN8GJt8PQo7KbnymMYOsr+dXVm6UL04vWlWbPSAROuBWmfgT6z4ARp8FxN8Los0qznypTtCG0a3M8PBitO57cdWXosVCfZ6DBzVMgmcw8rlCbnkvfP3guTP8kzPpWEDw56FCY9Q045Dulr02SVL36Tc383Hj94+WppRDrHwvv61xXun3jnfDoB+H+87OfU1+bB8tLvVahwWiT3lucOiRJkiRJkiRJklQUYYFgrbHa/FtvazR1MFpb3A8YliRJkiRJklQdSnQWuyRJklSDEjt6uoLCJdOEXEXq4OCvQzQGMz4Jkz8AfxyY2/rH/qnwQIDGwXD4f+c3N1Mg29LroWsL9JkErWPz26O3SaYJBIzUl27f+j5w6I9Kt74qX7QxtKst3hrat3suGrEGmPV1eOzDe6476BBY91DmGl65CqZelkWxBVjyx/C+g74IB31+1/UZnyhtLZKk2jL1Mnjhm+H9K2+HwYeWr55sdayGtkXQOBS2vBA+rpTBaI9/BF7L8TVJXeqDyiVVqaYR+c8dfhKMmle8WiRJkiRJkiRJklSwtkRYMFpt/q23JSTwrS2+jWQySSTfD0CWJEmSJEmSpDIxGE2SJEnKViJNQFS1SMbD+069H4Ycset6ff/c12/IMUit3J7/WnABmPQ+OOw/gyA4hUukCdOL+pJSJRQLD0ZLJKOhfd17P8xN+RD02x+W3Qh1LTDuQhg4C1bcDk9/GjY9E17D45dD8ygYe16Oxedg1d/C+8aUcF9JUu2b+O70wWjPfi74HTnuLeWrKZ1kEl7+CTz5/9IHOu9UqmC0rm3w+v/mPi/ic2Oppow8Nfi53vvxqHkkTHg7dG2GV3+277xIHZxwaxDSLEmSJEmSJEmSpIrRHt+asj0sQKzahQW+xemmM7mdpkhzmSuSJEmSJEmSpNyEn0ksSZIkVbvpnyjuepueLe56PSEsYKDP5D1D0QAiEeg3Lbf1K+ET5LINEnrtf4LQhRe+CS/9CNoWl7auapUulMLwB5VSNDxIIF4/ILwvkaJx+Akw5/tw8FeDUDSAUWfAvKfhzKfT13H/+dCxOnO9+dq2MHV741AYOLN0+0qSal+/aTDnR+nH/ONCePwK2PxieWpKZ9HV8MRHsgtFg9IFo21ZAPHtuc2JNUOfiaWpR1LPaBgIR16z5+veIUfBm16E2d+Cuf8FR/8OorsFOg86FM5bljbkWZIkSZIkSZIkST2jLb4tZXtYgFi1a00T+NYecltIkiRJkiRJUiUxGE2SJEm1a+xbgCIGdS38BSy9oXjr9YRkPHV7NCTgavylpaulVMZfkv3Yl38MT38anvgo3DoL1j5QurqqVaIrvC9aX7461PtEw8ME4tHwg9G6UwWjpTPwYBh3UfoxK2/PcdEsJbpge0jo2pHXlGZPSVLvMu0jMPWK9GNe/jHcNhuW/rk8NaWy8Bp4+N25zelcD8lcf/FnYcuC3OeMPgfq/DRtqeZMuATOXQxH/xZOfQBOuQca+u/qH/9WOOc1OOo6OPluOPUf0Dy8x8qVJEmSJEmSJElSuLAwsJY0x6JVs9ZoeDBaW3xrGSuRJEmSJEmSpPwYjCZJkqTaNWQuHPUbaByyZ3tda/6BTo9fVpqT78sl0Z26PRISjHbAZ2DKZbsCigYcHLSlMuXywusrhvFvheEn5T6vaxM89Yni11PtkiH3GQi/30jFEAsPRktEW0P74vk8RB/xi/T9HSvyWDSNba/DvefAbxuAZOoxLaOLu6ckqfcanyEAFCDRCfdfAPHO0tezt64tQVBxrpJxuO88WP9Y4TWsexgefDv8/XR46J9yn3/4/xReg6TK1DIqeBwdelTq95JaRsOEi2H4CWlfw0iSJEmSJEmSJKnndCW66ExuT9nXJxYeIFbNmmPhx9iFhcRJkiRJkiRJUiUxGE2SJEm1bcIlcMFqOG8pXBIP/n3LZpj3PMSa9xzbPBrOfAaGHRe+XsdK2PRcaWsupbCQq0gsdXs0Bof9BC7cBOevhHlPwwH/GtxWu4s1w+T3F7fWQhzz+/zmrXsoCCzaXTUH4RVDoiu8L9+AQSkb0YbQrni0Obwvnx/ZuhY44bbw/u4iHgjWsRJungzLb04/bu/HWUmS8jXkyOCSjTuPL20tqSz/SxBSnNfcm4Oa1z6U//4rboM7j4PXfwOr/pr7/KlXQH1tfoK4JEmSJEmSJEmSJNWC9sTW0L6WGg1Gi0ViNEdbUva1pbk9JEmSJEmSJKlSGIwmSZKk2heJQsuYXf9GY9BvCpz2IIw8A1r3g/GXwCn3wMCZ+wam7e22g+Guk2Dra2Upv6iS8dTt0br082JN0Dwi+LquFU5/BMZfHNx2o94EJ90FAw8ubq2FaByc/9yb9oPf94X7L4RbZsBvG+C2ObDqruLVV00SIWF6kPl+IxUi2hjaFY80hfZ155tlOOoMIJK6r5g///O/GP5YvFOsCRoGFm9PSVLvFonAiXdkN3b9I9C1pbT17G3FrYXNj3fAS9/Pf/6C76UPA86kvjYPkpckSZIkSZIkSZKkWtEWD/9gzNZY7X4QVljoW7rbQ5IkSZIkSZIqhcFokiRJ6r0GzoITb4NzF8LR10LfyUF7mjCe/7P6brjzeOhuL22NxRYWchWJ5bZOy2g4+rrgtjvhFhh6ZOG1Fdu4i/Kf270Nlv4RtrwYBBhtfBLuPQc2LyhefdUimSYkIlJfvjrU+8TSBaOl6cs3GA2CwMdU1j8CnesLWPgNiW54/deZxzWNCEJsJEkqlvq+MOl92Y3d8GTx908mYdsiWPsAxLfv2bf15cLXX/KH/Otac19hezcNK2y+JEmSJEmSJEmSJKmk2uNbQ/taorUbjNYa8r21pbk9JEmSJEmSJKlSGIwmSZIk7a1xcHbjOpbDqrtKW0uxJeOp2yN15a2jHCa+s7jrxduDsLTeJixMDyBag/cbVY5oQ2hXMk0wWnchwWh1aQ5ye+mHBSz8hvlfgO62zOOGVGDYpCSp+tWl/iTofWwpchhwdxvcfwHcNBH+dgz8aQSsunNXf+e64uyTT4hp9zZI7Mg8bs6Pob5/6r6RZ+a+ryRJkiRJkiRJkiSpbNri21K2N0QaqU9znFq1a4mlPh6uPeT2kCRJkiRJkqRKYjCaJEmStLdsg9EAnv9a6eoohWRIyFUtBlyNPAMGzi7umpufL+561SDsPkMEIr6kVAlF60O74oQHo8ULCkZrDe977suw4Sl4/hvw5JXw0n9A2+Ls1+7aBs9/Nbux4y/Ofl1JkrJVn20w2kvF3feFb8GyG3Zd79oMfz8VVtwRXC9WMNqTV+Y+J9u9J74DjrwGYk17th/yfeg3Jfd9JUmSJEmSJEmSJEll055IHQQWFhxWK/rE+qVsb0tsLXMlkiRJkiRJkpS7Gkw/kCRJkgrUOCT7sTvWl66OUkjGU7dHYuWtoxwiETjqWvjL9OKtueQPcPR1xVsPNJzYAAAgAElEQVSvGiS6UrenCa2SSi0ebQnt6y4oGC3DgW63H7Ln9Wc/C8ffAsOOybz2rQdmV8OAg2DUmdmNlSQpF9kGo219pbj7vv6b1O33nAH7vRO6thRnn0VXw5G/ym1ONsFodX2hvh+MOQfOWQir74b4dhh2PPSdlFepkiRJkiRJkiRJkqTy2RZPHQTWJ5bl39GrVFjwW3s8dVCcJEmSJEmSJFUSg9EkSZKkveUSjFZt4VCJ7tTtkRp9adDQv7jrJeOQTAaha71FspfdZ1Q5+kwMHo/3DiyJtZBoGhE6LV5QMFprbuO7NsOdx8LZr0DfyeHjtrwEbYszr9c0Ao66rvp+t0iSqkN96k+C3sfGJ+Hh98LCXwTXYy1wzB9g9LzU47s74IVvwpp7ofuNg8nr+sLwE2DK5bDttfC9Fl2ddflZ6VwPjYOD5+yLfwuL3/i9OuUyGHFyivFZBKPtHijXPBImXFq8eiVJkiRJkiRJkiRJJdceEozWUuPBaK0hwWhtIbeHJEmSJEmSJFWSaE8XIEmSJFWchkHZj41UWXhNaMhVrLx1lEv9gOKv+exni79mJUt0pW43uEmlFonC5A/t2z7pPcST4cF83fEC9qxryW/ezVNg66vh/Uv/lH7+vOfg/JVw/goYcEB+NUiSlEm0MbtxHSt3haIBxNvh3jfBot/sOzaZhLtPh+e+CGvugQ1PBJc198D8L8BNE4tQeA5e+EZQ0/wvwIOXwvKbg9/Dfz8FXr9u3/Gd6zOvWV/bB8JLkiRJkiRJkiRJUq1ri29L2d4aTR0cVitaoqn/3h12e0iSJEmSJElSJTEYTZIkSdpbMpH92GhD6eoohWRIYlAkPGSoqtU1w6BDU/dNuTy/NRd8D7o78q+p2oSF6UVr9D6jyjLzSzDrWzBgZnA56Isw54fEE8nQKfHwrswSIff3bNw8Be46CbYt3Ldvxa3h88ZfEoShNY+ASCT//SVJyqSrwE98fv4r+7YtvwXW3h8+p7uInzLdPDLzmBe/A79rhOe+tG/fg5dCd/uebZ3rMq9ZZzCaJEmSJEmSJEmSJFWz9kTqv123xGo7GK015Ptrjxfxb/mSJEmSJEmSVCIGo0mSJEl7GzQ7+7GxKgtGCwv9qeWQq5lf3jfAbtY34bD/yG+9+HZYfXfhdVWL7WtTt0fqy1uHeqdIBGZ8AuY9E1wO+jxEoqTJRaM7JP8xK/ECQw9X3w1/OwbinXu279gYPmfMeYXtKUlStgbPLWz+lgV7BottXwPPfrawNXMx/JTsxiW6wvtum7Xn9bbFmderNxhNkiRJkiRJkiRJkqpZW3xbyvbWWG3/PTgs+K0tsY1kspBPIJUkSZIkSZKk0jMYTZIkSdpb637Qb3p2Y6stHCoZkhgUiZW3jnIadQac+gBMvQKmfBiO/wvM+GRha3auK05tlSyZhBe+BY9fnrq/lsP0VPHiifz6MooU4W2SjpWw9Ppd15NJaF8aPn7UvML3lCQpG4MOgcbBha2xMxht/pfghjGw6dnC68pWrAEmvbewNba+Ahue2HV9y0uZ54S9hpIkSZIkSZIkSZIkVYX2kGC0lmjq4LBa0Rrrl7K9O9lFV3JHmauRJEmSJEmSpNwYjCZJkiTtLRKBI36Z3dhotQWjdaduj9R4yNXgQ+HQH8JhP4XRu4UQHfBv+a1XX9ufEgjAmnvh6U+F91dbKKBqSrrws+5CgtHGnFvA5N08+DZ47HL4ywFw28HQtSX1uCmXQ31tH1wnSaog0To46lqINua/RrwDVv4V5v87JLqKV1s2og1w0BdgwEGFrXP7obD+seDrLQsyj+/aWth+kiRJkiRJkiRJkqQe1RZP/Xff1lhtHwvamib4Lew2kSRJkiRJkqRKYTCaJEmSlMqQw+GIqzOPq7ZAsWQ8dXskVt46KsW4C4FI7vMKCZOoFq//Jn1/tMru+6opiWR4X7rQtIz6TYf+MwpYYDev/BQ2vwCb5oePmfnF4uwlSVK2Rp4G5y2BI6+BaR/LfX68AxZ8r/h1ZSPaAC1j4LSH4YTbClvrjrkw/0vQ9nrmsWEBp5IkSZIkSZIkSZKkqtBrg9Fi6YLRtpWxEkmSJEmSJEnKncFokiRJUph+UzOPSXaVvo7ddW2DF78D954L/5+9O4+P667v/f/+zqbdliyNFie24zh7AtkJWYCQBZJSoATKvhVoadNLgUJb2lsaKC3w47LcUlpogQa4BUpICaUUAmHPBiQBErKROImdxYtGtixb6yzn+/tDsS3NnO+Zc2bVjF7Px0MP63y389FYOkejmfM+t10pzT4ebb7N+7ev1pCrgdOk874kJddGm+dl61PPSvLQZ4L7Wy0UEG0lKPwsX00wmjHShd9aPDbUW0da6his/34AACjWOSxtfo208SXR537zeGnnd2pfUxix5OK/iW5p/WXSmhOqW+/XV0kKSFs9KM+bwQEAAAAAAAAAAACgVeVtTgt23revOyA4rB0EfX0znn9YHAAAAAAAAACsFFzJDgAAALh0DJUfU/B/s0RdWE/68W9L4z8+3Lb9K9Jlt0m9R4dbw3MEo63mkKujXi5t/F3p7vdJd7833Jx2D0azIQIiDgZTAE1QCPgWDQpNC6Vnk3T5L6WZx6TUWim5RlrYI81sXwySiaWkRJ90z/ule/6u8v1UG+YCAEC14t3NriCaWGr5dtd6af/99d/vkS+s/z4AAAAAAAAAAAAAAHUxW5hx9vW0eTBa3CTUGevSvDdX0jdbIBgNAAAAAAAAwMq2itMPVjdjzAmSTpV0pKQuSfOSxiVtlXSntdb9l//yayclnS9po6QxSdOSdkj6pbV2W3WVAwAANNBKC0bbfs3yUDRJyu6VHvgn6YyPhFvDFvzbTby62lpdLC5teUN7BqM98S3prndLs9ultSdLT/uMtObY4Dlb/6X8uqs5TA9NFxR+VnUw2kE9Gw5/3jG4+LHUqe+TOkekO95S2fqjF1deGwAAtZBo8WC0nk2N2e9Rr27MfgAAAAAAAAAAAAAANTcTEADWE+trYCXN0R3r9Q1GmylMN6EaAAAAAAAAAAiPK9lXEWNMv6S3SnqDFkPLXArGmF9JutZa+8EI66clvVfSyyStc4y5RdJHrbX/GbpwAACAZkmuXbz4PigEq5HBaPd/2L999w/Cr2Hz/u0xnhqoZ6N0zB9KWz9VfmyrBKPtu0e68XckL7e4Pf4T6TtPk164TUqt9Z/z6LXSbX9Ufu3UQM3KBKLyrLuvZsFoYRz/v6TsHunX74k+95g317wcAAAiiTc5GC3WsRg8Orcj5Pjk8u1Nr5Aevrr2dS21/nnS0Hn13QcAAAAAAAAAAAAAIBJrrX62/4e6b+ZXmvGCA77mCjPOvu54b61LW3F64n3am8+UtM8WBaMtePP6yb5v6+G53yhnS98jG1dcmzqP0TP7L1dvYk3d6gWAYtZa/Xz/j3XvzC814/mHXQ4kBnV633k6qef0BlfXmqbyk7px3/XanX1CR3Uep2f2X6Zk8U0rQ8h5Od2479vaNv+ghlPr9Yz+y7Q2wTUGAAAAAIDaIf1glTDG/K6kT0oaDDE8LulMSUdKChWMZoy5XNLnJA2XGXqepPOMMV+U9GZrrfsVBgAAgGYzRlp3ljRxi3tMo4LRrJX23uHfN/mrCOsU/NtNPHpN7ejsf5bS50lb/1XK3OQe1yrBaL/+m8OhaAfl9kmPXStteePydi8n/fQN0rZ/D7f26MW1qRGoQFD4Wd5xmKubp1wl9T9VeuIb0twuaWabtP/+4DlnfULqGm1IeQAAOCWaGIx2/Nulza+SBk6XHv68tPv7UvfGxd/BMzf6zyl+893IhVLfcdKBB2pf36ZXSMPPkI5+oxTjuRIAAAAAAAAAAAAArCRf3v1J3TT13arWSJqUUrGOGlW0cvXE+3zbl4YL5bysPvbYX+vR+a2Ba/165jb9fP+P9Y6NH1BfwnFzXgCosa+Of0Y/2vc/ZcfdPHWDXj78Zj1z4PIGVNW69uX36sPb/+JQaOYdB27SndM/1Vs3vE/xCNeUFGxB//j4e7R17p5DbT+d+oHeufGD6k+GuYQZAAAAAIDyYs0uAPVnjLlK0jUqDUV7VNL3JH1Z0nWSfiopclCZMeZCSV/X8lA0K+kOSV+VdIOkiaJpr5L0ZWMM34MAAGBlW1/mhTGvQcFouf3B/dmpcOt4ef92Q2aypMUwvM2vkZ79HSmWdI9rhWC0/Kz02Nf8+372Jmn64cXPpx+WHvhn6T9S4UPRRi6Wjn9rbeoEKhAUjFbwbOMKOWjDi6SnXy09+9vSb98nnfVP7mPIUa+Sjr2ysfUBAOAn3qRgtCOeL535UWndmZKJSVt+Tzrv36XT3i+tPdk9zxSdW2NJ6ZzP1r6+0z4onf8l6dg/kuLR74QKAAAAAAAAAAAAAKif8ezOqkPRJHdgWLvpjvf6ts8Wpg99/svpW8uGoh00ntuhW6a+V5PaAKCcvbmMfrzv26HHf3PPl5W3ufIDV7Eb911/KBTtoK1z9+qemTsirXPPzB3LQtEkaW8+oxunrq+6RgAAAAAADiL9oM0ZY94h6T1FzV+W9AFr7a99xscknSvpxZKeG2L9IyV9TdLSK8RulvT71tr7lozrkPRmSR+WdPAKtudL+jtJfxXyywEAAGi8ztHg/kIDgtEKC9IPy/xqNrNdSj21/FrWEYwW46nBMoluaexy6Ylv+Pe3QjDaT14Y3P+NLdLRr5e2XyMVZsOve/GPpPR5wcFxQJ0FZZ8VmpCLVuK4K6Wx50iZW6TCjBRLLQZcrjtLSl+wGMIIAECzxTubs9/Nr3P3xQPuxu0XUjZ8gfSSfdLDV0u/eHv1tUlS1/rarAMAAAAAAAAAAAAAqLkHZu+qyTp98bU1WWel64n5B8BNFw4c+vz+mTsjrfmb2bv03MEXV1UXAITxwOzdsgq4m3KR6cJ+7VjYro2dx9Sxqtb2mxn/8+j9M3fpqb1PC7+O43x8/8xdev7QqyqqDQAAAACAYqQftDFjzKmSPrikKSfpldbaa11zrLWeFoPNbjbGhPn+eK+kgSXbt0i6xFq7LCHEWrsg6ePGmEclXbek60+NMf9ird0eYl8AAACNl+gO7l+YkHLTUtL/jmo18eg10p6fBY+Z2SYNhAlGK/i3m3jkstre06+W/nPQv68RgXjVmM9Iu0Lcke/hz0Vb9+xPSSPPqqgkoJYKAe9xyDsOcw3Xd8ziBwAAK5UxUv9TpH0l98+QTEyy4d9UqFhKGr5Q2hXirtwbXhS8TtS+1FrphLdJg+dIN5xXfv/ldI1VvwYAAAAAAAAAAAAAoC7Gsztrss5JPafXZJ2Vrjvu//7m2SXBaJlctMc0k9tVVU0AEFbU45MkjWd3EYwWwPWYRj4XZP3PBZwjAAAAAAC1FGt2AaiPJ0PN/k3Lw+/eHBSKVsxamy+zj2MlvW5JU1bS64tD0YrW/Lqkzy9p6pB0VdiaAAAAGi5eJhhNkr57jpSfk6ytTw33/9/yY2ZC5sx6jl/xQmXirjId66RhRwjYXe9ubC1RhQlFi6ojLW1+Te3XBSoQFIwW1AcAAIps+YPStrHLwz0PWuol+6Sn/E35cSf++WLomku8091nksFrD50jDZxWvoZyuo6ofg0AAAAAAAAAAAAAQF1UEpJT7MiOzbpo4Pk1qGbl63EEo80Upg997gq3cdmbyyhvc1XVBQBhZCoIw6zFeaJdzRVmdaAw5ds3ETHQzBWANl2Y0lxhNnJtAAAAAAD4If2gff2upDOWbH/fWnt1jffxSknxJdtfs9Y+GGLe/6flgWovNcZcGRSoBgAA0DSJEIEAU/dK13RLyTXS6HOks/9J6hyuXQ2Tvyg/Zs/PJL0leMzMo9Lu7/v3mbh/+2oXS7n75sdr+/9cS/M1vtPS+t+Wzv5EuJ8HoAG8gBzKPMFoAACEd/z/koyRtn5ayk5K639LOuMj0jU94dfo3igluqSBEHfT7hor07/e3Rf0u7m0GLh20fekO94u7bpB6j5SOuEd0sizpNuulCZuleZ3B6/RvVHqOy54DAAAAAAAAAAAAACgaVwhOcd2nayjuoJf740ppg2dW3RSz+nqjHXVo7wVpyfe59s+6y0Go817c9pfmPQdc0rPWbp75vaSditPe3LjGklx4zEA9TXuCDnb0nWipgv7tTv7REnfRMSwx9UkKPxsIrtbni0oFuK6Es8WtCdordwubYgfXVGNAAAAAAAsRTBa+3pz0fb767CPFxVthwpes9beZ4z5maRznmzqkfQcSd+oYW0AAAC1EY/wxofcfumxa6U9P5de+MjihfnV8kLeUW3bF6Wnf16KOV6IKixIN5zvnm94auArKHxh+1ek48uE0RUWpKl7pDUnNDZUbGGi+jVOeId0xoerXweog0JA+FlQHwAA8HHcHy9+VCvRLXWkpYWMe0y5YLQ1J7j78gfK19AxKJ33hdL2Z15X2vbIF6VbX72kwUhP+Rv3cyoAAAAAAAAAAAAAQFN51lPGEcRyQf9zdPaaZzW4opXPFYw2U1h8Dd4VNCdJL0q/TvfM3CGr0juZZrI7CUYDUFfWWmWyO3z7zl17sXYsPOobjJZxhKkh+LEpKK/J/B4NJsvfOH5ffq/yNh+wn13a0EkwGgAAAACgejVIasBKY4w5RtLSv+Zvk/TDGu9jVNKpS5rykm6OsMSPirYvr7YmAACAuqgkzGr2Uelrw1IhW/3+p7eFH5u50d33xDek2cfd/Vz871D6Zo5DDmwNnvrwF6Rr+6Xrz5SuHZDu+0htSwtSbTDaeV+STv8/takFqIOg8LM8wWgAADTPuT6hZEuVDUY73t1XmIteT5DNr5Ke81Pp6N+Tjv1j6eIfSFveWNt9AAAAAAAAAAAAAABqZiq/Vznr/97cdHJ9g6tpDd2xXt/2nM0q6y04g+biSmgktV79iUHfftc8AKiVGe+A5rxZ377h5JjSyVHfPo5Pbpls8GMTFJYZZVzYdQAAAAAAKIdgtPb07KLt71trAxIdKnJK0fZd1tqZCPNvKdo+ucp6AAAA6iNeQTCaJC3ske5+X/X7XxgPPzYTkFO757bguQceCr+f1SQofCEoNG/yTumnr5MK84vbXlb65Tulnd+tbX1LTd0r3f8P0l1XSVv/tfJ1nvK30lGvkIypXW1AjRUCnuEGhaYBAICQjr2ysnn9xX82LtK7Jbi/c1RK9vv3pS+orKYgQ+dIT/836exPSCMX1n59AAAAAAAAAAAAAEDNZHLuoJXhVJkbda1SPfE+Z99sYdoZXjOUGlHMxJV2PK6E3gCot6AQr3RqzHl8msrv1YI3X6+yWlrQeVSSJkKGypULnwu7DgAAAAAA5RCM1p6eVrR9qySZRZcYY642xtxrjJkyxswYY7YbY75njHmXMeaokPs4qWh7a8Qai5M3itcDAABYGYLCr8p57KvV7z93IPzYu/5a2v9gabu10n3/J3juWn4d85X3v8uUJCne5e57/Ov+7Y9dV109Lls/I33rqdIv3ibd/bdVLGSkza+uWVlAvXgB4We5QuPqAACgbR35O+HH9h1z+PPuI6WRi/zHpZ8hdR8RvJYx0jFvKm3v2SQNnBa+JgAAAAAAAAAAAABA23GF5PTE+9Qd721wNa0h6HGZ8Q44Q3LSybEn/x317S8XrgMA1RrP7vBt7zCdWhMfcB6fJIK5XMqFWo6HDL0sdw4Iuw4AAAAAAOUQjNaeziravu/JwLPvSbpB0uslnShpjaRuSRslXSzpA5IeMMb8kzGmXALIMUXbj0ascXvR9qAxZiDiGgAAAPUXryIYbXrbYihZFE/8j3Tr66WfvkHa8R0ptz/a/G8eJ930Uun7l0i//HPpwEPSxE/Lz1tzQrT9rBaFCoPRfv0e//atn6qqHF+zO6Sf/75ka5AGdcE1Uu/m6tcB6qwQcGidzzWuDgAA2tbYpdIZHw33fOjEdy7fPvcL0rqzl7etO1M6/z/C7fuUq6SNv3t4u+9Y6cLrJcPLGQAAAAAAAAAAAACwmo3n/ENyDoZ4oVRPUDBaYdoZXjOcOhiM5v/YukLqAKBWnMGNqVEZY7QumVbMcXk0xyh/mTKBcWED5coFrBGeCQAAAAColUSzC0BdFP/VuVvSbZKGQsxNSrpS0rnGmOdZa11/hegv2h6PUqC1dtoYMy+pc0nzWkmTUdYpZowZlpSOOG1LNfsEAABtLlFFMJq3IOVnpGTIu9A9+Cnptj86vP3w1VL6/Oj7ffSri//u/r70yOel9DODx/cdKw0/K/p+VoN8QDBaLNm4OoJ8/YjarPPSmeq+34EGKnjuvpls4+oAAKCtnfB26Zg/lKYfkvb/RrrpJaVjerdIIxcvb+s+Qrrs54tB0bOPSd0bpN6jwu832bsY2LuwR1qYkPqOk4yp5isBAAAAAAAAAAAAALQBVxALwWhuCZNUh+nUgp0v6ZstTLuDh558TNMp/8d2IrdbBVtQ3MRrVywALOEKNzt4fIqbhAaTw75hX+UCwFajrLegffk9gWPCPm7lAtT25fco6y0oFesIXR8AAAAAAH4IRmtPxaFlV+twKNqMpE9J+rakxyX1SDpV0hskXbBkzumS/tMY8yxrbc5nH8XpHnMV1Dmn5cFofRWsUexKSVfVYB0AAIBF8a7q5mf3hAtGs5706/eWtmdurm7/8+PSY9e6+9PPkM79XPjwttWmEBCM9puPSye8zWdO6ZtH6mbP7ZXNMwlJnpTok0aeLZ31CULR0FI86+7bGim2GwAABEp0Sf2nLH6c+wXp1tce7hu9RHr656V4yn9u71HRAtGKdQwufgAAAAAAAAAAAAAAIGncEYw27AjvwqKeeJ8W8qXvbZ3MT2gqv9d3zsFANFfonKeCJnMZDaVGa1coACzhDG5ccsxPJ8f8g9Ec54vVbCK3u/yY7C5Za2UCbmJprXWG1i21JzeusY4NkWoEAAAAAKAYwWhtxhjTIak4Sv3IJ/+9V9Jl1trHivp/IelqY8w7JH14Sfu5kv5C0t/57Ko4OaOS9Ic5SQMBawIAADSfiVU3f2FC6tlUftye26X5JtyZ6NKfNH6frSQfEIw284j00L9JW96wvP2W19S3pqV2/yDa+Ct2S53D9akFaKCCF9z/lds8vezsKo/fAABguc2vWfwAAAAAAAAAAAAAAKDBrLWhQnJQqjveq735TEn79vmtzjnp5GLg2VBqxDkmk9tFMBqAunGFmy0NbBxKjUo+b/ef8AlLW+3ChMUt2HntL+zT2sSAc8yBwpQWbPlLiTO5nQSjAQAAAACqxlXC7SfuaJ+SfyjaIdbaj0j6WFHz240xYQLLbMj6qp0DAADQWuYnwo1bGK9vHX5O/0jj99lqbJn0pYc+s3x7fkJ6/GvBcwrZ6mpa6p4PhB+bGpA60rXbN9BE5YLRPnsTTzcBAAAAAAAAAAAAAAAAoF1MFSaVs/7vv1wakoNSPXH/y8K2zT3g2x5TXOuSizfh7Yx1aU3cPyAnTMgOAFRipnBAM94B376lYZiu478rSHM1C/uYTGSDQ+XCHvszZdYBAAAAACAMgtHajLV2VpLfJeIfDQpFW+LdWgxRO2idpMt9xk0XbXeFqzBwTvGalfhnSadE/HhhDfYLAADa2ZrjK587+2i4cbYJIT7dRzR+n63m9A8F90/cunx7/33lw9S+/2xprgYvts48JuX2hR/fNSYZU/1+gRXAK3PI/N59jakDAAAAAAAAAAAAAAAAAFB/49kdzr7hFMFoQbpjfb7t4zn/x3QoOaK4iR/aTqdGfccRPASgXoJCtYaXhKG5jk97cxPK21zN62plYYPKyh3bM7lw60yEHAcAAAAAQBCC0drTjE/bF8JMtNbOSPpaUfOFPkNXZDCatXbcWntPlA9JD1W7XwAA0OY2vry0LbVOevGEdM5npfO+KCXX+M/9+R9Ik3eV34ctVFdjJboIRitrvV9GcICc/52plpm4Rbr+TClzS2U1HfTQZ6ONH76wuv0BK0ihTP4gAAAAAAAAAAAAAAAAAKB9ZLL+QS3dsV71xP2Dv7Ao6uNTHDSUTvoHz4UNxwGAqFzhXEmT0prEwKFt1/HJytOe3HhdamtVYcMsyx3bQ6/jOG8DAAAAABAFwWjtaV/R9m5r7bYI839atH2iz5ipou10hPVljOlVaTBacd0AAAArwyn/WzrqNZLM4nbXeumi70odg9KWN0hHvVJae7J7/s/eJD3yRenmV0q3/4m05/bSMc0IRus9uvH7bDU9m6R4Z/AYaw9/ng8RjCZJczul718o/eId0i//XLrpZdKDn5S8CN8Hd783/FhJ2vLGaOOBFYxgNAAAAAAAAAAAAAAAAABYPVxBLcMp/1AcHNYT7400Pp1cv3zb8RgTegOgXlzHl3RyTDFz+JLooeSIzMFrPEKusVrVKtBsIhsuFJPwTAAAAABALSSaXQDq4gFJG5ZsR/0rzo6i7UGfMQ8WbW+KuI/i8XuttZMR1wAAAGiMWFI67wvSmR9bDLRae5JkijKGEwF3U9t7m3Trqw9vP/Rp6Vn/LY1ecritMFfbmstZe4rUvb78OEgbXixt+6K73+Ylk1z8PBcyGE2SvJx0/0cPbz96jbT7h9L5X5GM/wu0h9x1Vfj9SNLGl0rrzog2B1jBPFt+zHfusXruyWV+lgAAAAAAAAAAAAAAAAAAK14mW3yp06J0kmC0crrjAe9x9pFOjS7fdjzGmdwuedZbFlIEALUw7gjxKg5qTMZS6k8MajI/UTKWYK7D8janvbnSx8jPRJnHLWzA2p7cuAq2oLiJhxoPAAAAAIAf/vLYnu4p2l6IOL94fKfPmPuKto+JuI+ji7bvjTgfAACg8ToGpf5TSkPRJCkZ4U0DhXnpB5dK1x0p3f6Wxe38TO3qDGPsOY3dXyuLdQT3e9nDn+cjBKP5efSr0tTd/n2PfV361mnSl4x099+617j8V9KZH5d6t0idw9Lxb5PO/ixCrxkAACAASURBVGR1dQErTMErP+bdXw8xCAAAAAAAAAAAAAAAAACw4rmCWIpDclCqJ94bafxwURDacFFQ2kF5m9O+/J6K6wIAl0zWccxPlh6PhnzaFtcgGO2gPblxWYV7X3W5xy1s4JyngiZzmVBjAQAAAABwIRitPd1VtN0fcX7xeL+/UhenNTzVGNMdYR/nl1kPAACgtUQJRjto7gnpgU9IP36BNPmraHOf/nlp4Izo+zxo7cmVz11tYqng/sKSXOHc/ur399BnS9t23iDd9GJp353Bc/tPlQZOlY5/i/SCrdIVu6UzPyZ1rKu+LmAFCROMdvt2yfNs/YsBAAAAAAAAAAAAAAAAANSNtdYZ1JJOEoxWTncsWjBacdicK3RICh+QAwBRuMIwh33CMP3agtZYjVxBc35mvAOaLUz79s0WpjVTCH8j+XH+DwAAAAAAVSIYrT19W9LSq7+PNsZ0Rph/StH248UDrLU7tTyALSHpggj7uLBo+9sR5gIAAKw8iQqC0Q7adYO09VPR5nQMSVveUPk+1xxf+dzVxuaC+72lwWjhX+hz2nVDadvWf5VsiCSoza+tfv9ACyiEzDub8H9dHgAAAAAAAAAAAAAAAADQIvYXJrVg5337XIE4OKwnHv49zjHFNJgcXtbWHe9Vb3yN7/goYTsAEMZsYVrTBf+bladT60vbHAGZHJ8Oixpi6Ro/EXGdCUeoKQAAAAAAYRGM1oastTsk3bqkKSnp4ghLXFa0faNj3HVF278XZnFjzAmSzlnSNCPpu+FKAwAAWKGSVQSjVaJjSDr69RVONtKaE2tZTXvLzwX3F5YEo+VrEIw2da9ki1KfHrs23Nzjrqx+/8AKZ60t+RFx2TlV31oAAAAAAAAAAAAAAAAAAPUVFG7jCsTBYVGC0QaTw4qbREm7M3goR/AQgNoKCt9KJ0dL2oZSpW2StCc3Ls8WalZXK4saEucaPx4x6IxzBAAAAACgWgSjta+ri7b/NMwkY8wzJD1tSZMn6VuO4V+UtPSvQ1cYY44NsZu/KNq+xlrHrVsAAABaRdL/Tmh10zkkJXqkZ30z+tz1z5M61tW+pnZVKBOM5i0JRsuVCUZbd6Z06U3l9/mzN0lexBdiL7lRindGmwO0IC9kKJok7dhXvzoAAAAAAAAAAAAAAAAAAPU37ghW6Yr1RAr9Wq164r2hx7oC0NKO4KGoYTsAUI4rfCtpUupPDJa0+4WlSVJBeU3mJ2paW6vKBITNRRkfNegs6n4BAAAAAChGMFr7ulrSfUu2LzLGBIajGWOGVRqodo219iG/8dbaByV9fklTStLnjDHONAZjzAslvX5JU1bSe4PqAgAAaAmJBr+xIvXki3qp/uhzz/nX2tbS7soFoxVCBqOtOUG64Bopfb7UVeYOhQ//m/TwZ6W7rpJ+ckX5Gs/4v9LwBeXHAW2g4IUfu3MqQooaAAAAAAAAAAAAAAAAAGDFcYVvpVNjMsY0uJrW0x2LEIyWcgSjOQLTJgi9AVBjmdwO3/ah5KhipvRyaNdxS5IyjpC11SZqiKVr/ETEx5PHHwAAAABQLYLR2pS1tiDprZKWXjL+EWPMPxhjBorHG2MukXSzpC1Lmicl/VWZXV315LiDzpP0PWPMCUXrdxhj3iLpq0XzP2Kt3V5mHwAAACtfo99YkVyz+G+8K9q87iPLh3JhuXLBaF728OfZPf5jNr5Uet69Uu/Ri9smWX6/P3+zdPffSo9fFzzu6DdIJ7y1/HpAm/AiZJ3tmKpfHQAAAAAAAAAAAAAAAACA+svk/ANahh1hXVguGUspZTpCjXUFDA0lR33bM9ldspYbmAKoHXcYpv9xqDPWpb74Wv+1CG9UwRa0Jzfu27cukfZtd4Veus7Ha+MllysfWsezEe6IDQAAAABAEYLR2pi19gYthqMt9SeSdhtjfmKM+bIx5uvGmG2SbpB0zJJxWUmvsNY+UmYfj0u64snxB50v6V5jzG3GmK8YY66X9Jikj0tamgDxTUnvruBLAwAAWHkWHIFY9XIwiC3eHW1euZAvlCobjLYg3f8P0rdOlSZu9R8zctHy8LxYqnb1DT+zdmsBLaAQ4fXxnQSjAQAAAAAAAAAAAAAAAEBLG3eG5BCMFlZ3vDfUuLQjbG7Y8Vgv2HntL+yruC4AKOYKM3Mdn4L6XCFrq8lkbkIF5X37Tuw5zbfd9bi5/m9O7Dndtz1ns9qfnwxRJQAAAAAA/ghGa3PW2k9IulLS7JLmpKRnSHq5pBdK2lQ0bbekZ1trvxNyHz+S9CJJmSXNRtJZkl4q6bmSiuPjvyzp5dbaQqgvBAAAYKVrVjhVImIw2nF/Up862tmGlwT33/MB6Rdvk/bd5R6z5oTl28f8fvV1HTT23NqtBbSAKMFou6a4EyUAAAAAAAAAAAAAAAAAtCprrTOgJSgkB8v1xPtCjXMFoAU91gQPAagl5zE/IAxzKDXqv5YjyGs1yeTcx+iTHIFmU4VJLXjzy9qy3oKm8nsjrSNJ4wH7BwAAAACgHILRVgFr7SclPVXSv0s6EDB0l6T3SDreWntLxH18S9Ipkj4lKSjG/aeSXmKtfaW1dibKPgAAAFa0wXOkRLg3DVQtuebw553D0eZuuKK2tawGm14W3L/jf8qvseb4ojVfXnk9S41dLnX5v5ALtCsvQtbZDm5ECQAAAAAAAAAAAAAAAAAta39hnxbsvG+fK8QLpcIEoxnFNJj0f19yT7xPXTH/mzkHhe4AQBRzhVntL/i/+Xc4IKDR1Udwo/sxWBMf0BEdm53zJopC5Yq3l9rYeYx6Yv7nmaB5AAAAAACUk2h2AWgMa+1Dkl5jjOmSdL6kIyWNSspKyki601p7V5X7GJf0R8aYtz65j01P7mNG0hOSfmmtfaSafQAAAKxY8Q7pnE9Lt7xKsoX67uv0jyzZb2f4eSf+mbT25NrX0+56NkqnfkC68y8rm5/slzpHfNb8e+nO/11dbWd/orr5QAsqeOHH7pyqXx0AAAAAAAAAAAAAAAAAgPoKCrVJB4TkYLmeWG/ZMeuSaSVM0rfPGKN0ckyPLjxU0pfJEnoDoDaCQrTSAWGY6ZT/jcYncrtkrZUxpuraWlXG8ZimU6MaTKYVU0yeSt+cncnu0hEdRx3aHnecj2OKaTCZ1lBqVDPzB3zWIZwOAAAAAFA5gtFWGWvtnKTv1XkfWUk/rOc+AAAAVqRNL5MGTpN+/ofS+I/qs494t7TxxeHHP+M/pQMPSukLpKHzpFX8ol5VTn5X5cFoI8/yf9xP/itp9NLF75fJX0Rfd/BpUu/RldUEtLCowWir/Q0NAAAAAAAAAAAAAAAAANCqMjn/QJXOWLd642saXE3r6o6XD0ZLJ/2DhQ71pxzBaI7/IwCIynU8SZiEBhKDznlDjqDMrF3Q/sKk1ibW1aS+VuR6TNPJUcVNQuuSaU3kdvvMWx6o5gqtW5dMK24SSidHtX3+wbLrAAAAAAAQRazZBQAAAABtZc3x0ql/V5+1k2ukC74qpQbCz9lwhXTSX0jp8wlFq1b3kZXNG7vc3Td4tnTpT6RYKvq6J1UY1Aa0OM+GH5srSNl8/WoBAAAAAAAAAACoJ2PMe4wxtoqPzzX7awAAAACAaoxn/QNdhpNj3DAzgp54X9kxw6n1gf1pR/BQxvF/BABRuY75Q8lRxUzcOS+dcgc7rvZjVCbrH0yWTi0e013H9omiec51npzv+j9Y7Y8/AAAAAKA6iWYXAAAAALSdlPtuRKHEu6ULvykNnC6l+qW5XdLsY9LaU6REV+n4jrS0kClt795QXR1YzstVNq9vS3B/okfq3SLtvy/8moPnSEc8v7J6gBZnIwSjSdJcTupI1qcWAAAAAAAAAAAAAAAAAED9ZHL+gSoHA10QTnest+wYVzjOoX5X6E1up6y1BNUBqJorRKvc8akn1qeuWI/mvJnSNXO7dIxOrkl9rcazniZywYFmQ6lRaba0v/j86zofDz15bnAGrOV2cY4AAAAAAFQs1uwCAAAAgLbTMVR+TP+p7r7fulMaefZiKJokdY1Kg2f7h6JJ0lPf599+4jvL14HwFiYqm9cVfAc9SdJld4RczEibXild8BUp5r7rFdDOvKjBaNn61AEAAAAAAAAAAAAAAAAAqK9KQ3KwXE+8r+wYV/DZoX7HYz7nzWqmcKCiugBgqUrDMI0xSicd4Y1Z/2Cw1WAqv1c56/9G6oOP6bDj2J4pClQr3j7o4Pwhx+PPOQIAAAAAUA2C0QAAAIBaSw2UH/Pcn0tjly1vi3cvtvcdE21/m14q9R27vK33aGnTy6Otg2CDT6tsXtcR5cckuqTNrw0eE+uQXlGQzv+i1LOpslqANhAxF01zubqUAQAAAAAAAAAA0AyvkLQ5wgd30wIAAADQsqy1zpCc4TIhOVguVDBambC5oGAi1/8TAEThDsMMDm6U3Meo1Xx8coWZSYcfU1eg2d5cRnm7+CbsvM1pby7jO+7gfM4RAAAAAIB6SDS7AAAAAKDtxOLS+t+SdnzLPSaekp75X9L9H5UyN0mdaem4t0jrzoi+v9SAdOkt0n0fkiZ/KQ2cLh3/NqlzuPKvAaVGLpImbo0+L7km3Lgjf0d65Avu/o5ByZjo+wfajOdFG08wGgAAAAAAAAAAaCO7rLXbml0EAAAAADTCdGFK896cb1+5EC8s1x3vDew3Ms5wnIPWxPvVYTq1YOdL+sazO7W56/iqagSwus17c5oqTPr2DafWl53vOi+4wtZWA9fX3hPrO3RecAWaWXnam8toOLVee3MZWfm/gfvg/KBzRCa3i3MEAAAAAKAiBKMBAAAA9XDaB93BaGtPWfw3npJOfldt9tc5JJ3+odqsBX8nvH3x/3Tyl+Hn9D81fJjZ2HMkGUnWvz81EH6/QBvzHD8iLnPZ+tQBAAAAAAAAAAAAAAAAAKif8YAwm2FHkAv89ZQJRhtIDCkZSwaOMcZoKDWqJxa2lfRN5HZVUx4AaCLrPo6ECcNMp/zDHTO5nbLWyqzCG5RnHMfmpY/VUHLEPT+7U8Op9YHhcgfnB50jVnM4HQAAAACgOrFmFwAAAAC0pf6nSC94yL9vwxWNrQW10TEoXfLjaHOOenX4sYkeaeB0d39ybbR9A20qYi6a5nJ1KQMAAAAAAAAAAAAAAAAAUEeZnH+QSmesS71x3lMZRU+sL7A/HTJoLp10Bw8BQDVcx5G4EhpIDpWd7zo+zXmzmvEOVFVbq3IFki0NmkvFOtSfGPSf/2SwmitgrT8xqFSs49D2kPMcQXgmAAAAAKAyBKMBAAAA9dJ7tHTxj5YHWm14sXTyXzatJFQpGfzGkGWO/j3puD+Otv6zvuHuCwpNA1YRz4s2fp5gNAAAAAAAVowf3G/1J//h6Z1f9fSzh6PGnwMAAAAAAAAAVhNXSE46OSZjTIOraW3d8d7A/uHk+lDruALUMllCbwBUx3UcGUqNKG7iZecHBTyu1mOU8zxa9Fi5A812Bq9TNM8ZnukIaAMAAAAAoJxEswsAAAAA2trIs6QrxqW9d0jdR0o9G5pdEaoV75YKs/59Y8+VnvJeqWtU6tkUfe3uI6Tj3iI98I/L201c2vza6OsBbSjqJdNz2bqUAQAAAAAAIvr0jZ7e/P8OP7P/xx9YfeUPYvqd07l4DQAAAAAAAABQatwRpBIUfgN/qViHkialnPV/Q1065R9mUzIu6QhGc4TmAEBY47kdvu2u406xNfEBpUyHsnahpG8it1Obu46rqr5WY611BpKVBJqlRrV17p6ScQcD5dyhdcXr+P9fTeRWZzAdAAAAAKB6sWYXAAAAALS9eEpKn0soWrs46V3+7R2D0gXXSEPnVBaKdtAZH5GOf9viepLU/xTpmV+Xhp5W+ZpAG/EiJqPN5aJGqQEAAAAAgForeFb/+7rlz9FzBend/+U1qSIAAAAAAAAAwErnDnQhGK0SPfE+Z1/Yx9QVejNd2K/ZwnRFdQGAFHDMDxncaIzRUNJ/rCvYq51NF6a0YOd9+4qP5cVBaQdlngw0yziCzYrPHa51DhSmNO/NBdYLAAAAAICfRLMLAAAAAICWcvTrpK2flOaWvPi65kTpstukRE/168eS0pkfk874qFSYkxLd1a8JtBEv4vXSc7n61LGSzWWtJmel4T4pETfNLgcAAAAAAN28VZrwuR7qnh3Sjn1W6/t5/goAABDSm40xfy3pREmDknKS9kjaLukmSddba29sYn0AAAAAUBPWWmVy/iE5w45wLgTrjvVqn/b49rkCz0rGOUJvJOmmfd/VQHKootpckialLV0nqi+xtqbrNoJnC3piYbt2ZR/37R9IDGpT53FKxpINrgxovgVvXo/M/UYHClOH2nY6flaihGGmU2Pakd1e0j7uOJ+0i4LNa/v8Vu3JjR9qm8jtdo4vPpa7HuM9uV26bf9PtMexVsk6AeeSG/ddr/7EoLO/EnGT0KbOLRpMjtR0XQCAv8nchLbNP6i8Lb1IJ2U6tLnreK1J9DehMgAA0M4IRgMAAACAKHo2SpfeLN3/MWnfr6XBs6WT3lWbULSljCEUDfBhI46fy9aljBXrYzd4+ttvWk3NSWNrpX95TUy//VQuLgcAAAAANNf2Pe5n9PvnpPW8LxIAACCslxdtd0jqlbRJ0jMl/ZUx5nZJf2mt/V6jiwMAAACAWpku7NecN+vbFyUkB4f1xHt9241MYODZUv2JQSVM0jcM4esTX6iqviAvSr9Ol657Ud3Wr7Xp/H596on36+H5+wPHrUukdeWR79b6jo0Nqgxovodm79OndrxfM4UDocYPp9aHXtt1LJvI7gq9RqvJZHfqnx5/n8ZzO0KN74x1qTe+PGwynfJ/3PI2r6t3ftS5VnEQ2kBiUHElVFC+ZOx1mc+Hqq8SF/Y/Ty8ZfoNiJl63fQDAauZZT/898SV9Z++1geOMjK5I/54uXveCBlUGAABWg1izCwAAAACAltO7WTrr49IlP5RO/5DUsa7ZFQGrhhcxGW2u9P1Xbeu/77R6x1cXQ9EkaeeU9LJ/8fRowMXnAAAAAAA0W4GnrQAAALV2lqTvGmP+3hhT87unGGOGjTEnR/mQtKXWdQAAAABob5ncTmdfcRALwumO9/m29ycGlYylQq0RM7HQIWq1dF3m83po9r6G77dS35j497KhaJK0N5/RF3Z9vAEVAStDwRb02Z0fDh2KJrnDznzHOs4PQeeUVvel3Z8MHYomLYaLFv/JcKjC43rx/03MxDWUGqlorWr8aN//6FfTP2v4fgFgtbh/9s6yoWiSZGX1n5l/0+PzjzSgKgAAsFoQjAYAAAAAAFqGjRqMlq1PHSvRtXeUPjhzOemff8wV5gAAAACA5gp6Zjq7ip67AwAAVOEJSZ+W9PuSLpB0kqQTJJ0v6S2SvlM03kj6K0nvr0MtV0q6O+LHf9WhDgAAAABtbE9ut297h+nUmnh/g6tpDz3xXt/2qEFzzQqmu2fmF03Zb1TWWt1x4KbQ4x+d36pMtn1Dm4ClHpq7V/vye0KPjymudcnh0ONdIWoHClOa9+ZCr9MqDuSn9JvZuyLNSadKH6PueK96HOGZLr3xNeqK95S0VxqyVq3b9/+kKfsFgNXg9v03Rhof5XdhAACAcghGAwAAAAAALcOLGoyWq08dK9Ft2/wfnA9dTzAaAAAAAKC5goLOZxYaVwcAAEAL+rmk50raYK39A2vtZ6y1N1tr77PW/sZae4u19hPW2ssknS3pwaL57zLGvLDhVQMAAABAleYKs77taxPrZIxpcDXtYWPHFt/2zZ3HR1rnqM7jalFOZNOFqabsN6r9hUnNef7fvy67s0/UqRpgZdm58Fik8Zs6j1HcxEOP9wv9OqgdAwjHszsiz3Edw2t1LtjcpHPEruzjTdkvAKwGUX9X5XdbAABQSwSjAQAAAACAlhE1GG02W586VqL7d7n7DswTjgYAAAAAaJ75gOBygtEAAADcrLXfstZ+19qgqNlDY2+X9HRJDxR1fdCYCFeQAgAAAMAKsGDnfds7Yp0NrqR9nN53rvoTg8vaumLduqD/0kjrnLv2IvXE+2pZWigFFRq+z0pUEr6UyQW8+Q9oI7sjBnldvO4FkcYPJIYUV8K3rx1/zqJ+TX3xtTpnzbN9+y4aeL5iIS83jymmiwae79t33tpL1BNr/Dkik92lgm2N8wQAtJqo55t2POcCAIDm8X+WDwAAAAAAsAKVv+xnucmZ+tSxEvV0uC8mn5yR+nhPIAAAAACgSaYDws9WU6g5AABAvVlr9xpjXiHpdknmyeYTJD1b0vdqtJt/lvTViHO2SPqvGu0fAAAAwCqw4BGMVmt9iX796Ya/1zf3/Ie2zz+osdQGPX/oVRpMjkRaZ21inf5s44f03xNf1Lb5B5TzAu6OUoE5b0Y5W/rigbVeTfdTL64gCKOY4iauvC19vDJZwiOwOoxnn/BtT5kOdca6JS3+QWusY6Oe2X+5Tut7eqT1YyauweSwxnOlAWyVhBaudJmc/9cUV2JZgGUyltTmzuP1gqFXqy+x1nfOCT2n6o+P/Bv9YPIbenxhm/zu02CM0REdR+migefrhJ5TfdfpTw7qnZs+uHiOmHtQeZuv4Ctz8+RpujBV0l5QXntz40qnxmq6PwBY7eYKM77HXUnqMJ2+gdaZ7E5Za2WM8ZkFAAAQDcFoAAAAAACgZXgRg9EmpiNOaGFdSXcw2oGAC9ABAAAAAKi3mYDws5ms1eHMDgAAAFTLWvsLY8x3JT13SfNlqlEwmrV2XNJ4lDlc/AIAAAAgqgVvzredYLTqDKVG9fqxt1W9znBqTG9c/84aVFTq/+38R926//sl7Z5aIxht3BG+tKHzaG3o2Kybp24o6XOFGwHtZnfOPxjteUMv16XrXlSTfaRTY77BaBOO0MJW5gp7O7XvHL1p/Z9FXu/EntN0Ys9p1ZalkdQRetP6P696HT8L3rze/uDLfft2Z58gGA0AaswV+itJrx37E316x4dK2rN2QfsLk1qbWFfP0gAAwCoRa3YBAAAAAAAAYfncgCzQxHR96liJUgHx9/v93ycIAAAAAEBDuIK8y/UBAACgYtcXbT+1KVUAAAAAQIUWPP8/HhOM1v5ixv9yR8+2RjBaxieQSZKGk2NKJ/0De1zhRkA7yXoL2pvL+PaNpI6o2X5cP2eu0MJW5gp7SydHG1xJ43TEOjWQGPLtG8/6H38BAJVz/Z6aMEkd23VK5HkAAABREYwGAAAAAABahkcwmlPcuPsOzDeuDgAAAAAAigWFn81mG1cHAADAKrKtaDvdjCIAAAAAoFILnv8bnjpMV4MrQaPFFPdt91RocCWVyWQdQUWpMaVT/mFFe3LjKtjW+PqASmVyO2Xl/ybgmgajOX7OXCFirSzoeNPOhlPrfdt3E4wGADWXyfkHnKWTo+pNrFF3rNe3f9wxDwAAICqC0QAAAAAAQMsgGM1tIe/u208wGgAAAACgiYKC0YL6AAAAULG5om2SAwAAAAC0lAVb/LRmUUess8GVoNFixv9yR896Da4kOmttQHjEmNJJ/7CigvKazE3UszSg6VyhVTHFNZQcqdl+0kn/YLTJ/ISyXvu8MDlbmNaMd8C3z3WsaReuIL3x3BMNrgQA2l+5EE5XGGcmSzAaAACoDYLRAAAAAABAy7ARg9Gm5qRsPuKkFhUUjHZgfnU8BgAAAACAlWlmwf28dCbbwEIAAABWj6Giba6uBgAAANBSFjz/O0ESjNb+jONyR08rPxjtQGFK855/qF86NaahlH9gkyRnoBrQLnZn/UOrhpIjiptEzfbjCmiRpD258Zrtp9kyOf+gGskdDtcuhlPrfdtd4XsAgMq5Q39Hl/0bdh4AAEBUBKMBAAAAAICW4VWQ77VnuvZ1rETBwWiNqwMAAAAAgGKzAeFnQX0AAACo2DlF21wVCAAAAKClEIy2esWNIxjNrvxgtEzWHQAxnBxVZ6xLa+ID/nMDQo6AduAKRhtJHVHT/Qwmh50Bi+0U0uI63iRNSmsS/seZduH6ntmX3+MMpwQAVMZ1vkknF4NIXYGkmSy/2wIAgNogGA0AAAAAALQMW0Ew2r5V8Bq3tTYwGG0/wWgAAAAAgCbKB1yrlCs0rg4AAIDVwBjTKemKouYfNaEUAAAAAKiYOxitq8GVoNFcgUaeWiAYzRG61BnrVm98rSQpnRr1nxsQqga0g/EGBaMlTFLrkkO+fe0U0uIKUxxKjirmCJhsFyPJ9c4+jqUAUDsL3rymCpO+fUNP/k57MCCtWCa3U7aSi38AAACKtPczXAAAAAAA0Fa8SoLRZmtfx0qTLwSHxh0gGA0AAAAA0ERBz1nzBKMBAADU2l9IWnpFaUHS/zSpFgAAAACoyILnfzfMjlhngytBo8VN3Lfdsyv/BQVXMFo6OSpjzKHPo8wF2oG1VrsbFIwmBYe0tAtXAJgrfLGdrEumlTAJ377d2R0NrgYA2teEI4RTkoafPNemU/7n3HlvTtOFqbrUBQAAVheC0QAAAAAAQMsICkZLOP7KsRqC0Rbywf37CUYDAAAAAKxQBa/ZFQAAAKxMxpjXGGNGIs75fUlXFTV/zlq7vXaVAQAAAED9LVj/NzylDMFo7S5m/N8I6Gnlv6Aw7gwqGvP9fKlM1h08AbS6A4UpzXn+b+YdSa2v+f6GHAGEE230c+YOYvQ/xrSTmIk7v85xRwAfACA61++nMcU1kExLkoYd51xJGg8IVgMAAAiLYDQAAAAAANAybEAw2kCPf/u+uYBJbaJcMNoMwWgAAAAAgCYKemaeX/nXMQEAADTLGyU9Yoz5vDHmecYYxyshkjHmLGPM1yT9qySzpOsJSX9d5zoBAAAAoOYWPP83PHXECEZrd8ZxuaNnV/4LChlXMNqSAB9XmM9EbldLfI1AJXYHhFWNpI6o+f6cAYSOMLFW5Ap5SwcE1LSTYcf3ze7sjgZXAgDty3XeHEqOKG7ikqTe+Fp1LmRZYgAAIABJREFUxrr85zt+NwYAAIgi0ewCAAAAAAAAwvIcV1IbI/V3SZkDpX37/G8y11bKBaOV6wcAAAAAoJ6Cgs7zhcbVAQAA0IK6JL32yQ/PGPOgpG2SpiQVJA1KOlXSiM/cvZIus9b6XyUJAAAAACtUwRaUtznfPoLR2t/BkIVinl3ZLyhYa53hEcNLQppcgU05m9X+/KT6k4N1qQ9oJlcwWlesR73xtTXfnyscbE9uXAWbV9y09mXVC968pgqTvn2uY0y7GUmt923fnXOH8AEAonGG/qYOn2eNMUonx/TYwsOl89sokBQAADRPaz+DBwAAAAAAq4rrQuqYkfq7/fv2zdWvnpWiXPDZfC7gCnQAAAAAAOos6Flp3pWCDgAAgGIxScc/+VHO9yW93lr7eH1LAgAAAIDay3rzzr5OgtHanlHMt92T1+BKopkpHNCc538X13RySTCaI7BJksZzOwlGQ1tyBaONpI6QMabm+1sa2LKUJ097c5mWDw/LZN33QVh6vGlnI6kjfNvHsztkra3L9xUArDauYLPic006NeofjOYIVgMAAIjC/y+FAAAAAAAAK5DrWmkjqb/Lv2+f/3uN2kq2bDBaY+oAAAAAAMCPK+hckvKFxtUBAADQYv5B0pckbQ85fkbSdZIusdZeQigaAAAAgFa1EBCM1hFzvEkMbSPWosFo47kdzr6lIUzd8V71xPt8xxEegXYVFIxWD0MBAYSZnDtUrFVMOL6GmOIaSA41uJrmGE6u922f92a1v7CvwdUAQHtyBXEWB4y6Qjnb4ZwLAACaL9HsAgAAAAAAAMJyBaPFYlJ/t5FUOmA1BKMtlAtGK9MPAAAAAEA9BQWjPbC7cXUAAAC0EmvtdVoMOpMxpl/SyZI2SBqR1K3FG+PukzQp6T5Jd1lriZ0FAAAA0PIWbEAwmulsYCVohriJ+7Z7K/wpryvUrMN0ak28f1lbOjmqmcKB0jUIj0CbGs/6BweOpPzDrarVEevU2sQ6TeX3lvRlsjulntPrst9GyeT8jzdDyRHnMbTdDAd874xnd2htYqCB1QBA+8l5WU3mJ3z70kUBpK5jMqG/AACgFghGAwAAAAAALcN1IXXMSGu7/fum5upXz0pRNhgt15g6AAAAAACI6je7pR37rNb3m2aXAgAAsGJZa/dJurnZdQAAAABAIyx47jd8dcQIRmt3xsR82z3rNbiSaFyhZunUmIxZ/hpIOjmmbfMPlq5BeATaUN7mNOH4+RhJHVG3/aaTo/7BaG0QQOg6VqRTo77t7ag3vkbdsV7NetMlfePZHTq2++QmVAUA7WMit1tW/hfvpFNjy7eT/uefWW9aM4UD6on31bw+AACwevj/pRAAAAAAAGAF8hzBaEZSn+M9bwfmHZPayEKZ4DOC0QAAAAAAzVTumfm1d7T/c3cAAAAAAAAAQDjz3ryzL0UwWtuLOS53tFrhwWiuoKLkWGlbqrRNkjI5gtHQfiayu+U5fn7rG4zm+DlrgwBCV7jbkCOYph0ZYzScWu/btzv7RIOrAYD24/q91CimweTwsjbX77ZSe5x3AQBAcxGMBgAAAAAAWobrMulYTFrjDEarWzkrRrYQ3E8wGgAAAACgmWyZ3LO3fYVgNAAAAAAAAADAogVHMFrSpBQ38QZXg0aLOf6PC7bMm+SabNwRHuEXFJF2hBdN5HbJlntRBWgxrpAqI+MML6uFdMr/56wdAgidQYwBwTTtyBWsN57b0eBKAKD9ZLL+IZzrkmklTHJZ25r4gFKmw3+dNjjvAgCA5iIYDQAAAAAAtAzPcdNHI6nPEYy2fxUEo7kel4MIRgMAAAAANBOX8AAAAAAAAAAAwnIFo3XEHG8QQ1uJOS53tCrzJrkmcwYV+YSgucKL5r05TRemaloX0GyuYLR1yWElY6m67XfIEbo2kdstz67s40mQnJfTZH7Ct88VutiuhlPrfdtd33MAgPBcgWZ+5xpjjPP323HH78gAAABhEYwGAAAAAABahue4kjpm3MFoB1ZBMFqhzBXmcwSjAQAAAACayJKMBgAAAAAAAAAIacGb821PmY4GV4JmiBn/yx29FRyMNlM4oFlv2rfPL7gnKLxoPLerZnUBK8HunH9I1UjqiLrudzjl/3OWtznty++p677raW9+XNZxW6q0IwyuXbm+hzLZXSrYQoOrAYD24gz9dQSguX6/dQWsAQCA/5+9O4+O5Czsvf+r6kVSt7bRqFujGW941djgGTtgsyRsISwhQGLWhPAmARJ4sydkuQnJzfoGSHJzk8ube8EkkJATDA4xEAw2YFZjY8DYI49taWzP2GN7tHRLo7VbvVbdP8Zjy9P1VFdL3a1evp9zOBxXtaofaaqrt3q+haAIowEAAAAAgLZhmkdt29JgF4fRnCrnfOUIowEAAAAAdhBhNAAAAAAAAABAUHnX+4SvHruvySPBTrAV8lzeypEbUzhC8o5H9IeG1GvYn/22BbSjVGHGc/mYRzSwnkZ9AoTpNg4QpgzHCEuWdkfGmjyanZWMeO9DjspaLM43eTQA0FlMQTNTAM0UTEsX2vc5FwAAtAbCaAAAAAAAoG2YAmCWpIFey3PdaheE0cpVJpi3exjtnsdd/fS1ji7+o7L2/3FZb/tnR48sMKseAAAAANoF7+AAAAAAAAAAAEHlHVMYzXDlTHQU2/Ke7ui6Va4euoNShnBE1OrRUGhXxXLLspSIGOIRhm0B7Wq+cMJz+VhkX0PvNxbqVzw04LluoY0jLQuGqNuu8KgidqTJo9lZSUOER5LmDUE+AEB1Zbekk8W05zrTa1he2wIAgEYhjAYAAAAAANqGaSK1bUkDhvPeCiWpUOrsKdimYNxpJUcqVauntaipWVc//AFHn7rT1UMp6ci89O/fdXXVXzlaXG/P3wkAAAAAAAAAAAAAAACAtwJhtK5mG6Y7OmrdMFq64B18SETHZVneF3xNRPd4Lm/nYBNwpkx5TevlVc91Y9HGhtGkzoy0mI833seUTha1ezQSTniuSxmCfACA6haLaeNr74QhSmlavl5eVba8XrexAQCA7kMYDQAAAAAAtA3H9Q5hWZY06HPe25r3uXIdI0jzLF9q/Dga4R+/7mo9X7l8YV36h68SRgMAAACAdmB4Ow8AAAAAAAAAQIU8YbSuZlshz+WO28JhNENkKRExh4o6MdgEnGneJ07VnDCa92PQFBdrB+bjjfcxpdMlo3s9l88XZpo8EgDoHH6vR0cjY57L/V73LhQJ/wIAgK0jjAYAAAAAANqGYzi3ybakAZ/z3lY7PYwW4JyvXLHx42iE24+aZ8/fcBcz6wEAAACgHfDuDQAAAAAAAAAQlDGMZvU1eSTYCbZhuqOjcpNHElzKEFlKRM2holFjsIlwBDqHKYzWY/VqKDzS8Ps3PQbTbRxoMR0jTMeUTmcK7PlF+QAA/kwB0eHwbkXtHuO6sBXxXJfi9S0AANgGwmgAAAAAAKBtmCZSVw2jbTRkOC3DcatPMW/HMJrjuDri8z3Y/bPSg/NMrwcAAACAVhfgbSsAAAAAAAAAAJKkvOt9sleP7XOCGDqGbRnCaG6Aq4fukHTREEaLmMNopmBTxllTprxWl3EBO22+MOO5PBndK8uyGn7/CWOAcFZuG36BWXbLWiymPNf5hRg7WTK613N5qui97wEAqtvKa1vbss3Pu4btAQAABEEYDQAAAAAQSHrN1d99xdF7P+PopsPt92UwOoNj2PUsSxr2uSDo/GpjxtMqygHO+WrHMNpjS9JGlXF/bpLjEQAAAAC0ujacVwAAAAAAAAAA2CF5J+e5nDBad7AN0x0dtWYYLVteN4bMkj6hoqRPWCJd8LmaKNBG5gsnPJePRfc15f5HDY/BvJvTenmlKWOop6Xigsoqea7zi9V0MtO+tFI6qZzT4VfVBoAGMb0W9XttK5kjnekCYTQAALB1hNEAAAAAAFUdX3R15V84+p3/cPW+m1y9+oOOfvv61jzJBJ3NNJHatqRI2FJywHv9zEpnz8A2BeM2qxYYa0XH0tVvc+sDnf1vCwAAAACdIMg7t2KJ93cAAAAAAAAAAMJo3c62Qp7LHbc1z1lNF80RM79Q0WB4lyJW1LBN4hHoDKkdDqMlI3uM61I+j91WteAz5tHoWBNH0jrGonuN61KFmSaOBAA6h+m1aLUIZ8LwvMtrWwAAsB2E0QAAAAAAVf3lF1ydWH76sn/4qqvJx5iwiuYyBcAs69T/7x32Xn9iqTHjaRXlAOd8FbwvEtfSsoXqt5luv3NTAAAAAAAe2jHoDQAAAAAAAACoP3MYra/JI8FOsA3THR21ZhjNFN6JWFENhUeMP2dbtjEe4Rc/AtqF45aNIZRmhdH6Q0PqNTx3pAvtF2lJGf6eg6Fdxt+z0+0KjypsRTzXzRvCfAAAM8cta6Ew77kuETUHRyVzOC1d4LUtAADYOsJoAAAAAICqbnuoskblutL7biKMhuYyhdHsJ8Jo+0xhtGXv5Z3C9HfZrFBu/DjqrRTgXLZjC1KhxLEIAAAAAFqZG+BtW5A4NgAAAAAAAACg85nDaL1NHgl2gm15T3d05cgN8oVDk5niSqORPcbf5bRE1BSPaL9gE3CmxWJKJdf7ir7NCqNZlqXRDgoQmo4N1UI1ncy2QkoaQjymcCUAwGyptKCyvJ+/TeGzJ9cbXtuulpeUcza2PTYAANCdCKMBAAAAAKqaNnz3e/2drXeSCTqb6bym02G0vcOW5/qZ5c7eV8sBAmIF7++nWloxQMyt7EhH040fCwAAAABg64K8K98oNnwYAAAAAAAAAIA2kDdMmu+xepo8EuwE22e6o6MAJ8o1WdoQV0oawhCbmYJNpm0C7WS+cMK4Lhnd27RxmCIu7RggNMXcEoZjSbcw7U9++yAAwFu6YH4dOlolxOkXTlvw2S4AAIAfwmgAAAAAAKBtOIaZ1NYTPbTxIe/1C+uNGU+r6NwwWrCg3fHFBg8EAAAAALAtptD5Zmu5xo8DAAAAAAAAAND68q73B8Y9dl+TR4KdYFkh4zrHbcEwmiGu5BeGePI2hnhaOwabgDPNF2Y8lw+Hd6vH7m3aOIyPs2L7Pc6Mx5sAIcZONhbd57k8ZdgHAQBmKcPz42Bol3qrvB/bFRlVSGHPde34vAsAAFoDYTQAAAAAwLas5YKFi4B6ME2ktp8Iow0ZvmtZzzdmPK3CFIzbrFBu/DjqrRhwzCeWOQ4BAAAAQCsjjAYAAAAAAAAACMJ1XeUd75O9mhnSwc4J+Ux3dNR6J8GZ4hFBQkVJQzxttbysnLOxrXEBO22+cMJzuSli1SiJyB7P5eniXFPHsV2u6xrHPGr4HbtFMrrXc/l84YTcIF9UAwCeZI5wVn+uCVkh7Y4kDdttr+ddAADQOgijAQAAAAB8VftCcHalSQMBZA6AWU+E0foN5751+uTqcoALYRZKjR9HvZUCnsc2s9zYcQAAAAAAtifI6earzO8BAAAAAAAAgK5XdAty5X0yFGG07mBbPmE0N8CJck20Uc5ovex9Eq0pxvS02/gEJhaIR6DNtUwYzfA4y5TXlC2vN3Us27FSXlLRLXiuSxgii93CtE/l3ZxWy0tNHg0AtLe0KfobMMJpigObtgsAAFANYTQAAAAAgK98lZjSLEEiNJGp02c/EUYb6PFe3+lhNFMwbrN8qf2uelYMGEY7wXEIAAAAAFpakAtxr2y03/tWAAAAAAAAAEB95R3ziV6E0bqD5TPd0RTN2ynpojlelozurfrzu8KjCils2DbxCLS3VKuE0XyiYX6P4VaTLpiPCUlDhKZb+B1vTYE+AIC3tCHOawqeVdzO8LybKsxseUwAAKC7EUYDAAAAAPja8L641JNmV5i0iuYxBcCeDKP1Wp7r1/MNGlCLKAc436tQJXLYioKG0WaXOQ4BAAAAQLtb7fCoOQAAAAAAAACgOt8wmtXXxJFgp4SskHFd2Q14QlmTmEJFYSui4fDuqj9vWyHtjiQN226fYBNwpo1yVivlJc91zQ6jDYVHFLYinuva6XG2YIi4xex+xUL9TR5Na+kPDSoeGvBcR4gHAIJzXMf4fOMXGn3a7aJ7PJe3U4wUAAC0FsJoAAAAAABfG0X/9fNrzRkHIJnDaNYTPbT+Hu/1uaJUKnduPCtQGK21zgkLJGgY7cRyY8cBAAAAANieIO/ICaMBAAAAAAAAAPLuhnFdj93bxJFgp1g+0x0dBThRrolSRe8w2mhkTLYVbNpmIuodmUgbtg20g1TRHKMai+5t4kgk27KViJgiLe3zOEsZQoymY0i3SUa896v5wokmjwQA2tdK6aSKbsFzXdDnm6QhoLZcWlTByW95bADQbR7NHdVD2fu0Ujop1+3c+ZBAEOGdHgAAAAAAoLVteH+u/aRV83lIQN2ZPsuznwijDfic+7aWk3bF6z+mVmAKxm1WKDV+HPVWCnge2wxhNAAAAABoaUHOzeEzJgAAAAAAAABA3jFfRYMwWnfwC4q99+g7Zcna0naHI7t1Rf/z9LrEzypk1Tal0nVdfX35Rt2+/BXNF54KPjnyvvJnwhCEqOW2t618RXesfL2mcW7WG+rTxX3P1JvGflFD4ZEtbwc47YHsYX1+4RN6NHdUjut/cqdriBhGrKh2hRONGJ6vRHRcs4XHKpbfuPAJfXHhU00fz1aYjzfe0bduMxbdq4dzRyqWf23p8/rG0he3vN14qF/741fojcl3KBbq384Qm+r+zN26afH6QI/XzWKhuCZiB/XGsXeoPzTYwBECrc1xHT2eP6apzKSms4c0VzihXrtPL9n1Gr1w+JVNGcPDGw/o8wv/roc3jqjkbn8iSDw0oEvjB/XG5DvVF/KeVOMXDA36fOMXUPvtB39my6/lTWzL1rm9F+o5gy/SC4ZeJtsK1XX7ALBTvnzyBt21dpskKWr1aDSyR4nouK4ceJ6eM/iiHR4d0FyE0QAAAAAAvnJVPkNfNZ+HBNSdKQB2+usRvzDaer5zw2jlAN9ZF7zPiWhpxYBjnl+TiiVXkXB9vygDAAAAANRHoDAanzEBAAAAAAAAQNczhdEs2YpY0SaPBjshJHPMwBQGCmKxOK9blj6rjLOmt+35tZp+9utLn9en0x8NfPukTxDiTImoOTJR1tYjGJnymu5e/44eyx/TnzzjH2uOwQGbPZo7qg8+9mfb2ielUyFAv/hho4waYi6u3G3/TjvN7xjSTZLRfZ7Lt/tvvFpe1ndXv675wgn97jkfkGW1/nnKR7NT+t+P/+WWnjPXyiv6/to3NVM4rj849+925PEK7JTFYkrTmUlNZQ/pSPYeZcprT1u/IumT8x+S6zp60a4fb+hY5vKP64OP/4lyTv2uMLhaXtIdq1/XfGFGv3PO+z2PZ+nCnOfPxkMDgeOQI5GEbNlyPCKp23ktb1J2pYc27tdDG/fr28tf0k+PvVvn9V1c9/sBgGZLF56KVRbcvGYKxzVTOK69Pefs4KiAncG7EgAAAACAr42C//rV+n3WDlRlmkdtP/EJR3+P+WeXsnUfTsswBeM2K7ThuRtBw2iueyqOBgAAAABoTQHetvIZEwAAAAAAAADAGEbrsXvbIkaC7bMaHGH53so3K0IXflzX1deXb6zpPhKR4GG0ZA233YqF4rwOr9/Z0PtA57t1+ea6BMTGDPGqRksYwmidoJbjTScbi+5t6PYfyT2g47kHG3of9XL7yi3bjg+dyD+ihzeO1GlEQGvaKGd0aO0OfXL+w/rTY7+sPz72S/r3+X/UXWu3+b5W/Gz641opnWzo2H6w9u26RtE2ezh3RMdzD3muSxdnPZfX8lwTtiIaiSS2NLbteix/TH/z6O/rurkPKVte35ExAEA9uK6rdNE7Vsnrf3QjwmgAAAAAAF8bRf/1a97nIQEN4VReOEaSZD9xzttAr/ln/+ZLQaZht6ey4e+yWTuG0UoBfq/TTiw1bhwAAAAAgO1xA7wlX93o3PftAAAAAAAAAIBg8oYAQI/lc8VMdJT+0KBCCjds+2WVdCL/SODbZ8prWiymarqPPT1nNeS2W/Vo7mjD7wOdrV770N6ec+qynVrt6Tl7R+63GfZEG38MaQd7e85t+H2YQkKt5vH8wy21HaBVlN2SHsrerxsXrtPfHP99/e5Db9O1M+/Xt5ZvUqo4E3g7eTen/1r49waOVJrJP9rQ7T9qOJ7NF7z/DrUGRvdEd+5515WrW1du1p8+/Cv6zspX5QY5YQkAWsx6eVU5J+u5rpOjz4BJ4z4lBAAAAAB0hI2C/3omraKZHMPudvpaoPEeybK8J1x/52jn7qumv8tm+TYMoxVruGDZzErjxgEAAAAA2J4g78hXie8DAAAAAAAAQNfLO94fFvfYfU0eCXZKj92rS2LP0v3Zuxt2H+nCnC6OPSvQbWsJZUjSrvCoLuy7NPDtd0fGdH7vhI7lpmu6n1qki7MN2zY6n+u6dduHnjP4orpsp1YX9l2q4fBuLZcWd+T+GyURGde5vRft9DBawlh0n87pvdAY+6mHdHGuYduup6yz3lLbAXaK67pKFWc0lTmk6eykHsgeVs4QYa7VHStf04uGf1zn9F5Ql+2dyVENkyi2wPS8njKE0cai+2ra/lWDL9K9mTtrHlc9rZdX9G9zH9TtK7foLWPv0r6e83Z0PABQiwWf152J6HgTRwK0BnunBwAAAAAAaG0bRf/1TFpFM5kmUttPfMJhWZZnFE2SIqGGDKkllJ3qtyk09vuxhqgljLaw3rnhOwAAAADoBqv1Of8UAAAAAAAAANDG8m7ec3mP3dvkkWAn/dz4b+ic3gsbtv1aYmfpQvAg1HB4t9697w9lW7WdrPgLe39L49FzavqZWtTyOwBnWi+vbjskE7Yi+vnx31Jyhybxh6yQ/t9979VwePeO3H8jjIQTete+/ybLsqrfuEu8ffw9Ncd7atEux9JMuT5Bs3ptB2imtdKK7ly9Vf8290H90bFf1J89/Cu6PvUR3bP+vbpF0STJlatPpz4q1zRxZZvKbqPDaJXBHcctG4NpyejemrZ/5cAL9PKRa2Rp55+jjm5M6X2P/LZuSP1LXfcBAGiklOF1Z4/Vq4HQUJNHA+y88E4PAAAAAADQ2jYK/h/WE0ZDMzmGANjmr0x+dEL6qsfFE5c7+HuMQGG0UuPHUW+1hdEaNw4AAAAAwPYEOReUz5gAAAAAAAAAAHnDZHXCaN1lIDys/3bu32qhMKeUIdAQxC0nP6vp7GTF8lriNqb7T0b26k1jv/jkfw+EhrSv59yao2iStDsypj867x80V3hcS6WFmn/+tAeyh/XlkzdULE8XZ+W6LgElbIkpkiJJ79z7e+q1+3x/Pmr16JzeCxS1e+o9tJqc3Xu+/vL8a3Uif1xr5ZUdHct2DYaGtbfnXNmWvdNDaSnJ6Lj++LwPaq7wuJZLi1vezt1rt+u2la9ULPd7LLSKsltWzsl6rvupxM9rX8+5Fcu/cvIzOpK9p2J5trxW9/EB9VZ0Cjq6MaWp7CFNZyb1WP5YXbcftsIKW1HPx9VDG/fp0Pp3dMXA8+t6n5LkyntyyBX9z9cLhn8s8HbuWrtNt6/cUrHc67XwyeKCSm7Rczu1Ridty9ZPJv4fvXzkGj2WO6ayGhN6c11H3175sibXv+t7O0eObln6rO5cu1VvSL5DV/Q/j9fFAFqa6XVnIjrO8QtdiTAaAAAAAMBXrkpMabWDY1NoPaZ51Pamz/V+82W2vjpd+WXQsvf3vB3BCTDBvB3DaCXCaAAAAADQEYKE0Vb4jAkAAAAAAAAAul7e8b6KBmG07jQa3aPR6J4t//yxjWnvMFpxLvA2TBG1fT3n6dL4FVse25ksy9J4z9ka7zl7y9vosXo9w2gbTlaZ8pr6w4PbGSK6VLrg/XjpsXrbLixiWyGd3Xv+Tg8DDWRbtvb2nKO9PedseRs5J+sZRlsozslxy1sKYDbLRjljXDcRu9xz/z+8/n3PMFqmzInZaD2O62gmf1xT2UlNZw7poY37VXQLdb2PfT3naSJ2QPvjB3Vh36Wazk7qQyf+yvO2N6T/Vc+MP1sRO1rXMTiudxgtEd1T0+vPbDnjHUYrzslxnacFNlPFGeN2EtHxwPe5WSzUr0vil2/pZ4O6rP+HdHj9+7o+9REtFlO+t10uLeqfZv5al8au0JvGfknJLf5eANBopvdgiQjHLXQnwmgAAAAAAF9574t+PGnV+zwkoCFMATB700XPhmPet8mXpFzRVW+kfU7CCKrs/d3X0xQac6GdhirWMOZFvn8HAAAAgJYVoIvGZ0wAAAAAAAAAAMJoqCvTpOF0YVau6wYKOqUK3pGIVgwp+EUr0sVZwmjYknTROw44Gt3TVlE0ICjTc0fJLWmptKjdkWSTRxRcxlkzrouHBmpannU4MRutYbm4qKnsIU1nJjWdndRaeaWu2x8Kj2h/7IAm4gc1ETugwfDw09Y/K/4cTcQOeMZ2F4vz+vrSjXr57mvqOiZH3pNDLNmey02ShsBwyS1qubSokUjiyWXzhROetx0O71av3VfT/Tbbs/qfo0til+tLJz+tr5z8jEpuyff292fv1l8+8ut6+cg1esXI6+setgOA7TK9B0tsIxwPtDPCaAAAAAAAX6YQ1WmrGwp8ggiwXY4hALZ57zOF0SRpKSOND5vXt6tqj1NJKvp/v9OSSjWF0YJMswcAAAAA7AQ3wFu2TF4qO65CNp8xAQAAAAAAAEC3MobRrNaejI/WlIzu9VxecPNaKS9pODzi+/Ou6xonJJu2vZMGQkPqsXqVdysfR6nCjJ7Rd8kOjArtbqE457k8EWFSPjrTqM++nS7MtnQYLVs2x8xiof6alvttC2iknLOhB7P3aiozqensIc0VHq/r9nusXl0Yu+zJGNp49GzfuVCWZen1yV/QXz3y23I9gmU3n/wPXT30Eg2Fd9VtjI7rPYkiZIVq2o7v8aw497QwmjkG3Hqveb1E7R69ZvStumrwxfpAI2cQAAAgAElEQVTU/LWeIbvNSm5RX1z8lL6/+k29KfmLuqz/h5o0UgCozhhGMwR8gU5HGA0AAAAA4KtacKnkSLmi1MdFMtAEpt1x85zpYZ9z4JY3OjOMVjYE4zbLt2EYrVhDGG2B798BAAAAoGUFTVmv5fyD5wAAAAAAAACAzpZ3NzyX99i9TR4JOkEiao5BpAozVcNo6+VVbThZ7223YBTKsiwlouN6PP9wxbq0IW4FVJMueO87frEVoJ31hWIaCA1prbxSsS5dnNOEDuzAqILJlNc8l4cUVo/l/VoqbnuH0TKE0dAkjlvW8dxRTWXu1nR2Usc2jshRDZMIqrBk69zeCzQRO6iJ+AGd33eJwlakpm3s6zlPPzz0ct26cnPFupyzoRsXPqG37vmVeg1ZjkeATZJs2TVtJxbqV39oUOvl1Yp16cKsLok968n/ni+c8NzGWGRfTfe508ai+/RrZ/2pfrB2m/4z9c9aKS/53j5dnNM/nvgLXdH/PL0++fanxeIAYCdky+vG13R+n3EAnYwwGgAAAADAV7UwmiStbBBGQ3OY9sfNF+nxm0C97H2OUtsL8jgtlIJOQ28dpQDBt9MIowEAAABA+1vdIIwGAAAAAAAAAN0s7+Q8lxNGw1b0hwYVs/uVdSpPLksXZnVx7Jm+P58qzhrXJaJ7tz2+RkhEDGG0gvl3AfyYonrJ6HiTRwI0TyIy7h1Ga/FjqSlmFg/1y9p8sv0msdCA5/KssybXdY0/B2xHujCrqeykpjOHdCR7WBtOpq7bH42MaSJ2UPvjB3RJ7HLFQt4BwFr8xOhP6/tr31LOI5p7+8oteuHwq3R27/nbvh9JclzvSRSWVVsYTTp1PPMMo53xOjdVmPH8+WSLvub1Y1mWnj34w7osfqW+sHidvrH0BWNs7rS717+j+zN368dH36yX7nqNQhYJFgA7Y8Enap6I8B4M3YlnZQAAAACAr3KAMNFqTtoz1PixdLp//66j67/vyrakt1xl6c3Pqf2Li07nGtpe9qbvXGNRKWx7R7U6NYwW5HFaqN+Fk5qmWA4ecyOMBgAAAACty/R+/kwrG40dBwAAAAAAAACgtRFGQ70louM6nnuwYvmZMQgvpgBOj9WrwdDwtsfWCAlDrCrI7wucaaOc1bpHHEqSRiN7mjwaoHkS0XEdy01XLG/1Y6lXCFSSbxQqblhXcksquHn1WLwGw/Zlyms6kj2s6cwhTWUntVicr+v2++y4JmKXayJ+UPtjBzQarf9z1EB4SD+++026If0vFetcufp06p/1m2f/ZV1igq4h4hVSqOZtJaJ79HDuSMXyza9zC05eJ0tpz58fa8Mw2ml9oZjekHyHnjv4Ul03/yHPv8NmeTenz6T/VXesfF1vGXuXLopd1qSRAsBTUgXvMFrEimooPNLk0QCtgTAaAAAAAMCXE2Di6iqTVrftAzc7+oMbnvpjf27S1cyyo9/6MeJom5n2x81hNMuyNBzzDmXNrbqSOu/KVUH6Ybli48dRb8UaYm4rG1Kx5CoS7rx/XwAAAABod0HDaKve890AAAAAAAAAAF3CFEaLEkbDFiUjhjCaIXr2tNsUZzyXJ6LjdYleNELCEKtKGyZXA34Wiub9xhThAzqB+Vja2mG0THnNc3k8NGD8Gb91mfIacVpsSckt6tjGtKYyk5rOTurR3FFj7GsrQgrrGX2XaH/8gCZiB3Vu7wWyrdqjYbV68a5X69blL3lGEh/cuE+T69/VwYHnbvt+yq73JArLqn1uUSJiiuY+9Ryf8jm2JaP7ar7PVnNW7zP0nnPepztWv6bPpP/VeKw8bbbwqP7nY+/V1YMv0TWJn9NAuDWDyAA6kynEOxoZk72F5wGgExBGAwAAAAD4ChRGY9LqtuSKrv765so/9PtucvUrL3EVJfT0JNP+eOY5Ruft9g6jHanvxYVahhPge8KVNgwY1hJGk6STWWlssDFjAQAAAABsXcAuGvF9AAAAAAAAAOhyecf7g+IeiygHtsYUb0oZJhs/7TaGSESyhYNQpt8346wpU17zDeAAZzJNyg8prF3h3U0eDdA8yehez+Xp4pwc12nZKEW27HHyvKSY3W/8Gb912fK6RiKJbY8Lnc91Xc0WHtN05pCmspN6KHuf8m59JxmNR8/WxBMhtItil6nX7qvr9oMIWxFdk/h5fXjmfZ7rb0h/TJfFf0gRO7Kt+zFF5GxtIYxmeG2YLszKdV1ZlqWUIQYcUli7I8ma77MV2Zat5w+9TJf3X6XPpf9Nt618perPfHf167pn/Xt63ejP6oeHX96U+B4AmEK8hKnRzQijAQAAAAB8BQkuMWl1e+5+VFrKVi5fWJfuPSFdeW7zx9SqXMNMavuMMNrEHkt3Hq+88ZHZoFOx20s5wK+17LGPtbpSjWG0hXXCaN3okQVXKxvSubul4RghSQAAAKAVmd7Pn2k150ridT0AAAAAAAAAdKuCm/dc3rMD4QN0hkSkegzCxDghOeIdzGkFScPvK0npwpzifYTREFy6MOe5fDQ6RhwEHc0Unii6Ba2WljQcac0wYMYQRouHfMJoPusyjvf2AElaKS1pOjOp6eyp/62UTtZ1+4OhYV0SO6D98QOaiB1omcfd5f1X6ZLYs3Qke7hi3UJxXt9YvlE/NvJT27oPxzWE0bYQZTS9Fi64ea2UlzQcHtF84YTnbUajexTqsOf7/tCg3rrnV/T8oZfpuvkP6fH8w76333Ay+mTqw7p99av66bF369zeC5s0UgDdyhSnTkT2NHkkQOsgjAYAAAAA8OUEmLjKpNXtOTJv/iM/MO/qynP5255m2h/PPDfpYsPnfdPe52i0vSABw+U2DBgWaw2jrTVmHGhNjuPqlz/h6p9udeW40nBM+sjbbL3+hzhmAgAAAK0maKZ8tb4XDAYAAAAAAAAAtJm84/1BcY/d2+SRoFMkDXGbzTEIL67rKmWYkGzaZisYCo8oYkVVdAsV69LFWZ3Xd9EOjArtyjQpf5RJ+ehwfuGJVHGmZQJNZ8o63idSx0LmKGbICqnXjinnVF6BO1vmxGw8peDk9eDGfZrOHNJUZlIzheN13X7EiurCvks1ET+o/bGD2tdzrm/AdqdYlqXXJ96h9x3/bbmqnMRx0+L1unrwJRoMD2/5Psoe25UkW1sIo0XNx7N0YVbD4RGlCjOe68eirRsD3q5n9F2i3z/3b/Wt5Zv0+YVPeB4DN3s095D++vjv6keGX6nXjr7VNyoJANuxYIhTm0KXQDcgjAYAAAAA8BUojNaGwaVW8lDKvO4Bn3XdyDXsj/aZYbQx79s9tqSqV3lsR0Eep8vZ9vvdaw6jcWGyrvKx211d+62ndv7lrPTGDztK/Q9bowPts58DAAAA3cD0fv5MK3zGBAAAAAAAAABdq+yWPWNOEmE0bF3CJ2J2OgbhZb28YgwktPKEZMuylIiMe8ZK0gXvyBVgkmZSPrpULNSveGhAGY8wWLowp4tjz9qBUVWXKXufSB2vEvCJh/o9n/NM20N3cFxHj+ePaSozqansIR3bmFLJLdVt+5YsndXzDO2PH9RE7IAu6NuviB2t2/Yb6aze8/SCoZfp2ytfrliXczZ048In9DN7fnnL23ddQxjNCtW8rbg9oD47rg0nU7EuXZzVRbpM84UTnj+bjHRuGE06FYZ8ya6f0JUDz9cNqX/R99e+5Xt7V66+tXyT7l67XT+V+HldPfjitpqbA6D15Z2cVspLnuv8PtsAOh1hNAAAAACAryDBJSatbs9Rn/jZEe9zCrqWaX88M4x29i5LUuWNs4VT++twrP5j20mO93dfT1MsSxsFKdbT+PHUS+1hNFcSXy51i7+/xfuAkHyPo/KHbb5oBAAAANoQ8X0AAAAAAAAA6F4FJ2dc10sYDVvkF4NIFWZ0Uewyz59LFc0nbyajrR2JSEQNYTSf3wnwki56x/QS0T1NHgnQfInIuHcYzfC4aAVZQ8gsZvuH0WJ2vxZVOaHBtD10rsViStNPhNCOZO/xfAxsx0g4oYn4AU3EDmoidrn6w4N13X4zvWb0Z3Tn2q3KOZUnuty2coteOPwqndX7jC1t25H3JApbds3bsixLiei4Hs09VLEuXZiV67rGMNpYdF/N99eOhsIj+oW9v63nZ16mT6Y+bPx7nLZWXtHH5/5Bt6/coreMvUt7e85p0kgBdDpTmFqSEhHeg6F7EUYDAAAAAPgKEkbLeF+kEQFlCuY/8vRsgH+ALmLaH8/sH+0dNm/jxHLnhdHKAXeT5Y32CqOVAgTfNlvyvkAnOtDxRVf3zZjXf+9h6erzmzceAAAAAP7cgO9bV81z3gAAAAAAAAAAHS7vE0brsfuaOBJ0EsuylIzu1fHcgxXr/EJh6YL3yUm9dp8GQkN1G18jmCZMpwutG/NB6yk4eS2XFj3XMSkf3SARGdcjuQcqlrfysTTrGMJoIf8wWjw04Lk849Q3ioXWs1HO6Ej2sKazk5rOTCpV9Dk5ewt67Zgujj1T+2MHNRE/oGRkb8dc+HogPKxX7X6TPpP+14p1rhx9Ov1R/cZZf76l39dxvSdR2FbtYTRJSkYMYbTirNbLq54BYUkaa/EYcL1dEr9c7z3v73XLyc/ppsXrVXT9J8o9tHGf/uqR39JLd71GPz76ZvXynhXANpkCvLZC2hVJNHk0QOsgjAYAAAAA8OUECBOt5xs/jk5W8r6giyTpyLzkOK5suzO+ANou00TqM/884z7nHZ1Yki7rsO9oygEDYstZ/2hcqyn6PDa8EEbrHvf6X4hJnznk6urzOW4CAAAArSJo9n218kK6AAAAAAAAAIAukXd9wmhWbxNHgk6TiOzxDqMZ4meSlDKEbxKR8ZYPeiSj457LU4ZJ1oCXxWLKuC5h2MeATpKIGiKTLXosdVxHmbJ3GM0UPjvNFE7LGraH9lV2S3p44wFNZyc1lTmk47kH5ajGK5n7sGXrvN6LNRE/oP2xgzqv7yKFrM5NWbx4+Cd06/LNWijOV6x7IHtY96x/TwcGrq55u6Z/E1tbC6OZnrfThTmlfF4PJ6P7tnR/7SxsRfTK3W/QcwZ/RP+R+mfds/4939s7KuuWpc/qzrVb9cbkO3Ww/7kt/14BQOsyBXhHI2MKWaEmjwZoHZ37ahIAAAAAUBflADNXM4TRtsUv/pQtSI8tSefubt54Wplj2B/P/O4gGraUHJBSHheqOrHsSuqsLxsc0x/mDCttNsGcMBpMsv4XYNIt97vSNc0ZCwAAAIDqTKHzM63lgibUAAAAAAAAAACdJu+YT27qsQmjYeuSUe8rqfrFbUzr2iEIlYh4j3G9vKKNckZ9oXiTR4R2ZHoMWLK1O5Js8miA5jMdS9OFObmu23Lhm7yzIdcQU4rZ3uGz0+K2dzgtU/Y4ER9txXVdpYozmsoc0nR2Ug9kDyvn85p7K5KRvdofP6iJ2AFdHHtmV73OiNgRXZP4BV07837P9TekP6ZL41cqYkdq2q7jGsJo1hbDaKbjWXFW80Xvq5X32TENhIa2dH+dYHdkTO/e94e6Z/17un7+IzpZSvvefrm0qI/MfECXxa/Um5K/2BbvGQC0HvPnEN7BXqBbEEYDAAAAAPhyAlwAhjDa9pSq/I0fWSCMdpppIrXt8d3yvmHvMNpR/+8k2lKQgKEkrZovqtqSTGG0kC2VPR43yxkm0HeLQpWdfqPYpIEAAAAACCTou7V2C3oDAAAAAAAAAOon55hPbooSRsM2JCLek4j94japwoznzyQj3pG1VuIXYkgX53RO6IImjgbtKl2Y81w+EhlV2Kot8AK0o6ThWJp3c1otL2sovKvJI/KXKa8b18VD/mG0mGG93zbRutZKKzqSvUdT2UOazkxqqbRQ1+3HQwOaiB3QROyA9scPaiSSqOv2282B/qt1Ud8z9eDGvRXr0sU5fXP5C3rZyE/WtE3HEDm0FNrSGE2vDXPOho5mpzzXJaP7Wi4AuRMu779KE7EDunnx0/rKyc+orJLv7e/L3KW/eOTX9YqR1+vlI9coYkebNFIAnWCh6P0ezBS4BLoFYTQAAAAAgC8nwMzVTJ4Y0XaUDPGn004su5L4UkEy749eYbSLxizd/VjlD0zPdt7+GiRgKEn5NotFmR4biX5pbrVy+TIT6LtGwf87xarHVQAAAADNZQqdn4kwGgAAAAAAAAB0r7whjBa2IgpZW4sAAJKUjHrHzE7FbZY0FB552nLXdZUuzhq21foTkofDuxW2Iiq5lScMpguzOqeXMBqqM03KHzWEBoFO4xuZLMy2XBgt63hcTfwJ8dCA78+awmlZhzBaOyg6BR3dmHoyhPZY/lhdtx+2wrqgb7/2x67QRPyAzup5hmzLrut9tDPLsvSG5Nv1/uPvketx2cAvLl6vqwdfooHwUOBtuq735JDQFv/uSZ/n7vsyd3kuHzO8fu5GUbtHr028VVcNvkifSn1YR7KHfW9fcov6wuIn9b3Vb+jNY+/SpfErmjRSAO3OFKf2e10KdAPCaAAAAAAAX8HCaI0fRycrVg2jNWcc7cC0P3pdjGbC8P3NtPfnhG2tHHCCea7UXpE902MjOegdRlvKNnY8aB35KmG0E8syXs0VAABgKx5KufrSfa6iYenVz7K0d5jXGUAjpM3nagMAAAAAAAAAOpwpjNZj9zZ5JOg0iUi1uM3Tw2jr5RXlHO+rufhtq1XYlq3RyJjmCo9XrDMF34AzpQve+0o7PAaAeojbA+qz49pwMhXr0sVZXahLd2BUZpmyd8TMkqVeO+b7s6ZwWqbMF/ityHEdzeSPayo7qenMIT20cb+KbqGu97Gv5zxNxA5of/ygLuy7VFG7p67b7zRn956v5w+9TLetfKViXc7J6saF6/TTe94deHtleU+isLS1MFp/aEi9dp/n69vV8pLnzyQjhNHOtKfnLP36WX+uH6x9W59OfdT4tzstXZzT///4n+mK/ufrDcm3a1dktEkjBdCOik5BS6UFz3XEqdHtCKMBAAAAAHwFCaOtE0bblpL3BV2eNEMY7UmuYX+0PZoE+w3nXjyYkkplV+FQ54QMnCr70Gn5ygtAtjRjGM1w4bKlynMP0KEKVcJo2cKpUN5IvDnjAQAAne3zk67efK2j3BOvp3fFXH3pN209+7zOeU8BNJrp/fyZZleIHAMAAAAAAABAtyq4hjCaRRgN2xMPmeM2qeKsLtRlT19mCEJJUjLaHlGoRGTcO4xW6MAry6Ih0kXvfSURZVI+uoNlWUpEx/Vo7qGKdX7PEzvFFEaL2f2yLf+YUszu91yeNWwTzbdcXNRU9pCmM5Oazk5qrbxS1+0PhUe0P3ZAE/GDmogd0GB4uK7b7wavGX2rfrD2bc/42LdXvqwX7nql9vWcF2hbrus9OaTaY9nEsiwlIuN6LH8s8M+MRfdt6b46nWVZevbgj+iy+JW6cfE6fWPpi3LlP5nn7vXbdX/mLr169C16ya6fUMgi7wKg0kJxXq68T7Jsl88hgEbhmRMAAAAA4CtIGC1T3wvMdB3CaMGZ9kev6dL7xy3J40PBYlk6mpYu6aBzM8oBJ5jnq8SkWo3psZEY8P63Xco2djxoHQVDNG+zB+al557f+LGgMb57zNUHv3bqq51XXib97HMt4hgAgB3hOK5+5RNPRdGkU687r/orR861oZ0bGNBmAr5tVb5E5BgAAAAAAAAAulXeMYTR7L4mjwSdxi9uk/aI26SKM57b6bVj6g8N1X18jZCIjkseFxpNF1sv5oPWU3bLWiymPNclIkzKR/dIRgzPHS14LM2W1zyXx0Le0bPN4obbFNy8ik5BETu6rbGhdjlnQw9m79VUZlLT2UOesdPt6LF6dVHsmZqIH9D+2EHtiZ7FObrbNBge1itH3qjPLny8Yp0rR59OfVS/ftafBfo7O4bQVkhbP1ctEd1TUxgtGd275fvqBn2huN6YfKeeO/hSfXL+w3o4d8T39nk3pxvS/6I7Vr6mt4y9WxfGLm3SSAG0C9PrS0u2RsLJJo8GaC2E0QAAAAAAvpwq0S5JWvc+HwkBFasEfmaWg04f7nymv4RtV35BdPGYZFveMbWp2Q4LowV4nEp6WsyhHZgeG6OG7+iXN06FK7z2B3SWfIB9+cicq+eez77Qjr50n6tX/cNTB7brvifdOyN94PX8ewIAmu+Oh6XHl7zXve8mR3/wqq1diRPoNm4NH23MLBNGAwAAAAAAAIBulHc2PJf32L1NHgk6kSluk/IKo3ksk6REZE/bREOShniVVwgOONNSMS1H3idwjkY66ORboIpE1Ht/b8VjacZZ91xuip5tFgsNGNdlnXUN2SNbHheCcdyyjueOajp7SFOZSR3bmDYeh7fCkq1zey/QROygJuIHdH7fJQpbkbptH6e8ZNdP6NaVL2mxOF+x7kj2Hh3OfF+X919VdTuO6z05xLK2fp5arWFTwmjBnN17vt5zzvv0nZWv6rPpjyvjeEcqT5spPKq/e+wP9dzBl+qnEj+ngXB7RJcBNF66MOe5fCQyqojNcza6G2E0AAAAAIAvr6jUmTKFxo+jk5WqfGe16HHVvm5lCvV5dbB6I5aeMSodTVeum5pz9ZNqjxOUggjyOJWkfKmx46g3Uxgtafj+3XWl1Zw0HGvcmNAaCgG+65/2/l4ALc51Xf3adZUH+w9+zdXvvtzV6EDnHLsBAO3hu8fML7bf+xlXv/cKVyHCvEBVtSTfZ5alZ+5r2FAAAAAAAAAAAC0q73hfoZUwGuohETWEwoqVcRuvZVJ7BSJMv+9KeUl5J8fjCr5ShseAZA5FAZ3IFBJKF+fkum5LxTKzZe8Yj1/07KnbmONpmfK6hsKE0RohXZjVVHZS05lDOpI9rA2nvpNGRiNjmogd1P74AV0Su9z33xn1EbGjuibxc/rIzF97rr8h9S+6NH5F1SidKYpnaxthNMNrQy/D4d28VqyBbdl6wfCP6UD/1frswsd1+8otVX/mjtWv6Z717+l1ibfpBUMvk22FmjBSAK1soeg9AarWsCXQiQijAQAAAAB8lQ0hqs3W840fRycrVfkbL3hfwKkrmQJgpu+V9497h9EePVm/MbWCII9TScoVGzuOenJd1xxGGzT/3FKWMFo3KASI/J1Yavw4UH93PSo9lKpcnitKtx2VXnew+WMCAHS3bJUQ+OET0sGzmzMWoJ25NZTRZlZcqYNi5ttxLH3qvfGFSRFhBAAAAAAAANDxCKOhkZKmuE1htiJuky6YwmjtMyHZb/J0ujCns3rPa95g0HYWCt6T8gdDuzgmo6uYjqU5J6v18qoGwkNNHpFZtuwd1Yrb1WNYMTvus10mMtRLprymI9nDms4c0lR2UovF+bpuv8+OayJ2uSbiB7U/dkCjhCx3xMH+5+nCvsv00MZ9FetSxRl9c+km/ejIa40/77quXMPlB21rG2G0GsI6Y20UA24l/eFB/eyeX9Xzhl6mT81/SI/nH/G9fdZZ13Xz/0ffWblFbxl7l87pvbA5AwXQkkyfQ4xGeD4HCKMBAAAAAHyZQlSbFUpSqewqHGKC5laY4k+nncxIZcdlAqxk+IpHMv1pxgYtz5862WHf0QZ5nEpSPkBMqlX4/U6Jfu9/V0lazjZmPGgthSrHTUlay9VQXkDL+Nwh87/b4ROuXneQ50IAQHNVC4EveF9wF8AZagqjLTduHO1iLefqp/63o69Nn/rvi5LSZ37Z1qV7eT0MAAAAAAAAoHMZw2hWX5NHgk6UMETN8m5Oq+VlDYV3SToVo0gVZry3EWmfSMSuyKhCCqusypMG08VZwmjwlS56T8pPENlBlzE9d0inHietFEbLON4nsMRC1cNoUbtHESuqolt59cCs02En3TdRyS3q2MYRTWcmNZU9pEdzR+Uq4NXQAwgprGf0XaL98QPaHzuoc3ovkG2F6rZ9bI1lWXpD8u36wPHf8QycfXHxk7p68MXqD3tfKd7x2Udsbf3f1+94dqZkdN+W7wfSBX0T+v1z/4e+ufxF3bjwCeWcDd/bP5J7UB84/nt64fAr9ZrRnwl03AbQeczvwdon0A40CmE0AAAAAICvoMGlTF4aijV2LJ2qVCXw47jS0uxJ7b73S9LaSenqV8g6+6LmDK7FOIbveUzTgncbvhNYzHRWMKkc8DvSdgqj+QUDTf+ukrREGK0r5IvVb7NWJWKC1vRfk+bj87F0EwcCAMAT0lXO72yn19hAu5hd2ekR7Lxf/YT7ZBRNkh5MSW+51tHkn9iyLOJoAAAAAAAAADpT3vWeMN5j9zZ5JOhESZ+oWbow82QYba28orzrHelrpwnJISuk3ZGkUsXKyFu64D3hGjgtXZzzXJ6IEEZDdxkIDanH6vV8XkgXZnV+38QOjMpbtux9gkvQwE48NKDl0mLF8kyZKwYG5bquZguPaTpzSFPZST2Uvc/4mmKrxqNnayJ+QBOxg7oodpl6bQLCreic3gv03KGX6jsrX61Yt+FkdePidXrL2Ls8f9ZxfcJolr3lMQ2FdhkDiGcaa6MYcKsKWSG9dNdrdOXAC3RD6mO6c+1W39u7cvTN5S/qrrXbdE3iF3TV4Is4PwjoImW3pMViynMd78EAwmgAAAAAgCqChtHWCaNtWSlA1GrhN9+skbknPgwP/Z70x/8q60ff2NiBtRHb8B3P7rj38sUOu3hV0MdpLkBMqlX4hdH6ItJAr7Tm8V3xUqZxY0LrKFQJSkrSqv/FldCCVjdc3fO4ef33H+msqCUAoD3MLfs//5yKLnMSElBNLa/kZqs87jqd67r6wuHKv8G9M9Idx6TnXbADgwIAAAAAAACAJsg73uEIwmioh3hoQH12TBtO5ZU308U5XajLJEmpQmVI7LRkpH3CaNKpkJtnGK1IGA3+0gVDGK2N4oBAPViWpWR0rx7LH6tYZwoI7pSMIYwWt4OF0WJ2v5ZVGUYzBddwykppSdOZSU1nT/1vpXSyrtsfDA3rktgB7Y8f0ETsgIYju+u6fXL/LZIAACAASURBVDTOa0ffqrtWb/OM4926/CW9cPiV2ttzbsU6R+aT5G1tPYxmWZYSkXHNFI5Xve1YdN+W7wdPNxwe0dv3vkfPz7xMn5z/sOdr883Wyiv617m/1+0rX9Fbxt6t8Z6zmzRSADtpsZiWI+/JpUnegwGE0QAAAAAA/oIGlzLVLxwCA78A1GkLKwVdfPo/ymW5f/PL0o+8Vla0p5FDazmm/dGUITCF0Y7M12U4LaMcIK4nSflSY8dRT36Pi0hI2hUzhNGyhCm6QTHAvuy1f6C1Pbbkv/6+GenInKtL9uz8Y/z7j7j62G2u0muuXn6ZpXf+sMWVuQCgQ2WrvNfttOgy0ChuDa2zmZXGjaMdFMvSSUP0++N3uHreBbzuBAAAAAAAANCZCKOhkSzLUiK6V4/mHqpYtzmGZoqG9dkx9YcGGza+RkgYQm6pAmE0mDmuowVD8Gk0sqfJowF2XiK6xzuM1mLH0mx5zXN5LDQQ6OfjIe+Amim41q0KTl4PbdyvqczdmspMBopM1SJiRXVR32WaiB/QROyg9vWcy7mpbWooPKJX7H69/mvh3yvWuXL06dRH9Wtn/WnFv6/jmieG2FZoW2NKRIOF0ZLRvdu6H1SaiB/Qe8/7B92y9FndvPgfKrr+JyU+uHGf/r9HflMvG3mdXrX7TbwnBjqcX7yc92AAYTQAAAAAQBVOwODSOgGaLSsF+BunQ8mnL8isSvd9V7rihY0ZVIsy7Y+m7/t291uSKmdf54rSStbVUKwzvigMGjAstFEYreQTRgs/EUZ71OOiWkuVF/REByoECEqu5Rs/DtTXiSphNEna/98dOddu74v97frmEVev+l+OcsVT//2fd7m661Hp/7y1M55TAABPV+11x6IhXgTg6Wrooul45UWou4pfRO5oqpa/JAAAAAAAAAC0F8JoaLRkZNwzjLZ5ErIpGpaIjLddmCQR9Z5A7TfpGlgtLRljHabYHtDJjJHJFjqWuq6rjOMdMDMFz85kCqhlHO/gWrdwXEeP549pKjOp6ewhHd2YUsmt3wn5liyd1fMM7Y8f1ETsgC7o26+IHa3b9rGzXrrrtfr28pd1spSuWDedndS9mR/oWf3PftpyVz5hNNnbGk8iQFwnpLB2R5JVb4faReyIXrX7jXrOwAt1feojujdzp+/tHZX15ZM36Pur39Ibk+/Ugf6r2+79CIBgFgreYeqh8Iiidk+TRwO0HsJoAAAAAABffpMxN8v4X7ACPvwCUKfNeH2pevg7XRdGM+2OtuE7npG4eVvvv9nV+67pjC8GggYMT0d82kHR53ERCZn/bQlTdId8sfqT0xrBzrYzsxLsRcddx11dee7OHb//+ktOxfH02m+5+u+vdjU+3BnPKwCAp1SLC/P6Ewgm6OdLkjS7Iq1uuBrs687XVn7x8wdTzRsHAAAAAAAAADSbMYxmEUZDfSSi3nGb9KZJyOnijOdtktG9DRlTIyUNMZ/l0qIKTp4J1vCULnpPypfMsT2gk5mfO1onjFZ0Cyq53ieJm4JnZzIF1LJl7+BaJ1sspjSdmdRU9pCOZO9RplzfONxIOKGJ+AFNxA5qIna5+sODdd0+WkfU7tFPJX5O/zz7t57r/zP1UV0aP6iQ9VTuw3F9wmjW9sJoScPxbLNEdI9sa2cvYN3pRqNj+uWz/kj3rH9P189/xDOct9lSaUHXzrxfz4w/W29KvlOjvB4DOo4pXk6YGjiFMBoAAAAAwJffZMzNMvnGjqOT+QWgTjsR9jipprev/oNpcab90TbMlR4fMm/rc4dcve+a7Y+pFZQDPk7zpRpmou+wamG03aYwWvd9/143ruvqyJw0HJPGBtXSVxQqBDhuruUkx3Flmw4QaDknloLd7hsP7GwY7aZ7K5e5rnTtra7+5DXsbwDQaaq97lgmjAYEUksYTZKOzEvPOa8hQ2l5fp/Fza00bxwAAAAAAAAA0Gx51xBGswmjoT5Mk4pThRm5rivLspQyhG5MYZxW5jfmheK89vac08TRoF2YJuXH7H7FAwaWgE5ieu7IOuvKlNda4nHhF+6K297BszPFDLerdxSsFW2UMzqSPazp7KSmM5NKGSKpW9Vrx3Rx7JnaHzuoifgBJSN7W/ocbdTXlQMv0DeWv6CjG1MV61LFGX1z+Sa9dNdrnlxWlvlkNUvbC6MlAoR+x6L7tnUfCO7y/qt0Sexy3bz4H7rl5OdUlv8VXO/N3Kkjj9yjV4y8Xj82co0idqRJIwXQaObPIQghAhJhNAAAAABAFUHDaOuE0bbEcdxAf+OZsMeXqpnV+g+oxZUNF8AxdY8uSJi3NT0nnVhytW9X+3+x6JgvDPQ0ee+LgbWkamG0kX5LUuWDZynTPvG3VvLAvKuf+6ij7z586r9f/Szp42+3tSvemo+Pgv/3fk/KFKQBzo1tGyeWg91u2nxR0h11f33PhQEAtIhqrzvWcrz+BIKo9ZFyZM7Vc85rzfcjjeYXkcsHfC8EAAAAAAAAAO0o75jCaN13AVE0RtIQCsu7Oa2VVzQQGlLaMCE5aQjjtLKRSEK2bDmqPMEwXZgljAZP6YL3yVmjTMpHl/KLTKYLs4r3tUIYzXxV6XgoWBjNFHjL+my7XZXdkh7ZeFBT2UOayhzS8dyDns+VW2XL1nm9F2sifkD7Ywd1Xt9FClnkHLqVZVl6Q/Id+sDx3/Fc/4WFT+qqwRepPzQoSXJd874YskLbGksiUv25PBkgnob66bF79brE23TV4Iv1qdS1eiB72Pf2RbegGxev0/dWv6k3j/2S9scPNmmkABopXfR+D2YK9ALdhlfSAAAAAABfphDVmTJ5V1JtE1bXc65umZIeW3L14ostPeus7pvwGvTveyJc+QWDu5yu8S/e/hxDRc4URrMsS594p6Wf+Sfvnzt+Utq3q16j2zlBA4a5NppAXfJ5bIRtaXfce91ipjHj6WSO4+od//JUFE2SvnBYes9/uProz7fmUSZoGG0tRxitnRxNBTuYPTDXmgGaQqk1xwUA2B6/YK8krREJBxoi3fkXnTYK+h4fAAAAAAAAADqJ67o+YTRO/kB9+E0qThVm5EZd5V3v/dAvjNOqwlZEI5GEForzFevSRe8AHGDaN9oxDgjUw1BolyJWVEW3ULEuXZzVeX0X78Coni7rmL9gjwUOo3nfLuO0fxjNdV2lijOayhzSdHZSD2QPK+ds1PU+kpG92h8/qInYAV0ce6b6QoYT3dGVzu29UM8dfInuWP16xboNJ6MvLHxSbx77JUnyjfTZsrc1juHwboWtiEpu0Xibsei+bd0Htma852z9xll/rjvXvqX/TH1Mq2X/q42nijP64ON/qisHXqA3JN6u4cju5gwUQN05blmLhjCaKe4OdBvCaAAAAAAAX0EnY67XOBl8ftXVK//e0eTjp5e4+p9vtvQbP7q9D+vbTbVJ9qfNep1QsLxY38G0AdP+aAqjSdKbn2MOoy10yETroI/TvPk7rJbj99iIhKTdhu/pF9v/+/em+84x6bajlcs//QNXH/pZV9Fw68XR8gHDaKsb0t7hxo4F9XOk8hxMTw8EvF0jmAKdUvD9EgDQXqoFWde950UAOINbY+wrU3lOedeo9W8FAAAAAAAAAJ2g6BbkGiIAhNFQL/2hQfXZMW042Yp1p2JQ5g/pk5HKi9u2g2Rkr3cYreA98RpYMOwbo5E9TR4J0Bosy1IiMq6ZwvGKda1yLM2UvU+e7rX7FLKCZQRioQHP5dlye55sv1Za0ZHsPZrKHtJ0ZlJLpYW6bj8eGtBE7IAmYge0P35QI5FEXbePzvPaxNt019rtKriVE69uXb5ZLxx+lcZ7zpbjmsNolrW9uVa2ZSsR2aPZwmPG27Tra95OYFmWnjP4Ij0z/mx9fuET+ubyTcb3yKfdtXab7lv/gX5i9Gf04l2vVsgKNWm0AOplqbSokut9ojLvwYBTCKMBAAAAAHz5BUA2y9QYRvvAze6mKNop77ne1Zuf7WrPUOtFeBql5P859ZOWbY+yz0p9v6BrB6bdMeTzHY9lWTprl/T4UuW6hXVXUvvvb4HDaG0U7akaRjNcSGsx05jxdLL/9VXvHWg9Ly2st2ZYrBAwKjm3Kk1wkZS2kMm7evRksNvOr0nFkqvIDkT7/I5NQfdLAEB7qXZ8X6vxvTDQrWptfdX6OVMnCfoeHwAAAAAAAAA6Sd4xX42GMBrq5XTc5tF85VUkU4VZ48/12XHFDcGYVpeIjkvZuyuWnwrBAU/nuq5x30hEmZSP7pWMeofRUi1yLM0awmgx23AVag9xw203nKzKbrnlYztFp6CjG1Oazk5qKnNIj+WP1XX7YSusC/ou1f7YQU3ED+isnmfI3makCt1lODyiV+x+vT6/8ImKdY4c/Wf6Y/rVs/67HJlPVgtp+4/DRHTcN4w2FiWMttP6QnG9aewX9byhH9V18x/SI7kHfG+fd3P6z/RHdcfq1/SW5Lt0QWx/k0YKoB5MYWpJShBGAyQRRgMAAAAAVBF0MuZ6jRNWP/zNyg07rvTZQ67e/aL2D1UF5RdY2WzN68vGpXR9B9MGTPujXWWXGe03hdG2P6ZWEPRxmis2dhz1VDWM1m/Ja2r9wvqpk3Msq3uOI9t1bMG8Ay22ahgtYORvZrkz4ofd4MFU8Nu67qno3dkjjRuPiV8cJ99Gx1gAQHDVXnesmefoANjENbztCNve0fhaP2fqJITRAAAAAAAAAHQj3zCa1dfEkaDTJaN7PcNop2JQ3h/SJ6N72/Z8NNNEasJo8JJx1rThZD3XMSkf3SwR9b5Cb9onqtlMWcf7hPhaop6xkDmitlHOqD88WPO4GslxHc3kj2sqO6npzCE9tHG/im6hrvexr+c8TcQOaH/8/7J33+FxVIfawN+ZLZJW3dJKstzBxqaFltAuaUAaKRdISOAmkOTmBpIQQgmhhl5DS0IJLRA+SgoQIISSEEIJYDCYYoyxZWNbLpIsrbq0K22b8/0hy15J58zOrLbM7r6/5+HBmjMze3anz5zzzr5YWLYHvHpJWudPxeeI2v/Gq/3PoS/WPaXsw+A7WDX8Nuo8jcrptTSE8Zkdz8v0clS4qqf9GZQec0p3wdlzr8XSgefxROB+5b5+XFu4FTduOR+HVB2Bo/0nodLNZUmUD1TX5hWuapS5yrNcGyJnYjAaERERERERmbLaGTNo8znSiCI85L7XBH70aXvzymeyzr8yQ64qGNCgJza86XHGw9RsUgajJXnG41c8q11rI4jHyQyL65Fqu3OimEn4kFsHGhTP6qNxoDcI1Fl/yVnR85i8PMqp4YFhi8Fobf2ZrQelz5oOe+kPbf05CkYzWffMQtOIiCh/Jdu/MxiNyBpVMFpFKdAv6VsRLOJgNNVvNS4WF3C78rPzFREREREREREREZFKWIwoy0r00izWhAqd3ysPg/gotApb9A3yafI4EEoV5tMbDeDBbbemPF8X3JhXthAfr/wkg2Icbjg+iLcHX0VbuBUGzBubhuLqBoOqdYmoGPg98vW/PbxpWvtSu2rd9fhYxYGYU7rLhOFBxbbrsxGmYRaiFjSGUIGdwWhCCHwQXI61oZXKMMVMGjVCWBdahaH4QFrnW+2egd19+2BJ+b5Y4tsHVW4Hvlma8ppXL8Ex/u/i3o4bpeV/6rwDc0t3VU6vIx3BaOrjeWMehwEXKl3TcVjN57FPxUF4ovt+vD7w76TTvD74b6wYXoaj/Sfi0OrPQU9DoF4hyvWxLJ08mhfzS3fDAVX/BbfmyXV1yKYuRdBuPt+HIEo3BqMRERERERGRKavBaAPqdklTBMPqmSYLuCo0ZuFPkwX1clQmvuVjoAciEobmLZ5GJaoAMD3J85f6Sg2ytzne+6rA3SeKvH+AY3U7DaX3RVgZFTULRnMBM01eYNMxwGA0O+ImbZ16gtmrhx1m4VSJ2hmMljdaOu2Nn6tla7ZvsrpeEhFRfjHb9wNj59hxQ8CV7KKEqMipLlsrSuTBaPl0/Zpuya7xg2Gg2peduhARERERERERERFlS9hQv42GwWiUTn5Ps3T4YLwfiMsbpDR45dPkA1X4hYDA0oHnpzXvVwaAV/v/idNmX4YyFx9eOFFftBu/3XIxuqLt05qPVytBlas2TbUiyj+qYMCwGJ32vtSuf/Q8iu83n4X9Kw/dMSwUH5KO69PVYWdTxnWpG15PDk18pOv3eKn/acvzdqoSrRSLfHthSfk+2N23L5q8s/O+TwE53wGVh+HFvqewcbRlSllvLIDe4YBy2nQEXJkFnTZ4Z017/pQZle5qnNh0Gg6tOhJ/6rwD7ZFNpuOHjGH8sfN2LB34N05o/NGUQE0CHu66Gy/3P5PraqTNy3gGywZfxI9n/RIeneFo+SQQ3SYdzmBqop2KrLs5ERERERER2WU1cKl32OKIADoH1WWuInuWlKyTfaJBvWrqwO7pNVbIN6r1MVkGgVlI1ivrUq+PU1jdToPhzNYjnVTbhlsHNE1Do2RzGNeR3heAFbwRk8CBbhv79myKWNx3Mhgtf6y1GYzW1p+bddMs/CzMYDQiooIjhLAUfJlP59lETlOp6Ms2POrMa5FsSPbNizk0joiIiIiIiIiIiAqXKhhNgwaP5s1ybaiQpdK5WBUulg/qPI3QkLmGua2j6/DG4AsZmz9Nz4t9T007FA0A6j1NDAuioub3NOW6CjvEEcNjXX+AIXY2pA1OCi4bV24SdjZZiVYKF9zSsmBC8FpHeEvehqJp0DG/dBG+OOM4nDHnSly/6AH8ZPYvcXjtVzGzZA73c5QVmqbhuIYfpDStDte0P9/svLYxj8OAi8Wuvt1x/vyb8HX//6JESx4g3jq6FtduOhsPd96NkXgwCzXMD+3hzQUVijZuTWgFVgy/ketqkE2BSId0uJPOP4lyjcFoREREREREZMowrI0XkL9oSMo0GK3IrlRjFn9fABjSJQ8nu+U3wApVqsFoC+rUZZc+aWMhOJTVYLR86jyt2jbc25/ned0a6hXP6zsGircDfSpGTcI+uuVtJXLOSkAJAASGuC7kix6bIXy9OXo2axbKx2A0IqLCE7MYxjok76dDRAmE4nSvokQ+PJhH16/pluxeXDH/NkRERERERERERFS4VMFoJXopQyoorRpSCDlrSCFMzSk8uge17vqMfsaq4DsZnT+lblXw7bTMx+9lp3wqbjXuOkcFtfbGAmgPb97xd8iQd+TwuSotz1PTNGWQWmLw2od5ts+v9zTisOov4IfN5+D6hffjnHnX42v+b2M3315wa55cV4+K1Pyy3XBg1WdsTaNBh1uThxfaUeupV4YgNngYjJYPXJoLR8z4Gi5ZcBsOqDws6fgCBl7qfxqXbTwVbw2+DKFqxFVECvn65YPg8lxXgWzqiwWkw+sZjEa0Q5F1NyciIiIiIiK7rAYu2QnP6TIJUSu2UBGrHe0BYEiXPJzs2pq+yuSBVIPRjtlPPcJLa4FL8jwczep2GjOAaCw/HmREFduGJ+FFRzOr5eN0DKS/PoVsxKRTfY9Dg9GsHit6+GKjvGH3+J+rABrVvgmwHthHRET5wywQMxGD0YiSU12JKoPRwhmriuMlu8Yv5t+GiIiIiIiIiIiICpcyGE0rzXJNqNBVuqsxp2QXy+NXuKoxp9T6+E60R/n+GZ1/IFJcL/jNF4YwEIhuS8u8Mr0OETmdrunYvXzfXFdjgq5o+45/JwaXJVIFnan4FOOHjJ3z74o6e59fppdjv4pDcELjj3H5gjtw+S534n+afoz9Kg9Vfj+iXPjv+u/AqykazUjMK10Ijz79gEaX5sKS8n2mDHdrbiz2fWza86fsqfHU4QfNZ+O02ZdaCrUbjPfjDx2/xm+3XoyO8JYs1NC5Cvn6JRBJz/k/ZUdcxDFihKRl1e7aLNeGyLkYjEZERERERESm4hbzogI2wnM6B9U9PIstxMYsYGWyQVkwWtv69FUmDyiD0ZLc4Zhfr+FrU5/f7HDFUwLvbs6PwDAZw0auW8gkBMtJVPsed8KybqqSj2MnqJGA0ai6zKnBaFYDqIrtmJLPzNZDmVwF0Jite239QDiav8cSIiKayuo5R76cYxPlkuplo6pgtOEiDv9KdkYZ5D6HiIiIiIiIiIiIClBYKILR9LIs14SKwdH+k+DRkgdLaNBxjP8kuDVPFmqVOZ+bcTRq3HUZm39PtAtxwTcKOk1/rAcxYbNRlsT80kX4RNWn0lAjovx2VN23UC5ry58jnZG2Hf8OKYLRfLq9ILByl/z7BeNDO/7ttDAZF9xYVLYnvlr/bZwz9zpcv/B+/HDWufhkzRdQ723KdfWIlGo99fjuzNOhW4j68GolONp/Yto++8t1x6NML58w7Et130KFW9E5gxxt9/J9ceH83+Kr9f9j6RpnbWglrm49E38LPKAMKC903WkKD3aiQv5uhWgkru7wpDovIypG7lxXgIiIiIiIiJxNFUQ1WV8IiMUF3C4t6bidg+qy1m6gPyRQ40s+n0IQsxFoNSx5mCq2rENx/FJjVAFguoUf4dKv6XhyhfoH/3+vC+w3Nz9/TavbKTAW2lDty1xd0kX1nbSERVRfqUHWZdypYV5ONWrSJq0n6LyQJyEEIhZDJXuGx8bXtPzctotJ2GbbyJwFoyVZ94693cBTp+lc54iICoTVIOuR6bclJyp4ymC0Uvl1XbCIg9GShZ8X829DREREREREREREhUvVIbtEL81yTagY7F6+L86ddz3eGVqKQETecbzGMwP7VByEXcqWZLl26ef3zsS5867HW4P/wdZwK4TqwU0SYTGC94ffnDLcQBy90QD83pnTrSqlUcAkFOHjlZ+EliSIxa27Mb90NxxU9Rl4dcXbjoiKyNzSXXHuvOuxfOhVbItsUT4DT7cNo6vRE+2aMjwxGC0xuCyR3UANVZBaYvCaat8yv3QR/J5mW583HdXuWizy7YVFvj1RyiBdylP7VR6KX8y7Du8PL0N3ZOp2DgBNJbOwb8UhmFkyJ22fO79sEc6bdwOWD72KYHwIe5Tvhz3K90vb/Cn7PLoHX6r7Jj5R+Sn8peturAq+bTp+HDH8s/eveGvwPziu4f+wT+VBWaqpMwSi8pDPbB/LpmM4PoDVofemDB+KD2DUGOGxMU8EDfk5HAD4XPYCbokKGYPRiIiIiIiIyJTVwCUhxsLR/Baen3Wp79sgZgDPfiBwwoH5HSjyziaBsx8xsHwTUOMDjt1fwzXHaCjzTvxedoLRBmUPJ7esm2ZN84tqfbQSjLZbg3n57S8J/OZb9uvkBHEb61Eokrl6pJOhaDGQuKzrFPd5u4edF+blVEIIjJisE90ODJmLG+pQhcnCsbF1vpztshxPFYzmcclDaYZGc7OdJwvIefYD4In3gGPYPoCIqCBYDWPNl3NsolxSnb2pztWDRbxdJTvTNbuGIyIiIiIiIiIiIspXYWNEOpzBaJQpzSXz0FwyL9fVyJpq9wwcOePoac0jbIzizHXHS8sC0W0MRnOYQEQe+FDhqsL/Nv88y7UhKgz13iZ8se4bWf3Mx7ruw/N9T0wZ3hVpBwDERBRhIQ+YtRuooRo/ZAzv+KzeaEA6zhfrjsPHKg609XlEBMwrXYh5pQuz/rl+70x8qe64rH8uZVa9twk/mfVLrBhehke6fo++WLfp+L2xAO5svwZ7l38CxzX8H+q9jVmqae6MHcvkv0s+Hcu6I524eOMpirJtmF26IMs1olQkhs9OZjfglqiQmce6ExERERERUdGzGowGAL1Ba+N1DZqX/+Z5kfIb6ZygZZvAx68y8NJaYDgMbO0Dbv63wMkPTP1OyQJWEvW4Zkwd2NGacj3z0XSC0XwlGubVqcujcSAYzs/1zs52mi+hDapdQOKyrlc8r+9xYJiXU8Xi5uuPE4PRVAFaKlwf8kM4Kh+uClwdkrfjybiIhfXv0idtpFUSEZGjWdnvAwwpIrJCdY1XqejPNjACxO1c7BaQZF87FCnO34WIiIiIiIiIiIgKW9iQNwRgMBqRc5Topah21UrLVCFclDuBqHyZ+D0MsCPKJ43eWdLhnZE2CCEQiqs7cJTbDEZTjR/cHtrRE+2CgLx9JPctRETOoGka9q08GBcvuBWfn/F16HAlnWZl8C1c0Xoanu15BFFD0ai/QPRGA8pjWb2nKcu1SV2tpx4uuKVlgei2LNeGUhWMD0mH63ChROP9MKJxDEYjIiIiIiIiU3b6oAbD1sZ75G3zmb7VCux1qYF1nfnV0dMwBM551MDuF8tvkj60TGB918TvFLMRjNbhltxk7Q9AxGymBOWx6QSjAcB/72s+4tubbFbIIQoxGM3KslYFozkxzMupRpI8t3JiqJjVgJJx25KEcZIzqALvVNu5k4PRVrYhrwNeiYhoJ6vnHQwpIkrdzGr58LgBBOTtfgqekSRnN1+u64mIiIiIiIiIiIjsYDAaUX7we+XBN6oQLsodVVidahkSkTOpgtFGjBCG4gPKQA0AKNcVb6ZV8OnyBpuh7cFoqv2KBg31nkZbn0VERJlVopfiaP+JuHD+b7CobK+k40dFBH/vfghXtZ6ONcEVWahhbpgFOufTscyluVDnaZCWMbQ6f4yHz05W7qqAplnsKElUBBiMRkRERERERKaSdcZMFEzSMVMIgT8uszbD1R3A4osMrO7Inw7m974mcMNz5vV94r1JwWg2ft8Ot6QxghBAX6f1meS5uOL30i3e4TjnCxp2N2nT8ZVbbCwQBymqYLSEZV1XLh+HwWjWjSYJRhscBSIxZ+2HIzYCJQHgxRZn1Z8mWrlV4J5XDbT1y8uVwWgWw1jTLWpx/XNiqCAREdln9bwjWdgsEQGqs/LZNepp2hXniIUu2RVMvlzXExEREREREREREdmhDEbTyrJcEyIy4/fIG2B2sfO946iWSYNiGRKRMzV6m5VlXZE2hIygstznUjTAVCh3yYPUxsPXAtFt0vJadz08utfWZxERUXbMLJmDR3HcowAAIABJREFUM+Zcge/NPBNVLpOGWtt1Rdtx89ZLcG/7jeiP9WahhtmlOpbVuOvg1UuyXJvpqfc2SYd3K74jOU/IkHc68SnOyYiKFYPRiIiIiIiIyJSdwKWgSUjJSETgm3ca+M499gJq9rzEwO9eyo+wqvtfT/7dXlwzcRyrASsA0C4LRgOA7uJpUKIMy7L4IoTmGg1vnK++HTIcBsLR/AtRKshgNFUIXsKyrq+QL/i+kPPCvJwqWTAaAPSq20zkRCRmb/xX13FdcKornjKwz+UGfni/ehn5Fdv54EimamXOakBO+0Bm60FERNlh9XotX86xiXJJKE75/JUa3IrLdFV4bqFLdo3PfQ4REREREREREREVorCQNwQo0UuzXBMiMuNXdL5XBQxQbgghEIjK2xarliEROVOFqxpluvxN0p2RdoS2h5ZN5tG8tgNeVEFq46EdAUXgIvcrRETOpmkaDqz6NC5ecCs+XXMUNAsRM8uHXsHlG0/FC31/R1zYfLO9g6lCw+o9+Xcs8yvqzGuz/BGKy4PRynV74bZEhY7BaERERERERGTKTuDSSfca+Pdq+QQPLxf46zup1eGnfxRTAsWcRgiBlW3Jx1s96f5izFYwmuKNTz0MRrMajAYAlaUavry3uvyjgL06ZYoQAg++YeDEewz84lEDH7artwFViJhMvnSgtrKsZ1arp1/vkOXodCMWgtG65ffacyZsMxgtIG/zQTn27maBy/6e/Nhep3imMyR/UXTGWQ1dbOvLcEWIiCgrrAayWjmnIiI5l66+tmvvd/a9oExRhciN4z6HiIiIiIiIiIiIClHYkDcE8DIYjchRGrzydqw90W0wCigwId8NxPsQFfLGon6P4iXNRORImqah0TtLWtYZaUNQEajhU4SpmSl3VUqHB+PDMIShDlzkfoWIKC/4XBX4VuPJOHfedZhXuijp+KPGCB7tuge/2vRzbBhZk4UaZl5XAYV8qsLcVOFv5DzK8zhFWC1RsWIwGhEREREREZmK2whc6h4GPv8bA/e+OnWiR9+eXmfWI24y8FarczvEdg4CA/KXVk7Q2gOMRnd+j5iN37fdrXho2FM8Ny1VAWB2gtEA4KzPqW+JrHZIztxpfxI46V6Bh5YJ3PicwMHXGHhjg3wbsBNgGIw4dztKZCUYbVe/etmvKZ7NYlpG8zAYzWpAybihcGbqQdPzh6XC0r7LL29ng5EoMDiS/f1Z1GL7zbYiDfEgIio0Vs878iV8mChXRJKkr1m18uEdAxmoTB5Idp7MfQ4REREREREREREVooghb+BRwmA0IkdRhd/ERAx9sZ4s14ZUAorABwDwexlgRJRvVKGUnZE2hOLytwf7FCFnZny6PIRDwEDYGEEgIm+czf0KEVF+mVu6EL+Yey1OaPyxct+faGu4FTdsPg8PbrsVw7HBLNQwc1ShYX5FyJiTqcLceqPdiAm+eTMfhAz5eZwqrJaoWDEYjYiIiIiIiEzZCVwCACGAi58UiMUnTvj0yunX5cy/2EgRS4PBEYFfPmFg1wviOPCquDTwbZzVECYhgLWdO/+2GrACAMOuSgxJbjqLbockeWWBlbAsKz67RD3BPSbLOVu29Ar87qWJX3Y4DBx6rSHtUG5nOx2Sv1zVcVTfSUtYdCUeDbv45eOt2cZQIitGLDzv6HFaMJrNF4vmyzpfbH7/irVtdLdGddmKrWmqjA1WA3LaizTEg4io0Fg9zx5hSBGRKbNcNA2AX9G+rt9CAH0hYjAaERERERERERERFaOwIb8pzGA0ImepNwkMMAvjouwKROXLwqdXsJM9UR5q9M6SDu+KtiNoyBv5lruSB93YmWYoPoDuaKe0TBWaSUREzqVrLnyy5gu4ZMGtOLjqcEvTLB14HpdtPBWv9f8Lhsh9vyu7DGEoj2X1eXgsUx1/BQz0RLuyXBtKRTAuP4/zucqzXBMiZ2MwGhEREREREZmyG4wGAO39wGqb7Rv+fHLyZKul68cCo7LltD8JXP2MwMZuYPkm4P/uF7jtRfnN243d1uu1pXfnvycHyCXT7pbcuOwpnsYkqvXRlcIdjqP3lQ//5ypgXWduQ7We+1D9+Tf+q7iD0SaH4C1WhCZtCKS3PoUqbCEYrXvYWSFzVuqcaLBIwxScLBgWGLW4HHdr1FDjk5e9szn766bVYL6N3AcRERUEq+fZDCkiMme2KWkaUOOT3xMaCGWmPk5nFiQHcJ9DREREREREREREhSks5I2aSjQGoxE5SZnLh0pXtbQsELX4hmHKOFVInd+bf4EPRKQORgtEtmEo1i8t86UUjKYOTtwa3ggD8gaUfq86NJOIiJyt0l2Dk2b+DGfNuRrN3rlJxw8aQ3io8zbcuPl8bBndkIUapk9/rAcxIe/E0JCHx7I6T4OyrDvCa7N8EFIEo5XrDLMmSsRgNCIiIiIiIjKVSjAaAKzetnPCkYj5TJqqgGP21fD5PZLPd955BroGMx+EsmKLwANvTP2c370k/+w2+TNFqYGRnfOI2XxJRpu7eerAbgajTQ7LsmLJTPVEiy8yYKS68qfB8x+qyy54TEBM6iVtp6qD+RKMptg2Ji/ruXXy5djR76wwL6eysu70BDNfDzusBlONGw5jyjZDudVu45hZ5gH2VzxjfXdzeupjR9Ti+teS44BNIiJKD6unECM2g1uJaCdNA6rK5GX9oeI8p0p2nTbCYDQiIiIiIiIiIiIqQGFDEYymK24iE1HO+D3ycC1VGBdlXyAqXxYNimVHRM7W6JX0HwBgII7No+ulZakEapTqPmiQt8veOLJWOV29J//CZIiIaKKFvj1w/vyb8HX/9y0FlG8cbcG1m87GI12/x0g8P95+2W0S5JyPxzKvXoIad520jKHV+SEYH5IOTyXglqiQMRiNiIiIiIiITKnCiZJZnfBM/YqnzXt03nKCDo9bw2+P19Fg4RncnpfsDK1atkHgj8sMvLkxvZ1lf/28fH6rO4BQeGqZnZCXgZGd/7YasDKuwy1plNBTPDcslcFoKdzh2D3Jfeu7XsldB+wKk+cIMQMYSmgHKISwHNgATJzWyVRfaXIw2qwa+Xh2wgqLmZVgtG75S0hyJhKzN74hgBCDAxzFzjGzxA3sN1fe0OadTdnfT1td/1q2MZCPiLKjPzR2PfTEuwI9w9zvpJvVX5QhRUTmzE6LNAA1PnlZ/4h8eKFLdhqZ7AUERERERERERERERPlIHYyWvEM2EWWX36sIRlOEcVH2BSLydsWqZUdEzub3zFQGlm0Nt0qHpxKooWs6fLp8uk2j66TDq90zeL5GRFQgXJobR8z4b1y84FbsX3lo0vEFDLzY9xQu33gqlg++4vi286pz5HJXZd4GUfkVgW5mIXDkHCFD3lmrPE/XR6JMYTAaERERERERmbISmiOztnPnv59aoZ7J8gt1fP2AsQd1i5s0rLtKx6IG83n3BIH9rzTw7d8bOORaA9+5R+Dgawz88H4jbTdSn1ulnk9PcOqw9n7rn5vYsTdmM3iuXRaM1r4BImYzKShPqYL6JodlWbH7TPOJHnojdzflh5OEl/UmrIN2V/mhPOlYbjUETxWM1j6Q3voUKivrT0+eB6MB+RMIWCzaB6zvuEo8wP5z5WWrtwGRWHb31RGLgaZ9ISAgf4EPEVHaLG8VmHfe2PXQsbcb2OdyIyehkYXM6vVwiCFFRKZMg9E0oKZMXtafHy8TTbtk+x4GPxMREREREREREVGhiYs4okJ+85NBG0TOo+p8H4gwGM0JhBDoirRLy1TLjoiczauXoNZdLy0zIG/UmGqghioYplURjOb3MHCRiKjQ1Hrq8X/N5+Cnsy+xtJ8fiPfh3o4bcfPWS9AZactCDVMTUISF5fM5cr1XXvcuXps5niEMBOPyzlo+V2WWa0PkbAxGIyIiIiIiIlOpBqNt6d054ahJiM3+8yaGU1WWavjgUh3HHWAeWvX+VuBPb06s3D2vCrhOGQtMu/NlA/FUKw8gbFLnbsl9p/Z+6/MeSAimiloMWBnXIbupPDwArFxqb0bTIAwD4sW/wrj2FBh3/BKiJ3tvklCGZaUQjLbHTMDrVpe/th45e2NJstCgvoTO4XZX86HR/AhtsBqC11wjX/iBISAczY/vmktW1p+BEWf9jmb7Z5VBBqM5SpuNY2aJG9h7lnw7jxvAtiyHIMZtBJq2dCYfh4hoOk68x5gQ/tneD5z+Z5vJy2TK6uUAQ1iJzCXblGp88uH9eRLsnW4MRiMiIiIiIiIiIqJiEzHUD1tKGYxG5Dh+rzwcIRDdBkPwmXWuDcUHEBby/apq2RGR8zV6Z9kaP9VADVWgWkxEpcP9ikAWIiLKf3uU74dfzv8tvlJ3AtyaJ+n4LaH3ceXG0/G3wIOIGOEs1NCe7qg8LKw+j4PRVKFu3YoQOHKOsDECAfn1c7meWsAtUaFiMBoRERERERGZSjVbLDH0ZEDRkXWvZvlwj1vDX07RceeJKaRdYSww7ccPCRx3h5FysJVZ8IksGG1zr/V5J/4eMZvBaO3e2dLhYunT9mY0DeK6H0Nc/D/A0/cBD10P8d39ITatycpnpzMYzVei4SefMZ/wyRX255sOydanaQWjOe/5gpTVZT2rRj2PbYPpq0+hsrL+DDosjCASl1fabXKnk2ElzmInTLTEbb6dd2Q5GM3OPnfNNmeFChJRYWnvF9IAxtfWA+u7uP9JF6v7/f5Q8nGIipnZrRlNA2rK5NfmxbptJbuVxWA0IiIiIiIiIiIiKjRhk2C0Er0sizUhIiv8shf8AoiKCAZjfVmuDU0WiMgDHwD1siMi52vwKjpeKKQaqGE3UI37FSKiwubRvTiq/lu4aP7N2LN8/6TjxxHDP3sfxeUbf4r3h9/MQg2tC0TkYWH5HB5crzgOd0c7GVrtcCFD0jl1u1QDbokKFYPRiIiIiIiIyJSqI/g1x2r4hsk9zfZ+7AglUwWjXX2s+WXpDz+p4xPzLVRS4Yn3ANcpBhZdGMc5jxoYjVrr1R6LCwyahOj0DE+cT19QoGvIer0SQ4ZiNu8zvlB5hLzg1b+nHAJnh3j+L2OBaIkGeiD+9OuMfzaQ3mA0ALj2WA0/OEw98TG/M3DDcwaMVBMCUxAKi+TBaMGd/zYL8ZNxWsiVitVl3WwSmNRmI3ypWFkKRnNYqJhqna/xqafJl/W+WHTY2DZLPWPLtlTxkqn2bAej2djntvBFS0SUQWbnOW9sZDBauli9xOrnuQaRKbNNSYP6XH5wFFm9HneKZF+ZwWhERERERERERERUaMLCJBhNK81iTYjIigaT4ICuqDqUi7IjoFgGpboPFa6qLNeGiNKl0TvL1vjlKQZq2A1UMzsmEBFR4fB7Z+Insy7Cyc3nocZdl3T83lgAd7RdjTvarkZPVPIW4CwTQiAQVQSjeZqyXJv08XvldY+JKAZiSTqmUU4F4+pgtHJXagG3RIWKwWhERERERERkShVAU18BPPwjF147V35pGY4BPcPAaFQgEpPPo8bCyxyfO2P6l67rA8ANzwn817UGVrULvL9V4MN2gVhc3tO0NygdvEP3pHtPLTbv0Q6Edn5uNG5v2l5RiYCrfmrB1vXA5hZ7M7NIDPVBrH0PYsWrEJedJB/p9X9k5LMnU4ZlpbiaeN0a7j5Jh9/k2e85jwpc8XT2OmKv60oewNCXsA7Z7SM+5LCQKxWrwWjVZYDPKx+3ncFoSeVjMJqqzl43UFEiL3uztfjCFJysrd/68vC4AE3T0FwtL2+3Ma90sPNpW/gskYgyqEwRGAkA63LfhqRgWD3X7g9lth5EhUzT1MFoQiS/R1OIkt0TGIlmpx5ERERERERERERE2RI21I1TvLqiMQgR5YzPVYFyXd7oMhBhMFquqYLR/J4maFqKbyEmopyzG4zmSzFQw+50fg+D0YiIioWmadi38mBcvOBWfG7GMdDhSjrN+8Nv4vKNp+EfPY8iJnLX6Gk4PohRQ97Qsz6fg9FM6q4KgiNnCCmC0TRoKNMVDSqJihSD0YiIiIiIiMhUsnCiuTPU07b1AwMj6vJqC8Fo1T4NHTek5/L13S3A3pca2PdyA3tdaqD+TAMPvD41+a1ryHw+gUn3nt7fai+UpT/hN4nZDEYDgJtnnCovWPac/ZmZEMFBGJd8B+KoJogfHATx0yPUI/dugxjKfAqVoQjqmxyWZddndjOfwWV/F/ioKzvhO2u2Jf+cvoT78XaD0ZwWcqWi+l6T2+VomobmGvm4dsKXipVqm0o0aLIfzwVVnV0asM9sedmzK7kuOInV0MLyEuxojDdTEYzWMZCmSllkZ587NMr1jogyx2x/9FFX9upR6JKFE43rC429UZCI5Mw2Dw1Ak8mL6duzfL7nBMnOOUOR7NSDiIiIiIiIiIiIKFvMgtFK9NIs1oSIrPJ75R3w2fk+9wIR+TLwexleRJTPGrzNtsYvTzEYrdxl8rZxiXwOkyEiotSU6mU4xv9dXDD/11hYtmfS8aMigie7H8RVrWeiJfh+Fmo4VbfJdUo+nycztDp/BePyzqtlejl0LXnoIFExYTAaERERERERmUoWRNVYpQ6lShaMVmMxwL6xSsO7F6X/EnZwFPjuHwT+9z4D5z1m4Du/N3DNswY+dpl5UtCmnol/P2MzcCeQcO8qpvio2nivcvrH6k+QDhcbVtmqh4oQAuK9VyC+6AdeeMT6hJvXpuXzzSQL6kvVtV9PPoMDrrSQIJUGk9cvmd7gzn9bCbZKlC+hDXZC8GYpgtGshi8VMyshT04L01PuB3Tgq/vIt+WVbfmx3mfK4IjAI8sFnnxPoDeY299BCGE53KLcu/PfzTXyZZvt7dzOPnfIYdsOERUWs2P4tsHiPealm9VAzLgBBMOZrQtRPjMNRtPM7y0V43Udg9GIiIiIiIiIiIio2IQNeSNDt+aBS3NnuTZEZIXfIw8PYOf73OuKypeBapkRUX6oddfDo3mTj7idT08tGM1nI1Ct0lWNMpfFDiFERFRwmkvm4sw5V+K7Taej0qV4C3qCzshW/HbrxfhD+00YiKn7zGWCKsC5RCtFlUvRISlP1CtCq83C4Cj3gsawdHiq4bZEhYzBaERERERERGRK1RnTtf2K0u3S0KS4f7m1T5iGPFWXWa/HPnM0rL48M5ex9y0VuO4fAn98U+DCx5P3fG/ZtnMcIQReapGPN69OPrytf2dATzQuH2ff0RXqz8dcbHM1Ti3YpKiIDSIagTjvWIjTjrQ/8aY10/78ZDIVjLagXsMFR5nPZGgUWNOR+ZCJNgudvvtCO/9tNaxh3Gg0P0Ib7CxrpwQm5SMrq89oFIjEnBOwEjcJzTt4F/m60BcCuuXPDQreu5sFFpxv4Ft3GTj6d2Phn+9syt3y7A2OrVNWVJTs/PdMxfPGjoHsfhc7+1ynhQoSUWFRHQ+BiSG6ND12jjL9JqHgRMUu2bbkdmlorJKXtfU751okW5JlOocixR38TERERERERERERIUnbMgfsJfopVmuCRFZ5fcqgtEUoVyUHUIIBCLt0rIGxTIjovygazoavM3WxoWOUj21wLJyG4FqDFwkIiJN03BQ9WdxyYLb8KmaL0FD8s5dbw39B5dt/Cle7HsKcaHoVJdmqgDnem8TNG2aHdJyzO+RB6OpwuDIGULxIenwMgajEU3BYDQiIiIiIiIyZSWcaLYirKStH7jwcXmPfU2bGHhixeImDf88Q0ddub3p0q2lc2cH1GBYHXzyg8PkN0dDEWBwe6f5mCLQwCNieGbzV5V1aPNIHmxuWmO7Y+yyDQKn/tHAOXd1YMV1N0AcXgksfcbWPMaJzdMPZkvGLBBpui76soZvH2Q+oz0uMfBRl73f+NV1Aqf/2cDP/mzglXXJp2230Om7fxrBaAAQyIOAKNXX0iV3s5oV+6CHlgl2Fk/CMAlVSTTooKAPs+PSEvkzHQDAmiJ9rvPde40JYYrt/cDP/mxxwWfA2k7r45YnnCc0K0JYOwamVx+77OxzhxiMRkQZZLY/Stzv0/RYPVcCJp6jE9FEZpdl4+3KVNd1xRh4beWc02rYMBEREREREREREVE+CAtFMJrGYDQip1J2vo90sM1eDgWNIYwY8ofXDDAiyn8Nsv4DEj5XRcohLz5XpeVxVSGZRERUfHyuChzfeArOmXc95pYuTDr+qBHCI12/x682nY2NI5nvi6YKCatXXNfkE79X/h26I0XagSZPBOPyjn12QmqJigWD0YiIiIiIiMiUlWC0WbXycdr6gfUBeVlVKaCnkGb1uT00tF6r46WzdTzxEx0fXKojcruOlZeO/X3jcZl/U0N/CAhsD+bvNgmYOniBui5t2zv2xhQvt3CLGI4MvqCcPuCqnzpwqA9oXa2u0CR3v2LgkGsN3P6SwA3LG3Dw2h/jqYovWZ5+ik1rUp/WIuX6mIY7HCUeDff/r4anTzOf2QFXGnh3s7WGOw8tM/CZGwzc8oLArS8IfPYGA/e/bp6u0Gah03dfcOfnpxKM1jVof5psU4VQyHYbsxQd6AHgnL+ykZUZq+uPKgAyF1R1dumAvxKoUbzkbn2g+NaFjn6BDyQvAF26HtjYnZvfo6XT+ucmbu8zFcFo2Q7KYDAaETmFWWBXXzB79Sh0do6WvfzdiZTMtqXxUz7VdV17loNwncBKX6ERBqMRERERERERERFRAQkbimA0vSzLNSEiq1RhOGExiqF4ET7gcYhApENZxgAjovzX6J1laTzfNAI1yl3Wp1WFZBIRUfGaV7oQ58z9FY5v/BHK9PKk428Nb8T1m8/FQ9tuw3A8cx2dVCFhhXAsU4W7BaIMrXaykCoYzUZILVGxYDAaERERERERmbISRNVcIw8Aa+8TUL1saGAk9TqVl2j41G4avravhj2aNbhdGvZsHvv7zM/pePKnOhY3pj5/K1o6x/5vFoy292x12XiQS1QVjIYYdAg0xDql5d0ev3zCV59Sf2iCtj6BUx6YuHDDeiku8V9iq/P/BDZC2VKlDupLTyCepmn40t4aPre7epyh0bFwtMCQ+S8Viwtc8JiYUGdDABc+LhCLy6cVQuCNDcnr2ZfwQr9UgtECJuutU1gJZRzXbBKMduNzAvVnxnHcHXGsap84065BgVP/aGDPS+I47Fdx/OOD4rvpb1h80JEPwWi6NrYNz1GEdRZjSMzmXnXZGxtys76vsfHioVhC6I/qXKN7GIjEsvddbAWjhTNXDyIixekkgLHjNhszpIedn7FjgL85kYrZtjR+OT/T5N5SsbFyzhmKZL4eRERERERERERERNkSNuSNCUv00izXhIis8nvUIVtm4VyUWV2K375EK0WVy6ShJRHlhUZvs6XxphOoYSdUjYGLREQko2sufKrmi7h0wW04uOqzlqZ5beBfuGzjqVg68DwMYfLm4BQFovLz5EI4lqnC3UaMEILGUJZrQ1aplo3PRkgtUbFgMBoRERERERGZMhT3ExODqGYpnpVv6ZsY4JTonC+mJ8hK5isf07D6CheMu1x44/zMXPq2bBvrpaoKRnPpgL8C8CueK27sGZs+pvh9PSIKAPDHuqXlgdmfkA4XLe8oajzRnHPlH7yi9GPocCtu7GoatAfeg3benRjRSrHKuztGtITGZ1vXQ7RvtPT5qbITljUdt307+XrT+HMDQ6Pq3sqrO8a2gcna+oFV7fJp/u9+ax2+exMCnlTbqJlkoW5OYGdZz1J0oB/XGwT++g7w2RsM9AyPzdgwBI75nYHbXxJY3QEsXQ8cdbOBl1uc/9ukk9WQp8FphFmmW7J1o9YnL1cdjwqZ2fLdYhKalkmt8sOaVHxCMJp6vE09qdfHLjv73EgMCEeLa59CRNmTbH80nSBq2slqiCwwdp5PRPaNX82p7i21D2StKo7BYDQiIiIiIiIiIiIqNmFD/sY+BqMROVeFqwqluryhlip0gDJPHfjQBC1NLyAmotxp8M6yNN50AjXKbUxrFpJJRERU6a7BSTNPx5lzrsJM79yk4wfjQ3hw2624afMF2DramrZ6jBojGIrLG6GpQsXySb1JuFt3xMZb7SmrQnF5h1Q752JExYLBaERERERERGTKSjiRqvPqqnZA1Y/8Wx/PzgP2AxdoePuXOr6x/8ThlaXAPrPNp/3c7uqyls6x/6sCpuorAF3XsKtfPv267dPH4vJyt4iNzScuT5DpbtxLPuHmFvnwBLe9aJ6i0OJdNHXgl78P7S9rEJu9BD9qOxZ1u3Vgn13fRu3iTpzTcBVicI2N99pTST9/OtRBfen9nIUNGlwW7ppU/8zA3a/IK7WqXd2T+QNJWSwu8Mhya8ELiQFPZh2my0vkwwN58NIPO8FoZoFJibqHgev+OTbjMx8WeH3D1HE+e6OB0SIKMrIcjCZvf5oT8ST7gRpFMFp/EQbEBMPqstYshokl6hiwvn0lhofOrwNUbfPGj8nZYHfvMOSgbYeICkuyY/jPHxEQNkK9SM7OT8hgNCI1s21p/ByvuVpe3iYJHC90VvY9DEYjIiIiIiIiIiKiQsJgNKL8o2maMkSAwWi5E1AEHzC8iKgwNHqbLY03nUANO6FqDSZBLEREROMW+fbEBfNvwjH+76FES36dv2F0Da7ddBYe7boXI/FQ0vGTCUTU1yd+b/4Ho1W7auHRvNKyQJTBaE4VVASj+fTKLNeEyPkYjEZERERERESmkgXQAMCsWvupVPVZDLDfb66Gh3/kgnHXzv8Gbnbh3YtdGLxZx56TnhGe/CkNxl0u/PNMF048WP7dtvaO/b9bfh9qx/db1CCffl3nWC/XqCoYDePBaPLkmu4SxYPNjR9CxGLyMgBDowKn/cm8h+1a724T/tbuXgr9vDugzZyPy58WuHt5OSL6WOJWTPPgprozUbr7EB6sOgHDr/zLdN7TZScsa7qszvKUBwSueMpAJDaxcusD6mk2SMrWB4BhkxCjRP0jgLH9xzALxWhU3A8NKNZbJ1F9L1kwkqoDvcz1/xTNJWnxAAAgAElEQVToHBS45QX1D3fOX4snREQVNjjZ4IhzfhPlfmD7nc4an3zr7Q9mqEIOZhaWsLYzN8u0Q/6yJanE8NAyr4Z5M+TjrdmWve9iNUxw3JDF/ToRkV3J9kd/eE3g8XezU5dCZme/38FgNCIls01pRzBajfw8vnNoLEi8mFjZ90wnGM0wBN7ZJPDQMgMbAsX12xIREREREREREZEzKYPRtLIs14SI7PArAnFU4VyUeapQOtWyIqL84nNVoNKVvNH0dAI1XJobpXryc7ByvdJWiBoRERU3l+bG52YcjYsW3IL9Kg5JOr4BAy/0PYnLW3+KtwdfndaLgrsV4WAuuFHrrk95vk5hFlqt+u6UeyFD3rFvOgG3RIWKwWhERERERERkykoQ1awa+/OtK0+tPulWUarhnV/quPd7Gq45VsNzZ+i44zs7L5ebFd+tfWDsh+kakpfvCEZrlJev6xr7vyp4ziPGws388W5p+ca4Xz4hADxwrbLoT7c+p55uuxbvop1/fOHb0JYcsOPPB99Q30z+3qx7UD36ON5aZSP1xibV+ujKwB2OT++WfJxxlzwp8KnrDPQM76zg+DKWWd469YustvGSRCGAwe3tAU2D0arkw7sV662TqAK7ZCF4JR4NPvkLTqSuedb8ociflomi6Xhv9VsOjGS0Grao1g3X9nWjxicv73dQuFu2BCPq77wmB8+4hBBotxEaE5u0rBcrXsjUksXvYjVMcJyTth0iKiyq64hE1z5rc6dFU9g5e2jrL75zDSKrrLRLU91bEsJeuG4hsLI3CaUYwBuJCZxwt8DHrzJw4j0CCy80eLwgIiIiIiIiIiKinAsLRTDa9pd3EpEz+T3ysK0uRTgXZZ4yGE2xrIgo/zR4FS9XTzDdQA2fnnx6v1fRoJOIiMjEDI8fP5x1Lk6dfbEyzCvRQKwX93TcgFu2XorOSFtKn6kKbq7zNEDXXCnN02nqFcflQITXZk4VisuD0Rg8SzQVg9GIiIiIiIjIlKrDfWIQld1gNJ8X8JVI0o1yxOPW8L1DdZz7RR1H7jGxXjMVL1Ua75S7vkveXbWpamw+8+vk0/cEx/4/OfRlnHt7MNrc6GZp+Stt5RjwzJCWiXuvgAhPTWIR6z/Ak+/E5B+Y4PYZp4z945AvQTvrtzuGD4QENvUknRw/vC+KuFla1zRYCepLl5MOsTfTN1sB/1nGjtCzwJD6N/jXaiAUnli+Zpu936wvNPb/VILRzOrmFHaX9cVfsb68bv63+ffvCQJL11ueXV6zuqkOytuf5oRy3dh+XKpRvKiuL5iZ+jhZ0CQsob0fGMxyWNzQKBCKWB9/8jnIwgb5dt7Wl73vYffwtiGQmXoQEVnZHy3fBLQzrGta7ARiFuO5BpFVZnui8TO8OfJbHADMg8cLkZV9z0g0tXn/4TWBR96euEQueFzgvS08XhAREREREREREVHuhA1VMFpplmtCRHY0eOVhW4FIO4SVN+dQWoXiwwjG5W/NZYARUeFo9M5KOs50AzXKXZVJx2HgIhERTcee5fvjl/Nvxpfrjodb8yQdf01oBa5qPR1/734IEcPeGyWV4cEFdI6sCpkLRLP4BnqyLGKEERXyjjXlevLzMKJiw2A0IiIiIiIiMqUM7kp4KUJFqYZqRRCNTH0ehdfP3PCydHhHv4AQAmsU9wgXb7+nWN3fKi0fGBq7gRWNyRt/uDEWYHZE8EVpeTSu4c09vquoNYDlL0wZZPz9XiwtO0g9zfi8NS9uPq0V2q8eh+ar3FHP+edbSwV4f6AWb2ywNKptyQKR0unr+2sprasHXm3g8XcF+kPqcUajwDuTMu9abN5v7t0evKAKLwSAhip5iFBA/mIJR7G7rE/5VHrT8Z54rzgaZlkN+xicmrWYM6p1fjw0r7ZcXt7voO+QLcEkIWTrsxza9UG7vfE/MX/i36og1vaBlKqTErvBaHZDL4mIrLK6P3p6JfdD02Hn1+szOf8nKnZm/V607efxNT4NfkWbnlMesJFSWACs7OOD4dT277e9KJ/uwTd4vCAiIiIiIiIiIqLcUQej2WiUSERZp+p8P2KEEDTkAV2UOWahBw2e5izWhIgyyUowmpVgMzNWgtX8inBMIiIiqzy6F1+uPx6/nH8z9vDtl3T8mIjh2Z5HcEXrz7ByeLnlz+lWnCfXK65n8pHqu3RHGIzmRKG4ulPfdANuiQoRg9GIiIiIiIjIlCqAxj3pilIVViKTL8FoIhpB0z9vlpYFIxr6hmJY2yWfdsn2e4pVL94vLR8VXowu/ZcyeM4jogCA/UffhT8m/5B3Fhyjrnzr6gl/io/eR+cTj6LfVaueJsH5LzVgePtLNIJhAd9PDQzYCBU66+GJX+y5VQKH3xBH89lxfOq6OB5allqnZlWIk57eTCwAgK9Ew39+oeOQXexP+/XbDbyeJBxucljOn9+y1wm5b3swmlmH6cYq+fCuPGhzpOo4r1rW1T4NVx6dvhXhN88LGHYTkPKQ1a84KG9/mhPK0LzxQAVFm9hiDCsJJQlGC2R5X/DsB/a2qTOOnHiy0aw412jrS7VG9tndLaztzEw9iIjMwnETPfN+4Z/PZJKd/X4xhrASpUPiVdwSRVuz9QEgMFQ8+zMr39TKPZql6wW+8OuxezGNP49j/yviyrDim/5VPL8vEREREREREREROU/YkN/0LNFLs1wTIrLDLBQnwA74WReIdEiHezQvqtzW2g4TkfNZCTos16fXWaPcSjCah8FoRESUHg3emTh19sX4YfM5qHHXJR2/J9qJ29uuxJ1t16AnqujUl0B1bVJIIZ+q7zIQ71OG0VPumAWJTzfglqgQMRiNiIiIiIiIlAxDKDuCF0MwGtavRHPvKmXxy7+6E5GYvGxxkwYhBKpXvaCcvv+C7yMak//ALjE2Yw3AHuHV0nEubPk4BMY6zA7pFRjVSnaUiU0tO//d0Qrx/U/g+NkPKOsyWTgGPPCGwIftAntfalgOXhj3VutYB1wRGsIL7w7ji7818NJaYNsg8OpHwIn3CNy3dGymXYMCW/usdcBNFoiUbktmanjtPBdGf6fj9CPS+yFrEu6tr+0UCCvWJZXxkCdVWBwANCmC0bIdhpSKVJb18Z9I7zI65nepBfjlE6thH0MOehaiqrNr+3FpRrl8PegahHKfW6iCYfPy7uHs/h4fbJV/3uxaoGpSW+ZDdwUOWzhx2Kwa+bLtCQLhaHa+i91gtE09xbXOEVH2WN0fvb3Z/rx7gwKrOwQ2BASEKq22SNj5+sFw8Z1rEFllti1pCad4uzWqr+n+vqJ4ti+z6/xxyYKf39si8OnrDfxr9di9mMAQ8N6W9NSPiIiIiIiIiIiIKN1UnXRLNAajETlZlasW3oR2q4kCUXlIF2VOV0T+hhy/pwm6xm7ERIWi0Tsr6Tg+C8FmptPryQM5GgooTIaIiHJP0zTsV3koLl5wK46sPRq6hRicFcPLcMXG0/Bcz2OIiah0nKgRRV+sW1rm9yje4pmHzL5Ld5Sh1U4TjA8ry3yu8izWhCg/8I4GERERERERKZmFYbkmB6PVWg8kqqvIUIpVum1qwexoG9yKG6RPrlM/NNytEUBPB6qD8oYGADCgVyG6Xh565hY7U7KWRNYq53Hzofdh4a6rUbu4C/MXrsXvak8ZK1i/EgAghMDGb38Oh8x/Ga/6DlPOR+anfxTY61IDrT22JtvhsF8ZCB81G0feXiYt/9GDAgdcEUfT2Qbmnmtg4QVxvLHBvKNztoPRxnndGm76poZbTtBQ4k7PPFu27fwyt7xgv4N3X2hsGrNQjMYq+Q8TigChsLM7laeyrOclfzmMLX9/HxgIOft3mi6roSqDI875HZKtG/MV60HMADamuD/LR63dAlc/Y77cutXPUzKirV8+/AeHaXjpFzq+/18aPrkIuOAoDf84XYfbNXGDbzYJYX3k7SwFo9nMS+zJ8m9MRMXD6v5oax8wPGptH9nWJ/CZ6+OoP9PAnpcYWHihgaazDfw1S/tYJ7IbiDkwkpl6EOU7s00pMRjtKx9TX/D944Pi2RdZ+ab9SfY3Vz1tP+SeiIiIiIiIiIiIKFfCQhGMpjMYjcjJNE2DXxGME4gwGC3bAorAA9UyIqL8VO9tTBoWM91gtHIL0/s93LcQEVH6leplOLbhe7hg/q+xa9nuScePiDCe6L4fV7eeibWhlVPKe2NdEIrWWPUFFIw2w+NXnh8EIgxGc5qQIhitRCuFW/NkuTZEzpemrrxERERERERUiGImHSjdrol/m4WVTFY3vWdtWSM2t8CDGBZG1mNNyZIp5X+r/Ip0urkzgPISDeKDFlQbg8r5D7iqEeveBpTvMaXMg53BaHuGP1TO4+d93wS8Y//udvvxs6ZfY0l4DQ5f+zLE0/8PhmHgC3Ofxnrvrsp5ZFL5IvmbNQAgEgPe3bLz7w3dwJE3Gdj8Kx0zyqd2hhZC3TU408FowFgjnlM/q+HUzwKnPGDg7lem1yl7TcK95TUd6nnNr4M0nK4vNPZ/82A0dVlgGJgnf1mjI6QSjObSNezVDHygziO07V+rgW8ckL75OY3lYDR5+9OcUHXuH183FjWOhSvIdhlrOrYHVxY4IQS+fEvyFIRsB6O1D8iHz6oB9p2j4Z7vmu/M59SOBbPK1oErnhL49kECmpbZA4LJoUiqJ5iZehAR2QnsOusRgf3nmk8gBHDqH6eOExgCjrvTwIqLdew9O08CrtPI7n6/fwSoT/7SXKKiY3Vb+vLe6rJ1XempSz6wso/vD6nLRqMCz35g7zOzcV+FiIiIiIiIiIiISCVsqILR5C/kJCLn8Hua0BZunTI8EGUwWrapwugYXkRUWNyaB3WeRtP9bLk+vcYrPpf59GW6D+VJxiEiIpqO5pJ5OGvO1Vg2+CIeC/w/DMcVHRG22xbZit9suQifqPw0jm34HqrdtQCALsU5sgYN9Z7C6Vji0tyY4fGjO9o5paxbEaBMuROMD0mHTzfclqhQmcdCExERERERUVFThc8AgHvSFeUsG8Fo9flyn2ZTCwBgcWSttLjfVSsdvrhiLAxNXPJtVBmD0IT8hxzQqxCFPMnfLXYGox07+ITlKgPA1fXnjn3+tSfjgj905SwUDQCEZu/WQygCPP6uvAewWcdgPct3OO48Ucc/Ttfx88+n3nN4Y/dYZ2VAHRYEALv65cN7t4ftpByMJr+P6hjKYLQky/r4A9Pbm/uFNdMLwHM6I3l2FgBgcCSz9bAjWWheqUfDgjr5OC2dhb08x134hMBqC20LsxmMFjcEtimD0axttxWlGo5UvPhpXRewfFOKlbNBtQapzm16g+bBnkREqTK7Vpvs968I/OQh8/9koWiJ7nu9OPdldgLoAPOgIqJiZrYpJZ4Jul3qsFyz6+ZCY+U6zWx/81br2P0VO1xsOUJEREREREREREQ5IoQwCUYrzXJtiMguv1ceuhWIsPN9tqlCklTLiIjyV6N3lml5mat8WvMvTxLK4ffMzPhLbImIiDRNw8HVh+PSBbfhkzVfhIbkx563hl7GZRtPxUt9T8MQcWUoWI27Dh7dm+4q51S9p0k6PMBgNMcJGfKOPMnOwYiKFZu3EhERERERkVLMLBjNNfFvq6EmQB4Fo20eC0bbI7za1mTzN70Isf4DYKAHOgQqDXkC1aCrGjHNLS3ziOiOfzfFp76xwcxL5Z9Bj2sG1nh3w/X1Zycd/9b/Sf3B5Ml1b+KhtpNSnl5mjeKeq1nHYD0Hz1Y/v6eG67+hw7jLlVJAmiGAj7rG/t2h6OB91TEaan3ysr7QzvmozChXd252fDCaYnkn+6XPOELDsfulrx7LNhR2CIjVbzeQB8Foiev6LopAwc7B9NfHaQZHBK591tqS7cliMFrnoHrZNdsIV730q+pb2u9vzfz2qto3+RUvPwzH7IdSEBFZYTewa7peWVvY50QqdrMtGYxGJGe2LU1uKz2nVn7VFxgCwtHi2BdZ+Zb9IfVYq9rt/06J91Xe2yJw0d8MnPtXA0vXF8dvTkRERERERERERLkTFREIyB/GMxiNyPn8HkUwmiKkizJjJB7CUFzeENWvCEggovzV6G1WlpXpPrg0l7LcCp+eJBiNgYtERJRFPlcFTmj8EX4x9zrMLdk16fijRggPd92NX236BVYNvy0dRxUils9Ux+duhlY7TjAu78jjcyk6pRAVOQajERERERERkVIsri5zT7qinFVrfb75EIwm4nFg60cAgMODL9qatqp3PcR9V+34u9qQJ/H06TWIah5pmRuxCX9/cy97qURLyw7GT5puTjremxfo+M5B9kO9/vA9Da3X6Lj9jNk4cOQt29Obae+XD4+b9MXNRTBaouu/oeN7h9qvxKsfCYxEhDJA4ZBdNNSUy+fbFxz7QcwC49y6ensLDDu7c7Mq7CPZsvaVaHjkRzpartDxyCk6/iv5cw8AwGcXy4e/u2Xnb12IrIaqDMpfzJsTqnU+cd2or5CvKL3BDFTIYfa7wmSnMEkqgQmpUu3bAXvBaAftomEPRZualiw8s1NtM36Tc5tsBtARUfEw7CZ2TdPyTUCPw88fM8HuN+53UJgskZOYBqNN+tvs/tK2Igg6Bqzt482CGFWB82bGX4Dw7EqBg68xcNXTAtf/U+BT1xl48A3r1xhEREREREREREREdoUNdaMUBqMROZ+q8/1wfBAhRWdvSr/uqPoBEQOMiApPo3eWsiwdgRrlSeahCsUkIiLKpPlli3DOvOvwrYaTUab7ko6/JbwBH4belZY1FOA5sioQmaHVzqO6Vi5PEk5LVKzcua4AEREREREROVfMpN+ja1Iw2mwbwWizanKcYmXFtlYgGgEAHBZaihJjFGGLDa0qjWHgpcd2/O2PdWOLZ87Uj3A3IqiXS+dRbkzs4VpXaS/b/Jg5jyYd5y8n6/j4/LFlcdM3NZz1sHnHW00DDt0F+P13dSxuGl+Gc9D8+S8AG2xVz1Rbn7weZgFguQ5GA4A7vqOhrgK46z8CQxZDpJ58T+Dze6grP7NaHWw2HrRjFmyla2NhPZ2SzuNdQ9bqmCvKYDQLC1vTNCxqBBY1An0hDa+tT96p/LTDdbzYIl/JPnODgRWXTO/taU5ltl0lGnRQyId63dj57xnyXWvBBrps6hE4/zGBP79l7/t92AFsCAjs4s/8TlQVjOZxAXWK5aXy8fkaPuyY+l1btmV++arWP7PQ194QMLcuM/WZLiEEHl4ucMsLAuEY8PX9NZxxpIZSj/V14sE3DNzzqsBwGDhqbw0XfVmD2+WAAzNRgbMabppOv/23wOX/XVzbt93feTgsMDXmiYjMaJM2meZq9bjt/cA8h55XpZOV7Ms+k2C0VM6Lx0/fznvMQCQhq98QwC8eFfifA4Wl63EiIiIiIiIiIiIqXBEjjLbwJsRENK3zHYz1KctKNAajETmdqvM9ALw3/EZGwnNmePyo8zSkPL0QAoHoNgzEeqXlDd6ZqHbPSHn+2TBqjKAtvAmGGHsD9kcjq6TjuTU3at1F8ICNqMg0eJuVZekI1Ch3mc/D71Xv+4mIiDJJ11z4dO1R2K/yUDwWuA9vDr6U0nzqTa5j8pXqO/VGA1gbWgkN5v0Sq90z4Pc0QZvcoI/SLmTIO/T5kpyDERUrBqMRERERERGRklkwmnvS/TB/xVi4STSefL5L8uH+4aaWHf/0IIaFkfVYVbqnpUmr4hNTqJpi8jexbXM3YVCvks/DmDiPuur0XcJrEAjf7poQWnL6ERqeWSnw/Oqp49/0TQ0nHKihogQoL5l6g7P01MvhPz2AgNuflvq1KcJzTAPA7OXGZYTXreH6b2j41bEC/1kHHH5j8sSpF1qAlW3qcrNgtG6rwWiKl3YF8jUYzeY99qP21gCYdwr/yWc0HDBPXb6yDXh9vcAhuxbeDX6rYR8jUSAaE/C4c/8bxBWbVuK6UafYbnqD6a9Prg2EBA6+xpAGIFqxfFN2gtHa+uUrW3ONtcDDRLs1yoe3dNqtlX2qbWZGhQZNE9IQi7Y+YN+p+ag5MRIR0LWx7SUaBx5+W+B/79tZ6bc3CawPADceB1SWIumDzd+/YuDkByZOvzEA3P+D3O8riAqd6niYSa+uK8yAUTNWwokSBcOZqQdRvjPblCafblSVAeUl8u2ptacwr8sms3Kd1m8SXr06hZd8unRg24CQ3qPoHASWrgcOW2R/vkRERERERERERFQYXu57Bn8N3IuYiCUfOY1KLL7IlIhyp8ZdB7fmkYYmPrjt1ox97oLSxThl1vmoctfYmq4n2ok72q5BW7jVdLwlvn3ww+ZzUebyTaOW6SeEwNM9f8Y/eh6BgeQNB+o9TdC1wnwpLFExa/TOUpalI1DD51I0Pt8uE6GXREREdlS5a/C9mWfg0Ooj8ZfOO9ER2WJrer+38I5lquBSAwZ+s+UiS/No8s7GT2ZdhHqvosMGpUUwPiwdXp7kHIyoWDmg2zARERERERE5lVlne/ek5+S6rmFmdfJ5+iuBuoo86MS6uWXCn4siH1metNKYeINqpiIYrcPdhEFdftOqKj4xtaquKn3BaIHT104IRQPGgk/+dqqOC47ScOB8YHEjcNRewN9O1XHGkToaqzRpKBoAaJW1+IJ3Rdrq19Y/FsA0WbIAMKfQdQ2fWazhvYt1HHcAsIexHjOj8l7JkRjwm+flG5q/Eqgq06YXjKYD/kr5j+P0YDRVCIXdZd1co2Fxknvyt5ygYXYtUGXSlvKiv+UgfSQLrAajAcCQQ4I+VHV2JdzprCuXj9NTgMFot70kUg5FA4AW+SEq7doH5MObLZw7TLakSb4jWB8AIpLjRzoZihXQ4wLm1MqnaenMfZCQEAJXPm2g/KcGyk41UPITAxWnGRNC0cbd86pAzekGDrrawLIN5nW/+d9Ty//4pkCHIgiPiNJHdTxsqAQu+oqGg3cZO6e3+58qfBIA1nVl5rs4mZ1zJQAYdsj5EpHTmIUMTj6z0zQNu9TLx12bhSBcJ7ASytgfGjvHmywYFtjca/8zXTowYBK2tqmX53dERERERERERETF6qPQh/hL111ZD0UDgBK9LOufSUT26JoOvyf7b0veONqSUvDaPe03JA1FA4A1oRX4S9edKdQss94dXopnev5iKRQNYHgRUaGqctWiVHGelI5ADZ+uaIS7XSGGyRARUX7azbcXzp9/E46uPwlercTydLm4hsm0+jR8p22Rrbi97co01IbMhBTBaD59+gG3RIUofb2qiYiIiIiIqODE4uoytyRqe1YNkna+XJIn9w7Fhg8n/L1bZK3laSuNiYlTTYpgtDZPM4ZcVYp5JKTclPowZ4YGYHqdUEuMUby7x+2YsefZ0vIyr4Yrj9Zw5dH2533ByQvx4B3Tqt4Oo1HglY+Aw5dMHJ4vwWjjPjZbw59PGIB4cG8Y0DB/4Tq0e5qnjPeyYtUa31bqK+TLvnt4rBN0st9FHazm7E7Nqu+VyrI+6VANFz4un+GyC3Ro2thM7zpJw/F3ycd7YQ3wxLsCZV7g8MWAx+3AlS4FdsI+BkeAGeZtHbLCyrpRp1jvnRqM1jMs8P5WYFW7wIJ6DXNnAL1BYF2XQFUZcOiuGmbXTl3neoMCv3zC2kI8Zj/g8XenDs9WMFpbn3x4s72XtgIAFivOJeIGsCEALMlgmxuz9W9Jk/w8aE2WfmMzN/5L4OK/2dvvL98EHHengQ8u1VFVNnX9i8YEPmifOp0hgIffFjj9iMLYTxI5lWp/VOYFLvuajsu+lvq8z3rYwG+en/oBbf3A8KhARWnxbN9WwokSBRmMRiRl9+pzt0ZgZdvU4evyJBhtaFTg5bVATRnwiflAicfeftPKdVo0DoQiQPmk9nyphsd1DwOPvq3+YKMws8KJiIiIiIiIiIjIgjcHX87J52rQ4NG8OflsIrLH752JjsiWrH/uquDbGI4NosItb4c7WVekHa2j6yzPf8XQMsSbYnBpzumCu2zgJVvjM7yIqDBpmoYGTzM2h9dPKfO5ph+o4dXNg2WqXCk0/CQiIsoQt+bB5+uOxcerPolHu+7Be8NvJJ0mHSFiTlOil6LaVYuBuKLjhkUdkS3oinSggdcSGROMD0mHpyPglqgQSbqxExEREREREY2JmXR6dCmC0ZL55CLnd6IXAz3As/+fvfsOc6Ja2AD+nsn2hS1soxepSlERuSoWELuIyrXfa0Gxo9jrp2LvXa5eK/aGXkVsiAURVLChUhaQKtv7bpYtyZzvj7DsbnLOZCab7Gbh/T0PD5uZM2dOksnJzGTOO6+0mnZg7RLby/sHo/XQBKOtiRusrSOlZR3xSTh8D9ur17rC+waGXaUORWurYaMH4u+hd+L2otvDUt8XKwMH43a2YDQAQLEvMcaAxHE1HztadGh335PSBZt5TF9QldXgZEMAWZrzosXq86hRQxdCYYRwNuus/QS6KH6jP+9AgX37N288p4wxkG1xHnnK0yaOftzEsFtNrMyL7mA5uxwFo9VFrh1O2ApGS1Z3CmVuwHTypNvBwlyJ4beZmPiIicvfkjjuKRN73mFiwsMmLnhV4rRnJQbdbGL2ktYf9m9yJTKvtJdOsOV+A0Ny1K9JbmH7vB75ler19Exz3oEPytL3+7kRDsuw2v6GdFc3ak1Bx25zLy02cd2c0Nrwdznw0hL1stUW4T+hBnIQkX1ezVdAOPaLp0/QV/K7IqhoZ+Z0t8HdEJl2EHV2ViGDQtHlDNbsu65pp33Xtli8TqLPdSYmP2Xi4AdNjL3HRF6Fs3bb7XsqagOn5bZh3/MWiyDdKDuMIiIiIiIiIiIionaU37C5Q9bbI67PjpsdElF06xs/sEPWKyFR2GD/R+y8emf9Wb2sQ41mwHpHKXAYQNc3oWPeGyKKvH4J6nEIPeP6hqX+/pr6ByUO5z4aERFFpW6xWbig1w24pNf/ITM2R1suO7YnEl1J7diy9tMnTPv/FZ7SsNRDarVmjeHAQ9YAACAASURBVHJ6OAJuiXZGDEajsBJCxAohxgshzhJCXC+EuFQIcaIQon9Ht42IiIiIaGclK0shX7kP5mNXwrxhCsz/3Aj52euQXm+b67YKRotRHFH2TA/+I9exI6P7hzBpmpBTdguYfmjtN0gy3bbq8A9G6+VRX3hR4UrX1pFiVjU/SEhC1wSBCw9p22t35iGJbVo+mB6X34Sbh6/G6ZVvtbmuVfmKYLQgAWBRqSRvx5+Tqz9ytOhuwheopws2A4Dv1gFnvah/YVwGtEFf0R6MZif8yq5e6QLPnimQ2uIjMHlP4KnTAyv75Zbgp8s2lADnv2JCWo3u7yScPIXKbZFrhxN2gmB0nxuvCZSof0PoEKYpMXW2iaIgn8cGD3DubAnjAi/2usOLM54zcejDwUPRkuKA16cJ9EoXGKa5qVFuAdplWy7VvO459m7Y2kp8rECfbup5hVWRfS5WfZPuNV6tzkcNm9X5EnfMMzH1JRMPzTdR7m5u5PwVEue93LbX5I6P1MvXWIQlVkdJf0G0MwvnvpK/fhlAYqx63qd/dv79HyecfkVa9Y1EuzLLYDTFtCGa69JyC9tn3zVUpilx8jNmq1DpP7YC17zrrM12n2KFYp8rUsc7DEYjIiIiIiIiIiLadRU3RPhHb41xaUd0yHqJyLn9Ug9FnFDcubQdFDfmOyjrvD+r9UbPxWZe6UFpY5Ht8qmudOzVZb8ItoiIOtJBaUfCgKvVtGSjK/bqun9Y6h+Xqt4XOyTt6LDUT0REFCkjuozB//V/AsdknIoYERMw/5D0YzqgVe3j4LSjwlKPlMHHqlBovNKDOlM92CKZwWhESoE9OXV6QoiZAG5rQxUvSynPcbjOLAC3AzgVgHJYohBiCYBHpJTvtaFtRERERETUgszbADltf6C6vHni4o8hAWDBW8CDc9t0Rx5d+AwAxLgCp/VKC17n4OyQmxNxUkrIW08HGgJHsyfIehxRswAfpBwftJ6ufsn9w+pzHbclpeVd5hJ8aU5Pnibw34WhjUQdUr8Gw3bX3/EiHERsHMTd7+CG79fgzZfaVpcqRMZqEK4RrdHvLYLRxtd+i67eKlS77KUApc+5F3LAUcjcR3/S/binrE82CyG2B0QFvnjF0XO9jpJVEF4oThtr4LDdJf7YCqQnA3v1UfeNPdMEjhwOfL7Cur7v1wO/bQH2Ds+N1TqMk8HtFbWRa4cTdoJgeqbql99aAWSHEMYVCT9uADY6vJnO738Dv/8d/I2bO93AfgOAzK6+F2ZodwFVX1BTD+RVAL30WZ1hUa7ZftJDvNlSVhdgk+K1i3TwnS6kwjCAoTnq17ioGih3S6Qnhz/F85tcieOeMuGub5721FcSP9xoILcAOOrxtnem5bW+fST/fcrqes0CAKrqmJxBFGm6fSVXGPaLXYbA+KHAp38Gzluybtf6fDsNAqptiEw7iDo7q4+S6rTVEM1+VXUdUFgFdLfY3+9Iv24BCqoCp7+1TOK18yQMm+mVdvueckV+f1WEAhoZjEZERERERERERLRrqjO3ocpbHrxgGHWP641xqUdgfNqx7bpeIgpdt9gsXNX3bswpehEb69bAIz3ttu6iBgfBaA7KNnF7o+cOtKWNxTAR/FqgeJGAgUl74LTsCxFndExgHRFFXu+EAbi8z0z8r/gVFNRvwYDEoZiSNRWpMeG5GHRc2uHwSg8WVnyKgoYt6BHXBxO7HY99Ug4MS/1ERESRFGfEY1Lm6Ribcgg+LX0Xf7p/QhdXKg5KO3KnPt8wossYnNvjGswvm4Ot9ZsgLa/c07Nz3EGhsQrfTjIYjEakwmA0ajMhxNEAZgMIFm9wAIADhBCvA7hQSqm4VJuIiIiIiJyQ/7mxdShaSz/OB76aA0w8OeT6PV79vBjFgPtgwWhxMUBGlJ6jkV4v5EPTgYUfaMtMjluGD2AnGK31hRADGjciVjagUcTZbk+K2WIkbbwvNSbGJfDBJQZO+I/zE4z/3PYRxIiLHC8XipH7D8GceImTngn9ROiaQqC2XiIpvnnQsNUgXFf4s2bCo7g5GC1eNmCi+2tb4XoAkN5QDPn0TUh+5WjkpPgGfzvRNN46S/OZq64D6holEmKj88XThl+1Iewjs6vAhGHBy43oJfD5iuA/AMz5WWLvvtH5+tnlZHB7fqUE0PHPV9dmV4uQgewUXzCMKuAzryJ6Au1yCyOTLnDbcQKTRrV+r4ZaZGOuLuh8wWiZmr4t0sFoVsF8w7rrl8stBPbbLfztufl/rUPRAGBzGTD+IRNrCsO3nvJaoFty62k1FqEbVeqbGBFRGNkJCm2Lw3YX+PTPwJV8nQtUbZNISWzffYJXvzcxe4lEXSMwaU+B648UtgOG2sLpN3UNgyGJHFMGo1n86rymMHqD0VT9ZpMyN5DZ1V49ujBefxWKfS4GoxEREREREREREVE4lTQo7m653e0DnkZGbPhv1GmIaL1DJhFZ6ZswCFf1vcd3g+IQB99beTH/YfxSvThgenGjg2A0TdmD047G95VfolEG3gmr1oyeO9BaPddHBr+JOOELQRMQbbqpNhF1HkOSRuL6fg8qb3waDgenH42D04+GKU3uoxERUaeUHdcTZ/eYEbHvymg0JuVAjEk5EKYMPqbvirWnwiMbA6YzGC1y3FbBaK4oHXRL1MF4JEJtIoQYD+ADtA5FkwB+BvAugC8AlPgt9i8AbwrBI2EiIiIioraQNZXA4nnWZea/0aZ1eCzOY7kUe/S9061PEvZMRfSeSHz3CWDei5ZFjv33QbaCBrr6XQgRAy8GN6xz1JxE2WJ0a0JzaszkvQROH6tuRGoisO5uAymu1gkp3T0FuPqgOojkFEdtaIspowW8/zXQeMyLKFjTB9Wru2FK1f8c1THy9tYboNUg3LaEZUWSLMlr9Xh4/Urby6aalcCm1RAFG3HkQOfZ4juC0SwGXpdGzzU7ASId9mHFKtyoJTvhadHOdPB7RV5F5NrhhK7NLfsBlyHQQxOWsLUiet63sgjcNiC7K3D5oYEflPRkgWxNfxCpgLYmpilRoQtGSw7tQ53ZRb1cJF7Tlqz6pp5pQBfNTVbXF4f3NfZ4JYqqJL5fr54fzlA0AMivDJxWbRG6UVQNSClR5paQdpM9iMgRVfgnEL59pRG99BVlX23CXd9+n+1nFpo4+yWJr3OB79cDN/9P4uLX22f9TvaVAMAdeJ08EcE66EvV22R2FQGhrE3WRHjftS3iLW5LV+zg+NtuCFlFbWDByggF1NrtD+sbJbaWcx+QiIiIiIiIiIhoZ6EL4XEhBt1is2EII+z/iKhzE0JEpG/Iju2pXF9xg4NgNE3Z7NgeSHapL6xye6uV0zuCrv1pMRlIMBJ3vFZRe502EUVMpD/33EcjIqLOblfcR7Z1rKWJGzKlt51bu+twW4Rv645LiXZ1PBrZNZwOYICDf9fYqVQI0RvA+wDiWkxeDGC4lHKMlPIUKeURAHoDmAGgZVzocQDuasNzIiIiIiKipV8AnsBU/laWfAJZG/qP8lbBaDGKI8qRvawH4vdKC7kpESU350LOusG6UEYPZB1xDPbsbV3MkF6keQPTg8Zs+9lRm1q9jPGJrebNPkfgjuMFurfIOZs0Clh1h4HdsgSW35WIc/qtx4HGnzjH+BxLDv0S6dNvcbT+cBBCwOg1AJneUiTKOkyutg7y87ehBNhQ0jyQ1jIYLVrPUfsFow1ryLW9aJrXl0IjT90dx300zfGqm0KiUhP1ZaxCbTpaRwajHTlcKMMf/f2yGfh2Tece7G13wD0AbI2SYDSvzW1D950TLc8DUIdNtUVOCrDsZkMbNqYL/Vutv8FzWFTX6be19CT19GAyNDfDKamOcMibpnohfN97fbup54frvc4tkNj/Xi/iLjbR/Zr2uxNTvuJzU1MfOK3Jynyg17UmMq800e8GE/N+79x9JVE00vVHdvZh7LAKim3wAF0vM3H6syZq6iL/+X5sQeA6Zi+RKK2J/LqdrsGqbyTalYXyaR2So54e7gDYcEqI1c8rqrJfj93jtHJF+HC1Jhht3ED761fRHYc1qWuUOPtFE92uMNHnehN9rzfxxo+8cygREREREREREVFnV9ygvqAgIzYbLuFq59YQ0a4sK079I3ZRY76tG7Y0mg0o95Ro6u6pHYBe642eu8/qwiqzYm3eCZaIiIiIiKgFXfipKXndV6TUasK3Y0QM4kR8O7eGqHNgMNquoUBKudHBP/VZvkC3A0hv8XgJgMOklKtaFpJS1kspnwBwit/yVwkh+oX+tIiIiIiIdg3SNCFXLIX84bNWIWfyO5shUwveCXndHouA/xjFdU3pyQIHD9Yv0zs9+tKrpJSQ/xoVtJx4ZiEAYPce1s+hm7cMLgSeAJxc87HtNu1ev6r1hITWqTGxMQL/d6yBvIdcMJ/1/Zs73YXuqb629csQePHmwfj2mT3x4jPHoP+/z+q4u1v0Hbrjz1Oq5uCA2iWOFv/g1xbBaBbnVaMxGE1KCSxb0GrasHonwWjNKTSH1yxAvOksxazpNUmxCEariuJgNN21Su3xXvdOF7jxaHsrGv+QCa+TdLEQbGuQ+OQPiW9yJRo84V2Xk6bnVURHsJGuL/DfNnqnq8tttHvmqx0UhDkYLe9BA3266bfdId3V89YURPa9VQU2NAk1GC1TE4z28+bQ6rMr2PbXPVU9P1gwmrte4ouVEq//aGJlnvr9qGuU2P1WEz9usNlYB2JdwD4WZ2rzKwPbVB0kDKlge/jH3+XACbP0z4uIQhPpENleaUDXBOsyb/8kcdFrkf1s19RJZQhSoxf436+R71ec7ua5GYxGpGQ1FkV3umJIjmbftTB69ykaPPp5xQ7GzNgYu+OrU3GNVJVmH22f/gKXTwz9S6I+yL0Zpr8p8eoPEtu2l9taAZz5osSitdH7fhEREREREREREVFwRY15yunZcT3buSVEtKvLiu2hnF5n1qLGG/wONSWNhZCa2/lkx/VAkqG+GKlGM2i9I+jCKrPi1K8NERERERGRFaGJGzIV4yIpPHTh20lG144b+0kU5RiMRiERQgwGcHaLSQ0AzpFSaodUSyk/APByi0nxAG6LTAuJiIiIiHYOsrwY8sqjIS86CPLa4yFPGQq55BPfzF8X2qvjwUual3HIG0IQ1Ql760/C7D8wpGZElHzh9qBlxJWPQXT3pYUMCXJjtUxvqXL64TULkOCySJpr4aiaz1tPSAgxNSYaZPcGEpMBAHFoxNebjsCzeRejf8NGpHvLcFXpo7il+G7t4gtWtQhGsxhLG23BaLK+DvL2s4CG1skII+pXIM1bbquONLM5RaeLdOP0Kmchh02vSXKcvkx1FAejmZqR4O31Xt9xvIG50+2dOrvk9cgN9F62UaL3dSYmPWni0IdNjLnLxIaS8K3PSdjH1orgZdqDLiTA5fd27ZYV/UEK64vD15YN9xpBfwgZpvkO+3ULYEYw4C8SwWgZmmC0wirgkS8i90NcsCCiHqnq98AqBG/5Fonht5k48jETZ74gMWKmiQtfNVvdzbaoSiLp0vA8r/12A2ZMFHjgJIFbJgncOklg5e0Glt2sv5v3ekWgYI2D8B9TAi8tiZ7PHtHOQHesFq59JcMQOGVM8Mre/VmiojZyn293g37e2qKIrXYHu+FETZz0jUS7EstgNM30wdnq6b9tQav9pGhidYxdVG2/zXZ3zfMU+5hV29RlUxOBR08RmHdZaJeI1FuEvjV6JOb8FNhoKYG3l0Xne0VERERERERERET2FDfkK6dnxQW5iI6IKMysAhmLG9V9lZ0yAga6xWQj2aW+GEk3aL0j6J6DLjSOiIiIiIjIiiHU15JJBqNFjNtUH2PqjkmJiMFoFLozALQcKfe+lHKtjeXu93t8ihAiIXzNIiIiIiLaucjHrgB++aZ5QmUp5PUnQn74HFCivhujsp7rT4Ssdp5o49Gcx4oxoA1fOX4v/eB5q3kdQa5dDrx8b/CCYw7d8efwHtbPIUMTjJb8z6k4bLg+cKTJuNrFmFl8V+uJ8Z03GE0IAfQduuOxCybOrXwZ6/7aA8VreuOBoptxW4k+GG1li+s4OlMwGj55GfgyMMgsFh4cVTPfVhWp3tYjnO8uuhX7bltmuwlNr4lhCHTVHHlXRXUwmnq60Y5nsyaNElh4rYGsrtblnlskUexgkLtdUkqc/IzZKlTqzzzg8jfD9yODkzyBMnfYVtsmum3D/2tpSI66XG5hdAQplLslvl9vXaZ3OvDd9QauPVJo+7mEWGD2VIF+GcE7wj0032HF1cDSjUEXD5lVMFpaiF9x3VP0z/eadyV+2RSZ9zhYMFr3VPX8/MrWC5a7JR6ab+L690zsfaeJzWWtyz+3SMJ1oYlr3jVR7pa4dW74ns+SG1x49FQD1xxh4PbJBmZONjAw2/cEJo1SLzN/ReD6nYZrPjy/4z93RDuT9thXuuuE4N8tjV5g/3tNXDvHxIKV4f+c11oEo1VVRT6FzOkug1V7iXZlVh8lXbbv7pp9181lwAr7p8TaVbVFt1Rcbb8eu11PfkVgyUpNMFpKgu8czTEjBf7zL+cnUeoa9fNKavTnF75cxX1AIiIiIiIiIiKizqy4sUA5nSE8RNTeurpSEa8ZgqgLcWxdRt2fdYvNRKwRi2SX+iJBt+ngR54IMqUXJQ2FynlZceyTiYiIiIjIOUMTN2RKBqNFii58O4nBaERaDEajUJ3o9/glOwtJKVcB+LHFpGQAR4SrUUREREREOxP5+2LgqznqeQ9Nd17flAGOl/F41dNdFkeT/TIEzt4/cIDlWfvbC21pL3L1z5Dnjg1ecM8DIVoEe40fav38M+MUo2CPPQfGjEewT7/gz/+bTYcjWfolyMR38jzpfsOCFvlwyxTl9E2lgLveN4jWMhgtys5wSEUoWpPRdb8GXT7JdCMOrUcd53iL8O3GiVi0cTxeypuGl47abFlHyxAlXTBadV30DlA2NefR2zsE76DBAmvuNPD8WdYrzrk6/Cf+V+YjICwJAD7+A9hSFp73zupz5a/CItyqPQULpmoyJEf9nlXUAuuKwtyoEIy9R7/NPHWGwPwrDKy+w8ABAwXu/6eBVXcYmH+F7//vbzDw8lSB9y82sP4eA2ftb68TPHAQEB+jnvfhb5HrD8o1oXpdE4AYV2gf6qFBbj495m4TjZ7wP6dg218PTTDa3+XNf68rktjrDhPXzZF48HPrNj7yhUTGlSae/TY8zyUnxXr+IUPU78cPG4ASvwDImsjnERGRBV1/FGK3qpSTIlA7K/h3TG6hL/zwiMdM3DkvvPtEbou+pnLhfMiS4Be4t4WTfSUA2MZgNCLHdMFoVudf5i6PzmPZKk0oGQAUORgzozse9penuAeCLqAsJbH577REdRkr9R79PKtQSDf7RSIiIiIiIiIiok6rwaxHhUd9k1CG8BBRexNCaPueokYbwWiaMk1Bj7pB6LpB6+2t3FMCL9Q/2GTFBrmQioiIiIiISEEbjAYGo0WK26u+kFAX1k1EDEajEAghugPYs8UkD4DFDqr4xu/x0W1tExERERHRzkg+eGl4K6yrhdy4ytEiHs15rBiX9XKPnCJwzgECQvgGuJ5zgMAjp0RHKJos+hvmnVMhzz8geOF/HAFx51utJmV0ETh4sH6RzH+MBcYd63sQGwecOgPiqicAAENzrFd3RuWbUL5KsfHB2xrFRL+hQcsMq8/Vzluz/SZ3lsFo0bF5NVv+nXbWUGNr0MWzPCXK6bHwYP9tS3Fm5Rs4s+xlXHm4/om3DItL0QajBW1Kh7EbftUeUpMEzj3QwMXjrVd+yesmpAzfAH3VIPcmdoIA/i6XmPqSieG3eXHAfV48PN+E1++FdRL2UVMPeLwdH0DgtRmaN7ynvo7nv2vf5+HxStz/mYne13lhXOD791exumyfdODiQwQO20MgKb75SQ3O8U0bsvUb7DvrOPzr1Yk4/o/7kRNvkb7gp0uCwERNVmVEg9Fq1XWnJ4Ve58Cs4GXmLg+9fh1t37S9z+3bTd1PbChp/vw8+LnElnJlsYg7d5x1P3bsSPV8KYHPV7Z+8tsalUUtRXMgJ1FnE6w/CpeEWIG1dxk4cJC98nfOkyisCt9n3TIYrSEG8tX7wrYuFafPpM4iOIhoV2Z1mKTbO+mWLDBuoHreJ39E5z5FjcUx9vIt9tts9zgtvzJwmi6cLbVFGFp6svMD6zqLfT+rYLQwHiITERERERERERFROytpLNDOawoSIiJqT9maYLTihuDBaEUNecrpTWFryYZ6ELpu0Hp7K26w6JMZVklERERERCEwhHqAqCkZjBYpuvDtJEMd1k1EDEaj0Izwe/y7lNLtYPklfo+Ht7E9REREREQ7HVlTCTgMMbPlh88dFdeFz8QEOZpMTxZ48RwDdbN8/148x0C3EAZdhpusKIGcui8w/42gZcXH+TAe+ggiPTB55fi99M8lK7srjPveh/i6BmJ+OYzpD0DE+YLNhvUIEkZS86l6hitIEl206xs8GK1/4ybEm+oRxKsLfKNoddsjEF3BaPLr9yzn737YfkHr6OlRX4TTyqK5yLI472m2eL26aoLRqjphMJrowPf6idOsV/7MQokb/yfDFo5mNbj8p43Wy1bWSoycaeLl7yVW5QM/rAeunSNx5TuhB6MB0bHN6Nrs8vtu6pYsMLa/uuxjCyRW5bffCP2LX5e48X1pGXbX5JhRAkKzoculX0BecRSw9AvgjyWQz90Gefd5geVME7LWd1GebPRtSLJ+G2ThFhy3m7oRqwuANYWReU0qNOEMbQlGi4sRGJxtXeaTP8P/fHQf76bvoSGaEFSPCWzcfiPtj2wEG0ZCelLwYLSh3YHdMtXzft7U+rFVOIbOt2ucL0NEanaDQsNhYLbAt9e5cNyo4GU9JvDlqvD1c1b7QxVGKvDVe5Bm5C7AcFp1gwcBQbREdkmPB7LefuhtZxLqp+K4PdWd2h/B88Y7hFUI7JK/gBqbIbF2X6+iaqDR01xaSolKzSaUktD8WqYlqstYqbcIfrQMRnO+KiIiIiIiIiIiIooSRZqgIQMGMmJt3M2MiCjMdKGMxRZBjsHKZG+vM8mlvhiz1lQPWm9vRY3qPjnFlYYEI4Qff4iIiIiIaJdnCPUAUQkGo0WKW3OMmaw5JiUiBqPtKi4UQiwQQmwVQtQJIaqFEBuFEAuFEHcLIQ5yWN8efo/XOVz+ryD1ERERERHR5sikRsiPZzsq7wkxGK1JbIxAbEwUJVbNfR6oKgtaTDw8DyKlm3b+lNECcTHqeYft7nu+IiYWIqZ1oRE9gd7p6uVS4704qma+eqZLs7LOYvd9ghZxwcSQhrXKeau3X49ilS8QVcFoj1+tn3nOzRhw0XRkBjlf2ctOMNr6FRhZ+5t2dssAqxRNMFp1FIRc6eje7458r12GwLfXWneAD3wmkTbDxDML2/5DgNWg+tU/roIsDkwDKK6W2O8eL9KvMJUD4p/6SuKnjc31Og37qKh1Vj4STM3Godo2poxWbzCNXmD6G2bYQux0TFPigldNvPCd/fWcOiawzXKbG+bd50FePSlwgW/eh/zwOV85KSFffwhycm/IIzNhHhQPeWhX3/+HpUGeNAiTHh6tXfeHv0Xm9SjX3FKhLcFoADDZIqgUAF5aHP7nE6xvGmRx7ffaQqBqm0RBVdibBQDoEg/00exnnDFW4NvrDAzMtn7NhBA4eIi6zDMLWz/5UILRPl/JaAyicLEbFBpOE4bZ2xH79wuyVVBPW7gtwnYKY3KAimJgrX6fuK10zyIpTr9MKP0j7dqk1wvziashj+sJeVQWzKsnQVaUdHSzwspqt9sq/Hp0X/XM6jrA442+/Yrqeuv5T35tr81OjtNa7lvWNerP5aW0GA+TFsJ+uFXfZhWMZhVyT0RERERERERERNFNFyKUEZsNl+jk17MRUaeUFacORitqyLO8DswjG1HWWGxZZ7Krq3K+2xsdwWjFmrBK3WtCREREREQUjKGJG/JKbzu3ZNdR661WTk/SHJMSEYPRdhWnAZgIoCeAeABdAPQDcDCAmwB8K4RYJoQ4zGZ9g/web3bYnk1+jzOEEJohe0REREREu6jNuaEtl9ULOPRk/fyNqyDLi2xXpxtkGsnB9pEkf1sUvNCUiyDGHm5ZpHe6wMzjAgfn/nM0cMgQ/XIxLoEH/ikCguWEAO4/tASppiYppZMHo4mcvsCgUUHLDW1QBwLOX+HbDq0GBkdLMJosyQNK1RegoGs6xLm3wOUyMGmUdYN7NrYIRuuSpi034fHxttrVVROMVqUIzooW0RiMBgAHDhbISLYuU10HXPK6xNSXTORVBB/4bpoSK/Ik3lxq4of1zUEiNRaD6nMbc2D+a1TABV0nP2Ni6Ubr9Y29pzkQzCpwUCUqgtF024biu+nCgwVyUtTlv84F3lwa2TCFl5ZIPL/I2TrGD229kcttbsjz/gF89pp2GfnQdMhtbuCTVyCfuRmoLNWW7eEpwNhtS5XzQnk9TFNi0VqJJX9JuOvVy5drtpv0IJ+lYK6YKLBbpnWZlkGA4aDb/poCPZLihTYEdU2RxFr7u2GOHDsSqHzCwKb7XTCfDfz32jQDw3va60AH56in1zUCm0tlq8dOrS2MvgATos5Kt28cyX2lY0bar3zATSb+u9DEyry2fe513y0AkBfTwxdc9tefbVqHFV2/nxyvX2abRUAQkYp8fibw7lNATSXgaQSWfgF5w5SOblZYWQajWSxnFeBVFYVB36pw6pbe/8Ven+ik58yraP7b6jVpGZieFcI1VA0e/TyrYDT2iURERERERERERJ2XPoSnZzu3hIjIJztWHQK2zXTDbaoHlwNAaWMRJNQ/smfFNgWjqe92W2fWwistfihpJ8WNmj45tns7t4SIiIiIiHYWQhM3ZGqOn6jtdOHbyYb6mJSIGIxGzcYAmC+EuFsIq/tyAwD8R2Q7Gs4nt3QxeQAAIABJREFUpawB4H9ZdqqTOoiIiIiIdnZyzW+hLZjSDWLmq8Do8foyc1+wXZ1Hcx4rxuWsWVFj2QLr+YP3hLjiMVtV3XC0gS+uNHDFYQIXjxd4Y5rAWxcYcAVJIjhtrIElNxi46RiBs/YXuOYIgUXXGTh/X33akOjkwWgAgIMmBy0ytF4djPbjBuCOeaZlgJMqEKkjyDvO0c/cdyKaDrlP2Mt6O+l9+ETgjKshZjwC8cEmYPd9leUSpEVyVgspier1VUfhQPImHRH2Yddf99jb4F7+XqL3dSae/kb/o4C7XmLK0yZGzjTxr+clDrjPxIEPmMivkJbvT4UrHRs8mZAn9Id0+0IV1xZKfLvW3nP4aXtsveNgtCgI0/M62DZSkwQePEm/0VzzrkRlbWSCmipqJc5/xVndWx9ovW3JX7+FPLE/sMXGG/vFm5DzXrS1nsnV85TTf9sCfPqH/TZvKpUYfZeJQx40ceD9Jva6w8QvmwKX1wXqpSW17QPdK13g11sNHGeRvfnfb8McjGZj+xuiCRZbWwisKwpvey48RODlqQIfXGog+Glde4Zk6+t56uuWwWjOn0vL4A4iahtNhnVE95WG5Aj00mf2tpJXAVz8usSImSamvWJa3p3birtIfdduAKgzElFppEKGGixug67ZSXH6ZbaFEBxJu7gv3w6ctuJHyL/XtX9bIsSqB7DahbEKRouG0GZ/ZW7r+T9v8h0nBOPkOC2vsvlvq2C21MTmv7slCwzKtr8OANhmse9nFYzmbkDI3wFERERERERERETUsYpb3tixBYbwEFFHyYpTB6MBQHFDgcU8daiYgEBmrO9CnyRDf2eZWs3A9fake35WrwkREREREZEVQ6jHRknJYLRI0R1fJmnCuomIwWg7u60AngNwPoADAewBYBiAcQAuA/C5X3kB4CYA9wSp179XDWVIrP8yIdyXOpAQIlsIMdzJPwADw7FuIiIiIqJwkVICi9WBJUFl9YQQAmLaTH39331kuzptMFonPJqU9cEToMSNzzkKFZm4u8AjpxiYdYaB08YGD0VrMqa/wF0nGJg91cADJxk4YKAAYi1G1u8EwWjCRjDanvW/a+fNnCux/G/9QNqEKHiJZN564NeF2vniikd3/H34HtZhCsMOGAHj4nsgTroUIj4B4uDjtWVf3XqOcvrY/s1/6waTF1VH7+BkXcuiIRgtJVFg3mX2O8JL35AYOdOLmAu9OORBLxava352T34lMXd56/LLNgK9rjNx/XvW789HXY4FygqA954GACz/23aT8NsWX91Ox6dHQ/iALiRAt2386x8ChwxRzyuoAm6dG5nPwVXv2K83MRZ49ZhNyHnvTpiPzoB8/SGYz8+EvPxwYHvwXTDywUuBP3+wVVYXjAYAxz5pwmszieGwR0z83mK7+6sYuPC1wPCbck34Q7pF0IVdXRMEXjhb/3lckRfmYDQb298gTbDY2kKJQntvpy21sww8/S8DZ+5vfx/Ejj376OfNXd4yGM153fmVwcsQkT0dFSJ78hjnK3jxO4lZX9vvj+WP82HOuh7115yIJ99WD7hpkhfTA9isDlgOB12/z2A0Chfp9QL5m9TzPnutnVsTOVbHHZbBaIn6edFwbOKv3EabttoIitX18Sp5Fc0vbpXFr/YpCa0fHx8ksN1fjcVptdoG/RvsNYF6j6NVERERERERERERUZRgCA8RRZsUVzriRYJyXlGD/rflokZ1MFpaTAZiDd+Pv8kWg9DdHRyMZkoTJY2aPjmWfTIREREREYXG0MQNmWAwWiSY0kStyWA0Iqc64VB2smEpgCMB9JFSXiClfF5KuVhKuUpKmSulXCKlfEpKeRSAfQGs9Vv+BiGEfsR1YDBa8HSBQP6XZYerp74EwJ8O/30YpnUTEREREYXH+hVA3oaQFhWjx/v+GLGfvtDqnyGLt9qqz7szBaPdebZ1gX0mAINGtU9jVGLj9fOMTviC+xs0Cujez7LIUTXzke4t085/eYl6oG1iLJAU3/FpWfLjl/Uzx0+BSM/e8TAxTuCS8eo2d08BjtjDb+Kkqdqqp1R/gMGJgSOrT923uf6eqeplt5brm9zRtOFDUfJxOGakwKcz7DdmRZ7vOS1aCxz0gIk75vk62LeXhR7atCjpQACA/NS37W2tsF/X6u3XSdnMv9qhQhNw1Z50bXZp3g4hBGadYWi/u2Z9LfHr5vA/ry9W2qvz3QsNrDv8A5z+2Ahg9t3A+89APnMz8PK9YW9Tk90bVmNQwzrt/CV/Ba/jmYUm/ioOnP7zJt/23lK5W11HOILRACCzq/47ILcAAUFtbWEnGG1IjrrMumKgVPNaNOkSD2y5P3jf8uNNBhJiI/Pdpwt2A4A1hcDqfN+LEEowWkkNUN/Y8f0I0c7A6fdhuFwxMbS+5/K3JIqqgn/+zadvgrzmONS//R/sX3QLlidYH6Ntie0NbM4NqU126L5CLIPRGiLTFtpJeSy+UGt2jURRq14lxSoYLZRbd0VQg0fCXR+8XEl18DJO9pbyWpwOqLL41b6L3xih6RME4h2EzFu93rVB+j07rwsRERERERERERFFl0azAeWeEuU8hvAQUUcRQiArrrtyXrEm/AwAihvU87JbBD0mu7pql3drBq63l0pPGRql+gcZhlUSEREREVGoDKEJRpMMRouEOrMWUnN1oNUxKdGuLkqGklI4SSk/kVLOlzZG/EkpfwKwH4A1frPuE0K47K7SaRtDXIaIiIiIaNewaG7oyx40GYDvx3/xxHx9ucUf26rO41VPj7F7tBAl5IJ3gIUf6AuMHg/xfy9BiA4M13JZjEa1mtdJCCGAg46zLJMkt+Guopna+b//rZ6eKSphXjwe5q1nQP66sA2tbKN5s/XzsnoFTLp9ssC0gwRiW3ye9u4DfH2NgbiY1tuiSMsETp6urDpeNuDdxuswtr/vcZd44PqjBK44rLmOXunqZm3Nr4H571EwrzsB8tvoyg03NefRjY7PwNvhyOECr08TyAwh7n3mXAnjAi+Wa7ZrO3Ljh/j++PsvVFfV4cq37Z9uyd0ebOQ0GK0mCga02wmm8rdHT4GrjlAXMCXw5FfhOVVVWStx/XsmRt/pxdbAvMJWztxPoPhBEyf+egdyHj4D8Gq+dCNAADihSv+Zn7vc+vWQUuLSN/Rl/tzael55rbpcerLlahz5aLr6VHd5LVBsI3zCLjvb34BM9baWVwGUWlwnuVsmMHe6gV7pAvOv0J+6f/4sgX37R7Yz/GOmfv1N28e2EILRAKCgKrTliKi1UL4Pw6FvhsDHl4X282L3a0xU1wU2XEqJF74zceg1f2HUD6djt0GrkTysAr8l7Bm0zr/iBgKbciG3h0t5vBK3fGjCuMAL4wIvsq/yYt7voX/P615ny2C0EPtH2kV5LTaYuihL/moDq0+h1akYlyHQNUE9r0Kzj9lRdPu8/optjJtxcpyW3yI/r0qzyXRN8L2WLfXLEPjfJQb6bD9fEOz7w+r1ZjAaERERERERERHRzqeksVA7UDObITxE1IF04YzFDQXaZYob1fNa1hUr4hAjYpXlar1hvPgoBFahb1mx6qA4IiIiIiKiYIQmbsgEg9Eiodarv3gw2QhhYBrRLoLBaAQpZRmA09H6mvRhACZoFvHvcS3u1a3lv0zH3jqBiIiIiCiKyFCD0Q6aDNF70I6HYu9DgAF7qNfx3UfWbajzjXb0aM5juUI4mpT122Ajvzns5E9fQt5+pr7A6PEwHv8cIrODL9iK04z0BYC+Q9qvHREktgf3WZlW8aJ2XqlbPT2zagPw5/fA1+9BXj0J8uevQ21iSOQ2N2TeBqBMf2GNGLZPwLTEOIFnzzRQ9YSBtXcZKH7EwM+3uDC0u3o0srj0AW39I1a8ge8vLkXNkwYKHzZw7xSjVdBfz1R1neWyC7Zt3gR8/ynkzadAfv6Gdh3traPCPpw6fazvNb9vSvs3bF3cQDQiBiYEjphZ5GjZv4p9/3fGYDRviKF5txwrdgz69/fV6rZ/P5mmxJGPmXjwc4nftujLPXqqQO0sAy+fayD9sfOAl+9p87pDcWXZk9p5P220fj02lgJWX+lr/DZHbTBakuVqHNm3v37eevVNrEOi7Zta7Bv1SlOXqfcA64rUFRw9Alh3jwvjh/o25MP2ELjs0MCN+snTBc49MPKn9Yf3FDhgoHpe0/ZRF2LwT16Q0EAisifU78NwOHqkQOMzBmqeNFD+mIFlN9vvlw57xERpTeu+8N5PJc5/ReKbqv5YGb8HNsf2tV3furjtndWcpwAAJz9j4u6Pm+svqQEmP2Xi5SUmtjU4/77Xfd9ZBqMFCQgiaqXRYoOpj7LkrzZoy+mgNM0v0RW10XUfrjLNOQt/U2cHv2jMyeuVX9lcuHKbesEUzSmno0YIbLzPwN8PGCh91Lovr7DI6QsWjBYNx5FERERERERERETkjC6ER8BAt5jsdm4NEVGzLE04Y3FjnnaZ4gZ1n9ayLiGEdiC622LwenvQhb4lu7oiycXB80REREREFBqXcCmnS8lgtEhwm/pjSx7bEekxGI0AAFLKXwDM95t8lKZ4NAej/QfACIf/jg/TuomIiIiI2kwWbgbW/BrSsmLGw4ETDzxOXfiXbyBrA+9gJj94FuaJAyCP6AbzooPhKS5ULh7j4GhSbv0L5iUTII/MgJyyG+Tbj9tfOAzkczMt54vJ09qnIUGIxGRg+D8CZ3RNB/Y9rP0bFAkjxwHZvS2LuGDi3zXvOKo2w9Mi8aaxAXLOrFBa55jM3whz+kTIo7MgTx1mXdjiPYyPFRiYLZDRxTrFQrhcELM0oW+mCfnYlUiKF0iMC6ynlyYMCgDyYpov7pGv3m/ZhvakCx8SURaMBvguirruKAP3/7N9G9co4rAhrj++TJ6AH2t6OVp26/ZgIqfBaO4oGNAeamhecrzA7cerCxVUoc3hndfMkVi6MXi5yyYIJMQKyL/+BBa83aZ1tkWOtwiXlan7y9x86x+yVutvQgoAWNniOkMppUUwWvg+M1ldgQT1TVuRXxm21cC0EUTUUxOMBgB/bFVP36Nn4Gvx4EkCj54qMLY/MG4g8Po0gYsPab9+ZsIw9brm/OL7XxeMdt6BAifvo29nON8Pol2Z7vswlBDrULgMgaR4gdQkgX36CSy+3sCRw4Mvt2wjkHWVid7XefHRcoknvzLxfx+E/h28Jm4wAEDOvge5BRIfLleXmzpbIm2GiWMe96Koyv76dCVdAoiPUc/bFmJwJO2iPBYbTN2uEYwWbO8mTROm+9Hy6ApG0+3z+nPXIyAg0p+T47SWobNVdeoyKRa/5gsh0DPN159bqajVHzMFC0ZzMzCSiIiIiIiIiIio09GF8HSLzUSsoflxnoioHWTFaoLRNP2WV3pQ2qi+6ah/Xcmurspytd7A663bky6sUvdaEBERERER2SE0cUMmvO3ckl2DW3NsKWAgwdBcKElEDEajVj7zezxKU85/6FqWk5UIIbogMBitQlXWKSllkZRyhZN/AP4Kx7qJiIiIiMKicAvQo7/jxcQNz0Lk9A2crgtGa2wAfmydjSy/fh/y4cuAkjzfiNUVP8Lzv+eUi9sNRpMN9ZCXHQ78sQTweoGSPMinroP87DV7FYRA1tVC/rYIctVPkH/+AKxcar3AhH9GrC1OiQvvBBJanMgSAuLieyBido6LyURMDMSMRwCXJkFgu+x6TWqMRqa3tPWE7z5y2jRHZN56yK/fgzxlKLD8O9+2beXsmyDSHR06643cH+g9SD3vqzmQeeuVs3qm6qssbHkX102rIStL9YXbUajhVx3p2iMN3D65fRuYGzcUixMPcLxcTT1QXSe1IU86HT2g3eOV+HGDep6dIJjdu6vfnwYPULkt9HblVUg8tiB4esHovoBhCEgpIZ+7NfQV9h4Y2nL7Hw0xZ92Oh8dWf6IsVlBtoKJW/3xWF1g/1y9WSni8vjI19YBXs52lh/G3GyEEemj6uvzK8IVm6Gpq2Td1T9GHOOpCwbolB06LixGYMdHADze5sOh6F04fa8Box05waI5+3n8XmtoAjH8MAN6+0MBAzVdfXkV0hZgQdVbRtq+0/0CBT2e48NkMeweLeRXA8bNMzHirbX3CjpDfulp8t8ZjWbbRC3y2AjjuKfs7QFZhvYlx6nnbGABETlgFo9W3YQc1ylh90oOFX2dqboT44XLgnZ9MNHiiY9+izG2/7E+brOeHHIym2WRSEuzXp9Po1fdvwYLRKnaejD8iIiIiIiIiIqJdBkN4iChaZcWp+yG3Wa0cZF7aWKwd1J8V173V4yRNMJrbrHHYyvAqbmCfTERERERE4WcITTCadDjQiGyp9aqPLZNcydr3gogYjEatbfR7rBu1vdbvcT+H6/EvXyalLHdYBxERERHRTkmMGgfx9mqI2T9DnHcbMGTv4AslJkMce7Z63rB9gAz1D9/y569aP/5kdkCZRxOmKpeNcQVvFgDg9++A4sCQK/nFWzYrcEb+tgjyjBGQlx0GecE4yIsPsSwvXlsOYUTPobHY+xCIZxdDnHsrcMbVEE99CXHcuR3drLASBx8P8d/vgH9dAxx8vLJMmleTGqMREIwWQeasGyBP3R3y1jNsL2NMuy1s6xdCAAdN1s6Xp+4OKQNHUCfHAwmafL1SV2brCZvXtKWJYRNtYR923TLJwFdXGxiz/ezHbpnW5dtqddwQ5MYPCWnZreW+HEwnaupDWlVY/F0uMeZuE9V16vl2to2cFP28wqrQ2gUAby+z90KOGyQgK0shLzsMWPyx8xXtOxHi2lkQs3+BmPGwo0XFebdB3Pc+RE4fiAvuBAAMbdB/3nPVN1EFAPy2xXpd5bXAou1nEMstAiLSFWFgbaELRpv7W/jCMqwCcprEuARy1NdJamWE+bUIh8HZ+g/Vxa9LbNR8/TZ93+jejzxnX/NEpKHdV+rgw5sjhgusuav9GlHqyvD94fVg5Tp7X+bLNgJ/brX33aDbVzIEkKjZv97WGB0hTdRJeCwSpZYtaL92RJjVcUewYLR9+ukLnPasxNBbTPy4vuM/d2Vu+2145Xvrsk6O00rdwLYG3wK6sOdU/1uWhahQfcPKoMFopTUd//4QERERERERERGRM0UNecrpukAiIqL2km0RBqYKENMFPQKBwWLJLvUde1SBa+1JG1bpF+xGRERERETkhKGJGzLBYLRI0B1bJhsOB58Q7WKiZ/Q3RQP/S6V1l0iv8ns8yOF6dvN7vNLh8kREREREOzUhBMTAERDn3ATjhR8grnzMuvyLS/XzDAPY7yj1zM/fgPnsrTCfug5y4QfAD5+3mv1TwmjkxfZULuqyeTQpX7hDPWPpF/YqcEDW1ULefZ4yiE1FXPU4RL9hYW9HW4kBe0BMvRnGxfdAjBrX0c2JCDF0bxgX3Q3j7neAA44JmJ9uVjiqr6cn8EI86VXf4a8tzKdvAt561NlCh54U9nYITaDcDh+9ELiMEMhUX7ODkqYwie3kkk9CbVpYmZrz6NEejAYA44cKLL3ZBfNZF9bd48KzZ0au0bnxQ5Ebpw9Ge/RU/brzKgGnw9PdNfWQ7z8Nc8puMC+ZAPn9p8owvkiY8ZaJ3//Wz7cTBJNt8XtBW4LRVuivn2tlcu8CyEk9geXfOV6HuPE5GI98AjF5GkR8AjDlEvvLXvU4xDk3NYeBnn4VMPEU9PLkIVlzR9PVD94P89x/wHzoUsiX7oJcuxwA4DUlPvkj+Hv+4XJfmfJafZn0JNtPwRZdENf8lYCpSxByyG7f1DvdWb290qKvcxvWHYi1G4bbQkKs77n01DynfGdf80Sk4Y3ifaVB2QIvnN0+DSlxZezYn6mvsP9lvmCVve8Fq0BMfTCa7WYQAR7rDUY2Bkmc2gkE6y0mjbIusakUOOclEw2ejg3fstrv9ffmUmm5f+p013V9ie//Kk2IdEqCvXpmTrZ+re/6WN2wbUE20xL1IQcRERERERERERFFseJG9d3UrAKJiIjaQ2pMN8SKOOU8VYCYKiwNANJiMhBnxLealqQJRqv1dtyPHVJKFDeo++SsWAajERERERFR6AyhCUaTDEaLhFrN2B3dsSgR+TAYjVrK9Htcoin3p9/jUUIIJ8MY/Uf2+9dHREREREQtTT4f2G24et7x0yB6W2cViz6a+XW1wKv3A28/Dvl/pwbM/qzLEdo6Y+weTdY5GBXaVt9/ChRsslf28NMgTrwosu0he7r3C5iU6q10VMUE98LAidvCeyGKfOsx4I2HHS8njj0nrO0AAAz/h+Vs+eClkOVFAdPtBqPhtQcgF38cauvCRjcQPBrCPpyadpCBzfcbePpfApdPFLjhaP2TeOoMgc9mGHj8NIFnp1TjmfxL8WDh9cjxFCrL/xm/B9bFDVTOu/d4EzMmGuiWrF7X5jKpDXnSqflxEeSjV/hCKP9YAnndCZAz/x3xcDR3vcTc5dZl7GwbSfECXeLV84racGPPvPLgz39k3R845Eb/+wXYI+ashTjmrNbTDANi9s/BF558XsB3noiJgbjtFbhmPIwhDeuUi60uBLD2N+DD5yFfvBPy/P0hP38DawqBUnfw1X63NngwWprutgwhyknRbwQ/2dxFCMZu3zS0u/3OKsYAxjm99UQ7SE0S6J8RvJy/pqAgXVBdfmXHhpYQ7Sx0/ZErSnaWTh0j0D0lfPWNrPtDOb3eSEDt9p+o8gvtH3/a/d7X7eIYAkjQBaPt/DlWFE4ej/X8XxXHu52Q1be/CNJtHWhjPym3EPiig2/FVWZjH7klq/1Tp4dXudvHwlRrgtG6Jtr7bjhptHW5d3+SymM/d711gxmMRkRERERERERE1Ll4ZCPKGouV87LiGIxGRB1LCIEsTUijKkBMFZYGqEPFkg31XTfd3jZcWNZGVd4K1Ev1j0Dsk4mIiIiIqC2EJm7IBIPRIsGtCd1OZjAakSUGo1FL/iOr81SFpJT5AH5vMSkGwIEO1jPe7/GnDpYlIiIiItrliJgYiDvfBHr0bz3j6LMgZjwavIKsXiGtt8iVrZ23d1+bg+0tRnLK78N7KCAfvtx2WXHS9LCum0In0vwzuoF6oUkt0hhTpwgGqg1+IYrM2wDzzqkwD4r3/TtvP5hn7wNzxpEwbzwJcsWPvnLffgg563pHbUKXNIhrnoIYe7iz5WwQQkC89JNlGTm5D6Tfa6ALRiuOCXwP5H9ugHSamBVmut7D6KRns3qnC1x4iIHHTjVwz4kG5l1moGda8/zEWOCuEwQuOljgiOEClx1q4LzdCzCt4iVcWfYk7iyaqaz3p8QxqDXUyWcHpPwNAOjXTd2mNYX6UBUdt8cVOPGrOcDiec4qcmhtEeANskm6bG4bOZqQlsKq0MOa8oLkOSaatXgh/0IYlpEQCnsd7AtFy+mrnC0GjoC47RUgu4+2CnHqDPV0IYATL8JQqU5kWBM3uPUErxfyrqnY8luurab/shk48wUTU55Wv3Fd4oHYmPCG9+zbXz/vle/DE8ZlNxhtSI79OscOANKSoiPIyN8PNzrvdJuCgnSftWgIxthQInH2iybG3efFFW+byKtgWBt1PrpdtSjJRUNSvMDHl7dtxy3e8OLqmqdRt6or3t76b225pqDf/LJG23U3BMmiaqLr94UAkjWHLbUMRiMnPEE2mE2r26cdEdaWHGXDEPjmmuD9Sbj290JlFQissqVMP8/pcVpuoW+Bylr1gikJ9urZo6fAR9P1r3VNve840l+wfi8a9v+IiIiIiIiIiIjIvtLGIkjNAFhdGBERUXvSBYIVNQYOhVSFpenqSNIMRnebHfdjR3GDOtgNYJ9MRERERERtYwjF+CAApvS2c0t2DbWa0O0kTUg3Efl00qGkFG5CiAQAU/wmf2OxyP/8Hk+1uZ5haB3A5gYw386yRERERES7MtF3KIx3ciE+K4aYsw7iyyoYNz0HERsXfOHM0H74bhD6us85wG4wmj7FRt4wBfLr95w2S13Xdx8BlSX2Cu9/NMQe+4ZlvRQGqRkBk4Y0rLG9+OWlT0K5NQYJRpN5GyCn7gvMf6N54ppfgfV/Ar98A3z3EeRFB0O++gDkzafYaou47mmI13+HeHsVxMf5EMefb/t5OCUGjQTGHWtZRk6fCOltPhmd2UX9uS11BQajYfMaYLO98KNIcRL2IRvqtfVYzetIx4wU2HK/gY33Gsi900DF4wZuOsaA0fIJlhXt+HOful8cryN9w1IAwLAe6vc+t0A6HnBfY6gv/pKfvuqsIocuejV4UJ/dIJhszW8GhVUOGuRng8VXkEt68ELehRhd91vwio76N8S3dRDvroH4OB/Gk19oQ9GaiMNOhXhrJcQNzwbO3O8oiL5D9cu6XBjSU/1jVm78EOX0/Fn3W7anpdd/lKjQBESkJ9muxrYpo/UbwX++kVi6oe1hGdqAHL/Qu2Hd7ScT9c+IkhQjhfRkgSdOc9a+pmC0DE0gZ6m7jY0KUXWdRF2jxJ9bJfa6w8SrP0h8vx544kuJiQ+bqNAEiQQjpYTptDMlCgOvzaDGjrR3X4E/Zjr7KfKJgiuxcsxLWH2ngcqnYvHAa5cg9u0VyHxziXaZ0pgM1Is4/CEH2F5PfpBQ0ya6MCcBIFlzyFwTnbufFK081oF+csvadmpIZFkFo9nptg4eIrC3PgsYALBwTcd+J5c73Mcpdevb6vRprNk+nqeqTj0/NdF+XceOErh9sv5d+XVzYOPcQYLRShmMRkRERERERERE1KnoQngEBDJjHdwljIgoQrI1wWiqELSihsCwNEAdKpbsUl9Yphu83h5KGtXBbglGErq4NHctJCIiIiIissHQxA3pAvOpbdxe9YV0Sa7kdm4JUefCYDRqcj2AXi0eewF8bFH+9e1lmkwRQgy2uZ6W3pFSai7RJiIiIiIifyI5BSKnD0RcvP2FMnuGtK4GEaucPiTHN8DdFl2y0fZ58u3HQ2hZM1lbA/P+iyHaf04KAAAgAElEQVRvPMneAidPh7jzzTatk8IsNTCUa4yDAKi7imeqZ7iDBKPNmRU0PA0A5LO32GvIvhMhjjsXou9QiJ67QRiRP+Ui7pljXWDtcsjnbt3xUBdQU6wKRtu+fEfSDQRvGfYhP54N85QhkIenwbz4EMiNq5rnff2eb95hqTDPPwBy9c8RbrFzQgj0zRAYnCMQGxPYr8qnb9rx9/D6lUg0NQlTGmm/zAMADNVck7q6wPmA+1pDk2b17YeQQUIdQlVQKbF0Y/BydoNgcjTXg4USjFZUJXHUY15Ua85uuaQHCzdOxCnV9oJAxakzIISA6N4PIqWb7XaI2DiIY8+GuPMtYJ8JwG4jgNOuhLjr7aDLDhutDpFZFzsQHgSGpuXHdLfdLiuDssNSTStdEwQOtjhDedvctv9Ap+2bHrwY5qReMP97C6TXizH97dfZK73NzYqoSycIPH+W/aSl+Bjf/xnJmkDOdg7G+GG9xKiZXqRebiLpUhOjbjcDPrO5hcCHvzkPUvl5k8SEh0zEXWyiz3VevL2MPwJT+3ESItuRhvcUWHJpJbp7Ai/WzvEU7vh3QO0SvFJyCS6dOhxDzz8PQ3IE4mIEhGFA9ByA9Myu2udW4srA94n/gFsT4KqSV2HvM2+1T9olQT3PzWA0ciLYPvTOEoxmMU/Y7Lcm7m5dsKgato4bIqXcIuhMxSos1ipITiW30LeALhgtxUEwGgDcMkl/TmNrReC0YP1eSQ1DZImIiIiIiIiIiDqTYk0IT1pMBmINGzdyJSKKMFWoGQAUN7YOdvRKL0obi5RlVeFqyS71b866wevtwf85NcmK7Q5h94c2IiIiIiIiBUOorxMzGYwWEbWm+thSF9JNRD4xHd0ACi8hxJkA5kspCx0scz6A2/wmz5ZSbtItI6VcK4R4GcC52yfFAZgthJioCzoTQhwP4JwWkxoA3G63nUREREREFKLs3iEt1iDUFzEdNNjBD+kyyImwFT86aFGLaqUEtqyBvGQCUFkafAGXC+LWVyAOtRmgRu0nNSNgUrxswEHuRViUfJDlov0bNiJJblPP3PoXMHxswGRZVgjk/gK8+2RIzVXqM9hW+FC4CcMA7nsP8oZ/6gu9/hDkyZdBZHRHluY86ZZYdR8h7zgb4vDTwtDS0OhCKMTKHyHjioDyIsiHpjfP+PMHyMuPAN5c4QuFu/WM5nmrf4a88mjgtd8hMsIT6hQOsrTAtz3WB55KkUu/AFYt2/E4Bl7sVbcc3yftb7v+9F/mQtZUYnDRHwACl9taLjFcfY0Y4mOAek/g9BqrwJEt64ABu9tun119r7f3o4rtYLRUAVU0w+YyZ4P1pZQ4/TkTX+fqy/yxfjSGNKyzV+EJF0AMGuWoDf7E+BMhxp/oaJmh+48Avgx87g1GPDbG9sOgxvWtpheEKRhtTP/IXJg3fqjAt2vV7+XnK4CKWom0pNDXrQ0iMhuByhLgtQcghcCAC+7AHj2AleprE1vplRZyc9qFEALnHihw0GCJcfebKAlyrWdG1XrI3wvQbT0A7Bcwv6YeqG+UiI+N3MWZ7nqJ5X8DK/IkLnzV3md72Ubg7APsr6OyVuL4WSbytoeDbK0ATn9OIrurxIRhAmVuiV82AUO7A3268UJUCj9daI4rym6JJNf9jrHPXIa/1/5gXfCUy2Fc9l/tbJchkJ6kDhIqc3XDNuEs9aeg0l45XQ8ihEBynLpEDYPRyInGBuv5W2zuS0Y5q6Avu+M1htnYDf3wN4n9duuY790yZznWKLMIRnMaYL1m+5UBVZpTJCmaIEcrh+0OLFgVOH1FHrBgpcTI3kBOiu+1rg2yGZc7fG2IiIiIiIiIiIioYxU3qH/oVoUIERF1hCxNf1TjrUKttwZJ2wPOyhtL4IXiIjiow9WSDfVFlttMN0zphSECbzIZacUN6rBK3WtARERERERklwFNMFqw8aAUklpN6HaSJqSbiHwYjLbzOQ/Af4UQ7wJ4B8A3UkrlZdVCiDEAbgLgP1pyK4D/s7Gu27Yvm7798QEAFgghpkkpV7dYTzyACwA87Lf8w1bha0REREREFB4iIQly4Ejgrz8cLdcoYpXTY538rm818rWpiNcL4bJfqWyoh7xnGvDlO/YWOO0KiAknQeyxr+11UDtKy1JOvrH0gaDBaCdVvaedJ+88B3BXQZx4YfO095+GfPJawNMYSkuVxCX3AsefD5HUMXdnEOMmQY7YD/jTImjih8+BY8/GIPVLjTVxg+GFAZfijh6yJB8is2MuoPFqzqOLBW9BvvuMemZ5EbB0AeS3HwTOq6kEFs8DJk8LXyPbQL7zBOR/bgS86guvVPat+9l2MFq8WYdEWQd5zzRkbu4CKJarrpPwmOrQgJREoLg6cLpbJOlXuml12IPRtpZLeGz+pmI3CGag5rOQq76GTOunTbAMRcvwlGBgw3p9gRbE7a8DEyxCDiNoaI46KA4AcuOHBASj5YcrGK1fZAIrTh4jcMc8/f7HmS+Y+Oiy0C9S1NVstPzx79NXIafNxN59BVbmB98X6pXWOUKzBucI/HqLgRcWS6zOB95aFvjcBjWsQ99LR0EC6Ba/B7DbT8q6St1AzwgFwi1YKXHWiyYKqpwt994vEk+dEbxck2cXyR2haC3N+trE2iKBS9+QO77LLh4v8PipAjGuzvFeU+egDZGNks1M1tZAXncCsHxR8ML7ToSY/kDQYhld1MFoJa7AsOVgVPWoaAMxBZCsCRoKFhBE1Io3yPFp4WbI+m0Q8c7C/6KN1R6R3W5raHf9fmuTucsl7p1it1XhVW6zX2lSahE2qzudlhwPuBXhi2VuoKRaolITjJaa6PzLoWea+vWevURi9hLf9JuPFbhjsoA7SL+3LXynYYiIiIiIiIiIiKgdFDWqg9FUIUJERB0h26I/Km4sQD/XoO1/6+9omBkXeA2U1WD0WtONLq4UB60MD/bJREREREQUKYZgMFp7cmuC0ZINBqMRWWEw2s4pEcBZ2/+ZQoi1ADYCqATgBZABYE8AOYplywAcJaUMOhRUSvm3EGIKgM8BxG2fPA7ASiHEzwDWA0gFMBqA/5DTeQBucfa0iIiIiIgoZAdOchyM1iDilNPjnBxJmt7gZTwNgMv+AF85+27boWjio60QaZm266YOkNVTOTnFa51mMq52Ma4te9SyjHzkcmCf8RB9h0Ku+x3y0StCbmaAjB4Q76+HMGwmMUWQuOddyMl9tPPl3+sgAAzTDCKvNxKwKbYvdmvcGLjwX38A7RSMVt8o8f6vEj9t8g0CX6m5JqmLaT3aXL71KLByqXreZ69DdHAwmly5DPLV+4Dv5jledp9tv9gum25uT+tZNBdpCXsDAxRtgYGK8m3wnUpqrUu8Ohit1ggSjBZms74JHirVxLA51n9ItvqzsKkM2NYgkRhnr6IPfrVu26SaT5WBg60LnQtx3X8gOjDFJileoG83YHNZ4LzcuCE4Fv/P3n2HR1Htfxx/n9n0QhKSUIKA0ouI2EWxYBd7vfZesKBe61WvXq+/a0WvDXvvHbH3ih0vYgEJiNIJSSC975zfH5uQsufszm42Db+v5+Fhd+a0bJmd2Z3zmXdbLVvrsyTLRWjbTWPSTJCxeYobDlVcOdP8/Lz1Mywr1gzKju4xtwYRtXxNFa2CylL6Z2R4arOjAsI6woAsxTUHBB67q6ZoDry+gD/9gddEpn89z6w8aUO4SU5DsbWd4orwf/faMs2seYHwsb3HKHYcGv45K6/RnPx45KFoACNN35aHcN0b5hfDq3Ph1Tbbh/s+1Ww1CE7buZskVokNXDcQYOfXgQAsvw6Es7b6F2aZG3EdHVw3wjZcDXOWml+D3WD3FAB981neQtEAdcvrnj4Lc9IgvyB4ebEvmyRdE9H41lUGngtfmB0I26e9UpBqPmSmstb7/osQnoK7V/wOQzfv+LF0Ea+7wmPzIM4hZHDygtWQX6AZ0bfzP3Nt4V9piVBhDDOzbyts+5yj+wUCmk0WFkCZZVPYK4pcvf4edmX/85Zmh81U2EBICYwUQgghhBBCCCGEEKJnKayzhPAkSAiPEKJ7yIjrTbxKoF4H/whRWLeawUnDNtw26eXLIskJ/gEl1We/QG6lv7zTg9G01hTWrTKu6yPbZCGEEEIIIUQ7OZgvOO/iYT6oiIjWmirXMEkLSAlxLCqEkGC0vwIHGNn4L5yPgJO11iu8Nq61/lQpdSjwOM3hZwrYpvGfyXPAGVpr+UQUQgghhBCik6iDz0A/cWNEdazBaObvvMxcD1cIaKiHRG8zNPXK3+Gpmz2VVVc8KKFoPYDKyEYPGQtLfm21PE3bw6/+ud0qrnxiP+JpCNu+fv95OPkq9CnbtnusLanjL+kWoWgAKqsPfFiK3tMya7nxSh0jQgS+5CcMNwejLV8E2+/d/kGGUVGj2f8ul9mLw5cdVhem0NoQX2ss+SWygcWYfuVe9J1/DyS/RWF0nffgsSz/+g23M/0l1nLr15ZiCkazBX1UOylowBQzoH/52rg8WlOfcXngs9gHo40MvtgnEHhafi+EzQd4a2fWj/axKTTT1t0Tsr665TXUjvt566yDjepnCUZL2yJwGYUWinzt/2zNToXB2e1uxuqK/Ry+WOTnHctb/qlvNFdNiTIYzbJr47QNwSspYkCWt2C03B76O9aY/jDvz+35lC2pU4nsXfEBqbpqw/refsOLqlFx6IxLFhVo9vqvu+F1ed0bmluPUFy8d+jP3lf+FwhS62gFZTrigI8zntQcsZUmIyWy157W2hi81Z5AraB1xjo6dPiXx35DjTN4LJqwY/WwrFW9MOU3Rr5ukL+nf/0WPn7ZU1n1+A+oOG8/V2anmpcX+7Jb7ft44WooqYLsMBdZs4UTOQpSE83rTAFIQlg1hD+uZcXiHh+MFuoQyOtmKzNFcdhWihfnhD5GmPWj5tJ9On9jaPtc6ZNu3i6sNZ/jBNi3Pf0zID0Jyg0BaHOXaesY0pPsfdkM8Bje+/hXLpVhtnsSjCaEEEIIIYQQQgghRM/h1w0U1681rsuNlxAeIUT34CiHnPh+rK5bFrSusH618XZLuQnmE8hSfPYfkKv8FRGOsv0q3XKq3Srjutx4y0lwQgghhBBCCOGRwnxuvtt2boRotzpdS4M2ny+aGuJYVAghwWgbozuBlcBOwGAP5SuB94EZWuuPoulQa/22Umpz4DrgaCDLUvQbYLrW+pVo+hFCCCGEEEJET+UOQE85Bd56zHOdOhVvXJ4QyZGk9vBFWH342ZG6aBX6qZvh1fs9datOvQb2O8FTWdEN7LhfUDDaiNpFZPhLKPW1nombngSXjs73FIoGwLzZ8O5TsRppwA77wiFnx7bNdlKJSehBI2BZfvBKfyCXPC1J0T8DVpcGF1kZH5wEpYGHfurNOwWB+udPdthjtHly+TdLNNPfc6msg303V0zdVZEQFyj7eb7mwc81v6zSaA3D+8C5uzvsPqq5rae+0Z5C0QBG1Rn+xpaKzFdIBCC7c04G0n4/vPs0+qYzmxdm9YH15hNHvRpRu8hz2Qx/8xOd6Rqe9EbrqjAmEdiCPgBqVSJJ2jDz/Zv30FXlqJT2pzw9/11koWgAXrMKh+SAzzEHFyxc4y0YLb9AM9983hwATw6dxfgFP5tX5g5A/eNB1LZ7ehtwJxjRT/H+/ODHO3+Lv0H5la1eu4Vx7Q9G230kKNWxYRWX7O3wzi/m/ZA35mmumuK9rfoGzRNfa16ao1lTZi7jtN3nKS2mf8ZQT+3bgn66K718EfrmqTDvC1KBKbxrLJdAPen+MsoNV8stCnOu6H/e1kFhfVe8qjl5oiY7zf7aef676IInAUqrvZd966fo+sm60GVITmTBX7ZgFCFsujq7V69agj57F09l1dWPoSIIewq8/4PfFMW+3iSY9k3CKKoIH4xmC3NSCtIs+0vhAoKEaMXDdyIUruz4cXSwKLOhgzxwvKK6TvPWz/bPyMtf0Vy6T2z6i4RtPAN7w5Ki4OWLCuxt2R4vR8HIvjBnafC6H0NkhNu2V6Fss6l5m9vWK/8L35YEowkhhBBCCCGEEEII0XOsqy/ExW9cZwsSEkKIrtAnob8xGG1t3Wrj7VZ14/OMyxNVEj7i8BvOT630h7jqTQcprFtjXZebIGGVQgghhBBCiPZxlPmkY+1lPqiISKhjylRf++dgCbExk2C0jYzWeiYwE0AplQmMBQYCfYEUwAFKgPXAAuAnrbX5V4vI+l0LTFVKXUBzKFs/AsFrK4G5Wus/2tuPEEIIIYQQInrq0hnoJT/DgjmeytfHIhjNS5JDQ+jZkbq0GH3WJFgbYoZnC+rlxai+Az2VFd2DGrJ50FTbBOo5c/3D3JpzSavlU3dTpNaVeJia2+jPBej3n4vFMAN23A/nltdi114sDRxuDkZzmw/7B2RagtHi8vDjUK2SSdOVAFzc52buWnMUNJ5b8/o8l0dPVhy7naKmPhBSp5TirZ80B97T/KX3e79q/rcUnjhV8cF8zQF3u9S3+Obh55Uw80eXN89z2G9cINzmTY8BM70bisnxF3sqa5SZG33dCOgH/wnP3tZ6YTtD0QDSdCUDkytZXh0+RSnLLdlwu2VIWlvrdFrEwWjVKtkcjAbo8/dCPfJN2PGFsq5Sc+zDkScnOJasJK01Sil0Qz0qLp74OMWQ5FIWVWYElV1YoGl6QJrqmcz60T6+ZTc75D35pXnlkLGox3/o8FCwSI2ynLv821oH9cJv6L17A+CiKPZlG8v+39pruLbPtfjxhexLKfjH/h2f2rPbSPu67/6ENaWafhnenoeLX9bc83Ho16TT9qpIpUUM7Bc+TMLnQEayp2F0C3r1n+hjIwgx8q8zBqMVVzS/10ye/Dr4cfO78NqPmtN2NterrtN8GiY7M5RIgtFenxd9uospGEWIWErqwl/+dHkJ+ujRnsqqadNR+xwbUfu2ELNiX29rEOx2mwa2+8Z6leH7DBVOZNtfqpBgNBGJhvqwRXTRqhCfmj1DqE/OSHaNM1IUs87zUVKlueldzS3vmlu++2OX8yd3blKkKXgZYFR/xWf5hlDHSigq1+SkBz8Atq/TlIKR/RRzlgYXWLDK/ignmb/iC2n7zSKvY1NVF/r4SgghhBBCCCGEEEII0X0U1ttDeHLiJRhNCNF95Mabg8EKW4ShFdabg9FsQY9KKVJ9aZT5S4LWVfrDXAWwA9jGn6AS6eXL6uTRCCGEEEIIITY2DuZz7Ny2cyNEu1WFOKZMccJc5VmIv7guvm686Eha6xKt9Zda6+e11ndqrW/UWv9Haz1Da/2s1npuLELR2vRZp7X+RGv9uNb6Jq313VrrVyUUTQghhBBCiK6nfD7Uza/BIWfCkM1hy11Q/30H9jZPRq9TCcblCaHzTlqzzSJvqT50MBrvPOktFG2nKain50koWk80aIRx8Q2F13BT2nNsORC23RRuOUJx46EKKuwhT0EcB+Z94b38VrvB+EnBywePhOMuQV3/vPe2OpvlSh20uFLHgExzkX/nXk3i6AoyRxUyeNginsw4jgeyzggqd+rjmqRzXDIvcPGd5eKc6W8VitbkqW80PyzV3PZ+61C0DUPScNVrzfXyC0L/aU22qpnrraBNtYf0i3bSBcuDQ9G8ik+AjOzmfwlJrVara59k5KbhQ9EAsvzrN9yOw0+a5eoilZYv0FPMHwEAVDshUpzy56I9BlnabH9DdD+i+Fq8BXTBctx/HoM7KRG9S1Lg/93TcCcl4j54DSPWmIPL8n8v4YP5GudM/4bXuHOmn49/a/15ZgtG234z2CQrxHZq2PhuGQYwsq95TIXlUNSQAjtNAWC9Lwu/Mifu7Fn5Me+5FzJ5FIwbEFg2MKs56MJRMHkUfHW5w4RBHf8YKKX44Wr7199eAxl/W62Z8Un4skHBaCXFbD0Y0kKEDAJkp4JjS/XrhvRD/4qofLZ/nXF5qDAiN0Sw7ofz7fU+XAB1wRfs9cxrMFp9g+aDEOMQoqvtNKzjtyn6py9xz5qEu0cG7rGbo+d8hF6/Fr1/X0/11RUPwBHnRdxvji0YLS6HSpViXDeqvyLZEghU5OGC3rZDWqXs2/hKCUYTkfCHD0ajyDzhoScJ9fVQNLvHmSmKE3ewV7QFpnUkWzDaGPOcHAB+s8wvtI3eUTDYnFPM74X2fqIJzVRKcfLE2HymaA217dhPE0IIIYQQQgghhBBCdJ6WgUItZcT1JtFJMq4TQoiukJtgCUZrDBNztZ8iS9ijLVQNIMVn/mG6yu2CYDTLNjk3oX+3PAdNCCGEEEII0bM4lnlorpZgtFirDHFMaTsOFUIEdOF144UQQgghhBBCdDaVlYu6+O7WC7feHV1fC5+80mpxvSUYLT6iYDQPX4Q1hJ4ErH8MH2qlHv4aNXIrr6MS3Y0lGE0BlxRO57Lbj2+1XFdGEIy2zmPiVlw86q3VqJR07213Nz7Lm9PfnEyWl6WwT7EOWBk/gFPzHmr3cK6Z5fJ+iOCYH5fDkkLNJlnwZ7G3NveveLd9g6oIvpJjzH0xK6pq6pJ7UAcHh9G1NarI5cMF4Sf5Z7W5amWmW0qFz/vrOzXB/lqpUWGSnr54HQ4/x3NfLX22UIec0B9KU7aUdl30dSfCz1+ZCz51MyP63MBb7B+06t25NTz5c/Bn1563u8y/zmFUf0VBmebrJeamD96ycRC2YLS0jHB/RpcYFeKizmc86TJz0kHoL9+iyGdJYQByGwrZZvET7P7QjG5z4t2EQYpR/cyBE2/+pDndkIPZ1hNfa085r07b90tpEQlxipsPV5z7rL0BW8hPd6TrauGD5yKq09tv3sCHCkYrCRFQlmQJNwKYOdf+OPscePN8h33GKt77VbPfncHv87Ia0FqHff2uKIFqDxk2QnSF3UfClHEd24deV4A+d3LzguWL0BcFf6baqOfnowYMjarvbEs+bLGvN1WOORgtJQGy02DF+uB1RRWawFGHXahwolRLkGyFBKOJSIQLiwcoXNnx4+hgoXanot1zHN0fBvWGZYYc1pUlUFKlyUzpvP1SW7ZrXoaiV5KmrCZ43dJ1mp0Nj4AtZE0pe+D52hBhj6H2oUIZGeI4IVIzPtFcvHf3OE4QQgghhBBCCCGEEELYNQUKtdUnRIiQEEJ0Bdt2qdxfSrW/imq3kgZtvnKLLVQNINVyjl2l5cKkHcm2Tc6Nj+GPOEIIIYQQQoi/LAfzPDS37UXjRbtVWY4pk5wUfCqSybpC/PVIMJoQQgghhBBC/MUppeBfT6PbBKPVYZ41mRDJkaTb/mA0luWHXr/VbhKK1sOplHT7JOk/F6CrylsFlulij2FnkdjtsJ4digZguVJHy4BC2wTqjvDOL+HLvPGTZt+xyjrpu6Vkt4ojy19t36BsYVUxomuq0HdeHFmlbfdAHX8ZaqvdPBUf2ddbs5ltgtEy/KWsiN/E87BSQmSfVavkkHX1z1+jogxGu+W96H9AqWrKlJjzkT0UrdHIukXG5Wvj7A/wjE81dx+j+GiBPSjrkHDBaOmd+CaMQF4mpCWag1xenwcNxx2ML+1yCv051jZy/UWgG+DzWbDrIR042sgcOF7x25rgJ+yD+VBdp0lOCB3O8OIcD6logNMmDFaXFKGAqbs5fP27y9PfmtvJ7knBaI/+O+I6OZZgtKI/VgHmbdIC8zmdACRaQj1WlWge/8r+XM25ymH8wMBznWHZhPndwHsgPcxFzos6/wLAoofyOY3/VIvbjf8cZV8XapljWZeaqNhlBBy3vQq7XWsvffCg6CrudhjqojtQvT3uzBhkp5mDW4t82VQ65tS01MRACKU5GC18n6EOaVMTzeOplGA0EYlw34kArFziKbyzOwsVNBvtn6WU4sDxihmfmBv/aAEcvnV0bUfDdlzrc2Bgb/h1VfC6lYZtU+i2FAMywweetxVtMFpeDHOd7/9Mc/HesWtPCCGEEEIIIYQQQgjRMdbWWUJ4QoQICSFEVwi1XSqsX021337VvlDBYrZgtCp/558wUlhnuBoksk0WQgghhBBCxIZjmYfman8nj2TjV2k5pkz19aAJJUJ0EQlGE0IIIYQQQgiBchz05CPh45c2LKtTCcayCZGE0GsPATf1ddZVurwElpvDa5qoY/8ewYBEd6X+/Sz6mmON6/R/L0Jd9XDzgu/ej23nQ8aizv5PbNvsCo7lzek2fyHdmcFoXlz0gmbw1PCz4BPcWu5ZcyH9G8wn+nhWWYp2XZRjCZFrB712BfrYzb1XcBzUuTejjpoWUT+j+nmbBJ/ltp5h39u/LqJ+UkMFozmhg9Goju4ksPIazUe/RVUVgN//KMW971Z49rawZYdbgtFCmb0o8LibAg0AhveBUf2bgtFKjGVUWgyTBWJIKcUWm8BXv5vXf1mQya6X3UfRf18xrk9xK0nR1QDoq4+GT6tQvu5x1ZoDt1Dc+l7we6a6Ht6fDwdvGZt+VNv35ao/Nty86XBlDUYbmtszAk50VQU8Mz3ietmWbU/x3B/RFenG98S5z9r3H5MtoR6HzLDXeWVqcygaBAKSbP4sgnFhMiSLOv8CwB1GqfDBXEFBXBEEeTnGdap10FcE4V/hlrWqp+x9GscZRUhZqMfHcXrGeztSes7HUdVT/3kRtcvB7e7f9v6tclIp9vU2rktJsNcrtp8Hv4Ftr8txAqGiJtX14Hc1vo30dSBizEswWsEy+HMBbDam48fTBdrzTrn5MHsw2pEPuLgPdt4+qWvZYPicwLG46ThilSVPOVTI2iZZkY8t2mC0AVmRh7DZ/F4Yk2aEEEIIIYQQQgghhBAdrLDeEowWLyE8QojuJTMumzgVT4MO/r2tsG41Va75B+E0XwbJPvOFtwBSHPMPzJX+zj9hRLbJQgghhBBCiI6ksASj4WE+qIiILWzbdgwqhGgmwWhCCCGEEEIIIQLaBJjUK/OsyYRIjiS1h8mT//sURgSnkujSYvQBeaHrjtwHVC0AACAASURBVNwKttkzggGJbmvH/ezr/vfJhpu6sgyW/Nr+/jJzUSdfCZsMhS13QSWGCXrqCWxhX27zF9J5GbGZ0BxLh91n/8L8v2suJtMtZVLVbDatX9b+zlw3EFjVyxycES09/3v0xVOgtjp0wUPPQg0aAcnpMG7HwO0IjbJfrLKVTH/rGfZ5DeaTpGxSzNmYAFSrpNCVi6MLsHv/V6hriKoqAP3euAWKb/dUdmRt5MFo81aA1pqFa8zvo202bRHpUGFJOEjrZumELRy7veKr381/26wfNbsdfRiFVbvCrOD1uQ1Fre7rG05H/fOxjhhmxHYcCtmp5vCbQ+91qbvPIc5nj+NY5yE0B0C1/fFv2cINN/MyFUdto3hxTvDje8x2PSQ053PDE++BLZSx2NcbPpsJU05utdx1NT+tsLdneoXW1GvmWeokxcPebTJkBveGeB/UGy5k9dsaD8FoFZF9lh6yZWD7kJkSLvhLeQrlsod/RR5SplQPef2JbkHX1qAvCrHPbrPN5JiEokFge26zIt785k358QNy+u+FaQtS5CHL1RZ0pAgdJFtVB+lhdpmEALwFowH8+HmPDkbz8vVQNFISFZvnwS+W8OL7P3M5e9fYB2ObhAozy8s0B4ytWm9+YKxtKRgQYTCaUoF9n2jkdc9cZyGEEEIIIYQQQgghRAdxtZ+iugLjutwECeERQnQvjnLIje/H6rrlQevW1q+m2m8+6adPmFCxVJ8lGM2N7mKh0aryV1DhLzOuk22yEEIIIYQQIhYcZQlG0xKMFmtVlmPKFMsxqBCimQSjCSGEEEIIIYQIcFrPkqxT5lSctsFoWmv46i30G49CYgpqjyObJ7674b8I0zMuR/3twsDtL99Ev/M0VJXD9x+Grjh6W9TVj6B8Uc7uFN2KSkpBJyRBXU3wyrUr0HW1qIREWL82Nv2deDnq8HNi0la34VjeCy3ehwN6+YGe8Z7Zq+IDzl9/X+wb/u4D2PPodjej/X54ZQb663dgzsdhy6vrnkFNPqLd/eZlQloiVNSGLpflL2l1v3+EwWiJcYEJ/KYJ+dVOmCDBZflorSMO3Hnjp/BpCQOzYPl687p9Kj7w3FdffwGD65ayNGGw5zoAa8thgSX3bWRjaJ3WGsotg0ztvskCZ++iOO9Z83PwxjzNf4+GIrIwBTrk+lsHo/H+s+jJh6N2OqADRmqmi1ah774UPn45sGDPo1HTbsOXlcuULRRPfm3+2xKmukwZB3uPVfRKgplzNWvLYevBiiv2VZSGyTts4rT98W/FYrTfv2E/5Z5jFBU1mrd/CazulQQ3HqbYa0z3DqbS5evRj/0fvHRPVPVtwWilvgz07DdRbYLRTAF2LVUatn2LCswhZwBbD4LUxNaPcXycYmhuIAStrYUFmkDckV24Mbb0zOmKY7brnDAWITrczPujqqaueTJmQ8gJ8dv/mjhzemzKnLfpvf/WQHCSULGHoENbmJNSgX0ym8paCUYT3ug1S72VW74ozCdU9xbq3dbenM7thyh+WWXu4ZxnNKfupEmI6/hHzxak6KjAcZzJKkuesm3b43MgNw0ykvG8n5oUF30YaqQhbEIIIYQQQgghhBBCiJ5tfUMRfsxXtMuN93glPyGE6ES5Cf2NwWiFdaupds0neIQLFUvxpRuXV/nLIx9gOxTV2y9OKttkIYQQQgghRCw4mM9z120vGi/ardJyTGkL5xZCNJNgNCGEEEIIIYQQAW1S/utUvLFYgq/NZMrXHkTfPm3DXf3xSzBtOurI88G1pFS0odevha/fRd94hrexjtkOdf/nUU/sFN3UUdPg6VvM6169D/52YSD0Jhb2PjY27XQnjiV4pWUwWloDPSUYbUTd4g5pV193IozfGZU7oH3t/OdU+OB5T2XVebfEJBQNAhPaR/WDOWHyEzLd1sFcAxpWRdaP1iTHmwPYalSYYLTqCiheDTl5EfX51e/m2f+nT1LMOEaxuhQG9oZZP8Jh97X+oWVi1VeMq/3Fc18KOGf9/Vze98aIxvjst5oFloy5UU3nm83/HirNV+sk3ZKI0A04juKxkxWnPB78PCwpgqJyTaHlwqfZ/uKgZfqKw+Gu91ETdo31UFv3U18HxavRR45oveLDF9DfvAcvLODALbKswWgAb/0Mb/3cev03SzQPfBY+MKeJ0/bHv/o6WPMnDBgKQE664s1pPoorNAVlgSA9n9O992N0VQX6lO2gYFlkFTNyAvuA5evJ9JvTPkp8mYH3ShsrSwyFW6iqC1620HzBcgBuPdL82TiqnzkYbUlh6P4BijxeAHhwNhw6oXs/x0JEQr/9RGQV0jJQry1DJcYuHax3auR1Ut1Kstf8BAR/Hnl5P4cKOkoNEYwWLsRWCGj8LmTWQ94KL1/UsYPpYLagL2h/MNq5uysemW3v4LN82GtM+/rwwhQqDYEwM1sw2hpLMJqtLccJ7LfvM1bx4hxv+6pJ5q/3PElPiu2+TDQB2kIIIYQQQgghhBBC/FXNLnmfd4tf6tQ+G7Q5FA3CBwkJIURXsAWE/VA+2zqRP1yoWKpjnpRe6fd4wkgI+VW/8PH611lZuxTd9iKMbdRrw0kyQJyKJzMuu91jEUIIIYQQQghHmc+1z6/6hat/9zjHs5PFqXiGJI9k3+yj6NNNv6/6ueJ7Pi95hzV1K9CNJ09W+M1zjFIcczi3EKKZBKMJIYQQQgghhAjwtQ5LqlMJxmLxLYrpyjL0/VcFldHP3AaHToUwP9xvUFKMfupmz0NVh02ViZQbIXXK1WhLMJqecTkcdDp89Xb7+7nkHlTGRnhiiGMJPGsRUNgroYE0fx0VlqsaRiojGQb1hhN2VIzoozjk3thdFWTLmnkxayvIu8/ACZdFVVUvW4g+ZzKUFnmuo46+IKq+bCYMUsxZGnoSfE5D66CqvAZLmpeFem46yVlnUUHwa6Xa8RBw8sf8iILRyms0i9ea1+0zRhEfpxjU+LY9ZALMPMfh9g9cVq6HfdT3XD/7cBy8h1gx+UgunvscN/ovo8SX5bnaxS/Z+9h6kEJrjT57krmAUjB0c+9j7AJ7jVFgeRz7XOySZgmAyW0wp0npaXvDY9+jhm0RoxG2aPvPBejp58Ev34DfcnJ2RQnMepi9j4wuVLMhgk1aUDAawNKFG4LRmmSnKbJ7ykV93nky8lA0QB0+FXY9FP3QtWQsNe9Pljq9YN0adEUpKi1jw/JVYYLRKmuDX5+/rbG/L3cYYt5fzMs0v9bXVYbfjoQKUtosB+oaYJcRiulHKJLiZX9V9Hx6+SL0pQfByiXeKw0Zi7rtzZiGogHE+RSZKVBS5b1OiltFzrLvIC66YDRbmJNSkGrexAFQKcFowov3n/Nedll+x42jE4QMRmtn21sOVEwZFwi7Nfnbgy7Fd8QuIFy/+Rj6iRuhohRGb4O6/D5U30H4QwQp9k4xryutNi+3teVrPA9tt5Hw4hxv421PMFqs1fshQc5QEUIIIYQQQgghhBDCkxq3inWW3+I7Wy9fJklOmIvoCSFEF8hNMJ+fZgsVC9QJPXE+xXJuZVU7g9Hyq37h7uX/wo89hNKL3Ph+1vACIYQQQgghhIiEwnxsUa/rus33UiZr61cxv/JHLht8C73jc7t6OK3MLf+Kh1fdivY4vynV11MmlwjRdeS0UyGEEEIIIYQQAU7rL7NswWitJjB+PguqyoMLFa+GFYtCz3xtqbQIViz2VnboONjzaG9lRY+iEhLRA4fD8kXG9fpvo0M3cOhZMPOB0GV2Owx1cPe8akW72U52cVuE9fgbGFy/gl99YyNq+tSSx3lw9TmoM6+H3AEwYAgMH49Kaj27+6O/O+xxe/vD0ZR22b/i3Xa3Y6Mf/CcMGQP9N4NNR6Mc+4lCuqEeFs6FkkIoKULfdKb3jtIyUfd/FoMRt3bgeMVDX4Tevmb717W6n1e/KqI+nJpKkmvWQ7whGE2FP9lVf/s+ats9Pff380r7ugmDgpcdNKqag+J+gvVr0Vce6bkffHGoa59C7X4YWmt+nrwpQ4cuoM6xJH55NLo/DO2j0M9Mtxfadk9UVp929dPR+mdAryQoqzGvr7CEvOT47UGB+pRt4e0CVHpmxOPRtdUw/3soWA6JyZDQ/DzpKw7z1sZ7T5N+wmVM3U1x36cRhOdFyDGFwS7Lh4n7d1if7aHr62DF74EQ283GBAXO6toa9It3Rd7wgCFw4GmonP6oG1+m9yINtwY/NtVOCrUqAf/vi5mXuhUj+kJuumJlSejnyPQazF9jLnvweHs7tnC6dZUhuweguMI8xtMnKR48QU48FRsP3dAAC/9nD/y06TMQ9fgPHRZk3Sc9wmA0XUV2wS8wIHhdsYfz1l3LMa2jIC1E7lul/Tx7ITbQL9zpvfCqP9CVZajUXh03oA5QVav5/k/48nf7Z3wsNhfPneHQa5r5WHR9Ffxzlstl+yjSk9rXmf7qbfTNZzcv+P5D9Pl7oZ+db/0KzOdARrI5lLWsBrTWQdtMv+WwuikYbZMse6BxW+0NRtthCHwTQTZmKDX1EowmhBBCCCGEEEIIIURPFC5ESAghukqf+Mi3T7lh6tgmpVe5FbjajTqU7OP1r7c7FA1kmyyEEEIIIYSIHZ+K3QVHO1uZfz0/lM9mr96HdvVQWvlg3WueQ9HAHs4thGgmp50KIYQQQgghhAhwWn+ZVa/MMycTWhTTX75pb69oFVSWeepaf/Oep3IA6qGvUL6e+8WbCGPH/azBaKxfG7Kq2vlAdIhgNHXpvTDl5HYMrpvz2YLR/M23/Q0cWPEWvyaZg9GG5MABNR/wx+pA8kyGv5Q9Kz/muLLngMZAsZb++zZqmz023J00HIbmwu+GC4OM7g/PnO6w1fXhg9P2q3iPvv7Qz3d76SsOD9wYtgXc9Cqq78DgMvO/R//jCFhnSd0JJSMb9fDXqH6D2znSYHuMgtREqLSEVAFk+4tb3c9rWB1RHw4uyW61cV2NCpEC0uS7DyLq7+cV5i/+05Ng0+zWy/Tns9D/dwpUe0gwarLrodBnE9TkI1Cb7wCAUor+Bx/G6bMf497eZ4dpILSDxgeCDPQ7T1rL9IRQRqUUo/rBd39GVi83RDAaAG8+Csf8PaI29eez0FcdFdlATJYuxL19GndP+y/3fdr+5mwcgrdtetlCOiYWqH30H/PR/zoBlvwSWDB+Elz3NCq7X2B9/o/o07b31JZ65Fv49Rv0gh9Qg0fCvsdvaAcgI0SO4oOZp3HFfeOobQzwnLaHIjNM7qJpu/fbGvP2Y2R/+6PfO9W8vNhTMJp5eY5crElsRPTqPwPb4EXzIq+83/EdFooGsO2mivwC7ycMpLqVxGnzyeWl1eZAopZsQUcKSIwLBKS5hjJLCjUTh3bHTwHRrRSGSAc2WTQPtowwrLALvTjH5aRHNbVh5nfEYpuRlqS47zjF1GfMb9r/vKW56yPNoyc5HL519P3ph64NXrj6T9yv3gbMgbiOgl6WfZx6P9Q2BIeX+U0bFsDXOPQBEWQOJ7czGO34HRTfLIlNwHBNvf2xEEIIIYQQQgghhBBCdF99EvK6eghCCGEU6fZJoegTJlgs1TIpXaOpcatIsQSnhbOkemFU9drqEy/bZCGEEEIIIURs2I5/eoqlNZb5h12kQdeztGZxRHUy43p30GiE2HhEF1EvhBBCCCGEEGLj0yJszI+DX5mztBMaF+v6OpjzsbU5/c7T3vt+5lZPxdTLi1DxCd7bFT2OOukf0VfeZg84zBBulJyKuvFl1EGnbdyherYrEeoWYT0N9VxcfAc7VX0ZVGxYVh3vXejw339uxcwVRzFzxVE8vvoMji97zhrsoy/aH/e+K9HFgeCwOJ/iob2WkhVX06rccfGf8dOf2zF+zgP8cOJi+idYUmUa3V5wacj16tIZOF/UwuY7hiznyeKf0LeeE7RYNzSgrz46ulA0QL22rENC0QCSExT7mrPtAOiVBPH7HdtqWd4++0TUh4NLsq4xrqt2PASjrf4TbUsSMVi2zrx88zxwnOZXoF5fiP7X8ZGFoo2biPN/z+NMm74hFK2JOv4yblp7FdtXfbthWZyu5+QSe8CZyUHlb6ILlsNSywlscfEwcUpEbXaVcZtEHhSRO2mXkOv1vf9A+/0hy7QqX7wmNqFoTWY+AMeO5tODf45dm22YgtFYlt9h/UVD19ag330afeKE5lA0gHlfoA8ZjDvjCvQz0z2HoqEUDB6FOvRsnCsfQh13SatQNCBk0NlF/W6j1m3+XL7rI82/3wy93WgbjKa1ZmGBuezIvvZ2sm3BaKE/ngAokmA08Regp58XXSjaFjuhIgzCjNQBW0RWPsWtJsMtNa5rcKG6LnR921bJcQJhTqmJ5vUnPhqbECEhWsmf29Uj8GxpseaYh8KHosXS0dsq4kKc/VBeA0c+4PLdH9G9P92Vf/DpqgxuyL6MF9MPp0o17+j4f7M/Nz4ncIxmU2rIo/Zb8sSb8tDzIghGaxu6FqlTJsYu5LGmPmZNCSGEEEIIIYQQQgghOtHW6Tt39RCEEMKod3wumyWN9Fx+dOqEsMFmqSHWV/jLPffVUrW/kgq/+XfrSG3dS7bJQgghhBBCiNgYkzqhq4fQLjWuec5TVymuX4s2zSux8BHH2NStOnBEQmwczLPchRBCCCGEEEL89TjNwRT1yj5rsikYjSW/QGWZvb33n43RwALUy4tRfQfGtE3R/aheveHvd6JvvyDyuo4DF94BB5wKC75Hr1mGGrU1jN4GlTugA0bbzdhC31qGEfkbyHJL+GDp/nydsj0/Jo7HVQ4j6hax6z/uoFefzYA+6BMuh6du9tbvs7ehn70NZnwCq/5gl5vO5Fey+Dh1N4p92WxV8z92qP4OBejbL2A88JOTyQEDZ/JtSnD4zur8QeT6i+z9JSbD7ocDoI79O/rKI72NM5TvPkCXFKEyc5qXzfsCCldG1Zx65FtUXMd+7XbQeMUr/zNP6C+rAefKh9CHnAmr/oBNhpI6amuyLvSzvspb+wpNkmuYoQ9UtwgAICER6mqDC9VUQVU5pPby1N9qy3lfm2S1mYT/2UyoD5Ng0oY63h60p3L6k3rOv/hixmQ+St2dYl82E2p+ZGD9Cp7IOB5tCxxsoV/DGrZ9+Cj0wyECFg46vcNfE7Fy8kTFI7MjC4vos8c+kHgBvHCntYw+cyd4YLanx0Ef0gGhgquXsvNN23PsxK94dv2WMW9emaJzulEwmi5ahb74AFjyq73Q8/+1BgAZ9RuMSgwdlJiZEkmD4ZW32dwUlAVCTkxG9bOHeGSnKkxxR+sqA2FrStnr2oLRbGFrQvQ0etUS+O4DT2XVtU9Bckpgf2PT0TBhtw7/vNtqkPn9a5OqK/G59nDOkmpIsYSbAbiW8xOathK2bRBAVa0mJTF2gUJi46JtL65QdRbOtYZWdzezftREkJMcE5kpiolD4fMwF4Hc4UaX2Zc7TBwa2aN50aMl3D34vQ33t67+H28vP4hs/zr8P3wGXGWs5yjICBEWW1YNfdscNoULRstNg3gf1HvIHm5vMFpyguKlsxyOfCDy12xbNZ0YlCeEEEIIIYQQQgghhIiNPbMOYVTK+K4ehhBCWB3X71zuXXE96xoKQ5brE5/H0X3OCNteipNuXVflLwf6RzpECuujuzhrWwfmHMegxKExaUsIIYQQQggh+iYM4Ni+U3mu4H50ZDMJuoVay5ynrrK2brXnsj7iODXv4rDh3UIICUYTQgghhBBCCNGkRfhLnUqwFov79CXc+56Gb96zlom5CbtKKNpfySFnQRTBaEAgyGT4eBg+vsdMGI8ZW4CTbjF52R+YhZxAPbtWzWbXqtnN1VOag9XUnkejvQajNXVz7u4bbvehkL+VvWQtm+WW8OnSvbi0703cl3UmfhXH+JqfeGD1OaFD0QA1/Q1Uelbgzs4HRjRGK61h7me482ZDwTLYdAz8uSDydlLSURf+FzUi9qFLbU3ZInwoiBqzLYzZdsP9AZl4DkbL9q8jRZsLVzot0n/6bAIrfjc3UrQqgmA089/SP7P5tq6qQN92vqf2WlIT9w9d4KhpODMuZ6/Kj1stHl63mPzEEWHbP6D8bZxwz8V5t4Rtp7vYaZjiwRMU057X1NR7q5ObDmrqjejli+Crt82F8ufCO0+iJ+6PnnEFfPBcYPkBp6LO/j9URjYA+pt3Y/BX2N3zzT7UTZnPy4uzY9qui2EbvH4t7jXHok64HDW8a08U1y/eHToULRpjtgtbJC0xEAbixuh30rVlrYPLVpbYyw7Nta/Ltvx+2OAGQo56WcJLtNbWYLSctL/cnofYCGmt0Vf/zXuFEVuiBoX/rIylTbMDwUC20KC2UtwqkrU9vWx1Kbw4x+Xj3zR9eymu3F+xWU7z+9m2+XI8vOWLKmBQiNA18Re3fm3kdfLnxn4cHWTpuq7pd+Y5DtkXhd9A7HxzoMxuI+De4xxG9Q/9pp67THP38i1aLfsheSvuzTqLfxbdiFtTDZb3u8+x71sAlBrOzQoXjOY4ioFZsCT04TPQ/mA0gBT714QR8Xp8IYQQQgghhBBCCCGEgDGpE0j12cN5OlqcimezpBHkJPTrsjEIIYQXeYmDuGaze/ijJp919ebf4HLj+zE4aTjxTvgfPZKcZBwcXIJ/sKl0LSeNhFFomRwfp+I4pu/UsPUTVCKbJY+kd3yIk2GEEEIIIYQQIgo7Z+7D+LQdWFz9KzXdLGisyYLKH5lT/kXQ8u423sJ687Ffui+DQ3JP3HA/xUljWMqYLv3uT4ieRILRhBBCCCGEEEIE+JpDkeqVfdZk/LM3QW2MgzXCUGf+u1P7E11LKYXedk/4/kPvlTbfoeMG1FM4PvNy1998uzEYzcjX/DWRGjIWvesh8NlrMRpcsHgauKPgEv5VeD1VTgp9GwrwGU4m2qDfYNQLv6Gc5vAhpRQ8+wv62M3bPR59zbHNd2a/GVFd9VI+VFXAoBGouBjMOvegd6qiby8oKAteN2WcuU5eJvyyylv7I2sXkuZWGtdVOSnNd/oMtAejFa+BwaM89bfKEm6UlxH4X9fXoc+c6KmtltRjc8KXcRy45B709PNaLT93/f1c0O/2sPUPrAjzehk0AhUfoySBTnL6JIeTJ2q2u8Hlx+Xhy+ekgfL54KZX0YcMhnUFxnL6udvhtvPA32K79Oaj6C9mwcuLUUkp6LefjG7QvfvCuInw2cyQxXq55Tz/xkDWv1XFH0Uax23g1Gfi+WlldN02SbH9qPbJK+hv3oM730ON3qZ9nURB19cFbnz0Ymwb9sWhDj8nbDHHUWQkew9lDKe6HsqqIaNxM2TbdsT7Aq9Lm96p9nWrS+3hJeU1gfA0k1D9CdFT6If/BYvmea+Qt1mHjcUmPk6xWQ4s9pgplepW0cs17DA12uM2P2U1TYFImhe+13zzD4cxeYFltmBH5SEYrSbErrcQ/Ppt5HWWLUTX1aISun/iXrHHOSGJMT5bIStV8chJitOe8JbK+mk+jLnW5bsrHcbmtV6XEAe+xhTEl34wt/d6+oH8s+hG/CuXwhBzHz4H0pPsYygzZDf6LcP3tcjiHd3fYzBaDB7jhBg9TxKMJoQQQgghhBBCCCGEd3mJg8lLHNzVwxBCiB4hwUlkZIrlpLkIKaVI8aVT4S8NWlflL4+qTdvk+Jz4fuyYsUdUbQohhBBCCCFErKTHZTAhPfL5Op3Fr/09IxjNEoqdlzhIjv2EaAcnfBEhhBBCCCGEEH8JLUKV6pQ9wCVB13XGaDZQ099ASejVX8+ICREVVwee1kED6UEcy9c8bosEl5ZhRG35Ws90Vlc/BkecG4OBhZbplpLXsDp0KNq+J6AenN0qFK2JGjgc9eCXHTjCMI48H9VvMGrI2E4LRWvyf4eYEzn2GmNenpfpIcGj0ci6RaRagtEqnBbpP0kp0Ku3uZG13pOmVgefRwZA/8ZgND56CZYu9NwegDrtWtQwjye87XRA0KJz198ftlp2QxF7VH4SutBmY7yNoZuJ8yku3NPbaya38UI1SinY7wR7weWLzNuh0mL0Xlnol2fAJ69EPtiDT0c9vwB1/XOo82/1VCVrSgpbnZTKlqdk8NXsPC5OmsWmWdEl2CS4tWxR+7O9QHUF+qW7o2o7WvqHT3BP3gY9OR09OR3Wrohd4xN2RU1/HTVuR0/F+/aKXdcAWRe6XDnTpbpOs7LEnBrSPyMQymYzINMeahQqbKkoRMiLBKOJrqJ/+hL33Mm4+/XBPW0H9Pzvo2unpgqev8N7hW0md/q+T5OtBnnfp0nRVSTpGuItx7HNoWgBFbUw/f3mbYu2hBOF2MRsUNW5h86ih9Ffvxt5JdeFlUtiP5gOUFzhLZhsR0uYWHucPDEQjpaZEr5sk+1ucEk9r/W/jGkuqef6yb3Iz03vmP+euUlbogF/vT3xy1GBgLU0S55dmeHcLL/l8NjXYtszsp+3bWFSDDbV8ZYc9khVy3ZRCCGEEEIIIYQQQgghhBA9QKrPfBJIpd/j1YHaKKxbY1yeG98/qvaEEEIIIYQQ4q8kyTFf9by2uwWj1cuxnxAdQYLRhBBCCCGEEEIEtAxGwz5rsjOD0dQDs1Hb791p/YnuQ+0cHFIU0q6HdMxAehLHMlPZbRFC5A8R+tMm2EIlpeBccDvq1ln20LVOoq58CJXVx75+9DZw3KWdOKJG2f1Rp1zV+f02OnmiYqehrZeN6gfHbmcLRvPWbi9/KTn+IlLdKuP6StUiYcAXBzl5xnJ63mxP/VXUaGvYUF6mQtdWo5+80VNbrRzkPTBR5fRHnXl90PL/LdmOdH+Ztd5Na68mSdeGbnvSwZ7H0d2M7h8+bCEhDjJa/M6kjvl71P3pOyOsqxTqqkdxLpmBSk5FKYU6ahqccHlEzSTVlHDz3GNYvGwCtx0RuuwRW/rxqdbBGNcV/ptkXRO64rzOC3DUS35FX7gv/B4irC0aY7dHfVqFc9f7C1GGMgAAIABJREFUqG28X7HI67YnEje9o7n2dc2SQvP6AWH6TE5QDMw0J47kF9iDXJats7cpwWiiK+jClejLDoGfvoSKUsifiz5rZ/SqKIKTfv8Z6sJsy5okp6JOuTryPmLkgC28l01xq1BApr/Ec52Pf2veDriWTUJTuOK+Y+3tVNXB2jLNzys06yq9hUSJv5BFP1pXqQtutx+DLc/voAG1X2295rs/NJ/na/4oCl8+KR6uOTD2x5pKKU7ZyWHdHT4u2dt7kGJbVXVQXQ/F5rzoDVbGDcANcdqFr3FVL/O5WZRWB28frMFoLboZ7fFcqaT46B+DJsPsh+MRqYkuh1gIIYQQQgghhBBCCCGEEKJTpTjmk0Cqog1Gq19tXJ6bIJPjhRBCCCGEECKcREswWk13C0ark2M/ITpCXFcPQAghhBBCCCFEN+FrDlVK0rX8rfQF6lQCdZn9qR+9A3VLFlJXbA/KiblhW8CorTunL9H9jNnOc1F1x7uo1F4dOJgewjZx3m0xozpUMJrP/DWR2mFfePR79Mz7YNbD7Rhg9JQKP5FbHX8p+plbO2E0wNBxMOkg1FHno9KzOqdPA5+j+ODvDk98pfn2DxiSCxfsoUhPMj9e4YKCmmxavxQFpLrmE7kqndQWg4iD0dvAkl+CC875yFN/+QX2dUNWfo6+5G9QFiKNyGT8zqjefSOqok64DEZOCIRzLQsETmxR+wvf/zGRB7NO47eEUejG1+Im9Ss5quwldq/6PHSjaZmw05TIxt6NjPTwEI7u1/o9qjKy4c1V6APMgXntctBpqJwB6EU/Qu8+qD2ORk3YJaiY2vd49HO3Q0N9ZO2v+J0L5p7HdUn3UGbIBkpwa7n3zfH8Y/I5PPJNApVOKoeVz2T/infDt71uDVprT9uz9tAL56JP3yH2DR94KurCO1A+SwhnCAMyFRD7QKDp79vbDBXGprWGx29g+PJtWZYWHPAWKhjttzXmddmpkJHSsc+tECb6melQGRzgqY8eDZ/XRLbNCRWKNnQc6vjL0N++D1m5qH2PRw0JkQjWwSYN97ZdSXKr8RHYF870l1IY5y3ZZ9k6KCrX5KQrtC0YrfH/KVso3v3VXOiKV1zmLIWaekhJgDv/pjhtZ7lmlWj8LFq20Lxyr2NQR5yLfvkeWGkIOVzWPYPRZi/SHP2gy+rS8GX3GAUTBimO2U4xYVDHfn7efLji11WadwyHK7HyW8IIxtfaA2mdxj8xIxlWGTIaTfudXoLRBvX2ti1MSQxbJKy8TMV2m8J3f7avnZoId8+FEEIIIYQQQgghhBBCCCG6Qqov3bi80i2Pqr3C+jXG5bnx/aJqTwghhBBCCCH+SpIswWgNuh6/bsCnuj42ya8bKK5fa1yXGy/BaEK0R9e/w4UQQgghhBBCdA9Oc9BFX/9anl51SuBOziScCz7EvetR+N/dnTYcdfn9KFvQk9joKcdBn3QlPHFD+MJb7dbh4+kRHEtYjetvvt0QeTAagBq6OeqSGXDJDHRDPXp38xURu5JKy0D3GwxrlnZcH1NvQB17cYe1H42keMVZuyrO2jV82TyP4URPrDoNgFRtDsKsaBOMpnbYF/3W48EFC5ahG+pRcfEh+7OFECXGaTa5/RgojzAULbs/atptkdVppLbbC/VMINRAz3wAffs0htUv4Za1V0XX3uX3o9IyoqrbHfRKVvRJh7UhzukzhVmojGz0UdPgxbtiOh516FTUsHGEi89Qg0bA1BvQ9/4jdCCkyZuP8v0+OWy+9ErqVUKrVY+vOp3e5cvoPesKIv7LGuqhtBgycyKtGZIuWg1fvxMINNp+744JRes/GOey+6Kv7jGUMZYGZYd4lXz5JvrRfzO0312Y4hvXLC8GzOFJC83nqTIyqxr9wiOQ3Q8mHYxKTIp4zEJESmsNr9xrL/D2kzDlJO8N1tdZV6lL70WN3Q6151ERjLDjDMyC5HioDhOwk9Ii1DvLXR9RH6c94TLrPB+uZdep6VD19J0V5z9nLjR7cfPtqjo48ynNpOGaEX0lSPEvr3AlVFcaV6nDpwZuDBxhDEbTy/LD7gt1tuo6zTEPeQtFe+4MxdHbdt53PUopXj/PYZ87XD7+rWP6WJg4knG1v1rXN4WZ9bLsHpQZLlppC0ZzWjz5XoOv02IQjAZw/wmBx7Gw8dggKwXev8hh/CZwyAyXtz2Ez9XUa+h2r2AhhBBCCCGEEEIIIYQQQojWrMFofvOFRkOpdWsobTCf/5abIJPjhRBCCCGEECIcWzAaQI1bbT2G60zr6gtx8RvX9ZFjPyHaRWaYCyGEEEIIIYQAQCnLIaJunI1ZFmEwTXtsviNq1Nad15/oltQBJ4cvtO0eKCWTaoHmdIa23BYzqkMFBIUIRmtJxcWjHvs+fLlbZ6GuewbSs+yF+g1G/f0u1FQPAXhe7Ht8bNoxOezsbheKFikvE+dT3YoNk/pTXXNYQ2WbYDQGDjc3pjWsKwjb5+JC8/JhSevxlReHrb9BYjLq+udRT/yAGrGl93o2ex4NifYfUMJRN76M2u3Q9o+ji/UJ8xvRVoPMy9UhZ3rerniy6WgYurnn4uqoaagn56KueDDiroa+dwvrF/blqZUnc2jZa9xacDlLFw3jqPJXIm6rlWJLqlaU9I9foE/eGn3LVPQdF6GPGRvT9puoR8Nv80PxGtoRS7sMt+8b6C/eACDHX2RcX7zaHp60yBLkOPKXF9H3XIa+7kT01F3QRasiGK0QUSpYFnK1vulMdHkEYWChgtHGbue9nU7gOIqRHi6c3TLkNa9+dUR9NIWaaUswWtNWJjFekZ1qLtOW1vDol+FDasVfwPJF9nWDRrT+P6hufuzH005v/KRZWeKtbE5a5x+/+xzFBxc5jOmgc4vyE4bjV5agcprDzGzBaKWmYDTLpsLX4rDf6z5WaoyC0bYcqJh/ncNLZzk8d4Yi//8cth6siPMp3jjf4cO/OzxwgmLeNQ4DLV8D1IQJtBRCCCGEEEIIIYQQQgghhOgOUn3mC8dW+kNcXdKiqN5+vlCfeJkcL4QQQgghhBDhJIYJRusO1oY4Tzkn3sNJz0IIKwlGE0IIIYQQQggR4LNM4nQb0+qLI5tI3i7JKZ3Xl+i++gwMXyYjp+PH0VM4tvdwi2C0UOEYtvoGatgWqCsfNq8cMAT18NeoHfZFTT4C9cZKezsnXoE69KyYBY6pEy6H/U+CprA823Ytmran3R6ztrrKyH7Nk/JttqyZt+F2mtdgtNw8e4OF4cOB1pm7YeCayMKY1J3voXY7FJWRHVE9a3vpmajpb4QvOOkgGDex+X5iMurSe1E7HxiTcXS1HPN5fhtsNdj8olIDh6OueQLSMto/iCGbo26eGXEQpho0AjXlJNj72Ii7TNK1HFP2Ii+tPJaL1t3NgAaPQVehXn8x3JfSWqPP3xNKIwgPDEFd+xT07tt6Ye9+qLs/RLXzORzUu/MDUPYaHWLlbz8AkNNgCUarsv9sYgt9GVK3pPnOonnol2eEG6IQ7bd2RfgyL9/rvT1bgG5aF6QbejCyb/htS4qv+W/Ka4hsG7y+CiprNa4lnKjlPlW6JezI5MP5EowmgPWWZOC0TFRjsLSyBaMty0fbEvu6yLu/eC+bHWbfsqMopZh9ucOBW8S+7d8SRuCGOO2iKcwsw3JuVllN8DK/G7ysZVsAvZIhJSH8+NJiFIwGkJ2mOHxrxdHbOmS3CLlTSjF5lOKMSQ7jNlEkxZvrSzCaEEIIIYQQQgghhBBCCCF6ghTH/KNWlb8i4rYK68zBaA4+suJzI25PCCGEEEIIIf5qkkIEo9V2k2C0wjrzecqZcdkkODE8iU+Iv6C4rh6AEEIIIYQQQohuwhaK5G8MRvMy8T5W1q3tvL5Et6UcBz1sC1j8k71QjAKQNgZKORinx+vAjGpdV4u+4jBzZcdBOZHl56v9ToDJRwSCftYXAgp6ZcEmw1qFFymfD+7/An32pNYNDB4F+x4fUZ9hx5SQiPrHg+jzb4UVi2HQCPRBA6G2fV90q8fmBP6OHi49STE2D362Z9UxqjZ/w+1Ur8Fo6VmQkAR1hhn9ReHDpEqqzMuz/CGC/NoauRWM2c57eY/UlpPgno/Q5+1hL3PAKaiJ+6OLVsP6tTB4FCph4/nhIlQwmlKwxYAQ6ycfAbscDH/+Fvw+jItHf/AcvHBnyP7VI9+iRmwZwYgNbZx8Jfr9Z9vVhqd+TrsWjrsEPTndXCAG+1La7wet0Xdc0O62WtntsMDztWwhVJZDajoMGhnxZ4PJyL7hy8TSweMhJTFEYFLj9jzHbw6VK9K90Fobg/hswWibNLTZsH72Gpz9H0/jFSJqxfarSjfRH7+EOuUqb+3V15mXx3tI3ekCIz1cPC110CBYmQEVpeR5DbhsIb8A8/41zTm84C2YqMn/lkU8DLExKjWHc5LZIvjbFoxWtg7+mA9DxsZ+XFGat9x7UFu40N2OlJmimHWej4IyzaoSiHOgqs2mz69h55stqWQW+Ykj8HsIRktPVpi2KmWGw1UvwWhKKQZkwqIwX6HFMhjNK2swmiWDUwghhBBCCCGEEEIIIYQQojtJ9ZnP/an0l0fcVmG9eXJ8dnwffKrnn5MohBBCCCGEEB0tVDBaTXcJRrMc++XGezjhWQgRkgSjCSGEEEIIIYQIsAVfuH50QwOs+sNed8hYGDcRZj0Um7HUmMN4xF+POuVq9FVH2ddn5FjX/eXYgruawg1/+DhE3ei+IlKJyZA3JPAvVLmx28H0N9CP/BtKCmHs9qizrkd1UNCGSsuAUVsDoA3BNp5tvgPqzH+jho2L0ci63ndXOiSfa5/oP7Ju4Ybb1mA0ldJ8x+eglELn5sHKJcGFC0OksDUqqTIHKWT6S8PWBWDf41HTbjOGGMWCGr8z/Ps59DXHBK/MyIatJwfK5fSHnP4dMoau1DvNHOAA0Ccd0pJCP+4qLh5s76ERW8KQzdE3nmGue94t7Q5FA1ADh8OMT9CXHAjVkV+51bNt90DFJ6BHbwML5gSt1t9/iDrglIia1LXV6KduhidubN/Y+g2GbfaANx8NXjdhV1Rc4+fApqPb14/BkNxAiIct4CPWjt42zLagoR6AbEswWrGThVu8Fl9O60S32npNkeXl07/tD5krFlvD1f6KtNaB/RG3xT+/5Xar+27jvwjrNN3WbsR19IZ+I+in5TrtWsYa5u9oNVZbG4b74fy5wPsT1cOC0UZ5OE8gN8OHevBL9N2XkrekLOI+fl2lcS3bLqfF29sWAGSiFFTWalJDBTiKjV/ZOvPylsFow7YIfE9jehF++Va3CkYrieC8ouzU8GU6Wt9eir697OtXT3e46JH1fPxzDaVOBgCb1i+lf8NqPk3dLaj88viBlPnsDTZtLzIs52aVVQfva1uD0dpsOjbLCR+MltqdgtHqO3ccQgghhBBCCCGEEEIIIYQQ0Ujxma/2U+VGft5RYZ1lcnzCxneemRBCCCGEEEJ0hHiVgMJBE3xiXbcJRqszX/Bajv2EaD8JRhNCCCGEEEIIEeBYQpVcPxQs3RAi0ZZ6bA5q2Di066K/eB3WFbR7KOqQs9rdhthITDoo9PpsuXLCBsoSbqhdtNboZ6bb60YZjBYJtf3eqO337vB+gvo97lL0I9dFXu/M61EnXNYBI+paifGKkycqHv/KHHQ1si5/w21bMFqF0+LEr6bXTo45GE3/OZ9wsR8lVeblGa49GE3dPBM1cf8wLceO2v0wuOJB9E1ntl5+3i2oxKROG0dXyDGf5wdApv3CO54opWD/E2HbPdAnToCKFs/5xP3hqGnt66BlX1tMRL0fHITl3n0pvHhXbDoZPCrw/ybDjMFofPwy+spHInrN6IeuhRfujH5MY7ZD3fcZqjEA183oDS0/DxKSUCf9I/r2PUiIUwzNhfz27yJ6ctQ2YbY6VYGTVHMswWiu8lGyeAnZbYLRVofIahzQsCp44fzv0CMmwKJ5UFFiCPyyBGBZA7Gay2pr+FbL+7ZwrxDLw42jVb8ext50X/QMDZZgtLgIUr860aj+9uDOJnmZCjVwOOqW1xj8m4bbI0to/GC+vYeWuYehtg9taR1o95AJEQ1FbGR0SZF5RUb2hpsqPQs9bieY90Vw/fy5YfexO1N5jbdyKQmQnNCdRt6ariyDxT/Rp66Gp1+dErR+SfymjBg231h3YcIIa7u+xkP1XpZdwDLD42cNRmtz2D+8r+L9+aG3hWldEMQowWhCCCGEEEIIIYQQQgghhOjJUn3pxuWV/gpc7eLYztU0KGx7sb1GufFy7qsQQgghhBBCeKGUIslJotoNnnxU212C0azHfhKMJkR7STCaEEIIIYQQQogAnyUYze+HFYvt9TYZCoByHPR+J7QO24hWF4Qnie5JKQWvLkEfNsRcYId9OndA3ZljOdlm+SL0sZuHfh9HcKJOjzNxfzAFox02FV69z15vzLYdN6YudtKO5mC0TFXJ5FOmoFIPQ990JqnaHIxW6yTRgI84/M3BaJm55s5mPfz/7N13eFvl3cbx+zmSLHkkTmI7w9khgwwCgbDCCJuwd6CMQmhLgQ7a0pc9CqVQKB28BUrZ0EIZYa9SRtn0BcreOwkhyxmOR7yk5/1DSWxZ50hHsuT5/VxXrljPOj8nWkc65z6yg0dKx50Zfzy3Y5ct0pqPayRnUnI90TWuS5qbX5OZsLnHb5c/Zr/jpZETZB+/TZKR2e94mc227/Q6OlvKYLSi3GzDVAyX7nhP9q4/SWuqZKZsLe1/out9JtfMj6+Q/fxd6c3nOrbQwMEyJaXxNUdO8I7qeeaeeBicD3b1cmn+1R0qy/z56Y2haJJkfniJNGEL2VefkPoPktn7GJlJ+U/n2XRo5wSjfXSxI8dJc79ZtlCSVOYRjCZJK75cpLLtEh/fi92fkiRJlS3JX2Tak3dOXQfQ3TR7BKOFCjq3Dp+m+DhOoHJA6887jM98G4+9Z7Wpx7HoTpbBaJL0xPtWB8/ovuFQ6ATVHq9BpeWJt7fYyTUYTc/dL7tskcyQkbmvLQu1jf7GlRXnt46OsPddK3v1GZ4XBZCk0c0LFY41qNFJTjj7MDzZc96G54v+HqHC1S7HZUU93ky2D0abNMR9XFvFXfA0HvE4CoVgNAAAAAAAAAAA0BMUOe4HTFnF1Bhbp8KA/y++VjQtdW2vKODkeAAAAADwK+wUugajNXSDYLSYjaqqyf1kCfb9gI7rxWe9AgAAAAAy4hWMZGNSlfsX8yobJhNpTUUxx54hTZ7ZsTJOvEBm7JQOrYHexVQMl/nl1VK7gBzzk9/JDB7RRVV1Q17BaGtXpQ5Fk6R1tbmvJ1MnnOveftipHVt3wubSsWcktm29ezwcaNKW7nNKBkib79ix7XZjsycZnbZ74uOpICj95fslKp57klQQliT1j9Z4rrEmsD5pZGMwWpnnWHvDhdLrTye3f/2R7OHjtaYl7DpvQCw5ZcQ8ubJLQtE2bn/6LDln/VXOWdf1iVA0SapwvwCqpNwFo0mSGTREzqmXyTnnBpmDT5IJds41PYwxMn94XNpx/+TOfgNl/vy0tNOB6Rcav1nrz2Oneg6zLz7suzZ779XxgNpsjJsm89BCmYLEx5cxRmb3I+Scd7Ocn17ZKaFokjRxSPYBQJ98PlWHrH0w7bhLDzGaNDT1duxLj2z8eXDLCs9xX36d/Pzz5Qr3hJLiWK36x9amrQ/oKvaTt2T9PJe0eASjBUK5LShHCoJGc2emfsxXtDlWvSBodPY+mT0XraqTXvnCva8j2Z0ffOsZn4m+orrKvb008T21GZ0cHryB/dWxuawoay1R6zvsKlXgbley7/9H9k8/TxmKJkkBxbRJ85eufYuDw73nrd9VL/UIRlvbkNwWjaVea4PJw9I/GZUk57jlXaFHGBvBaAAAAAAAAAAAoCcoCXgfMFUX9X+sZXOsSatb3L8brAhxcjwAAAAA+BVx3A/A6w7BaKtbqhRVi2vfYPb9gA7rnLPLAAAAAADdXyDg3h6LSmtXuvcNKE+4aUpKpWv+Lb32L+nrj6UhI6VvvpC96SLX6ebM66S9jpbefkFa/KU0fQeZTaZ15LdAL2UO+oE0Y7b05nPxsL4Zs2XGTO7qsroXx+Mx3EOYnQ+Sve1SySYGRZjZB3dsXWNkfvhr2V0Pkz74jzRivDRjl3jo0jXPyu4xIHnO3J/IBLtnCEiu/PFIR0dtbfXql1bFYWmPyUZjy9efVL8+6aM86hHYIGl5oELl0ZWtwWil5Z5jJck+fJPMNnu23n78dtnLfiBJWhModZ0zILom4bY59TKZom6aptCLVZYaSe4BLuFe8umyCQSkS+dL//239NnbUnOzVFEpbbOnTNlQqaEubaCZ2btNOMn2c7wHvv2CrLUyaRJ17OO3S3+7PJNfI27OsTI7HShtu5dM2CN9owtsOjT7uZs0f6W7Fh+re2sO07HDb0vqnz5Cuv1ER9NHpA8GsX+7YuPPRXadhjcv1uJQcpDJJwsbtG+7ts+Wu685oekLdSAfCcg7+/3tpKJ+stO2k9l8R2n6DtLkrWXC7ZJymj2C0UIe6TbdwC/2NLrnDe+QsTFliY/OSw42uut1q6/avcUpja5Rswmp3vF/Ve+2K08Y7P0c4eajJfL1WoBebJX7Hca0C0bTKO9gNL3/H9nl33R5WHhto/+xZd3wrbxtbpI9Zbbv8RUtKySXXOflwQrPOc76h3r/iPv76mqX47L8BqNtNy7+nrzR/ZgqSVJxFzyNR0Luv2tDijoBAAAAAAAAAAC6i6KA9xdbdbEalWuIr3WqmpfJehx3NbiAk+MBAAAAwC+vYLTGbhCMtrxpiWdfeUEHTqQAIIlgNAAAAADABl6hStGobPUq9772J+1KMqECaYf9438k2Y//K7kFo43YRNrvhPjJ4G3CcgAvZtREadTEri6j+3Kc9GO6MTNhc+m8W2Sv/LG0rlYqLJY55TKZGf5PUk+5/sQtpIlbJLaFC6W/viR76felBR/HA8HmHCcd8z852WZ3t+04o23HuQRymPh9qSJFMNqKYLnUpI3BaKb/II9DuNZ7/gE9cdGfdc+AI9VY0E/ff/B27SIpJqNqxz0YrTRWndiwyWaptoA8qUzODtyo3iNDpycyxkgzd4v/aW/bvWVOuVT2hgullubEvkBAOvqX0p5Hta4VLpRO/o3sdecmr1VbLa1cKpV7H9xoVy7dGByY0e9w9g0y+34343mdYdJQ74C9VO5fNFeSFFBMR629V0WxdZpXeb2qAwMUtM06f9wbOu+sHXyFC9k1VdKHryXW1fSJazDap6sKZNdUybQJAf50cZOk5NDM8U2fZ/hbAV2gvkZ67SnZ156K3w4VyG46U5o+S2b6DtJms5Kf3zboxsFo24w1uuooo9PuSn5+MUbaYmT7NqOnfu7ohFtiemn9Q3e/msd1w5JTdPKwq/VwvwN8bzvS5ulg3g5G5zzg/zludb20vEYa0t/3FPQiNhaTFn/h3lnW7v3B6Enxx6BXcOG3X0ldHIxW0+B/bOWA7hMGaKNR6aHrZf/4s4zmlUfdLxywPOAdjLYhzGxgkXt/9TqpJWoVDLT++3gGo7X7JywOG+22qfTE+56bV0nEuy9fIh45440eLzUAAAAAAAAAAADdScQpkpEjq+QvbeqiNb7XWdHsfnK8kaNBwcFZ1wcAAAAAfU3YIxitIZbBQYx5ssIjGK1/YKBnoBsA/whGAwAAAADEeQWjxaLSWvcTP9V/UNplzaZbyU7fQXr35cT2ky/1FWIBwCevx3APYvb6jrTb4dKiz6QR4+NBi/ne5pStpVv/Ky1fJIULZcq4GseGkL2IbVS/6FrVBJJTO6oC68OC1gejqbQ8aUxbfxl4kn6y+FRpcfz2XaOf1M3f/kBzav8la9xD/QZE2wWjjZns/3dAzqQKRqtr7Lw6upIxRjr6dOngk6Q1K6SySqlmlbTsG2nsFJkil6vE7neC5BaMJkkLP0kdjHbw6Mxr/MHF3TYUTZI2zfKpdXb9Cwm3D6x9VMs+HalPCiZqbPPXKqrcX8bs6G+xj99IrqvxUz1bnByG92VwdDxEbda+G9u+XlAtKfm5bnyTR7gNOkcgEH8P5ATir19Om9tt+wKp+gLxUNCE9va32/2cNM9JPc4JyLTtMyb92kk/O4m/Y5sx9q/nS++/6v/frblJeu8V6b1XZO+4Ml5PsUdKV7D7BqNJ0k92c9TYEtMZ8xODyQ6cLo0qS97fHFdh9Pz/OFqwUgo8cYuGX3+KJGla4wcZBaMVh1t/PmJKrc55oDijup/7xOrIrdkf7pOWL5IaPa5QOHpSwk0TKZI99BTp7qvcx69cmuPiMlebwfvBiUPyV0cmrLXxcOx/3el/0rAxMn97W+U31kjvJHcvT3HiirP+oV7ez6ueeGBiRZt+z2A0l12nAzY3euJ973DGkrBnV96EPY5CaSAYDQAAAAAAAAAA9ACOcVQUKHYNQauP1vpeZ0WT+/d5g0LlCjkeV5oBAAAAACTxChhrjHkcj9mJvEKxKwo4Pw3IBYLRAAAAAABxnsFoMWntKve+/gN9LW0uf0D26jOld16QggUyx/xS2vmgLAsF4MpxD5fqaUwwJI2d0snbDEqVYzt1m91am6CyimiVazDaikBFfOj6YLRH1k7SeWNf07LgYO1W95x+veJXGtf8tSSp0RToN+VnJa1xYuUNKcsY1byo9cbICVLF8Ex/E+RAv4h3aEt9UycW0g2Yon5S0frEinClVF7pPXZAuWxpmVTtEi779UfSlru4zrP/92Tmhe13gnTcGZnP60RlJUZlxdLKOv9ztlr3pkpja5Pag4pqatNH8RtV3/pfcMEnSU0jWr5xHboyUC4tfCkhGO3b5Q2SyzGpY5oX+K9Bit+H2od4tQ2+SheQlRDg5RHG5bpGu1AtjzkmaU6K7biu4XjU6nOOs36ej9Aw00ve++TEFQ/I7tuBL8+hRdvnAAAgAElEQVStlWqr3ftC3f9g7F/sYVRUIP3vM1ZG0l5TjS4/zPv1yxijMeWSPXae7IKXpCfv0MTGzzLaZnGbvLhxr/9NR1eX6s7S7/ie/50brE64JaqAEw86Crb/OyAFTOLPwUDiGNd5G/tMwjzH97zkGjZsN7kGk3pNz3lpamnzuztOLwyPc3k92mjUxKQmc8plsl7BaAs/zVFR2avJ4GKLk4Z07f+n/fRt2at+kRTcn1K/gdKWs2VO+4NMuFDlI8LSO8khZMtSBKNtCDMrd8nS3aCqNjEYLeaRc+b89VzZxpkyux62sW3/6Uan3uEdjDbUI/cynyIeLx0Nzd51AgAAAAAAAAAAdCfFTj/XYDS3Ni9Vze7BaBUh7wsqAgAAAACShT2C0Rq6RTAa+35APhGMBgAAAACI8woWiEWlaq9gtDJfS5uSUpmzrsuyMAC+eIUb+jFhi9zVgZ7PtAYWlEer9KXGJQ1ZESyP/+AE9NSHVgc/PUOKxJvuLp2rD8OT9dpXOyikFr0fnqqlwczCWgZGV2lwdPn6bTgy3/+VjOmFwRg9RDgoNbYkt5+0M/8nKY2aJL33SlKzff1pmUNPSW5vaZb95YGZbePQk+X83CMspZvZdKj08hfJ7UP6S0fMNLr62dagjJBt0vlVv0m/aAbBaHZRcnhMeYtLcJ2kqmCZ7MJP1Nhs9fYiacD7T2lJcLbr2GEtS6RDfig98Ne0NZgfXCzz3TN91wz4Vtgv/ZhsBQvSj+lijmN06i5Gp+6S2TxjjMx5NysmacrzH2Q0tyTc+hpon52vY6qLMgpGk9xfW3OnM8KH8r8NY7IJhcsk3E0KOmbjWKdDYXSptmtaf/5Acop3UzjWqC0a31X/2PoTJwYNlSlOTrAygYDsjNnSW88n9dmbL5aZd27O/92r660Wr5HGVUiRUOr3e7WN/ted3IXH+NiVS2W/t63/CUf9TM6PLk9q9go3q3eKPZdybExSQGXeQ1RVm3g7GnMfF6haJHvBH6Q/PCaz9R6SpBEDjWaMlN5alDz+yJmmSwIGvYPROrcOAAAAAAAAAACAbBUFSiSX7zbqY7XJjR5WNC1xbefkeAAAAADITKQ7B6N57fsVsO8H5ALBaAAAAACAOK9QpVhMWuseGmFKB+WxIAAZMR7hhn5s6R72gj6qTQBZRUuV65AVgYr4D4GArno6+az99yKb6R+lR+q71Xfok4KJGZcwqfFTGUna93iZOcfKzNg54zWQOz/f0+i3TySHn+w/nWC0lKZt5xqMpjeelW1pkQm2+3j+2flplzTn3iT70RvS2lUyOx8kzT4kR8Xm36FbGr38RfL96A9zjY7a2mjWOOmRJ79S/3ef0rHVd2j7da+lX7TqW1lr0wYn2sZ10kM3JrWXRz2C0QJluuXzkfrJz2LrAzx2lzw2MfyU02UO2EmavqPsb06UWlIkfkTcv5AFOsoEg/mLqAp6pNv0IuacGzVj4jXS0/7nFIfb3HjvFU0Kjcp5XZCslVqs1OIREpWjreRzcZdt7C6N2l2SFLTN+umqq3X58nNTf75S7n1wjP3ifZlNpuWkyljM6vInrc5/0CpmpWGl0h+PNJo703tfc6XP8z6mj+jiYLTDNslovFsomqSU4Waea73yqLT7QSosMCoOS3UuYXJJwWged8uAjUqS7M2XbAxGk6QTdzT6yT+SJ524Y9e8X/cKRltHMBoAAAAAAAAAAOghigPuV8ypi2YQjNbsdXJ8ZhcZBQAAAIC+zisYrbGLg9FiNqYVzUtd+wjFBnKjA2fMAgAAAAB6lYBXMFpUWrXcva+0PH/1AMiM12M4nYKIzPFn57YW9GxO60eGXqFBqwMD4j8EgnrmY/dlTqy8QQePuFeXlZ+RcQnTGj+UOfECOWdfTyhaN/CLPYy2HpPYduURRiMHEYyWitlhP/eOhnpp2YKkZvvCg6kXPPp0mTnHyvn5n+RceLvMrofJOD3nI/7v72S026aJbWfMiYeiGWN01DaO/r7j27pm6Wn+QtEkqalRqlmdftx917o2D/J4jqt3ivUDnbk+FC21ylnbyhgjs8dcOf+ulXmuXip0PzhWMwgiRR6NGO/dN2ELabs5Uklp5usOGpJ9TT2EcRwF5v5EN/f7i+85JeuD0ez6MMRRzYvUP1qdj/LQi7WYkP5Q9nPdWvpdKZIicWu4d6iXvf2ynNXzyLvSuQ/EQ9EkaUm1dNT1Vl9VeYfHPf1R+mC58hLpT0c6aYNMc822NMs+fY9i87aWoi3+Jg2okLnBJdh2vYp+mf8Ozt8u3fizV7BaVW3iv2PUIwwwoHgwmt5/VXbVso3tP9zZaO+piWNP2cVozyndKxjNz3srAAAAAAAAAACA7qA40M+1vT5a42t+1LZoZbP7sdecHA8AAAAAmQl7BKM1dHEw2pqWlWqx7gfGDS5g3w/IhWBXFwAAAAAA6CYcj1ClxnVS3Vr3vnI+oAG6DZNdOI55bIlMpCjHxaBHaxNYMCDqHji0OjBQkvRO/RA1psgYeLSfRzBUGsdW3yEVHpTVXOReeT+j537p6NmPpa+qrHaZZDRtOKFoaU2c4d238NOEkBPb2CA9nyIYbY8j5ZxyqXd/D9AvYvTETx09/ZH02XKrHcYbbTlKiSEpoYLMF/76I2n6DimH2Lv+5NruFf7oV8C2aPCgxJpNICC711HSQzcmDh49SRo/vUPbA1KafYh0x++S2wtLZP7yvEw4IhuNSl99IL3zkuy7L0vvvCytdL9C9QZmpwPyVHD3c/zu/XXafWtVE+ifdmzx+mA0LVsoSXJkNbv+RT3Sb/88Voje6qF+B2he4ULPfrPb4bK3/sa989n5spO3ljnqZx2u42+vuqdxbXJOTNG/JgebxWJWj77rHox20ObSgVsYFQSl3Tc1GlrayaFoa6pkf7Rr/D2XT+anV0p7HCkzcLDnmMos8iWdL97d+HN5ibRwVfKYqtrE257BaLZNx8uPSQecKEkKBowe/6mjf30oLVplNbXSaPtNuu79esTjKBSC0QAAAAAAAAAAQE9R5LgHo9VFa13b21vZvEIxuX/pU8HJ8QAAAACQkYhnMFp9J1eSaEXzUs++itDQTqwE6L0IRgMAAAAAxHkFo3mFoklS+fD81AIgc16P4VQOOJFQNCRrE7I3IFbtOmSNE08EOOrdPXO++cEty7TjulelyNE5XxvZKyww2m+6JBGI5pcpLJYdPFJavii5c9FnstvNkZ74m+w//y699XzqtQ45OU9Vdq5Q0GifzaR9vO5HobB7ewr2lcdlUgSj2Vcel1a7X4G3o8FoQ0uicpzk38Wccpns8sXSq0/EG0ZOkLnsvqRAGSCXzPcukP32S+nf9yW2X/mwTDgS/zkQiAf0jZ8uc9ipstZKS76S3nlZ9p2XpXdfkhZ9Fp8YLpSZd57Mtnt39q/SdbbfRz+86UZdWfaLtENLNjxd1bbuL9/+7YkaOMn9+WZk8yItCo3MRZXohRaHhkuFxZ79ZuwU2QlbSJ+97dpvrzlT2n6OzOhNE9pX1Vld+S+rW1+2WrpW2maMNLbc6JAt4wFVj70rVdXGg81GDjK6/y3vGgM/jOmEWUa7TJKO287IGKP/LpSWuO8u6JjtHB2+Vde87tmmRtkDMvu8yvzxCZmZu6UdN3xg5vU4islaK2OMykvcx/gNRnPanDxjX35UZn0wmhQPm917qtQd3q9HQu7tBKMBAAAAAAAAAICeojjg/sVOXbTG1/wVzd4XKSsPDcmqJgAAAADoq7yD0dZ1ciWJVjR969peEihVYcD7uFAA/hGMBgAAAACIc5z0Y9or56plQLeR6WO4sETm+LPzUwt6tjb3pYHR1a5DqgOlqjeF+qre/cqY2YrE1um9L7eK3wh6nE0P9CSjJrgGo9mFn0pX/UK679r0a0zYXNps+zwU1w0VZB6Mpvf/z7PL/usfsr8+wbN/YHS1jJGszXyzklQ5yD2U1BT3l7niQdmVS6XaNdKoSYSiIe9MqEDm4jtlVyyWFn8pDRoiDR0tk+JxZYyRKsdJleNk9jlOkmRXL5fWVEllQ2X6D+qs8rsFM7BCBw5eoCuj6ccWb/hnbWw9oKJfrFZ3fnOcjh7xt4Sxmze8q9e+mqXlwcH6LLSJonOOU2zOCYrGpJZYPACpJSpFrW3z8/q/24xJGB9L0ddufixhLes6NlfbbfEIc0Jq60xEiqQ+AMb86nbZY6Z79ttjN5deaNj4elNdb7X5RTEtXtM65rWvpde+trr7DdcV0tZ56ytWt74i/d9X0jVHGz38jvucgqDWB3R1Pmut7GmZBTqa616Qmbqtr7EDi6RwUGps8bm2jcVjyuprpOL+Ki8xcvu3Xuk7GK3NE9Trz8iuq5NJEarXVTyD0Xz+uwEAAAAAAAAAAHS1Iq9gtFita3t7K5rcg9EGBMtU4GRxfAwAAAAA9GFhj2C0xi4ORlvuse9XERrayZUAvRfBaAAAAACAuExDlSJFUklpfmoBkDnHPZzF1eY7yZx0kcyQUfmrBz1Xm/CeAdFq1yGrAwP1XNHOarYZ3O9SiMTWadt1r+mqZaerLLoqJ2sC3cLICdIbzya3P3SD7yXMn/7Zd0K1CiKZz1n0qWuzbWmRvTZ1AGhg1hxNCksfL818s5I0dFDqr1hM2VCpjC810blMxXCpYnj28wcOlgYOzmFFPcv2u22qkY8v0qLQyJTjigvW/9CUeEDFETX3ad23hbq87JdaESzXXrVP6/fLzlRAMQ1rWaphLUulB16WHjg5u3DyHiAmo6gCipqAWhRs93e8PaqAWkyw9W/jJI1tHeNsHBvd+HfrWhvnbehTQC3GfftuayVvI7nexLVb640l1evyuymwcXyjCavJ5SSHdaZQKnQ/sWKjkROlsVOkrz70HnPn76VjfilJuvQJmxCKlkvXv2B1xt5WD7/tHoy22ySpXyT3713sujrZmy6Snn9QkmT2O0H67lkybR5L9uZfS++/6m/BkRNkfnyF71A0KR4oWTlA+qrK3/jAhiCz6pVScX+Vefw3r6xN/LeMeuTUBWybYLSmBun1p6WdD/JXTCfyDEZr7tw6AAAAAAAAAAAAslUccL9gaH20xtf8Fc1eJ8dzQWoAAAAAyFTEIxitIdYga22XnW+xotn9RISKAvb9gFwhGA0AAAAAEJdJqJIkDRrSd0I6gJ7AZ7CC+d6FMieck+di0KOZ1vtSacw9GG2NU6q3I5tnvYmrlv5CP1p9nbT7XOmZe7JeB+juzKiJ8si18Df/krtl+g/KWT3dXiiLK+KuWiZbs1qm38DE9vdekVa6H2S6gfnu2drnQ6OPl2b3v1Q5gPfCQG/jHPh9XXHLPH1nxN9Tjive8HTVmBiMZiQdX/13HV+der4kKRbLrshuzpHkKCqPXKQ+7a7+R+jY4bclta9zIlJhUcq5xhjplEtlzzjYc4y97lxp/3l6a80g/e7JjrwDSS0ak659zuq9xe79B2yen9dH++sTpBcfbr1900VSc6PMDy6SjcWkD1+Tbv2Nr7XM+bfK7PWdrOoYnkkwmm0TjFY5VuUewWhVtYm3ox5PDxuD1tazLz8m0y2D0Yzk8i6YYDQAAHLPGDNW0haSKiWVSFoiaYGkV6y1vPoCAAAAAABkqdhx/2KnLlrr66T7FU1eJ8dzgT0AAAAAyFTYIxjNKqZm26QCk8V5CDmwosn9fIXBhGIDOdM7L0UOAAAAAMhcIMNgtOL++akDQHb8hhvO2Dm/daDnaxOyNyC6xnVIg1OodyObZbX8Vuve1Mmrr5e54DaZky7Oag2gxxg5sWPzt94jN3X0FNkEo0nSwk+TmuxLj6Ses+thMlO30TZjstukJFWWZj8XQPdkwhHNPe84PbVgTspxwcD6g9wbGzqhKvQWhTH3+8s6UyhFitPON9vvI3PxPzz7o3L0yz98qpm/yX/oXqrgtVwHo9lYTLHzjkoIRdvo4Ztkv3hfdt8hsqfM9rWe+emVWYeiSdL4wf5/P0fr/y+WLpSkjgej2cRgNL3yuGw06j64C0U8Ls9HMBoAALljjDncGPOKpC8l3S/pakm/lXSbpOckLTXGXGuMKe+6KgEAAAAAAHquokA/1/aYomq06b8nXtHsfnJ8BSfHAwAAAEDGIk7Es68hts6zL5+std77foRiAzlDMBoAAAAAIC7gcdail3BRfuoAkB3H58c8ozfNbx3oBVpP9B8Qq/Yc9Vrh1q7tR2zlHRQwrulL3b34aAX/9qbMnkdJFcOliMfrSV8LhELvNHpS9nNn7StT5JGe0VsVFGQ3b8EnkiTb0iz77/tkn7pLuud/vcdP2lLm51dJkoYPyD68ZZOKrKcC6MbMrH21a/0L2mrdm6794wPLWm80ds3BFOiZItb9/rLOKZQp9Peab3Y9VNouObjvrfDm2mX0U/rjkm06VGNHbTlKGjEwd8FotqVF9rwjpecfcB+wZoXsCVtJdWv9LTjvPJkjftKhmiYO8T92Q5CZvfR7kqTyEvd/m7bBaLGYd+hcQO1C0NaskD74j/+COkkk5N7e2BI/GAwAAGTPGFNijPmHpHslbZ9i6CBJp0h63xizd6cUBwAAAAAA0IsUewSjSVJdtCbl3JiNqqppmWtfRQHBaAAAAACQqYhT6NnXVcFo1dHVarZNrn0VocpOrgbovTI86x0AAAAA0GsFMwyiiHh/oASgC/gJRistkxlQnv9a0LO1uS8NjK7xHLYwNMq1fe+p0i0nOLr5mud1z5tGY5oWaEzzAk1r/EB71D2rgfPfkqkYLkkyoQLZWftKz85PXGTSljJDRnb8dwG62pBR0tDR0tIFGU81c3+ah4K6uVA4q2l24afSqmWyp8yWvv0q9eCdDpS54DaZ9aGMlQOy2qQkaf/puQt+AdC9mIe/0WHz/qD/Fm6Z1HfQ6vmyzSfLhAoIRkNGCj0OvmkxIbXIkUeWVBJz6b2yu7WeiPHr8rN1UcX5Oaiw4w7YPIehaNUrZX+8u/T1RzlZz/z5aZktdurwOpsONZL8hXs5isV/aKiXjcU8g9Gq10kNzVaRkNET73uvtyFoLcFbL0jTd/BVT2fxCkaT4uFoqfoBAIA3Y0xA0t2S9m3XtULSW5KqJW0iaYZar34xRNJDxpg9rLUvdVatAAAAAAAAPV1xwPvCRvXRWpWFBnv2r25ZqahaXPsqQkM7XBsAAAAA9DXhFMFojV0UjLaiaYln32BCsYGc8XHGLAAAAACgTwhlGoxWlJ86AGTH+PiYZ+zU/NeBnq/NfaksujLj6ZsOMyoKG/3otJ303Iz5unXpSfpV1SU6XM9p4B/u3hiKtnFzv7xG2rxNQMGYyTKX3JV1+UB3YoyRZu2T+cS9jpbZatfcF9TdFUSym7fgY9n//WX6UDRJ5hf/uzEUTZKGlWa3yW36LVX/QoLRgN7KDKzQL3aN6oQ1tye0H7b2fl387bnSW8/HG7yC0TbZTOaeT6Rp2+e5UvQkEdvo2Ve/vMr3OiZUIHPpvZKkqwb+KCehaA//2NGcqZLp4EvbQVu0LmCbGmXnX63YhccoduNFsssWxtvXVCl29RmK7RSO/7nuXNnP3lHs2rMVu/AY2Qevl21plr3hgtyFol33Qk5C0SRphns+tKuA2gSZrV2V8n3HFyuk+karE2+L+VtvPXvv1f4L6iSFKT5ibGjuvDoAAOiFfqvEULRmST+RNMJau7e1dq61ditJ0yS92mZcWNKDxhiOvAYAAAAAAPCp0CmSkfuXZ3XRmpRzU50cX8HJ8QAAAACQsUiKYLSGLgpGW970rWt7sdNPRSnCtgFkJtjVBQAAAAAAuolghsFoYYLRgG4lEEg7xGy7VycUgh6vTRpCoW3QoJaVWhUs8z190pD1ywQCMqf/Wfaki6UlC6Rx02SCyR9Hmn4DZK5+Oh6U0NggjZwQD5MCegkzaz/Z+6/LbM5pv89TNd1cQTi7ea8+LkWTg0KSBALSoCEJTYUFRoOKrFbVZ/a8c9KkhZKGpx0HoOcKnXqJbny4XJcvP0fvhadqcuMnGhJdHu/8/F1pmz2lJo+gq3ChzLAx0rX/lhZ9Gh/X2CCtq+20+tH9FFVFpPvd+xrHbp7RWmanA3XVxN/o9MDPfY1/6avZumbQKfpH6VFJfSVmnfbbrFj7Tw9oVZ3Vu9/E39Pf+ZrV/8y3vmvaZ5q0xcj466ltaZE961Dp9ac39tsnbpcuvVf2jEOkVUtbJ95xpewdV7aOe3a+9OoT0pvP+d62p0iRzBPLZYKhjq+13ugyo903lZ75OP1Yx7YJOVu5VONGlyngSFGX7LOPl0ifLZNWpDiPJmBdJlZXyT58k8yB30tfUCcZUybddZJRJGgUCSnhT0mWb/cAAOjrjDHjJJ3WrvkIa+1D7cdaaz80xuwu6RlJG9KayyRdKOnkvBYKAAAAAADQSzgmoEKnWPWx5O940wajNS91be8fGJDyZH4AAAAAgLugCSlogmqxLUl9XRWM5rXvV1EwtJMrAXo3gtEAAAAAAHGhDIPRIgSjAd2KcdKP2Wz79GMAJ/G+NLzlW9/BaOUlUllJYriQ6TdQ6jcw7VwzZJT/GoGeZMbszMaPmezrMdMrhVInZZjvXSh700XJHX5C0SSpf5mMk/x6ueVoo6c/8rfEBjtPIMAR6O1MqEB28tYqe+cl7VL/YkKf/cs50vb7yDZ6HEwRjh/MboyRRk3Kd6noIYqWW+l+l2ArSeum7pzRWmvXWV1Q8CPJx0vguo/6K6QWaZVcg9H2qP6X9NFIacrWGlRstMv6u+xpu8f/9hOONnem0V+PbfPa+M6LCaFokqTl38ieuqvU1JC+6FceTz/GB3Pi+TkNRdvgisMdbXWJ+/9lW4G2/0ErlyhUPkzjnEZ9FhuSNPaIv2a4Xhv2+guk/ee5vs/pCgOKjObO5L0SAAA5dqGktm9sbnULRdvAWrvOGHOCpPckbfgC8HvGmCustV/mr0wAAAAAAIDeozhQ4h6M5tLW1oqmJa7tFQXDclIXAAAAAPRFYadQLS5B1Y1dFYzmte8XYt8PyKXucWQsAAAAAKDrZXqiaJirlgHdSiCQfkxxaf7rQM/XLmSvssX9w3o3m3JhEyCJKQhLx53pf/zx58SDdPqiVO9HSwZIR/2sY+9BS91DHs/fP7OvSk5Yc7s22WRQ9nUA6DkC3teYsqfuKn3zuXtnOJKngtCTFaZ4mWsorcxorSfet6qNpg+4f2DREfFQNEnbNbyu49b8PaG/KFanM1b+XnrtqaS5wYDR6Xs5+u95qV8nT9nF6K6THJUWtb5/sXf9yX2wn1C0XBk+Tjr01LwsPWOU0TAfu9eO2oTKrVwq++sTNHH1f7PebsB6JOFVV0nfkm8CAEBvZYwplHR4u+bL082z1n4q6cE2TUFJR+ewNAAAAAAAgF6tKNDPtb3e5UT8tlY0e50cz8F1AAAAAJCtiON+HkFDVwWjee37EYoN5BTBaAAAAACAuFD6E2oTRIryUweA7BgfH/MUux+oAyRwEu9Lw1u+9T114tA+GuYEpOGcdLGvceaPj8vsMTfP1XRfxhhpuznufQ98JRMpkqZsk/0GSstdm3eaYLRz6EPXvln1r+ii5Rdpz9qndEDNo7p6yWm6fskpUnlmATYAeqhU4cO1a6Rn7nHvI0gcLgpTfOyyrtn/OtGY1XdusGnHTWn8UAfUPpbQdv2SU3XDtyfr4LUP6furb9YbX22vbRrekL3pIs91ZowyOnSG93auOdplX/Q//0xbX14d8ROZG/8jk8eQwsk+jl1qG2Rmn50v/d+/NLp5YdbbDMgjGE2SatZkvS4AAOj29pbU9ku5V621H/uce0u724fmpiQAAAAAAIDer9gpcW2vi9amnLeiiZPjAQAAACDXwsb92NzGLghGs9Z67/sRig3klPdlzgEAAAAAfUuGwWiGYDSge3FShDZsUEQwGvxIDDerbPYfjLYpn98DnsyNr8p+f3vv/isfkZm5eydW1D2Zn1wh++nb0qql8YZQgcw5N7W+9xw1QXrr+ewWH1Dm2XXv1Ee1+39iej8ybWPb0JalunbpTzWt8UNpZZvBxf1litwPfgXQy/h5j+2mgGA0JCsMefeta/K3xpsLrL57c8zX2H8uPCCpLaQWzau+XfOqb0/qs4s+kxk5wXWtm09wtGBVTP9d0NpWXiI99tPudR02c/6tMnt9p1O2NXGI0bMfpw6oSwgyWx8WN6zF/WAoP9oGrSWpq856XQAA0O21T5F/LoO5L0pqUetxojOMMUOstctyURgAAAAAAEBvVhRwPzakPkUwWszGtKJ5qWtfRYhgNAAAAADIVsRxPza3oQuC0Wqi1Wq0Da59gwu4ADuQSwSjAQAAAADigpkFoynMid5At+L4OCGdYDT40e6+VBGt8j110hCTfhDQR5lJWypldEY5X4BJkhk1Sbrtv/HwkPoaaatdZUZv2to/cmLqf8dUSr2D0crHjdSrd+2sh/odoA/DkzWmaYEOqH3M/TmwnANVgT4jkOVXqewvw0UkVTBac/r5Z90f0xX/9PcqeNO3J6kywwAue/Q06YUGGZP8nr5/odHLZzp68G2r9xdLIwdJB0w3Glrazd7/73Rgp21q4pD0YxybHGI3vMV/8HR7CUFr7dWuzXpdAADQ7U1rd/tVvxOttXXGmPckzWjTPFUSwWgAAAAAAABpFAfcj7esi9V4zlnbslrN1v2qSBUFHG8CAAAAANnqTsFoK5q8j88kFBvILYLRAAAAAABxoQyD0SJF+akDQHZMmmC0grBMpo9z9E3tgtHKMwhGm0quE5BaaZlUvdK9j+fojcyAcmnOse6d46Zmv+7YKd6dY6eq0DboqLX3pl9obPY1AOhhsg5Gi+S2DvQKxhhFQlKDSwjaOvdzIzZ69QvrOxTN2Jj2rHsmiwolu3NEdve5MlvOlvabJxMIbOwrCBrNnWk0d2ZWS+edOfUymcLiTttePBQ69f+JW5DZsNcqDQ0AACAASURBVAwD69qyShFEV1edOLbqW9m/nCv96854wwEnysw5Vmb6Dtlv/60XZJ+7T4rFZHY5VGarXbNeCwAAZGRyu9ufZzj/CyUGo02R9GyHKgIAAAAAAOgDPIPRot7BaMubU50cP7TDNQEAAABAXxX2CEZr7IJgtOXN7hdILXSKPPclAWSHYDQAAAAAQFwwwzCOMMFoQLfS5oR1V4V8sAq/Ek+2L2/xF4w2cYg0tjwf9QC9iJPiuZpgNH82myWFC6XGLL7A3OVQ777x06UBFdKaFWmXMQecmPm2AfRMqZ63UykgGA3uCr2C0Vza2rrtVX+haJK0f+3jquxA+JaeuUf2mXuk156WueSu7NfpbHOO69TNTRySfoxjY0ltwz0OiPIjZFPcUWpbg9Hst1/JHrlpYv8jN8s+dqt04d9kdjs8423bp+6SvWSeFIv/TvahG6Qz/yqz3/EZrwUAAPwzxgySNKhd88IMl2k/fkL2FQEAAAAAAPQdRYES1/blTd/q0ap/uPYtblzg2l4c6Oe5HgAAAAAgvYhHMFpDnoPRFjZ8rk/r30/YzufrPnQdWxEaJmNSXAAVQMYIRgMAAAAAxAVDmY2PEIwGdCvGSd1fxEE18MlJvC+VR1f6mrbXVMMH+EA6BKN1mIkUyc7aV/r3fZnN++39MuWV3v2BgOzsg6WHbki90OARMtvsmdG2AfRggSy/SiUYDR6KCqTV9cntdY1W7QOKN4jFrK5/IX0wWv+IdOiwr3XVe5d4DyoZIPPnp2XnzUxf7PMPKLZTWObE86XjzpIJpn482Leel73p19LK7IO/shYMSaVlnbrJMeXxf/O1Dd5jAoomtY1r/koFsUY1OeGMtje4ZZnGNn/t2W/XVG28B9m/nOM+KBaTvfAYaccDZAr8b99aK3vDhRtD0dY3yt74K2nf77IfCABAfg1od7veWluX4RrL290u7UA9AAAAAAAAfUax437MZU20Wo+vvDujtSpCw3JREgAAAAD0WeEuCEZ7tOofGe3/VRSw7wfkWpozZgEAAAAAfYUJBKRAirCO9sKc6A10K+kev0X9OqcO9Hwmu2C0ad55QwA2SBWwEyQYzS8z7/zMJ22/T/p1v3uWVNL+fOM2BlTI3Pxa5tsG0HNlso/chiHsEh5KPLKo6pq85xxwdcy7U1LQkZ76uaNVf3J089mbqN+dr8s8WyNz6mVJY81JF8uM30zaeg/fNdubfy17nUfQ1oYxX34g+/N9pXdelL75wvfaGakY7t1XNkzG6dxDHwKO0V5TUo+J2EbXtt3r/51y3hSXY6POrbpcjlIE5P39CkmSra+RXnw45fr2iAmyDS4JfV4WfSYt+Tq5vepb6dO3/K8DAACy0f7s22yO6G4/p8NfFhhjBhtjpmbyR9ImHd0uAAAAAABAZyoK5O6YS4LRAAAAAKBjIh7BaI15CkZb2vgNodhAN5DlZc4BAAAAAL1SsECK+vwwKOz+YRKALmLSnARe3L9z6kDPZ0zCzfJola9pk4eZ9IOAvi6Q4rm6wCMpBUnM2MnSbW/KHr+lvwl7HuUrLMUMHiHd8prsHVdKn78nFZVIq5ZJw8ZIg0fIHHuGTGlZx4oH0LOkCrRMJRjKbR3oNYo9Xu5rG9zbm1usnv/Ue72Dt5DOmONou3GJ78VNqED2qJ/LjJks+9itkozMAfNktt073n/lI7KzM/hc575rZb97lkz/Qa7d9oYLpWiL//UyVdRP6j9IWrHYvb+8aw4mOnym0fw3vcPKpjW879p+YM2jeqJkjue8Z0539MoX0r1/fUaNa6p19Nq7dUjNQ2nrsVXfSu+8nP7/YtUy2T0Hxu8jp1ya/n3S2lXefauXp60LAAB0SPtgNI93jim1/+Kv/ZrZOFXShTlYBwAAAAAAoNsqyWUwWsHQnK0FAAAAAH2RVzBaQ56C0T6oezPjOez7AblHMBoAAAAAoFWoQGr0+WFQQSS/tQDITLrQhqJcnOuEPqHdSfFh26RBLSu1Kpg6DGgKFzYB0nMC3n3Bgs6roxcw46ZKP7hY9oYLUg8cOlrmhHP9rzt0tMzpf+5gdQB6jWyD0UI8p8NdiUcwWl2Te/ui1VK9R9+2Y6X7T/V+b2GMkbbfR2b7fZL7HEe66knZsw+X6mvSlS21NMv+7kfS7IOlKVvLVI7b2GVr1kgvPZJ+DS9b7Sr999+px5QPSx0iO2hI9tvvgENnGE0fYfXuN+79+9c+7tl+iseac2caDelvdMgM6SDnN9LiV/wX9N6rsi+kD1Db6K4/yq6rkbaYLVWOlZmytfs46x3+1j5YGwAA5F2KF+aczgEAAAAAAOjzhofHKGwiarTZZNUnmlg0LQcVAQAAAEDfFXbcz2VtjHV8n81NTXRNxnMmFLLvB+Ramkv/AgAAAAD6lEwCOQhGA7qXYLpgtNxdvRC9nMuJ7bPW/SfllGmVUlkJJ8QDaaUMRgt1Xh29xXFnSMPHJbcPGipz8m9kzr1J5sZXZUZN7PzaAPQOTpZfpYZSBDihTyv2CkZrdG9fUu291qm7dOz9t9lyF5nb/itz2h+kfgPTT3juftmLvit7zHTZ+/8iSbKrl8vu27FQMrPzQdLgEakHlVemflwVl3aohmwFA0bXHO3IcfmvGNGvWfsft5PrvGEtS3Vk9T1J7UYx/f17bRaLtmRUj73gaOm5+zKao4dulL3oONkf7qjYeUfJxmKZzQcAAPlW2+62+yWwU2s/p/2aAAAAAAAAcFHghDWn7IgOr7Np0eacHA8AAAAAHRRx3L8ub4ity8v26qI+Ljrbxg6le6q8oGsu8gr0Zlle5hwAAAAA0CuFCEYDeqx0j9+i/p1TB3o+l2C0Q2oe0qP99vOccvAMQtEAX1IEo5lsw3f6MGOM9Kd/yl54rPTha/HGyTNlLrxdZvgmXVscgN4hkOVXqZnsW6NPKfa4a9RmEYx27HYdfw9uho6WDv+RtMXOsvNm+pvU0iz7x5/J/vFnHd6+JKliuMxv75c9cRvvMZtMk7760Lu/qCQ3tWRhh/FGd/7A6IRbrBqa423DSqV//DCsovE/kp0zV/bCY6S3nk+Y9/tlZ2pJcKheKN5ZkjS14QP9rfQaBQN/bR2UYTCaJKkjwWbPPyA9erN04PcT21PWwb4gAAB51l2D0a6VdG+GczaR9FAOtg0AAAAAANBp9i47TIMLhumd2v/T6uaVGc0tDBRpQuFUzR64b/wYFwAAAABA1sIewWiNeQpGq4+6f7U+IFimitCwjbdLAv01pXiGZpXukZc6gL6OYDQAAAAAQKtgyP/YgnD+6gCQuUCax28XniiOHsYkhzPtX/u4ArZFUeP+ceIhBKMB/mQbsANPZuho6boXpC/elwoKpMpxMpm8pwWAVFIEWqYUJBgN7koiRpJNaq/3DEZLHitJm1QopydPmPGbyW6+k/TOizlb07fySpkJm0tPV8v+dM/WsNMNAkGZOcfJ3vgr7zWK+uW1xHTmznR0wHSr17+WCoLSFiOlSCj+/2MGVkh/+qf0zWfSkgXS2CnSv+/T0KvP0DML5+jDgslqNiFNa/xAwVHtgl29Askcp2MBaCnYe/4s0z4YrdnjDiplF94GAAAy0T4qt8gYU2ytrctgjcHtbq/pYE2y1i6XtDyTOZz8CwAAAAAAeqoZ/WZpRr9ZXV0GAAAAAPRpEa9gNNugmI3JcTkXqiPqYu7BaNv230UHVRyX020B8JbbRzYAAAAAoGcLZXDydkEkf3UAyFy6EJguPlEcPYiT/JFhWXSVdq/7t+vw8YPjJ/4D8CGQZcAOUjLGyIzfTGbUJELRAORWtoGWmexbo08p8rhr1DW5B6AtbR+Dsd6w0hwV1Ia59B5pjyOl0vLcL55KRWV8++GIzFVPSof8UCoZIBkjTdhc5ooHZSZukTKg33SD/d3CAqOdJxptN85sDEXbwDhO/H3KtnvJDB4hVQyPt0ua2vSRtmh8V0FFpYWfJi7qFTq21W55+A3WW/Cx7JKvE9uaGrzHN6UITQMAAB1mrV0paXW75lEZLjO63e3Psq8IAAAAAAAAAAAAAIDO5xWMJkmNsRTHuGWpPlrj2l4U6PrjFYG+hGA0AAAAAECrIMFoQI+VJnzBFJV0UiHo8Yxxbb54xUUqiDUmDb38MEfGYw6AdhyC0QCgRyEYDTlW4vFRSq3HMTlLPILRhvbPTT1tmf6D5Fx4u5xHF8vc/XHuN+AmEJQGDmmtIVIk5xf/K/PYEpmn1si5+TWZbfaMdxZ4H9Sknra/Wz7Ms8u+9ULrDY9gNLPj/q6B1jnzyVuJt1OFnzW799loVHb1ctm6tTksDACAPuujdrfHZzh/XJr1AAAAAAAAAAAAAADo1sIpg9HW5Xx7ddFa1/biQA87XhHo4QhGAwAAAAC0yuTk7TDBaEC3Egyl7i/Ow5nz6J2M+0eGMxve1Ctfz9axa+7QzIY3dcRWRv/6maNDZhCKBvhGMBoA9CyBLJ+30703R59V7PGxS12Te/vSauvaPnRAft+Dm8qx0uCRuVls/HRp6rbufdvuJePyODOOI9P+c6eBFd7b6Gn7u+WVnl32L2e33vAIRlMoLHPn+zkuqo0F7YLxGlNcTbMpuc9+9Ibs97aVPXCk7P6Vil19hmw0muMiAQDoU9q/8G/vd6IxpljS9DTrAQAAAAAAAAAAAADQrUVSBKM15CEYrd4jGK3IIRgN6EwEowEAAAAAWoXC/scWEIwGdCuBNOELRf06pw70fI73R4ZbNL6rW5f8QP9ZdZDu/qGj3ScTigZkwhzxY/eOkRM6txAAgD+BYHbzMgkdR59S4vGxS22je/uSavf2YaW5qScVc+FtHV+kpFTmR7+Vuew+afSkxL5BQ2R+cLH/eiq8w8R63P5ueaVU4HFn+PID2Yb6+M9eYWKBoDR0TPbhjWnYBZ8kNriEn7X2NcrWrJF9dr7sf/4pW7Na9qQdpC/ei/e3NEt3XyV7zDTZ+VfnpV4AAPqAf7a7vUsGc3eS1HbH5i1r7bIOVwQAAAAAAAAAAAAAQCfqzGC05lizGq37cXPFgR52vCLQw2V5ND8AAAAAoFfye/K242R/gjiA/AimCUYr5IoU8Mn4uJZCpDj/dQC90Q77SeFCqTHxizez53e6qCAAQEpOlqFDmYSOo08p9gpGczl+piVq9c437uM7JRht+g6yu8+Vnrkns3l3vi+9/JgUjkiz9pUZMireccOr0rPzZb/+SGbkhHhf+TD/C5elGFvUs/Z3TUFYdtQk6fN3kzsb10kfvSHN2FmKtrgvEAjKBAKyZcOk5R53ko5Y9Gni7RTBaPbFh6XrL5Bq16Rec/GXsledLnO4R1AwAABI5UlJ6yRtOMp7e2PMptbaj33MPaHd7QdyWRgAAAAAAAAAAAAAAJ0h7EQ8+xpzHIxWH6v17CsO9KzjFYGejrPYAQAAAACt0gUrbVAQkTEmv7UAyIgJBGRTDSjiihTwyc/zeyHBaEA2TFE/6fIHZM85QqqviTfueph07P90bWEAAFcmEEz9HtuL39Bx9DmlHhcsXF2f3PbAW97rDO3fOZ/JmDP+IruuVnrlcX8TttkzHnp21M+S1yoslvY7XllXXpIiDc5PuHM3Y373sOwhY9w7Vy6J/50iGE2SNG5qfoLRqqsSbtqXH/Ue+/rTud8+AABIYK2tN8bMl3Rcm+YzJc1LNc8YM1HSIW2aWiTdmfsKAQAAAAAAAAAAAADIL8cEVGDCarKNSX0NuQ5Gi3oHoxUFOD8P6Ew97whhAAAAAED++D15u8A7YR9AN0UwGvxyfHxkSDAakDWz1a4yjyyWufY5mfmfy7n4ThkCdACgewpkeY2pIM/rcFde4h4LtrpeaokmxvDd/XrMc51hKTLCcskUlci5/AGZ29+Wuf5lmafXyNz3hcx5t7gMNjLzzstfMeWV3n3F/fO33Twx5cOkEePdO6tXxv9OE4xm9j8x/Ya+84vMi6up3vijveUS6Y1nM1/DjZ99TQAA4OVXkprb3D7BGHOg12BjTETSLZLa7pzcZK39Ij/lAQAAAAAAAAAAAACQXxHH/eq0uQ5Gq4vWePYVOZxPBXQmjjwFAAAAALQiGA3ovQqLuroC9BTGTzBaSf7rAHoxUxCW2Wx7mSEju7oUAEAq2Yb4EHgJD+Up3kavqku8ff9b3mM3HZqbevwyYyfLTJ4pEy6UGTxCZu+jZW58VZq2vRQulIaNkfnV32WmbZe/IsZNk8qGJbf3GyiN3zx/282n0jLXZrv8m/gPnsFoAUmSmX2wdOjJKTdhBpTH/+0yUbtGse9vr9hOYdmbf53ZXAAAkBfW2i8lXdWueb4x5sfGmIQdEGPMZEnPSJrVpnmlpIvyWyUAAAAAAAAAAAAAAPkT9ghGa8xxMFp9rNa1PWQKVOCEc7otAKkRjAYAAAAAaBX0G4zGBzhAjxN2//AXSGJM+jERgvYAAEAfEAhmNy8Yym0d6DVSBaNVtTmO5q2F1nPclGFSOOTjPXuemUlbyvnLc3KeXiPnnk9kdjs8v9sLBGSO/WVy+9GnywSzfKx2tf6D3Nvv/L3s1x9JtdXu/W2em8y881Nvo7BE5tj/8bef19Ynb2Y2HgAAdIazJD3R5nZI0p8lLTLGPGGMuccY84akD5QYitYk6RBr7ZLOKxUAAAAAAAAAAAAAgNyKeASjNeQ4GK0uWuPaXhzol9PtAEivhx4hDAAAAADIi5DfYLRIfusAkHsFBKPBJ+PjWgqFKRIdAAAAeotAILt5fvet0eeU+QxGO/v+mOe4W+f13WufmcN/LA0cIvvsvVJzk8xuR8jMOaary8peaZlnlz1uC+95bYPgSsvizznNTe5jC4tl9jxKKu4v+/ht0vMPZllsBwwaIg0cLDl9974LAEAuWGujxpi5km6UdGSbrsGS5nhMWy7peGvti/muDwAAAAAAAAAAAACAfAp7BKM12twGo9VHa13bixzOpQI6G8FoAAAAAIBWQYLRgF4rTDAafPJzsnoRH+YDAIA+IJDlV6kEo8FDJGRUEpZqG5P7NgSjNbVYvfql+3zHSJOG5q++nsDsfoTM7kd0dRm5UVud3bw2YdbGGNnyYdKSBe5j14dam1n7yszaV/aFh2TPnZvddrOx3zw5Z13XedsDAKCXs9bWSjrKGDNf0umStvMYukrS3ZIutNau6Kz6AAAAAAAAAAAAAADIl4hHMFpDLLfBaHUewWjFAc6lAjobwWgAAAAAgFahkL9xBKMBPQ/BaPDLmPRjBlTkvw4AAICulnUwWji3daBXKS9xD0ZbUWMlGb34mVTT4D53kwqpX8TH+3X0CGbiDNmXHsl8ohNIvF0+3DsYLVKUeDvb57UsmTOu7dTtAQDQV1hr50uab4wZK2lLSZWSiiUtlbRA0svW2qYuLBEAAAAAAAAAAAAAgJzqtGC0WI1re1GgX063AyA9gtEAAAAAAK2CBf7GhXyOA9BtmEAg/SBAkoyTfsiA8k4oBAAAoIu1Dx/yi31mpFBWIn29Mrl9zfrjch5913rOffJn6d+rowcZv1l285x294NBg73HFra7QuXkmfEwbOt9P8uJYWNkLr1Xpn2tAAAgp6y1X0n6qqvrAAAAAAAAAAAAAAAg38JOxLW9McfBaPXRWtf24kCJazuA/CEYDQAAAADQyu/J20F2JwGg1/Jz4vqAivzXAQAA0NUCWe77+g0dR580wP2ChVpTH//71S/cA6sO21IaU27yVBW6xHZzspvXPsy6vNJ7bGFx4tRBQ2S33Uv6z5PZbTtVWRfdITXUSyMnSBNnyITdD0IDAAAAAAAAAAAAAAAAACBTEcf9AMyGWENOt1MXrXFtL3IIRgM6G5fnBQAAAAC08huMFgjltw4AQNcxPsIWBpTnvw4AAICu5gSymxdknxneSr2C0dZJ1lp9uty9f88phKL1NiZUIHPJ3ZlP/H/27j3KsrOsE/DvO+dUneqq7nR3SOdCEuhcCQkYQJCrEklAgZEAIjoIGhGHhTdQRnGWo5AZlzoizBqdYXS8wQg6423AcURcusRRkFkjwvKGw02iokBUwO6qVHdSteePatJ1Oafq3HfVOc+z1l7p8+1vf/vtXbve6jrZ9attYdbl4iu6z51v7zzva96cPOUrknaXm7FfD7o+5Zc+lPKU56U842tSHv54oWgAAAAAAAAAAACMVLtLMNqZ9XtGep5uwWhLzSMjPQ+wtwF/zTkAAADTqLTmU/UyseXbSYCpVXr4XQrHLx5/HQAAdRvwe9/S8Lup6O7oYkk6vPvy2ZXk708nn1npfNyNlwlGm0blyc9O9bgvTd7zG30ctO1eeNjju889ujPUuixdkHLnm1Pdezb5hR9J9WPfvfc5r35YGm96b6r77k3OriZnzySHDgtAAwAAAAAAAAAAYCIWugSjrY44GG1l/XTH8aXm4ZGeB9ibp/IBAAA4b26+t3nNufHWAUB9egnyOLbzh+sBAKZOc4BgtMfcOvo6mCrHFjuPf2alygc/2f246y8ZTz3Ur/zAL/V5wLbv2W56bHLZg3fOu/qmlF2+dytz88lTnpe09n6frzzr6zf+25pLWTyScuwioWgAAAAAAAAAAABMzKSC0ZbXugWjHRnpeYC9CUYDAADgvB5+ELKveQAcQGXvKUcFowEAM6DR7PuQ8k0/NIZCmCbHOj+Xk8/ek3zwk1XHfUcPJSc8TzO1Smsu5a13JScf2tsB28KsS7OZ8s2vTebb5wfnF1K+9XV7n/uykykv/t7dJ13/yOTpL+qtNgAAAAAAAAAAABiDdpdgtDMjDEZbq+7L6vpKx32LgtFg4gb4NecAAABMrbn53uYJRgOYXo09fpfC0YtSNv/APQDAtGr2GYz2mFtTrnnYeGphahxb7Dz+mXuSD36y877rL0lK6SHAmAOrPODS5Cf/INWXnkjuu3ePyTu/ZytfdHvyk+9J/uDtyfp68uRnp1x5XW/nftF3Jp/3hFTveUfyjrckd398Y8fFV6a85NXJrc/3PSAAAAAAAAAAAAC1WugSjLY6wmC0lbXlrvuWGodHdh6gN4LRAAAAOK/VYzBa07eTAFOrww/Zb3HRZZOpAwCgbo3+gtHKi141pkKYJsc6P5eTz6wkH/pk1XHf9ZcIRZsFpX0o1YtelfzM9+0+sUuYdbnqxuSqGwc7981PSrn5SclL/+1AxwMAAAAAAAAAAMA4tbsEo91X3Zu16r40y/A/87qyfrrrvsWmYDSYtD1+yhEAAICZMtdjMFpLMBrA1Cp7hC6ceOBk6gAAqFs/oeAPuj65+QvHVwtT49hi539v330qeddHOh9z3SVjLIh9pRx9QA+TPOYBAAAAAAAAAADAbFnoEoyWJKvr94zkHMtrp7ruW2oeGck5gN55YhYAAIDzeg5GmxtvHQDUp7HHW4YPEIwGAMyIvYLRjl60MedRt6T8+7en7PXvKEjywGOdx+9bTz75T533PfzyPcKLmR5HL9p7jl4DAAAAAAAAAADAjJlMMNrpjuOt0sp8aY/kHEDv+vg15wAAAEy9Vo/BaHv9cDhQj6tuTP7yz3eOX3715GvhwCqlpNptwkWXTaoUAIB6ze/yAMMXPDXltb+a3Hs2pb0wuZo48B5ySX/z51vJrTeMpxb2oaMX7j2nCEYDAAAAAAAAAABgtrR3CUY7M6JgtJW1Ux3HFxtHUopfcguT5olZAAAAzpub621es8d5wESVF35n5/GXvGaidTAFGt3fNiyHL5hgIQAANXrQQ7rvO7SU0mgIRaNvhxdKrjje+/xbb0guOORhmplx9KK95+zy/RoAAAAAAAAAAABMo4VdgtFWRxSMtrx+uuP4UvPwSNYH+uOJWQAAAM5rzfc4TzAa7EtPfk7ymNu2jj3mtuQLn1VPPRxcu/0Wk/bi5OoAAKhROXZRcsW1nfc99DETroZpcsOlvc991s1C0WbKict3/34s2Xs/AAAAAAAAAAAATJn50k7pEpM0qmC0lbXOwWiLgtGgFoLRAAAAOG+ux2C0Zmu8dQADKe2FlB/45ZQ735K84JUpr3lzyg/+Skq7+2/EgI7KLm8bLghGAwBmR3nhd3Te8dinTbYQpspDLu092Orx1wjBmiXl+InkUbfsMck9AQAAAAAAAAAAwGwppaTdWOi478yIgtGW1051HF9qHhnJ+kB/BKMBAABwXru3sJvSmhtzIcCgSnsh5SnPS+Nl359y61ekzLfrLomDqCEYDQAgSfKlL0qe8bXnXzdbKS9/Xcq1n1dfTRx4N1za+9xrT4yvDvan8sof3X3Cbt+vAQAAAAAAAAAAwJRaaBzqOL46omC0lbXTHccXG4dHsj7Qn1bdBQAAALCPHL2wt3mC0QCmXOm+q935fyIAAEyj0mym/Kv/kuqff1vydx9Lbvj8lOMX110WB9wNl5Yk1Z7zrjyeLLZ3+bc5U6lced3ud0cRjAYAAAAAAAAAAMDsaY85GG15vXMw2lJTMBrUQTAaAAAA5x19QG/zms3x1gHA/rWwWHcFAAATV04+NDn50LrLYEo86kFJKUm1Rzba9ZdMph4OmIZgNAAAAAAAAAAAAGbPQpdgtDMjCkZbWTvVcXyxeWQk6wP98cQsAAAA5y0d7e2HK1tz468FgPrcd7b7vrZgNAAAGMbxpZJX3Fb2nHfdJXvPYQYVj3kAAAAAAAAAAAAwexYaCx3HV9dXR7L+8trpjuNLjcMjWR/ojydmAQAAuF9pNJIjx/eeKBgNYLqtr3fftyAYDQAAhvXDz9s79Oz6SyZQCAdPL7/UAAAAAAAAAAAAAKZMu3Go4/iZ9XtGsv5Kl2C0xeaRkawP9McTswAAAGx1wYV7z2kKRgOYWQud/ycCAADQu1JKvuSm3edcf8ne4WnMoOIxDwAAAAAAAAAAAGbPQpdgtNURBKOtV+tZWe8cjLbUPDz0+kD/PDELAADAVkcfsPecZmv8dQCwP7UX664AAACmwmVHuwefNUryuKsn6svn2QAAIABJREFUWAwHR8NjHgAAAAAAAAAAAMye9hiD0VbXV1Kl6rhPMBrUwxOzAAAAbLV4ZO85rbnx1wHA/rQgGA0AAEbhqou673vMyeTCpe7Bacyw4jEPAAAAAAAAAAAAZs9Cl2C0MyMIRlteO9V132Kjh5+5BUbOE7MAAABsNd/ee45gNIDZJRgNAABG4taHdg8+e84jhaLRRXFvAAAAAAAAAAAAMHu6BaOtjiQY7XTXfUvNw0OvD/RPMBoAAABbzfUQjNZsjb8OAPalIhwTAABG4nFXJZcf67zvWTcLv6KLhsc8AAAAAAAAAAAAmD3tLsFoZ0YQjLay3jkYrZFGFhqLQ68P9M8TswAAAGzVSzBaSzAaAAAAwDAajZIfet7OALQXP6nkhssEo9FF8ZgHAAAAAAAAAAAAs2ehSzDa6giC0ZbXTnUcX2weTime6YQ6+El2AAAAtuopGG1u/HUAAAAATLmvekzJ4nzJf/it9azelzz3USXf8sUeoGEXDcFoAAAAAAAAAAAAzJ5xBqOtrJ3uOL7YODz02sBgBKMBAACw1fz83nOavp0EAAAAGFYpJbc/Irn9Ec26S+GgKILRAAAAAAAAAAAAmD3tLsFoZ9bvSVVVKWXwX0y7vHaq4/hS88jAawLD8cQsAAAAW821957Tmht/HQAAAADAVg2PeQAAAAAAAAAAADB7FkrnYLT1rOfe6uxQa6+sn+44vtg8PNS6wOA8MQsAAMBWc/N7z2kKRgMAAACAiSse8wAAAAAAAAAAAGD2tBudg9GS5Mz6PUOtvbzWORhtSTAa1MYTswAAAGw11957TrM1/joA2H+WLqi7AgAAgNnW8JgHAAAAAAAAAAAAs2dhl2C01aGD0U51HF9sHBlqXWBwnpgFAABgi9JLMFprbvyFALD/XHC87goAAABmW/GYBwAAAAAAAAAAALNnnMFoK2unO44vNQ8PtS4wOE/MAgAAsNX8/N5zBKMBzKbH3FZ3BQAAALOt4TEPAAAAAAAAAAAAZk97l2C0M0MGoy2vdw5GWxSMBrXxxCwAAABbzbX3ntNqjb8OAOrzZS/uOFxe8MoJFwIAAMAWpdRdAQAAAAAAAAAAAEzcXGMuzXT+2dbVIYPRVtZOdRxfah4Zal1gcILRAAAA2KqXYLSmYDSAaVZe+B3Jicu3Dn75N6Zcfk09BQEAALCheMwDAAAAAAAAAACA2bTQONRxfHV9deA1q6rK8trpjvuWGocHXhcYjp9kBwAAYKv5HoLRWnPjrwOA2pQHXp38+O8lv/0LqT751ymPfHLyhc+quywAAAAagtEAAAAAAAAAAACYTe3GQpbXT+0YP7N+z8BrnqlWs561jvsWm0cGXhcYjmA0AAAAtpoTjAZAUk5cnnzVt6XUXQgAAAD3K8V3aQAAAAAAAAAAAMymhcahjuOrQwSjLa/tDFr7nKXm4YHXBYbjVwkDAACw1dz83nOacrYBAAAAAAAAAAAAAAAAAJiMdpdgtDNDBKOtrJ3uum9RMBrURjAaAAAAW/USjNaaG38dAAAAAAAAAAAAAAAAAACQ5FBjseP46hDBaMtrp7ruW2wsDbwuMBzBaAAAAGw11957TlMwGgAAAAAAAAAAAAAAAAAAk9FuHOo4Pkww2sr66Y7jhxpLaZTmwOsCwxGMBgAAwFbzvQSjtcZfBwAAAAAAAAAAAAAAAAAAJFnoEox2ZohgtOW1zsFoS83DA68JDE8wGgAAAFstXrD3nNbc+OsAAAAAAAAAAAAAAAAAAIAk7S7BaKtDBaOd6ji+2Dwy8JrA8ASjAQAAsNWDrk8OLXXfX0pKszm5egAAAAAAAAAAAAAAAAAAmGkLYwhGW1k73XF8qXF44DWB4QlGAwAAYIsy304e8UXdJ7TmJlcMAAAAAAAAAAAAAAAAAAAzr1sw2pkhgtGW1091HF9qHhl4TWB4gtEAAADY6YILu+9rtiZXBwAAAAAAAAAAAAAAAAAAM6/dWOg4vjpEMNrK2umO44LRoF6C0QAAANhprt19X2tucnUAAAAAAAAAAAAAAAAAADDzFhqHOo6fGSIYbblLMNpi8/DAawLDE4wGAADATvPz3fc1BaMBAAAAAAAAAAAAAAAAADA57S7BaKtDBKOtrJ3qOL7UEIwGdRKMBgAAwE6t3YLRWpOrAwAAAAAAAAAAAAAAAACAmbfQJRjtTLWa9Wp9oDWX1093HF9sHhloPWA0BKMBAACw01y7+77W3OTqAAAAAAAAAAAAAAAAAABg5nULRkuSs9WZgdZcWescjLbUPDzQesBoCEYDAABgp7n57vtarcnVAQAAAAAAAAAAAAAAAADAzGvvEoy2un5P3+udXT+Te6uzHfctNo/0vR4wOoLRAAAA2KHMtbvvbApGAwAAAAAAAAAAAAAAAABgchZ2CUY7M0Aw2sra6a77lhqH+14PGB3BaAAAAOw0P999X2tucnUAAAAAAAAAAAAAAAAAADDzdgtGWx0gGG15/VTXfUtNwWhQJ8FoAAAA7NQSjAYAAAAAAAAAAAAAAAAAwP7Qbix03TdQMNra6a77FgWjQa0EowEAALDTfLv7vmZrcnUAAAAAAAAAAAAAAAAAADDzGqWZ+dL551/PDBCMttIlGG2hcSjN4mdpoU6C0QAAANhpbpdgtNbc5OoAAAAAAAAAAAAAAAAAAIBshJZ1sjpAMNry2qmO44uNw32vBYyWYDQAAAB2mpvvvq8pGA0AAAAAAAAAAAAAAAAAgMlqjzAYbWX9dMfxpeaRvtcCRkswGgAAADvNtbvva7UmVwcAAAAAAAAAAAAAAAAAACRZ6BKMdmaAYLTltc7BaIvNw32vBYyWYDQAAAB2as1139cUjAYAAAAAAAAAAAAAAAAAwGS1uwSjrQ4QjLaydqrj+JJgNKidYDQAAAB2mm9337dbaBoAAAAAAAAAAAAAAAAAAIzBQpdgtDMDBKMtr53uOL7YONL3WsBoCUYDAABgp7ldgtHand80AgAAAAAAAAAAAAAAAACAcekWjLY6QDDayvqpjuNLzcN9rwWMlmA0AAAAdpqb775vUdI9AAAAAAAAAAAAAAAAAACT1W4sdBwfJBhtee10x/HFpp+jhboJRgMAAGCnuXb3fYuS7gEAAAAAAAAAAAAAAAAAmKyFxqGO42cGCEZb6RKMttT0c7RQN8FoAAAA7LRbMNohb+gAAAAAAAAAAAAAAAAAADBZ7S7BaKsDBKMtr53qOL7Y8HO0UDfBaAAAAOw0N9d1V1k8MsFCAAAAAAAAAAAAAAAAAAAgWegSjHamz2C0+6p7c6Za7bhvqennaKFugtEAAADYaW6++75DS5OrAwAAAAAAAAAAAAAAAAAA0j0YbbXPYLSVteWu+5aah/taCxg9wWgAAAD05/gldVcAAAAAAAAAAAAAAAAAAMCMaXcNRlvta53ltVNd9y02j/S1FjB6rboLAAAAYB86cUVy/OLk05/aOj7fTr7gtnpqAgAAAAAAAAAAAAAAAABgZi10CUZbXjuVH77ru3pe50zVPUhtsbHUd13AaAlGAwAAYIfSaKT6shcn//UHt+546gtSli6opygAAAAAAAAAAAAAAAAAAGZWu0swWpX1fHT1L4Zef67MZ77RHnodYDiC0QAAAOiovOQ1SXsx1W++JVlfT77o9pSX3Fl3WQAAAAAAAAAAAAAAAAAAzKCFLsFoo7LUPDLW9YHeCEYDAACgo1JK8jWvSvmaV9VdCgAAAADMjmfekfyvN+4cP7Q06UoAAAAAAAAAAABgXzncvGCs6x9pHh3r+kBvGnUXAAAAAAAAAADAhvLcl3Uef/H3TrgSAAAAAAAAAAAA2F8unDuRy+avHNv6Dzv8+WNbG+idYDQAAAAAAAAAgH2iXP+I5Ov+9dbBL3hq8pyX1lMQAAAAAAAAAAAA7CMvvPSbc6ixOPJ1r1p4SG49fvvI1wX616q7AAAAAAAAAAAAzmu8+HtSfdGzkz95d3LyocnDH5/Smqu7LAAAAAAAAAAAAKjdVYcekldf9YZ8YPn9+cf77h56vUYauXLh6lx36KbMNeZHUCEwLMFoAAAAAAAAAAD7TLn24cm1D6+7DAAAAAAAAAAAANh3Lmgdy2OP3lJ3GcCYNOouAAAAAAAAAAAAAAAAAAAAAAAAAEAwGgAAAAAAAAAAAAAAAAAAAAAAAFA7wWgAAAAAAAAAAAAAAAAAAAAAAABA7Vp1F8B0KaXMJXlikgcluSzJ6SR/m+R9VVV9rMbSAAAAAAAAAAAAAAAAAAAAAAAA2McEo82wUsp/S/KV24bvqqrq5ABrnUhy57n1Luwy591JXl9V1S/3uz4AAAAAAAAAAAAAAAAAAAAAAADTrVF3AdSjlPKs7AxFG3Stpyf50yQvS5dQtHOekOSXSilvLqUsjeLcAAAAAAAAAAAAAAAAAAAAAAAATIdW3QUweaWUY0n+84jWuiXJW5PMbxqukvxRko8mOZbkkUku2rT/q5NcUEp5dlVV66OoAwAAAAAAAAAAAAAAAAAAAAAAgIOtUXcB1OJ1SR547s+nBl2klHJFkl/J1lC0dyW5qaqqR1dV9fyqqp6W5IokL09y76Z5X5bk+wY9NwAAAAAAAAAAAAAAAAAAAAAAANNFMNqMKaXcluTF517el+R7h1juziTHN71+d5Lbqqr6wOZJVVWdqarqR5I8f9vx315KefAQ5wcAAAAAAAAAAAAAAAAAAAAAAGBKCEabIaWUpSQ/sWno9UneP+Ba1yX52k1DZ5PcUVXVardjqqp6a5I3bRpqJ3n1IOcHAAAAAAAAAAAAAAAAAAAAAABgughGmy0/kOTkuT9/NMlrhljrBUmam17/SlVVH+rhuH+37fXzSykLQ9QBAAAAAAAAAAAAAAAAAAAAAADAFBCMNiNKKU9I8k2bhl5aVdU9Qyz5nG2vf6aXg6qq+kCS/7NpaCnJ04aoAwAAAAAAAAAAAAAAAAAAAAAAgCkgGG0GlFLaSX465z/eb6qq6reGWO/SJDdvGrovybv6WOKd214/fdBaAAAAAAAAAAAAAAAAAAAAAAAAmA6C0WbDa5I85Nyf707yyiHXe9i2139cVdVyH8e/e9vrm4asBwAAAAAAAAAAAAAAAAAAAAAAgANOMNqUK6U8Ksm/3DT0iqqq/mHIZW/c9vrDfR7/kT3WAwAAAAAAAAAAAAAAAAAAAAAAYMYIRptipZRWkp9O0jo39BtVVf3cCJa+dtvrv+rz+Lu2vX5AKeX4EPUAAAAAAAAAAAAAAAAAAAAAAABwwLX2nsIB9l1Jbj735+UkLxvRuse2vf5UPwdXVXW6lLKaZGHT8NEknx62sFLKxUlO9HnYNcOeFwAAAAAAAAAAAAAAAAAAAAAAgOEIRptSpZQbk/zrTUPfU1XVx0a0/OFtr+8ZYI17sjUY7cjg5WzxjUlePaK1AAAAAAAAAAAAAAAAAAAAAAAAmJBG3QUweqWURpKfStI+N/TeJD8ywlNsD0ZbHWCN7WFq29cEAAAAAAAAAAAAAAAAAAAAAABghghGm04vT/K4c3++L8lLqqpaG+P5qgkdAwAAAAAAAAAAAAAAAAAAAAAAwJRq1V0Ao1VKuTrJ920aen1VVe8f8WlOb3t9aIA1th+zfc1BvSHJL/Z5zDVJ3jai8wMAAAAAAAAAAAAAAAAAAAAAADAAwWhTpJRSkvxEksVzQx9N8poxnGrfBqNVVfWpJJ/q55iNywYAAAAAAAAAAAAAAAAAAAAAAECdGnUXwEh9Q5KnbHr90qqq7hnDeT677fWJfg4upRzOzmC0zwxVEQAAAAAAAAAAAAAAAAAAAAAAAAdaq+4CGKk7N/3515N8uJRyco9jLt32utXhmL+tqursptcf2rb/wT3W123+P1ZV9ek+1wAAAAAAAAAAAAAAAAAAAAAAAGCKCEabLoc2/fkZSf5ygDUu73DcI5O8f9PrD2zbf22f57h62+s/7/N4AAAAAAAAAAAAAAAAAAAAAAAApkyj7gI4kP502+vPK6Us9nH8E/dYDwAAAAAAAAAAAAAAAAAAAAAAgBkjGI2+VVX1d0n+eNNQK8mT+ljilm2v3z5sTQAAAAAAAAAAAAAAAAAAAAAAABxsgtGmSFVVx6qqKv1sSb542zJ3dZj3/g6n+x/bXn9dLzWWUm5I8thNQ8tJfrPnvyQAAAAAAAAAAAAAAAAAAAAAAABTSTAag3pLkrVNr59bSrmuh+Nete31L1RVtTq6sgAAAAAAAAAAAAAAAAAAAAAAADiIBKMxkKqqPpTkTZuG5pO8sZSy0O2YUsrtSe7YNHQ2yZ1jKRAAAAAAAAAAAAAAAAAAAAAAAIADRTAaw3h1kk9vev2EJL9VSrlh86RSSruU8i1JfnHb8a+rququMdcIAAAAAAAAAAAAAAAAAAAAAADAAdCquwAOrqqq/qaU8twk70gyf274iUn+vJTy3iQfTXI0yaOSnNh2+K8l+Z5J1QoAAAAAAAAAAAAAAAAAAAAAAMD+JhiNoVRV9c5SynOSvDHnw89Kkkef2zr5+STfUFXV2vgrBAAAAAAAAAAAAAAAAAAAAAAA4CBo1F0AB19VVb+e5GFJfizJp3eZ+p4kz6uq6gVVVS1PpDgAAAAAAAAAAAAAAAAAAAAAAAAOhFbdBVCvqqremaSMYJ1PJXlZKeXlSZ6Y5MFJLk2ynOTjSd5XVdVfDnseAAAAAAAAAAAAAAAAAAAAAAAAppNgNEaqqqqzSX6n7joAAAAAAAAAAAAAAAAAAAAAAAA4WBp1FwAAAAAAAAAAAAAAAAAAAAAAAAAgGA0AAAAAAAAAAAAAAAAAAAAAAAConWA0AAAAAAAAAAAAAAAAAAAAAAAAoHaC0QAAAAAAAAAAAAAAAAAAAAAAAIDaCUYDAAAAAAAAAAAAAAAAAAAAAAAAaicYDQAAAAAAAAAAAAAAAAAAAAAAAKidYDQAAAAAAAAAAAAAAAAAAAAAAACgdoLRAAAAAAAAAAAAAAAAAAAAAAAAgNoJRgMAAAAAAAAAAAAAAAAAAAAAAABq16q7ANgH5je/+PCHP1xXHQAAAAAAAAAAQ+nw3MN8p3kAMEGe0QMAAAAAAAAADjzP501Oqaqq7hqgVqWUZyV5W911AAAAAAAAAACMwe1VVf1q3UUAMLs8owcAAAAAAAAATCnP541Jo+4CAAAAAAAAAAAAAAAAAAAAAAAAAASjAQAAAAAAAAAAAAAAAAAAAAAAALUrVVXVXQPUqpRyNMmTNw39dZKzQyx5TZK3bXp9e5KPDLEeQL/0IWA/0IuAuulDQN30IaBu+hCwH+hFQN1mtQ/NJ7ly0+vfrarqs3UVAwCe0QOmkD4E1E0fAuqmDwF104eA/UAvAuqmDwF1m9U+5Pm8CWnVXQDU7Vxz+dVRrVdK2T70kaqq/mxU6wPsRR8C9gO9CKibPgTUTR8C6qYPAfuBXgTUbcb70PvqLgAAPsczesC00YeAuulDQN30IaBu+hCwH+hFQN30IaBuM96HPJ83AY26CwAAAAAAAAAAAAAAAAAAAAAAAAAQjAYAAAAAAAAAAAAAAAAAAAAAAADUTjAaAAAAAAAAAAAAAAAAAAAAAAAAUDvBaAAAAAAAAAAAAAAAAAAAAAAAAEDtBKMBAAAAAAAAAAAAAAAAAAAAAAAAtROMBgAAAAAAAAAAAAAAAAAAAAAAANROMBoAAAAAAAAAAAAAAAAAAAAAAABQO8FoAAAAAAAAAAAAAAAAAAAAAAAAQO0EowEAAAAAAAAAAAAAAAAAAAAAAAC1E4wGAAAAAAAAAAAAAAAAAAAAAAAA1E4wGgAAAAAAAAAAAAAAAAAAAAAAAFC7Vt0FwBS6O8md214DTJI+BOwHehFQN30IqJs+BNRNHwL2A70IqJs+BADTydd4oG76EFA3fQiomz4E1E0fAvYDvQiomz4E1E0fYqxKVVV11wAAAAAAAAAAAAAAAAAAAAAAAADMuEbdBQAAAAAAAAAAAAAAAAAAAAAAAAAIRgMAAAAAAAAAAAAAAAAAAAAAAABqJxgNAAAAAAAAAAAAAAAAAAAAAAAAqJ1gNAAAAAAAAAAAAAAAAAAAAAAAAKB2gtEAAAAAAAAAAAAAAAAAAAAAAACA2glGAwAAAAAAAAAAAAAAAAAAAAAAAGonGA0AAAAAAAAAAAAAAAAAAAAAAAConWA0AAAAAAAAAAAAAAAAAAAAAAAAoHaC0QAAAAAAAAAAAAAAAAAAAAAAAIDaCUYDAAAAAAAAAAAAAAAAAAAAAAAAaicYDQAAAAAAAAAAAAAAAAAAAAAAAKidYDQAAAAAAAAAAAAAAAAAAAAAAACgdq26C2CnUkozybVJbkzywCRHk5xJ8ukkH0nyh1VVLY/4nHNJnpjkQUkuS3I6yd8meV9VVR8b5bkmpZRyU5JHJDmRpJ3kE0n+Jsm7qqparbO2SSqlHE9yU5LrklyYZCHJZ5LcneS9VVV9pMbydiilXJWNj9sDkxxO8ndJ7kry7qqq7q2ztlmiD42GPrRBH2JQetFo6EUb9KKu53F/7EIfGg332YaD1ofYH/Sh0dCHNuhDW5VSrszGtbgiyUVJDiU5m+SzSf4qG9fk7voq3B/0odHQhzboQwxKLxoNvWiDXsQg9KHR0Ic26EOduT+AOvgaPxp6+IaD9jXeszH7gz40GvrQBn2IQehDo6EPbdCHup7H/bELfWg03GcbDlofYn/Qh0ZDH9qgD23l+bze6UWjoRdt0IsYhD40GvrQBn2IQehDo6EPbdCHOjvQ90dVVbZ9sGWjYb4iya9l45v7apftviRvT/LMEZz3RJI3JPmHXc73riRfPuR5rk7ylUlem+SdSf5p2zk+NqLreCTJdyf5+C5/n39K8rNJrqnx4z2265FkLsmXJPmPSf50j3upOnet/k2SS2v+HHheknfvUuc/nLtXLxpg7b2uwV7byTqvzQQ/BvrQaK6jPqQPbV7z5Ah60Obtjjqv0YQ+DnrRaK6jXqQXHfj7o8aPgT40mut4IO4zfai2+2MpyZOSfFuStyT5YJL1bee6o67rUPemD+lD+tDYrsd1Sb4/ye9k439q7HU9qiR/lOSbkrTruiY1fRz0odFcR31IH+q0fi+9Z7ftZF3XpoaPhV40muuoF+lFm9c9OYI+tHm7o65rNKGPgz40muuoD+lDB/7+sNls07X5Gj9bPdzX+I51e0av5k0f0of0Ic/o1b3pQ/qQPuT5vLo3fUgfmuU+NMH7w/N5u18ffWg011Ef0oe2r+35vP6ul140muuoF+lFndbvpf/stp2s69pM+OOgD43mOupD+tDmdU+OoAdt3u6o6xpN6OOgD43mOupD+tCBvz/2/HvUXYCtSpKfG+IL2v9McsmA5316kk/2ca43J1nqY/1bkrxjjy8KI/vETPLYbKRw9vr3WU7ysgl+nMd+Pc5dg38c8F76dJIX1nD/H07y833U+YkkX9LnOQb9/PrcdnLS16WGj4M+pA/pQ2PoQxn9N7JfOenrM+GPhV6kF+lFY+hFB+n+qHvTh/ShWexDk7w/svHG8Z9k4w3pvc51x6SuwX7a9CF9SB8a3/2R5CVDfH79vySPndQ1qXPTh/QhfWi898cQn1+f205O6rrUuelFepFeNLbrcXIEfWjzNrXvV0cf0of0oZm/P2w223RuvsbPRg/3Nb5rzZ7R2webPqQP6UOe0at7iz6kD+lDns+redOH9KFZ7EOTvD/i+bxerpE+pA/pQ2O6P+L5vH6ulV6kF+lFY7w/hvj8+tx2clLXpa5NH9KH9KGxXY+TI+hBmzfvVetDvXwO6kP60IG8P/rZWmE/uL7L+MeTfCgbzbWVjdS/m5M0Ns35Z0n+dynlyVVVfaLXE5ZSbkny1iTzm4arbKSsfzTJsSSPTHLRpv1fneSCUsqzq6pa7+E0j0jytF5rGkYp5bZspIG2t+26K8kfZ+OT8IpsfPLOndu3mOQNpZRGVVX/aQJlTuJ6nEhyvMP42Wy8uf2JbCSmPiDJo8/993OOJfnZUsrFVVW9fsx1JklKKc0k/z3JM7btujvJ+87Vek027sVybt8lSd5WSrmtqqrfn0SdM0IfGpI+dD99aHxWspFoPc30oiHpRffTizqf5yDcH3XTh4Z0QO4zfWirid0fSV6Q5OiEznVQ6UND0ofupw/trcrGm/wfzsb/WFjJxm/MvSrJTTl/fyQbn5u/XUp5ZlVVvzvpQidMHxqSPnQ/fYhh6EVD0ovupxeNz7S/X60PDUkfup8+1MEBuT+A6eRr/JAOSA/3NX6bA/ZszLTTh4akD91PHxof73noQ7vSh+6nD3U+z0G4P+qmDw3pgNxn+tBWns/bX/ShIelD99OH9ub5vO70oiHpRffTixiUPjQkfeh++tD4eK9aH9qVPnQ/faiDA3J/9K7uZDZblSR/mPMpen+U5JuTXNNl7uVJfjw70/d+L0np8XxXZGfq4e8neei2ee0k35qNT/rNc7+/x/O8okOdVZLVbLyhMZLEwmykp25PRfxwkqd2mHs8yY9um7vWae4YPs5jvx7Z+EL+uTVOJfmpJLcmOdRhbknynGw0r+01jf16nKvhtdvOe/bc/T+/bd6NSd69be7fJ7msx/NsPu495+6ZfrbWJK5HnVv0IX1IHxpLH8rGN1579Zhu2+9vO98bJ3FN6tyiF+lFetHY/k10UO6Pujd9SB+axT40qfvj3Lk+0+Vcf9Nh3x3j/rvvx00f0of0obHeH1+f5C+y8W+vZyY5vsvcY0m+PRv/A2Tz+T+e5Oi4r0mdmz6kD+lDY//30Oa1vFfd/TrpRXqRXjSe6+H96t6vlT6kD+lDM35/2Gy26dx8jZ+NHu5rfMd6PaO3T7boQ/qQPjSWPhTvefTzsdCH9CF9aEz/Hjoo90fdmz6kD81iH5rU/XHuXJ7P2/sa6UP6kD40vvvD83m9Xyu9SC/Si8b7b6LNa3mvuvM10of0IX1oPNdaSfFZAAAgAElEQVTDe9W9Xyt9SB/Sh2b8/ujr71R3AbYqSf5vNtL2Ht3HMd/Y4Yb/qh6P/altx70rycIu85/d4RPrwT2c5xXnmv77kvxEkn+R5FHZSAy8ZYSfmD+/ba0PJbl4j2O+c9sxf5akOeaP89ivx7nG/cn8//buPFqatKDv+O8ZEBjWUZBBQBj2oLiAmAhqHA0YiEeQJS64MIL7cqLRHA9CTlATjYnrOfEoUQTEJRIEREEgiANuuJ1BQEcEdVCUQVZxhlnhyR99573d1ff27equ7qqu+nzO6T+q3q7l9vu837rvc+vUTb4jyW3W3OaOSf68cfzLs+Y3Alt8HvfO8jcFj13x/vOz/IPGn1rzWPPbXLrLr+tQXzqkQzq02w5tcG53S3Jj41ifvcvPYwgvLdIiLdpdiw5lfPT90iEdmmiH9jI+jo71gcx+08LLknzP0ed04dGfXdo41iW7/LqH+tIhHdKhnY6Pj9pgm09NclXjHL5rl59H3y8d0iEd2vn3Q/P7unSXX9chv7RIi7Roty3a4NwmN1+tQzqkQ8aHl5fXOF+u8dNouGv80nHdozeglw7pkA7ttkMbnJs5j/W20aHj4+jQ8TF06EDHR98vHdKhiXbI/XkDeumQDumQ+/OG8NIiLdIi9+j1/dIhHdIh9+f1/dIhHdIh46PV19T3CXjVJLlow+1e2BhcL1tjm/s1LozXJbnfGts9t3Gsn11jm48+7YLQYajundkTB+f39VlrbvuaxnZP2fHf8z4+j49dN9iN7T7lhM/x03f8eTyvcbznrLHN/Y/G7E3b3JDk3mtsN3+cS3f5dR3qS4d0SId226ENzu3pjXP7y11+FkN5aZEWadFuWnRI46Pvlw7p0EQ7tPPPY25/p/4G3bjx6qbP4aINt9MhHWruR4e6O7/vbZzD6/d9Dnv+ei/acDsd0qHmfnTo5P3N7+vSXX5dh/zSIi3Sot18Hluc2+Tmq3VIh3TI+PDy8hrnyzV+Gg13jV86pnv0BvTSIR3Sod12aINzM+ex/nY6pEPN/ejQgY6Pvl86pEMT7ZD78wb00iEd0qHdfB5bnt+k7s87+pov2nA7LdKi5n606OT9ze/r0l1+XYf60iEd0qHdfB5bnJu56vW30yEdau5Hhw50fLR5nRd6V2u9YsNNf6Kx/LlrbPOkJDebW35RrfWta2z3g43lLy6l3GrVBrXW99dar11j39v4gmRhHL++1vo7a277Q43lr+7mlE62j8+j1vruWuvVG2z3p0man9s642kjpZTzkzyxsbo5xpbUWv8yyUvmVt08szHNlnRoKzq0eAwd2lIppWR5LDy7y2MMlRZtRYsWj6FFiw5mfPRNh7ZyMONMh5aOuY/xcdOx3rmP4xwyHdqKDi0eQ4e68/LG8n17OYs90aGt6NDiMXSIjWnRVrRo8RhatKWpzlfr0FZ0aPEYOrToYMYHME6u8Vs5mIa7xh8b8r0xU6VDW9GhxWPo0JbMebSmQzrUPIYOLTqY8dE3HdrKwYwzHVo6pvvzBkSHtqJDi8fQoe5M6v68RIu2pEWLx9AiNqJDW9GhxWPo0JbMVbemQzrUPIYOLTqY8dGGB6Mdtssay+eXUi44Y5vHNZafs86Baq2XJ/mDuVW3SfL562y7Y/+6sfzKFtv+ZpLr55YfXkr5uO1P6WA1x9Ndd3isf5vk1nPLv19r/Ys1t22O2cd3c0psSId0qEs6NPM5Se4zt3xjZr+xjtNpkRZ1aYwtMj52T4eMsy7ts0OMhw7pUJd0aNH7Gsu36+Ushk+HdKhLOsSmtEiLuqRFM+ar29EhHerSGDtkfACHyjVew7s0xp9Hs3s6pENd0qEZcx7t6JAOdWmMHTI+dk+HjLMujXHuld3TIR3qkg4tcn/e+rRIi7qkRWxCh3SoSzo0Y666HR3SoS6NsUOjHB8ejHbYbjxh3S1Oe3Mp5S5JPqWx/e+2ON6ljeVHt9h2V+7eWH7zuhvWWq9L8ra5VedlGF9TX5rj6dSx1IFHNZYvbbHtb2fxXB9cSrlw6zNiUzqkQ13SoZmnNpZfVmu9ssP9j5EWaVGXxtgi42P3dMg469I+O8R46JAOdUmHFt2zsfwPvZzF8OmQDnVJh9iUFmlRl7Roxnx1OzqkQ10aY4eMD+BQucZreJfG+PNodk+HdKhLOjRjzqMdHdKhLo2xQ8bH7umQcdalMc69sns6pENd0qFF7s9bnxZpUZe0iE3okA51SYdmzFW3o0M61KUxdmiU48OD0Q7bfRvLNyZ5z4r3P6ix/MZa69Utjvd7jeVPbLHtrnxMY/kDLbdvvv+TtjiXQ9ccT+/c4bGaY/H3193waMy+qbF6CGNxqnRIh7o0+Q6VUu6Q5AmN1c/uYt8jp0Va1KUxtsj42D0dMs66tM8OMR46pENd0qFFX9VY/q1ezmL4dEiHuqRDbEqLtKhLk2+R+eqN6JAOdWmMHTI+gEPlGq/hXRrjz6PZPR3SoS5NvkPmPDaiQzrUpTF2yPjYPR0yzro0xrlXdk+HdKhLOrTI/Xnr0yIt6pIWsQkd0qEuTb5D5qo3okM61KUxdmiU48OD0Q7bExvLf1xr/ciK939CY/ltJ77rdH91xv76cH1j+ZYtt2++fwhf096VUm6f5JGN1X+4w0M+sLG8z7F4j1LKc0opf1ZKeX8p5fpSyruOln++lPJ1pZRm8DmdDulQJybWoVW+LMn5c8vvTPIbHe17zLRIizox4hYZH7unQ8ZZJ3roEOOhQzrUCR1aVEr55iRfMbfqxiQ/1tPpDJ0O6VAnJtYhc9Xd0yIt6sTEWrSK+er2dEiHOjHiDhkfwKFyjdfwToz459EnMe/RLR3SoU5MrEOrmPNoT4d0qBMj7pDxsXs6ZJx1YsRzr+yeDulQJ3RokfvzWtMiLerExFpkrrpbOqRDnZhYh1YxV92eDulQJ0bcoVGODw9GO1CllNsmeWpj9YvP2Kz5xMK/bXnYtzeW71hK+eiW++jaexvLH9dy++b7H7DFuRyyr09y67nlf8qOnq5/9J/E5n8U247F5vvv12LbeyW5JLMIX5Dko5Lc+Wj5y5M8K8nfllJ+9OjfGafQoXN0qBtT6tAqzX9Tz6u13tjRvkdJi87Rom6MtUXGxw7p0DnGWTf21iHGQ4fO0aFuTLpDpZTblFIeUEp5cinltUn+V+MtT6u1vrGPcxsyHTpHh7oxpQ6Zq+6QFp2jRd2YUotWMV/dgg6do0PdGGuHjA/g4LjGn6Ph3Rjrz6NPYt6jIzp0jg51Y0odWsWcRws6dI4OdWOsHTI+dkiHzjHOujHWuVd2SIfO0aFuTLpD7s/bnBado0XdmFKLzFV3RIfO0aFuTKlDq5irbkGHztGhboy1Q6McHx6Mdrh+IMld5pY/kORnztjmgsbyP7Y5YK31qiTXNlbfoc0+duDyxvJnrLthKeUeSe7aWN3317N3pZSLkvznxuofr7U2nwbZleY4/FCt9eqW+2iO3a7/3m6T5NuS/Ekp5RM73veY6NCMDm1Jh2ZKKZ+U5KGN1c/edr8ToEUzWrSlkbfI+NgtHZoxzrbUQ4cYDx2a0aEtTa1DpZQLSil1/pXkqiR/keS5Sf713NuvSvJ1tdYf6uFUD4EOzejQlqbWoTWZq16fFs1o0Za0aMZ89UZ0aEaHtjTyDhkfwCFyjZ/R8C2N/OfRmzLvsR4dmtGhLenQjDmPjejQjA5taeQdMj52S4dmjLMtjXzuld3SoRkd2tLUOuT+vM5p0YwWbWlqLVqTuer16NCMDm1Jh2bMVW9Eh2Z0aEsj79Aox4cHox2gUsrjknxLY/XTa63vO2PT5tOKr9ng8M1tbrfBPrr02sbyE0optz7xncu+6oR1fX89e1VKuUWSX87i131Fkv+xw8P2NQ5vTHJpkmckeUySh2T2W5senOSxSX4oy9/M3D/Jq0sp99zgHEdNhxbo0BYm1qGzNJ9U/dpa69s62O9oadECLdrCBFpkfOyIDi0wzrbQU4cYAR1aoENb0KFTvSvJ05Pcq9b6032fzBDp0AId2sLEOmSuumNatECLtjCxFp3FfHULOrRAh7YwgQ4ZH8BBcY1foOFbmMDPo+eZ9+iQDi3QoS1MrENnMefRgg4t0KEtTKBDxseO6NAC42wLE5h7ZUd0aIEObUGHTuX+vDVo0QIt2sLEWmSuukM6tECHtjCxDp3FXHULOrRAh7YwgQ6Ncnx4MNqBKaV8SpKfa6x+VZKfXGPzZribT6dcRzPczX3u28sye5rnTS5I8syzNiqlfHyS7zzhj25WSjm/m1M7CD+T5F/OLX84yZM3+G1IbfQxDp+R5G611s+ttf63Wuuv1Vovq7W+rdb6hlrrS2ut/ynJPZP89yR1btu7JHlRKaVscJ6jpENLdGg7U+nQSkffSH9FY7Wne6+gRUu0aDtjb5HxsQM6tMQ4204fHeLA6dASHdqODp3swiTfkOQbSym37/tkhkaHlujQdqbSIXPVHdOiJVq0nam0aCXz1e3o0BId2s7YO2R8AAfDNX6Jhm9n7D+Pvol5jw7p0BId2s5UOrSSOY92dGiJDm1n7B0yPnZAh5YYZ9sZ+9wrO6BDS3RoOzp0MvfnnUGLlmjRdqbSInPVHdKhJTq0nal0aCVz1e3o0BId2s7YOzTK8eHBaAeklHKPzAbifCzfnuQraq315K1W2tc2O1Nr/eckP95Y/Z2llP9w2jallLsneUWSO5y2245Ob9BKKd+X5Csbq59Wa33dnk9l5+Pw6D+vzad3n/S+a2utT0vyrY0/ekiSL2tzzLHSoWU6tLkpdWgNj01yx7nlf0rywo6PMRpatEyLNjeFFhkf3dOhZcbZ5gbUIQ6IDi3Toc1NuEMfTHKvudd9MpsDenySH03y7qP3fXyS703yplLKp/dwnoOkQ8t0aHNT6pC56m5p0TIt2tyUWrQG89Vr0qFlOrS5KXTI+AAOhWv8Mg3f3ICu8e7ROyA6tEyHNjelDq3BnMeadGiZDm1uCh0yPrqnQ8uMs80NqEMcEB1apkObm3CH3J+3JS1apkWbm1KLzFV3R4eW6dDmptShNZirXpMOLdOhzU2hQ2MdHzfv+wRYTynlzkn+X5K7za2+Mskja63vPnmrJVc1ljd5Ml9zm+Y++/D9SR6d4yczliQ/Vkp5YmZPR31DZk/ivOvR+74xxxe/dyS5+9y+rq21Lj3ps5Ry0bonU2u9otXZ96CU8m2ZPfV63o/UWv/nmttftO6xTvg8Bj8Oa60/UUr5/CSPmVv9TUl+scvjHBodWkmHWtKhJU9tLP9irbX5FGmiRWfQopYm1qKdj4+p0KGVdKilnjvEgdKhlXSopSl3qNb6kSRXnPBHlyV5cSnlGUl+MMm3HK2/R5JXl1I+s9b65v2c5TDp0Eo61NKUO7QOc9Wn06KVtKglLVpivnoNOrSSDrU0sQ6ZqwYGzTV+Jdf4lib28+jWzHucTIdW0qGWdGiJOY816NBKOtTSxDpkzqMjOrSSDrU0sblXOqJDK+lQS1PukPvztqNFK2lRS1Nu0TrMVZ9Mh1bSoZZ0aIm56jXo0Eo61NLEOjS6uWoPRjsApZSPSfLqJPefW/2eJI+otb61xa5GGe5a6/WllMcneXmST577o886ep3mvZl94/DKuXUfOOW9f9PilEqL9+5dKeVrk/xIY/VP1lq/o8Vutvk8DmUc/kAW/yP7GaWUC2qtp42RUdOh1XSoHR1aVEr5+CSPbKx+9qb7GzMtWk2L2plai/Y0PkZPh1bToXYG0CEOkA6tpkPt6NBqtdYPJfnWUsoNSb79aPXtk/xcKeXTNvwNQwdPh1bToXZ0aG3mqhu0aDUtakeLFpmvXo8OraZD7UytQ+aqgSFzjV/NNb6dAVzjD2UcmveYo0Or6VA7OrTInMd6dGg1HWpnah0y59ENHVpNh9oZQIc4QDq0mg61o0OruT/vdFq0mha1o0VrM1c9R4dW06F2dGiRuer16NBqOtTO1Do0xrnq8/o+AVYrpdwhyauSfNLc6vdn9iTLP2u5u39qLH9sy3O5bZbDPYiBXGv9+yQPT/KsJDessclvJXlokqsb66/s+NQGpZTylUl+KosxfU6Sb97jaTTH4a1LKbdpuY87N5Z3MQ7/MLN/aze5WZJP2MFxBk+H1qND69GhE12Sxe/J/rTW+idb7G+UtGg9WrSeqbbI+NiODq3HOFvPQDrEgdGh9ejQenSolacn+Ye55QcneURP59IrHVqPDq1Hh1oxVz1Hi9ajRevRohNdEvPVK+nQenRoPVPtkPEBDJFr/Ho0fD0DucYP7d6Y05j3OKJD69Gh9ejQiS6JOY+VdGg9OrSeqXbI+NiODq3HOFvPQDrEgdGh9ejQenSoFffnzdGi9WjRerSoFXPVR3RoPTq0Hh060SUxV72SDq1Hh9Yz1Q6NbXx4MNqAlVJul+QVST5tbvUHkzyq1vqGDXbZfPrlPVtu33z/+2qt7z/xnT2otV5da/2GJA/IbELkt5K8I8k1Sf45yeVJnpfZU1T/Ta31iiQPbOzmj/d2wntWSvnSzCI9/+/+F5J8zT6foF9rfW8W/4OYJPdouZvmWGzzZNe11Fo/kuRvG6tbfbMzBjrUjg6tpkPLSiklyVc3Vnu6d4MWtaNFq029RcbHZnSoHeNstaF0iMOiQ+3o0Go61E6t9ZokL2msflQf59InHWpHh1bToXbMVR/Tona0aDUtWma++mw61I4OrTb1DhkfwJC4xrej4asN5Ro/pHtjVjHvMaND7ejQajq0zJzH2XSoHR1abeodMj42o0PtGGerDaVDHBYdakeHVtOhdtyfd0yL2tGi1bSoHXPVMzrUjg6tpkPLzFWfTYfa0aHVpt6hMY2Pm/d9Apzs6LfRvDzJZ8ytvirJo2utf7jhbi9vLN+35fb3biz/+YbnsVO11r9J8v1Hr7M8rLH8B6fss5y0/lCUUp6Q5PmZPaX6Jv83yZOP/sPWSgefx+WZPWHyJvfN8vhcpTkW22zbxjWN5eYTXUdNhzanQ8t06FSfl+Rec8vXZfZNNUe0aHNatEyLju1ifIyVDm1Oh5YNsEMcAB3anA4t06GNvaWx3PbfzEHToc3p0DId2tik56oTLdqGFi3TolOZr15BhzanQ8t06Ji5aqBvrvGbc41fNsBr/FDujTnLpOc9dGhzOrRMh05lzmMFHdqcDi3ToWPmPNanQ5vToWUD7BAHQIc2p0PLdGhjk74/L9GibWjRMi3amLlqHdqIDi3ToVOZq15BhzanQ8t06NgY5qrPO/st7Fsp5fwkv57ks+ZWfyjJF9Raf2+LXb+5sfzJpZRbt9j+M8/Y30E5eqrq5zVWv7aPc9mlUspjkvxSFh+E+JIkT6q1frifs1oaO81Anurom5pPPmN/XblTY/k9OzrO4OjQfuiQDiV5SmP5RbXW9224r9HRov3QIi064ziTGB+n0aH9mMo4G2iHGDgd2g8d0qE13NBYvmUvZ9EDHdoPHdKhNUx2rjrRon3RIi2K+epT6dB+6JAOrTKV8QHsl2v8fkyl4QO9xg/+59FHJjvvoUP7oUM6FHMep9Kh/dAhHTrjOJMYH6fRof2YyjgbaIcYOB3aDx3SoTVM9v68RIv2RYu0aA3mqnVop3RIh2Ku+lQ6tB86pEOrDHl8eDDawJRSbpXkpUkunlt9bZLH1Fpft82+a63vTPLGuVU3z+LF4SwXN5Z/Y5vzGYDPS3LR3PJra61v7elcdqKU8u8ye3LlR82tflmSL6m13tjPWSVJXtFYvrjFtp+dxYvQZbXWd219Rg2llDtl+Smu/9D1cYZIh/ZKh/rTe4dKKRckeXxj9bPb7mestGivtKg/vbdoDaMfH6fRob0a/TgbcIcYMB3aKx3iLHdvLO/i+67B0aG90iFONeW56kSL9kyLJsx89el0aK90iFVGPz6A/XKN36vRN3zA1/jB/zx6yvMeOrRXOtSf3jtkzuN0OrRXOtSf3ju0htGPj9Po0F6NfpwNuEMMmA7tlQ5xlknen5do0Z5pEacyV61De6JDE2au+nQ6tFc6xCqDHR8ejDYgpZRbJHlRkkfMrb4uyRfVWn+zo8O8uLH81Wue279I8q/mVl2d5FUdnVNfvqux/KxezmJHSimPTPIrSW4xt/pVSZ5Qa72+n7M655VJrplbftjRGFvHJY3l5pjuypdmsZHvSnL5jo41GDq0dzrUnyF06MuT3Gpu+Yokr9lwX6OiRXunRf0ZQovOMurxcRod2rtRj7OBd4iB0qG90yHO8vmN5UFM7u+SDu2dDrHKJOeqEy3qgRZNm/nqE+jQ3ukQq4x6fAD75Rq/d6Nu+MCv8Yfw8+hJznvo0N7pUH+G0CFzHifQob3Tof4MoUNnGfX4OI0O7d2ox9nAO8RA6dDe6RBnmdz9eYkW9UCLWMVc9TEd2h0dmjZz1SfQob3TIVYZ7PjwYLSBKKXcPMkLkjx6bvUNSZ5Ya31lh4f6hSQfnlt+fCnlfmts1xzEL6i1Xtvdae1XKeXJSR45t+oNmT35cRRKKZ+T5Fez+A3SazL7JuC6fs7qWK31Q0le2FjdHGNLSin3T/K4uVU3JvnFDk/tpuNcmOQZjdW/VmutXR9rSHRov3SoXwPp0FMayz879s6sQ4v2S4v6NZAWrTrOqMfHaXRov8Y+zobeIYZJh/ZLhzhLKeULkjy0sfpX+ziXfdGh/dIhVpnqXHWiRfumRcR89RId2i8dYpWxjw9gv1zj92vsDR/6Nf4Afh49yXkPHdovHerXQDpkzqNBh/ZLh/o1kA6tOs6ox8dpdGi/xj7Oht4hhkmH9kuHOMsU789LtGjftIhVzFXr0D7oEDFXvUSH9kuHWGXo48OD0QaglHKzzIL62LnVNyb5klrrr3d5rFrrW5M8b27VLZI8t5Ryq1M2SSnlsVn8jTfXJ/meLs9rW0cXvnXf+/gkPz236sYkT6m13tj5ifWglPKwJL+e5Py51a9L8oW11mtO3qoXz8zsm5ObXFJKecxpbz4ao8/J4hM6n11r/asV2zyglPKFbU6qlHKXzD6/C+dWX5/kB9rs59Do0PZ06JgOna2U8qlJHjK36iNJntt2P2OjRdvTomNadOK2xscZdGh7xtmxA+oQA6JD29OhYzp0rJTy0FLK485+59J2n57k+Y3Vr6u1vqmbMxseHdqeDh3ToWPmqtvRou1p0TEtOpv56mU6tD0dOqZDy4wPoC+u8dvT8GMHdI1/ZtyjNxg6tD0dOqZDZzPnsUyHtqdDx3ToxG2NjzPo0PaMs2MH1CEGRIe2p0PHdOiY+/Pa0aLtadExLTpmrnp9OrQ9HTqmQ2czV71Mh7anQ8d0aNnYxsfaXww79bNJvrix7ruTXFZKuajlvq5c40mT/yWz32Dz0UfLD0/y6lLK19Ra/+KmN5VSbpnk65L8cGP7H661vn2dkyml3D0nj7O7NJZvvuJrvarW+p4zDvWmUsrLkvxKkj+otX7khHN5UJKnJXlS44++u9Z62Rn778SuP49SyoOT/EaS286tfkuSb05y51JKm9O9ttZ6ZZsN2qi1/nUp5ceTfOfc6heWUv5jkv9da73+ppWllAcm+ZnMxupN3puzv4H4uCQvLaW8KcnPJ3nx0TcvS0opt0vy5Mye7H1h44//a631r9f4sg6ZDumQDs103aHTPLWx/Mpa699tuK8x0SIt0qKZXbXoIMZHz3RIhybXoWR/46OUctskdzrlj5sTyndacax3DGlyrWM6pEM6tKir8XH3JC8qpbw5sx+gvSTJW2o9+bcslVI+IcnXJ/mmxnlde7RuzHRIh3RoUVfjw1x1O1qkRVq0qOvx0WS+epkO6ZAOLZrk+ABGyTV+Ig13jT/mHr3B0SEd0qEZ9+j1R4d0SIdm3J/XHx3Socl1KHF/3sDokA7p0CL35/VDi7RIixa5R2//dEiHdGiR+/P2T4d0SIcWTXJ8rK3W6tXzK0nt8HXxmse8OMl1jW0/kuSPkvxyklck+ccT9v9rSW7W4mu7ooOv6blrHOc9c+//5yS/l9k/0l9I8qoV5/F9e/673unnkdlvNOpqLF26h8/jZklefsKx35XZBegFSf74aGzO//l1ST57zXHe3PcHkvxOZhNsz0/y4qNj3HDK5/Csvhuxp7GpQzqkQzvo0CnHvGVmN0rM7+8JfTZgKK8Ox44WadEzOxxLl+7h89hLiw5lfPT56nDc6NDAx9muP48cXof2NT4u6egzuajvXuzw70KHdEiHdvN5fNEJ7//g0fh4aWY3QLwgyauTXHnK/j+U5BF9d2IPfxc6pEM6tJvP4+IT3m+u+vTPS4u0SIt2OD4axzRfffLnokM6pEPGh5eX1whfHTbZNX7gDd/155HDu8a7R28grw7HjQ7p0DM7HEuX7uHzcI/eQF4djhsd0qFndjiWLt3D5+H+vIG8Ohw3OjTwcbbrzyOH16F9jY9LOvpMLuq7Fzv8u9AhHdKh3Xwe7s9r9/ehRVqkRbv5PC4+4f3mqk/+rHRIh3Roh+OjcUxz1Sd/LjqkQzpkfKz9OulJckxArfXSUsrjkjw3yccerS5JHnr0OskvJfnaWuuHd3+GW7ltkoed8Z73J/mmWuv/2cP5cIpa64dLKV+c2W9W+pK5P7pzkkedstk/JnlyrfW3NzzsHZJ85hrvuzrJt9daf3rD43AGHdKhIeipQ49L8jFzy+/ObKKfHmiRFg1BTy0yPgZCh4wz6JsO6dCE3S5nj4+bvD7J19da37jD85ksHdKhCTNXPSBapEUTZr56IHRIhybM+ABGzTVew4fAPXrTpkM6NATu0Zs2HdKhIXB/3rTpkHEGfdMhHZow9+cNiBZp0YSZqx4IHdKhCTNXPRA6pEMTdvDj47y+T4D+1FpfnuRBSX4qs4F6mtcneWKt9Um11qv3cnLt/ViSyzJ7Kucqf5fke5PcZ6j/KKem1npVrfVLk/z7zMbaad6X5CeTPKjW+jbdgAcAAAUCSURBVIo1d395ku9P8rtJrllzm79M8t2Z/YYT/4ndMR3SoSHYcYdO8tTG8vNrrTdssT+2pEVaNAR7apHxMVA6ZJxB33RIhybgNZn9VtxfSvKONbf5UJIXJvnCJA9309Vu6ZAOTYC56gOgRVo0UearB0SHdGhCjA9gUlzjNXwI3KM3bTqkQ0PgHr1p0yEdGgL3502bDhln0Dcd0qEJcH/eAdAiLZoAc9UDp0M6NFHmqgdEh3RoQkY1Pkqtte9zYABKKbfI7KnH90xyl8yebvz3SS6rtf5Nn+fWRinl9kkenORemT2p81aZ/Qfm75P8aa31z3s8PdZQSrlXkockuWuS2yS5Msnbk/xurfX6LfZ7XpL7JblPkrsluSDH4+P9Sd6Z5I9qre/e6gtgYzrEUOyqQxwGLWIodtki42PYdAjomw4xBaWUC5M8MLNxfsckt05yQ5IPJnlvkjcnecsB/GafUdIhxs5c9WHQIqBvOsQUGB/AFLnGMxTu0ZsuHWIo3KM3XTrEULg/b7p0COibDjEF7s8bPi1i7MxVD58OAX3TIaZgLOPDg9EAAAAAAAAAAAAAAAAAAAAAAACA3p3X9wkAAAAAAAAAAAAAAAAAAAAAAAAAeDAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgdx6MBgAAAAAAAAAAAAAAAAAAAAAAAPTOg9EAAAAAAAAAAAAAAAAAAAAAAACA3nkwGgAAAAAAAAAAAAAAAAAAAAAAANA7D0YDAAAAAAAAAAAAAAAAAAAAAAAAeufBaAAAAAAAAAAAAAAAAAAAAAAAAEDvPBgNAAAAAAAAAAAAAAAAAAAAAAAA6J0HowEAAAAAAAAAAAAAAAAAAAAAAAC982A0AAAAAAAAAAAAAAAAAAAAAAAAoHcejAYAAAAAAAAAAAAAAAAAAAAAAAD0zoPRAAAAAAAAAAAAAAAAAAAAAAAAgN55MBoAAAAAAAAAAAAAAAAAAAAAAADQOw9GAwAAAAAAAAAAAAAAAAAAAAAAAHrnwWgAAAAAAAAAAAAAAAAAAAAAAABA7zwYDQAAAAAAAAAAAAAAAAAAAAAAAOidB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9M6D0QAAAAAAAAAAAAAAAAAAAAAAAIDeeTAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgdx6MBgAAAAAAAAAAAAAAAAAAAAAAAPTOg9EAAAAAAAAAAAAAAAAAAAAAAACA3nkwGgAAAAAAAAAAAAAAAAAAAAAAANA7D0YDAAAAAAAAAAAAAAAAAAAAAAAAeufBaAAAAAAAAAAAAAAAAAAAAAAAAEDvPBgNAAAAAAAAAAAAAAAAAAAAAAAA6N3/B89nvm568KCIAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor, Config\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 5), dpi=300)\n", + " configs = get_known_configs()\n", + " to_display = configs[\"Relative humidity\"], configs[\"Ambient temperature\"]\n", + " for i, config in enumerate(to_display, start=1):\n", + " plot = figure.add_subplot(1, 2, i)\n", + " coros.append(plot_sensor(config, plot, {}))\n", + " await asyncio.gather(*coros)\n", + "\n", + "display(figure)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAE0YAAAmZCAYAAAAwyqtnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdd5RkVbX48e8eZkiSGXIaJAoIKElRkiBREZAgQRyCOYvx93yK+MxZjKBkQRHBwEMMKPoQUBBEJKkIKEgecmZm//44NVJ9+1Z3pe7qnvl+1uoFd997ztlVdavWmu5d+0RmIkmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmDNGXQCUiSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJknoQEVn5OXrQOUmavPxMkSRJkiRJkiRJkiRJkqT5S0QcXa0dG8txgxIRM2pq5GbOL+tLkiRJkqT2TR10ApIkSZIkad4WEVOBDYDnAEs1fhYAHgEeBm4FbgZuzswnBpSmJEmSJEmSJEmSJEmSJEmSJEmSJEmSpAGzMZokSZIkSeq7iFgI2Bs4HHgxsEgbw56KiL8AlwG/AX6emfeMXZaSJEmSJEmSJEmSJEmSJGk0ETEDuKmDIU8ADwIPADcCVwKXAj/NzCf7nd9cEfES4IKaUz/LzF37tMb2wK9HuGSHzLywD+scCpw8wiVrZubNva4jSZIkSZIkTURTBp2AJEmSJEmat0TEnsDfgTOAl9JeUzSAacDzgNcB3wHujIgvj0mSktQnEXFzRGTTz0mDzkmSJEmSJEmSJEmSJEkasIWA5YC1gV2A9wM/BG6LiE9FxGJjtO4RLeIvjYjVx2jNqsMn2DySJEmSJEnSpGNjNEmSJEmS1BdRfA34EbBqH6acAoxXIZIkSZIkSZIkSZIkSZIkSRpb04H3An+JiBf2c+KIWArYp8XpKcDMfq43gldGxBK9TBARzwa27VM+kiRJkiRJ0qQzddAJSJIkSZKkecY3gNe1OPdP4FfANcDdwCPAYsDSwDrAZsAmlF0iJUmSJEmSJEmSJEmSJEnSxPYI8PcW5xYFlgGWbXF+DeD8iNguM//Up3wOBhYe4fxhEfHRzMw+rdfKosABwPE9zHE4EP1JR5IkSZIkSZp8bIwmSZIkSZJ6FhF7Ud8U7QrK7o6/Gq2YKCIWBXYF9m78PKvfeUrSRJeZFjRKkiRJkiRJkiRJkiRpMrg8M7cf6YKIWBV4OXAUsFbl9BLAWRHxnMx8qg/5HFE5ToY2F5sB7Aj8sg9rVd1H2Sh2rsPpsjFaREwBXlMJz6I0mtM8KjOPBo4ecBqSJEmSJEkTxpRBJyBJkiRJkia3iAjgCzWnzga2zswL2tlhMTMfzcyzM/PVwCrAO4G/9TdbSZIkSZIkSZIkSZIkSZI0HjLz1sz8OrAJpaawai3g9b2uExGbAs+rhL8APFmJHd7rWi18F5jddPyCiHhOl3PtAqzadHw/8NNuE5MkSZIkSZImIxujSZIkSZKkXm1N2Umx2W3AzMx8opsJM/OBzPxiZr6n1+QkSZIkSZIkSZIkSZIkSdLgZOYjwMHAdTWnX92HJY6sLgl8CTi3Et8nIpbuw3pV/wZ+Xol124StOu504PEu55IkSZIkSZImJRujSZIkSZKkXu1WEzspMx8a90wkSZIkSZIkSZIkSZIkSdKEk5mPA5+oObV5RCzT7bwRsTBwUCV8YWb+Ezi5El+I0qBtLJxQOX51REztZIKIWBbYc5R5JUmSJEmSpHleR79YkyRJkiRJqrFGTeyP455FCxGxPLA5sHzjZzZwF3AncGlmPjjA9IZo5Lo+sBawFPAs4CFgFnAb8IfMfHicclkK2KIplymNPH6ambeMUw6rA88HVgaWBh4GbgIuy8zbxymHRYAtgZUo989iwL3A3cBVmXnjOOSwJPACYB1gScrzcDdwRWZeP4brbgSsTXncywKPNta9mfIaPDVWazfWXwDYFNgAWAFYGHgE+HNmXtDm+GdT3lOrAEsACwD3NX6uB67OzDlj8gAmiIgI4LmU+2c5YBngAcrn4E2U+2jMn4NB3ceSJEmSJEmSJEmSJEmaUM6viU0B1gMu6XLOfSj1Zc1Oafz3PEqNynJN544AvtLlWiP5MXAPML1xvAKweyPerkOABZuO/5yZfywlQBPD/FiXFRGrUB7vDErt0yLAg5Sayn9S6ukeH1iCfRIRC1JqBtcHVqS8tlAe5yzK63rDOOUylVL7uyHlPTUHuJ1S83ZpZs4ejzzaNRFqTSVJkiRJmtfYGE2SJEmSJPVq+ZrYI+OeRZNGgcFbgAMojbVaVQU9HRGXACcBJ493oURELE7Z3XFnYHtg9VGGzI6IK4FvAqdk5pNdrHkS8Jqm0C2ZOaPp/G7Au4AdKMVKVYdRnq8x0Wji9BrgTZTGbHUyIn4HfCozz20aezNDG/WdnJkzu8hhCmVX0EOAbSkNuVpdexNwJvDZzLynw3VOYuTXYlPgg5R7ZFqLOW4BPgd8ox+NyiJiY+AdwC6UhnStPBwRv6S8Bpd2uMb2wK8r4R0y88LG+dWB91J2ca0WLAL8BqhtjBYR61AKHV8CvIjSXHAkD0TELyiv3+/bzH8GpbiqlddExGtGOA9AZtZ+LkVEVkIfycyj28mtMs+6lOdxd0qxVSv3RsTPKM/BlV2scxIT7D6WJEmSJEmSJEmSJEnSxJSZd0fEgzzTcGmu6XXXt+mIyvGjwFmN9Z6OiNOBtzed3zQintdNrcxIMvPJiPhOZa3D6awx2uGV4xN6TqwPxqMuq7HO1cBGTaG7gVV6qSmKiAOB0yvhN2fm10YYMx3YG9gJ2I7S5G4kT0bEpZSGez/opilcRBwNfLg51qrGrJ8a9V17UWpGtwIWGuX6u4FzKa/ttWOQzwrA+4GZlE1969wVEWcCx2Tm3f3OoV3jVWsqSZIkSdL8asqgE5AkSZIkSZNe3S53a9TExkVEHAD8Dfg0sBmtm6JBaRq/DfBt4KqI2HbsMywi4tPAXcBpwKGM3hQNSqOyzYHjgRsjYps+5rNYRJxF2SFzJ+qboo2pRsOp3wIn0ropGpTX9MXATyLiexGxaB9z2BW4mrJj6M6MUKjSsCbwPuAfEfH2Ua5tN4cpEfFR4HLglbRoJtWwBvBl4PcRUdeksN01V2oU5f2J0vxupKZoUHYz3Au4JCJ+GBHLdLt2JY8jgOuAN1PfFK3VuGUj4grgr8AnKa/daMV3UHbv3Be4NCJ+FBGtCqkmjYhYNCK+BlxDKfocqSkawLKUJnR/jIhTI6Lt532UPMb9PpYkSZIkSZIkSZIkSdKk8HBNrNoorS0RsSaloVOzszOzeY2Ta4ZWm6n1y7crx3u0Ww8TEZsDGzeFnqTUFw7MAOqyTqwcLwfs0W6+LcysHD8BnNHq4kYjvduB44D9Gb0pGsCClMZYZwJ/iYgNu8p0HEXE+hFxA3AlpSHbtozSFK1hOUqN4V8i4viIaGdMuzntDlxL2dx1pHtmecrmyddFxKv6tX4nJkKtqSRJkiRJ8zobo0mSJEmSpF7dURPbf9yzACLiv4HvAqt0MXxD4BcRcVB/s2ppS0YvhBjJqsAFEfHqXhOJiGcBF1CaFw1ERKxFaYr24g6H7g/8NCIW7EMO7wb+F9igi+GLA1+MiG9FxNQecphCKZT5IJ01p3se8NuIWKyLNTcB/kBpjtXNDpOvoBSwrdvF2OY83gN8C+im0d3ilOegF3sCf4iIVXucZ2AaO5X+CngjpfFjR8MpO1deFBHtNGocKY9xv48lSZIkSZIkSZIkSZI0adQ1PHqwy7kOZ3jN0ynNB5l5JaWBUbODI6KX+r1amXk18Mem0FSg3Rq/wyvHP87Me/uSWPfGuy7rNOCpSuywbhdurLlTJfzDzLxvhGFb03ntVbPnUOrpqutONCsCvdT8BXAkpd6rq8aGQyaLeDnwI6CTTVqXBU6PiNf1un4nJkKtqSRJkiRJ8wP/4SxJkiRJknp1MVAtKtgpIt6amceOVxKNpmjH1Jx6Gvg18EvgNsrvQ1YDdgdewNCiqAWB0yLi6cw8c2wzHiIphVdXA9cBd1MKvWZTiiCeDWxB2dlyWtO4acDxEXFNZl7Rw/rHURq1zfVv4Dzgz8BdlN0416AUKPVdRCxJaea0Ws3pfwA/pOw4eR9lt8HnUppxrdi4Zlvg8z3m8EnKbnxVs4BfUIrV7gIepRTmbQjsCqxXuf4I4H7g3V2m8jHg4Kbjf1EKaK4G7gEWoxROvZKyg2Cz9Si7cr6l3cUau4z+ujFvsznA/1He3zdRHtMilIZ82wE7MrTh1TrAeRGxWWY+0O76TXYG3t90/EQjrwspzRefbqy9VU2udR4GLqO8n/4GPAA8RHmPL00pSNqB8lw2Wwf4XkRsl5lPt5j7SeCqpuMNGPq+vA/4Zxs59lVELEJ5zjaqOX0PcA7PvKeX5Zn7aOXKtRtQmqNtmpmzukxnXO9jSZIkSZIkSZIkSZIkTQ6NDTTrNk78RxdzTQFmVsK3UTYJrToF+EzT8VLAPsDpna7bhhOAzZqODwc+N9KARpO2A2vmmWjGsi6LzLwrIs6j1AfOtXtELJ+Zd3WR76HAlEqsk+d1NnAFcA1wPXAvpbYzKHWV61DqUF9UWWcx4LsR8bzM/FcXeQ/CfTzz2t5IeZwPU+oGp1NqJncGqptubknZELWXDZXXBI7lme87J6V28Tzg1sbxasBulOe6ue43gG9ExL2Z+YMecmjLBKo1lSRJkiRpnmdjNEmSJEmS1KvzgMcoxQ/NvhwRLwU+nZkXjWUCEfEi4MM1py4CjsjMv9ac+5+IeCGlyGX95umA4yLi95l5S/+z/Y85wM8pBVc/z8y7RxsQEdOBD1EaBs0t7FgIOJnSLKwbqwIHNf7/MeADwNcys7rrIsAHx2KXTOALDC+WeYhS8HF8ZmZ1QES8DXgPcDTld1xvojSs6lhE7M3wQpX7KI26TsnMx1uMC2Av4BvA8k2njoqI32bmjztMZaWmPB4CjgJOyMzZNWv/P0ojwPdXTr0hIj6RmbeNtlhELA18n+GNxk4Ejs7MVs29Pt4oUPwqsEtTfC3K++mVo61d4708c0//AHhnq4KwEe7B+yk7hp4FXNziHq7OtTXwJWDzpvDWwDuAz9aNycx/A5s2zXEzpXHgXD/OzJmjrT0GvsDwpmizgU8BH627jyPincC7gI9SPkvmWo1SrLZPF3mM630sSZIkSZIkSZIkSZKkSaWutug+SjOmTu1CqX9rdlpmzqm59jTKZn3Nm0Eewdg0Rjud0ghtbp3TBhGxVWb+foQx+1CaKM11G6W+cCIYl7qsJicwtDHaVOAQuts8dWbl+FbKJrsjeRI4m/KYf9XORqERsQbwCYY2t1sW+DrwsnaTHYA7gJMom25e3uK98x+NmsndgC9SmsLNtV9E7JuZZ3WZx3t55v1yPTCzxfvl4xGxZSPn5uZ7AXw9In6Tmfd0mcOoJlCtqSRJkiRJ84Vqt3tJkiRJkqSONBp6faXF6ZcD/xcRt0bECRHx2ojYJCL61qy9UTDwbYYWLEFp2LZji6ZoAGTmJZTd466unFqS1o+pX/bOzF0y8zvtNEUDyMx7MvNtwGGVUxtFxM5d5jH3eXsE2DUzvzRS4VKrwo1uRcQLGP54Hm7kclxdU7RGHk9m5scoTd1mUwpbFqq7dpT1l6c0Amv2N2DjxvotH28W51CKt26tnP5E497sxIKUxzEL2CYzj69rJtVY+6nM/ABwfOXUAgx/Plv5KjCj6Xg2cEhmHj5CU7S5699IKXCqPnf7RMRWba7fbO59eCyw30i7ZLZ4Tf4NrJyZb83M37RTfNeY62JgG+D8yqm39fNzaqw1mkO+vhKeAxyWmf/V6j7OzNmZ+RlKYWX1Ods7Irppcjfe97EkSZIkSZIkSZIkSZImgYhYibJZZtUZozVkauGImtgpdRdm5h0MbzS2Q0Ss2cW6I8rM+ymNppqNVgtTfSwnt6q5GWeDqMs6D7izEpvZzrrNGjVV61TCJ7dxr22Rma/MzHPaaYoGkJm3ZOZBlI1em+0eEevXDJkI/gCslpkfyMw/tPMebNRMngdsBVxZOf2uHnKZ2xTtGuDFIzURzMw/UO6tayqnlqNsIjomJlitqSRJkiRJ8wUbo0mSJEmSpH74EHDJCOdXoRT2HAf8CXgoIn4fEV+OiH0jYoUe1t4DWK8S+yewf2Y+OdrgzJxF2V3wseq8EVGdt2/aLZhpMfZkyu6LzY7sLSPen5m/7XGObry5JvaeRmHUqDLz+5SdJbv1dkojvLkepTRlqxafjJTDv4BXVcIbAHt2mdNhmXlVm9e+H6gW1Owy2qDGvX1AJfxfmfmdNtel0bTu9QzfrfX97c5R8Qfgna2a4Y2Sy5OZWX0Ptzv2ceA1lNd+rtWAbpsNDsI7a2JfzMxT2xncKFb775pTR/WQ05jfx5IkSZIkSZIkSZIkSZocImItSpOs5SqnHgU+0cV80ykbtza7PDOvHWHYydVpGLvN+06oHL8qIhapuzAiZgA7VMLVBkwDMYi6rMx8GjitEn5uRGzWYQp1r+2oz2svtZ3AMcBlTccBHN7DfGMmMx9tPNfdjL0POLQSfmFEbNBDSk8C+2TmvW2sfy9lM9BqjfDBjc+GsTARa00lSZIkSZqn2RhNkiRJkiT1rFHAsjvwkzaHLAxsCbwV+D5we0RcGBGHR8TCIw8d5i01sXdn5iPtTpCZNzF8p7igvmnXRFHd2fLFPcx1I/DVHsZ3JSKWAvarhK+jNNDrxIeB+7tYfzHgTZXw5zLzH53OlZm/Ay6ohPfudB7gN5n54w7WnUXZIbPZphEx2u/93sPQ3w3eBHy23XWb1n8K+HglvFsX72MoDfEGsstpZt7F8N1Je3lPjZuIWAXYqxK+i9KwshOfp+xg2eyFEfH8LtIar/tYkiRJkiRJkiRJkiRJE1BELBwRq0TEHhFxHPBnYOOaS1/bSWOhJocCC1Zi1Zq6qh8B1aZXM8eoRuUC4Jam4yWBV7a49jBKveJcv83Mv49BTuOuh7qsamM5gJntrhsRiwL7V8K/zcwb252jG41NQaubWU6KOrROZeZfgCsq4V4e67GZ+dcO1v8rcGwlvBAd3CftmqC1ppIkSZIkzfP8YpkkSZIkSeqLzLwfeAWl4KjTopwAtgO+DdwQEQe3NShiwca4ZncA53S4PsA3gerudy/tYp7xUm1gtFJErN7lXCc2CnLG24sohSjVXOZ0MklmPgx8r4v1dwKWqsS+3cU8c/1v5bh6b7bj+C7G/KFyvBiwSquLIyIouyU2O6mHpmTVhlYLAVt1OMffMvO3Xa7fL9X31AsGkkXnXgIsUImd0klzSPhPk7u6+6+bz8Exv48lSZIkSZIkaaJrNAHYMSKOiIj3RcTbI2K/iNhk0LlJkiRJUp9sFxFZ9wM8BtwKnAu8Fli0MvZR4ODMPL3LtQ+vHD8FnDHSgMYGsGdWwqsBO3eZw0hrJXBSJVzNmUZTttdUwnVNwSazjuuyMvNahtcTHRQR1XrDVl4JLF6Jndjm2F5VH+/zI2LaOK093vpZc9dNzVndJry79ZBDKxOx1lSSJEmSpHne1EEnIEmSJEmS5h1zd7uLiDOAXYGDgD2AJTqYZnXgtIjYCXhDZj4xwrXPBxauxH6YmdUGZ6PKzDsi4iJg+6bwehGxbGbe2+l8nWoU7LwY2ATYCFiO8rwtxvCmRzB8t0soz90/u1j+112M6Ye6Iphqk612nQu8vsMx1WKS2zLzltor23NT5XhGRCzVaBrYrt90sW7dLpZLAv9qcf3GwNKV2MVdrAtAZs6KiAcaa871PDp7LBd2u34rEbEKsDXl8a5LyW8JYBGG7rA614qV424bDY63F9XEzupyrjOBT7cx/2jG4z6WJEmSJEmSNA+JiGcDWwCbN/77fIZ+gfmWzJwxgNQ6FhEbAR8CXs7wv2PNveZvlC9kfy4znxzH9CRJkiRp0B6ibIJ5TGZ2VRcSES8ANqyEz8vMe9oYfjKlUVuzw4Hzu8llFCdS/n04t1Zp+4hYMzOb68x2AtZoOn6I7mt/xsU41mWdCGzZdLwMsCfw/TbGHlY5frjNccNExGLAtpTHuwGwLOXxPguYUjNkscrxQsAKlEaBE1pErEWp69wYWIvyOJegPIa617b6WnZbc3d9Zt7Q6aDM/GtEXMPQz4MtImJKpxv0jmIi1ppKkiRJkjTPszGaJEmSJEnqu0ZjsnOBcyNiAWBTStOvzSlfZFmP+mZfzWZSCkf2H+Ga59fELu803yaXMbQxWlAaPP2yhzlHFBFrA+8H9mVoY6luVHeka0cCf+px3W49t3L8GHB9l3Nd2cWYasOnpSOil+eiWtAEMB1ot1jl8czspvjpgZrYSPdSXaOrYyNipCaEo6nu6Dq9w/FX9LD2EBGxL/AmSjFSXeFZu7p5Pw1C9XPwaeCqbibKzFsi4i5g+RHmH8143ceSJEmSJEmSJrmI2B74AOXvR8sMNpveRUQA/w0cTf2XhZutA3wcODAiDsrMv4xxepIkSZI0UVwOHNttU7SGI2pip7QzMDN/FxF/B9ZuCr8iIqa32VitbY1anF8BOzZCQamL/HDTZYdXhn0vMx/pZx79MoC6rDOAz1Mars01k1EanEXEGgytAwU4s9PnNSI2A95Daca2yCiXj2YpJmhjtIiYQnlPvZbSrL4X3dbc/bGHNa9gaGO0xSkN+7qtRa0z0WpNJUmSJEmaL9gYTZIkSZIkjanMnE0pWvhP4UJELApsBewA7Aes32L4fhHx1sw8tsX5uuZL1/WQ7rVtrtEXEfEh4P9RdtPrh26aCD2cmY/2af1OLVs5/lfjfulYZt4WEU8B0zoYtmrleFFgk27WH8GywN/bvHZWl2s8VRMb6XmoPm5o/R7sVvW1Hc1dvS4YESsDpwIv6XWuhsnSlKv6GXVTZj7ew3zXMbQxWqefgeN1H0uSJEmSJEma/DYFdh50En10PMO/nD+H8qX/m4EFgQ0oX86d67nABRHxwsz8x3gkKUmSJEl99Aj1tVHTgKWBlWrO7QBcFhEzM/OMTheMiGcBB1TCsygbubbrFOCYpuMFgUOAL3aaTxtO4JnGaAAzI+IjmTknIpYG9qq5fkIZVF1WZj4QEecABzWFd4mIlTLz9hGGzmR4w/IT200uIqYBXwDeSG8N4JpNyFq0iHgO8B3KBsL90O3jvKGHNesaoC3fIt6tiVZrKkmSJEnSfKFfv5iRJEmSJElqW2Y+mpm/zswPZeZzgF2Ba1pc/sFGI7U6S9fEetkx7b6a2DI9zNdSRHwV+Aj9a4oG3TURerCP63eq+vo90ON8nY4fk9e2opOdIusaQ42FTpuWdaPTHTJ7ug8jYhXgQvpXfAeTZ1OJ6vuo110jq5+DC43wGVxnvO5jSZIkSZIkSfOuJ4AbB51EJyLirQxvivZdYPXM3CozD8jMvTNzPWBL4Mqm65YHfhoRC49TupIkSZLUL5dn5qY1Pxtm5sqUOqWZDG9QtCBwakS8vIs19wcWr8S+m5lPdjDHKUBWYtV/0/XL2Qyt51mdZxqlHczQ+sHrM/OSMcqjKxOgLqva0GwB4NWtLo6IAA6thP+WmRe1s1ijKdr3gTfT3+/eTrgNIiNiI+A39K8pGnT/OHupHa0bu1QP89WZaLWmkiRJkiTNF2yMJkmSJEmSBi4zfwZsAfy05vTywJ4thlYLnKDsQtmturF1a/QkIg4B3lRzahbwbeBwYBtgBqXp0SKZGc0/wJp9SufpPs3TjWpTuE6K0+o80e6FjUZP/WxKN5nUNRQctF7vw5OAdWrifwI+AewNPB9YEVgCWLDmPfWRHnMYlOpnVC+fga3G9/1zUJIkSZIkSZIanqL8LvdbwOuBzSi/kzxykEl1IuCbghUAACAASURBVCKWBT5eCR+bmQdm5m3V6zPzMmBb4A9N4XWBd4xdlpIkSZI0/jJzVmaeDGxKaR7dbAHgtIiY0eG0dQ3MTukwr1soDaGabRQRW3aYSztrPQ6cUQkf1vjv4ZX4Cf1evw9OYrB1WRcAt1Rih9Vd2LAd8OxKrNpcbSTvA15RE78N+BpwCPBCYDVK862Fax7vDh2sNxCNBnBnAsvVnP4dcDTwMmATSg3v4sDUmsd6cp9SmrB1v/N5rakkSZIkSQPVSXd9SZIkSZKkMZOZj0XEq4AbgemV0zsyvDAK4KGa2LN6SKNubN0aXWsUlHy65tQngWMy87E2p5oXdoer7tTXazHKEh1c+zgwh6EbB/wwM/fuMYfJoO4eWzoz76+JT3gRsQewUyV8F3Boo+liuybre+ohhu5w2ctnYKvxff0clCRJkiRJkqSGk4FvNL4kPkREDCCdrr0VWKzp+DrgqJEGZObDEXEwcC0wrRH+QER8MzPvG5s0JUmSJGkwMvOJiHg1sAJDm0YtQdlIdMd25omI9YAX1Zy6tE//jjycoU2s++VE4I1Nx3tHxA7A85piTwOnjsHaXZsIdVmZmRFxMvChpvD6EfGCzLy0Zki1adps2mycFxHLAx+ohJ8G3gN8JTPb3fxzMtShvQ54TiV2I/CqzLy8g3n69Vgnct3v/FxrKkmSJEnSQE0Z/RJJkiRJkqTxkZkPUnYYrFqvxZC6L4YsVRNrV93YWT3MV2c7YKVK7NjM/EAHTdEAluljToNSff2W7XaiiFiQoV86GlFmzgGqjcDW7Hb9SeaemtiM8U6ijw6sHM8GXt5h8R1M3vdU9X3Uy2dg3fgnMvPRHueUJEmSJEmSpGEy8766pmiT0Msrx1/KzKdGG5SZfwd+2BRaAtinn4lJkiRJ0kTRaCp1KPBg5dRLIuKANqc5or9ZDXNgRCza70kz8zLg6qbQwsBplcvOy8w7+r12jyZKXdZJQFZiM6sXRcRiwCsr4Z9n5m1trrMnUH3935eZX+ygKRpMjjq06mv7ELBTh03RoH+Pdck+j+3bJrHzea2pJEmSJEkDZWM0SZIkSZI00dTtuDi9xbV318Squ9h1YoOaWF0TqV68tHI8B/hYF/M8uw+5DNq/KserRMTSXc71XKDTbT/vrByvGxELdbn+ZFJ93AAbj3sW/VN9T52fmd3s3DpZ31PVz8E1e7yPq5+D/f4MlCRJkiRJkqSBi4jFImKXiDgsIt4bEUdFxKsjYvOIaLu2NiIWBzathDv5gvj5leN9OxgrSZIkSZNKZt4KfKjm1McjYtpIYyNiKqWx2lhagrH7d9mJleOVK8cnjNG6vZgQdVmZeRNwYSX8qohYuBLbH3hWJVZ93kdSfbz3AV/pYPxcE7oOrdFA7oWV8CmZeXMX0/Xrsa7bw9i6jZfv6mG+OvNrrakkSZIkSQNlYzRJkiRJkjTRPFATa7Xb3hU1sc17WHuLynG2WKMXq1WO/5qZdY2qRlMtTJmM6oqkXtDlXN2Mq66/CLB9l+tPJnXP+27jnkUfRMSCwPKV8P91Mc8CwJZ9SWr8VT+jpjL8S3htiYjVGf58/rGbuSRJkiRJkiRpImo0Q/sVMIvSlOwE4FPAZ4FTgMuAOyPik21u5rIyQ2txH+nwi8RXV4539Iu1kiRJkuZxXwf+UYk9GzhilHEvA1aoxO4Arurxp2q0PLp1KvBki3N3Af87Rut2ZQLWZVUbnC0J7F2JzawczwJ+3MEa1drO32dmq9dsJBO9trP6uwzo7rVdnv41Rtusj2MfAv7aw3x15tdaU0mSJEmSBsrGaJIkSZIkaaKpFi/B8N3W5roCeLwS26tRTNORiFgB2KYSviEzZ3U61yimV447nr+xO+Ze/UlnoC6piR3U5VwHdzHmFzWxQ7pcfzK5GHikEtujzS94TTTV9xN08Z4CdgcW6zKHauPGjj9/enRxTazbnWv3a3N+SZIkSZIkSZpUImJ6RPyC0gxtB2DaCJdPB94H/C0ith1l6mUqx/d3mFr1+mnA+h3OIUmSJEmTRqPR1DE1p/5rlEbRdQ3LDsvMTXv5YXjDo20jYu1uH18rmXkPcG6L06dmZqvNYwdlItRlNfsB8GAldtjc/4mItRhe//mdzHyigzX6Uds5nfJ7h4msX6/tAb0m0uQ5EbFep4MiYl1gw0r4ssyc05+0/mN+rTWVJEmSJGmgbIwmSZIkSZImmpfUxG6suzAznwJ+XQmvSHdNw14HTK3Eft7FPKOpNqSqKzIZzUHASn3IZaAy8yrg+kp434hYs5N5IuLFdLfL4s8Y3ljvwG4KbCaTRnHh+ZXw4sBRA0inV9X3E3T3nnpXDzk8VDnuRyFfJy4AZldir46IZ3UySURMBV5bc2osPgclSZIkSZIkadw0vtD+e2CnyqmHgAuB7wFnAZcDzV+cXRb4RUTsMsL0T1aOR/oSf5266zfocA5JkiRJmmxOA/5aia1Kfe0KEbESsFslfCf1zYq6yaXq8D7MW+eEDuODNBHqsv4jMx+l/Pu92Y4RsVrj/2fWDDuxw2X6Udv5ZmDhLsaNp55f28bmvm/tTzr/cWQXY+o+M37aayI15staU0mSJEmSBs3GaJIkSZIkqScR8fJOG1mNMNdawP41p1rtlAjw1ZrYZyNi0Q7WXQN4fyWcLebu1e2V43UjYka7gyNiBeCz/UxowL5ROV4Y+EZELNDO4IhYrGaOtjR24TyuEl4AOD0iFulmzknkYzWx9zaazE0amfkA8GglvHMnc0TEkcD2PaRxX+X42T3M1bHM/DdwTiW8AvDhDqd6B1At1PpdZl7ZbW6SJEmSJEmSNGiNvxedw9Df3d4A7AssnZk7ZOarMnO/zNyC8kX845uuXRA4LSJWabHEvZXjpSOiky9A122E45dqJUmSJM3TMnM28NGaUx9o8W+qmZS6rmZnNObp1XeBpyux17Rbv9ah8yj/Dmz+WSEzrx2DtXoyQeqyqqqNzqYAh0bEFODQyrmruqh7qtZ2bt3J5pQRsSHwgQ7XHITq44QOX1tKbdo6fcil2Vsbze3b0ri22pztCeCkfiYF832tqSRJkiRJA2NjNEmSJEmS1Ks9gL9GxIkRsX63k0TEypQvplQbmt0N/HKEoecB11diMygFB1PbWHdp4Ec16/4kM6u7UvbD/9XEPtXOwIhYhtIkrpudCCeqE4BbK7GdgZMjYqGRBkbEUpTnY8Me1v8Ew3dAfD5wTuPe6FhErBERx0bERj3kNaYaRV8/qISnUR73tt3MGRELRcTrIuKdPSfYmYsqx9tHxO7tDIyIXYEv97j+1ZXjjZp2Ih0vX6iJHRURr2pncETsQn2zvM/1lJUkSZIkSZIkDd5ngObf1/8UeF5m/qDuC/SZeXtmvg44qik8nfov7EP5G8fDTccLAJt3kN8La2JLdjBekiRJkiar0xle97cy8Iaaaw+riZ3WjyQy827gZzV57NaP+StrZWbeUfm5q9/r9NGg67KGyMxLGH7PzAR2BFavxE/oYolqbeditLk5ZWNz3B8DI9Y8TgSNe65aG3twRGzSzviIOIyxaQC3EHB2O3WbjWvOZvjzfXqjidlYmC9rTSVJkiRJGiQbo0mSJEmSpH6YSikwuS4iLo2It0RE3Q73w0TEohHxBuBK4Lk1l7wnMx9vNT4zEzgCqH555RXAz0faQS4itqIU71QLOu5n+E5y/XI+8FAltn9EfGuk3QUjYmfgUp75Ms2DY5TfuMrMh4DX1Zw6GPhLRLw6IoZ8ASgiVoyIt1CKnLZrhG8C7uxi/TuA1wBZObUL8MeIOKTNBnvPiogDIuJs4O/AW4C63UsnktdTnrdm04ELIuIzEbFiO5NExFYR8TngZuCbwFp9zXJ0Z9bEvhcR+7YaEBELR8SHKE0R5+7Y2O176uLK8RTg+xHRyRffepKZFwNfr8nj1Ig4OiIWrBsXEQtExLuAHwLVa87JzHP6n60kSZIkSZIkjY/GpjxHNoVuBvbNzMdGG5uZn6dszjPXwXW/N8/Mp4HfVcKvbjO/AA6pObV4O+MlSZIkaTLLzDnAR2pOvT8i/rPJaURsB6xTueb6zPxjH9Opa7J2RB/nn6wGXZdV58TK8drAlyqxJ4HvdDH3D4A5ldh7IuKjI9UQRsSBwCXAsxuhyVDbWX1tpwHnR8T2rQZExFIR8SXg2zzzveR+Pda5NcLPBS6KiC1HyGMLShO7ar3x3cD7+pTPMPN5rakkSZIkSQMx6j+0JUmSJEmSOrRV4+fYiLgZ+D1wLXAPcC+lKGAJYA1gY8pufa0agp2ZmSePtmBmXhwRHwGOqZzaAbg2Ii4AfgXcBiwArAbsDmwNRHU64PWZ+c/R1u1GZt4XEV8APlQ5dQSwV0R8H7gCuA9YilIs8zKGFnHMBt7O8CKfSSkzfxoRHwP+q3JqbeAUYHZE3ElpWDcdWI6hr9uTwKEML1CrNstrtf4PGsVYH62cWhM4FfhsRFwIXE4pnnmEcg8v1chxc8q9POF3e2yWmfdGxJ6U5oDNzeemAu8G3hYRlwC/BW6l3JMLUR73SsDzKI99ufHMu8YplB0omxuyLUZpTnYF8BNKAdFTwPLAZpT31LJN11/buK6bwqgfAbOAZZpiWwGXRcRDwL95pnDrPzJz0y7WGslRwDZA8+6RUym7lr4xIs4B/kz5LF4a2ADYB1i1Zq5/MfTLgpIkSZIkSZI0Gb2BoZtCfCQzH+1g/Ocof0+iMc+uwEk1151G+RLsXIdFxNcz80+jzP9Whn+5H2yMJkmSJGn+cSbwQWDDptgKwJuAzzaO6xqUndrnPH5EafC0RFNsj4hYPjPv6vNak8mg67LqnAp8nFIHOtdzKtf8JDPv7XTizPxrRJxGqUVs9kFgZkScRam/ephSK7YesCdDn59HKY+1usnlRPMFSkOupZpiKwK/jojfAj+jNJif04hvDexGef3nuoBSk1t9vrrxaeBdjfk3AC6NiIuAn1Jq2aDU/e5KqZGrq/t9Y2be3YdcWppfa00lSZIkSRoUG6NJkiRJkqSxNKPx042T6WDXxcz8aEQEw3eRnEYphti1jWmeAg7LzLqdDvvpf4DtGj/NlqV8SWckSSn8urD/aQ1OZn4wIpJSRFS1ALBy46fqCeDgzLyoZre9tncjzMz/iYh/A19l+O57KwAHNH7mKZn5l8YOimcztKEWlC951d2nE0pmPhUR+1EavC1aOf38xs9IbgP2AGZ2uf7jEfFOymdW1eKUArgxl5mPRcRLgHOB6o6ZywOvb3Oq64BdM3NWP/OTJEmSJEmSpAF4adP/zwbO6nD8RcDTPFNruw31jdG+CxzNM1+Engb8JCJ2zcxr6iaOiAN45kv+VXM6zFOSJEmSJqXMnNPYELVar/feiPg6pW7sldVhwHf6nMdjEXE2Q+uHplEaPrX6t9s8b9B1WS1yuj0izm/M28oJPSzxNkrt1fqV+KrAO0YZ+xSwH6U52oSWmbMi4mDgxwxtMgewbeNnJH+hPNYv9Cmlm4CDKXWMC1Aan23T+BlNAm/IzB/0KZeRF5tPa00lSZIkSRqEKYNOQJIkSZIkTXqnUgqN7u/TfP8AXpGZMzNzdicDM/MY4EDg312sey3w0szsa9FUncx8CngFpYFRJ+4H9s/M4/qf1eBl5n8DOwN/a3PIn4AXNxW0LF05/0CH658AvBD4VSfjajxO+RLUP3ucZ1xk5t+ArYDPU3Yo7MXlwHk9J9WhzLwS2AW4vcOhlwIvyMybe1z/FOBI4KFe5ulVY8fLHYBvUL6s19Fw4HTgRZk5Ke5dSZIkSZIkSWolIhYGNmsK/QuYHhEz2v2hbNjS/PevtaiRmU9Tvrz7ZFN4VeCKiPhaROwSEetHxHMj4oCIOJfyd4RpjWtvrUzZr7+5SZIkSdJkcBbw50psOeCtwEEMb8h1UWbeMgZ5nFYTa3tj13nVoOuyWhip8dntwM+6nTgzHwB2ouTfiX8DO2XmuNfOdauR6350sAFtw7nANpl5X5/z+TGwF539XmQWZWPdca2pnV9rTSVJkiRJGm82RpMkSZIkST3JzN9l5iHA8sCOwDGUP/Y/3ME0d1Kaq+0BrNcocOg2n+8CawPvBa6gNPtp5WnKboZHAhtn5m+6XbdTjQKaPSlflKkWdlXdBXyG8tycNda5DVJm/gLYEHgZcCJwNXAPMJvS6Owq4DhKsdXzM/NygIhYnOFFcLO6WP9Pmbkj8ALgFIZ/GamV2ynFca8BVszMAzPzrk7XH5TMfDQzjwJmAEdTGpy105jwccr7/f8BG2bmFoMq7srMi4BNgE8zenHU5ZTX6kWZ2e5rPNr63wZWAQ6jNIy8kvLefawf83eQx6OZ+UZgI0oR4B2jDJkFnAFslpkH97tgTZIkSZIkSZIGZEWeaTwG5fffN3XxM71pjmVaLZaZvwcOofzefK4FgTcC5wPXUf4e9F3K38Pm+iFwUmU6G6NJkiRJmm9kZlLqlareDby+Jl7XwKwffg3cVomtHxFbj9F6k8ag67Jq/IRSU1jnlE435K3KzNuAbYG3UDb6HcktwH8D62fmb3tZdxAy8xxgY+CbjFznNge4kLLp8cszc0x+d5GZ5wIbAF9l5IZtdwNfoTzvZ4xFLqOZX2tNJUmSJEkaT1F+dyhJkiRJktRfERGUJkHrAKsDSwCLUxqVPQg8RPkD/9WZOVrjnl7yWAHYgtK4bTlKs6e7Kc2CLm00KBu4iFidsoPcCpTn6nHKLoLXAH9Of4kzooh4KfDzSnjHzOx1Rz4iYm1Ksc2yjZ8FKY3/HqB8Ker6ebEwJSKW5Jn3zrLAkpTip4co9+YNwD96LSQbCxGxALA5pcnedGAqJe+bgMvH8jNnoml8Fm9M+SxeHliK8hl8N888H3MGl6EkSZIkSZIkDRcR21O+lD7XLZk5o4Pxm1G+jN1PN2fmmqOsuznwNcrv10fyFPBx4GON649sOveOzPxSL4lKkiRJkjQW5se6rIhYF9iSUn/6LOARShOsP2fmDYPMrZ8iYiFgK2A9Sr3gFEojvBuByzKz441qe8xnGuX3Kxs28plDqTm+CbhkgtYtzpe1ppIkSZIkjRUbo0mSJEmSJGnSi4gvAm9vCs0Bls7MkXYNlCRJkiRJkiRJE1AfGqO9ELi4z2m1nUNjQ5c9gW2AlSmbVswCbgH+Fzg1M29qXHsR8KKm4S/OzN/1MW9JkiRJkiRJkiRJkqRJZeqgE5AkSZIkSZJ6ERHLAEdUwlfZFE2SJEmSJEmSpPnWPZXjn2fmLuO1eGb+AvjFaNdFxDRgs6bQ08AVY5WXJEmSJEmSJEmSJEnSZDBl0AlIkiRJkiRJ3YqIAE4GFqucOm4A6UiSJEmSJEmSpInhzsrxugPJYnQvAhZuOv59Zj42qGQkSZIkSZIkSZIkSZImAhujSZIkSZIkaeAi4tCI2KnDMUsAZwMvq5y6HzitX7lJkiRJkiRJkqTJJTMfBK5pCs2IiHUGlc8Ijqgcf2sgWUiSJEmSJEmSJEmSJE0gNkaTJEmSJEnSRLA18IuIuCEiPhkRO0TEMtWLImJaRGwREf8D3ATsVTPXWzLz4bFOWJIkSZIkSZIkTWg/qxy/diBZtBARawH7NoXuB743oHQkSZIkSZIkSZIkSZImjMjMQecgSZIkSZKk+VxEfAN4fc2peyhfBHoCWAqYDiw0wlTfzswj+5+hJEmSJEmSJEkaLxGxPfDrptAtmTmjwznWBq4DpjZCjwObZ+Y1/cixFxGxAHA+sFNT+N2Z+bkBpSRJkiRJkiRJkiRJkv4/e/cdZldd5w/8faaldxJCSEJIUSBIR5CiCLrYVkXFFdYCKIKr+0OxLbsqqCyru7rqrgW7riKyomJdsAUbKkgRUFqAkGAoIb3PJHN+f5wh0yczaTfl9Xqe88z99s+dmXufBE7el51GXa0LAAAAAIA+7JVkZpLZSfZN36FolyY5d0cUBQAAAAAA7NzKspyb5MsdugYn+XFRFAcNZJ+iKAYVRXHWZuY09DXeZW5jkq+lcyjajUk+PpC6AAAAAAAAAAB2V4LRAAAAANgZ/DbJvC1c+7MkzyrL8r1lWZbbriQAAAAAAGB7KopiclEU07peSSZ2mdrQ07y2a68+jrgwye0d2lOT/LEoin8timJKH3UNKYriOUVR/FeSBekcsNaT5xVF8ceiKP6ht33bAtZOa6vnjA5DS5O8tizLjZs5AwAAAAAAAABgj1D4t6IAAAAA7CyKojgkyYlJnp5kRqp/oDQ6yZAkG1L946DFSe5J8qskPyvL8i+1qRYAAAAAANgaRVHMS7LfVm7z1bIsz+rjjClJfpLkgB6GH0hyd5JlSRqSjEoyLcnMJPUdJ5ZlWfRxxouS/KBD18NJ/pJkSZLGJHsnOTzJsC5LFyd5YVmWf+htbwAAAAAAAACAPU1DrQsAAAAAgCeVZXl7ktuTfKrWtQAAAAAAALu+siwXFEVxdJLLk/x9l+HpbdfmLBvgsZPbrr78Nslry7J8YIB7AwAAAAAAAADs1upqXQAAAAAAAAAAAAAAbC9lWa4qy/LVSQ5N8vUkS/uxbGGSK5KcnmTiZub+OclXkzy6uVKS/KptzxOFogEAAAAAAAAAdFeUZVnrGgAAAAAAAAAAAABghyiKoi7JIUkOSjI2yegk65KsSDIvyV1lWS7Ywr2nJXlakilJRqX6EOMVSe5P8oeyLBdvXfUAAAAAAAAAALs3wWgAAAAAAAAAAAAAAAAAAAAAAABAzdXVugAAAAAAAAAAAAAAAAAAAAAAAAAAwWgAAAAAAAAAAAAAAAAAAAAAAABAzQlGAwAAAAAAAAAAAAAAAAAAAAAAAGpOMBoAAAAAAAAAAAAAAAAAAAAAAABQc4LRAAAAAAAAAAAAAAAAAAAAAAAAgJoTjAYAAAAAAAAAAAAAAAAAAAAAAADUnGA0AAAAAAAAAAAAAAAAAAAAAAAAoOYEowEAAAAAAAAAAAAAAAAAAAAAAAA1JxgNAAAAAAAAAAAAAAAAAAAAAAAAqLmGWhcAtVYUxagkz+rQtSBJc43KAQAAAAAAAADYGk1JpnRo/7Isy+W1KgYA3KMHAAAAAAAAAOwm3J+3gwhGg+qGq+/VuggAAAAAAAAAgO3gJUm+X+siANijuUcPAAAAAAAAANgduT9vO6mrdQEAAAAAAAAAAAAAAAAAAAAAAAAAgtEAAAAAAAAAAAAAAAAAAAAAAACAmmuodQGwE1jQsXHNNddk5syZtaoFAAAAAAAAAGCLzZ07Ny996Us7di3obS4A7CDu0QMAAAAAAAAAdnnuz9txBKNB0tyxMXPmzMyePbtWtQAAAAAAAAAAbEvNm58CANuVe/QAAAAAAAAAgN2R+/O2k7paFwAAAAAAAAAAAAAAAAAAAAAAAAAgGA0AAAAAAAAAAAAAAAAAAAAAAACoOcFoAAAAAAAAAAAAAAAAAAAAAAAAQM0JRgMAAAAAAAAAAAAAAAAAAAAAAABqTjAaAAAAAAAAAAAAAAAAAAAAAAAAUHOC0QAAAAAAAAAAAAAAAAAAAAAAAICaE4wGAAAAAAAAAAAAAAAAAAAAAAAA1JxgNAAAAAAAAAAAAAAAAAAAAAAAAKDmBKMBAAAAAAAAAAAAAAAAAAAAAAAANScYDQAAAAAAAAAAAAAAAAAAAAAAAKg5wWgAAAAAAAAAAAAAAAAAAAAAAABAzQlGAwAAAAAAAAAAAAAAAAAAAAAAAGpOMBoAAAAAAAAAAAAAAAAAAAAAAABQc4LRAAAAAAAAAAAAAAAAAAAAAAAAgJprqHUBAAAAAAAAAMDOoyzLtLa2pizLWpcCu42iKFJXV5eiKGpdCgAAAAAAAAAAAMBOTTAaAAAAAAAAAOzByrLMunXrsnLlyqxcuTLNzc21Lgl2W01NTRkxYkRGjBiRwYMHC0oDAAAAAAAAAAAA6EIwGgAAAAAAAADsodasWZOFCxempaWl1qXAHqG5uTmLFy/O4sWL09jYmEmTJmXo0KG1LgsAAAAAAAAAAABgp1FX6wIAAAAAAAAAgB1vzZo1mT9/vlA0qJGWlpbMnz8/a9asqXUpAAAAAAAAAAAAADsNwWgAAAAAAAAAsId5MhStLMtalwJ7tLIshaMBAAAAAAAAAAAAdNBQ6wIAAAAAAAAAgB2nLMssXLiwWyhaY2NjRo4cmeHDh6exsTFFUdSoQtj9lGWZlpaWrFq1KitWrEhLS0unsYULF2bGjBledwAAAAAAAAAAAMAeTzAaAAAAAAAAAOxB1q1b1ymUKUlGjBiRfffdVygTbEeNjY0ZOnRoxo8fn7/+9a9ZuXLlprGWlpasX78+gwcPrmGFAAAAAAAAAAAAALVXV+sCAAAAAAAAAIAdp2MYU1KFNQlFgx2nKIrsu+++aWxs7NS/YsWKGlUEAAAAAAAAAAAAsPMQjAYAAAAAAAAAe5CuwWgjR44UigY7WFEUGTlyZKe+rq9NAAAAAAAAAAAAgD2RYDQAAAAAAAAA2EOUZZnm5uZOfcOHD69RNbBn6/raa25uTlmWNaoGAAAAAAAAAAAAYOcgGA0AAAAAAAAA9hCtra3d+hobG2tQCdDQ0NCtr6fXKAAAAAAAAAAAAMCeRDAaAAAAAAAAAOwhyrLs1lcURQ0qAerqut+209NrFAAAAAAAAAAAAGBPIhgNAAAAAAAAAAAAAAAAAAAAAAAAqDnBaAAAAAAAAAAAAAAAAAAAAAAAAEDNCUYDAAAAAAAAAAAAAAAAAAAAAAAAak4wGgAAAAAAAAAAAAAAAAAAAAAAAFBzgtEAAAAAAAAAAAAAAAAAAAAAAACAmmuodQF0VhTFAUkOTTI5yZAk65I8nmRukj+VZbl6K/ZuTHJ8kqlJ9kmyKsnCJLeWZTlv6yrvdtb+SQ5LMinJ8CSPJHkoyQ1lWbZsy7MAAAAAAAAAAAAAAAAAAAAAAADY9QlG2wkURTE6yQVJzkkVWtabjUVRjXXTagAAIABJREFU3Jbk6rIsPzSA/ccneX+Sv0sytpc5NyT5z7Isv93vwnve5xVJLkzyjF6mLCmK4qok7yvL8omtOQsAAAAAAAAAAAAAAAAAAAAAAIDdR12tC9jTFUVxepK5SS5J36FoSVKf5Mgkbx3A/s9PcmeSN6WXULQ2xyW5uiiKrxdFMay/+3c4Z3hRFFcm+VZ6D0VLWw1vSnJnURSnDvQcAAAAAAAAAAAAAAAAAAAAAAAAdk+C0WqoKIqLk/xvknFdhuYn+VmSK5N8N8nvk6zegv1PSnJNkgkdusskN6cKMPtpkie6LPv7JFcWRdHv342iKOqTXJXkVV2GFiX5SdtZt7Sd/aS9k3yvKIoT+nsOAAAAAAAAAMBAzZ8/P+95z3ty4oknZu+9905TU1OKoth0feUrX6l1iQAAAAAAAAAAAAC0aah1AXuqoijenuSSLt1XJvm3sizv6GF+XZJnJHl5klP7sf/kJN9J0tSh+7dJzi3L8q4O8wYlOS/JR5I0tnX/bZJLk/xzP5/Oh5K8oEO7JcmFST5XlmVzh7MOSvKFtueRJIOSXFMUxdPKsnykn2cBAAAAAAAAADvAtGnT8tBDD21qz5kzJyeddFLtCtoCn//85/OP//iPWb9+fa1LAQAAAAAAAAAAAKAf6mpdwJ6oKIpDU4WJPaklyellWZ7ZUyhakpRl2VqW5W/LsrwwyaH9OOb9ScZ0aN+Q5DkdQ9Ha9l1fluV/JXlll/UXFkWxXz+ey/QkF3TpPr0sy092DEVrO+svSU5J8rsO3eOSXLy5cwAAAAAAAAAABuLHP/5xzjvvvH6Hol1//fUpimLTdckll2zfAgEAAAAAAAAAAADopqHWBexpiqJoSPKldP7en1eW5dX93aMsyw2bOWNWktd16GpOclZZluv62POaoii+2mHdoFSBZedsppyLkzR2aH+lLMvv9XHO2qIozkpyR5Kmtu7XF0Xx72VZPrCZswAAAAAAAAAA+uWiiy5KWZab2meeeWZe//rXZ8qUKWlsbL/VYa+99qpFeQAAAAAAAAAAAAD0QDDajnd6kiM6tH9eluWXt/EZZyap79D+TlmW9/Vj3YfTOVDtlUVR/ENvgWpFUQxJ8ooe9uhTWZb3FkVxTZJXtnU1tNV8aT9qBAAAAAAAAADo0z333JPbb799U/sFL3hBrrjiihpWBAAAAAAAAAAAAEB/1NW6gD3QeV3al22HM07r0u5X8FpZlncl+UOHrmFJ/qaPJacmGdqh/buyLO/uV4Xda3pZP9cBAOycWlYkC76T3PfZZNUDta4GAAAAAAD2aH/84x87tV/xiq6f+wYAsIdZdmdyxweSez+drF+SbFiblK21rgoAAAAAAAAAoJuGWhewJymKYmaSZ3XompdkzjY+Y2KSQzt0bUjy2wFscX2SYzq0n5/k+73MfV4Pa/vr16lqe/J38PCiKPYuy/KxAewBALBzWL0g+flJ7YFoRX1y/FXJ1JfXtCwAAAAAANhTPfZY59sPJk+eXKNKAABqbMV9ybWHJxtWt/f98c3tjye9MDnua0nTmB1fGwAAAAAAAABAD+pqXcAe5tld2j8vy7Lcxmcc3KV9e1mWq3uc2bMburRnD+Cs3/X3kLaa7hjAWQAAO69b39keipYk5cbkd69JNq6rXU0AAAAAALAHW7VqVad2Y2NjjSoBAKihJbck1x3dORStq4U/Sm56y46rCQAAAAAAAABgMxpqXcAe5uld2r9LkqIoiiSnJPn7JMck2TfVz+aJJPcl+VmSb5ZlOa8fZxzUpT13gDXev5n9OjpwG5x1eJezfjHAPQAAam/+Vd37Nq5NFnw3mXbGjq8HAAAAAAB2IWVZ5pZbbsndd9+dxx9/POvXr8/48eOz77775oQTTsjw4cMHvGdra+t2qBQAYBfSvDz59cuTluWbnzv/quTIjyeDx2//ugAAAAAAAAAANkMw2o51VJf2XUVRTEvyxSQn9zB/att1SpIPFEXx+STvLMtyTR9nzOzSnj/AGh/q0h5XFMWYsiyXduwsimJskrFbeVbX+bMGuB4AYOe26DeC0QAAAAAAoBdPPPFELrvssnz961/PokWLepzT1NSUk08+OZdcckmOOeaYXveaN29e9t9//17Hn/3sZ/fY/+Uvfzlnn312j2Pvf//78/73v7/XPefMmZOTTjqp13EAgJopy+SmNyWr5/Vz/sZk8R+SfV+0XcsCAAAAAAAAAOiPuloXsIfZp0t7aJKb0nMoWleNSf4hyW+Koui6T0eju7Qf7395SVmWq5Ks69I9qh/nrCnLcvVAzkr32no6BwBgF1bWugAAAAAAANgpXXPNNZk+fXo+9rGP9RqKliTNzc259tprc+yxx+a8887Lhg0bdmCVAAC7qAXfTh66cmBrfvm3ycb17e2NzckdH0x+eFDyf0cm9302KVu3bZ0AAAAAAAAAAD1oqHUBe5iuYWJfTrJX2+PVSS5P8n9JHk4yLMmhSc5JckKHNYcn+XZRFM8qy7KlhzOGd2mv3YI61yYZ3KE9Yjue01FP5wxIURQTkowf4LIZW3suAAAAAAAAANA/X/rSl3LuueemtbVzsMaMGTNy0EEHZejQoZk/f35uvPHGbNy4cdP45z73ucyfPz8/+MEP0tDglhcAgF5Nen4y49zk/s8PbN1Vg5PxJyQT/ya5432dx246P1l6azL5tGTQuGTMYUld25/JHvtl8vj1SdOYZOzRyYgZSfOyZOi+yaO/SFY/lOzzN8mIWUlRbJOnCAAAAAAAAADsvtwluoMURTEoyaAu3ZPbvv4lyfPKslzQZfyWJF8uiuLtST7Sof8ZSd6d5NIejuoaWLZuC8pdm2RMH3tuy3P62nNL/EOSi7fBPgAAAAAAAAB01bohWfNwravY/Q2d3B4ysZu57bbb8qY3valTKNphhx2WT33qUznuuOM6zV20aFHe+9735rOf/eymvmuvvTbve9/7ctlll3WaO3ny5Dz44IOb2h//+MfziU98YlP7yiuvzLHHHtutnr322isnnXRSkuT3v/99zjjjjE1jF1xwQd761rf2+lwmTpy4mWcLAFAjDcOSYz6X7HNqcuO5SfPS9rG6pqS1ufe1i35TXT2Z+9nq2lrjjk2W/SnZ2HYb6eSXVH2DxyeLb0we/VkydGoy6XnJ6EPbAteOSOoaq/mr5iWL/5AUdcm+L66e04bVSVFf9dUPStY+ksz/VjV/ysuqP2MPRMuqqr7B/fis3nWPV9+zsjXZ53lJ47a4HRYAAAAAAAAA9ly75120O6f6XvqXp+dQtE3KsvxoURT7Jnlbh+63FUXx8bIsV23m3HKAde7sawAAdh2lP+4AAAAAALuZNQ8n39+/1lXs/l78YDJ8Wq2r2C5e//rXp7m5PYjjhBNOyHXXXZehQ4d2mzt+/PhcfvnlmTlzZt75zndu6v/whz+cM844I0972tM29TU0NGTatGmb2qNHj+6018SJEzuNdzR8eBVcMW/evE79o0eP7nUNAMAuYerLk3FPT3736uSJ3yXPvSFZeV9yw5m1rWvx7zu3H/5edXW06oHk8eu3zXk3X5A0jkqmnJZsXFddQ6cm089Kxh5ezVl4bXLXR5Lld1RBZx01DKsC2B66snN/XWPS2tL9vNFPq0Lp6odWAW1No5Ipp1cBdWsXJkv+mBQNyYhZyV7HJOsXJy3LkwnPTJbcWs2bcEIybL9t8/wBAAAAAAAAYBcjGG0HKctyTVEUrUnqugz9Z1+haB28N8k5SUa1tccmeX6Sb3WZ1zUobchAa+1hTU/hazvqHAAAAAAAAABgNzBnzpzccsstm9ojR47MVVdd1WMoWkfveMc78stf/jI//OEPkyStra352Mc+li996UvbtV4AgN3CsCnJyb9IFt+YjDuqCu1qGJZsWF3rynasluXJA1/p3Hffp5Pjr6zC4v70z72v3bC6eyha0nMoWpIsu6O6OrrrIwMqN0kV5jb7X5Kppyet65MV9yarH0we+Umy4u5kw6pk3WPt8+sHJyOe0vYzHpEMm5pMeFYy9oikblBSFAOvAQAAAAAAAABqQDDajrU6yYguff/Tn4VlWa4uiuI7Sc7u0H1SBKN19el0/55szowk39vsLAAAAAAAAABgi331q1/t1H7zm9+cSZMm9Wvthz70oU3BaEly5ZVX5jOf+UwGDRq0TWsEANgt1dUn459RPa4flJwyJ7nu6bWtaWdQbkh+c3qtq+hdy/LktndVV39sXJcsu726enLEx5KnXiAgDQAAAAAAAICdXl2tC9jDLOvSfqwsy3kDWP/7Lu0De5izvEt7/AD2T1EUw9M9sKxr3T2dM7QoimEDOSvJhH6cMyBlWT5eluWfB3IluX9rzwUA6FlZ6wIAAAAAAGCn8Zvf/KZT+9WvfnW/186ePTtHHHHEpva6dety8803b7PaAAD2KOOOTl78QDK4622c7NZueVvyYL8+zxkAAAAAAAAAakow2o51b5f2IwNcv7BLe1wPc+7r0t5vgGd0nb+kLMulXSeVZbk4Sdf+qVt5VtfaAQAAAAAAAIDdwNKlS3P//e2fWzZ69OgceGBPnwfXu+OOO65T+6abbtomtQEA7JGG75+87LHk9OXJ0ZfXuhp2lJvfmmxYUz0uy+oCAAAAAAAAgJ1MQ60L2MP8OckpHdrrB7i+6/zBPcy5q0t75gDPmN6l/Zc+5t6VpONdxzN7OH8gZw1kLQAAAAAAAACwi1i0aFGn9qxZs1IUxYD2OOCAAzq1H3/88a2uCwBgj9c4Mpl1XnUlycZ1SYpk1f3V4+H7J0tuTn7x3L73GTolqRuUlC1Ja0sy7phk/PHJre/Y7k+BAWhZlvzvsJ7HBo1PGoYnG1YkE5+b1A9OBu+TNC9O1j6aHPL+ZNTsZPFNSV1TMubwpNyQ1A/asc8BAAAAAAAAgN2eYLQd6/Yu7dEDXN91/uIe5tzZpX1IURRDy7Jc088zjt/Mfl3HOgajPSPJD/pzSFEUw5IcMoCzAAB2QT5VFwAAAADYzQydnLz4wVpXsfsbOrnWFWxzS5cu7dQeNWrUgPfoumbJkiVbVRMAAD2ob/vM3lEHtfdNfE7v8yf+TXLydb2P9xaMVjcoedW65BsDC8vdZPShybI/9TzWMCyZ8Oxk4Q+3bO891fpF1ZUkD32z+/hfv9/72iGTkoPenaxZkCz9U/LoT5MJz6p+n8YckUw8uQrLWz2/ClprWZE8/L2kaKjGJr80qWts32/NwuSxOUlRJJOenzSN2bbPFQAAAAAAAICdmmC0Hev/UqVjPHkXx/SiKAaXZbmun+sP7tJ+uOuEsiwfKYri9rSHjjUkOSHJT/p5xkld2v/Xx9xrk7yxj7V9OTGdf/9uLcvysQGsBwAAAAAAAGBHq2tIhk+rdRXsgsqy84eJFMUWBmBs4z0AAOinyS+pgqy6mnVe3+umvDxZ8O3u/Yd9aPNn1g9ONvZwi21Rnzz318m3xyWtLd3HX/iXZNjUZOP6ZN43kiduSAaNS4btn9x0/ubP7csZrcnczyY3vann8ef8KhkxMxk8MVlwdfU9a16ejDks2e/vqnrvuKTvkLFd0dqFyc0XdO57/JfV10euS/7yb72vnXt5++P6ocnGXj4LeviMZNTsZMPKpGlsFa7W2pIsvbV6PPE51c95+jnJ+OOqgLzm5cn6J5KUybD9Ooev9aVsrepfeV8yYlYV8lbU9W8tAAAAAAAAAFtNMNoOVJblwqIofpfkuLauxiSnJPlRP7d4Xpf2r3uZ9920B6MlydnpRzBaURQHJDmmQ9fqzay7LsnaJEPa2s8oiuKAsizv3txZSc7q0v5uP9YAAAAAAAAAALugsWPHdmovX758wHt0XTNmzJitqgkAgAGYeX73YLShU5NJL+p73bRXdw9Gq2usQsKSZNILk4U93Ea735nJyKdUIWJdHXxx0jgimXxaMv9/O49NeFYVipYk9YOSGWdXV1KFZ93y1p7D1vpjn1OTokgmPb/n8bFHJxNObG9PPb26upr9L70Ho71kXjJ0SnJlfe91HPah5LZ/6nnsqE8l085IGkYk3+xnCNjOpLdQtCRZdX919ebRn1ZfH/pm73PqBiWt67estiSZ8Ya2B0Wy4q6keWkV1DdkUvKUtySD965C4oqG6uufLqqC2SY8Kxl5QDJ8ehW6NuVl1e/30tuSNQuTvY5NBnX4O9PG5iqIrc6t/gAAAAAAAMCeyf8t3fG+nPZgtCS5MP0IRiuK4sQkT+/Q1Zrkx71MvyLJe5I8eVfEy4qimFWW5X2bOebdXdr/W5Zlr3d/lGW5piiKq5O8psseZ/d1SFEUT0lyWoeuDUm+sZnaAAB2PWVZ6woAAAAAAGCnMH78+E7te++9d8B73HPPPZ3aEyZM2KqaAAAYgEnPS46/KvnLh5JVDyTjT0ye/pmkvqnvdVNemhz+H1XA2YbVVXDUcV9PhuxTjU89vedgtP1fk4x8anLXR5MNK9v7G0Yk019bPX765UnzsuTRts8AHndMcvyVvdfSODKZ9prk/s/3+2lvUtQlT31b9XjYfsm0v0/mXdF5fPZF/dtr7BHJ4InJukc79488oAqbK4pk5huTuZ/rvnbGG5ID35nc++lkzfzOY42jk+lnJw1tn3d85H8lN/+//tW0p9iaULQkuf8LPfcvuz155Nre1z3+y+p60p/6+buSJPVDqtC1Q/81WXxTsurBKmCtcXhSNCYjZiV1bbeMr16QrH4oGXNI9fsOAAAAAAAAsIsSjLbjfTlVGNqBbe2Ti6K4sCzL/+xtQVEUE9rWdfS/ZVn2+LFnZVneVxTFV5Oc09bVlOQrRVGc0lvQWVEUL0lyVoeu5iTv39yTSXJJklclefJj5c4qiuK7ZVn2+FF2RVEMbnsuHe+E+WJvzwUAAAAAAAAA2PWNGTMmM2bMyP33V7cHLFu2LHfddVcOPPDAzaxsd8MNN3RqH3300du0xqIotul+AAC7nf1eWV1lWYV39deB70ieekGy5q9VqFjHtfv9XTL/W53D0aa9Jpn43Crs6Tm/TG57V7L0T8mYQ6uQtWH7VfOaxiQnX5esezxpbUmG7rv5Wo7676R+cHLvf/c97/TlyW0XJY/9Ihk6JTngbcmkU9vHj/1KMvppycIfJ4P2SmacW4XH9UddQ3LYh5I/nJOUrW19TVXfk9+bqaf3HIy236uqELaD35vceG7nsdn/1B6KliSzzk9W3JXc95n+1cXOaePa5K7/qK6BGLJvsu+LqoC0Jbckj/2883jTmOq1NPm06jU0bGoVXDhsWjLmsKRpVPvc1o1JuaG61ixMhk5KGoZVY2WZpKx+LwEAAAAAAAC2EcFoO1hZlhuLorggybVJnvw/wB8timK/JJeUZbm04/yiKJ6T5DNJZnToXprknzdz1MVJTksypq19XJKfFUXxhrIs7+6w/6Akb0zy0S7rP1qW5UP9eD4PFEXxiSTv6NB9dVEUFyb5XFmWzR3OOjDJF9pqedLi9C+ADQAAAAAAAADYhZ1wwgmbgtGS5Iorrsill17ar7V33XVXbr755k3twYMH58gjj9ym9Q0aNKhTe/369dt0fwCA3caWBMrWNSbDp3Xvrx+cPPO7yaM/T5bdnow9Mtn75PYzxh6enPzTvvcePKH/ddQPSo76r2Taq5OfHNPznHFPr8Kkjv5U7/vUNSQHvbu6tsT01yUjZiYLvluFok19efXcn7T3KVX42Z0fbO+b/Z7qe5MkM9+QDJmYzPtGFVY15eVVyFynGhuToz+dHPiuZN7Xk9vfu2W1smta+9dk7md7H29eWl1Lb+t7n0F7Jeuf6HmscXTSsqzt8cgq0G/GG6vX5BM3tO1dJJNekIw/rgpgaxxVvX7qB3feqyyTjevaw/02Nle/wy3Lk3WPJSNmCV8DAAAAAACAPYhgtBooy/KnbeFoHT9u7v8leVNRFL9P8tckQ5IclmS/Lsubk5xRluWDmznj4aIoXpbkuiRNbd3HJ/lLURQ3J3kgyagkRyQZ32X5D5MM5O6Hf0oyO8nz29qNqZ7be4uiuCXJyiTT287qeDdMc5LTyrJ8ZABnAQDsQspaFwAAAAAAADuN1772tfnqV7+6qf3JT34yb3nLWzJx4sTNrr3ooos6tV/1qld1CzLbWqNHj+7UfuQRtzMAAOwQdY3JpOdV144y7qjex0Y8ZcfUMP746upJUSSHfCCZ+cZk6Z+S0Yckw6Z0nrPvi6prc4ZPSw5+TxVudc8ntrrsfusrUItdR18/wydD0ZKkZUVy/xerq6u7/r173/AZVahfw/Aq8GzVvGTDyr5raRyZjH9msvqBKmCttTlZcnPSNDYZPj1Z8sdq3pgjklnnJavnJ+sXJQ9fk6xfnJQbq/HpZ1evrVUPVO8/409MBu+dbFhVBRXWb9u/awIAAAAAAAADJxitRsqy/GRRFBuTfCTJ0LbuxiQn9rHssSQvK8vyhn6ecX1RFKcl+Uraw8+KJEe1XT25Msm5Zfnk//nt1zkbi6J4ZZIvJOn4cXMTkvR2l8rjSV5XluWv+3sOAAAAAAAAALDrOvnkk3PYYYfltttuS5IsX748Z5xxRn784x9nyJAhva772Mc+lu9973ub2kVR5G1ve9s2r2/69OlpampKc3NzkmTOnDlpaWlJY2PjNj8LAIAaK+qqsLFlt3cf2/+1O76e3gydXF3bwuTTeg5GK+qSsnXbnJEkIw9IXnRXe/vx3yR3XJI89vMq2OqkHycjD0zu+Xhy5wfb5zWMSA56V3L7QD7bmV3WqvsHvqZlRbLwh937m5ckS5a0t5fektx4Xu/7PPDl6toS445JhkxKRh1UfR00Llk5N3nom8mah5OppycjZlWvq5Vzk33/Nhl9cLL20WTYfknL8mTtI1XQYcPIpGlMUle/ZbUAAAAAAADAbkwwWg2VZfmZoih+kuSSJC9JMqKXqY8muTzJx8uyXD7AM35cFMXBSd6fKrRsTC9Tf5/kI2VZfnsg+3c4Z1WSVxVFcXWStyc5tpepS5JcleTisiwXbclZAAAAAAAAAMCO9+ijj2bevHlbtHbatGlJki9+8Yt5xjOesSl87Prrr8+JJ56YT33qUznmmGM6rXniiSdy8cUX59Of/nSn/ne961055JBDtqiOvjQ1NeX444/PnDlzkiTz58/Pi1/84px//vmZNWtWhg4d2mn+xIkTM3jw4G1eBwAAO8j0s5JbLuzcN2y/ZO+Ta1LOdjfhxGSfU5NHrmvvG7x3cvyVyc97ec4HvD25+6Pd+8cdmxRF8sTvuo8ddFGXc09ITvlZ93mHfKC6yrJqF0X1ddFvk0eu7T5//AnJc36VPPg/ybyvJxvXJlNflTzlzcmvXpr89fs9P4ckOfK/kmV3JPd/vvc50B+L/1B9ffi7PY93/R2be/nA9h8yKZnysmTFvVWQ4NqFSeOIZPW8ZPiMZOmtSf3QKoBw7JFVMNvkl1QBa/VDk41rkpZV1dqV9yStLcnYo5K6huq1tnFNFTBXNCSNo5LWddVcAAAAAAAA2MkIRquxsizvT/KaoiiGJDk+yeQkE5M0J1mU5E9lWfbwcXQDOuPxJG8qiuKCtjP2aztjdZK/Jrm1LMsHt+aMDmddneTqoij2T3JEkklJhqUKd3soyW/LsmzeFmcBAOz8yloXAAAAAAAA28wZZ5yxxWvLtrCDI444Ip/85Cdz/vnnp7W1NUly880359hjj83MmTMze/bsDB48OAsWLMiNN96YDRs2dNrnuc99bj74wQ9u+ZPYjAsvvHBTMFqSXHvttbn22h5CGZLMmTMnJ5100narBQCA7eypFyTrFiX3fjLZsDIZe3QVElZXX+vKto+iLnnm96ugpkW/SYbPTGadnwybmsw8v3uA09DJyaGXJvOvStY83Hls5huSDWu6B6PVD0kmv3iAdRWd25Nf0nMw2ow3VHOnv666utbam5N/lkw8JWndkDzwpaTc2H3O8d9Mbn1XsmZ+97HjrkimnVk9XvzHZN1j1XljDq36vlF0X7M5B7072dic3POxga9l97Z2YfWe1JMV97Q/XnV/svBH1eObL+jn5kV6vJ+tYUQy9fRk1dzk8V91Hpv5xmT/s5KxhydFfTL/6ur1OWTf6nU18ZTej2tZVe05aEIydFI/awQAAAAAAICKYLSdRFmWa5P08HFo2/SM5iRzNjtx25z1YJJtErYGAAAAAAAAAOw+zj333IwZMyZnn312Vq1atal/7ty5mTt3bq/rzjnnnFx++eVpbGzcbrW96EUvyqWXXpqLL744Gzf2EJgAAMDuo6hLDrssOeQDyYZVSdPoWle0/dU3JU/9f9XV0VH/XQWGPfDlpNyQjHxqcuJ3kvrBySnXJ79/XRWC1jQuOfAdyfRzqvkr7k7u+0ySMmkam5x49dZ/H6edmdz/hWTJze19445Jpr6y9zX7nJrc9+nu/XWNyZjD2h43JBOf2z10rX5otX7JLcld/959bNILO9RxVPcz9joueeKG7v1Hfzq56z+rYKiOZp6XHPah6nFvwWj1g5PTVyaP/iy57Z+qwLbmpclBFyV/+bee18Bm9fIhnxtWVqGBPZn7uerqScffxfHHJ0OnJGsWJCvuTdYv6jx3+PTqfWPNgqRxVJLWZMjkKghu5T3JsOnJhGcme5+UlK3JoLHJ+iVJ44ikaOgcoFiWXdqtVfBhfVPnM1tbqq912++/IQAAAAAAALD9CEYDAAAAAAAAAGCHesUrXpFnPvOZueyyy3LFFVfkiSee6HFeY2Njnv3sZ+fiiy/Occcdt0Nq+5d/+Zecdtpp+drXvpYbbrgh9957b5YvX561a9fukPMBANjB6hr2jFC0vtQ1JMd8Ljnio0nzsmTYlPaxETOS5/4m2bAmqR/SHkhUNCRHfyo59NJk9fxk1Oxqn63VODI55RfJA/+TLLstGX1YMvMNVVhYbyY9P9nned1Dz/Y/Kxk0rr19yAeTxTcSLAWJAAAgAElEQVQmzUva+w69tPr5z74oWXJT8ljbZ1DXD06O+1rSNKrvevd7VfdgtLrGZMorkvHPTH75t8nqts+a3ufU5NDLOtT3uuTBr3bf82mXVN/LSc+rro72eW7y85N7ruXwjyS3vqPnsVlvSo78RLL2keShq6pAqvWLkykvq4Lwhu2XLP1T8tM+/t41+SXJot9Wj1ubqzXL7uh9PnuOJ38verPqgeT29/Q9p7egwJ4Mn5Gsur9zX+PIZNyxyfI/J2v/2nnsmC9Vr6U1D1fz1j2WrH4omf+tZOV9SV1TMvm05ClvrkIzN6yuroe/mzz4P9X725RXVK/3jqFsSbJhbdKyPBkysf/1AwAAAAAAsFlFWfbyyT+whyiKYnaSO59s33nnnZk9e3YNKwIAdjnfKHrun35OcuwXd2wtAAAAAAB92LBhQ+67775OfbNmzUpDg89Vo3ZaW1tz88035+67786iRYuyfv367LXXXpk8eXJOOOGEjBgxotYlbhfb6/X45z//OQcffHDHroPLsvzzVm0KAFvBPXrADtHaktz98eSvP6gCjaaclhx0UVJX33neqnnJgquT5qVVmNqEEzvssbEKY1uzMNnrGcngvfp37o3nJw98qWrXD02O/0YVIpYkZWsV1NQ4Ohk6uXOo0qO/SH5xSuf9iobkxfcnw6b2fN7iPybXHd3z2HHfSG59exV+1tUL/5yMOmgzz2VD8s3G3sfP7OXfHfR279TmDNor2bg+2bCy7znrew7S3mTMEcnSW7asBtgSYw5PNq5LVtzVuf/Z1yUtK5ObL6jC0kYdnLQsTcY+vQppXPijZN2iKnxt9j8nk16YDNmncwDjivuqtaMPqeaVG9qDIdc+Ur1vNAxJxh7V+/sE7cqyCsQbMilJWYVRzv9W9XOYeW4y6/xaVwgAAAAAwC7G/Xk7jjubAQAAAAAAAACombq6uhx99NE5+uhe/nE/AADA5tQ1Jge9s7r6MnxacuA7etmjPhl7ZHUN5Nxjv5gcemmy6oEqpKthSPt4UZeMflrPayeenBzzheS2dyfrF1fBacd+pe+woxEz2sKSWruPjT8+mfGG5M4Pduk/YfOhaElS11CFMS27vfvYfmf0vm7cscni33fvP+YLVSDRHZf0vO4FdyZD9u49WG3YfslL5iXL/5L8qJdAzVNvTMa1/V2ybE1W3l+F3o07Klm/pAqiaxyVpKxC55b/ufo5NS9LBo1Nivrk/i8kC77T+/ODrpbe2nP/nFM7t598Xay4p/vcW99RXVvr4Pclrc3JyrnJ4huTEbOSfU6tgthGHZQ0jEiaRifNS6owsFUPJCmr94sNq5PV86v3xbFHJhvWJMvuqN7XRsxKHroqeeS6JK1V0OS4o5J1jydLbk4aRyZjj07qm7b+OWwP65ckd/9nMvezvYcr3vSm6nrZ48ng8Tu2PgAAAAAAYLMEowEAAAAAAAAAAAAAwJYask91DdSM1yfTz67ChgbvXQV59aVpTDLhpOSxX3TuH3t0Fah28MXJxvXJA1+sQo/2OTU55ov9r2fmG5M/vqVzX8OI3sPkkmS/v+sejFY3KJl8WhXC1FMwWsOI9iCip16Q3POJ7nMOaDtzxFOr0Lg1D3ceH7JPMuaw9nZRl4yc1d4evFf3PUcfXF0dTXp+++O7PpLc2ku43pll9fXnz0ke+3nPc05fmTQMTVbel9x4frLy3upnVjQkM85Jhs+sQqju/2Lbcy6SckP3fRpHJS3Lez4DOrrzA53ba+b3/vu5NXoLDzzxO8mkF1TvYSvursIVh+zdeU5Z9v3etn5xsmZBMvLApH7Q1tW5fkly98eq19eGlf1b85vTk+dcv3XnAgAAAAAA25xgNAAA2G7KWhcAAAAAAAAAAADszIq6ZMjE/s8/5ovJnL+pwreSZOjU5Bn/Uz2uq08O/3By2L8l5cakrnFgtcz6h2Tj2uSe/06aFyfjT0wO+3Ay5pDe1zzlzcnyO6uwr6QKPTvhqmTQ2KRpdDJsWrJ6Xuc1U19RPe+kCoeb+9lk47r28aaxybQz2p/TIf+a/P6stN+PVSSHXDrw57c5k17UczDafq9qfzz9rJ6Dp+qHJI3Dq8cjn5o8Z07v5xzx0eraXGBUa0vyxO+SuqYqBK5+cNK6MWldn5StyYKrk7/+KFn0m2SvY5OppyfL/5z8+bKe95vwzOr7tuDbPYfRwUD9+mUDXzP++Op9Yc2C5PFfdR5rGlO9py27PRl7ZBVutnFdMupp1XvC3icnrc3Joz+rvrZuSJ74bbL0tiqYbUs8/sukeVn1fgUAAAAAAOw0BKMBAAAAAAAAAAAAAMCuYPi05IV/SZb8sQrHGntkUj+o85yirj14bCCKIjnwHckBb6/2rqvf/Jq6xuSYL1ThZasfSsYc2l5PUZc885rk+hckaxdWfeNPTA7/SPv60U9Lnv3T5I73VaFeY45Mjvx4Mmhc+5zpr02G7ZfMvypJXTL15cnezx7489ucUQck089JHvhSe1/T2OSgf2pv73NqUjQk5YbOa6edOfDz+gpFS6rv7YRndumrT+qGVo+nn1VdHa1b1Hsw2gEXJhNOrK7D/yNZckuy9pFk4ilJ44hqTtmaLL6xOvuRnyR/+ufOexzx8apv45r+PEPobtFvq6snzUurK6ne4560+qFk4Q+3X02r5yVNh22//QEAAAAAgAETjAYAAAAA/H/27js8zurO2/g9Rb1LtmxLstwbtjHYmF4NobcACYGQTkJ62c2mbMiml01v+242bbPJBkgjpIcNSSiB0AnVNmCMe2+SrK6Z949jZTSaGVnFtlzuz3Wda+Y5v3POc55pBlvzlSRJkiRJkiRJkqRDRTQOY07cf+tHIhAZRChaX0XjQuuvagFctiqEcOVXQtmMzECw2lPh7D8PvP64M0Lb3074DtSeAZv+DMUNIXisbHqqXjg2BLs9+u5UX+l0mHvj/t/bYBSMgfLZ0LQsvT9WBLVnpo6jeTDmhMz5kWjqtVW9CCZeAZvvgqI6GH8OxAoh0QF/f3/28x/zOTjqX8L97jbYei889QnYfDdMegXM+ReoXhhqT9wIy76UfZ3iRigcB8ke2PFoZr32zHBN2+5PBWlJw7VrKVQZjCZJkiRJkiRJ0sHEYDRJkiRpv0mO9gYkSZIkSZIkSZIkSZIkaXRF4zDm+NHexeBEIjD11aHlMvtdUHsabPxTCAyrvxDyqw7cHgcSicC8f4P7Xknaz6/NeS/kVwx9vfJZofVVMjn3+OpjU/fjRSFMbfw5mePiRTDtDbmD0c5/CAprw/2eDtj4xxDWN/YUyCtPH5tMwu5V4X5+JbSth542+MNx2dcunQbHfQPuvCD3dZxyC9z7itz18jnQtDR3XYeW+66FydeM9i4kSZIkSZIkSVIfBqNJkiRJkiRJkiRJkiRJkiRJkiQNVvXC0A5Gk6+BgjGw8ofQ0woNl8PkV+679SecC9F8SHSm99ecALVnDn6d8jlQNgOan0vvH3tKKhQNIFYA9RfnXicSgdLJqeP8Smjfknv8/I9B3fnhPFvuzT5m0tW5g9GO/SLM+adw/6ZIjj3F4Zou2PEELP8q7HwyXNPs90DrWrj/tbn3p9HRthGKxo/2LiRJkiRJkiRJ0h7R0d6AJEmSJEmSJEmSJEmSJEmSJEmS9pEJL4GTfwCn/QymXBfCw/aV/Eo4+X9D+FevsafA6b+AaDz3vP4iETj+W5BXnuorHAeLvjbyPRaMgZJJWc4ZD48NwLQ3ZZ9bf2m4bbw6SzECjVemDuOl2deYfkO4rToaTvwunP8gnPkbGH82TH1N+mPX15iTYMkfs9cAzn0Aznswd724Ea5N5q4DnHPPwHWAhpfufczhpmXFaO9AkiRJkiRJkiT1YTCaJEmStL8k9/IDRpIkSZIkSZIkSZIkSZIkHWoaXwYv3QCn/hTOuRvOvguKJgx9nXFnwsXL4aQfwCm3wIVPQfXCke8vEoFZ78nsn/IqKKwN9ydeDnmVmWOmXR9u534QCmrSa7PelR641ju2v8mvHHh/M9+RvX/GW6B6EUTzMmvxEqicB6VTc69bc1y4PfoT2euTroHaU8N15FLcCKfclLs+5mSomJe7PljRgpGv0V9eJRz9SXjZLqhcMLS5Xc37fj+SJEmSJEmSJGnYhvDreCRJkiRlMPxMkiRJkiRJkiRJkiRJknSkKRwDjVeNfJ2i8SGwbF+b/a4QJrby+9C9G+ovg3k3pup55fCSu+H+18H2R0Ow2/yPQsMloV61AM57EFb+CNrWw/hzYOIV6eeY9U5Y8zNoXZvqa3gpjDlx4L3NuAFe+B507Ur1lU6HiVdBvAgaXwEv/jB9ztQ3QLw4tAnnwYbbM9edcH64nXQNPPkRSCbS69NeH27LZ+XeW+U8iBXmrk+8MgS3PfLO7PVrEiGYLtEDt+T4ylJxI8z/CDzwhuz1M38PpVNgy725x0w4D8aeCj0dkOyCuotCqFy8ONSP/gT89UpIdKXmNF4Nq3+cfb3uluz9kiRJkiRJkiRpVBiMJkmSJEmSJEmSJEmSJEmSJEmSpMPL9OtDy6VyPpz/MHS3QqwoBHr1VToV5n849/zSKXDu/fDC96HleRhzCkx9XeY6/ZXPgpfcA898DnY9A2NOgPkfD6FoACd8OwS3rfkpRPJg8rWw4NOp+Yu+Dve8FHY9neqrPSOMAyibBqfdBg+8Hjq2QqwYjv1cCHeDEMD2yHsg0ZG5t6l7wtMmXglrfp5ei8Rg0tWQ7IZH3gX0+8WyE69KXXs0FoLaNvwh8xxzPwBjT8v+2MSKYdwSiOXD7lXZxwAc8zmoOjp3veESeMm98OLN0NMGDZeG/eQKRlv5g1DPK8295sGkuw1aXoDdK8Prt3J+eL0mE+F5a98EdRdAfjU0LQ21kknQ0w6dO6FgDERzfKUs0QORaOq57OkIz0WiI5y3pxW6mqBtQzhvXnl4L8RLDtz1S5IkSZIkSZIOewajSZIkSftNcu9DJEmSJEmSJEmSJEmSJEnS6IkXD39ucT3M+9DQ51XOh5N/mL0WK4DF34Djvh6O+wetlc+A8x6Etb8MwWqV80PwV6wwNabhEqjfBLtfhOLG9BCswrGw5I9w37XQujbVv+hr0HhluD/vw7D5TujYlqrPeV+4XoBZ74TlX03V8qtg7r+m73PytZnBaNECmPgyKBwD1Ytg+yP95lwTQtEAao6HaD4kOtPH5FWEcLm9qVkcWl8VR4XHrL91v4afloX7jS+HCeeFELHVP4GmZTD+JSFobPw5sOF2WPrF8Dy1roGyWVA+M+yzqwnW3Jq+9rTroXgiNFwOFXMgmrf3vSeTsO5XsOonsOlP0NUM098UXqtPf3rv8wEee+/gxgFMegWsuiWzv+FyWP/77CF62VQvCo/dzLdD0QTo6QyvgaZl0Lk9hLmVzQghdOWzYcffQ2Dbzidg55N7HqdLobA2PP6RvBCyJ0mSJEmSJEk64hiMJkmSJI2I4WeSJEmSJEmSJEmSJEmSJGkf6x+I1le8OISIDTg/CqVTs9dqT4PLVodgtLxyyCsL43tVLQjhay/eDO2bQyBYwyWp+sIvw9hTYMMfQwDWlFdB2fT0c0y+Dpqfg2f+PYSGFdbCyTeHUDSA034B91wB2x8Oxw2Xw8KvpObnV8Kka2Dl/6SvO+0NIZRsOOKlex+z+ieh9fXi/4aWTduGECKXy4rvhNsnPxJuy+dA6TSY9jqoXgwlEzPnPPFhePpT6X3Lv5I5bl/JFooGsPa2oa2z/ZHQ9hbeNlD9wTemH0ficNrPQ6Bc9aLwOuqvuzWE7kVj4floehYiMSidAokuKBwH8aKhXYskSZIkSZIkaVQZjCZJkiRJkiRJkiRJkiRJkiRJkiQdSSKR7KFcvUqnwrwP5Z7b+LLQBlr/6I/DUR8MAWxl09LD10omwvkPhVq8BPKrMtc4/luhf/VPIZoPk6+F+R8b3PVlM5hgtP2taWlo638z2js5NCS74e7LDuw5y2ZC41XhtdfdBsu+AF1Nqfr8j8GU63IHD0qSJEmSJEmSRsxgNEmSJGl/SSZHeweSJEmSJEmSJEmSJEmSJEmjJ14E5TNy14sbctdi+bDoy7DwSyFobaQKx498DR3+mp+Fpz+du/7kR0IDGH8OFNVDrACqF0NPK6z/PWz4Q6hXL4LaM2HGm6FsOnTuhFgxJLugYxsUT9w3r21JkiRJkiRJOswYjCZJkiSNhOFnkiRJkiRJkiRJkiRJkiRJ+8++Co6a+FJYddO+WUsC2HhHn4NvZda3PxLasi/ufa3iBpj/Uag5HqKF0LQ0hPmVToa2DZBXDiWTQrha925Y+QPYfBdsvQ/KZkDJZJhwPhRNgPaN0NUM064P9zffBXmV4T0QzQs//2wgmyRJkiRJkqSDmMFokiRJkiRJkiRJkiQdISJZvuiU9BdASKMikUhk9GV7j0qSJEmSJGkfmXglTH09vPC90d6JlKl1LTxw/fDm7vh7aGtvS+9/7L2ZY/MqoacVEp3huOGyELRWcyJULYCieiABRXUhbA2gYytE4xArgqVfgA3/B+WzYdLLYexp4Xj3Kqg7H8qmQzIBkejwrqVXTyfE8ke2hiRJkiRJkqRDlsFokiRJ0n7jlwklSZIkSZIkHVyi0cwvInV1dZGXlzcKu5GObN3d3Rl92d6jkiRJkiRJ2kciETjhO1B7Oqz5eQii2vHYaO9q8IomQLwUYoUhlGr1T4c2v+ZEiBdDcQOs/MH+2aMOfl0704/X/jLcbrxjaOtsuQdWfDu975Es4wrHQfumcL98NjQ/D8l+fzcaK4Se9tznGnsKJHrCa3f82dBwORSNH9w+ezohmhfe/5IkSZIkSZIOGQajSZIkSSNi+JkkSZIkSZKkQ0ckEiE/P5/Ozs5/9LW0tFBcXDyKu5KOTC0tLWnH+fn5RPxyniRJkiRJ0v4VicDU14QG0NUEP63IPrZkCsy7ESKxEKLWtBy23Q+l00JQ0xMfzjFvElz2Yghy2ngHPPx2aHl++HuuPQPO/ktmsNOvZuRe96KlUD4LundDNB6Cp/o66X8gmYSWF0JIWncLTDgftvwVnvp49jVP/Rn89arM/uJGuHQF3DLAL+C4dAXsegb+/gHo3A6Vx0DZNCACz3499zwd+npD0QCalmUfM1AoGsCWe8PtNmDNz+Cht2SOqVwQAtC2P5xZK50aggW7W8NrvXt3eB32tENRHdRdBJEotG2AWAFMflUIdCuohq5dkOgK7+uC2rBeNBbe34lOiBelnyuZNIRNkiRJkiRJ2gcMRpMkSZIkSZIkSZIk6QhSVlbGtm3b/nHc1NTE2LFjDWSSDqBkMklTU1NaX1lZ2SjtRpIkSZIk6QiWV567NvcDMO31ueu5gtEaXx5uozGoOw8ufW7P+H+Dpz4xtP3N/xgc9f7sQUuz3x1C1/qb+XaomB3u55XmXjsSCeFkR38s1ZdfmT0YbdobYcJ5EC8JoVJ9TXlVCF/Lpf7SEExVOhXqL86sT3k13L44+9ySSbB7Ve61pV47H89da3khtGza1sOKb6f3rf7p4M8biUOye+/jiifCxKtgxyOw+e7sY07+EVTOh9Z1IYyxa1cIeysYA2NOgvbNUDY9BLVtvAOi+VB3YXif93TA2l/CM5+B5ufDZ9vY02Duv0LV0ennaV0H638LRGH8kvDe7JXoguYVUDYjfIb1Z/CbJEmSJEmSDhCD0SRJkqT9JjnaG5AkSZIkSZKkDP2D0bq6uli3bh319fWGo0kHQDKZZN26dXR1daX1l5cP8CVcSZIkSZIk7T+TroFVN6f3RaJQf8nA86a9MTNQCWDyddnHz/sIrP4JNC0feN1rB/nzp41Xh7C1zu2pvmg+TLt+cPOzqT4uhDet+Vmqr7AW5rw3hC+ddivccyV0t4Ra3UVw1PtS+1n948w1p71hL+dcCMWN0Lo6vX/CeXDWH+CmIf699bizYfF/wG9mD20eQOE4aN80tDmRGCR7hn4uHR4GE4oG0LoGln954DH3vXLk++nV3RLej73vyWyhhn01XAY7/p49iLDmRNh2f7hfMhmIwO6V4XjMSTDjLeFzLxKBRA+0PA9F9dC8HLbcC9GC8HlaMAZ2PQn5VelhbJIkSZIkSVIWBqNJkiRJI2L4mSRJkiRJkqRDS2FhIXl5eWmhTM3NzaxYsYLy8nJKS0uJx+NEo9FR3KV0eEkkEnR3d9PS0kJTU1NGKFpeXh4FBQWjtDtJkiRJkqQj3NwPwaa/QPvG9L6iCQPPm/1PsO5X6UFak6+DqqOzj4/G4Ow74aG3wtpfZB8z4y2D33fhGHjJvfDIu2D7Q1AxFxZ8CqoWDH6N/iIROOUWeOG/YfPdUDolBJuVNIb6hHPhik2w9X4oqoPymSFEDmDm22DNz9ODospnQd2FezlnFE78b7j7cuhuDn3FjbBwT4jUjLfCc/8vc16sEHraM/snvzLsbajGngLlR2UPu8uldBpcvAx6WqG7FTb8AWJFUHsmPPbP8OKPhr4PaX8YKBQNYO0vc9d6Q9EAdr+YXtv6t9D+9uqB13/ozQPX8yohryy02jOhcDy0rYeCaogWQtdOSHSFcLWJV0Ll3OzrJJPQsSWst/Nx6GqCinlQNG7g80uSJEmSJOmgYzCaJEmSJEmSJEmSJElHkEgkQl1dHatXryaZTP3yh66uLrZt28a2bdtGcXfSkaf3PRmJREZ7K5IkSZIkSUemyrlw/kOw+qchiGf8S0IA2N5UzIZz74eVPwhhQbVnwJRXDTynaDycfiss/wY88o7MeuPVQ9t7xWxYcvvQ5uxNNAbTrw8tm3gxjF+S2V97Gpz1e3jmc9DyAow9FY79AkQH8fW18Uvgkudg058hXhIey/yKUGu8Knsw2kk/DAFu63/XZw9nwqSrwx7HngJb7u03KQInfBceeH3mehOvguqF2YPRGi6D9X+AREd6f+NV4fqi5ZBXDlNfm6pVLgCGGIxWNAEmviy8nvIqYOzJUDIJnvn38Npsfi41duY7oGAsdO2CbQ9C8cTw+kp0wbNfz32OxpfD6p8MbV/S/ta1MzSAXc8MPPbJj8DY08JnzIbbYceje1+/oCa8Z8aeFoIwW56HLfdB57ZUaNyEC6B8NtSeGgIOi+pD4GQkCp3bQ9haNDay65QkSZIkSdKgRfr+kLN0JIpEInOBp3qPn3rqKebOzfFbIyRJkvpLdMEt+dlrk66FU/xNb5IkSZIkSZIOTq2trRnhaJIOrEgkQmNjI8XFxftszaeffpp58+b17ZqXTCaf3mcnkCRpiPwZPUmSJCmLrha4+9IQ0NNr6uvhhO+AAfrpkkl4/EPwzGdSfTPfDgu/AiRg7W2w/VGonB/CzWJ7fq5328Pw53NCcBhAtACO+xpMfxMs/SI89t7UenUXw6m3hDCkPy2BzXelavEyOOeuEKR033WQ6Az9tWfA6bdBfmX2fe9aCr89KrO/dFoI3nvuPzNrJ3wXpmUJbevV1RLOX1Cde0zHdvh5Tfba6b+EhkvT+5LJ8Bi1roP7roGdTwIRGHdWCFF76M25zyUdiWKFUDIFWtdC+UxIJqBlJZCEwnEhLDFWEgIaJ18HHZth8z2w4Q9hfsVcqLsQJl0DpZOBSFizY1uY37EFtv4NYsUhHDGvfBQvVpIkSZIk9efP5x04BqPpiOcPXUmSpBHp6YQfF2SvGYwmSZIkSZIk6SDX2trK+vXr6erqGu2tSEecvLw86urq9mkoGviDV5Kkg48/oydJkiTl0NMBG26HXU9DzfEwbomhaANpfh52PAaVR0PZzME9Vm0bYfXPgARMOD+EGP1jvRUhfKhsOlQvhmgs9He3wdLPw+a7oXQKzHwHVB0dau2bYctfoagBqheGAKSB3HFGWKevY78A48+G/zsJetpT/UX1cPEyyCvd+3Xtze+OgZ2Pp/fFS+ClGyCvbOC5XU0hkKn32v76Clj94+xjr+3zvcSu5nCOSDQcv3hLCFrL5pRboGpheMy3PgjJHmi4BNbcCve/LvucCx6HrffBQ2/JrJVOg5YVua+pqD48X1ULobsZln0p91jpYFQwFqJ5kFcBkT2fVXUXwJTXhPfP8q/A7lVhTP2lMOak8Bm5/OvQtBTat8C8G6H2tDA/vzoEsCWT0LQcttwD2x4IIW9l06HhpSG8zT+TJEmSJEnK4M/nHTgGo+mI5w9dSZKkETEYTZIkSZIkSdIhLplM0tHRQVNTE83NzXR2do72lqTDVn5+PmVlZZSXl1NQUEBkP3ypyB+8kiQdbPwZPUmSJElHrM5d8NBbYf3voKAapr8J5rwvhA1tuQ+e+mQILao5ARZ+AYob9s151/4S7rkKkt2pvgWfhrkfHPpa634Hd12U2T/+HFjyx9zzOrbBL+og0e/fHKoWwgWPZJ/T8iL8akpmfzQPrtoRgtcAEl3Q/ByUToVYYWrczidh+6NQOA5qz4B4Ufbz/KQ8BKRJGrqCMdCxNXstvxoKx4YxBWMgXgata2HznaFefwmUzwnhbD2tUD4rhIRGolAyCfJrINkFRXVQNiMVtNhXMhHmRPNDPde/syS6obslfEb0/ZyQJEmSJGmE/Pm8A2cvv5ZCkiRJ0vAZQixJkiRJkiTp4BeJRCgsLKSwsJDa2lqSySSJRAJ/0Zq070QiEaLR6H4JQpMkSZIkSZJ0kMqvCL9kOZnMDO8ZezKc9bv9c96Gy+Ccu+HFH0HPbqi/DCZePry1JpwbAshaXkjvn37DwPMKamD2e+CZf0/1ReIw/99yzymdHELitj2Q3l9/aSoUDUJQWsVRmfMr54e2N3M/AI9/KLN/zMmw9b69zx+MyvkhqC2Xy9dCcX24n0zAjsdg9yooHA9Vx8CLN8GDb8w+N5qfGTjXa/y5MOlqeOANuc+9t+ucfB3sXglb7s09RkeuXKFoAJ3bQ2N59vq6X4c2FEUTINkTgs5IQvfu9Nf/mJOgejGs/D50NYXwxYGUl8UAACAASURBVB2PZl9r/LlQvQialsGYE8J7r3I+7FoagtrKZkHlXOhqCe+B4onhMynZBbGiEMTWvhnW3gadO6H+4uyfRYkuIAJRv74tSZIkSdJI+H/WkiRJ0oj4xUBJkiRJkiRJh5dIJEIsFhvtbUiSJEmSJEmSdHgYjV+YMPak0EYqGg8haw/eAJvvhJJJMOdfoPGqvc9d8BkoPwrW/wbyymHKq6H29IHnnPpjuPMi2PV0OB57Ciz+5ogvI039ZdmD0SZdHQKNtj+UWcsadBaBeHEIaupv9j/Dyh/Cpj9l1qIFIQDtH8tEQ1hT9aJU35gTcu//kmfht/Ohuzm9P14Kp98KrWtzzz3uG1B3AfxqWvb69DfB8f8VAqNuzvFvRQs+BdOuhyc/Cmt/Be2bwuti7Cmw7SFoWpr7/NJQtW0YuL71b6H1yhWKBrDx/0IDWPuLke/t7+9P3a89M4TC7Xwi1Tf2NJh8DTRcEcLVIrEQ9DZciZ7weTHQnynJJJAM4yRJkiRJOsQZjCZJkiRJkiRJkiRJkiRJkiRJkiRJkjIV18OZvwmBO0MJeYtEYOqrQxuskklw4ZPQ/GwIECudPOTt7lXl3BDu1Tccre4imPYGyKuE+1+TPn7sKXD8t+FPS6B9Y6p/9nsgVgxPfzJ9fDQf6i8GktmD0eovguhefkFNxVwomQK7V6b315wYHqOZb4NnPptem/FmiJdAcWPYQ6Izc91xZ0PhAMFMZTPCbSQaxmbbf8PlUFgLi/9faNm0bwmBVuWzIZYPNw3wupnxNnjuP7LXJl0Lq27KPVc6WGy+M7Nvyz2hPfTW4a0ZKwaSkF8Nbesy66VToageelph+yOZ9VN/Ej4POrZCwVioOhq6miC/Jnw+xApHJ7hTkiRJkqRBMhhNkiRJ2m+So70BSZIkSZIkSZIkSZIkSZIkSRq5AxWgE4lA+az9e465/woTr4Qt90H5zBA4Fo2FELdkTwjqat8EE86DhV+CvHI470FYdUsIKBq3BOovge4W2Pq3VIBYNB9O/D4U1MDk62DXM7D086nzFjfCgs9m3VKaSBSO/ybccwV07w59BTWw6Kvh/oJPh7CkVbcACWi8Go56X6jFi0Iw25pb09esOgYqZof75bOhaVnmeRtemrp/1Pthy92Q6Er1TbwSKo7a+/4Lx4bWq/FlsPqnmeN6H6tcwWjHfn54wWjnPQg1i2H3anj8Rtj59/DY1yyG0mnQshKqFoSxOx4PYXPVC8NzXtwAd14ILS+krxnNS38spP2tpzXcZgtFg/Aa7f867euvLx/ceSrmhvdETyvES0MYZtsmaLwqhCBu+CNsfyjUzrkrfM6tuTV8VpbPgp522PU0FE+E6uMg0RHGjDk5fK42LYdtD0PJnnq8eGiPgyRJkiTpiBVJJg1r0JEtEonMBZ7qPX7qqaeYO3fuKO5IkiQdUnra4cdF2WuTXgGn3Hxg9yNJkiRJkiRJko5oTz/9NPPmzevbNS+ZTD49WvuRJMmf0ZMkSZIkHdYSPSF4a/fqEARUNC69vvPpEJ4WL4G6CyC/cvBr714FG24PIUMTzoei8YOb174Z7roEtj0YjkunwZm/TQXOPfef8NBb0+fUXQxn/jq9b/M98Nw3oX0jjH8JzHkvROOD33+v9bfDneen9xXUwKUvQrIbbh0fwpT6Kp0GlzwHf/8ALP1c5przPgIv/i+0rEjvLxwHl68JQWbD1dMRgp+6dsK4s0N4HsCtE8Jj0d+ir8Gsd4T7bRthwx+gcALUHBfWIgG3TRz+fqTDXXEDtK5NHY85GWKF0N0Ku18MQYYtL4SQxTEnQVEddGyFkikhhDGvPMzrboFoIZAI8yVJkiRpP/Dn8w6cYfwtlCRJkiRJkiRJkiRJkiRJkiRJkiRJ0hEuGoPqRaFlUzk3tOEomQTT3zT0eYW1cO790Pxs+EXgFfPCPnvNeAsQhee/BZ07oP4iOCZL+FjtaaGNVN15cPKP4KmPh3CjmhPghO9AXmmoz3wbLPtS+px5N0IkAlNeBcu/AonOVC1aAFNfEx7Xe68N4WoARGDBp0YWigYQK4DJ12S5jgvhhe+l90Wi0HBZ6rhoPEx9bebchpfC2l+MbF8A1yRgx2Ow8ofhsSyZDBMvh6pj4GfVueeddTtsfzQ8NvlV4Xnv3g0Vc6G4Hrqaw7XsegY23w1rfja8/dWeDrVnhtCqjq2w8wloWja8tXTk6BuKBrD1vvTjDXsCCZ/+9NDXnvVumP+RoYVSSpIkSZIOCgajSZIkSftLMjnaO5AkSZIkSZIkSZIkSZIkSZIkHWkiESiflbs+44bQDpTJ14aW6IZov6+1HvsFKJsOa24LYWlTXgMNl4Za5Tw487fw2L/Azqegcj4c9w0onRJaUUMI8Up0wcQrYNyZ++8a5n4QNt4Brav79N0IJY17nzvt9ZnBaPFSaHwZvPDfgzv/Ue8Pz2v1wtD6m/XuECLX38QrYMK5oe3N+LNh1jvgF/XQtj77mKpjQzhbNmf/JQSsZfPUp+CJG7PXZr4Tnv1a9tr0N0HtGSE8q2MbbH8INv0l+9h4CYxbEgLeWlZkH6Mjy/KvhPft2X8KoZGSJEmSpEOGwWiSJEnSSBh+JkmSJEmSJEmSJEmSJEmSJEnS3vUPRYMQ9jXjLaFlM/4cuOCx7KFqY08K7UAomw7nPwRrboXWdTB+CYw7a3Bz6y+Gxd+EJz8C7ZugYi6c9D8QLYBVN0NP+97XaLx64PrEl+YIRrtqcHvsa+6H4OG3ZfZXHQsz3wYPXJ9ZK5qQOxQNoO787MFoeZVQs3jgvfQPn+vpDIFyO58Ij+WkV0BBdebcnnaIxEOg2rYHoaAmhMr1tMGTn4C2tSFcb8K5UDoNWp6HOy/MvZdJr4BVt+Su6+C06ylY8d0QbihJkiRJOmQYjCZJkiRJkiRJkiRJkiRJkiRJkiRJkqSDV7ZQtQOtsBZmvHl4c2fcANPfBN3NkFee6l9yBzx+Ywhvqj4OFn4JXvgeLP3CngERWPhlqD524PXHngZz3ttnHjD5Oph45dD32nAZPPIOSCb69V8OdReFALT+tUnXDLxm1UIonwVNy9P7p1y3J2AuAvT7xfUFY6GoPnOtWH54PPcmVhhui8ZBwyXp/Yu+lDm+fEZ4jts3Z9ZO/hFMvjYE9K35WfbzXd0RHpvVPw3Pw45HIV4WnvOieujYAonOve9b+97GPxqMJkmSJEmHmIPgb4IkSZKkw1Vy70MkSZIkSZIkSZIkSZIkSZIkSdLhLxJJD0UDGHsKnPOX9L5jPw+z3gO7noaqY6FwzODWPvbzMOU1sP0RqDgqBK1FIkPfZ3E9HPf/4OG3pgLQxi2B2e8O+1/4FXjknanxVcfAnPftfX9n/AbuuhSaloa+iVfAMZ+FeAnUXwLrfpU+Z8abIRob+v5Hov5SWPGd9L5oAUw4P9yf+prswWhVC0NgG8Dka0IbSMe2EJ7WshJqjoNpb4T8ilT9pgGet4uXw29m5a6fcze0b4I1P4fVP4Nk98B7ORJ0bB3tHUiSJEmShshgNEmSJGlEDD+TJEmSJEmSJEmSJEmSJEmSJEn7UHFdaENVOS+0kZpxA0w4D7beByWToeZ4iO75SvKsd4SgtM13QnEjjF8Sws32pmw6XPQ0tLwAeRXpgW+n3BzC1tbeBvEymPpamPfhkV/HUM37N9jyV2haFo4jUTjua1BQHY7HvwQKa6F9c/q8qa8Z2nkKauCYz+SuT3sjrPh2Zv/cD0H5TJj5dnj2G5n1ya+C2tPC/car4NgvwK5noHAsVB4drmf3GvhlY/bzzv4naLgc7jg9997m3gid26CrGV7839zjDiadO0Z7B5IkSZKkITIYTZIkSZIkSZIkSZIkSZIkSZIkSZIkSVJK6eTQsqmcG9pQRSJQNi2zP14MJ3wHjv92GDNaSibCeQ/Cxj9C24YQAFcxJ1WPFcCSP8G9V4fAsVgRzHpnCCrbl6ZclyUYLQKTXxnuNrw0ezDapKvTj4vrQ+uraALEiqGnNXP+5FdC9UI46X/hb9dl1iecDws+kTrOFYxWvQhO/Rk8+RFY+YPsY16+G6L5IXAvmYTdL4bAvObngQSUTodYfhiz8c+w/KvQ/GwYByFcbsprQlBdsge2PwJrbs1+LoPRJEmSJOmQYzCaJEmStN8kR3sDkiRJkiRJkiRJkiRJkiRJkiRJh4bRDEXrlVcGE6/IXa+cBxc9DW0bIb86hHfta7Wnw/Hfgkf/GbqbIb8qBMf1hrSNOwuO+iA885nUnFnvDsFlexONQ+NVmYFlZTOg6thwv+GycM7+gWLT3pB+XLkAdj6eeY5Z7w6herP/OXswWtnMEIbXKxKB0inhfsHxmePrLwxtbzbdBX86M7O/ezfseBwqjoJo3t7XkSRJkiSNOoPRJEmSpBEx/EySJEmSJEmSJEmSJEmSJEmSJOmIUjR+/64//Y0w9XXQugZKJkEkmqpFInDMp8OY7Y9C5Xwonzn4tRd+GXa/CJvvDsfFE+G0W1PBdHmlcM5d8LdXw46/Q+E4mPfhEKjW18QrMoPRogVQf3G4Xzkfak6Ebfenj5nx1sHvdSjyq3LXfn9MuK27KDye2x6E4voQBldzIuRXQF55CLsrGAvRWGruqp/A8/8FXU3h2ub+KyQT0LYOihtD2NxgJLqBSPrayWTqcU90Q7IHYgVDumxJkiRJOhwZjCZJkiRJkiRJkiRJkiRJkiRJkiRJkiRJB5NoHEqn5K6XThm4nktBNZx9J7SsCGFflQvSw7oghJpd8Bh0NUO8NBXe1dec98L2h2Hdr8NxrBBOvhnyK8NxJAJn/Q4efDNs+AMUjIEZb4FZ7xz6ngdjoGC0Xut/m7q//WFY+8uhnWP7w/DkR9P78sqhYh5E88Nj0L0bonnhudn6AOx6au/rxsuguzm9b+Y7wmNVOi398U8m0oPyevsSXWEPXbugZSVUHJU7ZC1bSNvedLeF57qnFSZcAEXjBj9XkiRJkobIYDRJkiRpf0kmR3sHkiRJkiRJkiRJkiRJkiRJkiRJUrpIBMqm731cXlnuWrwYTv8lND8Lu1dBzQmQX5E+Jr8KTv1x9jCvfW0wwWj7Q1cTbL0vs3/TENboH4oG8OzXQxuJSDQ89gBFE6BqEbRvgqal0N0SQu9mvh3aN0PReGjbCKtugspjoP4iqL8ENt4BT308XGevaD7M/1hYs2kpxEpgzIlQOS/09T7fiZ5wG4nsCW/rhp62EBwXLx7ZtUmSJEk6rBmMJkmSJI2E4WeSJEmSJEmSJEmSJEmSJEmSJEk6EkUiUD4rtAHH7edQNIB4CeSVpwd4Hel6Q9EA2jZA22/S690t8MxnM+dtuz+0Jz6cfd1EJzz+wZHtrXwWVB8PhbXh9VF1LDRcDvGizLEHIlhPkiRJ0kHFYDRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0qErEoG6i2HVTaO9Ew1G0/LQ+iuZAoXjoLghhNz1tMHW+yDZA7FCqF4cbiecD+POgEQP5FeGllcBsYIDfy2SJEmS9jmD0SRJkqT9JjnaG5AkSZIkSZIkSZIkSZIkSZIkSZKODIu+DDseg6alo70TDdfulaFty1LraYct94T7G/+YfX6sEPIqIb9iz+2ewLT8ysH1x0tCyJ4kSZKkUWUwmiRJkjQihp9JkiRJkiRJkiRJkiRJkiRJkiRJo66wFi58ErbcDY/fCB1bofnZ0d6VDqSedujZCO0bhzc/EusTmDaEQLXe/rwKiMb27TVJkiRJRyCD0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJh75oDMadBefeG45bXoBfTcs+9pjPwriz4fbFudcrmQy7X9zXu9TBKtkDndtDG6542eCD1DL6KyBWuO+uR5IkSTpEGYwmSZIk7TfJ0d6AJEmSJEmSJEmSJEmSJEmSJEmSdOQqboT8KujckVmbdC2UTITF/wkPvSWzXjEXLnoKkkl44sOw7MvQ0wrVx8EJ34aqY8K4nk74cUH281ceDRc+njpe8T144A3Zx16xBbpbYPWP4e8fyKzXnAhta0NYW7wENtwOkSgkE6kxeeUhmKttXeb8vHLoasp+bu073c2hsXZ486MFITCtNzxtUIFqffrjpRCJ7NNLkiRJkg40g9EkSZKkETH8TJIkSZIkSZIkSZIkSZIkSZIkSTooReMw7XpY+vn0/rqLQygaQMNl8PDbIdmTPqbx6nAbicCCT8LcD0GyKwSP9Q2eiuWH0LJt92eef/Z70o/Hn5N9nyWToaAGCsfAUe8PbTB6Q9Ei0cxa5w7Ych+UToPyWdDyAvx6evZ1cu0foGohnP8wPPt1eORdg9uXhi/RAe2bQhuOSLRPoFqfwLS0oLUs/b1ha3nl4X0jSZIkjSL/i1SSJEmSJEmSJEmSJEmSJEmSJEmSJEmSdHha8GkgCS/8Twidqr8EFn8zVS+aEI4fuiEVNDb+HJj1zvR14kVAUfZzTHpFZrBYrBAaLk/vK2kMfWtvS++f9a70sLXByhaI1iu/CuovSh0X1eUeO+Mt0Lw8hKn1d/THwt5mvRPGvwS23hfC4RouD6FwK74LD1yfe+2r22DjHXDXJdnrp/4Edq+GFd+BpmW519HgJBPheezcAbuHuUa8NEtgWsXgg9Zihfv0kiRJknTkMRhNkiRJ2l+SydHegSRJkiRJkiRJkiRJkiRJkiRJknRki8bh2M/DMZ8LoVHRWOaY6ddD3fmw+a9QOhmqjwvzBmvm26DpGXj+W+E4rxJO+2kIiervlJvhsffDul+H+rTrQzDZ/hYvgqqFsOPR9P5oHtRdCJvvghe+l17Lq4RxZ6eOK+aE1lfdxbnPWTIphGTVngHxEujul9RVdyE0vizcL50C91yZfZ0574Oln8teW/hlGLcEunZC5649tzuha9ee2779fes7IdGVe+9Hsu6W0Fg7vPnR/MxAtVxBa/378ytC8N5wggIlSZJ02DAYTZIkSRoJw88kSZIkSZIkSZIkSZIkSZIkSZKkg18kApEsoWi9ihtg8iuGt3Y0Dsf/Fxz9KWhdDZXzQ+BYNrFCOO6roR1o8z4Ef305JHtSfTPfAYVjYMEnYfvDsPOJPfssghP/OwSqDaRoHCz4DDz+wcxa48vDbV4ZHPsFeOitwJ7vYxWMhQWfSo2tOTH7+tF8qJyX+/xVx0LV0QPvMZtkEnraBxmolqO/f9CbgkQntG8ObTgi0RCW1j8wLS9HkFq2+lCCDSVJknTQ8b/mJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEkaqcIxoR2sJl4BZ/0frPwf6GqC+oth6utDrWgCnPcAbP0btG+B2tNC32DM/UAIP3v47am++kth/kdTxzPeDNXHwYY/QH41NFwGxfWpenEdjD8HNt6Rvnbjy6DmhNznLps+uD32F4mE0Ld40eCvs79EV3gchxqo1tvftQuSieGd+3CWTEDnjtCGmz0XLxlkoFqO/lhheI1IkiRpVBiMJkmSJO03ydHegCRJkiRJkiRJkiRJkiRJkiRJkiSljF8SWjaxQhh31vDWnfk2mH4D7HgMCsdBSWPmmJrjQsvl5Jvh3lfApj+HUKr6y2Dxf0K8FMpmQPNz6eOrj0sPVzvQonlQUBPacCQT0N2SPUjtH+FpAwWt7YRE5769psNF9+7Q2tYNb340PwSmVR8HM24IQX4j1fIirL0NCmuh7qIQwiZJkqSsDEaTJEmSRsTwM0mSJEmSJEmSJEmSJEmSJEmSJEkiGoeaxcOfXzgGzr4DOraH0LG8slRt8Tfh7ktD2BVAfhUs+urI9jvaIlHIKw+NicNbo6d9gEC1QQStdbfs00s6bCQ6oWMLbPh9aH3N/yjEyyBeDPESiO25TTsuhtievlgRPP4hWPrvIQyv15iTofZ0mP5GaN8S+pI9UHVMmNereQV0N4f3xbpfQaI7vDd2PAYbbg9jSibBUe+HKa8Oe5AkSTrEGYwmSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIODgXVmX3jl8BFz8D634fQtAnnQXH9gd/bwSZWCEXjQxuORDd0NWUGpg0laK1v2NeR4MmP7pt1tt4X2jOfHflau1fBQ28NrXBcCN2LFYfnpuFyaLwKEh3Quh5e+C5s+gsU1UHZdFj8X1AxO6yz7WHY/jAUjof6SyAaG/neJEmShsFgNEmSJGm/SY72BiRJkiRJkiRJkiRJkiRJkiRJkiTp8FDSCDNuGO1dHF6i8RBEly2MbjCSSejePbxAtd77Pe379pqOdO2b0o+Xfzm0/trWh/bbOeE4mgeJrvQx5bMhVgSdO/Y8XztTtcJxMO4siJfBzieguxkmnA/z/g3yK1LjeoPzItFw27Q8tNKpUHFUqn+wOneE11zh+PD6lSRJhyX/lJckSZJGxPAzSZIkSZIkSZIkSZIkSZIkSZIkSdIRKBKBvNLQihuGt0ZPO3TuSoWnDRSo1hvO1be/u3nfXtORqn8oGkDTstzj2zfBqlvS+3Y9A8u+lH38hPOhYytsfzh7PZoPZTMh2QPF9SGQbfuj4Txl06GnbU8oWksqbA2g5gSoOhZiBSGkLb8ytLzKzPt5FYapSZJ0iPBPbEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJB14sUIoKoSiccObn+iB7qaBg9Q6d2UGqvUNYEv27NtrUqYNfxi4nuiEXU+F+01L02sDBbRteyC0wYqX9gtLyxKg1huiljGuAqJ5gz+XJEkaNoPRJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSdOiJxiC/KrThSCahpzUVmNayAu6+bN/uUQeP7pbQWDu8+fGS7GFqOQPWDFaTJGk4DEaTJEmSej33X7DyB+EvMRsuh7k3hr8UHUgyeWD2JkmSJEmSJEmSJEmSJEmSJEmSJEmS9q1IJIRdxUuguB4q58JVO2HZF2H1T6BpeeacvAoorIXu1vB9xO7dkOg88HvXgde9O7S2dcObnzNYrWIvoWp7xsTy9+31HG6SSWh+DlpXQ/FEKJ0G0Tj0dIZQukgk99zOXZBXPvAYSdIBYzCaJEmSBLDsy/DoP6WOd/wdWtfBCd8a/pqGpkmSJEmSJEmSJEmSJEmSJEmSJEmSdGjJr4CjPx5a7/cEe9og2QOxYojGMuckuveEpPUJS+vec/vns7Ofp+FyaH4edj01/L1G86DhClj94+GvoQNnpMFqseLcwWlHerBa63q4/7Ww8Y/Z63kVUD4b2jfB7hdzr1N7Znhv5leE7xlvuRealsHuldnHVx4NY06Cogmw/REoqAnvyfqLIBINYxLdsPRzsPluyK+GadfD+CV7al2h7X4RWteGevWiENCWTEDLCyHsrXs3tKwMz2XDZSGcUZIOYwajSZIkSQDP/kdm38rvw8IvQV7pAd+OJEmSJEmSJEmSJEmSJEmSJEmSJEkaZZFIuI0XDzwuGodoOeSVZ9YWfRUeeVe/daOw6GshdOm+a7KvedX2EGrV0wo/HwM97ZljprwaTvgOcAusuS18L7JtQwhrmvpaKJ0WQpfW/w5W3QLdLVA2E2pPD8eb74RoPpTPgaZnwlgdvHpaoa0V2tYPb36saHihar33D9Zgte5W+Mt5A4cMdu2CbQ/sfa3Nd4Y2WDufCK2vF74fbiNRiJdD1870+qqb975urDg839k8+CZYcgd0bINEB1TMC59RpdMh0QnNy6HpWahaAOWzBn8tq34Cj7wzhMcV1MDib0LjVSEgcstfQ3hbtAAq5kDZjPDZEYlCV3P4fMqvDJ8hLSuguDGEy/XqagGS4TWY7A6ffa1rofY0KJ06+D1KOmIYjCZJkiR1bAv/k91fogvW/gKmvGqAycn9ti1JkiRJkiRJkiRJkiRJkiRJkiRJknSIm/5m2Pq3EEQGEInD8d+CkokQOyccJ7vT55TPCkFUkQjES2DWu+GZz2auPfX1qfsTLw8tmxk3hNa/D0LoUW8AXDIBzSugoBq6mmDdr0P4Ud1FkFca9ppXFr6Xue7X0L0b8qth7S/D9zETnUN7bArGQMfWoc0ZSOXRIQCrc2e4VbqeNmhrC+F5wzGUYLW8isxarGDfXk+vNT8fOBRttCQTmaFog5UrFK3Xn88Z3Dolk2D+R8PzESuGwloonw3bH4I1t8LW+8Pz2j8MrmMb/PVlw9l5pnhJ+KwYyLglIbSxYysU1YXPkoIaGHsabL4rhNrFiqFwDBROgO2PhKC26uNgwaegdPK+2aukg4bBaJIkSVKiO3etu2UECxuaJkmSJEmSJEmSJEmSJEmSJEmSJEnSES2WDyffBPM/Ds3PQc1iKBwbaoVjYPob4bn/TJ9z1AdSYWUAR38SiMCyL0GiIwSUzf8ojDlp5Pvre55IFMpnhPsFNTDrndnnFNTA1Nemjidfk33cTZHs/TUnwHn3p47bNsKqm2H978K1LfoK/PGUEM6UMfd4OPdvsPPJEIiVVwGNLw9Bc30leqC7eU9I2s5wm+t+1j6D1TKMOFitcHCharn6cgWrbXtw+Nd0uNu9Cu5/3ejuYW+haACb/hzaUDU/C+t/A6f8GOrOH/p8SQctg9EkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZKk/SUSCYFjvaFjfR33DSidDut+BXnlIXBs4hXpY6IxOObTMPPt0LoaihtCO9iNW5I97Gjm29KPi8bD7PeE1mvam+CZz2TOnfGWEOBWtSC0XKKxVLDWcGQEq+0afKjaP4LVksM79+Gqpx16NkL7xuHNzwhWqwi32x7Yt/vUoaWrCe68INyPl0G8GNo3heNZ7w6fqQN9Vkg6KBmMJkmSJI1E0r+UkiRJkiRJkiRJkiRJkiRJkiRJkiRJwxSJwpx/Cm1viutCO1RMfX1mMFp+VWbwWzbT3wgrvgUd21J9pdOh8eX7do+5jDRYLZmAruYBgtP6BKjlqhmslm6kwWo6/HU3h9Zr+VdC+//s3XmUpGV9L/Dv09PD7AMM+zrs83+RdwAAIABJREFUIqIggqi4YBTFaFSMihqNGI9LjN6cmOS6JIbojcvNek2iSdRcJDcmUYlKFuOGmiCIYPS4gSKyqOwwIMwwCzM894/qoatrumvp7qrqmfp8zqnz9rP/CoZz6h3q/fb4quQZ30xWHTm82oCeCEYDAIB+/cWQ0DQAAAAAAAAAAAAAAAAAYFQd9pJk403Jle9OttyV7H588ri/T8ZXdF678vDkjEuTq/4w+dmVyZqTk4efm4wv73/d86GMJbvt3nitWNv7+vpAsnV9+1C1KQFrLX33/6yxB9AIS/vsKcnTL09WHTXsaoAuCEYDAIC2yrALAAAAAAAAAAAAAAAAAADY+ZSSHPfbyUN/sxHUtdueva1ffUxy6of6U9tCV8aSxasbrxWH9r6+1slgtV5D1bZfd/Zgtcd/LPnKC6cf2/dJyVO+1PgzmjTe69XvS37w5433fsDTk+PPTf7jhGTbxmn2/nhy6POT9dcl916TXPpLyebbpz9ryd7J5jumH1u8R3LUq5MDz0xu/lxy0380/r3VrcmipcmqY5LlhzTm/vD9vb1/ptpyV3LteckJ7xx2JUAXBKMBAEBbdY7jAAAAAAAAAAAAAAAAAAAjrIz1HorG3JSSLF7VeOWQ3td3Cla7/2edg9bqtnl/W10bX5Uc8Ixk5ZHJ+h/tOH7YSydD0ZLGn9GHvKHxanboC5Przp/at2h5csDTGj+vPLzxOvg5yY9mCPF7/MeSi35ux/7FuyfPXzdZx35PTk5898zv6VH/J7nu75Mfvq/x72fPE5NVRydb7002r2vUtHVDstseybd+J7n72zPvNZ2Hvz35zrkzj5/6t8mm25JvvaW3fZsd/7bku/9r9uvn6vZLhnc20BPBaAAA0DdC0wAAAAAAAAAAAAAAAAAA2MnMS7DahumD06YLUZvvYLVjfyNZvDI54V3JpS9O6gOTY/s9OTn8Zd3t84i3J3d8Nbn36ka7LEpOeV+yePXUeWvPnj4YbY8Tkn2emCw7KNl449Sxw395ajhbJ2OLkyNf0Xh1ctCzkjuvSO74WrJoSbJibbLx5uSyc6aff+J7kuPe1Pjn9N237zi+/JDkyF9pjM8UjLbi8OQJFySfedT04/s+MXnEO9oHox307OTGf5l+7HEfSfZ4RHL7xckVr5t5j3bWXze7dcDACUYDAID08JcGAAAAAAAAAAAAAAAAAADAzEppBJMtXpksP7j39bUm2+7rPVRt2YHJwc9JjpgID1v7wkbfdX+XpCb7PCE5/KVJGeuujhVrkzOvSG65KNl0WyNUbfUxO87b9/RGeNh9P5naf8QrkrFFyZP+JfnyM5NNtzT6939aIySsn/Y6pfHabut9ydd+ZWpI3Hb7/Vzjeshzpw9G2x4kV8aSVcdMBsU1O+mPkzUnNfa69Ys7jh/dKcysJA8/d/pgtDKeHPK8ZNHS5J7vd9injbmE7QEDJRgNAABSh7QWAAAAAAAAAAAAAAAAAACYopRkfEXjtfygue217+Mbr9lavDo55Kz2c8bGk6d8Kbnkxcm6KxprjvkfyUPe0Bhfc1Ly3J8kd30zWbJ3suKwxnscpPHlyQFnJjd9emr/8kOSNY9q/LzniclRr06u+cDk+O7HJce8frJ96AuS771z6h6LVzf2TpIjztkxGG3JXslBz54446Tkrm/sWN/Dz22cv+KwZMP1U8cOfk4jFC1JFu8+83t84qeSy16RbLlr+vGZ+oEFRzAaAAC0NZe/VBCaBgAAAAAAAAAAAAAAAAAAu7xVRyZnXp5suTsZX5WMLZo6Pjae7HXKcGrb7qQ/S3525WTw2PjK5DHnJWVscs4pf90IMbv9K8mqo5JDfjHZbY/J8Ye9Nbn7O8mN/9JoL949ecInGsFrSXLYS5ONtyRXvifZsq4RdvbY/5eML5sYf8n0wWiHvqBRx2n/lPznM5PNdzb6dz8+OelPJ+eNr5j5/S3ZJznmDcl33zH9+Lb7kus+kqz77+TWLyTbNifH/kYjGG7rfY33sPrYZPGqyTW1Jvd8v7H30r1nPhuYV4LRAAAAAAAAAAAAAAAAAAAAAABgrppDxBaa1cckP/+t5Nb/TLauT/b7uWTZflPnlJIc9MzGazrjy5MnXZisvy6578Zkr5OTRUunrj/ut5OH/mZy/73JbrtPXX/Ua5KbP5vc8vnJvoe/Pdn9uMbPe5+aPPv65PZLGgFlax6VLFoyOXfPE5JFy5JtG1vqWpns+chkyV4zB6MlyVdfOrV9xa9OP2/1Q5NlByS3fnFq/6l/myw7qBEut+nWRh1b1ycbfpysPCJZvDrZ/4zG+xhbPHMdc7HptmTpvv3ZGxYIwWgAADAXtQ67AgAAAAAAAAAAAAAAAAAAgM4Wr04O/oW577Py8MZrJmVsx1C0JFm8Mjn93xvBZ/f8INnncckeD99xzoFPn37f8RXJ4S9LrvnA1P4jXpGML0tWPyR59AeTy1/V2/tpdc9VjVerr72y89p2wWxJI1ht+cGN97L/U5IDn9UInLv3R42QtaX7JOOrki13Juuvb8xbdkAjEG3x7slXX5Yc9Kzk5L9ojMEuSDAaAAD0i9A0AAAAAAAAAAAAAAAAAACASWOLk/1Ob7xm4+T3NQLebvhoUsaTtWcnj/iDyfHDfmnuwWj9tPHGxitJbv1i8q3f6X2Pa89Lbrs4ecIFyZ4nzG99sACMDbsAAAAYPgFmAAAAAAAAAAAAAAAAAAAAC97YePLIP0qe++PkOdcmJ747GVs0OT6+LFlz8vDqG5T11ySfPTW5+v1J9bw8uxbBaAAAMCduEgEAAAAAAAAAAAAAAAAAABaMo14z7AoG44HNydd/Lbn2/w67EphXgtEAAKBvCdhC0wAAAAAAAAAAAAAAAAAAAAbqyF9JjnzlsKsYjD0fmRz20mFXAfNqfNgFAADA8AkwAwAAAAAAAAAAAAAAAAAA2CWUseTRH0wOeX5y+yXJirXJwc9O7r8nKYuSMp5svi3JWHLXN5P7703WX5Pc84PkjkuTrRuG/Q66M74yOe2jyaIlw64E5pVgNAAAmFMwmlA1AAAAAAAAAAAAAAAAAACABaWU5MAzG6/tlu47+fOKQxrXNY+cfv0dX0tu/WKy7IBkvycnFx42ixoWJXVb7+u69ei/SVYf3b/9YUgEowEAQO1XuJnQNAAAAAAAAAAAAAAAAAAAgJ3O3qc2XklSH5h53tL9kk237ti//JDkuT9Ott6XXPvh5L6fJnscn6x9UVLGkq0bkw3XJ5vvSNZfl6y/Ntnr5EYQ26IVyb8/dOYz15ycHPfm5NBfnMs7hAVLMBoAALQNMCsDqwIAAAAAAAAAAAAAAAAAAIAFpowle56U3PWNHccec37yX89JHtg8tX/t2Y3r+PLkmNftuG58WbL7RPjZvk+Y7tBM+xz8PqclZ3yll+phpzM27AIAAGD42gWjdVo6h7UAAAAAAAAAAAAAAAAAAAAsfEe9ese+PU9MDnha8tjzk7HFk/37nJYc9+a5nXfcm2ao47Vz2xd2AuPDLgAAAIauX+FmQtMAAAAAAAAAAAAAAAAAAAB2fke9Otm2Kbn6L5JNtyb7PzV59AeSUpK1Zyf7Pim5/eJk2YHJXo+eGpQ2q/Nelfzog8nmOyf7Vj8kOeSsue0LOwHBaAAA0JZwMwAAAAAAAAAAAAAAAAAAgJFWSnLsrzde9YGkjE0dX7Z/cugL5u+8lUckZ1yaXPVHyc++1whbO/5tyfiK+TsDFijBaAAAMKfwM8FpAAAAAAAAAAAAAAAAAAAAI6M1FK1fVh+TnPrBwZwFC8iA/gsDAICFrF24WenTvgAAAAAAAAAAAAAAAAAAAAA0E4wGAABVgBkAAAAAAAAAAAAAAAAAAADAsAlGAwCAzCUYTagaAAAAAAAAAAAAAAAAAAAAwHwQjAYAALVf4WZC0wAAAAAAAAAAAAAAAAAAAAC6JRgNAAAEmAEAAAAAAAAAAAAAAAAAAAAM3fiwCwAAgOFrE4xWSoelQtUAAAAAAAAAGKxSyniSk5I8LMk+SXZLsj7JjUmuTvK9WuvW4VUIAAAAAAAAAACzIxgNAAD6FW4mNA0AAAAAAABgp1FKOSLJKUlOnrielGRV05Qbaq2HDaG0B5VSjk7y20nOTrK6zdSNpZSvJPmrWusnB1IcAAAAAAAAAADMA8FoAADQjnAzAAAAAAAAgF1WKeX0JG9JIwxtzXCrmVkpZTzJ76VRazff/VyW5Iwk65IIRgMAAAAAAAAAYKchGA0AADKX8DPBaQAAAAAAAAA7sROTPG3YRbRTSlmW5IIkP98yVJN8L8mPk9ydZGWSI5IcG98PBQAAAAAAAABgJ+WLLwAA0LdwM6FpAAAAAAAAADupzUl+muTIYRZRSilJ/ilTQ9E2JfnDJB+otd44zZrlSc5I8qIkWwZRJwAAAAAAAAAAzBfBaAAAUNsEmJUyuDoAAAAAAAAAGIb7k3wvydeTXDFx/U6S05J8aYh1Jcnrkjy7qX1zkqfUWq+aaUGt9b4kFya5sJTie6IAAAAAAAAAAOxUfOEFAADSJhitr2sBAAAAAAAAGLLzk/x1rXVT60AZ8i/SKqUcmuQ9TV2bkjy1XShaq1rr1nkvDAAAAAAAAAAA+kgwGgAA9C3cTGgaAAAAAAAAwEJWa71r2DW08TtJVja131lrvXJYxQAAAAAAAAAAwCCMDbsAAAAYuirADAAAAAAAAICFo5SyKslLmro2JHnvkMoBAAAAAAAAAICBEYwGAACZQzCaUDUAAAAAAAAA5t/ZSVY2tf+51nrvsIoBAAAAAAAAAIBBEYwGAAAAAAAAAAAAsLA8uaX9+aFUAQAAAAAAAAAAAzY+7AIAAGD4ap+27dO+AAAAAAAAAOzqHt3S/mqSlFKWJTkryYuSPCzJgUk2J7kjyTfTCFD7x1rrvYMrFQAAAAAAAAAA5o9gNAAA6CXAbOPNyU8+mdz3k2T/M5KVh/evLgAAAAAAAABGTilljyRHNXVtSXJtKeVJSc5L0vo/qpcm2T3JkUmen+RdpZR31Fr/fBD1AgAAAAAAAADAfBKMBgAA6TIY7d4fJRedntz300b7yvckR5zTr6IAAAAAAAAAGE37t7RvSvK8JB9LMtbF+r2SvLeUckqSV9Rat85zfQAAAAAAAAAA0DeC0QAAoNtgtO+9czIUbbtrPzz3fQEAAAAAAABg0h4t7ZVJ/j6ToWg3JHlfkq8kuTPJmiSPT/JrSQ5rWvfSJLcm+a35KqyUsm+SfXpcduR8nQ8AAAAAAAAAwK5PMBoAANR2AWZl8sdrz+t7KQAAAAAAAACMvNZgtL2bfv54kpfXWje2zLmslPKXSf4uyQua+n+zlHJhrfXieartdUnOnae9AAAAAAAAAABgB2OdpwAAwK6uXTAaAAAAAAAAAAzUTN/tvCLJS6YJRUuS1Fo3JXnJxLxmvzuPtQEAAAAAAAAAQF8JRgMAgNqvYDSBawAAAAAAAAD0bP0M/b9Va93abuHE+Btbup9WStl3XioDAAAAAAAAAIA+Gx92AQAAMHztAsyEmwEAAAAAAAAwUNMFo91Qa/2vbhbXWr9SSrk2yRFN3U9K8vF5qO39s9jnyCQXzsPZAAAAAAAAAACMAMFoAAAAAAAAAAAAAAvH3dP0XdbjHl/L1GC0h86+nEm11tuS3NbLmlLKfBwNAAAAAAAAAMCIGBt2AQAAMHy1zdgcvqBd2+0LAAAAAAAAANO6Icnmlr6be9zjppb2XrMvBwAAAAAAAAAABkcwGgAACDADAAAAAAAAYIGotW5L8oOW7tagtE5a5y+dfUUAAAAAAAAAADA4gtEAACCC0QAAAAAAAABYUL7d0t6jx/Wt8++cQy0AAAAAAAAAADAwgtEAAKBvwWgC1wAAAAAAAACYlU+3tB/W4/rjW9o/nUMtAAAAAAAAAAAwMILRAACgCjADAAAAAAAAYEH5tySbm9qnlFLWdLOwlLJnkke3dF88X4UBAAAAAAAAAEA/CUYDAIC0C0YrA6sCAAAAAAAAAJKk1npvkguaupYkeX2Xy1+fZGlT+4Yk352n0gAAAAAAAAAAoK8EowEAQNtgtIW4LwAAAAAAAAA7k1JKbXmd3sWytyXZ0tR+aynlsR3OeWyS323pfnet1f/ABgAAAAAAAABgpzA+7AIYjFLK4iSnJTk0yQFJ1ie5Kck3a63Xz/NZhyc5McmBSVYmuTmN3zh5aa31/vk8CwCg/3w3HAAAAAAAAGBXVko5ONN/n3L/lvZ4KeWwGbZZX2u9Yz7rqrVeV0r5w0wGnS1J8rlSyv9M8qHm7+OVUsaTvDLJHyfZrWmby5OcN591AQAAAAAAAABAPwlGG6BSyu8nOXcOW5xfaz2nxzP3SfL2JGcnWTPDnEuT/Gmt9Z/nUFtKKc9P8sYkM/1GynWllI8m+b35/gIYAMCc+MXYAAAAAAAAAKPsK0nWdjHvoCTXzTB2fpJz5qugJr+X5CFJXjDRXpnk/UneVUq5LMm6NL4b+Jgke7SsvTHJL9Zat/ShLgAAAAAAAAAA6AvBaLuwUsozknw4yb4dpj4uyeNKKR9J8ppa64Yez1mZ5INJXtRh6pokv5rkeaWUl9daP9vLOQAA/dOnYDSBawAAAAAAAADMQa21llJelkYA2muahvZIcmabpZcnOavWelM/6wMAAAAAAAAAgPk2NuwC6I9SyulJPpWpoWg1yX8n+XiSzye5o2XZLyX5x1JK138uSimLknw0O4ai3Z7kcxNnfSNT00b2S3JhKeXx3Z4DANBfAswAAAAAAAAAWJhqrZtrra9N8tQ0vvu3rc307yY5J8njhKIBAAAAAAAAALAzGh92ASPuxUku62H++m4mlVIOTvKJJLs1dV+S5FW11qua5i1J4zdI/nGSxRPdv5DkD5K8tcua3pPk55va9yd5Y5IP1Fq3NJ11XJIPJXnsRNeSJJ8qpTy81npzl2cBAPRHbReMJjQNAAAAAAAAYFdWaz1sAGeUedjjoiQXlVL2SfKYJAck2TvJvUluTXJprfWncz0HAAAAAAAAAACGSTDacN1Sa72+D/u+PcmeTe1Lkzy11rqpeVKtdXOSPy+l/DjJJ5uG3lhK+Zta6w3tDimlHJHk11u6X1BrvbB1bq31ylLKU5JclMlwtL2SnJvktV28JwCAPmoTftY2NG0O+wIAAAAAAADALNRab0/yr8OuAwAAAAAAAAAA+mFs2AUwv0opRyd5eVPXliTntIaiNau1firJ+U1dS9IILOvk3CSLm9ofni4UremcjUnOmahpu1dOBKwBAAxRuwAz4WYAAAAAAAAAAAAAAAAAAAAAgyAYbdfzkiSLmtqfqLX+sIt1/7ul/cJSytKZJpdSliV5foc9dlBrvTrJp5q6xtOoGQBgeKrwMwAAAAAAAAAAAAAAAAAAAIBhE4y26zmrpX1eN4tqrVcl+VpT14okT2uz5OlJlje1v1pr/X5XFe5Y0/O6XAcAMARzCE0TuAYAAAAAAAAAAAAAAAAAAADQNcFou5BSyv5JTmjq2prkkh62+HJL+xlt5p7ZYW07F6dR23aPLKXs18N6AID5VR9oMybcDAAAAAAAAAAAAAAAAAAAAGAQBKPtWo5vaX+71rqhh/WXtrQf1sNZX+32kImavtPDWQAA/VMfSK54bbsJAysFAAAAAAAAAAAAAAAAAAAAYJQJRhuu15RSvlBKubGUsqmUcm8p5fpSyn+WUt5ZSnlCj/sd19K+psf1P+qwX7OHDvAsAID+ufFfkw3Xzzxe5xKMJlQNAAAAAAAAAAAAAAAAAAAAoFvjwy5gxL2opb0kycoka5M8MclbSylfT/KWWusXutjvqJb2j3us54aW9l6llD1rrXc1d5ZS1iRZM8ezWucf3eN6AID5cdWfDLsCAAAAAAAAAAAAAAAAAAAAAJKMDbsAOjo5yedKKe8spZQOc/doad/Wy0G11vVJNrV0797FOffVWjf0clZ2rG26cwAA+u/2iztMqAMpAwAAAAAAAAAAAAAAAAAAAGDUjQ+7gBF1Y5JPJ7k8yVVJ1iV5IMleSU5K8qwkT2+aX5K8NY0gu7e02XdlS3vjLGrbmGRpU3tVH89pNt05PSul7Jtknx6XHTkfZwMAu6q5BKMJVQMAAAAAAAAAAAAAAAAAAADolmC0wbo8jcCzz9daZ0rJuDTJX5ZSTk7yD0mObhp7cynlslrrhTOsbQ0s2zSLGjcm2bPNnvN5Trs9Z+t1Sc6dp70AAJIZP7YBAAAAAAAAAAAAAAAAAAAAMJ/Ghl3AKKm1frrW+rk2oWjNc7+e5DFJrm4Zek8pZVG3R/Za4wJfAwAwBD62AAAAAAAAAAAAAAAAAAAAAAyCYLQFrNa6LsmLMzWN49gkT55hyfqW9rJZHNu6pnXPQZ4DALBz65yHCwAAAAAAAAAAAAAAAAAAAMCE8WEXQHu11m+UUj6X5OlN3Wcm+cI00wWjJe9P8vEe1xyZ5MJ5Oh8A2OUINwMAAAAAAAAAAAAAAAAAAAAYBMFoO4fPZGow2iNmmPezlvY+vRxSSlmZHQPL7u7inOWllBW11g09HLdvF+f0rNZ6W5LbellTSpmPowGAXVUVjAYAAAAAAAAAAAAAAAAAAAAwCGPDLoCuXN/Sninw7Ict7bU9ntM6f12t9a7WSbXWO5O09h86x7NaawcAWCAmgtFmFZAmVA0AAAAAAAAAAAAAAAAAAACgW4LRdg4bW9rLZph3VUv7qB7POaKlfWWbufN9Vut+AAALRG25AgAAAAAAAAAAAAAAAAAAANAPgtF2Dnu3tO+YYd53W9qPKKUs7+Gc0zrs127ssd0eUkpZkeQRPZwFADB8VTAaAAAAAAAAAAAAAAAAAAAAQD8JRts5nNrSvmm6SbXWm5N8u6lrPMnjezjn9Jb2f7SZ+5kOa9t5Qhq1bffNWuutPawHABicBwPRZhOMJkwNAAAAAAAAAAAAAAAAAAAAoFuC0Ra4UsrSJM9r6f5ymyWfbGm/ostzjs3UALYNST7XZslnk2xsaj92Yo9unNPSbq0ZAGABEW4GAAAAAAAAAAAAAAAAAAAAMAiC0Ra+NyU5qKm9Lcm/t5n/kYk52z2vlHJ0l+c0+1itddNMk2ut9yW5oMMeOyilHJPkrKaurUn+oYv6AACGpLZcAQAAAAAAAAAAAAAAAAAAAOgHwWgDUkp5WSllvx7XvCrJuS3dH6613jDTmlrrD5Oc39S1W5IPl1KWtjnnOUnOaerakuTtXZT4+0nub2qfU0p5dptzliY5b6Km7f621vqjLs4CABiOWqdeZ7MWAACA2as1uefq5P57hl0JAAAAAAAAAAAAAAAA0GeC0QbnlUmuK6WcX0p5ZillxUwTSyknl1I+keQDSUrT0I1JfreLs85NcldT+3FJvlBKObblnCWllDck+XjL+j9pF762Xa312iTvbem+oJTy+lJKc/hZSikPTXLRRC3b3ZnuAtgAABYAIWcAAAADt+4byYVrk397SHLBmuTy1yYPbBt2VQAAAAAAAAAAAAAAAECfjA+7gBGzLMkvT7weKKX8MMn1SX6WZFuSvZKckGS/adauS3JmrfWWTofUWn9aSnleks8m2R5QdlqSK0sp/53k2iS7JzkpyT4ty/8tydt6eE9vTvKwJM+YaC9O8hdJ3lZK+UaSe5McMXFWc8jbliRn1Vpv7uEsAIAhqC1XAAAABmLrxuSLZyRb1jXadVtyzd8kKw9PjnvTcGsDAAAAAAAAAAAAAAAA+kIw2vCMJXnIxKuTi5KcU2v9abeb11q/XEo5K8mHMxl+VpKcPPGazj8meVWtdVsP52wrpbwwyYeSnN00tG+SM2dYdluSl9daL+72HACA4ZkIRKuzCUYTpgYAADBrt3x+MhSt2TUfEIwGAAAAAAAAAAAAAAAAu6ixYRcwQt6b5B+S3NDl/A1JPpnkqbXWp/YSirZdrfXTSY5P8tdJ7moz9bIkz6+1vqTWumEW56yvtb4oyQsm9prJuiR/leT4Wutnej0HAGAoHgxEE3IGAAAwUN//s+n711872DoAAAAAAAAAAAAAAACAgRkfdgGjotb6yTSCzlJK2SPJw5IckmS/JMvTCKm7O40As6uSfLvWum0ezr0tya+WUn49yWlJ1ibZP43gtRuTfLPWet1cz5k464IkF5RSDk9yUpIDk6xIcksagXCX1Fq3zMdZAACDIxgNAAAAAAAAAAAAAAAAAAAAYBAEow1BrfXuJJcM+MwtSb40oLOuSzIvYWsAAAtGnU0wmjA1AACA2XNPBQAAAAAAAAAAAAAAAKNmbNgFAADAgvZgIJoH8gEAAAAAAAAAAAAAAAAAAAD6STAaAAC0JRANAAAAAAAAAAAAAAAAAAAAYBAEowEAQFu15drLUqFqAAAAAAAAAAAAAAAAAAAAAN0SjAYAAO1sDzcTcgYAADBg7sMAAAAAAAAAAAAAAABg1AhGAwCArnggHwAAAAAAAAAAAAAAAAAAAKCfBKMBAEBbteU6m7UAAAAAAAAAAAAAAAAAAAAAdCIYDQAA2poIN6tCzgAAAAAAAAAAAAAAAAAAAAD6STAaAAC082AgmmA0AAAAAAAAAAAAAAAAAAAAgH4SjAYAAG1NBKLV2QSjCVMDAACYtVndhwEAAAAAAAAAAAAAAAA7M8FoAACMttLtR2IP5AMAAAAAAAAAAAAAAAAAAAD0k2A0AABGXKePxLXlCgAAwECUMuwKAAAAAAAAAAAAAAAAgAETjAYAwGgrHT4S1zr12ovZrAEAAKDBPRUAAAAAAAAAAAAAAACMHMFoAACMtk7BaPEgPgAAwIJz65eGXQEAAAAAAAAAAAAAAADQB4LRAAAYbWVRhwm15QoAAMDQfe9dw64AAAAAAAAAAAAAAAAA6APBaAAAjLhuPxLPJhhNmBoAAEBf3PKFYVcAAAAAAAAAAAAAAAAA9IFgNAAARlvp8JG41qlXAAAABsTZzKyOAAAgAElEQVR9GAAAAAAAAAAAAAAAAIwawWgAAIy2TsFoDz6I74F8AAAAAAAAAAAAAAAAAAAAgH4SjAYAwGgrizpMmEswmjA1AAAAAAAAAAAAAAAAAAAAgG4JRgMAYLSVDh+Ja516BQAAAAAAAAAAAAAAAAAAAKAvBKMBADDiuv1ILBgNAAAAAAAAAAAAAAAAAAAAoJ8EowEAMNpKp4/EteXagypMDQAAYPbcUwEAAAAAAAAAAAAAAMCoEYwGAMBo6xSMtj3cTMgZAAAAAAAAAAAAAAAAAAAAQF8JRgMAYMR1+kgsEA0AAAAAAAAAAAAAAAAAAABgEASjAQAw2kq3wWizCUgTqgYAAAAAAAAAAAAAAAAAAADQLcFoAACMtrKoy4lCzgAAAAAAAAAAAAAAAAAAAAD6STAaAACjrXT4SFzr1CsAAAAAAAAAAAAAAAAAAAAAfSEYDQCA0dYpGC215doLYWoAAAAAAAAAAAAAAAAAAAAA3RKMBgDAaCuLOkyYCDerQs4AAAAGyn0YAAAAAAAAAAAAAAAAjBzBaAAAjLgOH4kffBDfA/kAAAAAAAAAAAAAAAAAAAAA/SQYDQCA0VY6fSSeQzBaFaYGAAAAAAAAAAAAAAAAAAAA0C3BaAAAjLaOwWgThJwBAAAAAAAAAAAAAAAAAAAA9JVgNAAARltZ1GFCbbkCAAAAAAAAAAAAAAAAAAAA0A+C0QAAGHEdPhLXuQSiCVMDAACYPfdUAAAAAAAAAAAAAAAAMGoEowEAMNrGxjtMqC1XAAAAAAAAAAAAAAAAAAAAAPpBMBoAAKOtLOowYSIQrQpGAwAAAAAAAAAAAAAAAAAAAOgnwWgAAIy2jsFo2wlGAwAAAAAAAAAAAAAAAAAAAOgnwWgAAIy2Mt5+vG4PRBOMBgAAAAAAAAAAAAAAAAAAANBPgtEAABhtZVGHCROBaFUwGgAAwILiPg0AAAAAAAAAAAAAAAB2OYLRAAAYbd0Go8UD9wAAAAAAAAAAAAAAAAAAAAD9JBgNAIDRVjp8JK6C0QAAAIaiug8DAAAAAAAAAAAAAACAUSMYDQCAEdflg/YeyAcAAFhg3KcBAAAAAAAAAAAAAADArkYwGgAAtFVbrgAAAAAAAAAAAAAAAAAAAAD0g2A0AABoSzAaAAAAAAAAAAAAAAAAAAAAwCAIRgMAYLTVDoFnncYBAAAYDvdrAAAAAAAAAAAAAAAAsMsRjAYAAG1NPGjvgXsAAIABcx8GAAAAAAAAAAAAAAAAo0YwGgAAdMUD+QAAAAuL+zQAAAAAAAAAAAAAAADY1QhGAwBgxHV4kL7WqVcAAAAAAAAAAAAAAAAAAAAA+kIwGgAAtFVbrgAAAAAAAAAAAAAAAAAAAAD0g2A0AABGXKfAszkEo1VhagAAAP3jngsAAAAAAAAAAAAAAAB2NYLRAACgne3hZkLOAAAABsx9GAAAAAAAAAAAAAAAAIwawWgAANAVD+QDAAAAAAAAAAAAAAAAAAAA9JNgNAAARlvtFHhWW649bT6LNQAAAHSl4/0cAAAAAAAAAAAAAAAAsLMRjAYAAG1NPGjvgXsAAAAAAAAAAAAAAAAAAACAvhKMBgAA7QhEAwAAGI6O92Pu1wAAAAAAAAAAAAAAAGBXIxgNAIAR1+2D9rN54N5D+gAAAAAAAAAAAAAAAAAAAADdEowGAABdEXIGAAAwUKUMuwIAAAAAAAAAAAAAAABgwASjAQBAWxOBaFUwGgAAwEB1vA9znwYAAAAAAAAAAAAAAAC7GsFoAACMuA4P0j/4IP4sHrgXpgYAAAAAAAAAAAAAAAAAAADQNcFoAADQ1hyC0QAA+P/s3XuwpHld3/HPr89hZ4bdhAUEEQmsi4giQSVUqZALJpS38hIMojFFSWIMhff7pSICqdxMImXQqBWDQmlEAhJQg2i4WepiNLArGkCBheG27LrsCuzsmZk93b/8sWfc3p5+ntPdp5/znH769aqa2tPP9WvZ1XWeZn7vAeiOGDUAAAAAAAAAAAAAAAAMjjAaAAC0Olhob8E9AAAAAAAAAAAAAAAAAAAAQKeE0QAA2G4LB89WCaOJqQEAAKzOMxUAAAAAAAAAAAAAAABsG2E0AABo81fhNAvyAQAAThbPaQAAAAAAAAAAAAAAADA0wmgAANDqYKF9XWXBvUX6AAAAAAAAAAAAAAAAAAAAAIsSRgMAYMsdFi8TNwMAAAAAAAAAAAAAAAAAAAA4DsJoAADQpl4KowmkAQAAnCye0wAAAAAAAAAAAAAAAGBohNEAAKDNhb+4+791hQX3q5wDAADAAc9UAAAAAAAAAAAAAAAAsG2E0QAA2HKHLLS/9c3Jb3xWctsfHc84AAAALEaMGgAAAAAAAAAAAAAAAAZHGA0AAA7z8Xcmb3tO31MAAAAAAAAAAAAAAAAAAAAADJowGgAAdKb2PQAAAAAAAAAAAAAAAAAAAADAxhBGAwBgu1XxMgAAgM3keQ4AAAAAAAAAAAAAAACGRhgNAAAAAAAAAAAAAAAAAAAAAAAA6J0wGgAAdKb2PQAAAMCAeeYCAAAAAAAAAAAAAACAoRFGAwBgy1lIDwAAcCJVz2sAAAAAAAAAAAAAAACwbYTRAAAAAAAAAAAAAAAAAAAAAAAAgN4JowEAsOVqh5fu8NoAAADbzjMXAAAAAAAAAAAAAAAADI4wGgAAAAAA3ZmM+54AAAAAAAAAAAAAAAAAgA0hjAYAAAAAwPq9+78mv/4ZycuvSt74pcm5D/Q9EQAAAAAAAAAAAAAAAAAnnDAaAADbrdYuL97htQEA4AQ7+7LkD5+VfOJdyfh8ctNvJa9/cjK+2PdkbJTDnqk8cwEAAAAAAAAAAAAAAMDQCKMBAAAAALBe7/3Fy7fdcWNy65uPfxYAAAAAAAAAAAAAAAAANoYwGgAAdKb2PQAAAPTjw/9r/va3/cvjnYOB88wFAAAAAAAAAAAAAAAAQ7Pb9wAAANAvC+lZo3PvT25+Q/LxdyanH5J88hclVz8uKaXvyQAATobxhb4nAAAAAAAAAAAAAAAAAOAEE0YDAABYhw+8Mvndp+Wy2N6jvjV5wk+KowEAAAAAAAAAAAAAAAAAAMAhRn0PAAAAg1Xr4ccwDPt7yXXPyGVRtCR5139JPvK/j30kAAAYPM9cAAAAAAAAAAAAAAAAMDjCaAAAbDkL6VmDD/16Mr6zef/Nbzy+WQAAAAAAAAAAAAAAAAAAAGBDCaMBAAAc1U2/2b7/xhcfyxgAACdf6XsANoqQNQAAAAAAAAAAAAAAAGwbYTQAAOiMRfzb45DAx86Z4xkDAAC2imcuAAAAAAAAAAAAAAAAGBphNAAAtlu1kJ41uP369v1X/83jmQMAAIbE8xoAAAAAAAAAAAAAAABsHWE0AACAo9jfS26/of2YndPHMwsAAGwT4TQAAAAAAAAAAAAAAAAYHGE0AADojEX6W+HmNxx+zOSu7ucAAIChKaXvCQAAAAAAAAAAAAAAAIBjJowGAMCWEy/jiN7+Y4cfM7nQ/RwAADA01fMaAAAAAAAAAAAAAAAAbBthNAAAgKOY3HX4MR9+TVIn3c8CAABbRTgNAAAAAAAAAAAAAAAAhkYYDQAAulIt0t8Ko53FjvvAK7udAwBgE5TS9wQAAAAAAAAAAAAAAAAAnGDCaAAAbDfxMo5swbjHu36m2zEAAGDreJ4DAAAAAAAAAAAAAACAoRFGAwAAOIqy4GPVzW/odg4AAAAAAAAAAAAAAAAAAADYcMJoAADQmdr3AByHstP3BAAAMFCeqQAAAAAAAAAAAAAAAGDbCKMBALDlLLTnqDxWAQBAL6rnOQAAAAAAAAAAAAAAABgaK/gBAACOonisAgAAAAAAAAAAAAAAAAAAgHWwgh8AADpT+x6AY1H6HgAAAAAAAAAAAAAAAAAAAAAGYbfvAQAAoF/iZRzR5ELfEwAAnBx3fjC57a0tB4jKsozDntc8zwEAAAAAAAAAAAAAAMDQCKMBAEBXqkX6W2H/zr4nAADoX63JH/9w8vYf63sSAAAAAAAAAAAAAAAAADbYqO8BAACgV+JlHNX4XN8TAAD078OvEUWjA+WQ/Z7nAAAAAAAAAAAAAAAAYGiE0QAAAFZVa/Kxt/c9BQBA//78p/qegEESPgMAAAAAAAAAAAAAAIBtI4wGAACdsYh/8G5/a98TAACcDDe9dsEDS6djAAAAAAAAAAAAAAAAALDZhNEAANhy4mUcwUde3/cEAAAbxu/frFH1fgIAAAAAAAAAAAAAAIChEUYDAABY1cW/7HsCAAAAAAAAAAAAAAAAAAAAGAxhNAAA6EqtfU9A18Z7fU8AALBhSt8DsEkOfabyzAUAAAAAAAAAAAAAAABDI4wGAMCWs5CeIxjf2fcEAAAAAAAAAAAAAAAAAAAAMBjCaAAAAKva3+t7AgAAAAAAAAAAAAAAAAAAABgMYTQAAOhM7XsAujYWRgMAgP545gIAAAAAAAAAAAAAAIChEUYDAGC7VQvpOYLxnYsfe8UDupsDAGBTlNL3BAAAAAAAAAAAAAAAAACcYMJoAAAAqxrvLX5snXQ3BwDAphAmZineLwAAAAAAAAAAAAAAALBthNEAAKAzFvEP3v4yYbT97uYAAIBtJLQHAAAAAAAAAAAAAAAAgyOMBgDAlrOQniMY37n4sZO7upsDAGBTlNL3BGwU7xcAAAAAAAAAAAAAAADYNsJoAAAAqxrvLX5s3e9uDgAAGKTDQtZC1wAAAAAAAAAAAAAAADA0wmgAANCVapH+4C0VRht7TwAAAAAAAAAAAAAAAAAAAEALYTQAALacUBVHsH/ncsfXcTdzAAAAAAAAAAAAAAAAAAAAwAAIowEAAKxqvLfc8XW/mzkAADZG6XsABkXoGgAAAAAAAAAAAAAAAIZGGA0AADpjkf6g1bp8GG1yVzezAABsDL8jswzvFwAAAAAAAAAAAAAAANg2wmgAAGy3aqE9K5pcWP6cur/+OQAAAAAAAAAAAAAAAAAAAGAghNEAAKAzomuDNj6//DkTYTQAYNuVvgdgSISuAQAAAAAAAAAAAAAAYHCE0QAAAFYxvrD8OVUYDQAAAAAAAAAAAAAAAAAAAJoIowEAsOVq3wOwqSYrhNEmwmgAALA+nucAAAAAAAAAAAAAAABgaITRAACgK9Ui/UEbn1/+nCqMBgAAC/NMBQAAAAAAAAAAAAAAAFtnt+8BOB6llPskeVKShyf5lCR3JPlwkutrre9b870+LcnnJnlokquS3JTkbJLraq13rfNeAADQm8mFFc7x6zAAsOVK6XsCAAAAAAAAAAAAAAAAAE4wYbQTqJTyK0m+bmbz2VrrNStc60FJnn9wvQc0HHNdkhfUWn912evPXOdpSb4nyRc2HHJbKeVlSX601nrrUe4FALA+te8B2FRjYTQAAOiX5zkAAAAAAAAAAAAAAAAYmlHfA3BvpZSvyuVRtFWv9WVJ/jTJs9MQRTvwxCSvKKX8UinlyhXuc1Up5aVJXp7mKFoOZnh2kj8tpXzJsvcBANg8FukP2vj88udMVoipAQAAAAAAAAAAAAAAAAAAwJbY7XsA7lFKuTrJz6zpWk9O8qokV0xtrknemuTGJFcn+bwknzS1/58k+eullH9Ya50seJ+dJC9L8uUzu/4iyfVJPpbkkQf3Kgf7PjnJq0spT6m1/t4S/2cBAKxfFS9jRatEzlaJqQEAAPN5ngMAAAAAAAAAAAAAAIDBGfU9APfy40keevDzJ1a9SCnlYUlemXtH0X4/yWfXWp9Qa316rfWLkzwsyXcmuWvquK9M8q+XuN2/z72jaHcl+fYkD6u1fsnBvf5WkscmefPUcaeSvKqU8ilL3AsAAE6OcUMYbXSq5RxhNAAAAAAAAAAAAAAAAAAAAGgijHZClFKekuSfHbzcT/KjR7jc85Pcf+r1dUmeUmt9x/RBtdYLtdYXJnn6zPnfU0p5xGE3KaVcm7vDatO+ttb6U7XWizP3enuSf5B7x9EemOS5h90HAGBz1b4HoEuThjDazum7/8wz3utuHgAAAAAAAAAAAAAAAAAAANhwwmgnQCnlyiQ/N7XpBUluWPFaj0ryjVObLiZ5Zq31fNM5tdZXJXnJ1KZTWSxY9twk95l6/eJa66tb7rOX5JkHM13yTQeBNQCAnoiXsaJxw6/YO6eTUVMYrfHXcgAA4DKHPa95ngMAAAAAAAAAAAAAAIChEUY7Gf5dkmsOfr4xyfOOcK1vSLIz9fqVtdZ3LXDej828fnoppaHmkJRSziR52iHXuEyt9c+TvGpq027unhkAADbL5ML87aNTd8fR5hFGAwC2Xul7AAAAAAAAAAAAAAAAAABOMGG0npVSnpjkW6c2PavWuneESz515vUvLHJSrfUdSf7P1KYrk3xxyylfkuS+U6/fXGt950ITXj7T1yx4HgDAZqm17wno0rghjLZzKtk5M3/fRBgNAAAW55kKAAAAAAAAAAAAAAAAto0wWo9KKaeS/Hzu+f/DS2qtrzvC9R6S5HOmNu0n+f0lLvGmmddf1nLslx5ybpvfzd2zXfJ5pZRPXuJ8AIA1stCeFY0bImc7p+/+s8w5AADA8sSoAQAAAAAAAAAAAAAAYHCE0fr1vCSPPvj5L5J87xGv99iZ12+rtZ5b4vzrZl5/9hL3evOiNzmY6U+WuBcAAJw8kwvzt49OCaMBAMBalL4HAAAAAAAAAAAAAAAAAI6ZMFpPSimPT/J9U5u+q9b60SNe9jEzr9+95PnvOeR60z7rGO8FALChat8D0KUbf2H+9h1hNAAAWI/Dnqk8cwEAAAAAAAAAAAAAAMDQCKP1oJSym+Tnk+webHptrfWX13DpT595/f4lzz878/qBpZT7zx5USnlAkgcc8V6zxz9qyfMBANajWkjPij7+zvnb924WRgMAAAAAAAAAAAAAAAAAAIAV7B5+CB34oSSfc/DzuSTPXtN1r555fcsyJ9da7yilnE8yXXG4X5LbD7nPnbXWc8vca85s91vy/LlKKQ9O8qAlT3vkOu4NAHA50bXBOn9r8777XJWMGsJoE2E0AAAAAAAAAAAAAAAAAAAAaCKMdsxKKY9J8iNTm55Ta33fmi5/1czrvRWusZd7h9H+Wof3mTbvPqv4liTPXdO1AABgvvGdzftGVyQ7DWG0/VV+dQYAGJLS9wAMihg1AAAAAAAAAAAAAAAADM2o7wG2SSlllORFSU4dbHpLkheu8RazwbLzK1xjttQwe83jvA8AwDGwkJ4VjFt+BX7oVzSH0Sar/OoMAAAAAAAAAAAAAAAAAAAA20EY7Xh9Z5IvOPh5P8k/r7WOO7zfKpWPk3wOAFzurjuSOul7Cpiv+pVnsCYXmvdd+43Jzpn5+9qCagAAwL15pgIAAACOWSnl2lLK15VS/mMp5U2llI+XUurUn/f1PeOsUsp9SynvmZmzllJe3PdsAAAAAAAAAACwit2+B9gWpZRrk/zrqU0vqLXesObb3DHzuqHG0Gr2nNlrHud9VvHTSV6+5DmPTPLqNd0fgONyx43Jdc9IPvoHyalPSh793cljfjAppe/JgG0wbgmjXXF1snO64TxhNAAAWBvhNAAAAGANSilPTvLDSZ6Q5AH9TrOSf5Pk2r6HAAAAAAAAAACAdRFGOwallJLk55Lc92DTjUme18Gttj6MVmu9Jckty5xTBHQANs/4YvK6L0rufP/dr8/fkvzxDyenHph8+jf3OxsbyEJ6VjBpCaONTgmjAQAAAAAAwOb43CRf3PcQqyilfEGS7+h7DgAAAAAAAAAAWKdR3wNsiW9O8venXj+r1rrXwX0+NvP6QcucXEq5KpcHy/5ygfvct5Ry5TL3SvLgBe4DAPPd+uZ7omjTzr7s+GeBVqJrgzVuC6NdIYwGAADHwjMXAAAA0KkLSd7T9xBNSilXJHlR7vl7oJ/ocRwAAAAAAAAAAFib3b4H2BLPn/r5NUneXUq55pBzHjLzenfOOR+utV6cev2umf2PWHC+puNvq7XePntQrfWjpZTbk9x/avPDk7zjCPeanR0Amr3tR+Zvv/n1xzsHsL0mDWG00RVJKcmoIYw2EUYDAIDFCZ8BAAAAx+auJP8vyf9N8kcH//2TJE9K8sYe52rzo0kec/Dz2SQvT/J9/Y0DAAAAAAAAAADrIYx2PM5M/fzlSd67wjU+dc55n5fkhqnXs2GyT1/yHtfOvH57y7HvSPLEmXstE0abvdcy5wKw7eq47wkYkmqhPSsYN4XRTt39352GMNpYGA0A2HKl9D0BAAAAAMx6SZKfrbVe9j/mlRP6fVYp5XOS/ODUpmcn+fyexgEAAAAAAAAAgLUa9T0Aa/WnM68fV0q57xLnP+mQ67Xt+8JFb1JKuTLJ45a4FwDcm5AVG8N7dbAmDWG0ncPCaHvdzAMAAIN02MJjz1wAAADA0dVab58XRTupSim7SX4+9/zDuC+ttf5mjyMBAAAAAAAAAMBaCaMNSK31piRvm9q0m+RvL3GJJ8+8bvvLUq895Nw2fyf3/KWsJLm+1nrzEucDsPUsfAZ6Nm4Io40OC6NtzHoKAAA4ATz/AwAAAMzx/Ukef/DzbUm+q8dZAAAAAAAAAABg7YTRjkGt9epaa1nmT5IvmrnM2TnH3TDndv9z5vU/XWTGUspnJvn8qU3nkvx2yym/lWRv6vUXHlxjEc+ceT07MwC0q5O+J2BQLLRnBZOGMNrOpTDamfn7hdEAAGB9quc5AAAAYLuUUh6d5LlTm7631npLX/MAAAAAAAAAAEAXhNGG578nGU+9/ppSyqMWOO8HZ17/j1prY7Wh1npnklccco3LlFI+I8lTpzbtJ/nlBeYDgCkWPrMhLNIfrnFDGG10KYx2uuE8YTQAYNuVvgcAAAAAgI1UShkleVGSg/9RMm+otb64v4kAAAAAAAAAAKAbwmgDU2t9V5KXTG26IsmLSykNZYaklPLVSZ45telikucvcLvnJblr6vUzSylf1XKf00l+4WCmS15Ua33PAvcCgHvUSd8TANtu0hBG2xFGAwBoJx7Mgcl+cu6soDQAAADA4r4tyZMOft5L8qweZwEAAAAAAAAAgM4Iow3Tc5PcPvX6iUleV0r5zOmDSimnSinfnuTlM+f/eK317GE3qbXemOQ/z2x+RSnl20op0/GzlFI+K8nrD2a55KNZLMAGADMsmmaNLMJnFU1htNEhYbTJee85AAB4508kv/rA5NXXJK/6G8lHXj//uEN/d/a7NQAAALAdSinXJPm3U5ueX2t9dz/TAAAAAAAAAABAt3b7HoD1q7V+sJTyNUl+K8mlQNmTkry9lPKWJDcmuV+Sxyd50Mzpv5HkOUvc7oeSfHaSLzt4fZ8kP5nkOaWUtyb5RJJrD+5Vps67mOSptdablrgXANytTvqeABZkkf5gjRvCaJeCaKOGMFqdJHU/KffpZi4AgBOvHH4Iw/bBX0ve+t33vN77UPI7X5F8xZ8lVz68v7kAAAAATrafS3Llwc9/nOTH+xqklPLgXP73Dg/zyC5mAQAAAAAAAABgmITRBqrW+qZSylOTvDj3/CWkkuQJB3/meWmSb661jpe4z7iU8vQk/y3J103tenCSL2047ZYk31hr/d1F7wMA9yY2xTp5P7GC8fn520en7v7vTkMY7dK5I2E0AAC21Pt+6fJt4/PJB1+dPPrbj38egDbnziZ/9sLk9huSBzwhecwPJKce2PdUAADAlimlfFOSpxy8nOTuv+O33+NI35LkuT3eHwAAAAAAAACAgRv1PQDdqbW+Jsljk/xskttbDv2DJE+rtX5DrfXcCve5o9b69Um+9uBaTW5L8jNJHltrfe2y9wGAv1InfU8AbLvJhfnbdxYMowEAwLZ6/8vnb3/Ld6xwMaFroEN3fjh53d9L3vmC5OY3JO/4D8nr/m5y8WN9TwYAAGyRUspDk/ynqU0vrLX+UV/zAAAAAAAAAADAcdjtewDmq7W+KUlZw3VuSfLsUsp3JnlSkkckeUiSc0k+lOT6Wut7j3qfg3u9IskrSimfluTxSR6a5MokH0lyNsnv11ovruNeAGw7C5+Bno0bwmijRcJoe+ufBwAAAFivs7+cnDt7720fe3vyoV9LPu0Z/cwEAABso59OcvXBz2eT/EiPswAAAAAAAAAAwLEQRtsSB0GyNx7Tvd6bZC2xNQCYq076noBBEdpjBZOGMNrOpTDameZzx+fXPw8AwMY48r8FwVY55Hmtep4DOnT998/f/of/QhgNAAA4FqWUr0/y1VObnl1rPdfXPFN+OsnLlzznkUle3cEsAAAAAAAAAAAMkDAaALCBLHxmg9SaFPGHwRk3hNFGl8Jop1vOFUYDALaZ5zkANpznegAA4BiUUj4pyQunNr201vqbfc0zrdZ6S5Jbljmn+N/MAQAAAAAAAABYwqjvAQAAllYnfU8AbLtJQxhtRxgNAADWx4JZAAAAYGu9MMmDDn6+Lcl39TgLAAAAAAAAAAAcq92+BwAAWF7tewCGpHo/sYJxQxhtdOre/51nIowGAGwzoSuWcdjzmuc5AAAAYHhKKY9O8o+nNv1EkvuWUq455NSrZ15fNXPOpNb6/qPOBwAAAAAAAAAAXRNGAwA2T530PQEsoUb8YYAmDWG0nUthtN2k7CZ1//JjxsJoAAAAAAAAQKMzM6//1cGfZf2jgz+XfCyXx9MAAAAAAAAAAODEGfU9AADA8mrfAwDbrimMNjp1z887p+cfI4wGAABr4vsBAAAAAAAAAAAAAAAAGBphNABg89RJ3xMwKBbSs4JxQxhtRxgNAAAAAAAAAAAAAAAAAAAAViWMBgBsICErNkj1fh2kSUMYbbRIGG1v/fMAAPSuLHjYgsdBEs//wIl1y+/1PQEAADBgtdYbaq1l2T9Jnj9zqZfMHHN1H//3AAAAAAAAAADAsoTRAIDNUyd9TwBsu3FDGG06hrZzpuHc8+ufBwCgb4sGzy/lKC4AACAASURBVISDWSfvJ6AvH/6NvicAAAAAAAAAAAAAAIDBEkYDADaQhc+sk/cTK5g0hNFGp+75eTqSNk0YDQAYpAXDaACwKUZXNO97z4uObw4AAGAwSil15s+T+54JAAAAAAAAAABOot2+BwAAWFqd9D0BLEF4bZDGDWG0nakw2qghjDYRRgMAhmjBMFoRUANgQ4yuSCYX5++7cOvxzgIAAHSulPKwzP/7lA+Zeb1bSrmm4TJ31Fo9MAAAAAAAAAAAwBEJowEAG0hoCuhZU9xsNBVG22kIo42F0QCAASrFoxo98KYDOnTqQcn+HfP3Xf24450FAAA4Dr+X5BELHPepSd7bsO8lSZ65roEAAAAAAAAAAGBbjfoeAABgaXXS9wQMSbWQnhWML8zfviOMBgBsK1810wHPa0Cfrnx48777Peb45gAAAAAAAAAAAAAAgC1jtRoAsIEsjGaTeL8O0qQhjDYSRgMAtlQpfU/AVvK8BXTJZwwAAAAAAAAAAAAAAPRht+8BAACWVid9TwBsszpJJnfN37cjjAYAbKtFw2gCagBsiNoSRmvbBwAAbKRa6zXHcI9OvxyrtT4vyfO6vAcAAAAAAAAAAByHUd8DAAAsz8JD1sn7iSVNLjbvG02F0UZNYbS99c4DAHASFF81AzA0bf84g3+4AQAAAAAAAAAAAAAAumK1GgCweaqFh2yQKrw2OOMLzft2psJou2cazj+/3nkAAE6E0vcAbCPPW0CX2j5jfP4AAAAAAAAAAAAAAEBnhNEAgM1j4SHQp0lLGG00FUYbnW44XxgNABgiYTS64Pkf6FHrP87gH24AAAAAAAAAAAAAAICuCKMBABvIwkPWqeuF9hbyD854wTDaTkMYbSyMBgAMUBFGA2BoWr6D9A83AAAAAAAAAAAAAABAZ4TRAIDNU4XRgB5NWsJoO8JoAMC2EkajD8JEQIda42e+nwQAAAAAAAAAAAAAgK4IowEAG8jCZ6BH47Yw2un5P9/rfGE0AGCAiq+aARialvhZazQNAAAAAAAAAAAAAAA4CqvVAIDNU1sWJcKyOl/IaqHs4ExawmijU/f8LIwGAGyVsubjIDn0eUqYCOhS22eM7ycBAAAAAAAAAAAAAKAzwmgAwAay8Bno0bgljLazQBhtIowGAAxQETwDYGja4me+nwQAAAAAAAAAAAAAgK4IowEAm6e2LUqEZVnIypImLWG00RVTPzeE0cbCaADAEAmj0QXvK6BHteU7I99PAgAAAAAAAAAAAABAZ4TRAIANJGTFBmlbRMtmGjeE0Ub3ScrUI9bOmYbz99Y/EwBA7wSs6MJhz1Oet4AutcXPfP4AAAAAAAAAAAAAAEBXhNEAgM1T2xYlAnRscn7+9tGpe7/eOT3/uHHD+QAAm6z4qhmAgWn7DtL3kwAAAAAAAAAAAAAA0Bmr1QCADVT7HoBB8X5iSeML87fvCKMBANus9D0AW8nzHNClts8Ynz8AAAAAAAAAAAAAANAVYTQAYPPUSd8TwBIslB2cSUMYbbRgGG1y0ecYADA8RRgNgIFpe3b3XA8AAAAAAAAAAAAAAJ0RRgMAAFjG+IhhtLZrAABsrAW/ahZQA2BjtMXuhfABAAAAAAAAAAAAAKArwmgAAGy3aiErS5o0RM12lgijTc6vbx4AgJNA8IwuHPa85nkO6FKdrLYPAAAAAAAAAAAAAAA4EmE0AADolIX6gzNuCKONZsJoo5Yw2lgYDQAYGmE0AAamNX7m+x4AAAAAAAAAAAAAAOiKMBoAAMAyJg1htJ2ZMNqOMBoAsE2E0dgA++eS87f2PQWwMVriZ63RNAAAAAAAAAAAAAAA4CiE0QAA2HIti1xhnnFTGG0mhLZzpuUae+ubBwDgJCi+aqYPCz7PjS8m1z0jecX9k1c+KPntJyV7N3U7GrD5WuNnvk8CAAAAAAAAAAAAAICuWK0GAABdqhbKDs6kIYw2OnXv17OhtGnj8+ubBwAABmtNz1PXf2/yvl9KJnfd/frW65Lf+cr1XBsYsJbPoNZoGgAAAAAAAAAAAAAAcBTCaAAAAMsYC6MBAMDJsEA4rdbkvb94+fbb3pLc8d71jwQMR2v8TAgfAAAAAAAAAAAAAAC6IowGAMCWs5CVJU0awmg7M2G00RXN1xBGAwC2Vul7ADbKGt4vkwvJXR+bv+/srxz9+sCAtXxn1BpNAwAAAAAAAAAAAAAAjkIYDQAAOiW8NjhNYbTRTBitlGTn9PxjhdEAAGABXT9PCfUBLVrjZ77vAQAAAAAAAAAAAACArgijAQAALGPcEEbbOXX5tlFDGG0ijAYADI3AFD2oC4SJ2o4p3rdAi7YwWms0DQAAAAAAAAAAAAAAOAphNAAAttsiC+mPdoOOr8+xG+/N374zJ4I2b1uSjIXRAADgeLQ9kwmjAW3aPj983wMAAAAAAAAAAAAAAF0RRgMAAFjG/h3zt+9eefk2YTQAAOjQImEi8SJgRXWy2j4AAAAAAAAAAAAAAOBIhNEAAACWsX9u/vbdqy7ftnNm/rHCaAAAsIA1RM1q2zXK0a8PDFjb54foIgAAAAAAAAAAAAAAdEUYDQCALdfxQtbWRfhspMYw2pWXb9s5Pf/Y8d765gEAAFq0PJMVYTSgRZ2stg8AAAAAAAAAAAAAADgSYTQAAIBlrCWMdn598wAAbBQhKtZpkRB12zHej0CL1viZED4AAAAAAAAAAAAAAHRFGA0AAGAZTWG0HWE0AGCLFYEpTqjWsJH3LdCmJX5WhdEAAAAAAAAAAAAAAKArwmgAAGy5rheyWig7OPt3zN++OyeMNmoIo02E0QAA4Hi0PJMJ+gFtWsOKbfsAAAAAAAAAAAAAAICjEEYDAABYxv65+dt3r7p8205DGG0sjAYAAIeqh4SmD9t/6DHCaECbls+PRT5/AAAAAAAAAAAAAACAlQijAQAALGp8Man78/ftXnn5NmE0AABYXJ0kt9+Q7N203ms2EkYDWrR+frTtAwAAAAAAAAAAAAAAjmK37wEAAKBXtXZ9g46vz7Ean2veJ4wGAABH86qH3RNFe9hXJ5MLh5ywyPOWZzJgVS2fH51/nwQAAAAAAAAAAAAAANtLGA0AAGBR+8uG0c7MP1YYDQAALncpipYkH3z1eq5ZJ837SlnPPYBhavv8aNsHAAAAAAAAAAAAAAAcyajvAQAAoF+17wHYJEuH0U7PP3a8t555AAA2jRAVx67tmc/7EWjTFj/zfRIAAAAAAAAAAAAAAHRFGA0AALpULZQdlMnF5n2jU5dvawyjnV/PPAAAsNUWed4SRgNW1PadTm2LpgEAAAAAAAAAAAAAAEchjAYAALCoyX7zvtF95mxrCKNNhNEAgKERmOKEaosXFe9boE1b/EwIHwAAAAAAAAAAAAAAuiKMBgDAdqsWsrKE2hZG2718205DGG0sjAYAAMej7ZlPGA1o0fadUVt0EQAAAAAAAAAAAAAAOBJhNAAA6JTw2qBMWsJoRRgNAACO1SKh67ZjijAa0KDWtH+n4/seAAAAAAAAAAAAAADoijAaAADAoqowGgAAbJZJyz5hNKDJIeGz2vbZAgAAAAAAAAAAAAAAHIUwGgAAW+6Qha5HvnzH1+d4tYbR5jxeCaMBAECHFnje8kwGrOLQzw6fLQAAAAAAAAAAAAAA0BVhNABgWO64se8JgCGbNITRym5SyuXbd840XEcYDQDYVnN+Z4JOTVr2eT8CTdo+O5LUQ/YDAAAAAAAAAAAAAAArE0YDAIbl+h/oewJgyGpDGG20O3/7zun528fCaADA0AhMcULV2rxvXtwYIGn/7Lj7gGMZAwAAAAAAAAAAAAAAtpEwGgAwLB/41b4nYON0vZDVQtlBmTSE0cqyYbS9BRZZAwAA7Rb5nbrtGGE0oMmkfXc9ZD8AAAAAAAAAAAAAALAyYTQAYLMICQF9qkuG0UYNYbQ6ab4WAACwPq3xImE0oMGh30H6jhIAAAAAAAAAAAAAALoijAYAbJb9O/qeANhmTTGzUUMYbachjJYk4/NHnwcAALbZQvH0lmOKMBrQpC2qmEOiiwAAAAAAAAAAAAAAwFEIowEAm+XiX/Y9AUOz0EL6I92g4+tzrCYNYbQijAYAACdS6zOfMBrQ4NDwme97AAAAAAAAAAAAAACgK8JoAMBmuUsYDehRbQijjYTRAADgZGqLGwmjAU0OCZ8dGk4DAAAAAAAAAAAAAABWJYwGAGyWi8JoQI8mDWG0IowGALAYISrW6f+zd+9hsp11nei/v+4dsjck3OWqBoQoIIrgOMhFBVHQUUEYhfF2BJTjMKMw4hzHyyCCjOMI4x1UznhBOSpyFRkRPdwEQYEBQUJQIEBUIhEIhiR772R3vfNHV8+uVLqqV92ruj+f5+mnV631rvf97dR6Vq9VWe+3DgguSpI2pk05HoERDgw+63D+AQAAAAAAAAAAAAAApiIYDQDYLILRmLsFT2QdNwmfzdMmDUY7MbqvnmA0AABYvHHhRoLRgFEO+DznwOA0AAAAAAAAAAAAAABgWoLRAIDNcp1gNGCFRgWjbY0KRjs+uq8dwWgAwCFSAqZYU8KqgWkcGHzm3AIAAAAAAAAAAAAAAIsiGA0A2CzXCkYDVqg3IhitRgSjbZ07uq+dk7PXAwAAR1mn0LNxbQT6ASMcFIx2YHAaAAAAAAAAAAAAAAAwLcFoAMBmOfPpVVfAodNlIv06989StRHBaFujgtGOjQ5N2zk1n5oAADaK62OWbFx4UQlGA0Y56O+Vv2cAAAAAAAAAAAAAALAogtEAgM0ybkIzwKL1RgSjjQo/S5Lt4/uvF4wGAAAz6hJMNK6NYDRghIM+g/QZJQAAAAAAAAAAAAAALIxgNAAAgK6aYDQAgNl0CbKCeRKMBkzh1OUHNPD3DAAAAAAAAAAAAAAAFkUwGgCwWZpJh8zZwo8px+yh0hsRjLYlGA0AoBP3dCxb643eVoLRgBHe/5zx28edWwAAAAAAAAAAAAAAgJkIRgMANoxJ9MAKtRHBaDUmGG1rRDBaTzAaAHCYCJhiFTp8RjA2jM9xC4zwgecd0MBnlAAAAAAAAAAAAAAAsCiC0QAAOOJMZGUCo4LRtsYEox07sf/6HcFoAMBR5PqbZeuN2SYYDZhSG3duAQAAAAAAAAAAAAAAZiEYDQDYMCbRs2GaY/ZQ6Y0IRqsxwWhbx/dfLxgNAAAWzz0ZsCjOLwAAAAAAAAAAAAAAsBCC0QCAzdJlwqFJicCitCmC0bZHBaOdnL0eAICN436NOep0/z+mTdXcSgGOIn/TAAAAAAAAAAAAAABgEQSjAQBwxC16EqtJsodKb0Qw2tY0wWinZq8HAAAYr/XGbBSMBszAlzMAAAAAAAAAAAAAAMBCCEYDADZMlwmHJiUCC9JGBKOVYDQAgE6EyDBXM35GUILRgFmMC14EAAAAAAAAAAAAAACmJRgNAACgq1HBaFuC0QAAuhGMxrKNO+YEowEzEPYJAAAAAAAAAAAAAAALIRgNANgwHSYcmpTIJBZ+vDgeD5XeiGC0GhOMtjUiGK0nGA0AABau9cZsFIwGzGLc+QUAAAAAAAAAAAAAAJiWYDQAYLMIPQNWqY0IRtsaE4y2PSIYbUcwGgBwiFTXgCn3dMxTl+PJMQcsiM8pAQAAAAAAAAAAAABgIQSjAQCHkEmJwIL0RgSj1bhgtBP7rxeMBgAAi9d64zYurQzgMBp3fgEAAAAAAAAAAAAAAKYlGA0A2DAmLTNvCz6mmmP2UGnTBKMd33+9YDQA4Chyfcw8dTqeHHPAgvibBgAAAAAAAAAAAAAACzFm9v7mqqoLkzw8yZ2TnE5ycZKXtNauWGlhAMAcmPQMrNCoYLQtwWgAALCWxgYX+fwAmEVv1QUAAAAAAAAAAAAAAMChtPbBaFV1pyRfObDqBa21a0e0rSTPSvLkJFtDm3+mqp7UWvvNBZQJAKyTsZOeAWbQGxGMVtMEo52cvR4AgI3jfo0la4KLgAXxGSQAAAAAAAAAAAAAACzE2gejJfkPSb6vv/y/Wmu/PqbtTyZ5ysDrvRkJleS8JL9WVdVa+435lwkALIUJh8zdoo8px+yh0rtu//W1PXqfkcFop2avBwBg47g+Zp66HE9j2viMAZiJ4EUAAAAAAAAAAAAAAFiErVUX0MHXZTfYLElGBppV1ecm+X+yO8tpMBBtb9/WX/7FqrrjYkoFABZvxknPALPond5//fa5o/cZFYzWE4wGABwmdXATWAmfEQALIlwRAABmVlW3rqrzV10HAAAAAAAAAACwXtY6GK2qbp3kLgOr/mhM86fk+v+eVyb510kekeSl2Z2Z15KcSPKD860UAAA4EkYFo22NCUbbGhGMtiMYDQA4TDqGwwiRYdlab9zGpZUBHEJjzy8AAMAoVXVBVf1WVX0qyceSfKqq/r6qnllVJ1ZdHwAAAAAAAAAAsHprHYyW5PMHlv+ptfaR/RpV1XZ2Q9D2ZjH9SWvt4a21l7XW/rC19k1JXpDdcLRK8uiqqkUWDgAsSpdJyyY2M4GFBzM4Hg+VnRHBaNtjgtG2BaMBAMBi+IwAWCXnFwAASJKq+s6qurT/c1FVjfwfZ1X1hUneluTbktw0Z5/nu0OSH07ytv6XqQIAAAAAAAAAAEfYugejXdD/3ZJcPKbdv0hyq+w+JJUkz9ynzY/m7AyF2yS5+zwKBACWbOEhVgBj9EYEo22NCD9Lku0RX2wvGA0AOEw636u5p2PJWm/MNscjMINx5xcAADhaviXJZya5Y5LXt9b2/R9qVXUsyQuT3Dq7z/m1oZ9Kco8kL1lCzQAAAAAAAAAAwBpb92C0Ww0sf2JMuy8bWL6stfbnww1aa3+X64er3XPG2gCAdWViM7Aoo8LMtkd+8X2yPSI0TTAaAABHzbzv1zv15zMCYArHb9ehkfMLAABU1VaSBw6setmY5v9Xks/L2SC0JHlPkr8aWvfAqnrMnEsFAAAAAAAAAAA2yLoHo50YWL56TLv793+3JH8ypt3fDizfdtqiAIBVMuGQeVvwMSWo73DZ2fcL7pOtKYLReqcdHwDAEeT6hyUbe83teARG2D5xcJvWW3wdAACw/u6R5Mb95euSvGFM2+/q/64k/5zkfq21e7XWvjjJfZJ8LGdv1p+4gFoBAAAAAAAAAIANse7BaGcGlsfNQLj/wPKbxrS7amD5vKkqAgBWrMukZRObgQXpjQhG254iGC1Jdk7NVg8AwNpwH0YXqzhOBBcB0/AZJAAAdHSX/u+W5P2ttev2a1RVt0vypf12LckzW2tv3dveWnt3kidlNzStkjywqm6xyMIBAAAAAAAAAID1te7BaFcOLH/mfg2q6u5JbjOw6i1j+hsMV9uZoS4AYK2ZlAgsyM6oYLQx4WfjtvUEowEAR0xzv3akzf3979Df2DEdj8AIrUOoYpc2AABw+N1xYPlDY9p9ec6Gnp1J8uv7tHlZkn/uL1eSL5pHgQAAAAAAAAAAwOZZ92C0S/q/K8m9qmq/RIFHDCxf0Vq7eEx/txxY/vSsxQEAK2ASPXO36GPKMXuo9EYEo22dO3qfrTHBaDuC0QCAo8b18dG2ivdfcBEwjS7nK3/TAAAgyXkDy1eObJU8sP+7JXlLa+1Tww1aaztJ3jmw6q6zlwcAAAAAAAAAAGyidQ9G+6vsPgzVkhxP8vjBjVV1LMl391+2JG88oL+7DSz//ZxqBACWqsOEQ+FpwCK0NjrIbHtMMNq2YDQA4AhwH8ZKzPgZgeMWGKV1CFXs0gYAAA6/czq2u9/A8uvHtPvHgeWbTlwNAAAAAAAAAABwKKx1MFpr7fIkb+6/rCT/raq+o6puXFV3SvJ7ST5nYJcXj+qrqm6X5PYDq94/32oBAGA/JtofGu1MRr6fW4LRAAA6EUR1xK3i/XfMAdPocu5wfgEAgCRXDSzfYr8GVXWTJF80sOrPx/S3M7A85n/AAQAAAAAAAAAAh9laB6P1/Vx2Q9Fakpsk+c0kn07ywSSPzNlZB5dlTDBakq8ZWL4qyd/Mu1AAYAk6TaI3KZEJCGagq53To7eNDUY7MaZPwWgAABwhq7j/ar1xG5dWBrBpOpwfxp5fAADgyPj4wPLdR7T5qiTb/eWW5C/H9HfzgeVrZqgLAAAAAAAAAADYYGsfjNZae0mSl+ZsOFoN/GRg/Q+01sYkFeRRe10meWtrEjAAYDP5Ew6sSG/M7cb28em2CUYDAA6Nrvdq7umYI+HpwKJ0Cj1zfgEAgCTv6f+uJBdU1T33afNv+r9bkve01q4c098dB5Y/MYf6AAAAAAAAAACADbT2wWh935rk13I2DG1PJTmd5Ptbay8ctXNVfVaSr83ZGQqvXkSRAMC6MCmRSSz4eJHHe3jsjAtGO3f0tq0bjd7WE4wGAMBRsoL7o7H3ZO7XgFE6nB86hacBAMCh957sBpjtXUT/TFWds7exqh6Y5JsGtr9qVEdVdSzJPQZWfWi+pQIAAAAAAAAAAJvi2KoL6KK1dm2SJ1TVs5M8PMkF/U3vS/LS1tpHD+jia3P22ymT5A/nXyUAsBwmLQMrMi7EbGtMMFpVsn082dln//3WAQAcau7pjrZVvP+Ci4AJtV5y6vIuDRdeCgAArLvW2k5V/W6S783uRfJDkry7qv4wyW2yG4q2ld0vQG1JfntMd1+SZPAbhy5aSNEAAAAAAAAAAMDa24hgtD2ttb9J8qwp9ntekufNvyIAYC01kxKBBdg5PXrb9phgtCTZGhWMdnK2mgAA1kbH+zD3a0fb3N//Dv2NG9PxCOznb36hW7smeBEAAPqemeQ7kty0//rzknxuf3kvEK0leUlr7b1j+vnG/u+W5AOttSsWUCsAAAAAAAAAALABtlZdAADARDpNWjaxmXXieDw0emOC0bYOCEbbPr7/+v3C0gAAgDkSXARM6JLf6NZOMBoAACRJWmuXJ/nXSU7lbBDa/9ncX/fBJE8c1UdVbSV59MC+r19ErQAAAAAAAAAAwGYQjAYAbBghU8CK7IwJRhsVfHbQdsFoAMBh0SnEOnFPd9TN+/3v0N/YY9PxCOzjU+/u2FAwGgAA7GmtvTbJvZK8MMk12Q1DqySfSPJLSb60tfaJMV08PMkF/X2S5I8WVy0AAAAAAAAAALDujq26gINU1SX9xZbky1prH52ynzsmeeNeX621u8yjPgBgHZnYDCxAb0ww2ta54/cVjAYAAFnN/brPCIAF6Z1ZdQUAALBWWmsfSPItSVJVt+6v+3jH3T+U5JEDr1893+oAAAAAAAAAAIBNsvbBaEnu1P/dMlu9x4b6AgA2kj/jzFFbwvG0jDFYjt51IzZUsrU9ft/tE/uvF4wGABw5ro+PtFXcH7XeuI1LKwM4hJpgNAAAGGWCQLS99u9K8q4FlQMAAAAAAAAAAGyYrVUXAAAwkS6TqAVRAYvQdvZfXweEoiXJ9vH91/cEowEAh4X7MFag0/2/YxNYkJ5gNAAAAAAAAAAAAAAAWATBaAAAAF2MDEbrcFs1KhhtRzAaAHDECLI+4lbx/o8Z0/EIDJvkvNAEowEAAAAAAAAAAAAAwCIcW3UBS3TOwPJ1K6sCAJhRl8mJJjbT1TKOFcfjoTEyGG374H23BKMBAOxyfXy0reD9b73ljwlsrt7p7m0FowEAQGdVdfMk5yep1tqlq64HAAAAAAAAAABYb0cpGO22A8ufXlkVAMCMTKIHVmSWYLTtUcFoJ6evBwBgrbhXYxVmDU933AJDJgkw7wlGAwCAUarqG5M8PMmXJblTkq3+ppZ9nlmsqjsl+ez+y6tba/9r4UUCAAAAAAAAAABr6ygFoz2s/7sl+ftVFgIALFgzsRlYgNbbf/1MwWgTTLgGADgU3K8daau4Xx91HQ+wn0nu05tgNAAAGFZVD0vyC0nuureq4653SfKn2f3w6NqqukNr7YoFlAgAAAAAAAAAAGyAtQhGq6rPPrhVkuSOVV2flUqSnJvk9kkemuQHBtb/1SSdAABrpNMkahPt6Wgpk/Idj4dG29l/vWA0AADoaM73R13u6ca2cb8GDJnkPr0nGA0AAAZV1Y8l+bHshqFVrn/j3TImJK219pqqujjJ3ZPcKMljkvzK4qoFAAAAAAAAAADW2VoEoyX5cA6egVRJ3jTDGIMPVr10hn4AgJUyaRlYEcFoAACjdQ0dXko4MetrFe+/Yw6YwCT36U0wGgAA7KmqJyX58f7LvZvx00nemuTKJF/foZsXDvTxdRGMBgAAAAAAAAAAR9bWqgsYUvv8HLS9y09y9oGrtyR55cL+BQDAGjDpmTUi+OHwmCkY7cT+6wWjAQDAYrXemG3u14AhPcFoAAAwqaq6MMmzs/s/6lt2A9F+MMmtWmsPSvJ9Hbt6xV6XSb6sqoafHQQAAAAAAAAAAI6IdQtGW5S9h6RekuQbWjPbCQA2lz/jzJPjiQnMFIx2fP/1k0y4BgA4FFyDH2lz/2i+S3+OOWACkwSY9wSjAQBA3zOSHMvuM3qnkjyktfbs1trJCft5d3//JDk/yYXzKxEAAAAAAAAAANgkx1ZdQN/zx2z7zv7vluSlSa7q2Ofet09+KsnFSd7QWvvI1BUCAOuhyyRqGajAIswSjLY1IhhtkgnXAABrzX0YXaziOBk3puMWGDLJfXoTjAYAAFV1bpKH5+xN9n9urb1lmr5aa72qujjJvfur7pbkb2evEgAAAAAAAAAA2DRrEYzWWnvcqG1V9Z05++DUD7TWLl1OVQAAMA8m2h8aswSjbQtGAwDY5fr4SJt7kHmX8PTenMcEDrVJ7tN7gtEAACDJA5Kc6C9fneS5M/b30ZwNRrvDjH0BAAAAAAAAAAAbamvVBXRUqy4AAFgXXSZRm2hPV44VJrCQYLST09cDALBWOl5bzz0YCw4y7phzPAJDJglGu+i/JL0RnxUAAMDRcaf+75bkra210zP2d+XA8vkz9gUAAAAAAAAAAGyoY6suoIPHDSx/5askPgAAIABJREFUfGVVAABrwqRlYEVGBaNtzRKMNsGEawAA2HgruKdvveWPCWyuSe7Tr/pg8tYnJF/664urBwAA1t9nDCz/4xz62xqxDAAAAAAAAAAAHCFrH4zWWnv+qmsAADaN8DTWiePx0OiNCEYrwWgAAN25Pj7a5vz+ty79jWnTaX/gSOmdnqz9Jb+Z3PtZybm3Wkg5AACwAQYvos+dQ3+DF9dXzKE/AAAAAAAAAABgA619MFpV/djAy59rrV05ZT83S/LkvdettWfMWhsAsAJdJi2b2ExXjhUm0RYQjNYTjAYsWWtJ1aqrAA4j19asK8cmMIlJg9HSkkuen9z9KQspBwAANsA/DSx/5hz6u9eIvgEAAAAAAAAAgCNk7YPRkvx4kr2ZS7+ZZKpgtCQ3H+pLMBoAbCQTmoEVmSkY7cT+63cEowFLcuZk8o7vT/7hFck5N03u/NjkHv9JSBqwAu7pjrSVhJT1xmxzPAJDpjlPnf74/OsAAIDNcUn/dyX5oqq6SWvt6mk6qqr7JPmMgVXvmLU4AAAAAAAAAABgM22tuoCO5jlL14xfADj0TGxmjaxk4j8LMVMw2vH91wtGA5blzd+afOBXk5OXJVf+TfKuH07e+1OrrgqAI2fe90cd+nNPBkxkXJjiCF0+FwAAgMPrrdn9otOW5Jwkj5+hr6cMLH+ktfaRWQoDAAAAAAAAAAA216YEowEA9JnQzDw5npjEiMnRXSZAb40IRms7Se/M9CUBdHHq48nf/8EN17/rR5IzVy+/HuCQ6nhtLaTqiFvF+z9uTMcjMGSav1OC0QAAOMJaaztJ/md2v6y0kjy9qj5r0n6q6pFJvjW7N+stye/Os04AAAAAAAAAAGCzHFt1AUtUA8tTfN37fFXViSR3S3JBkjskOT+735p5ZZJPJHlPkotaa3NJSaiqc5I8IMlnJ7l9kquSfDTJO1trH57HGANj3TnJF2X333VeksuSfCTJm1tr181zLADYn4nNwAK0nf3Xd5kAvT0iGC1Jdk4lW+dNVxNAFx/53Yy8PnrTY5IHvXKp5QBHnfs15qnD8dRW/r8DgI0iGA0AAKbwE0kek93n826e5PVV9fDW2kVddq6qxyb55exekFeSk0l+fjGlAgAAAAAAAAAAm+AoBaPdbGD5mlUUUFWPS/KVSe6b5C5Jtg7Y5aqq+v0kv9ha+6spx/yMJE/P7sNntxzR5s1Jfqa19pJpxhjo55uSPCXJ/UY0+WRVvTDJj7XWPj7LWAAcYc0keuZpGceTY/bQ6I0KRjvosj4HB6OdIxgNWKCdU6O3ffR/JmeuSY7deHn1AHB0reSefsyYPmMAhk0TprglGA0AgKOttfa+qvrFJE/O7o34nZO8o6pekOT3k3xyeJ+q+qwkD03y3Un+Zc5+6WlL8rTW2uXLqB0AAAAAAAAAAFhPHWbwHxpf1P/dkqwqlOsnknx7kgvT7b/9eUken+TtVfWzVTVRkF1VfW2S9yR5YkaEovXdP8mLq+oFVXWTScboj3NeVf1ukhdldCha+jU8Mcl7quphk44DALs6TFo2sRlYhDYqGK3DBOixwWgnp6sHoKuDAhw/+fbl1AEccl3vw9yvHW0reP+nCTkCjrApzlNdPhcAAIDD7weS/Gl2A85aknOSPDbJHyX5iwxcbFfV1Uk+nOR5ORuKtrf9Za21Zy+raAAAAAAAAAAAYD1NFLS1qarqwiQ/NLDqvauqZcg1ST6Y5NIkV2Y3LO2WSb4gye0G2m0n+Q9J7lRV39TaqESGs6rqQUlenuRGA6tbknckuSTJzZPcO8mtB7Z/W5KbVtU3ttZttlhVbSd5YZJ/NbTpn5K8M8k/J7lLf6y9b/a8bZI/qKqvaq29qcs4AACwcgsLRjs1XT0AndX4zQd/zAAAczLnYLROwejj2gjqA4ZM84ULgtEAACCttV5VPSLJc7MbiLZ3cb33AXUbWHdicNeBdr+e5N8utlIAAAAAAAAAAGATrEUwWlW9tmPT36uqSVIDzk1y+yQXDK1/zQR9zNPVSV6R5FVJ3pzkPaMCyKrqS5M8M8lDBlZ/Y5KnJHnWuEGq6jOTvDTXD0X78yRPaK1dPNDu3CTfk+TZ2f2WziT5hv64P9Lx3/RTuX4o2nX9Gp/XWrt2YKx7JPkfSe7XX3VukpdX1Re01i7rOBYAzGHSMwyYZrLr5IMsYQyWYpZgtK0xwWg9wWjAgtXW+O2C0YBlWso1OAxwzAET6fS9QdcnGA0AAJIkrbVTSR5fVa9K8tQk9xzVtP+7+j8fTPJjrbXfXXyVAAAAAAAAAADAJliLYLQkD8rBiRGV5L5T9D34rZNJ8qkkL5iin3m4Z2vtui4NW2t/UVUPTfL8JN8+sOlHq+oXWmunx+z+9CS3GHj95iRf1X/4bHCM00l+oaouTfKygU1Pqapfba19ZFyNVfU5SZ48tPqbW2t/sM+/571V9ZDshtLthaPdKsnT4ps+AZiIYDRgRWYJRjt2YvS2HcFowIIdFIzWO7OcOoDDTfgUXcz9OOnS35iQI8ctMGya84JgNAAAuJ7W2ouSvKiqHpzkq5M8MMlnZfdZsRsl+XiSj2X3mbZXJ3lVa77BAwAAAAAAAAAAOOuAmbGHwuA3TH46ybe21j6+kkI6hqINtO8l+fdJrh5YfbMkDx61T1VdmOQ7B1Zdm+Sxw6FoQ+O8PLsBbHvOzW5g2UGeluScgde/uV8o2sA4J5M8tl/Tnu/qB6wBAMB6myUYbevc0dsEowELV+M3tzGBMQBzJ4jqaFvB+y/8DJiIYDQAAJiX1trrWms/0lr78tbanVtrN22tHW+tfWZr7Ytba9/XWnulUDQAAAAAAAAAAGDYOgWj1YifLm1G/Vyb5PIkr89uiNfdWmuvXvC/Y65aa1cmedPQ6ruO2eVbkwzOwHhpa+39HYb6b0OvH11Vx0c1rqoTSb7pgD5uoLX2t0lePrDqWHZrBoCOOkxONOmZzpZwrDgeD4+ZgtGOJXVs/22C0YBFqwM+/jHnDJiLjte9ro9ZunHHnOMRGCYYDQAAAAAAAAAAAAAAVm0tgtFaa1ujfvaa9H/uNK7tPj8nWmu3b619ZWvtJ1prl63wnzmLTw69Pn9M20cOvf6NLgO01i5O8pcDq26S5KFjdnlYkhsPvH5La+19Xcbap6ZHddwPAEyiB1ZnlmC0JNkekTssGA1YtAOD0c4spw4AmHsQWZfw9N6cxwQOtWnOGYLRAAAAAAAAAAAAAABgrtYiGK2DWnUBK3bB0OuP7teoqm6X5F4Dq84k+fMJxnn90OuvHdP2aw7Yd5w3Zre2PfeuqttOsD8AHEB4GuvE8XhoLCoYrScYDVi0g4LRRpzfABbC9fGRtpKw83FjOh6BYVOcFwSjAQBwxFXVa/s/r6mq28zQz20H+5pnjQAAAAAAAAAAwGY5tuoCOviznJ2FcOQSA6rqc5Pcd2BVS/KGEc3vOfT63a21qycY7s1Drz9/TNvhsd7SdZDW2tVV9ddJ7j001se69gHAUWbSMvPkeGICiwpGO3NyunoAuqoD8uYFowFz4dqaLlZwnLTe8scENtc0AY6C0QAA4EE5e9M/4n+IdXK831fiwyYAAAAAAAAAADjS1j4YrbX2oFXXsCpVdfskL0oyOKPixa21D4/Y5R5Drz8w4ZAfPKC/QXefw1iDwWj3SPLaCfsA4Ejq8vyzZ6SBBZg1GG1rxDyQ3pHLfwaWbmv85t6Z5ZQBkMT9GnPVKcBoTJtpApCAQ26KMEXBaAAAkCQVH/wAAAAAAAAAAABzsvbBaEdJVR1Lcovsho59fZLvSXLTgSaXJPneMV3cdej1pROW8JGh17eqqlu01q4YqvOWSW4541jD7S+ccH8AgA3h+f9Do42YHN11AvT2iGC0HcFowILVAcFoo4IfAWDuVnB/JPwMmMQ05wzBaAAAAAAAAAAAAAAAMFeC0Vaoqn4uyZM7Nn9dku9orV0+ps3Nh16Pa3sDrbWrqupUksHEhpsluWKo6fA417TWrp5krH1qu9mE+wNwVHWZnGjSM105VpjEqOCgzsFoJ/ZfLxgNWLgav7mdWU4ZwOHW9draNfjRNvf3v0t/IwKOO+8PHC2C0QAAYIUGn2X0wTUAAAAAAAAAABxhgtHW3yuSPKe19icd2p439PrkFOOdzPWD0c5f4DiD9htnYlV1mySfMeFud5nH2AAsS5fJiSY2AwswczDa8f3XC0YDFq22xm/vXbucOgBgFffrwviASbRxYYojHHS9DQAAdHXrgeVJv6QTAAAAAAAAAAA4RDY2GK2qbpXk7klukeRmSSaaddBa+61F1LUAX5tku6pOtdb+7IC2w4Fl0yQsnMzuf9NRfc5znHF9TuvfJXnanPoCAJidSfiHh2A0YGPV+M2965ZTBkASQdYs37hjzvEIDJvmvHDA9TYAANDVl/d/tyQfXWUhAAAAAAAAAADAam1UMFpV3Tq7wVffluSuM3a3DsFoz0jycwOvTyS5VZIvSvLIJF+Z5JwkX5fk66rqOUme3NqoRIYbmGb2xjrvAwDp9CdEEBWdOVaYgGA0YFPVAVnyvWuXUwdwyHW9tnYNfqTN/X69S3+OOWACU52nnGcAAGDARBfIVXVOktsneWiSHx3Y9NfzLAoAAAAAAAAAANgsGxOMVlWPSvLrSc7P9F+93vr7rsUMhdbaJ5N8cp9Nb0ryS1X1wCQvSHJBf/2/z2542neN6PKqodcnpihreJ/hPpc5DgDckNAzYFUWFYzWE4wGLJhgNADWxprd0/uMAbgBwWgAALCfquryRZ6V5MNV0z7ad71nAl8xbScAAAAAAAAAAMDm24hgtKr6tiS/lf0D0QZnGwxvH9429VNXq9Bae1NVPTjJ25Lcqr/68VX1itbaH+yzi2C05LlJXjThPndJst9/TwA2lsmIrBPH46ExMhjtgMChPVsjgtF2BKMBiyYYDViGjte9gqiOuBW8/445YBKtt+oKAABgXXV97m6W5/P2vvT0fUlePEM/AAAAAAAAAADAhlv7YLSqunOS52X3oae9h5/eneRlSU4m+al+05bkcUlumuQOSe6f5AHZnf3bklye5JlJPr3E8mfWWvtQVT0jyc8PrP7B7B/k9c9Drz9jkrGq6rzcMLDsUx3GuXFV3aS1dvUEw92mwzgTa61dnt33urMZvqUUgJUwoZl5cjwxgZHBaNvd9t8eFYx2crp6ALo6KMBRMBoAm6pT6Nm4Nu4JgWFTnBcEMAIAcHTsPbu3KJXk7Uke01q7boHjAAAAAAAAAAAAa27tg9GS/MfshnXtzSp4epJntNZaVV2Qs8Foaa09f3DHqrprkp9O8o3ZDQn7niQPba1dtozC5+j3cv1gtC+tqpu31obDxN4/9PqCCccZbv/J1toVw41aa5+oqiuS3GJg9WcnuXiGsYZrB4ARZp30DDClhQWjnZquHoCuDgoEF4wGLJX7tSNtJeFBjjlgEtOcM5xnAAA4Ev4soy9+v6L/uyV5a5Ku//OrJTmd3S/UvDjJ61prb5ylSAAAAAAAAAAA4HBY62C0qtpK8u05+1DVi1prT++6f2vtA0keVVVPT/LUJPdI8odVdb9N+lbJ1trlQ0FkW0nunOSdQ02Hg8nuOuFQnzP0+r1j2l6c5P5DY00SjDY81iT7AgBsEJNjD42Zg9FO7L9eMBqwcFvjN+8IRgPmYCWBV2yeeR8nHfobe2w6boEhrTfFPs4lAAAcfq21B43aVlW9nL3Jfkxr7dKlFAUAAAAAAAAAABxaB8yMXbkvTHJ+kuq/fsY0nbTWnpbk5f1+7p3kSXOpbrmGg9zO3afNe4Zef2FV3XiCMR5wQH/jtt2v6yBVdZPsvrddxwKAs7pMNDQZka4cK0xi5mC04/uvF4wGLFrV+O09wWjAMrkGZ9kcc8AknDMAAGBKB3wQDQAAAAAAAAAA0N26B6Pds/+7Jbm0tfbecY2rxs70/eGB5e+atbBlqqrjSW49tPpjw+1aa5cleffAqmNJHjjBUA8aev2qMW3/+IB9x/my7Na2552ttRv8ewBgeiYwAgsgGA3YWILRgDUinPiIW8X7P2ZMxyMwbKrzgnMJAABH3tP7P89I8qkV1wIAAAAAAAAAABwCxw5uslK3HFi+aJ/twzMNjic5uV9HrbW/qaqLk9w9yedV1ee31vbrcx09JNcPsbsmyT+MaPuyJF848PpxSf7koAGq6m5J7juw6uoD9nt1dv9bn+i/vl9V3a219r6Dxkry2KHXL+uwDwD0mWjIhjHR/vBovf3XzxqM1hOMBqxY77pVVwAcCq576WDu90cd+nNPBkxkxL3/WM4zAAAcba21p6+6BgAAAAAAAAAA4HDZOrjJSp0/sHzFPtuvHtN+P387sHz3qSpasqraSvLUodV/3Fq7dsQu/1+SnYHXj6qqCzsM9Z+GXv9+a21kQkNr7ZokLz6gjxuoqs9N8siBVWeS/E6H+gCgr8tEQ5MR6cqxwgTazv7rZw1G2xGMBizaAX/veqM+YgBYBNfgR9sq3v9xYzoegSHThCkKYAQA4IjrP98GAAAAAAAAAAAwN+v+UNJg8Nk5+2z/9NDrOx7Q31UDy7ebqqIpVdX3VdXtJ9znnCS/luS+Q5ueM2qf1tr7kzx/YNWNkvxmVY1IYUiq6hFJHjuw6tokXb7J88eTXDfw+rFV9fAx4xxP8hv9mvb8Wmvtgx3GAgDYUCbHHhqjgtG2OgajbQlGA1bkoKAGwWgAbCphRMDcOa8AAMAULq2qp1XVQc/uAQAAAAAAAAAAdLLuwWgfH1i+6fDG1tq1Q23ueUB/g8Fk581Q1zS+K8kHq+oFVfUNVXX+qIZVdaKqviXJO3P9wLIk+e3W2msPGOtpSa4YeH3/JP9/Vd1taJxzq+r7krxoaP//3lr7yAFjpLV2SZKfH1r94qr63qoaDD9LVd09yWv6tez5RLoFsAHAWV0mPZsYTWeOFSYwKhitOgajbY8KRjs5XT0AnR30987fQ2AOOt+HOeccbat4/8eN6XgEhkz1uaJzCQAAR94dkvxYkg9V1Uur6qGrLggAAAAAAAAAANhsx1ZdwAH+dmD5whFtLkryFf3lhyT57f0aVdVNkvzLgVVX7NduwU4k+bb+T6uqDyT5cJJPJbk2yflJLkhyjyTn7LP/K5M84aBBWmt/X1WPSvLqJHsBZQ9I8t6q+l9JLklysyT3SfIZ+4zx1An+TT+U5POTfG3/9TlJfjHJU6vqHUk+neRz+mPVwH7XJnlka+2yCcYCgJhoyMZpvVVXwLwsLBjt1HT1AHR2wPWTv1UALMsqgsyFpwMTmeba2HkGAAD6jiV5RJJHVNWHkvxqkt9orX18/G4AAAAAAAAAAADXt7XqAg7w3iQ72Q3UunNV3XifNm/s/64k31xVF4zo64eSnDfw+qK5VTmdym7Y21cn+ebshqU9PMm9csNQtJNJfjTJo1prp7t03lp7fZJHJvmnoTH/RZJHJ3lYbhiK9rtJ/k1roxIf9h1np9/fC4c23SbJ12T33/bFuX4o2uVJHtFae2MAYCFmnIx45prk/b+a/MXjk/f9XHL6k/Mpi6Ppop9cdQXMy86IS/Gtc7vtLxgNWJUDA2EEOQBLJKTqiJv3+9+lvzFtHI/AsGnOC84lAABwbXafDdu7OK7sfpHmTyX5u6p6QVU9cFXFAQAAAAAAAAAAm2etg9Faa1cleUf/ZSV5yD7N9gK5WpITSf6kqr58b2NV3ayqnpndYLG9h68+meQvF1L0aE9I8swkb0nSKdwsyfuSPDXJ57bWfrK1dt0kA7bW/ijJPZP8SpIrxjT9iyTf1Fr71tba1ZOM0R/nqtbav8luCNpfjGn6ySS/nOSerbU/nnQcAEiy+ImGO6eSNzw8edu/TS75jeQd35+85sHJ6U8sdlxWYxkTV//hFYsfg+XojQpGu1G3/bdPjO7XJGpgoQ44x7TecsoADrmu1zOue1g2xxwwCecMAACYwh2S/GCSD+Tsl2e2/vK5Sb4lyRuq6q+r6t9V1fmrKRMAAAAAAAAAANgUx1ZdQAevTvIl/eWHJ/nDwY2ttYuq6g+SPCK7D1RdmOR1VXV1kiuT3CbJdr/53jdT/tKkIWOzaq29Lcnbkjy1qs5JcvfsfjPmHZOcl+ScJFf1a/5wkne21saFmXUd9/IkT6yqJyd5QJILktwuydVJ/qE/zodmHac/1ouTvLiq7pzkPtl96O0mSf4xyUeS/Hlr7dp5jAXAUdZlcuIMExg/+sfJx15z/XWfenfyoRckd3vy9P0Cm6834lJ2+9xu+28fH9P36fHbAWZxUPiiYDQAlmYFgUNj/w4KQAKGTHVt7FwCAMDR1lr7ZJJnJ3l2VT0kyROz+5zfsZy9YK4kn5/kF5P8t6r6nSS/2lp7xz5dAgAAAAAAAAAAR9wmBKO9MMl/zu7DUd9SVf+xtfbPQ22enOS+SW6bs982eV7/Z8/e+rcn+clFFz1OP5Tt3f2fZY15bZLXLWmsDyWZS9gaACzdu354//Xv+A+C0eCo2zm9//qtOQSj7ZwSjAYs0EFBDYIcgHnoei5xzjnSDgrrnLzDObUB2DPNOcN5BgAA9rTWXpPkNVV12yRPSPLdST57b3N2n9+7SX/9d1fV25P8cpLfa62dWkHJAAAAAAAAAADAGtpadQEHaa1dlOSLk3xJkq9IsrNPm0uTPCTJe7L78NT/2ZTrf+vkq5I8tB9MBsAm2zmd/NUPJ6+6d/LahyWXvmTVFbE0HSYazjLR+sr3Tb8vG8jEVSbQGxWMdqNu+28dEIwGsCqtt+oKAGBxxn5G4J4QGDbFeWHuoY8AALD5Wmsfa609M8mdkzw8yR/l7AX34PN8X5Lk15J8tKp+tqrutvRiAQAAAAAAAACAtXNs1QV00Vp7Z4c2F1fVfZI8KskjklyY5OZJrkjyriQvbK29dqGFArA8f/6Y5O//4Ozrf/zT5AG/l1zw6NXVxHJ0mmhoMiKwADsjgtG2z+22/7ZgNGBVDro2EowGLJHwmCNuzu+/zwiAeVtEaPA1H01O/WNy83slW9vz7x8AANZYa60leWWSV1bVZyX5niSPS3L7vSbZDUi7eZInJXlSVf1ZkucmeVlr7czyqwYAAAAAAAAAAFZta9UFVNUrq+oHquo+VVWz9NVa22mtvai19u2ttfu21j6vtfalrbXvEYoGcIhcfen1Q9GSJC15/3NXUg4AR0Tv2v3Xb92o2/6C0YBVOSg0ZhHhD8DRI/CMTlZxnIwZ03EL3MAU54W/fHzSu+6G63dOJ2/818nL75j88RcnL79D8om3z14iAABsqNba37XW/nOSz07y6CSvGWpS/Z8vT/J7Sf6uqp5ZVRcst1IAAAAAAAAAAGDVVh6MluRfJfnpJG9L8omqenlVPamqvmDFdQGwrv72l/Zff/kbllsHK9JlcqKJzXRkEjxdtV4y6gvpt87t1sfYYLSTk9cE0NlBf+/8PQSWyTnnSHMPBqy7ac9TF/3XG67766clf/fSs69PXZ68/mv2D1EDAIAjpP/lpy9urX11ks9N8t+TfCK7Hxy1nA1Iu22SH07ygap6aVU9cFU1AwAAAAAAAAAAy7UOwWh7KsnNk3xDkp9N8ldV9U9V9aKq+ndVdbfVlgfA2jj98VVXwEqZRA2swM7p0du25xGMdmqyegAmcsD1U+stpwyAJO7pmK8Ox9PYkCPHIzBsyvPC+597w3Uf+u0brjv9ieSyP51uDAAAOJxumuRmSQb/R1ob+EmS7SSPSPKGqnpVVd1luSUCAAAAAAAAAADLtk7BaIMPM+196+OtkjwqyS8muaiqLquq36mqJ1TVXVdUJwArZ9IqBxg76RlgCr1rR2/bulG3PrbGBKj1BKMBC3TQtZFgNGAu3IfRxSqOE8cmMIFpr41PfeyG605+dP+2l/z6dGMAAMAhUVUnqurxVfWXSd6e5LuS3HiwSZIzSU72lwefKXxYkndV1dctsWQAAAAAAAAAAGDJ1iEY7T8leVWST+dsIFqyf1DabZM8JsmvJPmbqrq0qp5fVY+tqguWWzYAKyP06mjz/jNXjic66p0evW1c4NmgqmT7+P7bdgSjAYt00N87fw+BJXJPd7TN+/3v1N+YNo5H4AaWcF7oXbf4MQAAYA1V1T2q6heSfDTJ/5vkX+Tss4J7zwdeluTHk1yQ5A5JvjfJRTkbkNayG6L2+1V1l2XWDwAAAAAAAAAALM/Kg9Faa89qrX19klsmuW/OBqVdlYOD0j4zybcn+bUkl1TVJVX1P6rq26rqDkv8ZwAASzPjpGeAaeyMCUbb7hiMliRbgtGAVTjg2qj1llMGAKzifl34GTCRGc4ZXc83vWunHwMAADZMVd2o/yzfG5P8dZJ/n+RmOftMYPrLr0/y6CQXtNae0Vr7x9bala2157bWvjDJ1yW5eGC/40m+f1n/DgAAAAAAAAAAYLmOrbqAPa21XpK39X+eVVVb2f1WyAcleXCSByQ5b3CXgeW9B57ulORx/Z9U1QeSvC7Ja5O8vrV2+eL+BQAsjwmtACxZb0ww2taNuvezfTy5bp/1gtGARToooEEwGjAXXe/V3dOzbOOOOccjMGSWa+OdU8mxEx3GODP9GAAAsCGq6sIk35PkO7P7hanJ7jN+e1+OWtn94tTfTvKc1trF4/prrb2qql6X5E1J7tPf/6sXUz0AAAAAAAAAALBqaxOMNqwflPbW/s9PV9V2doPSHpzdsLQHJLnJ4C4Dy3tBaRcmuWuSJyRJVV2c3aC017XWXrrI+gFYoIOCHTjkurz/jhG6cqzQUe/a0du2zu3ez/bx/dcLRgNWSjAaAMsy73swnxEAczbLZ88713QLRuvtl5gOAACbr/983yOT/NvsPuOXnH2Orw28vijJLyf5rdbaVV37b62dqqr/muRF/VWfNXPRAAAAAAAAAADAWlrbYLRhrbWdJH/Z//mpqjqW5EuyG5L24CRX2fZoAAAgAElEQVT3T3LjwV0GlvcesLpH/+eJ2aB/OwDDTGg90rpMThSeB8zbzunR27bnEIzWE4wGLNIB10aunYBlcs452lbx/o8d0/EIDJvhvHDmmuTcWx3cTjAaAACHTFVdkOT/TvL4JLfZW53dC+zWX95J8vIkz2mtvWGG4d47sDzB/6QDAAAAAAAAAAA2ycaGg7XWziR5S//nv/aD0v5ldkPSHpTkftk/KK1yNigNgI1k0ioAS9YbE4y2daPu/YwKRjtzcrJ6ACZy0PVzbylVAIecwDPWlmMTmECb4dr4zNXd2vWunX4MAABYTx/M9Z/JG3xO77Ikz0vyvNbaZXMY65qhMQAAAAAAAAAAgENoY4PRhvWD0t7c//kvVXVOkvsm+eYkT4hviASAQ6LL882egaYj4Q10NW7S8tYEtxpbI4LReqcmqwdgEgf9vZsl/AFgYq7Bj7Z5v/8z9ueeELiBGc4LO9ecXR53fmlnph8DAADW01Z2L6Zbzgak/VmS5yR5Wf+5vnmr+KAJAAAAAAAAAAAOrUMTjLanqm6R5CuSPDjJg5J8fs5+GyUAh4FJqwAs287p/dfXdrK13b2fYydG9C8YDVgkwWjAMnS9V5/wnv66TydXvi+5+Rcm2777YvMt6DOdqz+SnHvr5NhNljcmcEjNcM44MxiMtjO6Xe+66ccAAID1VUmuSvLbSZ7b2v9m787DLMnq80B/J6sa6G5WsQq1gG6QtSC0IckbaECDtdmSNVibLVndNjOjsWfRWLN4bGvzjD22Rx7b8iNrNF4k2mgxFthIxrIshA1oYRGLhNqgBbpo9oaGpmmglsy8x39UZtetrBtxI27cLW6+7/PU05kRceOcIg4nTkTl78v6n1bRSK31rlwOYgMAAAAAAAAAAHbY6IPRSimPTPIVuRKE9ozMDkKb3qYSCgBGq8NtXHgesGyThmC0vQf1O8/eQ2ZvF4wGrNS8tZG1E7Cl7vgbyW//9aQeJGeuT778Hyc3f8eme8UQy35ev+/tycs/J/n47yZ71yW3/LnkS3/06vDi1jbdA4EThsxTh9PBaC3hw4LRAADYPW9P8qNJ/nmt9f5NdwYAAAAAAAAAABi/0QWjlVIenquD0L4wV4eelVyuZjoZhPbWJK8++vOadfQVgFVRtHqqCT1jqYwnOmoqWu4bjHamRzDaJ84l73v55cLqz/j65BGf168tgGPz1k9toQ0Ay9b1me69P5+89fuufH94PnntdyaP+sLkkc9YTd8Yn3f82JWvJ/vJO/5xcv1nJM/4/qmDPPcBfQxYGx9MB6MdtjRxafE2AABgC9Van77pPgAAAAAAAAAAALtl64PRSikPS/LsXAlC+6Ike9OHZHYQ2ltyJQjtV2qt966jvwCsgeAG5lL0DCxZU0FzOdPvPF2D0T782uRVX5Psf/zy97/1vcmzX5Lc9Cf7tQeQZP7ayPoaWIYlP4e945/MbuPci5Iv/n+W2xZrtIbn9Tt/vEcwmvcHwAlDfinDYcdgtHqweBsAAAAAAAAAAAAAAHAKbF0wWinlxlwdhPbFSabTBsqMj02SvDlXB6F9fLU9BQA2Q9EysAHrDkZ78/dcCUVLLhdNv+G7ks/4hqTMeiQCGGBI+ANAbx3nnPe/fPb2t/+QYLRRW8M955N3nWjSfQ7oY8CccfCJqdO0BKNN9hdvAwAAAAAAAAAAAAAAToGNB6OVUm5I8qxcCUJ7ZuYHoe0neWOuBKH9Wq31EzOOA2AnKWg93bpcf2OErowVOlp1MNpkKhjt4keTj7zu2mMu3J185PXJY/5QvzYB5t7vJmvpBQBsJqSspU2hacBJdcDa+GN3TH3Tch7BaAAAnFKllEcn+eYkfzDJ45OcT/LeJL+c5N/XWi9tsHsAAAAAAAAAAMAW2XgwWpKPZX4Q2qUkb8jVQWjn19A3AGCMFDbTxfm7k3e/dNO9YCyWFYy21xCMdjD1eHPxnubP3/9OwWhAf/PWRkPCHwCOdX4O87zGmnlHAPQyYM5478uSZ/5wUkoyaXiPkCQTWQ8AAIxfKeUxSb4gyWOTXExyZ5I7ar32hXMppST5K0n+apLrZ5zuf0hyVynlL9Zaf3F1vQYAAAAAAAAAAMZiG4LRzuZylcF0INqFJK/LlSC019VaL2ygbwBspZbitFovF56xuxQ0swznfjJ53a2CYOhuWcFoZxqC0SZTjzttBdJnHtyvPYAkc8Md3A+BdfJMd8pt4vq3tWk8AicNmBc+9Z7kvjuSRz6j+T1CktSDxdsAAIANK6V8UZIfSvKcJHsndn+olPIPkvzdWi8vio9C0W5P8u25+ucDjxffx9uekuTflFJuq7X+1Gp6DwAAAAAAAAAAjMU2BKNNq0l+OcnfSfKaWlUGADCDIupTrsv1N0Zocf7u5LXfGeOEXppCg8rJeo85zlw/e/vhdDDaxebP7z2oX3sASYf1s3siAOvingNsuaGhwR985fxgtMn+sDYAAGBDSinfluSfJzmTq0POjj0+yf+d5CtKKV9fa50k+e4k35HLLwWmw9COPz/9suBMkh8vpbyl1vq2FfwVAAAAAAAAAACAkehZxb9Sxz/k9Lwkr0hyXynll0sp31tKeXYp5boN9g2ArdJWRKvAFpjjzp+IuYLemgqay5l+59lryKaeTGVCH15q+bxgNGARc+57Q8MfAJJ0X2Nbi7Nu3iMBPQz9pRzn33f0Rcsauy00DQAAtlQp5cuSvCiXfxFrydVBZ5n6viT5miT/SynlYUl+MFcHon0gycuT/HSSX0xyb64OWbsuyQ+v6u8BAAAAAAAAAACMQ0NV/lq9Pcnn5NrfInl9kuce/UmSC6WU1yV5dZJXJXldrbUlMQCA3dVSnFbr7N9LzA7pUpyosJkWd/74pnvAGC0rGK00ZVNPFUy3jdEzD+7XHkASwWgAbI2hgUNjaRMYsYFzxnHwufAzAAB2z/+X5EyuDjm7N8k7jr5+apJH5Uo42l9Kcl+Shx9t+0iSF9Ra/830SUspe0lekOQfJHnI0We/spTy1FrrO1f8dwIAAAAAAAAAALbUxoPRaq1PL6U8JslzcjkE7TlJPvdo93S0zfVH+56T5AeSXCylvD5XgtJeW2u9uI4+A7BhrQWtil133soLmo9/uTU7a7K/6R4wRksLRms4/jiUqNbknf+0+fN7gtGABcxdP1n7AOtkzjndNnH95wTsA1xlaDDa0XsnwWgAAOyQUsofTPIluRJ69uEk35Xk52q9/HBdSilJviHJjyV5XJLHJ/meo1PsJ3lerfWtJ89da50k+SellLuTvCxXFuXfnORvr+rvNFallOtz+WcrPyfJY5M8NMknknw0yR1JfrvWerC5HgIAAAAAAAAAwHJsPBgtSWqt9yR5ydGflFIelyshaM/J5R/kSa4OSntIkq84+vN9SS6VUt6QyyFpr07y67XWCyvvPABbRkErGVbYXPYULu46PwfOIpYVjJa99vPf+5vtH+/dHkAyd418HM4IMIjncbrYsmA0gJOGro2P3ztNvF8EAGCn/Kmj/5ZcDjn7qlrrb00fcBSQ9nOllHNJfiOXfy7xD+Tyg/lPzgpFO/H5ny+l/Mdc/sWqNcmXLvev0F0p5ZYkX3bUhy/L5VC4h00dclet9Slr7M+XJPnGJF+Z5MuTXNdy+CdLKS9O8sPz/jcHAAAAAAAAAIBtthXBaCfVWj+U5F8e/Ukp5fG5EpL23Fz+oank6qC0Byd51tGf702yX0r5jVwOSntVLgelnV955wFYg5aC1iGBWIzEqq9xmX8I4zbZ33QPGKPGYLSGoLMmTccfF15fuHteR/q1B9CJYDRgjTy3s26tY854BE4aOC88EMhvjQ0AwE75kqP/1iT/8mQo2rRa61tLKf8iyZ+d2vzSju28NJd/NjBJnt67lwOUUp6T5K/kchjap62z7SallIck+U9JbunxsRuT/Pkkt5ZS/m6S76u1+gdyAAAAAAAAAABGZyuD0U6qtd6d5MVHf1JKeUKuhKQ9J8lnHR06nWTyoCR/5OjPX83loLQ3Jnl1klfVWl+xjr4DsG4KWndepyL6AeOg7BlGu04wGouoDQXN5Uy/8zQdfxy8dvbGOf0wQQGLmDN3NM1xAH10XqdYz5xqG1nPGnNAD0PnqeP3Tk0B6w8cd5DsjeKfaQEAILnyS0yT5OUdjv+FXB2M9taO7RwHrpUkj+74mWX5oiRfteY25zmb2aFoNcnvJnl3knuSPDTJ55849kySv5zks0op31rrAynOAAAAAAAAAAAwCqP8ifta6weT/IujPymlfHquhKQ9N8lTjw49GZT2h4/+/OWM9O8OQKKglfmGjJEy/xDGzc98s4imgubewWh7DTuOQonOXD+vI/3aA0g6hDuYWwBYl20LRnMPBE4aGBo8OXrvNC8Y7fBCsvfQYW0BAMD6PGLq69/tcPzJYz7SsZ17pr5+eMfPrNrFJO/NlZ9H3JTDJL+U5PYkr6y13nPygFLKM5P8vSRfMbX5+Ul+MMn3rqGPAAAAAAAAAACwNE1V+aNSa/1ArfWna63/ba31s5LclMu/dfLHk9x5fNjRf0skngCMW2uwg4LW3bfia9wYWsTOmOyvv825gTRsvaUFozUcX48Kr/fm5TcbS8Ai5swddWD4A0Av1jOn2iaejTyPAX0MnTNqx2C0ycVh7QAAwHpNp/re1+H4j09/U2u90LGd6eOu6/iZZdpP8ptJ/mmS70ryzCQPS/Jfb6Avxy4m+UdJnlJr/bpa64tnhaIlSa31TUm+MsnPnNj1v5VSnrzifgIAAAAAAAAAwFLNq7ofpVrr+0spb0vyuCSPT/LEJA/ebK8AWJ6W4jTFrqdAh2s8aBy05KfWmhT5qqO3iWC01MjmHbmlBaM1hC8en39eOJH7HLAQwWjAOlinMELW18A1Bs4Lx++d5q2xD7vmQgAAwFaY/ofOOSnAnY/ZNrcn+bFZIW5lcz8jcCHJ02qt7+36gVrrYSnlBUmeleQzjzY/KMm3JPmh5XcRAAAAAAAAAABWY2eC0UopX5jkOUmem+TZSR650Q4BsDqtRasKWhmo9YeahVvthHqw6R4wRo3BaA1BZ42agtEmV/+3uSM92wPI/NAXwWjAOgmiOuU2cf2NOaCHoWvj4/dOTe8RjglGAwCArVJrvXfTfTip1nqQpHMo2tTnzpdSfiLJ909tfm4EowEAAAAAAAAAMCKjDUYrpTwjV4LQviLJo6Z3T31dG7YDsJMUu+68TkX0Q8ZBS8hRPVwgBAmSvPOfJU/7bzbdC4ZoKowuZ/qdp+n444JpwWjASsybO8wtAKzLtgWjuQcCJw2cFyaC0QAAgK3wlhPfP3EjvQAAAAAAAAAAgAWNJhitlPL0XB2E9ujp3VNf11ypWihT+96b5D9O/QFgtFqK0zqFZjFuK77GpSVHdW5gETT43X8gGG3smgqaewejNYQrPjC/uI8BqzBnbrHGAZai6zrGeoc1864I6GXgnFH3j/47JxhtcnFYOwAAAO0OTnz/oI30AgAAAAAAAAAAFrS1wWillM/NlSC0/yLJY6Z3T33dFIT2gSSvylEQWq31nSvsLgBr1VacptiVZNg4aAgtSuYXNEKT+96WHF5Izjxk0z1hUUsLRms6/iiUaF44kVAHYCUEowGwJhtZz3qPBPQwdJ6aHGUPzHu+P/jUsHYAAADaPe3E9x/YSC8AAAAAAAAAAGBBWxOMVkr57FwdhPa46d1TXzcFoX04Vweh/e4KuwsAbMyKi5ZLad4nGI0hDi8KRhuzpQWjNYQvPnD+eeFEghuABcwLdxC6CKyVOYd1M+aAPgaGBtfjYLQ57xHf+r3J8141rC0AAFiv4wfsP1RKecqcY58w/U0p5dm5+uf/On2OQb7pxPdv2EgvAAAAAAAAAABgQRsPRiul/FQuB6JN/2BTlyC0jyZ5da4Eof2n1fYUgK3RGtyg2HXndQnuGBLu0RRalCR1YGEkp9vk4qZ7wBDLCkZLUzDa5Or/NnekZ3sAyfy5wxoHWIKuz2HCGE+5DVz/tjFnPAInDZ0XJh2D0T706mHtAADAZpQkP7PAZ17V4/iabiFqNCilfFmSP3pi87/eRF8AAAAAAAAAAGBRGw9GS/Knc/UPNDUFoX0syWtyJQjtrevsJADbREEr8wwZBy0/Yz2voBHaHApGG7WmwLK2MMVZ9hqC1I7nl3nBaO5zwELmzB3CXwFYm02sZ62hgT4Gzhl1/+i/1tgAAOykPqFl04vrPkFnHuQHKKVcl+T/P7H5V2qtb1hyO49L8tieH3vqMvsAAAAAAAAAAMBu24ZgtGPHPzh1/INQ9yf5lRwFoSV5S61SAABI2n8O1q1i9636GrcFoyloZIDD85vuAUM0BSOWhqCzRg1Bag/ML/PmGfc5YAHzXqdY4wBL0XWdYj3DunmPBPQwdG08OTg6T4dfsFBrUvrkQwAAwFZY5GHaA/j6/FCSL576fj/J/7SCdv5ikh9YwXkBAAAAAAAAACDJ9gSjlSSfTPJruRKE9sZaVeYCMENrsIOfpyUZNA5KQ2hR0q2gEZocXth0DxhiWcFoTccfP/rMzYJ2nwMWYW4BYEv43SfA1hs4T9U+wWiHSdmWf6oFAIBW744XyVuvlPLnk3z3ic0/WGv9zU30BwAAAAAAAAAAhtiGn7b/vlwOQntDrcfVAgCwIAW2p8Cqr3Fp2SezlQEEo43b0oLRGsIXHzj/nHnGfQ5YxLy5Qy49ALus7T5ofQ2cNHRemOwfnadDMNpkP9nbhn+qBQCAdrXWp2y6D7QrpXxNkh87sfnlSf7WBroDAAAAAAAAAACDbfyn7Wutf3PTfQBgbBStnmpdihOHFDA2hRYl3QoaoclEMNqorToY7TgQbW44kXsgsIh5c4e5BYB12cQ9x30O6GNgaPDx74DqEj5c95NcP6w9AADg1Cul/NEkL01y3dTmX03yrbWuLBX+R5P8bM/PPDXJz62gLwAAAAAAAAAA7KCNB6MBwHIpdmWo0rxLMBpDHApGG7Wmgua2MMWZxzcEqR3PL/MKp1dWuwDsto7BsqVlHQSwTOYc1ql1DW19DZww9Ll7chyM1uE94uGlq2MLAAAAeiqlPDPJv01yw9TmNyT547XWT62q3Vrrh5J8qM9niveBAAAAAAAAAAD00LOKHwC2QUtxmsCYU6DLNR4wDtpCjuYFFkEbwWjj1lTQ3BR01qhhjjmeX+bOM+5zwIpY5wBrZU1zem3i2htvQB8D54y6f/TfDsFox8cCAAAsoJTyBUl+Kckjpja/JclX11o/vpleAQAAAAAAAADAcghGA2B8WkMbFLvuvlVf45bfUtyloBGaCEYbt2UFozWFLx6f/+D+fucD6KJTeLBgNGAAIeV0tZGx0tamsQucNHBemBwcnabDe8SJYDQAAGAxpZTPS/LLST5tavMdSb6q1vqxzfQKAAAAAAAAAACWRzAaADtGQSsZVmhd2oLRBIYwgGC0cVtaMFrD8cfzy/kPzutIv/YAknSaO6xzgHUSpMY6GW9AH0PXxfU4GK3DeQSjAQAACyilfHaSVyZ57NTm30nyvFrrPZvpFQAAAAAAAAAALJdgNABGqKWgVbHr7ut0jYeMg5blUVMwEnQxEYw2aksLRmuaY+rl+e3C3XP64T4HLGLV6ycA6GoT9xvvkYA+Bs4Lx2FnXd4jCkYDAAB6KqU8Lcl/SPKEqc2/n+Qra61z/qERAAAAAAAAAADGQzAaAOPTWrSqoHX3rfgal9LS9GS1bbPbDgWjjVpjMFrPR6q2ILU6SS58cF5H+rUHkHQLfbHOAQbpu0axpmGdjDegh6GBifXg6L8dgtGqYDQAAKC7UsrNuRyK9sSpzXfmcijaBzbTKwAAAAAAAAAAWA3BaADADhpSwNiyPOpS0AhNBKONW1NgUFvQ2czj2x7BJsmFeb/IXagDsAjBaABsi21bz25bf4DNG7gunvQIRptcGtYWAABwapRSnpTLoWifObX5rlwORXvvZnoFAAAAAAAAAACrIxgNgBFqK1pV0Lr7VnyNS2lpWjAaAwhGG7em///3DUabF754/oNz+uE+Byyiy9whGA1YJ2saVmx63WwNDfQxdM6oB0fn6LC+nuwPawsAADgVSilPTPLKJE+Z2vy+XA5Fu2sjnQIAAAAAAAAAgBUTjAbACLUUpyl23X1drvGQcVDalkcCQ0Zvk3OEYLRxW1YwWtvxdZJcuHteR/q1B5Csfv0E0HcOMeecXhu59gL2gT6WMC/Uw26/YEEwGgAAnDqllHriz3PmHP+4XA5Fe9rU5g8keW6t9c4VdhUAAAAAAAAAADbq7KY7AAC9tRbRKmhlqNK8a9KhoJHtVg8217ZgtHFbWjBaS/jiR9+cnH/fvI70aw+gMwGwAKzDutazNVee762hgR7qEtbF9aDbe0TBaAAAsFVKKTdl9s9TPuHE92dLKU9pOM0naq33LKk/j0zyiiSfM7X5k0lekGS/pQ8z1VrftYx+AQAAAAAAAADAOghGA2CEBKOdbl2u8arGgfE1ehstODV+Rm1pwWgtx//yszv0wzgCFtFh7lhGAARwivVdo1jTsGK1TuWitYw362vgGkuYFyYHze8RrjpOMBoAAGyZX03y5A7HfUaScw37bk9y25L680VJvuDEthuT/MKC52v5LXEAAAAAAAAAALBd9jbdAQBYKgWtp8Amr7HxNXqC0VhUU2BQ6flI1ff4azsy8PPA6dQlGM38AsA6bOJ+4x4H9LCMdXHdT9IheLgKRgMAAAAAAAAAAAAAgFkEowEwQm3FaYpdSVY2DgSGjN/k0ubaNn7GrR7O3l7O9DvP4GA0gAV0ugd1CG4AWBprY1atNnzddhxAspR5YXLQ/B7hquM2+J4KAAAAAAAAAAAAAAC22NlNdwAAoJcuwR4rC6BSMD16k/1N94CxWlowWs/jr+3IwM8Dp1OX9ZNgNGAIaxQ6Wltg9FQ7QqqBPpaxLq5dg9G8pwIAgG1Sa33KGtooPY59VZLOxwMAAAAAAAAAwC7Z23QHAKC31oJWxa67b5PX2PgavbrJglPjZ9SWFYw29BFMqAOwEMFowJaxpmHVrhpj3iMBfSxhXpjsJ598d7fjAAAAAAAAAAAAAACAawhGA2CEWorTFFeTZGWFzcbX+B1e2nQPGKtlBaP1DlK7piMDPw+cSp3WMOYXANZhE/cb9zigjyXMGfUg+dhvzT9OMBoAAAAAAAAAAAAAAMwkGA2A8WkNdlDsuvNWHk5mfO20usmCU+Nn1Opk9vbS85Gq7/HXdmTg54HTqcPc0TTPAXTR+znNmubUWlvgeMd2BKADJy1jXTzZTz722x3aEowGAAAAAAAAAAAAAACzCEYDYIQEV51uXa7xqsaB8TV6kw0WnCq4H7d6OHt7OdPvPEOD0YwjYBGd5g7BaMA6WdOwalNjzBoa6GUJc8bh+WT/4/OP2+R7KgAAAAAAAAAAAAAA2GKC0QDYLYpdWaUqMGT0Jpc23QPGamnBaD2Pv7YjAz8P0MA6GoC12MT9RsA+0MMy1sWHF7od5z0VAAAAAAAAAAAAAADMJBgNgBFStHq6dbj+Kwv2MPZGb7K/wcaNn1FbWjDawEcwwUXAQrrMHQJggSF6rlGsaVi1q8aY8Qb0sYR1cedgtE2+pwIAAAAAAAAAAAAAgO0lGA2A8WktoFbsykBt40vx/vgJRmNRSwtG63n8tR0Z+HngdOoSLCsYDYB1WNd6dqod75GAPpbx/u/wYrfjBKMBAAAAAAAAAAAAAMBMgtEA2C2Cq3Zfp2s8ZBwomN5pk0ub7gFj1RiM1veRaugjmHkIWECX9ZNgNGCtrGlYJ+MN6GMJc8bkQsfjBKMBAAAAAAAAAAAAAMAsgtEAGCHBVafbioPRWoNDjK/R22TBqeDGcWsKDCpn+p2nd5AawDKsOlgWwBxCR2t7Lppqp61Nz2nANZYwLxx2DEa7eM/wtgAAAAAAAAAAAAAAYAepygdghARXsUoKpnda3WAwGuNWD2ZvL2f7nadvkNo1/TAPAYvoMHc0BUACrIQ1zem1pmt/1brZeAN6WMa6+PBit+Pe85Jk0vC+AQAAAAAAAAAAAAAATjHBaACMT1sojMCYU6BLsMeAcdBa/Gh8jd7k0gYbN35GrR7O3t436KwMfQQzjoAFdFkbCUYDhuj7DObZnbUSsA/00TAvPPHrup9i0jEY7cLdyQd+qft5AQAAAAAAAAAAAADglBCMBsAIKWg91VZeQC94b6dN9jfYuPEzavVg9vZytt95+gapXduRgZ8HTqcuc4dgNADWYV3rWetmYEFN7/9u+fPdz3F4ofux527vfiwAAAAAAAAAAAAAAJwSgtEAgB00pABa8N5O22gwGqNWD2dv3+sbjDbwEUxAI7Aq5hdgrcw5rNrUGGu9xxmLwAm1ITC4lOQzn9/tHJOL3dt778uSS/d2Px4AAAAAAAAAAAAAAE4BwWgAjJCC1tNtxddYwfRum1zaXNsCZ8ZtcjB7eznT80RDH8GMI2ARXeaOhgAIgE6sUehoI89FxifQR9OcUbqf4rBHMNrkUnLXi7sfDwAAAAAAAAAAAAAAp4BgNAB2i+ChU6DLNR4yDlo+a3yN32R/g40bP6NWm4LRzvY7T+8gtWs6MvDzwKnUZQ1TBaMB62RNw4pdde/znA/00RaM1jEc7fBCvybvfGG/4wEAAAAAAAAAAAAAYMcJRgNgfFqLVhW0MpTxtdM2GozGqNXD2dv3+gajDXwEE9wALEQwGgDbYl3r2al2rKGBPprWxeVMOgejTXoGo33k9cl9v9PvMwAAAAAAAAAAAAAAsMMEowEwQm2hDYpdd16XguYhRc+C93bb5NIGGzd+Rm1yMHt7OdPvPEOD0YwjYCFd5g7zCzBEzzlEUNUptolr7zkf6KExGG0vKR2D0Q4v9m/33O39PwMAAAAAAAAAAAAAADtKMBoAu0Vx9Smw6mCPluA944AeVzUAACAASURBVGv86v6me8BY1cPZ28vZfucRjAZswqqDZQF6M+ewarXha4B5WoLROp+iJRjtEU+fvf3ci5JJw7sHAAAAAAAAAAAAAAA4ZQSjATA+QhtYpdbxZeyN3mSDwWjmrvGqNakHs/eVM+vvC0Bvqw6WBYCO1rWenW7Hcz7QR236pQl7SUq3cxxeaN731BfM3n7+fcndr+x2fgAAAAAAAAAAAAAA2HGC0QAYIQWtp1uHazyo0Lrls42FkYzG5NIGGzc/jVbb//f3zq6vHwALE4wGrFjfZzBhr6yV8Qb0UA9nby99gtEuNu978p9O9h48e9+dt3c7PwAAAAAAAAAAAAAA7DjBaADsGMWuO2/lBfSC93baZH/TPWCMmoqik6SsOxjNPAQsoMv6SQAsAGuxrvVsx3aE9AEnNa2Ly15SOgajTVqC0R786OSmb5y9773/Krl0X7c2AAAAAAAAAAAAAABghwlGA2CEWopWFbSSZFChdesYMr5Gb6PBaMbPaNWD5n3lzPr6kcQ4AlbH/AKskzmHFbvq2d54AzqqNY1zRp/n/8MLzfvKmeSWW5s/9+6f7d4OAAAAAAAAAAAAAADsKMFoAIyP4KpTbtXXWPDeTptc2lzbxs941cPmfXtn19ePxDgCFtRh7jC/AIOYQ+hqA2PFeySgs5Y5oewlKd1OM7nYdJLL53nCH0uu//TZh5x7Ybc2AAAAAAAAAAAAAABghwlGA2CEFLSebl2u8ZBxYHzttMn+pnvAGNWD5n3lTP/zPfrLF++LeQhYyKrXTwB9mXNOrbUFcdaGrwFa1EnLzh7BaIcXZm8/foewdzZ5ynfMPubDv5bc/45u7QAAAAAAAAAAAAAAwI4SjAbACLUUtK6twJad1VoAaXyNXt1kMJrxM1qTtmC0s/3P9/S/tnhfjCNgEV3WyK1rIIB5rFHYNh2D0bxHAqa1rYnLXlKWFIyWJDff2vz5c/+8WzsAAAAAAAAAAAAAALCjBKMBAOPSKdhjQGFz22cVTI/f4aVN94AxqofN+xYJRnvi1w7oi3kIWESXucP8AqyRNc0ptoFrb7wBnc0JRut8mosN55gKRnvk05NP+9LZx915u+BiAAAAAAAAAAAAAABONcFoAIxPa0GrYtfdt+pgD+Nrp9X9DbZt/IxWPWjeN13U3NUiYWoPMI6ABXS6B5lfgHUy57BiV937POcDHbWGke0lKd3Oc9ghGC1Jbrlt9nGfenfyoVd3awsAAAAAAAAAAAAAAHaQYDQAdovgIQZrGUPG1/hNNhiMpuB+vOph8769BULOSsdC6pl9MY6ARXSYO8wvwBDmEDpb11jpGowGMKUtGK30CUa70HCOE8FoT/62ZO+62cfe+cJubQEAAAAAAAAAAAAAwA4SjAbACLUVtCp23X1drvGAcdBa0G98jd7k0qZ7wBhNDpr3nSxqXjnzELCILnNHSwgEwNJZ05xamwjR85wPdDYvGK3raS7O3r534h3Cgx+dfMY3zD72PS9N9j/RvU0AAAAAAAAAAAAAANghgtEAGJ/aFtqgoJWhFEzvtMn+Bhs3fkartgWjnV1fP05qC2wDmNYlhObgk6vvBwCsjecvYAFt753LXlJKt/McNgSjzXqHcPOts489+GTynpd0a49xuvCh5EO/mnzsjuUEhx58MrnnDcnBp4afCwAAAAAAAAAAAABgwwSjATAuh5eST7yzef8yCojYbl2u8aBx0PJZ42v8NhqMxmjVw+Z9e+sORqvJB1+Z/LtnJi9+SPILX5h86FfW3AdgJ73mG5MPvGLTvQBGq+ezkmerU2xN1/6qMeY5H+io9Rdy7CXpGIx2cP/s7eXMtdue+DXJQx43+/g7b+/WHuPzOz+c/NyTk19+dvILz0j+/Zcn97f8u0eX873kUckv/cHkJZ+W/P6PLa+vAAAAAAAAAAAAAAAbIBgNgHF56/fOOUBB6+5b8TVuLYA0vkZvcmlzbSu4H6/JQfO+WUXNq3Tf25JXf31y75svB7Z97K3Jf3he8vHfX28/gJHpeA96zZ9M9htCHABgrDyLAV21vRcse0npGIzWeI4Z7xD2rkue/O2zj//Qq5JPnBvWJtvnI7+RvPkvJYcXrmz76Bsvh1Uvcs+6+z8mb/6fr/xCiMnF5Df+QvLh1y6nvwAAAAAAAAAAAAAAGyAYDYBxufOFm+4BozCk6Lnts4qpR++4QHAjjJ/RqofN+8rZ9fUjSd7zkuTw/NXbJpeSd71ovf0ARqbjPejwfPLen19tVwCSWBufZuu69rXh67bjAOYEow3VFK5+y23NnznneX/nvP/fZeb95747kvsXCL5/5z+bvf3dP9v/XAAAAAAAAAAAAAAAW0IwGgDjcvHDcw5Q0Lrz6oqvcdv5V902q1c3GYzGaNWD5n1NRc2rcvEjs7ff8X+ttx/AuPRZw5x74cq6Aeyyvs9Knq1Yta7BaABT2oLRs5ekDDt/0zuER31B8qgvmr3v3O3eSe6aC3c37zv//v7ne9dPzd7+u3+//7kAAAAAAAAAAAAAALaEYDQAdosisVOgyzUeMg7aPjsZcF62wuTSBhs3P43WpCUYbe/sYue87pGLfQ5gIT3uQesOfATgdNnEe5vWNj2nAVNqy7u/ssJgtCS5+dbZ2z9xZ/LhXx3WLttlcrF5X1s4PwAAAAAAAAAAAADAKSIYDYAdo6CVDCy0bvms4L3xm+xvrm3jZ7zqYfO+smAw2md/92KfA1hIn3uQV0XAAvquda2NT7E1XfurxpjxBnQ0LxitrDAY7Sl/pvkdw7nbh7XLdjm80LyvLZwfAAAAAAAAAAAAAOAUUe0KwI5R7Lr7VnyNWwv0ja/R22QwGuNVW4pS24qa23ze/5484XlT59lLnv7Xksd/ZfLgxyx2TuMbaNIngGjReQ0AtkrHYDQhfcBV2oLRlrBO3msJV3/I45Inft3sfXf9y+TgU8PbZzscXmze590OAAAAAAAAAAAAAECSpOUn8AFghBS07r5O13jIOBCMttMmlzbYuPEzWvVw9vayl5Sy2DnP3pA85xeTe9+cfOJc8thnJTc88cr+X/zS5KNv6nfO8x9MbvzMxfoD7Lge96A9wWjAOlgbn1qbeG/jXRHQVW0LRttLsuA7gAfOMWetfcttyft+/trtB/cn7/nXyc3fPqx9tsPhheZ9beH8AAAAAAAAAAAAAACnyN6mOwAAsFXaCiAVU4/fZH/TPWCMJg1FqfMKmufZO5M8+suSJ3/L1aFol0/e/3yX7h3WH4Bk+NwGnFKeldg2XceksQtMaXsvmDUEoz3xjycPfvTsfedeOKxttsdEMBoAAAAAAAAAAAAAwDyC0QDYMQpad1+XazxkHLR91vgavY0Goxk/o9VUlFrOrrDRRYqt2wq4gdOtzz3IqyJgHayNT681Xfurgs2NN6CjtmC0speUFQejnXlQ8uQ/M3vfB1+ZfPI9w9pnOxxebN7XFM4PAAAAAAAAAAAAAHDKqHYFYMcodt19m7zGxtfoTS5tru1q/IxWPZy9faXBaAtoK+AGTrc+96B5YQ0Ay2BtzFoJQAe6mhOMNlSXtfYttzbsqMm7XjS8D2ze4YXmfU3h/AAAAAAAAAAAAAAAp4xgNADGo0vhtOJqksXHwbzPGV/jV/c33QPGqKkodZXhQaX0/0xTgBtAn9CXZQQ+AKePZyU6W9dYmWrH+AS6ag0c30uywLP6tC7vER71JckjPn/2vjtvN6ftgsnFln2C0QAAAAAAAAAAAAAAEsFoAIxKl6IvhWE7b6XFf/PObXyNWq3JZJPBaMbPaDUVpe6dXWGjiwSjtRVwA6dbn2C0FYY+AjzA2vjUWlugT234+uRhxiIwpe25uuxl8P2ry1q7lOSWW2fvu//3knteN6wPbN7hheZ9TeH8AAAAAAAAAAAAAACnjGA0AMajU7Gqgtbdt8JxMHeMGV+jtvHCQuNntOrh7O0rDQ8SjAYsUZ/Ql+JVEQA74OD8la8nlzbXD2Bk5gSjDX3uLh0D1p/y7c3vHM7dPqwPbN7agtEWeLcEAAAAAAAAAAAAALAlVLsCMCIdCs/6hD7ANeaMH+Nr3Cb7m+4BY9VUlNq1oHkRZZHiVcFoQJM+wWirDH0EdlffZyXPVqfXmq79m//S5f/e8/o5BxqLwJS24LOlBKN1XGtf/+nJp3/17H13/Yurwx8Zn8nFln1LfH+596DlnQsAAAAAAAAAAAAAYM0EowEwHkKpSNKtaLnhmFqT+9+ZHHyyYf+84kZjcNSawq3W1r7xM1r1cPb2lYYHLRCMNrRAG9hdfe5BxasiAHbAB19x+f73npdsuifAmLQ+V+9lcCB5n/cIN986e/v+fcn7fn5YP9iswwvN+yY931+2PevtXdfvXAAAAAAAAAAAAAAAW+TspjsAAN0NCMRid3QJ9ph1zEfflLzm+cmn3p3sPSh52n+XPOJzkzt/Irn0seQzvj55xg8Mb5vt5fqxqE0Eo5VFgtEa+gnQZ4280tBHgCPW5qfYOq99Td7+d+cfA/CAluCzsjf8/tVnrX3TNyTXPTLZ/9i1++68PXnytw7rC5szudi8r+73PFfL8YLRAAAAAAAAAAAAAIARE4wGwHjUlsK0B45R0MoMB59KXvm8K4WEk0vJ7/3Dq4/5nf83uf/355zI+Bq3TV+/TbfPwpruPysND1okGK3DfRJgrr1NdwAYpb5rXWtj1sA7IqCvtufqsjc8kHyvx3uEMw9JnvxtyTt+7Np9H/z3yafen9zwxGH9Yf1qTQ4vNO//zf/j8v7P//5uofltIWt7D+rfPwAAAAAAAAAAAACALaHaFYAR6VLQquh19y0wDj7wi1dC0dq87+eX0Dbba9PXb9Pts7CmwueyysepBYLRIhgNaNLjHrTS0EcATr21hpUJ2Ad6ag0+2xseSN53rX3LbbO310nyrp8a1hc2Y3Jp/jG//YPJ2/5Ot/MdtgWjXdftHAAAAAAAAAAAAAAAW0gwGgAjIhiNZKFrfMffXFLTQodGrW/B+5nrV9MPxqfp//urDA8qCwSjmaOAJn3ugSsNfQR2Vt+1tjCqU2yN1976GOirbd4oexk8h1338H7HP/rLk4d/9ux9517ofjpGk5Ygs2nvetHw8xXBaAAAAAAAAAAAAADAeKl2BWA8uhS0KgYjyTVFil0Lzvqel5Hpef2ef3fyrJckX/X65BGft4TmjZ/Rqoezt680PEgwGrBMfYLRVhj6CABrJWAf6Kk1GO3M8Ofu6x7V7/hSkptvm73vvrclH33TsP6wfocXuh1339u6Hdf23vvMg7qdAwAAAAAAAAAAAABgCwlGA2BEFLSSxcKlDpcUjCbYatz6Xr/rHpY86U8lj/nyZO/Bq+kT49BU+Lxt4UFNAW4AgtGArePZ6vRa47UXHAz01haMtte+v4sHPbL/Z27+jjSGp9/5wiG9YRMml7of2+U+1vbeu1zXvS0AAAAAAAAAAAAAgC0jGA2A8RBKRVcnx8pkScFoivdHbsj1ayhAXVv7bFRT4FhZ5ePUAmNO8APQpM86WjAasBBrXbaRgH2gp9bn6jL8ufu6h/X/zA03JU/4Y7P33fUzy/uFEGyfLgH4be+99wSjAQAAAAAAAAAAAADjJRgNgBHpUnimoHX3LXCNDy9srm22yIDrV5YQjCbcccQa7j+rDA9aaMwJRgOa9AlG86oIWAdr41Nrnc9FgoOBvhrnjXL5OX3ovHL2xsU+d8uts7df+mjyvpcv3h/Wr899cHLQ4Zj95n2C0QAAAAAAAAAAAACAEVPtCsB4dCkaEjx0CnS5xieOmVxaUtPG16j1Kl49GUq1hGA0xqseNuxY5ePUAmNO8APQqE8w2gpDHwFgnbqsjz3nA1dpCkY/fv4fOGecfehin7vpG5PrHj5737nbF+8P260ODEbzYwAAAAAAAAAAAAAAwIj5iWgAxqNT4IuCVnJtYfPk4rJOvKTzsBkDrl9ZxrLZ+BmtpvvPSsODBKMBG7KUex5w+vRc6wqjOsXWee2NM6Cnxuf/vfb9XZ29ccHP3ZA86Vtm73v/LyTn7168T6xZj3tTl2C0tmP2znZvCwAAAAAAAAAAAABgy6h2BWBEuhQNKXrdeYsU0B9eWFbjSzoPG9Fn7JSToVQLhFRd24ElnIONqIezt68yPOiaMdhBUz8BBBABW8e8dHqt8doL2Af6apw3lhSMdsNNi3/2lttmb6+HyV0/vfh52V6TDsFok/2Wnct4nwkAAAAAAAAAAAAAsBmC0QAYkQ7FqkIfToENBuQZXyPX5/qtIhiN0WoqfC5nVtjoIsFoAwu0gR3W4x5oLgFgV9QOgTIA0xqf/4//OXXgWvlRX7z4Zx/zR5KHPm32vjtvX/y8rFmfZ7OhwWie7QAAAAAAAAAAAACA8RKMBsB4CGlg4wSjjduA61eWEIwmWG+86uHs7WWVj1OLjDn3SaBJn3uQ+xWwgN5rXXPNqbXO56LD8/OP8ZwGXGVOMNqQOeNz/9dh7xFKSW7+ztn7PvZbyb2/ufi52U6TgcFo/j0FAAAAAAAAAAAAABgxwWgAjEiXwjMFrSSrGwfG16j1Kl49GUq1hGA0xqupkLScWV2bi4TxKXgFmvS5B5pLgG0grIplOPjUpnsAjE3jWvg4GK0hOL2LW16w+GcfOEdDMFqS3Hn78POzXWqHYLS2Y6ynAAAAAAAAAAAAAIARE4wGwHh0KuRR7LPTNl3Mten2GWjA9VskpOqke9+UvO7PJa94VvKbfzXZv3/4OVmPpsLnssrHKcFowDL1uQda7wBrMPfZyly0u9Z4bQ/PdzjIWAOmNAajHz//D3ju3ju7+GeP3fjk5PHPnb3vXT+VTPaHt8Fq9Xm/POkQjNZ6zb0nAgAAAAAAAAAAAADGSzAaACPSoZBHcBXJCseB8TVuPa7fNUFoS1g2X/hQcucLkw//WvK2v5W86usUrI5GU2H0mfV2Y56mADeAPvdAIYvAQjwrsYUOPrXpHgCjMycYbcg7x7KEYLQkufm22dsvfjh5/79bThtsh9rhvWHbu0XPdgAAAAAAAAAAAADAiAlGA2A8OhWeKcbebRu+voL3xm1Q8erJoLQl+PCvJve8bvnnZfkaA8dW+Ti1yJhT8Ao06HUPtN4B1mHOXOPZa4et8doenu9wkLEGTGl6/j8ORhvy3L23pGC0z3x+cvbG2fvufOFy2mCFetx3JgcdTtd2jHscAAAAAAAAAAAAADBegtEAGBHBaKde5+L4VY0D42vc+ly/k6FUKwhGS5Lf/sHVnJflqg2Fz+XM6tpcJIyvqZ8Afe6B5hJgIX2fleYd79lrZ60z9O7wwvraAnZD41p4b87+DsqSgtGue2jypG+eve/9L08u3LOcdti81tCzI5P9ls97tgMAAAAAAAAAAAAAxkswGgDj0aWQZ50FtmyxFY0DxWQjt4XBaPf/3mrOy3LVw9nbyyofpwSjARtiPQ1sBXMRy+A9EtDTvGD0QcFoSwxXv/nW2dsn+8ldP7O8dliBHvedSYdgtNoSjGY9BQAAAAAAAAAAAACMmGA0AEZEIQ+bHgObbp9BhhS8lxUFoy2zKJbVmVcYvRKLjDnBaECTPvdAcwmwBvPW5sKqdtgar21TwDFAk8bn/+N/Th2wVt47u/hnT3rcVyQ3PmX2vnO3L68dNqt2CEabtASjCdAHAAAAAAAAAAAAAEZsiT+FTx+llDNJnpbk85I8MckjklxMcm+SdyZ5Y631k0tu87okfzTJk5J8epJPJHl/krfUWt+15LZuTvJFufx3e2iSDyS5K8mv19r668sBmnUq5FE8vds6Xt+VFdEbX+PW4/pdE4S2omA0OcXj0BSoUFZ4/RYJ45sIfgAa9FkbCSMCFmHuYBt5jwT0NicYbVDo/hL/SbbsJTd/Z3LH/3ntvo++KfnYHckjP3957bE8vZ7NugSjtRwjGA0AAAAAAAAAAAAAGDHBaGtUSnlSkucneV6SZyd5eMvhh6WUVyT5kVrrvx3Y7mOT/PUk35rk0xqO+fUkf6/W+tKBbX1Tku9J8ocbDvloKeXFSb6/1nrPkLaA06hD0ZBibFbJ+Bq3QcWrKwrAKmdWc16Wq6mQdKXXb5EwPgWvQJM+90BzCbAO8+Ylz147a53P1QJhgL4a5429Ofs7WGYwWtIcjJYk525PvviHltse69cWenas9XdRWU8BAAAAAAAAAAAAAOO1ooQHTiql/HSSu5L8/SR/PO2haElyJsnXJHl5KeXflFIev2C7X5vkjiR/IQ2haEf+SJKXlFJ+spRy4wLtPLSU8jNJfjbNoWg56sNfSHJHKeWr+7YDnHKdimcV++y0zgXUqxoHxte49bl+J0OpFgmp6tKM5fgo1MPZ21d5/coCY07wA9CkTwiNIFhgK5iLWIKmdfzVB628G8CINAajHz//D3ju3ltyMNrDnpo89tmz9537yW6hWmxAn2ezDtdw0hKM5j0RAAAAAAAAAAAAADBikhjW5w80bH9fklcleXGSlyZ5S66trPgTSV5TSnlCnwZLKc9J8rIkj5vaXJO8KZcDzF6R5J4TH/v2JD9TSveUh1LKmaP+f9uJXR9O8ktHbb05V/+0/+OT/Fwp5Vld2wHoVnimoHW3bbqYy/gatyHXTzDa6dZUGH1mhW0KRgOWqc890FwCLKLvWnvO8UIad9gar631MdDbnGC0ReeVcjbZu26xz7a55bbZ2y98MPnALy2/PdarS7hd6zHugwAAAAAAAAAAAADAeEli2Iy3JPkfkzyt1npTrfW5tdZvq7V+U631S5I8Kck/PvGZP5DkZ0spnRISSik3JflXSR40tfnXkjy91vqltdZvqbV+VZKbknx3kulfKf71Sf5Gj7/P307ydVPf7x/9/W6qtX71UVvPTPL5SV47ddyDk7yslPLpPdoCTrMuhdGKp3db5+LDFY0D42vcel2/E0uubkuw/lYarMXS1MOGHat8nFpkzCl4BRocXuh+rPUOsA5z5xpz0e5a57XtsD523wOmNb57HBiMdvaGxT43z5O+KTlz/ex9525fTZusT+0QjFb3W/a5xwEAAAAAAAAAAAAA4yUYbX1qkn+b5MtqrV9Sa/2RWus7Zx5Y6/tqrd+V5L8/setZSb61Y3t/Pcmjpr7/9STPq7W+/URbF2ut/zDJt5z4/PeUUp48r5FSyi25HKw27ZuP/n6XTrT1tiT/Za4OR3t0kh+Y1w7AZV0KeRT77LRFiw+X14ENt88wPa7fNUFoqwpGsxwfhaa5Z2/Lgu0aA9yAU2/SIxhNyCIAu2Lj7xCA0WmaNx54f7NoMNqNi31unusennzm82fve+/Lkkv3rqZdFtcnrKxLMNqkLRjNfRAAAAAAAAAAAAAAGC9JDOvzzbXWP1FrfWPXD9RafzTJS09s/rPzPldK+awkt05tupTktlprYyV0rfVlSaZ/ffyD0y2w7AeSXDf1/QtrrT/X0s75JLcd9enYC44C1gDaKeSha/FhnwKzXgSjjduQ67eiYDTL8XFoDBxb4fW7JpyvA/dJoMnB+e7HrmwdBey2vnPHvOPNRTtrnfeZTsHBxhowbU4w2qLP3WdWFIyWJLfcNnv75FJy14tX1y6r1xZ61ukY74kAAAAAAAAAAAAAgPGSxLAmtdZ3LfjRf3Ti++d2+MyfSXJm6vt/VWv9/Q6f+zsnvv+WUspDmg4upVyf5JvmnOMatdbfS/KyqU1nc7nPAHN0KVZV0LrTOhcfTo2DZRZdCwoZt17X70Qo1SIhVZ2aOTP/GDavae5Z6fUTjAYs0WGPYDTF88A28OzFMnRaHxtrwJTG5//jf05dcM44e8Nin+vicc9Nbrhp9r47X7i6dllQjzE0OehwupZjrKcAAAAAAAAAAAAAgBETjLb93nLi++tLKY+c85n/6sT3P9GloVrr25O8fmrTjUm+quUjX51kuprjtbXW3+nS1ow+Pb/j54BTrUMhj2Kf3bZQ6M8yx4TxNW5Drt+Kls3FcnwU6uHs7Su9foLRgCU6vND9WOtpYC3mzTXmot21zmtrfQz01PhcvTdn/xxnb1zsc13snUlu/s7Z+z7y+uS+rv9sx9ZpCz07Ntlv27m0rgAAAAAAAAAAAAAArJskhu0366feH9R0cCnlCUm+8MTnf61He6868f3Xthz7NXM+2+ZXcvXf7YtLKY/v8XngNOpUeKZ4eqc1hRNde+DUl8ssADO+xq3P9TsRSlUWCKnq1MyZ1ZyX5WqaR1Z5/RYacwpegQaH53scbC4BFrD0UEXPXixBl3cIAkGBaY3P/wOD0c7cMP+YIZqC0ZLk3O2rbZueetx3hgajuccBAAAAAAAAAAAAACMmGG37Pe3E9wdJ7mk5/vNPfP/WWusne7T36ye+f3qPtl7btZGjPv12j7YA0q1oSLHPTluk+HCZwWiKycZt0PVbVTCa5fgoNAUqrPT6LTDmOodHAqfK5KBbQf0x6x1gHcw1p9gar/1Sg9KBU2Hu8/+C88rZGxf7XFcP/+zkMX949r5zL0om3heM0qTDc1zrs577IAAAAAAAAAAAAAAwXpIYtt83nfj+jbW2VnR93onv39GzvXfOOd+0z11jW8Bpd/87kt/7kfnHKa7ecR2Lua4aB8ssADO+xq3H9Sul/ftlEYw2Eg3zSDmzwjYXCUZT8ArMcHih3/HmEmAhS35W8my/u9Z5bTvd04w1YFrTvHH0/mbRtfLZGxb7XB833zp7+/n3JXe/cvXt002f+2CXgOvJfsvnPdsBAAAAAPxn9u49WpezrhP8r/Y+J3cSAiSQgEnOISAqOgrYNiiIDghoNzdpURBPutsZp132co3jmqvdtmt6pp1erbO6HXW6l445It6gBWy8gEIj0ly0EW0VlcA5uXAJCSSE5Jycy95vzR9nn/Ced7/PW5e3qt6n3vfzWSuL7Kq3qh5StZ9L7f37bgAAAAAAYLwkMWSsKIorIuIfzmx+c8VhN898fWfDy94xpDgpEQAAIABJREFU8/Vji6K4ek7bHhMRj1nyWrOff0rD44FNcdebI37ryyM+/vOrbgmr1qaYq8sCMMX5I9fk/s2GUvUVjNZnsBadSfYjPS6n2oTxKXgF5tl9uOEB5jvAEKr6Gn0RHSh3V90CYGxS6+rz72/avhs8cHm745q48dURWxfP33fsaP/Xp3uTJYPRzKcAAAAAAAAAAAAAgBETjJa3fxERT5j6+vMR8XMVxzx65ut7mlywLMuHIuLUzOaralznZFmWJ5pcK/a3bd51gE032Yn4wD+oKPCZpthnrdUO/Zl6DjoNChI6NGpLBdv1FIxmOj4OqUCFrT6D7do8c/ooYI7d2SV+FfNpYACVc3N90foa8N7Weh/gWQOmJIPRzr+/abnu3h4gGO2iR0c86eXz933iNyLOPNB/G6ihwbhT1ghGKxf83ESAPgAAAAAAAAAAAAAwYgdW3QDmK4riFRHxAzOb/7eyLO+rOPSKma8fbnH5hyPikqmvH9XjdabNu04jRVFcGxHXNDzsycteF+jR3b8XcfbzDQ5Q0LreWhRzpQKN2lgqWIvVa3L/ZkKpip4CzIo+g7XoTLKQtM9guxbBaApegXl2Gy7X9SVAK9ZK5MiYBjRVEYzWdq584LJ2xzV1+JaIO39t//bdUxF3vjHi5u8dph10o04w2mTBZ6ztAAAAAAAAAAAAAIARE4yWoaIo/quI+MWZze+IiJ+tcfhsYNmpFk14OCKuXnDOLq+z6JxtfH9E/GgH5wFy8bk/avZ5wVXrrXYx1/Rz0GUBmOdr3Ja5fy1Cqmqdts9gLTqTCljsM9iuaBOM1mEQJLA+jv1CwwPMd4AhVPQ11vZrbMB7W+cdgmcNmJbsN4qK/RUOXN7uuKae8MKIS6+LePjT+/cdPyoYbWwWhZ498pmzC3Ya4wAAAAAAAAAAAACA8ZLEkJmiKG6IiN+KC0PC7oiI7y7LVlVa63YMQAVdy1qrW3w4PWS2LVicf+IOz8XgmkylZkOp2oRU1bqO6fgopPqR3O5fp/0dsBaOvyHiIz/e7Bh9CZAFay86IDgYaKpy/d9yrnzJ49sd19TWdsRNr5u/7973Rjz4sWHawQIN5jhljWC0ckEwmrUdAAAAAAAAAAAAADBimVXyb7aiKK6NiN+LiCdObb47Il5YluW9NU/z0MzXl7Zoyuwxs+cc8jrApmucCal4eq21KebqsgCsVUYp+Vjm/vUVjLbdz3npVipQodf71+KZU/AKzLrtZ1ocZL4DtND12t3aa30NeW9rBaN51oBpqT5hb43edt39uGe3O66Nw0fS+47/4nDtYHl/+X9Uf2ayIDzNeyIAAAAAAAAAAAAAYMQOrLoBnFMUxWMi4vcj4qlTmz8bES8oy/K2Bqfa9GC0n4mINzY85skR8dYOrg3kQPH0mqtbzDX1HHRaAOb5GrVG/cNsKFVPwWhyikci0Y/kFoxWu48ENsZn39f8GMXzQBasvdbXkMFoxjSgodS7o2Lv/U2bfuXAFRFXfXn7NjV11ZdHPOZZEff95/37jh2N+Mp/9sX/PwyvyfvJydmIe98fcc2CYL3JmUUXq38tAAAAAAAAAAAAAIDMCEbLQFEUV0XEOyLiK6c23x8RLyzL8i8bnu6Bma+vadiWK2J/YNnna1znsqIoLi/L8kSDy11b4zqNlGV5T0Tc0+SYougr6ATohuIdppS7LQ4SjMZ5De7f7Pygr/nCVp/BWnQm1ff0WUjc5pkT/AB0wnwHGIBQc4ZQa37sWQSmpfqN82v0Fn3GwauGDyI7fMv8YLSTd0bc8wcRj/+mYdtDe7e/fnEw2u7D6X3eEwEAAAAAAAAAAAAAI+ZPgq9YURSPiojfjYhnTm3+QkS8uCzLP21xyttmvr6x4fGzn7+vLMv7Zz9UluXn4lx427QblrzWbNsBWlDQutbqFnNNF9l3WQCmeH/klrl/fU2bTcdHIdWPFH0G2wlGA1ZEXwK00nSuXfV5a6/1NeS9NaYBDaXe/S0TmL91sP2xbd34nenrHrt10KYwq+E4eNvPLt6/KBjNfAoAAAAAAAAAAAAAGDFJDCtUFMXlEfHbEfG3pzY/FBEvKcvyj1qe9q9mvr654fGHZ77+yIDXmj0fQAuKfdZam6COTsM9PF+j1ijYbqbgdZkC2IWXMR0fhXJ3/vY+71+bZy7VToBGzHeADAilpgt15seeNeACqfeIe+v/Z/1U81NuXdS6Na1d/NiIJ750/r67/n3E2YeGbQ/9WRSMJvQaAAAAAAAAAAAAABgxSQwrUhTFpRHxtoj4hqnNJyPi28qyfN8Sp/6Lma+/qiiKyxoc//UV51u079l1L7IXCvdVDa4FUI+C1jVXt5hr+jkQjMZ5y9y/voLRtvs5L91KFZL2ev/aPHMKXoEOKJ4H2mi8Fq/6vLXX2hryvY0xDWgq1UedDy9//H8dcdHVzc65imC0iIhDR+Zv3zkRcdebhm0LUzoeBxcFo3lPBAAAAAAAAAAAAACMmGC0FSiK4pKI+M2IeP7U5lMR8dKyLN+zzLnLsvx0RPyXqU0H4sLwtSrPn/n6dxZ89ncrjl3kuXGubed9uCzLzzQ4HtgUjYtYFU+vtTZFzV0WQgveG7km9282lEow2kYrdxM7+lxOtXjmBD8AXTDfAbKgL6IDtebHnjVgWqpP2Fv/X/yYiG9+Z8RVT69/ylUFo13/4ohLrp2/79jRYdtCf3YWBKNZ2wEAAAAAAAAAAAAAIyYYbWBFUVwUEb8RES+Y2nw6Il5eluU7O7rMm2e+/vs12/a0iPi6qU0nIuIdCw55e0RM/8b9s/fOUcctM1/PthngnMnpZp9X7LPeaof+TD0HnQYFeb5GbZn+oRCMttFS/Uif96/NMycYDeiEvgQYgLX7Bhvw3icDjgESkuv/qTX6Y74m4tv+POJV90U87y3V59w62E3bmto6GHHja+fvu+fdEQ8dH7Q57OlyDlSWEbsLgtGs7QAAAAAAAAAAAACAEROMNqCiKA5ExK9HxEumNp+NiFeVZfn2Di/1hoiYrvp6ZVEUT6lx3P808/Wvl2V5KvXhsixPRsSbKs6xT1EUT42IV0xt2omIX67RPmAT7TYMRhNctd7qhv6UgtGYp8H92xdK1VMwWm/npVOpQIWiz+WUYDRgRYQVAa103Hfoi9bYkMFodebHnjVgWqpPmLNGv+jqeoHpWxct1aKlHL4lve/46wdrBj2ZnImF45j3RAAAAAAAAAAAAADAiAlGG0hRFNtxLrDsZVObdyLi1WVZvq3La5VleVtEHJ3adFFE3FoUxSUL2veyiLhlatOZiPixGpf7Z3Eu3O28W4qieOmC61wSEb+w16bzfr4sy4/XuBawiSbJfEY2Uptirg4LwBTnj1yT+zdT8NprABb5S/QjdQqgh5QKcANoRPE8MISqubm1F10wpgFNJcaf5HuhGqHmqwxGu/qrIq7+6vn7jh/1rnMlOvxvvvvwcNcCAAAAAAAAAAAAABiYhIfh/H8R8R0z2/7XiPhwURQ3NfwnGXA25Ucj4v6pr58TEb9fFMXTpj9UFMXFRVH844h448zxP1GW5R1VFynL8lhE/OuZzW8qiuIHiqK4oNqjKIovi4h37rXlvM9FvQA2YFPtnm54gGKftVbWLWqeeg5qH9PwvIzPUsWeNQpdW/FMjUIqcKzXwLw2z5zgB6ADwhGAQQhG21hDjjN1goONe8C05HvE1Bq9TjDawbat6cahW+Zvf+hYxL3vHbQpdKwqGK3T9+IAAAAAAAAAAAAAAMM6sOoGbJDvmbPtX+7909Q3RcS7F32gLMtPFEXxyoh4e0ScDyj7+oj4SFEUH4qIYxFxVUQ8IyKumTn8bRHxTxq053+OiK+IiJfsfX0wIn4qIv5JURR/EhEPRsThvWtNV4mciYhXlGX56QbXAjbN7qlmn1fQut7aFHMJRuMRTe7fTGFr0VMwmgLFcUjdp2K7v2u2eeY8T0An9CVAGx2vlazt6YL5MdBUcvxJrNHrBKZvXVT9mT7d9JqID/9wRLmzf9/xoxHXPnf4NtGNqmC0iHPPdF/vNQEAAAAAAAAAAAAAelTjN/YZq7Is3x0Rr4iIe6c2FxHxrIj4joh4UewPRfuViPjOsix3G1xnd+98vzaz69qIeHFE/L2IeGZcWDlyT0S8rCzLP6x7HWBDTU43PEDx9HqrW9Q8/Rx0WAitqHrcdk4ucXBfBYT6rFFITY3rFEC3JhgNWFLbUCFhRMAQ9DUbbMB7X2t+7FkEpiX6hOT6v8bafdXBaJdcE3H9t87fd8evL/m+jOY6HHd2agSjGecAAAAAAAAAAAAAgJESjLbmyrL87Yh4ekT8vxFx/4KPfiAiXlWW5WvKsjzR4joPlWX5nXEuBO0DCz56X0T8bEQ8vSzL3216HWAD7Z5qeIBCn7VWP7dz6pgug9E8X6P2x99X/7PFbGFrT8FogqzGIXWfiu0eL9rmmfM8AdPazlv0JUAOrL3ogjENaCi5/k+s0VPbp606GC0i4vAt87fvPBhx15sHbQoNFQfS+3ZrBKN59wgAAAAAAAAAAAAAjNSC36amS2VZ9pSmUeva90TEPyqK4gcj4usj4saIeEJEnIiIT0bEh8uyPN7Rtd4UEW8qiuJQRDwjIq6PiMsj4u6IuCMi/lNZlme6uBawIZoGowmuWm91C7mmn4NOi788X6M1ORtx8hPtj69T6NqK4sRRSIYy9pgz3eaZaxMeCayXT/9exG0/HfHwpyOue1G7c5hPA2007juqPq8vWltDjjMf+3fVnzHuARdI9QmpYLQa7wW2DrZuTWeu/7aIix8bcfpz+/cdvzXi0GsHb9LGajrubC0ZjGZOBQAAAAAAAAAAAACMlGC0DbIXSPYfB7rW8YjoJGwN2HCT06tuATlpFXImGI2IePBjDQ+YLXjtKRhNEf44pALHFhWnLq1NMJqgPdhon3xbxHte9sW+4HN/1PJE+hIgA+bJayy3e5tbe4DVSvQJyQC0Gmv3rYtat6Yz2xdF3PiaiI/+1P59d78z4sRdEZd/yfDtolqxZDCad0UAAAAAAAAAAAAAwEjV+FPmALBCkzMND1DQutZqF3JNfa7L4i/F+SPWNGRq5vPJAthlKU4chXJn/vZFxalLE4wGNPRXP9FNP2C+AwxCX0MuPIvAlOR8OrVGH0kwWkTE4SOJHWXE7a8ftCmbreG4U2yn9wlGAwAAAAAAAAAAAADWmGA0APJW7jY9oJdmkIuahVzTgR6dFn95vkaraBEydeEJOmnGPsJnxmGSCEbb6jEYrc0zq9gVNldZRtzz7o5Opi8B2uh6XmuevL4yu7fm0MAFUn1UYo1eJ0g/l2C0q58RcdXT5+87dtQ7qlwtevdU64/KuK8AAAAAAAAAAAAAwDgJRgMgb6kwmhQFXOutdsGyYDRmNQyZ2hdK1VMwmvCZcSgTY1HRYzBaq2fO8wQb6/S93Z3LfBpoo+m6q7Kv0RcxFM8aMCU1PiUD0Gqs3bcOtm5Op4oi4vCR+fse/GjEZz8wbHs2VsNxZ9G7pzo/OxEACgAAAAAAAAAAAACMlGA0APJW7jY9oJdmkIk2wWhdBgUJChmxJYPN9gWldURx4jikCk1zC0ZrPGYCa+PEnd2dy9gEtNK076hYW1l7ra/c7q1xD7hAqk9IrNGTgWlTti5q3ZrO3fTaiGJ7/r7jR4dtC8tLBflfwDgHAAAAAAAAAAAAAIyTYDQA8laruOeCA3ppBrmoWcg1XdjcaZGz52u0GgebzX6+r2A0z9QopMairT6D0VrwPMHmOtlhMJr5DtBG5+FS+iIGIhgNmJZaVyffK9V4X5RTMNql10Vc96L5++741YjdU8O2ZxM1fXeTCrKLSAf5L3M9AAAAAAAAAAAAAIBMCEYDIG/lbsPPK2hda7Xv71TBl2A0ImL5YLOegtHqhv2xWqlgtKLHYLTGYX4R+ijYYCfu6u5c5tNAG437DvOWzZXbvc+tPcBqpcazxI9T66zdtzMKRouIOHzL/O1nH4j4xFsHbQo1HLwyva/WH5WxvgMAAAAAAAAAAAAAxkkwGgB5m9Qp7pnSNEiNcalbbF9OFzZ3WPxVKpgercYhUzOfL3qaNnum8ldO0n3PVo/BaK3C+DxPsLF2T3Z4Mn0J0EbHoRvmyWsss3srEBSYlhp/ku+VarwvKrZbN6cXT/y7EQcfPX/fsaPDtoVqi37eUScYzTgHAAAAAAAAAAAAAIyUYDQA8lanuOeCzwtGW2t17+90wVenxV+ZFXDTQMOQqX0Fr21CqupQnJi9Rf1OkVkwmgAR2GAdfv8rnAfaaNp3VM5bzGsYimcNmJbqExI/Tq0TxH/q3tat6cX2JRE3fdf8fXe/PeLkp4Ztz8ZpOO4s+sMxdf6ojHdFAAAAAAAAAAAAAMBICUYDIG9Ng84Eo6232sX2UwVfgtHoRE/3XvhM/hYVmfYZjFanuHoffRRsrE6L3fUlQAudz2v1RWsrt4AWazJgWqpPSK7Ra6zdT97Zujm9OXRk/vZyEnH7G4ZtC4st+sMxtf6ojHEOAAAAAAAAAAAAABgnwWgA5K1Wcc/05wWjrbcVB6PlVsBNfUXTae9MYWtvfYtnKnuLxqGtHoPR6hRXA5zX6XxH4TzQQuO+o2IebO3FYIx7wLTU+JNYo9d533TtN7ZuTW8e+7cirvzS+fuO32oc7lPT/7aL3kkuCvNvez0AAAAAAAAAAAAAgEwIRgMgb5OGYUSC0dZb3WL7Cz7XZZGzQrLxWjJkqq++RfhM/hYFoxU9BqMVbZ5ZfRRsri6///UlQBsN57VCOjZYZvfeswhMS/UJyQC0Gmv3676ldXN6UxQRh26Zv++Bj0Tc96FBm8MCi95L1fqjMt49AgAAAAAAAAAAAADjJBgNgLzVKu6Z/rxgtLVWO0Rqqoixy+ApIVYj1rTYfaawtbe+RRF+9iYLxqGtHoPR2oT5CXWADdbh97/5DtBG532HeQ0DMe4BF0j1CYk1elWo+VP+UcQVh5dqUW8OfXck/38du3XIlmyYhnOcRe+lFu175HLGOQAAAAAAAAAAAABgnASjAZC3psFoE8Fo661mIVfZUzCa4vzxWjYwqq9gNMWJ+Vs0DhWZBaPpo2Bzme8Aq9a4H6rqa/RF6yu3e5tbe4CVSr0/SgagVfyY9Vn/z1LN6dVlT4p4wgvn77vjVyJ2Tw/bHuZb9E6y1s9OjHMAAAAAAAAAAAAAwDgJRgMgb43DiIQMrbXaxfaTxL8ve32FZOPV8N7NFrwKRttckwVFpls9BqMli64X0UfB5urw+9/YBLTScd9h7bW+cru3xj3gAqk+KvHj1EVr9xteHVFk/mPYw0fmbz9zX8Qn3zZsWzZGw3FwUfhZnWA04xwAAAAAAAAAAAAAMFKZ/0Y+ABtvUSDNPB/9qYj3vCLiP/9gxAN/3U+bWJ26hVzThdadFn9lVsBNjwYKRvNM5a88m95X9BiM1kZuIRPAcDr9/teXAC00XndV9TX6IoYiMAaYkhrPkgFoC4LRiu2lm9O7J7084uCV8/cdPzpsW5hv0c9H6vzsRDAaAAAAAAAAAAAAADBSgtEAyFc5icbF0OUk4hNvifjov4l4x9dF3PfhXprGqtQt5BKMxqwl713TkMa6FCfmb9G97zUYbUFxdZI+CjZXh+OJsQloQ99BbZnNWYULAxdI9QmJNXqx4MesYwhGO3BZxA3fMX/fp3474uHPDNueTdB03Fn0xxrKOu8rjXMAAAAAAAAAAAAAwDgJRgMgX4uKfuo4+4WIv/6JbtpCHuoW21/wuS6DQhSSjVbjezdT8Lpsf5QiQCJ/i4pMtzILRtNHwebq9PtfXwK00HReW9lv6YsYijUZMC0x/iQD0Bas3Xt9Z9Chw7fM317uRtzxy4M2hTnKnfS8qc4fcvDuEQAAAAAAAAAAAAAYKcFoAOSriyCi29+w/DnIR+1CrqlisU6LvxTnj9eS925RONZyJ+7pvHRmUZFp0WORc7LoehHPE2yuDr//Fc4DrTTtOyr6LYGvayyze2vcA6Yl+4REANqitXuxvXRzBvG450RccfP8fceODtsW5ks9l3XeVxrnAAAAAAAAAAAAAICREowGQL4WhdE0sXu6m/OwerXD8gSjMaNpsEIxU/DaVxGh4sT8LSoy3RKMBmSiy/Hk7Be6OxewOTqf1wpOYyieJWBaqk9IBKMlt8d4gtGKIuLwkfn7Pv9nEff/6bDtWXstxp3UO/Faf8jBOAcAAAAAAAAAAAAAjJNgNADyVauwp4YTd3ZzHlavbrH99Oe6LNAXYrW56oTyPf2ftjlxi2MY1KKQzqLHYLQ2SzUBIbDBOvz+P31vxKRuGC3AnsZrpWX7LfOe0cptzmqdD0xL9VHJ8PJFwWh9vjPo2KHXpfcdOzpcO5gv9XOSOn9YxjgHAAAAAAAAAAAAAIyUYDQA8lUniKiOE7d3cx4yULeQa7qIUTAaEc2DE2YKWxcFNT7z30R8659HfNWPNW6VZ2oEFt37Pouck0XXi2QWMgEMp+vx5L4PdXs+YAN0Pa81r1lfud3b3NoDrFZqPEsEoC1auxfbS7dmMJffGPH4b56/7/Y3REzODtuetdZi3Hnwo4lT1fnDMsY5AAAAAAAAAAAAAGCcBKMBkK9JncKeGk7c0c15WL26oR/lVMFXl0EhXYX1sQINiwCL2WC0Bff+5u+LePTTmzcpIroPkKBzi4pMt3ILRgM2V8fF7vcLRgMaarruKiv6rWX3Q13CqoFpqfFl9j3RF3ekz9XnO4M+HDoyf/vpeyM+9TvDtoULve+187fX+fmJcQ4AAAAAAAAAAAAAGCnV9gDkq6sQqp0T3ZyH1asdjDaZ/+9LX18w2mgtG5ywqNBwmUJXgQ75S977ot/wslbn9jzBxup6PHnw492eD1h/nYduVPVr5j3jldm9ExgDTEv2CYk1ejIwLSKK7aWbM6gveWXEgcvn7zt266BNWWtt1m4PfCTi9H1zzlXnD8sY5wAAAAAAAAAAAACAcRKMBkC+ahX21LD7cDfnIQN1C7mmC8wEoxHRvPh+prB10b1fKhxLcWL2UmPRMoF4tbR4rgTtwQbreDy5+HHdng/YAE37oWWDz8x76IpnCZiW6BNSAWiL3gmNLRjt4BURN/y9+fs+9baIU58dtj1c6NQ9+7fV+fmJd0UAAAAAAAAAAAAAwEgJRgMgX4LRmFW2CEarfUyX12ft9BWKpzgxf5PEWFT0HIzWKnDP8wQbq+vxZHK62/MB689aibpyWwN5doELpILRUmv0RGBaRP/vDfpw6Mj87ZOzEXf8yrBtWVsLxsHHfl163+7J/dsmZ2tczzgHAAAAAAAAAAAAAIyTYDQA8jXpKIhIMNr6qFuwPP25ToPRegrHYgBNi+9nClt7u/eKE7OXCukUjAZkpePv/13BaEBDjcOuKj5fdb7cwrVoILd7l1t7gJVKvkdMBaAtCEbbGmEw2rXPi7j8pvn7jh8dtCkb6XlvTe+b9zOOVJj/NAGgAAAAAAAAAAAAAMBICUYDIF+pMJqmBKOtj9qFXNOFzYLRiOWDE/q694oT85cai3ovcG6xVBMQApur6Xjy7F+KuPpr0vsngtGAphr2Q5XzlmX3Q03WZMAFUuNLIgBtUah5sb10awZXbEUc+p75++77UMTn/2LY9qylBXOYix+XfqZ2Ts45VZ2fn5gzAQAAAAAAAAAAAADjJBgNgHx1FUQkGG2N1CxYni6y77LIWTDaiDUsAixmCl67CmrcR3Fi9iaJe1/0HIy2qLg6yfMEm6vh9/81Xx/xkj+JuO5F8/fvCkYDGuo6XGrp4DTyldm9E4wGTEuNP8k1eiIwLWKcwWgR6WC0iIjjR4drxyYqiojty+bv220ZjGacAwAAAAAAAAAAAABGSjAaAPnqKohoRzDa2qgdTDZV8CUYjYhoXnw/G4zW071XnJi/1Fi0JRgNyEnLANCLHjN//0QwGtBQ43mt4DNy4VkDpqXGs0QA2myw/gX7RhqM9qgnR1zz3Pn7jv9SOkCebmxfOn/7vJ9x1LkX3j0CAAAAAAAAAAAAACMlGA2AfHUVRLQrGG1t1C3kKqcKmwWj0YXegtEU4WcvVWRa9ByM1map5nmCzdV4vrMX4LB98fzdu4LRgKYGDt0w7xmv3O6dwBhgWqqPSgagLVi7jzUYLSLi8C3zt5+6O+LT7xi0KWunahw8cNn87bsn55yrTkhdZuMuAAAAAAAAAAAAAEBNgtEAyFcqjKYpwWjro3bB8nTBV5dFzgqmR6tx8f1MwWtX/dE+nqnspYpM+w5GK9os1RS7wuZqOc5tJYLRJoLRgIYah0tV9VvL7oe6PEvAtFSfkFijJwPTYoBA9R7d8KqI7Uvn7zt+dNi2bJQi/d993s846ryvFAAKAAAAAAAAAAAAAIyUYDQA8pUKo2lKMNoaqVnINV3w1WXx12S3u3MxsCWL3cue7r3ixPylxqItwWhARpoGgBaC0YCOdT2vrezXzHvGK7N7Z00GTEv1CckAtEXBaNtLN2dlDl4Z8SXfPn/fJ94Sceb+YduzVirGwe3L5m/fOTnnVHV+fpLZuAsAAAAAAAAAAAAAUJNgNADy1VUQkWC09VG7YHmq4KvLIue+wrEYQMvAmEcO7+veK07M3iRRZFpkGIzWNBgJWCNN5zt749x2IhhtVzAa0FTDfkjw2ebKbs4qGA2YluqjUgFoC/q0vgPV+3b4yPztkzMRd/zasG3ZFEURcSARjLbbMhhNACgAAAAAAAAAAAAAMFKC0QDIVyqMpqndU92ch9WrW8j1ibdEPPBXe18IRiOWL76/+qu7accsxYn5SxWZFts9X9hSDWig8Ti3F+ywlQhGmwhGAxpqPK9dMhgtu3AtRsuzBFwg0SekwssXvSvs/b1Bz679pojLnjR/37FbB23KeqkYd7Yvnb993h9/qfPzE+8eAQAAAAAAAAAAAICRUm0PQL66CqHj4sQhAAAgAElEQVSaVzTEODUp5Prtr4y4/Ze7Lf4SjLZBigu//LL/cf7HnvL9S15HEX72Ut/3fRc4p4quF/I8weZqON8p9sa57Uvm7xcsDDQ1eOiGec945XbvcmsPsFLJ8ayYv3lRMNXYg9G2tiMOfc/8fZ/7YMQDfz1sezbFgcvmb985uX9bKsz/wg8t1RwAAAAAAAAAAAAAgFURjAZAvmoV9tQgGG2NNCi2L3cj/ui/nV801pZgtBFrWgQ4U/D6mGdGXP93Ltx28WOXD0YbPECCxlL3qFVwWQOC0YAmypbj3PbF83fvnl6qOcAGajyvrei3GvdrsATPG/CIVH+QCEbbvjR9qkuesHRrVi4VjBYRcfzocO1YJ1VjTuqZmvczjkXBfI9cz7tHAAAAAAAAAAAAAGCcBKMBkK86hT11CEZbH02DyXZORHzyrau7PhlZstB9azviuW+KeMZPRjzxpRFP+6GIF7w34tFfsWSzFCdmL/V9X2z3fOEWSzWBDrDBWgajbSWC0SaC0YCmup7XVvVr5j3jleG9sy4Dzkutq1Ph5Zc+PuLKp+3ffvCqiOu+pbt2rcqVXxrxuGfP33f89RET70q7cz68+rL5ux/82P5ttdZtxjgAAAAAAAAAAAAAYJwEowGQr65CqHYEo62N3VPNj/n8n3fYAIVko9U0MKoo9m/bvjjiaf99xDe+NeIZPxFx1ZzC1+YN6+Ac9GpVwWipouuFPE+wsZoGupwf57YTwWi7gtGAhpr2Q5Xz84r9AmHplLU+sCc1ns17T3Te0/9pPBJq9ci2H4nYOtBZs1bq0JH52x/+ZMRn3jlsW9ZCxRxm+9L52+95d8QHv/fCMLo678rNmQAAAAAAAAAAAACAkRKMBkC+yp2OTqTAdW3srjjkbtJRWB8rkGkRYNMACYaXLIrueSnV5vyKXWGDNf3+3wtu2EoEo00EowENdT2vXTY4jXzlOGfNsU3AiqT6gwVr9Ju+K+Kb3h5x+B9E3PiaiG94Y8SX/XAvrVuJG1+dXjccOzpsW9bZ+fC9rYvSn/n4z0d87N9+8etawWjePQIAAAAAAAAAAAAA47Qmf64cgLVUdhRCpfhnfeycXO31u3omGYFioOsowM9e6vu+2O75wm2C1zxPsLEaB7pUBKPtnDh3zmKo8RAYv6br7qp+yzp+feU4Z/W8AXuS4egV8+LrXnjun3V00aMjnvTyiDt/bf++T7w54swDERddNXy71tVWxY/uj90a8dTvP/fvkxrBaMY4AAAAAAAAAAAAAGCk2lTbA8AwJjvdnEcw2vrYfXi11xeMNl6NA2MGon/KX7IouudgtEIwGtBEw/HkfLDDRVfP33/mvogHb1uuScBmaTqvrZqfV57PvIcO5bpeBFYg1R9seGDw4Vvmb999OOLONw7alPGrGHO2Di7ef98fn/vfyU69+ZcxDgAAAAAAAAAAAAAYKcFoAOSr7CgYrWlQBPkSjEZrTYsAByp4FYyWv9T3favgsgbanF+xK2yuxt//e+PcY58VyTHv3j9cpkXApul8XlsVnGbeM1453jvrMuC8RB/V9zuA3D3hhRGXXjd/3/Gjw7Zlbe2ty4oD9T6+e6rmeY1xAAAAAAAAAAAAAMA4bfhv8gOQta5CqAQPrQ/BaLTWsPi+GCgYLctQAC6QDEbb7ve6rYquPU+wuVqOcxc/NuLRT5//mdP3LdckYMM0XXdXBZ9Vnc+8hw55bwScl+wPhnpPlKmt7YibXjd/373vjXjwY8O2Z8yqwl27DkYTJgsAAAAAAAAAAAAAjJRgNADyVe50eC4FQGth5+SKG6BYerRy7QMU4I9A6h71vZQSjAY00Hg8mQp22L4scU6BsEADXc9rzZPXV5ZrsxzbBKxGqj/Y8GC0iIjDR9L7jv/icO1YW3vP2NbBeh+f1AxG8z4bAAAAAAAAAAAAABgpwWgA5KvLMAZF1eth9+HVXr+cZFrETfeGKnj1PGUvNRYV2/1et8359U+wwZp+/0+Nc1sHEqfsMKQYWH+N19wV/VbV+cx76JJ3RsB5qfGl8OPUuOrLIx7ztfP3HTuqL62tYg6TWp/N2j1d83LuCwAAAAAAAAAAAAAwTn6TH4B8TboMY1AAtBZWHYwWoZhstDINTvA85S91j3oPRrNUA5poOM4VU8FoRaLwvtO5OLD2Op/XVvVrmc7vqSHHe5djm4DVSI1nQwXoZ+7wkfnbT94Zcc8fDNuWdXN+jVYcrPf53VM1T2yMAwAAAAAAAAAAAADGSbU9APkqdzs8l/ChtZBFMFqHzyUDaloEOFTBq74pe6nv+b6Dy1qdX7ErbKzGc93pYLRE0GMpGA1oomE/VFbMWyr7NfOe8crw3nlnBJyXGp8KwWgREXHjd0ZsJYK7jt06aFNGq2oOtJUIrp41qRmMZowDAAAAAAAAAAAAAEZKMBoA+eoyjEEB0HrYObnqFghGG6uqosNVybVdfFEyGC0RJNQZwWhAE0sEgBaJwntzHqCJztfc1vAMyDsj4BGpebUfp0ZExMWPjXjiS+fvu+vfR5x9aNj2rJW9NVpqfTZrVzAaAAAAAAAAAAAAALDe/CY/APmadBiMpqh6/MpJxOT0qlshJGS0GgbGFEX1Zzqhb8peqoC072C0osVSTdAebK6m3//T49xWKhity7k4sPYah25U9FtV5zPvGa8s712ObQJWIvkOYKj3RCNw6Mj87TsnIu5607BtGaWKMWfrYL3T7NZ9T26MAwAAAAAAAAAAAADGSTAaAPnqMoBKmNX47Z5adQvO8SzRpSxDAbhA6nu+TXBZE63O73mCjdU4kGgq2KFIBKN1GlIMrL+Bg9HMe+hS43EUWF+p8UUw2iOuf3HEJdfO33fs6LBtWSt7z1hqfTar7rtyYxwAAAAAAAAAAAAAMFKC0QDIV9lhGIMCoPHbObnqFuzxLI1T0+CEgQpeBe3lLxmMtt3vdQWjAY0sMc6l+rMu5+LA+ut8zV3Vr5n3jFeO9y7HNgGrkegP+g5HH5OtgxE3vnb+vnveHfHQ7UO2Zv1sHaz3uYlgNAAAAAAAAAAAAABgvflNfgDy1WVgkAKg8dt9eNUtOGciyGqUykyD0RTg5y81fvReFN3i/I2fc2BtNJ3rFlPj3NaB+Z/ZOdG+PcDmadoPVc1bqs5n3kOXvDMCzkv2B0O9JxqJw7ek9x3/xcGaMU4Vc5jU+mzWbs1gNO8eAQAAAAAAAAAAAICREowGQL4mO92dS5Hr+JUdPg/L6DKwjwFlXASof8pb6nu+2O73uq2C1zJ+zoHuTc5G3POeiOOvjzh5Z8ODp4IdikTh/bFfiHjoeOvmARum6zltZTCaddl4ZThntSYDzksFbxaC0S5w9VdFXP3V8/cdPyrAtI3zz1hqfTatLCN2T9c7rzEOAAAAAAAAAAAAABgpwWgA5KvTICwFQOOXSUGdAvyRavj8tC14ffI/bH6MZypvqQJSwWjAKp39QsTvf+O5f97/PREP/GXDE0wHoy3ozz7YYlwDNlTTNXfVvEUw2trKMiwnxzYBq5Eaf/w4dZ9Dt8zf/tCxiHvfO2hTRqVqHNw6WOMcOxGTU3UvWPNzAAAAAAAAAAAAAAB58Zv8AOSry0LnVLAN45HLPbzvQ6tuATk7dKT5MUId8pa6P62Cy5pocf4sQyaAXvzF/x7x2fe3P346AHTrQPpzn/mPETsn218H2Bxdr9cqz5fJ+pD1kMv7BmD1UuvqtgH66+ym10QUibXE8aPDtmUt7D1jqf+m0yZnI3ZrBqMZ4wAAAAAAAAAAAACAkRKMBkA+dk5EPHTsiwVok53uzq0AaPxyCfx5z0vPFZ8xLo2fn5YFr9c+N+Lm/67ZMfqnvCWD0bb7vW6r4LVM+kmgf3/1r5Y8wdQ4V1V4f/bBJa8FbIam85Cqz1fsnwgXHq8c56w5tglYjVR/4Mep+1xyTcQTv23+vjt+XcByUsWYs3Wwxil26gejCZMFAAAAAAAAAAAAAEbKb/IDsHrlJOKPfyDiTVdH/OaTI/7DzRH3/1k6jKYVBUDjl1Gh8mc/sOoW0NiAz8/1L272+U77OrqXGj96XkoJRgN61SAYbXKm36YA66Fp2G9VcHHV+cyh6ZKwauC8VH9QtAzQX3eHjszfvvNgxF1vHrYto7f3jFWtzyLO/UGZusFoufyxEQAAAAAAAAAAAACAhgSjAbB6f/WvIm776YjJ2XNfP3Qs4l0viNg90d01FLmOX0738GP/dtUtoLGGRYBLFbw2PFaoQ95S96fY7ve6rYLRAGqaHueq+rPybL9tAdZD1+u1yvNltD6koQwDWnJ63wCsWKqPEow21/XfFnHxY+fvO37roE0Zj4pxcKtOMNrZiMnpmtczxgEAAAAAAAAAAAAA46TaHoDVO/76/dtOfzbi0+/o7hqKXNdARsXTWxevugU0VTZ9foYMRtM/ZS11f/oORmuzVGv8nAOba2qsqiq83z3Tb1OANdF0Tls1b6k4n3BhOmUeDZyX6A+El8+3fVHEja+Zv+/ud0acuGvY9ozZ+fDq4mD1Z8udiN1T9c7rvSMAAAAAAAAAAAAAMFJ+kx+A1XvgL+Zvf/hTHV5EAdDo5VTEtS0YjQ4Jdchb6v70XRTd6vwCHYCaiqlgtKIiGK08229bgPXQ9XqtKvDVHHq8cgzzzel9A7Bayf5gmQD9NXf4SGJHGXH7nD+IsumqxsGq4OqIiMnZ+sFo3hUBAAAAAAAAAAAAACMlGA2AzaDIdQ1kVMS1JRhtfJo+P0sUvBYNjxXqkLdkMNp2v9dtE4yWY8gEkL+q/mxyZph2AOPWeM1dNW+pOJ81/ojlOGf1PAHnpfoowWhJVz8j4qqnz9937Kh3FbXtPWNVwdUREeVO/WA0cyYAAAAAAAAAAAAAYKQEowGwGQQPjV9ORVzbgtFGJ+cizJyebfZL3Z++g9FaLdUyfs6BjMyEOmxVFN5PzvbXFGCNdDynrZojW+PTpZzXi8CwUv1Bm/DyTVEUEYePzN/34EcjPvfBYdszdlsHqz8z2YmYnK53Pu8dAQAAAAAAAAAAAICR8pv8AGwGBUBrIKNC5S3BaOPT8PkpiurPpA9u9nGhDnlL3Z++i6JbnT+jfhLI1+wYVwhGAzrQdM1dFUQlGG19ZRlC5p0RcF6qP1jmPdEGuOm16QD5Y7cO2pT8VYyDVeuziIjybMTuqW6uBwAAAAAAAAAAAACQKcFoAGwGwWhrIKMirm3BaOMz5PMjGG2tJIPREgW/XWkTjJZlyASQn6bBaGf6awqwPhqvuZcNRrPGp0Pm0cB5qf5gqQD9DXDpdRHXvWj+vjt+tUGI1ybbe8a2DlZ/dLJT/7+pORMAAAAAAAAAAAAAMFKC0QDYEAqARi+nIq4twWjrb8iC14yebfZL9T1tgssaaXN+gQ5AHTNj3FZF0OPkbH9NAdZH5+u1quA04cLjleOc1ZoMOC8VjObHqZUO3zJ/+9kHIj7x1kGbkreKcXCrIrg64twarXbYXI7jLgAAAAAAAAAAAABAtRq/XQ0AayCnUC1ayqiIa+vgqltAU2XT52eJYLSi4bEToQ5ZS4VuFBVBQstqVXSdUT8J5Gt2nCoqXg1NzvTXFmCNNF1zVwWfVZxPMBpd8s4IOC/ZHwwZoD9ST/y7EQcfHXH28/v3HTsaceOrh2/TmJxfp1WtzyIiyp2Iyel65zXGAQCstaIonhERT4mIJ+5t+mREfLQsyw+vrlUAAAAAAAAAANANwWgAbAYFQOOX0z1UhD9CGQdGeZ4yl+h7cgxGaxwACGym2VCHipCHydneWgKskc7Xa1XBaBmtD2koxzlrjm0CViPVHwhGq7R9ScRN3xVx28/u33f32yNOfirisuuHb1duqt7d1PmDHOVOxO6pmtczZwIAaKMoisMR8bUR8ay9/31GRDxq6iN3lGV50wqaFkVRHIyI/yEivjcinpz4zMci4uci4ifLsvSSHwAAAAAAAACAUWpRbQ8AY6QAaPRyCvwRZDVCDZ+fYpmC16bH6p+yNkl8v7cJLmui1fkz6ieBjM2OUxXjkGA0oI6moRtV67uq81mTjVdOa/vzhMYA56X6qL7fAayLQ0fmby8nEbe/Ydi2jM7eOq2o8TfNJmfqB6N5VwQAUFtRFM8viuLtRVF8LiI+HhG/GhE/HBHfGBeGoq1MURRPiYgPRMS/iEQo2p6bI+LHI+L9RVHcPETbAAAAAAAAAACga36TH4DNoMh1DWR0DxXhj8+gxfcNg9E8T3lL3Z9iu+cLC0Zjxs7JiLvfGfHAR/IMFGE4y97/2fDPqnny5Mxy1wM2Q7nT8fkEozEgcyvgEanxZ5kA/Q3y2L8VceXT5u87fqv+NiIq393Ued/0X360fjCan4sAADTx1RHxLRHxmFU3ZJ6iKJ4QEb8XEc+Y2fWxiHhrRPxmnAt0m/bMiHhHURTX9t9CAAAAAAAAAADolmA0ADaDAqDxy6lwThH+Bhiw4NXzlLnU+NHzUqqwVGPK3e+K+I1rI971gojf+opz/7tzYtWtYlWWntc2DEYrzy55PWAj1A3neETV+q5ivzX+iGW0tn+E5wnYk3r/OBsuzHxFEXHoyPx9D3wk4r4PDdueUdl7xrYvqf7oZ98XcerTNc9rjAMA6MDp2B84NqiiKLYi4i0RcePU5k9HxIvKsnxKWZYvL8vyZWVZ3hwRL4mIu6c+dygi3lwUFjYAAAAAAAAAAIyLansANoOi6TWQUfH0RJDV+Az4/DT9nXL9U95SwXXFdr/XbROMllOAJN3ZPRXxnpddGIT2mXdF/NmPrK5NrNbSgZoNg9EmZ5a8HrARug5GqwxttCajQ9ZkwCNWFI6+Tg69Lv1O49itgzYlTxVzoK0DEdf/nerT1J17eVcEANDU2Yj404j4uYj4voh4ZkQ8KiK+d5WNiojXRsTXTX19X0Q8pyzLd8x+sCzL342I50TE/VObnxMRr+61hQAAAAAAAAAA0DG/yQ/AhlDkOno5FSorwh+hpkWAy/zB7KbBaJ6nrKX6nr6D0Vot1RS7rqVP/oeInYf2b7/tp4dvC3lYdtyYDfCsOt/k7HLXAzZD42C0KoLR1leOc9Yc2wSsRCpEqmkI/ia77IkRj3/B/H13/ErE7ulh2zMW08/Y1/50xBVP7ua8Ob1TBwDI39GIuLIsy68py/K/Kcvy35Vl+SdlWa70JXlRFNsR8WMzm3+oLMvbU8eUZXk8In5oZvM/L4o2f5kJAAAAAAAAAABWwy+7ALAZFACtgYwKlRXhj0+qsDVlyIJXz1PeUven77qBVufPqJ+kO7e/Yf52YVWba+lxY3aMq5gnT84seT1gI0waBqNVzc+r1vDm0HTJOyPgEanxyY9TGzl8ZP72M/dFfPJtw7ZljC6/IeJb/7yjk3lXBABQV1mW95dl2XX6fxe+ISIOTX39yYj4pRrHvX7vs+c9OSKe02G7AAAAAAAAAACgV36TH4DNoGh6/HIqVPY8jdCARYBNQ9VyerbZLxmMtt3vddsEozUNAGQcJsYcZi07bsyMU1XjkBA+oI7djmtGK+c15tCjleWcNcc2ASuRmhsPGaC/Dp708oiDV87fd/zosG3JTXIcnHnGDlwa8ew6WRdV1zNnAgBYA6+Y+foXy7L6Fxb2PjM7qXxlZ60CAAAAAAAAAICeCUYDYLWGKohVALQGMipUFoy2AQYsePU85S1ZFJ1hMFpO/STd0Ucwa9lnYjbUQTAa0IXGwWhLBp8JDh2xDOes3hkBj6gZWsViBy6LuOE75u/71G9HPPyZYdszVode28FJjHEAAGvgxTNfv7vBsbOffclSLQEAAAAAAAAAgAEJRgNgtQYrPlUANHo5FSoLqRmhIYvvGxbLep7ylro/rYLLmhCMxp5yZ9UtIDdLhwHNBqNVnO/kXUteD9gIjYPRKlSt/8yh6VJO7xuAFUusq3t/B7CGDt8yf3u5G3HHLw/alLw0fHfzpJcveTnvigAAxqwoiosj4uaZzR9ocIr3zXz9lKIoLlquVQAAAAAAAAAAMAy/yQ/Aig1UfKrIdQ1kVMSlCH98GhcBNgw3W+ZY/VPeksFo2/1et03RtWLX9WTMYdbSz8TsOFUxDn3855a8HrARmgajVc1bKufI5tDjleOcNcc2ASuRHH+WeU+0oR73nIgrZvMb9hw7OmxbxqBIPGPblyx5YnMmAICR+9KImP6h5D1lWX6h7sF7n/3s1KbtiHhqR20DAAAAAAAAAIBeCUYDYLWGCgQSPDR+Od1DITUjlHGhu+cpb6m+p01wWROtzp/xc0575c6qW0Bulh03Zgvuty+tPubMA8tdE1h/k4bBaNUnXLzbHJou5fS+AVixxLo6FVpFWlFEHD4yf9/n/yzi/j8dtj3ZaPjuZuviJS9njAMAGLnZtOE7W5xj9pintGwLAAAAAAAAAAAMSjAaAKslGI3aMgr8UYQ/Qg2fn2UKXpse63nKW+r+FNvzt3fGUo09+gj2WXZeOzNOHf771YecumfJawJrrSwjdpsGo1XMz8uq/cbH0aq6tyuRY5uAlUj2UdborRx6XXrfsaPDtWMUEu8Tty9Z8rzGOACAkXv0zNdtXtbPHnNVy7YAAAAAAAAAAMCgDqy6AQBsuqECywSjjV5OxdOK8DfAEsFoTY8V3Ji5xP3pOxit7fnLcrlgP/IzWTDmuN+badl5yOwzc8WhiGufF3HPe9LHTJoGHgEbZXKmxUFV67uKObI5NF3yPAGPSIxP1l3tXH5jxOO/OeIz79q/7/Y3RHzNv4zYOjh8u1ap6TvuZYPRjHEAAGN3xczXD7c4x+wxj2rZlgsURXFtRFzT8LAnd3FtAAAAAAAAAAA2g2A0AFZrqMIcBUBrIKN7KBhtfHIK1pvlecpb8v5s9XvdoufzMx6L+ohy0n9IH/lZetyYE+rwvN+MeNOj04fsCkYDFuijj6haw5tDj1iGazPvjICIindHgtFaO3RkfjDa6XsjPvU7EU966fBtylLiGdu6eLnTGuMAAMZuNhitzYu42WC02XO29f0R8aMdnQsAAAAAAAAAAPZRbQ/AaglGo66cgq0U4Y9Q0+dnmYLXhsd6nvKWuj9bPYdRtQ5Gy6ivpBsLg9H0Hxtp0kMw2kVXRbzyM+lDBKMBi7TpI6rWd4LR1liO89Uc2wQMb0FfILy8vRu+PeJAInfh2K2DNiUPDcec7UuGvR4AALlrM8EzKQQAAAAAAAAAYJT8Jj8AKzZUYJlgtPHL6B4qwh+fnIL19sno2Wa/ZChH30upluF8WT/rtCIYjX2WHDeKRP9yybULLnl6uWsC62334e7PWRmMZg5NhzxPQERFX7BMgP6GO3B5xA2vmr/vU2+LOPXZYduTq9Q6bdlgNGMcAMDYPTTz9aUtzjF7zOw5AQAAAAAAAAAgSwdW3QAANtzuqWGuowBo/HIK+xFEM0INn59UMWIfx3qe8pa6P8V2v9ctijhXeN2078uor6QbgtGYtfR9XzBObV8WsXty//ah5uzAOLXqI6rmLBX7jYHjldPa/hE5tgkY3qK+QDDaUg4diTh26/7tk7MRd/xKxJf+48GbNBrLBqMZ4wAAxi7nYLSfiYg3NjzmyRHx1o6uDwAAAAAAAADAmhOMBsDqTM5GvOeVw1xLMNoayOgeKsJnoYbFshPPU9ZS40ffwWgREcVWi/5GwevaKXcW7NN/bKReg9EuEYwGNDfpoY+oWsMbA+mSd0ZAxOLgxmJruHaso2ufF3H5TREnbt+/7/jRzQpGSz5niXXa1sVLXs8YBwAwcg/MfH1Ni3NcO/P151u25QJlWd4TEfc0OaZY5o+TAQAAAAAAAACwcfwmPwCrc88fRHzuA8NcS9H0+C0qThya52mEmj4/Q/5StgLFrKW+34coim5zjZz6SrqxcMzRf2ykZechiwqPti+Zv10wGrBIqz6ias5SFYxmDByvHOernicgYnFfoHh/KcVWxKHvmb/vvg9FfP4vhm3PmKTWaHWZMwEAjN1tM1/f2OIcs8fMnhMAAAAAAAAAALIkGA2A1fnI/zXctRQArYGMiqcFo41P47CoZQpeGx7recpbavwYIhit1XIto76SbizqIyb6j4209Lx2wTi1dfH87ZPTS14TWGuTnebHVM3Pq/o6c2i65HkCIhaPPcX2cO1YV6lgtIiI40eHa8fKNXxvs2wwmvdEAABj9zcRMf3i4tqiKB5V9+CiKK6MiMdNbdoNwWgAAAAAAAAAAIyEYDQAVufu3x/wYoLRRi+ncDtF0yOUcRGg5ylzqWC0AYqitw60OCjjZ512FoXN6D8209L3fUEwWqrofvfUktcE1lrZIhit+qQVu42B45XhfFXYLBBREYzmx6lLe9STI6557vx9x3+pXdDqWkms05YNRsvpnToAAI2VZXk6Ij4+s/nZDU7xnJmvb9s7JwAAAAAAAAAAZM9v8gOwGRQArYEVFE+nih4VTY9Qw+enWBAa0/Wx+qe8pUI3hiiKLloEo5UZBk2wnEXBL0JhNtOy933ROCUYDWijVTBaVfBZxRzZHHq8cpyvmlMBEbHwD2sIRuvG4Vvmbz91d8Sn3zFoU1an4Ti4dfGS1zNnAgBYA7878/XzGxw7+9nfWaolAAAAAAAAAAAwIL/JD8DqtAl8aUvR9Pit4h6mCs8UTbNQ02A0z1PWkn3PAEuprTbjZIZBEyxHMBqzlr7vgtGAjk3aBKNVqAxGMwbSIc8TELG4LxCM1o0bXhWxfen8fcePDtuW3KQCrFNrtLpyDCQFAKCpN898/bqiKLarDtr7zHdXnAsAAAAAAAAAALLlN/kBWJ2tg+2PveJwwwMEo43fCoq4BKOtj8ZFgA3DzZbhecrXoudmiKLoVgGiCl7XjmA0ZvUZjJaa+0xOL3lNYK2ViWC07csirn5G6qCKkwpGW18Zzlc9T0DE4lDO6swB6jh4ZcSXfPv8fZ94S8SZ+4dtzyo0fUe5bDCan4sAAKyDP4yI4/Q6OiYAACAASURBVFNfPyn2B57N890R8cSprz8eEf+pw3YBAAAAAAAAAECvBKMBsDqtAl8i4ut/NeJb3t/smEWFbYzDKu7htmC09TFk8X3DUDX9U74WFkVnGozWOASQ7AlGY9ay40axYJxKFd3vnlrumsB6mySC0bYOLO5zFqnq64yBdMnzBERUjD1+nNqZw0fmb5+cibjj14ZtS1YSc6ZUeHVd3jsCAGSnKIpy5p/nL/p8WZa7EfGjM5t/siiKmxZc46aI+L9nNv9IWZogAgAAAAAAAAAwHn6TH4DV2TrY7rjLbwzBQ5toBWE/qcIzRdMj1PD5aRvg0OZYz1PGVlwUvdUyQJT1UibCZiL0H5tq6fsuGA3oWGqsWhTyWhnmWrXfGn+8MgzyNacCIlYfjr4prv2miMu+ZP6+Y7cO2pTVaDgOptZofV0PAGDDFUXxpKIobpr9JyKeMPPRA/M+t/fP43po2hsi4oNTXz8mIt5XFMW3zPn/8KKIeH9EXD21+X0RsclJxAAAAAAAAAAAjJBKewBWp20wWrEdjYPRFE2PX2XhfA+2BaOtjcbPzxLBaE15nvK1sCh6u//rLwoTSVLwunYW9RGCXzeTYDQgN5NEMNrWgUj3ORVzlqoxzhyaLnmegIjFfYFgtO5sbUccel3EX/6f+/d97oMRD/x1xFVPG75dK5eYMy0bjOa9AQBAU++NiBtrfO6JEXE8se9oRNzSVYMiIsqynBRF8YqI+EBE3LC3+bqIeHtRFLdFxF/GuUnlV0TEzTOH3x4RryzLVfzCBQAAAAAAAAAAtOc3+QFYnVaBL3EujKZoGFr0hb9pdy0ysoIiri3BaLTRsH9SoJivhcFoAyyltgSjERXBaMajjbTsfV80j07NfQSjAYuUiWC0tmv+iOo58sQYOFo51uCaUwERsfDd4xDh6Jvk0JH0vuNHh2vHSjQcB5cORstw3AUAoJWyLD8dES+MiA/P7HpKRLw8Il4W+0PR/iQiXliW5Wf6byEAAAAAAAAAAHRLMBoAq9Mq8CX2CtEaBg/9zb9udy3ysYoirm3BaOuj6fPTsI9ZhucpYysORmsTJqLgdf0sCobRf2ympQM1F/RfBy6bv333xJLXBNbawmC01Ly6Ys5S2dcJFx6vDOer5lRAxOrD0TfJlU+NeNyz5+87/vrNDEBNBVinwqtrM2cCAFgnZVl+NCK+LiL+l4g4tuCjH9/7zN8uy/JjQ7QNAAAAAAAAAAC61jKRBgA6UBxsedx2ulBokcnZiK2W1yQDKyjiShWeKZoeoSGL7xv2T56nfK26KLpNMFqOQRMsRzAas5a974vm0QeumL/97IPLXRNYb5NEMNrWgXZr93MnXbzbGEiXPE9AREUop2C0zh06EvHZ9+/f/vAnIz7zrojrXjh8m3K0fclyxy8drA0AsFnKsrxpgGss9Re6yrI8GxE/HhE/XhTFMyPiqRFx/d7uT0XER8uy/NByrQQAAAAAAAAAgNUTjAbA6rQNKSu2o3HwUIRgtLErVxD2s3XR/O2Kpsen6fPTOsChzbEKFLO16qLoLcFoRCy8p8ajzbT0fV8UjPao+dsFowGLlIlgtEUhr1Xz88r9xsDRWsXavornCYhY3BcMEY6+aW58dcSHfjBicnr/vmO3rm8wWtNxcNlgNO+JAADW2l4AmhA0AAAAAAAAAADWkt/kB2B1WgW+xF4hWovQIoWuI7eC8Kjti+dv9yyNUMZFgBPPU74W9DtDFEUvChNJyTFoguUsCugzHv3/7N15nB11ne//d50+3emEbE0WCGFJmsVABJFlDCEoRFCEi6AyUURJ1JlRYO7AOIA63gDKHRnc8OfAT9QLphkUETEgLsAV2VFAFgmGRbISMHtCtt5yTt0/Omm6T9e3Tu3beT0fjzyg9m84RdW3vqc+79OYwn7ubgGezYZgtJ0EowFwUTUEo5XKCvTs3rdT98WuAbaAT/SpAEju9xarKbl2NIqWsdK+ZzkvW7VQ6nkz2fakztBnssrhxqDoMwEAAAAAAAAAAAAAAAAAAADIKYLRAADpsZoDbtfkHuhgQhFQvqUR9lMiGK1xBQ1wCLAt51N2uRZFJ/AoFShAlGC04nH5TLl+NKbQn3uAYLRegtEAuDBdl1xDXg33N7sqbX1VqnQHOyZyIIP9Vc4nAJJSD0dvRO3znOdXOqWVtyfalOT4vA9alnmM2tPh+E4EAAAAAAAAAAAAAAAAAAAAQD7xJj8AID2lEMFoQUKLKHTNuRSKp5sIRisOv+dPiGA038GNFChmlmvxaAKPUq5hIgZphEgiPRQ4N6bQn7vLfapsCEbbSTAaABf2Tuf5Vlm++tWr7pZ+MVG6+2Dp9V/WOSbPZLlUrUgbnki7FUNxPgGQ0h8DaER7nyINn+S8bFlHsm1JnUufqak1xH4ZJwIAAAAAAAAAAAAAAAAAAACQT7zJDwBITylA4IsUIhiN8JBcS+PzKxGMVhhZDovifMout+uOldFgNApei6XevY/rR2MK+7m7BXg2m4LRtoU7JoBiMwWjuT7z1/RZtrwiPfJhqXuDx2PyfJ9Lf/la2i1wRp8KgOR+LUhiDKARlZqkKZ90XrbuUWnrq8m2JxEBxm3CBKPRZwIAAAAAAAAAAAAAAAAAAACQU7zJDwBIj9UccLsm90AHEwpdcy6FsJ8mgtGKw+f5E+Qa89bG/lbnfMqwlIPRAgWIEoxWKFVD0MxuXD8aU+jP3eU+VTYEo1V7pe6NIY8LoLBM9yurbO5X1wYXr7jNHLDmuD33wFxatTDtFjjjfAIgpR+O3qja55qXLbs5uXakzW0s0vTjHZ4QjAYAAAAAAAAAAAAAAAAAAAAgn3iTHwCQnkCBL+oLRvMbPCSJIqCccytOjEup1Xk+RdM5lOGwqDTObXjj+tkk8ChlBbhP1oaMIN/s3jrLuR81pDiD0ZoNwWiSdMd46fVfhzw2gEIyBZqVyrue3522qelnLbo8mmMi2zY9m3YLnNGnAiDJPRzdcD9DeGMOk/Y81nnZ0o7ijZsFGbdpMoxRx3U8AAAAAAAAAAAAAAAAAAAAAMgAgtEAAOkJEvgiSVZJgYLRKHTNuRSKuJpHOs+vdCfbDqQgSPhiwG25NmWXW/GtlcCjVNAAURRHtU7oC9ePxhQ2GMAKGIwmW3rsY1LX+nDHB1A8pvuVVTY/94cNNqv2hNseGIg+FQAp/TGARtY+13n+jpXS2oeSbUtqXJ7TQgWjFSxYDgAAAAAAAAAAAAAAAAAAAEDD4E1+AECKAgZdWU3ugQ7Gw1HommtpFHGVTcFoncm2A+HZCQbr+b0+cW3KsJSLogMFiKYQIon4VHvdl3P9aEyhP3eX+1TZLRhN0s5tDRRMAMAzU8iZVTYHvYYORqtzjwT8qNKnAqA6/Wy+To3VAR+TSi3Oy5YuSLQp8QswblMKEYzGOBEAAAAAAAAAAAAAAAAAAACAnOJNfgBAeoKGOlhNcg10MB4vhWAtRCiFIi5jMFpXsu1ABPyePwGuMUFxbcout8+GYDQkoV5oDMFojSnWYLQ96m/etSbk8QEUjul+VSqb+zNVgtGQIfSpAEjpjwE0smHjpMlnOC977Q6pd1uy7UmFy3Na07AQ+2WcCAAAAAAAAAAAAAAAAAAAAEA+8SY/ACA9QcOAAgejUeiaa3YKRVzNo5znV7vTaQ+C8/t5WWGC0Xxuy7Upu1zvUwk8SpUCBKNxbSqWeqEvXD8aU9jP3e0e19Raf/tqT7jjAygeU8iZ5RKMVi/8s+4xCUZDhOhTAZDqBKM1JdeORtU+z3n+zu194WiNzMtzmgk/yAAAAAAAAAAAAAAAAAAAAAAgpwhGAwCkJ2jhqdUULLSIIqCcS+HzK480L6t0JdcORCDDYVEU4WeXa1F0Ao9SpiARVxk+1+FfvdAY+jaNKfR9w6UfbZWkUov75tXukMcHUDim+1WpbA56NYWpeT4mwWiIEM9kACS5jj0mMQbQ6Ca9X2qd6Lxs6YJEmxKvAOM2YYLRGCcCAAAAAAAAAAAAAAAAAAAAkFO8yQ8ASE+YYDS3QIeoj4dssFMo4iqPMi+rEoxWbAGuMUG35dqUYSkXRZuCRFxR8Foo1TqhL1w/GlPoQLw696mm4e7LKwSjAahhCjmzyuag13rhn3WPSTAaIkSfCoBU51rA16mxKzVLB5zrvGztg9K25Um2JnluPwRTChGMlsaYOgAAAAAAAAAAAAAAAAAAAABEgDf5AQDpSTwYLWyIBNKVwufXPNK8rEIwWr4kWAToVsjohGtTdrl+Ngk8SpmCRNxQ8Fos9UJjCPFoTGE/93r3qXrBaNWecMcHUDym+5VVNge9EoyGLKFPBUByHwNIIhwdUvs887JlNyfWjFgFGbdpGhbmgCG2BQAAAAAAAAAAAAAAAAAAAID08CY/ACA9QcOArJL/4CGJQte8SyPsp+wWjNaZXDsQnu/zJ8A1JiiuTdmVdlF0kGA0Cl6LpV7oC9ePxhT6c68XjNbqvrzaHfL4AArHFHJWKpv7M1WC0ZAh9KkASC5jAFawsWj413aE1Hak87JlHQUPg3c5x+o9o7kq8n8zAAAAAAAAAAAAAAAAAAAAAEVGMBoAID1BC0+tkoKFFgUMYkNGpPD5lUeZl1W6kmsHIpBkEaDP6xNF+BmWcjBaiWC0hkcwGpzEHow23H15hWA0ADVMIWdW2dyfMYWpeWUTjIYI0acCIMk4BpDE8z/eMnWe8/xtS6V1jybalHgEGLcphQhGK3SYHAAAAAAAAAAAAAAAAAAAAIAi421+AEB6ghSeWk27/hkgGI1C13xLo4ireaR5WaUzuXYgAj7PnyDXmLc29re6TWhjZrl9NkkURlsBgtEoeC2WeqEx9G0aU9j7Rr17XL1gtGpPuOMDKB7T/apUNvdnTGFqXtULDwX8oE8FQJKqhmsBwWjJmvJxc/9hWUeybUmUy3NaoOD83Rh3BAAAAAAAAAAAAAAAAAAAAJBPvM0PAEhPkFCH3cFoQZiK25ATKYT9lEeZl1W6kmsHUhAmGM0nivCzy/U+lcCjVKDCV4LRCqVe6AvXj8YU+nOvF4zW6r682h3y+AAKxxRyZrkEo9UL/6x7TILRcifLAb70qQBIMgdI8VVqolonSJNPd1624mfSzh3JtidyAe6HYe6hWb7/AgAAAAAAAAAAAAAAAAAAAIAL3uYHAKQnSOFpmGA0Y3EbciFIkF5YTcNlDA8hGC1fkiwCtHyGqlGEn2Eu1x0rgUcpU5CIKwpeC6VeaAzXj8YUezDacPflFYLRANQw3a+ssjnolWC0xpPGM71X9KkASObrVKjxaAQyda7z/J1bpdcWJtuWpPgdT/SMcSIAAAAAAAAAAAAAAAAAAAAA+UQwGgAgPUkHo1HomnMpFHGVmqSmVudllc5k24KQ/J4/cRUjOslwQECjcwtvyGwwGgqlXuhLlgNGEJ+wfdp6Bfemvs9u1Z5wxwdQPFVDyFmpbO7PmLbxyiYYLX8y3G9hvAiA5BKMxlepidvndGnYOOdlyxYk2pTIBfrxhjDj4gSjAQAAAAAAAAAAAAAAAAAAAMgn3uYHAKQoQFFsmEI0wkPyLa3Pr2m48/xKV7LtQEhJFgH6DFWjCD+7XK87CTxKlQIEowUqsEVm1QuN4frRoML2ieoFoxn6PrtVukMeH0Dh2Ib7lVU292cGbhPkWa9eeCiyJ8tjMvSpAEjmawHBaMlrapEO+LjzstX3S9tfS7Y9iXB7Tgsx1sM4EQAAAAAAAAAAAAAAAAAAAICc4m1+AEB6qgEKT62m4Mej0DXnUiriamp1nv+HuRTj54nfIkDLZ7jZ4I39rR7kWohkuIU3JFEYbQUIRkvrWol42HXuM/RtGlPYz73ePa5eMFqVYDQANUzBaKWyuT8zMPyz2uP/mDyL5Q/BaAAyz3Sd4qvUVLTPMyywpeX/nWRL0hcq3IxxIgAAAAAAAAAAAAAAAAAAAAD5xNv8AID0BCk8DRWMluEiXNSX1udnCkar7JCe+bdk24KC4tqUXSkHo5UCBKOFKpZF5lQNQTO7EeLRmEIHatYLRjP0ffqPHyDACECxme5Xlksw2sAwtUpXgGMSjJY/GX7uoU8FQDKPPZZCjEcjuLZ3SmPe7rxsaUeOxz8SbjffiQAAAAAAAAAAAAAAAAAAAADIKYLRAAApClCUEyoYjULXfEu4aGxke98/S8PM66z4KcVlueH3/KkTGuO6qc9tuTZll+tnk8CjlClIxFVeC4PhqF7oC9ePxvPaL6SXrw25k3rBaMPdl1e6Qx4fQOHYLsFopqDXsMFoNsFouZPlZ2f6VAAkl+sUX6WmwrKk9rnOy7a+Im14Itn2xM11PDHMWA/jRAAAAAAAAAAAAAAAAAAAAADyibf5AQDpCVJ4GioYLcNFuKjPTriIa7+z+/7pds51r5O61ibTHoTk8/zxG242iM8uNkX42eV237ASeJQadUiAjSh4LZTNz7kv5/rRWDY+Kz06J/x+6t3jynWC0aoEowGoUTUEo5XK5qDXathgtCrP+HmT5c+LPhUAyXwtSOL5H86mnGsem126INGmRCfAuE3rxBCHY5wIAAAAAAAAAAAAAAAAAAAAQD4ZKtNQNJZlNUs6XtL+kiZJ2ibpDUnP2ra9POJjTZV0pKR9JI2U9DdJKyQ9btt2b5THApBziQejUeiab0kVUVvS/nOkI67aNVnnnMtycTfekmQRoN+CWc6h7HINRgsTnufR3rP9b0PBa7EsvsZ9OX2bxrLqzog+8zrXr2ET3JdXeyJoA4BCsQ3BaFZZsgz9KTtkMJokVXulpmHBtkUKMvzcQ58KgGQeAyAYLT3DJ0mT3i+98Zuhy1b8VDr6O1JTa/LtioXLc1r7POn5+QH3yzgRAAAAGptt26pWq7L5DhVAwizLUqlUkpXEuyUAAAAAAAAAAAAAUFAEo6XEsqx2ScdKOmbXP4+SNGrAKits254SwXEmSPqKpI9K2tOwzuOSvm3b9h0hj3W2pM9LOs6wykbLsm6TdLlt2+vDHAtAQQQJA7JC3LoodM23OF9UnTBLOvG3Uufr0rDx0rBxby2rG8bHC7T54PdzCvFiot8AR65NGZZyUXRTq9Q8Rup908dGXJMKo+rh2sD1o7G88NWIdlTnHrf3Ke7LK90RtQNAYZiC0Upl83N/dcA2VYLRGkKWA6HpUwGQZB4DCPFDHQivfZ5zMFrvm9Kqu6QDPpp4k0IJMsY9Yt8wBwyxLQAAAJA/tm2rq6tLW7du1datW9XTw4+9AEhXS0uLRo0apVGjRqm1tZWgNAAAAAAAAAAAAADwgZ85T5BlWSdalnWvZVkbJC2R9FNJl0h6jwaHokV1vA9IekHS+TKEou0yU9LPLcu6xbKsPQIcZ6RlWbdKul3mUDTtasP5kl6wLOv9fo8DoICCFJ6WwmR6ZrgIFx5E/PkNn9RXWHfM9X2haM0jpdFvGxyKJtUPQKKAGrUIRisOU3hDkkXRY6b73ICC18KoegifynLACLKrXohQ2xHSO79lXu7l3ATQWKqGYDSrbA43HximFjRw0e4Nth3SkeV+i5dAWgDFZ7xO8VVqqiafITWPdV62tCPZtsSqTlH0u24Ktts4f2wEAAAAyJgdO3ZoyZIlWr58uTZs2EAoGoBM6Onp0YYNG7R8+XItWbJEO3bsSLtJAAAAAAAAAAAAAJAbvM2frCMlvU/uIWWRsCzrREl3Spo4YLYt6Wn1BZj9X0nrazY7V9KtllUvAWbQcZok3SbpYzWL1km6b9exntHghIa9JN1lWdYsr8cBUFBBwoBMRdVxHQ/ZEXUR1yH/U5rxI+mQC/pC0UzqBSBVKcbPB7/nT4hfaPUdjJbhgIBGl4Wi6Kbh/tan4LU4bEPIzKB16NsggKbW+usc+nlzOFqVQiIANUz3rFLZHG4+KBitK9hxeRbLlyw/99CnAiCZrwXevzJDHJpapSnnOC9bfa+0441k2xNawHGb5qC/r5Xh+y8AAAAQoR07dmjlypXq7WXMEEB29fb2auXKlYSjAQAAAAAAAAAAAIBHvM2fDd2SlkS1M8uy9pX0C0ktA2Y/Jmm6bdvH2LY9x7bt90naV9JFkga+EXSGpP/t43D/Kem0AdO9kv6npH1t237/rmMdLentkv4wYL1hku60LGuSj2MBKJpAwWg+A4cGHY8ioHyL+vPzGHxFMFr+dW+QNj6b3PH8FsxShJ9dpvtGkkXRXgKMBiEYrTCqBKMhJiWP15WRU5znV7ojawqAgjDds6yyOdy8SjBa48nwmEzn62m3AEAWZGEMAM6mznWeb1el5T9Oti1xseqMVZeag+2XAH0AAAA0gN2haDb9XwA5YNs24WgAAAAAAAAAAAAA4JGhMg0x6pX0F0l/kvTUrn8uknS8pAciOsZXJLUNmH5c0sm2bQ+qMrRtu1vSdy3LWilp4YBFn7cs6/u2ba9wO4hlWe3qC1Yb6O9t276rdl3bthdblvVeSfdLOm7X7HGSrpD0OQ9/JwBFFCSoLEwhGuEh+Rb1S6z1is3616tzztkU42dWtSI99VlpyU3yHRbl9fxw3NZngCPXpgzLQFG078JXXvgvDJtgNMTEa+BiaZjz/CrBaABqmO5ZVlmyDP2pgdtUCUZrCFkOq+98o+/5sRQijB9AAZjGALg2pG7c30mjp0lbXhq6bNkC6dBLwo3lJSnoGLcVMBiNcSIAAAAUnG3beuONN4aEojU3N2v06NEaOXKkmpubZeXlmQFAYdi2rd7eXm3btk1btmxRb2/voGVvvPGGDjzwQK5PAAAAAAAAAAAAAOCCYLRkdUi6oTagTFJkX25blnWwpIE/nd4jaZ7TMXezbftOy7I6Bmw3TH2BZZ+uc7grJA18E3+BUyjagON0WpY1T31BcC27Zn/Gsqyv27a9tM6xABRRkDCPUMFoGS7ChQdRF3F5DUarU/xIMX52vfQtacmNATdOMhiNa1NmGT+bBIPR0LiqBKMhJp6D0Vqc51d7omsLgGIwBaOVyub+1MD7XIVgtIaQ9eeeTc9K445JuxUA0mS6TiUZjg5nliVNnSv9+UtDl725WNr4dAGu4XXGIn0H5+9GMBoAAACKraura1DYkCSNGjVKkydPJmwIQOqam5s1YsQITZgwQa+//rq2bt3av6y3t1fd3d1qbfX43S0AAAAAAAAAAAAANCDe5k+Qbdub3ALKIvJxSQPTOH5h2/ZfPWx3Tc30HMuyjN+4W5Y1XNLZdfYxhG3br0i6c8CssvraDKARBQrzCPHiIuEh+ZZWETXBaPn11++lc1y/BbNcm7Irj0XRNgWvhWF7uL9w/UAQXoPRmoY5z7crUpVzD8AApjBPq9z3x4kdQTCaKZANGZXxYLQtL6fdAgBpMz5fZXgMoJFM/aR5PGbpgkSbkoqgwWiMEwEAAKDgBoYMSX0hRISiAcgay7I0efJkNTcPfr7fsmVLSi0CAAAAAAAAAAAAgHzgbf7i+VDN9I+8bGTb9ouSnhgwaw9J73PZ5P2SRgyY/oNt2y95auHQNn3Y43YAiiZI0FWYMJq0grUQkaiLuDy+CFvvnCMYLbu2Lw+xcYgXpeuF6dUi2CjDchiMFvm1EqkxhcwMxPUDQXgNRisZgtEkqdodTVsAFIMpoKzULJU8BKMFvabwjJ8vmf+8st4+ALHLYzh6IxkxWdrrZOdlK26VKnl5RjGN29QZiwwajMY4EQAAAAquNhht9OjRhKIByCTLsjR69OhB82qvYQAAAAAAAAAAAACAwXibv0Asy9pb0jsGzNop6TEfu3iwZvoDLuueWmdbN4+or227vdOyrL18bA+gKAKFeYR4gZHwkHyLuoja68uw9UKubILRUMNvMBoF+NmVy6JoCl4LwxQyM2gdrh8IoGm4t/VKLeZl1Z5o2gKgGExhnla570+9bSpdwY7LM36+ZL3fwvkEwDgG4HecB7Fpn+c8v2ej9MavE21K4kbsF2y7rN9/AQAAgBBs21ZPz+DvK0aOHJlSawCgvtprVE9Pj2ybdzwAAAAAAAAAAAAAwCTLFf3w7+0108/btr3dx/aP10xP93GsP3g9yK42LfJxLABFZNsKFN4SJoyGIteci/pFsIiC0aoEoxVSmF+R9nud4tqUXcbi0Qw/RvHSbHGYQmYG4vqBIJpaPa43zLys0h1NWwAUgynMs1Tu+1Nvm6DBaAQM50vWg1my3j4ACchjOHqD2fcsqXm087KlCxJtSnABx2322D/Z4wEAAAA5UK0OfY5rbm5OoSUA4E25PPQ7E6drGQAAAAAAAAAAAACgD2/zF8thNdOv+tx+SZ39DXRogscCUESBC05DhBVRNJ1vkRcpez2X6nSXCEZDrXpherWqBBtllum6k+miaApeC8MUMjNoHa4fCKDkMRit1GJeViUYDcAApnuWVe7746QaQTAaQVY5k/HPi/MJQB7D0RtNebi0/xznZW/8Rupck2x7ouTlRxr2/VCAHTNOBAAAgOKyHX4wygrzA2gAELNSaeg4k9O1DAAAAAAAAAAAAADQh7f5i+WgmumVPrdfUTM9zrKsttqVLMvaU9KeIY9Vu/7BPrcHkHeBgzxCvMRIeEjORfwimNcXYkt1Qq4IRiuoENcav8FoWQ8IaGgEoyFFXu4v9G0QRJPXYLRh5mXVnmjaAiD/ejaZg81KLsFolR3StuW7/j1oMBr3wVzJevAY5xMA03Ug02MADah9nvN8uyKt+EmiTQkkTLHz2MOTPR4AAAAAAAAAAAAAAAAAAAAApIi3+YtlbM30Wj8b27a9TVJtJeIYD8fZYdv2dj/H0tC2OR0HQJEFLTgN8+uuWS/ChbvIi7g8nkv1Qq5sgtGKKUwwms8uNgX42WW8b2T4MYqC1+Kwd3pYh+sHAvAajNbkEoxW6Y6mLQDybftK6bdHm5db5b5wNJNfvU1647chgtF4xs+VzH9eWW8fgNhtes55vu8AfMRq/ExpZO3vRO2ytCPZYh4TLwAAIABJREFUtkTKw1hkc5CvUhknAgAAAAAAAAAAAAAAAAAAAJBPLpVpyKGRNdOdAfbRKWlglfSoGI8zkNNxfLMsa6KkCT43OzCKYwPwK2DBqd/AoYEID8m5tIqU65xzVYLREBLXpuwyhTeEuRfFjoLXwqgSjIaYeA1GK7WYl1UJRgMg6c9flrYvMy+3ynIN+aj2SE98Rpp8ZrDjcx/MmYwHj1U5n4CGt+JWw4IQ4fmInmVJ7XOl5+cPXbb5z30Bd21HJt8uz0KM27QQjAYAAAAAAAAAAAAAAAAAAACgcWS5oh/+1QaWdQXYR21gWe0+kzxOEBdIesHnn7siOjYAP3ZuD7hhiEK01xYG3xbps6Mu4vJ4LllN7ssJRkNYpvAtZEAGgtH8FvNGfq1EamyC0RATz8Fow8zLqj3RtAVAvi2/xX15qdz3x03n36RNzwQ7Pv3ofMn855X19gGIVfdG87ItLyXXDngz9ZPmZUs7kmtHpDyMVTcHCEbL/P0XAAAAAAAAAAAAAAAAAAAAAJwRjFZsQVIRsrwNgCJZ/0Sw7cKE0ax9UNr0XPDtkbKIi7gsgtHgwk7wcyXYKLuMxaMJPkYd+A8+N6CbXRgEoyEuJa/BaC3mZZXuaNoCoNissjz1mzr/FvAABH3kStaDWbLePgDx6lpjXta7Obl2wJs9DpD2mu28bPmPMz5eG2Lcpnl0gMMxTgQAAAAAAAAAAAAAAAAAAAAgnwhGK5ZtNdPDA+yjdpvafSZ5HABFtu7RgBt6DLMyee3OcNsjPZEXcXkNRqvTXUoyQAvJSTLwhWCj7DKFI4QJ6fRrxGTp4AsGzys1u2xAwWtheCnkJsADQTR5DUZrMgfEVglGA+BBqVw/aFqSegIGztCPzpmM91s4n4DG5uV+hWyZOtd5fvc66Y3fJtuWKHj5EY/mMQF2zDgRAAAAAAAAAAAAAAAAAAAAgHwiGK1YCEaT/n9Jb/f558yIjg3Aj54NwbYLG0bzwlfCbY8UGYqoJ8ySWtoC7M9rMFqdwkgvwTXInyQDXwg2yrAMBKNJ0jHXSTM6pCnnSodeKp3yeLLHRzqqO+uvQ4AHgvAajCZJpWHO86s90bQFQLFZ5b6QxXp2bg22f/rR+ZL1zyvr7QMQL4J/82f/j0jlkc7Lli5ItCmJaRlrXjZ6mmEBwWgAAAAAAAAAAAAAAAAAAAAA8qmcdgMQqTdrpif42diyrJEaGli22cNxRliWtYdt29t9HG6ih+P4Ztv2Wklr/WxjefkVdgDRCxzkwf+zDcs2FHGNbJeO+S/p+SukTc9Kex4j2Tul1+9235/X6z/BaI2pkmQwGsFGmWUKR0g6GM2ypPbz+v5IUqXLvK7pWon8sQlGQ0yG7+N93aZhUmXH0PlJ3icB5JdVlhTj8xL3wXzJevAY5xPQ2Nyes5FN5T2k/c92DkF741dS9wZp2LjEm1WXcdzGw1j1yIOk1r2krjWD5zeNkA78B+nZS3wcDwAAAAAAAAAAAAAAAAAAAACyLeGKfsTsrzXTB/jcvnb9jbZtb6pdybbtDZJq5+8f8li1bQdQdFWC0eCXoYjLKkltR0rvuUs6a6X07l9IYw+P7rAEozWmKsFokEt4Q9qPUW73QgpeC4NgNMSh7Uhpj/28r19qcZ6f5H0SQH6VyvWfp8LIetAWBsv855X19gGIFcFo+TR1nvP8aq+0/NZEm5KIUpN02BeHzj/2eqllT8NG3N8AAAAAQJKmTJkiy7L6/zz44INpNwkAAAAAAAAAAAAAANSRdkU/ovVizfRBPrdvr5lenOCxavcHoOiCBnlYBKM1LGMRtdM54aWL4/Fcsursi2C0YqokGYxGgWJmmT6beteF2BGM1hCqBKMhAntMeevfRx4onXCHv+1Lw5znV3sCNwlAA7EIRsNAGf+8OJ+AxkYwWj5NPGHwM89AyxYk2RIfQo7bTLtYmvVzaconpP0+LL37l1L7PPP3JjbjRAAAAAAAAAAAAAAAAAAAAADyqZx2AxCpF2qmj7Asa4Rt2zs8bn98nf3VLps5YPo4SXd7OYhlWXtIOsLHsQAUUtCC07TDaJAeQxGXU0CRl9AiryF79Qr5d7zmbT/Il2qSwWgEG2VXRoPR3K5fFLwWh5fgTa4fqOe059/qq4ye5v/61WQIRksyQBRAfpXK8fabuA/mS9aDxzifgMZGMFo+WSVp6lzpha8MXbbxaWnzC9LYtyffrkB8/CDM/h/p++Npe8aJAAAAAAAAAAAAAAAAAAAAAOQT6TIFYtv23yQ9P2BWWdIsH7s4sWb6ty7r3lNnWzcnaHAo37O2ba/xsT2AIghacJp2GA3SYyyidij68nSeRBSMtuSHUvcGb/tCfiQZ+EIBfnYZrztp34vcrl8UvBaGvdPDOlw/UI8ljTms70+QfnSpxXl+kgGiAPLLKtd/ngol40FbGCzzwWgZbx+AeFU6024Bgmo/z7xsWUdy7fAsrnEbgtEAAAAAAAAAAAAAAAAAAAAAFEvaFf2I3sKa6U952ciyrGmS3jVg1nZJ97lscq+kgZUix+3ahxfzaqZr2wygEQQO8vAYZoUCMhRxOYZ8RBmM5mFfK3/ubV/Ij0QDXyjAzyxTOELqIZ0EozUEgtEQBStk37k0zHl+tSfcfgHkn+2hzxF3MBr3wZzJ+HMP5xPQ2CpdabcAQY1slyac4Lxs2S1S1cOzdRaEfXYzbe+lzwYAAAAAAAAAAAAAAAAAAAAAGZR2RT+i92NJA6u4PmxZ1sEetvtCzfTPbNs2VoLYtr1DUm0KTO0+hrAs6xBJHxowa6ekn3hoH4CiCVpwGrZACPllCihyCgjyElrk9VzyUsj/l//tbV/Ij0qCwWh2lSLFzMpoMJrb9YtzqTi8FG+vffitf7dt6a83SL87UbpvpvTydzkfoNDDPk2GYLQk75MAssn4fDZAKe5gtIwHbWGwrH9eWW8fgHhVXYLRxr3LvAzZ0D7PeX7Xaulvbr8BlYLYntNNY0WMCwAAAAAAAAAAAAAAAAAAAADIJ4LRCsa27b9K6hgwq0XSAsuyWk3bWJZ1pqR5A2b1SPqKh8NdKal3wPQ8y7I+6HKcVkk/2tWm3W60bXuJh2MBKJrABafcuhqXqYgrYDCaV14K+Xesiu54yIZqwoEvFOFnk/FzSfte5BbsSMFrYdgegtEkacsrff/8y39IT50vrX1IWv8H6emLpOfnx9c+5EPYUOFSs/P8aq/zfAANxEP/1SrHGyhLHzpfMv95Zb19AGJVcQlGO+ifkmsHgtn/bKlpuPOyZR3O8zMn5LObqc+V+fsvAAAAAAAAAAAAAAAAAAAAADgrp92ARmNZ1r5y/u++d8102bKsKYbdbLNte73LYa6Q9CFJbbumZ0r6nWVZ/2Db9ksD2jJM0j9J+lbN9t+ybXuFy/4lSbZtL7Us6/+TdMmA2T+3LOvzkn5g23bPgGMdKun/7GrLbhvkLYANQBHZlWDbhQ13QH6Ziricir48Fd97PJfiLORHdiUdjKaqJA8hfEiWn+tOklzvhQSjFYbX4KkVP5Wm/7v08neHLnvlOunwK6USj/6NK+T1yjKcO0H78gCKw0vIRqnsLWg6cBu4FuVK1oNZOJ+AxuYWjDblE8m1A8E0j5b2+4i0/Jahy1bdKfVsklrahi5LRVzjNqaxIsaJAAAAACBJtm3rmWee0UsvvaS1a9equ7tbEyZM0OTJkzVr1iyNHDky7SYG9tprr+mpp57SqlWr1NnZqfHjx+vwww/XMccco1Ip3HeSa9eu1SOPPKI33nhDnZ2d2meffdTe3q4ZM2aE3reTxYsXa9GiRVq3bp22bNmiPffcU5MmTdKsWbM0bty4yI8HAAAAAAAAAAAAAAiG6ujkPSrpAA/rTZa0zLCsQ9I804a2ba+yLOvDku6V1LJr9vGSFluW9bSkpZLGSDpK0oSazX8lab6H9u32RUnTJX1g13SzpP+SNN+yrGckbZXUvutYA9/K75H0Idu2/+bjWACKJHDBKcFoDcve6Ty/1Ow008MOvQajEVbVkCoJB6PZFfV1o5AtGQ1Gc2NT8FoYpvterUVXSJNOlbrXDV3W+6a06Tlp3DHRtg35ETZU2NQP8np+AiguLyFXVtzBaBkP2kKNjH9enE9AYzMFo417l9TU4rwM2dI+1zkYrdojrbhNOvhzybfJl7DfexCMBgAAAABpWr9+vb72ta/plltu0bp1Dt/bSmppadHs2bN15ZVX6l3vepen/c6bN08dHR3908uWLdOUKVM8bfvggw/qpJNO6p++4oordOWVVxrXtwZ8r/ie97xHDz74oCTp8ccf1xVXXKHf//73qlaHjqPutdde+vKXv6wLL7zQd4jZs88+q0svvVQPPPCA47733Xdfffazn9UXv/hFlctlXXnllfrKV976LeYHHnhAJ554oqdjbdiwQd/4xjd0yy236PXXX3dcp1QqaebMmbriiit08skn+/q7AAAAAAAAAAAAAACil+GKfoRh2/aDkj4kaeBbFpakYyTNkfR+DQ1Fu1XSx2zbe1rRrnXnSLqtZtFESadK+ntJR2vwG/lrJZ1p2/YjXo8DoICCBqOFDXdAflUNARyWQ86rl9Air+cSwWj5FDYcqppGMBoyp2r4XLIQjGZsAwWvhWG67znpWm1exvWlwYUNRjPk6ROMBsDL/cVqirnfRJBVrmQ9eIw+E9DYTMFozaOSbQeCm3iSNGI/52VLFyTalFSYxroJ0AcAAACA2N15551qb2/XtddeawxFk6Senh7dc889mjFjhj772c9q587sf9/2ta99Te9+97v1u9/9zjG4TJLWrFmjf/mXf9HZZ5+tnp4ez/v+9re/rWOPPVb333+/cd+rVq3S/Pnz9Z73vEdr1qwJ9HeQpJtvvlnt7e265pprjKFoklStVvXoo4/qlFNO0Sc/+Ulffx8AAAAAAAAAAAAAQPQyUNGPuNi2/RtJb5d0g6RNLqv+UdLZtm1/3Lbt7QGOs8227Y+pLwTtjy6rbpT0PUlvt237Hr/HAVAwgQtiuXU1LFMAh1Nwmafie69BIR72VRrmcV9ITsiiv0rSwWgZDwloWKbPJQv3IlPBK+dSYfgJnurZbF7WNDx8W5BfYQOJTAGxpuBIAA2kTp/DauoL6IgzaJogq3zJej816+0DEC9TMBrPU/lRapKmftJ52YYnpC0vJ9seI8OYZegfhDFtTzAaAAAAAMTppptu0kc+8hFt3bp10PwDDzxQZ5xxhj760Y/quOOOU1PT4LHyH/zgBzrjjDMyHY72zW9+U1/+8pdVqfSNxb/tbW/TBz/4QZ1zzjk68cQT1draOmj9hQsXav78+Z72/a1vfUv/9m//1r/v3Q477DCdeeaZmjNnjmbMmNH/3+3xxx/XnDlzhqzvxeWXX665c+dqy5Yt/fMsy9K0adN0xhln6OMf/7g+8IEPaMKEwb8zfcstt+i0007L9GcEAAAAAAAAAAAAAEVXTrsBjca27SkJH2+tpPMty7pI0vGSDpC0t6Ttkl6X9Kxt28siOtbPJf3csqypko6StI+kPSStlrRC0mO2bfMTagD6BC1gDhvuIEmvXC8dcmH4/SBZpnOm5NSdiTAYzUshf3mEt30hOXbYor+EiwYJdcgmUzhCFPeisKyS4byh4LUwqn6C0VxysDc8KbUdEb49SFfg+1rI4nrHfpb8BfcBKKZ6IVLWrutHrMFoBFnlS8Y/L57JgMZWNQWjtTrPRzZNnSv95WvOy5Z2SEcalhWBMViNcSIAAAAAiMtzzz2n888/X9XqW2OfRx55pK6//nrNnDlz0Lrr1q3T/Pnz9f3vf79/3j333KPLL79cX/ta9p5XFy1apEceeUSSdNZZZ+nqq6/WtGnTBq2zadMmff7zn9eCBQv6533rW9/S+eefrylTphj3/fTTT+uLX/zioHknnniirrvuOk2fPn3Q/HXr1unyyy/XDTfcoIcffliLFy/29ffo6OjQVVdd1T9dKpV04YUX6pJLLtH+++8/aF3btnXXXXfpoosu0sqVKyVJ999/v+bPn6+rr77a13EBAAAAAAAAAAAAANEgGK1B7AokeyChYy2TFEnYGoACC1xwGjLcQZL+9M9S60Rp/78Pvy8kxxQQYzl0Z6IMLSp5KOQvNUd3PEQk40X3tSjCz6YsB6OZ7ocEhBSH3et93d7N5mVP/qO04qfSCbdLLW3h24V0BP1/21gc73V7Qz+I+xaAusFou64fcfabuBblS9b7qVlvH4B4VQzBaKVhybYD4Yw+RBp/nLT+D0OXLbtZOuIqb2O9cQr9Yw4mhj4X9zcAAADAkb1zp7RuVdrNaAwT9pVVLuZryp/5zGfU0/PW7wTPmjVL9957r0aMGPrjihMmTNANN9yggw46SJdeemn//GuuuUbnnHOODj/88ETa7NXGjRslSZdddpmuueYax3Xa2tr0ox/9SJs2bdJdd90lSapUKrrxxhsHhZHVuvDCC7Vz51vvgH34wx/WbbfdprLDeTJhwgR973vfU3t7uy677DKtX7/e899hxYoVOv/88/unhw0bpjvvvFOnnnqq4/qWZemss87SzJkzdfzxx+vVV1+VJH3jG9/QP/3TP2nq1Kmejw0AAAAAAAAAAAAAiEYx3zgAAGRf0ALmsOEOuy2/lWC0vLH9BKN5KHDzfC55KOQfdbDHfSExeSv6y1t7G4bpc8lAMJoxZCSuAlskzhQI6qTHJRhNktbcL/3qMOl9f5BGTgnVLKQkUN85gn6zUz9LMvfLADSOev3XMdP7/unl2SyuNiBbMv95Zb19AGJVNQRTNxGMljvt85yD0Tpfl9b8Xpp0SuJN8iZsqLUpQJ9xIgAAAMDRulWy57wt7VY0BOtnL0uTpqTdjMg98MADeuaZZ/qnR48erdtuu80xFG2gSy65RA899JB+9atfSZKq1aquvfZa3XTTTbG2N4hZs2bp6quvrrvef/zHf/QHo0nS73//e2Mw2lNPPaUnnniif3rSpEm66aabHEPRBrr00kv1u9/9Tvfdd5/H1vcFmnV2dvZPX3vttcZQtIEmTpyon/zkJ/q7v/s7SX1hb9dee62++93vej42AAAAAAAAAAAAACAaGajoBwA0pMAFsRHdulYtjGY/SI4pIKbkUGhvDAwatJK343oKWSNrNnPCFt0fnfQLjRQpZpIpiCjOgA/PTAWvBDoUhp/gqd46wWiS1LVaev5/BW8P0hUkiCyKQOGSKRgtYMgxgAKp0+c48NN9/4y130S/J18y/nlxbwMam58fZEC27T9HKhkC7ZYuSLQpzuIaAzQ9/zHmCAAAAABx6OjoGDR94YUXap999vG07X/+538Omr711lvV3d0dWdui8uUvf1mlUv33r6ZPn64pU6b0Tz/33HPGdW+99dZB0//8z/+sMWPGeGrP/PnzPa0nSdu3bx8UNtfe3q7Pfvaznrc/9thjdcIJJ/RP//KXv/S8LQAAAAAAAAAAAAAgOgSjAQDSEbTg9JALo20H8sMYUORQoJh0MBoF1BkUsuhv8unRNMMrwqyyyfS5ZCEYzXido+C1MEyBoE4qHl+UX/7jYG1B+gL1NSIIRjNd7/ycnwCKya3/evAF0sGf2zUR4/BzleewXMn6M0/W2wcgXqb+LcFo+dMyVtrvQ87LVi2Uet5Mtj2ehX1+IxgNAAAAAJL06KOPDpr+xCc+4Xnb6dOn66ijjuqf7urq0tNPPx1Z26IwfPhwzZ492/P6hx56aP+/79ixQ9u2bXNc7/HHHx80PWfOHM/HmDVrlufwuUcffVSdnZ3902effbankLeBTjrppP5/X7FihVauXOlrewAAAAAAAAAAAABAeASjAQDSESTcYfg+0vjjom8L8sH2U6DooYtjeQ1G87AvwkGyJ2xR+8j2aNrhGUWKmWQMZMzCY5ThGkagQ3GY7nuO6/K5F16QvnMU1ypTEISf8xNAMbldl9520Vv/HmugLPe/XMlCf+Wk+6Qpn3ReRuA50NhM/dsSwWi5NHWu8/xKp7Ty9mTbMkRMY4CmsW6bMUcAAAAAiNqmTZu0ZMmS/umxY8cOCgbzYubMmYOmn3rqqUjaFpUDDzxQLS0tntdva2sbNP3mm87B5H/+85/7/33s2LE66KCDfLXrmGOO8bRebXDdPvvso+XLl/v6U/v3X7p0qa+2AgAAAAAAAAAAAADC441+AEA6ghSczr6fYrRG5qdA0VMQiNdgNA+F/BRQZ1CIovsx06NrhldZCAnAUMZgtDgDPjwyXucoeC2Maq/3df2EVFUrUikD5zD8CdTX8NjXcd2F4Vyh7wPArf86sJ8SZ6As16J8SfuZZ2S7NOkUacWtzsvTbh+AdJl+9MAUFIxs2/sUafgkqfNvQ5ct65AO+ofk21SP1x/xMGKcCAAAAACSsm7dukHTBx98sCyfz3XTpk0bNL127drQ7YpSbdBZPc3NzYOme3uHfte9fft2dXV19U/vv//+vtvldZvXXntt0PTFF1+siy++2PfxBtq4cWOo7QEAAAAAAAAAAAAA/sVYmQYAgAu/BafNY6Qx0+qvh+LyU6CYeDCaj0AaJMMOUfQXZ3iDCUX42WT6XLIQjGa6hnEuFYefe4uvYLRu/21B+tIKRjOFEpv6ZQAaiFsw2oC+kmUpkuuRE/o9OZP257XrOc8Y+pl2+wCkys8PMiD7Sk3SlE86L1v3qLT11WTbM1CYMUs3pgJ87m8AAAAAELlNmzYNmh4zZozvfdRuk7XQrVIp+vdmNm/ePGh61KhRvvcxevRoT+tt2LDB977r2bp1a+T7BAAAAAAAAAAAAAC4441+AEA6fIc7xFRIjfwwnTOORc0RvqDnJSSLYLQMClP0l0Z2cExFkQjHeN3JQL60sQ2cS4XhJ3jKz7qVTqk8wn97kK4gwWhRXKucAmilgEFtAArFLWSj9vpjNcXzzETQR76k/XntDowx3R+5twGNzXSfMvWHkX3tc6UXv+68bNnN0hFfTbY9dYX9/sO0PeNEAAAAgKMJ+8r62ctpt6IxTNg37RZEzq4JvbZMYdU+RLGPrBs2bNig6Z6eHt/78LpNkH3XU/u5AwAAAAAAAAAAAADixxv9AIB0+C04bYAXwFCHqUCx5NCd8RIE4vWccgxeq0EBdfaEKbpPI/Qq7ZAAOPMVyJg0wzWMc6k4/ATI+Fm30uW/LUhfoL5GBP1n0/WOUFgArn2OpILReA7LldT7qbuD0Ux9+bTbByBVprBpgtHya8xh0p7HShufGrpsaYd0+JXZCL6PDMFoAAAAgB9WuSxNmpJ2M5BTe+6556DpN9980/c+ardpa2sL1SYnlUq2xtBr/46bNm3yvY+NGzd6Wm/8+PGDph9//HEdd9xxvo8HAAAAAAAAAAAAAEhXkd74BgDkie8CZoLRGp6fAkVPRW1ezykPxWOmtiE9eQtGo0gxm7IcjGY8TzmXCsNPgIyf+1Cl039bkL4gfY0o7mdOAbQSfR8A7v3t2utPbP1rgqzyJeXPqz8c3XA+ErQHNDY/P8iA/Gif6zx/x0pp7UPJtqWfYdwm7A/DmLa3GScCAAAAgKhNmDBh0PQrr7ziex8vv/zyoOmJEyc6rlcuDx6b2LnT+3d0QYLH4tTU1KTJkyf3Ty9dulQ7duzwtY9FixZ5Wm+vvfYaNB3kMwIAAAAAAAAAAAAApI9gNABAOvyGFoUtDEL+mQoUnYLRPHVxPJ5T1d7661BAnUFhiv5S6CKHCXJDfEyfSyrhebVMBa+cS4XhJ3jKT4hapct/W5C+QH2NCPrPpiBI+j4A3K4DQ4LRYgqVrXItypXU+6m77oumvnzq7QOQKj8/yID8OOBjUqnFednSBYk2JX6m5z+C0QAAAAAgam1tbTrwwAP7pzdv3qwXX3zR1z4ef/zxQdPHHnus43qjR48eNL1582bPx/jLX/7iq01JmDFjRv+/V6tVPfSQ9+DyjRs36s9//rOndWfOnDlo+r777vN8HAAAAAAAAAAAAABAdmShoh8A0Ih8hykQjNbwTOeMU5G9l9Air2F7noLRfATSIBlhitrTCL2iCD+b/Fx3kmYMdKDgtTC83H92617vfd1Kp/+2IH1BgsiiCBY2BUHQ9wEgt/5rQsForm1A5qT+zLM7GM0U+pl2+wCkytS/LRGMlmvDxkmTz3Be9todUu+2ZNsjxTduYxzPZJwIAAAAAOIwa9asQdM//vGPPW/74osv6umnn+6fbm1t1dFHH+247sSJEwdNL1682PNxfvOb33heNyknn3zyoOkf/vCHnrft6OhQT0+Pp3Xf+973qqnprbHgX/7yl1q7dq3nYwEAAAAAAAAAAAAAsoFgNABAOghGg19+ChQ9BVt5DUbz8FJdlXCQzMlbMBpFitmU5WA04zWMQIfC8BM89aaPX/uudPlvC9IXJBgtiiEfYzBakPYAKBS3/nZtXymu/jVBVjmT8ue1OzDUGDDMvQ1oaKbnL1N/GPnRPs95/s7tfeFomRH2+w/D9vSXAAAAACAW55133qDp6667TqtXr/a07Ze+9KVB0x/72Mc0bNgwx3WPOuqoQdN33323p2Pce++9evLJJz2tm6Rzzz1Xo0aN6p9euHCh7r333rrbvf766/rqV7/q+ThtbW0699xz+6e3bdumSy65xF9jAQAAAAAAAAAAAACpIxgNAJAOvwWnFsFoDc8UPuZUoBhl4b2XYDQKqDMoZ8FoFClmk+lzyUIwmjHQgZC9wvATjOZHpTOe/SJeQfoaUfSfTde7uM5PAPnhGoxW00+Jq+/Ec1i+pP7Ms+u8NN7b0m4fgFT5GXdEvkx6v9Q60XnZ0gWJNqVPTOM2xuc/xokAAAAAIA6zZ8/WkUce2T/95ptv6pxzzlFnp/t3sddee63uuuuu/mnLsvSv//qvxvWPO+44jRgxon964cKF+tOf/uR6jL/+9a+aO3duvb9CKkaNGqWLLrpo0Lw5c+bogQceMG6zfPlgP5p6AAAgAElEQVRynXLKKdq8ebOvY1155ZWDAuf++7//W1/4whdUqfj7bmHx4sV6+OGHfW0DAAAAAAAAAAAAAIgGwWgAgJT4LTiNIRiNotd8MQVwlJwKFD10cbyGhVR7669DOEj2hAqHSqOLTJFiJpnCNtIIzxvCdA3j3lYYpsL8sAhGy6dA/dYI+s+O/SzFd34CyJEsBKPR78mVtD+v3WMAxoBhgvaAhuZr3BG5UmqWpnzCednaB6Vty5NsjYuwz2+G7QnQBwAAAABHq1ev1vLlywP92e3GG29US0tL//SDDz6oE044QU888cSQ461fv14XXnihPv/5zw+af9lll+mII44wtnPUqFH66Ec/2j9dqVR0+umn67777huybk9Pj374wx9qxowZWrNmjdra2vz8J0nM/Pnzdfjhh/dPb9myRe9973s1Z84c/fznP9fzzz+vl156Sffdd58uvvhiTZ8+XS+++KJaW1t15plnej7O1KlT9YMf/GDQvK9//euaNWuW7r77bu3caf6+c/ny5br++us1e/ZsTZ8+Xb///e/9/0UBAAAAAAAAAAAAAKHxRj8AIB2+C05jCEar7pSaWuqvh2wwBXBYDt0ZT6FFXoPReuqvQwF1BoUouk8j9CrtkAA4MwajxRTu4Ycx0IGC18KIK3Sz0hXPfhGzAPeJKO5npusdfR8Abv3XIcFoMfWvuRblS+rPPLvHAAznY++bibUEQAb5GXdE/kydK730bedly26WDr88wcbENW5jGutmnAgAAAAAnJxzzjmBt7V3fSd/1FFH6brrrtPnPvc5Vat9459PP/20ZsyYoYMOOkjTp09Xa2urXnvtNT355JNDgrhOOeUUXXXVVXWPd9VVV2nhwoXavHmzJGnt2rV6//vfr4MOOkhHHHGEhg0bpjVr1uiJJ57Q9u3bJUl77723rrnmGs2dOzfw3zMuLS0t+vWvf63Zs2fr1VdfldT33/T222/X7bff7riNZVm6/vrrtXLlSt11112D5rs577zztHr1an3pS1/q/4z++Mc/6oMf/KBGjBihd77zndprr700fPhwbd26VevXr9fixYv7/1sDAAAAAAAAAAAAANLFG/0AgHRUfRYw13mRKRB7pySC0XKj2u083ymwI+lgNFPxJNITpug+jWC0MEFuiJHhc8lCMJrxGsa5VBjV3nj2W+mMZ7+IV6D7WgT9Z1MQRFzBfQDyw/W6VBuMFlffiX5PvqT9ee26L5rOxw1P9J3XqTwPAkidqX9b4mvUQmg7Qmo7Utr03NBlyzqkt8+P5/sHP8IeP+32AwAAAECD+sd//Ee1tbXpU5/6lLZt29Y//9VXX+0P/XLy6U9/WjfccIOam5vrHmPy5Mm64447dNZZZ2nr1q11jzF16lT9+te/1po1a3z+bZKz33776ZFHHtEFF1yghQsXuq47btw4dXR06PTTT9cXvvCFQctGjRpV91iXXXaZjjjiCH3qU5/S6tWr++fv2LFDjz32mKf2trW1eVoPAAAAAAAAAAAAABAtqnwAAOmwfQajRRHsMKQNBDrkxpuLzcucChS9FN57LRbzEkzDuZRBdohtU+gi22Hai9gY71UZeIwyBTZwLhVHXPeWSlc8+0W8ggSjRVEYbwqC8N2XB1A4bteB2n5KXMFoYcKQkby0P6/d90W34LP1TyTTFgDZY3r+MgUFI3+mznOev22ptO7R5NoR27iNy/2NsSIAAAAAiNXZZ5+tJUuW6KKLLtL48eON6zU3N+t973ufHnvsMd14442eQtF2mz17tp588kmdeeaZsgzfAU6YMEGXXnqpnnvuOR166KG+/x5J23vvvfWLX/yiPyDtsMMO09ixY9Xa2qr29nadfPLJ+v73v68lS5bo9NNPlyRt3rx50D7GjBnj6Vinnnqqli1bpuuvv15HHnmk8b/hbs3NzZo5c6auvPJKvfLKK7rooouC/SUBAAAAAAAAAAAAAKHwRj8AICV+C2JjCEarEmaVG0s7zMscCxS9hBZ5PKf2/aD0yn+5r0M4SPaEKbp3K5SPDaEOmVQ1/L8dV7iHL6ZrGOdSYcTVT6l0xrNfxCxIIXsE9zPT9W7zIun5K6XJ/0Mad0z44wDIH7f+9pD+dEz9a57D8iX1YLSmwf908tK3pQm3J9MeANliev4iGK04pnxcevYS5xC8ZR3SxBOSb9MgIb//cCvotqsZGcsCAAAAgPQsX7481v1PnDhR3/nOd/Ttb39bTz/9tF566SWtW7dO3d3dGj9+vPbdd1/NmjVLo0aNCnyMadOm6c4779T69ev10EMPadWqVdqxY4f22msvTZ06VSeccILK5bfGMk488UTZPsKy/axba8GCBVqwYEGgbWfNmqVZs2Z5Wnfx4rd+WNOyLE2cONHzcVpbW3XBBRfoggsu0MaNG/XHP/5Rf/vb37Rx40b19vZq5MiRmjhxog455BBNmzZNI0aM8P13AQAAAAAAAAAAAABEizf6AQDp8FvAXOeXGoO1gWC03Hjx6+ZlTgWKUQZbTXyP1NIm9Wwyr8O5lD1pB6Mde4P01Oe8rx/iBVPEyXAelTJQTGo6TzmXiiOue0ulK579Il5B7mtR9J/dgiBe+Ir0wleld90oHfip8McCkDNuwWhN7tNRSTtoCz6l/Hk1tfb90+15b+vLybQFQPaYnr9KfI1aGK0TpMmnS6vuGrpsxc+ko78rlfNc8Oz2/MdYEQAAAAAkpVQq6dhjj9Wxxx4b2zHGjx+vj3zkI7HtP6u2b9+uZ555pn/6kEMOCRw0t+eee+q0006LqmkAAAAAAAAAAAAAgJhEmBoCAIAPfoPRXAt7AqoSZlUITkX2noKtPJ5TpWbp3XdJ5ZHmdewqYURZEyokIYIu8n4fkvaYMnhe82iXDQh1yCTjvSoLj1GmaxjnUmHE1U+pdMazX8Qr0H0timC0emFGtvTMxVKlJ/yxAOSL63Wppq8UV6is73EFpCrtILuSh2C0OMaeAOSD6fnLLSgY+TN1rvP8nVul1xYm1AjTGHLYexDBaAAAAACAYuvo6NCOHTv6p4877rgUWwMAAAAAAAAAAAAASEIWKvoBAI3IbwGzp6Arv23ojX6fSF7JoUDRy/li+Sg2m3iC9OHV0vR/N69DUX7GhCj4i+J60zpROvkh6aDPSXseLR34j9LJD5vXTzskAM5M/1/XDQpKgOk8JaSxOOLqp1S64tkvYhbgPhHF/cypn1Wrd4u0+v+GPxaAfHHrvw65/sQ0BE0fOl/S/ryadgWjuQbHEIwGNCzbEIzmpT+M/NjndGnYOOdlyxYk2pTIuY11M1YEAAAAAMi5VatWaf78+YPmnXfeeSm1BgAAAAAAAAAAAACQFILRAADp8F0QG0NxatVQ8IZ8sZwKFL10cXyeU+U9pH3+h3k5wWjZEqboPqogxj32l/7ue9Kpf5Le9QNp1MHmdSlQzCbTeZSJYDTTNYyAkMKIq59S6Yxnv4hXoPtaBP1nx36Wg82Lwh8LQM64BaPVXH9i6zvR78mVrASjVbrTbQeAbDIFo3ntDyMfmlqkAz7uvGz1/dL21xJoRFxjgG7Pf4w7AgAAAACy5Y477tC///u/a926dXXXffbZZ/Xud79bGzdu7J/3jne8QyeddFKcTQQAAAAAAAAAAAAAZABv9AMAkpdWsEMtU8Eb8qXk0J3xFGwV4JxyK+i3d0oa5n+fiEkGgtGG7thlGaEOmWQKPIztHPHD0AZC9oojrn5KpSue/SJeqQWjeQwzcuqPASg2Y4CsQx8lrmA0wqlzJivBaITEAnBgCqamn1s87fOkV/7LYYEtLb9Fmv6lpFvUxxiA73V7t7EqxooAAAAAANmydetWXX311frmN7+pU089Ve9973v1jne8QxMnTlS5XNbGjRu1aNEi/epXv9Ldd98te8B7EC0tLero6Eix9QAAAAAAAAAAAACApPBGPwAgeUGKl8MWBjkxFbwhX6yAwWhBzim3YkjOp2wJFCCzW0yhV27nJWFW2WQMRosp3MMP0zUs1LmPTIktGI0wkHwK8P92FCGOXoMgnPpjAIrN+FzvFIwWU/+afk++pP15eQlGi2PsCUD22bb5+Yt+bvG0vVMa83bpzReGLlu6QDrsi/HeD2IbA3Rpc9r3YAAAAAAADHp7e3X33Xfr7rvv9rT+8OHDdfPNN+sd73hHzC0DAAAAAAAAAAAAAGRBTFVpAAC4CBKM5lbYE1RcgSNIlmNAUVzBVi7FkIHOa8QnRJFhXMENrvulQDGTshyMZrzOEbJXGHEFbla64tkv4hWoeD6C/rPX6x2BEUDjMQVsOF034uo7EfKRL2l/XiUPwWhxjD0ByD636xP93OKxLKl9nvOyra9IG55ItDlvCXsPctuesSIAAAAAQLaMHTtWTU3+vjs4/vjj9fDDD+vss8+OqVUAAAAAAAAAAAAAgKzhjX4AQPICFcMSjAaDkkN3xlOwVYBzyq2gn/MpW8IU3ccVjOZ2zqUdEgBnfgI/kmYZzifOpeKo9sazX9cwEGRXgP+3o7ifeQ2CMF2TABSXsZ/kcO2JLRiNcOp8Sbmf2rQrGG3nDpeVuJ8BDcltTM9p3BH5N+Vc6bkvOPclli6Qxs+I8eAxhZS5PZMFCtoGAAAAACA+Z511ltasWaN77rlHjz32mBYtWqQVK1Zo48aN6urq0vDhw7XnnnvqgAMO0AknnKDTTjtNxx9/fNrNBgAAAAAAAAAAAAAkjDf6AQDJC1K8HEfYQpUgq0JwCuyIKxjNrRiSovxsCRUOFVMwmut5SYFiJpn+v44tPM8PUxs4lwojrsDNSlc8+0W80goW9hpmVOkOfywAOeMnGC2mvhOBsPmS9ue1Oxit4hKMZscUTAsg29yevbwGBSNfhu8tTTpVeuPXQ5et+Kl09Hfeum8kJuzzm9v2jBUBAAAAALJn3LhxOvfcc3Xuueem3RQAAAAAAAAAAAAAQEZloaIfANBoAgVIxRCMFlfgCJIVNBgtSNieWzgIQXsZE6LgL7bQK5dzLu2QADgzBqN5DAqKk+kaxrlUHLEFo3XGs1/EK8j/21EEC3sNguC8AhqP8brkFIwWU9+JcOp8Sbuf2h+M5nLP2rk9mbYAyBa3MT23H0lAvrXPdZ7f+6a06q4YDxxTSJnr8x/BaAAAAAAAAAAAAAAAAAAAAADyh2A0AEDyghQvRxHsUIsgq4JwKq720sUJEozmUgxp9/rfH+ITpug+rmA0ChTzx3QeZSEYzXid41wqBLsaX3hIpSue/SJegYLRIrifeQ2CIBgNaDzGfhLBaDDJSDBa03DzOgSjAY3JLZTaa1Aw8mfyGVLzWOdlSzuSbYsUwfcfLs9/aYeTAgAAAAAAAAAAAAAAAAAAAEAABKMBAJIXqBAnhmA0t6I35IdTUbOnIJAA51R5hHlZ7xb/+0N8QgWjxRh6ZTo3KVDMJlPYRlzheX6YCmY5l4ohzqAXAqxyKqX+s9d7IucV0Hj89JPi6jv1bIxnv4hH2v3U0q5gtGn/al6nSuA50JDcfjyDYLTiamqVppzjvGz1vdKON5JtT1j8IAMAAAAAAAAAAAAAAAAAAACAgslART8AoOEECvuIIRjNregN2dI82rysZezQeV4K712LxUzHGifjudi11v/+EKMwwWhxdpEJs8oVY+BHjOF5npnOU4pdCyHOUI5KV3z7RnzSChZ26mc5IRgNaECG65JjMFpMfaeu1fHsF/FI+5mnaVcw2rgZ5nXSbiOAdLj9eEaJYLRCmzrXeb5dlZb/OJ5j2qZxm7DPby7bG48J/D/27jxejqrO//+7+y5JLiEJkIUlkIWwRnYYFtkRdBgEv1+ZEXAUZpRBdBzUUb8wuMCMgqM/BxzRr8go4AiI4yiRr05QJICIgIQlskbMiiRkD1lu7tb1++Nyk7vUOV3bqTrV/Xo+Hnk86KquqqN1uuqc6vt5NwAAAAAAAAAAAAAAAAAAAOAvgtEAAPlLEoyWJMSqbjscho4gW6bi5AM+Hr7cVeF9tUUaNTF8HcFofklV8OdwiGwMXaNA0U+mwA8PgtFM90XCHBqDrTA/LQKsSirBfSKLoM/xs6O9j8A9oPmYxhxh4yRXY6fOFW72CzeKHqcOBKO1tEtH/bvhTczLgKZkm39VCEZraLv9mTTuwPB1i28rWaCY7fuTMv3vAAAAAAAAAAAAAAAAAAAAAIB+BKMBAPKXJBjNWtiTUM1h6AiyVTOE2O3+NsMGUYY4CfvU6MnhywlG80yKovssgmTMOw9fXHRIAMLVDPcrp30kKkL2GlYQSEvudLd/gtHKKdF9IoPxc7VNat+1/vvoV+Xy2n3SEx+S5n9MWv1o/fe/Okd67APS/I9La55w3z6Ug/G6FDZGcTR26l4v9XW52Tcc8CQYTZJ2mh7+HuZlQHOyPSOuEozW0CoVacbF4es2viCtm+/goKbnNinnb7YflilVwBsAAAAAAAAAAAAAAAAAAAAA9POhoh8A0GyKCnYYLiAYrTRM56raFr48SmiRrVjMxhSM1kUwmlfSFLS7DL0y7psCRS+ZgjwrLfm2I7QNhOw1rGf/Sfrd5e7237fN3b7hTpLPdtKxznB7vL3+ewhGK4+F35QefIf0ys3Sy1+T7j9FWn6P+f0v/Kv08LukRd+VXr5R+sWx0qv35tde+Mt0XQob77ocO21b6W7fyFbR49TBwWjGeyRjaaAp2Z4RVwhGa3gz3md+Xrf49nzbkopt/sdzRwAAAAAAAAAAAAAAAAAAAADlQzAaACB/pqAZm6yCHQar9WS/T2QvCMx9Jk0wWtKwvVGTwpdvIxjNL2kK/lwOkQ37LjokAAamwA8fgtEI2WtIXWulF7/s9hi1bqmWYCyGgiW5T2R0P6u2139PL8FopVDrlRZ8ZuiyoFf6/efC39+3Tfr9tSOXP3yutPHF7NuHkokRjFZ1GYy22t2+ka2i5zzVUYNfhL+n6DYCKIbtGbEP83+41bGXNOVt4euW3Cn1dWV8QEfPbWzPw7m/AQAAAAAAAAAAAAAAAAAAACghgtEAAPlLEoyWNMTKhmC0crAWJ7YalrsMRpsYvrx7fbL9wY00BX+R+k/SfRv6HQWKfjLdr7wojKYvNaTF38/nHNa2uT8GspWkX2QVLNwyqv576FPlsOrh8DHrht9LnStHLv/TvVKfIfTu0Yv6A4zRvIzXpZCxtGnelgXm9SVSdDDaoKBP05yPsTTQnGqW4KuW0fm1A8WZeUn48u510ms/y6cNqedvtu0ZtwMAAAAAAAAAAAAAAAAAAAAoH4LRAAD5S1RoGlLY85bPpmsHAQ7lEPSa11XbTCvq7zdpsVnVEA5Ss7QT+fM1GM3YNylQ9JIxyNODaZSxn9KXSm3jc/kch3tW+WQ1fk5icJCMSa8hPAt+6fyTeV3PGyOXbVlmfv/6Z6TVv0nfJpSXMUA252C0osO2EF3RoWPVQf2QsTSAwfosz4gJRmsOU98ltY0LX7fotmyP5SxcmGA0AAAAAAAAAAAAAAAAAAAAAI3Fg4p+AEDzSVAMGxZiNe0iqW18+Punv6/+Pm1Fb/BHrce8zhSMVmlx0xZpaDH1YLYAN+QvVdG9wyGyKZCv6JAAhDOdF5fXmMjoS0iBe1b5JPlsZxX0GSUYrY9gtFKwhVOFhVzVu9+9/LV07UG5GcdJIdce0xwqk3aYgmzhnaLHqZUIwWhFtxFAMUzPiCtVx+Ge8EbrGGmf94Sve+3nUufrOTQiZbC17UdAnIWxAQAAAAAAAAAAAAAAAAAAAIA7BKMBAPKXqNA0pLBn/IHS6fdLU9+1Y1nrTtLsz0jHfbf+LglGKwdbeIupODFSEEjCYjNTGBshM55JUfCXVZBMKNO+KVD0kiloo+pBMJqxn9KXyi1lIXRUNe5Z5ZPks51RfyIYrXHYgs5Cg9HqBIFsfiVde1ByMQJkXYbKEIxWIgWHjg0J6DONpQlGA5qS6RlxdbQ9bAqNZebF4cuDPmnpnRkeyNVzG1tf5VkRAAAAAAAAAAAAAAAAAAAAgPLhp84BAPnLKhhNknY7Wjr5J8naQTBaOdR6zOtMIWW20Icdb0rUHGNRPyEzfkl0nXmTy2A0077TtBfuGIM2fMiXNlzD6EuIgjDP8kny2c7qflYdVf89BKOVg22MXOsaucw01h4QELDQ1EzXpbBrT9VlMBpjn9Io+lwNnsubgo6KbiOAYpieEbeMzrcdKNbEE6Sxs8LDfxfdLh34cccNSBvCRzAaAAAAAAAAAAAAAAAAAAAAgMbiQ0U/AKDpJAl2SFsYFNaMkOJ/+McWjGYKKYsSjJa0T5mOSciMZ3wNRjP1OwrwvWQKRosUvuiYsZ9S7FpqLsY7YbhnlVCGwcJxtbTXfw+Bw+Vgu3+FncN6YVY+3A9RHGOAVMgYxTSHyqQdpiBbeKfo0LEh/dAy5yP0EWg+BKNB6p+Pz7w4fN2GZ6X1z2R0IEf3GdvzzKLvwQAAAAAAAAAAAAAAAAAAAACQAMFoAID8JSpcdhAUQoBDOdjCW6pt4csjhTQk7FOmgIgaITNeSVXw53KIbNg3xfd+MvUjL4JgDNcwil0RBfes8kn02c5o/FyNEozWmc2x4JYtfDFsblQvzMplmCz8ZxwnEYwGg6LHqYPn8oTHABisRjAa3jTjfeZ1i253e+y0QenW7XnuCAAAAAAAAAAAAAAAAAAAAKB8qGAEAOSvyGCHwQhGK4daj3mdMRgtyhAnYZ8yFfXbAtxQgBQFfy5DPkxFihTf+8kUtOFDEIyxDRS7IgLbvRV+SnKfyOpaFTUYjZBP/9lCEZMEo7mYo6E84oyTTOHSmbSDcXR5FHyuKhGD0RhPA83H9IyYYLTms9M0acrp4euW3OH5XNoyNmeuBgAAAAAAAAAAAAAAAAAAAKCEPKjoBwA0nUTBDgSjNS1bwZkprKHS4qYtkrmon2A0v6QJSHAaekWYVakYAz8cXmMiI2QPKXDPKqECx8/VUdHeV+vK5nhwxzauDpsb1Q2z4p7T3EznP2S8WzdkLwXTeA3+KXqcOuSaZpnzFd1OAPkzPSOuEozWlGZcHL68a7X02v+k378xpCzt/M22Pc8dAQAAAAAAAAAAAAAAAAAAAJQPwWgAgPwlKjIlGK1p2cJbqm3hy6OEFiUNCzEV9dcImfFKqmJ2h0NkU+gaxfd+Mp0XH4LRjAF+FLuWm4PxThiC0cqnyPFztT3a+/o6szke3AliBqPVC4u1Ba2h8cUZJ9UN2UvTDoLRSqPoOc/gubz1eQBzM6DpmJ4RtxCM1pT2ebfUOjZ83eLb821LHNZ7G8+KAAAAAAAAAAAAAAAAAAAAAJSPw6o0AABMPAlGqxGMVgq2wIU0wWhJ+5SpqN8WNIECpCj4qxcCkoqp31F87yVT0IYPwWimvlR04ATiqfVJ6+ZL65+Wxh0g9W7O6bgEo5VPgvtaVvezyMFojK29Z/vsh82N6t1TCFlsbsZxUsi1xxQunUk7GPuUh0fBaLYwbPoU0HwIRsNgrTtJ+5wvLbpt5Lo/3St1rZVG7ZbiAK5CyizPugOC0RrS8nukZXdLLR3StPdIe5xVdIsAAAAAAAAAAAAAAAAAAACATBGMBgDIX5Ii04qDYDTCG8rBFoxmKrCPFASSsE+ZjknIjF/SFLO7DEYz7ZsCRf8EgYzFqk7D8yKiL5Vf7xbp1+dLK+bmf2zCjMon0X0to/FzS9RgtM5sjgd3bEG+YXMjU/DVAMa/zW3TK+HLQ4PRHIbK1uun8EfRgWODQ85t4/mi2wkgf6YfzyAYrXnNuCQ8GK3WIy25Szrg7x0cNOX8jXtbc3npa9JTH9vxetGt0nHflWZeUliTAAAAAAAAAAAAAAAAAAAAgKx5UNEPAGg6RQY7DNbXlf0+kT1beEu1LXx5lML7pGF7pmA0Qmb8kqrgz+UQ2dTvKFD0jq0PuQz3iIy+VHoLbyomFE0izKiMihw/VyMGo/USjOY9W+BwWLBd3WA0y/7Q+Fb/Onx5+64jlxGMBqn4UJZKxGA0UzgygMZl+vEMgtGa1+STpJ2mh69bfFu6fTsLtLfN/7i3NZRan/TctcMWBtLv/7n48RYAAAAAAAAAAAAAAAAAAACQIYLRAAAFSFCckTTEytoMQ9Eb/FLrNq8zFdhbi5zfNO7AZO2pGoLRCJnxTIoisCj9J+t9OyuKRGK2kA0fgtHoS+W39AfFHZswz/JJUtyc2f0s4jg8LFgLfrEGo4XMjer1O64lzatns/TGS+HrJp80chnBaJCKD+qoRgxGK7qdAPJnCkarjsq3HfBHpSrNuDh83br50obnHBwz7fcfBKM1jY2/l7rXj1y+ZbG08cX82wMAAAAgV8uWLdNnPvMZnXTSSZoyZYra29tVqVS2/7vtttuKbiIAAAAAAAAAAAAAAJkhGA0AkL9ERaYOgtFMRW/wS19X+PKW0ckLxqZdKLVPSLZtxRCMFlaMhOKkCYcqIhgtTZAb3LAGo/kwjTJd/+hLpbH+meKOTZhRCRU4fo46dicYzX+xg9HqBE5xLWlem18xr5v6rpHLXI6dCLEqkYLP1ZC5vO0eSZ8Cmo7pGXHL6HzbAb/MfL953eLbU+zYUUiZ7Tk5IfqNpWezed3mRfm1AwAAACiZ6dOnDwkQe/DBB4tuUmy33HKL9t9/f33xi1/UI488olWrVqmnx/LdDwAAAAAAAAAAAAAAJedDRT8AoNkkKVx2UUhNMFo51AznqToq+T6Puy35ttW28OV9W6Wudcn3i4ylKGZ3GnplKFIk0MFDlnNSacmvGcY2GPopxa7lYCtizcO2VcUeH/ElGj9nFSwc8brC2Np/QcbBaLagNTS2TX8IX15tl3Y+YORyp8Fodfop/FH0nGdwMJqtTxbdTgD5IxgNYcbOlCafHL5u8felWtYhwWnnb7bteVbUUFo7zOs6X5O2/kl68grplydKT35U2rIsv7YBAAAAcObnP/+5LrvsMnV1GX5ccpgHH3XGYEIAACAASURBVHxwSBDcNddc47aBAAAAAAAAAAAAAAA4QDAaACB/iYpMswp2GITwhnLoM/xRX5rixJb25NsOLqYe7g/fTL5fZCtVMbuD6832XZuG3xQoescWsuFDMJqxnxLkUApblro/xr4flFp3Cl/36HvdHx/ZSnRfy+qRT9RgtM6MjgdnbEFmocFodfpd5mEQKI1NfwxfPnamVA0ZJ7kcOxGMVh5FB44NmYsRjAZgENMz4irBaE1vxsXhy7etlFb8IuFOXT0DJBitadjGvxt+L91/irTw36XVv5EW3iTdf7LUuTK/9gEAAABw4qqrrlIw6EfSLrroIv3qV7/SwoULtXjx4u3/zj///AJbCQAAAAAAAAAAAABAtghGAwDkL1HhcoLinWP+r309wWjlYDpPaYLR0qhagtEWfDa/dsAuTTG709ArQ5Eixff+sQajeTCNMrUhoNi1FPIIRmsZI9W6zeu7N7pvAzKU4LNdySjoM+p1hWA0/9mC0WphwWh15m0BwWhNq3dz+PIxexo2cDl2YhxdHkUHow26L1rH84yngaYTNg6Sinv2CH/s85dSS0f4usW3Z3ustPM3272N546NxRZQ/YdvSJuHhRhvWSot+6HbNgEAAABw6uWXX9aCBQu2vz777LN1xx136PTTT9d+++2n6dOnb/83duzYAlsKAAAAAAAAAAAAAEC2PKjoBwA0nwSFOOufib/NXu+U2saZ1weWYAD4w1ScWB2VbzsGVCzBaPBHogDGN7kMvTLum+J779iKRp2G50VlKpil2LUUet5Itt2U06K/t2WMPQRp7ePJ2oBiJCpkzygYbcKh0d7X15XN8eCOLcgsLIy43njKdo1BYzP1pWpb+HLb2Gm3P0vZlhTjfuTLp1AWwmMADObbjzLAH207S3v/7/B1r94jda/Ptz1Wtvkfzx0bSpKA6vlXZN8OAAAAALl58sknh7w+//zzC2oJAAAAAAAAAAAAAAD5IhgNAJC/JEWmvVvib9Oxl3T6/eb1tQQFJMifKWSjqOLEKsFopZAqGM1h6JWpAJ/ie//Y+pAPwWjGvkSxayn0dSbbbqqhIDtMS50AUYI+SybBfSKrczxuP2ncQfXfVyMYzXu2ILMkwWhJCvLRGExzadN1xxZCdfRN0pE3SlNOl8bOTNAWgtFKw6s5jyU8xqt2AsgFwWiwmXlx+PJat7T07vj7Mz63SRlsXbHd23hW1FAIBgYAAACazuuvvz7k9dSpUwtqCQAAAAAAAAAAAAAA+SIYDQCQv0RFpgkLg3Y7Rjr5HkM7KOQvBVNxYrVO4IsrBMmUg6/BaKZrGcX3/rH2IR+mUab7In2pFGqGe5vNmb+Rdt43+vsrbfb1BH2WS5L7RJbn+IQ7pPZd7e8xjdngD2swWkhgY71+F/QRstCsTHNp03XHFoxWaZEOvEI641fSyT9N0BjGPuXh0bmy9Umf2gkgHwSjwWbyaVLH3uHrFt2Wa1PsbN+fMGZvKHyvBQAAADSdzZs3D3nd1lbne2AAAAAAAAAAAAAAABoEldAAgAIkKDKtJAxGk8xBVjUKSErBt+JEgtHKIU3QmLVIPiXjvilQ9I4tGM1peF5Epr5EQE05xA2QOuEOadIJ0opfRN+mWucP4rmflUuS+1qW53jXI6RzF0mrHpQeflf4e2pd2R0PbliD0UKuS1GCZoM+rifNyDSXNvUF29hp8JgmyTg8TSAy8uVTGLStr/nUTgD58O3ZI/xSbZFmvE96/rqR69Y+Lr3xsjTugBg7dPTcxvr9Cc+KGgrfawEAAABeC4JATz31lF566SWtWrVKXV1dmjRpkvbaay+deOKJGjt2bOx91mo8swQAAAAAAAAAAAAANCcqFwEA+UtSZJqm2NlUnB1QQFIKppCNoooTqwyfSiHVNcNl6JWhSJHie//YzknVg2A0U19KEj6K/MUNRhsYy8QJjKl3v3IZAonsJblPZD1maR8vTT1Pmni8tOa3I9f3EYzmvcBBMFqth/FxMzLNpY3BaLZ7zqAxDcFojc2rOQ/BaAAGqRnmZ1WC0fCmGReHB6NJ0qLbpcMN62JJ8cMwkuz3NoLRGgrfawEAAABeWrNmja677jp9//vf1+rVq0Pf097ertNPP13XXHONjj32WOO+lixZohkzZhjXn3baaaHLb731Vv3N3/xN6Lprr71W1157rXGf8+bN06mnnmpcDwAAAAAAAAAAAABAEaiEBgDkL1EwWorCVFOhPgUk5WAKj6mOyrcdA0zF/vCLr8FoprAHiu/9Y+tDTsPzIjL2JYpdS6GvM977B8YycfpevftVjXFQuSS4T7gas5jGYHED/5C/WsxgtCj9jjlVczKdd2NInuUR9JAxTZJgNMbRpeHTubKG8DGeBpqOaRxb1I8ywD/j9u8PiA6z+HtSLc5zSEf3mYotWM2jezDSIxgYAAAA8M4999yjmTNn6oYbbjCGoklSd3e35s6dq+OOO06XXXaZenv5jgUAAAAAAAAAAAAAABuSPQAA+cu7GNYUChHU+v9ZC2JRuFpX+PKiihONxf5vCoI6hWjIRaoCMZfXBNO+Kb73jrUPeXDfMF1nfAqcgFncAKntY5kYfa9eKBZhRuWSJPSw3pglKdMYzDRmgz9swWi1kOtSlIAHriXNyRSuabr3WIM9B93bkszNCYYoEZ/GqZY5O+NpoPn0efbsEX6aeYm05rcjl3f+SXr9AWmPM9PtP/XzZNu9jeeODYWgewAAgGzUeqWtrxbdiubQMdXdd1Ye+O53v6tLL71UtdrQ54r77ruvDj74YHV0dGjZsmV64okn1Ne343n2t7/9bS1btkz33nuvWlsb9/8fAAAAAAAAAAAAAADS4Bt1AEABci4ytf2BXdBHMJrvTOExRRUnRgmaqbTl0xaYpQlIsAY3pESYVXnYzonLPhIZIXulljQYLU7fq9a5FxFmVDIJ7hP1xixJtYwKX24KlIA/bMFoYdelKOMp2z7RuEz3ENPc2zbnHjw+Jhitsfk057H1NZ/aCSAfYQGxEsFoGGqfv5Ke/IfwQOhFt0UPRnMWUmYLVuNZUUPheQ4AAEA2tr4q/XRG0a1oDuculsZOL7oVTjzzzDO6/PLLh4SiHX744frGN76hE044Ych7V69erc9+9rO6+eabty+bO3euPve5z+m6664b8t6pU6dq8eLF21/feOON+trXvrb99V133aXjjjtuRHsmTpyoU089VZL02GOP6cILL9y+7oorrtDHPvYx4/+W3Xffvc7/WgAAAAAAAAAAAAAA8kcwGgAgf3kXmdpCIWq99YNDUCxjMJohlMO1eiEjfdvoU15IcZ1xGnpFmFVp2EI2fAhGI2Sv3Po6471/IGgmTmBMvV9er1FIWypJPtuuxiNVwxgsLCAAfrEV0IeOuSP0O64lzcl03k1zJevYadC9LVEwGmOf0vDpXFn7mkftBOBerc8c9EowGgZrnyDt/b+kpT8Yue7Vn0jdG6X28SkOYAs2i7K5ZXtnYWwoBMHAAAAAgDc+8IEPqLu7e/vrE088Uffdd586OjpGvHfSpEn61re+pVmzZulTn/rU9uX/+q//qgsvvFCHHHLI9mWtra2aPn369tcTJkwYsq/dd999yPrBxo4dK0lasmTJkOUTJkwwbgMAAAAAAAAAAAAAgK8SVJsBAJBS3sWwtmAQWzgA/GAK2agWVJxYL2TEFOSGfNVSFIglCWSIvG/CrErDGozmwzSKkL1Si3uvqBfKmWQbxkDlkuQ+kaTfRGEKRmMM5D9T6IcUfv6iFNxzLWlOpvNuDEaLOnZKEoxGMER5+DTnsfQ15mYok84V0jP/JN13vDT3z6SXv04AUly2cN+inj3CXzMuDl/e1ykt+6+IO3H1GbUFq3FdaCiEUwMAAABemDdvnp566qntr8eNG6e77747NBRtsE9+8pM655xztr+u1Wq64YYbnLUTAAAAAAAAAAAAAIAy86GiHwDQbPIuXLaFQlDI7z9TyEaLIZTDNVvQnkQoiC/SXGcqLdm1YwTT8Jvie+/YAhGc9pGICNkrt7j3ioFQzjjb1QvFopC2ZDwKRmsxBETYQiXgB2swWufIZVHGU7Z9onGZ5tHGuZLtEfSg61uS8FmC0crDp3Gqta8RHoMS2LxYeuJyac4M6YXrpbWPSet+J83/B+n5LxbdunKxzbFM4140r93PlMbsGb5u8e0pd24LNouyOfe2psF3WgAAAIAXbr996DzwIx/5iPbc0zBnHOZLX/rSkNd33XWXurr4ng0AAAAAAAAAAAAAgOEIRgMAFCDnYlhbKASF/P4zBqMVVJxYL2SEYDQ/+BqMZipSDChQ9I6tD/kQjGacytGXSiHuvWLg3hMWXGQyEKZmQiFtuSQJk6kX5pqUKZy2j4IN7wW2YLRtI8cjUcZTXEuakylc0zRXqlrGTkHaYDSPwrZg59W5soTPeNVOYJiNL0iPvl+6dz/plW+FB9Mu/DrPGOIgGA1xVFuk6X8dvm71I9KmV/JtzxDc25pG0ufe9AMAAAAgU4888siQ13/914b5YojZs2fryCOP3P5627Ztmj9/fmZtAwAAAAAAAAAAAACgURCMBgDIX94FGLZQCFNBN/wRVuQpSVVDKIdr9YLRagSj+SHFdcZpMJqhSJHCNP9Yg9E8mEbRl8otTsCZtGMsEysYrd79ijFQqST5bNcbsyRlGoMRDus/ayh0MHJ9lH7HtaQ5mQLxjPcey9hpyJgrSTBaikBk5MyjcaptPM94Gj5aN1/69buln71FWvKf9mvftlXStpX5ta3sbM/xCEZDmJkXm9ct/l6EHRiCC03PeSKzbU9YYkNJGk5NmDkAAACQmfXr1+uPf/zj9tcTJkzQQQcdFGsfJ5xwwpDXv/vd7zJpGwAAAAAAAAAAAAAAjcRRlSwAABZ5F5naQiGSFpEgP6YAh2p7vu3Yftw6wydCQfyQJiDBaeiVad8UKHrHdq9yGZ4XGX2p1OKGaA6MZcbF+IP6eqFYjIFKJsFnu96YJSlTQIQpzBb+sAajqf/a1DJojB1lPBXU2ScakykQz3TvsY2dBo+5kozDCUYrD58Cx6x9zaN2Aqselp6/TlpxX7ztfPq8+c72HI9gNIQZf7C06zHSupCC9UW3S4dcU0ygvi1YLeBZUUNJGk5d2yZpTKZNAQAAKLWOqdK5i4tuRXPomFp0CzK3evXqIa/3228/VWIGXh944IFDXq9atSp1uwAAAAAAAAAAAAAAaDQEowEACpBzcZ4tFIJQEP+ZCt2LCiaqFzRDMJofUgWjOexbpj+GpWjZP7Y+5EMwGn2p3OLeKwbGMuMPlnaaJm1ZGmGbNvt6xkDlkuSzXanTB5KqjgpfTjCa/+oFo/Vtk9rG7XgdZTyVtCgf5Wa6hxiD0SzhIIP7WaJgNMY+peHTubL2SY/aieYUBNKKuf2BaKsfSbgP+nFkq35tXkcwGkxmXhwejLZ1mbTqIWnKaeZtnYWU2QrwCUZrKL2bEm7XKbXvkm1bAAAAyqzaKo2dXnQrUFLr168f8nr8+PGx9zF8m3Xr1qVqEwAAAAAAAAAAAAAAjaiAn6wGADS9vIvzbEFWFPL7z7tgtDrHJRjNDzVPg9GMw2+Klr3jezCasS9R7FoKfZ3x3j8wlqlUpONuj7eNCWOgckkyfraFA6fRYghG6yMYzXtBhGC0Ie+P0O8IWWxOpvNuuu5EDaFKFIyWYtyPfHkV1EQwGjxU65OW/Uiae5T04NnJQ9H6d5ZZsxreyzea11UJRoPBtAukanv4ukUR5+wj2ILN0m7Ps6KG8uzVybar8b0FAAAAkJVgWOh1xfSjZjFksQ8AAAAAAAAAAAAAABoNwWgAgPz5FIxGIb//TMEtrsI+6qm22dcTjOaHNAEJSQIZ0u47oEDRP5Z7lcs+EpXpD6MJciiHuPeKwfeeKaf0F2HX3abOfZIxUMkk+GzXC8dLqmoKRmMM5L1a3GC0COOpevtEYzLN0UzXnV0ON+9r530HvSAYrbF5NE61FhkyN0POaj39QUo/f4v0yF9K659Ov0/mhdH1bDKvq/cMEM1r1G7SXu8MX7f8R1LPZsvGju4zUYNoUW7b1iTfljk7AAAAkJldd911yOuNGzfG3sfwbXbZZZdUbQIAAAAAAAAAAAAAoBF5UNEPAGg6SQpxJr01+fFswSCmgm74w1ToXmnJtx0DWkZJE08wr69RYOSHFAV/TvuWqQCfAkXv2EI2fAhGM07lCHIohbhBQsODZsbuG/6+4dsc9sXs2oBiJRk/uwqRbRkdvrzW5eZ4yE69uU+SYDRCFpuT6bybrjsdU6Vdjx65fNKJ/cEiAxKNsRhHl0aRoSxHfGXYAsJj4IHeTmnhN6V795Meu0R646Xo2044VDriq+b19OPo2nY2r7OGKKLpzbwkfHnvFmn5fyfYYcr+VqmYn2nWutPtG/74073JtyUYDQAAAMjMpEmThrxeuHBh7H28/PLLQ15Pnjw5VZsAAAAAAAAAAAAAAGhEPlT0AwCaToLivFkfSn644WEig1HI7z/TObKdV9cOu868jgIjP0QJ8jBxGYxmCnsICLPyjm+hjMOZCrQpgC+HuOOP4UEzpmCqIdu0Sfu8J7s2oFhJPtuuxkoto8KX9xGM5r2gTiBikmA0gqabk+m82647J9wpdey94/VO06Xj/3PY9gkeVacZ9yNfRY5TZ/7N0Ne2vsZ4Gq71bJJe+LL00xnSkx+RtiyNvu1ux0mn3Cv9+TPStL+yvJFnDJGZnuPN+rt824Hy2ePt0mhD0fqi2ywbOvx8towJX97X6e6YyFeac8ncDQAAAMjMLrvson333fFDVhs2bNCLL74Yax+PPvrokNfHHHNMJm0bUCHwHQAAAAAAAAAAAADQAAhGAwDkz1RkOuFQadoFI5dP/2tp2oXJjzc8TGQwikH852M40ZRTzOsIRvNDqmA0l0Nk0x+fUnzvnZrp2uPJFMrYDgrgSyHu+GN40EyUYLRKq7TzvuaQGsZAJZPgPmEbA6dRNQSj1RgDea9WLxhtWJF9lHAgQhabU5Lw6nH7Se98RXrbw9KZj0jvXCiNnT7sTQSjNbYC5zyjdhv62jqmZ24GR7rWSgs+L82ZJj3zf6Rtr0ffdve3SWc8IJ31qLTXOW8GZRPwlwnTc7zJp+baDJRQta3/e4swqx6UNi+Jt78sCtZNwWi9BKM1jDT9hLkbAAAAkKkTTzxxyOs77rgj8rYvvvii5s+fv/316NGjddRRR2XWNkkaNWro93ldXfzAEQAAAAAAAAAAAACgfDyp6gcANBVTcV61XTrhDumsx6UDruj/946npONvl6opQrBsxdkUg/jPFNziKuwjqvGzw5cTjOaHVMFoDkP3TAX4FC17yHBOigxlHMJQCElfKoe4448RwWiGYufBBu6Tuxr+iJ4xULkk+WzbxsBptHaEL6fY3n91g9GGjWOjjKfq7RONyXQPqTdHa2mXJp8kTXprf5jIcEkCaAlGKw+vxqkESiFHnSukpz7ZH4j23D9L3eujbzv1POmsx6TTfylNOW1oII7tmkk/js70HC9KGDUw42LzusXfC18eOAy0N83Vhgcgo8RS/GkHz4EAAACATL3//e8f8vqmm27SypUrI2171VVXDXl9wQUXjAgyS2vChAlDXq9YsSLT/QMAAAAAAAAAAAAAkAeC0QAA+TMVLleq/f8m/pl01I39/3Y9Illx9JD9EoxWasb+UnA4kalAkmA0P5QtGE0OiyKRjK/XngH0pXIzhX6aDA+aiVKkPzD+MYXUxG0DCpbgsx0WOpQFUzBf31Y3x0N26oWY1RIEozGfak6me0jaQMZEwWiE/5SGT+eqYggZlsR4GpnZvFh64nJpzgzppa9KvVuibVepStMuks5eIJ18jzTxWPP7jDz6vPlu+PhnAMFoiGKXQ6Vdjghft/j2mCFotntTRMzVGp91DFMHz4EAAACATJ1++uk6/PDDt7/euHGjLrzwQnV22sOpb7jhBs2ZM2f760qloo9//OOZt2/mzJlqb2/f/nrevHnq6eHHbgAAAAAAAAAAAAAA5ZKyWg0AUlj3tNS9tv+/BxeI7DRdGrdfIU1CXkzFeY7yOm2FghSD+M/XcCKC0fyWqujeZXawoXjNp5AA9DOGwfiSLU1fKrW4QULDg2ZMxc6DDYRiVQzhWIQZlUuSz3bagCKTlo7w5UFff/CWq0A2pBfUKXgZPo6N0u+YTzUn0z3EFMYZWZJgtBSByMiZT+NUS6gI42mktfEF6fkvSUvvjHeNqrZJMy6RDv60tPOsKBuYV9GPowkC83M8gtEQ1YyLpfVPj1y+eZG0+hFp8kn5tcUYjGYvykeT4DkQAAAAMMTKlSu1ZMmSRNtOnz5dkvSd73xHxx9/vLq7uyVJDz74oE466SR94xvf0LHHDg27X7NmjT7/+c/rm9/85pDln/70p3XooYcmaodNe3u73vrWt2revHmSpGXLluncc8/Vhz70Ie23337q6Bj6fd/uu++u0aN5HgIAAAAAAAAAAAAA8AvBaACK88yV0spfjFx+8JXS4dfn3x7kx1ScV3UUdFWp9AdDhBV+UAziP9M5chX2EVXV8AeBNYLRvJAmIMHVtUgyBzUODgiFH0z3qqJDGQcYQz/pS6UQd/wxPGgqSpH+wH3SFFLDGKhcfApGazUEo0lS71apfbyb4yK9WtxgtAjjqXr7RGMyBeKlve7YQs1NCEYrD5+CmioV9YejhYydfWonymXdfOn566TlP1GseVnLGGnWZdJB/yh1TI2+XYWAv9Rq3eZ1pud+wHDTL5Ke/mT4HHvx7SHBaKbrg+UzHZUpGK2XYLSGkSaYmlBrAAAAYIgLL7ww8bbBm3/fceSRR+qmm27Shz70IdVq/c9j5s+fr+OOO06zZs3S7NmzNXr0aC1fvlxPPPGEenuHjsvPPPNM/cu//Evy/xF1fOITn9gejCZJc+fO1dy5c0PfO2/ePJ166qnO2gIAAAAAAAAAAAAAQBIJqs0AAEjJWJzn8LY0PFBkAMUg/jMVuhcdTmQKpRkeKIFipAlIcNq3TEWOFC17x9SHXAbnxWLoSxTAl0Pc8cfwoJkoRfoDgWimkBrGQOWS5LNtCsVLy1RsL0l9W90cE9lwEYxGyGJzchVebQv5MbaFsU9p+HaujEF8nrUT/lv1sDTvHdLco6XlP1bkULS28dLsq6XzlkpH3RAvFE2qEyZJP47E9gwvShg1IEmjJ0l7/UX4uqU/7A+PzotprtZHMFrDSPPdA3M3AAAAwIlLL71Ud999t8aOHTtk+SuvvKI5c+bo7rvv1qOPPjoiFO1v//Zv9bOf/UxtbYa/Z8vAOeecoy984QtqafHlbxwAAAAAAAAAAAAAAIiHYDQAQP5MxbDWgr6UTAXaFIP4zxTc4irsIyqC0fyWJhjN5RDZdJ3zLSQA/oYyDjDeMyMW4aM4QU2xz9Pw891qCabavk2dYDTGQCWT4D6RNqDIpLXDvC7Pon/EE+XaM2IcG6HfcS1pTqbzXsQcLdW4H7nybc7D3AxpBIH02v9IvzxJuv8UacV90bcdNUk67Lr+QLTDvtAfqpSI5dkF/TgagtGQlRkXhy/v3SQt/8mwhQ6f2xCM1vhqKb57qBeUDQAAACCx888/X3/84x91xRVXaOLEicb3tbW16ayzztJvfvMbfec733Eaijbg6quv1oIFC3TllVfq5JNP1u67764xYyJ81wwAAAAAAAAAAAAAgAcKThQBgDAEejS+AoLRTAXaFPL7z9dwIoLR/JamCNhl3yLMqjyMfciXbOlK+GIK4P1nCvw0qbRKlWHnuxqhSL/65h/Sm8ZAcduBYiX5bLsKKGqxBKNRcO+vKEXww4vsaxECpyiub06me4irQEYbgtFKxLdxqmk8zdwMFrU+6dWfSM9fJ61/Ot62HVOlgz4l7ftBe9BsVLbnqMwLo7EFDBGMhjj2/Atp1G5S19qR6xbfLs14b/19DJ/3J2G6tjBPaxxpvnvguzAAAAA0uSVLljjd/+TJk3XjjTfq3/7t3zR//ny99NJLWr16tbq6ujRx4kRNnTpVJ554onbeeefY+77mmmt0zTXXJG7bwQcfrOuvvz7x9gAAAAAAAAAAAAAAFIVgNADFyaLQA+VURNiMqUCbUBD/mQp2iii6H4xgNL+lCUhwGrpHmFVp+BrKOICQvfKKW4gaFm4VpUh/4D5pul9SEFsuSe4TrsZKtiCP3q1ujon0ogSY9Q4LTIgynmI+1ZxM9xBXgYw2jKPLw7dzZRxPe9ZO+KHWIy25U3rhS9IbL8XbduwsafaV0vT3SS3t2bWJYLT0bM/wCEZDHC3t0rSLpIVfH7lu5f3SluXSTnv3v3YZwNkyJnw5wWjlEgTSxuekLUulSW+V2nfZsS7Ndw/M3QAAAIBcVKtVHXPMMTrmmGOKbgoAAAAAAAAAAAAAAKVHMBoAPwWB9OL/Jy3+Xn8AyT7nSwdfJVU9CSNBOqbiPFtBX1qmAm1CQfznazhR1VAgWSMYzQupgtFchjQSZlUavl57tiNkr7Tijj3Cwq1Mxc6DDYx9TGOgKCFJ8EiC+0S1LftmSPb+10cwmreCCJ/54ePYKOMp5lPNqXdL+PIiwqvTjPuRL+/GqYa5mXftRKF6O6VFt0ovfrk/oCaOCYdKs/9J2vt8R8+0bc8ueMYQCcFoyNLMS8KD0RRIS74vzb6qzg4y+CEh01yNAOvy6O2UHj5PWvnL/tfVNum426SeTdLax6RFtyXfN3M3AAAAAAAAAAAAAAAAAAAAlAzBaAD8EwTSgs9Jz39hx7INz0obfi+99QdSJYMCERSsgGA0U4F2jWIQrwWBudDdFPSSl1ZDoZmtqBL5SRWM5jL4ijCr0igixDMOQvbKK+7YIyzcKkqR/sDYxzQGoiC2XJLcJ1wFFFWqUnWUVOsauY6Ce39FCUMcMY6N0O8IWWw+G18wrytijkYw4LiqPwAAIABJREFUWol4NucxjaeZm0HqD6D5w7ekl74qbXs93ra7HSe95Wppz79w+xzbNjelH0fT12leZ/pBBMBklyOk8W+RNj43ct2i26SDr3zzmuDwuY0pGM3W1+GX57+4IxRN6p9vPfrebPbNcyAAAAAAAAAAAAAAAAAAAACUjCdV/QCakykcpk965f+OXL7sh9JL/+a2SciHsTivgGA0ikH8ZivkdBpeFYGpQJJgND/4GoxmKlxeMVfavNjdcRGfqQ8Vfe3ZjpC90oo79ggbw5iKnQcbCFQzhdQQDlsyCT7bLgOKWjvCl1Nw768kwWhRxlPMp5rPq/eY17kKZLRZMVda8Hlp5QP9wdrwl2/jVGOolGftRL661vZfU+ZMk575dLxQtClnSGc8IJ31qLTXOe5/3MMa2k0/jsT2DK9lVH7tQGOoVKSZl4Sv27RQWvt4vR2kb4PxhzyYp5XGwpvc7ZvnQAAAAAAAAAAAAAAAAAAAACgZgtEA+Gfbyv4itDBPf1Lq2Zxve5A9UzGstaAvJVMwBIX8frOFMRQdTtRCMJrX0hTdu7wWmYbfW5ZKP50p/ea90YJL4J7vwWimfupb4ARGiluIGjaGMd2DBhvoq4TDNoYkn22XAUWmcL6+re6OiXSSBKP1bIqwX64lTWfZf5nXFRGMJknP/bP0wBnS7y5nLOQz784NQcMYpHOF9NQn+wPRnvtnqXt99G2nnied9Zh0xv3SlNPcB6JtZ3l2QT+OpmtN+PJqu+NnQ2hY099rfm606LY3/8NhkKtxnkYwWmn0bHS375e+KnU73D8AAAAAAACA1Hr7Av36D4F+8Tw/CgYAAAAAAAAAgEQwGgAf1QsVeuPFfNoBd4xhMw5vS6YCbQr5/WYLbSmq6H4AwWh+s4Xq1eMy+KpegfTSO6WF33B3fMRQQIhnHMb7GsF63osbSBZ2riMFo1XN20vS0rvitQPFSvLZNgUDZ6GlI3x5L8Fo3oobjBYE0ron629DyGLz2bDAvK5W8FzolZulNb8ttg2w8CyoyTiup8igqWxeLD1xuTRnRn9gTO+WaNtVqtK0i6SzF0gn3yNNPNZtO01tMCEYLZqnPx2+PMp8CwgzZndpj3eEr1v6A/tz4yxCFY3Pq7vS7xvlt+kP0o8mSIu/X3RLAAAAAAAAAAyyaVug/54f6JJba9rjkzWd8pWarvox3/UAAAAAAAAAACARjAagUIZCj3qhQlEL1OAvU3Gey7AZUzAEhfx+s4VbuQyvisJUaFZ0GAD6+RqMFmX4/fLXHB4fkdVMIZ4FX3sGtIwKX16j2NV7WQSjVdujb28LxyLEqjySfLZdhsi2GoLR+uhT3opy7Rk8jt20MNp+CeRsPrsebV43aqK747buFO19K+931wYkFwT+BTWZnkH51k64sfFF6dH3S/fuJ73yrehjrWqbtO+l0jkvS2+9Q5pwiNt22lhDlOjHkfRuCl9OMBrSmHlx+PKejdKrc9weu8qzIkTw2/dJmxcV3QoAAAAAAAAAku55OtCkT9T0lzfX9L3fBlr7ZonE08ul5ev4QScAAAAAAAAAAAhGA+CfekUa9YLTUAKmYDSHYTOmYAgK+f1mC3CwBb1I0uFfDl9+0KeSt2cwU5Ek1yg/pApGczhEbokQZrRlibvjIzpTH/ImGM10DaLY1Xtxxx7VtpHLKpXo16q2ceZ1656M1xYUJ8lnO6zvZMVYcN/t7phIJ8q1Z/A4dv0z0fZL0HTzGTvLvG787PT7n3pe+PIDroi2fffG9G1A9lzfHw65NsFGBKM1pXXzpV+/W/rZbGnJf0Z/dtAyRjrgY9K5i6Rjvy3tbLkW5soQjkY/jsY0p9q2Kt92oLHs9U6pfZfwdYtu7w8LDWULO4yI59WIatmPim4BAAAAAAAAAElH7CN1G/7s4h/u4vseAAAAAAAAAAAIRgPgn3pF/xRxlJ+xOM/hbckUjEYhv99qlgLVeuFEU88dGdpRaZH2fnf6dklSlUIzr6UKRnMYfGXqN/CPMRjNkymUMZSIYDTv1WKOPVrGhC+f8X7zNnu8Y8d/736m+X29W+K1BcVJ8tkeNTn7dgwwBdTG7d/ITxAlGK1z0H9HHNNyzpuPbZydRSDjwVdKrWOHLtv/o1LHPtG2rzEf81KW8+Th/aw6Ktk83zSuJ1CqMa16WJr3Dmnu0dLyH0syBRMN0zZemn21dN5S6agbpI6pTpsZG/04HdO1afZn8m0HGkvLaGnaBeHrVt4ndb7m7tg8K0JUCz5XdAsAAAAAAAAASJq2W0WHGb5+mvOsVP27Ph16TZ8+cHtNP1sQqFaL+B0XAAAAAAAAAAANwpOqfgBNqVIJX16vWJLQofIzFee5DJshvKGcbEX3prC7AeMOkE65V9p5v/7XO02T3voDaeKx2bSthWA0r6UpAnYZjNZqCDiCh0z3Kof9Iw5TsSvXIP/FDWU13W+O+Ko08YTwdQdfueO/J51k3jf9pTzqhUeHGT0x+3YMIHS4fGpRgtG2hf+3TZTANTQW0+d8vw9ns/+Jx0ln/kY66JPS9PdKx39POuprUoth7DMc9zY/ZXVe2neVTvzRjnn+uAOlU/+fNP7gBDszPJc0zQNQPkEgvfY/0i9Pku4/RVpxX/RtR02SDruuPxDtsC9Ioye5a2caBKOlY7o2TXprvu1A45lxSfjyoCa9/qvwdabvy+IwjZcYH2E4X374AQAAAAAAAIDeeZj9+fBzr0m3/ibQO2+q6Yq7AwUB4WgAAAAAAAAAgOZRJ1EEAApQ79fr+XX7BlBAMBrhDeVkOz9Rwon2OFN650Kpe4PUNj6bArMBBKP5zRaqV4/La1ELwWilYepDvgSjmYpdGSf5L6tgtFG7Smc+Ir3+gPTs1dK6J6V9PyjNulTa9agd76u2SKMnS9tWjdwH96zyqHXHe/++H3TTjgHVtvDlhA77K3YwWmfE/XLOm47pPlYvuDqOXQ6VdvnK0GWmUNjhkgRJwr1aRmOOSlWaem7/v55NUtvO6fYVhkKC8gtq0vIfS89fJ61/Ot62HVOlgz7VP5Zq7XDTvkyZnl/Qj+sKauYxtmkOBkS12zH94Z1vvDRyncvgQuPzasZHGC7D70kAAAAAAAAApHLuYRV94WfRvtv5xrxAHzm1ogP3cNwoAAAAAAAAAAA8QTAaAP/UC/QgwKH8jMU/DsOIqoZbHoX8frOFW8UJJ2qfkL4tw5kKzWrb+gupswxhQ3ypgtEcBl9RXFse3gejUexaWnHHHrbrRqUi7X5G/z/rPgyhjFGDj1C8uKGHO89y044BhA6XT+xgtIjzbs5586kVNEYyhcIOl1UAF7KV1bO8wWFmaULRhu9rCIeBNXCr1iMtuVN64UvhYUQ2Y2dJs6+Upr9Paml30z4XjAF/9OO6bHNnnt0grUpFmnGx9OxV+R7XFCRLiD6G47sLAAAAAAAAwBtHTZMOmCK9/Hq09z+0MNCBe/CMDwAAAAAAAADQHBwm0ABAQvWKJQlGKz9TcZ6xKDUDhDeUk+38mMLu8mIqkgxq9CsfeBuMZggngn+KuFfFYSt2DaL9giQKEvcekcV1wxikx7i6NOKGHlYdhzmYxmGMgfzlKhgtyn7RWEyfc9fzM9PYZzjubX7K7LxkORYnUKph9HZKC78p3buf9Ngl8ULRJhwinXCXdM5L0r4fKFcomkTAXxq2IE2C0ZCFGe+L+QwpgyI24w95dHN/wzAUTQIAAAAAAAC+qFQq+p8roj9PXrvFYWMAAAAAAAAAAPCMJ1X9AJqT4Q/v6xVL2oqWUBIEoyGimiXcymV4VRS2IkmK8YuXptjPh2A0W99HPkzhekVfewa0WMJBCKnxWy1uMFoGRfmmkCzuV+VRixmM1uo4iNM0tub6468gwrkZPNeOOu9mPtV8jGMkx8FotrHPYNzb/JTVeclyLG56BkVwTHn0bJJe+Ir00xnSkx+RtiyNvu1ux0mn3Cv9+bPS9AukqifzvNjox4nZrkuuQ4bRHDr2kqa8Ld9j2oJka935tQP+8+WHHwAAAAAAAABIkqZPrOj1r1Y1fbf6712/1X17AAAAAAAAAADwheOKNQBIoK9O0T9FruVnKs5zWYxRNYU3UMjvNVvQguvC+3psRZJ926S2nfNrC0YyBTZE4vBaFDXgqNYlVTvctQP1+R6MZi123Sa1tOfXFsQTN0Qoi2A00z4IHC6PenOk4VyHOTC2Lp8o52bwXDvqvJtz3nxM9zHXYyTb2Gcwnhn5KbNgtCznaoYfbDCF+cMfXWull78uLfx3qXt9vG2nnCG95Wpp8qlSxdQHSoSAv+Rs16Us5mCAJM28RFr5i4hvzuCaZAuS7euib2OQBrgHAgAAAAAAAA1m0s4VLbq+RUvWBHpllfSub9a0NeQ3LzYQjAYAAAAAAAAAaCIEowHwT88G+3qKXMvPWJznMIzIFKIVN5wE+bKFWxUdTmQrJOM6Vbw0wWguQxpbxkR7X982qZVgtEIVca+Kw3oN6pLa8msKYoobIhT1upFkH72d6feNfNRiBqO5LnhnbF0+QU/99wwJRot4fYiyXzQW033MFJiYFYLRys3HYDQCpcqnc4X04lelV74l9W6Jt+3U86SDr5ImHuumbUUxfibox3URjIY8TH2X1DZO6nkjn+PVfV49Pp92oAQIRgMAAAAAAAB8NX1iRdMnSn99XEXffjgYsX7D1pHLAAAAAAAAAABoVASjAShQwj+8p8i1/EyBRS7DiExF2nHDSZAvW7iG68L7eghG81uqYDSHhWFxgtFQLOO9quBQxgG2cJC4AUrIV9zgqGoGRfmme1aNa00p1Pri39cIRsNwtQgBZrXu/v5WbYk+FmE+1XyMYyTH87OW9mjv497mp8zOSw7BaKKQwDubF0svfFladGu8uU6lKu1zgTT7SmnCIe7aVyjD8wsC/uojGA15aB0j7fMe6Y+31H9vFs8jeVaEqFx+FwcAAAAAAAAgExMMv6u7fmu+7QAAAAAAAAAAoEgEowEoHwo4ys9UnOeyGIPwhnKyhYAUHU5kK5KkGL94aYLRXIpaXEsfKp7vwWgtlmLXPsZKXos79siiKN+0D0IYy6HWHX8b12EOhA6XT5RgNKl/vl3tiH59YD7VfEzn3PUYyRb0MRj3Nj9ldV6yfG5k2heBUv7Y+KL0/PXS0jvjzfGrbdKMS6SDPy3tPMtZ87xAP06OYDTkZebF0YLRsmB9VsQYCYO4/GEQAAAAAAAAAJnYxRCMtoFgNAAAAAAAAABAEyEYDUD5UMDRAEzBaA4LqQlGK6eaLRit4GGMrUiS61TxfC0CbhkT7X30oeIVEeIZhy0chBBZv8UNjiIYDUk+067DHBhbl0/UYLS+bVJrjGC0qPtF4zDdx0yBiVmxBX0Mxr3NT5kFo2X53IhAKW+tmy89f520/CeSgujbtYyRZl0mHfSPUsdUZ83zCsFoydkC6aOGcQJRTDxBGjtL2vxKnTdmEFRVtf2QB8+KvBfEuOel5snzTQAAAAAAAABGpmC09QSjAQAAAAAAAACaCMFoAIqT9BfJKXItP2NxnsNijGpb+PI+CoK8ZgvXcBmkF4WtSJLrVPECS6hekaIG1dCHimfqQ0VfewYQzlhecYOjogYqJtlHX2f6fcO9JONV12EOpgAk+pS/ghjBaFL0c0kYXvMxjpEcP2aOel3rfM1tO5BMZsFoGT43Mj2XJFCqOKse7g9EW3FfvO3axkv7/710wBXS6Elu2uYt02ciz3CdklrzePjy6qjk31sAYSoVaebF0oLPuj+WLUiW70H8l+fzbK5zAAAAAAAAgPd26ago7DuftZulIAhU4TkfAAAAAAAAAKAJ8HPAAMqHsI/yMxWZZlngOpwpvGHpXVLN0wAl2IuBig4nqraai/+5ThXP22C0iAFH9KHieR+MRrFradXiBqNFDFRMsg+uNeVQSxKM1p59OwYzjYGW/1iqRQzgQr6inpfaQDBaxOtD3Gsays8Uhud6jBQn8HHjS+7agWR8DEYzfjVCMFqugkB67X+kX54k3X9KvFC0UZOkw66TzlsqHfaFJgxFk/kzQcCf3bY10rNXha+zzbWBpGa8X1K9ArUMCtgI0S+3XK/dFEwCAAAAAAAAvpsyLnz5G9ukVZvybQsAAAAAAAAAAEUhGA1A+fR1Ft0CpFZAMJopvEGS1j7h7rhIx1R0L/kRTkTQjL8IRkNaxhBPD649kj30aNvr+bUD8W14Nt77swhGqxr2sfy/pV7G1t574+X427gORqu2mdetesjtsZFM1GC0vpjBaFuWjly29TVp4TekJ/9Beu6L0hrmWw3FNEczhZFnJU5Qzas/cdcOJFPLan6T4XMj0zOo136e3TFgFtSkZT+S5h4lPXi2tPqR6Nt2TJWO+pp03hJp9lVS+3hnzfSe8VkqwWhWtgC+njfyaweax077SFNOc3+cSquMgVdJAreRsxyv3bVu6ZVbpF+eLP3XBOmZq7j+AQAAAAAAAJ45aA/zuhdey68dAAAAAAAAAAAUiWA0AOWzZXHRLUBam03nsKBgtJe+6u64SGfFL8KXV6pSxVDklSdTWE1mRd9IzNdgtDGWv1YZjBDQ4pn6kMsQzzgqVXMw0a//l/TGwnzbg2jWPim9+JV420QNVLTuwxKu9tA5Us3TayakjS9K886Kv12cAKEkbGPr5693e2wkEzcYLep4dusy6f7TpO4N/a9X/1b6f/tLT/69tPDr0oLPSL88Xvrjd+O3GX4y3TNch8dWY1zXTPNIFCer4Ocs+5lpXL/iPstzK6RW65EW3S79bLb0yF9K65+Ovu3YWdKx/yG984/SAf8gtXa4a2dpGPqxKegb/Tb9oegWoBnNuNj9MSoV81yQH2HwX57Ps7vXS0/8nbT611LPRumFL0n/NV56g+sjAAAAAAAA4ItJO1c0aefwdc+/FuTbGAAAAAAAAAAACuJJVT+A5pQw1OiNl/v/aB/lVOuRNiwIX+cybKZqCW947efujot0Xrk5fLktjCNPpqAZCs2K52swWtTCbYLRimcMRnMc+hGHLSBk/hX5tQPR/e7y+NvYQs0i78MSrvb6A9Lax9MfA268+OVk28UJEEq0f8tY7PUH3B4byQS90d43MI6NM55d9aD0+Af7//uJv5N6tww7dk166uNSX3f0fcJfpr7keo5mCoQNs+Y37tqBZDILRsvwuZGtz756T3bHQb/eTmnhN6V795Meu0R646Xo2044RDrhLumcl6R9PyC1tDtrZumYPhMEo9n5+swIjW2fd0utY83rs/oRkKrphzy6stk/3PHh2v3kR4puAQAAAAAAAIBB9p8cvnzlG/m2AwAAAAAAAACAohCMBqCc1v6u6BYgqQ3Pmde1jXN3XFvBqy8hWxipfdfw5TVPQhVMhWYEoxUvavjHcLuflW07wuz/9/XfU+tx3w7YGYPRPLpnmK6RkrT6kfzagWh6t0jr5sffbswe6Y9db4z1/PXpjwE3Ft2WbLs2S8F9Fny6FiKaqGOL7cFoMUNa//RTaetr0kbDfK/njWTXQPinqDFSnLCQKae7aweSyWp+k1cw2lOfyO44za5nk/TCV6SfzugPW9myNPq2ux0nnXKv9OfPStMvkKoehVT7wviZ8CBcx2e2Z0aTT86vHWgurTtJ+5zv/jgthpDsPoLRvOdDMNrKX0q9W4tuBQAAAAAAAIA37WR45NvrweNEAAAAAAAAAADyQDAagHJa83jRLUBS3evM6/b8c3fHrVoKXm3rUCxT8XSLIZAsb6Z2EIxWPFNgg02lKu3/4ezbMpwtzGpA0mA3ZMd0Dny6Z0w5zbyud7MUBPm1BfX1bJYU85yMntwfCJHWpBPs69c/lf4YKEZrSADaLkdK7bu4PS7BaOUTNZRo4P4Xdzxb65E2LLC/p29LvH3CT6YxUiWHwKKx+0Z7X8sYt+1AfJnNbzL8OsOncX0j6lorLbhGmjNNeubT0rbXo2875QzpjAeksx6V9jonXjBi0zF8JnwI1/GZ7ZnRnn+RXzvQfGZcYlmZ0bWuagpG43m195I8z3ahZ2PRLQAAAAAAAADwpjbD1/C9njxOBAAAAAAAAADANYLRABQnTVHbWoLRSstWkL/bMe6OawtvyKOAG8nUDAVbR30933aYEIzmr1rEwvsDPyFNOETa4x3SST+Wpp7ntl1StGC/qO2HO6Zz4FMY0BFftq+nGN4vpnvagNadhr4ePVk65WdSNYNxyq5H13kDYROltOc50qFfGLqs2iYdco37YxMmUz5BxGC0WsJgNKl+8BHjm8ZgOo95XBfe8rlo7+vrctsOxJfV57+S4dcZPo3rG0nnCunpT/UHoj13rdS9Pvq2e50rnfWYdMb9/SHQBKLVZ/r/iLmgne2adOAn8msHms/kk6Sdpoevq7ZncwzTc8ca4yPv+XLtZt4GAAAAAAAAeKPV8PVoD8FoAAAAAAAAAIAmQfUPgHJa+7gUBBTIlZGpWH54GEjWrMFo3A69ZQpkGDUx33aYEIzmr3rBHAOO/KrbdoSpjqr/nqjthzumc+BTGNDoydLbHpLuPyV8fdArifBPb/R2mte9a7nUvqu09AfSpoXSTtOkff5KGrVbNseuVKQJh0kbns1mf/DDPu+WZl4i7TxLevUeqXWsNO090sTj3B+b8XP52AKqBwtSBKPVC6NifNMYAsNfWOdxXWgdE+19BH/4J6vPf5bB9j6N6xvB5sXSC1+WFt0a7zNYqUr7XCDNvrI/tBzxGMMCPQnX8ZXpmjT1XVwb4FalKu37QWnBZ0auy+pHY1oMzx0JjvWfaZwtSQdfKb3wpXj7O+DjUuefpGU/jLcdY2kAAEaoVCozJB0uaU9JYyWtkLRU0qNBEPUXKZy0a1dJR0uaIWmC+n8FZ6OkVyX9LgiClUW1DQAAAEA2Wg1fj/byVRAAAAAAAAAAoEnwF/4AyqlrjbRlsTR2ZtEtQVymX5t3XURtK2qj4M1fpkCGlogF8a4Zg9Es4TdwL/D8rz5MBYqDERxSPNM58C0MqKXDvC7olRShvyEfNUvIUOtOUmuHtO/fuju+9d4ZuDsu3Km+OQ7Z6y/6/+V6bM+uhagvTjBarTfZWKR3S502ML5pCMYxUg5hrFXD/Gs4whz8k1kwmikEKsm+CBDOxMYXpeevl5beaQ90Ga7aJs24RDr40/0hr0jI8Jnw/blI0YoM+QQO+sf+oKoNC3Ysm3yytM97stm/abxkeyYBT1iu3XucFT8Ybe93SWNnxQ9G47sNAAC2q1Qq50v6hKTjDW9ZV6lU7pb0uSAI1uTUpoqk90j6iKQT67z3aUnfkvTdIODLZwAAAKCMWqsVhf1dV2+Mr+UAAAAAAAAAACgz/sofQIEq6TZf8zjBaGVk+nvLapvb49oK2yh681NQk2rd4etMgWR5MxWamQLdkA/fQzei9F/f/zc0g6KCPOOyBTrQj/xiuzdEDXpJw5d7J7JT5Dn17VqI+qIGo9V6k49lezfb11N71xhM44s8AhOjXveYj/knq3FppsFo3MtSWTdfev46aflPFCtkt2WMNOuy/mCgjqnOmtc0TJ+JgOBjqyJDPoGW0dLbH5de+Q9p8yvShEOkaRdJLe0Z7d8QkN9HcKz3bKGWSZ4bVUcle27AWBoAAFUqlbGSbpF0QZ237irpckn/u1KpXBwEwX2O27W7pDslnRZxkyMk3Szp7yqVygVBELzirHFAA9i6daueeuop/eEPf9CaNWu0bds2jRkzRlOmTNH++++vI444Qu3t2czdli1bpm9/+9t66KGHtHDhQq1fv149PTu+x7n11lt1ySWXhG77xBNP6NZbb9Wjjz6q5cuXa+PGjarVdswnFi9erOnTp0uSTj31VD300EPb1wU8MwIAoHTaDF9d9PIbOQAAAAAAAACAJkH1DwC/veVz0rL/kt54ceS6tU9I0y/Mv01Ix1SQ77og1VbYRtGbn2zFWr6Eu5jaUaN4qFCB5z+HVzUUKA5GcEjxjEGenk2hbO2hH/mlr9O8Lo/7WtX2h/opA4tRjJYxxR2bMJnyCSIGowUOg9EI7GwMprF2HvPqyMFoBH94J7NxaYbBaL6N68ti1a+l578orYhZ6902Ttr/o9IBV0ijJ7lpWzMyhgVSDWNlupdxXUBeWkZLB/y9m32bnjsSduU/2zPt1gTz/5bRBKMBAJBApVJpkXS3pLOHrVot6WlJGyXtq/7QsYEvV6ZImlOpVN4WBMEjjto1SdI8SQcOW9XzZruWqn8yOFXSUZIGDwSOkjSvUqmcGATBUhftA8qqr69PP/zhD3Xrrbdq3rx56u01P8ccPXq03v72t+uDH/ygzjnnnMTHvOWWW/TRj35UXV3xnmP39vbqwx/+sG655ZbExwYAAOXTagpG8/xPZAEAAAAAAAAAyAp/5Q/Abx17SROPNQejoXwKC5qxFARS9OanogNkojC1g+KhYvkeBtUSIRiN4JDimc6Bb2FAtvbQj/xiujdUR0mVHILJ8jgG8lXkeIjxc/lEvSfUepOH/PZssq/3fYyGaEznMY8xUtTrXo1gNO9kNS7NMoDPt3G9z4JAWjFXev46aXXM+u5Rk6QDPy7t92Gpfbyb9jU1QzBaQDCalXG+z49noAEYf8iD8ZH3bNfuKD+0EbZNku1s38sAANAcvqShoWg9kj4h6dtBEHQPLKxUKgdL+g9Jx7+5aJSkeyqVyiFBEKxw0K4bNTIU7VuSPh8EwarBCyuVygRJ/0fSp7Vj4jhV0s2S3uGgbUApPfDAA7r88su1cOHCSO/ftm2b5syZozlz5ujoo4/WzTffrCOPPDLWMX/+85/rsssuUxAEsdt79dVXE4oGAEATajF8FdTLV0EAAAAAAAAAgCZB9Q8Av43ZS9r1GGnRbSPXbV2We3OQgaKCZmxFuBTD+skWLkYwGmx8D92oRui/vv9vaAaFBXnGZLuH0Y/8Yro3eHFPi//H98hBvUCLIvsOoRHerce7AAAgAElEQVTlU+uJ9r6gN/lYtrdOMFrUNsBfQSAFhp+ezmOMFPW610fwh3eyGpdWDH/5n2hfno3rfRTUpOU/7g9EW/90vG07pkoHfUra94NSa4eb9sH8mSAYza7IkE/ANdMPMjA+8p9pnC0lm/+3jJKqLVK1Ld5cjO82AABNrFKpzJR0xbDFfxkEwZzh7w2C4IVKpXKGpF9pRzjabpI+L+lDGbdruqSLhi2+PgiCfwp7fxAEGyRdValU/iTp64NWvb1SqRwbBMHjWbYPKKNrr71W11577YiAskqlooMOOkhTp07VbrvtptWrV2vZsmUjwtOefPJJHX/88brpppt06aWXRj7uVVddNeSYF110kT7wgQ9o7733Vltb2/blEydOHLLd66+/rhtvvHH76/b2dl155ZU6++yzNWnSJFWrO54RTZ06NXJ7AACA/9oMf57Ta3mcCAAAAAAAAABAI+Gv/AEUqFL/LWP2lHoMxdW17vDl8FtRhWe2ohKK3vxUIxgNCdU8/6sPU4HiYLYwR+TDeL/yLAzIFkJCMJpf+jrDl7eMybcdKI9694Ii+w5hG+UTxAlGM1yv6undXH/fKDfbZz+PMVKUgGHJPpdEMYxj62q8e0qmwWiejet9UuuRltwpvfAl6Y2X4m07dpY0+0pp+vv0/7N35mGyVPXBfk9Vr9OzL3fnLqz3sgUVRcBEEIOiohE3EpKoMaJGE4ggBpMP8YoGUZOg0cQVEp+AfqhB9CPKoiiCiBiQ5V7gwl2469zZZ7qn16rz/XG6Z+mZ6mWmp7t67u99nn6661TVqV8tfc6p5byFHVqa+IRpPP8T0lYrSSMln4Kw1Hi1l6R95H9KtYmsBdSphXsXdrRKMdoCzwcFQRAEYXnwcSA4Y/jm+aRoBbTWSaXUu4AngEKF/R6l1A1a6501jOvCouF+4BMVzPcl4L3AqUV5iRhNOKK5/PLLufHGG2eltbW1cfXVV3PJJZewfv36OfM899xz3HzzzXzuc58jnTbi6Uwmw6WXXkoikeDyyy8vu9xnnnmGxx9/fGr4da97Hf/1X/9VUcy33347mcz0c5LXXXcdH/nIRyqaVxAEQRCE5ibgcUsz68hLMAVBEARBEARBEARBEARBEIQjgxr2JBIEQVgComvM28zno5oH+QX/4LXfvPZzrSglRpNOb/6klFys0g7xS42I0fyJ36UblYj9/L4ORwJeQiK/yTRLxSOCPX/hVTf4QvZZgbBYqD/l6oJGHjul2taCP6n0/NnNLbwtmxUx2rKn1D6sRxup0nLPSS9tHEL1eLVLqz63r+HtDLkWNJdcEp79MvzwOHjoXdVJ0TpPgbNuhTc8Dce8R6RodcPjPyES29J4nu+LMFFYBni9kEHaR01AKQnxAtpAVv5YqPbagdzbEARBEI5QlFJR4K1FyZ8pN5/W+lng9hlJAeBPahgawNFFw3dprcs28LTWGvhhUfJxNYtKEJqQ//iP/5gjRXvFK17Btm3buPrqq+eVogEce+yxXHfddTz++OOcfPLJs8ZdccUV3HfffWWX/cgjj8wafutbi4uc2s973333obWe+giCIAiC0HwEPC4N5uRWkCAIgiAIgiAIgiAIgiAIgnCEIGI0QRD8iwpApE/EaMsNr47US90htdEduIXqKdUBxxcSGbw7cbvSeaih+F3WYnl0UJyJiEMaT6Pqq2opFY8cR/7C12I0wZeIGE2oJZWeP+tFiNFyZcRoIuxsfkr99/0kRnNF/OE7vOq0auuyhUhBPPPyWbu+kWQnYNtn4Y5N8MgHIbGn8nl7zoA/uAMu+B1svBgsEUvVFa//hIjRSuNVJkm5ICwHvK47iuzK/5Rsay+gfi1I8qoV0cqxIgiCIBy5vAZomTH8K611pcbwm4qGL6pNSFPEiob3VTHv3qLhrkXGIghNy7PPPsuHPvShWWlnnXUW//M//8O6desqyuP444/n3nvvZcuWLVNpruvyp3/6pwwODpact7+/f9Zwpctc7LyCIAiCIDQ3XmK0/SOQc0R8KgiCIAiCIAiCIAiCIAiCICx/RIwmCELjUKr0+Ohq07lLxGjLC6/O8Evd8axUpxK/SW4EQ0kxWrR+cZTCqxO3dB5qLH6XQdkViNFEHNJ4GlVfVUupeOQ48hdOcv70utVpZdregv8o9x8WMZpQDZWeP7uLEaNNlB7v9zaaUJ5S+7AeMqRKyz0nDVoeAvcVXnVa1WK0Gh5nci0I0kPw+LXwgw3w2FWQ6i87yxQrz4Pzfgrn/wrWXVj+Oq+wRHhtdxGjlcSrLVvLMkYQGoVX3SriWP9TUmq5gEc6CpK8attbXtevBEEQBGH589qi4fuqmPd+YObFjxcppVYuOqJpDhUNV1PBF087vMhYBKFpufLKK4nHp1/w0tnZyfe+9z1aW1urymfFihV897vfJRQKTaXt37+fT37ykyXnm7lsgGDQ43nIGs8rCIIgCEJzE/S4dfHoXgh9wOWln3L45Q65Ny4IgiAIgiAIgiAIgiAIgiAsX6T3jyAI/iW6xnx7idG0iNGaEq+O1EstmikllvCb5EYweAoZlHe5UG9EjOZP/C5rsSp4Vl3EIY2nUfVVtZQSOshx5C+86oa6ya3kIbimo5zIqpGiWL/XtcJcKj1/1rmFd4TPxkuPP3QPbP7bheUt+INGn1dXXGdqcywrn5w3Ct7t0qrFaDV8z4vf2vX1JHkQnv4n2PFvkEtUN+/aN8JJH4PeM5YmNqE6vP4TJeU6gmd9JsJEYTng9UIGR8RovqfUefZC2kCFMq3aawdyb0MQBEE4cjm5aPhXlc6otU4opZ4AXjQj+SSgCgN5Se4vGn5xFfO+pGj4N4uMRRCakqeffpof/ehHs9Kuv/56Vq1ataD8TjzxRK688ko+/elPT6V94xvf4Nprr6Wrq2veeVx34ddrFjNvLdi2bRtPPPEEQ0NDjIyMEIlE6OvrY8uWLZx66qmEwxW8HHAecrkcDz/8MDt37mRgYIB0Ok1fXx8bN27k7LPPJhJp4EuiBEEQBMEnBMq80+W3e+C1N7o8ea3Fxl55kZEgCIIgCIIgCIIgCIIgCIKw/JCn/AVB8C8FMZpXR1btmk8tO0UKS4+X4GGpRVclO5WUuXMsNIZSAhnlkxv4IkbzJ6WEDX7Aq4PiTPy+DkcCXvIGv3WULiV0EDGav2i4GK0Eyf2NjkCYj3L/4UYeO+XEaHu+A+vf7p82m1BetFfgmRvhhMsXtoyR/y09/sCd8Pg1cOrWheUvNJ6S59V1aCNVs4zhR6H3ZUsXi1AdnmK0KkUdIkZbHPFdsO0G2HkTuFUIcpQF698BJ10NnacsXXxC9XiK0USKXBKv+uxILBeE5Yflcd3RlevVvqeU1HIx97CqvXawUFG2IAiCIDQ/W4qGn6ty/ueZLUY7EfjpoiKa5l7gGeCE/PDvK6VO1Vo/XmompdRa4C0zkrLArTWKSRCaihtvvBE943pJb28v7373uxeV5+WXX85nP/tZsllz/yWRSPC1r32Nq666CoDdu3ezadMmz/nPPffcedNvuukmgJLxKY/7b7t27WLjxo1Tw+eccw4///nPp4Z1FdeM9u7dyw033MBtt91Gf7+35zEajXLuuefyzne+k7e85S3Ydvnzl+3bt3Pdddfxox/9iPHxcc983/jGN7J161aOP/74iuMWBEEQhOVGJdX3ZAaO/pjL3/6hIhqE1vxlYqWgJWSGlYJkBnIudERhPAnpHGQcCNmwrgtetVnR1ybP+QiCIAiCIAiCIAiCIAiCIAj+Qp7yFwShgZS5eday1nyXEma52coEM4J/aJRopmQHbpHr+RKvzlp+EMgUEDGaP/G7DKqSY9jv63Ak4CWn81tH6VLxDP4auotfBC80DK+OpdUKQRZMmbb3vjtg3RvrE4pQGeXqgkaWR+XEaA9cDKOPw+99qj7xCOWpVLqaPACPXbV0cTz5STjmLyG2fumWISwdpcqlegjHq5Et3nUGvOFpaD+h/LTC0uNVBlV9fl9LMVqZY9bN+U+KvFDGtsNT/wh7bilfh8/ECsKmd8GJV0HbsUsWnrAIPK9plpDrCN71mbw8Q1gOeF6vrkKIKTSIUmK0RbSBqm1vPfcVOPUTC1+eIAiCIDQhSqluoLso+YUqsyme/riFRzQbrbWrlPoLjGgtjLlA8l2l1Pla693zzaOUWgncDrTMSL5Oa32gVnEJQjPx4x//eNbwn//5nxMKhRaVZ19fHxdeeCHf//73Zy2nIEZrVrTWfOpTn+KTn/wkmUym7PTJZJI777yTO++8c46YrRjHcbjyyiv5whe+gOuWvn6VTCb5zne+w/e+9z0+97nPcdlll1W7KoIgCIKwLHhiX+Vi03++e3Evzulq0Xz/AxavPEHkaIIgCIIgCIIgCIIgCIIgCIJ/WCY9ewRBWJZE15hvEaMtLxolmuk+3XtcNZ1ChfrhJRfzkxjN8ojFS+om1Ae//6etCuotEaM1nkaJPKulVDyPfAiO/6v6xSKUxu/12mNXiRjNb5QTWVUjCKo1ldS12z4DW66CUMfSxyOUR2cbHcE0z30Nfu+TjY5CWAhuiePIb20kgOe/Di/6bKOjEMC7bV1tO6iW0qJyx6yTAqu1dstrBMO/hac+DXv/G6iiI4QdhWPfB1uugJZ1SxaeUAs8RDlaxGgl8RSj+bAuE4Rq8ZKvJ/fXNw6hetxSL/dZRBuo2vZWqt/UI/JCIUEQBOHIorNoeFJrnagyj8NFwzW9MK61flAp9QbgFqAPI157XCn1DeDHwB7Myf864DzgUqBnRhZfAeSi7AxyjmbfSKOjODJY1wUBu3H3tPbt28fu3btnpZ1//vk1yfv888+fJUZ76KGHyGazBIMlnnX0Mblcjosvvpjvfe97c8atWrWKU045hd7eXtLpNP39/fzud78jHo9XlHcymeSP/uiPuOuuu2alB4NBTjvtNNatW0c4HObQoUM8/PDDTE5OTsV0+eWXMzIywrXXXrvodRQEQRCEZuMlGxU/+N3ihGeVMjIJ7/2Wy/atFrbl3X5zXI2lQDXyuSVBEARBKCKZ0RwYhawDjgbXBVfDxh7oaFlYnZXKalwXoiH/13ta65Ixam22zwvDkMrC6g5zzeaFYbN+azogaIOVbwMk0prJDIRsaI/OXv9EWjM6Cd0xiAQhnYPBOPSPQyxk8g7aZj9obZaXc8HJ7xPHhUPj0BqGgGUuauYcyDhm2tFJaI/AizeArSCVg4NjMDgBqzshmYGJlIn70BhYCk5ZB2s7a7efMjlNOmfi2jNstsO6LhP/gVHzrTWsaDfrEQvPXW4mpwnaJqZsTjOegrH8O9Yd16x3LAQB22yH9ggEA2pqf2Uds/yADaGAv48/QRAEQRAEQRCEpUae8hcEwb9UJEYr/2ZCwWc0quPZUW+GX3mMKyedEBqDk5w/3UtG1gi8OhV5yW+E+lDpf3r925c2Di8qEXpKudR4GiXyrJaSHSM1ZMZESuQXvKSZ9arX1r4BDv7Ye/z4M5AahEhvfeIRyuNnSWbn75WfRjsw8iisPGfJwxEqwE/nzofuEjFas+KkvcdVIv+tBa3HQvy5yqYd/PXSxiJUjlfbutp2UC3FaOXyclIQbFIx2uH74alPwcGfVDdfsB2O/2s44TKI9C1NbEJt8ZLWiBitNF6S31qWMYLQKFqPmT99ch8kXoDY+vrGI1RBibJbWXD8h+DZf60+24UI+Seeh/bjqp9PEARBEJqX4gsAHg8qlKR4nrYFxuKJ1voepdQW4HLgEmBT/vflJWZ7GrhGa31breNRSq3ASNqqwaPBWn/2jcDRH5Pz53qw89MWGxt4+/GBBx6Yk3b66SVerlkFL3nJS2YNJ5NJHnvsMV760peybt06du3aNTXuX/7lX7jxxhunhm+99VZe/vKXz8mzt9dsrHPOOWcq7eKLL+bXv56+3j0z35msW7e4lxxcccUVc6Ror3vd67j22mt56UtfOmd613V56KGH+Pa3v83NN99cMu8PfvCDs6RoHR0dXHvttbznPe+hrW12kZlMJvnyl7/MP/zDP5BKmXvsW7du5YwzzuCCCy5Y4NoJgiAIQnNy+gZFVS9AWiTPHYbg+11OXQfpLDzTP/90loKWkHmno86H19sKtmWEJlkHwgEjRUnljChlfTd0RI0IJJGGgbiRffS2mumzDrRFjFwknjbzn3G04oa3KHpbIZmFyYwRr7RFYF2XQmtNKmukboNxM6+rzXiATM7E0BMzsVmWmSfnGEFLJGhiGU7AUMKsz6p2IyZ5YRj2j0IsbGLOOia9JWTkLLZl4pxIaXpbFas7oLPF5DeaNNuoIHtxXCNUCQfNekWCZl0Oj5v8bMtIT9rCZvp42myzeAo6WmDzKuiOiRBFEARhPh58XnPtHS73bC893dnHwNouRdYxgk/bUqSymkNjpg5J5Ux5nXNMORwKGPlWgaBtPq42ZXpvq6nXNKYu1Jh6J5GeFn31T8AJK0391NkCazsVsXxdNZaE/nEj7g9Ypi4IBUz9YCsYT00LxUYn4fiVZtzopKmTlJqWjOXc6fq4JWTyiwTNZzxlYspW8C7kcnS1QCJj1rOAlY/DL7SG4eKXKSxl4g3aRriWyeU/+d+WAssyAr2sY7ZjPK3Z0W/q/3iJxyTnY0UbrGw3++zgmMkzvcBHwCNBk89M1nVBX6tp44QD5ng9pk8xmX8seGOv2e/94zA6qUlmpsV0WQcOT5h13DVotsExfWacq818sbykLuuYbRgNwVAcJtJwxiZF0DbjtqyGaNAc2zp//A1MmPbQZAZWdShWtBmZ3lDcLCsaNNMVhIXpnDl+V3eYZR6egAOjmo29inDA/Bdslf+e+ck3hQ5PmGMeoNA6Umr6XeOWMulK5X/P+FbMTVvacWr+6a355ys5Tk2vW/E01Y6bE2uNxvldICk0H66rp87hCseX1hrHNeWCHHOCIAiCcGThs179giAIMyiI0VQpMVrWe5zgT7z2mbXEVVKgBWIbILFn7jg/SyeOZLzkYgvpyLNUiBjNn3h1cC3m+A8tbRxeVCKNkHKp8TRK5FktXh3hC2RHRYzmF3Ie/WgC0fosf8MfwyNlyr1cHBAxmm8oJclcVZs32S+Y1a+BQGv+mClBLlGfeITy+Kl9qn30JIxQHW6JJ34qkf/WgrUXwjP/XNm0XrJtof54ta2rPb+v6fWAMg9FeElt/YrWRoL71Kdh4JfVzRvug81/C8f9lZw7NBue54PSsbsknrJGn53vC8JC6D3Te9zAAyJG8zOlrmkrGzZ/GPb9ACb3Tqf3ngmD87wRaP07pn/bC7ju5Mi5vCAIgnDEUSxGW8hFgeILUUtlWy+cuFTSNe9B4FrgniWK5a+Ajy9R3oJQM/bt2zdreOXKlfT09NQk75NPPnne5b30pS8lEAiwcePGqfTOzs5Z061atWrW+GJaW6eLkUhk9nXRUvMtlLvuuosvfOELs9Kuv/56PvrRj3rOY1kWZ511FmeddRZbt26dE2eB2267jZtuumlqeMOGDdx3332e6xGNRrniiis488wzOe+880ilUmit+Zu/+RueeeYZLKvMMxKCIAiCsIz4g+PgpDXw1IH6LvfxfaXHu3quMKScQGTX4Pzpe0emfw8VXZp8pl/zn7/yfsZkppitEgpSj9qztM/BBCz44h8r3vdKaQcJgiDMZNeg5g1fdBmdLD/tA8/D7PK6dNldLLUqSDzBSKvGK7yC+PShmUMLry9m5+NNQZRVaXzVMDLPdvaTFA1Me+Tr99c/qMMT5lMLiqVoYF7ysG9kdtr9Oxa+ns8drmbaapazmG3vs4OpJizHdSpNpUK1+URySzFuqWR44ykjuJzMmLZ6d8xIDR13WlpZ7vtgXsxZ4HNvU6RzJt/WMHRGjQRxJGHmsZSph8ZT5rwmnRc+FtY9aBvJYSEOMBLPgQl45pAmkTGi54EJk09vK8TCakoUaSsjHUykNas6FBt7jUB62wFN1oFNvYpjVxjZZkfULKd/3IgSbWVEiCMJzYFRI/rMOuZcLZeXRIcC05LRcMDUKenctIQ6k8t/O2YZxWVqa14inZhx3rm2E/raTB7pnCk/07np34X5WsPTEu6p3xEjK52THoa2iJo7XwRiISPbFgRBEAShMchT/sKSoJTaBJwGrME87HUQ2AM8qLUWk5WQp8yJQMta822FvKeRw6n58OoMa5UQ4NWK4z4Aj/3d3PRKJUpCfWl2MZrW06+dEOpLpVKxvrOXNg4vrIDpzFaq7CklwxHqg2d91WSnUFo6xPsGL7mGVad6LdwNL/sKPPw+72n8JE4SStdnp36yfnHMhx2Cl34ZfvXnpaeTY8o/LHZfdL8Ejnkv/Ob9NQjmyLvZv2woKUarU3128t/D8MNG7FEOKYP8gy/FaGVoluNHu7D3+0aINvJodfO2rIMtH4Fj/tK8UEBoQjw6P8h5YGm8rsf4TYQuCAsh0gvtm2H86bnjBh6AjX9c/5iEyihZdlvQugnOfwj2fBviO2HlOXDURXDf640ctYAdmf1CkIW0n7zk/oIgCIJw5LCQC5hLftFTKfVe4J+BWIWznAXcBTyplHq/1rqCC2qCsPwYHh6eNdzV1VWzvCORCOFwmHR6+tp58fKaha1bt84afv/7319SilZMsfitgNZ6Vt6BQIA77rijIrlbQbh21VVXAfDcc89x++23c9FFF1UclyAIgiA0Oy1hxY8vs/g/P9D89GnNUV3w8QstbnlYc/OD8uxFte/lWxop2tKTc+ED/6U58xjNqetq/1y662osS5HJaYK2ESB0RMlLEipbntaanANPHYTdgxBPa9ojivaoETQMxY2wYEW7ESfYFrRHze9kFlZ3QHvUxLB3GLpiRhSxe9Dst64YrGo3wpt4Gjb1QEvIyCJSWSOkGIibY2I8CcOTMJHS9LUqzjoGOlpKr0cyoxlOmFiDtslDKSO7CNpGuBAOgFIKrTWuBrdIcFHJb8eFJ/eb70jQbOdUFjpbzIWFTF5w0RYxy48EjRRjNAk5x+QxGIeJFKxsNxKOVNaIIyIBM5+jzT4M2bCuy+xHjRlO5mURXS1mnJJ+DsIi0Fo3/Bj6xA91RVI0QRAEoT5obdoigLzXs0quvK0R53dey5wvvbHnn/OJuPePmk8pUtnZArppSq2P97jYHIlaQaymaJ1HstYagbYZ44rniwSlTS4IgiAIlSJP+Qs1RSn1VuDDgNcryYeVUt8BrtFae7z3RRDyRNeY71LCLFfEaE2Hl+ynHh3PvJYhAiJ/0sxiNLQpn+wSYkdh6ahEdrj6AlANfHuaHYFcwnt8pXI3YeloZH1VS5xKXhgv1AU/1GvHXgodJ8Hdr5h/vJe8TWgMpeqCji31i8OLTX8Gu74Fh+72nqZZpDJHAovZF+0nwKt/YaQ5yoaH31u7uITmolS7wgrXJ4ZwD7zqXhj6DUzsgI4TYejX8NvL5k4rZZB/8GpbN1SMVuZBDb8fP24Wdt8C266fX35TitZj4aS/g41/Jtctmh2v6xoiRiuNVztb2fWNQxCWir6z568bBsWD4WtKld2F8r5lDWz58Oxxf3A7bPsM9N8LLRvguPdD31nT4xci5JfrQ4IgCMKRR3GXiOgC8iieZ95uFgtFKfX3wHVFyY8AXwbuBw5guhmtAl4OXAqcm5/uZODnSqn3aK3/o5ZxCUIzUCwq8xJ4LZTOzk76+/unhoeGhmqafz14/PHHeeCB6XPGtrY2PvOZz9Qk75/97Gc8+eSTU8OXXHIJp556asXzf/CDH+Saa64hlTLnKXfccYeI0QRBEIQlQY+bNoNq725wJHNZ26X45rtmd5Q+bwu89mS44zF4+pCRNAVtI3GKhcyd0KE4jCWNPEopI1JK5yAUgHjKyLaE5uK0rS6v3mL2YzIDARtWtpljZCgOP3tGY1tGhLWhx8gD9o1MS7k25A/vnGs+WcdIuA6Ne0vmWkLTcq9MzhxLazrMuPGUyXsy4xWxH+R9JoZoEE5YBaOTRkKQSMOBMbN+YERilaBU9UI+P/OqzXBMnyKZAatwKyJkyolo0IjU2iJw+gZFNGj2dThgypuJNChgOKEJ2EZOt2sQoiEjfEvnzPQHx4xELhQwx4vjGmFKOAB9rWYPzRTNacxvR5v95LjmmG6LTM+rMMtQysQ5ljTLS+W7liWzZj+lsuZz3EozfTIzXfYl85KMglCut9UI8MBMl8yafFe0wYvXK1683iwjnjYiukKpfGjcbI+sY7adbUE6L6Cb/miSGfOfcbWJbWW7Wa+gbfJ3XHhivxH6jadMmT0yaY5ZxzXyvn2jZrktITO+IMzb0GO2Qzhotlkya7ahxixLY7ZDW8TkN5Y08a7pNLEOxk15ErLNfrItk98je6aPlZPzXfsKZUf/OGQcs91sZdKtvOiwI3+VrLCNCq4PpUy8kxmzXdoiZntEAmY+pfJCRmX+ky0hIwuxlNnug3EjA9zYY2SKL1qv+M9fLaM/pCAIgiAIvieRNp/+8eIxCxOt2da0TG2OUC2iiM2Sr80Wsc2WrzElXwsFRLQmCIIgLE+arFe/4FeUUq3A14CLy0zaDXwAuEgp9U6t9U+WPDihObGjEMzfNREx2vLCs+NZPcRoHp3bKpEoCfXHUyCzkOeQl4hSnbLdlHQwbhSVyA4b/b+3woCI0XyN1z6wmuwUykk2OgKhgNe+qHe91vVi73F+F4AcaZQ61/GLpLH3zNJiNOlM7R8W8/8+6m1GigZw7F9CYjc89alFBCMPJDUtpY4jq47nPnYYVrzCfADGn5l/OimD/INX27qhYrQy+LVd5KTg+W/C9hsgsaf89DPpPAVO/BisfxtYIoBaFngK36UnS0m8rhs12/m+IHjRezY8/4256aOPQ3YCgm31j0koj+f1ajXdY2Q+7DCcco35zDt+Ae0nv7aDBEEQBGHp8LUYTSn1KuCTRcnXAlu1ntMde3f+822l1KXAv3wJIP4AACAASURBVGP6odrAN5RSz2mta2XM/TJwW5XzHAP8oEbLFwRfoEq115uEe++9d9bwn/zJn9De3l6TvO++e/Z9xHe84x1Vzd/S0sLLXvYyfvGLXwBw//331yQuQRAEQQDQrguP/QL931+B+74Pb/pL1JVfanRYFaGU4u2nK95++sLzePQFzUuuk3tKzcY92+dLnfsczv7RuVM9eaD65RVLz7SeP2+/k8zCY3vnpqeq7Iq0nKRoAD99Gn76dCUrtcxWvGqWev0Xl//OwYXNd3Cs8mm9yo8D85QHlYoGx8o83h6f5/2dw4np/P/fE0f6cSkIgiAIQrPjuKZNNH+7aGGytVCgWKI2W6jWOo9QzXyreeeLhcG2mv8+iCAIgtD8yFP+wqJRStnAd4DXFY0aAB4FxjAPNr2Iaen/SuAHSqlXa61/Wa9YBZ9R6sGg6Nrp8SJGW1547bN6dDzzEkiIgMifeHVir2dH6HJYJWJxUhCszYOCQpVU8p9utBjNDpceX4ncTVhavPaBX2RElSIdGf2Dp/CzzvVaqfJHRHr+olRd4BdpQ7njV8ogf6D14gRRgaI+fX4SFQv1xZ3niTMwUrRGdv7yKoukDPIPnhKiKttB1U6/GPx2/GQnYMe/w9Ofh1R/dfP2nAEn/T2sfUNj/6vCEuCxP7V0YimJ1zWhZjvfFwQv+s6eP127MPgQrP7D+sYjVIhH2e0pwayQBYnR5PqQIAiCcMRR3A20RSkV01pX2I0TgBVFw7XsJv4pZp8A/ofW+hPlZtJaf1UpdRTwD/kkG7gRWIQ6YVb+h4HD1cyzHARSQvPR3d09a3hsrIqe3xUwOjr77168vGbgwQcfnDV8zjnn1CzvX/5y9qPB3d3d7N69u6o8Zkradu/ejeu6WNYiz5UEQRCEIxo9dAj+51voH30T9u+cHvGDr+NOJlAf+xoqUKLvQpOjXReGDnJabzuffFOMa+7Qy072JAiCIAiCIAiCIAhHIpkcDOe8ZLULk61FgzOEafMI1WLzithmiNZmzNMahpaQ3DMUBEEQqkee8hdqwfXMlqJlgQ8DX9VaT70jRCl1IvB14Mx8Uhi4XSl1itb6YL2CFZqEljXTv0uJ0bSI0ZoOL2FRPTqeeQkkRIzmT/wikClFqVj81on6SKIS6Vmj//flOvQ3Oj7Bu43RbB2lpSOjf/BLvaYsI7BxM3PHSd3lL0rVBX4pi0SM1hzo3OIEKcXtFj+1x4X64niI0Rp9TIgYzf94ta2rPXbqeawtRihZS9JD8MwX4dkvQGakunlXngcn/z2sOEeEaMsVL1mO9F4pjef1abu+cQjCUtF2HIT7ID0wd9zAAyJG8yuul7RxkWXTQsTW0o4WBEEQjjC01kNKqRGga0byemB7FdlsKBresejAAKXUWuDlRcllpWgzuB64Aig0Cl6ilDpVa/14LeJrZtZ1wc5Pi1ipHqzrKj/NUlIsKhsZqfIaWwlSqRSp1Oz2c09PT83yrxcHD85+dPekk06qWd579+6dNfzylxcXadXhui6jo6NNKaATBEEQfMTPvof+yj/MP+7uW9F334p+218DGoYPm/su0RiMDpjfXStQr/wj1JkX1CwkrTU8+yg89WuYjKOHD6G6VqJTCVQoAoGgiSHaCvFRaGmHzl7IpGBi1KS1dprrjLF2sAPgupBKwNgQemwIDuyEvTvgwC5ITQJwdWsHb1PreaTvVWRPOpvoOa9nMmcxGIeABeMpeHyvJhI0HZ1ftB5cDavaFbZlNodSpuP1QFwTtCESAEfDRApCNhyegMkMhAMQtCEWNt/7RkyH6FgY2iOQysFIvuP2//lBc9zrspTZHoIgCIJ/+MA5imsvVAzG4Z/u1uwd1gQs6IopgrYRcWjAcU0ZHrBgfTes7YSDYzAQN9OcsBLWdiqCARhPQjwNg3FNOgepLNiWeZOBUqY+UMrkFQtDOgs/f9bUk7YFqazm0Dj0tZphS4FtKQI2rGiHFW0m/3QWAjb0tprYfvQ7TTQEK9sVHVH4zW5NNAhvOk2xvluRdUz9e2jM5NvXZmIIWGbYcaE9qmiLmLo3HIDVHeb3YNzUz1lnOibHhXQOBiY0QVsRDZnfh8ZNjB1RRSxk1jEcgIwDyYzZXp0t0BOD4UmIp0z8hW0TC0/HpLUZt6INklkTQ9A2bYGgDaGAme7J/TAwYeZtCUE0ZPIfnYSca6bV2sR/y8Oae7ZrhuJm31oKOqMmn3DA5BkKmHZJKKBwXIinNcmM2baRINi2mW9jDxzTB7GworfVLKM7ZrZLIm2W3R4x+6uw3caTsHdEM5wwca3uMHkentBkcmYZfW2m3dOef/QtYJvjJ5k1271/HJ46oIkEzfZZ3aEIBczynzus2T9qYvjWrzRDCThuBXS1wIYehaWgf1xj5dd3XZci50LOKRwDcFQ3xEJmOVnHHAdtEbMPhxNmfTqiZhtNpOCxvZqHd8GhcRO3paCn1eSRccyx7GpIZOD4FdAZUwzHNWNJk3/OnW7/hQMm/6EErGjVtEYUEymz3FQODoyabfmqE6b/m1MfPXu4sP27Wqb1PVoX/c4fY5oZv4u/fTJOM//0giAIfiOZNZ/DE/ON9Sq4vAs0pYolarOFarE58rXCeOU5XyggsjVBEITljk960grNilLqaOCyouS3aa1/UDyt1nqbUuo84F6m5Wg9wMeB9y9poELzEZ0hRlMlxGiuiNGaDtej41kpAV6t8OpA4tXhRGgsXp1vygml6omI0fyJVzkzk0aLx+xw6fGVrIOwtHjWV012CiViNP/gtS8W0kF1sdhREaM1A6WEDX65aF/u+JUyyB8s9r8dKNrPixUTiayleXE9xGhWmbbtUuNVFkm95h+82tZVi9HqeKw1+vhJHoSn/wl2/Bvk5n11mzdr3wgnfQx6z1ia2AT/4CVGYxFC1COB5XK+LwheKAV9Z8G+ObdqYfCB+scjVIhH2e1Z1lfIQs7f5FxeEARBODLZDpw1Y/hYqhOjHT1PfrXgtKLhnVrrXZXOrLVOKKUeAs6dkXwGcMSL0QK2YmNvo6MQ6sHatWtnDR86dIihoaGaCMyeeuqpsstrBoaGhmYNd3XVzmZXnHctmJiYEDGaIAiCsDjO/2P4t6sh43H/G+C2L5bMQv+/m+FDN6DeUdyNpnp0Love+k742fdmpxd9LwnxMY7lCY6deAJ23giJt6I++hWIxirqUKxzORgfgmTcXJseGTDStY5e82x+Mg72CCQmIBSGjh4jcItEIZeDbGZK3kZyHCYGIZ3i6hMP82x2Jb9yNnOo92RWbd7EsSstOqNGsnFo3Ag0osFpWUosZKQdGiNp0Ri5x/5RIynJ5IxcI5R/7OrgmBGiHLtCsaLNSGgcDU8fhH2jmjUdipcfbZY3OmmEL4NxiATNtCHbSE3AiD0mMzCWNJ2yO6Jm+em88KUrZjx1BZnOSF7qclSXkYU42kw3lJfx/N9HNFt/JM/WCIIgVEuQLFfv/Dg9n9hGz/gIXwmGIBiCYBjiYzA5bn5n0+YZxnDUDA/sh5Y2kx6JmZfQFuyfw/0mcztg2g7hKERbIBQ14zt6INICI4chFMkvL8R7O3pNHsk4tLShNm6BjZtNXZnLwuggenwYUhr6C5YkDUz//nAgb0kayhnLVcCGkSH4wbCpZ7U2FQz572jMxHlgF/SugeFD0N5jrF9ODlYcZUSpuSxrXdesZ3s3tHWCZUMyYerrcBQS4zB0CBJjZl27VsDgAdj3nNker/wjs6zU5PQ2CrewEqC1HeLjRirrZDEKMMz2KnxCUTrau8w2beuEWIcRwSbjkE1zSiBk5k+Mm/bCxAhkUnTlsmZd27uNINbJcW0wzLWtHWYdQxGzXq5jpnNn/nbAcaAlBl0roWcVjMyIDUweKLOP4qP5/DTseMxsg2NOgfFh80mMm22glBHTKpV/ebll8rAsE3sgaI6LwjEUyBvPHCcfm8Nm1+GVuZzJN5UwMtxkHCyb82NtsO5YOOp4Pn/GOujsM/vIyZlPLgt9SdPeau+GFWvNcTYxYtZbKZjIx5PLoUcHYdew2eeZtFmP8WHoWwtdfSafkX7zUtEV7SZ+yzax2gEIKBgahtFBM3wwf8yOHDbrm0mb/R4Mm+PDts12SSXM+EiL+b+5rjlWUklIJ2Gvmt6GSpll9qwyyz3rdai+tWZ9Xcd8a40eGYDBg9CzEtW7xvwfC8dboRWti75n/Z4nrdrpZj0PXSKPUtPNM712NS7K/M0BjcJ1NRplhGpuPq0gVMuna62mZGxT06DQ+XnzJQauzuetFVrr6em0NmkwvXw9+/f08hQaPZ1XPs0sd/Z00zI4NXvczHjzy52afuZ3fvkzpyuOc/Z8am6ezIhz5jrM2H5m+ul8CmlMza/QloUVsAkph925XhI5m82hfgKWNsJES2FbCluBbSssy8gwrfzHthVXbPN+rrM7mKLLThEOaCzbJulYrAoniagsGRXG0ZBzNBuicaIB1+wzRzOSDTGci5JIQzAArrKxlSZsa1ZEUnQF0uQIEM1N0J4bIaMDZCbTuOkUTjCKG4zgpNOMpgOM2e1MEiHkpFin+2kJwZ7QBgZ1B0kVoT/XSjpnDqZowEEDm9rSqEAAhSadcWmxsqyMpNnUMk5YZwjbmmwmSzYYI6kihFSOaEDjBCL0xjSR9lYCTopQNm72w1A/dmqC5+Jt7E628mJnG2sy+4mPJ9keO4XDsY1sWhWkw0oRJkPYSRAeOUCEDOEghMMBtLJIBDuJuyHiToi4EyTuhJjIBc1v1/xOuCEmcoXxQSacEGktzxEuJVobEedEyohpi8aWmtNzTACHVjtDm5Wm1crQapvvoHIYcyKMu1GUbdETyrCqzWFdKM6G4DDtgTSJlhXE3TCZeJJuZ4icCmJForwwbrM5OkRrSLNvRHMwtJZwOEDOVeS0heO4ONrCsYM4KoDjanKOecFLKylaoxYHnQ72JyK0B7O84eVtvPsPgthWZX3BdGLc1IeFdkogBKOHzW87aOroQN7JkBg3v13H1LV2ABWOorWeur6jXdfU+WODpv4NRaC9y7SpEuOm3s5lYfVG094Y6YfJuKmb9z4Lh/aYunzL6Wb8yqNQsfbK1kVrM28wBJSX2OlczrQhtEZZFtpxYOgg9O81bYpA0GyDjm5YdxzKlpciC8KRgNTOwmL5ODDTZnTzfFK0AlrrpFLqXcATQCif/B6l1A1a651LF6bgT0o0XmaK0UoJs0SM1nx4Ch7qUCV5LaPRgiRhfrw6IS9WxFBLRIzmT3QFssNGCxHLySOkXGosunDJfx7qUV/VEimL/IOf6jU7Atk5V5DlePEbXsIGP5VD5Y5fOab8wWL3Q7F0yk/tcaG+OB4PhtdTVjXv8j2OSZ0zZamIbhqP1/lNteWJFSo/Ta1olBAkvgu2fxae/6a3jHA+lAXr3wEnXQ2dpyxdfILP8JDlaBGjlcTrupHXSzUEoRnpPXt+MdrEc/WPRagMz7K7EWI0OZcXBEEQjkieZLYY7Uzgh5XMqJSKAafOk18t6CwaPrSAPIrnER2YcERx1llnzUl75JFHeM1rXrPovB955JFZw9FolNNOK/YZNh+VSFAqJZOZ52Vdi0TLC3gEQRCERaLau9GvfDPc/e1F5aP/9Sr0w3cbCVgwBLE2I3XIZKCzx8gbCvKVvBRDx8dMR07LguHDRsTy9G9rtGY14KffRf/0uwDojl5YvQGOOj4vwQgaQcnooOlEOzpohBtLxPH5zxSBoOmgC/Cqt5mOvsm4EYeEIzA+Mi0dKUhCLJvjV61Hnfgy6F1txtkB07n2qDWolrap7LXW4ORYsTFnOgUnEzBuE0nG6c5mIBOm+7knzDqv2QSbTjQxpJN0h1voDmZZlxyGXbvMfu9eaeJKTcJY2khCsvlPtNUITYbywp10EhLjbOzqgw2bOS0EsG7Jtm29CFguOXeR17gFQRCq4NP9/8Ca7aXlpo2i7mey++a7L/zQwvPb8/Ts4Z/fvvC8asHggdnDowOVzzs2CAf3VL/M+Bjs3VH9fAthbIZofuQw7HseHvpJ/Y+jpSA1aT5Qfr8NHTTfzz1edt2XxbYpotCKkqeZlh/f2XgfD0dfNid9XXYfu7cfP88cQr3JEiBhxZiwWonnPxNWK4n8t0mLMWG1Ebdi86YnrNjUfBNWG46f+gAtQ3LYjDpRRh2Pl60XSABLdymjJHfshEtvcQnoLO06TpsbJ6aTREgzqaIcsvr4/czDdOpxAtkkvzf5v1wy9m263NEFLW9K7znzekqN0a2dRs6rLMhljCw2l4WDu6cnCoWnX06Qv2aj27rMdZ7C9ZvCd0H+O3MZeZkaWe/7TXrDZtQ7r0b94cVzxjmuZjIDbREjGR1PGel9MgPtUSPSH09BT8y8WGs+UlmNAkKBuffQhhMarY0MvyVkhPm2ZfLP5FenJWTSXA2hQF5UpzUTKYjlu+EcHoeV7UawKQjC/EhNKiwYpVQUeGtR8mfKzae1flYpdTvw9nxSAPgT4LraRig0NdEZb08UMdrywmuf1aOjstcyREDkT/wkkPFCxGj+pJL/dKP/9+WOY6nfGouXjAiaT6zRKKGDMBc/1Wtey5S6y1941VV+KocsEaM1BbUWo5Xb72VZjo8gHCF4SZrKSX+XmnLnZVZr/WIR5serfV21GK3ENcKqKVMW1bsOG9sOT/0j7LmlMtl3ASsIm94FJ14FbccuWXiCT1EiRlsQjXxxhyDUi9ZN86dnFvaglFAHlkraKGI0QRAEQaiUHwOXzhg+p4p5f5/Zz2A+qrXur0VQQHEDLraAPIovjsUXGIsgNCXr169n/fr1vPDCC1Npd911V03EaHffffes4TPOOINQqI4vd6gRvb2zfYnDw8OsXbvWY+rq8z5wwHRWjkQiTE5O1lS8JgiCIAgLRb3h3ehFitEAePhuz1FN/2TEWF6A5hdx28xOvD+9rapZvfaFDkXMfTUnB65/7q/1Rs+AjT/zHP++ka+RUC08FTmJntwgMT1JRoUYsHtZn92LjUPYTbMh+wIbs3uYtFoYsrtpcycI6BwBHAI6R1BnyakAe4LrWZnrp88ZZFK18HzoaE7IPEubGyeoM1jaRaOIW61kVRBH2bhYdDmj2OQYszrYFdqIRvGa+N2cnH6KoM4SIEeOAJNWCxkVosMZI6NCOMomo0IcCqxkd3AD98ZehYNNtzPMutx+2t1x1mQPENYZVuUOkVVBFJq41UpEp+h0xngudDRJFSWkM9g4pFSEVbl+VuX6sXFod8e5s/W13B89mwm7nZgbpzfq0umMMKDbcRzNsG4j6k5yWvpxOp1RYm4CR9mEdIZ2ZwJXWUTdJAcDqxgK9BJz41jaxd5wHFasFdvNYY0exhrYi51NYeFiawcL10xH0W/tYuNCIMjqwBjJRIaArXEjbWQDLdihEKHDO7FwGbU7Cegcw3YXw3Y3q3L9tLiTWLiEdIZgKMBgoBflOqBderKDOChSVhS7s4eIypHRNvvUCrI5TXtmiEzWJUmY29rfwuPhU0hYLbS4SVr0JBE3RX9gJQOBPlblDqG05s62C6o6bm2dw8UipDP0usPEnDgtOkmbM06rTuBiYWtnarsM2j2kVRiFxtIuFi6qoxsrGMTKplHZFNFcHEtBVgVIOTbKdQi6GSatKINWj1keWWztgOswYncR1mna3DgOFk9GTkZply5nhHZ3gg53nDZ3HJSF0i5t7gRB5TJutzOouhm0u7G0S1QnCeosI3YXhwKrFvQ/DpAjrHKELdd8qxwdKkHAzZLOap5Ux3jOe3J6G63uBG0kCekMVsAiSYS4asFysvRkB4joFONWO+lgjKy26Qyk6F6/mhUtDrHMKFZmEmXbWJaFApI6iKvBSifIpjKEQhYDVg/doTRHtyXJpTJsy61lx2Q7q9Uo4YBmV6qDDivJCmucdePPEHGTBNZuIKA0oWyCqJVh8vAQWlkETjubiZWbyWVztGRGUW4OtEbnP7ianAOj4xnCbopw2CblBnCwSLs20SC0tEdp7Wgh58BkBsbTCjfn8Mg+m10TUU7uGOfn/T10hh1yLsQzFrGJAwR1lqMzu/irkX/n/MQ9C9pfgiAIglBP7t3zWto2D89Jv2Ts1gZEI8xHkByd7hid7lhN8tNAWoXnCNXM8PTvmSK2uNVKXMWYsNuIq7nytbjVivZ6flTwNTkVZFh1MWx1zRn3w8gfmh9RoP1PuXzVPwGwJb2duNVKtzNCxE2ywhlgwO5ld2gjSms6XHO+vTN09FReR2X3YmsHR9nsDR4FwOnJRwjpDA42WilyBBmz23GwcZTN2ux+1mf3EtUpwjptzke0Q1aFmLRaGLPacZRNSoUZsbuJWzGyKkirmyCjgoR0FgLwwvHrUFozHOgB4NzEz3CwmbRiuFhopViffYHe3BDrsy9g4xDSGRSaiE4zZHezJ7iBcasNWzvsD67hsL2CDdk9HJXbTw6bnAqYDwFyTgDnmza5Bw7htPeRcyHnwKFxeL4Kf27QhlXt5n0GrgtjSSNNK54mGgSlIOdCoop3oAP0tkLAgsG4mb+Y1jC89iQjVTs0Zs6NbMtI2QrLSmRMHK5rfp+yFo5ZoTg0qtk1BPtH4NDnLWyRrAnLDHnKX1gMrwFaZgz/Smv9tNfERdzEtBgN4CJEjCbMJLpm+reyzGe+Dl1axDFNRyM7nnl1IKmmw6lQP7xkPn4So5USALjSeahhVCRGa/D/3i4jj2i0uO1Ip9T2b7aO0tKR0T941mtl3kixFHjVpVJ3+QsviYyfyqFy7TIpg/zBosVoRfs5sNhyq+kf/z1y8ZR8+lyMFhQxWsPxlH1WeX6vailGK0O96rDh38JTn4a9/01V5aMdhWPfB1uugJbmf1u4sEA8H2zxT8cNX+IpH/JRO1sQFkuwY/703Li51yYPxvkPL6nlYvfVQsTW8qIFQRAE4cjkJ0AS85g5wJlKqc0VPgf3rqLh/65hXAeKhk9QSrVorSeryOPFRcOHFhmTIDQdr33ta/nqV786Nfytb32L66+/nmBw4dcbBwYGuOOOO+YspxlZvXr1rOFt27Zxyimn1CTvlStXTonRUqkUL7zwAhs2bKhJ3oIgCIKwKF70Sjj1bHj8gUZHIjSSjD+fa1qV83Zt/37ifr506LI6RrM4guTocMenhkM6O3VbvM8Z5JT0U1wYv7PqfFcky/dsfn38x7w+/uOq8y7m2OzO2Qnb71tchvnHJ1oLv+NzT/F7nSEAOt0xjs7unptHGlanJ2YlBYGIk4SB4anhE3huzqynDDxVcahpFWJ3cAO2dtiY3YONYwR1booAOeJWKy3upBG+LVMG7R6eDJ9IjgCtbpyITk9JByJuiqhO0erGieokCRUzYkKdxqrg+Y9nQsdxd+w8RuwuVucOcW7iPo7J7lp4sDsWPmvFeB0+v6vDsgVBEARhmRDVKe7ffQ5vXncbg4E+AN48fjsfG/xMgyMTlgoFRHSaiJOeausvFhdFUkVnCdUK34ki+dqE1UqiaJppMdt0WtJqKb9goSFsD28BmBKcFXOQ1XPS5pv2kejpJZezN3gUD/HyBURYmp/Fzp2T9mjktKrz2RE+rvQEB5h7d70Ksg7sHSk/TXYR3dIHy7zCLJ6G7/5vdXn2j8M922efg+4fgfU9VQYnCD5HnvIXFkPxkxz3VTHv/ZjLuIVj8EVKqZU1fGOm0AzkEt7jWtbMHlZB0POoU10RozUdXoIHqw6dW706t3nFJDQWz073fhKjBcxxNV8nbxGBNA63grPLRovHynVIk3KpsZQ6PqwmO4WSjoz+wU/1mlcZJHWXv/CUyPioHCp3/Ipszx8sdj8UCxwX0rFeWB64Hq+0afQxUWr5Ug75A686rdp2UD2uHRVY6nbR4fvhqU/BwZ9UN1+wHY7/azjhMoj0LU1sQhPhIcvxkusIBs92tsdLNQShGfESo2kXcnFTnwj+wlPauMiyaSFia7k+JAiCIByBaK0nlVLfBf5sRvJHgXeXmk8pdTzw5hlJOeCWGob2ODACFF4ZHsnH+JVKZlZKvQFYW5T8y5pFJwhNwmWXXcbXvvY1tDadAgYGBrjpppu49NJLF5znjTfeSDY7/dxiLBbjve9976JjbQRnn302t91229Twfffdxzve8Y6a5H3WWWfx6KOPTg3fddddTbudBEEQhOWFUgq23oJ+x2ZIy/N1gr/YlN3Nxsxudoc2zhl3YqYSf7cg1IawznBCZrZtq82Nz/t7udLrDHHO5P0VTduqS/SPm4cTMjvmbF9BEARBEI4Mzkw+zL4dR/O7yKmszB1mXW5/o0MSmgwLTUxPEnMmWekcrkmeDtaULC1eJFcrlqiZ9NnytbjVSkLFmLDbiOe/sypUk9gEQaiOXYMiRhOWHz7qTSs0IScXDf+q0hm11gml1BPAi2YknwSIGO1IIllCvRotei7PCs7fAVfEaM2HV8czL2lZLfGSSDRakCTMj1cH9kZ3ui/GjpjOZMVI56HGUcl/utHiMTtceryUS42l1PFRj/qqlkhZ5A+09pbJNEKMViw5KiAiPX/hVRb5qRwqd/zm5JjyBYutC4rLjMWWW7r8GzEFn+J41WVl2rZLTaljUtpCjUe73pKmqsVodbxBvhTHjtZGhPbUp2Cgyj7I4T7Y/Ldw3F9ByEN2Ixx5KBGjLYhmaGcLwmIJdXqPy4yJGM2XeJTdXmV9pZS8n6KAec7PpA0tCIIgHLlcC1wMFMzs71JK/bfW+o75JlZKRYCbgJkXLL6htX6+1EKUUsUV8Lla6/vmm1Zr7eSFbTMtQtcrpR7QWj9ZZjnrgX8vSn5Aa32w1HyCsBw58cQTueCCC7jzzjun0j760Y/ypje9iZUrV1ad37Zt2/jsZz87K+3d73433d3di461Ebz61a+eNXzLLbdwww030NbWtui8X/Oa1/ClL31pavjrX/+6iNEEQRAE36B6VqHuGUVvfwR9963QxJW0ZAAAIABJREFUv3f2S3lzOdj/PHT2wbZfg1PBC3trybGnglIwOQGTccikjMQtGIZIC8RHIZuZnj7SAqlJM0+0FSIxsCywA9DaAUefhDrqOFh3LDg5OLwf/bVr6rtOQkUo4IuHLufC9bfPGXfJWC1d3IIgCIIgCIIgNIoADi9JPVp+QkGoEzYuHe44He54zfLMECwSqpnfiXnka4X0cvI1d7EvmRSEI4Cdg5pXnqAaHYYg1BR5yl9YDFuKhp+rcv7nmS1GOxH46aIiEpqLkmK01bOHreD804kYrfnw2mde0rJa4nXSo+t8s1qoDK/ONwEPmUujEDGa/6jkP93o/70lYjRfU2r7N1tHaRFd+YNSdYKXpGwp8ZKQSN3lL7RHu9lP5VA5oY2X6FaoL74To0k7p2nxknyWa9suNSJG8zelzr2qFqN5XB9cCmp57GgX9n4fnvo0jFT5IEvLOtjyETjmLyHQUruYhOWBpyxHxGgl8SqX5IEZYTkRLCHRzI4BR9UtFKFCvKSWixajlRDLhrogMzw3Xa4nCoIgCEcoWuudSqkbgStnJH9XKfVh4Kta6ynjgFJqC/B14KwZ0w4Bn1iC0LYCfwoULtR2Ag8qpT4GfFNrPTlzYqVUCPhj4HNAb1FeVy9BfILQFHz+85/nvvvuY3LS/GVGR0e56KKL+MlPfkJra2vF+QwMDPDWt76VTGZaQrJ69WquuaZ5pSInnXQSr3zlK/n5z38OwPj4OFdffTX/+q//uui8L7jgAo455hief944Ix9++GG++c1v8hd/8ReLzlsQBEEQaoXacjpqy+klp9Gui77yQvjNPfWJaeutqHMvKjuddhywLJQyHR11OgmhyNRwWVZvQP/TZUayttRYFrge10EjLRCOQs8qCEXg6d8ufTw+54LEXXx/79u5dPWXGAz00ZMb5LOHr+as5K8bHZogCIK/CUfhlDONSLRvjRGFatfUQeEoKhID24aWNpicQMfHjBg1lwXXQXWtABQ6k0K1dhi5qOtCIGjEo5mUkZamk6A1enQAsmlAmTpMKUjGYegQvPAM7HlmdnwdvRDOPy/V2QfdK8z9QKVMXYkyvwsflIk/k4JwC7R2QlcfKhSenk8p9NgQjI9AcgLiY0aMatkmFq1h7w7zu2cV7N9ptsEr3ggbN8PEKKCNcDWVNL9bWs16B8NmGU7OtINiHSaPzj4IhSGdgvgIdOfF845jpm3tgFgHqrXdbDet8y/U1fntNmiEruPDkMjLV4JhiLbA2LDZJx29qHXHmG3f0Wu2T/9ek38wZPZ1IGjSM2mTlsua9bZts31m/rZtGB00y06MTb/gd+rbNdsuFDHxR1vNsgYOwOB+GD4MG7fAinVm3Q/vN3nG2lGF9dfabDftguugJ0Zh6CC0dUIgZGS33SshYPaPsuzpGC3LxJlMQCQK7T3mWOnfi37+CXj2MXNcoc3+LXyUBYf3zj7OAkFYedS82x5lQXu32cfjI5BKmG2/Yq2JLxwxx1qkxaz/6ICJKdpqtkswbGJuaTX/o0zKbM+OXlRvvi/w2JCZPhCA7lVmmaGQOT7Ghsx+yqSm91t7t5m+EKPron/4Ddj+iDkWIjHIZcz/rqXNbMNQJL/dbBNfenK2NJgZ7eFC23hmG1lVOp2aPd1842a1vRc4XalllptuqfKteF2K56tDbEu9zvNNp5Q51iZGTPkVjppjMhw1//FC+ec607+nhnNFn/w0EyOmbA4ETfp8Lx4PhU0ZOD5slgfm/5mvh4jGTJk8ctjE1bsGYm1wcI/5nxWItZv/YvcK6Flt/p+TcfOfPLQHNmw2/8fEuPmvbzzRlAfBEBzeBz+fK22uiEJ9FgxPxz9zXCUvWw9FTJk2eNBsrwLRVujoMdsvGDLbpVBv9e81ZYvt0e+m1Dmz17iS59kLmGdB42ocd6XXDhaxnBDQrRRzXyszmf8MVpWf1pBSYSZ0lDgR4joy/ZsW4npmWpSEjpDNaXpSB7BzaYacGM+oDfxv5EVopYi5k7TqSRIqyoTVyqjdNWeZvbkBbFzGrHZiboIXZZ8kqDPY2iHgmm9bO9jKxVIwrDoYsToJkOP54DEcDK6eZ00EYWnZ5fHXEoRmxke9aYVmQinVDXPaIi9UmU3x9MctPCKhKUn1e48r7ujn1fFx580w9FDNQhLqwMSO+dPrIXjwWkZuEh79yNIvX6iOxJ75061FihhqjVdH7p03w/Bv6hqKkGf0ifLTNFrIUU4AMLlfyqVGkp1HdligHiLPWnLgTshNNDoKwfEQycDiBUMLwWuZB34snV/9xOiT86f7qRwqd/yOPCb1mR/waldXSvF+Xmy5Je2c5uXwL+ZPt30sRtt2A0RX1i8WYS5uiXOvRorRyj1QceBOyNXgrWfaNXmNP13dfK3Hwkl/Bxv/DOwSQhPhCMdDljP4a6lrS+F1zuMnAbEgLJZQCTHaU/8ILWvqF4tQGWPb509frLSx1EOMwbb5xWgD9y9tPfJ715sH1AVBEATBn/wdcBJwQX44CHwR+D9Kqf8FJoCjgRczu/dBBniz1vpgrQPSWu9TSl0C3AYUKtG2fFw3KKV+CxzAWLJXAacD81me/l5rfX+t4xOEZmHz5s188Ytf5D3vec9U2oMPPsgFF1zArbfeyrp168rmsWPHDt7ylrewfft0+92yLL71rW/R19e3JHHXi2uuuYbzzjtvavhLX/oSmzZt4oorrqho/rGxMcLhMJHI7Gu+gUCArVu3cskll0ylfeADH6Czs5OLLiove5nJPffcw9FHH83RRx9d1XyCIAiCUAuUZcENP4D/+U/0U3kxVTRm5AsFscP4MCQmTOfxsSHTsT0xAQP7zL3JQNBMGwgamUNHD+z43ewF2QHUp/4v6uzXVxaXPfs6mwpX94JO9YcXw9mvh0MvwM4nTcdxrc26ZFLoHb+D/c+bDvMdPSburhWozl7TOb8z/4m1mw7/yjK/hw9DZw+0dZltFGlBKYXO5YyELZMyHdaDIQiGUeG59431ru3w65+gD+9Dda9E73wKxgaNPCASM1KWaMzElkkZmYgdADtovlMJsx92PGYkJ37GDpjO/snZz62+Mf4jLtzxIw4E1rA6dxCL/D3uQNBIQQJB87ED5tgaHSgSgsygs89IS5Q1LWSolIJoINZhvgNBc413T5X3wAvMFCCEwmafFdJdxwgdCkRaoKXd7OOO7rxQKGr2aVsn9K01x2syAYMHpiUrrmOO533PLSwuQRCakze/D+vDX6hqlgVoR6qaThfqVdeFjh7TplgCFqA1aSiNjLeey67VsirJR7uukQ7lMhBtQwWa+xkY9eq3NzoEQagLOjUJgRAqEEAPHjRt0oJsMZkw51Iz6g6t9fS5lVJzzglnTsfAftN271pRuTy7VKwD++HALiN6jMbybfU206ZPjJtzkYK4UlkmXVlG5lnII5c1UriZYsvEGIwOmnPJjh6zDUIRc46TGIfWzqkyTWcz8Nzj0N4Fa46uyXoJzUcs/1ko2nWnxKAq2DcrfTKjsSwLSwHZDKGQBfQaAWe0BXT0/7N35+GWpXV96L/vqTo1dA1d1d3V88xMM2iDE6IQwAkjoBghqKHVaKIxN0aMEUwuiT5ouKKJCRi5EUGJKFeUSeMQEFAwDtgo0LTQDT0ATTc9VHfX0F3je/9Yp6rO2Wfa++xh7eHzeZ71VK111vDutd/zXfu8e+3fTtl05r2UenyhAOL8ljNF648eaQqj7rs0eehADt7xqfz+Xx3KnQc356qdhzM/dyIHj2/OgWOb88DR+Vy//+z87f492VxO5nidyyce3N3Ho4PGLV88kVXvMYcJNdl/4dCmPR3zh2uth3rcxxc75te4S5+ZV1b54OMdv9dMTL5RFHhY7cNt9Xhy42uGf3wGo40CMmtZrVDbF/6gmRhPa304fxTWKx5x9D65NK4m7YPS9/5lMzG+2ij4udq19L6/VtRzEqz2t1Eb1vuA9sHPuJ5Ng03b157v1bH79YtpMzfGhdFuffPo2kHvei6MNsICYff+RTtfxrDnicnjX5Fc/o8UDGF9q93Y88DHm4nejFMBYujXpm3NdfPkCh+Auu0to28PfRjiDUqrvRa7/2PdffnIRj35Z3KmpgsAjJda64lSynck+ZUkL1r0o/OTfOMqm30xyUuHWXSs1vr2Usrzk7whyeJvAdie5OnrbH4oyU/UWl87rPbBpPje7/3eXH/99Xnd6153etkHP/jBPP7xj88rXvGKfOd3fmcuu+yyZdvdfPPNedOb3pTXvOY1OXJk6RdivfrVr15SUGxSPetZz8rLXvay/PzP//zpZT/2Yz+WD3zgA3nlK1+ZpzzlKcu2OXnyZP7yL/8yv/Vbv5U3vvGN+ehHP5orr7xy2XoveclL8t73vje/+qu/miQ5evRoXvjCF+YlL3lJfvRHf3TFfSfJiRMn8tGPfjTvete78ta3vjU33nhj3ve+9ymMBkBryubNybd8b8q3fG9P29Xjx5JaU+ab9zpPfZD91P+bok4Hk/MuaaWARTlrV3L1Nc3U+bON7vTsc8/8f/OZ+5zK5s1NIbVu2nXV45KrHne6Df183L0eeehMMbDjx5MH701u+2TzgfyzdpwppnZq2jzfFLirtfmg/4H9TaGR7TubfTx8uPlQ9LGjpwvdZOv2pkDA7r3N/++7qzn4qUIBW7Y1xeCOH03uuDXZtr05zu5zUrZub/rC/Xcn93yhOfZFVyWHHkw5fjSX1toUBNi6vTnW9p0rFgA4XSRhoTjaqT63bL0TJ5p+d3iheMHe85vHfargwuGDTRu2bG8+3L1GEZ96YH9y+6eaPrzj7KYfbVk4d8eONudr83xy9OGUnWefbmdqTU4cX9bGWmuy/4vJ4QNNu87a1Vexg3rnbcnffaj5QrNjR5u2bdnWPCdbtyVbz0r2XZycd3FzDo481JznA/ubIg0njjUFGT7656m3f6p53stc817+pk1NoYcdu5PHf1my94Jm/VP97NS2Bx9oigRu2doUbjvyUHLk4abQxalibAf3JwcfTPbuS65+QtPegw8kB+5vttt9TvP8nDje9LmjDzdtmJtbaM/Cv4cPNNvVk822u/Y0heW2NEUIc86Fzf4euLcpZpE0+9u2PTlxMjl2pCleePJEctGVzT5Lac7JFz/X7P/Y0eYxPHy4KSZw+EBy1eObgoWb55u+cOhA8/NzL0h27mnO81xJjh1r9n3q92v/F1N/6780bT52pDne7nOaYiD7Lk45+9zUAwvFFE+cSDlrZ1Pk79wLlz7RRx9uzul5FzaP98F7m/mzFurGL/Sl3PXZpr0H7m+Kdmw768zzvlB4JOdf2pzbv/rjpiDj9e9vHtupfnj8WNM/6snmsaQkF13RFO3bu+9Mcb3tO5tz9eB9zbG2bGv2v21H87v38OFm+YkTzeM/+9zkysel7N2X+tmbkh27Uy5e+Nvn5ImmnQ/c0/zs7z6YPPFpTbvf89Yz56GU5rGee1Ezv3nzmd/HUzbPNwUFHz7cFCF56FBTdHLX3iZnjh5p+vauvc05S5rnfv8Xz+z//Eub/dz8sabgw1rmFvpQmTtz/k5lZq1N/6snm3Y8tMaXmq9UuHDnnqaPHTuanH9ZU1T0Rf9q7fa0oJSy9LoIQ1Lm5hayvZ9SMcColW1nnfn/eRct/eFZy78D59Rr4/X+diylNNfsASr7LmleR6zk1OuG9fZxqrjzKVu3NdM5K3wB9vyWZX8/lvktyeOe2m2TYUVlbm7FPlvm5rJj8a1U84s+H7F55WJlze/i0t/HsmVr8/dUkuzam12P2ZsXP6b79h07XvORzyYf+FTNHfcnO7Ym+3Yl9xxMDjyc3H0g2b092b0tufq8ZNt8ctt9yYdvrfnTTyXPflxy1Xklj74geeCh5Of/uOboieTYieTyc5LnPblk17ZmP3c92Gz/mAuTHVuS2+9L7j2UHD+RHDmeHD1ec/xksnVzsm2+ZPf2ZMvCLV/n7EjuPpjcek/NFeeWXLC72W7/4eTSvclr/6Tms/uTay5OHrkvOXdXySV7kpM1+fz+5PP7ax4+3vwpeuJkcuhIUpM8dDQ5d2eyb2dyyd6SLz5Yc+u9TbvO2ZE87sKSreVoNv/v38jmeryZcjybTv//xOnlZ9XD2VKPZf+mPXn0kZtSUnOyzOXiY3ekpGb/pnOS1Jx18nAOze3MgbmdOVq2ZC4nU1JTUnOo7EgtJVcdvSXb6sM5Urbm0NyOnMimbMqJfHHT+dleH8rFx+/I9pMP5ViZT03JWScPZ0uO5XDZnrs3n58Tmcu2+nAOzu3MiWzKyTKXvSf2p6Tm187+7nx4+1Oy7/g9ueD4XTmrHs6ukwdz9on7s60eycNla847cW/u3HxhDs3tyI6Th/K5zZfkZJnLkbI1O04eyomyKXtOPJCrjt2Sq47emid93/+d5BHddzyYAO7yZ6M6X1U/tIF9dG7T3avfNZRSzk/S69fvSfZJMDdGH/5nOEZR4MEHSqfDuBVGG7f20J16ot3jt1EIicHwQWkGrY3rSL9FjWiXHGLUlhVG8zqGDm33ibK5uYGunmy3HfSu17+Lpnl88NyvSK75yeSSf7h6sSvoVHyb10CtV/QXJs2WPcnDnd9RxcQZZjYZHwKAFdVaDyZ5cSnlbUleluQrV1n1viRvTfLKWuvdI2jX75dSHp/knyX5vqx/v9tdSd6c5LW11tuG3T6YFK997Wuzd+/evOpVr2qKLiQ5cOBAXv7yl+cVr3hFHv/4x+eyyy7L3r17c++99+a2227LJz/5yWX7mZ+fzy/+4i/mB3/wB0f9EIbm1a9+dW6//fb89m//9ull7373u/Pud787F198cZ74xCfm3HPPzZEjR3LnnXfmox/9aA4cONDVvn/5l385+/fvz9vf/vbTy97ylrfkLW95S/bt25cnP/nJOffcczM3N5cHH3wwd9xxR2688cY8/PDDA3+cADBqZfPS9zgXF3k6XSxFwZShKls7xkL37kuueGz3O7hgefHcdS0UAVtm0/bkqsctW1xOFRzae/6ZhYuLAKxWgKBzH1m9INrp9TZtas7B3lU+dtVlUYMkKbv2Jtd8xUqNaQocnLJl66IflebnK3wxWimlKYqwUmGEDSgXXpFceEX3G5wqTLH7nKXLL3lEX8X5psKAnpMlrnxcypc+Y81VBnreL3tU9+te8+WtPedrHXfZz17566n339MUSTvngnV//zfq1N/PnYUKa63JPXckn/l481mt8y5JzruoKey2RlHFFY9x+EBy9+ebInC79i4UVCtNsbuF/5dSmmOePNlkGQAATJn5zSVfflXy5VcN5i+Sf/MNA9nNWB231q2pv/WjTZHsKfDNB/9w4PssR74tyucwbXyalo3qLIy2katHZ2G05SWMe/dDSV45gP0wCnuvTfZfv3z5Sh+o3XzW8mVMl1F8kFohoumwecy+wWLc2kN39q33xdlDpt9MLtcSBm3zIP4M6vWYMmiitV2AaLH5PW23gFHozAwZQqe2x2xKSTbtSI539wEsxsj87jS3bdb11mxsXeP7MDbvSI4fWr58tevmrh5ueB2mC56dXPOK5IJ/oCAavZvbuv46dG+cXmfDIGzZqzDaNNjUZ9ZvO3/1n+24Itn/t/3tHwCmWK31bUneVkq5Ksm1SS5OsiPJnUluS/KhWuvRDex3wwMAtdb7kvxskp8tpVya5ClJLkqyJ80gywNJ7k7ykVrrzRs9Dky7n/7pn84znvGM/NAP/VBuuumm08trrbnhhhtyww03rLn9tddem9e//vV56lOfOuymjtSmTZvy1re+Nddcc01e9apX5dixY6d/dscdd+SOO+7Y8L7n5+fzO7/zO/m5n/u5vPKVr1xS8Ozuu+/Oe97znq72sWOH96gAAAAWK4uLKA7rGKvcz1JKaQo3dlG8cd1jnLWrq6KVpZREUTQAAJhZpZTUCy9Pbv9U200ZX5+9af11YML4OnkGpctPr/W9DdPkEd+38vIv/3+XLzvvq4fbFtq3bwTP8TnX+sDgNDjvaW23YKm2C2yxMY97WbvH128m085HJNuH8K1n/XqCusATa/djkm3DvylhGRk02cbpb6MdlzX9mOm154nJlo5vsd12frLr0e20h/E0DteV87+m7RbQq63nJXuekJz7Zd2tv/PqZPcaN0A+9bW9Lb/iRcnc/Mo/G4VLnpd8/V8kz35PcuGzFEVjY8ZtjGySbdrWfJELTJN9X9t2CxiEfrN+z5OT7St8GGXHlcnVq7xPCwAsUWu9pdb6O7XW/1Zr/U+11jfVWt+3kaJoA27X52qt76y1/vJCu3621vpLtdbfVhQN1vec5zwnn/jEJ/Ibv/Ebefazn53Nm9f+jumtW7fmW77lW/LOd74zH/7wh6euKNoppZS88pWvzCc/+cl8//d/f84555w119+5c2de8IIX5B3veEcuv/zydff94z/+47nlllvyEz/xE7niiivWbc+uXbvy3Oc+N6973evyhS98IV/2ZV2OJwMAAAAAADCdvvYFbbdgrFVF45hCpVa1qehdKeVJSf5u0aJ7a609faK/lPIvk/zXRYt+t9b6wj7b9R+S9FUZ4uMf/3iuueaafnZBt47en7znmcn9i7rSOU9NnvP+ZHPHt/s9cGPy3mf6dvtpdfmLkq9+S1JGUK/zhv+U/N3Lh38chuMx/zp5yi+03YqlDt6SvOdrk8Ofa7sldOuyb0+e/tbRZM5qTjycvP+bk7v+pL020JsylzztLU0BhXFz+PPJH3xJcuSetltCL8qm5Kt/M7n8H43+2MceTN77nOS+vx79senPtguT53wg2T1GRaluf1vyoRcl9WTbLaEX83uSbfuSA2t8E0jZnHzN25JLn7/8Z7f9f8mHXhw178k5T0me9d7lBfRG7e4/T973Dcnxg+22g+59+euTR/5AcscfJn/6/OTkGp8lLnPJV/3P5Mp/vPo6K72+Wa9/fuynko+NsMhwmWvGwK55eVN4Evp17EDyJ1+X3PuXbbdk8j35Z5NrfqLtVsBgeV9t8m09N3n2+/p/3fCZX0v+4nty+u+3Mpd81ZuTy16YvP+5ox+jfvHRdgvUzpAbbrghT3jCExYvekKt9Ya22gMApZRrknz81Hy/9+gdP348N920dIz7UY961LoFrmAlhw4dyt/8zd/k5ptvzt13352jR49m69atueCCC/LoRz861157bbZunb0v4zx58mSuv/76/P3f/33uueeeHDx4MDt27Mj555+fxz72sXnSk56U+fmNv76/5ZZbcv311+fuu+/O/v37Mzc3l127duXiiy/OYx/72DzqUY/Kpk2bBviI2iW3AAAAAAAA+lMPH0z99y9O/up/977x1u3Jlm3J9p3JvV9IThxvls/NNV90fuoz58ePDa7Bo7JzT3L5o1Oe9tyUl6qjMQruzxsdhdHYkFLK1Uk+vWjR4VrrjtXWX2UfP57k1YsW/Xqt9aV9tuv8JPt63OwRSd55akZhtBE7cm9zQ/7+65O9X5I86oeSzWetvO7BzyS3vDm598NJfOh+KszvSS58VnLVS5O5Ed7g87l3JZ9/d/LQHaM7Jv3Zui+56BubgkSltN2a5Q59NvnMm5oPYNcTbbeGxcqmZNsFSWpy4mhy/tcmV790PD54dfyh5NNvSL74geSO30vmtiX7ntZ2q1jJzkcml397cv7XtN2S1R2+I/nUf00+sfDy+oJnJ5tm78bsibHzkU1BtPOf3l4bjj3YZNDdH0pOPNReO+hO2dQUkb7qu5OdV7XdmuXu/lBy61uST/+P5jX+ub6tfXzNNX97n+pLn/m15It/2hQs37rvzLVj16OTy78j2fdVq+/qix9MbvvN5KZfaubPeWqy7fyFw8wnB25OHlg0nrvrUc3EdNi0Ldn39OTq70m27Gm7NY37P5bc+hvJ/R+Pon1j7KzLk8u+Lbno684su/evk9vemjx4Y5MjFz832XpeU3yzbO7+tfjRB5LPvDG578NNUbSrr0u27F17m8++vbmGfe4dyY7Lk92P7evhrWhuPtnzJclV35XseuTg989sO/pAMyZ19595Xb8R2y9OLnlecum3tN0SGI6Dn0k+8+vJfX8T76tNkrnknGuTK78r2T2gv6Huel9y++80769c9u3JBc9olp8ao777T5PjhwZzrPV87TtH+57gDHPjFQDjRmE0YNbJLQAAAAAAgP7VkyeT2z6ZfObjydnnJBdcnuy7JNm8JTn6cLJpc/Pv8aPJ/NZkx+7k5MmklJS5pvjZqTpLZYWaBfXwweSu25Pd5yR7z2/uu/vczcntn0wuuKIppPbgfcmhB5PU5OCDTTu27UgOH2imTfPJpk1NWzbPn2nTg/uTXXuSPfuSkyeST/xV6ic/khx6IJnf0rR385Zkfr6Z37I95aydTXtrTdl2VnL2ucm+i5vjbTsrOf+yZM95Kz4Whsf9eaOjMBobUko5N8k9HYt31lq7vmO6lPKaJC9btOi/1lr/1SDa14tB33QFAAAAAAAAANAWN14BMG4URgNmndwCAAAAAACA6eD+vNGZa7sBTKZa671J9ncsvrzH3VzRMX/TimsBAAAAAAAAAAAAAAAAAAAAAAAw9RRGox83dsw/ssftr15nfwAAAAAAAAAAAAAAAAAAAAAAAMwIhdHox8c75r+q2w1LKTuSPGmd/QEAAAAAAAAAAAAAAAAAAAAAADAjFEajH3/YMf/MHrb9miSbF81/pNZ6V98tAgAAAAAAAAAAAAAAAAAAAAAAYCIpjEY//ijJQ4vmv6qU8tgut72uY/7tA2kRAAAAAAAAAAAAAAAAAAAAAAAAE0lhNDas1no4yds6Fv/b9bYrpTw6ybcuWnQ8yVsG2DQAAAAAAAAAAAAAAAAAAAAAAAAmjMJo9Os/JDm2aP66UsrzVlu5lLItyRuTbFm0+A211k8Pp3kAAAAAAAAAAAAAAAAAAAAAAABMAoWi+bsXAAAgAElEQVTR6Eut9TNJfrFj8dtKKT9cSllc/CyllMcleW+Spy1afG+S/zjcVgIAAAAAAAAAAAAAAAAAAAAAADDuNrfdAKbCTyS5Jsk3LczPJ/lvSf59KeX6JAeSXJ3k2iRl0XZHk3xrrfULI2wrAAAAAAAAAAAAAAAAAAAAAAAAY0hhNPpWaz1RSvmOJL+S5EWLfnR+km9cZbMvJnlprfXPht0+AAAAAAAAAAAAAAAAAAAAAAAAxt9c2w1gOtRaD9ZaX5zkHyX5izVWvS/Jf0/yhFrrH46kcQAAAAAAAAAAAAAAAAAAAAAAAIy9zW03gOlSa31bkreVUq5Kcm2Si5PsSHJnktuSfKjWerTFJgIAAAAAAAAAAAAAAAAAAAAAADCGFEZjKGqttyS5pe12AAAAAAAAAAAAAAAAAAAAAAAAMBnm2m4AAAAAAAAAAAAAAHSjlLJsWa21hZYAdGeljFopywAAAAAAAABoKIwGAAAAAAAAAAAAwESYm1t+6+uJEydaaAlAd1bKqJWyDAAAAAAAAICGd1QBAAAAAAAAAAAAmAillGzatGnJsoceeqil1gCs7/Dhw0vmN23alFJKS60BAAAAAAAAGH8KowEAAAAAAAAAAAAwMXbs2LFk/sCBAy21BGB9Bw8eXDK/c+fOlloCAAAAAAAAMBkURgMAAAAAAAAAAABgYuzatWvJ/OHDh3P06NGWWgOwuqNHj+bw4cNLlimMBgAAAAAAALA2hdEAAAAAAAAAAAAAmBg7duxYMl9rzWc/+9kcP368pRYBLHf8+PF89rOfTa11yfLODAMAAAAAAABgqc1tNwAAAAAAAAAAAAAAurVp06bs2rUrBw4cOL3s6NGj+fSnP53du3dn9+7dmZ+fz9yc7w8GRuvkyZM5duxYHnzwwTz44IM5efLkkp/v2rUrmzZtaql1AAAAAAAAAJNBYTQAAAAAAAAAAAAAJspFF12Uo0eP5siRI6eXnTx5Mvfff3/uv//+FlsGsLKtW7fmoosuarsZAAAAAAAAAGPPV+EBAAAAAAAAAAAAMFE2bdqUyy67LJs3+45gYPzNz8/nsssuy6ZNm9puCgAAAAAAAMDYUxgNAAAAAAAAAAAAgIkzPz+fyy+/PDt27Gi7KQCr2rFjRy677LLMz8+33RQAAAAAAACAieBr8gAAAAAAAAAAAACYSFu3bs3ll1+eY8eO5YEHHsgDDzyQY8eOpdbadtOAGVVKyfz8fM4+++ycffbZCqIBAAAAAAAA9EhhNAAAAAAAAAAAAAAm2vz8fM4777ycd955qbWm1pqTJ0+23SxgxszNzaWUklJK200BAAAAAAAAmFgKowEAAAAAAAAAAAAwNU4VJZqbm2u7KQAAAAAAAAAA9MgdHwAAAAAAAAAAAAAAAAAAAAAAAEDrFEYDAAAAAAAAAAAAAAAAAAAAAAAAWqcwGgAAAAAAAAAAAAAAAAAAAAAAANA6hdEAAAAAAAAAAAAAAAAAAAAAAACA1imMBgAAAAAAAAAAAAAAAAAAAAAAALROYTQAAAAAAAAAAAAAAAAAAAAAAACgdQqjAQAAAAAAAAAAAAAAAAAAAAAAAK1TGA0AAAAAAAAAAAAAAAAAAAAAAABoncJoAAAAAAAAAAAAAAAAAAAAAAAAQOsURgMAAAAAAAAAAAAAAAAAAAAAAABapzAaAAAAAAAAAAAAAAAAAAAAAAAA0DqF0QAAAAAAAAAAAAAAAAAAAAAAAIDWKYwGAAAAAAAAAAAAAAAAAAAAAAAAtE5hNAAAAAAAAAAAAAAAAAAAAAAAAKB1m9tuAIyBLYtnbr755rbaAQAAAAAAAADQlxXue9iy0noAMELu0QMAAAAAAAAAJp7780an1FrbbgO0qpTyvCTvbLsdAAAAAAAAAABD8Pxa67vabgQAs8s9egAAAAAAAADAlHJ/3pDMtd0AAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgNaVWmvbbYBWlVLOTvKMRYs+m+ToBnb1iCTvXDT//CSf7qNpAL2SQ8A4kEXAOJBFQNvkEDAOZBHQNjkEjINZzaItSS5bNP+BWusDbTUGAAZ4j94ps3qNB8aHHALaJoeAtskhoG1yCBgHsghomxwC2jarOeT+vBHZ3HYDoG0L4fKufvdTSulc9Ola6w397hegW3IIGAeyCBgHsghomxwCxoEsAtomh4BxMONZ9JG2GwAApwzqHr1TZvwaD4wBOQS0TQ4BbZNDQNvkEDAOZBHQNjkEtG3Gc8j9eSMw13YDAAAAAAAAAAAAAAAAAAAAAAAAABRGAwAAAAAAAAAAAAAAAAAAAAAAAFqnMBoAAAAAAAAAAAAAAAAAAAAAAADQOoXRAAAAAAAAAAAAAAAAAAAAAAAAgNYpjAYAAAAAAAAAAAAAAAAAAAAAAAC0TmE0AAAAAAAAAAAAAAAAAAAAAAAAoHUKowEAAAAAAAAAAAAAAAAAAAAAAACtUxgNAAAAAAAAAAAAAAAAAAAAAAAAaJ3CaAAAAAAAAAAAAAAAAAAAAAAAAEDrFEYDAAAAAAAAAAAAAAAAAAAAAAAAWqcwGgAAAAAAAAAAAAAAAAAAAAAAANC6zW03AKbI3Un+Y8c8wCjJIWAcyCJgHMgioG1yCBgHsghomxwCxoEsAoDp5BoPtE0OAW2TQ0Db5BDQNjkEjANZBLRNDgFtk0MMVam1tt0GAAAAAAAAAAAAAAAAAAAAAAAAYMbNtd0AAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgNYpjAYAAAAAAAAAAAAAAAAAAAAAAAC0TmE0AAAAAAAAAAAAAAAAAAAAAAAAoHUKowEAAAAAAAAAAAAAAAAAAAAAAACtUxgNAAAAAAAAAAAAAAAAAAAAAAAAaJ3CaAAAAAAAAAAAAAAAAAAAAAAAAEDrFEYDAAAAAAAAAAAAAAAAAAAAAAAAWqcwGgAAAAAAAAAAAAAAAAAAAAAAANA6hdEAAAAAAAAAAAAAAAAAAAAAAACA1imMBgAAAAAAAAAAAAAAAAAAAAAAALROYTQAAAAAAAAAAAAAAAAAAAAAAACgdZvbbgBnlFI2JXlkkscnuTjJ2UmOJNmf5NNJPlxrPTTgY84n+eoklye5KMnBJHck+Uit9dZBHmtUSinXJPmSJPuSbE1yZ5LPJflQrfXhNts2SqWUvUmuSfKoJOck2Zbk/iR3J/mbWuunW2zeMqWUq9I8bxcn2ZnkC0luS/LntdZjbbZtlsihwZBDDTnERsmiwZBFDVm06nH0j3XIosHQ1xqTlkWMBzk0GHKoIYeWKqVcluZcXJrkvCTbkxxN8kCS29Ock7vba+H4kEWDIYsasoiNkEODIYcacoiNkkWDIYsasmhl+gfQBtf4wZDhjUm7xrtHZjzIocGQQw05xEbIocGQQw05tOpx9I81yKHB0M8ak5ZDjAc5NBhyqCGHlnKPXvdk0WDIooYsYiPk0GDIoYYcYiPk0GDIoYYcWtlE949aq6nFKU1Q/kiS30vzR31dYzqe5A+SfPMAjrsvyS8luXeN430oyQv7PM7VSV6U5OeSvD/Jgx3HuHVA53FXkp9M8vk1Hs+DSd6c5BEtPt9DOx9J5pN8Q5LXJvn4On2pLpyrn0pyYcu/A9+e5M/XaOe9C331vA3se71zsN50ZZvnZoTPgRwazHmUQ3Jo8T6vHEAGLZ6ua/Mcjeh5kEWDOY+ySBZNfP9o+XmQRYM5jxPR12RRa/1jR5KnJ/nXSX4jyaeSnOw41nVtnYe2Jzkkh+TQ0M7Ho5L8TJL3pXlDY73zUZNcn+RfJNna1jlp8bmQRYM5j7JIFq20/27yZ63pyrbOzYifBzk0mPMoh+TQ4v1eOYAMWjxd19Y5GuFzIYsGcx5lkSya+P5hMpmma3KNn60Md41fsd3u1Wt5kkNySA65V6/tSQ7JITnkPr22Jzkkh2Y5h0bYP9yjt/b5kUODOY9ySA517ts9er2dL1k0mPMoi2TRSvvvJn/Wmq5s69yM+HmQQ4M5j3JIDi3e75UDyKDF03VtnaMRPQ9yaDDnUQ7JoYnvH+s+jrYbMMtTkrf0cSF7d5ILNnjcb0pyVw/H+p9JdvSw/2cm+aN1LgYD+4VM8hVpqm92+3gOJfnBET7PQz8fC+fgvg32pf1JvquF/r8zyW/20M47k3xDj8fY6O/XqenKUZ+XFp4HOSSH5NAQciiD/wP2RaM+PyN+LmSRLJJFQ8iiSeof4zDJIlk0i1k0yv6RZtD4Y2kGo9c71nWjOgfjNMkhOSSHhtc/kvzTPn6/PpnkK0Z1TtqeZJEskkXD7R99/H6dmq4c1Xlpa5JDckgODe18XDmADFo8GbOWRd0cTxbJoontHyaTaTon1/jZyHDX+FXb7F69MZjkkBySQ+7Va3uKHJJDcsh9ei1PckgOzWIOjbJ/xD163ZwjOSSH5NCQ+kfco9fLuZJFskgWDbF/9PH7dWq6clTnpa1JDskhOTS083HlADJo8WSsWg518zsoh+TQRPaPXqbNoU2PXmX555PclCZUN6ep9vfkJHOL1vmHSf60lPKMWuud3R6wlPLMJO9IsmXR4pqmuvpnkuxJ8qVJzlv08+9MsruU8oJa68kuDvMlSb6+2zb1o5TynDRVQLd2/Oi2JB9N88t3aZpf2vmFn52V5JdKKXO11teNoJmjOB/7kuxdYfnRNIPad6aplHpukqcu/HvKniRvLqWcX2v9hSG3M0lSStmU5K1Jntvxo7uTfGShrY9I0xfLws8uSPLOUspzaq0fHEU7Z4Qc6pMcOk0ODc/hNJWsp5ks6pMsOk0WrXycSegf40AW9WlC+posWmpk/SPJS5KcPaJjTSo51Cc5dJocWl9NM8B/c5o3FQ6n+bbcq5JckzP9I2l+N99bSvnmWusHRt3QFsiiPsmi02QRGyWH+iSHTpNDw2PMWhatSxadJotWMCH9A5hOrvF9mpAMd43vMGH3yEw7OdQnOXSaHBqeaR/3kEN9kkOnyaGVjzMJ/aNtcqhPE9LP5NBS7tEbL3KoT3LoNDm0PvforU4W9UkWnSaL2Cg51Cc5dJocGh5j1XJoTXLoNDm0ggnpH91ruzLbLE9JPpwz1fOuT/LDSR6xyrqXJHl9llfd+7MkpcvjXZrl1Q4/mORxHettTfJ/pfllX7zuz3R5nB9ZoZ01ycNpBjIGUqkwTdXUzmqINyf5uhXW3Zvkv3Wse2KldYfwPA/9fKS5gJ/ax4Ekb0jy7CTbV1i3JPnWNKHV2aahn4+FNvxcx3GPLvT/LR3rPT7Jn3ese0+Si7o8zuLt/mKhz/QybR7F+WhzihySQ3JoKDmU5g+u9TJmtemDHcd70yjOSZtTZJEskkVDe000Kf1jHCZZJItmMYtG1T8WjnX/Ksf63Ao/u27Yj30cJzkkh+TQUPvH9yX5+zSvv745yd411t2T5EfTvPmx+PifT3L2sM9J25MskkWyaOiviRbvy5j1yudIDskhOTSc82HMurfzJYtkkSya8f5hMpmmc3KNn40Md41fsb3u1RuTKXJIDsmhoeRQjHv08lzIITkkh4b0emhS+kfbkxySQ7OYQ6PqHwvHco/e+udIDskhOTS8/uEeve7PlSySRbJouK+JFu/LWPXK50gOySE5NJzzYay6+3Mlh+SQHJrx/tHTY2q7AbM8JfnrNFX2ntrDNj+0Qkd/cZfbvqFjuw8l2bbG+i9Y4Rfqii6O8yMLYf+RJP8jyQ8kuTZNpcBnDvAX8jc79nVTkvPX2ebHO7a5IcmmIT/PQz8fC4F9V5KXJdnR5TbnJvlEx/FvTJcvAPo4H1dn+YuB56+x/vYsf4Pxl7s81uJt3j/MxzWpkxySQ3JouDm0gbZdkuR4x7G+ZpjnYxwmWSSLZNHwsmhS+sc4TLJIFs1oFo2kfywc6/4037Lw+0n+48J5umDhZ+/vONZ1w3zc4zrJITkkh4baP+Y3sM2XJDnY0YZ/O8zzMQ6TLJJFsmjor4kW7+v9w3xckzrJITkkh4abQxtomzHr7reRRWeOI4vOHEMWTWj/MJlM0zm5xs9GhrvGLzuue/XGaJJDckgODTeHNtC2mRv3kENySA4NL4cmpX+0PckhOTSjOeQevTGa5JAckkPu0RuHSRbJIlnkHr22Jzkkh+SQe/TanuSQHJJD+kdPj6ntBszylOTKDW73to5O9ftdbPOojgvikSSP6mK7N3Uc61e72GbvaheCAQbU1WkqDS7e19O73PZPOrb73iE/z6M4H/u6DeqO7Z68wnn8siGfj1/rON4bu9jm0Qt99tQ2x5Jc3cV2i4/z/mE+rkmd5JAckkPDzaENtO0nO9r2qWGei3GZZJEskkXDyaJJ6h/jMMkiWTSjWTT087Fof6t+e27cdHXqPFy5we3kkBzq3I8cGlz7fqqjDX8x6ja08Jiv3OB2skgWde5HFq28v8X7ev8wH9ekTnJIDsmh4ZyPPtpmzLq37WSRLOrcjyya0P5hMpmmc3KNn40Md41fdkz36o3RJIfkkBwabg5toG0zN+4hh+SQHBpODk1S/2h7kkNyaEZzyD16YzTJITkkh4ZzPvpsn3v0ut9OFsmizv3IopX3t3hf7x/m45rUSQ7JITk0nPPRR9uMVXe/nRySQ537kUMT2j96meZCa2qtt25w09d1zP+DLrZ5SZJNi+Z/t9Z6Uxfbvbpj/jtKKdvW2qDWur/W+nAX++7HNydL+u9f1Fo/2OW2r+mY/57BNGllozgftda7a62HNrDd3yXpPG/d9KcNKaVsT/LtHYs7+9gytdZPJXnHokWb0/Rp+iSH+iKHlh5DDvWplFKyvC+8YZDHGFeyqC+yaOkxZNFSE9M/xoEs6svE9DVZtOyYo+gfp471hVEcZ5LJob7IoaXHkEOD87865h/ZSitGSBb1RRYtPYYsYkPkUF/k0NJjyKE+GbPeEFkkizqPIYuWmpj+AUwn1/i+TEyGu8afMc73yMwqOdQXObT0GHKoT7M67iGH+iKHlh5DDi01Mf2jbXKoLxPTz+TQsmO6R2+MyKG+yKGlx5BDg+Meve7JIlnUeQxZxIbIob7IoaXHkEN9MlbdMzkkhzqPIYeWmpj+0QuF0SbTRzrmt5dS9qyzzbd2zL+xmwPVWm9M8peLFu1I8vXdbDtkX9sx/0c9bPveJEcXzT+tlHJR/02aWJ396eIhHusbkpy1aP7/1Fr/vsttO/vstw2mSWyQHJJDgySHGs9I8ohF88fTfFMdq5NFsmiQpjGL9I/RkEX62iCNMouYHnJIDg2SHFrqvo75Xa20YjLIIlk0SLKIjZBDcmiQ5FDDmHXvZJEsGqRpzCL9A5hUrvEyfJCm8X1phk8OyaFBkkMN4x69kUNyaJCmMYf0j+GTQ/rZIE3j2CvDJ4fk0CDJoaXco9c9WSSLBkkWsRFySA4NkhxqGKvujRySQ4M0jTk0lf1DYbTJdHyFZVtWW7mUcmGSJ3ds/6Eejvf+jvlv6mHbYbm0Y/7j3W5Yaz2S5OZFi+YyHo+pLZ39adW+NADf2DH//h62/bMsbeuXllIu6LtFbJQckkODJIca39cx//u11jsHuP9pJItk0SBNYxbpH6Mhi/S1QRplFjE95JAcGiQ5tNQVHfN3tNKKySCLZNEgySI2Qg7JoUGSQw1j1r2TRbJokKYxi/QPYFK5xsvwQZrG96UZPjkkhwZJDjWMe/RGDsmhQZrGHNI/hk8O6WeDNI1jrwyfHJJDgySHlnKPXvdkkSwaJFnERsghOTRIcqhhrLo3ckgODdI05tBU9g+F0SbTIzvmjye5Z431n9Ax/9Fa66EejvfnHfPX9LDtsJzTMX9/j9t3rv/EPtoy6Tr70xeGeKzOvvh/ut1woc9+rGPxOPTFWSWH5NAgzXwOlVLOTvLCjsVvGMS+p5wskkWDNI1ZpH+MhizS1wZplFnE9JBDcmiQ5NBS/6Rj/n2ttGIyyCJZNEiyiI2QQ3JokGY+h4xZb5gskkWDNI1ZpH8Ak8o1XoYP0jS+L83wySE5NEgzn0PGPTZEDsmhQZrGHNI/hk8O6WeDNI1jrwyfHJJDgySHlnKPXvdkkSwaJFnERsghOTRIM59Dxqo3RA7JoUGaxhyayv6hMNpk+vaO+Q/XWk+usf7jO+ZvXnGt1X16nf214WjH/NYet+9cfxwe08iVUnYn+bqOxX81xEM+rmN+lH3x8lLKG0spN5RS9pdSjpZS7lqY/5+llB8opXQGPauTQ3JoIGYsh9byj5NsXzT/hSR/MKB9TzNZJIsGYoqzSP8YDVmkrw1EC1nE9JBDcmgg5NBSpZR/keS7Fi06nuS/tNScSSCLZNFAzFgWGbMeLDkkhwZixnJoLcasN0YWyaKBmOIs0j+ASeUaL8MHYorfl16JcY/BkkNyaCBmLIfWYtyjd3JIDg3EFOeQ/jF8ckg/G4gpHntl+OSQHBoIObSUe/R6Jotk0UDMWBYZqx4sOSSHBmLGcmgtxqp7J4fk0EBMcQ5NZf9QGG3ClFJ2Jvm+jsVvX2ezzkqFt/d42Ns65s8tpeztcR+Ddm/H/EU9bt+5/mP6aMsk+2dJzlo0/0CGVFV/4Y/Dzj8Qe+2Lnes/qodtr0pyXZrw3ZNkPsn5C/PfmeT1SW4vpfznhd8zViGHTpNDgzFLObSWzt+pX6u1Hh/QvqeSLDpNFg3GtGaR/jFksug0fW0wRpZFTA85dJocGoyZzqFSyo5SymNKKS8tpXwgyWs7Vnl5rfWjbbRt3Mmi02TRYMxSFhmzHhA5dJocGoxZyqG1GLPukSw6TRYNxrRmkf4BTBzX+NNk+GBM6/vSKzHuMSBy6DQ5NBizlENrMe7RAzl0mhwajGnNIf1jiOTQafrZYEzr2CtDJIdOk0ODMdM55B69jZNFp8miwZilLDJWPSBy6DQ5NBizlENrMVbdAzl0mhwajGnNoansHwqjTZ6fTXLhovn7k/zKOtvs6Zj/Yi8HrLUeTPJwx+Kze9nHENzYMf+V3W5YSrk8ycUdi9t+PCNXSrkyyb/vWPyLtdbOKpCD0tkPD9daD/W4j86+O+jnbUeSH0nyN6WUawa872kihxpyqE9yqFFKeWKSp3YsfkO/+50Bsqghi/o05VmkfwyfLGroa31qIYuYHnKoIYf6NGs5VErZU0qpi6ckB5P8fZI3JfnaRasfTPIDtdbXtNDUSSGLGrKoT7OWRV0yZt0dOdSQQ32SQw1j1hsmixqyqE9TnkX6BzCJXOMbMrxPU/6+9EYZ9+iOHGrIoT7JoYZxjw2RQw051KcpzyH9Y7jkUEM/69OUj70yXHKoIYf6NGs55B69gZNFDVnUp1nLoi4Zq+6OHGrIoT7JoYax6g2RQw051Kcpz6Gp7B8Ko02QUsq3JvnhjsU/WWu9b51NO6sUP7SBw3dus2sD+xikD3TMv7CUctaKay73T1ZY1vbjGalSypYkb83Sx31rkv9niIdtqx8eT/L+JP8uyfOSXJvm25q+NMnzk7wmy1/EPDrJe0opV2ygjVNNDi0hh/owYzm0ns4K1R+otd48gP1OLVm0hCzqwwxkkf4xRLJoCX2tDy1lEVNADi0hh/ogh1Z1V5KfTHJVrfV/tN2YcSWLlpBFfZixLDJmPUByaAk51IcZy6H1GLPukSxaQhb1YQaySP8AJopr/BIyvA8z8L70YsY9BkgOLSGH+jBjObQe4x49kENLyKE+zEAO6R9DIoeW0M/6MANjrwyJHFpCDvVBDq3KPXpdkEVLyKI+zFgWGaseIDm0hBzqw4zl0HqMVfdADi0hh/owAzk0lf1DYbQJUUp5cpJf71j8x0n+exebdwZ2Z1XKbnQGduc+R+3301TxPGVPkv+w3kallMuS/NgKP9pUStk+mKZNhF9J8uWL5k8keekGvgWpF230w3+X5JJa6z+otb6q1vruWutHaq0311r/ttb6rlrrv0lyRZL/lKQu2vbCJL9bSikbaOdUkkPLyKH+zEoOrWnhBfR3dSxW1XsNsmgZWdSfac8i/WNIZNEy+lp/2sgiJpwcWkYO9UcOreyCJP88yQ+WUna33ZhxJIuWkUX9mZUsMmY9QHJoGTnUn1nJoTUZs+6dLFpGFvVn2rNI/wAmhmv8MjK8P9P+vvQpxj0GSA4tI4f6Mys5tCbjHr2RQ8vIof5Mew7pH0Mgh5bRz/oz7WOvDIEcWkYO9UcOrcw9euuQRcvIov7MShYZqx4gObSMHOrPrOTQmoxV90YOLSOH+jPtOTSV/UNhtAlQSrk8TQdcHJK3JfmuWmtdeas1jWqboam1Hkjyix2Lf6yU8q9W26aUcmmSP0xy9mq7HVDzxlop5aeTfHfH4pfXWv90xE0Zej9c+KO1s2r3Sus9XGt9eZJ/2fGja5P8416OOa3k0HJyaONmKYe68Pwk5y6afyDJ2wZ8jKkhi5aTRRs3C1mkfwyHLFpOX9u4McoiJogcWk4ObdwM59CDSa5aND0izTjQtyX5z0nuXljvsiQ/leRjpZQva6GdY0sWLSeLNm6WssiY9eDIoeXk0MbNUg51wZh1D2TRcrJo42Yhi/QPYFK4xi8nwzdujK7x7tWbIHJoOTm0cbOUQ10w7tElObScHNq4Wcgh/WPw5NBy+tnGjVEOMUHk0HJyaONmOIfco9cnWbScLNq4WcoiY9WDI4eWk0MbN0s51AVj1V2SQ8vJoY2bhRya1v6xue0GsLZSyvlJ/neSSxYtvjPJ19Va7155q2UOdsxvpCJf5zad+2zDzyT5ppypyFiS/JdSyrenqYr6t2kqcF68sN4P5sxF73NJLl20r4drrcsqfJZSruy2MbXWW3tqfQtKKT+Sptr1Yr9Qa/25Lre/sttjrXA+xr4f1lpfV0r5+iTPW7T4h5K8ZZDHmTRyaE1yqEdyaJnv65h/S621s3o0kUXrkEU9mrEsGnr/mCWyaE2yqEctZ1QVJ7cAACAASURBVBETSg6tSQ71aJZzqNZ6MsmtK/zoI0neXkr5d0leneSHF5ZfnuQ9pZSvrrV+fDStHF+yaE2yqEeznEXdMGa9Mjm0JjnUIzm0jDHrLsmiNcmiHs1YFhmzBsaaa/yaXON7NGPvS/fMuMfK5NCa5FCP5NAyxj26IIfWJId6NGM5ZMxjQOTQmuRQj2Zs7JUBkUNrkkM9muUcco9ef2TRmmRRj2Y5i7phrHplcmhNcqhHcmgZY9VdkENrkkM9mrEcmrqxaoXRxlgp5Zwk70ny6EWL70nynFrrTT3saioDu9Z6tJTybUn+V5InLfrR0xem1dyb5gXDHy1adv8q697SQ5NKD+uOXCnl+5P8Qsfi/15rfVkPu+nnfExKP/zZLP0D9itLKXtqrav1kakmh9Ymh3ojh5YqpVyW5Os6Fr9ho/ubZrJobbKoN7OWRSPqHzNBFq1NFvVmDLKICSSH1iaHeiOH1lZrPZzkX5ZSjiX51wuLdyf59VLKUzb47UJTQRatTRb1RhZ1zZj1InJobXKoN3JoKWPW3ZNFa5NFvZm1LDJmDYwz1/i1ucb3Zgyu8ZPSD417LCKH1iaHeiOHljLu0R05tDY51JtZyyFjHoMhh9Ymh3ozBjnEBJJDa5NDvZFDa3OP3upk0dpkUW9kUdeMVS8ih9Ymh3ojh5YyVt0dObQ2OdSbWcuhaRyrnmu7AayslHJ2kj9O8sRFi/enqWB5Q4+7e6Bjfl+PbdmZ5YE9Fh241vr5JE9L8vokx7rY5H1JnprkUMfyOwfctLFSSvnuJL+cpSH6xiT/YoTN6OyHZ5VSdvS4j/M75ofRD/8qze/aKZuSPH4Ixxl7cqg7cqg7cmhF12Xpa7G/q7X+TR/7m0qyqDuyqDuzmkX6R/9kUXf0te6MSRYxYeRQd+RQd+RQT34yyR2L5r80yXNaakvrZFF3ZFF3ZFFPjFkvkEPdkUPdkUMrui7GrNcli7oji7ozq1mkfwDjyDW+OzK8O2NyjR+3e2RWY9xjgRzqjhzqjhxa0XUx7rEmOdQdOdSdWc0h/aM/cqg7+ll3xiSHmDByqDtyqDtyqCfu0VtEFnVHFnVHFvXEWPUCOdQdOdQdObSi62Ksek1yqDtyqDuzmkPT1j8URhtDpZRdSf4wyVMWLX4wyTfWWv92A7vsrHp5RY/bd65/X611/4prtqDWeqjW+s+TPCbNQMj7knwuyUNJDiS5Mcmvpame+uxa661JHtexmw+PrMEjVkp5cZpwXvz7/htJ/ukoK+fXWu/N0j8Mk+TyHnfT2Rd7qejalVrrySS3dyzu6UXONJBDvZFDa5NDy5VSSpLv6VisqncHWdQbWbS2Wc8i/WPjZFFv9LW1jUsWMVnkUG/k0NrkUG9qrQ8leUfH4m9soy1tk0W9kUVrk0W9MWbdkEO9kUNrk0PLGbPujizqjSxa26xnkf4BjBPX+N7I8LWNyzV+nO6RWYtxj4Yc6o0cWpscWs64x/rkUG/k0NpmPYf0j42RQ73Rz9Y2LjnEZJFDvZFDa5NDvXGP3hmyqDeyaG2yqDfGqhtyqDdyaG1yaDlj1euTQ72RQ2ub9Ryapv6xue0GsNTCt9D8ryRfuWjxwSTfVGv9qw3u9saO+Uf2uP3VHfOf2GA7hqrWekuSn1mY1vNVHfN/uco+y0rLJ0Up5YVJ3pymOvUpv53kpQt/qPVkAOfjxjSVJU95ZJb3z7V09sVetu3FQx3znZVcp5oc2jg5tJwcWtWzkly1aP5ImhfTLJBFGyeLlpNFZwyjf0wzWbRxsmi5McwiJoAc2jg5tJwc2rBPdsz3+jsz8WTRxsmi5WTRhhmzlkMbIoeWk0OrMma9Dlm0cbJoOVl0hjFroG2u8RvnGr/cGF7jx+UemfUY95BDGyKHlpNDqzLusQY5tHFyaDk5dIYxj+7JoY2TQ8uNYQ4xAeTQxsmh5eTQhrlHTxZtmCxaThZtmLFqObQhcmg5ObQqY9VrkEMbJ4eWk0NnTMNY9dz6qzAqpZTtSX4vydMXLT6c5JtrrX/ex64/3jH/pFLKWT1s/9Xr7G+iLFRTfVbH4g+00ZZhKqU8L8lvZmkBxHckeUmt9UQ7rVrWdzqDcVULL2aetM7+BuW8jvl7hnScsSOHRkMOyaEk39sx/7u11vs2uK+pI4tGQxbJonWOMxP9Yy2yaDRmpa+NaRYx5uTQaMghOdSFYx3zW1tpRUtk0WjIIlnUBWPWcmio5JAcijHrNcmi0ZBFsmgts9I/gNFyjR+NWcnwMb3Gj/370guMe8ihoZJDcijGPVYlh0ZDDsmhdY4zE/1jNXJoNGaln41pDjHm5NBoyCE51AX36MmioZNFsqgLxqrl0FDJITkUY9WrkkOjIYfk0FrGuX8ojDYmSinbkrwryTMXLX44yfNqrX/az75rrV9I8tFFizZn6UVhPc/smP+DftozBp6V5MpF8x+otd7UUluGopTy3DQVK+cXLf79JC+qtR5vp1VJkj/smH9mD9t+TZZefD5Sa72r7xZ1KKWcl+XVW+8Y9HHGkRwaKTnUntZzqJSyJ8m3dSx+Q6/7mVayaKRkUXtaz6IuTH3/WIssGqmp72tjnEWMMTk0UnKI9VzaMT+M115jSRaNlCxiVcas5dCIyKEZZsx6bbJopGQRa5n6/gGMlmv8SE19ho/xNX7s35c27iGHRkQOtaf1HDLusTo5NFJyqD2t51AXpr5/rEYOjdTU97MxziHGmBwaKTnEetyjJ4tGQRaxKmPVcmhE5NAMM1a9Ojk0UnKItYxt/1AYbQyUUrYk+d0kz1m0+EiSF9Ra3zugw7y9Y/57umzbY5N8xaJFh5L88YDa1JZ/2zH/+lZaMSSllK9L8jtJtixa/MdJXlhrPdpOq077oyQPLZr/qoU+1o3rOuY7+/SgvDhLs/GuJDcO6VhjQw6NnBxqzzjk0Hcm2bZo/tYkf7LBfU0VWTRysuj/Z+/Ow2S7ynrxf98QCEMgYQqjJMyDyhiUgJiDgAIKGFBAZAjkyiDOIALXIaAXLj9F8YqCoJAwKoMEZFTEwxAIMo+KTIkQmQmEEDKv3x+7jqfO7urumrqquvvzeZ5+yF6119qrqtZ+O+x+867lWYVYtJkdvT42IhYt3I5eaysei1hR4tDCiUNs5id7xyvxYH+riUULJxaxEc+s9xOHto44tLt5Zr0OsWjhxCI2sqPXB7BYfscv3I6O4Sv+O347/F3ac4/9xKGtIw4tzyrEIc89RhCHFk4cWp5ViEOb2dHrYz3i0MLt6HW24nGIFSUOLZw4xGbk6O0nFm0dsYiNeFa9nzi0dcSh3c2z6hHEoYUTh9jIyq4PhdGWrKoOTvLKJPccar4wyc+11t46x0u9LMnFQ8f3q6obj9Gvv3hf2Vo7b37TWqyqeniSuw81fSRdxccdoaqOTfK6HPgvRm9P98v//OXMar/W2rlJXt1r7q+xNarqJkmOG2q6KMnL5zi1fde5RpLf7TX/Y2utzftaq0QcWixxaLlWJA49snf8wp0eZ8YhFi2WWLRcKxKLNrrOjl4fGxGLFmunr7VVj0WsJnFoscQhNlNVP53k6F7z65Yxl0USixZLLGIjnlmLQ4sgDhHPrEcSixZLLGIjO319AIvld/xi7fQYvuq/47fB36U999hPHNoi4tByrUgc8tyjRxxaLHFouVYkDm10nR29PtYjDi3WTl9nqx6HWE3i0GKJQ2xGjp5YtAhiERvxrFocWgRxiHhWvYY4tFjiEBtZ9fWhMNoSVdWl0gXS+w41X5Tkga21N8zzWq21zyQ5eajpMklOqqrLrtMlVXXfHLjTzQVJnjrPec1q8Atv3HPvl+QFQ00XJXlka+2iuU9sCarqmCRvSHK5oeZ3Jrl3a+37o3stxYnp/qVkn+Or6j7rnTxYoy/KgZU5/7a19rkN+ty0qu49yaSq6prpPr9rDDVfkOQZk4yz3YhDsxOH9hOHNldVt05y26GmS5KcNOk4O41YNDuxaD+xaGRf62MMYtHsrLX9tlEsYoWIQ7MTh/YTh/arqqOr6rjNz1zT7/ZJXtJrfmdr7ePzmdlqEotmJxbtJxbt55n1+MSh2YlD+4lDm/PMejSxaHZi0X5i0VrWB7AsfsfPTgzfbxv9jj8xcvVWhjg0O3FoP3Foc557rCUOzU4c2k8cGtnX+tiEODQ762y/bRSHWCHi0OzEof3Eof3k6E1GLJqdWLSfWLSfZ9XjE4dmJw7tJw5tzrPqtcSh2YlD+4lDa+209TH2m2FLvDDJA3ptT0ny4ao6asKxvjJGhck/SLdzzZUHx3dM8raq+l+ttf/Yd1JVHZLkUUme1ev/rNbaGeNMpqqum9Hr65q944M3eK/ntNa+scmlPl5Vb0zymiTva61dMmIuP5TkyUke3HvpKa21D28y/lxs9edRVbdJ8uYkhw41fzrJ45IcUVWTTPe81tpXJukwidba56vqz5M8Yaj51VX1W0me31q7YF9jVd08yd+kW6v7fDOb/4vDtZK8vqo+nuSlSV47+JeWNarqikkenq6i9zV6L/9Ra+3zY7yt7UwcEofEoc6849B6Tugdv7W19sUpx9pJxCKxSCzqbFUs2hbrYwWIRWLRrotFyeLWR1UdmuRq67zcf5h8tQ2u9aVVerA2Z+KQOCQOHWhe6+O6Sf6hqj6R7o9npyT5dGujd1iqqlskeXSSX+7N67xB204nFolFYtGB5rU+PLMenzgkDolDB5r3+ujzzHo0sUgsEosOtCvXB7Aj+R2/S2K43/H7ydVbOeKQOCQOdeTqLY84JA6JQx15essjDolDuy4OJXL0Vow4JA6JQweSo7ccYpFYJBYdSI7e4olD4pA4dCA5eosnDolD4tCBduX6GFtrzc+SfpK0Of7sGfOae5Kc3+t7SZL3J/n7JG9J8rUR4/9jkktN8N5On8N7OmmM63xj6PzvJnlPupvzZUn+aYN5/OGCv+st/TzS7WQ0r7W0dwGfx6WSvGnEtb+a7hfPK5N8YLA2h18/P8mdx1zn/bG/neTd6R6svSTJawfXuHCdz+Gvlx0jFrQ2xSFxSBzagji0zjUPSZcgMTze/ZcZA1blZ45rRywSi06c41rau4DPYyGxaLusj2X/zHHtiEUrvta2+vPI9otFi1ofx8/pMzlq2fFiC78LcUgcEoe25vP42RHnnz1YH69Pl/zwyiRvS/KVdcY/N8ndlh0nFrQ+xSKxSCzams9jz4jzPbMe/VmJQ+KQOLSF66N3Tc+s1/9sxCKxSCyyPvz48bMDf+YYk/2OX/EYvtWfR7bf73i5eivyM8d1Iw6JQyfOcS3tXcDnIVdvRX7muG7EIXHoxDmupb0L+Dzk6a3IzxzXjTi04utsqz+PbL84tKj1cfycPpOjlh0vtvC7EIfEIXFoaz4POXqTfR9ikVgkFm3N57FnxPmeVY/+rMQhcUgc2sL10bumZ9WjPxdxSBwSh6yPsX9GVZJjB2ut7a2q45KclOTqg+ZKcvTgZ5RXJPml1trFWz/DmRya5JhNzjkryS+31v5uAfNhHa21i6vqAel2VHrg0EtHJLnHOt2+luThrbV3TXnZw5LcaYzzvpfkN1trL5jyOmxCHBKHVsGS4tBxSa4ydPz1dA/4WQKxSCxaBUuKRdbHChGLrDVYNnFIHNrFrpjN18c+pyV5dGvtY1s4n11NLBKLdjHPrFeEOCQO7WKeWa8QsUgs2sWsD2BH8zteDF8FcvV2N3FIHFoFcvV2N3FIHFoF8vR2N3HIOoNlE4fEoV1Mjt4KEYvEol3Ms+oVIQ6JQ7uYZ9UrQhwSh3axbb8+Dlr2BFi81tqbkvxQkuelW6DrOS3Jz7XWHtxa+95CJje5Zyf5cLpqnBv5YpKnJbnhqt6Mu01r7ZzW2oOS/Hy6tbaebyV5bpIfaq29Zczh/z3J05OcmuT7Y/b5zyRPSbezif/zusXEIXFoFWxxHBrlhN7xS1prF84wHjMSi8SiVbCgWGR9rDCxyFqDZROHxKFd4O3pdsR9RZIvjdnn3CSvTnLvJHeUcLX1xCKxaBfwzHrFiUPi0C7lmfWKEYvEol3E+gB2Fb/jxfBVIFdvdxOHxKFVIFdvdxOHxKFVIE9vdxOHrDNYNnFIHNoF5OhtA2KRWLQLeFa94sQhcWiX8qx6hYhD4tAusqPWR7XWlj0HlqiqLpOu2vGRSa6ZrqrxmUk+3Fr7wjLnNomqulKS2yS5froKnZdN939czkzy0dbap5Y4PcZQVddPctsk105yhSRfSXJGklNbaxfMMO5BSW6c5IZJrpPk8OxfH2cl+XKS97fWvj7TG2Bq4hCrYqviENuDWMSq2MpYZH2sPrEIWDZxiN2gqq6R5Obp1vlVk1w+yYVJzk7yzSSfSPLpbbCrz44lFrHTeWa9+sQhYBWIRewG1gewG/kdz6qQq7d7iUOsCrl6u5c4xKqQp7d7iUPAsolD7AZy9FafWMRO51n16hOHgGUTh9gNdsr6UBgNAAAAAAAAAAAAAAAAAAAAAAAAWLqDlj0BAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAHqq6qiqar2f45c9r0Wqqr2997932XPaiXzO21tVndiPFdvh+tYdAAAAAAAAAMDutl3zXgAAAACA3UFhNAAAAAAAAAAAAAAAAAAAAAAAAGDpDl72BAAAAIDVVFVHJfnCBF3OT3J2ku8k+VySDyc5LcmbW2sXzHt+AAAAAAAAAAAAMKyqKl3e25G9ly5OcmRr7czFzwoAAAAAgEkctOwJAAAAADvGIUmunuRGSX4qyZOSnJLkzKp6ZlUduszJ7XRVdVJVtaGf05c9J2BnqarTe3HmpGXPCQAAAAAAAACg525ZWxQtSS6V5PjFTgXmo6r29PJ2WlXtWeJ85CvCHLmnAAAAYC2F0QAAAICtdrUkT0zyiao6ZtmTAQAAAAAAAAAAYMc6YYPXHllVtbCZAAAAAAAwlYOXPQEAAABgW/leks+u89rlk1wlyVXXef3IJG+pqmNbax/ZiskBAAAAAAAAAACwO1XVVZL87Aan3CDJniT/upAJAQAAAAAwFYXRAAAAgEl8oLW2Z6MTquq6Se6d5PFJbth7+UpJXl1VN2+tXbg1U2QeNvuegaS1dmKSE5c8jYm5vwEAAAAAAACAHeohSQ7ptbUkNXR8QhRGW7rtmncDAAAAACzGQcueAAAAALCztNa+1Fp7bpJbJfmHEafcMMmjFzsrAAAAAAAAAAAAdrhH9o4/k7U5bPerqsMWNB8AAAAAAKagMBoAAACwJVpr30vyi0n+fcTLD13wdAAAAAAAAAAAANihqurodJt5DntxkpN7bZdL8uCFTAoAAAAAgKkojAYAAABsmdbaeUmeMeKlo6vqKoueDwAAAAAAAAAAADvSCb3jluQlSd6c5GubnAsAAAAAwAo5eNkTAAAAAHa8t4xoOyjJTZO8d9pBq+qgJLdJclSSqye5SpKzk3w9yWeTfLi1dsm0489TVV0nyc3SzfWwdLuOnp3kW0n+K8n7B0Xk2AJVdbkkP5LkWkmOSHJokm+mWysfba19bonTG0tVXT3JHZLcIN38v5MuYfN9rbUzljm3rVZVh6V77zdOd/+cl+TMJO+d5L1X1bWT3D7dfXhouvvvS0ne0Vo7e87TnkpVHZLkTkmul+SaSS5O8tUkH0/ykdZaW+L0AAAAAAAAAABW0iA/6Bd6ze/cl1tSVS9P8htDr92uqm7VWvvoFs/r0unylm6R5KqD5q8m+dAk166qK6XLe7lpksOTfC/JV5Kc2lr70lwnvfbaV03yo0lumORK6fKW/jsrmndVVddNcqt0OYVXT1cg7+tJvpzktEXkCVXVjZPcLsl1khySLlftv5O8u7V21lZffyeqqh9KcqN0+X9XTXJuuu/19HT5lxdu8fXdy9Nfd1XuyVsluW663MELkny5tfaSMfvLAd4CVXWZJEenux+uli5enp0uL/Z9E4xzo3T35r41dn6Sb6TLDz2ttfb9OU8dAACABVEYDQAAANhSrbWvV9XZ6RIphl1tmvGq6s5JHpfk7umKoa3nW1X1piTPaK19apprTauqrpbkuCR3S3Jskmts0uWCqjotyXOSvGbcgm5VdXqSI9d5+ciqGqeI0l1aa3tHjL033dz3eUdrbc868/h4kh8aavp6kuvMkmxUVb+Q5OW95se11v5qzP4HJfnFJA9J8uNJLrvBuV9I8sokf9Ja+8Z0M94aVbUnyVOS3DVdQcFR53wqydOTvHySwllVdXySF/War99aO32Kefav+9TW2omb9DkxyR8Mt7XWauj12yf53ST3yjrPMavqHUme1Fo7bYPr3DvJ7yS5Y5IaccoFVfXaJE9srf3XRnOe9D1MMM5RSU5MFzf6sXKfr1TV85I8q7V2zqTX6F1vb8a4vwfz+sIGQz28qh6+2fX2fSaDxL4z0yWX7bO3tXaXTSe9gar68yS/1mu+9VYnLwMAAAAAAAAAK+Pn0hWrGXZy759/o/f6I5P8+jQXG+T0/Guv+X/ysAYb+P3vJA9NcsV1xvjPJH+0UWGeqrpluvyZ+6QrecPL+wAAIABJREFUGDPqnPcm+e3W2qmTvYuNVdWx2Z+3dKl1zvlQkucm+dtJN/ybV97NYKwjkvxmknsn+cENTr2oqt6X5C+T/P2kG69ulCM1yFd7eJLfyoG5dMMuHuTt/O5G+U5D1zsxvc+o51+rNv3ITm6tHb/ZSePYynzFda53y3T37U8lufYGp55TVW9L8sxxPtfeNfZkm9/LY+Thbem9vM54q3BPXiHJryb5pXQb0o4y8jvb7jnAm63rSYyY46YxZbPc1Kr6wSRPTHL/JFcYMcTJSTYsjFZV108Xb++V9b/fJDmvqt6V5M9aa2/eaEwAAABWz8j/mBIAAABgzkYV8Vmv+M9IVXWTQaGzdyZ5YDYuipbB6w9J8vGq+puqWrcw1jwNdhf9cpLnJ3lANk+ISJLLpCve9coknxj80X876ScwXD3JT8845vG94/OTvGKcjlV1jyQfT/LiJD+ZDYqiDVw/XeGsz1fVVMmO81ZVh1TVC9Ilp9w9Gz/Hu0WSlyZ5yyCZZ1urzh8mOS1dIthGmzscm+Q9VfWEEeMcVlWvSfL6JHfK6KJoSXf/PTDJp6rqbjNNfgqDNffJdImRG8XFa6YrnvbJqrrdAqY2d4PdPV/aa95TVTefdszBjs8P6zW/V1E0AAAAAAAAANhVTugdn5vk1fsOWmsfSfKx3jkPqaqRBYpmUVX3S/KpJL+cdQopDdwkyYur6pX9eQzyZ34/yYeS/HzWKaQ0cEySd1XVU2ab+f9c+1JV9Zwke9PlXo0spDRw2yQvSPLOQZGahaqqy1TV05J8PsmTsnEBpqTLQ7pTug07PzooVjWPeVw3ybuTvDDrF0VLus/yrkneW1X/Zx7X3omq6lpV9bIkH0nyiGxcFC3pNmn82XSf6ylVtVlu6bjzcC9Pfs1VuSd/NN1394xsXDRrVN/dmAO8MFX1u+nu7YdldFG0zfpfabCuP53kV7L593vZdDm4b6qqd1XV9Sa9JgAAAMujMBoAAACwCIePaDt73M5Vddd0u3/dc4prH5Qu8e0dVTVOgsKs7piNCzlt5uZJTltGgaYZvDTJhb22R0w72CBRrP/+T2mtnTVG3yckeWO6YmGTumKSZw8K6c3yHc5kUMTvzUn+14RdfzJd8sZGCUzbwfPS7Y457rPLSvLHVfWo/2moOjzJvyS53wTXvUKS11fV7SfoM5NBguOzk1x+gm7XSxfPtmVxtHS7YvY9ZobxfiFrf8c8d4bxAAAAAAAAAIBtpKpulK4gzbBTWmvf7bWd3Du+SrpiSvOcy0PSFWQ7bIJuP5+uoNa+MSpdgaKnZuNCRgdcOsn/qapfmeC6awfprv3SJI+bsOuPpctnmagA0SwGxa/+KcnvZYriOukKmJ1aVfeecR43SLcB5DETdn1KVf3RLNfeiarqVkn+LcmDs/5GmBu5b7r8y5vMOA/38uTXXJV78sfTFYObtgDWbswBXohBQbM/zJSfb1UdmeTUdOv60lMM8WNJ/q2q7jDN9QEAAFi8pf0HngAAAMDuUFU3zOiiP58fs/+9k7wma/+IfUGSt6crmPbFJN9Jt/PfUUl+Ismde+f/SJJTqurHW2v9Il5b5eJ0O/19Msl/JPlmuoJwleRKSW6c5A7pdrwbLgJ1aJK/q6rbtNa+uMH4n0ry7cE/Xy/JlYdeu3Dw+mbOGeOcDbXWvlZVb0qXVLTPvarqiNba16YY8mFZWxTrhaNOHFZV/zfJ74x46VtJ/jnJB5N8Ld2OsIen243wHklu2jv/hHSf6xMmmvX8vDDJXYaOP52uUNp/pHsvhyW5TZL7Z+1uhD+e5DeT/MnWT3P+qurXkzxqqOmMJP+Y5BPp3vvhSX40XRLZlXrdn11Vb00XD/4uyXDhsA8meUuSLyT5brrP7SeS3CcHrrXLJXlBVR3dWrtoTm9rpKr6rSSjdvc8fzDXdyb573RJYtdPd3/t21H2CklOydDOxlvkgiQfHTq+RQ6MxWcl+a9JBmytfbKq9ibZM9T8sKp6cmvt3Cnm+Nje8TeTvGqKcQAAAAAAAACA7emRWVtAqV8ELUleluT/y4EFik5I8vdzmsfRSZ4+NJdvJ3lTuqJZX0uXl3LzJA9Il+M27MFVdUpr7VXp8klOGHrtjCRvSJc/8810+TM/Mhinnz/zzKp6Q2vt9Cnfw+OTPGjo+LtJXpfk/Um+Orj2zdLlLf1Ar+8PJHl7Vd26tfbtbKHBpomnDubS94kk70iXs7dvHkekK1x2r3SbZ+5zaJJXVdWdWmsfnGIqV0yX13WdwXFL8p4kb0uXU3NOkqunyw88Lslle/2fXFX/2Fp73zrjfyX7c3cOTXLD3uufy+b5fxPl9mxiS/MVq+roJP+a7r0OuyTJu9J9tl8YzOFySa6b5Ngkd82B9/WN020wervW2nfGmFOfe3nCe3mF7slrJvmHHHiv/Vu6gm1npPscrpUuD+7nxxhvV+QAL8gv5cBCfeeky+s9Nd2aPCjdPX2XdJ/7AQZF0d6XtTmzSfcdn5ou1/asJJdJ9z3fMd2G3IcMnXuNJG+sqtu21s6Y7S0BAACw1aq1tuw5AAAAACuoqo5Kl0Qy7B2ttT0TjvPEJM/sNZ+V5GqttUs26Xv9dEkFhw81X5Tkz5L8cWvt6xv0vXWSv8mBxZGS5E9ba4/f5LpHZe17f0Rr7aSN+g36/meSj6fbbe/t4yTWDP5g/4wkv9B76Y2ttZ/ZrP9gjJOSPHyo6YzW2lHj9F1nvL3pkob22fC7r6r7pEucGfb41tqfTnHt/0yXMLLPl5IcudF6qarj0iW0DDsryZOSvLi1dt46/Srdzq/PS5dsM+y+rbXXTzj9iYz4nM/L/qScryT51dbayOJXVXVokr9MV0hu2LeTXLu19v1Nrn18khf1mq8/TTJVVfUfMj61tXbiJn1OTPIHvebz0yWhnJsuOesFrbVRSS7XSFcw8U69l56fLrnlWYPjzyd5VGvtX9aZw9FJ3pi13/2DW2uv2Gj+672H1tqmO5VW1U2TfCRrkx3fPJjvl9bpd1yS52Z/cs/30yXaTXr9vZng/h7qd3qSI4eaTm6tHb9ZvxHj3D9ri7qd0FrbtABib5zbJflAr/lPWmu/PemcAAAAAAAAAIDtp6oula7w07WHmv87yQ+MyjWqqjemK8SzzyVJbjBpcZSq2pOugNOwfXkvSfIXSX5/VFGhqjokXW7L43ovfTpdHtB70xWI2Sx/5prp8mfu2Hvp+a21R4/xHk7M2tyd4dylFyX5rXXew0HpNm/8o6zNfzmptfaIaa4/Tt7LoO9r0+V8DXvPYL7rFRnbV7zp99LNffhapye5ZWvtu5tct58jNfx5vS/JL7fWPrRO36PSfV+37b301tbaPTa67qD/nqxdc3dpre3drO9W2IJ8xSunyxXtj/GiJCe21tYt8DbYvPcvk/xU76V/aK3df5Pr7ol7eaZ7eTDOqtyTF2d/kbyPJXlMa+296/S97Ki80p2QAzzPeDFNzuA6uanD383zkvxua+2b6/Q/4LupqsskeXeS2/dOfUOSJ7bW/n2DuVwzyR8neUjvpfcnOWbUPQkAAMDqOGjzUwAAAACmU1XXSvKEES+9YrOiaAMvy4FF0c5N8lOttSduVBQtSVprH0mXKPLPvZd+tar6O9zN0+1ba/dvrb123N0GW2tntNYenOTE3kv3qqpRO+itojel27Vt2PGTDlJVd8qBRdGSLpFio6JoR2RtEsVn0iXGPH+9omhJ0jqvTbfLY78Y1TMGhdMWaV9y0eeT3GG9omhJ0lo7J91n/NbeS4en28lxO9pXFO1urbXnrZd00lr7apKfSbcD57CHJHna4J8/mS5xZWRRtME4H8joz2qshK4ZPDdrE8lemeRn1iuKliSDtXps9r/vy6137oo7JWvvt8dOMU6/T0vy11PNCAAAAAAAAADYju6ZA4uiJclLN8g1Orl3fFCmyHFax75CSr/eWvu1UUWIkqS1dn5r7VeyNufnpkn+cTCnc5L8xCb5M19Jlz/Tz6N7UFVNm1OyL5/l/7bWHrnBe7iktfasJD+fbqPTYcdX1Y9Pef1NVdWjsrYA018l+bGNCjAlSWvt24NNVU/ovXRUkl+eYjr7Pq83JNmzXlG0wbVPT3L3rM2xu3tVXW+Ka+80f5kDi6JdnOQhg3W4blG0JGmtfS5dLOjnEN6vqn50irm4lztj3csrdk/uK7x1apI7r1cUbXDt9fJKd2sO8Fbb9908vrX22PWKoiUjv5sTs7Yo2pNaa/feqCjaYKyvtNYemuSpvZdun+TnNp82AAAAy6QwGgAAALAlBrvwvSXJ1XsvnZtuZ7TN+t89yTG95ke21t4+7hxaaxekS9j4xlDzpZP81rhjTGrcRIh1PC3dLmT7VJJHzjajxWitXZRuh7xhP1xVt5twqFEFqfoJS32/nuSwoeNzk9xjowJTfa21LyZ5UK/5FknuM+4Yc3RhkgeMsxNta61l9Hru7365nfzGRglJ+wyStf6k13z5JFdIt+PlA1pr/cJpo8Z5d7pYNewuVdUvXDYXVfXDSe7Sa/5skoeNUzCytbZvR9Fta5Dk1y9gdnRVHT3uGFV1WNbusPnPrbXPzjo/AAAAAAAAAGDb6BfTSZIXb3D+65L0CwQ9oqrm9d/Yvby19v/GPPf3RrQdMfjfX9+soFCStNbOSvKsXvOV0m0oOq29rbUnj3Nia+0NSf5oxEu/NsP111VVByd5Sq/5La21xw3yqMbSWntRkr/pNf9mVR0y6vxNnJ6ugNe6m3cOXfdbWVuc56B0BdN2raq6aZIH9pr/d2vtZeOOMfj+H52kXyTpSVNOy73c2fBeXtF78jtJHthaO3uKvrs2B3hBXtNa+9NJOlTVlZP8aq/5ea21Z04yTmvtxKzdaHva+AAAAMCCKIwGAAAAzEVVXbaqrlNVP11Vz0/ysSS3HHHqL41ZsOp3esfvaq39/aTzGiQp/Hmv+bhJx1mEQSLIS3rNP7aMuUzphSPajh+3c1VdPskDes3vHOzouF6fQ7N2Z8BntdY+P+5192mtnZrkX3rNy1grL2+tfXDck1trn0rS32100oJ0q+I/szbBaSOvWaf9JYPPZVyv7h0fnOSHJ+g/iceMaHt8a+38cQdorb013a6i29nzk1zQa3vsBP0fnq4Q3rDnzTQjAAAAAAAAAGDbqKojkvx0r/lDrbVPrtdnkJ/Rz0E7Msld5zCli7O2QNC6WmvvT/JfI176dDbfSHJYP+8lSW47Qf++SYuaPTNJPx/wvlV1rRnmsJ4Hpfu+9mlZWzBnXE8b9N/nGlm7kes4njphIaW/S7dWhm3XXK95+e0c+N+5fiFrN8zcVGvtwiRP7zXfc4oNMt3L+212L6/iPfmnrbUzp5zDTHZADvBWuiTJE6bo97gkhw4dn5O1+eXjelrv+NZVddSUYwEAALAACqMBAAAAkzi2qtqonyTfT5cU8YYkv5S1BWvOTfKLrbWXb3aRqrpKkp/oNU9SLKnvjb3jI6vqyJFnLt9nese3rapLL2UmExoUovq3XvODJ9i17/5Jrthr2ywx6G5JDu+1/e2Y1xulv1aOnWGsab1gij79z/0m85jIErxowp0iP59uh8e+SdfAh0e03XTCMcZ1z97xl7N23Y3jr+cwl6VprX0tyat6zQ+qqv79vJ5H947PzPYvFgcAAAAAAAAAjO/hSfp5VSeP0e/FI9pOmH06eVtr7YwJ+3xkRNuk+TOfS3J2r3navJfTWmsfn6RDa+28rC0EdHC6vK55+7ne8d7W2menGai19sUk/fc6aa7Y95Jsmg/Zu+5ZWZsjuFV5SiuvqirJ/XrNJ7XW+sXjxvWm3vEhSX50wjHcy/ttdi+v2j3ZMnqD30XatjnAW+ztrbXTp+jXX2Ovaq3175NxvSfJt3tty8gRBgAAYEwKowEAAABb7bvpiprdbJyiaAN3TlK9tvfMMIcvjGi7zQzjja2qDq2qe1XVk6rqxVX1xqp6V1V9qKo+0v9J8pzeEIek2/luu+gXMrtKkvuM2fcRveNzsrZwUl8/KeHMKZKShvXXylETFGqah+9nbZGzcXyud3ypqjp05Jmr7Z1T9Onvtnlukg9OOMbpI9rm/r0Pdiq+fq/5dVMm8r01XXLldtaPd5dP8rDNOlXVsUlu0Wt+QWvtonlNDAAAAAAAAABYeY/sHV+U5BWbdWqtvSdrC9f87GAzz1lMk/cyKs/pXXMYZ9q8l1Om7PcPI9ruMOVYIw0KaN251zxLTmGyNlds0pzC01prF0xx3X6u12FTjLFT3DLJlXttU3+vrbVvZe1Gm5N+r+7lA428l1f0nvxsa+1LM87hALswB3ir/OukHarqykl+uNc8S3y4JGvvsYXkkgMAADCdg5c9AQAAAGDH+0CSvxjs5jauO41oe01Vjb173hiuNsex1qiq2yX57XRFwS4343CHJ5lrssYWekWSP82B7/n4bFLgrKqOTLKn1/zK1tpmhZ/6a+XKg+SSaY0qJna1rN0lbquc0Vq7cIp+/WSupEuYO2fG+SzaNLtFfrd3fMYUBbL6YyRbk3B4uxFtkxZxS5K01i6qqo8lOWa2KS1Pa+20qvpgDvxcHpPk/23S9bG944vSFeAEAAAAAAAAAHaBqrpTkpv1mt/cWvv6mEO8OMkfDh0fkuQXk/zFDNOaR97LvMaZNu9lqjyWJB9PcmGSSw+1jcqTmcXN023SOezhVfUzM4x5vd7xpDmF/QJ74+rneu3mwmijckX/oqrOn2HMy/eOJ/1e3cvj3cureE9+aIZrH2AX5wBvlWm+m2OSHNRre3JV/coM87hR73hLc8kBAACYjcJoAAAAwCS+l9HJGpdOt2vftUa8dpck76+q41trm+7IOXDdEW23HLPvuK465/GSJFV16SR/lq5wT/8P8tPaNolPrbXvVNVrkzx4qPmnquparbUvb9D1+CTVa3vRGJfsr5XLJ7nVGP0mcdVMl6Q0jW9N2W9UMbVLj2hbdWdN0af/3iceo7V2YbeB5QG24vM7YkTbp2cY7z+yjQujDTwnB97rN6+qPa21vaNOrqojkhzXa359a+3MLZofAAAAAAAAALB6ThjRdvIE/V+S5Gk5MF/phMxWGG0eeS/zGmfavJep8lhaa+dX1elJbjzUPCpPZhajcgqvu077tCbNKZxXrtd2zPOal1HfX7/o4awm/V7dy+Pdy6t4T35t1gvu9hzgLTTNdzNqLd1g1on0bEkuOQAAAPMxr/9jDgAAAOwOH2it3XrEzw+21q6d7g/Ex6cr1jPsMkleUlX3HvM6i/hD86w7uK0xSIh4VZLHZb7PXbZb4lO/oNmlkjx0vZOrq0j1sF7zZ1pr7x7jWv0dB7fC3NfKBkYlSO0arbV5vP9V/gwPH9HW3wF2ErP0XRV/l+SbvbbHbHD+Cel+pwx77lxnBAAAAAAAAACsrKo6NMkDes1nJXnDuGO01s5IsrfXfKuqut0MU5tLzsqc8memNc88llF5MrNYxZzCVc5T2i527Pe6C+7lVfzuzp7lYnKAt9Q0380qrjEAAAAWSGE0AAAAYG5aa99qrZ2c5Nbpit0Mu1SSl1bVUWMMdeU5T21RfifJfUe0n5nkr5I8JMkxSX4gXbLIZVtrNfyT5C4Lm+3W+ZckZ/TaHrHB+cdm7S5u/eJqa1TV5ZMcMtnUYKmuOKLtezOMN0vfldBaOy/J3/aa71dV1+ifW1UHJXlUr/kz6WIOAAAAAAAAALA7PCjJFXptf99aO3/CcU4e0XbCdFPaMeaZxzIqT2YW2zWnkI35XrfGIu7lVfzuLpqxvxzgrTPNd7OKawwAAIAFOnjZEwAAAAB2ntba+VX10CTXyIF/5L9SugI4d91kiO/3jr/dWlvpP3BX1RFJntxrvijJbyd5Tmtt3D/qb/vdx1prrapOTvL7Q803q6o7tNZOG9GlXzTt4iQvHuNS5yW5JAcW/z+ltXbcRBOGxfnuiLZ+ou4kZum7Sv4qyROy/16+dLpE46f3zrtnkqN6bX/dWmtbOjsAAAAAAAAAYJWMKl72mKp6zBzG/oWqenxrrZ+/tltcIcnZM/QdNipPZhajvpOfba29bs7XYbFGfa9Xbq19e+Ez2VkWcS/vqHtSDvBKGrXGbt1a++jCZwIAAMBSHLT5KQAAAACTGyQBPCxrkyt+oqoeuEn3b/SOD6+qw+c2ua1xnySX77X9Tmvt2RMkRCTJVeY4p2U6KUm/WNHx/ZOq6tAk9+81/1Nr7czNLtBauyRJPwHq+uNPkXmoqksvew7byKiEvcNmGG+WviujtXZGkjf0mh9VVf3n14/tHZ+XLtYAAAAAAAAAALtAVd0iyR228BKHJ7nfFo6/6uaZxzLvwlb9nMJErthOMOp7PWrRk9iBFnEv77R7Ug7waMvMD91pawwAAIAJKYwGAAAAbJnW2peS/P6Il56+STGlr45ou+V8ZrVl7t47PivJc6YY5wZzmMvStda+kGRvr/lBVXXZXtsDsnaHwRdNcKn+WrlJVR0yQf/d7MIRbdMksVx11onsIl8b0XbTGca72Qx9V00/Xh6Z5J77DqrqgOOBV7bWvrnVEwMAAAAAAAAAVsYJO+Qaq+om03SqqstkbTGrUXkys9iOOYVszve6NRZxL++0724n5QDPKzc0WW6ht522xgAAAJiQwmgAAADAVntuks/32m6QjRPI/m1EW78gzqr5gd7x+1prF0wxzjHzmMyK6Bc4OyzJcb2243vH30ry+gmu0V8rl0uyZ4L+u9nZI9quNMU4N5p1IrvIB0e03W6agarq4OysJJ+3Jfl0r+2xQ//8qKx9nv3cLZ0RAAAAAAAAALAyBhtxPrTXfEGSj874863emHuqahUK2yzDVHks6XJY+kV3RuXJzOJj/z97dx4maVnei//79KwsAwwwIEsUWdxQYxRUEEVwTfQkaAyuiRijHIInag4aDWFRE40/RJKjxiWK4kE9xBhAcwx4RIgiKuBKxAVcGDZlhGGYYXqmZ6af3x/VM3RXV3VXddd09XR/Ptc1F7zPuzx3VXf1VE3f7/dJsqFp7Lk9noOZtyP2iu4IZuK1PNdek3OpB7gnvaGllAOTNC+GPJO+1WLMzwcAAIB5RDAaAAAAsF2NNAa8vcWu00spS9qc9v9ajL14JAhottq7abu5YW5SpZS9kxw3xfk3N20vmOJ1eulzGd9g8aqt/1NKOSTJU5v2f6rWurGLOVp9r7yii/Pns3tbjE2lqfPY6RYyX9Ra70ryi6bh3y+lTOXfaZ+TZJfpV9WV7fZzptZak/xT0/DvllIeMtLY3Bym+b1a6zd7NT8AAAAAAAAAMOv9fpIVTWMX11ofN50/Sf6m6Zolo3qc5pkTpnjeC1uM9bSvo9a6IcnVTcP7lVKe0ct5ZrHmvp2kvz2CveojuibJ/U1jzyulLJ/i9WjY7q/lOfianEs9wHOiN7TWekuSm5uGn1hKeVg/6gEAAGDmCUYDAAAAZsKFSX7aNHZgkte0OrjWenvGrzL30CQn9byy3mluzmlukujEqZn66mprm7Z3neJ1eqbWuj7JRU3DzyilbF1Z76QWp328y2kuz/hVB19aSnl4l9eZj37SYuyJ3VyglLIgyZ/2ppx54z+atvdP8rwpXKflz8/tbHv/nPlEknWjtgeSvDbJC5Ls23TsB3s8NwAAAAAAAAAwuzUvqpY0+tKm66IkQ01jJ01xobsd3VGllMO7OWFkcdQ/bhrenOTLPavqAZe2GDt7O8wzGzX37ST97RHsSR/RyMK7lzUNL0vyP6dyPbaZqdfyXHpNzqUe4Nsztg8v6bI3dMRrp1FDrzR/jw0kObMfhQAAADDz5uM/0AIAAAAzrNa6Jck7Wux6aymlXRPA37UYe88sXunrzqbto0spu3R68kgTylunMf/qpu09Zsmqic1BZwNJ/mSkcfBPmvZ9v9b63W4uXmv9TZKPNA0vSPLpUspOXVU6z9Ra70pyW9PwiSNhZ506NVNbSXA++1CLsfeUUhZ3eoFSyjOT/EHvSupY88+Znn7ta633JfnfTcOvTvI/msbuS/LpXs4NAAAAAAAAAMxepZQDkjy7aXhVxgcqda3Wek/GL3R3YJLnTPfaO6h/7PL4N6fxfI12aa21uZ+uFz6W5FdNY8eUUv5qO8w12zT37ST97dvqZb9iq17RN5dSjpni9WiYidfyXHpNzpke4FrrcJLvNQ0/r5Sye6fXKKX8fpKnTWX+Hjs34xdPfnkp5cX9KAYAAICZJRgNAAAAmCmfTvLjprH9k/z3VgfXWi9Ocn3T8O5J/qPbley2KqUsK6W8qZTyiqmcP4mvNW3vmuSsTk4spRyU5PNJlkxj/htajP3eNK7XE7XWb2T81/2kJM9I8uCm8fOnOM27Mn61vscnuXiqjSGllIeUUt5XSnn0FGvaUTQ3dT44yRs6ObGU8owk/1/PK5rjaq03JLmyafhhST7eyUrDpZTDMj48bKY0/5x5dCnlt3o8x/ubtvdN0tzkeGGttXlFSwAAAAAAAABg7npVGosljnZRrXVzj65/YYuxV/fo2juaZ5RS/raTA0spv5vkjBa7/ldvS2qotQ6mdYjWO0spr5vqdUspzy2l/NPUK5sRtyZZ0zTWz/7AnvUrjiym+rmm4UVp9P9NKZiplLKklPLaUsobp3L+HLHdX8tz7DU513qAm3tDd0rS6ffDYzN+UeS+GAnm+0CLXeeXUv5wKtcspSwopby4lNLqexcAAIBZRDAaAAAAMCNGViB7W4tdbyml7NzmtJcmuadp7OAk3yqlnN7J6mWllIFSynGllA8lWZlGkNODuii9U59LMtw09qZSyjtKKQsnqO+lSb6RB1ZvvG+K83+zxfznllL+oJSyaIrX7JXmBolDM341wqEkn5rKxWutv0ryyiS1addzkny7lPKKib4GW5VSdhlpdvi3JDcneV2SpVOpaQfy0RZj7y6lnFxKKa1OKKVaAjpkAAAgAElEQVQsHVnR8T/SaORpXo2Pyf15xj9vL0vy+ZEVjlsqpZyQ5Kt54GfY4PYpr61rmrYHkny2lHJEryaotd6Y8cFxzT7Uq/kAAAAAAAAAgNltpIflVS12tQozm6ovZHzo1O+XUlb0cI4dwdZ+ltNLKf/crj9vpCfvDUn+LY0Aq9E+UWv96nas8QNJLm0aG0jyvlLKxaWU3+7kIqWUh5ZS/qqU8oM0+qCmFMA1U2qtNY0+w9GeWUp5Vyllnz6U1Ot+xZOT/KJpbO8kV5RSzimldNTzWUp5Uinl3CS/TPLhJIdMoZa5YCZfy3PlNTnXeoA/kWRL09jrSilva/d4RgLDXp3k6iR7ptGTOzSFuXvtb5Jc2zS2c5J/LaV8tJTS0eu8lPLoUsrbk/w0yf9J0tH3JgAAAP0z6Q2hAAAAAD30L2n8gvrwUWP7phES9J7mg2utN5dSTkzyxSSLR+3aJY2Vy95aSrk6ydeT3Jnk3jR+2b1Hkt9K8viRP3v0/JGMr/WnpZQLk/xJ066/SXJSKeVfk/wgybo0GgYenuT3M7bxZn2Sv0rywSnMf2cp5bKMXSFu3ySXJBkqpdya5P6MDw/7s1rr9d3O16X/neSdGbtq6yObjvlCrfXuqU5Qa/1cKeXMJO9o2vXQkfnfU0q5Ksn1SVal8Vzslsb3xqFJjkjy2Exvxb4dTq312lLKpUn+YNTwgjSCp04tpVycRkjcUJIVSZ6QxvfY6Ga6N0RQVVdqrT8upZye5NymXc9LcnMp5T/SWIHyzjRWajw4ja/RY0Yde3uSz6bx/M+US9MIq9xz1NiTklxXSlmb5I60CMqrtT6uy3k+kOS4NvuurrW2Wh0TAAAAAAAAAJibjssDgTNb3VRr/VavJqi1biylfDbJn40aXpTkFUnO69U8O4Az01h4NGk8FyeWUi5Jcl2Su9LotXpEkj9M8uAW59+S5I3bs8Baay2lvCKN4J7mUJsTkpxQSvl+kquS3JRka0/aHmkEbT02jR6o5u+pHcH5SZ7bNPaWNBanvTONvp7NTfs/X2s9s9eF9LpfsdZ6dynl99P4uo4O8VqY5LQkf1FK+UYai0relmR1Gr1+eyTZL8nvpNEDON/CDNuZsdfyXHlNzrUe4FrrHaWU92V8f+GZSV5eSvlckh+N1LxXGr2Jz8vY74d3p7HA9UO6fTy9VGvdUEp5QRrhcb/VtPvVaXx9rk/yn2mEIt6TRh/sHmn0uj4ujZ8PbRetBQAAYHYSjAYAAADMmFrrcCnlbWkEpI325lLKB2ut97c454pSylOT/GvG/0J7lyTPGfkzG/xFkiem0TAy2oGZPLxoU5I/SqPJYKrelOTYNJ6X0Ran/cqHu05jvo6Math43gSHnd+Def62lHJHGqFKS5t275vkxSN/GOu/Jzkyyf5N44/J2CCuVs6ptX64lCIYrUu11veWUvZO8tamXUuTvGDkTzv3p9E09vztVF5LIw1Gb0xyQYvdy9Jo9uqFS5LcmvE/85MpNI0BAAAAAAAAADu0V7cYu3A7zHNhxgajbZ17PgWjvSeN8JgTR7Z3SyMkqDkoqJXbkhxfa713O9W2Ta113UhP4cfTCHZq9tsZH9A0F3wuyRVJntFi334jf5p9bzvW09N+xVrrf5VSjkzyb0ke3eKax478YXIz+lqeQ6/JudYDfHqSZ2b86+mQJG+epJaLRs5/6STHzYiRoLcnplHX05p2L0hjgdcnzXhhAAAAbFcD/S4AAAAAmHe2rpo22ook/6PdCbXWa5M8Po2miU3TmLumserc16ZxjfYXr3VNGk0E3+zy1DuSPLPW+sVpzn9jkmcluXk619lOJgo+uzPJ5b2YpNZ6fpKjknxlmpfakOT/JFk57aJmuVrrr5Ick+6+b4aSnFZrnaw5hgnUWv86jZU1u2mGui3Jca1WeZwJtdZPptEEvHY7zrElyYdb7FqVRoMnAAAAAAAAADAPlFL2SPLCFrs+tR2m+2rG9wodXkqZN0Ertdaa5OVJul0k8etJjq21/rz3VbVWa11ba31RklOS3D7Ny61MozdxVqu1Did5UZJP97uWZPv0K9Zab0oj3Oi9aSweOR3XJ5lWT+aOqh+v5bnwmpxrPcC11vVJnp7k2m5OSyNY72UjP3NmjZFe12ck+Zsk90zzcj/K+EW+AQAAmGUEowEAAAAzaqTh4uwWu04rpSyb4Lzf1Fr/NMmhafzS/Ydp/AJ+MmuT/N80woceWms9rtb6ra4L71Ct9fY0ViN7XZLJmkNuSXJGkkfUWr/ao/m/kcZqdb+X5J+SXJ1G08W6JP1sUvhCkt+02ffJkSCknqi1fq/W+owkT07yyTSCpDpxZxorv74yyYNqrS+ttd7Vq7pms1rrL5I8Nslfp/E8tDOUxop7v1NrPXcmapvraq3/kOTwJBckuW+CQ+9K8rdJDq+1XjcTtbVTa/1YkgOSvCrJ/07y3TTqG+zhNK2C386vtW7s4RwAAAAAAAAAwOz28iRLm8a+UWv9Wa8nGulraxW49upezzWb1Vo311pPSSMc6CuZuOfsu0lek+SpMxmKNlqt9UNJDh6p48vpbIHC4TRqPyfJcUkO2lF6oWqt99ZaX55Gj+DZSf49yc+SrM70Fp2daj0971esta6vtf7PJAel8RivT9JJf+GGNL5n/zqNHqsjpxtUtSPr12t5R39NzrUe4Frr3UmekkZg3UR/d25J8h9JnlJrfdNsC0XbauT7+u+SPCTJ/0zj+Rnq4NTNSa5J8vYkT6y1PmpkkVgAAABmsdL4N1sAAACAHU8pZUWSJyRZkWSvJLumsUrg2jTCsH6c5Jbax38AKaU8LMkTR2rcZaS+25L8oNb6k37VNd+UUg5N8qg0vk/2SrI4jUaRNUl+keTH8yUErROllMcm+e0keyfZOY3n6SdpNJau62dtc1kpZUmSY5I8OMmD0mhk+nWSHyT53mxtNtoeSimfTvLSUUM1yaH9aqIFAAAAAAAAAJiPSil7p7FA5SFp9Ofdl8bCi9/dHgF101VKWZxGT+GBafQ+LU8jEGdtGgt7/jTJT2utvVwAkO2slLJ7kiOT7JNG/9/uaSziuDaN0KifJPl5Lxdo3VGUUs5OctbosVpraXFcX17LO/prcq71AI88niek8VpalsbX4WdJrqm13tPP2qaqlLJzkiOS7J/Gz4c9kmxM47HdlcbPh5trrZ0EqAEAADCLCEYDAAAAAGDWGAm9vDXJklHDl9Vaf7dPJQEAAAAAAAAAAMw6nQajAQAAAOxoBvpdAAAAAAAAjPKajA1FS5IP9KMQAAAAAAAAAAAAAAAAAGaWYDQAAAAAAGaFUsouSV7fNHxzki/2oRwAAAAAAAAAAAAAAAAAZphgNAAAAAAAZou3J9mnaewfaq3D/SgGAAAAAAAAAAAAAAAAgJklGA0AAAAAgL4qpexZSnlPkr9s2nVLkn/uQ0kAAAAAAAAAAAAAAAAA9MHCfhcAAAAAAMD8Ukr5aJIjRjb3TrJ/ktLi0DfVWodmrDAAAAAAAAAAAAAAAAAA+kowGgAAAAAAM+3QJL89yTGfrLV+diaKAQAAAAAAAAAAAAAAAGB2GOh3AQAAAAAA0OTCJH/W7yIAAAAAAAAAAAAAAAAAmFkL+10AAAAAAADz3mCS25N8I8n5tdar+lsOAAAAAAAAAAAAAAAAAP1Qaq39rgEAAAAAAAAAAAAAAAAAAAAAAACY5wb6XQAAAAAAAAAAAAAAAAAAAAAAAACAYDQAAAAAAAAAAAAAAAAAAAAAAACg7wSjAQAAAAAAAAAAAAAAAAAAAAAAAH0nGA0AAAAAAAAAAAAAAAAAAAAAAADoO8FoAAAAAAAAAAAAAAAAAAAAAAAAQN8JRgMAAAAAAAAAAAAAAAAAAAAAAAD6TjAaAAAAAAAAAAAAAAAAAAAAAAAA0HeC0QAAAAAAAAAAAAAAAAAAAAAAAIC+E4wGAAAAAAAAAAAAAAAAAAAAAAAA9J1gNAAAAAAAAAAAAAAAAAAAAAAAAKDvBKMBAAAAAAAAAAAAAAAAAAAAAAAAfScYDQAAAAAAAAAAAAAAAAAAAAAAAOi7hf0uAPqtlLJ7kmNHDd2aZKhP5QAAAAAAAAAATMfiJL81avs/a61r+lUMAOjRAwAAAAAAAADmCP15M0QwGjQari7tdxEAAAAAAAAAANvBHyT5fL+LAGBe06MHAAAAAAAAAMxF+vO2k4F+FwAAAAAAAAAAAAAAAAAAAAAAAAAgGA0AAAAAAAAAAAAAAAAAAAAAAADou4X9LgBmgVtHb1xyySU59NBD+1ULAAAAAAAAAMCU3XzzzTnhhBNGD93a7lgAmCF69AAAAAAAAACAHZ7+vJkjGA2SodEbhx56aA4//PB+1QIAAAAAAAAA0EtDkx8CANuVHj0AAAAAAAAAYC7Sn7edDPS7AAAAAAAAAAAAAAAAAAAAAAAAAADBaAAAAAAAAAAAAAAAAAAAAAAAAEDfCUYDAAAAAAAAAAAAAAAAAAAAAAAA+k4wGgAAAAAAAAAAAAAAAAAAAAAAANB3gtEAAAAAAAAAAAAAAAAAAAAAAACAvhOMBgAAAAAAAAAAAAAAAAAAAAAAAPSdYDQAAAAAAAAAAAAAAAAAAAAAAACg7wSjAQAAAAAAAAAAAAAAAAAAAAAAAH0nGA0AAAAAAAAAAAAAAAAAAAAAAADoO8FoAAAAAAAAAAAAAAAAAAAAAAAAQN8JRgMAAAAAAAAAAAAAAAAAAAAAAAD6TjAaAAAAAAAAAAAAAAAAAAAAAAAA0HeC0QAAAAAAAAAAAAAAAAAAAAAAAIC+E4wGAAAAAAAAAAAAAAAAAAAAAAAA9N3CfhcA81GtNcPDw6m19rsUgHFKKRkYGEgppd+lAAAAAAAAAABA1/ToAbOV/jwAAAAAAACAyQlGgxlQa82GDRuydu3arF27NkNDQ/0uCWBSixcvzrJly7Js2bIsXbpUIxYAAAAAAAAAALOSHj1gR6M/DwAAAAAAAKA9wWiwna1fvz533HFHNm3a1O9SALoyNDSUu+++O3fffXcWLVqU/fffPzvvvHO/ywIAAAAAAAAAgG306AE7Iv15AAAAAAAAAO0N9LsAmMvWr1+flStXargCdnibNm3KypUrs379+n6XAgAAAAAAAAAASfToAXOD/jwAAAAAAACAsQSjwXayteGq1trvUgB6otaq+QoAAAAAAAAAgFlBjx4wl+jPAwAAAAAAAHjAwn4XAHNRrTV33HHHuIarRYsWZbfddsuuu+6aRYsWpZTSpwoB2qu1ZtOmTVm3bl3uu+++MSvqbv35dsghh/gZBgAAAAAAAABAX+jRA3ZU+vMAAAAAAAAAJicYDbaDDRs2jGlUSJJly5blgAMO0KgA7BAWLVqUnXfeOStWrMjtt9+etWvXbtu3adOmbNy4MUuXLu1jhQAAAAAAAAAAzFd69IAdmf48AAAAAAAAgIkN9LsAmItGNygkjQYGDVfAjqiUkgMOOCCLFi0aM37ffff1qSIAAAAAAAAAAOY7PXrAXKA/DwAAAAAAAKA1wWiwHTQ3Xe22224aroAdViklu+2225ix5p9zAAAAAAAAAAAwU/ToAXOF/jwAAAAAAACA8QSjQY/VWjM0NDRmbNddd+1TNQC90fxzbGhoKLXWPlUDAAAAAAAAAMB8pUcPmGv05wEAAAAAAACMJRgNemx4eHjc2KJFi/pQCUDvLFy4cNxYq593AAAAAAAAAACwPenRA+Ya/XkAAAAAAAAAYwlGgx5rtUJbKaUPlQD0zsDA+LcMVqQEAAAAAAAAAGCm6dED5hr9eQAAAAAAAABjCUYDAAAAAAAAAAAAAAAAAAAAAAAA+m5hvwtgZpRSFiV5SpIHJ9kvybokdyT5bq31lz2e66FJHpdk/yS7JrkzyS1Jrqm1burlXAAAAAAAAAAAAAAAAAAAAAAAAMwNgtH6pJRycJIjkxwx8t/HJ1k26pBbaq0H9WCeFUneluTFSfZsc8w1Sd5ba/3cNOd6UZK/THJUm0PuKaVclOTMWutvpjMXAAAAAAAAAAAAAAAAAAAAAAAAc4tgtBlUSnl6kremEYbWMqSsx/P9bpJPJNlnkkOPTnJ0KeVTSU6utd7f5Ty7JvnnJC+Z5NA9k5yS5IWllFfWWi/vZh4AAAAAAAAAAAAAAAAAAAAAAADmLsFoM+txSZ49ExONhLBdkmTxqOGa5DtJfp5kjyS/k2TvUftfnmS3UsoJtdbhDudZkOSiJL/XtGtVku8mWZPkkJG5ysi+fZNcWkp5Zq316i4eFgAAAAAAAAAAAAAAAAAAAAAAAHPUQL8LIEmyMcnPenWxUsqBSf4tY0PRvp7k8FrrEbXWE2utz05yYJLXJ9k06rj/luRvu5ju7zM2FG1Tkv+R5MBa63NG5npCkkcn+cao45YkuaSUsl8XcwEAAAAAAAAAAAAAAAAAAAAAADBHCUabeZuSfC/JR5OcnOQJSZYl+bMezvG2JMtHbV+T5Jm11h+NPqjWurHW+r+SnNh0/l+WUh4y2SSllIPTCFYb7Y9qre+vtQ41zXVjkmdkbDjaXknOmmweAAAAAAAAAAAAAAAAAAAAAAAA5j7BaDPrgiS71Vp/p9b6mlrrR2qt36m1burVBKWUw5K8ctTQUJKTaq0b2p1Ta71kpLatlqSzwLKzkiwatf2JWuulE8wzmOSkkZq2evVIwBoAAAAAAAAAAAAAAAAAAAAAAADzmGC0GVRrXT1RQFmPvCzJglHb/1ZrvamD897dtH1iKWVpu4NLKTsledEk1xin1vrTJJeMGlqYRs0AAAAAAAAAAAAAAAAAAAAAAADMY4LR5p4XNG1/vJOTaq0/SvKtUUO7JHn2BKc8J8nOo7a/UWv9cUcVjq/phR2eB3PSQQcdlFLKtj9XXXVVv0sCAAAAAAAAAACAHZ7+PAAAAAAAAADY8QhGm0NKKQ9K8tujhjYn+XoXl7iqaft3Jzj2uZOcO5GvpVHbVr9TStm3i/MBAAAAAAAAAAAAAAAAAAAAAACYYwSjzS2Pbtr+Qa31/i7Ov6Zp+/Au5vpGp5OM1HRDF3MBAAAAAAAAAAAAAAAAAAAAAAAwxwlGm1se1bR9c5fn/2yS6432yBmcCwAAAAAAAAAAAAAAAAAAAAAAgDluYb8LoKcObdpe2eX5tzRt71VKWV5rXT16sJSyZ5I9pzlX8/GHdXk+AAAAACM2100ZrsNdnbOoLE4ppaNjh+twNtdNUyltzhkoA1lYFm23628a3pSa8V/LBWVBFpTZ/8+5w3U4A8V6HAAA3ai1dvzefL4aGt7YcnxhWZiBsmC7zdur97db6uZsqVt6UNH2181nxS11S7bUzRMeU1KyaGBxL0oDAAAAgDmr1prUmjLg9+0AAAAAAJAIRptr9mjavqubk2ut60opG5IsHTW8e5LVTYc2z7O+1np/N3O1qG33Ls8HAAAAmPdWbvhZPnvXR/OLwZ9mON3dZL/bguU5Yren5gUrXpkFbYIENg5vyEW//nB+sO66rB9e14uSd3gDWZCH7vSw/NE+f5YHLz2kZ9f9yfobcsmqT2blhp+1DkbLwjx0p4flxfu+NgcsOahn8/bKms2r8+lf/VN+uv6G7L5wzxy3/Pk5dvnv9bssAIBZ7cf3fz///pvP5NaNP88BSx6SF+97ch6ytHktrPnt6/f+v1yx+tL8aui2lvuXDuyUR+78uLzsQX+eXRYs69m83117Tb5497/krqE7ctDSh+VlDzol+y4+oOvr3Lnx1vyfX38oPx/8SbZk4gCx2WKPhXvlybsdn+fv/dK2oXCj3/9vrBsmvN5BSw/Lmx9yzvYoFQAAAAB2eHXD+tR/eGNy9b8nCxakPvcVKa99R8qC7bcgBAAAAAAA7AgEo80tuzZtD07hGoMZG4zWqnu8V/OM1pMu9VLKPklWdHla7+5gBQAAAJgh92xalX+89YwMDq+f0vn3bVmdr6z+fLbUzXnxvq9teczH7nhP/uv+66dT5pwznC352eCP8g+3npEzD3pf9li017SvecfGW/KB296ezXVT22O2ZHNuHrwx/7DyjJz50Pdl2cLmtQv6Z7gO5x9vPWNbWMVdm+7IRXd9JEsGlubJux/f5+oAAGanOzauzIdvf9e2UKlfbrgp5608PWc89H9lr0X79rm62eH6+67Op379gQmP2TA8mO+u+0buvm1V/urB56SUMu15f7L+hnz0jvdsCyy+afC/8t6Vf52zHvqB7Lyg+Vfl7a3bcl/ee+tf5/4ta6dd00y6d/Pdueyez6aU5L/t/fJx+5vf/wMAAAAAU1ffcVLy1UsfGPj0ualJyinv7FNFAAAAAAAwOwhGm1uau7AnXpq5tcEkyye4Zi/nmeiaU/XnSc7q0bVgTqm15jvf+U5+/OMf56677srGjRuzYsWKHHDAATnmmGOy6669ehnOvFtvvTXXXXddbrvttgwODmbvvffOYx7zmBxxxBEZGGi9kn2n7rrrrnzta1/LHXfckcHBwey///45+OCD8+QnP3na127lxhtvzA033JBVq1blvvvuy5577pn99tsvxxxzTPbaa/o32wMAAHPHD9ZdO+VQtNGuve+q/OE+r8rCsmjM+H2b780P7//2tK8/V20YXp/vrvtGjlv+/Glf6/r7rp4wFG20+4fX5gfrrstT9njWtOftlV9u+GnLUIRr1lwhGA0AoI3P/+bCbaFoWw3Vjfn2fV/Ps/d6YZ+qml2uve+qjo9dueHm3DF0Sw5YctC05/3Wmq9sC0Xbau2WNfmv+7+dJ+52bMfXuWHddTtcKNpo31jzlTx/r5eNC5v7xeBPhKIBAEAL+vOmRn8eAPNZ/c0dydVfGL/jsgtT//vf9WQhCAAAAAAA2FEJRpvb6hw7B5iC3/zmN3nnO9+ZCy+8MKtWrWp5zOLFi3P88cfn7LPPzpOe9KSOrnvSSSflggsu2Lb9i1/8IgcddFBH51511VU57rjjtm2fddZZOfvss9seP/qXuscee2yuuuqqJMk111yTs846K1/5ylcyPDw87rx99903p59+ek499dSum6S++93v5k1velOuvPLKltc+8MADc/LJJ+ctb3lLFi5cmLPPPjtve9vbtu2/8sor8/SnP72jue6+++6cc845ufDCC3P77be3PGZgYCBHH310zjrrrDzzmc/s6rEAAABz051Dt/bkOoPD67Nm8+rstWifMeO/Grot1T/hTOhXG3sTBnDn0Mouj+/N175X7tzYup5fzbI6AQBmizs33pofrLu25b47unxvOJf9usvwrTs33taTYLQ728zb7n1v+3p27PfD926+OxuG12enBbuMGZ9tn0cAAKDf9OfpzwOAKfvyRUmLvwdzz6+TdWuSZXvMfE0AAAAAADBL9H4pLfppXdP2TlO4RvM5zdecyXmAabrkkkty8MEH57zzzmvbdJUkQ0NDueyyy/LkJz85J598cjZv3jyDVU7NO9/5zjztaU/Ll7/85ZaNUUny61//On/xF3+RF73oRRkaGur42u9973tz5JFH5oorrmh77dtuuy1nnHFGjj322Pz617+e0mNIkk9+8pM5+OCD8+53v7tt01WSDA8P5+qrr86znvWs/PEf/3FXjwcAAJibNtdNPbvWxuHBjsYYa0OPnqNurzPbvjbt6u/V8wMAMNdcsfrStvtm23u9fhruMqi5V89du/ex3V5/w/D6XpTTV62eC9+jAADwAP15+vMAYDrqrTdNsLP135EAAAAAADBfLOx3AfSUYLTkn5J8tstzDknS/u4D2EGdf/75ec1rXjOuceiQQw7Jox71qOy8885ZuXJlrr322mzZsmXb/o985CNZuXJlvvCFL2Thwtn518R73vOenH766du2H/7wh+fhD394dtlll9x555355je/mQ0bNmzbf/HFF+eMM87Iu9/97kmvfe655+a0004bN/6oRz0qhx12WJYsWZKVK1fmuuuuy5YtW3LNNdfkxBNPzNOe9rSuH8eZZ56Zd7zjHWPGSil5+MMfnsMOOyzLli3L6tWrc/31149pnLvwwgtz55135rLLLpu1XyMAAGD72zzcu5tmBlvc2D4XbuLf3nr1HHUbLDA4y7427erfXDdlc92UhWXRDFcEADB73bv5nlx731Vt9wuXHa27YLRevT9vd51urz8XvpatHsNs+zwCAAD9oj9Pfx4ATNuvVrbfN+r9AwAAAAAAzEd+Wzu3rGnaXtHNyaWUXTM+sOzeDubZuZSyS631/i6m26eDebpWa70ryV3dnFNK6cXUPVM3b05W3dbvMua+FQemzOGGle9973s55ZRTxjRdPe5xj8sHPvCBHH300WOOXbVqVc4444x8+MMf3jZ22WWX5cwzz8w73/nOGau5UzfccEO+9rWvJUlOOOGEvOtd78ojHvGIMcesXr06f/mXf5lPfOIT28bOPffcnHLKKTnooIPaXvvb3/523vKWt4wZe/rTn573v//9Ofzww8eMr1q1KmeeeWY+9KEP5atf/WpuvPHGrh7HBRdcMKbpamBgIKeeempOO+20PPjBDx5zbK01l156aV7/+tdn5crGL8CvuOKKnHHGGXnXu97V1bwAAMDcsbm2Xqn+d3Y9Ks/a8wUt971n5VsznPHNs61u8G8VlpYkyxfundfs/+YuKt3xXb3mS7lmzZfHjfcqeKHdc72oLM6mFl/n2RawMFEwwobhwey6QDAaAMBWV63+92yu7UOOZ9t7vX6qtdtgtN48d+2Cf7u9/uBw61+fH7ns2By3/Hld17W9bKqbct6tp7fc1+oxt3t+Dl76iLxonz8dN754YOn0CgQA6DH9eTNoDvfo6c/TnwcAPfHrW9vvGxaMBgAAAADA/DY3Ow7mr5uath/S5fnNx99Ta13dfFCt9e5Syuoky0cNPzjJj6YxV3Pt89eq21JPfHi/q5jzyr/8JNnvoH6Xsd28+tWvztDQAzdOH1vQ57oAACAASURBVHPMMbn88suz8847jzt2xYoV+dCHPpRDDz00b3rTm7aNv/vd785LX/rSPOYxj5mRmjt1zz33JEne/OY3t11hcvny5fn4xz+e1atX59JLL02SbNmyJR/72MfGrQA52qmnnprNmx+4GemFL3xhLrrooparPq5YsSIf/OAHc/DBB+fNb35zfvOb33T8GG655Zaccsop27aXLFmSSy65JM997nNbHl9KyQknnJCjjz46T3nKU3LzzTcnSc4555y89rWvzUMf+tCO5wYAAOaOTXVTy/Hli1bkoJ0e1nLfTgM75/7htePGW93YvmFL67CrXRfs1vb6c9VNgz9sOb69gxf2WLhnVm36VcfH98tE9WzYMphdF+w2g9UAAMxeg1vW52v3XjbhMYLRpq4XwcXDdbjt16DrYLQ2n6n2Xbz/rPpMVWtNSUnN+CC6Vs9pu+dh+aK9Z9XjAgBoS3/ejJnLPXr68/TnAUBPrLm7/T7BaAAAAAAAzHMD/S6AnmoOJju0y/MPbtqeaHm1Xs/VTagaMIErr7wy3/nOd7Zt77bbbrnoootaNl2Ndtppp+X5z3/+tu3h4eGcd955263O6TjmmGM6Wonx7/7u78Zsf+UrX2l77HXXXZdvfetb27b322+/nH/++S2brkZ705velGc/+9mT1jLaOeeck8HBB24aOe+889o2XY22zz775NOf/vS27S1btszarxEAALD9bW4TjLawLGp7ztIFO7Ucb3XD/sba+mb3pQMTf76ci9o95l6FVrQLcNh94V4tx9sFLPTLRM+DYA8AgAd8fc2XMjhJeFcvwr3milZBXRPpxXvPjcMbenb9dl/rpQtm12eqUkqWDLT+rNjq+7Ht42pzDQAAmGv05z1Afx4ATNPa1e33DQ/PXB0AAAAAADALCUabW/6rafuxpZRuuqqfMsn1Jtp3VKeTlFJ2SfLYLuYCunDBBReM2T711FOz//77d3Tu3//934/Z/sxnPpONGzf2rLZeOf300zMwMPlfYYcffngOOuigbdvf+9732h77mc98Zsz26173uuy+++4d1XPGGWd0dFyS3H///Tn//PO3bR988ME5+eSTOz7/yCOPzFOf+tRt25///Oc7PhcAAJhb2gWjLZogGG1JaX2j+sYWN/gPbml90/9Os+wm/pnQ7gb/XoRWDNfhtuELeyzcc7vN20sTB6PNrloBAPplc92Ur6z+wqTHtXpvPl+1C0ZrFwbdm2C03r23HRy+v+X4TrMwbLr9Z57xz0e750gwGgAA84X+vAfozwOAadqyuf2+4S0zVwcAAAAAAMxCgtHmkFrrnUl+MGpoYZJjurjE05u2/2OCYy+b5NyJPDWN2rb6bq31112cD0zg6quvHrP9ile8ouNzDz/88Dz+8Y/ftr1hw4Z8+9vf7lltvbDTTjvl+OOP7/j4Rz7ykdv+f/369Vm3bl3L46655pox2yeeeGLHcxxzzDEdN7ddffXVY1ajfNGLXtRRE9loxx133Lb/v+WWW7Jy5cquzgcAAOaGdsFo7UICkvahZq1udm9303+7cLW5rJuQgG4N1Y1tAx/2WLhXy/F2QWr9MlFAhGAPAICG6++7OvduvnvS4zYMD2a4Ds9ARbNfu/fJ7YLFevH+fHCC97bdXr/d8TsN7NLVdWZCN89pu8e1dBYGvgEAwPagP28s/XkAMDV1yyTBZ4LRAAAAAACY5xZOfgg7mIuTPHbU9quSfGmyk0opj0jypFFD909y3uVJBpNsvSv0qFLKI2qtP+6gxpOati/u4BygA6tXr87Pfvazbdt77LHHmMajThx99NH5zne+s237uuuuy9FHH92zGqfrkEMOyeLFizs+fvny5WO216xZk1133XXccd///ve3/f8ee+yRQw89tKu6jjjiiI5Wh2xujNt///3zy1/+squ5mh//z3/+8zz4wQ/u6hoAAMCOb9MUgtGWtAn4anXzf7uwq6UL5mMwWusb/DfVoWyumyZ8ziczUbjCHgv3bDk+OLw+tdaUUqY8by9N9BgGBaMBAKTWmi/f0/mvRIfqxiydh4HE49TWwWhLB3bO2i1rxo1PFNjbqYmCfbsJRhuuw22v1S54uZ/afVbsLhht9j0uAADoNf154+nPA4ApWnfvxPsnC04DAAAAAIA5TjDa3POpJH+TZMHI9gtLKYfVWm+a5Ly/atr+l1rrhnYH11rXl1L+NckfN13jVRNNUkp5WJIXjBranOTTk9QGdGjVqlVjtg877LCub5J+xCMeMWb7rrvumnZdvdTcSDWZRYvG3py+adP44ID7778/GzY88CNvKk1MnZ5z6623jtl+wxvekDe84Q1dzzfaPffcM63zAQCAHdPmNsFoiyYI6Wp3o3qrG/bb3ey+U5uQsLlsohv8NwwPZtcFUw9Gmyh4YY9Fe7UcH86WbKpDWVyWTHneXproMUy0DwBgvrjx/u/kjqGVHR+/YXhQyFSS1rFoyU4LdklafBzqxXvPicLPNg4PdhxQvHF4MLXNI9hpwS5Trm97aff91ipsrm2I9jz8rAgAwPyjP288/XkAMEW3/GTi/cOC0QAAAAAAmN8Eo80xtdabSikXJPnTkaHFST5RSnlGu6CzUsofJDlp1NBQkrd1MN3ZSV6SZGtXw0mllItrrS2XZCulLE3y8ZGatvpYrfVnrY6ft1YcmPIvk/ySi+lbcWC/K9guVq9ePWZ799137/oazefMtqaegYGBnl/z3nvHrri1bNmyrq+x2267dXTc3Xff3fW1J7N27dqeXxMAAJj9Ng0PtRxfONA+pKtdqFmrm//bBQLMx4CGicLgNg4PZtcFnX0mbGVwS+tQgSTZfWHrYLSt8y4emB3BaIMThEe0C00AAJhPvnTPxV0dv2HL+mThntupmh1Jm2CxNu/PJ3pf2qmJgtFqajbWDVlaJv9MNDjB++DZGDbdPhitxWfFLa2foyXz8LMiALCD0p83c+Zgj57+vKnRnwcA49UP/83EBwwPz0whAAAAAAAwSwlGm2GllAPT+nl/UNP2wlLKQW0us67W+psJpjkryQuSbF227egkXy6l/Fmt9cejalmS5LVJzm06/9xa6y0TXD9JUmv9eSnlH5OcNmr4X0spf5nkI7XWbXfnllIemeSjI7VsdXc6C2CbV8rChcl+B/W7DHZQtY69QaTb1Shb6cU1ZrslS8beSD401DpcYCKdnjOVa0+m+esOAADMD5vr5pbji0r7YLR2N6q3umm/XaDVfLzZfekEwQWDWwYfWDZgCjZOELywx8LlbfcNDg9mWfaY+sQ9NNFjmChYAgBgPvjl4E25afC/ujrHe6iG2iYYrd37816E8k52jQ3Dgx2FRQ8O39923+wMRmvznDaFoNVa235/7jQPPysCADsm/XlMh/68qdGfBwAt3PLjifcPb5mZOgAAAAAAYJYSjDbzrk7ykA6OOyDJL9rsuyDJSe1OrLXeVkp5YZLLkyweGX5KkhtLKd9O8vMkuyd5fJIVTaf/e5IzOqhvq7ckOTzJ745sL0ryviRnlFK+k2RtkoNH5hrdvTGU5AW11ju7mAuYxJ577jlme82aNV1fo/mc5cvb34Q9VVu2zK5f1DY/xuaVPTvR6cqde++995jta665JkcddVTX8wEAAGyum1qOL5wgGK3dDfytgq3a3+w++27i394mCoObbvhCq1C6JFlSlmangV2227y9sqVuzqba/iaj2VInAEC/fHn1xV2f4z1UQ7tgtHafSSYK7O1Uu/fn3c7RHCg22tIJ3uf3S6dhc5vrpmxJ65DuiQKlAQBgrtCfNzX68wBgrLplS7JukvcRw8MzUwwAAAAAAMxSA/0ugO2j1npVkhckWTVquCQ5IsmJSZ6T8aFon0nyklprxx0RI8eemOSipl37JHlukj9K8oSMDUW7K8kf1Fq/1uk8QGdWrBj7sv7pT3/a9TV+8pOfjNneZ599Wh63cOHYbM3Nm1vfBNHKVBqbtqcFCxbkgAMO2Lb985//POvXd3fT0Q033NDRcfvuu++Y7al8jQAAAJK0DaOaKBitXYBAq+CFdmEM8/Fm90UDi7KwtF5jYrqhFe2CFZYO7DRJINv0Qx96YbI6ZkudAAD9sGroznx37Tdb7jt0p8OzpCxtuc97qIZ2wWjtPpNsrpuzabh1gHSnJgs+G9zS2fv/weH7W44vLIuyaKD9Z7Z+aRei3fy9ONH35kSfXwAAYK7Qnzc1+vMAoMldtyZbJvm7fXh2BZ0CAAAAAMBME4w2h9Vav5jk0Uk+lGSiLodvJnlRrfVltdbWHdoTz7Ou1vqSNELQWnf2N9yT5INJHl1rvazbeYDJLV++PIcccsi27XvvvTc/+tGPurrGNddcM2b7yCOPbHncbrvtNmb73nvv7XiOH/7wh13VNBOe/OQnb/v/4eHh/Od//mfH595zzz35/ve/39GxRx999JjtL33pSx3PAwAAsFWtNZtr6ybZRWVx2/Pa3ajefHP7cB3OxuENLY9td8P8XNcufGFDm+epU+2CBZYu2DkLyoIsLkvanDe9QLZemawOoR4AwHx2xerPp2a45b5n7XlCx2FU81brXLTstKB9WPNkwWaTmey57/T6gztY0HT778X1E26PttOC+flZEQCA+UV/3tTpzwOAUe74xeTHbBGMBgAAAADA/CYYbYbVWg+qtZZp/jmpi/nuqrWekuRBSY5P8qokb03yF0n+MMnBtdajaq2f68Fj+9da61FJDk7yopE53joy5/FJ9qu1/nmtddV05wLaO+aYY8Zsf+pTn+r43B/96Ef59re/vW176dKlecITntDy2OaVKm+88caO5/niF7/Y8bEz5ZnPfOaY7X/+53/u+NwLLrggQ0NDHR37jGc8IwsWLNi2/fnPfz533XVXx3MBAAAkyXC2tA1YWFgWtj2vfbjX2Jv7h+rG1DYpBPM3GK2zoIButQte2BpiN9vDMiarY7bUCQAw09ZuXpNvrLmi5b79Fv9WDt/lCVnaJuBruuFec0W7zyQ7TRAutr3en2/VLvCs0+Mmqr2f2n3uaA7Mnuj5aRfEDQAAc43+vKnRnwcAo6y6Y/JjhgWjAQAAAAAwvwlGmydqrUO11itrrZ+otf59rfV9tdZ/q7V2sNRM13P9otb6uZE5/n5kzitrrZ11JQDT8id/8idjtt///vfnV7/6VUfnvvWtbx2z/ZKXvCRLlixpeezjH//4Mdtf+MIXOprj8ssvz7XXXtvRsTPp5S9/eZYtW7Zt++KLL87ll18+6Xm333573v72t3c8z/Lly/Pyl7982/a6dety2mmndVcsAAAw722qm9ruW1gWt923dGBpy/Hm8IANW9rf7N8uXG2um+lgtJ22BaN1FmbXLxuaghLG75/e8wMAsKP6z3u/mE1tfj36zD1PyEAZaBsk1Wn41lzXPhhtl7bnTPd98mTvXzsNrWv3mWrWBqO1Cekb91lxgsc/X0O0AQCYf/TnTY3+PAAYZaiDf2cUjAYAAAAAtLBhU83f/t/hPPu8LTnqXQ/8ufyHrXsuYUcmGA1gjjn++OPzuMc9btv2mjVr8tKXvjSDgxP/AvW8887LpZdeum27lJI3vvGNbY8/6qijsvPOD9wkcfHFF+f666+fcI6bbropr3zlKyd7CH2xbNmyvP71rx8zduKJJ+bKK69se87/z96dh0lSFXi//53IzKrM3rt6VRqGpUGWEZARQWiYpllGQQFHXhWdYUa9jo6+iuMdF1zxOtdtZoSZC47ggOAyyAVZbNEWkIaWRkAaEBQa6JamAemNql4rMysz47x/FFVdWRUnMqJyz/x+nofHjjgnIk5GllXnZJ7ziw0bNuj000/X9u3bY13r4osvLpvQ9oMf/ECf/vSnVSrF+wL7iSee0KpVq2IdAwAAAKAzFP2wYLSUs8wVslW0RRXGnDMsiMG1YL7T1SugzBW80DsajOYIZAsJr2ukSsERrRLgBgAA0EhDfl73bP95YNnMZJ9eP/1kSXvDcMeLGr7V6VzBaGEBXPUKLo5aPiLr7wncn2nR8ZTrno4fG7rub8r0hI5FAQAAgE7C/LzJYX4eAABj5AlGAwAAAAAAABCf71u96VJfX7zV6s4npQee3fvfy7sJRkPnIRgNAFrMpk2btGHDhkn9N+Kqq65ST0/P6Pbdd9+tk046SQ888MCE623btk0f+chH9IlPfKJs/6c+9SkdeeSRznZOnz5d73znO0e3S6WSzjrrLN1+++0T6g4NDem73/2ujj/+eG3evFmzZ8+Oc0sa5gtf+IJe+9rXjm7v3LlTp556qt7xjnfoxhtv1GOPPaa1a9fq9ttv18c//nEdccQRevLJJ5VOp3XOOedEvs4BBxygK6+8smzfN7/5TS1ZskTLly9XsVh0HrthwwZdfvnlWrZsmY444gjddddd8V8oAAAAgLZXtO5gtJQXPxhNKg9fCAtiCAsh6GTuYLTqghdc93rker2uYLQWCcuoFNrRKu0EAABopN/s+JX2lHYFli2b/dbRPnur9/WaL3iSTtKknCFc1QcXhx8fFiId5Txpb2rsNjWCa5xXsEMq2b0LMF2vy/WzDAAAALQi5uc1D/PzAAB4xVC+cp2YgZ4AAAAAAAAAOt9da6VVzzS7FUDjJJvdAABAufPPP3/Sx1o7vEDkmGOO0WWXXaYPfehD8n1fkrRmzRodf/zxWrx4sY444gil02k9//zzevDBBydM9Dn99NP1la98peL1vvKVr+jmm28efSLjli1b9Fd/9VdavHixjjzySPX29mrz5s164IEHtGfPHknSwoUL9Y1vfKMln0zZ09Oj2267TcuWLdO6deskDd/TG264QTfccEPgMcYYXX755dq4ceOEJ3qGueCCC7Rp0yZddNFFo+/R/fffr7PPPltTpkzR6173Oi1YsECZTEa7du3Stm3b9MQTT8R++iUAAACAzhQWjOYKCJDCQ81y/qCmacYr/w5e7G5k1GvSEVvZWVz3rtrghawzMGH4epmEK5CtNcIysqXwYIhqg+MAAADaTcmWdOfArYFlaS+jJTPPGLPd2n29Zhv53ms8Y4zSXka7SxPHRVUHo1Xo31YKBh6R9fcE7s+0aIBYpRDtKYlpktz3t1VfFwAAABCE+XnNw/w8AACG2XyEzxmtX/+GAAAAAAAAAGgr9zwTPK8S6FQEowFAh/rABz6g2bNn673vfa927949un/dunWjk4qCvO9979N3vvMdpVLuhfQj9tlnH/3kJz/Rueeeq127dlW8xgEHHKDbbrtNmzdvjvlqGmfffffVr3/9a334wx/WzTffHFp3zpw5uvbaa3XWWWfp05/+dFnZ9OnTK15r5Kmf733ve7Vp06bR/YODg1q9enWk9rbq0z0BAAAA1FdhssFoibBgtL0Tb7OOMKteL1NxoUmncgejVRf85QpWGAkmqNd1a6VSMETU4AgAAIBO8eiu3+jlQvD3IEtm/pUyiamj2/UK3+10RiPBaDsnlFXbT65076O+N64A4bQ3NXB/s4WHaI8NRnOPFQEAAIBuw/y8yWF+HgAAkqIEo/ml+rcDAAAAAAAAQFtZ17pfAwJ14TW7AQCA+jnvvPO0fv16XXjhhZo7d66zXiqV0hlnnKHVq1frqquuijTpasSyZcv04IMP6pxzznEujp83b54++clP6tFHH9Vhhx0W+3U02sKFC3XTTTeNTsA6/PDDNWvWLKXTaR144IE67bTTdMUVV2j9+vU666yzJGnCkyJnzpwZ6VpvetOb9Oyzz+ryyy/X0UcfXTFgIJVK6YQTTtDFF1+sp59+WhdeeOHkXiQAAACAtlYMCUZLhQWjhS52Hwz8d9TjO91IUNl4uVJ1oRXue52W5A4YaJVgtErBEEVbVMF3/7wCAAB0Emut7ugPXtSdUFLLZr+1bJ+zj9kifb1ms3I92dDULVSuZsFojvcwkwh+z5vN9bMojR8rhgc7AwAAAN2G+XmTw/w8AEDXG8pVrlMiGA0AAAAAAABAuXVbXfMqgc6UbHYDAKDbbdiwoa7nnz9/vi699FJ961vf0po1a7R27Vpt3bpV+Xxec+fO1aJFi7RkyZJIT1B0OfTQQ3XLLbdo27Ztuueee/TCCy9ocHBQCxYs0AEHHKCTTjpJyeTePzlLly6VtdE7XXHqjnfNNdfommuumdSxS5Ys0ZIlSyLVfeKJJ0b/bYzR/PnzI18nnU7rwx/+sD784Q+rv79f999/v1566SX19/erUCho2rRpmj9/vg455BAdeuihmjKFxSUAAABAtyvYIWdZMiQYLWlSSppUYLDa2AXursXumS5e7O4KXnAFHkTlutcjgWiue15t4EOtRGlH3s8q5UVf5AUAANCunh58XBvz6wPLjp1xsmal5pTtGwnDHS/fIn29ZnMFoxmFhcpVd+8q3fuooXU5f0/g/lYdU4WHaI8dKxKiDQAAgPbD/LzKmJ/H/DwAQIPlI3yO6ROMBgAAAAAAAGAva63WbQkue80C6ah9wx8QBLQjgtEAoEt4nqdjjz1Wxx57bN2uMXfuXL397W+v2/lb1Z49e/Twww+Pbh9yyCGTnsjW19enM888s1ZNAwAAANChgoLNRoQFo0nDAQK7Szsm7I8SjNbbxYvd04ngRTDVhlZUCqFzBQy0UzBazh/UNM1oQGsAAACa646BW5xlp/WdO2Gfq3+dbZG+XrO5g9GM895V00/2bUl5mwutE/X8rvcw402N3a5GSJkeefLky59QFmWsSDAaAAAAwPy8emJ+HgCg4wzlK9fxJ35WBwAAAAAAAKB7bdst7XBMYfzuBZ6OeDXBaOg8XrMbAABAu7v22ms1ODg4uv3GN76xia0BAAAA0A2Kthi4P6GkPBP+kV/aSwfuz/mDgf8uP7Z7F7vXK6CsUgidO/Ah+D1qtCjtaJUQNwAAgHp6IbdBT+x5OLDsz6e+Xq/u3W/C/pEw3PGqDd/tHMHBaDLGee+q6SdHC/2N9t7kSsHtyDgCl5vNGKN0hHuaK7mC0VrzdQEAAADoDMzPAwB0nHyEzxlLpfq3AwAAAAAAAEDbWLfFXXbwgsa1A2gkgtEAAKjCCy+8oC984Qtl+y644IImtQYAAABAtyj4Q4H7kyZZ8Vj3Yve9E29di91d4QPdwHXfslUEL1hrnaEXI/faHfjQGmEZ0cIjWiPEDQAAoJ7uHLjFWXZ639sC97tDcFujr9ds1pWLJqNeZ+Dz5O9drYLRrLXK+nsCy1o5QCxKGDQh2gAAAAAajfl5AICONJSrXMcnGA0AAAAAAADAXs9sCZ5UOa1Xmj+9wY0BGoRgNAAAxvjJT36iz372s9q6dWvFuo888ohOPvlk9ff3j+476qijdMopp9SziQAAAACgoi0E7k95PRWPjRSM5ljs38qL+OstLCTAuhIbKsjbnKyCjx0JyYjyfjVTrcIjAAAA2ll/Yase2vnrwLL90wdrcebwwDJXCG6+ij5mJ3H1lY1MXfrJtQr9HbJ5+fIDy1o5bNo55intfc3usSLBaAAAAACiYX4eAACS8hE+x7TBnzECAAAAAAAA6E7rtgTvXzxfMsY0tjFAgySb3QAAAFrJrl279LWvfU3/9m//pje96U069dRTddRRR2n+/PlKJpPq7+/X448/rp/97Gdavnx52cKknp4eXXvttU1sPQAAAIBuUXAEoyVNquKx7oCvwcB/j9XbxYvdXQEGVr4Kdkg9pjf2OfMhwQvp0WC04Hs+EpbR7C8vwl7DCILRAABAp1s5sFy+SoFlp/e9zdlnc/WvrazyNqe06d7+txQejBYWKjdZkfq2pcrBaNmQ8LRWDpuuKkQ70bqvCwAAAEBrYX4eAACShvKV65SCP3MGAAAAAAAA0J3WO547dPB8QtHQuQhGAwAgQKFQ0PLly7V8+fJI9TOZjL7//e/rqKOOqnPLAAAAAEAqOoLRUlUFo41d7B68kD+T6N5ghrAAg6w/qB4vfjBaWGBYpWC0VgnLcP2slNchGA0AAHSuwdJu3bv99sCyealX6ahpxzmPdfX1pOE+VFh5dwgORpPcoXLZCMFlLmGBZiPyNiff+vKM5z5PaY+zLJOYOqm2NUKUsaIrPI6fVQAAAABxMT8PANDV8hG+Q/cJRgMAAAAAAACw1zObg+dUHjS/wQ0BGsg9WxcAgC40a9YsJRKJWMeceOKJWrVqlc4777w6tQoAAAAAyrmC0ZKRgtGCA77GBly5gqzCwsE6Xa+XdpZFCQcLPi5KMJr7nrdC4FiUNkz2/gAAALSDVdtXKG9zgWWn9p0jz7i/cwgLk3IFUHUT6whGMzLOe5e3k79vUfvXeT/4/Y5ynkwLj6nSjiDssf15V3hcN48VAQAAAMTD/DwAAEQwGgAAAAAAAIBYrLV6Zktw2eJ5jW0L0EjJZjcAAIBWcu6552rz5s1asWKFVq9erccff1zPPfec+vv7lcvllMlk1NfXpz/7sz/TSSedpDPPPFMnnnhis5sNAAAAoMsUqgpGcy12z435N8Fo44UFGEw2oCxXcgeGjQSxhYVl5EqDUrJvUteulWjBaIR6AACAzlTwh3T3wG2BZdMSM3X8jFNCjw/rX2dD+ordzhh3MFquNPm+Z9QwuryfVSYR8t75ewL3e/LUY3on1bZGcIdoD98Xa23IWNE9bgEAAACAsZifBwCApKHwhy9IkkoEowEAAAAAAAAYNjAo7XBMcTx4gWlsY4AGIhgNAIBx5syZo/e85z16z3ve0+ymAAAAAECgYj2C0cYEL+T84BCG9CthXd2oN+S1hwWchXGFCvSatDyTkCSlQwIXmh04VrIlFexQxXrNbicAAEC9PLjzHu0sDQSWLZ11pnq88BCssD5m1JCuTmWtDSk1zn5y1h+UtVbGxJ/ok3WMg4LqzdIcZ7l7PDVlUu1qFHeI9vDPYsEOycqPdSwAAAAABGF+HgCg6+UjBKP5BKMBAAAAAAAAGLZ1l7tsv77GtQNoNK/ZzqQG5QAAIABJREFUDQAAAAAAAAAQT9ERRhUpGM0RIDB28b4ryCrtuUO6Op1nEuo1wcEVkw3+ct/nvaECPaZXRsHhCa7AhUaJGtbR7aEeAACgM/nW150DtwSW9ZhenTz7zRXP4RnP2ceMGtLVqazcwWhGRmkTHMTlq+QMkq6kVv3brCM4ORMSetwKXOO9kXFL2M9kN48VAQAAAAAAgNiGCEYDAAAAAAAAEF3/HnfZnKmNawfQaASjAQAAAAAAAG2m4Acv9E95PRWPHRu6NdbIYveSLargCF7r9sXu7ns3udAK13G9Y67jGU+9Xm0D2WolalhHt4d6AACAzvT47t9q89CLgWUnzDxN0xIzIp3H1cfs9nDZ8GA0KZ0Ivm/S5PvnrkCzieevEIzmB89AyrT4eKq3wngn7GfS9XMMAAAAAAAAIMBQhM9/fb/+7QAAAAAAAADQFlzBaD1JaWpvY9sCNBLBaAAAAAAAAECbKdrgYLSkSVY81hVuNrK4P2yRf7cvdk8nwu9dXHk/+CnQ469T6T1rlqhhHc1uJwAAQD3c0X9z4H5Pnk7tOzvyedxhVN3eh3IHo0kmdGxS6/553PO7ytNeaz+WMVMhpC8scK7bx4oAAAAAAABAVNZaaShfuaJfqn9jAAAAAAAAALSF/j3Bcyr7pkjGmAa3BmgcgtEAAAAAAACANuMKRkuZnorHuhas5/xBWWtZ7B7CFVCWDblnYVzHjb/PYe9ZM2UjBk5EDVADAABoF+sHn9Qfc2sDy46ZfqLmpBZEPletw3c7hQ0JRjMyzr65NPl7F7V/Xale1g9+NGOrj6fc451s2f8GH9varw0AAAAAAABoGUPRHtBAMBoAAAAAAACAEf2OaYt9rf28VqBqBKMBAAAAAAAAbcYVjJY0qYrHuhas+/JVsEPKlsIWu7vDB7qB695NNvjLdVy7BKNFfd3ZUnPbCQAAUGt3DNzsLDut79xY53L39bo8GM2diyZjTGgQ12TvXdTA40r1XP3fjNfaM5B6K4w7XP3/HtMrzyTq1i4AAAAAAACgo+Qjfn5ZIhgNAAAAAAAAwLD+4Oe1EoyGjkcwGgAAAAAAANBmCs5gtGTFY8PCzXJ+NjRsi2C02oZWuO71xGC04Pue8yM+SbpOor7uvO3uUA8AANBZNuVf0OO7fxtYduiUo7Rf+qBY52vVENzmcyejGRklTFIp0xNYPtl7FzX4t1I9V3BaJtHa46mM42exaAsq2oIz8K3bx4kAAAAAAABALEMRv+f3/fq2AwAAAAAAAEDbeHl38H6C0dDpCEYDAAAAAAAA2kzREYzmCgYYyxW8IA0HCLhCBJImqZSXitbADuVa8O8KPqjEFSzWOyEYrTXDMqJeP1ciGA0AAHSOXw3cKusI7Tqt79zY53P19aKGdHUq1z0eZiTVI7g42nGV6uX84EczZlo8QGz8OGSsnJ91/kyGjTEBAAAAAAAAjJOP+PmlX6pvOwAAAAAAAAC0jQHH8p2+qaaxDQEajGA0AAAAAAAAoM0UHMFoSVM5uCw8GC2rnB/8dOKwRfLdotYBZa5AhfGBCa0bjBY9OMLasGALAACA9rCjOKAHdq4MLFvUu78Om3J07HO6w3cJRnMZmcbTqsFo2VJwPz3jtfajGcOC2/J+1vm6CUYDAAAAAAAAYhjKR6tHMBoAAAAAAACAV/TvCZ5T2dfa0xKBqhGMBgAAAAAAALSZoiMYLeVVG4w26AzbcgU2dBPXPah18ML4ELpaX7dWco7Ah/FKKjp/ZgEAANrJ3QM/U9EWA8tO63ubjIn/5D1X/zxPMFpI6fB9rn3/PFr/tlI9Z4BYorXHVGFjvmwpq6xrrNjirwsAAAAAAABoKflon19a369zQwAAAAAAAAC0i/49wfsJRkOnIxgNAAAAAAAAaDNFPzhkKmkqB6N5JqEe0xtYlvOzzkX+mZBAtW6RqXHwgivsYnw4RssGo8W4frPbCgAAUK2cn9Wq7b8ILOtLztNfTD9xUucdH4o79noI5r0SQOe+d9ECziYeF+2eV6qX9YNnILX6mMp1P6Xhexp1/AIAAAAAAAAgxFAuWj2/VN92AAAAAAAAAGgbBKOhWxGMBgAAAAAAALSZgh0K3B8lGE0KD9pyLfJ3HdNNer104P5caXLBC1lHYMPEYDRH4MMkr1sr8YLRmttWAACAaq3efoez/7as72wlTHJS53X29bq8/2StDSkdDkar5b0r2aJznDXx/JWC0Vz9/NaegZTyUko6fo7zISHaBKMBAAAAAAAAMeQjfs9eIhgNAAAAAAAAwDCC0dCtCEYDAAAAAAAA2kzRFgP3Rw9GcwdtuRb597LYPTRQbjLyEUPo3IEPk7turbjaH6TZbQUAAKhGyRZ118BPA8umeNN0wszTJn3uVu3rNZuV7ywzFYPR4t+7WKG/IQHFBb+goi0ElmXaIGzaNe7L+lllGSsCAAAAAAAA1RvKRavnE4wGAAAAAAAAQCr5VtsdUxznTDWNbQzQYASjAQAAAAAAAG2maIcC96eqDUbzs8r5wYv822ERf71lEq5gNHcwgou1Vjk/eMLz+Pcn7bxuc8MyYoVHdHmwBwAAaG8P7bxXA8VtgWUnz3qzs38dRa3Dd7uJ896V6hyMFlI35zseyyj3eKKVuO5p3s86g5EZKwIAAAAAAAAx5AlGAwAAAAAAABDd9kHJ2uCyvqmNbQvQaASjAQAAAAAAAG2mYAuB+5OmJ9LxYUFbrpCvasIeOoXrHgzZvHwbb1LykM3Lyo90HXeQXfxAtlqKc32CPQAAQLuy1uqO/psDy5ImpaWzz6rq/K6+Xt7PyrpmsnQBK/drNxp+wmHYvYurVn3bbEhZxmv9GUiZkLEHY0UAAAAAAACgBvIRP78kGA0AAAAAAACApH7381oJRkPHIxgNAAAAAAAAaDNFZzBaKtLxYUFbuVLwJNy0Fxym1k3CFvzHDf4Kqz/+XtcykK2W4rzmZoe4AQAATNYTg4/oT0PPBZYdP+MUzUjOqur8rn62lVXe5qo6dzsLDUYz4cFo2Un0PXN+9HsdFryW890zkNohQKzXOVbMOvv/rmMAAAAAAAAABCjko9UrEYwGAAAAAAAAQHpxu7tsDsFo6HAEowEAAAAAAABtxhWMlqo6GM292L0dFvHXW1g4XPxgNHdYQ6+Xrtt1aynOtcPCIwAAAFrZnf03B+43Mjq175yqzx/Wz+7qPpQ7F01GrwSjJYL7yZO5b3GCfPM25wwozpbc52mHMZVr7JHzB539/wwh2gAAAAAAAEB0pWJt6wEAAAAAAADoaOu2BE+onDNVmpY2DW4N0FgEowEAAAAAAABtxhWMlvSiBqOFLXYPXsjfDov46y08oCx6kIIUHtYwPlgg7N43MxgtTuBEtptDPQAAQNvamFunpwYfDyw7ctpxWtCzT9XXaNW+XrPZsGS0kWC0kMDnuHIhgWZB8n4ucH82ZDzlmUTsdjVaeIh28GvrZawIAAAAAAAARBc5GC344QwAAAAAAAAAusv6rcH7D5rX2HYAzUAwGgAAAAAAANBGfOuraIMnyiZN1GC0sMXuwSEC6YQ7FKxb1DK0IiworNdLj7tuWCBb88IyXKEPQeKEqAEAALSKO/pvcZad0fe2mlyDYLRgYcFoZjQYzRX4PIlgtNj9+eC+cNbfE7g/rE/fSlw/j1l/jzMMbnywMwAAAAAAAIAQxeAH4U0QNUANAAAAAAAAQEf7oyMYbfF809iGAE1AMBoAAAAAAADQRkqOUDRJStUgGM21wL9dFvLXU8r0yHN8pBo3SMEVFNZr0vJMomxfeFhG9HCyWirZkgp2KHL9ZrUTAABgsrYNbdLDu+4LLDsoc5gOyLymJtcZH4o7FsFo4dzjmkFZW/n48mPi9ueDQ8Jc58l4U2Odv1lc476dxe3O9yRsvAIAAAAAAABgnFIpYj2C0QAAAAAAAABI67YEz907cF6DGwI0AcFoAAAAAAAAQBsJC6NKRg5GC17snvMHnYFdLHaXjDGh9y6ObCm4fm/Afa5lIFutuH5OXFyBewAAAK3qVwM/lZUfWHZ639tqdh3PJNRrgsPRco4+Y3dwB5t5Zrhv7Bqj+PJjhfhK8fu3rv5/trQncH+mTYKmXfd0e/Fl5zFBYxgAAAAAAAAADlEDzwhGAwAAAAAAALqetVaPPB9cdhDBaOgCBKMBAGpi48aN+vznP6+TTjpJCxYsUE9Pj4wxo/9dc801zW4iAAAAAHSEonVPfk2ZnkjncC1231XcId8R/kAw2jDXfXAFnbnECaALD2RrTjBa3OvGDZoAAABopt3Fnbpvx52BZQt6FunPp76+ptdzBUs1q6/XCtyxaHuFjVHi3ru4Qb6u+q796US7BKMFt3N7sd95TLuEvgEAAADtjvl5AAB0CILRAAAAAAAAAET0nXvcsykXzzcNbAnQHMlmNwAAut3++++v5557bnR75cqVWrp0afMaNAnf/e539dGPflT5fL7ZTQEAAACAjle0BWdZ0kT7uM+12H2Pvyv2Md2mVgFlrvqucIe0l9GgvzvgPPECHGol9ustdW+oBwAAaD/3bP+5CnYosOz0vnPlmdo+fyztZbSzNDBhf7P6ei3BuifzGA1P5gkbo+T8Qc3QrMiXi3uvXcG/rvO0S3iYazwSNg51BfsBAAAArYL5eQAAoJXYovuztjIEowEAAAAAAABd7/u/cc+lPGheAxsCNEltZ2wDALrOz3/+c33wgx+MPOnq7rvvLntS5cUXX1zfBgIAAABAh3EFNEhS0qQincO12L3Wx3Qi131wBSO4uILFXKECruvmSs0KRot33bhBagAAAM0y5Od1z/afB5bNTMzWsdP/subXdPcxczW/Vrvw5YeUjgSjuccocfufce+16/xZf0/g/nYPRgvT66Xr0BIAAAAAI5ifBwBAh4kaeEYwGgAAAAAAAND1BkKW7iyY0bh2AM2SbHYDAADt7aKLLpK1e5Nm3/3ud+v973+/9t13X6VSexfkz507txnNAwAAAICOU7TupwenTE+kcxCMNnnpRHCgQbZGQWEZx/nTjiCFZgWOxb1u3CA1AACAZvnNjl9pd2lnYNkps9+qlBctjDiOWvUxu4V55X9docJS/P5nrfrzWUdwsas/32pcP4vO+l5GnuF5fAAAAEA9MT8PAIAOQzAaAAAAAAAAgAhyBaunNweX7TtbMsYEFwIdhGA0AMCkPfXUU3rsscdGt88880z96Ec/amKLAAAAAKDzFXx3MFoyYkjDZBblE4w2zHUf4gYvuOr3muDzuwIK2icYrTntBAAAiMO3Jf1q4NbAsrSX0ZJZZ9Tluq4+Zr6L+1BW1llmXolGS5iEekyvhmx+Qp24/c+499rVn3cHIE+Ndf5mSTvGIy5h4XQAAAAAqsf8PAAAOlDRPeejDMFoAAAAAAAAQFf7+i/c8ygvfw8PNEV34CcdADBpDz30UNn2eeed16SWAAAAAED3KFr3JNmUiRqMFnOxu0nLM4lYx3SqjCNUrlbBC+mEIxjNSzuuGy+QrVbiB0d0b6gHAABoH4/uvl/bCsGP1ztx5hmakphWl+u6wnG7uw8VEow25imH7uDi2gSduesHnz/r7wnc3y5B067xiLP+JEK3AQAAAETH/DwAADpQ1MCzUqm+7QAAAAAAAADQ0q5Y5Z5HuWBGAxsCNFGy2Q0AALSvzZvLFwctWrSoSS0BAAAAgO7hCkYzMvIULbwsnYi3eL1dFvE3Qq2CF7KO4AXX+V2BA80Ky4gfNJGVtbYsxAIAAKCVWGt1R/8tgWWeElo2+611u7YrjKpZIbitwLrn80gaG4w2RTtL2yfUmEx/NVb9kisYLfg9y3hTY52/WeKO/RgrAgAAAPXF/DwAADpQ5GC0iPUAAAAAAAAAdJS1L1mtesZq8053nT6eaYouQTAaAGDSdu/eXbadSqWa1BIAAAAA6B4FRzBa0qQih071mF4ZGVmFpg2M6mWx+yjXvYgbWpH3c4H7XQForReMFvx6jTxZ+RP2+yqpYIfUY3rr3TQAAIBJeSb7ez2Xeyaw7NgZJ2t2am7drl2r8N1OEtSnHGHGBKP1eunAOrlSvP65616nTI8Kdihyfdd1M47+fKtxjTvc9RkrAgAAAPXE/DwAADpQqRSxHsFoAAAAAAAAQDex1uozN1n96y8rr/Xqa49ntQJVIxgNALqEtVYPP/yw1q5dqy1btiifz2vevHnaZ599tGTJEk2bNi32OX3fvSgFAAAAAFAfxZBgtKg846nXS0cOWkgn2mMRfyO4Ag3ihla46ruCBdxhGfECH2rF1f4ZiZnaURoILMv7WfV4BKMBAIDWdEf/zc6y0/rOqeu1Wy0EtxVEi3B237u8jds/D+5Xz0rO0dbCS5Hql2xJeRscgJxpkzFV3KCzuEFqAAAAQCdjfh4AAIikGDznYwKC0QAAAAAAAICucu86RQpFk6SZPNMUXYJgNADocNu2bdNXv/pV/fCHP9TWrVsD6/T09GjZsmW6+OKLddxxxznPtWHDBh1wwAHO8lNOOSVw//e+9z29973vDSz78pe/rC9/+cvOc65cuVJLly51lgMAAABAtynaocD9qRjBaNLwAvaoQQuZmIvjO5k7tCJeQJmrfvxgtOaEZeRKwdedmZrjDEbL+llN16x6NgsAAGBSXsxv0B/2PBxYdsTUv9A+vfvX9fquvl6+i4PRwqLRjMzov12BY1lHfzVIwS+oaIMXGc5K9kUORgt7vzJeezyeMWGSSpkeFRzjzvHiBqkBAAAAnYj5eQAAIJaogWcEowEAAAAAAABd5YY1UR8pK3meqVwJ6ABesxsAAKifW265RQceeKAuueQS56QrSRoaGtKKFSt0/PHH64Mf/KCKRb5IBQAAAIBW5Vqwn4wZjNYbYwG7KwysGzkDymIEL0juQDN3MFptAtlqxdX+Wck+5zHdHewBAABa2Z39tzrLTu87t+7Xd/UBs03q67UCGxaMZvZOc+g1rgDh6PcurJ86KznHcf6Jx2T9Pc7zZNpoTBUn7IxgNAAAAHQ75ucBAIDYCEYDAAAAAAAAMM6a56wuuytaMNqb/7zOjQFaSLLZDQAA1MfVV1+tD3zgA/J9v2z/QQcdpMMPP1xTpkzRxo0b9eCDD6pUKo2WX3nlldq4caOWL1+uZJI/EwAAAADQagr+UOD+uMFomRgL2OOEqHU6ZzCan5W1VsZUfuqKtdYZLOa612HXbQZX0IQrOELq7mAPAADQugYK2/TbnasCy/4sfbAOztR/Bomrr0ewbLCxPe50ovp7F9annpWKEYxWcvd32ylsOu1ltKu0I3JdAAAAoFsxPw8AAExKsRCtHsFoAAAAAAAAQFf4r7t9feR/ooWiSdLHT/MqVwI6BN+oA63GL0qDLzS7FZ1vyiLJ69xfgY8++qj+8R//sWzS1dFHH63LL79cJ5xwQlndrVu36gtf+IKuuOKK0X0rVqzQF7/4RX31q18tq7to0SI9++yzo9uXXnqp/uM//mN0+7rrrtPxxx8/oT1z587V0qVLJUn333+/zj///NGyCy+8UB//+Medr2XhwoUVXi0AAAAAdJeiDZ4km/J6Yp0nzsL8TBst4q83130rqaiiLShlKr8PBTskKz+wzHWvWy8YLfi6U7xpSpkeFezEAD+CPQAAQCu6a2C5fJUCy07vOzdS8G21XH3MnJ+LHL7baXwb3F8etvd+uPrJcUJ5XaG/kjv4N6hvG3bNTKJ9xlRxxortFPgGAAAwivl5jdPBc/SYnwcAACYtauAZwWgAAAAAAABAx9sxaPWxH0cLRdt/jnT133ta+prum1OK7tWZMw6Adjb4gvTTA5rdis539rPStP2b3Yq6ef/736+hob0LkJcsWaJf/vKXmjJl4uKEefPm6Tvf+Y4WL16sT37yk6P7v/GNb+j888/Xa1/72tF9yWRS+++//+j2rFmzys61cOHCsvKxpk2bJknasGFD2f5Zs2Y5jwEAAAAATFS0wZNfkyYV6zy9jgCBIK6wgW6UTrjvRc4fjBRQFxaY4HpfXIEDRVtQwS8o5cV7/6vlCjlLexmlvYwKpYnBaGGBEwAAAM0wWNqte7f/MrBsbmqBjp42cbF5Pbj621a+hmxevSbdkHa0C1MWjBbcT877ucjnC+unzkz2Be4P6tNn/T2BdVOmRwnTPlMz4oz/GCsCAIC2xPy8xungOXrMzwMAAJNGMBoAAAAAAACAV6x8SiqFPUdW0u8v9nT4qwlDQ3fymt0AAEBtrVy5Ug8//PDo9owZM3T99dcHTroa65//+Z/1lre8ZXTb931dcskldWsnAAAAAGByCnZi4JQkJWMutM/EWuwePqbsJmH3IusICxvPFSo2fH5XMJr7/Qo7X73kQoPRgu9RLkY4BQAAQCPcu/125W1wH+XU2efIM4mGtCMstNjV7+p0Vu4nII6d3uPqJ8cJ5XXd46RJalpiemBZwQ6pZEtl+7Kl4GtmvKmR29IKCNEGAAAAwjE/DwAAVCVyMFqpch0AAAAAAAAAbSk7ZPXvt/v66/8KT0VbNFt6zcIGNQpoQQSjAUCHufbaa8u2P/KRj+jVr351pGO//vWvl21fd911yufzNWsbAAAAAKB6RVsI3J8yPbHOEyfsjMXue9UioCwspMEdjOZ+v5oRluG6Zq+XqUk4BQAAQL0V/ILuGlgeWDYtMUNvnHlqw9oS1sfs3j5UWDDa3mkO7r5n9D6yO/R3Smg/fHz/3/VeZRLtFTSdiTVWbK/XBgAAANQC8/MAAEBVihGD0aLWAwAAAAAAANBWhopWp37L1ydvdM+THPH/nmuU8EzFekCnIhgNADrMvffeW7b9N3/zN5GPPeKII3TMMceMbudyOa1Zs6ZmbQMAAAAAVK/gCEZLmlSs8/TGCDsjGG2vsHuRjRhaERbS4Hpf0onWCssIC30gGA0AALSD3+66RztLA4FlS2edpR6vt2FtqUX4bqexIcFoGjPHpxZ9T3cwmjv0N+g413ig3cLDGCsCAAAA4ZifBwAAqlKKGHgWtR4AAAAAAACAtnLLo1b3/zFa3b99I7FQ6G78PwAAOsjAwIDWr18/uj1r1iwddthhsc5xwgknlG3/9re/rUnbAAAAAAC1UXQEo6ViBqNlYizOb7eF/PWUMEmlTE9gWdTwBVfwQo/pVcIkAsvCAxkaGzjm25KGbD6wrNfLOIMUwgLhAAAAGsm3vu7ovyWwLGV6dPKsNze0PeHhu93Zh7KhuWh7k9FcY5Wcn5MNO0lZXVegWSZ0LDT+OGd4cJuNp+KEnaUT7fXaAAAAgGoxPw8AAFSNYDQAAAAAAACgq/3qyWj1PvNmU7kS0OEIRgOADrJ169ay7YMPPljGxOvwHHrooWXbW7ZsqbpdAAAAAIDacQWjJWMGo7HYffJcwQZRg79c9cLek6RJOd/jRgeOhV0v42Xc96fUnaEeAACg9fx+z0PaPPRCYNkJM0/TtOSMhrbHMwn1mN7Asny3BqPJd5ZFCUaz8p1hvuO5++dTYoXWZUudEYyWiTH+izOuBAAAADoB8/MAAEDVCEYDAHSRP261eu/3fHn/UBr9711X+npoQ7QHHAEAAABAJ1q3JdqY6OyjCEYDks1uAIBxpiySzn622a3ofFMWNbsFdTEwMFC2PXPmzNjnGH9Mf39/VW0CAAAAANRWwa9NMFpvnGA0FruXSXtTtLO0fcL+6oPRwgMI0t4U7S7tmPR1ayXser1exvmz1eh2AgAAuNzRf3PgfiNPp84+p8GtGZb2pmioNDHIyxW2hWFhY5Wcn1Wvl654Dlc/tdfLKGV65MmTHxDUNj60LuvvCW5jmwVNM1YEAAAdj/l5jdOBc/SYnwcAAKpWDJ7zMUEpYj0AAFrUn7ZbvfHrvrbuKt///z9k9bPHrH79KU+v249F/gAAAAC6z7oIz036h5ONjjug/m0BWh3BaECr8ZLStP2b3Qq0KWvL02HjPo0ySC3OAQAAAAConaJ1BKN58YLRMjEW57PYvZwrXCEXMbTCVa9SaEPaSzuC0RoblpH3c86ytDfF+fPS6HYCAAAE+WN2rdZnnwwsO2b6CZrbs6DBLRqW9jLaWRqYsH98+Fa3sHI/EdFo73dX4cFog5qp2RWv5eqnZrwpMsYo7U3RoL+74nGugLWMN7ViG1pJpkJg81iVwp0BAABaEvPzUAXm5wEAgKqVirWtBwBAi7p6tZ0QijZicEj6/+6yuvrvGRMDAAAA6C65gtUL293lbzlS+vhpnk55Dd8jAhLBaADQUfr6+sq2d+yYuFi6kvHHzJ5decEIAAAAAKBxCnYocH/KxAtG640RdsZi93Ku++EKQhgvb4PrVbrP1V63VsICztJeJiQYrTtDPQAAQGu5o/8WZ9npfec2sCXl6EONFxKMZrzRf4cHo0W7d656I8HFaS/jCEYrPy7r7wk8T7sFTUcdKxp56jG9dW4NAADtwRiTkLRY0uGSXi1ppqS8pAFJ6yU9ZK0N7ixM/popSSdK2k/SqyTtlvQnSY9YazfU8loA9mJ+HgAAqFrkYLSSrLUsfmwi7j8AVGfF793f90nSD++3uvrv9277/nB9Y1j8j3L8TQYAAEAn2bRDso7h0hNf9nToq+j7AmMRjAYAHWTevHll208//XTsczz11FNl2/Pnz6+qTQAAAACA2iraQuD+pOmJdZ5MjMX5GYLRymQSroAyd2DYWNmSKxgt/D1pnWC04OuNBCOknfenW0M9AABAq9g89KIe2/1AYNlrprxW+6UXN7hFe7nCqLq1DxW+TGKvkfCyINUGo430v52hdaXy/n+2FDweyHhTI7WjVUQNckt7aRYgAAC6mjFmP0l/Lek0SSdJmhFSvWSMuUPSZdba26q87jxJX5b0Tkl9jjr3SfqWtfYn1VwLwETMzwMAAFUrBs/5CFQqSUmWfTXas9usPvIjX6vXSwfPl774Fk9nH81noQAQ15MvhZcXfalYsvoizKhjAAAgAElEQVT6CqtrVlv9cdvw/hlp6dTDpG+/x9OCGfz+7Wbrt1j97+t83ffK3+SLz/b0liP5mQAAAOEefd7q0zf6euBZ6dCF0r/+L08nHUwfAq2jP+SRavPDZh0AXcqrXAUA0C5mz56tgw46aHR7+/btevLJJ2Od47777ivbPvbYY2vSthEskAAAAACA6hRt8NODkybeZFhXyNZ4Rp5SMUPXOp0zGCFiMFreGbxQKRituuvWiut6I8EIrna6XjcAAECj/Kr/VllH5NbpfX/d4NaUc/f1urMPZa3vLDPa+12TZxLqNcHhaOODy1xc/dSRgOiooXWufrIrWLlVRQ3GjjqmBACgExlj/kfSc5IukXSWwkPRJCkh6U2SfmaMWW6MWTDJ675Z0u8l/aMcoWivOEHSjcaYHxpj2iulFWhxzM8DAABVK5Vi1A2eH4L62ZO3OvHrvlb8QdqVkx7eKL3tv3zd/VTUx3kAAKThwLOBCF/VfehHVl+8dW8omiTtzEk3PyKd8m++fJ/fv91qd87qxG/4+uWYv8nnXu7r18/wMwEAANz+tN3qjEt83fHkcL/ywQ3Sqf/u6/EX6EOgdbiC0YyRZkZ7pinQVQhGA4AOs2TJkrLtH/3oR5GPffLJJ7VmzZrR7XQ6rb/4i7+oWdskqbe3t2w7n8/X9PwAAAAA0OmKdihwf9KkYp3Htbh/vLSXYRHNOFGDEVxc9SoFC7RKWIbreiP3xfU6sg0OcAMAABhrR3FA9+9cGVi2T+/+OmzK0Q1uUTlXH6rRIbitImwq2thgNKn6fnLWEaA20r91BYWNP3/WD56xFDVorFXEGSsCANDFDnHsf1HS3ZKul/QTSY9IGp/4+hZJq4wxC+Nc0BizVNItkuaP2W0lrZF0g6Q7JG0bd9h7JF1njGGeKFBDzM8DAABViRN2RjBaw930sNWmneX7rJWuuIcF1AAQx3MvR6t39b3u369rN0m/WlujBqHt3Piw1ZZd5ft8K32Hv8kAACDET39ntW13+b6iL12xij4EWkf/YPDP46yMlPBYuwWMx4QXAOgwF1xwQdn2ZZddpk2bNkU69qKLLirbfte73jVholS1Zs2aVbb90ksv1fT8AAAAANDpirYQuD9lemKdJ+ri/HZbxN8IUYMRXFzhFr1eOvS4VgnLcL3OkfviCkjI+1lZy5eKAACgOe4euM3Zlz5t9rlNDwMO60N1p+j9RndwcbR+sqveyHsSJRjZt35IP3lqpHa0iqiBZ5WCnQEA6CKPSPqopMXW2kXW2lOste+y1p5nrT1G0n6Srhx3zCGSbjARO6HGmEWSbpI09kPg1ZKOsNa+3lr7DmvtGZIWSbpQ0tiO71sl/cukXhmAQMzPAwAAVSEYraX9tyOg5/qHJu7fusvqT9srf5adL1g9tclq7UtWuUJ5/a27rIaKVtsHrZ7dZvV8/3DdzTutNmyzemm7le8zzwJAfWzeOfx7pi7n3lW5ThRrnuN3YD0US1bPbB7+27Qn35r3+KpfB7frugfL92eHrNZtsSrx9xIAAMgdvPvtu4f7DGtfGv5vhyOYCmiEl3cH7+9rr2mGQMMkm90AAEBtLVu2TEcffbQeffRRSdKOHTt0/vnn6+c//7kyGfdChksuuUS33nrr6LYxRv/0T/9U8/YdeOCB6unp0dDQkCRp5cqVKhQKSqVSNb8WAAAAAHSigiPMIWnifdSXMj3y5MmXH1ov6qL4buK6J9GDFxyBCYnwYAHndUuNDctwtX8kMMLVTl++CnZIPaa2i7wAAAAqyflZrdr+i8Cy2cm5ev2MJQ1u0UTpRHAfKtvgENxWYUOC0cy457+lE1PKoz9ekfdzka7lqjfSr3W9N2P7/0M272xzuwWIRR0DVgp2BgCgw1lJt0m62Fr7UGhFa1+U9EFjzO8kXT6maImkd0r6cYTrfVnS7DHb90k6zVpb1pGx1uYl/acxZqOkm8cUfcIYc4W19rkI1wJQAfPzAABAVWz4HI0yBKM13K+fcZetfcnq0FcZrdti9c4rfD3y/PD+g+dLP/q/PL1+//Ls65Jv9c83WF2xyir3ymfYvUnp704w+shSo7+92tdjL0Rr1w/eb/Se47zKFQEggif+ZHX+d309/uLw9qELpf/5gKej963dg6QG9tTmPOu21uY8GGat1TdWWH3tF1a7XvlkMelJbz/G6L//zmhqb3MfJjbW6vXusmLJquRL//gjqx89YFUoSbOmSJ870+j/PoO/lwAAdLNHn3eXHfL5vZ/JGCOdfpj0w/d7mju9dfpA6A79jvHSHILRgEAEowFAi9m0aZM2bNgwqWP3339/SdJVV12lN77xjaOTm+6++26ddNJJuvzyy3XccceVHbNt2zZ96Utf0re//e2y/Z/61Kd05JFHTqodYXp6enTiiSdq5cqVkqSNGzfq7LPP1oc+9CEdfPDBmjKlfHHIwoULlU6zsAIAAAAARhQdwWgpryfWeYwx6vUyyvrhs5B6CUabwBVskHUEho1XKVjMfV1XIENjg9HyjuuNBkeEBD/k/Kx6PILRAABAY923/Q5nv3fZ7LOViBkyXA+uvl7UcK9OE/ZMTjNuLlrGce+ihMpZa5310q8EF0fph2dL7nFVpQDkVhM1GC3TZoFvAADU2P+y1m6Ic4C19tvGmGWS3j5m99+qQjCaMeZgSX83ZteQpL8fH4o27lq3GGOuHXNcr6QvSXpfnDYDnYr5eczPAwCgqUqlGHUJRmukFwbCPpmWDv+Sr9y3PZ1xia8NL+/d/8wW6bRv+Xr+m56mp/d+gP3NX1r9x6/Kz5kvSleusrpyVfi1xvvbq6wOmmd1/IEs1gZQnaGi1Wnf8rVp5959azcN/x7b+HVPU2oUjNW/J97vOZd1m2tzHgz7nwetPntz+T0t+tL1D1lleqSr/749/s48PyD956+srrlv72vZPih98karfft8veP1hKMBANCt9uuT/ritcj1rpdufkN79375u/6dE/RsGjNHvmNbYRzAaEKj5M7wBAGXOP//8SR9r7fAHesccc4wuu+wyfehDH5LvDycYr1mzRscff7wWL16sI444Qul0Ws8//7wefPBBFYvlX5qefvrp+spXvjL5F1HBJz7xidGJV5K0YsUKrVixIrDuypUrtXTp0rq1BQAAAADaTcEPDkZLmlTsc2W8KRWD0VjsPpE7tCJaQJmrXqV7nXYEKuQiBD7UkjM4YjQYzR2kkPMHNUOz6tIuAACAICVb1F0DywPLMt4UnTjr9Aa3KJgrXLbRfb1WYa3vLDMqn5DvChiO0j8v2oJ8BS9ETJvw4N+yYLSQ9yksOLgVeSahXpNW3p21Iqn9XhcAALUUNxRtjMtVHox2SoRj3i1p7Gz8m6y1z0Q47hsqD1R7hzHmw2GBakC3YH5eOebnAQDQYH6MYLRi8PwQ1MdND1cO37l4uS0LRRuxMzd8/N+dsPfz6++trm2YzzX3EYwGoHq//IPKQtFG9O+Rbv2d1flvqM3vmYEafcW5bmttzoNh14T8bfrxb60uf7dVpqf5f2sKxfC/oU9vlr7/m+A61z1g9Y7X16NVAACgHUQNRhtx55PS8/1W+/Y1vw+E7vHy7uD9fVP5OQSCEH0NAB3qAx/4gK6//npNmzatbP+6det066236vrrr9d99903YdLV+973Pt12221KpeIvqI/qLW95i/7lX/5FiQQpygAAAAAQV9EGT3xNTSIYzRUgMFY6UblOt6k2tMIVmlDp/XAFjuUiBrLViitgIlowWmPbCgAAsGbXavUXg2fMnzzrzaF9l0Zqlb5e6wib7F4+Aaia/nlYnZGxUJTzhwWjtWPYdJSxYpQ6AABggkfGbWeMMZWeIvC2cdvfi3Iha+2Tkh4Ys2uqpDOiHAsgGubnAQCASQl5KMQEJXcw2p681d1PWS3/ndW6LXY0wBWTFyV85+u/cN/n372w99+Deat1W2rQqDGuXMV7DKB6j7/o/l1y1b22YiBVVP3hz2qN7E/bh//moTYef9FdlitI61skiG5jf3j5zY9YZ/jefX+sfXsAAED7mDOtcp3x/vCn2rcDCLNhW/AYZ970BjcEaBMEowFABzvvvPO0fv16XXjhhZo7d66zXiqV0hlnnKHVq1frqquuquukqxGf+9zn9Nhjj+kzn/mMTj75ZC1cuFCZDAsoAAAAAKASVzBachLBaFFCIFwhAN0sLLTCrzCJ2VpbMVjMfV1XIENjwzJc1xtpX1hAQtTwOAAAgFqw1urO/psDy5ImqaWz39LgFrkRjFYueixadfcuG1JnpH/rOv/Yfn2uFLy6I6GkUqanYjtaTZSxYoYQbQAAJqMYsM/ZWTDGLJR01LjjV8e43t3jtt8c41gAETA/DwAAxFYqRa+bzwfuvvkRq/mf8LXs332dc7mvQz7v683/4WtnluCYavTvru74S++0emFg+D24/9kaNAgA6uBff+n+W3HXWunAz/p69Pnq/564Qqsmo1XCutrdzqzVll3hdd5xhS/fb35/olJYaVhY6O5cjRsDAADaSjHGxy4j1m1pfv8H3eUZR5j+4vmNbQfQLpLNbgAAdLsNGzbU9fzz58/XpZdeqm9961tas2aN1q5dq61btyqfz2vu3LlatGiRlixZounT48fIXnzxxbr44osn3bbDDz9cX/va1yZ9PAAAAAB0o0INg9EyEULPoiyI7zZhYXF5P6dMwl1esEPyFRyeVjkYzRX4MChrrYwZHxFRH66AiZFAtIRJqMf0ashOnKTdrcEeAACgOZ4cfFQv5DcElh034xTNTM5ubINCuMJlc362oX29VmFDotHMuOe/VRMg7AotHj5vpux/xxsbquYKWMskprTlexdlHNhrGCsCADAJi8dtFyVtC6n/5+O2H7PWBieyBrtv3PYRMY4FOgbz85ifBwBAS6nwsLUyhYnfuW/ZafWuK30Vxi30vf0J6Us/tbrkne33eWSr6N9T/ULoD/3A188+ltDZl8V4n2MY2GM1eyrvMYDJ2bTDakeFr89e3D4cjrX2//HkeZP/fbO9hsFoz2yWjlxUu/N1q3WO8IWx1m6Sfvo76dzX1b89YaoJJ/GtuvL7dQAAMGxoEsFoBPGikXbnrF7aEVy2eD59WCAIwWgA0CU8z9Oxxx6rY489ttlNAQAAAABMUsmWZB2hWqlJBKO5whfGCgsB61ZhwWd5PxtaHhbOMNlgNF++CnZIPaY39PhayZWCZ66NDdpLexkNlQhGAwAAzXVH/82B+42MTus7t8GtCefq69kG9/VaR0gw2rhJ7GkvHVgv51decZENqVMpGG1sqFrOD84nadeg6XTImCZOHQAAMMF547YfsjY0FeHwcdvrYl5vfYXzAagh5ucBAIBI/BgrdAOC0X7ysJ0QijbiugetLnnnJNsF9ceJoXZY8Yfh8LrBoerPFeSZLdIbDqjPuQF0vhvXRAubWrdFeui56n7fbNtdfdjkaHu2WkkEBFRr+D5Wdt2DVue+rrn3O0qIm0u+KGWHpCnd9vU6AACQJA0V4x+zPmI/CaiFDS+7yw6e37h2AO2EYDQAAAAAAACgTRSse+ZkchLBaOlElGC09lzIX09hgXJZf1CzNMdZHh6MFh4sEFae87Pq8RoUjOZ4Db1jAinS3hTtLG2feKwjVA0AAKDWNubW66nBxwLLXjvtWC3o2afBLQoX1tfL+oMN6+u1ijjTzVz3Lkoob95RJ2V6lDDJ0PMX7JBKtqiESToD1jLe1IptaEVRxoEZxooAAMRijJkm6f3jdgcn+e61eNz2xpiXfW7c9hxjzGxr7UDM8wAAAACoFT8sG3mcoYnBaL8ZH388xpZdUv8eq76phMdMxss1CEbzrfTf99ZvQfUzW6zecEC093fLTqtfrbV6erPUk5RSCWlWRlr6GqPF84fPkS9YrXpGevxFK99Ki+cZnfIaaeYUfoaATvTES3HqDv++efIlq1VPW+0a8yfpNQuMlr5Gmp4e/l0xVLRavU569Hmr0iu/An/x+9q1+5kqQrK6zfj36/BXGf3lIVLJly69M9rfpxvWWC34sa/9+vbuGxyS1r4kLZwpvXrW3v0HzDFadqg0u8Z9j2rDSfoHCUYDAKBbDcXIox9RTSgrENeOkCmNY/vaAPYiGA0AAAAAAABoE0VbcJYlTU/s82UqBHFJlcO6ulFYSECl8IWcIzCh0nkrX3dQM9SYb0Jc4RFjf1bGhqSNFSWcAgAAoBbu7L/FWXZ63183sCXRhPX1hvtfsxvXmBZgbfDiQBPwNHjXvYvS93T1z8ees1L/f2piurKOAOB2HU9FCUYLC4wGAACBviZp4Zjt7ZL+u8Ix4z/wizUt31q72xiTkzT2w7qZkghGAwAAAJrAWivZGEEfQ7myzd89b/XDB8KPX7dFesMBk2kd+msQjCZJn7+lfsFoX/mZ1XuOq1zvnqeszv22H7jY1jNWl7/b6O3HGL31Ml8PPDu21Gq/PukXF3o67FWEowGdZt2W6L+fnt4sfWOFr4tuCjrG6uD5w78r5kyV3vZtX3c/Xbt2jnf1vVbf/VsrY/i9FObrv/D12ZvHv19WPUmpWBoO74zqsruiVrZ61Uzp5x/zdNS+tXt/qg0neXqztKi7vl4HAACvGCrGP+aP26SSb5Xw6G+i/nZPfA6CJCnhSb2kPwGB+L8GAAAAAAAA0CaK1v1NTcpLxT5flIXsURbEd5tek5aRkdXECUBhwWfD5e5whkrvR6VgtEZxvYby8IjgAAiC0QAAQCNsG9qsh3etDiw7KHOYDsoc2uAWVdYqfb3WFxSMNvm+Z87PBe6PHow2OByM5gevmMsk2jUYjRBtAABqyRjzNkn/e9zuz1lr+yscOm3c9mQ+XMuqPBht+iTOUcYYM1/SvJiHHVTtdQEAAIC2VyrFq18oXyn5sR8HP1BirGe2WL3hABbyxlXyrbaHjLimj3s2XK4gFWK+nZI0e4pUfOVt3BX88XSopzdLu3JW09Pu99j3rT7wg+BQNGk4GOdjP7Z64FmNC0UbtrFf+ucbfN32sUT8BgJoac/ECJv6+eNWj70Qfq6LbrJ67SLVNRRtxG/+KJ3Ap0tOT2+2AaFowyYTDhLHSzukj17na9WnavN3o+Rb/XFbdee46CZfD3yWv2MAAHSjsL5PKhE8lh8qSi8OSPvNqV+7gBF7HMFo03pFGDTgQDAaAAAAAAAA0CaK/pCzLGnif9QXbbE7wWjjGWOU9jLKBgRUVA5GCy5PmR4lTPhknPBAhsYEjvm2pLydfHgEwWgAAKAR7hr4qXwFLxA7bfa5DW5NNGEhud3YhwoKIZaCYtHcfc+8n5W14U+Pd/XPx46VwsZN2VJWSrnfo4w31XlsK4syDmSsCABANMaYoyR9f9zu2yX9V4TDxwejTWLZvLKSZoecczI+LOlLNTgPAAAA0F1s5WCzMoW9c0Q277T69TOVD3m2yiCRbrVtt2SDP5bWQ5/zdMyfTfyc+R3fKenGh6NfY9mh0p2fiBbS8pmbfH1zRXCD7nhC+utj3Mc+/qK0rkL4UaEkXXOf4wVLWvEHaXfOalpIABuA9pIrWG2sFNE/Rlgo2ohbf2e1dtPk2zTeoQvlPN9tj1mdcBC/k1xuetj9O70R7l0nbdlpNX9G9e/Rph3Vh7k98VLVzQAAAG1qyBFi/p/vMrrgjUazLgz+bGbdVoLR0Bi788F996m9DW4I0EYIRgMAAAAAAADaRMEWnGVJ0xP7fNEWu1cOT+tGvc5gtPDQirwzMKHyffZMQr0mHRhM1qiwjLzvXnuZTlQOj6gUHAcAAFCt3aWdum/HnYFlC3r20WunHdvgFkWTMAn1mF4N2YmPBCQYbS8jb8I+17jGyipvc0qbsNA5VzBa5dBfaW//PuvvCSyP0s9vRYwVAQCoDWPMfpJuU3kY2XOS/sZa15L7UI06BgAAAEA9+OWrc6+c9X5tTO2rPd5U7fGmareZqt3eNL2quEnT/Z3a/ZvXSi/4SnjSrogfE/cHf1SJMX67wepnj1k9/JzVSzukN/250bzp7vr7zA7ef9IhRjfGCKI5aF70sJi/PNg4g9FWPmX1hgOkG9dYPfnS3kGftdKK31u9uD3yZZysldZvlY7at/pzAWgN67e6AyAna6g4HMZYK5843egffhDcyJd21O46neinv2v+R4CHfdHX8o96VQfYvVyDvkx2SMoXrHpThOkBANBtXAGrPUlpRsZo/nRpy66J5Rdc7evhz3s1CXoFJOnOJ6zueNJqYFA6bKH09mOM9ptjtGfi9FBJ0jSC0QAngtEAAAAAAACANlEMCUZLmVTs87HYffIy3hRt18sT9lcKrcg5gsV6I7wXI/XypYnnyJYaEzgW9vqihEe4guEAAABqZdXALwLDxSTptNnnyjMTg7VaRdr7P+zdd3gcxcEG8Hf2Tro7FduSLbnJVZKNjQGbGGyDHQwGU0MnkFBCSyGBQBKSEJJQEkIgdEJIIQQICUn4ANObMbbpBoMpxk2Se5UsyVa705Wd749zke5m9qquvr/n4cE3szc72tvbm72bfdcFb4DBaFaEYu6Z1TmLx3Rbnvfotm3P8bldFMAGOwIInzm3N1hNNx7P1vOpaPrtivIchoiIKF8JISoBzAcwvEfxdgDHSSmbomymI+RxPB/Aoc8JbZOIiIiIiFLFNHs9/FvZ5fjUeYh++fUA1scWdNLKYDRL/3jHxHcelzB7bNZPNuq3cakTqNSEpl0wTeC+NyTW7oxu3bWDo+/n3AP1dX9aKPGnhX0fgHPX6xL/vIwXhBPlirod6e6BtckjgItm6IPRWjrTH/yVqV5dLvHB2nT3AmjtAmbebuLecwV+OCf+3+STEfJqSmB9MzB+SOJtERERUXbxBtTlhXtSdWoq1cFoW3cBQ641seYWAzWVPBemxPxynonfv9L7HOb3r0i8do2BDk0wWnFhCjpGlKUyd9Y3ERERERERERER9WIVjGaPKxgt8sXu0YSn5SPdttsbjKCjq492O6c7cCzqYDSbup/uCNuHiIiIKBFesxuLdr2srOtnK8Ph/Y5KcY9iox9j5l8wmpSmpiZ84pnVWDrSONkTUNe7erwWQgjtOva+NrpxvsuWrcFokc9Pog13JiIiykdCiHIAbwAY16N4J4BjpZR1MTSVqcFoDwKYFON/pyVhvURERERE2c3sfXVusZn83GIGx+i5vRI/fap3KFokNRXB74hVyooF3v9F9Jfl1VREf2G1zRC45Mj0Xoj9ryUSZiwbi4gyWl2j+v1coQl/TNTwAcBXRlkvc/ho4Ku1wPUnCSz+qYFCu8CvTlYf+5IRlpWLpJT46VO631Wj8+JVyb3E/Nr/k9jdFf/nR7Je6/rG5LRDRERE2cUbft9LAEChLfj/6gjn5re/yvNgSsyGZonbFPvRzg7gpudNdGqC0UqcfdwxoixmT3cHiIiIiIiIiIiIKDq+pAejRb6OThdwle90284diBSMpg5eiDoYzVYEKHaDVIVlWK2nZzCCPsDNk/Q+EREREe31QdtCdAR2K+tml52MAiOzb6vnMNSzWzwRxpi5SEI9yUyogtEswsfiHZ+Hhn45bS50muG3C937fLepnqHviiKMOhNFCtE2YEOByOz3ExERUboIIfoDeB3AQT2KWwEcJ6X8MsbmQge3FTH2pQThwWi7YuxDGCllI4CYLi3UBQkQEREREeWVsGC05H/328zgGK0P1gKtMW7y2sHW5zIVpQJ3nC3w06ciXzhdUxnbug8aHtvyfWH1DmDC0HT3goiSYc0OdflXRgKfbgK2tyVvXa4CYOPtBoQQML4T0C73wfW2sLKBJeplGYymtrEF+HJr/M/v5wROOkjguAnA/JXJ6ZPfBN5cDZwxJb7nNycp5LW+SUJ10y0iIiLKbd26YDR7cFxQHeHc/MmlEg9dlOROUV55dbmE1AxpX/0SGKv5xb+YU/GItBiMRkRERERERERElCX8mmA0AzYYIvY790UVjBZlYFe+iTf4y6OZ2BwavBDret19MGFapVsTHCEg4BD7gzx0QQq6v5+IiIgoUaYMYEHLs8o6h3DiqwNOSHGPYqcdY8rUhOBmklimuxcKh7Yu0vhTVx/6WjiE+rXZH4yma6fYcv2ZKtJ5oMsoYrgJERGRghCiFMCrAL7So7gNwAlSyk/jaLIu5PGoGJ8funyLlLI1jn4QEREREVEymGavhyVmR9JXweAYvWBASmyqo4inPv7AyMFoI8piDxibO1Egtm/Lk6+OwWgxkVLivx9JPP8pUOIELpohMKs29u/SPT6J+xdIvN8gUTNY4AezBUYPyszv5KWUePwDiZc+Bxrbg/troQ04bIzANXMEBpVmZr+z3aYWiQcWSnyyQcK/56OlslTg5IOBC6cLCCHg9krc/6bEO3USzgLg6U/UbdUMFujyyqQGox1/YPwh+eWae/cw+DNcQ6PE1/9qRl7QwoUz+uY9etafTRw1Lvhvhx34yigBRwEw7xOJzzbvX276WGBUucDODolCO9DlBRavSU4fEgmMIyLqqaFR4qF3JP7wanCsU1MJPPANA3MP5DiHKBN5dcFoezJ5j58ocNPz+nPtdg/Q2S1R7OB7nKK3fqfEnxZJLNso8eYq/XK+ALBym3r/K9FPgSTKewxGIyIiIiIiIiIiyhK6YLQCURBXey5NeNX+dgthj7PtXBdv8JdHEywW6bXYv15dIFtqwjJ0gQ8Ow9VrQpuun7q/n4iIiChRn3UsQZNvu7Ju5oC5KLJpbi+eQXRjTHcgH8dQ6glABsIDoQ1hwGm4lGPNSONP7fjcVmT5eP/zuyClhEfzGumel+kiBaM5DKdlPRERUT4SQhQDeBnA9B7FHQBOlFJ+GGezK0Me18T4/LEhj1fE2Q8iIiIiIkoGM9DrYbGZ/JQXBqPp1e2I/Tm1gyMvM2m4wGUzBR5+R/29ts0AbjtLwGbEdlH1xGEC3zxc4IkP0xeOFgyT48Xg0bpBxuAAACAASURBVLrheYnfvbT/9XrsPYn/fdfAGVOi34YBU+KEe028tS8qXeLx9yXe/bmB6srMey1+9rTEXa+H76PzV0o8uVTi/esMDCzJvH5ns43NEkfcbmLrrtAaif/7GPhiC3DbmcDce0y82xC5vXGVgNsr8FZd8o41vz4l9hu87hXcX8L70tIZDOLjjXuCVm2TmPUHM6HAuBFlwI+Pi7w9Dx8NfLh+/+OBxcHPtsZ26+f1DDh7fYV6//pgLfDB2vj3vTkHACMHCjzybngbf39b4i/nSxgxfv4SEfW0ZofEUXeY2NEjQLS+ETjhPhP/uFjg4iPi/8wjor7hDajLC/ek6hw+Bpg4FFixTd9GfSNwyIjk941yU0OjxJG3mxHHx3st26QuZxgfkR6D0YiIiIiIiIiIiLKEz/Qqy+1GfOFljogXu1vX5zOnTb1tdMFhe+kCE6Ld1vEGsiWLLoAtNDhBH4yWmn4SERFRfpFS4vWWeco6AzYcXfa1FPcoPukOwc0kUhOMpuNIcjBa6PhcN173mG74pBcBqG83qhu/Z7pI/c7Wv4uIiKivCCFcAF4EMLNHcReAk6WU7yXQ9PKQxwcLIYqklNF+yXZkhPaIiIiIiCiVTLPXw+Koh/bRY3CMXkNT7MErNRXRbce/XSgwd6LAwtUSu3t87TyiHDhzisDhY+J7PR6/LHnBaD87QaDLCzR39C43BPDvJep11DUmZdV5obUzPCDMbwI3v2DijCm2qNt5YyV6hKIFNbYDf1woce+5mfW+bmyTuH+Bfv+sbwQee19GFbxE0XtwsVSEou13/wKJA4chqlA0AKgdLOD2JS8U7duzBKaMjP81Ly9Wl/sCQEc3UMp79wAA7l0gEwpFA4Al1xsY0j/ya/XUFQbeqZN4ux6orgDOnyZQ4gBKrzIjPjeZShzAxUcKNHcAzgLgiGrgwukC97+p338XrgbmTEhhJ4ko5/x5kewVitbTTc9LXDhdxhyATER9R0oJr3oK175gNCEE3rvOwICr9WMZBqNRLP64UEYdigYATZplix3J6Q9RLmIwGhERERERERERUZbwS5+yvEAUxtVepIvZXQxG09IHlFkHL0QbLKZfry6QLTVhGbrgt9B+6YMjPJyETURERElX5/4SGzx1yrqp/WahvKAixT2KT7pDcDOJlOoJ7LpxpNMowm60hJVHCpXTbVtXyGthFfxrFY4c2k62iHR+Eu35CxERUT4QQjgBPA9gdo9iD4BTpZRvJdK2lHKbEOJzAAfvKbIjGL72epRNzA55/Eoi/SEiIiIiogSZgV4Pi80OzYLx85vBCywr+yW96axXtyP259QOjm45IQTOmQqcMzW5cyGEEJhVC7yt/gkkaneeI/Dj4wxtfanTxF8Wh38v39CYvLCkXLdwNeBRTOv6fDPQ0ilRXhzdvvHkUvU2f+gtiXvPTaSHyfdOfTCsysqi1RI/Pi41/ckXC1dZvy99AeB3L0X/3q2tBLp9AojxpkU6cycmdhwcqAlGA4AtrcABQxNqPmc89HZir9dphyCqUDQgGEh23uEGzju8d/nPTxC4/dXUfU5cfKTA/eeFf5bVVgK6/XfRGok5EzhPkYji93ad/ji3sQVoaALGRXnOQER9z29xflLYI6+6n0ugshTaMKu6RgmAYwiKzqLVyRkTlzAEmkiLwWhERERERERERERZwqcJRrOL+L7mKzAKYBd2+KX61jiRgtPymVUwghVdcFr0wWjq1yRS4EOyRBvspguAkDDhld1wCP5yQ0RERMnzRsuz2rpjy05PYU8S4zDUY6RI4bu5SGovvlBPOtOFOluFlgH6bRsa9Ksb33pMt+U5QNYGo9ms+x2pnoiIKF8IIQoBPAPg2B7F3QBOl1IuSNJq5mF/MBoAXIIogtGEEAcAmNajqDOa5xERERERUR8yzV4Pi/vophgNTQxGC2WaEg1NsT9vcL/0Xwh9+mRhGcgQjVMneGE+eDPw4XxgwCCIM6+A+OppkN5uyH/8BjUflgH2H4U9r64xodXmjTa3xNl/MbX19Y3BG8Lc9oqJTzYGAwz3GjYAOG2ywC9OFDAE8Mi76tfa7QOa2iWunyfx1hqJju79deMHA5fNEjh/Wnhg0N/fNvHP9yU2tgBfGQXccIqBQ0ao92uvX+I3L0q89LncFxCwbff++opSwN5jFT3rdF78PPIy1NvOdolfzJN4u06i3RMscxUAR9YITB0NfLQ+chvRHu8KbMDIcqCyFCh1Yt/64lVUCBw3MbE2RpQDQgCqeyjVN+VvMJqUEn97S+JfH0isaVRvn56OqAbea9DXn3hQ9J9vxZp79p4xJbXBaCceqO7znAP0z2ng5xgRJag+wnFkLYPRMsbmVonrn5F4r0HCrb7cgvKA1RjJUdD78WmThTZstj6O7w8o/+w9d/t8c3LaG1WenHaIchGD0YiIiIiIiIiIiLKEXxOMViA0s0+i4DBc8AfUt7uJNqwrH8UbUKYLTYg2WCDeQLZk0Qe7FVk+Dm1DF/pBREREFKut3RuxvHOpsm5i8aGoco5ObYcS4NKMCfMxGE1HN0U/NMhsL6vxuZQy6uBiXfse0w13oFO7DpfN4rb2GaxQOCAgtAF1PFckIiIChBB2AE8COLFHsQ/A2VLK15K4qn8D+BWAvfcxP1MIUSulrIvwvJ+HPH5SSpng5a1ERERERJQQM9DrYYnZkVBzJQ70Ckfaq65RYkZ1+gO9Msm23Yj54vi7zsmMbXj5LIEXP5dYuFpdf0Q1cOsZBmbfqQ7m+u1pAmPvOxf44NV9ZfLjhcBvnoB89V/Aey+juuQkYER4MNrGFqDbJ+EoyIxtkYlMU+LYu/WhaADw1McSf1qoDmjYthv4eEMwuCzSRdCDf6Jez7bdwKI1Em6victn7U8uu+t1Ez99av/3/BtbgPkrTHz0SwPjh4S/phf83cRTn+jX36SeXhbRh+skDh/DfSgaXr/ErD+YWL0jvG7tTonHP0ju+qorALtNoMQGPPANgcsek72C+1TOmALMWxZebjOAP35DoJ8rsdfaWSAwoiy4v4aqb5TQ/1qY2/7wmsQvnok+hOz5Kw2c+1cTC1aF1504CbhgWvTbscCuXvaw0cAP5wjcv6Dvw9GqK4C5B6rrSpwCVWXA5tbwuuA+Q0QUv8p+QJvFLytrd+bvZ1Mm2d0lMeP3JrbsSndPKJMV2no//tXJ+mC0Bo4hKAKrc7d4ja3g5wmRDoPRiIiIiIiIiIiIsoQuGM0uCpTl0XAaRejUBKPpLv4nfRCAO2IwWnTBC8leb7Lo+h+6r1gFn3nMLvRHWVL7RURERPnrjZZntXXHlZ2ewp4kzip8K9/oArkEDGW5LpjXatv5pBcS6qs7QsfdVgHFunUIGHCI7AwENoQBh+FM+PyFiIgoVwkhbAgGlp3Wo9gP4Fwp5YvJXJeUsk4I8RiAS/cUFQJ4VAgxRxd0JoQ4DcDFPYq8AG5OZr+IiIiIiCgOIcFoxQncAG1WLdDhAZZtCq+rb4y72ZxVF8c2uWB6ZlyQWuoUeOVqAwtWAh9vlPDv2Y1sBjBlpMCxE4JBQo13GXjqE4knlkg0tgNHHyDw7ZkCU8yVkLe9GtauvP17QGcbAKDWW69ct5TA2p3AhKF99udlvUVrgKUbrJe58/XIF9X/XXNBfizueE3i8lnBfwdMibvnh7fZ0Q38ZbHEPef23r/XNknLULRE/PZFEy9cZYu8IOH5z5DUC+sjqa3c/+8LZxiYNlZi/gqJq/6j3x+f/K6BhauAjzZIdO+ZyjioBDh2gsABQ5Nz3Kyt1AWjJaX5rOMPSNyjeD/rnDEFKC8WePmHBhasApZuCH52FNiAaWMEjhqnDzuLhRAC954rcO5UiT8vktjRJvGV0QKFtmAg4qtfJryKfRZda8Bm6Pt886nBYL9QDU3J6wMR5SdfwLo+Xz+bMs1/PpIMRaOICkNSdUaUC/zuDIFfzgsfQ8TzHQLllxf64NytuiK57RHlEgajERERERERERERZQlfnwSj6S9od2nCBcgqeMF64nLiwWjq9XanORjNFdJ/q30nVX0lIiKi3LfL14yP2t5S1o10VGNc0UEp7lFidGPC/Bw/6YLR1BPe9cFl+m3nthi7h467rV4bt9mp7ZMQmXHhXDycRpHF+QvPFYmIKO/9A8DXQ8quB7BMCDE6xra26wLOergRwBnAvrsNHAHgDSHE5VLKVXsXEkI4AHwHwF0hz79LShnhMm0iIiIiIupzZu8bNZSYHXE3ddlMgZc+B5ZtCv8ulRfnh6tvjC10qrw4GPSTKQrtAiceBJx4kP4750GlAt87SuB7R/Uul/98Qf2EPaFoADDGtx6GDMAU4eFV9Y0MRrPyfkPigWbJUtcINHdIDCwRaGgCtu1WL7dw9f4+SynR2Q0sWNV3fwePSdF7f21q96fxQ3ofU8YNFhg3WKCx3cRvXwzvy5lTAJshcOxE4NiJffcbWHWlUO6TsR7Lc8W6nUCj+r63ShP2BNQV2AVOmAScMCnya3X5LAPzV4bfUKqyNPL6ZlQLzKjuvY7mDomKH6tvUBWrUicwbID1MtUVAqrfl1u7gJZOifLi7P3NlojSq1s9bX+ftU35+dmULp3dEnLPJrfbggHRALBkbRo7RVlDdY5/6Ej1GGLrruD+VuzgGILUkn3uVmgHRpYntUminMJgNCIiIiIiIiIioizhT3EwGi921wsNAtvLL33wS5/yNZFSJhwsoA98iP9O0rHQrccR0i+H4dS24c7LYA8iIiLqC2+2voAA/Mq648rPyLpQKt2Y0CrAK1dppw5pXtJ4xslWdaHt6V8bt/b1yfag6dAxfk/RBjsTERHlsIsUZX/Y81+sjgawyGoBKeVmIcSZAF4DULin+EgAK4QQHwNYC6A/gEMBhN5L+kUAv46jX0RERERElGxmoNfDYhn5u98fzhG4f0Hvb0xdBcCphwis2q7+JvW/H0k88e34u5mL6mIMZjr3MJF1vzGoyIblkA/dEHE5h/RipG8T1heODqura5TQfjlPeO7TzArDuPF5ifU7Tby8XL/M55uBgClx/TyJf74vsaNNv2wyrN0J+AMSdhv3o0gefz+1+9M3Dle/JucdJpTBaF87JDWvYW2lujxfQ/Zi/bvPnRr763TSQcHxhTtkeuq3jojvNR9YInDsBOCNlXE9vZevT438mVyj2WcAoKEpGHhKRBSPbvWUpH3y9bMplaSUuP9NiXvfkNjQvL9cCGByFXDveQYeS/EYirLPYaOBitLw8URN6K+qPcxbJnHBdJ7DkNoTS5J73DlzikChnfsbkY6R7g4QERERERERERFRdHymV1lekFAwmv5ifaeNF7vrWIUE6MLPfNILEwFlnVV7PekDH9wwZXLusmilWxvs1rtfhrDBIdThaJ5A/gV7EBERUfK5A514Z/dryrqBBYMxuXRGinuUON1Yr9t0Q8r8msQnNWNbobn4ymqcrKMb26ras3pt3JrxbbYHTevCoAEGoxEREaWDlHIRgDMANPUoFgCmAvg6gOMRHor2HwDnSSnVX0oSEREREVFqmb2/5y02OywXH4RduOU0gZMm7S9zFQD/utzAgCJheQHvZ5vy6zvlSBoao98eR1YDvzk1+y9GlW0tkFceE/XyNd56ZTnDHvR2dUks3ZDuXvT24CJpGYq215hfmLjjtb4PRQMAXwDY2NL368l2G5oldlp/LCTVH84WmDJSfaybMFTgvvMEjB7V354lcGGKgiFqKtXrWd8MeP359/lW3xT933z31wUOqor9dSp2CMz7voGiwv1lx00Abjgl/tf8LxcYGDc47qcDAKaPBW49I3IfhvYPjpFU6mMYAxARhYoUjLZ2J2CaPM70pYffkfjR/3qHogGAlMCyTcBRd/T93HnKbiPLgScuV0fqjBoI2DVpOxf9Q6K5g+9vCrepRWJ7Es+lK0qBO8/J/u+hiPqSPd0dICIiIiIiIiIiouj4pfoXVruRSDAaL3aPh8si5MATcKPE1i+s3Cp4wSp0oCercAWv7IZT9O1r5tYGo4X3y2G40B3whJVbhVMQERERRevtXa9pxxXHlp0Gm7CluEeJ042/TZjwSS8KhSPFPUof/bQyXTCaepxsNfbUjW2D7UUXjOYxu+A2O5V1Llt2B6NZhmhneegbERFRtpJSviyEmATgZgDnAijTLPoBgDullE+nrHNERERERBSZ2TuzuFjz3eJe1eZGlDgH4vkrDazaDmxqBaaNAQYUBb8nDQbHqL9N/dMiib9dyIsq96pvUpf/+hSBM6YIrNgqIUQwDOig4YDNyIFtt+BJoGN31IvX+NbiDUU5A2X0/vtR9m6bza3xP/dfl4W/P/q5BA4eDoz+hTqYoq4RGGsR5kjAo+/Ftz9tut3AX96S+N1L+uf//kyBEXu+RSoqFJg2Bhg6wPo4d9UxBs75isQnG4GJQ4HRg1J3XKypVJebMhiOlmjYVraxCqh86CKBdg8waqDAEdXA4H7xv05zDxTYfqeB99cCVWXAAUMAIeJvb2yFwOc3GvhkI7B2T7ibwy7g8QdDGb9aKzCoBPh4A9Dtl6gqExg/BFi2EWjplJgwVODgqug+k4UQqK4Alm8Nr2PAJxElIlIwmscHbN0dPG5S3/jL4vjH3N+aIXDcxCR2hrLO6EECh40CCuzq8YTdJjBmUPB8ReU/H0pceUwOfD9ASfXY+/rj0s9OELj5awKfbgLcPuDXz5p4t8G6vc23G9p9lIiCGIxGRERERERERESUJfzSpyy3i74KRuPF7jpW28ZjdmnK9cELjiiD0azCFTyBrj4Ps9OFu6nW6zRcaAuEz6TUbR8iIiKiaPlMHxbuelFZV2wrxYz+c1Lco+SwGst5TDcKjfwJRtNdzGdog9H0wWU6urFtoXDACAnW07Xvl350BNS3gHQZxdp1ZwOrcxSGaBMRUb6TUqZtZrKUshHAFUKIqwEcCWAUgCEAOgFsAbBMSrkuXf0jIiIiIiILsndg0CjfJsvFJ/lWA5gCwxCYOAyYOKx3/YSh+ueu2pa9gU19oaldXT52EDB5hMDkEblxAaqUEti2DvD7IF96LKbn1njrleUMlFHz+CQeeTf/3mdzJwLfnGZo64f2B7Yp8vjqdkgcf2BuvM+SodsnsWo7EDCBkeXAoFKBZRvj258GlgBH1Qr8TvPbWrED+PGxIq4L7Yf0FzjpoLi6tc9tZwpc90x43y6dqe9PdQUgBCAVf1J9Y/4FozVoAiovmylw2Uz9+zEeJc7kBsgU2gWmjwWmj+35evd+7UcP6l12wqTwZaJRU6kORlurCUclIookYEoE1JmvvTQ0xhaMFjAltu8G7LbEAi1zkZQS65sB0wyG6voDwOeb42/vt6cLVJVxG5O1ScP1wWgfb0htX+K1s11ie1sw2NZuC+7zHp/E6j3nHDWVwTBrSg6rc7cLpgk4CgSmjQ0+PmyMwLsN+uWnWgT3EdF+DEYjIiIiIiIiIiLKEn7pVZYnFoymD9rixe56ViEB8QSjuaIMobNar9vswgAMjKqdeHkC6r9NF4ym0m16ktonIiIiyj9L29/Cbn+Lsu6oASdlbYCYdfiuG/0wIIW9SS+puXhDNwleH4ymH4O7tWPb8NfB6rXZ5W9Wlkc7xs9ULgajERERZTQppRfAwnT3g4iIiIiIYhAI9Ho43L8V07s+wAdF05WLX9D+PwDnaZurKNVfOPlOffCiciF4cSUAdHSry3PpwmC5bDHkD+fG/fxq71pl+caWYIiToyB3tlUiTFPi189J3DVfwutPd29S74Lp1vtBbaUmGI0BewCCx+VbX5b43csSnh73Rz1uAvD5ltjbcxUAzgKB2eMlqsqAzeH3r8Q3Do8vFC1ZTpss8KtnJfwhwTLnfEXfJ2eBQNUAYJPi76lvlIgnNCub6d4/NZWp7UemG1shoLr5Vr0mWI6IKJJu9b3MwyyukzhqvP6zSUqJNTuABask3lwpsXA10LpnusqZU4DHLjVQ7MivzzaVzzZJnPNXc18w84gy4HdniLAxRCwYikbRuHC6gXnL1DvaY+9LzB5v4ltHJDeMNlmaOyS+8ZCJN1YGH5c6gTvPEdjYAtz5mkT3nnNWQwTPCx66SMDJc/uE1e3Q1x0YclODi2YI3PuGfjx64Qy+HkTRyMyjMBEREREREREREYXxS/WMuoKEgtGsLnbP7gv5+1KBUQC7UN93Qhe+YBXKYBV41pPV69Vt0X6y6P4GVf+dNvX+49YExxERERFFw5Qm3mh5VllXIApx1ICTUtyj5LEa6+nCd3OXekKQbiqQ7txFF+wL6LepOvRXf27U6tsZU5+yhdU5CoPRiIiIiIiIiIiI4mAGwoqe2vwNTOta0qus2OzAn7ddiVm734zY5L8v119A+eh7DAIBgkEEumC0kuy8z0oYuWsn5NXHJ9RGrbdeWW5KYJ36a/C89Mh7Er9/JfFQtB8cndkXPw8fANxyusDgfsHHDjtwwykC50+z7nfNYHU9g4mCnlwaDNbzhAStzF8J7GiLvT3fno8Vu03glasN1PYIyhICOGMKcPc56d3Xxg8ReOp7BgaVBB+XOoH7zxM4/sAI+5Im9CvfQvb8Aak9BtdUZPZxJNV0+0xDU2r7QUS5wxt++qZ00/Ph45zNrRKPvWfiW/8wMfLnJibcYOLKJySeWbY/FA0AnlkGXP0/jpO6fRJz790figYEA1Iv+kf82+axS/g5SdE5bTJQVaavv+RRiQ/XZeb79NJH94eiAUC7B/ju4xK/e2l/KBoQPK//9xKJXz6bmX9HNjFNqR1f3nqGCLtBweQRAo9fJlCouOzoR8cJfH82j1VE0VBfuUdEREREREREREQZxye9ynJ7QsFo+ov1ebG7NadRhI5A+Kw0fTCaOnihQBTCJmxRrdMhnBAQkIqgCKvgtWQwpYlu6VHWuRT7kW7/SUWAGxEREeWuLzs/xjbvJmXdjP5zUGrvn+IeJY9VEFVfj/UyjSk1E7GEejKQduwpPTClCUOE3zOu21SPbdXBaPrXptXfrCx3aYKCs4X1uWJ2/21ERERERERERERpYZphRUMCO/DuhqOxzT4EW+zDUCi9mNC9CgUIXsEq/X4Iu/7Sr+ljBXQ3mnjkXYlLjkxKz7NalxfQfeVc6kxtX/rMwqf1f2QIcekNwIwTehe6OzDm6lNgyABMxfyVukbggKHJ6Gj2e/z9yNv5m4cLPPGh9XJ3nSPwp4XqZb4yCnj8UgNjK4C364Dj7gk/dgDAvecKXJPEII1iB7DwJwb6u4IBQ0IIXHdCMJRpeBngLIh8wXatJpioPs/CrHT+GcX+E+rVqw2ccJ96H6go3f/vA4cJrPqtgQ3NwM4OoLoCKCvOjIvsT50ssP1gA+t2AqMGBoPcIqmpFFi4Onx7rW3KrzCHTa2AX/3ya4PA8lV1hXpMtL0N6PBIlDgz4/1ARNmjO4Yg3A/WSmxuBRaskli4SmLNjuifO+8Tib9dIGEY+Xuceu1LoKk9uW3OrM3f7UmxEULgz+cb+NoDmkEXguP4w8dk1j61s13ipS9ie84/35O482wZFt5F0du6G3D71HVzJqi36/nTDJw7VWLVdqDAFvyeavxgoMjB14EoWgxGIyIiIiIioqznNbux1r1Ke2F0shSIQox1HYChhSP4RWAf8ZlerPOsRpt/N8YXTUKpfUC6u0Q5wmd6sda9Clu9G9PdlV5swo4xznEY7hitvFA/lF+qv0UvEIVx98HqAn9e7G7Nabg0wWjqADRdmEUsAXRCCDgMl3IdH7e/s++zUEBgmGMkxjgPQIFhHZy3w7sFDe6V2mCIvfxS/yu/KsRD93et99RhYeuL+x73t5djXNEklNj6Wa6/M9CONV3LsUsTPOE0XKhxTURFofVsXK/ZjQb3Smz3brZcLtUKhSM4znCMiLuNNv8urOlajvbArqifYxcF+45DyR7feEw3Gtwr4TW7Mb7oIBTZSpLa/t6/1ye7Ue2aiMoIrz0Rxc7qM8IuCjDWNR7DCkfx/IhSan7LPGW5gIE5ZaemuDfJZRM2FIhCZSDy0ra3saV7veXzDRgY5hiFMa5xCYUn96WuQAfWdC1Hq19za/M9NnjqleUCmmA0ixCyBa3Pwy7Cp0as6VLPDlO1ZRVa1xHYrW4ny8+nVOHHe2X730ZERERERERERJQWZkBbNdS/HUP928Mr3B1AqX7+1Mhy/eo2t8bSudzV0a2vK3Gkrh99ST7z5+gXPvECiCGjej/fNOEoMDDStwnrC0eHPaW+UQKa7+fzzVt1kZeZNNy6fvIIoNAuMGMs8P7a8PpbTjdwwNDg9p42RsJZAHhCpowV2ICvTxX49XMS7dbTfaJ2+UyBqaN7v86GIVAdQ/hSbaU6mGjdTsAfkFEFYuWyL7bE/pwZ1cDwAcAWxVSgWSGBH0IIjB4EjB4UZwf7UKz70qiB6vJkh6ZkOqu/V7eN8pVVUFxDE3BI/FPyiChPdWuCb1SOuE0fqBRJa1cwhM0V/6UAWe/LbckNPi2wWZ8rE4U6ZETwXp26vPEHF0nMrAm+zwvtAoeNBkaUp/fcZvUOwIzxrdPcCexoA4Zk731n067OIviypkJfZ7eJiN8VEJEeg9GIiIiIiIgoq7X4mnD/phvR6NuasnUeXXYKzqq4NKoQI4pem38XHth8EzbvudDbLuz4zrDrMKlkalr7Rdlvl78Ff9x0E7ZlWChaT4eVfhUXDf0hbIqL9XvyaYLREgk9sA5Giz6wKx/pwgDcmgC0ZASj7V1eFYz27u75YWVVjjG4qupGZdCklBIvN/8PLzX/N6b16/oUShcesd6zBus9a8Ke/73hv8S4oknK59R3rcCDW27Rhs71dGbFxTi2/HRlXTrGDbGaW34mTht0YcwhQ190fISHtv5BG6AYyRH9j8U3B18BQ3H353g0erfi/k03osXfBCAYrHFV1U0Y7RqXlPaXdyzFQ1v/0Cs45vRBF2HuDjrRNAAAIABJREFUwDOT0j4RAa80P4kXdj4Rcbnp/Y7BBUN+kLTjB5GVde7VqHevUNZNKZ0eMSA1GzgNF3yB8GC0d3a/FnUb1a4JuGL4L5MeSpqo9e41eGDzb9BldiS9basx9bymRxNuq8AogF3YLcOCQ1kFi2UDh+HU1vFckYiIiIiIiIiIKA4yjovlIwSj2QyBiUOBFdvC6za2AF6/RKE9v4OIOixCo3IlGA3rV0a33PTjw0LRAEAYBuTwsaj2NiiD0eoaE+xfjmjpjHzVud0Axg9Rh4Pt9d2vBt+T3z1K4P21vZerrgCOnbD/cYlT4PxpAg+/03u58w4TGNJf4OIjBP74pn5dE4cC1xwr8J3HrftuN4DLZiZ+rKjVBBP5TWB9s3VwUa7r6pYxB1YO6QeUOgW+e5TADc+Fv4bfmpG7x/eBxeryls7U9iPdWjVT5WwG0J8/1/Uyoix4LPMrhlsMRiOieHRHPz0kYbowpnyxtim57Y0dFDxXJopWVZnAyQcBL36uX+abf9/7Rg3+/0fHCdxxloCRpn1t3rL4DhwXP2LilasN3gw5TvVN6u0+sBgoK+Y2JeorvIKbiIiIiIiIstpTjQ+nPNxkYeuLWNn1aUrXmQ+e2/n4vlA0APBLPx7eeid8ZnwBL0R7Pdv0WEaHogHAR+1v4cO2xRGX82veDwVGAsFoNv3F+tl+IX9f04UB6MK79MFosW3nWF6Xzd3r8PzOfyvrNnjqkxKKBqj3o1j66THdeGTrXTAVE8GllHh02z1RhaIBwDNNj2J792Zl3dON/8joUDQAeL3lGdS5l8f0HJ/pwyPb7o47FA0A3tv9Bj7t+CDu54f6746/7gtFAwC32YVHtt0NmYQZHH4Z/Ht7hqIBwLM7/4ktPcYSRBS/zZ51UYWiAcAHbW9iafs7fdwjoqD5LfO0dceWnZHCnvSdWMeGKg3ulZjf8mwSepM8wTHdvQmHohmaKQ7JDOrStRXzuN2muWIjS1j9vboQZCIiIiIiIiIiIrIQCMT+HHfk71Sf+Lb6e1NTAhuaY19lruno1teV6u8PkTVkvcWV23sVlQLHnQdxs3r+CACgqga1vgZlVd32OPbdHNQQRWDDmEFAaYTAve/sCUa7aIaB+88TGD0QcNiBuROBhdcaYSEOf/qmwBWzBcqLgbIi4PJZAn+9MLjMnWcL/HCOwKCQe+U4C4CTJgFv/NjAZTMF7jlXYNRAdX8OGg68/EMDk4YnfhF3dYW+rm5Hws1ntWj2n1C1g4P/v/5EgV+fIjCkX/DxAUOAxy8TOPGg3L3wvlwTKtAS3fSxnKELZCwrAsMsQthtAmMGqevqG/M8cYiI4pLKYDQzzw9T63YmdwPsHUMRxeKJy42w8yor98yXeCGK0/G+IKXE3fPje9+8vgJ4uy7JHcojuvNaHneI+pY93R0gIiIiIiIiipcpTazoXJaWdS/vWIoDiw9Ny7pz1ZcdH4eVdUsP1npWYXzRQWnoEeWK5Yp9KxMt71iKGf3nWC6jCz2yiwSC0Xixe9x0204fjKYuj3U7xxrIsLxjqbq8U10eD1V4RKzhFLsDrdjcvQ4jndW9yrd6N/QK2IrG8s6lGOKo6lVmShNfdn4SUzvpsrzjY4yL4bOvwb1CG7wX63oPLT0y4Xa6TQ/WdH0RVt7k246dvu2oKByaUPtr3avg1ryflnd8jOGO0Qm1T0SIOShxdefnOLzfUX3UG6KgRu9WfNaxRFlX65qE0a7aFPeobyQr4OvTjvdxWsUFSWkrGZp825MSUGsIXTBa8kKddW05DRc6Am0xtJPd51MuTYi2XRQkFM5NRERERERERESUt8w4wqU62yMuUlupr2to4sWZ7R59XUmEAKtsIN940nqBc6+GuOL3EDab9XJVNaj+Uh2M1rDZA4DfC0cTrFNbCbgK9fXfPUr0CjO68hgDVx4D+AMSdps65KjQLvCnbwr88bzg+o0ewWkFdoF7zxW45+uy177uKgjW7XX1HIGr5wDtHome97MrsAGuwuSFKxU5BKrKgM2t4XV1jRInIn+DnOIJRqupDG4vwxC4+VSBm74m0eUFih25vx3LNfcf2tUFBEwZFiCYq1o61eW67ZPvqiuAusbw8nUMiiWiOKQyGC3Pc9Gwfmdy29s7hiKKRYlT4P3rDNT+Kvwm7zr//VDitMmp399WbEvs+f/5SOKr4/g+iUdDk/qIXVPB7UnUlxiMRkRERERERFnLK7vhlRa3dOxD7YFdaVlvrjJlAG2abdoZw0XHRKF8pg9dZuS752YC3XugJ18fBKNVOUajQBTCJ729yocWjtBeCE9BLk1ggjugDmzSleva0RntqsU6z+qol28L7IaUMuwukW3+5HyWDS0cqQx9GOMcH3Nb7Yo+xdNP1XO6TU/axg2xiuZ4kMjy2nb8ipmpcegI7IYJ9Q/DHYF2VCCxYDSrfYJjNKLk2OnbHtPyXaZmNi5REr3R8hykZirg3PIzUtybvjPaNQ6butcm3E6zbwdMaWqDxFItWeOMkc4aZbnDcGJo4Uhs825MeB1jnOM05eOx06e57WMIAYHRmnayxShnDQRE2Psu2/8uIiIiIiIiIiKitJEWF9cKgV5pRXt1qH//lJ4uYOkCYO0KOEeOw/D+p2DL7vDvg4MXbObfxZmrt0u8uUpicD8Bv6n+bcFuAIW5cFXdh69bVosTLogcigZAHDgNNS88pqxb31mEbp+EoyD/9qWe6hVhO6GmjRVwWkzj0m1BXShaT4ZFEJQQAv2iuF9LqTP5r6H0eYFPFgFrPgUCftTaL8ZmhCcyqsKK8klzZ+yRJ6HBl0IIFOdAoGM0rIK/WjuBQaWp60s6MRgtSDYsB5YtgqxfDjRuAgYMAiqrIJy9N0TVzuMBTA57/s72fI8cIiIr3b5gwGx7dzBUee9/yzYlfuyYOBQ4ZoLAnAME+jmBOXerzwnN6HOYslqHR2L+SmBHm8RXawUmDguOTdcmORht+tjktkf5Y/QgYEg/YHuUl7B9viW5Y4w2t8T8FcDqHRKThgkcOyEYPh1qVYLBaGu2c2wUrzrN1MGaPL8pAVFfy4WvcImIclpXVxc++eQT1NXVYefOnfB4PHC5XBg8eDDGjRuHKVOmoLDQ4pYyZGn27NlYvHjxvsdS9YNyEixatAhHH330vsc33ngjbrrppj5ZFxERUT7xaAJmUqErwAv/k8ljurV1PtOrrSOKxJNFIR3uKI4rfk0wWkECwWgOw4mjBpyEN1qf7VV+XA6FS/QVpyY4zm1qgtE0+6PLFttMpZn9j8eS3YuiDv2TMNEtPXCK3jMgdf2JlW5fqSk6EGOc42MKcVMF68TTT9VzkvX3pkI0x4NEltdJVpCk1TgpNIQxrvYtXkuO0YiSo9kX66x0TpSgvtXm34UP2t5U1g0rHImJxYemuEd9Z1b/E7C07S3tmDJafulHe2AX+tvLk9SzxCRjLFYgCjF7wMna+rnlZ+Cx7fcltI7BhVU4uORwZd3sspPxWceSqMJ2Z/Sfg372AQn1Jd3628sxrd/Rvd57BgwcW35aGntFRERERJR8nJ/Xtzg/j4iIqIdAQF1uLwCKSoG2lvC6tvCbTsjm7ZA/PRWo+2xf2djat7DFPjVs2YamuHubtR5+x8T3/iURMAGr37BKnAi7wVy2ke++1Gs/CDP1GIiag6Nr7MiTUeO9QVt96t2dePVnxVm/zRIR6f1UVgRccqRAm34qZM79qiq7OiCvPxv4eOG+spohg7Cw7LKwZesbc+2vj01rHD/91Vbm7/ttoMV0upYuBqOV59H9buV/74H803XqupDH5RUGMCg8GE23HYkoO3n9cl94WUdImFl7t+z1uKMb6PAA7Z7w8LO9z/VpTtPiMWogcMwBAsccABwzXmDogP2f5Z9aBK1pspxzytZdEsfdY2LlnkAnmyHxp28KzB4f+3inrEg/tqqpBE6fnL9jKEqMzRD40XECP386ujflym3A7i6J/kWJ73Prd0ocf6/ZI1BaYsoI4OWrDQzu17v9YAh+/KIJ/aZwpim13wvUVKS2L0T5hsFoREQZKBAI4Mknn8QjjzyChQsXwu/3a5d1Op04/vjjcfnll+OUU05JYS+JiIiI0s8qTGtwYRVsCL8LZqw6Am1oC4TfeTPRC5SpN+sAFXUQFFE0rMJzknWciFWX2Yld/mZleSS6QCF7AsFoAHBGxbdQUTgUn3UsgUM4cHi/2TikdFpCbeYDl6GegaUL5NOFQRRp2tEZ6hiBH4+8FYtaX8R6Tx1MGfxV3i/9aPRtVa870Amn4QorUymx9UM/W+QQh8GFwzGt/9Ha4AibsOGqETfh9eZnsKbrC3h6fHY2+rbCL8O/71D1SfcZYYMdTsOFTrM9vB3Ftrb6rBlSWAUjDceD9sButAd2h5XHGhyiO34UiEJUFAwJK+80O7DbHz6pPlmhYp2B8NdkL13AYyysguCyKQCPKJPpgtEEDEiE36JS5twUfso0i3e9pP0MObb8jJy6CKfKORo/GnErFu96CRs8dTCl9W1hJSS2eTcp61p8TRkUjKb+HsWADUMKh1s+VwgDIxxjMXPAXIx1HaBdblr/o+GyFWPJ7kXY4d0cU/8KDQeqXRMwt/wsbXDxGNd4XDPiFry16xVs6l4LqXhtSu0DMKl4Ko4uy43f7C4Y8gMMd4zGl50fo8TWD0f0PxYHFB+S7m4RERERESWM8/OIiIgoLXTf9xoG0K9MHYzWHl4mn7grLAyrumMF3h6gCEbLsyCi1k6Jq/6zNxTNWqmj7/vTl6TfD3n79/QLlA+BuO2ZqNsT9gKM/erhEJtNSBE+f2J+gwtL1gHTx8bT29xgFex11qHALacbqCoTWBfIo/fdS4/0CkUDgBpvvXLRuh2p6FDmao1jOkvt4OT3I1uUWwWj5dHUIF3oS3lx7vw+bkU2bob88/VRLz8woBhLAWjOo32GKBP5Az3CykKDzDyyd7hZSJBZePAZ4NV/lZsy35oh8E69hJTA1NHBILQ5BwiMrdCHL1sdufNh9HjzC3JfKBoABEzg6v9KHDQ8tr9++ABgyfUGrviXiRc+319eXQHMqhW4/SyBQnt+fE5S37h2rkCpE/jXB/tDsHa06Ze/+UWJu7+e+D530wuyRyha0LJNwB2vSdx5TmgwWmLr2tQKuL0SrkK+V2KxdTfg1lwGUTuY25KoLzEYjYgow7z55pu44oorsGbNmqiW93g8eO655/Dcc89h6tSp+Otf/4pDDz20j3sZu9GjR2PDhg0AgFGjRmH9+vXp7RARERHlBI9FONnPR90RFgATj8WtL+N/jX8LK7cK5KDYWYWY6IKgiKJh9V5N1nEiVp+2f4C/bb0trDya44oqSAoA7KIwoT4JITBrwPGYNeD4hNrJNy5DfetFd0D9+aQLndIFL1gZ5hiJbw75fq+yNv8uXNdwsbpPZifKMKh3fzTH3qPLvoYTB54Tc59UnIYLp1acH1Z++4afYoOnLqxc1SddiMZQxwhMKJ6M+S3zwp+jeA2sPmuuH31PwgGD8VjQ8hyebnokrDzWgDLd8aPWdSCuHHFjWPlHbYvxyLZ7wtdrdsS0Xh2roMekBKNZtJ+scDeifOYzfcrwRACoLByKHd4tKe4R5TuP6cbi1leUdQPsAzG138wU96jvVTlH4/whP4hqWSklflR3HryyO6yu2deEMa7xye5eXHTjlYrCIfjVmPuTtp6DSw7XBvcmw2hXLUa7avus/UxjCBvmlJ+KOeWnprsrRERERERJw/l5RERElDaBgLrcsAGl5QAawuvaWsPL3n4urGisd62y6UQvls02r6+Q8ET5k3Sps2/70udWLQVa1Tc7AgBx5/MQjtjmRTknHYqR6zZhQ+EoZf28ZRLTx+bvxb71ms395/MFvnvU/jA5l8X0k1zbevLtF8LKar2KYxmADS2AaUoYRq5thejoAq6s1FQkvx/ZotgBFNgAn+Kj0yqYItc0tqnDYgbEPt0wO737EmBGkXa6hzYYLTlT4ojyRsCUIeFlPQPKZFi4WUdImFlofXcGBJklUz8n8Mglsd+I2WoIFMOhLmu9ujz8M63bDyzdEFs7NZXAsAECz11pS1LPiHoTQuB7Rwl876j9ZU3tEoN/on6jvrUm8WhDKSXmLVO38+wyiTtDLutoaEp8net2AhOHJdxMXtF9JwDk97kbUSowGI2IKIPcfPPNuPnmmyFl70GpEAITJkxAVVUVBg4ciKamJmzcuDFsctbSpUsxY8YMPPDAA/j2t7+dyq4TERERpYXHdCvLBQQcIjkzl4o0YTVWgR8Uu74OUKH8pdu3BIykHSdipTuudEsPAtIPm9B/Zad7P9gtnkN9RxuMptnvdOVFRnJmKun6A8QWFJas/liJZdvpQjRcRjFcmr4q29H8vYXCkZZQNEAfimcV/BXL8rr2i4wSZXlXoANSSu0d66LVFdDPJvOZiQeeWoWfxbrtiChcq78JUnMfyoEFgxmMRin3/u4F2vDOY8q+lrbP8UwhhEB5QQW2ezeH1bX4LGbjpJju3MxqDEtERERERJRsnJ9HREREaSU1V7sbNqB/ufopbS0QAOSS1yGXvA40bga2hV85Xu1TB6Ot2JZfQUQ3PR/9xcFH1mT5Ntlcr68bUAGMnhB7m1OOQs3T9dpgtDtek7j9rNibzXZd3RIPLpZobFfX11T23pecFj9dJX75et+S7buA15+AXL0MCOxJMSkfDHHESRBTvtp72W3rgWWLw9oY5t+qbDtgArvdQFm+BDqF2BVjMNq0MUCRI8uPUyHk9g3AG09CvvQI0NEGFDqAsZMAXzdQVQNRfRBw/PkQRSUQQqCqLBjYECoYBJFb20Zn2SZ1edWA1PYjXeSm6ELt99IGo3E6GeW4gCnR0TO8rFcwmQwJNgvW9woyC6l389INS9PHxvc8wyJLzcz0QWKCpJTYpMj8jsfwAfkxBqDMMkg97R4A8MlG9Jp77w9I/HuJxHsNgNsbPP85/kCBkw5S77td3RJ3zg8ej1XW7gQ8Pglnwf7nf7Q+un4fNwF4c3XwXCxUfSOD0WJV16iZV10MlBXz2ETUl3jFJBFRhrjmmmtw33339SorLS3FL37xC5x//vkYOXJk2HPq6+vx6KOP4s4770R3dzcAwOv14jvf+Q46OztxzTXXpKTvREREROniNtUzBRyGK+FAj710gSseszMpwSEUpAu9AZIToEL5S7dvFRnFaXv/6o4rQDC8qsTeT1vvl+r3Q0Geh0Gkiz7USv35pA340rQTqwKjEHZRoAzQUwVR9HV/rOgCAlV90od+FWmDNFTBWfqAtfSFccQS7GZFFxSma7/Ipv6F1oSJbumBU8R21+jw/lgEoyUh8NRq+zAYjShxzRZBSgPtlcry0IuJiZIlIANY0PKcss5lFOHI/nNT3KPMNLCgUhmM1uzPnGA0q7BbIiIiIiKiVOD8PCIiIko7UxeMZgCl6mA0tLVCPnIL5D9+a9n0WO86bd38lcDxB0bbyez1foPE6h3RL3/VMdk970/e/j1tnbj4eoiCwpjbFGMPRJVzdSLdyjkdHolj7zbx4Xr9MjUhP6G6snQal2xthLzqOGDDqvC6/94DXH03xNk/CD6u+wzyB0cr2xkYaNauo7kzf4PRWrui/029wAb86mSL9JQsJOu/gLzmBGB3SNJZ457fOD9eGAwOfOEfwP2vQ5T0R02FOhitPnN+Au1TO9okdrSp68ZWZPdnWDSklMD/PRDTc8o1xx+PLxg6kmthg5S9TFOi09szvKxnOJlUhJthT/CZ7BVutvffXbzUImUcduC6E+P7jLY6AuX6zLtk7qP5Opak9BJC4PuzBR5cpH63Xv0/ifvPE/AHJE59wMSrX/au/+ObEj8/QeD3Z/Y+frR7JI6LcL4JADN+b+KTXxsQQmBDsz5EraeRzg48dFE/HHOXibWKMXUw5Itjo1jozkNqB6e2H0T5iMFoREQZ4LHHHgubdDVz5kz85z//QVVVlfZ5NTU1uOWWW3DRRRfhrLPOwvLly/fV/eQnP8HkyZMxe/bsvup2Tli0aFG6u0BEREQJ6DbdynKnkViYR08uTXCIX/rhk14UCkfS1pXPrEJMkhGgQvnLKlApXXSBUEAwvKoE6mA0KSX80q+ssxuxT2akxOkCtdyBLmV4piqcLNhO8n6ldRlFaA/sDu+TYt2p6I+Obh2qPulCv4qMYn3AWix/bwqC4HSKtAGsbpgyAEPYompHd6zTbR9dMBoQDDVLdCyl29aAPuAxFlaBqrr9hYiipwtG62cbgELNmEPm/PQsSpdP2t9Fi79JWTdrwAlpHddnknJNaGGLT73t0kF/bsYZi0RERERE1Pc4Py99OD+PiIioh0BAXW7YgH5l6roNqyDn/ydi0zXeBm3d9/9touHW6H57zmY3Pq8JnlO4/iSBScOz9wJgubsZ8Gvm1NkLIM76ftxt26bOBj7V15umhGFk77aL1b+XSMuL1AvtQFVZeFlWeu7vylC0veRDNwInfQuiqATy0d8BbvVvPwMDLdo2mjvCg+TyRatmOsuNXxMYUAQsWCmxqwsYP0Tg4iMEjqzJrfeZfOzW8FA0lbpPgVcfB86+EtWVAvNXhs9FqG/Mj/kJN7+g/zvHDkphR9Ll83djfkp5oFVb19IFFHHKP8VJSonO7p7hZT3DyaQi3Cwk5CykvqM73X8RRWIzgFInUOrY838ncMgIgUuPFDh8THyf0VZDaF2Gdq5oSeK03nJOM6I0+cWJ+mC0B96UOGNyMPQyNBRtrztek/j+bIkR5fsPBv/50Pp8c6/PNgPv1gMza4HrntaPEad1LYFLujHDvQSXe5/CiJJ3UVNZqAxGq8+caYVZQ3ceUpMHocVE6ZatX7UREeWMNWvW4Morr+xVdsQRR+CVV15BSYn+ItWexo0bhwULFmD27NlYuXIlAMA0TVxwwQX49NNPMWhQPnzjSURERPnIbXYpy3VBNfGwasttdqLQ4K+kyWAVYpKMABXKX7p9KxXBTzpW67YKCfRbhATaRZbeajTL6V7LAMLDM00ZgEfzuaULx4q3T8pgtJD3gs/0avepZPZHR7ftPIHwbWQVoqFrRzVG0IVppfV4YBHm4jHdlgFmPcUacmf1GncFOlBeUBHVeq3a0ElG4KlV8JrH7IIpTRgit+6cS5RKzb4dyvKBBYPBO8RRKkkpMb9lnrLOLuyYXXZKinuUuXSf3ZkVjNb33+EQERERERGpcH4eERERZQypudpdGEC/cnXdyo+iarrM3IWyQAtabeHttHRCeXO3XOL1S7ypz3MKc8rBWb4tPlmsr/v6DxNq+uRJwD8sgtGaOoDB6ns+5qRXl1sHMI0ZCNhCUi6s3muHjUpKt/qEXPK69QJd7cCXH0B+5RjAYtlSsx126YNfMZ+tOY/vdbejXV1eUQp8f7aBq+ektj+pJKUEFj0T/fILn4E4+0rUakL06tX3ess5X2zWH3/G5MHXEPKD16JeVvxvFbBrJwZ9/3TtMtt2hwdZUu6SUsLt3RtcFvqf3B9u1qO+w7M/yCy0vqMbkPmRyZi1DLE/wGxvoFnJvmAzEfy3sl70Lt/zn8NuPaaLh1Vzub57JTMYbSCD0ShNhvYHXAWAWzMN/vp5Jg4dpX+jmxKYv0Li0pn7l3nty+jf/a8sl5hZK1BnERL8xsYT4ZKe/QUrPkJ15UxgRfhzGvIkbDiZ6tRTq1EzOLX9IMpHDEYjIkqza6+9Fh0d+y8WHTBgAJ5++umoJ13tVVlZiaeeegpTpkyB1xsMjtiyZQt++9vfht3tkoiIiChXeEy3stxhuJK2DuvgkE70t2smpVFMrMKgkhGgQvlLt28V2dL3q5jTKIKAgFT8jKkLbgKsg9EKGIyWFlahVm6zq1d4pu4zK9hO8vbHIlsxoNhVQt8LVsFSyexPrOtQ9UsbjGYUw6UJDvNLH3ymFwVGYY92NMF0aTweWIWydQU6ow5G04a+af42q3a7TH2oWbSs2vCZiQeeWo0bJCS6TXdK9mOiXNXsU88iHliQp7fuprRZ1fUZNnevU9Yd3m82BvB8fB99MFpjxlzslokhtURERERElB84P4+IiIgyhhlQl9tsEJVVCV8MP1ATjLbbDTR3AINKE1xBBlvfHLzIOFo1id0rrM/JBf8HufBpYOtaoO6zYOHkr0JcfRdEzcHABn0KnJh+QkLrPnqS9Y1iWzvzKxitPsI9aE7ShOydPhl4NiRgrtAOnDM1/b/ZaG1piLiIvPdHEHe/BHTr50EJAOWBFjTaw68Ob+6QyMebcXn9Epta1HUjyvJge7TGmGT2+bswb/02qif9GMC4sOr1zUC3T8JRkFvbzu2VuPN1ifcbJNw+4F2Lt2RZcW797UpRHJMAACPHAUNHA5VVGBhohtN0w6O4jqChUeKw0Xmw3XLYu/USD78j0dQucfyBAt+fLfDC58B/P5RoaOoRdrYnyCyWsSGlnhCh4WU9/xP7ysPrhTL8zFWY/CCzZDMsupfr+2syg9HKOc2I0sQwBE6cBDyzTF2/ZB2wZJ31m/nyf0r87a0AbAZwyAiBeZq2VH7/isQbKwP4ZKN+mV6haACwdS1qKmYql82XsOFkebdeYvlWdV2mf8dElAsYjEZElEarVq3Ciy++2Kvstttuw5AhQ+Jqb+LEibj22mtx66237it7+OGHcdNNN6GsLLdua1BfX4/PP/8cW7ZsQXt7O4QQKCoqwuDBgzFmzBgcdNBBKCrSX6CeLN3d3Vi8eDHWrVuHlpYWVFZWoqqqCrNmzeqT9W/btg1LlixBY2MjmpubUVJSgsrKShx22GEYO3Zs0tdHRESU6bo1ITPOJAajWYVqWIVyUGy6LMKgfDLxABXKX7rwp3RefG8IA07DpQxpsgqrsgpGszMYLS2s9iN3oBP97fvPxa0+M6xCOGPlNNTnoqH7m1UIXzL7E+s6VNvJKkTDpfl7geD7qX+vYLTMOx4hVep3AAAgAElEQVQka5yhDYHU/G02YYdDONEd+gMorD+To9UV0AejWR3LomW1/wLB157BaETx0wWjlRdUwpTqC3ZUga9EiZrfMk9bN6fstBT2JPPpggu7pQedZjtKbOm/Qkk7FuNnNhERERER9SHOz4sf5+dxfh4REfUB01SXGzZgeOKfMw9uuwpzR72irKtrzO1gtLURwqt66ucEBsaWkZtS8om7IP98fXjFp29BXnIY8NB7kA/frG9g8qyE1t9/gAu/bboBv65Qr6NVfU+6nGSaEg0W+1ZNJXDNHHXCxU2nGnin3sTOHtMnbj9LoNSZmYEdsrMtuvCqjWsgz66NuNhAXTBank653diiDzypzoOL6OW/7oj9Sa/8EzWLPwZGfaSs/tvbElcdk5nvp3gETInj7zXxTn3kZX95cu783ZY2RxGMVuiE+P5twTAkewGMybMwtm0dVjgmhi1qdTynzPfqconT/mTCt2fa0ktfSPzwv5yrlGoloQFmex6XOEV43b56dV1RFgSZJZtlMJrmVDFXJPMcojwfwkEpY93wNQPPLEvsDfvh+uD/318b++fYR+v1dbfv+EVYmdyyFjXTBKCY37uxJTfDhvvCGysk5t6rf91rB3MbEvU1BqMREaXRfffdByn3DygHDRqESy65JKE2r7nmGtxxxx3w+YIXmXZ2duKhhx7Cz372s7BlL774Yjz22GP7Hq9btw6jR4+Oaj2LFi3C0Ucfve/xjTfeiJtuusmy/b02bNhg+cXFt771LTz66KNh5d3d3bj//vvx0EMPoa6uzrJ/NpsNkydPxumnn44f//jH2klQs2fPxuLFi/c97vl6WNm9ezduuOEGPProo2hrawurLy0txbnnnoubb74Zw4YNi6pNHZ/Ph4cffhgPPvggvvjiC+1ytbW1uPbaa3HppZfCbudHPBER5QdVqBAAy5CUWBUKBwzYYCI8AEC3fopdl2kRoGImHqBC+UsbqJTmi+9dRrHyGGIV9uNjMFrGsQ616v36WoVNOW3J+9wq0vQpdN+yCt1KxftDtw7Ve0D3eVtkK7YMcQsLp7MIWEsXq3VbBSX2JKXU7l9Wr6XLVoxuvyIYzeIzOVpWwWjJCDyNtG3cgU6Ah0WiuOmC0QYVVKLRu03zLE42pOTa5FmLVV2fKesOLjkcQx0jUtyjzFauCUYDgBZfU4YEo2nGdGkcixERERERUe7j/Dw1zs/rjfPziIgoZUz1DWhgGMCwMbG3d8zZwJtP7Xt4dNdi7aJ1jRIzqnP3Qs2Gpuh/qxo1MHNDGGS3B/Lfd1ovc/OF+sqzf5Dw3yYMA9d1/pnBaAC27AI8mulalxwp8IezBAaWqLf3wVUCS39p4JllEk3twImTBGbWZuZ+BwDYsjapzZUHWpTl+RqMZhXINGZQ6vqRNv/3x7ieNsZdBwETEkZY3S/nSVx1TKIdyxyL1yCqUDQAuOzIDD6WJImUEthiEYxWVglx5hXAUadDjNkfgiYu/RXG/kETjLbVC8DZB72lVPj9K/tD0Sh6xY4e4WW9wskESkLDzRz760LDzUqcQHEhYFgle1FEVsP0XJ9519IZ219oNwC/JoPIHj4sIEqZg6sENtxmYNR1mZdmeMHu/2fvzOOjKPL+/6memUzukxAh4UrCLcopcnqAgoiKJ4L7eK27rLrq7uO6ruu5uu4jK+oPb2VXdF3XY5FLWA9QkUMRYQHlEJJwGK4k5M7kmpmu3x9DQiZT1dMz03Pm+369eJHpqq6q7umjpvtb73rXc+HRAyiUhBWqHDhUCQz0bx6hLsVTn2h/34VdQHZNEOGG3soSBEGEkU8++cTt84033oi4uLiAyszOzsZll12GpUuXutUjCryKJkpLSzFt2jTs3btXV36n04lt27Zh27ZtuP7661FYWGhYW3bu3IkZM2bg2LFj0jz19fX429/+hqVLl2LlypV+17Vt2zZcd911OHDA+4umoqIizJs3D6+88gpWrVqF3Nxcv+slCIIgiGih2dkkXG5VEgyrgzGGRFMSGpyewdZaAiPCN7RlUIELVIiui0z+FO7B94mmZFQ5PCOetGQ/Dg0xmoXEaGHByuLBoIDD82VH52NPU0Rm4PEoK8tD1CZpjwIT4pjVsPbIkLVT1C7ZvktQknyT08nKCaMo0cRMsLJ4tHBPQZnefkYrbxEKXAHta12ikowaVHos15Ka6UVLrqYledSDXW3VvB666qc+GkH4S6vagjpntTAtU1OMRhDGsrZquTRtasasELYkOkg1pcPMzHBwh0dalb0CveMLwtAqdyJVWk0QBEEQBEEQRGxD8Xn6ofg8is8jCIIgQoAqGUipmIBuuUBcPNDq+e5YBPv9K2CX3Qp+/2vg07JcywAMb96JHfFne+QvEs+LEzMcq9Gfd0iPCBY6HNwN1ImFUu0ckYtiWO+BhjSDJSSju6MM5eYcj7TqRg7X0Rb7HK+Vpy24hiEjSXs/9M5i+M3UKNlXWgIiP+jm9IxHAYCj4lfRMc+xGrEMpEcakBAXJceIn/B6Hy7QnbDyVpzhKMNxcw+PtBYH4FQ5TDEi6dlYrE8YE28BemUGuTGRQE0F0FgvTGIvrwMbNk68Xm4B8luXCJMOHG8BidGiE7uDY4O2vz9mSIzrLDBrE5e5RGYeafFAivW0yKxjepIVMXONjBW0vg41xs1oR33sDvx8EsNrX4l3ygDPnygEEVJ6ZTLseETBiCdU6JwHJuikOmvR3Sl48HO0BPndXGJGUVuLy0mM5g2nqt0P6ZYMr88GCIIIHBKjEQRBhIkjR47g0KFDbssuvvhiQ8q++OKL3QKvNm/eDLvdDoslOgfKt7a2Yvr06R5BV5mZmRg2bBhycnJgsVhQX1+P48ePY8+ePbDZgjMAds+ePZgyZQoqK91f1OTk5GDEiBFIT09HWVkZNm/ejKamJlRVVWHmzJl4+umnfa5r1apVmD17Nhob3Qdy9+jRA2effTYyMzNhs9mwZ88etxk6d+zYgbFjx2Lz5s3Iy8vzb0MJgiAIIkpoVsXTD8Yr4tmo/SVBSRSK0Ui6YRxawqBABSpE16ZRNvg+zGI0qbzKT0mgmcRoYYExhnglQXgN63yPkh2LVhYPEzMZ1ia9x5bsWEs0JYVkZmSZsMvB7bCrrbAoroFpTu5EsyoWoSYoiYhjVigwCcVgnnI6cb8h3KLEBFMSWhwCMZrOfobWdUPrWpdoShYulx2rvqBVRqDCU9n36JaH5LUE4TfVjpPStCxLd+k9IkLiO4gYodJejm31G4Vp/eIHoiBhcIhbFPkoTEGGuRsq7Cc80qrskTHaTXYPTzD4GQ5BEARBEARBEEQbFJ+nH4rPo/g8giAIIkSo4gmvwBiYyQQ+8TLgi397L8dkBiZc6lo1MdntPU3/1iKhGK24zI/2RhHV3l8jt3PlyOC1wx/4wT3grz0E7N0KVAX4RU2caUyjEpOQ4awRi9G60Ov4eomnkDEgzbi5eyMCvm+7oeX1aT0sXF5c3jXfLFdJzpvslNC2IyysXxHQ6oNb9grFaHanS7TXOyug4iOGkzrnsZw1nHUN0VFpsTwtT2NSsG49UaCWCpPWH0nGV/s4zhvYBfZfjHFI7NqMCOItHeVlHeVkLpGZu9ysLZ0J5GZAcjyJzCIdzjnw7rPga98Hjov7OpqYcoGe30nKDrBxEc6XP/q2gcPzgHPzgc2d5rIYdAbQtxudJ0T4OSuP4cKBwOc/Gl/22H7AkWrfhIJX1a8Q68v3/RdWC0PvTOCw4H5aXNF1xOf+cqTa9dtDxlUjaf8RRCggMRpBRBhO7kSNxsAjwhjSzd0MHXTsD5s2bfJYNnr0aEPKHjVqlNvnpqYm7NixA2PGjDGkfL0sWLAAjz32GABg4sSJOHr0KAAgNzcXGzeKBzUBQHKy+8DcxYsXY8+ePe2f+/bti5deegnTp0+Hoige63POsW3bNqxatQp///vfDdgSF3a7HTfccINb0FWPHj2wcOFCXH311W5taWhowDPPPIMnn3wSNTU1Ps8IumfPHlx//fVuQVfTp0/Hn/70J5xzzjke+bdv34577rkHGzZsAAAcPXoUc+bMwbp162AyhfdYJwiCIIhgIhWlmIyNOvFHYET4hpZAxRGgQIXo2sjEQgmm8IqQEiX1a4mQHNwhTWuTSBGhJ0FJFH5vna9roToWE0xisURnEYVM7hkqaaDWdjeqNqSdOqZlEtS2MhhjSDAlwub0nCHS4zuQ3GviJfssVCQoSaiB59tGvf0MLVGr1n6WXYcaVZ2RdhJUrmpfy9TAhKd6hHF6pXIEQXhy0i4fbJFp7g4mC4KI9egsIqR8Ub0SKlRh2kWZV4ZE4hqNZFqyhWK0Skf4xWh2tVUqRw23tJogCIIgCILoelB8XugId4wexedRfJ4WFJ9HEARBhAWZGO3UvYTNexx8/3+BIyXyMhQF7J5nwTJPC6vY/a+Cz/8VAKCwVbxuUYzLiPTKuuacw3Dl8Mh5z8DLSsFvPw+weU7a6g8sO9eQcpCQjPRW8SjsKh8kdNFOQ4t4eVIcoMSQuIRzDrzju2jYg/7DgaIdrj/t4mtRcfhfW4UFmRgtM8bnD+LHD4E/9cuAynjl+F0YWLhbmFZSETtitFod11bGgD/Pip1rjxb8kbnihMQUID1buh5TFOSniscWAMAFz6j45g8KxuZ3jf0YK9z5L3H8iD9YzR3lZZ3FZKyT3KztH3MTm3VMN5voWOpK8EWPAm/P93t9ZpbHx6gx/HOtppFjfZH3fB3JTGJ4/nqGy15UUXbqp1JaAvDGzZ7PqgkiXAw4g+FzH6V/enj5BgVldcC1r6mwSX6TdmRIyx48WvGENJ2vX4HC7JliMVoX/X3mC799X94P6ZMFPHwp9QUIIhSQGI0gIowax0k8fGBeuJsR8zyR/xqyLJ6z14SSI0eOuH3OyclBVpYxT2TPPPNMYX2hDrzq1q0bunXrBgAwm0/fcsxmM/r27au7nBUrTs8QYjabsWbNGhQWFkrzM8YwevRojB49Gg8//DBU1ZgHYC+88AJ27NjR/rlHjx7YuHEj8vPzPfImJyfj0UcfxZlnnonrrrsO1dXVuutRVRWzZ892m1Xzsccew6OPPipdZ8SIEfjiiy8we/bs9tlIN27ciHfeeQc33nij7roJgiAIItqQyVLiFWOjBWRSEZJuGIfWvrQHKFAhujYysVBimAffywb/a0kC7apcEmhm9JgvXCSaklDlqPBY3llEFqpjUXpsqfokYaGSBmptd5PThjRzxqm/5VFfbWUkKklCMVrne4vsXhPu64FcUKavn6ElUNPatkQlWbi80RmYGK1ZbQSH/EWvTIqiF63rZHse6qMRhN9U2sWRDmnmTFgUC2Szw2md9wThCw3OOmyqWSNM627pibOSPQcmEy4yLd2Fy6vsnn3VUNO5b9wRmdiXIAiCIAiCIIIFxeeFjnDH6FF8Xl/d5VB8HsXnEQRBECFCds9krsHdrGc+8Pdvgf+uAw7v88yXkg6MOA+sV3/35eNntP/Zv7VYWEVRuUt+FKuTj1Q3it9V3TiOYdpQoKwOOKcfw7n9IktoxVe/aZwU7S4DxFZtJCQjs1ncv6puUAF0DSFBQ4v4uEq2hrghweaHbwIvo89AYODIdjFaoeRadKIOqG/mSImPnPMwFFRLXpVlxvj8QXz1W9oZJlwKmC1A1hlAzUngiyUeWQrsB5FssqPBafFIO3CS4wLZ5G5RRpXNe8xFxbMKMpNiY3u14C1NQOVxcWJugde+TEGOAojdngCAl9dxEqNFEZxzrN3r2zpLfqVI5WcWM333hH/wlmZg2asBlaFoxNfFshhtxQ7fNy4zCRjdl+GHRxV8tR9ocXBcPIShWwqdw0TkUCB3tQIA/vlzhn7dGHYd46iyAXVNwP99rH0+XDkCGNHbdZz/+LiCz3/kOF4ryNhkA958EoNbf8QFtq+QxOWxefzt+Sg47zKhxK0kxiX6gcI5x/Id8vRdjylIstJ1iSBCAY2YJAiCCBNVVVVunzMyMgwrOz4+HlarFS0tp3XAneuLJg4fPtz+99lnn60ZdNUZk8lkyIyMqqrihRdecFv2+uuvC4OuOnL11VfjjjvuwIsvvqi7rqVLl2LXrl3tn6+77jrNoKs2zGYz3nrrLWzcuBHl5a4BjAsWLKDAK4IgCCKmaVbFszpZlQRD65FJRbRkLYRvaIrRAhSoEF0bmRwnVPInGTIRkta54OBiSSADg4ke84WNeMk9ornTdxmqYzFBIgftLM8KtyRMa7s7ijO0zom2MmQyuI7bzDmXCrXCfT2Qtl+n3Et2bJmZBRYlTrpeokkiRgtQKuZNXGaXXMv0ome/aMniCILQpkoiRssyi4VLBGE0G2o+QSsXT3U4NXMWFNY1Btr4g+w8jQwxmkafLsySWoIgCIIgCIIgYheKz9MPxedRfB5BEAQRIlSneLly+l7KElOAiZe5/ukl4/TzYZmMqL4ZKK8HclL1FxtNyKRDA3KAOecE590C5xyorwYSkgHFBOZjn4hzDnzzsXEN6jPQuLJSM5BVUSlMKj1mA5BmXF0RiMPJwbnrvBGRHB/a9gQT7nSCf/0feYZh44EfvvZeUO+BYHkF7bqP/NaD0qxldS5BTSzDOUdlA8ABxFuAasmrsvRYl1zt2SJPO/8qKE+867ZILT8K7PIU9Q22nsB3jb08lpeE/zWoYVR5CXUq7I4uIUUDIJbDttGzn9fV++alwFrVjBZFfKH59iAJQKKJYxqSOxG3TGC4amQXOVeI0HKkGGgQ2Yn0w7TEaC0tAGKzg7S91Pd1sk6FN3dLYbh6FCCbzJUgwsnAHAZIzusHL2WYO9b1LGJcwenj961vnJr3tvEd8uZmMNw4TjKR8Xffglc9p6+hVeUolIT/FsdQfzoYlNfL087Og89SNG6rA1QnWIpx7ysJoqtAkeMEQRBhonMgVHp6uqHldy6vslL8YiraaAsoCjXr16/HoUOH2j+PGTMGM2fO1LXuI488AovFc3YSGc8//3z734wxPPXUU7rXTU5Oxrx5p2e1/eGHH9zaTRAEQRCxRotEjJZgsBhNJkzRKywhtHFyp1RyB8hlUAThDbtql4r1QiV/kuGPCEl2LpiZJWZn9I0G5CIy96hb2XdrtAhC7z1LKgkL0bkRx6xQJI+nO7ZVS9IVf2rf69lmO2+FCnGQecReD3TKvfyV3MnSG50NuuqV0ahqr+8IUHjqTbwGUB+NIALhpL1MuDzLkgNAHmLENQK3CEIvrWoL1lWvFqalmtIxNvX80DYoysi0iKehjAgxmsb9WyZrJQiCIAiCIAiCCBSKz/MPis/ThuLzCIIgiIBQVfHyACWjjDGgu0sY07+1RJrv/62N3fc5MjFahjikI2D4ikXgl/Zw/bswBfz8RKjzbwdvFU/+4rYu5+Bv/xX8it7Aj9uMaVBGd2DkBcaUBYBNvBz97IeEaSXlkuM4Bmi2c9z2DxVZv1WR+VsVd7wjPmdSrCFuWBDgDjvU//db8Jk9gXeeluZjf1wEWL3H47JpNwB5pwXL2c6T0ryVgYWlRDSccyz4TEXufSq636si514VaXereH+r+FjKDNI1KmL4bq00iU2d7bkwr0CYt8D5k3D5km2xc1/zJkabe07XiQ/lbz4pTWPT5npd39qrL66sXyFNP3jSJcAkooMfjvqWv0AcNkEQgVO0M+AiFC7vR6tq7F6XZIJYLfK7Gd8OgjCaqYOBboKwN7MC3CwRml0/Rt6nUxhw7Sidfb493+nLBwDlpShIF8fuHzwJ2B2xe/0JlCJxODUA4PLh+vvnfNuXUH92Fvj0bPAZZ0C9bgD42vcNaCFBdB1IjEYQBBGjxNKg+EGDBrX/XVpaigULFoS8DRs3bnT7PGfOHN3rZmdn4+KLL9aV12azYfPmze2fx4wZg379vM9o0ZELLnB/qblhwwaf1icIgiCIaKJJFUc0xUskNf4ik95oyVoI/TRLvsc2ZGIrgvBGs8Y5KhMphQpZ/VrCH7tUjGY2pE2EfySYJGK0Ttc2mQwi0eBjUSbZsvNWN7meVKYVonODMabrPJDtNyuLh4m5gsP13Kf1CNbChWyfy/o5Hvlkkjsv36VMQhKwGM3L+rJrmV70SM/0yNMIghBTZRcPfM2ytE0ZFzvPnYnI49u6dah3imdXPT/jUliUuBC3KLqQidFsar2mjDwUyPo1DAqsLDZnvCUIgiAIgiAIIvah+Dxjofg8giAIokugiifzAgt8aBd7/F8AgG7Ok0hz1gjzzP+EY/tPsTngVSaUCYYYja9bBr7g10B9tXvCqjfAF/7WewHLXwN//WGg2iAhbVoW2J/fB7MY+B5lxo0olEj2imsTwHlsHkd3vMPxxkaO+mbApuG4S46BVxv8lT8CH74MNIivFwCAzDPA8gpd15cEL/FEky53E6OlqPUwS+JDvAmgopk3NnH8fgnHiTp9+TPDG8IYVPi2L+WJvQe4jplOsFyxGC3f9qNweXE5cKI2Nq5HVRphYleNAH53cew8g9CCb/sS2LBSnmHiZd4LySvAs2W/R7zkHbndCZRWC5OICGTG874JWQu7e89DEP7An7w14DIUyI/nWO1fA0CVzbdt654CpCZ0jfseEd1YLQwf3q64PXewmoHXb2Qo6C4+hh+ZyTB9qOfyODPw1q0MvbP0Hfv8b4/51NZCiE2jThU4XCVMIgAUV8ivXw/O0Pld/bQf/N6ZwOF9pxcePwz+pxu1fzMRBOEGjZokCIIIE5mZmW6fa2vFg338pabG/QVF5/qiiblz52Lp0qXtn++77z4sX74ct9xyC2bMmIEePXoEvQ1bt251+zx27Fif1h87dixWr17tNd/mzZtht59+AZSfn+/zjJJqp9nESkrkM38RBEEQRDTj5A6pMMuqeJ+hzhdkkhmZiITwDW/7MVCBCtF10ZIKyc7rUJEou65oCH8cknPBwkgQEU6k94hO36VMzGX0sahVXpOzESnmtFN/h6Y9WiQqSbA56z2Wd9x3snOio/RLJgBrdp6+Bmjda0Ilg5Mh2+d65V7+HltSMVqA4tdG1YsYTQ1MeKqn/6VHnkYQhJhKr2I0MRyxG5xFhAaVO/F5lXjWZiuLx+T0S0LcouhD6zytspejp7VPCFvjjrRPpyTGlEiAIAiCIAiCIIjIguLz9EPxeYd8qovi8wiCIAi/USUD4RVT4GUPGA4oCpiqon9rCbYmjBJme2MTxwu9Y+u5rKpy1EhChDKSjN9W/tHf5Ymf/gv8rgVg8XIjG1/xN691sJ8/CgweBQweA9ScBPZuBSxxgNninjEtCxg0GsxqrKmLMYbCfqmA4PW+zWnBiVqgR7qhVYad+maOd7foe+eZbA1yY4IMd9iB/7zlNR+b4xL9sfEzgJVHwC/KEGc0mcAUBTw3//S6ADKdVSg353hkr2rkiNUJuRat9+29eUyL0T58WZrG/vwBmCKQguZJxGhVOwDJq9Bl2zluPz+6jyfOuVQY+NJchl+dx7rMO1X+0RvyxPEz9O2H3AJ0d1bgeFEfZAwUx8AUlwP9uvnZSCJk1DX5HotUkN01zhUitHAvQmP25Ae6ylEOHgM2idM6P2+MJXyV4vYnwSERRUzqz3D0aQXfHQKaWoExfbWfQ6QmMKy+W0FxObD7GMABpFiBsflASrxO0dahvT63M//7fwO4T5hWVEZiURlFZeLlo/oAcWad39fHbwNOhzjtozfARl0gTCMIwh0SoxEEQYSJzoFQ1dXGTTfQ3NyM5uZmt2VZWVmGlR9qrrrqKlx11VVuwVebNm3Cpk2uJwGFhYUYP348JkyYgEmTJmHw4MGGt6GszL0H279/f5/WHzBggK58paWlbp/fe+89vPfeez7V1ZmqKlI2EwRBELFJs2QmJ8A1sNZIZMKVQMUhhAtv+zFQgQrRddGSCoVbjOaPcFEmRjMzi3A5ERr0fpdNTnEUrtFSLq3ymlQbUuASo0llWiGUhOnZd7JzoqNcUCYa7LiNWveasF8PTOJ+i165l5595Et6o7MBnHO/A+oandpiNNm1THf5OvaLXqkcQRDutKjNqHeKBwi3CZdYjAaoE+FnZ8MWlNuPCdMmpF8kFXoSp0k3Z4FBARfMMFtprwirGE12bw5l35MgCIIgCIIgiK4Hxefph+LzKD6PIAiCCBGSgZAwBS5GY5Y48JzewPFDGNaySypG21kae5PdHKsFVMlmZRv8eoE7ncCWNfIMLU3A4X3AwBHu69nqgIN7gNZmoOQH7UqsCcCc34JZT00Om5oJ9NbX1zGSvj0SgMPitPL62BOjfX8EaJGcop1JtkbnO1OuqsBP+1yivQYd4uj8oe1/svhE8EtvAVYv9sz3s/tP5+meB5QfAQBkOquFYrRK7bCSqEVVOXYe8W2djMToPJZ0cUJyAQGAnv3Ey3PFYrShth3Son484UujIpP6ZsAp8eGM6hP9UjTusAM/7Qdy80/f2zrnOXkMOPET8LmGXCj/TH0Vdu8FmMxIcTbgDMcJnDCf4ZGluJzjoiHRvV9jlbI6DlsLkJEIvPWNb/1Wi4mESkSQOLBbnjb7HrDJV+gqRkn9XkOMFlu/01SVY1+ZS4q2TyIWkjE0l67PRHQRb2GY5MPrDMYY+ucA/T1/KmnCHQ7g4G7wVYLfZF5I+OCvyD3rf3G0zvP5U0lF7IqrfaG0iqOsDhiWC1gtrv1RLPFi9u/uub8450BpkUtu35Glr8gr3b/d3+YSRJeDxGgEEWGkm7vhifzXwt2MmCfdHH6tf25urtvnEydOoLKy0pAAqd27PX9sd64vmmCM4f3338ejjz6KZ5991iOorLi4GMXFxfjHP/4BwBWI9bOf/Qx33XWXYTNxdg6MS01N9Wn9tLQ0XfkqKyt9KlcP9fX1hpdJEARBEJGAlhgtXhG/OPUXmTikmaQbhqAlggIAOycxGuEfMqkQgwKrYuxMqb4iEwC08GY4uQMm5vnYzmzxXYIAACAASURBVE5itIhELrVq7PRZIoMwWMqlJQft2CZZe7zJtIxEj3hUj8BNj2BNds82wQwLi/Pa1mAibb9eMZqfkjuZYEaFE628BVbm33XSm5QsUDGat34DoH/fEQThTpW9QprWLkaTxj/EVnAWEVo451hTtUyYpkDBhRmXh7hF0YmJmZFuzkS146RHWpVde/baYNO5b9yG0WJ7giAIgiAIgtADxeeFjnDH6FF8nn4oPi8wKD6PIAiC0I1MjGY2KO4jrwA4fgg31ryNxek3CbPIBnVGMyUa25SfbVw9fPMn4A9e5z3fbecC/9gO1m8IuNMJ/uJ9roGwqsR605mps6XimFDSrXd3qRit0hZ7A6c3Fut/35lkDWJDggT/cRv4g7OB8lLvmQGXWGjkBW6L2Iz/Ae8sRlMUsGlzT3/OK2wXo2U4xXLq//6ku9lRxdEa/XK9NjJjdA4hzjlw7KA40WwBs0pikvLEYrTRzdukdVXHQIhQlcY2RPsxwr9YAv7UPKCpwdXfue0xYO697bI3XlcF/vAc4L/rvJbFpt+gq05mNoP36AMcKUFBa4lYjCYPjyHCRF0Tx9xFKv6zy/8yrh7JkJoQW/0TIjLgmz+VprEZ4t9dIhST/PjkMSRG23qI46pXVBzxc56Sm8bReUwQneEbPwJ/8ufeBdeX3Qp89Ibn8iYbCuwHcBSeBreu3i86Uctx9Ssqvjng+hxvAZ67jmHeeQqKysXX5oJOIlZ+YDf4H68Bjh7wrfLSIvAdG8CGT/Kj5QTRtSAxGkFEGCZmQpbFR80rEZWMHz/eY9nWrVsxbdq0gMveunWr2+eEhAQMHz484HLDidlsxpNPPom7774b//znP7FixQps2bIFLS0tHnmLi4vx2GOP4bnnnsNrr72G2bNnh6HF/tHaarz0g/PYeTBCEARBEB1plgyqBYB4gwfW6hG3EP7jbT86uB2c86if9YwIPXIRVSIUpoS4Ne5oyaeanI1INnsO9pDJhEiMFl5kModwidGsSgIYGLhAUNNRKCWTS3mTaRmJ7DxwE5pJJRodxGiSNjfpFKyF+/6SKOtn6BSwyvJ5O7YSFfnU2I3OBr8Fko2q9tS+gQpP9UjPSIxGEP5RaRdPz8jAkGHp1v5JBD2BJAKhpGkPDjXvF6aNSpmETIuBo5ZinExLtlCMVhluMZqf/RWCIAiCIAiCCAYUn9d1oPg836D4PP+h+DyCIAhCNzIxmsmgoV15hcB3n2NS09e4vvZ9vJfmeY8+UQc0NHMkx8dOHFZJhfhenJEIpCcas5288gT4A9cADn0TgfH7ZwHv/QiseB1Y8pL+ii68BuyeZ/1spbGY8/KR6qxFnclTQFu1fTswaFQYWhU8Hliqv0+XEt75OH2Gt7aA/+5yoNbzHZKQgmFgj78DZna/NrGzJgAPLAJ/8fdAfTWQmQP2+1fAenUYXJ9X0C44ynJWCYv/xzcci2+OvXjQIj9ex0W79EpKbSVgqxMmsb8ul67GUjLAUzOBOvdjhwGY1eMnLD/e22OdKlv0/x6LVTEaLy0Cf7SDzMxhB3/1QbD8ocC4S1x5FvxalxQNNz8I1meQ/sp79AOOlKCw9QA2JU7wSC4ui/7jJtb47Qc8ICnarOHAqz+LrfsKERlwzoH3npOms/yhusvS6vuoMSJGa7FzzHhexUntMGIAwPVjGD7dzVF9Kkw8M8klIxpXQOcyQXSEl5W6JO3eZOsJyWC3/wV83TLX77VOFJ74GuvTPMVoJRL5V1fh5sWnpWgA0GwHbn+HY1gel/7G699BjMadTvDfzwLK/DOA87umAp9WgiXKx3UQBAGEdwQoQRBEF6Z3797o3dv9oexnn31mSNlr1qxx+zx27FjExcUZUnYbTqfT0PL0kpOTg3vvvRfr169HbW0tvv76ayxYsABXXHEFkpPdO361tbWYM2cOli+XPzjXS0ZGhtvnujrxQ3oZtbVeTMyn6NbNfabUv/zlL+CcB/TvzTff9KmtBEEQBBEtNDubpGnxirEzJsoG6tp5K+yqvmAnQk6jU/vNBweHEz5OpUcQ0JAFhVD8JEOrDTKBk0NyvTErJEYLJ/GSe0Sz013oFarjUWGK9D7YURbVWdzW3h6D5aJa6BKa6ZBoyO7THbdRJuPQkhSGCln7m9VGqNz7jNEyCZhMuHY6XUOM5kVupoW3+7pdInnUix7pmV6pHEEQ7sjESenmLBKxEkHls6pl0rSLMmeFsCXRT6a5u3B5lSO8UztKJcGm0PU9CYIgCIIgCILoelB8nn9QfB7F5xEEQRDBg8ukWgaJ0VhuQfvfT1Q8Js1XEt5HxoZzsFK8vMDIeVe++LduKRoA4Phh4PtN4J/+S/cq7NNKKH96Bywh/HEMAIDcfGQ6PQdTA0DV1u9C3JjgckAi15ORbA1SQ4LFd2v0SdHSs8GWH4by5law3gOFWdiMG8FWHQNbegBs+WGwCZe6p+cVtv+dKRGjAcCe4/qaHk0U+yEUyIjVV2XHD8nT8s/UXrfDvawjw1mJcHmVfI7tqEEmRmMMSDM2HD6k8DXviZefujfyxgZgw0pdZbHrf+Nb5T37AQAKW4uFycUx1heKduwOjve/038NvWoEcGKBgtL5Cn54TEHNQgVL7zAhNYFkSkQQ2L9DnjbtBnmaAEWRKz14jIjRPt0NXVI0APjNVIaKZxXse8L1r/wZBf8zjrQnBOHB5x94l6IBwMybwVIywG56QJhc2FIkXF4c3vlWw0pZHcdne8Rpz36mwuY5bxAAoH/3Dn2O7zf5LUVrZ9OqwNYniC6AQdOKEARBEP4wffp0vP766+2f3377bTz11FOwWPwfZFZRUYGVK90fDE6fPl2Y19xpBheHQ79sorpa/JIrlFitVowbNw7jxo3Dvffei9bWVixbtgyPPPII9u/fD8BlZb/77rtx+eWXaz488EZOjvtMsUVFRcjO1v+2tK09vtajdz2CIAiC6Io0S4QuJpgNH7QvE5a42mGDRUk3tL6uhh7BiV21w2wiGQPhG1JZUASIkLTaIGu3QyITspCoJKzI5FNNqg2cu2Y3VbkqvW8F43hMUJKE4rM2WZRdbYWdt0rXDRUyCZu7wM27REP6HXSQY8mEgxEhSpTscw6OFrXZqzBEum1evkstcVogYjFvUjWZ5FF3+Tra1qw2QeUqFEZBEgThCzIxWpbltGiJQRxEyHlsBGcRoed4Syl22bYK0wYnDkdefL8Qtyi66Xi+dqTKHplitEj4bUYQBEEQBEEQRGxD8XmBQfF5BEEQBGEwTklfwCAxGvJOy2R62Y/AwlthZ57y1uJy4OxexlQZCcgG3udliJf7Az8oGSmrtc7LfwD2it+BeDDpcrBE+eRmYaH3AGQ69+AQ+nokVVaLY06ilQM+vkYZ0jM47WiDt7YAP24FSsVCHyGWOGDwaLBe/T3L2/ypvjImXgaWdYbXbExRgOxccWIHMdrQFvl5s+sox9CesSWw8UcokBmrr8rqJb9nFQXIzBGntZHTC9jrKV/MbBWfqDKpWDRR1SiOt0hPAEyK9nnCG2qB79YCh/a69q351H0/LRPIHwoc+hGo9vEix5hr3cKzwcy+91E458DhH4HFfxZn+PwD8DFTwYt36pOO5hWAJaX61AY2YAQ4gMJWsVBv3wnAqXKv+7cr4VQ5dpYCPxzlSLIyjC8AeqaHZv8crgIafehajOjN0D3V1bZcA/t7BCFE43cAGzDcp6IYk59TaoyI0XYf178d3VMARWHo76VrQBCxCq+vBr7/GqjpILE2W4DBo4BeA9qvGfzgXl3lsf6nrklX/gr48GUPWbGsX7S/vOv2i37UEHYv3S5P65N1+m++7YuA28G/+QTsout9X8/e6nruVNpJejd8otvkCQQRC5AYjSAIIozcc889WLRoUfugsYqKCixevBi//OUv/S5z4cKFsNtPPxhMSkrCL37xC2He1FT3B4M1NTW669m9e7dP7dL64W4UcXFxmD17NqZNm4YzzzwTR48eBQCUlpZi27ZtGDNmjN9ljx49GitWrGj/vHnzZowfP173+t9++62ufOPGjQNjrP2YWLNmTftAeoIgCIIg3GlWm4TL400Jht87NcUhqg0pIDFaIOgRozl4K4BYnR6PCBYyeU4kiJCsSgIYGDg8XwA2SdotE1kZLYMkfEMm91KhooU3I54loEVtEn7XQHCOxwRTEuDwDGhqu96KpGltaN3zjEYm7up47sra2nHdeMl30MKb4eQOmJhZKqaTfX+hRGufN6k2r2I02TXD27FlZhbEMStaued0Ro1OnVO2CfAmLpNdy/Sip9/AoeqSyhEE4Y5MjJYpES25ExvBWUToWVu1XJp2UeaVIWxJbJBpEQ8YD7cYLZJ/mxEEQRAEQRAEEdtQfJ6xUHweQRAEQQSITP5hNijuo4OQyAwn+rUewn7rAI9sReUckEyGE41US14hZyYbs42cc+CjN3xfUa8UDQCb5X//NFiw+ERksjphWlVtC3iTDSwhNp7zy6REIs5IBS4dFrzzh5eVgv/+CuCAb78H2te/5k6wXz8NZjK5Pv/zaWD5617WcsHyDBg43UHMdl3dEtyf83/CbHMWccwYxpESHzvXopIK39+Zp8QHoSGRQKMk7igxxftvr7RM4eKs1jLh8pgQo8nuY14usXz7evC7LzK+QW0Mnwz85QOwFP3mKe6wg//1DuDjf2jne0r/fY/Nmqc7bzsXXgM8fQcK7AeEySoHtv8EjO7re9GxSF0TxzWvqljb7l3hUBjwwhyG288P/sSkH+3Uf/1MjANuHBc79w4i8uFHxSIhAMBFc3wqS9GQDqkxMinpg8v0bUecGeglvuUTRJeAf7cW/KHrgcZ6cYYrbgN+sxAwmYBP3vZeYEZ34DxXrCWLs4KfMxVY8Te3LAWt4n4R58DWQ8DYfF+2IDbw5zccAGSd6qfzZa8Bb4l/8/rEmnfBC84Eu+F3ulfh5UfA77sCOLDLI4098hZAYjQixgj+rxKCIAhCypAhQ3DJJZe4Lbv//vtRViZ+YOuNPXv24Omnn3ZbdssttyAzU/wrsXt39wFte/bon8noP//5j09ts1qt7X+3tHgOuDWS9PR0XHXVVW7LDh48GFCZEydOdPv87rvv6l63oqICn332ma682dnZGDFiRPvno0eP4uOPP9ZdF0EQBEF0JaRitCAITmTiFgBocsrlMoQ+vAlUAMDOdcwKRhCdkMlztM7pUKEwRXq9apS02yE5DyyC2X2J0KF132k+dY+QfadAcI5HWZltkjEtsVQozw+ZCKNj+2TSr44ysUQd92mpjCMCrgdacjY990jZ96m1X9rzmMQzTjeq/ovRbE7JS9pT2Lm9fcCZP8iOCY98OgRqBEG4U2kXP5fuZjk9LSOTDJKJjdAsItTUOKqwpe4rYVovaz4GJp4V4hZFPzIxWp2zGnY1MDlpIMglteHvixEEQRAEQRAEEdtQfF5woPg8giAIgvATp0O83GQ2pvwe/YAOwhmZDKQ4vHNpGE61TfymKtOoMMIdGwwqqBOMAQXDwB5/F+ycIIptAiBz2FDh8mpTJvgbj4e4NcFDr1jposHAV/cpSE8Mohjtpfv9lqIBAJa8BGx29W/5vu3grz2kf90OckW/yS0AFNdw1V6Oo+hhPy7N+vznsfWWuciPn5kxK2iWCR4SU7yvmyL+fZ3RdEK4vMoGqGp0H0v+iNG4wwH++E3BaVAbO9aDv/1X39ZZ+75XKZovsDv+D7jubt/XS04DLHFSAQgA3PA3NZCmxRRPf8Y7SNFcqBy4818cB08G//y699/66phQ4LoP98qM0WsnEZnIxGh9BoJliGN0ZCgaRg8e5fcyADhSrX8b8rsBJg1RHEHEMry1BfxPN8n7zIBLarZhhffnEdYEYPSFYC9/CZZ4ekwA6+lpOdPqF81Z1DX7RSV+PB9LsgJWCwM/dhD8Wd/7qTL4qw+CF+3Un//lB4RSNIKIVUiMRhAEEWaeeeYZJCaefutWU1ODq666Cg0Nvg1AraiowDXXXIPW1tMDW3r06IFHHnlEus7IkSPdPn/00Ue66vr000+xZcsWn9qXnp7e/vfJkyfdZs0MBmaz+wvijoFf/jB58mT07du3/fPWrVuxatUqXes+/vjjPm3vr3/9a7fPv/vd73w+HgiCIAiiKyAbVBuvJBhel1WJB5P8hCbpRuDo2Yd2Hr4B3ET0IhUqRcjg+0SZFErSbgcXB8iamUEBsoRfyOReQAcRmYbIKRjHo0y01dYOLdmW1vYYjWzbO+4vmVSuo0RD+zuwuf3v0YYQbq+MeC2xm5d7JOdcLn3TsW2y70CPkE2GlggQADhUqHAGrfz2fAFsA0F0VSod5cLlWZbuwuUEEShfVn8EJ8R93Isyr4zdgQBBROt8rXKEb6RbJEtqCYIgCIIgCIKIfSg+LzhQfB5BEARB+IFDcr8yWwwpnsVZgZze7Z/7txYL85WUR/+g+45USeY11RLK+AL/4t/SNPb0CrDbHvOtQGsC2Bf1YF80QHlzK9gFV3lfJ0xkdhNLjMpN2cCWtSFuTfDQI0YbkAN8+lsT+ucEUYpmbwU2rAy8nC8+dP2/bqlvK+YWBFw3s8QBPfq2f766fpk07wdbY+tadLDSt/y56d7zRC1Nkt9XCeIJHDvC0sRitMzGI8LlKgeqo3x+a3/EaNi9GTh5LCjtcePLD33Kzr9YYljV7PevgM35X//jBoaMRZpah2xJLMzBkwhocs9Y4t8a1+Ml24K7j07Uei+/ewpgf1XBhvtNGNWH4kiIEHP8kHj5xMt9LoqZ5EoPVY1+KdGy7fqvF4UUjkh0ZXasB2pPes3GP/+39vOIBSvBPquC8tzHYJ0l14LfdsnchjMcYtnw4aqu2S/6qcr3dbLa+uje+sk3PQD2ZYP7v0ff1lyF6+x7c4cdWL9cV16CiBVIjEYQBBFmBg0ahBdeeMFt2ddff41LLrkER46IH9x2pqioCFOmTMHevaf1/Iqi4O2330Z2ttw8Pm7cOLegr2XLlmHr1q1e67rpJt9nlRg8eHD73w6HA19++aWu9RobG/HCCy+gvl7DftyJhoYGLF3q/hKnY/3+oCiKR0DUvHnzvM50uXTpUrz88ss+1XXjjTdi0KBB7Z/37t2LK6+8EtXV1T6VU1FR4bEfCIIgCCKWaFabhMuDIUZTmCItl8RogaNHXGJXgxu4T8QmUqFSBIiQALkEQNZumSDQzIwJkCX8Q0ts1naP0BI5JZiMmqK4Y5kS4VibqE3SHgUKrCze8PbIkLWz4/6SSeU6yt/0fAfycsJ/PbAoFlhYnDDNWz+jlbdIJWN6pHuJJnHAYaPq/wCwRqf3de3cv/u6XbXrlqVSH40gfKNZbYLNKX4Gm9lBtMQgCzDsekERRGA0ORuxoeZTYVqWpTtGpIwPcYtigwxzN2lalT18YjSZ3D4YfWGCIAiCIAiCIIjOUHyeNhSfR/F5BEEQRAhxiicLgcnACfGGjWv/s6D1gDBLsdgPErXIhDIZRj2C/mm/PG3gKLd9rovhk8AscWDmyJ8IsWe2OIZkVcqlQLm+vnQ0UKkjvGDK4NPvSfm+7eDvPgu+5j3w+hrjGnK0RC5Q9IXP/gV13iTgn3/1bb3c/MDrBtwEjeOaNkuz/XAUUNXYeM/cbOewtfi2zgUDQy/34U4n+OZPoL7xBNRFj4J/uRS8KQjxNY2S2KFEsWzRjRSxGK1nvVj2CQB7j+tpVOQiF6PJjxH+zcdBak0nThwGX/IieFmpq97iH6AuuBPqL8aD/+sZ8JOunc+//xrqQ9cDRrVLUYBzLgqsjNQMAEC2UywecahAhf5HITGL3cFRohFK8KPYn2IY+3SUP7k/YFJIiEaEiVqx+ZRl9/S5KK3DOBa6RL5cL87Np3Oa6MLs/lZfvq+WActfl6cPHgOmSFRBkt923SXCWM6Bsjp9zYol6pp8v/i2yYv5ljWa+djwSWBmi9s/nDkW0JL+vj0f6qsPgf/zafDd7pMn8T3fuZb/6xngX88Cdn3jKQgiViAxGkEQRARw66234s4773RbtnHjRgwZMgRPPfUUSktLhesVFxfjoYcewrBhw/DDDz+4pc2fPx9TpkzRrDclJQWzZ89u/+x0OnHppZfis88+88jb2tqKRYsW4dxzz0VZWRkyMjL0bh4A4IILLnD7fMstt+Dll1/Gtm3bcODAARw6dKj938mTpx86tra24u6770ZeXh5uvfVWfPTRR5pBWFu2bMGUKVNw+PDh9mXnnnsuBgwY4FN7Rdx99904++yz2z8fO3YMEyZMwJIlSzys7DabDY8//jiuv/56qKrq0/4ymUxYsmQJUlNT25etXbsWZ511Fl555RXN7a+qqsL777+POXPmoFevXnj++ed92EKCIAiCiC5kg2rjleAMqk2UyVt0SL0IbfSISxw6JSgE0RGZCEmPLCgUyIRMsnY7JCIhmVCJCA0WFgcFJmFa23cp+06tLB4mZnygq+wYbxe1ySRhpiT/Z1j0A1k77bwVdtUOznm7zK0zHaVqViVBKupp21Z5OZEh45DtC2/9DNmxBeiTvknFaDrkZiJUrkr7aB2xq/7d15t9kJ2RGI0gfKPSXiZN62bxPkUjJzEa4SMbaz+T3jMuzLgcJibuXxHaxClWpJrE08uHU4wmlVZHyG8zgiAIgiAIgiBiH4rPo/i8jlB8HkEQBBE2HBIxmtm4CfHYNadFowWtJcI8R2uAxpbYebdTLXlFrSWU8YkjchkPy8gGhk8GhpyjryyTGWz2Pca0KwQUarwmfNkyG7zeN7FspFLtJbwg2Qrceb7reOLvPQd+27ngLz8A/vhN4PMmgpf9FHAbuL0V/Fadx5Ee9mzxnqcTLMGY9zbs1ofb/76i/iPNvHMWxca1SOsY+uMMz2tRvAX41fmhFYJwhx38kTng910BLP4z8I+nXJ/vmgpeIxZH+V1Xo+Q3VaI4TsmNNLEYrUfNj0iyileZ/LQa1fe1apu47ZqCzyb/J730Fb7wXvCbR0P9863gt4wGVvwN+HEb+Ct/BL+yL9T/nQF+5wUueYdRXDwXLKdXYGWkuJ4TPFzxF2mW97dG73FjFIcqAacqT1+8iQdVYllcoV12nBm4ZyppEIgwUifp76aK71daSAVGALjWiRgllJTru1Z0TwFuGU9iNKJrwo+WgL/xhCFlMa3rUM9+wsWPVjwpXSXWJPp6qG/2fZ2sJIBv/Rz47zp5pkGjgJEXeCxmZ/QBLpqjXcE7T4O/9hD4ryaBL/4zAIAvftL17OG1h1x98EWP+N5wgohyIn96CYIgiC7Ciy++iIyMDDz55JPg3PUjsL6+Hg888AD++Mc/YsiQIejVqxcyMjJQWVmJw4cPY9++fR7lWCwWLFy4ELfffruuep944gksW7YMNTWumWrKy8sxbdo0FBYW4qyzzoLVakVZWRm+/fZb2Gyup/VnnHEG5s+f79PMlNdeey0efPDB9lk2jx075hFs1sZNN92EN998021ZXV0dFi9ejMWLF4MxhsLCQuTn5yM9PR1msxmVlZXYtWuXxyyeiYmJeP11DSuyD1gsFrzzzjs477zzUFnpsr0fP34c1157LXJycjBq1CikpaWhrKwM33zzDZqamgAAaWlpmD9/Pn75y1/qrmvo0KH48MMPcc0116C2thYAcOTIEdxxxx246667MGzYMPTu3RupqalobGxETU0N9u/fr3sWU4IgCIKIBZrVJuHyeCUhKPVJBUYk3QgYLalLG3aJEIogtJCdnwkS0WGokQkXZe22q+LzwMyMC5AlfIcxhgRTImxOz4CuNhlXqI9FmeyrXdQmaU+opYFa29+s2mBRrOAQv+zv2FaFKYhXEoTys3YZXITLOBJMSah1egZQeOtnyLarrUxv+Ctkk9GsNuqSI9n9FJ5qba9HXpLXEoRPVNrFUQ0KFKSbu4W4NUSs4+B2fFktHgSRpKRgfNrUELcotsi0ZKPOWeOxvEoy42OwUblTKsGLFGk1QRAEQRAEQRBdA4rPOw3F51F8HkEQBBEmnCEQow0ZAz7nf4F3n0WhRIwGAAdOAmfmGlZt2HCqHDVSMVrg5fPmRqBcfP9nTy11/a8owHMfg7/xOLDtS8BWK8isAPlngl1zJ9goz8GxkUr/HAZIYgDuPuM5zC35AZnDfRP6RiJVEikRAFw/huH+6QxDejLwk8fBX33IPUNpEfjb88F+91JgjfhqOWDXiKXo0cdz2fHDnssiAHb2xPajJp63YH/xEAwo3CPM++9tHA8e4TgrL7rlGJUaISp3ns8wug/Dog0q9pcBI3sz3D2FYXxBiLd5w0fA+hWey/f9F/zDl8F+buDgeqkYLcX7uhLBA2tpwoBsFduPiKUy737H8fOJ0XkcVflzH6s84V9lomsJALS0AFUaZTbUAJ++I0777nP99Z/RB8L5T9uuZ2ndwK67C7jhPv1lykh13Z+uqV8KmX7invc47row8KqiGT0SlC/3AVMGh77+q0YAv5mqYEJhdJ7bRPTDOQcaJGK0FPGkhVooivxYDqJ/MGRonc99swCrGRibz/DoZQw90um8Jrom/E25sNUX2P8t0U5PTAHP6A5Uu5+YlzfIxdXFFRwT+3etc7Ohxfd1MpMA/txv5BnMFrCFn0plmOyBReC7NwNHD3iti7/xBHDWBNfzJr306APEaxmWCSI6ITEaQRBEBPHEE0/gvPPOwx133IGioqL25Zxz7N69G7t379Zcf+TIkXjttdcwevRo3XXm5ubiww8/xKxZs9xmOiwuLkZxsefsRv369cPq1atRVlamuw4ASEhIwLJlyzBr1iwcPXrUp3U7wzlHUVGR2z4SkZubi6VLl2LYsGEB1deRoUOHYu3atZgxYwaOHz/evrysrAz/+c9/PPKnp6dj5cqVcDqdPtc1depUbN26FXPmzMHWrVvblzudTuzYsQM7duzwWoavM4cSBEEQRDQhkp8AZw13OQAAIABJREFUYRCjOSVvpAnd6JGc+CtQIbo2ES9C8lFI5JAIAi0KidHCTYLiTYwmvlcE61j0JvOUCSlDfW5o1deo2mDRkGJ2ln4lKEkSMdqp7yBCtlmGvJ+hfY/UStcjGkk0iWdibVT9m1W00alvPdn1zBt6ZKrteUleSxA+IROjpZuzYGKm9s+Mda3AByI4bK3bgBpHpTBtcsYlsCrxIW5RbJFpycahZs/3J7LzPNjIxPaAXOhLEARBEARBEAQRLCg+Tx8Un0fxeQRBEESQcEjek5pM4uV+wi6eC/7us+hj/wkm7oCTeQ4dKy6PDTGaTIoGABlGPILWGqjae0D7nywxGezXfzWgwsiif3ft9A+32PGL4aFpSzCpkoQXPDyT4U+XdxjM/O2nYsHhhlVAgGI0vmmVPPHsSVBeXOu5TtlP4Nf0D6jedvqfbUw5bYy6wCUKBJBvP4RsRzkqzOIDasWO6BejyY4hwDVwftYIhlkjjL3W+wrfKJcgYMNKwFAxmiR+KEEcp+RGiliMBgD905ux/Yj44v7RTo6fT9TTuMhDdvxoitGOyOWnUm55CMqtD0uT1asLpDLQQGGfVYElhDZOj6VkgMPlYRvevBM74sXXufpmjpT46L4GBUJxhXcb0/IdHFMGB2cf/VQlXj7nHIZ3bhMLRQgiZDQ1ALJnjim+PxNUJJIcAOCqeBLpaIFzLj2fl96uYNaIrnudJYg2OOeAVp/cF3rp+B2Ym+8hRmMARjX9F9sSRnpk1yNLjTX8EaNloRb4ab80nc1fBqYhhGZmM/DAIvBfT9FVH18gngBJyMjzoSz8VH9+gogiSIxGEAQRYUydOhV79uzBBx98gDfeeANfffUVHA7J7FAArFYrLr74Ytx222247LLL/BqYduGFF2LLli34wx/+gJUrV7bPiNmR7Oxs3HzzzXjooYeQmprqc+AVAIwePRp79uzBu+++i08++QS7du1CeXk5bDabNDApLS0NX331FVavXo3PP/8cO3fu1NwfADBw4EDcdNNNuOeee5CYaPygmuHDh2Pv3r14+OGH8eabb7oFrLWRnJyMa665Bo8//jh69eqFdevW+VVXYWEhtmzZgtWrV2PhwoXYsGEDWlq0e9uDBw/G1KlTcd1112HChAl+1UsQBEEQ0UCLZGBtvBKcQbWJJm3JDOE/eiQn/gpUiK6N7NiSnc+hxtfrikwQaGYkRgs33qRWcilXcO5Z3qR7UmlgiM8NLSlZk7MRTkX++7/zuommJFQ5KgTlnPoOJNscKdcD2b731s+QfZdmZoFFifNab6IiEaPpFJx5tkffev4KT/XIVNvwRaJGEIRcmJRl6RycLn7+LHqmTBAiOOdYU7VcmGZhcTg/fUaIWxR7ZEoGlVTZPftKoUCrPxMpklqCIAiCIAiCILoWFJ/nDsXnUXweQRAEEUJEQiUAMBsc95GbDwCwwIG+9sMoiSvwyFJU3qYKiW6qNcRomkIZvRzxFNkCcMnsevQ1oILIJjWBITEOaJS84n+vqBt+EdomBYVKnVIivvLv4oxVJ8Ab6zUHP4vgqgp89i/wF+4D6iQmCQBs1PnihO69gLxC+XHqA2zuvQGX4caZ49rFaABwoW0d3k+7Tpi1JDyvsAxFJrZKsgJWS4Rca49qiLRKfgDn3LiJ0po8f8MBABJ1iNG6y62dF2aU4gMMFKat3AnYWjiSrBGyv33AVzEaLy0CSn7wuR424jztDCMvAD552+dyvTJ0bMilaADcpEWDWn6UitFKKoDhvULVqMhDjwSlpDx4MUFVNnHZPdL0rc9bW4DVi8F3fQu00GT3hMG0NMvT/BCjMUV+j1KjPPSurglwSNxuuTSvBNHF4ZtWg3/zMXBoL9BQG3iB3fOAPB1itMKzgF2bPRYXtJYIxWi7jkb5hcgP6jUu8zImH/5Anmi2AEPO8V7IwJFAUipgq/Oe1wchMht5vu68BBFtkBitC8EYSwEwEUAegG4A6gEcA7CLcy5XU/pejwXABAC9AfQA0HCqnu2c80NG1UMQsYzZbMbcuXMxd+5c2Gw2bNu2DcXFxaioqEBrayusVitycnIwYMAAjBw5ElarNeA6Bw0ahOXLl+PkyZP46quvcOTIETQ2NiInJwf9+vXDpEmTYDafvm2cf/75fg12S01Nxbx58zBv3jxd+RljmDx5MiZPngwAaGpqwu7du1FSUoITJ07AZrOBMYbU1FT07t0bZ511Fvr06aO7Pf4GRKWlpeH555/H008/jXXr1uHgwYOorq5GdnY28vLyMGnSJCQlnX5w6+/+Alz7YObMmZg5cyaam5vx7bff4vDhw6isrITNZkNSUhIyMjJQWFiIwYMHIysry696CIIgCCLaaJaI0cIlmSH8w8mdaOHenybaVf8EKkTXxcHtaOXiQQuRMvheKtOSiAMcXBwgS2K08ONNahVqEZm8Pa7AD6k0MMTnhlWJB4MCDs+34U2qTVOK2fl+Hy+7T6s22FW7VMQVrH6Dr8j2vTcRmFT4pvO7lB0rvgjI3NbT2S+yq/4JT32Rnfm7DQTRVZGL0XLcPsvCszi6XlAE4R+7bdtwvPUnYdq5aRcixZwe4hbFHp5CQxdhE6M55cHHkfLbjCAIgiAIgiCIrgfF552G4vMoPo8gCIIIIU7Je1KTsUO7WEISeLeewMljKGwtEYrR9EgwogGZTAYwRozG/0+i/erRF8xooV2EYlbkaV/W9g5dQ4KI7DjK6nwMcYntAQCOHgD6i6U7MvifbwXWvOs942U/Fy5mjAG3PQb+xE2ARITsQXI6kJENlBadXjZoFDB5lr71dcKuvh38rb+0f76v8lm5GC2Iwp1QIRP7ZEZGWJILbwPqv1sLnHORMXU1ysRo3uWBLCkVPKM7UO15o5qTsBm/kojRAOD8BSrW/U6JKjka51zjGuS5HXzfdvDbzvW9onOnAcMnaWZhc34L/vVqTVGjz8RZwW592LjyfCE1s/3Pxyv+hPfSZguzPbFKxYe3m0LVqohDzzW4OIihBr6KATvCHXbwe2cCO9Yb2yiC0IMfYjQoChhXwZlnB1uNcjNalZawOpL6QwQRYvjiJ8HfeNy4AhkD+/mjYCbvfRf2P/eDL3/dY3mB/YAw/8qdQLOdIz5SxM4hoEF7jhwPzkn4CTM3/kGazm5+ECzZu92VxScCN/8R/CV5WT7Tsx9w2a3GlUcQEQaJ0boAjLEJAB4GMAWS75wxthPAqwBe435GBjDGsgH8CcBsAJmSPF8DeJZz/qE/dRBEVyQpKckt8CjYdOvWDVdffXVI6vKHhIQEjB49GqNHjw53UwC4ZgSdNm1ayOqLj4/Heed5maWDIAiCILoIsoG1ViUhKPUlmMRP5GVCEkIfegUndg05DkGIiIbB91IhkeS8kEmiSIwWfmRyrXCJyGTtaVYboXJVeu8KlqhNhsIUJCiJaFQbPNKaVBscTHzMW1gcLEqc27JEmQzOaUOzxr061NssQypK9HKflKXr3a5ERTwTa5PT8zvRg80pCWzshEMiqvNG2zmlKy/JawnCJ6qkYjSxYIkg/GVN1TLhcgaGKRlXhLg1sUmmJVu4vMZRCSd3wsRCG9StJSuVPWshCIIgCIIgCIIIJRSf5w7F51F8HkEQBBFEHOIJ8WAKQtxHbkG7GO1TQXJJRXQPvG9DJtMwKUBKfGBl8/pqwFYnTswrDKzwKIJ5GRO9f8dBDBjeLzSNCQJaUqLMzlIiu0asw5ESn8RofN92XVI09qd3wLr1kKdPuRbIOgP8rqm66mVPvAvkDwVWLQYv2QU2YDhw9R1gcYHLoN3qyegO3mcQcPhHAMDwlu9xd+ULeD7rLo+8wRTuhAqZDMQIQaMR8IZaoPakdp6F/wv2zg/GVNgojjtiOsRoAFzXWIEYLalsH9b8VsFFz4klhdsOA+9/x3HrxOiROTS1Ai2S7oHo+OFvP6VZHltSBGxZC771C6C+GkhMARsxGbjiFy6Zota6+UOB1zaAr1oMvLNA7yZol/nSl2CDRhlSls+knJ6ULd9+CMnOejSYPI/BZdsBp8phUqLnuDESPdfgQycBu4PDYjZ+H8nuwRl6Qgm+/g9J0YjwkeLPxI8MClQ44SlG83fCh0gh2MJqgohGeG2l175bG2xJEfg1/bUzXf5zsAuvBRt1gb4yu+eBZ+YAVWVuy/u3FkvXWfpfjrlju0afiHMuFaOlJwLn9D39OTEOGJ9Ti18+PxqJvElaJrvpAd31s+t/C/TqD75+JVBx1CWqDgD26nqwDIr3JmIXEqPFMIwxC4AXAOiZ9u1sAK8AmMMY+xnnvNTHui4B8CYAb1fM8QDGM8beATCPc06j0wiCIAiCIAiC8ItmiRgjPlhiNJmwhMRoAaE1QLoj/gpUiK6L1rkpEyiFGpkUS9Z22XlgITFa2JGK0U4J+mTXumBJuWT3LA6OFrVZ3p4wSAMTTElCMVqj0waLRIwm2t/y+3SjtowjwkWJ3voZgX6XiSaxGK1RbQDn3GtAnN72dMbBJRF9XvCl36W3LQRBuDhpLxMu9xSjdY2gByI4HGraj6Km3cK04cnj0D1OPqiD0I9MjKZCRY3jJLIsOSFtj0xWamXxMDEKVyAIgiAIgiAIgiAIgiAIogvhlEwMaQrCs9K8AmDnBhS0lgiTi8Vz5kQd1Y1igUBGInx+3+3B95vkaSRGa2ftutKoFqPZWgC7U5zWUeLAOQeOH5IXdPKoT/XyDSv1ZRw61msWNnwS8KsnwV990Ht5eQVgmTnAjX8I/pvfM89tF6MBwCW2T4VitLI6oKGZIzk+et9FH6sRL48YEcjRA97z1FYZV1+jZGLFRHGckge5BcAPX3suP1KM4b20V/1sD3DrRH3VRALHa+VpncVQnHPgu8/lKySnA917gV12K9hlt/rVHpZXCParJ6GWHwHWvOdXGe1lPfbP8EnRACA10+3jpKZN+Dh5ujDr/jJgcBcMV3A4OQ5qOxNd+VTgcBVQGATXRnUAYkm+ZY2xjSEIvSSng5n9iN1XFDCIf7+oztgUozEGpAVneBdBRD47N2rLtdvofzaQnQfEJwLN4hsj+81zYFff4XsbzpoArFvqtkj2nAgA1uwB5nr/CRoTNNsBp9i3jNV3KRhX4P77lK/+CFww5qWdWb/0uQ1swkywCTNd5a9fAf7gdT6XAQC49i6SohExD0UaxyiMMTOAjwB0nibNDuBbAEcAJMElROvdIX0ygDWMsQmc80qddZ0PYDmAuA6LOYD/AjgAIB3ACADdOqTfACCVMTaLcy65bRAEQRAEQRAEQchpUZuFyxNMeqYI8h2ZwKhRMsCX0IdewYmdSwIDCUKC1rkZMSIkmchJ0na7RCRkJjFa2In3IrmTXeuCdSxq3QubVJv0GAuHNDBRSYLoIWSTaoOTiY95kURMKqfT2F7XepFxPZCKEp2SyJ/2dMl3GaAYzcEdsPNWxDHfZgRudGq88OuA3U/hqS/9LpLXEoR+Gp0N0nOms0CJScLjuSRoiyA6sqZquTTtosxZIWxJbJNplge5VNorQi9Gk4ntg/T8hiAIgiAIgiAIgiAIgiAIwhv8y6Xgb/759IKak0CVYBKZoWOB0VPA/ud+MGt84BU7JfYlfwbVe4HlFoADKLCLZTg/VQHNdo54S/SKiAD5AHyZTIMf2A3+/kKgaAfQMx9s+g1gEy8TZ9YQCbEJl/rY0ujF2xGy80h0vyes1AgtcDuOPnwZsNXJMzv0xzfympPAW3/xnrHwLKB7nr5CJ1wKeBOj5Z8J5PTWzmMgbPwM8NVvtn8uaJWfUxuLgelnhqBRQaKkXHwe9MkK/jWWf/sp+EeLgdL9rgXJ6cCoC8B6DwD//N/AsQPAAfHkVW7UngQvLQLr1d/3NhTtBP/geaD4e0B1AqVF4oyJKbrKY70KxREIG1chs3Qbzs0fgc2Sw+mDrRwPXcpxZm503N+KNESlvTM7LaipkEvnAGD8jMCloKdg42eAByhGw5gphrTFb1LS3T5e3LBGKkYrqeiaYrTSarkctDPF5caL0VSVS8VoGYnMJQNcsQh8/Qqg8rhnJj3XNoIIBudM9W89xqBwVdjB5jy6+9RVNrmwWlGi455MEEbCm2zgj8zRl3n8DDBFAR93CfDlh+I848R9GK/kFngsGtO0TZq9WPK7JlrhnOPldRwrd3DUNAHn5jM8dClDdgpDQ4t8vWTB8Am+6g3NugJ+TjTyfMCaALQ0+bwqGz8jsLoJIgogMVrsMh+eUrTnATzGOa/uuJAxdjGAVwDkn1o0EMBSxtj53EtvmjGWB2Ap3KVomwD8gnO+t0M+K4B5ABYAaHtrcxmAPwP4ow/bRRAEQRAEQRAEAc65dGCtVQnOlCIiCQtA0o1A0ZLVdMSu+idQIbousnOTQYFVMSBY1QBk15UW3gwnd8DE3B/dOSQiIRKjhR+ZiKz51L0q1CIyLSlWk2pDY4hFbVrIzoNGpw0ORSJGE7RTqxzZ9kbD9cBbP0Mq3dN5bGkdK43OBsQpPorRtGZC6oC/wlNf+l16+xgEQQBV9gppWpZFb1RjbAVEEMZT3nocOxq+Eab1TxiKvgkDQtyi2CXBlIhEJVl4X9Y634OF7P6tV+RKEARBEARBEARBEARBEARhOPXV+kQKu78Fdn8L/v0mYOGngctGJOIkZgrC0K68QgBAYWuJNMtLX3Lce3F0D1L3RYzGD+4Bv+P803Krop3gXy0DHnwDbPoNnvmPyvcdRl7ge2OjFG+H/aK6iXjJ7oTZYgpNgwxGdgwBQOapcCD+wfPgL9ynXZBDHOPSGd7YAH77ZO8ZE5LA7pyv+7rD+g4Gn30P8P5CeXl3/dUwaZIuxrsPDO9tL4WZ2+EQxLrNeF5F+TMKuqVE5zWpWPIKzmiJUGf4F0vAH/sZ0Hn45/eb/HqDz+eeCXxcDpacpn+d/TvAf30h0KQjTkenGE0kcGiv79cXYv793+C8A4OkeSbOV/H1HxQM6Rn5x9P1r6vC5bnpQKLVvf38H0/JC4qLB7vpAeMaNnkWMPZi/H/27jvOjeL8H/hnVtJVt7tz99nYvjPG9GIIzaETOtiUHzgkAUIgJkCAQPgmQAiBFGoghJJAgNA7JmAwmGLAuFKMbTC2z/3cfcXldEXSPr8/dLZ10jyjXZ3q6Xm/XveytTu7O5JGuyvtzGcx6/2EFldX3wPVIzrZLc2itn9x49O4tv+92qLhEJDsby/Jdsck53uKVLxGW1tid187lJcC9OhNwPP690yIjOk9EOrimxNbVllQzBHatnO7753bwGohujKybdA1J/Hh+JGG7w01bgIAQF18C2j+DGDz2o5lfnIj1MDhmoXjU5VVMXudAgQwpnUGPis8LKY8970mV133MuGBD3e9AnNWEN6ZT/jqFgtzVvDLdYsaXkIzJwMLZvILHDUWOPiETtVVdesJTPgL6IHr+BMknWPPDYeqCdHFSTBaF6SUGgXgmqjJvyGi+3Tlieh9pdQRCAea7Tgy/hDA/wMQL9r9NgBlEY+nAzieiFqittEK4B9KqVUA3oiYdZ1S6l9EtDLOdoQQQgghhBBipwC1wYb+R8IiSx9O01lcWIyEbnQOF1YTLZhggIrIX1x4YrFVAktZaa6NnjG8KuRHN2+PDtOCtv5z4LMKtNNF+nDvpb/9GJHuILIiY9tqYo9dGQlGY47bzXYTQqTvNKp7vbn3oMVu2hlQp9t2tuwPuNch3nHS38n30hTO57e3oxcqHK1nV30cBqMlGHjq5rzL6TmGEALYHNignW7Bg17ejh1FVR52BBXJ8WHDmyCmc9/x5WPTXJuur9zXB/5WXTCa4ZbjKcIdv1P1+40QQgghhBBCCCGEEEIk3defAPNnAPse3rn1hJjgJG8KbohXGQ6VGda2AhaFYKvY0Ko/vkX4zYnJ33Q6Nei7A6BM8xM0vfrPXaFokdNfuE8bjIY1y/QrP/0SKCs7+hqkg5Org5Nf/xKn/b9DUl6XVDAFo5WVAhQMgJ67J/6KmODDGB+9AtQaQvfaqSdmQ7UHHDplXXkX6NCTQM/cCSz/LrzP6T0Q6uQLgSNOgxo8wtX6Okt5vaBjzw0/ZwBehDA0sBI1Bfrn9d8ZuRnWaNuEZZkKRnvmTneD5p2Y8gIw9pfO6/DKP52FogFASTdn5Sr5YDS0teKIaX/G05c8i58+oX/uW1uABz8mPPLj7G5P21oIW1v087Rt59WH2HWpV5dAlSWvwamCQuBvbwCf/Q/03Wygrb2izU3A7ClA3Tpg6CjgwKMAKKB+QzgsYo8DoS68EWqvLDgmlPYMp3u2f0a6UROO8H+Oz0uOiClak/7L6Fnhyc9dBKOlICjFeAxW24DXHk5sxf13Aw4/JbFlheAoBTV8r/A5VUX/hNdhQR+ImeO5aHwwmnQNEvlozgfAd7PNZc69Emr3A4AxZ0CVhscMqWGjgMdnhM+/ViwEuvWEOugYqAOOSrwuTODwTevvwEm7TYqZvmFr+By1e1F2n0c7Ubed8MgnsTvXpZuAF+cQnp3J73i7R91Xnp4zBLUO3wvqT88n5XcidfYVwJ6HALPeBzVoTlBXLwmf31ZWA0UlUPscBhx+al79RiXylwSjdU03Aojcg33AhaLtQETrlVKXAJgaMfkvSqlXiEibNqCUGgHgZxGT2gBcFB2KFrWdiUqp/0YsVwjgVgCXmOonhBBCCCGEEJFa7WZ2XrFVnJJtFjPBIa3UghCF4NF0HhPxOQ04CVBiASoif7HBT57sucLG7VeAcKBPN0QFozEhUV7NXTRFenGhDjsCubj2aAql6gyf5YNPFWj3nc22H81MYFSq6mPCB4/6EbL0bb5I8znmPk/+UBMfHpaB58vh6tIcagIRsXfs7ex7WWLxHQ6dhpx1XCa1gaduws4kvFYI57igpHJfb1gOv+fkeN8skWLbgo2YueUj7bwBBUOwV+mBaa5R11fu64Pa1uUx0+uD6b+tYzadewohhBBCCCGEEEIIIUTC5k/vfDAaF5zkSUG/s0HDAQAFCKB/cAPW+gbGFGkLAsEQwevJ3QGvaxr00ytKNc9p6hv6wssWgFr8UEVRfRHW6MOr3IZV5bobT1b47avmq4HTFvhx2v9LU4WSbHWD/rmVlQAeS4FW1YQDf+KgUMBRiBzNmx63jPr94wm3MzX6WKjRxya0bErsNrLDwxFtNWww2rQluRnWWNsAtDK5l1V9Urd/Jf82oGZe8tc7bzqUi2A0zJvmvGwvh8FdldUdAq1itzkdJ16vYOqpMG1J9vdimLuan1fVt2PbIU2w507D9kxqKNoOyusFjhkHdcy4pK87HZRlgcr7h0Pc2u3VupAJRsv+9pJsrQF3z3lpCl4jLuAWAMrWfAO08uNFTNS9b0ENGRm/oBDppiw2GI1yPBmtnvk8l0vXIJGHaL75O5+69n6ocRP08yr6A2ddlrzbFzOBw9UBPqx76SZg/8HJqkDmzF4e/t1LZ9oSoM4wTKJHxLBUCoWABTPYsuqC3yQ1mEyNGg2MGi23sBYiisT/dTEqPELu1KjJDm5NARDRJwDmREwaBuBowyLjAURegXmdiJY42NSdUY/PU0oVOamjEEIIIYQQQgBAsyEYjQun6awSJrgF4Af5ivicBpwEEgxQEfmLa1tcCFMmuN2vcAGBXiX3Psg0NtTKboJNNppt/RXfVLZHbt1bg41sW8rE54MLxGi2m/gQDU09i5njv2k93DKZwO0PbNho5e9D0el9nc8qgE8VuFq3id92FqaWaOCpm7CzZtsPm/SdSIQQHdUF9cFoFb7YjrNcUCNJNJowmNr4DrvvP6H8LFhKLlknW7lX3/G9jglCTKVc+G4mhBBCCCGEEEIIIYQQ8dDcTzu/khAzItOb/BviqZLuQHk/AMDerd9qywRCwKr6pG86ZWybcMckG6NuCaH7VSEcfXcIr3ypv0Y1tHfHx2TbwFbDk23ueK2bgkFg3Up92TwLRjvnwPjDce/aMAahHA1zqGEunQzb0YaWL3S2Ii74MNrU1+OXOfwUZ+vKAeqosR0ej9s6kS375jeprk1q1BjuS1TdJzXbpGAAdNN5qVn5By+5qgc2rHJWuLw/MGI/R0VVaQ/g4OP5AnXr0Mfnx5gRfJFv1wIbt2b3fumxT/n6nXdQ1L63toZf0f5jklSjLujwkzs8rGrTh4C8/x3gb83u9pJsH37vrvySFHQ1qGe6AioF9Hjd0ZD4WMP3BgbvnnilhEglpaCY0M8cPZXeqYH5PJfrAquj0LoVsH93NuxT+sM+rifsCUeBPnZwzixEGtG3s2BffSLsEytgH9s9/HdcT9iXjwF9Ev6OQ8Eg7EdvAv77V35FHg8w5ow01RpAxQCgsDhm8uBALXwqpF3k27U5vkNq9/Vq/nk8M5Pw3Tp2Ngq8EfuujavN3/ejzjeFEKkhvcy7nj0BRP6E3wZgqovlJ0c9PsdQdmzU4yedbICIFgKYFTGpFEAO3tNBCCGEEEIIkSktTMAMABRZsT/aJYNpwK6bkA7RkdPXLtEAFZG/uLaVTYPvC61iKOZeHrr6B5mAQC7USKQPF7DVYjejxfaDmDt8pTQYzaOvUz0TfgPwIWWpxL0GzXYT/NznWFNPbj0tdjOaQvqwrmzaHyR6nsHu61y8l1wom5953UycLpNo4KmbMFqCjVabD5UTQuzCBSWVa4LRWNydmkXea7Vb8GnDu9p5vbwVGN1DOmmnQoVPP8qiPmAYmZEiLaH0hwQLIYQQQgghhBBCCCFE0s18D+Tf1rl1cAMpPSm6Id6gKgDAo+t+xRa57JncudnUzW8S/vAmYdEGoKkV+HQJX7Y6+jLXaw+ZVx4VjIaNq/ggu4HD49a1KxnaW+Gf4xWY+yftdP0ruXm9kAtGG9E3/ITpDxc4W5GDYDRauzy2rUVRN/0HqmeFs23mAFW1d4fH47e+aCz/1crca0c1G/V17tMd6FkSPwwkEXTnBOCLj1KybgCg5d85K7hqUcrpAAAgAElEQVR+JRDSByp0UNId6rZnoSznQ5nVr+81F1izFA+NN69v95vtrA1tnLmM8Owsvm7Hj+r4mP74E7asuuz2ZFWry1G/uK3D4xFMMBoAjH04d86JOmvFZsJpD7p7vss3A8FQcj9P9U369fXyBWDNih7m7kCvPlA3Psre9FGIjLMsWEx/crJzex/EfZ7L4nQNIv920ISjgWlvA9sagLYWYMFM0K3jQZ9PSn5FhUgArfwedPWJwNefhL/PBdrCf20twHezQbecD5rxLujeq4DnzMGe6pr7ofoMSlPNET7/HhT7G4YHNoa36IN3f/Kf7Dx/duvmiYk9jxcv63geQfddzZZV1/0Dqkd5QtsRQrgjwWhdT2XU4yVE1Opi+flRj0/VFVJK9QcQGdMfBPC5i+1MjXoscZhCCCGEEEIIx0zBaIUpCkYzhcU0G+ojzJwGnATtxAJURP7i2lYmgp84lrJQxARq+aPqH6IQbOZiqFcl/87Bwh0u1IFAaAzWsculsj1ydaozhGFkIpyCC/Dyh5rY46suiI57LcPvwWbtvGzaH5iCzEznGey+zsV7WeLppp2eUDCa7WyZYIKBp9H7xnjcBKkJkc+4YLTevn6aqdJ5ULgzfcsHaLL1A8WOKTtdzmVThAs2bAhugk3p7UzJHb/dBLkKIYQQQgghhBBCCCFEUu19KNSv7wPGnOFuuS8/7tx2uaAtb4p+K6+sBgAMCdaigrlu/tH3AOXADXDagoRHP3Fezx2hVjvQS/8wL+CP+i27lg9O0Q0q7uquONrC0j9bOKnfWrbM49MI/tbsb0vRlmzQ17m6H0B1652vyEkw2ltP8DMPOQHq1Rqoky50vs1ccf61O/9bSG2YvvyHbNF7p+ReG+LC9ar19zHqNGrcDEx5odPrUXdN5LfxyoPOVrKG31eqq++B+vV9ULe/CPXyIqj93d0wSw0ZCfXOBr5A7VLsPUhhxV/54dFbW4APF7rabNqYjmnnHAhY1q7jGAXagFp9cAUqq6G69Ux29boMVdYXOPbcnY+rDMFoUxYCS5mgw67mic/dP89ACFjdkNx6NDDdIsuZ89Yd1K/vi/3788tQz8+H2vPg5FZSiGRSig1Gy9IcT8fqma665fG6Bk19HahbFzudCPT2k52ulxDJQG89EQ5BYwsQ6Om/Ae89a17RxTdDnXVZcivnRHtofrSqtmXsImsbc3un9M3qxOt//KiI83AiYOZ7bFk19vKEtyOEcCdFtxURGRQdK9nocvno8oOVUj2JaEvU9L2jHs8jIjejzKZHPd7LxbJCCCGEEEKIPNdiN2unF6hCeJQnJdssMgSuNYckdCNRfoevXSDBABWRv7i2lYngJ5MST6k2uCd6vxIkvvOcT8IkMq7Yow+4A+IFkfHLdRa37nom/AbITDgFF+DVbDchRPpO4brPsemzzQX+ZNP+wNQWuPMMIuL3dS7eSzYYLYFQMadhaoEEA0/dnnP5Q00o96Wop6kQXQQRsfvJcm9ssBIXi0bI7Y4QIjVCFMJHDf/TziuySnBkzxPTXKP8UcEc/4IUxLZQI3p603enQu74ncpzYSGEEEIIIYQQQgghhDBRw/cChu8FHHceaNpbgNNgsGXfug9Ta0dEwIbV+pkpCkZTlVU7r+AMC6xEnbe3tty6LcDAXimpQtIs3QQ0urh3aXXEZS4iArbyN7UDAPijbvKyhhkgXN4fqjh7+hqk09DeCrcf24jJLwzUzm9qBRZtAA4YkuaKdQIRYYkp1GrJXOcrcxCMhsVfs7PU9f+E6jfY+fZySOS+CABGti1myy5mguqy2bJN+jpX9XF20zFq2AgUd4MqcnjtrOYbPmjTqYHDgD1G8/NnTA6HcREBWzYDBUWA1wdV2qNjOW5f2Xsg1LlXda6OAFT3XqDBI4DVS2JntoeyDalQ6N8DWL9Vv45pNYQT98q+G8DNWcG39ZEDouq7lg+tyMewTtcq+u/87/DAchTYrWizCrVFv1oFVOnvQdZlhGzCHZMS29eu3wIM059OJoQLUipr5fu4qstuhzrnV8mrhBDppCwo6I/hdo4mo9k2Ye0WYJP+nplxg9Ho+y/4mUvnJ14xIZJpoaGd7rBgZtwi6tCTklCZBAwdBXwW24dzj7bv8Q5O1i4yd3X2/05kYjrXNlEKKC+NOBevNwQ1j9gvoW0IIRLDR6KLXBU9Ulz/LZ2nK7+ng2lM7DwrOl5dtw0hhBBCCCGE0OKC0YpSOKjWUh42HC2R4BARpguE0gkYQqGE0OHaVkkGgp9MuGCm6P2KKRjNK8FoGWcK2DIFkRWlMJiLC8aqZ4LaLFgoVEUpqw+He+2aQ02uPscJBaMZAu3SzacK4FX6+5hw5xlt1AobIe08LnBOh90POQw528GmEJptZz3REwk8DVIAbdTqahmn5xlC5DO/vR0tzGe3wqcLRsu+DsMie329bTp7HB7T60dZdSzuanTBhjtw70mqcOcHmQjlFUIIIYQQQgghhBBCiEiqrA9wyAmOy9OcDxPaDn3wEmjsMKCtRV/Ao79W3GmDqnb+99ytr7LFlvL3e8saN0+0HZftWQz0jrw/2MZaoDnOtePmjtfHaU30kKd2lVX66XnigAMGYvdWPtTq61W5FeiwcRuwnemGMKKfAmqZdqATdBBUZQg3UgOGOt9WrhnU8XPT02YSrAB8ubI9zDCH1DD70HjhSjTnA9jnjQSdMRh0cl/Yvz0LtK3BvMyqRaBrT0mwphFOuCB8DORsXgs6tjvouB6gccNBpw0EndQH9pXHgSJCPmnGu/rlByVxX8msix69CdT+uRv/A74fwx2TCD9+3EZTa/a0K9smLFzHz7/g4Kjns8gQqnjShUmqVdeleuy6aVgxtWDstjfZslMXZ087STYiwh//Z6P3teZzqkG9gALm1JQLMkvE2kbCzRP1r7cpGA3HnZu8SgiRbkrBIv1nMMdOf0BEuGOSjd7X2Rhyo41FTHZQebyuYW/8i5/X4iIZW4gUobXLgXmfd35FlVXAKEMwcQqpE87XTh+/5SV2mZnLcmynFGXSvMTqf0B0VnnNN2xZdfS4hLYhhEiMBKN1PdG3MRngcnld+ZGaadVRj1e53M7KqMcVSqkyl+sQQgghhBBC5KmWkP5Hbi64LFnY8BYJ3UiY82A09wEqIr9xbcsUnpQJTgOJTOGAEoyWecWGYM76oL73m08VwGel7r3j6tQQ1N8FudhTCqXSH3bDBWK0UguamGAu3efGFKyyJVjveD2ZopRyfZ7RHOKPoW6eW4mnm3a633YXjOY0FA0whz2y62fO/4zLyDmaEHGZApJ6+/qlsSaiqyEiTKl/QzvPAy+OKTs9zTXKL6We7ihQ+vtncUG5qcKG3WbRuZgQQgghhBBCCCGEECJ/qRsfBXY/wFnhbz4LD4p1gebPAN32U6DOkIDiTVHfgYgQr2vqH2SLLd2U3QNeP1xIeIPPhIlR3Rcd+j/QHx2ExkQHp61hAqySGfaTg6xeFXi14TJ2/qVPZ3dbiraECXAAgBF9Aaqtcb6ykLkfBAWDwLrooXRh6ld3Ot9OLhocPQQReLn2Arb4Qx/nTjsiItQwl9yrDcFotGYp6IYzgXUrwhOCAWDGu6Cb9aEFAEBtraCrTky4rjsdczbUT34LAFA3PeFu2W+mgX5zKogIFGgDZr6nL5fMEElN+9mBnvozAOCPp5v7vL0wm/DLZ7OnXf3lXb4uVx6rsOfAjs+Hbr+IX9lx5yWnUl1Zj45Dlh/Y8Bu26CNTCbadPW0lmR6eSvjT24Qt+nvT79SrhA8yqm9KzmtDRDjtQT6grSzUqJ2uLrsdauCwpNRBiIxQFhT0n6Nc2/f8+1PCH94kNMbp1lteyh+j455rN7vrwyxEslEoBPrF4Z1fUf/doP78SkbGaQCAGrandvr+rfPYZe6YlFv7pEitAcKbfJ6Z0fO/6Bi9RNefwRcef31iGxFCJESC0bqe76MeD1JKVbpY/jDNtJ6aab2iHru6tTgRbQcQfbsb3XaEEEIIIYQQIkaLrb8ql7FgNEMwiTCLDn/iBGwJRhPu+JnPJRfClCklTH2iwwOCNt95LpXhWsIZn1UAr9LfJo8Lnkh1EAR3zCLoO5RkKpjCFCpnI8QsE1tXj/KiUBVpyxPTkSDbwjjcnmf4DaFfbvZ1JRYTjOby/MbpMR1ILPDUTfDaDm6fgxD5iAtG88CLHl7d/Wz0nTO4fa3IX4v887C6VT9o6JAeR6GXt1w7TySHUgrlPv1d3tMZjEZEbLip6TxQCCGEEEIIIYQQQggh0kX1GQT1+Ayo5+ZBPTMX6qNtQEl3tjy9+4yr9dPbT8Yv5NH3N+i0iBAvD2wc1PyVthgX6pMtnvjc3XWoEX0jQtGIgAUz4y8UPeh+zVJtMTVouKu6dEV79rdxwvYp7PwNW3PnuuGSjfq69iwGencD4CoYLWiev3E1X2b0sc63k4v6VAIFHW/oc4R/Blv8P9Nypw2t3wL4mS4w1X0MQSCTn9O3h6+mgurW6xeaORmoZ+Y5oK66G+qN5bD+9DxUYXtf6wN+6H5FKxeF96szJ/PbGpi8faUyBVK+/SSICN2KFP453hw08cqXhK3N2dG2np7B1+P2M6JC0bj2AAAHHZOxgI2c0qNj34TeoTpcUf8oW3y6/hQg5z3hcN9aUgCUM10P691339P6ehUwdzU/v9xu0M+44LrkVECITFEKFtOHO9eC0Zx+R+P2JwBAk581L9ziB9l8iKIQKff1J8BW/c3ZHRs8AurFhVDD90pOnRI1boJ28kWNT7OLfLc2t/ZLO0yan9hyxb5wQPoOtE0f1AoA2OMgKG+KfssTQmjJJ66LIaL1SqlFAEZGTP4JgL/GW1YpVQpgnGaW7qpO9Gi5OFnhWs0AIkcr8lePHFJK9QWg7+XPy+9btgghhBBCCJGD2GA0T2oH1fIBRkm60peHTKEukYJkvqOiENGig8V2yNUgJFOIkFdJMFo2KLZKsS20JWY6FzyR6pA+t+vn2mKqccdWE+65FXtK0RqMvheD+/VkSomnFNAc7rhjpSmY1c2+jnsP3ASdAc6P6QAQMIQ9crj9OgD09JZjSzD24rNpGSFEWF1Afxv0cl8fWCr2/kqGrttJq5PoGqbUv8HOO778rDTWJH9V+PpifVttzPS6YPpGuAWoDSHoB/lk27mYEEIIIYQQQgghhBAifymlgCG7huDQqNHAlx/rCz/1Z+Dnf3C0XtqwGnjnv/ELpigYTXXrCerVB2gM91sYHliGL4sPjCm3LH3300jIN6vdXYeqihjIirp1zhaKCEYj2wbWLteXMwX05IvKauz9zbeY0u0E7ewFa4B+PdJcpwRs8RMbwFXdN7xfICYgTysYpx/EWv0NhQAAA4c5304OUpYFGjAMWPn9zml9Q/z1qg1b01GrzmkLEuauBibN5/dP1X3ZWcD3X/Dz1q0AKvrHTl8aZ4T/2MuBN/6ln2dZwAkXQJVFDbnsMygcGuUy8IFeegBoMFxzrNrb1fqMqvfl59WtA7bUAb16Y99BCqZ+C21B4IXZhJ8fCXg9mQsTIyLUMplPANCzJKpuy7/jCw/bMzmV6up6xQ413qd1AVv8m1rCkSO6VuBcyCYsWOus7P6DFRau03+W6pPQFa+5jfDIJ+Zzu+o2TTDpiP0kgETkPsuCxRyriHKn751tE+ascFa2jyk1It65DQC0+IES/c2fI5FtAysWOv/+J/JH/92AyurEwmRr5nV68+rE8VAeT6fX0+l6VO+r3fvsbTgnmr+GsOfA3Dsnmleb2P50x+8AO0V8f40xePeEtiGESJx8E+iangVwe8Tj3yqlniaiNXGWux1AT810J8Fozkcc7tIMoMywzkRcAeDWJKxHCCGEEEIIkcVamCCyIqs4pdvlQmP8hmASYWYKdYlkCoUSQodrW5kKf+KwgURRYT6mcECfKkhqnURiuGC0uoC+E1iq26LbEMDiFIeLsttN4HXgnluxVYJG1KV026nkNChxBy6IzKt88FnO9wslHv3Psn7bZTCaiyC1YALHde51UFAo8/bWB6PJOZoQcXHHqQqfqZd2rNzpmiXSobZlORb652rn7V06GgMKB6e5Rvmp3Kv/HNczn/tUMAWnZtu5mBBCCCGEEEIIIYQQQuxkdW7QKvm3gW69EJg52dkCqRwkW1m1KxitTR/29eIcwvO/SF0VOsO2CUtdBreNiPx5/Ls5zhZqjvg9u24d0Kq/cSsGDXdXma5oUBUu/uRp/L3iGu3s178mHDcqewdPExFue4tw+yQClz8xoq8CNTcBtUkMRlvDBKOV9YUqMSVGdBGDqzsMLFcARjd/iS+KD4opun4r0Ogn9IoOiMoSkxcQLnjMxhZmNwEAPYuBctOlsHUr+XkBfZ8aeukBfpmCIqiLbwYt+xb4Zlrs/CNPjw1FQ3to3Sk/A178u6GyGp/wN8kCAPzgRHfrM9nncKC0B9CkT8yj+66G+tPzOLwKGNkPWKS/NxwAYMJzhD++RZh4hYUfDM9M+3pqOqGF2V2cqMk5I8O5hDr14iTVqovTHLvP3foaJgz4p7b4VS8QfnoYoXtRdu6DErG6HgiEnJUdf4jC3z9ITTDa87NsXPgfcw+jIrsZ47ZOjJmuTr2ocxsXIisoKOYE1LZzp/edKeAzkscCdivXzyMiYNrb8VfS0hQ3GI1Wfg/6v3Huzt1FfqneF7j7f1C9BzhehPzbQA/d2LnterzAiRd0bh3JcszZwF0TYiZfsOVlXN/vLu0iFzxGGHsAocCbW+dEbn9D2mFgr6gJtZqg1nZq7OWJbUQIkbDYW72LruCfACJHYfYC8K5SahC3gFLqOgD6X6UB28E2Eznrzp0zdSGEEEIIIURWyVgwGhMa02wY6Ct4QQqgjVodlQ0YQqGEiBaiIFpJn+FezASRZYrTICRTMJpX+ZJaJ5GYIuYYsTWkvwLMheIli9u2nqlgiiKrBAruLphxr7Xb55B1+wOX5xncdLeheCUWE4zmMlSsyUUwWiLHdS5YpcgqQSkT7ibnaELE5zoYLZE754m8M6U+tpPqDieWj01jTfJbuS92cAMA1AcS7P2TAFNIabadiwkhhBBCCCGEEEIIIcROlnmoFdnmITb0r1uch6IBwFaHI8sTMahq53+r2phgJgDTlmTn8J7aBqA16G6Z6r67rmfRTec5Wob823Y94AKsgHDQXJ5TldXYs+17dv4jUymrgx3e+gb409t8KBoAVPcF6MHr3a04TjAace0qX8L2BsV+dv679hK2+HUvZ2cbqm8ijHvEHIoGhNuQYq6tk20D61bwCwdjg9GofgMbDAYA6v7JUGV9oW5/ETj4+F2Bm14fcNRZUL9/nF/2sj8BZ/4CKExS/+sxZ0B5k9efUVkW1FNf8AU+fg009zNYlsJ711g4Is5uesNW4IyHbLQF09/GNmwl/Py//Hb/87OO5x9EBBgC8VT1PkmrW5fWd3D4sxChl70F+7XMYxe55c3s3AclqsbBvdPKSoCnL1E4aqRCeal+/9XQia54NRspbigaALyz6gwMCdbGzhgXG+YiRM6xLFhMXIPp3DTbLHF4P8ahFYCPC1Sa9Z6zlTSb+yUTEegP4yUUTZjVzAPd9lNXi9Bjt5oL/PiGcHgvZ8BQqHvegho4zNV2U0V16wl1f+zvVP1CG1EWir0x+Q4PfJhDO6d2NRv1dTYGVwPwRv0USKZgtH0Oc1stIUQnSTBaF0REjQCifx3cB8BCpdRdSqljlFIjlVL7K6UuUkp9BuBeYOcIxOhvjo2azUSfTSby61f0Ms5HzgkhhBBCCCHyWout71VQZOkDRZKFDTCS0I2ENIf0AXc6QdLfBU8IHVPbchsYlGpcGED0fsUUIuRV3qTWSSSm2OUxKNVBZK7rk6FgCktZroJNLVgoVEXaeW6fQ9btD1yeZ3BBI65fB6a833b3c62b8oEEjuvc8y3xlLKvHRemJoTYxW0wGhdmSbnUO0ukVF1gI77c9pl23tCi3VFVrLnNtUgJUzBauj6zpt9Lsu1cTAghhBBCCCGEEEIIIXZScYZa1a1jZxERMOVFd9vzFbor74KKDEYL8IPFn56Zndd6ahK410d1+8/j1BonuShS5ID7Nczr1L0MqnuZ+wp1Ne3hcD9tfIYtMmt5uirj3vOz47f1EX0BzHrf3YrjBKNhLfOiDMyPYDRVWR0zbXjbcnhIn3z44cLs3Ce98TWhxcG9AKv7GG44tmkN0Ka/6SsAIKDpU/Pxa2xxdcPDOwfmq7I+sO6bBPXOBqiXvod6dyOsO16CMoQ2KF8BrOv/CfXuRqBvJV8vh9ShJ3V6HTHr7L8bMGI/dj5NeQEAMKRC4bMbPTh2D/P6Nm0DPliYzBo688oXfLsuLQQG9oqauMJQyZMuTE6l8oDyeABNKMl5W19hl3luJnWpfjBLN/HPpeF+C6vutLD57xYuPDR8DlzGXMqvb0r8NXnBwfH395v/hh82fx4zXf32ETZsUoicohQU9J8FO4f2OUuY0KFo1cx9WQGA3uW/S3TQHGe80dIFwLJvna1L5Ld500DbdHEpseL9rqOuvAvWL++AmrQe6uVF4fPuyL+JK2G9vAhq9LHJqn1SqIOOAXr2jpn+ky3Ps8s4OX5nGy4Q9m/jFFoe5n/v229w1LnGaiYY7dhzEqyZEKIzJBitiyKi1wH8GugQH9wdwA0APgLwPYCvATwJ4MiIMv8A8GHU6nIpGO1hAHu7/DszCdsVQgghhBBCpFGmgtHY4BAmqEOYuQmUC9gOepMI0c4UhJOp8CcOFwYQ/RyCTDCaBQ8s5Ul6vYR7boMdUt0W3QavZTKYwk1diz2lbCcX9+F0qT1vcIsN92LOM7h9nfv3vpt2epACaLNbHa/HH3L+8y63TzOu3/B82ZBJOUcTwoiIUM8Go/Vzu7bOV0h0CR83vAWbubvpCeVjpbNqGnEBh63UgiZ7W1rq0GzrOyha8MCnCtJSByGEEEIIIYQQQgghhHDNE6cfxppl/LxVi4BtDe62t/8Yd+XdqNwVjLZPCz9gfPH67LzWU+Nw0P0Ou1UAfbq3PzC9T9EiQoqIWy7itcxrw8I3wRnd8hVb5Lt12dmeAGeBWwcNJmBjrbsVh/QBXzutZdrVoPwIRsMeB8VM8iEILxOMtnk7YNvZ146+43MxO6gyBIFg9WLzwpqQPVr5PV9e89qqku5QA4dBFTnvG6V8BcDR4xyXZ40a3fl16Gie504rF3V4eOwe8a9Jv/dt+tuXqf2M3g2x19JX8O+7GnlgkmqVJwbFHsMPauaPY3VN4f1QV8E9l4OHAj1LFCrLFJRSoFAI9O1slK+coy1f34mueAsd7D9Hc++JtHfRVSgLFtOnqimQO3EfS5jQoWijhxqOx6uXOFtJc5ydcc03ztYjhG0DDQ4bb8NGYEsdP7/9vFR5PFADhobPuyP/KvonocIp0is2GO3A5q/Z4vNrCXaLIdQ5yzQ0EeqY85XqvgoFXoUDBuvnjzsgap+1apG+oCb0WwiRerlzpiRcI6J/ADgZALPn7WA7gF8BuAbAoKh56zXlt0Q91t9ynKGU6obYYDRnUasGRLSRiL518weAv+2NEEIIIYQQIiu1MANri6yilG6XCxppcRHwJXZxEygXIM1d8IRgmEL3Mhn+pMPtV6LDfLgQIZ/yJb1OIjFFHnchW6lui8Uu6+M2TCuZuOBRbVlDPd2GzWVdUCIX7sWc93ChX27bVolHH4wGmIMmY8q6CEYLJBCMxj3fYquUfc5uQliFyEdNoW1oJX2nBS5QiZN9XdJFJvhD2/F54xTtvL6+gdiv2yFprlF+Kzd8jusDm9JSB/Z8xRB2K4QQQgghhBBCCCGEEBmn4gy1WqMfgkKLvgJduJ+7bR1+ClTvAe6WcSNiwGa5zQe21aTnZ2PXuEH3hw4HTtk7dvpVx6pdvz/X1jjfUGvETcOY9xcD8yTAKg5VEk6eu2DLS2yZP72VnVcPX/2SHyS9w/GjgFH1s9yvXBNmtQMRsUF9Kl/aFRNq8/PGp7TTmwPAuuiRi1ng71Octe1q5jIdtfhB155iXjig6Stbyw99VLvv76hOTqjTLwEKOtEPe78joUa4PA46pM78BT/zm2mgiM/gzw5T6B7naTz4EeHfn+rDaVJlqSHs88pjYs896PVH+JWdeEEyqpQ/NOGmx/qnordhOPPYh+3w/rsLqNd3P0RFRJc7am4C/e5s0C/HoOyTZ1ytxwknYbcnb58cO3GPg5K6nxMio5SCRfpjz5WfDMequtzY59RsiF/PkgLgkiP0/YKoxQ8scRho1sKfvNOWOtCff+5sPUIAcNLLlWwbdMOZfIG+lcC+RySxTumlLrg2Ztq4bRPZ8iFSmP/Ln4LqdFEz2Wep4betHd/Rrjw2dt90RBVwwJBdj6nFD9TM065HSTCaEBkhwWhdHBG9D2AvAGcD+A+AhQDqAQQArAEwDcD1AEYQ0cMU/ra+R9RqvtCsOjqOdzeXVYsuX09ELm+LI4QQQgghhMhXzXazdnqR5S4Exi0uNMZNwJfYxU1YCRcKJYQON/heQaHQis5pzywumKmNWju0e+4z4LUkGC1buA0WS3UQmev6ZDAkrMhFXU3HereBYKk+b3DLaVDizunMcdTte2kMRnMRdubquG67Dzzl1l/iKZVzNCEStDmwgZ3HBaMpSJCR4H3a+C4btndc+ZmwlCfNNcpvPTy94FVe7by6gMM7YHYSF7JanGXnYUIIIYQQQgghhBBCCNGBZR5qRZqAGiIC3flLd9s54+dQtz3nbhm3ooJA3lw9TltsbSPQ1Jp9A/G5EJnd+ym8fLmFXx2jUFkG7DMIuP//KVx7fMS1LDfBaIHIYDR9gJUuVCVfqb+9hjK7EaObdcPNgNUNQENTdrWn7S2E8/5lDkG6dIzC6xMs0G0/4Qtd+Fv9dEMwGho3A/5t+nmD8iMYTSkFdcktMdNv2/QndhkuGLlJDh0AACAASURBVDFT5q523qar+zDX1d/6T/yFdcFoXGDjxTc7rpMTaugoqAfeA/b/IVDEXM/zeGP/yvsDp/wM6s43klqfDnUbeSAw/jd8gfdf2PnfQWUK035r4YRR5nX+6nnC2sb07au4ENLRuwFnH9SxzVBbKzD3U/0Cg4ZD9ShPcu26NjUo9hhugTC/7kfsMtOXAp8sTmWt0qeB6UJXXhrR7v73ODDj3fD0UL22fH2CXfGIKO4+ffmSEfAhGDNd3a8JSxMiVykFZQhmumlidp0/c0yf59JC4JiRwCc3WBjWmwlGe+4e5xtrNgSjxVuP7pxF/vLgz9A/0Ung6ZwPgMVfs7PVk3Ny+2agp/wsZlIJNWP28sPZRX4ZvAb0yO9TWauk4YJYi3zAwJ7h/198hIV//0Rhv0pgQE/gosMVJl1tdXhf6dm7+Y1IMJoQGeHNdAVE6hFRCMDr7X9GSqnBACojJq0hojWaogujHrvdi0f/cvudy+WFEEIIIYQQeaw1Q8FoJUzQiJsgELGLm9ctQG0gotz+EVmkDTf4vsgqgRXvrr5pZgpyag750d0b/gU+wIQIeZUEo2ULt+EOqQ4icxuM5jZULJm446vbsm6ec5FVDE+WhbO4Pc/gQr+S+d67CUZzUzaQQOCp6fnKOZoQiakP6nsp+VQBenjKtPP4YLTc6JglUidgt2FqwyTtvO6envhBj6PTWyEBS1ko8/bGpkDsHRvrA4bbIyZRS0h/y+hUhwQLIYQQQgghhBBCCCFEp8TrW6ILqFm7DFjyDb/M7gfA+s/MztUrAap7GahHObA1HHAxqvV7tuzSTcC+lezsjOAG3Vf1AUoKFR68QOHBC/RliAsS0mkPRiMiNoBIF6qStwaPAACctP19fFE8Wltk0nzChYdmT1+/KdGj4KI03G+hZ4kKhxzWrdMXKu8H1b2X/sqoKRhtLRO2B+RNMBoAYPf9YyaV2Y2oCNahzlsRM69mI+HokdnThl790vk18ao++un0cdyhnUCwYz9BCgaADau0RdWI/RzXySm196FQD05J+nqTQZ16Eej5e7Xz6NOJUKf8dOfjfSoV3rvWg7sm2/i/1/XvXcgGJs4lXHF06ttZW5Cwsk4/7+ZTNecdXCgaAPzgxORUKp8w4aZ9Ns7H/vvamLtGf+736pfZtR9KVD0TVloWcdmepu7aP5XZDdryDX7AtgmW5e41qW8CtuiHfuw0OKgZwn7AUVClPVxtS4hsppSCl2IDAHd47SvCUxcTPC4/Y+lERFjBHM9evEzhvNEOxmnMet/5Bv2GfslTX+PnnX8trF/9zfl2RJdB9RtAZw5hZsY/n6ephqDf3Q/I+XBapRSoel+gZl6H6Qe0zEUPTwu2hopilllaMBx47zng5ifSVc2ELWf2T1V90OH85dIxFi4dY1jRFx/y8yQYTYiMyK6RoCIbHBf1eCpTbkHU432VUm5Gfx4RZ31CCCGEEEIIwWqx9QNri6zilG6XG7jbYjfDJvPdBEUsLuCEEzRcCBIiUjPTttyEL6VLiacbOy8y0Idr/z4JRssaroPRUhwGUWgVQbn4+TfVQW3Gbbt4LUxl3TyHVIepJqKIeW7NdlO487Vmuo7bfV2BVciGLLoJFvPbboLR9GGPJqbny7WLZiaMRQgRVhfQjyQp9/VxHUhMEoyW92ZtnYqtoUbtvKPLTkWBVZjmGgkg/HnW4YIRk40Lrc7kuacQQgghhBBCCCGEEELE5Ylzk61aTXDWoq/Ny+x7eOL16ayIgbtDAqvhZW5kNXd1dl3vsW3CUuY+HyP6OljBsu+cb6ytJfzv1npg+xZ9mXwKsIpnYDhg5kj/52yRj/gMvox4fhbfv9PnAXqWtF8f3bwWCIX0Bcv7AV6mr5YpGG0NE4xWXAqUOWnMXQQTLlgV0IcRZlsbenues31kVR+gf09m5nez468gENWnZv1Kvk3m26D8gYb98Hp9eNwR1ea+D1O+Tc+xb0UdYDObqtbtBlYvYdel9sngOUWuMoSbHtGPOe4DWLIhu86NElXPdAEsj7xsH9HmykP6YDSi+AFnOlzQ7Q4XNj6nn5HJ82chUmR061fsvJYAsLo+jZVx4auVhL+8Y+O+KYQW5rS3ssxhf8OFc5xvuD3AOhq1tgDrVrKLKdl/5C9Tv1cnh/XP3uTndZV2pTkvUgBKqUVbfLO3D5pVEYj7TpJF6pihDIN66afTwi9A//0r7Aeug/3oTaDP324Ppl7Nb6RX785XVAjhmgSjiWg/j3r8uK4QEa0DEBkH6gVwpIvtHB31+F0XywohhBBCCCHymE02Wmz9VbWUB6MxA3cJxIa1CZ6bsBUACCYQoiLyEzv4PsVBVIkw1SkyPDDIdErlwoxE+rkNd0h1UJ+lLFfHxZIMfj5cBaMZXjc368nk8+VwdQpSUBsklsx9XYmlD2n0h5yHnbkJPOX2aSbceUORVcK2Cz8TKieECNsc2KCdXuHNo873IilssvFB/UTtvAJViB/2OjnNNRI7lPv0n+f6ADOSLMm447fbUGEhhBBCCCGEEEIIIYRIKxVnqNWapR2uQ1LDJtCtP+bLd+sFNfbyJFXOPXXpH3f+34sQhrct15a76EnC5m3Zc3117Rawg+6r+5oH3ZN/G7BghvONtbUPuNeF3u1gCFXJN8rrBfb/IY71T2XLPDWd8MWK7GlPr/EZFLAim5OhDahf3MYHo4UMN33lgtEGDnd9w6qcNmCYNqhgRFuNtviLcwizlmVHG3pnPmFerbOyvztZad9XWvatuZ3sEIzqI7TGsF8aOMxZpboI5fUCexykn7l2ubaP0OFVwNG78+t88xvg85rUt7N/f6rfhlLAcM29ruj+a/mVjTkzSbXKI/13Y4NvJ9Q/zC5Wk57L6ikXLxiNtjUAW+p2TQ/xyUzfrnW//ZqN/GesxG7C1Q0Pxc7o1Qfq9Oih7kLkvgmNjxnn16TnPoeu/PtTG4f8xcbNEwk3vMp/nsscdAWyH73Z3caZYDRjeFVRCXDYKe62I7oQ0/cr8zkfffxah+NhzJrH/jLBOmWZSv1vG7fY/2EXebP76UCLu/F/mcCd81R003w/e/Uh0OVHgh7/I/DqQ8Bz94D+72zQ/40LB6brnHB+fn2HFyKLSDCa2EkpdSQ6hpstIqKphkXeiHp8scPt7AHgBxGTmgC872RZIYQQQgghhGgj5sdthIMxUskUNNIswWiuuQlbAYBAAiEqIj81M+E82RiMVmgVQTE/0UWGCOhCkQAJRssmbttXOtqjm/A1t8FuyeSqnobXLVeeL8dUJ12oCLuvS+C5ca8dF76m0xTa5rhswHYfdso93xKrlA2VI9hoZe5gJYQA6gP6nlQVvn7sMorpOJId3dFFpszbPhsbA/rOIIf3PAGlnu5prpHYgQs6rGM+/8mWzPMVIYQQQgghhBBCCCGESBsrzlAr/zagcVdSBr3+iLG4emQq1JCRyahZYo49p8PDqgAT0gTgUSa4JROW6O/xAwCojnefnzfNgQMxAu3XsLkAouJSoJy/hpaP1DV/hwXCNXUPsGVuesNOY414yzaZ27Un8iNfqw/pAgB1+CmGYDS+byOtZT5zg4Yb69XVqMIioE9lzPSqNn6f9H+vZ74NERGueclcjz0HAGfuB7w2wcIlR+qPIXTvVc422BbVR5oL6+szCKowtTeTzkbq6nv1M5q3Aw2x10CVUph0tQWfPhMLAHDja6ltZ0SE+6bo90ODy4AiX8d+GNRgSOM66qzwZ0m4orw+YMBQ7bw93v0z/jpW3xdmZR3QFsyec6NEscFoO4ZdRAV4loca2HX94U33nxdT0NPUlSfgwJa5MdPVvz6F6jfY9baEyHaHt87BtOVHsfNr4py3ptv2FsL1rxBsB9WKF4xGm9cCz93trgLR50U71nXHJewi6tWacJiqyE+m0CrDjbYpFALdNYFf7ZV3QQ0xpO3mEMWEvl+0VhNU2u6SAf8On29nuYYm/XscvX+ibQ2gR36vbxOz+MgbdcktnameEKITJBhNAACUUiUAHo2afFOcxZ4DEIp4PE4pNcLB5m6MevwykYxOE0IIIYQQQjjTEuIDyIo9qQ1G40I3AH6wr+C5CVsB+GAoIaLpAoSA1O8jEmEpC8VMqGPk8wgywYA+VZCSegn3uPeR4ybEK1FuwtcyGRzoZtumY3GuPF+O6bn5NecZ3L7OtB5+292Y7Tq/iOnmuJ5I2Cm3/mJPqTFcxW0QqxD5hAtGqvAZRpKwHUeyq1OWSB8iwpT66HsphVmwcFz56WmukYhU7tPcXhxAfSA9t7Zmv5tl4bmYEEIIIYQQQgghhBBC7GQZ0lN2iAyqmf4OX+7Ui6GGjup0lTpDKQVU7bPzcXUbE7ID4O1vsueaDxcK0Lsb0KvEMNgZAM350N3GAu0D7tcwAU0Dh4dfR7FLe6jXAS3fsEU++B5obst8m3pnvrkOE47e9d4SF4w26uDwvx4mGC0Y5DdgaFd5pzJ2EL5pn/TJYmBrc2bb0OIN5lCfaTdaWHCbB2/8yoOxBxj2E5tqnW0w2LFPDXGBjUygQZdnChSc8a52cnGBwvOX8sOopy8F6pkQhWRY08jPq9Jdzv2CP4apkQd1vkL5yvCZOb3/au10m4AVdamqUHoQEeqZoRflpe37rKgAxh72VviYPvtLErgH26p6/fSxWydqQ9Fw1mVQ+XiMFPlBKRzaMgeH+6drZyfyGUulTxYD2/XZZDHiBaOZwoZYgdh9EQUDADEhjQOGQvWscL8d0XUkGIyGpfOB7Vv4+YedlHidso3mOxkAFGxZj+GF+nDUkPIguD37++Pz5zxRE76cCrS5jLbxeID+uyVSLSFEEkgwWhellHIcZ6uU6gZgEoC9Iia/RkSvmZYjoiUA/hsxqQDAU0opNnZeKXUmgIsiJrUBuM1pXYUQQgghhBCi2eaD0Qqt1N79zBSq5DbkS7gPk+OCoYSIlsywoHTgAn0ig5C4ECGv85+ARIq5Dd5LRxiEm7C2Eo8+GCsd3ITEmQKw3DzfbAzjMD23lqjzHyLShqXFWw+He//9trOLmDaFYupoLI8QQhSKXzACd95QbJWaw2vlHE0ILSJig9HKTcFohvWJ/LS0eSGWtyzSzjuo+5Go8PVLc41EJC4YzW9vR4vdnPLtNzPh9tn63UwIIYQQQgghhBBCCCEAAMrBUKv2oCOybWDx1/yqDjk+WbXqnIiBr8c38YErs1cA17xk48uVmb/2s2SDfnq1k0tZa5kgKk77gFg+gEjCOaKpohKgbyWO9n/KliECvlyZxkoxFqw1zz/nwIjB80uYoLfK6vC/Xi4YzdC3kQlGU/nYrjRBN6Y2BABfr0pVZZwxhaJ1KwQOHBJ/HRQMABudBaNRdAAIF6yXr8FoZX2BvpXaWfS3y2E/fhtI81r/cHfzau+bkrrj3uc1/LoPGaYJ76jlwwKRLecVOUjtewQ7b5h/MZujYtoH5AJ/G9DGZHfuDAlZvbjDdAUgwNy0edN2IGS7+7xwwYODgvoDtDpY2rnowtq/a45ggmEf/yzz38MiTZzrrD7FPqDQFye8eqW+f5lRUBPSuG4FYPPBaCLPJRqM1mA44PcbAlSOSLxO2aZiADur0qdP9A0pL1Zv1IempsOGrYTb3rJx5j9DOOWBjn8/ftzGk5/bsG1CPTNkICYYbfUS95XoNwSK+z1ACJFyEozWdV2ulPpIKXWRUkrb410p1U0p9TMA3wM4OmLWCgBXONzOrQAi4z8PB/CBUmqPqG0VKqWuAvBK1PL3ElEW/MwthBBCCCGEyBWmgbtFKQ5G8ygvClShdp7bkC/hPqgkYGfuh1SRW5IZFpQOXChA5GeECwb0MZ0PRPoVuQx3cBPilSinbV7BQiF/r4OUK3IVaMaXdfMZdxPGli4FqhAW9Hcejw5gbaNW2NAHiyUSNMK9Htz+NKZcAuFjbgJPQxRCK+nvzFTiKTV+/uQcTQi9baEtCDB3d+1tCEZTMHdgEvnng4aJ7Lzjy89KY02EToXh81zPhCMmE/e9P1u/mwkhhBBCCCGEEEIIIQQAwIo/1GpHgBZdfzpfSCngSMP8dNoR6gTgpO3vw2u4XvuPDwlH3mnj/W8zOyh/6Sb99kf0jTPgPhgA1rscptTWGv5XAojcGVSFQcG1uLruQbbID++22UCUdAjZhH9/ym//3IMUDhkW/j+1NgNzPtCWU4MTC0aj5iagfr1+mYHD2Hp1Vaoy9rM0MLgO19X9nV3mmHttbPFnrg3VMPsiAPjb2QpFcUJAAAAbVgEhhzcQjA4AYQIbda9lPlBKAceeyxf4719Al48BrVvRYXKf7go3ncq/V395h/DXd5mQlU5Y10i44DG+DV13Qmyd6Ik/seXVyAOTUq+8dNZl7Kyi9UswuEw/76oXkt8u0okLCAF2hYTQE7fHzLtv/fXaZdqCwJoG7SzXdSgLMSs6/BR3GxAil7SHNlUxwWjbWoCnZ2TPfuc/05ydg5XF6QZERMAL9/EFivU3d6Yd39Mi1dawq1FX3WOuiOj6jMFohs/WNn0gGACoy2+HcvA7Uc7oUc7Ouq8v3xf0runMyVKKrWskHP43G7e9RXhrHjD5245/L8wm/Py/hEufdh6MRv++xX1F8jHYXIgs0oX2wiKKAnAMgCcBbFBKLVVKvaOUek4p9YZSagaAOgBPARgUsdxyACcQkaOe8ERUC2AcgMhf3Y4A8J1Sao5S6iWl1GQAqwH8A0DkL8BvA0jgyCGEEEIIIYTIZ61MMJqCSkuoCzd4123Il3AetrJDwEWAishv7OD7BMKC0oHbr0R+RgK2vv17LbnrSLZwE0blUwXwWakPtXPa5kus0nCnsQxx89qZnlOy1pMpSikUe/TBb9HhXqawr0SeW4ml71TgD213tLzbYzoANpBJx3SeVWyVwmf52KDIRELbhMgHdYZAJFOQksSiiUjrWldj3vbZ2nl7lOyHwUXSGSTTenkroJguAab9QLI0237t9HSEBAshhBBCCCGEEEIIIUTCLP0NrTpYsxS07Fs2RAkA1CuLoQr0N+FMNxUR7OWBje+X7mMs3xoE/vhWZgfk1zA/Y1fxl7LC1q3gA4jOv1Y/PdB+/VoCiNxpf13u3XijsdhT0zMXavXet/y8kf2A53+hdvWZ+ehVvnBlYsFoWLucX2c+DqxmQgbv3HiTcbFnZmauDS3dxM+74miHQ3NN7SBaYFd/GgqF+GXzsf20Uyf/xFxg81rQaw/HTL79TPP79Zd3CNtaktvW/mUIZty9XziwLRKtWsyv7NyrklWtvKR6lAPV+2rn0ZqlqGbOL5ZvBprbMhsW2xl1cYLRaPFc7byfbXmWXa7GsF/UYUNKQvWxE48aC8Uda4XoCtrDlaqZYDQAuHkiIWRnfr+zss55HcridQNaMJOfd8zZwP5j9PMCLoPRqs3fc0U+MAWjGdr0Nj71U51wfifqk4W69WJn7R/gv0D/+7v+4ZDDNHtsGmH55vjlnppOWLdFP6+8dFe7oGWGHwlMJDBfiIySYLT8oAAMB3AygPEAzgJwKIDokWL/A/ADIuLPCjWIaCqAsQAiv9IqAKMBnAfgRwD6RC32AoDzicjh7Q6EEEIIIYQQIowbVFtkFacl1IULXeHqJXhuw+TcBKiI/MYFBrkJTUonLsQo8jMSZIIBvcqbkjoJ97hAK23ZNLVFp9txU/dU4MIB3Zb1WQXwKmedYtxsM524/VR0uJcp7CuR51biYYLRbKfBaM7KRQoygY86piC4kvbny56jJRDaJkQ+qAts0E4vUIXo5ulpWFL/nYuQ+c5YIv0+bHiTnXdC+dg01kRwPMqLXl79XR7rAy57KyeAOw5nY0itEEIIIYQQQgghhBBC7GQ56INWuxT48iN+fmkPoO/g5NWps6KCvXYLrEJJnL5bM5cBTa2ZuQZk28QGo1VHj06KxoSbAYAauod+RlsLKBgEGpiNDhwWZ6P5SbWHhSkAP9r+Plvu4+8zdy3xQ8O2/zzWgifi805fTeVXtDMYjemrFWL6QHDt0eMB+g3ht9dVMSGDCsCPCr5hF/sog21o6Ub9ti8d46K/8pplzssGI/rJbqrtEJTWQR4PzFfD9wJG7G8u9OXH2sljD+AXaWoF5qxIvF46prZ7yFBNGzLsh9Tg6iTUKM+NPEg/fXUNqvrwn+m5q1NUnzTgQsmA9iAj5ny2p70VvYP6PgVLN7nbJ/PBaJoQmmF7ulq3ELknvK8Z0cbHONQ28CHR6fTpYuef9fJ43YC+4L87q8NPBbhAcU0wGtUy59cHHh2nEiIvmMYUJhKMNurgztUnCymvF+jG9BFu2IjD/DPYZdczwWOp9NHCzn8X7LCPMv2WZ6DyOJhaiGwgwWhd1zQArwDgI0rDggDeBXACEZ1JRAn1gCeidwDsDeDRONucCeAcIhpPRDIiTQgH/H4/pk2bhieffBJ33303br/9dtxzzz145plnMGvWLLS1JS8cYtWqVbj55psxZswY9OvXDwUFBVBK7fx76qmn2GVnz56NCRMmYL/99kN5eTk8Hk+HZVesWLGz7NFHH91hnhBCCCGEGy1MAFmhVZyW7bMBRhK64Zrb14wLhhIiGhcYlGtBSJGfET4YLTr3XmSKR3nhc/h+pKstOg08y3QwhZvQwnhliy2nzzmzYXAcp+cZxqCwBN5PNpDN4bHaaYBaJDeBp6Yw1R2vGfe5MoXICZHP6gL63lMVvr4J/mYrwWj5ZkuwHrO3TtXOqywchj1K9ktvhQSr3KcfIcbtB5IlREG0Uot2XrZ+NxNCCCGEEELkJ+mfJ4QQQogYysFQq4VzQN9M4+cfeXp2HYejAnQUgNO3TYq72Effp6g+cazbAjQzXcVG9IvzutYyIQN9K4HuZfp5gVagxXBtubv+JiR578jTdv73jG1vs8WWZDDYoWYDfx3z+FFRE7i2A+wKYfIyN+wLMg12LROI1W8IFLeurmz43uys05vfY+e9yWempdy7C/TTq+KFNLajxs2ge69yvsHIIDQu+AMA8nxgvjrzUnOBmnmg5tj9+un7mY8h5/3LRksgef0fphl2K7q6kClE77CTk1Cj/MaGy82cjNP34d/3Cx6z0ZrEdpFOXChZjyLA61EgQ6BsVZu+PboJbCIi1DP3ni/TBKOpiHMLIbokK/xdc9/W+egb1N/YFABe/iLz+5w6F11vh5Sbj6+mfQ1+cCLgZfrf636b587ZmQBekWcs0+85/OeKuGC07r06V59sxf020rgJY/z8b12T5qd/37Rsc+fXsVvETzq0eG5iK8njYGohsgFzmwKR64hoLoDzVPhKyu4A9gRQCaAHwkfuRgCLAcwiom1J2uZGABOUUr8GcASA3QD0B9AEYA2Ar4loeTK2JURXFwqF8PLLL+PJJ5/Exx9/jGAwyJYtKirCj370I1x66aU47bTEf/x57LHHcNVVV6G1NTZF2yQYDOKKK67AY489lvC2hRBCCCHcaLGbtdPTFXAioRvJ4/Y1C9jJG3QgujYuMCjT4U8cJ/sVLhjNp/Kwg1wWK7ZKEQjF31clElyVCKfbKclwMIWbYIx4YW/FVim2heLfjijTz5nDvRbRwWDcMdSrfPBZ7gMTSzzdtNOdBp75Q/pyCgrEXEgOuAg85QLaFBSK2s8BJbxWCHe4QKRyX1/jcgpZNIBHZNTHDZMQJP21ixPKz8quwV55rtzbF0uxMGZ6PXN352RpZoLtgewNqRVCCCGEEELkD+mfJ4QQQggj40DaCJ9MZGepi36fpMokSe+BQGEx0Lqr792tm+/AjJJDsco3hF3szIdsrL3bQv+e6f3d/6aJ/GDb6jhhRMQFCVVWAz5uwH0r0Gy4Pl6cnX0MMk0NGbmzR8CFW57Hrwb8Q1tu2SYgGCJ4Pem/frSYyZsYWgH0KI6qD9d2Dj0Jyts+BNPDDMVkgtHYkKM8DbVSlgU67jzgw5dj5l1Y+zCu3O232uWIgEXrCSP7p7cNza817Yvi14Vam0ETjnK30UBEW+KC9cr6QpX2cLferua0S8LH4TkfsEXokoOB57/tcO36/IMVXp5DmPytfpn6JuCsh2xMvsbT6SpOXcS3n9JC4Mz9NTMMwTGq/26drlPeMwRa/OjNSwE8rp23qh44+xEbb1/d+XaRbvVN+nZYvuPUxhDAWBVYhln4Qcz0ZZuch6L424A25me38lB9zDQ18kDH6xYiJ7Ufkzyw8e91V+Cswa9pi936P8KZ+xP2rcxc/ysuWFFnWO84Bbjjm8cLVdYH5CvUzw9q+uQz61KVTPilyDOGzwwZjl/bGvXTuQCxXNejHFi3InZ642bcWHcv7up9g3axy54hHD+KMLR3evZNLQHCGuatcarIBwzoGf4/hULA5GcTW5EEowmRUQ5/rRe5isIWEdEbRPQgEf2ZiP5CRA8T0QfJCkWL2mYbEX1MRE8R0d/at/u6hKIJ4cxHH32EPffcE+PHj8eUKVOMna4AoKWlBW+++SZOP/10HHzwwfjqq69cb/Odd97B5Zdf7rrTFQDcdNNN0ulKCCGEEGnFBaMVpSsYjdmOhG64E7ADCJC7oDM3ASoif4UohFZq0c7L1iAkLrwqcr/CtX+vBKNlFacBX+kKgnB6bMx0aKCbY3i8ujr9nGf6OXP4/UHHYJHooLR4y8fdLheMxgSeOS3XzcN3wgy6OA/gnm+hVQyr/W7t3HvPLStEvqsL6EcAVMQJRuNwIYiia2oO+fFZ47vaeeXePjiw+xFprpEw4T7X9YEUB6MZfifJ1u9mQgghhBBCiPwg/fOEEEIIEZfVydCLH1+fdYOylWXFBDHt3laD2cuPwJNrLzUu++T09F4HIiI8PUO/zYpSoKw0zgDc2hr99EHDAW7AfaAV8BuGV5Xor6kLQF36RwBAKfkxc/mR2jJBOxwqk27BEGHZZv28u87pOKSStm8BGvXXTtT51+x64GH6ahGFB1lH44LRBuZnMBoAqHOv1E7vi0A0PwAAIABJREFU5t+Iz37ZwC535+T0X5O+YxK/zSonl9Y/mcjvkzgRASBs0GOeButFUh4P1D1vQf32Eb5Q7VJg/vQOk4p8Cv+70kIvQ3e1978Dvl7V+fZ26/9sdt7Xt1go8GqOZ8w+Q13yh07XRwCo5AMtPB88j9P30Pc9BoB3FgDzDGGJ2YoLNtoZjMYdpwBUtenn1ejvxehq+wBQbkft88dNcL5iIXKV2nUOetr2dzEksIot+s+PM7vPcROMNjxOeDUXwqiuvT/8nwJDgHUECgaA9Sv1ZSW0SAA7wwe1TMFoW+r007v36lx9slUPJvCtYSN62luxd8sCdtHHPkvfvmnZJvPb5sTw3oBltbeLLz5MfEUDh3WuIkKITpFgNCGEyCK33XYbjj/+eCxevLjDdKUU9txzT5x44om44IILcPzxx2P33XePWf6LL77AYYcd5roj1O9+9ztQxNnh+PHj8eGHH2Lx4sVYvnz5zr9zzjmnw3IbNmzA/fffv/NxQUEB/vCHP2DmzJlYunRph2UrKytd1UkIIYQQgtNi+7XTC62itGyfC73xS+iGKy0JvF5uAlRE/jIF4GRrEBK3X4l8Llz7l2C07OI08MxpgFpnOQ4Jy3AwhUd5UGQVxy2noOKGqDkPg0tPOJ1bTvYHAB80kuh7yQWqBagNATt+MKnf1gej9fTyd8oKkHmwYYf1M883st7cPl7O0YTQqwvoeylW+PoltL7c6/opOuPzLe+jmfluflz5mfAob5prJEzKffreh/XMfiBZuDYCZO93MyGEEEIIIUTXJ/3zhBBCCOGI1bmhVmqvHySpIknWf7eYSb1DdfjJludx6gj+uurMpem9EmQagF/JX4LeZQ0z6H5QFVDA9DEkArY18usskt+1WREBBKNav2eLLUntZQmtlXVAQJNVBgAjokOtmHYDoGOQjtfQVyuk6QdRt15bVA0Yyq+nqzMER+4VXMLO+359+q9KL95gCEaLFwACgBbMcL/RQEQ/wc3r9GUGyKB8oD3087SLgR7lfKH5se+B16Nw/YnmkM3pSTj21fI5fxhaETuNiIC1TEiVIdBLuDBwuPE8bw+r1rj4G1/nXu8Yrh1WlALU1gps4EOZ2GC0TejwO5eJMRgt1LFyareRjtYpRE6LCm06ZftktuiMNH8Pi9bAd/uJMaIvf1w1BRDv/C5hCrDuUKmNgC6MOHJdIr8lEIxGRMD3X+qX6dk7CZXKQj00J6MAEAyPGdi3dT67aDr3TVMXd35b1RHf/WnBzMRW0nsgVFF2jj0RIl9Ir3QhhMgS11xzDR544IEO07p3747f/e53+PGPf4whQ4bELFNTU4OnnnoK99xzz867Sba1teGyyy5DU1MTrrnmmphloi1atAjz5s3b+fiUU07Bc88956jOEydORFvbrh/d77jjDtxwww2OlhVCCCGESFRLqFk7PV0BJ1xwSCJBX/nMFFLiUwUIaEKgAhQ/mEUILiwIcB4SlW5OwnyCTPv3KeYOSSIjHAejpSkIwul2uGNbOhVZJWix9cf4HQqtYljK3AE9V8LgOFwbij5ucsfRRNtWiYe/u7Xf3o6elrl3ORdc1t3TCwoKpIlMCtrOA0+50MvI95ENlTMcF4TIVzbZqA/qOxtV+My3tVamjiMiLwQpgI8a3tLOK7G64bCex6W5RiIeLhhta6gRAbsNPis13ylMx2AnobhCCCGEEEIIkWzSP08IIYQQjsW5Lh3XISckpx5Jpo45GzT9He28c/svxaQl+2rnvTUPeHG2jfMP6eTr4lCNIUDrR3ubr1VRMACsW6mfOXgEUMAMuAeArfX8PAlG40WE9ZSSHwMC67DONyCm2MkP2Nhwr4U+3dN3vXHBWn5edfRl0VomGK2gEOgTEUJsCkYLBmLb2DYmkabMfF22S+tRDnTrBWyPDSPsuepLAIdoF5vJ5EWlChHhG0NGUvciB235w1fcbzgY0Z9ma52+TJmDVLY8oZQCHXM28KY+wJwevQkY/5uYvg7nHKRw80Q+aOGqFwhXHE0J95FoCxJWMm9f96JwOFuMuvVAC5NCM3B4QvUQHamSbqBDTwKY86Gz6SPcDT688blZhFtPT1XtUmPpJn07H+rZBDprfzYkBkqhKqA/Nja1Ahu3Af16xN++KRitVyjqOPDDM+OvUIhcF/Vd85ytr+HRssu0Rb9dC6xtJAzslZn+enNXOw8kOtR0mPrwZX5epctgtK2G1FE5PxJAQsFo+G4OsFn/5VGNPCAJlcpCcYK6z9n6/9k77/g4irv/f2bvTrrTqctykWRjS7JxwUCwTTEYDDY9ENoTCCEklOQHcRqBhzwQQhzTTBJInAAPIYUaAw8x3RQXsAEXjLGNbVzlLldZvZyku9v5/aHiK/Od25PuTifp+369/LJ2Z3Z37m52dnb3O+95A3OzvqNMW7INqG6UyHHHv236cGP3xWjF+QHlXLWwazth8SLD9DiJeSrNMAzDaHn++efDgq7OOussbNq0Cffcc48y6AoASktL8eCDD2L9+vU44YQTgtLuvPNOLFmyJOKxV69eHbQcOutkPLZdsmQJpJSd/xiGYRiGYaKBkqY4EyRGIwVGLN2ICt33lWlXy1dUsjSGCYWS5wCJk1FFCyVyChQJ+KRiRlEAdsHzHiQTLpu1a1GiJH1W5V/JcG5YkbNZydObZHAqqPKHikUo0UhXP1eaoRGj+Rsibt9kqvOk2dJhF+qg4Giu6x5THfQX+H1Rn113XWCY/kqdv4aUrkYUo4EKZuDnvP2F1XWfocanjuA+J+diFl4lIbrzmpIkxgJK5Oo00mAIW9yOyzAMwzAMwzAMo4Lj8xiGYRiGiQqjG88wx50GkZqkz8qnX0cmXZeyHG6NM+z6f0jMX5+YfgUl8ACA+y+NMPD20B7Ar46xQWEJPeAeoMVoKU4IO8fnkIQMEC5tLSOznv8nM6H90yufMpXrC7MBd2pIXSonyl1QDGEEDL/UidH8inewVL3K1E9Q15cRQgQJ9QKRc+7E0zfQ5/lb6xJXf575hD7WS7dElgDIw3v1wsVCwiDiDRSjqeUfIisv4vH7E+KW+/UZnn8kbNWoQQJ/vlb/Oz6+sOv1bXclYBKb/+c2Ykj3AY39j6ovTNSInz9Gpk14XS/ALzvSJr3rTVDC2ZKlT9DyTiGASdNR2krXSZ3INhBKjJblr4Ed/uDDDiiwtlOG6c2ESJvOafoU5zfQop6Rvzbhpy4ocaTZK7H5oLW8354oYDPU11R5cDfkH3+i3tCRckxATAmsW0PFaJq+VUb/7V8zgej6d+pzSd42RZ3dMIBvnNP9IiUhgrgf6+DShvdQ0krIwwFMfzz+9/YtXomPtqrTzj3e+n5K2p2Jsqke2LSqa4XhvjjD9DgsRmMYhulhtm3bhp/8JPjmbvLkyXj//fdRVFREbBXMqFGjsHjxYowZM6ZznWmauOGGG3D06FHttocPHw5atnrM7m7LMAzDMAzTVZoJMYbTlpiAMlJgxNKNqKC+LwED6Tb1FFI+Uy1vYJhAKOmegEiYQDFaKBFSq2zplJZ4TbVAiBIOMT2DVSlXokRklsuTIFFbd8tgKY/Fz+xMVjEa8RlDxSLUdbSrv2WaTSNGs9DHoeRpaYZOjGb9uk6K4AI+L8trGcY6lV46OjGSGI2CB9j2D6SUWFT1hjLNLhw4J/vSBJeIsUKOfQCZVuWNnxiNen7jStL7MoZhGIZhGIZh+i4cn8cwDMMwTNQYXR9qJf7rpzEsSGwRdjtwylRlmv3Adiy9S/+5n16qlkzFmh3Eo+txBUBaqMwqlP30wF0UFtMD7gGghujXuej36QwgMrKBrGPvIkZ66d9gfTnwGe1NiylH6uj3lyMVr0RlOVHuotLgZZ0YzRccByFbPECLeiJgZObS++kPFNID8c/P3kWmPbYgMe0QAPzlI7oOXTA2shgN771IJolfPU3LKgPrUZ16wioWfwQjcgZCzJhNpss3/gZphtedn00zcPtU+rd8aknX4yB00qgpI4mE/YSEyp0JsAwvZoiCYuCS76vTAJyQR7Tb7by3IQ6FihNen8Ruohkp9RCmEQAYNAwYMRYD/EeR4a9TZtGJbAOpalLny/WHSNmmXmVpfwzT6wm51xQAXt5/I5nd4wUWbY5zmRQs+Np63msm0NdS+T7dH0JBMYStTUouKIG1N2T8BCV0dKVDOFJ0xWT6C0LTT1f0B+VOTWUfPREiPSsGhUpCNPdjAGCDiXf2XUmmr90HrNsX60IFs2wH0NiiTrvuVAv3Y+2U5Lfn/Xhel8siInxfDMPEHxajMQzD9DB33XUXGhqODR7Nzs7GvHnzkJ4e3Qu0gQMH4j//+Q9SUo7dwO3fvx8PPPCAdrvAYwOAw2F9UH13tmUYhmEYhukqpBjNSIwYjRKpePzqcjFqKElJmuGGQ6hfSrRK4qkmwwRAyYKchguGSM5HYTqRU0fb4iMEQg6DX+IlE8kmIrMqnUhLAkmYle/OUh4L361DpMBhJOczDOq3CBWDUdfRrkr3HCIFdqGe4ZqSngXlIdreNBt9XfdJtfAxmv0Hfl6W1zKMdaq8h5XrU4UTbiMjwaVhehObGtfgQOteZdrpmech056d4BIxVkgxUpFpU/82OlFid4l1f4VhGIZhGIZhGKarcHwewzAMwzBR0534kuFjIufpSYqIwZzlZRg1CHDY6E2/3BOfIoVCidFUMqsw9hHWrfxCCGca4KTjKGSV+h0a0vi5dkTyCzr/HNuySZt1zd7ETLj0VTmdNqZAMYi6nKg7oeeMTR1bASBMjIa6KjpvPxejiRFjybShh1aTaftr4lEaNUfULiAAQJ6F20m5bQ2dePIUWt4RKACpI+Qf/bz+KCk9kU6rOgQcPaBM0knudh0Fqhq71maVHVFvNzQHcDrUx5SU3LOwBEIn+WCiRow8iUz78RDNuQvgywRdx2LBzqOAn/BJlrRqZLKDhkEMHwMBoNSrFvbp5H+BVBGhe2FitAyON2H6C+HtebZZiwInLWX890qJOk9i256NB6wf77QRmsStmjY18N6Z6hf5QuKMqf41942YDnR9JtXkv7o6OuHc7pcnWQkVgCsY0bobLmL8JgB8uSe+7dIHG9X7z3IBF58QjRit7X+5bW3XC1NY3PVtGYaJCck5GpRhGKafsGXLFrz77rtB62bPno3Bgwd3aX9jx47FXXfdFbTun//8J6qriYfhaJu5sqt0Z9tYsGnTJrz66qt46qmn8NBDD+Gxxx7DCy+8gC+++AItLV2XZvh8PixfvhwvvfQS/vSnP2H27Nn45z//icWLF6O5uTmGn4BhGIZhmK7QbKof+jstyl+6i066IVUPShkllKTEZUuDQ6gD+ikxFMME0hsH31PtCnDsXPES9d9OnC9Mz+CyJZeIzGp5EiVq06E7DzqwInqz8t0mc3tA/Rah103qOmrle1QhhCC/F0tiNCJPmi2dlNBR7ZqKUDFcB4FlpsrP8lqGCecoIULKcwyMGEwrFMFZTP9hQdUbyvUCAtNzv5Xg0jDRkOvIV66v8hKjy2KA7r6fYRiGYRiGYRgmUXB8Xvfg+DyGYRim32LT2MF0lIwHisfFtiwxRlCDX1ctRLpT4Mpv0O+CDtUBjS3xj4/bQchkivMjv6eSi19TJxS2y610A+YP71Ovd0Un1O2PiGnf7vz723XzYNfEA9zxqoTXF/96tJ2oRwBw4+mKukQIiURhiBjNronVChOj0fcJ/V7ecP61ZJLxwI0Y7PYp03YdBT7fGf/6U90oUUnIfCYcB2uSqs/eJZNEUSkt2TP9AADp9wMNhAkuq5/XHxUnnwO46LgpeXUJZHV4rMRFES7b6zWSRR1lxGvYUp3kc79aQMUihjhw3jVk0jU7/6rd9KH5Ek0J6A91Bykl/rTQxJj76edKxa276B24M4BzrmzPp66XOy2GGlBitBx/iNyov18Xmf6DodZ63HDcbnKTlz6XyP2Ficv+6kdNU2Lan2qLYbdTRwFDcwnhZ+UhYPl75Lbigu8cW6DEaK0hz6BJMVqOrphMf0LbTw8/fyTV/wIgvnlTDAqUpOQN1orjAcABH75dN49Mf3d9fNujD79W73/6GCDf4mMaQwDH5QHS0wi8/nTXC0NNMsAwTMLQTFPAMAzDxJs5c+YEyTMGDBiAm27qXmf5F7/4Bf7whz/A6217qdLY2Ii///3vuPvuuwEAu3fvxogRtIb73HPVFuNnn30WALTlox7u79q1C8OHD+9cnjp1KpYuXdq5HI1AZN++ffj973+P1157DYcPE7MyAXC5XDj33HPx/e9/H1dffTVsFl5Qb968GQ8++CDeffdd1NWpp3dxuVy4/PLLMWvWLIwaNcpyuRmGYRiGiR09LUajpBsmTLTIZjiFKyHl6O3oBCcOQ/1iwytblesZJpBYy4ISgU7S1CF6o8SAlEiQ6RmsXosSJSKzCwccIiVi+5koUZsOK7IyK99brPL0FNRv4ZWt8JreTslYEyUa6cZvmWZLR72/Nmx9k9kNMZqRDrsgruum9eu6lbZdJ5WTUvLMqQwTQBUpRhtkYWsikEkRNML0LXZ7tmO7Z6My7aT00zAwpSDBJWKiIdeRj93N28PWV/ksTuPcBUgxWhL0PRmGYRiGYRiG6T9wfF4bHJ/HMAzDMFEi1IPVI2720KvJ/14yVPIUgFw2H09efwk+3yWxp1KdZ0cFcGJRnMoWcAwVWpkMANnUAGxcoU5sF8KJVBdkihNoVchYj7AYrct855fA3+4DABT4DuI/5dfhiqH0AOqH3pOYeXl8z5UyzSuQ04qDjy0b6wCFMAlAZ93pJCoxGiFuAICM/i1vEAXF2jfM8/ZcjTMHvKVMO2O2ifq/GnCnxq8OUVIrAJh7a+RrhFy9mEwTtz/c9gd1D+Vvl8LVVwPUvVwGC4RCEXY78NQSyJsmkXnkb2+A+MuCoHWpDoGV9xg4/RG1QOrSv5hofDJ6YSol+SwZqKm3lJijgMVosUbkDoLMGahs+3O/fBsfPtGKC58kJD0Afv6qxN9vTN4+35vrgDtfo1vZAu8BuKXGeuR0Q2RkQwIoaVWLQ8s0AtJAKDFarj9YHir6+XWR6UcQ94v3j96I328dQ25mSmD+BuCmZ028MaOLIu8osCJGm3gc8OItdL9I3vtf9MalJwJTLj+27EhV5/MGi9EkJR7mNoTpRHN9VvWtCUE2AIgC+j1Pb0cIAVlYAuzYoM33+OH/xvPZ31Omvf0V4PVJOOyx7xPtr5bYsF+dduE4gVSHgMsBeCLM0T4sF0ixC5iP/rx7BeL+OMP0OF17Ws8wDMPEhA8++CBo+cYbb0RKCv3gzAr5+fm47LLLtMfpjUgp8eCDD6K0tBRPPPGENugKADweD9577z1ce+212LePeEnZjt/vxx133IETTjgBc+fOJYOuOvb76quvYty4cZgzZ06XPgvDMAzDMN2j2VQ/ZXcazoQcXydXomRfTDiU0CXN5oadED15zQhPLRkGvXPwfarhhCAe03V8HkqMRp0vTM9gtZ4lUkRm5VjOJDg/rMgLrXwWK79BMojgKHS/RXNA+0YKRrshfUsz1MHcVvo3lDwtzZZOChypdk25f41QVfV3IB3yWoZhjlFJitEijCbRwGK0vs+i6jfItPNzr0pgSZiukGtXn99VXovTOHcBqg+RzNJqhmEYhmEYhmH6HhyfZx2Oz2MYhmGYAIwuDLVyZ0JopGNJQ6jkKQD51t+Rly6w/UH681PSsljR0CxxiOgqlORHGGz7iVqiBACiKOC3ySSEQoeJPo0zMRO29maEzQYcf0rn8jcb3sfMillk/ueWx//dIiVs+cFkRT0qpwfDoyjkvNaK0XzBy7WEYdCVDuHo3n1Jn+A7vySTTjr6CYTmHfTbX8W3DlH1x+UASvIjby/f+gedOOG8tv9tdnV6hxitjqg/AJDFYjQVovREYAwtRsPapZAHd4etPnWEwNgh6k08XsDTGn19o+SMpbr6c0AtRhOh7RATE8TVPybTph99F898j+53vLxKotmbvHEyzy1Ti/46oGRnnXRIYc/6Jkq8u5RZdALJQKob1d9TrhkiN6L6ZwzT1yAk3C6bD09cH1ku9M564Gh9/NufGuLc/X/nCOx91MDOhw2s+rUNhTnEJKt7twGbVpH7F/f8PVgqnmJNjEb2r7kNYTrQPc9RitEIMe13/zs25UlmLPQxs8w6/KbiITJ9waZYFugYn5XR7dyF49rajhwLIYgl+YBsbgI+eq3rhcnMhcjI7vr2DMPEBOIJCsMwDBNvysvLsXv37qB1F1xwQUz2fcEFF+D111/vXF65ciW8Xi8cjt45YN7n8+G6667DvHnhswYNHjwY48ePx4ABA9DS0oLDhw/jq6++QkODekBuKB6PB1dccQUWLAie9cPhcODkk09GUVERUlNTcejQIaxatQpNTU2dZfrFL36B6upqzJw5s9ufkWEYhmEY6zSbHuV6p5GYACSdcMVjNiIHAxJSjt4OKXQx3HAIddCPT7bGs0hMH4GU5yTx4HtDGHAZaUqxUIcYzctitF6BVclDIkV9TpsbtX5ihqx2kkFOYeU7sXIeuyz0B6zk6Sl0v0WT2YgMtL1YoySQ3ZG+UcempGcd+KWf7J+1idHU13VvFNd18vMGlDmSvNZpuCwfj2H6OpVe9aBWK2K05J3vloknFa0HsbZ+pTKt1DUWI1yjElwiJlqo85sSJcYCDyG2T2ZpNcMwDMMwDMMwfQuOz7MOx+cxDMMwTDDCsNE6ntxBQFX4uxZx3R1xLVPM0MnbDu8FANhtAiX5agnam2slvnUSYBjxeWu08yidFklGJHdupBNLTzz2d2YOcPRAeJ6K/eptXepJxpgQSk8Ctq7pXJzgWUNm3VsF1DZJZKXF7+3jdsLzO3KQYuV+QhCTkgoMHBq8TidG84fEdx3arc6XY8Gs1Q8QpSeSba1TtmCM6yg2edTf1Yb9wHfiVzRSalWSb7H9o+oUAAwd2fZ/JDHaob30PrK5DpEMGwVs/oJOX/cpMGR42OrifGDTQfUmWw8DJw9Vp6nw+SV2Edez0oGEQKa+hpa9FBZbPzhjncC+QQhyxwZMuOgagGilmlqBXUeBMYRQr6fZqOjmBHJSywZ9Bld7fGVGLilRq2psk57luPVtYh0xn2mmvzZ4BV8bmf6CIM4Z08TJQwWodqczm2y7Lg3IiH3RAqki5lPOSQOKCBlaELs0tqQU57H+UAdOIpaosT54+aBa1shtCNMJdY4BhBhNfZ3rF2Jai3L/k5vXk2mf75K49MTY39cfrFWvLx0IDM1tO97ADOBAjX4/JQMFsHcb0NqNCdYHFnV9W4ZhYgaL0RgmyfD5Jcr1Y1WZGFCU0/bCridZtmxZ2LqJEyfGZN8TJkwIWvZ4PFi3bh0mTZqEoqIi7Np17Abwz3/+c9DMii+//DJOP/30sH0OGNAm+Jg6dWrnuuuuuw6ff/5553LgfgMpKupex+/OO+8MC7q65JJLMHPmTEyaFD6bh2maWLlyJV555RU899xz2n3PmDEjKOgqKysLM2fOxC233IKMjOAnBB6PB0899RTuu+8+NDe3dYRnzZqF0047DRdffHEXPx3DMAzDMNHglz5SopE4MRp9HErIxIRDC07SYUA9SwclhmKYQOIhC0oELptbKR/qaFd8RP13sBgtqbB6LXLZEifmslL3k0FOYUmMZuH7tSJ5S2ZRolbA2t4eSCnjIoFMM9TB3E1+/eA2Snbatk83KXCM5rpOte2B5xzLaxnGGqb0o8qrjsDNc6hGAYTCarT+yOLqtyGhnlH4/NwrE1wapivkOtQBgDW+KvilDzYR+7ABsr+SBH1PhmEYhmEYpn/D8XmJo6dj9Dg+zzocn8cwDMMwIRjq2CUAwGU3Ay/MDh5Q60gBLvpu/MsVA0SqEzI9G2hQjB49sAtSSgghUDpQLUZ7caXEJ9slPrvbQKGVAfFRojomANgNYFhuhI0P7KTTJpx37O+MSDsKgcVolhCX3QQ5/9nO5fMbF0NIE1Koz6ftR4CJw+NTFr8pScleab6i3paXqTMPGQER2h5QMisA8AXHQUhqvxYHoPd5zv4WkJVHyqBuTv0Id3muVabNfl/i4Ti+pqTEaEqxXghSSqCcEKM5UiDS2tsUqi511KMDhPgjdzCEM3knhexpxFW3Q374bzqDQm4KAD89z8C769XvxE95wMTa3xg4aai1697eKsCn3hVKqfnqdNewAhajxYXTNPL8Fx/FyT/8HcYXtokYVSzYJDFmSPLF0LT6JPYQjj0AMKQfP6h5Qb+TDkFRZg5KWxeT2XZUABMjvP5vaFGvTw+NByws1e+IYfoKlGC1qQ5nFANjh9Cizg52VEicWRrf9qdaPRcicix2QeRHr9GJ538HwhXSeGTmqPPWV0Oa5rE++X719VJw/5ppRwih0QsGp8j6GqCuSp21H4hpRWFJBBVjGxc3fECmPThfYtQgEzecrnmO1gUoOeOQrGN/l+QD6/bp91MiDkHeclr3CuPO7N72DMPEBBajMUySUV4NFN9LPP1iYsbOhw0M7+GxkOXl5UHLgwYNQl5eXkz2fcIJJyiPN2nSJNjtdgwfPrxzfXZ2dlC+wYMHB6WHkp5+7MWe0+kMStNt11UWLFiAv/zlL0HrZs+ejV/96lfkNoZhYPLkyZg8eTJmzZoVVs4OXnvtNTz77LGXb8cddxyWLFlCfg6Xy4U777wTZ5xxBqZNm4bm5mZIKfGzn/0MW7duhaF7Cc4wDMMwTExoNj1kmtNwJaQMDiMFduFQSoooaQcTThPxXbkMN/zSr0yjpHgME0g8ZEGJIM1wQxWL4DEbIaUkxWiUcIjpGayIu9ryJa4+RiqTgIFUQ33fnEisnKPW5Gm9QwRHkWo4IWAo5TMd185W2QIT6mtldySQaTZCjBahf6OSOgbu02GkKNO8prXrul/6yT5g4OdleS3DWKOR2A7JAAAgAElEQVTWVw0/fMq0PAcVgXsMQcyoJy2FSDC9kXpfLVbUqgNdB6cUYZx7gjKNSS4oMZqEiRpfpUUxYnQ0m+ooyURKghmGYRiGYRhGBcfnJY6ejtHj+DxrcHwewzAMwyggRE4AIEZPAB5+DfKJu9sGZQ8fA3HXExCDj0tgAbuHmD0P8ifTwhOam9qEMXmDUZwvEDpouIM9lcCMuSbenGGLednKjqiPOXyABekuJSK65PsQ9oDhc9Sge4q05I0xSCbEuNMgr/gR8OYzAAA7/Ni64wSMKt2kzL/tsMTE4fEROuytArzqsAql2EpSdWeoQtJi18Rq+UPew1L7LWJxA4A2udcTiyG/d7Iy/ee1T+MuqMVoALCzQra3VbGHaotKrByv+gjgUcfSiD++c2yBEqO11yNJidH6gaShO4ixk7TRC/LIPuV0cOeP1f+23/6biS0PGGTMRCCUWA9oEzgoIUQvSEkF8gsjHpOJHmF3QJ5/HbDwFXWGg7uw8I4RGHyX+jniHa9K/FzRneppdlcCpuYkeL382zi5Zb12H6JdCisy81DgOwCn6UGzYpxG2ZHI1/JGUowW0E4KARSM0O6HYfoOROzdcw/DuOYnWHCHgR88a2LpNro/u5OQSceS7ojRpN8PfPQfMl3c8efwlZmEvFpKoLEWyMiBbGkGDu9V5ytiuSJjARlygdSJafuDbM/ifWkKvLigYSEWpJ+vTL/xXxJnFEuUDIzdvRklRssLeDxTOpB+btVB8YePatPFA69A/uY6fWFCRY4Mw/QI/IaYYRimh6iqCjYJ5+RE+YJNg9PpRGpqqvZ4vYVZs2YFLd92223aoKtQsrOzlYFXUsqgfdvtdrz99tuWgsc6Aro6KCsrw5tvvmm5TAzDMAzDdB1qUC2QODEaQEtHPJry9RV2ebbi5UNP46nyB5X/Xjg4B+vqV0bcj4cQlKTZ3HAY6uAhn6kWQzFMIOTg+yQWIQG0FKrJ3wifVMtLAMBOCIeYnsFKPbMLOxwicb9bJOGYy0iDoQnqThRWhF5pVuRpFvJY2U9PYQiDFHx1tG/UNRToXltHfS9Nflp8Fik9zUiHgxA4UsLHUHT9v8Df22GkkOcWy2sZ5hiVXvXsx4A1MRpJaNAI02dYWvMeKak+P/fKpOhHMJHJtdPnd6U3PhGTOiE6wzAMwzAMwzBMIuD4PGtwfB7DMAzDKNDJOA0bxFmXwXhlM8SiGhgvroM46azElS0WHDeaTmsXs5RS4pZ23lkP1Hli/35oB/HImhTJtCOlJAc1i1OmBq+gBt1TuNSTjDHhiO/eFbRc7N2N8c0blHm3a8RB3SVqKVF5mTqzajC8TSNG84XEQRBiNMHihk7E8DEQ//2UOm1/GZ6/iR5c/8oX8XtHXUa0RaVWXqlTQjwAGDHu2N+kGK3dgnJwtzqd5UGRGTiUTtP8PheMpTfbfgT4co+1w5dVqOvmkCzAnUrUaapcQ0ZAsCQ8bohJ0+nExf/BwEyB6WPoLPuqki9WZu1eukwNmI5vNrwfeSeu9vjFzBwYkChpVfexqLYy6JikGC0gniC/CCK15yf3ZZiEYCPk0rVt06sXZAssuMOGmjkGpoxUZ423GE1KiUoi5DYnzYL4aMNyOu2KH6nP9wzNs/u69ufuh/fQMYosHmYCoUS2ofWH6n+lpAIDCmJbpmQkCvnb+Y2LtOlvrottn4iUM7qP/bZW7s2KDyyjEyeeB+RamEyWnwkxTFLAd8UMwzA9RGggVOjMkN0ldH+VlZUx3X8iWL9+PZYtO9bxzMjIwKOP6g29Vvn444+xcePGzuXvfve7OPHEEy1vP2PGjKCArrfffjsm5WIYhmEYRo/H7yHTnIREJB5Q0hWdqKQvsK5+Jf649x58WvsBNjauVv5bWfcxnjkwG/OPEjNotaMbIE1JTajB+AwTSBNxHib74HuqfB6zET5N3XcIIkCK6RFctsjXIpfhtjRzZKyIVPetiMQSgZVyWDmPU4UTRoTH3onsM3QFnSgRoK+hum2tkGaoX9xFFKMR5TFgwGm4un1d1/WvQoV6VB2hrg0M0x+p9KpHAbiMNKTZIr/Ap65gyRfqycSCVrMFS2veU6Zl2XMxMePsBJeI6SouWxp5ra+KkxhNJ0RnGIZhGIZhGIZJBByfFxmOz2MYhmEYAq0Y7ViaSE3cRJ4xJSsPSMtQpx3YBQA4dYQ+rkFKYBs9H0+X2UnIZIrzI8RZVB0GPMR74dBB8rpB9yp4EKx1FDKi0lb1YPPfvSPjJpTZfkS938GZQIZTUZf2RyEwo2QWQJAYTbY0A0f2qfNFMQC9XzCUEMXVVmLSwHpys2Vl8ak/tU0SFcRhSwdaiPmiRHvuTCB7wLFlUozWPolqLXGPmV8YuQz9HHHVbXTi7i1k0qQI175bXzDxzlcS9c36ukfJGXXyBknIPVFYrD0W003GTiKT5J62unLyULpefPh18kXLfPi1en1JPuAs32xtJx19n5Ent23rJcRoFiSnlBjNLQP6bSw0YvoTjlQySTYdi9V1pQicXqxuf176XMLnj1/7U1EPNBLn7uAsCzvYQ19rxegJ6oSsPHp/ddVt/9donr8PGmahYEy/waoYbT/R/yoo7h9i2ijuKyZ5VmvT1+7tbmGCqWxQt3G5AWGHp0XouwPAqNbtdOKYSYBDPcYhCH4mxDBJQT9olRmGYfoniRxkHS8WL14ctHz99dcjMzMzJvteuHBh0PK1114b1fZpaWk49dRTO5c//fTTmJSLYRiGYRg9LWaSiNEo6YZGVNLb8Us//u/I3yFhWsr/fuVr2sHV1ABpl+GGXahnVfRKr3I9wwTiIc7DZB98Hyr36cDjb4RPU/fthHCI6RmsXIsSLemLJGuj6l6isfK9WJF+CSEi7itZPjOFi6hHHe1bNKKwaKCESJH6N41+dTSoy9YmAezudT0aERwpr+3DfTSGiRZKjJbnsDK1NUCr0Zi+yIraxWQ7f272N+Ew1G08k5zkOvKV66uIdqE7SCnhMdVTNya7pJZhGIZhGIZhGMYqHJ+nh+PzGIZhmF6N0InRNFKkXoIQAigYoUyTL/0eADC5BBgZ4fXR8ytiPxh/BxFuVqp+xH0MakAzABQES2VEZm5UZRKu5I4xSCaEYQDfOCdo3UjNQOTjf2PizbWxr0f//Zp6nyMHha+TjXVtYj0VClGLEAKwE+/IAsRoOLArfOB9B5QIrL+iEcUdv/1dMu39jcAXuxPXDgGR20UAkC88ok4oLAm+j+yiGE1kRdeG9UsuuoFOO7IPslr9I99ypkCGU5kEAFhfDnzrSROTHjKx6yhd93YQcsYSQvIppQTmP6feGYsU44o4bjSd+OG/IU0Tt51DP//50YsScz+3FlefCKSUpKxtWkkLUF9tbUfO9r5PuziuhJCcvrBCwjT17XBDs3q9OzCejwWATD9CXPn/6MQvFgUtFg8g8qHtetTYEh85Wrf7QuXqNgMAcO7V6vVpGbSAuK59ApT6KnV6ihPCybFITACkGC34mi0JQXZ/uS4JwwDGnho5I4AzPSsw0fMlmT53lcTKnbFrk6qIsP9AMdoJhfp3dAWOergk0RFxpUN88wcWxWj8TIhhkgEWozEMw/QQubnBD6Nra2tjuv+amhrt8XoDy5cvD1qeOnVqzPb92WefBS3n5uZi9+7dUf0LDALbvXs3TDN5HmYyDMMwTF+lmRhUaxf2hA7I1gmM+iqbGtegxmd9lnMTfnxet4RMbzIblOvTbG44CNGTT7ZaPj7Tf6HkN4mWUUULJfNpMhu18iBKOMT0DDZhQ6rQREch8ZK+SHXfimwsEVgRelk9jyPJ4JLlM1OQAtb2fgYlCrMLBxxG12WJ9HHV1+xI6W6jbYbx7l7XKakKEC5WIftoLEZjmE4oMVquRTGaIMVoyTcLLtM9/NKPRdVvKdOchgtTsi9McImY7kKJ0Sp9sRejtchmUqye7JJahmEYhmEYhmH6DhyfFxmOz2MYhmEYAkMnRusjw7Cogb57tkB6GiGEwKp79Z/1yY9lm8wlRrT6JPYQ4WmUTKYTakCzOxPIDjEKZOZEVzAnP9eOBnH3U0HLIwmZCgA0e4FbXzDR7I1dPTpcJ+EhQq2U9Ugn1aOERFbEaPvL1HkMAxiiFhP2WwYUAKkuZZJ86Gb8+Vr6/J/x79jfI2wnpFapdqAwW7+tbGqg61RRiBAvkhiNEhhl5ukLwUDkDYZ44BUyXT5xt3L98AECn94d+Tq/7TDwmzfpdquMknxSYRlffUYkAKKfiDl6EvHTP9CJaz5Gcb5Aeiqd5baXJOqbkyNmZsN+4CDx+OvCAeXWd+Rqi8kTQgDX/UJ7Lf94K70bv0lfk9MDxhEIFgAy/YnLf0gmyd99L2hZdw/0/kbg2WXxaXvKiL5QhhPIz7CwA+re7JSpEGnqHQghgAzi+XpHn6iO6hv1vufyTLyhxGghdZvqt/ej65L45V+s5QPw4d5LtXluf8mM2TMiUowWMkTkl+fT7eQruU+SaeLJjyAKigGbhbFYLvXE8wzDJBbiCQrDMAwTb0IDoaqrLVr3LdDc3Izm5mCTbV5e73v4ffDgwaDlcePGxWzf+/btC1o+/fTTu7U/0zRRU1PTKwPcGIZhGKY34TE9yvWphjooIl44CeFKX5ZuLK9dFDlTCCtrP8JFudeEzZbuNVvhI0RPLsMNByF60smhGAZokzc0E+1EsouQdMJF6nwB2sSQTHLhsrnR4iNml0HiJX0uI4IkLEnEFJFkZoB1iUZEGVyE76SnoeR5Hf0Mqr/RXclImk394q5VtsAnvaSIkRK1dXwOSl7rNa1d1ynxrNNwwSaCZ4gjJZN9WF7LMNFCCZAGOBTTo0eBZDFan2Nd/QpUeg8r087KujDp+9dMOLl2daR9lVcz1WsX0Ynjue4wDMMwDMMwDJMoOD4vMhyfxzAMwzAEho1OE31EjKYTM61eDEy5HFlpAplOoI4OgcCmg8C4gtgUaU8lYBKvnEoizPEjqQHNBcVhsWtRD5znQbDRMXh4m/CpXe40snW7NntVI/DJNuCCGHVF311Pv7ccqXolWk4IzBwpwMCh6jRKjNYhtAKAQ3vVeQYNhXB0fdK7vogwDMjCYmDn18r0E/JbAKi/s9V7gL2VEsPyIsgTo6CMmFOoJB8wjAjHWb2YTisKESzYiGtNRz2qq1KnRyt37K+crpnoa8tqMunEIoG7LxL4/Qf6GIg31kqYpgyrE6YpsTNKMZr85E36QCxGiz/FJ5BJcumbEBOn4epTBJ5foa4TDS3Awk3AVafEq4DW+XyXuox2AzjPvt76jgL6PuL4U1Dy9r/IrPPWSEwbo24bmzTzproDJ0sdOtJ62RimlyNsNshho4C928ITva2Qfj9Eex+hWD3/YSevr5H4yXmxL+NuUlaN8HsrFYQYTXzjHP12mTlAjeIi2tEn4r4RYxWqnoaJ0Yi62p/6X1F81iyzDr8dvxW/23C8Mv2rcmDX0chtlxWqiTnVc0LCDieXCDy+UN3/GVWxUr2T6++EGHlS29+OyGI0wc+EGCYp4JGTDJNkFOUAOx/uIy/LkpiiJLjXKSwsDFo+dOgQKisrYxIg9fXX4S8EQo/XG6isDL6LzsmJ3Q8Xuu9YUF9fz4FXDMMwDBNnWgjhkTPBghNKPNJXpRt1vhpsaKADASgqvAex07MFJWljgtZTAhWgTaLiMNRBLF5T84aUYQA0m8QTcHRfGBRvKDmAx9SL0RyCA+WSDZeRhhrQ95yJFkFQkq3O9CQ5N2zCjhSRilbZQuaxIk9ryxdBjEYIwJIFSuzWIRihRCPdrVtpBv29NPkbkWlXT3vb5G9Qru/Yn51op3RtWyCUCE71PZGSyT4sr2WYaKn0qqO4cx0RRpN0EruAciZ5kVJiYdUbyjQb7Dg355sJLhETC/Ic6qijuIjRNNfeZBHzMgzDMAzDMP0Xjs9LHD0do8fxeZHh+DyGYRiGIdAN9tZJ03oR4uSzIF/5kzoxYHDwj84W+OMCWg7z9FKJv34nNu+PdmgeVxcPiLAxMaBZOcg3I8o+T1pyxxgkG8JuD5pU6RvNXyHDX4d6Wya5zfYjEheMi0092qae9wcAcPZIxTHKibpTMKJTShGGjRg87QuIg2iqV+fJ6d6EVX2WolJSjDbBsRuGGEWKE1fvAYbF0FNNtUWU1CoIleSkHXHimcErbMSwXr8PssUDtKjjpZHZ+6TcPYFwptHTu+3dBnP2bYAQEIOGAmddBlE6vjP57JGRxWgeL7CnChgRcn3aXwO0+NTblOYT7dw+QtAIAGMmacvBxIDRE+i0dnnmlJHA8yvobJ9ul7jqlJ6Pp9lOXANPGQZkHt5ibcpDuwM4PsDyVliCic1ryOzry+m9NmjkuulmQMxhYQmdkWH6IvmFdJ/h8F6goE1ifVweMDQH2EfM97GCcEN3l6PqkGBLz/ulaQKUtDpUEhsKJbCua/sCZD3xRWTw82ImBIN6B3jsmiWbm4CjB9TZ+tF1SaRnRTUlcq6s0aa/sEJi5uXd6xNJKVFP9CGyXMH7nno8kGoP73+PHgzkfbxAuQ8R+PtS0vNA0jjWkWGSARajMUySYbcJDI/00obpE0yePDls3erVq3HhhZpZKSyyenWwtMLlcuHkk0/u9n57GktGcYu0tsZeqiFDjdEMwzAMw8QcSnrkMlwJLYdOYNQX+bxuCUz4lWlnZE1DmuHGx9XvwoQZlr6y7qMwMRoldAHaBkjbhfrholWBCtN/iVS3khmqfE1mI7yauk+dL0zPEamuJVpE5oxwvESL2nS4bG60+tRitBSRCpuw9jg72X6DaKFkdp72fhAlGO1uO6eT6DX5G2gxmkmI0doFdA6indK1bcHHtv55I0nlGKa/45d+VBMCpDy7NTEa9YSWn4z2LbZ5NmJvi3oQyKTMKchx8Ius3gglQKz2VcCUJgwROzGEThzvSrDcnmEYhmEYhmFC4fi8/gPH50UPx+cxDMMwjAXIAba9jNMuIpPkk/8Dcd0dAIDbpwo8vlCSQqInP5bIzzBx/ze7/72UHVEfpDAbcKVE6KdQg+9VA5qpAfcUruSOMUhGxM2/hfz7/QAAt2zCnVV/xsz8+8n8P31ZYsa5sTk2VY8AYLKiOkhKqldUSh+EGjwdIEaTHuJdCdcnJeLWmZCfvKVMy6zYhnsuOR4PzVf/ttc8beLQHw0MzIzN/QxVh0oGRt6//Nt9dOKk6cHLdlqMhroqej+ZPWwh703ccDfw0u/VafOfBdAe6/DCI8DMlyDO/hYA4MJxwGkjgM936Xc/+jcm6v9qIMV+rG788zO6DSpRz2NFyz0BiCwW4cUbkZ4F6UwDmhVjFNp/m2sntYlitxxS72POYonbzpE4fnDPydGklKTMdtQgAfmvB6zt6JoZEO4AmWlRCbLMOrjMJngU7/qX7wDqmyUynOGfvVHzaChIjNYugWKY/oL44SzIL6co0+Sbz0D8+BEAgM0Q+PWlAre9pD63W3zAloMSo4fEtu2pJrqxuW4Lx6k8SMtdI8mmCIG1rKtqi1mk+kfcN2LCIOpq4PuFA5qOnkqw3pf51q3AW/+wlDXbp7lPATDrXYlBmSZun9r1Z0StPsAXPjQRAJCeGryc6xb42TSBP3x47LcVAvj1hH0QHxMHCJQ0UrLqQFwZkfMwDBN3+sgTeYZhmN7HsGHDMGzYsKB1CxaoDbTRsnDhwqDl0047DSkpKTHZdyIZMCA4CrGqSt9p7uq+nU4nTNOElLJb/4YPHx6z8jEMwzAMo8ZDiNFSEy1Go6QbRPl6M1JKLK9dpEzLdwzBDYN+gqsH3oxxbvWMWV/Wf4ZWM1hyoxPIuWxuOIS67+qVsQ+eZ/oWlCwI0At/kgFShORvhM+k5UEOg8VoyYbLphc9JFpEFkkClkySMF1ZovneIn2mZJLBqaD7GW1tHCX56u5v2SEyU0HJzwCNuKz9e6au6z6L13Wq36BqN6nfVnd9YJj+RI2vUikzBoA8R3dnJudBqX2JhVVvkGnTc69IYEmYWJLnUEfa+6QPdX79bI7RQj0fsQsHHEbve1/FMAzDMAzDMEzvhOPzIsPxeQzDMAzTBQxbT5cgJgi7HbjoBjJdHj0AABgxQGDbg/qhZw+8K3Gwpvvvinao5/ehRTKBEFIZUaQSo0U5cN5Fv0tnCK78UdDifUdn44X9N2k3OVwXm/eN2w+r199zsVCLgMvL1BvoxA0WxGjwEHEWLEZTIkaMpRMP7MSsy/Uijv9dGrv31duPqNePjDDXmNy7lU781q0QoWJNahC+3wfU6sRoUcod+zHi2z+zltHbCvnE3ZBmWzyFzRBY/EsD939T4NzjNZv5gbfWBa+b9a66LuZnAFlp4fVY+nzAwd3KbcQDr1gpPRMDxMwX1QmH90G2tsCdKvDZr/T9odnv92zczJq9dFqJg+hkdXDSFODMSyHu/l+IH88OShIZOUBmLubu/z65+fPL1Z+9QT1HLgAgvSOeb0ABBF8bmX6GGHcqnfjy40GTQ/zobAN//C+6H/SzVwh7UDeoalSf0zlW5kEsp2WfUN2bBUL1cTqEaHXV0W3H9F+oCWACxWiUmNZmAwYfF/syJTHihrst5/V6miPm+Z/XJRpbut4v0vYfUsPXzb5K4O83Clx+EnD9qQLv/czAdz6g+y1B9/pWxGhp/EyIYZIBFqMxDMP0IBddFDzT0osvvgivlx7wboWKigq8/fbb2uP0FoYMGRK0vGnTppjte9CgYwP9mpubsXev5gkgwzAMwzBJQ7Opnj3EqZiBKJ5Q4hFKVNKb2dW8FYdby5VpZ2RN6wwWOj3rPGWeZtODdQ0rg9ZRchIDBlKFEw6hDhzyyu71lZm+j+4cdCZYoBgtlAipVbagWRIzJwGwwcLDeCahUL+l1fRYk2yiNh2678YVxbU+4mdOcL8hWqjydQjIKFFYd3/LVOGEAXUQf5NfJ0ZTp6UZbS8C7ULdTlm9rlPiNVX/rz/10RimK1R6iQhu0MKkUJSDBQBIFqP1Gcqbd2NT4xpl2gnuiShI7V+BP32JXDs9WqNK0z50BVJsmkRSXoZhGIZhGIZh+gccn6eH4/MYhmEYhkBq3nuEim16MaJ4HJ246thEmsX5AjPOpQfj+01gwabuvyvaWaHeR8lAvRBJ1lcfGywfSmFx+LpoB847+dl2tIiMHCA9O2jd9XWvYtaRmeQ2izbH5n3jXqIqjCsgNiDkDaKolD6InYjXChSjNROT7LJoj2bSdOVqWb4DQgj8YDLdFry3ITb1p8UrcbhOnVaSr2+LsPojMkmUjA9fSYrR/EBdJX0cln9YJ3uA9XPu4G4gQG6Xliow83IDi++04XTFpaSD9zceq3v1zXQ9LMomEo7sC247gjbStENMbKG+a9MEDu4CAOS6BeZcp2mHNvZs3IzuOlpcuZpME3c9AeOJRTBmvw5x2c3quKDCEpS2EiJRAJ9sI8RoGneKuyOmQNVXY5j+wIln0mmVh4IWf3qugI24Dd11NIZlaqeK6MbmWrktomRTmblt9wg6KIF1pxiN6OhH2i/T/7AiRjuiHiOHQcMgKBF2X2XgUMBhbeKf4307I+apbwaW0d2GiEQrRhNC4JazDLw5w4aXbjVw4ThB/74pqUB+4bFlK781C1wZJinoO0/kGYZheiE///nPgx4YVVRU4Nlnn+3WPufMmRMUvOV2u/HDH/6wW/vsKc48M/gGf8mSJTHb9+TJk4OWYzUbKMMwDMMw8aWFEKMlWnBCCVco4VdvZnntIuV6AQOnZ57buTw+fSLctgxl3pW1wQEflJwkzZYOIQTshvqhqk96g2bAYZhQqHPQaaTBEMk9Y69OCFXvq1GutwsHKSdheo5Iss6EX7OSTNSmQyf2iqacurwGbEgRirdiSQT1PXQIRihRWHd/SyEE0mzqYEBdH8djEmK09n1R13Wv2WqpXKRYRfE9RfruGKa/U+lVT4+eZqRHIVfkvkdfZ1H1m2Ta9NwrElgSJta4bRlkP6jKG2GG6Cih7vsTLbZnGIZhGIZhGIbh+Dw9HJ/HMAzDMF3ASO74k6g47UIySX7wUtDyReP074huek6SUgyrlBGPqksize+zXzMwt7AkfJ0rnRYSqXAm92SMSYti8PAFjepYRADYfLD7h/T6JOoICcuQrPA6LJvqgapDitwAihR1pwNq8LQ/QG7kISag40HVNJQcZ9MXAIALNS7HL3YDD8030eztXjtUTYhAAGBIln5bWaMxk5x6fvg6XTtUTTSIaRn9T9TQDYQQ6u+egpC5XKi5Bj63XOIfn5qQUuIoPe8kxhcp2qBDeyDv/S96IxZGJY4hI2iJylfLOv+8YCxdFyrqgdqmnotxr6in06Y1f0InElLKIIpKcHzrNjK5kgjNo8QmDtmKFLRfM/MGRz4+w/RFxkyk0zatClp02Om2Z0cF0NgS27anijinrYjR5O7N6gTVfVkIIoOQvx5tv1Gor1Zvx9JYJhQrYrQ6dX1C7iD1+j6MMAzLz0gmtn6FHAvhfxfNMfH5zq61TVoxmjPy9rLFQ4vR7Cltn7cDK5+b5YsMkxSwGI1hGKYHGTt2LC6++OKgdb/61a9w+LB6gFokNm3ahD/84Q9B62666Sbk5vbOm7vp04Mfrs2dOxf19ZondVFw4YXBL3L/8Y9/xGS/DMMwDMPEF4+pjjpwGokNPqLEIx5/Y58SdzWbHnxZ95kybZz7FGQ78jqX7cKBSRlnK/NubVofNMiakqt0fK8OQQdu+GT3ZnBn+jakPCeJxE8UKsFPB3WEGE13rjA9ByXP7ED3W8eDSKKbRJdHh+5cjaacus+cZnMnvVBQ188AohOFRQv1GzT56ci9RiLN3S5Go9oqq9d06vOqvifqu+uL8lqG6QqV3iPK9XmOgZb3Qbagfec2qF9T5a3A6rpPlWnDnSMx0qUZbcAkPUII8nyn2oeuEs/+CsMwDMMwDMMwTDRwfHkdzi0AACAASURBVJ4ejs9jGIZhmC5g9J1hWKJY89x/7VLIZfM7Fy86AbgowmuCaY+beH1N114amabEzliL0VJSgQEFYauFEEA0g+dTWYzWFcQv/hS2bkLzGjL/w+/Jbsde6qRWeap54nRSvaJSOo0aPO33HfvbQ8QpOPldCYWghBnb10HWV+OKkwXpOACA37wlccGfTPjNrtcjSu4DWJCB1FWRScrPphWjEe/usnrnvWdPIn5wL5A1wFJeOesHyvW3naOPNfvRixIz5kpSJAMA/3NR8D7kgZ2Q/28KsGODeoO8IRAsUkwYIiUVGDRMmSb/8GPIdinP8YMFvnkivZ8nl/Rc8Iyu/g0+tI5MEwUjIu+8sAQGJCZ5vojq2I2E2CQ9cCJWlo0w/RTx3f8m0+Svvw1ZWxm07n+/S1+LTphpwuxG/yeUrorRpJTAq3PUiTrpcAeZRHuwfR2k30/3tajtmH4Mdb4cO09kPVGf+ul1Sdz5V0v5HA1H8ejV1sZhnPNHEws3Rd82NRCycwBIV88JG8yB3WRS2Oe0IkZj+SLDJAV954k8wzBML+Wxxx5DWtqxQdM1NTW46qqr0NCgmSpCQUVFBa655hq0trZ2rhsyZAjuv//+mJU10YwbNw7nnHNO53JdXR3uueeemOz74osvRknJsRvqVatW4V//+ldM9s0wDMMwTPxoNj3K9amJFqPZVFEygB8+eGWrMq03srZ+OVqk+qniGVnTwtadnnWeMq+ExOd1SzqXO8QuoXSIbBwihSxTX/p+mdgTqW4lM5TMBwDq/OoZaewsRktKdL+llfRYkyqcEJrHwIkujw7duRpNOXWCtWT6vBSUMKRFNsMvfREFo907trqPoxOjUWlpRocYTX1dt3pNbyLadtX3RH13fU1eyzBdpSoGYjQKyWa0PsHH1e/AhF+ZNj33yqSXizKRyXWoR48FysxjAXX97g19MYZhGIZhGIZh+h4cn0fD8XkMwzAM0wVEHxuGdeP/kEny+Yc7/7YZAm/NMFCQTe/KbwKz3jW7VIwDtUCLT51WOjDC+4n9O9TrC4ohKJFdNIPnWYzWNSZfErZKALiz8nFykxUaT5kVdFIYpcihvEyd2ZECDBxK78xGxGz5AiaIo8RoLnVcBgOgsJhOm/8cUh0CZQ/p2+DPyoAPv+56EaKuQ4HUqWP8cNEN6vWaQfiyhnh3l8GD8qNFlJ4I8fdlED96ADj/O8D519GZm+ohG2rDVg/KFHjlR/pr0TOfSHy1j46bGDUoeFm+/jRQpZG2WxHIMLFF1wa988/OP9/4Md0O3fdmz8XOVDeqj/3jqYIUgYqf/kG5Pixfu9zxR9X/VKZTbWdDi7pMbjPAZMqyEaafInLygSHD6QzvPR+0+J1T6evQnkpgybbYlMs0adFnrjvCfdlXn9FplAA3EF178MVCuq/F7QgTChXjGBhHXl+jztNPxWg492pr+eqqcOsUA5/ebeCn5+nbhFYf8OD86J8RNRBiVSEAl5XhU/uJ+3wg/HPaLewwK8/CQRmGiTd97Ik8wzBM72P06NH461+DLbPLly/HxRdfjPLyckv72L59O6ZNm4bNmzd3rjMMAy+++CLy8yNNkZTchAaOPfnkk3jssccsb19bW4vm5nCZh91ux6xZs4LW3X777Xj99dejLuOiRYuwc2c338IxDMMwDGOJZr96Sj+XkaZcHy90whUPISvpjSyvXaRcn27Lwvj0iWHrh6YWoyDlOOU2K2s/6hSSUN9Rx/eqF6N5yTSGiacsKN6kGrS8qs6nfvGiO1eYniPSNYmSa8YLIUSvEYXpvrtoyunU7iexfYauoPusHrMprhJISoxGXbv90kdKVDskZZTE0eo1nTq26nuivjsTJllOhulPHI2JGE0dzMBitN5Pk78Bn9UsUKblOwbj5PTTElwiJh7k2tXne5WPmHW+izSbxPMbW/L3xRiGYRiGYRiG6XtwfJ4ejs9jGIZhGBWa9x6GLXHFSABi6Eg6cfNqyAC5k8Mu8OAV+oGv68uBKkLMoaNM85i6JEJ3S5YTYjSdVCYauRCL0bqEsDuUkpnjW7aT2yzZ2r13jpU6qZXqFQVVdwpGQNg05zo1eNoXYPdrVhdGuJInTifpKKLbI/nVMgDA8DzAnarfzWuru16PKBFIWgrgdESQgdRXqddTsg7dIHxKmBWN1JHpRAwZDvG9u2Hc/xyM+58HrvgRnXnLauXqScP1v78pgXe+Ute9XDdgGCHbr1mq3Z8lgQwTW4pKySS59pPOv22GwEgizEYIoNnbM/EzVepX9Mh1+oAj+9SJms8cnK+tPuYSkzxTx6bEJunmsckKBLdrTH/m+FPIpMB2BwDcqQKFGkl1d/vRHTS2tl3TVGRHui0KKXMgwkp7k0PHMMovPwYaWGTFWIQSo5kBkq56QrSXoTnR+jAi1QUMKIicsV1QeGapwJzrDDx0pb6PvKwMaPVF1z5R/Qd3iqJPrYISoA8ZDuEIGX8V6RmfYQDp/bNOMEyywWI0hmGYJODmm2/GjBkzgtZ99tlnGDt2LGbPno19+9QPoMrKynDfffdh/Pjx2LBhQ1Dao48+imnTpsWtzInivPPOw5133hm07q677sLll1+OL7/8UrmNaZpYsWIFfv7zn2Po0KE4dOiQMt/111+Pm2++uXO5tbUVV199Nb773e+S+wYAv9+PtWvX4ne/+x3Gjh2L888/H3v37u3Cp2MYhmEYJlqaTY9yvdNIbPCRTjzSRMhKehuHW/djh2ezMu20zHOUkhMhBM7IOk+5TYX3IHZ6tgCgv6MOmYnDoAM+fLKVTGMYShaUFgNZULwxhEEKm+r96hd5lGyI6Vkiyal0krJ44dQIKJLp/NAJwaKRfuk+UyzkYfFGV36PvzGiYLRbxyb2QV27df2eNKNNsuYw1BJHq9d0UgSnKGuk745h+jtVpBhtkHK9CkGI0Zjezyc1H5ASyWm5V8AQfWugV38l16EePVblJWad7yK9WVrNMAzDMAzDMEzfhOPzaDg+j2EYhmGixOhjw7BOv0ifvj9YHHXJCQKOCK8MbnrWhJ8aTU+wo4KWyWSnRXg/dYAQqBaES7k6iUbCkeK0npcJ5qzLwlZd0vABmf2+NyV2EnXBCpTUKtUOOL31MB//GcwbToT5reNgfus4yGd+o94gkpCIFKMFTBDnaVDnYTEazfDRdNpn70D6fBBC4IqT9W3C8ytk5yS+0UKJHXOt/Gx1armCoMRoNju9r2ri3V1mnoWCMJEQUy4n0+SvrgySgnYw1MJl41PCwRBaf2RTPbB9nXZf4my6jEx80NWLUMHG+EJ1NimBXUdjWKgooK6Bub7KtoKp0ElkA2m/Lub41QLIxhagRSGEayTFaAGFjUZWyzB9DG27s+J9yJbgOK5vafpAD86XuPp//Vhf3j1BWoNm/uGMCLdFcj8hHQaA0y+MfPDxk+m0LWvoNKqvxfRfKDFaIPUs2gujYETkPCEy6Ej3ZqYEdldGV4yGFnU7FqkN6kBuXKlOUPR7hGHon/Nl5LTlYRimx9E8QWEYhmESyRNPPIGcnBw89NBDnQ/h6+vrcc899+Dee+/F2LFjMXToUOTk5KCyshJ79uzB1q1bw/bjcDgwZ84c3H777Yn+CHHj0Ucfxd69e/Haa691rnvnnXfwzjvvoKCgAOPHj0deXh5aWlpw6NAhrF+/HvX19Zb2/fTTT6O6uhpvvPFG57q5c+di7ty5yM/Px0knnYS8vDwYhoG6ujocOHAAmzdvVs5yyTAMwzBM/Gk21VMK6YQv8YCSFwEgZSW9jeW1i8i0yVnnk2mTMs/BGxXPw4QZlray7iOUpI1Bk6kO+umQmdiFWqACAF7TS6YxTG8ffO+yuZXnR52PEqPxo71kRHeNAHpGzJVmuEG9U0qm80MntYpG+qX7TD0hposWXfmbzEZaMBqDupVmSyeOq752U+sD9+UgJI4+6YMpTRhC/8KQFMEpPq/uu/OYjcjBAO2xGKYv45c+VPvUV4M8Bz3bonV6ZsZbJjZ4zVYsqZ6vTEu3ZeH0zHMTXCImXujEaFJKCCuBYRaIRmzKMAzDMAzDMAyTKDg+j4bj8xiGYRgmFM2z0j42IFJkDwB+8SfIP9+hTJcP3wrxr1WdywMzBR7/tsBPX6bfDb2zHrj93xLPfM/6M+cdhAOoVP1YO5hy9QB8oZN9WB08n+KM2bPz/oj4zi8h1ywBtn/VuW6w/zDs0gsfEUtwxmwTG35rYGBm9N87JbXKcwO44yJgCy3nDaKLYjTp8x5rPTzqWFc4+V0JhRAC8vJbgLf/qUyXD98Kcf9z+N3lAv/+XP9++tdvSjx8ZVfqkHq9NTGaWhhEihhtGstktXrSs6ikjgzNRI3kvLUF8u4rgL8sCGr/7bbI9YmsPwHhhFJKyFtO0+/oguuB0yKIS5nYM2k6MKAAOHogPK1iP2RzE4Sz7cecc52B19eGx8kDwIx/m/jorsRPPEfVv5xPX1InGAYweLi1nWcPANyZyPWpBZAAUN0EDM4KXtdAiNHSAuMBuV1j+jNTrwIe+AGZLO+9BuKxdzuX771E4KkldB/ojbXAos0mvvi1gVGDunYP06iZ7zg9NcLGlBjNnQmRFVnuKlKdkMeNBvZsCU/csprekNsRJgyi/geKQom+u8jIjkN5egkFI4D1y/R5PI2QrS0QKW0NwpghAvddKvDgfLpt+ulcEx/eYb1vRAkaI7ZBAGRrC7D0TXUidZ9vdwCtRKfFQtvFMExi6FtP5BmGYXo5DzzwABYsWICRI0cGrZdS4uuvv8YHH3yAl19+GQsWLFAGXZ1yyilYvnx5nwq6AgCbzYZXX30VM2fOhMMR/BLpwIED+PDDDzF37lzMmzcPy5Ytsxx0BbQFqs2bNw+PPvoonM5gZXBFRQUWLVqEV199FS+//DLmz5+PtWvXhgVdORwOuN38gophGIZhEkGz6VGudxquhJYjRaTCgPrBHDX4tzfhlz58XvuxMm2E83gMSR1Kbptpz8ZY9ynKtC/rl6HVbIk4QJoSqACAV2retjD9nt4++J4SNtX5CTGaQUsEmZ4jkhitJ8RcTqJMAgZSjeSZ2Vh3rkYj/dIJ1npCTBctun5Nra8KJvzKtFjUrTSDEKP5CTGapt9zTIxGt1U+qReemtIk+3+q+qI7/3RlZZj+QLX3KKRCXgzERozGWrTezaq6pajzqwNYp2ZfghTDQlQJ0yugzvcW2YxGv/V3K5HwEGL73tAXYxiGYRiGYRimb8PxeWo4Po9hGIZhQtG8+ehjYjQAEFf/mE7c/hWkNzhea8a5BjbM1H8Pzy+XqKi3/gZpB+EAKhmoH9AvPY1A5UF1YkExvWGGxcHzqYmNS+xriLzBEE+GxyH++dBd5DYV9cDzK7r29rGSkhLZGq1L0QCIoaX6DHZiMktfQAyEh5hozqWOy2DaEJffSicufBmyYj+K8wWuVoeodvLUxxJNLdHXI7IOWZm7mRSjEYPpbZpJUSkxGg/MjwnCMICLbqAzrPskqjYjEkFivQ0rSKEnAIhZcyHu+xcE1c4wcUMYBsRfF9IZAn63whyBQZnqbEu2AX4zsVE0UkpajFZGCE4GDe2UmkRCCAEUliDPT7RzULeflBgtPUiMZlFWyzB9EJGSCvHPz+kMqxZC7t7cuViQLfDna/X3R/XNwDOfdL0Nos5bAEiPFG5OCat/PNvy8cUNd6sTmgnpMMDtCBMO9dwmUIxWrx6fY/lZQR9EFIywljHkvmfWtwx88Wv6GdHCzYAZRd+onuo/WOm2LHuXTBKUGE13X0bdyzEMk3D4DplhGCbJmD59OjZt2oT/+7//w7/+9S8sXboUPp+PzJ+amooLLrgAt956Ky677LI+OyOREAK//e1vceONN+KRRx7BvHnzUFVFP1BLT0/H9OnT8YMf/ADDhg2LuO+7774bN954I+bMmYOXX34Ze/bs0W6TkZGBKVOm4NJLL8W1116LvDzu4DIMwzBMvJFSasRoVqIOYocQAmk2Nxr8dWFp1OBfADjcuh+f1XyIvc07lVICp5GGkWknYGr2pXAYtBwscD+DUgpxeta5KHaN7tJnWVO/DOvqV6LGV9m5rtVsIUVMZ2RpZkrrzHMeNjaGz8rSbDbhj3t/haPew8rtOgZId0eg0sEOzxZ8XvsxDrXus5S/g0x7Nsa7J+HUzKnavnWr2YKlNe9je9NGNGt+81AMYcOw1BJMyb4Q+SlDyHx+6cPSmvextXE9PGY0IheBotThOCNrGoY6NcF9UdJserCk+l2UeTaj1Uze2dn3t+xWrtdJkpIJShJACQp0EkGm54gke9C1cfGCOgdcRhoMkTxB27rvLpJwLjhvbPbTUxjCBqeRpry+vH7kOXK7WEggqbqyt3kHHt97b9h6SjZmwECqaIuCsGvaKp/0IgX0m8pmswmSGHSgKqvDSIFDpChFqq8cfrpT1hYtNmHHcOconJNzCbLtHETB9E4qvUTgNIDcKMRogppNT4OUEp/XLcHGxi9Q5yMCSoijDUkdijMyp2G4a2Tk7FHwdeMafFn3KXlvMjClABMzpmC0+6SYHjcZMaWJRdXqWfJSRCrOzrk4wSVi4onufH+i/Hcxk+AdaFG/Y+kJSTDDMAzDMAzDMEwoHJ+nhuPzGIZhGMYihnoyzV7PpOnAF4vUaQd2AscFx6aNKxD4rwkCr32pfp/r9QNr9wIXjLN2+B0V6v0U50fY8MAuOq2IGPQKQGTmWpv4h8Vo3Ua43JCX3gTMf7Zz3fGt4RLiQFbu7JrMoVw9DxAG+CvVCRRDR+nTHcT7lNaAuLoWIqbQyXVKS1Fpm8jAVE/6hS1fAvmFuPlMA/PWEHkA1DUDmw8BE46L7vDlxC3QgAjhJtLTSIvRsog4E60YrUK5WvRjUUOsEceN1l8HNq0CxkwMWnXH+QJ/Whh9+5SXHvAcYZNGgJOeDUy9qs8+d+gVDB7edm76Fc+JysuA0vGdi8cPAg6HDyNoy1oNHJfAxxhHG4AW4tFWHnUNHEhPkq4kvwC5278mk8urgXEFwesaSTFagDyUhUZMf2foSMBmA/zqCZOx6Qtg+JjOxYnDBSJNYbqsrBtiNM0wEbcm/F021AI16v6L7r4sjMIox78IweJhJhyqL9UuRpM+L1Ctjhvt19elSPfBHVTsBwYEj4WbcJzAmSXAMsL/e6AWKLJ4K0O1QxHljADk15q+9nHHq9fr7ssysiMflGGYhMBiNIZhmCTEbrfj+uuvx/XXX4/GxkZ8+eWXKCsrQ0VFBVpbW5GamopBgwZh1KhROOWUU5Ca2vWBKjNnzsTMmTO7tO2SJUsSuh0AjBgxAs888wyefvpprFmzBlu2bMHRo0fR0NAAt9uNgQMHYvTo0TjxxBPDZq+MxODBg/HII4/gkUcewa5du7BmzRpUVFSguroahmEgIyMDBQUFGD16NEaOHAmbrY++2GYYhmGYJMUrW2FC/cDfaSQ+WMRlqMVoTYTE6mDLPjy+715ScNTBxsbV2Ny4Fj8puh+GCO9vhO5nu2cjVtYtxm2Fv8ZY9zei+gwfVL6Gt4/+23L+FJGKCRlnRcx3gnsS3EYGGs3wz1pOiKuAYwOkdQIVlegklK8bvsTT+x+BH/QABh1r6pfjYOs+XJF/ozLdL3342/5HsLlpXZf2v61pA1bVLcEvhz2MgSkFYelSSvz9wO+xvmFVl/Zf5vkaK2oX42dDf4cRLuLhbRR4zVb8dd9M7GrWB6QlM7GQBSWCaMupO1eYniPS79gTgUuUDCySxC3R6EQZ0ZRV1y/oLe1BmuFWitGOeA+Q28Ti96TEYS2yGWWeTVHsJ6OzrutkgJGu6zo5qJP4LV2GG15/+H4PtO7VHisSW5vWY3X9p7hr2CPIYjka0wup9KnFaOm2zKjup+jrGB1Q9UbF86R4KxJlnq+xsvYjzCj6DUaljY+8gQVW1C7Gi4f+GuG4m7Ci9iPcNOQOTMycEpPjJisbGr7A4db9yrTJWdORbiOmOWZ6JZm2bNiFHT4Zfr+8t4WemTxWJFpszzAMwzAMwzAMQ8HxeTQcn8cwDMMwETCSZ/KxWCKmXwtJiNHkK3MgfvW/YeuvnUSL0QBg1rsmLhgX+XoupcQOYgx9aSQx2n7i2bbNBgzSyFszLY7IZYlVTBDTvw0ZIEab0rQMQ7wHcdChnlj0jbVAdaNEjju6GJsdR9T1cUTtBus7cbmBkyO8H6TkC81tMQ5SSqCVsMFQUjUGACDcmZBnXAwsm69MlxtXQky5HOeNBvLcQKVmztk5iyReuCW6OlRGSBpH5EfYz/6ddFrBCPV63QB8T4N6fRYLo2PGuVcBf7uPTJarFkJc/eOgdddO7JoYbcSAgP2u+IDOOO0alqL1MMJuhxwyvE2CFoL8zXXALb8Fvn8PhBC4eoLAJ9vV9WHj/sSK0crouRJR3LpbuV6cdVlUxxDTr0Xqsvko9O7HfkehogwSF44Lrr+kGE0GNN4sfGT6OcLlhjzzm8AnbynT5dqlEJccG9Ny2ghgWC6wl57PAp/vAi79ix//uNHAkOzoriuNREiv3QBSdEYSXV+oMI5itBQnXzsZBRFiXA/toUXMVN+9PzD54rb7YY/mJgtoew4TIhAGgCu+IbBsh7pvdMYjJjbNMpDhjHy+NlD9Byu30tQzIgCYcJ56ve6+LC3DwkEZhkkELEZjGIZJctxuN84++2ycffbZPV2UpMIwDEycOBETJ4Z3oGPBiBEjMGJEP76JYRiGYZgkpNn0kGk9IkazuQFv+HqPX/0QcGnNexGlaB1safoKOz1bUZo2NixtSc38sP34pA8fVs6LSozWarbgw8p5lvMDwCkZk+GyRR7E7DAcmJg5BUtr3otq/x1CFyEE7MIBnwz/gr1mZDHaB1X/6bIUrYPFVW/jwtyrlZKZnZ6tXZaidVDnr8GnNR/i6oE3haWVt+zqshStgxbZjEVVb+GHhXd3az8AsLlpXa+WogFAWpLJnyh0UigVLEZLTigJWU9CCbOirXPxRif2iqashrDBaaQpxWLJJoOjcNncgI+I/CaIxe+ZZsRm5rTAsjgMjfDUVHSmAmgi+lWhxwjEZXOjzk9MA91NKr2H/z979x0eR3WvD/w9s7vSFnW5W66SKwYXwDRjeu+QS8cJkIQQkpAAISGFhNSbC5cEAiGBkHDzIwkhkIQWeu8ldDC4AcY2YGzZliWtpN2d8/tDWlnaPd8zs6vVqvj9PA8P0pyZM8fSaObMzpn34Pktj+Hg2uP7pX6i/rQxYZ7hriY0qiD1a20e0NCaasYjm+7qU90J3YEHG/9VkGA0rTXu2XCLv3Xh4t6Ntw77YDQptE7Bwf7VRxe5NdTfHOWgOjgCnyY+HpD9D5V7MyIiIiIi2r5wfJ4Zx+cREREJnGEa3HnwqcDPv2Auu/sP0Icvgdpxj16Lj5kHnH+AwlUPm58TPbMSuPt1jSN3sr/4urEZ2CIMDaz3DCMSXnodMwkqaBlXU+FzMqwSBqMVxM779fo2iBT+uvZ07Dv5YXGTY6518cTFuf29LReCYerXP++7DnX5nfZjB5CD0dIvkCctYyFKwr7bsr1S3/gVtBCMhr/8L/SXforSkMLfznFw4JVCoAGAm5/XOG8/jd2m+g/LWG5+rI4Gr8fqYkhjEBglhDTaXsCXMECoYNT4euCbv4G+/MvmFZ75N3R7G1Tptr/ZXScDPz9e4ZJ/5BaOlj5+dFsr8PJjcps+f1lO9VI/qWswBqMBgL7xMqhQCXDaRfjSYoXzbzEfC0dd48K9vnh9xuVCMGhZIIFRKeHi+JnzctvJ/v8FXLYE9R0rjcFopmtwc7u5XTGXwWhEPanzr4QWgtFw383Q3/odVLCz3xBwFG75ooOjr3GxQchRBYB73wQOuNLFmz904Dj++0LNbeblsVKPicGF8yZKSoGR2ecMUfUof8FM3fWzb00G0rGaHuO67j1527GTC96coUJFy4Ef3gz9g9OAtux3MLqtMd/7fG1/hW/eZr72r90MnHqDi7u+6t0/koPRfJzLPhTORTvvB1UiJKsFLPf/0r0/ERXd8JyqhIiIiIiIiIYdU7hJWngAQmikMI5W1/yEYWV8aU71S+tLgVnL42+KYQQma9s/QLsWnlwI9qw80Pe6e1QKsylYlAcqu78OCYFPCUNYWk+udrEq3vcQrxSSeL9tubHsvQLUDwAr428bl68Qlheq/lytaC1MPQOpLFAx0E3wpTxYldP6hQowosIqdSJwYH5oMzk8rcit6dTz/NrTYPvbkNoJ5N5WqS7bPgaTXNtZqsIIOSV932+O5yFJRY96gkpuV0LbA0+twbgB8wD0/v4dF+o6TVRsGxPmgY4jChSMJnm/bTlcpPpcT6H6tk2pTWjMIXjyo44PreeioW5l61Lx3nPn8r0womR0kVtExVAbGrjf61DpixERERERERERERGJ1PB8DUsFg8Au8ngvfeeNWcsCjsIvT3Kwz3S53uufkEOL0lZaHt3Uj7Rvq6UwovH19g39hnCUMhitEJRSneF7PSyKP4uHPzhY3OapFcDb6/yPh0y5Gqs2mMsaOoTjJGvFnaDmLvJeLyJMBNPaNeFtQniTG+gMhyArNXoicPTZ8gpvPgcA2H+mQtPVDmxZH79/yv8xtKlFY6OQwdHgFdIohYGMndwdZJIln2A0v6GO5Is6+mzg5K/LKzzVexI4pRS+daiDdZc72H2q//00jOo6fh43T1oGAOrLP4eqGuG/Uuo/ExqsxfqOGwAAoaDCnpbuxqaW3AL0+kLqSzWUbIDx7DVrF+8Q0AzKcYCaMWhIrDK3wRDOJgWbdAejhaO9wgeJtldqVB1w2kXyCi880Ovb3acqvP9zBzd+1t4/eedj4PFlubWlpUMIWvTqwkr3ZeOmdp4/fFJKAeNyuMiG2Lcmg3yD0WrHQoWL/27iYKL2PBzqXx9AXXGXeO+q3zOP5Q0FFXazzIVzzxvAwquqIQAAIABJREFUBxu9+0ctUv/B489dp1LAOnM/RR39eXlD6X4NACLb9/FANJgMz0/kiYiIiIiIaNixBmM4xR+AFBGC0eIpc4Bba8oyJYupHtc8wmJLslHcJpcX9ptTTTm1Z1zJJNRHZvtef0JpPSblEABUqsKoj8zq/j4khKh4B6i0QsN7QJ0f0u8gVYBgBwBoTZnrjwvLc65faH+upJ/DUBFSJZgWnTPQzfBldmx+TuvPjO3UTy2hvnCUgzllOxvLdizbtcit6TQ7tsC4fAdh+UCJBsowOZw9YnpUaBxGhMbkVJfp78mBg5mxuXm3r5hyPR/sUFaY3+XkcANiTnmf6+l5zElhpwCQ9Ag8la77DhwEhXpz/dnlaqhfF2n7JQWj1QRzC0ZT5iGTolzvgyRtbhwpnexzPR2u5SUEgasL0/8fjB7c9E+x7MCaY4vYEiqmuWW7Dch+ywIVmBD2eBGNiIiIiIiIiIiIaLDL4aXuIWfKDnLZ8lfFokPnyM+P7n4d2Nxqf/F15afm8mgJMCZjvg2dTEKvegv63Zeh168B1ppfesV4j5fp/YYLMRitYNTU7ONrfttrCFnGAz6x3H+ozJpNQIfwOLG+QzhOMjX4HFMSFSazjHeNJ+iwPJNkeIMvato8ubDH+agsrPCtQ+Vz0Cur/R9DtpDGaR7zDuk1QhhIneXZWD7BaJUMRis0NW+xWKaFa9+YSoVvHuK/PzC5tqu+Za/IK9Xv6Ls+6l/K1h8CgI/eh966GQAwY4x8/nn7owI2ysNGYWjOxNRac0GdPfxNVFGNeiFsdIVhWJIUbFKWnoSeYY9E3ZStH7ri9axF0VKFJXsolHtkC77yYW4hjWKgodCF1W2t0Mtfg14m3C/a+kKSXLZh6DCZeAWjbTKPpcWYif3TniFGxSqgdjsY+MxXzCv851Fo1/zO3pzx9vHFr37ovf/mNiGgUTjfpc9DWP0ukBA+X7CF5wcCcllEuPcnoqIbxp/IExERERER0XDS5poDx4CBCUaLBoRgNCEsI25pv4kUmmXdxvUfOtCSQzBaLFCO08ec1zkDi09KKZw6+lxUBKo813UQwGljvoISZ9uDCSnsxCtApZBhJdLvQOv+DV4rVKBZUieQcO1Bcn4M5QAYBw5OHX3ugJwj8tEQmY19qg73te78sj2wa4U8KIcG1vEjP4eaYO9pi+sjs7Bv1RED0p4JpVNxSM0JvZbNjM7FXlXyzLsD5eTR56AsUNH9fdiJ4LQcr0EAcFjtiRhfOrn7ewWFkzLqHswWVR2CGVF/A95qQ6Nx7IglBdlvQAVxxtivitdhPxoiO/Q6l0lhp4D3dV0qt9W5T9XhaIh4DFDrg0IFmBIVmxSMVhvKLRgNQjCahnkwQq73QTb53CNlSnicd0zcAgUvDzYft6/BG80vGstmRHfCRAZYDVu7V+6P2dH+DRLNFFQhnDHmqwgoy0AiIiIiIiIiIiIioqHAGb6fc6pDTpMLV74hvvh6yq725/k1X3dx0u9ctLabnyetEMKI6kei11gBfd/N0EeMgf7sAujP7wF9Qj3w0iPGbZXtpVcAqKi2l6eVeiQNkH8HnpS1qMLdimO33ilu8uU/a5x1k4uOpHeggymQJa0+4S8YTU3wFxSjpJej413jNzva5I1D8ngH6mG/E8Qi/cBfe31/+u7yOejl1cAba/wFgixfb14vHALGVRqLtlkrBaNZjql8gtHKGSJUcAsPkstuu1YsOmwOUGseRp5lRBmgt24Cbr1aXmnBfv4qo/637/He66zrvK6cvUg+/3ztr8UbayIFkFXEhYtj3sFoNWgQgtFWbQBSbu/zqBiwlB6XXu6zP0a0PVh0pFik77zRuDzgKJy2m/1e7KancwtGEwMNM/LHdCoF9+oLoQ8dCX3WQuBxYXJOr/syk3EeIdc9MRiNjKS/i86/B93UaC6urO2f5gxRau4ic8GWDcCDtxiLluxhPycd9xsXb661n5ek/oPxPHTNxdCHjYI+ayH0Est4SFt4fkB+Z0KFfXb4iajf5fEJChEREREREVHxtblx4/ISVQpnAF6sjThCMJrhZX1Xp8Rgt7JAJZpTW7LrMYRRpXTK2qbWVLPvYIOW1Fbj8opAFRZXHdb9fXVoBObEdkZ50DvgLNOE8FR8b/LVeLPlJTQmzCPYyoKVmBWdi5ElY3stDznmAUBeQV/xlBy8cEjNCcYglSe33I8tyewPt3MNBKsJjsSelQdmLV+f+AgvND1mrF9rnRX2IwWujC+djPlle2Qtb0414bHN9xi3aXVbUCn8LP2SAigaIrMxM+pzlswBUBaowMzYXIwqGTfQTfHNUQ5OHPUFLKzYFyvibyPhZn+qH1BBTI3MxNTITIYKDGKjSsbhO5N/iXdaX8f6jrWYGG7AtMgO4rmtvymlcMzIMzC/fA+sjL+DsSUT0BCd3afwq/4yMVyP70++Gu+0voakTmJWbD6qgrkP6qsIVuGiif+NZa1vYFNiA6ZHd8SY0rp+aHH/CDsRnFd3KVa0vo3325bBFUI5x5ZOwIzoTogGCjcj0U5lC/GDKddgactraEpu8r2dUg4mhRswLTIHIWfbsWU7zhKWmZ8B+bofdOQ6I4Eovlr3QyyPv4kP2lbkHWi6pv09vNr8XNbyQgWYEhVTwk0Y+7sAMCLkMbW1T2IwmtCXrArWYlFldkBn3G3Fw5vuMG7T6jajHF4jzu2SHucdo9zGhw0ZD2+6Q/y9HVRzXJFbQ8VU6oRxbt13say181rpenzW0FeVwRrMjM3NI4iRiIiIiIiIiIiIaIBoy8MBxyleO4pMzZgPfcKXgdt/Y17hT/8NfO47WYsn1ipcdbLC+bfIP7e//0djZDlwzanZL8musgSjpel3/gP907Ot7e/F9tIrAFT4HIdQOjQmYxwK1OgJ0KURoL33ONDrPvoq/l7xGXG7m57RGFcF/ORY+wvWK4RQq1HJT1DhmsdKZhk72d96EeHl6HQwWkJ4kxtgeINPqrIWevxUYK0h1O6t56Fbm6GinWNlZo1VOP8AhaseNh8Du/zURfOvHYSCXseQeXn9SMBxPCZ0FILRrCGNeQWjMUSo0FSoBHrRUcBTd2UXtsehP/kQavSErKJwSOH+rzvY5af2cUllpUBJUMG94ivySgedDBXka96DhSqvAn7xT+hvWcZNrFkJzFiAPevlc8MrHwL3valx6JzcJoTNR7MQPlvW8rFxuWeArKSiGvUd5rDRRAr4sBGYPKJnu8zVlKXH3/ntjxFtB1Q4Cj13EfDaU9mFn6yG3vQpVPXIrKIrPqOwsbnzfsvkzXXA5laNqqi/c5HfQCLcdg3w92s868vnfKPGT/U/XC/EvjUZSJOxp8Pem4Sx8bwu9TZ/n85g70T2mFv9kzM7+7AZn5HtPU3hd2conPP/5L/iQ69y8f7PHQQD5t+T7/PQP38L/O0q6z8BAFA1EqrMMu7Ydl8m3fsTUdHxjpmIiIiIiIiGBCkYLexEi9ySTpGA+QMuU1iG1HYAGF86Ee+2vpG13BQg4BXUJYWdmTSnmozLR5eMx+EjsmdnzFdZsAK7V+6f83YhIUQloRPW7WxhJUeOOAUBlf1RyLL4m8agCCkQzIV5IENtaJTxZ7cy/o4xGC2pk0joDpSo3p/QSv+G+sgsY/2bk41iMFo81YLKYN8Gw8SFUL/ZsQU4tFYelEb5UUphSmQ6pkSmD3RTqI+igTIsKN9zoJvRy8RwAyaG85ztr4jKg1XYtWKfPtdT6oSxY9muBWjRwAiqEGbG5mJmrPghlLWh0VhUlR1YlA+lFIIqhKThGu51XZfKTUGnvcqdEGbH5mN2zDL7k4dXtz5nDEaTQp6IBrNNyQ1iAFZNjkFFuQ7XlPq2o0vGGfu28ZQlGK0Af38J137eMdFC/38o25LchOebHjWW1ZVOxqzovCK3iIotoIKYFZuHWTH+romIiIiIiIiIiIhy4gzvSezUWd+HFoLR9MO3QhmC0QDg3H0ULrhVI2V5rHLzcxpXnawRyAgYWvWp+TlW/aht6+n7bvZoeYbxHmMjYpWdL0vbQvAABqMV2vHnAn+9steiKncLLtrwv7hixIXiZn96VuMnx9qrXiEF7AkBLkYjx/tbLyJMXhfvep7ZYZmsqSTsvz3bOXXEmdDXf99c+OSdwCGndn/77cPkYLRECnhoKXDYjvb9SSGN0zweqev2NmD9GnNhXQGD0coqGZ7VT9Q+x0GbgtEA4KG/AaddZCxaMEnh+jMUvmgJfqiJAbp1K/CEeRwEAKhFR+XUXup/as/D7aE8PcIQT9xF4daXzGv/6dliBaOZl8cSm80FdXmOIS2vQX3iMbF4xfrewWgtYjBaV5BoBcMeiXpSB5wIbQpGA4BHb+vsS2eIlir87RyFmXe6+PHd5nPR7S9rnL2ob8FosYxAIt/3Z7a+kMQr5Lonhg6TiRSMlr7/bzJPMswQ4t5UJNYZ2PjSI+YVXnsKmL84a/EX9nbw4vsufv+k+Zy0bnPn/dmhc8zV+g1G0/f/WWp6b17nIWswWuEmrieivhm+U5UQERERERHRsNKWMoczhZ2BGXwUdczBaKbwMtsL/FIQgSlAwCuIozX9oNAHKUQtFij3XUd/CgqBJwltGTQE+WdUqsLGUDQAiOTwu7Qzf4AuHSuA+ffcmjL/HqV22uv3f0xIpJ+pbb9EREQ9BaXAU9d+XTeFqQFygGohRYUQ3HbdhpRO9fv+iQppY+ITsaw252C03AZsSn1JqW8bdiJwhMeXhejbet1PmPiegXIIeWzT3UjqpLHswJrjoKTBQURERERERERERERE27th/hm6qqiRC1e/KxYFAwpz6+x1N7UBazZlL/9UmAt0Ys+mrHrLXnmmcZOtxcpxgGofz8n4YnRBqenmCVsWtL1q3W7NJmBLq/2p3cr15vKGjpXG5VnCUWDGAn/rRoUxlq1dzzMTwpvcABBieINvwvECAPq9t3t9P6ocGFclV/Xou95PfT/dal5nYm2PkMZkAvqtF6AfvR163SporYGmjXKloyfJZU6Or/XGKnNbn/ybIU+8qJ+917rp5Fp7v6AmBmD1MiBpmcStYSdrHTRAdj1QLNJrtl1b5k2Qq/jHK7rzPNHPmtvMy8ukcfD5BBUBQM0olLvNGJ00j0NakRF2KwWbRHXXOyFl7GcR9TLdcj1a/rp10/1myNej3z2u0Z7wdy4SAw1Le/aHksAKe3u6jc/jfDMuh2A09q3JROpnp6/JzebgUOvnIdsptfuhcuH7b4tFCyfb6318mXxO8hOMprUG3vmPfSdp0zwmqA9a3kmI8J05osGCwWhEREREREQ0JLS5cePygQpGiwhhGaYX/20BW7VBIRjNEI7lFdTVIgRqmdc1jygrC1T4rqM/SYEnUkBKmvQzkn5fgCXkTghx0DBPbeoIAx9t+87leJECWkKqBAGYQ9+8wvT8MIW3AfZ/FxERUU/5XtelACMpQLWQpNAmIJ/wVKKBtTGx3ri8IlCFEqcwg4O0EB+Wa/9cKSWWSQHCuUh4nHdMpH/bUNXmxvHEZvPg7ergCOxcvleRW0RERERERERERERENIQM82A0AMDCg8zLXRf6jhvEzb60j/fP5oTrXLhu72cvjeb5UlHb9chIJ5PAK4971t1tVB1UqY8xhT5e0lf5BoeQ2d5HAzWjsxYf3Xw3xiQ/tm76qJzLBwBYYX4kivrEKn9tO+Q0KL8vPUvrxZs7X9C2BaOVMLzBt10OkMv+fHmvb5VSOGexfA664gGNXz9iHveZ5nku+vgD6DN3hf7S3tCXngp90izoy78MNAoHHwBUyuEKSikgYB73aRQt878u5URNmS0XvvYU3KsugE6ZJ1Gs9jht1EY19AVHyCvM3wdq4nQfraRiU8d+US6890/dgWdL9pDPPR1J4L9+6yLe0b/jTsQAEdMEhOXVUJW1ee1HdYUV1Quho1c+uO3fmUxptAlDdLrbVcFgNKJeZu8ql939B+hPPhSLF0+TN33pA2D691y8udb7XCQFo8V6BhL9/oee9QDoDBsaZUmPlIya4L+PxL41GUnX5q6/gaZGczGvS9mO+JxYpG/9tVh24i4K1VG52l/cp3HjU+b7MzHwNdzjmzUr5MozqCPPsq9gO98wGI1o0GAwGhEREREREQ0Jcdc86iAcsHxa1o+ksIxWtzlrdidbeEZNyByMZtqm1SPkKpeggOZUk3F5LCDMZlhkISHwRApISRNDvCzhJmLwglCXPHmX+QN0KXhN2ocYHiHUYw2P6GNwi9ZaDFez/buIiIh6yve6LgWnSUFrhSQFkgKFCR4lKiYpGE26F7ESX/bJLRjN1peMOuYB3YUIRkt6nHdMhlsw2tObHxTvrw+oPhoBlcPgeyIiIiIiIiIiIiIiGnbUN68Vy/QVX4Fu/MRYdvYihStPVJhkydp4eTVw31s96tMajcLj15pY13Opf9/k0eIMPgLPfK/nty7yRZVGoK59JGt5WLfj8fcPwOKWJ8Rtj79ODrVyXY2Vn5rLpnVkvzCtLv0/4KizgLIqoGokcMKXoc6/0vsfkBYRAqpSSaCjHegQ3uQGgBDDG/xSgQBwxJliuV69rNf33z3cHs54/i0ab62Tn/3K56Ku/V15PvD+0t6Fd/0B+p+/lXda7hGukFMw2uAY2ztcqS/9VC687VrgyTuNRTUew2irW9YAWzfJ+/3Z3/00jwaAWnwMMMsSUvTGswCAcVUKvz5FPv/84xXg2scGKhjNcGLrS+jrhAYAwDQhGG3FemBLa+e/VQpX6tkuVSGHRxJtj5RSwGnfFMv1VReIZY6j8JX95XPRh5uAz/3RHhILAC3t5vNVOhhNr12ZFVArGjcFKpj7ODQVDAJjJ/lbmX1rMpHGuKZfBGsS+mZeffftkCqrBGbtYi5cswK6dauxqCKi8OTF9hijL/4/jfc2ZJ9zxH5N6bbfq778PGvd3Y79ItT0efZ1bBMghPnOHNFgwWA0IiIiIiIiGhLa3bhxedjxMbtjP5Be5E/qZFbIhxRoVqrCKBOCyOJuS04BawDQkjJ/qJjLuoMlGC3omANPEq4wfVQXMcTLEm4i/S6lujTMD4WUEIwWUiUIwPxQJ24Id5COl0L+G/xK6A6kkDSWSWFsREREmYJCkFlCCD7rLnfNAUYhxxy0Vki2UFUpUIhosNqYML+cUptHMJrU55VIfVvb31g0IASj9TH0F/A+7xjJychDTkon8cgm84DtqFOGPasOKnKLiIiIiIiIiIiIiIgGoVilXKa2g9ewRtYBIcsz2cf/ZVyslMLXD3Tw3s8DmFsnb37LC9uevWxtA1LC+/ndYUQP5xgaM26qr9VUV7iHVZ2PdSgnqq4B6gd/ylpen3gPj6w+FNPCjeK2UlDDR1uAuPAYsL5jVfbCWbvAufg6qLvXQd35IZyv/xLKdsxnkoLRACDe3BmOZhIIQjnbwTmkgNT8xXLho7f3+tZxFH55kv159q0vyc9+NwrzdNXEAN3SBDx/v3mFe24yL4+Wex9XuQSjRThes19JgQ9d9MO3GpdXe8ztXfPpUrlw0VGdYRM0aKkvXiaW9TwmTlnoce55caCC0Qwntr70bboCY+uFYDQAuOv1rmA0y7yF3e2qYAANUSY1Zze58Jl7oOPy+Lm9G+znopdXA8s+sZ+P5ECiri8e/Yd1+176EjLt854OJQxGIwNLMJrWGtgq3HPyumSk9j5GLnxOuEcCMHucwv/+l3xe0hr4e8b9WSKp0W5+fQ2xnrdWK9+Q29SDOvYc75USljRX3oMRDRr8NI2IiIiIiIiGhDYhgCLseDxV7ie2UKjMADMp0CwSiCEivPSfS8Bad7npAaZACkYrC1T4rqM/hZR5QEhSW56UwvKztgQvSL9LqS7pcZAUEqGU8r0PV7visZ7Pv6Gv4RG27W3tISIi6kkKMksKwWdpUoCRFLRWSLbw3b4GjxIV28bEeuPy2tDogu1Dyg6z3QtJpNDfVkOocK6kwEUbLd4BDD0vNT2FTckNxrK9qw4dsOBxIiIiIiIiIiIiIqJBZd/jzGE1E6dvFwEmKhAAZsoBMXr1u5517D9Lfvn15uc1bn3JxeZWjUbLo9d0MBpefsxzfz2pOp8v4O9gCR0AgKqRwLgpOe2bfJq9q1g0q+MdseyqhzXaEtnP7laYH4cCMASjVY8CxkwG0HmsK+mleZuoZdxcvFl+sboknPu+tnc7LBSL9AfZx8oeU+2/zx/frXHNIy6WftT7OHJdjU3CHHm1MQWsWQG4QoqjpKLGe51cwjxsgXzUd9Pm2kNBn7rLuLgiLGdvAMCYphVimZotH980SEybJ5f94zroriDMmpjCNMvchC+vRtZk6YUkB6Nld7T6dNyNGAcA2C3+grjKu5/Y2wQAsfQ4+XIf50mi7c3MneWyVApYawj97bJwiv2aBAD/esV+LmoR/nZjXV0WvXqZfQc9KK/7Ldu2c3b3tyL712Qi/R1oDbRu7fxbMuF1ycxyTwaPc8LuHvdn3/6HxoNvayRTnecm6Z4MAKq6Xh3VHe1Akxyo3q2syl8gbKv53crOOob/Z4BEQwWD0YiIiIiIiGhIiLtx4/KBenE7KgSaAdkBZlJ4RsSJiS/9A/4D1tJafAYFaK3RLASjxQLlvurobyEh8EQKSEmTwuOsoWJS8IIYjGYe4KIsM8LK4Q6999HuxsXgBdsxFxECAr2OGS+24JeoJcyCiIiop3yv61IgqhSgWkiOCogBvH0NHiUqtkYxGM0yKjNHUh82nkfor9TvzSUIWpLMI3BxuASjaa3xYOM/jWVBFcK+1UcUuUVERERERERERERERIOTipYDR3w2e/kJXx6A1gwMdfLX5cLbrvUM9zhnsf3l15Ov19j1py5efF9epzYG6FuvttZjNH6qv/Xm7wPMWCAWqxO/BhXs/0m7tkdqnPw7+s7Ki8Wy7/1L48ArXWxq6X38LV9vPh5rkxtQ7W7uve+TzocKGoIPc2ELqIq3AAlhsqZcQrAIAKBsL7I/eAt0RqjBrpOBxdPsdX7tFo2dLnPx+ye3jQNtagNc4bRWEwP0PTf5a3BP5dXe6+QS5sFgtH6lyquBI8+UV0gmoO/5v6zFjqNQaRnGPm3Tf+TCw87IoYU0EFRlrbVcf+Mw6K2d15mLDpH7Pq4G3lhb0KZtq9vVcpCRaZzNwafkvS/lOMDCg7Bf6+PiOj+9p/Nk2twm11OWbleFj/Mk0XZGjRgHHHSyWK7/fZNYNqlW4cSdvUOIbnhSDnsVgxZLuwIe7/2Ttf5uFTXA4Uv8rWtyePb9uFGI/WsyEZPR7IFavC6ZzVssFukbL7NuuvtUYC+P7PpDfuXi+OtcxDt8hue/8IC9wrTPnAdV6uN+q8USjOYn7JqIioLBaERERERERDQktAkv1EuBFf0tl0AzKTwjGoghYgmXygpYE34G29b3FxTQrtuQQtJYNliC0YJC4ElCCEhJk4LAbCFeUpkUCiYN7LM9RhL34fNYAfILj7AFm/lhC1aztYeIiKinfK/rUnCaFLRWaFJ/r6/Bo0TF1OG2Y0tqk7Esn2A0ZRs0YiD1R639c0cIRutj3xaQzzu2wMXhEoy2tPVVrOv4wFi2W8W+qAxyYA8RERERERERERERUZq64NdQX7gMmLkzsGBfqEtugDr+3IFuVtGoxccAc3aXV3j7Bev200crXH2y/aX8lZ8CX/2rNEElUNH2KfSvv+nZ1izjPd66Te/DcaCuuh847hxg0gygZkznf3P2gLrgauD0PPZNvqkLzKF3u7S9bN3umZXAtY/1fn634lPzuvWJVdkLT73QV/usrMFozUCHkCjB4Ia8qAuukgszXopXSuGerzmo9hhWnHI7A9LSIXu2F/Croxr45+/8NnebSh8v0ecSlhdlMFp/U+f/Elh0lFiu//uL0C1NWcvjluFPDfFl5n395G9QI8bm3EYqPvXTW+XC158G7rgBAPCFvR384gS573PO/5ODiPqi1XL8lWWOcZuxAKqPAR/q67+EA43zGq8T13npfY0WS7ti6XYxbITISH3nRrnw79dYQ6r/dJbCd4+w34ede7POChpOE4MWSwG8+qS1XtSMAcZMAvY7Aeq6x6FGjrevb6FGT4C6NDuQNEuo/ydZpiFICX8DWgNN5rG0AHhdEijHAY6QA4T1R+/L2yqFe893EPBINLr7deCWFzUaLa9MpoPR9I8swYnl1cAOu0Gd/79QZ33fvtO01uz+fbeyKn91EFG/YzAaERERERERDQntbty4POxYptrqRyFVggDMMwdmvvwvhWdEnFhOAWteIVetppmdDJqT8gd3ZYEKX3X0t5BjDjxJCgEpaVJYgi3ESyrr0O3G/cnBCPJDJGkfme21hdvZjhWpzO8xIZGOuQCC1vAIIiKinqQgM6/ruhRgJAWtFZoUYNvX4FGiYtqU3CCWFTYYLVtSJ9ChzaOlbAHXUmia3yBoGylwscSxDTgfHsFoDzb+w7hcQeHAmmOL3BoiIiIiIiIiIiIiosFNBQJQS74N54Zn4Fx1P9ThSwa6SUWnTvq6WKafvNNz+xMWeD9XWr/VvLw6CjjP3+e5vdH4qb5XVbEKOBdcDefm1+Hc8UHnf9c9BnXcOVDSy9RUGJNniUWHNdt/93e82vv53QfCI9H6jt7BaOqcnxTm91oaARzhlcx4M9DRZi5jcEN+LMeKfiL7XBQrVbjrq96vzLYlgAfe7jyWPrG8C1/dZJ58ylO5j4mpSsL+67MF8lFBqEAA6pLr7Su9+HDWolmWfLOGjpXmgoUH5dAyGlATp1uL9RN3dH990cEKEWG+z/fk4Tt90iyEGAE9AsjSFuzb9x2OmQQEAljQ9oq4yl9f1GgWLoUlbjtC6cndyxk2QmSigkFg90PkFdYK1xYAoaDCj49x8MXFcp/X1cD9b5nHw0nnlLJS+z2g+p9/dd5L/X0ZnB/9Bcrj3OnLnod7r5NLyCxtP6R7PtcFtjZU/IhmAAAgAElEQVTK28Qq+69NQ5yaPlcufPpu67ZlYYW7fdyf/esVLQZWlwSBaAmgUymg3fxuKcZOgvPvj+H89gmoz3zF/72/FGyOrlA4IhoUzG9wExEREREREVn8ft3/4JOOdUXd5ycda43LI5YX6vuTUgqRQAzNqS1ZZa1ZgWbmaQsiTgwhVYKgCiKpk1nlmaEbmfVmakkJI8Uy13Pl9WKBcl919DcpdCvhWqaQgiWETghXAOyhafFUK8qDmR9wmx8E2UIixGCVzGPF8juOBORjXapfCorzSzrmIoEYB/8REZFvIUe4rgvBZ2lJ1xxgJAWoFprUR4i7limpiAaZjYn1YllNcGTB9mPqIUv3QYBH6K9wTxLvY+gvACSF806JJXDRNsvmULG6bQXebX3DWLZT2W4YXZL/DJ1ERERERERERERERDRM7bSnXPbnK6BPvxiqTH5xeEwlMGM08O4nue+6JgboD5fnvuH0+VCxwTExKHmYsQAIR4G27GeK+7Y8jnvLDhU3/c8HwLsfa8wY0zl+bWOL+XneuGTGGNe6hvzb24NSCjpSBrQY0rRam4GE8GI1gxvyM2OBXLbS/Ax0Xh1QGQG2CO/Mpy3rOj+t/NR8DMVKgaoNeZyLAGBUnfc6OQSjKQajFYWqqIGu31E8tvSffg4sPqZXSMK+MxRe/TD7GNqpfCOq3c3ZldSOhYrIYyZokBk7pTMsRRo7svTF7i+VUoiVAnHDkLf1W4GX3tfYZXJhx16b9pUW073HgKu6+j7vT4VKoEdPxOJPnxTXue9Njd2nmP+dZT3H/lTU9Lk9RMOV2nFP6OfuNxeuXenZr91vBnD9E3L5n57VOHlh9nI5GE2J10YAwA67WduTDxWrgK4eBWySxz/mFDJL2w/xPScNNG0yF5VVQQUC/dakIW/+PmKRvu47wNFfgLLc7+42BQiHOsOpJc+uAk7Y2dzfqol23Yev/7Az4M5kBMfAEg1njCkkIiIiIiKinK3vWIe17e8X9b+kNn8CVupEivyv30Z6mT8z0EwKu4p2hUtJoRvZAWv2kKvWlL+gAClATcGxhoQVU1CZA08SwnGQJgWV2IMXLMFoht+dziMYTdp/ZnCZFGRWqsIIKDnfvr+CW6RjzvbzJCIiyiRe14Xgs+5yIcBIClAtNKmP0NfgUaJi2pAwv2lSGagWQwvzk91HtvVFbcHFfvvO+ZDOO7bzitT/H0oebPyXWHZQzbFFbAkREREREREREREREQ0Vqma0tVyftx/0lo3y9krhB0cpOHnkf9RE0fnCfy4CQagzv5v7zmhAqGgZ1BnfNpZ9dsvNmNqxyrr9rEtdPL2i8zleo/AYsTbV2HtBAQJhukkhVfEWoEMKRmNwQz5UtByoHmUuXPoitCGgLlqq8J3DvU8+P7iz8xhaLuRtNIwEcP33/Da1FzXex/GWyzERZTBasaizvi8XLn8N+qdn95pg7dx9FEZnZHIGHODSpeeZ6yjkuYj6nSoNA6MmWNfRbz7X/fUvTpDPPQt/5uKRdwo7BiVumZc07GZcj/ycl/wYX48piQ/g6JSxeOlHwNsfmf+dZemwtkBQvpYSEXD058UifeOPPTc/dp69H3TfW9nLXFejVTinRNEGvPyYWJ/qr6BDr2DjEIOHyUQ4/rUGmhrNZeVV/decYUBNmS0XdrRDX3gktHQfDKAqqnDhwfbz0oZm4LU15rLari6D/sd1chu//HNr/UQ0tDEYjajAlCFJVkuJ8EREQ4RrSFE2ne+IiIgGQngAg9Gkl/kzA82kF/jDTrSznj4GrKV16HbPgBEAaE4ZZioEEAuUwVGD46MCKZggKQSkpElBXpFAVNzGFgZn+t2JwWiW/pF0rGT+TqXfsS04AvAf0perzGPZb3uIiIh6yve6LgWiBi1hoYWU7qtl8uqTEQ0mjQnzCO7akP1FFokUBmzqI9v+VuzBxeaBj62uvyBoGylwscSRB0kN9WC0DR0f4+WtzxjL6iOzMDUys8gtIiIiIiIi6juO0SOi4Ybj84iIaLBS379JLlz1FnD3H63bn7zQwYPfcHDmXrld12piANasMBfuegDUH18Ejj8XmLcYmLs3cNRZUFfdD7XoqJz2QwNLLfmWcfmI1EY8/f6+OLv6Bev2l97R2YeSgtFqUpt6LyhUIAwARITnna1bgYQwFoLBDXlT3/qtXHjPTcbF3zzEwW1fcnDqQvv55401GiulYLQRLrD8NZ+tzOAn/Kokh2OCAUJFoxYfA0ybK6/wwF+Ad1/u/nbaaIWnLnbwzUMU9p8JnL1I4aEzN+DYrXeatx83tcAtpn433v4707/6RvfXp+9mP+d871/Z9/990WZ5bSCi470XFCqUr6ue91bMEFf55yvmz2pj6bFEFTX83IPIQlWNACZONxcufRE6aX9nqDTk/ff1xpref6dSKBoAlL16n1imfvQXz33lzaP/rti/JhNHeCdOa2DrZnNZf4X7DSPqnJ/Iha8+ATwp9H27/OhohZvPVphuGbr8ywfN/YeaWNdz4Ft+Jbdvzu7W/RPR0DY43nYmGkYcQ4cpkfAOJiAiGsySyWTWMtP5joiIaCCUBwduZoaIz7AMKRAg2hUuFRUD1nq/+C8FrNm2MWlJbTUujwXKPbctlpAKGZdLASkA4GoXcbfVWGYLPyt1wlDCRySm3530Yo0UEmHbf2bwmBRkZguOAPyH9OVKDGoTjn0iIiKTfK7rgBycFhSC1gpNDB5lMBoNIRvFYDRhRm0vOQxKlPq2CgqlloBrKRitzY0jJcw261dSOO9IAY7A0A9Ge3jTndAwD6w9qOa4IreGiIiIiIioMDhGj4iGG47PIyKiQauuwVqsn3/As4r9Zirc+FkHi+xV9VJtCUZTB58G1bATnG/8Cs6vH4RzzUNwLr4Oau4i/zugweMz5xkXj0xtwG/XnoPysLzpY8uAtoS2BKM1bvumdiyUFGaWDymkKt4MnWg3lzG4IX+WUCL9n0fFsuMXKNz8eQfXnSY/577vLY3VjeZnwvXOR/7bmMnj/AkAKLEc4JkKefySJ3X4Z+0rZFz/6kcp/OIEBw9dEMANSxws3mAJkClUOBUVj0cwGho/6f4yFFSoHymv+twqYEtr4cahxC0fiYZ127ZvSkqBkXUF2afqCioan1yHndpeN67z+hrzttuC0aoL0haiYW32bnLZyjc8N//eEfZxfve91ftc1GIJRosufUou9NPnyZOa4FF3LiGztP2QxrhqDd3UaC4r53XJkxTW2EU/d7+1XCmFU3dz8OJ3c3/uURMFsElIswaAvoSizd/HvLx2bP51ElHB8YkpUYEppVBS0vsFmuZm72ACIqLBLPM8VlJSwpkZiIhoUIg55ZgcnjZg+xcDzVK9r51yuFSs1/+z6/EXsGbbt4kUjFYWqPDctliCjjmYIOHKT1za3TbxhX9bMJqjHN8hd4AcjGALRpPCHTLDIqQgMyn4rLt+Kbgl1SIGufkRT+UeNEdERJRJCjKTAorSEq4UYGQOWis0MXjUR1gt0WCxMfGJcXlNvsFoOZD6tmEnAkfJjyhtocBS2JpfCSFwMeQMz0FSzckmPLPlIWPZ6JI6zIntUuQWERERERERFQbH6BHRcMPxeURENGhNnwfUjJHLX3kc2hDwaXLYjv6vbTWBOBAXngsxUGZYUbsfKpd98C4O38E8HhAAtAYOv8pFU5u5vDq1ads3Iwr8UrMQjKbjLUCHEIxWUpxJ4IaliTPksuftL+ADwKFz5PPPivUQw/XGrHvJs26jYAgYNcF7vVyC0UrlyceoH+x2sLVYewTS6LUr5cI9DsunRTSAlNfv7NO10M1bur/16vOs2lCIVnVqE4bfKe2ipOcYmbFToAoVwN6jL7ZH/PmcNi1LTwBfXlOYthANY2r3Q+TCde95bn/MPPu56Fu3a/ztxW197WahTw0AZa8/LBdOnePZlrxZ7hUAAKN99LdoOyQd+xrYuslcVMHrkqf5i+33L+tW+aqmPJz7c4/qmALWWPrXs3bNuc40dfTZ5uXn/izvOomo8BiMRtQPysvLe33f1NTUpxfRiYgGktYaTU1NvZZlnueIiIgGQokqxVnjLkRABQasDVI4VGaYlhQulQ5Wk0I3surxEYwmhZ711JxqMi6PBQbPNV4KPLEFqNh+PlKIXVouwSd5BaP5PVY8QvTE+oXgtRSSYviDH1J7vH6eREREPYUc83U94RWMJgYYFWewsN/rN9FgtjFhniVtRGh0XvXZhiRkPgeRQszy7dsCQKvbt5fcpcDFEiHAEQBcLb9sMdg9sfle8Vx6YPUx1oA6IiIiIiKiwY5j9IhouOD4PCIiGsxUMAT1lV9Y19HfP9lXXV/cO4dgtOVPyIV1Db7roSFg1wOB0RPF4u8+eypqLY8XH1sml9WmGru/Vhddk0/rZBGhUfFmoENIlQgNz8maikE5DnCQcK5JpaA/eMe6/aRaWzCaxkZhGEjNf+7028Texk2BCvgY25xLMFoJj59iUhOmASedL6/w6O3QScu4J0swmpo2tw8towGxx+Ge4Tx6yfzuzyYvPEhhcq287qV3FG4cSlw4DMO6rfcYn0IGy/boizV0rMhp07L0uLuK6sK1h2i4WnyMWKR/9FnPzXeepHDmXvZ7sFNu0Ljigc5zUovllZOyVvPkrFh0lL8+T57U9Hn2FXhvSCbShCNaA02N5jJelzyp8mqoL1wmr2ALLsvwixNyC0eriQH6ivPEcrXk2znV18vexwALD+q9bOf9gH2Ozb9OIiq44EA3gGg4Ki8vx8aNG7u/TyQSWLt2LcaPH88Z3IhoSNFaY+3atUgken9SWlFRMUAtIiKiweLAmuPEcK1iqAhUY0Z0DsqDVQPWBkB+Yb9nmJarXcRdczBaOhDAT+hGSqfQ5sY92+QnKEAKTxtcwWjmQRy2kC9TiFmaZ/iCE8NGw3JT8IkYjGa535OD15qhte7eVvo3eAa7Wf59ralmlDj5DYrJN8yCiIiop5AQOJRw7eGdUiBqUAhQLTQxvNbS5yAaTDrcdmxNbTGW1YZG5Vmr/2cc+YbsRh1LMFqqj8FoUuCicP8xlHW47Xhs8z3GsopANRZW7FvcBhERERERERUYx+gR0XDA8XlERDQUqINOBpwA9A9PN6/w1F3QH7wDNWmmtZ7aMoV/nOvg+Ou8w0Bq3nzAXFBWBVRakkZoyFGOA9z4HPSR44zls1feiVf/9w1M+P2OOdddk9q0bT8zd867jUZRYaxlvBlwhHCIXEKwKIs6+RvQD95iLNN/+DHUZX+2bv/LkxS+8bfssZ+vfAhsNg/xRU1KCE7Y5zioeXtDX3WBuXy8zwCiXI4JBusVnfOV/4H7wbvAc/eZV3j6HjkwQQqG6EtoAw0YFQwCP78deOAv0D//gnmlT9cCrz8NzF2ESbUKL3zHwagLzX2ee94AXFfDcfr+GWabJRitF7/nJT/GTukMndEaDR2rcto0lh5LVM4AGiIvKlQCvesBwIsPZxcmE9AtTVAx+2eIv1+i8N6n2hom/It7Nb66n0Zzu7xOTBgHqE6/2Lr/gliwL/DyY+ayQp7baPiwBqNtMpdV1PRfe4YRdfLXoZu3AP/3s+zCxo+hW5uhovL437TP7anwrdv9T3ZVE04C771tLqxrgKoa4buuTKo0DPzsNuDpu6GXvgTVsBOw3wlQDKYmGlQYjEbUD8LhMEKhUK+BClu3bsXKlStRUVGBsrIyBINBOI4zgK0kIjJzXRfJZBLNzc1oamrKGnQVCoVQWspOPRHR9m5hxT4D3YRBQQqH6hmE1u62QcP8YDPiRDv/L4ZmbXuA0CaEq2WSQs96kkLtYs5gCkYzB54khIAUQA5eAIBIIGrdn5/fQVp6Rq9s8gNqKfzOhYt23YawigCQ/w1eQWRS+wGg1W1BFfIbENgqtccjzIKIiKgnKchMCj5LkwOMzEFrhZbuq2Wy9TmIBpONifViWU2ewWjK0ufV0L3K8+3bhp0IHDhwDfdRUv/UL+m8U+LI5xUpGHmwe3bLw+K93/7VRyHkFCdkkoiIiIiIqL9wjB4RDVUcn0dEREPSPscCgSCQSprLX3sK8AhGA4AFE/3trmegVS9jJjIIeRhSlbXQlbXAFtPUpsC4lY/g0B12xH1v5VZvd6jV7IV9bKFBTBhr2fgJUCm8lM1gq76pswRfrLakfXSZPkoBhme/UigaYAlGmzzLflxNmObZHgBALv1+BusNCHXCudBCMJp+7SkoQzCa1hpYaw5GU3UNBW0fFY8KBoHDl0D/4cfAJ6vNK732FDB3EQBgRLnCgbOAh5aaV127GZhQgAyWeId5TEvE7R2Mpmzn0BypklLo2rHAhnWo7xBCAAVl6XE/FQxGI/Jl0kxzMBoAvPtyZ2iYhVIKFx7s4LFlcjj1xhbg7Y+A5jZzeQAplGohNa2A5xaJOmwJtCkYbcQ4XwFMtB2yBaNtNffvVVlVPzZoeFGHL4E2BaMBwLpVQMNOnnWMKAOqovZ7sZ6q4x/JhdPm+qvEQpWGgf0/A7X/Z/pcFxH1DwajEfUDpRTGjRuH1atX93phPpFIYOPGjb1mqiQiGkrS5zc+UCYiIuokhV3Fe4Rp2cO6Orf3E7AWNwR0mZiCvDJJ4WllgcEz63RICCZICgEpgPyzLlGlYiBLmvw7MNVpfojsQH6xxhb+EE+1IOx0BqNJv7+oRxCZdCym68+X9DO17Y+IiCiTFGQmBZ+lJbV5UL0UoFpo0vW7zY3D1S4cxZdqaXDbmPjEuFxBoSaU/wxpst79ZKlv6xWyq5RCJBAz3rf4CYK2kQMX5QHnUtD1YObqFB7edIexrFSFsajq4CK3iIiIiIiIqPA4Ro+IhiOOzyMiosFKBUPQex0BPGF+/qDffgnq6M971jOxVmGXScBLH9jXq5aC0eYv9twHDVGLjwHu+oOxSP/mEhx30Sm47y3/kz+F3TiiOt75zfjCBzaoMZPMowg/XAFEhNC0Egaj9YWKlstTWq14HbqpEapCThnaexoQLQFa7UNVeqlxzecite9xwJQdgFETgPUfZpfvc5y/HeQSdsZgtIEx3zKRuBB+hs0bgBbzJGb9cT6iIlt8DPD3XxuL9CuPQy35dvf3h81ReGip+cx1+o0uHrnQQcDp2/1/m5BZG9YZCUeFPvYmTgc2rMPUxHtQ2oX2OY4u5jYDAFR5AVLhiLYDavGx0LddayzTt10L5RGMBgD7z/QOILrxKY0DZpnPR7FUsziVqqqs9dx/n+1xaGc/uiMjnM0QTkrUSTpiNdAkfNZguY+gDKMmAMEQkMyepFjfdzPUV/7HswqlFI6br/DHp/1NWlzTnH3P1V2X33svIhrS+NYOUT+JRqOYOJGz0RDR8KGUwsSJExGNRge6KURERIOG9EJ/a48wKVtQWTpcyk/AWqslYK33vr2DAqQwgVhAGJAzAKQgs6ROwtXmYIJ8gxcAf7+DNC0PrxHZ2tAzfEwKIrMFqwGdQXLSz8zvsWNsWx9+pkRERGlBZZ6jJaGzH4r2LhcCjIQA1UKTgkk1NNpcn9NUEQ2gjYn1xuWVwRrP4GCJ7YlHZi85374tAEQd82yOralmz21tpPNOieW8onPv/g+4V5ufwwYhGG9R1SGIBjhbJhERERERDQ8co0dEwwnH5xER0WCnzv2ZXHjPH6FTKV/1XHuag5Eew9RqUo3mNpx1qa990NCjzvyetfy06/fA0bPbrev0VNMzXK+uH4KIpICZdauAdmE8Qag4Yx2GM/Xt34ll+ox50K486VVZWOH8A3L7/KDGFNJ44ElQDTtBBQJQ3/4tEMl49nri14Ad9/C3g9KI/8YwWG9AqNIIMHNnc6EUjCYtB/rnfERFpc64WC586RHo+LaxMufuK59znlwOnPeXvg9IiQthjxE33ntBgY89dfFvAABh3Y4JyTW+t4vprmtkRXVB20M0bM3bWy578k7olx72rCJSonDDGQ5KzcN4AQC/eUzj0XfN56QyYQygOv9Kz30XgqqshbrgaiAQ2LZw2jyoM75VlP3TECQ9M3RdoMn8WQOvS/6pYBAYO9lc+LeroJe/5quey45W2GGcv31W/+0nciFDEom2CwxGI+pH6YFXoVB+LxgREQ0WoVCIg66IiIgMbGFa6ZnppTAAAAing9GEl9J7BlpJAVWZWnwEBTSnzDORDaZgtJCSBwElhTAD6Wct/Z568hNylyYFoynLxyy2NvQMdJN+z36CC8TjsQ/BaFKomp8wCyIiojQpyCwpBJ91l7vma36+gU65sl3v+nJ9JSoWKRitNuR/JvVs/geKx1PmAf++gtF83CPlI+mazzslSh5EriEPnh+MtNZ4sPFfxjIHAexXfWSRW0RERERERNS/OEaPiIYDjs8jIqKhQNU1ACd/XV7h5Ud91bPrZIW3fmh/na3GNYQRTZoBVVbpax809KiR46G+8COxPNz0EW4b+Vv85jR/zyt7huspKcSsL+oazMsTHcDaVeayEIOt+mwvy7POxk+Alx+zbv7twxTGVPjfXbUhGE199w/bvt71QKi/vAn1/ZugvvErqBufh/PVy30HuKuSsP/GMBhtwKhTLzIXrHvPHAq6RghGi5QB1X0Zr0GDgaoeBfWV/5FXePT27i/DIYWFk+VVb3pGY1NL38LR2oR5ScO6R5hoIAiMmtin/WRS4+uBWOcJtb7DEgaYocztes+hoqag7SEarpRSwMGniuX69t/4queEnRXe/bH9HuyaR6RgNOH9pCKGEakjPgf15zegvn091BV3Ql33GFTtmKLtn4YYqS/e3gZ0tJnLeF3KjeUeW99xva8q6qoVnrvEwV+/4H3vZPyMCAD2PBwqyOfDRNsDBqMR9bNoNIr6+npMmTIFtbW1KCnhDB9ENDSUlJSgtrYWU6ZMQX19PQddERERGUhhWikkkegK+pBCM0KqBCEnZK2nZ8Ca3wCAVo9gtA63vbttmcoCOYz46GchS+CJ1H4pVMxX8IIl5C5T+neSyTaWJeSUiGFvPY+RvgSR2Y6jfCTcDjGELuKwb0hERP5J1/WEEHzWXS5c820BqoUkXVsBOfCJaDCRg9FG99Mee/eTxeBiy99W9zpC/9frfsdLQujfSgGOQ9Hy+Jv4oG25sWzXisWoCY0scouIiIiIiIj6H8foEdFQxPF5REQ0FKnZC+XCpf/xXc+IcoWJlveOawxhRGIQFQ0fM+Zbi52lL2DJ7gpBH29D9gxGQ10/BKNNsByP771lXp5LCBaZVdYClSPk8qUvWTcvDyv87Hif4XrJjQhkTqJVVw8VDPZapEaMhTr4FKjjz4WaPs9X3d1yCTtjsN7Akc4hiQ7gw2VZi/VaISSqrt53aB4Ncpa/db30xV7f7zBe/p13JIHX1/StKXExGC2+7Zuxk7POXQUxZQcAwKz2d31vUuFu7fqiuvDtIRqm1KSZcuHb9r5PTxNrFS46OPfrUEwLY2Vrx+ZcV1+o8fVQR3wWardDoEojRd03DTFCf0s3b5a3Kavqp8YMU5Mt56UcPhuKlSqctKuDPT1u2UckN5gLJs7wvS8iGtr64W6GiDIppRAOhxEOhzFq1ChoreG6rvgyPRHRQFJKwXEcfuBORETkgy2sqtVtQYlTKoZS9XzRX3rpP4UkOnQ7SlVYDBXI2q9HUEBLaqtYFguU+9pHMdiCCaQwA+lnZAs18VrHVKeGEIzmkT8fcWJIpLIDXlq7jhFXp9Dmmh8cScdIZv0mfkP1MsWFtgD+wiyIiIjSgkKQmRR8BgApnYKbOcC0iy1AtZC8+npEg93GpBSMlv8MxAryZ4aZ/eTWvgQXB8qMy1ulGSh9yidwUer/D1YPNv5TLDuw5pgitoSIiIiIiKi4OEaPiIYKjs8jIqIhbfdDxSJ9w6XAqRf6Dt6wddWrUtkvLKtDTvdVLw1hO+8H1IwGGj8xlz/+T0QW/gHHzPscbn/ZXlWvcL3xhQ9GU9FyaKmtrnmsQ04hWGSklII+6CTgtmuN5fr67wOnfAMqKI8rWbK7wu8e13j+Pfu+pibez15Y6IDGXMLyGKw3cMZPFYv0GfOgdz0A6rt/gKod07nwkb8L9fRDSCMNjB33ksv+dT30woOg9j4aAHDyrgp/fFru9Dz3nsY+M/L/fEAMRnPbtn3THwGh6XrffBYnNv0dv6n5kq9NJne83/lFuSUhl4h6O/C/gBsuNZc1fgzduhUq6u89oFMWKlzxQG7PTGKm8Xqj6qAcH2nFRANBCcdmq/wuHSJ8PyoX6sCToG/5lblw2SvQ69dAjarzXd9OdQrPrDSfm0IqhfHJdeZ2HHyK730Q0dDGYDSiAaCUQiAQGOhmEBERERFRH9nCoeKpFlQFa8TQjHCPbW3BAPFUC0qdsBiwlqnFIyigOdUklpUNomC0oCXwJOmawwykn3XE8Z5ZO7dQMSkYzWMfgRiaDLOZpsMdbEFkfsLdxPAIj7A8iS2Mz0+YBRERUZoUZJYUwk4Be2iaFLRWaAEVQKkKo123ZZX57ZsRDaTGROGD0aTZ9ICul1d6FMvBxd7986gj9W379rcnnXdKHPklhKEUjLa2/X281WJ+C2SH2AKML51c3AYRERERERENII7RIyIiIiIqPBWJQU/dAVj1lrFc33Ap1Lk/6/N+gkhlL9zn2D7XS4ObCoaAn/wN+sv7iuvoy7+Mqy+twwcbD8RLH8h11bhd4/TKKoHK2sI2NG18vRziZqBCDEYrBHX2D6CFYDQA0Nd9B+qrl4vljqNwx3kODr3Kxasfyvtp6FiRvbDQwVYMRhsSrEGIAPDiw9AXHgn88UWgqRFYvcy8HoPRhg0VDELv/19iCJ7+7onA9U9DzdwZB84CLjta4Qd3mseeXPIPjW/JubOe2oThd5Ge49366dhT4+uhAewVfxb//cl3cMmon0BLYTRdpia6UikrqvulTUTDkRo3FfrM7wF//ImxXF91IdQl1/uqa/5Ehc/tqXDTM/7Hww03m6sAACAASURBVMUM77ioH/3V9/ZERSeNcY1bxp5GzONVyUzNWAC97/HAY/8wlusv7An8833fAYoNliHNU0saERAmWlfT5vqqn4iGPsaxEhEREREREeXJFg6VDqOSQjOiPba1hV6lg7mk0K/s/VpmsQDQYimPDqJgtJAl8CQhhBlIP2t/oWLmdUx1umIwmv1jlqhwvKT3YQtYkbb1Vb/PYyeTLXTCz8+UiIgoTbquJ3QHtDANeNKVQ9NCjhygWmjSNS/f6ytRsbS5cTEUuTY0Ou96c5mjVgr+9ROyK/XP8w39TUsIIcu2+w/pPDUYPdR4h1h2UM1xRWwJERERERERERERERENV+qos+XCe26Cds0vrGYamctQtYUH+X6hloY2teMeUL9+yLrO6Id+i+cucXDuvvLTy+pUY+cX4+uhLJM/9UldQ27rh4ozCdxwp8oqob7xK3mFf/8fdDJprWNUhcJ/vufg9N3kY6O+Y1X2vusGMhiNwXoDyitYauUbwNKXgIdvFVcp+PFDA0oddJJcqDX0PTd1rqcUvn+kg4Nny6u/tS7/cSlxYe7RcI9gtH479rrqVQAuavwVPlk2AXu3PCmurrSLSYnVnd+UMxiNKBdqySVyoRDSKPnlibn1jcvcjPF6jgNMn5dTHURFJd3/tVretWMwWs7U166QCxs/AV5/2ndd00bJ56WpWGsuOPhU3/UT0dDHT4WJiIiIiIiI8lTilCKozMEc6SAzKTSjZ8iGLfTKT2hWTy0eQQHNQjBaxIkhoAK+9lEMIeHnCnSGqJhIP2s/oWJSOEOHbkcyK4hNeADt8YzIK1jFFn7nJ4hM+jf4PXakdmVy4KBUcfZBIiLyL+jIg3uT2jwYVbreA/YAo0KTrq9+Q2uJBkpjYr1YVhu0TK/WJ9v6ya5OoU0IRvMV+hswDzSJZw60ypEUsmw/rwyNYLRNiQ14sekJY9nEcAOmReYUuUVERERERERERERERDQsTd1BLtuyEfhUeGk1w8WHmgdbHdT8YPbC8VN91UnDRP2OQCAoly97FY6jcPKu8oC9hnSo1chxBW7cNqo+x+dvDLYqnPod5bLmLcB/HvacAEsphf/aRT6Gdmp/I3vh1AI/c/UbjOY49r8J6n+2a1/aK49DL3/dUgef2Q8rXsfEit7nkP1myuebV1bnPy5la5t5eaznmB2vYL98ZdRb427CuZuuF1cfl/wIYd3e+U1ZVf+0iWiYUsEgUC2M+etog+5o911XZVRhQg7ZhOWZ4/XGTIJi4C8NZlIwWlwYe+o4vFfLR+1Ye9DpCku/OMOc8XLZjnHDfRkAjJviu34iGvoYjEZERERERETUB9JL/fHuYDTvMICQU+IZsOY3fCPutsDV8qybLakm4/KyQIWv+oslaAkmkMIMWoUAMCnQxO868VTv36E0YEZ5JKNJx0p3iJ4lwCziRK11A3J4Wr7BLeLPMxDrv1k0iYhoWLIFniaFADTpeg9A7Df1h6gUbJpn8ChRsWwUgtEUHFSHavOu19bn1T0CxNrcuLien9DfqGMORpP6qH6kdAouUsayEkce2KKHSDDaI5vuEv99B9ccxz48EREREREREREREREVxty9gYoaufyNZ3xVc/gchcpI9vJTmm7NWqbGMRhte6LKq4B9jpVX2LAO+pl/Y696YJohHyLituLorXd31nX05/uplQAOPCm39f2GYJG3HfcERsihd/qio6FP3wl69bvWag7ZARhjGDpbm9yAI5rvzS6Yu3euLbXzG8AQKuXz3gGmDlviuY7+7XeBu/8grzBrlwK2iAaaGjcVmLdYXuHNZ3uNNz91ofw3vOQPGs+vym9sSmOLebua1MZt3/RXMFpddr1TE++Jq4d1V4pbWRVUYPBM5k40ZCw+xrzcdYFVb+ZU1ef28t+vqE419l5Q15DTvoiKTzi+W4VgtEgZ+9p5UI4DHHq6WK6vugC6zfw+ZaYpIxT2mW7YhwLOeO9K8/4ZjEa0XWEwGhEREREREVEfSC/1p8MypNCMzCAuz4A1nwEAGhptQhgbALSkthqXxwLlvuovlqCSZ7dLuuYAlbgQACYFmvhdJ7NeKRjBKxhNCl9L/26lALOwE4WjvB8Ai8dQnuER4s/TR9AcERFRT6E8Ak+lwDSv+gpNvH5b+ltEg8GGxCfG5dXBWgQsfW1v/gaA2ALM/IT+Sv3z1swZKHOQtAQulljOK0MhGK011YyntzxgLBsRGo15ZbsXuUVERERERERERERERDRcqUAA6ndPiuX6Mu/wGAAoCys8cqGDGaM7v68Ia/x4w2U4Y8ufs1cez2C07Y26+Dpg8iyxXH/rOKiWzbj3fAc7127pXj6l4z3ct/pIjE51TSS1+6H918baMcCoOv8bhHyGYJEn5ThQ1z5sX2n1MuhLPiNOhAsAJUGFhy5wMKdHxtqs9qV4YPURCOv23isffXbhg3z8huUxVG/AqR0WQn3/JqAyz4noTv46AzeGIfUjQ5+lp0dv7/5yQo1CueVP+fCrXcQ7ch+f0igMz6lJber8wnGAsZNzrtcPVV6d9TdR37FKXF+nxxxVVPdLe4iGO/XVy8Uy/d0Tc6rre4crnLuvv+tSdWpz7wWGUESiQUXqc8WFsadhvh+VL/Wln1rL9Y2X+a7rb190sP/Mbb++0RXA7fPuw6wOIeyawWhE2xUGoxERERERERH1gRSWkQ65ksKuIoFoxvceAWtCPSZS+BkANA+RYDSllBh6khCCUuIpc0CJ9Dvyu05mqEO+wWhSuEN3+F0fg8jEYyiHY6fXdkKYRdhHkAUREVFPIRUSy6TruhSYBgAhp5jBaObrXr7Bo0TF0phYb1xeGzJMmZ4Dv8N0bX1Qqd/aU9QpMy5vc+NI6ZTPVvQmnW8AoMSRX0KwDZQfLJ7a/ADa3Lix7IDqY3wFLRMREREREREREREREfml6hqAOfLELHrzBl/1zJ+osPTHAXx0hYNPL3ofl3z6C/PzqPF8+X57o2IVUH980b7SY//E1JEKL+zzb3y0bCLeXz4Ny1fugL3iz3WW14zp9yAideSZ/lcuYTBaIalxU4G5e9tXWr0MePdl6yqzxym8/sMA1l3u4MO5V+KNVTtjbvsb2fvb7ZC+NNeMwWhDijr4FKg71wAH5BY+AwBq5/36oUU00FT1KKhb3hbL9b1/6vX9OYvla9KmVuDeN3Nvg2cw2uiJUKF+HGuX0UerdjcLKwK7xV/o/KKcwWhE+VClEWDMJHPh+jXQKf9j6kJBhWtPdfD/zvbuK3efT9Lt4L0ZDXbSPWCrEIwWYTBavlRJqT0c7f6/+B5/O6pC4aELAthwpYOVP3Ow7nIHR7/2C3kDBqMRbVcYjEZERERERETUB1JoVXegmRCakRnE5RmwlkP4RktK+MAWcmhaWaDCd/3FEhRCVExBKVprSwid9wfVpU4YSviYJDPUQQ5Gs3/MIv6OvY4VH+231p9vMJoU1OazPURERGlBS5BZUghAS7hygFFQBfvcJr+k63C+11eiYtnYT8FoNj37ydZgNB/Bv9GAORgNyD+YMOlaAheVJRhN6P8PFgk3gUc23WUsKwtUYI/KA4rcIiIiIiIiIiIiIiIi2i5MmiWXrX43p6pGVygEP1olr8AXXrdLKhgCps0Ty/Xffw3d2gw0NWJkagPqkmt7r1BZ088tRG6hff0ZTLO9mrnAe52XHvFV1ZhKhbFrX5BXmDbXZ6NyUOo3GI3HzmChHAdqvxNy35AhMsPX6Ily2XP39woq2lnIM0p75+Pcx6c0mucUR02qsfOLun4+9gzH9oHNDxlXPbnp1s4v3PwmRCQiACPGymUb1splgj3rvYPRqt3ewWiYPj/n/RAVlRiMZn6XjsFofTTDck7YtB5oasypuuqYwpQRqjPk/NN18oq1lvMhEQ07DEYjIiIiIiIi6gMpLCMdBCAFAmRuJ7343x2wlkP4RqtrC0ZrMi6PBcp9118sIWUezJHU2UEp7boNGq5xfSm8ridHOYg4UWNZVjCaNGOFx3MhKVCsO/xO+L35CY6w1R9PtfieZcPUrnzbQ0RElBYSwk6BzkAfEykwTUEhgCIGo0khuAxGo0FODkYb3cea5U5vzwAxKdi5VIURUAHPvdjCeG33OzYJw31EmnTv0WlwB6P9f/buPE6Sur7/+Ptb3T1Hz7E7M8suyy7I5cEGEBGQQwE5lUMFb7zQmBhj1BhjPBOPBHMfaqJREzXRmOQXFcRbUBHxVjyIGg88OVxgZ6+Znt3t7vr+/pjt3Z6e76e6qs85Xs/Hgwc79a2u+k7PTHVNT/Wrv77789rV8M6cNeesvUQDEe88DwAAAAAAAAAAOs894QXmmH/BefJl+28zwdvc8F/hgamNckPh67qw8rnHP98e/Nn35a86Xv7Wm8Lj4z0Io20+Nv26Bf5u12nu0mc3Dc75t79G/qPvTrfBO2+397XxyAwzS2kgbRgt5XrojTMvSY5hNcrlpEObFLGwbLl8IfHr619xxXzEU9JjT3LatNbe1jUfy3Z9SjX22tEsjNbtKF8gvPb87e9ctOzofT/VxTM3zH8ws6O7cwJWMPeUl5hj/o+fmvk1I0etczpxc/I6E43XpT344Zn2AfRe1jCa/Sa+SOHkR0qja8xh//pntPR6Nr93TrrnV+HBLafJRWSSgNWEn3gAAAAAANpgxTJKB4Jm4b84Nsa6rHhX7UX/mcJoVTsUMBOHn8wdXYphtCgcUSkHQilJn7MVr0u73uKoQ/hJ2ajJ0yxmWGX/9q14RFIUYsF6xvZjxdrr96TaRmhejdLenwAA1CQFh0LBU8kOGOVdYf5doHokKTwKLGV2GG19W9tN+/OXNhBtKUb2xSZJ5/5JQr9H1CTFw+IlHEaLfawbpq8LjhXcgM5Ze0mPZwQAAAAAAAAAAFYLd+wJyStYobMAH8fSp/4jPBgIbmD1cJdeLa0/3F5h293SFz8WHhub6MqcFsjy/UncquPcUcfJ/f0npC2nJa7n/+YF8vfembxOHEt3hMNo7uX/3PIcEw2kjOUR1VtSXGFA7p8+K518brobbDhCrknAD8ube9377MGvfEr64FslSUMFp1tebl9rPleW7tud/hoVK4omSZP7Q0auy2E0t35xUemxMx/Rv935HJ2w5zaNV3fq8t0f1U2/uFB5VedX2E0YDWiVO+dx9uAPviF96/OZt/mR30t+DcxkfRjtSS/q6fW7QEusYFa1El4+zOuj2uGiSO5937VX+PpnpNu+lH3Dd/3c3uer/yX79gAsa4TRAAAAAABogxnLiGflvTdjV41BgKRoVtVXtSeeSz2n2arxThYJYyO58dTb75W8EVEpx4tDKXuMAJ1kB8PSrtcYdWg1jGBFIObikmIf2/GIlPNPiky0Eo+w5pP2/gQAoCbv8uaYFSqylidF1rrBPEfLEK0Fem2uOnsgsNxoss0wWpY5hKQ9tx2MhuWMP2OWWvz5s0KMUrNjy9INo/3v7De0dd8dwbEz11yg0fzS+z0PAAAAAAAAAACsIOc90Rzyn/tg+u38+Dv22GFHZ5gQViL3e3/Z2g3HJzs7kQA3Ppk+wEYYrSvcgx+u6O1fkJ72MnulalX6fPgNpw647y5pn/EGtMee2PoEk6T9niCMtuS4DYcretOnpMkNzVfucpgKS8AR908crj8nut+U05ueYkeFrv9O+mtUtieE0Sbi/SGjbgdmN4XP056267/0rZ89TNt+tFHX3vEkHVa5++DgqRd0d07ASnf8GeaQ/+wHMm9uQ5PLyybqwmjuNx6WeftAz2WN9w3x+qh2ualDpWPseH4rxybd+ZPw8iiSNh6VfXsAljXCaAAAAAAAtMF6YX8pntU+v1dx7d2NGjTGpayoVSmeTYx+hW9jR7Bmq7uCy0dyY5n20QsFVwgurwRCKVaATpKG2gyLLd52+I/OVrihxgqKecXaG+8xPwcrvpd2+1Jr8RYz6kcYDQCQUeRyyikcRysboaJQCFWyzw+6xYzgVrOdnwG9tK18jzm2rpDiotwESZeMeH/wPHnO+B0m7blt5CLz/LaV6K8kleNwcFGSCpF9bFm6WTTphulrg8udIp0/8ZgezwYAAAAAAAAAAKw27gT7Rfn6yifTb+hXP7L3cfzpGWaEFWnLadlf3C5J6zZ2fi4hST8HNc5JR23p/lxWMXfimYnj/pufS97AnbfbY0b4p21pw2gDhNGWrBOSv++kJo+VWBHc2IR0vwfZK9zx4wXX1Jx5jP2YdovRAAnZbbQcJWlN7fUCh2xKv8FWPOiUxGNZ6DN1Fz6le/MBVoOk348+/E75PdmubR3IJ59nT9aF0bp2TgR0VMbfHQeHuzON1SbpnPeDb5X/6feybe8O4/ezDUfIFXr7JusA+o8wGgAAAAAAbbBiWnPVGc0lxrqKCz62XvQ/V51N3E7IrBEKqPiy9sRzwbHRJRlGCz9ZGQqoWOGvghtIjBzUs4Jfjdv2VhityfPn1vdKbR/W55A2RJYUgMv6PVSbU3A+KWMWAADUsx6PQ8HTpOX5qLd/zGw8Z6spxbMLLlgDlhIrjBYppzX5dt8VPTGNduBf7Z7bSnZEreUwmhFidHLKKW+Gjr2PW9pft/107v90+9wPgmMPGTtD6wYO7fGMAAAAAAAAAADAqnPxVYnD/v1/m247d/7UHrvgSRkmhJXIbThcuij5ey14u83HdmE2gf08+cXNV7ry+XLF0e5PZjU77SLp2BPt8Vs+Iv/dL9njvzJqRGum5qNH3ZA2wpALvxkh+s896UVSUphhzTrp0qt7Nh/0j3vaH9qDc7PS9NYDH558hL3qe77k9Z1fpbsmbWavPTZae5P18XavE0rmhkekNI+D9U67sDuTAVYJ99jnJo77F14gv3Nbx/a3Jt558IPDCKNhGcga1Say1RHuyucnjvvnnCr/ifem3p63wtWbj8kyLQArBGE0AAAAAADaUIzCF6uU4lmVjBiAtPhF/mZgrcl2gvuu7g4ut4JpkjSyBMNoeRcOqJQDoZSSEf7KFF5IiNPVsyIoVkjh4PbtC5tKCQE8a16NClHBjMll/R6S7JhalvsUAICavBU8jcOhIiuMVjDOD7rFehz2irXXJ7ztJtBH2yrhMNpEYZ1yLtfWtl3Kd9PrxPn5cM76XavVMJoRXHQFOZf2M1s6bpi+zhy7cPKKHs4EAAAAAAAAAACsVm5sQu6vP2yO+7e9Sn57+G9XC9azwmjHnSpXXHrXtaH33CveIfdbb8h2o029ecG0O/lcubfcmLzOi1JGAtEyl883/Tr4f/wje8x84X0XA3uFwZTrEWtYqtyJZ8r9wyelc6+cjzQcdtT8f/d7oPSop8u9/Wa59Zv7PU30gHv0M+Re+hZ7hbpzHeecXnqRfZXKq69N9wZ+M8ala4PxHhVUmf+gy2E0SXK/9fr0Kx9zglzaKCSAILf5WLkX/IW9wv99U7r27R3bX1R7s9Q1U3Jjazu2XaBrCKP1hTtqi9xz/theoVqVf9MfyM+lfG2b9ftZj37PB7C0EEYDAAAAAKANjYGzmrmE0JW0OAhgBQJKcfJ2rNuEzFZ3mbcZyY1n2kcvFKL0AZU543O2gnNZ1m28P72sMFqz7RfNsaQAXpbPIW3cLY25uBTeR4b5AABQk3fhd6+1QkVlHw6mWRHQbkl6HC4lRGeBftpW3hpcvq6wvqv7rT9Pts/P7XPiRta5rRVda6bS5LhihY5jpbvgtJe27rtT3535anDsgcUTdL+hLl6cDwAAAAAAAAAAUO/EhyePf/XTzbdxlxFGO+GM7PPBiuTyeblnvly65Fnpb3R47/5m5k56hHTUlvDgwy+Ti3gJZy+40TVy1/w/e4UffF1+26/DY7/+RXj5YUe3PzGDy+WkfIo3CEyzDvrGnXiWoj/9T0X/+X1F//1/8/+977uKXv2vcoQbVpfH/pZkBV0bznW2bLQ388nvSXvL4WvV683sDS8frb3hYC5nz6eDnHPSlc9Pt/Ihh3V3MsBqcealicP+lo90fp9dPCcCOipzGC1lrBjNnXtl8vjsLunbN6fb1h3hMBrn18DqxLNqAAAAAAC0wQqaxYq1o7ItOJZ3+UVRj6TAWinOFt2Yre4OLp8xlkvSSLT03lmz4MIXc1QCARUrvGDFFLKs2xgVs8NoyU+z5F1BAy78pHmpOmPGy6zvseC6KeNuzVR8Wft8+C/mWeYDAECNFTSzQkVWMC1vnB90S9K5hHX+AfTbtvI9weWTXQ6j1bMiu1nOJYu50eDyrL8f1VjHldrvHVmvh+mnz0x/2Py95ILJK3o8GwAAAAAAAAAAsJq54qi05TRz3L/tVfKVSvJG7gyH0dwmXnyPhdxDH5luxeKYtPaQ7k6mgbvoqvDy857Y03mseieelTz+vfAbUGnXdHh5tyM+A0PN1yGMBiwLzjnJOHfx//yaBedDj3ygfZFK7KUfGA3HejN7w9eNjNauaRubnJ9TD6R+fB4c7u5EgNVi0zHShiPs8R/eKu+bBxYz2UyMCCvUAGG0jjn8AdIhm5LXuTMcPKvny/ukrb8MD3IsAlYlwmgAAAAAALTBCppJdpBgOBpZ9IfG5MCaccGFoVQNhwJmq7uCywfdkArR0rtwwgqolAMBlZIVFUv4+qRdtzF6YgUI2tnHTHWX9vo9wbGk77FF60bheIQVXbPMVcMhC4kwGgCgNVbw1AoVWcG0QhQ+P+iWoaQwWsLjJdBP08bvIVP59sNoTukumLTOPztxbmv9vtNMOQ4fV/IHjivhz62d8/9u2FXZoa/s+lxw7LCB+2lL8SE9nhEAAAAAAAAAAFjt3HNeYw9Ob5V/1RPk4zg47PfOSffdFb4tYTQ0Oudx0nGnNF9v87E9i8EccOnVi1+kfdyp0tmP6+08Vjm3dp30jJeb4/7VT5LfFigO7doe3t74ZKemFpYqjNbba2UAtOEw49xl293yr37igVDRkeucrj7Tfpw6+U9jlYzwWc1M+P2vNVp7w8E1XT5+1TvzknRhmQHCaEAnuFxO7rmvTV7pti91dqfW8Q1YarL+HlggjNYpLp+X+83XJn4NvBHGX+Dun0vGc0jafGxLcwOwvBFGAwAAAACgDUmRqG0VO4zWqJXAmmXWDKPtDi4fzY9n2n6v5DMEVBrjZTXFDBEv62tZaty28e45kWv+NIs1n2nje2X+NuEgRIgVXlv0OTRh3Z9StpgFAAA1eSNoZoWKynE4mGYF1rqlEBXMWGvS4yXQL9573WeF0QoburvvuoCYdf6ZJbI7kjPCaC3+7FWMEGPtuGJF37w3LrDok5u2f8z8XC6cfFzvX+ABAAAAAAAAAABWPfewi6VTL7BX+PInpO98ITx218/s2/HiezRwg8Nyb/q03HNfl7xiH14s7SYOkXvbzfMvBD/viXK/++dyb/603GCK8BU6KvrtNySvcP2/Ll62y3gD47GJ9ieUJFUYbem98TEAQ1LU9Usfl75984EP//VZydd3fODW1sJoI37/dTVjvQujuXxB7r9/2HzFQcJoQKe4Rz1d7rX/bo77t7yss/trDAADS1XG6ycdYbSOcpc+S+7vP2GvcMftzTdyp7GOc9LGo1qbGIBljTAaAAAAAABtGI6K5ti0ESQIxauSAl5Zw2ilePeBd5SqN2OE0UaisUzb7xUrQlLxiwMqc9X2wwtW8Ktx27GsMELzJ9Ct+SR9ja3YWYj1fWTdP5ZSwvpZ7lMAAGqsoJkV9ykHHu8lKW+cH3STGU/N+PgK9MJcPKs9cSk4NlVY34E9JLyTW10YzTr/zBLZLVphNCME3Yx1XKn93mGG0VraW3fsief0+R0fD45N5NfplPFH9HhGAAAAAAAAAAAA89wFT04c91+7MTxgveA1l5MOvV+bs8JK5IZH5J71SmnDEfZKfQo3uLXr5K5+laLXv0/uqX8gN2RfX4ouO/9J5pD/euB4ZIXR1kx1aEKGgRQhBsJowLLhNiU//tSfDznndPb97XVv/H7yvmb2hJePxvuvqxnvctixgVu3URpdk7wSsVCgs85/kh0c3H5v6s2cYvzadc7s5w9+cBgxIiwTWd9YdqD316WvdO6hj5R73p+FB+/6afMNbP1VePkhmwmPA6sUYTQAAAAAANpQiAbMgJcVuwrF1IYSw2hbg8tHc+PB5RVfCb7of7a6K7j+SG6JhtGi8MUc5XhxQKUUG2G0DOEFK3qyz+81oy310jx9bs0nKYyWFM1Lu33r/rHMGes7OQ1GPJEMAMjOOl+yQkXWY68VWOsm6/HVerwE+inpvLITYbTEa0b2F8S895oz4mxDCWHpRsWo02G08HElv/+4YoXRllIa7Us7bjCPPedNXK6cy/d4RgAAAAAAAAAAAPuddqGUS/hbxfv+Krz8TuNFsesPlyvwAmUkOOsSc8ideWkPJ4KlyJ2V8D1w25fkKwf/fuwrZakUfuPhroeFhsN/F1+AMBqwfJx+sRQlvGz/+19b8OGlJ9oX4rzvq1633WFfszKzN7x8tHZdyaEJAdFuaRaTtAJOAFrinJMGjNd2bP2l/O4dqbbzO+eEj0UvmX7zwQ8mOvGmrEAPuIz5nEKKUDGy23R0ePkvfxQOVdfbtT28fGpDe3MCsGwRRgMAAAAAoE1WUGu6HH6XlWIgrlGICpkDa1MF+0m92eriizRCyyQ7sNZv+QwBFSu8kCkqlrDuXPXg9r3i4DouxdMsVtzB+hrPh8jS/xHY+hyyhlus9YeioqKsfygAAEAHw0ONrFCRFUyzzpe6yTqfIIyGpeg+I6qcU15r8pNtb9+Ohx201+8xz5mznJ+Hfm+Sskd/ayrWcSWaP644o/rml0gYreor+uz2jwTHhqOizlp7UY9nBAAAAAAAAAAAcJBbt1Huua9LXMf/198vXnaXEUazXkQL7Oeueqm0+djFA5c9R9pyau8nhKXlnCsS3/nLv/IJBz/YbbzwXpLG2v87e6Jiijc2JowGLBtu/Wa5q19jr3Dr9MQnewAAIABJREFUTfJ7Dl6T/tyHJ1+H8+A3xPreXeHrVuww2vwbDrpNxyRPtgvcy/85eQXCaEDHJf3c+adukY/D1/HVe8qpThcct3DZ43d9SBfP3HBwwXiXz4mATkl8998AwmjdkXAe4v/gUvkvftQe3z0dHhjrcrQawJLFK1kBAAAAAGjTsPGC/X0+/BdHK16VNbqxLjGMNrNo2YwRRhvJpbiwog8GjPBJJRBQmauG7yPraxNihRekhV8DK4uQ5vlzax87K+EnbrOGyKztW/ePpT4El2b7AAA0YwXNrABaOQ4H0/JR7y/2tM4nrMdLoJ+mjeDuZOGQrgduawGxUuB3kZpM5+dGVHhPXFLsq9kmJ/u4UjgQbjTCaH5phNG+ufuLmq6E49tnr320hjIElQEAAAAAAAAAALrBPf1l81Eqg3//38lXGv5mcydhNLTGbThC7u1fkHvFO6QnvlB6xsvl/uZ6uT96q/mmSFg93MCg3L9/y17hK5+U//kP5v+9c5u93niXX3xfDP9dfIFC799EEEDr3LNfLV1unw/ppg8d+OfEiNNHfi/5ep63fDZ83cqsGUbbf814H8JoevAjEocdYTSg8x6W8GaaO7dJ3/xs000UB52u/71IH7joe/rje6/Rtb96gt5/5zNVUOXgSqNrOzBZoAey/i44QBitK5o8p+P/42/twV1GuJpAI7BqEUYDAAAAAKBNVtDMYoXRskQCJGkqIYxWihdH0GaNMNpobjzTfnsl78Lhk3IojGbE44ajYur9WV8XSSrVhcW8D79rjkvxNIu1D2/k1rKGyKztl2I7ThFe37o/CaMBAFpTMIJmFSNUZAXTrMBaN2WN1wL9tM0Io00V1ndoD0kXjcyf0yb9bGT53amYsy8At85Xk1jHlfz+44qzwmhmGrl3vPe6cfra4Fje5XXuxKU9nhEAAAAAAAAAAECYe/TT7cHt90i/+snCZffdHd7OxqM6OCusVG58Uu7SZyl60d8o+u03yD3sYqJoOGjTMVI+4Q34bvvy/P+tF95L3X/xfTHFGxvnev8mggDa4y692hzzt31pwccnHZ68rXfcHL5uZedcePlI7Zrxw3ofmXVRJB15nL3C2nW9mwywSrihorR+sznuv/slc6zeUMHpiqmf6LX3XaPLZz6unOpeMzO6Ri6Xa3eqQI9k/H2wQBitG9zIuDRpv+ZR3//q4nB+za7p8PJuR6sBLFmE0QAAAAAAaFPmeJWxftbo1FhuXENR+J2T6kNeNVYYbSSX4sKKPihE4fBJOV4YNPDeBz9fKVtsbjAaMuNm9XGHdrIIWeN3Wb8nrO9F6/6xzFn3J2E0AECLrKBZJRA8TVpeMMKp3TRkhFazPr4CvXBfeWtweafCaFY8TDp4nmydS0rSUKYwWrpwcVrNjitLOYz2g9K3dcfenwfHHjb+SK3J8054AAAAAAAAAABgidjyMGlNQvTi599f+PFuI0i09pDOzQnAquQKA9JZl5nj/q+er/jFF0vf/Fx4hYGh+dhINxXtNww7ICnuBmBpetAp9tj1/6r4EYMH/tv4lmc33VwcL752Zbtx6cxEdcf8P/oVITv3Snvs1At6Nw9gNTnnCnvsPdfI/+jb6bZj/W42tjb7nIB+yRrKLvT+DbtXjXMTjk3VqvTVT4XHzGMR18kCqxVhNAAAAAAA2pQ5XmWs30pgrRiFL4oIRdBmqruC6y7ZMJoRPin7hWG0fX6vYlWD61r3dUjkIg0b4ZOFYbQ4uE6U4mmWLPORpGIuxUUvC7YfXn9PXFLsw/MOqf98F86HMBoAoDX5lI/rzZZb2+km6/HPerwE+mm6fE9weafCaGnMxaXg8oIbUCFK/zNsndtKUqk6k3le1nGlFm60o2/9D6PdMH2tOXb+xGN7OBMAAAAAAAAAAIBkLp+Xe917zXH/J1ctXLBzW3jFNbzgFUD73Av+InmFW2+Sf9cbwmPjPTgOFZtfv+uINQDLjsvlpIdfnm7lG/5Tf1Z9W+Iqb785EEYLX56jyer+mEifQkbuSS+SHnJOw0In90dvk1u/uS9zAlY698xXJI773ztP/te/aL4hYkRYCbKG0QYGuzMPyF39aumoLea4f8Xj5bffu3jAeJ7IjU90amoAlhnCaAAAAAAAtGm4haBZcHnGaNZwNGKGs0rxwlBA7KtmvGM0N55pv72Sd+GLORqDBnNVO0qS+T41vjalhH10Yvvm+h2av5fX3ngu9XaszzfrfAAAqCmYj+vlTMut7XST9fhXIoyGJcZ7r219DKP5/QGxTp1LDkbDcsafMht/30mjHIePK/n9sTZnXBDj+xxG++We2/XD0neDYyeOnqZDB7loFAAAAAAAAAAALC3ulPOkBzzEHPfbfj3//71z0l7jmqZeBIkArHhu45HSVS9t7ca9eOF9ijCa8r1/E0EA7XOXPiv1ulf+PDmM9g83Lr52Zdq4dG0i3i4Nj8r16djhxtbK/d3H5N56k9wfvFnuNe+W+8BP5C5/Tl/mA6wGbu06uZe+xV5hblb+4//edDveCqMRI8JykjWMlidC3C1uYr3cv3wleaVPv3/xsl3WsYjniYDVijAaAAAAAABtKrYQNAsuzxjNKkYjGjHCaLPVhaGAUnXWfEH/SC7FhRV9UHDhP8hWGkIpSVGSVu7TkPqonPfh+9G55k+zZP1e6dT3lpQt3mJF9IZzxUzzAQCgphBZj+v7wsvj8PK8sZ1uss4nkuKsQD/MVndrr98THJsqbOjIPpySLhqZP0+2zyWzndtGLjLPh0vVFsJoxvHmYHDRCKMZ5/+9cuP0debYhZNX9nAmAAAAAAAAAAAAGZz0CHvs5uvkZ3ZK995przPGC14BdIZ70ENbu2EPjkNuOMXf0XP5rs8DQBcc8cDUqx657xcaiirm+I/vke7a4VXaO38NSxx7bS+F152obpfG+hsxcvmC3AlnyF3xPLmLr5Jbz5v+AV13/wcnj//g6823sWs6vLzPxxQgk6xhtIHB7swDkiQ3MCidcp457n9468KP9+6Rtm8Nr7xmqpNTA7CMEEYDAAAAAKBNSTGqEOvF/ZkjWLkRFaNw1KxU3b3g45nqLnM7SzaMFoXfeaPcEEpJipK0cp+GlOr2YQXm0jx9XswYg+hU2E3KFm8xYxYZ708AAGryznpcL4eX+/DygrGdbrLDqcbVZUCfbKvcY45NFdZ3ZB8uxUUj1rlk1nNzyT5/biWM1hhYrqkFma3PrJ9ZtPv2bdWtu78YHDt66EE6ZvhBPZ4RAAAAAAAAAABAOu6ip5pj/u9eLP/o9fJP/Q17A+O8+B5Ah5z+KGlkPPvt1vQg0FhMcf1uoffXygBonzviAanXHVBZT1j3o8R1Nv9RrNEXxnr826q6c4cUGxe0TFR3SGNrs0wVwEpw3KnSpqPt8a98Sv4D/5i8jd07wsv53QzLSsYwWoEwWre5C+3nh3TDf8nf+N8HP777Z5L1ZsZJxzgAKxphNAAAAAAA2tSp2FUxN5ptv9GIRozblOKFoYDZhlBavdFcCxd89EB+f6CgUWMopWSEF/KuYMbVLFb4qz7uYIfRmj/N0qmInrn9XNEcs+6nECui1krMAgAA6WB4qFHZ78u03NpON1nnbnPVWXnrj69AH2wrh8NoeVfQWK77FzzWfhrmquFo4HBkn6tahlP+vpOGfVyZ/53BOp/3ijPvq1M+u/16xcb+L5y8osezAQAAAAAAAAAASM898OT2NjDGi+8BdIYbHpH7iw9Ja6ay3XBsiYTR8r2/VgZAZ7jnvi71un+34TodmuKS/mu/JT3mH+1rWSaq2zmPAlYhF0Vy1/xP4jr+TS+Vv+lae4Vd0+HloxxTsIxEGfM5hNG67+KnScP2a9H8658pf9uX5z+48/bwSlEkHXpk5+cGYFkgjAYAAAAAQJuyxq6sIEDm7eRGzJjabLUhjBaHw2gFN6CBaGk+kVsLFDSKVVXVVw98PGcEv1qJeFm3qQ+F2WG05u8sYoVVOrV+zuU16IaCY6Vq+niEFVHLOh8AAGqsx/VKQ/C02fK8sZ1uss7dqqqYoSWgH7aVtwaXTxXWK3I9+JPg/lCgdX7eyrmkdX5eMkK+SRoDyzW1ILN9Nt+fAOJMdZe+tPPG4NiGgU06YfTUHs8IAAAAAAAAAAAgo8uf09rthkfkBpbmNW0Alid30iPkrvul3Mv/Of2NxnsQASmmeEPlfO+vlQHQIQ85J/Wqk3N36Vd/le76nu/ckbCd6nZprPtvoAhg6XHHHC/3r19NXMd/7N324O7t4e324pwI6BTX/HVdCwxwrt1tLpeTe+MHEtfxH//3+X/c+dPwChsO53kiYBUjjAYAAAAAQJs6FbsqZtzOUFRUMQpfFNEYwZqp7gquN5JL8W5zfVJw9rvc1cdS5owoQivhBes29aEwM4yW4gn0rPG7VuJu1udgBSqC61r3aQvzAQBAOhgeamSFxawwWtL5QbckPf5ZMVGgH7aV7wkun8qv79g+kmLAtfNkK1rWyrmkFYIuxemjvzWVOHy8KUTzF7Y4Ix7XnyyadPP2T2if3xscu2Dicb2J3QEAAAAAAAAAALTB3f/Brd1w7SGdnQgASHL5vHTBk6WB8JvPLlp/fLLLM5I0sqb5OvneXysDoEOOOV4qpAyu7N6hXOR08hHt7XJNvFNau669jQBYvo54QPK5zlc+Jb93Ljy2e0d4+RhhNCwnGcNoRIh746gtydG6j75LvrxPfjp8HbQOPbIr0wKwPHDFPAAAAAAAbbLiZCGRIg268B8asoQChqJh5VzODJvNVncnflwzuoTDaHlnP8FcH1Gxgl8thReM29SHwryPjVs3fwI953Lm1z+klbhbms8hSdVXtdfvCW+7hfkAACAlhdHCAbRybITRot7/ATrp8S/t4yvQC1YYbbLQuTBamnNe6/y8lXPJtCHoNKzjTbPgon3+3z374r26acfHg2PjubU6bTz9OwoDAAAAAAAAAAD0zXlPlIaK2W+3+ZjOzwUAJLmh4nwcLY3xHkRA1kw1X4cwGrBsuZFx6dzHp1v589dKkp59VsagS5211e3KKZbbxLkUsFq5oaJ04VMS1/EXrJX/zP8sHtg1Hb5BL2KxQKckxbdCONfuCTd1qHTGoxPX8Y85XLrpg+HBNL83AVixCKMBAAAAANCmLC/wH86NyBlPtGYJedXWLeaMUEBDjGCmuiu43khuPPU+e60Q2U8wV+piKSUjSDIcZb+ozgqRWXGHelHKdxbJEjuzImetbL/xe8KS9Lm2EpsDAECyg2aVQAAt9lVVVQmubwXWuinp8S/NOQLQK9vKW4PL1xU29GT/Xl6SNBeXguNDLZyfp/19J436uHK9WpDZGefzPvOe2veVXZ/TTHVncOzcicv6EokEAAAAAAAAAADIyq2ZknvTp6X7PSjbDYl5AOgi9wdvkk46u/mK4z148f1Yivhagb8PA8uZe9k/zQcZBwaT4yvey8/u0u+e6/Tay1uLo01Ud8z/Y/OxLd0ewMrgXvIP0vFnJK7jX/8M+V//4uDHlbJU2h1eeWxtJ6cHdFfWMFou3515YBH3x+9JDpzN7JDu/Gl4rBfRagBLFmE0AAAAAADalCUWlRS6yhRY27+dESMUsCcuqeoPBkVmq+E/UozkxlLvs9cKzr6Yoz5qYAVJsgTIDtzG+PqUqjMH/u0VG7dO9wR6lthZJz+HtOGWOSM0l7RtAACaKRhBs1CoqOLDUbT57fT+Ys+CG1Dehf/wnfS4CfSS917byvcExyYL6zu2nzRnvNbPRSvRX+s29efnaVX84hCjdPD4ZIfRrPP/7oh9VZ+Zvi44NuiGdPbaR/V0PgAAAAAAAAAAAO1wW05V9L7vyH3kzvS3IeYBoIvc4LDcmz7VPJrQixffj082X4dYA7CsueERRa/9d7lP3Cv3yXvnQ2mWL35Mzjm99vJIH31h9pf/T1a3z/+DyCywqrnBYbm33JC8kvfSZ/7n4Me7d9jrpjlfAZYKwmhLlhtdI/eeb7R24zGOQ8BqRhgNAAAAAIA2DeeKqdcdiux1MwXW9gezilE4jCZJpbogwfIMo9nvilWuixpYwa+WwgtGiKxUtw9v3NalfAK9aMTsQloJkVmfQ9pwS1JALUu8DwCAelbQrOzL8t43LFscSzu4nYR3zewS55yGrDhTyvAo0G0z1Z3mz85UR8No9jmv33+mbP1ctBL9tc6dWwmjlePw/VOI5o9Pac/nu+07M1/VveVfB8fOWntRpt8nAAAAAAAAAAAAlgq3dp101UvTrfygh3Z3MgBWPRdF0sia5JV6EAFxA4PScJO/ped7f60MgM5zA4Nyg8PSMSea6/h3/In8T78nSTrzGGkwY6tlbS2MtmFzq9MEsEK4fKHp71X+PdfI/+S78jf+P+nz19orjvUgFgt0DGG0JW1qo7TusMw3c72IVgNYsgijAQAAAADQprwraMANplo3KSyVJbBWC2YlvSi+FB+MBcxUdwXXGc2Np95nr+WNgIokVeqiDyUj+NVKeMEKkZX9PpXj+Rib93FwnaRIRJp9hLQSPbC2nzbcMlctmWND0XDm+QAAIM2fL4V4xYpVXbCsPoDaqBYw6jUruJo2PAp0233le8yxdR0MozXjvTd/LloLFxthtBaihNax5eDxKXw+7800cud573XDdPgis0g5nTdxec/mAgAAACA959zRzrknO+f+2jl3k3Nul3PO1/338za27dv878iOfaIAAAAA0CZ32bObr3T/k6QTz+r+ZADgyt9JHu9VBGR8Knm80J9rZQB0yZZT7bGtv5R/1smK3/xSrRnyeuYZ2eIuk/F2ybnm4UcAq4J7/AuSV9hTkn/2qfKvf4b8377QXo8wGpaTrG+QS4S4p5xzck9ocmwK6UG0GsDSRRgNAAAAAIAOSBvhSopiZQms1fY3khsz15mt7g7+u17S7futENlPMNciZZI0F4dDXlkCZGlus2d/fKHdLELa75VIkQbdUObtW/E9KyC3aD0jMjEUFRW5XOb5AAAgJQfNGmNFlXifsaYdWOs26/G7lTgT0A3bjDBawQ1oNNfJix2TLhrxKvt9qqoSHG0lXGzF1PbEJcW+GhwLqfrqoghjTe24EllhNN+7MNpP5r6vn+/5cXDslPGHa7JwSM/mAgAAACCZc+5c59ynnHPbJN0u6b8k/aGkcyQt3T++AAAAAEAfucPvL/eOL0qHbFo4UBiQJg+VLn6a3Js+KZf1hcwA0AL3tJclr9CrF9+PN4mNEGsAVhTnnPTY30pe6X/+Ubr1Jv3TVU6veHT686KJ6g5pbEIuIh0AQHKPeprcK9/Z3kbyBWk4+3V/QN9kfT4hl+/OPGC76qVyL/jLbLchjAasahypAQAAAADogGI0op2abrpesxjAcG5E+yp7U+1PkgbcoPIur4pfHB8oVWcO/NsKo43mxpvuq19yysvJyQdSZGV/MJgyZwS/rIhCEisqJs2HT8a0Vl5xcDxK2Z9PO6/h3EhLF/lZcbe5lOEWa71W7k8AAGoKCUGzcrxPQ9HwwY8bQmkLt9Ofd8EdjorB5WkfX4FumzbCaFOF9R194UjSprxP/ploJVxczI2aY6V4NvXvM5VUxxUjjNZ2Gjm9G6avNccumLiiZ/MAAAAAkMpJki7q9yQAAAAAYLlxx50i96Gf9nsaACBXHE3+a/BQ+FqRjmv2Iv8cYTRgpXEPPLnp1Sj+pg8pf8p5euMVTq96tNf4i8LXr9ebqG6XxtZ2ZpIAVgR3yTOl9ZvkX3JJaxsYmyBcjeWFMNqS55yTnvL70pop+Tc+N92NxprEpAGsaGSfAQAAAADogLQv8m8WlypG9gv/F+xvf8DLOWfeZnZ/GM17b4bRRnJjqfbXD8455Y2ISn0wpWTEF5pF6IK3Sfj61AJs7WYR0s6r1RCZGUYzAnJp12vl/gQAoCafEDSrD56GPq6XFFjrJiueOlct9XgmQNh95a3B5VOFDR3eU/JFI6WEc85WzieTfj9K2lej5DDa/HHFmZ9bb8Jod+39pf539hvBsS3Fh2jz0JE9mQcAAACAtu2VdHuXtv1VSUdl/O+OLs0FAAAAAABg+TvHeIOqk87uXQSkWRhtmGs3gRXnhDOar/Phdx745+hQuuPRRHV782MKgNXngSdLA0Ot3XacGBGWGZchn+OcXC7XvbkgWZrzoZp1G7s3DwBLHmE0AAAAAAA6IO2L/JsF1KzoxqL16rZTzIVjAaV4Pow2F88qVvhdokaipRtGk6SCEVGp7A+meO/NkFcrYbHBaEjOeLqkFmDzPnxfupRPoKedV9rY3qLtm98P6cIRZmiuxfkAACAlB80qvrLg43JCwCgpsNZNZng05eMr0G3T5XuCy6cK63s4C5/4M9HK+XnS70el/SHoNJKOK4Vo/rhiXdQe9yiMduP0debYhZPGxfgAAAAA+q0s6duS/kXS8yQ9VNKYpJRvbZ3ZHu/9zzP+V2m+WQAAAAAAgNXJPfnFi0MhuZzcU36/d5MgjAasOu7I4zLf5iUXNo+jTcQ7pNG1LcwIwErmxiakK5/f2o3HCKNhmckSN87luzcPNOU2Hytd8OTmK+Zy0sYjuz4fAEsXYTQAAAAAADogdeyqSfgsbXyqfjsjuXDcbLa6W5I0s///IaO58VT76xcrolILG5T9PlUVfk1P2lhdvchFGo6KwTErwFbjlO4J9NQRvRbmL9nfi3vikmJfbXp76/O07hcAANKwYqfSweDpgY/jfcaaUt7154/QZhityfkB0CvbKr0JoyWd83rZ0eKc8onHActQVDT3WQtBp5F8XKn9zmF8br77YbQd5W36+q6bg2NHDB6jBxRP6PocAAAAAGT2b5LGvfcP8d7/lvf+Hd77W71PKDMDAAAAAABgSXEnnCH3lhuli58mHXuidP6T5P7mo3JnXdq7STQNo4XfLBfA8uZe8BdN1/F79xz49ysf1fw69cnq9ubHFACrkvvdP5d76Vuy35AwGpYbwmjLinv1u+R+55rklSYPlcvbb9AOYOXjaA0AAAAAQAcUc+kuPGgWPksdRqtbrxiF912qzocCZhPCaFZUbanIRwNSoOVV3h82mIvtGEna+3LR7XIjwchCbV9ecfB2acNo1tdr8Xqtz9+yJ55r+r1aMu7TVkNtAABIUj6y/yBZbni9cNmHA0Z5V5DL8gfrDrIeB63HTaCXYh9rW9kKo23o2Ty8pLm4FBwbzhVb+vmdDxeHz89LGcKEjceZerVgW2Scz3t1P4z22e0fMYPPF0xe0bdjHwAAAACb9357v+cAAAAAAACA9rktp8ptObV/+x+fTP6rdHFpX+cLoEX3e1Dzde7+mXTkcZKkqVFpzbC0c85efW11uzSWYrsAVh3nnPS435b/9S+l//jr9DckjIZlJ8O1lsS2+s7l89LT/lB6xGPkn2a8gfCRnNsAq13U7wkAAAAAALASpI1wFZvEpZqNH1ivbn8jRuiqFg+Yre4KjkfKaSgaTrW/fim48BPNlf1hg6QYQtr7ctHtjK9lbV9WGCFtGC1tYKzVEFlSUC1NPGLOWKfVUBsAANLB8FBILXh64GMjYGSdF/SC9TiYFGkFemV3dceB8+NGU4X1Hd1Xs3NeM7LbxrmkdV4fiqVZrOCiVH9s6U8Yba46q1t2fio4NlXYoIeMndHV/QMAAAAAAAAAAAAA+mh80h7L5aWCfc0NgGXshDOlweTr+P0zTlL8j38k/7PvyzmnNU0u+5+sbidiBCCRO+2CbDcY55iCZSbLm9Dm8t2bB7LZfKy08X7BIXfahT2eDIClhjAaAAAAAAAdkDp21SQIkDYYUL+/ohFGm63OhwJmqruD46O58fl3flnCrIhKLWyQFCNpNb5gfS1r+zLDaCnvy7SBsU7PX0oXj5iLS5m3CwBAMzmXU2T8SaIx6FQxAkZJcbVuM88PquHHTaCXtpXvMcem8p0NoyXzZmS3nXPJYmSEoKtZwmjhcJwk5fcfW6yz+W6H0b6w41PaE4ffzvf8icco53Jd3T8AAAAAAAAAAAAAoI/WJITRhkeW/HW+AFrjRtfIXf3q5iv+95vkf+ds+e99TW9+SnISYKK6XY6IEYAkJ50tnXlJ6tVdUsAVWIoIoy1LLorknneNlGu4XvaoLdIlz+rPpAAsGRytAQAAAADogE7FrtIGA+r31ywUMGuE0UZyY6n21U95Vwgur4UNrPBCTvmW4ynW16hUC6N5I4xmphTSbb+RFbxrZigqmmPW/bVgHSM2l/Z7HAAAS8ENaK/fs2h5uSGEZgWMrPOCXrAev5MirUCvbCtvDS4fdEMdP+dPOuf18l05l7TOi7OE0SpxOLgoSXk3/+dS58IXj3YzjFaOy/rcjo8Gx0ZyYzpjzfld2zcAAAAAAAAAAAAAYAkYSwiORLyRFrCSuae/TDr2BPmXPTZ5xdJu+ff+hS574wcTV5usbpfGCKMBsLkokq75H+mT75X/zi3SHbdL//tl+wZja3s3OaATsoTR8v27Lh2LufOfKG04XP6mD0n33S33oJOlS58tx3EIWPUIowEAAAAA0AFpg2bDOTtaJWUIrNXtz4od1IJoM9VdwfHRZRBGK0ThuFllf0ClZIQXhnOtv0ue9TWoRcWsMELaMFqxhfhdFjmX01A0rD3x3KIx6/6qZ8XT0n6PAwBgyUcF7a2GwmgLQ2hlI2BknRf0wrARHi37fSrH+/o6N2Bb+Z7g8qnC+s6/c3ST7c1VS8HlaePAIdb5c5YwYWOAsabgBg7cR+ZnZoSRO+Ebu2/Wzsp0cOyctZdoMBrq2r4BAAAALEtHOOfeLek0SYdJGpG0XdJ9kr4l6WZJH/Deh3/RAAAAAAAAwNKzJiGMNhu+/hfAyuFOf5T8Fc+Trn178oq33iTnpAdskH4UeA/F4bikET9LGA1AUy6fly57ttxlz5Ykxa96ovSF68MrJwVcgSUpwzWzOVI7S407/nS540/v9zQALDGcPEZOAAAgAElEQVThtz4HAAAAAACZpI1YNVsvbXxqqC7OUcyNBtepRbBqgbRGVlBtKSm48DtwlOP5gIoV8Wo1KibZX4NaeMEKo6V9An0oGm5rHqlua8XdUsQjzNicEYQBACCtggvHwxpDaBVfMW7fv3fmSgqbzsXhEBTQK1YYbbKwvsczsc83mwWikxSj8O8tpepM6m00Bhhr8guOK+Hz+W5l0WIf68bp64JjBTegc9Ze0qU9AwAAAFjGjpJ0taQtktZKKkhav//jp0l6u6RfOuf+3jkX/uMRAAAAAAAAlpYNR9hj1fA1NABWFnfWZc1XmpuVbr9NV54cvr7l4pkb5q98IYwGIKuNR9pjY2t7Ng2gI7K8mXAu1715AAA6howlAAAAAAAdkCZi5eQ02CSKlSboNRQNK+cOPgFrBc5K1d3y3i/zMJoRUPHzARUz4tVGVMz6GpSqyWE0lzKMFrmchqKi9jSJqFhxszSKuVFtr9y3aLkVkquJfdWcVzvzAQBAkvIu/CeJSkOwqPY4v/j24fOCXkh6HJyLZzUuLv5A/1hhtHWFDR3fV9IZr/c+IbLb3rltSClOH0arGMeV+t83rPN5rzj1frL43uw3dfe+XwXHzlhzvsbya7qyXwAAAAAr3oik35d0iXPuSu/99zq9A+fcekmHZLzZMZ2eBwAAAAAAwErghopde8MuAMvEqRdIF10lffr9iav5Z5+qF39wWp/8dl7fvvvgtXibynfqz+597fwH45PdnCmAFchNHWqfi3BMwXKToYumHKkdAFgOOFoDAAAAANABaV7oPxQVFbkocZ1iiqDXUFRceBtj37Fi7YnnNFPdFRwfzY033Ve/WWG0WkBlzgwvFIPL07Ciagf25Y0wWoZ3FilGI03DaGkieRbr+9EKVdTsiefs+bQRmwMAQGoePK1pDKUdvH2h43NKKym6WmoSHgW6zQqjTRXWd2Fv9jmvlzdDvO2cSzYLF6dRto4r0cHjih1G644bpq8LLneKdP7EY7q0VwAAAADLVEXSLZJulPRdSXdI2i1pVNIRkh4h6ZmS6n8RfICkG51zp3vvf9Hh+fyupNd2eJsAAAAAAAAAsCq5KJJe8y7p0U+XbvuK/LveYK67/usf0M1PP12fePGf6NtDD9YD9/5IF8/eoEOq+99Qe4w3+ASQ0diEPTYcflNTYMmKkl+zt0C+f9elAwDSI4wGAAAAAEAHpIlYpYkBpAmsNe6rmBsz1y3FuzVb3R0cG0m43VKRj8JPNO+L5wMqvQwv1PbljTSCFVII7iM3ounKvYnrJAVY0mw/xLq/apLiEmm+NwEASJI3wmaNwaLGUFqNFVbrhUE3pEiRYsWLxqxQK9ALsY81XQ6fV052IYzW7JzXDhe3c24bvriqFM+k3kY5Dh9X8nXHFWdErL1f/HPfrp/N/VA/mftecOwhY6frkIGNHd8nAAAAgGXrNZLe6b0PV7Glb0u63jn3x5qPlb1cB6vWh0r6kHPuFO+Nd30BAAAAAABA/110lfTp9y9efvlzej8XAH3hnJNOOV865Xz5L39C+sHXg+v5b39BI5uO1uN3X6fH7w68KV9S4AgAQh5ydni5c9L6zb2dC9C29K/rUo7UDgAsBxmSlwAAAAAAwJImYpUmBpBqOw3rjBihAEmarc5oNg6H0UZz40331W9WAKWyP5hS6kJ4wfoa1PbViTBaqgBewte11e03i0ckhV3aCbUBACA1f1yvKcfl4HpWMLUXnHPmY2Gz8CjQTTsr06qqEhxbV9jQ49nYPw/DUbHlbZphtGr6MFrFh48rhbpgY4bLYdp2w/S15tgFE1f0cCYAAAAAljrv/TUJUbT69fZ4718p6YUNQydLempXJgcAAAAAAICOcI/5zfDy0x/V45kAWArceY+3Bz/5XvkXXhAeKwxIQ61fowNgdXKbj5UeePLigRPPkhtb2/sJAe1whNEAYKUhjAYAAAAAQAfkXE6DbihxnTQxgFTxtIZ1hqOiGeXaVdmu2equ4NhIbqzpvvqtPlRQr7w/bGCHF1qPeBWN25b9PpXjspFFyxhGSxEZs+aRavtWGK1JuCUxjNbGfAAAkKSCETZrDKE1htIO3N4Iq/WKdS6X9PgJdNu2sv3a+KnC+o7vL+mM18vb4eI2IrvWefFcXFLsq6m2UU51XAl/dlYYuVX37LtL35n5anDs/sPH68jh+3d0fwAAAABWF+/9P0m6vmHx73Z4N2+VdHzG/x7b4TkAAAAAAACsHCeeJT3rlQuXPeEF0iMe05/5AOivxz2vtduNTchlCcIAwH7uFW+X1m8+uGDDEXKvfEf/JgS0KsvjYL5/b9gNAEiPjCUAAAAAAB0ynBvR3sqexPFmaoG1vd7eTrFhO5HLaTgaUSmeWbTuW+/8M3M7yyGMljcCKLWwwVxcCo433kdZJH2d9sSz8oqDY1n+kNwsepZTvq34i/X5Nwu3WOG0QTeknMu1PB8AAKTmj+sHPy4H17OCqb3SangU6CYrjDYUFbsUtrXPeSu+bAbI2on+FnOj5thcXEr1e411XMnXHVes0LF1/t+qG6c/bMbWLpq8oqP7AgAAALBq/bmk+lfNnu6cW+u939GJjXvv75Fkl7oDeDEeAAAAAACAzTkn99zXyV/yTOknt0nHniB32NH9nhaAPnFDRelvrpf/w4xxxLGJ7kwIwIrnjj1Reu93pP/7huS9dOJZcoX+vpkx0JIsf5PMkdoBgOWAozUAAAAAAB1SjEa0Q9sSx9NoGlgLbKeYC4fRkozmxjOt3w9WAKWyP2xghb7aiUAk3bYUz8poGCgpErFoH03CbcO5kbZeJGR9DnNNwi3m/dlGaA4AgJpmj+s1VljJCqv1SqvhUaCbtpW3BpevK6zv+YvOrWix1N75ZDGyw2iz1Zl0YbQ4fFwpRAePK3YYrXN2VXboK7s+Gxw7bOAIbRk5uYN7AwAAALCKfU3Sdkm1V8HlJG2R9KW+zQgAAAAAAABNucOOlgiiAZCko34j+20IowFogyuOSief2+9pAG0ijAYAK03U7wkAAAAAALBSpIldpdEsoBaKchRTxAAapQkI9Ft9qKBeLWxghb7aCi/k7PDCXHVWseLgmBVSCGkWbksb0TNvb3z+pSbhFvP+bHM+AABIUsEImzWG0Ro/PnD7KBxW6xUzPJoQgwK6bVvlnuDyycL6ruwv6Zy3VLVDze2cT1rnts32Wc88rtQFG+2QXOfSaJ/f8TFzLhdMXtHzmB0AAACAlcl7H0v6ZcPiQ/oxFwAAAAAAAABAdm795uyBonHCaACAVS7LNZiE0QBgWSCMBgAAAABAhzR7sX/aGEDTwFpgO+sKG1Jtu6YYjS6L2FXehQMo5f0xASv01c7nNuiG5IynTOb3Fw4jZAmjJcXXpPbCblJCuMUIn9VY92dSjAIAgLTyRtis7Pct/DjeF1zPCqv1ivX43OzxFeim6XI4jDbVpTBa0ilvt8JoQ1HRPNcuxenCaI3HmZr644q1D+87E0bbE8/p89s/ERxbm5/SKeMP78h+AAAAAGC/uYaPh/syCwAAAAAAAABAS9wfv1s67tT0NxgjjAYAWOUIowHAikMYDQAAAACADmkWj0odRmshsPbQsbNSbbvm5LEzFbml/7SAFUCp+H0qx/tU2R9Ia1RsI7zgnDNvP1edle9EGK3p17iYelvB7Rvfi3v9HlV91bzdXBdCcwAA1FiP6+V44eN52Xh8t4KpvWI9HlphUaAX7jPDaNnCyWklnfNaPwtOkQajoZb3GbnI/vlLGSZMd1wxwmjG+X9WX975GTPkdt7E5X0/xgEAAABYcdY1fHxfX2YBAAAAAAAAAGiJW3eYonfcIveBH8u9+YbmNxgnjAYAWOWyhNHyhNEAYDlY+q+ABgAAAABgmWgWj2oWTku7Xmj8pNEz9Nh1zzCDIzVOTg8ePV1PWP+bqebSbwUjDlD25cQIyXDK+9q+fThMNhfPynsjjJbhCfTm3yujqbeVdftzCfGIuWop8/YAAEjLflzft+DjSsPHB2+ffJ7TbUnhVKAfqr6q7eXw69qn8ut7PBv7Z2E4KrYdZbZ+R7JCY43SHFes6FsnwmhVX9Vnpj8cHBuKijprzUVt7wMAAAAAapxz6yQd3bD4rn7MBQAAAAAAAADQHrfhCLmHnC1tPiZ5vbWH9GhGAAAsUQPD6dfNEUYDgOWAozUAAAAAAB3SLGiWNi5VjJKjWKHtOOd08dTjdd7EY3T3vl+o6uPgbdcPbNRIbizVPJaCQhQOoJT9vsQIiRUuScv6WpWqs2YYwQopBLffLH7X5vyTvhdL8axGNR4cmzNic2mjfgAAJMkbYbOKLy/4uNzw8cHbh8NqvWI9fluPn0C37axMK1Y1ODZV6E4YLemc1/pZaDdaLNV+R9q6aHmpmi6MVo7Dx5VCdPC4YoWOOxFGu3X3FzVduTc4dvbaR5lhZgAAAABo0VO08E1zt0r6QZ/mAgAAAAAAAADohE3HSHfcnjwOAMAq5sYn0l/xmevvdekAgHQIowEAAAAA0CFNg2YpgwBNo1kJ44WooCOGjk21n+XACqBU4nJihKTd+IJ1H8/FdhhNGcJozcJn7c4/KcKXdL+VjNhc2qgfAABJCsbjetnvW/hxvC+4nnX7XjHDqYTR0Cf3lReHwmq6FUZLYkXKhqP2o1/FXPh3rdRhNB8+rtQHG+2z+fbCaN573TB9rbH/vM6duKyt7QMAAABAPefcBkmvaVj8Ee99+9VnAAAAAAAAAED/NAufbV45ryEAAKAl45Pp182R2gGA5SBqvgoAAAAAAEijadAsZVyqaTRrFUWqCnWhgnplv8+MkETKacANtrXfpPCJFUaLMoTRmn2vtPs1HoqKcsZ85oz4mWRH04Zz7ccsAAAoRNbjennBx5WGj5vdvlescOqeaqnHMwHmTZfvCS4vRqNth3Yt1jmmZEcCO/H7S1K4OA3zuFIXXHTGn03jNtsBPyx9V3fs/Vlw7NTxc7Q2n+FCHAAAAACrhnPugc65yzPe5lBJH5W0oW7xPkl/3sm5AQAAAAAAAAB6zx3eJHy26ejeTAQAgKWKMBoArDgcrQEAAAAA6JBmL/hPGwRoGs3qUuRgKaoPFdSLFWumsis4VsyNyLn0kbIQ6z6ej4oZYYQM+2wWv0sb0bNELtJQNKy5eHGoxQpWSAlhtFUU4wMAdE/eeFyvxPsWfFz2+4LrWbfvFevxcK/fo6qvKOf4kwt6a5sRRpsqrO/xTOZZAV4rapZFMRoNLi9VZ1LdvjHAWGOFmBdqL4z26ekPmWMXTDyurW0DAAAA6C/n3GaFr8E8tOHjvHPuSGMzM977+wLLN0q63jl3m6T3SbrWe/9jYx5jkp4l6TVaGEWTpD/z3v/U2DcAAAAAAAAAYLk47lR77IgHyI2u6d1cAABYirKE0Yq8TgoAlgNepQMAAAAAQIc0i1kN54qpttOpwNpKkE8IFeyu7ggu78T9Y30t5+JZxT4cRnBKH0YbjIbl5OSNyEIn4nfF3GgwjGYFKySp1MWYBQAAVoCoMVjUXsCoe4Yj+1xurlrSaH68h7MBpG3lrcHl3Q2j2ee8pTgcKevI+XnOCKMZ+2xUjo3gYnQwuGidz7eTRfvVnp/q/0rfCY6dMHKqNg4e3sbWAQAAACwBt0i6X4r1Nkn6mTH2b5KuTrjtCZL+UtJfOud2SvpfSfdJ2i1pVNLhkh6s8LWg7/De/2mK+QEAAAAAAAAAlrotp0nHny7971cWDbknv7gPEwIAYInJEkYbn+rePAAAHUMYDQAAAACADmkWsxpKiGnUSwqsDboh5Vwu07yWs0JdqKDRrooRRutAxMuKN8yHw9oPo0Uu0nA0YoYcrPBDFubnEIfjZ7GPtScQUkvaFgAAWeRd+HG97BcGiypmGM0+L+iFpHOMUjyrURFGQ29tK98TXN7NMJpzCWE0I7KbNhCdpBgZYbSE6G89+7hyMLjoXBRcxytOtY+QG6evM8cunLyi5e0CAAAAWLXWSDorxXqzkl7ivX9nl+cDAAAAAAAAAOgR55z0tx+Vf+srpK/dKO3eLt3vQXKX/6bcpc/q9/QAAOi/8YnUq7oM6wIA+ocwGgAAAAAAHZIUNBuKhlMHzZKiG52Ifi0n9aGCRruq24PLh1MG6JJY9/NcPCvfgTBabR9mGK0DITI77hbe5954j/m5EUYDAHSCFTarDxZ5782AUT6yzwt6Ienxec4IjwLdZIXRJrsYRkti/Rx04lyyaJyfW+fTjRoDjDX1xyXrbN778DlyM9vK9+ibu28Jjh019EAdM3xcS9sFAAAAsGr8QNIbJZ0j6WRJwylu8yNJ75H0Tu/9fd2bGgAAAAAAAACgH1xxTO4P/6nf0wAAYGkam+zOugCAviGMBgAAAABAhyQGzTLEAJKiG50IZi0neSOgIkm7KjuCyztxH1nbmKt2LoxWjEa0zRjrZjzCClYkBV2sbQEAkEXBCJuV44PBIiuKJtlhtV4ZjIbl5ILnAnNVwmjoraqvaHslfDa5rrChx7OZZ8XHOnJ+nhsNLreiv43KVnCxLsTsFAXXsc7/m/ns9usVKw6OXTh5xfy7+AIAAABY1rz3R3Zx21slvVqSnHORpPtLOkbSJklrJQ1JmpO0XdLdkr7uvb+3W/MBAAAAAAAAAAAAgKXMDQ7Jr5mSdlqv1qozPtH9CQEA2kYYDQAAAACADhmKiuZYltBVYmBtlQWqCi4cUJGkXZXtweWduI+sbZQS4mFZwwbd/jpb33NWuKWUEHTpRKgNAAAreFofLLLCSlLyeUEvRC7SUFQMxkSTAqNAN2wvb5M3oltThfVd22/WGLDUmXPbYhQOo83FJcW+qsjlEm9fMY4t6YKL2cNos9Xd+uKOG4Jj6wuH6cTRUzNvEwAAAMDq5b2PJf1w/38AAAAAAAAAAAAAgJBNx6QLo62Z6v5cAABtI4wGAAAAAECH5FxOQ9Gw9sRzi8aGc3Y0rVGnAmsrQSGyAyg7q0YYrQP3UdHYRlKsRRkjEUnztPafRdEIUOyq7tCuyo5Fy7eVt5rbyvL9CwCAxQqbxaqq6qvKudyCSFojK6zWS8NGGG26fF/w8RXoljv2/swcm1xqYbQunttK0r3lXx/Yx3A0okK0+FhRjsPHlvrfN6zPbW+8J/PP9+d3fFz7/N7g2AWTj20acgMAAAAAAAAAAAAAAAAAAEBGm46Rvv+15uuNre3+XAAAbSOMBgAAAABABw1HI+EwWoYYQFJgLSkIsBIVEgIos9XdweWduI+GW9hG1kiEFT/Lu0JiEC4t63vuh6Xv6hW3X516OwU3sCRCNACA5S/pcb3iy8q5nCoJEVIrrNZLxdyIpiv3Llr+wXvfpQ/e+64+zAhYaDQ3rqFouN/TWKCVc+tGxWjUHHv9z15w4N8FN6DjRk7SMw99kYq5+dvEvqqqKsHb1p/nOhc+n79l56d1y85PtzLtRcZya/Sw8Ud2ZFsAAAAAAAAAAAAAAAAAAAA4yB1+rHyaFdes6/ZUAAAdEPV7AgAAAAAArCS1F98vXp4tBmC98D9LYG0liJSTy/j0RSfuo1a2kTWMZgUirGBaVtb3YubtrLLvOQBA9+QTwmbl/UG0clw21ylE/Q91rrZzMSw/k4X1/Z7CIp04n0x7blv2+/Tdma/pn+9844FlFR+OokkLg4tZz+dbce7EZR2JIAMAAAAAAAAAAAAAAAAAAKDBaRc1X+fYE+XWTHV/LgCAthFGAwAAAACgg6xYRtaIhhnNyhhYW+6ccyq4bBGUTgRLWomKZQ0pWIGI4Q4FzToVbrG+FwEAyCopbFbZH0SrBdKCt08Iq/UKj4tY6qby3Q2jtRIP68R56VBUzLTvn8x9X/ft2yqp2XGl/rjU3TDaoBvS2Wsf1dV9AAAAAAAAAAAAAAAAAAAArFpbTpUufEriKu53runRZAAA7cr3ewLoHefcsKSTJB0naULSkKRdku6RdKukn3jvfQf2U5B0lqQjJG2UNCPpLknf8t7/vN3tAwAAAMBSdsjAofrJ3PcWLy8cmm07hUN1596fL1q+LuN2VoJ1hQ26a98vU69/yED799GgG9JYbo12V3emvs1UIVuE4pCBjeHlHfoaW9vPajV+zwEAumPQDZlje/0eSVLFl8118hljqd3QqcdpoFs2Dh7e1e3nXUHjuQntqm5PtX7BDWg8v7bt/UYu0rrCobq3fHfq29xTvkvrBjaonHBcKUQHg4tZz+ezOmvthRrJjXV1HwAAAAAAAAAAAAAAAAAAAKuVc056zbulsy6T/9bnpS9+TLrvrvnB858k94yXyx1zfH8nCQBILer3BNB9zrkznHP/LWmHpP/P3n2HR37V9+J/n5G0u9JWr73r3gsG22DjRjU2mGJCL+b+CDUECJAfJJcQSiB0AgnhXgiQBLihtwAGYxIw1TYxNhAb27Exwb33trvaova9f2h9V9bOjEZazai9Xs8zz+p7zuec89mir0bSzlu/SPJ/knw4yfuSfCzJ15L8PskNpZR3l1JWT/GcNaWUTya5NcnPknw+yQeTfDzJaUmuKaWcW0p57o7+ngAAAGarY5Y/drux7tKTI5c/cnL7rDhhu7HFZUmOWHbslHubqx6+/NEt1+7cs2v2W3LIDp9ZSskxK7b/u2xk/yUPyqqenSd1xuFLj86SWt9248dO4tzmPR0yLeEOx9b5twgAU9HbtbTh3Mbh/iTJYDXQsGY2BKMdvfwxKSkz3QbUVUstx604sa1nlFJy1CQ+tzly2SOyqLZ4Ws6e7PPS++8rQyOt3VeOXPaItr1/99b68oSdntmWvQEAAAAAAAAAAAAYVWq1lCc8P7W/+Hhq374mtZ9vGX2864tC0QDmGMFo81gppbuU8vEk5yY5NcmiCZbsmeSvk/y2lPKUSZ51SpJLk7wmSbNgtUcl+WYp5UullMavggMAAJijHrz0yLxw19dmadfyJMnq7jV53Z7vyOqeNZPa5+HLH5Xnrnl5emujnzqt6dktr9/73VnWtWLae57tnrLz83PiqqdlUWkeqLDP4gPzhr3ek1qZni93PHvNS/OIFY9vGsJSUsshfUfkT/Z826T37+1amj/b+z1Z27PH6HWtL8/a5SU5dsXjptzzWLVSyxv2ek/2WXzglNZv60cwGgDTY1FZnFqDb0tsGrk/GG2w7nx36Z62j/E7Yr/eQ/Ly3d+YFV2rZroVeICVXTvlT/Z8W9Yu2r3tZz137ctz/IqTmj5PrqUrRy17VF6422un7dyn7nxqHrfqqekpE327a9RE95UkD9jroL6H5CW7vSErunbasUbHWd29Jq/a863ZqWeXad0XAAAAAAAAAAAAAADmq1JV1Uz3QBuUUkqSf03yvDrTv0tyeZJNSdYkOSbJ+Fd5DCR5ZlVVP2jhrBOTnJkHBq9VSS5McnWSVUmOSjL+FR9nJHlWVVUjE53RTqWUwzIa6pYkufTSS3PYYYfNYEcAAMB8MFKNZP3wfVnRtSqjn6JNdZ/hbBhenxXdwjeGqsHcOXBbqmz/tYxlXSuyvHtlW84dGNmSuwZvrzu3snun9HUt2+Ez1g3dm2Vdy1MrXTu8Vz3rh+7LhuF1LdfXSi1renZrWz8ALFxvuvLF6R9ev934H+3+FzlmxWNy0frz86mbP7jd/JJaXz5y8Fc60WJLqqrKXYO3NQ1cgk5ZVFuU1d1rd+jzjqlo9jx5p55dsqTW25ZzB0cGc9fgts8LPnPz3+WWgeu3q3vWLi/Jk3Z+Tq7ffFU+eN0b6+719wd9Ob1dD/w5PtP5/r2otjiru9d0/O8GAC677LIcfvgDfsLt4VVVXTZT/QCA/6MHAAAAAAAAAMwH/n9e53TPdAO0zR9n+1C0c5K8rqqqS8cOllK6k7w4yf9Kcv+ryBcl+Xwp5ZCqqu5rdEgpZa8kp+WBoWjnJnllVVWXj6lbnOTVST6cpGfr8NOTvC/J2yb3WwMAAJj9aqWWld3jM6insk+XULStuktPdlu8V8fPXVRbnN0X793WM9r9d7y8e2XbguMAYDL6akvrBqNtGulPMhqEWk936ak7PlNKKdll0W4z3QbMqE48T66np/bAzwtWdK+qG4y2cet9pVnAWXdZtN2Y928AAAAAAAAAAAAAAJhZtZlugLYZHzZ2TpKTx4eiJUlVVUNVVX02yclJtoyZWpvkTyY4591Jxr7S/xdbz7l8bFFVVVuqqvpYklPHrf+fpZR9JzgDAAAAAIB5oLe2tO74puH7A4wG6s73zLJgNGD26Gt0X7k/cHGk/n0lSbqLnyEFAAAAAAAAAAAAAACzjWC0eaiUckSS/cYNv76qqsFm66qq+s8knx43/PQm5xyc5KVjhgaSvKyqqs1NzvhOks+PGVqc5J3N+gIAAAAAYH7o7aofYLRx5P5gtPpfxu4pi9rWEzC3NbqvTBy4uCillLb1BQAAAAAAAAAAAAAATI1gtPnpgHHXN1RVdXGLa08fd31wk9oXJukac31aVVVXtHDGh8Zdn1pKWdJKcwAAAAAAzF19teYBRkMj9QOMuktP23oC5rbeWl/d8U0TBC66rwAAAAAAAAAAAAAAwOwkGG1+Gv/KshsnsfaGcdc7Nal99rjrz7ZyQFVVlyf55ZihpUme1MpaAAAAAADmrt6uBsFoWwOMhqqhuvM9tUVt6wmY23obBC5uvD9wsaofuNhT3FcAAAAAAAAAAAAAAGA2Eow2P9067nrJJNaOr727XlEpZbckDxszNJTk3Emcc9a461MmsRYAAAAAgDmoYYDR1mC0wYYBRj1t6wmY2yYKXBysBuvO99TcVwAAAAAAAAAAAAAAYDYSjDY//TrJljHXDy6l9La49ug6e9Vz+LjrS6qq6m/xjCT5xbjrwyaxFgAAAACAOaivUYDRcPMAo27BaEADfQ0CF//ffWWkfuBid1nUtp4AAAAAAAAAAAAAAICpE4w2D1VVtT7JF8YMLUnyionWlVK6kohUJLMAACAASURBVPzpuOHPNyh/yLjrK1tucNRVE+wHAAAAAMA809sgwGjjyGiA0VBVP8CoR4AR0EBvg8DFbfeV+oGLPQIXAQAAAAAAAAAAAABgVhKMNn+9Jcm1Y67/tpRycqPiUkpPkk8lOWrM8E+TfKvBkoPGXV8/yf6uG3e9cyllp0nuAQAAAADAHNIoGG3T8GiA0eBIgwCjmgAjoL6+BveVwWoggyODGRS4CAAAAAAAAAAAAAAAc0r3TDdAe1RVdXcp5aQkp2U07Kw3yZmllG8m+WaS3yXZlGSXJI9M8uokDxqzxa+SPK+qqqrBEavGXd8+yf42lFI2J1kyZnhlknsmsw8AAAAAAHNHX1eDYLSRrcFoDQKMugUYAQ30NrivJMnmkf4MVvUDF7uLwEUAAAAAAAAAAAAAAJiNBKPNY1VVXVtKOT7Jy5K8KsnRSU7d+mjkriQfSfJ3VdXglSKjlo273jSFFjflgcFoy6ewxwOUUtYmWTPJZQfu6LkAAAAAAEyst1Y/wGiwGsjgyECGGnxZukeAEdBAo/tKkmwa2ZjBkfqBiz01gYsAAAAAAAAAAAAAADAbCUab/7q2PrYkqZKUJrU3JPnrJF+bIBQt2T4YbfMUetuUZKcme07Fa5O8cxr2AQAAAABgmvV1TRBgVDUIMCoCjID6+roaf3tp43C/wEUAAAAAAAAAAAAAAJhjajPdAO1TSnl0ksuT/GOSR2fiv++9k3w2yfWllD+e5HHV5Duc0hoAAAAAAOao3lqzYLT+DDYIMOoWYAQ0sLgsSWnwLbDR+4rARQAAAAAAAAAAAAAAmEsEo81TpZQnJPlxkv3GDN+U5C1JjkqyKsmiJLsleUqSzycZ2lq3JsmnSymfKqWUBkdsGHfdO4U2x68ZvycAAAAAAPNIb1fjYLSNw/0ZHGkQYFQTYATUV0pJb62v7pzARQAAAAAAAAAAAAAAmHu6Z7oBpl8pZU2SryZZMmb4jCQvqqpq3bjy25KcmeTMUso/Jflekp23zr0yyVVJPlTnmNkajPbJJN+Y5JoDk5w+DWcDAAAAANDE4rIktdQykpHt5jaN9GeoQYBRjwAjoInerqXZOLL9t5k2DvdnqGoQuFgELgIAAAAAAAAAAAAAwGwkGG1++p9J1oy5/l2SU6uq2txsUVVV55dSXpDkx2OG31lK+WxVVbePK79v3PWaTEIpZVm2D0a7dzJ71LO1z/G9TtTLjh4LAAAAAEALSinp7Vqa/uH1281tGu7PoAAjYAr6aktzV53xTSP9GRxpELhYE7gIAAAAAAAAAAAAAACzUW2mG6Atnj/u+kMThaLdr6qqnyT5+Zih3iT/o07pFeOu9229vbr1d1dVdc8k9wAAAAAAYI7pqy2tO75ppD+DVf0Ao+4iwAhorLer/n1lY5PARfcVAAAAAAAAAAAAAACYnbpnugGmVyllaZIDxw3/ZJLb/DjJY8dcH1+n5vJx1wdN8owDxl3/dpLrAQAAAACYg3obBKNtHO7PkAAjYAoa3Vc2jfRnSOAiAAAAwKi7L0yu/2bSf+32c9VQMjKYLN032f2UZI8nd7w9AAAAAAAAALifYLT5Z1WdsVsnucf4+l3q1Fw67vqhpZS+qqo2tnjGoyfYDwAAAACAeai3q3GA0eBI/QCjntqidrYEzHF9jYLRhvsz2CAYrae4rwAAAAALyA3fTs59wWj42UT++6PJQ9+XHP5X7e8LAAAAAAAAAOqozXQDTLt764zVfzVIY8vGXW8YX1BV1S1JLhkz1J3kMZM448Rx19+fxFoAAAAAAOaoRgFGG0f6M1gN1J3rKT3tbAmY4xoHLm7M4Ij7CgAAALDAVVVy0ZtbC0W736XvSbbc1b6eAAAAAAAAAKAJwWjzTFVV/UnWjRs+apLbHD3u+tYGdd8ed/3yVjYvpRya5PgxQ/1JfthaawAAAAAAzGVLuvrqjm8a7s9QVf+Fed1lUTtbAua4RoGLm0aa3Fdq7isAAADAAtF/TbL+ismtGRlIbvlRe/oBAAAAAAAAgAkIRpufzhp3/apWF5ZSdkvyjHHDP29Q/uUkw2Oun1NKObiFY9487vpfq6ra3GKLAAAAAADMYY0CjDY2CTDqKT3tbAmY43q7GtxXhvszWA3UnXNfAQAAABaMW86c2rqb/216+wAAAAAAAACAFglGm5++Pu76BaWUF020qJSyOMkXkywbM7whSd3/EVFV1RVJPj9maFGSz5VSljQ545lJXjZmaCDJuyfqDQAAAACA+aG3QTDahqH7UqWqO9dTFrWzJWCO66311R3fNNKfwYaBi+4rAAAAwAKw/qrk16+d2tprvzS9vQAAAAAAAABAiwSjzU9fS3LxmOuS5AullI+WUnavt6CUclKS85OcPG7qQ1VV3dPkrHcmGTv/qCQ/LqUcOm7/xaWU/z/JN8at//uqqq5rsj8AAAAAAPNIb1f9YLR1w/c2XNNT62lXO8A80ChwcdNwf4aqgbpz3cV9BQAAAFgArvjkjq1fd8X09AEAAAAAAAAAk9A90w0w/aqqGimlPC/JuUnWbh0uSV6f5E9LKZckuTrJpiSrkxyVZLc6W/17kg9NcNaNpZTnJDkzyaKtw49O8ttSygVbz1mZ5OFJ1oxb/r0k75jc7w4AAAAAgLmsr0GA0bqhxsFo3WVRwzmARoGLW6rNKVX9nxPVU3NfAQAAABaA28/ZsfV3/DxZcfD09AIAAAAAAAAALRKMNk9VVXVlKeVxSb6Y5JgxU7UkR259NFye5NNJ/qyqqsEWzjqrlPLsJJ/LtvCzsvXcYxos+2qSV1ZVNTzR/gAAAAAAzB+NAoxG0vjLxT2lp13tAPNAo8DFJKkyUnfcfQUAAACYd4YHkkventx4erLpliRVMrShcf0hf5r8/uPN9/zlK0YfSdK9PBlav21u9dHJ8f+S7PTQHW4dAAAAAAAAAMaq/yPSmReqqvpdkkcmeWmS8zIaeNbMpiRfTvKoqqpeXVXVpkmc9e9JDk/yT0nuaVJ6fpLnVVX1wqqq+lvdHwAAAACA+aFZgFEjPWVRGzoB5otGgYvNuK8AAAAA8875L0su/7tk/e9HA8yahaKtfEjy8I8kB/5x6/uPDUVLkrsvSH74iGT9VVNqFwAAAAAAAAAa6Z7pBmivqqqGknwhyRdKKSuTHJNk/ySrkixOsj6jQWaXJvmvrfVTPev2JK8ppbwhyaOT7JtktyT9SW5K8puqqq7Zgd8OAAAAAABz3FQCjLprPW3oBJgvphK42F3cVwAAAIB5ZOPNyfVfb73+8T9Jaj3JcZ9KDnpV8rMnJwPNfi5yA8Obkgv/PHncdye/FgAAAAAAAAAaEIy2gFRVdV+Sn3TgnIEkP2v3OQAAAAAAzD29Uwgw6imL2tAJMF8srvWmpKRK1fIa9xUAAABg3hgZTm7+t6Qaaa2+Z1WyZNfRt0tJdj42OeYTyS9eOLXzbzojuebLyX7/X1JqU9sDAAAAAAAAAMbw3WcAAAAAAKBj+rqWTXpNd+lpQyfAfFErtSyp9U1qTU/NfQUAAACY40aGkgvfmHxrl+RXr2p93X4vHA1EG2vPpyXdk/+hFv/PeS9Kvrk6ufgdrQe0AQAAAAAAAEADgtEAAAAAAICOWVyWpEzi2xO1dKWrdLWxI2A+6Oua3At3u8uiNnUCAAAA0CH/9e7kdx9JBu9tfc2uT0ge9v7tx3uWJ489LelZMfV+Bu9LLntfcvnfT30PAAAAAAAAAIhgNAAAAAAAoINKKemrtR5g1FN62tgNMF/01vomVe/eAgAAAMxpVZVc9emJ6/r2Sk44ffTxtN8nj/9RsmhV/drdn5Q857bkqA/vWG+t9AUAAAAAAAAATXTPdAMAAAAAAMDC0tvVl/6R9S3V9tQWtbkbYD7onUTgYpL0FPcWAAAAYIpGhpP7LksG70tSTfPmJSm1pHtZUlucbLm9ftmmW5PNt0283WF/lez1jNaP71qSHPjHycVvTUYGW1831vorki13JYt3ntp6AAAAAAAAABY8wWgAAAAAAEBHTSbAqLv0tLETYL7o7ZpcMJp7CwAAADAlt52V/OSkme6iNV19yT6nTn7dopXJ3s9Nrvva1M/+1i7J0R9NHvT6qe8BAAAAAAAAwIJVm+kGAAAAAACAhaVvEgFGPcKLgBb0TTJwsZTSxm4AAACAeWlwXfLTJ8x0F61ZdkDy+B8ni1dPbf1xn0r2enZSuraNrXhwsvKwJC1+XeWCNyS3nzO18wEAAAAAAABY0LpnugEAAAAAAGBh6Z1UgNGiNnYCzBe9AhcBAACAdrvhO0k1MtNdNNe9LHna75K+PXdsn57lyQmnJYMbko03JkvWbgtZG7g3qfUk3UuTr/cmw5sb73PNF5O1J+xYLwAAAAAAAAAsOILRAAAAAACAjhJgBEy3yQQu9ghcBAAAYCEaHkhuPysptWT1scmilTPd0ey28abkjv9IBtdvG/vVK2eun1bt94c7Hoo2Vs+yZOWhDxxbtGrb23v8QXLDtxqvv+ozyc7Hj77dvTTp3SPZdHMy1J+Ukqw8LFl99GjQGgAAAAAAAABsJRgNAAAAAADoqL7JBBjVBBgBE5vMfaVb4CIAAAALzYZrkh8/Ltl4w+h1757JCd9Odj52Zvuara78VPLr1ybV8Ex3MjmlOznoVZ098+DXJjeclqRqXDNRoNwuj0pOOD1Zssu0tgYAAAAAAADA3FWb6QYAAAAAAICFpVeAETDNersELgIAAEBD579sWyhakmy6KfnVq5KqSZjVQtV/ffLr18ytULTSlex8XHLSD5LVD+/s2bs9Pnnst3Zsjzt/kVz2vunpBwAAAAAAAIB5oXumGwAAAAAAABaWSQUYFQFGwMQmE7jYI3ARAACAhWSoP7nj3O3H77koufs/k52P7XxPs9kNpyXVyOTXHfa25KHvndqZ1UjytQm+XvHgNyVHfrDxfJnBn5W997OTZ16bnL7f1Pe4/l+To//3dHUEAAAAAAAAwBw3g98FBwAAAAAAFqI+AUbANOubROBit8BFAAAAFpKBe5NquP7cjd/pbC+z2b2XJpd/OLnwz6e2fp/nj4aTTeVR6052Pan5/mse03yPmda39+hjqjbdkgzcN339AAAAAAAAADCnzYLvhAMAAAAAAAtJrwAjYJr1ClwEAACA+hqFoiXJZR9IRoY618tsdfXnk+8fmfzmTVNbv/tTkp2O3LEeHvympHTVn1v10GSPp+7Y/u1WaslD3rxje/zw+GSkyb9XAAAAAAAAABYMwWgAAAAAAEBHTSrAqCbACJjY5ILRBC4CAACwgIwMNp+/5czO9DFbDW1MLnh98wC5+y07cPQx1kPenJzwnR3vY49TkhO//8AAtBUPTg55fXLyOUmte8fPaLdDXpc88kvJ7k+u/2c1kXX/ndz6w/b0BgAAAAAAAMCcMge+Sw4AAAAAAMwnAoyA6dbX1fp9pVvgIgAAAAvJ8Mbm8zd9N9nzDzrTy2x0+9nJ4LqJ6x53RrLn09rby+5PHH3MZfv/4ejjfnf8IvnRo1tff+N3R0PiAAAAAAAAAFjQBKMBAAAAAAAdNakAoyLACJjYklpvy7UCFwEAAFhQ+q9rPr/+qs70MVsM3Jtc+enkik8m/de2tqa2ONnlUW1ta97a6ahk0U7JwD2t1a+/or39AAAAAAAAADAn1Ga6AQAAAAAAYGHprbUejCbACGhFrXRlSa2vpdoegYsAAAAsJBuunWD+6o60MSsM3JP86DHJRX/ZeihakjzkLcni1W1ra17r7k2OeFfr9RuubFsrAAAAAAAAAMwd3TPdAAAAAAAAsLAsri1JSS1VRias7akJMAJa01dbms0jGyes6xa4CAAAwEIyUQDYxuuTkcFkIXwd7uovJPdd1nr9AS9L9nx6svdz2tbSgvCg1yfLD05uOC3ZeFPSt1ey5fbkxtO3r+2/PhneknQt7nyfAAAAAAAAAMwagtEAAAAAAICOqpVaemt92TiyYcJaAUZAq3q7liZDd0xYJ3ARAACABaX/mubz1fBoGNXyAzvTz0y65czWa4/82+Qhb2pfLwvNHqeMPu533+/qB6OlSjZck6w8tGOtAQAAAAAAADD71Ga6AQAAAAAAYOHp7VraUl1PEWAEtKa31up9ReAiAAAAC8CNZyTfe0hyw2kT1264qv39zKQ7zkt+8aLklu+3vmbPp7WvH5Jl+yelwX9jX39FZ3sBAAAAAAAAYNYRjAYAAAAAAHRcnwAjYJr1tRi42C1wEQAAgIVgcF2y7vLWas9/eXt7mUl3nJv89PHJtV9ufc2hb0xWPrh9PZF0LU769qk/t+HKzvYCAAAAAAAAwKzTPdMNAAAAAAAAC0+vACNgmi2p9bVUJ3ARAAAAxtl0czK0KenunelOpt9/fywZ3txa7eHvSHY9afRB+y0/KOm/dvvx9YLRAAAAAAAAABa62kw3AAAAAAAALDy9tdaC0XpqgtGA1vS1el8RuAgAAADbW/fbme6gPe76ZWt1+zw/eeh7hKJ10rKD6o8LRgMAAAAAAABY8ASjAQAAAAAAHddqgFG3ACOgRb1dLd5Xaova3AkAAADMQfMtjOru3yQ/Pinpv661+r2f195+2N7yBsFot/4w+f5RyTVf7Gw/AACzRVUll/998r2HJF9bkpz5iOSmf5vprgAAAAAAOkowGgAAAAAA0HGtBhj1FAFGQGtaDVzsEbgIAAAA29tw1Ux3MH023pj89OTk9rNaqz/g5cnez2lrS9TRKBgtSe65KDnvJcl1X+9cPwAAs8Xlf5f85i+SdZcnI1uSu36ZnPOM5LazZ7ozAAAAAICO6Z7pBgAAAAAAgIVHgBEw3QQuAgAAwBg7H5sc84kHji3ddzRk4fY6gQrrr+xMX51w6XuTgbub1xz4imTn45Kdj09WPTQppTO9sc2yJsFo9/v9PyT7vqD9vQAAzBZVNfocaLvxkeSKTya7Pq7zPQEAAAAAzADBaAAAAAAAQMe1GmDULcAIaFFvi4GL3QIXAQAAWAhWHDL6GO/WH9cPRttwVft76oT+65OrPztx3RHvTvr2bH8/NLb8wIlr7r5gNASk1NrfD0yXkcFk4w3bjy/ZNRnekqRKUpKelUmtq9PdATDbbb4t2Xhj/bnbftrZXgAAAAAAZpBgNAAAAAAAoONaDTDqqQkwAlrT1/J9ReAiAABMt1JKSfKmJEvGDH+hqqprd3Df/ZO8eMzQxqqqPrwje8KCt/yg+uPr50kw2m8/NBpKNJFFq9vfC811LUlqPc3/voY3J/3XJcv271xfMFUjQ8mFb0yu+kwyvLG1NYf/dXLEu5JS2toaAHPIZR9oPLflztHg2NVHd64fAAAAAIAZIhgNAAAAAADouL6uFgOMigAjoDW9Ld9XBC4CAEAbvDDJB5NUW69P29FQtCSpquqaUsoRSZ5z/1gp5eqqqk7b0b1hwVp2YP3xTTclQxuT7r7O9jOdNt40GkjUiu7e9vZCa0789+SnT2xe84sXJU86tzP9wI649H3J7z82yTXvSZbsmhzy2vb0BMDccssPk9//Q/OaHxyTnLoh6W7t+2IAAAAAAHNVbaYbAAAAAAAAFp7eWmv/UbtbgBHQor4W7ysCFwEAYHqVUmpJ3nP/ZZIrkrx0Go94WZKrtu5dkrx/GveGhWf5QY3nrvli5/poh9/+bTIyMNNdMBk7Hz9xzZ2/SKpq4jqYaVf/y9TWXfV/prcPAOam4YHkP/+0tdobvt3eXgAAAAAAZoHumW4AAAAAAABYeFoNRhNgBLSqt0vgIgAAzJCTk+yf5P7UmrdWVbVxujavqqq/lPKWJN/cOnRIKeXxVVX9dLrOgAVl6b5J99JkqH/7uUvenuz7gmTRqs73tSOqKrnz/OT3H2utfu3j2tsPretZniw7INlwdfO6a76YrDg0WX1UUvO1HWaB4YHknguTgXtHrwfuSTbeMLW97rkwuenfkq4lyepjkuGNSf8NyU5HJl0Nvkey5e7krl8n1dBoIGRtcVJqyaKdktUP934CMNdUVXLB65P1V7RWf+8l7e0HAAAAAGAWEIwGAAAAAAB0XF+LAUY9NcFoQGuW1PpaqhO4CAAA0+5FY96+oKqqb0/3AVVVnVZKuSDJ0VuH/jCJYDSYilpPss/zk6s/t/3cljuT/3pPcvRHOt7WlA3cm/zH85Nbf9z6mv1f0r5+mLwD/zi5+G3Na85/6eivi3dJTvhOsubR7e8LGrnlh8l/nJoM3jd9e579tO3HelYlj/1GstvJ28aqkeTitye//ZvGey1anZzw7WTtCdPXHwDts/mO5IePSjZc2fqaVgPUAAAAAADmsNpMNwAAAAAAACw8vbUWg9FKT5s7AeaLrtKVxWXJhHU9NfcVAACYZk8Z8/b/aeM59+9dkjy1jefA/HfEu5OuBp9D//4fknX/3dl+dsRFb5k4FG3VEUnKaKjWw/4mOeDlHWmNFj34L0cfPSsmrt1yZ3L2M5Lhze3vC+oZuC8551nTG4rWyOC9ydnPTAbXbRu74bTmoWhJMnD36PvJ0Mb29gfA9Ljg9ZMLRUuS9ZOsBwAAAACYgwSjAQAAAAAAHbe4tiRlgm9TlNRSS1eHOgLmg96uiUMXu8uiDnQCAAALQyll3yS7jBn6XhuPG7v32lLK3m08C+a3pfskD35T/blqKLnwjZ3tZ6qqkeS6rzavefj/Tp56SfL8dclzbksOe0tSSmf6ozW1ruSoDyXPvTtZfvDE9QN3J7ec2f6+oJ6bvpsMb+rcecMbkxvP2HZ97VdaWzd4X3Lz99vTEwDTZ2jTaOjlZG24cvS5MAAAAADAPNY90w0AAAAAAAALT63UsqTWm00j/Q1rekpPihcpApPQV1uae3NX05qe0tOhbgAAYEF42NZfqyRXVVV1U7sOqqrqxlLKlUkO2jp0ZJIb2nUezHsPeXNy1b8km+q82978b8nNZyZ7PLnzfbVq8+3JNV9KBtc1rlmyNjnolaNv9yzrTF9MXa0r2fXxyforJq797YeStScmi1a2vS3mgM13JreflVTDo9elNvrvY8ma0estdye3n51snIanDRf/1Y7vMVnnvSgZ2Po1zxu/3fq6G7+T7PPc9vQEwPS48xfJyEDj+X1ekFz/9e3HhzcnG29KlsoLBwAAAADmL8FoAAAAAADAjOjrWjpBMNqiDnYDzAe9XUsnrHFvAQCAabVmzNs3d+C8m7MtGG1tB86D+at7aXLkB5PzXlx//sI/T3a7OKnNwoDxW3+cnPOcZGh987ojP5R093WmJ6bHQa9Orv5s84CQJLnzvOTfDktO+n6y6ojO9MbsdNvZyTnPTAbve+B4z8rkhO8kXb3J2U9LttzZ+d5Kd/K47yXn/WGypfkPc5jQBW+Y/Jprv5QsPyg54p07djYA7XHzD5KzTmk8v/ro5JiP1Q9GS5IbTksOncLHBwAAAACAOaI20w0AAAAAAAALU2+teYBR92x80SUwq010X0mS7uLeAgAA02inMW/f2oHzxp6xqgPnwfy23wuTnY+vP7fu8uSKf+xsP60YGUrOf/nEoWjHfybZ/6Wd6Ynps/qo5PE/StaemHQva1676abk16/rSFvMUtVIcv7Ltg9FS0bHzn9Z8stXdC4UrbZ49NG9NFl7QnLSmckeT06edH6yx9OarGvj1yv/613JPRe3b38ApmZkcPTjVDNP+GmyZG2yeJf68xf+2bS3BQAAAAAwm3TPdAMAAAAAAMDCNFGAUY/wImCS+romCFwsPSmldKgbAABYEBaNebsTP6h17BmLO3AezG+llhz90eSHj6g//1/vSvb7w2Txzh1tq6m7fpVsvLF5zc6PSA58RWf6YfqtPSE5+Wejb//+k8l/Ngk/u+Pnyabbkt5dO9Mbs8vdFyb91zae77+uY63k+M80vu8sPyg58YzGawc3JN/cKamG2tPb9d9MdnpYe/YGYGruODfZfFvj+d1PSXpWjL69/ODGIZ+eBwEAAAAA85hgNAAAAAAAYEZMFGDUUxY1nQcYT+AiAAB03MYxb6/pwHljz9jYsApo3S7HJ/u9KLn2S9vPDdyTXPLO5NiPd76v8fpvSG78TnLxWyeuXfvY9vdDZ7Tyd3ndV5ND/6z9vdA+g+uTG05L7vp1cs+FSe/uyZLdJ153xSfa31urdnn01Nf2LEuO/UTyq1dPXz9jrbu8PfsCMDUbb0wueH3zmrHPgXY6MrnzvPp19/wm6X1K4336r0tu/G4y1J/s+QfJqiMm3y8AAAAAwAwRjAYAAAAAAMyIiQKMugUYAZMkcBEAADru1jFv79uB88aecVsHzoOF4cgPjoYSDdfJG7zyn5KDX5OsOqzzfd3v7guSnz052XLXxLWLd04O/pP290RnrDoi2euZyY2nN6658M+T7r7koFd1ri+mz+Y7k589MbnnopnuZOr2fl6y8tAd2+OAP0pu+E5yy/enp6exbvhWMjyQdPnaKMCMu+ei5KdPSrbc0bimd4/Rjwv3e/Cbkiv+sX7tWackz70rWbx6+7m7fj161uC9o9eXvD151JeTfV8w9f4BAAAAADqoNtMNAAAAAAAAC9NEAUaC0YDJWiJwEQAAOu2qrb+WJPuWUg5q10GllAOT7FfnbGBH9e2ZPOQt9eeq4dHgqarqbE9jXfxXrYWiHfSq5InnJcsOaH9PdM5jvpE87P3Nay78i2SovzP9ML2u+MeZCUVbdcSOP9aemDzsb5JHf3XH+6l1J4/9ZnLEuyfuc+Xh268/4OVJafLSkJu+u+M9ArDjLn5781C0JHnyL5PeXbddL9s/6VnVuP7Kf64//pu/2BaKlow+r//1a5OR4db7BQAAAACYQd0z3QAAAAAAALAw9U4QYNRTW9ShToD5os99BQAAOu3iJANJ7k8hfkaSj7TprGeNeXswyQykqMA89uC/SK76TLLx+u3nbv1RctMZyV7P6Hxfw1tGz5/IYW9PHvbe9vdD59V6ksPeLnWOnAAAIABJREFUltx7WXLdV+rXDK1Pbv95ssdTOtsbO+7m73X+zINenRz3T50/dyLdfckRfz36mIoD/ij58WPrz930vWSf5029NwB23MhgcsuZzWsOf2fSt9f243s8Jbnua/XX3PS95LC3PnBsaFNy+znb1w7cndz2k2T3J7XWMwAAAADADGryY4EAAAAAAADap7drggCj0tN0HmC8ie4r3e4rAAAwraqqGkhydpKy9fGXpZTmT8ynYOueb0pSbX2cs/VsYLp09yZH/W3j+XOemWy5q3P9JMn130h+9JikGpm4VrjD/DfR3/FZpyS//bvRIBBmp4F7k0vfl5z19OSnTxp93PWrzvex+5M7f2YnrD668dw1n+9cHwDUd89FSTXUvKbR851mH7vu/MX2Y8NNng/d99vmPQAAAAAAzBKC0QAAAAAAgBnRV5sowGhRhzoB5ouJ7isCFwEAoC2+uvXXKsmaJE2Slabsg0nWZjR8LUm+0oYzgH1OTdY8pvH8t3ZJhvo708sl70r+49Tk7v+cuHavZzXvm/lhn1OTnY9vXnPRXyY/fUIyMtiZnmjd4LrRoMNL3pHc/L3k1h+NPjpt7YnJnk/r/Lmd0N2brDy88fxlH+xcLwA80MB9yZnHNa/Z+znJLo+sP7fPqc3X3nPx1PoCAAAAAJjFume6AQAAAAAAYGHqFWAETLPeLoGLAAAwA76S5P1JdstocNmflFJuqqrqA9OxeSnlLUlel9HgtZLktghGg/YoJTn6o8kPjsnou1wd1309OfCP2tvHwD3J5R+auO6AlyVrTkj2f8lo78xv3b3JE36W/Gtf87o7z0tuOmM0XITZ49qvJPddNvl1i1Ynu57UvGZw3fYha7s9MelZse26qy9Z86jkgJcntXn8vYeHfyT52ZPqz13y9uSQ1yU9yzvbEwDJtV9qPv+Izyb7vbjxc9ruvuSplyT//tD68xe9OTnpB9uuq6Gp9QkAAAAAMIsIRgMAAAAAAGbERAFGPQKMgEkSuAgAAJ1XVdVAKeWtST6XbeFl7y2lPDTJa6qqumcq+5ZSViX5ZJIXjNm3SvK2qqoGpqN3oI7VDx8NDrr6X+rP3/az9gej3XFeMry5ec1uJ48GSLCwdPcmR34wuegtzetu/algtNnm1p9Mbd0pFyVL957eXuaz5Qc3nquGk7v/c+KgOQCmX7OPg7ueNBr4O5EVh2bbp8Xj9F//wOsRwWgAAAAAwNxXm+kGAAAAAACAhalvggCj7poAI2ByJrqv9NQELgIAQDtUVfWFJKdn26u0S5LnJ7milPK3pZQmKR0PVEo5qJTyt0muyGgoWrn/mCRnVFX1uensHajjYe9vPHftl5KL/yoZ3jK9Z/Zfl5z30uR7hyZn/8HE9Xs9a3rPZ+7Y8xkT11zxieQrJTnjQcndF7a/Jx5o7Pvz6fuNPm745uT32enhQtEma+m+yaqHNp4/51nJ0MbO9QOw0N3yw+Sspyc3frtxTavPa2s9qRuKliTrLk+u+9dt11WzYLQGewAAAAAAzDLdM90AAAAAAACwMPV2TRBgVAQYAZPT29XXdL67CFwEAIA2enGSnyY5JtvC0VYneWOSN5ZSbknyqySXJ7l36yNJViZZleTBSY5LssfW8bGBaCXJBUle1PbfBZD07pbsc2py/b/Wn7/sA8k9lyQnnjE9522+MznzEcnmW1ur3/Xxyf4vnZ6zmXtWPjg54I+Sq/9l4tr1v09+cHTy1EuSVUe0vzcm//7cSM+q5OiPTk9PC0kpydEfS35yYv35wXXJz56SnHz2aC0A7XPzD5Kzn5ZUw83rDnh563s+8ovJeS+uP3fuC5KRgWT/FyUjg63vCQAAAAAwSwlGAwAAAAAAZkRfbaJgNAFGwOR0le4sLkuypdpcd17gIgAAtE9VVRtKKU9I8rkkz85ooFmyLeBsjyTP3PpoZGxCx9j1pyd5aVVVG6atYaC5g1/TOBgtSW7+XnLvZcmqw3b8rGu+0HqI0gnfTXZ/ctLlc/wF7fjPtBaMdr/ffzw57p/b1w/bTOb9OUnWnpjs8sikGkr6r0+WrElWPTTZ45Skb6+2tTmv7fq40T/X28+qP3/Hz5M7z0/WPLKTXQEsPJd/eOJQtJN/nvQsb33PvZ7RfP6/PzYajFYNtb4nAAAAAMAsJRgNAAAAAACYEYtrvSkpqf7f65wfSIARMBW9XUuzZahRMJrARQAAaKeqqtYneW4p5c+TvDdJX7LdJ/5lu4Vbl4+rLUk2JXlnVVUfnu5egQmseNDENXeeNz3BaHee21rdUR9O9nr6jp/H3FdKsvro5O4LWqu/8lOC0Trlzl9Mrv4x30iW7NKeXhay3Z/YOBgtGb1/C0YDaI9q66e1E35MLJN/Lt2zIundPdl0S/35ey4c/XVEMBoAAAAAMPfVZroBAAAAAABgYaqVWpbU+hrOdwswAqagt+l9ReAiAAB0QlVV/yvJvknen+TejIac3f+oGjzG1ty7de2+QtFghvTunqx5bPOaX70yuegtycjw1M4YuC859w+TG05robgk+zxvaucwP+1z6uTqN97Ynj7Y5vpvJDd8q/X6XZ8gFK1d9n5+8/nfvDG55K+TaqQz/QAsBAP3Jb94UfKtnZOv1pLhTc3rd39ysminyZ+zzwsaz1Vbn5dXg01q6v/QMgAAAACA2UYwGgAAAAAAMGP6upY2nOupCTACJq+31uy+InARAAA6paqqu6qqekeS3ZKckOQdSX6Q5NIkNyfZsvVxy9axM5P8dZLHJdm9qqp3VFV150z0Dmx13KeSpfs1r/nth5KL3jy1/c95ZnLdVyauK13Jcf+cLN13aucwPx3yp8mez2i9/rsHJSND7etnobvlh8l/TCKsbtmBybH/2L5+FroVBydH/0Pzmkvfm1zyzs70A7AQnPOM5NovJwP3TFy7/JDkmI9P7ZzD39F8vqo85wEAAAAA5oXumW4AAAAAAABYuJoGGBUBRsDk9TYLXCwCFwEAoNOqqhpM8h9bH8BcsvLQ5A9+m5x1SnL72Y3rrvp08rD3J12LW9/73sua75kkB/1JstvJyZpHJb27t743C0N3X3LCt5P7LkvuvTTpvy65+K2N60e2JLecmez5B53rcSG54p+azx/06mSXR4y+veyAZOfjkq4l7e9rIXvQnyYbrkz++6ONa678p+SIdyW1ro61BTAvrft9cvs5rdWefE6y87FT/zi4eHXyhJ8lPzmp/nw1kowMTm1vAAAAAIBZRDAaAAAAAAAwY5oFo3ULMAKmoK/pfUXgIgAAAExKd29yyOuah5gNrktu/E6y8rBk2YGja+43PJBsuTPp22M0pGHjjcnIQHLNF5qfW7qSIz+QLNppen4fzE+llqw6YvQxMpxc9oFkaH3j+uu+nuxxSjK8Odlwdf2anpWj/6ZTjV737Z0sWjntrc8bg+uS/uuTG7/duKZ0JUf+jffnmbDrE5oHo225M+m/Jll+UOd6ApiPrvtaa3VrHpusfeyOn1dr9n30kaQa2vEzAAAAAABmmGA0AAAAAABgxvR1NQ4w6hFgBExBb9P7isBFAAAAmLQ9njZxzbn/Y/TXWk9ywMuTo/8hufTdye/+VzK8afJn7vl0IUpMTq0r2e+FyZX/3Ljm2i+OPiaj1EbfBx71xaRnxY71OJ8Mrk/Oe0ly03dHQw+b2fNp3p9nyu5PShavSbbc0bjmjIOTo/4+OfTPk1I61xvAfLL5ttbq9n/x9JxXao3nfvy45EFvaLK4mp4eAAAAAADarMlXQgEAAAAAANqrt9YkwKjpT7oGqK/pfUXgIgAAAExed2/ypPNaqx0ZTK78VHL63sllH5haKNraxyXHfXry6+CoDye7PWl696xGRsO/fvXq6d13rvv1a5IbvzNxKNriNclxn+lMT2yva3Fy0veTvr2b1/3mjaP/zgFon+7lyYGvmKbNmrwc8M7ztoUW11MNTVMPAAAAAADtJRgNAAAAAACYMb1dfQ3nugUYAVPQ1yVwEQAAAKbdLo+YXP3m26d2zv4vSU4+K1myy9TWs7D1LEsef2by0PdO/943fCsZXDf9+85FQ/3J9d9orfaZ13l/nmmrjx79e1i8c/O6qz/XkXYAFqwTvp2UaXoZ347sMzI4PT0AAAAAALRZ90w3AAAAAAAALFy9tcYBRoLRgKlwXwEAAIA22f8lyTVfaO8Zezy1vfuzMOz2xOSSd0zvniODyUVvS9Y8KhkZSEp30t3gB3/UFiWrj016d53eHmbawH3JXb9Mbv/56J/BRJYfknT3tr8vJlZKss//SK74ROOaG09Pqmq0FoDJmfDjYklWHt7ydvcN3Z3rN1+VoWpou7me0pMDqi1p/OPHJjCy/Z4AAAAAALORYDQAAAAAAGDG9DUJMOopizrYCTBf9HW5rwAAAEBbHPjK9gajLVmb7PmM9u3PwrHzccmqhyX3Xjy9+17xiebBUuMd/s7kiHfOj6Cpq7+Q/OqPRwPiWnXQq9rXD5N34CuSK/8xqUYaFFTJ2c9IHvP1xqF/ANQ3cHfz+b2f01Jg6kg1ktPv/GJ+dPe3m9aVJM9ee2BOvv2qSTS5VTWJj+UAAAAAADOoNtMNAAAAAAAAC1dv0wCjng52AswXS2qNX7TnvgIAAAA7YO1jksd8Y/r3LV3JLo9KTv550t07/fuz8JSSnHRmsvspM9vHpe9ObvvJzPYwHTZcm5z/stZD0ZasTY54V3Lo/2xjU0za6qOSE85oXnPz95LL/64z/QDMJ/+XvfuOk7uq9z/+OrM7m2TT66YHAqGEFjqEIh0RRRQVudeuV8Verlgv9nrVawWx+1NRwQIoKCJdOtISWgokIWUT0nu2nd8f3113Q+Y7OzM7M7ubvJ6PxzzmO+dzvud8Astk2f1+37Ojm2C0439R0DJztzzYbSgaQAT+OOVgFgweVdC6Oykm5FSSJEmSJEmSepHBaJIkSZIkSZIkqdcMyuQJRsvUVbETSbuL+jzvK7W+r0iSJEmS1DNTXwX/EeHC7fDqDfDK56GuhECGDideBa/eCGfdBcP2K1+f0qAGOPUGOOfR/PMGNsC4F1Wuj0VXVm7tallyNUkESzfGHA8XrIZXNMIhn04C6tS3THoJvGZL/jmLf1edXiRpd7Lj+fRa/VSoTf/dVVf3b7y9qG3njBhf1HwA2lqKP0eSJEmSJEmSekFtbzdQjBDCLe2HEbgoxriqxHUagN90rBVjPL0c/UmSJEmSJEmSpOLU1+QJMArZKnYiaXcxKM/7Stb3FUmSJEmSyqNmQPLIAhPPhUW/LH6NzACY8GKorS97e9K/DT8QBoyBHatz1yeeA5POg1XFBZEU7JmfwdAcoX+DxsP4M6B+cmX2LadC/9lMfAkMGF3ZXtRztfUw4hBYPyd3ffMCaGuFTE11+5Kk/iq2weZn0uuHfKbgpVbsWFLU1huzA4qaD0BsLv4cSZIkSZIkSeoF/SoYDTiFzo+bGtiDdQa2rwUFfXyVJEmSJEmSJEmqhEGZ9ACjulBXxU4k7S7q87yvZH1fkSRJkiSp/PZ7Nyz5HbQ1FXfejIshO7QyPUkdMlnY730w59IctTqY8S4YOQuGzoBN8yvTw6Mfzz1eUw8nXg2TXlKZfcvh+Xtg+fXdz8uOgOlvrnw/Ko8DPgT3pvz7amuGbUth8LTq9iRJ/dW25dC6Lb0+7TUFLdMaW1nVtKKorZtDCSGWbS3FnyNJkiRJkiRJvSDT2w2UIPR2A5IkSZIkSZIkqTzG101hYKZ+l/FRtWMZUjO8FzqS1N8NqRnOmGzDLuMDwkDG103phY4kSZIkSdrNjTkWTrsJJpwNA8ZC3cjkkckTUH7oF+CIb1SvR+3ZDv4UHPF/MOqo5GtzwNjk6/W0f8Doo5PwtDPvgr3fAEOmw/gz4ejLYPL5le2rdSvc/7YkiKovihEeuDj/nEETkn9OZ90D9ZOq05d6bvqb4Kjvp9c3P1O1ViSp31s/N732krlQm/6BPl2tbm6kldyhZTXU5hxvyZRwW2Dso993SJIkSZIkSdIL5P7JqCRJkiRJkiRJUhVkM1lOH3ke16/57U7jZ416JSH4WSmSihdC4KxRr+TKlZfvNH7aqJeRzWR7qStJkiRJknZz405OHlJfFAIc8IHkkWbgWDj+FzuPzbgYHv8SPPrJ/OtfsBpatsK1U4vvbdsKWH0fjDux+HMrbcuzsP7R9PqpN8KEs6rXj8prv3fBnEthx5pda5ufgYZTq9+TJPU3McLjX8hdGzAaRhxU8FIrdjyXczwQOGnE2dy2/vpdas2hpuD1/60td/iaJEmSJEmSJPU1e2owWtc/tz/RlSRJkiRJkiSpF71k9IWMzI7hkU33kgkZjhn2Io4YekJvtyWpHztxxNkMrhnKAxvvoCk2cfiQ45k9/IzebkuSJEmSJEn9zeTz8wejDZ8JdaOgbiQMmZ4EShXrqW/A2BOSALe+ZOO8PMUAo4+uWiuqkCH75A5Ge/xLsPebIFNC4I4k7UmWXAXP35W7Nvq4opZqbFqae5nsOOprhuSsNWcyRe0BQFtz8edIkiRJkiRJUi/YU4PRxnQ53tJrXUiSJEmSJEmSJEIIzB5+hqFFksrq8KGzOXzo7N5uQ5IkSZIkSf3Z8Jkw9TVJ8MkLhQwcfGl7oFlIju99U/F7LL0GHnwPHP39nnZbXpsWpNdmfiwJg1P/NmQ6rLl/1/HNz8Bdr4ETr06+ziVJu2rZBg9fkl7f791FLbeyaVnO8fF1U6gN2dwtlBJgGVuKP0eSJEmSJEmSesGeGox2cvtzBJb3ZiOSJEmSJEmSJEmSJEmSJEmSpD5q9pUw5nhovAka/wEDG2DcKbD362HCmZ3zpr8RBo6DRb/OHSq25r70PeZflgSoDJ9Z9vZLtml+eu2wL1avD1XOkOnptef+CCtvhfGnV68fSepPnvsjbF2SuzbhbJjw4qKWa2xamnN8fN1ksqEuZ62llPDKtubiz5EkSZIkSZKkXtCfg9FiMZNDCFlgAnAW8MkupTnlbEqSJEmSJEmSJEmSJEmSJEmStJvI1MABH0ge3Zl4TvLI5bFLYe7n089d/te+FYy2OUe4G8A+b4UQqtuLKiNfMBrA8hsMRpOkNCtvyT0eauDwbxT1d2WMkZVpwWgDJtOSEmbWnCkhGC22FH+OJEmSJEmSJPWCEn4CWlkhhNa0R9dpwKJ8c3Ocux14FrgCGNZlreuq+MeTJEmSJEmSJEmSJEmSJEndCCEcGUJ4VQjhZSGEfXu7H0mSemxCSmBah4f/G/5xCjz0YdiyuCot5bXixtzjQ2dUtw9VzvgzSW7NSPHUN6vWiiT1O6vuyD2+1+tgxEFFLbW+ZQ3b27blrDXUTSabqctZaw41Re0DQErImiRJkiRJkiT1NX0uGI3kN2tpj0LndfeI7Ws8Bfy+cn8USZIkSZIkSZIkSZIkSZL2XCGEgSGE6V0eee/cDiGcF0JYBNwP/A64Bng6hPDPEMLMKrQsSVJljDkOpr02/5xVtydhVDceB5sXVaWtnDY8BbE1d22IeaW7jcFT4cCP5J/z1Leq04sk9SfbGmHzgty10UcXvVxj09LU2oS6ydSGbM5aS6aE2wJjS/HnSJIkSZIkSVIv6IvBaNAZXFYpAXgQeGmM0Y+6kCRJkiRJkiRJkiRJkiSpMj4MzG9/3Aq0pU0MIbwG+CMwhV0/EHU2cF8I4chKNyxJUkWEALN/DaOP7X7u9kaYf3nle0rz2P+k14bOqF4fqrzDvwp7vyG9/vgXoHVH9fqRpP5g3nfTayX8PZkWjDasZgT1NUPIhrqc9eb8ueO5tXkbnSRJkiRJkqT+oba3G8jhDtKD0V7U/hxJPg1ye4FrRmAHsB54Erg1xnhnT5qUJEmSJEmSJEmSJEmSJEndOp8k2CwCP4kx5rw+MIQwEriC5ANfY/sjtJc7zhkM/DGEsH+MsdDrByVJ6jtCBg7+FNz+su7nrrqt4u2k2vR0em3oPtXrQ9Wx//vh2f+Xu7ZjDWx4HEYdUd2eJKkvW31vem3ofkUvlxaM1lA3GYBsyOasN2cyRe9F09riz5EkSZIkSZKkXtDngtFijKek1UIIbXRe4HRhjHFJVZqSJEmSJEmSJEmSJEmSJElFCSEMAmbRed3fX/JMfy8wnM5AtGXAH4EW4JXAtPZ5k4H3AV+rQMuSJFVew6mQHQbNG/PPW3M/3PlqOPoyGDi2Or0BxDZYPye9Xju4er2oOkbOgvopsPW53PXNCw1Gk6QOLVth5S3p9cHT0mspGnfkDkYbPyAJRqvN1OVuJVOzU6J4QdbPgRghFHWWJEmSJEmSJFVdCR8N0ev8yaskSZIkSZIkSZIkSZIkSX3fIUANyXV/W2KMD+WZ+zo6Q9GeBg6OMb4/xvjh9nUeaJ8XgDdVrGNJkiqtdjAc/QPIZLuf+9zv4aYTobWp8n11eOZn6bVjf1q9PlQ9IQPH/ji9vmlh9XqRpL7u1rPTawd9oqTAsZVNKcFode3BaCH9e4aWkOPWwEkvy79hvr/rJUmSJEmSJKmP6G/BaJ9tf3wOWN/LvUiSJEmSJEmSJEmSJEmSpHR7tz9H4Im0SSGEA4B9u8y9NMa4oaMeY9wMvLfLKfuHEKaUuVdJkqpnr4vg3CeTgLR935l/7qZ5sPwv1ekL4PEvpdemnF+9PlRdE86CEYfmrm02GE2SAFj3GDz/z/T63m8oesmtrZvZ2Jr7FrmOYLRsnmC05kyOWwNP+hOceHX6po98rKgeJUmSJEmSJKk31PZ2A8WIMX62t3uQJEmSJEmSJEmSJEmSJEkFaehyvCLPvJPanwOwCfjTCyfEGO8PISwFJrcPHQo8V44mJUnqFUP3SR4xwuIroXlj+tz5P4DJr0jm1AyAUANtzdDWBLVDoGULSbboCwXIDoMQuu8ntkHzBtj8TO56pg7qRhbyJ1N/Ne5FsP6xXcc3Pg1N6yEzAGoHlXfPtmYItYV9jUpSb1tzb3otUweD906vp2hsWppa6wxGq0ud0xxqgJYX9FIDU18FA8fB9lW7nrRjNWx/HgaOLbpfSZIkSZIkSaqWfhWMJkmSJEmSJEmSJEmSJEmS+o36Lseb8sw7of05AjfHGFtS5s2lMxhtag97kySpbwgBpl4IC3+UPqfxJvhNprT16yfD/h+EAz6YO3yqdQf86/2w+HfQvD59nRGHlLa/+o8h++Qef/5O+P3IJJBv1NFw7I9gxME922vbCrj3LbDyVhgwGvZ/Hxx4iQFpkvq2lben16ZcADXpAWZp0oLRBmYGMaJ2NADZkE09vyWT5/uDcS+CJVfnKER48utw+FeLaVWSJEmSJEmSqqrE345KkiRJkiRJkiRJkiRJkiTl1TXZIv1Obpjd5fjOPPPWdDkeVlJHkiT1RYd9qXJrb10KD38Ynvlp7voDF8OCK/KHogEc/8vy96a+ZWhKMFqH2Apr7oWbToSmbr5e8q4T4ZYzYMXfoG0HbFsOj3wM5l9e+pqSVGltrbD4yvT6Ed8oadnGHbmD0RrqJhPawyJrM+mBa82hJn3xY65Irz35NdixtqAeJUmSJEmSJKk3GIwmSZIkSZIkSZIkSZIkSZIqYVOX44ZcE0II44F9uwzdnWe92q6n9qAvSZL6loFjYPpbKrvH/B/sOta8ERblCXnpUFMPww4of0/qW4Z0E4zWoXkDLLmq9H2e/ydseGLX8QV5AnwkqbetvDm9dtAnYNCEkpZtbEoLRpv07+NsSM8Zb87kuTWwbiTMeHd6ffFvuu1PkiRJkiRJknpLbfdT+q4QwqnAacDhwDhgOPk/VTKXGGMs8Dd4kiRJkiRJkiRJkiRJkiSpQMvanwNwSMqcl3Q53gE8lGe9EV2Ot/SgL0mS+p5pF8IzP63c+msfhOfvgVDTObbmPmjb0f25Iw6BYCbpbm/IdKgZBK3bup+79uHS91ny+9zj6x+D1iaoqSt9bUmqlHV53vdGHFryso1Nz+UcH183+d/H2ZD+vtiSqUmtATDpXJj//dy1dY90258kSZIkSZIk9ZZ+GYwWQjgb+A47f0pkqb9pjT3vSJIkSZIkSZIkSZIkSZIkvcBjXY5HhRDOjjHe+II5b25/jsD9McbmPOtN73LcWI4GJUnqMxpOg/rJsHVp5fa4aXZp501/U1nbUB9VMwCmvRae+Vn3cxf8AI65vLR9NjyeXtuyCIbtV9q6klQpLVvgkY+l1ye9rKRlm9uaWNO8KmetazBabUi//a85ZPJvMv7M9NrCH8OxP8p/viRJkiRJkiT1km5++tn3hBA+AtxAEorWNQwtlvCQJEmSJEmSJEmSJEmSJEkVEGNcCMwnuV4vAJeFEPbuqIcQPgyc0OWUa9PWCiEMYecPU11Y3m4lSeplmVo49UaoHdLbnXTKDICZH4V9397bnahajvwOTHkldBe0A7DhiRI3aUsvbVpQ4pqSVEEPX5JeG3M81NaXtOzKpuXElNvbJgyY8u/jTKihhtzhaM2ZmvybZGphxsXp9XWPdNunJEmSJEmSJPWG9I+M6INCCGcDX21/2RFu1hGOthVYD+T7tEhJkiRJkiRJkiRJkiRJklQ9Pya57i8CewNPhRAeBcYBU+i8DnA78Ks865xC5/WCLcDjFepXkqTeM3wmvGYTbF0KW5fD348tfo1zHoa/Ht6zPoZMh5P+BMP2g5qBPVtL/Ut2CJz0B2jaAFuehaV/hjmX5p777C9h1peL32Pr0vTaZoPRJPUxba2wKM//qk59TclLNzblfj+soZYx2YadxrKZLK1tLbvMbSkkyHLSeTD/8ty1Z34BR87qfg1JkiRJkiRJqrICfvrZp3yl/bnjQqilwHuAvWKMQ2KMk2OMexf76LU/jSRJkiRJkiRJkiRJkiRJu7dvA0+1H0cgCxwJTKUz6CwC34wxPp9nnVd0mftojHFHBXqVJKlvqJ8Mo4+G+inFnTf55TByFkx4cc/2n/5mGHmooWh7srr+2Xo0AAAgAElEQVThydfS9Delz3niK7D+cYhtnWNtzfD8PbDydmjN8e1aWwtsyhN+tvDH0LKt5LYlqey2PgfNG9PrI0sPI21sei7n+Ni68dSE2p3GakNdzrnNmQJuDRx5WHrt6W8lYZiSJEmSJEmS1Mf0m2C0EMI+wGEkFzUB3AccHGO8LMa4pPc6kyRJkiRJkiRJkiRJkiRJucQYm4CzScLROoLQAp3XAgbgj8Cn09YIIQwBLuhyzs0VaVaSpL4kBJjxruLO2fedyfOMi0vft2YQ7P3G0s/X7mVwN+F8NxwMd5wPLVtgyxK4/mC4aTbcfApcNz0JTutq7b/o/JYuh/Vz4M8zYN1jPe1cknqurRVue0l6vX4qjDup5OUbm5bmHB9fN3mXsWzI5pzbEmq632jQhPz1a6bA8hu7X0eSJEmSJEmSqqjfBKMBx7c/d1wQ9YYY46Ze7EeSJEmSJEmSJEmSJEmSJHUjxvgcMAu4GPgr8ATwJEkg2qtijK+OMbblWeJNwDCS6wcDcH1FG5Ykqa+Y+VE49PNQv2tAyr+FGhh2IMy+Eia+OBmbfB4c9wsYtn/he4UaGH0MnH5b92FY2rMc+5P89WV/hqe/A/e/HTbN6xzfthzuvmjnuf98Tff7bVsG97wBYp4ANUmqhmXXwsYn0+tn3w+h9FvzVjYtyzk+vm7Xv4ezoS7n3OZMgfvP/k16rWVT8n7dsq2wtSRJkiRJkiSpCmp7u4EijGt/jsDDMcb5vdmMJEmSJEmSJEmSJEmSJEkqTIyxGbii/VGsnwC/7LLWhnL1JUlSnxYCHPwpOOiT0LYDagbCv7NEQ1KPbblDWaa/IXm0bu9yTr69aqEmd+iK9nAjZ3U/Z+GPYfMzu46vnwObn4UheydBZ1uXFLbn+keTkLViwv0kqdwW/za9NvYkGNRQ8tJtsTU9GG3AroGotSGbc25zpqawDUcemr/etA4ab0rCVSVJkiRJkiSpD+hPwWihy/GCXutCkiRJkiRJkiRJkiRJkiRVTYxxG7Ctt/uQJKnXhJCEosGuIWi5QtG66jhPKtWwAyE7HJrzZNPmCkXr8MhHYfjBUDOouH3XPZI7GK1lG6y4EbY8mwQTjT6quHUlqRDNm2DJ1en1Mcf3aPk1zatoic05a+Prdg1Gy2Zyh5e2dPd9QIch+8KA0bBjTfqcjU8BBqNJkiRJkiRJ6hsK/Olnn9D1YzAK/DgLSZIkSZIkSZIkSZIkSZIkSZIklaR2EOz33tLPX3I1zPk0PHJJcefd9dpdA3y2r4Z/vAjufAU89CG48Wh47DOl9yZJuWxdCjcem3/Ovm/v0RaNTUtTaw11k3YZy4ZszrnNmQJvsaupg/0/mH/OIx8tbC1JkiRJkiRJqoL+FIz2eJfjKb3WhSRJkiRJkiRJkiRJkiRJkiRJ0p7i0M/Bkd+B4TOru+/T39359bzvwNoHdh6b+1nYOK96PUna/T3+Zdj4ZHr92J/C0H16tEVaMNqo2rEMyAzcZbw2LRgtFHFr4EGfgKMvzz9n87OFrydJkiRJkiRJFdRvgtFijHOAuUAAjgwhjOzlliRJkiRJkiRJkiRJkiRJUolCCJNDCCeHEM4PIbw+hPCG3u5JkiRJOYQA+78Xzn0cBoyu3r5L//SC19ekzLu28r1I2nOkvdd0mHJ+j7dIC0YbXzc553g21OUcb8nUFL5pCDDjnUnQZRrfTyVJkiRJkiT1Ef0mGK3dN9qfa4AP92YjkiRJkiRJkiRJkiRJkiSpOCGEaSGEb4UQngEWA7cCfwB+Dvws5ZyTQgiXtj/eW71uJUmStItxp1Zvr/WPwWOfhvWPw4Ifw/o5uec9/oXq9SRp99a8EbYtT6+POAzqRvZ4m8YdKcFoA3IHo9WGbM7x5kwJtwY25Hkf3zS/+PUkSZIkSZIkqQL6VTBajPEXJBdABeCSEMI5vdySJEmSJEmSJEmSJEmSJEnqRgghE0L4IjAfeC+wF8m1gF0faVYDnwE+DXwrhLBPRZuVJElSupkfLe96p9+Svz73c3DDwXD/f6XPad4Iba3l7UvSnidG+OsR+ecc8pkybBNpbEoJRqvLHYyWzaQEo4Wa4hsYcXB6bdOC4teTJEmSJEmSpAroV8Fo7d4IXAfUAteGED4XQhjRyz1JkiRJkiRJkiRJkiRJkqQcQghZ4G/Ax0iu/XuhmO/8GOOTwK10hqf9R1kblCRJUuFGHwUvmVPG9Y6Bly/p+TqNf+/5GpL2bM/fBZsXptfPuB2mnN/jbTa2rmdb25actYa0YLRQl3O8JVPirYGzvpp7fP2j0Lq9tDUlSZIkSZIkqYxyXWDUZ4UQLm0/fBSYDYwBPgl8KIRwD/AEsA5oK2bdGOPnytmnJEmSJEmSJEmSJEmSJEn6t58AZ5AEoEWSgLM7ScLOmoAvFLDGH4BT24/PAj5f/jYlSZJUkBEHw7D9YePTPVsnk4Waeqivh+wwaN5Y+lrL/wYTz+lZP5L2bCtuTK8NOwDGnVyWbRqblqbWxqcEo9WGbM7x5lBTWhPD9s89vn0lPP0dmHlJaetKkiRJkiRJUpn0q2A04DPs/MmQHRdI1QOntT9KYTCaJEmSJEmSJEmSJEmSJEllFkI4HXgdndf7LQD+I8b4YHt9GoUFo10PfK99jaNDCANjjNsr07UkSZK6NfHcngej1Y2EEJLj7IieBaPN+07yGDmL5FtGIFMHo4+GAy+BwVN61quk3d/T306vTTw376mLts3njvU3sGzH4m632dK6Kef44JqhDK0dnrOWDXU5x5szmW73y2nsSRBqIbbsWnvko9CyBQ75NIQS15ckSZIkSZKkHupvwWi5xO6npAo9PF+SJEmSJEmSJEmSJEmSJKX7dPtzABYDs2OMq4tdJMa4OISwHhgBZIEDgEfK1qUkSZKKc8AHYdlfYNO80teoG9l5fMwP4bYX97yvdS/4FnHNffDcH+HsB6B+Ys/Xl7R7euYX0JI7sAxI3vNSLNz2FN957lKaY1OPWhhfNzm1ls1kc46XHIw2YBTs81ZYcEXu+tzPwY7n4ejLSltfkiRJkiRJknqoP35sQyjjQ5IkSZIkSZIkSZIkSZIkVUAIYRQwm+QDTCPw/lJC0bp4osvxfj3pTZIkST1UPxnOuicJNJv+FqgZVMIiXW5pGX9G2VrbxbblsPAnlVtfUv8WI8z9fHp91tegflJq+aa1f+xxKBrkD0arDXU5x1tCTekbHvo5yA5Lry/4IWxbUfr6kiRJkiRJktQDtb3dQJFO7e0GJEmSJEmSJEmSJEmSJElSQU6kM+1iVYzxuh6u1zVUbVwP15IkSVJPDRgF+/5X8jjmCrhqMLQVEQ40bP/O40wNDJ0Bm+aXv0+A5++szLqS+r9ty2HzwvT66GNSSzFG5m+dW5Y2xtdNSa1lQzbneHMmk3O8IAPHwUGfgkcuyV2PrbD6HpjyytL3kCRJkiRJkqQS9atgtBjj7b3dgyRJkiRJkiRJkiRJkiRJKsiE9ucIPFiG9TZ1OR5ShvUkSZJULplamPxyWHL1zuMDxsKQfWDNvbueM+mlO7+un1q5YLTGm+Cq9m8ha4fAuBfBEf8H9RMrs5+k/mPj0+m1TBbGzk4tb2rdwLa2rT1uIZBh1tDjUuvZUJdzvCXU9Gzj/d8HC65ID4a78wKoGwWjj4XDvwojDunZfpIkSZIkSZJUoB58LIQkSZIkSZIkSZIkSZIkSVKqUV2O15VhvUFdjpvLsJ4kSZLKadZXYOiMztc19XDcT+GYK2DQpJ3nTnkV7PW6nccy2cr217IleWxfCUuugptmQ+v2yu4pqe+7/aXptZOuyfve1Ni0tMfbBwIXjH0To7PjUufUhtw9NGd6eGtgzQA45fr8c5rWwoq/wk0nwpYlPdtPkiRJkiRJkgpU29sNSJIkSZIkSZIkSZIkSZKk3dLGLsdDy7BeQ5fjtWVYT5IkSeU0ZDq8+CFYdQc0rYOGU6F+YlI7dy6svA22Pgejj4VRR0KmZufzB4xJX3vmR2Hzs9C8CcadBOPPgBuP6Vm/WxbDc9fAXq/t2TqS+q/mjdC6LXetfgpMekne01c2Lcs5PjBTz7mjL+x2+4GZevatn0lD3aS887KZupzjLaEm53hRhu0P098Mz/ws/7zmjcmcQz7d8z0lSZIkSZIkqRsGo0mSJEmSJEmSJEmSJEmSpEp4vsvxjJ4sFEKoAQ7vMrSiJ+tJkiSpQrJDcgcJ1Y2AKefnP3faa2HRr3Ydr58Cs76y6/iR34Z/vb+0Pjssvx6mXQghQMtWaFrfWcvUwoCxSU3S7mn93PTauBd1e/rKpqU5xyfWTeX0US8vtatdZEM253hzJlOeDUYf030wGsCa+8uznwoTI7RuTf5+qhsBmSy0bIGa+uTvptbtEGqTv68kSZIkSZKk3Yw/9ZIk9Q3P3w3zvpd82tLUVycXNoQy/ZJOkiRJkiRJkiRJkiRJvWFO+3MA9g8hTI4x5r5rvHvnAPXtxxG4t6fNSZIkqY8ZfwYMGA071uw8Pu2i3POnvhoe+hDE1tL3XPQrWPxbiC1JuExs2bk+aBIc9gWY/qbS95DUdz1/Z3pt79d3e/rKpmU5xxsGTCq1o5xqQ13O8bIFo025AP71Pmhrzj9v+Q0w7zLY713l2VfpFvwQ7n9H7lqmDtqakufMAJj+Rjjim0lwmiRJkiRJkrSb6PeJMyGEbAjh5BDCJ0MIPw0hXBNCuDmEcHNv9yZJKtCyv8BNJ8Di38DSa+Du/4RHP9HbXUmSJEmSJEmSJEmSJKkHYoxPAh13iQfgw6WsE0LIAB0Xk0Tg0Rjj+p53KEmSpD6lZgCcdE0SjtZh4kvh4P/JPX/QBDjhd1AzqHNs37fD+c/BqKMK37cjDO2FoWgA25bBvW+G5TcWvp6k/iFGeORj6fXxZ3a7RGNKMNr4usmldpVTNuQOvGoJNcRybDBwLJx4NdTUdz/3wXfDkj+UY1elWXpteigaJKFoHc8tm2De9+CRj1enN0mSJEmSJKlKanu7gVKFEAYDHwTeA4x9YRly/1w3hHAR8MX2l2uBo2OMZfkZsCSpBLENHnzvruNP/m9yYcKQ6dXvSZIkSZIkSZIkSZIkSeXya+ASkuv63hNCuCHGeFORa3wJOK7L6x+VqzlJkiT1MeNOhPOXw7qHYWADDJ4GIaTPn3oBTDwnmT9kehKWBnD2/bDxKdi8MHm9+Hew6Fel97XwxzDx7NLPl9T3rHskvTbtovzvPUBT2w7WNq/KWWuom9STznaRDXU5x2MItIZAbTlujZv8crhgNax9AFbdCY99Kn3uwh8n77+qjAUl/Nhj4U9g1lchU1P+fiRJkiRJkqRe0C+D0UIIhwJXATNILpaClCC0HP4M/AAYCkwDzgT+Xu4eJUkFev4u2LJo1/HYBot+Awd/suotSZIkSZIkSZIkSZIkqWy+BryT5Jq9GuDaEMIHYow/7O7EEMIY4OvA60muEQxAI/DTyrUrSZKkXldTB2OOLXx+bT2MPWHnsRBg+IHJA5LQtJ4Eo617uPRz1f+1NcO6R6Flc/I6ZCBGct7KlBkAIw+F2sFVbVElWPHX9NqIQ7s9fVXTCmLK7WxlD0bLZFNrzaGG2thSno1qB8G4k2HUUfD4F6B1e+55jcXmne/BdqyBDY8n98gUavn1xe/TvB6e/QUM2QdCDQzbDwaOK34dSXu2pvWwfi4MOwAGjoEtz3Xe91c/BbY+B0NnwKDxha23dWnyd8mQfboNHJUkSZIk6YX6XTBaCGEmcDswjOQip46LnQoKSIsxbg4hXA28pX3oAgxGk6Tes+LG9NqiXxuMJkmSJEmSJEmSJEmS1I/FGNeGEN4H/Jzk+r6BwOUhhI8AvweWd50fQjgG2B84CzgPGELn9YGtwJtjjE3V6V6SJEm7jeEzYfSxsOa+0s7fvDD5QOgXBrBp97f0Orj7ddCyqfBzMnVw5LdgxsWV60ula94Id10Ey29In7P367pdZlXzspzjNdQyJttQanc51Ya61FpLJgNFZG4VtmE9TL0wCdrKJbbCbefCiVcnc7WrtmZ44GJY+JPq7XnfW3d+PfXVcNwvksA7ScqnrRUe+iDM+x7d3KKdmPxyOP5XkB2Su960Hu54Bay6LXk9/GA45XoYPLVcHUuSJEmS9gCZ3m6gGCGEgcBfgOFdhucAbwWmAwfSeQFUPtd2OT69bA1Kkoq3fk56beOTyadMSJIkSZIkSZIkSZIkqd+KMf4/4Avs/GGo+wCXAN/qMjUA95CEqP0HMLRjifbnj8cY/SBUSZIklebka2DcKaWff9OJ0Lq9bO2oH9i6HO58ZXGhaABtTfDAu2DNg5XpSz3z8Efyh6INHAf1k7tdpnHH0pzjY+vGUxNqS+0up2zIptaaQ01Z9/q3o78Po45Mry+/AeZ8pjJ77w6e+lZ1Q9FyWXI1PP7F3u1BUv+w8Icw77sUFIoGsPRaePQT6fX739kZigawYS7c+aqedChJkiRJ2gP1q2A04H3AXnT+3/V3gCNijD+LMS4CCv0N0610Xly1dwhhXJn7lCQVakM3wWeLf1OdPiRJkiRJkiRJkiRJklQxMcZLgTfTeZ1fx3WAHWFpHY9A5wekdrxuAt4YY/x61RqWJEnS7mfQeDjjVjjvmdLXWHFj+fpR37f4txBbSz9//uXl60Xl0dYKi67MP2ffdxS01MqmZTnHG+q6D1UrVm2+YLRMhW4PrB0MZ96df86iX1Vm791BX/ln01f6kNS3PVvCe8WiX0PMEaTWugOWXbfr+NoHYMvi4veRJEmSJO2x+lsw2nvpvBjqmhjjB2KMbcUuEmPcDCzqMnRgGXqTJBWrZQts7ubCgqU5fhAqSZIkSZIkSZIkSZKkfifG+AuS6/UuIwlI6whAC+wciNYx1gb8P+DAGOMvq9iqJEmSdmdD9obBe5d27r8+AAt+CMv/Cs2bytuXdtW8CZZdD6vugNam6uy5bSUs+X3y7/nhD/dsrWd+CjvWlKcvlce2pdCyOf+cUUcVtFRj09Kc4w11k4rtqlvZUJdaa87UlH2/f6upg5Gz0uvbVkDTusrt31+1tcL6x3q7i8SWxfD0d2Hdo1D8bZiSdnet22HlbbC6myDMXJrWwtwvJN8zLfwJrP1X8j6zbRm0bst9TuMtPWpXkiRJkrRnqe3tBgoVQpgJdPxkOAIf6eGSC4GO32RNB27v4XqSVB7Nm+CJr8Lzd8HQfeHA/4Zh+/d2V5VRyKc8bHwq+SV2Tfov8iRJkiRJkiRJkiRJktQ/xBiXAO8JIVwCnNj+mAKMBuqA1cBK4G7g5hjj+t7qVZIkSbux/d5TWujVlkVw/zuS40ET4JQb8ocGqXRrHoBbzoLm9v8lGLofnH4L1Jc/dOrflvwe7n4dtO0o35p/GAOn/A0mnl2+NVW6TfO7nzPxnG6nxBhZ1bQ8Z218BYLRajPZ1FpLyJR9v53s9x64723p9TsvgNNuhhDS5+xpHrmktzvY2b/elzxPey0c93OoGdCr7UjqI7YsgdvOgQ1PlL7GnEt3fj3pZTDzY+nzY0vpe0mSJEmS9jj9JhgN6PhNUQTmxhif6eF6XS+WGt7DtSSpPNqa4ebTYO2DyetVt8HCH8NJf4LJ50Glf2FVbVuWdD8ntsDmBTB8ZuX7kSRJkiRJkiRJkiRJUlXEGLcCf29/SJIkSdV1wAeT54U/hI1PJ8fZ4dBwGhz9fbhmCsTW/GtsWwH3vhXO+Vdle90TxQh3vqozFA1g0zx44GJ40XWV2bN5I9zzxvKGonW453Vw/jI/LLwv2LQgf33vN0CeELIO61vWsCNuz1lrqJtcSmd5ZUP6105zpqbs++1kn7dCWxM88K7c9ZW3wqrboeGUyvbRX2xaAE99s7e7yG3xb6HhdNg3T9CdpD3Hw//ds1C0XJb9GWJbngmxvPtJkiRJknZr/SkYbWyX4wI+nqNbXX9TUV+G9SSp51bc2BmK1tWdr4CB4+GE30LDi6rfV6Vsfa6weeseNRhNkiRJkiRJkiRJkiRJkiRJUnmEAAd+KHnkcuS34cH3dL/Ouodg8zMwZHp5+9vTrXsItub4EO5lf4bWpsoEjC27AVq3lnbuec/CvW+EVXfkru9YnQRHTTiz9P5UHt0Fo407uaBlVjYtS6011E0spqOC1IQaMmRoY9ewmeaQ6XxRqfeiGRfD/Mth/Zzc9SVXG4zW4bk/pNcGNsArG8u/Z4zwm0z38wCW/M5gNEnJ91NLr6nM2suvT681b6zMnpIkSZKk3VJ/CkYb2OW4HB+/MrzL8aYyrCdJPbfsz+m17Y1w8ykw9dUw9mTY581QO7hqrVXElhy/rM5l6Z9gr4sq24skSZIkSZIkSZIkSZIkSZIkAYw9ofC51+0Lww+EvV4H098EgyZ01jY8CfO+B6tugxGHJtd/r74Xhh8MB3wQxhxb7s53D6v+mV5r2Qw1o8q315YlyXX8hQTh5VI/GQZPhUnnpQejAdzxcpjxruR44FiY8GIYeVhpe6p0G5/MXx8zu6BlGpuW5hwfVjOC+pohxXZVkGyoY0fcvst4S6am88UR/1eRvQEYc0J6MNr8y+Dwr0PtoMrt3x+0NcMTX0uvF/j1VbQQYMLZsOLG7uc2/gMe+zSMOwkaTk/OlbTnaNkCy/4CS65K3rOq7YmvwfS3QNNaWHY9bH0uGd+8AGqHwIRzYPLLIDus+r1JkiRJkvqc/hSMtrrL8ZgyrNf1IzDWlGE9Seq5Z37e/ZwlVyeP+d+Hs+/r3z/o25b7l4G7WHFj8gk2/sJFkiRJkiRJkiRJkiRJkiRJUqWNnJUEV634WwGTI2x4Ah79RPI45+Hk/MVXwV0Xdk7b8ESX48dhye/gsC/BQR8ve/v9XsjkKcby7bPqn3D7S6F5Q+lrzPxY0u++74CnvwVbU66Rb90GT32j8/Wjn4CjfwD7/lfpe6s4rdth+Q3p9cnnJyGHBVjZtCzneEPdpFI6K0htJsuO1l2D0Zoz7f+9jDgMxp9esf3Z7z2w4Afp9ZtPg1P/CnUjKtdDX9ayDe58RRL2k+aAD1Vu/wP/u7BgNIC5n0ue9/kvOOYK79WR9hQ71sCtZ8Paf/ViD8/DH0an1xf9GoYfBKfdtHPYsCRJkiRpj5TvNwV9TWP7cwAO78lCIYTRQNefVC/oyXqSVDbZ4YXP3fhU/k+S6Q+aCvwFcvNG2Lqksr1IkiRJkiRJkiRJkiSpKkII2RDCySGET4YQfhpCuCaEcHMI4ebe7k2SJEn6t5OvgYM+BaOPhaEzCj/vkU9AaxM8+O7u5z76CdiaO2Bpz5YnpCe2lm+bhz5YWCja0Bkw7mQ44ptwxLdg3Ckw4RyYfSXs1/7vOTsEzn6g8L1jW/v+m0pqXSVYfFV6bdiBcGKe+gukB6NNLrargmVDXc7xlqEzYP8PwOk3Q+3giu3PiIPg0M+n19fcCwt+VLn9+7olV+UPJpv2Whh3YuX2H38GnH4rDNmn8HMW/ghW31u5niT1LfMuKywUbcorYa//hNHHpM8ZOgNqh5avt642PA5PfbMya0uSJEmS+pXa3m6gCHcDbSRhbqNDCKfFGG8pca230Plbki3Ag2XoT5J6rmZAcfOf+Aoc+rluPhGrD2vdVvjc9XNh8LTK9SJJkiRJkiRJkiRJkqSKCiEMBj4IvAcY+8IyEFPOuwj4YvvLtcDRMcaccyVJkqSyqRkAh30+eQDc80Z49v91f17jjfD8HbBjdWH7LP8r7Pu20vvcHYU8wWhtLeXZY9sKWFvA7URHfa8z/KzDAe/PPXfQeDjkszDn04X10LIFVt4Kk88rbL56Ztl16bXZv4RMtuClGpuW5hwfXzep2K4Klg25+2s++BMw4qyK7buTyefDY/+TXl92Hcz8SHV66WvyfX0B7PX6yvfQcAqctyA5bm2CqwYlIYz5LPszjD2+4q1J6gO6e58CGHsCnPSHwtaLEa4emnw/U25Lr4PD/7f860qSJEmS+pV+E4wWY1wXQngAOLZ96PMhhFuLvbgphDAJ+BidF1DdFGN3P+GTpCpoa4XtK4s7J7bCIx+Dw79WmZ4qrXVr4XM3zIVJ51auF0mSJEmSJEmSJEmSJFVMCOFQ4CpgBp0fbFro9X9/Bn4ADAWmAWcCfy93j5IkSVJe488oLBgttsEtZxa+7v3/lQRVhBoYeUQSkjZoQvH9Lb0Olv0F6kbCXv8BIw8rfo0+I08wWmwubcllf0n+GWWHwV4XwbzLCjuv4fTi9hl/RuHBaAB3vBymXghjjk2+BlbfCy2bYcBoGH82TLswf1CcCrf67vTa8EMKXmZ72zbWt6zJWWuoYDBabajLOd4cmyq25y6GHQCDJsK25bnrz/8T5v8A9nkbZPrNbYs9FyM898f0es3A6oeP1dTBuBcl4Yv5PPFl2PgkbJoHgyYnoaBN65L3o2EHwtQLkvc1qVp2rE2+33r+LmjbUd61l/05eR66H0x4MUx77e4bDLj0z8mfd3tj8jrGwgJhG4r47z2E5PukQgLXirVpHlzZ/v1P7WBoOC1PHxkYMQv2eSsMnlL+XiRJkiRJvaa//YTx28CV7cfHkVzo9I5CTw4hNADXASPbhyLwzXI2KEkl27II2kr4Je2T/wv7vh2G7lv2liqupYhgtOV/g5kfrVwvkiRJkiRJkiRJkiRJqogQwkzgdmAYScJBbH8uKCAtxrg5hHA18Jb2oQswGE2SJEnVNuUCePq7sPaB8q/dEdSx9BpY+CM4804YPK3w8+d8HuZc2vl63vfglOuh4ZSytlk1+YLA2lqKX+/xL8Ojn+h8/dQ3Cjtv+pth+AHF7TXmeJh8fvLvslBLfpc8XuiZn8Pqu+Co7xbXg3a1dRlsW5G7NvbEJESqQKuaUkLBgIa6ycV2VrBsyOYcbyk1LLAUmVo49PNw31vT5zxwcRJCeMr1e06o3yPd3Osy8xNJaGW1HfxpWH0ftHZz707H+9WGJ3YeX1BVi9cAACAASURBVHU7LPgBHPU92O/dlelR6qppHdxyOqx7pLL7bJqXPOZfBif8Bqa+qrL7VdvjX4JHP1n8eYP3Tu5RLMZBn4RVt0HzxuL3K1TLls7vldMsvRYWXAFn3AHDZlSuF0mSJElSVWV6u4FixBh/C3T8VCMAbwsh3BlCOCnfeSGEwSGEd7afO4vkIqoI/D3GeFcle5akgr3wFwjF+POM5JPF+pvWbYXPXXVb8qkfkiRJkiRJkiRJkiRJ6jdCCAOBvwDDuwzPAd4KTAcOpDMgLZ9ruxyfXrYGJUmSpELV1sMZt8LhX09C0ipl63NJAFuhmjfC41/Yeax1K8z9XHn7qqp8wWhFhkA1bYC5X+h+Xld7vQ6O+zkc+5PizoMkCOrE38MxV8C0i2DiucmjVPO+D5sXlX6+EnM/n147/H+LWmpl09Kc49lQx6jsmKLWKkY2kzu8rbmtqWJ75rTPW7r/b2PFX2HlrdXpp7dtWwFP5vkamvlxOOR/qtdPVw0vgrPugQM/0rN1HrsUWreXpycpn4cvqXwoWlexJQkQi3k/s6F/KeX7ntHHJqGXZ98L9ROLO3fMMXDWvTDzYzDxpZ3f90w8F8afUdxaPbW9EZ76ZnX3lCRJkiRVVG1vN1CCVwH3AqPbX58A3BZCaAQWdJ0YQrgc2A84HhjAzp80uQx4fZV6lqTubXyyZ+c3/gMmnFWeXqqlpZtPnXmhJ78Os75UmV4kSZIkSZIkSZIkSZJUCe8D9iK5dg/gO8CHYkw+BTCEMK3AdW6l8/q/vUMI42KMq8rca58XQsiSXDc5FZgAbAaWAw/HGBf1YmuSJEl7htrBcOCHk+MbZsH6RyuzT+M/Cp+79FrIFYy08tbkw7dDpnx9VU2eYLTYUtxSq25PguIKNe0imP3L4vZ4oUwN7Pv25NHhqf+Dhz5UwmIRVt4CQ97Ss572dOseTq8NnVHUUo1Ny3KOj6ubSCbUFLVWMWpDNud4cywyLLAc9n4jPHBx7veeDo3/gPGnVa+n3tJdANyB/12dPtKMPBRGfg0mvwJuml3aGk1rYc0DMO6k8vYmdbXuUVhYQiBpT22al4TSDp5a/b0rYfXd0Lqt8Pm1Q5IAxVDI51akGH4gzPpyen3Bj+D+t6fXy6mY76ElSZIkSX1evwtGizE+E0J4KfAnkot6Oi50mgCM7zI1AG/vckyXuUuBl8YYV1elaUnKZfMiWPRr2L4yCTTb8ETP1rv7P+EVyyGT+5ddfVIxv2AGWHwlHPbFnv2wVZIkSZIkSZIkSZIkSdX0XjpD0a6JMX6glEVijJtDCIuAvduHDgR6PRgthDAdOBo4qv35CGBolymLY4x7lWGfscBngQuBUSlz7ga+GWP8Q0/3kyRJUgEmvbRywWjrH4Xbzk2C2Fq2wOaFsPHpzvqw/ZPnrmO5NG+AupGV6bGS8l0v3tYMMcK878LSa2Db8vxrdffP6IUmnVfc/EJNfGmJwWjAfW+FJ78Gww5MwtYmnlPe3vYEa+5Prw0YXdRSK5uW5hxvqJtY1DrFyoa6nOMtMU84WaVkamDiubD0T+lznvgybFmchEmOOqJ6vVXLtkaY+zmYf3n6nLEnwICc/wtffaOPgoHjYXtjaef/42QYfQw0nAoH/0/y95PUU9tXw9zPwvN35Q+wrLRrp3V+bwUweC/Y63Ww9+t6raWiLbse5n0fVvy1uPMmvbTy9+lNOg9q3l9cYFupNi+AthbI9Ltb5yVJkiRJOfTL/7uLMd4fQjgC+CnQ8dP8+ILnnU4hCUQLwE3AG2OMJf4UT5LKYN0jcMsZsGNN8nred9PnHvDh5JMTnvoWbJibPm/H6mTN025JfsnUH7QUGYy2ZTGsuQ/GHFeZfiRJkiRJkiRJkiRJklQ2IYSZwKT2lxH4SA+XXEhnMNp04PYerleSEMIpwMdJwtAqfodzCOEc4OfAuG6mzgZmhxB+Dbwjxril0r1JkiTt0fZ/Hyz+DWx+pjLrL78hvVZo2NeOtf0zGI08AR2xBf71AZj3nfJvO/FcmPKK8q8LMGwGzPx4EhZVio1PJ4+l18KJV8HUV5W3v93ZsuvTa4d9sejlVjblDuNrqJtc9FrFyIZszvHm2FzRfVMd+vnk/o584YSLr4Rl18IZd8Kow6vXW6U1bYC/H5fc45LPrP+tTj+FyGThqO/C3f8JbSWG6a25P3msugPO/CeETHl71J6lZSvcNBs2ze/tThJdv7fa+DSsuBG2r4IDSww1rabFv4O7LiL3rdV51E+BQz5TiY52NqgBZn0N/vU+iu6xFAt/AjPeUfl9JEmSJEkV1y+D0QBijCuBc0MIRwLvB04HJqRM3wDcDHw3xtgrF0JJ0k7mfLYzFK07w2fCPm+Bfd4K8y6DB9+dPnfVHbDolzD9TWVps+LSPulhv/emh8Ut+b3BaJIkSZIkSZIkSZIkSf3DrPbnCMyNMfY0MWJ9l+PhPVyrJ2YBZ1Vjo/YQtmuAui7DEXgIeAYYARwOjOlS/09gWAjh/BhjWzX6lCRJ2iMNHAfnPAJLroanvw2ZATD2xJ3ntDXBqluhbhTM/CjUDoGn/g82zYMxs6GtObn+u1Ka1gL7VG79iskTjLatERb8oPxb7vM2OPpyyFTwVqtZX4KJL4aVtyahHVufK2GRCE98xWC0Yjz2qfTa3m8saqm22MqqlGC08XWTco6XS22oyzneHEsMueqpEQfBix+Cu16T3MuSpmVLcn/IcT+tXm+VtujX3YeiTXstjD2+Ov0UauqrknuUlt8A6x6FRb8qbZ3V98Cq26Hh1P/P3n2Gx1Hdbx//HvXiIhfJlnsvuGFMs2kGbHpvCSShJUAgCSGElCeBEJL8CQmBhJCeECCd3nuzwVSDDTZuYBvj3qtkWVpJ53kxEpLlndnZ3dnZXen+XNde0sxpPxftrmZn7gm2PulYVj7gLxRt8IVQ0COJhSws+U1iQxf9EkZ+wwkWzGQLfo6vwLGR33K+GuM8F/Q9DYrKU1pay9pfd64HXPdcyzWVeSXO++GKI2DJb2H1I7D1vRjzNP0ZGqph6V+i95l/o4LRRERERERE2omsDUZrZq19D7gQwBgzBOgP9MA5CWgzsAFYoJN7RCRjNDbAumf99+8yuuX7EVdBwx6Y+233/p/8IzuC0Rojzt26ohlwrnMgc/Mb+7Ztn5faukREREREREREREREREREREQkKK2vrPNxpWNMta2+LwlgvqDVAqsJKHnCGNMPeJi9Q9FeBy6z1i5q1a8QuAL4FdB8peapwM+AHwRRi4iIiIi4yO/cdBPsS/2P6TW15XtrYe1TTQFmKVCbonlTzXgEo215ywmcC9r4n6U2FK1ZxZHOo98Z8Mz+sftHs/U9qK+BvOJga2uvatZF329yoLhPXFNtjWx2DSLrVdAv3sriku8SzFPfGEnpup6Ke8HEX8FzB3v32/R6OPWEZdOs2H16T0t9HYnoup/zsBbWPAmR7bHHRLPpdQWjSXL8/BxVHAWH3uP9vsDXWq/D1tnxj9uzAaqWQ5eRya2fSpEq2P5B7H4Tb4XR16W+Hi89DnQe0Yz9ofN46xJYfk/0Pn1OgUm3t2yvfDD6e+jITuc5Ltn/NyIiIiIiIpJ2WR+M1lrT3SSTvaOkJMkYkw8cBgwAKoEqYC0w11q7Io2liWSG6k+ccDM/Csuh+6S99w29FObdAA27o4/ZMMP54K64MqkyU67epX5w7vjQ99TowWip+tBfRERERERERERERERERERERIJW1Or7Wtde/nVt9f2uAOZLRgRYALwLzG76Oh/n3LlXAlrjJqBbq+03gGnW2r1OPrLW1gK/NcasBB5p1XStMebP1tpPA6pHRERERIJmjHNT6aV/Ts38M0501rCNLfu6TYQjHoROQ1KzZhCsdW/bsci9LVG9pzkBT2EqGw+dh8OuBDOk7y9xgr0ASofA4C/B2Otb9okjstMJtommuE/coSkb6la7tlUUxBeyFq98UxB1v1tQW2i6T4LSQVC9wr3Pro/gvhIoPxwm3QFdR4dVXWp8+l/v9pwC6HtaOLUkyhgYcA4s+1ti4+fd4DzaKujmBK9NuAUqDk+uRmmf6qvhvWti/98zOXDAbcGEWw04J7FgNICXp8EpS5xr3TKR3/cR/c9KbR1B6X+uezDagHP33u4yKvq1hw01MOdaOOB2haOJiIhIsJb+BT76HexYCHgcuzJ5zu/K43+SuaHZIiJZQke72yFjzD3GGBvQY0Uc65YbY/4ArMc5sete4Bbgdzh3rfzEGPO6MebsVPy5RbLGjJP99x19HeS2+fCqoAz2/7nHIOvc8SDTNdS4t+WWQGH36G3ZetcyERERERERERERERERERERkY5nc6vvewYwX+vkhi0BzJeoe4Eu1tqJ1trLrLV/sdbOsdZGglrAGDMcuKjVrjrg4rahaK1Zax9tqq1ZIXBjUDWJiIiISIqMu2nfm2kHxu4digawbS48dzBEqlK0ZgBsg3vbzoCD0UoHw6TfBjunH8bAofdCYY/E57CNzqNqKcy/MXpIUUc35zr3tsPui3u6DXVrou4vy+tBUU5x3PPFI8/kRd0fCe5X0cSYHJh8rxOI5aWhBta/AM9PgT2bvftmsu0LvNtNHhz8VygqD6eeZIz/qROWGaS6bbDpdSdMasfCYOeW9uG1c/2Fok3+Z3Dvj4ZfBX1OSmzs7tXw6pn7vp/KFG+cH7vPpN9mdiBua31OgBHf2Hf/wPNh4Of33nfo3e7zLPkNLPplsLWJiIhIx7bs7/DOFbB9vnPcqvmYTLRHYx1sfhNeORE2v5PuykVEslr0I6IiLTySi1oYY04E7gEqYnSdAkwxxvwbuMJaW51ceSJZZvGvnTvd+NHjEBh1bfS2kVc7B3dfcLl7ytI/QfkU6Dpu32C1dKhZBzsWQMMe6DwSugyHht3u/fNKoMAlGK1OwWgiIiIiIiIiIiIiIiIiIiIiWWJ901cDJHWlrTGmBzC61a6lycyXDGvtthCWuQDIbbX9sLX2Yx/jfsHegWrnGWOu8gpUExEREZE0K+4F09+ALW/Di0eGs2btFlh5Pwy9NJz14mXr3dt2Lo6+v+JIJzTDfVKoWgG5hVDcx9lVOhjKD4P8TolWmpzyyXDqUtj4GtQ0BW4V9YbOw53z7+u2wuwr/c/38R9h3I8hJz8l5WalZX91b+txSNzTrXcJRutd0C/uueKVZ6JfG1Jv61K+dkwVR8Jpy2DNU/Dml7z7RrbDin/BqGvCqS1oH93p3jb8KhjzAyjpG149ySjuDce9CVvecULMCsogvwxqVjvPl7Ye1j4D2z+If+7GWlj6F5j0m8DLliy2aymse8a7z5CLYf9fQFGsy1TjkN8JjnzcCYetWgb5XZ1r3RprW/p4vd6ufx5W/BsGx3h+C1tjBHYu8e7T42AYGSVoLFOZHJh0Bwz/Kqx62Pkz9j8LysY7obKtdRkBeZ2g3iXsd8mdMPq7+44TERERSYTX74JubD0s/TP0PDj4ekREOggFo0ksD8XqYIyZCjwKtD7CboE5wHKgDOekttZ3/PwC0MUYc4a1mRqXLxIwa2Hx7f765hY5d8zJ8XiaLj/M+cBkwc37tu1YCM8eCHmlMOU/0O+0xGpOVmPEOTC87K699/c4GCbe6j4ut9j9bkGRHdDYADm50dtFREREREREREREREREREREJFO8ATQCOUAPY8wx1tqXE5zrUpyANYBq4N0A6stkZ7bZvtvPIGvtImPM20DzFf6lwHHA4wHWJiIiIiJByy2AiiNg8EXwyb3hrLnoVqg4CkwulA5wgigyhW2If0zliU6IRrYpKIN+p+67v2yM83XtM7DG59v5um1QtRy6jAyuvmwW2eXeVtI/oWsSNtStjrq/V0Hqg7DyTfTAu0hjJOVr+1LQDQZ/Ed7/fkvQn5sts8OpKRV2fOjeNu7GYMOcwpBb6Lz+VBwRvb3PSYmHdi65Q8Fosre1z8buM+7Hqfk5ysmFHgc6j2h2LPQOu3jzQug5BToPDb62RG2dG7vPfv8v9XUEzRjoup/ziKXbBNj0evS2mjWwZ4MTAikiIiKSiMYG2L0SGvbAtvcTm2PlfTD+p1BcqcBWEZEEZNCnFrEZY8YaY15uerxkjIn7CIcxplfT2OZ5RqSi1jS7DhicwOPcNvNY4O9eCxlj+gEPs3co2uvAGGvtgdba86y1xwH9gG8CrY+2nwr8LIE/n0h2qlkHu6N/CLaP3tP9fRjZbX/v9vpqeO0sZ+10+Oj3+4aigXM3mRePch+XVwoF3d3b68K46a6IiIiIiIiIiIiIiIiIiIiIJMNauw1ofbXzT42J/4xvY0xf4Ps457RZ4IX2fENOY0xvYEKrXfU45+X5NaPN9onJ1iQiIiIiIRn0hfDW2rkYnhgGjw+GB3vAotudm4FngkSC0ToPC76OTDD4i/H1f3IULPldamrJNts9Aqz6Rgmj82FDXfTAr1CC0XIKou6P2LqUrx2XQRfE7vPpf+CjP6S+lqBZ6x7AA9kXiuZHzylQOijx8U+Ogi3tPdteYtr2Pjw1Ft77hne/8iOgdGA4NbXl5z3YE8PgscGw4ZXU1+OlagU8PwWeP8S7X0F36HNCKCWlTax/twX/F04dIiIi0r5YC/N/Ag91h8eHwFM+Alvd1FfDo33hsYH+goJFRGQvWRWMBlwBTAWOAuqstRvjncBauwEnnKt5nssCrC8jWGs3W2tXxPsAprWZ6hVr7fIYy90EdGu1/QYwzVq7qE1Ntdba3wLntRl/rTEmTUerREIW2em/b/lh/vp1HRu7j22AlQ/5Xzso1sKS38Y/LqcAckug0CMY7c04P9wVERERERERERERERERERERkXS5o9X3hwJ/imewMaYX8DjOeWrNoWq3B1Naxmp7UtA8a211HOPfaLM9Jsl6RERERCQsvafB/r8Ek+vdb8B5MOXfzg2pgxDZDnO/DSsfCGa+ZDXWxz+mvQaj9T8HxlwPJo5LwN77Bqx+LHU1ZYtXPcLPDrgt7ul2N1Sxs2F71LbeBf3ini9eeSY/6v56G0n52nEZ92Pof3bsfu9+DVY/kfJyArX8bve2yf8Mr44w5eTCUY8nHla1cwm8dDTU7Qi2Lske9dXw0jGwY4F3v7IJMOVf4dQUTc9D4CAfgY3VK+CV42H36pSXFJVthBknwOY3vfsVVcDUpyC3KJy60mXoZTDi6+7tH/0Otsx2bxcRERGJZtlfYf6N8WVDxLJ7Fcw8WeFoIiJxyrZgtNNbfX9vEvM0jzXAmUnM024YY4qBz7fZfVeMMcOBi1rtqgMuttbucRtjrX2Uvf/tCoEb46tWJEvF8+a3p89gNL93XVn0C/9rB2XLbKj+JP5xBd3BGOerm3XPOXe3EBEREREREREREREREREREZGMZq39H/B+06YBvmKMec0Yc4TXOGNMqTHmq01j9wds0+N5a+3rqaw5A7S97fjSOMcvizGfiIiIiGQqY2C/78A522Haq3DMizDtNTivCs7aCMe+Ameuh8Pvg0EXwNlb4IT34JytcOL7cOzLcMxLzrhjXoQeh8a3/vK/p+bPFS/bEP+YTkODryMTGAMTfgpnb4VjZ7T828ayLEP+LdOlMQK1W6K3dd0voaCYDXVrXdt6FfSNe7545ZuCqPszLhgtrwSOeBDOXAtjb/DumynPOX4t/Yt7W4XnYY7sVjYOTlsOJ83z/xzUWn1V5gRvSvhWPQp127z7VJ4AJ86F0gHh1ORm+JVwXjV0P8i7X2MEVvw7nJra2vSGEzjopaA7nLEWesb5PjAb5eTBgXdC6WD3Pl6hliIiIiLRxHNMpfl3pMPvj93XNsKs82D7h4nXJiLSweSluwC/jDFDgObbZzQCTyYx3RNAA5ALDDbGDLDWrkyyxGx3DtC11fY24OEYYy7A+Tts9rC19mMfa/2CvQPVzjPGXOUVqCbSLtTHEYzWfZK/fn4/jNuzwf/aQfn0f4mNK2wKRMvr5Pz5GlyeGjbOhE6DEltDRERERERERERERERERERERMJ0DvAW0KNp+zBghjFmPW1Cv4wxfwRGAJNxbrxpcALRDLAG+FJINafTsDbb8Z7f+Gmb7R7GmG7W2hhXoYqIiIhIxsjvtG/ITl4pFE3de19uIXQ/wPm+oFuUebrAcwf7X3fdc7D2mb33FfSA7hMhJ9//PMmy9fGPye8cfB2ZpKAr9DqqZXvkNbDkN+791zwO9budkKqOqLrtr0WtlCQWvLOhbnXU/YWmiLK8HlHbgpRvov8MRjItGK1ZcSWM+AYsuNk97HD1o1BfA3nF4daWqN2r3NuK+7m3tQcmxwlIa9bnZFj7lP/xC2+BsvHhv55I+m16LXaf/mc7QaCZIK8Ejn4WnhjmHei2YQbs973QyvrM9nmx+wz+EuTkxu7XnvQ6GpZ/Er1t2/vR94uIiEh2amyAxlonf6D5a0MtNDZ9bd5f0h+6jPL/PnP3GtixACK7YMvb/sZUngC9j23ZLukHu6MfO/hM/S6YeQpMutMJeXVT1Mv5s5SNd44TNuxx3teUDobiXv7qExFpB7ImGA0Y2/TVAkustVWJTmStrTLGLKHlLojjiP/Eofbmy222/+0jqOzMNtu+otOttYuMMW8DhzTtKgWOAx73M14ka9Xt8Nev3xn+P9QxBnIKnTfoXhojYG14B4ltI6z0kWwcTfMH8sZA7+mw5ono/SI+/z5FREREREREREREREREREREJK2stcuNMacAjwCVtASdVQK9W3U1wOWtvqdV39XAKdbazaEUnV5lbbY3xjO46RzJPUDruy52xblhqoiIiIh0JN0PdC6g9BOi0WzGSfvuKyyHIx+F8inB1ebFLUTJTd9TU1NHJhtyCXz0W+fcfTcPlsGUf8OAc8OrKxNYC29d6t4+4usJTfvq9mei7q8o6IMJ4VqN/JyCqPsjti7layesqNy5RmbVQ+59HuwGh/0P+p8RXl2JqN0CNWujt3Ud2/FCiIZ+Jb5gtKpl8PwhUFQBRz4GPQ9NXW2SGax1AjyX/tm7X36XzHudKuwOE2+Ft7/i3mfds/DBD2H8z8INddu11Lvd5DjvETqaoV+G5X+P3rb5Tdi+AMrGhFuTiIhIe9McSNY6jKxhz76BZG0Dy9z2N+5xDzXzCj2LJ0y/y0g4+jkoHejex1qY8y1Yckf8fydDv7Lv9vwfxx5X/Sm8epr/dSpPhE2vQn21sz3scjjw997BaiIi7UQ2PdO1frVZFsB8y2gJRkvsVh/thDFmKHBkm913xRjTG5jQalc98Hocy86gJRgN4EQUjCbtXWRn7D5FvZ0DovHILY4djAawbW7L3cBSbdMbULMmsbEF3Vu+H/8zj2C0XYnNLyIiIiIiIiIiIiIiIiIiIiKhs9a+Y4w5APg7zvli4ISetf661xCcQDQDvABcZK1dn/JCM0OnNts1CcxRw97BaJ0TL6eFMaYCKI9z2NAg1hYRERGRBBgDU5+BmafCtjmJz1O7yblg84w1kFsYXH1uGuO4yBXg4L+mpo5M1m28Ey400yMUrjECr58PPadASd/waku39S/Aptfc2/ueHPeUexprWLHn46htvQv6xT1fIvJMftT99Y2RUNZP2KF3w46FsHNR9PbGWph1LpyxGop7hVtbPN65wr3t8AfCqyNT9D8DDvoDzL4qvnF7NsKrZ8AZqyAn+v9paSc2vwFzrvXuUzYeJt8LBV3DqSkeQ7/sBE+89033Pgtuhu6ToP9Z4dVV5RGMVjoQJt0J3Sa492mvyqc4QSTL/ha9fcYJcPrKcEPsREREguIaSNY2QCyeQDKPsUEEkmWKnUtg1nlw/NvufT75R/yhaEUVMOYGGHD23vvHXA/1VbD0L/5yJfxa1yaofelfoGwCjIjz9zERkSyUTcForU/K2RHAfK1fSboEMF82u5SWu2sCzLHWvh9jzNg22/OstdVxrPlGm23FrUv75/UGduyPnDfB/c+J/4OcvGKIbI/db/VjIQajzUp8bOsP5bqNhy6jo38AVl+V+BoiIiIiIiIiIiIiIiIiIiIiEjpr7QbgZGPMJOCbwLFApUv3HcBLwJ3W2pkhlZgp2gaj7Ulgjhqgm8eciboKuDGguUREREQkDCV94MT3nHCPp8dD1fLE5qnd4gRO9T0l2PqisQ3x9S+qSE0dma7vKXBeFdzv8XbfNsDK+2HUt8KrK91W/Me9rfyIhKacXzXbta1XQTihc/mmIOr+iK0LZf2E5Xd2LkJ/wOPyPVsPqx6EEV8Lr654bXw1+n6TB52HhVtLphh+JQz7KtTvcl5jGuudUMI3vuA9bs8GWP8y9Dk+nDolPbyei8EJ8Br59XBqSdTIq53wtpeOdu+z4j/hBqPtcglGG/lNmPSb8OrIRGN+6B6Mtns1bHsfuk8MtyYREcluvgPJ2gSIxRNItk97OwkkyyRb3oGa9VDce982a2HRrf7nOn0lmFworoweuJqTCxNvhQm3QM1a55jMa2cnd7MCN5/+R8FoItIhZFMwWus7HgYRZNY6aC3OT0zaD2NMLnBRm913+Ri6X5ttj6j5qJbFmE+k/Ym4ZDr2nALjb0p83txif/2qP018jXjtWBh9f+Xxzt1+HunjPrbtLxZdRkYPRovsSrw+EREREREREREREREREREREUkba+17wIUAxpghQH+gB1AAbAY2AAustY1pKzKz2JDGiIiIiEh7llcKo74N7yYRPDT7SudG2L2mQkG3mN0TFk8wWu9p0S9G7SjySqHrfu7n8APMuRbIgYKuUHEkdBoSWnlpsf5F97buByY2Zd0q17ZBxSMSmjNe+SY/6v5GGmmwDeSa3FDqSEh+Z+gyCnYudu/zyb9g+FWZ9/NsLWx9F2o3RW/PLYKcbLpEM2DGQH4X5wFgjgQMMQ9LzLkGSu6HsnGprlBSbfdqWPmA8zrUaWjLdW4f/8F7XOX01NcWhLLxkFMAjS4hlKsect4b5UR/jg6UDq4q4AAAIABJREFUbYx+jR041yd2dCX9oaiXE74Yzcd/hAPvhNzCcOsSEZHUsha2fwCb324JEdsnyCyOULPW7Y2RdP/pJCg16/bNL2iohYW3wI4F/uaoPAFK+/vrm5Pb0nf6q/DCEbBtrv96/dj0Oiy+Y9/9jbVNNTS958krdt4rlo0Ndn0RkZBk01G3za2+HxjAfANafb8lgPmy1QlA61uT1AAx4vgBaHsri5Vxrts2oamHMaabtXZbnPOIZI/Izuj785PMevQbjOZ24DNokSpY8c/obWXjnQOMXrq2+VAjr3P0fvUKRhMRERERERERERERERERERHJZMaYzsDgVruWWWurW/ex1i4HlodaWOararPt8wQhzzFt5xQRERGRjmjQ+TD/RqjdHLtvNLtXw2tnQVEFHPUU9EgsZComW++/74irU1NDNhlxNcz+qnefOdc4X00OHPg7GH5l6utKh1WPQM0a9/ZhlyU07aa69a5to0omJDRnvPJMgWtbxNaRaxL51TFEI6+G2Ve5t295C965DA76U+YEjTU2wLtfh6V/cu8z4hvh1ZMNSvrBgHOcoCwvOxfD0+OdwM6Jt2ZeIJ74s/IBmHVe/OMqT4AuI4OvJxUKu8PgC2HZ39z7vDwdjnzMCSBNpQ9+6N7Wue3lvh1QTq7znDzv+ujty/4K296HqU9BUXm4tYmISGrYRuf9+sd/THclkuka9uy9vWejE1a26yOfE5jEf/fLK4WjnoDnDvE+XpGI5mM9foz+Duz/C/3uJSJZJyfdBcShOXjLAOOMMT0Snahp7PhWuwJ+Bckql7bZfshau93HuLI22xvjWdRaWwW0eQdB0kd+jDEVxpgx8TyAocmuK+JLyoLRivz12/IO1Nckt1Ys9dXwzET39q77OR+kehlw9t7b+W7BaDpXU0RERERERERERERERERERCTDnQ/MbXq8AxSmt5yskcnBaH8Axsb5OD2gtUVEREQkWQXd4Li3oO+pUNS7ZX9usXNeevMjlj0bYwdxJcM2+Ot3+APQ79TU1ZEthl8BB//ZX1/bCO9+A3avTW1N6VC/2wnuc7P/L6Hr6ISm3lgX/e/r8K7HkxPrGomA5Ofku7bVN0ZCqSEpw690Qs+8LLsL1j4VTj1+rHvOOxQNYKxLAE9HNvmfMPIaKB0cu+/i22DTrNTXJMGLVMGbF8U/rnQQHPFQ4OWk1EF/hN7HubdvnAlLfpvaGnavgYW3uLd30iWyAIz5gXf71tmw4OZwahERkdRb97xC0cSfxtq9tz/8mf9QtJ6TnfevfU9KfP2SvnDCbBhwHhSW730MrvmRk+KP0RfdCpvfTO0aIiIpkCG3T/DlLaAWKMAJR/sa8JME57qKllC4euD1pKvLQsaYcqDtJ0B3+Rzeqc12ImlLNUDrT8xc0o/ichVwYwDziAQvsiP6/vwkMwGN+4db+5h1jnNXg1RZ+QBULXVvL2vKpKw8EdY9s2/7wM9D6cC99+W1fbppEtmVWI0iIiIiIiIiIiIiIiIiIiIiEpaeOOf7Acy21m5NZzFZpO2JRuXxDDbGdGLfYDQ/N0yNyVq7kThvpGp053ERERGRzNJ5KBz1uHefxXfAnGu8+2x9D6pWQKdBQVXWorE+dp9eR8OAc4JfO1sNu9wJRXl5Wuy+tgHWPOYEVbUnG172bh/0hYSmtdayMbIuatvg4hEJzZmIfFPg2haxdaHVkZThV0BhD5h1rnuflQ9CvwzJ1171oHd7UW/IKwmnlmySWwiTfu08Ft0Oc7/t3X/VQ1BxRDi1SXDWvwgNCVxSevRz2fdzk5MHh98HD3Zz77PqQRh3Q+pqWP2Ye1thORQkeX1ie2GME8y45DfufVY96Dw/iYhI9ov1fl3CZ/Kc3weag75ah37tta8Qcor27btPu58+rfY/3AtslGNKDW2C0Vb5DOrtdgAc90byfy8AxZXOe0ovT42DHR8Gs140Kx+E8impm19EJAWyJhjNWltrjHkNaD5Cf50x5hFr7fx45jHGjAW+A9imXa9ba6sDLDWbXAi0TlRaBsz0ObZtUtGeBNavAVofDXJJPxJpJyI7o+/P75LcvI1x/PitfRrm3wSjv5Oag8jrX3RvK+kP3fZ3vh9+Jax7lpanYqCoAqb8e99x+S6ZifVB3cRWRERERERERERERERERERERFKkOeDLAqvTWUiW+bjN9sCovdy17b/VWrstiXpEREREpKPxG1Az6zyY+AsnpCxItiF2n24HBLtme9B9EuQW+wuqWfBzGHo55OSmvq5Us42w+nGYdbZ7n05DnYuQE1DVsIM9jbujtpXnJzZnIvJMvmtbxEZCqyNpPSeDyXH+3aJZ8S8o6ec8r/Se7oTchK1mHax6BJbf7d2v/PBw6slmfl5PltwBZeOg/9lQUJb6miQ5jQ2w+lGYlUA4aXEldBoSfE1hKChz/p9ud7mcefs853nN5AS/9o5F8O7X3Nv1XLS38sO9g9F2r3b+HcvGhVeTiIikxpZ3011B5ogWSLZPkFg8gWQe4WZec6T7GENuUfT8geYshl1LYcV/oWatv/mGXhpcbX70np7aYLQlv4aBn4eeB6duDRGRgGVNMFqTX+EEo1mcEK1njDHnWGvf8jPYGHMw8CBQinMXSts0Z0d1SZvtv1trbdSesSUyLtG1RLJTqoLR4r27xvwfOx/6Hf0sFMV1M9kYddTCiijBZs0GX9RycLffqXD4/bD411CzBiqOggN+Hf3gb55LMNrmN5OvWURERERERERERERERERERERSaV2r7wvSVkX2WdRme1ic49teYbowiVpEREREpCPqfgD0Ocm5MbeXrbPhpWNgzA9hws+CW9/Wx+4z8pvBrddeFJTByKth4S9i9929ygkSO/xByMm2y8tasY3w+vmw8n7vfmOvTzhga2PdOte2ioI+Cc2ZiHzj/mt1va0LrY6klfSFIV+GZX9177PwFucx8hqY9OvwagPYsRBenuaEo3nJLYbR3w6npmzW/UCoPAHWPevd7+2vwKJfwTEvQUl4P1cSp8YGJxBt9aOJjd/vB9n9mjPmh/D6593bN82CiiODXXPNkzDrXO8+o68Lds1s1/dUKJsA2z9w7/P0eDh2BvQ6KrSyREQkYLVbvZ/rw+IrkMwjZMxP2Nhec2RoIFmmyC2MHozWUAsbXoGZp0Vvj6Z0MAz6QrD1xTLiKljxD6jdkro1nj8UDvo9DL8ydWuIiAQoq44iWGufN8bMAKbihGr1AV41xvwT+DMwu22wlzHGAAcCVwBfAvKbxlrgNWttjE9p2idjzKHAmFa7GoB74pii7St+cQJltB3j812Epz8AD8Q5ZijwWABri3hzDUbrmty89XEGowFsmwOvHA8nzklu7c9qqIaHe3v32e97e28POMd5xJLfyb1t11LoHO95nyIiIiIiIiIiIiIiIiIiIiISkta3tB6ctiqyT9tbgY83xpRYa3f7HH9YjPlERERERGI74hFYdCusfxE2zvDuu+BmGPoV6DQomLVtg3d7UW8o7R/MWu3NhJ9Dp6Gw6mGoWQvb57n3Xf2YE1bU95Tw6gvahpdjh6KV9IchFye8xMbI2qj7i3KK6Zyb5PUgccjPcQ9Gi9hIaHUE4uA/Qd1WWPWQd78lv4Fhl0HX/cKpC2D+T2KHopX0c54jexwYTk3ZzBg48jFY9EuYd4N3352LYckdMNFHuKOkx7pn/YeilY1v+b7TEBh0AQyIEfCV6QZ+zgnkfOOC6O1vXgynLw9uPdsI730LGva49+l/NpRPCW7N9iC3AKa/6jyfL77Nvd/c78AJ74RXl4iIBGvhLd7tFVO9Q8ZyiuIMJHMJN1MgWWbJKYy+v7HWee33E4rWZTT0ng5jf+gE0Iep8zCY/iYs/hUs/UvL/rLxex/f6ToWTE7Lttexn31YmPtdGPRFyO+cdMkiIqmWVcFoTT4PzAEqccLN8oCLmx7VxpglwLamtu7ACKA5Vcc07TfAKuC8EOvONF9us/2MtTb6kfroMjIYzVq7EdgYzxiT4B1fROIW2RF9f36X5OZt9Di46WXbXFh0u3OnrGi/eO1eDVtmQ+0mKCyHvFIwuc4b5dqtTp+cfOi2v5MO7PXLwJT/egecefEKjlv/ooLRRERERNKlvsa542txX+g8NN3ViIiIiIiIiIiIiIhIBrLWfmSMmQeMxwn36mutXZPuujKdtXZdq783cM6TPBx43ucUU9tsPxNQaSIiIiLSkeQWOBeBjv0hvHUpLL/bo7N1wlKGfzWYtWMFo/U+Nph12iNjnCCpYZc52ysfhFkeQTRrnszuYLQ1T8XuM+rapJbYVLc+6v7y/MpQr0nKN/mubZHGutDqCITJgQPvjB2MBs6/cVjBaNbC2idj95v+OpQOSH097UVuAYy9HvqdDk+P9+679kkFo2WyNT5+PgBGXwcTb01tLeky6Hx49+tOuGNbe9ZDQ53zfz4IOz+CqqXefQZ+Ppi12pv8LnDAr5wQWLe/w62zYc9GKKoItzYREQnGptfd285YAyV9wqtFMkduUfT91Z/C1vf8zXHyAufYSrp0GQ4H/9l5+LXoNph7nf/+9VWw8VXoe3L89YmIhCzrgtGstRuNMScAjwODcILOwAk76wRMarPvs6G0hKItBU5vCtHqcIwxpcDn2uy+K85p2iY8lcdZQyf2DUbbHmcNItklsjP6/mSD0eprEh8799vw6X+du6+0/iVv/k9h/o+Sq6u1ZMLLenrctaJuW+LzioiIiEji1r8Ir57ZEo7b9zQ4/D73A8giIiIiIiIiIiIiItKR3Qn8FefcvZ+w7009JbpHaAlGA7gEH8FoxphRwCGtdlX7GSciIiIi4qn3cTGC0YDZV0J9NQz9MhSUJbdeY713e+Xxyc3fkVQcBTkF4BactfTP0OsYGHheuHUFYc9mWPKb2P0qj0tqmY2RtVH3VxSEe6F9DrkYDPazy+Za1NtIqLUEoqg3lI2D7fO9+73/Xeg6OvUBfnXb4YMfOM9jXrqMgpL+qa2lveoy2rkZb41HZv6OhTDjVCifDCOuhvxO4dUnsS39k79+/c9JbR3pVjYeNs7Yd39DDXz8Bxh1TTDrLLjZuz2nACqmBrNWe1V5PHzsES733CEw4WYnYC6dASgiIhKfrXNg8xvu7cWV4dUimSWnMPr+eTf4Gz/g3Ox8T1B5HMyNc8zMU6D3NCjp57x/V0iaiGSonHQXkAhr7Yc4AWj/oyXszLZ6fNaVvQPRGoF/AAdZaxeFWXOGORfo3Gp7A+Azrv8zH7fZHhjn+Lb9t1prlXAk7Ze17sFoBV2Tm7txT3Ljt74Lzx3Usr3+pWBD0QA6DU58rFcqd0OSf3YRERERiV99Ncw8vSUUDWDN4/Dh/6WvJhERERERERERERERyVjW2ruAp3DO4bvYGPPdNJeULf4NNLTaPssYM9zHuO+12b7fWquTbEREREQkOf3PhPLDY/ebex28ciJEqmL39WIb3Nt6Tm7/gStBKiqHMT/w7vP65+ADnxcJZ4o9m+H5ybH7Df0KdN0vqaU21a2Lur88P9yL7Y0x5Jn8qG0R6xJ8l8mMgQk/d4J9Ypl5Kiz2EYKXqLod8PwU+PiP3v1y8p2as/FC+UyQkwf73wImxiWta5+ED34ILx4J9TXh1Cax+f0ZHHAe9Dg4tbWk2wG3ubfN+ZZzbV6y5v0IVvzTu8+YH0BRz+TXas9GfcsJZHRTvQLeuMAJxhQRkeyw4RV4dpJ7+8hr9H69I8t1CUbzK9bxk0xVNg6GXBr/uPUvwvJ7nJC0JXcGXpaISBCyMhgNwFq7zVp7AbAf8Gug+fYQps0D4APgV8BIa+3F1todYdebYdrecfMf1toYt9PZR9tguWFxjh/SZnthnONFskt9FUS5Kw8AeV2Sm7vrOPe2aTOh1EduYc1aWPQr2L0W3vtmcvW01W1/KOyR3Bxud/Rq0AccIiIiIqFb+ww07N53/5rHw69FRERERERERERERESyxfnAIzjn9P3cGPOcMeboNNeU0ay1HwP3ttpVANxjjClyG2OMOR24uNWuOuCmlBQoIiIiIh1LbiEc8wIcFCM0CGDLW7DgZ8mt53WJyzEvQV5xcvN3NONuhOFXevdZdCvUbg2nniAsvxuqlrq353WCKf+Fg/+S1DLWWjbWrY3aVlEQbjAaQL6JHiIWsZGQKwlI35PhuLdgv+/H7vvhT1IXkrXiX7Cz7aVybYz+Lkx/A/qfkZoaOorBX4Rps2DIxbH7bpsLKx9IeUniQ8MemBcjQDOvMxx6Lxz23/YfRtL9AOg61r39w58mN3/tVlj4S+8+Rz3pvL6Lt85D4fh3YvdbfDvs2ZT6ekREJHkfxjjeMOqacOqQzJTj+jGqt2GXw2nLnEyEbHXI32DKf5yA+KGXwWH3wfRZ/sd/eBM01KauPhGRBOWlu4BkWWs/Ar4NYIzpBPQCmhN4NgMbrLXVaSov4xhjRgBtb9NzVwJTfdhme7wxpsRaG+Xq+KgOizGfSPsS2enelp9kMNqY78Os8/bdP/xrUHEknL4CXpwKG2d6zzP3O84jaEc8lPwcuS4fXDfoZrYiIiIioVvicse37fPCrUNERERERERERERERLKCMebvTd/uBHYBnYFpwDRjzC6cG59ubGrzy1pr294gNFTGmH5EPwezd5vtPGPMIJdpqqy1mz2WuRE4E+jWtD0FeNEY8xVr7eJWtRQClwO3tRl/m7X2U4/5RURERET8yy2C4V91gk/e/KJ33yV3OOezl/ZPbC3bEH3/iG8oFC1RI6+Bjz2C7RprYfObTlBVNtjwknf7sS9Dj4OSXmZnw3ZqbfTrFsoL+iQ9f7zyTX7U/ZHGupArCVD3ic6j4kiYcZJ7v7ptsP0D6Hlo8DVseNm7vcfBMPEXwa/bUZVPdv4dVz0Kke3efTe8DEMuDKcucbftfaivcm8/ZTF0GRlePZlg2GXw3jejt216DRrqIDd6mGVMm990Xpdd174ie16vM0FJHxjwOVh5n3ufxjrY/Ab0Oz28ukREJH6NEe9r5XMKoSTB4xDSPuQWxte//9lwxIOpqSVsxsCg851HaxN/BXOviz2+dgtsnw89DkxNfSIiCcqaYDRjTG/g4Fa7Zllr97oVibW2CqgCloVZW5a5tM32LGvtkngnsdauM8bMA8Y37crDCVx73ucUU9tsPxNvDSJZJeJx3maywWiVx0OnoVDV6qkvtxiGtjr3c/R3YgejpcKkO6DTkOTnyXVJaFYwmoiIiEh4ts+Hdc/BptfTXYmIiIiIiIiIiIiIiGSXiwHbatsCpun7Lux7o89YTNMcaQ1GA2YBA3306wt84tJ2L87fT1TW2tXGmLOA54DmKykPAxYaY94DlgNdgQOA8jbDnwRu8FGfiIiIiEh8Ko+HnHzngmQ3DXvgmf0hr5Oznd/ZCT2a8H9Q0M193GfjXcJATNZcBpV5Og+HLqNh5yL3PjNPgWFfdf6dCruHV1s8Irtg3g3OuWxuSvpBtwMCWW5T3TrXtor8ykDWiEdeTgFEyQ2stx4/j9mi4ijI7wqRHe59np8MJQOc63B2fNiyv6gCJv8LKqfHt+bqx53AwHXPevfrd0Z880psxkC/0+CTf3j3++ReJ5Sr8jgYd5PCMcOyZzPMu94J6Kr+1PvnsstI6DwivNoyRb8z3YPRbCPcVwilg6BsHIz6FvQ62t+86190Xo8919ZzUtz6ne4djAbw6hnOa0zpABhwrhPIa4z3GBERCdfG19yD1MF5f2lywqtHMk9OnMFoHSEUte+p/oLRAN66CE78AHJ0/E1EMkc2vbKfBTzS9Pg34BF5LtEYY3KBtrdIuCuJKR9ps32JzzpGAYe02lWN/0A1kezUsNu9La80ubnzu8C0mTD4Qicgrc8pcMxLzh1zmvU9GabG+KAmaAf8GkZeHcxcuS4fXDTUBDO/iIiIiHhbdjc8MxHmfse7X2N9OPWIiIiIiIiIiIiIiEi2s60e4sFaOwM4E9jUarcBDgTOA45n31C0/wKft9br6hARERERkQQV9YSJt9OSd+yibivsXuk8dixwwodeONw7UK3Zumei78/JjbtcaWIMHPg7yOvs3W/pn/z/O4XNNsJLx8KSO7z7HfTHwP6vbIpED0YrzimhU26XQNaIR77Jj7q/XQSj5ZU4/0djBSDuXrl3KBrAno3wynGw1iMwr62VDzkhOLFC0XpOhuFf9T+v+DfuRuc6qFi2fwCLbnXCoqwOJaVcQy28cBgs/TNsn+cdigZw4O87ZnhUaX+Y8HPvPtUrYM0T8PJxsOGV2HOuex5eOcG7z6AvQe84QyAF+p/lL/hk90rYNMsJvfvgB6mvS0RE/KvdAi8f695eWA7jfxpePZKZcov89+1zihOG2t51GQFjf+Sv746F8Ha6700mIrK3bApGK8P51MQAs6211WmuJxudBLS+Hcku4IEk5vs3e99n5CxjzHAf477XZvt+a+2eJOoQyXz1XsFoJcnPX9IXJt8Lpy2FqU9A+eR9+/Q5Hi6wMOzy5NeL5YDfwKhrgpvP7ReRBj11iIiIiKRcZBfMucb7rirN6qtSX4+IiIiIiIiIiIiIiGQjE+Cjw7HWPg2MBf4EbPPo+hZwjrX2Ap1jKSIiIiIpNfLrcOJcmHgbFHTzP27HQljzlHef3Wvd22IFJom33sfAyR/G7rdzkRPkkmk2zICts737HPkY9D0lsCU31kX//1he0AeThiCgfFMQdX/E1oVcSYoM/iKcND/x8Ytv89930a3EzGsf8wM49uX4nufEv05D4ITZMOU/0OOQ2P03vAxb30t9XR3d6sdg10f++nabCL09AkrauzHf99fP1sOi22P3W3y79/nanYY61w8qKDZ+uYVw+EMwNUYYZmsf/d4JChQRkczwyb+8209ZBF1GhlOLZK7cwth9Rl8HU5+GIx+JL0gtm42/CY57G/b/hfN7rpcV/4Lda8KpS0TEh2z6RGBr01cLRL/dhsTSNp7zf8mc/GSt/dgYcy9wadOuAuAeY8yxbkFnxpjTgYtb7aoDbkq0BpGs0eASjGbyICf6HXtSZvjXYOlfUjf/2Bth1DeDnTNHwWgiIiIiaVH9KSy+AyI7/fWvr4KCstTWJCIiIiIiIiIiIiIi2WZwugtIBWvtoJDX2whcaYz5JnAYMBDoDVQDa4C51tpPwqxJRERERDq4bhOcx8hvwJP7QdVSf+M2zoB+p4HJAWuhbbiUV/BVYc+Ey5UmpQPggNthzrXe/TbMgD4nAwZyo4dxhW7jq97tJhd6Tw92ybrol7BV5FcGuo5feSb69ScRGwm5khTqOgrGXA8Lfhb/2PUvNF1nEiO0rrEOtrwdYzIDo7/TcS6UT5eCbjDofKg4Ah7tH7v/5jegx4Gpr6sjW363/74dORStWe9psP7F2P02ztw7ZMvkNYWgNQc0Wue118vwq/Z93yT+5eRCn+Nh0h3wno9rH+t3wa6PoWxs6msTERHn+EBjhM9eG00u5LSKQtn8uvvYXsdCYY+UlidZIidGMFpxH5h4azi1ZJqeBzsPcN6HLvxF9H62ETa+BoM+H15tIiIesikYrfWR5NK0VZGljDG9gJPb7P5bAFPfCJwJNN/6YgrwojHmK9baxa3WLwQuB9reeuM2a+2nAdQhktnqXYLR8krCrQOg23g48lF49YzYfTsNhaFfhg880n97TnE+WCjoBhN+DsMuD67WZnnF0fc31AS/loiIiIg4Hygs+D+Yf6NzQNOvyK7U1SQiIiIiIiIiIiIiIllJ54cFy1pbB7yS7jpERERERD6Tkw8TfwmvneWv/5I7YMlvcS52NlA6EIZdAft9zwn72PWx+9jK44KoWPqfDXO+TUsYSxQf3ek8ADoNg5FXw4ivpyeQZd0L8P73YNtc7359T3O/9iBBmyJro+4vL0hPMFp+TvSQunpbF3IlKTbwvMSC0QDuC+j/QOXxulFsmEr6tVyf5OW9b8Lu1TDh5r2DMiR59bth9pWw7ln/YwZ8LnX1ZIsB5/kLRqvfBfclE7RoYMA5SYyXz/Q/G+Z8y9858k+Pg8n/gMFfSn1dIiIdkbXO8YE51+zblpMPPQ6F8T+BhbfAuufc5xmo9yTSJFawtd6/OgZ8zj0YDeCN853jMEO/AmOvVziviKRVTroLiMNcWo64j0hnIVnqIvYOwvvQWvtOspNaa1cDZwGtj6AfBiw0xsw2xtxnjHkWWAX8Fmh9a5IngRuSrUEkKzS4BKPlpiEYDaDf6XCBhaOfj97e/yw4ayOcthT6nuo+T5fRMH0WfK4GztkKw69IzZvbHJdfRBr3BL+WiASv+lOY+x2YeTosvNU9LFJERDLH5jdg3g3xhaIB1Felph4REREREREREREREREREREREclc/c90brLtm235Wr0CPvh/sPg2Z9eupe7DysYlWKDspXQAHPJXMLn++lcthfeuhmV3pbauaLbOgRknxg5F6zoGJv0m0KWttWyqWx+1rSI/TcFoJj/q/khjJORKUqxsHEy8DUjTxdedR8CBv0vP2h3ZIX9zwjJjWXSrc32CBOvNL8En//Dff8LN0H1S6urJFoMvgkEhhGYd8lfn9VuSV9IXDrkLjM9wxTcvhNWPpbYmEZGOaulfooeiATRGYNNr8NLR3qFoAIMvDL42yU45hd7tY68Pp45M130i7O8RjAaweyXM/xEsuDmcmkREXGRNMJq1diXwFs4RzZHGGIWjxeeSNtuBfRphrZ0BnAlsarXbAAcC5wHHA+Vthv0X+Ly1tiGoOkQymlsIUF6agtGaVU6HkxdC5QnOdnElHP4AHP4gFDX92HrWaJ0gtFgJyslym79BwWgiGW/XMnjuEFj0K1jzOLz/XZh5inNgSkREMteK/yQ2TsFoIiIiIiIiIiICzuejkZ3O3X1FRERERERERKRjGPN9OHM9HH4/HHoP9J4e3/iP/+h8dQtGG/61pMqTNoZ+Gc5YAwPO9T/+PHKwAAAgAElEQVTm4z+krh43S/8KsS49GvQlOGFO4IExOxu2UWujX7NQUdAn0LX8yjMFUfdHbF3IlYRg9LVwxirnGpdD7wlv3WmvwUnzoPPQ8NYUR9fRcPIiOPYV6DLau++yu3RNUZB2r4VVD/vvf/pKGPP/nGvKOrrcAph8r/N/d/K/4JC/B7/Gmeud120JzpCL4cw1cMTDzmtMTvTg0c98lIb3QCIiHUEQv2NOnwW5McKwpOPw+r9w8J+hsHt4tWS6/b4L/c6I3e/jP+r8LxFJq6wJRmtyq8v34sEYcxgwqtWuOuBfQa5hrX0aGAv8Cdjm0fUt4Bxr7QXW2uogaxDJaA0uwWi5xeHWEU3X0XD0M3CBhTPXwoBz9j4wnRsjGC0Mbn9PDTXhrC8iifv4D7Bnw977NrwCG2empx4REfFnwyuJjYvsCrYOERERERERERHJPgt/CY/0hQe6whMjYNOb6a5IRERERERERETCUtzLCdoachFM/GV8Y6uWQ8062DQrenvnYcnXJ3sr7gVjrvfff9tc2DoHts9veVQtT90FsvXV8Mm9sfsNu8wJpgnYxrp1rm3lBZWBr+dHvoke3FJv2+lNq0v6Ote4DLkIRl6T+vUqT4SKwxWskE55xdBrauzXkPpdsPpxhaMFZd0z/vv2nAyl/VNXSzYyBrqOgsFfgKGXQLeJwc3d4xDn9VqCV1QB/c90XmMaY7yOrn8e6naEU5eIdAw1653fp3Z+BFUroPpTaIwRCN3eNNTC9nnJzWFyoMuo2P2k4yjxCEwvGx9eHdmi8vjYfWrWQO2m1NciIuIiq4LRrLWPAn8HDHCKMeb3xpi8NJeV8ay1r1trTatHobV2cwrW2WitvRLoDRwDXAL8P+Bq4GxgiLV2srX2oaDXFsl49W7BaF6hYxnCK7zNNoZUQ1H0/foAQyTzLb49+v4V/w63DhER8a+hFnYuSmxsfVWwtYiIxKt6FSy5Exb8HLZ9kO5qREREREREOp5VD8P734PIdme7ainMOEmB+iIiIiIiIiIiHVHZBCgbF9+YR/pAY230NgWjpUbZOOffyq9nJ8HT41sejw+FR/snfjPOaBpq4a1L4IGy2DdTLx0M5YcFt3YrG+vWRt1fnFNKaU7nlKwZS76JHgAXsXUhV5IGg78YwhoXpn4N8af3cU5okZfXP+c8T8z5dscLEglKQx28fRm8/RX/YwZ/KXX1tBdBPpfo7ztzPFgGM0+HyM50VyIi2azqE3jmAHik0vl96smR8PhgeGwQ/C8Plv413RWG56PfJT9Hn5OhsEfy80j70fcUyIkSKN55uBM4K3sbcC7k+AgG//Cnqa9FRMRFVgWjNbkCuAMnHO2rwPvGmEuMMXrXkiGstXXW2lestfdYa2+x1t5prX3YWvtJumsTSZsGl2C0vCwIRsuEGhWMJtL+rHky3RWIiEg0tVucD1cSpQtcRSSdNr8Dz+wP710NH/wAnj0Qlv8j3VWJiIiIiIh0LPN/su++yHZY8Z/waxERERERERERkfQyBo58NP5wNDedFIyWEsbAkQ9DWRLnjdWsgVdOgJoNwdQ073pYfg/Yeu9+nUfA1KfApObyuE2RdVH3VxT0wRiTkjVjyYt2gTcQaYyEXEkadJ8Eh94NuSm4xiUnH8beCAM/F/zckpjcApj6LJQO8u7XWOvczH3JHaGU1e58eBMs+5u/viYXRn4Lhl6e2pragxFfdx4mN/E5mv++h301uLokeWseh3f0byIiCbKN8PI02DbXvc87l8OGmeHVlC5Vy2HudcnPc8hdyc8h7UvnoXDEw1DQvWVfl1Fw1BPO8Q/ZW2EP57hKYbl3v49+B1s9nrtERFIoL90FxMMY83KrzV1AZ2A/4G9N7auBjU1tfllr7bGBFSkiEo3bXYpS8YFM0Fw+OAPA2nBqyC2Ovr9mLexYCF33C6cOEYlP9Sr3toJu4dUhIiL+LbkTdn2U+Pj6quBqERHxY+0zMO9G2Dp73zZbD3O+5dzFJs/l90oREREREREJztpnYfsH0du2vAPDrwi3HhERyRjGmAsDnM7inB+4A1gPLLY2rBNYREREREQkbp2GwIkfQPUKePNC2DQrwYkMdBocZGXSWqchcNIHULUCaprCwF6YEt8cjXXw6X9h1DXJ1WKtE4oWy7RXofzwlF7YvLFubdT9FfmVKVszlnxTEHV/xNaFXEmaDLkYBn0Btn8IDXtazglqqHWCJhKRkwddx0BeFlzf09F0nwinLYfHBsDu1d59P7kXRl8bTl3tiZ/nW4Dj3nJ+TvI7pbScdiMnDw68Eybc7Fz31vz89O5VsO396GOmvQqm6XJvk6O/70y26iGIVOnfR0Tit+19JxAslk/ugV5HpbyctPrkn8nP0eNQKIoR5iQdU99T4OxNsGMB5JVC6WCFonnpfSyctR52LIKnx7r3++Re53c0EZGQZVUwGjAV58SmZhYwTQ+A/k0Pvyc6mTj6iogkrn539P1Z/8FJSE+hXn9PT42BM9dDca9wahERfxob4AmPO/MpGE1EJHPU18Cm15wP0T+8Kcm5FIwmIiHa+CrMPMX7pMa6rc5J1ZXTw6tLRERERESkI6rfDW9/2b193bPh1SIiIpnoHlJ3kkm1MWY2cC9wn7W2NkXriIiIiIhIokxTqNnwKxMPRsvJh9zCYOuSfXUa5DwA+p4Ka56Ib/z8m6CkPzTWQt02yCmA4sqmC9Z7+ptj2/tQu9m7T1FFykPRADZF1kfdX16QzmC06De+r7eRkCtJo5x8XYzdkRgD/c+FJb/27rd9HuzZ7P+5pqOpXgm7PoZuE6H6Uyesq2at84hl7A3Q85DU19ge5Xfe++/ugNvhpWP27ddtf6g4Iry6JDmNdc7Pk16LRCRe1Sv89Vt+D/Q5BToPh7KxzrU+7c32D5OfY9hlyc8h7ZfJgbJx6a4ie5gcKBsDQy6B5XdH77PkDqg40gnw7TxCYXMiEppsC0aLRsFmIpL51j4dfX9ulgejJXpHnXh13c+7fdnfYOwPw6lFRPxZ/7xzsN+NgtFERDLD9vnw8nTYs8H/mKJezokR0S5mjewKrjYRkViW3Onv99J1zykYTUREREREJNU+/a/3xTORnc7vcO3xhF0REYlHKs6O7oRzw9WpwM+NMZdYa59PwToiIiIiIpKsfmdCYTnUbop/7MDzg69HvA27PP5gtMh2mHVO9LaJv4JR17pfOGsb4f3vw6JbY68z9PKUX4BrrWVT3bqobRUFfVK6tpd8UxB1f8R6nLctku2GXgIf/RZsg3e/h8th/1/Cft8Jp65s0BiB2VfCsrsSn2PwRcHV09FVHOWESOz6aO/9w65ITz2SuJknw+mrICc33ZWISDZpjCPMuPn3qu4HwVFPQHGv1NSUDtbCqgeTmyO/Cww4N5h6RKTF0Mvcg9EAXjvb+Vp5PBx+v/OzKCKSYtl4xqkJ8CEiknqN9e5J3nlZHowWltKBUDbBvX3e9eHVIiL+LLnDuz2sYEUREfH2xhfiC0XrNBRO/MC5g1k09VXB1CUi4offD0TrtqW2DhEREREREYFP/+fdXl8F1Z+GU4uIiGSq1ufr2VYPL9ZH3+b9BqgEnjHGfC2JOkVEREREJFXyimH6a1B+WPxjJ/0m+HrEW99T4NC7oXRQMPPNvQ62zHZvX/1Y7FC0wh4w+rsw7sfB1ORhR/1W6mxt1Lby/MqUr+8mz+RH3R+xcYQsiGSbsnFw1FPQZXTsvu9/F1YmGbTRniy/J7lQtGkzofPQwMrp8EwOHPsy9J4OOQVQXOmE+SkYLfvUrEs+1EdEOp54gtGabZ0Nc64NvpZ0Wv+Cd/v+t8CgL0Fep+jtxZUw/Q3365pEJHHlk2HIpbH7rXsOPvy/1NcjIgLkpbuAeFhrszHITUQ6uk2z3NtyszwYrauPDxWCUjYWtn8Q3noikrjVjzm/2HpRcI6ISPpVrYDt8/33n/BzGHaZc3KZ2wcMen4XkbBEdvrvu+FlqK+GvNJ92+q2tVyYX9AdSgcEU5+IiIiIiEhHsmej87tXLNvnQ6fBqa9HREQy0SVNXzsDPwJ64ASZNQJvAbOBlcBOoADoDowDjgB6N421wH3As0AxUAbs19RnIHsHpP3aGLPIWuvjBUpERERERELVZSRMnwXL/v7/2bvv6Diqu43j36tqybZcZbl3sHHDdIxppvceWmgJCakvCQkpJCSkUtITEkJIAQKh946BgKk2BmwD7r1b7pKtutLO+8dIUZuZnS0zuys9n3P2aHfunTs/GbE7O+W5MOdqf+sU9IWC3sHWJc5GX2U/6neD1diyfPPL9qSc8Vr7IPQ/1KUtxuQL3UfCWSvtUJkQbI1scm0bUJDGYLQc52C0hmh9yJWIhGzwyTB4EUT2wOP9wetvft53YMiZkFsYXn2Zau2D8a9TMg5O/RhyC1Jfj0DxEDhuJjTWQ04+GBN7HQleYT+o2xHfOmsfhBEXBVOPiHROie6zr38covfYnxudwer73dtOfNcOZgKINkCkoqUtrzuQo30UkaDt9x1Y9a/Y/dY+CAfcFnw9ItLlZVUwmohIVlr7sHtbv4PDqyMZo66E1fd2XD7h++HVUFjq3V651D74LiLp98lPY/dpqAq+DhER8bb5Jf99z98BhX1bXue5zKwS2ZNcTSIiflUs8d+3ag080gNGXAqH3AEFvaC+At69DDY917Zvz33hqMftcG4RERERERHxZ/3jYEW9+3QfBY214dQjIiIZx7Kse40x+wDPYIeiAfwd+IVlWevd1jPG5ABnA78BRgGfARZblvWzdv1OA/4IjMEOSMsDfgsckOJfRUREREREUmXwaWBy24ZtuennEqQl4WkfTDfwRDB5YDXEN87SP0D1eiidDrlF9iT0jbXQZyqse8R73cGnhRaKBrC1frPj8u45Peme63L9XAjyjXMIQMSKhFyJSJrk97TfDzY85d6nag08ORjKjrPDjkZ/zv4s6awBVLs+hu3vQPEI+3fc/Sns/BCIQvnr8Y9XdrwCR8Kgf+PMMuUXMPcrHZd77e9seBoW3mJfdzrweAX5ikhs0QT32aN19ntUz32hzwEw4Jjs/RxprIM197m3t76GPyfP3pcTkXD1HOMvNLZ6PSy4sSm0ECjoY38HK9k3+BpFpEtRMJqISJCiEVhxp3v74NPDqyUZ+3zZPtHYWNOyrN+h0H9aeDV0G+Dd/uJUuKjGu4+IBK9uB+yaF7tfw97gaxERkY4ql9oXg9RssS8y8+PoZ9qGogHk93Duq/d3EQlL9br411n7ANRth+Nehrlf7RiKBrBnGbwwGS6shs0vwo73oddEGHZeywkbERERERERactroqiT3rO/V+Wn70ZBERFJP2NMMfAUMA6IAJdblhXjjnewLCsKPGmMmQm8CBwJ3GSMWWdZ1j2t+r1gjHkLeAOY2rR4ijHmRMuyXknpLyMiIiIiIqlRNBBGfhZW/9u7n8mBcd8Ipybxr1spjL4SVv4z/nXXP24/2i/zklsE+ziElQRoW8Q5GK20YFCodbSXb/IdlzcoGE26knHXwsZnvcM163fC+sfs5yv+Bvt8DQ6+vfOFo33yc/jkx6kbLw3vtyIZYei58OnPoWZTy7L8XnD00/Dase7rLfiB/bP7SJjxEpSMC7JKEcl2iQajQdvvXmUz4OinIL8k+ZrCVLcTZp3h3p5brGtLRDJBTj7s+w1/3zMW/rLta5MLh/wVxn4xmNpEpEsKb6oMEZGuaOub7m3DLoCCXuHVkoz+h8Nxr8LwC6HvQTD+W3DcK3bidlhi3YDeWAt7VoZTi4i4q1jor5+Cc0REwrfpZXjxQJj/fX+haH0OgGNfhKFndmzLUzCaiKRZ3bbE1tsy075hf/2j3v0eKYa3zodFt8F7V8BrJ0B9RWLbFBERERER6cyqN7mfE534Q/s8oy5cFRER+BmwH2ABt/kJRWvNsqwq4DxgJ2CAPxtjStv12QNcADQ0bQfgpCTrFhERERGRIB32D/sYUm6Rc3vZcXYYxeBTwq1L/DnkTpj0Y+g1CQr6BndTfkEfOP4N6D0pmPFdbK13DkYbkOZgtDxT4Lg8omA06UrKZtjXtw48wf86y//ifY9XNqpcmtpQtMGnp+X9ViQjFJXBCW/CiIuhx2g7KO2EWVB2DEx/KPb6VWvsa/RFRLykap+9/HVYfmdqxgrT0j/C9vfc2495OrxaRMTbpBvhwD9A34PjO95jNcIHX4e6HcHVJiJdToiJNiIiXUzlcvivx0H2IQ4BE5ms9Aj7kS6WFbvPlpnQUzOTiKRNZC/M8vneFlFwjohIqCwL5n0bGqv99R97DRz6N/f2PJebWSN74q9NRCQRtdsTX/edi+NfZ8dse5bqcf+X+HZFREREREQ6k9pt8MlPYPkd7n1GXBRaOSIikrmMMXnAFU0v64DbEhnHsqztxpi/ATcARcClwB/b9VltjHm0qc0Cpidat4iIiIiIhCAnH/b/hf2Q7JOTB1N+aj+aPWBSv53TF9thJSHbVr/JcfmA/MEhV9JWvsl3XN5g1YdciUiaDTrRftRsgWf38Tex7/on7JCjzmLDU6kba+ptMOG7qRtPJBv1HAPTH+y4fPDp/tbf+Cw01kOuc4ipiAhRl2C0vgfDKXPt568cBdvejj3W+iey77N7w5Pe7T33DacOEYnNGBj/DfsB8Mw+sHeFv3Wj9bDpBRh1eXD1iUiXkpPuAkREOqX6Cnj1SO8+wy8Ip5bOwteMIwGcSBUJS9VaWPcobJ8DVjTd1STmvSsgUumvb2O1+8E8ERFJvaq1ULHQf/8JN3i35/dwXu7nwhIRkVSo2xb+Npf/NfxtioiIiIiIZCLLgtlXeYeilewHvfyc3xMRkS7gSKA/dlDZ+5ZlVSUx1sxWz89x6fNy008DDE1iWyIiIiIiIhKvMVendryScdBtQGrH9CFqRdkW2eLYVlowMORq2srPcQ5biei6bOmqigbCfj5DQZb9CWZ/Dj641g4Tsaxga0tWQxWs+DvMuQZeORoezIPnJ9q/w+zPwfzvp25bQ89O3VginU1+D+h7UOx+ViPsWRp8PSKSvaIuYcat9/EH+Axx3TGnZZ9gwY2wY27y9QUhGoFV98ATg2D3J+79eoyGYp3WE8lYZcfG1/+9K2DOF2HZX+zvNSIiSchLdwHJMsZMBc4CjgLGAH2BnoBlWVaH388Y0xsoaXpZZ1lWeVi1ikgXsv4JqN3q3l48DPKKw6unMyg9Cgr6QP0u9z553cOrRySVVtwFc78GVoP9uux4OObp7PqbXv7X2Kn97dXtsE9EiohI8CrjPMnaY6R3e55LMFpkT3zbERFJVDqC0SoXh79NERERERGRTLT1TXtmTy8jLrJnDxUREYHhrZ5vSnKsza2ej3Dp0/pAXp8ktyciIiIiIiLxGPdNWPnPFA1mYNKP03KccXfDDiKWc2hBaf7gkKtpK8/kOy5vpIGo1UiOyQ25IpEMsN/1UP6qff4illX32D+X3Q6jPweH/yvQ0hJWXwH/PQF2ftB2ecUi+5FKIy6xgyhFxN2kH8Fb59vhZ15emAIXVkNeUTh1iUh2cQszzmm1jz/2Glj1L6jZ7Ny3teb9GoBFt8Lhd8Ooy5MqMaUa6+GN06D8tdh9J/0YTE7wNYlIYsZ9E9Y9BpHd/tdZ+Q/75/K/wknvQn6Jd38RERdZu4dgjJlsjHkV+BC4CTgOGIkdemaaHk5mAKubHsuNMUomEpHUW/uQd3v/w8OpozPJLYCpt3r3aawLpxaRVKre2DYUDeyDPYt/k76a4tVQBXO/Gv966QizEBHpqqrX+u+7/y9j93E7GNlQCVbU/7ZERBJVq31JERERERGRtFn+l9h9hl8UfB0iIpItBrV6nuzsYM3X+hnAbRau1jPuFSa5PREREREREYlH70lw+iIYdEriY/Q7HEZeDjNegpGXpq62OGyrdw8hGFAwyLUtDPmmwLWtofX16CJdSV4RHPMc7H9zfOutuht2fhhMTclafW/HULSUMJDXdIiu32Fw0B9h2n0BbEekkxl6Nhz3Goy+yt5X8bLukVBKEpEs5CcYrftwOGk2jLsOSo+C4mH+xrYaYd533LeRDhuf8ReKNu3fMPrK4OsRkcT1nggnvQf7fh1Kp9v7Q7H2iZpVLISlfwq2PhHp1PLSXUAijDFXAX8BumFf5GS1arZwD0UDeBpYhz1jZHfgfEBHb0QktbbM9G4v6BtOHZ3N2Gvg/S+5t7//RRj7hfDqEUmFdY+2DUVrtvE5mHxT+PVYUaheDzndoKjMu2/1RjuJf92jiW1LYRYiIuHZs9J/36Hnxe7jtj9rRSFSCQW9/W9PRCQR9TvSs91dH0OfKenZtoiIiIiISCaINsY+L9B7f+g1Ppx6REQkG1S2ej4hybEmtnq+16VPt1bPa5LcnoiIiIiIiMSr134w48W2y54cCjUbY697/OtQdmwgZcVjW8Q5GK1HbgnFuT1CrqatfJPv2hax6ilQRrh0Vfk9YeIN0GcqvHGa//U2vQh9DwqurkRtejF2n3icOs/+txGRxJUdYz8AXjseyv/r3G/TCwr4ERFnlktoWft9/O7D4aDfNa0ThUd6QKOPU1615bBzHvQ/NLk6U2X9E7H75PWAkZcFX4uIJK/XeDj49rbLVt4Ncz4fe911j8GkG4OpS0Q6vawLRjPGnA/8k7aBaAY77Gwn4HmExrKsqDHmYeC7TYvOQsFoIpJq+SV2IISbgj7h1dLV7FkJPcekuwoR/z66znl5ILP7xLD7E3jvStg1z3498rNw6F2QV9y2X91OePsCKH89ue3VKRhNRCQ0e30Go429xt9Nq4UeQb/1OxWMJiLBi+xJz3aX/A6m3ZOebYuIiIiIiGSCpb+P3WfERcHXISIi2WRD008DjDbGHGZZ1pwEx7q86afVatz2Brbqo5PSIiIiIiIimWDYebDsdu8+hf2g/+Hh1BPDprr1jstL8weFXElH+TkFrm0Rt6AFka6k9CjILYbGan/9P/4R1O2AcddCj1HB1mZZsOIu2Pxix0nmC/pC6TRoqIbts6H8tdRtt3gY9JqcuvFEBAad4h6Mtu4R2Hsb9BgZakkikgWiLvvrOe7hx5gc+z1nw5P+tjHzMBjzBfvR/7D4a0zWrgWw4m/2farb3o7df/CpYEzwdYlIMAadaL9PWVHvfrsXwMwjAAO5RdB/Gux3PRT0CqXMTqVuByz+DeyYA411Hdsn3gBDzgi/LpEAZVUwmjFmEHBv08vmULQ7gN9alrXaGDMSWOVjqKexg9EMcEyKyxQR8f4iCmCy6u03s4y7zvuGi9X3wpSfhVePSDKq1nq3W1bwB3b2rIB1j8LuT2HtA23b1vwHigbBAb9uu3zO55MPRQOo3Zr8GCIi4s2yYNPzsP7x2H37HACH3Olv3AKPYLS6ndBjtL9xREQS1bA3dp8LdsKz+0Ld9tRtd/W9CkYTEREREZGupbEWVt0L1evsYz7zvhN7HQWjiYhIW7OACPa1iga4wxhzlGVZPu9OtRljLgJOouW6wVdcuh7Y6vma+EoVERERERGRQIz/Fqy62/t6j6m3QW638GpyYVkWb+x+zrGttCD9wWh5xv1elYZofYiViGSo/B5wwK/gg6/7X2fpH+x7KU56L9jrX+d+FVZ4XKe7yfm9Jykmz74fJCc39WOLdGVjrob533Vvn3l403tKwIGLIpJd3PbXPcKPAZj8Y9j2lv9r4lf+A1bfB8c+DwOPj6/GZGyfA/89Hhqq/PUvLIVJPwq2JhEJVvFQmHADLPxl7L7b32t5Xv4abHgKTp4DecXB1dfZ1O+GmdNgz3L3PrpvXzqhnHQXEKcfA8XYF0hFgQsty/q6ZVmrm9ot1zXbmot9sRVAP2OMvl2KSOo01Nhpq166jwinls5o2Hne7Ts/CqcOyX6W392GAG14xrt9zhcSH7v59/P6Pbe9Cy8dBAt+0DEUrdmyP0Nkb8uMBJE9sOkF/3Uc8lfof4RzW50m5xYRCdxH34ZZZ/rre+I7/gM580uwv5o7qN/lbwwRkWT4CUYr6AMDT0z9tiN7Uj+miIiIiIhIJmqosc8jzP0yLLzZ33mLsuMUmi8iIm1YllUJPId9YsECpgIvG2OG+R3DGPMF7AlVrVbj3O/S/eRWzxckUrOIiIiIiIikWI+RcNZKmPwzyCm0J+YsPRK6j7RD00581w4YyQDLaj51bRuQn/5gtHzjHpoQsSKubSJdyr5fgxPegoEnAAb6HR57ndqtsPTPwdVUtR5W3pXaMUddYT/KZgDGfk8ddQWMuNT+OfFGOHm2JrQRCUJhXzjW496q2nJY/tfw6hGR7BB12V/PcQ8/BqDPVDjlA5j6Kxh1pf05H3NbdbDwlvhrTMbiX8cRitbP/p16Tw62JhEJ3v6/gGNfhHHX+Xt/albxKax7NLi6OqM1//EORRPppPLSXYBfxphc4BJaws9usyzr8UTGsiyrwRizBGjeWxoPrPZYRUTEv8rFsfv0nhJ8HZ1V6XTvdreDAyLNKhbD3K/Ajveh5772l64hZ6Snlqo13u2r/mWn3vcY6X/M+t3277f2oZZlpUfCIXd0PFC04AcQqfQer7EWHu1pPy8aAiM/6+//s+KhcPZaMDmw+WXnPrUKRhMRCYwVhfeuhDVu9wS1M+wCyCvyP77JsQOH6nd2bHNaJiKSSlbU/0nTkvGp3/7ml2D4Z1I/roiIiIiISKZZdAtULPLfv/tIOPgvgZUjIiJZ7XrgVKCw6fV0YJEx5n7gUeCDpgC1/zHG7AvMAL4AHEjLjC0W8E/Lsj5pv5GmsLVjabnG8K3U/hoiIiIiIiKSsG4DYPKP7EcGW17tEYxWMCTESpzlG/fQhIhVH2IlIhluwJFw3Cstr7f8F/57vPc6W2cFV8+2t+zr3lKlbAZMuzd144lI/Poc6N0e5HuKiGSnRIPRALqPgAnfaXldNAgW3ea9zra3INoIObn+a92C23wAACAASURBVEzG1jf89z3meeg+PLBSRCRkg0+xHwD5vWHZn/ytt3UWjL4yuLo6m/I30l2BSFpkTTAacDhQ0vS8HvhVkuNtoCUYzffskyIiMe12PxEG2MFE/Q4Jp5bOyBjoexDs/NC53WoItx7JLvW74JUjWwJbdi+AN8+2ZwMqPSL8eiJ7YveZeRiMvhqGnWe/f2x/F2o2w4BjoLjdyfU9K+HZsR3H2PY2vDAFRlwMg04Gcux/g3gPstdshMU+d8Em3miH5gAUljr3qVMwmoiIo8he2DEH6rbD4NMhv0f8Y3x8k/9QNICxX4x/GwV9FYwmIunRUO2/78hL7ZO+jT7WGXEJrH0wdr+3L4SL6/2dhBYREREREckWlgW7P4Zd86HvgdBrIqy62//6Rz5in4PIL4ndV0REuhzLslYbYz4P3AfkYAeXdQeuaXpgjKkE9gAFQK+mn9A2EM0Ac4BvuWzq+03jA9QCr7j0ExEREREREXG0pX6Da9uE7lNDrMRZnilwbYtYmmRexFXpkfZ9DV73MOz6CB7vz/8OR0Xr205EX9i/5bnJgd5TYPy3YPCpbcdpqIHlf4HV90FeD9jnK/Y5mFQaem5qxxOR+BWVQf8j7Pu8nOx4H+Z+DabeCvk9w61NRDJTMsFo7Q09L3YwWrQeHsqz70ua9CPof1j823HTWAsLfgibXoDKJfGtWzwU+h6culpEJLOMusx/MNqqu2HbOzDoJHufKa97sLVlotX3wYq77PsxB58OU34OteUw/3uw9qGWfvm9IbI7fXWKpFE2BaM1p3xYwNz2M0QmoPX6ujJXRFKnYqF729Bz4bC/2+FekrjGWve28v+GV4dkn3WPdgxrsaKw8h/pCUZr2Bu7T+1WWHSL/WgtJx+m3Q8jLrRfL/8bzP2y91hrH2r7RSgoB/ymbcBONwWjiYj4tnc1zDqzZZ8yvxcc9QQMPM7/GNFG+7PNj5LxsP8t9gHEeBX2BaePsrod8Y8lIhKPhir/fXuOhWNfgLlfgcrF7v1GXWHPoDn6KvjoOqhY5D3uxudh2Dn+6xAREREREclk0Ub48P9g+V9blpUeBdXuNwC2MehkGP6ZYGoTEZFOw7Ksh4wxUeAu7Ov1rKam5otoejU9Oqzaqt/LwMWWZbkdJLwPeKTp+V6PfiIiIiIiIiKOyus3Oi7vndeP4twEJjlNsTzjfitgQ7Q+xEpEskxuARz6N3j3Uu97kryuga3b3vb1llfte5iOfbHtdbjzvwvL/tzy2i00KVEDT4LRn0vtmCKSmIP/BC95hPssv8OemOrEt3U/qYiAW5Bxjnv4sat+h/jvu+l5KH8NTpoDfabEvy0nb11gj5uIQ++CnNzU1CEimaffITDhe7HDG5vtWWY/dn8Cx7/etfaZVv4T5nyh5XXFItg1z76vtGZz274KRZMuLJuC0VonaqxPwXjRVs+z6d9BRDJd1Wrn5SM/C0fcH24tnZXXSQiAJ4fC5JtgzBe61g6wxLbkD87LV90Nh/8r3FoAInsSXzcagXcugrJj7RNssULRwjJjJgw6se2ywgHOfWu3Bl+PiEi2mX9D26DdSAXMvhJOXwz5Pi+qqtsGtVv89T3DIyQolnyXjPF4AotERBLhJ2C4tbJj4PSFsO1tWHUPrHuk7RjdBsLEH9jPB51k9y2fBa8d6z7mwpsVjCYiIiIiItmtbid8fGPbMLTWtr3lf6z+01NTk4iIdHqWZT1ijHkX+A1wHi3X7VkO3U2rn6uBX1qW5Xli37Ks2amqVURERERERLqeqBVla/0mx7ZzSq8IuRpnxhjyTQERq2MImtMyEWll2Ln29bhrH4QFP0jNmFYUlv6xJRht72o7CClVymbA2C9BQV87LKBkPAw4GnLyU7cNEUlc34Pg5LnwskdA0fZ3YftsKJ0WXl0ikpmiLsFoJoHPdWOgoA/U7/LXv7HW3kc59M74t9VexZL4QtHGfRP2roT+R9j32XcflnwNIpLZpt4Kw86Hbe/Y9xlueiF2YPTWWbDzQ+jnETrb2Sz+TcdlW16Nf5zBp0P/pn3NvgcmV5NIBsqmQLDWFz+lIga2b6vnikcUkdSpWue8vPuIcOvozKJ13u01G+H9a+xZ7Kf8NJyaJDtUJhH+EoR4Ax2cPFGW/Bip0nuyfeKtvW6lHZeBHdwjIiItrChsfLbj8uoNdojPmM/7Gyes4MmcQufljTH21UREkpXIfrQxMOAo+3HQH2HD07B7ART2t0+wFg9p27/sGCgZB5VLncfbOdd+v8t1eS8UERERERHJZA018OoxUPFpasYrHpqacUREpEuwLGsDcLExZhBwAXAEsD/QH+gN1AG7gLXAbOBVYKZlWU7haSIiIiIiIiIps6thm2u42MCCIY7L0yHP5LsEo7kELYhIix4jYcL3YfGv/QeJxLL55ZaxVt1tXw+cKtPua7m2rf0E9iKSGfocALlF0Fjj3mf7e9kVjBZpuk7X78TuIuJP1CXIONHAUxNnTMjml9z3f/J729fbg70vE6nwHscvkwsH/d5/fxHpPPodYj8ARl4Cz4yJvc7ml+xgL5MTbG3pYllN768W1FdA5ZLUjDvtXijsl5qxRDJQNgWjtU7OGJyC8Sa1er4jBeOJiMDeNbBjjnNb8fBQS+nUGmv99Vvye9jvOzoIJ/401EBeUcjb3BPu9oI2/WHIcdi9LHQLRttp//+c2y3YukREskXDXmisdm77+Ef+g9HqQgpGcwsDcjtZIyKSKskGDOf3gFGfBT7r3a94mHswGtghAifPTq4WERERERGRdNj0QupC0QBKj0jdWCIi0mVYlrUZuL3pISIiIiIiIpJ2W+o3urYNyKBgtHxTQA1VHZY3uIS6iUg7xsCIS2D5HakZz2qEx/qmZqzWBhzdccJPEck8Obkw/DOw+t/ufeZ9G2o2wdRbne+7yhSbXoKPvgWVi+3XJePhgN/CkNPSW5dIZxF1CTJOOBjNxNe/aq37Pku3MhhztX2/59qHILI7sZraG3BMasYRkezWYzT0PRh2fuDd7+MfweLfwshL4cDfQ25BOPUFzbJg0a2w7Hao2Zz68RWKJp1cNkUlrmv6aYADjDEJ7uWBMWZfoPVRoY+TKUxE5H/eucS9rXhYeHV0dhNu8NevYU/snWTpOmIF6lWvD6eO1pINdAjCkY/AyMviX2/fr0Ov/Zzbiga5rGTZB81FRMQW8QjMrNkE9T5PLNT6DEab8nN//dzkuBxcVDCaiAQtEtJ+dKzvEDvmwPqnwqlFREREREQkUTs/ggU/hPk3wPY59kWsb1+QuvGHnQ8l41I3noiIiIiIiIiIiEialNdtcFzeO68f3XJCnoDbQ75LcELEcglaEJGOpvzcDh5Lp4K+cOyLkNejY1vPfeCwf4Zfk4gk5oDfQL/DvPss+S18fGM49SRi1wKYdUZLKBpA5RJ480z7nLOIJC/VwWjEGYzmpbYcFt4MK+5MXSgawPhvpW4sEclu0+6D7iNj94vstkOsP/xG4CWFZtmfYcEPgglFG3VF6scUyTDZFIz2HlADWEAR4JE+FNO1rZ6XW5a1NJnCREQAqFwOO2a7t3cfHl4tnd3Qs/33nf354OqQ7FFfAS/HOMC8Z0U4tbTmFYCTDmeusGcp2efL8a/r9f9lyTgo6OPctvXN+LclItJZxQrM3OAzfMdvMNrQc/31c+MajFaX3LgiIrE0dpzxNhAl42P3mfslO1RARERERETiZ1n2Q4Kz4WmYebh98eqiW+3nj6dwhsj9b4HpD6ZuPBEREREREREREZE0Kq/f5Li8rGBIyJV4yzPOwQkNbkELItJRYV84/nU47VN7cvn2jzDs920YfAqcuxmOe7Vl2yfNgdMXQs+x4dQhIsnrVgonvRs7mGLlPyDaGE5N8Vr5L7AcarOisFJBjSIp4RZk7HZvTmeQX5LuCkQkU/QaD2cug5Pegz4HxO6/+t/QUBN8XWFY8bfgxu6h743S+eWluwC/LMuqM8a8BpzRtOiXxphnLMuKK3bWGDMd+BJ2wBrAEyksU0S6quqN8Ny+3n26DQinlq6g5xg45A6Y+9XYfatWQ/1uKOgdfF2SudY9Crs/9u4z63R7do6D/gT9Dw2nrlgBOGEpGgLHPGv/vwXQ/wiY8H37Jik/9rseyo53b8/Jh0GnwFqHm6Nqy+OvV0Sks4oVmLn2YRh9VYwx9sJH18Xe1tTboPdE36U5yil0Xh6tT25cEZFYwjq5MfKz9kUoXmq3wtI/wZSfhFKSiIiIiEinsOMDeP+LULkUek2E/X8Jg05Kd1Wd0/zvuc84nIzuI+DIx6DfwakfW0RERERERERERCRNttRvcFyeacFo+S7BaBG3oAURcWZy7Gtpna6nLZsB5a8Hu/1ek+yf+T1goMf9GCKSHUwOjLjEDvFwU7cDajZC9+Hh1eWmepN9T1eviZBbANvfde+7/jE4+M9gTHj1+RGNQMUiaKxNdyUi/tTvcl6e47x/3ymYrIkyEZEw5ORD/8Nh8k/hzbO8+zZWw5r/QO/JLct6jLYDaTNBtAH2rIAeoyC33T2WVhQql9j3ijbWQsXC4OrozJ8hIk2ybW/il9jBaBYwBJhpjDnDsqytflY2xswAHgNyAAM0AL8JqFYR6SqsKPzXxwHovJ7B19KV7PMVGHIWvH8NbHrBu+/cr8KhdypdvCvbMtNfvx1z7P+fT18Y/EFmywo+GG3fr0NuEfQ50P5yU/46FA+G3GJ7Fo+8YigeBqVHQUGvlvWMgam32OE7z413H//Qu2DA0VAyLnYt3cqcl0cq4vqVREQ6tVifC5tfgsrlULJPx7ZoA2x8Dt461339HmNhys+g/2H2gcBkuc1Ko2A0EQlaNKQLGEqPgpLx9gkJL2vuh8k3Zd4FHyIiIiIimahqHbxyJETr7Nc7P4A3z4XTFmjW+1SrWmuHz6XawBPgqMd13k1ERFLCGJMPHAqMAfoCPQFjWdbP0lqYiIiIiIiIdEnl9Rsdl2daMFqecb52L2Lp2j2RlBl1VcdgtLzuMP7b8GkKDl0VlsKgk5MfR0Qyy8DjoWiIHX7m5ukRcO4WKHK5zypoNeXw9vmw7R37dW6Rfc9ZpNJ9ndqt8MwoOOoJ6HtgOHXGsvo++57RoO/NEwmDS/BxUgafDpueT/248VJgj4g4GXSyfc95bbl3v/e/6LDuqTD9wbb3xIdt3WMw52p7/ymnEKbeCuO+Yd9TtOW/8O4l9v5TGHKyLTJKJH5Z9VduWdYcY8xDwMXY4WgHA0uMMb8HHgE6HME1xuQCxwJfBD6DHYhG0/p/tCxrTfCVi4gvjXX2QZ9ugyCvKN3V+Ff+X383FeR2C76WrqZ4CBzxgH1A0Ctcae2DsPEZOHW+bqrpqtY/4b9vw167//hvBlcPQGONHawYhMJ+cObKjl/shp8f3zgl42DM1bDyn+0aDJyzDoqH+h8r3+VLpoLRRERaRPbE7vPcvnDqPOgztWVZ7XZ4ZTrsWea97tgvwMhLkquxNbdgtMa61G1DRMRJWDO75eTC8W/AB1+DDU+D1eDcb+9K2Pkh9Ds4nLpERERERLLZmv+0hKI1a6yGT34GR3jMnC3xq9sezLgTvqdQNBERSZox5kjgeuAkoNChS4e7S40xpwAXNr3caVnW9cFVKCIiIiIiIl1NTWMVlY27HNsGFsRxzXQI8l2CExqsSMiViHRioy6HqtWw6Fb7erXi4TD9Ieh3qH3z+/I7Ep9IuOe+cOSjkOt0WExEslpOPhw3E966ACoXu/d77zI47pXw6mqz7StaQtHAvr+tsSb2elVr4fVT4Jz16X//2jXf/j1EOosgwsP2vxm6ldohglZj6sf3S4E9IuIkt8DeF3r7M/FP/Ln5Rfjg63DEfcHUFkvlcnj7Quy4IuxrIT+6DnpNgL4Hw6zTw7vnCcDofVY6v2z8K78aGAccgP1u0Rv4SdOjzdEkY8xiYBTQvEdomtYxwLvA98MoWEQcRBtg/vfsWeGr19k/a7fYbSe+DaXT01tfPDbP9NfPmNh9JH4FveDA38Ocz3v3a6iC+d+Hox7z7heNwKLbYMMz9kG90iNh8k/SNwuDpEZuN/tvwC+vg8+p0lDt3nbqAigZD4/3S2zmitM+TV3a9YQb7Pe56vUtyyb+ML5QNHC/ScprRhERka6mwUcwGsCca+DkOS37lx99M3YoGsCwOAMyY3E7oZnohR4iIn6FGcBYVGZ/j7QsO1TgyUHOJ4fXPaxgNBERERERP3Z/7Lx8zX1w2D/si54kNaIBXNha2A8GHJP6cUVEpMswxnQH7sKeGBVaJjltzXJZfSFwOZDTNNZ9lmUtSHmRIiIiIiIi0iWV1290bSsrGBJiJbHlG+dj6RFL1+6JpIwxMPkm+36K2i1QPKzlut2Dfg9Tb4HKZbgfygK6j4SaTW2vqy3oA92HB1m5iKRbrwlwxiJ4cjDUbHbus+VVu61oULi11WyGLT7vhXVStw02vwxDz0pdTYlYnaYgFJGgBBGMltcdDr8bDrrdngTcyYtTY4/TbQDM8HjfyO8Fz4xyb3cJdRYRofdkOGMJVK2HmYe57zc5WfcoHHoX5BUFV5+bNffj+D1w1b2wd3V8oWinzrd/mjzIKbAnmG2taAg0VsG878K6R5zHCOIzRCTDZF0wmmVZNcaYk4GHgONoedcw2LNHNgefGewAtf+t2qptJnChZaUz4lakizO5sOLvzuEPVeuyJxitsR4W/zrdVciYz0HvSfDyod79Njxt30DvNSvBu5e13Tms+NQ+2Hjqh+7BTpnOikLFQsjrCT1Gprua9CgeBpVL/PePJBBGFq+ox5eb3CL75q/hF8Cqe+Ifu1sKg/x6joGT58L6x6FmI5TNgIEnxD+OW1BbpCK5+kREOpOPb/LXb+dcWPUvGHiiPSvCmv/4W6/n2MRrc5LjcqOygtFEJGhe+9JBMcaeNWvgCfZFHe2Vzwq/JhERERGRbLT2Ife2ysXQZ//wauns/Ibwx2O/7+hiKhERSZgxpgR4C5hEywSnrTVf2+fIsqz1xpgXgDOb+l4MKBhNREREREREUmKLSzBagSmkd16/kKvxludynDYSjYRciUgXkFvgHGSW2w36TIm9fqomvBeR7DPkTFhxl3v7ir9D3wPte9jyiqDf4fZkvkGo2QzbZ8PG55If682zYdq/of806DGmJTQyDFYUKhbBkt+Ft02RMJTsl/oxc5oiRPJ7uF+LM+JSWPuA9zijrkruWp6crIsyEZGwdR8Goz8HC2/2v060Dj75CfSaCLXl9mSfg09NTeisZdnXMe6aD05xRJ/+zHm9tQ/Apjj2tYZd4PP9tb+dOeDG6H1WOr+s/Cu3LGu7MeZE4PqmR2lzU7ufzZqD0nYDvwZ+pVA0kTQzxj4wXLGwY1v1+vDrSUT1Jngqs2b+6dL6HQIzXobXT3bvYzXAnmV2irCTZX9xTszduwI2PAOjLktNrWGqWAKzToe9q+zXZTPgqCegoHd66wpbvAEtDSEEo3mlPud2s38e/Geor4CNT9sHb/0oHpr6g8pFZbDvV5Mbwy1YsF7BaCIiAEQj9j6HX3O+EFwtfrkFozXWhVuHiHQ96XyfGXquczBaxUJ7n93khF+TiIiIiEi2+OSn3u01WxSMlkqpPtcx9BwY/+3UjikiIl3NY8BkWq7tqwceAV4HosA9PsZ4EjsYDeBE4IbUligiIiIiIiJdVblLMFpZwRByMux6kHzjfO1eg6VJTUVERDLGmC/Cyn86B2oAfOIwqfohf4V9vpzaOpb/FT74P/c6EvHeFfbPsV+Gg28PJ/iooQreuQQ2Phv8tkTC1GMslB6R4Moe95D6CcrZ50uw9kE6xnI0ySmAMZ9PqLKWMTT5noj4MPpzsPi3duCZX4t/1XHZgX+A8d9IvI6GGns/Z/1jia0fqfTfN559Pq99LQVQSheQWUdm42DZfg2MAK4GHgI20jJzZOswtOeBa4FRlmXdolA0kQxR7DBjBkDVunDrSERDlULRMtHAE+wDAV52f+q8vH43fPB19/V2vJ94XeliWfDWuS2haADlr8NH16WvpnSJ9+afjc+kZhaM9vausm/8ev9LsPrf7v2ag9HyusPRT8D52+HcLXCMj5oGn5GaWlMt32Wmo8hu+29VRKSra/15HYRxAXz+5xY6L483kFREJF5eIcPNxl4TzLb7HOC8vLEaqtYGs00RERERkc5gw9P2LI1e6raGUkqXEdmTurFGXApHP6kLqUREJGHGmAuAE2i5s+I9YB/Lsq60LOseYJbPoV5qHhLY3xjTI6WFioiIiIiISJdVXr/BcXlZQebdN5JvnMMFIlYk5EpERETEVb+D/d0H1trcr8CelamrYc8KmPu11IaitbbiTlj/eDBjt7f0TwpFk84lr7t9H+gJs4IJD/Mz5oCj4ajHoffktstNDvQ9CI57FUrGJVeHn4A2EZGeY+H416DvwWByEx/no29CxeLE11/xt8RD0fzqNRGOfAQGHu9/HZfjQDHbRDqJrN+bsCyrFri76YExxgB9gAJgh2XpqK5Ixuo+zHl5dYYHo9VXwBNl6a5CnJgcOP0TeLjIvc+2t2DkJR2Xr33Qe+z6XcnVlg67F0Dlko7L1z0Kh/69a9280lAV/zqzzoQpP4dJN6amht2fwGszoG5H7L7NwWjNCvrYP/0cSBp9VdylhSK/xL2teh10HxFeLSIimSjocGCn/Z9k5TjPOqlgNBEJnJ9gtNGfC2bbvSa4t5W/AT1GBbNdEREREZFs5+cC5fe/DKMuD76WrqIhRcFoQ8+GI+5PzVgiItKV/aDV80+BEy3Lqo53EMuythhjtgIDsCeF3Q+Ym5oSRUREREREpCsrr9/ouDwTg9HyjPO1exFL1+6JiIhklMGnwIiLYe1D/tdZ9yhM/H5qtr/2IVrmKwnI2odgxEXBbqN5O7GcPNcOGxHJBjn5wd7f6zeQbNi59qOxDqxo07q5kOtyv1C8ggh9E5HOqXQ6nDIXGuvbhrq+cQpsfdP/OOsegck3JVbD2ocTWy+W6Q/BkLPsHIzcwvjX9/q86EpZEdJlZfxfuTFmf+AkYALQv2nxdmAx8IplWfNa97csywJ2hlqkiCSmeLjz8qq14dYRr9eOg2hduqsQN7ndYPDpsOl55/b1T8JBt0NOu8TgWAfH6rPwo2XTS87LG6qgdgsUDw23nnSxookFowF8/CMYeAL0Pzz5Ohbd5i8UDToGozXrMdp7vUk/hv6HxVdXWPJ7ubctvR0O/E14tYiIZKLq9cGO3++Q1I/pGoymfWURCVis95n9b07NPryT/B7Qcx/Ys7xj27qHYUxAgWwiIiIiItluh4+8ksZqqFwOJfsEX09XsOaB5MfILYZp94MxyY8lIiJdljFmEDC11aL/SyQUrZUl2MFoAPugYDQRERERERFJUqPVyLbIZse2soLMu+Y+3yVcoMGKhFyJiIiIxNTv8PiC0RbcAL0nw6CTkg8U2jUvdp9kbXrBYbsfQ/nrUDTIDofLL0l8/OpN9jZ2f+zdr7Af9J6SujAnkWwXb1BOIkE9fvgNaBMRadb+s3zAjPiC0T75CUQbml5EoWo9FA+BgcdD2XF2OFlrVeth80t2vsmO2clU7szkwoCjIa8oiTE89gn1PitdQMb+lRtjDgR+Dxzp0e0WY8w7wLcsy/ognMpEJGW6uwSjVSyCyB7I7xluPX58cC3s+ijdVUgs477hHoxWuwW2vwsDjmpZVr0Btr7lPWZdFgajNex1b9v5YdcJRmtI5npqYOY0uKgu+QOja/7jr5/Jcf8iYnKg32GwY07HtqFnw5SfJl5f0Ar7ubdteErBaCIiVeuCG3vSj4IZN8flxEdjbTDbExFp5vY+k9cTzlhsn7QI0pCzYMlvOy7f8irUboNupcFuX0REREQkG8W6SLnZ2odgckDHMrqSrW/DtreTH2f0VXZAtIiISHKmNf20gPWWZcVx1bKj1hdweJyIFhEREREREfFnR2QrDVaDY1tZweCQq4kt3zhf1x6J1odciYiIiMQ06jJYfBvUOIewOpp1Bgw8AY5+CvK6J77tXfMTX9evaD3Ubodu/e3XS/8MH16LfUoAKBkHM2a630vsZdt79r9FvY/7Osd9U6Fo0vV4TXLnFaITpmQDHkVExlwNy273tz/QbOEvOi5bdCuMuBim3dcSHln+Brx5NkQqU1Kqo1FX2mGxyfAKu9T7rHQBObG7hM8YczbwFnYommn1+F+XVo8jgTeNMeeEXaeIJKnPVOflVgNsnRVuLX7M+5694ySZb9CJ9o6pmy2vtn29eSb/O9jmZsdssKJJlxaqyB73tjfP6fjv0Fl5BcT59aLL+1UQcgq9D0oNPct5+fhvB1NPqnQb4N62dyWs9vh/VkSkK6heH9zYQ84MZtwclxOH1esh2hjMNkVEwD0YbeQlwYeigX0yxInVCOsfD377IiIiIiLZqHS6v35r7g+2jq5ijc9j7rkeM1FOuAEO+lNq6hERka5uYKvnC1IwXuuLAJTgKSIiIiIiIkkrr9/g2lZWEMK1KHHKcwk5iFiRkCsRERGRmAr7wUmzYdDJ8a235VVYdW/i262vgL2rEl9/v+thwDH++i74gf2zdhvM+xZt7tOsXAoLb06shg+/ETsEpdckOOQOmPjDxLYh0ll5heiEyWRIHSKSvboPg5Pes+/j6TEGiocmPtbah2DTC/Zzy4IPvuYvFM3k2tttfngpGmT36XsITPkFHHpX4vU28wo/0/usdAEZF4xmjBkPPAgUYQefWbR8C2odkGa1enQDHjDG7BdutSKSlF6ToFuZc9vqDLvp4aPrYfGvYvcbdp7z8sk/S209Etuoy2Dwac5t7WdY2LPc35gbnk6uprCt/Id3++zPuwcKdCapCEarXAy7krg+u7HOf9/cbt7tY78MfQ5su2zUFVB6ZPx1hW3wGe5t718DkRT8txIRyVa1W5yXJ/v+PuZq6Htwqo8CRwAAIABJREFUcmO48ZpRaeMzwWxTRLqmHXNh1lnw3ASY80WocbkYNacwnHr6HmSfUHEy9yvh1CAiIiIikm3cAtbb27MMKhYHW0tXULEwdp9TF8AJbzq39RgNU2+GnNzU1iUiIl1Vr1bPUzHVcuswtC5w0YOIiIiIiIgErbx+o+PyvnmlFIR1PUoc8o3zMfcGqz7kSkRERMSX7sPh2Bchr3t86214KvFt7v448XUBhl8IJ7wBl1oxu7Jjjv1z80sQdQhqTeSezJrNsHOud5/CfnD6J7DPV8AY774iXY3JkOs9vMJ8RET8KtkXpj8IZ62Ac9bD4UmExzbvX+1dCRWLYvfPLYaLI/Z2mx/7Xuvc1+TBuZvsPqe8D5N+mJrr77zCzzIlCFMkQBkXjAbciR101hx6ZoAG4D3gEeDRpucR2oakdQP+FnaxIpIEY2DgCc5t6x6GnR+GW4+bpbfDkt/G7jfoFBh/PS1vTU1MnntgmgSraJDz8sjutq+r1/sbb80DydUTpo3PQ2O1d5/q9bDppXDqSaeGqtSM88HXoHZrYuvW7/LfN1YwWmFfOPEtmPZvmHgjHPMcHH5PdhzAHXq2e1tjLWx6PrxaREQyjdtnTO8p8Y/V7zCYeisc8zwc+vfgPiO8Lvja/HIw2xSRrmfXfHjlKNj4rB1YvPIfsO0d576x9qVTxRgYcZF7+7zvhFOHiIiIiEg2sRr99133aHB1dBVu35ua9TkQ+kyxg59LxndsH3FJMHWJiEhX1fqEeS/XXv4NbvV8ZwrGExERERERkS7OLRitrGBIyJX4k2+cwwUilkMQiYiIiGQGY6DsuPjW2fIKzJwOC26E3Z/Et+6u+fH1by+ecNjdH8PbF8J7Vzi3126BBww8tx+881lY/FuoXAaLf2e/fvM8u/0BA2+eY//OL0yOvd0BM/zXKNLVmAyJEPEK8xERSdSgkxNfd9XdsPRPsO1tf/0L+3e8N3P4Z5z7jv5c4nV58QqZ1PusdAEZsldjM8ZMAo6mJRAN4LfAQMuypluWdbFlWRdZljUdGAj8ut0Q040xCdw1LiJpM/h097a1j4RXh5uqtfChS2pre0fcD6XTYNp9UFhqLysaBEc9Dr0nBlejuMvr4bx83aNtU3zX/MffeOsfS76msCz+lb9+G58Nto5M0BAjIM6vbe/AE2Ww5A/xr1u/O3afZjk+whzyimHU5bD/z2HI6dkRigZQEOMa90RmABER6SzcgtH67A89Rsc31thrYML3YMhpwX5G5DjPOgnACuWWi0iKLPkDROv89Q0rGA1gxMXubavuhmgcoQ8iIiIiIl1BPMFoycx6LbbcIu/2o5v+jY2BGS9B30Ps1zmFMPZLMPkngZYnIiJdzrZWz5O6gMYYUwhMbbVoQzLjiYiIiIiIiABsqXf+ellWMDTkSvzJc7l2LxKtD7kSERERicuEGyCve3zrbH8XFv4SXj4Mtrzqf71kg9HivSbXzwRolUtg7QMw73p4bhzM+7b9esOTLX02PG3/znU7vMfKL7HvmRDp0rLgntKc3HRXICKdUVEZjP924ut/+A2Y7TPELM/hOrzS6TD4tLbLCvvD+OsSr8mLV/iZV2iaSCeRUcFowPlNPw12ONq1lmV9x7KsXe07Wpa127Ks7wFfa9Uf4LxQKhWR1Bh2HuT3dm7b+WG4tTh547TYfQCOfhoK+9nPR30WztsC52yAczbC0LOCq0+8uQWjAbxzKVhW/H9nqQrZClK0EXa8769v+WvB1pIJGmvc2077OP7xProOHsiBdy+DVffaf0deGqrgk5v8jx9mmEPY8kpidMiCg3EiIkGwLKhzCUbrVgaTfhzfePk9k6/JD69gNBGRVFl9r/++8cxOl6xek6DHGOe2uh1QtSa8WkREREREskG0wX/fXfMgsie4WroCr+M2n6mA7sNaXncfAae8D+dtgwt2waF3Qo5mkhQRkZT6qOmnAUYaY8YnMdb5QPMHXQMwO5nCRERERERERADK6zc5Lh9YMCTkSvzJN843vTZYkZArERERkbiUToMT34Vx34DiOANYG2tgwQ/99/cKRis7DsZ+2Xv93BCvyY3XuOvsf8d+B6e7EhEREUmXA34N0+5ruSc/r6e9j1N2XGq34zRBqTH2xKQH/RGGXQD7fQdOmg299kvttltvz7VN1/lJ55dpwWhN0xBjAbMty/pLrBUsy7oTeIeWJI1DA6pNRIKQWwhDz3Zus+K4QSIIFYvsh5dh58PJ73cMPzM5UDzEe0dDgucVjLZ7AVR8CsvuiG/MPcuTqykMe1dBY62/vlVroWJJsPWkW6NLmF1uEfSeDAOOTmBQC9b8B2ZfBe9f496toQZeOwHWPeJ/6M4cjFbQK90ViIhkpoa97p/dhQNg9JVw7Esw4mJ/43ntA6WSZhQQkaDFG4QQ5r60MTD2S+7tq+8DKxpePZ1NQ7UdnNFYp39HERERkc7Caoyv/1PD4wtT68yiDfY+coPHRDCtWVGIVDq3TX/YnjnbSbf+zjNcioiIJMmyrNXAilaLbkhkHGNMIdB815cFzLUsqyrJ8kRERERERKSL29tYyd7GCse2sowNRnOeHEPBaCIiIlmgzxQ46A9wznq41LIfF9XQcou8hx3vQ/3u2P2iEfu+SSeH3wPHvwaH/hX6THUfo/Vkxf0Oi73NsIy4BA76HfSemO5KREREJJ2MgVGX2ftRl1pwYaW9j3P8a1A6PXXbcQpGA/u+ynHXwlGPwgG/gp5jUrfNeGgCVOkCMi0YrXUE4r1xrPfvVs+TmVFSRNKhxyjn5TvmhltHe+se926fMROOegz6HeLdT9InVijI5ldg1b/iG7N+V+L1hMXtwKWbpX8Mpo5M0ehyo1Dzl5FD/wElrXYfeu4b3/gr/wGVS53bNjwNO+KcoLozB6O53WzVbO+qcOoQEck0tVvd27oNsH8OPhmmP9hy8vOYZ93XCSsYLRv2i0QkezXWwZsuQepuwt6XHn+de9unP4VHS2DJ78Gywqsp2zVUwdsXw2O94aF8eLgbPJgLr5/i/XkpIiIiIpkv3gmRIrvtY+xdmRWF+d+3940f6Q6PFMMDBj7+iXeAcMNe7KwYB91HBFGpiIiIH3c3/TTAZcaYK+NZ2RiTA/ydttcXxpx0VURERERERCSW8vpNrm1lhUNDrMS/POM8qWnEqg+5EhEREUmJ3G4w8AR/fR/rY583bn48MQg2vdi2T8ViiLrsF7QJQ/OIGMhtFYy279f91RaGIWekuwIRERHJdINTuL+Q6ff85zgfIxLpTDItGK13q+cfxbFec1/TbgwRyQYm13l5YzXU7Qy3ltZW/9u9re9BMOjE8GqRxOTHCAWZ9+34x4xUJlZLmKrXx9d/xZ3B1JEpGmIEo5XsA6d8BKd8CCfMgjMWQ984Aw9fmAJL/wTvXg7vfxnePBdePBDevST+ejP9S1Iy8nt5t++YDdE4b44TEekM6na4txX2d2nwmBHKhJT033Mf7/aGqnDqkM6voRo2PAsf3wQLboQVf4fqjemuSoK26DYofz2+dWLtb6ZaTh4MPs29vaEKPvoWvHwIrHnQnoFPvL13Fax7uOO/1eaX4Q2Hk1ON9bD6P7D0z7D7k1BKbGPXfFjyB1j7cHYcLxARERFJJ6sx/nU2v5z6OrLJotvsR3uf/hQW/8Z9vTX/cW8L+3uTiIhIiz8CW7HTOw3wT2PMzcaY4lgrGmMmADOBzzatbwErgIeCK1dERERERES6iq31ztchdcspoldun5Cr8SffNRhN16aIiIhkrf1/mdh6tVvgjdPs61SbzTrTuW9OPpS0mn/EeEQM5LS6v23Y+TAwA+6lHXgCDDsv3VWIiIhIpht7DfQ5IEWDZUIkUwbcRyqSRpn2V976KlyPO8M72NXqec8U1SIiYXELRgNY+xDs+9Xwamm2+j7Yu8K9few14dUiicuLEYzmJbfYDudrLxtudG50CQLrqtz+PZqD0QDyiqDvgS2vh38Gds71v41oPXz4jcTqa8/lRHWnkF8Su8/Lh9hBdcbji5qISGfj9dnttj/jlebvtX+dSiXjvdtfORJmzIRupeHUI51T/W54/RTYMaft8oI+cPQzMODI9NQlwbKisOz2+NcrOzblpcTe5vGw6QXvPjs/hHcvhU9/Die9CwWa18FRZA9sfNq9fedc2L0Qek+0X9duh5nTWh2/MXDAr2G/BELQE7HkD3bwHZb9umQczHgFug8LZ/siIiIi2cZtUoz8EvdzLyv/Dof8FXJCOtaRaVbf69H2b5jwXee2T3/uvl6BgtFERCQ9LMuqNsZcCTyHfeVwDvA94GvGmBeAda37G2MuAvYFTgKmYV/p23wSuRa4xLIsK6TyRUREREREpBPbUr/BcfmAgiGYDL2eOS+nwHF5gxXBsqyMrVtEREQ89DsEzlwOz8aYvNzNwl/CyEvs8+/V65z79JoIua32I7yC0XILW57nFcExz8KGp2HXPCgaZE+Otmc5OB2qr99hT45ctz2x38XJEQ/A8Au876MQERERASjsCye8CesftycZ3b3Avj8tWh//WJl+jEXBaNIFZNpfeetvUfFMGd26byZELopIPBrr3NsqPg2vjmbVG+C9K7z7jLw8nFokOYkGo426wg5eqFzasS0rgtFqE1invu2Bzc7EKeAOIM9j4umx17R82QlbXvfwtxkWP/9P7poPuz+BPlOCr0dEJFO4BaPl5Lvf+Nv/cLs92m6Gx9wi6D0ptfW5MQZGXwWr7nFu3zUflvwOpt4STj3SOS39Y8dQNID6XfDhtXDKh5l/kDmb7JoPn/4CKpfYM8Id+Lv0hDztXR3/xRD73wLFQ4Opx8s+X7G/O+z6KHbfysXwWB8o7AdFQ2HERTDhe94XlnQle5Z3/Fxrr+JTO4hu8a8c/kYsmHe9/Rh6Lky9DUoSvEAolpotMP+7/C8UDexjCAt/CYfeGcw2RURERLKd5XL6f/z18MmP3df78Fo45C/B1JTJoo3O56maVSy0LzBv/53YsqBms/t6+QpGExGR9LEs62VjzFeBO2i5xq8ncGG7rgZ4oN3r5gMxDcDVlmX5OCAnIiIiIiIiElt5/UbH5QMLhoRciX/5HhNxN1gR8k0nvS9ARESks+s5FnqMbTVhbBwqFtrXV+/62L1P7/3bLfC4frX9ta25hTDiQvvh11sX2IEkyTr8Hjv0TUTa0X0UIiKu8nvA6CvtR7NZZ8HGZ9NXUxAUGitdgO66E5H0K+jj3rbb40BMECwLnopx0/cZy+yUe8l8LjMhxTT+25BX4tzWWYPRUjkDQ6ZxC5vJ9fj/uKAXnPIBTPs3FJYGU5cbr8C2bGcM9PQRTLDh6eBrERHJJIl8VuWXwOAzOi4fek64nyXDzvduX/9EOHVI57XlNfe2XfPcZzST+NVshteOty9AqFgI6x+Dlw60L5II24Yn/fWbcAPsfzOc/D5M/H6wNbnJK4LjZkKfA/yvU7fDDmFe8AOYdWZwtWUbP7PvvHOxHUgW6zvshidh5mFQU56a2jqM/7RziNuKvwW3TRGRMEUbYevbsPTPsPVNe1IFEZFkWQ3Oy4sGwbEvuq+3/A6oWBxMTZmsfkfsPg17Oy6rcb6B73+8jjeJiIiEwLKsvwMnA1tpG3hG0/Pmh2m33ADbgZMty3ownGpFRERERESkK9hSt8FxeVlBGibo88kr+Cxi6dyeiIhIVht+QeLr7lnpfT/uiIvbvg56cuphSfwuzXIKYPDpyY8jIiIiMvVWMHlxrpThIZQ58f4+ItlHwWgikn4DjnRva6gOrw6Aco+b7gF6jIaeY8KpRZLn56ZqJ32mQH5P57ZOG4y2NfV1ZIqGBMJmwP4yMOpyOK/cnm0jLP2PCG9b6bD/LbH7fPJjqFobfC0iIpkikWA0gGn3wtBz7WT/nAIY/hk47B+pr89LXg/v9j3LwqlDOq9YoVy7Pw2njq7gk59C/c62y+q2w+r7w6uhsQ7euRTmfce7X7/D4cK9MPVm/p+9+46Tor7/OP6a3WvcHRz96BwdpEgTsCGCotiNBdQYjTFqNFFjfkl+xlRTTaIx0V+a0TRjb9gbYEeqovQicCDSOeDuuLY7vz/Gy7WZ2dnd2Xb3fj4e94Cb73e+3w/H3d7M7Hzfw8hbocsxyanPSW4XmDGv5Q0jXux40XrqjF3IVltTV+HveDUH4JP7/R2z3rrfObc93QNW/cIK3xcRyUSHN8Jj+fD6ibDsG/D6SfBoHhz4MNWViUimM0P2240gdJ/qvu/6//O/nnRX5eF9G7tzZrfz5C6TE39ju4iIiAemac4HBgPfAbZh3Unc/INGf98H3A4MMk1zQdILFhERERERkVYrZNaxt9b+AWjFOb2TXI13WUa2Y1utqXtQREREMtqI/4l9bdmiq2HZjc7tPU9r+rmR4IiBfhdAyWWx728E4Zg/QV5X/2oSERGRtqvoKDj+4cQfA/nO5Z6/qIPeRDKPvstFJPU6jXNuq9yWvDoAPvyee/uYn2XgwU4b5va95eSoW60/szvYt7fWYLTlt8DUuc6BcJks1rCZeoYBY34KCy8DM+xfXacvhXnTm35PFY2MLUwhk/T9gvWkjh0vuPdbcgNMez45NYmIpFqsv6uy28PUpz4PkglAlsffbX7KKojcJ1ynpw9I7MLV7u0HV0FvPQUsbuE62PgX+7Z9i4BvJKeO9f8HWx9279P3Qjjx8eTUE42cTtYbJAOugDdmRbfvp8/BCyPhzNVt+/Wy9rD/Y664DUZGuNYTi5qDkedd+XMYdDUMu1Eh+yKSWd6dY/PACRNeanSttftUyO9vXcfqfUZSyxORDBaus98eyIKsfBh8rfN5yd73EldXuvIajFbQr+m28k+c+x/9i/hqEhER8ZFpmhXAb4HfGoYxFDgB6At0AXKAvcAu4D1guWkqhV5ERERERET8t6dmJ2HsH+zRI42D0bKNHMe2OjPGh8uLiIhIesjtAjPmW++TV5RCMM+6n8eLshXObSWX2TxIK8HrZAPZcOy/YeiNcHAldBhhraM7tLqhT4cR0HEM7F8KNWXWPQRVuyGnI3Q/CQoHJLZGERERaVv6XQjdtsPOeVC9x9qWVwzvOYW5pvmDSAPO4fkirUU6rrSrv4lpimEYJR736dH4E8MwTiSKVxjTNN/y2ldEEsAIwLSX4Y3TW7ZV77VCnoJ5ia9j15uwf4lze5fJUHJJ4usQ/7Qrhi6TYN9i7/uUXGr96RiMdtC6qJjX3fq+rN5nLYCvPQw5RfHX7IdwDMFouxZYIV2nvGktQGpNQpX226P5d5bMgXY9YetDUHcEtvw7vprO3WotVjpvG6y7Bw58CJ3HW4vmczvHN3a6Mww48Ql4NEJ4z44XoHwLFJYkoyoRkdRyCjX1egzsJZwsUbzMXb3POi4TiUWLUI5myj5OTh2t3aE1zm1bH4bjHkxOHaWPubfn94MTHk1OLbHqdbp1XvX6SdHtd3gDLJgJx/3HOvdoi+rKEzPuxz+F0T/wd0yn88zmfdb/AT75O5y2CIpG+FuDiEgiVO2G/csi99v9+dtqW/4NE+6BYV9PbF0i0jqY9gvLMILWn5P+7ByMdmgNhEMQCCamtnTkNRitsboKOLTWvm92B+gxPf66REREEsA0zfXA+lTXISIiIiIiIm3PzprtttsNAnTLTt/7N7JdFr3WhmuTWImIiIgkRDAXik9u+LxiK3z43fjG7DC85bZhN8Get1tubz80vrkaMwzoOsn6qNfrtJb98s/xb06RtmLUbbDk+pbbO45Jfi0iIpmkXU8Y8MWGz8N1zsFoLYJl04yRjpFRIv5K1+9yA3g4jn3fiKK/Sfp+HUTaDrfgm8pPof2gxNfw8Y/d20d9P/E1iP+OfxhemWyF7EUy4R7oOMr6u1Mw2pYHrQ87XabAhN83vVCXCk7hKpHsXwrbn2kIh2stQkfstwcjBHM1V3yS9QFAGLb8J7Z6htxghaKB9X026rbYxslkwTzrSSORvobbnoIRtySnJhGRVPLrd1UqeAlGq9qlYDSJXajavX3Lg9DlGBj6dSt0W2Jz5DPntrwk/fyGqmHfIvc+E+/NjP/n7lPh/B3w9oXWE/u82rUAnu4FBf1h8gNtL7Sg7nBixv34hzD4Gv9+F5mm8+9uO3WH4aPvw4lP+jO/iEgiVe2Jfp+PboOBV0J2oe/liEgrY9bZb298Y87xj8K7s1v2CVXB4fVtK2y2amfkPtuehuJpcGQXLLwcdr7m3LfXWb6VJiIiIiIiIiIiItJa7K7ZYbu9S3Y3sgM5Sa7Gu2zDubZaM8KDKEVERCTz9J8dfzBa/zktt/U6HbIKWz7YtsQhGERE0kufL8Cym1s+jH7QV1JTj4hIpgqkedyQWzhbutcu4oN0XUloYgWcRfNhNvqIdl8RSbX8Ps5tVbuSU8P+Zc5thYOg1xnJqUP8VTgQzveweOTMNTDs6w2fZxdFP9e+9+GdC6GmLPp9/eQUjJbVPvK+nz7nby3poHqf/fZ4wmaG3gguT9pyFMyHo+K8EN1a9L0gcp/9SxJfh4hIOqjL5GA0D8cXK25NfB3SeoUjBKMBLLvJClSV2LmFoFTvs4KgEu3D/43cp9PRia/DL+16wqnvwKwP4Zg/w3EPQW43b/tWbIX5M6BiW9PtVXth3T2w5i6rT2tTWx65T6w+nevfWLUHIdqnK3/6AtQmKPhNRMRPzW+Q8qL2ELwwEj74Dmy63/pcRCI78CGsvgM2PwjV+6Pbt/aQtd8H34UPvg0rvg/bn03OcXs8zJD9diPY8PfeLuFdXs4ZWpNdCyL3Wf8HOLwRnu7hHooGDQ9sEREREREREREREZH/2lmz3XZ7cY7L+pY0kGU438deZ0Z5T4OIiIikv4L+1n2o8Wg/uOW2rAKY9iJkd2zY1n8OjNT9/yIZoV0xTH3GCjisN+irMOSG1NUkIiLJZSgYTVq/dP4uj+fOba/7KhRNJF0E88EIgBlu2VZXkfj5645AncsC1dOXWPVJZgoEod9FUPq4fXvfC6FoeNNt+b1jm6tym7UAcMS3YtvfD07BaEOugzW/cd936yMw5R8QzPW9rJSo3ucc9paVH/u4XSfB9Nfh49th17ymbUYQRvwP9DkfPv4RHFhhpTF3GgdjfwUFfWOftzXpMSNyn7KVia9DRCQdhDI4GC2nU+Q+O19PfB3SeoU8BKMBrL8X+l2Y2Fpas2qXYLRwjdWe1z1x89cdgXV3u/fpNA7yM+xY2jCsMLf6QLd2vWDeNO/7z+0Hl4Ss6xF7F8OCUxvCZlZ8D054FPqc63vZKeN2XSZen70Cg6/xZ6yq3dHvE66GPe9Br9P8qUFEJFFiCUYDqCxtuO648udw6tuxX18VaQvW3QvLvtHweeEgmP4aFA6IvG/lpzD/VDi0pmVbn/PhxCfdnw6YSk7BaI2fWJiVD52PsX9oxqfPWq8xo25LTH3pxDRh9xve+j43xFu/gv4xlyMiIiIiIiIiIiLSWu2q+dR2e4+c9H6vyy0YrdaM8T0/ERERSW8ll0Cfc2DvIqgrh3fnOK9DaG7Et53bup8IF+yG/R9Afh/I7+VPvSKSHL1mwQX74MBy6x6kPI8P8vaTkQVmXfLnFRFJhmBeqisA3DJO0vR+UREfpVswWinxBaKJSKYyDAgW2C+CTUYwmtsi8BlveAt8kPQ25ufWhb/K0qbb8/vAxHta9s/vF/tcH/wP9DilYfF7sjkFowXzoO8FsO1J9/13vAh9z/evnt1vwYrbrJCrQBC6TIZxv4Gio5z3CVXBh7c2DUfIKrAukhSNhDE/sb7GkTw/zLktr9j7v8FO96kwI0LQy8kvxzdHa5bdwfq/PLjKuc/hdRCuhYDzm/ciIq1CJgejeVls3fjpM36q2ArLvwX7FkHRKBj1feh2fGLmyhShauu469NnIbsIBn3FCsfNZGGPwWj7FlkLx9M1ACDdVe91b685mNhgtJ2vRu4z+ieZ///bfar1c7npfu/7vHsplG+C/Uubbg9Xw+JrrfOirAJ/60yV2vLEje1n6HIswWhgBQYpGE1E0l2swWiNVWyGZ/rAJeHM/90tkgjV+2H5TU23lW+CVb+Ayfe571u+BZ51CU/b/jRsfRRK5sRdZkKEHW6ANIJNP+93kX0wGsBH37faOwz1t7Z0E65tCEX2S+Egf8cTERGJgWEYAWAUcDTQD+gGtMO6X/AIsBvr/sEVwCrTNHUfoYiIiIiIiCSMaZqOwWjFaR6MFjACZBlZ1NmED9SatSmoSERERJIiqwB6TLf+PvBK2PAnb/t1HO3eHsiGrpPiKk1EUiiYA12npG7+SX+FRVe13F5yefJrERGJVZfJ1tq05oZ9M/m1NNd/NnzwrZbb83q0nvVEIi7SKhjNNM2SVNcgIimUlcJgNLdFrZEu/Ehm6DAEZn0An70Mu9+2gkY6jbUOBoO5LfsXxBGMBvDSWJj8NyuQomo3ZOVDj5nJeWqCWzBadlHk/Usfjz8YLVwL+5bC9mdgza+btu140fo4cw0UDbff/91LrUVcjdW/Fux9D+afChPugaE32C+wDNfB8m9C9T7nGr0Eq0liDb4Wlt3o3B6uhcMb3EP0RERaA6dgtKwMCEYDGHgVfPKAc3tdAoJuasrg1ePgyA7r88rtVhjrzPdSF06bDhZebh3L1du/1Pp9OuwbqaspHuEQmCFvfUNVVghH4cDE1tRauYWFQ2J+jusdXAsf3+7eZ/A10OfsxNWQLIZhnSeWXAalT8KG/4u8T+mjzm1Vu2DRNTD+TmjXw786UyWR32eH11u/K/L7xD9WpJ8XJ7vmwdbHoP/F8dcgIpIofgSj1XvlGDj6l9YNV9nt/RtXJNPteBHMcMvtm/5mBaOFQ3DwYziy03poT/lm67yorhyWeAi+XnoD5HW19u00Dgy3JwUmmdP5ndHsloX+F8OH33EeZ+Xt0H+O9R6PH8d36cjvRWtGlsLkRUQkpQzDmApjNpKcAAAgAElEQVRcC8wCPNy0AMABwzBeAO4zTfOdhBUnIiIiIiIibVZ56CCVYft7FYpz0v/6c5aRYx+M5ud7fiIiIpK+BlzpLRgtuwj6xLlOUETETa9ZkNW+ZT6A7pkWkUzSf07LYLT8Pulx311+b+h6nJWv0Fi/i/UQa2kT0uhOaBFp85wSSUNJCEY78IH9diMLcjomfn5JjtzOUHIpTPoTTLgLBn7JPhQNID/OYDSARVfDOxdZC5He/zI80xs++jEk+qHGYYdgtIDHYLStD8Oe9yL3c1K5A149Fl47rmUoWmMvjIBdC1puL/+kZSianWXfgFentAxPrCiFF46C9fc675vXAzpPjDyHJJaXoJODqxJfh4hIqjkFowUzJBit91nu7eEaCPl8s9X2ZxpC0eqFKmHzv/2dJ5NU7YbSJ1pu3/DH5Nfil3B1dP2fHQRVMQYWtXWRvm6JCCwP18Lia63zggPL3ftOzODvYzvFJ8PEe/wZa+tDMLcENt3vz3ipZBeWDzDoKzDaITzv2H/B+Tuhx6ktAzWae6YvbPNwrhmJW7h+JGvvjH9+EZFEclsk0SvCcX9z+5fBgpnw3FDYszC+ukRak89edm6r3gfzT4GXxsEbs6zr3+9dAgu/6C0UDaBmv/VgkZcnWn/Gc+ziN5vFWQAYwaafF/SH7lOdx9nyH3jzbOv47sP/Tfx7LqkQdvhaxWrAF60H+IiIiCSZYRhHGYaxAFgAzAE6AobHj87AF4E3DcN43TCMocn/F4iIiIiIiEhrtrPmU8e2Hjm9k1hJbLKNbNvtdX4/fENERETSU9dJcNzDkNfduU+HETBjAWQXJq8uEWl72vWA6a9Ch2HW53nd4Zg/Rl5rJCKSTobdBCO/B9kdrM87T7COowIR1qkky9S5n6+bCVprTgdeBeN/m+qqRJIiTX4KRURwDkartX8Kj68WX2O/Pa8bGMqQbJNyiuxTyuO18ifQ/UToMcPfcRsLOQSjBfOcg+Cae+NMOGs1tOvprb9pWkEknz4H22wCOZzMmw4XHW56gfWzV7zvv28xLDgNTm30gOhFX4HDG9z3m/RnpSCnA6eFcI2VrYJ+FyW+FhGRVHL83Z0pwWjnQLcTYc/bzn1CFRDM8W/OZTfbb197Z9u9qFf6BGCzGPzQWghVez8OTCfRBqMBvH6SdRwr0Snf5N7++onWRf1Jf4XO42Ofp+agFZ686hfe9zlrPQSCkftlGsOwnhyz5934xwpXw5KvQfeToP3g+MdLlbpK++3BAhjyNfjkfqjY2rC9+zQoucy6bjP9VSvAzwjC4x2s4D07b38BjvoujPqB83UoO4c2wMY/W+ea8fyf7Vucua/JItI2OAWjZbWHac9ZQT2lj8F7X8T22NNO1U7rAQqzq/T6JwKQ7fIwnmU3w+43/Jtr13xY+XOY+Hv/xoyVaTo/KKN5MBrAuN/CK5Mij7v6Dus4uNes+OpLN07Hs7E6+pf+jiciIuKBYRgXAw8A7bCCzsD+RMJL23RgmWEYV5qm+aSvhYqIiIiIiEibtbtmh+32doECCoMeHkaeYtmG/f14tabPDzEVERGR9FUyB/rPhsrSlg8yz+4A7YpTU5eItD1dp8BZa6FqL+R20dpdEck8hgFH/xxG/8TKlsjplOqKmsrraq2bqT0EgVzdky1titJ+RCR9OC1IratI7LxOQRQAuS6J+dL65XVLzLjr74l9X9O0fiZqDkL1fvvFMW7BaHUegwZry2DZTd7r+vB/4f0rogtFq/d4ewg3WhC15Pro9t/zLmyfa/299jDsWuDev8tk6HNudHNIYnh5jT20NvF1iIgkU6gajuxqtu2Ifd9MCUYLBGH6azD06859/A47rj3o73itQc1+5zavx4DpJhRDMNqhNbD1Mf9rac3CdXBoXeR++5fByxNgz3uxzVNXaQXXRROKNukv0GFIbPNlgkFX+zdWuBY2PeDfeKngFIYYzLPexDnjIxj9Y+vJNsf8GU5+uWmYfVaB1bf9UPd5Vt8B80+Fyu3WOTY0nGebdgGT6+G142HtXVYYuNvrrReH18e3v4hIIjkFo9WHHAeyoORSOOUtGHwd9DrD+9gvjIq/PpHWwO1mmS0P+j/f+j9YN8KYJtQccH9PLJHMsHOb3RMVuxwDM97wNnb9+wOtiZeHing1+QHrybwiIiJJZBjGRcBDQD5WuJn5+YdBQ9jZHmA98D6wGNgA7G3Up/F+AAXAw4ZhnJ+cf4WIiIiIiIi0dodD9vegdc0uxsiARfxZRrbt9lrT54dviIiISHozDCjob91v2/hDoWgikgp5XRWKJiKZLZCVfqFojWV3UCiatDkKRhOR9JFVaL89lOBgtL3vO7cVliR2bklvAfunKMVt+1x4cSwc2hDdfuVbYN40eKwQnugIT3aBp3vD5maLpdyC0WoPeZ+v9HE48lnkfjUHYN3vvI9r55Es2PESVGyLbf+3zrP+bVW7wQy5953+amxziP96nwVG0L1Pzb7k1CIikmimCR/eCk90hqd7wPPD4cAKq80xGC0vefXFK5gLI29zbt/+TPJqaavcfqe+PLFlIF8mcArmiGTZTfbhRmKvfLNzIJWdRVfH9vXd/gyUrfDe3whC77OjnyeT9L8Uhn7Dv/FW/9I6P8tUjueyn79pk90BRv8IptwPQ651fjOnaGTkufYuhGf6wuMd4NnB1rn1Ex3huSEtrxOt/z+o3uP93xFJ2Ur/xhIR8VvzJ8fWa36dtPsJMOlPMO0FmO1wPtNc+UYrbFKkrcspSv6cjxfBwwHrmsTcEth4X/JrcLtu73Q+W3xS5NBbgI1/aX2vL3YPxYnVwCv8G0tERMQDwzCGAX/Hui+xcSDaIeBu4Eygq2maPUzTHGGa5nGmaU4xTXO4aZrFQDfgbOAPwGGaBqRlAf80DKMVP01BREREREREkqUiZH9ffftgCq7lxyDbYa1DnYLRREREREREREREpJVQMJqIpI+sAvvtdQkORpt3snPbUf+b2Lml7SpbAQtOhbDDYqBwHWx9FFb+HN77EnzwbXh2AOx+q2m/6j3w/pfhwIcN29yC0fpeEF2de95zbzdNWPULfxbpvHEGvHlW7Pu/Mwdq7Z/c9V8zF1qL6SU95HaGAV9y71O9Pzm1iIgk2oY/wupfQajS+vzQOph/qvV7+8gO+32cjo/TlVPQMcCyG6Hy0+TV0hYZWc5tFVvgnYuSVopvQi5hXYUDnduqdsKB5f7X01pVeQhDbuzQmui/vmUr4b3Lotun74XQrmd0+2SaYA5M/AOcWwqnLbb+jNebGRwm5/QzH4jyaTZFR3nvW1cO5ZsaziXLN1nnprXlDX3W/yG6+SOp3O7veCIifnIKpnV7gEQwD2Z5DD99fhh88B3rgQxmOPr6RFqFFD8RtWoXLL4W9ryb3HnNOuc2t/PZifd4G/+di6z3VVoLt69XNPpfAoZuCRERkaS7F8inIRDNBH4C9DVN8xbTNF8yTdMx3d80zX2mab5gmubNQF/gp5+PUa8Q8HiQICIiIiIiIuKsPHTYdntBMDPuNc82sm231/n58A0RERERERERERGRFNJdsCKSPlIRjFbjeK+lpeuUxM0tUrEV9rzTcnu4Fl47Ad6dAx99H7b8G9b81nkcsw5W/erzv5sNgSvNBfKgeJr7QsbmKre5ty//pntt0Sr7KPZ9d71uhX44mT5PP9PpaNJ9MOanzu2RXqdFRDLF5n+33Fa9xwoEOLTOfp/CwYmtyW9Z+e7tm/+VnDraKiPo3r7nbSj/JDm1+CXsEow2/TX3fXe87G8trZlTAIqbnfO99934V3hxdHTj53SGCb+Pbp9MVtAXuhxj/XnuFve+gWwIurze7nkPjuzytbykcfqZD+ZFN063E+Oro+YAbH04vjHcOJ2zi4ikg1iC0QA6jYGZi6DXGZHnWPMbeOdiePMchaNJ2xTL8Xe9YF7T0Nj8fjEO9PkDT5LJdHhIDLifz/ac6W38so9g5+vR1ZTO/Fq0NvDL/owjIiLikWEYxwMzaAhFOwycZprmT0zTLHfd2YZpmodN0/wRcDpQQUNA2qmGYRznU9kiIiIiIiLSRpWHDtluL8xqn+RKYpNl2L+HV2vG8V6EiIiIiIiIiIiISBpRMJqIpI9UBKOVrXRuK/li4uYVqTdvmhUUALDp7/DSeHgkB/Ytim6c0ketxdsVm50XVuV0guwOMPlvYHg8BFh7pxW2tv6P8OIYeLo3LL7O+rksWwXrkhhWUHIZtOvp3B6utQ+dASs4oMf0xNQl8QkEYdT34YTH7Ntr9ie3HhERv5kmrLvX+Xf7wi85Lw7uGGWQUKoZAedjeoANf/RnHtOM3KdN8vB12fpI4svwk1swWk4XuLDMub3sY//raa1iWXD/4Xesc5fN/7E+rymDhVfAUz3hIaPpx+Jrox9/wOXQrjj6/VqDgv5w3nboNK5hm5EFkx+AS02YUwOzK6CHU0CEaQVsZyKnn/nG4R9edJ8Kud3iq2Xlz+DFsdb3cCzcfoeHjsQ2pohIMsQajAbQdRJMe8H6feXFjhfg4aB1LfTxTlZQWvkWz6WKZKxYA68KSmD2EZhTZf2cXWrCuZsht0ts4+14MbkPpTDrnNsCWe779v2CtznemAUVER72kincvl5eDbwKepwS/zgiIiLRuf7zPw2si9bXmqY5L95BTdN8Hbi20bgAX4t3XBEREREREWnbKpyC0YIdklxJbLIM++vrtaZPD98QERERERERERERSTEFo4lI+gimIBjt4GrntmE3Jm5eyQx9zk3OPIuvhddPgkVXwYEPYh/nic7w7CDn9qKjrD8HXA5nrYMhN0Qes3I7vHEGLL3BCpc4sgM2/gXevgA+e8l7bQOvhBlvwJS/e9+nsY5j4LgH4dyt0P8S5347X7ffnlMU27ySPDmd7bfXHoSwQ2CQiEgmWPs7WPaN6PcLZEOHof7Xk0qV2/0Zp+6wP+O0NqGqyH0qdyS+Dj+FXILRgrnWMd6Ib9u3b3u8IUTv0AYrwGvHS1B7CKr2wva5sPXRzPuaJIJTAEokBz6AhV+E0sdh/kzY/C+o2hl/PVntYfi34h8nk+X3hlPfhpOeg2P+DOdugUFfbtpn5K3O+2/6W2YGyzi9jgWjDEYLZMGoH8ZXS2UplK2Ibd+sQjjlLWjv8Hu8rjL2ukREEi2eYLTGzo/iGCtcC7Vl8Olz1kMk9DoprV2sx99Drmu5zQjA4DjyQN48F3bO93Y+GS+3a7xG0H3fQdd4n+fZEvdzyUwRS4DesQ/CSc/DhN9bx6OT/wZGjEG/IiIiMTAMIxc4Gyu4zASeNE3Tt6d1mKb5MPAkVjiaAZxjGEaUJysiIiIiIiIiDcodgtEKMiQYLdvhtLjOjPG9CBEREREREREREZE0o2A0EUkfWU7BaOWJm/PAcue2Lsckbl7JDAOuSN5cu99K7Pj5fZuGg7UfDEc5hEg099nLNttegV1veJ9/wj1QfJIVkNbnPO/71et9jvVnIBuOf8ha8GXH6fUiW8FoaS+nk3PbtieTV4eIiJ8Ob4IPYgz36TzR+r2XcSIsuPVjcXKk4OT6MKy2JnQkch8/QquSKezy/VIfztFpvH27GYZ3Z8PSm+D5oVaA1xtnwONF8FQ3eOs8eHcOPNMb1t7tf+2ZJJYF9429dznsX+JPLQAnzYWCvv6Nl6myCqD3WTDkWisorbniaZDfx3n/Nb9OWGkJ4/Q7IpgX/VhDr4+vllh1ngAzF0JOR+vvdtbfk9yaRESi4VcwWrue0PO06Oev2Aqf/CP6/UQySbTH37ldYdQPnEOhR/8o9lr2vA3zZ8DLExIfrGvWObcZWe779joNpvzT4zxhePVY73WlK7evl5MBl0HvM60HP3U/UaFoIiKSClOAQhreKLgrAXPc2ejvhUAr+MUvIiIiIiIiqVIesn9AZ2GmBKM53F9YG++9QCIiIiIiIiIiIiJpQsFoIpI+HIPRIgQfxCocgu3P2LcNujoxc0pmKRoBA7+c6ir80Wlsy215xbEtMK+34wVv/fqcC9mFDZ8Puzn6udoPbvr56Nuj21/BaOkvp7Nz27uz4w/sEBFJhXcujn3ffrP9qyOZOk90b6/aFf8ckQLAdr8R/xyZyFMwmg9f/2RyCkkKZDcE5XYc7bx/6eOw/g+R51n+TTiwIvr6Wot4j7PcAuyikdsN5tRC8cn+jNcWnPiUc1vpExCOIUwhlZy+lwK50Y9lBODkV+OrJ1pHfRdOXwodR1mfZ+U7993vEtQvIpJKfgWjAYz9NWS1j36/pTfAS+PgIcP6ePcS2OdjCKtIqjn9nNkpGglf2A1jbnd+WEggC058Or6aDq6GZwfEN0YkZsi5zQhG3n/gl+Bij+8XHvgADm3w1jddRXueNjzGYH4RERF/1YeUmcAa0zTf93uCz8dcbTOniIiIiIiISFTqzFqqwpW2bYXBGN7jSoEsw/49vFozivciRERERERERERERNKYgtFEJH1kFdpvT1Qw2qG1ULXbvq14RmLmlMwz+W9w7IPQ++xUVxKfAV9quS2YBz1nJX7u4bc0/bzbCVBQ4n3/QC70OafptoJ+0dWQnRlP7mrTcjq5t+9+Ozl1iIj4pWoPHIgj9GTAF/2rJZn6nOfeXr45/jnq7G9I+69502HXgvjnyTSRvi7gfP6TrhyDORqFJBWNgHY945+r9In4x8hU6RJAO/xmK9RBvOs80TnsunpP5r0WOoUhBmMIRgPofhLkdom9nmgFmwX+B12C0bbPTWwtIiKx8jMYrdMYOGMFHHUr9P1CdPse+LDh71sfgVePhR0vRV+DSDqK5vh7+C1gGJH79TzNn4eDrLjNua2uAiq2gmnGNrZbMJrX84CsfOtBLF6UPuatX7qKNuQ42tdZERGRxBjZ6O/vJnCedxzmFBEREREREfGsInTYsa0wmBn3nWcb2bbb68w0uRdIREREREREREREJE4KRhOR9JFVYL89UcFoO1+1325kQe+zEjOnZB4jAAMug5OehfF3pbqa2Dktipl8H3RN4EOUx90J3ac23RYIwtSnIb9v5P2zi+Ck51qGZnnZt/k4kt4ihdcd3pCcOkRE4mWa8NEP4anusY8x6kfJDXLx09Cvw6CvOrfPmwYffi/2hdTgLQBszZ2xj5+pQkci9wk7hA6lK6fAgECjm/qMAPSbHf9cq34GK34Q3/dmpkqHmyFLLocR3051FZnHMGDmQuf20keTV4sfwlX22wMxBqMFc+CkF2OvJ1pZ7ZrN386+H8DK2xNbi4hIrPwMRgMoHABjfwEnPglnb4COY2IbxwzBx3rtlFbC6efMzoArvPXLagfTXoDcrg3b+l8CY35qnTN5teoXVvhZY+FaWHIDPF4Ec0vguaFwYIX3MeuZLkFfRtD7OJP+Bl2mRO738Y+9j5mO3M7Txt9tvZcJ1uvzxHuh23HJqUtERMTdoEZ/X5TAeRqPPcixl4iIiIiIiIiL8tAhx7aCjAlGs38Pr9aM4r0IERERERERERERkTTm8fHLIiJJ4BSMFkpQMNryW+y3tx8C2YWJmVMyW7/ZsOa3cGRHqiuJzoz5zoufcrvAzPfg8EbYOQ+WXOfPnIEcOG8b5DmEwnQaC+dshoMfQ05nyO9j1VCxpaFPdhF0GmctZm+uoH909eR0jK6/JJ9hwMCr4JMH7Ntry5Jbj4hIrLb8B1b+NPb9i2fAmB/7Vk7SBYIw+a+w+Z/Oi71X/9IKSBjsEqDmJuQhGG3PO7GNncm8BKNVbIVPX4Res6zfvenOaeG80exy1lHfhXV3xz/fqp9BbmcY/s34x8ok0QQz+OGUt63j/9yuULHZCsiN9vheGnQaC/0ugtLHW7Ztewom/tH+nMovB9dA6RNwZLv1s9lpLPSfHTn4uDkz7ByGGMyLvb6uk+D0pfDyxNjH8Kp5EFpWfuLnFBHxm5dg2li1HwynL4dDaxqury44zfv++96HZbdYD7HoPCH+ekRSxWsw8ZmrrHNsr7odD+d/BmUfQbte0K6HtX3YjbB/OSy7yWqLZG4JzKlp+Llfcyds+GNDe/lGeGkszK6O7jgzHHJua36O5yavK5y2EA5tAMLw/HD7fmYdlK2EjqO8j51Owi7nw8NvgsFXQ9kq6DjS+f1VERGR5Ctu9Petjr3i13jsHgmcR0RERERERFqx8tBhx7bCYPskVhK7LMP+PbzadHhIooiIiIiIiIiIiIgPonhEtIhIgjnduF+XgGC0Rdc4txUd5f980jrk94JT3oJBV0PBgNTUMHVudP3bD4FuJ3roNxiGXAvHPxpbXY0N/TpcuN85FK1eIGgtmi/oZwW3dRgKPWc2fHSd7LywqqAE8qK4x7n9EO99JXUGu7w2V+1JXh0iIvFYe2fkPn3OhROegD7nN2zLKoSR34NpzyeutmTqMMK93S7AxysvAWC1ByHUxp58WechMA7gzTNh4eWJrcUvTgvBmwdztOsB01/zZ87lt0D5Zn/GyhROASiJ0v0EKCyxAsk7jlYomh/6X2q/veYA7F+WuHk/fRFeGgcf/xA2/tUKzFh8Dbx6XPTH724BfYHc+OrsNC6688dYNQ9wC7oEowUSGFYnIhIPp9djv163AkErpKj++t/4KMNt1/0OXpkMn/zTn3pEUsHtXLXTeOg/xwoRjOW9qkAWdB7fEIoGVmBt8TQ4/hHvAWTr7gHTtD423W/f57kor7k7BV8DGFEEwNXrMAQ6DIPJDvUBvDgaQtUN/5ZM4hhU+fn/YVaBFQKsUDQREUkvXRr9PZFPvaof2wA6J3AeERERERERacUqQodst7cL5BOM5oEeKZTt8B5ebbIfkigiIiIiIiIiIiKSIApGE5H04XTzfqjK/Uny0ao5CJvuc27vPNG/uaT1aT8IJt8H534CU/5hBXrV6zQeLtgLvc5MzNwDr4x+7Ml/a1go40Xf8yP3cTN1Lky8J/GLcQwD+l3kvX/H0YmrRfzTdbJzW9Xu5NUhIhKrJTfAgQ/d+wz6Ckx9BvpdAFOfgktN6+Piw3D0z1uGqmSqSAGpO+MIsfIaAFa9N/Y5MpGXwLh6W/4Dn76QuFr84vT0UrubD4unQ25Xf+Z9dmDmLZqPRzKD0XrMTN5cbUmv062ATTvxvN66CYdg6Q0Qrm7ZdnAVPNUd1v/R+3ghm3HqBeMMRjMCcNyDEGwX3ziRNB/fbb5E1yIiEqtEB6M1N/R66Hl6dPuYIXj/SqjcnpCSRBLO6TxnyNdg1jI4/mHoPM7/eYtGwNg7vIWQffAteDhgfZRvtO9TWWqF43plurzPF0swWr2ux7m3P5pn/TseK4QFp8Nhh39PunEKkjOy7beLiIikh8YXcRIZjHaw0d9byZsqIiIiIiIikmzldfbBaIXBDkmuJHbZDteM65zeixARERERERERERHJMApGE5H04RakFKrwb55d893bB17h31zSug28As7eAJMfgJNfhZnvQm4XGHyNff+jfwHTXoQep3obf/zv4LiHYcLvYeZCa55AFAuEzlwN3ad67w8QyIbsouj2qXfeNuhzTmz7xqL/HO99i0Ylrg7x17Cb7bdXJzEYLVwHexdB6eNwZFfy5hWRzLbuXtjgIQCm99mJryUdRApGi0fIazDansTVkI7CVdH1/+SBxNThp7DDQnC74F8jAEOu92/uNb/xb6x0l8xgNKdzJYlPMA86jrFv+/hH/obN11t7J1Rsce+z9AbY+Dfn9rKVsO0ZKFtlheI7CcQZjAbQYwacsxmm/DNxgfgtws7CUfQVEUkTIYdgtGCCgtEC2TDtBZj+Ooy7Ewr6e9/3mb6wa0Fyj2VE/JDsAMLGRtwCZ66CY/8F4++Of7zF11o/h144BX1BdA93aa5ouLd+oUr47BV4bgisvdu6/pvOgdhOr23xfK1EREQSr/FFnEQeqDc+sFBqqIiIiIiIiMSkPGQfjFaQUcFo9u8t1JoO70WIiIiIiIiIiIiIZBgFo4lI+nALRqvzMRjt8Hrntna9oV1P/+aS1q9wIAz6MvQ81VqMDlY42JR/QPsh1uK+4ulWgNrIW6HXLBh6g7exh98MJXNg2I3QdQoYhrf9ukyCWR9A0YiY/knkdo1+n/N3Qn6f2OaLVdcp1tc4kqJRya9NYucUpFOVpICy2sMwbzq8OgXeuRie6Q1bH0vO3CKS2byETOV1h56nJb6WdNDB48LkWNR5DEarSmKoZjpwCrFwsu0p6/deOnNaOG84LAQf9UMY+T1/5t54nz/jZIJEhYnMWGCdCwVyoHAQTLoP+l2QmLkEikY6t+143r95zDC8fRF8+F1v/Tf8yWYME5b/D7w4Gt4+H14cBQu/6DxG/bl2vNoVw8AvwWmLYdQPoF0vyGoP/S6Csb+y36frsVA8w9v4zcPO3MLesvK9jSkikmypCGwyAlaA5YhbrOMHI4q3LudNh9dOhOp9iatPxG+OgVdJyvToMAwGXA7Db4JjH4x/vHnTYckNkcN4S59wbjOieCCMnfO2Rdd/+Tcbrv86BXKnmtP5cLK+T0RERERERERERERaufKQ/X1ThRkUjJZl2F8zrjX1YCERERERERERERFpHfRIYRFJH1mFzm1+BqNVlDq3DbvJv3mkbRt4hfURroNAs1+3XoJC+pzv3Db+Llh+i33bWeuhg4ewMDe5XaB8k/f+PU6xFpgnmxGAiffCgggBM2Pv8B4qJ6mX18N++4EPoaYMcjomdv6VP4M9bzd8bobgvUut7/PczomdW0Qy28FV7u1GACb+0b9wl3TX9djIfXa8DL1Oj37skMdgtOo90Y+dyWK5oe2NWXDK2+l7rOS0QL358fV/twfh6J/DmJ9Z3ydGNoQ/DybKKrR+DtfdC8u+EXnu8o0wbwYc+8/WH7LrFIASj2E3QfE068PunEj812msc9uSr0Gfc/2ZZ+N9sM0l1KK5A8uh5iDkFFmfmya8fyVs/lfTfjtfdx4jmBt1ma4MA8bcDqN/YgW9Be6uLKkAACAASURBVIJQdwS2PgoHPmjo1+1EK6AnELTCNufPhLIVzuPm9236uVswWvMQNRGRdBGutt+eyGC0xgoHwLCbYe1d3vfZtwg+/jFMvCdhZYn4KhUBhE4GXGY9kOKDb8U3zoY/Wg+F6XUmbLoftj1pHcP1+QIcWg3bnnZ/aJFT+LVX+X2s4NuVP41uv21PwKbpMORr8c2fCE4BevF+rUREREREREREREQEgIrQIdvthcH2Sa4kdtkO7y3UmQm4F0hEREREREREREQkBaJ47LqISIJlFTi3+RWMZprWAg0nA77kzzwi9ewCADoMgy6T3Pcb+GXntj7nghFsuX3ivfGHogHkdImuv9sC/ETrORN6ugSqzPoQep+RvHokfkUjnNtePNp5QZhf1vy65TYzBKWPJ3ZeEcl8bq9PA6+CWSug3wXJqyfVIh3rALxxRmyvr6Ej3vpV741+7EwWy+/IPe86B+6mA9MhGM3haacN7YZ1fhnMgewO1ofx+SUwt/PO5nbNh+eHQ80B7/uks3AtlG+BqmY/G34+JXbI9XDi0zD+dw3bFIqWHP0udm478hmURhFm5mbDn6Lf5/nhDa9RH/2wZShaJAGfg9HqGYYVegaQ1Q5mvg8T7oHht8DkB2DGvIb2vO5wypsw5Ab7sdoPgaKjmm5zC1VsK0GpIpJ5nEIdk/m6Nf5OmPosDL7GeoBDQf/I+2y637n2ugrrGKjWfnGLSNI5Bl5FOM9JlGHfaHkcE4stD8OyG2HxV+Gzl2H7XHj/Clh9h3soGvgT9jXmdsjtGv1+S66HPe/BviVQuT3+OhoLVcO+pVD5afT7Op0PB1L0fSIiIiIiIiIiIiLSypQ7BKMVBDskuZLYZTu8t1Cb6HutRURERERERERERJJEKxNFJH0kIxht+Ted24pGQbtif+YRieS4h+Cdi+HA8qbbjQCM+Sn0Pst538KBcMLjsPAKqDtsLYQZ+QMrhMAP0S4e6jTen3ljNfI2a6FVc73Phk5HJ78eiY/bIrzKUtjzDhSfnLx66m15EIZcm/x5RSQzhEOAad826gfW4ty2JtvLkzNNWP0b6HdRdGPXVXrr5zVArbWI9Ya2dXfDyFut0J9047gQPI7LWdmF0fWvq4CVP4fxv419znSw601YdDWUb7RClgdfBxN+b4U+OX3v9DrDCnba+Ff79mA76+cspxOMvwsGXpmw8sWDvK5WoNfau+zbV/0c+l0Y3xwVpVC2Ivr9qnbCjpegeJpzfW6SFcYTzIFhX3duzymCY+6FrpNh8XUQ+vz3UfuhMO0FK2itsT7nwqKv2I9lhvypWUTEb+Fq++2JCql00uds62PSX6zPX58Gu9907h86Aku/AZPva7p987+t9wSq90FWoXXddfjNCStbxJNwjf32YE5y66gXyLYeujJvenzjbH0oxvlz/fu3z1oB7862riFH47XjG/7e+RiY/irkdIyvltV3wMc/abg2UTwDjn/I+7m3Y4Cebu8QEZG0V/9myRTDMEoSNEePBI0rIiIiIiIibYhTMFphBgWjZRn219drTYf3IkREREREREREREQyjO6cFZH0Eci1bui3W/xeezD+8Y/sgnW/d24fdlP8c4h41X4QnLYYqnaBWQt5PeHQGmg/2D0ksF7f863wtINrrLG87ONVbhfvfQM5VmBCKnU73grK2rWgYVsgB0Z8O3U1SeyyO1jfg9X77Nv3LU1NMJoRSP6cIunoyGew9RGo3A7dT7JCKJuHgLRFpksgVc/Tk1dHuhl8HWz8s3uf/Uvgs9fgs1es1//+c6BwgPs+XoPRDnzkrV9rEc+TPrfPhcFf9a8WvyRiIXgwhuPmtXfCztdhzE+g9zmZ9bpnhq3z4OW3NNoWgg3/ZwUgTPid89c5kGOFkQRyYP29TduO+SP0mw3Ve6FdD+sYTlJv7B2w8S/24fJlH0GoGoI2wTZmGEqfsIK783parwdZ+S377V8We2173rECaUIeX8MbC7aLfd5EGHA59L0Qyj62AjPaD7F/XXA7tw45BA+JiKSa0+tTsoPRmjv5VXjhKCjf5Nxn09+sYOqCftbnZSutgMr6Y526ciskbfk34ehfwMCr9KAUSQ3H85zs5NbRWPHJ1vF96aP27Se/Yp2HvXWe9bAWPw38sn9j5feCU96Cii1WqC/Aoqug/BPvY+xfAk90gkFfta5R9IghMG7J161zrsZ2zYOniq3Xn2E32R9vN+YYFJ7C7xMRERHvDODhBM9hfj6PiIiIiIiISEwqQvbXuzMpGC3b4b2FOrf7GUVEREREREREREQyiBIeRCR9GIbzotGqPfGPH+lp9b3Pjn8OkWgEgtZCnYL+EMyBTkdHF3AWyIZOY/wNRQPI7eq9b8llkFPk7/zRMgw46QUYeRt0Pc5awDXjDeh+Ymrrktj1dAnbK0tVyI3uqxfh8CZ4ZZIVrrP2LnjrXFimYFkAdrzk3NaWF6wOuspbvwUzreCpFd+DlydYIZhuvIbqbH0Ids731rc1iOeGtr0L/avDT2GnheBxBKPFGmpWtsIKAVichgFyTswwLDi9aShaY+vutn7ewg5Pia1//ZrwBzjmT1A8wwqGO/5RGPI1yO0MHYYqFC2dBLKgxyn2bWYYDq9vui0csn7O3rkY3p0Nq++A5TfDc0Oh5gCYJoSqPv+ogQMrYq+t/BM4uCr6/bpMie9nPlGy2kHXSdbPgNvryqS/2m8PVSWmLhGReDm9PgXzkltHi/lz4PQlkR9usrHR6+7au5wDqFZ8D14c3fbClCU9OB5/5yS3jubG/9b+vYZ+F0PPmVZA2EVl/s87+Bp/xzMMK3C9+CTr46x1MPbX0O2E6MbZdB/MnwGrfx3dfqt+2TIUrbEV34One0PtIfdxEhEULiIikjz1oWWJ/BARERERERGJS3nI/jptQbB9kiuJXbZh/95CnVmLaZpJrkZERERERERERETEfwpGE5H0ktvNfnu1D8Fo610WIvQ5D9oVxz+HSGvgFFDYXMcxMO43ia3Fq6x2cPTPYOa7cMIj0O3YVFck8eg/27ktr3vy6hCRptb8Giq3N922/h44tC419aQLM+welNSWg9G6HAMlX4xun5oD8PGP3Ps4LSK3s+LW6ObPZE6Lpr2o2uVfHX4yHYLR4lkIboZi3xdg0/2w+634xkiWT5+Dna+591n0FefvnfpgBsOAIdfBjNfhpLnQ/2J/6xR/TX7Aua3s82CyIzvhrS/AI1nwSDZse7JpvyOfwhOd4eEAPNru849cWPkT57GH3uhe17YnYVmEPnaOfzj6fdJJMN9+e1jBaCKSpsLV9tuDucmtw05OJ5hwt/WABCerfg51lVbw55YID0qp3gMrb7f+vul+mDsAHu9oheGWf+Jf3SLNOR5/p/j6QX4fmPpM0yDEDsNh7C8bPjcCcNx//Jtz7K+g8zj/xrMTyIKjvg2nvg0Tfh/9/h9+1zo2Prg2ct/qfZGvaQDUlsHjRbDuD1YYsR3HoPA2fJ1JREQyjZngDxEREREREZGY1YSrqTHt3xcrDGbOAwKzHB66YmISwuE6s4iIiIiIiIiIiEgG0SOFRSS95HWDgzbb4w1GqyiF8k3O7Sc8Ed/4Iq1JbtfIfUb/GEZ+HwLBhJcjbVCvWc5tdZXWn+WfwOYHobIU+nwBesyIf5Gu29PRDOUJi7DjJfvtWx6GMT9OailpZdcCa+GrE6ONL1gdfxdseTC6fT57FUI1ELS/cSuqYLR9i6Fqd9sI1owrGG23f3X4KRHBaPn9nNuyi6DW7oS0mc3/gu5TY68hGcwwrPhe5H5lH0FWoX2bFtxnptzO0H4oHF7fsm3Vz6BmPyy9wd85R/yPFZpdNByWXO/fuAOvgsIS/8ZLhcbBIo0d+cw6n8nvA91OsAI7RETSQcgpGM3h9SwVep7m3v5ERzh9uXPIW2PbnoTXToA97zZs2z7Xuu502lLncxKReDid0zosXkqqHqfAedut8/KcztD9BMgqaNqn1xnxzTHgS9BhGPS9EDoMjW+saA38Mqy+A47siG6/mgPwxulw5mrIcgi+Bdj9ZnTn5stuAiMIQ22Oz02HceI5HxYREUm8UhRaJiIiIiIiIhmgPHTIsS2TgtGyXe5NrA3XkhXUvT8iIiIiIiIiIiKS2XTnrIikF6dApuq98Y279i7ntrG/VriTSGO5Xdzb84ph1A8UFCWJYwSgx6mw87WWbXXlsOHPsORrDds23Q8FJXDaoviCb8yQW1GxjyvSGphhqNxm37bxz207GG37M+7tbT1YKNgu+n3MOji8ATqOtG+PNgDs4Kq2EYzmFCLmRboGo4Ud/k3x/Fx1HA35fVu+phWNhJnvwwsjreBVN5vuh8l/i72GRAtVw8LL4eBqb/33vme/va0HO2aybsfbB6MdXOV/KBpAt8+DAod8Dfa+b4UH+mHQ1f6Mk0puQUILL7f+7HocnPwyZLdPTk0iIm7CVfbbA3GG0fspEIRZK+Clo+3bw7Xw4mjv4zUORatX9jGUPgoDLo+tRhE3Tue06XL9ILcLlFzi3J7T0Qp23fNO9GMfdSuM/UXstcUruz1MnwdLr7d+9qMJXq/YCp/83T7E7L99IpxL2ln6dStsrnBA0+2JOB8WERFJMNM0S1Jdg4iIiIiIiIgXFaHDjm2ZFIyW5XJvT51ZA7g87ENEREREREREREQkAyjRRETSS243++1Ve2Ifc/9yWPd75/Zes2IfW6Q1Khzo3j7+dwpFk8RrP8R+++ENTUPR6lVsgZU/i2/OcLVzm77npa1zC6mtdX56YptwcI17e1tfsBpLMBpYQQROog1GK1sVWw2ZJtqvS2PVu8E0/avFL05hb0YcOf+G8fnxbKMxArlWYHZ2IZy1GoIebgqsijO8OxFC1fDRD+HRPCh9PP7x2vrrVybre2Fy5+txSsPfR97mz5iDr4Nux/ozViq5BaPV2/serPpl4msREfEi5HBtJJ2C0QA6jbFC9RNp62NNPz+0Ht7/CrwyBZbemL7hwpL+ag/ab8/KoMVJY26Pfp+CEhjl07FiPIqGw4z5cHElXLgfCgd533fro+7tTg8ViGTxtS23OQbo6bl3IiIiIiIiIiIiIvEqD9nf82hgkB8sSHI1sct2CUarNeO4l0xEREREREREREQkTejOWRFJL07BaEc+jW28/cvg5YnufYpGxja2SGtV0B+6TIZ9i1q2TboPSi5Jfk3S9mQV2m+3+76st/0ZmPiH2OcM17g0GrGPK9IaVG53bgsdscLRsjPnSYm+OqRgNFeBYGz77XwVSubYt0UbAHZwZWw1ZJp4gtFCVVBXDtnt/avHD4laCN7vAihcDNvnWmP1ORc6jrbasgpg8LWw7nfuYxxcBXknxVeHn0wT3jgDds33b8y2/vqVyZIZKNbvYshqFILZYWj0Y4z4jvUaVLndukbT7TjodaZ/NaaSl2A0sH7v8YuEliIi4olTaLzX17NkGv5N2Pla4sbf8bx1jGUYUP4JvHZ8Q2j4vkXW3KctarvnwhKbULVzMFpu9+TWEo/ik+HsjfDcYOc+2R0AA4ygFZ479Pr0ei0JBCGnE5y5Cj55AJZcH3mfPW/Dzteh4xio/LTh/zJUBbld4cCK2GrZ/aZ1/tv4HMwxKFznaSIiIiIiIiIiIiLxcgpGyw8WEjBivN8tBbKNHMe2WtPtnmgRERERERERERGRzKBgNBFJLwX97bcfWgtmGIyA97F2vQnzprn3OeMja2GTiDR14lPw1nmwf4n1eXYHOOZPUHJpauuStiMrhieuVW6DUA0End/odxVSMJqII7dgNLDChQZcnpxa0knNATiyw72PodPumGx7yjr2COa2bIv2aZZtIRjNNJ0XTXtVtTv9gtEcF4L78HPVeZz1YWfM7dbPdumjzvsfWA7FaRSMtnehv6FooGC0TJbTCfKKoWpX4ufqP7vltgl/gGU3etu/YACMu8PfmtKJ1/CP/csSW4eIiFehKvvtdsflqdZrlhWsX1eeuDnW/AaO+g5s+ntDKFq9Q2th+3Mw4LLEzS+tT/Ue57a8DApGA2g/CGZXwZKvwSf/AEwoGgVT/g5dIjywKJ0Ec2HI16DfbFj8Vet6hJv5p/pfQ7gGDm+EohGNtiUoKFxEREREREREREREHIPRCoOZ9UCcLJd7e2rjecimiIiIiIiIiIiISJrQnbMikl6KjrLfXlcBFaVQWALhEJRvhLKPrKev15RB4QBr4UJWvtW/tjxyKFqf86DjaD+rF2k98nvB6YutIJzqfVA0UgtuJLliCUYDK8SksCS2fcPVzm3RBHOKtEbV+9zbtz7WNoPRKkoj91GwEBQOto7fo1F7ED57Bfqc07ItHOXTLMtWWsFhrTkQ2WsoWn4f56DDt8+HITfAwCvTJ/gi7PDvSvRxaXYhnPAIVN0Lc/vaB4Qsv8U6n+xxSmJr8Wrn6/6PGYgxbFbSQ9HIxAejdT8J+pzfcnuvM7wHo/X9gr81pZtgFOc12+dC77N17iEiqWOazsfagTQ5PmzuvO3wRMfEjf/hd6H3ObDqZ/bta+9UMFprUx86Ha6BULX1Z/1H88/D1daDFhp//t++DtuqdjrPnWnBaGCdO055AMb+CkJHoF0fCARTXVVscjvDiU/Ckc/gzXMbHhrjpy6TYd8i+7b3r4TprzcEltdV2PdL19djERERERERERERkQxSETpsuz3TgtGyDed7e+rMKO+xExEREREREREREUlDSjgRkfTiFIwGsPgaqDkAB1faL0zf+Bc4fbm1iH37M5HnGnxN7HWKtBX5fawPkWSLNRitclscwWhuNwG04jAdES/cggMBdr5iHafldEpOPemianfkPgpGg56nwYYog9EAdr3hEIwW5dMsaw9aC5vze0VfQ6bw+jWZ9SE82dW+rexjWHIdbH0ITn4NgmkQiuUU+GYk6XJWXlcY8V1Y+RP79vmnwvi7YfhNyanHiWnCxz+K3G/MT2HkbfDSOChbEbm/odevjNZ/NuyaH/v+xTOsMIauU6D4ZNj8T9i/DCq2Qo9TodsJMOJb9qGThQOh80TYv9R9DiMIg66KvcZMEM25yVvnwcAvW+EiIiKp4HZdJJiXvDqikVMEU/4O73/ZW//60GYjy3u4cOmjzm0HPvA2Rr1wXdt++IRpWucuruFijcLE7MLFPAWWRRli1rx/KhjBzL6mkomhbk7a9YRT34Kne1nXuvw09Ouw0CEYbd9ieHYQnLnaes11CjnO6+ZvTSIiIiIiIiIiIiJtUHnokO32gmD7JFcSnyyXe3tqzSjvsRMRERERERERERFJQ2347nsRSUvZ7SG/H1SWtmzb+Zr7voc3wOo74OifRl7kPewm6DUr9jpFRCSxsgpj269yW+xzui18LI8h0EekNbELpW0sXAvb58LAK5NSTtrwEoymYCE4+mewb1HkgJzmqj6z3x5tMBpA1U4FowHkdoGC/lawkZPdb8H2p61QpVQLO4RVJDNwsP9s52A0gOU3W+F7o35gHxCVDLsWRO7TrqcVimYYMPNdeLI7hCrd98nv7U99khoDvgQ750HpYy3b8nrA1Lnw6mTn/We83vRzu6BKJ4YBk/4Kb54FR3Y49AnCuN+6B+S3BtEGCX3ydxhwuRVGJyKSbG7nfcHc5NURrY6jvfU7+pcw8n8bPt/0d1jkIaDz4x/HVFYTh9bDoqth70LI72sdOw7yGObmVYvQsUjhYrEEjvkQYib2cruBEUh1FVIvmAcz34fnh/k7biAH+s+BrY/Yt1fvgaciBJ/ltqIQOhEREREREREREZEUcQpGKwx2SHIl8QkaQQIECRNq0VZr6n0ZERERERERERERyXwKRhOR9FN0lH0wmhdb/g1jbod9S5z79DwdJtwd2/giIpIcWQWx7RdPMFqo2rnt8Aaoq4i9rnRlhmHfUjjwAXSeYH2kKtRF0lvY5eej3tq720YwWl0lbH8W6g7But9H7p/MAKd0ldPRWlD8SJSXIGoO2G+PKRjNQ4hdJvPyNSkosf7M7e4ejAaw46X0CEYzHYLRjCRezioaAb3OgB0vOvf5+EfW13fgl5JWVhOfvRy5z4hvN/yOzyqwQq6cFuPX6zkz/tokdYJ5cPzDcNT/wv5lDT9P7XpB96nWa3PP0+CzV1ruWzw9/vk7j4Oz1sDud6xwyk5jrRDBQ+ut78Fux0HhwPjnyQROX2cnn/xTwWgikhpu532BKIMekyk3QohQfZ8h1zXdVnIJfHQbHHEIZPZLxbam4UoVm61AtnV3W+9VxBIu5rRNMle7HqmuQJrrMBTyuvt7PSGQDb3Pjnwu5ibPw2ueiIiIiIiIiIiIiLiqaCXBaADZRjbVZstgtDozhnvsRERERERERERERNKMgtFEJP0UjfS2sNtOxVb49DnY/aZzn3G/jm1sERFJnlgDyCriCEaLtIB0+3NQMif28dNNOASLr4ZP/tGwbfA1cMyfwAikrCxJU27BgfXKVsDWx6D/xYmvJ1XKVsGCmXBkh/d9jGDi6skkgSDkFUPVLu/7VO+33x7LTVutPRjNy9dk1A+tP/O6R+67+Z9w7D/iKskXToFvgSRfzjrmT/DiaKi1vykSgPevgB6nQH6v5NVV7+Bq9/YJ98DQG5pu6z/HfTF+j1OhoH/8tUlqGQEroKzzOPv2wdfYB3aVXOrP/NkdoPcZTbe1xcCvfrOjC0ZLl9dgEWl73M77grnJqyNakYLROo6G4x+1QkEbC+bBzIWw5Hr3EFxXEcLl9y2FV46xbyv7yPoQAeihUOK0dNZaeKKzf+MFcqzzxpxOzmHwkeR6OKcXEREREREREREREVflocO22wsyMRgtkEN1qKrF9lo9VEdERERERERERERaAQWjiUj66eSwYNert851bgvmWwuhREQkvWUVxrZfZTzBaBGCn1bc2rqC0bY/0zQUDWDjX6HXWdDn7JSUJGnM5sYZW+/Ohn4Xts5wvcOb4MVR0e9nRFgo35YE86Lrv3+JFc7QPITBKSzLTTSBbJko0tekeDr0n239PS9CcES9x4tg+Ldg5K0QyI6tri0PW79bdr/RsK3jaOh+Mhz9Uys0yY1ZZ7/dSPLlrIJ+cNzD8OaZ7v2e6Q2XmsmpqTGnYLTcLnDBXvu2nqdDdhHUHrRvn/QXf2qT9NbrLOh1RtMwmO4nWUFe4p+SS2HRVdHts/7/2bvP8LjuOm/j95lRsyT33uM4sR2nOE53qtNJIz2B0GGBZemwLGF3gST0Tlg6+wCBZcMSCJAQ0nvvxenNiXuvkmWVmfO8ODGWpTmj6Wr357rmss6//iRLU6RzvvMj2PNffB4xEKy8GZ7/Lmx5AeiFxwgpH9meUyb6cDBa1ZDs/ac8Ef8atWE6LLwOnroEnr40/717Cox75MPZ+yWAYbNh9sd7uwplUjMSjroa7rkg/vVpPhLVUD0UDvwB3P+OwtbIJexckiRJkiRJkpRVUyrzmyM2JodWuJLiVQWZz+tqL+TNRyVJkiRJkiSpjzEYTVLfM/UceGwstK4t/doLrij9mpKk0qtqKGxeUcFoPbw7WvNrha/dF73wvcztL//MYDR111NwYGdPfBbmfyu/9VPbofl1CJIwdI/85lZCy2q4tg/W1d8UEqbw6CfgkJ/s2lbIu1m2rsl/Tn+SLcRi/2/CrI/sDIxI5fjz3L4FFn0RVt4IJ92beUwYwuZnIExD24Zo7ZoR0c/ys9+ApX/sPmfTouj24g9g4d+BN0IqaobDiHm7Bluk+0gwGsDkU+HYm+D2k7KPe/5ymFPBUIN0e/xzlEN/GT8vWQt7fQae+s/ufeeuh9pRJSlPfVyyBo7+Kyz9E2x8PPoZnHJWzwEzyk+yNgrqT23Lfc4jH4GWlTDvy+WrS+URpqPHxm0rosfQuNddUn+Tb8hxpY05HNbd1729cffcgrsLDaLM9hqnZSWsf6iwddVPBNHjfKIm+l5I1ES3ZJfjRE2ncZ2Pa2HUQdHfxHz+3XdNPRtOeRz+HvOmS/t8Hp7+Um5rJWqif2e8HYbPhRsOzL8eg9EkSZIkSZIkqShhGNIcG4zWw5s89kHVQU3G9o6wgHPsJEmSJEmSJKmPMRhNUt9TNQSO+Rvc9zZoejlqqx0dXaA7Yr/oNnI/uOdCaHolv7XHHF76eiVJpdcbwWipQXYSwNqYkJsV11W2DvUPqe25j33u27D/N3K7+Bxg/cNw70U7n/dNPgOO+D1U1edfZ7k8/+3ermBgSBYQjPbyT2H2R6MLhnfIFgIWp2V1/nP6kzAmQAxgt7ftGnKU68/mDuvug5uPguNu2fX/sHkJ3H0ubHgkv/U6u+PUXY9rR8OC38Gkk6PjuM8r0Uu/zpp4IhxzHdx5WvyYpy+LgugSycrU1LoeCDP3NeyWfe7cz8K2ZfDq/4t+rkbOh8P/x1CGwSZRBdMvjG4qn+F7w4aH85vzwg+in9Pq/veO1IPWlhfgzjNg60u9XYlUeoU8l6+kuRfDXW/u3j7+2BwXKDAYLVtoc9Nrha2pNwQ7w8N2CRTLNXSs0/GO8cma7iFmOc2PW7NCz/nV+0bsAxdsg4feD69fGQWhBskobHrfS2DOp+HBf8ocDt5Zonrnx6MOgPM25TZvh5qRMGyvgj8NSZIkSZIkSRK0htvpiDknqX8Go1VnbG8PCzjHTpIkSZIkSZL6GIPRJPVNYw6BM16Atk3RBdp14yDocnFSw/T8gtH2+CDUTyptnZKk8qhqLGxe67o3LkzLM/QFIN1a2J6qvDANr/4aVt8Br/8vhCmYeg7se2l0oaJKL9+fj3UPwNgcAmnTHXDjIbu2Lb8W/tAAFzT3jXC0MIQlV/V2FQNDoq6wea9dCfO+tPO4kGC07SsL27u/yPY1SXQ5+W3KWfDa7/Jbf+098Px3osCJ138Pa+6Cl3+Wf509aV0P970VTn8R6sZkCUbLfEJfRUw+FY6/DW49LnN/2wb4fRWM2Bc2LYraZn0EZrwTRh9c/P5b+BFGAgAAIABJREFUXooCA1Mt0WNf3fj4sXVjs6+VqIJDfgL7fzU6rh7R/XW3pNIYe3j+wWgdW2HRpdC+aWcI4rK/Rn2zPgb7XQo1I0peqgoUhvC3Ob1dhVQeyfro1pdNPh0mvxmWX7OzrXpYdH+Z0/zTYNEX89831RI9F8/0/HTDo/mvVzFxoWM5BIwlMwSOFRM6FhdiZuiY+pqqIVGQ9ME/joIPh+6x8/dWNcPhqKugdQPc/y5Y8bfMayRqdj3eMa9tI9xwyM43DYgz9+LoZ02SJEmSJEmSVLCmji2xfQ39MBitquvvnt/QYTCaJEmSJEmSpAHAYDRJfVeQgNpR8f1143Jfq2G36GIFSVL/UNVQ+NxUS2Hz022F7znQdDQX939QiHRHFNDSk1Qb3P8OWPKHXduXXh3dTrgbxh1ZnhoHs1SewWiv/1/mYLSOFkjWRWF2iSq4bm78Gn/fD057JrpIupJSrVE4b6IKakbB6tuh+fXK1jBQFfp/ufL6XYPRCjlpa8vzhe3dX+QTjDbxpChsIN/Awxd/GIU7LL06//ry0bYxCm6b8/HosSGToJd/nTX+WJh0evzF7rAzFA2ir91LP4Ejr4KpZxe+79r74JZjdgbGvfSTKIAtTu2Y3NatGVl4TZJyM+0CeOHy/Oc9/53M7S/+AF78Lzh7JQzJEpCoyrn3Lb1dgVQ+E0/K7fV6bwoCOOJKeOWXsPJGqJ8Me30Ghs7Mbf7I+VA/FbYtzX/vts1RqG9n25bDox/tee6oA2HIpBxDx/INGDN0TCqL6mEwcr/MfbWjYNT8LMFoMSHfNSPh9Gfhue/Ak5/LPOaI38P0C/OvV5IkSZIkSZK0i6ZUfDBaY3JoBSspjeog8++e79p0A882PwZAMqhmRt0sjh5xCkOrhleyPEmSJEmSJEkqSh+/kkGSsqjNIxjt+NujoDVJUv+QrC98bnuTwWjF+kMjjD0SDvt17hcRF+qVX8GT/w7bV+1sGzYHDrw8uvh6h1W3wEMfgqaXs6/39GVw3E3lqXUwS23Pb/zSq+DA70cXpwM0vQYPvBvW3LlzTLIu+7pNr8Btx8OJ9+S398v/DQ+9f9e2XALztq+Dh/8Zll+TPWRKlbfhUbh+Piz4TRQCVcj/z7ZlcPPR0RqNu5W8xF6XTzBa9bDoguq78wzoallZ/lC0HR77BOz5QdjyXOb+3g5GAzjyD/CHPJ6vhCl49GMw+YzCgkXCMLqPCruExXUOYOusekT8RfeSKm/MAtj3Ulh0CRCWaNEQnvkqHFRA4JpKq21T9+BmaaAYtlf/ecORqnqY/ZHolq8gET2/u2lB/nNTzUCXYLQXftDzvGOuhcmn57+fpD4uiO9K1GTpq4a9L4bRB8N9F8H2NVH7yPmw8HrDcCVJkiRJkiSpRJpjgtESJBiSqPAbCpdAdZD5d8/r21ezvn31P46fbX6MR7bezaenfo3GqmGVKk+SJEmSJEmSitIHriSVpALV5RiMNvqwgRl+IEkDWSIJySGQasl/bkcTkOVCsY1PwIbHoG48TDplZ3BmLnulU1Ftg8Hae+DWY+HNr5Q+WKV1A6y4Dp77Dmx6snv/lufh9pPh6L9C8+uw9l5Y8n+5rb3q5ig8JshyEaLyl27N3F47GlrXd29vWQmrb4MJx0O6A249DpoX7zoml7C1tffCdXvDuGMhWQvVw6FhGkw8GYZM3DmufQu88kt47JOZ17nlKNjzw92fPza/Bg27wZjD4IXLYcXfe66ps8N+DcPnwo2H5DdvsKrLct889ZzsoVsbn4CbDoezlhQeZLn2brjlmDfu1wbIr0OaX4cVN2T/3s30rqBTz4LzNsCau+GuM8tXXzFuOwm2r87c1xf+/6qGwJFXwT3n5z5n2zJ48Ucw5+P577fxifgQtExqx/Q8RlLlBAHs+wWY8Xa4poTBw0uvMhitL1hzV+5jp50PE08pXy1SKQ2bA6MPGjxhq2MOg/O3wh+HQ5jOfV57U/e25dfGj0/UwLnroHpo/jVK6t8yvT7vasLxcMbL0e/EkkNg3FG+8ZMkSZIkSZIklVBTTDBaY3IYQT8877Qql989v2F123Ie3noXx470zXskSZIkSZIk9Q994EpSSSpQ/eTcxs18X3nrkCSVR1VDEcFoMZ79FjzxWSCMjkcdCCfcHYWbtG/tee10GySG5F9Tf7VtKay4Hqa8uXRrbnoGbj8JWlb0PLbQsJ4dgVwqnVRMMNrU8+Dln2Xuu+0EOOyKKMCsayhaPjY/G906qxkJx1wLY4+AjU/C9fv3vM5LPyq8hkwOuwJ2f2dp1xzoxh8LS//UvX34PlHA1BMXw3Pfip/f0RSFp6XbM/c3zoy+17KFGGxbAqtvh4kn5ld7X7T8b3DPhZDaln1cXIhYzcjo/n3GO2Hxb0pfX7HW3h3f11cuCp90Wv5Bro99Igotm/G2/PZ6/ff5ja8bm994SZXRuDvs/h549VelWa9lJbSsgiETSrOeCtP0Sm7jhu8NR/6hvLVIKk51I+zzBVh0Se5zuv4eKt0BW56LH7/flwxFkwa0LBfNJWtyW6J6KEx6U2nKkSRJkiRJkiTtoimV+VzhhuSwCldSGvXJxrzGv7TtaYPRJEmSJEmSJPUbfeRKUkkqQP3UnsdMOBFmvrf8tUiSSq+qobB51+8Pd5wB6x7c2RaG8NQX4Yl/4x+haAAbHt15sesrv+h57XRbYTX1ZxseKX6NjhZ47ttw/QHw931yC0Urxn1vL+/6g1F6e+b2uvFQPyV+3gPvioLwSq1tIzzyEdj8fG6haKU2cn/Y7a2V37e/m/EuGHf0rm1VDXDg96Kgq/nfhPpp2dfY9AyEqcx9h/43vKUdqkdkXyNbSEF/0boB7jyj51C0INFziFhdmcN09vhnuCiEUx4v3Zotq0u3VjGqhsCUs/Of98hHoG1Tz+NW3QK3Hgf/G8Bz38xvj6Gz8q9LUmXs84XSBjxeMyN6nn33+dFzI1VW6wZ47FM9jxsxD05+uPz1SCpedZ4XvXQNRtv6UvbxI/bNb31JA0dQ3dsVSJIkSZIkSdKg15TakrG9Mdk/39hmTv1+eY2PC4aTJEmSJEmSpL6oqrcLkKSC9RSMduRVMPWc0l5sKkmqnERt4XNX/C26Hf0XmHJmFMr19GWZxz73TRi6B2x5oed10+2F19Rfrc/z4v0wDRsfh0QNDJsLiSQ8+vHcgudKZfsqaF0PtaMrt+dAl2rN3J6sg+F7w7Zlla0HYOMTcN1eld83WQcLfgMJL2bNW3UjLLwBVvwd1j8AQybB5DOi++Adhs6EbUvi11h9a3xfojp67j/j7fDiD+PHLb8Wpp4H9ZPy/xx6S7oj+p5vehWCAO65ILd5uVx0PaTMwWgNb7xuG7k/jDkc1t1X/Jqdv2d629x/gyV/gLAj9zntm+Dxf4M5n4Rhc2DzM9CxDaqHwpbnIbU9eizLJWgnzm4XFT5XUnk17gZnr4bFv4bHP1P8eqnt0fPvjY/D0j/COWugbmzx66pn6Xa45ZjsY+Z8GkbsF4Xq+vxR6h+qh+c3vmsw2uans48fvk9+60saOBI1vV2BJEmSJEmSJA16zbHBaHm+eU4fceDQo3iy6UGebHqw58HEf/6SJEmSJEmS1BcZjCap/8oWjDbz/TDtvMrVIkkqvUQJnqredRZMOAnW3pV93EMfyG29dFvxNfU3K2+Ara9EYUU9aXoVbn8TbH0pOh6xH0w5q7KhaDvccRqcdH8UIKTipbZnbk/UwvjjYeWNla2nNx13C4zYt7er6L+qhsC0c6NbJo0zYfXt8fPrxsX37bjAeP63oH0LLP5N5nGrboG/ToN9Pg/7fKHv309segbuPAOaF+c/N5cAltosX9NSGNcpMOaIK+GBd0f/x4lqmPHu6Ov/8s/zW3PUQaWssDgj50VhiQ99EDryeEfVV35RvsfHIZNh4knlWVtSadSNgb3+NQrWevLfS7v21ePgLR1RQLHKa+VN2QOQRh8KB3y7cvVIKo3qPC96ae8SjPbM1+LHDp0F9VPyr0lS/5HtdwyGpEqSJEmSJElSr2uKCQZr6KfBaNWJav5p0r/x0ranWbz9BTrC6A2gV7Qu5cmmB7qNj/v8JUmSJEmSJKkvMhhNUv9VNQSGTISWld37DEWTpP5vR8BNsVbdVJp1YOAEo6Xb8xv/+Kfh6L/0PO7et+0MRQPY9FR06w3rH4SlV8eHLyk/6dbM7clamP5WePmnUTBeUQLY91JY9IUi1ymTCSfCcSW8P1Fmjbtn79/yQnzfjguMk3Ww4AoggMVXZB4bpmDRJTD2KJhwXCGVVkYYwv1vLywUDbIHye1Q3VjY2rmYeDKMOXznccM0OP426GiBsD0KnWhanF8w2uQ3w6gDS19rMXZ7K0w9F1LN0fH2tdA4A1pWwF93q2wt9VPhtCwhPZL6lslv7jkY7aT7YfsauOvM3Ndd+keYfmFxtalniy7N3j/jHZWpQ1JpVQ/Pb/yO54AArRtg4+PxY/e7rO8HM0sqn1L9vluSJEmSJEmSVLCmVOY3Pmzsp8FoAMkgyZyGecxpmPePtmeaH8sYjNac2koYhgT+zUqSJEmSJElSP5Do7QIkqSjTLujeVj0Mxh1T+VokSaVVNbS3K+huoASjpVryG7/sGmhZnX3MtmWwvvtJFL3qhct7u4KBIxUXjFYHtaPgpAdhWhHhGyPnw5tfhn0/D8fdUvg6mSSHROFXO275GHtUFFhy8I/h2Bvixw2ZWFyN2qmnYLRtS7s1pcIEzal6CKp37WjYref9Xvnv3GvrDZufho1PFD5/4ik9j6kdW/j6mSTrYNLpMP/bcPQ1mYMfqoZEr9sgChA7c0luax/wPTji95BIlq7eUknWQM3I6DZsVhTU1zAdTn6ofHvu/w2Y/QkYfyyMPx72+jc45fGdX1tJfd/wuTBiXua+2R+HM1+HMYfBlDdHAbK58nlw+S3/G2x4OPuY+qmVqUVSaeUbjNbetPPjpX+KHzduoaGV0mBQMzK+L1Ed3ydJkiRJkiRJqojm1JaM7Y3JPnjOchHigt7SpGlJN2fskyRJkiRJkqS+xmA0Sf3bvpdEFxTtUNUIR/8FkrW9VZEkqVT6YqjHQAlG69iW54QQ/jwB2jbGD1mRJTSqHOrGwR4fyD5m7d3w6CchDCtT00CW3p65PfHGc666MXDk7+HQX+a/9ryvwSmP7QzEmnA8jDq4sDp3mHI2vDUNF4Vw4TY48a6dt7emYfYne17j7JXR+GP+Cnt+CIIsL58P+H7m9lkfK6z+waxxZs5DO9JJPvLi5Yy6Zx2j7lnH6b+cyvqmTj/vdeN6XuT1K2HLiwUUWgFhGu4+r/D5QRXs/7Wex406IP/whzhzPwcXNMPCa2GvT0dhYblomBoFLA6Z1L2vbjyccHf08zznE1GoWn8y+mCY9ZHSr5uoju6bDvweHH8bHH8LzP8G1I4u/V6SyicIYMGvoX7azrZhs+GspXDg96GhU/ue/5z7uuvuh+v2hfU9BHepMOl2eOiDPY8zGE3qn/L9fdRrv9v58aan4sft8x+F1SOpf5n+ViBDQPjwuZCoqng5kiRJkiRJkqRdNcUEozXEBIn1V9mC3ppSWytYiSRJkiRJkiQVzmA0Sf1bzQg4/lY49Sk49iY4ZxWMP7a3q5IklUK2C1EX/HbXYMxKSbdXfs9yaM98YkeP4i7+3/gUPPT+wuspxJ4f6TkYDeCF78Nr/1v+ega6uFDArmG0M98DC6/Pfd39vw57X9y9PVsIWU+mvwWOvjoKGskkCODA78Kpi2L6E1Gw05AJue858WRomLFrW3II7P7O3NdQZEdAXg4ufvVr/HjFh9maGkZ7WMPfn2/g7B+ndw4YMjG3hW5/E6T6UPBlGMLa++Dv+8HWIkLbzt8M1Tm8k2myLrf7056cuQT2/2rhP79jDoHTX4DjboHDfxfdjr0JzngJxh1ZfH29af+v5/W9nZP9vpTb/6+kvm/k/nD6c3DiPXDifXDqM1A/pfu4unFQOyb3dTc/DTceAs98FZqXlq5ewapboWVFz+MMRpP6p5o8Q4M3Pgav/x88cTG8+MP4ceOPK64uSf1D3ViYdn739j0+VPlaJEmSJEmSJEm7SIdpmmNCwRqrBlYwWragt+aYcDhJkiRJkiRJ6msMRpPU/wUJGLEvTDwRqhp6uxpJUqlkC0abdEp0q7S4cKj+5oXvFzZv6Z+gZeWubU9/Ga6fV1w9DTNg7BEw51M9jx2xHxzwXdjnP2HUgXD8HVFIRDZPXxoFDalwcaFRQXX3tklvguNuhbFZgoyG7x0FHM79bMy6BbxUrR0DB3wPFvwmt/Ej9omCnKaeB3UTou/DPT8E52+Bqvr89q4ZDifcGYWyNUyHiafAsTdG36PKT83InIalw4D/XfPWbu33vAzLNr7x855r8EDzYlj+11wrLK8whPvfCTcfAZufKW6tfL6P9/86zPsqjJgX/Xzu9yXY78u5z9/zX6ChBOEv1Y0w4XjY7aLoNvHEgRH+VdUAh/6ydOtNfwvM+XTp1pPU+6rqo+fDYxdAIhk/bspZ+a/95H/A3/eB1XcWXp92tfrWHAYFUDu67KVIKoNsv4+Kc+9b4NlvxPfve0lxAeCS+pcFv4W9PgPDZsPoQ+GQn8Hsj/R2VZIkSZIkSZI06G1PbyNNOmNfY5Ygsf6oNqijKtP5nUCTwWiSJEmSJEmS+omq3i5AkiRJyijbhaiJ2ijAaNlfYN39latpIASjtW2EV39d2NwwDX+eBMdcB5NPhY1PwVOfL7yWiSdHa+0IfwhDeP678ePPXgFDJu7aNv4YOGc1PHVJFICWydaXYOMTMGp+4bUOdmFH5vZE5hNnmHBcdCtYkOOwquji0pnvLWybhqlw1FWFzc201hFXlmatwSwIYOxRsPburMM2dYxgVdvEjH1/XxTygaODKLAuV6//Hqadn0+lpZdOwQ3zYdOi4tea/pb8xgcJ2Ptz0W2Hto2w5CrY9GT2ucNmx4ccaqfxx0RhiRseLW6d2R+HAwsMOJXU/+3zn7D6Dmh6Ob957Vvg1oVw4XZI1pajssFlWQ6BqqMOjJ7XSOp/kvVRePb2VaVbc9zRpVtLUt+XrIH534xukiRJkiRJkqQ+I1sgWGNyALx5YydBENCYHMamjvXd+gxGkyRJkiRJktRfGIwmSZKkvmn4PvF9ydookOm4W+HqsdDRXJmaBkIw2sanINVS3Bp3ngYHXg5b8wxkANjr36L/u1EHwpQzozCeHYIAgiSEqcxza0bGrzv9wvhgNIhCjwxGK1y6PXN7XDBasTp/X3R19ipYcV308zjmcBi5X3lqUO+Z+d4eg9G2dMSHZ+6SQTL7E/BCDiFSS6+Gxb+F8cdD/aQcCy2xh/85/1C0fS+DZ77c/fFp5vuLr6dmJJx0Hyy7Bl74HlQNhTmfhEmnwIbHYPWtUD8VJp0KNSOK328w2PcSuPOM+P5Jp0dhR1VDYcxhUNUIw/eKHhfbNkaPnYZqSINbw3R408Ow/FrY9DQQwsu/gPZNuc2/8WA49amyllg2HS2w6Y3aRx/Se6Fjza9Hwcs9mfm+8tciqTyCAHa7KHtwe76y/Y5LkiRJkiRJkiRJFZEtEKwhmeXNnPupxuTQmGC0rb1QjSRJkiRJkiTlz2A0SZIk9U1Tz4lCYrqGeI0+ZGcYU9UQOOTncN/bKlPTQAhGKzYUbYdHP57f+NGHwYIrYNis7OMS1ZCKCUZL1sXPG75XFBiz4dHM/Sv+BvO/kVut2lUYQtiRua9cwWhkCbqoGxsFZ2ngmvEuaFkFT34udsimjvggrsbaTgc1o3Lf9/53Rv/u/R+w35cqG7jSuh5e+e/85w2fA8feCA+8F5oXQ+0Y2P+bMOG40tRVVQ+7vSW6dTb6oOim/Ew+PQoW7foYOvU8OPTn2QNAJWmHmhEw4x07j+d9JbpfeeknPc/dtCgK9mqYXr76ymHD43DvhTsDyUYdCEdf0zthpk9+vucx874Ge3yg/LVIKp/9v17aYLS6saVbS5IkSZIkSZIkSQWJC0arCqqpDbKcn9pPxYW9NWcJiJMkSZIkSZKkviTR2wVIkiRJGVU3wt7/vmtbohr2+eKubVPOhFFdwlkady9PTen28qxbSXEBV+XQMANOfwHO2wAn399zKBpAUETQ1kE/iu/b/GwU8KX8ZfueKeb/K5sgy0vVbH0aGIIA9r4Y9okPHtnYER8g1VjbKdCskKCpZ74Cq2/Nf14xNj5R4MQEjF8IZ74K566Dc9bAzPeUsjKV2uyPwYXbo9uZS+CCZjjqKkPRJBUuUQ0H/xgubIWp5/Y8/q6zIEyXv65SCdPw4Pt2hqJBFIb8yL9Uvo4Xfgiv/Tb7uPM2Rs9jfM4q9W+Japj85tKsNeGE0qwjSZIkSZIkSZKkojSntmZsb0wOI6jkm2hWSGNMMFpcQJwkSZIkSZIk9TVenSNJkqS+a5//hKP+BLu/B2Z9BE64CyafuuuYqgY47hbY/5sw9bwoSOfkh8tTT7qtPOtWUrqCwWinPxeFoeUT9jL6kML3G3MoHPbr+P7FVxS+9mCWLRAwUVWePYfuUZ511b8kh8R2beoYntsahX6PLu4h9KTUmpcUNq/z/Wvt6ChUTn1fsja6NUyFqvrerkbSQJGsgSOvggX/A7Vj4sdtfAIe/Xjl6irW+kdg4+Pd25f9FZperVwd914Ej340+5j9vw41IypTj6TyK1Vw7e7vK806kiRJkiRJkiRJKkpcIFhjcmiFK6kMg9EkSZIkSZIk9XcGo0mSJKlvm3oOHPZLOOi/YMxhmcfUDIe5n4GjroL9LoPaUTD3s6WvZSAEo4UVCkY74c4o9CVfe306c/tu78ht/rij4/se/lD+9aiHYLTq8uy554czt086NXO7BqZE/H3Ixo74kIKOdKeDMFXY3ot/U9i8Qq25I/85VQ0wZkHJS5Ek9WNBADPeBueuhWRd/LgXfwhLrqpcXcVYd19839K/lH//VCvcdiIs+b+exzbuXv56JFVOzaji15j1MZh2XvHrSJIkSZIkSZIkqWhxgWANMQFi/V1DTOBbc2prhSuRJEmSJEmSpMIYjCZJkqSBaca7S7/mQAhGS+cQjDbxlOL2GH0ojD2qsLkTToDhc3dtS9TAnh/MbX7t2Pi+1HbYvrawugazbMFoQZmC0UbuD2OP7LJXAvY03G5QyRLosqljRGxfR+cstNGHFL7/4v8pfG4+0h2FBbHN/ABUDSl9PZKkgeG0Z7L333MBpPrB65t198f3bX66vHs3LYarJ8CqW3IbXz28vPVIqqzaIoPRJp0GB10OiarS1CNJkiRJkiRJkqSixAWjNQ7QYLS4zyvu6yBJkiRJkiRJfY3BaJIkSRqYhs8p/ZoDIRgt7CEYbcR+sPBvsP/XoaaAi4AnnADH3QRBUFh9iWo44S6Y+T4YOgsmnQrH3gBjj8htflVD9v7NzxZW12AWZglGS5QpGC0IYOH1MOsjMGwvmHAiHPUXmHx6efZT35Ssje3a2DEyti+VDncejDoQhkwqbP/73wHbVhQ2Nx8rb8jeP+pA2Otfo/vl0YdGx/O+Bgd8u/y1SZL6r8bdo8eMbFZeX5lairHuvvi+7WvKt+/q2+HaPaB9U+5zqgfmyfLSoFUT/5ojJ3t9ujR1SJIkSZIkSZIkqSSaU1szthuMJkmSJEmSJEl9k29TLkmSJOUqNcCD0apHwEH/BUEC5n4WZn0U/tBD0FhXR/8VquqLq7F2NBz634XN7SmQ7daF0b/jj4W9/z0KclN26SzfM+UKRgOoboy+HzV4JeKD0ban62L7OtKdDoIEHPILuOdcSG2P2urGwfS3wguX91zDXybDOaujOeXy+h/i+w76Icz68M7juZ8tXx2SpIFn+kWw4dH4/rvOgrNXwpAJlaupJ02vwiMfhy3PQVUjbFsWP7ZcwWhhCI9+HMJ0z2M7Sxb5OkhS3zJsduFzZ/4TjDumdLVIkiRJkiRJkiSpaE0dmQPBGpJDK1xJZcQFo21LNZEOUySCZIUrkiRJkiRJkqT8GIwmSZKkgWvIJGhZUbr1Us2lW6u3ZAu5Om0R1E/ZeVxIwFmxoWilMHwubH42+5jVt8Pae2Dh34EAkkNg1EGQrKlIif1K2B7fV85gNCkZH36WCuNPyurommEy+VQ47TlYeWN0HzXhJBgyHvb4Z3j1V/DcN7PXccOBcMYr5bt/WP9gfN+088uzpyRpcJj5Pnj6MmjfHD/mzxPhmL/B+IVQlWcocqk1vQrXzMx9fGuZgtGaX4NNi/KfVzO85KVI6kXjjoH6abBtya7te3wQRh8CYQoe+kD3eVPOgkN+3nNwuyRJkiRJkiRJkiqqKZU5GC0uQKy/iwt8CwnZlmqmsWpgft6SJEmSJEmSBo5EbxcgSZIklc2+l5R2vScuhk1Pl3bNSgtjgtGGzd41FG2HyW8ubz3lMOm03Mal2+G2E+G2E+DmI+CGA6DptbKW1i+lswSjBQajqYwStbFdqZqxsX0dqQyNjbvBnh+EGe+IQtEAhs+B+d+AC1uy17FtGay5o8dyCxKG3YMWdpjzaagbV559JUmDQ81wOO6WnsfdeTr8bS/Y8Hj5a4qz9t78QtEAtq+JHktLrZDXfI17RAFKkgaORDWccAeMPQKCBNSOhXlfg4N/AjPfC3u8H858DcYeFfVXj4B9Pg9H/clQNEmSJEmSJEmSpD6oObU1Y/tADUbL9nnFhcRJkiRJkiRJUl9iMJokSZIGrmkXwMj5pV3z3gtLu16lpWOC0YKqzO17fw6qMr9rXDdTziqsplKb9eHC5m1+Bh77RGlrGQiyBaMlDEZTGSWzBKMlGmP7OtL57lMHx92afczGJ/JctActK+H+d8GVCUhtzzxm2gWl3VOSNDiNPgiO+L+ex21bGgUFh/k+kJZAqhXue0cB81rggffApkXF17DxCXjoQ3DXOXD/2/OfP+/LBiFJA1G/5G7VAAAgAElEQVTjDDjxHjh/C5yzGva+eNef9YbpcOJdUf9562G/y6KQNEmSJEmSJEmSJPUpqTDFtnRTxr6BGozWkIw/99dgNEmSJEmSJEn9gWfnS5IkaeCqGQ7H3wbzvwNTz4Fhs2HKmbDvpXDYrzPPGTEv+5qbn4U195S81IoJ44LRkpnbxxwGJz8Acz8Hu78nClU44yUgw0X/084vWZlFaZgOJ9xd2Nxlf4V1D+4MKkp3wPa1EIalq6+/yRqMFhOoJ5VCsi62K5VoiO3rSBWw14TjYOq58f3tmd8ttCDb18K1e8Li32Qf1zC1dHtKkga3yadB9fDcxt755vLWksnKG6F5cWFzF18BNx0B6x8pfP9Vt8JNC+Dln8KyP0N7nieAj5gH0/t5gLak7KoasocfVjUYiCZJkiRJkiRJktSHbUs1EZL5PNBsAWL9WU2iltog8zl4BqNJkiRJkiRJ6g+8il2SJEkDW80I2OtTwKd2bQ9D2PoiPPPV6DhRCwdeDnt+EG47GVbdFL/mLUdB4x5wxJUw+qCylV4WscFoWV4aDJ8L+39117bDfgUPfQDSbdHxnE/B9LeUpsZSGHtE4XNvOiz6t2G3KBSsZTnUjonC9CafVorq+pdswWhBdeXq0OCTqI3tSsWcsAWQKjTHcMFvYemfMve9fiXM+1KBC3ex6IvQ0Zx9TKIa6saXZj9Jkqoa4Kir4bbjex674rooELS6gid+L/tLcfM7tsLz34Uj/rew+c99e2cwciEmnVr4XEmSJEmSJEmSJElS2WULAmtMDqtgJZXVkBxKa0f3v4c3p0r4RqGSJEmSJEmSVCa+fbkkSZIGpyCAeV+Bs1fBCXfDuWujUDSAZHzgzj80vQy3nQBtm8tbZ6mFqcztiTwzk3d/F5y7Dk68B85ZAwd8B4I+9PIiCGDqucWt0fxaFIoG0LoO7jwDNj1TdGn9TpglGC1hMJrKKJktGG1IbF9HzN1cj6qGxAc8Nr0CTa8VuHAnqTZ46Sc9j6ub0LfuUyVJ/d+E42C3t+c2dsMjpd9/+1p46afw1Bdh9Z279m1+tvj1X7+ysHlhCKtvL27vurHFzZckSZIkSZIkSZIklVVzlmC0hmQF3ziswuJC37IFxUmSJEmSJElSX+FVtpIkSRrchoyHcUdCdacTG2rH5Da3fTOsuqk8dZVLuiNze5BnMBpEX7OxR/TdIIBcgx9yFsKSq0q8Zj+QNhhNvSQRH1KZDuJD0zrSRexZleUktxe+X8TCb7j5iNzGjTum+L0kSeqqblxu40odBrz1ZbjhIHj4Q/D0ZXDrQlh06c7+7WtKs8/Gp/Kf07EV0q09j5v3FahqzNw38ZT895UkSZIkSZIkSZIkVUxTamvG9tqgjppE/Llo/Z3BaJIkSZIkSZL6M4PRJEmSpK7yCfp6+svlq6McwphgtEQBwWh93ZQzYeis0q65ucQhEf1B3PdMkIhuUrkEydiuVBAfmtaRKmLP6mzBaJfDvRfBnyfBldVw7azoMSDMMYlt3QOw4ZHcxk5/a27jJEnKR3XmE5672fx0afd95iuwbcmubYsugRsPi0LYWksUjPbwh/Kfk1MoWwCzPgaH/KJ7MPC+l8HwOfnvK0mSJEmSJEmSJEmqmLggsIZklvPFBoCGmGC0ZoPRJEmSJEmSJPUDAzD9QJIkSSpS7bjcx6a2l6+OckjHhVwNwJcGQQALr4Nr9yzdmsv+Urq1+ot0e+b2oDpzu1QqVQ2xXamq4bF9HTnmlGXeszF7/+tX7vx460vw1Odh4+Nw1J+yz0t3wE0Lcqth7BEw8eTcxkqSlI/q+MfPXTS9CusfgbX3QstyGHskTDo1e5hy81JYdx90NEXHVUNh3NFQNx6WX5t5zvoH4e/75Pc5ZLPuPkinIPFGuGpHM6y5K3qtM/7YzPXnEoxWPRyqG2G3t8Dog2H1rdHrwHELYeR+patfkiRJkiRJkiRJklQWccFojTHBYQNFY1Xm4Lem1NYKVyJJkiRJkiRJ+RuA6QeSJElSkeryCEZL1JSvjnIIB1EwGkD1iNKuF3bAhkdh1IGlXbcviwtGSxiMpjKrnwRDZ8HWF3dtHzKRdM3Y2GmpYoLRqgt4B9ClV8ODH4CDfxT/c5FrqOK4Y2DBb3cGukiSVErVOZ7Qverm6LbDc9+CIAlnvgb1U7qPf+mn8OjHMjxvDGDfS6F1faEV52/dfTDuKFh7H9xzHrSsjNqHzYaFN0DjbruOzyUYraZToNzQmdFNkiRJkiRJkiRJktRvNA/WYLSYzy8uKE6SJEmSJEmS+pJEbxcgSZIk9TlVjbmPHSjBaIkBGoxWMxJi3vGuYHefC2FY2jX7MoPR1Jvmf3PX4MYgAfO+ljX8rKOYYLSgwO/rV34Bv6+BRV+CVGv3/rX3ZZ9/URjdTrgDGqYWVoMkST1JZ3iMylWYioJAu9ryUkwoGkAIi75Q+J6FuOVouPetcPMRO0PRALa8ANfM6D6+NYdgtFwD5SRJkiRJkiRJkiRJfVJTamvG9oYBHowW9/nFBcVJkiRJkiRJUl9iMJokSZLUVe2Y3Mf2t2C0dEwwWjBAg9ESSZhyZua+428rbM3m12Hri4XX1N+kWjK3D9TvGfUtU86Ek+6DOZ+Gvf4Vjr8Tdn8XqSzZhB2pIvaL+37P1aIvwG0ndg9PXH5N/JwDf1DcnpIk5WrIpOLmr7x+1wC0jm3wzFfig3RLbeIpuY17/ffxfQ99aNfjbct7Xq96eG77SpIkSZIkSZIkSZL6pKaYILDGUr/xbh/TGBOMFvf1kCRJkiRJkqS+xGA0SZIkqavRB0GuJzsk+1kwWhgTjJYYwCFXB/0Qxi3ceTx0Fpz2DIw/tvA119xVdFn9wiu/gvvfkbkvUV3ZWjR4jT4YDvg2zP8WjDsSgFQ6fnhHlr4eFRuMBrD2blh9a5d1t8WPL+a+SJKkfIw5AoIi/yTQ0RT9+9JP4K/TYPEVxdeVqyETYPShxa3x8k+joOMdNj/b8xyf90qSJEmSJEmSJElSv9YcF4wWExw2UDQmM58L3ZLeRirufGJJkiRJkiRJ6iMMRpMkSZK6StbB7I/mNjbRz4LR0jEnMgQDOBitZjiccDuc8TKc/jyc9iwMnxv17f7uAtccUbLy+qx1D8GD743vNyBCvahswWgTTihicie3nQh3nwu/r4E/joaWlZnHJethxD6l2VOSpJ7UjYHd31PcGh3bYM098PCHoXV9aerKVaIW5l4MBMWt89fdYNUt0cebn+55fLvvlC1JkiRJkiRJkiRJ/VlTTDBawwAPRmuICUYDaEptrWAlkiRJkiRJkpQ/g9EkSZKkTPb7Mkw8uedxQT8Lh4p7h7eBHIy2w9CZMGw2JJI726ZdWNhayYbS1NSXvfqr7P397XtfA0rWYLRUEQuPWQA1o4pYoJOlV0O6Hdo2xI85/dnS7CVJUq4O/hns/3UYfVhhrwE6tsGzXwPCkpfWo0QNTD0LFv4dJp9R3Fq3nQiPfRq2vtTz2LbNxe0lSZIkSZIkSZIkSepVcSFgjQM8GC3b59ccExYnSZIkSZIkSX3FIEg/UCZBEMwB5gFTgCHAdmAN8DLwZBiGzUWsXQ0cAUwDJgJNwArg8TAMXyuuckmSpAoJAtjni7DyxuzjwvbK1LPD5mfhyf+ENXdC/VSY/y2YeGLu8+OC0RKD9KXBhBNhj3+Gl3+a37x0W3nq6Ut6+pokDEZT78kWjJatr0eJKjj8d3D32ZDaXsRCOagZCfXTyruHJEldJZIw97PRbc09cMtR+c3/26zy1JWLZE3076Q3RbdrZ8PWFwtf7/nv5jau3WA0SZIkSZIkSZIkSeqvOsJ2tqe3ZexrTA6tcDWV1ZDl82syGE2SJEmSJElSHzdI0w8GpyAIRgAfB95LFFoWJxUEwRPAH8Mw/Hoe648FLgUuBEbFjLkP+G4Yhn/KuXBJkqTeUjeu5zGplvLXsUN7E9x5BjS9Gh23bYDbT4YT74Gxh+e2RjomGC0YpC8NEkk4+Mewxz/BY/8Ka+7IbV66taxlldzGJ6FpMQzfC4bN7nl8mEOylMFo6kWpML6vo5hgNIiCVt78Kqy6BWpGwcj5sP6B6Gdo2zIYdQCk2+GF78OmRYXvM3yfKIRTkqTeUtXQ2xXkJ1Gz63H91OKC0XI1453l30OSJEmSJEmSJEmSVBbNqa2xfY3JYRWspPKqgmrqEvUZg+GasnxdJEmSJEmSJKkvGKTpB4NPEATnAz8BRucwPAkcCEwBcgpGC4LgFODXQE/pIYcDhwdB8Dvgg2EYNueyviRJUq/IKRhte/nr2OHln+4MRfuHEF78Ue7BaGFMMFpiEL80CAIYdSAc/jv4yxQgS+LSDum2spdVEmEI974VlvzfGw0BzPsq7H1x/JxUK9xwUM9rG4ymXpTKEn6WrS9nQybCjHfsPK4/p/uY3d8Niy6Fpy8rbI9JpxQ2T5KkUunvwWjD5sDqW8u/77Tzy7+HJEmSJEmSJEmSJCkvYRiypn1F1uAzgHXtq2P7GgZ4MBpAY3JoTDDalm5tqbCDFa1LaA+7nyObDKqYVDON6q5/u5ekCujpPn9E1WhGVY+tcFX9W1u6lfXtaxhXM4lkkCx4nVSYYk3bCkZXj6MmUVvCCiVJkiRJMhhtUAiC4IvAJRm6lgAvAmuBOmAisC+Q1xVxQRAsBP4CdP7tdgg8BrwKjADmA2M69b8NGBYEwVlhGJbisnVJkqTSq2qE6mHQ3v2P//+QaqlcPU/+R+b2DY/kvkY6Jhgt8KUB9ZNg7mfh2RyygVOt5a+nFF75RadQNIAQnvwcTD4DRuzdffza++HmHEP26qeUpESpENnCzzpSFSoiSMB+l0LNCHjsU/nP3+MDpa9JkqR89HYwWtVQGDoTNj6R2/iuJ87NeAe89KPS19XZ9Itg9MHl3UOSJEmSJEmSJEmSlJcl21/h58u/zoaOtUWt05gcWqKK+q7G5LCM4XDNXYLRHtlyN79b9SNaw/g3jK4KqjlrzDs4duQZBEFQ8lolKZNl21/j5yu+ljXoEmC3ull8YPLFjKgaVaHK+qcwDLlxw5+4bt3vSdHBkEQ975zwceYNPTTvtZ5qeogrVl5OS7qZJFWcNuZCTh51no8RkiRJkqSSSfR2ASqvIAg+TfdQtCuB/cIwnB6G4YlhGF4UhuE5YRguAIYBRwLfA9bnsP4U4Gp2DUW7F9g7DMODwjC8IAzDk4ApwMeB9k7jzgC+XOCnJkmSVH5BAOMWZh/TUaFgtHQHpLu/AxsAW1+EdI5JQKHBaFnN+yoccy1MPSf7uHQ/CUZ7/vuZ21+4fNfvmebX4alLcg9FA5h8ZlGlScXIGoxW6ejtOZ+E426F2Z+MwlMmntLznIXXQ+3o8tcmSVI2vRmMtu9l8KaH4U2PwVFXw6yPwv7fzP442vVdp0cfAuOPLX1tiRrY88Nw+JWw4DdRGKokSZIkSZIkSZIkqU9oT7fzo2WXFR2KNiRRT3IQnDvbkByWsb2pUzDaytal/HLld7KGogF0hO38ce0veX7bkyWtUZLipMIUP17+pR5D0QBe2/4iV6z8XgWq6t+eanqIa9b9Dymi60pa0tv4+YpvsL59TV7rbGhfy8+Wf52WdDMAKTq4Zt3veLLpwZLXLEmSJEkavAb+b3AHsSAI5gFf79TUDlwUhuEf4+aEYZgmCja7Nwhy+g3/pcDITsf3ASeE4a6/DQ/DsBX4QRAES4A/d+r6VBAEPwvD8PUc9pIkSaq8cUfB8mvi+1MVCEYLQ3jum9nHtCyHhmk5rBUToJbwpQEQheFNPh0mnQp/ngTbY/6ImuoHwWiLfwtbnsvc98ovYOUNcNgv4YnPwYZHcl83UQ1zPg27v7skZUqFyBqMlgorV8gOE46Lbjusvh0eeB80L951XKIG5n8HJr2psvVJkpRJbwWjzfoo7Pv5ncdTz45uEAX2xukajBYEcNiv4PaTYcsLpatv/rdh9kdLt54kSZIkSZIkSZIkqWSe2/Y4W1Obi16nMSYwbKCJ+zybOrb+4+MHt9yR15oPbrmdvRr2L6YsScrJC9ueYlPH+jzGL2JD+1pGVY8tY1X924Nbbu/WFpLm4S138qbR5+e8zsNb7iKk+wndD265nf2HHlZUjZIkSZIk7WD6wQD1RqjZL9n1//iD2ULRugrDsKOHPfYE3tWpqQ14d9dQtC5r/iUIgis6zasFvgi8N9e6JEmSKqq2hz+KbV8F6RQkkuWrYe298OR/ZB/T9EpuwWjpmKd4g+Bd7/ISJGDuZ+GxT2XuT7dVtp58pVrh/ndmH7NtKdx2Yn7rjj0Cjr2x90I0pDdkyz7LFppWMeOPhdOfj8JdqhuhfQu0bYIR+/jzI0nqOxLVvbPvnv8S35eszdJX072tYXr0mLv1FXjpJ/D8d4qvr35q8WtIkiRJkiRJkiRJkspieetrJVlnYm0O59wOAI3JoRnbm1Nb/vFxvl/TFa1Z3vRMkkpoeQH3NytblxiMlkXc13RF65I813ktZh0fIyRJkiRJpZPo7QJUNucDB3Q6vjUMw1+VeI+LgM4JIFeHYfhSDvO+0eX4giAI6kpXliRJUgnlEmBz2wnQ3hQFpJXDq/+v5zFbX8ltrbjs24TBaN3M+WR839NfqlwdhVh1a3nWPfgnhjqpT8gWftbRF4LRIApvGbYnDJkIw2bDmEP9+ZEk9T3TLuzeVjsGqvN8Z+wZ74JDc3jdMvEUGD4nvj+Z5dfEiSyhaUNnwt7/XprA5waD0SRJkiRJkiRJkiSpr1rVurwk6xw+/ISSrNPXNSQz//2/qVMw2uq2ZXmtubptBemwr5yoJ2kgW9OW/33+6gLmDBbt6XbWt6/O2Jfv1y1u/Lr2NbSn2/OuTZIkSZKkTAxGG7g+2OX4q2XY4+wuxzkFr4Vh+BzwYKemBuCkUhUlSZJUUrmE2Ky5A64aGt3ufDNsK/Ef0179dc9j1t7d85imV2HVzZn7ShEgMBCNPz5ze2obtG2ubC35aMoxKC8f+14CI/Yt/bpSAfpFMJokSf3BAd+NAjx3qGqABf8D7Vvi53RVPw0W/Bomndrz2PHHZO+vGR3fl6jJPrd2FBz2awg6/dljzOEw93O7tmWTrIehs3IbK0mSJEmSJEmSJEmquHxDvLqaVDONd0/8JPs1HlKiivq2xh6C0drTbaxvX5vXmu1hGxs71hVdmyT1ZFUB9/mr21aUoZKBYV37KtJkPtF6TdsKwjDMaZ0wDFkT83UOSbOufVXBNUqSJEmS1JnpBwNQEAR7AJ2vMHsNuL3Ee0wA5nVq6gDuzWOJO4BDOx2fAlxTfGWSJEkllksw2g6pFlh+bXS7oCm/uXHSHbmNW/wbOPT/QSLmKX5qO9x8ZPx8g9EyS9bG9y37K+z+zvj+MITNT8P6R2DkfjByfu6BDMXavqY068z9LAzfJ6p9xN6lWVMqgazBaKnK1SFJUr9XPwlOeQLW3gNtG2Hs0TBkfGFrDZmQw5gp2fuHz43vS23ref0Zb4Pxx8Lq26F+chSMlqyB3d8Nm5+BMA3pVlh9G6y7HzY/22X+O6F6aM/7SJIkSZIkSZIkSZIqLgxDVrdlfvPit43/MIcMW5h1fhBAVVBdhsr6rrhgtObUVgDWtq8kjAnJ+cy0b/CtJZ/N2Le6bTmjq8eVpkhJihF3n3/BuPezsm0pd2+6oVtfIWFqg0Xc1xOgNdzOpo71jKwe0+M6mzs20Bpuz7rPxNqpBdUoSZIkSVJnph8MTMd2Ob41zDWuPXf7dDl+KgzD5jzm39fl2JQFSZLUNxUabvaHRjhnNdQV+Uf/psW5j11zJ0w4PnPf0j9Dy8r4uYlkfnUJNjwaH4wWhvD4Z+D57+xs2+0dcNgv48PrSqk1v3fv62b6W+HgH0PNiNLUI5VY1mC0LH2SJCmDZB1MOKE0ax35B7jngvj++p6C0bL8mjjVmlsN9ZOigLTOhs2KbjvsdhF0tMAzX4FXfgHJeph2Acz7cm57SJIkSZIkSZIkSZIqblPH+tgglkm106hODK7Qs1w0JjO/OVhruJ32dBurYkJyEiSZVjeT4VWj2NyxoVv/6rblzG2YX9JaJamzpo4tNKW2ZOybVDuNkMyXy67JEv412PUUGre6bXlOwWjZAtZy6ZckSZIkKVeJ3i5AZXFIl+P7AYLICUEQ/CoIgmeDINgcBEFzEASvB0FwSxAEFwdBsFuOe8ztcvxynjW+0sN6kiRJfUOywGA0gEWXFr//9tW5j33+e/F9K67PPrdlVe77DCYd2+L7qurj+9bcsWsoGsBrv4UlfyhJWd2k2mDRZXDjArh2Nrz8s8LX2vdSOOJ/DUVTn5bKEv2dLTRNkiTlaM9/KWzemAXZ+4fumb2/fgrUji5s7XxVDYmC0M5ZDWcuhvnfAE+SlyRJkiRJkiRJkqQ+K1vQyviayRWspP9oSA6L7WtObWV1TEjO2JqJJIMqJsR8XXsK15GkYmW/z58Se7+/ObWRllSWawAGsZ5C43INNDMYTZIkSZJUKQajDUwHdTl+7o3As1uAm4F3A3sBw4B6YBpwPPA14MUgCH4UBEGWlAcA9uhyvCTPGl/vcjw6CIKRea4hSZJUftnCr3qy/NrC5jUthqbXoo/bN+c+b8V18OoV0LIS1twNbW/M7dgWhXJl07h7QaUOeB3N8X3JLN8br/wyc/urvy6qnFj3XgiLvgjrH4CtLxa+TpCA3d9VurqkMskWftbWUbk6JEkasKaek/vYsUfs/Lh+Ckw4KfO4cQuhflL2tYIAdn9f9/bG3WHkvNxrkiRJkiRJkiRJkiQNOHFhXMOSI6hPNla4mv6hMUswWlNqC6taM4fX7AhEGxcTPNRTuI4kFSvuPn9Iop5hyRFZAzHXtK8oV1n92uq27F+Xnvr/Ma7dYDRJkiRJUmVU9XYBKouJXY7rgYeBMTnMrQb+BVgQBMFpYRiujBk3osvxmnwKDMOwKQiC7UBdp+bhwMZ81pEkSSq7qobC57asgDAdhU3lNH4V3Hk6bHg0Oh59KOz2tvz2fODdOz8OEjD7kzByfs/zchkzGKWyBKNlC8177X8yt6+6ubh6Mnn2m7DsL6VZ66iroWF6adaSyihbMNq2tsrVIUnSgDXheDjoh/Dkv0P7luxjZ3141+MFV8A958Hae3e2jVkAR1yZ2977fjEKe94R7jx8bzjqz7m/rpIkSZIkSZIkSZIkDUhxQSvZwnEGu/pkIwEBIWG3vqbUFlbHBA+Nr5kCwIQ3/u1qlaE3ksos/j5/CkEQMLJqDNVBDe1h9xOHV7ctZ3rdHuUusV8JwzA2bG6HXEMvewpQW5NjwJokSZIkST0xGG1g6hpa9it2hqI1Az8FrgeWAQ3APOC9wJGd5swH/hQEwTFhGLZn2KPrW6m0FFBnC7sGow0tYI1dBEEwDhib57SZxe4rSZIGsGKC0cIUtG2E2tG5jb/vbTtD0QDWPxjdCt4/Dc9/B5JDso8btxDGHl74PgNZR5ZgtKZXK1dHnPYt8MRni1+nbjyctQwSvkRU/5AtGO1p/5YuSVJpzPowzPwnaH49el1z02Hdx4xbGIWedTZkApx4D2xbAduWQf0UqJ+U+75V9XD4b+DgH0LremicUdSnIUmSJEmSJEmSJEkaGOICXcbHhHcJkkGS+kQjzemt3fqiYLTMITgT3gibiwud29yxge3pFuoSPZyjLEkFirvP33H/lAgSjK+ZxLLW17qNiQt9HMyaUptpSWe5NgL+P3v3HSbJVd/7/3Oq0+Sd3Z2ZnrC7ykI5gIRAIAzYGOk6EJzANjYY44BzIjj8CNe+Nk6P8c/GXCcMBmNjDAZsIRDJgBICIUArIVZC0oaZ7pndyalTnfvHaKXZmTrdVTOd+/16nn12+5xT53ynt7u6e7rqU8oWwgajlR+34i9pubiovvhA6PoAAAAAAAjCWe9txhiTkpTa0nz6N/z3S7rRWntsS/89kt5ljPkNSX+6qf2Zkl4v6fcDltoajLa+g3LXJO0tM+dOvFbSm6owDwAAwAZv61uriNanwwWj5U5J2c/sbi2XUpkM28t+T7roNyQvUZu1W125YLQj75DOf42096ot7e+sbU2bHftwtPE9B6WuUalrWFqbkhL9Uvr50iWvJxQNLaVcMJok3T9pdcm4qU8xAAC0s1hKGrhw498vvFu666ek+W9s3L7sTRvvI40XvG3PeLRAtK0SAxt/AAAAAAAAAAAAAACQO4hl1BHehQ29sf7AYLTjuUeVs8Gng50Om3MFo0kb/x9ndZ1fnSIBYAvXPn9zGOZIcsIRjBYu4KuTZELcJ7OFGeX9nJJlzqEp+HnNFqYrzpXNnyAYDQAAAACwa5z53n5ijvYFBYeiPcFa+2fGmAlJv7ap+deMMX9hrV2usK6NWOdOtwEAAKgvs8tgnfVpac/FlcedvHN36+zE8LOkK95a/3VbSXG1fP833io950NP3i7lpXvfUH4ba3f/uDrtkXeHH2vi0vc9JMWS1VkbaKBShU+Tf/wJq396FcFoAABU1f5rpP/19UZXAQAAAAAAAAAAAADoQOv+muaLpwL70qkDge3Y0Bcb0HRhclv7w2v3O7dJJzcuhLY3PqSESapg89vGZHLHCUYDUBMFv6CThWxg3+bARld4Yza/fZ/X6cKExVlZzRSmNJE62zlmujApG+K04Ez+uM7rCXEeDQAAAAAAZXiNLgDVZa1dleQHdP15uVC0TX5PGyFqp+2TdFPAuK1Bad3hKiy7TaXwNQAAgNaz8li4cTboLVyNnfvq+q/Zas55Rfn+zK1n3p67VyosBI897QsvkXLBB+dEkp+Tsp8NP77nIKFoaBulCrvM99xBDjcAAAAAAAAAAAAAAAAAtItygS6jjmAcbOiLDwS2P7Z+JLB9ILZXPbE+SZJnvCdC0raaLlQO2QGAnZgpTMkGniIbLhhtOj8pvxHnZzSxMMFoG+PKh8qFDZ0Lux4AAMqodT0AACAASURBVAAAAOUQjNaeVgLa3hNmQ2vtiqQPbWl+bsDQZg1Ge4ekyyL+eVEV1gUAAO3s3FcGtz/lV6SeQ1L/he5t7/xJaf5wiEUa8MVb78H6r9lqzvnJ8v3FLW9h83OV5zz+EenmK6Xs53ZcliTpob+PNn7vFbtbD2gilYLRAAAAAAAAAAAAAAAAAADtI5M7HtieMEntjQ/XuZrW0hvrD2wv2mJg+9agoRFH8FAmR+gNgNrI5oP3+Z48DSdHn7jtCsYs2LzmiidrUlurCh+MVn5c2HmmC+EC1AAAAAAAKCfe6AJQE/OSNv/WOmutfTTC9ndKetWm2xcHjFnYcjvStwjGmD5tD0abjzJHEGvttKTpiLXsdlkAANDuLv0dKfNpafXYk21X/qF06Rukp/3Fxu1PXCed+lLw9nf8uHTgxdKJ/5ZSQ9L5r5EOvuTMMbZUm9rL6Tu3/mu2mqHroo0vbH2b7LB2Qvr086Xh66XEXmltUko/V7r8LVKir/L21kr3vi5abRe8Ntp4oIkRjAYAAAAAAAAAAAAAAAAAncMVxJJOTsgzXp2raS19sYFI47cGo40mDwSOCxuOAwBRufYvQ4lRxU3iiduu4MbTc+xPjFS9tlZV72A0XiMAAAAAANVAMFp7+pakg5tuT0Xcfmsc+/6AMUe23D4r4hpbx89aa+cizgEAAFAf/edLL7xbOvERafW4NPoCaeSGM8ck9ri3n7t3489pUx+XznuNdOFrpT2XS15MKq7WpnaXvnOl3nPqu2YrMp501sulx97vHuMXJe/xj1aFxQiTW2nmtidvzt0jnbxDesEXN9YNsj4tLT0s3fXqCOtIGnqmlP7OaNsATSxMMNq/3OXrR6/jgDcAAAAAAAAAAAAAAAAAaHXZ/PHAdldoF54UNRhtdEvQUDo5HjhuujAp35bkmdiOawOAIBlHqNZo6sx9fpfXrT3xfVoozm4bm82f0CW9V9ekvlZT8As6WciGGlsp0Gw6ZODZTD6jki0qZjiFHQAAAACwc5wh3J4Ob7mdi7j91vFdAWMe2HL7/IhrnLvl9v0RtwcAAKiv7rR0/s9IV7x1eyiaVD4YLcjDfyd9/GrpYxdI84el4kp16gxr4kWSMfVds1XFusv3l9af/HdhYXdrnbxj489Wfkm662ekD6WlW6+XFre+Hd/khv+QzvvpJ2+nnyc98583AviANlGylcf87/8KMQgAAAAAAAAAAAAAAAAA0PRcITnpLSFe2C5qMFp6S/BQ2hE+V7QFzRZO7rguAHBxhXMF7fNdrwOVAr46yclCRlYhrkqtjfvN2uBjsK21oe9XX6XQYWwAAAAAALgQjNaevr7l9mDE7beOPxUw5r4tt68wxvREWONZFeYDAABoLYloBw08YeUR6ebLpLt/Ltp2z3iXdPAHdramJO29aufbdhovWb7f35QrXFjc/XoP/8P2tiPv2AjTq2TftdLBl0rX/Z30w6vSSzLSd35G6j9v93UBTcQP8d38g1mpUCQcDQAAAAAAAAAAAAAAAABaWcmWNFOYDOxzhXbhSb2x/kjjR7eEDI0kx51js/njO6oJAFw2wreC9y2jAfv8dIJgtEqi3Bfr/qoWS/OBfUulBa35qzVZFwAAAACAIASjtaePS9p89ve5xpiuCNtftuX2tt8kWWundGYAW1zSsyOs8dwttz8eYVsAAIDmk9hT3/W6J6SJ79v59oNb3/LByV8v31/a1F9Y2P16p+7a3nbsg+G2vWBTwF68W+pO774eoAmVQuadZaqQVQgAAAAAAAAAAAAAAAAAaJxThWkVbTGwb2uIF7bri4W/+HPCJLU3PnxGW5fXrcH4/sDxhN4AqLaF0pzW/bXAvnTAPj+dIhitkkzEEEvXfRf1Ps3mg0NNAQAAAAAIi2C0NmStnZR0x6amhKTvjDDFjVtuf8Ex7sNbbr8qzOTGmIskXbepaUXSJ8OVBgAA0KQS4Q8aqIquEensH5e6x6JvG++XBi6ufk3tqljhqkZ+7sl/F6qQwrRwv5T59Jlt058Pt+25r9z9+kCTs9bKhgxGOz5X21oAAAAAAAAAAAAAAAAAALWVdQS6GBmNJMfrXE3riRKMlk6OyzPbTzcMCiOSpAzBQwCqLJtzh3gFBqM59k/zxVPOgLVOMx1xX+0aHzUYLeq6AAAAAABsRTBa+3rXltu/HmYjY8wNkp6+qcmXdLNj+PsklTbdfqkx5oIQy7x+y+0PWGvXw9QHAADQtJJ76rtealjyYtL174u+7QU/L8W7q19Tu6oUjFba9Fa2sFB+7NmvkF58rPKan7tJmv+GNHmL9M23Vx4vSS8+IQUcjAK0m5IffizBaAAAAAAAAAAAAAAAAADQ2lzhW/sSw0p6qTpX03qiBaMdCGwfdbRHDckBgEoyjjDM/tge9cb6t7WnE8HBaJI0nZ+sWl2tLBvxfnDt26Pu83mNAAAAAADsFmfNt693SXpg0+3nG2PKhqMZY0a0PVDtA9bah4PGW2uPSHr3pqakpH8yxnSVWeNFkl65qSkv6S3l6gIAAGgJsZ76rpcaenzd3ujbXvWH1a2l3ZUqBaPlnvx3ft497uLfkp7xD1LPAam7whUK/YJ08xUbAWn3/GrlGm+6V+rhqofoDNGC0WztCgEAAAAAAAAAAAAAAAAA1FzWEZLjCvHCmbq8HnkhTyFMJ4MDhkaSwceoEnoDoNpc+xXX/mlfYkhxk4g0Vyex1jrD5tz3W3CQmuv+jCke2O4KNgUAAAAAICyC0dqUtbYk6VckbT5l/M+MMW83xuzdOt4Y812SbpN03qbmOUm/XWGpNz0+7rTrJX3KGHPRlvlTxphfkvTvW7b/M2vtYxXWAAAAaH6FhfquF0tu/B2PGMiWGpIMHwMiKVYKRluXvv0e6VPfIWU/Ezzm6j+Rrv5jyXv8y0MvWb36rvpjae+V1ZsPaHKRgtHKZBUCAAAAAAAAAAAAAAAAAJqfK4hl1BGSgzN5xlNvrD/U2FFH2JyrfbE0p7XSyo5rA4CtXCFermA0z8Q0kiC80WW5tKA1P3g/fVFP8DkIrvvN1X5Bz6XOtVdLyyGqBAAAAAAgGIkIbcxae6s2wtE2+2VJWWPM540x7zfG/Kcx5lFJt0o6f9O4vKSXW2sfqbDGcUkvfXz8ac+SdL8x5m5jzL8ZY26RdEzSX0raHCP/X5J+bwc/GgAAQPMZeEpj1o33Rht/4MW1qaOdDV1Xvv/Bt0t3/qQ0/Xn3mIGLz7w98b27r+u0se+u3lxACyjZ8GNPzFUeAwAAAAAAAAAAAAAAAABoXu6QnOCwLmzXFxsINc4VPORqlwgeAlBd7jBM9z7ftY9i/yRlytwHV/RdG9h+qpBV0RbOaCvagk4Vso55nu5cg/8DAAAAAMBuEIzW5qy1fyXptZJWNzUnJN0g6WWSXiTprC2bZSU9z1r7iZBrfE7SSyTNbGo2kq6R9MOSXihpeMtm75f0MmttKdQPAgAA0OxGvkMy8fqs5aWe/HdqKNq2Z/9YdWvpBOe9unz/0X+rPMfgZWfePvendl7PZnsukQavqM5cQIso+eHHHp+LkKIGAAAAAAAAAAAAAAAAAGgqy8VFrZSWAvvKhXXhTL27DEYbjO9X0qQC+wi9AVAt6/6a5oonA/vK7fMJRnNz3Qc9Xp/O674ksM+Xr5l85oy2mXxGvoIP4r6w5zKlTFek9QEAAAAACINgtA5grf0bSVdIeq+k4G8DNmQkvVnSU6y1t0dc42ZJl0l6p6S5MkPvlPSD1toftdauRFkDAACgqSUHpYt/oz5rXf0nT/470R9+u9HvkoZvqH497W7PZdLBH9z59vF+qefQmW17r5IOvGR3dUnSte+UjNn9PEALiRaMVrs6AAAAAAAAAAAAAAAAAAC1lckfd/aNJg/UsZLW1herfLzxvviwkl5w+JlnPI0kxwP7MoTeAKiS6fyks6/cPj/t2D9N5yfl2wgHHrchVzBZOjmhocSojOMU863bueYx8jScGHe+RhCMBgAAAADYjXijC0B9WGsflvQKY0y3pGdJOiBpVFJe0oykr1lrv77LNaYl/bwx5lceX+Osx9dYkXRC0lettY/sZg0AAICmduUfSnsul+56teTnarNGrEs662Xhx1/8W9LSkY1AtAtfK3mx2tTVzoyRnvUv0r9+cGfbp5+7PbzMGOnZH5CO/I30lV/e2bzd49IIQXfoPFGC0U7MS9ZaGQIEAQAAAAAAAABACzLGvFnSm3Yxxbutta+sTjUAAAAAUH+uQJVur1f9sT11rqZ19cUGKo5JJyfK9o8mD+h4bvtpYdOE3gCoEtc+P24S2pcYdm7n2n/lbU7zxVNlt2135YLREl5CQ4kRzRQy2/q3htS5Quv2J4aV8BJKJyd0LPft0OsDAAAAABAGwWgdxlq7JulTNV4jL+mztVwDAACgKRkjnfNjUt+50q3XV3/+WLf0jHdJXRG+mLv6j6tfRyfyElLPQWn1WPRtD7zIMWdcesovSee/Rvrgfqm0Gm3ep/9d9FqANuDb8GNLvrRekLqTtasHAAAAAAAAAAAAAAAAAFAbmfzxwPbR5AEumBlBb6hgtANl+0eS44HtGUJvAFSJK0RrJDEuz7gvEF8u2HE6P0kwWoDT99lIciIwGG3rdu55Dpwx3/Z5ggPVAAAAAAAIw2t0AQAAAEDb6RrZ3faxHuk5H5Ve9Kj0o1b63gel598qvfiYdNaPbB8/9sLgeQ68ZHd14EyFhZ1t139B+f5YlzQcMUhv9AXS+E07qwdocVGC0SRprVCbOgAAAAAAAAAAAAAAAAAAtVUp0AXh9IUIRhutcJ+OOoLTZgqT8m1pR3UBwGbOMMxU+f1Td6xXA7G9kebsBAW/oJOFbGDf6ddRd6BZ2GC08vPMFKZ4jQAAAAAA7Fi80QUAAAAAbSdMMNr5Pyc99M7gvu//ttSdfvL2wIUbf1wu+Hlp6hPb2w/9YOU6EF6sRyosRt+u52DlMc/7hPR+91WsntB7lnTwB6RL3ihxpUN0KBsxGG01L+3rrU0tAAAAAAAAAAAAdfZySXdGGL9cq0IAAAAAoB6yrpAcR0gXgvXG+iuOSafK36eu0JuiLepUYVrDybEd1QYAp7nDtyrv89PJcS2uzYWesxOcLGRk5Qf2VQxGK5woezvsPEVb0GxhRkPJ0VA1AwAAAACwmdfoAgAAAIC2E++Tuit8uX/tX0tX/dGZbXuvll584sxQtDDG/5d06IfObJv4/o0ALVTP0HU72647xFUJjSdd+jvlxyT2SC96VHrqn0ldQzurBWgD/g6C0QAAAAAAAAAAANpExlr7aIQ/JxtdMAAAAADsVMHP62RhOrDPFcCCYH0hgtFGK9ynI8lxZ1+mg4OHAFSHb0uazk8G9oXZ5zsDvjp4/+T62T15Gn48qCzt2LevlJa0XNy4qPxyaVErpaXAcae3L/ca0cn/BwAAAACA3SEYDQAAAKg2Y6SzX1FhjCdd8nrpe+6Xrv5T6fr3Sy/4otTj/kLIyUtIz/pX6bkfl678Pxt/3/BBKZbaWf0Iduhl0bfpHpNiyXBjz6owf2o4+vpAG4oajLZGMBoAAAAAAAAAAAAAAAAAtJyZwpSs/MC+0dSBOlfT2vpiA2X7u7weDcT2lh2T8rq0Nx58Yd9pQm8A7NJs4aQKNvig30rBjZI7GM0VttYJMvnjge1DiVHFTUJS+dC504Fm2TL34entU16XBuP7y84DAAAAAEBU8UYXAAAAALSlK/9Amv+aNPWJ7X2bA7D2XLzxZ7eMJ43fuPEHtXH2y6T1jHTPr4XfZvS7w48dvEyKdUulteD+5J7wcwFtLGow2irBaAAAAAAAAAAAAAAAAADQcjKOIBVPMQ0l0nWuprVVCkYbTU7IGFNxnnRyQnPFk9vaXeE7ABBWtsx+ZGQXwWizxRnl/HWlvK4d19aqXKGVI8nxJ/49ENurLq9b6/72cxiyhRM6Txc7/2+6vO4zQjXTyQnNF09tG+d6PQcAAAAAoBKv0QUAAAAAbcmLS8+7RTr7x89sTwxKF/9mY2rC7l30q+HHJvdKF/16tPmf+W53X/8F0eYC2pQlGA0AAAAAgJb1kXutXvkuXz/zz74+882IH/IBAAAAAAAAAB3FFcQynBxTzMTrXE1r660QjJZOHgg1jyt4KJufjFwTAGzmCs8ajO9Xl9ddcXvX/kmSpjt0H+W6TzffV8YYZ/Bc9vHts86AtTNDNd2vEQSjAQAAAAB2ht8CAwAAALX0zHdL6edLmU9JPQekc18p7bm40VWhlsZukgYvlS78Ran3rGjbHvqhjcfJasDBPAdfWp36gBbnE4wGAAAAAEBL+otP+fr1Dzz5wf4fv2j1z682evnTuZ4bAAAAAAAAAGC7TC44SGW0TPgNgnV53YoprpKKgf3lAoU2G3UEqLlC7AAgLNd+xLXf2Wp/YkRxE1fRbt/PZfOTOth17q7qazXWWmcg2db7NJ2Y0NH1h7aNqxSMlk6c+drhei2ZJhgNAAAAALBDHGEMAAAA1JLxpPNeJT3rfdLVbyMUrR1c8gZ33/c+KD3vZunqP4keinbaC74oDV55ZtvFvyUd/MGdzQe0majBaGuFiBsAAAAAAICqKxSt/vd/nfkZ3bfSWz/G53YAAAAAAAAAQDBXSE46ZEgOnmSMUV+s39kfNnjIFXqzVFrQaml5R7UBgCRlXOFbIYMbPRPTcGIssK8Tg7mWSwta81cC+9LJ8TNuj6aC7+NsfvKMvyvN4/q/WijNaa20WrZeAAAAAACCxBtdAAAAAAC0lHNfKR15h1RYPLP9B05JqX27n7/3LOnGL0vz35DWTkj7rpW607ufF2gTvh9t/Gq+NnU0q3zR6iP3Sg/NWH3HhUbPPHfjoDYAAAAAABrpCw9JcwHHuj+YlU7MWU3s5bMrAABASD9rjPldSRdL2i+pIOmUpMckfVHSLdbaLzSwPgAAAACoCmutso4gm9GQITk4U29sQAulucC+sMFD5ca988Qfqsvr3lFtLgmT1Pk9l+iZe76z6nPX2vH1R3XX4medj+PB+H5d3f9MXdx7VZ0rAxrvq0t36L7lL2uptPBE29H1hwLHhg1ulDb2UVP5Y9vaXc/DdnFk9bC+svRFzRZmnmhzhaJJ2wNGXfv2mfyk3nH89zXjDEabKHt7s3ee+AOlqrwfj5mYDnWdpxsGb1RfbKCqcwMAzrRWWtHn52/RY+tHVLTFbf1JL6lzui7ScwZvVMJLNqBCAADQrghGAwAAAIAoBp4ifefnpMO/vxFetu8a6ao/qk4o2mleXNp3taSrqzcn0CZsxPGdFIy2sGr10r/x9dkHT7dYveYGo//7Ck4uBwAAAAA01ok59yf65VwdCwEAAGh9L9tyOyWpT9JZkp4j6beNMV+W9EZr7adqUYAxZkTScMTNzqtFLQAAAADa13zxlHJ2PbBva6ALwumLD0gBx9N58jScHA01x2B8v1KmK/D/5qG1w7stMdBXl2/XVxa/qF86+GalvK6arFFt31q9T399/K0q2PIHMH5x4RN62cjP6jl7b6pTZUDjfezkv+jjpz4QenzY4MZyYzP546HnaDVfWvwfvXvq7bIKd+XpHq9vW4jYSCL4fvPl676VLzvn2vp6vDc+pIRJBu77jtToNeJry3fpzoXP6DcPvU398T01WQMAOt1aaUV/evSNmsofLTvunqXb9dWl2/Vrh35fMUOECQAAqA6v0QUAAAAAQMvZd7V0w39I3/ct6Vn/IvUeanRFQMfwIyajdVIw2nvvsptC0Tb83ResbrkvapwcAAAAAADVVe6TaX77hWQBAACwO9dI+qQx5g+MMbW4esprJd0X8c9HalAHAAAAgDaWzZ9w9qWT43WspH30xfoD24cSo4qbRKg5jDEaacD9/+31b+oby3fXfd2d+u+T/1oxFO20/zr1fhX8Qo0rAprDUnFBt85+KNI2oxHCMF3BaNP5SVnbfsfS+rakj868N3QomrRxH239leFIckxG0X6NaGQ0khw7o80zXkNeI2YKGX1x4ZN1XxcAOsWdi5+tGIp22rfXv6mvLd9V44oAAEAnIRgNAAAAAAC0DD/8d/eSpLUOCkb75OHggzZ+64MR7zQAAAAAAKqs3HkGy7n61QEAANDCTkj6O0mvkfRsSZdIukjSsyT9kqRPbBlvJP22pP9TxxoBAAAAoGrmiicD2/tje9QT66tzNe1hILY3sN0VJOQSJaSomh5ee6Ah60ZV8PN6aO3+0OOXS4s6kXukhhUBzePI2mEVbfirJqVMl/bE94Ue79qf5ey6FoqzoedpFTOFjGaLM5G2CQoXTXop7UsMR5pnb3xISS8VMH+015Rq+ebKvQ1ZFwA6wTdXvlbT8QAAAOUQjAYAAAAAAFqGH/GCbSsdFIx2833B7YcnpVLUOw4AAAAAgCoqlsnsJhgNAACgrC9JeqGkg9ban7HW/r219jZr7QPW2gettbdba//KWnujpGslHdmy/RuMMS+qe9UAAAAAsEtr/mpge19sT50raR8X914V2H5V/zMizXN539OrUU5kRVtoyLpRzRSmZBXtYqbZ/IkaVQM0l0zuWKTxV/RdJ2NM6PHlQrna8Xm2k5/pir7rAtsv7422b3fNc0WDXiOm8scbsi4AdIKorzft+JoLAAAah2A0AAAAAADQMqLGey2s1aSMplQqcyzVzFL96gAAAAAAYKuVMuFnBKMBAAC4WWtvttZ+0lpb8SsSa+2XJT1D0re2dP2RMSZWxbLeIemyiH8IZwMAAAAQSc4PPvCry+uucyXt45Lep+qa/hvOaLuo50o9rf/Zkea5qv86Xd57bTVLC8W30cLGGiWzgyCIbH6yBpUAzWcyfzT02H3xYX3P0I9Emr8n1qd+R4Bmpg2Ds6IGz1zV9wxd3he8//7ufS9ROnkg1Dzp5AG9YN+LA/uu7rtel/Y+LVJd1bBcWtBScaHu6wJAuyvagk4WMpG2IRgNAABUU7zRBQAAAAAAAITlRzy2aWYxapRa69rbI80FXyhVC2vSKBdLBQAAAAA0SLnws5WclRT+Su8AAABws9bOGmNeLunLevJN1kWSnifpU1VaY1rSdJRtjOH9HgAAAIBo1h3BaCmvq86VtI+YiemVY7+qZ+x5vh5bP6Kx5CFd3netYhGztOMmoZ+deIPuW/mKHl07ooLNV7XO+1e+qqmA8KSSSlVdp1ZcQRB9sT0aiO0JDIbKtmFgExBkKncssP387kt0VtcFkiQjo7HUQV3ee6364gOR10gnJ7S0tj0gqx0DCF37m+HEmK7oe/oTtxMmqXO6L9SlvU+TZ7zAbQYT+/W6Q2/T15fv1onco7IBl7I2MppIna0r+q5Vd6w3cJ6El9DPTfy27lv+sh5dP6KiLezgJ3Mr2aI+N//fgX1T+WPqj3OwNABU08l8Vr6CT+K5tPdpOrzylW3ti6V5rZaW1RPrq3V5AACgAxCMBgAAAAAAWoYfMedseqk2dTSjVJnf8iyu168OAAAAAAC2WirzubRcaBoAAACis9beY4z5pKQXbmq+UVUKRgMAAACAenAFo3V53XWupL14JqZLeq/WJb1X73qeK/qefkbwTrWsZ1YDg9F82yrBaMEhZ+d2P0UHUudo8lRQMFpwuBHQTkq2qGlHONlzBm/SNQM3VGWddHJCD63dv619ug2fZ659x6W9T9MPjLwq8nzdsV5dt+e5u6xqI4jzyv7rdGX/dbueaytrre5e/LxW/O0HiGdyx3Rhz2VVXxMAOlnG8d7WyNMPjfy0Dj+yPRhN2ggkPaf7wlqWBgAAOkRwvDcAAAAAAEATihqMll2sTR3NKF7mwp0Lq/WrAwAAAACArcqFnxGMBgAAUBO3bLl9RUOqAAAAAIAdyhGM1rE8BR8I58uvcyU7k3EEFaWTE0onJwL7pgtTLRP8BuzUdH5KJRUD+8ZSB6u2zojjeZYtdE4w2qjjPmgHxhiNpg4E9k3lj9W5GgBof65Q0/2JYQ0nRpUyXYH9rrBgAACAqAhGAwAAAAAALcNGDEab3n5BsLaVDz5eRJK0EHycIAAAAAAAdbFSLhhtvX51AAAAdJBHt9webkQRAAAAALBT645gtBTBaG3PM8GnO7ZCcJi1VtlccAjEaPKARpPBYT5FW9BsYaaWpQENN5U/GtjuydNIonpBXq5QsNnCjPJ++1yxaaW0pOVS8NWjXSGM7WIsGRykRzAaAFRfxhFwlk4ekDFGI8lxx3btF0gKAAAag2A0AAAAAADQMvyIwWgLa1KuEHGjFpUrG4zWGfcBAAAAAKA5La27P5eu5OtYCAAAQOfYmiBAcgAAAACAluIKRusiGK3tOYPR5Ne5kugWirPK2eArwqSTE87gCEnKEh6BNjeZCw5GG06OK+ElqraOKxTMymo6P1W1dRqt3D6j7YPRUocC2zM5gtEAoNpcrzenX2tcwb+8twUAANVCMBoAAAAAAGgZUYPRJGlmufp1NKP1grtvIfg4QQAAAAAA6mKlzMXXl9vnwuwAAADNZGjL7ZMNqQIAAAAAdsgdjNZT50pQb55ige2+bf5gtEz+uLMvnZxQyuvSYHy/Y1vCI9DephyhVWOOQJWd2p9IK6Z4YN90oX2eZ67AmZTp0p74vjpXU19jyYOB7YuleS2XFutcDQC0L2ut8/Vm9PFgNFcYZ7bM+2IAAIAoCEYDAAAAAAAtYyfBaHMr1a+j2VhrlSu6+wlGAwAAAAA0UrnP88VS/eoAAADoINdtuT3ZkCoAAAAAYIdyzmC07jpXgnrzTPDpjr5t/i8UXMER/bE96o31S5JGHSFQrm2BdjGVPxrYPpY6VNV1YiamoeRoYF87Pc+y+eBf940kx2WMqXM19TWaCg5Gk6SMI4APABDdcmlRq/5yYF/68fe0rmC0mXxGpRZ4/w4AAJofwWgAAAAAAKBl+Du46ONsBwSj5cuEokkEowEAAAAAGssSjAYAAFA3xpgumyZUuwAAIABJREFUSS/d0vy5BpQCAAAAADu27ghGSxGM1vY8xQLbS2r+LxRcoUvpTWForvCIbP54TWoCmkHRFjSdnwrsG0tWNxhNktLJ8cD29gpGC95nuMIX28me2F51e72BfVPsSwGgasq9Pz39njbteN0pqahThWxN6gIAAJ2FYDQAAAAAANAyypxHrd5UcPvcak1KaSrrhfL9i+v1qQMAAAAAgCDlPs8XdxCCDgAAgLJeL2nzWdYlSf/doFoAAAAAYEdyjmC0LoLR2l7MBAej+bb5v1DIOIOKnvyY7g5Gm6xJTUAzmM5PyXeEG46nDlZ9PVc4WDs9z9xBjMH7mHZijNFYMvhxM5U7VudqAKB9uV43u71e9cf2SJJGkmMyMoHjXO+NAQAAoiAYDQAAAAAAtAzfcSa1MdK+nuC+2ZVyp1+3h1yxfP9avj51AAAAAAAQxJb5aF4MPgcCAACg4xljXmGMSUfc5jWS3rSl+Z+stY9VrzIAAAAAqC1rrXJ+8JUgCUZrf57jdEdXqFIzcQcVHdj07+DQosXSnNZKKzWpC2i0qdzRwHZPMY0kx6u+njuA8LhsuS8uW0TJljSTzwT2jXRAMJokjTkC9abywY81AEB0rmCzdHJCxmyEoSW9lPYlhgPHud4bAwAAREEwGgAAAAAAaBm+46KPRtK+3uC+2dWaldM01gvl+9fyrX8gBwAAAACgdZX7VFoo8ZkVAADA4dWSHjHGvNsY8z3GGMc3IZIx5hpjzIck/a02vjY57YSk361xnQAAAABQVTm7Luv4zXKKYLS25xlHMJp1HDzYJNb9Nc0VTwb2jW4KKnIFNkmER6B9TeWPBbaPJMcUN4mqr+cKB1v317RYmqv6evV2qjCtkoKvqJyuQdBcMxpLBgejZXLBjzUAQHSu96ajW15nN4cAh9keAAAginijCwAAAAAAAAjLd5wr7Rlpb09w31wHXERxPfj4hiesVQhOAwAAAACglspdeL3Y3OcxAQAANFq3pJ94/I9vjDki6VFJC5JKkvZLulJSOmDbWUk3Wmsz9SkVAAAAAKoj5685+7oIRmt7nmKB7b6a+wuF6fyks29zGNpgfL+SJqW8zW0bl82f0NndF9akPqCRpnJHA9vHkodqsl65cLBs/oT2xPfVZN16KRc0Uy58sZ2MpoKD0RZKc1otLasn1lfnigCg/bheb7YGkI4mJ3T/yj2htwcAAIgi+BIKAAAAAAAATch1HrXnSft6g/tmV2tWTtPIVQg+IxgNAAAAANBI5YLRbn+4fnUAAAC0OE/SUyS9UNIPS3q5pO9WcCjapyVdaa29r37lAQAAAEB1rJcJRkt5XXWsBI3gmeDTHX1bqnMl0WTzxwPb4yahfYnhJ257xtOII7QpQ3gE2tRk/lhg+5gj3Gq3+mID6o31B/Zly4QYtgrX/mZffFhJL1XnahpjLOl+7Ezlgh9vAIDwCn5BpwrZwL7R5IEzbm8NSjuNYDQAAFANBKMBAAAAAICW4Tsu+ugZabDXBPbNrdSwoCaxXizfv5avTx0AAAAAAER1cll6eLpMchoAAEDnerukf5H0WMjxK5I+LOm7rLXfZa0NPkMSAAAAAJpcrkwwWpfXXcdK0AieiQW2l5o8GM0VajaSGN/2M6Ud4RHThEegDRX8gmYcYWTjqUM1W3draMtprlCxVuIKmnGFLrajwfh+dXk9gX1TjiA+AEB4JwsZ+Qo+eWfre9lRx3vb5dKilouLVa8NAAB0lnijCwAAAAAAAAjLd5wnbSQNOo55W1xr/5Or1wu76wcAAAAAoJYqfTL/wFes3nhTcOA5AABAp7LWflgbQWcyxgxKulTSQUlpST3auDDuvKQ5SQ9I+rq1TX6WOAAAAACEsFYmGC1FMFrbiyk4GM06ghmahStsaTS1PSjCFYzmCjsCWtl04YQzWGU0ebBm644kx/Xw2gPb2tvheZZ1BM259i3tyBijseRBPbL+4La+DMFoALBrrtdLT56GEqNntKUdYaSn5+mLD1S1NgAA0FkIRgMAAAAAAC3DFYzmedKA45i3Bfdxcm2jUOE0pzWC0QAAAAAADWQrJKP9zoet3nhTfWoBAABoRdbaeUm3NboOAAAAAKiHnCMYLWGSipng0Cy0D2O8wPZSk2eBu4OKtgdFuMKLpgtT8m1JHo9ztJGpXHBooKeYRpJjNVs3nWjfAMJpx8/QScFokjSaOhAYjDaZO9qAagCgvWQcob/7E2klvMQZbQOxQXV5PVr3V7eNzxZO6DxdXJMaAQBAZwj+TSEAAAAAAEATcp1I7RlpjyMYbXG9dvU0i1KFi2ESjAYAAAAAaKQKuWgAAAAAAAAAADxh3RGM1u311LkSNEJMwaFgvpo3GM23JU07gtFGA4KKRgPC0iSpaAuaLcxUtTag0abywSFV6eS44iYR2FcNrpCwU4UZFfzWPah2tbSsxdJ8YJ9r39KuxpOHAttdYT4AgPCihHAaYwLf80pSxhGQCgAAEBbBaAAAAAAAoGX4OwhGWwg+Tq6tVAxGy9enDgAAAAAAgriCzgEAAAAAAAAA2MoVjJbyHAeIoa14Jvh0R99WOEiugWYLJ1WwwQfppQOCikaS4865CPRBu5nKBQejjaUO1nTd0VRwSJiVr5nCVE3XrqWsI4RRKr9vaUejjsfQfPGU1korda4GANpLJkIwmiSNONqzjnkAAADCije6AAAAAAAAgLBcwWjGSHu6jaTtAwhGk9Za9+J2kqSFVav33Gn11aMb/9fXnCX91LOMUgnT6NIAAAAAACEQjAYAAAAAAAAACCvnCEbrIhitI3hyBKOpeYPRsmXCzIKCilJelwbj+zVfPBUw16Quq2p1QGNN5Y8Fto8lD9V03aFEWp5i8lXa1pfNH9d4qrbr14orYCZpUhqM769zNY01lnSH603lj+nc7ovqWA0AtA9rrfP1ZjQg9HejnWA0AABQGwSjAQAAAACAluEKRvOMNNAV3Le0Lvm+lee1b4hWpWC09cLGF1TGtN59MLNk9dw/9fXApgv0ves26d23W33+dZ6S8db7mQAAAACg05CLBgAAAAAAAAAIa90RjJYiGK0jeCYW2O7b7eFGzSLjCHzYGx9yBvqNJg84gtEIj0D7KPgFzeSnAvvGahxMFjNxDSXSmi5Mbutr5eeZq/aR5Lg8Exws2a72xoeUMl3K2fVtfVM5gtEAYKeWSgta81cC+9IBob8b7cGBaScLGRVtQXGTqFp9AACgs3TWJ10AAAAAANDSbJlgtD1ljntb2v6dd1txBcZttl6ofR218I7P2TNC0U770qPS336eU+sBAAAAoBW4Ps8DAAAAAAAAALBVzhGM5gqYQnuJuYLRVOHqoQ2UzR8PbE8nJ5zbuPpccwGtKJs/4XzujiUP1nx99/Nse1haq5h2BKOV29+0K2OMxlLBj6NM/lidqwGA9lEuQNQVgOZ6HfLlayafqUpdAACgMxGMBgAAAAAAWobvOJO6UjDaQvCxcm2jFOKYr7UWDUa75T732fP/fCdn1gMAAABAK+DTGwAAAAAAAAAgrHWC0TqacZzuWLKlOlcSXmYHQUXtGNgEbDWVPxrYHlNcI8mxmq/vfp65A1+anav2TgxGk6Sx5KHA9qkcwWgAsFOuoN4er099sYHAvuHEmPN9fCu/7gIAgMYjGA0AAAAAALQM33EmdccHozkC4zZbb8FgNGutDpc5zuvuR6WHpzm9HgAAAACaXYiPrQAAAAAAAAAASHIHo6W8rjpXgkaImVhgu9/EwWjTjrCH0eQB5zauEKPF0pzWSitVqQtoNFc4VTo5rpiJ13z9csFotgW/wPRtSdOFqcC+Tg1GG00dDGyfyhOMBgA7VS6E0xgT2JfwEhpKpCPNBwAAEAbBaAAAAACAUP7nQauX/HVJN7ytpDd+yNfyeut9IYzW5wpGM0Ya7HFvl1msTT3NouRXHrOWr30d1XZ0VlrOlR/z719hXwQAAAAAza4FzysAAAAAAAAAADRIzhGM1uWVuXIm2obnON3RV4iD5BpgtbSsxdJ8YF+5oKJyfYRHoF1M5Y8Gto+lDtVlfdfzbM1f0VJpoS41VNNsYUZFG3yV5E4NRhtzBFDOFU9qrbRa52oAoD1kygSjleMOJD2+65oAAEDnIhgNAAAAAFDR579l9cK3+/rI16TbHpbedovV9/2V35JXy0Jrcz3kPCMl40bpgeD+Y7Pt/VgNFYwWfCxEU3t4pvKYz3+rvf9vAQAAAKAdhPnkVijy+Q4AAAAAAAAAIK07gtFSBKN1BM/EAtt925zBaOVCzEYdgT2SNBjfr6RJRZ4TaCVTuWOB7WPJg3VZv90CCMvVPJIcr2MlzaNcyF6GIB4A2JFpx+tNufe2UrlgtMld1wQAADoXwWgAAAAAgIr+8tO+8sUz2/7nW9LN32hMPehcfplgNEk6uDe4/+hsbeppFmGC0XLFymOazWq+8pjDfE8GAAAAAE0vTLb+SojPgAAAAAAAAACA9pdzBKN1EYzWETzH6Y6+SnWuJBxX8E7KdGlPfJ9zO894ziCjTAsGNgFbFfy8ZgqZwL6xVH2C0fpiA+rx+gL72ikYbTC+v2NfI/fGh5QyXYF9mXxwMB8AwK3gF3SyMB3YVymE0xWclskflw1z4BAAAEAAgtEAAAAAABV91fG94K9/oDmvwIf25QxGe/w3HAcdxxEdm6tNPc3Cdb9s1orBaIUQx7Idm5MWVvmiDAAAAACaWZhPbSu5mpcBAAAAAAAAAGgBawSjdTTPxALbrax823zHrLqCitKpAzLGlN3WFR4x3YKBTcBW2fwJWQU/Z8eSh+pSgzFG6eREYF9rBqMFX0nY9TN2As94SqeC96VTOYLRACCqmcKU8/Xb9d71tLQjOG3NX9FyaWHXtQEAgM5EMBoAAAAAoKJHTga3Hwm+EAhQM77juKbThw8d3Bd8INHx2fYOziqFON4rV6h9HdVWKIX7f/tm8EUFAQAAAABNIsyFX1fyta8DAAAAAAAAAND8co5gtBTBaB3BK3O6oyukoZEy+eOB7aMhgopGHOERmRYMbAK2msofDWyPm7iGk2N1q6OdgtFc+5tODkaTpPHkwcB212MQAOCWdbzWePI0lEyX3TZdJjiN97cAAGCnCEYDAAAAAOxKMWRwEVANrkeb93geWnoguH8++Fi5thEmGC1fqn0d1VYIWfPR2drWAQAAAACovcU2/+wOAAAAAAAAAAhn3RGM1uX11LkSNELMxJx9Jdt8B8G5wpXKBUM8OSY4zGimMCW/CX9WIIrJ3LHA9pHERNnnebW1UzDatHN/09nBaKOuYDTHYxAA4OZ6fRxKjCpuEmW37YsNqNfrd8wbHLgGAABQCcFoAAAAAIBdyS42ugJ0Et+RjOY9/huOPY6Lgrb7ydVh8glzhdrXUW1hg9GOzRHQCAAAAADNzIb42Da/Wvs6AAAAAAAAAADNrWSLKtrgA526PMfBYWgrXpnAJF8hriBaRyVb1Ew+E9gXJqho1BGeVrQFzRZmdlUb0GhT+aOB7eOpQ3Wtw/VcPFXIOl9vmtFaaVULpbnAvk4PRhtLBQejzRZnnGGrAIBgmV2EcBpjNJIcD+xrxUBSAADQHAhGAwAAAACUVSiWP3P1ePB3rEBN+I7jmjyz8fdAV3D/4npt6mkWpRDHe+WKta+j2vIhaz46W9s6AAAAAAC7EybOeoFj0gEAAAAAAACg45ULMCEYrTN4ZU539G3IK23WyclCVr6CaxoNER7hCo6QpEz++I7rAprBVO5YYLsrxKpWXEEuvnxnsGEzmi5MOvvSZfYlnWAs6Q7by+TYlwJAFNO7CEaT3MG/rsA1AACASghGAwAAAACUtZov339ivj51AJLkO86kfjwXTf1dJrC/3YPRXPfLZrkKIYfNqBDyOLbjs633swEAAABAJ7EhPrbNr/HZDgAAAAAAAAA6XblgtBTBaB3BM+WC0UJcQbSOXIE7Rp6GE2MVt095XdobHwrsy+bdIUhAs8v7OZ0sBIeOlQuxqoWhxKgzcDHbQiEtrloTJqm98eE6V9Nc9iWGlTDJwL5MPjigDwCwnbXWGWAWNhjNNS5L6C8AANiheKMLAAAAAAA0t7VC+f7JeasnY6mA2nKdIu09fszCQFdw/0pOKvlWMa89H6ulEMd75Yu1r6PawgajHZurbR0AAAAAgN0JE3k2v1rzMgAAAAAAAAAATS5XJhiti2C0juAp5uw7nntEvcX+Hc07GN+v/vienZYlSVorrZ4R9nRk7XDguKHEiBJecEjPVunkhOaKJ7e1P7L+oI6tf3tnhUrq9nq0P5GWMe15zCQao2SLyuZPqGTLH9w5U8jIOr4hHEsdrEVpTgkvof2JtGYKU9v6Hlo7rP2JkbrWs1MPrz4Q2D6SHC8bKNkJPONpNHlAx3Lb95lH1g5rInX2jufujfVrX6I1g+fCPl8364n1tcxzAqiXki1poTirpJdSX2ygrmv7tqRsflJFW+GkrhDC7M8WS/Na94MP3hlNHgi1jisY7VRhRo+tP+QMK90pI0/p5IQSXqKq8wJAo3116Q5l8sc1mpxQOjmh4cRY6N8zAO2GYDQAAAAAQFmr+fL98+7jkICq8x0BYKfzzgbKHPu2tC4N9lS/pmYQJhgt187BaLO1rQMAAAAAsDs2RDLaAr9jAgAAAAAAAICOt04wWscrF/Dzl8fftKu5L+i+VK8e/y0NxAcjbZf3c3pf5h368tIXZFX5YL10yOCIjbET+ubq17a137N0m+5Zui1SnVvtjQ/pp8Z/U+d1X7SreQBrrT479zF99OT7lLe5Hc8TN3ENJUarWFk46eREYDDaZ+Y+ps/Mfazu9VRTOjne6BKawljqUGAw2h0Ln9YdC5/e1dzp5AG9Zvx1Gk8d2tU89WKt1a2zH9bHT31AObseefuRxLh+evx1OtB1dvWLA1pA0Rb02PrDOrJ6nx5au1/fXntA6/6aPHl6+sBz9WOjr1XM1D6e446FT+s/pt+lVX+5anOOJg/oNeOvd4aUZvPHndu6As+2rZEKfh9s5ettj/1mqDmiSpikru6/Xt839KOEOwJoG19Z+oLuWbr9idtGnvYnhnX9nhfoxv0/2MDKgPrr7ChwAAAAAEBFFYPRgi8IAtSE7ziR+olgtC73tottfIJ1pwejZZekfDHEWfYAAAAAgIYIE4xG+D4AAAAAAAAAwBWMZuQpYZJ1rgaNEFOsZnMfWTusd039eeTtPnryvbp76X9ChaJJ4YMjoo6Naq54Un917M1aK3GgL3bnvpWv6IMz/7irUDRpI2AqZmr3HHev277hYbXch7SSsWRwyE81ZPPH9VfH36KSDXlQc4N9dfl2/efJ9+woFE2SpguTevvx31PBL1S5MqA5Ffy8vrV6n24++W96+7H/T79x5Mf0Z0ffoI+efK/uX7nnic8nvnzdufgZfSD79zWv6aHVw/rnzP9f1VA0ScpU2J9l85OB7b2xfvXFB0KtMZRIy6vh+/kgBZvXlxY/p7c88gv6z5n3aK20Utf1AaAWMrkTZ9y28nWykFXBVjjRF2hDtY+kBQAAAAC0tErBaAuctIo6cgWjmdPBaGUuCnrvMenQ/urX1AzaNRgtH7Jma6UT89I5Q7WtBwAAAACwM2GirBc4JwcAAAAAAAAAOl7OEYzW5XXJnD5IDG3Nq3Fo0oOrX9dsYUb7EsOhxvvW1x0Ln4m0xmjyQOixtQ41ytl1fXX5dl2/57tqug7a250RnwMutQyvKqedw8NGEu37s0UxlqrtY2u+eErfXP2aLu19ak3XqYa7F7+w6zlWSkv65urXdHnfNVWoCGguOX9dj6w9qCNrh3Vk9bAeXf+WijZ8EOAXFm7RtQPP0fk9l9SsxnuX76rZ3HPFk3pw9eu6pPfqbX3Z/PHAbaK8t42ZuIaTo8rmT1QeXGVFW9AnZz+k2xc+pZv2/7CeM3ijYoYoFQCtx7e+ZgpTgX3t/NkGcOHVHAAAAABQ1lqlYLTVMKe2AtVhHQ8373QwWpd72z+6xdf3X1X/K83VQynE07AVg9EKES6udvQUwWgAAAAA0Kxcn+c3W1jjd0wAAAAAAAAA0OnWHcFoKa/MFTPRVgbig+ryup2PhWo4kXssdDDaXPGk1vyVSPMf7Do39NgDqbPlyZOvEFdH3aETuUdrNjc6Q7UeQ2d1XVCVeaI61HVeQ9ath3b+2aI4mDpXRkY21CW7dubE+qMtEYw2kw8O0Yg8jyOMA2g16/6aHl57QEdWD+vI6n16bP0h+YpwkkKA92f/Rm88+88VN4kqVXmm2cJ0TeY97UTuscBgtKncscDxI8nxSPMfSp3XkGC005ZLi/r36b/X/8zdrBcP/4Su7LuOkG0ALWWuOKOCDT6hl2A0dCKC0QAAAAAAZa1WCkar3bEnwDZ+hWC0rjLfLbXzY9UPcUxUvs2D0U7MW0l8YQUAAAAAzSjM4efzqzUvAwAAAAAAAADQ5FxhWF0Eo3WMuEnoaf3P1m0Lt9ZsjWz+uC7XNaHGZvLHI819dtcFOpgKH4zWHx/UVf3P1D1Lt0VaJ4psrnHBFGh9JVvUyUJ21/OkTJeuG3ju7gvagYOp83RW1wV6bP1IQ9avlfO7L9VY6mCjy2gKexNDurzvWn19+Us1W6ORIT9RrPhL1ZmnVJ15gHpbLS3robX7N4LQ1g7r2Pq3ZascQDuVP6ZbZ/9TN+3/oarOe1otA3OljffCQabywcFo48lDkeZ/9uALdffS5yPXVW3ThUn97eQf6bzui/XS4VfpnO4LG10SAISSKfO+k2A0dCKC0QAAAAAAZVUKRptv47ApNJ9KwWjlruRS6bHcykohzjDPtXkw2sxy7eoAAAAAAOyODfG5tZ0DzQEAAAAAAAAA4RCMBkl6Wfpn5ZmY7lm6rSbBLFHCbbK5cMFoCZPUxb1X6cfTv1j2OMYgPzH6y0qalO5dvlPrfvWvJJMttEaYD5rTTD4jXxEO5tzCyNPBrnP1o+mfV198oIqVRajBGL124nf1vuxf64GVe1WwrX1AcdKkdGnvU/Vjo7/Q6FKayivHfk3/mv2/+vryXc73E7sRNSizEay1WiktVmWu5SrNA9TacnFRR9YO68jqYT20dp9O5B6TDXX5vt35+KkP6Gn9z9JIcrzqc/u21sFo298brpVWNF88FTh+NGII5wU9l+qnx1+nj868V9OFyR3VWE0Prz2gPzn6Oj2t/9l60dArNJRMN7okACjL9TuLPfF9/H4MHYlgNAAAAABAWWuF8l8KcNIq6skVjLb5OKI3f7/Rmz+6feDsSo2KagKlEN99tX0wGhcmAwAAAICmFSYYjfB9AAAAAAAAAEDOGYzWU+dK0EgxE9fL0z+nHxn5mV0FhX1k5r36wsIt29qjhNtkHCckX9B9qX524o1P3E55XYqZnZ2qmfRS+omxX9aP21/YVZjPAyv36h+m/nRb+2xhRnk/p6SX2vHc6Fyuk/KNjP7wvHcpXuFxHzeJpnjs9cf36OcmflslW1TOX290Obuym/1NO+vyuvXKsV9VyZac7yfCuHPxs/rg9D9sa8/mT8haGzn8sp5ydl1FG3zA+C8deLPO6jp/W/u/T/+D7lr87Lb2agWsAdW2UJx7PARtIwxtKn+0JuukTJfO675YObuuh9ce2NZftAW9P/s3+uUDb636fsG3wSdRPHfwe/W9Qy8LPc8dC5/Rf8z847b2oNf2cu+Px5LRgtEk6an91+up/ddr3V9z/jzVcM/Sbfqvk+/XYmm+4tivLH1RX1u+U98x+D26af8PqSfWV7O6AGA3srngz2CjyYk6VwI0Bz79AgAAAADKWq1wUaz56l+cDnBynUjtbfou6YbzjRRwlZ+ldalQtErEm/cL6Z0KFYxWqH0d1ZaP8B3YNMFoAAAAANC0wlyLl98xAQAAAAAAAABcoVApr7vOlaAZeMbbVWDBROqswHZX0FMQV0jEeOqsqocpeCa2qzkPdp0b2G5lNZ2f1IGuc3Y8NzqX6/myLzGigfhgnavZvZiJE4TS5mK73JceSAXvK1f9ZS2XFtUf37PjuWutXJjZ/kQ68H7ZE98XOH65xIHZaA6zhRk9tHa/jqzepyOrhzVdmKzJOt1ej87rvkQX9FyqC7ov1cGu8xQzMS0V5/WWR35Rq/7ytm0eXP2GvrT4OV2353lVrcVX8MkhKS8Vaf/meu+3XFrUcmlRfbGBJ9qm8seC1zRd2hsfCr3mVl01/hz37MEX6pqB5+jW2Q/rU7P/qYItfwJc0Rb16bmP6I6FT+um/T+s5wzepISXqGmNABBVthD8GWyEYDR0KILRAAAAAABlVQpcWtj5BZWAyPwQwWj7et3bz69Jw/3VrakZhAlGK9TuQjs1U4xQ88ximNPsAQAAAACN8P/Yu/M4R+oC///vqtzp+0y6p+eCaY7pAeELKKCCoCwKioAiC4uI51fddVdd15/ren69VndlxQtW3eVQEUFALkGRGx0YUI6ZnhnoYRimj+mk73Tuoz6/P4aZ6Zl8PpVKd5KuJO/n4+HjIakcn0lXKpWkPq9Shc4XiiQBwxDQ9doLmhMRERERERERERGRNaowWrkn1FNtCnj6pJdHcxFEsxE0OpulyxcKKcJoQbf8vpdThysAB5zIIZu3bDw9yjAaLYpqUn6Ak/KpRplt30PpEVuH0cxiZo0O+QH0DYrLYwyj0TIQQmAqE8ZQYm8EbSgxiKlMqCyP1aA3YZ1/Pfp9A+j3b8AKz2romiPvek3OVlzQ9T78MvQj6f3cOnEtBhpOsLRfaVVOyCdRyMZnJmjyXh1Kj6HRtyCMltotvV6PZyU0zd7H8Xh1H97ReSne2HI27pq6EU/MPQhR4BSOcSOKWyf+F4/M3oPzuy7H8Y2n2v7fSUT1I5SSfw/Bz2BUrxhGIyIiIiIiIlOqENU+qSyQzAh4XfwSmMpvqWG06Vj9htFS+cc62V4xMbcwf38nIiIiIiKyLStxy7uEAAAgAElEQVQpayGA+STQ4i/7cIiIiIiIiIiIiIjIplIMo1EJmccgRgsGLGK5eczn5qTL7Dgh2aE50O3uwZ70cN6ycFoetyIqJJwek14ecPdWeCREldHkaIFPb0DCiOUtC6XHsM4/sAyjsiaai0gv16HDq8t/iFcF01T3RVRKQgiEM2N7I2jxQQwltmA2O1WWx2pytKDfP4B+3wb0+wcQdK+ErumWbntqy1vwZORh7EgM5i2L5iK4beI6XN7zjyUbq4B8cogDxYXRmh1t8Op+JI143rJQegSH+47a/997lDHglUU95nJqdXXgvcFP4IzWd+D2ieuwLf5swdtMZkL42dh/YK33SFzYdQUO9x9dgZESEaklcnHM5Waky+wYaCeqBIbRiIiIiIiIyJSV4NJcAvC6yj+WepBI750q7HMzNCejCqNpRYTRalGhgCEApDJWpqHbC8NoRERERERE9WU2wTAaERERERERERERUT1LKsJoHobRaBHMYhDj6ZGC4YNxk5hY0GPPSETAvUIaRhtXxC6ICgkpXgcBl/3igESloGkagu4+vJx8IW+Z3bel0aw8ZtbgaFIGoBod8khoLBeBEAKaxjkNVDpCCOxJD2MovgVDiUHsiG9FRBF/WapWZwf6fQN7Y2j+Deh29S56fdY0DZcEPopv7voUcsg/W/0TkQdxcssZOMJ/zFKHDQDICfkkCs1iyO3A9TUE3CvwSnIob9l4auSQ/87ffwSAHs+qoh7TDvq8a/CJlV/B1tgzuC18HcbSrxS8zcvJF/Dd4X/F8Y2n4J1dl6Pb3VOBkRIR5Qtn5GFqgHFqql8MoxEREREREZEpK8Gl2TgQMD9xHhUQSQh88HoDdz63N/J1/nEafnq5hiYvf0xcSCjWR33B0+R3Ay6HPKo1k398U02wEjBM5f8GZ3vprPWYG8NoRERERERE9qX6PH+oOfl8NyIiIiIiIiIiIiKqEylFGM2reys8EqoF++I2u5Iv5i1TxZ4Ovo48gOPVfWhxtC15fOUQcMtjVVb+vUSHiuXmEc3JQ0uqdY2oFgTcvdIwmt23pTFDfjC1Kn5mtiwrskiJJLwa47S0eIYwMJrahaHEIIbig3gpsVX5vrJUHa7uV0NoG7DOtx6drmBJw349npU4u+Nd+N3Ur6XLbxy/Gv+25ntw6e4lP5YB+eQQBxxF35cqjLYwvJM0EpjOTkhv3+PuK/ox7WJ9w/E4as2xeCLyEO6a+CXmLET4noluxHPRTTit9W04p+M9aHRyohwRVdah4cp9XJobbc6uCo+GyB4YRiMiIiIiIiJTVsNotDQfut7ArX898N83Py3g0IFffohhtIVU6+PCMJqmaehoAMYlv5m9MiUA1N5zmrPwOo2nyz+OUpPF7VTmk0AyI+B11d7fl4iIiIiIqNpZDaPxOyYiIiIiIiIiIiKi+pZUhNE8OqMctDhB9wppGG1cET076DqKCckBd19JQxulFFDEK0LpURjCgK7pFR4RVTOzCBTDaFTL1NvSwu8dyymmCE41OJqUtzFbFstF4OU+GBUhJ3IYTu7EUGIQO+KD2JHYioQRK8tjdbt60e8fwDrfevT7N6DdVf5YzNnt78LTkccOiortE86M4ffTt+LtnZcs+XEMIZ9EsZj9uKDi/Xrhfu54alh5+x7PyqIf0050zYFTW96CE5regAem78D907cjJZKmtzGQw8Ozd+PJyIN4a8dFeFPruSUJ3hERWRHOyD+Ddbt7+Xme6hbDaERERERERGQqJz/ZyEHm5McikUXhiMBtz+RffsvTAj+4RKC9wZ4H0CwHZRjtkO/21nXLw2hb8n+DqglWXqczVTi5vJgwGgBMzAMr28szFiIiIiIiIlo8i100fsdEREREREREREREVOdUYTRGOWixlhK3UcXTgor7tANV/CItUpjNTlUkGkK1QxVG82hetDh5sCbVLlX4bzITRsbIwKW7Kjwia6LZeenlDY5m5W0aTZZFc/PocAWWPC6qXVmRwSvJl7AjPoihxCB2JrYp9+eXqse9Eut8A3tjaP4BtC7D+5BLd+OS4Mdw1fAXpcv/MH0rTmx6I4Kepe0rGpBPDtFRfBBHvT0bR1Zk4NRc2JOWh9E8mhdtztrYd/ToXpzTeTFe3/o3uGfyV/jT3B8hFM/zPgkjjtsnrscjM7/DO7suwwlNb2SUiIjKbjwl/wwWcPdWeCRE9sEwGhEREREREZlShagWmk0IAIx3LdamXfLnOWsAz+wG3nx0xYdkW4bit4dD176BFRoe35H/pA6OWp2KXV0YRtsrzDBa3Xlou8DX7zEwMQ8cv0rDdy/S0NnE9yMiIiIiIrsRFj+Oz8b5HRMRERERERERERFRPUsxjEYlZh63ScOlu5W3VUWhVPdpB2ZjC6VHGUajooTS8rMRd7t7oWn8TY9qlyqAKWBgIrMHvZ5VFR6RNTFDclZxAI2OJuVtvLofOnRpiCmak98f1a+Mkcau5BCG4lswlBjEy4kXkBapkj+OBg29ntXo3xdC861Hk7O15I+zGEf6j8HJzWfiiciDecuyIosbQ1fjkyu/tqSAliEUYTTNUfR9qSLBBgxMpkMIevqwJyUPowU8fTUXAmtxtuHS4Mfxpra347cTN2BL7OmCt5nOTuDaPf+FB2buwoVdV+AI/4YKjJSI6pX6ewj7BtqJyo1hNCIiIiIiIjJlJYw2V56TutSNF0PqJ3n7uMCbj+bBA/uonin9kKfoGMWxPdvHSzoc21AF4xaajpV/HKVWdBiNv7/XlWeHBc7+noHsq+v/ljGB258RmP6eDqeD200iIiIiIjuxmimf5XdMRERERERERERERHVLCIGkkZQu8zCMRotUOG6zWro8Y6QxmQkVdZ924HM0oNnRhkhuJm9ZKD2KoxuOW4ZRUbWqxjggUSl0ugPKWFgoPWLbMFo0Ny+9vMHRrLyNrulocDRhPjeXf39ZHphd79JGCjsT2zGUGMRQfBC7ki8iKzIlfxwNOlZ61qLfP4B+/wYc7jsaDSZBv+V2YdcV2Bx7CjHJa25HYhBPRB7EqS1vWfT9G5BPotBRfKSsy9UDDTqEZHs2nh7ZG0ZLy8NoPe6VRT9etej1rMLH+76A7bHncNvEdRhJvVzwNruTO/C94S/g2MbX4vzOyxH02PczARFVJ0PkMJHZI13Gz2BUzxhGIyIiIiIiIlNWgkuz8fKPo5ZtlX9nBQDYIj/ZWt1Shfr0Q37j6e/WIJt2HZ4HUhkBj6u2oklWAobzSSCTFXA5q+ffns4Wd/3QvABQPf8+Wpp/ve1AFG2faAo49/sGfv+p4s+IRURERERE5SMsltEY3yciIiIiIiIiIiKqXxmRlk7YBwAvw2i0SF3uIHQ4pIGJ8fSoMow2kdmjXB/tHEYD9k6YjiTkYTSiYoQZRqM65dRc6HQFEc7kH8g/buNtqSpk1lggMKUKo8UMeWiNalfSSOClxDYMxQcxFN+C3cmXkEORB/RboMOB1d51e0NovgEc5jsKPkdDyR+nXBqdzXhX1wdww/hV0uW3ha/DMQ0nosnZuqj7N4R8H1TXij8+3qW70OnqxkRmPG/Zvn3D8ToMo+1zVMNr8Dn/d/FU5BHcMfkLzGanCt7m+egmbIk+jTe0no1zOy5e9N+ZiOhQ05lJZERauizIz2BUxxhGIyIiIiIiIlM5CxNXI/KTNJJFk/PqJ3lw1OLM4TqhCvXph7SwVrap72NkBji8u3RjsoOchYAhAMwmgC77njwpT0Z+siOlqWh5xkH2Mx0T+P2gfNn924ChkEB/gJE8IiIiIiK7sBpGY3yfiIiIiIiIiIiIqH4lDPWXxAyj0WI5NCe63EFpFCyUHlHeblyxTIcDXe5gycZXDgH3CgwltuRdrvo3EckYIoeJjPzMzwGbxwGJSiHo6ZOG0ewcmYzlVGG0ZtPbqZar7o9qRzwXxY7EVgzFB7EjsRXDyZdgKMKwS+HUnFjjPQL9/gGsezWE5tG9JX+cSnpd85vwZORBvBDfnLcsbkRx68S1uKLnU4u6b1nQFwAciwijAXvft+VhtBEkjQSmMmHp7Xo8tR9GAwBd0/G6ljNwfNOpeHDmLvxh+lYkDfMzOxow8OjsvdgUeRh/034hzmw7D27dU6ERE1GtCmXU+5ndDKNRHWMYjYiIiIiIiEypQlQLRRlGWxKz+NOWMUAIAU1j4AcADMVE6kOfnZXt6vvYPV2/YbSZeG2H0aZj5RkH2c9fXzFffuMmgS+/g9tNIiIiIiK7sJp9nzU/rpCIiIiIiIiIiIiIaljKZPK5V/dXcCRUawLuFdKQzXhKPel4PCWPiHW5e+DQ7D0lM6iYMG3nmA/Zz1QmjKzISpcF3L0VHg1R5XW75Ou5XbelQgjEjHnpsoYCYTTV8mhWfn9UvaLZCIYSg6+G0AYxmtoFYfmIDutcmhuH+Y7EOt8A+v0DWOM9ouaiUZqm4ZLAx/D1Xf+ErMjkLd8UeQSvaz4DRzccV/R954R8EoUGvej7Ava+b2+RzLMIpcdMt2k97voIo+3j1j14a8e78fqWt+B3Uzfjsdn7CoYCk0YCd07+Eo/O3ofzOi/Da5tPh64t7u9ERBRSfA/R4mznCQOortn7WzgiIiIiIiJadqoQ1ULzqfKPo5aZxZ9m48DYLLCirXLjsTPV+qgf8ttBg0dDe4M8lLV7WiA/pVbdclZeqKi+cFixYbSpKvv30eIViiU8vav0P9ITEREREdHiCYu76JE49+WJiIiIiIiIiIiI6lXSNIzGCaC0eEF3H57HprzLQ2n5pOO9y+SRCFV0zE4Cnj7p5bPZKSSNBF9PZIlZKKWbYTSqA0HFtjSUHrHlSc9TIqmMGTY6zM+qrVoezUWWPC5aXnPZGeyID+6Poe1J7y7L43g0Lw7zHYV+/wD6fRuw2rcOTs1Vlseyk253L97WcRHumrxRuvym0DX4tzVXFR2FE0Ie43IsMrgVcMu3Z+PpEexJydcJl+ZGu6t7UY9X7Zqcrbg48BG8qe1c3D5xPZ6P5n+OONRsdgo3jF+FB2fuxIVdV+CohtdUYKREVGtC6THp5dXwPQRROTGMRkRERERERKZy5ie4AABEk+UfRy0rFH96aYJhtH1UE6l1yW/Lq9rlIbAXQ6Udkx3kLM4bnysQk7Ib1WtD0+TrwgzDaHUjlTVf6QflvwcQEREREdEysZo7KxRBJiIiIiIiIiIiIqLaZRZG8zDkREsQVMQgQulRZdxmXBFNU4Ul7CTgUk+aDqdHscq7roKjoWqlCqO1OTvh0b0VHg1R5am290kjgUhuBi3O9gqPyFw0q46YNTiaTW+rWh4z5pc0Jqq8mczkqxG0LRiKDyKcKc8B1V7dj3W+9a+G0Aaw0nsYHFp9JivOar8AT0Uele47TmTGce/ULXhn12VF3WcO8klcGhyLGqMqqJMwYngxvkVxmz7oiwyx1YqAewU+uuLzGIoP4raJ6/BKcqjgbUZSL+P7I1/GQMMJuKDrfej1rKrASImoVoQy8s9g3QyjUZ2rz71MIiIiIiIissywMHM1mrQ6vZVkCoXRdk8LAPY6q9RyUa2PsjDakQENzw7n32DLaO2tr1YChgCQzJR3HKWWVrw2gs3Anrn8y6ditfe3JblUgXVZtk0gIiIiIqLlowqdH2omXt5xEBEREREREREREZF9pRRhNJfmhkNbXASACFDHbVIiiZnsJNpdXQddbghDGYVSRdbspN3VCZfmRkak85aNM4xGFqleAwFOyqc6EXD3KpeNp0dtF0Yzi5g1OppMb6tabhZbo+UnhMBUJoyhxN4I2lBiEFOZ8pxBvkFvwjr/evT7BtDv34AVntXQuX8OAHBqLlwa+DiuHP68dPn907fjpOY3otez2vJ9CiGfHOJYZKjM7L17c/Qp6eU9npWLeqxa1O8fwL+s+jb+Mv847pj4OaazEwVvMxj7C7bGnsGpLW/G2zsvsd17BhHZUyglD7RXw/cQROXEMBoRERERERGZshJGm0+Vfxy1rFAYbXimMuOoBqr1UXLCRmxYAfz66fzLN8uP1ahqVl6nAJDMVFdkT/XaUIXRpmPlHQ/ZRyprvnxkFjAMAZ2FNCIiIiqBTFbg334rcMezAi4HcPkpGv7lbE165ngikrMaRhuXfNYjIiIiIiIiIiIiovqQVITRPLqvwiOhWmMWtwmlR/PCaLPZKaSF/MDYYBVEoXTNgW53L0ZTu/KWqWJXRIdiGI3qXaOjGY2OZkRz+XGwUGoER/qPWYZRqcnGCQA6dPj0BtPbNjqapZfHFPdJy0MIgXBmbG8ELT6IHYlBzGQny/JYTY4W9PsH0O/bgHX+9ehxr4K+yChXPVjnX4/Xt5yFP83dn7fMQA43jl+NT6/6puXnMAf5JAodi4vRNTpa4NcbETeiectUUcWgm2G0hXRNx0nNp+G4xpPx8OzvcN/UzUgY5md/FDDwp7n78XTkMZzVfgHe3P5OeHRvhUZMRNUmkYtjLiefQMrPYFTvGEYjIiIiIiIiUzn5yUYOEk2Wfxy1LFsgjLZ7ujLjqAaqAJisfXTMCg1A/g12TQHzSYEmb+1EDKy8TgEgmSnvOEpNGUZrATCcf/lU/m91VKMKhdHSWWBkBljVUZnxUOkJIfD4jr0BjWP7gFZ/7WyziYio+nzk5wLXbzzw2eJztwnMJYBvXMD3JyKrLHbRsGcOyOYEnA6+voiIiIiIiIiIiIjqTUoRRvNy8jgtkd/RiGZHGyKSScbj6REc3XBc3mUqAXdfycdXDgH3CkUYTf1vI1oolB6TXt5tEhokqjUB9wpEE/lxsHEbRiajWXnErMHRVPDEfw2KMFo0Nw8hBE8cuEyEENiTHsZQfAuGEoPYEd8q3ZcphVZnB/p9A1jnH0C/bwAB9wr+3Yt0Qdf78Hx0E+Zz+WcE3Jncjj/N3Y83tp5t6b4MoQijLTJOp2kaAu4VeDn5guXb9HpWLeqxap1Ld+Os9vNxSsuZuHfqZjw6cx9yMJ/YkBJJ3D31Kzw2ex/e3nkpTmk5E7q2uMgdEdUus4g5w2hU7xhGIyIiIiIiIlOqENVC8/IT45FFqvjTPsNTVqcP1z6hDKPl//B2rMnxR1tGgVMOL9GgbKDewmiBZnn0btr8pDtUQwqF0QBgcIxhtGo1MS/w1u8ZeObVAGJvK3Djh3ScdgQPsiAiosqbigrcuCl/3/Nb9wq892SBo3r4/kRkherz/KEMsTeOtrK9vOMhIiIiIiIiIiIiIvtJKsNovgqPhGpRwL0CkUR+TEQ2+VgVRmtxtsPn8Jd8bOWgmjg9nrJfzIfsJ5GLK+M7nJRP9STo7sNLiW15l4dtGEaL5eRhtEZF9Ozg6zRJL88hi5RIwqtxX6wSDGFgNLULOxJbMRTfgh2JrYgq/q5L1e7sQr9/A/pfDaF1uoIMoS2R39GId3d/ENfuuVK6/LcT1+PYxpPQ4ix8QIwB+eSQpcS0ig2jBd0rF/1Y9aDR0YyLuj+E01vPxR0TP8cz0T8XvM1cbga/DP0ID83chQu734/1DcdXYKREVC1UYTSX5kabs7PCoyGyF4bRiIiIiIiIyJSVMFo0Wf5x1LJCYbTx8vyeVZVU66Mu+R1udQfQ5AXmJevn5lGBUw6vnR/vLIfRLMSk7EQdRpNfHksBqYyAx1U7f1uSsxRG2yPwtmO4LlSjT/xK7I+iAcDYLPDB6w1s/5oOh2yDT0REVEa/HxTK/dJzvm9g57d49kaiUhueYRiNiIiIiIiIiIiIqB6pwmgehtGoBILuPgwltuRdHpJE0MZT8jBasIqCUKqxTmT2wBC5JYU1qPapJuUDDKNRfVFGJhUBzeUUM+allzdYCKOZXSeajcDr5r5YOeREDsPJndiRGMRQfBA7EluRMGJleawuV8/+CNo6/wA6XN1leZx6d2LTG/HE3IPYFn82b1nCiOM34f/FB3s/U/B+DCE/WM2Bxe+/Bd19lq/r0tzo5DpiSbe7Bx9e8Vm8lNiO28LXWorPjaV344cjX8VR/tfgwq4r0OddW4GREpHdhTPyz2Dd7l7oml7h0RDZC8NoREREREREZMpKcGk+Vf5x1LJCYbSw/HfKuqQKo8lOUKRpGjb0Aht35i/bPl7acS03y2G0THnHUWppRfwq2KK+zXQM6Gktz3jIPlIW1uUXQ+UfB5Xe2KzALX/J39i/NAE8PgScfuQyDIqIiOra7mn1sl1TQDgi0N3McCdRIRa6+/uNzAgAfF0BwExs7zPX1sDng4iIiIiIiIiIiGpfShFG8zKMRiUQ8KjiNvmTj2WxNAAIuleWdEzlFFDELzIijenMJDrdgQqPiKqJKozm0txoc3ZWeDREy0cVRpvOTiBtpODWPRUekVo0qwqjNRW8baPJdaK5CDrB94xSyIoMdidfwlB8EEOJQexMbFOGgZcq6O5Dv28D+v17Q2itTp6drhI0TcMlgY/ia7v+ERmRzlv+l/nHcXL0DAw0nqC8DyEEDMgnh2hLCOMUEzYNuFcwolukw31H4TOr/h3PRDfitxPXYzJTeCLD9vhz+NYrn8bJzWfiHZ2XotXVUYGREpFdjafkn8EYpiZiGI2IiIiIiIgKUIWoFoqlAMMQ0HVO0lwMK2E0IQQ0Wf2rzqjWR9Wqt65bw8ad+TeaqLHYXM7iDPNqCqMZhlD+vYMmJy+bYhitLqQU0byFZmPFpBfILm75i4BQ/OmeHRE4/Ui+FxIRUWXF8o9RO8jzI8Bb1ldmLETVTLWPJzMyU75xVItURuAD1wvc8rRA1gBOOQy46SM6VrZzf5iIiIiIiIiIiIhqlyoM4WEYjUogqAiFzWWnkcjF4XP491+mikJV04TkbnevclkoPcIwGpkKZ+SvgW53L/QlRFmIqo0qMgkA4fQY+rxrKzgac9FcRHq5WfRsH5/eAB26NMYUU9wvFZYx0tiVHMJQfAuGEoN4OfEC0iJVlsda4VmDft/eCFq/bz2anDyYfrl0uoM4t+Nv8dvJG6TLfxW6Bl/0/wAe3StdLhRRNABwoDJhtJ4qigHbiaZp+D9Np+LYxpPw6My9uHfqFsQM84lLAgIbIw/g6fnH8Jb2d+Ks9gsZBieqU7XwPQRRuTCMRkRERERERKashNGAvZPFm+TfzVMBWfVvFwCAdBaY2z2Klqd+CxGZgXbK26AdfWJlBmczqonUqjBap+K33In52gomGQXWoX2qKYxmFgwMNGsA5H/D6Vh5xkP2YiWMNleek6hRmd38lHr7vH28ggMhIiJ61WTUfHmh0DUR7VVMGG14unzjqBafvkXgV5sOPGkbdwIXXWPgic/zjLxERERERERERERUu1JGUno5J4ZTKZhNJg6lR7HG1w8AiOeiiORmpddTxdXsyKv70OrswGx2Km9ZKD2KAZywDKOiaqGelK8O7hHVog5XN5yaE1mRf9DqeHrUVmE0VXyn0WFyNupXaZqGBkcT5nNzecuiuRo7G3kZpY0Udia2YygxiKH4IHYlX0RWlP7gfQ06VnrWot8/gHW+Aazzr0eDhQAeVc6b28/DpsgjGEu/krdsOjuBeyZvwoXdV0hvKwsU7qNpiz9mpMsdhA4HDBQ+2C3oYRhtKZyaC2e2n4eTW87EfVO/wcOzd0vfRxbKiDTunboFj8/+Aed2XoLXt5wFxxL+3kRUXQyRQzgzJl0WZBiNiGE0IiIiIiIiMpezGFyaTzKMtlhWJtKH/vE9aJ7+CwBAXPt14DM/hPbOD5d5ZPajDKMpTn7T1Si/fKLGfqPNWZxgXithtAbP3v/FJCfNYhitPqQthNEi8mNlycaiSYEnXlYv//OO2opaEhFRdRidMX//mYoJAIpSMxHtV8yeXKHXXa0TQuC2v+Y/B5t2Ac8NC7xmJbc5REREREREREREVJsSRlx6OcNoVAptzk64NQ/SIv+gs1B6ZH8YbTw9oryPagqjAXvHKwujjSuiV0T7hNLySflmgUGiWuTQHOhy9WBPejhvWcjk/WI5RLMR6eVWg1mNjmZpGC2Wk98vAUkjgZcS2zAUH8SO+CBeSe5ADhYOcC6SDgdWe9dhnX89+n0DONx3NHyOhpI/DpWOQ3Pi0uDH8N3d/wohOWLmwZk7cVLzaVjpPSxvmSHUE7gcUEyasTimTldAGd5ZqMfNMFop+B2NuLD7CpzW+jbcOfkLPD3/WMHbzOfmcFPoGjw8czcu6HofNjScCE3jcUJEtW46M6mMqfIzGBHDaERERERERFSAYXEualQSKCJrrITRwgkX+hf8t/jR/wec/XfQvP6yjcuOVOujrviuv0vxW+4z+b9PVzWrAcNk6X9rLZu0yevC5QA6GuRhNIYp6oOVMNpcovzjoNJ6ZVodwASAzaPAoy8KnHbE8r/G//sRA1c/IhCOAGcPaLjqbzU0+5Z/XEREVHrzBWKrtRZdJioXs/28Qw3PlG8c1SCTA0KKY8uvfkTgmsu430lERERERERERES1KWXID/bw6vV1jByVh67pCLhXYDi1M2/ZwhiaKozm1X1ocbaXbXzlEHCvwPb4c3mX2y3mQ/ZiCANhRRit28VJ+VR/Au4VijCavSKTqoBZo6PZ0u0bFNeL5nhgzD7xXBQ7EluxI74VQ4lBDCdfggGLB/EXwak5sdrbj37fBvT7B7DWdyRDwVXoMN9ReEPr2Xhs9r68ZQYM/Cp0NT6z6t+ha46DluWEehLFodctVtDTZy2M5mEYrZQ63QF8oPefcWbiHbht4jrsSGwteJvx9AiuHv0GjvAfgwu7rsAq7+EVGCkRLZdQRr1f2c0wGhHDaERERERERGTOsPhbTaHJ4qRmJYwWcgYOviARA7Y8AZx4ZnkGZVNW18d9uho1QHKWHQB4KSxweHdtTCa2GkZLyU8gYUtmrwu3A2hvAHZP5y+bipZvTGQfKQthtAjfl6rO7vwT1OZ5038ayFyjw6EqYlbA/z5u4GO/PPDecv1GgZcmBB797NIOOCAiInsqFGSd4P4nkSVFdHAyMRcAACAASURBVNHw0kTZhlEVzCJyL4wX80wSERERERERERERVZekIozmYQiCSkQdRjswCXk8JY+GBdx90LTqOt4woJhAbbeYD9nLTHYSGZGWLlOtU0S1LODuk15up22pEEIZMFMFzw7V6JCfjTyqCK7Vg2g2gh2JrRhKbMFQfBCjqV0QRR39YI1Lc2Ot70j0+wbQ7x/AGu8RcOuekj8OVd75ne/F8/NPYi6Xf4bAXckhPDp7H97Udu5BlwuT2J4OfUnjsfI+7tSc6HQFl/Q4JLfGdwQ+tfIbeC76JH47cYOlSN2L8c3491f+Ga9tPh3ndV6GdldXBUZKRJUWUnwP0ersYByVCAyjERERERERUQGGxd9uogzQLFrWQtRq2Cn5UXXrpvoLoynWR13xG0+X/DdaAMBX7xK44YPVdaCSitXXabJGwmguB9DZKF/GMEV9SGULr/Rz8mNlycaGZ6xtzP64DTh7oMyDMfE/j+eP8/EdwNYxgfW9tfG+QkREB6QLhKwneGJcIkvMYl+HmowC4YhAd3N97luZfcZ/Ybxy4yAiIiIiIiIiIiKqtJQijMZJoFQqQWXcZmTB/5eHbqoxCKX690Zys4jnovA7FAfhUV0ziz1V4+uAaKmCJpFJQxjQtaWFikohJZLIQX7mv0aLYbQGRRgtpgiu1aK57Ax2xAcxlBjEUHwQe9K7y/I4Hs2Lw3xHod8/gH7fBqzyroNLd5XlsWh5+RwNuCjwYfxs7DvS5XdO/gLHNZ6MVlfH/styQn2wmq4t7QTOVt7HA+4+OJb4OKSmaRqOazoZxzSeiMdn/4B7pm6yFKDcFHkEf53/M85sOw9nt18In6OhAqMlokoJpeWhxIC7t8IjIbInhtGIiIiIiIjIlGEh2gUA86nyjqOWmQWg9tntWpl/obv+zgSkmhzsUMyVXtMhvxwA7tkskM0JOFU3riLWw2ilP0tVuRQKo3U1aYDkrFtTDKMtSs4QuPWvAj/fKNDi0/C+UzWctd6+r42UhchfLIWaeY3Xi+H8E6JJPbFT4OyB5fu7bsw/cTAA4EcPC/zoUq5vRES1ptB+x2y8evaxiZZTMWE0ABgcA7qtHZ9dc8w+40/yMy8RERERERERERHVsKQyjOat8EioVqliEBPpceREFg7NifEFkbSFVGEcOzOLX4TSY1jrO6KCo6FqoQqjNTva4HP4KzwaouWn2pamRQqz2Sm0u7oqPKJ80aw6qqMKnh1KFVCzEuypVjOZyVcjaFswFB9EOCOPkiyVV/djnW89+v0DWOcbwCrvYXBozDvUi+MbT8GGhhOxJfZ03rKkkcDN4Z/iIys+t/8yA+oJXDqWFmIMKKK5C/W4JfOWqOQcmhOnt52D1zafjt9P34aHZu5CRqRNb5MVGfxh+lb8ee5+nNNxMd7Yeja3JUQ1QvU9hJXtNlE94LsdERERERERmbIaXJpPCgDFx0BiKYFQBFjbuffsF/UmZwhLk4NHXPlfZonZqUU849VNtT7qit94elo1NHuBSDJ/2Uwc2D4ObKi+45XyWA0YJi3EpOyiUBitQ3Gyyol5hikW41v3Cnzpjn3PncCvnhK4/v0aLjt5+c9kJ5OSn9guz3wSaOMJkarGK5PWrre1PMeeLFlojtsfIqJalC4Qso7I5+cQ0SGK3VN6MSRwxlH19q3HXmbfxWUtfv4nIiIiIiIiIiIiqkaqMJpH91V4JFSrVJOKc8hiMhNCu7Mbk5mQ9DrBKoxEtDo74NG8SIn8AyhD6RGG0UgqnJYfnBVw91Z4JET2YBaZHE+P2COMZhIva1xiGC1WI2E0IQSmMmEMJfZG0IYSg5hSvOcvVYPehHX+9VjnG0C/fwB9njXQNUdZHovsT9M0XBz4CF58eTPSIpW3/NnoE3g+ugnHNr4WAGAI9cFqS12PrLyXBxnhqSifowHnd70Xp7W+FXdO/hKbIg8XvE00F8HN4Z/i4Zl7cH7X5XhN4+vqci4eUS0JK+LUZvuhRPWEYTQiIiIiIiIylbM44TKa/x19gfsV+OdbBH78kEDWAFZ3AL/5qI4TVtfXF7Jm8aeFhiVhNMxOlHYwVSCnmB2sm6w2T39BxxFfkK/Ie+ZqI4yWszjDvJrCaGmT8JXLAXQpw2jlGU8tG50R+NrdB69EQgDfuU/g714nbPlDmdUw2lyCYbRqMjhmbWO2xeL1ykGY1EytrpdERFRdzPZLAXmEmYjyWYnCL1TPr61inysiIiIiIiIiIiKiWpATOWREWrrMyzAalUi3uwcaNAjJKV1C6VHkRA4C8mMNq3FCsqZp6Hb3Yji1M29ZSDHxmki1blTja4CoFHyOBrQ42jCXm8lbFkqPYn3D8cswqoOp4mU6dPh0awfRNijCaNFcdR6YLYRAODOGofggdiQGMRQfxEzW4tl7i9TkaNkfQev3D6DHvQq6Zs8TU9Py6HB14+2dl+C2ieuky28K/TeO8B8Dr+6DAfUEI8cS16tGRzMaHc2mMcUez6olPQYtTrurC1f0fBJntr0Dt01chxfjmwveJpwZw0/G/h2H+47Gu7rejzWMHhNVpUQuLt3PBPgZjGgfhtGIiIiIiIjIlKJDlWe+yAmrP3hQ4PsPHLjzV6aAs/7LwOh3dPjc9ovwlIvVMFrIEci/cCZc2sFUAdX66DD5jWddt4b2BmA6lr8sPC8AVP/6ZlgMGCarKNpj9tpwO4EuxQnMJqLlGU8t++ljQvp8bxkDZuJAuw3DYlYDVBNRYE1necdCpZEzBLaNW7vuzom9B60sR7Qva7JtYhiNiKg2Fdq+13O8iagYxba+iv2eqZZY/S6OiIiIiIiIiIiIqJakjIRyGcNoVCpu3YN2VzemMqG8ZeOpEWSF/MdBHQ50u3vKPbyyCLr7pGG0cYbRSGE8PSK9nJPyqZ4FPH2Yi8vDaHagipc1OpotH2fZ4JAfmB3NRZbteM1iCCGwJz2MHfFBDL0aQosoIiNL1eJsR79vAP3+Dej3DSDgXmH754eW3xlt78BTkUel+2Wz2SncPXkj3t39QRhCPTFEw9KDewH3CkQTJmE098olPwYt3irv4finvv+HLbG/4PaJ65T7ZQu9lNiG7+z+LE5seiPO67wMnW7J3DMisi2z/Ul+BiPai2E0IiIiIiIiMmUIa7Mxo6ni7vdXm/LvdzYO/GEr8M7jiruvamYWWFkoIvuxsR7DaIrfefQCvyUGmhVhNPVvOlXF6qTphPykqrZkFkZzOYDORg2yqfUT1XlismV17xb1CjQxX91htOFp4KQ1ZR0KlcjOCSCZsXbdVHbvutktP0FhWaUZRiMiqjvpQmE09RwdIlrA4tdL+xX7PVMtYRiNiIiIiIiIiIiI6lHSJIzmYRiNSijoXiENo4XSo8hB/uNglzsIh1ad0zBVE6lDFiILVH9SRhKz2Snpsm5Oyqc6FnCtwIvYnHe5XbalsZz8gHhV7Eym0SE/INNADkkjAZ/Dv6ixlYshDIylXnk1grYFOxJbEVU8D0vV7uzaG0HzD6DfN4BOV5AhNCqaQ3Pg0uDH8Z1XPguB/EkxD83cg9c2n2762cehOZY8jqC7Dy8ltsnvH050uYNLfgxaGk3TcEzjiVjfcDz+PPdH3D15I+ZzcwVv9/T8Y3g2uhGnt56Lt3VcBL+jsQKjJaKlUoXRXJobbc7OCo+GyJ6q8xs5IiIiIiIiqpic+oQjB5lPFne/T+2SX/6TRw2887ilf2FfLcziTwtF9GYIAAf9hBa2x1mmKimnmBxcMIzWBGzbk3/5lrGlj8kOrL5O4zUURgsogkjRFBBJCDT7+INzKUzMA0fa8PfNQoGSfYZn8racZFODRW6Ph2eWKYxmsu6lLIbdiIiouhQKX0aK/CxMVK9UYbRmr/x1VOz3TLVEFYXfJ2cIOAp9EUJERERERERERERUZVKG+othL8NoVEJBdx8GY3/Nu3xL7Gm4E17pbVRxsWqgGns4vQc/Hf32ou/XoTmx2rsOp7a8BT6HDc+8SfvNZaexce4BjKR2QQjzH6LMtsXV/DogWqqAR77+70oMLWlbWqxWVweObzwF6/wDB10ezcnPKt2giJ3JNJpE1GK5yEFhNEMYeHr+MbwQfx7JXNzyY5RKSqTwcuIFJAzJWdNLoMvVsz+Cts4/gA5Xd1keh+rPau86nN56Dh6evTtvmYCBn459B12uHuXtdehLHoNZ6DTg7q3aGHAtcmgOvLH1bJzUfBrun74df5z+LTLCfEJQVmTxwMwd2Dj3AM7peA9Oa3sbnJqrQiOuLoYw8FTkUbyY2Lws72Wl5NTcWOPrx+tbzoJb9yz3cKhIqjBawN0LXVv6dp+oFnDvhIiIiIiIiEwZiomrh5pTn7AxTyKtvtPp8vw+ZVtWw2g5zYmY1oBGseAJmh6HyKShudzlGZwNqSYHF5oP3N2sAchf7679k8BP3yugV/mEYquv01gNhdH62tTLR2eBZh4PWRJh+bESy65QoGSf3dPlHQeVzpYxixuyVw1PAyesLtNgTJite1bXSyIiqi7pAp/Z5pOAYVT/ZwqiclPt7TUpwmixVFmHY2uF9ozj6b3PGxEREREREREREVEtSRrqAxA9DKNRCQXcfdLL53NzQG5OuizoXlnOIZWV6t9rIIdnohuXdN9Pzz+GP8/9EZ9e9U00mAR1aPlMpkO4cvjzmM1OLel+HHAyDER1LajYlqZEcsnb0mI9PPM7XBb8e5zS8ub9l8UUYTSz2Fn+ddURtWgugk4cOMvyz8d/gCcjD1m+b7sLuvvQ79uAdf716PcNoNXVsdxDohp2Xtff4dnoRul781QmjKlMWHlbXXMs+fGDJmG0oKd693lrmVf34R2dl+KNLWfjrqkb8cTcgxAFji6KG1H8ZuJ/8fDsPTi/63Ic33gqNI3HNy50w/hV2BR5ZLmHUTJPzT+CpyKP4pMrv8Y4WpVRhdHMQpZE9YaJQCIiIiIiIjJlNbg0EbEeNNkjP3YEAOCos0+qVsNoABA59AdHIYAJ+RdgtUq1PhZab7pMftd9YPvix2MXlsNoVTSxPK0IDDl0QNM09LaobzsyU54x1aqESTAvPF9crKpSrAaoRhhGqxrb9hR3/eGZ5Vk3VdsmgGE0IqJaJIQw3fbvE62i/Wwiu1EFvuaT9vwsUgmFPuNHJSE5IiIiIiIiIiIiomqXUoTRNGjwaDxbBJWOWQyilLexi253DzSUL4KwJz2MP889ULb7p6V5YOaOJUfRAKDLHYSjBDEWomoVcPcu9xD2EzBwx8QvkBWZ/ZdFcxHpdYuJVnp1P3TIX+cL7384ubPqo2i97tU4vfUcfKj3s/j24dfhS2t/iEuCH8VJzacxikZl59V9eE/3hxd1W9VrtBgBk/3aniqOAdeDVlcH3hv8BP519ZU42n+cpdtMZkL42dh/4D93fw4vJWpg4lSJDCd31lQUbZ9dyRfx1/k/LfcwqEiqMJrZ9pqo3jiXewBERERERERkbznD2vXC8hMNSTGMdkAxYbQ5vRm9OKQcEx4BeteWdlA2ppocrBc4bufwLvWys79nYOZ7Olr81XsGlFoMo6leG+5Xf8/zuDR0N8m3PSMzAijjwVy1JpFRL5soYtteSSmTMS8UKiLaSctrKlrc32oqWqaBFJA2ed9mGI2IqPZY/bwWSQLNvvKOhajaCcXuXrNiLls9BweNAt/F1fNzQ0RERERERERERLUrYcSll3t0HzSNxwFR6QTcfRW5jV24dQ/aXV2YyoTL9hjbYs/grPbzy3b/tHjbYs+W5H44KZ/qXZuzCy7NjYwwORNxBUVyMxhLvYJV3nUA1GG0xkNPym5C0zQ0OpoQyc3mLYvlDhxMXKrtSqVo0NHnWYN+/wb0+wawzr++qGAcUTkc13QyXtP4OjwXfdLybXTocGquJT92hysAp+ZEVuQf9NzjYRitGvR51+ITK7+CrbFncFv4OoylXyl4m5eTL+C7uz+H4xtPwTu7Lke3u6cCI7WvrbFnlnsIZbM19gxObjlzuYdBRZjOyj+r8zMY0QF1Nt2ciIiIiIiIimU1uFSqMFrCHr8XVkzWYngO2BtGy7NnV6mGUhVUob5CYbQLjze/wluvMpCzurLbkNWAYdYA0tnq+HeqIhSuBSc66muTX2c0/zd5MmEWRitm215JVgNUE8sUz6LiJS3G7vaZk58ouuzSJuseAxVERLXHbLu/UGSZ3peIqonqk2iTIow2nyzbUGyv0NcT3O8kIiIiIiIiIiKiWpQy5D+4eHWenYZKq8nZgjXeIyxfv8XZjlXew8o4ovI7puGkst5/KD1a1vunxcmKDCYz4yW5r2May7sOEdmdrunY0HDicg/jIHtSw/v/f6wEYTQAaFBcP7ogjGb3bb4OHWu8R+Cs9gvw8RVfwH+u+zn+dc2VeHf3B/Captcxika28Z7uD8OjKQ6akVjrOxIufelhNIfmwPqG/5N3uUtz40j/sUu+f6qc9Q3H4/NrrsRlwX9Ai0MxseYQz0Q34msvfwK3hH+mjGrWA7u/ly1FLf/balFWZJBUfB/W6myv8GiI7IthNCIiIiIiIjJlWAwuhYr4TnTPnHqG59gcIER1hJtKQRV/kplztORdJl7ZXsLR2J9qcrBe4BuOVR0a3neKOo725MvATU9V73pXTNMtViUTqFX/JseCv3VQ8Xu9XWNedhU3CVJO2vS5tBpGm2QYrWoUG0aLLFMow2zdm5gH7ny2et9LiIgoX9ri57VYnQW+iRZD9VVPs2I+Wz3HvxhGIyIiIiIiIiIionqkmgjqYRiNyuDCrvfBq/sLXs8BJ97d9QE4NGcFRlU+b2k/H12unrLd/0x2Eimjjs96Y1MT6XEYKOLszQpH+I/BiU1vLMGIiKrbuZ1/azk8Uwl70gvDaPKDfVWhM5VGRTRsYTxnPD1S1H2Wm1Nz4nDf0Xhr+0X4h74v4z/7f4nPrv4OLuh6HzY0ngifo2G5h0gk1ebqxAd6PwOnVjh25tP9eFfX+0v22O/ovBTNjtb9/61Bw/ldlzMcWIV0zYFTW96Crxx2Nd7ecYml2F4OWTw0cze+vPOjuH/6dmSM+jv4sZbjYeH0WF3Nyax2qn04oPjALVEtq+5v5YiIiIiIiKjscha/D4umgHhKwO9Rx6f2GZ9TLxubBTaPAsf2WRygTaUyAv/zJ4GndwGtfuDC4zW8oT//uSkmjDavS35o2LVt8YOsQspYVuHVDv92robrN6pX6F8/JfB3r1vkwJZZUWG0NNBWBb/xKiN4C/7W3c0agPwr2jXmZVcJk9+ywvP2+1HEMITlbedUdO/1dd3CRoKWVdJi7G6fSGJ51s10gXFe/r8GNn9Fx8p2rnNERLUgZTHcGWekiKgg1fFWTV7557r5Op47U+jYtGgdPzdERERERERERERUu1RhNC/DaFQG6/wD+PzqK/FcdBMmM+PS67Q423FM44lY4VlT2cGVQburC59d/R08O/8ERlO7ICS/zViRNlLYGHlAuiycHsNK72FLGSaVmCr4oEHHaa1vLXh7p+bEam8/jms62VK0hajW9XpW4XNrvovn5p88KEpWbi/Gt2BPenfe5XtSe8cghEBUGUYrLnKkun7s1TCaEEK5bTnK/xoE3CuKerylaHa24TDfUVjrPQJu3VOxxyUqpWMaT8TnV/8XNseewnRmQnqdgHsFjmk8ER2uQMked4VnDT635ko8N/8EYrl5HN1wHNb6jizZ/VPleXQvzum8GK9v/RvcM/kr/GnujxAFArkJI47bJ67HIzO/wzu73osTmt4AXdMrNOLlFU6PSS+v9HvZUsRy83h6/rG8y1MiibncDFqd7cswKirWwvjsoRirJDqAYTQiIiIiIiIyZRRxsrDwPLDGwu9Ke0zCaABw4yaBY/uqNyiSzgqc9A0DWxZ8V3rVAwJX/52Gj5x28BfFxYTRZheclWW/V7YvcpTVSRnLsvD9+2GdgM8FJBRxg7ufr96AUq6I12msSqINhmIm+MK/dZfie147xrzsyjAEUiahp7ANI3PpIrabhgCmY0AnfxOwvaRi29ziA+Ykxz5H5MdDl12h9S+SBH78sMC3Lqy+9xIiIspndb8jVn8nTSQqmupTWpPiRKWROo5/FYqfx7nNISIiIiIiIiIiohqUUobRFF8kEy1RpzuIN7eft9zDqJgGRxNe33rWku7DEDk8Nf8osiL/QJ/x9AjDaDajihd1ugK4OPCRCo+GqDa0ONtxWtvbKvqY903dgjsnf5l3+b5YWtJIIAf5gcCNjuaiHkt1/dir4bVoLoK4EZVe520d70G/f6CoxyMiIOjpQ9DTV/HHbXW24/S2cyr+uFReLc42XBr8ON7U9nbcPnE9BmN/KXib6ewErt1zJR6YuRMXdl2BI/wbKjDS5RPNRhAz5JNk3tpxUdX8+1VhNGDv5wCG0apDTBG3BRhGI1qoPrKdREREREREtGiFJmMuNG9x0uqD283v9Dv3CVz2MwPTseqLG92w0YD34wdH0QBACOBffiMwFz/435QtIvAz5uzJvzA8CqEISNUiVQDMSstM1zW8dq35dXZOFj8mOyjmdVotYTQrf+tuxfe8EzaMedmVKka1jx2fy1SBMR9qQn4MBtmMal1Uvc6XK5SRNgkJ7vPt++rnfZmIqNZZ2e4DjBQRWaH66qKjQX55LAXMJ+tzv6rQZ/xYuj6fFyIiIiIiIiIiIqptSUUYzaP7KjwSIlLRNQe6XZLjWKGOcNHyCaVHpJcH3CsqPBIiWooe9yrp5VOZMNJGyjSo0VhkUKNBEUaL5iIA1NsVAAhy20JEZBu9nlX4+74v4h/7voo+T4FJVK/andyB7w1/AdeMfrOm9+3N/m3VtJ/c4GhSBk1r+e9Xa6KK/Tiv7odTc1V4NET2xTAaERERERERmVLFiWSiBYJLQgjc87zA7unC93XjJoHOTxkYClXPZM+7nhO44lr1eOeTwG+fPXh5pogw2ohLciaYdBKIWHhCa4RqcrCVMBoA/MMZ5l+FvPuaIlZ4GzFK+Dq1Cyt/6y7F7/VhG8a87CpRIDI2GQWMYsp7FZCyGCjZ5/Ed9ho/HWzbHoGfbzSU+waqMNqc/HjosrMayKnXiAcRUa2xut8RZ6SIqCDVq2SVyckph+vn646DFAyjVcnneiIiIiIiIiIiIqJipBRhNC/DaES2EnBLjmMFJ9/b0bjib1JNwQciAno88jCagMB4emR/tEymocgwmiqwsi/aEUqPSZf79AY0OlqKeiwiIiq/oxpeg8+t/i4uD/4TWp0dlm7zfHQTvvbyJ3BT6L8xn50t8wgrL5SR7yN7dT+aHa0VHs3SdLt6pZeHFe/XZD+q/bhi9+GIah3DaERERERERGSqmB6OWXApmRG45KcC7/hhceGpI79o4CePVkes6uqHC4/z7ucXH0YbdioORpionwNKVAEwh8VvON51gobr3q+uqD0/AmRz1Rc1KOZ1Wi0TqFV/64VhtO4m+d9yYh7I2SzmZVfxtPlyQwDTscqMxap0EdtNALh/kOuCXX3zdwYGvmzgfSZR0W75cTaIJMs0qAKsBnLqNeJBRFRrrAYxq2Ufm2g5CcUu34o2DZriY7qVsH4tUj1X+8QKfI4jIiIiIiIiIiIiqkZJRRjNwzAaka0EPfLjWEPpkQqPhMwIIZSxuqAibkdE9tTp6oZLc0uX7UntRkwR1NChw6c3FPVYqgjHvscYV2zrg+4+aKof/omIaFnpmo6TW87AV9b+GOd1XmYpPm7AwKOz9+LLL38M9039Bmmjdg6QVO0jB9wrqu69TBU8ZrS6eqj241SxWqJ6xTAaERERERERmSqmLXT29wz89DEDQjKD8+anBW5+enFxmo/+QuDaP9k7jiaEwKZdha/3/CG/BxYTRhtxKQ5GCNfPASWq9VEv4vvny0/R8eaj1Mt3hIsbU7mkMgJfusPAKd/K4fwf5XD/VvXrJ1fEy6NaJlBb+Vv3KE4uZgjgpYnSj6kWJTKFrxOeL/84ipGyMOaFRmrvREU14ZndAl+6o/B+QXezfAM/Jz8euuzSFuOZwzNlHggREVWE1SBmodgsEam5HUBQcRzP8Ex9Ro4LfRfHbQ4RERERERERERHVIlUYzcqkbSKqnG6XavL9GAxh7+N868l8bg4JQ35GVFVAgYjsSdccytftnvQIoiZBjWIDL42KMFo0N28aXAy4e4t6HCIiqjy37sFbO96Nr669Gqe3ngPdQmYmaSRw5+Qv8JWXP44n5h6qif39WnovU+0fhBlGqxqxnHyylmqfjKheMYxGREREREREpooJLgHA//25wDd+lz+D85ZFRtH2+eD1Ar/bXPkJsUIIbBkV2DMrpMG3fcbngGn5MQQH2TEBJNIH7qeYMNqwsw/SEUzUz5eWqvWxmDAaAHzgDeobbLbJ0/me/zbw9XsEnnwZuPO5veHBu5+Xr4PFBAyjqeqYWK76NzkWfJt1RED9tx8cK/2YalHCwoR624XRLAZK9oksU0CLzP3kMWFp29Wt+E0nlgLm4pXfnqUtrn/D09WxrSUiInNWt/vVEh8mWi5m36doGrCyTb5stE5js4X2k2O1cxJWIiIiIiIiIiIiov1SRlJ6OcNoRPYS9MhP8JsRacxkJys8GlIZT6tPuMwwGlH16XGvlF6+J7VbGdRocCjOUGaiUXEbAzkkjbhJTEZx8nciIrKdJmcrLg58BF9c+wMc2/haS7eZzU7hhvGr8O1XPoPtsefKPMLyCqXlE42qcR+5WxFzm8yEkRWZCo+GFkMVuG1gGI3oIAyjERERERERkaligkv7XHm/OCj+BQD3bF76WD59s2E6mbbUNo8IHPf/DBz7VQMrPmvgwh8bygiL1QiTEMC2PQf+O1tEeC7qaMKc3pJ/n3UURlOtj8WG0f72JPUNLv7J8p/FZNsegbuez7/8vB8amJWsg8W8TqslEmXlb+1zazi8S369zaOMElmRsPB7x0SVh9HmqmSdrydCCFz/Z2uvIQYzYAAAIABJREFU0aOD6mVP7SrNeIphOYxWpxEPIqJaY3U/O84wGpEps69yNAABxfHY0/GyDMf2GEYjIiIiIiIiIiKiepQ05Ad4eBhGI7IVs2CAKphDlaf6WzToTcrwERHZV49HHkYbTw8jqgyjFR/UMLvNbHYak5mQdFk1xmSIiOpdwL0CH13xeXxq5TewyrvO0m2GUzvx/ZEv40cjX8NYaneZR1h6OZHDZHpcuqzbJY+M2Znq/VfAwITi30n2otqP42c2ooMxjEZERERERESmFhNGm40Dmxf8pm4lZnbL/y38EfXFEHDVA5WJHaWzApf9j3HQv+OO54DP/1b++DsnrY9rZEEsJZMr7t8z4pJ8cRmun4NJVOujo8hvODRNw0UnqONoP354eeNovx9Urxf/dFP+slwRw43IT65qO8ow2iF/6wHF7w8vT5R2PLUqZSGMFp63V2Su2DBatazz9WQuASQtnoToyKCGzkb5sk27Kr9uWl3/huTH/xARUZWx+nmYkSIic2YvJU0D2hrkn89nYuUZj90V+hqNMUYiIiIiIiIiIiKqRSlFGM3LMBqRrXh1H1qc7dJlDKPZh+pvEXCvgKYVeSZiIlp2Qbc8jDaZCWEmOyld1riIMJpZhGNX8kUIyA9YZxiNiKh69fsH8NlV38H7ez6NdmeXpdsMxv6Cb+z6JG4c/zHmstVzNvGpTBg5yCcDVON7WacrCE2RC+Jns+oQUwZuGUYjWohhNCIiIiIiIjJVTHBpoc2jB2ZxPjtsft113cAFxwMXn1j4x/ZP3yxw21/LH0K5b8vBcbd9btokpKG33dPW73smfuD2mVxx4xp29uVfGC7wBNcQ1fqoL+I4jQ0m31v/w40COyeWLwb15E71sp8/IZA9JKhXTMBwTn4Moe0YFv/Wazrlf/zhGXvFvOzKyrozIf+ufdlYibktNJ8EcoupfFLZDBfxnulzAa9bK1+26eXK/13TFt+3t4xynSOiyslk5Z9RaOmsPq2MFBGZM3staRrQ5pcvm4nV57at0McXbnOIiIiIiIiIiIioFiWMuPRyr674EpmIlk1QEQ0YT49UeCSkElL8LQKe6gs+EBHQ61klvVxA4KXEVukys8iZilf3Q4dDuuylxDbp5Tp0dLmDRT8WERHZh67pOKn5NHx57Y9wQdcV8Fn4HC5g4PG5P+ArOz+G303+GinD/mezN4uFdbt7KziS0nDpLnS6uqXLwumxCo+GFiOai0gvX8x+HFEtYxiNiIiIiIiITC22JbMwKva5W83ratdeoUPXNfzXxRpeI+l+Herd1xi4YaOBezcLrP9SDu6P5rDhyzn8YbB0E2a/do98zDNxeVhqpIiTXMwuuH2xYbQRl+QJCtVPGE21PuqL+IbjmBXmNbVv37d8E7B9bvPlMwuOAyw2glE1YTTV3/qQP9vKNvn1igkv1TMr2/iw3cJo8pP0mIra/3e2ujJcxHum1wW8dq18e/3ky8VvA5cqbXH9eyG0N1RERFRO8ZTA+6810PZJA+2fNPDxXxpIZrjtKSWrn4fjqfKOg6jamYbRALQ1yJfNyOfA1bxC255Yitt6IiIiIiIiIiIiqi1CCKQM+UFNXt1X4dEQUSHdijBa2CQ0QJU1rvhbBFwMoxFVo05XAE7NJV02mQlJL29wNBX9OJqmKUMcqjBapyuoHBsREVUXl+7GWe3n46uHXYMz2t6ujGUulBJJ3D31K3xl58fw57k/whBFTpKrINXnlXZnF9y6p8KjKQ1V0C2U4WezahBThNEWsx9HVMsYRiMiIiIiIiJTiw2jDYUO3DBkEtWZuFLH69ftDZ4EWzQ8/QUd/3K2ebAKAK64VuDcHxjYPg5kDWDrHuCtVxn45K8NXPWAgWd2L22S6M4J9TJZJGh42vrjzcQO/P9skd/5DsvCaCM7IEK7i7ujJRJjOyHu/BnEY3dCZBdRKVok1froKLzK5Dm2QITvjmeXb6JxOGL+2FPRA/+/2NdopMbCaKva5X/84ZnKB5OqkZX1Z+H6ZgeLCaNVSxCwXhTznul1Aa9ThNFCEWC2wrEMq2G0TA4YCpd3LEREH7xe4PqNAvH03ve6ax4R+OSvuf9TSlb3taOMFBEtmqYBbYqTjE7H5JfXOsP8/AKIMcZIRERERERERERENSYj0jAg/3LUwzAake0E3fKDL1UxLqqsjJHGdEZ+4FLQY+Hs1URkO7rmQFARpVRRBc4KUYU4QqrgYpHjIiIi+2t0NOOi7g/hS2t/iOMbT7V0m7ncDH4x/kN8c9ensTX2TJlHuDiq9zJVXKwaqN6Hw+mxCo+EipUVGSQVJwloZBiN6CAMoxEREREREZGpXIHJmCrD0wf+v9lE1o7Gg2MnDl3Dt9+l46aPLKJ0BeD7Dwh86tcCJ3zdwNfvWeTgAZhNaw9Lgvy7p/MvU5ld8L1Vpsgw2ohT8ePhQ7cVd0dLIH7zQ4hLN0D8x99DfP4iiI+/CWLGpCRXQspY1iK+4VjbCRy3Ur08PA9s37M8gYNC69PUgtdUsa/RuUR1RBushtFWtsuvl8zYL+hlR1ZiH3ZbZxYTRoskSz8OWrzhGevX9bqAo3vUy0eKuK9SKCZGuWXMXq8dIqotsZTAbc/kb2du2Cgwn+T2p1SsdnZnKhzqJKo2Zi8lTQPaG+TL6vW1VWjTE0tXZBhEREREREREREREFZNSTAQFAK/ureBIiMgK1eT7uew0Erk6/YHHRsKZMQjFL04MGBFVrx73qqKu37DIMFqxIQ5uV4iIale3uwcfXvFZ/POqf8da75GWbjOWfgU/HPkqfjD8FYwkd5V3gEWqxchnt2Lsqn8r2UcsN69cttjALVGtYhiNiIiIiIiITKkCIBt6905eVVkYdlJNZP3i29V38J4TdUz919I+tn7pDgH9Izmc+PUcvnGPgWzO2qx2IQSiJhGd8CHfPSXSAi9PWh/X7ILno9gw2p9azpBeLh66tbg7WiTx7GMQV/0zkFsw8G1PQdzyg4o8vioCdmgsywpN0/Af7zZfx9Z/2cBPHjUgrBYRSiCbE3hRfrK+/RYGv4qJ9ADAnPo4QluxGsFb2aa+j2LiS/XKsBDWm7XZsWqqbXmLyQmCq2W9rxfFxMw8TiDYrN7O2zqMxt8TiaiMXgzJP0skM8BD2ys/nlpldbtvFgMnIvPIoAagzS/f2ZuOoaKfx+2i0LYnzjAaERERERERERER1ZikaRjN5IAQIloWZuGA8P/P3n2Hx1EcbAB/Z+9O3VaxrWbZBtPcgNCrqYbQQseU0D8CoQQcSIAAARNqaAFCDxCSEAjNGNMCxpQYDBhjDO69SJYlWb2f7m7n++Ms6yTN7O1e00l6f8/jx7rd2d2529253b2dd33lCawJqehCEAy4MNxTkODaEFGsFKZaPA1cwWnAWdd0zoI4ClNLIloOERH1Hzulj8PvRt+Py4pvtH08ubx1Ee7b+Fv8a8tfUe+riXMN7ansUJ+r9OdgNF3dmwONlsFb1PeaA43acZkRHscRDVQMRiMiIiIiIiJLutCc66YIzLvJwNHj1OMb24GGVgmfX6LFqy5z1G7WaVa5mQKf/y76U9eFm4A/viORc52J/8w38eb3Ep8sk6huUvc0rW8F/BZhQVU9pltR4Swopa6lq7DTYLS1ogR1Rk7vEcvmQ1ZsdDYzG6RpQq5fDjnvA8jP3oL8zRR1wU/+E/Nlq2jDsiIIRgOAo8cLrL3Xehv79csS932YuI7Ya6qADr91mZqQbchOsFWo/hIQpXtfPdd1wVDA41KXDQ1oJDU7bVd9km0zujpnpgIpbvW4HzYNvjCFZFZaa399pLoBj1ugMFs9vqw+sevWyff92q3xqwcRke74BwCWbuH3XqzY/SR1YeBEFGS1LwkB5GWqx/lNoDHJzkcSIdx5vu46GxEREREREREREVF/ZRWMlspgNKKkk+seDo9IUY6r8JYluDbUky4YbURKEVxCc4MdESW9ohRnwWiZDgPOIp2uwNN/w2SIiMg+IQT2HnIw/rjDEzhzxKXIMLLCTiMh8XXjHNyx/kq8W/2K5bl/vLUFWtEYUD+RvV8Ho3mKteOqNEFwlByaLYLrGIxG1B2D0YiIiIiIiMiSVRDVAWMFXrhIf2q5qdY6UCcnI/zyD9tV4O8XR5h61UNrB3De8xJTnzVx7KMmin5v4sGPevc2DRemVNkjlH+hw8Cd0E7zToPRAOCxvGvUI758z/nMLMi6Kshrj4G88GeQN50Geft5+sJbNkK2xv9pErrOwa4ornDsOFxoA/463TZTYlFpYgImlti49lzT0vV3wGG1+kunct376hmMZhgCIxVZgYCz8KXByk7IU7KF6QUsQvPGFarHzVzEbSGZlKp/U+wl3RPcxwFgVK5mXgkOQHQSjFbfyu2OiOLHqj1aznsZYsZuCHFtCyAl230iHavdQwAotLivuqw+5tVJeuGOOVs6ElMPIiIiIiIiIiIiokTxWnSOTmMwGlHSMYSBghR1B3xdKBclToVXvQ4K+3HgAxEBRanOgtGyIgzUcBrEUZDKtoWIaDDxGB4clXcy/jT2GRydewrcNoJ3fbIDH9a8junrrsTc+o8QkBF0pIuS1XlKfw5Gy3bnIVWkKcfx3Cy5tWiC0dKMDLiFJ8G1IUpuDEYjIiIiIiIiS1YBNABQnNM7qKhTaV33ELCecm0EowHARQcbePuq2J/CBkzgprck8qYF4L4iAOPyAHa5NYC97rLu/b5ua/fXMxY66wAfGqzm1ywq02zWTv/q8AuhWqJc/aOjeujI+mqYL/wJ8uRRwI9f2p9w/bKYLN+KVVBfNKafHH77mvyAmZCwg3Vbwy+jJmTzsBvW0Km6uX+ENujel2pdj8pTl7UbvjSY6dr4UPUW7Xhf0LUDLgM45WfqxuCHTf1ju4+Xz1dK/PplE9NeM/Hl6r79HKSUKLO5bw4J+Y2uRBOMZndeseKkze0vQZRE1D9ZheaUNwze77xYsxuI6QsEg7iJSM0yGE0AI3OC/6skOgg3GYRrelq8CakGERERERERERERUcK0a4LR3MLNzqBESaogpUQ5nJ3v+15lR5lyeH8OfCAiYLin0NFxUZbL4gllMZou0zUk4uUQEVH/luHKwhn5l+D2HZ7EvkMm25qmMVCPVyufxj0brsPi5gUJ7d+hO0/xiBTkuIclrB6xJoRAPkOr+6XmQKNyuNOQWqLBgMFoREREREREZMkqgAYA3C6B4hx1mU21El+t0V+ozM20X49Tfibw5q/jcxpb39r1PtdutS4LAEvLu96TlBL/W60uN9oirKnzAq5P86CL/doWaJe/VpRgs1txg8L6pdpprPj8wbpIvw9y/TLIi/cFXrrH+YzWLolo+U6EC+qL1CE7C5yxt3WZFi/w3YbI5t/hl+jw27tobyfMq6al62+7YQ2dvP7+EdbjJARvVK56A0h0YFJ/ZGf78fqBdl/yBKxYtQNHj1NvC3WtwJaGOFYqib00z8RRD5t47n8Sj8+ROOIhE//+1mGiYgxVNgLtPntls1K7/h6p2c831yV223TS5jb0g7aWiPovq3DTGn3GMjnk5FumtiV8GaLBKty+5HELFGrulS5N8PFeMggXxtvaMbiDn4mIiIiIiIiIiGjgaTfblcNTjfQE14SI7NKFbOlCuSgxpJTaAAQGoxH1by7hsr0fG3AhzbD5BPseshyEcRRqQjKJiGjwGJ5SgEuLb8CNox/AzukTbE1T0VGGpzffjcfKbsem9rVxrmFQlU93jFwMQ/TvyB39uRmD0ZJZiyYYjaGzRL3171aaiIiIiIiI4s5OOJEuAGxTLXDHLPUMXEb3wBM7Tt9b4K0rDcfTxdryLYC57YNpbAsGZqlcfaQ6xKXd1xVWoAtGS5E+vF16prYOZW7FEx3WL4P020ybAbC1SeLCF0ykXx1A5hVtmHbe39B60UFAzRbb8wglIwxmc8JJWJZT/7zUwIm7W5c58D4Tt79jImAzGafFK3HBCyZyrgv+O/95E83t1tOW1oafd21zVxmnwWgAUNnkfJpE065rxdWsUZo26NX50tbnOZjZ3X6SKeDJKrBzovphNwCAJYPwdx3TlLhlRvcPzJTAbTOl7XYs1pY5+IrJDPm+H5WrLmMnTDKWnHxsjer7tomIYsKqPaphQFfMhAsnClXXGr96EPV3VhleYtv5vPZ4rzb29Ul2do452zriXw8iIiIiIiIiIiKiRPGa6htT0hiMRpS0dJ3vq3xbYErNjbEUdw3+Wnil+qYlBhgR9X9FKaNslctyDYEQkd1c7ySMg4GLRETUaYf0XfHbUffg8uKbke+x6NQRYlXrYty/8Qa8tOVR1Pq2xrV+upCw/AHwXZafov68qzrKE1wTcqIloO7Y5ySklmiwYDAaERERERERWQpoOoJ3D0ZT/3BWWqvv/JrmQUQ/uJ22l8Daew28c7WBf1wi8OVNBpr+amDujcHXt58Ug4SsMNp8wPrq4N9WAVOH7qyvy6ZtHXt1wWge6cNJzR9op69yF/Qe2N4KfP+pvkIhpJQ47AETL38rYUqBNpmCv+ZcgdtGTLc1vdK6vgtGc8UgGS09RWDWNQZmXGl9ueTu9yUuetFeMs4V/5L497cS7b5gIN4r8yWueNl62vnrw883NOxCt49aqVQ/WCKpOAnB0wWjAcCYm0089bmJz1dKSEWDtGSzxJOfmXh1vgmff/CFqJlWCQUhkikYzep7aViWQKHmnowNNYNv/a7dClQo9veNNcDCTYmvDwAsLY9sPZRYBKOp9u14cRKMlkz7DRENPFbHgNXNiavHQOfkG6Y/HGMT9RWrfanzFE93XsdgNLUWBqMRERERERERERHRANKuCUZLFQxGI0pWupAtv/TFPdSA9Co6yrTjGGBE1P8VpdoLRst0EG7We1r7YRxsV4iIKJQQAj8bciD+uOPjmJr/K9thm/MbP8f09Vdh5tZ/oS0QnycDV2pCwgbCdxlDq/un5oD6puNojuOIBioGoxEREREREZElO0FUus6rm2ol6jWhINHEWI0YIvCLPQUuOMjAwTsJZKYKHLJz8PX0kw3Mu9nAkbsBET7oyJZlW4L/V1l0ft99JOBxqceFC0Zzww8BYJSvVDm+Ml39w6ac96G+QiGue01iZWXv4S/kXIJ2kWprHr2sXAjpi2/PXDtBfdEQQuDUvQSuOcp6hq/Ml7jpLetEstoWidcX9N6BXl8gUdOs3rHmrpbKEKOeakLCLpyE9HTqD6EN+ran97BRudbr65pXJI562MS5f+sejvbgRyb2/JOJ37wq8cvnJfa400Rty+AKzzJtBuvVt8a3Hk6EC80bqQnQqo3Pb2RJrcbiPf+wqW+29aUOHjzkD9k+SzT7eYs3sdunkza3sT2xoW1ENLhYtUftPgzKwNd4sBsiCwCltfzMiXSsdqXOaze6473SusG3b9lpelq88a8HERERERERERERUaJ4NcFo6a6MBNeEiOzKTynWjrMK56L4quzYrBw+xJWNDFdWgmtDRLFWlDLaVrksB+Fmvae1H8YxEMJkiIgo9lzCjSNyT8SdOz6NY/POgFt4wk7jlz58XPsW7lh/Jb6o+wAB6Y9ZfUxpomoQBqMFQ6urE1wbsqs50KQcHs1xHNFAxWA0IiIiIiIishQugAYARmlCaFZU6Dtq/vXc+KWWHThWYM4NLgSedWHzAwZKNPWLxtLy4AdTpb4OhcxUICtNaD+blZXB6f2aUCKP9AEACvxVyvGVYw9VT7h2iXp46LIrJJ74VL1im11DsDJlV/WEE/aH+KQBr1+7EEeN/i9G7rIeR4z5GB9k/jw4vqURmD877PKjod0eY3yF466Tw2+fD34ksdMtASwqVVfq+43q9Rswge82qOd50Yv2UqpCw44iC0ZL/o7lusAuVQieLpyxp9cXSLw6P/jeP18pcdNbsluH85WVwG632UwKGyDsbj/JFIymC0jsDM3L09wTOxiD0Tosfg9c30e/cTkJjfGHhIeOGaYvt6Iiigo5ZDdMEAgGWjQzsIKI4kT3fdhp5qLE1GOgc9Lul9bFrx5E/Z1lMNq2/3XndaW1Ma9O0rNzntYa31x6IiIiIiIiIiIiooRqM9U3pqQa6QmuCRHZlWqkIdc9XDmuUhM6QPGnC0YrSClJcE2IKB6KUtUPVu8pM4pAjUwHwWiFbFuIiMhCuisTp464ANN3fAr7Dz3C1jTNgUa8VvUc7lp/LRY1fROTh5TX+avhk+qbrfI9+sDn/sIqtLrKx3OzZNWiCUZzcixGNFgwGI2IiIiIiIgs6TrchwZRjc5Th0ht1YSGAcBBO8UvGC1UUY7Aij8ZeOZ8gUsPFThnP4Frjxa47USBaVMEdi1QT3fe/gL3nCZQnKMev6oy+H9Vk/oia8G23xPHF6mnX74l+L8voB7fGYyWrwlGq8rRhJetWGB54TdgSoy/3bp3/7LU8b2Gidv/AfHkp3hlUQrOmz0O/8s8DJXuAnyZcShOHv02po78N+alHwD/J29azjtadoL6YiE7w94M11cDe99l4r9LZK/PfWWFfj10BuOFqmiQ2FBjr361Ldi+PKtQjALN9dCKRnvL6UtO1rUugFDl+bkSbR0SRz2s/uBqWoB/zBs84Wh2g9Ea1A/m7RPhto28TPX+W5tE4W6JYhXKtUrRDiXC5nr7ZUPDJUfmAEPS1OWWlCfuvQQcLqoxifYdIhpYwgV2nf2ciR81Ab5kn5NPcNMgDG8isstqXxLbDt9115ZK6xCTG9z6EzvnaS1RBqNVNEh8tkKiqX1wfbZERERERERERESUnLym+sf1NENzowARJYWClJHK4ZUdZQmuCXWq0Hz2hZp1RUT9y3BPIdzCHbZcVhSBGmlGOlwIvwwX3Bjm0XTEICIiCpHnGYGLi6bh5jEPYdeM3W1NU+Urx3Pl9+MvpbdiQ9uqqJavCw8G9Oc0/UmakY5st/qppFbvnfpWc0DdsS+a4ziigYrBaERERERERGRJ1xnTFdJfdfQw5/PNj/xBRI5lpApcfpiB5y808MqvDDx6toE/nWLgkakGVtzlwl/OFsjJCJYdVwh8eoOBly8z8IfjDZy1j7pj7ua64AdTqQmYyt92HWpckXr6ZdtCXPxhgtEKAupgtFJDk7jmbQM+flU9DsA7f/9cO67T0tQJ3V6L2XUQx5wD4fbgL7PVG8SMoafhsB0+w4jSR7BiU/xSYLTbYxyucOw0wn7ZEx43cfITJppDOhQvsXiwxsKNvYctcXC92esHWrd1grbqMF2crR6u226TiZNgtLxM+/P9fBXw3Fzrjt93zOoddDdQ2Q1Gq29Lns9DFwbY2Q7karaHupbkeQ+J0mIRjOakzYmlzXX2y4Z+RwohMFHzMKOlCXyQUbggop6SKVSQiAYWO0GNt7w9eMJe48XusRIAlNYOvmMNIrusTq86g9F0gdftPqC6OfZ1Sma2gtEsjvUt521KTHvNRPHvTRz9iIlh00y8NIjCwYmIiIiIiIiIiCg5tWuC0VKN9ATXhIic0IUIVLDzfZ/RBR8MhMAHIgJcwoWClJKw5TKjCNQQQiDTFb6jx4iUQriEK+LlEBHR4DM6bWdcV/InXDnyNhTa+D4DgDVty/DAphvxYvnDqO6ojGi5VR3qzgZDXblId2VENM9kow+t5rlZsmrRBKPZOQ4jGmwYjEZERERERESWdAE0RsgZ5Wj1gwW0PC4gO4nuWbruaAMVDxloeNzA4ukGjtitK3mpRNMxt6w++P8adW4ZCrZdh9pN8yCk8m3T+7TBaH4AQLFPfQF2zuZctAr1hyjvvgTS7+s9fNMq/GdOjXqBIe4ffuP2v8Xf5kGkBS/01rZILNxkPW2jMRSXPtMct1Ap7faozp+LylVHOJvp+4uBodea+Hxl8L2X1+s/g1k/SnT4u49fUu7sM6vZ1jHcqsN0kSYYraox+UMbnASjCSFwzVH219ctM6zf/6ZahN3WBwq7YR/JFO4UbtvQBeXVtsSnPsms2atfwWu2Am0diW0L2jokahysB3+PNn9CsXo/31CduPfhJCAHANZXx6ceRER2ghpnLwsew1PknJzWVDXFrx5E/Z3VrtR5hGd1bWlVZPe09Vt22p5Ig9FemS/x+JyuBfhN4NKXJFZs4fcFERERERERERER9R1dMFoag9GIkpouzKCKne/7hNdsR51ffbMSg9GIBo6ilFFhy2RFGahhZ3o7AW1EREQ9CSGwe9a+uHWHx3BuwZUY4tJ0euphQdNc/GnD1ZhR9RJaA86esqkPD9Y8tb0fKvAwGK0/8Uuf9lpYtMdxRAMRg9GIiIiIiIjIUs9Qkk6ekAf85GYAman25zliSPBiZjJJcQsMSRNw9UhdGrlqtrJ8WW2ww+iSzeqOo7sVBeczvG61cnxdQ7AHq18TjOZGMBjt0LavlONbfQLf7nKOemIA+P7TXoPMt5/DZ2mT9dOEuOfQNyD++QPEuH0ABMNshv/WRvoCgG+q8/Dt+t7DA6bExhoJnz/yzrZOwrKiNXVfAXcEV06OetjEy9+YqLMI/2lo6x28tdjh9ebOcCGrUIyiHPUHU6l+sERS0a5rzTq56nD7G0Fb79zAXv7z3eDoFG4nVAUA6lvjWw8ndNuGa9u2wWC0Ls0WYQlSJj5g4qcyZ+UnFHV/vcMwdbnS2sjqEwmnwWhLHYZeEhHZFbDRvPhN4J1FbIei4aTdtzr+JxrsrIK+Oi8PFWYDQ9PUZc5+zuaJywBhp+1psRlybJoSm2ok1ldLtHolXv5GPd07P/L7goiIiIiIiIiIiPqOl8FoRP2SLmyrMVDvOKyAolfVoX4QM6APsSOi/qcoNXwwWqZraFTLsDM9AxeJiCgaLuHC5Jyf486xz+D4YVPhESlhp/FLPz6pm4k71l2JT2tnwS9tdAyCVTDawPkuy9eEvFmdI1DfaQnon8ScFeVxHNFAxGA0IiIiIiIisqQN7go5oxRCYFSu/Xnm95PweultR/HmMR5cAAAgAElEQVScJ5XjmrwCNZsqsKJCPe2kbdcUsz//p3J8G1LR/vpT8GkSDTzbLtAe2fIFcgPqxJd3R1+mr/yaxd1eyg//hbXvvI8a93D9NCHurj8R9fnjAQCrKiUyr3HWCfng+7vKm6bE3e+byLnOxI5/MJE7zcS1/zEjCkjThTjFIxhtZK7A3y8RSHE7n/bCFyW+Wmtdpmeo3t+/cvZ51Gy7b8gqFKNI8/CUfhGM5nBdjysSOGPv2C3/4Y8lapoHfsdwu2EfDer7T/tEIMy2wWC0LlbBaEDi24JZDsMWbji2++Vr3bFGaV2kNXLOeTBafOpBRGQ33PTtHwb+8Uw8OWn3a5MoSJYo2VgGo3X+LwQmae41K68HyusHT3tmp+0JF14tpcTjc0wM+62JHf5gYqdbTGRfZ+LjZeryf5gxeD5fIiIiIiIiIiIiSj7tmmC0VMFgNKJkZhUkUMkO+AlX0aF+aqVbeJDnGZHg2hBRvBSmhA9Gy3JF11nDTiBH4QAKkyEior6TZqTjF8PPw507Po2Dhh4NgfCdw1rMJry59UXctf43WNg0D9Lq5jTow8EGUjBagSYYrc5fDa/ZnuDaUDjNAX1Hnswoj+OIBiIGoxEREREREZGWaUptZ0x3jzPK0Xn259tfgtGwehFKGpZrR3905e/g9avHTRopIE0TuSs+005f99R96OhQJ8+5twWjuRHAnu0/Kcs8vnkv+OHCpxmH4/HcqzBjyCkIbDvVl+uWbi8nv/8MSx96CON2XqKtS0++AHD0Iyauf93EuD86C0Xr9PS71ZBvP4u//OUr3P6ORMu2gJ7WDuCJTyXuel9i4UaJB/5r4u73TcxdHb4Trm57dMXpCscvDzCw5UEDH00z8LPwvyM7siTk2rqd995TTUtwGqtQjOIc9fCKRoS9+N/XdOvaKgTvgTNjuyFMeSSybb8/sR2MlkRBH+HagWGZ6o2kohFo9yX3dh9rS9QPN9quqimxn8fizerlDU1DrxDK8UXAkbt1HzYqT71uq5uBxrbEvBenwWgbagbXNkdEiWMVjhvquw3O5rt8i8Qjs03c9JaJ298x8f5PEqbTxm8AcXLI3OIFOiIIfyYa7ETIId6EYv0J3xvfD579y074Zbjg5/d+Aqa9JruFXOtCpomIiIiIiIiIiIj6mq6TbprBYDSiZJbjHoZUkaYcV6kJ6aL4qexQ3yyW7ymCIVwJrg0RxUtx6uiwZewEm1mxE8hRkFIS1TKIiIhC5XiG4YKi3+APYx7BuIw9bU2z1VeB58sfwEObbsa6thXKMh2mF7X+rcpx+QMqGE3/XnTBcNR3mgNN2nEMRiPqzR2+CBEREREREQ1WfosOk+4ev5EHw0rsdVLNHxL+CQ5JYd1SjPKVIc1sQ7viJqvXhp6lnMwQwLhCAFvWI7etQjv7OlcOfPM/BbKO6TXOsy0YDQAmeZfh88wjlPPYY9IqrAoUbX+9X9t3+GLDFKQs3vbUi+YGvHL7i7hgp4XaeugsKgUWlUbe8fjqd3Ox88YZ+P2Yy5Tj735f4p4PZEjYgMRvjxF4+Cx1uJWU+qA+q7CsaOVmChwzAThiVwPT35W478PYdMZeGhIQ9MKXkQSjBf+3yqkoylbvl+0+oKkdGJrE9w7qOmxbresxeUC6B2jz6cs48WMZUFortWFMA4HtYLQEhU7ZEW7b2CVfP93KCmDPGIccJqvXF5h4dX6Ypx/pf0+Ji9Ja9fDf/Vzg4J0EHvzIxJoqYPIuAvefLpDq6b7vleTq533X+xIPnhn/fdVOSEWo6ub41IOIyG57VNkIVDdJDLdxDvaf+SYu+ruEr1t2s8QpewKvX2HA4x64x0Q6TjPh6lqBgujuLSUakKx2pdBgtNN+JvD8XHXp2Uslrjs6tvVKVnbannDBaA9+xBQ0IiIiIiIiIiIi6j/azTbl8FQGoxElNSEE8lOKUepd12tchSaki+JHF4zG8CKigWW4pxBu4YZfap7ujugDNewEqxWkFEe1DCIiIpWStB1x7ag7sazlB8yo+jvKOzaFnWZ9+0o8tOlm7JV1ME4ZcQHyU7r62FmFglmFifU3wzz5cMGNAHofH1R2lGNU2tg+qBXptGiC0dKMDLiFJ8G1IUp+DEYjIiIiIiIiLX9AP87dI7tqdJ79+Y7oJx3F5fqlcMHE+I6V+CHtZ73GvzvkJOV0O48A0jwC8uv/IjdQr51/nSsHPs0FK0/Ixci923/QziM0FA0AvkvfDw8MvwG3bbkf8rA0lHuKcMHOa7XTx9vPx3xgOV726Oz7l9kSFx8ksXtJ79CFnmVDxTMYrZPHLXDPaQL3nAb8/k0TD38cXVDUkpDr6+u26uc1oQhYtqX38JptYTu6kCgAKM7Rj6tsTO5gtEhC8AxDYK/RwLwYbvJv/yBx7dEDNwTEbthHvfr+0z6hq7Nr2/fSzvlAihvoUNzzsaRcYs9RA3d9diqvlzjnufArN+HBaHXq4aPzgKPGCRw1zvrJpGPygMxUoMXbe9yzX0jcfpLEkLT4rl/dd5HHhR5BQkFbE/wZE9HgEXBwKJp/g4mh6od0b9faoQ/GfudHYOYi4Kx97S9zoLA6B1Gpa2EwGpGK1b4UevT284n6cmvVD+4ckOw0PbWt+nEVDRJfOTwvTsR1FSIiIiIiIiIiIiIdryYYLY3BaERJrzClRBmMpgvpovip7ChTDh9IgQ9EBLiEC/mekSjv2KgtYyfYzEpWmGC1oa4cZLiyoloGERGRlQmZe2HcDnvg64ZP8V71K2gIaDoihPiheR5+ap6Pw3KPw/HDpiLLNVR7XuKCG8M8+bGudp8xhAsjUgpRoTgnqOK5WdJpDjQqh4c7BiMarIzwRYiIiIiIiGiw0nWMB4IBIKGcBKPl95frNOuXAQAmeJc5mmxC22LI1mbIx65HpmyBS/NEpnojB36hzix3h0xzRuPbjpb/Qs4lMCHgFSkYbSMULd0TXcBXrL23WF0fqwAnV4KvcDx4poGvbjJw72kCY4ZFNo/KRmBrU/BN6cKCAGjnX9MS/N/qcynKtl5+MtMGo4VZ15dNjm1v7liGrCUj06KdD1Vv0ek+0XRhgJ0d+d0ugXGF6jKrK+NTp2RTcqO9FVuVwHag1StR26IeNyrX3n6b6hGYuq+6bLMX+GJVpLWzT9c26UJwaluAgN0EQiIiB+x+h3dqbLf+Z3XuBwAzFw3OtsxpE24VVEQ0mFntSiLk8M4wBF79lfp4r7QOkE7TCvspO218XYv+s/hmnfNgx9DrKgFT4rsNEl+tkfD5B8dnTkRERERERERERH3HlCa8sl05jsFoRMlPF7qlC+mi+DClicqOcuU4BqMRDTzFqaO14wy4kGZkRDX/zDDBavlsV4iIKAEM4cIhOcdg+tincdKwc5EqwjwhGEAAfnxW9x7uWPdrzK6dic1edZDoiJRCuIT1Q937G/25mfo8gfpOiyYYLdwxGNFgxWA0IiIiIiIi0rLqHO/uFYxmP4yovwWj7de2wNFkJaXzgJnPAgAEgFzNkynqXTnwwaMc55G+7X9nylaMzlaHq6mUekZhYdpeuHP4rWHL5mQAM6+O7GJuRgrw/B5zMXfDERFNr7OxRj1cF4YEhA/LioeDdhK4+XgD6+9z4Y0rIqvAgg2AaUps1gSjvXKZwLBM9b5V2xz83yqsYUgqkJWqHtdvg9HCNDUXHSRw3+kCudH9pr/d6wskzAEcamT3rTWoH8zbJ+xsGztoAgW3Nse+PsnmznftJ+WU1SVu27YKgBzlIFz17lP0jcDS8vi/H932pzu2MSVQpwmEIyKKRiDB4UCvzpfwBwbuMZGO08NAtvlEak6aLN31pdYOoG6QhA/aaXt0ocMAsHiz8/bave2yxuY6id2nmzjgXhOTHzCx060mVlYMvvafiIiIiIiIiIiIEsdrqkPRACCVwWhESU/X+X5rRwUCMpDg2gxedf5q+GSHclxhakmCa0NE8VaYot+vs1xDIER0D5nOcll39ihkMBoRESVQqpGGE4afjeljn8Kh2cdC2IjIaTNb8fbWl/Df2jeU4wdieLA2GM23OcE1oXBaAk3K4eGOwYgGK3dfV4CIiIiIiIiSl9/ingR3j+uITkJNCoZG92NbIsi6rUBtJQDg5Kb3MK3wEdvTDvXXQT79p+2vhwVqUe0e0atcpTsfbZqbt1Klt9vro3b246Xv7Z/GH7jjl2HLjMoFFt1uIMdhgNTJewJP/dJAUTaAwCGoeWO1sxmEUVqr7nBr1TE4XFhWvJ2xj8DH0wwc+6j9QCIAeOsHib1GC20I4a4FAt+uV7/x6ubgcMvPxQAKhgLNW3uPq2iUCEb3JSd9+JV1nYUQuOk4gd8fK1HeADz3P4m73w/fifuWEwTu/UBd7sa3JB46K3k/q2jYDfuoT6IAAl1Ioivke2n4EAGg95urVv9+0O81tUs8+JHE7GUS3663P90Xq4D6VomcjPhv36W1+nElufbnU5QjcOwE4ONlvcctTcBvdrp9psDi4TzVzcDwJP6NasEGiSc/k/D6gTP3EThtLzi6MerL1RL//EaixQucsDtw3v4i6huriCg809lhZ0y8Ol/igoMG1/7tNH+uoS25j7GJ+orVvtRzj7G6vlRaC+RlxqRKSc200fhYBaMtjeAhn50PQLjsnyZWVHQNL6sDzn7OxKLbB9YTUomIiIiIiIiIiMg5KSVqfFXwhzzwMxaaAg3acemuGD0ZkYjipkATzhOAH6taFyPXPTzmy8zxDENalMGJrYFmNPrrlePyPCOQYmieSJskTBlAta8K5rbwufXtK7VlB2LoA9FgV5Q6Wjsu02VxM6NN4eaha/uJiIjiKdudh/MKr8IRuSfh7a3/wNKW7yOe10A8Rta9p6qOzajwloWdfqg7BxmurFhXixSaA43K4bE4jiMaiBiMRkRERERERFq6sCagq8NkJyehJuOLIqtPQm3oSlwZ7S/DKF8pSj2jbE2a3eNmrWJ/OVam7tarXJl7JBqMbOU8cnrMY0R2bDugnrOfwBPnCeRmBrsgb37AwMgb9Sv8uIlAdrrA0eOBSw8RMDqTyNwe5D35DvB47Oq2SROek8zBaAAwZYLAglsNvPiVxFOf20tQmLFQ4iKLcImSXCBfc12zalvAky4kCgBcIhjWs1YRjFapvo6aNHRhH3bXtWEIlOQCP5+IsMFoY4YF9wldMNojsyV+NVlit8Ik2NBizG4wWpMXME3Zte/3IX1oXtffIzS/x3QGCg4kXp/EwfebEYUf+ALAvLXBMKt4K61Tf/YjhgBpHmfb1Z6jBD5e1nt+S8vjv351bVO+JowPAMobgHFJcuzT4g3W0RDB47yv1gAnPN71pv7zncQtJwj8dkowdCRcwNl7P0mc/pS5/Zjx1fnBII57T+v7toJooAv0wVdaMBgt8cvtS3aPlTo1tcenHkT9ndWu1PNwoyg7GHqsOtfdUAPsae/STL9mJ5TRKhhtyWbnXxJuA2hul/hoae9xP5UB67ZKjB3BYzwiIiIiIiIiIqLBakHjl3i96m9otggxi4fUKIOPiCj+8lOKICAgFb8I/bVselyWacDA7ln74cLC6xwHKDb5G/D3LY9gZetPyjoDgFu4sVfWITi/8Gp4jJRYVDmmvqj7ALOqX0abGf5pp9nuvKhD5Igo+RSl6H84z3JF/xTXrLDBaMVRL4OIiChSxamjcXXJH7Gi5UfM2PoSyrwOniy/zUAMRsv3qL+f2802/GnDNWGnFzCwc/p4/F/x7zHUnRPr6lGI5kCTcngsjuOIBiKjrytAREREREREycsf0I9z9zijTPMIFNgIps9MBcbkRVevhFjXvSfoOO8K25MONbtfoCrxbVaWK3cXo0Hzw2G22SMYLcdje/nhPLLPUrzyKwN5mV0dWotyBN69xkBOj3tEJu8CVDxk4IPrXHj1cgOXTTZ6BSOJifvjcP/8mNVvYw0QUCQQWIUSuJLkCsfeYwSeOM+A7xkDlxwSvsNwfSvw6CfqlJ3MVGB4FpCvua7ZGWxmGRhnQLtfJn0wmi78yuG6PmgskB3mvp6PpxnYrQAYkqYv84cZFgl0/ZjdsA8pgcYkCfrQhQGGtgPDNcFoW9W/H/Rrz82VEYWidYokNCESpXXq4aMcBKt2mqS5p2Z5hfr7I5Z0s89IBYZlqsct39L3gXxSStwxy8SQ3wT/ZV5jIvtas1soWqd7P5AYcb2Jfe42MW+tdd3ved/sFaT7l9kSdS19/56JBjqrcNw8TXsUrZWV8ZlvMrMTThSqyRufehD1d1b7Us9gNJchtNeNkuG4KhHsHNLqgtG8PhlRe+0ygM31+vFfrxscnz0RERERERERERH1tql9LV7c8lDCQ9EAMMyHqB9IMVKR5xmR0GWaMPFj87f4d+WTjqd9YctDWNH6ozYUDQD80o/vmr7Am1UvRlPNuFjcvACvVT1nKxQNAAoHYOADEQEjUorggls5LlyomR1Zbut5FKaURL0MIiKiaI3L3BM3j3kYFxZehxz3MEfT6kLE+rNow94kTKxuW4qnN98ToxqRTosmGC0zBsdxRAOR+syHKEJCCA+AQwCMBlAEoBlAOYAfpJQb+rBqREREREQUAZ+DYDQAGJ0XPmxpQhF6BWslI/nTV91ej/euwOysY2xNm93jJrBi/xZluU2eUWgwssPPIzUdxbkCsLgRw67ncT8u+dUflONO3ENg4/0Gvt8INLQBY4cDE4qDnZKtCCEw7UiJL+ZGXT0AQLMXmLsaOGK37sOtwh+SbZNyGQIvXCRw6xGNWPLrCzHKV4YjxsxGk+Ii5ds/qOcxcdu+EgxG673uq5qCQTeWwWgCKBiq3naqGpO7U7PufbkcrmvDELhsssDDH6tn+MhUgV0KgjM9Zz+Bv81Vl5u5CLjrPRPpKcAv9xcoykmyjS5CpoO8t4Y29ApP7Ava0LyQVTJCEyi4tTn29YmFn8okPl0hMWOhxME7C4wdDnj9wNqtwNA04MjdBI4c13ub+7FU4rr/2NuX9ywBfizrPXyZ+isq5kpr1cMjCUabWKxu19p9wLqtwC4Fzudply54zRDAxGLgf6t7j1sSRXBdrFzxssTzmvZNZ1EpMPVZE4vvMJCb2Xv78wckvlU8YMvrB95aKHHZ5IHRThIlK9334eg8YMn04DF9fVtk8z7tKfUBwoYaoNUrkZE6ePZvp3mbzUkSJEuUbKx2JVWLMqEYWFfde/jyBB27RuunMokPFkvkZAC/2ENgZK6zdtNO29PmA9o6JNJTus97ZaX19ROd6mbgznf1C3Zy7khEREREREREREQDy9cNc/ps2Skitc+WTUT2FaSUoMZXlfDlLmr6Bq2BZmS4NE/R7KG6oxKrWhfbnv+CprmYWvAruIQr0irG3NcNnzgqX8DwIqIBySVcKEgpRnnHpl7jMl2aG2gdSBUWT5oGEh6ISUREpGMIAwdmH4m9hxyMT+vexce1b6HdDH/zbLQhYskoyz0UmcYQtJjq0C27NravRo2vCsM8+TGqGfXUHFB3vo1FwC3RQMRgtAFICDEdwB1RzOIfUsqLHS5zBIA7AZwNQPkMbyHEPACPSCnfiqJuRERERESUQH6LTo8exe/8o/OA7zZYz/PQXZK/E70sXwd8+ma3YYe2zcPj+I2t6Yf0uIhY4t+sLLc8dRykUCTMAcg2Qy5ypWXi2AnRB6NdUP8yLnnhaghDvUwAGJImegWS2XHKBQfj7Q+vwBmZf4UZg5tA/rtU4ojdum8r4QLAktGOgVLs0PwhAODUpln4V875tqedODL4pgo01zV9gWBQVbjAON30ldFd6447qQu/0m++WpccLPDYJ7JXm5adDkyb0jXDZ87XB6MBwB2zguP+OFPiw+uMXttof+Qk7KO+FRjj7EE6caENzQvZNkZkqdvM6mbANGVSBXT+Y56Jy/4pt+/LX67pXe+735e4+XiBe0/repP//NrExX+3twK/+L2BWT9K/FjWu/ySzYkJSdxcp15OSZ7zdTG+CBBC3U4s2xLfYDSrYL6JIwX+t7p3gWXlfRtEefMM03EoWqfyeuDFryRuOLb3emqyCP/5fhNwWURLJCK7dMeALgPIShM4PIJj+k4r7zKw2x97L0BKYMFG4LBdI593f+M0GK3JG596EPV3uvM7IHhc19P4IoH3flIcV21J7oBvAHj5m+Bxemf7cccsiQ+vNbD3GPvHvXbbnrpWID2l+7Bojj3/851FMFryf/REREREREREREQUJ2VexROzEiDfUwxDc28dESWXUak7YlnLwoQv10QAW7yl2CljvK3yTtuzNrMFzYFGZLsjePJjnDh9D6NSx8apJkTU10an7awMRotFIKIQAiNTd8Bm74Ze43ZI2wVGEgVGEhERAUCKkYrjhp2JQ7Kn4P2a1/Bl/Ucwob7RNtc9HFnugRlAVZK2I1a2/hT1fBiMFl8tmmC0WATcEg1EvEJMURNCHA9gCYAroQlF2+ZgAG8KIV4WQmQmpHJERERERIOAnPMGzEv2gzk5Nfjv6KEwbz4dcv3yqOdtFYzmVvyeVZIbvpPnGXsnTxiNiqwshTy7900SP2+ejQyzxdY8ss2Gbq9H+3r/6AgADa4c7TxyAvVdL9IzMXyIwLETbC1e63c/NyCG6JcZrZP/9iA6fAdjasMbUc9rsSK8xwwTAJaUKrvW/VmNznLCdy37DNI0kW9xXXPaaxKHP6j/YFyGPhitokE9PFlYhQ85NaFY4O5TRbcO9xOLgQ33db80JoTA4unhL5d5/cD//cOEP9D/e4ZbBev11BD+wTkJoatz6Lah2+4DJlCVRKGAXp/E796QttbD/R9KGJcHtv+zG4p2z2kCk3cRmFSsHr98CxBIQMrB1mb18OIIvpbSUwTGaK5CbmmI73uxDEbTfMZLNgPSKg0kClJK/GW2id2nB5B1TQD73xPAB4vl9nEX/93EA/+NbtnT31VP32gRjNaYJO0F0UBmJyg0UmNHABkp6nEzF/X/4x8nnDbfVqGRRIOZZTCaYtiEInXZ5VuCQcfJqsMvcc0rslsbvbUJuHWmgxMv2G97ahWXqXTH3dFK4o+diIiIiIiIiIiI4qyyo7xPlrv/0MP7ZLlE5NxB2UfDQN+E5FR0lNkuW9mhfsixFV2H9b7gMztQ49tqu3y6kYG9hxwSxxoRUV+anHNcr2EpIhV7DTkoJvM/cOhRyuGHZB8bk/kTERHFwxB3Ds4puAK37fA49sjaX1nm0JyfJ7hWiXNojL6npXR2vxvZ55c+tJvqzhZZDEYjUmIwGkVFCHEEgJkAQiM/JYDvAbwBYDaA6h6T/RLAq0Lw0S1ERERERNGSX70POf18YE1Imn+HF/jqfcjrT4BsqtdPbIM/oB/nVhzRj7aKSt5G17k1GcjWJsgzd1aOy5StOKnpA1vzye5xI8RE7zLHdck2Q+aRlgEAeO83kZ9GTWpfgkn77RTx9HaIzKEQz3+DW84dHvW8vlzTe5hVJ9xYBEDERVXXTTdTWj5FbqDW9qTDvn4N8m93WAaj/fNr657JQggUDFUniVU2xi+oJxZ0QXgiwhC8G48z8OPtBp7+pcBrlxv44Y8GsjN6z2xiscDhu4af3/pq4LOVkdUlmTjp3F4dpw72TumDYLrW5yiL76NN9nfDuPtqLVBjL3PTsYfPElhwq4E/HB9sICcWq3eeNl9we463Gs32MyzCxyfowu/iHXynDUYzgEmaz7iuNX5hlA9+JHHDGxJLy4HWDmDBRuCkv5qYu1riz/+VYb8n7GjxqsPzrMLPGlqT9/uFaKCwExQaKZchMEXzQO0ZC/tm//YHJL5aIzFnuURTe+Lq4DQIqMUbn3oQ9XdWu5LqHG+C5riqtSO5jud7+t8qdXjsR0sBn99+g2K37VEFo9W32l6MI05CtYmIiIiIiIiIiGjgaA40ojmQ2KcvZrqG4Ni8M3DcsLMSulwiilx+SjGuKbkd+R7NUwXjyEnYWSTBaM1JFIy21bcFEuF/tBEQGJU6Fr8ddS/SXRkJqBkR9YUd03fFr4pvQp57BACgOGUMrim5A3meETGZ/1G5v8CJw85BlisbAJDlysZpIy7CwdlTYjJ/IiKieCpMLcGvR96CaaPuxm4Ze8AFNzKMLBybdwZ+nnd6X1cvbvYZeijOzr8c2a7cqOYTgEWHUopKS0Df4SXLpekkQzTIufu6ApQQ5wL4xkF5W91chRAlAGYASAkZ/BWAX0kpl4eUSwVwBYCHAHi2Df4FgLsB3OKgXkREREREFEJKCfnMrfoC1eWQb/wV4tI/RrwMv8Xv527Fw91G5wlYdXfNSgWy0yOuTlzJ0tWQ502yLHNW9o94HeFvuBpqdr8RYrSvFFmBJjQ7SO7PNkNuKEsPpsa4XQJzrjdw9CPOe6Ne4J0J7HaT4+mcEm439jh1CmaMkTj96ch7zTa1A29+L3HmPl2doa064cYiACIeZGXp9r9T4MNxzR/j1exzbE2ba9YDb7+N9Itvxc75Hqypcrbszs+kUHNdtM0HNHuBIWnO5pso2vChKNb1pJECk0aGn8HkXQS+WBW+J/or30ocMyFJNz6bnIR9lNVJAH3/fu0EwQzPAtI8QLuvd7nSWmD/HeNTN6fWbY1PsMsjUwWmTemeGDneIph0aTmwc75+fCyoQhsAYFhmZNuULjRya7yD0Sy2v4kW93YuKQeKcmJbFyklHpuj3oYOfzC2yRVVjb3rrwr96FQXp0AOIuqiDwqNzfxP2F1g1o+9F7KpFnhpnomLD05cMvGWeokpfzGxfEvw9YghwKyrDRwwNv7HJU6/qRMZ2kbUn1hlcquC0cYV6ssv2wLsEH0ee1x8u17/RquagJE27zeLJhitwSK8NhpOgyKJiIiIiIiIiIhoYKjsKNeOu2XMoxjizo75Moe4smGIZH1KJhHpjMvcE9PHPoXWQDN8UnHTVpTerHoB3zd92Wt4RUeZorSaLhhtcs5x+K7xC7SbvX9oaQzq7jUAACAASURBVLbotJ5ouvobcOGusc/CEMEbu1NEKgPRiAaJvYYchL2GHIQO04sUIzWm8xZC4MTh5+CEYWejOdCILNdQiEifbk1ERNRHds2YhF0zJqHD9MIjUgbFd9nhuSfgsJzj0RxogBnmLtg/rrscfsX5m5R8ima8WIVvZzrod0o0mPBK8eBQIaXc4OBftc353gkg9PbteQCmhIaiAYCU0iulfBzA1B7TXy+EGBP52yIiIiIiGuTWLwM2LLcu88lrkFa9T8PwWwT8uxVnlDuG6Zg6Kg9JeRFRShk2FA0Ajr92KrJs/GaYY3Z/SqYBiQkdYdZVD6myo+tFWub2P48cJ3DLCerP8GejgLpHDew6pHve9R7tP+E3U0dCpCYuAevUvQTM51wInP4qtq4sRvOKXFxa/5KjeUx91oTX17X9WnXCNZL1CkdV95tu9mhfbHvS3EAt0NIIOSUbp1S96njRnSFRuvAgAKixFY3eN+IRjGbXniX2FvKPr2W3bbQ/ctK5vbQufvVwwk4QjBACozShA5tqk2edVcbhgaJ7lAC/Prz3NpyZKjBW8z29ZHN8PxOfX2pDtIZlRTbPEUPV+2ncg9Es2qZhWULb5m6sic1nHDAlHptj4uxnTRz7FxNbEvRg7s31vYc1WQSjfbcB+N0bJo57NIAb3zRR3ZQ8+x3RQGEnKDQau1uEyV76ksRB9wUw84fE7NtX/bsrFA0ItvW/fN6M6lzXLl0gpo5V20g0mFntrarWZkiawOg8dfllW5L3uCI9RT/OybG//WC03gXr+zAY7YPFEhe8YOLwBwP4/ZsmSpPo3IuIiIiIiIiIiIgiU6kJHEoz0jEydQyy3bkx/8dQNKL+LcOVFZe2oSRV/SRMXVhYT1JKbYjaqNSxyHKpn0Br1Wk90So073VESiFyPcO3f1YMRSMafGIdihZKCIEh7uyk7ANCRERkV4qROqi+y4Lf3zlhz7NccCmnD8CiQylFxSp8m8FoRGq8WkwREULsAuCikEEdAC6WUmq7fEgpZwL4R8igVAB3xKeGREREREQDi/S2QVaXd+v4LT97K/yEpauBVT9EvFyfxXUsj+La1+4jgbzM3sM76UJq+pr87fHhC514CTIm7YX91fdWbJdmtiHL7J02dXTLZ7brU+Cv7DHT7jcp3H2qgbeuNHDu/l0XZe87XeDrmw1kZwj8cN9QPDS5FFfkfY0H89/BvKsbkXbGZbaXH1M7jEeuWY806cX/1f3d8eQfLe362zIYLVmvT29e1+3lRO8y25PmBbpSqM5a/6TjRXeGRGWn68vogoqSgTbsIwFXs07Y3botCzXhjsQ8CaW5XaKmOfadyp0Eo5XVxnzxEbEbBDNKE6SwoSa29YlGmSJsKhq/miww7yYDaR51ozixWD3dsi3q4bFS26ofZ3df60kXQFbREN/whXChjWOGqceX2QgW3NoksaxcwufXv4dTnjDx29ck3vheYs6K8POMFVX9G9v19fSbwCOzJT5eBjz0scSB95loaGUwBlEs2QkKjYbuO6PTt+uB05828eRn8T0W8geCbUlP66qB+evjumgAzo6VAKDZG596EPV3VjmGuvvNJhSphy8rj74+8aJ6iECnCgd9ZuzmPlYrws51x1zn7CeQ5rFfh56srhECwEvzTJz0VxP//lZi7mrg4Y8lJj9goqyOx4BERERERERERET9mS5wqCClZFB1KCaivleQMlI5vNpXCZ/pCzt9U6ABbWaLclxhykhkaoLRWpIoGE3fJqs/GyIiIiIiIiu6cHpTJqaf1GDUoglGSzMy4BZR3OBHNIAxGI0idR7QLQJ0hpRytY3p/tzj9VQhRFrsqkVERERENLBIbzvMx38HOSUH8rQdIX99GOSaxcGRc2fZm8dlB3VN45Df4jqWqsO9xy1wxt76G57GFSXfzVDy6w+B78OHlonrHwMATCy2fg/5ga1QlTi78Q3bdTqw7dvuA9J7p8actpfAvy8zYD7ngvmcCzcdZyB1WxBOeorA9RfsgKfvPxQ33H06Mg443PayY26H8dt7OR/Q/h0eqrzR0eRvLezqQKsLQwJiFwARK1JKyJcfBJZ83W343u2LbM8jNyQYbZ/2hdipY62jOnSG9Ay1CEZraHM0y4QyNT3BExGCl54iMONKexvV+mrg5W/id9G/okHi8AcDGHqtiaLfmTj/eROt3th1LDcdVH1TbXJ0aNeFBPRsB3Ycrt5YVmxJjvcBAKU1savLKXsCz15gICNVv5NMHKket6g0vp9JrfqeQgDAsAiD0UZkqYf/bzXwweL4vZ9wwWgjc9TjN1uE4FU0SBzzSAAFN5iYNN1E7jQTT33efef0+iQOuDeAD5ZEUGkbDtgRePFi/baj2v8bHXyHrKsGXvo6efY9ooHAblBopIamC+xZEr7cXe9JdFgEOkarsR1o09zD/l4c2/tOTpfQlMTBw0TJStdsjddcf/mpLHmPKazCESsb7dfbbiij6hizXhNKPGYYMOtqwzI83Uq7RX8iKSXu/aB3pTfVAv/6JnnXFxEREREREREREYXHEB4iShaFKeofsCVMbPWFfypkRUeZdlxBSgmyXOqnNDYzGI2IiIiIiAYoo1tcTBcJBqPFi+4cU3dOSkQMRqPIndbj9d/tTCSlXA4gtId/JoBjY1UpIiIiIqKBRj57K/DGX7sGLJsPecm+kJ/NADYstz+fS/aF9Drvoe0PqIe7DGif+Hju/vqe+KfsmVzBaHLzWsgbTw1bTjw+GyIlFQAwKcz9A/n+rcrhk7zLMKkg/FPpAODXdc91H5AWYWpMEhBpGcDIsdtfT6t9AhWrRuHTDcfgzbJz8O36Q7Bl1Wjt9N9v7OpAa9UxOBFhWY58/jbks7f1GlwYqMSBrd/YmkVeSDCaAHB31R2OqmBsu+qT4hZI0zw0IrmD0dTDE7WuD9tVwPuUgUnF4cte+KJESwzDykKd+YyJudui6P0m8Mp8iZtmxDAYzcGsKpLkHi9dEEzPr6XxRepyy8LfB5cQ7T5pK+RqpxHhy4wrBN60Eean256XbwFWVcYvsKCmWT8uL8KvuAL1Q1oBACf91cSG6vi8H23btO3jH5mrbqQ213WfsLFN4olPTdwxy8Qed5qYs6JrXGsHcM0rEsblAdz+jomGVol7PpD4bkMM3gCAL35v4MubDLQ8YeCnO4L/5t1s4OKDDRw0Vj3N7GWKYDSHh5Zvfc9QDKJY0rVHsQwMvum48AdeVU3AUQ+buG2miS9Xx34/b7EIGapr6Ij58npyEiILWIciEQ1munBjoPdxfKcJmuP5hZuAsrrkPK6wOsd2cj5l9zxN9Tno6pCdDkyZIFD1sIELDnR+Ym0VjFbTDKypUo9778fkXFdERERERERERERkT4VXHSRUyBAeIkqw4SkFMDRdYSstQs+6yqhDxTKNIchyDUWmS30zUrO/yX4l40hKyWA0IiIiIiKKKSHU51gByWC0eGnRBKPpzkmJiMFoFAEhRCGAPUMG+QF85WAWn/d4fXy0dSIiIiIiGojk0m+BN55Qj7v9XCDgdza/cyc4roNfcx3LbXE2OXkXdRjNuELgsF0dVyFu5OofIc+x8ZkMKwJ2P2j7y8N2se48OiKgDkYT/1mGY/dICbu4zzZMwTEtn3YfmJYRvp7JbMeJ3V4OD9TgsLavcGrTLOzT/gNGBKpxf+UtyklXVQJeX7ATbX8KRpPv6/PDj235JOz0KaYXGbK127CzmmbgrdKzcXTzHIzp2Igx2dZBe6GfSXa6ukxDW/J2UNaFUCRyXXvcAt/fZuCuU8IvtPj3sb/wv6lGYt7a3sOf+UJia1Ns1p2TYLS61vBlEiFcMFWnCUWagKr65AhSOOwB623mwLHAI1MFlkw3sOpuA788QOCAHYHcjGBY2g7DgkFnvzlK4OubDbhs7ByH7qwv8/qCOAajtaiHp3uA9JTIdupdCqynG3uLCX8g9u8pXNtUkqseX9qVdYn11RI/+5OJa/8jcdd7EtUWwXF3vy+RO83E3e/H7r1M3kXg4J0E0lMEJo0M/usMvD1Es43MXh4McwvV5DAY7cs1EVWXiDR0QaGxPFY6Z38Dz5wffobz1gL3fiBx2IMmHvhvbI+JrILG6j/9CLJOk8QTI05b37b4Z7UR9UtW+5IuGG2yxfWXN5M0cNUqOLbSSTCazaa0rK73sHpNMFrOtktLHrfAMc4vEaLN4hJEk0VbXaqoIxEREREREREREfUPfulDta9COY4hPESUaG7hwXBPoXJchSYwLJRVqJgQAlmaTui6TuuJ1hioQ7upvoGvIKUkwbUhIiIiIqKBwKWJG5IIJLgmg0dLQB2+neUakuCaEPUfDEajSEzq8fonKaWme6PSvB6vJypLERERERENcvKha2I7w62bITetdDSJNhjNpZ/GZQi8eJGBYZldw4ZlAi9ebC+0Jd7kyh9gXnUk5KX7hy+clgHx+ych3J7tg3YrFNjD4h6C/D0mdg8yKxgN8doKiJE7Yfcw94Od0jQLk9t6njIBSEkLX9dkNrbnaWRvxzd/pBzuN4PhaED/CUaTUgLffqwdv7s//H44PFAD1Vs6pfldfFT6C6xdOx5rxz+Ia4/Wv3FXyFUffTBa2Kr0GW34VYLXtcctcOuJBsznXEh168s1tQMnPBaAzx+7Dvpr1DmLCJjAWwvDL2fhRonDHwwg/aoACm8I4Kp/m2jxdp/OSTBafSsQcDJBnOiCYFw9tg2rNveR2Yl9H03tElf8y4RxeWD7vwUb1WVzMwDvUwbm3ezCtCkGUj0CO+cL/Ov/DMy72UD1US9h5bo9sGbZWCxKvRKPHlOF7Ax7O8boYQIHjlWPe/27+H0mtS3qeQ/LinyeExQhrD29+1Pk89fR7QKdbe7oPPX4NVVd+88DH0lsqIl93ey48gjrbeW0vdTjO/zAh0u6v/kWiwAMneb2vm9DiAaKcO1RrFx+mIGXLhHwWJwDhrp9lkRVY+z2dctgNK8L8qV7Y7YsFaeHPq0MRiNSkhE0C7sWCO0x/ds/JOcxRaPFOfaHi+3X2W7J0trew+o1gdY5IdcF8jKdn1i3WwSjWR0XRrLuiYiIiIiIiIiIKDlUd1TChPomDYbwEFFfKExVtz2VHWVhp9WV6Qx61HVCbzbVndYTzSr8rSClOIE1ISIiIiKigUII9U3HARnbhyRTl2ZN+HamJqybiBiMNlhcIYT4RAixWQjRLoRoEkJsEEJ8IYS4Rwgx2eH8ej5Deo3D6deGmR8RERER0aAnm+qBNXFI85j3gaPifk3AvzvM2eQBYwXW3GPgn5cK/PPS4N8Hju375CpZuQnyysOAxYrwsR7E1X+GePkniENO7DXu7P307yV/l9EQry6D+MPfIKa/DPHvxRDFOwIAJo20/gxObPpQPcJlkcbUD4ix4fOwd+1YDY9Upwgs3hzsRasLQwJiHwARlZnPWY6euM+YsLMY5SsNv5zXH0e+RaiQL2T/HarJ1uuXwWh9uK63PmK98P8uBUbdZOLbdTIYkBclq07136xo146rbpJ49gsT+95jYu5qwOsHqpqAZ76QOPXJ7juS07CPZNhm7G4bI3MFJmnu+XpsjsRXaxLTQz9gSoz9g4m/zbW3vJP3FPC4e39fyPZWyDsvhHzwKqBsDVBbAXzwD8grD4M0u9ar9Pshl3wD+dlbkKWrIefOgvzfO5CfzYB852+YmvaNcrlLyoFl5fH5TGo0j1TIy1QPtyMzVWDscOsy7/4Y+/cTLrRxXKH6u97rB9ZXB/9+20awYTy4DODig62PRQ7YESjOUY/7dn33120W4Rg6nyx3Pg0RqemOjeMRInvhQQaW3mnvIKzDD7zvIPwnHKuwnVpXLjDndUi/P2bL68l0eG+H158cQbLU/0i/D/KH/0F+9R5koyLtqp+z2iusmq0z91GPXWTjlLkvNLbp3+nqKtgOjrTbjFQ2AR0h4dxSSn0wWkiYciTH4ZEGo7FJJCIiIiIiIiIi6r8qNCFCAgZGeGw8zYyIKMY6Q8x6sgoNC1emKxhN3Qm9RdNpPdEqNfXPcg3V1p2IiIiIiMiKS6ifmiw1QfkUveaAOnxbF9ZNRAxGGyzOAXA0gGIAqQCyAIwBcBiAWwD8TwjxnRBiis357dzj9SaH9dnY4/UwIUSuw3kQEREREQ1s65fFZbbyyZsdlfdrrmN51Ne9usnOEDj/QAPnH2ggO6PvQ9EAQM54BvCpw7dCiesfhzhnGkTBKOX4c/cT2nC4KeMFxPAiiBMuhDj6LIjUrkSqPUYCRdnq6TI9AZzaNEs90t2/g9EwYb+wRTzwY5x3pXLc4m33c1h1po1HAESk5PPT9SMPPQm73HQHhoXphDzab6OXd0sj9lj+in50SMfk7HR1mWQIudIJFz7UF7LSgmGPVqqagIPuN3Hqk2a3DuqRaGrXT7/06xWQC+b0Gv7ZCon8G0xc+W/1tHNWAI9+0tW4Ow37qNUEXCWSqdk4XIpVc87+6vUlJXDpSyZavfHtpd/QKjHielMbDKZyrqLOct1SyOOGA3Ne7z3Blo2Qt50dLNdUD3nDiZBXHg55+3mQ502CvOUsyFunQt5+LuRD1+CMd86H0DzB57UFcQpGa1YPD9cWhnPSntb740vzJPyB2L6ncG3TbgWA0FRrWTlQ2yJR1QcPkt1xODDjSgP77WD9mRmGwLET1GUe/aT7m48kGO3DJUzGIIoVXXsUr8DgnfMFHplq70Ds//4hUWkz/CecZouwnS3uIqChBlg2PybLUtG9i8xU/TRt4U85ibqRNRWQF+8Lee0xkDefATl1N8hFc/u6WjFllRutO3YCgMm7qEc2tQO+KM+34iHcOfZDH9sMRrN5niYlUF7f9bqtQ38tL/S6QMyD0SzaPauQeyIiIiIiIiIiIkpuuhCe4Z4CeAxPgmtDRAQUppQoh1d6yywfZNphelHrq1LPMzU4z0xNuFizP1mC0dRhlbqwOCIiIiIionAMTdxQQAYSXJPBo1kTvq07JyUiBqNRl30BfCyEuEcIq9vPAQA5PV6rrwxqSCmbAbT3GKyJBiAiIiIiGqQ2RBiMlj8KmHyyZRG5cqHt2fk0YSK6ULCkt9RGh/mTLoU47QrLIjsMF7j1xN6nTiftARy5m346j1vg/tOFMtjpz0dVI8+sU04nXP07GE0UjgHG7xu23ESverv/838lmtulZcfgZAlGk0vnA4216pE5IyDufROu9DScvrd1hUt86ptYejp61pW2yjEYLXbOP9BAbkb4cu/+BKRdZeLGN000tll3fl9UKnHpSyb2uyeAs54JYM7yYPkmiyCQZe5d4P/tSZDLF2wfZpoSF74Yvtf59a9LtPuCy7AKHFSpa3VWPh50OVeG4rvpqiMECjW/D6yuAm6dGd8whV88YaLe4Wd2zISuv6XfD/nui5AX7Q0ELH5cmjsLcvNayNceBRZ+bjn/kf5yHNI2Tznurvek5U2CPUkp8dFSidOeDODMpwN45VtTOb0uUC/aYLTrpwiUhHncwsxF0S2jJ12wQ2fblJEqsMMwdZnlFRLLt8S2Pp2O3A3wP2PAfM6FwLPB/xseN+B/xoD3KQNr73XhF2GC5DpNKNaP+2Jl1/ptjyD4Z+3W5AswIeqvwrVH8XDKz+zPvOh3JozLAzjp8QA2VEe+7zdbBMVu9hTDhADW/hTx/MPRHStlpuinaWUwGjkkH7se2Liia0BLI+Qd50NaHf/1M5bBaBbTWQV4JcO5SU/h6vTG9/aOt52cp5WFXEqqtzjHzwk5j9WdI1mxDEazOHdlm0hERERERERERNR/MYSHiJKNrv3xynY0+DX3bQKo6tgCqXksVuc8szSd0L2yHT6z73/wqOwoVw5nm0xERET/z959x0dR538cf31n0xNKAiQBBAuidAtYaPZ21rOe3tl7OT3b/WznefaznOU8G+odp6fn2bGDDWxYALHQpLcACSQhvezO9/fHgiTZ73d2ZrMp6Of5ePAgmW+Zb7bMzszO9z1CCJEoR4WMy13kbphtpTpSaVxuOyYVQkgw2s/dauAJ4DxgHDAEGASMBS4FJreor4DrgTvi9JvT4vdEplG3bNMlgT5iKKXylVJDg/wDBiRj3UIIIYQQQiSTnvFhYg2790Td+jzsvp+97zee8t1d2DIHN8V83qvz+/YT7/JBI1H/94ivrm46yuHNSx0u3Fdx5hjFU2coXr7QISXkHRZw2miHj//P4cqDFSeNUvz+AMWHVzlcNLplfnQToa3/DpvqgBPj1hlWP8datvttLrUek3BNgUjtTbsu+sLx9gr7HcvmLPKT9/B+nWx74H5w/MWoi+5ATSmFUQcY66XrBnaq/9FY1qdJrHnXTPP6yi1hRZ2BLQgv1Ame61V3+x/EvVM03f/g8vlizfTFmmXrNZEms9xnLNOMu8tl4ueamcvh5Vlw8P0u//rM5XvzjXcBqHWy+Dxzb/T5Y6OBfMCXS2F1ub9xfbgpdyFoMJot4Ko9WV8bhpd59yzF46fZn6+/f6j5ZGHbBDVNmaP5dFGwNsXXrYFF36Eb6tHl69G3nYW+218Aon72Xvj3nb7qnlTxsrXs2Ef8f4n13FeaXz3oMulbeOUbOPUpzc1vmILRzI9xbnbr0nv691B8d5PD0bvY6zz/VXK/lPMT2ji40Fxn/hpYWJzc19sZoxWPnaqYfLmDs2kQmz9rumQoHEeRmhLscR5caK8/4ZMt469tDP63rDJnwAohEmDbHrXlvtL2PRW79w/W5u0fYIfrXYrKAwRvui56+Xz0snmsnjLFWi+sUikO5aOXJhgs7oNtvyM73d7G67hFiJa01vCRYd+sdC18M7Xdx9NWvLYAXrfs8gql7ozBaBuqvMuXb4A1G+P3E2Qva2XZltpeoczdmwSmd81U7NYvwEqAmgb7qKrr7WVV9dEQbyGEEEIIIYQQQgghxNZHQniEEJ2N1/ZnrSXMEaC40XwhXogUeqYWAN6T0G0T19uTPaxym3YeiRBCCCGEEOLnwrHEDbn653NT186mOlJhXJ4dSkrcjhA/SykdPQDRJr4CDgXe0/ZbTn8O/EMpNQp4DhjYpOxapdQXWutJlrYtg9E8Zu9b1QK5Hn0m6mLgpiT1JYQQQgghRIfQNZXw+duJNe6/EyoUgqv/gf7tMHOdqa+hL38QlRL/kDBsmQSe0gmCiYLSX7/vXcFxULe/8FOYiB+HD1ccPjx4qMuYAYoxA5q308Vp9gahrTWJrokDToCHr/GsMrbmc2vZomJ4aaZ9Im0Xj2CCdjP1Fc9idfFff/p5n52gb3d7iNXow3fH2W7klgUHnWwNTPzH2j9wyLbvxCwf0eQaoHzLNTuryjrv5GQ/4UMdJTNN8eX1Dnvd4T9wadxdzet+cZ3Dntsr/jZFU2O4oeQ5/47/3Lza9deMr/0c/ew9qDteZME6/8/nD6s1hw9XCQSjaaLZ+h0nYnttWD6bjtpFcfpoxdPTYxtqDWdPdJn9Z4fs9OT+Xbe86f/1UZAT4ZnKK8k7/YlAIQjNvPFP31WPq3iNywvuxTXc4ef1b6G4QpPf1fvxWFOuOe2p2NHe957mioM03bK2tLcFRPRIwhnB7lmK5851yLnU/HjPXdP6dTRl3TY1ef0N6q14+4fYinPXaAb3Tt7rLPzYljC0ZNpze3vZ699qauo1WemK2gRuhruqLBoAE2R/SwhhFrF8zLT1vtJJoxSzVgT/tNrm/1xf2y393efoW86AdSt4MPcS/lh4j2f9lanbULik7YLRbH9ptsfhm2nfTgirSNhapL+cghp1YDsOpu1Yv7HGOxgtL9te1tmC0bTWrI8TjAawdmPzIHMTWyijSdPg2XKP25l1bxEyd8peim9W+t+eb/TouzrOdq+mAXIyfK9KCCGEEEIIIYQQQgjRCWitrSFDhRLCI4ToINmhLnQJdaMyEnsnmnUNqxmUbb674tp68/asZ1ohIRW9ljrHYxJ6VaSC7qk9EhhxcjS49ZQ2lhjLCtL6tPNohBBCCCGEED8XyhaMRnJvTi+iwrqROtd8IZ7XMakQv3Rb4VR2EY/W+m2t9RSPULSmdWcAewM/tij6q1KGmZGWboKOMcE2QgghhBBC/DJ89hbUe8w29KDGHx39v99ASLPMONy4HmZ95Ks/azDaVpbTpdetQF95hHel4y9B5XfgRVupHsleoa0/11zlbwO7jPOsM672c3arm20tf/1b86FkXnojoQnXo1/6B3q9+U6l7UF/8IK98LBTUZlbZnSHHMWdx5lnfx8wCEZt22Lhob+1dr1/zTSOyPyu2bKQA1cevOW0T/88c9uVqypw77oI/czd6FWL7OPvAJ05GA1gj+0Uq+5O/NTa3ne6/OZxl//NSPwUycyM3aI/fPI6ruvy+DT/fc3Z9FYJGoxW3gnCB2whASGP18b9Jylr+MDiEnj4o+ScqtJa8/pszTUvu3y+OH79I4bD18fPYunXeRww/4mkjMGPwsg69qn5xFr+8qz4j8f4u81PRFU9zFjefFmp5XXTwyPoIoisdMUIy0f4wmKob0zeqUjb66/ptmlwb3OdJSXEDcsYVAi1D8fftqy5t21C0QB6dVHWv6G6Ht76PvpzbWPwvmsaOl+IiRBbK9tneKiNv/n7/f7Kum8Zz8kTXGxfXX27UnPjU6u58NYfuDlyGgf2f4er4oSiASxO2wG+/aRZvx/M05z0WIS0CyPc8KrLkpLEPwdsj7NXwI8Eo4lAwh4fqLXV7TeONub1LvTao8lKg1TLOajSTvbwVNbZz6M1VVwZv06Q47SVTYLRNlr2s1JDkJHafNlF+yq2CzB/x+vxrq73bluZyG3WhBBCCCGEEEIIIYQQHaoyspFa13xisCCtr3G5EEK0hwJLOKMtzBGioWkmhU22Z1lxgtE6UnHDGrTlGzcJqxRCCCGEEEIkKmSJk9FagtHaQnXEfvFgTqhrO45EiK2LBKMJtNalwCk0vyZ9ELC/8qRE5AAAIABJREFUpUnL6XuZCay2ZRsf988WQgghhBDil8EzXMlLtx4w5vCfflVv2L/k1x++5D2GTZPKwxFzeUoCR5M+spvbhF6xAH3CQM866rJ7Ub+/u51GZBHySJvL+nmk/qsDT/QuB54outBa/uM68/L8isXw3/vQD16FPn8ceuXCVowyOO266Po6+HiStY4aNDJm2al7O7x8kcNhQ2GnAthre7juV4o3L3VQqvnUcJWSinrsY3PfwH9/PIabDo+w705w1AiYfLnDQUO29NEv1zzVfHVdFpE3J6In3Ig+dzT6++k+/uL20dmD0QD6dFcsvsPhtL0TG9SLM1u3XZyTPuSnkzkX3buML5cGaFsUbWkLebKpijPhvT1EbK8Nj8+m3GzF46faK7zQioC6ps59WvPrR1zumezd36794D/nKF7LvZ/dbhtHGgkkTLXSeeX/tJa9N9d7/GXVmuWl9vIfipq332A585eXpGA0gOfONT+/Edf++ZEIP9um7XqYtwkbqmGlx+N2yf6KT69xSE9VlD9of70uvM2hoGvbbgy/udG+/imbXh+1CQb/rCqLX0cIEV/ER1BjW8hKV3xxncNJo4Kv6KVZcNnzmnCLD/PXvtHsfmuE278s5Incc7i11w1My97XV5/z0gZFf/j6fQBuedPl4PtdXpoVDSi68x3Njje4fLZIJ3RMamuSnWZvI8FoIpBGjxfMzykYzePtpzw2J0op6z5jWU3nug/XBp9P193vxj8ICxKMtrpsS+XyWnPD7lnEnGfITldMv87h/H0Uu2wD+3ifOvMORouz3esMx5FCCCGEEEIIIYQQQohgvAKGJBhNCNGRCi3bIFv4Gdi3aU1D1kIqRJaTY6xX5TF5vT2ss4w/RAo9UgvaeTRCCCGEEEKInwulLHMwtGVCqWgVr9DtbAlGE8JKgtEEAFrrWcCUFosPs1TvzMFojwDDAv47JknrFkIIIYQQotV0ZRl82XLX3B910R2ojKwtv2d1gYN+Y6788SS0YfKt/uBF3DN2Rx/aA/eaYwmXmdM7Uj0yvGL6XF+Ee+1x6MN6Rft+5xn/jZNAP3q9d4XTr0WdeCnKK1GnPXTJhZ59Ypc7Dow/uv3H0xb2O847AA7Ytf47MnVtoG57hUu2/FKyGv3svYmMLjC9YS3udSegD+uFPqibd+XBexgXH7ub4u0/hJh/a4jp14W4/ViHjFTzrHA1dC/YzRwQkVW1jhvX3sxHV4eY9PsQBwxq3ke/PPOwIiqFtSmF0V+qK9AT/uz9d7Qja/hQJzubtX1Pxb/Pdlh2Z/sPrDyUy5qU3nybPpwnFm0bqO2KTZv3IBPuASrrgtVvC7Ywt1CcfJYjRijOHGOutLC4lYMCHv7I5V+fxX9Al97pMOvGEKdsX4T6582tX3GCTqqwh6R+v8o7rOH71fZAns3lTdlCFHpkJy+9Z2C+PQxoZRKDuPwEo9m2uQCzV5o7+P0BiodOccjb9Jh0zVS8f6VD7pZdO/rnwbxbHAbkt31CZFqK4tzx5vU89emmYLQE8/wkGE2I5LBtj0LtsEtS2E3x/PkO7oQQ7oQQlQ85cQN1Nnv4I03aRS673RJh2gLNizM0xz3qokls2zY/fWcA9F0XUVyh+cvr5gdm/N0ueZe7nPqky8YAYUq2xzktxR4YLsFoIpCwxwumvqb9xtHGPIPR4rRtuj/U1IfzEx5Om1jv89vuqT9CbYP3dihIjmPT4N1yy0umu+Xb/IKuisdOdfjmzyGm/tH7fE2Zx8uxOk7wWWc4jhRCCCGEEEIIIYQQQgRTbAkYyna6kCMTNYUQHahpmFlTtmA0rTXFDUXGspYha7btW7XH5PX2YPvbeqUVElIBLugWQgghhBBCiCZCmI8nXOLf/FME5xW6nR0yB3ULISQYTTT3bovfR1jqbWzxe68gK1FK5RAbjFYepA8brXWx1npOkH/A4mSsWwghhBBCiKT4cgqEE0iZ2GU8HH5GzGK1//Hm+pVlMOODZov09HfQfzkVlsyB2mr4/G0aXplgbG6bAN6SDjeiLz0YPnsLaiphyRz0HeeiP3rFXwcJ0OXr0R+9jP7sLfT0d+DTNz3rq+MvbrOxBKGUgl+dFlsw5ghUbqDDrk5L5ebD0efGrXde6ZOB+s2PlDRf8NbEQO2D0nO/Rj//APrX28Knb0BtnNnPOwyFwaOSsm517xv2wmfvRa9baSzq7xHSsyqlycU9sz9G13Ts3Q03s4Uu2YKPOlr/HoqKv7f/qbYf0ofwdo4t295ufVV0Mn7QYLSqOBPe21plnea9eeYyP6F5Z401v4Aq66C6PuCD0URJpebS/8Zvv10P2LaHQofD6NvPAUNIaVtTN06M/g+8vNIcoLpkvaLG4/H4ocj7b333B4276cVV26CtAVo9kvjdTWqKotCSUbm6PPHntiU/wWjbdLe3X7DOvLyX4bE4YJBi0e0Oz52rePECh/m3Ouxc2H4bwZH97WX3THatARePnar4/Fr7G3JlafKeDyF+yTrTvlJ2uuKDqxzeu8IhO91fm29Xwf5/c/nNhNZdPLE0dfvoD+UlTP7Bu6+NtfDcV5pjH/G/Tq/tflaauUyC0UQgXvuDtZZ02a2Q16e/irPd6pFtXv6vzzSPTg0WdtiWNgS4DdiXS73LgxynNQ2d3WjJme+WyG3OWqhpgLpG88DiBaPZxiWEEEIIIYQQQgghhOi81lpCeArS+kavcxNCiA7SMsxss7Lweurc2C8lysMbqNfmi1xahqxlh7oY61V10mC0AstjIYQQQgghhBB+OMp8zb+rI+08kl+GakswWoaTRYpKbefRCLH1kGA00dSyFr/bZt4vbPH7tgHX07J+qda6zFhTCCGEEEKIX5oDT0I9+QWcciUUeKRRtKAeeNd8wdFeh0KW+Yt6/UXzbGT9evMwKg3ckH65sW2K3xuMfT8dVi2KXffk//jsIBj92Vvokwej//xb9LXHof/v15711SV3ofIK2mQsiVDn/gVOvxbyt4FuPeCIM1E3Pd3Rw0oqdcldcOKl0b/PIs8NdoiYHy6JXykJtNa4t56FvmAc+uFrfLdTD05J2gWBKi0djjjTWq5P2BEdiT0BnZsFqZb3bUlKz+YLllpSp9qZn/ChziYnQ7HyLofDh7XfOuekD2Fu+uCE2q4qAx0wQ8AWhNQeFqzV7HqLPcjEz2ujtyU4C2BNy1sBBPC/r/09kPvspNDr16DPHAmzpia2sp13Rz0yNRq6GEQohHpyOuqQU6DvDgAMrZ9jrKpRzFtr7+rrOEEOReXw6aaP/w0eeR55lpCLRNkCyf79eTsEozU5056VrqwBHja9zLtr5GYrTt7T4fiRiozU9t0ADuljX981L2uWbTCXZabC3jso9t7BXL4qKbfIEELYtkehDvrmL+QoDhysKLnP4ZrD2m979dO+bEMd8xf7+zCf+iPMX+Pvs8G2r+QVjFbb0DlCmsRWIuwRjPbVe+03jjbmddwR73B5+Db2Cpc8p9nhepcP5nX8+25Dtf8x3P+ed0BjkGC0dZVQvymwrNwSQNY9y39/XlZbTtdUxwmELKnq+OdHCCGEEEIIIYQQQggRzLqGVcblBekSwiOE6Fgtw8yaKm4oillmCxWL9tWn2e85oa7Gep03GM3+WAghhBBCCCFEPI4lbsildTc9Fma2Y8scS0i3ECJKgtFEUy0vlbbdO7rlDOkdA66n5ZS4uQHbCyGEEEII8bOllELtvBvOxXeiXlgQDT7Jzfduc99bqJQUc1l6Bow90tzwlcdwL94f99zRuA9eCZ++2az488y9aXDSjU1TfB5N6om3mws+e8tfBwHoqo3ouy6Eap8XIBx2Kupkc/BbR1GOg3PezaiXFqFeX4Vz7eOojCTNXu0kVHomzmX3ot5YjXq/HHbfL6ZObiRYYkrfcOxFH6ZwsNbQ4Ub0abvClOeCNRx3FKp7z/j1AlAHneRZrh+IfV0rpci3nCctCTXPRddP3pTw2JLJtZxH78zBaAB9cxVvXhbCnRAi/JhD9T8cTh/ddoOekz6UOelDrOUnjrSve2VZsAn3AFXF63EvOQB3fHr03wNXoEvXBeskQVe+4LJ0vb3cTxBMofnaNaB1wWizzdcDxzg+8j762O1g+fzgKznqbNSHlThPTkcNH4167BP/bX91Os7UGtTOuwOgnvoS+u/E9o3LyHRrjE2+v+Sc6HN8TH/cyw5Bv/wI2nVpDGsmfRv/hfPCjGidUo9gtKDhYfH0zTUv/3wxhCPJCWPwu23a1p7/adSnW+fbuA3tk9g2NzMt2sgWVGcL1BBCBBPppPtKGamKO49zeOiU9hlIcagXm7fwG0v8f5h/uMDf54JtX0kpyLQEo9XECQgSoplG7xeMrjPvq21tvN5x8bYWx+zqXaOsBs6a6FJd37HhW+ur/Nd94zvv/dMgx2law8Li6M/llpdLd9u3/i3EC7a8/lXzwGrqvfst7ti5QkIIIYQQQgghhBBCiASstYXwpEowmhCiY+Wl9iRVmb+sNYU6rrUEPXYNdScrlNNsmS0YrTpSGXCUyaO19ghG62NcLoQQQgghhBB+OMoSjKYlGK0tVFuC0bItx6JCiCgJRhNNtZypbZtq+kOL30copYLM1B8bpz8hhBBCCCEE0ZAsNXw06sWFsO0gc6VdxqP2OMi7nx2H2wu//xwWzIKXHo4pmpJ9sLVZmjmHLVZFqc+KSTDtVSgr9le393ao659s2/G0glIK5fy8D9mVUqj0TNg+NtCpe8BgtP2rp8UurPF3IYquLEevWIBeNg9dvArdUI9e8SN6ffM7B+qrjkwoyEgdfnrgNnHttp93+WsT0AtmxSy2BaOtS2kRvjjjQ/Sz9yY2tiSyTQTv6LCPIBxHkZmm+NeZikmXOAzpHV2+U4G9ze/2Ulx/uGKXbWDvfo2cUPEy/RtXWOvPytiVH9MGGsuOGeHy/PnKGj61dL22hqrYVM78Cr77bMuClx9BX3E4uiHOTPhW2lijeSfOGSQ/r42cDEWOOfOTNRsTD1JYVRq/7c71Czjk38cm1L+67X+oPz6CSt1yUZ/KzEY98G78xiPGoq6b0Ly/7K6oJ6YT2u/XDK5fYGw2J31w9IfSdfDNNPQDV6DvPJ/5a+2BC009MlVT36hZ4bErkJf0YDT7i2D6kuSsw++2aXBv/xurFAfGBr31RDvIy1YM9M7nNcpMjf5vez5WlXVsaMlmFbWaxcWahnDnGI8QQdm2R6FOsrN06l6Krhltv556J4MqJ3qx+uoi/xejL9/gr5722O5nWYLRqiUYTQQRDnuXz/ywfcbRgVSczdaBllNiTa0qgze/69jP9A0BgtEAvvDYPw0aYD2nKNpgo2U/vVuWv8+Gk0Z515v0rcY1DK4qTihdccfNFRJCCCGEEEIIIYQQQiSgwa2ntNF8HV5h+jbtPBohhGjOUSHyLYFgplBHe6hYbNBjdsh8kWWVZfJ6e9gYLqVe1xnLCtNkmyyEEEIIIYRInEPIuNxFgtHagu3YMsdyLCqEiPp5z7IWQe3V4vciUyWt9RrguyaLUoBxAdazX4vf3wnQVgghhBBCiF8clZ6B+ssz0DWvecHeh6LumRS/g4L+Ca23NJRnLdtjO5+T7V37iTD3+hPR9bVBh2Wk62rQf73Ad311+wuoeDNvRbtQubGJK67ljhM2e9Z9HbuwxvtCFO266Kf/ij68AP27EejTdkUfPwB9YFf074ajj90e97az0TVVuGfvCbOmBhoTKamo82+FcUcFa+eDCoVQj3/qWUefOxr96RvNluVbbiBRHOoV237i7Ul7fybKGj60FZ7NUkpx1C6KH24O4U4IMf/WEP85R9Elo2kd+MOBiolnKW77tcM3fw7x2alLeH71aSxZNIh/Fp1n7Pu7jBHUOZnGsqsHL0IpxYDYpxiAOUXBJ9xXOYYkqyU/wKQJscuT6P158euEfL42enczL1+z0f94WlpZ5l2e6dbwz6LzSSVO8EVLOwxFPTMbte+vjZ9bauT+qCsfhC651i7UDU+Z22bloG5+lqFqqbHdnPShsQvffYblD9/ne/iZl7gc/Q/zvkDXDEgJJfezeOwAe9m+97g0JiEAy28w2pAAN2QdMwB65HTO/ZKpfwy+0c3cFBRke6+VdIJgjLvfdel3jcvAP7n0vMLllVkSjia2PrZw006Si0a3LMUbl7Z+x+2simeomp/L/EXDrHVKQtH7/iwv9f/H1zX6q2fb7iuFNWy1ynxNuhBm4ThJesuCB3R3RraQQYB479yUkGLy5fG3J09+0sHBaNXB6q8ut4/X6/Eymbsm+v/GWnPDbuZDxhi79Vc8c479GWkIw4zlscur4+RkSzCaEEIIIYQQQgghhBBbl5LGNWjM5xtNQUJCCNHebNuidQ2rYpatNSyL9hEbKpYTMl9k2ZHBaLbxg2yThRBCCCGEEK3jWObvuTrSziP5ZaiOmC+ky7YciwoholI6egCic1BKZQDHtVg81aPJq8CIJr+fBUzxsZ5BNA9gq/bTTgghhBBCiF86teMIeLMIipZAfR30KER16+GvcX5idwSrdyyzvIGzx/qccK497hDwyevoh69BXfn3gCNrsYoF36DP3dt/g4NPRg3cpVXrFEmUG5vYNKLue9/Nby++0TyJuqoCCjwaTn8b/cRN3p1PfhY9+VnfY1GX3QuDRkFKajTMKN3nzOMEqCF7oI85FyY9aa2jrzsBXliA6r0dAPldFBguWixJMaRm1dXA0rkwaGSSRhycn/AhXVYM7z2PXr0Ytct42O841KbkNF1dAW9NRK9ciBq6Nxx4Iio1rR1G7s9v93I4fnfN3DVQH4ZBhdA9q8WrefGW98Lomi8CryPvh8lw4GCG9lV8tSz2AZ2zWpOXHSw9pcox34lEv/gP1ImXBh6jXyc+Hv+OM36DYHp3g4WGGxsXlQcc1CYfzdfMW2MvT3PreW716exlCnFs6cCTUNc8Bit+hOwu0HdA3CBPdeyFcOjvYPJz6Psua1548MmoPtvb2zoOQ7bNgHWxZXPTBxvbFP2wEHrH/Uvi6tUGN7U5ehfzdm6zf3ykueLg1iUGWQNyPnoRvWQJ7H88qv9ODOvjPZamdujVSVKMDAq6RgMbz/yX/3SOzNTo/7bnuKQqCQMLIBzR/Hu65qWZmslzYsur6uGEx1wW3e4Efi5cV/PabPh4oaZvd7hwX0WXjM77fIqfF9v2yG9QaHsYP1Ax/1aHQTf6v3Pc3euuZfThI3EO+g07F0JuysmwZBgFWQVwu7lNcagXWW4t34YG+V7PylJ/2zWvfVJrMFqcgCAhmmn0DkbTy+bFDQ7bGgQN+mrp4CGK8QPhk4X2Op8ugopaTdfMjnnENgTcx1nvUT9ogPXcomiDcku+efcs/339bi+HjbUuv3/OPIi5azR7bt/8MY633SuplBBaIYQQQgghhBBCCCG2JusaVhuXh0ihZ6rXBVlCCNE+Cg2hZgBr62O3X7ZtWqEhVCw7ZL7YpSOD0Wzj7xLqRlYop51HI4QQQgghhPg5UViC0fB/3a/wr8oSjJZjORYVQkR1oukRooNdAzQ9oxcB3vKo/+ymOpsdp5Qa6HM9Tb2gta7zN0QhhBBCCCF+2ZRSqL4DUDsM9R+KBgkHozWQaly+53YwqLfPSaZunBNhk58LNqgW9OTnAoWiqQtvR13/VKvWKZKse2wo1/D6H3w3v2rDA+aC6o3WNrqhHv3q477X4ctJl6FOvBQ1fDRq8Kg2DUXbTF31j7h19Ek7o8NhwB5QU5RiTjjSD1+b8NiSwRpCgUbX16LXrURfuA/6oT/CK4+hb/od+s7z0Fqjy0rQF4yLlr02AX372eg///anx6KzSE9V7FrYwF6FVXSjCl1TueXf6sXom0//qe6OjYvpFTakeXnIm/4/tNYMzS41ls9bG3zCfaVjuZhqzTJ0hXk9rXX1i/6+VPEbBNO7m/kzLJFgtAfedznwPvv4tmtYxsyle3NU1dvxO0vLQF10ByozG7XzbqhtdowbiraZyuqCOvYC1IOT4aDfwMj9o33d8M+4bYeOH25cviK1PxWGILxVKcm50+iIxHZPPGWmKY7f3V7+0Ica3cpUDuu26asp6Cf/gj5vDHrWVMbuCCk+X5P981o1pDZ3+miHSZf4/yohc1MGZU/L5qKkklY/D365rubg+13Oe9ocitbU/2YEH9Np/9Sc8JjL3z/QXPOyZrdbXNZVbOknEnQjK0QAtkMtv0Gh7WWnAsXc039gbM1nzZb3aSxieN33P/37dcUk3tZXctXloxl7wcmMHqDIy1ao9AzU4FF07b8NaZbbPZWk9GJ61t5oy53rTFaW+atn21w5StElw1xWKd96iSDiBKOxbF77jKONeX0i+tzl5aDB3hXrwzBpdsd99m6oCrbuEvM1TkACwWibgprLa8zl3QOeorh4P/v2dEVp7D5OvGC04o6bKySEEEIIIYQQQgghhEjA2vpVxuU90woJKcsXNkII0Y4KDKFmAMWNRbh6y3THOreW8vAGcx/psRcv5YS6GutWRyrb7VqXlmzBaLbHQAghhBBCCCH8CqmQcbmrJRitLdhCt7Mtx6JCiCgJRvuZUUqdppQKdAsWpdR5wE0tFk/UWi+3tdFaLwT+3WRRGjBRKWWZBgJKqWOAM5ssagBuDjJWIYQQQgghRAJ69oHM7MDNGlSacfku/QLMtI93IqwmsYsF9FsTcY/dHn3bWf4a9OqLeupL1O+uRqXIxVmdSm5+zCIHzVUb7ovbdEzN56Q0y+zeQl9yAHpx84A1vWAW7vlj0Qd3hy+nJDZekwNPQl1yV/L680kphXrOR4jct58AsE2uuXhB+s7mgtkfoxvizG5uQ7awD/XQVeiDuqNP2BGKljYvfPc/8ONseG0CLF/QvOzTN2D2tLYZbAL0nK9wz9kbfXB39KE9Y/+dPKRZfQWMrv0y0DpyV38LH7zAgOkTjOUlGyPW0B5b0EeVLRgNYLH/UEO/GsKa+97z9znhNwimnyWEav7aYJ9HxRWa61/1bvP5sn0Z3LDAsw4ASqGu/DuqoF+gMcR0s/t+ODc9jfPAu6jfXoUKmb+oamr4yG2tZXPTBsUsK0rt06oxbjZ6QNsk9xw8xN7vsg3w9PRWBqNZtk2hzRdV1lSiJ95BXrZi35389dnZg9EAjtpFUfaAw5gB3vUy3Fp2+F0P3PHp9Lx6H2OdxghsrG2DQW6yslTzm8ddnPMjpFzoMu1Hf+1mLQ/22nj7e81/v2reZsn6aADfd6s0Y/4aIfNilyF/jvDqNxKQJpLPFprjNyi0rWmt0c/fjzs+nZ2u25Npyw8mPC/rp38rFu3IN0v3+unfy2fXc9gTD6L2P87Yn1KKXrbAxVAv1ocChIfjP6TH9jgrBTnp5s+c6o7bhRZbo3CcYLTl89HxQue3Al6nfvwGow3tE7/iCwkEnSbL+qpg9Us86gd9yheuix47WYPRsoL1B3DMLublf3ldk3mxy263RPhgXvTxjrfdq5TtohBCCCGEEEIIIYQQWxVbCE+hhPAIIToJWyhYWDdS2ljy0+/Flu0ZQEFqbB+2YLRG3UCD7pgvPNY2mMMqJRhNCCGEEEII0VqOJW7ItczVE61THTHfTdV2LCqEiJLZ4D8/5wCPK6VeBF4Apmqtq00VlVKjgOuBY1sUrQb+5GNdN21qu3lq9RjgfaXUuVrr+U3Wkw6cD/ytRfu/eYWvCSGEEEIIIZJDhULoPQ+Gaa8FalfvpBuXp6cG6MTPTM5wI6SaQ9hM9NRX0X+9wF/lgbuizv4T7LoPKqeb73WIdpQXG4wGcETlO/ytx5WeTX9f+qhnuT5zJLxZhOrWA11Wgj53dMLDNDr9WtTYI2HwKJTfmdxJpvoNhD/ch37Q47H67jMYuf+mSeSxk8TXphSyPtSDnhHDnRF//AaG7Z28AXtwXc30JTBjuUZr+KHIXM8WhreZfvcZeMX82tAzp6JGHdjaobaKXrMM3vsf+ok/B247pmY6r3c5ylfdbpFyUoigbz6dvMy9YbtrYurUuyGqasKYThF2y4TKuth+Kz2D0b6H3cxBSIn6zxf+gw38BsEMseR6zVsTfR06PhPWXpqlqWu0l+9R+zX5kRJ7hU3U2X+GX52KKrQHlLWl/nmQkw5Vhmv35mQMZe+6r5stK0rpnZT1jmmjYLST91Bc/Ky2BtmcNVFzwkhNtiXMJp6IpV+HJvs830xD19UwsCCDD+bHfw33z+uYz5CgumUppl7t8MlCWLBOc/MbmnUtgoV+U/ESOZtOR+dHiq19lVTGD+ioqdd8sgiKyjUHDFJs2yP+4xRxNSdPcJm+JG7VGLNXBqv/78/Nz+3T0zUPfah/2obOXwvHP+oy7Y8O4wduHc+1iIZ6RdxoKFbExf6zjh7yRLRHnYT60XHbzi0yvwY7aLc01osPoR++1ldVdceLqPFHx62X3wVWl8cuL0npSZqOEy7VQnFl9HmOtx9vC3NyFORYgmQr6yQMUQTQGOe1W1sNxSuhg/YVk8XrXeF3szXMx9yOKXOhrFqTm93+G8Ogwa8bPILRbI/Xdj2iYb8thV34cZ19DN0ygz8e2+SZzyFsXt+3q+CIh1y+ut4xHks0JYGRQgghhBBCCCGEEEJsXWzBaAVp27TzSIQQwiw/zX5jx7UNq+iZVrjpZ/P2LFWlkZfaM2Z5Top9MnpVpIJ0x/IlcRsqbjBfSFko22QhhBBCCCFEKzkqZFzu6q3/Zq6dUXXEfFfnnFCXdh6JEFsXCUb7ecoETt/0z1VKLQSWARuBCNAD2AUoMLQtBQ7TWq+NtxKt9Sql1HHAZGBzisFYYK5SaiawBOgG7A70atH8TeDGYH+WEEIIIYQQIlHqV6ehAwajNShzWFma+ZyXmZ8TYY31voPR9Ia16BtP9r169dQXHRZYJXwq3A5yukNV84SDHHPG90+eKjqfkypfjt//5GfRJ16KPjrJF4GMPxrnvJsxewduAAAgAElEQVST22eijr8YKkrhX7cZi3V9LQoYZr8WiDnpg9m35tPYguXz2yUYrSGsOfVJl5dmxa/brzFOcs3UV+2hjP+9Dy64NfgAk0R/9DL6trOhwZA45sPIOh8P0CY9IqU//ZwXKbPWKy3agOkUUY45G5NaJxONObxAz/0KxSW+xxjPbW+5/HmS/2ARn3lmDOltnuBf0wDLS2H72GvejP73tffYzij/T9w+1N/fQyU5TC4opRRD+8CXS2PL5qQNjllWHDIHWga1e/+kdBOja6Zi3i0OO99o3wd55gvNhfsmtn9g27w0C0YDKCumX56/P7J394SG0iFSQor9B8H+gxTnjHW586wHeSrlWDLcOo6oeps7i7ec8u0VXm/tp6QKBprOTm+ydqPmVw+6fLvpprchR/P02YpT9vROQHznBxIKRYNo0IhfVXWaF2eatwGrLJvcfe9xqXnYISPV32tPxwvGarNArs11dMJtE1l/bFsf60/W42FoawvD2hr4DQptS3rFj+iH/uiv8pjDfYWiAfSyfO9fEupJN9d8sYBNfTgaCtolznXrtqBNpez7S/ECgoRoJuyRtLvZsnlbfzCax3bV72mbgfkwvC98b56/AkBjBF79RnP2uPY/FxS27Cf27gZrNsYuL66wPyi2bc/OhdF9DdO6Zq/U1FpeTvECaU365cav0xCGZ7/UEowmhBBCCCGEEEIIIcTPiNbaGoxWmObjDhZCCNEOMpxMclN6Uma4NmVdw2qGMWrTz6uM7fPT+hgDALI9JqNXRyrpkZqc66b8qnfrKA2bb8yZL9tkIYQQQgghRCs5mC86dom080h+/sK6kTrXfOdTr2NRIYQEo/0SOMDOm/7F8wFwptbafNbPQGs9VSl1LDCRLeFnChi16Z/Jf4HztNbyiSiEEEIIIUR7GXNE4Cb1tmC0IEeStvSQphob4lbRa5ejn7oV3n3G33oLt0U9/omEom0FVCiEHn80vPN0s+U7NCwlpMNEVOwLrujUz8m/IX7gEIBe+B3qIx8BagGpS+9Jep+JUkqhzr4R1xKMRiR6+F3YLToZurwmtsqK1NjwnggOf/8qj3cWRNv/fn+HX+9mfk+9P1fzt/dcqurgsGGKKw5SZKVH606eo3l0qsucouhk+IEF0b6OGLGlr/99rX2FogEMr/vBu0KpR9Z7r/a5GEg3NsCkCegHr9qy0BAAGNSw+rm+6+Y1CUbLjdjXu77SvJ22BX1EVAqNpJKGYcb9e8+j/+9RVEYCs+5beHGGDhSKBv6DYAb3tpfNKfIXjLaqTPPJQnv5uC4rOWfev+wVDjwJddPTneZzakgfxZdLYx/vObudCZOvabZsXUrrL/AbMwDf4VCJGFigmHiW4sx/mV9DL83UXLiv//5qGzSPf6x5cYZmrSV3x2kZBlu+nn65/oLReuX4H0tnoBd9h775dELL5vEn4E9ca6yXravJcGupczJjykoqvddxy5v6p1A0iIZVnTVRc+QITZcM+2snXmChl3Lz94xGb36X2HqyLnEp7OovzEuIRPkNCm0resUC9O9G+Ks8YDjq9hd9992riznctCSlFymNYd/9bFZckXgwmqPsbSsTy8AVv1R+gtHWrmj7cbQxz2A0n30opbjreIcTH3c9g7bOfVpz9rhAw0sK2+d33+7mYLQfi+192U6npadEj6nnrYkt+2qZvb942zqTQYXmbW5L90yOX6c6/qk/IYQQQgghhBBCCCFEJ1Ee3kC9Nn/ZUSAhPEKITqQgra8xGG1tkzA0W9CjbXuW5WSjcNAtb5AIVEWC3awrGYobiqxlElYphBBCCCGEaC1TYDSA23JuhGi16oh9AkVOqGs7jkSIrU8nuG+8SLIHgeeA5T7rVwOvAgdprQ8KEoq2mdb6bWAY8BhQ5lH1C+AErfVvtdbVQdcjhBBCCCGESJxSCvWm/QtykwZLMFp6kGA0r5mvm8UJRtNlxejzx/kPRTvkt6h/fY3KK/BXX3Q4NWJMzLLu7kYOrXovZvkxu0BBxHwHPKNpr6Bff7I1w4uh3ixC9d4uqX0mxZjDzcs3nZBWSrFdD3OVd7IP5bUuRzM1azylTi4AlxY+wB/XHMGH8+HD+XDcoy5nT3SZNFszeY5mZammrFpzw6suhzzgMnkOfLYYbpykOWti9L3/5neaIx9yef1bWFwCS9bD5Dlw1D9cXvtmy/bhpZn+AmZyIpX0D6/0ruQVyNij0Nd6Wks/el3zUDRodSgaQK/IevJT4qQJbZIX2XKKJte1n67ZEMk2LrcFowHUGkKONtMXtD6BoLhC85sJwb9IaRkEo8ON6CVz0PNmoL+fjp7xAbqilC4Ziv4Z5sdxblH0tbihSvPZIs20BZoNVbGvzxdm2F+zVx+ieK//I6RiDmhRtzzXqULRAIb1MS+fU94F9a8ZP/2ugeKUXsa6J230H2xz+UFtf1r6hN3tj+/UBdHXmV9/+J/myhc005fY6zgtL4gsK6ZfbvznWCnosRUFo+mVC9Fn7QHL5sWtq4hut0xKKr0f/8emxZY3hGHKHHub2gbdumA0Q3Cojdc2IJ61FVBcCRuqo+usqIPqeqhrjP6NEoomWivVfI1C0unqCvTiH9AbN2xZtmGt/1C07K6op75Epfg/wOxluSFaSagX1U7wjWmxj90q2yGto+z7S1UegU1CxPATFl8c+OvbTsfrkzPIbvFhwxTf3+Rwx7Hejf42pf0/UG2f4cP6msdaVA5l1eZHxiuUcYgl6Hn2CvujnJlqLbI6dGjwNjbV9aD9nCMUQgghhBBCCCGEEEJ0OFuIEEgwmhCicylM28a4vOl2bG29eZtma+uoENkh83fP1R0QjGbbJqeoFHqktv7mlkIIIYQQQohfNscSN+QSaeeR/Px5hW1nSzCaEJ6CTGcXWwGt9atEg85QSnUHhgL9gAIgi2gYXjnRALN5wHda61Z/Mmmti4GLlFJ/AMYC2wKFRIPXVgPfaK2XtnY9QgghhBBCiMSpbj3goffRd18EKxdCahocfga88ww0xN7l0RaMlhbkSNIroGizxjizxt+cCGXF8fvJzEb94T7UEWf6GZnoTLY3z7adWHQuJw+bzIeNwwA4aDBMON2BqQECptIy4JtpyRgl7DgC9Zdnou+lzsixpGC4Ww77++XCbEOu2AvdTuSFbif+9PslpY/yz+5nxNSb+Llm4ufxJzO/OFNz2SLN/e+51snh17/qcsyuDkop5q6J2yUAu9XNplVRUg1tn1KhVy+GF//RNp0fcALDcrL4cGH8qj0iW0JK0nUDWW41NU5sCFql5QR6Toa97xoni26u5aT8kjnooqWoPtvHH6SB1prCqxMLMWgajKbnfIm+7SxYtTh2HSPGMqTsalbkHBpTNue71dwf6stVLzZ/nd91vOLqQ9RPYWa28KVhfeDuExzc20vNgzz4FNT+x/v8i9rP0D4KU1zF2gpY0nUY24/cH2Z+RJmTS6Nl/+CK0r+zY9dqHsw4k2rLWy0tBW44XHHcbkkcvEVWuuKpMxTn/Dv273I1vPKN5sJ9429Rvl2pefKT+Nu92GC0EkbuHn+cPXMg1DLVrxPTj98YqH6v8HpWpvaLWV5SZW/j2pJAiH6+HD/S/Hi98wOEW5GBUuYzGK0hrHnXI6BNiI62V2IfwYHoN/6JfuS6aPBrSiqccxPseTD6nL38dXDACaj/exQVCpbiZg1GS+lFQXidsey0vRUvzNDUG/JKWxOMphR0sewvVcYeXgthF44fjMa6OOHQWwGvTKygecHb9VRc+yvFQYM1e95h/vB/6EPNVYcE67e1bMe+I8zzagCYUwTjBsYutz1cjoKBBeZ99x/Nm0EgsWC09FTFuB3h00XB27bk6mg4mtdxphBCCCGEEEIIIYQQonOwhfB0DXUnyxIWJIQQHcEW1rh203bM1RGKG803lC5Is9xFkuiEdNOE9aqIvxuaJpNtm9wrtQ+Oaqe7pgkhhBBCCCF+thxlCUbTcqfvZPM6prQFdAshoiQY7WdMa10OfNbO62wAPmrPdQohhBBCCCH8U7uOh6e/gfISyMhG5XRDX/UQ+ozdYencZnUbVLqxj/QgR5J+ToQ1ek8C1t99GrcLddm9cOyFqJQEZnqKjrf9YOPiPLeMKfPHU/zKRtJSIC87OltaV5b573vjhvh1AJRC/ec76NkHMrNh7XKorojO3nYj0L0n5Pf7KRSpU7IFS0SaBKPlmSdQt/Rw3kWtHs74u73f//PXwverYWC+Zsl6f30eXfVm6wZVFeC1kyD93/sTazjuSNSZNxgKFGRmQbeeqG49GPK8y4cL4z+HeZGymN9NwWg22Wn210qNyvRu/PEkOPly3+tq6tkv4/9tNqFN38nouhr0zafDmmXmit99xuD8I3jXEIz2zKI+PLModgzXvKzZewfF+IGwpETztaXr3+yxaRtRaQlG69Ld82/oKMM8bup8zMMu3x9wInrmR6xLsd9ptCC8jlvmX8zV75xJo3bIy4Z1FbChCgb0gtIayM2C7PT2246eOUZx5zuaRYZ81Zdmai7cN34fT37q7zXptHy/lJeQk6H485GKW96099FrK/oOS1dXwLRXA7XpFSkxLi+usD8mpdX2/rLMuXxANHDTy+3HKs4YrXhvruasibHrL6+JhjPG+6xfWQp1jZ5VhOgww/vCUSPadjur534dDdveLNyIfvxP8PiffLVXD7yLGrl/QuvOtwWjhXpSbdnPycmItltp2A0sqdQQJ3bXK5wox3zITFXbZ/GKn5M450QAKF7V9uNoY157VIlutUZuC327w2pDdvqK0uh7vFeX9tv3tGW79s9TdM3QVBhCE5es14wbGDtGW8iao6B/nrnMK+wx02MfysuRIxSfGo6PEnHDa5oHT+7E51SEEEIIIYQQQgghhBAArG0wn5O2BRAJIURHKUwz352mKrKRqkgFdZEawtp8gUeBpS1ATqgLpvvRmMLS2potGM0r2E0IIYQQQggh/HIwz0NzW940XrRateWYMsPJIkXJfFghvEgwmhBCCCGEEEL8wqiU1Gj40+bflYInpqMP6tasXoPlpEpakJuMNQlksgrHSZZYMse7fPAo1ImX+h+T6HRUVhf7JOmGegrWfoPaefefFulVi5I/iEN+i+q/05bfe2+X/HW0Ncfy5nS3vA9tE6g7ygszNCeOVGgf86yz3SpO2fhC61ZY0bbBaHrZPJj0RLBG2+6MOvUaOPS3voL3hvm8pikv0jyYKzdSxqpU+wVdLWVn2MtqnCzPtvqHLxION/j7B4lPui+rAR2JwPv/s4eibTK0fl7g/id8rBk/UPH+PPsYtwSjGdIZALp2sjfhJr27QfesaDBUS3PXQMXo4+nS7UbWNdqD0fI3BWB1ffACnBueBKBP9+g/gCxLeExbUkpx0ijFHW/HPmdTF0TDufK7er9aX5/tMxitRRis3rAGBfzlaIcvlkSYMtfczhby0xnpM0cFbtMrbA5GK/l6JvxmT2PZizPtj3mG5Tu/l2dqfjRdlbrJO39wOHRo9Lke3BtM8Syujm5H8uJkSJZUeZcL4Zejov9CTvRf3J8VOJv+b1knOx322UnxhwMU3bLaLnRGN9SjLxiXWOM+26PueAk1YFjC6++VYw5uLQn1pNIxJ01mp0F+V3MwmleI0Gaux7UdXTLM46k0hB8JYRX2EYy2+Ht0uHGrDoP3OuZLNH9cKcVv9lDc956587++q/nbie0XxGULMws5sH1P+NYwl3ClJU/Z3peiv8/A86YyE3zp9Evi4ct/v9I8eHLy+hNCCCGEEEIIIYQQQrQNewiPBKMJITqXgnT7tXDrGoqojdgv8Mj3CBbLCXU1Lu9cwWj+rwMUQgghhBBCCBtHOcblrvYxH1QEUhUxX7ScE9qKJpQI0UEkGE0IIYQQQgghBCo9A33gSfDBltChBpVmrJseZDKl9nGHgFrzxQdaa3jub1BsvgvlZurSewMMSHRW6p5J6D8eYyzT91+Oeuzj6M9awydvJHflO+2GuvD25PbZESwnpJu+D5M5qTkZ7nhbs3xD/HqZbg2Pr7mEwohH6o0f1RXocBiVktxTYrq+Dv34DfDiP/w3SklFXX4/6pjzAq1rWF9/k+BbBqP1ipjDiWxyPEKsalWmd+PqjYHWtdmSEs2M5Qk1BWDRlE/Qtx7iq+7g+vmB+588J/q4f2++3oxd+8GO+ZuCFyrMCQeqS/fA620PSin23A5reNcbi7vyu+smUHzvq8bybpFyMnR99Jd3n0GfcgVqh6FtM9iAThxpDkZzNZz3tMuk3wdJfLVTLe+KtGzLa+y/5zkUXu3SaPh+cES/9gvraA29fD6sDf4G7RlZb1xeUlSKXjLH+Dq57PngwWhXvWjf55xyucNBQ7Y8zr27Wasyfy2MGWAvByhu/+tc24xjCNgKGsiVeFsVU9/x2U9yxhK7/mQElPlt6yh8BaJ2NvqqIxNqp+5/GzXqwFavv5flu/96J4N1KQXGspzaEvK79DSW+QpGs2ySHMe+v1QfhsawJjVl63uORQdo9BGMVlkG30yDPQ5q+/G0Ec9gtFb0e8ex9mC0+9/T3HC4Ji+7fd6LEdv2QkWPxY3BaJbsbq+QtX65wcdm24eKp19u8BA2m/USLiuEEEIIIYQQQgghxFZhbYP5Wj0J4RFCdDbdQrlkOJnUubUxZesaVlEbMdwhEshN6UmGY7/+zRaMVt3OwWiudiWsUgghhBBCCNGmrMFoLedGiFazHVNmW45BhRBbSDCaEEIIIYQQQogop3kwSL0yz/JOM+SH6OoKmPoqZGTBbvug8jZNSvea+bq57b2/R/3r6+jPGzfAV+9BQz16/gx4bYJ343FHwrC9465DbAVGeUzwXvjtlp9L10F5sIAno+2HoH5zOfTdAYbuhUo1BwFuVUKWcJ8mM6r7dU/OhOZkevZL+5gmFF1Ed7ec0bVf0ju8NjkrLFkFvbdLSld6xY8w80P0fX/wVV9dcBt07wmZOTBsL1RB/8DrHNrbX70eLYLR+jVa0rwssj3eEjUeF4YBULQ00Lo2e2FG616fB859xHfdIQ3zAve/vgoawpo5q83jHLVdk8CFynJzJ107WTphE5cd6DBlrvkLrBdmaE79/ZEUl+0Dr8eWF4SLm/2uz9gdJm9AZeW0xVCNtNbR9+OHL0E4jDrkFBi5PyO2gYH5sLA4ts0b38GfJ7n0z4P9d1ZkpsF7czXrKqLP5/47Q4nPAAen5Zd/S7ekzOVmKy49IDa0Iz0FzhzT+UNz9OxP0H+7NKG2vSzBaBtCPdFT/ou68LZmy+sbtTUIBKAhHLusuEKzwpxFSH4X2G/n5su2yYUuGVBZF1t/TpFmzADv56S4Mti26qL9FEP7RLerzYPIVIcEcm1uq7bSYC7RcfTcr2H2x8EbHn1OUkLRIPqetlmaup1xedbkp+i139VA7L5yiY9gNNs73lHRbYlNVT3kyrewwg8/wWgA82Zu3cFoHmWt+ThKS1GM3gGmLzGX732ny4+3JScINx6vMLNtLAFjq0rNj4xXX/0DHlKkOJASSuxB7mzh6kIIIYQQQgghhBBCiLZV59ZSHjbf4bBQQniEEJ2MUoqCtG1YXrcwpmxt/SrqXHMwWrxQMduk9KqIjy+Yk6g8vIGGzTeqbEG2yUIIIYQQQohkcLAEo2kJRku2KkswWk7I4+JoIQQgwWhCCCGEEEIIITZrEarUoMypOGktjiT1vBnoKw+Hqo3RBXkFcNv/UMNHgxuJv95F36HDjbBsPvqqI6HUZ/jR8Rejzr5RAh1+JlRKCjp/Gyg23HW0oQ4992vUkD3go5eSs74LbkWNPTIpfXUajmWyd5P3Yf+ujUBq+4ynlU6oeJmzN/476f3qs/aA11eh0szhj777efc/6LsuhHCjr/rqn1+hBu7SqnUCdMtS9MuFlWXe9XIjzSts02i+o69NaggyUqHO8OfVqCzvxmuWoetqUBlx6rXw9vf2uISR28LyDTB+IGyshQ/nx9YZU/uF73V1cavYp/pjPs7eJ9AYv1wK36w0lw3rE/1flxVDuSGFC6BL90Dra0+HD1dskwurDK+t9+ZGQ+HWNeZgCnTIj8T+vfrQHvDKElSvtr8QT7su+voT4LO3tix752nY7zjUX/7DiaMUd7xtfn3d9tbm5S3LNYcNNb8HTJyWX/6tL0JXlqG65AJw57GK7HT4zxeatRthr+3hL0c77Nqv8+7HaK3Rd5wL7/4n4T7yIuaNVVmoO3zxLrQIRjO9/pqqNlzvOafIXv/w4SomCESpaFDZF4YAFa++NisOcJ3r9Gsd9tqh8z7HQgShn7s3eKNdxqOueDBpY+jl8d1/peXi9JyNq+hVOh8YGlNW4iPo0LVc26HwEYyWHbd78Qunw43oJ27yV3fZPLbmTxSv3PzWntY5chfF9CXmFSwqhsXFmgH5bf/oeYWZ2QLGbMd1Xn11y1LsVAA/rvM3rsxW5MD36ZZ4WyGEEEIIIYQQQgghROv8UDWDGZWftOs669xaa1lB2jbtOBIhhPCnIK2vMRhtVuVnRDBfvxwvGM02Kb0qbJ7EHsTGcClfVXxMUf1ydMubMAZYX7y/QQghhBBCCCH8cJR5HtrKusVMXHN/O4/GnxSVyvYZOzOq63jSHY8LeTvQ+oa1zKj8hLUNq9k8T2Vp7QJjXVs4txBiCwlGE0IIIYQQQggR1SJUqd4SjJaesmUyqY5E0LefvSUUDaB0HfqhP6ImfGqfRd5S0RL0Q1f7D0U76TKcS+/xV1dsNdSf/om+7BBjmb5gHHxch37wquSsbO9fJaefzsRHMFrv7DAhrYiozn9KaEj9vLbpuLoCPnsT9j8+oea6ohR998Uw7VXfbdS/Z6F2iA3jSNTwvvGD0XpESpv93i8cLBhNvf0vskInU0fsFwW1TqZ3Y61h2TwYNNL3+sIRzawV5rK/Hqf4v8O23IlmcbHm4PtdljW5SfHtxTfSO+zzM2STO4tvZOz20wK1Of9pl42W64CH941+PuqrjoKIJRg0v1+g9bW35893GHdX7Gd3fRiG3uSSZwl4KQibg+D0cTvApBWovIJkDjPa98YN6Ak3wuxPYMWP5kpTX4Fpr3LiyOOtwWhe3p3jv65julhx6VwYMRaA1BTFzUcrbj468DA6zhfvJhaKtu+xUFcNX04hr8W2aLPSUC4snodubEClbtnnjLdtq6yLfR5/KLI/t3870RyCsnOB4gtDgMrajYbKLZT4DEY7e5ySUDTxs6Ary9EPXgnTXgvW8Mizca55NKlj6ZIRDepuCPtvk+NW0Wvl15iC0fwEHdq2MI4DOR45u5V1voYnfuk+ecN/3WVtdHzUCbT20/LCfRQ3vGrfH7j6RZdXL7EcLydAf/Mx+tl7oufChuyJOu9mVGa2PcxM2QPGNlSbl3sFowGcMNIe/NtSZiuy0VNTkrsvE3E1IUf2j4QQQgghhBBCCCGE8GNtwyq+qgh2TUNbSVGp5KX27OhhCCFEjEJLQFhpuMSjjXfQY45lUnp1pHXBaMUNa3hg5Z8oD2+IX9lD11AumSG5S5cQQgghhBCi9Rwc4/KNkbJOc17K5PON7zN94wf8vt9NZMSb39TOVtQt4u8r/0KNW+Wrvi2cWwixReefBSuEEEIIIYQQon20CFVqsASjpTU9kvxmGiw3JNbP+xq9bgX2aeQtVFXArKn+6gLquAt91xVbD7Xbvp6vGH3jKd4djD0CPnsr/npeX4kKJW9SdKfhmE9INw0oTKGRvuESVqT2D9z9/62/h+IRR9I9SzG1vB977JRBWnoK/fPguN0UPXLg4PtdZi5P9A9o7tCq95LTkYG+7SxIS4fC7WD7ISjbYwfoxgb4cTaUl0DVxmjbIM64PqmhaACHDFW8/YP39rUgvK7Z79s0BgtGc9YuJzN3A6TGXjxWq3x8cfDVe4GC0eatgZoGc9kBg5pPnB+Qr/j6qjpeen8tRRsdDnn5dEbXfuV7Xex/POqQU9h70fc88vKlXNz7Id9NF6wzL++aAaMHgH7/f7BwtrlSr76wwzD/4+wAo7aFFAfChiCGxSXRfyb5HhcT6jNGwkuLUOnB78aj62th7tewbgWkZ0Lapj5SUtFXH+Wvj+f+xognjqdrBlS0YUhNvGC0zkY31MPqxdHPiB2GolTz95mur0M/fmNCfatfnQZ7HgyfvUX3mRvBsKu4MdSdSMSlfsliZjuDGFgABV0VK0u9t21V9bHL5hSZ6+65HeRmm4M38i03ViqpjL/vagtG2zEfTt5D0RiB8QMVv+rcb3ch4tLhMCz+Dn3u6MBt1c3PJhxC69mvUuR3gVVxQhSbynZryF/+BRSeGVNW7OO6ddc1bxcU0aA2G9P2SoiW9Cev+6+8bC66oR6V5pHI1wnV1Gu+XgafGwJJkyU3WzHlcodDHjCniU36Fh78wOWsMYquma0L5dLzZqCvOGxLEPKcL9Fzv4JHp2HZXBByIDdLYTpHVl5jbhMvGG2E93ydZjLNp/c6RG0D5HTOm3QKIYQQQgghhBBCCCE85Kf2wVE/w2uthBBbvYI4IWfmNuYwtc2yLcFoVZFKtNYx19j49V7pK60ORQMoSOvT6j6EEEIIIYQQAtiqz/csqZvPrMrPGNPtoI4eSjNvrn/edyga2I9BhRBbSDCaEEIIIYQQQoioUPNgIFswWnqTI0n9xj/t/a1ZDlUbfa1af/62r3oA6q8vo/oO8F1fbGX2PRamvWousy3fRI09Eu0VjJbTHXXHi6jc/FYMsBOzBqNFtvwcDjO+5lOe7fZbazcKF93krh871y/g30XnMKpuFnxw05aKn4C6/x3UqAN+WvTuHxz6XeNS12juOyfdX0jEgIbF7Fn3dfyKiWqoR1+7KaxjwHC46xVUQWxYnJ7zFfr6E6DUkoYVz++uRp31p1YM1OzEkYorXtBoj2yBXpH1zX7vFzQYDZcs1zxLv8bJittef/oG6vRrfdiUhNIAACAASURBVK9v5grzH5MaguEtrkXTH08i97azOK+22nf/QPQ9MvZI1DWPobK7wrijOG/WoTxd+gVfZO0drK8Wfr2bIiNV4b7wd2sddfzFnT6UMS1FsXOhPWjKJj9SbC8sL4F3noZfnx+oT/3xJPQNJwUbiMmCWej7LmPmDQ8wMLGcL18cHZteoZfMoXXRG21DL52L/supsGROdMGIsXDrf1F5BdHyH2ejz9nLX2f7HgtzvoT1RdAlF3X2n1Bjj4iW7ff/7N13eBtVugbw9xs1y73EJY6dnpBeSAiEFEgIEFoKJIHQy3KpCT0ssMCyF7gsnSV0WOrSwtJZem8LJNRU0km105zYjps05/6huGqONJLl/v6eJ0+kc86c+WxLo5E08850dOqpgJutkz0eSTsXV93TCxX7AjznTBRkhrngUbFFuN2STdbbj5Hd9b993Xq22/gOslATnjZ1mOBvU/VBm0RtidqyLrANXvlL5Asfejxk4oyY11RtYG6kwWglcFT5LPt2aQKJ6tIFHRkCxIcIG1q9TWFUj9b4KkCtyocv2B9bVQms+hUYcEDT1RNjLy80ceaTSvv+sFqU547UM2mAoH/nQOCylcteUrjhDYUnzjAwY0T0K1Tz59WGolVb8h3MHz8HMM5yGYcBpGreQu2tBCp9Cm5n/Zp8mo1P9Ud3XdOtg9asxDXyiJB5kwW3vxebYLuyKgajERERERERERERtUXhQoSIiFpKThMEoyVqTkr3w4dyswxeR/hj56wsKf0xquUa4jaZiIiIiIhixSNt+2CuFaW/tqpgNFP5sXzvzxEtk+RIaaJqiNoPnqVDREREREREAUZtWIsJgU9clsPc+4YpXxXww0fa6dSTN9tf99O32homd70NGXOs/XmpzZEzrol+4YkzgO79rfsmnwZ5axNk+Pjo52/tDE3gUt1gNH8VLt1xP5L9waGFTkPhtQsN7LrgZ/y8ZiR+XjMSa1f2weI1wwOhaBbUZUfBPPdgqBU/AQAyEgU3DFpuObbg9zwUdToLjwz9JuyPckfBNSHDhOScGyFvbgCS08POFdbq36DuvDioWfl8UNefFHUomvx7NYzzb2mSIKzOqYJD+uj7E9wK8ZkZ9dryMyL7GNCAiXhVZtm31/CGn2D9iojWt3qbdfugXMDjqn00qF3boG46DYgkFK1bP8g7WyD/KYBx64JAKNo+xp9uxMNbL7Z8TkRixuYnoJZ8ByxbaD3AMIApf2rUOprL4C6RB0Vkdw79ZYy6aw7U3mLb86mt62MTilbt9UfRY0Y8/rfvotjN2YABi/CvdcuabH3RUNu3wHz4L1CnD68NRQOAX7+GmtoV5rxpMG85x34oGgC55lHIq2sgr62FvLkRMqP+9jQtxLGgc3PuQYVZu428/5NAYEkoDcM1lVJYoglAGRTiONDMROv2bTYepoWaMVlhQt2I2hJ1x4XRhaJ5EyB/ujH8uEaYOiyy16kEVYo0v3WSWoUPKKsMvd3R9RoGYBiCRI91/ymPxyZEiKiepd+3dAW2/bFDYfZj4UPRAEBikYwG4N25od/zFJcDsx4x8cqi6J6flZv/wEMbBuL03Cfw105/wSZnbk2f/2f9+1xD9MFoALDb4m2X3zpXFs6aYDQ7FQd4Q4Q42nHe+NiFPJZVxmwqIiIiIiIiIiIiakaDE0e2dAlERJay3V2Q4cq2PT7P0x2pzoyQYxId+gNASv17bK+rrnKzDEW+HVEt29AgbpOJiIiIiChGescPaOkSGmWvaeOq6M1oR1UhfMr6Ys46/eKHNlE1RO0Hg9GIiIiIiIgooE6oUqXoz5p0OwFVVho4Ub7Y+gRzAMCPn8WwOEBufgky6vCYzkmtj/QZGgg4i2bZhGTIA58AZ1wLZHQONB54BOQvT0KufQzidMaw0lbI0HzM468TjOarwvCKX/DF+sNw0c6HMHbvVzh47zc4q+hpfHRGAaYOEyQPPwCDhuVhUMVS5Ps2hQwoAwAsXwT1p4OgPn8d5oPXYN7z++OFjafi+D2v4dDSz3DZjnux9fd8ZPh3Ah+9hHNenIS3/5iqnW7BxtmYUvK2fn0OB3D06ZC0rNgFb/z3/UDgllJQfj+UUsDPnwPbNkU1nVz3BCQr8qtRRuLEA/R/mdJKgfzze+CUK4FDjwdOuxopT3yM5Agu5iJQ8Jp7reeXhNo7Ls3rxd5iqFL7B4Jt0ryc9Mps0PDpK0BlheVYHZk1B5KcXi8QraZvyMEYNG4wvlo3AeftegzH73kNtxf8GYUr7F9ZM82/E5Peuwzq/BDBiwcfA0lKjajuljJ7VBTBaGddBHgTQo5RM/oE9h8AKNMMhA/6fFBm/dQHZZpQM/tGXIMd17wxDgkob5K5LYPRfvwssD1pBdT65VBnjgD+dYd+0LfvAu89Z3/S7K6B114RSKdcy9fZ9NAPi4jtafDnK9gDFFlvqjAwV/9Y7pRo3be9BGH/ZoWaTVsmg9GonVB/rAB++Nje4NmXA0edDgwdB0w9F/LEd5Bu/Zq0vkP6RvY6lWiWIl0TjAYAO0sDz/tKn/Vz39SEE1VX0TCwsa69Fa3jNYBaJ1X3fZrdZdpQMNprPys0925Q1wzB8Pzw42Y9YuLlhSaqfAqmaa9IpRSm/aMKc3LuxfMps3Fz5rUY3f0LrHN1BQD4fvxSu6zDAFJDZEtHEozm2Pe2Pzu5NiQtHK/1dQ9s69FJcPes2ISjldkIyiMiIiIiIiIiIqLWpbd3IPZPGtPSZRARWTLEwAmZZ8Ep4Y8NdYsH0zLPCHvRnkRH8DFm1UqiDEYrrIzuOMSGBiWMxKCEETGZi4iIiIiIqHtcXxyUPLGly4hauWlx8F0L2hrhe79JadPQyW0/7Juoo2rnZwQTERERERGRbY7at4ihgtFc914E9dtT9cOWmtqQMZBDpjXf+qhFyfVPQX3ySnTLJqcHwrJiFZjVltQJN6zHrPNc9QeuPDGoYinuK7ii3jDpubL29vm3QH33QUSrV385seb2zOJXMbP4Ve3YyaUfYteKLByf9xI+TZgAAEj37cATW87HcSXvhFyPXPVQbejYlHOBuy+JqE4dde+lwOL/AoUbgbzewMZV0U106jzI5FNjUlMoJ+wvuOBf1ifxOw1AUjIg599Sr71ruh+LN9ubv5NvBxLMUsu+UiO+9k5ON2DDSstxKNwE9NAfKFbXxl3WP0uXtNoD0dQvX0Hdc6mt+eo57pyQ3TLvIQz4KB0PbK3/WOpXsRzLPeHDXaYXvwk3Qp/hL9c/Gb7OVuKYwcClkwT3fmQ/ySIn3QV5axPUqUOBreutBxXvAl55ACqvN9QNs+v33fYqZMwxgdvvPhtl5fYsXTkI04Z9hZ9Kc2I6r2iSP9T4OOCCW4HZl4c9sLIpqefvBnbH5sqzNQYeGHZIUlwgwEMX7hGprbsDwSTVv8s/durH7hfiO0JdiJnPDISTpMZb95umwnbNhaWyklru70sUK6q4COqUIbbHy7FnQbo2TZilTu/MwL6Oz+Z2JdEsgdfUh2J+vFzh8S8VvloVCHO8dbrg3HFSs53RvRoaNp7y20qAbh57dVIHtGNL5Mss+S72dTSRddvtjYv17tErFxjodW34DcRJjypUP8P/foLgyiMk5L7aJ8uB93Z2r9e22ZWL+9Ln4J6Cq+DfvRPQ7D84DCAlRDCaVchruGA0hyHo3glYVaift5pX/xGfbX2zBfoton3lDEYjIiIiIiIiIiKyLdfTDaNTDmux9TvFhR5xfTEiaRxcRiOvwEBE1ISGJR2Eea478WvJd9jhs/7yJNOVg6GJB6GzJ/xVduKMeBhwwETwMdLRBqPpTo53ihMHJB8Sdnm3eNDT2w/7J42BIZrjRImIiIiIiCJkiIFTcy7G0MQD8XvZb60uaKza1oqNWFu+Iqi9zK+5wnoL0YVie414DEsaXXM/3khEv4ShGBA/vLlKI2rTGIxGREREREREAXVClSpEf/a2e9m3zRuKBgSF+1D7Jk4X1OijgG/ftb/Q4Sc1XUFthS4YTdU5o9oX4ixkR+1BjNJ7CNT4qcAXb8SouGBJZgk++OMYLIwbgd1GMkaW/4hUc3fIZeTNDZC0rNr7Dgfw/GKokwc1vqC6YXwRhqLJdf8EPHHAfsMhuT0bX4sNnZIEo7oD368L7jtuqPUy+emwHYw2oGIpEpUuGC2x9k5WXuD3ZRUKtW0j0KO/rfVt3GXdnpcW+F9t3wJ12VG25qpLnlwYNoxKvAnA1Q9D/f38eu0X7noEc3PuCbuOmXvCBDl27QuJ16QwtUKGIbh7lmDORIWhN5koqQi/THYyIB4v8PKKQBCYhnr0euv2Px8P/OmvwOzLoZ64KbrCAVuhhl18m/H1wv2wsM+JWOvqjp15w3HZhsgfWw3pni8AoB66NrDtOuq0Rq/HLmWagdfRlb9A/fIlsPCT2K7A4YDMuCjsMBFBWjy0YWKRqvABt/5H4aIJQGq8YIMmGC3OpQ8/A0L3/bFTH4xWVKYPY8pqO09zameUUsCvXwOrfg1sB0cdHnUQY92g27DcHqBLr6jW0xgup6BPNrDMZqZUgrkXKSH2Mc98snYfZmcpcP5zCllJgmn7jjUwNTlAdn7Feyvt1UgdVIRB1ACAzWuh9ha3iX1Lu6/9iTEOD+zRSfDgKYILNSHSVq7+t8KjXyicNKr+EzvVC0zsF9jfmPag9Q7AW4nHBILRNq8DelvP7zACYbEi1m+brILRdPsb1cFoADAo12YwWgzOV3TH6PyaMgajERERERERERER2TYgYTgGJPDkSCIiO/LiuiMvrntM5hIRJDqSsMdfFNRX4i+Oas4CzcnxWa4uOC1nTlRzEhERERERxYIhBoYmHYihSeEvmt5Svi760DIYrdxsXcFoWys3WrZ3j+vL935EjWCEH0JEREREREQdgqP2LMdKcWuHeUwbCSkxJHe8ARk8OvxAaldkUGR/cxk3tYkqaUMcmjOV6wYZhgo1dNTPz5e/PAnMvDgGhekJgAPKF2HS3k9Dh6IdfUZQKFrNHPl9II9/23RFhiHn3AiZfApkwgnNFopWbd5k64/2pgy1TurIS7MfkjKgcjmSNAdyFdcNRouLB9KyrSdZv9zWupRS2BAmGA1vPwlURZYuIhfdBuk92N7gQ6YFAl7quHDXI2EX61a5HhNKPw89aMhYezW0Mj06CZ44w97Hx9nJgf9FBHLezVGtTz3+V6jDkoFt1gcChjT1XMj7OyDPL4bMuSPscDeqcPDK53DK0psx54MTULw8HZfvuBc9vNFd1TXRX4zB5YtDjlHvPB3V3NFQPh/UvKlQfz4+EDQX61C0YeMhd75le/8sNzW2q7/+DYWuV5v4YZ3Chl3WoSd5aQgZDJWfBrg0L5vLtuiDVLaGeKliMBq1BKUU1E2nQ118GNS9l0FdeRzUjadAhQrD1c21fQvw42f2Fzj4mEBIbQsY3cv+Pk2iWQKPqkS8qQ+wbGj+p7WJRKYmnMiwUUJp8751pjZGhQoCN0Lsg62zt4/d0gr32AsmG6cJE2uM88YLHjtdkJNsf5nV24Bb3lH1/l31isKIm01tKBoArHN3R4W4Yfr1P6/DCIQPp3it+4ssLrLp16zSWeehMbCLvW1hXAyC0bz6jwkjUsbASCIiIiIiIiIiIiIiagMSHNZfNJX6ozu2qEBzcnyOp0tU8xEREREREXUkXof1Vc/LWlkwmi4UO9vN935EjcFgNCIiIiIiIgowak9qrwgRjOZWzXcWo7y0HHLQ5GZbH7UiE0+IbPzYY5umjrZENB/zmHXC0EKFZDjrny0t3gQYc+8KhI4lpsSgwOgZ1zxqGYpWTfbbH3L1w81Y0T79RgAnX9H8691n+nDglAPrnwx/5EBg5gjrE+Tz0+3Nm+IvQrJZjCSzxLK/2KiT/uN0Abk9LMepr962tb7NRfrgkPy4Eph3XBgId4qEyw1MOdf2cElKg1wdHIS2dmUf9Khca7lMvFmKB7fOgRMhAgcByCFtN7hxkI3vX1K8QIKnzmNu5sVAVn7TFVWXNwFyz7swrpwPiU8MBLPNmguZe2dk06hy3F54LVb+mIM3p68JOfaGlLeQ5qndlooy8diWC+CCL/RK1i2LqKZoqYpyqKn5wHcfxH7yw2dDviiHcf+HkJGH2V4sPy38mEiVVACzHzVx+cvWISTh1ulY9TP6YINl37It+uVWFFi3iwBZEYSvEMXMxy8H/tX16b+hHv9r5HNtDr39qycrD3LODZGvI0Z0+zoNiTLhVYHEoTSLq3nrfLI8EDoHALqoo+pgtNMO0tfy1SqF6Q/4MfQmP2Y/amKTJsyROqjVv2m75NZXAgHEVtYubaKCGqe0QuHSl0z0u96P7n/240Mbuz5ZScCdM2N/uIKI4JyxBjbf6cADJ9sPUozW7+4+8Is+KLJ6e5GqC0bbG7xt0AWjOeoGo3W2V1+8u/G/g+H5sQlYK4s8t5OIiIiIiIiIiIiIiKjZJTqsr45XEnUw2mbLdp4cT0REREREFF6cYX08ZblZVnO8b2uwlcFoRE3C2dIFEBERERERUStRJxgt1b8bNxXehEpxoyKnN6oOnYXKRV+iYt0qJJvFzVPP4bMhmrAdav8kr7c2hCBo7CurIC59mF+HYWhOxK4bjOYPEdzjsP6YSPbbH3hxGfDhi1A/fQ588UYjimxCk08F/n5+069n2Hhgv+GQfiOACTMgDv0J8E1NRPDM2cC54wT/XaPQK1MwbTjgMDTBaDbDiaYVvwUASNAEo5UYCbV3HE5g5ERg8bfBA5cthFIKIqFPxF8aIoRov/tnAcs+DVtzkMNnQ+ITI1pEjpgNDDgA6tWHgFceAJRCvm8TFq4djVeTpmGZZz8oBH6WLr7NOK74HfSqsg5Nq9F/JHDA4ZHX30r0zgTcTqAyxKZjRLf698XjBV5aBjUhst+/HXLjM4DhgPr9Z0h6FjD2OOt9haNOB164B9hm/cVSKEffOgizjt+Kl5cFp1wNK/8F1y47GRc6UvFS8kzsFS+mF7+B3lU2woR2b4eqKId44iKuKRTlqwqErlWUAf0PgDpvLLBnZ0zXAQDyt+eBQ48P+3y2kpcu0EcLRW/Ndn1ffrq+TvXHCqhLjkD/1AexNDk4xG/lH3sBWD9+l2y2/jl6Zih4ln4NlZEDdOkV1e+JKBrq9cesO/51J9SkkyC9B9ufrFKTUgoAh82CzL4cWPgxkJIBjDkWkpYZWbExdJDNt4kJZimqn43p/p3Y5LJ/YMH8TxXmTBSYms1X9dP85AMFz/7XelDd8MbfNil8ukJh1S0GEuO4jejoVFkpsNl6P1Iuug0y5hio7v2B5YuCl123FK3tEaSUwoyHTby/JPzYFC9w2eGC3BRgylBBVnLT/jQXHGoAMHHR80138NNST39k+wq1/dVhZqnxAHYE9+8uC27za8qtG4zWLcPePlZiDHY/4z2C6cMFL3wfvL6DewHfrLY3T1nzXWuBiIiIiIiIiIiIiIgoaokO66vjlfojP37aVCYKtcFoeRHPR0RERERE1NF4NcFoCiYqVQU8EttzNKJR6i9GiX+3ZV8O3/sRNQqD0YiIiIiIiAgAIA5HzemU6eYuXLfj74E7XcbCOPEkmBteBr59vPnqufTuZlsXtU5y51tQVx4Xflx2cKhJh6QL6DLN2tu+Kv3yTpe2S1IygBkXQWZcFJjy1KHA+uXRVNlkxOmCOuAw4IePm24dj/8Xst/wJps/GiKC8X2B8X3DBwrk2wwnenDrHABAkiYYrdioc0VMhxNywCSop24JHlhWApQUAUmhE9mWbrGuqbO3HGk/RhiK5nQBE06AXHpPZMvtI3m9IXPvAubeBfXT51Bzj0CKuQdn7X4muvlufKZFw/May+UU5KcBq7fpx4zqEfzYE6cLmPcQ1O0XxK4Ytwc48AhIUhpk4oyQQyUxBbj5Jag7LwZW/hzxqp54rTuSsu/CE2ln1bT1rFyD5zedBif86OTfgYt2PRzxvNixGcjtGflyGmrTaqgbTwVW/BizOa3Ihf8HmXBC1MvbDWWMpcEhso/Ue/8CSvega8Iflv3b1m0B0Meyb6n1caoYuPEDqIunB+4cPhu46gGIN8F6MFGMqJLdwC9f6vvPGgl8ttf+65BPn1Yjl98HSU4HWsl+UEp84PVpw67Q4xJVac3tbF8BfoP9oLjb3lWYMxHQXUiuOof2yIH2Q50Ki4EnvwkErlEHt26Zvm/clMD/mmC0kMu2kG/XwFYoGgA8e46BY4c073PggkMNxLtNnPVU04SjLfYMxPi9X2n7Hft+3FSvdX+RRTCazx/cVncuAMhPt1dfUoyO+XrsNIHPD7zxi4JSwDGDgafPNpAUJ/jnVyZuekthwy6gZyd9gG1ZlQJaXbQfERERERERERERERFRfQmaYLQS/56I59rl24YqZf19fLbb/sW9iIiIiIiIOqo4TTAaAJSZe+ExWj4YraByk7Yv28NgNKLGMMIPISIiIiIiog7B0Jww7993NuY2TRJEUxh1eODEe+rYho4NP2b81Kavo63QPYfrBqPtDXHFQof9/Hx57BsgM8RBOaOPgnxRDvlwF+SWl/XjTrkS8vp6yAs2z6IPV9eZ1wEezdnmjZ37+cWtLhQtUr0zw48ZXP4bPPsOxErUBKOVGnXCfhxOIKerfsKCDWHXubnIur3vnsgCreSaxyDvbYdxw9MxCSSS4YcAh0yLbuFOuZAPdkK69Gp0HS0tKyl0/4EWwWgAgKNOA/bbP3aFnHQZJEzIXl0y4ADI499C3t8B9BkW0aq8qhyPbL0IxcvTUfB7HnYv74QVqwehb+WqSKuuL8b7Uuq0YbELRcvtYd0++ijgpMsaNXXXFtilmz48RODGL4HgkiyfdeLftj2mZTsArN1uHajSv+TX2jsfvgC8/kj4Iokaa6ONbdIbj9qfr7LCuj0huVW+NxuYG35MglkbjJbv0x9wYGV7CVDlUzA1OUpSZzOTF0EA5NeNfCmhdqJwo3W72wN0DrwmS/f+1mPWtr5gtFcW2Q8cy0xswkJCOONgA29e3DSHRizxDIAf+hBKx77VpuiC0fYGt/k1uyOOOj9C55T693WSPOHH2BHvEbx0noFd9xrYcY+BVy90ICkusDE8e6yB1bcaKL7fwKpbHejZyXqOshBZ7URERERERERERERERK1FojYYLcTxlxpbQ50cz2A0IiIiIiKisLwhgtHK/RYH4LUAXTCaR+KQ4miBK80TtSMMRiMiIiIiIqIAbTCaL/D/1j+ar5Zdhc23Lmq1JC4eMMJ8dJFmI+mpgxDd78oMhBsqXxXUlcdpFhaIQ38id9BwbwLkuV+B2ZfXNu63P3DIdMjVD0NuexUiAomLh4yfCkw/L3gSjxcy5RxIRg4kr7ftdYesa8gYyEOfAydcCBxwGDBrbkzmxZnXQfL7xGauFtQ1Q5AQ5qT4gRVLa24naYLRio06SVkOF5DRGdA9fmwEo+3SfA+RVaYJjLDiTQQmnADxxPZKL/LXfwF5ocPN5KoHIbe9Chx1OnDQkcAZ10Ke+Skm4WytQfhgNOt2cbog8z+GnHtTIFxr/0Nr/0UiNRNy47OQP/01suUQ2C5KfCLk5MvDD7bgVeXI8O9EgtqLEDFbtY45C3Lh/+n7G7EvpSrKoSrKoLZvgdq8FuaD1wBV1leTjYY8uRAy905g3JTA32jcFMgld0FufQUitn56rX45jVs+Ugd0B3pmhlhnSSCNMctvHYxW6Nc/6Dfssm7vXrW+3n31wQshayQKRSkF5fdDVVUGnvdlpVCle6CKd0Ht3gG1qxBq+xZg9eLwc331tv0V67Yprhgl6sTYwC7hty2JnbNrbudVRbBfAaDKD6wshDYYzaiz+gS3/XlfXmg/QIrasSLr1yBk5NS+r+sxwHpMwR9Qm9c0TV1R+na1/cd1lvU5JM3i2CGCH64zMLpn/fZD+wIT+wX+Degc+bxLPf3hD3HYRXV4WWq89XZrt1UwmuZX6qzztsthiK1gxsQYXwzT6xYkxgX/LE6HIMEj+8ZYL1vOYDQiIiIiIiIiIiIiImoDEh3Wx46U+vdEPJfu5PgUZzrijKa5CCwREREREVF7EucIEYxmto5gtK2V1scpZ3vyGn0+BlFH52zpAoiIiIiIiKiVCBGqpPx+YOPK5qtlb+RXVaP2SS65G+qeS/UDUrOar5jWThtuGAhGw6JP9cs6Iv+ISOITAwFAoUKAqsdecg9UaTHwwfOBhoRkyKX3QnJ7hl4wCtJnKOTSe2rum288BlSURT/hlHMgZ/0lBpW1Dl9cZWDEzaa2f0DFsprbiZpgtBKjTuCX0wFxOKA6dQEKLEKfCm0Eo5Van/Wf7tckEDXk9kBufrFJgsjE6QSe/SUQKmj1HHK6gEOmQVIyIGOOifn6W4NOSQLA+m+UkQDkpOi/pJG4eOD0P2tDxVRxEdT1J+m3T937w3j258gKtnLYLGDJd8ArDzR+rhDksBmQAyZBvf88sPq3oH71/nOQI0+OaE5VvAvq3strt59NoecgSHwiMHMOZOacmE/fvzMgAqhmygI68YBwXxwG+jN91qE024x0+HduhyO9U732Kp/Clt3WMwYFLq36FUqpNvslplIqsP+gzEDAqtVtvz9wv+5t06zzf/Vtf/jbNfOb9tcVtN7adSvb6zVD/4wxq9HU/J40t2P5ZPnhI/tjtcFoEaR+NaOBueHHZGQmQi65C2r+1ciPMBgNAH7eoLR/jrrBaPER/or2VijEe9rm9oFiZJcmGK3u+9s+Q/XLf/YacPIVsa2pEbZF8BFOZmLT1WHHiG6Cr/8cOhT834sUzv5nJYqr7L1PXu3qiRJD/4NVB6OlaI7NKioL3tD4NW/ZHA02HT0ygPU7QteX1AL5lnEu6/ay2OX6EhERERERERERERERNZkEh/XVfkqiCUarsA5Gy3F3iXguIiIiIiKijsgtHggEyuK8lrJWEoymC8Xmez+igfUG1wAAIABJREFUxmMwGhEREREREQXogpFMP7BlLVBZYdktVz0I9B8JdO8PNbUrUGwzyCYEmfKnRs9B7cSxZwMhgtEkI6cZi2nldMFoyoRavxzqqin6ZZ2as5ZjRBwOyPVPQp1+NbB7B9CtHyQlo0nXWWP25cBTt0S+XL8RkL8+C+nSK/Y1taDhXQXHDwde/cm6f6CNYLRio84VMatfO7LyLIPR1IL5wJRzIQ59+MDOnWUAgq9+meov0i6DscdCpp4LeLxAv5FNEopWTZwuyL3vwbx+NvDZq/U7T7u6+R7LLSTL+gKoAICMRgZbSFIqcPd/gPeeg/q/c+t3pmZC/vl941ZQvR6RQNDmzIuBpT8ApXuAynKgx0Coh64Fftc8ISLVd3jg/279LIPR8MPHUCW7IYkptqdU913R6FA0ueddwB0H9BsBdeMpwFdv1e+fFfswtLoSPIIeGcCa7U26mhrnjw8TNlQS2LZk+q0L8okLRSt+R8bo+sFom3fr86ryfcGBS+rJm4EeA4E/VkCVFEUfzBUUvKXChJJZ3TbtBXJV326uFDtqXaqs3+819X5itAbl6oM7q3VNF8iMi4EJM9Dtk3XAh5Gt461fAFOzirq5h1sjPPb97d8UZo1kMFpHpnYVWnekZdbclMwuUP1GAMsXBS//0cuQVhSMVqzZfDTkdQEJLRDSZYcyTeDrt6FW/Ijpe0tw6OJn8YN3BPYYgZNeulX9gQSzFEN6/Ri8rBhY6umvnbs6SDE1+C0PAGC3RY63z2891tHgmgb9cwWf/R56W5gU1/zbG68uGK2qeesgIiIiIiIiIiIiIiKKRqLTOhit1F8MU5kwRHMhagsFVdYnx2fx5HgiIiIiIiJbDDEQZ3gtQ9DKW3kwWrY7r5krIWp/GIxGREREREREAbrQGr8fWL9Cv9zhJ9UE0qjJpwAL5je+llFHNH4OahfE7QEe/Rrqf8ZYDzjoyOYtqDUzNAfbLPkO6syRrSLkRLr1a/51jj4KyioY7ZgzgXee0i933s3tLhSt2v+MN/DqT2ZQe5IqwcSDsyF9b4eaP08bjFZhxKEKTrjgqw1GS8+2XtmGlVCXTgbufAviiQvqVt+9j50rsgHP4KC+dP9Oyyll3kPAMWdCdI/5JiI3PA0MHg31n2cC9489E5h2XrPW0BKyrI/zAwCkxyCPTgwDOPp0oHP3QJBU0TZgwIGQc66HuNyNX0HddeX2BHJ71m+c/zHU0dmAr5EpDRmda0LypHs/fVTPe88CMy62NaXavBZ4/1+NKkv+vRqSVefLtJv+BfXYDcC37wEpGZDjzoFMPqVR67BjUJfmCUb74FID8R59+IeqqgQKAyFmWT5NKA2ArSvXI2P0wfXa/rDeJAEA8quCg9Hw5M1hIpuIWhlfpXW7u3WmGA3JA5LigOJy/Zi8tMD/kpGDcdOygQ+D939CeetXhQGdrfuMOpuaLbsjmhbvLQZmjYxsGWpnirZZt6dl1b9/4JGWwWhY+TPUt+9CRh8V+9qisMci2MtKZlIgsLa1UaYJde0M4Ot3atrSABxR+nG9cX4YiDPLUG4EJ5z9FjdIO391mFlqvHV/kcVxWX7NTkTDYDTdNqquxBbYjDMYjYiIiIiIiIiIiIiI2rJEh/UBUyZMlJt7Ee+wfzXJggqLY0oA5PDkeCIiIiIiItvijHhNMJrNAxibkF/5sK1yq2VfNkOxiRqtec8eJCIiIiIiotbL0ASjmX5gZ4F1X2aXmlA0AJCz/gL0HNi4Ok6+AuilP6GUOh7pPxJy8e3B7efeBOncvfkLaq1ChUSFC/wpb/krZMi5f7PumH154ybuPxI44cL6bUPGQObcAfQeYr1MaiYwbHzj1tuKHTFQcM7Y+oEETgO476wkpFz/QE3IWaqpT/nY7uwUuOHYd8Z7WqZ+hT9/Abz7TL0mVVYK8+65UFdOwU4j1XKxdP+uoDZ5bxvkuLObPRQNAMTlhsyaC+OphTCeWgiZcTHEqTnjvx3JTtL3pWnCHaIhw8fD+McHMJ75CcafH4ZkNs8XQOJNgHy4CxgxIbjTmwi5+x1g4szwE+03vPZ232HaYerTV23VpYqLoE5sRJhkXm/Ia2vrh6IhEDhqXPR3GM/9AuOBT5olFA0ABuRGH4KyfNUgHFnyQdhx1x0jmDQgzHpeuKfmZra/EKKsQ5JWrC4ObttqnVCS4i9CirknbH1ELcW88VSoBfdDLfkOqrJCP1DX54xtSGWsuJ2CqUNDP+dz6+xixLkE8yZHti3aWwksXG/d15hsp182MDaxw9ulCUZLrb9PLSE+G1F3XATVCsKvK6oUKnz2xmaF2K9sSWr+VfVC0XQcMNGncpVl3yanft81qmA0TY6js8HboMFdwm+MkoLzqZucV/PSUabJ4CQiIiIiIiIiIiIiImpNEh36L7ZK/PaPESnz78Vui2PgAJ4cT0REREREFIk4w/oAvDJ/aTNXEmxb5VaY8Fv25fC9H1GjOVu6ACIiIiIiImolQgWjFW237kvLqndXktKAR78BvnwDat3yQBhH0Xaox26wXFz+/EggbOT7D4FNq4GhY4EBoyCNOcuc2iU58RJg/0OBRZ8Apgnsfyik34iWLqt10T2H24pDpwNP3QxU1TlT2uGATJzRqGlFBLjkbmDiDGDxf4G83sDooyAuN/DYN1ATgq/eKKdfDXG274/NHj1NMHuU4NvVCgke4PABgoHVwUUSONs+21eoXb7AkYXOvq2AY9/vqcHrQUPqrjko3+8g/OIcgErlwMF3Toax7HsAwC6bwWhyyd2QBOurcVLTyU8XANahG0Y7ebkWpwu46x3gm3egVv4C+KognToDBx8NyekGeOKhPlkQeo4p59TeOfBI/cCl30P5qkKG6imloK45IdIfI+CIkyEHTALGT4XE2786bVMbmBvdcglmCXpXrcHrG2bgxZRZOCv38aAx+2UDT55l4KCeoR+QSimofz9Qcz9OVaBX1RqscvcOGrtkTQmmK1Vvn3TpFut5+1WssPnTELWQTxbUbsNcbqjeQ4EBB0AGjAIGjgJyewYe67ogXben+WqN0NVHCZ77Th8M1T2j/nbh/6YL3vxZYXmDi7J1rtqCCnFjpzPD9rrrvgaeOFLw0kL7AVVLtwA+v4LT0U5eSClyhRssmyW1U/2GHgP0c2zbBKxbDvToH8PCIldcbn9sZisLRlO7dwAfvgAsmG97mWxfAX7D4KD2Lc4c7TLVT/VUr/V+9c4IgtEcDYLRDuwBpHiB3SEuetkiwWgu65+1LExmOxERERERERERERERUWuQ4NAfo1bi34Ms2DsQpqByk7aPwWhERERERET2eTXBaOVmiIPnmonuvZ/AQKarczNXQ9T+tO8zPImIiIiIiMg+hz4YTRVts+5reNIuAPHEAZNORPUp3mrreuCfNwH+Bsn3Q8dBjjkzcPuQaVGVTB2L9BkK9Bna0mW0XrrncBshXfsCt78OdddcYOMqoEtPyIW3xSQAT0SAIWMC/+q2O13Av36DunsusOhTIC4eOPES4ISLGr3O1k5EMLEfMLGfRSCHETjbvpN/OwzlhynBj60CZxZQAWBfgJykZWqiswKWuPvjpNsMLPMIABP9Kh7G664Z6Fq1ASWaK2ymmg2ulskwxBaRn6bvK6lovjqamjgcwLgpkHFTgvuGHAzc+AzUP64EdjUIDEzLgpx9PWTMsbXjnS7gb89D3XBy8Ip8VYFtXHd9iIl6+Drgl68i/xnu+Q9k5GERL9ccBuXqA/ZCeX/9MQAAF3w4bffz6F25Cud2fhjLPf2Q49uKm7t9ibNvPMneZGuWADsL6jUNqFhmHYxWmQus/g3oPaSmbdmq3QCCD3ztX8lgNGpDqiqBZT8Ay36A+veDgbaUTlD9RwKlmqtaO93NV1+EBuYK/n2BgRMeCk4QSvAAB/eq3yYi+OxKA5e+pPDiDwoO5cM5RU/h9oJrMDfnbjyTeprtdSfU+bVM7A+8tNB+3RU+YPFmYFi+/WWo/VBlpcDmtdaduT3q38/vC2R0BnZo0jkLN7R4MNqeCILRundqPWGA6ss3oW4+G9hbHNFymX7rCwdsdWZrl6kOM8vQZNaWVgB7KxTiPbW/H5/NYDSPSzB1mOCZb/X7WS0SjKZ56SivtG4nIiIiIiIiIiIiIiJqTTwSB6e44FPBV30p8Wu+W7egOzneJW6kOYOPvyYiIiIiIiJrcQ7rYLQy0+LKpM1M996vkysLLqP1HodN1FYwGI2IiIiIiIgCDE2okt8PFFmf+InUzLDTSk43qOMvABbMr210uSGX3xdFkUSkpXsOtyEy8jDIC0ug9hZD4q3DsmK+zq59gXveDWzrRALhSB2dBM62d8BEpn87CixO8q9uE0fg48U/XN1wZ/Zd2OLMwaTST3DG7mfhUbVnvc/JuQfLPLWhDcs9/dCv92IMLF+iLaOTb0ftHcMAeg5s1I9F0clN1feVtqNgtHBk0omQSSdCVVYALncg4Gz3DiAjJxC+2NCYYwOBlQ2DYQFg7VJtMJrasxN4/q7I62vFoWgAsF9O5MvEmWUYUf5TvbbRZd9j8Zr9scdIQpJZDMmYDMBmMNrKX4Ka+lcsx5tJxwW1b3LlBsbXCUZb/8ceWAWj7VfBYLSoGEZg36Xm/3C3Q4x3OAKvXfVuG9btjn3LWt42bNcjoWqzrMeqBqm9XW9+Oz+nUX+uz16FeuDP0f0tdm8H/vuevt/Vur+Qnz5c8OU8A+Nur58i9OfJgmRv8PY5K1nw/LmCp89SwI9fw3HFXADA4IrFEa03sU7Q0EzHlzgPYyNafv//NXF4/8Cfst4/ARyGBLcHjQn8c4bptxxTr1+Cx0jwnKHnsBhj0W8IrF8zO5r1ywGlCbFqsL8rDgdw/i1Qt5xtPb5wY4yLi1xxBMFog3Kbrg47VMluqBfuBp65LfKFDz0exv++gKxnSgGL/NpQwWjGvod9Voi3uNtKgG6e2vt+TTCa8f6zUD3GQXJ71rTNGBE6GC0jQb/ephLnsm4vr4o8KJeIiIiIiIiIiIiIiKi5iQgSHckoqnv82j6lfvsX3tGdHJ/tzoUhhmUfERERERERBYszvJbt5a0gGG1rpfWxnFnuLs1cCVH7xGA0IiIiIiIiCtCFKplm4GR5K6n2rlgmc+4EBh4E9fMXgDsOMuMiSOfu0dVJRNba0YEyzRWKVrM+EcDJj8lqGLWPpWxfgXUwmiMrcMPhwrItCqPfm4g96UcAAF5Nno4PEiZhwabZEABrXd3wRcJ4y1UtibMOO3MoH3pXra5tGD+t2R8XFOB06ANMhnfteOEm4t6XWOFyA506hxyn8noD64NDs9SPn0EmnBDcrhTUMfo5tev6x4eQ4dbPsdYiziXYLxtYUWB/mZP2LIALPsu+ZHPfQaYRBMKotcFBjLm+LZZjtzkyodb8B1AKa7cDqVsXY4OvK2DxUtut6g/bNQAADpnWBoK57NyWCNdVf70MR4otNf0CINpgtHBaeTAaAIzpLVhyk4GHPg8E7hwxQHDskNCPMZdTgFEToe59D+rSyRhYsTSidSbVCTBK/uJ53Lf1VVySc3dEc3y4TNfTnMFBzRtSFCo4zSGA09G4foexb4xFwJxhOSbcHHZD6cReaJ0BGL9ug+EZDI+qQO/K1XBiX4iqxwt07hH0O5PJp2iD0dTtF0CO04SmNYJSCjtKgPQEwDBCP5f2RBKM1qXltv2qohzqf8YAG1baX+jAI4CEZMj+hwLHBn7PWZleWD1vCkMEozn27T+EDEYrBrpl1N7XBaM5Fn0MdfolwD+/D4R8Azi8P5DiBXaXBY8f3AVIiW/+37suGK2sqnnrICIiIiIiIiIiIiIiilaiI8kyGK3Ev8f2HLpgNJ4cT0REREREFBmvEW/ZXtYKgtF07/1y+N6PKCZ4xicREREREREF6ILR/D6gyDoYTVJsBqOJAIfNhBw2M9rqiCgch+Y5bMehx8euDmr76oTVZPkKLYcUOKuD0Ry4432FPZX1P2Z8PXkq3is6AkeVfoBfPUMiLqFv5Up4VGXgTr8RkEvuingOip3jhwOv/hTcfupBDDYKqc8wy2A0fPEG1OX/CA6GWvhxZPNn5UOue7zVh6JVG9NHsKIgOEhk1kjBvCMFUx8wsalo39i9X+O2wuvCT2ozGE35qoDng7cjmb5t1tM6M/HmCi/Ov9JEYTEADLAMRQOALvmpkAs+gpozKWwdcs6NkDOvtVUzUUTcnvBjotUGgtEAoH9nwT9Oivx1SUZMAO58EyPnnRHRcklxddb1zlMY6xkc8bo7Ir+pD3yKvdYaMHc40PNwAECqfxeu3f53XL7zH0B2PkT3nm78VOCLN6zXXLABkp0fYb3WlFJ4/CuFy19WKK0A+ncG7j3RwOED9M+tIpvHFCV6gGGxKTMqkYaiyVOLIL0GBbWHCjfTMZZ8C4w4GKnxgcA8n8VzoLC4/n3d88SpfEBFGdTD10FuXQAA8LgE04cLnvom+HF40qiW2V/3MhiNiIiIiIiIiIiIiIjauARHsmV7ZMFo1se15LjzoqqJiIiIiIioo4rTBKOVmxZXFG1GSils1bz3y+Z7P6KY0JzKQ0RERERERB2O7gRc0w/s2Grdl2ovGI2ImoEu3NAGmfY/MSyE2rw6YU3ZfutgtG3OzMANhxMv/mAdBHFc19cxoOfPuKjzfRGXMLBiKZDXC/LMT5BHvoJ0yo14DoqdORMNOBt8kjyyG3Bwr5app62QcVOsO3YWWAZ6qQ9eCD1hfh/IR7shLy6FPPxl4P/9D218oc1k7kRBXIOQjF6ZwPzZgv27CdbcauDbSZ9i8eph+Gz94ejkD77qbpCSIqi9JeHHvfWEZXOm3zoYrciRhuPL/xIUUmIl/+q/QYaNC/xt5n8MuTzENm/YuPATEkVBRICktKaZPCGlaeZtReTAI5Hx7iocVfKe7WUS92XRKTOQXtSvcgUcytcU5VE7VuRIw7zs2/BK0nQgPkTiVojgM/WPK2JWz4dLgfOeDYSiAcCyLcCR95rYsFMf/PbpCnuhcBdNkPqBgs1AlZVCvfYwzCn5wJrFtpeTc/9mGYoGAFlJkf8MxoLAvoGIIMv6/BkUFtf/PVqFpwGAA/7AjS/fhCreVdP+1+MECQ0yMrtnAHMmtFAwmiZTs6yyeesgIiIiIiIiIiIiIiKKVmIjg9FM5Udh1RbLvmw3j4UjIiIiIiKKhFcXjOa3eXXXJlLi340ys9SyL8fdpZmrIWqfGIxGREREREREAQ6ndXtlBbDD+st5ZPEDGqJWI8pgNLnt35ARE2JcDLVpRu1Hhhn+nZZDdhmB8JVFe3NQXqWf6ndPX2x15kRcwgl7XoMcdw6kxwCIwY8wW9oh+wnev9TAsUOAgbmBYIsPLzPgMFomaKHNOGCSvm/dsnp3VUU58N5zIaeTf3wA8cRBuvSCDBwFcWkSJ1qpIXmCL64ycNwQoH9n4Kwxgq+uNtBpX8CIyykY1Xkv+lX+jogeWTaCTtRzd1q2Z/msg9HsEmWiS9eMwG1PHGToWMj084ExxwQPTukEDDywUesjCumwmdoueW0t5MmFkKseBI45E+gxoF4QaigydGyMCmzdJD4Rrx+7yvb4pLh9Nwr+AAB4VCUOKvuuCSqjjuCl5JmAN1HbL2OO1S/8xRswH78pJnU8+bV1yFm3P5vwm8F9pqnwyiJ9MNqBPYCxvYH7Zwtund7MoWjbN0OdPAjq7kuAXdZhz0GS0yFX3A+cNk87pEtq5LU4vn6z5naWJv+usMH5M35tMFqdji/fqrnZNUPw9dUGpg0D9u8KnDFa8OmVBhKbOYyumtdl3V4W4r0jERERERERERERERFRa6ILRiv127jKHoCdVdvgU9ZfjmS786Kui4iIiIiIqCOKM7yW7WVmywajba3cpO3jez+i2NCc9U5EREREREQdji5UqaRIv0xWftPUQkSRiyY8atKJoU+yp45Jah9Laf5dlkN2OgLBaDN/mdwkJUwrfhOIZ2BfazKhn2BCv+gCGDsqSUqF6pQLbN8c3Ll2KdTg0VDz5wFv/TP8XHe9DenU9q8WO7K74I2LQzyO3HH6Pg31+euQQQdZ9/l8UE/cBBRusOzP8jcuGC0nvhIuZ3Dyh5x3C9TKX2vX63JD5j3Y5sLsqG2RU+dB/fd9YOv6+u2X3BXYfnTKBXoPhkw5BwCgSvcAyxcBS76HWvY9sPQHYGdB/UkPmgwcdXpz/QgtznnYdFz46sN4MP38sGNrgtGKa98vP7zlYgzu9VMTVUft2Tp3dyBeH4yG4YeEnuDpW6EGHQg5qP6++derFK551cRXdTL/8tKAw/oJfCbwyXKFHfsuVNglFVi7Xb8K1/kmemcBE/YT3DFDkOwV/HctsNH67QKePFNwxsEtE3CsNq6Cmj0womXk/Fsgp1wZdlx+euT1GDChlIKIIFPzZy5scP6MNhhN+Wtuq08WQI6u3UYPyRO8emHr2F/3anZ5yiqbtw4iIiIiIiIiIiIiIqJoJTisr3hT4ttj2d5QQYiT47Pcbf8YICIiIiIioubkdSRYtpe3cDBaQeVGy/Z4I1EbuE1EkWEwGhEREREREQVEE6qUxeR6olZDF26o4/ZAzrimaWqhts0IH4y2y5GGHY50bCy3/nKhMdau7AMXfIBF2BBRm9Ojv2Uwmlq3DDihd+gA2mp5vYCRhzVBca1QFMFoWPyttks9+b/Ac7dr+9P9O2EIYKrIVwsA+Z2sv2KRHv2BJ78Hfvg48Dc+YBIkt0d0KyGySbLzgad/BH74COqNRyHDDgHGHgvpaR0OJAnJwIgJwIgJEABKqUCo2tIfgN3bgS69gFGHQ0Sa9wdpQZLdFbM6LcWDmkCiuhI9+26U1x5Q0b9yBe7dejkuzbm73tg+FSvx3bqxeDfxSKx094YfDphjpsCnBH7Lf0bNbcsxqO33mwI/IlzexhgTLRNo1VHtFS/g1QejiWEAz/wMdfow7Rh11VTgoyKIJ3BVxFWFCoffY6K8wUXoN+4Cnv42+IUvVChatVWFgXlXFih8cqUDLy+0fgF1O4Gpw5pm26F8VcCiT4GkNKDXoJqft6a/rDTyULSLb4eceImtsZ0SgTgXgn6v2rmVCQGA0j1AYgqykgVA8O9tm+1gNF/tnYWfQO3eAUnJsFdMM/Jq3sqV+6zbiYiIKHoi0gPAMAC5ABIBbAGwHsA3Simbey1ERERERERERNSQNhjNby8YbasmGC3VmYE4w2vZR0RERERERNZ076NaOhhN994v292lQx2DTdSUGIxGREREREREAY4IQ5XikyCJKU1TCxFFLpJgtG79IOffDOnev8nKoTZMaoMw0jXBaDsdafgoYSL8KnahGQMqlmL+lkuQ79NfLZOozenePxCO1dA7T9meQu59LxCI0hFEE4y2dimUUkFfHKrSPcCL94Zc1HHIVAxyA79aX6gprC6aYDQAkOR04LCZ0U1MFCWJTwQOmQY5ZFrky4oAnbsH/nVgY44YjJ5vrsEad8+Q45KqN1cV9Q+ouGjXw6gQD+7JuAS7jWSMLvsvntp8LpLNYpy455XagW/cEuPKY0sBMGHADwd84oRfHPDDEfw/jLD9ftk3R4N+s+a+Ydnvt91fO8aMYZ1166tus65D32+Kvfdoe414IF4fjAYEQjdVn6HAyl/0f7eTBkBeWwsAOPXx4FC0WPnsd+CHdQqvLLIORjtyAJAaH/sDetTKX6Cung5s2/d+oecg4PbXINlda8dM7apZ2oLbA7liPuTo020vIiLISwuExNnhgD9wY1chkJiCTOvzZ1BYXP936dMFo1XPBwB+H/DFG8BxZ9srphnpgtHKKpu3DiIiovZMRGYAuBzAaM2QnSLyEoAblFI2YnCJiIiIiIiIiKiuREeyZXupv9iyvaGCECfHExERERERUWTijHjL9nKzDKYyYUjLnG+he++X485r5kqI2i8GoxEREREREVFAJKFKAJCR0zR1EFF0bIYbykV/B2bN7TghOxS5Oo+NNE0w2i5HGn72DIl6FQ9smYsTil9DwqRpKP7oTcSpciSb9g4aI2pLpPsAWEeG2Fz+7nfqhX20e54ogtFK9wCFG4Hs/PrtX70NVJaHXFTOvA7Tlgp+3RjdXykvjVdxImpvjOPOxj2PzcTxeS/DL/qvUePd+26U1w9GEwBX7LwPl+ycDwf8aKtbCQEQiAYz4VZVaNSLWQdWN2DOLw68knw8zsp9PGhcmcQB8ZrErDpkzh1Qc4/QD9i+GSs+X4SpHw3D7wWNKNyGA2/VJHcBmDmyCULR1i+HOntU/cY1i6HuuRS49RXgg+ehbjnH9nxy6wLIuClR1dItPYJgNLUvyKxoO5DfB1m6YLQ99e/7dcFoyl/vvvpkAaQVBqPFuQRWG46yJgrrIyIi6khEJBHAYwBOCjM0HcAFAI4XkTOUUu83eXFERERERERERO2ILhhtr1kCU/lhhLlIUkGl9VX6eHI8ERERERFR5LyaYDQFhUpVgTjxNnNFAbr3fgzFJoodngFLREREREREAZEGo9k4aZeImpHdq1vsfyhD0Sg0qQ0ySNcEo/nEhe+8oyz7wplS/Bb+p+hxZN72T8Sf/xdk+bdZh6KlZEQ1P1Gr0r1/9MumZgLDD41ZKW2C2xPdcmuX1NxUe3ZCFRdBfbIg9DKnzoP0Hoz9u0Yf3pKfHvWiRNRKicuNY++/Gd+sOyTkOMPYt+2oKLPsd7bhUDSKneqAOTeq4FXlSPUXWY7ba8QD3sTw8w0/BPLQ55Z9CsA33gPR/19NH4oWiscJTBka20e/WvET1KlDrTt/+Ajq9gsiC0X7v1eiDkUDgH6d7f98DgSCzNTrjwKAPhitztshpRRMTRhh9Xw1fvwMatc22/U0F6/bur2ssnnrICIiam9ExAHgJQSHom0D8AGABQB+RP2E0mwAb4jI2GYpkoiIiIiIiIiondAFoyko7PWXhl2+oHKzZXuWO7cKlCbWAAAgAElEQVRRdREREREREXVEcZpgNAAo9+/V9jWlKrMSO6qsr7LKYDSi2OFZsERERERERBTg0py1qBOX0DR1EFF07ISdORxAt35NXwu1bXVC9tJM62A0APgy3vpcumuOEhza13qZY4vfwbPbzofxzhbIQZOBjM5A5+7BAz1e4IBJkVRN1Dr1GhTY9kZj4gkQpzO29bR27rjolluzBMpXBfOOC6GmdYM6Ohv45j/68cedDTnnBgCNCzc7sAdjj4jaI+k9GCMOyMeU4rcs+w/1/1B7RxOMRmQl3rQ++GavkQB49Aft1CWDDoJcdm+9ti+8Y5DXZy3Gd/+00TU21uSBQLI3Nq+Pyu+H+Y8roP50kH5QZQXwzlO255RbF0DGHteougZFcK6KQ+0LMvvgeQBAZpL176awOBCIBgBrt+vncypf/QbTBL5+235BzcTrsm73mYDPr0l9IyIiIjtuA3B0nftVAOYAyFNKHamUmqWUGgFgEIBv64zzAHhdRDo3X6lERERERERERG1bgkN/8egS/56Qy5b5S7FHc0HSHHdeo+oiIiIiIiLqiOIc+mMsyzTHZja1wqrNULA+Hi7Hw/d+RLHCYDQiIiIiIiIKcEYYjOa1d9IuETUTO8E7XXpBPFGGzlDHUSdkL8O/UztMifVHiwf1FHxypQPLT/0Zr285CW9sOB7/+eM4rFvZB6/v/h8kvr8JkhxIIhIRyImXBE8y9VxIHF9nqO2ThGRg2Pjolj3j2hhX0wZEGYym1i4FnrsDePMJoKoy5Fi55WUY8x6COAOJHflpUa0SADC2d/TLElHrJv/7Ii7e+SBcqv42xVB+zNl8J9SaJYGG8hAHUww8sAkrpLYoXukfL2W7Q588UZccfwGQFHgB+yx+HCZ2/xAFzuxG1xcLM0fWBn8ppaC+fhvmw9dBvfM0VMnuQHtFOdTbT8Kc3gPmCb2g3n0Walch1GuPBMZ+/2EgJOzfDwAL5semsKx8yAc7IeOmNHqqQV3sB78ZMGtuq7JSZCdbj6vyA5uKANNUOPUJ03oQAAf8QW3qgxds19NcvCE+Yiyrar46iIiI2hMR6Qmg4QepM5VS85Wq/8ZFKbUUwGGoH46WAeDGpq2SiIiIiIiIiKj9SHRovthB+GC0gspN2r5sd5eoayIiIiIiIuqovIb+/KLyFgpGK6jcbNluwIFOrtZxTCdRe+Bs6QKIiIiIiIiolXB7Ihsfl9A0dRBRdAwbwWhDxzZ9HdT21Qk8S/fvRJxZhnLDa3vxQfuO3eo7fgT6pF4GteB+YPNaYPgMyNnXQxqE+MkJFwIJKVAfPA9UlgfCCmbNjcmPQtQayIQToBZ9Gtky970PSe+AX4ZFGYyGRZ9CffGGvbGjj6p3NyMRiHMqlPvsh5wAwN/2+xEiB0S0DBG1HeJw4LBH7sN/zpuCB9IuwG9xgzCgYhnO3fUEji59H/j5MKDnQH0wWr8RkAc+Bd57FurFe4F1ywLtWfmAg9et6qjiK/VpUeUJmYjkUxZ5dQ1eOv5PODnv2UbX5YAfu+934Y1fFF7+QWHxZmC/bOA/iyObJzMJmDI08HqqlIL6+/nAO08F7gPAK/OBWxdA3XAysHxRzXLq1j/Vm0f9605g5sXAx6804qeq48zrIKdcGbPg5VHdgc4pwJbd4cc6VJ0gs22b0Cerj3bsks3Amm3Af9eEms8iNO2nz6G+fgcy5pjwBTWTeDeQ4AG8LiDOFfjf6w7879fnvhEREVFoNwJw1bn/lFJK+2GIUqpMRM4E8BuA6h3Rc0TkdqVUiD0OIiIiIiIiIiICALfhgVs8qFQVQX3hgtG2aoLR3OJBqjMjJvURERERERF1JG7xQGBAIfgAtLIWC0bbaNme6e4MhzDKiShW+GwiIiIiIiKiABeD0YjaNCN8wIKMm9IMhVCbV+exJAC6Vm3A756+thaNdwPd0mvvy5CDIUMODrucTD4FMvmUSCslahvGTwXunguYNlMgUjKAoeOatqbWKlww2tjjgK/eCm7fpr/Sbj1JaRBX/VAaEcGQPMH36+xNUe2Q3v7wg4ioTZPu/TEhvwQTVswO6lP3XAoMGg1VUWa9sCc+EAZ7zJmQY85s0jqp7UgoUMD11vsDewcegkhOgSgTL+Z2ewiw8XL09h9TMbn0Q7yYPBOndnk6qH9Y2S/wbk7A7FEDMHtUbfuqQoVJd5v4Y6e9mh49zUBi3L6g0WULa0LRaif8FeriSUDhhvCTLZhvb6XhTD8Pxjk3xGaufVxOwXXHCC5+XoUd66j7B9q+GalJqcg1BJvN9KCxR90Xfl/RofmDq4euAQ4+GiKRBb02lYG5guL7bYS3ExERkS0i4gUwo0Hz38Mtp5T6XUReBzBrX5MTwMkAbo5thURERERERERE7VOiIxk7fduC2kv9xSGXK9AEo2W5c2EIL6RFREREREQUKRFBnOFFmVka1FfeQsFoWyus3/tlu3ObuRKi9o2fpBAREREREVGAyxV+TF3e+Kapg4iiY9g46bgTP1wlGxocfJVfZSO4YJ+BuYBhtI6T8YlaC0nLAgaPsb/AUacHwnQ6ogahZQ3JFffbCgLVSu1k2XzKQZFtt4aU/4oxg5Ojr4OI2o4E/XP9/9m78zg587pO4J9fVd9HJgmZZDKTORjmDoxz4XA43AgoDKcjwq4ggopcHii4glyKuoKK4LGisCgil4DHgqICLgvIrhwLyLVyDMcMMzBXkk53ju5n/8gwSbqfqq6qrj7S/X6/Xnml6/f7Pd/fdyaVTlX183ye6lkPSq79Qv3kyOgyNcSJbKzNP3P7d+3uqtbffbrKd2YnFl33rJt/Pw+d+sckyWP3vDOXznyydk0+uDB49JztJZ9/WSM/cNfF+/nqrzfyyEuO/ntaveuP6xd2EorWR+UJP78sdZ9+35KBDl6SNI+9O+WN30j1kh/N7j0f63nfZtUiCe/aLyTfurbnugDAmveQJMf+UO4jVVV9vsNjXz/v8WP60xIAAADA+jfenKwd3ze7p+1xNxz8Ru34KUO7ltwTAADARjXaqL+WdXp2dYLRvPeDlSEYDQAAgCMGh7tbPzK+PH0AvekkGK1NsAPcYV7o0BmH6z+sr7P7VKFoUKe84m86W/j4n0n5qV9b3mbWsFJKcul96+fe8PGUbTuTi67sfYMt22uHn3n/1t+7mtXhXLn/o2lUsxmZm84P7n133vO1q1N2+IElbAjtgir3703e97b6uRFB4izULhht+lDnr6OnDlR5/B9XHa39rRuef8fXgzmcN3/jiXn0nndlaO5ATjv0zfzh9c/ME/f8ZarX/krt8SODJX/7rPanFNz6qkbOuNO8/t/zZx31t5zKq/4h5ZQzl6d2Kbn3OYuvOzbIrPr7NyYfe3/ucugrPe87kMOtJ2+7qee6AMCa99B5jz/QxbEfTI57EXFpKWXHkjsCAAAA2AAmmvXnWy4ejHZd7fj2ITe2BQAA6NVIi2C0mbnpFe4kqaoqNxz8Zu3cjqHTVrgbWN8EowEAAHDEYJsrdGuUUcFosKYIRqNvjg812HWom2C0fvcC60MZGUt55d+1X/PSN6XxjN9MaRfCswGUp70kmfc6szzjN1PO3n3kwV129158y8n1e5aSr1z8O9lx+Ibjxkfn9uefrn1oPnTt/bPnC9tyyxd25K+/8bjsGJlJ8W8qbAydvMauMywYjYXaBqMdXPz42/ZXee7b5jL5rLmO9vvsly7OQGaPG7vLoa/kbd98Qqa+sCXX/se5edqtr7vj1X/1gXfW1iml5FuvaGTXluPHBxrJe57TyKbRtROOXH75T9P44IE0Pngg5bL7LeteF3UQCt089v//x96fpLv3VwvqVbOtJ/fe0nNdAGDNu+u8xx/p9MCqqqaSfHre8BI+XAEAAADYOFoFo021CUabq2bz7UP1wWinDLkJHwAAQK9Gm62C0favcCfJbYdvzoFqpnbOez/or4HVbgAAAIA1YnC4u/UjLvSGNaXRQf69EBc6Me+5tOPwjR0furuDcADYqMr3PjhVuwVnXrBSraxp5W73TF774VT//LZkel/Kld+fcsUDj87feXf7/4/tbN7WcuqMC07PJ97+vXnt5qfkC8Pn5cxDX8sTb/vLXHDwi0mSkerA0cXb/bASNoxmjz9KHR7pbx+sC8MDSSlJVfMP2f5FgtEOHa5yn9+ay6frbzC4wGuv+6mcd/A/Ws7XvWqvXvj45BV/m2w/PTnz/JRj3hds31TyyV9p5I//Z5V/vy7ZtSV5wveW3G3XGnv9f99Hr9hWF+1cfE2jWhhid/pSgtHSLhjt1gVD1W03Jd+5Ptm/N9l5Zsq2pSdZVzffkMzNpWzr4H8AANAvF8573PqFXr0vJbn0mMcXJXnfkjoCAAAA2ADGWwSj7Zvd2/KYmw7dmMPV4dq5HUOn9aUvAACAjWikUX8t6/QqBKN962Dr8wC994P+EowGAADAEV0Ho40vTx9AbxrN9vMjYykDgyvTCye2ecFo22c7D0a79Ix+NwPrzEnbktu+Uz83OLSyvaxh5cwLUp7ywvrJ8y/rve7ue7SePO/SbJ/9dn75pt9cvFC7OsD60mswmiBxapRSMjpYH4K2WDDan/1r1XEo2tDcgTxq799032CS6rmPOPLF1lOSl7wx5ZKr7pjbOl7y/IetsSC0Y5TnviZldOU+q7poZ0kWiWutCzLbdbj3YLS5tAlE33vLHV9Wc3OpXvMLydtec9yS6ooHpPzKG1K2bO9672rvLale8Pjk4x848vjie6f82ltT2gTPAgBLV0rZmmTrvOGvdVlm/vpze+8IAAAAYOOYaE7Wjt92+ObcdKj+nLovTX+uZb3tQ0u/iQ0AAMBGNdoiGG1mBYLRpmb3ZmZu+o7HX5n5Yu26yeZJGWtOLHs/sJEIRgMAAOCIbsM4VvBiU6ADiwWjjZ+0Mn1w4ivHX2x/8uFvd3TYve6S7Ni0doMSYE1oF7Az1GVI7UZ14d2PhLXc/K3uj73q6tZzp5+bnHlBcu3nFy1THvvT3e8NnJh6DUYbGu1vH6wbY0P1IWhTB6okrV9Lv+Bd7QO4jvVTt742W+Zu7aG7Y9z8rVTPelCqxzw95eE/lnLu9yx6SDWzP3n3G1Ld1MO/0f3w4Mev6Ha7O7hupVktDEY781C3OSZHnTzbImA3SfbddvTrv/7jBaFoSZJ/e1+qZzwg5U2f6Xrv6uVPvSMULUnyqQ+leumTUn77f3RdCwDoyuZ5j/dXVTXVZY35V+n6YQEAAABAByaam2rHv37gy3nhl3+iq1pbB07OcGOkH20BAABsSCON+nNzlzMY7eszX84brn9Vrjt4bUfrdwztWrZeYKNqc0thAAAANpSBwe7WjwhGgzWlscjHPOP1dy+EBeY9l3bM1t/dcr4HXyQUDRbVbBNiOSgYrROl2Uwe/uTuj3vzZ1MmWl/3W0pJecRTFi/0mJ9KOeduXe8PnKB6DkbzPZ16Ey2eGvsOtD7mzz4ylxv2LF77fuclv/uA6/LKCz+anHl+/aJzLk55782LF/uud/xhqqfdK9W/vKvtsmr/3lRPvjzV7/xM8me/0Xn9bgy1uVBk4qSUsZV9z7t9U8m529uvaaY+GO3UQ9d1vd/FM5/KttmbWs5Xf/nbR36fm0v1F69sXejr/y/V22tC09qopqeSj7534cTH359q7xJD+ACAxcy/lfR07ar25h+z5BdOpZTtpZTd3fxKcpel7gsAAACwkiYG6oPRerF9qIO77gAAANDSSGOsdnx6dnmC0aZnp/K7X39Bx6FoSXLK0GnL0gtsZILRAAAASHIkDCKDQ50fMFKfsg+skkabsJ0kGW8dBgPHKcd/ZLj98Lc7OuziXYLRYFHtAnYEo3WsPPEXklPv3PkBZ16QcloH194+5unJPR/Wev7+j015zu90vi9w4usxGK34nk4Lky2yvfbO1I9XVZWfe2vVtuZdT02+/puNvO+5zTz78aen+bI3pfHGT6W89sPJ1h1HF95pZ8rz/zhldDzlRX/eedOzh1P9zs+kOnSw5ZLqdS9Lvvnlzmt2qzmQ7Dyz9fz21bnL4mMua/8eaOfh6xeMlSSP2/uOtse9/NElp24++njL7M3579c9tX0zt92UamZ/8pl/TW74Wtul1at+PnOPvzDVezp8Hnzp00ndn//sbPLv/9pZDQCgV/OD0Vq8cmxrfjDa/Jq9+Okkn+ny11/3YV8AAACAFTPe7F8w2ilDq/PzLAAAgPVitFkfjDYz18v9xRb3qX3/J9Nz3YWu7RCMBn3X423OAQAAWJcGh+svdKwzLBgN1pTmIsFoE/07SYd1rnF8MNpJc7dlaO5ADjbaB3zczef3sLhGm3uVdBNQu8GVsYnkTf+e6n71P9xcsP6xT+9s3eBQ8pvvTP7v/zoSALLt1GTztuQ71yfbd6Xc7Z5LaRs4EfUYjOZ7Oq20Ckbbd6B+/PrbkpunWtf7u2c18oALkpHBhQFd5YLLk7/8bPLRfzgSfnzl96eMjh+Ze9A1qT7wjuRf3tlZ4zddn+o1v5Bc/H3JRXdP2XnWHVPVgenkLa/qrE6vtp2ajIy3nl+lYLSfvE/J7/5TlQOH6+cfNPW+2vEf2vP2/N7WZ7as+4sPKfmJ+5R88Lm/nIPXfikP2fePmajaPBG+6/9+MNWH/kcnrSff/HKqlz81ueHryennJrvOSTn/0vq1VZtwviIgGwBWWPvU3P4dAwAAALDhbR/c2bdapw2f1bdaAAAAG9FIo1UwWnfhZZ268dA3uz5m13AXN38HOiIYDQAAgKMGh5Ps7WztkGA0WFMGBtvPjwlGo1NlwaNLZz6Zj45d2fKI7ZPJ2duWuS1YDxptQiwH24cPcrzSbCbvviHVD+yoXzA8mtzplJTHPD151E92XreU5JKrjvwC6DUYbcj3dOpNtHhq7J2pH//GLa1rPesBJT9wt/ahVGVsIrn/Y+vnXvj6VNt3Je/9y+S277StkyR5xx+lescfHQn+e/YrUx71E6lu/U6qRywtIbn8+ItS/elL2i9aLPhs052W1EOvztpW8uKrS37pHQuzRgZzOD984N21x91j+n/nggOfz+eHL1gw99mXNNJolGwdTx5R/a9k70c77qd67tXJ6ETn/wHJcf/vqwc8LuXFbzzyeui4RbJUAGAV7Zv3uJcfzs0/Zn5NAAAAAGpsGdyW88fuli/s//SS6ow0xnLZ5L371BUAAMDGNNKo/3H59DIFo+073OE1trc7eXBnzh2767L0AhtZY7UbAAAAYA0ZHOp87bBgNFhTFvv7O3HSyvTBia+xMFzhcXvf0faQx15e0qg5Dpin2ToYrbSZo16Z3JzyW3+dHBveMTSc8rI3p7z35jTe8vmUH37OwnAPgE71+r1Z2CUtTI7Uj+89UD/+zVtb1/q1Ry3t37cyPJrGs1+R8rffSHnl33V+4KGDqV75rMxdNbzkULQkyZkXpDzzv7Zfc/q57QMHxyeX3kePfv7BJddcsfDP4kWPGsxZ/+MTKa/+pwVhZSXJH17/zAzPHZ+I99qhV+WCncfUmj3cfUPTS8g5ed/bk7/5k4Xj1Vybg7zOAoBltlaD0f4gyV27/PXIPuwLAAAAsKKeeuovZvf45Wmkt58d7xw6Iz97+q9mtDnW584AAAA2ltHGeO34zHIFo83u6WhdScmdR87Ps09/cRpFhBP0W4+3OQcAAGBd6iYYrd0FqcDKG1jk7+/4ppXpgxNfzQfx1+z5q/zi9l9P1eJD+h+5u4vhoSNNH8n3W7nHQ5M3fSbVe/48ZXA4uc8jU87evdptAetFr9+3u3lvzYYyOVKSVAvGp2YWrk2Sb96ycG2SnLIpmRjpz2vwUkqqKx6YnHVh8tXP9aVmV3acnnL/xyTnXZrq2Q+uXVIe/PhUb/291jXGVy8IfKBZ8hdPTR5zWfI/v5gMDSQ/cNeSB110+5/PJVclr/to8k9vTfWta1POuiDVvtty1Rt+PZ/90vfkdZufnENlINfs+atcsmMmyc8dLX740Ir/91Rve01y9VOPD5Y92OIJmvQW3gYAdOO2eY/HSinjVVVNdVFj+7zHbeJ3O1NV1Y1JbuzmGMH1AAAAwIlovDmZZ+x6YQ7MzWTv4fkf1bQ30hjNxIDzNgEAAPphpFF/H7GZuenMVXN9DyVrFYx2n80Py4O2POqOx2PN8Yw1J2rXAkvnKiwAAACO6ubi7eFebkoPLJvF/v4KRqNTjYU/DDjt8HW5//4P5H3jD1gwd9adknvdZSUag3VAMNqyKLvOSXnaS1a7DWA96jkYTZA49cZbPDX2ztQHoH2jRWTFuTv61NDtSqORvPRNqV7yo8mXPt3f4ovZvutID5feJ3nHl1O9+D8nn/rQkbmhkZSn/1rKFQ9I9a4/blmirPL73Waj5JorSq65on6+7DonefJ/yR1RIO97e6okZx7+el7ynZcdXfi1pJqbO/LnkbQOHbv8/snH3t+n7ue59vNHfp114dGxA9Ot1x88sDx9AABJkqqqbiql3JJkyzHDZyTpJtH2zHmP/9+SGwMAAADYYIYbIxkeGlntNgAAADaskcZYy7kDc9MZbY73db+p2b214ycPnpJtQ30+iRNoqb+RhwAAAJzYurl4WzAarC2LBKOt9oXinEBqgtGS5OU3/koGq4MLxv/r4xppNErNEcACjeZqdwBAN3oORusidJwNZbLFtRL7WmRLXXdL/fhpm/v/+rvc+aKUP/1oyruuTXnth/tev9bwaLL16AlC5eTTUl7zzylv/4+UP/lIyntuTHncM49MjrQ+qemECwLfcXrrub/6/aNfHz5Uu6RcdXXL92198YVPHP/4wEzrtTWhaVVVpfrwuzP36l9I9fpfTXXLjX1uEAA2nPkhaOd0efzZi9QDAAAAAAAAgDVttNn6HMLpuf19329qdk/t+Hhzsu97Aa0JRgMAAOCoIcFocMIaWCR8YeKklemDE1+p/8jwipmP50NfvV9++La35pIDn8qjL03e85xGHne5UDTo2FZ3BgI4ofQajNbNe2s2lFbBaHtb5E5989aqdvzUzX1qaJ7SbKbc6ZSUCy5Pzr2kP0W/56rk7g+sn7vq6pR5AV+llJQdp6ecf1nKsX+Xtu1svceJFoy2fVfLqeptrzn6YPZw/aKhkZS3fL7PTR3Tw5c/c/zAwTbBaDVz1e8/L9XzHp289fdSve5lqa4+PdUXP5lq32197hQANox5/zjnnp0eWEoZT3LxIvUAAAAAAAAAYE0babQORpuZW3iDz6Woqir7ZvfWzo03T7DzFeEE1+PZ/AAAAKxLiwUrHWuoxdW8wOoYXOTv75gPXulQo/W9FC6b+WT+4ronJ1t3pPH0r61cT7BOlP/0C6k+8p6FE/d46Mo3A8DiBnr8UWo3763ZUCZaZObtO1A//v4v1I+ftkzBaMcqL/2LVD+ye2lFTr1zynNemew6J9UvPTb52PuPzt35opSnv7zzfrbvSn1MXE68YLStpySbT05u/fbCueu/mur6r6bsPCuZna0/fmAw2XFGMjKWzPT/TpeZH4x2oPVJY9UNX0v18qcl//zWI38Om7Ym1y4Mbat+/Mqk0Uj5l/6egAYAG8TfJ/mJYx7fr4tjr8rx54h+oqqqG/rRFAAAAAAAAACslNG2wWj9PY9uZm46s6m/semEYDRYUYLRAAAAOGqxYKXvGhhMaTaXtxegO81FPuaZ8MErnSqLLxmbWP42YD3afY/krAuTr37uuOHyA09apYYAaKc0B1oHMbUz1CL9ig1vskXG/K01WVGfva71s++0LX1qqI2y65zk51+d6pXP6vygrTtS3vL55GPvOxKov/vKlLHJI3O//e7kMx858jro9HOTi65MGe4idH/rKa3nRsc7r7MGlGYz1b1+IHn3G+oXfOnTyc6zksOH6uebAymlpNpxenJti/S8pbj+q8c9rL755dZr3/DrR78+OJPccmPrtXNzS2oLADawf0gynWT09sf3LKVcUFXVwjTShZ487/E7+9kYAAAAAAAAAKyEwTKURpqZy8Ibjk73ORhtanZPy7mJ5mRf9wLaa6x2AwAAAKwhnQajDY8uvgZYUaUsEmY1ftLKNMKJr9HBR4ajPsiHXpRmM+X33pvc/7HJSXdKzr0k5Zdfl3L/x6x2awDUWSx8uJVBwWjU2zZR/77t23uTqjo+CO3V728djLZrSwdhxv3wyKel/Pyrk9POTrZsPxLW1c5D/1PKyFjKvR+ecvcHHQ1FS1IajZSL751y9VNTLr1vd6FoSbKpTRrcYu+H16DyvD9qPXnLt4/8Plt/x8kMDB75/R4PXXyjU87srrEk2XPLHV9W7/+r5M2/032NOifgnxMArAVVVe1P8vZ5w89b7LhSynlJHn3M0OEkb+pjawAAAAAAAACwIkopGW2M1c7NzPY3GG1f22C0TX3dC2ivx7P5AQAAWJc6vXhbMBqceEYnVrsDThSlg2C0Mc8n6FXZsj3lpW9KVVWLh1oCsLoEo9Fn21vkCx+aTW6bTjYfc87On3+kdTDaOSf3ubEWSinJo34i5VE/sWBu7qVPSv7xzUcHzjgv5Un/ZfmaOf+yI4Fghw8dP95oJHe52/Ltu0xKo5HqvEuTL35i4eR3rjvy+/z/1u+6/XtTuebZqd7yqvb7POLHU73ld5M9N3fe3C03Zu45D0mu+0ryrWs7P24xXvsCwFK8OMnjk9yekJonl1LeWVXV39QtLqWMJHl9kmPviPSnVVV9aVm7BAAAAAAAAIBlMtIczdTc3gXjM3PTfd1nanbhHknSSDMjLcLZgOXRwVWOAAAAbBhDnQajjSxvH0D/jfrglQ41OvjIUNAeLJlQNIATQLPZ23GDg4uvYUNqFYyWJDcecx7N566vsv9gmzqbVv91RHnhf095+duSH3tBynNfk/L6f0tZxgDlMr4puffDF05c8cCUTVuXbd9ltXlb7XD1upel+rf3JfturT/u9u9NZcLK1l8AACAASURBVPuulNf/W/s9xieT+z+m+94+/oH+hqIBAEtSVdWXk8xPRH17KeWZpZRjw89SSrkwyT8nudcxwzclecnydgkAAAAAAAAAy2e0RSjZ9NxUX/fZN7undnyiOek6EFhhPd7mHAAAgHVpYGjxNUkyNLq8fQD9NywYjQ6VDoLRxtokOgAArBfNHn+UOthh6DgbzsntgtH2JOftOPL1L759ruW6d/702rj3WSkluerqlKuuXrk9n/dHqQ7sT/71H44MXHa/lBf92Yrt33cn1QejJUn1sw9rfdzAMeGLd77oyPeq2cP1a0cnUp71ilR7bkn+57uS2dkemwUA1oDnJ9md5LsvFAaTvDrJC0spH0+yN8nZSS5LcuyZ2AeTPLqqqutXsFcAAAAAAAAA6KuRFsFoM3PTfd1n3+ze2vHx5qa+7gMsTjAaAAAAR3V68fbQyPL2AfTfsEBDOtQQjAYAkKT3YLQhwWjUGx8uGR9Opg4snLvx9vNopg9W+cAX648vJbnvecvX31pXJjen/NbfpNp7a3L4YMqW7avd0tIcnOntuEbzji9Ls5lq26nJDV+rXzs2mTI8mvLSN6Xac3PygXek+q1n9LZvj8qffnRF9wOA9aqqqtlSyjVJ/iTJDx8ztT3JQ1scdmOSJ1VV9cHl7g8AAAAAAAAAllPrYLT9fd1n3+ye2vGJpmupYKWtjdtJAwAAsDYMDXW2TsASnHj8vaVTpSy+ZusJHkAAANCJXoPROg0dZ0Pa3uK8mBv3VkmSf/j3+uC0JLnglGTzWAev19e5Mrn5xA9FS1LOu7S3A48JRkuSbN/Veu3o+NH9Nm1NTjmztz17VN6/L+W8S+74BQAsTVVV+6qqenySH0ryr22W3pzkD5Pctaqqv1+R5gAAAAAAAABgGY22CEabnu1vMNpUy2C0TX3dB1hcj2fzAwAAsC4NdBiMNuQibzjRlGZz8UWQJGXxeymshxACAIBF9RyM1uF7azakbRPJV76zcPzmqSO///Unq5bHvuPp7nu2rpzfY1BYY97zYNvO1mvH5iXxXXB50mwms7O97d2praekvPytKQODy7sPAGxQVVW9PcnbSyl3TnJZklOTjCf5VpJrk3yoqqqDq9giAAAAAAAAAPTVSItgtJm5fgej7a0dH2+2uDMusGwEowEAAHBUp4FnvV4cDsDaN/8i+zpbdyx/HwAAq63nYDRh4rS2dbx+/LvBaP/nq/XBaE/43pLzTynL1BWr4vIH9nbc/DDrHWe0XjsvGK1s2prq/o9L/uktve3drq2f/vVkbi45e3dyt3ulTJzU9z0AgONVVfWVJF9Z7T4AAAAAAAAAYLmNNEdrx6f7HIy2b3ZP7fh4c1Nf9wEW50p2AAAAjhoY6nDd4PL2AcDqmX+RfZ0t25e/DwCA1dZrMJr3zLSxZawkWRh+dsv+5NDhKl+8of64h1+8vH2x8srAQPK6/53qKd/b3YHzwqzLaWfXPKNuN7LwRLDyS69NtWV78i/vSm78euf7jk4k0/sWjt/7B1P+y5+kbNraeS0AAAAAAAAAAADowkhjrHZ8pu/BaHtrxycEo8GK6+AqRwAAADaKMjTc2cLBDgPUADjxNDr4yHCrYDQAYAPoJRht+66UUvrfC+vG5vrzcnLLVJX/+HZyeK5+fvepnlfrUTn3e1Ke+uIuD5r3nu3eP5jUfd8ZGkm2nbrw8KHhNJ79ijT+6j9SXvTnne35kCem8d6b0vjggYW/fuMdQtEAAAAAAAAAAABYVqMtgtGm56b7us/U7J7a8YnmZF/3ARYnGA0AAICjOg08Gxhc3j4AWD3zL7Kvs3XH8vcBALDaeglGe8AP9b8P1pWt4/Xjt+xPPnd9/VyjJOd5Cb5ulSf9UvK4Z3R+wLww63Lyack9H7Zw3fc9ImV4tH2t+zwyOe3sxXt8+I913h8AAAAAAAAAAAD02UiLYLSZuf1926Oqquyb3Vs7N9Hc1Ld9gM4IRgMAAOCoToPRmoLRANatxiIfGQ6PJhObV6YXAIDV1Gx2fUj5yZctQyOsJ1vqz8vJzVPJZ6+vaufO2Z4MD5Zl7IrVVp71ipRn/EaHixe+Zyu/9Nrkyu9PSjnyveuqq1Oe90eLlxoaTnn525NzLm695vn/LeWSqzrrDQAAAAAAAAAAAJbBSKP+RqEzs/0LRpuZ25+5zNbOjQtGgxXXw23OAQAAWLcGhztbNyAYDWDdKosELmzflbLYGgCA9aDZ3Y9Sy0v/MsX7ZRaxdbx+/Jb9yeeur5+7aOfy9cPaUBqN5PE/m+rW7yR/8Yr2i2tCG8vmbSmv+NtU+/cls4dSJrd0vvfZu1Ne/39Sfef6ZP/eZOKkpKqSudnkTjuP9AYAAAAAAAAAAACraLRZfwLmgWomc9VsGqX7GyLPt292T8u5iebkkusD3RGMBgAAwFEDQx2u83YSYN0qi1z0vuP0lekDAGC1dROMNrkluedDl68X1o0tYyVJtWD8xr3Jv3xx4XiSXLhTMPFGUe50Ss2zY/6i1u/ZythE73tv25lECh8AAAAAAAAAAABrz2hjtOXczNx0xpq9nz/3Xftm97acG29uWnJ9oDtu7QsAAMBRQ8OdrRsYXN4+AFg9jUU+MtwuGA0A2CA6DUYb35TyK/89ZWRsefthXThtS/34wcPJdbfWz128a/n6YY3Zsn3xNYu9ZwMAAAAAAAAAAIB1ZqTR+jzdmbnpvuyxb3ZP7XgzAxlpE8wGLI8ubnMOAADAujfYaTDa0PL2AfRm95XJv3904fg5F698L5ywSimp2i04+bSVagUAYHUNtzmB4eJ7p/zsq5JbbkguuCJlcvPK9cUJ7cJTuls/NJA8ZHdZnmZYezafvPiaIhgNAAAAAAAAAACAjWW0TTDa9NxUkg7Ov1vEVItgtInmZEpxLiesNGfMAgAAcNTgYGfrBjpcB6yocs2z68d/9JdWuBNOeI3WHxuWiU0r2AgAwCo668LWc+ddknLO3VLu/iChaHRlYqTkzts6X//Q3cnmMSfTbBidBKO1eb8GAAAAAAAAAAAA69FIm2C0mdnpvuyxr0Uw2njTtVSwGpwxCwAAwFGDw52tE4wGa9N9Hpnc91HHj9330cn3PXx1+uHEVdp8bDgyvnJ9AACsojK5Obn8/vVzZ5y/wt2wntz11M7X/tAVQtE2lFPPSoYW+Xyu3fs1AAAAAAAAAAAAWIcGymCaGaidm5nb35c9pmb31o6PNyf7Uh/oTv3feAAAADYmwWhwQisDg8mL35h87P3JFz6RnH9JcvkDUwZ8BESXGo1ktsWcYDQAYAMp/+kXUn3s/ccPjk4k93rY6jTEurD7tJK//VTV0dp7ni0YbSMpY5Op7vvo5B/f3HpRw3MCAAAAAAAAAACAjaWUktHmWPbN7lkwN92nYLS62kky0dzUl/pAd9xKGAAAgKMmN3e0rAhGgzWrDAymXPn9KT/6vJQrHyIUjd6UNhfajwpGAwA2jnLFA1Oe+5pk4qQjA2ecl/Lyt6XsOGN1G+OEtvvUztaNDiZn3ml5e2HtKc/9/UUWOM0DAAAAAAAAAACAjWekMVo7PtO3YLS9teOC0WB1uDIWAACAozZv62ydYDSAda5NMNrI2Mq1AQCwBpRHPi15xI8n+25NJrektAuRhQ5cfFpJUi267vxTkmbD822jKWMT7Z8dDcFoAAAAAAAAAAAAbDwjjfprmqbnpvtSf2p2T+34xMBkX+oD3XHGLAAAAEedJBgNgCSzh1vPjY6vXB8AAGtEaTRSNm0VikZf3PW05OJdi6+7aKfnGzUEowEAAAAAAAAAALABjbYIRpuZm+pL/X0tgtHGm5v6Uh/ojjNmAQAAuEMZHEomTlp8oWA0gPWtXTDaiGA0AABYilJK/vwpi/+o/sKdK9AMJ57iNA8AAAAAAAAAAAA2npEWwWjTs9N9qT81u7d2fLwx2Zf6QHecMQsAAMDxNm9bfI1gNICNa6T+hwgAAEDn7rar5PvOab/mwp1lZZrhxNJornYHAAAAAAAAAAAAsOJaBaPNzO1fcu25aq5lMNrEwKYl1we6JxgNAACA453UQTBaUzAawIY1Or7aHQAAwLpwzvb2wWf3PHuFGuHE0nCaBwAAAAAAAAAAABvPaHP5gtFm5vZnLnO1cxNNwWiwGpwxCwAAwPEmNy++ZkAwGsCGNSIYDQAA+uHsk1vPXXnnZOfm9sFpbFDFaR4AAAAAAAAAAABsPCON+mC06T4Eo+2b3dNybqI5ueT6QPecMQsAAMDxBoc7WDO0/H0AsDaNCkYDAIB+eOju1sFn11whFI0WGk7zAAAAAAAAAAAAYOMZaYzWjs/MTS+5drtgtPHmpiXXB7rnjFkAAACONzSy+JqBweXvA4A1qfg3AAAA+uLyM5OLdi4cHxpIHne5YDRaKE7zAAAAAAAAAAAAYOMZbYzVjs/M7V9y7anZvbXjA2Uww6WDa26BvnPGLAAAAMcbHF58TXNg+fsAAAAAWMdKKfmDJzbSmJeB9oIfLDl9q2A0Wmg4zQMAAAAAAAAAAICNZ6RFMNr07NKD0fbN7qkdH29OphTndMJqcCU7AAAAxxvuIBhtYHD5+wAAAABY5+5zXsmnX9zIH3ygysyh5LGXlTz0rk6goQ3BaAAAAAAAAAAAAGxAo836YLSZuX4Eo+2tHZ9oblpybaA3gtEAAAA43qBgNAAAAICVcuHOklf/iDA0OlQEowEAAAAAAAAAALDxjDRGa8cPVgcyW82mWZo9156a3VM7PtGc7LkmsDTOmAUAAOB4QyOLrxkcWv4+AAAAAIDjNZzmAQAAAAAAAAAAwMYz2hhvOTczt39Jtfe1CEYbb25aUl2gd86YBQAA4HiDw4uvaQ4ufx8ArD3D9XdWAQAAYIUUp3kAAAAAAAAAAACw8Yw0Wl/XtNRgtKnZvbXjE4LRYNU4YxYAAIDjlKGRxRcNCEYD2JBO2rbaHQAAAGxsDad5AAAAAAAAAAAAsPGMNMZazk3PTi+p9r7ZPbXj483JJdUFeueMWQAAAI43NLT4GsFoABvT3R+42h0AAABsbMVpHgAAAAAAAAAAAGw87YLRZuamllR73+ze2vGJ5qYl1QV654xZAAAAjjc0sviagYHl7wOA1fODP1Y7XJ743BVuBAAAgOM0mqvdAQAAAAAAAAAAAKy4wcZgBspg7dz03PSSak/N7qkdn2hOLqku0DvBaAAAABxvcHjxNQP1Hx4BsD6UJ/xcsnXH8YOPeErK6eeuTkMAAAAc0XCaBwAAAAAAAAAAABvTSGOsdnxmbn/PNeeq2UzN7qudG29u6rkusDQDq90AAAAAa8zQyOJrBoaWvw8AVk0547zkv30wee+bU934tZRL7pM88JrVbgsAAIBSVrsDAAAAAAAAAAAAWBWjjbHsm71twfjM3HTPNffPTaXKXO3chGA0WDWC0QAAADje0PDiawYGl78PAFZVOeXM5EefF5fcAwAArB1FMBoAAAAAAAAAAAAb1EhjtHZ8enaq55pTs3tbzo03J3uuCyxNY7UbAAAAYI0RjAYAAAAAAAAAAAAAAAAAwBoy0hirHZ+Zm+655r42wWgTzU091wWWRjAaAAAAxxsUjAYAAAAAAAAAAAAAAAAAwNox2mwVjLa/55pTs3tqxwfLUIZKB9fbAstCMBoAAADHGxpZfI1gNAAAAAAAAAAAAAAAAAAAVshIoz4YbXoJwWj7WgSjjTcnU0rpuS6wNILRAAAAON5I/QdDxxkYWv4+AAAAAAAAAAAAAAAAAAAgyWiLYLSZpQSjHa4PRptobuq5JrB0gtEAAAA43hnnJc2B1vOlpDSbK9cPAAAAAAAAAAAAAAAAAAAb2sgyBKNNze2tHReMBqtLMBoAAADHKWOTye4rWy8YGFy5ZgAAAAAAAAAAAAAAAAAA2PBGWwSjTc/2Hoy2b3ZP7fh4c7LnmsDSCUYDAABgoZ1ntZ4TjAYAAAAAAAAAAAAAAAAAwAoaaYzWjs/MTfdcc2p2b+34RHNTzzWBpROMBgAAwEJDw63nmoLRAAAAAAAAAAAAAAAAAABYOaPNsdrxmbn9Pdfcd3hP7fh4c7LnmsDSCUYDAABgocE2wWgDgtEAAAAAAAAAAAAAAAAAAFg5I436YLTppQSjzdYHo000N/VcE1g6wWgAAAAsNNQmGG1waOX6AAAAAAAAAAAAAAAAAABgw2sVjHaoOpjD1aGeak7N7a0dF4wGq0swGgAAAAsNjbSeGxhYuT4AAAAAAAAAAAAAAAAAANjwRhqjLedm5qa7rjdXzWb/7L7aufHmZNf1gP4RjAYAAMACZXC49WRzcOUaAQAAAAAAAAAAAAAAAABgwxttjLecm5ntPhht/+xUqlS1cxPNTV3XA/pHMBoAAAALDQ61nhsQjAYAAAAAAAAAAAAAAAAAwMoZaY62nJuem+q63r7ZPS3nxpuTXdcD+kcwGgAAAAsNj7SeE4wGAAAAAAAAAAAAAAAAAMAKGm2MtZybmZvuul67YLSJ5qau6wH9IxgNAACAhQaH28wNrVwfAAAAAAAAAAAAAAAAAABseM0ykMFSf43rzNz+ruu1CkYbKsMZarS5zhZYdoLRAAAAWKhdMFpzcOX6AAAAAAAAAAAAAAAAAACAJKONsdrx6R6C0aZm99aOjzcnu64F9JdgNAAAABYaahOMNiAYDQAAAAAAAAAAAAAAAACAlTXSIhhtZrZ/wWgTzU1d1wL6SzAaAAAACw2NtJ4bGFi5PgAAAAAAAAAAAAAAAAAAIMlIs0Uw2tx017X2ze6pHR9vTnZdC+gvwWgAAAAsNDjUem5gcOX6AAAAAAAAAAAAAAAAAACAJKON0drx6bmprmu1CkabaG7quhbQX4LRAAAAWGhwuPXcQJvQNAAAAAAAAAAAAAAAAAAAWAYjjbHa8Zm56a5rCUaDtUswGgAAAAsNjbSeG5tcuT4AAAAAAAAAAAAAAAAAACDJaItgtOm5/V3XmprdWzsuGA1Wn2A0AAAAFhoabj03LhgNAAAAAAAAAAAAAAAAAICVNdIiGG2mj8Fo403X0cJqE4wGAADAQoNtgtHGfKADAAAAAAAAAAAAAAAAAMDKahWMNj3bfTDavtk9tePjzU1d1wL6SzAaAAAACw0OtZwqgtEAAAAAAAAAAAAAAAAAAFhho836YLSZue6C0War2eyf21c7N9F0HS2sNsFoAAAALDQ03HpOMBoAAAAAAAAAAAAAAAAAACtspNEqGG26qzr7Z/e2nJtobuqqFtB/A6vdAAAAAGtQaZOjfadTVq4PAAAAAAAAAAAAAAAAAABIMtIYrR3fP7cvew7f2nGdGw9e13JOMBqsPsFoAAAALHTyacmW7cktNx4/PjSc3P1Bq9MTAAAAAAAAAAAAAAAAAAAb1mhjrHZ8anZvnv+lJ/dlj/HmZF/qAL1rrHYDAAAArD2l0Uiu/vGFEw/+kZSJk1a+IQAAAAAAAAAAAAAAAAAANrSRFsFo/TJcRjLYGFrWPYDFDax2AwAAAKxN5cdflAyPpfqHNyZzc8l9Hpny1JesdlsAAAAAAAAAAAAAAAAAAGxAyx2MNt6cXNb6QGcEowEAAFCrlJL8519M+c+/uNqtAAAAAMCGUZ7/31L9xk8unHjwj6x8MwAAAAAAAAAAALCGbB3clkaamcvsstTfPnTqstQFutNY7QYAAAAAAAAAALjdlQ9JRicWDJf7P2YVmgEAAAAAAAAAAIC1Y6w5kd3jly1b/btvus+y1QY6JxgNAAAAAAAAAGCNKNt2przib5PTzj4ycNKdUn7md1Kuunp1GwMAAAAAAAAAAIA14Mk7fyZ3Hb8ijT5GJ400RvOIbU/IPTY9oG81gd4NrHYDAAAAAAAAAAAcVS6+V8qbP5fq5huSzSenNNz3DgAAAAAAAAAAAJJktDmen971gkzP7s+th29acr1GaWTb4ClplmYfugP6QTAaAAAAAAAAAMAaVLbuWO0WAAAAAAAAAAAAYE0abY5ltDm22m0Ay0AwGn1VShlMcu8kZyTZmWRfkuuSfKKqqq+uYmsAAAAAAAAAAAAAAAAAAAAAAACsYYLRNrBSypuT/PC84Wurqjqrh1onJ3nJ7fW2tljz4SS/XVXVX3VbHwAAAAAAAAAAAAAAAAAAAAAAgPWtsdoNsDpKKVdnYShar7UeluQzSZ6eFqFot7tXkreXUt5YShnvx94AAAAAAAAAAAAAAAAAAAAAAACsDwOr3QArr5SyOckf9qnW/ZK8K8nQMcNVko8n+XKSzUkuTbLtmPknJtlUSnlUVVVz/egDAAAAAAAAAAAAAAAAAAAAAACAE1tjtRtgVbwyyam3f7231yKllF1J3pHjQ9E+lGR3VVVXVFV1TVVV359kV5LnJDl0zLpHJPnVXvcGAAAAAAAAAAAAAAAAAAAAAABgfRGMtsGUUh6U5Cm3Pzyc5FeWUO4lSbYc8/jDSR5UVdXnjl1UVdWBqqp+L8k1847/uVLKmUvYHwAAAAAAAAAAAAAAAAAAAAAAgHVCMNoGUkoZT/LaY4Z+O8kne6x1bpInHTN0MMmTq6qaaXVMVVXvSvKGY4aGk7yol/0BAAAAAAAAAAAAAAAAAAAAAABYXwSjbSy/nuSs27/+cpIXL6HWE5I0j3n8jqqq/l8Hx/3mvMfXlFJGltAHAAAAAAAAAAAAAAAAAAAAAAAA64BgtA2ilHKvJM84Zugnq6qaXkLJR897/PpODqqq6nNJPnrM0HiS719CHwAAAAAAAAAAAAAAAAAAAAAAAKwDgtE2gFLKcJLX5eif9xuqqvqnJdQ7Jcn3HDN0OMmHuijxgXmPH9ZrLwAAAAAAAAAAAAAAAAAAAAAAAKwPgtE2hhcnOf/2r7+d5OeXWO+u8x5/qqqqqS6O//C8x7uX2A8AAAAAAAAAAAAAAAAAAAAAAAAnOMFo61wp5bIkzz1m6GeqqrppiWUvmvf4P7o8/kuL1AMAAAAAAAAAAAAAAAAAAAAAAGCDEYy2jpVSBpK8LsnA7UN/X1XVm/pQ+px5j7/W5fHXznt8p1LKliX0AwAAAAAAAAAAAAAAAAAAAAAAwAlOMNr69vwk33P711NJnt6nupvnPb6xm4OrqtqXZGbe8ElL6ggAAAAAAAAAAAAAAAAAAAAAAIAT2sBqN8DyKKVclOQFxwy9sKqqr/ap/MS8x9M91JhOMnLM48ne2zmqlLI9ycldHnaXfuwNAAAAAAAAAAAAAAAAAAAAAABA7wSjrUOllEaSP00yfPvQx5L8Xh+3mB+MNtNDjekkW9rU7NVPJ3lRn2oBAAAAAAAAAAAAAAAAAAAAAACwQhqr3QDL4jlJ7nH714eTPLWqqtll3K9aoWMAAAAAAAAAAAAAAAAAAAAAAABYpwSjrTOllLOT/OoxQ79dVdUn+7zNvnmPR3uoMf+Y+TUBAAAAAAAAAAAAAAAAAAAAAADYQAZWuwH6p5RSkrw2ydjtQ19O8uJl2GotB6P9QZK3dXnMXZL8dZ/2BwAAAAAAAAAAAAAAAAAAAAAAoAeC0daXpyV5wDGPf7Kqqull2Oe2eY9P7ubgUspEFgaj3bqkjm5XVdWNSW7ssp9+bA0AAAAAAAAAAAAA/P/27jxaurSg7/3vaZqGZupGhmbmZVQGBwheFTC2BlTkCjJcMWhCKw5xSjDxxqWYFTC5eHMdouvGKFeRJohcCWGSOSgNAkHFNAKCSCOgDI0NNGA3NE3Dkz/qvO+ps6tOndpVu2rvqv35rLUX7HprD2ef53zr9PPutV8AAAAAAAAAWIMHo+2Xp079/5cnuayUcuqEbW7TWD97zjYfrrVeO7X+nsaf33nJ8zvu/Z+otV7Zch8AAAAAAAAAAAAAAAAAAAAAAADsEQ9G2y/nTv3/b0vyvhX2cfs5290vyVun1t/V+PO7tzzGXRvr72y5PQAAAAAAAAAAAAAAAAAAAAAAAHvmrL5PgJ30jsb6V5RSbtRi+wedsD8AAAAAAAAAAAAAAAAAAAAAAABGxoPRaK3W+pEkb5t66ewkD26xiwsb669Y95wAAAAAAAAAAAAAAAAAAAAAAADYbR6MtkdqrefXWkubJck3NnbzgTnve+ucw72wsf69y5xjKeXLknzN1EtXJ3n10l8kAAAAAAAAAAAAAAAAAAAAAAAAe8mD0VjVc5J8YWr90aWUeyyx3U811p9Xa72mu9MCAAAAAAAAAAAAAAAAAAAAAABgF3kwGiuptb4nybOmXjonycWllBset00p5ZFJLpp66dokT93ICQIAAAAAAAAAAAAAAAAAAAAAALBTPBiNdfzbJFdOrT8wyWtKKV82/aZSyg1KKT+e5L82tv+lWusHNnyOAAAAAAAAAAAAAAAAAAAAAAAA7ICz+z4Bdlet9YOllEcneVWScw5eflCSd5ZS/izJXyc5L8n9k9yqsflLk/ybbZ0rAAAAAAAAAAAAAAAAAAAAAAAAw+bBaKyl1npJKeVRSS7O4cPPSpIHHCzzPDfJD9Rav7D5MwQAAAAAAAAAAAAAAAAAAAAAAGAXnNX3CbD7aq0vT3LfJL+R5MoFb31zksfWWh9fa716KycHAAAAAAAAAAAAAAAAAAAAAADATji77xOgX7XWS5KUDvbzd0l+uJTyL5I8KMmdk9wmydVJPpTk0lrr+9Y9DgAAAAAAAAAAAAAAAAAAAAAAAPvJg9HoVK312iSv7fs8AAAAAAAAAAAAAAAAAAAAAAAA2C1n9X0CAAAAAAAAAAAAAAAAAAAAAAAAAB6MBgAAAAAAAAAAAAAAAAAAAAAAAPTOg9EAAAAAAAAAAAAAAAAAAAAAAACA3nkwGgAAAAAAAAAAAAAAAAAAAAAAANA7D0YDAAAAAAAAAAAAAAAAAAAAAAAAeufBaAAAAAAAAAAAAAAAAAAAAAAAAEDvPBgNAAAAAAAAAAAAAAAAAAAAAAAA6N3ZfZ8ADMA50yuXXXZZX+cBAAAAAAAAALCWOfc9mwCVcQAAIABJREFUnDPvfQCwRe7RAwAAAAAAAAB2nvvztqfUWvs+B+hVKeURSV7c93kAAAAAAAAAAGzAI2utL+n7JAAYL/foAQAAAAAAAAB7yv15G3JW3ycAAAAAAAAAAAAAAAAAAAAAAAAA4MFoAAAAAAAAAAAAAAAAAAAAAAAAQO9KrbXvc4BelVLOS/INUy/9bZJr19jl3ZK8eGr9kUneu8b+ANrSIWAItAjomw4BfdMhoG86BAyBFgF9G2uHzklyx6n119VaP9XXyQCAe/SAPaRDQN90COibDgF90yFgCLQI6JsOAX0ba4fcn7clZ/d9AtC3g7i8pKv9lVKaL7231voXXe0f4CQ6BAyBFgF90yGgbzoE9E2HgCHQIqBvI+/QpX2fAACc5h49YN/oENA3HQL6pkNA33QIGAItAvqmQ0DfRt4h9+dtwVl9nwAAAAAAAAAAAAAAAAAAAAAAAACAB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9M6D0QAAAAAAAAAAAAAAAAAAAAAAAIDeeTAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgd2f3fQKwh65I8tTGOsA26RAwBFoE9E2HgL7pENA3HQKGQIuAvukQAOwnn/FA33QI6JsOAX3TIaBvOgQMgRYBfdMhoG86xEaVWmvf5wAAAAAAAAAAAAAAAAAAAAAAAACM3Fl9nwAAAAAAAAAAAAAAAAAAAAAAAACAB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9M6D0QAAAAAAAAAAAAAAAAAAAAAAAIDeeTAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgdx6MBgAAAAAAAAAAAAAAAAAAAAAAAPTu7L5PgFmllOsluXuSeye5XZLzknwuyZVJ3pvkLbXWqzs+5vWTPCjJnZLcNslVST6c5NJa6/u7PNa2lFLuk+SrktwqyQ2SXJ7kg0neWGu9ps9z26ZSys2T3CfJPZJ8SZIbJvlkkiuS/Fmt9b09nt6MUspdMvm+3S7JTZJ8JMkHkryp1vr5Ps9tTHSoGzo0oUOsSou6oUUTWnTscYyPBXSoG8bZxK51iGHQoW7o0IQOHVVKuWMm1+IOSW6Z5Nwk1yb5VJK/yeSaXNHfGQ6DDnVDhyZ0iFVpUTe0aEKLWIUOdUOHJnRoPuMD6IPP+G5o+MSufca7N2YYdKgbOjShQ6xCh7qhQxM6dOxxjI8FdKgbxtnErnWIYdChbujQhA4d5f685WlRN7RoQotYhQ51Q4cmdIhV6FA3dGhCh+bb6fFRa7UMYMkkmE9K8tJM/uO+LliuS/KKJA/v4Li3SvKfk3x8wfHemOQxax7nrkkel+QXklyS5NONY7y/o+t40yRPTvKhBV/Pp5M8O8ndevx+b+x6JLl+km9J8p+SvOOEsVQPrtXPJblNzz8Dj03ypgXn+fGDsXrLFfZ90jU4aTnV57XZ4vdAh7q5jjqkQ9P7PNVBg6aXi/q8Rlv6PmhRN9dRi7Ro58dHj98DHermOu7EONOh3sbHjZM8OMlPJHlOkr9K8sXGsS7q6zr0veiQDunQxq7HPZI8LclrM/lLjZOuR03yP5P8aJIb9HVNevo+6FA311GHdGje/pdpz6LlVF/XpofvhRZ1cx21SIum93uqgw5NLxf1dY229H3QoW6uow7p0M6PD4vFsl+Lz/hxNdxn/Nzzdo9ez4sO6ZAOuUev70WHdEiH3J/X96JDOjTmDm1xfLg/b/H10aFurqMO6VBz3+7Pa3e9tKib66hFWjRv/8v0Z9Fyqq9rs+Xvgw51cx11SIem93uqgwZNLxf1dY229H3QoW6uow7p0M6PjxO/jr5PwFKT5HfX+ED7/SQXrHjchyX5aItj/U6SG7fY/4VJXnXCh0JnP5hJviaTp3Au+/VcneSHt/h93vj1OLgGn1hxLF2Z5Ht6GP83SfLcFud5eZJvaXmMVX++Ti+ntn1devg+6JAO6dAGOpTu/0P2cdu+Plv+XmiRFmnRBlq0S+Oj70WHdGiMHdrm+Mhk4vjtmUxIn3Ssi7Z1DYa06JAO6dDmxkeS71/j5+vdSb5mW9ekz0WHdEiHNjs+1vj5Or2c2tZ16XPRIi3Soo1dj1MddGh62dv56uiQDunQ6MeHxWLZz8Vn/Dga7jP+2HN2j94AFh3SIR1yj17fS3RIh3TI/Xk9LzqkQ2Ps0DbHR9yft8w10iEd0qENjY+4P6/NtdIiLdKiDY6PNX6+Ti+ntnVd+lp0SId0aGPX41QHDZpezFXr0DI/gzqkQzs5PtosZ4chuOcxr38oyXsyievZmTz17yuTnDX1nv89yetLKd9Qa7182QOWUi5M8qIk50y9XDN5yvpfJzk/yf2S3HLqz787yc1KKd9Ra/3iEof5qiTfvOw5raOU8pBMngZ6g8YffSDJ2zL5IbxDJj+81z/4sxsl+c+llLNqrb+2hdPcxvW4VZKbz3n92kwmty/P5Impt0jygIP/Pe38JM8updy61vrLGz7PJEkp5XpJfi/JtzX+6Ioklx6c690yGYvl4M8uSPLiUspDaq1v2MZ5joQOrUmHztChzflMJk+03mdatCYtOkOL5h9nF8ZH33RoTTsyznToqK2NjySPT3Lelo61q3RoTTp0hg6drGYyyX9ZJn+x8JlM/sXcuyS5Tw7HRzL52fyDUsrDa62v2/aJbpkOrUmHztAh1qFFa9KiM7Roc/Z9vlqH1qRDZ+jQHDsyPoD95DN+TTvScJ/xDTt2b8y+06E16dAZOrQ55jx0aCEdOkOH5h9nF8ZH33RoTTsyznToKPfnDYsOrUmHztChk7k/73hatCYtOkOLWJUOrUmHztChzTFXrUML6dAZOjTHjoyP5fX9ZDZLTZK35PApev8zyY8ludsx7719kqdn9ul7f5SkLHm8O2T2qYdvSHKvxvtukOSfZ/JDP/3epy15nCfNOc+a5JpMJjQ6eWJhJk9PbT4V8bIkD53z3psn+X8b7/3CvPdu4Pu88euRyQf56X38fZJnJPlHSc6d896S5FGZxKt5Thu/Hgfn8AuN4157MP7Pabzv3kne1Hjvx5LcdsnjTG/35oMx02Y5exvXo88lOqRDOrSRDmXyH14nNea45Q2N4128jWvS5xIt0iIt2tjvRLsyPvpedEiHxtihbY2Pg2N98phjfXDOn1206a99iIsO6ZAObXR8PDHJX2byu9fDk9x8wXvPT/IvM/kLkOnjfyjJeZu+Jn0uOqRDOrTx34em92Wu+vjrpEVapEWbuR7mq5e/VjqkQzo08vFhsVj2c/EZP46G+4yfe77u0RvIEh3SIR3aSIdizqPN90KHdEiHNvT70K6Mj74XHdKhMXZoW+Pj4Fjuzzv5GumQDunQ5saH+/OWv1ZapEVatNnfiab3Za56/jXSIR3Soc1cD3PVy18rHdIhHRr5+Gj1NfV9ApaaJH+aydP2HtBimx+ZM+C/a8ltn9HY7o1Jbrjg/d8x5wfrzksc50kH0b80yW8m+cEk98/kiYEXdviD+dzGvt6T5NYnbPOvG9v8RZLrbfj7vPHrcRDujyb5V0luvOQ2t0jyzsbx35UlfxFY43rcNbO/FDxywfvPzexfNP7Gksea3uaSTX5du7rokA7p0GY7tMK53T7JdY1jff0mr8cQFi3SIi3aXIt2ZXz0veiQDo20Q1sZHwfH+mQm/9LCy5I89eA6XXDwZ5c0jnXRJr/uoS46pEM6tNHxcf0VtvmqJFc1zuGnNnk9+l50SId0aOO/D03v65JNfl27vGiRFmnRZlu0wrmNbr5ah3RIh4wPi8Wyn4vP+HE03Gf8zHHdozegRYd0SIc226EVzs2cx3Lb6NDhcXTo8Bg6tKPjo+9Fh3RopB1yf96AFh3SIR1yf94QFi3SIi1yj17fiw7pkA65P6/vRYd0SIeMj1ZfU98nYKlJcmrF7Z7fGFwvW2KbezQ+GD+X5B5LbHdx41i/vcQ2Nz/uA6HDUN01kycOTu/rwUtu+4eN7b5vw9/nbVyPWy0b7MZ2XznnOn71hq/HsxrHe+YS29zzYMye3ubzSe66xHbTx7lkk1/Xri46pEM6tNkOrXBuT26c219t8loMZdEiLdKizbRol8ZH34sO6dBIO7Tx6zG1v2P/Bd248er0dTi14nY6pEPN/ehQd+f3c41zePO2z2HLX++pFbfTIR1q7keH5u9vel+XbPLr2uVFi7RIizZzPdY4t9HNV+uQDumQ8WGxWPZz8Rk/job7jJ85pnv0BrTokA7p0GY7tMK5mfNYfjsd0qHmfnRoR8dH34sO6dBIO+T+vAEtOqRDOrSZ67Hm+Y3q/ryDr/nUittpkRY196NF8/c3va9LNvl17eqiQzqkQ5u5Hmucm7nq5bfTIR1q7keHdnR8tFnOCr2rtb5/xU1/rbH+jUts8/gk15taf0Gt9T1LbPcfGuvfWUq54aINaq1X1lqvWWLf63h4cmQcv7nW+oYlt/3Fxvr3dnNK823jetRar6i1Xr3Cdn+epHndlhlPKymlnJvksY2Xm2NsRq31r5K8aOqlszMZ06xJh9aiQ0ePoUNrKqWUzI6FZ3R5jKHSorVo0dFjaNFROzM++qZDa9mZcaZDM8fcxvg4fayPbOM4u0yH1qJDR4+hQ915eWP97r2cxZbo0Fp06OgxdIiVadFatOjoMbRoTWOdr9ahtejQ0WPo0FE7Mz6A/eQzfi0703Cf8YeGfG/MWOnQWnTo6DF0aE3mPFrTIR1qHkOHjtqZ8dE3HVrLzowzHZo5pvvzBkSH1qJDR4+hQ90Z1f15iRatSYuOHkOLWIkOrUWHjh5Dh9Zkrro1HdKh5jF06KidGR9teDDabru0sX5uKeX8E7Z5VGP9mcscqNb6riR/PPXSjZN88zLbbtg/bKy/qsW2f5Dk2qn1B5ZSbrv+Ke2s5ni63QaP9S1JbjS1/j9qrX+55LbNMfvobk6JFemQDnVJhya+Icndptavy+RfrON4WqRFXdrHFhkfm6dDxlmXttkh9ocO6VCXdOioTzTWb9rLWQyfDulQl3SIVWmRFnVJiybMV7ejQzrUpX3skPEB7Cqf8RrepX38+2g2T4d0qEs6NGHOox0d0qEu7WOHjI/N0yHjrEv7OPfK5umQDnVJh45yf97ytEiLuqRFrEKHdKhLOjRhrrodHdKhLu1jh/ZyfHgw2m67bs5r5xz35lLKbZJ8ZWP7N7Y43iWN9Ye12HZT7tBYf8eyG9ZaP5fksqmXzsowvqa+NMfTsWOpA9/aWL+kxbZ/lKPner9SygVrnxGr0iEd6pIOTTyxsf6yWuvlHe5/H2mRFnVpH1tkfGyeDhlnXdpmh9gfOqRDXdKho+7cWP9wL2cxfDqkQ13SIValRVrUJS2aMF/djg7pUJf2sUPGB7CrfMZreJf28e+j2Twd0qEu6dCEOY92dEiHurSPHTI+Nk+HjLMu7ePcK5unQzrUJR06yv15y9MiLeqSFrEKHdKhLunQhLnqdnRIh7q0jx3ay/HhwWi77e6N9euSfGzB++/bWH9brfXqFsd7U2P9Pi223ZQvaax/suX2zfd/+Rrnsuua4+kjGzxWcyz+j2U3PBizb2+8PISxOFY6pENdGn2HSinnJXlM4+VndLHvPadFWtSlfWyR8bF5OmScdWmbHWJ/6JAOdUmHjvqnjfXX9nIWw6dDOtQlHWJVWqRFXRp9i8xXr0SHdKhL+9gh4wPYVT7jNbxL+/j30WyeDulQl0bfIXMeK9EhHerSPnbI+Ng8HTLOurSPc69sng7pUJd06Cj35y1Pi7SoS1rEKnRIh7o0+g6Zq16JDulQl/axQ3s5PjwYbbc9trH+llrrFxe8/96N9cvmvut47z1hf324trF+g5bbN98/hK9p60opN0vy0MbLf7LBQ96rsb7NsXinUsozSyl/UUq5spRybSnlowfrv1NK+cFSSjP4HE+HdKgTI+vQIv84yblT6x9J8oqO9r3PtEiLOrHHLTI+Nk+HjLNO9NAh9ocO6VAndOioUsqPJvmeqZeuS/IrPZ3O0OmQDnViZB0yV909LdKiToysRYuYr25Ph3SoE3vcIeMD2FU+4zW8E3v899HzmPfolg7pUCdG1qFFzHm0p0M61Ik97pDxsXk6ZJx1Yo/nXtk8HdKhTujQUe7Pa02LtKgTI2uRuepu6ZAOdWJkHVrEXHV7OqRDndjjDu3l+PBgtB1VSrlJkic2Xn7hCZs1n1j4Ny0P+4HG+i1KKTdvuY+ufbyxftuW2zff/6VrnMsu+6EkN5pa/1Q29HT9g/9IbP6HYtux2Hz/PVpse5ckF2US4fOTXD/JrQ/WvzvJ05P8TSnlPx78nHEMHTpDh7oxpg4t0vyZelat9bqO9r2XtOgMLerGvrbI+NggHTrDOOvG1jrE/tChM3SoG6PuUCnlxqWULy2lPKGU8rok/6nxlp+utb6tj3MbMh06Q4e6MaYOmavukBadoUXdGFOLFjFf3YIOnaFD3djXDhkfwM7xGX+GhndjX/8+eh7zHh3RoTN0qBtj6tAi5jxa0KEzdKgb+9oh42ODdOgM46wb+zr3ygbp0Bk61I1Rd8j9eavTojO0qBtjapG56o7o0Bk61I0xdWgRc9Ut6NAZOtSNfe3QXo4PD0bbXT+f5DZT659M8lsnbHN+Y/3v2hyw1npVkmsaL5/XZh8b8K7G+tcuu2Ep5U5Jbtd4ue+vZ+tKKaeS/JvGy79aa20+DbIrzXH4mVrr1S330Ry7XX/fbpzkSUn+rJRyn473vU90aEKH1qRDE6WUL0/ygMbLz1h3vyOgRRNatKY9b5HxsVk6NGGcramHDrE/dGhCh9Y0tg6VUs4vpdTpJclVSf4yycVJ/uHU269K8oO11l/s4VR3gQ5N6NCaxtahJZmrXp4WTWjRmrRownz1SnRoQofWtOcdMj6AXeQzfkLD17Tnfx+9KvMey9GhCR1akw5NmPNYiQ5N6NCa9rxDxsdm6dCEcbamPZ97ZbN0aEKH1jS2Drk/r3NaNKFFaxpbi5Zkrno5OjShQ2vSoQlz1SvRoQkdWtOed2gvx4cHo+2gUsqjkvxY4+Un11o/ccKmzacVf3aFwze3uekK++jS6xrrjyml3GjuO2f90zmv9f31bFUp5Zwkv5ejX/f7k/w/GzxsX+PwuiSXJPnZJI9Icv9M/tWm+yV5ZJJfzOwvM/dM8ppSyp1XOMe9pkNH6NAaRtahkzSfVP26WutlHex3b2nREVq0hhG0yPjYEB06wjhbQ08dYg/o0BE6tAYdOtZHkzw5yV1qrb/Z98kMkQ4doUNrGFmHzFV3TIuO0KI1jKxFJzFf3YIOHaFDaxhBh4wPYKf4jD9Cw9cwgr+Pnmbeo0M6dIQOrWFkHTqJOY8WdOgIHVrDCDpkfGyIDh1hnK1hBHOvbIgOHaFDa9ChY7k/bwladIQWrWFkLTJX3SEdOkKH1jCyDp3EXHULOnSEDq1hBB3ay/HhwWg7ppTylUn+S+PlVyf59SU2b4a7+XTKZTTD3dzntr0sk6d5nnZ+kqectFEp5Y5JfnLOH12vlHJuN6e2E34ryf82tf6FJE9Y4V9DaqOPcfizSW5fa/3GWuv/VWv9/VrrpbXWy2qtb621vqTW+n8muXOS/ztJndr2NkleUEopK5znXtKhGTq0nrF0aKGDX6S/p/Gyp3svoEUztGg9+94i42MDdGiGcbaePjrEjtOhGTq0Hh2a74Ik/yzJD5dSbtb3yQyNDs3QofWMpUPmqjumRTO0aD1jadFC5qvb0aEZOrSefe+Q8QHsDJ/xMzR8Pfv+99GnmffokA7N0KH1jKVDC5nzaEeHZujQeva9Q8bHBujQDONsPfs+98oG6NAMHVqPDs3n/rwTaNEMLVrPWFpkrrpDOjRDh9Yzlg4tZK66HR2aoUPr2fcO7eX48GC0HVJKuVMmA3E6lh9I8j211jp/q4W2tc3G1Fr/PsmvNl7+yVLKvzhum1LKHZK8Msl5x+22o9MbtFLKv0vyTxov/3St9fVbPpWNj8OD/3htPr173vuuqbX+dJIfb/zR/ZP84zbH3Fc6NEuHVjemDi3hkUluMbX+qSTP7/gYe0OLZmnR6sbQIuOjezo0yzhb3YA6xA7RoVk6tLoRd+jTSe4ytdwtkzmgRyf5j0muOHjfHZP8XJK3l1K+uofzHCQdmqVDqxtTh8xVd0uLZmnR6sbUoiWYr16SDs3SodWNoUPGB7ArfMbP0vDVDegz3j16O0SHZunQ6sbUoSWY81iSDs3SodWNoUPGR/d0aJZxtroBdYgdokOzdGh1I+6Q+/PWpEWztGh1Y2qRueru6NAsHVrdmDq0BHPVS9KhWTq0ujF0aF/Hx9l9nwDLKaXcOsl/T3L7qZcvT/LQWusV87eacVVjfZUn8zW3ae6zD09L8rAcPpmxJPmVUspjM3k66lszeRLn7Q7e98M5/PD7YJI7TO3rmlrrzJM+Symnlj2ZWuv7W519D0opT8rkqdfTfrnW+gtLbn9q2WPNuR6DH4e11l8rpXxzkkdMvfwjSX63y+PsGh1aSIda0qEZT2ys/26ttfkUaaJFJ9CilkbWoo2Pj7HQoYV0qKWeO8SO0qGFdKilMXeo1vrFJO+f80eXJnlhKeVnk/yHJD928PqdkrymlPKgWus7tnOWw6RDC+lQS2Pu0DLMVR9PixbSopa0aIb56iXo0EI61NLIOmSuGhg0n/EL+YxvaWR/H92aeY/5dGghHWpJh2aY81iCDi2kQy2NrEPmPDqiQwvpUEsjm3ulIzq0kA61NOYOuT9vPVq0kBa1NOYWLcNc9Xw6tJAOtaRDM8xVL0GHFtKhlkbWob2bq/ZgtB1QSvmSJK9Jcs+plz+W5CG11ve02NVehrvWem0p5dFJXp7kK6b+6MEHy3E+nskvDq+aeu2Tx7z3fS1OqbR479aVUn4gyS83Xv71Wuu/arGbda7HrozDn8/R/5D92lLK+bXW48bIXtOhxXSoHR06qpRyxyQPbbz8jFX3t8+0aDEtamdsLdrS+Nh7OrSYDrUzgA6xg3RoMR1qR4cWq7V+JsmPl1I+n+QnDl6+WZL/Ukr5Byv+C0M7T4cW06F2dGhp5qobtGgxLWpHi44yX70cHVpMh9oZW4fMVQND5jN+MZ/x7QzgM35XxqF5jyk6tJgOtaNDR5nzWI4OLaZD7YytQ+Y8uqFDi+lQOwPoEDtIhxbToXZ0aDH35x1PixbTona0aGnmqqfo0GI61I4OHWWuejk6tJgOtTO2Du3jXPVZfZ8Ai5VSzkvy6iRfPvXylZk8yfIvWu7uU431W7U8l5tkNtyDGMi11g8leWCSpyf5/BKbvDbJA5Jc3Xj98o5PbVBKKf8kyW/kaEyfmeRHt3gazXF4o1LKjVvu49aN9U2Mwz/J5GfttOslufcGjjN4OrQcHVqODs11UY7+TvbntdY/W2N/e0mLlqNFyxlri4yP9ejQcoyz5QykQ+wYHVqODi1Hh1p5cpIPT63fL8lDejqXXunQcnRoOTrUirnqKVq0HC1ajhbNdVHMVy+kQ8vRoeWMtUPGBzBEPuOXo+HLGchn/NDujTmOeY8DOrQcHVqODs11Ucx5LKRDy9Gh5Yy1Q8bHenRoOcbZcgbSIXaMDi1Hh5ajQ624P2+KFi1Hi5ajRa2Yqz6gQ8vRoeXo0FwXxVz1Qjq0HB1azlg7tG/jw4PRBqyUctMkr0zyD6Ze/nSSb621vnWFXTaffnnnlts33/+JWuuVc9/Zg1rr1bXWf5bkSzOZEHltkg8m+WySv0/yriTPyuQpqv+o1vr+JPdq7OYtWzvhLSulfFcmkZ7+uX9Oku/f5hP0a60fz9H/QEySO7XcTXMstnmy61JqrV9M8jeNl1v9srMPdKgdHVpMh2aVUkqS72287OneDVrUjhYtNvYWGR+r0aF2jLPFhtIhdosOtaNDi+lQO7XWzyZ5UePlb+3jXPqkQ+3o0GI61I656kNa1I4WLaZFs8xXn0yH2tGhxcbeIeMDGBKf8e1o+GJD+Ywf0r0xi5j3mNChdnRoMR2aZc7jZDrUjg4tNvYOGR+r0aF2jLPFhtIhdosOtaNDi+lQO+7PO6RF7WjRYlrUjrnqCR1qR4cW06FZ5qpPpkPt6NBiY+/QPo2Ps/s+AeY7+NdoXp7ka6devirJw2qtf7Libt/VWL97y+3v2lh/54rnsVG11vcledrBcpKva6z/8TH7LPNe3xWllMckeXYmT6k+7b8mecLBf7C10sH1eFcmT5g87e6ZHZ+LNMdim23b+GxjvflE172mQ6vToVk6dKxvSnKXqfXPZfJLNQe0aHVaNEuLDm1ifOwrHVqdDs0aYIfYATq0Oh2apUMre3djve3PzE7TodXp0CwdWtmo56oTLVqHFs3SomOZr15Ah1anQ7N06JC5aqBvPuNX5zN+1gA/44dyb8xJRj3voUOr06FZOnQscx4L6NDqdGiWDh0y57E8HVqdDs0aYIfYATq0Oh2apUMrG/X9eYkWrUOLZmnRysxV69BKdGiWDh3LXPUCOrQ6HZqlQ4f2Ya76rJPfwraVUs5N8tIkD556+TNJHl6Dc7dAAAAPuklEQVRrfdMau35HY/0rSik3arH9g07Y3045eKrqNzVefl0f57JJpZRHJHlujj4I8UVJHl9r/UI/ZzUzdpqBPNbBLzVfccL+unLLxvrHNnScwdGh7dAhHUryfY31F9RaP7HivvaOFm2HFmnRCccZxfg4jg5tx1jG2UA7xMDp0HbokA4t4fON9Rv0chY90KHt0CEdWsJo56oTLdoWLdKimK8+lg5thw7p0CJjGR/AdvmM346xNHygn/GD//voA6Od99Ch7dAhHYo5j2Pp0HbokA6dcJxRjI/j6NB2jGWcDbRDDJwObYcO6dASRnt/XqJF26JFWrQEc9U6tFE6pEMxV30sHdoOHdKhRYY8PjwYbWBKKTdM8pIkF069fE2SR9RaX7/OvmutH0nytqmXzs7RD4eTXNhYf8U65zMA35Tk1NT662qt7+npXDailPJtmTy58vpTL78syeNqrdf1c1ZJklc21i9sse3X5+iH0KW11o+ufUYNpZRbZvYprh/u+jhDpENbpUP96b1DpZTzkzy68fIz2u5nX2nRVmlRf3pv0RL2fnwcR4e2au/H2YA7xIDp0FbpECe5Q2N9E793DY4ObZUOcawxz1UnWrRlWjRi5quPp0NbpUMssvfjA9gun/FbtfcNH/Bn/OD/PnrM8x46tFU61J/eO2TO43g6tFU61J/eO7SEvR8fx9Ghrdr7cTbgDjFgOrRVOsRJRnl/XqJFW6ZFHMtctQ5tiQ6NmLnq4+nQVukQiwx2fHgw2oCUUs5J8oIkD5l6+XNJvqPW+gcdHeaFjfXvXfLcvizJ10y9dHWSV3d0Tn35qcb603s5iw0ppTw0yX9Lcs7Uy69O8pha67X9nNUZr0ry2an1rzsYY8u4qLHeHNNd+a4cbeRHk7xrQ8caDB3aOh3qzxA69N1Jbji1/v4kf7jivvaKFm2dFvVnCC06yV6Pj+Po0Nbt9TgbeIcYKB3aOh3iJN/cWB/E5P4m6dDW6RCLjHKuOtGiHmjRuJmvnkOHtk6HWGSvxwewXT7jt26vGz7wz/hd+PvoUc576NDW6VB/htAhcx5z6NDW6VB/htChk+z1+DiODm3dXo+zgXeIgdKhrdMhTjK6+/MSLeqBFrGIuepDOrQ5OjRu5qrn0KGt0yEWGez48GC0gSilnJ3keUkeNvXy55M8ttb6qg4P9ZwkX5haf3Qp5R5LbNccxM+rtV7T3WltVynlCUkeOvXSWzN58uNeKKV8Q5IX5+gvSH+YyS8Bn+vnrA7VWj+T5PmNl5tjbEYp5Z5JHjX10nVJfrfDUzt9nAuS/Gzj5d+vtdaujzUkOrRdOtSvgXTo+xrrv73vnVmGFm2XFvVrIC1adJy9Hh/H0aHt2vdxNvQOMUw6tF06xElKKQ9P8oDGyy/u41y2RYe2S4dYZKxz1YkWbZsWEfPVM3Rou3SIRfZ9fADb5TN+u/a94UP/jN+Bv48e5byHDm2XDvVrIB0y59GgQ9ulQ/0aSIcWHWevx8dxdGi79n2cDb1DDJMObZcOcZIx3p+XaNG2aRGLmKvWoW3QIWKueoYObZcOscjQx4cHow1AKeV6mQT1kVMvX5fkcbXWl3Z5rFrre5I8a+qlc5JcXEq54TGbpJTyyBz9F2+uTfLULs9rXQcffMu+99FJfnPqpeuSfF+t9brOT6wHpZSvS/LSJOdOvfz6JN9ea/3s/K168ZRMfjk57aJSyiOOe/PBGH1mjj6h8xm11vcu2OZLSynf3uakSim3yeT6XTD18rVJfr7NfnaNDq1Phw7p0MlKKV+V5P5TL30xycVt97NvtGh9WnRIi+Zua3ycQIfWZ5wd2qEOMSA6tD4dOqRDh0opDyilPOrkd85s99VJnt14+fW11rd3c2bDo0Pr06FDOnTIXHU7WrQ+LTqkRSczXz1Lh9anQ4d0aJbxAfTFZ/z6NPzQDn3GPyXu0RsMHVqfDh3SoZOZ85ilQ+vToUM6NHdb4+MEOrQ+4+zQDnWIAdGh9enQIR065P68drRofVp0SIsOmateng6tT4cO6dDJzFXP0qH16dAhHZq1b+Nj6S+GjfrtJN/ZeO1nklxaSjnVcl+XL/GkyX+byb9gc/OD9QcmeU0p5ftrrX95+k2llBsk+cEkv9TY/pdqrR9Y5mRKKXfI/HF2m8b62Qu+1qtqrR874VBvL6W8LMl/S/LHtdYvzjmX+yb56SSPb/zRz9RaLz1h/53Y9PUopdwvySuS3GTq5Xcn+dEkty6ltDnda2qtl7fZoI1a61+XUn41yU9Ovfz8Usq/TPL/1VqvPf1iKeVeSX4rk7F62sdz8i8Qt03yklLK25P8TpIXHvzyMqOUctMkT8jkyd4XNP7439da/3qJL2uX6ZAO6dBE1x06zhMb66+qtf7tivvaJ1qkRVo0sakW7cT46JkO6dDoOpRsb3yUUm6S5JbH/HFzQvmWC471wSFNrnVMh3RIh47qanzcIckLSinvyOQv0F6U5N21zv9Xlkop907yQ0l+pHFe1xy8ts90SId06Kiuxoe56na0SIu06Kiux0eT+epZOqRDOnTUKMcHsJd8xo+k4T7jD7lHb3B0SId0aMI9ev3RIR3SoQn35/VHh3RodB1K3J83MDqkQzp0lPvz+qFFWqRFR7lHb/t0SId06Cj3522fDumQDh01yvGxtFqrpeclSe1wuXDJY16Y5HONbb+Y5E+T/F6SVyb5uzn7//0k12vxtb2/g6/p4iWO87Gp9/99kjdl8kP6nCSvXnAe/27L3+uNXo9M/kWjrsbSJVu4HtdL8vI5x/5oJh9Az0vyloOxOf3nn0vy9UuO8+a+P5nkDZlMsD07yQsPjvH5Y67D0/tuxJbGpg7pkA5toEPHHPMGmdwoMb2/x/TZgKEsHY4dLdKip3Q4li7ZwvXYSot2ZXz0uXQ4bnRo4ONs09cju9ehbY2Pizq6Jqf67sUGvxc6pEM6tJnr8R1z3v/pg/HxkkxugHhektckufyY/X8myUP67sQWvhc6pEM6tJnrceGc95urPv56aZEWadEGx0fjmOar518XHdIhHTI+LBbLHi4dNtln/MAbvunrkd37jHeP3kCWDseNDunQUzocS5ds4Xq4R28gS4fjRod06CkdjqVLtnA93J83kKXDcaNDAx9nm74e2b0ObWt8XNTRNTnVdy82+L3QIR3Soc1cD/fntft+aJEWadFmrseFc95vrnr+tdIhHdKhDY6PxjHNVc+/LjqkQzpkfCy9zHuSHCNQa72klPKoJBcnudXByyXJAw6WeZ6b5AdqrV/Y/Bmu5SZJvu6E91yZ5Edqrf//Fs6HY9Rav1BK+c5M/mWlx0390a2TfOsxm/1dkifUWv9oxcOel+RBS7zv6iQ/UWv9zRWPwwl0SIeGoKcOPSrJl0ytX5HJRD890CItGoKeWmR8DIQOGWfQNx3SoRG7aU4eH6e9OckP1VrftsHzGS0d0qERM1c9IFqkRSNmvnogdEiHRsz4APaaz3gNHwL36I2bDunQELhHb9x0SIeGwP1546ZDxhn0TYd0aMTcnzcgWqRFI2aueiB0SIdGzFz1QOiQDo3Yzo+Ps/o+AfpTa315kvsm+Y1MBupx3pzksbXWx9dar97KybX3K0kuzeSpnIv8bZKfS3K3of5Qjk2t9apa63cl+T8yGWvH+USSX09y31rrK5fc/buSPC3JG5N8dslt/irJz2TyL5z4j9gN0yEdGoINd2ieJzbWn11r/fwa+2NNWqRFQ7ClFhkfA6VDxhn0TYd0aAT+MJN/Ffe5ST645DafSfL8JN+e5IFuutosHdKhETBXvQO0SItGynz1gOiQDo2I8QGMis94DR8C9+iNmw7p0BC4R2/cdEiHhsD9eeOmQ8YZ9E2HdGgE3J+3A7RIi0bAXPXA6ZAOjZS56gHRIR0akb0aH6XW2vc5MACllHMyeerxnZPcJpOnG38oyaW11vf1eW5tlFJuluR+Se6SyZM6b5jJf8B8KMmf11rf2ePpsYRSyl2S3D/J7ZLcOMnlST6Q5I211mvX2O9ZSe6R5G5Jbp/k/ByOjyuTfCTJn9Zar1jrC2BlOsRQbKpD7AYtYig22SLjY9h0COibDjEGpZQLktwrk3F+iyQ3SvL5JJ9O8vEk70jy7h34l332kg6x78xV7wYtAvqmQ4yB8QGMkc94hsI9euOlQwyFe/TGS4cYCvfnjZcOAX3TIcbA/XnDp0XsO3PVw6dDQN90iDHYl/HhwWgAAAAAAAAAAAAAAAAAAAAAAABA787q+wQAAAAAAAAAAAAAAAAAAAAAAAAAPBgNAAAAAAAAAAAAAAAAAAAAAAAA6J0HowEAAAAAAAAAAAAAAAAAAAAAAAC982A0AAAAAAAAAAAAAAAAAAAAAAAAoHcejAYAAAAAAAAAAAAAAAAAAAAAAAD0zoPRAAAAAAAAAAAAAAAAAAAAAAAAgN55MBoAAAAAAAAAAAAAAAAAAAAAAADQOw9GAwAAAAAAAAAAAAAAAAAAAAAAAHrnwWgAAAAAAAAAAAAAAAAAAAAAAABA7zwYDQAAAAAAAAAAAAAAAAAAAAAAAOidB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9M6D0QAAAAAAAAAAAAAAAAAAAAAAAIDeeTAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgdx6MBgAAAAAAAAAAAAAAAAAAAAAAAPTOg9EAAAAAAAAAAAAAAAAAAAAAAACA3nkwGgAAAAAAAAAAAAAAAAAAAAAAANA7D0YDAAAAAAAAAAAAAAAAAAAAAAAAeufBaAAAAAAAAAAAAAAAAAAAAAAAAEDvPBgNAAAAAAAAAAAAAAAAAAAAAAAA6J0HowEAAAAAAAAAAAAAAAAAAAAAAAC982A0AAAAAAAAAAAAAAAAAAAAAAAAoHcejAYAAAAAAAAAAAAAAAAAAAAAAAD0zoPRAAAAAAAAAAAAAAAAAAAAAAAAgN55MBoAAAAAAAAAAAAAAAAAAAAAAADQOw9GAwAAAAAAAAAAAAAAAAAAAAAAAHrnwWgAAAAAAAAAAAAAAAAAAAAAAABA7zwYDQAAAAAAAAAAAAAAAAAAAAAAAOidB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9O5/AXpnFOxFOo7tAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "from uuid import UUID\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor\n", + "\n", + "\n", + "location_names = {\n", + " UUID('53998a51-60de-48ae-b71a-5c37cd1455f2'): \"Loft\",\n", + " UUID('1bc63cda-e223-48bc-93c2-c1f651779d69'): \"Living Room\",\n", + " UUID('ea0683de-6772-4678-bfe7-6014f54ffc8e'): \"Office\",\n", + " UUID('5aaa901a-7564-41fb-8eba-50cdd6fe9f80'): \"Outside\",\n", + "}\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 10), dpi=300)\n", + " configs = get_known_configs().values()\n", + " for i, config in enumerate(configs, start=1):\n", + " plot = figure.add_subplot(2, 2, i)\n", + " coros.append(plot_sensor(config, plot, location_names))\n", + " await asyncio.gather(*coros)\n", + "\n", + "display(figure)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9f576f5bb8e34cb8ab1d3c09f770d027", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(DatePicker(value=None, description='Start date'), DatePicker(value=None, description='En…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "from uuid import UUID\n", + "import functools\n", + "from concurrent.futures import ThreadPoolExecutor\n", + "\n", + "import ipywidgets as widgets\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor\n", + "\n", + "\n", + "def wrap_coroutine(f):\n", + " @functools.wraps(f)\n", + " def run_in_thread(*args, **kwargs):\n", + " loop = asyncio.new_event_loop()\n", + " wrapped = f(*args, **kwargs)\n", + " with ThreadPoolExecutor(max_workers=1) as pool:\n", + " task = pool.submit(loop.run_until_complete, wrapped)\n", + " return task.result()\n", + " return run_in_thread\n", + "\n", + "@wrap_coroutine\n", + "async def plot(*args, **kwargs):\n", + " location_names = {\n", + " UUID('53998a51-60de-48ae-b71a-5c37cd1455f2'): \"Loft\",\n", + " UUID('1bc63cda-e223-48bc-93c2-c1f651779d69'): \"Living Room\",\n", + " UUID('ea0683de-6772-4678-bfe7-6014f54ffc8e'): \"Office\",\n", + " UUID('5aaa901a-7564-41fb-8eba-50cdd6fe9f80'): \"Outside\",\n", + " }\n", + "\n", + " with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 10), dpi=300)\n", + " configs = get_known_configs().values()\n", + " for i, config in enumerate(configs, start=1):\n", + " plot = figure.add_subplot(2, 2, i)\n", + " coros.append(plot_sensor(config, plot, location_names, *args, **kwargs))\n", + " await asyncio.gather(*coros)\n", + " return figure\n", + "\n", + "\n", + "start = widgets.DatePicker(\n", + " description='Start date',\n", + ")\n", + "end = widgets.DatePicker(\n", + " description='End date',\n", + ")\n", + "out = widgets.interactive(plot, collected_after=start, collected_before=end)\n", + "display(out)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "60091fa7d9ea415985ec53937e422b4a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(DatePicker(value=None, description='Start date'), DatePicker(value=None, description='En…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from uuid import UUID\n", + "import ipywidgets as widgets\n", + "from apd.aggregation.analysis import interactable_plot_multiple_charts, configs\n", + "\n", + "location_names = {\n", + " UUID('53998a51-60de-48ae-b71a-5c37cd1455f2'): \"Loft\",\n", + " UUID('1bc63cda-e223-48bc-93c2-c1f651779d69'): \"Living Room\",\n", + " UUID('ea0683de-6772-4678-bfe7-6014f54ffc8e'): \"Office\",\n", + " UUID('5aaa901a-7564-41fb-8eba-50cdd6fe9f80'): \"Outside\",\n", + "}\n", + "\n", + "start = widgets.DatePicker(\n", + " description='Start date',\n", + ")\n", + "end = widgets.DatePicker(\n", + " description='End date',\n", + ")\n", + "\n", + "plot = interactable_plot_multiple_charts(location_names=location_names)\n", + "out = widgets.interactive(plot, collected_after=start, collected_before=end)\n", + "display(out)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "08a4d937037b45bda2298879df7f80b6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(DatePicker(value=None, description='Start date'), DatePicker(value=None, description='En…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import datetime\n", + "import uuid\n", + "import ipywidgets as widgets\n", + "from apd.aggregation.analysis import Config, configs, interactable_plot_multiple_charts, draw_map, get_map_cleaner_for\n", + "from apd.aggregation.database import DataPoint\n", + "from apd.aggregation.utils import merc_x, merc_y\n", + "\n", + "start = widgets.DatePicker(description='Start date')\n", + "end = widgets.DatePicker(description='End date')\n", + "\n", + "def get_literal_data():\n", + " # Get manually entered temperature data, as our particular deployment\n", + " # does not contain data of this shape\n", + " raw_data = {(53.8667, -1.3333): -1, (53.35, -2.2833): 1, (52.45, -1.7333): 3, (51.5, -0.1333): 6, (51.55, -2.5667): 5, (54.9667, -1.6167): -1, (55.9667, -3.2167): -1, (54.7667, -1.5833): 0, (53.7667, -0.3): 1, (53.7667, -3.0167): 0, (51.4833, -3.1833): 4, (53.2667, -3.5167): 2, (52.0833, -2.8): 2, (52.0167, -0.6): 2, (52.6667, 1.2667): 5, (50.4333, -4.9833): 9, (50.35, -4.1167): 10, (50.5167, -2.45): 9, (50.8333, -1.1667): 9, (56.45, -5.4333): 4, (57.5333, -4.05): -2, (54.5167, -3.6167): 3, (53.0833, 0.2667): 4, (51.35, 1.3333): 7, (50.8833, 0.3167): 8, (58.45, -3.1): 3, (50.1, -5.6667): 9, (58.2167, -6.3333): 4, (55.6833, -6.25): 7}\n", + " now = datetime.datetime.now()\n", + " async def points():\n", + " for (coord, temp) in raw_data.items():\n", + " deployment_id = uuid.uuid4()\n", + " yield DataPoint(sensor_name=\"Location\", deployment_id=deployment_id, collected_at=now, data=coord)\n", + " yield DataPoint(sensor_name=\"Temperature\", deployment_id=deployment_id, collected_at=now, data=temp)\n", + " async def deployments(*args, **kwargs):\n", + " yield None, points()\n", + " return deployments\n", + "\n", + "def draw_map_with_gb(plot, x, y, colour):\n", + " # Draw the map and add an explicit coastline\n", + " gb_boundary = [(-2.6653539699999556, 51.617254950000074), (-2.6937556629999335, 51.59617747600004), (-2.71312415299991, 51.58661530200004), (-2.760487433999913, 51.579779364000046), (-2.7980850899999155, 51.56350332200009), (-2.816395636999914, 51.555568752000056), (-2.8587133449999556, 51.546128648000035), (-2.943348761999914, 51.54254791900007), (-2.9562882149999155, 51.54572174700007), (-2.9641007149999155, 51.552801825000074), (-2.969471808999913, 51.559881903000075), (-2.9746801419999542, 51.56297435100004), (-2.984038865999935, 51.55853913000004), (-3.0102432929999168, 51.53803131700005), (-3.0156957669999542, 51.53164297100005), (-3.0737198559999115, 51.50836823100008), (-3.0764867829999503, 51.50775788000004), (-3.088937954999949, 51.505072333000044), (-3.105620897999927, 51.49721914300005), (-3.1317032539999445, 51.48041413000004), (-3.1350805329999503, 51.47630442900004), (-3.1409399079999503, 51.46478913000004), (-3.1453751289999445, 51.45994700700004), (-3.1524145169999542, 51.45718008000006), (-3.1666560539999296, 51.45600006700005), (-3.1723933579999084, 51.45327383000006), (-3.1727188789999445, 51.453111070000034), (-3.160064256999931, 51.43183014500005), (-3.167144334999932, 51.41046784100007), (-3.1848038399999155, 51.39760976800005), (-3.204009568999936, 51.401597398000035), (-3.218861456999946, 51.402777411000045), (-3.289418097999942, 51.38422272300005), (-3.539173956999946, 51.398504950000074), (-3.557443813999953, 51.40509674700007), (-3.5753067699999406, 51.420436916000085), (-3.6047257149999155, 51.44570547100005), (-3.6631973949999406, 51.476223049000055), (-3.6769913399999155, 51.47703685100004), (-3.695423956999946, 51.47150299700007), (-3.717925584999932, 51.478583075000074), (-3.7376195949999556, 51.49087148600006), (-3.748036261999914, 51.50092194200005), (-3.7494197259999282, 51.50535716400009), (-3.747670050999943, 51.507025458000044), (-3.7445369129999335, 51.50763580900008), (-3.741851365999935, 51.50836823100008), (-3.7493383449999556, 51.52806224200003), (-3.7519018219999225, 51.53306712400007), (-3.758941209999932, 51.54677969000005), (-3.770130988999938, 51.56329987200007), (-3.782215949999909, 51.57664622600004), (-3.7902725899999155, 51.58197663000004), (-3.8077286449999406, 51.589178778000075), (-3.8169652989999463, 51.59650299700007), (-3.8326716789999296, 51.61554596600007), (-3.8416235019999476, 51.621527411000045), (-3.8548884759999282, 51.62384674700007), (-3.8867895169999542, 51.62140534100007), (-3.9623917309999115, 51.61562734600005), (-3.9766332669999542, 51.61188385600008), (-3.989979620999918, 51.60651276200008), (-3.998768683999913, 51.60028717700004), (-3.999908006999931, 51.59088776200008), (-3.9922582669999542, 51.58112213700008), (-3.9818009109999366, 51.571600653000075), (-3.974598761999914, 51.56297435100004), (-4.016184048999946, 51.56297435100004), (-4.016102667999917, 51.56037018400008), (-4.0208227199999556, 51.555853583000044), (-4.026519334999932, 51.554022528000075), (-4.029204881999931, 51.55927155200004), (-4.031971808999913, 51.56313711100006), (-4.0385636059999115, 51.56622955900008), (-4.046457485999952, 51.568426825000074), (-4.0531306629999335, 51.569240627000056), (-4.056304490999935, 51.56704336100006), (-4.065581834999932, 51.55756256700005), (-4.070220506999931, 51.555568752000056), (-4.0768123039999296, 51.55695221600007), (-4.087269660999937, 51.56191640800006), (-4.112131313999953, 51.565619208000044), (-4.121652798999946, 51.56598541900007), (-4.132191535999937, 51.56297435100004), (-4.142730272999927, 51.55695221600007), (-4.156809048999946, 51.54629140800006), (-4.1664119129999335, 51.54254791900007), (-4.176503058999913, 51.544256903000075), (-4.18773352799991, 51.54877350500004), (-4.1967667309999115, 51.54938385600008), (-4.200550910999937, 51.538763739000046), (-4.213368292999917, 51.539129950000074), (-4.272450324999909, 51.554754950000074), (-4.2899063789999445, 51.555568752000056), (-4.293324347999942, 51.55914948100008), (-4.29515540299991, 51.56195709800005), (-4.297352667999917, 51.569240627000056), (-4.278309699999909, 51.578192450000074), (-4.280832485999952, 51.58881256700005), (-4.2897029289999296, 51.601548570000034), (-4.2899063789999445, 51.61701080900008), (-4.255767381999931, 51.62384674700007), (-4.252023891999954, 51.62710195500006), (-4.241281704999949, 51.63934967700004), (-4.234730597999942, 51.644964911000045), (-4.228505011999914, 51.63743724200003), (-4.234730597999942, 51.63743724200003), (-4.234730597999942, 51.631293036000045), (-4.2278539699999556, 51.628119208000044), (-4.22101803299995, 51.62384674700007), (-4.1900935539999296, 51.63027578300006), (-4.139027472999942, 51.63231028900009), (-4.0912979809999115, 51.639878648000035), (-4.070220506999931, 51.66229889500005), (-4.0698136059999115, 51.66893138200004), (-4.070383266999954, 51.67430247600004), (-4.07054602799991, 51.67597077000005), (-4.0754288399999155, 51.677801825000074), (-4.087269660999937, 51.668850002000056), (-4.095448370999918, 51.66510651200008), (-4.106841600999928, 51.66425202000005), (-4.146351691999939, 51.66705963700008), (-4.200550910999937, 51.68585846600007), (-4.214955206999946, 51.679673570000034), (-4.293690558999913, 51.67226797100005), (-4.3152970039999445, 51.67747630400004), (-4.342355923999946, 51.69086334800005), (-4.3664444649999155, 51.70848216400009), (-4.379261847999942, 51.72687409100007), (-4.338042772999927, 51.72333405200004), (-4.319976365999935, 51.72483958500004), (-4.310454881999931, 51.733710028000075), (-4.328724738999938, 51.73297760600008), (-4.3471573559999115, 51.73578522300005), (-4.3625382149999155, 51.74286530200004), (-4.371815558999913, 51.754787502000056), (-4.368763800999943, 51.75698476800005), (-4.362904425999943, 51.76386139500005), (-4.358021613999938, 51.773138739000046), (-4.358225063999953, 51.782131252000056), (-4.365101691999939, 51.789048570000034), (-4.3714900379999335, 51.78595612200007), (-4.379261847999942, 51.77529531500005), (-4.384917772999927, 51.77187734600005), (-4.3929744129999335, 51.763739325000074), (-4.399159308999913, 51.76162344000005), (-4.409331834999932, 51.76316966400009), (-4.417876756999931, 51.76788971600007), (-4.426503058999913, 51.77529531500005), (-4.445790167999917, 51.77326080900008), (-4.449330206999946, 51.76630280200004), (-4.441395636999914, 51.75678131700005), (-4.426503058999913, 51.747300523000035), (-4.460764126999948, 51.73578522300005), (-4.4988907539999445, 51.73484935100004), (-4.574208136999914, 51.74115631700005), (-4.603423631999931, 51.73924388200004), (-4.639230923999946, 51.73318105700008), (-4.6453751289999445, 51.732123114000046), (-4.678212042999917, 51.71743398600006), (-4.680287238999938, 51.692694403000075), (-4.689442511999914, 51.69159577000005), (-4.69163977799991, 51.689886786000045), (-4.69163977799991, 51.685980536000045), (-4.693959113999938, 51.67841217700004), (-4.712310350999928, 51.650091864000046), (-4.721424933999913, 51.652044989000046), (-4.734934048999946, 51.65924713700008), (-4.741851365999935, 51.65607330900008), (-4.759185350999928, 51.644964911000045), (-4.8482966789999296, 51.64630768400008), (-4.86351477799991, 51.64411041900007), (-4.878977016999954, 51.63743724200003), (-4.887806769999941, 51.62995026200008), (-4.8957413399999155, 51.621079820000034), (-4.904774542999917, 51.61383698100008), (-4.923695441999939, 51.608628648000035), (-4.931996222999942, 51.59902578300006), (-4.941029425999943, 51.59650299700007), (-4.946034308999913, 51.59760163000004), (-4.956450975999928, 51.602769273000035), (-5.021595831999946, 51.61603424700007), (-5.0457657539999445, 51.62689850500004), (-5.0366104809999115, 51.63743724200003), (-5.0511775379999335, 51.65692780200004), (-5.100493943999936, 51.66469961100006), (-5.119740363999938, 51.67841217700004), (-5.113433397999927, 51.68528880400004), (-5.0366104809999115, 51.67841217700004), (-5.038726365999935, 51.68183014500005), (-5.04133053299995, 51.68939850500004), (-5.043446417999917, 51.692694403000075), (-5.028675910999937, 51.69293854400007), (-5.002552863999938, 51.68740469000005), (-4.988189256999931, 51.68585846600007), (-4.974598761999914, 51.687933661000045), (-4.941029425999943, 51.70014069200005), (-4.892648891999954, 51.706366278000075), (-4.868275519999941, 51.716782945000034), (-4.8580623039999296, 51.71832916900007), (-4.844838019999941, 51.71381256700005), (-4.844838019999941, 51.720038153000075), (-4.873402472999942, 51.73773834800005), (-4.879017706999946, 51.76203034100007), (-4.8625382149999155, 51.78237539300005), (-4.824330206999946, 51.788275458000044), (-4.824330206999946, 51.79572174700007), (-4.836008266999954, 51.790716864000046), (-4.864979620999918, 51.783270575000074), (-4.921294725999928, 51.78001536700003), (-4.933583136999914, 51.77529531500005), (-4.9172257149999155, 51.77533600500004), (-4.905181443999936, 51.771185614000046), (-4.900542772999927, 51.76211172100005), (-4.906239386999914, 51.747300523000035), (-4.8920792309999115, 51.73940664300005), (-4.895659959999932, 51.728176174000055), (-4.9105525379999335, 51.71820709800005), (-4.988189256999931, 51.70685455900008), (-5.009917772999927, 51.706366278000075), (-5.149240688999953, 51.718085028000075), (-5.166900193999936, 51.71381256700005), (-5.156971808999913, 51.69757721600007), (-5.1686091789999296, 51.68891022300005), (-5.1828507149999155, 51.68927643400008), (-5.180653449999909, 51.70014069200005), (-5.180653449999909, 51.706366278000075), (-5.230132615999935, 51.73004791900007), (-5.2495011059999115, 51.733710028000075), (-5.228138800999943, 51.73395416900007), (-5.213937954999949, 51.73574453300006), (-5.202870245999918, 51.74079010600008), (-5.191151495999918, 51.75104401200008), (-5.176828579999949, 51.75967031500005), (-5.1432185539999296, 51.76386139500005), (-5.125965949999909, 51.76850006700005), (-5.110259568999936, 51.778509833000044), (-5.107085740999935, 51.78807200700004), (-5.112294074999909, 51.81317780200004), (-5.113392706999946, 51.82880280200004), (-5.11750240799995, 51.84369538000004), (-5.125884568999936, 51.85602448100008), (-5.139637824999909, 51.86399974200003), (-5.146473761999914, 51.85716380400004), (-5.16437740799995, 51.86676666900007), (-5.2037654289999296, 51.87018463700008), (-5.221587693999936, 51.87767161700003), (-5.2358292309999115, 51.87103913000004), (-5.2914119129999335, 51.86399974200003), (-5.3109431629999335, 51.86399974200003), (-5.304269985999952, 51.867621161000045), (-5.297352667999917, 51.87018463700008), (-5.297352667999917, 51.87767161700003), (-5.300689256999931, 51.882025458000044), (-5.302561001999948, 51.88523997600004), (-5.300160285999937, 51.888332424000055), (-5.2905167309999115, 51.89199453300006), (-5.2905167309999115, 51.898138739000046), (-5.2983292309999115, 51.91095612200007), (-5.288929816999939, 51.91693756700005), (-5.252837693999936, 51.91864655200004), (-5.234201626999948, 51.923041083000044), (-5.204172329999949, 51.942287502000056), (-5.191151495999918, 51.946600653000075), (-5.16038977799991, 51.94944896000004), (-5.1195369129999335, 51.95892975500004), (-5.088042772999927, 51.97601959800005), (-5.085031704999949, 52.00185781500005), (-5.070790167999917, 52.00185781500005), (-5.070790167999917, 52.00804271000004), (-5.082753058999913, 52.01447174700007), (-5.081206834999932, 52.021185614000046), (-5.070220506999931, 52.02635325700004), (-5.053700324999909, 52.028509833000044), (-5.0266007149999155, 52.027411200000074), (-5.015044725999928, 52.02533600500004), (-4.961740688999953, 52.007513739000046), (-4.942534959999932, 52.007473049000055), (-4.913685675999943, 52.014837958000044), (-4.920521613999938, 52.028509833000044), (-4.9016007149999155, 52.02643463700008), (-4.863189256999931, 52.01699453300006), (-4.841420050999943, 52.014837958000044), (-4.83226477799991, 52.01898834800005), (-4.833851691999939, 52.02875397300005), (-4.8382869129999335, 52.04010651200008), (-4.838002081999946, 52.04901764500005), (-4.83039303299995, 52.05292389500005), (-4.796986456999946, 52.05646393400008), (-4.77757727799991, 52.064886786000045), (-4.7631729809999115, 52.075873114000046), (-4.7386775379999335, 52.100816148000035), (-4.720285610999952, 52.113348700000074), (-4.7065323559999115, 52.11347077000005), (-4.673451300999943, 52.09739817900004), (-4.675689256999931, 52.126939195000034), (-4.637521938999953, 52.13849518400008), (-4.513824022999927, 52.13568756700005), (-4.50226803299995, 52.138373114000046), (-4.495757615999935, 52.14350006700005), (-4.490956183999913, 52.150376695000034), (-4.484283006999931, 52.156317450000074), (-4.454701300999943, 52.16205475500004), (-4.4348038399999155, 52.170355536000045), (-4.415394660999937, 52.18154531500005), (-4.385568813999953, 52.20343659100007), (-4.371245897999927, 52.20929596600007), (-4.3547257149999155, 52.212103583000044), (-4.334339972999942, 52.21283600500004), (-4.315825975999928, 52.21629466400003), (-4.197132941999939, 52.279282945000034), (-4.1390681629999335, 52.33022695500006), (-4.10960852799991, 52.365301825000074), (-4.096262173999946, 52.387884833000044), (-4.0873917309999115, 52.430121161000045), (-4.0789688789999445, 52.45302969000005), (-4.067941860999952, 52.47361888200004), (-4.056548631999931, 52.48786041900007), (-4.0618383449999556, 52.49705638200004), (-4.064035610999952, 52.50918203300006), (-4.062570766999954, 52.52098216400003), (-4.056548631999931, 52.52944570500006), (-4.048491990999935, 52.530462958000044), (-4.0266007149999155, 52.52338288000004), (-4.016184048999946, 52.52195872600004), (-3.998768683999913, 52.52594635600008), (-3.9473363919999542, 52.549261786000045), (-3.9473363919999542, 52.556708075000074), (-3.9744766919999392, 52.55654531500005), (-4.025868292999917, 52.545355536000045), (-4.0531306629999335, 52.54242584800005), (-4.068470831999946, 52.550116278000075), (-4.1141251289999445, 52.58860911700003), (-4.125477667999917, 52.60390859600005), (-4.122222459999932, 52.62872955900008), (-4.105946417999917, 52.653509833000044), (-4.0848282539999445, 52.67267487200007), (-4.067128058999913, 52.68024323100008), (-4.063547329999949, 52.68309153900003), (-4.05882727799991, 52.696600653000075), (-4.056548631999931, 52.70066966400003), (-4.052723761999914, 52.70221588700008), (-4.041981574999909, 52.70465729400007), (-4.001088019999941, 52.72410716400003), (-3.988270636999914, 52.73427969000005), (-4.014719204999949, 52.73232656500005), (-4.031971808999913, 52.723944403000075), (-4.048817511999914, 52.721584377000056), (-4.125152147999927, 52.77830638200004), (-4.144357876999948, 52.802801825000074), (-4.149037238999938, 52.81207916900007), (-4.146229620999918, 52.82021719000005), (-4.128895636999914, 52.82363515800006), (-4.117339647999927, 52.83075592700004), (-4.1197810539999296, 52.84625885600008), (-4.127756313999953, 52.86172109600005), (-4.132191535999937, 52.86831289300005), (-4.131988084999932, 52.882473049000055), (-4.129872199999909, 52.88922760600008), (-4.123605923999946, 52.89325592700004), (-4.064035610999952, 52.919175523000035), (-4.071400519999941, 52.921087958000044), (-4.074574347999942, 52.92279694200005), (-4.0776261059999115, 52.926662502000056), (-4.0891007149999155, 52.918850002000056), (-4.100493943999936, 52.914129950000074), (-4.1105850899999155, 52.915676174000055), (-4.118560350999928, 52.926662502000056), (-4.144398566999939, 52.91478099200003), (-4.171620245999918, 52.91347890800006), (-4.228505011999914, 52.919175523000035), (-4.300689256999931, 52.905585028000075), (-4.317290818999936, 52.89935944200005), (-4.337310350999928, 52.89203522300005), (-4.406605597999942, 52.89252350500004), (-4.4272354809999115, 52.885972398000035), (-4.446197068999936, 52.87592194200005), (-4.4816788399999155, 52.850897528000075), (-4.477935350999928, 52.84833405200004), (-4.475493943999936, 52.84414297100005), (-4.491363084999932, 52.83820221600007), (-4.500965949999909, 52.82680898600006), (-4.501332160999937, 52.81391022300005), (-4.4891251289999445, 52.803168036000045), (-4.501942511999914, 52.794989325000074), (-4.509185350999928, 52.791449286000045), (-4.5164688789999445, 52.789496161000045), (-4.5285538399999155, 52.79047272300005), (-4.5424698559999115, 52.80068594000005), (-4.5639542309999115, 52.80524323100008), (-4.583078579999949, 52.81464264500005), (-4.594634568999936, 52.81679922100005), (-4.606516079999949, 52.81509023600006), (-4.61351477799991, 52.81110260600008), (-4.619211391999954, 52.80654531500005), (-4.626332160999937, 52.803168036000045), (-4.648589647999927, 52.79962799700007), (-4.704497850999928, 52.803168036000045), (-4.719309048999946, 52.79751211100006), (-4.733225063999953, 52.78750234600005), (-4.747425910999937, 52.78343333500004), (-4.762847459999932, 52.789496161000045), (-4.752512173999946, 52.79877350500004), (-4.7514542309999115, 52.80320872600004), (-4.755441860999952, 52.80931224200003), (-4.7492569649999155, 52.81427643400008), (-4.734934048999946, 52.83047109600005), (-4.596058722999942, 52.92841217700004), (-4.580962693999936, 52.93349844000005), (-4.562082485999952, 52.93451569200005), (-4.543527798999946, 52.937933661000045), (-4.523996548999946, 52.944240627000056), (-4.443430141999954, 52.98216380400004), (-4.423695441999939, 53.00263092700004), (-4.358225063999953, 53.02846914300005), (-4.349964972999942, 53.04148997600004), (-4.345692511999914, 53.059475002000056), (-4.343861456999946, 53.10106028900003), (-4.340891079999949, 53.11273834800005), (-4.334339972999942, 53.11676666900007), (-4.3276261059999115, 53.11469147300005), (-4.324696417999917, 53.10789622600004), (-4.320668097999942, 53.10150788000004), (-4.312245245999918, 53.109442450000074), (-4.304758266999954, 53.12099844000005), (-4.303618943999936, 53.12531159100007), (-4.263539191999939, 53.15452708500004), (-4.2523494129999335, 53.159409898000035), (-4.234527147999927, 53.16400788000004), (-4.221302863999938, 53.175034898000035), (-4.200550910999937, 53.20099518400008), (-4.17796790299991, 53.21759674700007), (-4.151519334999932, 53.22809479400007), (-4.122222459999932, 53.23346588700008), (-4.0906876289999445, 53.23517487200007), (-4.08234615799995, 53.23354726800005), (-4.074330206999946, 53.23065827000005), (-4.066883917999917, 53.22907135600008), (-4.054107225999928, 53.234361070000034), (-4.032297329999949, 53.24070872600004), (-4.008900519999941, 53.24445221600007), (-3.974598761999914, 53.261786200000074), (-3.8653051419999542, 53.289129950000074), (-3.8312882149999155, 53.289129950000074), (-3.841420050999943, 53.30744049700007), (-3.870757615999935, 53.32562897300005), (-3.8784073559999115, 53.337591864000046), (-3.859974738999938, 53.33633047100005), (-3.840565558999913, 53.33283112200007), (-3.822987433999913, 53.32656484600005), (-3.8101293609999516, 53.31708405200004), (-3.7905167309999115, 53.323431708000044), (-3.7688695949999556, 53.31915924700007), (-3.748199022999927, 53.307806708000044), (-3.7319229809999115, 53.29287344000005), (-3.7162979809999115, 53.28693268400008), (-3.6022029289999296, 53.28888580900008), (-3.5623266269999476, 53.29441966400003), (-3.372059699999909, 53.350897528000075), (-3.33031165299991, 53.35179271000004), (-3.2923884759999282, 53.34052155200004), (-3.2713110019999476, 53.33055247600004), (-3.262074347999942, 53.32050202000005), (-3.250803188999953, 53.312567450000074), (-3.122222459999932, 53.26227448100008), (-3.107533331999946, 53.25189850500004), (-3.0951228509999282, 53.23932526200008), (-3.0877579419999392, 53.23468659100007), (-3.0845434239999463, 53.23859284100007), (-3.0845434239999463, 53.25857168200008), (-3.0845434239999463, 53.275458075000074), (-3.09593665299991, 53.28713613500008), (-3.1111954419999392, 53.302801825000074), (-3.1354060539999296, 53.33380768400008), (-3.171538865999935, 53.36225006700005), (-3.185210740999935, 53.37726471600007), (-3.186350063999953, 53.39276764500005), (-3.175526495999918, 53.40273672100005), (-3.157297329999949, 53.40875885600008), (-3.1146541009999282, 53.41266510600008), (-3.0942276679999168, 53.41738515800006), (-3.058257615999935, 53.434759833000044), (-3.0355525379999335, 53.43374258000006), (-3.0121964179999168, 53.41669342700004), (-2.9529516269999476, 53.323919989000046), (-2.9351293609999516, 53.309475002000056), (-2.9105525379999335, 53.29633209800005), (-2.8814998039999296, 53.288397528000075), (-2.850575324999909, 53.289129950000074), (-2.849598761999914, 53.29120514500005), (-2.848378058999913, 53.29555898600006), (-2.8449600899999155, 53.300116278000075), (-2.837554490999935, 53.302801825000074), (-2.8286026679999168, 53.302435614000046), (-2.813384568999936, 53.297756252000056), (-2.8061417309999115, 53.296576239000046), (-2.789784308999913, 53.29743073100008), (-2.775502081999946, 53.29987213700008), (-2.7481176419999542, 53.30963776200008), (-2.753651495999918, 53.32245514500005), (-2.750884568999936, 53.33161041900007), (-2.743153449999909, 53.33852773600006), (-2.734486456999946, 53.34442780200004), (-2.7261449859999516, 53.34198639500005), (-2.7174373039999296, 53.34271881700005), (-2.708607550999943, 53.346136786000045), (-2.6997777989999463, 53.35179271000004), (-2.7141007149999155, 53.35236237200007), (-2.764393683999913, 53.34516022300005), (-2.775380011999914, 53.341009833000044), (-2.782378709999932, 53.32636139500005), (-2.799794074999909, 53.32103099200003), (-2.810332811999956, 53.32172272300005), (-2.843658006999931, 53.323919989000046), (-2.886463995999918, 53.33356354400007), (-2.924956834999932, 53.35000234600005), (-2.956939256999931, 53.37055084800005), (-2.980824347999942, 53.39276764500005), (-3.096587693999936, 53.54433828300006), (-3.101918097999942, 53.55805084800005), (-3.0994766919999392, 53.57200755400004), (-3.087635870999918, 53.58771393400008), (-3.021839972999942, 53.65281810100004), (-2.968658006999931, 53.69403717700004), (-2.9603572259999282, 53.69757721600007), (-2.9517309239999463, 53.70807526200008), (-2.9114477199999556, 53.725043036000045), (-2.899037238999938, 53.73541901200008), (-2.9848526679999168, 53.73607005400004), (-3.021473761999914, 53.745794989000046), (-3.049183722999942, 53.769517320000034), (-3.056385870999918, 53.80304596600007), (-3.044911261999914, 53.87848541900007), (-3.056630011999914, 53.90615469000005), (-3.040679490999935, 53.923529364000046), (-3.017567511999914, 53.93195221600007), (-2.925689256999931, 53.95270416900007), (-2.909250454999949, 53.95384349200003), (-2.896107550999943, 53.94773997600004), (-2.8885391919999392, 53.94603099200003), (-2.885365363999938, 53.950506903000075), (-2.881988084999932, 53.95652903900003), (-2.874175584999932, 53.96165599200003), (-2.865142381999931, 53.96548086100006), (-2.8579809239999463, 53.96759674700007), (-2.869252081999946, 53.97882721600007), (-2.8344620429999168, 53.99982330900008), (-2.830067511999914, 54.01601797100005), (-2.8475235669999392, 54.00836823100008), (-2.864857550999943, 54.00429922100005), (-2.895497199999909, 54.00234609600005), (-2.900298631999931, 54.00495026200008), (-2.9160863919999542, 54.026556708000044), (-2.91820227799991, 54.03432851800005), (-2.911284959999932, 54.03998444200005), (-2.9007869129999335, 54.044907945000034), (-2.8920792309999115, 54.050116278000075), (-2.872670050999943, 54.071600653000075), (-2.8588761059999115, 54.08100006700005), (-2.826771613999938, 54.08881256700005), (-2.815174933999913, 54.09878164300005), (-2.795969204999949, 54.12518952000005), (-2.8128149079999503, 54.139878648000035), (-2.8364151679999168, 54.16758860900006), (-2.8509415359999366, 54.18463776200008), (-2.854237433999913, 54.19407786700003), (-2.8328751289999445, 54.19904205900008), (-2.810292120999918, 54.21190013200004), (-2.7952367829999503, 54.22947825700004), (-2.795969204999949, 54.24872467700004), (-2.8028051419999542, 54.24872467700004), (-2.806630011999914, 54.233710028000075), (-2.8208715489999463, 54.22174713700008), (-2.850575324999909, 54.20774974200003), (-2.886382615999935, 54.19627513200004), (-2.904652472999942, 54.18764883000006), (-2.9126684239999463, 54.176988023000035), (-2.9203995429999168, 54.16205475500004), (-2.939198370999918, 54.15509674700007), (-2.9842016269999476, 54.15314362200007), (-2.997710740999935, 54.15957265800006), (-3.011341925999943, 54.17413971600007), (-3.017323370999918, 54.19009023600006), (-3.008168097999942, 54.20034414300005), (-3.015370245999918, 54.21190013200004), (-3.024484829999949, 54.221584377000056), (-3.035755988999938, 54.22597890800006), (-3.049183722999942, 54.22207265800006), (-3.044667120999918, 54.208319403000075), (-3.047840949999909, 54.19432200700004), (-3.053537563999953, 54.181301174000055), (-3.056630011999914, 54.17023346600007), (-3.0610245429999168, 54.16193268400008), (-3.090728318999936, 54.13947174700007), (-3.10765540299991, 54.11855703300006), (-3.117909308999913, 54.10883209800005), (-3.145253058999913, 54.100043036000045), (-3.147450324999909, 54.08869049700007), (-3.1443985669999392, 54.07514069200005), (-3.1453751289999445, 54.063788153000075), (-3.1805313789999445, 54.09284088700008), (-3.1897680329999503, 54.09788646000004), (-3.2057185539999296, 54.098537502000056), (-3.219553188999953, 54.100775458000044), (-3.2311091789999296, 54.105129299000055), (-3.240956183999913, 54.11212799700007), (-3.2381078769999476, 54.12759023600006), (-3.232533331999946, 54.14468008000006), (-3.233143683999913, 54.15916575700004), (-3.248402472999942, 54.16681549700007), (-3.248402472999942, 54.17365143400008), (-3.215199347999942, 54.17983633000006), (-3.206776495999918, 54.20892975500004), (-3.2090551419999542, 54.24274323100008), (-3.207386847999942, 54.263006903000075), (-3.2231339179999168, 54.25763580900008), (-3.231353318999936, 54.24721914300005), (-3.240956183999913, 54.22207265800006), (-3.232167120999918, 54.20254140800006), (-3.247141079999949, 54.19794342700004), (-3.270130988999938, 54.19912344000005), (-3.2860001289999445, 54.19721100500004), (-3.306792772999927, 54.19188060100004), (-3.3285212879999335, 54.204738674000055), (-3.3644913399999155, 54.24249909100007), (-3.394195115999935, 54.26439036700003), (-3.407378709999932, 54.27773672100005), (-3.412912563999953, 54.29376862200007), (-3.41038977799991, 54.30145905200004), (-3.405995245999918, 54.30963776200008), (-3.4041235019999476, 54.31854889500005), (-3.4114477199999556, 54.33274974200003), (-3.4134415359999366, 54.342962958000044), (-3.4163305329999503, 54.344916083000044), (-3.440174933999913, 54.35175202000005), (-3.474273240999935, 54.39350006700005), (-3.497710740999935, 54.40582916900007), (-3.5918676419999542, 54.48309967700004), (-3.608143683999913, 54.488267320000034), (-3.613189256999931, 54.49164459800005), (-3.6236873039999296, 54.50608958500004), (-3.6341853509999282, 54.512884833000044), (-3.6268204419999392, 54.520412502000056), (-3.616200324999909, 54.52757396000004), (-3.61156165299991, 54.52993398600006), (-3.5903214179999168, 54.56464264500005), (-3.5638321609999366, 54.64276764500005), (-3.5301407539999445, 54.68805573100008), (-3.5160212879999335, 54.712876695000034), (-3.5091853509999282, 54.72166575700004), (-3.500721808999913, 54.72597890800006), (-3.478871222999942, 54.730902411000045), (-3.4681290359999366, 54.73529694200005), (-3.455433722999942, 54.745021877000056), (-3.439564581999946, 54.76146067900004), (-3.4309789699999556, 54.780462958000044), (-3.440174933999913, 54.79743073100008), (-3.4075414699999556, 54.85602448100008), (-3.3879288399999155, 54.88336823100008), (-3.3644913399999155, 54.89980703300006), (-3.3449600899999155, 54.90253327000005), (-3.3333634109999366, 54.89728424700007), (-3.3227432929999168, 54.889878648000035), (-3.3064672519999476, 54.88617584800005), (-3.295725063999953, 54.88690827000005), (-3.254628058999913, 54.89980703300006), (-3.267323370999918, 54.905503648000035), (-3.317290818999936, 54.92031484600005), (-3.2914932929999168, 54.93667226800005), (-3.276519334999932, 54.943426825000074), (-3.213612433999913, 54.954413153000075), (-3.2010391919999392, 54.95221588700008), (-3.1936742829999503, 54.94863515800006), (-3.1879776679999168, 54.94448476800005), (-3.1801651679999168, 54.94082265800006), (-3.14281165299991, 54.93353913000004), (-3.122792120999918, 54.93268463700008), (-3.0395401679999168, 54.94717031500005), (-3.021839972999942, 54.954413153000075), (-3.090728318999936, 54.954413153000075), (-3.090728318999936, 54.96124909100007), (-3.0715225899999155, 54.96312083500004), (-3.0562231109999516, 54.968817450000074), (-3.040923631999931, 54.97247955900008), (-3.021839972999942, 54.968085028000075), (-3.021839972999942, 54.97553131700005), (-3.0462947259999282, 54.982123114000046), (-3.0502913779999403, 54.981510325000045), (-3.1354060539999296, 54.968085028000075), (-3.453846808999913, 54.981756903000075), (-3.470692511999914, 54.984442450000074), (-3.486236131999931, 54.989488023000035), (-3.501047329999949, 54.99249909100007), (-3.515288865999935, 54.98920319200005), (-3.5123591789999296, 54.98712799700007), (-3.511463995999918, 54.98688385600008), (-3.510894334999932, 54.985988674000055), (-3.5091853509999282, 54.981756903000075), (-3.5260310539999296, 54.97711823100008), (-3.5418595039999445, 54.98065827000005), (-3.57054602799991, 54.995428778000075), (-3.583607550999943, 54.968085028000075), (-3.5756729809999115, 54.95734284100007), (-3.5706274079999503, 54.937567450000074), (-3.5687556629999335, 54.916001695000034), (-3.57054602799991, 54.89980703300006), (-3.581695115999935, 54.88361237200007), (-3.598378058999913, 54.87799713700008), (-3.691761847999942, 54.88320547100005), (-3.7176407539999445, 54.880845445000034), (-3.739247199999909, 54.859808661000045), (-3.8101293609999516, 54.86627838700008), (-3.8078507149999155, 54.86107005400004), (-3.806792772999927, 54.86090729400007), (-3.803334113999938, 54.85887278900003), (-3.8123673169999392, 54.855169989000046), (-3.8198136059999115, 54.855902411000045), (-3.826079881999931, 54.85993073100008), (-3.8312882149999155, 54.86627838700008), (-3.819976365999935, 54.878566799000055), (-3.815052863999938, 54.87714264500005), (-3.8101293609999516, 54.87250397300005), (-3.8116348949999406, 54.88003164300005), (-3.813221808999913, 54.88312409100007), (-3.8169652989999463, 54.88617584800005), (-3.828846808999913, 54.874986070000034), (-3.8443090489999463, 54.86627838700008), (-3.839751756999931, 54.855902411000045), (-3.8374731109999516, 54.851996161000045), (-3.844105597999942, 54.85097890800006), (-3.8578995429999168, 54.84454987200007), (-3.823841925999943, 54.82469310100004), (-3.833607550999943, 54.82005442900004), (-3.885731574999909, 54.80646393400008), (-3.9641820949999556, 54.771918036000045), (-4.011708136999914, 54.76821523600006), (-4.042876756999931, 54.76947663000004), (-4.042876756999931, 54.77692291900007), (-4.046783006999931, 54.77802155200004), (-4.050200975999928, 54.778550523000035), (-4.053334113999938, 54.77997467700004), (-4.055775519999941, 54.782538153000075), (-4.05296790299991, 54.78546784100007), (-4.050160285999937, 54.78900788000004), (-4.049712693999936, 54.78998444200005), (-4.051747199999909, 54.800034898000035), (-4.0477188789999445, 54.81305573100008), (-4.049956834999932, 54.82322825700004), (-4.063588019999941, 54.82684967700004), (-4.064035610999952, 54.83152903900003), (-4.078602667999917, 54.82412344000005), (-4.09007727799991, 54.809759833000044), (-4.093495245999918, 54.792669989000046), (-4.083851691999939, 54.77692291900007), (-4.122954881999931, 54.77301666900007), (-4.173939581999946, 54.792303778000075), (-4.209136522999927, 54.826239325000074), (-4.200550910999937, 54.86627838700008), (-4.215402798999946, 54.861029364000046), (-4.2397354809999115, 54.843003648000035), (-4.255767381999931, 54.838324286000045), (-4.2707413399999155, 54.83942291900007), (-4.345285610999952, 54.86017487200007), (-4.3569229809999115, 54.86554596600007), (-4.3656306629999335, 54.87250397300005), (-4.375152147999927, 54.88690827000005), (-4.379872199999909, 54.89789459800005), (-4.386789516999954, 54.90477122600004), (-4.402902798999946, 54.90729401200008), (-4.409006313999953, 54.90302155200004), (-4.416818813999953, 54.89280833500004), (-4.423573370999918, 54.88035716400003), (-4.426503058999913, 54.86945221600007), (-4.4172257149999155, 54.84593333500004), (-4.4094132149999155, 54.831244208000044), (-4.402902798999946, 54.82469310100004), (-4.386708136999914, 54.82416413000004), (-4.372425910999937, 54.82184479400007), (-4.35960852799991, 54.81663646000004), (-4.347645636999914, 54.80731842700004), (-4.344471808999913, 54.79450104400007), (-4.353179490999935, 54.78310781500005), (-4.358143683999913, 54.77098216400003), (-4.343861456999946, 54.75641510600008), (-4.356516079999949, 54.741888739000046), (-4.353260870999918, 54.72089264500005), (-4.348133917999917, 54.70197174700007), (-4.3547257149999155, 54.693793036000045), (-4.360340949999909, 54.69159577000005), (-4.365305141999954, 54.68695709800005), (-4.371896938999953, 54.68227773600006), (-4.382394985999952, 54.68008047100005), (-4.405262824999909, 54.682074286000045), (-4.426503058999913, 54.687567450000074), (-4.4518123039999296, 54.69879791900007), (-4.46117102799991, 54.701239325000074), (-4.4967341789999296, 54.70062897300005), (-4.505604620999918, 54.70465729400007), (-4.563628709999932, 54.75641510600008), (-4.596669074999909, 54.77529531500005), (-4.714466925999943, 54.81785716400003), (-4.759592251999948, 54.82534414300005), (-4.781076626999948, 54.83307526200008), (-4.799631313999953, 54.86127350500004), (-4.821034308999913, 54.86664459800005), (-4.859120245999918, 54.86627838700008), (-4.88304602799991, 54.86009349200003), (-4.905873175999943, 54.84979889500005), (-4.925770636999914, 54.83738841400003), (-4.941029425999943, 54.82469310100004), (-4.9496150379999335, 54.81582265800006), (-4.953684048999946, 54.81000397300005), (-4.954823370999918, 54.804754950000074), (-4.954701300999943, 54.79743073100008), (-4.952870245999918, 54.78896719000005), (-4.9479060539999296, 54.777329820000034), (-4.940256313999953, 54.76703522300005), (-4.930165167999917, 54.76264069200005), (-4.923247850999928, 54.75185781500005), (-4.911936001999948, 54.728216864000046), (-4.8959854809999115, 54.70453522300005), (-4.867258266999954, 54.69013092700004), (-4.866932745999918, 54.68146393400008), (-4.872141079999949, 54.663316148000035), (-4.872425910999937, 54.65403880400004), (-4.872059699999909, 54.64923737200007), (-4.859120245999918, 54.63296133000006), (-4.880604620999918, 54.63621653900003), (-4.923491990999935, 54.649725653000075), (-4.944081183999913, 54.652777411000045), (-4.953684048999946, 54.65973541900007), (-4.959868943999936, 54.67552317900004), (-4.958973761999914, 54.69196198100008), (-4.947255011999914, 54.701239325000074), (-4.954823370999918, 54.707464911000045), (-4.958892381999931, 54.714056708000044), (-4.959055141999954, 54.72093333500004), (-4.954701300999943, 54.728501695000034), (-4.973378058999913, 54.729722398000035), (-4.981556769999941, 54.731634833000044), (-4.988189256999931, 54.73529694200005), (-4.992665167999917, 54.74433014500005), (-4.997059699999909, 54.75836823100008), (-5.003285285999937, 54.77130768400008), (-5.0130102199999556, 54.77692291900007), (-5.033192511999914, 54.782416083000044), (-5.1282445949999556, 54.848944403000075), (-5.157134568999936, 54.87909577000005), (-5.175526495999918, 54.91461823100008), (-5.180653449999909, 54.954413153000075), (-5.177601691999939, 54.99054596600007), (-5.170806443999936, 55.008693752000056), (-5.156727667999917, 55.01654694200005), (-5.1356095039999445, 55.01585521000004), (-5.124582485999952, 55.016791083000044), (-5.119740363999938, 55.01992422100005), (-5.115142381999931, 55.03156159100007), (-5.105213995999918, 55.02619049700007), (-5.095529751999948, 55.01508209800005), (-5.091867641999954, 55.00971100500004), (-5.076893683999913, 54.99555084800005), (-5.069488084999932, 54.986029364000046), (-5.064564581999946, 54.97553131700005), (-5.0637914699999556, 54.96458567900004), (-5.065256313999953, 54.940334377000056), (-5.06086178299995, 54.93113841400003), (-5.0475154289999296, 54.92031484600005), (-5.030995245999918, 54.911322333000044), (-5.013091600999928, 54.90961334800005), (-4.9955948559999115, 54.92031484600005), (-4.992298956999946, 54.924261786000045), (-4.988189256999931, 54.927720445000034), (-4.988189256999931, 54.93455638200004), (-5.0240779289999296, 54.97638580900008), (-5.029774542999917, 54.98550039300005), (-5.032500779999907, 54.99371979400007), (-5.033029751999948, 54.99526601800005), (-5.047027147999927, 55.01508209800005), (-5.0502823559999115, 55.02680084800005), (-5.0496720039999445, 55.04897695500006), (-5.047596808999913, 55.05573151200008), (-5.043446417999917, 55.06427643400008), (-5.0257869129999335, 55.08869049700007), (-5.018950975999928, 55.10224030200004), (-5.016184048999946, 55.12262604400007), (-5.007801886999914, 55.14118073100008), (-4.988270636999914, 55.15265534100007), (-4.947255011999914, 55.16791413000004), (-4.882394985999952, 55.21857330900008), (-4.877552863999938, 55.22089264500005), (-4.867258266999954, 55.22247955900008), (-4.865305141999954, 55.22565338700008), (-4.865589972999942, 55.236314195000034), (-4.864816860999952, 55.24135976800005), (-4.841949022999927, 55.275091864000046), (-4.838002081999946, 55.28400299700007), (-4.8372289699999556, 55.293850002000056), (-4.839751756999931, 55.31557851800005), (-4.838002081999946, 55.32501862200007), (-4.832508917999917, 55.33112213700008), (-4.7992244129999335, 55.354722398000035), (-4.781076626999948, 55.36351146000004), (-4.773101365999935, 55.36937083500004), (-4.767160610999952, 55.37905508000006), (-4.758778449999909, 55.40228913000004), (-4.7492569649999155, 55.413763739000046), (-4.71703040299991, 55.43048737200007), (-4.650502081999946, 55.448472398000035), (-4.626332160999937, 55.468410549000055), (-4.617787238999938, 55.49559153900003), (-4.626779751999948, 55.51972077000005), (-4.6507869129999335, 55.53705475500004), (-4.687163865999935, 55.544134833000044), (-4.66624915299991, 55.562201239000046), (-4.666493292999917, 55.56329987200007), (-4.6711319649999155, 55.584418036000045), (-4.692738410999937, 55.60521067900004), (-4.7219945949999556, 55.619208075000074), (-4.776519334999932, 55.632879950000074), (-4.808745897999927, 55.63361237200007), (-4.818104620999918, 55.63719310100004), (-4.810617641999954, 55.646551825000074), (-4.810617641999954, 55.653998114000046), (-4.868560350999928, 55.67560455900008), (-4.900990363999938, 55.69232819200005), (-4.920521613999938, 55.70856354400007), (-4.876332160999937, 55.735256252000056), (-4.861073370999918, 55.756740627000056), (-4.865305141999954, 55.79047272300005), (-4.8717341789999296, 55.802435614000046), (-4.8777970039999445, 55.81102122600004), (-4.882720506999931, 55.82135651200008), (-4.888661261999914, 55.864528713000084), (-4.888824022999927, 55.865301825000074), (-4.892648891999954, 55.89288971600007), (-4.886463995999918, 55.91966380400004), (-4.872141079999949, 55.937201239000046), (-4.849354620999918, 55.94822825700004), (-4.818104620999918, 55.95563385600008), (-4.799387173999946, 55.957912502000056), (-4.7857966789999296, 55.95697663000004), (-4.722320115999935, 55.94009023600006), (-4.705433722999942, 55.93846263200004), (-4.693959113999938, 55.94135163000004), (-4.6725154289999296, 55.93378327000005), (-4.505970831999946, 55.91909414300005), (-4.4816788399999155, 55.92829010600008), (-4.590606248999961, 55.941514390000066), (-4.630034959999932, 55.94627513200004), (-4.673451300999943, 55.96185944200005), (-4.724517381999931, 55.99835846600007), (-4.765044725999928, 56.007066148000035), (-4.78343665299991, 56.017645575000074), (-4.7992244129999335, 56.030951239000046), (-4.810617641999954, 56.04376862200007), (-4.8237198559999115, 56.07367584800005), (-4.824330206999946, 56.07851797100005), (-4.8391820949999556, 56.08063385600008), (-4.844309048999946, 56.07298411700003), (-4.843739386999914, 56.06297435100004), (-4.837554490999935, 56.05060455900008), (-4.790150519999941, 56.010199286000045), (-4.778920050999943, 55.99209219000005), (-4.785308397999927, 55.984035549000055), (-4.803618943999936, 55.982082424000055), (-4.828033006999931, 55.98232656500005), (-4.851551886999914, 55.98802317900004), (-4.862294074999909, 56.00214264500005), (-4.865386522999927, 56.02020905200004), (-4.866851365999935, 56.05833567900004), (-4.865386522999927, 56.06671784100007), (-4.826324022999927, 56.124212958000044), (-4.755441860999952, 56.188381252000056), (-4.750884568999936, 56.20270416900007), (-4.755523240999935, 56.20652903900003), (-4.7662654289999296, 56.20209381700005), (-4.7799373039999296, 56.191473700000074), (-4.837269660999937, 56.12441640800006), (-4.851673956999946, 56.112616278000075), (-4.873117641999954, 56.11200592700004), (-4.880604620999918, 56.11985911700003), (-4.878977016999954, 56.15053945500006), (-4.883168097999942, 56.16400788000004), (-4.893544074999909, 56.174261786000045), (-4.9070938789999445, 56.177069403000075), (-4.920521613999938, 56.16791413000004), (-4.909087693999936, 56.14996979400007), (-4.895253058999913, 56.11473216400003), (-4.8862198559999115, 56.08038971600007), (-4.889149542999917, 56.06484609600005), (-4.901926235999952, 56.06191640800006), (-4.904367641999954, 56.054348049000055), (-4.900054490999935, 56.03412506700005), (-4.900054490999935, 56.01459381700005), (-4.898019985999952, 56.001166083000044), (-4.892648891999954, 55.98973216400003), (-4.906402147999927, 55.98574453300006), (-4.921457485999952, 55.98867422100005), (-4.937489386999914, 55.993841864000046), (-4.954701300999943, 55.99656810100004), (-4.954701300999943, 55.98973216400003), (-4.942005988999938, 55.986314195000034), (-4.928863084999932, 55.98114655200004), (-4.918446417999917, 55.97333405200004), (-4.913685675999943, 55.96185944200005), (-4.917388475999928, 55.94745514500005), (-4.9272354809999115, 55.93768952000005), (-4.9387100899999155, 55.92963288000004), (-4.947255011999914, 55.92084381700005), (-4.952137824999909, 55.90912506700005), (-4.954986131999931, 55.89935944200005), (-4.95921790299991, 55.89012278900003), (-4.96898352799991, 55.87986888200004), (-4.983143683999913, 55.87103913000004), (-4.994740363999938, 55.86981842700004), (-5.026356574999909, 55.87372467700004), (-5.0424698559999115, 55.884751695000034), (-5.056752081999946, 55.91030508000006), (-5.0668025379999335, 55.938788153000075), (-5.070790167999917, 55.958685614000046), (-5.1108292309999115, 55.98895905200004), (-5.116037563999953, 56.00169505400004), (-5.123605923999946, 56.00991445500006), (-5.139637824999909, 56.00275299700007), (-5.123768683999913, 55.986314195000034), (-5.085682745999918, 55.93187083500004), (-5.078236456999946, 55.91095612200007), (-5.086537238999938, 55.901271877000056), (-5.105620897999927, 55.90497467700004), (-5.171538865999935, 55.935532945000034), (-5.180653449999909, 55.948431708000044), (-5.180653449999909, 55.96930573100008), (-5.190825975999928, 55.96173737200007), (-5.1996150379999335, 55.948553778000075), (-5.2057185539999296, 55.93451569200005), (-5.207915818999936, 55.92462799700007), (-5.212635870999918, 55.91714101800005), (-5.242054816999939, 55.89288971600007), (-5.218129035999937, 55.86469147300005), (-5.208159959999932, 55.849269924000055), (-5.201079881999931, 55.83148834800005), (-5.2193904289999296, 55.83144765800006), (-5.2631729809999115, 55.845770575000074), (-5.296701626999948, 55.85268789300005), (-5.307118292999917, 55.86041901200008), (-5.313384568999936, 55.88544342700004), (-5.319325324999909, 55.889105536000045), (-5.327219204999949, 55.89154694200005), (-5.3348282539999445, 55.89667389500005), (-5.3382869129999335, 55.90375397300005), (-5.3391007149999155, 55.91303131700005), (-5.3382869129999335, 55.93138255400004), (-5.336089647999927, 55.93919505400004), (-5.326161261999914, 55.95026276200008), (-5.323963995999918, 55.958685614000046), (-5.325754360999952, 55.967230536000045), (-5.3382869129999335, 55.99656810100004), (-5.313628709999932, 56.01235586100006), (-5.204497850999928, 56.11945221600007), (-5.146473761999914, 56.13312409100007), (-5.104603644999941, 56.15151601800005), (-5.0949600899999155, 56.15737539300005), (-5.0594376289999445, 56.203111070000034), (-5.043446417999917, 56.21629466400003), (-5.013295050999943, 56.22760651200008), (-4.974964972999942, 56.23700592700004), (-4.9400935539999296, 56.25141022300005), (-4.920521613999938, 56.277777411000045), (-4.938099738999938, 56.27098216400003), (-4.975087042999917, 56.24799225500004), (-4.991932745999918, 56.24298737200007), (-5.0327042309999115, 56.24115631700005), (-5.049549933999913, 56.23704661700003), (-5.064564581999946, 56.22931549700007), (-5.0754288399999155, 56.21698639500005), (-5.099436001999948, 56.18195221600007), (-5.1088761059999115, 56.174709377000056), (-5.228138800999943, 56.12921784100007), (-5.3109431629999335, 56.05805084800005), (-5.319935675999943, 56.05491771000004), (-5.338042772999927, 56.05410390800006), (-5.345692511999914, 56.051214911000045), (-5.345285610999952, 56.046128648000035), (-5.350209113999938, 56.03192780200004), (-5.356353318999936, 56.01976146000004), (-5.359364386999914, 56.020738023000035), (-5.3686417309999115, 56.009426174000055), (-5.390288865999935, 56.00568268400008), (-5.415028449999909, 56.00690338700008), (-5.43382727799991, 56.010199286000045), (-5.434559699999909, 56.014960028000075), (-5.434722459999932, 56.02362702000005), (-5.437123175999943, 56.03001536700003), (-5.444406704999949, 56.02757396000004), (-5.4479060539999296, 56.02228424700007), (-5.448231574999909, 56.016058661000045), (-5.447621222999942, 56.009426174000055), (-5.454986131999931, 55.95563385600008), (-5.45140540299991, 55.95343659100007), (-5.436431443999936, 55.94896067900004), (-5.430775519999941, 55.94818756700005), (-5.420806443999936, 55.92829010600008), (-5.416737433999913, 55.91681549700007), (-5.416005011999914, 55.907416083000044), (-5.4125056629999335, 55.899603583000044), (-5.400380011999914, 55.89288971600007), (-5.400380011999914, 55.886704820000034), (-5.407215949999909, 55.886704820000034), (-5.407215949999909, 55.87986888200004), (-5.402943488999938, 55.87872955900008), (-5.39289303299995, 55.87372467700004), (-5.3976944649999155, 55.87156810100004), (-5.402495897999927, 55.868353583000044), (-5.407215949999909, 55.86627838700008), (-5.35179602799991, 55.83242422100005), (-5.326771613999938, 55.808579820000034), (-5.317779100999928, 55.78302643400008), (-5.324574347999942, 55.769232489000046), (-5.3385310539999296, 55.76264069200005), (-5.372425910999937, 55.75641510600008), (-5.3875626289999445, 55.75031159100007), (-5.433461066999939, 55.72101471600007), (-5.4445694649999155, 55.71161530200004), (-5.4539688789999445, 55.70058828300006), (-5.46117102799991, 55.68813711100006), (-5.463612433999913, 55.67983633000006), (-5.466175910999937, 55.662176825000074), (-5.468617316999939, 55.653998114000046), (-5.490101691999939, 55.644598700000074), (-5.488270636999914, 55.640326239000046), (-5.484283006999931, 55.63572825700004), (-5.482289191999939, 55.632879950000074), (-5.4838761059999115, 55.61005280200004), (-5.474761522999927, 55.603949286000045), (-5.462635870999918, 55.60203685100004), (-5.454986131999931, 55.59194570500006), (-5.461089647999927, 55.57880280200004), (-5.476918097999942, 55.57489655200004), (-5.488758917999917, 55.56907786700003), (-5.482289191999939, 55.55027903900003), (-5.503529425999943, 55.52651601800005), (-5.509632941999939, 55.516791083000044), (-5.5106095039999445, 55.51146067900004), (-5.509632941999939, 55.49258047100005), (-5.5109757149999155, 55.484442450000074), (-5.514271613999938, 55.48387278900003), (-5.5187882149999155, 55.48517487200007), (-5.523264126999948, 55.48265208500004), (-5.545521613999938, 55.44916413000004), (-5.561512824999909, 55.435532945000034), (-5.5846248039999296, 55.427435614000046), (-5.5846248039999296, 55.421210028000075), (-5.572132941999939, 55.422308661000045), (-5.562082485999952, 55.41986725500004), (-5.553089972999942, 55.41453685100004), (-5.543690558999913, 55.40692780200004), (-5.527455206999946, 55.38434479400007), (-5.5266820949999556, 55.38027578300006), (-5.5149633449999556, 55.37368398600006), (-5.525054490999935, 55.358628648000035), (-5.557972785999937, 55.33185455900008), (-5.574370897999927, 55.32200755400004), (-5.594105597999942, 55.31313711100006), (-5.616281704999949, 55.30658600500004), (-5.6399633449999556, 55.303900458000044), (-5.649525519999941, 55.30516185100004), (-5.669097459999932, 55.31085846600007), (-5.6808975899999155, 55.31134674700007), (-5.691395636999914, 55.308579820000034), (-5.714019334999932, 55.29913971600007), (-5.725575324999909, 55.29706452000005), (-5.7545466789999296, 55.29734935100004), (-5.772287563999953, 55.30125560100004), (-5.782866990999935, 55.31354401200008), (-5.794667120999918, 55.35639069200005), (-5.796701626999948, 55.37909577000005), (-5.7914119129999335, 55.39862702000005), (-5.763417120999918, 55.41205475500004), (-5.725412563999953, 55.437567450000074), (-5.715646938999953, 55.44790273600006), (-5.7152400379999335, 55.46889883000006), (-5.720122850999928, 55.491522528000075), (-5.7219132149999155, 55.51386139500005), (-5.707753058999913, 55.54336172100005), (-5.712066209999932, 55.55072663000004), (-5.718861456999946, 55.55731842700004), (-5.721831834999932, 55.56460195500006), (-5.718129035999937, 55.57575104400007), (-5.694488084999932, 55.605536200000074), (-5.6733292309999115, 55.640611070000034), (-5.6694229809999115, 55.66071198100008), (-5.6808975899999155, 55.67446523600006), (-5.626535610999952, 55.70062897300005), (-5.61945553299995, 55.71198151200008), (-5.613189256999931, 55.725775458000044), (-5.5982966789999296, 55.74298737200007), (-5.581206834999932, 55.75763580900008), (-5.5678604809999115, 55.76386139500005), (-5.539173956999946, 55.77094147300005), (-5.504628058999913, 55.78937409100007), (-5.4735001289999445, 55.815659898000035), (-5.454986131999931, 55.845770575000074), (-5.551747199999909, 55.783636786000045), (-5.587473110999952, 55.76715729400007), (-5.599436001999948, 55.76422760600008), (-5.6126195949999556, 55.76386139500005), (-5.60578365799995, 55.77684153900003), (-5.6332087879999335, 55.78278229400007), (-5.64671790299991, 55.78750234600005), (-5.66038977799991, 55.79734935100004), (-5.667958136999914, 55.81102122600004), (-5.669016079999949, 55.83783600500004), (-5.67406165299991, 55.845770575000074), (-5.631988084999932, 55.88178131700005), (-5.625599738999938, 55.889837958000044), (-5.61937415299991, 55.90314362200007), (-5.6043595039999445, 55.91364166900007), (-5.586293097999942, 55.92332591400003), (-5.571034308999913, 55.93451569200005), (-5.593495245999918, 55.92796458500004), (-5.6275935539999296, 55.90534088700008), (-5.6537979809999115, 55.89760976800005), (-5.671701626999948, 55.88690827000005), (-5.6808975899999155, 55.886704820000034), (-5.687977667999917, 55.89337799700007), (-5.694162563999953, 55.90497467700004), (-5.696400519999941, 55.91596100500004), (-5.586822068999936, 56.01203034100007), (-5.57843990799995, 56.02448151200008), (-5.5826716789999296, 56.028957424000055), (-5.576649542999917, 56.032538153000075), (-5.571034308999913, 56.037543036000045), (-5.583892381999931, 56.040716864000046), (-5.596424933999913, 56.036810614000046), (-5.609852667999917, 56.03001536700003), (-5.625599738999938, 56.02448151200008), (-5.6317032539999445, 56.005926825000074), (-5.674875454999949, 55.977728583000044), (-5.67406165299991, 55.95563385600008), (-5.690785285999937, 55.93764883000006), (-5.694488084999932, 55.93451569200005), (-5.704497850999928, 55.936753648000035), (-5.707508917999917, 55.942572333000044), (-5.705881313999953, 55.949652411000045), (-5.701975063999953, 55.95563385600008), (-5.696441209999932, 55.98216380400004), (-5.659901495999918, 56.02326080900008), (-5.5846248039999296, 56.08466217700004), (-5.5815323559999115, 56.08828359600005), (-5.580067511999914, 56.09292226800005), (-5.5774633449999556, 56.096991278000075), (-5.571034308999913, 56.09902578300006), (-5.564605272999927, 56.098089911000045), (-5.556548631999931, 56.09589264500005), (-5.550689256999931, 56.09349192900004), (-5.550526495999918, 56.09218984600005), (-5.547840949999909, 56.09003327000005), (-5.5394587879999335, 56.08685944200005), (-5.531605597999942, 56.08633047100005), (-5.530100063999953, 56.09218984600005), (-5.534738735999952, 56.098537502000056), (-5.5414119129999335, 56.10248444200005), (-5.5475154289999296, 56.10488515800006), (-5.550526495999918, 56.10643138200004), (-5.55695553299995, 56.12221914300005), (-5.558705206999946, 56.13080475500004), (-5.554676886999914, 56.13739655200004), (-5.522531704999949, 56.16575755400004), (-5.515736456999946, 56.174709377000056), (-5.509632941999939, 56.188381252000056), (-5.5399063789999445, 56.18341705900008), (-5.562489386999914, 56.16791413000004), (-5.5826716789999296, 56.15058014500005), (-5.60578365799995, 56.139960028000075), (-5.599354620999918, 56.160589911000045), (-5.586415167999917, 56.18113841400003), (-5.569406704999949, 56.20026276200008), (-5.550526495999918, 56.21629466400003), (-5.5594376289999445, 56.22955963700008), (-5.547230597999942, 56.24017975500004), (-5.52562415299991, 56.247259833000044), (-5.50617428299995, 56.24982330900008), (-5.494740363999938, 56.253119208000044), (-5.4928279289999296, 56.26040273600006), (-5.4992569649999155, 56.267645575000074), (-5.512684699999909, 56.27094147300005), (-5.554269985999952, 56.26349518400008), (-5.5631404289999296, 56.26032135600008), (-5.572621222999942, 56.25385163000004), (-5.58234615799995, 56.24876536700003), (-5.592152472999942, 56.24982330900008), (-5.5980525379999335, 56.25861237200007), (-5.595570441999939, 56.26992422100005), (-5.5846248039999296, 56.29075755400004), (-5.57258053299995, 56.32807038000004), (-5.56273352799991, 56.341050523000035), (-5.543690558999913, 56.352850653000075), (-5.525217251999948, 56.34662506700005), (-5.498199022999927, 56.34833405200004), (-5.4481095039999445, 56.35968659100007), (-5.4481095039999445, 56.36591217700004), (-5.4721573559999115, 56.364935614000046), (-5.515370245999918, 56.35683828300006), (-5.5375056629999335, 56.35968659100007), (-5.517323370999918, 56.39276764500005), (-5.509632941999939, 56.40062083500004), (-5.498931443999936, 56.404730536000045), (-5.486073370999918, 56.40810781500005), (-5.4780167309999115, 56.41290924700007), (-5.482289191999939, 56.421128648000035), (-5.457020636999914, 56.44086334800005), (-5.423573370999918, 56.45001862200007), (-5.322865363999938, 56.45498281500005), (-5.242054816999939, 56.44220612200007), (-5.208729620999918, 56.44684479400007), (-5.18187415299991, 56.45966217700004), (-5.118519660999937, 56.50775788000004), (-5.085682745999918, 56.54877350500004), (-5.064564581999946, 56.56513092700004), (-5.086537238999938, 56.55849844000005), (-5.099598761999914, 56.54364655200004), (-5.1105850899999155, 56.52586497600004), (-5.125965949999909, 56.51048411700003), (-5.166900193999936, 56.49005768400008), (-5.190174933999913, 56.46865469000005), (-5.201079881999931, 56.462103583000044), (-5.243763800999943, 56.45921458500004), (-5.350168423999946, 56.47296784100007), (-5.378081834999932, 56.458970445000034), (-5.394276495999918, 56.46548086100006), (-5.4105525379999335, 56.50364817900004), (-5.42414303299995, 56.500067450000074), (-5.4359431629999335, 56.49115631700005), (-5.454986131999931, 56.46954987200007), (-5.468617316999939, 56.47573476800005), (-5.433338995999918, 56.52362702000005), (-5.427642381999931, 56.53782786700003), (-5.4037979809999115, 56.524603583000044), (-5.379261847999942, 56.519191799000055), (-5.3566788399999155, 56.51968008000006), (-5.3382869129999335, 56.52415599200003), (-5.2905167309999115, 56.54466380400004), (-5.265044725999928, 56.551214911000045), (-5.252552863999938, 56.556341864000046), (-5.242054816999939, 56.56513092700004), (-5.27562415299991, 56.553615627000056), (-5.286773240999935, 56.552069403000075), (-5.306792772999927, 56.552801825000074), (-5.3109431629999335, 56.552069403000075), (-5.327707485999952, 56.54466380400004), (-5.338693813999953, 56.542303778000075), (-5.360340949999909, 56.53221263200004), (-5.372425910999937, 56.53034088700008), (-5.384348110999952, 56.53343333500004), (-5.400502081999946, 56.54364655200004), (-5.413929816999939, 56.54466380400004), (-5.410878058999913, 56.552069403000075), (-5.407297329999949, 56.55532461100006), (-5.402699347999942, 56.55744049700007), (-5.396636522999927, 56.561712958000044), (-5.392689581999946, 56.566473700000074), (-5.3893123039999296, 56.57489655200004), (-5.386626756999931, 56.57880280200004), (-5.360707160999937, 56.60626862200007), (-5.351918097999942, 56.612941799000055), (-5.31086178299995, 56.63361237200007), (-5.304514126999948, 56.64016347900008), (-5.298451300999943, 56.64642975500004), (-5.317779100999928, 56.65387604400007), (-5.317779100999928, 56.661322333000044), (-5.309071417999917, 56.66425202000005), (-5.286773240999935, 56.674994208000044), (-5.261463995999918, 56.67332591400003), (-5.248199022999927, 56.67405833500004), (-5.218902147999927, 56.688666083000044), (-5.196441209999932, 56.688666083000044), (-5.153309699999909, 56.68121979400007), (-5.132639126999948, 56.68451569200005), (-5.093373175999943, 56.69904205900008), (-5.012806769999941, 56.70929596600007), (-4.9955948559999115, 56.71596914300005), (-5.1605525379999335, 56.69586823100008), (-5.238270636999914, 56.71662018400008), (-5.23851477799991, 56.72256094000005), (-5.228423631999931, 56.73647695500006), (-5.222075975999928, 56.741522528000075), (-5.154652472999942, 56.78229401200008), (-5.136382615999935, 56.79877350500004), (-5.119740363999938, 56.818426825000074), (-5.179066535999937, 56.78925202000005), (-5.187489386999914, 56.78115469000005), (-5.191761847999942, 56.774644273000035), (-5.202259894999941, 56.76911041900007), (-5.214670376999948, 56.76520416900007), (-5.224964972999942, 56.763739325000074), (-5.233469204999949, 56.76068756700005), (-5.237049933999913, 56.75336334800005), (-5.2389216789999296, 56.74445221600007), (-5.242054816999939, 56.73647695500006), (-5.255238410999937, 56.721584377000056), (-5.268462693999936, 56.71308014500005), (-5.283355272999927, 56.70937734600005), (-5.30101477799991, 56.70856354400007), (-5.3098038399999155, 56.70648834800005), (-5.319162563999953, 56.69749583500004), (-5.34015865799995, 56.693060614000046), (-5.348378058999913, 56.687201239000046), (-5.359364386999914, 56.674994208000044), (-5.388050910999937, 56.65521881700005), (-5.403879360999952, 56.64923737200007), (-5.4242244129999335, 56.64704010600008), (-5.434396938999953, 56.64288971600007), (-5.4487198559999115, 56.62457916900007), (-5.458119269999941, 56.620347398000035), (-5.470773891999954, 56.618394273000035), (-5.482574022999927, 56.613267320000034), (-5.493316209999932, 56.60639069200005), (-5.53343665299991, 56.57290273600006), (-5.599598761999914, 56.52903880400004), (-5.667388475999928, 56.498480536000045), (-5.67406165299991, 56.49689362200007), (-5.683013475999928, 56.50063711100006), (-5.694691535999937, 56.51386139500005), (-5.70539303299995, 56.51666901200008), (-5.721791144999941, 56.51850006700005), (-5.740834113999938, 56.52326080900008), (-5.7582087879999335, 56.52997467700004), (-5.770253058999913, 56.53782786700003), (-5.7551977199999556, 56.554022528000075), (-5.751047329999949, 56.56199778900003), (-5.749134894999941, 56.571966864000046), (-5.756662563999953, 56.571966864000046), (-5.793853318999936, 56.54328034100007), (-5.8543595039999445, 56.550482489000046), (-6.0034073559999115, 56.61871979400007), (-6.009836391999954, 56.62653229400007), (-6.008168097999942, 56.642279364000046), (-5.998036261999914, 56.64988841400003), (-5.983509894999941, 56.65281810100004), (-5.933583136999914, 56.654730536000045), (-5.899037238999938, 56.650824286000045), (-5.866851365999935, 56.64154694200005), (-5.8391820949999556, 56.62653229400007), (-5.831695115999935, 56.633978583000044), (-5.855620897999927, 56.64472077000005), (-5.865589972999942, 56.65143463700008), (-5.865834113999938, 56.661322333000044), (-5.75999915299991, 56.70075104400007), (-5.735503709999932, 56.702337958000044), (-5.672596808999913, 56.68414948100008), (-5.647368943999936, 56.68121979400007), (-5.5941462879999335, 56.68333567900004), (-5.564808722999942, 56.68764883000006), (-5.543690558999913, 56.69546133000006), (-5.636545376999948, 56.688666083000044), (-5.658558722999942, 56.690741278000075), (-5.708851691999939, 56.70856354400007), (-5.749989386999914, 56.714544989000046), (-5.859038865999935, 56.68121979400007), (-5.89679928299995, 56.675116278000075), (-5.907378709999932, 56.674994208000044), (-5.9203181629999335, 56.67796458500004), (-5.942738410999937, 56.686753648000035), (-5.955555792999917, 56.688666083000044), (-6.0248917309999115, 56.68569570500006), (-6.098622199999909, 56.696966864000046), (-6.123850063999953, 56.69562409100007), (-6.143544074999909, 56.684881903000075), (-6.161732550999943, 56.67820872600004), (-6.186594204999949, 56.68109772300005), (-6.2096248039999296, 56.68846263200004), (-6.222767706999946, 56.69546133000006), (-6.228179490999935, 56.70107656500005), (-6.232533331999946, 56.70652903900003), (-6.235340949999909, 56.71238841400003), (-6.236398891999954, 56.71906159100007), (-6.234486456999946, 56.728583075000074), (-6.229562954999949, 56.72907135600008), (-6.222767706999946, 56.72719961100006), (-6.215321417999917, 56.72964101800005), (-6.193470831999946, 56.74852122600004), (-6.1805313789999445, 56.75462474200003), (-6.026966925999943, 56.763739325000074), (-6.0148819649999155, 56.76703522300005), (-5.979888475999928, 56.78156159100007), (-5.965199347999942, 56.784857489000046), (-5.948231574999909, 56.782538153000075), (-5.937977667999917, 56.77692291900007), (-5.928537563999953, 56.769964911000045), (-5.913644985999952, 56.763739325000074), (-5.860910610999952, 56.75079987200007), (-5.8522029289999296, 56.746975002000056), (-5.853342251999948, 56.757879950000074), (-5.858143683999913, 56.768459377000056), (-5.8683975899999155, 56.77586497600004), (-5.886341925999943, 56.777411200000074), (-5.886341925999943, 56.784857489000046), (-5.874012824999909, 56.78571198100008), (-5.861805792999917, 56.78510163000004), (-5.850087042999917, 56.782456773000035), (-5.8391820949999556, 56.777411200000074), (-5.8246150379999335, 56.78758372600004), (-5.8020727199999556, 56.79181549700007), (-5.7766007149999155, 56.787990627000056), (-5.756662563999953, 56.784857489000046), (-5.831695115999935, 56.80536530200004), (-5.8508194649999155, 56.818019924000055), (-5.851185675999943, 56.82892487200007), (-5.837473110999952, 56.83661530200004), (-5.7338761059999115, 56.84479401200008), (-5.692738410999937, 56.85492584800005), (-5.66038977799991, 56.87299225500004), (-5.673573370999918, 56.87653229400007), (-5.692005988999938, 56.87531159100007), (-5.7084854809999115, 56.87055084800005), (-5.724354620999918, 56.85382721600007), (-5.744496222999942, 56.85415273600006), (-5.783924933999913, 56.85993073100008), (-5.775380011999914, 56.86994049700007), (-5.735503709999932, 56.89411041900007), (-5.7805883449999556, 56.89874909100007), (-5.874867316999939, 56.887152411000045), (-5.9211319649999155, 56.89411041900007), (-5.8875626289999445, 56.89911530200004), (-5.8522029289999296, 56.90033600500004), (-5.8522029289999296, 56.90770091400003), (-5.859852667999917, 56.91054922100005), (-5.8801163399999155, 56.92202383000006), (-5.8625382149999155, 56.93374258000006), (-5.851429816999939, 56.95425039300005), (-5.842518683999913, 56.977443752000056), (-5.831695115999935, 56.99713776200008), (-5.814116990999935, 57.00950755400004), (-5.786040818999936, 57.02057526200008), (-5.755238410999937, 57.026556708000044), (-5.729318813999953, 57.02383047100005), (-5.719878709999932, 57.017564195000034), (-5.699940558999913, 56.998114325000074), (-5.688303188999953, 56.98969147300005), (-5.67406165299991, 56.983587958000044), (-5.658558722999942, 56.97947825700004), (-5.625599738999938, 56.976629950000074), (-5.571278449999909, 56.98383209800005), (-5.523264126999948, 56.99713776200008), (-5.523264126999948, 57.003973700000074), (-5.540435350999928, 57.001166083000044), (-5.556507941999939, 56.996079820000034), (-5.571278449999909, 56.99331289300005), (-5.5846248039999296, 56.99713776200008), (-5.607085740999935, 56.98851146000004), (-5.628814256999931, 56.991888739000046), (-5.6498917309999115, 56.999660549000055), (-5.6703181629999335, 57.003973700000074), (-5.685536261999914, 57.00958893400008), (-5.681711391999954, 57.02240631700005), (-5.680043097999942, 57.03620026200008), (-5.701975063999953, 57.044907945000034), (-5.710926886999914, 57.044175523000035), (-5.731353318999936, 57.03900788000004), (-5.742339647999927, 57.03807200700004), (-5.752552863999938, 57.04059479400007), (-5.769602016999954, 57.04975006700005), (-5.780181443999936, 57.05174388200004), (-5.791127081999946, 57.05927155200004), (-5.776193813999953, 57.075832424000055), (-5.734486456999946, 57.10541413000004), (-5.722645636999914, 57.116441148000035), (-5.715646938999953, 57.12006256700005), (-5.703277147999927, 57.120754299000055), (-5.673695441999939, 57.11904531500005), (-5.663482225999928, 57.12372467700004), (-5.645863410999937, 57.12946198100008), (-5.620838995999918, 57.12409088700008), (-5.57843990799995, 57.10639069200005), (-5.558257615999935, 57.10040924700007), (-5.4598282539999445, 57.09979889500005), (-5.454986131999931, 57.10297272300005), (-5.447417772999927, 57.11017487200007), (-5.430775519999941, 57.11074453300006), (-5.41429602799991, 57.10822174700007), (-5.407215949999909, 57.10639069200005), (-5.400380011999914, 57.10639069200005), (-5.400380011999914, 57.11383698100008), (-5.420033331999946, 57.12067291900007), (-5.503895636999914, 57.11269765800006), (-5.527414516999954, 57.107489325000074), (-5.540638800999943, 57.10639069200005), (-5.5477188789999445, 57.11009349200003), (-5.573312954999949, 57.12787506700005), (-5.5846248039999296, 57.133693752000056), (-5.668446417999917, 57.147650458000044), (-5.6808975899999155, 57.157904364000046), (-5.673817511999914, 57.174994208000044), (-5.638824022999927, 57.202378648000035), (-5.625599738999938, 57.21625397300005), (-5.644154425999943, 57.23322174700007), (-5.620106574999909, 57.25214264500005), (-5.578236456999946, 57.26675039300005), (-5.543690558999913, 57.27090078300006), (-5.511586066999939, 57.25763580900008), (-5.480091925999943, 57.23700592700004), (-5.446278449999909, 57.22304922100005), (-5.407215949999909, 57.22992584800005), (-5.407215949999909, 57.23672109600005), (-5.448841925999943, 57.24209219000005), (-5.458119269999941, 57.24664948100008), (-5.47288977799991, 57.26121653900003), (-5.482899542999917, 57.268011786000045), (-5.49250240799995, 57.27090078300006), (-5.501942511999914, 57.27765534100007), (-5.4889216789999296, 57.29242584800005), (-5.464833136999914, 57.306626695000034), (-5.4406632149999155, 57.311835028000075), (-5.4406632149999155, 57.31928131700005), (-5.464995897999927, 57.32493724200003), (-5.4817602199999556, 57.31671784100007), (-5.494292772999927, 57.30442942900004), (-5.50617428299995, 57.298163153000075), (-5.523426886999914, 57.29515208500004), (-5.558461066999939, 57.28143952000005), (-5.57843990799995, 57.27765534100007), (-5.599436001999948, 57.27924225500004), (-5.637440558999913, 57.28900788000004), (-5.656971808999913, 57.29132721600007), (-5.7000626289999445, 57.28359609600005), (-5.720570441999939, 57.284491278000075), (-5.729318813999953, 57.298163153000075), (-5.7252498039999296, 57.30158112200007), (-5.701975063999953, 57.33234284100007), (-5.6937556629999335, 57.337103583000044), (-5.671986456999946, 57.34442780200004), (-5.663482225999928, 57.349676825000074), (-5.654367641999954, 57.353949286000045), (-5.647206183999913, 57.34992096600007), (-5.6414688789999445, 57.34320709800005), (-5.636545376999948, 57.33978913000004), (-5.613189256999931, 57.34198639500005), (-5.5012914699999556, 57.37099844000005), (-5.456654425999943, 57.39354075700004), (-5.4481095039999445, 57.42169830900008), (-5.46507727799991, 57.423895575000074), (-5.492054816999939, 57.40875885600008), (-5.5375056629999335, 57.373928127000056), (-5.563465949999909, 57.36310455900008), (-5.586659308999913, 57.36505768400008), (-5.610910610999952, 57.37140534100007), (-5.6399633449999556, 57.373928127000056), (-5.615589972999942, 57.382473049000055), (-5.607085740999935, 57.389105536000045), (-5.609201626999948, 57.397772528000075), (-5.617746548999946, 57.41010163000004), (-5.619618292999917, 57.41669342700004), (-5.624012824999909, 57.41640859600005), (-5.6399633449999556, 57.40802643400008), (-5.707183397999927, 57.35976797100005), (-5.732411261999914, 57.352769273000035), (-5.784575975999928, 57.34857819200005), (-5.807769334999932, 57.35492584800005), (-5.8248591789999296, 57.39435455900008), (-5.822255011999914, 57.39350006700005), (-5.817372199999909, 57.39520905200004), (-5.812855597999942, 57.398098049000055), (-5.8111873039999296, 57.40119049700007), (-5.813872850999928, 57.40452708500004), (-5.8231095039999445, 57.41233958500004), (-5.8248591789999296, 57.41547272300005), (-5.825266079999949, 57.428900458000044), (-5.821888800999943, 57.435532945000034), (-5.8111873039999296, 57.44220612200007), (-5.8215225899999155, 57.44546133000006), (-5.852528449999909, 57.450384833000044), (-5.859038865999935, 57.45270416900007), (-5.861195441999939, 57.46344635600008), (-5.870513475999928, 57.48078034100007), (-5.872670050999943, 57.49371979400007), (-5.869699673999946, 57.500881252000056), (-5.856068488999938, 57.51780833500004), (-5.8522029289999296, 57.52411530200004), (-5.8510636059999115, 57.538397528000075), (-5.851470506999931, 57.55109284100007), (-5.847075975999928, 57.55890534100007), (-5.831695115999935, 57.55882396000004), (-5.833851691999939, 57.563381252000056), (-5.837025519999941, 57.57477448100008), (-5.8391820949999556, 57.579291083000044), (-5.821400519999941, 57.583197333000044), (-5.803618943999936, 57.581366278000075), (-5.7863663399999155, 57.57518138200004), (-5.732574022999927, 57.54523346600007), (-5.715646938999953, 57.538397528000075), (-5.707020636999914, 57.542303778000075), (-5.68976803299995, 57.52789948100008), (-5.6808975899999155, 57.52411530200004), (-5.650868292999917, 57.51264069200005), (-5.6399633449999556, 57.511053778000075), (-5.645334438999953, 57.51666901200008), (-5.648304816999939, 57.52187734600005), (-5.650542772999927, 57.52680084800005), (-5.6535538399999155, 57.53156159100007), (-5.5815323559999115, 57.538397528000075), (-5.5402725899999155, 57.534491278000075), (-5.5168350899999155, 57.534857489000046), (-5.512684699999909, 57.54148997600004), (-5.543120897999927, 57.55536530200004), (-5.588368292999917, 57.56102122600004), (-5.632720506999931, 57.55768463700008), (-5.66038977799991, 57.544582424000055), (-5.694488084999932, 57.56631094000005), (-5.689198370999918, 57.56940338700008), (-5.6808975899999155, 57.579291083000044), (-5.714222785999937, 57.58270905200004), (-5.7316788399999155, 57.59829336100006), (-5.744252081999946, 57.61798737200007), (-5.762806769999941, 57.633978583000044), (-5.778146938999953, 57.63743724200003), (-5.7936091789999296, 57.63857656500005), (-5.8058975899999155, 57.642645575000074), (-5.8111873039999296, 57.65509674700007), (-5.805409308999913, 57.667181708000044), (-5.785023566999939, 57.67951080900008), (-5.790760870999918, 57.68854401200008), (-5.790760870999918, 57.69599030200004), (-5.753570115999935, 57.707464911000045), (-5.734486456999946, 57.70795319200005), (-5.704986131999931, 57.69013092700004), (-5.692494269999941, 57.691066799000055), (-5.68195553299995, 57.69871653900003), (-5.67406165299991, 57.70966217700004), (-5.685170050999943, 57.71141185100004), (-5.692290818999936, 57.716498114000046), (-5.698841925999943, 57.723089911000045), (-5.708851691999939, 57.72955963700008), (-5.720529751999948, 57.73338450700004), (-5.803822394999941, 57.743841864000046), (-5.80695553299995, 57.75462474200003), (-5.8020727199999556, 57.780585028000075), (-5.803822394999941, 57.792222398000035), (-5.801258917999917, 57.800441799000055), (-5.809925910999937, 57.82062409100007), (-5.8111873039999296, 57.833197333000044), (-5.807362433999913, 57.84393952000005), (-5.799956834999932, 57.85370514500005), (-5.789540167999917, 57.86200592700004), (-5.776519334999932, 57.86790599200003), (-5.751128709999932, 57.87335846600007), (-5.724761522999927, 57.87352122600004), (-5.698638475999928, 57.86908600500004), (-5.67406165299991, 57.86050039300005), (-5.677886522999927, 57.846909898000035), (-5.674794074999909, 57.82709381700005), (-5.667958136999914, 57.80695221600007), (-5.66038977799991, 57.792222398000035), (-5.650542772999927, 57.78180573100008), (-5.6373591789999296, 57.77423737200007), (-5.622141079999949, 57.77020905200004), (-5.60578365799995, 57.77049388200004), (-5.613270636999914, 57.77521393400008), (-5.617909308999913, 57.78021881700005), (-5.625599738999938, 57.792222398000035), (-5.613026495999918, 57.792629299000055), (-5.603260870999918, 57.791083075000074), (-5.5846248039999296, 57.784816799000055), (-5.591175910999937, 57.80442942900004), (-5.587025519999941, 57.81858958500004), (-5.5852758449999556, 57.83144765800006), (-5.598988410999937, 57.846869208000044), (-5.6375626289999445, 57.86635976800005), (-5.650380011999914, 57.87775299700007), (-5.6399633449999556, 57.88784414300005), (-5.6476944649999155, 57.88898346600007), (-5.6507869129999335, 57.89081452000005), (-5.6535538399999155, 57.89468008000006), (-5.643950975999928, 57.90420156500005), (-5.620757615999935, 57.92088450700004), (-5.6126195949999556, 57.92877838700008), (-5.598215298999946, 57.91901276200008), (-5.587310350999928, 57.91510651200008), (-5.550526495999918, 57.91510651200008), (-5.556263800999943, 57.88776276200008), (-5.527902798999946, 57.86758047100005), (-5.487049933999913, 57.85586172100005), (-5.454986131999931, 57.85370514500005), (-5.46117102799991, 57.86050039300005), (-5.449045376999948, 57.869126695000034), (-5.437123175999943, 57.897650458000044), (-5.427642381999931, 57.908270575000074), (-5.4149063789999445, 57.90814850500004), (-5.369496222999942, 57.89752838700008), (-5.355620897999927, 57.89126211100006), (-5.327504035999937, 57.87327708500004), (-5.293853318999936, 57.86204661700003), (-5.221587693999936, 57.846869208000044), (-5.236317511999914, 57.86078522300005), (-5.2475479809999115, 57.86701080900008), (-5.276763475999928, 57.87417226800005), (-5.320668097999942, 57.898504950000074), (-5.384917772999927, 57.914129950000074), (-5.39289303299995, 57.91819896000004), (-5.394398566999939, 57.923895575000074), (-5.396839972999942, 57.926214911000045), (-5.3973282539999445, 57.928900458000044), (-5.39289303299995, 57.935614325000074), (-5.386545376999948, 57.936428127000056), (-5.378977016999954, 57.93183014500005), (-5.3717341789999296, 57.93105703300006), (-5.366200324999909, 57.943060614000046), (-5.3471573559999115, 57.936712958000044), (-5.319162563999953, 57.91474030200004), (-5.297352667999917, 57.908270575000074), (-5.2860001289999445, 57.90875885600008), (-5.266957160999937, 57.91400788000004), (-5.2562556629999335, 57.91510651200008), (-5.2436417309999115, 57.91290924700007), (-5.22101803299995, 57.90403880400004), (-5.211293097999942, 57.90208567900004), (-5.198801235999952, 57.897772528000075), (-5.162261522999927, 57.87848541900007), (-5.1199845039999445, 57.86798737200007), (-5.0911352199999556, 57.84031810100004), (-5.070790167999917, 57.833197333000044), (-5.07648678299995, 57.83852773600006), (-5.083404100999928, 57.84756094000005), (-5.0893448559999115, 57.85724518400008), (-5.091867641999954, 57.86420319200005), (-5.0971573559999115, 57.87091705900008), (-5.197255011999914, 57.91787344000005), (-5.221587693999936, 57.92133209800005), (-5.221587693999936, 57.92877838700008), (-5.201893683999913, 57.92865631700005), (-5.193959113999938, 57.935980536000045), (-5.19554602799991, 57.94765859600005), (-5.204497850999928, 57.960150458000044), (-5.216704881999931, 57.96588776200008), (-5.2488907539999445, 57.96938711100006), (-5.2631729809999115, 57.976548570000034), (-5.292632615999935, 57.98061758000006), (-5.333892381999931, 58.00853099200003), (-5.359364386999914, 58.011379299000055), (-5.357167120999918, 58.01406484600005), (-5.3566788399999155, 58.014878648000035), (-5.351918097999942, 58.01752350500004), (-5.366932745999918, 58.02887604400007), (-5.386586066999939, 58.032538153000075), (-5.427642381999931, 58.03119538000004), (-5.424305792999917, 58.03554922100005), (-5.422352667999917, 58.03896719000005), (-5.419585740999935, 58.04205963700008), (-5.413929816999939, 58.04547760600008), (-5.413929816999939, 58.05231354400007), (-5.447010870999918, 58.08437734600005), (-5.428089972999942, 58.09796784100007), (-5.390044725999928, 58.09218984600005), (-5.366200324999909, 58.06598541900007), (-5.344309048999946, 58.075506903000075), (-5.322865363999938, 58.07172272300005), (-5.300770636999914, 58.07013580900008), (-5.276763475999928, 58.08641185100004), (-5.283070441999939, 58.08641185100004), (-5.278065558999913, 58.09625885600008), (-5.2787979809999115, 58.10537344000005), (-5.283558722999942, 58.11347077000005), (-5.2905167309999115, 58.12055084800005), (-5.276763475999928, 58.12055084800005), (-5.276763475999928, 58.127386786000045), (-5.297352667999917, 58.134833075000074), (-5.284087693999936, 58.14008209800005), (-5.255523240999935, 58.143784898000035), (-5.242054816999939, 58.14789459800005), (-5.242054816999939, 58.15534088700008), (-5.275054490999935, 58.15452708500004), (-5.290842251999948, 58.156317450000074), (-5.304798956999946, 58.162095445000034), (-5.297352667999917, 58.168402411000045), (-5.304798956999946, 58.17332591400003), (-5.313059048999946, 58.17731354400007), (-5.321888800999943, 58.18024323100008), (-5.331450975999928, 58.18203359600005), (-5.3293350899999155, 58.186712958000044), (-5.326161261999914, 58.198431708000044), (-5.323963995999918, 58.203111070000034), (-5.336822068999936, 58.203192450000074), (-5.346791144999941, 58.20685455900008), (-5.39289303299995, 58.24469635600008), (-5.3920792309999115, 58.261379299000055), (-5.375884568999936, 58.26422760600008), (-5.352894660999937, 58.25893789300005), (-5.31078040299991, 58.243394273000035), (-5.293853318999936, 58.24091217700004), (-5.276966925999943, 58.243394273000035), (-5.237294074999909, 58.25763580900008), (-5.2160538399999155, 58.261419989000046), (-5.194325324999909, 58.25999583500004), (-5.173207160999937, 58.25092194200005), (-5.165638800999943, 58.258246161000045), (-5.152251756999931, 58.264837958000044), (-5.138335740999935, 58.269598700000074), (-5.129383917999917, 58.27138906500005), (-5.11156165299991, 58.26825592700004), (-5.0812882149999155, 58.25409577000005), (-5.0676977199999556, 58.25092194200005), (-5.017730272999927, 58.253241278000075), (-5.002430792999917, 58.25092194200005), (-4.933583136999914, 58.22304922100005), (-4.943430141999954, 58.233587958000044), (-4.954823370999918, 58.23981354400007), (-4.982004360999952, 58.25092194200005), (-4.968861456999946, 58.25678131700005), (-4.940337693999936, 58.259466864000046), (-4.926747199999909, 58.26459381700005), (-4.990223761999914, 58.27142975500004), (-5.009917772999927, 58.27138906500005), (-5.018055792999917, 58.26862213700008), (-5.029367641999954, 58.25971100500004), (-5.040028449999909, 58.25775788000004), (-5.0501195949999556, 58.25991445500006), (-5.0707087879999335, 58.269232489000046), (-5.081654425999943, 58.27138906500005), (-5.096424933999913, 58.27676015800006), (-5.125965949999909, 58.30019765800006), (-5.1362198559999115, 58.305568752000056), (-5.137440558999913, 58.30927155200004), (-5.156361456999946, 58.32461172100005), (-5.160145636999914, 58.326605536000045), (-5.167795376999948, 58.33926015800006), (-5.171009894999941, 58.34666575700004), (-5.173207160999937, 58.353949286000045), (-5.153309699999909, 58.353949286000045), (-5.1634008449999556, 58.364569403000075), (-5.162912563999953, 58.37449778900003), (-5.155913865999935, 58.384466864000046), (-5.146473761999914, 58.394964911000045), (-5.145497199999909, 58.400051174000055), (-5.14671790299991, 58.40664297100005), (-5.146839972999942, 58.41242096600007), (-5.143055792999917, 58.41478099200003), (-5.135487433999913, 58.413763739000046), (-5.122222459999932, 58.40957265800006), (-5.116037563999953, 58.40859609600005), (-5.057972785999937, 58.38727448100008), (-5.016184048999946, 58.38812897300005), (-5.043934699999909, 58.400091864000046), (-5.0533748039999296, 58.40664297100005), (-5.0502823559999115, 58.41478099200003), (-5.0570369129999335, 58.42218659100007), (-5.066151495999918, 58.41714101800005), (-5.076161261999914, 58.414496161000045), (-5.086822068999936, 58.41388580900008), (-5.0980525379999335, 58.41478099200003), (-5.0980525379999335, 58.42218659100007), (-5.08812415299991, 58.421942450000074), (-5.085031704999949, 58.42218659100007), (-5.085031704999949, 58.429022528000075), (-5.091786261999914, 58.429754950000074), (-5.09601803299995, 58.43146393400008), (-5.105539516999954, 58.43650950700004), (-5.0501195949999556, 58.45380280200004), (-5.025542772999927, 58.447699286000045), (-4.9955948559999115, 58.43650950700004), (-5.105539516999954, 58.48737213700008), (-5.105620897999927, 58.505560614000046), (-5.103667772999927, 58.51422760600008), (-5.095855272999927, 58.518866278000075), (-5.042795376999948, 58.53546784100007), (-5.0279841789999296, 58.54409414300005), (-5.016184048999946, 58.55939362200007), (-5.0229386059999115, 58.55939362200007), (-5.015207485999952, 58.580064195000034), (-5.011586066999939, 58.60057200700004), (-5.004953579999949, 58.61774323100008), (-4.988189256999931, 58.62832265800006), (-4.859486456999946, 58.61322663000004), (-4.835926886999914, 58.60504791900007), (-4.818104620999918, 58.59292226800005), (-4.817941860999952, 58.587591864000046), (-4.81281490799995, 58.571966864000046), (-4.806752081999946, 58.55841705900008), (-4.803822394999941, 58.55939362200007), (-4.804595506999931, 58.54832591400003), (-4.807240363999938, 58.53961823100008), (-4.811634894999941, 58.53204987200007), (-4.818104620999918, 58.524644273000035), (-4.799794074999909, 58.532456773000035), (-4.791818813999953, 58.54165273600006), (-4.7899063789999445, 58.55174388200004), (-4.790150519999941, 58.562486070000034), (-4.785755988999938, 58.577053127000056), (-4.777088995999918, 58.583319403000075), (-4.771595831999946, 58.59039948100008), (-4.776519334999932, 58.60716380400004), (-4.758859829999949, 58.59910716400003), (-4.7280167309999115, 58.577460028000075), (-4.7113337879999335, 58.57306549700007), (-4.683257615999935, 58.56150950700004), (-4.670399542999917, 58.55939362200007), (-4.660023566999939, 58.555853583000044), (-4.659291144999941, 58.54755280200004), (-4.663238084999932, 58.538397528000075), (-4.6673070949999556, 58.53204987200007), (-4.6790258449999556, 58.52391185100004), (-4.714466925999943, 58.50560130400004), (-4.732411261999914, 58.480454820000034), (-4.751535610999952, 58.46161530200004), (-4.7609757149999155, 58.44798411700003), (-4.74242102799991, 58.44953034100007), (-4.682972785999937, 58.48456452000005), (-4.673451300999943, 58.48737213700008), (-4.6668595039999445, 58.50291575700004), (-4.650502081999946, 58.50995514500005), (-4.630441860999952, 58.514960028000075), (-4.612131313999953, 58.524644273000035), (-4.6010636059999115, 58.54193756700005), (-4.595122850999928, 58.56000397300005), (-4.584950324999909, 58.57416413000004), (-4.560536261999914, 58.57990143400008), (-4.517486131999931, 58.575506903000075), (-4.475493943999936, 58.565619208000044), (-4.426503058999913, 58.54637278900003), (-4.426503058999913, 58.53888580900008), (-4.427886522999927, 58.53530508000006), (-4.428700324999909, 58.53473541900007), (-4.426503058999913, 58.524644273000035), (-4.449940558999913, 58.510199286000045), (-4.464751756999931, 58.49201080900008), (-4.477650519999941, 58.47134023600006), (-4.4953507149999155, 58.44953034100007), (-4.478098110999952, 58.453558661000045), (-4.46117102799991, 58.46246979400007), (-4.43390865799995, 58.483628648000035), (-4.432728644999941, 58.487616278000075), (-4.4339900379999335, 58.49237702000005), (-4.4342341789999296, 58.49628327000005), (-4.430165167999917, 58.49799225500004), (-4.425933397999927, 58.49909088700008), (-4.385365363999938, 58.52240631700005), (-4.382394985999952, 58.524644273000035), (-4.343861456999946, 58.53888580900008), (-4.317005988999938, 58.54572174700007), (-4.306996222999942, 58.54637278900003), (-4.287180141999954, 58.54291413000004), (-4.2573136059999115, 58.52798086100006), (-4.234730597999942, 58.524644273000035), (-4.248931443999936, 58.53204987200007), (-4.238189256999931, 58.536444403000075), (-4.232248501999948, 58.54242584800005), (-4.227691209999932, 58.548163153000075), (-4.22101803299995, 58.551947333000044), (-4.209706183999913, 58.55292389500005), (-4.190785285999937, 58.54783763200004), (-4.1769913399999155, 58.54637278900003), (-4.16820227799991, 58.54938385600008), (-4.1605525379999335, 58.562567450000074), (-4.149322068999936, 58.565619208000044), (-4.111195441999939, 58.565619208000044), (-4.0902400379999335, 58.56207916900007), (-4.081450975999928, 58.561835028000075), (-4.070220506999931, 58.565619208000044), (-4.061512824999909, 58.57282135600008), (-4.048817511999914, 58.58958567900004), (-4.039784308999913, 58.59292226800005), (-4.030629035999937, 58.59406159100007), (-4.029042120999918, 58.59516022300005), (-4.027821417999917, 58.59271881700005), (-4.0092667309999115, 58.57330963700008), (-4.003773566999939, 58.57062409100007), (-3.981434699999909, 58.57306549700007), (-3.8957413399999155, 58.565619208000044), (-3.8101293609999516, 58.57306549700007), (-3.7669571609999366, 58.58372630400004), (-3.6983536449999406, 58.61115143400008), (-3.659901495999918, 58.62083567900004), (-3.597564256999931, 58.62714264500005), (-3.565500454999949, 58.626613674000055), (-3.542591925999943, 58.62083567900004), (-3.552479620999918, 58.61546458500004), (-3.556263800999943, 58.61399974200003), (-3.532053188999953, 58.60211823100008), (-3.504017706999946, 58.60333893400008), (-3.447010870999918, 58.61399974200003), (-3.3914688789999445, 58.60065338700008), (-3.364084438999953, 58.600816148000035), (-3.3508194649999155, 58.62083567900004), (-3.3677465489999463, 58.624701239000046), (-3.3860570949999556, 58.631740627000056), (-3.402251756999931, 58.64203522300005), (-3.412912563999953, 58.655585028000075), (-3.3900447259999282, 58.67177969000005), (-3.3748673169999392, 58.677069403000075), (-3.3582657539999445, 58.675482489000046), (-3.3543595039999445, 58.67015208500004), (-3.35179602799991, 58.66083405200004), (-3.34788977799991, 58.652044989000046), (-3.340565558999913, 58.648138739000046), (-3.3098852199999556, 58.648138739000046), (-3.244252081999946, 58.65900299700007), (-3.204090949999909, 58.66111888200004), (-3.1519262359999516, 58.64126211100006), (-3.118763800999943, 58.64109935100004), (-3.052886522999927, 58.648138739000046), (-3.0191137359999516, 58.640326239000046), (-3.025380011999914, 58.62213776200008), (-3.0444229809999115, 58.601629950000074), (-3.049183722999942, 58.58673737200007), (-3.060454881999931, 58.57843659100007), (-3.0754288399999155, 58.56037018400008), (-3.0845434239999463, 58.551947333000044), (-3.1107478509999282, 58.53864166900007), (-3.1180313789999445, 58.53204987200007), (-3.129261847999942, 58.51264069200005), (-3.1293025379999335, 58.49640534100007), (-3.1187231109999516, 58.484442450000074), (-3.0975235669999392, 58.47748444200005), (-3.0850723949999406, 58.47825755400004), (-3.073963995999918, 58.481675523000035), (-3.064442511999914, 58.48297760600008), (-3.056630011999914, 58.47748444200005), (-3.053334113999938, 58.46576569200005), (-3.0577286449999406, 58.45685455900008), (-3.066761847999942, 58.451157945000034), (-3.077056443999936, 58.44953034100007), (-3.0863337879999335, 58.41421133000006), (-3.129790818999936, 58.36928945500006), (-3.182769334999932, 58.32843659100007), (-3.2205297519999476, 58.305568752000056), (-3.2622777989999463, 58.292629299000055), (-3.34984290299991, 58.27610911700003), (-3.38499915299991, 58.26459381700005), (-3.438099738999938, 58.236029364000046), (-3.447010870999918, 58.22675202000005), (-3.454741990999935, 58.210150458000044), (-3.473459438999953, 58.193426825000074), (-3.515288865999935, 58.168402411000045), (-3.7350154289999296, 58.07217031500005), (-3.809193488999938, 58.05190664300005), (-3.8275040359999366, 58.04205963700008), (-3.8362524079999503, 58.03143952000005), (-3.8460994129999335, 58.01117584800005), (-3.851714647999927, 58.003892320000034), (-3.8605850899999155, 57.998928127000056), (-3.8856095039999445, 57.991400458000044), (-3.9173070949999556, 57.98745351800005), (-3.981434699999909, 57.96356842700004), (-3.990956183999913, 57.96039459800005), (-3.997670050999943, 57.954413153000075), (-4.001372850999928, 57.94611237200007), (-4.001942511999914, 57.935614325000074), (-4.018299933999913, 57.940619208000044), (-4.023060675999943, 57.943060614000046), (-4.016184048999946, 57.949286200000074), (-4.0301407539999445, 57.953192450000074), (-4.055775519999941, 57.95498281500005), (-4.0843806629999335, 57.964178778000075), (-4.0891007149999155, 57.960150458000044), (-4.0863337879999335, 57.95189036700003), (-4.0776261059999115, 57.943060614000046), (-4.062652147999927, 57.93695709800005), (-4.03148352799991, 57.93618398600006), (-4.016184048999946, 57.93219635600008), (-4.009429490999935, 57.92767975500004), (-3.988270636999914, 57.908270575000074), (-4.008941209999932, 57.88959381700005), (-4.013824022999927, 57.879339911000045), (-4.009348110999952, 57.86790599200003), (-4.025135870999918, 57.868068752000056), (-4.054839647999927, 57.874335028000075), (-4.070220506999931, 57.87417226800005), (-4.0793350899999155, 57.87026601800005), (-4.0969132149999155, 57.85736725500004), (-4.1049698559999115, 57.85370514500005), (-4.132923956999946, 57.85415273600006), (-4.190419074999909, 57.87006256700005), (-4.218169725999928, 57.87417226800005), (-4.298898891999954, 57.86277903900003), (-4.3209529289999296, 57.87103913000004), (-4.353179490999935, 57.89520905200004), (-4.3723038399999155, 57.90448639500005), (-4.392404751999948, 57.908270575000074), (-4.339588995999918, 57.86570872600004), (-4.307728644999941, 57.85146719000005), (-4.269398566999939, 57.846869208000044), (-4.229074673999946, 57.85724518400008), (-4.2082413399999155, 57.85919830900008), (-4.190581834999932, 57.85028717700004), (-4.173451300999943, 57.83901601800005), (-4.1497289699999556, 57.82982005400004), (-4.1334529289999296, 57.830145575000074), (-4.1390681629999335, 57.846869208000044), (-4.0750626289999445, 57.82318756700005), (-4.0399063789999445, 57.81818268400008), (-3.9835098949999406, 57.84235260600008), (-3.9514867829999503, 57.838324286000045), (-3.933705206999946, 57.82566966400003), (-3.9473363919999542, 57.81268952000005), (-3.914784308999913, 57.80768463700008), (-3.877674933999913, 57.81671784100007), (-3.8418676419999542, 57.83490631700005), (-3.813547329999949, 57.857123114000046), (-3.798451300999943, 57.866522528000075), (-3.786040818999936, 57.86542389500005), (-3.779449022999927, 57.85565827000005), (-3.782215949999909, 57.83942291900007), (-3.790028449999909, 57.83071523600006), (-3.92601477799991, 57.734808661000045), (-3.948841925999943, 57.72492096600007), (-3.975209113999938, 57.70327383000006), (-3.988270636999914, 57.69599030200004), (-4.00804602799991, 57.693793036000045), (-4.02367102799991, 57.69782135600008), (-4.0286352199999556, 57.70770905200004), (-4.016184048999946, 57.72333405200004), (-4.042958136999914, 57.73729075700004), (-4.077951626999948, 57.73029205900008), (-4.155344204999949, 57.692572333000044), (-4.168568488999938, 57.689439195000034), (-4.1939998039999296, 57.68854401200008), (-4.2592667309999115, 57.67869700700004), (-4.277821417999917, 57.68060944200005), (-4.294789191999939, 57.68016185100004), (-4.302154100999928, 57.66860586100006), (-4.30882727799991, 57.65485260600008), (-4.324045376999948, 57.64826080900008), (-4.33820553299995, 57.64508698100008), (-4.4031876289999445, 57.60952383000006), (-4.412180141999954, 57.60297272300005), (-4.4203181629999335, 57.592962958000044), (-4.428456183999913, 57.57754140800006), (-4.423451300999943, 57.57680898600006), (-4.409901495999918, 57.582464911000045), (-4.379872199999909, 57.58934153900003), (-4.365101691999939, 57.59723541900007), (-4.3510636059999115, 57.60736725500004), (-4.340809699999909, 57.617173570000034), (-4.328724738999938, 57.626288153000075), (-4.283111131999931, 57.64142487200007), (-4.2445369129999335, 57.66303131700005), (-4.201893683999913, 57.674994208000044), (-4.1937556629999335, 57.67552317900004), (-4.182240363999938, 57.67279694200005), (-4.169016079999949, 57.663763739000046), (-4.118723110999952, 57.65770091400003), (-4.096791144999941, 57.65810781500005), (-4.0807185539999296, 57.66498444200005), (-4.068104620999918, 57.672308661000045), (-4.0246475899999155, 57.687201239000046), (-4.009348110999952, 57.68854401200008), (-4.004505988999938, 57.67597077000005), (-4.025257941999939, 57.65521881700005), (-4.0541886059999115, 57.63572825700004), (-4.083404100999928, 57.62335846600007), (-4.118560350999928, 57.592962958000044), (-4.11546790299991, 57.58783600500004), (-4.112294074999909, 57.58413320500006), (-4.1088761059999115, 57.58144765800006), (-4.1049698559999115, 57.579291083000044), (-4.151356574999909, 57.57684967700004), (-4.170643683999913, 57.570746161000045), (-4.187489386999914, 57.55882396000004), (-4.178089972999942, 57.54954661700003), (-4.184925910999937, 57.548163153000075), (-4.207997199999909, 57.552069403000075), (-4.262603318999936, 57.552069403000075), (-4.262603318999936, 57.544582424000055), (-4.233957485999952, 57.54511139500005), (-4.220285610999952, 57.543402411000045), (-4.207997199999909, 57.538397528000075), (-4.226307745999918, 57.51544830900008), (-4.237456834999932, 57.50531647300005), (-4.248931443999936, 57.49746328300006), (-4.212798631999931, 57.492173570000034), (-4.1948136059999115, 57.49160390800006), (-4.173898891999954, 57.49746328300006), (-4.157622850999928, 57.50849030200004), (-4.150054490999935, 57.51504140800006), (-4.149322068999936, 57.51788971600007), (-4.126779751999948, 57.518866278000075), (-4.116200324999909, 57.52179596600007), (-4.097523566999939, 57.53668854400007), (-4.082997199999909, 57.54441966400003), (-4.067290818999936, 57.54995351800005), (-4.0531306629999335, 57.552069403000075), (-4.034982876999948, 57.55687083500004), (-4.046457485999952, 57.56785716400003), (-4.083851691999939, 57.58612702000005), (-4.056019660999937, 57.585150458000044), (-3.9643448559999115, 57.592962958000044), (-3.8682755199999406, 57.587876695000034), (-3.8374731109999516, 57.592962958000044), (-3.6848038399999155, 57.65444570500006), (-3.625152147999927, 57.66193268400008), (-3.632557745999918, 57.65094635600008), (-3.637684699999909, 57.64622630400004), (-3.6456192699999406, 57.64142487200007), (-3.632476365999935, 57.635646877000056), (-3.6196182929999168, 57.63621653900003), (-3.606068488999938, 57.63947174700007), (-3.590972459999932, 57.64142487200007), (-3.61156165299991, 57.66811758000006), (-3.5747777989999463, 57.66111888200004), (-3.55492102799991, 57.659857489000046), (-3.535755988999938, 57.66193268400008), (-3.521473761999914, 57.66779205900008), (-3.5054418609999516, 57.67865631700005), (-3.4959610669999392, 57.69135163000004), (-3.501698370999918, 57.702826239000046), (-3.491851365999935, 57.71312083500004), (-3.4828181629999335, 57.71401601800005), (-3.4730525379999335, 57.711004950000074), (-3.460682745999918, 57.70966217700004), (-3.447865363999938, 57.71246979400007), (-3.4212540359999366, 57.72138092700004), (-3.409169074999909, 57.72333405200004), (-3.2847387359999516, 57.72044505400004), (-3.2100723949999406, 57.69399648600006), (-3.0786840489999463, 57.66941966400003), (-3.034901495999918, 57.66860586100006), (-2.994496222999942, 57.67552317900004), (-2.932687954999949, 57.69961172100005), (-2.9160863919999542, 57.702826239000046), (-2.75804602799991, 57.702826239000046), (-2.7512100899999155, 57.70062897300005), (-2.741118943999936, 57.69086334800005), (-2.731068488999938, 57.68854401200008), (-2.719878709999932, 57.690619208000044), (-2.711537238999938, 57.69399648600006), (-2.7035212879999335, 57.69472890800006), (-2.6929418609999516, 57.68854401200008), (-2.658924933999913, 57.69745514500005), (-2.573394334999932, 57.68146393400008), (-2.541981574999909, 57.68235911700003), (-2.526112433999913, 57.66860586100006), (-2.5181371739999463, 57.67011139500005), (-2.5110570949999556, 57.677801825000074), (-2.497954881999931, 57.68235911700003), (-2.4800512359999516, 57.68121979400007), (-2.4328507149999155, 57.66811758000006), (-2.425526495999918, 57.67572663000004), (-2.4177953769999476, 57.674261786000045), (-2.4087621739999463, 57.669623114000046), (-2.398060675999943, 57.66811758000006), (-2.3865860669999392, 57.671576239000046), (-2.369496222999942, 57.680568752000056), (-2.360503709999932, 57.68235911700003), (-2.3410538399999155, 57.675848700000074), (-2.3289688789999445, 57.67405833500004), (-2.3235977859999366, 57.678941148000035), (-2.32054602799991, 57.68455638200004), (-2.313384568999936, 57.68992747600004), (-2.3040665359999366, 57.69399648600006), (-2.295643683999913, 57.69599030200004), (-2.274322068999936, 57.69383372600004), (-2.230132615999935, 57.67914459800005), (-2.209950324999909, 57.67552317900004), (-2.1840714179999168, 57.67845286700003), (-2.1243383449999556, 57.702826239000046), (-2.108143683999913, 57.70498281500005), (-1.9976700509999432, 57.702826239000046), (-1.9969376289999445, 57.69904205900008), (-1.990834113999938, 57.69037506700005), (-1.982167120999918, 57.68109772300005), (-1.9735001289999445, 57.67552317900004), (-1.961293097999942, 57.674709377000056), (-1.9447322259999282, 57.68256256700005), (-1.9324845039999445, 57.68235911700003), (-1.9256892569999309, 57.678168036000045), (-1.914214647999927, 57.66474030200004), (-1.8294571609999366, 57.61347077000005), (-1.820464647999927, 57.59634023600006), (-1.817005988999938, 57.578192450000074), (-1.8113907539999445, 57.56049225500004), (-1.7960098949999406, 57.544582424000055), (-1.7960098949999406, 57.538397528000075), (-1.8000382149999155, 57.52586497600004), (-1.7895401679999168, 57.514837958000044), (-1.7611384759999282, 57.49746328300006), (-1.7753800119999141, 57.496527411000045), (-1.7821345689999362, 57.48899974200003), (-1.7812393869999141, 57.48041413000004), (-1.7717179029999102, 57.476263739000046), (-1.7593481109999516, 57.47357819200005), (-1.7659399079999503, 57.46743398600006), (-1.7891739569999459, 57.45644765800006), (-1.8301488919999542, 57.42617422100005), (-1.8474828769999476, 57.40814850500004), (-1.849964972999942, 57.39435455900008), (-1.9544978509999282, 57.341131903000075), (-1.9802953769999476, 57.31928131700005), (-2.044667120999918, 57.22650788000004), (-2.068511522999927, 57.17462799700007), (-2.074126756999931, 57.15420156500005), (-2.0714005199999406, 57.13556549700007), (-2.052357550999943, 57.12742747600004), (-2.0493057929999168, 57.118841864000046), (-2.065256313999953, 57.10053131700005), (-2.0658259759999282, 57.09983958500004), (-2.156158006999931, 57.020697333000044), (-2.1869197259999282, 56.98468659100007), (-2.200103318999936, 56.94871653900003), (-2.1971329419999392, 56.94025299700007), (-2.1912328769999476, 56.93414948100008), (-2.186268683999913, 56.92674388200004), (-2.1863907539999445, 56.91453685100004), (-2.191314256999931, 56.90892161700003), (-2.209706183999913, 56.895819403000075), (-2.213693813999953, 56.890692450000074), (-2.219878709999932, 56.87262604400007), (-2.23460852799991, 56.861395575000074), (-2.2689509759999282, 56.84634023600006), (-2.295806443999936, 56.82526276200008), (-2.3198136059999115, 56.80158112200007), (-2.336089647999927, 56.79083893400008), (-2.3918350899999155, 56.771185614000046), (-2.4086807929999168, 56.762925523000035), (-2.4264216789999296, 56.751288153000075), (-2.4359431629999335, 56.74038320500006), (-2.4407445949999556, 56.73484935100004), (-2.4516495429999168, 56.69098541900007), (-2.4637345039999445, 56.67877838700008), (-2.4774063789999445, 56.66868724200003), (-2.487456834999932, 56.65387604400007), (-2.4875382149999155, 56.64606354400007), (-2.481271938999953, 56.63239166900007), (-2.480620897999927, 56.62653229400007), (-2.4861954419999392, 56.619574286000045), (-2.504058397999927, 56.60883209800005), (-2.514556443999936, 56.591498114000046), (-2.530018683999913, 56.58075592700004), (-2.623768683999913, 56.543402411000045), (-2.6409399079999503, 56.522365627000056), (-2.6613663399999155, 56.51422760600008), (-2.6997777989999463, 56.50364817900004), (-2.708729620999918, 56.49599844000005), (-2.7276505199999406, 56.46954987200007), (-2.737294074999909, 56.46702708500004), (-2.74437415299991, 56.46954987200007), (-2.752308722999942, 56.47361888200004), (-2.764800584999932, 56.47573476800005), (-2.819325324999909, 56.47129954600007), (-3.055653449999909, 56.45213450700004), (-3.0606176419999542, 56.45172760600008), (-3.099273240999935, 56.44188060100004), (-3.1339005199999406, 56.426947333000044), (-3.238189256999931, 56.36774323100008), (-3.280181443999936, 56.35789622600004), (-3.3234757149999155, 56.36591217700004), (-3.311512824999909, 56.35651276200008), (-3.294016079999949, 56.352769273000035), (-3.2515356109999516, 56.352850653000075), (-3.230620897999927, 56.35602448100008), (-3.188384568999936, 56.37018463700008), (-3.149566209999932, 56.37555573100008), (-2.950266079999949, 56.43187083500004), (-2.9399307929999168, 56.43854401200008), (-2.930653449999909, 56.44806549700007), (-2.909087693999936, 56.45571523600006), (-2.88499915299991, 56.45799388200004), (-2.867909308999913, 56.45184967700004), (-2.8500870429999168, 56.44204336100006), (-2.8147680329999503, 56.44041575700004), (-2.8028051419999542, 56.42796458500004), (-2.800892706999946, 56.40892161700003), (-2.808257615999935, 56.391058661000045), (-2.8216039699999556, 56.376166083000044), (-2.837554490999935, 56.36591217700004), (-2.8129776679999168, 56.36591217700004), (-2.809193488999938, 56.36286041900007), (-2.8047582669999542, 56.34910716400003), (-2.8028051419999542, 56.345404364000046), (-2.7914932929999168, 56.34247467700004), (-2.7826228509999282, 56.34162018400008), (-2.7752579419999392, 56.33942291900007), (-2.768625454999949, 56.33234284100007), (-2.6771541009999282, 56.32843659100007), (-2.655262824999909, 56.32217031500005), (-2.621205206999946, 56.30442942900004), (-2.613189256999931, 56.30190664300005), (-2.5768123039999296, 56.28392161700003), (-2.5768123039999296, 56.277777411000045), (-2.6301163399999155, 56.24852122600004), (-2.648345506999931, 56.22870514500005), (-2.672027147999927, 56.22239817900004), (-2.7202042309999115, 56.21629466400003), (-2.7835994129999335, 56.19196198100008), (-2.8061417309999115, 56.188381252000056), (-2.8307185539999296, 56.190741278000075), (-2.8920792309999115, 56.20888906500005), (-2.940052863999938, 56.209418036000045), (-2.9643448559999115, 56.20563385600008), (-2.9746801419999542, 56.19830963700008), (-2.982411261999914, 56.189113674000055), (-3.0355525379999335, 56.16791413000004), (-3.0910538399999155, 56.13226959800005), (-3.107533331999946, 56.12689850500004), (-3.127552863999938, 56.12287018400008), (-3.138295050999943, 56.112209377000056), (-3.152251756999931, 56.07851797100005), (-3.1635636059999115, 56.06386953300006), (-3.1783748039999296, 56.05809153900003), (-3.2484431629999335, 56.055975653000075), (-3.268381313999953, 56.05093008000006), (-3.3030492829999503, 56.037543036000045), (-3.342681443999936, 56.02716705900008), (-3.381825324999909, 56.02338288000004), (-3.420969204999949, 56.02488841400003), (-3.5825902989999463, 56.05174388200004), (-3.671498175999943, 56.050848700000074), (-3.710031704999949, 56.05809153900003), (-3.7454320949999556, 56.07221100500004), (-3.7464900379999335, 56.072780666000085), (-3.782215949999909, 56.09218984600005), (-3.8031306629999335, 56.107123114000046), (-3.817005988999938, 56.11225006700005), (-3.8374731109999516, 56.112616278000075), (-3.8374731109999516, 56.10643138200004), (-3.777699347999942, 56.08283112200007), (-3.769154425999943, 56.07514069200005), (-3.7608536449999406, 56.07245514500005), (-3.7264298169999392, 56.03803131700005), (-3.721424933999913, 56.03070709800005), (-3.712635870999918, 56.028998114000046), (-3.693470831999946, 56.03115469000005), (-3.6866348949999406, 56.03070709800005), (-3.6795548169999392, 56.025458075000074), (-3.674794074999909, 56.01870351800005), (-3.6682836579999503, 56.01276276200008), (-3.656239386999914, 56.010199286000045), (-3.599720831999946, 56.017238674000055), (-3.5773819649999155, 56.01703522300005), (-3.405425584999932, 55.98973216400003), (-3.3582657539999445, 55.98973216400003), (-3.340891079999949, 55.99445221600007), (-3.331044074999909, 55.99408600500004), (-3.320423956999946, 55.986029364000046), (-3.303456183999913, 55.97760651200008), (-3.121815558999913, 55.96930573100008), (-3.1147354809999115, 55.966131903000075), (-3.096831834999932, 55.95197174700007), (-3.090728318999936, 55.94818756700005), (-3.078236456999946, 55.94684479400007), (-3.0156957669999542, 55.950506903000075), (-2.9399307929999168, 55.96930573100008), (-2.9166560539999296, 55.98061758000006), (-2.900054490999935, 55.996161200000074), (-2.8828832669999542, 56.00849030200004), (-2.8579809239999463, 56.010199286000045), (-2.863636847999942, 56.02228424700007), (-2.8663223949999406, 56.02676015800006), (-2.8709610669999392, 56.03070709800005), (-2.8527725899999155, 56.03978099200003), (-2.823150193999936, 56.059759833000044), (-2.8028051419999542, 56.06484609600005), (-2.635121222999942, 56.05805084800005), (-2.615956183999913, 56.053168036000045), (-2.587554490999935, 56.030951239000046), (-2.569406704999949, 56.02448151200008), (-2.57835852799991, 56.00800202000005), (-2.583648240999935, 56.00275299700007), (-2.5695694649999155, 55.99994538000004), (-2.5440567699999406, 56.00267161700003), (-2.528960740999935, 55.99656810100004), (-2.5248103509999282, 56.00055573100008), (-2.514556443999936, 56.00576406500005), (-2.507923956999946, 56.010199286000045), (-2.4932755199999406, 56.00153229400007), (-2.4525040359999366, 55.985256252000056), (-2.4143774079999503, 55.97833893400008), (-2.3509415359999366, 55.94818756700005), (-2.307769334999932, 55.93500397300005), (-2.146839972999942, 55.917303778000075), (-2.1380102199999556, 55.91461823100008), (-2.132557745999918, 55.90643952000005), (-2.13109290299991, 55.89720286700003), (-2.1287735669999392, 55.88979726800005), (-2.1209610669999392, 55.886704820000034), (-2.0994766919999392, 55.88178131700005), (-2.080189581999946, 55.86937083500004), (-2.0228572259999282, 55.80548737200007), (-2.009673631999931, 55.79083893400008), (-1.8778376939999362, 55.69489166900007), (-1.8631892569999309, 55.67161692900004), (-1.8530981109999516, 55.65932851800005), (-1.8315323559999115, 55.65070221600007), (-1.8260798819999309, 55.64362213700008), (-1.8216853509999282, 55.636419989000046), (-1.8164770169999542, 55.632879950000074), (-1.8071182929999168, 55.63450755400004), (-1.8007706369999141, 55.63922760600008), (-1.7962947259999282, 55.644232489000046), (-1.7925919259999432, 55.646551825000074), (-1.781402147999927, 55.64565664300005), (-1.768625454999949, 55.641913153000075), (-1.7564998039999296, 55.63361237200007), (-1.7476700509999432, 55.619208075000074), (-1.7679744129999335, 55.619208075000074), (-1.7679744129999335, 55.612982489000046), (-1.7559708319999459, 55.60887278900003), (-1.720855272999927, 55.614569403000075), (-1.6991267569999309, 55.612982489000046), (-1.6308487619999141, 55.58510976800005), (-1.6308487619999141, 55.57827383000006), (-1.6363419259999432, 55.57168203300006), (-1.6346736319999309, 55.56439850500004), (-1.6276749339999128, 55.55711497600004), (-1.6171768869999141, 55.55027903900003), (-1.6308487619999141, 55.544134833000044), (-1.6308487619999141, 55.53729889500005), (-1.6222224599999322, 55.534084377000056), (-1.6029353509999282, 55.52362702000005), (-1.6029353509999282, 55.516791083000044), (-1.6113175119999141, 55.50804271000004), (-1.6063533189999362, 55.503241278000075), (-1.5963435539999296, 55.49990469000005), (-1.5893448559999115, 55.49567291900007), (-1.5849503249999088, 55.483710028000075), (-1.5813695949999556, 55.41665273600006), (-1.5831192699999406, 55.40692780200004), (-1.5882869129999335, 55.39057038000004), (-1.5891007149999155, 55.385199286000045), (-1.5893448559999115, 55.37653229400007), (-1.5833227199999556, 55.354722398000035), (-1.5585831369999141, 55.32892487200007), (-1.5558162099999322, 55.31134674700007), (-1.5570369129999335, 55.306626695000034), (-1.5589900379999335, 55.302069403000075), (-1.5619197259999282, 55.29779694200005), (-1.5657445949999556, 55.29364655200004), (-1.570057745999918, 55.28620026200008), (-1.5682266919999392, 55.27960846600007), (-1.5642797519999476, 55.27326080900008), (-1.5620824859999516, 55.26666901200008), (-1.5564672519999476, 55.25503164300005), (-1.5439346999999088, 55.24388255400004), (-1.5209854809999115, 55.229396877000056), (-1.5291641919999392, 55.21625397300005), (-1.5240779289999296, 55.21010976800005), (-1.514271613999938, 55.204779364000046), (-1.507964647999927, 55.194647528000075), (-1.510812954999949, 55.184759833000044), (-1.5175675119999141, 55.176214911000045), (-1.5221248039999296, 55.16746653900003), (-1.517933722999942, 55.157131252000056), (-1.5007218089999128, 55.141791083000044), (-1.4959610669999392, 55.13458893400008), (-1.492543097999942, 55.112982489000046), (-1.4837540359999366, 55.09170156500005), (-1.4800919259999432, 55.08539459800005), (-1.4762263659999348, 55.083644924000055), (-1.4632869129999335, 55.08030833500004), (-1.459584113999938, 55.07859935100004), (-1.458078579999949, 55.07575104400007), (-1.4547013009999432, 55.067572333000044), (-1.438303188999953, 55.042303778000075), (-1.4291886059999115, 55.033270575000074), (-1.4240616529999102, 55.02435944200005), (-1.4195043609999516, 55.011704820000034), (-1.412912563999953, 55.00031159100007), (-1.4015193349999322, 54.995428778000075), (-1.398182745999918, 54.992621161000045), (-1.3702286449999406, 54.97553131700005), (-1.3626602859999366, 54.96478913000004), (-1.3617244129999335, 54.958685614000046), (-1.3635147779999102, 54.95425039300005), (-1.3640030589999128, 54.94818756700005), (-1.3628637359999516, 54.92593008000006), (-1.3603409499999088, 54.91705963700008), (-1.3531388009999432, 54.91351959800005), (-1.355824347999942, 54.904282945000034), (-1.2967830069999309, 54.77993398600006), (-1.2754613919999542, 54.74843984600005), (-1.2404679029999102, 54.72166575700004), (-1.2250870429999168, 54.71503327000005), (-1.172230597999942, 54.701239325000074), (-1.172230597999942, 54.693793036000045), (-1.1926163399999155, 54.693793036000045), (-1.192453579999949, 54.68927643400008), (-1.1907852859999366, 54.68618398600006), (-1.1851700509999432, 54.68008047100005), (-1.1827286449999406, 54.67206452000005), (-1.1788223949999406, 54.66474030200004), (-1.172922329999949, 54.65835195500006), (-1.1647029289999296, 54.652777411000045), (-1.172922329999949, 54.644191799000055), (-1.1824845039999445, 54.63922760600008), (-1.2062882149999155, 54.63296133000006), (-1.203724738999938, 54.62571849200003), (-1.1988419259999432, 54.62156810100004), (-1.1918025379999335, 54.61977773600006), (-1.1821182929999168, 54.61928945500006), (-1.1793513659999348, 54.62091705900008), (-1.1784561839999128, 54.624212958000044), (-1.1769913399999155, 54.62677643400008), (-1.172230597999942, 54.62612539300005), (-1.1695857409999348, 54.62360260600008), (-1.1654353509999282, 54.61871979400007), (-1.1629532539999445, 54.61395905200004), (-1.1647029289999296, 54.61180247600004), (-1.1526586579999503, 54.61318594000005), (-1.1467179029999102, 54.618475653000075), (-1.1380509109999366, 54.646551825000074), (-1.1205948559999115, 54.63300202000005), (-1.1036270819999459, 54.624660549000055), (-1.0842179029999102, 54.620428778000075), (-1.042062954999949, 54.61709219000005), (-0.9934789699999556, 54.59813060100004), (-0.7879125639999529, 54.56077708500004), (-0.5629776679999168, 54.47736237200007), (-0.5346573559999115, 54.461004950000074), (-0.5228572259999282, 54.44708893400008), (-0.5217992829999503, 54.43805573100008), (-0.5235896479999269, 54.43024323100008), (-0.5204158189999362, 54.42007070500006), (-0.5099991529999102, 54.41156647300005), (-0.47679602799991017, 54.39720286700003), (-0.46275794199993925, 54.38898346600007), (-0.4477432929999168, 54.37319570500006), (-0.43057206899993616, 54.349310614000046), (-0.4184464179999168, 54.32404205900008), (-0.41803951699995423, 54.303941148000035), (-0.4145401679999168, 54.297308661000045), (-0.4090063139999529, 54.29075755400004), (-0.4011938139999529, 54.28563060100004), (-0.39073645699994586, 54.28351471600007), (-0.3948868479999419, 54.273138739000046), (-0.39757239499994057, 54.269191799000055), (-0.3892716139999379, 54.26406484600005), (-0.3704727859999366, 54.247707424000055), (-0.3627823559999115, 54.24249909100007), (-0.3220108709999181, 54.23607005400004), (-0.31191972599992823, 54.231634833000044), (-0.30011959499995555, 54.224676825000074), (-0.2770889959999181, 54.21775950700004), (-0.26960201699995423, 54.20766836100006), (-0.26256262899994454, 54.18109772300005), (-0.2603653639999379, 54.176988023000035), (-0.2338761059999115, 54.16046784100007), (-0.11143958199994586, 54.13157786700003), (-0.07551021999995555, 54.11212799700007), (-0.16392981699993925, 54.08340078300006), (-0.1946915359999366, 54.06232330900008), (-0.2194718089999128, 54.022772528000075), (-0.1974177729999269, 53.99481842700004), (-0.1686905589999128, 53.929348049000055), (-0.1511124339999128, 53.899318752000056), (-0.045155402999910166, 53.801214911000045), (0.13347415500004445, 53.642645575000074), (0.1492619150000678, 53.60960521000004), (0.13689212300005238, 53.57713450700004), (0.13119550900006516, 53.573431708000044), (0.1096297540000819, 53.56289297100005), (0.1313582690000885, 53.59369538000004), (0.1359969410000872, 53.610663153000075), (0.12020918100006384, 53.61810944200005), (0.09945722700007309, 53.622300523000035), (0.056162957000083225, 53.64126211100006), (0.034515821000070446, 53.64606354400007), (0.014821811000047092, 53.64325592700004), (-0.023915167999916775, 53.62885163000004), (-0.04503333199994586, 53.62555573100008), (-0.06940670499994894, 53.626939195000034), (-0.09227454299991678, 53.63104889500005), (-0.11261959499995555, 53.63751862200007), (-0.1300349599999322, 53.64606354400007), (-0.2253311839999128, 53.719916083000044), (-0.2603653639999379, 53.73541901200008), (-0.2956436839999128, 53.738796291000085), (-0.3051651679999168, 53.73969147300005), (-0.4311417309999115, 53.71430084800005), (-0.4496964179999168, 53.71430084800005), (-0.5104874339999128, 53.71430084800005), (-0.5444229809999115, 53.70945872600004), (-0.5515030589999128, 53.71116771000004), (-0.5762426419999542, 53.72565338700008), (-0.5791723299999489, 53.72797272300005), (-0.6370336579999503, 53.73200104400007), (-0.6583552729999269, 53.72797272300005), (-0.7264705069999309, 53.70062897300005), (-0.7173559239999463, 53.69867584800005), (-0.7085668609999516, 53.695746161000045), (-0.7001846999999088, 53.691839911000045), (-0.6924535799999489, 53.68699778900003), (-0.6774796209999181, 53.702826239000046), (-0.6498103509999282, 53.710598049000055), (-0.6195369129999335, 53.71185944200005), (-0.5961807929999168, 53.70807526200008), (-0.5554906889999529, 53.69049713700008), (-0.5447485019999476, 53.683579820000034), (-0.5299373039999296, 53.67767975500004), (-0.5140274729999419, 53.681301174000055), (-0.48631751199991413, 53.69448476800005), (-0.3072403639999379, 53.71426015800006), (-0.27936764199995423, 53.707098700000074), (-0.2603653639999379, 53.68699778900003), (-0.1886287099999322, 53.620428778000075), (-0.1440323559999115, 53.606634833000044), (-0.11318925699993088, 53.58462148600006), (-0.09593665299991017, 53.57713450700004), (-0.06094316299993352, 53.57396067900004), (-0.0466202459999181, 53.570379950000074), (9.199300006912381e-05, 53.53534577000005), (0.0959578790000819, 53.488348700000074), (0.11508222700007309, 53.48322174700007), (0.1340438160000872, 53.48061758000006), (0.15186608200008322, 53.475816148000035), (0.1678166020000731, 53.464504299000055), (0.17090905000009116, 53.457017320000034), (0.1731063160000872, 53.44676341400003), (0.17579186300008587, 53.43768952000005), (0.1814884770000731, 53.43374258000006), (0.1906030610000471, 53.43187083500004), (0.21949303500008455, 53.41950104400007), (0.21192467500009116, 53.41266510600008), (0.2293400400000678, 53.40477122600004), (0.24488366000008455, 53.39093659100007), (0.2561141290000819, 53.375067450000074), (0.26042728000004445, 53.36147695500006), (0.34213300900006516, 53.22630442900004), (0.35621178500008455, 53.18854401200008), (0.3566186860000471, 53.145738023000035), (0.3357853520000731, 53.093451239000046), (0.32984459700008983, 53.08649323100008), (0.31869550900006516, 53.083685614000046), (0.29883873800008587, 53.08120351800005), (0.2824813160000872, 53.07485586100006), (0.19304446700004974, 53.02008698100008), (0.17448978000004445, 53.01544830900008), (0.16081790500004445, 53.008978583000044), (0.08212324300006912, 52.938666083000044), (0.061167839000063395, 52.924994208000044), (0.03760826900008851, 52.919175523000035), (0.022146030000044448, 52.91258372600004), (0.008555535000084546, 52.89862702000005), (0.010264519000088512, 52.88646067900004), (0.04066002700005811, 52.88507721600007), (0.09253991000008455, 52.89252350500004), (0.10564212300005238, 52.88934967700004), (0.13347415500004445, 52.87518952000005), (0.14714603000004445, 52.87201569200005), (0.17090905000009116, 52.86212799700007), (0.22242272200008983, 52.813666083000044), (0.24675540500004445, 52.79572174700007), (0.2644962900000678, 52.80369700700004), (0.2856551440000885, 52.805568752000056), (0.32553144600007045, 52.803168036000045), (0.34180748800008587, 52.79743073100008), (0.36988366000008455, 52.77301666900007), (0.38453209700008983, 52.76837799700007), (0.38453209700008983, 52.77521393400008), (0.37924238400006516, 52.79083893400008), (0.39942467500009116, 52.80951569200005), (0.42554772200008983, 52.827378648000035), (0.4386499360000471, 52.840725002000056), (0.44402103000004445, 52.86505768400008), (0.45671634200004974, 52.89199453300006), (0.47234134200004974, 52.916449286000045), (0.48568769600007045, 52.93349844000005), (0.5202742850000845, 52.95526764500005), (0.5695906910000872, 52.96930573100008), (0.6233830090000652, 52.97565338700008), (0.6718856130000859, 52.97443268400008), (0.6643986340000652, 52.98187897300005), (0.6847436860000471, 52.986395575000074), (0.7067977220000898, 52.98322174700007), (0.7291772800000444, 52.97748444200005), (0.7504988940000885, 52.97443268400008), (0.8357039720000898, 52.97443268400008), (0.8754988940000885, 52.96816640800006), (0.9210718110000471, 52.95465729400007), (0.9684350920000497, 52.94749583500004), (1.013926629000082, 52.960150458000044), (1.0034285820000832, 52.96474844000005), (0.9915470710000704, 52.96747467700004), (0.9790145190000885, 52.968410549000055), (0.9660750660000872, 52.96759674700007), (0.9660750660000872, 52.97443268400008), (1.2746688160000872, 52.92918528900003), (1.3960067070000832, 52.89142487200007), (1.6442163420000497, 52.775824286000045), (1.6733504570000832, 52.75568268400008), (1.6970320970000898, 52.73102448100008), (1.7158309250000912, 52.68374258000006), (1.7341414720000898, 52.65460846600007), (1.747243686000047, 52.62518952000005), (1.7407332690000885, 52.60390859600005), (1.7468367850000845, 52.58852773600006), (1.7487085300000444, 52.568793036000045), (1.7475692070000832, 52.53278229400007), (1.7711694670000497, 52.48590729400007), (1.7671004570000832, 52.47695547100005), (1.7544051440000885, 52.46735260600008), (1.7292586600000845, 52.41559479400007), (1.7301538420000497, 52.405910549000055), (1.7278751960000704, 52.39630768400008), (1.6836043630000859, 52.32453034100007), (1.6518660820000832, 52.289129950000074), (1.6411238940000885, 52.28180573100008), (1.6305444670000497, 52.27045319200005), (1.6282658210000704, 52.24481842700004), (1.6308699880000859, 52.19977448100008), (1.6254988940000885, 52.18036530200004), (1.6074324880000859, 52.14594147300005), (1.6035262380000859, 52.127834377000056), (1.5892033210000704, 52.100816148000035), (1.5875757170000497, 52.08698151200008), (1.582286004000082, 52.08148834800005), (1.5036727220000898, 52.060980536000045), (1.4868270190000885, 52.04901764500005), (1.4720158210000704, 52.05621979400007), (1.4668074880000859, 52.04800039300005), (1.4638778000000912, 52.035142320000034), (1.4558211600000845, 52.028509833000044), (1.4489852220000898, 52.02496979400007), (1.4248153000000912, 52.00185781500005), (1.3548283210000704, 51.95404694200005), (1.3435164720000898, 51.94285716400009), (1.332286004000082, 51.94009023600006), (1.2644149100000845, 51.99437083500004), (1.2348738940000885, 52.00031159100007), (1.1852319670000497, 52.025091864000046), (1.1578882170000497, 52.028509833000044), (1.1578882170000497, 52.02167389500005), (1.1935327480000524, 52.00079987200007), (1.2143660820000832, 51.991441148000035), (1.2602645190000885, 51.984808661000045), (1.2707625660000872, 51.98151276200008), (1.2751570970000898, 51.976996161000045), (1.2744246750000912, 51.96088288000004), (1.2710067070000832, 51.95644765800006), (1.2507430350000845, 51.95962148600006), (1.2389429050000444, 51.958644924000055), (1.2176212900000678, 51.954331773000035), (1.2057397800000444, 51.95343659100007), (1.193207227000073, 51.955511786000045), (1.1652938160000872, 51.96702708500004), (1.1430770190000885, 51.966050523000035), (1.0944930350000845, 51.955959377000056), (1.0691024100000845, 51.95343659100007), (1.0954695970000898, 51.945746161000045), (1.2620548840000652, 51.939154364000046), (1.2819930350000845, 51.946600653000075), (1.278493686000047, 51.92792389500005), (1.1995548840000652, 51.87767161700003), (1.2122501960000704, 51.87164948100008), (1.2278751960000704, 51.86737702000005), (1.2644149100000845, 51.86399974200003), (1.2747501960000704, 51.870306708000044), (1.2822371750000912, 51.880560614000046), (1.2866317070000832, 51.88165924700007), (1.288259311000047, 51.860581773000035), (1.2763778000000912, 51.84479401200008), (1.2192488940000885, 51.811835028000075), (1.167816602000073, 51.790228583000044), (1.1354272800000444, 51.78172435100004), (1.0654403000000912, 51.77529531500005), (1.0466414720000898, 51.777044989000046), (1.0372827480000524, 51.78217194200005), (1.021332227000073, 51.80255768400008), (0.9887801440000885, 51.83026764500005), (0.9798283210000704, 51.84357330900008), (0.9770613940000885, 51.82461172100005), (0.9620874360000471, 51.813788153000075), (0.9251408210000704, 51.80255768400008), (0.8942977220000898, 51.78461334800005), (0.8869735040000819, 51.782131252000056), (0.8864038420000497, 51.776678778000075), (0.8834741550000444, 51.76471588700008), (0.8789168630000859, 51.75275299700007), (0.8737085300000444, 51.747300523000035), (0.8619897800000444, 51.74555084800005), (0.8459578790000819, 51.736761786000045), (0.8357039720000898, 51.733710028000075), (0.8234969410000872, 51.73383209800005), (0.8014429050000444, 51.73969147300005), (0.7917586600000845, 51.74115631700005), (0.7671004570000832, 51.739447333000044), (0.7208764980000524, 51.728176174000055), (0.6985783210000704, 51.720038153000075), (0.7142033210000704, 51.715277411000045), (0.7324324880000859, 51.713771877000056), (0.7492781910000872, 51.70848216400009), (0.7607528000000912, 51.692694403000075), (0.7890731130000859, 51.710150458000044), (0.8530379570000832, 51.71889883000006), (0.8835555350000845, 51.72687409100007), (0.9123641290000819, 51.741522528000075), (0.9300236340000652, 51.74359772300005), (0.9455672540000819, 51.733710028000075), (0.9474389980000524, 51.72524648600006), (0.9445906910000872, 51.71548086100006), (0.9404403000000912, 51.70799388200004), (0.9381616550000444, 51.706366278000075), (0.9401961600000845, 51.698431708000044), (0.9440210300000444, 51.69057851800005), (0.9518335300000444, 51.67841217700004), (0.9417423840000652, 51.673041083000044), (0.9379988940000885, 51.664496161000045), (0.9381616550000444, 51.64126211100006), (0.9347436860000471, 51.63589101800005), (0.9267684250000912, 51.630926825000074), (0.9114689460000704, 51.62384674700007), (0.9384871750000912, 51.624986070000034), (0.9480900400000678, 51.621527411000045), (0.9518335300000444, 51.61701080900008), (0.9244897800000444, 51.588324286000045), (0.8733016290000819, 51.559475002000056), (0.8282983730000524, 51.541856187000064), (0.8162541020000731, 51.537176825000074), (0.7712508470000898, 51.52826569200005), (0.6920679050000444, 51.536322333000044), (0.6643986340000652, 51.53506094000005), (0.6637475920000497, 51.53554922100005), (0.6505639980000524, 51.53579336100006), (0.6466577480000524, 51.53534577000005), (0.6440535820000832, 51.53506094000005), (0.6427514980000524, 51.53351471600007), (0.6233830090000652, 51.52204010600008), (0.6086531910000872, 51.51898834800005), (0.5952254570000832, 51.51862213700008), (0.5822860040000819, 51.51654694200005), (0.5688582690000885, 51.50836823100008), (0.5527449880000859, 51.51797109600005), (0.5472111340000652, 51.51772695500006), (0.5254012380000859, 51.516913153000075), (0.45606530000009116, 51.505560614000046), (0.45085696700004974, 51.49827708500004), (0.44800866000008455, 51.48822663000004), (0.4416610040000819, 51.47703685100004), (0.42847741000008455, 51.46710846600007), (0.41407311300008587, 51.46190013200004), (0.39918053500008455, 51.45840078300006), (0.38453209700008983, 51.453111070000034), (0.4484155610000471, 51.45994700700004), (0.45679772200008983, 51.46312083500004), (0.4614363940000885, 51.47016022300005), (0.46485436300008587, 51.47724030200004), (0.4695744150000678, 51.48041413000004), (0.5348413420000497, 51.49168528900009), (0.6948348320000832, 51.47703685100004), (0.7094832690000885, 51.47052643400008), (0.7219344410000872, 51.456284898000035), (0.7231551440000885, 51.44672272300005), (0.7131453790000819, 51.44122955900008), (0.6923934250000912, 51.439520575000074), (0.6565047540000819, 51.444525458000044), (0.6409611340000652, 51.44415924700007), (0.6093856130000859, 51.425116278000075), (0.5727645190000885, 51.419582424000055), (0.5545353520000731, 51.412176825000074), (0.5622664720000898, 51.40656159100007), (0.5691024100000845, 51.399603583000044), (0.5765080090000652, 51.39362213700008), (0.5859481130000859, 51.391058661000045), (0.6718856130000859, 51.391058661000045), (0.7129012380000859, 51.38422272300005), (0.7049259770000731, 51.39598216400009), (0.7003686860000471, 51.409816799000055), (0.7053328790000819, 51.41950104400007), (0.7264103520000731, 51.41901276200008), (0.7283634770000731, 51.406236070000034), (0.7392684250000912, 51.387925523000035), (0.7534285820000832, 51.371527411000045), (0.7644149100000845, 51.36440664300005), (0.9772241550000444, 51.34918854400007), (1.1009220710000704, 51.37323639500005), (1.4238387380000859, 51.39207591400009), (1.4482528000000912, 51.382879950000074), (1.4391382170000497, 51.35008372600004), (1.4355574880000859, 51.343736070000034), (1.430837436000047, 51.33779531500005), (1.4251408210000704, 51.33295319200005), (1.4186304050000444, 51.32965729400007), (1.3829858730000524, 51.329779364000046), (1.3776147800000444, 51.326239325000074), (1.3806258470000898, 51.304754950000074), (1.387868686000047, 51.28790924700007), (1.4043074880000859, 51.261379299000055), (1.4130965500000912, 51.22174713700008), (1.4047957690000885, 51.18353913000004), (1.3844507170000497, 51.151678778000075), (1.3571883470000898, 51.13100820500006), (1.2903751960000704, 51.116522528000075), (1.2629500660000872, 51.10325755400004), (1.2516382170000497, 51.10252513200004), (1.2299910820000832, 51.10370514500005), (1.2181095710000704, 51.10097890800006), (1.2082625660000872, 51.09467194200005), (1.1997176440000885, 51.087591864000046), (1.1920679050000444, 51.08258698100008), (1.1722111340000652, 51.077378648000035), (1.1067000660000872, 51.07636139500005), (1.0871688160000872, 51.07298411700003), (1.0669051440000885, 51.06439850500004), (1.027598504000082, 51.04165273600006), (0.9764103520000731, 50.99445221600007), (0.9664819670000497, 50.98273346600007), (0.9690861340000652, 50.95685455900008), (0.9798283210000704, 50.91815827000005), (0.9451603520000731, 50.909369208000044), (0.8698022800000444, 50.925116278000075), (0.8022567070000832, 50.93919505400004), (0.7624617850000845, 50.930894273000035), (0.6643986340000652, 50.870306708000044), (0.6241968110000471, 50.858710028000075), (0.4074813160000872, 50.829331773000035), (0.3702905610000471, 50.818793036000045), (0.36524498800008587, 50.81899648600006), (0.35425866000008455, 50.80963776200008), (0.34441165500004445, 50.79905833500004), (0.3422957690000885, 50.79515208500004), (0.3081160820000832, 50.780951239000046), (0.2710067070000832, 50.747381903000075), (0.23389733200008322, 50.74701569200005), (0.2141219410000872, 50.748928127000056), (0.16830488400006516, 50.759833075000074), (0.1573999360000471, 50.761053778000075), (0.12208092500009116, 50.76080963700008), (0.11304772200008983, 50.76414622600004), (0.09555097700007309, 50.775051174000055), (0.07703698000005943, 50.778998114000046), (0.034515821000070446, 50.780951239000046), (0.01754804800009424, 50.784857489000046), (-0.17316646999995555, 50.829006252000056), (-0.20612545499994894, 50.83104075700004), (-0.20889238199993088, 50.83010488500008), (-0.2331436839999128, 50.821926174000055), (-0.2696833979999269, 50.831284898000035), (-0.39757239499994057, 50.802069403000075), (-0.5689591139999379, 50.802069403000075), (-0.7327367829999503, 50.767279364000046), (-0.7415665359999366, 50.769232489000046), (-0.7498673169999392, 50.773871161000045), (-0.7582087879999335, 50.77708567900004), (-0.7675675119999141, 50.774725653000075), (-0.7731013659999348, 50.76601797100005), (-0.7662654289999296, 50.74713776200008), (-0.7709854809999115, 50.73688385600008), (-0.7899470689999362, 50.73004791900007), (-0.8128149079999503, 50.73476797100005), (-0.9041235019999476, 50.77187734600005), (-0.9114884109999366, 50.77781810100004), (-0.9058731759999432, 50.78803131700005), (-0.8924861319999309, 50.794623114000046), (-0.8636368479999419, 50.802069403000075), (-0.8636368479999419, 50.808254299000055), (-0.8736059239999463, 50.812933661000045), (-0.8931371739999463, 50.82534414300005), (-0.9046931629999335, 50.829331773000035), (-0.9095352859999366, 50.82599518400008), (-0.9217016269999476, 50.821600653000075), (-0.9289444649999155, 50.82282135600008), (-0.9190160799999489, 50.83616771000004), (-0.9297989569999459, 50.83999258000006), (-0.9391983709999181, 50.84324778900009), (-0.9707738919999542, 50.846991278000075), (-0.9948624339999128, 50.84707265800006), (-1.0018611319999309, 50.84711334800005), (-1.0207413399999155, 50.84365469000005), (-1.033558722999942, 50.82591380400004), (-1.0426326159999348, 50.80190664300005), (-1.0562231109999516, 50.78302643400008), (-1.0827530589999128, 50.780951239000046), (-1.1030167309999115, 50.79547760600008), (-1.0936173169999392, 50.812933661000045), (-1.0753067699999406, 50.83002350500004), (-1.069162563999953, 50.84365469000005), (-1.0873103509999282, 50.84979889500005), (-1.0881241529999102, 50.84975820500006), (-1.1498103509999282, 50.84666575700004), (-1.1647029289999296, 50.84365469000005), (-1.129709438999953, 50.825100002000056), (-1.1237686839999128, 50.818793036000045), (-1.1212052069999459, 50.79938385600008), (-1.1249080069999309, 50.788723049000055), (-1.1380509109999366, 50.780951239000046), (-1.1511124339999128, 50.78139883000006), (-1.1693416009999282, 50.78587474200003), (-1.1856176419999542, 50.79242584800005), (-1.1926163399999155, 50.79865143400008), (-1.1992895169999542, 50.807928778000075), (-1.231516079999949, 50.81891510600008), (-1.2551977199999556, 50.83193594000005), (-1.288156704999949, 50.839178778000075), (-1.3014216789999296, 50.84365469000005), (-1.3185929029999102, 50.85691966400009), (-1.338937954999949, 50.872707424000055), (-1.4492895169999542, 50.91205475500004), (-1.4664200509999432, 50.91815827000005), (-1.4664200509999432, 50.91193268400008), (-1.4564509759999282, 50.90875885600008), (-1.4379776679999168, 50.90131256700005), (-1.4256078769999476, 50.900091864000046), (-1.4011124339999128, 50.88117096600007), (-1.323068813999953, 50.82575104400007), (-1.3142797519999476, 50.812160549000055), (-1.3172908189999362, 50.80023834800005), (-1.3398331369999141, 50.79515208500004), (-1.4039607409999348, 50.79157135600008), (-1.4186905589999128, 50.788397528000075), (-1.4113663399999155, 50.78489817900004), (-1.4049373039999296, 50.780951239000046), (-1.4049373039999296, 50.774725653000075), (-1.4505102199999556, 50.76935455900008), (-1.4762263659999348, 50.76341380400004), (-1.4875382149999155, 50.75771719000005), (-1.491932745999918, 50.75726959800005), (-1.5247289699999556, 50.761053778000075), (-1.5571996739999463, 50.72329336100006), (-1.559396938999953, 50.71922435100004), (-1.5611873039999296, 50.71898021000004), (-1.5807185539999296, 50.722642320000034), (-1.6021215489999463, 50.731756903000075), (-1.6706436839999128, 50.74005768400008), (-1.672922329999949, 50.74005768400008), (-1.6930232409999348, 50.739935614000046), (-1.7150772779999102, 50.73578522300005), (-1.7535294259999432, 50.72284577000005), (-1.7717179029999102, 50.72011953300006), (-1.7974340489999463, 50.723171291000085), (-1.8350723949999406, 50.72768789300005), (-1.8574112619999141, 50.72695547100005), (-1.8773494129999335, 50.72284577000005), (-1.8963516919999392, 50.71629466400009), (-1.8968806629999335, 50.716050523000035), (-1.9138891269999476, 50.70742422100005), (-1.9291072259999282, 50.69586823100008), (-1.9400121739999463, 50.69082265800006), (-1.9443253249999088, 50.69765859600005), (-1.946115688999953, 50.707912502000056), (-1.9492895169999542, 50.713324286000045), (-1.9877009759999282, 50.72011953300006), (-2.01390540299991, 50.71893952000005), (-2.0219620429999168, 50.72011953300006), (-2.0254613919999542, 50.723863023000035), (-2.026193813999953, 50.72508372600004), (-2.0338435539999296, 50.73712799700007), (-2.038970506999931, 50.739935614000046), (-2.0480850899999155, 50.734808661000045), (-2.0826716789999296, 50.69896067900004), (-2.0695694649999155, 50.700100002000056), (-2.0577286449999406, 50.702826239000046), (-2.046620245999918, 50.70726146000004), (-2.0356339179999168, 50.713324286000045), (-2.0141495429999168, 50.688788153000075), (-2.0025121739999463, 50.681301174000055), (-1.984120245999918, 50.67853424700007), (-1.9674373039999296, 50.67865631700005), (-1.9527888659999348, 50.67658112200007), (-1.9458715489999463, 50.668850002000056), (-1.9529516269999476, 50.65184153900009), (-1.9382218089999128, 50.645819403000075), (-1.9324845039999445, 50.64443594000005), (-1.9672745429999168, 50.61709219000005), (-1.965199347999942, 50.60219961100006), (-1.9837133449999556, 50.59662506700005), (-2.065174933999913, 50.59552643400008), (-2.082183397999927, 50.59784577000005), (-2.1573380199999406, 50.62051015800006), (-2.3426407539999445, 50.63377513200004), (-2.377064581999946, 50.64752838700008), (-2.398345506999931, 50.64557526200008), (-2.435902472999942, 50.63751862200007), (-2.447621222999942, 50.62787506700005), (-2.4600723949999406, 50.60651276200008), (-2.465646938999953, 50.585150458000044), (-2.4564509759999282, 50.575506903000075), (-2.4312231109999516, 50.57025788000004), (-2.428700324999909, 50.55756256700005), (-2.4392797519999476, 50.54181549700007), (-2.45335852799991, 50.52765534100007), (-2.4595434239999463, 50.52765534100007), (-2.4603572259999282, 50.56549713700008), (-2.4835098949999406, 50.59039948100008), (-2.6929418609999516, 50.69281647300005), (-2.8648168609999516, 50.73379140800006), (-2.887318488999938, 50.734361070000034), (-2.94554602799991, 50.725816148000035), (-2.9627579419999392, 50.72329336100006), (-2.998199022999927, 50.708238023000035), (-3.021839972999942, 50.70648834800005), (-3.059722459999932, 50.713324286000045), (-3.071359829999949, 50.711004950000074), (-3.0941462879999335, 50.69896067900004), (-3.099232550999943, 50.69708893400008), (-3.115834113999938, 50.68797435100004), (-3.1254776679999168, 50.68528880400004), (-3.135894334999932, 50.68593984600005), (-3.1551407539999445, 50.69135163000004), (-3.1664932929999168, 50.69281647300005), (-3.1856176419999542, 50.690741278000075), (-3.2191462879999335, 50.68081289300005), (-3.2598363919999542, 50.67454661700003), (-3.271392381999931, 50.664496161000045), (-3.280425584999932, 50.65119049700007), (-3.2955623039999296, 50.63751862200007), (-3.368153449999909, 50.61709219000005), (-3.390736456999946, 50.61782461100006), (-3.4075414699999556, 50.62128327000005), (-3.420969204999949, 50.62946198100008), (-3.433338995999918, 50.64443594000005), (-3.446359829999949, 50.66828034100007), (-3.4504288399999155, 50.672308661000045), (-3.453277147999927, 50.67328522300005), (-3.455433722999942, 50.675441799000055), (-3.458607550999943, 50.67755768400008), (-3.4644262359999516, 50.67853424700007), (-3.467762824999909, 50.67641836100006), (-3.468902147999927, 50.67169830900008), (-3.467844204999949, 50.66697825700004), (-3.45531165299991, 50.657904364000046), (-3.4420466789999296, 50.62352122600004), (-3.433338995999918, 50.610256252000056), (-3.451161261999914, 50.59943268400008), (-3.4672745429999168, 50.585598049000055), (-3.4817602199999556, 50.56854889500005), (-3.494862433999913, 50.548163153000075), (-3.505970831999946, 50.520819403000075), (-3.505034959999932, 50.501206773000035), (-3.487456834999932, 50.459418036000045), (-3.509755011999914, 50.45848216400009), (-3.532134568999936, 50.454779364000046), (-3.549427863999938, 50.446519273000035), (-3.556263800999943, 50.43211497600004), (-3.5493057929999168, 50.41559479400007), (-3.531971808999913, 50.410223700000074), (-3.487456834999932, 50.41156647300005), (-3.487456834999932, 50.40477122600004), (-3.4974666009999282, 50.38735586100006), (-3.49828040299991, 50.383693752000056), (-3.5073136059999115, 50.382798570000034), (-3.5149633449999556, 50.37995026200008), (-3.520130988999938, 50.37482330900008), (-3.5269262359999516, 50.34979889500005), (-3.5388891269999476, 50.34442780200004), (-3.5545141269999476, 50.347642320000034), (-3.57054602799991, 50.35639069200005), (-3.577788865999935, 50.334051825000074), (-3.5991104809999115, 50.325832424000055), (-3.6215714179999168, 50.321926174000055), (-3.631988084999932, 50.31232330900008), (-3.6373591789999296, 50.29539622600004), (-3.6475723949999406, 50.27456289300005), (-3.653309699999909, 50.25104401200008), (-3.6456192699999406, 50.22601959800005), (-3.6606339179999168, 50.22101471600007), (-3.700917120999918, 50.21352773600006), (-3.7180069649999155, 50.21238841400009), (-3.740386522999927, 50.21588776200008), (-3.758615688999953, 50.22174713700008), (-3.774240688999953, 50.22296784100007), (-3.788970506999931, 50.21238841400009), (-3.826324022999927, 50.23419830900008), (-3.8841853509999282, 50.280462958000044), (-3.949940558999913, 50.31899648600006), (-3.9610082669999542, 50.322251695000034), (-3.9702042309999115, 50.320746161000045), (-3.995757615999935, 50.311428127000056), (-4.005604620999918, 50.30923086100006), (-4.011341925999943, 50.30695221600007), (-4.024769660999937, 50.29718659100007), (-4.032948370999918, 50.294907945000034), (-4.044056769999941, 50.29645416900007), (-4.054351365999935, 50.30036041900007), (-4.070220506999931, 50.30923086100006), (-4.067941860999952, 50.31281159100007), (-4.064035610999952, 50.322251695000034), (-4.086008266999954, 50.326239325000074), (-4.1082657539999445, 50.33661530200004), (-4.118723110999952, 50.35187409100007), (-4.1049698559999115, 50.37067291900007), (-4.141753709999932, 50.36904531500005), (-4.1527400379999335, 50.37067291900007), (-4.1655167309999115, 50.37636953300006), (-4.171457485999952, 50.382798570000034), (-4.175770636999914, 50.39085521000004), (-4.18382727799991, 50.40106842700004), (-4.191477016999954, 50.417629299000055), (-4.18390865799995, 50.431708075000074), (-4.1703181629999335, 50.44513580900008), (-4.159535285999937, 50.459418036000045), (-4.179432745999918, 50.45307038000004), (-4.189564581999946, 50.45368073100008), (-4.200550910999937, 50.459418036000045), (-4.203684048999946, 50.45140208500004), (-4.204741990999935, 50.44867584800005), (-4.2123917309999115, 50.441473700000074), (-4.222523566999939, 50.43797435100004), (-4.234730597999942, 50.43829987200007), (-4.234730597999942, 50.43211497600004), (-4.2202042309999115, 50.425848700000074), (-4.2161352199999556, 50.415716864000046), (-4.219715949999909, 50.40509674700007), (-4.228505011999914, 50.397365627000056), (-4.2414444649999155, 50.39468008000006), (-4.2899063789999445, 50.397365627000056), (-4.273019985999952, 50.38190338700008), (-4.216175910999937, 50.38776276200008), (-4.1937556629999335, 50.37689850500004), (-4.228505011999914, 50.37067291900007), (-4.228505011999914, 50.36383698100008), (-4.220122850999928, 50.365301825000074), (-4.200550910999937, 50.36383698100008), (-4.207997199999909, 50.35639069200005), (-4.180043097999942, 50.35639069200005), (-4.180043097999942, 50.35016510600008), (-4.191314256999931, 50.34756094000005), (-4.197987433999913, 50.342230536000045), (-4.199126756999931, 50.33539459800005), (-4.1937556629999335, 50.32843659100007), (-4.1937556629999335, 50.322251695000034), (-4.214995897999927, 50.323146877000056), (-4.225697394999941, 50.33539459800005), (-4.235096808999913, 50.34955475500004), (-4.2523494129999335, 50.35639069200005), (-4.337717251999948, 50.37067291900007), (-4.383697068999936, 50.36749909100007), (-4.456206834999932, 50.33820221600007), (-4.4953507149999155, 50.32843659100007), (-4.659820115999935, 50.322251695000034), (-4.659575975999928, 50.32062409100007), (-4.662709113999938, 50.31777578300006), (-4.667795376999948, 50.315334377000056), (-4.673451300999943, 50.31541575700004), (-4.687163865999935, 50.34271881700005), (-4.694325324999909, 50.343451239000046), (-4.700184699999909, 50.34088776200008), (-4.705555792999917, 50.337551174000055), (-4.7113337879999335, 50.33588288000004), (-4.731556769999941, 50.33466217700004), (-4.752105272999927, 50.33030833500004), (-4.763295050999943, 50.32208893400008), (-4.755441860999952, 50.30923086100006), (-4.755441860999952, 50.30174388200004), (-4.7623591789999296, 50.298041083000044), (-4.771636522999927, 50.29157135600008), (-4.779855923999946, 50.28432851800005), (-4.783355272999927, 50.27789948100008), (-4.7818904289999296, 50.27179596600007), (-4.776519334999932, 50.26508209800005), (-4.776519334999932, 50.26080963700008), (-4.788441535999937, 50.24209219000005), (-4.790150519999941, 50.23655833500004), (-4.800160285999937, 50.22955963700008), (-4.849720831999946, 50.23456452000005), (-4.868723110999952, 50.22943756700005), (-4.887318488999938, 50.21499258000006), (-4.904774542999917, 50.20844147300005), (-4.947255011999914, 50.19936758000006), (-4.960682745999918, 50.19049713700008), (-5.002430792999917, 50.14411041900007), (-5.014556443999936, 50.15656159100007), (-5.0203751289999445, 50.19196198100008), (-5.033192511999914, 50.19936758000006), (-5.05296790299991, 50.19578685100004), (-5.053618943999936, 50.18691640800006), (-5.051869269999941, 50.17552317900004), (-5.064564581999946, 50.16461823100008), (-5.064564581999946, 50.15839264500005), (-5.058501756999931, 50.155462958000044), (-5.043446417999917, 50.14411041900007), (-5.051869269999941, 50.144598700000074), (-5.058461066999939, 50.14272695500006), (-5.070790167999917, 50.13727448100008), (-5.08031165299991, 50.13271719000005), (-5.081613735999952, 50.12539297100005), (-5.080962693999936, 50.117173570000034), (-5.085031704999949, 50.10993073100008), (-5.093902147999927, 50.105536200000074), (-5.125965949999909, 50.09634023600006), (-5.114654100999928, 50.09662506700005), (-5.106068488999938, 50.09511953300006), (-5.091867641999954, 50.089504299000055), (-5.086903449999909, 50.089056708000044), (-5.075347459999932, 50.09048086100006), (-5.070790167999917, 50.089504299000055), (-5.068470831999946, 50.085150458000044), (-5.064930792999917, 50.07184479400007), (-5.06086178299995, 50.06903717700004), (-5.056507941999939, 50.060614325000074), (-5.069488084999932, 50.042181708000044), (-5.0980525379999335, 50.01439036700003), (-5.107289191999939, 50.013006903000075), (-5.127430792999917, 50.01544830900008), (-5.139637824999909, 50.01439036700003), (-5.146473761999914, 50.01056549700007), (-5.176136847999942, 49.987941799000055), (-5.18773352799991, 49.964504299000055), (-5.191151495999918, 49.95913320500006), (-5.200103318999936, 49.961371161000045), (-5.210357225999928, 49.96674225500004), (-5.240386522999927, 49.988348700000074), (-5.245228644999941, 49.99310944200005), (-5.2495011059999115, 50.000067450000074), (-5.253041144999941, 50.01264069200005), (-5.25226803299995, 50.020697333000044), (-5.252674933999913, 50.027777411000045), (-5.259755011999914, 50.03766510600008), (-5.2884008449999556, 50.067694403000075), (-5.304351365999935, 50.08026764500005), (-5.323963995999918, 50.089504299000055), (-5.384185350999928, 50.10797760600008), (-5.424712693999936, 50.11273834800005), (-5.458119269999941, 50.125881252000056), (-5.47484290299991, 50.13043854400007), (-5.495676235999952, 50.12962474200003), (-5.521839972999942, 50.12372467700004), (-5.540923631999931, 50.11347077000005), (-5.540638800999943, 50.09975820500006), (-5.5346573559999115, 50.08234284100007), (-5.5455623039999296, 50.06891510600008), (-5.563465949999909, 50.05963776200008), (-5.57843990799995, 50.054754950000074), (-5.61945553299995, 50.046210028000075), (-5.667388475999928, 50.04287344000005), (-5.705148891999954, 50.05231354400007), (-5.715646938999953, 50.08270905200004), (-5.705962693999936, 50.08348216400009), (-5.698801235999952, 50.08539459800005), (-5.694488084999932, 50.089504299000055), (-5.694406704999949, 50.095770575000074), (-5.697092251999948, 50.10053131700005), (-5.700306769999941, 50.103216864000046), (-5.701975063999953, 50.103176174000055), (-5.707386847999942, 50.12201569200005), (-5.70921790299991, 50.13263580900008), (-5.70539303299995, 50.13727448100008), (-5.7035212879999335, 50.140611070000034), (-5.684641079999949, 50.16152578300006), (-5.676747199999909, 50.16502513200004), (-5.647368943999936, 50.17206452000005), (-5.583607550999943, 50.19586823100008), (-5.549427863999938, 50.20351797100005), (-5.5109757149999155, 50.21946849200003), (-5.4891251289999445, 50.21979401200008), (-5.458119269999941, 50.20075104400007), (-5.437977667999917, 50.19432200700004), (-5.417388475999928, 50.202460028000075), (-5.402943488999938, 50.21735260600008), (-5.395863410999937, 50.22724030200004), (-5.39289303299995, 50.23655833500004), (-5.3875626289999445, 50.240301825000074), (-5.351918097999942, 50.240301825000074), (-5.3148494129999335, 50.253607489000046), (-5.200306769999941, 50.33075592700004), (-5.1635636059999115, 50.34723541900007), (-5.1498917309999115, 50.35016510600008), (-5.146473761999914, 50.35529205900008), (-5.145659959999932, 50.366888739000046), (-5.147043423999946, 50.37938060100004), (-5.153675910999937, 50.39948151200008), (-5.142404751999948, 50.40448639500005), (-5.12726803299995, 50.40521881700005), (-5.119740363999938, 50.40477122600004), (-5.0502823559999115, 50.42869700700004), (-5.0481664699999556, 50.43439362200007), (-5.038726365999935, 50.44790273600006), (-5.029774542999917, 50.486761786000045), (-5.0286352199999556, 50.507025458000044), (-5.025257941999939, 50.52423737200007), (-5.015614386999914, 50.53803131700005), (-4.9955948559999115, 50.548163153000075), (-4.975168423999946, 50.548163153000075), (-4.967844204999949, 50.55158112200007), (-4.954823370999918, 50.56122467700004), (-4.947255011999914, 50.56244538000004), (-4.941477016999954, 50.55695221600007), (-4.937123175999943, 50.54531484600005), (-4.9344376289999445, 50.53164297100005), (-4.933583136999914, 50.52024974200003), (-4.926869269999941, 50.52289459800005), (-4.924305792999917, 50.52448151200008), (-4.920521613999938, 50.52765534100007), (-4.902414516999954, 50.52057526200008), (-4.860951300999943, 50.519191799000055), (-4.844838019999941, 50.51406484600005), (-4.855824347999942, 50.527411200000074), (-4.87328040299991, 50.534084377000056), (-4.906239386999914, 50.54197825700004), (-4.921864386999914, 50.55487702000005), (-4.92023678299995, 50.564154364000046), (-4.915191209999932, 50.57249583500004), (-4.920521613999938, 50.58295319200005), (-4.920521613999938, 50.589178778000075), (-4.895659959999932, 50.585923570000034), (-4.821197068999936, 50.589178778000075), (-4.7924698559999115, 50.59520091400009), (-4.7766007149999155, 50.60984935100004), (-4.765044725999928, 50.62799713700008), (-4.7492569649999155, 50.64443594000005), (-4.755441860999952, 50.659369208000044), (-4.751942511999914, 50.67007070500006), (-4.741932745999918, 50.67487213700008), (-4.728138800999943, 50.672308661000045), (-4.657297329999949, 50.71112702000005), (-4.645578579999949, 50.723537502000056), (-4.637806769999941, 50.74115631700005), (-4.619007941999939, 50.754787502000056), (-4.577259894999941, 50.774725653000075), (-4.5501195949999556, 50.80955638200004), (-4.55492102799991, 50.897772528000075), (-4.543771938999953, 50.93919505400004), (-4.536854620999918, 50.94757721600007), (-4.5226944649999155, 50.972723700000074), (-4.5266820949999556, 50.98037344000005), (-4.530425584999932, 50.99469635600008), (-4.531320766999954, 51.008693752000056), (-4.526437954999949, 51.014960028000075), (-4.437326626999948, 51.014960028000075), (-4.4264216789999296, 51.01268138200004), (-4.4057511059999115, 51.00287506700005), (-4.3957413399999155, 51.00067780200004), (-4.337717251999948, 50.99664948100008), (-4.317290818999936, 51.00067780200004), (-4.302316860999952, 51.007513739000046), (-4.234730597999942, 51.05532461100006), (-4.2291560539999296, 51.06110260600008), (-4.224680141999954, 51.06708405200004), (-4.218495245999918, 51.07245514500005), (-4.207997199999909, 51.07636139500005), (-4.214263475999928, 51.086004950000074), (-4.226307745999918, 51.11322663000004), (-4.228505011999914, 51.120428778000075), (-4.2319229809999115, 51.12669505400004), (-4.249012824999909, 51.14288971600007), (-4.255767381999931, 51.15151601800005), (-4.222320115999935, 51.149725653000075), (-4.214833136999914, 51.15151601800005), (-4.208363410999937, 51.16229889500005), (-4.2098282539999445, 51.17283763200004), (-4.217274542999917, 51.18138255400004), (-4.228505011999914, 51.18622467700004), (-4.228505011999914, 51.19245026200008), (-4.152333136999914, 51.21161530200004), (-3.969471808999913, 51.22239817900004), (-3.931996222999942, 51.231350002000056), (-3.9131973949999406, 51.23338450700004), (-3.840891079999949, 51.23338450700004), (-3.818959113999938, 51.23607005400004), (-3.787098761999914, 51.24677155200004), (-3.769154425999943, 51.247707424000055), (-3.6397598949999406, 51.22638580900008), (-3.559315558999913, 51.22809479400007), (-3.434193488999938, 51.20978424700007), (-3.4043676419999542, 51.19204336100006), (-3.38499915299991, 51.18622467700004), (-3.2707413399999155, 51.18939850500004), (-3.198882615999935, 51.203558661000045), (-3.1627498039999296, 51.206732489000046), (-3.096750454999949, 51.20453522300005), (-3.057525193999936, 51.20815664300005), (-3.029286261999914, 51.220404364000046), (-3.021839972999942, 51.21356842700004), (-3.0355525379999335, 51.199286200000074), (-3.021839972999942, 51.19245026200008), (-3.004790818999936, 51.21312083500004), (-3.0013321609999366, 51.220404364000046), (-2.9995824859999516, 51.23322174700007), (-3.0015356109999516, 51.23969147300005), (-3.0049942699999406, 51.24506256700005), (-3.008168097999942, 51.25454336100006), (-3.0076391269999476, 51.29197825700004), (-3.0106095039999445, 51.310980536000045), (-3.021839972999942, 51.32282135600008), (-3.0024307929999168, 51.31907786700003), (-2.992176886999914, 51.321926174000055), (-2.992095506999931, 51.32204824400009), (-2.988392706999946, 51.33112213700008), (-2.9877823559999115, 51.34666575700004), (-2.9798884759999282, 51.35586172100005), (-2.965972459999932, 51.364935614000046), (-2.959584113999938, 51.374253648000035), (-2.9746801419999542, 51.38422272300005), (-2.9529516269999476, 51.398504950000074), (-2.9210098949999406, 51.39443594000005), (-2.8841853509999282, 51.41697825700004), (-2.816395636999914, 51.47361888200004), (-2.798573370999918, 51.48261139500005), (-2.780873175999943, 51.48908112200007), (-2.7612198559999115, 51.49286530200004), (-2.7376195949999556, 51.49408600500004), (-2.716420050999943, 51.49957916900007), (-2.6961563789999445, 51.51264069200005), (-2.6078181629999335, 51.60736725500004), (-2.599598761999914, 51.611395575000074), (-2.5892227859999366, 51.61424388200004), (-2.580433722999942, 51.61863841400009), (-2.5768123039999296, 51.62750885600008), (-2.57445227799991, 51.63572825700004), (-2.568959113999938, 51.644964911000045), (-2.562245245999918, 51.65338776200008), (-2.556385870999918, 51.65924713700008), (-2.499175584999932, 51.69676341400009), (-2.464995897999927, 51.725897528000075), (-2.4477432929999168, 51.73187897300005), (-2.404896613999938, 51.74115631700005), (-2.3885391919999392, 51.750433661000045), (-2.380767381999931, 51.76190827000005), (-2.3833715489999463, 51.77326080900008), (-2.398060675999943, 51.782131252000056), (-2.4024145169999542, 51.76357656500005), (-2.4203995429999168, 51.753119208000044), (-2.4434301419999542, 51.74843984600005), (-2.4632869129999335, 51.747300523000035), (-2.482085740999935, 51.74286530200004), (-2.495838995999918, 51.73200104400007), (-2.507964647999927, 51.71857330900008), (-2.5221248039999296, 51.706366278000075), (-2.581695115999935, 51.681708075000074), (-2.5911352199999556, 51.67536041900007), (-2.600209113999938, 51.66559479400007), (-2.6653539699999556, 51.617254950000074)]\n", + " draw_map(plot, x, y, colour)\n", + " plot.plot(\n", + " [merc_x(coord[0]) for coord in gb_boundary],\n", + " [merc_y(coord[1]) for coord in gb_boundary],\n", + " \"k-\",\n", + " )\n", + "\n", + "country = Config(\n", + " get_data=get_literal_data(),\n", + " clean=get_map_cleaner_for(\"Temperature\"),\n", + " title=\"Country wide temperature\",\n", + " ylabel=\"\",\n", + " draw=draw_map_with_gb,\n", + ")\n", + "\n", + "out = widgets.interactive(interactable_plot_multiple_charts(configs=configs + (country, )), collected_after=start, collected_before=end)\n", + "display(out)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "apd.aggregation", + "language": "python", + "name": "apd.aggregation" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Ch10/apd.aggregation-chapter10-ex01/LICENCE b/Ch10/apd.aggregation-chapter10-ex01/LICENCE new file mode 100644 index 0000000..86685d4 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10-ex01/LICENCE @@ -0,0 +1,31 @@ +Copyright (c) 2019, Matthew Wilkes + + +All rights reserved. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + +* Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + +* Redistributions in binary form must reproduce the above copyright notice, this + list of conditions and the following disclaimer in the documentation and/or + other materials provided with the distribution. + +* Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived from this + software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND +ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. +IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, +INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, +BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY +OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE +OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED +OF THE POSSIBILITY OF SUCH DAMAGE. + + diff --git a/Ch10/apd.aggregation-chapter10-ex01/Mapping.ipynb b/Ch10/apd.aggregation-chapter10-ex01/Mapping.ipynb new file mode 100644 index 0000000..916e704 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10-ex01/Mapping.ipynb @@ -0,0 +1,254 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "datapoints = {\n", + " (53.8667, -1.3333): -1,\n", + " (53.35, -2.2833): 1,\n", + " (52.45, -1.7333): 3,\n", + " (51.5, -0.1333): 6,\n", + " (51.55, -2.5667): 5,\n", + " (54.9667, -1.6167): -1,\n", + " (55.9667, -3.2167): -1,\n", + " (54.7667, -1.5833): 0,\n", + " (53.7667, -0.3): 1,\n", + " (53.7667, -3.0167): 0,\n", + " (51.4833, -3.1833): 4,\n", + " (53.2667, -3.5167): 2,\n", + " (52.0833, -2.8): 2,\n", + " (52.0167, -0.6): 2,\n", + " (52.6667, 1.2667): 5,\n", + " (50.4333, -4.9833): 9,\n", + " (50.35, -4.1167): 10,\n", + " (50.5167, -2.45): 9,\n", + " (50.8333, -1.1667): 9,\n", + " (56.45, -5.4333): 4,\n", + " (57.5333, -4.05): -2,\n", + " (54.5167, -3.6167): 3,\n", + " (53.0833, 0.2667): 4,\n", + " (51.35, 1.3333): 7,\n", + " (50.8833, 0.3167): 8,\n", + " (58.45, -3.1): 3,\n", + " (50.1, -5.6667): 9,\n", + " (58.2167, -6.3333): 4,\n", + " (55.6833, -6.25): 7,\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAARS0lEQVR4nO3df4hc13nG8eexYodFuJWDVkq0tiqH2oIksiV3LEJFfshuJNukjiIItPQP0RRUmyTQgJVYFTRtjbGwUtxSSqlKTEOJGlKq3YS6tqTGENM/nGQVyZVCrcQ1SuJdN5JSRFOy9Q/57R9zx9pdzXpmdufee87M9wNmd+7OaF9rtM+ee+4573VECACQn6vqLgAAsDgEOABkigAHgEwR4ACQKQIcADL1tiq/2cqVK2PdunVVfksAyN7x48cvRMTo/OOVBvi6des0OTlZ5bcEgOzZ/lG740yhAECmCHAAyBQBDgCZIsABIFMEOABkqtJVKMBiTJyY0oEjZzR9cUZrVoxoz/b12rFprO6ygNoR4EjaxIkp7T18SjOvXZIkTV2c0d7DpySJEMfQYwoFSTtw5Myb4d0y89olHThypqaKgHQQ4Eja9MWZno4Dw4QAR9LWrBjp6TgwTAhwJG3P9vUauXrZnGMjVy/Tnu3ra6oISEfyFzFZgTDcWu81/waAKyUd4KxAgNR8r3m/gSslPYXCCgQAWFjSAc4KBABYWNIBzgoEAFhYVwFu+6ztU7ZP2p4sjm20/WzrmO3N/S6OFQgAsLBeLmJujYgLsx4/KulPIuJJ2/cUjz/cz+JYgQAAC1vKKpSQ9EvF578saXrp5VyJFQgA0F63AR6SjtoOSX8TEQcl/YGkI7a/qOZUzK+3e6Ht3ZJ2S9LatWuXXjEAQFL3FzG3RMRtku6W9CnbH5R0v6TPRsQNkj4r6UvtXhgRByOiERGN0dErbqoMAFikrgI8IqaLj+ckjUvaLGmXpMPFU/6xOAYAqEjHALe93Pa1rc8lbZN0Ws057w8VT7tD0g/LKhIAcKVu5sBXSxq33Xr+oYh4yvb/SvoL22+T9H8q5rkBANXoGOAR8aKkW9sc/zdJv1ZGUQCAzpLeiQkAWBgBDgCZSrqdLKpF73UgLwQ4JNF7HcgRUyiQRO91IEcEOCTRex3IEQEOSfReB3JEgEMSvdeBHHERE5LovQ7kiADHm+i9DuSFKRQAyBQBDgCZIsABIFMEOABkigAHgEwR4ACQKQIcADJFgANApghwAMgUAQ4AmSLAASBTBDgAZIoAB4BMEeAAkCkCHAAyRYADQKYIcADIFAEOAJnilmo9mjgxxX0jASSBAO/BxIkp7T18SjOvXZIkTV2c0d7DpySJEAdQOaZQenDgyJk3w7tl5rVLOnDkTE0VARhmBHgPpi/O9HQcAMpEgPdgzYqRno4DQJkI8B7s2b5eI1cvm3Ns5Opl2rN9fU0VARhmXMTsQetCJatQAKSAAO/Rjk1jBDaAJDCFAgCZIsABIFNdBbjts7ZP2T5pe3LW8c/YPmP7+7YfLa9MAMB8vcyBb42IC60HtrdK+pikWyLiFdur+l4dhg6tCoDuLeUi5v2S9kfEK5IUEef6UxKGFa0KgN50Owceko7aPm57d3HsZkkfsP1t29+yfXu7F9rebXvS9uT58+f7UTMGFK0KgN50OwLfEhHTxTTJMdvPF6+9TtL7Jd0u6Wu23x0RMfuFEXFQ0kFJajQaIWABtCoAetPVCDwipouP5ySNS9os6SVJh6PpO5LekLSyrEIx+GhVAPSmY4DbXm772tbnkrZJOi1pQtIdxfGbJV0j6cJCfw7QCa0KgN50M4WyWtK47dbzD0XEU7avkfS47dOSXpW0a/70CdALWhUAvXGVmdtoNGJycrLzExfAEjMAw8j28YhozD+eTS8UlpgBwFzZbKVniRkAzJVNgLPEDADmyibAWWIGAHNlE+AsMQOAubK5iMkSMwCYK5sAl7gbDgDMls0UCgBgLgIcADJFgANApghwAMgUAQ4AmSLAASBTBDgAZIoAB4BMEeAAkKmsdmICg4wblqBXBDiQAG5YgsVgCgVIADcswWIQ4EACuGEJFoMABxKw0I1JrrI1cWKq4mqQCwIcSEC7G5ZI0qUI7T18ihBHWwQ4kIAdm8b0yM4NWmZf8TXmwrEQAhxIxI5NY3ojou3XmAtHOwQ4kBBu3o1eEOBAQrh5N3rBRh70FbsJl4abd6MXBDj6ht2E/cHNu9EtplDQN+wmBKpFgKNv2E0IVIsAR9+wggKoFgGOvmEFBVAtLmKib1hBAVSLAEdfsYICqA5TKACQKQIcADJFgANApghwAMhUVwFu+6ztU7ZP2p6c97UHbIftleWUCABop5dVKFsj4sLsA7ZvkPQRST/ua1UAgI6WOoXymKTPSWrfhR4AUJpuAzwkHbV93PZuSbJ9r6SpiHiutOoAAAvqdgplS0RM214l6Zjt5yXtk7St0wuLwN8tSWvXrl10oQDmovc6uhqBR8R08fGcpHFJH5J0o6TnbJ+VdL2k79l+Z5vXHoyIRkQ0RkdH+1Y4MMxavdenLs4odLn3OnevHy4dR+C2l0u6KiJ+Xny+TdKfRsSqWc85K6kx/yIn0G+MOpveqvd6Sn8fvF/l6mYKZbWkcdut5x+KiKdKrQpogzv+XJZD73Xer/J1nEKJiBcj4tbiv/dGxMNtnrOO0TfKxh1/Lsuh9zrvV/nYiYls5DDqrEoOvdd5v8pHgCMbOYw6q7Jj05ge2blBYytGZEljK0b0yM4NSU1N8H6Vj37gyMae7evnzKlK6Y06q5R673Xer/IR4MgGd/zJC+9X+RxR3S74RqMRk5OTnZ8IAHiT7eMR0Zh/nDlwAMgUAQ4AmWIOHOiA3YRIFQEOvAV2EyJlBDhKlfvoNZeeIxhOBDhKMwijV3YTImVcxERpBqEXBrsJkTICHKUZhNFrDj1HMLyYQkFp1qwY0VSbsM5p9MpuwjTlfm2lXwhwlGZQemGk3nNk2AzCtZV+YQoFpcmhYx7yMwjXVvqFEThKxegV/TYI11b6hRE4gKywMugyAhxAVlgZdBlTKACywsqgywhwANnh2koTUygAkCkCHAAyxRQKAPRZVTtFCXAA6KMqd4oyhQIAfVTlTlECHAD6qMqdogQ4APRRlTtFCXCgJhMnprRl/9O68cEntGX/05o4MVV3SeiDKneKchETqAEtUQdXlTtFCXCgBtwsebBVtVOUKRSgBrRERT8Q4EANaImKfiDAgRrQEhX9wBw4UANaoqIfCHCgJrRExVIxhQIAmWIEjoFSVRc4IAUEOAYGm2MwbLoKcNtnJf1c0iVJr0dEw/YBSb8p6VVJ/ynpdyPiYlmFAp2wOaZ8nOGkpZc58K0RsTEiGsXjY5LeFxG3SPqBpL19rw7oAZtjytU6w5m6OKPQ5TMcerjUZ9EXMSPiaES8Xjx8VtL1/SkJWBw2x5Sryj7X6E63AR6Sjto+bnt3m69/UtKT7V5oe7ftSduT58+fX2ydQEdsjikXZzjp6TbAt0TEbZLulvQp2x9sfcH2PkmvS/pKuxdGxMGIaEREY3R0dMkFAwvZsWlMj+zcoLEVI7KksRUjemTnBuZo+4QznPR0dREzIqaLj+dsj0vaLOkZ27skfVTSnRER5ZUJdIfNMeXZs339nFU+Emc4des4Are93Pa1rc8lbZN02vZdkj4v6d6I+EW5ZQKoG2c46elmBL5a0rjt1vMPRcRTtl+Q9HZJx4qvPRsR95VWKYDacYaTlo4BHhEvSrq1zfFfLaUiAEBX6IUCAJkiwAEgU/RCwVBiSzgGAQGO5JQdrjS9qh+/QPuDKRQkpYp+G2wJrxc9VfqHAEdSqghXtoTXi1+g/cMUCpJSRbiuWTGiqTZ/HlvCqzFsv0DLnC5iBI6kVNFvg6ZX9RqmniplTxcR4EhKFeHKlvB6DdMv0LKni5hCQVJaIVr2CgW2hNenqvc4BWVPFxHgSA7hOviG5T0u+3oLUygAUJKyp4sYgQNAScqeLiLAAaBEZU4XMYUCAJkiwAEgUwQ4AGSKOXAA2Rr2roYEOIAs0RaYAAcGzrCMSt9qm/og/v+2Q4ADA2SYRqXD1tWwHS5iAgNkmHptD1NXw4UQ4MAAGaZR6TB1NVwIAQ4MkGEaldIWmDlwYKDs2b5+zhy4NNij0mHpargQAhwYIMPUaxsEOCBpsJbeDfuodJgQ4Bh6w7T0DoOFAK/JII34cseGEOSKAK8BI760DNPSOwwWlhHWIKXNFhMnprRl/9O68cEntGX/05o4MVV5DXUbpqV3GCwEeA1SGfG1zgSmLs4odPlMYNhCnA0hyBUBXoNURnwpnQnUiQ0hyBVz4DVIZbNFKmcCKWDpHXLECLwGqYz4UjkTALA4jMBrksKIL5UzAQCLQ4DPMmxrs9l2DeSNAC8M69rsFM4EACxOV3Pgts/aPmX7pO3J4tg7bB+z/cPi43XlllouVmQAyE0vFzG3RsTGiGgUjx+U9M2IuEnSN4vH2WJFBoDcLGUVysckfbn4/MuSdiy9nPqwIgNAbroN8JB01PZx27uLY6sj4mVJKj6uavdC27ttT9qePH/+/NIrLgm78QDkptuLmFsiYtr2KknHbD/f7TeIiIOSDkpSo9GIRdRYCVZkAMhNVwEeEdPFx3O2xyVtlvRT2++KiJdtv0vSuRLrrAQrMgDkpOMUiu3ltq9tfS5pm6TTkr4haVfxtF2Svl5WkQCAK3UzAl8tadx26/mHIuIp29+V9DXbvyfpx5I+UV6ZAID5OgZ4RLwo6dY2x38m6c4yigIAdEYzKwDIFAEOAJlyRHUr+2yfl/Sjyr6htFLShQq/X6+ob2lSri/l2iTqW4o6avuViBidf7DSAK+a7clZW/+TQ31Lk3J9KdcmUd9SpFQbUygAkCkCHAAyNegBfrDuAjqgvqVJub6Ua5OobymSqW2g58ABYJAN+ggcAAYWAQ4AmRqKALf9GdtnbH/f9qN11zOb7T+2PVXcru6k7Xvqrqkd2w/YDtsr666lxfZDtv+9+Hs7antN3TXNZvuA7eeLGsdtr6i7ptlsf6L4mXjDdhLL4mzfVfysvmA7qbt82X7c9jnbp+uupWXgA9z2VjXvHnRLRLxX0hdrLqmdx4rb1W2MiH+pu5j5bN8g6SNqNi1LyYGIuCUiNkr6Z0l/VHdB8xyT9L6IuEXSDyTtrbme+U5L2inpmboLkSTbyyT9laS7Jb1H0m/bfk+9Vc3xd5LuqruI2QY+wCXdL2l/RLwiNXua11xPjh6T9Dk178yUjIj4n1kPlyu9+o5GxOvFw2clXV9nPfNFxH9EREp37d4s6YWIeDEiXpX0VTUHX0mIiGck/Xfddcw2DAF+s6QP2P627W/Zvr3ugtr4dHGa/bjt6+ouZjbb90qaiojn6q6lHdsP2/6JpN9ReiPw2T4p6cm6i0jcmKSfzHr8UnEMC+j2lmpJs/2vkt7Z5kv71Px/vE7S+yXdrmYP83dHhesnO9T315IeUnP0+JCkP1Pzh70yHer7QzVv4lGLt6otIr4eEfsk7bO9V9KnJX0hpfqK5+yT9Lqkr1RZW/G9O9aXELc5ltRZVWoGIsAj4jcW+prt+yUdLgL7O7bfULMZTWV3WH6r+maz/bdqzuVWaqH6bG+QdKOk54obelwv6Xu2N0fEf9VZWxuHJD2higO8U322d0n6qKQ7qxw0tPTw95eClyTdMOvx9ZKma6olC8MwhTIh6Q5Jsn2zpGuUUJez4n6iLR9X88JSEiLiVESsioh1EbFOzR+w26oK705s3zTr4b2Sur7ZdhVs3yXp85LujYhf1F1PBr4r6SbbN9q+RtJvqXnrRixg4HdiFv8QHpe0UdKrkh6IiKfrreoy23+vZm0h6ayk34+Il2stagG2z0pqREQSvwBt/5Ok9ZLeULNN8X0RMVVvVZfZfkHS2yX9rDj0bETcV2NJc9j+uKS/lDQq6aKkkxGxveaa7pH055KWSXo8Ih6us57ZbP+DpA+reQb/U0lfiIgv1VrToAc4AAyqYZhCAYCBRIADQKYIcADIFAEOAJkiwAEgUwQ4AGSKAAeATP0/KVaoHKMq6aEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "fig, ax = plt.subplots()\n", + "lats = [ll[0] for ll in datapoints.keys()]\n", + "lons = [ll[1] for ll in datapoints.keys()]\n", + "ax.plot(lons, lats, \"o\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJcAAAD4CAYAAADhPXT2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAL9UlEQVR4nO3db6ieZR0H8O/XqXEQa8bOTKfrWOmCUqc9jmikLbOplC4hqFejgpVokNBK8Y0FoTgjehWdSPBFEQZzRWHTNIpeWJ41bTOc2pi2cyTPgoHSUme/Xjz3Wc8Oz3PO/dz3/buvP/f3A2PnPOc8ey7Gl+v/dV80M4h4OCV0ASRfCpe4UbjEjcIlbhQucXNqmx+2atUqm5qaavMjxdmePXuOmNnksJ+1Gq6pqSnMzMy0+ZHijOSLo36mZlHcKFziRuESNwqXuFG4xE2ro8XU7do7ix27D2Du6DGcu3IC2zevw5bL1oQuVrQUrpJ27Z3FHTv34dibbwEAZo8ewx079wGAAjaCmsWSduw+cCJYC469+RZ27D4QqETxU7hKmjt6bKzXReEq7dyVE2O9LgpXads3r8PEaStOem3itBXYvnldoBLFL1iHPrWR10LZUipzaEHClerIa8tla6IuX2yCNIsaeXVDkHBp5NUNQcKlkVc3lAoXyUMk95F8iuRM8dp6kk8svEZyQ9kP1cirG8bp0G8ysyMD398L4Ftm9jDJ64vvP1bmH9LIqxvqjBYNwNuLr98BYG6cN2vklb+y4TIAj5A0AD80s2kAXwOwm+R96DevHxn2RpLbAGwDgLVr19YvsSSjbId+o5ldDuA6ALeQvBLAzQBuM7PzAdwG4MfD3mhm02bWM7Pe5OTQQyKSqVLhMrO54u9XADwEYAOArQB2Fr/y8+I1kROWDRfJM0ieufA1gE8C2I9+H+uq4tc+DuB5r0JKmsr0uc4G8BDJhd//qZn9huRrAL5P8lQA/0HRrxJZsGy4zOwggEuHvP5HAB/yKJTkQVtuxI3CJW46e0Ajtf1kKepkuFLdT5aaTjaL2k/Wjk6GS/vJ2tHJcGk/WTs6GS7tJ2tHJzv02k/Wjk6GC9B+sjZ0slmUdihc4kbhEjcKl7hRuMSNwiVuFC5xo3CJG4VL3Chc4kbhEjcKl7hRuMSNwiVuFC5xo3CJG4VL3Chc4iapbc46JZ2WZMKlU9LpSaZZ1Cnp9CQTLp2STk8y4dIp6fQkEy6dkk5PMh16nZJOTzLhAnRKOjXJNIuSHoVL3FS+Eq94/askD5B8huS9fsWUFFW+Eo/kJgA3ArjEzF4nubrx0kVES0/jq9OhvxnAPWb2OnDiXqAsaempmrJ9roUr8fYUV9wBwEUAPkryTyR/T/KKYW8kua24SXZmfn6+iTK3TktP1ZStuTaa2VzR9D1K8tnivWcB+DCAKwA8SPI9ZmaDbyzuZpwGgF6vZ0iQlp6qqXMl3mEAO63vzwD+C2CVV0FD0tJTNXWuxNuF/lV4IHkRgNMBHBn176RMS0/V1LkS73QA95PcD+ANAFsXN4m50NJTNWwzD71ez2ZmTkyTaXifAZJ7zKw37GfB1hY1vM9fsOUfDe/zFyxcGt7nL1i4NLzPX7BwaXifv2Adeg3v8xd0J6p2luZNmwXFjcIlbhQucaNwiRuFS9woXOJG4RI3Cpe4UbjETVLPishRzhsmFa6Act8wqWYxoNw3TCpcAeW+YVLhCij3DZMKV0Cb3j851uupUbgC+t2zw5+dMer11ChcAanPJW7U5xI3uR9S0STqIm3OmOd+SEXhGhBixjznQypqFgfkPmPeNoVrQO6jt7YpXANyH721TeEakPvorW3q0A/IffTWNoVrkZxHb21TsyhuFC5xo3CJG4VL3NS6Eq/42ddJGsksb8+Q6ipfiQcAJM8HcA2AlxotlWShbrP4PQDfQP9WM5GTVL4Sj+QNAGbN7Gm30knS6lyJdyf6l0wtqQjjNgBYu3Zt5YJ2RU4nsKteiXcVgAsAPE3yEIDzAPyF5LuGvHfazHpm1puczONUi5eF/WSzR4/B8P/9ZLv2zoYuWiXL1lzFNXinmNmrA1fifdvMVg/8ziEAvcUd/hx51ixL7Sdb7jNirPEqX4nnWqpIee9UrbqfLNZnTizbLJrZQTO7tPjzATP7zpDfmepCreW9U7XqfrJYd9Bqhn4M3jtVq+4ni3UHrcI1Bu+dqlsuW4O7b7oYa1ZOgADWrJzA3TddvGzTFusOWu3nGsP2zetO6tsAze9UrbKfrI1yVaFwjSHWnaqxlivoHdeSvqXuuFafS9woXOJGfS5HMc6at0nhchLrrHmbFK4R6tY6ddYJc6FwDdFErRPrrHmb1KEfoom1ulhnzdukcA3RRK2j506oWRzq3JUTmB0SpHFqndhmzUOMXBWuIZpaq4vluROhRq5qFoeoujshVqH2e6nmGiGWWqcJoUauqrk6INTIVeHqgFAjVzWLHRBq5KpwdUSIPqSaRXGjcIkbNYuypDoz+wqXjFR3Zl/NooxUd2Zf4ZKR6s7sK1wyUt2ZfYUrkF17Z7Hxnsdxwe2/xsZ7Ho/yGVx1Z/bVoQ8glcMbdWf2Fa4AUjq8UWdmX81iAF05vKFwBdCVwxsKVwBdObyhPlcAsR3e8KJwBZLTNupR1CyKG9VcNXT9KTbLUbgqSmUiNKRS4SpuyHgVwFsAjptZj+QOAJ8G8AaAvwP4gpkd9SpobEJPhKZQa47T59pkZusHnn/5KIAPmtklAJ4DcEfjpYtYyInQVO4IqtyhN7NHzOx48e0T6F8u1RkhJ0JjvTFjscr3LS7yRQAPD3sjyW0kZ0jOzM/PVy1ndEJOhKayfFQ2XBvN7HIA1wG4heSVCz8geSeA4wB+MuyNuV6JF/J5EqksH5Xq0A/et0jyIQAbAPyB5FYAnwJwtbX5QPtIhJoIjfXGjMWWrblInkHyzIWv0b9vcT/JawF8E8ANZvZv32LKoFSewlP5vkWSLwB4G/rXEgPAE2b2FbeSyklSWD5aNlxmdhDApUNef59LiSQbWlsUNwqXuNHaYoNSWJJpk8JV0nLBiWkhO5aQq1ksocxaXixLMjGtOypcJZQJTixLMrGEHFCzWEqZ4DRxMUITPEJetZlVzVVCmbW8WE70NL3uWKeZVbhKKBOcWJZkmg55nWZWzWIJZY+CxbAk0/SxtTrNrMJVUgzBKavJstbpS6pZlCXVaWZVc8mS6jSzCpcsq2ozq2ZR3Chc4kbhEjfqc3VI27slFK6OCLElSOGKVNO1TIhnWyhcEfKoZUJsCVKHPkIee7JCnNJWuCLkUcuE2BKkcEXIo5YJsSVIfa4IeT0Lou2dHQpXhHJ5lLjC1bCmphBS2j82isLVoJjOLsYgi3DFcgg09EN4Y5N8uGKqLWI5uxiL5Kciqkw4et3SmsrjJNuSfLjGrS08j7vHcnYxFsmHa9zawvO4eyxnF2ORfJ9r3AlH735RDlMITUm+5hq3tlC/qD3J11zAeLVFKo/ZzkH04Wp6DiuXpZUURB0urzks9YvaUarPRfIQyX0knyI5U7z2TpKPkny++PuspgsX04PMZHx1rsS7HcBjZnYhgMeK7xulGe+01Rkt3gjggeLrBwBsqV+ck2lkl7Y6V+KdbWYvA0Dx9+phb6xzJZ5mvNNWtkO/0czmSK5G/66fZ8t+gJlNA5gGgF6vN9bNZhrZpa3OlXj/JHmOmb1M8hwAr3gUUCO7dFW+Eg/ALwFsLX5tK4BfeBVS0lTnSrwnATxI8ksAXgLwWb9iSorqXIn3LwBXexRK8pD8wrXES+ESN2zz3nOS8wBedPyIVQCOOP77KfL+P3m3mU0O+0Gr4fJGcmZgeUoQ9v9EzaK4UbjETW7hmg5dgAgF+z/Jqs8lccmt5pKIKFziJrtwkbyL5GyxJfspkteHLlMoJK8leYDkCyQb3ym87Ofn1ucieReA18zsvtBlCYnkCgDPAbgGwGEATwL4vJn9ra0yZFdzyQkbALxgZgfN7A0AP0N/a3prcg3XrST/SvJ+j1NJiVgD4B8D3x8uXmtNkuEi+VuS+4f8uRHADwC8F8B6AC8D+G7QwobDIa+12geK+lDsKGb2iTK/R/JHAH7lXJxYHQZw/sD35wGYa7MASdZcSyn28y/4DPpbsrvoSQAXkryA5OkAPof+1vTWJFlzLeNekuvRbwIOAfhy2OKEYWbHSd4KYDeAFQDuN7Nn2ixDdlMREo/smkWJh8IlbhQucaNwiRuFS9woXOJG4RI3/wOfdKaAPZfJtAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "fig, ax = plt.subplots()\n", + "lats = [ll[0] for ll in datapoints.keys()]\n", + "lons = [ll[1] for ll in datapoints.keys()]\n", + "# Don't draw lines\n", + "ax.plot(lons, lats, \"o\")\n", + "# This is a map of the UK. Here, 1 degree latitude is \n", + "# 1.7x as far as 1 degree longitude\n", + "ax.set_aspect(1.7)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Set up mercator transform from https://wiki.openstreetmap.org/wiki/Mercator#Python\n", + "# Thanks to Paulo Silva and the OSM contributors\n", + "import math\n", + "\n", + "def merc_x(lon):\n", + " r_major=6378137.000\n", + " return r_major*math.radians(lon)\n", + "\n", + "def merc_y(lat):\n", + " if lat>89.5:lat=89.5\n", + " if lat<-89.5:lat=-89.5\n", + " r_major=6378137.000\n", + " r_minor=6356752.3142\n", + " temp=r_minor/r_major\n", + " eccent=math.sqrt(1-temp**2)\n", + " phi=math.radians(lat)\n", + " sinphi=math.sin(phi)\n", + " con=eccent*sinphi\n", + " com=eccent/2\n", + " con=((1.0-con)/(1.0+con))**com\n", + " ts=math.tan((math.pi/2-phi)/2)/con\n", + " y=0-r_major*math.log(ts)\n", + " return y\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJkAAAEDCAYAAAAm1qYrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAARk0lEQVR4nO2de7BdVX3HP98mgqE8biTgwA1pghNCHTU8LoJaLQ9LgE4bcGhLtUVSbEpB+pgxo4zT6gwzVSd1xjIUMsBYSlVQMI1IlWgLiFMJmAgkPLx4IWO4CZbwCLYh05Lw6x973XBycu6957HW2Wvv8/vM3Mk5a6997u+efGft9fh915KZ4Tgp+ZWyA3Dqj4vMSY6LzEmOi8xJjovMSY6LzElOqSKT9GVJz0t6rM36vy/pCUmPS/pa6vicOKjMeTJJHwD+B7jFzN4xTd2FwDeAM83sZUlHmtnz/YjT6Y1SWzIzux94qbFM0tsk3S1pg6QfSjo+XPpT4B/N7OVwrwusIuTYJ7sBuNLMTgY+AVwXyo8DjpP0n5LWSTqntAidjphZdgCNSDoYeC9wu6SJ4gPDvzOBhcDpwFzgh5LeYWY7+h2n0xlZiYyiZd1hZie0uDYOrDOz14DNkkYpRPfjfgbodE5Wj0sz+yWFgH4PQAWLw+U1wBmhfA7F4/OZUgJ1OqLsKYxbgQeARZLGJV0KfAS4VNKjwOPA0lB9LfCipCeAe4EVZvZiGXE7nVHqFIYzGGT1uHTqSWkd/zlz5tj8+fPL+vVOAjZs2PCCmR3RXF6ayObPn8/69evL+vVOAiT9vFW5Py6d5LjInOS4yJzkuMic5LjInOTktnZZGdY8vJWVa0fZtmMXRw/NYsWSRZx/4nDZYWWJi6wL1jy8latWb2LXa3sA2LpjF1et3gTgQmuBPy67YOXa0b0Cm2DXa3tYuXa0pIjypi2RSfrrkFf/mKRbJb256bokXSNpTNJGSSelCTcPtu3Y1VH5oDOtyCQNA38BjIQ8/BnARU3VzqXI7VoILAeujxxnVhw9NKuj8kGn3cflTGCWpJnAQcC2putLKcwgZmbrgCFJR0WMMytWLFnErDfN2Kds1ptmsGLJopIiyptpO/5mtlXS3wNbgF3A98zse03VhoFnG96Ph7LnGitJWk7R0jFv3ry95VUbqU3EVqWYy2RakUmaTdFSLQB2UOTf/5GZfaWxWotb90tUM7MbKIwijIyMGFR3pHb+icNZx5cT7TwuPwhsNrPtIb9+NYXZo5Fx4JiG93PZ/5HaEh+p1Z92RLYFOE3SQSosRGcBTzbVuRO4OIwyTwNeMbPnmj+oFT5Sqz/TiszMHgTuAH4CbAr33CDpMkmXhWrfoTB1jAE3Ape3G4CP1OpPWzP+ZvYZ4DNNxasarhtwRTcBrFiyaJ8+GfhIrW6UvqzkI7X6U7rIwEdqdcfXLp3kuMic5LjInOS4yJzkuMic5LjInOS4yJzkuMic5LjInOS4yJzkZLGsVDZVy8ytGgMvsqpm5laJgX9cemZuegZeZJ6Zm552fJeLJD3S8PNLSX/VVOcwSd+W9GgwAS9LF3JcPDM3Pe2kX4+a2QnhAIeTgVeBf22qdgXwhJktpjgx5IuSDogdbArcQ5meTjv+ZwFPm1nz3qAGHBKMJgdTHMq1O0J8yfHM3PR0KrKLgFtblF9L4VjaBhwC/IGZvd5caTJzb9l4Zm5a2u74h8ff7wK3t7i8BHgEOBo4AbhW0qHNlczsBjMbMbORI47Ybydup6Z0Mro8F/iJmf1Xi2vLgNVhL4wxYDNwfIt6zgDSicj+kNaPSigMwGcBSHorsAg/XMsJtNUnk3QQ8FvAnzWUXQZgZquAq4GbJW2i2Bfjk2b2QvxwnSrSrrn3VeDwprJGc+824Oy4oTl1YeBn/J30uMic5LjInOS4yJzkuMic5LjInOS4yJzkuMic5LjInOS4yJzkuMic5LjInOS4yJzkuMic5FTWQe5bC1SHSorMtxaoFlHMvaHe6eH645J+kCbcAt9aoFq0c97lKIUDCUkzgK00mXslDQHXAeeY2RZJRyaIdS++tUC16LTjP5m598MUbqUtAGb2fIzgJsO3FqgWnYpsMnPvccBsSfdJ2iDp4lY3S1ouab2k9du3b+801r341gLVou2Of4O596pJPudkipZuFvCApHVm9lRjpVYn93aDby1QLToZXU5l7h0HXjCzncBOSfcDi4GnWtSNgm8tUB1imXu/Bbxf0szg0TyV/U/3dQaUKOZeM3tS0t3ARuB14CYzeyxBvE4FiWLuDe9XAivjhebUBV+7dJJTyWWlMvE1085xkXWAr5l2hz8uO8DXTLvDRdYBvmbaHS6yDvA10+5wkXWAr5l2h3f8O8DXTLsjK5FVYXrA10w7JxuR+fRAfcmmT+bTA/UlG5H59EB9yUZkPj1QX7IRmU8P1JdsOv4+PVBfshEZ+PRAXYlm7g11T5G0R9KF8UN1qkoUc2/DtS8AayPH6FScWOZegCuBbwJJjb1O9Yhi7pU0DFwArNrvjn3rRTH3OtUi1sm9X6I4fnBPi2t78ZN7B5NY5t4R4LbinHvmAOdJ2m1mayLE6FScTkQ2qbnXzBZMvJZ0M3CXC8yZoK3HZYO5d3VD2WUTBl/HmYpo5t6G8kt6D8upE9msXTr1JatlpUGnCpnB3eAiy4Q6Zwb74zIT6pwZ7CLLhDpnBrvIMqHOmcEuskw44/jWy2yTlVcJF1km3PvT1gkDk5VXCRdZJnifzEmO98mc5NTZreWTsVPQzxn4Oru1XGSTUMYMfF3dWv64nIQ6z8D3GxfZJNR5tNdvovguJX1E0sbw8yNJi9OF3B/qPNrrN9OKzMxGzewEMzuB4iS4V9nfd7kZ+E0zexdwNeEkuCpT59Fev+m049/Sd2lmP2p4uw6Y22tgZVPn0V6/6VRkkx2q2silwHe7Cycv6jra6zexDlWdqHMGhch+Y5Lry4HlAPPmzesoUKe6dDK6nMp3iaR3ATcBS83sxVZ13Nw7mEQ5VFXSPAq73B83HwntOFEOVQX+lsIyd11wke82s5Ho0TqVJIrv0sw+BnwsbmhOXfAZfyc5LjInOS4yJzme6pMpdXKTu8gypG5uchdZD6RqbabKZWvn83NrBV1kXZKyteklly3HVtA7/l2SMnO2l1y2HDN6XWRdkjJztpdcthwzel1kXZIyc/b8E4f53IfeyfDQLAQMD83icx96Z1uPuxwzer1P1iUrlizap+8DcTNnu81lSx1XN7jIuiTXzNkc45KZlfKLR0ZGbP369aX8bicNkja0yr7xPpmTHBeZkxzvk/WB3Gbg+00sc68kXSNpLBh8T0oXcrWYmIHfumMXxhsz8Gse3lp2aH0j1qGq5wILw8+pwPXh38rTayvU6zpkHYhi7gWWArdYMVRdJ2lI0lFm9lyUKEsixjpgjjPw/SbKoarAMPBsw/vxULYPVTtUNcY6YI4z8P0m1qGqalG23wRc1XyXMVoh31Mj3qGq48AxDe/nAtt6CSwHjh6axdYWguqkFcpxBr7fo90oh6oCdwIfl3QbRYf/lar3xyDeOmBOe2qUkW8W61DV7wDPAGPAjcDlkeMshV6yIXKljHyzWOZeA66IG1oe5NQKxaCM0a4vKw0YZYx2XWQDRhmjXV+7HDDKGO26yAaQfvcz/XHpJMdbMqctepnAdZE509LrBK4/Lp1p6XUC10XmTEuvE7guMmdaep3AdZFlwJqHt/K+z9/Dgk/9G+/7/D3ZpWb3OoHrHf+SyXEXnmZ6ncB1kZVMVTwAvUzg+uOyZAbBA+AiK5lB8AC4yEpmEDwA7WbGDkm6Q9JPJT0p6T1N1w+T9G1Jj0p6XNKyNOHWjzpm3zbTbsf/H4C7zezC4Fo6qOn6FcATZvY7ko4ARiV91cz+L2awdaVu2bfNTCsySYcCHwAuAQjCaRaPAYeoOL3rYOAlYHfUSDNn0Pe7mIp2HpfHAtuBf5L0sKSbJP1qU51rgV+nsMFtAv7SzF5v/qCqmXvbxfe7mJp2RDYTOAm43sxOBHYCn2qqswR4BDiaYt+Ma0MLuA9VM/e2S9k7Tue+YtCOyMaBcTN7MLy/g0J0jSwDVlvBGLAZOD5emHlT5lxXFVrRaUVmZr8AnpU0MaY+C3iiqdqWUI6ktwKLKHyYA0GZc11lt6Lt0O482ZXAVyVtpHgc/l2Tufdq4L2SNgH/AXzSzF6IH26elDnXVYUVg3bNvY8AzRvONpp7twFnR4yrUpS530WM/TpS4wvkkShrrivHffubcZFVnBx3DWrGRVYDcl8x8AVyJzkuMic5/rhMgK9j7ouLLDI55eznInYXWRdM9Z+XS85+TmL3PlmHTLdWmMsMfE7LTS6yDpnuPy+XnP1cxA4uso6Z7j8vl5z9FGLvNqXIRdYh0/3n5ZKzH1vsvaQUece/Q9pZK8xhBj72clMvAxoXWYdUYa1wgphi76WP5yLrghxaqn7TS0qR98mctuiljxfF3BvqnB5O9n1c0g/aDd6pBr0MaKKYeyUNAdcB55jZFklHdvg3OBWg225CLHPvhyncSltCnec7jsSpLbHMvccBsyXdJ2mDpItbfVBdzb3O1MQy984ETgZ+m8Lo+zeSjmv+oLqae6tGv83A7fTJWpl7m0U2DrxgZjuBnZLuBxYDT0WLdICJmbKT5aGqbZp7vwW8X9LMcADrqcCTUSMdUGI7xMvIzohi7jWzJ4G7gY3AQ8BNZvZYioAHjdiiKCM7I4q5N9RZCayMFJcTiC2KMszAPuOfObFTdspIRXKRZU5sUZSRiuQL5JmTIuuj3wv8LrKExJp6qHrWh4ssETm5hcqmdiLLxWuYizUuB2olspxaj5zcQmVTq9FlNxOXqdbxcrHG5UCtRNZp65FyU99crHE5UCuRddp6pFzHy8UalwO16pN1urVl6n5T1aceYlGrlqzT1sP7Tf2hUi1ZO9MTnbQeVdjUtw5URmQppieqZNStMpURWarJTe83pacyfTKf3Kwu0cy9od4pkvZIujBumN5JrzLttmQT5t7jKQwi++XvS5oBfAFYGy+8N/DJzeoSy9wLhQ/gm8ApEePbi3fSq0s7Hf9Gc+9iYAPFybw7JypIGgYuAM5kCpFJWg4sB5g3b17HwXonvZrEMvd+ieL4wT3NNzfi5t7BJJa5dwS4rTjnnjnAeZJ2m9maaJE6lWVakZnZLyQ9K2mRmY3SwtxrZgsmXku6GbjLBeZM0O5k7IS59wCKY5+XNRh7V015pzPwRDP3NtS9pMeYnJohMyvnF0vbgZ+X8suLfuPAnJHeQOq/+9fMbL8RXWkiKxNJ682suWWuPWX93ZVZu3Sqi4vMSc6giuyGsgMoiVL+7oHskzn9ZVBbMqePuMic5FRWZJI+K2lrOAXlEUnnNVy7StKYpFFJSxrKT5a0KVy7RmGxVdKBkr4eyh+UNL/hno9K+ln4+WhD+YJQ92fh3gP685d3jqRzwncxJql53Tk9ZlbJH+CzwCdalL8deBQ4EFgAPA3MCNceAt4DCPgucG4ovxxYFV5fBHw9vH4LxTLaW4DZ4fXscO0bwEXh9Srgz8v+Tib5nmaE7+BY4IDw3by9nzFUtiWbgqXAbWb2v2a2GRgD3i3pKOBQM3vAim//FuD8hnv+Oby+AzgrtHJLgO+b2Utm9jLwfeCccO3MUJdw78Rn5ca7gTEze8aKhNPbKP7evlF1kX1c0kZJX5Y0O5QNA8821BkPZcPhdXP5PveY2W7gFeDwKT7rcGBHqNv8Wbkx2d/QN7IWmaR/l/RYi5+lwPXA2yi2fH8O+OLEbS0+yqYo7+aeqT4rN0qPNWvfpZl9sJ16km4E7gpvx4FjGi7PBbaF8rktyhvvGZc0EzgMeCmUn950z30Ui8xDkmaG1qzxs3Jjsu+jb2Tdkk1F6GNNcAEwcTjFncBFYcS4AFgIPGRmzwH/Lem00Ke6mOIklYl7JkaOFwL3hH7bWuBsSbPD4/hsYG24dm+oS7h34rNy48fAwjAaPoBiYHNnXyMoe/TTw6jpX4BNFKeg3Akc1XDt0xQjqlHCCDKUj1CI8WngWt5Y8XgzcDvFIOEh4NiGe/4klI8ByxrKjw11x8K9B5b9nUzxXZ1Hcc7V08Cn+/37fVnJSU5lH5dOdXCROclxkTnJcZE5yXGROclxkTnJcZE5yfl/ynbAcPHJPm4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "\n", + "x = tuple(map(merc_x, lons))\n", + "y = tuple(map(merc_y, lats))\n", + "ax.plot(x, y, 'o')\n", + "ax.set_aspect(1.0)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJkAAAEDCAYAAAAm1qYrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAdbElEQVR4nO2de3Qc9XXHP1e7MtixAwa7kZEs/MAvqsY2CGzcJCWhhUDbUMqjhBAeDXWTBkh72iRNe8jpKee0p6Q5BUIDx3XTNqENwYYk9AVpSlLSYgM2tmPFxrGNgywhGRMeMciAtLr9Y2bNaDS7OzP7m53f7M7nnD1azfPu7Hfv/T3vT1SVnJwkaUvbgJzmJxdZTuLkIstJnFxkOYmTiywncXKR5SROqiITka+IyAsi0hfy+CtEZJeI/EhE/iVp+3LMIGm2k4nI+4DXgK+qak+NYxcB9wMfUNWXReTnVPWFRtiZUx+pejJVfQx4ybtNRBaKyMMislVEfiAiS91dvwP8raq+7J6bCywj2FgmWwfcpKpnAn8EfNndvhhYLCL/JyKbReSDqVmYE4li2gZ4EZHpwBpgg4iUNx/n/i0Ci4BzgS7gByLSo6qvNNrOnGhYJTIcz/qKqq4I2DcAbFbVUeCAiOzBEd1TjTQwJzpWhUtV/RmOgC4HEIfl7u5vAe93t8/CCZ/PpmJoTiTSbsL4OrAJWCIiAyLyMeAjwMdEZAfwI+Bi9/BHgJ+KyC7ge8CnVfWnadidE41UmzByWgOrwmVOc5JawX/WrFk6b968tG4fmZ0vHDr2fva0d/Cu6dORKse3Ilu3bn1RVWf7t4cSmYj8AXADoMBO4HpVfcOzX4A7gIuAEeA6VX262jXnzZvHli1bwn+CBrDgzi9W3NfpeX9OWyfr115Ke7GNYlshecMygog8F7S9pshEpBO4GThdVY+KyP3AlcA/eg67EKc5YRGwCrjb/Wsd1YQUxLSBySWKHQxxw7oHWHFGJ5sHDvLAFVeZMq8pCRsui8BUERkFpgHP+/ZfjNP/qMBmETlRROao6pBBW0MRVUR+gkQVxI7+IXb0DzHSNV7X/VqBmiJT1UER+WugHzgKfEdVv+M7rBM46Pl/wN02QWQishZYC9Dd3R3b6HqF5CWsqKqx4M4v8uzNf2jAmuYkTLicieOp5gOv4HT5XK2q93oPCzh1UtuIqq7D6Zukt7e3atuJSSGVMSGooGvm3qw6YcLlLwMHVPUwgIg8iNO/6BXZADDX838Xk0PqJI6OjnL1NzewbTiZqJqEqCqRe7PKhPkW+oHVIjLNrUWeB+z2HfMQcI3bDbQaeDVMeay90Mbqrrm1DgvNtIG2Ca8cOwhTJntCRDYCTwNjwDZgnYh83N1/D/AfOM0X+3CaMK6veV1gtDTO5oGDtQ4NxCYR5SGzOql1K3UtXaqr/vzzoUNlWqKaPvi2eF7rrGxDWWStHDJFZKuq9vq3p9bif3jk9aoCs0FUUci9WWXsiTkeGiWw6YPjk171kkStOOvYNmgxUUyIKCc6VnoyEyThpWpR9sC5N5uIlZ5spGs8cshshIimD45XLfznBGOlyMKQh77skP8sDZOHzMlY68nihMx6mXHg6LH3R+ZPbei9m5nUPJm0px/uZhw4OuHl3xeX3JtNxFpPZpp6ROMlL/xHJ7NPq9YXXc1LNZLcm6UssuIpI1X3Z7mbxqYO/LRp2ieRF9ztIdMiS7psVG+YzSsADqmLrFbItJG8ITgaqYusFkmWy4r7B+mZOYWrfrWHZT2dtU+og1b2Zk3dhHFk/tSqIW9p73z+cuPv095e4MNj43zm5nvZ3Tdo1IZ8nFkGPFkt6imXvXvNYtrbCxSKBYrFNpavPDX0uXFCZqt6s5rfkIgsEZHtntfPROT3fcecICL/KiI73MzUNcf4e0mrKWPbcy8zOlpizH3t2DZ5ln01T5iXzcIRZiLJHmAFgIgUgEHgm77DPgnsUtVfF5HZwB4R+WdVfcu0wSbZ3TfI5y67nXevWcwPH/8xu1+Obm6YHoBWD5lRY815wH5V9f/kFZjhTpmbjpPResyAfXVTq73smS0HuP/OR3hmy4GG2NOKITOqyK4Evh6w/S5gGc6E3p3Ap1R10k9XRNaKyBYR2VL62euRja1EPeWysYX11yrDhM1W7gEI/clFZArwIWBDwO4LgO3AKTih9S4Reaf/IFVdp6q9qtpbeOc7JuzLehdTlPJZq3mzKD+vC4GnVfVQwL7rgQfVYR9wAFgacFwq1AqZZW9W3B/cfBG25T+vCAQTRWQfJjhUgpPK4DwAEXkXsIQGZ6a2ZfhNNaG1asgM9alFZBrwK8CDnm0fL6cqAG4F1ojITuC/gc+q6otRjcliF1MQYTxaK4XMUC3+qjoCnOzbdo/n/fPA+WZNm0ySQ7LHFnZWDJdxqNS00YrNGS3jv20c+tMq3qypRFZvuayaN4sz7CevCDhYJ7IkmzJs8WbekN8K3sw6kaWNicZZL7k3a0GR2eLNWgkrRVZPU4Yt7WW1aKWQmY1vxEdaTQBxx/y3esjMpMjqxZaQ2SrerClFZmPIbGVvZt+34ZL0qAxbvJmXZvVm1oqsXmz0ZkG0Qqd583/CKsTxZvVM+G3VkNnUIsuiN2vGkGn1t5D10bJBtKI3s1pkjSCvACRPaiLrmTmnIffJYshsNqz/ZI0ImVG9Wb3Zflpt5GyqIlvWETQnxTxJeLM0szdmDSNpCtzjznX3/0hE/icJY1d2zOETvWezsmNiqM1aXyYEe7NmDZk1P5Wq7lHVFaq6AjgTZz3LCWkKRORE4MvAh1T154HLTRu6smMO915yOX+w+he595LLJwmtXuJWAJL0aM0SMk2lKbgKZ95lP4CqvhD2gmFCZvGUEVZ3zaW9UKDY1hZrxd8kKwAmhdaM3sxUmoLFwEwR+b6IbBWRa4JO9qYpOHz4cKQbbx44yGipxNh4KXDF3zQqAF6SmgPQDN4sdBI8T5qCz1W4zpk4nm4qsElENqvqj70Hqeo6YB1Ab29vpCWDtw0PcfU3N7C6ay6bBw6GXvHXy2udbS3ZGJo2ptIUDAAPq+rr7qTex4DlJgz0sm14iLu3PBlLYGGxwZv5Q2bWvZmpNAXfBt4rIkV3tvkqYHfYC4ctl9UiTMi0PWN2M2IkTYGq7gYeBn4IPAmsV9U+8+ZmAxNCa6YKQKhPoqojqnqyqr7q2XaPL1XBF1T1dFXtUdXbkzC2UZjoz4witGavAFjzc2mmkFkmD50O1ojMNkyNzqgnt1mzVABykTWAVvdoucgahCmhZdGbWSUy28plQSFzWU8nV350TaxlcmoJrVk7zZt62RvTLOvp5LY7r6a9WGB0rBRrmZwZB45aORo3SbL/M2kgy1eeSnuxQKHYFnmZnHrIegWgpUUWNWTu2PYco2MlxsZKjI2NBy6TE4ZWW0pHVCP1Uxujt7dXO29fHbhv9/C7ap4/9vy0mseEKc+E+VK9oljW08nylaeyY9tzda8oVylsBok/qJz57M1/WNf9TSMiW1W11789L5OFwLuk4e6+QWPLFVYqnwUlNc5yQuOmDpc2tf4nQVbKZqk+4Uu7zmfJjPmTtptqyjBJUjXCKO1nWW3OSNXqj5z6q9zac1Og0EyRVW/WTBWAVJ9uQQoUpEDPCYtind8s3qweshAyUxXZ2HiJkpboe3XvpH0m52Ta7s0qhcxm6QFI1eJ/6f93bun7EnuOxF/QNPdm9nuzVEX2wMB3qgrMVm+WhNCaeaRG9nxvAGmsLtcojxY2ZNrszawXWaPyZZSJUjazMXTaiLFcGO6xZ4lISUQuM29qdUwNAYqKSaE1awXASC4MABEpAH8FPGLaSJu9mU3YGjJN5cIAuAl4AAidB8M0zezNsoyRXBgi0glcAtwz6YyJx03IhfHt99wV8faNI6o3S7p8luUKQOgn6cmFsSFg9+04646Xql1DVdepaq+q9s6ePTu0kWGG/pRJy5tBXhGohKlcGL3AfSLyE+Ay4Msi8hsG7EuVOGWzJCcGZ9WbGcmFoarzVXWeqs4DNgK/p6rfMmBfLNL0ZpB7ND9GcmEkSZRQmQRxa5r1Cq2ZKgDGcmF4tl+nqhtNGRi3+SJtbwbJeLQshsxsNgg1mHrazfLQ2eQis8Gbgfmkx2EHNNrizZpaZCaptxcgaY9mczeTvZYZwqQ3a1R3kzcVQr0VABu8WT4lLiL1JDf2Tq2rRFAqhCdff2nScVmaNtf0niwsUb6cJCsCaaVCSJJMiKyeURhhZprHISmhBaVCyHrIzMOlh5Gu8UgF6HpDJ0yuQe7uG+QzN98bKhVCVkJmJjyZzZiodXpflciyN2tqTxYnVEb1ZqY59VcWcNufXE6xWGBstHYOtCx4s9Q9mc1jysJismnjjNPnUiwWKBbaKLabLfin5c1SF5mNxPECpoT29K6DTqG/5BT8Nw0PH9uX1U7zzITLZR2HIo3ISKpWWQ2/0OJUCvr2DfGZm5yC/6bhYfr2DUGN9jXbQ2buySqQ5mrAu/sGue9rjzsCc6lUG41KGiEzF1kFVnbM4Yb3n8Xy7ngrBMfxYn4BmV46Jy2aUmT1hsryUtQ3XrCG9WsvjS20KIQRVNRO9kq15EZ7s6YUWb1MXIq6wFkLuyKdH9WrVBOYf1+Y/k/byEUWwMSlqEs8tX8g9LmNCFuVPFqUmeaN9GY1a5cisgT4hmfTAuDz3uUGReQjwGfdf18DPqGqO0wa2kjKS1G/d0Y3T+0fYEd/uJWCTZTDKh2T5RG2NUWmqnuAFXAsFcEgk9MUHAB+SVVfFpELcdYZX2XY1sjNGPWwbXiIPVvCd8wnJbBmwEiaAlV9XFVfdv/dDEQqxHxg1jMRzbCLRgjM5JKGZRoVMo2kKfDxMeA/g3b40xTYTJL9l63iwcqYSlNQPub9OCL7bND+amkKTHqzRibFM1mTNHWubd4sSrdStTQFiMi7gfXAhar6UxPG2Y7NDaA2YSRNgYh048wu/6iq/tiEYWliak0mPybCZBKhNmlvZipNweeBk3ESrWwXkS3GLXVpdEK8ILJQk4wSMpMuXhhJU6CqN6jqzHJGxqCVwqrxqaXfjWZ1imRBYLaRt/j7MF2rTEJg9VQAKrF4461xzalJ04osjbTrfmz0YEE/oqTH3lklsrQbZW2e6u8nCQEn5c2y81Qzhi1eLGwFIElvlossAUwLzJsbI8n7JEUmRZZEM4apUJmEwG6782qu+51zue3OqycJLQxpVwAyKTJbScKz1MqNEfeejQyZucjqpOe0OVzzobM5+x0nJXL9oNwYUek5Ldp8BdPezLopcR+Y9QyPvrjUyLWKp4yE+nXGDZU9p83hrvJs74tX15ztHYdauTFqDWb02jhaKnHDugeODcJs1LS53JPVgX+299LzTguV1yIq5SlyUQXmtzHMfIXyj9KkN7POk2WJ8mxvUMbGxnl618EJ+/0iMFVmiyJgr42jpfFI8xVMkVmRmRyKHTfJSt++IW78iw2ccfpcnt51cMJk3CCCxBFVeFE9ZNnGntXB8xWCQubY89OM9phkVmS20LdvqKa4qhHF28UNwZuPHmLz96I3+yzeeCs/vuyWWPf0kpfJLKNSeS6uwGxYuzN9CxLGho7yOIRNjleNsAKr1mZmogJgjci8Y8rS7ihvBmzwYGXssSQDZGVMfxyBJenNcpG5NKJRstw70HNaMglcXutss8qDlTGVpkCAO4CLgBHgOlV92rCtk2jkjHKY6CGierUJvQNjJW78iw111Uqr2WYbNS1T1T3lsfvAmTgi8qcpuBBY5L7WAnebNjQtlncH9/uVvUbYL3dC70CxjTNOn2vMRlMCSypkRm0nC0xTAFwMfFVVFdgsIieKyBxVNfdTTYHl3XNYv/ZS2guT+/28lL/kat6tVu9AXOIKzF88SHJUsKk0BZ2A96kNuNsmECVNgQ0zys9a2OXkKQvZ71eNcsv7uo2PGwmV9ZS/gsqfI13jNXs+4nqz0J7Mk6bgc0G7A7bppA2q63Ay/tDb2ztpv208tX+A0VIJIFSeslorlNTbO+C9T1xqVXCC9tfbzWQqTcEA4C1kdAHPx7bKEnb0D3HDugc4a2FXpDxlSZKkwMIQp6spisgqpikAHgJuFJH7cPKSvdqo8ljSHeU7+oeaXlwrO+awumsumwcOsm04+LPW481CicyTpuB3Pds+Ds5McuA/cJov9uHUPq+PZU0TEGZRr6j5/pMW2L2XXH6scnP1NzdUFFpcTKUpUFX9pKouVNVfUNXEcmFknSDBVCvEJx0eJyZhbmN1V+2mlagVAHtb8AzTyI7yuMLwi60R5a+JSZjH2TxQuWkl7kQTq0XWbB3lYUVTb/NElAJ+OQnz32x+PFKojOLN8kGLDaIR3T5xa4/bhodCiytOBcBqT5YGpjrKG92XmMZaUGG9mVUii5unzPSMctNfWJKCixoe41A8ZeTYKw5WicwmbFnGrxqNstFb4I8jtFxkCZLk+C5bfgRhQqb1Ikuzo9yWL9KPrXZVwnqR5bxNI8pflajWRnbFo18BYMaMGe8I2p+LrAa2eA1b7PCz4qRO/ul9HwVg0aJFi4OOaRqR2ZB6PSlsEViQN1s1ex7tbYXyv0FDvppHZEmS1pecZngMyxOHf8LoeKn8b+AYwVxklmK7uMpsf2mQax/7GgB79+4NXI2m5bqVwuYs8xM3KUsUlnfP4ayFXfzgSH/dw20q2VqPeCvVzre/5KS0OnLkyOuB58W+YwMxmRjPVo5NWikW+N3Sqqqd1Wmkgm/U8OuWJ0lvtuKMTtqLzrguFN47ozvSysFJUu8wqbxMZgEjXeO+cV21J63EJeqPxMQ4vKbyZI2eUW6CchmpPK6rPNZ+T3/6XszUQM+wY/xPxFkwtQenmvrbqrrJs/8E4F6g273mX6vqPxix0DJMhkx/Idw7rmtaykHG5EjisJ/kDuBhVV0KLAd2+/Z/EtilqsuBc4EvuvM0I9PoZQnrGcJSD3HmP5qi1o/E9POoKTIReSfwPuDvAVT1LVV9xXeYAjPcxCvTgZeAMZOGmu4or0dc9QrA5jawJH5wYTzZAuAw8A8isk1E1ouIvyP0LmAZzoTencCnVHXSk4ySpqDRNMqbRRFYUmJstMjDiKwInAHcraorgdeBP/YdcwGwHTgFWAHc5XrACajqOlXtVdXe2bNn12e5hVTKAFTGBg9WzYakfmhhRDYADKjqE+7/G3FE5+V64EF3/uU+4ACQSutpPR3lUR6y/8sqN6beeP4a1q+9dILQ6umDNCnMNAQG4fKTDQMH3WR44KSP2uU7rN/djoi8C1gCPGvQTuuplAGo0d6rkjdNS2AQvp3sJuCf3Rrjs8D1vjQFtwL/KCI7cYZ7fFZVX0zC4KSJ27cZlAHIlMDCNptUyqeWtMCWdRzi4v+9sfI9wlxEVbcDvb7N93j2Pw+cH8fALOP98v0ZgDaNm13IKwxeb1r+v5od9QosbNEkU91KjZpRHvfh7+gfYv33nkpEYGG8YtmbjpXGGS2V+MGR/orHNkpg0GTdSjaQZg3S602rDReqR2BxKla5yOqkHDIbIa4w99g0PsimveZDZD219kyFy7CYGO9fT3OGrcQR2LKOQ3U/z6YUmY1kcY0nU5Nz8nBZhbjNGf5rmLyeCTtqYXrmV+ZElqWh2DZ4rzTFVaalwmWc8kXsZLwVzmuE8OKMMkly3qqVnuxTS7/LHc/8srHr+R9g0iNoi6eMsOKkTlbNnscTh39ybDaPd78tNGJStJUiM0FZSKZqmmHKUmXxlKfut7cVGB0vce1jX5sktDTwCv/NKYmvr3aMphUZJPcrDcp77/VO5an7xbY2QFk1e17qIisLf0qhjbHx93BL38vsOXKgIfduapFVI2rILHuzoLz3O9v2Tzj27an7yuj4OE8c/olZ42PwawtmMaXQRkEKqEDPCYtykdmKN+89KGuWdbBzz0SRlafuVyqTNQK/F+97dS9j4yVUoKQl+l7d2zBbMikyU80YcbzZU2/sZXR8NbW81PaXBhsurmrFgz1HDnBL35foOWERfa/uNe7FlsyYT2dnZ0fQvkyKLE3q8VKmy4hRKzZ7jhxIJEQumTGfW3tu4tGOr09afhJykcVqzojipZJsIrAlJ1vPCYsovp2jbBItL7IksUUESXPNvA8BzhpbQftbqsW/EqbFYGLkQlb49nvuOvb+0KFDgWuc5iIzTKuICyYKDGBwcHA46DgjuTDcY84FbgfagRdV9ZciWx0B0x3lJrqa0hRYpaHpSQwm8IurFmHLZOVcGJe5M5Ym9LG4Ivwy8EFV7ReRn4tkhaWkIRq/WKqJJMychyjXq3X+oy8ujSwwCCEyTy6M68DJhQG85TvsKpzJvf3uMS9EtsQC0vJE1cRievJMNdHVulccgUE4T+bNhbEc2IqT68KbH3Qx0C4i3wdmAHeo6lf9FxKRtcBagO7u7lgGh6X8wGwee2bDep5hbKg301IYkZVzYdykqk+IyB04uTBu8R1zJs4s8qnAJhHZrKoTsiGr6jpgHUBvb29gdbde/A/NtkGONggrCiZSeYURWVAuDH/ClQGcwv7rwOsi8hhOHrPAlNthiDOmzOYv0GbbADqOX0bXtBUMjGxn+I3dRvPE1RSZqg6LyEERWaKqewjOhfFtnEw+RWAKsAr4G2NWhqBWuSYtb2ZaXH4xmLrmb3Z/gYK0U9JR2tuON3LdMkZyYajqbhF5GPghMA6sV9U+o5YGUBaPjV4iCZv8Yniw/9NGhNY1bQUFaadNCrRJ5e6huBjJheEe8wXgC4bsCk3YLzOMN7NRrF68YgCla9qKukTWqNSpLdl3abuYKjEwsp2SjgJKSccYGNke6fxG5+Mt01Iiy6q4ygy/sZsH+z8dqkyWlqCCaCmRNQPDb+yeJC6bBBVELrKMYbuggshFZjFZFFQQucgSJkq7VrOIyk/Liuyi6f72ZPMcP+VMOmfdBjJlUrtWswoqiKYRWSWP0QgxVWLqcecg0o64jZy/Ne9LqdmSJk0hso7jl3F5922ItKN6FYMvXsEbb21NxZZFXYEjkFuaphDZeTPnuB6jCChTjzsnlMiOn3ImU487h6NvboolylxQ4ci8yC6avoujb05F3ZZw1TGOvrmp5nlOeel+1/uN1vR+uaDik1mRectab7y1lcEXr4jkld4uL032frmgzCIVpsolTm9vr27ZsqXmcUFjykwU5suerK1tat3XynEQka2q6h9IkT1PVo/Acg+VDpkRWVRx5YKyB+tF1nvSh+nmW7zhnx/lIxeVvVgvsjWzr53U9pULKlukVvAXkcPAc5X2d3Z2dnR0dHSCk8jj0KFDz1eaBh+SWUAml0dMiCSex6mqOmlJ5tRE1mhEZEtQzadVaeTzyBOu5CROLrKcxGklka1L2wDLaNjzaJkyWU56tJIny0mJXGQ5iZMpkYnIn4nIoIhsd18XefZ9TkT2icgeEbnAs/1MEdnp7rtTRMTdfpyIfMPd/oSIzPOcc62I7HVf13q2z3eP3eueO6Uxn9wsIvJB9zntExF/8hzzqGpmXsCfAX8UsP10YAdwHDAf2A8U3H1PAucAAvwncKG7/feAe9z3VwLfcN+fhJPv4yRgpvt+prvvfuBK9/09wCfSfiYxnmHBfT4LcJLj7ABOT/KemfJkVbgYuE9V31TVA8A+4GwRmQO8U1U3qfOEvwr8huecf3LfbwTOc73cBcB/qepLqvoy8F/AB919H3CPxT23fK0scTawT1WfVSdr5n04zyIxsiiyG0XkhyLyFRGZ6W7rBA56jhlwt3W67/3bJ5yjqmPAq8DJVa51MvCKe6z/Wlmi0udLDOtEJiLfFZG+gNfFwN3AQmAFMAR8sXxawKW0yvY451S7VpZo+OewbhSGqoZKrygifwf8m/vvADDXs7sLeN7d3hWw3XvOgJu87wTgJXf7ub5zvo/TmXyiiBRdb+a9Vpao9KwSwzpPVg23jFXmEqCcaO8h4Eq3xjgfWAQ8qapDwBERWe2Wqa7ByQpZPqdcc7wMeNQttz0CnC8iM91wfD7wiLvve+6xuOeWr5UlngIWuTXlKTiVnocSvWPatZ2INaOvATtxMjo+BMzx7PtTnFrTHtwapLu9F0eM+4G7eLuX43hgA04l4Ulggeec33a37wOu92xf4B67zz33uLSfSczneBFOPt/9wJ8mfb+8WykncTIVLnOySS6ynMTJRZaTOLnIchInF1lO4uQiy0mcXGQ5ifP/zauNAradx70AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "\n", + "x = tuple(map(merc_x, lons))\n", + "y = tuple(map(merc_y, lats))\n", + "\n", + "ax.tricontourf(x, y, tuple(datapoints.values()))\n", + "ax.plot(x, y, 'wo', ms=3)\n", + "ax.set_aspect(1.0)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJwAAAEDCAYAAADA/21vAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOydd3iUVdrGf2dakknvvQEBQm8CAgqKoljAtjbs3V3b2ll33V391rK6a3cVC/aCioiC2EUEgdBBCCGk997LtPP98SaTSTKZzCSTkITc1zVXZk57zyR3ntOe5z5CSskwhtFfUB3rDgzj+MIw4YbRrxgm3DD6FcOEG0a/Yphww+hXDBNuGP2KAUs4IcSbQogSIcQBJ8tfLIQ4KIT4XQjxQV/3bxg9gxio+3BCiJOBOuAdKeWEbsomAauAU6WUlUKIMCllSX/0cxiuYcBaOCnlL0CFbZoQYqQQYoMQYqcQYpMQYmxL1o3AS1LKypa6w2QboBiwhOsCK4DbpZTTgXuBl1vSRwOjhRCbhRBbhRBnHrMeDsMhNMe6A85CCOEDzAE+EUK0Jnu0/NQAScACIAbYJISYIKWs6u9+DsMxBg3hUKxxlZRyip28PGCrlNIIZAohDqMQMKU/OziM7jFohlQpZQ0Kmf4AIBRMbsleA5zSkh6CMsRmHJOODsMhBizhhBAfAr8BY4QQeUKI64FlwPVCiL3A78DSluLfAOVCiIPAT8B9UsryY9HvYTjGgN0WGcbQxIC1cMMYmhiQi4aQkBCZkJBwrLsxjB5i586dZVLKUHt5A5JwCQkJ7Nix41h3Yxg9hBAiu6u84SF1GP2KYcINo18xTLhh9CuGCTeMfsUw4YbRrxgm3DD6FcOEG0a/YphwTsJgMPDaa6+Rn59PU1MTw0eCPcOA3PjtLQwGA7t27WLixIl4e3v3uJ3GxkYyMjIICAhgxYoVPPLIIwCoVCrGjRtHXFwc06ZN49FHH3VX14c+pJQD7jV9+nTZG9x9990SkGq1WqpUKnnbbbdJg8EgLRaLNJvNduukpKTI/fv3SymltFgs8rXXXpN+fn4S6PS6++67ZVJSkgSkVquVJpOpV/0dagB2yC7+tsecXPZevSXc9OnTJSBvvvlmK0kWL14sExISpJ+fn7z//vtldXW1TEtLk88++6xcsmSJtdzJJ58sR48eLQF56qmnyrvvvltGRkbKmTNnSi8vL/nBBx9IKaUsLCyUnp6e8uqrr+5VX4cijivCvf322xKQy5Ytk7m5uZ2s04QJE+xarZCQEHniiSfKOXPmyHPPPVeuWLHCoeW65557pEqlkmlpaT3u61DFcUU4Pz8/GRoaKouKimR1dbVcsGCBlVTBwcHyySeftH6Oj4+XycnJMjc31+XnxMbGSkCmpqb2uK9DFccV4VrJtGTJEimllBs3brSm5eXlSbVaLQG5YcOGHj9DSilvuukmCcgHH3ywV+0MRTginFOrVCHEn4EbWv5w+4FrpZRNNvkCeA44C2gArpFS7mrJO7MlTw28LqV8wrnljOv4/vvvre/Xrl0LQEhICAsXLuTxxx8nOjqa5cuX4+XlxRlnnNFteyOe/4/d9FtnzOT0RYtYsWIF8+bNc0/njxN062IuhIgGfgXGSSkbhRCrgPVSyrdsypwF3I5CuFnAc1LKWUIINZAGnI4SWZUCXCalPOjomTNmzJA98YebOXMmKSlKoNZ1113HG2+80W2drkhlD/o8ZdtyUkw42ateJuPoUX4/fJggPz+X+zqUIYTYKaWcYS/P2X04DeAlhDACeqCgQ/5SFEkGCWwVQgQIISKBBCBdSpnR0pGPWso6JFxP0Uq2DRs2MG3aNGu6K6SyRSvBOuKHT9+nZPNmLrnzAW7c8BWfXXx5j9o/HtEt4aSU+UKIp4EcoBH4Vkr5bYdi0UCuzee8ljR76bPsPUcIcRNwE0BcXJyz/cdsNmMwGBj/2sv4L1pI9bc/sOy1V9BFR6OLiULl4dF9I3RNLlvU5xyhYs8Wag7vxW/sFPZrw2gsKnS6r8NwgnBCiEAUq5QIVKFEvl8hpXzPtpidqtJBeudEKVegSDkwY8aMTmW6slIl73xA/c5d6GKiMeTlA1D+2RqlUzotCU89breeMwSzRcWeLRR+9ylqL2+CTziFsDmLUKaukhHP/4eMO+5xqb3jFc4MqacBmVLKUgAhxGoUyQVbwuUBsTafY1CGXV0X6Q4hgUajkSs+/4Td3VgQoVaIY8jLRz9pIkIlqN+zT2nHYLSWc5VgtjDWVFL4/Wp8EscSe961qDTadu02xFh63PbxBmcIlwPMFkLoUYbUhUDHGf1a4LaWOdosoFpKWSiEKAWShBCJQD5wKdDthEcAWrWK2TGx3RIu8JyzqNuudCfo3LPQhoWiz1PRVFIAAjx7QTQAc1MjeeveR6gEkQsvaEc2WwxbOefQ7V9DSrkN+BTYhbIlogJWCCFuEULc0lJsPYq0QjrwGvDHlrom4DaUyPhDwCop5e/dPhMwmi1szcvtrigafz+EWg1A1ftrrJbMMywKz9Cobus7QnNlKRnvP0djQTbRZy1DFxjSq/aGMUAj72PGjpWzHnm4S+vWSqrGolxyPnsdU0MtAKFzzyBsTvf7a86gLusweWveQahUJJ10FX5hI6mL7vr/s3VYHbZy7tkW6VeUNtR3Ipu9OVhzebGVbAAB40/o8TN98hXCSIuFrB2rKUnfipd/BGPmX4eHT1CP2x1GewxIwtlDQ4ylE+n00YnW98EnnILO33litBLMFlJKio9soSR9K+Gj5xE7ZTFqjUe7Ol1ZueHFg3MYNISzB11AMImX3U7euvcoT/kJc0MdkYv+gErT+WvZI1gr6isLKMvYQXVRGo3VRXj6hRE/7VyESu1yn4YXD44xKAlXdSCFhoIsQmaeSs6aNzE31ivpv6fgkziGaD97moVtMJsMGJtq8fQJBqC6IJWiw78AEDV+IVHjT+0R2YbRPQZVTEO1vozynb+Q//WHVO79jcwPX7SSrRV5X71Hc11FFy0oKD78K3vXPk7m9k8pz95DYEybSHpwwlSkxYKxqd5BC/bROuT39CjteMCgsXDm+gYKnnoWS0ODNc1UV2237J61jzHr8qe7bCsofjK5e9dTkr6VkvSt7fKaakpJ+/kNMFqYctHf3NP5YVgxaCycoaAAS0MDGh9/a5p/8lSiF1/G6Fv/jn/kGMKSTgRA4+njsC1Pn2DGzL/ebt6RTW/TXF9Js6Ea38zGTvmO5oIwbOW6w6CxcCovLwB8RyRTuU+xSqFzz8QjUJEhi7niZnzyLSTMuABpMXfbXqwhgdgTH0VKSV1DETV1+ZjMTRzJ/gaAaeOu7aNvcnxjQBJOaO1YkRap/Mp9W1HpPPAdOR5dQOedfyEEQt3+a9mzVLbla+sLScvegNncDEBS/JkE+Y+wlmmqK6f06HaaastRa3Xop07BJ3GsNd9YV4PF2IxQa9D6BnT5LKPRyKFDhwgJCSEqqnenIIMVA5Jw9qCLirS+txiaiTnnCqfr1iZ6dSKd0dTIkexvKCjZ2S49PHgCcZFzlOdYTFTkHSBv79c0Vhej0wdgMRkoPbodfexI/EZPxlBRQsXuzdg6wai9vFEH+aP/3wrOmzqddevWERsbi9lsJjU1FYAJEybwySefMHbsWI4nDBrCNWfnWN/HLLnKbpm6aFW3cywAKS3sT/uYiuqjnfKSR54HQF5xCqkZa63p4UlzSDjhAixmE9mFm6jav52iH1YDgsDJJ6KPScRQUUJ97lFUHp7UZaZCvoUPU9MAKCsrw9PTk1deeYWvvvqKr776inPOOYeUlBQCAwNd+VUMagxYwmmiGjAV6Ns+BypDlcrHG31kfK/a3nv4QyvZkkecx6EMxX/O3zeOorJ9VFQfpaS8zccgYuzJxE09R3m+WkNizCnUzjwVY1U5Kp0HGm/fTs+oC2tGGo2Yq6vJffwpbG7P4eabb2bLli0sWLCAu+66i7fffrtX32cwYcASriOKX3kdAEtdPWmvPop3XBKBU+bgP2ZyNzXbQ0pJWeVhAEbGnmYlG0B1bQ7VtTkIVIyMO42EqJMQQkVtolendoQQDr1HfEo8aIjRovbWtyNbK+bMmcMll1zSLvDneMCg2RaR5vYrz/qcI+StfRtTQ51T9VtJI4RgytgrmTftHjLzN7Yrc88995Censn1Vz5LYvR8hHDPr6erLZIZM2ZQUFDAwYN9EuIxIDEoCCdNJowlpfgtOBnfObMB0MeMIPqsy1F7tRerceRC1IqQwCQ8PQIICRxtTXvzjTd5+umniY+PZfaJ47ttw5m5YndexieddBIADzzwQLdtDRUM6CHVOo9TqxEaDXXbdxD3r38QdN65CLUaj6PNGCpK8AgO71H7o+PPxM87mqlTZ3LZZcswGc2YzBb27u5S9d2tyMlRFkL+/v7dlBw6GJAOmJ4jo2Xck4ozcevCofClV2lKO0LUvXdR+ML/0IaGYMjLR6XzJPnOx9rVd2R9utqTmxCoY9Kc0ezOruTQgfxO+fbmcdC9RbV1WbL1IjEYDCQmJuLv78+uXbvw9PR02M5gwqBzwLQH76mTaUo7QsHTzwJYI7TUXnpH1ZxG6o5MUndkKh9GRjtdz5GPHNj3k2tsbOSiiy6ioKCAl156aUiRrTsM+DmcJko5rNePG4vaToS7Ru/TaUHhzDyuI0wukKwjnJnPQdviYfny5Xz99de8+uqrnHfeeT1+7mDEgCdcKzQBAUTdc0en9MbCHKfOTvsajkhnu3ioq6vj9ddf58orr+Smm27qj64NKAwawgGo/f0JPGdxp/SG/Eyn2+hqLga9s3LgnKVbvXo19fX13Hjjjb161mBFt4QTQowRQuyxedUIIe7qUOY+m/wDQgizECKoJS9LCLG/Ja9XN7YJIfCdNRMAr3HJaMPDAOzuxfVkWHUERw4AtuiOdLf+92liY2OZO3euO7o16OCMtshhYApAixpSPvB5hzJPAU+1lDkX+LOU0tbt9hQpZVmPO2lzzFW7bTsAXmOS8F9wPV45IFTuI5dpZDSao/m9ntN1JHzr4qE5K4e5ixfbPX04HuDqKnUhcFRK6Wij6jLgw553qWtYmpupXLcBgIrP11LxuXK4HrPkKvzHOI5jsIU975H+gqW5mc9Tth2TZw8EuGoaLsUBmVrkIM4EPrNJlsC3QoidLQpJXdW9SQixQwixw1xjP56g9IOPQUo8k0a1Szc3Ntgtfyxhb2g1FJcgm5vRhtq9u/a4gNMWTgihA5YAyx0UOxfY3GE4nSulLBBChAHfCSFSpZS/dKxoq57kOTK60260tFhoaBGpMdfWkvCfJ5BmM0KnwzvffoSVI3clR1aut4sHe5BSUvXealSeHgSefeZxG07oioVbDOySUhY7KNPJAkopC1p+lqDM/Wa62kmAxsy2YchYVEzWPQ+S968nAfotANnVYdiW7PXZR6jPSSfw7MVojmPFTFcI53BuJoTwB+YDX9ikeQshfFvfA4uAAz3paO3GPWiCAglZdok1zWvsmEEz+a7PTgOVirDYE491V44pnBWV1qPo9N5sk3YLgJTylZak81HUMW0nYOHA5y2k0AAfSCk3uNrJup2HadirOExKg5GE/z4JQji1Ou3psOpumJsawCKtenZwfEbpO0U4KWUDENwh7ZUOn98C3uqQlgG45iFpBw0706zvyz9ZTfknq4l77BHU3u45R+1L+ORbqApsoPboQfTRCS0+dsevBsmgOGkIvf5sPJNirJ9VXp6oPNtr9zbEWDDV11L8yzqnnTLB8cmDOyClJO/LdzE3NRA690yg/VHX8Ra/OmC9Rcy1DRjyS2k6WkDNDzsx5JZY8+Iee6TTcGppbubwy38HwG/0JDT6tmBoZ4NrnIFvZqPTJLWYjWTvWkt9zhEiF/0Bn/gkt/RhMGNAEs5c10jmTU8hTZ0P5QPOPN3u3C3noX8AoPH2Q+sfhNnQhFp3bN1+cvd8TcmR34gYczKBk2a3y7N1Wzqe5nIDk3CVtQrZ1Gq8Z4xBFxlM/c7DGHJLqNrwHVUbvkNotYQuuxT9xPGUffo50qgISJvqazj8oqIJMv6+/1rbPBaLh4rcfQTGTiR++hLqBslquq8xIAmn8vHCXFmLSqehfttB7J07SKMRQ2Eh9fsOUL9rd6f8mCVX931HHaChsgBDQxURY08GunfUPF4wIAmnCfQl9vGbUPvqyb7jeUzlbSpJSZ88QtMhIyqdjtL3P6Zhf9u2XszfluNd4dVu/uYs3G3lKvOVSKyAqK4j64/HYXXA/stpg/1R6bQEXThf2XPz0OJ70iRK31yPxt+fmi1b25HNc9RIzLW11HpVULF7M/ZiNdxlYbojZm1pFsVpm9EHROLp0xa76q6Fy2DGgLRwntq2Cz38T5+ByteL4uc/o3aTcpaqDval8svv0cXGYMjNA6Ap/Sg1v2y2Dq+BU+a4/Fx3WLma4nQO/bgCD30AI0+8zCXXqePByg1IwnWE7+zxeMSGU/zKGppScyh/7zs8EuLx9/OlpIVwan9/mo5mAOAZHtPlkZe7tkhat0ektGBoqKKptoyyjJ2UZe1Epw9g/Bl3ovX07rad402MekCGCQaMDZNh/3e73bzm7CIa9qYz94zL2XjbXVRVVXUqE//04/gUd32pW0/CCDuiojqD9JzvqKnLa5fu4RPM+EV3OCRbx6G9I+EGu5VzFCY4YOdwyRH2nVI84iMIXDKPKdHedskW89ADqLT2rydqhaO5nDObuqUVh9h1cGUnsgGMO/1PTlk2W/TmHrDBhkExpNrDS3c+BEBsbCyp6elcuebTdpeJ2LvXobeoqslmT+p7mMzWy7BJiD6ZhKiT2PL7ixgaqtF5Hb+uR85gUP5rWRqbKdunHOgLX1+nbh10BV1ZOaFSW8kWEz6Tk6bfx6i401GrPfAUylZMyqqHyNj2icPQxe7mkEP5fHVAW7jkiGIOFXXWDWk6ogxlmuAgxDXL2FNc1KlMzebfqMutIWxe57BC6Nniwd8nhtNOfLRTuhCC6eOvI79kBxWUUHp0G0IIEmde5HTbx8viYVBaOEO+EgBmKq+gMTWtXZ6xtIzMO++lfNVnlP72HYDdPbnu4OwBvZQSk6kJlUpDVNh0AqWy72YxGR3WO16t3IC2cF3BZ/Y4St9cB4B+wrh2eYXPv2R9H7T0HEp/+46y7T8x+ua/ovZs7z/X2y0Ss9nAgfTPKK04iE7ri5QWjKZ6fL2jSJz1B5fbOx6s3KAkXNW636zvzfX1aPz8sDQ3U/ruB5hrlNsFA89ZTMUXX7VVcvPhudHUyO5D71BTl0dEyGSaDNUIBIkxpxDoF0+duve/2qG4ETzgCWdvHqcJadFTU6nQ+PkhpSTnb48gmxXZ+9CrloHNMOo/fgZqD+eGSGNjLUc2v0dA1Fiixp1id19OSgs7DrxOQ1MZk8ZcRljQuE5lnPGbOx4P9Ac84exB5aVs6qq9PVFH1lP6+i9WskX/5X504WHtVM9DZixwvnEBtSVHqS05Sk3REaJ9JuDtGYKfTzRCqKirL6KwdA/1jSWMTjjbSrbi8gOUVhzCQ+eHl0cgEaGT8c103aN4qA+rA/akYf7rF1s/21o4Y2kVWX9U/Nz8z5hJ7S97sTQqZAtZdglqPz+8RifR8PshSl5fCYBXRCyJy+7s8lyz4zyusaaUfV892blfvvFU1eYAkvCwaJYuXk5GWiV5RdtJzfwSjdoLi8WIRZoQQsXMibfg6x3ZLemG2slDr04anBSzWSCEqLYp87BN3plCiMNCiHQhxIO9/TKF//nI+r7hQIaVbCpvPU1p6RT/7zXKV6+xkg2Uq8rz13/g9GrVyy+UMQtu6JReVZsNSJYtu4Lly+/nT3fPJzJWQ2rmlwCcOOU2Tpn1MEH+I5HSwrZ9L5Oa8SX6dPuX0HWFoXzy4JKFsxGzmWWrLyKEWADcK6U8x075NJQQwzwgBbhMSulQtrujhYM2K3fkD1Yu43fqNGp+3AWA5+gkmtKOWPM0oSGYSjvr53gEhxN15qXoo9rueuhqpSotFqTFjPZICeVVR6ipy8ciSqmoLMZobNv2UKm0TB5zOcEBigRFs6GOorK9VNZkUlaZhrdXCBGhk9GOGolvaCKqDgsKe/O4wWzl3Cm56oyYjS1mAukt4YIIIT4ClgJu0Yn3HB1rJZwt2QAr2fSTJqLy0FGXolxx1FxeTOW+re0I19X2iFCpECoV5uRoYjOV682TJ0TzxLOXc/jwIVaufIud2wpQmxPx0LVdDuKh8yE+ai7xUXMprzrCkexvOJrzPeR8j3/kWMYsuK6dJP/xtHhwlXCOxGxOFELsBQpQrN3vQDSQa1MmD5hlr3KL0M1NAF7hXXvs+p40mdpNe9FFh+I5ovMFaT6zTqBuW4r1s37ieHxnziB+wTJMjfUYayrxCI5w9B0d4tCBfB686wMmT42Hpsno1SHg4PLo4IAkggOSMBobSMveQGHhbooPbyZi7EkOn9Nx8TBUtkic/reyEbP5xE72LiBeSjkZeAFovd7F3uaX3TFcSrlCSjlDSjlDF9B5kt3qPeIxQrnkLfiyheTc/79O5fxOnkfUfX8m9Brl8jdzba01T+PljVd4DCpN7xbnhw7k89G7W+yqnXcFrVbPuJHnE+g3gsL932M2NbfLP168gd0iZiOlrJFS1rW8Xw9ohRAhKBYt1qZoDIoF7DE84pW5XOHTyuLBZ+5EhEaN18QRRN7xR3RRkXjEROM9ZTLqgAAMecrjuttq6G5Ic0fAtBCCkXELMRjryd3zda/bG4xwi5iNECJCtLjYCiFmtrRbjrJISBJCJLZYyEuBtfbasIWn2oMLYxYxxjexU55+4kjre6/keJpSc5BS4nfyZDxHjrBufVhq65BGA9JkcuEr9j0CfOOIjZhNcdqvlGfvcVi242p1KJyvOkU4GzGb1TZpt7QK2gAXAQda5nDPA5dKBSbgNuAb4BCwqmVu5xDRXmEsiz+bRyfc3o50yRHFNGcVofLxwmt8Ip5JMZiqaon9vxvxWzDVKrEPULdjJ5b6BusthDAwrBxAUvwZ+PvGkbFtFcamtiH/eBhWnSKclLJBShkspay2SXulVdBGSvmilHK8lHKylHK2lHKLTbn1UsrRUsqRUsp/OfM8gUAt1KiFmgn+7eUR6rb+jqWukZCrz6QuJRWPxEg8R3UWEPSZPRNddBQ1GzdR+PIKLE1NncocK6hUGsaNWIrFZGDX6n9SfGRLl3uEQ83KDci1uERispgxSzMHqttvdzQdzUcT7IdHfDjGkipUHu3dyVutnFqvJ+JPN6MND6PpcBoFz76IxWgcMFbOWx/GyNiFAGSlrCbtl5WYTc1D3soNSMLlN5bwQc46/nbgBQ7Xtt3BYGo00rA3Hd95kxTvD7MZU3lNl+2ovb2J+cv9BF14HsbCIhp/P+SW/rmLdIkxCxiz4HoCYyZQlX+Q8qzOCgL2MJit3IAkXJO5mc/yvm1HNgBpsoAEdaAPhrxSAHznd1Yvt53LAWiDFWm7qh9+Ano/lwP3kS4gKtnqO1eaYf8ai6F01DWovolQK9t6Yfoaan5QTg58507stp5+fDL6iRMwlVd0W9YVuIN0vpmNaD28CYqbRGONsuM0lIfVAUm4UT5xdtOrUhWNOGNdM1XrfkPl5YE2Ishu2VYrZzEaKX59JQ37D+A1tu1CXndYOXCfpdPpAxwG3gyVxcOAJJw9mA1mUv66AX20H1HzR6L20CiSXt04H9Tv3E3D/t8JOON0Qi692GHZnqK3pPPNbERaLCi+DgqGqpUbNISTJjPG2mbizkrGNzGIwPHhijeH0cFNgh5FVKxdhzYykoDFi1Dp2q9o3WXl3AGVWoPFbMDYbP9SFHsYjFZu0BBOo9eh9fMg9bVtfHXqK5Ttyif4klM7bYvYonbr71jq6wm98rI+l9fvrZXzC09CWszUlXXtiDMUFg+D6htM/PPJhM9NIOH8CUTc9QcCz3PscWHILUHl5YEuonNsayvcaeV6Qzp9sQEAi8lgTXNmWB1sVm5QxTTEnDaamNOUib+9AGlbGMurqdtyAP2UJITagf+Qm9FTya8A3zg0Ht4UHPyR4HjnL6obbBhUFs5ZmKrrKXpmFdJiIfiyhd2Wd/dcrieWTq3WERg9nqba8nbpHa3cYB9WB3fvu0DpyvU0pecTfstSdJHBnTaC+wM9IZ2+SYfF1Iyxsbb7wjYYTMPqkCOctFhoOpSNzwnJyhGYk+iLFaurpAsNVPSAK3L3OSw3mK3c4O25HZgqa8l7+E1MFTV4Tx/dLu9YWDlwjXR+PjF4e4V28h4ZSouHQbVo6A4Fj79Hc6Yi2yXNrm+c2tOUK9/1K+UpP+EVlYBXWDTeBm80Ht5odHqqCg7h6RdGaOJ0h+06s5BInhDN5KnxyA8y+OnXd6guTCUgKtnl7zDQMaQIZyxri/+sWvcb/gvbE0ET1YCpwLUL4Yp//gJpNmOsqaQm1b43R0jCtG73+RyRLnlCNP9+/gq0GjXnXjiZ0eO+I3vXlw4JZy9CfzAE2gypIVWoVVYZCENuCRaDfcms6p83UbbqM7tOjw0xFppKCzE3N9JUVoRHUDieYdGMu+dpPMNjOpX38g93elO5q+F18tR4tBo1ao2KoKAAZk2Zh6G+0uVhdTBg0Fo4eyI3HvHhGPJK8T9zJtrQAEpeWUtzViEhV52B95Qkq3Wr+Fy5Q9jS1IypooLAcxYr8RBC0JSZReFbL7Zr12/MFKpTd9NUrAgh+owYR8y5V+BbpOoU1NwT7N2djdFkVhxPTRaMzV5YzEYaa4rR+3cd0jgYdUiGlIULOHcupvIazFX1NOzLoHbLfoxFFRQ8/j7lH/1gtXiaoEAA6nfuojkzi8r1G8hZ/jCGwiJK32uLEwqafhLRZ11O5OkXUn1wJ1q/QJJufIi4869DrfOkIU7nch9rE72sr1YcOpDPy89+w+4dWbz87DcYG8IAqMpv7zA6FBYPg9bC2YP35FEEXTifis82AuAzezzBl55K+Uc/UvHZRmo2HiD8xusIOm8JJW++jdfY0TTn5NJ8VHH0zH/iaQA0IcEknn8LuoC2O4nrc9PxHzutXRr0TtSwlXQTRkXyxz+fgVatZq57u7oAACAASURBVOKUOLIyStmTGkFV/kGixp3So7YHKgashfti3ovdF7KDoItPwWviCEAJuNGGBRJ5zyVE3HYL0mCg+LWV6KKVYGqPhHii7r7TqqKpjQgn8OzFxDz0QDtile/ahDSZ8AiNtPvM3nqVTBsXi6ZlDqfRqJg8NZ7QoLHUlmVRmec4yM3entxAtnLuUk9aJoTY1/LaIoSYbJOXJYTY31LXvg+1GyFUKsJuPNf6uWr9VgC8kkYRsuxSTGVl5D36BABqHx+0oSGE33gdic89Tczy+whYtBChapsbmeprKf75S/TRiQQ5uE6pN6TbdTAXk8mMyWzGZLawd3c2cZFzQErSflnZLn51sC8euv0tSSkPSymnSCmnANOBBuDzDsUygflSyknAo8CKDvmntLRhV1HH3dCGByJa3Jbqd7dFfenHjiHi9lvxnjIJj4R49OM7K1d2ROW+rUiziagzLkal6f7CkdaXKziQXsj9t7/H2ys2cttjn7C9vgKtxovxoy4EIH3zezTVlXfTSnsMVCvnFvUk2zhUYCuKpEOfoytZfaFSEXnvpZSs+BKPhIh2e29eo0biNWpkpzr20BBjoS7rMF6RcXgEO/ZO6Q18Mxs5RD6HDuRb53W1iV6Yi9pclfaufZzg+KkExU3G3zSaxvi2264H02rVnepJrbgesBXOkMC3QggJvCql7Gj9gPbqSXFx9mMaXIH3lCQSX74bAFMP1UwmBQWzobyQuBnzXKrnyrDXcTPYVhvYb9Y8koUaU0wAtcVHKc3YQXn2blRqLYHT5hI290xUWtdXyscS7lJPai1zCgrhHrBJniulnIYihvMnIcTJ9uraqieFhoY6260+w9SISE6va6K5sZEX/nY/k+PsLxj6EkKlxm/2PIJiJhA/fSnTLvwHY0+9maDYSZSn/Ez6yqeoy1LuqRgsiwe3qCcBCCEmAa8DS6WU1gmHlLKg5WcJytxvZs+76zpcPcpqxeyYWEJb4ll3bN/OCSOdmyX0xrp1l65SqfGPSGLknMtIXngrQqUi+5NXKN36vdPPPNZwl3pSHIrQzZVSyjSbdG8hhG/re2ARcMBeGwMNW/NyOWfpUi699FIefvhvrF23vts67iCbs/ALH8nIa+7FZ0Qypb99i8VosFtuoFk5d6knPQwEAy932P4IB35tUVXaDqyTUm5wW++dQE/dknYXFXLlmk+ZcvF1+IZHs3HFfzHWdS0r0Z9ka4VKoyVo6jykyUzul+8MCj85d6kn3SClDGzdPmnd/pBSZrQoKk1uUVdySj2pFaeGpLpS3O3YXVTIu78dIHTx5VhMBgq+XWW3XF+QzZlyPvkWfEckE3bSYuqOHqSp1P6NigPJyg38f4lu0NVFvu5Aq8XwCA7Hd9QE6rPTkFJiMRmRFoVkx8KydYT/2KkA1KYfGPBWbmD3bgDBJ3400mSics8WDj3zAGUpP2GsrbJuyJZn7yFrx5puWnENzlo5rb8id1GW8jP1eRlu7YO7MeAJd6yH1VYETJqFLjCUwu8/A6AuM5XcD19l79rHKUnfSvrm9yhO+7XL+n1l3UDRDo6/+FaEWk32x/+jOb/zxuNAGVYHPOGOFToOTSq1hsjT2y7c1WsCaKxWhvPM7Z8CoNP7222rN2Rztq5PfBIjr7obKS1UvL2K+r37rcM+HLuYjo4YJpwL8IlPInKRouVWlqnIhWk9ffGPHINa64W9WwL60rJZ+9Uyj9T6BhB15iUYqsooefNtyj9Z3a7c6E8732bd3zguCOfO/27vuFHW9/6RY5l2wd8Jjp+C2diIPqD9aYS7yOZKO/6jJ6PRK7fiqLzanDx7ugHubgxowt051rkddHevVB2t9DwCQ5l63t8IiBpL3JSzsFjMZKYo87pIG2fJ/rBstmi1cjVp+zBUlhJ73rUELTm7U7ljbeUGNOEGKnR6f8YsuAF9YBRCCKRZuQuipji9z57pLIFFyy07Kp1Hn/WlNxgUhBsoK9WOqCo4xP71/7V+Dh1xAuAe65Y8IZpLr5xD8oTOVwI4gu/I8Qi1hrqjhzpZ6oEwrA4KwvUnXNk4zUr5HGNTLdETFzF+0e14eAe6jWz/fv4KrrlxAf9+/gor6bpr2yffgkqrQx87kpoj+7CY7IdJHsthdZhwvYBQa/ANTSRm4iJ8QuLdNm+zjVNtjXFwBSEzFmCsqaT0t+865R1rK3fcEM5dK9V2R1mmJsaNTmTCqEi3LhJa41RNJjMmkxLj0ApHz5kwKpIbTjmBufMXEDBhJmXbfkTstO99eqys3JAKE+wtXBlOJ4yKpDgsmIaqfOYmGGCED9kZdW7px6ED+dx/x3tMnhrP3t3Z1msybWNZpZQ0VBag1ujw9AtlbHww50zzoaLoCP+55FwMDXWseSSV/K8/JHLyndbFxLGGS1eQ9xdmzJghd+xQPJyeSz0NgB/LxnZbrztVzO6GE2cI12rhrloyE3X1IW65+WYAFi29gmrvNuVKd2+L2JLNYjaxY9VfkNK+40B4eDh3vfQ2L7+/itzP3yR07hn4XHx6uzKtFj/tor+5tZ/g+Ary42ZIdTd2Hcxl1qzZAERERBA+dn67fNsI+46R9q6iY12zobFLsgEUFxfz8v89jHfsSNSeXpRu/gZDgX3Xpf7GoLFw0L2V608LJ6Uk+9fXqasq4twb/kVmcc9uK+zOEnZFVFNzAwgwNtbSVFtGQHQyE5OiyTy4jh8//aBTeZW3nvjHHmmXpolqGLZwxxKuhNpV5u6nOPcwYeMW9ZhsYF9rxDa9K2g89Gh0erz8wwmMGY8QKrY2FlMYPRHvuLYrP0NmnQqApd7+oqm/Fw/DhOshGmuUa5j8I0Z3U9J59Gb4bQ2+Vuk8iL/4ZkJOPB2hVlN9SNG0C52zyG397A2OK8K58xA/OGEqCEHxkd/c1mZP0THSXwgV4fMWE3v+dZibGlF7eqHx6ew61TrF6E8rN6QI15fu5h0hhAApKTz4I2aT/Yip/oAjWQnfxGRGXPVntP7BFH77CXLL0X7smX24S8xGCCGeF0KktwjaTLPJO1MIcbgl78G++BL9jeIjW9jzxWPWz60OmF1hwqhIrloykwmj3BdM7ayGiUdgKHEX3ABA1sf/Q5pMbutDT+AuMZvFQFLL6ybgfwBCuR7vpZb8ccBlQojuFWS6QH8c4tfnHKFky7cYqtvuVpUWC9WHdpP5wQsc2PIaJUV7AUg66WoAyrN2UZK+lW0f3Meu1f/E0NCmNTxhVCQv/uUP3HTRXF78yx/cQjpXxXK0Pn7ELLkKAPOvae3y+ntYdYuYDbAUeEcqeyxbhRABQohIIAFIl1JmAAghPmope9DZB9459vt2WyN9CSklOWtXYmlsonTzBoJnnoIQAkP2YWqK8vENjaChvBhzkzIXLC7Zi3/yVIWMLVbO2FSLStOm99Gq/aZRqwDJtHGxHEjv+Z5YT2TBGmIs+JonoPLwpPbIfgIX9Ph/vtdwtfddidlEA7k2n/Na0rpKHzCQUmIoLqE2ZScF//4vlkZli0Oo1ZRv/4mKHRtJjAjlw48+ojAnizPveQRdkCKJWnN4D0FT5rVTVkpeeCsaXdsqs532m8nCroO59AQ9kQFriLFYt3qa4lXoJ42n5uiBTsNqf1o5py2cjZjNcnvZdtKkg3R77btVPakrdJTOL1/1GbVbFNFCta8vIcsuISRkMiqtBxZDMzedMY/bz5iLRq3CZLZw2txZZNTfTd6696k9sh+Nty8jr70fLBZ8izp/3QPphdz22CdMGxfLroO5PbJuPbVqHeE9ZTJ1KTtpPHwE/fhjcweEK0OqIzGbPCDW5nMMUADoukjvhBYZrxWgnDS40K8eozZlJ7VbtuJz4iy8J07AM2kUKp0WdcuJg9rDkx0Z+RjNyiXARrOZlKN5qLQ6Ypdeg6m+Bm3rdoNaDdjfOD6QXtjjYdRdZAPwGjsaodXSmNY14UZ/+mifnD60whXCdSlmA6wFbmuZo80CqqWUhUKIUiBJCJEI5KMMyZf3psPdoSuRwo4o/3wtNT//gkdCPMEXnodKa1/dcm9OITes+IwTRsaQcjSPvTkKcYQQbWRrQXcC063kcTZa351kA5gSEUm+SkWYXk/He7RNBfp+CSV0inA2YjY326TdAorGCLAeOAtIR1nFXtuSZxJC3AZ8A6iBN6WUjlWS+wk1P/8CQPiN13ZJtlbszSm0Es0d6I547iYaKOKKfLoGY3Mz/7zyaj5TWdhd1P8H+u4Ss5FSyj9JKUdKKSdKKXfYlFsvpRzdkueSmI09uGNrpDUy3W/+Sah9fHrdni26Iou9dHsLgb4gm7mhkf3/fY41n3/OPffcwwUXnM/smNhO5fpj8TAwvPL6Ec2ZhRQ+9yYqb298T5xlt4y9S976Er1RQO+ObNJiofSd92hKS+etd95h2bLLMZotbDqSRs2vW6j44it0UZF4xMeh9vFGHQL1u9LYM+pcJk6ciNrNt2kfN4SzNBspe/cban7ajcrLi8g7/ojQaqnffwBjUQlIif/ppzp9b5Yr6O09DvbgjGeLlJKq736g8dBhgi86n7Ueakq2bmFT2mE2PPAXjCWlADRnZWMoLEIaDNDirjZ16lQCAgKYN28eF110EcuWLUPjBq/h44Jw0myh6LlPqU85hPfMZFQeWkreeg9DXr71FwzgPWMq2qCgXj/PdvFwrMgGULdjF1XrvwHAIy6W3UWF7C4qpPqnjRhLSgm/6fp2q1VTVRX1u/ag8jWgDvBhSXMwP/74I9dccw2PPfYYK1euZM6cru+qcAZD6vC+FbaH+FJKSt74ivqUQ4ReexYqTx21m/Yh1Gr8F55C2LVXAqCfPLEd2Ww3TQcSXOmT2scbtb8/Ki9PCp59kaYs5YCo4WAq2sjIdmTTRDXgOU6H/6kLCFw6D7/5U/h5USxHjhxhzZo1mEwm5s+fz7PPPmv3FkZnMeQtXOPvmdR8p6xhKlZvxFxdj1dyPBG33K7kH1YuDtH2gXK6u62bq/8A+uSxxD3yN8z19eT/+xkKn3nBmue/aKHdOh23RoQQLF26lPnz53Pttdfy5z//mV9//ZU333wTPz8/l7/DoLRwrqxULY2K65A2OgRdVAjCU4f/4tnWfG1YKAhBY9oRGg+ntZO4Atf/yK1wJ9l6a23V3t6EXbUMj5GJ1rSARa6dTwcEBLB69Wqeeuop1qxZwznnnIPF4nqfBnxMA2D38N6V+AZLswGVR/sLNGyPt6p/3mS9QzXmoQcUEtrgWMqYuntYN1VWYSwpxWtMUqc8exu/U4KiWXXqde3S3njjDW644QY2bNjAGWec0anOcR/T0JFsnWBR9t31kyZ0Ihu4/4/uLPriuZrAALtks4cpQdG8ffKVndIvvvhihBBs3brV5ecfF4Szh9b/ZmmxUPXdj3iOTiLs2quOca8UDJQFy6zQBLSqzvtwvr6+jB8/nm3btrnc5qAgnLM6cT2HxFxVRc0vm2nKyOzjZznGsSRaxzDKbaVZGC0dT10VTJ8+nT179tjNc4RBQbiewNn4BqFSEXDG6RhLSqn4/Auqvv3Bbrn+IMJAsGq22FORz9W/vGs3z9/fn7o616Uthvy2iDPQxbT4hKpUhFx8Yb8+e3JcJCeMjGFTbU6PDtO7WtD0hLz2Fg17KvLtlg0NDaW2tpbCwkIiI513mx+0hDs1JNUpvRFnYMhTfqmx//grGv+u95bcfcY6OS6S12++EK1azc3mWVzx+SftSNefq2NXXZNycnLQ6/Uu78UN2SHVFRgKClH5eDskW19gyrRotGo1GpUKrUrNSb5x6PNU1ld/oTuydfQesVgsrFu3jrPOOgtvb2+XnnXcE87c0Ej9nn14jXYugt5d86yGGAtb83Ixms2YLGaMFsWb2F1wlrA9cbrctWsXBQUFLFmyxOW6g3ZIdQfUkfWU/PsLpMGA/8IF/fbcVtLuLirkis8/YXZMLFvzcjmc03+B3NBzJYKnnnoKT09PzjrrLNef2aMnDhI4cje3NDZT8tpX1O/YS8CZi/CeGQg09LkkaUcL2erBAUCMe+dt+jxVlxa5p2QrKSlh1apVLF++nOCWC4xdwZAmXFeo35VG0bOfYGlsJvjShQReMNel+j1dPPT3toe7yQZQVVUFwPjx43tUf1ATztmVqpSS+h2HMRSU0rgvg4Z9R/FIiCDkmsXoxye2K9sxjNBZtG5v2Aba2MJZsrlrJdwXZAMoLFS+W0BAQI/qD2rCOQOL0UTGNY8jDS0S8kLgv3gWIZefjsqzmzNWB7AlxuS4SF6/SdneMJrN3LDis3akG2gbur3BunXrUKvVzJs3r0f1hyThjLXNaLx1NBTWUPCvdUiDEeGpI+7JW9AE+6PycByl5SpOGBmjbG+oVdbPe3MKe0w0Z61cV1bVXdbN1sumurqa2bNnk5qayoIFC/D3t39zYndwNkwwAHgdmIASOX+dlPI3m/z7gGU2bSYDoVLKCiFEFlALmAFTV24r7sKuR78j79v2gi2BS+cRcoXzgnyuDqspR/M6BUv3tVXryqq6i2yNh7LJe/gNhFZDwgt38cQTT5CamsqVV17Jk08+2eN+O2vhngM2SCkvapF8aPfXkFI+BTwFIIQ4F/izlLLCpsgpUsqyHvfSCUgpKd6STeEvyo3IAclhVB8pI/CC+QRdOL+b2j1DqyXqGCz9m8X+cVBP2u4K9qxqV891lWzG0ipKXl0LgDSayLzlaZ4Arr76at566y2X2urUl+4KCCH8gJOBawCklAbAkQKfowj9PkF1ehl7//0TVYdK0PjomPnEWUTMbVsMHCpyfRLuqpVrDZbur/laR6u6qTbHbrmeLBKCivaTlV/aLm3hwoW8+uqrrne0A5z5S4wASoGVQojdQojXhRB2zzNaIvTPBD6zSZbAt0KInS2CNXYhhLhJCLFDCLGjtLS0q2J2kfX5fqoOKZq7QeMjCJvVd2I4juBusjlqr9WqPrNtM1es+cTuwX9PyDYmuICIkxJZ+PGV+I5o22dbt24dHh69v6HQGcJpgGnA/6SUU4F6oCsly3OBzR2G07lSymkoYjh/EkKcbK+ilHKFlHKGlHJGqJ2Alq584k4NScU7tm2JXrIth9KUNkksU5P9C86cgTN/sFZnyb6ybLbtd3z9Zsnnfzu2u4VsyRHFjA7MZ/Mda1h/+go8g/WETm9TVnMH2cA5wuUBeVLKVvfOT1EIaA+d9OOklAUtP0tQlDNn9qyrXWPUpVNZsulPzHxCuZC2NrOCgp/SWXvSS6w/fQXG4jb+m6rryfvnStKXPUpzVpG7u9IOhoJCCp5/CUNh3z6nI1whW3JEsdV3cOcj31F5QOnrdxe9Q8an+/AM8WbB25e6r2/dFZBSFgkhcoUQY6SUh1FUMDspWAoh/IH5wBU2ad6ASkpZ2/J+EfBIx7ruwO8vbeboR4oHanNlI1lr2zRzVHpPCv+7isbfMzHX1FvTi15cTfzTf3TYbk83gmu3p1D2/scANGXvRhe52OU2egJnydZKsubKBjbfvoa67EprXtSpozDVG/AfE8qoy6ai9XHfZb/OrlJvB95vWaFmANd2UE8COB/4VkpZb1MvHPi8RT5BA3wgpdzglp53gErX5nvfSjwABFSs/oW63w7gPWMsKi8PDLnFNGcVYcguIv//3kYXF4Ha25PApfMQmt5radRs2Ur5x4oEq35qEoFL5mEu6XWz3cJVsgHU5VS1IxtA2Ox44ha7x9ewI5winJRyD9Bx/+yVDmXeAt7qkJYBTO5595xH8o2zkWZJ+vu72qWrdRqqvtqCytuLyHsvRahVjA0v4si7O0l9bRsNe4/SsFeRk/cYFY2pogZMFvxOnYpoEXJxxcpVfPU11d8pbuqBF5xMyGWnudyGK3B1+OyI4MlRzH/zYqrTyxFCsPtf36PS9p3X2pA6aRh3y4nEnjmGjdevwmJQtgwiTkpE6+uB5cSTEGpVyy9dED4ngdTX2kcdFfzfO9b3xpJKQpa1v4HPHsz1DQidFqSk+vufrGQLiYtmwR+vYm9lm+Bnfwj+2UN38R3+SaH4J4Wy5S4lNtfc1HfS+kOCcLaH+L4JQZy26kryvk3DO9qfyJNHAEpgtO0vvrnS/qVqwZctxFBQTuWaTfjNn4IuRlkx21qoqRGRzI6J5dvffuPHRx9TjoA8PbE0tBHq5w3fMSJpFFf/8m6XcQF9hSlB0cwKTWBbaRbNul12yzSW1lFztJyyXflIiwVTnYHyPfn4jggi+jTn4lZ7giFBuI7wDPZm1GVT26V1/C8PnRHDpHvnk/7+bsye3niNS0AbFoj/GSdgqqyjduMeil74jOiHr0Ht7WmtNzUikvfO/wPvv/MOm//2DyyNTXiNT0QaTRgKJJa6Rh76618Zn5yMyWJmVmhCvxKuNXhZp1ZhsszjbwcqOVzbPvTxwIu/kvHx3nZpKp2auLOTGXfrHDSe7j1rtsWQJJwzEEKQsHQCCUsndHLS1Ib4o5+aRMPuI+Tc+xLRf70aXXQImqgGZkfF8stPP3HjDTcwZ+4cFv7zTt7L3Enug6+ClCRdcBr3PvhAi9u4hW2lWf3yfVr/oc6JmYxOrUIt1EgBE/yT2hGu8JeMTmQDmPnE2YSd0FkV0904bglnC3uewVH3X07dtoOUvrGO/Effwmt8Imp/H1Z67SPva0Vz7elnnuHer98h++mVyGYjMY9eDyOiuGnbKuuQ1pfWzd7c7ED1EUwWM1KAWZo5UH2kXb53tD8BY8OIXpjE7y9ttqZnf3HASjgpJfW5VTQU1dJc0YBvnSf3fH4P8+bN4/zzz+9VnweFmE0rHN1I09uQwa5c0Rt+z6T8w+8xVdRirqpDGk14R4Uxae4som9eymeLb0EaTUQ9uAzv6WPsttHTS+fs9cmZtsb4JjLBP4kD1Uc6DaetMDUa2XTTJ9RmtW2J6CP98ArzobGklobC2k51AgMDqaio6JTeEY7EbIYtXAu6in/Qj09E/383Asp/vmwyIDx1lAlB5rpvkUYT/mfOsku23t5u2NP6h2szuyRaKzReWk55V7nBoD6/muwvD9JYUktjcR2+I4JJumI6PglBLB2/CP3vJm77021MmTKlR/1p99xetzCEYDGaaD6aj6mqDkNuCZ4jo9HFhKLy8kDtq0cIgfDqvOvuO29iu8/9eY2mO+Ad7c+4W060m1fqW8fCkRMAuPXWW3v9rCFDuJ5E4pubTRx5dyfFW7JoKq+nuaoJLPanGNrIYPxPm442MhhDTjFNGYXUbz8EgDS1Cb4MNrI5whfzXgSgaYxy/1hqau+vLBgyhOsJDr26lYxP9qLSqYk9YwweQXpqw0ejCfJFGx5Ec0YBxtIqzHUN1O9Mo+zdb611tdEh1vceccpQ3N9kc6fcRUe0kg0gKysLgCA3CG4PKsK5+yrLpnLl2PfkFX/Ab2Sb71frXE4/aaQ1LXDJPJozFDcgbVgAal9lE1gaTQitpt/I1lFu1p78bE9IaEveVrKlpqbywgsv8O677+Lt7d3rFSoMMsK5G6EzYin4MZ2mioZ2hOuSPJGtB/u1La/eoa8uHO7YbkcCdvXcVqKtXbuWu+++m6NHlTPmSy65hHvvvZeoqKhe9+24IFzrL/ir36M59OpWVGoVAePCOPLeLjxDvfEb0fuhoif9GUjPa3Vw3b59O+effz6TJk3iL3/5C7feeisxMTFu68uQJ5ztLzs0LYXvv1MiunI3pKL19WDO8+fhGeyaAlBv+zHQcOfY72lubkan03HfffcRGRnJzz//3ONQQEcYUoSznYfY+wNX5DeBSrD4q+tpLK3DK8zHrc6FXfXJFfz6YR71lUZOvyUBlcq91zBFeCYTo59CXsMeipoOcefY75FS8tBDD/Hkk08SFxdHZmYmCxcu7BOywRAjXCu6+iPnp9YSnuiF1tcDre/AIlorPn3kMABfv5DBI7/MIy54PBRH0OCVTUnTEfzDPXp0H1iEZzIXxD2FWmgxSyOGRjObNm3izTff5K233mLp0qU0NzeTk5PDpEmTetR3ZzDkCOfoDy0QqNR9L4nXm+HziR3zeXDGRgAePvlX4NfOZVLm4+mjwWKWFKTVYWwyYzFLjmyr5OAv5Qhg9IlBTF4URnSyD0IIYvRTUAst69d9zd///nf27t2L2WxGrVbzwAMP8Pjjj/fJxXYdMeQI1xWa6kyUZjWg06s77V8NlPlVSWYD37+e1W251/64Fw8vNdn7a6ivbItKEwLCR3gjkXz/WhbfvZpFbGwsc+bMIeGyEF7O/R933HEHo0ePZvny5cyaNYtZs2ZhL0qur3BcEE5Kycq79lOS1cA1zyjHNL0lmZSS9JQqSjLqOfBjGSqNYPKiMCYuDMXLt+tf69qn0/nxjWxOuS6OploTCEjfVoneX0tFQRO1ZUqM+UlXxHDNfYv5/V0fnnvmeR78ywOU+23jlft+4GiKIpk1/Zxwkk8OwSdIy/mxTzJu3DjrirKsrIwvvviCb775hrVr1/Lxx0pAz7x58/jqq6/6bI7WHQaVtwg49hixB2OzmZV37ufgxnKW3DuKU6+Pd7k/1SXNbHwnl0W3JlCe28j65zLI3F1FQ7Xiih0a74XJIKksbEKjU7H49hGcen1cpyHKZLBw7+Sf2qV5+mqIHuuDxSwpTKvjgofGcMLSCGvdjhP9zN1VZK+K5YorruDCC51TXK+vr2fr1q3k5uZy/vnn9znZjmtvkd9/KuPgxnJmLInglOt6FpGfuauKH9/I5sc3svH01SAEjJkTRNwEP0ZMDyBukh9CQPa+Gn58I5sv/5NO5p4qAiM82fFlEZFJ3kSM8iEw0pOz7xrJumeVDdUL/zqak5Y5dnosajrEJQlttwAyFkVMwwV4e3uzcKH92wP7G+5ST1oAfAG0+sSsllI+0pJ3JooYjhp4XUr5hNt67wDb1xTy89s5VBU24Req4+J/jO3xpDg0oS3aKiDcg6v/O4HIJJ9O5RIm+3PtH3pWHgAAB5VJREFUcxP55d1cPn+8zfHR0qRj77cl7eZbAJNOD+vURt/funNs4Rb1pBZsklKeY5sghFADLwGno0Twpwgh1kopOwVSuxPfvJzJ1y9kWD/f+cEMdF7dx5ue5dPWrfV146zvf3hdsWx3fTiD8BF6h8QVQjD/qjhGJiTx9M3rAUjbl8PqnPs4kreHlC+KqKs0kjjVn4dP3tSTrzeo0RfqSbaYCaS3xKcihPgIWIqdyH13YvtnbVHH/uEeJE5tP2exJVZjozKH9fISXZZ5fGcpJ8/Tcd3kbKf74H3+Laz9Tzq33HILaqFRhsUEoGfCkUMGzlg4W/WkycBO4M4OEfYAJwoh9gIFwL1Syt+BaCDXpkweMMveQ1qUlW4CiIvrufqRJT+C8oI6/vnPf3DZZRdRWn0HoT72+Z2TZeK0k0rx8RXsOhhht8zmTc0UF1nIPOp8rGZSjBKLevjww65/gSEOd6kn7QLipZSTgReANS3p9sYeu8vi7tSTnMHWTwu4+7T38fHx4YILLmTUqNGMTuo8WTY0S77b0MRpJymyYHW1EkzX4amb3qlsWqoy78rKtE+4pJiCTq9hdA1nLJw99aR2hJNS1ti8Xy+EeFkIEdJS13YZFoNiAXuMrnzijM1mNn2gGNP9+3cSH5+IlCbKKjbxyku1HEkzsfRCL3JzzLz1Wj15ue2vZbzxmk28+OIzmNXL0fvuB8BikWz/TZk9XHSJfphMboBb1JOEEBFAsZRSCiFmoljOcqAKSBJCJAL5KHJel7v7S5iNFtbf+xsFqc3c9xdf1Pp7KK85kcbm33j15V957j/KNYvrv1RcpceO0/DsywH8fsDIay8rM4ONG39h4sTpREb58cpKHcnjtKz9+G5++O5+AJ5+8oj9hw/DJTi18SuEmIKyLWJVTwIuAUU9SQhxG3ArYAIagbullFta6p4FPIuyLfKmlPJf3T3P0cYvKJu/UkrKchopyWhgxxsH2b3TyCOP+3HpFW2uRjtTDFx2QTkBgYKnngvA319FaJiKqGi1daVZXDCWCaM/5JZb7kQIwcaNGzGbzbz99tvcc889aLVadu/e3S/njEMFjjZ+ldC3AfaaPn26dITb35km4yf7SZT5oATkI0/4y7TcSPnb7jC5+BxPGRunliqVknftjd4yLTfS+nKEffv2tWv37LPPdlh+GJ0B7JBd/G0H3UnD8uXLeeGJXYSE6Bg1WkNdrYU33wti1GhFD+PD9xr4+itl6LzoEi/++9RhoqOjUamc8xKZOHEiBw4cYNWqVcTFxbnFj38YNuiKicfy5cjC6XQ6GRISIq+66goJSJUKOWOmTn7wWbCsqamxWqZp06ZJs9nc23/WYfQAOLBwg+q+VCklBoOBsrIyPvjgI8aOHctf//owxYXhXH9FA/v27bOW/fbbb522asPoR3TFxGP5cmThHnjgARkcHCznz58vd+/eLaWUMjc3V2q1WqnX6yUgExISZHNzc2/+SYfRC+DAwh1zctl7dbdosIezzz5bAnLmzJkyJSXF5frDcB8cEW7IjDkrV67krrvu4uOPP2bGjD69zmsYvcCgW6V2hdDQUJ555plj3Y1hdIMhY+GGMTgwTLhh/H875/NSVRDF8c8XJVtVaptoURptXAVF1C4K1NxY0MJVUruifyDc+A+0iSApCKpNVqsIQoxqF1mL/LExn7QxXBRWtAqC0+KeV7fHUyx17n15PjAw78ycYWbel7kz3DsnKSG4ICkhuCApIbggKSG4ICkhuCApIbggKaW8eS/pI7D6K1J/z07g0wa2XyaKGOseM6t7MaWUgttoJL2x5b5I/c8o21jjkRokJQQXJGWzCu5G0R1ISKnGuin3cEFxbNYVLiiIEFyQlIYVnKRhSR8kvfXUlyu7LKkiaVZST85+UNK0l12V326W1CJp1O2vJO3N+QxKmvM0mLN3eN05992SZuSrR1Kvz0FFUm08mGJY7tvzsidgmCxKU629C5gEWoAOYB5o8rIJ4ChZkJ0nwEm3XwRGPD8AjHq+jSzSQBvQ6vlWL7sPDHh+BLhQ9JzUzEOTj72TLGLCJNBVdL8adoVbgX7gnpl9N7P3QAU4LGkXsM3MXlr2j9wBTuV8bnv+IXDCV78eYNzMlszsMzAO9HrZca+L+1bbKgu/YvNZFtOvGpuvUBpdcJckTUm6JanVbfVi0u32tFDH/oePmf0AvgLtK7TVDnzxurVtlYXl+l4opRacpKeSZuqkfuA6sA84ACwCV6pudZqyFez/4rPquHcFUso+lvrWlpmtKka+pJvAY/+5XEy6Bc/X2vM+C5Kage3AktuP1fi8IHsZvkNSs69ya457twGse2y+9aDUK9xK+J6symlgxvOPgAE/eXYA+4EJM1sEvkk64nuws2SR16s+1RPoGeCZ7/PGgG5Jrf7I7gbGvOy518V9q22Vhdd4bD4/QQ+QjbNYij61rOEUdheYBqbIJnJXrmyI7IQ2i59E3X6ITJjzwDV+v2nZCjwgO2BMAJ05n/NurwDncvZOr1tx35ai56TOHPUB73y8Q0X3x8zi1VaQloZ9pAaNSQguSEoILkhKCC5ISgguSEoILkhKCC5Iyk/jxQq/5JK0ZgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "gb_boundary = [(-2.6653539699999556, 51.617254950000074), (-2.6937556629999335, 51.59617747600004), (-2.71312415299991, 51.58661530200004), (-2.760487433999913, 51.579779364000046), (-2.7980850899999155, 51.56350332200009), (-2.816395636999914, 51.555568752000056), (-2.8587133449999556, 51.546128648000035), (-2.943348761999914, 51.54254791900007), (-2.9562882149999155, 51.54572174700007), (-2.9641007149999155, 51.552801825000074), (-2.969471808999913, 51.559881903000075), (-2.9746801419999542, 51.56297435100004), (-2.984038865999935, 51.55853913000004), (-3.0102432929999168, 51.53803131700005), (-3.0156957669999542, 51.53164297100005), (-3.0737198559999115, 51.50836823100008), (-3.0764867829999503, 51.50775788000004), (-3.088937954999949, 51.505072333000044), (-3.105620897999927, 51.49721914300005), (-3.1317032539999445, 51.48041413000004), (-3.1350805329999503, 51.47630442900004), (-3.1409399079999503, 51.46478913000004), (-3.1453751289999445, 51.45994700700004), (-3.1524145169999542, 51.45718008000006), (-3.1666560539999296, 51.45600006700005), (-3.1723933579999084, 51.45327383000006), (-3.1727188789999445, 51.453111070000034), (-3.160064256999931, 51.43183014500005), (-3.167144334999932, 51.41046784100007), (-3.1848038399999155, 51.39760976800005), (-3.204009568999936, 51.401597398000035), (-3.218861456999946, 51.402777411000045), (-3.289418097999942, 51.38422272300005), (-3.539173956999946, 51.398504950000074), (-3.557443813999953, 51.40509674700007), (-3.5753067699999406, 51.420436916000085), (-3.6047257149999155, 51.44570547100005), (-3.6631973949999406, 51.476223049000055), (-3.6769913399999155, 51.47703685100004), (-3.695423956999946, 51.47150299700007), (-3.717925584999932, 51.478583075000074), (-3.7376195949999556, 51.49087148600006), (-3.748036261999914, 51.50092194200005), (-3.7494197259999282, 51.50535716400009), (-3.747670050999943, 51.507025458000044), (-3.7445369129999335, 51.50763580900008), (-3.741851365999935, 51.50836823100008), (-3.7493383449999556, 51.52806224200003), (-3.7519018219999225, 51.53306712400007), (-3.758941209999932, 51.54677969000005), (-3.770130988999938, 51.56329987200007), (-3.782215949999909, 51.57664622600004), (-3.7902725899999155, 51.58197663000004), (-3.8077286449999406, 51.589178778000075), (-3.8169652989999463, 51.59650299700007), (-3.8326716789999296, 51.61554596600007), (-3.8416235019999476, 51.621527411000045), (-3.8548884759999282, 51.62384674700007), (-3.8867895169999542, 51.62140534100007), (-3.9623917309999115, 51.61562734600005), (-3.9766332669999542, 51.61188385600008), (-3.989979620999918, 51.60651276200008), (-3.998768683999913, 51.60028717700004), (-3.999908006999931, 51.59088776200008), (-3.9922582669999542, 51.58112213700008), (-3.9818009109999366, 51.571600653000075), (-3.974598761999914, 51.56297435100004), (-4.016184048999946, 51.56297435100004), (-4.016102667999917, 51.56037018400008), (-4.0208227199999556, 51.555853583000044), (-4.026519334999932, 51.554022528000075), (-4.029204881999931, 51.55927155200004), (-4.031971808999913, 51.56313711100006), (-4.0385636059999115, 51.56622955900008), (-4.046457485999952, 51.568426825000074), (-4.0531306629999335, 51.569240627000056), (-4.056304490999935, 51.56704336100006), (-4.065581834999932, 51.55756256700005), (-4.070220506999931, 51.555568752000056), (-4.0768123039999296, 51.55695221600007), (-4.087269660999937, 51.56191640800006), (-4.112131313999953, 51.565619208000044), (-4.121652798999946, 51.56598541900007), (-4.132191535999937, 51.56297435100004), (-4.142730272999927, 51.55695221600007), (-4.156809048999946, 51.54629140800006), (-4.1664119129999335, 51.54254791900007), (-4.176503058999913, 51.544256903000075), (-4.18773352799991, 51.54877350500004), (-4.1967667309999115, 51.54938385600008), (-4.200550910999937, 51.538763739000046), (-4.213368292999917, 51.539129950000074), (-4.272450324999909, 51.554754950000074), (-4.2899063789999445, 51.555568752000056), (-4.293324347999942, 51.55914948100008), (-4.29515540299991, 51.56195709800005), (-4.297352667999917, 51.569240627000056), (-4.278309699999909, 51.578192450000074), (-4.280832485999952, 51.58881256700005), (-4.2897029289999296, 51.601548570000034), (-4.2899063789999445, 51.61701080900008), (-4.255767381999931, 51.62384674700007), (-4.252023891999954, 51.62710195500006), (-4.241281704999949, 51.63934967700004), (-4.234730597999942, 51.644964911000045), (-4.228505011999914, 51.63743724200003), (-4.234730597999942, 51.63743724200003), (-4.234730597999942, 51.631293036000045), (-4.2278539699999556, 51.628119208000044), (-4.22101803299995, 51.62384674700007), (-4.1900935539999296, 51.63027578300006), (-4.139027472999942, 51.63231028900009), (-4.0912979809999115, 51.639878648000035), (-4.070220506999931, 51.66229889500005), (-4.0698136059999115, 51.66893138200004), (-4.070383266999954, 51.67430247600004), (-4.07054602799991, 51.67597077000005), (-4.0754288399999155, 51.677801825000074), (-4.087269660999937, 51.668850002000056), (-4.095448370999918, 51.66510651200008), (-4.106841600999928, 51.66425202000005), (-4.146351691999939, 51.66705963700008), (-4.200550910999937, 51.68585846600007), (-4.214955206999946, 51.679673570000034), (-4.293690558999913, 51.67226797100005), (-4.3152970039999445, 51.67747630400004), (-4.342355923999946, 51.69086334800005), (-4.3664444649999155, 51.70848216400009), (-4.379261847999942, 51.72687409100007), (-4.338042772999927, 51.72333405200004), (-4.319976365999935, 51.72483958500004), (-4.310454881999931, 51.733710028000075), (-4.328724738999938, 51.73297760600008), (-4.3471573559999115, 51.73578522300005), (-4.3625382149999155, 51.74286530200004), (-4.371815558999913, 51.754787502000056), (-4.368763800999943, 51.75698476800005), (-4.362904425999943, 51.76386139500005), (-4.358021613999938, 51.773138739000046), (-4.358225063999953, 51.782131252000056), (-4.365101691999939, 51.789048570000034), (-4.3714900379999335, 51.78595612200007), (-4.379261847999942, 51.77529531500005), (-4.384917772999927, 51.77187734600005), (-4.3929744129999335, 51.763739325000074), (-4.399159308999913, 51.76162344000005), (-4.409331834999932, 51.76316966400009), (-4.417876756999931, 51.76788971600007), (-4.426503058999913, 51.77529531500005), (-4.445790167999917, 51.77326080900008), (-4.449330206999946, 51.76630280200004), (-4.441395636999914, 51.75678131700005), (-4.426503058999913, 51.747300523000035), (-4.460764126999948, 51.73578522300005), (-4.4988907539999445, 51.73484935100004), (-4.574208136999914, 51.74115631700005), (-4.603423631999931, 51.73924388200004), (-4.639230923999946, 51.73318105700008), (-4.6453751289999445, 51.732123114000046), (-4.678212042999917, 51.71743398600006), (-4.680287238999938, 51.692694403000075), (-4.689442511999914, 51.69159577000005), (-4.69163977799991, 51.689886786000045), (-4.69163977799991, 51.685980536000045), (-4.693959113999938, 51.67841217700004), (-4.712310350999928, 51.650091864000046), (-4.721424933999913, 51.652044989000046), (-4.734934048999946, 51.65924713700008), (-4.741851365999935, 51.65607330900008), (-4.759185350999928, 51.644964911000045), (-4.8482966789999296, 51.64630768400008), (-4.86351477799991, 51.64411041900007), (-4.878977016999954, 51.63743724200003), (-4.887806769999941, 51.62995026200008), (-4.8957413399999155, 51.621079820000034), (-4.904774542999917, 51.61383698100008), (-4.923695441999939, 51.608628648000035), (-4.931996222999942, 51.59902578300006), (-4.941029425999943, 51.59650299700007), (-4.946034308999913, 51.59760163000004), (-4.956450975999928, 51.602769273000035), (-5.021595831999946, 51.61603424700007), (-5.0457657539999445, 51.62689850500004), (-5.0366104809999115, 51.63743724200003), (-5.0511775379999335, 51.65692780200004), (-5.100493943999936, 51.66469961100006), (-5.119740363999938, 51.67841217700004), (-5.113433397999927, 51.68528880400004), (-5.0366104809999115, 51.67841217700004), (-5.038726365999935, 51.68183014500005), (-5.04133053299995, 51.68939850500004), (-5.043446417999917, 51.692694403000075), (-5.028675910999937, 51.69293854400007), (-5.002552863999938, 51.68740469000005), (-4.988189256999931, 51.68585846600007), (-4.974598761999914, 51.687933661000045), (-4.941029425999943, 51.70014069200005), (-4.892648891999954, 51.706366278000075), (-4.868275519999941, 51.716782945000034), (-4.8580623039999296, 51.71832916900007), (-4.844838019999941, 51.71381256700005), (-4.844838019999941, 51.720038153000075), (-4.873402472999942, 51.73773834800005), (-4.879017706999946, 51.76203034100007), (-4.8625382149999155, 51.78237539300005), (-4.824330206999946, 51.788275458000044), (-4.824330206999946, 51.79572174700007), (-4.836008266999954, 51.790716864000046), (-4.864979620999918, 51.783270575000074), (-4.921294725999928, 51.78001536700003), (-4.933583136999914, 51.77529531500005), (-4.9172257149999155, 51.77533600500004), (-4.905181443999936, 51.771185614000046), (-4.900542772999927, 51.76211172100005), (-4.906239386999914, 51.747300523000035), (-4.8920792309999115, 51.73940664300005), (-4.895659959999932, 51.728176174000055), (-4.9105525379999335, 51.71820709800005), (-4.988189256999931, 51.70685455900008), (-5.009917772999927, 51.706366278000075), (-5.149240688999953, 51.718085028000075), (-5.166900193999936, 51.71381256700005), (-5.156971808999913, 51.69757721600007), (-5.1686091789999296, 51.68891022300005), (-5.1828507149999155, 51.68927643400008), (-5.180653449999909, 51.70014069200005), (-5.180653449999909, 51.706366278000075), (-5.230132615999935, 51.73004791900007), (-5.2495011059999115, 51.733710028000075), (-5.228138800999943, 51.73395416900007), (-5.213937954999949, 51.73574453300006), (-5.202870245999918, 51.74079010600008), (-5.191151495999918, 51.75104401200008), (-5.176828579999949, 51.75967031500005), (-5.1432185539999296, 51.76386139500005), (-5.125965949999909, 51.76850006700005), (-5.110259568999936, 51.778509833000044), (-5.107085740999935, 51.78807200700004), (-5.112294074999909, 51.81317780200004), (-5.113392706999946, 51.82880280200004), (-5.11750240799995, 51.84369538000004), (-5.125884568999936, 51.85602448100008), (-5.139637824999909, 51.86399974200003), (-5.146473761999914, 51.85716380400004), (-5.16437740799995, 51.86676666900007), (-5.2037654289999296, 51.87018463700008), (-5.221587693999936, 51.87767161700003), (-5.2358292309999115, 51.87103913000004), (-5.2914119129999335, 51.86399974200003), (-5.3109431629999335, 51.86399974200003), (-5.304269985999952, 51.867621161000045), (-5.297352667999917, 51.87018463700008), (-5.297352667999917, 51.87767161700003), (-5.300689256999931, 51.882025458000044), (-5.302561001999948, 51.88523997600004), (-5.300160285999937, 51.888332424000055), (-5.2905167309999115, 51.89199453300006), (-5.2905167309999115, 51.898138739000046), (-5.2983292309999115, 51.91095612200007), (-5.288929816999939, 51.91693756700005), (-5.252837693999936, 51.91864655200004), (-5.234201626999948, 51.923041083000044), (-5.204172329999949, 51.942287502000056), (-5.191151495999918, 51.946600653000075), (-5.16038977799991, 51.94944896000004), (-5.1195369129999335, 51.95892975500004), (-5.088042772999927, 51.97601959800005), (-5.085031704999949, 52.00185781500005), (-5.070790167999917, 52.00185781500005), (-5.070790167999917, 52.00804271000004), (-5.082753058999913, 52.01447174700007), (-5.081206834999932, 52.021185614000046), (-5.070220506999931, 52.02635325700004), (-5.053700324999909, 52.028509833000044), (-5.0266007149999155, 52.027411200000074), (-5.015044725999928, 52.02533600500004), (-4.961740688999953, 52.007513739000046), (-4.942534959999932, 52.007473049000055), (-4.913685675999943, 52.014837958000044), (-4.920521613999938, 52.028509833000044), (-4.9016007149999155, 52.02643463700008), (-4.863189256999931, 52.01699453300006), (-4.841420050999943, 52.014837958000044), (-4.83226477799991, 52.01898834800005), (-4.833851691999939, 52.02875397300005), (-4.8382869129999335, 52.04010651200008), (-4.838002081999946, 52.04901764500005), (-4.83039303299995, 52.05292389500005), (-4.796986456999946, 52.05646393400008), (-4.77757727799991, 52.064886786000045), (-4.7631729809999115, 52.075873114000046), (-4.7386775379999335, 52.100816148000035), (-4.720285610999952, 52.113348700000074), (-4.7065323559999115, 52.11347077000005), (-4.673451300999943, 52.09739817900004), (-4.675689256999931, 52.126939195000034), (-4.637521938999953, 52.13849518400008), (-4.513824022999927, 52.13568756700005), (-4.50226803299995, 52.138373114000046), (-4.495757615999935, 52.14350006700005), (-4.490956183999913, 52.150376695000034), (-4.484283006999931, 52.156317450000074), (-4.454701300999943, 52.16205475500004), (-4.4348038399999155, 52.170355536000045), (-4.415394660999937, 52.18154531500005), (-4.385568813999953, 52.20343659100007), (-4.371245897999927, 52.20929596600007), (-4.3547257149999155, 52.212103583000044), (-4.334339972999942, 52.21283600500004), (-4.315825975999928, 52.21629466400003), (-4.197132941999939, 52.279282945000034), (-4.1390681629999335, 52.33022695500006), (-4.10960852799991, 52.365301825000074), (-4.096262173999946, 52.387884833000044), (-4.0873917309999115, 52.430121161000045), (-4.0789688789999445, 52.45302969000005), (-4.067941860999952, 52.47361888200004), (-4.056548631999931, 52.48786041900007), (-4.0618383449999556, 52.49705638200004), (-4.064035610999952, 52.50918203300006), (-4.062570766999954, 52.52098216400003), (-4.056548631999931, 52.52944570500006), (-4.048491990999935, 52.530462958000044), (-4.0266007149999155, 52.52338288000004), (-4.016184048999946, 52.52195872600004), (-3.998768683999913, 52.52594635600008), (-3.9473363919999542, 52.549261786000045), (-3.9473363919999542, 52.556708075000074), (-3.9744766919999392, 52.55654531500005), (-4.025868292999917, 52.545355536000045), (-4.0531306629999335, 52.54242584800005), (-4.068470831999946, 52.550116278000075), (-4.1141251289999445, 52.58860911700003), (-4.125477667999917, 52.60390859600005), (-4.122222459999932, 52.62872955900008), (-4.105946417999917, 52.653509833000044), (-4.0848282539999445, 52.67267487200007), (-4.067128058999913, 52.68024323100008), (-4.063547329999949, 52.68309153900003), (-4.05882727799991, 52.696600653000075), (-4.056548631999931, 52.70066966400003), (-4.052723761999914, 52.70221588700008), (-4.041981574999909, 52.70465729400007), (-4.001088019999941, 52.72410716400003), (-3.988270636999914, 52.73427969000005), (-4.014719204999949, 52.73232656500005), (-4.031971808999913, 52.723944403000075), (-4.048817511999914, 52.721584377000056), (-4.125152147999927, 52.77830638200004), (-4.144357876999948, 52.802801825000074), (-4.149037238999938, 52.81207916900007), (-4.146229620999918, 52.82021719000005), (-4.128895636999914, 52.82363515800006), (-4.117339647999927, 52.83075592700004), (-4.1197810539999296, 52.84625885600008), (-4.127756313999953, 52.86172109600005), (-4.132191535999937, 52.86831289300005), (-4.131988084999932, 52.882473049000055), (-4.129872199999909, 52.88922760600008), (-4.123605923999946, 52.89325592700004), (-4.064035610999952, 52.919175523000035), (-4.071400519999941, 52.921087958000044), (-4.074574347999942, 52.92279694200005), (-4.0776261059999115, 52.926662502000056), (-4.0891007149999155, 52.918850002000056), (-4.100493943999936, 52.914129950000074), (-4.1105850899999155, 52.915676174000055), (-4.118560350999928, 52.926662502000056), (-4.144398566999939, 52.91478099200003), (-4.171620245999918, 52.91347890800006), (-4.228505011999914, 52.919175523000035), (-4.300689256999931, 52.905585028000075), (-4.317290818999936, 52.89935944200005), (-4.337310350999928, 52.89203522300005), (-4.406605597999942, 52.89252350500004), (-4.4272354809999115, 52.885972398000035), (-4.446197068999936, 52.87592194200005), (-4.4816788399999155, 52.850897528000075), (-4.477935350999928, 52.84833405200004), (-4.475493943999936, 52.84414297100005), (-4.491363084999932, 52.83820221600007), (-4.500965949999909, 52.82680898600006), (-4.501332160999937, 52.81391022300005), (-4.4891251289999445, 52.803168036000045), (-4.501942511999914, 52.794989325000074), (-4.509185350999928, 52.791449286000045), (-4.5164688789999445, 52.789496161000045), (-4.5285538399999155, 52.79047272300005), (-4.5424698559999115, 52.80068594000005), (-4.5639542309999115, 52.80524323100008), (-4.583078579999949, 52.81464264500005), (-4.594634568999936, 52.81679922100005), (-4.606516079999949, 52.81509023600006), (-4.61351477799991, 52.81110260600008), (-4.619211391999954, 52.80654531500005), (-4.626332160999937, 52.803168036000045), (-4.648589647999927, 52.79962799700007), (-4.704497850999928, 52.803168036000045), (-4.719309048999946, 52.79751211100006), (-4.733225063999953, 52.78750234600005), (-4.747425910999937, 52.78343333500004), (-4.762847459999932, 52.789496161000045), (-4.752512173999946, 52.79877350500004), (-4.7514542309999115, 52.80320872600004), (-4.755441860999952, 52.80931224200003), (-4.7492569649999155, 52.81427643400008), (-4.734934048999946, 52.83047109600005), (-4.596058722999942, 52.92841217700004), (-4.580962693999936, 52.93349844000005), (-4.562082485999952, 52.93451569200005), (-4.543527798999946, 52.937933661000045), (-4.523996548999946, 52.944240627000056), (-4.443430141999954, 52.98216380400004), (-4.423695441999939, 53.00263092700004), (-4.358225063999953, 53.02846914300005), (-4.349964972999942, 53.04148997600004), (-4.345692511999914, 53.059475002000056), (-4.343861456999946, 53.10106028900003), (-4.340891079999949, 53.11273834800005), (-4.334339972999942, 53.11676666900007), (-4.3276261059999115, 53.11469147300005), (-4.324696417999917, 53.10789622600004), (-4.320668097999942, 53.10150788000004), (-4.312245245999918, 53.109442450000074), (-4.304758266999954, 53.12099844000005), (-4.303618943999936, 53.12531159100007), (-4.263539191999939, 53.15452708500004), (-4.2523494129999335, 53.159409898000035), (-4.234527147999927, 53.16400788000004), (-4.221302863999938, 53.175034898000035), (-4.200550910999937, 53.20099518400008), (-4.17796790299991, 53.21759674700007), (-4.151519334999932, 53.22809479400007), (-4.122222459999932, 53.23346588700008), (-4.0906876289999445, 53.23517487200007), (-4.08234615799995, 53.23354726800005), (-4.074330206999946, 53.23065827000005), (-4.066883917999917, 53.22907135600008), (-4.054107225999928, 53.234361070000034), (-4.032297329999949, 53.24070872600004), (-4.008900519999941, 53.24445221600007), (-3.974598761999914, 53.261786200000074), (-3.8653051419999542, 53.289129950000074), (-3.8312882149999155, 53.289129950000074), (-3.841420050999943, 53.30744049700007), (-3.870757615999935, 53.32562897300005), (-3.8784073559999115, 53.337591864000046), (-3.859974738999938, 53.33633047100005), (-3.840565558999913, 53.33283112200007), (-3.822987433999913, 53.32656484600005), (-3.8101293609999516, 53.31708405200004), (-3.7905167309999115, 53.323431708000044), (-3.7688695949999556, 53.31915924700007), (-3.748199022999927, 53.307806708000044), (-3.7319229809999115, 53.29287344000005), (-3.7162979809999115, 53.28693268400008), (-3.6022029289999296, 53.28888580900008), (-3.5623266269999476, 53.29441966400003), (-3.372059699999909, 53.350897528000075), (-3.33031165299991, 53.35179271000004), (-3.2923884759999282, 53.34052155200004), (-3.2713110019999476, 53.33055247600004), (-3.262074347999942, 53.32050202000005), (-3.250803188999953, 53.312567450000074), (-3.122222459999932, 53.26227448100008), (-3.107533331999946, 53.25189850500004), (-3.0951228509999282, 53.23932526200008), (-3.0877579419999392, 53.23468659100007), (-3.0845434239999463, 53.23859284100007), (-3.0845434239999463, 53.25857168200008), (-3.0845434239999463, 53.275458075000074), (-3.09593665299991, 53.28713613500008), (-3.1111954419999392, 53.302801825000074), (-3.1354060539999296, 53.33380768400008), (-3.171538865999935, 53.36225006700005), (-3.185210740999935, 53.37726471600007), (-3.186350063999953, 53.39276764500005), (-3.175526495999918, 53.40273672100005), (-3.157297329999949, 53.40875885600008), (-3.1146541009999282, 53.41266510600008), (-3.0942276679999168, 53.41738515800006), (-3.058257615999935, 53.434759833000044), (-3.0355525379999335, 53.43374258000006), (-3.0121964179999168, 53.41669342700004), (-2.9529516269999476, 53.323919989000046), (-2.9351293609999516, 53.309475002000056), (-2.9105525379999335, 53.29633209800005), (-2.8814998039999296, 53.288397528000075), (-2.850575324999909, 53.289129950000074), (-2.849598761999914, 53.29120514500005), (-2.848378058999913, 53.29555898600006), (-2.8449600899999155, 53.300116278000075), (-2.837554490999935, 53.302801825000074), (-2.8286026679999168, 53.302435614000046), (-2.813384568999936, 53.297756252000056), (-2.8061417309999115, 53.296576239000046), (-2.789784308999913, 53.29743073100008), (-2.775502081999946, 53.29987213700008), (-2.7481176419999542, 53.30963776200008), (-2.753651495999918, 53.32245514500005), (-2.750884568999936, 53.33161041900007), (-2.743153449999909, 53.33852773600006), (-2.734486456999946, 53.34442780200004), (-2.7261449859999516, 53.34198639500005), (-2.7174373039999296, 53.34271881700005), (-2.708607550999943, 53.346136786000045), (-2.6997777989999463, 53.35179271000004), (-2.7141007149999155, 53.35236237200007), (-2.764393683999913, 53.34516022300005), (-2.775380011999914, 53.341009833000044), (-2.782378709999932, 53.32636139500005), (-2.799794074999909, 53.32103099200003), (-2.810332811999956, 53.32172272300005), (-2.843658006999931, 53.323919989000046), (-2.886463995999918, 53.33356354400007), (-2.924956834999932, 53.35000234600005), (-2.956939256999931, 53.37055084800005), (-2.980824347999942, 53.39276764500005), (-3.096587693999936, 53.54433828300006), (-3.101918097999942, 53.55805084800005), (-3.0994766919999392, 53.57200755400004), (-3.087635870999918, 53.58771393400008), (-3.021839972999942, 53.65281810100004), (-2.968658006999931, 53.69403717700004), (-2.9603572259999282, 53.69757721600007), (-2.9517309239999463, 53.70807526200008), (-2.9114477199999556, 53.725043036000045), (-2.899037238999938, 53.73541901200008), (-2.9848526679999168, 53.73607005400004), (-3.021473761999914, 53.745794989000046), (-3.049183722999942, 53.769517320000034), (-3.056385870999918, 53.80304596600007), (-3.044911261999914, 53.87848541900007), (-3.056630011999914, 53.90615469000005), (-3.040679490999935, 53.923529364000046), (-3.017567511999914, 53.93195221600007), (-2.925689256999931, 53.95270416900007), (-2.909250454999949, 53.95384349200003), (-2.896107550999943, 53.94773997600004), (-2.8885391919999392, 53.94603099200003), (-2.885365363999938, 53.950506903000075), (-2.881988084999932, 53.95652903900003), (-2.874175584999932, 53.96165599200003), (-2.865142381999931, 53.96548086100006), (-2.8579809239999463, 53.96759674700007), (-2.869252081999946, 53.97882721600007), (-2.8344620429999168, 53.99982330900008), (-2.830067511999914, 54.01601797100005), (-2.8475235669999392, 54.00836823100008), (-2.864857550999943, 54.00429922100005), (-2.895497199999909, 54.00234609600005), (-2.900298631999931, 54.00495026200008), (-2.9160863919999542, 54.026556708000044), (-2.91820227799991, 54.03432851800005), (-2.911284959999932, 54.03998444200005), (-2.9007869129999335, 54.044907945000034), (-2.8920792309999115, 54.050116278000075), (-2.872670050999943, 54.071600653000075), (-2.8588761059999115, 54.08100006700005), (-2.826771613999938, 54.08881256700005), (-2.815174933999913, 54.09878164300005), (-2.795969204999949, 54.12518952000005), (-2.8128149079999503, 54.139878648000035), (-2.8364151679999168, 54.16758860900006), (-2.8509415359999366, 54.18463776200008), (-2.854237433999913, 54.19407786700003), (-2.8328751289999445, 54.19904205900008), (-2.810292120999918, 54.21190013200004), (-2.7952367829999503, 54.22947825700004), (-2.795969204999949, 54.24872467700004), (-2.8028051419999542, 54.24872467700004), (-2.806630011999914, 54.233710028000075), (-2.8208715489999463, 54.22174713700008), (-2.850575324999909, 54.20774974200003), (-2.886382615999935, 54.19627513200004), (-2.904652472999942, 54.18764883000006), (-2.9126684239999463, 54.176988023000035), (-2.9203995429999168, 54.16205475500004), (-2.939198370999918, 54.15509674700007), (-2.9842016269999476, 54.15314362200007), (-2.997710740999935, 54.15957265800006), (-3.011341925999943, 54.17413971600007), (-3.017323370999918, 54.19009023600006), (-3.008168097999942, 54.20034414300005), (-3.015370245999918, 54.21190013200004), (-3.024484829999949, 54.221584377000056), (-3.035755988999938, 54.22597890800006), (-3.049183722999942, 54.22207265800006), (-3.044667120999918, 54.208319403000075), (-3.047840949999909, 54.19432200700004), (-3.053537563999953, 54.181301174000055), (-3.056630011999914, 54.17023346600007), (-3.0610245429999168, 54.16193268400008), (-3.090728318999936, 54.13947174700007), (-3.10765540299991, 54.11855703300006), (-3.117909308999913, 54.10883209800005), (-3.145253058999913, 54.100043036000045), (-3.147450324999909, 54.08869049700007), (-3.1443985669999392, 54.07514069200005), (-3.1453751289999445, 54.063788153000075), (-3.1805313789999445, 54.09284088700008), (-3.1897680329999503, 54.09788646000004), (-3.2057185539999296, 54.098537502000056), (-3.219553188999953, 54.100775458000044), (-3.2311091789999296, 54.105129299000055), (-3.240956183999913, 54.11212799700007), (-3.2381078769999476, 54.12759023600006), (-3.232533331999946, 54.14468008000006), (-3.233143683999913, 54.15916575700004), (-3.248402472999942, 54.16681549700007), (-3.248402472999942, 54.17365143400008), (-3.215199347999942, 54.17983633000006), (-3.206776495999918, 54.20892975500004), (-3.2090551419999542, 54.24274323100008), (-3.207386847999942, 54.263006903000075), (-3.2231339179999168, 54.25763580900008), (-3.231353318999936, 54.24721914300005), (-3.240956183999913, 54.22207265800006), (-3.232167120999918, 54.20254140800006), (-3.247141079999949, 54.19794342700004), (-3.270130988999938, 54.19912344000005), (-3.2860001289999445, 54.19721100500004), (-3.306792772999927, 54.19188060100004), (-3.3285212879999335, 54.204738674000055), (-3.3644913399999155, 54.24249909100007), (-3.394195115999935, 54.26439036700003), (-3.407378709999932, 54.27773672100005), (-3.412912563999953, 54.29376862200007), (-3.41038977799991, 54.30145905200004), (-3.405995245999918, 54.30963776200008), (-3.4041235019999476, 54.31854889500005), (-3.4114477199999556, 54.33274974200003), (-3.4134415359999366, 54.342962958000044), (-3.4163305329999503, 54.344916083000044), (-3.440174933999913, 54.35175202000005), (-3.474273240999935, 54.39350006700005), (-3.497710740999935, 54.40582916900007), (-3.5918676419999542, 54.48309967700004), (-3.608143683999913, 54.488267320000034), (-3.613189256999931, 54.49164459800005), (-3.6236873039999296, 54.50608958500004), (-3.6341853509999282, 54.512884833000044), (-3.6268204419999392, 54.520412502000056), (-3.616200324999909, 54.52757396000004), (-3.61156165299991, 54.52993398600006), (-3.5903214179999168, 54.56464264500005), (-3.5638321609999366, 54.64276764500005), (-3.5301407539999445, 54.68805573100008), (-3.5160212879999335, 54.712876695000034), (-3.5091853509999282, 54.72166575700004), (-3.500721808999913, 54.72597890800006), (-3.478871222999942, 54.730902411000045), (-3.4681290359999366, 54.73529694200005), (-3.455433722999942, 54.745021877000056), (-3.439564581999946, 54.76146067900004), (-3.4309789699999556, 54.780462958000044), (-3.440174933999913, 54.79743073100008), (-3.4075414699999556, 54.85602448100008), (-3.3879288399999155, 54.88336823100008), (-3.3644913399999155, 54.89980703300006), (-3.3449600899999155, 54.90253327000005), (-3.3333634109999366, 54.89728424700007), (-3.3227432929999168, 54.889878648000035), (-3.3064672519999476, 54.88617584800005), (-3.295725063999953, 54.88690827000005), (-3.254628058999913, 54.89980703300006), (-3.267323370999918, 54.905503648000035), (-3.317290818999936, 54.92031484600005), (-3.2914932929999168, 54.93667226800005), (-3.276519334999932, 54.943426825000074), (-3.213612433999913, 54.954413153000075), (-3.2010391919999392, 54.95221588700008), (-3.1936742829999503, 54.94863515800006), (-3.1879776679999168, 54.94448476800005), (-3.1801651679999168, 54.94082265800006), (-3.14281165299991, 54.93353913000004), (-3.122792120999918, 54.93268463700008), (-3.0395401679999168, 54.94717031500005), (-3.021839972999942, 54.954413153000075), (-3.090728318999936, 54.954413153000075), (-3.090728318999936, 54.96124909100007), (-3.0715225899999155, 54.96312083500004), (-3.0562231109999516, 54.968817450000074), (-3.040923631999931, 54.97247955900008), (-3.021839972999942, 54.968085028000075), (-3.021839972999942, 54.97553131700005), (-3.0462947259999282, 54.982123114000046), (-3.0502913779999403, 54.981510325000045), (-3.1354060539999296, 54.968085028000075), (-3.453846808999913, 54.981756903000075), (-3.470692511999914, 54.984442450000074), (-3.486236131999931, 54.989488023000035), (-3.501047329999949, 54.99249909100007), (-3.515288865999935, 54.98920319200005), (-3.5123591789999296, 54.98712799700007), (-3.511463995999918, 54.98688385600008), (-3.510894334999932, 54.985988674000055), (-3.5091853509999282, 54.981756903000075), (-3.5260310539999296, 54.97711823100008), (-3.5418595039999445, 54.98065827000005), (-3.57054602799991, 54.995428778000075), (-3.583607550999943, 54.968085028000075), (-3.5756729809999115, 54.95734284100007), (-3.5706274079999503, 54.937567450000074), (-3.5687556629999335, 54.916001695000034), (-3.57054602799991, 54.89980703300006), (-3.581695115999935, 54.88361237200007), (-3.598378058999913, 54.87799713700008), (-3.691761847999942, 54.88320547100005), (-3.7176407539999445, 54.880845445000034), (-3.739247199999909, 54.859808661000045), (-3.8101293609999516, 54.86627838700008), (-3.8078507149999155, 54.86107005400004), (-3.806792772999927, 54.86090729400007), (-3.803334113999938, 54.85887278900003), (-3.8123673169999392, 54.855169989000046), (-3.8198136059999115, 54.855902411000045), (-3.826079881999931, 54.85993073100008), (-3.8312882149999155, 54.86627838700008), (-3.819976365999935, 54.878566799000055), (-3.815052863999938, 54.87714264500005), (-3.8101293609999516, 54.87250397300005), (-3.8116348949999406, 54.88003164300005), (-3.813221808999913, 54.88312409100007), (-3.8169652989999463, 54.88617584800005), (-3.828846808999913, 54.874986070000034), (-3.8443090489999463, 54.86627838700008), (-3.839751756999931, 54.855902411000045), (-3.8374731109999516, 54.851996161000045), (-3.844105597999942, 54.85097890800006), (-3.8578995429999168, 54.84454987200007), (-3.823841925999943, 54.82469310100004), (-3.833607550999943, 54.82005442900004), (-3.885731574999909, 54.80646393400008), (-3.9641820949999556, 54.771918036000045), (-4.011708136999914, 54.76821523600006), (-4.042876756999931, 54.76947663000004), (-4.042876756999931, 54.77692291900007), (-4.046783006999931, 54.77802155200004), (-4.050200975999928, 54.778550523000035), (-4.053334113999938, 54.77997467700004), (-4.055775519999941, 54.782538153000075), (-4.05296790299991, 54.78546784100007), (-4.050160285999937, 54.78900788000004), (-4.049712693999936, 54.78998444200005), (-4.051747199999909, 54.800034898000035), (-4.0477188789999445, 54.81305573100008), (-4.049956834999932, 54.82322825700004), (-4.063588019999941, 54.82684967700004), (-4.064035610999952, 54.83152903900003), (-4.078602667999917, 54.82412344000005), (-4.09007727799991, 54.809759833000044), (-4.093495245999918, 54.792669989000046), (-4.083851691999939, 54.77692291900007), (-4.122954881999931, 54.77301666900007), (-4.173939581999946, 54.792303778000075), (-4.209136522999927, 54.826239325000074), (-4.200550910999937, 54.86627838700008), (-4.215402798999946, 54.861029364000046), (-4.2397354809999115, 54.843003648000035), (-4.255767381999931, 54.838324286000045), (-4.2707413399999155, 54.83942291900007), (-4.345285610999952, 54.86017487200007), (-4.3569229809999115, 54.86554596600007), (-4.3656306629999335, 54.87250397300005), (-4.375152147999927, 54.88690827000005), (-4.379872199999909, 54.89789459800005), (-4.386789516999954, 54.90477122600004), (-4.402902798999946, 54.90729401200008), (-4.409006313999953, 54.90302155200004), (-4.416818813999953, 54.89280833500004), (-4.423573370999918, 54.88035716400003), (-4.426503058999913, 54.86945221600007), (-4.4172257149999155, 54.84593333500004), (-4.4094132149999155, 54.831244208000044), (-4.402902798999946, 54.82469310100004), (-4.386708136999914, 54.82416413000004), (-4.372425910999937, 54.82184479400007), (-4.35960852799991, 54.81663646000004), (-4.347645636999914, 54.80731842700004), (-4.344471808999913, 54.79450104400007), (-4.353179490999935, 54.78310781500005), (-4.358143683999913, 54.77098216400003), (-4.343861456999946, 54.75641510600008), (-4.356516079999949, 54.741888739000046), (-4.353260870999918, 54.72089264500005), (-4.348133917999917, 54.70197174700007), (-4.3547257149999155, 54.693793036000045), (-4.360340949999909, 54.69159577000005), (-4.365305141999954, 54.68695709800005), (-4.371896938999953, 54.68227773600006), (-4.382394985999952, 54.68008047100005), (-4.405262824999909, 54.682074286000045), (-4.426503058999913, 54.687567450000074), (-4.4518123039999296, 54.69879791900007), (-4.46117102799991, 54.701239325000074), (-4.4967341789999296, 54.70062897300005), (-4.505604620999918, 54.70465729400007), (-4.563628709999932, 54.75641510600008), (-4.596669074999909, 54.77529531500005), (-4.714466925999943, 54.81785716400003), (-4.759592251999948, 54.82534414300005), (-4.781076626999948, 54.83307526200008), (-4.799631313999953, 54.86127350500004), (-4.821034308999913, 54.86664459800005), (-4.859120245999918, 54.86627838700008), (-4.88304602799991, 54.86009349200003), (-4.905873175999943, 54.84979889500005), (-4.925770636999914, 54.83738841400003), (-4.941029425999943, 54.82469310100004), (-4.9496150379999335, 54.81582265800006), (-4.953684048999946, 54.81000397300005), (-4.954823370999918, 54.804754950000074), (-4.954701300999943, 54.79743073100008), (-4.952870245999918, 54.78896719000005), (-4.9479060539999296, 54.777329820000034), (-4.940256313999953, 54.76703522300005), (-4.930165167999917, 54.76264069200005), (-4.923247850999928, 54.75185781500005), (-4.911936001999948, 54.728216864000046), (-4.8959854809999115, 54.70453522300005), (-4.867258266999954, 54.69013092700004), (-4.866932745999918, 54.68146393400008), (-4.872141079999949, 54.663316148000035), (-4.872425910999937, 54.65403880400004), (-4.872059699999909, 54.64923737200007), (-4.859120245999918, 54.63296133000006), (-4.880604620999918, 54.63621653900003), (-4.923491990999935, 54.649725653000075), (-4.944081183999913, 54.652777411000045), (-4.953684048999946, 54.65973541900007), (-4.959868943999936, 54.67552317900004), (-4.958973761999914, 54.69196198100008), (-4.947255011999914, 54.701239325000074), (-4.954823370999918, 54.707464911000045), (-4.958892381999931, 54.714056708000044), (-4.959055141999954, 54.72093333500004), (-4.954701300999943, 54.728501695000034), (-4.973378058999913, 54.729722398000035), (-4.981556769999941, 54.731634833000044), (-4.988189256999931, 54.73529694200005), (-4.992665167999917, 54.74433014500005), (-4.997059699999909, 54.75836823100008), (-5.003285285999937, 54.77130768400008), (-5.0130102199999556, 54.77692291900007), (-5.033192511999914, 54.782416083000044), (-5.1282445949999556, 54.848944403000075), (-5.157134568999936, 54.87909577000005), (-5.175526495999918, 54.91461823100008), (-5.180653449999909, 54.954413153000075), (-5.177601691999939, 54.99054596600007), (-5.170806443999936, 55.008693752000056), (-5.156727667999917, 55.01654694200005), (-5.1356095039999445, 55.01585521000004), (-5.124582485999952, 55.016791083000044), (-5.119740363999938, 55.01992422100005), (-5.115142381999931, 55.03156159100007), (-5.105213995999918, 55.02619049700007), (-5.095529751999948, 55.01508209800005), (-5.091867641999954, 55.00971100500004), (-5.076893683999913, 54.99555084800005), (-5.069488084999932, 54.986029364000046), (-5.064564581999946, 54.97553131700005), (-5.0637914699999556, 54.96458567900004), (-5.065256313999953, 54.940334377000056), (-5.06086178299995, 54.93113841400003), (-5.0475154289999296, 54.92031484600005), (-5.030995245999918, 54.911322333000044), (-5.013091600999928, 54.90961334800005), (-4.9955948559999115, 54.92031484600005), (-4.992298956999946, 54.924261786000045), (-4.988189256999931, 54.927720445000034), (-4.988189256999931, 54.93455638200004), (-5.0240779289999296, 54.97638580900008), (-5.029774542999917, 54.98550039300005), (-5.032500779999907, 54.99371979400007), (-5.033029751999948, 54.99526601800005), (-5.047027147999927, 55.01508209800005), (-5.0502823559999115, 55.02680084800005), (-5.0496720039999445, 55.04897695500006), (-5.047596808999913, 55.05573151200008), (-5.043446417999917, 55.06427643400008), (-5.0257869129999335, 55.08869049700007), (-5.018950975999928, 55.10224030200004), (-5.016184048999946, 55.12262604400007), (-5.007801886999914, 55.14118073100008), (-4.988270636999914, 55.15265534100007), (-4.947255011999914, 55.16791413000004), (-4.882394985999952, 55.21857330900008), (-4.877552863999938, 55.22089264500005), (-4.867258266999954, 55.22247955900008), (-4.865305141999954, 55.22565338700008), (-4.865589972999942, 55.236314195000034), (-4.864816860999952, 55.24135976800005), (-4.841949022999927, 55.275091864000046), (-4.838002081999946, 55.28400299700007), (-4.8372289699999556, 55.293850002000056), (-4.839751756999931, 55.31557851800005), (-4.838002081999946, 55.32501862200007), (-4.832508917999917, 55.33112213700008), (-4.7992244129999335, 55.354722398000035), (-4.781076626999948, 55.36351146000004), (-4.773101365999935, 55.36937083500004), (-4.767160610999952, 55.37905508000006), (-4.758778449999909, 55.40228913000004), (-4.7492569649999155, 55.413763739000046), (-4.71703040299991, 55.43048737200007), (-4.650502081999946, 55.448472398000035), (-4.626332160999937, 55.468410549000055), (-4.617787238999938, 55.49559153900003), (-4.626779751999948, 55.51972077000005), (-4.6507869129999335, 55.53705475500004), (-4.687163865999935, 55.544134833000044), (-4.66624915299991, 55.562201239000046), (-4.666493292999917, 55.56329987200007), (-4.6711319649999155, 55.584418036000045), (-4.692738410999937, 55.60521067900004), (-4.7219945949999556, 55.619208075000074), (-4.776519334999932, 55.632879950000074), (-4.808745897999927, 55.63361237200007), (-4.818104620999918, 55.63719310100004), (-4.810617641999954, 55.646551825000074), (-4.810617641999954, 55.653998114000046), (-4.868560350999928, 55.67560455900008), (-4.900990363999938, 55.69232819200005), (-4.920521613999938, 55.70856354400007), (-4.876332160999937, 55.735256252000056), (-4.861073370999918, 55.756740627000056), (-4.865305141999954, 55.79047272300005), (-4.8717341789999296, 55.802435614000046), (-4.8777970039999445, 55.81102122600004), (-4.882720506999931, 55.82135651200008), (-4.888661261999914, 55.864528713000084), (-4.888824022999927, 55.865301825000074), (-4.892648891999954, 55.89288971600007), (-4.886463995999918, 55.91966380400004), (-4.872141079999949, 55.937201239000046), (-4.849354620999918, 55.94822825700004), (-4.818104620999918, 55.95563385600008), (-4.799387173999946, 55.957912502000056), (-4.7857966789999296, 55.95697663000004), (-4.722320115999935, 55.94009023600006), (-4.705433722999942, 55.93846263200004), (-4.693959113999938, 55.94135163000004), (-4.6725154289999296, 55.93378327000005), (-4.505970831999946, 55.91909414300005), (-4.4816788399999155, 55.92829010600008), (-4.590606248999961, 55.941514390000066), (-4.630034959999932, 55.94627513200004), (-4.673451300999943, 55.96185944200005), (-4.724517381999931, 55.99835846600007), (-4.765044725999928, 56.007066148000035), (-4.78343665299991, 56.017645575000074), (-4.7992244129999335, 56.030951239000046), (-4.810617641999954, 56.04376862200007), (-4.8237198559999115, 56.07367584800005), (-4.824330206999946, 56.07851797100005), (-4.8391820949999556, 56.08063385600008), (-4.844309048999946, 56.07298411700003), (-4.843739386999914, 56.06297435100004), (-4.837554490999935, 56.05060455900008), (-4.790150519999941, 56.010199286000045), (-4.778920050999943, 55.99209219000005), (-4.785308397999927, 55.984035549000055), (-4.803618943999936, 55.982082424000055), (-4.828033006999931, 55.98232656500005), (-4.851551886999914, 55.98802317900004), (-4.862294074999909, 56.00214264500005), (-4.865386522999927, 56.02020905200004), (-4.866851365999935, 56.05833567900004), (-4.865386522999927, 56.06671784100007), (-4.826324022999927, 56.124212958000044), (-4.755441860999952, 56.188381252000056), (-4.750884568999936, 56.20270416900007), (-4.755523240999935, 56.20652903900003), (-4.7662654289999296, 56.20209381700005), (-4.7799373039999296, 56.191473700000074), (-4.837269660999937, 56.12441640800006), (-4.851673956999946, 56.112616278000075), (-4.873117641999954, 56.11200592700004), (-4.880604620999918, 56.11985911700003), (-4.878977016999954, 56.15053945500006), (-4.883168097999942, 56.16400788000004), (-4.893544074999909, 56.174261786000045), (-4.9070938789999445, 56.177069403000075), (-4.920521613999938, 56.16791413000004), (-4.909087693999936, 56.14996979400007), (-4.895253058999913, 56.11473216400003), (-4.8862198559999115, 56.08038971600007), (-4.889149542999917, 56.06484609600005), (-4.901926235999952, 56.06191640800006), (-4.904367641999954, 56.054348049000055), (-4.900054490999935, 56.03412506700005), (-4.900054490999935, 56.01459381700005), (-4.898019985999952, 56.001166083000044), (-4.892648891999954, 55.98973216400003), (-4.906402147999927, 55.98574453300006), (-4.921457485999952, 55.98867422100005), (-4.937489386999914, 55.993841864000046), (-4.954701300999943, 55.99656810100004), (-4.954701300999943, 55.98973216400003), (-4.942005988999938, 55.986314195000034), (-4.928863084999932, 55.98114655200004), (-4.918446417999917, 55.97333405200004), (-4.913685675999943, 55.96185944200005), (-4.917388475999928, 55.94745514500005), (-4.9272354809999115, 55.93768952000005), (-4.9387100899999155, 55.92963288000004), (-4.947255011999914, 55.92084381700005), (-4.952137824999909, 55.90912506700005), (-4.954986131999931, 55.89935944200005), (-4.95921790299991, 55.89012278900003), (-4.96898352799991, 55.87986888200004), (-4.983143683999913, 55.87103913000004), (-4.994740363999938, 55.86981842700004), (-5.026356574999909, 55.87372467700004), (-5.0424698559999115, 55.884751695000034), (-5.056752081999946, 55.91030508000006), (-5.0668025379999335, 55.938788153000075), (-5.070790167999917, 55.958685614000046), (-5.1108292309999115, 55.98895905200004), (-5.116037563999953, 56.00169505400004), (-5.123605923999946, 56.00991445500006), (-5.139637824999909, 56.00275299700007), (-5.123768683999913, 55.986314195000034), (-5.085682745999918, 55.93187083500004), (-5.078236456999946, 55.91095612200007), (-5.086537238999938, 55.901271877000056), (-5.105620897999927, 55.90497467700004), (-5.171538865999935, 55.935532945000034), (-5.180653449999909, 55.948431708000044), (-5.180653449999909, 55.96930573100008), (-5.190825975999928, 55.96173737200007), (-5.1996150379999335, 55.948553778000075), (-5.2057185539999296, 55.93451569200005), (-5.207915818999936, 55.92462799700007), (-5.212635870999918, 55.91714101800005), (-5.242054816999939, 55.89288971600007), (-5.218129035999937, 55.86469147300005), (-5.208159959999932, 55.849269924000055), (-5.201079881999931, 55.83148834800005), (-5.2193904289999296, 55.83144765800006), (-5.2631729809999115, 55.845770575000074), (-5.296701626999948, 55.85268789300005), (-5.307118292999917, 55.86041901200008), (-5.313384568999936, 55.88544342700004), (-5.319325324999909, 55.889105536000045), (-5.327219204999949, 55.89154694200005), (-5.3348282539999445, 55.89667389500005), (-5.3382869129999335, 55.90375397300005), (-5.3391007149999155, 55.91303131700005), (-5.3382869129999335, 55.93138255400004), (-5.336089647999927, 55.93919505400004), (-5.326161261999914, 55.95026276200008), (-5.323963995999918, 55.958685614000046), (-5.325754360999952, 55.967230536000045), (-5.3382869129999335, 55.99656810100004), (-5.313628709999932, 56.01235586100006), (-5.204497850999928, 56.11945221600007), (-5.146473761999914, 56.13312409100007), (-5.104603644999941, 56.15151601800005), (-5.0949600899999155, 56.15737539300005), (-5.0594376289999445, 56.203111070000034), (-5.043446417999917, 56.21629466400003), (-5.013295050999943, 56.22760651200008), (-4.974964972999942, 56.23700592700004), (-4.9400935539999296, 56.25141022300005), (-4.920521613999938, 56.277777411000045), (-4.938099738999938, 56.27098216400003), (-4.975087042999917, 56.24799225500004), (-4.991932745999918, 56.24298737200007), (-5.0327042309999115, 56.24115631700005), (-5.049549933999913, 56.23704661700003), (-5.064564581999946, 56.22931549700007), (-5.0754288399999155, 56.21698639500005), (-5.099436001999948, 56.18195221600007), (-5.1088761059999115, 56.174709377000056), (-5.228138800999943, 56.12921784100007), (-5.3109431629999335, 56.05805084800005), (-5.319935675999943, 56.05491771000004), (-5.338042772999927, 56.05410390800006), (-5.345692511999914, 56.051214911000045), (-5.345285610999952, 56.046128648000035), (-5.350209113999938, 56.03192780200004), (-5.356353318999936, 56.01976146000004), (-5.359364386999914, 56.020738023000035), (-5.3686417309999115, 56.009426174000055), (-5.390288865999935, 56.00568268400008), (-5.415028449999909, 56.00690338700008), (-5.43382727799991, 56.010199286000045), (-5.434559699999909, 56.014960028000075), (-5.434722459999932, 56.02362702000005), (-5.437123175999943, 56.03001536700003), (-5.444406704999949, 56.02757396000004), (-5.4479060539999296, 56.02228424700007), (-5.448231574999909, 56.016058661000045), (-5.447621222999942, 56.009426174000055), (-5.454986131999931, 55.95563385600008), (-5.45140540299991, 55.95343659100007), (-5.436431443999936, 55.94896067900004), (-5.430775519999941, 55.94818756700005), (-5.420806443999936, 55.92829010600008), (-5.416737433999913, 55.91681549700007), (-5.416005011999914, 55.907416083000044), (-5.4125056629999335, 55.899603583000044), (-5.400380011999914, 55.89288971600007), (-5.400380011999914, 55.886704820000034), (-5.407215949999909, 55.886704820000034), (-5.407215949999909, 55.87986888200004), (-5.402943488999938, 55.87872955900008), (-5.39289303299995, 55.87372467700004), (-5.3976944649999155, 55.87156810100004), (-5.402495897999927, 55.868353583000044), (-5.407215949999909, 55.86627838700008), (-5.35179602799991, 55.83242422100005), (-5.326771613999938, 55.808579820000034), (-5.317779100999928, 55.78302643400008), (-5.324574347999942, 55.769232489000046), (-5.3385310539999296, 55.76264069200005), (-5.372425910999937, 55.75641510600008), (-5.3875626289999445, 55.75031159100007), (-5.433461066999939, 55.72101471600007), (-5.4445694649999155, 55.71161530200004), (-5.4539688789999445, 55.70058828300006), (-5.46117102799991, 55.68813711100006), (-5.463612433999913, 55.67983633000006), (-5.466175910999937, 55.662176825000074), (-5.468617316999939, 55.653998114000046), (-5.490101691999939, 55.644598700000074), (-5.488270636999914, 55.640326239000046), (-5.484283006999931, 55.63572825700004), (-5.482289191999939, 55.632879950000074), (-5.4838761059999115, 55.61005280200004), (-5.474761522999927, 55.603949286000045), (-5.462635870999918, 55.60203685100004), (-5.454986131999931, 55.59194570500006), (-5.461089647999927, 55.57880280200004), (-5.476918097999942, 55.57489655200004), (-5.488758917999917, 55.56907786700003), (-5.482289191999939, 55.55027903900003), (-5.503529425999943, 55.52651601800005), (-5.509632941999939, 55.516791083000044), (-5.5106095039999445, 55.51146067900004), (-5.509632941999939, 55.49258047100005), (-5.5109757149999155, 55.484442450000074), (-5.514271613999938, 55.48387278900003), (-5.5187882149999155, 55.48517487200007), (-5.523264126999948, 55.48265208500004), (-5.545521613999938, 55.44916413000004), (-5.561512824999909, 55.435532945000034), (-5.5846248039999296, 55.427435614000046), (-5.5846248039999296, 55.421210028000075), (-5.572132941999939, 55.422308661000045), (-5.562082485999952, 55.41986725500004), (-5.553089972999942, 55.41453685100004), (-5.543690558999913, 55.40692780200004), (-5.527455206999946, 55.38434479400007), (-5.5266820949999556, 55.38027578300006), (-5.5149633449999556, 55.37368398600006), (-5.525054490999935, 55.358628648000035), (-5.557972785999937, 55.33185455900008), (-5.574370897999927, 55.32200755400004), (-5.594105597999942, 55.31313711100006), (-5.616281704999949, 55.30658600500004), (-5.6399633449999556, 55.303900458000044), (-5.649525519999941, 55.30516185100004), (-5.669097459999932, 55.31085846600007), (-5.6808975899999155, 55.31134674700007), (-5.691395636999914, 55.308579820000034), (-5.714019334999932, 55.29913971600007), (-5.725575324999909, 55.29706452000005), (-5.7545466789999296, 55.29734935100004), (-5.772287563999953, 55.30125560100004), (-5.782866990999935, 55.31354401200008), (-5.794667120999918, 55.35639069200005), (-5.796701626999948, 55.37909577000005), (-5.7914119129999335, 55.39862702000005), (-5.763417120999918, 55.41205475500004), (-5.725412563999953, 55.437567450000074), (-5.715646938999953, 55.44790273600006), (-5.7152400379999335, 55.46889883000006), (-5.720122850999928, 55.491522528000075), (-5.7219132149999155, 55.51386139500005), (-5.707753058999913, 55.54336172100005), (-5.712066209999932, 55.55072663000004), (-5.718861456999946, 55.55731842700004), (-5.721831834999932, 55.56460195500006), (-5.718129035999937, 55.57575104400007), (-5.694488084999932, 55.605536200000074), (-5.6733292309999115, 55.640611070000034), (-5.6694229809999115, 55.66071198100008), (-5.6808975899999155, 55.67446523600006), (-5.626535610999952, 55.70062897300005), (-5.61945553299995, 55.71198151200008), (-5.613189256999931, 55.725775458000044), (-5.5982966789999296, 55.74298737200007), (-5.581206834999932, 55.75763580900008), (-5.5678604809999115, 55.76386139500005), (-5.539173956999946, 55.77094147300005), (-5.504628058999913, 55.78937409100007), (-5.4735001289999445, 55.815659898000035), (-5.454986131999931, 55.845770575000074), (-5.551747199999909, 55.783636786000045), (-5.587473110999952, 55.76715729400007), (-5.599436001999948, 55.76422760600008), (-5.6126195949999556, 55.76386139500005), (-5.60578365799995, 55.77684153900003), (-5.6332087879999335, 55.78278229400007), (-5.64671790299991, 55.78750234600005), (-5.66038977799991, 55.79734935100004), (-5.667958136999914, 55.81102122600004), (-5.669016079999949, 55.83783600500004), (-5.67406165299991, 55.845770575000074), (-5.631988084999932, 55.88178131700005), (-5.625599738999938, 55.889837958000044), (-5.61937415299991, 55.90314362200007), (-5.6043595039999445, 55.91364166900007), (-5.586293097999942, 55.92332591400003), (-5.571034308999913, 55.93451569200005), (-5.593495245999918, 55.92796458500004), (-5.6275935539999296, 55.90534088700008), (-5.6537979809999115, 55.89760976800005), (-5.671701626999948, 55.88690827000005), (-5.6808975899999155, 55.886704820000034), (-5.687977667999917, 55.89337799700007), (-5.694162563999953, 55.90497467700004), (-5.696400519999941, 55.91596100500004), (-5.586822068999936, 56.01203034100007), (-5.57843990799995, 56.02448151200008), (-5.5826716789999296, 56.028957424000055), (-5.576649542999917, 56.032538153000075), (-5.571034308999913, 56.037543036000045), (-5.583892381999931, 56.040716864000046), (-5.596424933999913, 56.036810614000046), (-5.609852667999917, 56.03001536700003), (-5.625599738999938, 56.02448151200008), (-5.6317032539999445, 56.005926825000074), (-5.674875454999949, 55.977728583000044), (-5.67406165299991, 55.95563385600008), (-5.690785285999937, 55.93764883000006), (-5.694488084999932, 55.93451569200005), (-5.704497850999928, 55.936753648000035), (-5.707508917999917, 55.942572333000044), (-5.705881313999953, 55.949652411000045), (-5.701975063999953, 55.95563385600008), (-5.696441209999932, 55.98216380400004), (-5.659901495999918, 56.02326080900008), (-5.5846248039999296, 56.08466217700004), (-5.5815323559999115, 56.08828359600005), (-5.580067511999914, 56.09292226800005), (-5.5774633449999556, 56.096991278000075), (-5.571034308999913, 56.09902578300006), (-5.564605272999927, 56.098089911000045), (-5.556548631999931, 56.09589264500005), (-5.550689256999931, 56.09349192900004), (-5.550526495999918, 56.09218984600005), (-5.547840949999909, 56.09003327000005), (-5.5394587879999335, 56.08685944200005), (-5.531605597999942, 56.08633047100005), (-5.530100063999953, 56.09218984600005), (-5.534738735999952, 56.098537502000056), (-5.5414119129999335, 56.10248444200005), (-5.5475154289999296, 56.10488515800006), (-5.550526495999918, 56.10643138200004), (-5.55695553299995, 56.12221914300005), (-5.558705206999946, 56.13080475500004), (-5.554676886999914, 56.13739655200004), (-5.522531704999949, 56.16575755400004), (-5.515736456999946, 56.174709377000056), (-5.509632941999939, 56.188381252000056), (-5.5399063789999445, 56.18341705900008), (-5.562489386999914, 56.16791413000004), (-5.5826716789999296, 56.15058014500005), (-5.60578365799995, 56.139960028000075), (-5.599354620999918, 56.160589911000045), (-5.586415167999917, 56.18113841400003), (-5.569406704999949, 56.20026276200008), (-5.550526495999918, 56.21629466400003), (-5.5594376289999445, 56.22955963700008), (-5.547230597999942, 56.24017975500004), (-5.52562415299991, 56.247259833000044), (-5.50617428299995, 56.24982330900008), (-5.494740363999938, 56.253119208000044), (-5.4928279289999296, 56.26040273600006), (-5.4992569649999155, 56.267645575000074), (-5.512684699999909, 56.27094147300005), (-5.554269985999952, 56.26349518400008), (-5.5631404289999296, 56.26032135600008), (-5.572621222999942, 56.25385163000004), (-5.58234615799995, 56.24876536700003), (-5.592152472999942, 56.24982330900008), (-5.5980525379999335, 56.25861237200007), (-5.595570441999939, 56.26992422100005), (-5.5846248039999296, 56.29075755400004), (-5.57258053299995, 56.32807038000004), (-5.56273352799991, 56.341050523000035), (-5.543690558999913, 56.352850653000075), (-5.525217251999948, 56.34662506700005), (-5.498199022999927, 56.34833405200004), (-5.4481095039999445, 56.35968659100007), (-5.4481095039999445, 56.36591217700004), (-5.4721573559999115, 56.364935614000046), (-5.515370245999918, 56.35683828300006), (-5.5375056629999335, 56.35968659100007), (-5.517323370999918, 56.39276764500005), (-5.509632941999939, 56.40062083500004), (-5.498931443999936, 56.404730536000045), (-5.486073370999918, 56.40810781500005), (-5.4780167309999115, 56.41290924700007), (-5.482289191999939, 56.421128648000035), (-5.457020636999914, 56.44086334800005), (-5.423573370999918, 56.45001862200007), (-5.322865363999938, 56.45498281500005), (-5.242054816999939, 56.44220612200007), (-5.208729620999918, 56.44684479400007), (-5.18187415299991, 56.45966217700004), (-5.118519660999937, 56.50775788000004), (-5.085682745999918, 56.54877350500004), (-5.064564581999946, 56.56513092700004), (-5.086537238999938, 56.55849844000005), (-5.099598761999914, 56.54364655200004), (-5.1105850899999155, 56.52586497600004), (-5.125965949999909, 56.51048411700003), (-5.166900193999936, 56.49005768400008), (-5.190174933999913, 56.46865469000005), (-5.201079881999931, 56.462103583000044), (-5.243763800999943, 56.45921458500004), (-5.350168423999946, 56.47296784100007), (-5.378081834999932, 56.458970445000034), (-5.394276495999918, 56.46548086100006), (-5.4105525379999335, 56.50364817900004), (-5.42414303299995, 56.500067450000074), (-5.4359431629999335, 56.49115631700005), (-5.454986131999931, 56.46954987200007), (-5.468617316999939, 56.47573476800005), (-5.433338995999918, 56.52362702000005), (-5.427642381999931, 56.53782786700003), (-5.4037979809999115, 56.524603583000044), (-5.379261847999942, 56.519191799000055), (-5.3566788399999155, 56.51968008000006), (-5.3382869129999335, 56.52415599200003), (-5.2905167309999115, 56.54466380400004), (-5.265044725999928, 56.551214911000045), (-5.252552863999938, 56.556341864000046), (-5.242054816999939, 56.56513092700004), (-5.27562415299991, 56.553615627000056), (-5.286773240999935, 56.552069403000075), (-5.306792772999927, 56.552801825000074), (-5.3109431629999335, 56.552069403000075), (-5.327707485999952, 56.54466380400004), (-5.338693813999953, 56.542303778000075), (-5.360340949999909, 56.53221263200004), (-5.372425910999937, 56.53034088700008), (-5.384348110999952, 56.53343333500004), (-5.400502081999946, 56.54364655200004), (-5.413929816999939, 56.54466380400004), (-5.410878058999913, 56.552069403000075), (-5.407297329999949, 56.55532461100006), (-5.402699347999942, 56.55744049700007), (-5.396636522999927, 56.561712958000044), (-5.392689581999946, 56.566473700000074), (-5.3893123039999296, 56.57489655200004), (-5.386626756999931, 56.57880280200004), (-5.360707160999937, 56.60626862200007), (-5.351918097999942, 56.612941799000055), (-5.31086178299995, 56.63361237200007), (-5.304514126999948, 56.64016347900008), (-5.298451300999943, 56.64642975500004), (-5.317779100999928, 56.65387604400007), (-5.317779100999928, 56.661322333000044), (-5.309071417999917, 56.66425202000005), (-5.286773240999935, 56.674994208000044), (-5.261463995999918, 56.67332591400003), (-5.248199022999927, 56.67405833500004), (-5.218902147999927, 56.688666083000044), (-5.196441209999932, 56.688666083000044), (-5.153309699999909, 56.68121979400007), (-5.132639126999948, 56.68451569200005), (-5.093373175999943, 56.69904205900008), (-5.012806769999941, 56.70929596600007), (-4.9955948559999115, 56.71596914300005), (-5.1605525379999335, 56.69586823100008), (-5.238270636999914, 56.71662018400008), (-5.23851477799991, 56.72256094000005), (-5.228423631999931, 56.73647695500006), (-5.222075975999928, 56.741522528000075), (-5.154652472999942, 56.78229401200008), (-5.136382615999935, 56.79877350500004), (-5.119740363999938, 56.818426825000074), (-5.179066535999937, 56.78925202000005), (-5.187489386999914, 56.78115469000005), (-5.191761847999942, 56.774644273000035), (-5.202259894999941, 56.76911041900007), (-5.214670376999948, 56.76520416900007), (-5.224964972999942, 56.763739325000074), (-5.233469204999949, 56.76068756700005), (-5.237049933999913, 56.75336334800005), (-5.2389216789999296, 56.74445221600007), (-5.242054816999939, 56.73647695500006), (-5.255238410999937, 56.721584377000056), (-5.268462693999936, 56.71308014500005), (-5.283355272999927, 56.70937734600005), (-5.30101477799991, 56.70856354400007), (-5.3098038399999155, 56.70648834800005), (-5.319162563999953, 56.69749583500004), (-5.34015865799995, 56.693060614000046), (-5.348378058999913, 56.687201239000046), (-5.359364386999914, 56.674994208000044), (-5.388050910999937, 56.65521881700005), (-5.403879360999952, 56.64923737200007), (-5.4242244129999335, 56.64704010600008), (-5.434396938999953, 56.64288971600007), (-5.4487198559999115, 56.62457916900007), (-5.458119269999941, 56.620347398000035), (-5.470773891999954, 56.618394273000035), (-5.482574022999927, 56.613267320000034), (-5.493316209999932, 56.60639069200005), (-5.53343665299991, 56.57290273600006), (-5.599598761999914, 56.52903880400004), (-5.667388475999928, 56.498480536000045), (-5.67406165299991, 56.49689362200007), (-5.683013475999928, 56.50063711100006), (-5.694691535999937, 56.51386139500005), (-5.70539303299995, 56.51666901200008), (-5.721791144999941, 56.51850006700005), (-5.740834113999938, 56.52326080900008), (-5.7582087879999335, 56.52997467700004), (-5.770253058999913, 56.53782786700003), (-5.7551977199999556, 56.554022528000075), (-5.751047329999949, 56.56199778900003), (-5.749134894999941, 56.571966864000046), (-5.756662563999953, 56.571966864000046), (-5.793853318999936, 56.54328034100007), (-5.8543595039999445, 56.550482489000046), (-6.0034073559999115, 56.61871979400007), (-6.009836391999954, 56.62653229400007), (-6.008168097999942, 56.642279364000046), (-5.998036261999914, 56.64988841400003), (-5.983509894999941, 56.65281810100004), (-5.933583136999914, 56.654730536000045), (-5.899037238999938, 56.650824286000045), (-5.866851365999935, 56.64154694200005), (-5.8391820949999556, 56.62653229400007), (-5.831695115999935, 56.633978583000044), (-5.855620897999927, 56.64472077000005), (-5.865589972999942, 56.65143463700008), (-5.865834113999938, 56.661322333000044), (-5.75999915299991, 56.70075104400007), (-5.735503709999932, 56.702337958000044), (-5.672596808999913, 56.68414948100008), (-5.647368943999936, 56.68121979400007), (-5.5941462879999335, 56.68333567900004), (-5.564808722999942, 56.68764883000006), (-5.543690558999913, 56.69546133000006), (-5.636545376999948, 56.688666083000044), (-5.658558722999942, 56.690741278000075), (-5.708851691999939, 56.70856354400007), (-5.749989386999914, 56.714544989000046), (-5.859038865999935, 56.68121979400007), (-5.89679928299995, 56.675116278000075), (-5.907378709999932, 56.674994208000044), (-5.9203181629999335, 56.67796458500004), (-5.942738410999937, 56.686753648000035), (-5.955555792999917, 56.688666083000044), (-6.0248917309999115, 56.68569570500006), (-6.098622199999909, 56.696966864000046), (-6.123850063999953, 56.69562409100007), (-6.143544074999909, 56.684881903000075), (-6.161732550999943, 56.67820872600004), (-6.186594204999949, 56.68109772300005), (-6.2096248039999296, 56.68846263200004), (-6.222767706999946, 56.69546133000006), (-6.228179490999935, 56.70107656500005), (-6.232533331999946, 56.70652903900003), (-6.235340949999909, 56.71238841400003), (-6.236398891999954, 56.71906159100007), (-6.234486456999946, 56.728583075000074), (-6.229562954999949, 56.72907135600008), (-6.222767706999946, 56.72719961100006), (-6.215321417999917, 56.72964101800005), (-6.193470831999946, 56.74852122600004), (-6.1805313789999445, 56.75462474200003), (-6.026966925999943, 56.763739325000074), (-6.0148819649999155, 56.76703522300005), (-5.979888475999928, 56.78156159100007), (-5.965199347999942, 56.784857489000046), (-5.948231574999909, 56.782538153000075), (-5.937977667999917, 56.77692291900007), (-5.928537563999953, 56.769964911000045), (-5.913644985999952, 56.763739325000074), (-5.860910610999952, 56.75079987200007), (-5.8522029289999296, 56.746975002000056), (-5.853342251999948, 56.757879950000074), (-5.858143683999913, 56.768459377000056), (-5.8683975899999155, 56.77586497600004), (-5.886341925999943, 56.777411200000074), (-5.886341925999943, 56.784857489000046), (-5.874012824999909, 56.78571198100008), (-5.861805792999917, 56.78510163000004), (-5.850087042999917, 56.782456773000035), (-5.8391820949999556, 56.777411200000074), (-5.8246150379999335, 56.78758372600004), (-5.8020727199999556, 56.79181549700007), (-5.7766007149999155, 56.787990627000056), (-5.756662563999953, 56.784857489000046), (-5.831695115999935, 56.80536530200004), (-5.8508194649999155, 56.818019924000055), (-5.851185675999943, 56.82892487200007), (-5.837473110999952, 56.83661530200004), (-5.7338761059999115, 56.84479401200008), (-5.692738410999937, 56.85492584800005), (-5.66038977799991, 56.87299225500004), (-5.673573370999918, 56.87653229400007), (-5.692005988999938, 56.87531159100007), (-5.7084854809999115, 56.87055084800005), (-5.724354620999918, 56.85382721600007), (-5.744496222999942, 56.85415273600006), (-5.783924933999913, 56.85993073100008), (-5.775380011999914, 56.86994049700007), (-5.735503709999932, 56.89411041900007), (-5.7805883449999556, 56.89874909100007), (-5.874867316999939, 56.887152411000045), (-5.9211319649999155, 56.89411041900007), (-5.8875626289999445, 56.89911530200004), (-5.8522029289999296, 56.90033600500004), (-5.8522029289999296, 56.90770091400003), (-5.859852667999917, 56.91054922100005), (-5.8801163399999155, 56.92202383000006), (-5.8625382149999155, 56.93374258000006), (-5.851429816999939, 56.95425039300005), (-5.842518683999913, 56.977443752000056), (-5.831695115999935, 56.99713776200008), (-5.814116990999935, 57.00950755400004), (-5.786040818999936, 57.02057526200008), (-5.755238410999937, 57.026556708000044), (-5.729318813999953, 57.02383047100005), (-5.719878709999932, 57.017564195000034), (-5.699940558999913, 56.998114325000074), (-5.688303188999953, 56.98969147300005), (-5.67406165299991, 56.983587958000044), (-5.658558722999942, 56.97947825700004), (-5.625599738999938, 56.976629950000074), (-5.571278449999909, 56.98383209800005), (-5.523264126999948, 56.99713776200008), (-5.523264126999948, 57.003973700000074), (-5.540435350999928, 57.001166083000044), (-5.556507941999939, 56.996079820000034), (-5.571278449999909, 56.99331289300005), (-5.5846248039999296, 56.99713776200008), (-5.607085740999935, 56.98851146000004), (-5.628814256999931, 56.991888739000046), (-5.6498917309999115, 56.999660549000055), (-5.6703181629999335, 57.003973700000074), (-5.685536261999914, 57.00958893400008), (-5.681711391999954, 57.02240631700005), (-5.680043097999942, 57.03620026200008), (-5.701975063999953, 57.044907945000034), (-5.710926886999914, 57.044175523000035), (-5.731353318999936, 57.03900788000004), (-5.742339647999927, 57.03807200700004), (-5.752552863999938, 57.04059479400007), (-5.769602016999954, 57.04975006700005), (-5.780181443999936, 57.05174388200004), (-5.791127081999946, 57.05927155200004), (-5.776193813999953, 57.075832424000055), (-5.734486456999946, 57.10541413000004), (-5.722645636999914, 57.116441148000035), (-5.715646938999953, 57.12006256700005), (-5.703277147999927, 57.120754299000055), (-5.673695441999939, 57.11904531500005), (-5.663482225999928, 57.12372467700004), (-5.645863410999937, 57.12946198100008), (-5.620838995999918, 57.12409088700008), (-5.57843990799995, 57.10639069200005), (-5.558257615999935, 57.10040924700007), (-5.4598282539999445, 57.09979889500005), (-5.454986131999931, 57.10297272300005), (-5.447417772999927, 57.11017487200007), (-5.430775519999941, 57.11074453300006), (-5.41429602799991, 57.10822174700007), (-5.407215949999909, 57.10639069200005), (-5.400380011999914, 57.10639069200005), (-5.400380011999914, 57.11383698100008), (-5.420033331999946, 57.12067291900007), (-5.503895636999914, 57.11269765800006), (-5.527414516999954, 57.107489325000074), (-5.540638800999943, 57.10639069200005), (-5.5477188789999445, 57.11009349200003), (-5.573312954999949, 57.12787506700005), (-5.5846248039999296, 57.133693752000056), (-5.668446417999917, 57.147650458000044), (-5.6808975899999155, 57.157904364000046), (-5.673817511999914, 57.174994208000044), (-5.638824022999927, 57.202378648000035), (-5.625599738999938, 57.21625397300005), (-5.644154425999943, 57.23322174700007), (-5.620106574999909, 57.25214264500005), (-5.578236456999946, 57.26675039300005), (-5.543690558999913, 57.27090078300006), (-5.511586066999939, 57.25763580900008), (-5.480091925999943, 57.23700592700004), (-5.446278449999909, 57.22304922100005), (-5.407215949999909, 57.22992584800005), (-5.407215949999909, 57.23672109600005), (-5.448841925999943, 57.24209219000005), (-5.458119269999941, 57.24664948100008), (-5.47288977799991, 57.26121653900003), (-5.482899542999917, 57.268011786000045), (-5.49250240799995, 57.27090078300006), (-5.501942511999914, 57.27765534100007), (-5.4889216789999296, 57.29242584800005), (-5.464833136999914, 57.306626695000034), (-5.4406632149999155, 57.311835028000075), (-5.4406632149999155, 57.31928131700005), (-5.464995897999927, 57.32493724200003), (-5.4817602199999556, 57.31671784100007), (-5.494292772999927, 57.30442942900004), (-5.50617428299995, 57.298163153000075), (-5.523426886999914, 57.29515208500004), (-5.558461066999939, 57.28143952000005), (-5.57843990799995, 57.27765534100007), (-5.599436001999948, 57.27924225500004), (-5.637440558999913, 57.28900788000004), (-5.656971808999913, 57.29132721600007), (-5.7000626289999445, 57.28359609600005), (-5.720570441999939, 57.284491278000075), (-5.729318813999953, 57.298163153000075), (-5.7252498039999296, 57.30158112200007), (-5.701975063999953, 57.33234284100007), (-5.6937556629999335, 57.337103583000044), (-5.671986456999946, 57.34442780200004), (-5.663482225999928, 57.349676825000074), (-5.654367641999954, 57.353949286000045), (-5.647206183999913, 57.34992096600007), (-5.6414688789999445, 57.34320709800005), (-5.636545376999948, 57.33978913000004), (-5.613189256999931, 57.34198639500005), (-5.5012914699999556, 57.37099844000005), (-5.456654425999943, 57.39354075700004), (-5.4481095039999445, 57.42169830900008), (-5.46507727799991, 57.423895575000074), (-5.492054816999939, 57.40875885600008), (-5.5375056629999335, 57.373928127000056), (-5.563465949999909, 57.36310455900008), (-5.586659308999913, 57.36505768400008), (-5.610910610999952, 57.37140534100007), (-5.6399633449999556, 57.373928127000056), (-5.615589972999942, 57.382473049000055), (-5.607085740999935, 57.389105536000045), (-5.609201626999948, 57.397772528000075), (-5.617746548999946, 57.41010163000004), (-5.619618292999917, 57.41669342700004), (-5.624012824999909, 57.41640859600005), (-5.6399633449999556, 57.40802643400008), (-5.707183397999927, 57.35976797100005), (-5.732411261999914, 57.352769273000035), (-5.784575975999928, 57.34857819200005), (-5.807769334999932, 57.35492584800005), (-5.8248591789999296, 57.39435455900008), (-5.822255011999914, 57.39350006700005), (-5.817372199999909, 57.39520905200004), (-5.812855597999942, 57.398098049000055), (-5.8111873039999296, 57.40119049700007), (-5.813872850999928, 57.40452708500004), (-5.8231095039999445, 57.41233958500004), (-5.8248591789999296, 57.41547272300005), (-5.825266079999949, 57.428900458000044), (-5.821888800999943, 57.435532945000034), (-5.8111873039999296, 57.44220612200007), (-5.8215225899999155, 57.44546133000006), (-5.852528449999909, 57.450384833000044), (-5.859038865999935, 57.45270416900007), (-5.861195441999939, 57.46344635600008), (-5.870513475999928, 57.48078034100007), (-5.872670050999943, 57.49371979400007), (-5.869699673999946, 57.500881252000056), (-5.856068488999938, 57.51780833500004), (-5.8522029289999296, 57.52411530200004), (-5.8510636059999115, 57.538397528000075), (-5.851470506999931, 57.55109284100007), (-5.847075975999928, 57.55890534100007), (-5.831695115999935, 57.55882396000004), (-5.833851691999939, 57.563381252000056), (-5.837025519999941, 57.57477448100008), (-5.8391820949999556, 57.579291083000044), (-5.821400519999941, 57.583197333000044), (-5.803618943999936, 57.581366278000075), (-5.7863663399999155, 57.57518138200004), (-5.732574022999927, 57.54523346600007), (-5.715646938999953, 57.538397528000075), (-5.707020636999914, 57.542303778000075), (-5.68976803299995, 57.52789948100008), (-5.6808975899999155, 57.52411530200004), (-5.650868292999917, 57.51264069200005), (-5.6399633449999556, 57.511053778000075), (-5.645334438999953, 57.51666901200008), (-5.648304816999939, 57.52187734600005), (-5.650542772999927, 57.52680084800005), (-5.6535538399999155, 57.53156159100007), (-5.5815323559999115, 57.538397528000075), (-5.5402725899999155, 57.534491278000075), (-5.5168350899999155, 57.534857489000046), (-5.512684699999909, 57.54148997600004), (-5.543120897999927, 57.55536530200004), (-5.588368292999917, 57.56102122600004), (-5.632720506999931, 57.55768463700008), (-5.66038977799991, 57.544582424000055), (-5.694488084999932, 57.56631094000005), (-5.689198370999918, 57.56940338700008), (-5.6808975899999155, 57.579291083000044), (-5.714222785999937, 57.58270905200004), (-5.7316788399999155, 57.59829336100006), (-5.744252081999946, 57.61798737200007), (-5.762806769999941, 57.633978583000044), (-5.778146938999953, 57.63743724200003), (-5.7936091789999296, 57.63857656500005), (-5.8058975899999155, 57.642645575000074), (-5.8111873039999296, 57.65509674700007), (-5.805409308999913, 57.667181708000044), (-5.785023566999939, 57.67951080900008), (-5.790760870999918, 57.68854401200008), (-5.790760870999918, 57.69599030200004), (-5.753570115999935, 57.707464911000045), (-5.734486456999946, 57.70795319200005), (-5.704986131999931, 57.69013092700004), (-5.692494269999941, 57.691066799000055), (-5.68195553299995, 57.69871653900003), (-5.67406165299991, 57.70966217700004), (-5.685170050999943, 57.71141185100004), (-5.692290818999936, 57.716498114000046), (-5.698841925999943, 57.723089911000045), (-5.708851691999939, 57.72955963700008), (-5.720529751999948, 57.73338450700004), (-5.803822394999941, 57.743841864000046), (-5.80695553299995, 57.75462474200003), (-5.8020727199999556, 57.780585028000075), (-5.803822394999941, 57.792222398000035), (-5.801258917999917, 57.800441799000055), (-5.809925910999937, 57.82062409100007), (-5.8111873039999296, 57.833197333000044), (-5.807362433999913, 57.84393952000005), (-5.799956834999932, 57.85370514500005), (-5.789540167999917, 57.86200592700004), (-5.776519334999932, 57.86790599200003), (-5.751128709999932, 57.87335846600007), (-5.724761522999927, 57.87352122600004), (-5.698638475999928, 57.86908600500004), (-5.67406165299991, 57.86050039300005), (-5.677886522999927, 57.846909898000035), (-5.674794074999909, 57.82709381700005), (-5.667958136999914, 57.80695221600007), (-5.66038977799991, 57.792222398000035), (-5.650542772999927, 57.78180573100008), (-5.6373591789999296, 57.77423737200007), (-5.622141079999949, 57.77020905200004), (-5.60578365799995, 57.77049388200004), (-5.613270636999914, 57.77521393400008), (-5.617909308999913, 57.78021881700005), (-5.625599738999938, 57.792222398000035), (-5.613026495999918, 57.792629299000055), (-5.603260870999918, 57.791083075000074), (-5.5846248039999296, 57.784816799000055), (-5.591175910999937, 57.80442942900004), (-5.587025519999941, 57.81858958500004), (-5.5852758449999556, 57.83144765800006), (-5.598988410999937, 57.846869208000044), (-5.6375626289999445, 57.86635976800005), (-5.650380011999914, 57.87775299700007), (-5.6399633449999556, 57.88784414300005), (-5.6476944649999155, 57.88898346600007), (-5.6507869129999335, 57.89081452000005), (-5.6535538399999155, 57.89468008000006), (-5.643950975999928, 57.90420156500005), (-5.620757615999935, 57.92088450700004), (-5.6126195949999556, 57.92877838700008), (-5.598215298999946, 57.91901276200008), (-5.587310350999928, 57.91510651200008), (-5.550526495999918, 57.91510651200008), (-5.556263800999943, 57.88776276200008), (-5.527902798999946, 57.86758047100005), (-5.487049933999913, 57.85586172100005), (-5.454986131999931, 57.85370514500005), (-5.46117102799991, 57.86050039300005), (-5.449045376999948, 57.869126695000034), (-5.437123175999943, 57.897650458000044), (-5.427642381999931, 57.908270575000074), (-5.4149063789999445, 57.90814850500004), (-5.369496222999942, 57.89752838700008), (-5.355620897999927, 57.89126211100006), (-5.327504035999937, 57.87327708500004), (-5.293853318999936, 57.86204661700003), (-5.221587693999936, 57.846869208000044), (-5.236317511999914, 57.86078522300005), (-5.2475479809999115, 57.86701080900008), (-5.276763475999928, 57.87417226800005), (-5.320668097999942, 57.898504950000074), (-5.384917772999927, 57.914129950000074), (-5.39289303299995, 57.91819896000004), (-5.394398566999939, 57.923895575000074), (-5.396839972999942, 57.926214911000045), (-5.3973282539999445, 57.928900458000044), (-5.39289303299995, 57.935614325000074), (-5.386545376999948, 57.936428127000056), (-5.378977016999954, 57.93183014500005), (-5.3717341789999296, 57.93105703300006), (-5.366200324999909, 57.943060614000046), (-5.3471573559999115, 57.936712958000044), (-5.319162563999953, 57.91474030200004), (-5.297352667999917, 57.908270575000074), (-5.2860001289999445, 57.90875885600008), (-5.266957160999937, 57.91400788000004), (-5.2562556629999335, 57.91510651200008), (-5.2436417309999115, 57.91290924700007), (-5.22101803299995, 57.90403880400004), (-5.211293097999942, 57.90208567900004), (-5.198801235999952, 57.897772528000075), (-5.162261522999927, 57.87848541900007), (-5.1199845039999445, 57.86798737200007), (-5.0911352199999556, 57.84031810100004), (-5.070790167999917, 57.833197333000044), (-5.07648678299995, 57.83852773600006), (-5.083404100999928, 57.84756094000005), (-5.0893448559999115, 57.85724518400008), (-5.091867641999954, 57.86420319200005), (-5.0971573559999115, 57.87091705900008), (-5.197255011999914, 57.91787344000005), (-5.221587693999936, 57.92133209800005), (-5.221587693999936, 57.92877838700008), (-5.201893683999913, 57.92865631700005), (-5.193959113999938, 57.935980536000045), (-5.19554602799991, 57.94765859600005), (-5.204497850999928, 57.960150458000044), (-5.216704881999931, 57.96588776200008), (-5.2488907539999445, 57.96938711100006), (-5.2631729809999115, 57.976548570000034), (-5.292632615999935, 57.98061758000006), (-5.333892381999931, 58.00853099200003), (-5.359364386999914, 58.011379299000055), (-5.357167120999918, 58.01406484600005), (-5.3566788399999155, 58.014878648000035), (-5.351918097999942, 58.01752350500004), (-5.366932745999918, 58.02887604400007), (-5.386586066999939, 58.032538153000075), (-5.427642381999931, 58.03119538000004), (-5.424305792999917, 58.03554922100005), (-5.422352667999917, 58.03896719000005), (-5.419585740999935, 58.04205963700008), (-5.413929816999939, 58.04547760600008), (-5.413929816999939, 58.05231354400007), (-5.447010870999918, 58.08437734600005), (-5.428089972999942, 58.09796784100007), (-5.390044725999928, 58.09218984600005), (-5.366200324999909, 58.06598541900007), (-5.344309048999946, 58.075506903000075), (-5.322865363999938, 58.07172272300005), (-5.300770636999914, 58.07013580900008), (-5.276763475999928, 58.08641185100004), (-5.283070441999939, 58.08641185100004), (-5.278065558999913, 58.09625885600008), (-5.2787979809999115, 58.10537344000005), (-5.283558722999942, 58.11347077000005), (-5.2905167309999115, 58.12055084800005), (-5.276763475999928, 58.12055084800005), (-5.276763475999928, 58.127386786000045), (-5.297352667999917, 58.134833075000074), (-5.284087693999936, 58.14008209800005), (-5.255523240999935, 58.143784898000035), (-5.242054816999939, 58.14789459800005), (-5.242054816999939, 58.15534088700008), (-5.275054490999935, 58.15452708500004), (-5.290842251999948, 58.156317450000074), (-5.304798956999946, 58.162095445000034), (-5.297352667999917, 58.168402411000045), (-5.304798956999946, 58.17332591400003), (-5.313059048999946, 58.17731354400007), (-5.321888800999943, 58.18024323100008), (-5.331450975999928, 58.18203359600005), (-5.3293350899999155, 58.186712958000044), (-5.326161261999914, 58.198431708000044), (-5.323963995999918, 58.203111070000034), (-5.336822068999936, 58.203192450000074), (-5.346791144999941, 58.20685455900008), (-5.39289303299995, 58.24469635600008), (-5.3920792309999115, 58.261379299000055), (-5.375884568999936, 58.26422760600008), (-5.352894660999937, 58.25893789300005), (-5.31078040299991, 58.243394273000035), (-5.293853318999936, 58.24091217700004), (-5.276966925999943, 58.243394273000035), (-5.237294074999909, 58.25763580900008), (-5.2160538399999155, 58.261419989000046), (-5.194325324999909, 58.25999583500004), (-5.173207160999937, 58.25092194200005), (-5.165638800999943, 58.258246161000045), (-5.152251756999931, 58.264837958000044), (-5.138335740999935, 58.269598700000074), (-5.129383917999917, 58.27138906500005), (-5.11156165299991, 58.26825592700004), (-5.0812882149999155, 58.25409577000005), (-5.0676977199999556, 58.25092194200005), (-5.017730272999927, 58.253241278000075), (-5.002430792999917, 58.25092194200005), (-4.933583136999914, 58.22304922100005), (-4.943430141999954, 58.233587958000044), (-4.954823370999918, 58.23981354400007), (-4.982004360999952, 58.25092194200005), (-4.968861456999946, 58.25678131700005), (-4.940337693999936, 58.259466864000046), (-4.926747199999909, 58.26459381700005), (-4.990223761999914, 58.27142975500004), (-5.009917772999927, 58.27138906500005), (-5.018055792999917, 58.26862213700008), (-5.029367641999954, 58.25971100500004), (-5.040028449999909, 58.25775788000004), (-5.0501195949999556, 58.25991445500006), (-5.0707087879999335, 58.269232489000046), (-5.081654425999943, 58.27138906500005), (-5.096424933999913, 58.27676015800006), (-5.125965949999909, 58.30019765800006), (-5.1362198559999115, 58.305568752000056), (-5.137440558999913, 58.30927155200004), (-5.156361456999946, 58.32461172100005), (-5.160145636999914, 58.326605536000045), (-5.167795376999948, 58.33926015800006), (-5.171009894999941, 58.34666575700004), (-5.173207160999937, 58.353949286000045), (-5.153309699999909, 58.353949286000045), (-5.1634008449999556, 58.364569403000075), (-5.162912563999953, 58.37449778900003), (-5.155913865999935, 58.384466864000046), (-5.146473761999914, 58.394964911000045), (-5.145497199999909, 58.400051174000055), (-5.14671790299991, 58.40664297100005), (-5.146839972999942, 58.41242096600007), (-5.143055792999917, 58.41478099200003), (-5.135487433999913, 58.413763739000046), (-5.122222459999932, 58.40957265800006), (-5.116037563999953, 58.40859609600005), (-5.057972785999937, 58.38727448100008), (-5.016184048999946, 58.38812897300005), (-5.043934699999909, 58.400091864000046), (-5.0533748039999296, 58.40664297100005), (-5.0502823559999115, 58.41478099200003), (-5.0570369129999335, 58.42218659100007), (-5.066151495999918, 58.41714101800005), (-5.076161261999914, 58.414496161000045), (-5.086822068999936, 58.41388580900008), (-5.0980525379999335, 58.41478099200003), (-5.0980525379999335, 58.42218659100007), (-5.08812415299991, 58.421942450000074), (-5.085031704999949, 58.42218659100007), (-5.085031704999949, 58.429022528000075), (-5.091786261999914, 58.429754950000074), (-5.09601803299995, 58.43146393400008), (-5.105539516999954, 58.43650950700004), (-5.0501195949999556, 58.45380280200004), (-5.025542772999927, 58.447699286000045), (-4.9955948559999115, 58.43650950700004), (-5.105539516999954, 58.48737213700008), (-5.105620897999927, 58.505560614000046), (-5.103667772999927, 58.51422760600008), (-5.095855272999927, 58.518866278000075), (-5.042795376999948, 58.53546784100007), (-5.0279841789999296, 58.54409414300005), (-5.016184048999946, 58.55939362200007), (-5.0229386059999115, 58.55939362200007), (-5.015207485999952, 58.580064195000034), (-5.011586066999939, 58.60057200700004), (-5.004953579999949, 58.61774323100008), (-4.988189256999931, 58.62832265800006), (-4.859486456999946, 58.61322663000004), (-4.835926886999914, 58.60504791900007), (-4.818104620999918, 58.59292226800005), (-4.817941860999952, 58.587591864000046), (-4.81281490799995, 58.571966864000046), (-4.806752081999946, 58.55841705900008), (-4.803822394999941, 58.55939362200007), (-4.804595506999931, 58.54832591400003), (-4.807240363999938, 58.53961823100008), (-4.811634894999941, 58.53204987200007), (-4.818104620999918, 58.524644273000035), (-4.799794074999909, 58.532456773000035), (-4.791818813999953, 58.54165273600006), (-4.7899063789999445, 58.55174388200004), (-4.790150519999941, 58.562486070000034), (-4.785755988999938, 58.577053127000056), (-4.777088995999918, 58.583319403000075), (-4.771595831999946, 58.59039948100008), (-4.776519334999932, 58.60716380400004), (-4.758859829999949, 58.59910716400003), (-4.7280167309999115, 58.577460028000075), (-4.7113337879999335, 58.57306549700007), (-4.683257615999935, 58.56150950700004), (-4.670399542999917, 58.55939362200007), (-4.660023566999939, 58.555853583000044), (-4.659291144999941, 58.54755280200004), (-4.663238084999932, 58.538397528000075), (-4.6673070949999556, 58.53204987200007), (-4.6790258449999556, 58.52391185100004), (-4.714466925999943, 58.50560130400004), (-4.732411261999914, 58.480454820000034), (-4.751535610999952, 58.46161530200004), (-4.7609757149999155, 58.44798411700003), (-4.74242102799991, 58.44953034100007), (-4.682972785999937, 58.48456452000005), (-4.673451300999943, 58.48737213700008), (-4.6668595039999445, 58.50291575700004), (-4.650502081999946, 58.50995514500005), (-4.630441860999952, 58.514960028000075), (-4.612131313999953, 58.524644273000035), (-4.6010636059999115, 58.54193756700005), (-4.595122850999928, 58.56000397300005), (-4.584950324999909, 58.57416413000004), (-4.560536261999914, 58.57990143400008), (-4.517486131999931, 58.575506903000075), (-4.475493943999936, 58.565619208000044), (-4.426503058999913, 58.54637278900003), (-4.426503058999913, 58.53888580900008), (-4.427886522999927, 58.53530508000006), (-4.428700324999909, 58.53473541900007), (-4.426503058999913, 58.524644273000035), (-4.449940558999913, 58.510199286000045), (-4.464751756999931, 58.49201080900008), (-4.477650519999941, 58.47134023600006), (-4.4953507149999155, 58.44953034100007), (-4.478098110999952, 58.453558661000045), (-4.46117102799991, 58.46246979400007), (-4.43390865799995, 58.483628648000035), (-4.432728644999941, 58.487616278000075), (-4.4339900379999335, 58.49237702000005), (-4.4342341789999296, 58.49628327000005), (-4.430165167999917, 58.49799225500004), (-4.425933397999927, 58.49909088700008), (-4.385365363999938, 58.52240631700005), (-4.382394985999952, 58.524644273000035), (-4.343861456999946, 58.53888580900008), (-4.317005988999938, 58.54572174700007), (-4.306996222999942, 58.54637278900003), (-4.287180141999954, 58.54291413000004), (-4.2573136059999115, 58.52798086100006), (-4.234730597999942, 58.524644273000035), (-4.248931443999936, 58.53204987200007), (-4.238189256999931, 58.536444403000075), (-4.232248501999948, 58.54242584800005), (-4.227691209999932, 58.548163153000075), (-4.22101803299995, 58.551947333000044), (-4.209706183999913, 58.55292389500005), (-4.190785285999937, 58.54783763200004), (-4.1769913399999155, 58.54637278900003), (-4.16820227799991, 58.54938385600008), (-4.1605525379999335, 58.562567450000074), (-4.149322068999936, 58.565619208000044), (-4.111195441999939, 58.565619208000044), (-4.0902400379999335, 58.56207916900007), (-4.081450975999928, 58.561835028000075), (-4.070220506999931, 58.565619208000044), (-4.061512824999909, 58.57282135600008), (-4.048817511999914, 58.58958567900004), (-4.039784308999913, 58.59292226800005), (-4.030629035999937, 58.59406159100007), (-4.029042120999918, 58.59516022300005), (-4.027821417999917, 58.59271881700005), (-4.0092667309999115, 58.57330963700008), (-4.003773566999939, 58.57062409100007), (-3.981434699999909, 58.57306549700007), (-3.8957413399999155, 58.565619208000044), (-3.8101293609999516, 58.57306549700007), (-3.7669571609999366, 58.58372630400004), (-3.6983536449999406, 58.61115143400008), (-3.659901495999918, 58.62083567900004), (-3.597564256999931, 58.62714264500005), (-3.565500454999949, 58.626613674000055), (-3.542591925999943, 58.62083567900004), (-3.552479620999918, 58.61546458500004), (-3.556263800999943, 58.61399974200003), (-3.532053188999953, 58.60211823100008), (-3.504017706999946, 58.60333893400008), (-3.447010870999918, 58.61399974200003), (-3.3914688789999445, 58.60065338700008), (-3.364084438999953, 58.600816148000035), (-3.3508194649999155, 58.62083567900004), (-3.3677465489999463, 58.624701239000046), (-3.3860570949999556, 58.631740627000056), (-3.402251756999931, 58.64203522300005), (-3.412912563999953, 58.655585028000075), (-3.3900447259999282, 58.67177969000005), (-3.3748673169999392, 58.677069403000075), (-3.3582657539999445, 58.675482489000046), (-3.3543595039999445, 58.67015208500004), (-3.35179602799991, 58.66083405200004), (-3.34788977799991, 58.652044989000046), (-3.340565558999913, 58.648138739000046), (-3.3098852199999556, 58.648138739000046), (-3.244252081999946, 58.65900299700007), (-3.204090949999909, 58.66111888200004), (-3.1519262359999516, 58.64126211100006), (-3.118763800999943, 58.64109935100004), (-3.052886522999927, 58.648138739000046), (-3.0191137359999516, 58.640326239000046), (-3.025380011999914, 58.62213776200008), (-3.0444229809999115, 58.601629950000074), (-3.049183722999942, 58.58673737200007), (-3.060454881999931, 58.57843659100007), (-3.0754288399999155, 58.56037018400008), (-3.0845434239999463, 58.551947333000044), (-3.1107478509999282, 58.53864166900007), (-3.1180313789999445, 58.53204987200007), (-3.129261847999942, 58.51264069200005), (-3.1293025379999335, 58.49640534100007), (-3.1187231109999516, 58.484442450000074), (-3.0975235669999392, 58.47748444200005), (-3.0850723949999406, 58.47825755400004), (-3.073963995999918, 58.481675523000035), (-3.064442511999914, 58.48297760600008), (-3.056630011999914, 58.47748444200005), (-3.053334113999938, 58.46576569200005), (-3.0577286449999406, 58.45685455900008), (-3.066761847999942, 58.451157945000034), (-3.077056443999936, 58.44953034100007), (-3.0863337879999335, 58.41421133000006), (-3.129790818999936, 58.36928945500006), (-3.182769334999932, 58.32843659100007), (-3.2205297519999476, 58.305568752000056), (-3.2622777989999463, 58.292629299000055), (-3.34984290299991, 58.27610911700003), (-3.38499915299991, 58.26459381700005), (-3.438099738999938, 58.236029364000046), (-3.447010870999918, 58.22675202000005), (-3.454741990999935, 58.210150458000044), (-3.473459438999953, 58.193426825000074), (-3.515288865999935, 58.168402411000045), (-3.7350154289999296, 58.07217031500005), (-3.809193488999938, 58.05190664300005), (-3.8275040359999366, 58.04205963700008), (-3.8362524079999503, 58.03143952000005), (-3.8460994129999335, 58.01117584800005), (-3.851714647999927, 58.003892320000034), (-3.8605850899999155, 57.998928127000056), (-3.8856095039999445, 57.991400458000044), (-3.9173070949999556, 57.98745351800005), (-3.981434699999909, 57.96356842700004), (-3.990956183999913, 57.96039459800005), (-3.997670050999943, 57.954413153000075), (-4.001372850999928, 57.94611237200007), (-4.001942511999914, 57.935614325000074), (-4.018299933999913, 57.940619208000044), (-4.023060675999943, 57.943060614000046), (-4.016184048999946, 57.949286200000074), (-4.0301407539999445, 57.953192450000074), (-4.055775519999941, 57.95498281500005), (-4.0843806629999335, 57.964178778000075), (-4.0891007149999155, 57.960150458000044), (-4.0863337879999335, 57.95189036700003), (-4.0776261059999115, 57.943060614000046), (-4.062652147999927, 57.93695709800005), (-4.03148352799991, 57.93618398600006), (-4.016184048999946, 57.93219635600008), (-4.009429490999935, 57.92767975500004), (-3.988270636999914, 57.908270575000074), (-4.008941209999932, 57.88959381700005), (-4.013824022999927, 57.879339911000045), (-4.009348110999952, 57.86790599200003), (-4.025135870999918, 57.868068752000056), (-4.054839647999927, 57.874335028000075), (-4.070220506999931, 57.87417226800005), (-4.0793350899999155, 57.87026601800005), (-4.0969132149999155, 57.85736725500004), (-4.1049698559999115, 57.85370514500005), (-4.132923956999946, 57.85415273600006), (-4.190419074999909, 57.87006256700005), (-4.218169725999928, 57.87417226800005), (-4.298898891999954, 57.86277903900003), (-4.3209529289999296, 57.87103913000004), (-4.353179490999935, 57.89520905200004), (-4.3723038399999155, 57.90448639500005), (-4.392404751999948, 57.908270575000074), (-4.339588995999918, 57.86570872600004), (-4.307728644999941, 57.85146719000005), (-4.269398566999939, 57.846869208000044), (-4.229074673999946, 57.85724518400008), (-4.2082413399999155, 57.85919830900008), (-4.190581834999932, 57.85028717700004), (-4.173451300999943, 57.83901601800005), (-4.1497289699999556, 57.82982005400004), (-4.1334529289999296, 57.830145575000074), (-4.1390681629999335, 57.846869208000044), (-4.0750626289999445, 57.82318756700005), (-4.0399063789999445, 57.81818268400008), (-3.9835098949999406, 57.84235260600008), (-3.9514867829999503, 57.838324286000045), (-3.933705206999946, 57.82566966400003), (-3.9473363919999542, 57.81268952000005), (-3.914784308999913, 57.80768463700008), (-3.877674933999913, 57.81671784100007), (-3.8418676419999542, 57.83490631700005), (-3.813547329999949, 57.857123114000046), (-3.798451300999943, 57.866522528000075), (-3.786040818999936, 57.86542389500005), (-3.779449022999927, 57.85565827000005), (-3.782215949999909, 57.83942291900007), (-3.790028449999909, 57.83071523600006), (-3.92601477799991, 57.734808661000045), (-3.948841925999943, 57.72492096600007), (-3.975209113999938, 57.70327383000006), (-3.988270636999914, 57.69599030200004), (-4.00804602799991, 57.693793036000045), (-4.02367102799991, 57.69782135600008), (-4.0286352199999556, 57.70770905200004), (-4.016184048999946, 57.72333405200004), (-4.042958136999914, 57.73729075700004), (-4.077951626999948, 57.73029205900008), (-4.155344204999949, 57.692572333000044), (-4.168568488999938, 57.689439195000034), (-4.1939998039999296, 57.68854401200008), (-4.2592667309999115, 57.67869700700004), (-4.277821417999917, 57.68060944200005), (-4.294789191999939, 57.68016185100004), (-4.302154100999928, 57.66860586100006), (-4.30882727799991, 57.65485260600008), (-4.324045376999948, 57.64826080900008), (-4.33820553299995, 57.64508698100008), (-4.4031876289999445, 57.60952383000006), (-4.412180141999954, 57.60297272300005), (-4.4203181629999335, 57.592962958000044), (-4.428456183999913, 57.57754140800006), (-4.423451300999943, 57.57680898600006), (-4.409901495999918, 57.582464911000045), (-4.379872199999909, 57.58934153900003), (-4.365101691999939, 57.59723541900007), (-4.3510636059999115, 57.60736725500004), (-4.340809699999909, 57.617173570000034), (-4.328724738999938, 57.626288153000075), (-4.283111131999931, 57.64142487200007), (-4.2445369129999335, 57.66303131700005), (-4.201893683999913, 57.674994208000044), (-4.1937556629999335, 57.67552317900004), (-4.182240363999938, 57.67279694200005), (-4.169016079999949, 57.663763739000046), (-4.118723110999952, 57.65770091400003), (-4.096791144999941, 57.65810781500005), (-4.0807185539999296, 57.66498444200005), (-4.068104620999918, 57.672308661000045), (-4.0246475899999155, 57.687201239000046), (-4.009348110999952, 57.68854401200008), (-4.004505988999938, 57.67597077000005), (-4.025257941999939, 57.65521881700005), (-4.0541886059999115, 57.63572825700004), (-4.083404100999928, 57.62335846600007), (-4.118560350999928, 57.592962958000044), (-4.11546790299991, 57.58783600500004), (-4.112294074999909, 57.58413320500006), (-4.1088761059999115, 57.58144765800006), (-4.1049698559999115, 57.579291083000044), (-4.151356574999909, 57.57684967700004), (-4.170643683999913, 57.570746161000045), (-4.187489386999914, 57.55882396000004), (-4.178089972999942, 57.54954661700003), (-4.184925910999937, 57.548163153000075), (-4.207997199999909, 57.552069403000075), (-4.262603318999936, 57.552069403000075), (-4.262603318999936, 57.544582424000055), (-4.233957485999952, 57.54511139500005), (-4.220285610999952, 57.543402411000045), (-4.207997199999909, 57.538397528000075), (-4.226307745999918, 57.51544830900008), (-4.237456834999932, 57.50531647300005), (-4.248931443999936, 57.49746328300006), (-4.212798631999931, 57.492173570000034), (-4.1948136059999115, 57.49160390800006), (-4.173898891999954, 57.49746328300006), (-4.157622850999928, 57.50849030200004), (-4.150054490999935, 57.51504140800006), (-4.149322068999936, 57.51788971600007), (-4.126779751999948, 57.518866278000075), (-4.116200324999909, 57.52179596600007), (-4.097523566999939, 57.53668854400007), (-4.082997199999909, 57.54441966400003), (-4.067290818999936, 57.54995351800005), (-4.0531306629999335, 57.552069403000075), (-4.034982876999948, 57.55687083500004), (-4.046457485999952, 57.56785716400003), (-4.083851691999939, 57.58612702000005), (-4.056019660999937, 57.585150458000044), (-3.9643448559999115, 57.592962958000044), (-3.8682755199999406, 57.587876695000034), (-3.8374731109999516, 57.592962958000044), (-3.6848038399999155, 57.65444570500006), (-3.625152147999927, 57.66193268400008), (-3.632557745999918, 57.65094635600008), (-3.637684699999909, 57.64622630400004), (-3.6456192699999406, 57.64142487200007), (-3.632476365999935, 57.635646877000056), (-3.6196182929999168, 57.63621653900003), (-3.606068488999938, 57.63947174700007), (-3.590972459999932, 57.64142487200007), (-3.61156165299991, 57.66811758000006), (-3.5747777989999463, 57.66111888200004), (-3.55492102799991, 57.659857489000046), (-3.535755988999938, 57.66193268400008), (-3.521473761999914, 57.66779205900008), (-3.5054418609999516, 57.67865631700005), (-3.4959610669999392, 57.69135163000004), (-3.501698370999918, 57.702826239000046), (-3.491851365999935, 57.71312083500004), (-3.4828181629999335, 57.71401601800005), (-3.4730525379999335, 57.711004950000074), (-3.460682745999918, 57.70966217700004), (-3.447865363999938, 57.71246979400007), (-3.4212540359999366, 57.72138092700004), (-3.409169074999909, 57.72333405200004), (-3.2847387359999516, 57.72044505400004), (-3.2100723949999406, 57.69399648600006), (-3.0786840489999463, 57.66941966400003), (-3.034901495999918, 57.66860586100006), (-2.994496222999942, 57.67552317900004), (-2.932687954999949, 57.69961172100005), (-2.9160863919999542, 57.702826239000046), (-2.75804602799991, 57.702826239000046), (-2.7512100899999155, 57.70062897300005), (-2.741118943999936, 57.69086334800005), (-2.731068488999938, 57.68854401200008), (-2.719878709999932, 57.690619208000044), (-2.711537238999938, 57.69399648600006), (-2.7035212879999335, 57.69472890800006), (-2.6929418609999516, 57.68854401200008), (-2.658924933999913, 57.69745514500005), (-2.573394334999932, 57.68146393400008), (-2.541981574999909, 57.68235911700003), (-2.526112433999913, 57.66860586100006), (-2.5181371739999463, 57.67011139500005), (-2.5110570949999556, 57.677801825000074), (-2.497954881999931, 57.68235911700003), (-2.4800512359999516, 57.68121979400007), (-2.4328507149999155, 57.66811758000006), (-2.425526495999918, 57.67572663000004), (-2.4177953769999476, 57.674261786000045), (-2.4087621739999463, 57.669623114000046), (-2.398060675999943, 57.66811758000006), (-2.3865860669999392, 57.671576239000046), (-2.369496222999942, 57.680568752000056), (-2.360503709999932, 57.68235911700003), (-2.3410538399999155, 57.675848700000074), (-2.3289688789999445, 57.67405833500004), (-2.3235977859999366, 57.678941148000035), (-2.32054602799991, 57.68455638200004), (-2.313384568999936, 57.68992747600004), (-2.3040665359999366, 57.69399648600006), (-2.295643683999913, 57.69599030200004), (-2.274322068999936, 57.69383372600004), (-2.230132615999935, 57.67914459800005), (-2.209950324999909, 57.67552317900004), (-2.1840714179999168, 57.67845286700003), (-2.1243383449999556, 57.702826239000046), (-2.108143683999913, 57.70498281500005), (-1.9976700509999432, 57.702826239000046), (-1.9969376289999445, 57.69904205900008), (-1.990834113999938, 57.69037506700005), (-1.982167120999918, 57.68109772300005), (-1.9735001289999445, 57.67552317900004), (-1.961293097999942, 57.674709377000056), (-1.9447322259999282, 57.68256256700005), (-1.9324845039999445, 57.68235911700003), (-1.9256892569999309, 57.678168036000045), (-1.914214647999927, 57.66474030200004), (-1.8294571609999366, 57.61347077000005), (-1.820464647999927, 57.59634023600006), (-1.817005988999938, 57.578192450000074), (-1.8113907539999445, 57.56049225500004), (-1.7960098949999406, 57.544582424000055), (-1.7960098949999406, 57.538397528000075), (-1.8000382149999155, 57.52586497600004), (-1.7895401679999168, 57.514837958000044), (-1.7611384759999282, 57.49746328300006), (-1.7753800119999141, 57.496527411000045), (-1.7821345689999362, 57.48899974200003), (-1.7812393869999141, 57.48041413000004), (-1.7717179029999102, 57.476263739000046), (-1.7593481109999516, 57.47357819200005), (-1.7659399079999503, 57.46743398600006), (-1.7891739569999459, 57.45644765800006), (-1.8301488919999542, 57.42617422100005), (-1.8474828769999476, 57.40814850500004), (-1.849964972999942, 57.39435455900008), (-1.9544978509999282, 57.341131903000075), (-1.9802953769999476, 57.31928131700005), (-2.044667120999918, 57.22650788000004), (-2.068511522999927, 57.17462799700007), (-2.074126756999931, 57.15420156500005), (-2.0714005199999406, 57.13556549700007), (-2.052357550999943, 57.12742747600004), (-2.0493057929999168, 57.118841864000046), (-2.065256313999953, 57.10053131700005), (-2.0658259759999282, 57.09983958500004), (-2.156158006999931, 57.020697333000044), (-2.1869197259999282, 56.98468659100007), (-2.200103318999936, 56.94871653900003), (-2.1971329419999392, 56.94025299700007), (-2.1912328769999476, 56.93414948100008), (-2.186268683999913, 56.92674388200004), (-2.1863907539999445, 56.91453685100004), (-2.191314256999931, 56.90892161700003), (-2.209706183999913, 56.895819403000075), (-2.213693813999953, 56.890692450000074), (-2.219878709999932, 56.87262604400007), (-2.23460852799991, 56.861395575000074), (-2.2689509759999282, 56.84634023600006), (-2.295806443999936, 56.82526276200008), (-2.3198136059999115, 56.80158112200007), (-2.336089647999927, 56.79083893400008), (-2.3918350899999155, 56.771185614000046), (-2.4086807929999168, 56.762925523000035), (-2.4264216789999296, 56.751288153000075), (-2.4359431629999335, 56.74038320500006), (-2.4407445949999556, 56.73484935100004), (-2.4516495429999168, 56.69098541900007), (-2.4637345039999445, 56.67877838700008), (-2.4774063789999445, 56.66868724200003), (-2.487456834999932, 56.65387604400007), (-2.4875382149999155, 56.64606354400007), (-2.481271938999953, 56.63239166900007), (-2.480620897999927, 56.62653229400007), (-2.4861954419999392, 56.619574286000045), (-2.504058397999927, 56.60883209800005), (-2.514556443999936, 56.591498114000046), (-2.530018683999913, 56.58075592700004), (-2.623768683999913, 56.543402411000045), (-2.6409399079999503, 56.522365627000056), (-2.6613663399999155, 56.51422760600008), (-2.6997777989999463, 56.50364817900004), (-2.708729620999918, 56.49599844000005), (-2.7276505199999406, 56.46954987200007), (-2.737294074999909, 56.46702708500004), (-2.74437415299991, 56.46954987200007), (-2.752308722999942, 56.47361888200004), (-2.764800584999932, 56.47573476800005), (-2.819325324999909, 56.47129954600007), (-3.055653449999909, 56.45213450700004), (-3.0606176419999542, 56.45172760600008), (-3.099273240999935, 56.44188060100004), (-3.1339005199999406, 56.426947333000044), (-3.238189256999931, 56.36774323100008), (-3.280181443999936, 56.35789622600004), (-3.3234757149999155, 56.36591217700004), (-3.311512824999909, 56.35651276200008), (-3.294016079999949, 56.352769273000035), (-3.2515356109999516, 56.352850653000075), (-3.230620897999927, 56.35602448100008), (-3.188384568999936, 56.37018463700008), (-3.149566209999932, 56.37555573100008), (-2.950266079999949, 56.43187083500004), (-2.9399307929999168, 56.43854401200008), (-2.930653449999909, 56.44806549700007), (-2.909087693999936, 56.45571523600006), (-2.88499915299991, 56.45799388200004), (-2.867909308999913, 56.45184967700004), (-2.8500870429999168, 56.44204336100006), (-2.8147680329999503, 56.44041575700004), (-2.8028051419999542, 56.42796458500004), (-2.800892706999946, 56.40892161700003), (-2.808257615999935, 56.391058661000045), (-2.8216039699999556, 56.376166083000044), (-2.837554490999935, 56.36591217700004), (-2.8129776679999168, 56.36591217700004), (-2.809193488999938, 56.36286041900007), (-2.8047582669999542, 56.34910716400003), (-2.8028051419999542, 56.345404364000046), (-2.7914932929999168, 56.34247467700004), (-2.7826228509999282, 56.34162018400008), (-2.7752579419999392, 56.33942291900007), (-2.768625454999949, 56.33234284100007), (-2.6771541009999282, 56.32843659100007), (-2.655262824999909, 56.32217031500005), (-2.621205206999946, 56.30442942900004), (-2.613189256999931, 56.30190664300005), (-2.5768123039999296, 56.28392161700003), (-2.5768123039999296, 56.277777411000045), (-2.6301163399999155, 56.24852122600004), (-2.648345506999931, 56.22870514500005), (-2.672027147999927, 56.22239817900004), (-2.7202042309999115, 56.21629466400003), (-2.7835994129999335, 56.19196198100008), (-2.8061417309999115, 56.188381252000056), (-2.8307185539999296, 56.190741278000075), (-2.8920792309999115, 56.20888906500005), (-2.940052863999938, 56.209418036000045), (-2.9643448559999115, 56.20563385600008), (-2.9746801419999542, 56.19830963700008), (-2.982411261999914, 56.189113674000055), (-3.0355525379999335, 56.16791413000004), (-3.0910538399999155, 56.13226959800005), (-3.107533331999946, 56.12689850500004), (-3.127552863999938, 56.12287018400008), (-3.138295050999943, 56.112209377000056), (-3.152251756999931, 56.07851797100005), (-3.1635636059999115, 56.06386953300006), (-3.1783748039999296, 56.05809153900003), (-3.2484431629999335, 56.055975653000075), (-3.268381313999953, 56.05093008000006), (-3.3030492829999503, 56.037543036000045), (-3.342681443999936, 56.02716705900008), (-3.381825324999909, 56.02338288000004), (-3.420969204999949, 56.02488841400003), (-3.5825902989999463, 56.05174388200004), (-3.671498175999943, 56.050848700000074), (-3.710031704999949, 56.05809153900003), (-3.7454320949999556, 56.07221100500004), (-3.7464900379999335, 56.072780666000085), (-3.782215949999909, 56.09218984600005), (-3.8031306629999335, 56.107123114000046), (-3.817005988999938, 56.11225006700005), (-3.8374731109999516, 56.112616278000075), (-3.8374731109999516, 56.10643138200004), (-3.777699347999942, 56.08283112200007), (-3.769154425999943, 56.07514069200005), (-3.7608536449999406, 56.07245514500005), (-3.7264298169999392, 56.03803131700005), (-3.721424933999913, 56.03070709800005), (-3.712635870999918, 56.028998114000046), (-3.693470831999946, 56.03115469000005), (-3.6866348949999406, 56.03070709800005), (-3.6795548169999392, 56.025458075000074), (-3.674794074999909, 56.01870351800005), (-3.6682836579999503, 56.01276276200008), (-3.656239386999914, 56.010199286000045), (-3.599720831999946, 56.017238674000055), (-3.5773819649999155, 56.01703522300005), (-3.405425584999932, 55.98973216400003), (-3.3582657539999445, 55.98973216400003), (-3.340891079999949, 55.99445221600007), (-3.331044074999909, 55.99408600500004), (-3.320423956999946, 55.986029364000046), (-3.303456183999913, 55.97760651200008), (-3.121815558999913, 55.96930573100008), (-3.1147354809999115, 55.966131903000075), (-3.096831834999932, 55.95197174700007), (-3.090728318999936, 55.94818756700005), (-3.078236456999946, 55.94684479400007), (-3.0156957669999542, 55.950506903000075), (-2.9399307929999168, 55.96930573100008), (-2.9166560539999296, 55.98061758000006), (-2.900054490999935, 55.996161200000074), (-2.8828832669999542, 56.00849030200004), (-2.8579809239999463, 56.010199286000045), (-2.863636847999942, 56.02228424700007), (-2.8663223949999406, 56.02676015800006), (-2.8709610669999392, 56.03070709800005), (-2.8527725899999155, 56.03978099200003), (-2.823150193999936, 56.059759833000044), (-2.8028051419999542, 56.06484609600005), (-2.635121222999942, 56.05805084800005), (-2.615956183999913, 56.053168036000045), (-2.587554490999935, 56.030951239000046), (-2.569406704999949, 56.02448151200008), (-2.57835852799991, 56.00800202000005), (-2.583648240999935, 56.00275299700007), (-2.5695694649999155, 55.99994538000004), (-2.5440567699999406, 56.00267161700003), (-2.528960740999935, 55.99656810100004), (-2.5248103509999282, 56.00055573100008), (-2.514556443999936, 56.00576406500005), (-2.507923956999946, 56.010199286000045), (-2.4932755199999406, 56.00153229400007), (-2.4525040359999366, 55.985256252000056), (-2.4143774079999503, 55.97833893400008), (-2.3509415359999366, 55.94818756700005), (-2.307769334999932, 55.93500397300005), (-2.146839972999942, 55.917303778000075), (-2.1380102199999556, 55.91461823100008), (-2.132557745999918, 55.90643952000005), (-2.13109290299991, 55.89720286700003), (-2.1287735669999392, 55.88979726800005), (-2.1209610669999392, 55.886704820000034), (-2.0994766919999392, 55.88178131700005), (-2.080189581999946, 55.86937083500004), (-2.0228572259999282, 55.80548737200007), (-2.009673631999931, 55.79083893400008), (-1.8778376939999362, 55.69489166900007), (-1.8631892569999309, 55.67161692900004), (-1.8530981109999516, 55.65932851800005), (-1.8315323559999115, 55.65070221600007), (-1.8260798819999309, 55.64362213700008), (-1.8216853509999282, 55.636419989000046), (-1.8164770169999542, 55.632879950000074), (-1.8071182929999168, 55.63450755400004), (-1.8007706369999141, 55.63922760600008), (-1.7962947259999282, 55.644232489000046), (-1.7925919259999432, 55.646551825000074), (-1.781402147999927, 55.64565664300005), (-1.768625454999949, 55.641913153000075), (-1.7564998039999296, 55.63361237200007), (-1.7476700509999432, 55.619208075000074), (-1.7679744129999335, 55.619208075000074), (-1.7679744129999335, 55.612982489000046), (-1.7559708319999459, 55.60887278900003), (-1.720855272999927, 55.614569403000075), (-1.6991267569999309, 55.612982489000046), (-1.6308487619999141, 55.58510976800005), (-1.6308487619999141, 55.57827383000006), (-1.6363419259999432, 55.57168203300006), (-1.6346736319999309, 55.56439850500004), (-1.6276749339999128, 55.55711497600004), (-1.6171768869999141, 55.55027903900003), (-1.6308487619999141, 55.544134833000044), (-1.6308487619999141, 55.53729889500005), (-1.6222224599999322, 55.534084377000056), (-1.6029353509999282, 55.52362702000005), (-1.6029353509999282, 55.516791083000044), (-1.6113175119999141, 55.50804271000004), (-1.6063533189999362, 55.503241278000075), (-1.5963435539999296, 55.49990469000005), (-1.5893448559999115, 55.49567291900007), (-1.5849503249999088, 55.483710028000075), (-1.5813695949999556, 55.41665273600006), (-1.5831192699999406, 55.40692780200004), (-1.5882869129999335, 55.39057038000004), (-1.5891007149999155, 55.385199286000045), (-1.5893448559999115, 55.37653229400007), (-1.5833227199999556, 55.354722398000035), (-1.5585831369999141, 55.32892487200007), (-1.5558162099999322, 55.31134674700007), (-1.5570369129999335, 55.306626695000034), (-1.5589900379999335, 55.302069403000075), (-1.5619197259999282, 55.29779694200005), (-1.5657445949999556, 55.29364655200004), (-1.570057745999918, 55.28620026200008), (-1.5682266919999392, 55.27960846600007), (-1.5642797519999476, 55.27326080900008), (-1.5620824859999516, 55.26666901200008), (-1.5564672519999476, 55.25503164300005), (-1.5439346999999088, 55.24388255400004), (-1.5209854809999115, 55.229396877000056), (-1.5291641919999392, 55.21625397300005), (-1.5240779289999296, 55.21010976800005), (-1.514271613999938, 55.204779364000046), (-1.507964647999927, 55.194647528000075), (-1.510812954999949, 55.184759833000044), (-1.5175675119999141, 55.176214911000045), (-1.5221248039999296, 55.16746653900003), (-1.517933722999942, 55.157131252000056), (-1.5007218089999128, 55.141791083000044), (-1.4959610669999392, 55.13458893400008), (-1.492543097999942, 55.112982489000046), (-1.4837540359999366, 55.09170156500005), (-1.4800919259999432, 55.08539459800005), (-1.4762263659999348, 55.083644924000055), (-1.4632869129999335, 55.08030833500004), (-1.459584113999938, 55.07859935100004), (-1.458078579999949, 55.07575104400007), (-1.4547013009999432, 55.067572333000044), (-1.438303188999953, 55.042303778000075), (-1.4291886059999115, 55.033270575000074), (-1.4240616529999102, 55.02435944200005), (-1.4195043609999516, 55.011704820000034), (-1.412912563999953, 55.00031159100007), (-1.4015193349999322, 54.995428778000075), (-1.398182745999918, 54.992621161000045), (-1.3702286449999406, 54.97553131700005), (-1.3626602859999366, 54.96478913000004), (-1.3617244129999335, 54.958685614000046), (-1.3635147779999102, 54.95425039300005), (-1.3640030589999128, 54.94818756700005), (-1.3628637359999516, 54.92593008000006), (-1.3603409499999088, 54.91705963700008), (-1.3531388009999432, 54.91351959800005), (-1.355824347999942, 54.904282945000034), (-1.2967830069999309, 54.77993398600006), (-1.2754613919999542, 54.74843984600005), (-1.2404679029999102, 54.72166575700004), (-1.2250870429999168, 54.71503327000005), (-1.172230597999942, 54.701239325000074), (-1.172230597999942, 54.693793036000045), (-1.1926163399999155, 54.693793036000045), (-1.192453579999949, 54.68927643400008), (-1.1907852859999366, 54.68618398600006), (-1.1851700509999432, 54.68008047100005), (-1.1827286449999406, 54.67206452000005), (-1.1788223949999406, 54.66474030200004), (-1.172922329999949, 54.65835195500006), (-1.1647029289999296, 54.652777411000045), (-1.172922329999949, 54.644191799000055), (-1.1824845039999445, 54.63922760600008), (-1.2062882149999155, 54.63296133000006), (-1.203724738999938, 54.62571849200003), (-1.1988419259999432, 54.62156810100004), (-1.1918025379999335, 54.61977773600006), (-1.1821182929999168, 54.61928945500006), (-1.1793513659999348, 54.62091705900008), (-1.1784561839999128, 54.624212958000044), (-1.1769913399999155, 54.62677643400008), (-1.172230597999942, 54.62612539300005), (-1.1695857409999348, 54.62360260600008), (-1.1654353509999282, 54.61871979400007), (-1.1629532539999445, 54.61395905200004), (-1.1647029289999296, 54.61180247600004), (-1.1526586579999503, 54.61318594000005), (-1.1467179029999102, 54.618475653000075), (-1.1380509109999366, 54.646551825000074), (-1.1205948559999115, 54.63300202000005), (-1.1036270819999459, 54.624660549000055), (-1.0842179029999102, 54.620428778000075), (-1.042062954999949, 54.61709219000005), (-0.9934789699999556, 54.59813060100004), (-0.7879125639999529, 54.56077708500004), (-0.5629776679999168, 54.47736237200007), (-0.5346573559999115, 54.461004950000074), (-0.5228572259999282, 54.44708893400008), (-0.5217992829999503, 54.43805573100008), (-0.5235896479999269, 54.43024323100008), (-0.5204158189999362, 54.42007070500006), (-0.5099991529999102, 54.41156647300005), (-0.47679602799991017, 54.39720286700003), (-0.46275794199993925, 54.38898346600007), (-0.4477432929999168, 54.37319570500006), (-0.43057206899993616, 54.349310614000046), (-0.4184464179999168, 54.32404205900008), (-0.41803951699995423, 54.303941148000035), (-0.4145401679999168, 54.297308661000045), (-0.4090063139999529, 54.29075755400004), (-0.4011938139999529, 54.28563060100004), (-0.39073645699994586, 54.28351471600007), (-0.3948868479999419, 54.273138739000046), (-0.39757239499994057, 54.269191799000055), (-0.3892716139999379, 54.26406484600005), (-0.3704727859999366, 54.247707424000055), (-0.3627823559999115, 54.24249909100007), (-0.3220108709999181, 54.23607005400004), (-0.31191972599992823, 54.231634833000044), (-0.30011959499995555, 54.224676825000074), (-0.2770889959999181, 54.21775950700004), (-0.26960201699995423, 54.20766836100006), (-0.26256262899994454, 54.18109772300005), (-0.2603653639999379, 54.176988023000035), (-0.2338761059999115, 54.16046784100007), (-0.11143958199994586, 54.13157786700003), (-0.07551021999995555, 54.11212799700007), (-0.16392981699993925, 54.08340078300006), (-0.1946915359999366, 54.06232330900008), (-0.2194718089999128, 54.022772528000075), (-0.1974177729999269, 53.99481842700004), (-0.1686905589999128, 53.929348049000055), (-0.1511124339999128, 53.899318752000056), (-0.045155402999910166, 53.801214911000045), (0.13347415500004445, 53.642645575000074), (0.1492619150000678, 53.60960521000004), (0.13689212300005238, 53.57713450700004), (0.13119550900006516, 53.573431708000044), (0.1096297540000819, 53.56289297100005), (0.1313582690000885, 53.59369538000004), (0.1359969410000872, 53.610663153000075), (0.12020918100006384, 53.61810944200005), (0.09945722700007309, 53.622300523000035), (0.056162957000083225, 53.64126211100006), (0.034515821000070446, 53.64606354400007), (0.014821811000047092, 53.64325592700004), (-0.023915167999916775, 53.62885163000004), (-0.04503333199994586, 53.62555573100008), (-0.06940670499994894, 53.626939195000034), (-0.09227454299991678, 53.63104889500005), (-0.11261959499995555, 53.63751862200007), (-0.1300349599999322, 53.64606354400007), (-0.2253311839999128, 53.719916083000044), (-0.2603653639999379, 53.73541901200008), (-0.2956436839999128, 53.738796291000085), (-0.3051651679999168, 53.73969147300005), (-0.4311417309999115, 53.71430084800005), (-0.4496964179999168, 53.71430084800005), (-0.5104874339999128, 53.71430084800005), (-0.5444229809999115, 53.70945872600004), (-0.5515030589999128, 53.71116771000004), (-0.5762426419999542, 53.72565338700008), (-0.5791723299999489, 53.72797272300005), (-0.6370336579999503, 53.73200104400007), (-0.6583552729999269, 53.72797272300005), (-0.7264705069999309, 53.70062897300005), (-0.7173559239999463, 53.69867584800005), (-0.7085668609999516, 53.695746161000045), (-0.7001846999999088, 53.691839911000045), (-0.6924535799999489, 53.68699778900003), (-0.6774796209999181, 53.702826239000046), (-0.6498103509999282, 53.710598049000055), (-0.6195369129999335, 53.71185944200005), (-0.5961807929999168, 53.70807526200008), (-0.5554906889999529, 53.69049713700008), (-0.5447485019999476, 53.683579820000034), (-0.5299373039999296, 53.67767975500004), (-0.5140274729999419, 53.681301174000055), (-0.48631751199991413, 53.69448476800005), (-0.3072403639999379, 53.71426015800006), (-0.27936764199995423, 53.707098700000074), (-0.2603653639999379, 53.68699778900003), (-0.1886287099999322, 53.620428778000075), (-0.1440323559999115, 53.606634833000044), (-0.11318925699993088, 53.58462148600006), (-0.09593665299991017, 53.57713450700004), (-0.06094316299993352, 53.57396067900004), (-0.0466202459999181, 53.570379950000074), (9.199300006912381e-05, 53.53534577000005), (0.0959578790000819, 53.488348700000074), (0.11508222700007309, 53.48322174700007), (0.1340438160000872, 53.48061758000006), (0.15186608200008322, 53.475816148000035), (0.1678166020000731, 53.464504299000055), (0.17090905000009116, 53.457017320000034), (0.1731063160000872, 53.44676341400003), (0.17579186300008587, 53.43768952000005), (0.1814884770000731, 53.43374258000006), (0.1906030610000471, 53.43187083500004), (0.21949303500008455, 53.41950104400007), (0.21192467500009116, 53.41266510600008), (0.2293400400000678, 53.40477122600004), (0.24488366000008455, 53.39093659100007), (0.2561141290000819, 53.375067450000074), (0.26042728000004445, 53.36147695500006), (0.34213300900006516, 53.22630442900004), (0.35621178500008455, 53.18854401200008), (0.3566186860000471, 53.145738023000035), (0.3357853520000731, 53.093451239000046), (0.32984459700008983, 53.08649323100008), (0.31869550900006516, 53.083685614000046), (0.29883873800008587, 53.08120351800005), (0.2824813160000872, 53.07485586100006), (0.19304446700004974, 53.02008698100008), (0.17448978000004445, 53.01544830900008), (0.16081790500004445, 53.008978583000044), (0.08212324300006912, 52.938666083000044), (0.061167839000063395, 52.924994208000044), (0.03760826900008851, 52.919175523000035), (0.022146030000044448, 52.91258372600004), (0.008555535000084546, 52.89862702000005), (0.010264519000088512, 52.88646067900004), (0.04066002700005811, 52.88507721600007), (0.09253991000008455, 52.89252350500004), (0.10564212300005238, 52.88934967700004), (0.13347415500004445, 52.87518952000005), (0.14714603000004445, 52.87201569200005), (0.17090905000009116, 52.86212799700007), (0.22242272200008983, 52.813666083000044), (0.24675540500004445, 52.79572174700007), (0.2644962900000678, 52.80369700700004), (0.2856551440000885, 52.805568752000056), (0.32553144600007045, 52.803168036000045), (0.34180748800008587, 52.79743073100008), (0.36988366000008455, 52.77301666900007), (0.38453209700008983, 52.76837799700007), (0.38453209700008983, 52.77521393400008), (0.37924238400006516, 52.79083893400008), (0.39942467500009116, 52.80951569200005), (0.42554772200008983, 52.827378648000035), (0.4386499360000471, 52.840725002000056), (0.44402103000004445, 52.86505768400008), (0.45671634200004974, 52.89199453300006), (0.47234134200004974, 52.916449286000045), (0.48568769600007045, 52.93349844000005), (0.5202742850000845, 52.95526764500005), (0.5695906910000872, 52.96930573100008), (0.6233830090000652, 52.97565338700008), (0.6718856130000859, 52.97443268400008), (0.6643986340000652, 52.98187897300005), (0.6847436860000471, 52.986395575000074), (0.7067977220000898, 52.98322174700007), (0.7291772800000444, 52.97748444200005), (0.7504988940000885, 52.97443268400008), (0.8357039720000898, 52.97443268400008), (0.8754988940000885, 52.96816640800006), (0.9210718110000471, 52.95465729400007), (0.9684350920000497, 52.94749583500004), (1.013926629000082, 52.960150458000044), (1.0034285820000832, 52.96474844000005), (0.9915470710000704, 52.96747467700004), (0.9790145190000885, 52.968410549000055), (0.9660750660000872, 52.96759674700007), (0.9660750660000872, 52.97443268400008), (1.2746688160000872, 52.92918528900003), (1.3960067070000832, 52.89142487200007), (1.6442163420000497, 52.775824286000045), (1.6733504570000832, 52.75568268400008), (1.6970320970000898, 52.73102448100008), (1.7158309250000912, 52.68374258000006), (1.7341414720000898, 52.65460846600007), (1.747243686000047, 52.62518952000005), (1.7407332690000885, 52.60390859600005), (1.7468367850000845, 52.58852773600006), (1.7487085300000444, 52.568793036000045), (1.7475692070000832, 52.53278229400007), (1.7711694670000497, 52.48590729400007), (1.7671004570000832, 52.47695547100005), (1.7544051440000885, 52.46735260600008), (1.7292586600000845, 52.41559479400007), (1.7301538420000497, 52.405910549000055), (1.7278751960000704, 52.39630768400008), (1.6836043630000859, 52.32453034100007), (1.6518660820000832, 52.289129950000074), (1.6411238940000885, 52.28180573100008), (1.6305444670000497, 52.27045319200005), (1.6282658210000704, 52.24481842700004), (1.6308699880000859, 52.19977448100008), (1.6254988940000885, 52.18036530200004), (1.6074324880000859, 52.14594147300005), (1.6035262380000859, 52.127834377000056), (1.5892033210000704, 52.100816148000035), (1.5875757170000497, 52.08698151200008), (1.582286004000082, 52.08148834800005), (1.5036727220000898, 52.060980536000045), (1.4868270190000885, 52.04901764500005), (1.4720158210000704, 52.05621979400007), (1.4668074880000859, 52.04800039300005), (1.4638778000000912, 52.035142320000034), (1.4558211600000845, 52.028509833000044), (1.4489852220000898, 52.02496979400007), (1.4248153000000912, 52.00185781500005), (1.3548283210000704, 51.95404694200005), (1.3435164720000898, 51.94285716400009), (1.332286004000082, 51.94009023600006), (1.2644149100000845, 51.99437083500004), (1.2348738940000885, 52.00031159100007), (1.1852319670000497, 52.025091864000046), (1.1578882170000497, 52.028509833000044), (1.1578882170000497, 52.02167389500005), (1.1935327480000524, 52.00079987200007), (1.2143660820000832, 51.991441148000035), (1.2602645190000885, 51.984808661000045), (1.2707625660000872, 51.98151276200008), (1.2751570970000898, 51.976996161000045), (1.2744246750000912, 51.96088288000004), (1.2710067070000832, 51.95644765800006), (1.2507430350000845, 51.95962148600006), (1.2389429050000444, 51.958644924000055), (1.2176212900000678, 51.954331773000035), (1.2057397800000444, 51.95343659100007), (1.193207227000073, 51.955511786000045), (1.1652938160000872, 51.96702708500004), (1.1430770190000885, 51.966050523000035), (1.0944930350000845, 51.955959377000056), (1.0691024100000845, 51.95343659100007), (1.0954695970000898, 51.945746161000045), (1.2620548840000652, 51.939154364000046), (1.2819930350000845, 51.946600653000075), (1.278493686000047, 51.92792389500005), (1.1995548840000652, 51.87767161700003), (1.2122501960000704, 51.87164948100008), (1.2278751960000704, 51.86737702000005), (1.2644149100000845, 51.86399974200003), (1.2747501960000704, 51.870306708000044), (1.2822371750000912, 51.880560614000046), (1.2866317070000832, 51.88165924700007), (1.288259311000047, 51.860581773000035), (1.2763778000000912, 51.84479401200008), (1.2192488940000885, 51.811835028000075), (1.167816602000073, 51.790228583000044), (1.1354272800000444, 51.78172435100004), (1.0654403000000912, 51.77529531500005), (1.0466414720000898, 51.777044989000046), (1.0372827480000524, 51.78217194200005), (1.021332227000073, 51.80255768400008), (0.9887801440000885, 51.83026764500005), (0.9798283210000704, 51.84357330900008), (0.9770613940000885, 51.82461172100005), (0.9620874360000471, 51.813788153000075), (0.9251408210000704, 51.80255768400008), (0.8942977220000898, 51.78461334800005), (0.8869735040000819, 51.782131252000056), (0.8864038420000497, 51.776678778000075), (0.8834741550000444, 51.76471588700008), (0.8789168630000859, 51.75275299700007), (0.8737085300000444, 51.747300523000035), (0.8619897800000444, 51.74555084800005), (0.8459578790000819, 51.736761786000045), (0.8357039720000898, 51.733710028000075), (0.8234969410000872, 51.73383209800005), (0.8014429050000444, 51.73969147300005), (0.7917586600000845, 51.74115631700005), (0.7671004570000832, 51.739447333000044), (0.7208764980000524, 51.728176174000055), (0.6985783210000704, 51.720038153000075), (0.7142033210000704, 51.715277411000045), (0.7324324880000859, 51.713771877000056), (0.7492781910000872, 51.70848216400009), (0.7607528000000912, 51.692694403000075), (0.7890731130000859, 51.710150458000044), (0.8530379570000832, 51.71889883000006), (0.8835555350000845, 51.72687409100007), (0.9123641290000819, 51.741522528000075), (0.9300236340000652, 51.74359772300005), (0.9455672540000819, 51.733710028000075), (0.9474389980000524, 51.72524648600006), (0.9445906910000872, 51.71548086100006), (0.9404403000000912, 51.70799388200004), (0.9381616550000444, 51.706366278000075), (0.9401961600000845, 51.698431708000044), (0.9440210300000444, 51.69057851800005), (0.9518335300000444, 51.67841217700004), (0.9417423840000652, 51.673041083000044), (0.9379988940000885, 51.664496161000045), (0.9381616550000444, 51.64126211100006), (0.9347436860000471, 51.63589101800005), (0.9267684250000912, 51.630926825000074), (0.9114689460000704, 51.62384674700007), (0.9384871750000912, 51.624986070000034), (0.9480900400000678, 51.621527411000045), (0.9518335300000444, 51.61701080900008), (0.9244897800000444, 51.588324286000045), (0.8733016290000819, 51.559475002000056), (0.8282983730000524, 51.541856187000064), (0.8162541020000731, 51.537176825000074), (0.7712508470000898, 51.52826569200005), (0.6920679050000444, 51.536322333000044), (0.6643986340000652, 51.53506094000005), (0.6637475920000497, 51.53554922100005), (0.6505639980000524, 51.53579336100006), (0.6466577480000524, 51.53534577000005), (0.6440535820000832, 51.53506094000005), (0.6427514980000524, 51.53351471600007), (0.6233830090000652, 51.52204010600008), (0.6086531910000872, 51.51898834800005), (0.5952254570000832, 51.51862213700008), (0.5822860040000819, 51.51654694200005), (0.5688582690000885, 51.50836823100008), (0.5527449880000859, 51.51797109600005), (0.5472111340000652, 51.51772695500006), (0.5254012380000859, 51.516913153000075), (0.45606530000009116, 51.505560614000046), (0.45085696700004974, 51.49827708500004), (0.44800866000008455, 51.48822663000004), (0.4416610040000819, 51.47703685100004), (0.42847741000008455, 51.46710846600007), (0.41407311300008587, 51.46190013200004), (0.39918053500008455, 51.45840078300006), (0.38453209700008983, 51.453111070000034), (0.4484155610000471, 51.45994700700004), (0.45679772200008983, 51.46312083500004), (0.4614363940000885, 51.47016022300005), (0.46485436300008587, 51.47724030200004), (0.4695744150000678, 51.48041413000004), (0.5348413420000497, 51.49168528900009), (0.6948348320000832, 51.47703685100004), (0.7094832690000885, 51.47052643400008), (0.7219344410000872, 51.456284898000035), (0.7231551440000885, 51.44672272300005), (0.7131453790000819, 51.44122955900008), (0.6923934250000912, 51.439520575000074), (0.6565047540000819, 51.444525458000044), (0.6409611340000652, 51.44415924700007), (0.6093856130000859, 51.425116278000075), (0.5727645190000885, 51.419582424000055), (0.5545353520000731, 51.412176825000074), (0.5622664720000898, 51.40656159100007), (0.5691024100000845, 51.399603583000044), (0.5765080090000652, 51.39362213700008), (0.5859481130000859, 51.391058661000045), (0.6718856130000859, 51.391058661000045), (0.7129012380000859, 51.38422272300005), (0.7049259770000731, 51.39598216400009), (0.7003686860000471, 51.409816799000055), (0.7053328790000819, 51.41950104400007), (0.7264103520000731, 51.41901276200008), (0.7283634770000731, 51.406236070000034), (0.7392684250000912, 51.387925523000035), (0.7534285820000832, 51.371527411000045), (0.7644149100000845, 51.36440664300005), (0.9772241550000444, 51.34918854400007), (1.1009220710000704, 51.37323639500005), (1.4238387380000859, 51.39207591400009), (1.4482528000000912, 51.382879950000074), (1.4391382170000497, 51.35008372600004), (1.4355574880000859, 51.343736070000034), (1.430837436000047, 51.33779531500005), (1.4251408210000704, 51.33295319200005), (1.4186304050000444, 51.32965729400007), (1.3829858730000524, 51.329779364000046), (1.3776147800000444, 51.326239325000074), (1.3806258470000898, 51.304754950000074), (1.387868686000047, 51.28790924700007), (1.4043074880000859, 51.261379299000055), (1.4130965500000912, 51.22174713700008), (1.4047957690000885, 51.18353913000004), (1.3844507170000497, 51.151678778000075), (1.3571883470000898, 51.13100820500006), (1.2903751960000704, 51.116522528000075), (1.2629500660000872, 51.10325755400004), (1.2516382170000497, 51.10252513200004), (1.2299910820000832, 51.10370514500005), (1.2181095710000704, 51.10097890800006), (1.2082625660000872, 51.09467194200005), (1.1997176440000885, 51.087591864000046), (1.1920679050000444, 51.08258698100008), (1.1722111340000652, 51.077378648000035), (1.1067000660000872, 51.07636139500005), (1.0871688160000872, 51.07298411700003), (1.0669051440000885, 51.06439850500004), (1.027598504000082, 51.04165273600006), (0.9764103520000731, 50.99445221600007), (0.9664819670000497, 50.98273346600007), (0.9690861340000652, 50.95685455900008), (0.9798283210000704, 50.91815827000005), (0.9451603520000731, 50.909369208000044), (0.8698022800000444, 50.925116278000075), (0.8022567070000832, 50.93919505400004), (0.7624617850000845, 50.930894273000035), (0.6643986340000652, 50.870306708000044), (0.6241968110000471, 50.858710028000075), (0.4074813160000872, 50.829331773000035), (0.3702905610000471, 50.818793036000045), (0.36524498800008587, 50.81899648600006), (0.35425866000008455, 50.80963776200008), (0.34441165500004445, 50.79905833500004), (0.3422957690000885, 50.79515208500004), (0.3081160820000832, 50.780951239000046), (0.2710067070000832, 50.747381903000075), (0.23389733200008322, 50.74701569200005), (0.2141219410000872, 50.748928127000056), (0.16830488400006516, 50.759833075000074), (0.1573999360000471, 50.761053778000075), (0.12208092500009116, 50.76080963700008), (0.11304772200008983, 50.76414622600004), (0.09555097700007309, 50.775051174000055), (0.07703698000005943, 50.778998114000046), (0.034515821000070446, 50.780951239000046), (0.01754804800009424, 50.784857489000046), (-0.17316646999995555, 50.829006252000056), (-0.20612545499994894, 50.83104075700004), (-0.20889238199993088, 50.83010488500008), (-0.2331436839999128, 50.821926174000055), (-0.2696833979999269, 50.831284898000035), (-0.39757239499994057, 50.802069403000075), (-0.5689591139999379, 50.802069403000075), (-0.7327367829999503, 50.767279364000046), (-0.7415665359999366, 50.769232489000046), (-0.7498673169999392, 50.773871161000045), (-0.7582087879999335, 50.77708567900004), (-0.7675675119999141, 50.774725653000075), (-0.7731013659999348, 50.76601797100005), (-0.7662654289999296, 50.74713776200008), (-0.7709854809999115, 50.73688385600008), (-0.7899470689999362, 50.73004791900007), (-0.8128149079999503, 50.73476797100005), (-0.9041235019999476, 50.77187734600005), (-0.9114884109999366, 50.77781810100004), (-0.9058731759999432, 50.78803131700005), (-0.8924861319999309, 50.794623114000046), (-0.8636368479999419, 50.802069403000075), (-0.8636368479999419, 50.808254299000055), (-0.8736059239999463, 50.812933661000045), (-0.8931371739999463, 50.82534414300005), (-0.9046931629999335, 50.829331773000035), (-0.9095352859999366, 50.82599518400008), (-0.9217016269999476, 50.821600653000075), (-0.9289444649999155, 50.82282135600008), (-0.9190160799999489, 50.83616771000004), (-0.9297989569999459, 50.83999258000006), (-0.9391983709999181, 50.84324778900009), (-0.9707738919999542, 50.846991278000075), (-0.9948624339999128, 50.84707265800006), (-1.0018611319999309, 50.84711334800005), (-1.0207413399999155, 50.84365469000005), (-1.033558722999942, 50.82591380400004), (-1.0426326159999348, 50.80190664300005), (-1.0562231109999516, 50.78302643400008), (-1.0827530589999128, 50.780951239000046), (-1.1030167309999115, 50.79547760600008), (-1.0936173169999392, 50.812933661000045), (-1.0753067699999406, 50.83002350500004), (-1.069162563999953, 50.84365469000005), (-1.0873103509999282, 50.84979889500005), (-1.0881241529999102, 50.84975820500006), (-1.1498103509999282, 50.84666575700004), (-1.1647029289999296, 50.84365469000005), (-1.129709438999953, 50.825100002000056), (-1.1237686839999128, 50.818793036000045), (-1.1212052069999459, 50.79938385600008), (-1.1249080069999309, 50.788723049000055), (-1.1380509109999366, 50.780951239000046), (-1.1511124339999128, 50.78139883000006), (-1.1693416009999282, 50.78587474200003), (-1.1856176419999542, 50.79242584800005), (-1.1926163399999155, 50.79865143400008), (-1.1992895169999542, 50.807928778000075), (-1.231516079999949, 50.81891510600008), (-1.2551977199999556, 50.83193594000005), (-1.288156704999949, 50.839178778000075), (-1.3014216789999296, 50.84365469000005), (-1.3185929029999102, 50.85691966400009), (-1.338937954999949, 50.872707424000055), (-1.4492895169999542, 50.91205475500004), (-1.4664200509999432, 50.91815827000005), (-1.4664200509999432, 50.91193268400008), (-1.4564509759999282, 50.90875885600008), (-1.4379776679999168, 50.90131256700005), (-1.4256078769999476, 50.900091864000046), (-1.4011124339999128, 50.88117096600007), (-1.323068813999953, 50.82575104400007), (-1.3142797519999476, 50.812160549000055), (-1.3172908189999362, 50.80023834800005), (-1.3398331369999141, 50.79515208500004), (-1.4039607409999348, 50.79157135600008), (-1.4186905589999128, 50.788397528000075), (-1.4113663399999155, 50.78489817900004), (-1.4049373039999296, 50.780951239000046), (-1.4049373039999296, 50.774725653000075), (-1.4505102199999556, 50.76935455900008), (-1.4762263659999348, 50.76341380400004), (-1.4875382149999155, 50.75771719000005), (-1.491932745999918, 50.75726959800005), (-1.5247289699999556, 50.761053778000075), (-1.5571996739999463, 50.72329336100006), (-1.559396938999953, 50.71922435100004), (-1.5611873039999296, 50.71898021000004), (-1.5807185539999296, 50.722642320000034), (-1.6021215489999463, 50.731756903000075), (-1.6706436839999128, 50.74005768400008), (-1.672922329999949, 50.74005768400008), (-1.6930232409999348, 50.739935614000046), (-1.7150772779999102, 50.73578522300005), (-1.7535294259999432, 50.72284577000005), (-1.7717179029999102, 50.72011953300006), (-1.7974340489999463, 50.723171291000085), (-1.8350723949999406, 50.72768789300005), (-1.8574112619999141, 50.72695547100005), (-1.8773494129999335, 50.72284577000005), (-1.8963516919999392, 50.71629466400009), (-1.8968806629999335, 50.716050523000035), (-1.9138891269999476, 50.70742422100005), (-1.9291072259999282, 50.69586823100008), (-1.9400121739999463, 50.69082265800006), (-1.9443253249999088, 50.69765859600005), (-1.946115688999953, 50.707912502000056), (-1.9492895169999542, 50.713324286000045), (-1.9877009759999282, 50.72011953300006), (-2.01390540299991, 50.71893952000005), (-2.0219620429999168, 50.72011953300006), (-2.0254613919999542, 50.723863023000035), (-2.026193813999953, 50.72508372600004), (-2.0338435539999296, 50.73712799700007), (-2.038970506999931, 50.739935614000046), (-2.0480850899999155, 50.734808661000045), (-2.0826716789999296, 50.69896067900004), (-2.0695694649999155, 50.700100002000056), (-2.0577286449999406, 50.702826239000046), (-2.046620245999918, 50.70726146000004), (-2.0356339179999168, 50.713324286000045), (-2.0141495429999168, 50.688788153000075), (-2.0025121739999463, 50.681301174000055), (-1.984120245999918, 50.67853424700007), (-1.9674373039999296, 50.67865631700005), (-1.9527888659999348, 50.67658112200007), (-1.9458715489999463, 50.668850002000056), (-1.9529516269999476, 50.65184153900009), (-1.9382218089999128, 50.645819403000075), (-1.9324845039999445, 50.64443594000005), (-1.9672745429999168, 50.61709219000005), (-1.965199347999942, 50.60219961100006), (-1.9837133449999556, 50.59662506700005), (-2.065174933999913, 50.59552643400008), (-2.082183397999927, 50.59784577000005), (-2.1573380199999406, 50.62051015800006), (-2.3426407539999445, 50.63377513200004), (-2.377064581999946, 50.64752838700008), (-2.398345506999931, 50.64557526200008), (-2.435902472999942, 50.63751862200007), (-2.447621222999942, 50.62787506700005), (-2.4600723949999406, 50.60651276200008), (-2.465646938999953, 50.585150458000044), (-2.4564509759999282, 50.575506903000075), (-2.4312231109999516, 50.57025788000004), (-2.428700324999909, 50.55756256700005), (-2.4392797519999476, 50.54181549700007), (-2.45335852799991, 50.52765534100007), (-2.4595434239999463, 50.52765534100007), (-2.4603572259999282, 50.56549713700008), (-2.4835098949999406, 50.59039948100008), (-2.6929418609999516, 50.69281647300005), (-2.8648168609999516, 50.73379140800006), (-2.887318488999938, 50.734361070000034), (-2.94554602799991, 50.725816148000035), (-2.9627579419999392, 50.72329336100006), (-2.998199022999927, 50.708238023000035), (-3.021839972999942, 50.70648834800005), (-3.059722459999932, 50.713324286000045), (-3.071359829999949, 50.711004950000074), (-3.0941462879999335, 50.69896067900004), (-3.099232550999943, 50.69708893400008), (-3.115834113999938, 50.68797435100004), (-3.1254776679999168, 50.68528880400004), (-3.135894334999932, 50.68593984600005), (-3.1551407539999445, 50.69135163000004), (-3.1664932929999168, 50.69281647300005), (-3.1856176419999542, 50.690741278000075), (-3.2191462879999335, 50.68081289300005), (-3.2598363919999542, 50.67454661700003), (-3.271392381999931, 50.664496161000045), (-3.280425584999932, 50.65119049700007), (-3.2955623039999296, 50.63751862200007), (-3.368153449999909, 50.61709219000005), (-3.390736456999946, 50.61782461100006), (-3.4075414699999556, 50.62128327000005), (-3.420969204999949, 50.62946198100008), (-3.433338995999918, 50.64443594000005), (-3.446359829999949, 50.66828034100007), (-3.4504288399999155, 50.672308661000045), (-3.453277147999927, 50.67328522300005), (-3.455433722999942, 50.675441799000055), (-3.458607550999943, 50.67755768400008), (-3.4644262359999516, 50.67853424700007), (-3.467762824999909, 50.67641836100006), (-3.468902147999927, 50.67169830900008), (-3.467844204999949, 50.66697825700004), (-3.45531165299991, 50.657904364000046), (-3.4420466789999296, 50.62352122600004), (-3.433338995999918, 50.610256252000056), (-3.451161261999914, 50.59943268400008), (-3.4672745429999168, 50.585598049000055), (-3.4817602199999556, 50.56854889500005), (-3.494862433999913, 50.548163153000075), (-3.505970831999946, 50.520819403000075), (-3.505034959999932, 50.501206773000035), (-3.487456834999932, 50.459418036000045), (-3.509755011999914, 50.45848216400009), (-3.532134568999936, 50.454779364000046), (-3.549427863999938, 50.446519273000035), (-3.556263800999943, 50.43211497600004), (-3.5493057929999168, 50.41559479400007), (-3.531971808999913, 50.410223700000074), (-3.487456834999932, 50.41156647300005), (-3.487456834999932, 50.40477122600004), (-3.4974666009999282, 50.38735586100006), (-3.49828040299991, 50.383693752000056), (-3.5073136059999115, 50.382798570000034), (-3.5149633449999556, 50.37995026200008), (-3.520130988999938, 50.37482330900008), (-3.5269262359999516, 50.34979889500005), (-3.5388891269999476, 50.34442780200004), (-3.5545141269999476, 50.347642320000034), (-3.57054602799991, 50.35639069200005), (-3.577788865999935, 50.334051825000074), (-3.5991104809999115, 50.325832424000055), (-3.6215714179999168, 50.321926174000055), (-3.631988084999932, 50.31232330900008), (-3.6373591789999296, 50.29539622600004), (-3.6475723949999406, 50.27456289300005), (-3.653309699999909, 50.25104401200008), (-3.6456192699999406, 50.22601959800005), (-3.6606339179999168, 50.22101471600007), (-3.700917120999918, 50.21352773600006), (-3.7180069649999155, 50.21238841400009), (-3.740386522999927, 50.21588776200008), (-3.758615688999953, 50.22174713700008), (-3.774240688999953, 50.22296784100007), (-3.788970506999931, 50.21238841400009), (-3.826324022999927, 50.23419830900008), (-3.8841853509999282, 50.280462958000044), (-3.949940558999913, 50.31899648600006), (-3.9610082669999542, 50.322251695000034), (-3.9702042309999115, 50.320746161000045), (-3.995757615999935, 50.311428127000056), (-4.005604620999918, 50.30923086100006), (-4.011341925999943, 50.30695221600007), (-4.024769660999937, 50.29718659100007), (-4.032948370999918, 50.294907945000034), (-4.044056769999941, 50.29645416900007), (-4.054351365999935, 50.30036041900007), (-4.070220506999931, 50.30923086100006), (-4.067941860999952, 50.31281159100007), (-4.064035610999952, 50.322251695000034), (-4.086008266999954, 50.326239325000074), (-4.1082657539999445, 50.33661530200004), (-4.118723110999952, 50.35187409100007), (-4.1049698559999115, 50.37067291900007), (-4.141753709999932, 50.36904531500005), (-4.1527400379999335, 50.37067291900007), (-4.1655167309999115, 50.37636953300006), (-4.171457485999952, 50.382798570000034), (-4.175770636999914, 50.39085521000004), (-4.18382727799991, 50.40106842700004), (-4.191477016999954, 50.417629299000055), (-4.18390865799995, 50.431708075000074), (-4.1703181629999335, 50.44513580900008), (-4.159535285999937, 50.459418036000045), (-4.179432745999918, 50.45307038000004), (-4.189564581999946, 50.45368073100008), (-4.200550910999937, 50.459418036000045), (-4.203684048999946, 50.45140208500004), (-4.204741990999935, 50.44867584800005), (-4.2123917309999115, 50.441473700000074), (-4.222523566999939, 50.43797435100004), (-4.234730597999942, 50.43829987200007), (-4.234730597999942, 50.43211497600004), (-4.2202042309999115, 50.425848700000074), (-4.2161352199999556, 50.415716864000046), (-4.219715949999909, 50.40509674700007), (-4.228505011999914, 50.397365627000056), (-4.2414444649999155, 50.39468008000006), (-4.2899063789999445, 50.397365627000056), (-4.273019985999952, 50.38190338700008), (-4.216175910999937, 50.38776276200008), (-4.1937556629999335, 50.37689850500004), (-4.228505011999914, 50.37067291900007), (-4.228505011999914, 50.36383698100008), (-4.220122850999928, 50.365301825000074), (-4.200550910999937, 50.36383698100008), (-4.207997199999909, 50.35639069200005), (-4.180043097999942, 50.35639069200005), (-4.180043097999942, 50.35016510600008), (-4.191314256999931, 50.34756094000005), (-4.197987433999913, 50.342230536000045), (-4.199126756999931, 50.33539459800005), (-4.1937556629999335, 50.32843659100007), (-4.1937556629999335, 50.322251695000034), (-4.214995897999927, 50.323146877000056), (-4.225697394999941, 50.33539459800005), (-4.235096808999913, 50.34955475500004), (-4.2523494129999335, 50.35639069200005), (-4.337717251999948, 50.37067291900007), (-4.383697068999936, 50.36749909100007), (-4.456206834999932, 50.33820221600007), (-4.4953507149999155, 50.32843659100007), (-4.659820115999935, 50.322251695000034), (-4.659575975999928, 50.32062409100007), (-4.662709113999938, 50.31777578300006), (-4.667795376999948, 50.315334377000056), (-4.673451300999943, 50.31541575700004), (-4.687163865999935, 50.34271881700005), (-4.694325324999909, 50.343451239000046), (-4.700184699999909, 50.34088776200008), (-4.705555792999917, 50.337551174000055), (-4.7113337879999335, 50.33588288000004), (-4.731556769999941, 50.33466217700004), (-4.752105272999927, 50.33030833500004), (-4.763295050999943, 50.32208893400008), (-4.755441860999952, 50.30923086100006), (-4.755441860999952, 50.30174388200004), (-4.7623591789999296, 50.298041083000044), (-4.771636522999927, 50.29157135600008), (-4.779855923999946, 50.28432851800005), (-4.783355272999927, 50.27789948100008), (-4.7818904289999296, 50.27179596600007), (-4.776519334999932, 50.26508209800005), (-4.776519334999932, 50.26080963700008), (-4.788441535999937, 50.24209219000005), (-4.790150519999941, 50.23655833500004), (-4.800160285999937, 50.22955963700008), (-4.849720831999946, 50.23456452000005), (-4.868723110999952, 50.22943756700005), (-4.887318488999938, 50.21499258000006), (-4.904774542999917, 50.20844147300005), (-4.947255011999914, 50.19936758000006), (-4.960682745999918, 50.19049713700008), (-5.002430792999917, 50.14411041900007), (-5.014556443999936, 50.15656159100007), (-5.0203751289999445, 50.19196198100008), (-5.033192511999914, 50.19936758000006), (-5.05296790299991, 50.19578685100004), (-5.053618943999936, 50.18691640800006), (-5.051869269999941, 50.17552317900004), (-5.064564581999946, 50.16461823100008), (-5.064564581999946, 50.15839264500005), (-5.058501756999931, 50.155462958000044), (-5.043446417999917, 50.14411041900007), (-5.051869269999941, 50.144598700000074), (-5.058461066999939, 50.14272695500006), (-5.070790167999917, 50.13727448100008), (-5.08031165299991, 50.13271719000005), (-5.081613735999952, 50.12539297100005), (-5.080962693999936, 50.117173570000034), (-5.085031704999949, 50.10993073100008), (-5.093902147999927, 50.105536200000074), (-5.125965949999909, 50.09634023600006), (-5.114654100999928, 50.09662506700005), (-5.106068488999938, 50.09511953300006), (-5.091867641999954, 50.089504299000055), (-5.086903449999909, 50.089056708000044), (-5.075347459999932, 50.09048086100006), (-5.070790167999917, 50.089504299000055), (-5.068470831999946, 50.085150458000044), (-5.064930792999917, 50.07184479400007), (-5.06086178299995, 50.06903717700004), (-5.056507941999939, 50.060614325000074), (-5.069488084999932, 50.042181708000044), (-5.0980525379999335, 50.01439036700003), (-5.107289191999939, 50.013006903000075), (-5.127430792999917, 50.01544830900008), (-5.139637824999909, 50.01439036700003), (-5.146473761999914, 50.01056549700007), (-5.176136847999942, 49.987941799000055), (-5.18773352799991, 49.964504299000055), (-5.191151495999918, 49.95913320500006), (-5.200103318999936, 49.961371161000045), (-5.210357225999928, 49.96674225500004), (-5.240386522999927, 49.988348700000074), (-5.245228644999941, 49.99310944200005), (-5.2495011059999115, 50.000067450000074), (-5.253041144999941, 50.01264069200005), (-5.25226803299995, 50.020697333000044), (-5.252674933999913, 50.027777411000045), (-5.259755011999914, 50.03766510600008), (-5.2884008449999556, 50.067694403000075), (-5.304351365999935, 50.08026764500005), (-5.323963995999918, 50.089504299000055), (-5.384185350999928, 50.10797760600008), (-5.424712693999936, 50.11273834800005), (-5.458119269999941, 50.125881252000056), (-5.47484290299991, 50.13043854400007), (-5.495676235999952, 50.12962474200003), (-5.521839972999942, 50.12372467700004), (-5.540923631999931, 50.11347077000005), (-5.540638800999943, 50.09975820500006), (-5.5346573559999115, 50.08234284100007), (-5.5455623039999296, 50.06891510600008), (-5.563465949999909, 50.05963776200008), (-5.57843990799995, 50.054754950000074), (-5.61945553299995, 50.046210028000075), (-5.667388475999928, 50.04287344000005), (-5.705148891999954, 50.05231354400007), (-5.715646938999953, 50.08270905200004), (-5.705962693999936, 50.08348216400009), (-5.698801235999952, 50.08539459800005), (-5.694488084999932, 50.089504299000055), (-5.694406704999949, 50.095770575000074), (-5.697092251999948, 50.10053131700005), (-5.700306769999941, 50.103216864000046), (-5.701975063999953, 50.103176174000055), (-5.707386847999942, 50.12201569200005), (-5.70921790299991, 50.13263580900008), (-5.70539303299995, 50.13727448100008), (-5.7035212879999335, 50.140611070000034), (-5.684641079999949, 50.16152578300006), (-5.676747199999909, 50.16502513200004), (-5.647368943999936, 50.17206452000005), (-5.583607550999943, 50.19586823100008), (-5.549427863999938, 50.20351797100005), (-5.5109757149999155, 50.21946849200003), (-5.4891251289999445, 50.21979401200008), (-5.458119269999941, 50.20075104400007), (-5.437977667999917, 50.19432200700004), (-5.417388475999928, 50.202460028000075), (-5.402943488999938, 50.21735260600008), (-5.395863410999937, 50.22724030200004), (-5.39289303299995, 50.23655833500004), (-5.3875626289999445, 50.240301825000074), (-5.351918097999942, 50.240301825000074), (-5.3148494129999335, 50.253607489000046), (-5.200306769999941, 50.33075592700004), (-5.1635636059999115, 50.34723541900007), (-5.1498917309999115, 50.35016510600008), (-5.146473761999914, 50.35529205900008), (-5.145659959999932, 50.366888739000046), (-5.147043423999946, 50.37938060100004), (-5.153675910999937, 50.39948151200008), (-5.142404751999948, 50.40448639500005), (-5.12726803299995, 50.40521881700005), (-5.119740363999938, 50.40477122600004), (-5.0502823559999115, 50.42869700700004), (-5.0481664699999556, 50.43439362200007), (-5.038726365999935, 50.44790273600006), (-5.029774542999917, 50.486761786000045), (-5.0286352199999556, 50.507025458000044), (-5.025257941999939, 50.52423737200007), (-5.015614386999914, 50.53803131700005), (-4.9955948559999115, 50.548163153000075), (-4.975168423999946, 50.548163153000075), (-4.967844204999949, 50.55158112200007), (-4.954823370999918, 50.56122467700004), (-4.947255011999914, 50.56244538000004), (-4.941477016999954, 50.55695221600007), (-4.937123175999943, 50.54531484600005), (-4.9344376289999445, 50.53164297100005), (-4.933583136999914, 50.52024974200003), (-4.926869269999941, 50.52289459800005), (-4.924305792999917, 50.52448151200008), (-4.920521613999938, 50.52765534100007), (-4.902414516999954, 50.52057526200008), (-4.860951300999943, 50.519191799000055), (-4.844838019999941, 50.51406484600005), (-4.855824347999942, 50.527411200000074), (-4.87328040299991, 50.534084377000056), (-4.906239386999914, 50.54197825700004), (-4.921864386999914, 50.55487702000005), (-4.92023678299995, 50.564154364000046), (-4.915191209999932, 50.57249583500004), (-4.920521613999938, 50.58295319200005), (-4.920521613999938, 50.589178778000075), (-4.895659959999932, 50.585923570000034), (-4.821197068999936, 50.589178778000075), (-4.7924698559999115, 50.59520091400009), (-4.7766007149999155, 50.60984935100004), (-4.765044725999928, 50.62799713700008), (-4.7492569649999155, 50.64443594000005), (-4.755441860999952, 50.659369208000044), (-4.751942511999914, 50.67007070500006), (-4.741932745999918, 50.67487213700008), (-4.728138800999943, 50.672308661000045), (-4.657297329999949, 50.71112702000005), (-4.645578579999949, 50.723537502000056), (-4.637806769999941, 50.74115631700005), (-4.619007941999939, 50.754787502000056), (-4.577259894999941, 50.774725653000075), (-4.5501195949999556, 50.80955638200004), (-4.55492102799991, 50.897772528000075), (-4.543771938999953, 50.93919505400004), (-4.536854620999918, 50.94757721600007), (-4.5226944649999155, 50.972723700000074), (-4.5266820949999556, 50.98037344000005), (-4.530425584999932, 50.99469635600008), (-4.531320766999954, 51.008693752000056), (-4.526437954999949, 51.014960028000075), (-4.437326626999948, 51.014960028000075), (-4.4264216789999296, 51.01268138200004), (-4.4057511059999115, 51.00287506700005), (-4.3957413399999155, 51.00067780200004), (-4.337717251999948, 50.99664948100008), (-4.317290818999936, 51.00067780200004), (-4.302316860999952, 51.007513739000046), (-4.234730597999942, 51.05532461100006), (-4.2291560539999296, 51.06110260600008), (-4.224680141999954, 51.06708405200004), (-4.218495245999918, 51.07245514500005), (-4.207997199999909, 51.07636139500005), (-4.214263475999928, 51.086004950000074), (-4.226307745999918, 51.11322663000004), (-4.228505011999914, 51.120428778000075), (-4.2319229809999115, 51.12669505400004), (-4.249012824999909, 51.14288971600007), (-4.255767381999931, 51.15151601800005), (-4.222320115999935, 51.149725653000075), (-4.214833136999914, 51.15151601800005), (-4.208363410999937, 51.16229889500005), (-4.2098282539999445, 51.17283763200004), (-4.217274542999917, 51.18138255400004), (-4.228505011999914, 51.18622467700004), (-4.228505011999914, 51.19245026200008), (-4.152333136999914, 51.21161530200004), (-3.969471808999913, 51.22239817900004), (-3.931996222999942, 51.231350002000056), (-3.9131973949999406, 51.23338450700004), (-3.840891079999949, 51.23338450700004), (-3.818959113999938, 51.23607005400004), (-3.787098761999914, 51.24677155200004), (-3.769154425999943, 51.247707424000055), (-3.6397598949999406, 51.22638580900008), (-3.559315558999913, 51.22809479400007), (-3.434193488999938, 51.20978424700007), (-3.4043676419999542, 51.19204336100006), (-3.38499915299991, 51.18622467700004), (-3.2707413399999155, 51.18939850500004), (-3.198882615999935, 51.203558661000045), (-3.1627498039999296, 51.206732489000046), (-3.096750454999949, 51.20453522300005), (-3.057525193999936, 51.20815664300005), (-3.029286261999914, 51.220404364000046), (-3.021839972999942, 51.21356842700004), (-3.0355525379999335, 51.199286200000074), (-3.021839972999942, 51.19245026200008), (-3.004790818999936, 51.21312083500004), (-3.0013321609999366, 51.220404364000046), (-2.9995824859999516, 51.23322174700007), (-3.0015356109999516, 51.23969147300005), (-3.0049942699999406, 51.24506256700005), (-3.008168097999942, 51.25454336100006), (-3.0076391269999476, 51.29197825700004), (-3.0106095039999445, 51.310980536000045), (-3.021839972999942, 51.32282135600008), (-3.0024307929999168, 51.31907786700003), (-2.992176886999914, 51.321926174000055), (-2.992095506999931, 51.32204824400009), (-2.988392706999946, 51.33112213700008), (-2.9877823559999115, 51.34666575700004), (-2.9798884759999282, 51.35586172100005), (-2.965972459999932, 51.364935614000046), (-2.959584113999938, 51.374253648000035), (-2.9746801419999542, 51.38422272300005), (-2.9529516269999476, 51.398504950000074), (-2.9210098949999406, 51.39443594000005), (-2.8841853509999282, 51.41697825700004), (-2.816395636999914, 51.47361888200004), (-2.798573370999918, 51.48261139500005), (-2.780873175999943, 51.48908112200007), (-2.7612198559999115, 51.49286530200004), (-2.7376195949999556, 51.49408600500004), (-2.716420050999943, 51.49957916900007), (-2.6961563789999445, 51.51264069200005), (-2.6078181629999335, 51.60736725500004), (-2.599598761999914, 51.611395575000074), (-2.5892227859999366, 51.61424388200004), (-2.580433722999942, 51.61863841400009), (-2.5768123039999296, 51.62750885600008), (-2.57445227799991, 51.63572825700004), (-2.568959113999938, 51.644964911000045), (-2.562245245999918, 51.65338776200008), (-2.556385870999918, 51.65924713700008), (-2.499175584999932, 51.69676341400009), (-2.464995897999927, 51.725897528000075), (-2.4477432929999168, 51.73187897300005), (-2.404896613999938, 51.74115631700005), (-2.3885391919999392, 51.750433661000045), (-2.380767381999931, 51.76190827000005), (-2.3833715489999463, 51.77326080900008), (-2.398060675999943, 51.782131252000056), (-2.4024145169999542, 51.76357656500005), (-2.4203995429999168, 51.753119208000044), (-2.4434301419999542, 51.74843984600005), (-2.4632869129999335, 51.747300523000035), (-2.482085740999935, 51.74286530200004), (-2.495838995999918, 51.73200104400007), (-2.507964647999927, 51.71857330900008), (-2.5221248039999296, 51.706366278000075), (-2.581695115999935, 51.681708075000074), (-2.5911352199999556, 51.67536041900007), (-2.600209113999938, 51.66559479400007), (-2.6653539699999556, 51.617254950000074)]\n", + "fig, ax = plt.subplots()\n", + "\n", + "x = tuple(map(merc_x, lons))\n", + "y = tuple(map(merc_y, lats))\n", + "\n", + "ax.tricontourf(x, y, tuple(datapoints.values()))\n", + "ax.plot(x, y, 'wo', ms=3)\n", + "ax.plot(\n", + " [merc_x(coord[0]) for coord in gb_boundary],\n", + " [merc_y(coord[1]) for coord in gb_boundary],\n", + " 'k-'\n", + ")\n", + "ax.set_aspect(1.0)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "apd.aggregation", + "language": "python", + "name": "apd.aggregation" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Ch10/apd.aggregation-chapter10-ex01/Pipfile b/Ch10/apd.aggregation-chapter10-ex01/Pipfile new file mode 100644 index 0000000..b308175 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10-ex01/Pipfile @@ -0,0 +1,25 @@ +[[source]] +name = "pypi" +url = "https://pypi.org/simple" +verify_ssl = true + +[dev-packages] +pytest = "*" +pytest-cov = "*" +pytest-asyncio = "*" +mypy = "*" +flake8 = "*" +black = "*" +pre-commit = "*" +wheel = "*" +twine = "*" +sqlalchemy-stubs = "*" + +[packages] +apd-aggregation = {editable = true,extras = ["jupyter"],path = "."} +apd-sensors = {editable = true,extras = ["webapp"],path = "./../code"} + +[requires] + +[pipenv] +allow_prereleases = true diff --git a/Ch10/apd.aggregation-chapter10-ex01/Pipfile.lock b/Ch10/apd.aggregation-chapter10-ex01/Pipfile.lock new file mode 100644 index 0000000..37ebbba --- /dev/null +++ b/Ch10/apd.aggregation-chapter10-ex01/Pipfile.lock @@ -0,0 +1,751 @@ +{ + "_meta": { + "hash": { + "sha256": "9cbbc3af88a1213ed8f4f93c33e35a9f9d7e047077cd25ff02f9bde13e2b606b" + }, + "pipfile-spec": 6, + "requires": {}, + "sources": [ + { + "name": "pypi", + "url": "https://pypi.org/simple", + "verify_ssl": true + } + ] + }, + "default": { + "aiohttp": { + "hashes": [ + "sha256:173267050501e1537293df06723bc5e719990889e2820ba3932969983892e960", + "sha256:438f1f1555c02c50894604d94944cff188fe138b46467b7fa99fdceb51ab5842", + "sha256:90bed250d1435aef33a1f8c439c5056d5d25a44fe6caf33fcafafed805bad4dc", + "sha256:93c3b14747413f38f094a60e98f55e73831f0c9a23ae7faa3dc97d8963e13021", + "sha256:a6e70a38d883185b1921d8122759661c39ade54949770394412a9e713fec6fa7", + "sha256:b5036133c1ba77ed5a70208d2a021a90b76fdf8bf523ae33dae46d4f4380d86f", + "sha256:c138451a82cdbf65cddf952941d5c7a1a2cac8ce3bc618dee8d889e5251ec7a5", + "sha256:c94770383e49f9cc5912b926364ad022a6c8a5dbf5498933ca3a5713c6daf738", + "sha256:ea26536ae06df6dac021303a0df72c79e55512070e6a304ba93ad468a3a754dc" + ], + "version": "==4.0.0a1" + }, + "alembic": { + "hashes": [ + "sha256:49277bb7242192bbb9eac58fed4fe02ec6c3a2a4b4345d2171197459266482b2" + ], + "version": "==1.3.1" + }, + "apd-aggregation": { + "editable": true, + "path": "." + }, + "apd-sensors": { + "editable": true, + "extras": [ + "webapp" + ], + "path": "./../code" + }, + "async-timeout": { + "hashes": [ + "sha256:0c3c816a028d47f659d6ff5c745cb2acf1f966da1fe5c19c77a70282b25f4c5f", + "sha256:4291ca197d287d274d0b6cb5d6f8f8f82d434ed288f962539ff18cc9012f9ea3" + ], + "version": "==3.0.1" + }, + "attrs": { + "hashes": [ + "sha256:08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c", + "sha256:f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72" + ], + "version": "==19.3.0" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:2335065e6395b9e67ca716de5f7526736bfa6ceead690adf616d925bdc622b13", + "sha256:5b94b49521f6456670fdb30cd82a4eca9412788a93fa6dd6df72c94d5a8ff2d7" + ], + "version": "==7.0" + }, + "flask": { + "hashes": [ + "sha256:13f9f196f330c7c2c5d7a5cf91af894110ca0215ac051b5844701f2bfd934d52", + "sha256:45eb5a6fd193d6cf7e0cf5d8a5b31f83d5faae0293695626f539a823e93b13f6" + ], + "version": "==1.1.1" + }, + "idna": { + "hashes": [ + "sha256:c357b3f628cf53ae2c4c05627ecc484553142ca23264e593d327bcde5e9c3407", + "sha256:ea8b7f6188e6fa117537c3df7da9fc686d485087abf6ac197f9c46432f7e4a3c" + ], + "version": "==2.8" + }, + "itsdangerous": { + "hashes": [ + "sha256:321b033d07f2a4136d3ec762eac9f16a10ccd60f53c0c91af90217ace7ba1f19", + "sha256:b12271b2047cb23eeb98c8b5622e2e5c5e9abd9784a153e9d8ef9cb4dd09d749" + ], + "version": "==1.1.0" + }, + "jinja2": { + "hashes": [ + "sha256:74320bb91f31270f9551d46522e33af46a80c3d619f4a4bf42b3164d30b5911f", + "sha256:9fe95f19286cfefaa917656583d020be14e7859c6b0252588391e47db34527de" + ], + "version": "==2.10.3" + }, + "mako": { + "hashes": [ + "sha256:a36919599a9b7dc5d86a7a8988f23a9a3a3d083070023bab23d64f7f1d1e0a4b" + ], + "version": "==1.1.0" + }, + "markupsafe": { + "hashes": [ + "sha256:00bc623926325b26bb9605ae9eae8a215691f33cae5df11ca5424f06f2d1f473", + "sha256:09027a7803a62ca78792ad89403b1b7a73a01c8cb65909cd876f7fcebd79b161", + "sha256:09c4b7f37d6c648cb13f9230d847adf22f8171b1ccc4d5682398e77f40309235", + "sha256:1027c282dad077d0bae18be6794e6b6b8c91d58ed8a8d89a89d59693b9131db5", + "sha256:24982cc2533820871eba85ba648cd53d8623687ff11cbb805be4ff7b4c971aff", + "sha256:29872e92839765e546828bb7754a68c418d927cd064fd4708fab9fe9c8bb116b", + "sha256:43a55c2930bbc139570ac2452adf3d70cdbb3cfe5912c71cdce1c2c6bbd9c5d1", + "sha256:46c99d2de99945ec5cb54f23c8cd5689f6d7177305ebff350a58ce5f8de1669e", + "sha256:500d4957e52ddc3351cabf489e79c91c17f6e0899158447047588650b5e69183", + "sha256:535f6fc4d397c1563d08b88e485c3496cf5784e927af890fb3c3aac7f933ec66", + "sha256:62fe6c95e3ec8a7fad637b7f3d372c15ec1caa01ab47926cfdf7a75b40e0eac1", + "sha256:6dd73240d2af64df90aa7c4e7481e23825ea70af4b4922f8ede5b9e35f78a3b1", + "sha256:717ba8fe3ae9cc0006d7c451f0bb265ee07739daf76355d06366154ee68d221e", + "sha256:79855e1c5b8da654cf486b830bd42c06e8780cea587384cf6545b7d9ac013a0b", + "sha256:7c1699dfe0cf8ff607dbdcc1e9b9af1755371f92a68f706051cc8c37d447c905", + "sha256:88e5fcfb52ee7b911e8bb6d6aa2fd21fbecc674eadd44118a9cc3863f938e735", + "sha256:8defac2f2ccd6805ebf65f5eeb132adcf2ab57aa11fdf4c0dd5169a004710e7d", + "sha256:98c7086708b163d425c67c7a91bad6e466bb99d797aa64f965e9d25c12111a5e", + "sha256:9add70b36c5666a2ed02b43b335fe19002ee5235efd4b8a89bfcf9005bebac0d", + "sha256:9bf40443012702a1d2070043cb6291650a0841ece432556f784f004937f0f32c", + "sha256:ade5e387d2ad0d7ebf59146cc00c8044acbd863725f887353a10df825fc8ae21", + "sha256:b00c1de48212e4cc9603895652c5c410df699856a2853135b3967591e4beebc2", + "sha256:b1282f8c00509d99fef04d8ba936b156d419be841854fe901d8ae224c59f0be5", + "sha256:b2051432115498d3562c084a49bba65d97cf251f5a331c64a12ee7e04dacc51b", + "sha256:ba59edeaa2fc6114428f1637ffff42da1e311e29382d81b339c1817d37ec93c6", + "sha256:c8716a48d94b06bb3b2524c2b77e055fb313aeb4ea620c8dd03a105574ba704f", + "sha256:cd5df75523866410809ca100dc9681e301e3c27567cf498077e8551b6d20e42f", + "sha256:e249096428b3ae81b08327a63a485ad0878de3fb939049038579ac0ef61e17e7" + ], + "version": "==1.1.1" + }, + "multidict": { + "hashes": [ + "sha256:07f9a6bf75ad675d53956b2c6a2d4ef2fa63132f33ecc99e9c24cf93beb0d10b", + "sha256:0ffe4d4d28cbe9801952bfb52a8095dd9ffecebd93f84bdf973c76300de783c5", + "sha256:1b605272c558e4c659dbaf0fb32a53bfede44121bcf77b356e6e906867b958b7", + "sha256:205a011e636d885af6dd0029e41e3514a46e05bb2a43251a619a6e8348b96fc0", + "sha256:250632316295f2311e1ed43e6b26a63b0216b866b45c11441886ac1543ca96e1", + "sha256:2bc9c2579312c68a3552ee816311c8da76412e6f6a9cf33b15152e385a572d2a", + "sha256:318aadf1cfb6741c555c7dd83d94f746dc95989f4f106b25b8a83dfb547f2756", + "sha256:42cdd649741a14b0602bf15985cad0dd4696a380081a3319cd1ead46fd0f0fab", + "sha256:5159c4975931a1a78bf6602bbebaa366747fce0a56cb2111f44789d2c45e379f", + "sha256:87e26d8b89127c25659e962c61a4c655ec7445d19150daea0759516884ecb8b4", + "sha256:891b7e142885e17a894d9d22b0349b92bb2da4769b4e675665d0331c08719be5", + "sha256:8d919034420378132d074bf89df148d0193e9780c9fe7c0e495e895b8af4d8a2", + "sha256:9c890978e2b37dd0dc1bd952da9a5d9f245d4807bee33e3517e4119c48d66f8c", + "sha256:a37433ce8cdb35fc9e6e47e1606fa1bfd6d70440879038dca7d8dd023197eaa9", + "sha256:c626029841ada34c030b94a00c573a0c7575fe66489cde148785b6535397d675", + "sha256:cfec9d001a83dc73580143f3c77e898cf7ad78b27bb5e64dbe9652668fcafec7", + "sha256:efaf1b18ea6c1f577b1371c0159edbe4749558bfe983e13aa24d0a0c01e1ad7b" + ], + "version": "==4.6.1" + }, + "pint": { + "hashes": [ + "sha256:32d8a9a9d63f4f81194c0014b3b742679dce81a26d45127d9810a68a561fe4e2", + "sha256:7ece3f639ad58073ce49982b022d464014e6d91d0b3eaa89c8e8ea9c38e32659" + ], + "version": "==0.9" + }, + "psutil": { + "hashes": [ + "sha256:094f899ac3ef72422b7e00411b4ed174e3c5a2e04c267db6643937ddba67a05b", + "sha256:10b7f75cc8bd676cfc6fa40cd7d5c25b3f45a0e06d43becd7c2d2871cbb5e806", + "sha256:1b1575240ca9a90b437e5a40db662acd87bbf181f6aa02f0204978737b913c6b", + "sha256:21231ef1c1a89728e29b98a885b8e0a8e00d09018f6da5cdc1f43f988471a995", + "sha256:28f771129bfee9fc6b63d83a15d857663bbdcae3828e1cb926e91320a9b5b5cd", + "sha256:70387772f84fa5c3bb6a106915a2445e20ac8f9821c5914d7cbde148f4d7ff73", + "sha256:b560f5cd86cf8df7bcd258a851ca1ad98f0d5b8b98748e877a0aec4e9032b465", + "sha256:b74b43fecce384a57094a83d2778cdfc2e2d9a6afaadd1ebecb2e75e0d34e10d", + "sha256:e85f727ffb21539849e6012f47b12f6dd4c44965e56591d8dec6e8bc9ab96f4a", + "sha256:fd2e09bb593ad9bdd7429e779699d2d47c1268cbde4dda95fcd1bd17544a0217", + "sha256:ffad8eb2ac614518bbe3c0b8eb9dffdb3a8d2e3a7d5da51c5b974fb723a5c5aa" + ], + "version": "==5.6.7" + }, + "psycopg2": { + "hashes": [ + "sha256:4212ca404c4445dc5746c0d68db27d2cbfb87b523fe233dc84ecd24062e35677", + "sha256:47fc642bf6f427805daf52d6e52619fe0637648fe27017062d898f3bf891419d", + "sha256:72772181d9bad1fa349792a1e7384dde56742c14af2b9986013eb94a240f005b", + "sha256:8396be6e5ff844282d4d49b81631772f80dabae5658d432202faf101f5283b7c", + "sha256:893c11064b347b24ecdd277a094413e1954f8a4e8cdaf7ffbe7ca3db87c103f0", + "sha256:92a07dfd4d7c325dd177548c4134052d4842222833576c8391aab6f74038fc3f", + "sha256:965c4c93e33e6984d8031f74e51227bd755376a9df6993774fd5b6fb3288b1f4", + "sha256:9ab75e0b2820880ae24b7136c4d230383e07db014456a476d096591172569c38", + "sha256:b0845e3bdd4aa18dc2f9b6fb78fbd3d9d371ad167fd6d1b7ad01c0a6cdad4fc6", + "sha256:dca2d7203f0dfce8ea4b3efd668f8ea65cd2b35112638e488a4c12594015f67b", + "sha256:ed686e5926929887e2c7ae0a700e32c6129abb798b4ad2b846e933de21508151", + "sha256:ef6df7e14698e79c59c7ee7cf94cd62e5b869db369ed4b1b8f7b729ea825712a", + "sha256:f898e5cc0a662a9e12bde6f931263a1bbd350cfb18e1d5336a12927851825bb6" + ], + "version": "==2.8.4" + }, + "python-dateutil": { + "hashes": [ + "sha256:73ebfe9dbf22e832286dafa60473e4cd239f8592f699aa5adaf10050e6e1823c", + "sha256:75bb3f31ea686f1197762692a9ee6a7550b59fc6ca3a1f4b5d7e32fb98e2da2a" + ], + "version": "==2.8.1" + }, + "python-editor": { + "hashes": [ + "sha256:1bf6e860a8ad52a14c3ee1252d5dc25b2030618ed80c022598f00176adc8367d", + "sha256:51fda6bcc5ddbbb7063b2af7509e43bd84bfc32a4ff71349ec7847713882327b", + "sha256:5f98b069316ea1c2ed3f67e7f5df6c0d8f10b689964a4a811ff64f0106819ec8" + ], + "version": "==1.0.4" + }, + "six": { + "hashes": [ + "sha256:1f1b7d42e254082a9db6279deae68afb421ceba6158efa6131de7b3003ee93fd", + "sha256:30f610279e8b2578cab6db20741130331735c781b56053c59c4076da27f06b66" + ], + "version": "==1.13.0" + }, + "sqlalchemy": { + "hashes": [ + "sha256:afa5541e9dea8ad0014251bc9d56171ca3d8b130c9627c6cb3681cff30be3f8a" + ], + "version": "==1.3.11" + }, + "typing-extensions": { + "hashes": [ + "sha256:091ecc894d5e908ac75209f10d5b4f118fbdb2eb1ede6a63544054bb1edb41f2", + "sha256:910f4656f54de5993ad9304959ce9bb903f90aadc7c67a0bef07e678014e892d", + "sha256:cf8b63fedea4d89bab840ecbb93e75578af28f76f66c35889bd7065f5af88575" + ], + "version": "==3.7.4.1" + }, + "werkzeug": { + "hashes": [ + "sha256:7280924747b5733b246fe23972186c6b348f9ae29724135a6dfc1e53cea433e7", + "sha256:e5f4a1f98b52b18a93da705a7458e55afb26f32bff83ff5d19189f92462d65c4" + ], + "version": "==0.16.0" + }, + "yarl": { + "hashes": [ + "sha256:2e5f4f4d709aed4f689843ef605fc432d0472e3325a8e165b1ecf1e2f3f22a89", + "sha256:412fe567284bdd16a8035c5a6f541da9872804b5702378532cf2e3ef5ae4a9e6", + "sha256:629f542dfd4e964c9e32039a1515b3262dae210f8802cfcceca9f0b529c68ee7", + "sha256:7bd0b31008afcba762d75171ac09135f49bc17c8d092bce49f0b9bf2c4b51850", + "sha256:9510699e48d7565a2c1dc0a9fcb396f1ac80802991621cf02d55540d571a5dc9", + "sha256:9a07c2a1b0c8b314ad5bcea37e62c109d8c19ad9f02985e8db898a56c129984f", + "sha256:9a49055f9e3121449c76709986aee829c74e2eee3b98185542799eec97808ed1", + "sha256:b59dd6679cb2ae172eb594f484e482aaac66fbff71a717603b0f9adf01649386", + "sha256:e5d6b530bec5817be9383452728c116d59868bfbed650ccc7657b2ec9aa51c03" + ], + "version": "==1.4.0a11" + } + }, + "develop": { + "appdirs": { + "hashes": [ + "sha256:9e5896d1372858f8dd3344faf4e5014d21849c756c8d5701f78f8a103b372d92", + "sha256:d8b24664561d0d34ddfaec54636d502d7cea6e29c3eaf68f3df6180863e2166e" + ], + "version": "==1.4.3" + }, + "aspy.yaml": { + "hashes": [ + "sha256:463372c043f70160a9ec950c3f1e4c3a82db5fca01d334b6bc89c7164d744bdc", + "sha256:e7c742382eff2caed61f87a39d13f99109088e5e93f04d76eb8d4b28aa143f45" + ], + "version": "==1.3.0" + }, + "atomicwrites": { + "hashes": [ + "sha256:03472c30eb2c5d1ba9227e4c2ca66ab8287fbfbbda3888aa93dc2e28fc6811b4", + "sha256:75a9445bac02d8d058d5e1fe689654ba5a6556a1dfd8ce6ec55a0ed79866cfa6" + ], + "markers": "sys_platform == 'win32'", + "version": "==1.3.0" + }, + "attrs": { + "hashes": [ + "sha256:08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c", + "sha256:f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72" + ], + "version": "==19.3.0" + }, + "black": { + "hashes": [ + "sha256:1b30e59be925fafc1ee4565e5e08abef6b03fe455102883820fe5ee2e4734e0b", + "sha256:c2edb73a08e9e0e6f65a0e6af18b059b8b1cdd5bef997d7a0b181df93dc81539" + ], + "index": "pypi", + "version": "==19.10b0" + }, + "bleach": { + "hashes": [ + "sha256:213336e49e102af26d9cde77dd2d0397afabc5a6bf2fed985dc35b5d1e285a16", + "sha256:3fdf7f77adcf649c9911387df51254b813185e32b2c6619f690b593a617e19fa" + ], + "version": "==3.1.0" + }, + "certifi": { + "hashes": [ + "sha256:e4f3620cfea4f83eedc95b24abd9cd56f3c4b146dd0177e83a21b4eb49e21e50", + "sha256:fd7c7c74727ddcf00e9acd26bba8da604ffec95bf1c2144e67aff7a8b50e6cef" + ], + "version": "==2019.9.11" + }, + "cfgv": { + "hashes": [ + "sha256:edb387943b665bf9c434f717bf630fa78aecd53d5900d2e05da6ad6048553144", + "sha256:fbd93c9ab0a523bf7daec408f3be2ed99a980e20b2d19b50fc184ca6b820d289" + ], + "version": "==2.0.1" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:2335065e6395b9e67ca716de5f7526736bfa6ceead690adf616d925bdc622b13", + "sha256:5b94b49521f6456670fdb30cd82a4eca9412788a93fa6dd6df72c94d5a8ff2d7" + ], + "version": "==7.0" + }, + "colorama": { + "hashes": [ + "sha256:05eed71e2e327246ad6b38c540c4a3117230b19679b875190486ddd2d721422d", + "sha256:f8ac84de7840f5b9c4e3347b3c1eaa50f7e49c2b07596221daec5edaabbd7c48" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.1" + }, + "coverage": { + "hashes": [ + "sha256:2358e685d0253125da42a48396038d4c7b4cd1448c00bbc4bda0cb8c43c2a870", + "sha256:25017cf384eeed2e6caf72efd3ec4124e32a8b7a4387600499104387975400c7", + "sha256:2e2de9423ff8b14303a97eafddd16c479fbcc9a0b8b0be3b7c3843a3e0cf6d69", + "sha256:324ed908e4e40a6e2451056fe502470ad4e79495cb7a03ecab94e6309c3e117e", + "sha256:34f865a0cf6255b694a46e4383a7131c61ea72c5b4c4f81d20e522fb1e440b4b", + "sha256:3a2bcc464b60a18f1f7167b95b2773ede93bf3722bfa59e0802717f652b6cc25", + "sha256:48d70865266d649b6602e2ba94820d7972ef470d3b72a8fd41a3d17321feed3a", + "sha256:50cf23523ab3a724c6905d3b60f87fa8250d9bae3995e09f49f63effa2b54f15", + "sha256:54c84a68abd8c4c5b71878b35eb85321df41f3d144c78181867d5b026ec74994", + "sha256:5b59d661ee7f3200aedd7b71882b7927ea7ed522df75e3853f316a79ad872a2e", + "sha256:5ffb39624bc573177888a21fb301ccee46838c600b27d58c3e9dae495f44d34a", + "sha256:699b3072b7f0e69ed175a88fa8b2ec7eefc4f34d490c54ed9a52feff21a15fdc", + "sha256:79ef4a2bb862110bd585174e551a783bee5c3aa461734a2ac7429193be357589", + "sha256:8210a6f93c4a8c6d460b402e20e38399529b99200c3318542faf6a520c9b6a5c", + "sha256:8d30c10cfd0a6fdf0a2d5023de00ef7b329cd6ead2310c9e53eab79c209acb70", + "sha256:97ac79ff28f2cda6ac00a803ee582b965951755f61ab43377482bfba450b619a", + "sha256:9fe4aacacff9028ed167db108bf013510654f148d83c4857fed61d2ce0588bf2", + "sha256:a5b6395d5957d638f8b1870561607e3c39b1a236ea6cff9eafe5b9bb1db913f2", + "sha256:ab32c5fad6905986a7e34e3acf01180a69bb60c2aa7331815b46e51c776a1943", + "sha256:ad67f0cfdfecbd49b9da46a7e488e6dc32a69388740b85c36a4ef4b33082cbad", + "sha256:aedad67c30326a1af324f45833a40b97180664912deb29942459ddbe9fa0ce19", + "sha256:b077cd0e70f41366ac1f9d09275258fa1906758a5d4f31cacc18b10dfcf90784", + "sha256:b8ea210810d3c14aec7561f8fe0d3eec582d1088100aaa0bb8153d53d867d20f", + "sha256:bf572722326ce6704e863447a070039a827072b7179352570859be899b9e6551", + "sha256:c0df57e189dacd2606cae6386acf127d01d85b2bf49acd9a65543b5d6c359ddc", + "sha256:d523e75f2a8a0b4a6a8be1287c0e0e3a561b8832b05ddd987d4cd7c62f3ad3bc", + "sha256:e10593c60c5f0bfd8b241bf9f27ef2191a3005b73dde8ada0424f642543a1e59", + "sha256:e9128444c83bc260aea988bf1ca6278a33ba730955bf94720468c656b61353eb", + "sha256:f7162f2e3711f3a08a8a741f92e1f63afd58d0713177979f2cf9723dd50161cf" + ], + "version": "==5.0b1" + }, + "docutils": { + "hashes": [ + "sha256:6c4f696463b79f1fb8ba0c594b63840ebd41f059e92b31957c46b74a4599b6d0", + "sha256:9e4d7ecfc600058e07ba661411a2b7de2fd0fafa17d1a7f7361cd47b1175c827", + "sha256:a2aeea129088da402665e92e0b25b04b073c04b2dce4ab65caaa38b7ce2e1a99" + ], + "version": "==0.15.2" + }, + "entrypoints": { + "hashes": [ + "sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19", + "sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451" + ], + "version": "==0.3" + }, + "flake8": { + "hashes": [ + "sha256:45681a117ecc81e870cbf1262835ae4af5e7a8b08e40b944a8a6e6b895914cfb", + "sha256:49356e766643ad15072a789a20915d3c91dc89fd313ccd71802303fd67e4deca" + ], + "index": "pypi", + "version": "==3.7.9" + }, + "identify": { + "hashes": [ + "sha256:4f1fe9a59df4e80fcb0213086fcf502bc1765a01ea4fe8be48da3b65afd2a017", + "sha256:d8919589bd2a5f99c66302fec0ef9027b12ae150b0b0213999ad3f695fc7296e" + ], + "version": "==1.4.7" + }, + "idna": { + "hashes": [ + "sha256:c357b3f628cf53ae2c4c05627ecc484553142ca23264e593d327bcde5e9c3407", + "sha256:ea8b7f6188e6fa117537c3df7da9fc686d485087abf6ac197f9c46432f7e4a3c" + ], + "version": "==2.8" + }, + "importlib-metadata": { + "hashes": [ + "sha256:aa18d7378b00b40847790e7c27e11673d7fed219354109d0e7b9e5b25dc3ad26", + "sha256:d5f18a79777f3aa179c145737780282e27b508fc8fd688cb17c7a813e8bd39af" + ], + "markers": "python_version < '3.8'", + "version": "==0.23" + }, + "keyring": { + "hashes": [ + "sha256:91037ccaf0c9a112a76f7740e4a416b9457a69b66c2799421581bee710a974b3", + "sha256:f5bb20ea6c57c2360daf0c591931c9ea0d7660a8d9e32ca84d63273f131ea605" + ], + "version": "==19.2.0" + }, + "mccabe": { + "hashes": [ + "sha256:ab8a6258860da4b6677da4bd2fe5dc2c659cff31b3ee4f7f5d64e79735b80d42", + "sha256:dd8d182285a0fe56bace7f45b5e7d1a6ebcbf524e8f3bd87eb0f125271b8831f" + ], + "version": "==0.6.1" + }, + "more-itertools": { + "hashes": [ + "sha256:409cd48d4db7052af495b09dec721011634af3753ae1ef92d2b32f73a745f832", + "sha256:92b8c4b06dac4f0611c0729b2f2ede52b2e1bac1ab48f089c7ddc12e26bb60c4" + ], + "version": "==7.2.0" + }, + "mypy": { + "hashes": [ + "sha256:1521c186a3d200c399bd5573c828ea2db1362af7209b2adb1bb8532cea2fb36f", + "sha256:31a046ab040a84a0fc38bc93694876398e62bc9f35eca8ccbf6418b7297f4c00", + "sha256:3b1a411909c84b2ae9b8283b58b48541654b918e8513c20a400bb946aa9111ae", + "sha256:48c8bc99380575deb39f5d3400ebb6a8a1cb5cc669bbba4d3bb30f904e0a0e7d", + "sha256:540c9caa57a22d0d5d3c69047cc9dd0094d49782603eb03069821b41f9e970e9", + "sha256:672e418425d957e276c291930a3921b4a6413204f53fe7c37cad7bc57b9a3391", + "sha256:6ed3b9b3fdc7193ea7aca6f3c20549b377a56f28769783a8f27191903a54170f", + "sha256:9371290aa2cad5ad133e4cdc43892778efd13293406f7340b9ffe99d5ec7c1d9", + "sha256:ace6ac1d0f87d4072f05b5468a084a45b4eda970e4d26704f201e06d47ab2990", + "sha256:b428f883d2b3fe1d052c630642cc6afddd07d5cd7873da948644508be3b9d4a7", + "sha256:d5bf0e6ec8ba346a2cf35cb55bf4adfddbc6b6576fcc9e10863daa523e418dbb", + "sha256:d7574e283f83c08501607586b3167728c58e8442947e027d2d4c7dcd6d82f453", + "sha256:dc889c84241a857c263a2b1cd1121507db7d5b5f5e87e77147097230f374d10b", + "sha256:f4748697b349f373002656bf32fede706a0e713d67bfdcf04edf39b1f61d46eb" + ], + "index": "pypi", + "version": "==0.740" + }, + "mypy-extensions": { + "hashes": [ + "sha256:090fedd75945a69ae91ce1303b5824f428daf5a028d2f6ab8a299250a846f15d", + "sha256:2d82818f5bb3e369420cb3c4060a7970edba416647068eb4c5343488a6c604a8" + ], + "version": "==0.4.3" + }, + "nodeenv": { + "hashes": [ + "sha256:ad8259494cf1c9034539f6cced78a1da4840a4b157e23640bc4a0c0546b0cb7a" + ], + "version": "==1.3.3" + }, + "packaging": { + "hashes": [ + "sha256:28b924174df7a2fa32c1953825ff29c61e2f5e082343165438812f00d3a7fc47", + "sha256:d9551545c6d761f3def1677baf08ab2a3ca17c56879e70fecba2fc4dde4ed108" + ], + "version": "==19.2" + }, + "pathspec": { + "hashes": [ + "sha256:e285ccc8b0785beadd4c18e5708b12bb8fcf529a1e61215b3feff1d1e559ea5c" + ], + "version": "==0.6.0" + }, + "pkginfo": { + "hashes": [ + "sha256:7424f2c8511c186cd5424bbf31045b77435b37a8d604990b79d4e70d741148bb", + "sha256:a6d9e40ca61ad3ebd0b72fbadd4fba16e4c0e4df0428c041e01e06eb6ee71f32" + ], + "version": "==1.5.0.1" + }, + "pluggy": { + "hashes": [ + "sha256:15b2acde666561e1298d71b523007ed7364de07029219b604cf808bfa1c765b0", + "sha256:966c145cd83c96502c3c3868f50408687b38434af77734af1e9ca461a4081d2d" + ], + "version": "==0.13.1" + }, + "pre-commit": { + "hashes": [ + "sha256:9f152687127ec90642a2cc3e4d9e1e6240c4eb153615cb02aa1ad41d331cbb6e", + "sha256:c2e4810d2d3102d354947907514a78c5d30424d299dc0fe48f5aa049826e9b50" + ], + "index": "pypi", + "version": "==1.20.0" + }, + "py": { + "hashes": [ + "sha256:64f65755aee5b381cea27766a3a147c3f15b9b6b9ac88676de66ba2ae36793fa", + "sha256:dc639b046a6e2cff5bbe40194ad65936d6ba360b52b3c3fe1d08a82dd50b5e53" + ], + "version": "==1.8.0" + }, + "pycodestyle": { + "hashes": [ + "sha256:95a2219d12372f05704562a14ec30bc76b05a5b297b21a5dfe3f6fac3491ae56", + "sha256:e40a936c9a450ad81df37f549d676d127b1b66000a6c500caa2b085bc0ca976c" + ], + "version": "==2.5.0" + }, + "pyflakes": { + "hashes": [ + "sha256:17dbeb2e3f4d772725c777fabc446d5634d1038f234e77343108ce445ea69ce0", + "sha256:d976835886f8c5b31d47970ed689944a0262b5f3afa00a5a7b4dc81e5449f8a2" + ], + "version": "==2.1.1" + }, + "pygments": { + "hashes": [ + "sha256:71e430bc85c88a430f000ac1d9b331d2407f681d6f6aec95e8bcfbc3df5b0127", + "sha256:881c4c157e45f30af185c1ffe8d549d48ac9127433f2c380c24b84572ad66297" + ], + "version": "==2.4.2" + }, + "pyparsing": { + "hashes": [ + "sha256:20f995ecd72f2a1f4bf6b072b63b22e2eb457836601e76d6e5dfcd75436acc1f", + "sha256:4ca62001be367f01bd3e92ecbb79070272a9d4964dce6a48a82ff0b8bc7e683a" + ], + "version": "==2.4.5" + }, + "pytest": { + "hashes": [ + "sha256:1897d74f60a5d8be02e06d708b41bf2445da2ee777066bd68edf14474fc201eb", + "sha256:f6a567e20c04259d41adce9a360bd8991e6aa29dd9695c5e6bd25a9779272673" + ], + "index": "pypi", + "version": "==5.3.0" + }, + "pytest-asyncio": { + "hashes": [ + "sha256:9fac5100fd716cbecf6ef89233e8590a4ad61d729d1732e0a96b84182df1daaf", + "sha256:d734718e25cfc32d2bf78d346e99d33724deeba774cc4afdf491530c6184b63b" + ], + "index": "pypi", + "version": "==0.10.0" + }, + "pytest-cov": { + "hashes": [ + "sha256:cc6742d8bac45070217169f5f72ceee1e0e55b0221f54bcf24845972d3a47f2b", + "sha256:cdbdef4f870408ebdbfeb44e63e07eb18bb4619fae852f6e760645fa36172626" + ], + "index": "pypi", + "version": "==2.8.1" + }, + "pywin32-ctypes": { + "hashes": [ + "sha256:24ffc3b341d457d48e8922352130cf2644024a4ff09762a2261fd34c36ee5942", + "sha256:9dc2d991b3479cc2df15930958b674a48a227d5361d413827a4cfd0b5876fc98" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.2.0" + }, + "pyyaml": { + "hashes": [ + "sha256:0113bc0ec2ad727182326b61326afa3d1d8280ae1122493553fd6f4397f33df9", + "sha256:01adf0b6c6f61bd11af6e10ca52b7d4057dd0be0343eb9283c878cf3af56aee4", + "sha256:5124373960b0b3f4aa7df1707e63e9f109b5263eca5976c66e08b1c552d4eaf8", + "sha256:5ca4f10adbddae56d824b2c09668e91219bb178a1eee1faa56af6f99f11bf696", + "sha256:7907be34ffa3c5a32b60b95f4d95ea25361c951383a894fec31be7252b2b6f34", + "sha256:7ec9b2a4ed5cad025c2278a1e6a19c011c80a3caaac804fd2d329e9cc2c287c9", + "sha256:87ae4c829bb25b9fe99cf71fbb2140c448f534e24c998cc60f39ae4f94396a73", + "sha256:9de9919becc9cc2ff03637872a440195ac4241c80536632fffeb6a1e25a74299", + "sha256:a5a85b10e450c66b49f98846937e8cfca1db3127a9d5d1e31ca45c3d0bef4c5b", + "sha256:b0997827b4f6a7c286c01c5f60384d218dca4ed7d9efa945c3e1aa623d5709ae", + "sha256:b631ef96d3222e62861443cc89d6563ba3eeb816eeb96b2629345ab795e53681", + "sha256:bf47c0607522fdbca6c9e817a6e81b08491de50f3766a7a0e6a5be7905961b41", + "sha256:f81025eddd0327c7d4cfe9b62cf33190e1e736cc6e97502b3ec425f574b3e7a8" + ], + "version": "==5.1.2" + }, + "readme-renderer": { + "hashes": [ + "sha256:bb16f55b259f27f75f640acf5e00cf897845a8b3e4731b5c1a436e4b8529202f", + "sha256:c8532b79afc0375a85f10433eca157d6b50f7d6990f337fa498c96cd4bfc203d" + ], + "version": "==24.0" + }, + "regex": { + "hashes": [ + "sha256:15454b37c5a278f46f7aa2d9339bda450c300617ca2fca6558d05d870245edc7", + "sha256:1ad40708c255943a227e778b022c6497c129ad614bb7a2a2f916e12e8a359ee7", + "sha256:5e00f65cc507d13ab4dfa92c1232d004fa202c1d43a32a13940ab8a5afe2fb96", + "sha256:604dc563a02a74d70ae1f55208ddc9bfb6d9f470f6d1a5054c4bd5ae58744ab1", + "sha256:720e34a539a76a1fedcebe4397290604cc2bdf6f81eca44adb9fb2ea071c0c69", + "sha256:7caf47e4a9ac6ef08cabd3442cc4ca3386db141fb3c8b2a7e202d0470028e910", + "sha256:7faf534c1841c09d8fefa60ccde7b9903c9b528853ecf41628689793290ca143", + "sha256:b4e0406d822aa4993ac45072a584d57aa4931cf8288b5455bbf30c1d59dbad59", + "sha256:c31eaf28c6fe75ea329add0022efeed249e37861c19681960f99bbc7db981fb2", + "sha256:c7393597191fc2043c744db021643549061e12abe0b3ff5c429d806de7b93b66", + "sha256:d2b302f8cdd82c8f48e9de749d1d17f85ce9a0f082880b9a4859f66b07037dc6", + "sha256:e3d8dd0ec0ea280cf89026b0898971f5750a7bd92cb62c51af5a52abd020054a", + "sha256:ec032cbfed59bd5a4b8eab943c310acfaaa81394e14f44454ad5c9eba4f24a74" + ], + "version": "==2019.11.1" + }, + "requests": { + "hashes": [ + "sha256:11e007a8a2aa0323f5a921e9e6a2d7e4e67d9877e85773fba9ba6419025cbeb4", + "sha256:9cf5292fcd0f598c671cfc1e0d7d1a7f13bb8085e9a590f48c010551dc6c4b31" + ], + "version": "==2.22.0" + }, + "requests-toolbelt": { + "hashes": [ + "sha256:380606e1d10dc85c3bd47bf5a6095f815ec007be7a8b69c878507068df059e6f", + "sha256:968089d4584ad4ad7c171454f0a5c6dac23971e9472521ea3b6d49d610aa6fc0" + ], + "version": "==0.9.1" + }, + "six": { + "hashes": [ + "sha256:1f1b7d42e254082a9db6279deae68afb421ceba6158efa6131de7b3003ee93fd", + "sha256:30f610279e8b2578cab6db20741130331735c781b56053c59c4076da27f06b66" + ], + "version": "==1.13.0" + }, + "sqlalchemy-stubs": { + "hashes": [ + "sha256:a3318c810697164e8c818aa2d90bac570c1a0e752ced3ec25455b309c0bee8fd", + "sha256:ca1250605a39648cc433f5c70cb1a6f9fe0b60bdda4c51e1f9a2ab3651daadc8" + ], + "index": "pypi", + "version": "==0.3" + }, + "toml": { + "hashes": [ + "sha256:229f81c57791a41d65e399fc06bf0848bab550a9dfd5ed66df18ce5f05e73d5c", + "sha256:235682dd292d5899d361a811df37e04a8828a5b1da3115886b73cf81ebc9100e" + ], + "version": "==0.10.0" + }, + "tqdm": { + "hashes": [ + "sha256:5a1f3d58f3eb53264387394387fe23df469d2a3fab98c9e7f99d5c146c119873", + "sha256:f1a1613fee07cc30a253051617f2a219a785c58877f9f6bfa129446cbaf8b4c1" + ], + "version": "==4.39.0" + }, + "twine": { + "hashes": [ + "sha256:1a87ae3f1e29a87a8ac174809bf0aa996085a0368fe500402196bda94b23aab3", + "sha256:ba8ba1b39987f1c22d9162f7dd3b4668388640e5f7158c15226624f88e464836" + ], + "index": "pypi", + "version": "==3.1.0" + }, + "typed-ast": { + "hashes": [ + "sha256:1170afa46a3799e18b4c977777ce137bb53c7485379d9706af8a59f2ea1aa161", + "sha256:18511a0b3e7922276346bcb47e2ef9f38fb90fd31cb9223eed42c85d1312344e", + "sha256:262c247a82d005e43b5b7f69aff746370538e176131c32dda9cb0f324d27141e", + "sha256:2b907eb046d049bcd9892e3076c7a6456c93a25bebfe554e931620c90e6a25b0", + "sha256:354c16e5babd09f5cb0ee000d54cfa38401d8b8891eefa878ac772f827181a3c", + "sha256:48e5b1e71f25cfdef98b013263a88d7145879fbb2d5185f2a0c79fa7ebbeae47", + "sha256:4e0b70c6fc4d010f8107726af5fd37921b666f5b31d9331f0bd24ad9a088e631", + "sha256:630968c5cdee51a11c05a30453f8cd65e0cc1d2ad0d9192819df9978984529f4", + "sha256:66480f95b8167c9c5c5c87f32cf437d585937970f3fc24386f313a4c97b44e34", + "sha256:71211d26ffd12d63a83e079ff258ac9d56a1376a25bc80b1cdcdf601b855b90b", + "sha256:7954560051331d003b4e2b3eb822d9dd2e376fa4f6d98fee32f452f52dd6ebb2", + "sha256:838997f4310012cf2e1ad3803bce2f3402e9ffb71ded61b5ee22617b3a7f6b6e", + "sha256:95bd11af7eafc16e829af2d3df510cecfd4387f6453355188342c3e79a2ec87a", + "sha256:bc6c7d3fa1325a0c6613512a093bc2a2a15aeec350451cbdf9e1d4bffe3e3233", + "sha256:cc34a6f5b426748a507dd5d1de4c1978f2eb5626d51326e43280941206c209e1", + "sha256:d755f03c1e4a51e9b24d899561fec4ccaf51f210d52abdf8c07ee2849b212a36", + "sha256:d7c45933b1bdfaf9f36c579671fec15d25b06c8398f113dab64c18ed1adda01d", + "sha256:d896919306dd0aa22d0132f62a1b78d11aaf4c9fc5b3410d3c666b818191630a", + "sha256:fdc1c9bbf79510b76408840e009ed65958feba92a88833cdceecff93ae8fff66", + "sha256:ffde2fbfad571af120fcbfbbc61c72469e72f550d676c3342492a9dfdefb8f12" + ], + "version": "==1.4.0" + }, + "typing-extensions": { + "hashes": [ + "sha256:091ecc894d5e908ac75209f10d5b4f118fbdb2eb1ede6a63544054bb1edb41f2", + "sha256:910f4656f54de5993ad9304959ce9bb903f90aadc7c67a0bef07e678014e892d", + "sha256:cf8b63fedea4d89bab840ecbb93e75578af28f76f66c35889bd7065f5af88575" + ], + "version": "==3.7.4.1" + }, + "urllib3": { + "hashes": [ + "sha256:a8a318824cc77d1fd4b2bec2ded92646630d7fe8619497b142c84a9e6f5a7293", + "sha256:f3c5fd51747d450d4dcf6f923c81f78f811aab8205fda64b0aba34a4e48b0745" + ], + "version": "==1.25.7" + }, + "virtualenv": { + "hashes": [ + "sha256:116655188441670978117d0ebb6451eb6a7526f9ae0796cc0dee6bd7356909b0", + "sha256:b57776b44f91511866594e477dd10e76a6eb44439cdd7f06dcd30ba4c5bd854f" + ], + "version": "==16.7.8" + }, + "wcwidth": { + "hashes": [ + "sha256:3df37372226d6e63e1b1e1eda15c594bca98a22d33a23832a90998faa96bc65e", + "sha256:f4ebe71925af7b40a864553f761ed559b43544f8f71746c2d756c7fe788ade7c" + ], + "version": "==0.1.7" + }, + "webencodings": { + "hashes": [ + "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", + "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923" + ], + "version": "==0.5.1" + }, + "wheel": { + "hashes": [ + "sha256:10c9da68765315ed98850f8e048347c3eb06dd81822dc2ab1d4fde9dc9702646", + "sha256:f4da1763d3becf2e2cd92a14a7c920f0f00eca30fdde9ea992c836685b9faf28" + ], + "index": "pypi", + "version": "==0.33.6" + }, + "zipp": { + "hashes": [ + "sha256:3718b1cbcd963c7d4c5511a8240812904164b7f381b647143a89d3b98f9bcd8e", + "sha256:f06903e9f1f43b12d371004b4ac7b06ab39a44adc747266928ae6debfa7b3335" + ], + "version": "==0.6.0" + } + } +} diff --git a/Ch10/apd.aggregation-chapter10-ex01/README.md b/Ch10/apd.aggregation-chapter10-ex01/README.md new file mode 100644 index 0000000..85669dd --- /dev/null +++ b/Ch10/apd.aggregation-chapter10-ex01/README.md @@ -0,0 +1,4 @@ +# APD Sensor aggregator + +A programme that queries apd.sensor endpoints and aggregates their results. + diff --git a/Ch10/apd.aggregation-chapter10-ex01/pyproject.toml b/Ch10/apd.aggregation-chapter10-ex01/pyproject.toml new file mode 100644 index 0000000..4d3bb67 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10-ex01/pyproject.toml @@ -0,0 +1,5 @@ +[build-system] +requires = [ + "setuptools", +] +build-backend = "setuptools.build_meta" diff --git a/Ch10/apd.aggregation-chapter10-ex01/pytest.ini b/Ch10/apd.aggregation-chapter10-ex01/pytest.ini new file mode 100644 index 0000000..8c26fbc --- /dev/null +++ b/Ch10/apd.aggregation-chapter10-ex01/pytest.ini @@ -0,0 +1,4 @@ +[pytest] +markers = + functional: these tests are significantly slower as they start a HTTP server + performance: very slow tests that provide performance guarantees \ No newline at end of file diff --git a/Ch10/apd.aggregation-chapter10-ex01/setup.cfg b/Ch10/apd.aggregation-chapter10-ex01/setup.cfg new file mode 100644 index 0000000..3ee0436 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10-ex01/setup.cfg @@ -0,0 +1,83 @@ +[mypy] +namespace_packages = True +mypy_path = src +plugins = sqlmypy + +[mypy-alembic] +ignore_missing_imports = True + +[mypy-alembic.config] +ignore_missing_imports = True + +[mypy-alembic.script] +ignore_missing_imports = True + +[mypy-alembic.runtime.environment] +ignore_missing_imports = True + +[mypy-matplotlib] +ignore_missing_imports = True + +[mypy-matplotlib.axes._base] +ignore_missing_imports = True + +[mypy-matplotlib.figure] +ignore_missing_imports = True + +[mypy-matplotlib.pyplot] +ignore_missing_imports = True + +[mypy-IPython.core] +ignore_missing_imports = True + +[mypy-yappi] +ignore_missing_imports = True + +[mypy-pint] +ignore_missing_imports = True + +[mypy-pytest] +ignore_missing_imports = True + +[flake8] +max-line-length = 120 +ignore = E501 + +[metadata] +name = apd.aggregation +version = attr: apd.aggregation.VERSION +description = A programme that queries apd.sensor endpoints and aggregates their results. +long_description = file: README.md, CHANGES.md, LICENCE +long_description_content_type = text/markdown +keywords = +license = BSD +classifiers = + Programming Language :: Python :: 3 + Programming Language :: Python :: 3.7 + +[options] +zip_safe = False +include_package_data = True +package_dir = + =src +packages = find_namespace: +install_requires = + sqlalchemy + aiohttp + pint + psycopg2 + alembic + click + + +[options.extras_require] +jupyter = ipywidgets +yappi = yappi + +[options.packages.find] +where = src + +[options.entry_points] +console_scripts = + collect_sensor_data = apd.aggregation.cli:collect_sensor_data + sensor_deployments = apd.aggregation.cli:deployments diff --git a/Ch10/apd.aggregation-chapter10-ex01/setup.py b/Ch10/apd.aggregation-chapter10-ex01/setup.py new file mode 100644 index 0000000..6068493 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10-ex01/setup.py @@ -0,0 +1,3 @@ +from setuptools import setup + +setup() diff --git a/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/__init__.py b/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/__init__.py new file mode 100644 index 0000000..3277f64 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/__init__.py @@ -0,0 +1 @@ +VERSION = "1.0.0" diff --git a/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/alembic/README b/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/alembic/README new file mode 100644 index 0000000..97a87d5 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/alembic/README @@ -0,0 +1,12 @@ +Generic single-database configuration. + + +# Database setup + +To generate the required database tables you must create an alembic.ini file, as follows: + + [alembic] + script_location = apd.aggregation:alembic + sqlalchemy.url = postgresql+psycopg2://apd@localhost/apd + +and run `alembic upgrade head`. This should also be done after every upgrade of the software. \ No newline at end of file diff --git a/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/alembic/env.py b/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/alembic/env.py new file mode 100644 index 0000000..4c8a2c2 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/alembic/env.py @@ -0,0 +1,80 @@ +from logging.config import fileConfig + +from sqlalchemy import engine_from_config +from sqlalchemy import pool +from alembic import context + +from apd.aggregation.database import metadata + + +# this is the Alembic Config object, which provides +# access to the values within the .ini file in use. +config = context.config + +# Interpret the config file for Python logging. +# This line sets up loggers basically. +if config.config_file_name: + fileConfig(config.config_file_name) + +target_metadata = metadata + + +def include_object(object, name, type_, reflected, compare_to): + if object.info.get("is_view", False): + return False + return True + + +def run_migrations_offline(): + """Run migrations in 'offline' mode. + + This configures the context with just a URL + and not an Engine, though an Engine is acceptable + here as well. By skipping the Engine creation + we don't even need a DBAPI to be available. + + Calls to context.execute() here emit the given string to the + script output. + + """ + url = config.get_main_option("sqlalchemy.url") + context.configure( + url=url, + include_object=include_object, + target_metadata=target_metadata, + literal_binds=True, + dialect_opts={"paramstyle": "named"}, + ) + + with context.begin_transaction(): + context.run_migrations() + + +def run_migrations_online(): + """Run migrations in 'online' mode. + + In this scenario we need to create an Engine + and associate a connection with the context. + + """ + connectable = engine_from_config( + config.get_section(config.config_ini_section), + prefix="sqlalchemy.", + poolclass=pool.NullPool, + ) + + with connectable.connect() as connection: + context.configure( + connection=connection, + target_metadata=target_metadata, + include_object=include_object, + ) + + with context.begin_transaction(): + context.run_migrations() + + +if context.is_offline_mode(): + run_migrations_offline() +else: + run_migrations_online() diff --git a/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/alembic/script.py.mako b/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/alembic/script.py.mako new file mode 100644 index 0000000..2c01563 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/alembic/script.py.mako @@ -0,0 +1,24 @@ +"""${message} + +Revision ID: ${up_revision} +Revises: ${down_revision | comma,n} +Create Date: ${create_date} + +""" +from alembic import op +import sqlalchemy as sa +${imports if imports else ""} + +# revision identifiers, used by Alembic. +revision = ${repr(up_revision)} +down_revision = ${repr(down_revision)} +branch_labels = ${repr(branch_labels)} +depends_on = ${repr(depends_on)} + + +def upgrade(): + ${upgrades if upgrades else "pass"} + + +def downgrade(): + ${downgrades if downgrades else "pass"} diff --git a/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py b/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py new file mode 100644 index 0000000..85f4019 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py @@ -0,0 +1,35 @@ +"""Add indexes to datapoints + +Revision ID: 4b2df8a6e1ce +Revises: 6d2eacd5da3f +Create Date: 2019-12-02 16:07:41.123116 + +""" +from alembic import op + + +# revision identifiers, used by Alembic. +revision = "4b2df8a6e1ce" +down_revision = "6d2eacd5da3f" +branch_labels = None +depends_on = None + + +def upgrade(): + op.create_index( + op.f("ix_sensor_values_collected_at"), + "sensor_values", + ["collected_at"], + unique=False, + ) + op.create_index( + op.f("ix_sensor_values_sensor_name"), + "sensor_values", + ["sensor_name"], + unique=False, + ) + + +def downgrade(): + op.drop_index(op.f("ix_sensor_values_sensor_name"), table_name="sensor_values") + op.drop_index(op.f("ix_sensor_values_collected_at"), table_name="sensor_values") diff --git a/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py b/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py new file mode 100644 index 0000000..e9b1a81 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py @@ -0,0 +1,38 @@ +"""Add daily summary view + +Revision ID: 6962f8455a6d +Revises: 4b2df8a6e1ce +Create Date: 2019-12-03 11:50:24.403402 + +""" +from alembic import op + + +# revision identifiers, used by Alembic. +revision = "6962f8455a6d" +down_revision = "4b2df8a6e1ce" +branch_labels = None +depends_on = None + + +def upgrade(): + create_view = """ + CREATE VIEW daily_summary AS + SELECT + sensor_values.sensor_name AS sensor_name, + sensor_values.data AS data, + count(sensor_values.id) AS count + FROM sensor_values + WHERE + sensor_values.collected_at >= CAST(CURRENT_DATE AS DATE) + AND + sensor_values.collected_at < CAST(CURRENT_DATE AS DATE) + 1 + GROUP BY + sensor_values.sensor_name, + sensor_values.data; + """ + op.execute(create_view) + + +def downgrade(): + op.execute("""DROP VIEW daily_summary""") diff --git a/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py b/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py new file mode 100644 index 0000000..38fbb26 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py @@ -0,0 +1,31 @@ +"""Create sensor_values table + +Revision ID: 6d2eacd5da3f +Revises: +Create Date: 2019-09-29 13:43:21.242706 + +""" +from alembic import op +import sqlalchemy as sa +from sqlalchemy.dialects import postgresql + +# revision identifiers, used by Alembic. +revision = "6d2eacd5da3f" +down_revision = None +branch_labels = None +depends_on = None + + +def upgrade(): + op.create_table( + "sensor_values", + sa.Column("id", sa.Integer(), nullable=False), + sa.Column("sensor_name", sa.String(), nullable=True), + sa.Column("collected_at", postgresql.TIMESTAMP(), nullable=True), + sa.Column("data", postgresql.JSONB(astext_type=sa.Text()), nullable=True), + sa.PrimaryKeyConstraint("id"), + ) + + +def downgrade(): + op.drop_table("sensor_values") diff --git a/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/alembic/versions/d8cdc709086b_add_deployment_table.py b/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/alembic/versions/d8cdc709086b_add_deployment_table.py new file mode 100644 index 0000000..204e096 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/alembic/versions/d8cdc709086b_add_deployment_table.py @@ -0,0 +1,32 @@ +"""Add deployment table + +Revision ID: d8cdc709086b +Revises: d8d4cf6a178f +Create Date: 2019-12-17 16:28:58.585616 + +""" +from alembic import op +import sqlalchemy as sa +from sqlalchemy.dialects import postgresql + +# revision identifiers, used by Alembic. +revision = "d8cdc709086b" +down_revision = "d8d4cf6a178f" +branch_labels = None +depends_on = None + + +def upgrade(): + op.create_table( + "deployments", + sa.Column("id", postgresql.UUID(as_uuid=True), nullable=False), + sa.Column("uri", sa.String(), nullable=True), + sa.Column("name", sa.String(), nullable=True), + sa.Column("colour", sa.String(), nullable=True), + sa.Column("api_key", sa.String(), nullable=True), + sa.PrimaryKeyConstraint("id"), + ) + + +def downgrade(): + op.drop_table("deployments") diff --git a/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py b/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py new file mode 100644 index 0000000..9e34b3f --- /dev/null +++ b/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py @@ -0,0 +1,34 @@ +"""Add deployment id to DataPoint + +Revision ID: d8d4cf6a178f +Revises: 6962f8455a6d +Create Date: 2019-12-03 20:58:11.285509 + +""" +from alembic import op +import sqlalchemy as sa +from sqlalchemy.dialects import postgresql + +# revision identifiers, used by Alembic. +revision = "d8d4cf6a178f" +down_revision = "6962f8455a6d" +branch_labels = None +depends_on = None + + +def upgrade(): + op.add_column( + "sensor_values", + sa.Column("deployment_id", postgresql.UUID(as_uuid=True), nullable=True), + ) + op.create_index( + op.f("ix_sensor_values_deployment_id"), + "sensor_values", + ["deployment_id"], + unique=False, + ) + + +def downgrade(): + op.drop_index(op.f("ix_sensor_values_deployment_id"), table_name="sensor_values") + op.drop_column("sensor_values", "deployment_id") diff --git a/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/analysis.py b/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/analysis.py new file mode 100644 index 0000000..0ac429a --- /dev/null +++ b/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/analysis.py @@ -0,0 +1,384 @@ +from __future__ import annotations + +import asyncio +import collections +from concurrent.futures import ThreadPoolExecutor +import dataclasses +import datetime +import functools +import math +import typing as t + +from uuid import UUID + +import matplotlib.pyplot as plt +from matplotlib.axes._base import _AxesBase +from matplotlib.figure import Figure +from pint import _DEFAULT_REGISTRY as ureg + +from apd.aggregation.query import ( + get_data, + get_data_by_deployment, + with_database, + get_deployment_by_id, +) +from apd.aggregation.database import DataPoint, deployment_table +from .utils import merc_x, merc_y, convert_temperature +from .typing import IntermediateMapData, T_key, T_value, CleanerFunc, Cleaned +from .typing import ( + CLEANED_COORD_FLOAT, + CLEANED_DT_FLOAT, + COORD_FLOAT_CLEANER, + DT_FLOAT_CLEANER, +) + +# Static UUID to represent aggregation of other deployments +GLOBAL = UUID("bd02526e-7619-4a59-b04b-1fafd1c262d1") + + +@dataclasses.dataclass +class Config(t.Generic[T_key, T_value]): + title: str + clean: CleanerFunc[Cleaned[T_key, T_value]] + draw: t.Optional[ + t.Callable[ + [t.Any, t.Iterable[T_key], t.Iterable[T_value], t.Optional[str]], None + ] + ] = None + get_data: t.Optional[ + t.Callable[..., t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]] + ] = None + ylabel: t.Optional[str] = None + sensor_name: dataclasses.InitVar[str] = None + + def __post_init__(self, sensor_name: t.Optional[str] = None) -> None: + if self.draw is None: + self.draw = draw_date # type: ignore + if self.get_data is None: + if sensor_name is None: + raise ValueError("You must specify either get_data or sensor_name") + self.get_data = get_one_sensor_by_deployment(sensor_name) + + +def draw_date( + plot: _AxesBase, + x: t.Iterable[datetime.datetime], + y: t.Iterable[float], + colour: t.Optional[str], +) -> None: + plot.plot_date(x, y, color=colour, linestyle="-", marker="", xdate=True) + + +def draw_map( + plot: _AxesBase, + x: t.Iterable[t.Tuple[float, float]], + y: t.Iterable[float], + colour: t.Optional[str], +) -> None: + lon = [merc_y(coord[0]) for coord in x] + lat = [merc_x(coord[1]) for coord in x] + + for axis in "x", "y": + plt.tick_params( + axis=axis, + which="both", + bottom=False, + top=False, + left=False, + right=False, + labelbottom=False, + labelleft=False, + ) + + plot.tricontourf(lat, lon, y) + plot.plot(lat, lon, "wo", ms=3) + plot.set_aspect(1.0) + + +def get_map_cleaner_for(sensor_name: str,) -> COORD_FLOAT_CLEANER: + """Given a sensor_name that represents a float, return a coroutine that acts as a cleaner + extracting that sensor's data keyed by the value of a Location sensor.""" + + async def clean_latest_coord_and_value( + datapoints: t.AsyncIterator[DataPoint], + ) -> CLEANED_COORD_FLOAT: + + # We will iterate over data points and build an entry in cleaned_data + # for each deployment. This lets newer data replace older data, as + # datapoints is assumed to be in date order + # IntermediateMapData is a typing hint for a dictionary with specific key/values + cleaned_data: t.Dict[UUID, IntermediateMapData] = {} + async for datapoint in datapoints: + # Get the existing data for this deployment, if we've seen it before + row_data = cleaned_data.get(datapoint.deployment_id, None) + if row_data is None: + # This is the first time we've seen this deployment + row_data = {"coord": None, "value": None} + if datapoint.sensor_name == "Location": + # Coord is a 2-tuple of floats + row_data["coord"] = ( + float(datapoint.data[0]), + float(datapoint.data[1]), + ) + elif datapoint.sensor_name == sensor_name: + # Value is a single float + row_data["value"] = float(datapoint.data) + # Store the info about this deployment back into the cleaned_data set + cleaned_data[datapoint.deployment_id] = row_data + + for data in cleaned_data.values(): + if data["coord"] is None or data["value"] is None: + # We only got a partial record, don't plot this + continue + yield data["coord"], data["value"] + + # Return the set up cleaner coroutine + return clean_latest_coord_and_value + + +async def clean_watthours_to_watts( + datapoints: t.AsyncIterator[DataPoint], +) -> CLEANED_DT_FLOAT: + last_watthours = None + last_time = None + async for datapoint in datapoints: + if datapoint.data is None: + continue + time = datapoint.collected_at + watthours = ureg.Quantity(datapoint.data["magnitude"], datapoint.data["unit"]) + if last_watthours: + seconds_elapsed = (time - last_time).total_seconds() + time_elapsed = ureg.Quantity(seconds_elapsed, ureg.second) + additional_power = watthours - last_watthours + power = additional_power / time_elapsed + yield time, power.to(ureg.watt).magnitude + last_watthours = watthours + last_time = datapoint.collected_at + + +async def clean_magnitude(datapoints: t.AsyncIterator[DataPoint],) -> CLEANED_DT_FLOAT: + async for datapoint in datapoints: + if datapoint.data is None: + continue + yield datapoint.collected_at, datapoint.data["magnitude"] + + +def convert_temperature_system( + cleaner: DT_FLOAT_CLEANER, temperature_unit: str, +) -> DT_FLOAT_CLEANER: + async def converter(datapoints: t.AsyncIterator[DataPoint],) -> CLEANED_DT_FLOAT: + results = cleaner(datapoints) + async for date, temp_c in results: + yield date, convert_temperature(temp_c, "degC", temperature_unit) + + return converter + + +async def clean_temperature_fluctuations( + datapoints: t.AsyncIterator[DataPoint], +) -> CLEANED_DT_FLOAT: + allowed_jitter = 2.5 + allowed_range = (-40, 80) + window_datapoints: t.Deque[DataPoint] = collections.deque(maxlen=3) + + def datapoint_ok(datapoint: DataPoint) -> bool: + """Return False if this data point does not contain a valid temperature""" + if datapoint.data is None: + return False + elif datapoint.data["unit"] != "degC": + # This point is in a different temperature system. While it could be converted + # this cleaner is not yet doing that. + return False + elif not allowed_range[0] < datapoint.data["magnitude"] < allowed_range[1]: + return False + return True + + async for datapoint in datapoints: + if not datapoint_ok(datapoint): + # If the datapoint is invalid then skip directly to the next item + continue + + window_datapoints.append(datapoint) + if len(window_datapoints) == 3: + # Find the temperatures of the datapoints in the window, then average + # the first and last and compare that to the middle point. + window_temperatures = [dp.data["magnitude"] for dp in window_datapoints] + avr_first_last = (window_temperatures[0] + window_temperatures[2]) / 2 + diff_middle_avr = abs(window_temperatures[1] - avr_first_last) + if diff_middle_avr > allowed_jitter: + pass + else: + yield window_datapoints[1].collected_at, window_temperatures[1] + elif len(window_datapoints) == 1: + # The item in the iterator can't be compared to both neighbours + # so should be yielded + yield datapoint.collected_at, datapoint.data["magnitude"] + else: + # Otherwise, let the window fill up, it will be yieleded later + pass + # When the iterator ends the final item is not yet in the middle + # of the window, so the last item must be explicitly yielded. + if len(window_datapoints) > 1 and datapoint_ok(datapoint): + yield datapoint.collected_at, datapoint.data["magnitude"] + + +async def clean_passthrough( + datapoints: t.AsyncIterator[DataPoint], +) -> CLEANED_DT_FLOAT: + async for datapoint in datapoints: + if datapoint.data is None: + continue + else: + yield datapoint.collected_at, datapoint.data + + +def get_one_sensor_by_deployment( + sensor_name: str, +) -> t.Callable[..., t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]]: + return functools.partial(get_data_by_deployment, sensor_name=sensor_name) + + +def get_all_data() -> t.Callable[ + ..., t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]] +]: + async def get_all_data_inner( + *args: t.Any, **kwargs: t.Any + ) -> t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]: + yield GLOBAL, get_data(*args, **kwargs) + + return get_all_data_inner + + +configs = ( + Config( + sensor_name="SolarCumulativeOutput", + clean=clean_watthours_to_watts, + title="Solar generation", + ylabel="Watts", + ), + Config( + sensor_name="RAMAvailable", + clean=clean_passthrough, + title="RAM available", + ylabel="Bytes", + ), + Config( + sensor_name="RelativeHumidity", + clean=clean_passthrough, + title="Relative humidity", + ylabel="Percent", + ), + Config( + sensor_name="Temperature", + clean=clean_temperature_fluctuations, + title="Ambient temperature", + ylabel="Degrees C", + ), +) + + +def get_known_configs() -> t.Dict[str, Config[t.Any, t.Any]]: + return {config.title: config for config in configs} + + +async def plot_sensor( + config: Config[t.Any, t.Any], + plot: _AxesBase, + location_names: t.Dict[UUID, str], + **kwargs: t.Any +) -> _AxesBase: + locations = [] + if config.get_data is None: + raise ValueError("You must provide a get_data function") + async for deployment_id, query_results in config.get_data(**kwargs): + if deployment_id == GLOBAL: + name = "Global" + else: + try: + deployment = await get_deployment_by_id(deployment_id) + except IndexError: + name = str(deployment_id) + colour = None + else: + name = deployment.name or str(deployment_id) + colour = deployment.colour + # Mypy currently doesn't understand callable fields on datatypes: https://github.com/python/mypy/issues/5485 + points = [dp async for dp in config.clean(query_results)] # type: ignore + if not points: + continue + locations.append(name) + x, y = zip(*points) + plot.set_title(config.title) + plot.set_ylabel(config.ylabel) + if config.draw is None: + raise ValueError("You must provide a get_data function") + config.draw(plot, x, y, colour) + plot.legend(locations) + return plot + + +async def plot_multiple_charts(*args: t.Any, **kwargs: t.Any) -> Figure: + # These parameters are pulled from kwargs to avoid confusing function + # introspection code in IPython widgets + location_names = kwargs.pop("location_names", None) + configs = kwargs.pop("configs", None) + dimensions = kwargs.pop("dimensions", None) + db_uri = kwargs.pop("db_uri", "postgresql+psycopg2://apd@localhost/apd") + + with with_database(db_uri) as session: + loop = asyncio.get_running_loop() + coros = [] + if configs is None: + # If no configs are supplied, use all known configs + configs = get_known_configs().values() + if dimensions is None: + # If no dimensions are supplied, get the square root of the number + # of configs and round it to find a number of columns. This will + # keep the arrangement approximately square. Find rows by multiplying + # out rows. + total_configs = len(configs) + columns = round(math.sqrt(total_configs)) + rows = math.ceil(total_configs / columns) + if location_names is None: + location_query = session.query( + deployment_table.c.id, deployment_table.c.name + ) + location_data = await loop.run_in_executor(None, location_query.all) + location_names = dict(location_data) + + figure = plt.figure(figsize=(10 * columns, 5 * rows), dpi=300) + for i, config in enumerate(configs, start=1): + plot = figure.add_subplot(columns, rows, i) + coros.append(plot_sensor(config, plot, location_names, *args, **kwargs)) + await asyncio.gather(*coros) + return figure + + +_Coroutine_Result = t.TypeVar("_Coroutine_Result") + + +def wrap_coroutine( + f: t.Callable[..., t.Coroutine[t.Any, t.Any, _Coroutine_Result]] +) -> t.Callable[..., _Coroutine_Result]: + """Given a coroutine, return a function that runs that coroutine + in a new event loop in an isolated thread""" + + @functools.wraps(f) + def run_in_thread(*args: t.Any, **kwargs: t.Any) -> _Coroutine_Result: + loop = asyncio.new_event_loop() + wrapped = f(*args, **kwargs) + with ThreadPoolExecutor(max_workers=1) as pool: + task = pool.submit(loop.run_until_complete, wrapped) + # Mypy can get confused when nesting generic functions, like we do here + # The fact that Task is generic means we lose the association with + # _CoroutineResult. Adding an explicit cast restores this. + return t.cast(_Coroutine_Result, task.result()) + + return run_in_thread + + +def interactable_plot_multiple_charts( + *args: t.Any, **kwargs: t.Any +) -> t.Callable[..., Figure]: + with_config = functools.partial(plot_multiple_charts, *args, **kwargs) + return wrap_coroutine(with_config) diff --git a/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/cli.py b/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/cli.py new file mode 100644 index 0000000..d1b0fbc --- /dev/null +++ b/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/cli.py @@ -0,0 +1,184 @@ +import asyncio +import typing as t +import uuid + +import aiohttp +import click +from sqlalchemy import create_engine +from sqlalchemy.orm import sessionmaker + +from . import collect +from .database import Deployment, deployment_table + + +@click.command() +@click.argument("server", nargs=-1) +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +@click.option("--api-key", metavar="", envvar="APD_API_KEY") +@click.option( + "--tolerate-failures", + "-f", + help="If provided, failure to retrieve some sensors' data will not abort the collection process", + is_flag=True, +) +@click.option("-v", "--verbose", is_flag=True, help="Enables verbose mode") +def collect_sensor_data( + db: str, server: t.Tuple[str], api_key: str, tolerate_failures: bool, verbose: bool +): + """This loads data from one or more sensors into the specified database. + + Only PostgreSQL databases are supported, as the column definitions use + multiple pg specific features. The database must already exist and be + populated with the required tables. + + The --api-key option is used to specify the access token for the sensors + being queried. + + You may specify any number of servers, the variable should be the full URL + to the sensor's HTTP interface, not including the /v/2.0 portion. Muliple + URLs should be separated with a space. + """ + if tolerate_failures: + attempts = [(s,) for s in server] + else: + attempts = [server] + success = True + for attempt in attempts: + try: + collect.standalone(db, attempt, api_key, echo=verbose) + except ValueError as e: + click.secho(str(e), err=True, fg="red") + success = False + return success + + +@click.group() +def deployments(): + pass + + +@deployments.command() +@click.argument("uri") +@click.argument("name") +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +@click.option("--api-key", metavar="", envvar="APD_API_KEY") +@click.option("--colour") +def add( + db: str, uri: str, name: str, api_key: t.Optional[str], colour: t.Optional[str], +): + """This creates a record of a new deployment in the database. + """ + deployment = Deployment(id=None, uri=uri, name=name, api_key=api_key, colour=colour) + + async def http_get_deployment_id(): + async with aiohttp.ClientSession() as http: + collect.http_session_var.set(http) + return await collect.get_deployment_id(uri) + + deployment.id = asyncio.run(http_get_deployment_id()) + insert = deployment_table.insert().values(**deployment._asdict()) + + engine = create_engine(db) + sm = sessionmaker(engine) + Session = sm() + Session.execute(insert) + Session.commit() + return True + + +@deployments.command() +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +def list(db: str): + """This creates a record of a new deployment in the database. + """ + engine = create_engine(db) + sm = sessionmaker(engine) + Session = sm() + deployments = Session.query(deployment_table).all() + for deployment in deployments: + click.secho(deployment.name, bold=True) + click.echo(click.style("ID ", bold=True) + deployment.id.hex) + click.echo(click.style("URI ", bold=True) + deployment.uri) + click.echo(click.style("API key ", bold=True) + deployment.api_key) + click.echo(click.style("Colour ", bold=True) + str(deployment.colour)) + click.echo() + Session.rollback() + return True + + +@deployments.command() +@click.argument("id") +@click.option("--uri") +@click.option("--name") +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +@click.option("--api-key", metavar="", envvar="APD_API_KEY") +@click.option("--colour") +def edit( + db: str, + id, + uri: t.Optional[str], + name: t.Optional[str], + api_key: t.Optional[str], + colour: t.Optional[str], +): + """This creates a record of a new deployment in the database. + """ + update = {} + if uri is not None: + update["uri"] = uri + if name is not None: + update["name"] = name + if api_key is not None: + update["api_key"] = api_key + if colour is not None: + update["colour"] = colour + deployment_id = uuid.UUID(id) + + update_stmt = ( + deployment_table.update() + .where(deployment_table.c.id == deployment_id) + .values(**update) + ) + + engine = create_engine(db) + sm = sessionmaker(engine) + Session = sm() + Session.execute(update_stmt) + deployments = Session.query(deployment_table).filter( + deployment_table.c.id == deployment_id + ) + Session.commit() + + for deployment in deployments: + click.secho(deployment.name, bold=True) + click.echo(click.style("ID ", bold=True) + deployment.id.hex) + click.echo(click.style("URI ", bold=True) + deployment.uri) + click.echo(click.style("API key ", bold=True) + deployment.api_key) + click.echo(click.style("Colour ", bold=True) + str(deployment.colour)) + click.echo() + + return True diff --git a/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/collect.py b/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/collect.py new file mode 100644 index 0000000..1d9ea08 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/collect.py @@ -0,0 +1,112 @@ +import asyncio +from contextvars import ContextVar +import datetime +import typing as t +import uuid + +import aiohttp +from sqlalchemy import create_engine +from sqlalchemy.orm import sessionmaker +from sqlalchemy.orm.session import Session + +from .database import DataPoint, datapoint_table, Deployment, deployment_table + +http_session_var: ContextVar[aiohttp.ClientSession] = ContextVar("http_session") + + +async def get_deployment_id(server): + http = http_session_var.get() + if not server.endswith("/"): + server += "/" + url = server + "v/2.1/deployment_id" + async with http.get(url) as request: + if request.status != 200: + raise ValueError(f"Error loading deployment id from {server}") + result = await request.json() + return uuid.UUID(result["deployment_id"]) + + +async def get_data_points(server: str, api_key: t.Optional[str],) -> t.List[DataPoint]: + if not server.endswith("/"): + server += "/" + url = server + "v/2.1/sensors/" + headers = {} + if api_key: + headers["X-API-KEY"] = api_key + http = http_session_var.get() + + # Get the deployment ID in parallel to the sensor data + deployment_id = asyncio.create_task(get_deployment_id(server)) + + async with http.get(url, headers=headers) as request: + result = await request.json() + ok = request.status == 200 + now = datetime.datetime.now() + if ok: + points = [] + for value in result["sensors"]: + points.append( + DataPoint( + sensor_name=value["id"], + collected_at=now, + data=value["value"], + deployment_id=await deployment_id, + ) + ) + return points + else: + raise ValueError( + f"Error loading data from {server}: " + result.get("error", "Unknown") + ) + + +def handle_result(result: t.List[DataPoint], session: Session) -> t.List[DataPoint]: + for point in result: + insert = datapoint_table.insert().values(**point._asdict()) + sql_result = session.execute(insert) + point.id = sql_result.inserted_primary_key[0] + return result + + +async def add_data_from_sensors( + session: Session, servers: t.Iterable[Deployment] +) -> t.List[DataPoint]: + tasks: t.List[t.Awaitable[t.List[DataPoint]]] = [] + points: t.List[DataPoint] = [] + async with aiohttp.ClientSession() as http: + http_session_var.set(http) + tasks = [get_data_points(server.uri, server.api_key) for server in servers] + for results in await asyncio.gather(*tasks): + points += results + loop = asyncio.get_running_loop() + await loop.run_in_executor(None, handle_result, points, session) + return points + + +def standalone( + db_uri: str, servers: t.Tuple[str], api_key: t.Optional[str], echo: bool = False +) -> None: + engine = create_engine(db_uri, echo=echo) + sm = sessionmaker(engine) + Session = sm() + deployments: t.Iterable[Deployment] + if servers: + deployments = tuple( + Deployment(id=None, name=None, colour=None, api_key=api_key, uri=server) + for server in servers + ) + else: + deployment_data = Session.query(deployment_table).all() + deployments = tuple( + Deployment.from_sql_result(deployment) for deployment in deployment_data + ) + asyncio.run(add_data_from_sensors(Session, deployments)) + Session.commit() + + +if __name__ == "__main__": + standalone( + db_uri="postgresql+psycopg2://apd@localhost/apd", + servers=("http://pvoutput:8080/",), + api_key="h3hdfjksfhwkjehnwekj", + ) diff --git a/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/database.py b/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/database.py new file mode 100644 index 0000000..d7f0d37 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/database.py @@ -0,0 +1,129 @@ +from __future__ import annotations + +from dataclasses import dataclass, field, asdict +import datetime +import typing as t +import uuid + +import sqlalchemy +from sqlalchemy.dialects.postgresql import JSONB, DATE, TIMESTAMP, UUID +from sqlalchemy.ext.hybrid import ExprComparator, hybrid_property +from sqlalchemy.orm import sessionmaker +from sqlalchemy.schema import Table + + +metadata = sqlalchemy.MetaData() + +deployment_table = Table( + "deployments", + metadata, + sqlalchemy.Column("id", UUID(as_uuid=True), primary_key=True), + sqlalchemy.Column("uri", sqlalchemy.String, index=False), + sqlalchemy.Column("name", sqlalchemy.String, index=False, nullable=True), + sqlalchemy.Column("colour", sqlalchemy.String, index=False, nullable=True), + sqlalchemy.Column("api_key", sqlalchemy.String, index=False), +) + +datapoint_table = Table( + "sensor_values", + metadata, + sqlalchemy.Column("id", sqlalchemy.Integer, primary_key=True), + sqlalchemy.Column("sensor_name", sqlalchemy.String, index=True), + sqlalchemy.Column("collected_at", TIMESTAMP, index=True), + sqlalchemy.Column("deployment_id", UUID(as_uuid=True), index=True), + sqlalchemy.Column("data", JSONB), +) + +daily_summary_view = Table( + "daily_summary", + metadata, + sqlalchemy.Column("sensor_name", sqlalchemy.String), + sqlalchemy.Column("data", JSONB), + sqlalchemy.Column("count", sqlalchemy.Integer), + info={"is_view": True}, +) + + +class DateEqualComparator(ExprComparator): + def __init__(self, fallback_expression, raw_expression): + # Do not try and find update expression from parent + super().__init__(None, fallback_expression, None) + self.raw_expression = raw_expression + + def __eq__(self, other): + """ Returns True iff on the same day as other """ + other_date = sqlalchemy.cast(other, DATE) + return sqlalchemy.and_( + self.raw_expression >= other_date, self.raw_expression < other_date + 1, + ) + + def operate(self, op, *other, **kwargs): + other = [sqlalchemy.cast(date, DATE) for date in other] + return op(self.expression, *other, **kwargs) + + def reverse_operate(self, op, other, **kwargs): + other = [sqlalchemy.cast(date, DATE) for date in other] + return op(other, self.expression, **kwargs) + + +@dataclass +class DataPoint: + sensor_name: str + data: t.Any + deployment_id: uuid.UUID + id: t.Optional[int] = None + collected_at: datetime.datetime = field(default_factory=datetime.datetime.now) + + @classmethod + def from_sql_result(cls, result) -> DataPoint: + return cls(**result._asdict()) + + def _asdict(self) -> t.Dict[str, t.Any]: + data = asdict(self) + if data["id"] is None: + del data["id"] + return data + + @hybrid_property + def collected_on_date(self): + return self.collected_at.date() + + @collected_on_date.comparator # type: ignore + def collected_on_date(cls): + return DateEqualComparator( + fallback_expression=sqlalchemy.cast(datapoint_table.c.collected_at, DATE), + raw_expression=datapoint_table.c.collected_at, + ) + + +@dataclass +class Deployment: + id: t.Optional[uuid.UUID] + uri: str + name: t.Optional[str] + colour: t.Optional[str] + api_key: t.Optional[str] + + @classmethod + def from_sql_result(cls, result) -> Deployment: + return cls(**result._asdict()) + + def _asdict(self) -> t.Dict[str, t.Any]: + data = asdict(self) + return data + + +def main() -> None: + engine = sqlalchemy.create_engine( + "postgresql+psycopg2://apd@localhost/apd", echo=True + ) + sm = sessionmaker(engine) + Session = sm() + if False: + metadata.create_all(engine) + print(Session.query(DataPoint).all()) + pass + + +if __name__ == "__main__": + main() diff --git a/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/query.py b/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/query.py new file mode 100644 index 0000000..3d2005d --- /dev/null +++ b/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/query.py @@ -0,0 +1,146 @@ +import asyncio +import contextlib +from contextvars import ContextVar +import datetime +import typing as t +from uuid import UUID + +from sqlalchemy import create_engine +from sqlalchemy.orm import sessionmaker +from sqlalchemy.orm.session import Session + + +from apd.aggregation.database import ( + datapoint_table, + DataPoint, + deployment_table, + Deployment, +) + + +db_session_var: ContextVar[Session] = ContextVar("db_session") + + +@contextlib.contextmanager +def with_database(uri: t.Optional[str] = None) -> t.Iterator[Session]: + """Given a URI, set up a DB connection, and return a Session as a context manager """ + if uri is None: + uri = "postgresql+psycopg2://localhost/apd" + engine = create_engine(uri) + sm = sessionmaker(engine) + Session = sm() + token = db_session_var.set(Session) + yield Session + db_session_var.reset(token) + Session.commit() + Session.close() + + +async def get_data( + sensor_name: t.Optional[str] = None, + deployment_id: t.Optional[UUID] = None, + collected_before: t.Optional[datetime.datetime] = None, + collected_after: t.Optional[datetime.datetime] = None, +) -> t.AsyncIterator[DataPoint]: + db_session = db_session_var.get() + loop = asyncio.get_running_loop() + query = db_session.query(datapoint_table) + if sensor_name: + query = query.filter(datapoint_table.c.sensor_name == sensor_name) + if deployment_id: + query = query.filter(datapoint_table.c.deployment_id == deployment_id) + if collected_before: + query = query.filter(datapoint_table.c.collected_at < collected_before) + if collected_after: + query = query.filter(datapoint_table.c.collected_at > collected_after) + query = query.order_by( + datapoint_table.c.deployment_id, + datapoint_table.c.sensor_name, + datapoint_table.c.collected_at, + ) + + rows = await loop.run_in_executor(None, query.all) + for row in rows: + yield DataPoint.from_sql_result(row) + + +async def get_deployment_ids() -> t.List[UUID]: + db_session = db_session_var.get() + loop = asyncio.get_running_loop() + query = db_session.query(datapoint_table.c.deployment_id).distinct() + return [row.deployment_id for row in await loop.run_in_executor(None, query.all)] + + +async def get_deployment_by_id(deployment_id: UUID) -> Deployment: + db_session = db_session_var.get() + loop = asyncio.get_running_loop() + query = db_session.query(deployment_table).filter( + deployment_table.c.id == deployment_id + ) + return [ + Deployment.from_sql_result(row) + for row in await loop.run_in_executor(None, query.all) + ][0] + + +async def get_data_by_deployment( + *args: t.Any, **kwargs: t.Any +) -> t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]: + """Return an Async Iterator that contains two-item pairs. + These pairs are a string (deployment_id), and an async iterator that contains + the datapoints with that deployment_id. + + Usage example: + + async for deployment_id, datapoints in get_data_by_deployment(): + print(deployment_id) + async for datapoint in datapoints: + print(datapoint) + print() + """ + # Get the data, using the arguments to this function as filters + data = get_data(*args, **kwargs) + + # The two levels of iterator share the item variable, initialise it with the + # first item from the iterator. Also set last_deployment_id to None, so the + # outer iterator knows to start a new group. + last_deployment_id: t.Optional[UUID] = None + try: + item = await data.__anext__() + except StopAsyncIteration: + # There were no items in the underlying query, return immediately + return + + async def subiterator(group_id: UUID) -> t.AsyncIterator[DataPoint]: + """Using a closure, create an iterator that yields the current + item, then yields all items from data while the deployment_id matches + group_id, leaving the first that doesn't match as item in the enclosing + scope.""" + # item is from the enclosing scope + nonlocal item + while item.deployment_id == group_id: + # yield items from data while they match the group_id this iterator represents + yield item + try: + # Advance the underlying iterator + item = await data.__anext__() + except StopAsyncIteration: + # The underlying iterator came to an end, so end the subiterator too + return + + while True: + while item.deployment_id == last_deployment_id: + # We are trying to advance the outer iterator while the underlying iterator + # is still part-way through a group. Speed through the underlying until we + # hit an item where the deployment_id is different to the last one (or, is not + # None, in the case of the start of the iterator) + try: + item = await data.__anext__() + except StopAsyncIteration: + # We hit the end of the underlying iterator: end this iterator too + return + last_deployment_id = item.deployment_id + # Don't yield an iterator for unclassified deployments + if last_deployment_id is not None: + # Instantiate a subiterator for this group + yield last_deployment_id, subiterator(last_deployment_id) diff --git a/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/typing.py b/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/typing.py new file mode 100644 index 0000000..5db1337 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/typing.py @@ -0,0 +1,48 @@ +import datetime +import typing as t +from typing_extensions import Protocol + +from apd.aggregation.database import DataPoint + + +# Aliases for common types +# These type variables allow for generic functions. T_key represents the place +# in a chart that an item will be placed, and T_value the kind of data that is plotted. +T_key = t.TypeVar("T_key") +T_value = t.TypeVar("T_value") + +# Cleaned is a placeholder type, representing an async iterator of key and value functions +# Cleaned[float, float] is equivalent to typing.AsyncIterator[Tuple[builtins.float, builtins.float]] +Cleaned = t.AsyncIterator[t.Tuple[T_key, T_value]] + +# T_cleaned represents a placeholder for the result of a cleaner function, and is *covariant* +# because it can accept compatible types (such as ints where floats were declared). +# It is bound to Cleaned, so only items that match the specification for Cleaned (for any values +# of T_key or T_value) are valid +T_cleaned = t.TypeVar("T_cleaned", covariant=True, bound=Cleaned) + + +# CleanerFunc is a generic protocol, it matches any Callable that converts an async iterator +# of datapoints to its type. So, CleanerFunc[float] would be equivalent to t.Callable[[t.AsyncIterator[DataPoint]], float] +class CleanerFunc(Protocol[T_cleaned]): + def __call__(self, datapoints: t.AsyncIterator[DataPoint]) -> T_cleaned: + ... + + +# CLEANED_DT_FLOAT is a Cleaned represents datetime/float pairs, for simple charts +CLEANED_DT_FLOAT = Cleaned[datetime.datetime, float] +# and CLEANED_COORD_FLOAT represents (lat/lon), float pairs +CLEANED_COORD_FLOAT = Cleaned[t.Tuple[float, float], float] + +# The _CLEANER variants are functions that return their matching iterators from above +DT_FLOAT_CLEANER = CleanerFunc[CLEANED_DT_FLOAT] +COORD_FLOAT_CLEANER = CleanerFunc[CLEANED_COORD_FLOAT] + + +# When drawing a map we will be building a dictionary of UUID to dictionary +# That inner dictionary should contain coord (float, float) +# and value (float) only. Either or both can be None. +# This class is abstract, it's just for type checking. +class IntermediateMapData(t.TypedDict): + coord: t.Optional[t.Tuple[float, float]] + value: t.Optional[float] diff --git a/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/utils.py b/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/utils.py new file mode 100644 index 0000000..da90a12 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10-ex01/src/apd/aggregation/utils.py @@ -0,0 +1,82 @@ +from __future__ import annotations + +import contextlib +import functools +import importlib +import io +import math +import os +import typing as t + +from pint import _DEFAULT_REGISTRY as ureg + + +# Set up mercator transform from https://wiki.openstreetmap.org/wiki/Mercator#Python +# Thanks to Paulo Silva and the OSM contributors +def merc_x(lon: float) -> float: + r_major = 6378137.000 + return r_major * math.radians(lon) + + +def merc_y(lat: float) -> float: + if lat > 89.5: + lat = 89.5 + if lat < -89.5: + lat = -89.5 + r_major = 6378137.000 + r_minor = 6356752.3142 + temp = r_minor / r_major + eccent = math.sqrt(1 - temp ** 2) + phi = math.radians(lat) + sinphi = math.sin(phi) + con = eccent * sinphi + com = eccent / 2 + con = ((1.0 - con) / (1.0 + con)) ** com + ts = math.tan((math.pi / 2 - phi) / 2) / con + y = 0 - r_major * math.log(ts) + return y + + +@functools.lru_cache +def convert_temperature(magnitude: float, origin_unit: str, target_unit: str) -> float: + # if origin_unit == "degC" and target_unit == "degF": + # return (magnitude * 1.8) + 32 + temp = ureg.Quantity(magnitude, origin_unit) + return temp.to(target_unit).magnitude + + +@contextlib.contextmanager +def jupyter_page_file() -> t.Iterator[io.StringIO]: + from IPython.core import page + + output = io.StringIO() + yield output + output.seek(0) + page.page(output.read()) + + +@contextlib.contextmanager +def profile_with_yappi() -> t.Iterator[None]: + import yappi + + yappi.clear_stats() + yappi.start() + yield None + yappi.stop() + + +class YappiPackageFilter: + """ This object can be passed to yappi's modname filter to limit + by Python package rather than module filename""" + + def __init__(self, package: str) -> None: + mod = importlib.import_module(package) + self.fn = mod.__file__ + if self.fn.endswith("__init__.py"): + self.fn = os.path.dirname(self.fn) + + def __eq__(self, other: object) -> t.Union[bool, NotImplemented]: + if isinstance(other, str): + return other.startswith(self.fn) + else: + return NotImplemented diff --git a/Ch10/apd.aggregation-chapter10-ex01/tests/__init__.py b/Ch10/apd.aggregation-chapter10-ex01/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/Ch10/apd.aggregation-chapter10-ex01/tests/conftest.py b/Ch10/apd.aggregation-chapter10-ex01/tests/conftest.py new file mode 100644 index 0000000..328e95f --- /dev/null +++ b/Ch10/apd.aggregation-chapter10-ex01/tests/conftest.py @@ -0,0 +1,124 @@ +import datetime +from uuid import UUID + +from apd.aggregation.database import datapoint_table + +from alembic.config import Config +from alembic.script import ScriptDirectory +from alembic.runtime.environment import EnvironmentContext +import pytest + + +@pytest.fixture +def db_uri(): + return "postgresql+psycopg2://apd@localhost/apd-test" + + +@pytest.fixture +def db_session(db_uri): + from sqlalchemy import create_engine + from sqlalchemy.orm import sessionmaker + + engine = create_engine(db_uri, echo=True) + sm = sessionmaker(engine) + Session = sm() + yield Session + Session.close() + + +@pytest.fixture +def migrated_db(db_uri, db_session): + config = Config() + config.set_main_option("script_location", "apd.aggregation:alembic") + config.set_main_option("sqlalchemy.url", db_uri) + script = ScriptDirectory.from_config(config) + + def upgrade(rev, context): + return script._upgrade_revs(script.get_current_head(), rev) + + def downgrade(rev, context): + return script._downgrade_revs(None, rev) + + with EnvironmentContext(config, script, fn=upgrade): + script.run_env() + + try: + yield + finally: + # Clear any pending work from the db_session connection + db_session.rollback() + + with EnvironmentContext(config, script, fn=downgrade): + script.run_env() + + +@pytest.fixture +def populated_db(migrated_db, db_session): + datas = [ + { + "id": 1, + "sensor_name": "Test", + "data": "1", + "collected_at": datetime.datetime(2020, 4, 1, 12, 0, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 2, + "sensor_name": "Test", + "data": "2", + "collected_at": datetime.datetime(2020, 4, 1, 12, 1, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 3, + "sensor_name": "Test", + "data": "3", + "collected_at": datetime.datetime(2020, 4, 1, 12, 2, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 4, + "sensor_name": "Test", + "data": "4", + "collected_at": datetime.datetime(2020, 4, 1, 12, 3, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 5, + "sensor_name": "OtherTest", + "data": "5", + "collected_at": datetime.datetime(2020, 4, 1, 12, 4, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 6, + "sensor_name": "Test", + "data": "1", + "collected_at": datetime.datetime(2020, 4, 1, 12, 0, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + { + "id": 7, + "sensor_name": "Test", + "data": "1", + "collected_at": datetime.datetime(2020, 4, 1, 12, 1, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + { + "id": 8, + "sensor_name": "Test", + "data": "2", + "collected_at": datetime.datetime(2020, 4, 1, 12, 2, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + { + "id": 9, + "sensor_name": "OtherTest", + "data": "3", + "collected_at": datetime.datetime(2020, 4, 1, 12, 3, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + ] + for data in datas: + insert = datapoint_table.insert().values(**data) + db_session.execute(insert) diff --git a/Ch10/apd.aggregation-chapter10-ex01/tests/test_analysis.py b/Ch10/apd.aggregation-chapter10-ex01/tests/test_analysis.py new file mode 100644 index 0000000..6b3f31b --- /dev/null +++ b/Ch10/apd.aggregation-chapter10-ex01/tests/test_analysis.py @@ -0,0 +1,503 @@ +import collections.abc +import datetime +import functools +import uuid + +import pytest + +from apd.aggregation import analysis +from apd.aggregation.database import DataPoint, datapoint_table +from apd.aggregation.query import db_session_var + + +async def generate_datapoints(datas): + deployment_id = uuid.uuid4() + for i, (time, data) in enumerate(datas, start=1): + yield DataPoint( + id=i, + collected_at=time, + sensor_name="TestSensor", + data=data, + deployment_id=deployment_id, + ) + + +@functools.singledispatch +def consume(input_iterator): + items = [item for item in input_iterator] + + def inner_iterator(): + for item in items: + yield item + + return inner_iterator() + + +@consume.register +async def consume_async(input_iterator: collections.abc.AsyncIterator): + items = [item async for item in input_iterator] + + async def inner_iterator(): + for item in items: + yield item + + return inner_iterator() + + +class TestPassThroughCleaner: + @pytest.fixture + def cleaner(self): + return analysis.clean_passthrough + + @pytest.mark.asyncio + async def test_float_passthrough(self, cleaner): + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 65.0), + (datetime.datetime(2020, 4, 1, 13, 0, 0), 65.5), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == data + + @pytest.mark.asyncio + async def test_Nones_are_skipped(self, cleaner): + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), None), + (datetime.datetime(2020, 4, 1, 13, 0, 0), 65.5), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 13, 0, 0), 65.5), + ] + + +class TestTemperatureCleaner: + @pytest.fixture + def cleaner(self): + return analysis.clean_temperature_fluctuations + + @pytest.mark.asyncio + async def test_window_not_full(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [(datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0)] + + @pytest.mark.asyncio + async def test_window_exactly_full(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 1), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 21.0), + ] + + @pytest.mark.asyncio + async def test_window_overfilled(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 3), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 4), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 1), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 3), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 4), 21.0), + ] + + @pytest.mark.asyncio + async def test_outlier_dropped(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 61.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 21.0), + ] + + @pytest.mark.asyncio + async def test_limited_to_DHT22_range(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 91.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 91.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 91.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [] + + @pytest.mark.asyncio + async def test_Nones_dropped(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 31.0, "unit": "degC"}, + ), + (datetime.datetime(2020, 4, 1, 12, 0, 1), None,), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 32.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 31.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 32.0), + ] + + +class TestWattHourCleaner: + @pytest.fixture + def cleaner(self): + return analysis.clean_watthours_to_watts + + @pytest.fixture(scope="class") + def huge_data_set(self): + date = datetime.datetime(2020, 4, 1, 12, 0, 0) + power = 500 + data = [] + for i in range(50_000): + date += datetime.timedelta(hours=1) + power += i + data.append((date, {"magnitude": power, "unit": "watt_hour"},)) + return data + + @pytest.mark.asyncio + async def test_one_entry_insufficient_to_find_diff(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [] + + @pytest.mark.asyncio + async def test_two_entries_provides_diff_with_second_time(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 13, 0, 0), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 1 + assert output[0][0] == datetime.datetime(2020, 4, 1, 13, 0, 0) + assert output[0][1] == pytest.approx(9.0, 0.0001) + + @pytest.mark.asyncio + async def test_nonstandard_units_can_be_used(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 13, 0, 0), + {"magnitude": 10000.0, "unit": "joule"}, + ), + ( + datetime.datetime(2020, 4, 1, 14, 0, 0), + {"magnitude": 3.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 2 + assert output[0][0] == datetime.datetime(2020, 4, 1, 13, 0, 0) + assert output[0][1] == pytest.approx(1.7777, 0.001) + assert output[1][0] == datetime.datetime(2020, 4, 1, 14, 0, 0) + assert output[1][1] == pytest.approx(0.22222, 0.001) + + @pytest.mark.asyncio + async def test_fractional_hour(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 23, 42), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 1 + assert output[0][0] == datetime.datetime(2020, 4, 1, 12, 23, 42) + assert output[0][1] == pytest.approx(22.7848, 0.001) + + @pytest.mark.asyncio + async def test_diff_happens_pairwise(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 23, 42), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 13, 23, 42), + {"magnitude": 13.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 2 + assert output[0][0] == datetime.datetime(2020, 4, 1, 12, 23, 42) + assert output[0][1] == pytest.approx(22.7848, 0.001) + assert output[1][0] == datetime.datetime(2020, 4, 1, 13, 23, 42) + assert output[1][1] == pytest.approx(3, 0.001) + + @pytest.mark.asyncio + async def test_None_ignored(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + (datetime.datetime(2020, 4, 1, 12, 58, 0), None,), + ( + datetime.datetime(2020, 4, 1, 13, 0, 0), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 1 + assert output[0][0] == datetime.datetime(2020, 4, 1, 13, 0, 0) + assert output[0][1] == pytest.approx(9.0, 0.0001) + + @pytest.mark.asyncio + @pytest.mark.performance + async def test_performance_of_cleaner(self, cleaner, huge_data_set): + import cProfile + + # Generate data point objects before profiling starts + datapoints = await consume(generate_datapoints(huge_data_set)) + profiler = cProfile.Profile() + profiler.enable() + + # Run the cleaner to completion + await consume(cleaner(datapoints)) + + profiler.disable() + cleaner_stat = [ + stat for stat in profiler.getstats() if stat.code == cleaner.__code__ + ][0] + # Assert that the cleaner may take no more than 0.5 seconds to process + # these 50k data points + assert cleaner_stat.totaltime < 0.5 + + +class TestTemperatureMap: + @pytest.fixture + def temperature_data(self): + return { + (53.8667, -1.3333): -1, + (53.35, -2.2833): 1, + (52.45, -1.7333): 3, + (51.5, -0.1333): 6, + (51.55, -2.5667): 5, + (54.9667, -1.6167): -1, + (55.9667, -3.2167): -1, + (54.7667, -1.5833): 0, + (53.7667, -0.3): 1, + (53.7667, -3.0167): 0, + (51.4833, -3.1833): 4, + (53.2667, -3.5167): 2, + (52.0833, -2.8): 2, + (52.0167, -0.6): 2, + (52.6667, 1.2667): 5, + (50.4333, -4.9833): 9, + (50.35, -4.1167): 10, + (50.5167, -2.45): 9, + (50.8333, -1.1667): 9, + (56.45, -5.4333): 4, + (57.5333, -4.05): -2, + (54.5167, -3.6167): 3, + (53.0833, 0.2667): 4, + (51.35, 1.3333): 7, + (50.8833, 0.3167): 8, + (58.45, -3.1): 3, + (50.1, -5.6667): 9, + (58.2167, -6.3333): 4, + (55.6833, -6.25): 7, + } + + @pytest.fixture + def temperature_datapoints(self, migrated_db, db_session, temperature_data): + datas = [] + now = datetime.datetime.now() + for (coord, temp) in temperature_data.items(): + deployment_id = uuid.uuid4() + datas.append( + DataPoint( + sensor_name="Location", + deployment_id=deployment_id, + collected_at=now, + data=coord, + ) + ) + datas.append( + DataPoint( + sensor_name="Temperature", + deployment_id=deployment_id, + collected_at=now, + data=temp, + ) + ) + return datas + + @pytest.fixture + def populated_db(self, migrated_db, db_session, temperature_datapoints): + for data in temperature_datapoints: + insert = datapoint_table.insert().values(**data._asdict()) + db_session.execute(insert) + + @pytest.fixture + def cleaner(self): + return analysis.get_map_cleaner_for("Temperature") + + @pytest.fixture + def get_data(self, db_session): + db_session_var.set(db_session) + return analysis.get_all_data() + + @pytest.mark.asyncio + async def test_latest_coord_temp_cleaner( + self, temperature_data, populated_db, get_data, cleaner + ): + data = get_data() + deployments = 0 + async for deployment, data_points in data: + deployments += 1 + cleaned = {a async for a in cleaner(data_points)} + # There should only be one deployment + assert deployments == 1 + expected = set(temperature_data.items()) + assert cleaned == expected + + @pytest.mark.asyncio + async def test_newer_items_superceed_older( + self, db_session, temperature_datapoints, populated_db, get_data, cleaner + ): + # Pick any of the deployment ids and find the pair of DataPoints in that deployment id + deployment_1 = temperature_datapoints[0].deployment_id + existing = [ + datapoint + for datapoint in temperature_datapoints + if datapoint.deployment_id == deployment_1 + ] + old_location = [ + datapoint for datapoint in existing if datapoint.sensor_name == "Location" + ][0] + old_temperature = [ + datapoint + for datapoint in existing + if datapoint.sensor_name == "Temperature" + ][0] + + new_location = DataPoint( + sensor_name="Location", + deployment_id=deployment_1, + collected_at=datetime.datetime(2031, 4, 1, 12, 0, 0), + data=(-10.5, 150.1), + ) + new_temperature = DataPoint( + sensor_name="Temperature", + deployment_id=deployment_1, + collected_at=datetime.datetime(2031, 4, 1, 12, 0, 0), + data=21, + ) + for data in [new_location, new_temperature]: + insert = datapoint_table.insert().values(**data._asdict()) + db_session.execute(insert) + + data = get_data() + deployments = 0 + async for deployment, data_points in data: + deployments += 1 + cleaned = {a async for a in cleaner(data_points)} + # There should only be one deployment + assert deployments == 1 + + # We expect the newer one, not the older + assert (new_location.data, new_temperature.data) in cleaned + assert (old_location.data, old_temperature.data) not in cleaned + # The cleaner converts two data points to one plottable + assert len(cleaned) == len(temperature_datapoints) / 2 diff --git a/Ch10/apd.aggregation-chapter10-ex01/tests/test_cli.py b/Ch10/apd.aggregation-chapter10-ex01/tests/test_cli.py new file mode 100644 index 0000000..5cab441 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10-ex01/tests/test_cli.py @@ -0,0 +1,155 @@ +from unittest import mock +import uuid + +from click.testing import CliRunner +import pytest + +import apd.aggregation.cli +from apd.aggregation.database import Deployment, deployment_table + + +@pytest.mark.functional +def test_sensors_are_passed_to_get_data_points(db_uri): + runner = CliRunner() + with mock.patch("apd.aggregation.collect.get_data_points") as get_data_points: + runner.invoke( + apd.aggregation.cli.collect_sensor_data, + [ + "http://localhost", + "http://otherhost", + "--db", + db_uri, + "--api-key", + "key", + ], + ) + calls = get_data_points.call_args_list + assert len(calls) == 2 + details = {call[0] for call in get_data_points.call_args_list} + assert details == { + ("http://localhost", "key"), + ("http://otherhost", "key"), + } + + +@pytest.mark.functional +def test_add_deployment_to_db(db_uri, db_session, migrated_db): + runner = CliRunner() + deployment_id = uuid.UUID("76587cdd42dc489ea1d220e9b0bc62ca") + with mock.patch("apd.aggregation.collect.get_deployment_id") as get_deployment_id: + get_deployment_id.return_value = deployment_id + runner.invoke( + apd.aggregation.cli.deployments, + ["add", "http://otherhost", "Other", "--db", db_uri, "--api-key", "key"], + ) + deployments = db_session.query(deployment_table).all() + assert len(deployments) == 1 + deployment = Deployment.from_sql_result(deployments[0]) + assert deployment.uri == "http://otherhost" + assert deployment.api_key == "key" + assert deployment.id == deployment_id + + +@pytest.mark.functional +def test_use_stored_deployments(db_uri, migrated_db): + runner = CliRunner() + + deployment_id = uuid.UUID("76587cdd42dc489ea1d220e9b0bc62ca") + with mock.patch("apd.aggregation.collect.get_deployment_id") as get_deployment_id: + get_deployment_id.return_value = deployment_id + runner.invoke( + apd.aggregation.cli.deployments, + [ + "add", + "http://specifiedhost", + "Specified", + "--db", + db_uri, + "--api-key", + "an_api_key", + ], + ) + + with mock.patch("apd.aggregation.collect.get_data_points") as get_data_points: + runner.invoke( + apd.aggregation.cli.collect_sensor_data, ["--db", db_uri], + ) + calls = get_data_points.call_args_list + assert len(calls) == 1 + details = {call[0] for call in get_data_points.call_args_list} + assert details == { + ("http://specifiedhost", "an_api_key"), + } + + +@pytest.mark.functional +def test_list_deployments(db_uri, migrated_db): + runner = CliRunner() + + deployment_id = uuid.UUID("76587cdd42dc489ea1d220e9b0bc62ca") + with mock.patch("apd.aggregation.collect.get_deployment_id") as get_deployment_id: + get_deployment_id.return_value = deployment_id + runner.invoke( + apd.aggregation.cli.deployments, + [ + "add", + "http://specifiedhost", + "Specified", + "--db", + db_uri, + "--api-key", + "an_api_key", + ], + ) + + result = runner.invoke(apd.aggregation.cli.deployments, ["list", "--db", db_uri],) + expected = """Specified +ID 76587cdd42dc489ea1d220e9b0bc62ca +URI http://specifiedhost +API key an_api_key +Colour None + +""" + assert result.output == expected + + +@pytest.mark.functional +def test_edit_deployment(db_uri, migrated_db): + runner = CliRunner() + return + deployment_id = uuid.UUID("76587cdd42dc489ea1d220e9b0bc62ca") + with mock.patch("apd.aggregation.collect.get_deployment_id") as get_deployment_id: + get_deployment_id.return_value = deployment_id + runner.invoke( + apd.aggregation.cli.deployments, + [ + "add", + "http://specifiedhost", + "Specified", + "--db", + db_uri, + "--api-key", + "an_api_key", + ], + ) + + result = runner.invoke( + apd.aggregation.cli.deployments, + [ + "edit", + "--db", + db_uri, + deployment_id.hex(), + "--colour", + "red" "--name", + "New name", + ], + ) + expected = """New name +ID 76587cdd42dc489ea1d220e9b0bc62ca +URI http://specifiedhost +API key an_api_key +Colour red + +""" + assert result.output == expected diff --git a/Ch10/apd.aggregation-chapter10-ex01/tests/test_http_get.py b/Ch10/apd.aggregation-chapter10-ex01/tests/test_http_get.py new file mode 100644 index 0000000..df575c6 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10-ex01/tests/test_http_get.py @@ -0,0 +1,188 @@ +from concurrent.futures import ThreadPoolExecutor +import datetime +import typing as t +from unittest.mock import patch, MagicMock +import wsgiref.simple_server + +import aiohttp +from apd.sensors.base import Sensor +from apd.sensors.sensors import PythonVersion, ACStatus +from apd.sensors.wsgi import set_up_config +import flask +import pytest + +from apd.sensors.wsgi import v21 + +from apd.aggregation import collect +from apd.aggregation.database import Deployment + +pytestmark = [pytest.mark.functional] + + +@pytest.fixture +def sensors() -> t.Iterator[t.List[Sensor[t.Any]]]: + """ Patch the get_sensors method to return a known pair of sensors only """ + data: t.List[Sensor[t.Any]] = [PythonVersion(), ACStatus()] + with patch("apd.sensors.cli.get_sensors") as get_sensors: + get_sensors.return_value = data + yield data + + +def get_independent_flask_app(name: str) -> flask.Flask: + """ Create a new flask app with the v20 API blueprint loaded, so multiple copies + of the app can be run in parallel without conflicting configuration """ + app = flask.Flask(name) + app.register_blueprint(v21.version, url_prefix="/v/2.1") + return app + + +def run_server_in_thread( + name: str, config: t.Dict[str, t.Any], port: int +) -> t.Iterator[str]: + # Create a new flask app and load in required code, to prevent config conflicts + app = get_independent_flask_app(name) + flask_app = set_up_config(config, app) + server = wsgiref.simple_server.make_server("localhost", port, flask_app) + + with ThreadPoolExecutor() as pool: + pool.submit(server.serve_forever) + yield f"http://localhost:{port}/" + server.shutdown() + + +@pytest.fixture(scope="module") +def http_server(): + yield from run_server_in_thread( + "standard", + { + "APD_SENSORS_API_KEY": "testing", + "APD_SENSORS_DEPLOYMENT_ID": "a46b1d1207fd4cdcad39bbdf706dfe29", + }, + 12081, + ) + + +@pytest.fixture(scope="module") +def bad_api_key_http_server(): + yield from run_server_in_thread( + "alternate", + { + "APD_SENSORS_API_KEY": "penny", + "APD_SENSORS_DEPLOYMENT_ID": "38cf2bae9adb445fad946c82e290487a", + }, + 12082, + ) + + +class TestGetDataPoints: + @pytest.fixture + def mut(self): + return collect.get_data_points + + @pytest.mark.asyncio + async def test_get_data_points( + self, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + # Get the data from the server, storing the time before and after + # as bounds for the collected_at value + async with aiohttp.ClientSession() as http: + collect.http_session_var.set(http) + time_before = datetime.datetime.now() + results = await mut(http_server, "testing") + time_after = datetime.datetime.now() + + assert len(results) == len(sensors) == 2 + + for (sensor, result) in zip(sensors, results): + assert sensor.from_json_compatible(result.data) == sensor.value() + assert result.sensor_name == sensor.name + assert time_before <= result.collected_at <= time_after + + @pytest.mark.asyncio + async def test_get_data_points_fails_with_bad_api_key( + self, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + with pytest.raises( + ValueError, + match=f"Error loading data from {http_server}: Supply API key in X-API-Key header", + ): + async with aiohttp.ClientSession() as http: + collect.http_session_var.set(http) + await mut(http_server, "incorrect") + + +class TestAddDataFromSensors: + @pytest.fixture + def mut(self): + return collect.add_data_from_sensors + + @pytest.fixture + def mock_db_session(self): + return MagicMock() + + @pytest.mark.asyncio + async def test_get_get_data_from_sensors( + self, mock_db_session, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + results = await mut( + mock_db_session, + [ + Deployment( + id=None, colour=None, name=None, uri=http_server, api_key="testing" + ) + ], + ) + assert mock_db_session.execute.call_count == len(sensors) + assert len(results) == len(sensors) + + @pytest.mark.asyncio + async def test_get_get_data_from_sensors_with_multiple_servers( + self, mock_db_session, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + results = await mut( + mock_db_session, + [ + Deployment( + id=None, colour=None, name=None, uri=http_server, api_key="testing" + ), + Deployment( + id=None, colour=None, name=None, uri=http_server, api_key="testing" + ), + ], + ) + assert mock_db_session.execute.call_count == len(sensors) * 2 + assert len(results) == len(sensors) * 2 + + @pytest.mark.asyncio + async def test_data_points_not_added_if_only_partial_success( + self, + mock_db_session, + sensors: t.List[Sensor[t.Any]], + mut, + http_server: str, + bad_api_key_http_server: str, + ) -> None: + with pytest.raises( + ValueError, + match=f"Error loading data from {bad_api_key_http_server}: Supply API key in X-API-Key header", + ): + await mut( + mock_db_session, + [ + Deployment( + id=None, + colour=None, + name=None, + uri=http_server, + api_key="testing", + ), + Deployment( + id=None, + colour=None, + name=None, + uri=bad_api_key_http_server, + api_key="testing", + ), + ], + ) + assert mock_db_session.execute.call_count == 0 diff --git a/Ch10/apd.aggregation-chapter10-ex01/tests/test_query.py b/Ch10/apd.aggregation-chapter10-ex01/tests/test_query.py new file mode 100644 index 0000000..9b6e0aa --- /dev/null +++ b/Ch10/apd.aggregation-chapter10-ex01/tests/test_query.py @@ -0,0 +1,111 @@ +import datetime +from uuid import UUID + +import pytest + +from apd.aggregation.query import ( + get_data, + get_deployment_ids, + get_data_by_deployment, + db_session_var, +) + + +class TestGetData: + @pytest.fixture + def mut(self): + return get_data + + @pytest.mark.asyncio + @pytest.mark.parametrize( + "filter,num_items_expected", + [ + ({}, 9), + ({"sensor_name": "Test"}, 7), + ({"deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd")}, 5), + ({"collected_after": datetime.datetime(2020, 4, 1, 12, 2, 1)}, 3), + ({"collected_before": datetime.datetime(2020, 4, 1, 12, 2, 1)}, 4), + ( + { + "collected_after": datetime.datetime(2020, 4, 1, 12, 2, 1), + "collected_before": datetime.datetime(2020, 4, 1, 12, 3, 5), + }, + 2, + ), + ], + ) + async def test_iterate_over_items( + self, mut, db_session, populated_db, filter, num_items_expected + ): + db_session_var.set(db_session) + points = [dp async for dp in mut(**filter)] + assert len(points) == num_items_expected + + @pytest.mark.asyncio + async def test_empty_db(self, mut, db_session, migrated_db): + db_session_var.set(db_session) + points = [dp async for dp in mut()] + assert len(points) == 0 + + +class TestGetDeployments: + @pytest.fixture + def mut(self): + return get_deployment_ids + + @pytest.mark.asyncio + async def test_get_all_deployments(self, mut, db_session, populated_db): + db_session_var.set(db_session) + deployment_ids = await mut() + assert set(deployment_ids) == { + UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + } + + @pytest.mark.asyncio + async def test_empty_db(self, mut, db_session, migrated_db): + db_session_var.set(db_session) + deployment_ids = await mut() + assert deployment_ids == [] + + +@pytest.mark.usefixtures("populated_db") +class TestGetDataByDeployment: + @pytest.fixture + def mut(self): + return get_data_by_deployment + + @pytest.mark.asyncio + @pytest.mark.parametrize( + "filter,num_items_expected", [({}, 9), ({"sensor_name": "Test"}, 7)] + ) + async def test_iterate_over_all_items( + self, mut, db_session, filter, num_items_expected + ): + db_session_var.set(db_session) + num_items = 0 + num_deployments = 0 + async for deployment_id, items in mut(**filter): + num_deployments += 1 + async for item in items: + num_items += 1 + assert num_deployments == 2 + assert num_items == num_items_expected + + @pytest.mark.asyncio + @pytest.mark.parametrize( + "filter,num_items_expected", [({}, 5), ({"sensor_name": "Test"}, 4)] + ) + async def test_skip_first_deployment( + self, mut, db_session, filter, num_items_expected + ): + db_session_var.set(db_session) + num_items = 0 + num_deployments = 0 + async for deployment_id, items in mut(**filter): + num_deployments += 1 + if num_deployments == 2: + async for item in items: + num_items += 1 + assert num_deployments == 2 + assert num_items == num_items_expected diff --git a/Ch10/apd.aggregation-chapter10-ex01/tests/test_sensor_aggregation.py b/Ch10/apd.aggregation-chapter10-ex01/tests/test_sensor_aggregation.py new file mode 100644 index 0000000..311dd19 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10-ex01/tests/test_sensor_aggregation.py @@ -0,0 +1,199 @@ +from __future__ import annotations + +import contextlib +from dataclasses import dataclass +import json +import typing as t +from unittest.mock import patch, Mock + +import pytest +import sqlalchemy + +import apd.aggregation.collect +from apd.aggregation.database import Deployment + + +@pytest.fixture +def data() -> t.Any: + return { + "sensors": [ + { + "human_readable": "3.7", + "id": "PythonVersion", + "title": "Python Version", + "value": [3, 7, 2, "final", 0], + }, + { + "human_readable": "Not connected", + "id": "ACStatus", + "title": "AC Connected", + "value": False, + }, + ] + } + + +@dataclass +class FakeAIOHttpClient: + responses: t.Dict[str, str] + + @contextlib.asynccontextmanager + async def get( + self, url: str, headers: t.Optional[t.Dict[str, str]] = None + ) -> t.AsyncIterator[FakeAIOHttpResponse]: + if url in self.responses: + yield FakeAIOHttpResponse(body=self.responses[url]) + else: + yield FakeAIOHttpResponse(body="", status=404) + + +@dataclass +class FakeAIOHttpResponse: + body: str + status: int = 200 + + async def json(self) -> t.Any: + return json.loads(self.body) + + +@pytest.fixture +def mockclient(data) -> FakeAIOHttpClient: + return FakeAIOHttpClient( + { + "http://localhost/v/2.1/sensors/": json.dumps(data), + "http://localhost/v/2.1/deployment_id": json.dumps( + {"deployment_id": "b29ba0ee10f14552b6b21327bb96d3fb"} + ), + } + ) + + +class TestGetDataPoints: + @pytest.fixture + def mut(self): + return apd.aggregation.collect.get_data_points + + @pytest.mark.asyncio + async def test_get_data_points( + self, mut, mockclient: FakeAIOHttpClient, data + ) -> None: + token = apd.aggregation.collect.http_session_var.set(mockclient) + try: + datapoints = await mut("http://localhost", "") + finally: + apd.aggregation.collect.http_session_var.reset(token) + + assert len(datapoints) == len(data["sensors"]) + for sensor in data["sensors"]: + assert sensor["value"] in (datapoint.data for datapoint in datapoints) + assert sensor["id"] in (datapoint.sensor_name for datapoint in datapoints) + + +class TestAddDataFromSensors: + @pytest.fixture + def mut(self): + return apd.aggregation.collect.add_data_from_sensors + + @pytest.fixture(autouse=True) + def patch_aiohttp(self, mockclient): + with patch("aiohttp.ClientSession") as ClientSession: + ClientSession.return_value.__aenter__.return_value = mockclient + yield ClientSession + + @pytest.fixture + def db_session(self): + session = Mock() + sql_result = session.execute.return_value + sql_result.inserted_primary_key = [1] + return session + + @pytest.mark.asyncio + async def test_datapoints_are_added_to_the_session(self, mut, db_session) -> None: + assert db_session.execute.call_count == 0 + datapoints = await mut( + db_session, + [ + Deployment( + id=None, colour=None, name=None, uri="http://localhost", api_key="" + ) + ], + ) + assert db_session.execute.call_count == len(datapoints) + + +@pytest.mark.usefixtures("migrated_db") +class TestDatabaseConnection: + @pytest.fixture(autouse=True) + def patch_aiohttp(self, mockclient): + with patch("aiohttp.ClientSession") as ClientSession: + ClientSession.return_value.__aenter__.return_value = mockclient + yield ClientSession + + @pytest.fixture + def table(self): + return apd.aggregation.database.datapoint_table + + @pytest.fixture + def daily_summary_view(self): + return apd.aggregation.database.daily_summary_view + + @pytest.fixture + def model(self): + return apd.aggregation.database.DataPoint + + @pytest.fixture + def mut(self): + return apd.aggregation.collect.add_data_from_sensors + + @pytest.mark.asyncio + async def test_datapoints_are_added_to_the_session(self, db_session, table) -> None: + datapoints = await apd.aggregation.collect.add_data_from_sensors( + db_session, + [ + Deployment( + id=None, colour=None, name=None, uri="http://localhost", api_key="" + ) + ], + ) + num_points = db_session.query(table).count() + assert num_points == len(datapoints) == 2 + + @pytest.mark.asyncio + async def test_datapoints_can_be_mapped_back_to_DataPoints( + self, mut, db_session, table, model + ) -> None: + datapoints = await mut( + db_session, + [ + Deployment( + id=None, colour=None, name=None, uri="http://localhost", api_key="" + ) + ], + ) + db_points = [ + model.from_sql_result(result) for result in db_session.query(table) + ] + assert db_points == datapoints + + @pytest.mark.asyncio + async def test_daily_summary_view_matches_query( + self, db_session, model, table, daily_summary_view + ) -> None: + await apd.aggregation.collect.add_data_from_sensors( + db_session, + [ + Deployment( + id=None, colour=None, name=None, uri="http://localhost", api_key="" + ) + ], + ) + + headers = table.c.sensor_name, table.c.data + value_counts = ( + db_session.query(*headers, sqlalchemy.func.count(table.c.id)) + .filter(model.collected_on_date == sqlalchemy.func.current_date()) + .group_by(*headers) + ) + + daily_summary_view = db_session.query(daily_summary_view) + assert value_counts.all() == daily_summary_view.all() diff --git a/Ch10/apd.aggregation-chapter10/.coveragerc b/Ch10/apd.aggregation-chapter10/.coveragerc new file mode 100644 index 0000000..e766c69 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10/.coveragerc @@ -0,0 +1,3 @@ +[run] +branch = True +omit = tests/* diff --git a/Ch10/apd.aggregation-chapter10/.pre-commit-config.yaml b/Ch10/apd.aggregation-chapter10/.pre-commit-config.yaml new file mode 100644 index 0000000..d3b6ec7 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10/.pre-commit-config.yaml @@ -0,0 +1,26 @@ +repos: + +- repo: local + hooks: + - id: black + name: black + entry: pipenv run black + args: [--quiet] + language: system + types: [python] + + - id: mypy + name: mypy + exclude: (?x)^( + (.*)/setup.py + )$ + entry: pipenv run mypy + args: ["--follow-imports=skip"] + language: system + types: [python] + + - id: flake8 + name: flake8 + entry: pipenv run flake8 + language: system + types: [python] diff --git a/Ch10/apd.aggregation-chapter10/CHANGES.md b/Ch10/apd.aggregation-chapter10/CHANGES.md new file mode 100644 index 0000000..8e424e5 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10/CHANGES.md @@ -0,0 +1,5 @@ +## Changes + +### 1.0.0 (Unreleased) + +* Generated from skeleton diff --git a/Ch10/apd.aggregation-chapter10/Connect to database.ipynb b/Ch10/apd.aggregation-chapter10/Connect to database.ipynb new file mode 100644 index 0000000..98a74f0 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10/Connect to database.ipynb @@ -0,0 +1,577 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "53635\n" + ] + } + ], + "source": [ + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.database import datapoint_table\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " print(session.query(datapoint_table).count())" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "53635\n" + ] + } + ], + "source": [ + "from apd.aggregation.query import with_database, get_data\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " count = 0\n", + " async for datapoint in get_data():\n", + " count += 1\n", + " print(count)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nO2df5RV5Xnvv88czuAZIhnGAMWJk1FK8cYMMOmk4KXXaiwlkahHIyFW1vKu5uptb1dbSjvtULnFZEEgkhC6bu+695L+olcWRQ0dTTASitqueoUuzIDERIpGRUcKNDhRYYRheO4fZ+9hz56999m/z95zvp+1Zp05++wfz373u9/nfd/neZ9HVBWEEEKIGw21FoAQQki2oaIghBDiCRUFIYQQT6goCCGEeEJFQQghxJMJtRYAAD7ykY9oe3t7rcUghJBc8cILL/y7qk5N+jqZUBTt7e04cOBArcUghJBcISJvpHEdTj0RQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+qej2JyF8B+ByAk6r6CWNbC4AdANoBvA7gC6r6jvHbKgBfAjAM4HdVdXcikhOSIr19/XjwiZcwMDgU6TxNxUrf7OzQRQDAlKYi1tx6HcqdrSPX2bj7CN4eGMSVzSV0L5498htJjiDlbq8LU5qKWDJnBp55+RTeHhjEh0tFnL8wPPKM/WCvB1lDqkWPFZEbALwP4G8tiuIhAKdVdYOI9ACYoqp/LCIfB7AdwC8BuBLAPwD4BVUd9rpGV1eX0j2WZJXevn50P3oIQxeTibRcLAg23jUXALBq52EMDl16XUrFAtbf2ZHZBmQ80NvX77vck6wLZj0I8qxF5AVV7YpdGBtVp55U9Z8AnLZtvh3AVuP/rQDKlu1/p6rnVPU1AK+gojQIyS0bdx9JTEkAwNCwYuPuI9i4+8ioxgoABoeGsXH3kcSuTRCo3JOsC2Y9yCJhF9xNV9XjAKCqx0VkmrG9FcA+y35vGdvGICL3A7gfANra2kKKQUjyvD0wWNNrpHH9esatfJ22J/0ssvqs4zZmi8M2R/WrqltUtUtVu6ZOTXwFOiGhubK5lMo13K6TxvXrmSDlnvSzyOqzDqsoTojIDAAwPk8a298CcJVlv48CeDu8eITUnu7Fs1FscOoDxUOxIOhePBvdi2ejVCyM+q1ULKB78ezErk0QqNyTrAtmPcgiYRXFEwDuNf6/F8Djlu1fFJGJInI1gFkA/iWaiITUlnJnKzYunYvmUjHyuZqKDSOeT0DF28U0YJY7W7H+zg60NpcgAFqbSzRkp0CQcneqC1Oaili+oG3k+OZScdQz9oO1HmQRP15P2wHcCOAjAE4AWAOgF8AjANoAHAOwVFVPG/s/AOA3AFwAsEJVv1dNCHo9EUJIcNLyeqpqzFbVu11+utll/3UA1kURihBCSHbgymxCCCGeUFEQQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhCRUEIIcQTKgpCCCGeUFEQQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhSNR8FIWHp7evHg0+8hIHBoTG/TWosYN0d/rO39fb1Y+PuI3h7YBBXNpfQvXh2bNnAvOQ0mdJUxJpbr0O5szWwLOb+/QODKIhgWBXNpSLOXxjG2aGLsdwDUElYXywIzg9fSkY2pamIJXNm4JmXT43I235FCft+8g6GVVEQwd3zr8LackdscvjFXu7WMq4FTvXA/tyr1RMrbveTZF1OiqoZ7tKAGe7GH719/eh+9BCGLrrXr0KD4BtLq6d/7O3rx6qdhzE4NDyyrVQsxJIm1I+cJsWCYNmnrsK3X+j3LYuT7Flk+YK2VJWFW7kXC1KTlKBe9cB87jv+5U1f9cR+rPV+4q7LaWW449QTSYSNu49UfamGLyo27j7i61z2hnZwaNjXsX7O7fflHxpWbN//ZiBZnGTPItv3v5nq9dzKfWjYX51ISx7g0nMPqiTMY633k2RdThIqCpIIbw8Mxraf2z5+rxH1+laGXUbgScqYBm73lRRe5VKLMqt2zSjlYz13XusJFQVJhCubS7Ht57aP32tEvb6Vgkig88QhYxq43VdSeJVLLcqs2jWjlI/13HmtJ1QUJBG6F89GscH75So0CLoXz/Z1rlKxMGpbqVjwdayfc1eT06RYqBh+g8jiJHsWuXv+Valez63ciwV/dSIteYBLz91vPbEfa72fJOtyklBRkEQod7Zi49K5aC4VHX+f1FjwZcg2z7X+zg60NpcgAFqbS7EYsv3IaTKlqYiNd83F2nJHIFmssgOXeqbNpSKaivG+fgKgsTC6MZvSVMTyBW2j5F04s2VEjoJI6oZswLnczTKuhQeQWz2wPnc/9cTpWOv9JFmXk4ReT4QQklPo9UQIISQTUFEQQgjxJJKiEJHfE5EfishLIrLC2NYiIntE5KjxOSUeUQkhhNSC0IpCRD4B4D4AvwRgLoDPicgsAD0A9qrqLAB7je+EEEJySpQRxX8AsE9Vz6rqBQD/COAOALcD2GrssxVAOZqIhBBCakkURfFDADeIyBUi0gTgFgBXAZiuqscBwPic5nSwiNwvIgdE5MCpU6ciiEEIISRJQisKVf0xgK8B2APgKQCHAFwIcPwWVe1S1a6pU6eGFYMQQkjCRDJmq+pfquonVfUGAKcBHAVwQkRmAIDxeTK6mIQQQmpFVK+nacZnG4A7AWwH8ASAe41d7gXweJRrEEIIqS1RExd9W0SuADAE4LdV9R0R2QDgERH5EoBjAJZGFZLUH1lLakNIPRNJUajqf3LY9lMAN0c5L6lvnJLIvHN2CN2PHQIAKgtCUoYrs0nmyFpSG0LqHebMJqlizR8tAOzqwGmblf6BQXz8v38vUK7pKU1FfHzG5Xju1dO+9rVOccU1Bba69zC2739zTJ5qr/zJ1t8+XCpCBBg4O+S436qdL2LQKJMGAa6/pgUvvf3emPzPZv5st/JvEODX56cfTdYtX/WSOTPw3UPHazIFubr3MLbtO+ZYH1tzkus6Lhg9lqRGXvJHm3mOAcSS13l172E8vO/YmO0LZ7bgB8d+5pg/GYBnWVn3W7njIPyrTX+kGXo8SN5yIJ282m7PzEpcedujkFb0WCoKkhoLNzyN/oynfDQx80e4ydvaXMJzPZ/2da6Zq54MlEqz2rWD7heGggheXX9L7Od1Iky9CFL+YfD7zJKWoxppKQpOPZFYqPQKD8JpRmhSYwHr7ujIfF5gK9VkDXIvQfMtx5lvPCxp5tAOcx9J1yW/95+nOh0FGrNJZHr7+rFih7OSAIAz54fxB48eQnOT/+xgtebK5lJseZ2D5luudu2g+4UhzRzaYe4h6RzTfu8/67mu44KKgkTGjyfS8EWFKnKRP9rMcxxXXme3fNQLZ7a45k+ulmvbul8SL3GaObSD5C0H0smr7ef+85DrOi6oKEhk/A6/fzY4NCp/tFPTYM/73FRsGJVb2v7dD1Oailg4s8X3vqahNK68zmvLHVi+oG1Mnupt913vmj/Znlu5uVTElKai436bls1DyVImDVJRQk75n8382YBz+TdIuoZswDtf9fIFbTXJq20+Mzf1lZdc13FBYzaJjF9jZK0Nf4SMN5gzm+QGP8PvQkPy0wWEkGSgoiCRKXe2YvOyeXCbEZrUWMA3liY/XUAISQa6x5JYMOfLCSHjD44oCCGEeEJFQQghxBMqCkIIIZ5QURBCCPGEioIQQognVBSEEEI8oXssyQT2JDFmxFm63BJSe6goSM1xShJjRpwFmCObkFrDqSdSc7bvf9Nx+/BF5sgmJAtwREFSx54L2itJjDUyrT3v9IJrpozKC91UbMDEYmEkr/RN104dlW8ZSDfncpbwys1t/h5HbvCgctifkVOebDNasD1Per0+y1rA6LEkVYLmzTYjzvrJYeyXNHIuZwmnMrfme3bLWR13OSWRM73enqUdRo8l45KNu4/4biisEWfdpqfCMDRcX1NaTmU+ODQ8UgYbdx8ZoySA+MspyLP3S709y1oRSVGIyO+LyEsi8kMR2S4il4lIi4jsEZGjxueUuIQl+cdvkiN7xNm4czjXS65jwP1eze1eZRFnOSVV5vX0LGtFaEUhIq0AfhdAl6p+AkABwBcB9ADYq6qzAOw1vhMCwF+O4dbmEl76ymdGTSfEncO5XnIdA+73am6PKzd4WDmyel5yiahTTxMAlERkAoAmAG8DuB3AVuP3rQDKEa9BxhF+c0HbiTOHcxo5l7OEU5lbyzmu3OBh5IhKvT3LWhFaUahqP4CvAzgG4DiAn6nq9wFMV9Xjxj7HAUyLQ1AyPvCbC9qOU95pe17opmLDqHPZ8y0D6eVczhL2MreXc1y5wcPI4ZQT277NLU96PT7LWhHa68mwPXwbwDIAAwAeBfAYgD9X1WbLfu+o6hg7hYjcD+B+AGhra/vFN954I5QchBBSr+TB6+lXAbymqqdUdQjATgD/EcAJEZkBAMbnSaeDVXWLqnapatfUqVMjiEEIISRJoiiKYwAWiEiTiAiAmwH8GMATAO419rkXwOPRRCSEEFJLQq/MVtX9IvIYgB8AuACgD8AWAB8C8IiIfAkVZbI0DkEJIYTUhkghPFR1DYA1ts3nUBldEEIIGQdwZTYhhBBPqCgIIYR4QkVBCCHEEyoKQgghnlBREEII8YSKghBCiCdUFIQQQjyhoiCEEOIJc2YTUidUy5udNfIm73iGioKQOsCer7p/YBCrdh4GgEw2vnmTd7zDqSdC6oBqebOzRt7kHe9QURBSB1TLm5018ibveIeKgpA6oFre7KyRN3nHO1QUhNQB1fJmZ428yTveoTGbkDrANADnxYsob/KOd0LnzI6Trq4uPXDgQK3FIISQXJGHnNmEEELqACoKQgghntBGYeGebz2P5149PfJ94cwWbLvv+hpKRAghtYcjCgO7kgCA5149jUWbnq2NQIQQkhHqZkRxdc8uWM32AuC1DUtGvtuVhMnRk2fQ29dPbwtCSN1SFyOKdpuSAAA1tvth1c4XY5eJEELywrhXFPd863nP3+ev21P1HINDF+MShxBCcse4VhS9ff2uU0omJ947n5I0hBCST8a1ovjjb/ubMpqz5qmEJSGEkPwSWlGIyGwROWj5e1dEVohIi4jsEZGjxueUOAUOwrkL/qaM3j03XH0nQgipU0IrClU9oqrzVHUegF8EcBbA3wPoAbBXVWcB2Gt8J4QQklPimnq6GcCrqvoGgNsBbDW2bwVQjukaNaW3r7/WItQVvX39WLjhaVzdswsLNzzN8iekhsSlKL4IYLvx/3RVPQ4Axuc0pwNE5H4ROSAiB06dOhWTGKOZNW1SbOdiZq30WLTpWazYcRD9A4NQVNJgrthxkMqCkBoRecGdiDQCuA3AqiDHqeoWAFuASvTYqHI4cfZ8fG6tWcisVQ/J5u/51vM4evKM428rHzmYi/uth+dEorO69zC2738Tw6ooiODu+Vdhbbmj1mI5EsfK7M8C+IGqnjC+nxCRGap6XERmADgZwzVCEWfj/uFSMbZzhWHOmqdGGd3Ha7J5L3fmi7WPiF+VRZueHaXozNEQML6eE4mGvZ4Mq+LhfccAIJPKIo6pp7txadoJAJ4AcK/x/70AHo/hGqFonBCf9++7g0OxnSso89ftcfTMGm/J5q994MlaixAJr9HQih0Hcc2qXZw+I1jde9i1npjKImtEGlGISBOARQD+q2XzBgCPiMiXABwDsDTKNcLS29fv2z3WD0mvzXaKXLu0qw0bdx/xXBTYn4EpsThY3XsYHwznYMjgQbXFnRcVHF2QzCoDLyIpClU9C+AK27afouIFVVO6Hz1YaxEccZq/fvTAMcfItdUaHqAS3DCvWMsi3yoiGH/02CEqijplde/hWosQinEbPbZaeKZJjQWcOZ/uQrvevn78/o6DI41i/8DgqO9hyGsD29vXj1U7D2NwqP4WO57P+ciJBKe3r39kNOlFVjt+uVYUUbxL1t3RMaahKhULng1Xe8+uSN4Jf/TYIccotvXIxt1HAiuJgmT1NQrO6t7DmTRaEm/CeCr5VRIAcM+CtjjEjJ3cKorevn50P3oIQ4YrTP/AILofPQQAOPCG95RNqdgwolDsiqbaA3XyTvCrsNiTvEQY28qwjp/ye3jfMSqKnBHWU+nBJ17yfY2s1oncKooHn3hpREmYDF1UPPjESxio4qG0/s45ACoGRXuD7lfzbzNedHtvge6Q/hAEH021NpeSEIWQqlTzVPJq4Ku1RyaTJxZCyZYGuVUUboXv56F4NeClYoOv/BNmI+emWFbsGL04jG6RowkzNmi/Il5FYe8hzpo2CXtW3hjqXEk8X7sn3MQJDfja5yudHC7oS5ft+98MdVy1fDhWXvzyZ0JdIw1yqyiSYv2dc3yPKqphTaGa5HqHepnvfu7V07GlpbUrCaCS9nbRpmerKguneeowLo/tPbuwfEGb47NzyuF+7sLFMXXTHMH+ae/hTDc0Tlz7wJNjXKInTyxk8j6qTXs6vYNOdcyNUjHbGR9EMzDv29XVpQcOHAh0jN80pnYmNAhe+eotnvvMXv09X2swFs5s8eXCmgavW/J/54Gwz880Z1frSVezG3ld36ssV/ceTsQP3q4wwpTPZQXBy+u863ZWcFISVtKsz15u2hMEeGX9Esxc9WRVZWGVOYgBGwA2L5sXqgMkIi+oalfgAwOSbTWWAF9fOrfqPubwvhppKYnNy+alcp08oMafGcLEacrHdL21BhX8/R0HY/FhT2qx1MP7jkWW74NhzY2ffrXFlVeH7EgExV5X7FzQitJecE2wtDpf/o5/A/bCmS2ZnzqsK0WxfEGbrweSlYfW2lwK3dPIMkHmbb1wC2Hi5HqrqDTGfmwJ7T27atLgxqGE8rjq1wlF+FFnEPy6afvpFFqV2ztn/Rmwly9ow7b7rve1by3JraJoLAT3qc/TPP5lBcFzPZ8eURILZ7bUWKJ4WN17uOpL1xDg0Tq52XoFg/TrqhhHDz8M7T27Umkg80LSSjvOwKGK4Cuv89Im5VZRTJoYzA4fdPomzlwWYbDPNVfrdeQl0Y+fHu+mLwR7VvZ79YoF6ddVEYindz5r2iQsz+giqlpyWYCOXpJK+8qYXa7NOtPsI9q0n32yQm4Vhd+hnUnQ6Zs9K2+sibKYPLEQypC38pHRiX7c5u+TIG4lFfRZ2UcJ1bybg8j386su9e4XbXo2iFgAKvVobbmDdiYbG+6qbiu08vC+Y7i6J/7ou92LZ8d6PqAyCvLTIXnwtutiv3ZS5NY9tiCS+ErdPStvxMINTyceoTUODw97rgZz/j5p+0aQBYdJ9QqDjBKAimJpbS75eq4XtGJTeeXk+55RfJ2YfnnjyP9mWcTlep13wriLKyrl94ePHsLXl87Nte1u1rRJuZI/tyOKtMI5JNHjsBIkflFTQF9r+/xrEtNTKz0WHNrZ5mMqx2xcJ8aYS8TOwOBQoOf63KunAysJANj/wKJR38udramMLPLg+RTFNnDhomLFjoNo79mF2au/F6ke1yKfS5SFnbUit4oiCFHmiMudrYnOMd89/yrf+371Tn9uuybWrHxOLqNxTE95zfK0WxRSb19/1dXY0y9vHGlc/booO+FnyjDpnr3bKLHc2Zr4GoGwtpVrH3hyxJje3rMr0URScdkGzl24iJWPhM+nXot8LnlTEkCdKIqongXmHHPcsYYWzmwJJFvQoap1sOLkBjg4NDzSM3P6i6Nnak5FVWuYly9oG9UDjzIs//f3g/f+42LWtEmZWPw4f92eQPtf3bNrzNqGD4Y1MWVx07VTYzvXRQ0/MhhPEYmTJLeKIu0HXO5sxXM9n8brG5Zg+YK2Mdf3WoK/edm8EUUjuLQ+Imn/aavBP0zPKU0X0ajK3JRzde/hwI4OcbF52TzfvcVJjcEDwF1WkJH6V40T750fZYj3YnXvYdfRXlJZB595+ZTj9rChLMJOZXlNYdMB4RK5NWb7ja+TxLTR2nKHY8O2uvcwtu07NvLSTWosYN0dHSO947SNV0HWI7hRLTLm9MsbQ83f24kaw+nhfcfQ9bGWmi04a7KErvfDujs6Ak9/mS7Ta8sdvu7zglZGCq9VGeHUoszcGvYPfATkdCLsVJabU0Nrc2kkuvScNU855qw3FUk9OCjkVlGsLXfgtVPvV128leaCFjcFUivsnlBh8WrEJxTiCY0ch4dWrV5YQXD7URAvKKvtxqSp2ICzPqMcz1+3Z+R4p4CGteBKlwb6yuYSbrp2amDlFdbppHvxbMcEZtbzVQtSeOCN0+NmRbwbuVUUQGURGlexJs+qnS+6NuJxrWx1Ok+YnBVpM6WpiDW3XhdKyZk91jCZGr8aIMqxOeL7+VW7cMFSoNbEO2nj1UCb924qND+E7WS4JTALcj6zc+inLPM6nZVrRQEAxQb3BVb1viI2rsjFg0MXMWfNU449K7eeYVCcpg7uWdCWekM2QTCqMfVi8sQC+v701yJf0ymBlp9j/vDRQ7jgc9gYtkOVVMNWrYE2R+dpdATDlL+dteUOPPPyKdd3oTXneUNya8w22bjUuSIH9SjKC1Oa/C/7H7oYX0Kdd88NY86ap8Zs7148G6VitOkn+1DfZG25I1VlP3liAa+sX+I7wX2t8yZ8fencWOxQXiTZsJkOIq9tWDIqrpkVPz4rWekQOr0LpWIBm5fNc72/vJB7RWEuYkrbo6hWrLn1OhQDxMl58ImXsHDD07Fc+91zw2MUT7mzFXoxuAFyQoOMPK/1d3a4vkRryx2hAkAGZfrljSMN/2sbloxaVW0nbJiVuCl3tmLTF+J3284S98yvrgSy0iEsd7Zi/Z0do9oir7qdJ3KbuKie6e3r95UbPAlam0t4rufTgbJ3AZWeVdiX5uqeXZFtFW6Z5LywZ5lbOLMl0x2QuKdpzGdda7ySHGU1I15apJW4iIoixzilywzLpMYCzpyvHpcf8O8S29pciiWvc9R4W+Mxp4cTQbOqVSNL5TZ/3Z4xda7elQSQE0UhIs0A/gLAJ1BxUPkNAEcA7ADQDuB1AF9Q1Xe8zkNFEZ6oqTmtaz06v/L9WBerxTU909vXj+5HD2EohL+vmcqyXohrVJH10ROpkJdUqH8G4ClVvRbAXAA/BtADYK+qzgKw1/hOEiLq/GxzU+NIr3HNrdclbhwNQ7mzFR+6LJyDXj0piTihkiBWQisKEZkM4AYAfwkAqnpeVQcA3A5gq7HbVgDlqEISb6I07tb1C6ZxNA4mT4xnIZ7JQIiRTpDkOOOFOAzbWfEiItkhyojiGgCnAPy1iPSJyF+IyCQA01X1OAAYn9OcDhaR+0XkgIgcOHXKOe4L8UeUFdj29QtxhcKOe+74wwGzgV1WkDFZAuuB7sWzfbv3OiHIjhcRyQ5RFtxNAPBJAL+jqvtF5M8QYJpJVbcA2AJUbBQR5Kh7/CbhccJp/UK5szWSUTQJ19GhYW8X3Cy4q2aBcmdr6JAS9apcSXWiKIq3ALylqvuN74+hoihOiMgMVT0uIjMAnIwqJPGme/Hs0A173F4tSTXYfj2ySGVE0PWxFnQ/etA1akHeVwrXgjChVsYLoRWFqv6biLwpIrNV9QiAmwH8yPi7F8AG4/PxWCQlrmQlzWaW4tg4Bb+rpymVOMJSkEuYib/M2FRm4i8g/ajQtSCq19PvANgmIi8CmAfgq6goiEUichTAIuM7SZhyZ6uvcAdW4ooFBSTvc98cwEZhugybAeXM4Hd5SBFKsolb4q9apFKtBZGaClU9qKpdqjpHVcuq+o6q/lRVb1bVWcZnPCvCSFX8hDuw4hYnKyiTJxYS71U9eNt1rr/ZkwBt3/+m435u2wmphluU5FqkUq0FuY/1RC6xttzhK180UHGB9Grcg3iWprE61ktWu/3CLTS135DVhNhp9gjGGVfgzSxDRTHO2LPyRixf0DbKRbKxIJjSVBwVNLHafP03fK6nSNPn3k131d9qCZI2Xn2Meph+yn0+CjKWODLtmT14a/DBYgMwrJV1G7UwELu9q2HHCfbAhrOmTfKd85rUFz/zCMBZD9NPVBTEFb+eM1nzMCqIOE4zWUceTtFvj548g0WbnqWyIGPwStBVCOpFkkM49UQikUUPIzdbhOLSfLJbiPQgodNJ/eCVk7sebF9UFCQS21xWALttTwOveEf1MJ9M4qfc2eoaU40jCkKqELfdICxWzxOv3p+bmyMh1XCLqcYRBSEJ0tvXj4UbnsbVPbuwcMPTVd0MvaLkWkcK5c5W19zi9iCIhJDq0JhNakJvXz9WPnJwpJfWPzCIlY9UQpC4GdC9ouTaDY1L5sxwDIx307VTfckWdgFh3tKnEuIHjihIYniNEP5k54tjGv6LWtnuhpftwT7YeOZl59D15na3EQdQcQkOg1Nq2udePY17vvV8qPMRkhU4oiCRcHNFBSrTQW4987MuYU3dtgPeUXLtEri5Mprb19x6neu5Bjx85r1wy18eNq951tyOawnLorZQUZBI3D3/KtfcB2EXIkWZ+jFpEOepKtNDJWrOjaAEvSd7LnTT7RgAuj7WUlfhrr3KIk1lIXB20nAznY0n5capJxKJteUOzxAafozUdpymn8wwz37o7etP1ENlde9hzFz1JNp7dmHmqid9rRkJ6pbrpnwf3ncMq3YeRv/AIBSXwl2P53hDXmWRJkE8/LK4vigKVBQkMl5Nr1tDZo/4asVp+skpzLMbXo1ykHDlToRtAOIM81DP4a7zwniLYExFQSJTrfF1asjW3RFsCB5k/YPXvlHXRnk1ACWPBB9JL8mqh3hDeWK8RTCmoiCROX+hek/f2pDNWfNUVfuAvYfuZ/3Dok3PVt134GzFUB12qsarAfjAwxCfRvMwnqef8obXau08PicqChIZL08lK6t7D6O9ZxfePVddsdhDgHQvno1S0X26CqjEabrnW8979q4/bIx+kpiqiWsxX9h57LBuvVlngstKS7ftWeDu+Ve5/pbHaUJ6PZHUCGJ8VADtPbtGvi+c2YL1d3ZUHYlUc0U1O3pJhPLwct8NQlgjbVi33jQJ4wl0wcUzwW17Flhb7nB9jnkMI0NFQXKBqQAmNRbGZLQLwjGz98wAAA/USURBVDvG1JNX2Og06e3rH+PqOl7JiptrEji5PzeXio7K+8MRHSpqAaeeSG547tXTgY3gdsy542oNcnvPrsBTQEGnFHr7+rFyx8FRrq4rU1zbkTZJeAKlOd8fdDW/m5liYHAolNt4LaGiIJFIu7JHndoxjdF+FqgF9XsPOqWwaueLsFt3/Fl78omXI0B7zy7MX7fH8fckwq2EYc2t17n+5jRyMEevTuRt/QsVBYlE3gxzQc2fQewFQY3Zgz6dAIJijco778vfR+dXvu87Qm8tOfHeeUdlEbSBToqgq9+r5akYHBrOjQMCbRQkMFaDZN6IKrFXmlU/xuw5a57y5fUVFqsDADC6Ie0fGET3o4cABG/00uLEe+fHbEs73EoUrDYnP3VtYHAolpA1SUNFQQLhFCE1r7jFg7Jz7QNP4orLL/N8+f00CkkrCT8MXVSs2vliphsmJwO/27PKkoesGWbGbwQBkxU7DuLAG6czbdCPNPUkIq+LyGEROSgiB4xtLSKyR0SOGp9T4hGV1Jrevv5xoyQA4Nfnt/na74NhHTE4e1FtGqHWSsJkcOhipqegVtgM/Ct2HHRV6HF5yAZNouVEkDAzdrIeByoOG8VNqjpPVbuM7z0A9qrqLAB7je9kHJCX4b9f4u7B5WEdg8kfPJL+s5w4IX6TaBz5qs2RQNRAi1HdrbMcByoJY/btALYa/28FUE7gGiRlstwDDYo1kdDyBf5GFX7x8tDJEsM1MC997fNzYp8qisNO5jQSCBNoMeq9ZdnmF9VGoQC+LyIK4P+o6hYA01X1OACo6nERmRZVSFJ78ubd5IU5fbZo07M4evJMrOf2conMGnbDt5VJjQWsu6MjVluGea6Nu4/EttgxajRgoHqSK79keKF4ZKKOKBaq6icBfBbAb4vIDX4PFJH7ReSAiBw4dco5bSXJDmmHHZg80TuuU1Tae3bFriTGE2fOD2PFjoOZH0nGMPMUCK/w+HGQ1fKOpChU9W3j8ySAvwfwSwBOiMgMADA+T7ocu0VVu1S1a+rU6gnvSW2JK+BdNVqbS3h9wxK8+OXPpHI94k2cdimrLSAukh7B2RvuqJEBqpHVdRWhFYWITBKRy83/AfwagB8CeALAvcZu9wJ4PKqQpPakEYOoVCyMuk7c9gNSW6J4BbkRhzHbi1WWbIs/v2pX4g4dWXWIiDKimA7gn0XkEIB/AbBLVZ8CsAHAIhE5CmCR8Z3knHJnKxbObIntfJuXzcPmZfPQ2lyCoDKSWH/n6DnxLPuVk+AkMX2ZtAHYXD3f3rMLF8axDaIaoY3ZqvoTAHMdtv8UwM1RhCLZZNt918eyKnvhzJYRhVDNWOqW0J7kj8YJDTh3If6wJUmvbM7y+oa0YKwnEoi15Q68uv4WvL5hSajjZ02bhG33Xe97/3sCTj8tX9CG1zcswfTLG4OKVhM2L5tXaxE8mRDjzE4SSgJIfk1I2PwgYfBKp1tLsikVyQVBlYUA2LPyxkDH+J1+EkMec/9F1/1coOvUiiyH0sgLUdaEZM3L6LIqWRxrBRUFSY3XQo5CqjF5YmHMudPsBY5n8jIvH7bBz5qX0UBG1+FQUZDQBHk5Gwvh5zCqhX5I2pV28sRCrIZ8k1nTJgHI/vRTHvjyd8I1+FnzMspq9jsqChKaIKu1H7prjN+Db772+TmuvyXtQrtwZgte/PJnsO2+62NVFtMvbxyZhit3tkZSpOMJQfCcIUC+VsR7kfYCQr9QUZDQ+HV3XL6gLdJcfLmzFZuXzRtl6GuQynnDuNCWig2jXHObS0XHF2H5grZRhvcwysLJDXjzsnnY/8CiUfs9dNdc11hB5jFhlGJrc2lk5JIHrmwu4Zt1PMLK6tQT81GQ0FzZXPJcZdtq5BKIw2Bb7mz1fZ5qU2Lr75wT6HxWtt13vWeMJDt+3YCtcZCseRisx5U7W0cUox8ZrM4GQWS2Eue02PIFbZ62I3PBZZiYUHHEfMoCaUVACAoVBQnNTddO9Xzxn+v5dIrSXKLalFhankZBG9kgymtSYwFnzruvcraPfESAoEtfNi+bF2tZmUrOXIcjAJoaCzh7fniMYjTLwm+irAdvc0+Xmiduujab4YyoKEhonnnZPZhjaw17RmkHMLQzpamINbdel6hCWndHh2c4CftalXvme/fmnUhC/rXljkDThX5GcFEUmt8sh2mxff+xTEYkoI2ChMarQa5lz8hr+J50bCAA6PvTX0t81OJ1fqc7XFvuCGTjSDp6b5xEKessKQmgNnlC/EBFQULj1SB7jTaSxiuAYdKxgdI0HLuN2tyey9pyh6/psMkTC3UTvbeWI988QUVBQuM1aqj19I8bcTQMXpnMgq48j0L34tko2Vby2iPw2jE9yOxeWK9vWDLyVy9KAog3KvKUpuK4jXhMGwUJjdeooZbeG27GbEE8DUNWpiv8eEq5HcfQIRXKna2xhA4vFmTELrVt/7HAjgMmWXVlpqIgofFyXUwjf4UbbqMZxfiLrVTvjX4aUyJOMc16+/pdFXQYxwFg9CLMrEFFQUJTEHGd869l4+W2viOu+Wi30OcZXVSbe7zq2aaEF+e5TSV5Kei15Y5AimJCg+DrS+dmWuFTUZDQeBmGk84R4EX34tlYtfPwqGxq1ebug+B21xmZkRp33D3/KseG15rXJCnCuqq6LS4MG02g1tCYTULj1UMPEgcqbsqdrVh/Z4dn9rwouLnYpuF6W4+Yrr1m+RZExoRXyRpuMudRSQAcUZAIdC+e7WoI9Bt6ISmSnLt3G0kl7XpbzwRdqBeEhTNbHFd/Rw0CmaTMacMRBQlNludUk8RtJEWf/HziFOxx4cyWTI9Y0oYjCkICkrQNhKQPlYI3VBQkEvXoARR2/QIheYWKgkSicUIDzl246Lh9PFPv6xdIdbzWWuQNKgoSCScl4bWdkHqgt69/1PRk/8AgVu08DCCftr3x3e0jhJAasHH3kVE2LAAYHBquqdt4FKgoSCTcMouNl4xjhITBLYxMVoNlViOyohCRgoj0ich3je8tIrJHRI4an1Oii0myyoO3XYeiLZxqsUHGTcYxQsLgFhQzq6lOqxHHiOL3APzY8r0HwF5VnQVgr/GdjFPKna3YuHTuqFXQGzMet4aQpAkTAj7LRDJmi8hHASwBsA7ASmPz7QBuNP7fCuBZAH8c5Tok29ADiJDRjDcX6qheT5sB/BGAyy3bpqvqcQBQ1eMiMs3pQBG5H8D9ANDWNj6TfRBC6pfx1IEKPfUkIp8DcFJVXwhzvKpuUdUuVe2aOrV2+ZUJIYR4E2VEsRDAbSJyC4DLAEwWkYcBnBCRGcZoYgaAk3EISgghpDaEHlGo6ipV/aiqtgP4IoCnVXU5gCcA3Gvsdi+AxyNLSQghpGYksY5iA4BFInIUwCLjOyGEkJwSSwgPVX0WFe8mqOpPAdwcx3kJIYTUHtEMJFsRkVMA3jC+fgTAv9dQnLBQ7nSh3OlCudPFr9wfU9XEvYEyoSisiMgBVe2qtRxBodzpQrnThXKnS9bkZqwnQgghnlBREEII8SSLimJLrQUICeVOF8qdLpQ7XTIld+ZsFIQQQrJFFkcUhBBCMgQVBSGEEG9U1fMPwFUAnkEl58RLAH7P2N4CYA+Ao8bnFGP7Fcb+7wP4c9u5lgF40TjPQx7XXAfgTQDv27avBPAj4xx7UfEhdjp+IiqhRM4CGATwrxa5hwG8B+AcKnGoMi83gJsAHLbIPQzgnqzLbfz2Z4Zs54zzZKm8bzDK9SKAtzC6fu8FMATgDLJXvx3lBvAxAAct9eTHeZA7B++lW3ln/b28AcAPAFwAcJftt68B+KHxt8xNhpH9q+4AzADwSeP/y1FpBD4O4CEAPcb2HgBfM/6fBOCXAfymtYCMgjsGYKrxfSuAm12uucC4rr2AbgLQZPz/WwB2uBz/3wD8LYBPohKH6tsWuc/nVO6HDHlbUGmQv5EDuX8TwOsA/sSQ8y0A38yQ3O0APg3guwDuwuj6/XcA/sb4LWv1xE3uuQC+Ycj7IQDvAPifOZA76++ll9xZfi/bAcxB5d28y7J9CSqdnwmGnAcATHY6h/lXdepJVY+r6g+M/99DpZfSikqCoq3GblsBlI19zqjqPwP4wHaqawD8q6qeMr7/A4DPu1xznxo5LWzbn1HVs8bXfQA+6iL27QD+lyH3YwB+xSL3hJzKbZb3XQC+B+BzOZD7k6hUxL9W1TMA/gmV3lQm5FbV11X1aRgrYG31uxOVURKQsXriIfc0VOrFVlRGeWcALM6B3Jl+L6vIndn30pD7RVRGQlY+DuAfVfWC8V4eAvAZp3OYBLJRiEg7Ki/QftgSFKFSSb14BcC1ItIuIhNQqQhXBbm+jS+h8mCcaEVlyAZVvYDKC/OLhtwC4Dsisg/A/BzJbZb3FwH8dU7kfhLAFAA/E5GPoNJDas6Q3KOw128Ap4FM1u9R2OT+OQC7UXke61HpwXqRFbmz/F6OwqUdzOJ76cYhAJ8VkSbjvbypmgy+gwKKyIdQmVJYoarvikggyVT1HRH5LQA7UNFw/w8V7RoYEVkOoAuVnqvjLja5fw7AfYbc76pql4hcA+BpVFGWGZIbRn6PDlQaAk8yIneviAwZ1z4F4HkAd2RIbiuXIT/124pdblXVOSJyJYBeWJ5NxuXO8nvpJXeW30s3Gb4vIp/C6PfygtcxvkYUIlJEpXC2qepOY/MJo4DMgqqaoEhVv6Oq81X1egBHABwVkYKIHDT+vuJDll8F8ACA21T1nLFtnXkOY7e3AFxlyL0TFaPk/zV++zcjsdJPUOkRvJ8TuU8A+C8A/h6VgGF5Ke9jAD6rqosAlGD00jMi98juAP4QtvqNyrxzFuu3p9xG/X4bwE9QGd3lQe4sv5decmf5vfSSYZ2qzjPeS0HFKcnzAM8/4yR/C2CzbftGjDY+PWT7/T9jrLV/mvE5BRXvjF+ocm27EacTwKsAZlU57rcB/G9D7icBPGK57iZDXjM6419mXW5LeR9DZZiYl/IuAPgfhrxzAPwbgI1ZkdtSv18B8F2H+r0Fl4zZmSlvN7lRmav+piHvFFR6i3+VA7kz/V76qCeZfC8t+/8NRhuzCwCuMP6fg4rn0wTPc/i4yC8DUFRcsQ4af7egMve5FxVNtBdAi+WY11HpOb6PSm/z48b27ai4df0IwBc9rvmQcZzpjvagsf0fUNHgphxPuBx/GSrDV0XFE+FHxv5/YPxvurP9KCdy3wJgHiqGsTyV9+2o9JjOoOI2uz9jcn8KlR6gojL0HrSU9/OoeOJcNMr9rhzI/QAqLpdW99g8lHfW30uvepLl9/JTxnFnAPwUwEuW99W8/j4A87x0gKoyhAchhBBvuDKbEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhCRUEIIcQTKgpCCCGe/H9DmsqiQBIg1AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from apd.aggregation.query import with_database, get_data\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "async def plot():\n", + " points = [(dp.collected_at, dp.data) async for dp in get_data() if dp.sensor_name==\"RelativeHumidity\"]\n", + " x, y = zip(*points)\n", + " plt.plot_date(x, y, \"o\", xdate=True)\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " await plot()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nO2df5RV5Xnvv88czuAZIhnGAMWJk1FK8cYMMOmk4KXXaiwlkahHIyFW1vKu5uptb1dbSjvtULnFZEEgkhC6bu+695L+olcWRQ0dTTASitqueoUuzIDERIpGRUcKNDhRYYRheO4fZ+9hz56999m/z95zvp+1Zp05++wfz373u9/nfd/neZ9HVBWEEEKIGw21FoAQQki2oaIghBDiCRUFIYQQT6goCCGEeEJFQQghxJMJtRYAAD7ykY9oe3t7rcUghJBc8cILL/y7qk5N+jqZUBTt7e04cOBArcUghJBcISJvpHEdTj0RQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+qej2JyF8B+ByAk6r6CWNbC4AdANoBvA7gC6r6jvHbKgBfAjAM4HdVdXcikhOSIr19/XjwiZcwMDgU6TxNxUrf7OzQRQDAlKYi1tx6HcqdrSPX2bj7CN4eGMSVzSV0L5498htJjiDlbq8LU5qKWDJnBp55+RTeHhjEh0tFnL8wPPKM/WCvB1lDqkWPFZEbALwP4G8tiuIhAKdVdYOI9ACYoqp/LCIfB7AdwC8BuBLAPwD4BVUd9rpGV1eX0j2WZJXevn50P3oIQxeTibRcLAg23jUXALBq52EMDl16XUrFAtbf2ZHZBmQ80NvX77vck6wLZj0I8qxF5AVV7YpdGBtVp55U9Z8AnLZtvh3AVuP/rQDKlu1/p6rnVPU1AK+gojQIyS0bdx9JTEkAwNCwYuPuI9i4+8ioxgoABoeGsXH3kcSuTRCo3JOsC2Y9yCJhF9xNV9XjAKCqx0VkmrG9FcA+y35vGdvGICL3A7gfANra2kKKQUjyvD0wWNNrpHH9esatfJ22J/0ssvqs4zZmi8M2R/WrqltUtUtVu6ZOTXwFOiGhubK5lMo13K6TxvXrmSDlnvSzyOqzDqsoTojIDAAwPk8a298CcJVlv48CeDu8eITUnu7Fs1FscOoDxUOxIOhePBvdi2ejVCyM+q1ULKB78ezErk0QqNyTrAtmPcgiYRXFEwDuNf6/F8Djlu1fFJGJInI1gFkA/iWaiITUlnJnKzYunYvmUjHyuZqKDSOeT0DF28U0YJY7W7H+zg60NpcgAFqbSzRkp0CQcneqC1Oaili+oG3k+OZScdQz9oO1HmQRP15P2wHcCOAjAE4AWAOgF8AjANoAHAOwVFVPG/s/AOA3AFwAsEJVv1dNCHo9EUJIcNLyeqpqzFbVu11+utll/3UA1kURihBCSHbgymxCCCGeUFEQQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhCRUEIIcQTKgpCCCGeUFEQQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhSNR8FIWHp7evHg0+8hIHBoTG/TWosYN0d/rO39fb1Y+PuI3h7YBBXNpfQvXh2bNnAvOQ0mdJUxJpbr0O5szWwLOb+/QODKIhgWBXNpSLOXxjG2aGLsdwDUElYXywIzg9fSkY2pamIJXNm4JmXT43I235FCft+8g6GVVEQwd3zr8LackdscvjFXu7WMq4FTvXA/tyr1RMrbveTZF1OiqoZ7tKAGe7GH719/eh+9BCGLrrXr0KD4BtLq6d/7O3rx6qdhzE4NDyyrVQsxJIm1I+cJsWCYNmnrsK3X+j3LYuT7Flk+YK2VJWFW7kXC1KTlKBe9cB87jv+5U1f9cR+rPV+4q7LaWW449QTSYSNu49UfamGLyo27j7i61z2hnZwaNjXsX7O7fflHxpWbN//ZiBZnGTPItv3v5nq9dzKfWjYX51ISx7g0nMPqiTMY633k2RdThIqCpIIbw8Mxraf2z5+rxH1+laGXUbgScqYBm73lRRe5VKLMqt2zSjlYz13XusJFQVJhCubS7Ht57aP32tEvb6Vgkig88QhYxq43VdSeJVLLcqs2jWjlI/13HmtJ1QUJBG6F89GscH75So0CLoXz/Z1rlKxMGpbqVjwdayfc1eT06RYqBh+g8jiJHsWuXv+Valez63ciwV/dSIteYBLz91vPbEfa72fJOtyklBRkEQod7Zi49K5aC4VHX+f1FjwZcg2z7X+zg60NpcgAFqbS7EYsv3IaTKlqYiNd83F2nJHIFmssgOXeqbNpSKaivG+fgKgsTC6MZvSVMTyBW2j5F04s2VEjoJI6oZswLnczTKuhQeQWz2wPnc/9cTpWOv9JFmXk4ReT4QQklPo9UQIISQTUFEQQgjxJJKiEJHfE5EfishLIrLC2NYiIntE5KjxOSUeUQkhhNSC0IpCRD4B4D4AvwRgLoDPicgsAD0A9qrqLAB7je+EEEJySpQRxX8AsE9Vz6rqBQD/COAOALcD2GrssxVAOZqIhBBCakkURfFDADeIyBUi0gTgFgBXAZiuqscBwPic5nSwiNwvIgdE5MCpU6ciiEEIISRJQisKVf0xgK8B2APgKQCHAFwIcPwWVe1S1a6pU6eGFYMQQkjCRDJmq+pfquonVfUGAKcBHAVwQkRmAIDxeTK6mIQQQmpFVK+nacZnG4A7AWwH8ASAe41d7gXweJRrEEIIqS1RExd9W0SuADAE4LdV9R0R2QDgERH5EoBjAJZGFZLUH1lLakNIPRNJUajqf3LY9lMAN0c5L6lvnJLIvHN2CN2PHQIAKgtCUoYrs0nmyFpSG0LqHebMJqlizR8tAOzqwGmblf6BQXz8v38vUK7pKU1FfHzG5Xju1dO+9rVOccU1Bba69zC2739zTJ5qr/zJ1t8+XCpCBBg4O+S436qdL2LQKJMGAa6/pgUvvf3emPzPZv5st/JvEODX56cfTdYtX/WSOTPw3UPHazIFubr3MLbtO+ZYH1tzkus6Lhg9lqRGXvJHm3mOAcSS13l172E8vO/YmO0LZ7bgB8d+5pg/GYBnWVn3W7njIPyrTX+kGXo8SN5yIJ282m7PzEpcedujkFb0WCoKkhoLNzyN/oynfDQx80e4ydvaXMJzPZ/2da6Zq54MlEqz2rWD7heGggheXX9L7Od1Iky9CFL+YfD7zJKWoxppKQpOPZFYqPQKD8JpRmhSYwHr7ujIfF5gK9VkDXIvQfMtx5lvPCxp5tAOcx9J1yW/95+nOh0FGrNJZHr7+rFih7OSAIAz54fxB48eQnOT/+xgtebK5lJseZ2D5luudu2g+4UhzRzaYe4h6RzTfu8/67mu44KKgkTGjyfS8EWFKnKRP9rMcxxXXme3fNQLZ7a45k+ulmvbul8SL3GaObSD5C0H0smr7ef+85DrOi6oKEhk/A6/fzY4NCp/tFPTYM/73FRsGJVb2v7dD1Oailg4s8X3vqahNK68zmvLHVi+oG1Mnupt913vmj/Znlu5uVTElKai436bls1DyVImDVJRQk75n8382YBz+TdIuoZswDtf9fIFbTXJq20+Mzf1lZdc13FBYzaJjF9jZK0Nf4SMN5gzm+QGP8PvQkPy0wWEkGSgoiCRKXe2YvOyeXCbEZrUWMA3liY/XUAISQa6x5JYMOfLCSHjD44oCCGEeEJFQQghxBMqCkIIIZ5QURBCCPGEioIQQognVBSEEEI8oXssyQT2JDFmxFm63BJSe6goSM1xShJjRpwFmCObkFrDqSdSc7bvf9Nx+/BF5sgmJAtwREFSx54L2itJjDUyrT3v9IJrpozKC91UbMDEYmEkr/RN104dlW8ZSDfncpbwys1t/h5HbvCgctifkVOebDNasD1Per0+y1rA6LEkVYLmzTYjzvrJYeyXNHIuZwmnMrfme3bLWR13OSWRM73enqUdRo8l45KNu4/4biisEWfdpqfCMDRcX1NaTmU+ODQ8UgYbdx8ZoySA+MspyLP3S709y1oRSVGIyO+LyEsi8kMR2S4il4lIi4jsEZGjxueUuIQl+cdvkiN7xNm4czjXS65jwP1eze1eZRFnOSVV5vX0LGtFaEUhIq0AfhdAl6p+AkABwBcB9ADYq6qzAOw1vhMCwF+O4dbmEl76ymdGTSfEncO5XnIdA+73am6PKzd4WDmyel5yiahTTxMAlERkAoAmAG8DuB3AVuP3rQDKEa9BxhF+c0HbiTOHcxo5l7OEU5lbyzmu3OBh5IhKvT3LWhFaUahqP4CvAzgG4DiAn6nq9wFMV9Xjxj7HAUyLQ1AyPvCbC9qOU95pe17opmLDqHPZ8y0D6eVczhL2MreXc1y5wcPI4ZQT277NLU96PT7LWhHa68mwPXwbwDIAAwAeBfAYgD9X1WbLfu+o6hg7hYjcD+B+AGhra/vFN954I5QchBBSr+TB6+lXAbymqqdUdQjATgD/EcAJEZkBAMbnSaeDVXWLqnapatfUqVMjiEEIISRJoiiKYwAWiEiTiAiAmwH8GMATAO419rkXwOPRRCSEEFJLQq/MVtX9IvIYgB8AuACgD8AWAB8C8IiIfAkVZbI0DkEJIYTUhkghPFR1DYA1ts3nUBldEEIIGQdwZTYhhBBPqCgIIYR4QkVBCCHEEyoKQgghnlBREEII8YSKghBCiCdUFIQQQjyhoiCEEOIJc2YTUidUy5udNfIm73iGioKQOsCer7p/YBCrdh4GgEw2vnmTd7zDqSdC6oBqebOzRt7kHe9QURBSB1TLm5018ibveIeKgpA6oFre7KyRN3nHO1QUhNQB1fJmZ428yTveoTGbkDrANADnxYsob/KOd0LnzI6Trq4uPXDgQK3FIISQXJGHnNmEEELqACoKQgghntBGYeGebz2P5149PfJ94cwWbLvv+hpKRAghtYcjCgO7kgCA5149jUWbnq2NQIQQkhHqZkRxdc8uWM32AuC1DUtGvtuVhMnRk2fQ29dPbwtCSN1SFyOKdpuSAAA1tvth1c4XY5eJEELywrhXFPd863nP3+ev21P1HINDF+MShxBCcse4VhS9ff2uU0omJ947n5I0hBCST8a1ovjjb/ubMpqz5qmEJSGEkPwSWlGIyGwROWj5e1dEVohIi4jsEZGjxueUOAUOwrkL/qaM3j03XH0nQgipU0IrClU9oqrzVHUegF8EcBbA3wPoAbBXVWcB2Gt8J4QQklPimnq6GcCrqvoGgNsBbDW2bwVQjukaNaW3r7/WItQVvX39WLjhaVzdswsLNzzN8iekhsSlKL4IYLvx/3RVPQ4Axuc0pwNE5H4ROSAiB06dOhWTGKOZNW1SbOdiZq30WLTpWazYcRD9A4NQVNJgrthxkMqCkBoRecGdiDQCuA3AqiDHqeoWAFuASvTYqHI4cfZ8fG6tWcisVQ/J5u/51vM4evKM428rHzmYi/uth+dEorO69zC2738Tw6ooiODu+Vdhbbmj1mI5EsfK7M8C+IGqnjC+nxCRGap6XERmADgZwzVCEWfj/uFSMbZzhWHOmqdGGd3Ha7J5L3fmi7WPiF+VRZueHaXozNEQML6eE4mGvZ4Mq+LhfccAIJPKIo6pp7txadoJAJ4AcK/x/70AHo/hGqFonBCf9++7g0OxnSso89ftcfTMGm/J5q994MlaixAJr9HQih0Hcc2qXZw+I1jde9i1npjKImtEGlGISBOARQD+q2XzBgCPiMiXABwDsDTKNcLS29fv2z3WD0mvzXaKXLu0qw0bdx/xXBTYn4EpsThY3XsYHwznYMjgQbXFnRcVHF2QzCoDLyIpClU9C+AK27afouIFVVO6Hz1YaxEccZq/fvTAMcfItdUaHqAS3DCvWMsi3yoiGH/02CEqijplde/hWosQinEbPbZaeKZJjQWcOZ/uQrvevn78/o6DI41i/8DgqO9hyGsD29vXj1U7D2NwqP4WO57P+ciJBKe3r39kNOlFVjt+uVYUUbxL1t3RMaahKhULng1Xe8+uSN4Jf/TYIccotvXIxt1HAiuJgmT1NQrO6t7DmTRaEm/CeCr5VRIAcM+CtjjEjJ3cKorevn50P3oIQ4YrTP/AILofPQQAOPCG95RNqdgwolDsiqbaA3XyTvCrsNiTvEQY28qwjp/ye3jfMSqKnBHWU+nBJ17yfY2s1oncKooHn3hpREmYDF1UPPjESxio4qG0/s45ACoGRXuD7lfzbzNedHtvge6Q/hAEH021NpeSEIWQqlTzVPJq4Ku1RyaTJxZCyZYGuVUUboXv56F4NeClYoOv/BNmI+emWFbsGL04jG6RowkzNmi/Il5FYe8hzpo2CXtW3hjqXEk8X7sn3MQJDfja5yudHC7oS5ft+98MdVy1fDhWXvzyZ0JdIw1yqyiSYv2dc3yPKqphTaGa5HqHepnvfu7V07GlpbUrCaCS9nbRpmerKguneeowLo/tPbuwfEGb47NzyuF+7sLFMXXTHMH+ae/hTDc0Tlz7wJNjXKInTyxk8j6qTXs6vYNOdcyNUjHbGR9EMzDv29XVpQcOHAh0jN80pnYmNAhe+eotnvvMXv09X2swFs5s8eXCmgavW/J/54Gwz880Z1frSVezG3ld36ssV/ceTsQP3q4wwpTPZQXBy+u863ZWcFISVtKsz15u2hMEeGX9Esxc9WRVZWGVOYgBGwA2L5sXqgMkIi+oalfgAwOSbTWWAF9fOrfqPubwvhppKYnNy+alcp08oMafGcLEacrHdL21BhX8/R0HY/FhT2qx1MP7jkWW74NhzY2ffrXFlVeH7EgExV5X7FzQitJecE2wtDpf/o5/A/bCmS2ZnzqsK0WxfEGbrweSlYfW2lwK3dPIMkHmbb1wC2Hi5HqrqDTGfmwJ7T27atLgxqGE8rjq1wlF+FFnEPy6afvpFFqV2ztn/Rmwly9ow7b7rve1by3JraJoLAT3qc/TPP5lBcFzPZ8eURILZ7bUWKJ4WN17uOpL1xDg0Tq52XoFg/TrqhhHDz8M7T27Umkg80LSSjvOwKGK4Cuv89Im5VZRTJoYzA4fdPomzlwWYbDPNVfrdeQl0Y+fHu+mLwR7VvZ79YoF6ddVEYindz5r2iQsz+giqlpyWYCOXpJK+8qYXa7NOtPsI9q0n32yQm4Vhd+hnUnQ6Zs9K2+sibKYPLEQypC38pHRiX7c5u+TIG4lFfRZ2UcJ1bybg8j386su9e4XbXo2iFgAKvVobbmDdiYbG+6qbiu08vC+Y7i6J/7ou92LZ8d6PqAyCvLTIXnwtutiv3ZS5NY9tiCS+ErdPStvxMINTyceoTUODw97rgZz/j5p+0aQBYdJ9QqDjBKAimJpbS75eq4XtGJTeeXk+55RfJ2YfnnjyP9mWcTlep13wriLKyrl94ePHsLXl87Nte1u1rRJuZI/tyOKtMI5JNHjsBIkflFTQF9r+/xrEtNTKz0WHNrZ5mMqx2xcJ8aYS8TOwOBQoOf63KunAysJANj/wKJR38udramMLPLg+RTFNnDhomLFjoNo79mF2au/F6ke1yKfS5SFnbUit4oiCFHmiMudrYnOMd89/yrf+371Tn9uuybWrHxOLqNxTE95zfK0WxRSb19/1dXY0y9vHGlc/booO+FnyjDpnr3bKLHc2Zr4GoGwtpVrH3hyxJje3rMr0URScdkGzl24iJWPhM+nXot8LnlTEkCdKIqongXmHHPcsYYWzmwJJFvQoap1sOLkBjg4NDzSM3P6i6Nnak5FVWuYly9oG9UDjzIs//f3g/f+42LWtEmZWPw4f92eQPtf3bNrzNqGD4Y1MWVx07VTYzvXRQ0/MhhPEYmTJLeKIu0HXO5sxXM9n8brG5Zg+YK2Mdf3WoK/edm8EUUjuLQ+Imn/aavBP0zPKU0X0ajK3JRzde/hwI4OcbF52TzfvcVJjcEDwF1WkJH6V40T750fZYj3YnXvYdfRXlJZB595+ZTj9rChLMJOZXlNYdMB4RK5NWb7ja+TxLTR2nKHY8O2uvcwtu07NvLSTWosYN0dHSO947SNV0HWI7hRLTLm9MsbQ83f24kaw+nhfcfQ9bGWmi04a7KErvfDujs6Ak9/mS7Ta8sdvu7zglZGCq9VGeHUoszcGvYPfATkdCLsVJabU0Nrc2kkuvScNU855qw3FUk9OCjkVlGsLXfgtVPvV128leaCFjcFUivsnlBh8WrEJxTiCY0ch4dWrV5YQXD7URAvKKvtxqSp2ICzPqMcz1+3Z+R4p4CGteBKlwb6yuYSbrp2amDlFdbppHvxbMcEZtbzVQtSeOCN0+NmRbwbuVUUQGURGlexJs+qnS+6NuJxrWx1Ok+YnBVpM6WpiDW3XhdKyZk91jCZGr8aIMqxOeL7+VW7cMFSoNbEO2nj1UCb924qND+E7WS4JTALcj6zc+inLPM6nZVrRQEAxQb3BVb1viI2rsjFg0MXMWfNU449K7eeYVCcpg7uWdCWekM2QTCqMfVi8sQC+v701yJf0ymBlp9j/vDRQ7jgc9gYtkOVVMNWrYE2R+dpdATDlL+dteUOPPPyKdd3oTXneUNya8w22bjUuSIH9SjKC1Oa/C/7H7oYX0Kdd88NY86ap8Zs7148G6VitOkn+1DfZG25I1VlP3liAa+sX+I7wX2t8yZ8fencWOxQXiTZsJkOIq9tWDIqrpkVPz4rWekQOr0LpWIBm5fNc72/vJB7RWEuYkrbo6hWrLn1OhQDxMl58ImXsHDD07Fc+91zw2MUT7mzFXoxuAFyQoOMPK/1d3a4vkRryx2hAkAGZfrljSMN/2sbloxaVW0nbJiVuCl3tmLTF+J3284S98yvrgSy0iEsd7Zi/Z0do9oir7qdJ3KbuKie6e3r95UbPAlam0t4rufTgbJ3AZWeVdiX5uqeXZFtFW6Z5LywZ5lbOLMl0x2QuKdpzGdda7ySHGU1I15apJW4iIoixzilywzLpMYCzpyvHpcf8O8S29pciiWvc9R4W+Mxp4cTQbOqVSNL5TZ/3Z4xda7elQSQE0UhIs0A/gLAJ1BxUPkNAEcA7ADQDuB1AF9Q1Xe8zkNFEZ6oqTmtaz06v/L9WBerxTU909vXj+5HD2EohL+vmcqyXohrVJH10ROpkJdUqH8G4ClVvRbAXAA/BtADYK+qzgKw1/hOEiLq/GxzU+NIr3HNrdclbhwNQ7mzFR+6LJyDXj0piTihkiBWQisKEZkM4AYAfwkAqnpeVQcA3A5gq7HbVgDlqEISb6I07tb1C6ZxNA4mT4xnIZ7JQIiRTpDkOOOFOAzbWfEiItkhyojiGgCnAPy1iPSJyF+IyCQA01X1OAAYn9OcDhaR+0XkgIgcOHXKOe4L8UeUFdj29QtxhcKOe+74wwGzgV1WkDFZAuuB7sWzfbv3OiHIjhcRyQ5RFtxNAPBJAL+jqvtF5M8QYJpJVbcA2AJUbBQR5Kh7/CbhccJp/UK5szWSUTQJ19GhYW8X3Cy4q2aBcmdr6JAS9apcSXWiKIq3ALylqvuN74+hoihOiMgMVT0uIjMAnIwqJPGme/Hs0A173F4tSTXYfj2ySGVE0PWxFnQ/etA1akHeVwrXgjChVsYLoRWFqv6biLwpIrNV9QiAmwH8yPi7F8AG4/PxWCQlrmQlzWaW4tg4Bb+rpymVOMJSkEuYib/M2FRm4i8g/ajQtSCq19PvANgmIi8CmAfgq6goiEUichTAIuM7SZhyZ6uvcAdW4ooFBSTvc98cwEZhugybAeXM4Hd5SBFKsolb4q9apFKtBZGaClU9qKpdqjpHVcuq+o6q/lRVb1bVWcZnPCvCSFX8hDuw4hYnKyiTJxYS71U9eNt1rr/ZkwBt3/+m435u2wmphluU5FqkUq0FuY/1RC6xttzhK180UHGB9Grcg3iWprE61ktWu/3CLTS135DVhNhp9gjGGVfgzSxDRTHO2LPyRixf0DbKRbKxIJjSVBwVNLHafP03fK6nSNPn3k131d9qCZI2Xn2Meph+yn0+CjKWODLtmT14a/DBYgMwrJV1G7UwELu9q2HHCfbAhrOmTfKd85rUFz/zCMBZD9NPVBTEFb+eM1nzMCqIOE4zWUceTtFvj548g0WbnqWyIGPwStBVCOpFkkM49UQikUUPIzdbhOLSfLJbiPQgodNJ/eCVk7sebF9UFCQS21xWALttTwOveEf1MJ9M4qfc2eoaU40jCkKqELfdICxWzxOv3p+bmyMh1XCLqcYRBSEJ0tvXj4UbnsbVPbuwcMPTVd0MvaLkWkcK5c5W19zi9iCIhJDq0JhNakJvXz9WPnJwpJfWPzCIlY9UQpC4GdC9ouTaDY1L5sxwDIx307VTfckWdgFh3tKnEuIHjihIYniNEP5k54tjGv6LWtnuhpftwT7YeOZl59D15na3EQdQcQkOg1Nq2udePY17vvV8qPMRkhU4oiCRcHNFBSrTQW4987MuYU3dtgPeUXLtEri5Mprb19x6neu5Bjx85r1wy18eNq951tyOawnLorZQUZBI3D3/KtfcB2EXIkWZ+jFpEOepKtNDJWrOjaAEvSd7LnTT7RgAuj7WUlfhrr3KIk1lIXB20nAznY0n5capJxKJteUOzxAafozUdpymn8wwz37o7etP1ENlde9hzFz1JNp7dmHmqid9rRkJ6pbrpnwf3ncMq3YeRv/AIBSXwl2P53hDXmWRJkE8/LK4vigKVBQkMl5Nr1tDZo/4asVp+skpzLMbXo1ykHDlToRtAOIM81DP4a7zwniLYExFQSJTrfF1asjW3RFsCB5k/YPXvlHXRnk1ACWPBB9JL8mqh3hDeWK8RTCmoiCROX+hek/f2pDNWfNUVfuAvYfuZ/3Dok3PVt134GzFUB12qsarAfjAwxCfRvMwnqef8obXau08PicqChIZL08lK6t7D6O9ZxfePVddsdhDgHQvno1S0X26CqjEabrnW8979q4/bIx+kpiqiWsxX9h57LBuvVlngstKS7ftWeDu+Ve5/pbHaUJ6PZHUCGJ8VADtPbtGvi+c2YL1d3ZUHYlUc0U1O3pJhPLwct8NQlgjbVi33jQJ4wl0wcUzwW17Flhb7nB9jnkMI0NFQXKBqQAmNRbGZLQLwjGz98wAAA/USURBVDvG1JNX2Og06e3rH+PqOl7JiptrEji5PzeXio7K+8MRHSpqAaeeSG547tXTgY3gdsy542oNcnvPrsBTQEGnFHr7+rFyx8FRrq4rU1zbkTZJeAKlOd8fdDW/m5liYHAolNt4LaGiIJFIu7JHndoxjdF+FqgF9XsPOqWwaueLsFt3/Fl78omXI0B7zy7MX7fH8fckwq2EYc2t17n+5jRyMEevTuRt/QsVBYlE3gxzQc2fQewFQY3Zgz6dAIJijco778vfR+dXvu87Qm8tOfHeeUdlEbSBToqgq9+r5akYHBrOjQMCbRQkMFaDZN6IKrFXmlU/xuw5a57y5fUVFqsDADC6Ie0fGET3o4cABG/00uLEe+fHbEs73EoUrDYnP3VtYHAolpA1SUNFQQLhFCE1r7jFg7Jz7QNP4orLL/N8+f00CkkrCT8MXVSs2vliphsmJwO/27PKkoesGWbGbwQBkxU7DuLAG6czbdCPNPUkIq+LyGEROSgiB4xtLSKyR0SOGp9T4hGV1Jrevv5xoyQA4Nfnt/na74NhHTE4e1FtGqHWSsJkcOhipqegVtgM/Ct2HHRV6HF5yAZNouVEkDAzdrIeByoOG8VNqjpPVbuM7z0A9qrqLAB7je9kHJCX4b9f4u7B5WEdg8kfPJL+s5w4IX6TaBz5qs2RQNRAi1HdrbMcByoJY/btALYa/28FUE7gGiRlstwDDYo1kdDyBf5GFX7x8tDJEsM1MC997fNzYp8qisNO5jQSCBNoMeq9ZdnmF9VGoQC+LyIK4P+o6hYA01X1OACo6nERmRZVSFJ78ubd5IU5fbZo07M4evJMrOf2conMGnbDt5VJjQWsu6MjVluGea6Nu4/EttgxajRgoHqSK79keKF4ZKKOKBaq6icBfBbAb4vIDX4PFJH7ReSAiBw4dco5bSXJDmmHHZg80TuuU1Tae3bFriTGE2fOD2PFjoOZH0nGMPMUCK/w+HGQ1fKOpChU9W3j8ySAvwfwSwBOiMgMADA+T7ocu0VVu1S1a+rU6gnvSW2JK+BdNVqbS3h9wxK8+OXPpHI94k2cdimrLSAukh7B2RvuqJEBqpHVdRWhFYWITBKRy83/AfwagB8CeALAvcZu9wJ4PKqQpPakEYOoVCyMuk7c9gNSW6J4BbkRhzHbi1WWbIs/v2pX4g4dWXWIiDKimA7gn0XkEIB/AbBLVZ8CsAHAIhE5CmCR8Z3knHJnKxbObIntfJuXzcPmZfPQ2lyCoDKSWH/n6DnxLPuVk+AkMX2ZtAHYXD3f3rMLF8axDaIaoY3ZqvoTAHMdtv8UwM1RhCLZZNt918eyKnvhzJYRhVDNWOqW0J7kj8YJDTh3If6wJUmvbM7y+oa0YKwnEoi15Q68uv4WvL5hSajjZ02bhG33Xe97/3sCTj8tX9CG1zcswfTLG4OKVhM2L5tXaxE8mRDjzE4SSgJIfk1I2PwgYfBKp1tLsikVyQVBlYUA2LPyxkDH+J1+EkMec/9F1/1coOvUiiyH0sgLUdaEZM3L6LIqWRxrBRUFSY3XQo5CqjF5YmHMudPsBY5n8jIvH7bBz5qX0UBG1+FQUZDQBHk5Gwvh5zCqhX5I2pV28sRCrIZ8k1nTJgHI/vRTHvjyd8I1+FnzMspq9jsqChKaIKu1H7prjN+Db772+TmuvyXtQrtwZgte/PJnsO2+62NVFtMvbxyZhit3tkZSpOMJQfCcIUC+VsR7kfYCQr9QUZDQ+HV3XL6gLdJcfLmzFZuXzRtl6GuQynnDuNCWig2jXHObS0XHF2H5grZRhvcwysLJDXjzsnnY/8CiUfs9dNdc11hB5jFhlGJrc2lk5JIHrmwu4Zt1PMLK6tQT81GQ0FzZXPJcZdtq5BKIw2Bb7mz1fZ5qU2Lr75wT6HxWtt13vWeMJDt+3YCtcZCseRisx5U7W0cUox8ZrM4GQWS2Eue02PIFbZ62I3PBZZiYUHHEfMoCaUVACAoVBQnNTddO9Xzxn+v5dIrSXKLalFhankZBG9kgymtSYwFnzruvcraPfESAoEtfNi+bF2tZmUrOXIcjAJoaCzh7fniMYjTLwm+irAdvc0+Xmiduujab4YyoKEhonnnZPZhjaw17RmkHMLQzpamINbdel6hCWndHh2c4CftalXvme/fmnUhC/rXljkDThX5GcFEUmt8sh2mxff+xTEYkoI2ChMarQa5lz8hr+J50bCAA6PvTX0t81OJ1fqc7XFvuCGTjSDp6b5xEKessKQmgNnlC/EBFQULj1SB7jTaSxiuAYdKxgdI0HLuN2tyey9pyh6/psMkTC3UTvbeWI988QUVBQuM1aqj19I8bcTQMXpnMgq48j0L34tko2Vby2iPw2jE9yOxeWK9vWDLyVy9KAog3KvKUpuK4jXhMGwUJjdeooZbeG27GbEE8DUNWpiv8eEq5HcfQIRXKna2xhA4vFmTELrVt/7HAjgMmWXVlpqIgofFyXUwjf4UbbqMZxfiLrVTvjX4aUyJOMc16+/pdFXQYxwFg9CLMrEFFQUJTEHGd869l4+W2viOu+Wi30OcZXVSbe7zq2aaEF+e5TSV5Kei15Y5AimJCg+DrS+dmWuFTUZDQeBmGk84R4EX34tlYtfPwqGxq1ebug+B21xmZkRp33D3/KseG15rXJCnCuqq6LS4MG02g1tCYTULj1UMPEgcqbsqdrVh/Z4dn9rwouLnYpuF6W4+Yrr1m+RZExoRXyRpuMudRSQAcUZAIdC+e7WoI9Bt6ISmSnLt3G0kl7XpbzwRdqBeEhTNbHFd/Rw0CmaTMacMRBQlNludUk8RtJEWf/HziFOxx4cyWTI9Y0oYjCkICkrQNhKQPlYI3VBQkEvXoARR2/QIheYWKgkSicUIDzl246Lh9PFPv6xdIdbzWWuQNKgoSCScl4bWdkHqgt69/1PRk/8AgVu08DCCftr3x3e0jhJAasHH3kVE2LAAYHBquqdt4FKgoSCTcMouNl4xjhITBLYxMVoNlViOyohCRgoj0ich3je8tIrJHRI4an1Oii0myyoO3XYeiLZxqsUHGTcYxQsLgFhQzq6lOqxHHiOL3APzY8r0HwF5VnQVgr/GdjFPKna3YuHTuqFXQGzMet4aQpAkTAj7LRDJmi8hHASwBsA7ASmPz7QBuNP7fCuBZAH8c5Tok29ADiJDRjDcX6qheT5sB/BGAyy3bpqvqcQBQ1eMiMs3pQBG5H8D9ANDWNj6TfRBC6pfx1IEKPfUkIp8DcFJVXwhzvKpuUdUuVe2aOrV2+ZUJIYR4E2VEsRDAbSJyC4DLAEwWkYcBnBCRGcZoYgaAk3EISgghpDaEHlGo6ipV/aiqtgP4IoCnVXU5gCcA3Gvsdi+AxyNLSQghpGYksY5iA4BFInIUwCLjOyGEkJwSSwgPVX0WFe8mqOpPAdwcx3kJIYTUHtEMJFsRkVMA3jC+fgTAv9dQnLBQ7nSh3OlCudPFr9wfU9XEvYEyoSisiMgBVe2qtRxBodzpQrnThXKnS9bkZqwnQgghnlBREEII8SSLimJLrQUICeVOF8qdLpQ7XTIld+ZsFIQQQrJFFkcUhBBCMgQVBSGEEG9U1fMPwFUAnkEl58RLAH7P2N4CYA+Ao8bnFGP7Fcb+7wP4c9u5lgF40TjPQx7XXAfgTQDv27avBPAj4xx7UfEhdjp+IiqhRM4CGATwrxa5hwG8B+AcKnGoMi83gJsAHLbIPQzgnqzLbfz2Z4Zs54zzZKm8bzDK9SKAtzC6fu8FMATgDLJXvx3lBvAxAAct9eTHeZA7B++lW3ln/b28AcAPAFwAcJftt68B+KHxt8xNhpH9q+4AzADwSeP/y1FpBD4O4CEAPcb2HgBfM/6fBOCXAfymtYCMgjsGYKrxfSuAm12uucC4rr2AbgLQZPz/WwB2uBz/3wD8LYBPohKH6tsWuc/nVO6HDHlbUGmQv5EDuX8TwOsA/sSQ8y0A38yQ3O0APg3guwDuwuj6/XcA/sb4LWv1xE3uuQC+Ycj7IQDvAPifOZA76++ll9xZfi/bAcxB5d28y7J9CSqdnwmGnAcATHY6h/lXdepJVY+r6g+M/99DpZfSikqCoq3GblsBlI19zqjqPwP4wHaqawD8q6qeMr7/A4DPu1xznxo5LWzbn1HVs8bXfQA+6iL27QD+lyH3YwB+xSL3hJzKbZb3XQC+B+BzOZD7k6hUxL9W1TMA/gmV3lQm5FbV11X1aRgrYG31uxOVURKQsXriIfc0VOrFVlRGeWcALM6B3Jl+L6vIndn30pD7RVRGQlY+DuAfVfWC8V4eAvAZp3OYBLJRiEg7Ki/QftgSFKFSSb14BcC1ItIuIhNQqQhXBbm+jS+h8mCcaEVlyAZVvYDKC/OLhtwC4Dsisg/A/BzJbZb3FwH8dU7kfhLAFAA/E5GPoNJDas6Q3KOw128Ap4FM1u9R2OT+OQC7UXke61HpwXqRFbmz/F6OwqUdzOJ76cYhAJ8VkSbjvbypmgy+gwKKyIdQmVJYoarvikggyVT1HRH5LQA7UNFw/w8V7RoYEVkOoAuVnqvjLja5fw7AfYbc76pql4hcA+BpVFGWGZIbRn6PDlQaAk8yIneviAwZ1z4F4HkAd2RIbiuXIT/124pdblXVOSJyJYBeWJ5NxuXO8nvpJXeW30s3Gb4vIp/C6PfygtcxvkYUIlJEpXC2qepOY/MJo4DMgqqaoEhVv6Oq81X1egBHABwVkYKIHDT+vuJDll8F8ACA21T1nLFtnXkOY7e3AFxlyL0TFaPk/zV++zcjsdJPUOkRvJ8TuU8A+C8A/h6VgGF5Ke9jAD6rqosAlGD00jMi98juAP4QtvqNyrxzFuu3p9xG/X4bwE9QGd3lQe4sv5decmf5vfSSYZ2qzjPeS0HFKcnzAM8/4yR/C2CzbftGjDY+PWT7/T9jrLV/mvE5BRXvjF+ocm27EacTwKsAZlU57rcB/G9D7icBPGK57iZDXjM6419mXW5LeR9DZZiYl/IuAPgfhrxzAPwbgI1ZkdtSv18B8F2H+r0Fl4zZmSlvN7lRmav+piHvFFR6i3+VA7kz/V76qCeZfC8t+/8NRhuzCwCuMP6fg4rn0wTPc/i4yC8DUFRcsQ4af7egMve5FxVNtBdAi+WY11HpOb6PSm/z48b27ai4df0IwBc9rvmQcZzpjvagsf0fUNHgphxPuBx/GSrDV0XFE+FHxv5/YPxvurP9KCdy3wJgHiqGsTyV9+2o9JjOoOI2uz9jcn8KlR6gojL0HrSU9/OoeOJcNMr9rhzI/QAqLpdW99g8lHfW30uvepLl9/JTxnFnAPwUwEuW99W8/j4A87x0gKoyhAchhBBvuDKbEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhCRUEIIcQTKgpCCCGe/H9DmsqiQBIg1AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from apd.aggregation.query import with_database, get_data\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "async def plot():\n", + " points = [(dp.collected_at, dp.data) async for dp in get_data(sensor_name=\"RelativeHumidity\")]\n", + " x, y = zip(*points)\n", + " plt.plot_date(x, y, \"o\", xdate=True)\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " await plot()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nO2de5wU1ZX4v3eaAQbUGZHXgOBoQsQX8pgoRFeTEDUKyMQH6C/+Vo0/XROzwbg+cEUZIsTnGtk1a1Y3UbLJqmgMChOTuGRN1kTMAhpMJEZFfM3wiDqjwgDzuL8/qmqmu6equp7dVdPn+/n0p7tv1+P0rap77j333HOU1hpBEARBcKKi1AIIgiAIyUYUhSAIguCKKApBEATBFVEUgiAIgiuiKARBEARXBpRaAIDhw4frurq6UoshCIKQKjZs2PBXrfWIuM+TCEVRV1fH+vXrSy2GIAhCqlBKvVmM84jpSRAEQXBFFIUgCILgiigKQRAEwRVRFIIgCIIroigEQRAEVwp6PSmlfgDMBnZorY82y4YBjwB1wFZgntb6A/O364FLgC7gG1rrX8QiuSAUkaYtTdzy/C207WsLdZyqTBUA7V3tANQMqmHhcQuZddisnvMs37icbbu2MXroaBZMXdDzmxAffuo9/16oGVTDaXWn8Zt3fsO2Xds4YOAB7Ova13ONvZB/HyQNVSh6rFLqJOBj4IdZiuJ24H2t9a1KqYXAgVrr65RSRwIPAccBY4D/Aj6lte5yO0d9fb0W91ghqTRtaWLRs4vo1J2xHL+yopKbT7gZgMbfNbKna0/Pb4Mzg2n8TGNiG5D+QNOWJs/1Hue9YN0Hfq61UmqD1ro+cmHyKGh60lr/Bng/r3gusML8vAJoyCp/WGu9V2v9BvAahtIQhNSyfOPy2JQEQEd3B8s3Lmf5xuU5jRXAnq49LN+4PLZzC/iq9zjvBes+SCJBF9yN0lq3AGitW5RSI83yscC6rO3eMcv6oJS6DLgMYPz48QHFEIT42bZrW0nPUYzzlzNO9WtXHve1SOq1jnoyW9mU2dq2tNb3aa3rtdb1I0bEvgJdEAIzeujoopzD6TzFOH8546fe474WSb3WQRXFdqVULYD5vsMsfwcYl7XdwUBzcPEEofQsmLqAASq+aDeVFZUsmLqABVMXMDgzOOe3wZnBLJi6ILZzC/iq9zjvBes+SCJB//GTwIXAreb7E1nl/6mUugtjMnsC8PuwQgpCKbEmF4vh9QSI11ORserXS73b3Qvi9QQopR4CPgsMB7YDi4FVwEpgPPAWcK7W+n1z+xuArwCdwJVa66cKCSFeT4IgCP4pltdTwRGF1vp8h59mOmy/DFgWRihBEAQhOcjKbEEQBMEVURSCIAiCK6IoBEEQBFdEUQiCIAiuiKIQBEEQXBFFIQiCILgiikIQBEFwRRSFIAiC4IooCkEQBMEVURSCIAiCK6IoBEEQBFdEUQiCIAiuiKIQBEEQXBFFIQiCILgiikIQBEFwJb78jkLZ07SlyTEr3JABQ7hpxk2eM3o1bWmKLfObm5wW2RnI/Mpibd+yq4UKVUG37qZ6YLXvLGheqFSVdOiOHLmzs6+NHjqaQ/Y/hN9v/z3dupsKVcG5nzqXRdMXRSqHF/LrvdRZ3uzug/zr7ifLodP/ifNejouCGe6KgWS46380bWli0bOL6NSdjttkVIZlJy4r+JA0bWmi8XeN7Ona01M2ODOYxs80hn7AvMhpUVlRyVkTzuKJ157wLIud7Elk/uHzi6osnOq9sqKSm0+4uegNp9t9YF33n/zlJ57uk/x9s/9P1PdysTLciaIQYuHUx06lZVdLwe1qh9byy3N+GehYXvYthFc5LawRgVdZ/B6/VFSoCv7wt38o2vnc6iWK6xqlPOB83b2Q/X+ivpeLpShkjkKIhW27tkW2ndM2Xs8R9vzZODUWccpYDII2gkFxq5dS1Fmhc4apn+xjp/U+EUUhxMLooaMj285pG6/nCHv+bCqU/SMTp4zFwOl/xYVbvZSizgqdM0z9ZB87rfeJKAohFhZMXcAA5e4rkVEZFkxd4OlYgzODc8oGZwZ72tfLsQvJaVFZUcm5nzrXlyx2sieRcz91blHP51TvlRWVkVzXqOSB3uvu9T7J3zf7/8R5L8eJeD0JsWBNzEXh9WRtE4enSCE5LbI9WKaMnOJZlmzZxeupF7t6L6XXk9N9kH/dw3o9xXkvx4lMZguCIKQUmcwWBEEQEoEoCkEQBMGVUIpCKbVAKfVHpdSflFJXmmXDlFJPK6VeNd8PjEZUQRAEoRQEVhRKqaOBS4HjgGOB2UqpCcBCYK3WegKw1vwuCIIgpJQwI4ojgHVa691a607g18CXgLnACnObFUBDOBEFQRCEUhJGUfwROEkpdZBSaghwBjAOGKW1bgEw30fa7ayUukwptV4ptX7nzp0hxBAEQRDiJLCi0FpvBm4DngZ+DvwB8BwxS2t9n9a6XmtdP2LEiKBiCIIgCDETajJba/19rfVUrfVJwPvAq8B2pVQtgPm+I7yYgiAIQqkI6/U00nwfD5wFPAQ8CVxobnIh8ESYcwiCIAilJWwIj58opQ4COoArtNYfKKVuBVYqpS4B3gKKG0RG6BckLamNIJQzoRSF1vpvbMreA2aGOa5Q3tglkWnd28qNv70RQJSFIBQZWZktJI7lG5fbZhLr6O5g+cblJZBIEMobiR4rFJXs/NFBaNnVwnE/Os5X1NWaQTVMPHAi67at87RttokrKhPY0nVLefQvj/aJ2OqWPzn7twMGHoBSira9bbbbLfndkp46USiOH308m9/f3CcSqhVJ1qn+FYp5h88rejRZp3zVp9Wdxs/f+HlJTJBL1y3lkVcesf2tdmhtKqK+RoVEjxWKRlryR1t5joFI8jo7NTjTR0/nxZ0v2uZPBlzrKnu76//nejTRPsfFzKHtJ285FCevtpuSsIgqb3sYJGe20O9IS/5oMHqMQCR5nY/94bG+UmkWOrff7YJQzBzaQe6LuPNqe71mpcjvnU2xFIWYnoRIaNrSxI3P3piTNMfCSlKU9LzA2RSS1c9/8ZtvOcp840EpZg7tIP8j7nvJ6/9P0z0dBpnMFkLTtKWJhf+z0FZJAOzu3M0Nz95A9aDqIksWnNFDR0eW19lvvuVC5/a7XRCKmUM7yH+IO8e01/+f9FzXUSGKQgiNF0+kLt2F1joV+aOtPMdR5XV2ykc9ffR0x/zJhXJtZ2+nUJ5l8Uoxc2j7yVsOxcmr7eX/pyHXdVSIohBC43X4/eG+D2n8TGOPbd2JSlXZ87kqU0VVpsrxuxdqBtUwffR0z9taE6WzDpvF0hOXUj2w2vZ3ryyavoj5h8/v6aVWqArmHz6f+0+7v6c+FIraobU9k6OzDpuV81v1wGpqBtXYbnfL39ySUycKxfTR03PktmSff/h81/pXqKJOZAO29Qy98oat/yBY18yJ7GtQDshkthAar5ORpZ74E4T+huTMFlKDl+F3RmXKZpguCP0NURRCaGYdNotb/+bWHJNRNkMGDGHZicvKZpguCP0NcY8VIsGylwuC0P+QEYUgCILgiigKQRAEwRVRFIIgCIIroigEQRAEV0RRCIIgCK6IohAEQRBcEfdYIRHkx/+3Is6Ky60glB4ZUQglxy5JjBVxtmlLU4mkEgTBQhSFUHIe/cujtuVduktyZAtCAhDTk1B08nNBuyWJyY5Mm593+rhRx+Xkha7KVDFowKCevNInHXxSTr5lKG7O5SThlpvb+j2K3OB+5ci/RnZ5sq3IuPl50sv1WpYCiR4rFBW/ebOtiLNechh7pRg5l5OEXZ1n53t2ylkddT3FkTO93K5lPhI9VuiXLN+43HNDkR1x1sk8FYSO7o6yMmnZ1fmerj09dbB84/I+SgKiryc/194r5XYtS0UoRaGU+qZS6k9KqT8qpR5SSg1WSg1TSj2tlHrVfD8wKmGF9OM1yVF+xNmocziXS65jcP6vVrlbXURZT3HVeTldy1IRWFEopcYC3wDqtdZHAxngPGAhsFZrPQFYa34XBMBbjuHaobU8/+Xnc8wJUedwLpdcx+D8X63yqHKDB5UjqccVegn79A0AqpRSA4AhQDMwF1hh/r4CaAh5DqEf4TUXdD5R5nAuRs7lJGFX59n1HFVu8CByhKXcrmWpCKwotNbvAncCbwEtQJvW+pfAKK11i7lNCzAyCkGF/oHXXND52OWdzs8LXZWpyjlWfr5lKF7O5SSRX+f59RxVbvAgctjlxM4vc8qTXo7XslQE9noy5x5+AswHWoFHgceAe7TWNVnbfaC17jNPoZS6DLgMYPz48dPefPPNQHIIgiCUK2nwevoC8IbWeqfWugN4HPgMsF0pVQtgvu+w21lrfZ/Wul5rXT9ixIgQYgiCIAhxEkZRvAVMV0oNUUopYCawGXgSuNDc5kLgiXAiCoIgCKUk8MpsrfXzSqnHgI1AJ/ACcB+wH7BSKXUJhjKJbhZSEARBKDqhQnhorRcDi/OK92KMLgRBEIR+gKzMFgRBEFwRRSEIgiC4IopCEARBcEUUhSAIguCKKApBEATBFVEUgiAIgiuiKARBEARXRFEIgiAIroiiEIQyoWlLE6c+diqTVkzi1MdOpWlLU6lFciVt8vZnQq3MFgQhHeTnq27Z1ULj7xoBEhmmO23y9ndkRCEIZUChvNlJI23y9ndEUQhCGVAob3bSSJu8/R1RFIJQBhTKm5000iZvf0cUhSCUAYXyZieNtMnb35HJbEEoA6wJ4OUbl7Nt1zZGDx3NgqkLEjsxnDZ5+zuBc2ZHSX19vV6/fn2pxRAEQUgVaciZLQiCIJQBoigEQRAEV2SOIpsVZ8Ibv+79fujJcOGTpZNHEAQhAciIwiJfSYDx/Z7jSyOPIAhCQiifEUXjgUB3VkEFNH7Q+zVfSVj89c+waSVMmhendIIgCImlPEYUjdXkKgmM743V3vZffWXUEgmCIKSG/q8oVpzp/vudEwsfo2NXNLIIgiCkkP6tKDatdDYpWXzcUhxZBEEQUkr/VhRPfN3bdreMj1cOQRCEFBNYUSilDldKvZj1+lApdaVSaphS6mml1Kvm+4FRCuyLrr3ettvbFq8cgiAIKSawotBav6K1nqy1ngxMA3YDPwUWAmu11hOAteZ3QRAEIaVEZXqaCbyutX4TmAusMMtXAA0RnaO0bFpZagnKi00r4TtHQ2ON8S71LwglIypFcR7wkPl5lNa6BcB8H2m3g1LqMqXUeqXU+p07d0YkRh7DPXg0eWXtt6I7luDOPcfD45dC29uANt4fv1SUhSCUiNCKQik1EDgTeNTPflrr+7TW9Vrr+hEjRoQVw54o3Vrb3onuWEEph172ijONRY52/PTviitLUMrhOgnhWXMVLBlmrOdaMsz4nlCiWJl9OrBRa73d/L5dKVWrtW5RStUCOyI4RzCibNyrSjcnDxieWdmT7m1vw+pvGJ/706pxN3dmnb9oMoHcc3yuorNGQ9C/rpMQjvz7RHfB+u8bn2ffVRqZXIjC9HQ+vWYngCeBC83PFwJPRHCOYGQGRnes9hJ6Rt050d4zq6O9f5nEbk55mku30dDjl8KSA2V0IRgjB6f7xFIWCSPUiEIpNQQ4Bci2CdwKrFRKXQK8BZwb5hyB2bTSu3usJ7oiPJYNdpFrp1xgKAK3RYFtb8crV7FYcxV0tZdainAUWtypu2V0ISRWGbgRSlForXcDB+WVvYfhBVVaVl1Ragns2bTSaPzb3oHqg2HmTfDCj+wj1xZqeABQsYhZFLLrgtJnWiwaT1whiqJcSfA8hBv9N3ps9z733wcOhX1FjuG0aSU8fhk9jWLb27nfA5HSBnbTSmOOpSPlo4ggdBW4N4X+R/6z70gyO37pDuERxrtk9t1QWZVblv89n7DeCU9cQd8bJaUNfVjWfsu/klCZeGQpBSntWZY9QTyVNq00TY4envX6r4QWMQ7Sqyg2rYRVX8v1tV/1NaO80MWrHGoM/ef8M1SPA5TxPuefC5/X8k7IPodXhSU9yV6CzK3omOeJikkK7dRlzz3HG9fNug/t2gI7nrrO+zkS6PEEaTY9PXUddHfklnV3GOXt77vvO+du433SvL62YmuysRDrf2Bc1J7egom4Q3pE4Xs0VT0uFkkEoSCFPJXcGvhC7ZHFII/5cUpAehWFU+V7uShuDXjlUI8L9cxGzkmxPH5p7nnELTKPACa3YYdFK0K+L/vwifD154MdK47rm+8JlxkEc+8xPuc7REinJF42PBhsv0L5cLK5/q1g5ygC6TU9xYU12oiC7MYjzvUO5WLvfuPX0TXI+UoCjO9ecqTb2am9jkSzaax2vnZ2Ody79hrnsQtvksZQ+TePNuog+5XU/1HI7Gl3He853qPnIkYHNcEorUs/mVpfX6/Xr1/vbyevaUzzqRgAN73nvs3NI72twTj0ZO83Qtw0pixUetDrZ3mFFOpJ27khZ2/rdn63ulxzVTzzC/WX5JovgtRPpgpu3BadTHFy82j3dTPFvJ/d3LRVJSz+q9EhKKQssmXON0kX4qz7A40KlVIbtNb1vnf0SfmNKBruLbyNNbwvRLGUxFn3F+c8qUDT05Ne/Q37EYblepvT674smpFXXJPQXiZFC9HVnp7RZaHFlY1FCpmTf6/kozsMpV13or/j+pnAPvTkxJsOy0tR1F/i7YIk5aJVjwvc00g0fuy2bjiFMLF1vdVGY+zFdOVmEoqTKJRQv/Gm6g4x6vSBVzdtL53CbOXmdQK7/hK48Elv25aQ9CqKIHGcEup6ZkumCr75x14lcejJpZUnKtZcVfih87News7N1i0YpNeeXhQ9/CBYtnrBIG6lHWlU6G7/sqakTUqvohi4n7/t/ZpvosxlEYR8W3OhXkdaQlt76fF+6Xv+jpn/Xysqnbf12tODaHrnwycavUYhl0yBxa3ZxKm0qw+O9njWPVM1rPC2XrZJCOlVFH4eePBvvvn686VRFoOqg03k/fTvcm3yTvb7OIhaSfm9VvmjhELhW/zIt2R472cvHlH5fP15o9co80y5zPWwuDWb9d837q+o7+mZN0V7PDBGQV7ap9Nvi/7cMZHedRQqE/9K3a8/bzR8cUdojcLDIz9Xg2W/j3t+w8+Cw7h6hX47DU9dZ8z/eLmuusOYU9n5F/covnbsV9v72aqLIG60/ZFA7uLaqL9VXzWcUtI8dzd8YqrkT++IoljhHOLocWTjxx7v19c63/4ah3nq8csdym0axPU/KHw8q3HNDAouUyHa3/d3Xd/4tX8lAXB13jqNSfOKM7JIg+dTmLmB7k7j/mqsNlzZw9zHpcjnEmZhZ4lIr6LwQxgb8aR58dqYp13kfVu/iwGzs/LZuYxGYp5yUdiN1b0KadNKCq7G3q+2t3H16qJshxeTYdw9e6dR4qR58a8RCDq3kr8ALs5EUlHNDXTtNcyuQe/jUuRzSZmSgHJRFGE9Cywbc9Sxhg492Z9sYYaqdm6AHe29PTO7VxQ9U8sUVahhrr8ktwce5r/uKl32XYZPTMbixzt9zq81Hth3bUNXe3zKYsKp0R1LdwcfGfSniMQxkl5FUewLPGme4a7a2GY0avnndzMLnXV/lqJRvesj4vafzrbdB+k5FdNFNKwyt+Rcc5X/OYuoOOt+773FgQFCNmSqeu+/QnzckjsR78aaqwCHfORxZR189Zf25UFDWQQ1ZbmZsMUBoYf0TmZPu8jbEDsOs9Hsu+wbtjVXmXZ408QycKiR98LqHRd78kpF0A8oFBlzv9pg9vt8Nq0sWD9tW6vYsWl/OndnGDCki5GTPqK6rr1XzvHTS7fgzApd75XZd/s3f1ku07Pv8vY/dYcxUmj8wH27UtSZU8PesTvY8YKaspycGqrH9UaXvmW8fc56S5GUgYNCehXF7LvgvdcKL94q5oIWJwVSKvI9oYLi1ohnIrqFCnhotW2touX3NehuI9ZT5+4BtPy+BqBXWZTsgVX+54/8eEFlz91YeI5y3G2Yoaz911xlRELVXcao2M8cWZRUH+zQQB9smKX8Kq+gTiczb+qbabGyKvd4haK6vrWuH62Itye9pidIxdL3fsHqK51/i2plq+1xetNCbt94QI+SsNDdiu0bD4jm/EGpGgZn3RdstGhNbNuZJRvbel/5SgL8KSZrxLdkuH3inVIw8yb7DJMzbzI6W3bmXTeCjtadEpj5Gh3e5d1ykVJzVnpHFBYVA50XWJX7itiKAGFO7OjYZQy/7XpWTj1Dv9iZDuq/0tOQde2z79M4lQdGVRomGy8Mqobr3gh/TrsEWl72WfVVw1XUC0HDgsTVsFn/1ynCrzU6L0Y4kyD1n8/su4x5F6dnoXpcqvOGpHtEAdDwXWwTkvv1KEoLfpb9d++LbiXr3jb7XAF2PUO/5A/1Lfz01KJgULURUtrrY1HqRDMN90YzD+VGnA1bj4NIa25cs2y8/L+kdAidRkln3e/8/1JC+hXFpHnG0L/YHkWl4vTb/AVEfOo6Yy1DFOxt66t4Js1zdJhxpWIAnob6s++CzEBUpf1JnMp9s19tb8Pf+EHuqup8goZZiZpJ8+BL/9a/U8ROu7jwNknpEEZhxkoo6U1cVM5sWuktN3gcVI8zekd2GeLcqKwK/tA01tC2dTDNz1eDzurbqG7GHN/WO5ntRn5iIC/kZ5k79ORkd0CiNtNY17rUuCU5GlRd+pFdCSlW4iJRFGnGLl1mUAYOhX1evGjw7hJbPS6avM5mvK2W/z2A1i1DDe9jBTWH7aL20x8W3r8/5vSww29WtUIkqd7unNj3nitzJQEpURRKqRrg34GjMR7frwCvAI8AdcBWYJ7W2tWRWxRFCMKm5sxe63HbodGOUqIyz2xaSdvyf6Bl3RB0V7a1VFPziQLKwkplWS5ENapI+uhJANKTCnU58HOt9UTgWGAzsBBYq7WeAKw1vwtxEdY+WzWst9d4+m3JDGkwaR47XhmbpyQAFK2vD6Vtq8tkejkpiSgRJSFkEVhRKKUOAE4Cvg+gtd6ntW4F5gIrzM1WAA1hhRQKEMbzJXv9wqR5/pMGOTEoWnt553tOowZFywaHtRR+kuP0F6KY2E6KF5GQGMKMKA4DdgIPKKVeUEr9u1JqKDBKa90CYL6PtNtZKXWZUmq9Umr9zp07Q4ghhFqBnb9+IapQ2BHbjlW1s+LRHTa3caaqb5bAcmDmTdi6i3umIjleREJiCLPgbgAwFfh7rfXzSqnl+DAzaa3vA+4DY44ihByC1yQ8dtitX5g0L9ykaByuo/vcstapZLirJoFJ84KHlChX5SoUJMyI4h3gHa21FS7zMQzFsV0pVQtgvpcw5nOZECa5UtReLTE12Hp3wGBx5YgVFt9tZb5dqBBREq60rV7Nq5+fyeYjjuTVz8+kbfXqUotUNAKPKLTW25RSbyulDtdavwLMBF42XxcCt5rvT0QiqeBMUtJsJiiOTcuSJbSufBS6uiCToWbeudQuXlxqsYpHFGEphB7aVq+m5cab0Hv2ANDZ3EzLjUYHrXrOnFKKVhTCej39PfBjpdQmYDLwbQwFcYpS6lXgFPO7EDeT5vmf1I4qFhTE7nOvamo8b9uyZAmtDz1sKAmAri5aH3qYliVLYpJO6O/s+M7dPUrCQu/Zw47v+IwanFJCKQqt9Yta63qt9SStdYPW+gOt9Xta65la6wnme4myyJQhXsIdZNPw3WjOO6g69t5r7Q3/6PibGjIk53vrykdtt3MqF4RCdLbYLzDtbG4usiSlIf2xnoReZt/lLV80GC6Qbo27n/UURVgd6za87zN/YY0k8nEqF4QCZFy87sphrkIURX/j68+bfvBZLpKZgWbU2aygiYVcIL2upyimz71ycPt0KheEiHBzQC8H81P681EIfYki05412sgOPlgxEHSnsW7Dyo5WTJ97p3AzAcPQvDZ7Nh2vvd7zvfKTn+CTa9YEOpbQv9Ftzt585WB+EkUhOOPRcyZxHkaZjL2ZKWvkka8kADpee53XZs8WZSH0YUBtrbNCyCQw7E3EiOlJCEUiPYyc5iK07rEn5ysJC6dyobwZ+U2XdMBlMPclikIIRevDj/gqLwYDxoxx/K0c7MlC9FTPmeM8FyYjCkEoQMTzBkHJ9jxx6/05uTkKQkGc7mkZUQhCfPgOieDi3ZQ9UqieM4eMwwK9AbUuKU4FQbBFFIVQEtpWr6b5uoXGBKHWdDY303zdQndl4TJKyZ9o3P/0L9put9/JJ3mSLShbL76YzROP6HltvdjnIkhBSCCiKITYcGtwW25aDN153und3Ua5A25zD/mjjY9//RvbzaxypxEHQMuybzufx4WtF19M+3Prcsran1snykJIPaIohHC4TOS5TRzr9nZf5VDA8yRvtOHkymiVj3IJCaJbW53P40K+kihUXoiWJUvYfNTRxujkqKPLOlaV1EVpEUUhhKJm3rmOvwVZiKSJKCRCAQ+VYkf89Puf3NyOyy3cdWJcsH1GBuhPyk0UhRCK2sWLXSeZ/TZkCnhryc19yq0wz15oW706Vg+VIA2AX7fc1ocedixvufGmnLmdlhtv6tfKwq0uiooPD7/EKLeIEEUhhKfAJLNdQ5Yf8TWbzMcf9SmzC/PshFuj7CdcuR1BG4AowzyUc7jrtNDfIhiLohBCU6jxtWvIapc04melhZ/1D27bhr3hXRuAqirnHWMOXFgO8YZSRT+LYCyKQgjP3r0FN8luyDZ/+jiar7nWdftFq17K+e5l/cNrs2cX3LbLDO4W2FTj1gC4jXiKsACxP5ufUoeLk0car5MoCiE0bp5K2bQsWcLmiUfAR4ZpyamPrYEfr8vNcTHym1eiBg92PX7Ha6+z9eKLXXvXyswrEIepJqrFfEHt2EHdehPPAIfYpU7lCcDNySONZkJRFELR8Dr5qDCURd3Cpp7X17YNp/bmbxXct5ArqnXDxxHKw9V91wdBJ2mDuvUWk0CeQJ2d/soTgFv05DSGkRFFISSSplVX8+AvlvLZtzcA8NvX3+dr24a7ToJ7octsTJMSyqOcXF37mydQNnbXzWnuTrlky0sqoiiExKEwbsxR7a1cu+EhfrbqappWXU3lM09Tu6Qx3MFN23Gh3v/miUf4bsD8mhTaVq+m+drrchv9cwIAABT/SURBVMOYXHudr2OkiTg8gYqpWP2u5ndqXHVra+o6BaIohFDEfbMrehXHtRseKjgJXhCzN+tlwZ3f3q5fk0LzTYv7TnIXOepuUXFxBNg88QheOelk25/jCLcSBL+r+btcTIFpW/8iikIIRTEn5iJxMPXppupnvsC3OcujE4Bfss1Zf54+g79Mn5EK01b3jh22yiKOcCtB8L2av0CeCr1nT2ocEJLrNiAklkWrXuKh59+mS2uampvT1dsI22N3SbM68ptXFhzxbP70cT1eX3GweeIROd91ayuWtJ3NzTRfbzS6xQ5h4pXuHTv6lFXPmRN+JFkk2lavZsd37jZGlx7uNd3aStvq1Ym9HhaiKARffPn+5/jt6+/3fN9ZVcOo9uR729iilKeHefOxkxlw0EHuD7+X48SsJDzR2UnzTYsT3TBlN7YDamuN+SSnaxXzQkY/WGFmvEYQsGi+5lp2b9xY2jzzBQjVGVRKbVVKvaSUelEptd4sG6aUelop9ar5fmA0ogqlZtUL7+YoCYAHjzydPZlK1/20+YqSKI5Xc958b+fau7dnwtmNgmaEUisJi/b2RJug3r3m2pwJ/reuvT72TIqrXniXE279FYcubOKEW3/Fqhfe9X0MP2Fm8km691cUVoPPaa0na63rze8LgbVa6wnAWvO70A+48pEX+5Q9M24ayyef49hwa+CMhjtpzwyMVBYFdONfYWRv77UH57XPmoZ1DBbN1xX/sVQDvd0D+fU9QHc5X+cI8lWveuFdrn/8Jd5tbUcD77a2c/3jL/lWFmHDqCQ5DlQc5uW5wArz8wqgIYZzCEXG7aH5wpv/W3D/f5l8duSjigrgw8oq3wrj/sX/2vO55vzzIpNH4+6hkyjyk0YVgdplS6EiWJPjqKwjiJ10xy9eob0j9zjtHV3c8YtX/B0orBkswXGgwioKDfxSKbVBKXWZWTZKa90CYL6PDHkOIQE4PTRLn/0eU//6WsFe9zPjpvk6n1dz1QEd7cxquNPzcRUw4cn/AODbV93FK6t+3qNowioyDXQWaVQRhdLNTtma//rz1GmRm6eq58xhzG23umcq9EnYaMBgjCD8lDvSj12bwyqKE7TWU4HTgSuUUoUTEpsopS5TSq1XSq3fuXNnSDGEuGl2eGjclIQGNg7/ZM53N3TWq+PAg7h92vmBzEuFGNneyssTj6DhZ/czqr2VCnrDhoQ5l7XmIw0UvBa7d9N8zbWJnsuA4vv3h40MUIik1neoetZaN5vvO4CfAscB25VStQDme19/N2Of+7TW9Vrr+hEjRoQRQygCY2pcQmjbYCmJRSde3lO2pm6G61zGh5lBXHrRdznyz5s59rlneWbcNM+jhR2D9vfcyCvsG/WwjU4QJRFUMRU6V6HjepU1SrdUyyso25YfthPgtqgtCvJNrqEjAxQgqesqAj8bSqmhSqn9rc/AqcAfgSeBC83NLgSeCCukUHquOe1w3/tkKwmAeyefzeq6GXQplTN6sJTKxWfdmnOeC6aP93yui05f3KMssl9+icNDy+1caTpuWOy8gqyRXGAimMx24/rHN/V83nzU0bGv50iqQ0SYdRSjgJ8qYwJnAPCfWuufK6X+F1iplLoEeAtwjrcrpIaGKWN5dP1bfdxj39hvJId+vCOnh6rNcjvunXw2904+m7vnTwaMuY/m1nbG1FRxy2mH0zBlbM+2SxuO4Ud54cbzyW5kLjo914vpZ6uuLvi/8tlZVcODR57ONRseSpUpKZ8uIEOy5HcKcWJdw0CyxjwB3N5hTPrnL2QsNwIrCq31FuBYm/L3gJlhhBKSyY8vnZGzKhtgaNe+Pg+4MsudOOETw3oUQrZisENhr4zAaGDW1M3w9R/c0BjrQp4ZN41nxk3rmai35IgSaxT1yQ+bqd63u+C2fs7/YWUV5826mTWrru6Zf0kCrfsNo+aj9/qU76yqYf89H1GljUbfr7xxr2xO8vqGYpGq6AtC6VnacAyv33IGW2+dBcAIh1XZTuUTRg7lx5d6b9y/PH08V3zhWt7Yb2Qfs9LquhncO/nsnO0vmD6erbfOYtT+/tdtaHK9sxadeDln+PCo8suiEy/niGWNBWXyQzfwvUmGR/rskLJriNS082+fOrXP4sw9mUoePPJ0zp57W+C6jntNSND8IIFwS6dbQiSEhxCYrbfO4plfLLUN4bGzqq/bogKevuqzvs5hmZ+u+IK7bVgBb5jKC+CUo0azY9D+jNz7kaceqgbumHa+L9miwEsco43DP1nQBVkDnaqCu6bOz1F2Hw4cUnDE4sacM2/jtcB752LJddHLTzGivbXHzJctr0ah/KrHEGtCVr3wLp99e4OjTEuf/V7gYwchM2hQUc/nFRlRCKGwC+Fh9RLzyW7Io+SAQZk+x/7RurccJ7jzmyFrdOK01mPj8E9GOjHuNodjx6ITL3edZLeOd+bc2/v8h+8dMzfwZHG3UnRGPDP+zLhpXHTaImY13MlFpy3qI++auumBVtsHdSv9zb/+BwtefKzHTXpUeyvXmDlQfrbq6h7TY7GwcronDVEUQmBWvfBuTwiP7VU1dAPbq2pYPvmcPg3AwExwS/mgAe636aYlX3T87aLTF3NGw505r9unnZ8j7+3Tzu9jwsrm9plXMGTG9ECyf5gZ1EdJvbHfSK74wrVMGDkUgDF33F7wOLMa7rRdU2K5FTuNuPwudMw+btMhwf5zGO6dfLbvOQoFvHlbMLPVmeufYHBXR06ZNa9TyJkhDg+5pGa/E9OTEBhrtbY1+evG7ef08XvwzG1nT7KNMwX+XGgtvMhrccInhplzKl9k68UXs/u5db4asvPmLLMtH7X/wB4zXPWcOTT/4w3Q0dFnu/as0drshjv56os/Ydab66jQmm6laDpkuquSC0Ncx3VDgeeovtkM+Kvtcq2COM2lecUyb4K/SXgnB4Wk9tyTKpeQApxWa+dzwfTxBb2b3GiYMpa750+mqrL3dq1QxnGXNhzj+3hVlRXcPX8yY2uqUEBNVaXtg3DB9PE5E+91DzzAkBn+TCN3z5+cc66xNVXcPX8yz99wSs52Y769rE8cpE4U90w+p2efC6aP597JZzN77h2c0XAns+feUbAxH1tTxa6jpzqawJLGmJoqxtx+m+/9dtjMiXnho8rgk8ea3hGr3/2cSKrpSUYUQmDG1FS5xsMZW1PFNXlrI4LSMGWs5+MUivp5y1mTfB0vm7oHHuBlDz71GvjroP09uwFb7p3ZeRjGfPNKHshy+2yYMrZHMdYtbCoow9aeeZvP86MT5+TY2/dVDGBgd2fBY1jrXaLggunjXdfFVFVmuOa0w6k262rHd+5mX3NzQRNQF4on6+fy2SBCBQzkl++a7XUS3jI9Du3aZ+sE4jtLYpEQRSEE5nMTR7g++L9d+PkiStNLoaifUSguJ6ymYseg/Wl98Ke+9q2eM8fzeoChAzPs2ue82OyETwzL+X7j31zex5pTaEHi3fMnR1pXlpKz1uEoYMjADLv3dTEmr1Nh1cWX73+Oa/7pEgai+yzqBEPh3T3lXBq+9n8DybR/CI+w7NHcmrrpzNn6nCfz0xVfuJbPvr2BBS8+ljM/sidTyftfupAJgSWKD1EUQmD++8/OwRzH+owNFSVeTWJx8eX/s5zFc46KVSEt+9IxjvM2QJ+1Kl8+vm9v3sl92PICuy4G+Zc2HOPLXPjjS2dQ9/odrnMzYRSaqqjw7V6rMeoum3snn82crc952hecXYX/p/kgXvclTXEQRSEExq1B/tzE0gV6dDOJZSJIndmtFBmHyVYFvHDTqaHPUYiGKWMdFYXdP7Qa52xlcdHpi3nwqSU9k7EWq+tm8OPj53FdZNKGxwr9YkcYhawKKAm7q7xj0P59wsVY2xbykspeq2PrVJHEiSNEUQghcGuQ3UYbcXPNaYc7NqJdEeQMaDrE3syggYGf/ETo43tlrEP9O0X6XdpwDPWHDMupG7sG74BBGVeX4/7EgDFjCmam8zpZvaZuhqP5qdBanaQjikIIjNscRanNP05EYRL7tylGz3Z2XqPwxn4jmbVmTejje+Wa0w7n+sdfysnOZk0IO2H1vrODMUblcJBGRn7zysgiwj78mfP42xmH8N7Dj1CR1SHZYbMCPW2IohAC4zZq8Ju/IkqcJrMVwcKl59OtnU0h8aw9tydoox/U46s/4iWEihcqM4rFc46idsqpfGZPfeBkd9YizKQhikIIjJtrbBQNclCcRjOaeD2eSkG5N/pxLwRTZLsZ97LqhXcdFbSd44AXshdhJg1RFEJgMko52vxL2Xg5zZ1E5YnllGwnKeG8+xtu99ldEa7zsKPm/PNsy90UtJc8KtkMqFDcee6xiVb4oiiEwLhNDK964d2S3fhBbPd+cAvOJ0TP+cePs214s/OaxEXt4r6T/V5wWlwYNJpAqZEQHkJg3HrohRa9xUnDlLHcctYxOWEzbjnrmMgaFScX2yhcb4W+LG04hgumj++p34xSfcKrJA0nmdOoJACUjsBdMCz19fV6/fr1pRZD8MmqF951XfRlZ9vtD7iFz+iv/7k/s/Xii2l/bl2f8qoZ06l74IESSOQdpdQGrXV93OeREYUQmCTbVOPEaSRVytXoQnDqHniAqrww8mlQEsVE5igEwSdxz4EIxUeUgjuiKIRQlKMHkCxaE8oNURRCKAYOqGBvZ994OQMLZKVLO+W+fkEojNtai7QhikIIhZ2ScCsXhHJg1Qvv5pgn321t5/rHXwLSObfXv7t9giAIJeCOX7ySM4cF0N7RVVK38TCIohBCUVNV6atcEMoBpzAySQ2WWYjQikIplVFKvaCUWmN+H6aUelop9ar5fmB4MYWk0njmUVRW5E5dV1YoGs88qkQSCULpcQqKWcpgmWGIYkSxANic9X0hsFZrPQFYa34X+ikNU8Zyx7nH5qyCviPhcWsEIW6uOe1wqiozOWVpdqEONZmtlDoYI7LyMuAqs3gu9OQ5XwE8A4lKliVEjHgACUIu/c2FOqzX093AtUB2AtlRWusWAK11i1JqpN2OSqnLgMsAxo8fH1IMQRCEZNGfOlCBTU9KqdnADq31hiD7a63v01rXa63rR4woXX5lQRAEwZ0wI4oTgDOVUmcAg4EDlFI/ArYrpWrN0UQtsCMKQQVBEITSEHhEobW+Xmt9sNa6DjgP+JXW+gLgSeBCc7MLgSdCSykIgiCUjDjWUdwKnKKUehU4xfwuCIIgpJRIQnhorZ/B8G5Ca/0eMDOK4wqCIAilJxGJi5RSO4E3za/Dgb+WUJygiNzFReQuLiJ3cfEq9yFa69i9gRKhKLJRSq0vRsamqBG5i4vIXVxE7uKSNLkl1pMgCILgiigKQRAEwZUkKor7Si1AQETu4iJyFxeRu7gkSu7EzVEIgiAIySKJIwpBEAQhQYiiEARBENzRWru+gHHAf2PknPgTsMAsHwY8Dbxqvh9olh9kbv8xcE/eseYDm8zj3O5yzmXA28DHeeVXAS+bx1iL4UNst/8gjFAiu4F24C9ZcncBHwF7MeJQJV5u4HPAS1lydwFfTrrc5m/LTdn2msdJUn2fZNZrN/AOuff3WqAD2EXy7m9buYFDgBez7pPNaZA7Bc+lU30n/bk8CdgIdALn5P12G/BH8zXfSYae7QtuALXAVPPz/hiNwJHA7cBCs3whcJv5eShwInB5dgWZFfcWMML8vgKY6XDO6eZ58yvoc8AQ8/NXgUcc9v8a8ENgKkYcqp9kyb0vpXLfbso7DKNB/qcUyH05sBX4R1POd4DvJEjuOuDzwBrgHHLv74eBB83fknafOMl9LPBPprz7AR8A302B3El/Lt3kTvJzWQdMwng2z8kqn4XR+RlgyrkeOMDuGNaroOlJa92itd5ofv4Io5cyFiNB0QpzsxVAg7nNLq31s8CevEMdBvxFa73T/P5fwNkO51ynzZwWeeX/rbXebX5dBxzsIPZc4F5T7seAk7PkHpBSua36Pgd4CpidArmnYtyID2itdwG/wehNJUJurfVWrfWvMFfA5t3fUzBGSZCw+8RF7pEY98UKjFHeLuC0FMid6OeygNyJfS5NuTdhjISyORL4tda603wu/wB80e4YFr7mKJRSdRgP0PPkJSjCuEndeA2YqJSqU0oNwLgRxvk5fx6XYFwYO8ZiDNnQWndiPDDTTLkVsFoptQ44PkVyW/V9HvBASuT+GXAg0KaUGo7RQ6pJkNw55N/fwPuQyPs7hzy5RwO/wLget2D0YN1IitxJfi5zcGgHk/hcOvEH4HSl1BDzufxcIRk8BwVUSu2HYVK4Umv9oVLKl2Ra6w+UUl8FHsHQcL/D0K6+UUpdANRj9FxtN8mTezRwqSn3h1rreqXUYcCvKKAsEyQ3Zn6PYzAaAlcSIvcqpVSHee6dwHPAlxIkdzaDSc/9nU2+3FprPUkpNQZYRda1SbjcSX4u3eRO8nPpJMMvlVKfJve57HTbx9OIQilViVE5P9ZaP24WbzcryKqoggmKtNartdbHa61nAK8AryqlMkqpF83XtzzI8gXgBuBMrfVes2yZdQxzs3eAcabcj2NMSv6H+ds2M7HSFowewccpkXs78P+An2IEDEtLfb8FnK61PgWowuylJ0Tuns2Bq8m7vzHszkm8v13lNu/vZmALxuguDXIn+bl0kzvJz6WbDMu01pPN51JhOCW57uD6Mg/yQ+DuvPI7yJ18uj3v94voO9s/0nw/EMM741MFzp0/iTMFeB2YUGC/K4DvmXL/DFiZdd67THmt6IzfT7rcWfX9FsYwMS31nQH+xZR3ErANuCMpcmfd368Ba2zu7/voncxOTH07yY1hq/6OKe+BGL3FH6RA7kQ/lx7uk0Q+l1nbP0juZHYGOMj8PAnD82mA6zE8nOREQGO4Yr1ovs7AsH2uxdBEa4FhWftsxeg5fozR2zzSLH8Iw63rZeA8l3Pebu5nuaM1muX/haHBLTmedNh/MMbwVWN4Irxsbv8P5mfLne3llMh9BjAZY2IsTfU9F6PHtAvDbfb5hMn9aYweoMYYerdn1fdzGJ443Wa9n5MCuW/AcLnMdo9NQ30n/bl0u0+S/Fx+2txvF/Ae8Kes59U6/zpgspsO0FpLCA9BEATBHVmZLQiCILgiikIQBEFwRRSFIAiC4IooCkEQBMEVURSCIAiCK6IoBEEQBFdEUQiCIAiu/H8KgxuCBe2ajgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import collections\n", + "\n", + "from apd.aggregation.query import with_database, get_data\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "async def plot():\n", + " legends = collections.defaultdict(list)\n", + " async for dp in get_data(sensor_name=\"RelativeHumidity\"):\n", + " legends[dp.deployment_id].append((dp.collected_at, dp.data))\n", + "\n", + " for deployment_id, points in legends.items():\n", + " x, y = zip(*points)\n", + " plt.plot_date(x, y, \"o\", xdate=True)\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " await plot()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nO2de5hU1ZXof6u7C+juIA3ysJuHRHQQFVDTRtQEJ2HUSQAlGRW8yTfEyeBkXtHkXhJUFFBUlEnUezPf3Gsmk5A7+QxqDLEhGXVIJsmMaXPxBWpLUIOK3QpRQYVG+rHvH+dUU1V9zqnzrDrVtX7f11917TqPVfucOmvvtdZeS4wxKIqiKIobNeUWQFEURUk3qigURVEUT1RRKIqiKJ6oolAURVE8UUWhKIqieFJXbgEAxo4da6ZOnVpuMRRFUSqKJ5544g/GmHFJnycVimLq1Kls27at3GIoiqJUFCLySinOo6YnRVEUxRNVFIqiKIonqigURVEUT1RRKIqiKJ6oolAURVE8KRr1JCL/AiwA9hpjTrPbxgAbganAbuByY8w79mfXAl8E+oAvG2MeTkRyRSkhm556ndUPPcf+7p5Ix2nIWGOzQz39AIxuyLBq4aksOmPiwHnWP7yTzv3dtDTVs/yi6QOfKckRpN8L74XRDRnmz2rmFy/so3N/N6PqMxzp7Ru4xn4ovA/ShhTLHisic4H3ge/nKIo7gLeNMetEZAUw2hjzdRE5BbgX+CjQAvw78EfGmD6vc7S2thoNj1XSyqanXmf5/c/Q059MpuVMrbD+0tkAXPvgDrp7jv5c6jO13PbZmal9gAwFNj31uu9+T/JeyN4HQa61iDxhjGmNXZgCipqejDG/At4uaL4E2GD/vwFYlNP+Q2PMB8aY3wMvYikNRalY1j+8MzElAdDTZ1j/8E7WP7wz72EF0N3Tx/qHdyZ2boVA/Z7kvZC9D9JI2AV3E4wxXQDGmC4RGW+3TwTac7bbY7cNQkSuAq4CmDJlSkgxFCV5Ovd3l/UcpTh/NePWv07tSV+LtF7ruJ3Z4tDmqH6NMfcYY1qNMa3jxiW+Al1RQtPSVF+Sc7idpxTnr2aC9HvS1yKt1zqsonhTRJoB7Ne9dvseYHLOdpOAzvDiKUr5WX7RdDI1TmOgeMjUCssvms7yi6ZTn6nN+6w+U8vyi6Yndm6FQP2e5L2QvQ/SSFhF8RCw1P5/KfCTnPYlIjJcRD4MnAT8NpqIilJeFp0xkfWXzaapPhP5WA2ZmoHIJ7CiXbIOzEVnTOS2z85kYlM9AkxsqldHdgkI0u9O98LohgyfnzNlYP+m+kzeNfZD7n2QRvxEPd0L/DEwFngTWAVsAu4DpgCvApcZY962t78e+AugF7jGGPOzYkJo1JOiKEpwShX1VNSZbYy5wuWjeS7b3wLcEkUoRVEUJT3oymxFURTFE1UUiqIoiieqKBRFURRPVFEoiqIonqiiUBRFUTxRRaEoiqJ4oopCURRF8UQVhaIoiuKJKgpFURTFE1UUiqIoiieqKBRFURRPVFEoiqIonqiiUBRFUTxRRaEoiqJ4oopCURRF8aRoPQpFCcump15n9UPPsb+7Z9BnjcNqueUz/qu3bXrqddY/vJPO/d20NNWz/KLpsVUD85Izy+iGDKsWnsqiMyYGliW7/ev7u6kVoc8YmuozHOnt41BPfyzfAayC9Zla4Ujf0WJkoxsyzJ/VzC9e2Dcg79Rj62l/+R36jKFWhCvOnszaRTNjk8Mvhf2e28flwOk+KLzuxe6TXNy+T5L3clIUrXBXCrTC3dBj01Ovs/z+Z+jpd7+/amuEb1xWvPzjpqde59oHd9Dd0zfQVp+pjaVMqB85s2RqhcVnTeZHT7zuWxYn2dPI5+dMKamycOv3TK2UpSSo132Qve4bf/uar/ukcN/c7xP3vVyqCndqelISYf3DO4v+qPr6Desf3unrWIUP2u6ePl/7+jm23x9/T5/h3sdfCySLk+xp5N7HXyvp+dz6vafP3z1RKnng6HUPqiSy++Z+nyTv5SRRRaEkQuf+7ti2c9vG7zminj+XPpcZeJIylgK375UUXv1Sjj4rds4o/ZN77Eq9T1RRKInQ0lQf23Zu2/g9R9Tz51IrEug4cchYCty+V1J49Us5+qzYOaP0T+6xK/U+UUWhJMLyi6aTqfH+cdXWCMsvmu7rWPWZ2ry2+kytr339HLuYnFkytZbjN4gsTrKnkSvOnlzS87n1e6bW3z1RKnng6HX3e58U7pv7fZK8l5NEFYWSCIvOmMj6y2bTVJ9x/LxxWK0vR3b2WLd9diYTm+oRYGJTfSyObD9yZhndkGH9pbNZu2hmIFlyZYejI9Om+gwNmXh/fgIMq81/mI1uyPD5OVPy5D1v2pgBOWpFSu7IBud+z/ZxOSKA3O6D3Ovu5z5x2jf3+yR5LyeJRj0piqJUKBr1pCiKoqQCVRSKoiiKJ5EUhYhcLSLPishzInKN3TZGRB4VkV326+h4RFUURVHKQWhFISKnAcuAjwKzgQUichKwAthqjDkJ2Gq/VxRFUSqUKDOKGUC7MeaQMaYX+CXwGeASYIO9zQZgUTQRFUVRlHISRVE8C8wVkWNFpAH4NDAZmGCM6QKwX8c77SwiV4nINhHZtm/fvghiKIqiKEkSWlEYYzqA24FHgX8DngF6A+x/jzGm1RjTOm7cuLBiKIqiKAkTyZltjPmOMeZMY8xc4G1gF/CmiDQD2K97o4upKIqilIuoUU/j7dcpwGeBe4GHgKX2JkuBn0Q5h6IoilJeohYu+pGIHAv0AH9rjHlHRNYB94nIF4FXgcuiCqlUH2kraqMo1UwkRWGM+bhD21vAvCjHVaobpyIy7xzqYfkDzwCoslCUEqMrs5XUkbaiNopS7WjNbKWk5NaPFqBQHTi15fL6/m5OueFngWpNj27IcErzSP7rpbd9bZtr4orLBLZy0w7uffy1QXWqveon5342qj6DCOw/1OO43bUPbqfb7pMagXNOGMNzne8Nqv+crZ/t1v81Av/t7NJnk3WrVz1/VjObn+kqiwly5aYd/KD9Vcf7cWKF1LqOC80eq5SMSqkfna1zDMRS13nlph38a/urg9rPmzaGJ1894Fg/GfDsq9ztvrrxafyrTX+UMvV4kLrlUJq62m7XLJe46rZHoVTZY1VRKCXjvHU/5/WUl3zMkq0f4SbvxKZ6/mvFJ30da9q1Pw1USrPYuYNuF4ZaEV667dOxH9eJMPdFkP4Pg99rlrQcxSiVolDTkxIL1qjwaZwsQo3DarnlMzNTXxc4l2KyBvkuQestx1lvPCylrKEd5nskfS/5/f6VdE9HQZ3ZSmQ2PfU612x0VhIAB4/08d/vf4amBv/VwcpNS1N9bHWdg9ZbLnbuoNuFoZQ1tMN8h6RrTPv9/mmvdR0XqiiUyPiJROrrNxhDRdSPztY5jquus1s96vOmjXGtn1ys1nbudkn8iEtZQztI3XIoTV1tP9+/Empdx4UqCiUyfqffB7p78upHOz0aCus+N2Rq8mpLF773w+iGDOdNG+N726yjNK66zmsXzeTzc6YMqlP9g2XnuNZPLqyt3FSfYXRDxnG7by4+nfqcPqkRSwk51X/O1s8G5/6vkdI6ssG7XvXn50wpS13t7DVzU1+VUus6LtSZrUTGrzOy3I4/RRlqaM1spWLwM/2urUneXKAoSjKoolAis+iMidy1+HTcLEKNw2r5xmXJmwsURUkGDY9VYiFrL1cUZeihMwpFURTFE1UUiqIoiieqKBRFURRPVFEoiqIonqiiUBRFUTxRRaEoiqJ4ouGxSiooLBKTzTirIbeKUn5UUShlx6lITDbjLGiNbEUpN2p6UsrOvY+/5tje1681shUlDeiMQik5hbWgvYrE5GamLaw7PeeE0Xl1oRsyNQzP1A7Ulf7EyePy6i1DaWsupwmv2tzZz+OoDR5UjsJr5FQnO5stuLBOerVey3Kg2WOVkhK0bnY246yfGsZ+KUXN5TTh1Oe59Z7dalbH3U9J1EyvtmtZiGaPVYYk6x/e6ftBkZtx1s08FYaevuoyaTn1eXdP30AfrH945yAlAfH3U5Br75dqu5blIpKiEJGviMhzIvKsiNwrIiNEZIyIPCoiu+zX0XEJq1Q+foscFWacjbuGc7XUOgb375pt9+qLOPspqT6vpmtZLkIrChGZCHwZaDXGnAbUAkuAFcBWY8xJwFb7vaIA/moMT2yq57mb/jTPnBB3DedqqXUM7t812x5XbfCwcqT1uMpRopqe6oB6EakDGoBO4BJgg/35BmBRxHMoQwi/taALibOGcylqLqcJpz7P7ee4aoOHkSMq1XYty0VoRWGMeR34B+BVoAs4YIx5BJhgjOmyt+kCxschqDI08FsLuhCnutOFdaEbMjV5xyqstwylq7mcJgr7vLCf46oNHkYOp5rYhW1uddKr8VqWi9BRT7bv4UfAYmA/cD/wAPAtY0xTznbvGGMG+SlE5CrgKoApU6Z85JVXXgklh6IoSrVSCVFPfwL83hizzxjTAzwInAu8KSLNAPbrXqedjTH3GGNajTGt48aNiyCGoiiKkiRRFMWrwBwRaRARAeYBHcBDwFJ7m6XAT6KJqCiKopST0CuzjTGPi8gDwJNAL/AUcA/wIeA+EfkiljK5LA5BFUVRlPIQKYWHMWYVsKqg+QOs2YWiKIoyBNCV2YqiKIonqigURVEUT1RRKIqiKJ6oolAURVE8UUWhKIqieKKKQlEURfFEFYWiKIriiSoKRVEUxROtma0oVUKxutlpo9LkHcqoolCUKqCwXvXr+7u59sEdAKl8+FaavEMdNT0pShVQrG522qg0eYc6qigUpQooVjc7bVSavEMdVRSKUgUUq5udNipN3qGOKgpFqQKK1c1OG5Um71BHndmKUgVkHcCVEkVUafIOdULXzI6T1tZWs23btnKLoSiKUlFUQs1sRVEUpQpQRaEoiqJ4oj6KHHZfeSXdv2kfeF9/zhymfve7ZZRIURSl/OiMwqZQSQB0/6adFxcsKJNEiqIo6aBqZhQdM06BXMe9CDM6nh94W6gksvS8+BIH2toYtXBh0iIqiqKkkqqYUXScPCNfSQAYY7X7oPPGVQlIpSiKUhkMeUWx+8orPT/fOff84gfp1rQBiqJUL0NaURxoa3M1KWXp37u3RNIoiqJUJkNaUXRdv9LXdh1nfTRhSRRFUSqX0IpCRKaLyNM5f++KyDUiMkZEHhWRXfbr6DgFDoI5csTfhu+9l6wgiqIoFUxoRWGM2WmMOd0YczrwEeAQ8GNgBbDVGHMSsNV+ryiKolQocZme5gEvGWNeAS4BNtjtG4BFMZ2jrBxoayu3CFXFgbY2dn1yHh0zTmHXJ+dp/ytKGYlLUSwB7rX/n2CM6QKwX8c77SAiV4nINhHZtm/fvpjEyCdz4rTYjrX3zrtiO5bizYsLFtC5/Gv0dnaCMfR2dtK5/GuqLBSlTERWFCIyDLgYuD/IfsaYe4wxrcaY1nHjxkUVw/kch+ILa+3t6ortWGGphlH27iuvpOfFlxw/6/x6ZVgxq+E6KdHpWrOGjlNPo+PkGXScehpda9aUWyRX4liZ/SngSWPMm/b7N0Wk2RjTJSLNQNniT+N8uMuoUbEdKwwdZ300z+ne29lJ1w03AgypVeOe4cz9/aUTJCQvLliQp+iysyEYWtdJiUbhfUJfH/vv/SEAzavSt8A3DtPTFRw1OwE8BCy1/18K/CSGc4RCMpnYjmXefTe2YwVl59zzHSOzzOHDQ8ok1jH79HKLEAnP2dDyr9Fxyqk6u1DoWrPG9T7JKou0EWlGISINwAXAX+U0rwPuE5EvAq8Cl0U5R1gOtLX5D4/1Q8KjWafMtaM/+1n23nmX56LA3s7OROUqFV1r1sAHH5RbjEgUW9xJf7/OLpTUKgMvIikKY8wh4NiCtrewoqDKSud115dbBEcOtLWx98676O3qoq65mfFfuYZ3HnzQMXNt0QcPgEhCkiZPbl8MysU1hOm87npVFFVKmv0QXgzd7LE9PZ4fS0MD5tChEgljcaCtjc6vfX3godjb2Zn3PhQV+oA90NZG1w03Yg4fLrcopafIvakMPQ60tQ3MJj1J6cCvolN4RIkuaV6zGhkxIq+t8H0hUaMTOq+73jGLbTWy9867giuJ2tpkhCkDlTqyrHbCRCr5VhJA05LFUUVMhIpVFAfa2ui89rr8WPtrr7NGqsUuXn09oxYupPnmm6hraQER6lpaaL75puIntqMTcs/hW2HpSHKAUL6Vvr74BSkTlWinrnZeXLDAum7Z+9DhWeBE1y23+j5HGiOeoIIVRdctt0Jvb35jby9dt9xa9EfYcpN1YUctXMhJP9/KjI7nOennWwPZjff/cCNwdLSgi8MCEmKKXdfSkoAgilKcKJFKZv9+fycZOTKoWCWjYn0Ubp3v56J4KoT6en/1J2yTkduUsnP51/LOo4qjgBAmt8zxU2IVoTCWPXPiNE7cvDnUsZK4voWRcDJsGM23rAUYFBChzvFk2X9foPXEAxSrh5PLjP/321DnKAUVO6NIiuxsIw5yHx5JrneoFnt392/aY3sgD1rwhFX21k+NdCc7tV8bdC4dJ89wvXZONdzNkSN0Lv+a4wy2ElPld8w+3erD3L+0fo8iZk+n6/jiggX+IhfBGqCmGDEpcKa2traabdu2BdrHbxnTQdTVMePZHZ6bvDBrtq81GPXnzPF/IyTMjBc6yi1CIEJfP9tkVWwk7RSGnLut1/m9+rJrzZpE/AtNVyzJs0+H6p/hw5nxzNMxSpUcHbNP91w3U8r72TNMu7aWGc89S8eppxVVFrkyB3FgA7SsvyPUrFBEnjDGtAbeMSBVN6Noua24Yyk7vS9GqZREy/o7SnKeisCYgZF01w03Os4wsqG3haPuOGZeSTmh/ThFi/LBB5UzuyyyuLJjxiklEaPwXhlEXx8dJ8+g/qNnBTrumwEc2PXnzEm96bCqFEXTFUt8XZC0XLS6lpbQI400E8Ru64VbChO30Nv99/7Ql+nKyySUJHEooSETTWVM+FlnAPyGafsZFOYqtz6fDuymK5Yw9bvf9bVtOalcRREij1NaQ88cGT48LxKr/pw5ZRYoHrrWrCn+o6vxf1s6hdl6JYP0G6oYywg/BFlbvWKRtNKONSu0MYFlrZRnUsUqitrGxkDbBzXfxFnLIgyFtuZio45KSW3tZ8Tbcvu6QMcc9F3r3IP5fIcqEs/oPHPiNJquWBL5OEOO4cN9b5qk0q5rbo71eNl7Rpqaim7rZ5u0ULGKwu/ULktQ882JmzeXR1mMHBnKkdf59RV5Nnk3+30SxK2kgl6rQbOEIgsbg8jXceppA//7iYgq5MTNm2letUr9TAW0rL050Pb77/0hHTNOif2eHv+Va2I9HlizID8Dkubrr4v93ElRsYqiFOkcTty8uSSLvGa80HH0L2wsdUF221KlIA+y4DCpUWGQWQJYisX3de3rY/eVV7Jz7vmuC67cqBl/tLjjqIULVVnkEOreNMYKBT5tZmpnzH7JnDitonyPlasoSpTOIYkRRx4BFJ4EjLUutL8mYZ5yqzrnFBqYXc3uRfbhKsOGRRPMA7N/f6Dr2v2bds9U725M/9Uv896XSllUQuRTJN9Ab6+lME6ewQuzZke6j8tRzyXKws5yUbmKIgBRbMSjFi5M1MbcdLn/ch3NARcD5lblcwoZjcU85VGno+PkGQMK6UBbW9HV2DXjxw88XP2GKDvhx2QYZoFcENzMh6MWLkx8jUBY38qgBXAJFpKKyzdgjhyh8+srQt/H5ajnUmlKAqpEUUSNLMjamOM2Q9WfMyeQbEGnqrkX1ykM0Bw+PDAyc/qLY2SaNUUVezA3XbEkbwQeZVre/4e3Qu8blcyJ01Kx+HHn3PMDbd8x45TBaxs++CAxZfGh8+fGd7D+/vAzgyGUkThJKldRlPgCDyQQfKHDmmEUnt/DLNSy/o6jisbOVNuy/o7E46dzHf5hRk6lDBGNqsyzcnatWRM40CEuWtbf4Xu0KA0NwU8wfPjR+68I/Xv35jnivehas8Z9tpdQ1cH3f/kr5w9CprIIbcryMGGrT+koFaso/JpskjAbNa9axYznns13Qj/1pHWunKyo0tAwsGAuSqba0MRQBKWYGSPXYRuFqCaw7GK6ci04Ezt1vV+a16wOfI5syLRvpdrX52uFczn6zPXBHrKQVVhTlpuVoK6l5aiZ0CWra3YAWA1UbPbY5lWr+GD37qKLt0q5oKV51ap0LaCJKY/XgbY214dgTV0dcVQT33vnXZGVZ9J+B1dEAvuPst/Vj8y5vpuBU9bXY3xmOd459/yB/bvWrLEyofb1QW1tIB9ZnNQ1NzvOcuuam/nQ+XMDK6+wQSfjv3LNoEqLMmJE3vGKRSIeevLJobMi3oWKnVFA8UVoSjx03uiu/OJa2ep4nJSWhcyltqmJljtuD6XksiNWJ7Nk7my1UElAsMCGbMRWx6mnORbeKQfjv3KNY4XJ8V+5huZVq5zNux6EHWS4FTALNDvMyuuDSp2BVGz22CwdM2e5LrAqzMg5FAiU3iGTYcaO7cH3c2LkSMeR1a5PzoslcqSupYWTfr41ry2pTK2e1Nb6D7126ZNS0XHazMHFu2ImyVxjxTL8gv/7Ng0BBF6/hbqWlkTqhmj2WJ+03HqLY3vQiKJKoTbIsv+envgWJr33nmOtAKeRYVAKp/pZgozUYmHkSGY896zvmUy5C8203HZroLxYYUjSl+bLb+fjWqQlRYrbLKll/R2l80smRMUriuwiplJHFJWLCddfhwRIiNh1y63s+uS8eE7+3nuDFM+ohQsJNSutq/M11W9etSpUAsig1IwfP/Dgn9HxvLeTPmSalbgZtXAhLbevG9IlYpuWLC66TVoGhHGYsdJKxZueqpEDbW103XJr4NQVcZA1ETlViPNCRowI/aPpmHFKZMd8GDNkYZW5+nPmpHoAEnfWWSdzYDnwLHJUZvNfuSmV6UkVRQXjVC4zLNLQgDl0yNe2NePH+0ppUdfSEktd56h+kKFY08OJoFXVipGmfts59/zB91yVKwmoEEUhIk3APwOnAQb4C2AnsBGYCuwGLjfGvON1HFUU4Ynq8JWGBprXrGbUwoX8bs45sS5Wi8s8c6Ctja7rr8ccyQ1aMIAPX4JdyrJaiGtWkfbZk2JRKc7su4F/M8acDMwGOoAVwFZjzEnAVvu9khBR7bO1TU0Do8YJ11+XuHM0DKMWLqT5Y73UNfQCZuDV+vOmmpREnKiSUHIJveBORI4B5gJfADDGHAGOiMglwB/bm20A/gP4ehQhlSKIhLbh565fCLIIrCguq1nDMmp8J6Muzv+OHT88zv7PZWYRoDjOUKGupSVyuHJaooiU9BBl+HgCsA/4rog8JSL/LCKNwARjTBeA/eoYPiIiV4nINhHZtm/fvghiKFEcvYWpD+JKhR277bh+9OBzLHmDpmkHcZxZDB8+qEpgNRA5Lb5IaqKIlPQQRVHUAWcC/2SMOQM4SAAzkzHmHmNMqzGmddy4cRHEUKKERzo9WKI6MBMJHe1zjnppPutdZizpys+79UJHVSoJiJgWf/hwZnQ8H69AypAgiqLYA+wxxjxuv38AS3G8KSLNAPZr8IovSiCijCLjjmpJbH3BkYPJHHcIMlB61WP9iVOqkGpVrr7Zfh/ceRqsbrJet99XbolKRmgfhTHmDRF5TUSmG2N2AvOA5+2/pcA6+/UnsUiquBKrbyECqcpjs/mr8MT3wPSB1MJHvgALvlluqUpGNmOxEhPb74O2L0OPnYjxwGvWe4BZl5dPrhIRNcTl74EfiMh24HTgViwFcYGI7AIusN8rCTNq4cLgSfRiXPGceMx9/Rj/227+Kmz7jqUkwHrd9h2rXVHCsPWmo0oiS0+31V4FRFIUxpinbT/DLGPMImPMO8aYt4wx84wxJ9mvb8clrOKNn3QHubjlyQrMyJHJj14/dbv7Z8Ma898/8T3n7dzaFaUYB/a4tL9WWjnKRPqC5pXQNK9a5ateNFghkJ4P9wApnkuyOtZrel/ovzAu2V/d2hWlGA5RdwNUga9CFcUQ48TNmwdV2iOTsbLO5iRNLBYC2bLuNl/nK23MvZtpLf11K5QhTBWYnyq2wp3iThyV9rKzjbzkg5mMVf/AmIHqaKWNuXdbLxJyHcm3zoY/vHD0/diT4e8ed99eqV66PbIQVYH5SRWF4orvyJm0RRhJrYuZKWfmUagkwHr/rbNVWSiDGTXJXSGIfzNtpaKmJyUaaYwwcvVFmKP25EIlkcWtXalu5t3o/lkV+L5UUSjR2PYvwdpLwajJ7p9VgT1ZSYBZl4O4PC51RqEoxYjZbxCW3MgTr9GfW5ijohTD9Lu064xCUZIjaEoEtxEd5M8UZl3uvkBv1KTgcipKlaOKQikP2++DH3/JdhAa6/XHX/JWFm4jOhjsaDz1M87bnXShP9nCsuFiWD3q6N+Gi8MfS1FSgioKJTm8Hrht1wyesps+q90NL99D4VqKXY84b5Zt90oJ8rOQ5VM2XAy//2V+2+9/qcpCqXhUUSjR8HLkeTmOe1yywbq1g7fvodAn4hbKmG33SgnSHTLrTKGSKNZejM1fhTVjrJnJmjHVnatK+6KsqKJQovGRL7h/5mMh0pbGBi6c1MKsqZO5cFILWxob4kmJUCxCpdQZP4N+J6+w42pLd52aEOyAmQGGkHJTRaFEY8E38Uyh4fEg29LYwLXjjqUrU4cRoStTx7XjjmXLL64fvHE2zbMftt+XbIRKmAdA0LDcbd9xb2/7cr5vp+3LQ1tZePVFSQkQ4Zca5RYPqiiUGPAIhXV7kA1r5IaxYzAFqdGNCDccM2zwcZzSPLvh9VAOkq7cibAPgDjTPFRxuuuKYYhlMFZFoUSn2MPX6UG24C56XOpnOLYHWf+Q5FoJrwdAptH5MyDxxIVVkG+oohhiGYxVUSjR6XWuZ51H7oPstinw4DLPzde2r81v8LP+4VtnF982m9wtrKnG6wHQc8hrx3DnC8JQNj9VGl5BHhV4nVRRKNHxilTKZfNXLbv+Bwe8txNh486N+W3zboRMvfd+f3jBCkX1Gl1n6wokYaqJazFfWDt22HXEKREAABUoSURBVLDetFPjkrvUrT0NeAV5VKCZUBWFUjoCOh9nbpg58Les61FY+D+L7+Q3FDUJ85Rn+G4Awjppw4b1lpIwgQD9vcHa04BX9uQKTCOjikJJJybfVNP+RrulLArLngYl+zBNSyqPagp1HWKRQHk4XTc3351XtbyUoopCSScODu32N9phwV0Rj2vbjouN/lePCv4AC2pS2H4fPPhX+aGuD/5VsGNUEklEApVSsca1mr/77YobFKiiUKIR4GY/d3ILM6dOHvgLjDFFneDFj2GPZv0suAs62g1qUmi7Bihc7+GRz6rS8QoEWD0K/uFk58+TSLcShqCr+b1MgRW2/kUVhRINn6Pocye38F5trTVTyP0LyOnHO5uMHFd4OxLwnEH8BUHNWX6DAIKSa866/cPWXyWYtt7vclYWSaRbCUPQ1fzF6lT0dFdMAIIqCiUwa9vXMvv7s5m5YSazR8PaMU1F9xlQElEQoU+ERS0T8pq3NDawomCF94pxxzJz6mSWTRhbcJCIYaquP37x58y+bcrRzLJJsHqUNevKmrO637YfprZpa9PfpF9ZFFLqdCtRyFXSftZMdL+d7uthk+L4MiWNLHt4meUrsOkXYeMxI/lpYwOPvdbpuI/76D4EIrw0LH/l9oqxYwYrIft9e3098yY1s3WPwwNIarxTl2e5+Tj40FjbtBShUNNtU4qHBidNf49l8krzw3f7fdZM9cAea5Y270b3a+VVo6TUZNPM+M0gkOXBZfBqe3nrzBchUi+LyG4R2SEiT4vINrttjIg8KiK77NfKc/Erjmx5eUuekhhAhPdqaweN9LOsGHds9NlEoSy5ysfr2CLsratznvV85Epf51o7ajizR8PMqZOYPXWy+wyqmBkhR0kU+muyf26mtVjpOZjqUeyi9pXMtPt75mhY1H6DR+6ueHw6W17ewoUPXMisDbO48IEL2fLyluAHCZJmppCUR3/FoY4/YYw53RjTar9fAWw1xpwEbLXfK0OAFb/2uJQOI32AeZOaY1cSiLBi3LFcOKnFl9kLe9Yz6CHvYwS3dkwTG48ZSb/tU8nOoOZNah68sQ97+bxJzcycOtnZX2Ob1maWQln8+EvJn6OQ2uFFN5l5/CTrPsrpk5eGZVwHIXHUq97y8hZWP7aaroNdGAxdB7tY/djq4MoiahqVFOeBSmLedgmwwf5/A7AogXMoJcbvj+bs4yflOZT31kWwbhoPc47ti9h4zEh/iijnIb928xeOtrd+0XM3x+Pbs5R5k5qZbc8EBpSQR4TOzOMnWf3h5ci3P0tcWZQj59Al3/I0Fc08fpJz37gMQoBYvsfdT97N4b7DeW2H+w5z95N3BztQVDNYivNARfVRGOARETHA/zHG3ANMMMZ0ARhjukRkfFQhlfLj60cjwiH7R551KIfGS0kUnDMQImz8wzZWAsseWEj7+7+HnFDdpv5+Vrz1DvMPHnJwhOcfZ+ChjxXUuvGYkcB7rHSwPpw7ucV/pJe9zazjJ7H9FeeQ27Vjmrj/mJH0Y432Lnv3PVa+vX/QdssmjKW9Pj/1ybQjR9jU+aa3Q31Yo7VmJU5fRvZYW28aNPp2VRI5bGlsYP7BgnxaUbMBA10HHfxXHu2uxGQGSyNRZxTnGWPOBD4F/K2IzPW7o4hcJSLbRGTbvn37IoqhJM0bB98IvlOYEFhjaO7pZd17ffGbrHKY988nW0qiwPSzv7aW68cdy8zjJ1kP2CL+j8L3G48ZyZbGBs48flKe7yFw1JcIRsRRWbmZwwrNcOdObjn6HfJMOcPcTTlZjhy0nKwJ+zK2NDb4UhKIcMPY6EohMlEzAxQjpb6jSIrCGNNpv+4Ffgx8FHhTRJoB7Ne9LvveY4xpNca0jhs3LooYSgk4rvG4eA/oMmNo/lALj/xlB/P/viPe8+VSMBsopC/COg+wnPc9NTWR14wgQnt9PWvHNOWZuNzMYdaMxmLZhLHuysnLlFNI1AWOuWSjguzZRDasmWxfFcEx/XzC6ygGmVyjZgYoRkrXVYRWFCLSKCIjs/8DFwLPAg8BS+3NlgI/iSqkUn6uPvPqeA9oDCP686fqI2pH5J1n8fTF8Z4zl2IPpiizmZhnQoWzh2K0TplYfDZEzGHLfiiICoolGi4GZ7YXax5bk/NmrKfiXNQyIW8WWXTW5kRKEztGmVFMAP5TRJ4BfgtsMcb8G7AOuEBEdgEX2O+VCmf+CfOZc9yc2I637vw7WH3+HTQ3NiMIzY3NrD53NfNPmD+wzco5K2M7X8Xi4tx1Y+bxk/jAzwhdhBVjx0R/sAXhwB6WTRgbPoULDivzE3YAd/fZim31KDA9rtvNm9TsEK3lw8RXIYR2ZhtjXgZmO7S/BcyLIpSSTr590bdZ276W+393P/0RHHdzjpszoBByFYMTgmBKUfQnLkL4ZELv63Z+v8cp2PalYcMGHuAj+/pcF1CGZdnESbRnCP89RejDGrlv6nzzaPv2+5JdQFhkfcNAdF+QaK0KI0XLGpVKYOWclTzz58+wY+kOq8FvdJLNtGOm8e2Lvu17+8unB3sALJ6+mB1LdzB+xHhLtoDylZodZ97Ijt0xlTEN6gtxmqnYf+/V1tpO5kw8sgHtw8L7fQawH755+bySXhNSJN9XMRNaIBOfZznd8qGKQgnNgLLwiSBs+symQPv4NT8Jwo6lOwa2/8Txn7A/iMlfkJTSsUfC6/a9lS6lZiuM06eWoW5Hsb7Oyee1bMLYSOanUCuwcyi63sVeHJo1t3mGXAPUFV+UWA5UUSjRCPAg3r50eyIijKwbOejYG3dujNWpXGsMtYnNUIT5Bw8xsq8vdcqijzIsAguwhqa9vt56+IYMK727/baisjitws86rn3N4nJmagPyupGt6Z4yVFEooQkyGstEMGEMq/G28z72ucdCH9sPI+tG8nTNNJ5+ZU/wB7nH9tOOmWb989l7ACyfQAWYy5Jmxyt7GN7f768f7Ifvll+Hq0PddWTwIsXC4++tq2PW8ZPY0tjAbHt9TJ7jOgi2vK6ktPqdKgolNEFSHNz8sZtDn+em89wfAomG0GI53h/73GOw9CH48Pms+8PbwR7kLg+S8SPGHzXDzbocai1luCOrjOJUFhWkfAQBhG2vvh5gJ+Hu4eFmPr4e8/bixxXjjqU/d31MBD5SkOom7aiiUELjd7X24umLi0Y3eTH/hPms+/g66muPjsQEYfH0xaFCaOtr61n38XUDobmjho2ixuGnsHj64nzH+9KHmD/+LBr8PnSNYd3H1+Wdq7mxmXUfX8fWxVvzt73kHwfWBOx4ZQ/r9r1Fc28vAgP7hFGKzY3NrJPKWdB6XONxAzOsOd3dvhXcG3Xh1lP4Vp8xKIfcYx2pqRmonbJ67JijyiKlpietR6GE5rjG4zzz4TQ3NnP1mVdHUhJZ5p8w3/dxipnEVp27KtDx8lj6EIe+d5qvTTMG32HA+XmQ9jC/7ljmn3VjXtjn/BPmDyjGmRtmFj1/brDBCh/bO7Hu4/Etg1o8fbHlO3JhYMGl3Vff3noTMz2sNLkcN8xHFuGUcrimhuvsvGjz6yLkR0sQVRRKaOZOmuv5w3/k0kdKKM1RipnE4lBcxagxhpvP9yjh6cSsy32vB2ioa+BQ7yHXzwsXRwZej2IM6+beHmtfZZVc7jqchroGunu7Oa7xuPxBhd0Xcx5eRnvXb4qO5q+ec20omZr6+9lfG+PqbmNCzTz6bdMWUz9D8ndncNT0pITmV3t+5fpZc6NDvYYSESqBYRzYvoCm4U3cGvNDtpAbz/Euu1q4ViXoehREEpE/dx3OjqU7ePxzj7N96XYeufQRx/N9+6JvF33wrvv4utCyrnj7AJm4/DdRjyPCda88FI8sMaOKQgmN1wN57iTfiYRjxyuBYU3CpTN37H6NXy/5deKzFq/ji4OLduWclYF8HCPrRhbfKCVE8n+9/z4373uL5p5exBjwG22VEP2kM1W5KgolNF4PZK/ZRtJ4JTCMknpkAK8R7tiTox/fJ26zNrfrsnLOSl8+h5F1IxMPOU4NoyYz/+AhHtnTyfbdr7HjlT1MO3IkXKSYCIvffa9iIsyCoIpCCY3XrKFs5p8ixGEScxqxD7T/3eORj++Xq8+8mhG1I/LaCjPwFpKNICuMwsqagnYs3VE9SgJg3mAT3qbON9mx+zXG9/YGeug3DW9i5Ql/Fqd0qUGd2UpovGYNsdevCICXMzuOdOluTmGTXJ0lR7Iml7ufvJs3Dr4x2CHssV8pHPoVwazLXVOHb93TxaKWCbw0vHhajUxNhhUfXQEnzEc2zAqdyHJgEWbKUEWhhMYrNDb2+hUB8JrNDLUHZLU/9J3Wv8SJVTL2wKD2LS9vcVXQl0+/3DMa0I28RZgpQxWFEpoaqXG1+Zfz4eW2vqOckVhKeLzus1s/fmuyJ2/9omOzl4JeOWdlIEVRJ3Ws/djaVCt89VEoofFyDEfNyhmFMLZ7Jb1c9keXObbn1jVJjAXfDLWbW4RZNg1+7t9Tf/5UqpUEqKJQIuA1Qg+SBypu5p8wn9XnrvasnhcFtxDbpENvq5VsaG+2f2ukZnB6lZThJnOlVm0Uk4JQrtbWVrNt27Zyi6EEZMvLW1jx6xWunwetV1EpeKXPGKrfeUiz4WL4/S8Ht3/4fCsZZIoRkSeMMa1Jn0eHQEpo0j5dTgq3mZT6QCoUOzNwHhWgJEqJOrMVJSBXn3k1qx9bzeG+wwNt6gOpcFQpeKKKQlECEnb9gqJUKqoolEgMqxnGkf4jju1DmWpfv6AUx2utRaWhikKJhJOS8GpXlGpgy8tb8syTXQe7WP3YaqAyfXvqzFYURYmZu5+8O8+HBXC473BZw8ajoIpCicSoYaMCtStKNeCWRiatyTKLEVlRiEitiDwlIpvt92NE5FER2WW/jo4uppJWrj37Wuok34JZJ3Vce3a4imOKMhRwS4pZzmSZUYhjRnE10JHzfgWw1RhzErDVfq8MUeafMJ+1H1ubtwo67XlrFCVphloamUjObBGZBMwHbgG+ajdfAvyx/f8G4D+Ar0c5j5JuNAJIUfIZaiHUUaOe7gK+BuTWTZxgjOkCMMZ0ich4px1F5CrgKoApU6ZEFENRFCVdDKUBVGjTk4gsAPYaY54Is78x5h5jTKsxpnXcuHFhxVAURVESJsqM4jzgYhH5NDACOEZE/hV4U0Sa7dlEM7A3DkEVRVGU8hB6RmGMudYYM8kYMxVYAvzcGPN54CFgqb3ZUuAnkaVUFEVRykYS6yjWAReIyC7gAvu9oiiKUqHEksLDGPMfWNFNGGPeAubFcVxFURSl/KSicJGI7ANesd+OBf5QRnHConKXFpW7tKjcpcWv3McbYxKPBkqFoshFRLaVomJT3KjcpUXlLi0qd2lJm9ya60lRFEXxRBWFoiiK4kkaFcU95RYgJCp3aVG5S4vKXVpSJXfqfBSKoihKukjjjEJRFEVJEaooFEVRFG+MMZ5/wGTgF1g1J54DrrbbxwCPArvs19F2+7H29u8D3yo41mJgu32cOzzOeQvwGvB+QftXgeftY2zFiiF22n84ViqRQ0A38LscufuA94APsPJQpV5u4BPAjhy5+4DPpV1u+7O7bdk+sI+Tpv6ea/drP7CH/Pt7K9ADHCR997ej3MDxwNM590lHJchdAb9Lt/5O++9yLvAk0AtcWvDZ7cCz9t9iNxkGti+6ATQDZ9r/j8R6CJwC3AGssNtXALfb/zcCHwO+lNtBdse9Coyz328A5rmcc4593sIO+gTQYP//18BGl/3/Bvg+cCZWHqof5ch9pELlvsOWdwzWA/kbFSD3l4DdwHW2nHuAO1Mk91Tgk8Bm4FLy7+8fAt+zP0vbfeIm92zgG7a8HwLeAf6xAuRO++/SS+40/y6nArOwfpuX5rTPxxr81NlybgOOcTpG9q+o6ckY02WMedL+/z2sUcpErAJFG+zNNgCL7G0OGmP+EzhccKgTgN8ZY/bZ7/8d+DOXc7Ybu6ZFQfsvjDGH7LftwCQXsS8B/smW+wHg/By56ypU7mx/Xwr8DFhQAXKfiXUjftcYcxD4FdZoKhVyG2N2G2N+jr0CtuD+PgNrlgQpu0885B6PdV9swJrlHQQuqgC5U/27LCJ3an+XttzbsWZCuZwC/NIY02v/Lp8B/tTpGFkC+ShEZCrWD+hxCgoUYd2kXrwInCwiU0WkDutGmBzk/AV8EevCODERa8qGMaYX6wfzEVtuAdpEpB04u4Lkzvb3EuC7FSL3T4HRwAERGYs1QmpKkdx5FN7fwNuQyvs7jwK5jwMexroet2GNYL1Ii9xp/l3m4fIcTOPv0o1ngE+JSIP9u/xEMRl8JwUUkQ9hmRSuMca8KyKBJDPGvCMifw1sxNJwj2Fp18CIyOeBVqyRq+MmBXIfByyz5X7XGNMqIicAP6eIskyR3Nj1PWZiPQg8SYncm0Skxz73PuA3wGdSJHcuI6ic+zuXQrmNMWaWiLQAm8i5NimXO82/Sy+50/y7dJPhERE5i/zfZa/XPr5mFCKSweqcHxhjHrSb37Q7KNtRRQsUGWPajDFnG2POAXYCu0SkVkSetv9u8iHLnwDXAxcbYz6w227JHsPebA8w2Zb7QSyn5P+1P3vDLqz0MtaI4P0KkftN4C+BH2MlDKuU/n4V+JQx5gKgHnuUnhK5BzYH/gcF9zeW3TmN97en3Pb93Qm8jDW7qwS50/y79JI7zb9LLxluMcacbv8uBSsoyXMHzz/7IN8H7ipoX0++8+mOgs+/wGBv/3j7dTRWdMYfFTl3oRPnDOAl4KQi+/0t8L9tuX8K3Jdz3m/a8mazM34n7XLn9PerWNPESunvWuB/2fLOAt4A1qdF7pz7+0Vgs8P9fQ9Hndmp6W83ubFs1Xfa8o7GGi3+SwXInerfpY/7JJW/y5ztv0e+M7sWONb+fxZW5FOd5zF8nORjgMEKxXra/vs0lu1zK5Ym2gqMydlnN9bI8X2s0eYpdvu9WGFdzwNLPM55h71fNhxttd3+71gaPCvHQy77j8CavhqsSITn7e3/u/1/Npzt+QqR+9PA6ViOsUrq70uwRkwHscJmH0+Z3GdhjQAN1tS7O6e/f4MVidNv9/ulFSD39Vghl7nhsZXQ32n/XXrdJ2n+XZ5l73cQeAt4Luf3mj1/O3C6lw4wxmgKD0VRFMUbXZmtKIqieKKKQlEURfFEFYWiKIriiSoKRVEUxRNVFIqiKIonqigURVEUT1RRKIqiKJ78f6S57F/6hNcgAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import collections\n", + "\n", + "from apd.aggregation.query import with_database, get_data, get_deployment_ids\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "async def plot(deployment_id):\n", + " points = []\n", + " async for dp in get_data(sensor_name=\"RelativeHumidity\", deployment_id=deployment_id):\n", + " points.append((dp.collected_at, dp.data))\n", + "\n", + " if points:\n", + " x, y = zip(*points)\n", + " plt.plot_date(x, y, \"o\", xdate=True)\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " deployment_ids = await get_deployment_ids()\n", + " for deployment in deployment_ids:\n", + " await plot(deployment)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAE0YAAAUsCAYAAAC9bUPVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdd7x0Z1Uv8N9KBwIJEAJSQ+9NihSBBJAqIL2HkCCCXq5cURD13ovYr6BwQakGCKFKByHIRQOitCAogjSBCKEESEIPIWTdP/a8Zt79zilzzpwzb/l+P5/5kL32fp5nzZk5w+eds/Z6qrsDAAAAAAAAAAAAAAAAAAAAAAAAsEz7LTsBAAAAAAAAAAAAAAAAAAAAAAAAAI3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAEaq6qiq6tHjuGXntZ2q6tTR8z912Tntjfyc92xV9bTxZ8WesL73HQAAAAAAAAAAwO5jE7VgS61hm9ey63OXvT4AAACwfhqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMRoAAAAw0wq7oq32OLeqzqyqz1bVKVX1R1V1n6o6aNnPBQAAAAAAAAAAANiYPaWesKruuEI+pyxwjaPXeO5HL2idY9dY56hFrAMAAAAAuyON0QAAAIBFOTjJZZJcI8ldk/xmkjclOaOq/qSqDl1mcnu7qnrpqOjpi8vOCdi7VNUXR58zL112TgAAAAAAAAAA7JaWVU94wgrxn6uqK2/RmmPH72bzAAAAAMAeR2M0AAAAYKsdkeTJSf6tqm697GQAAAAAAAAAAACApdiyesKqOjzJ/VY4vV+S4xa53iruX1WX2MwEVXW1JLdfUD4AAAAAsMc5YNkJAAAAAHuU7yf53ArnLprkUkkuvcL5qyQ5paru0N0f24rkAAAAAAAAAAAAgG2xu9UTPjzJIaucf3RV/V5394LWW8lFkzw4yYs2McfxSWox6QAAAADAnkdjNAAAAGAep3X30atdUFVXTHKvJE9KcvXR6UskeV1VXbe7f7w1KbIIa73OQNLdT0vytCWnMTe/3wAAAAAAAAAALMDuVk94wui4s3NzsaOS3CnJ/1vAWmNnJ7nk1PHx2WBjtKraL8mjRuGzMjSaYy+1p9aiAQAAAGyV/ZadAAAAALB36e4vd/fzktw4yRtmXHL1JL+0vVkBAAAAAAAAAAAA22m76gmr6iZJbjoK/3mS80ax4ze71gpeneQnU8e3qqrrbnCuuya54tTxOUnesdHEAAAAAGBPpDEaAAAAsCW6+/tJHp7k32ecfuQ2pwMAAAAAAAAAAAAswTbUEz5mvGSSZyd52yh+v6q65ALWG/tKkr8dxTbahG087pVJzt3gXAAAAACwR9IYDQAAANgy3X1ukj+acermVXWp7c4HAAAAAAAAAAAA2H5bVU9YVYckedgofGp3/2eSl43iB2do0LYVThwdP7KqDphngqq6dJJ7rzEvAAAAAOz15vpiDQAAAGADTpkR2y/JtZO8f6OTVtV+SW6a5Kgkl0lyqSTfSfKNJJ9L8tHuvmCj8y9SVV0hyXUy5HpYkotkyPWsJP+Z5MOToi+2QFVdJMktk/xUkiOTHJrkWxneK//S3f+xxPTWpaouk+RWSa6WIf9vJzkzyQe7+/Rl5rbVquqwDM/9mhl+f85NckaS98/z3Kvq8klukeH38NAMv39fTvKe7v7OgtPekKo6OMltk1w5yeWS/CTJ15N8PMnHuruXmB4AAAAAAAAAAGzWVtQT3i/JJUexkyb/+/YMdWKXmTp3QpLnbnCt1bwlyTeTHDE5vmySe0zi6/WIJAdNHf9rd3+kqhaT4QJU1f4Z6tiuk+QKSS6RZP8kZ08en0ry8d2lfnMR9pUa0Ko6KMk1MjzXy2V4bZPheZ6V4XX99DblckCSmye5fobfqQuSfDXJF5J8oLt/sh15rNfeUKcKAAAAuxuN0QAAAIAt1d3fqKrv5MICiR2OmHX9Wqrqdkl+JcnPZWiGtpKzqurtSf6ouz+5kbU2qqqOSHLfJHdOcocMBU6rOa+qPpCh2Or16y0IqqovJrnKCqevUlXraaJ0THefOmPuUzPkvsN7uvvoFfL4eJIbTIW+keQK3f3jdaw/U1U9NMkrR+Ff6e6/XOf4/TLs7PmIJLdPcsgq134hyWuTPKO7v7mxjLdGVR2d5LeS3ClDAeCsaz6Z5A+TvHKexllVdVySl4zCV+3uL24gz/G6v9vdT1tjzNOS/O/pWHfX1PlbJPmdDMWBM7/HrKr3JPnN7v7AKuvcK8lTktwmyawKwfOq6o1JnjzZJXbd1noOc8xzVJKnZfjcGH9W7vC1qnp+kmd29/fmXWO03qlZx+/3JK8vrDLVo6rqUWutt+NnUlWXyNDU7tCp06d29zFrJr2Kqnp2kv8+Ct+ku/9lM/MCAAAAAAAAALBYi64nnDhhdPyDJK+brHd+Vb0yya9Onb9JVd20uz+6iTV30d3nVdUrRmsdn/kaox0/Oj5x04ktQFVdM0MDujtm2PjxYmsM+XZVvStDTd4H51hnt6hF3K4a0NGaT8sCatE2sO5NkvxCkmOS/EySg9e4/htJ3pbhtV14bW5VXTbJbyY5LsnhK1x2ZlW9NsnTu/sbi85hvfaWOlUAAADYXc28mRIAAABgwWY18Vmp+c9MVXWtSaOz9yZ5cFZvipbJ+Uck+XhVvbiqViw4WKRJEdVXk7wwyYOydkFMMuzwePsMRQ//VlXX37oMt8S4udZlktxzk3MeNzr+UZJXrWdgVd0tyccz7Pp5l6xSbDJx1QyNsz5fVb+6xrXboqoOrqoXJfn7DE0AV/se73pJTk5ySlWtVXC226vB7yX5QJJ7Z/XNHe6Q5J+q6tdnzHNYVb0+Q2HhbTO7KVoy/P49OMknq+rOm0p+AybvuU8keVRW/1y8XIbmaZ+oqpttQ2oL193fyfBenXZ0VV13o3NOdto8dhR+v6ZoAAAAAAAAAAC7rU3XE+5QVVfN0NBp2htGGw++bMbQcTO1Rfmr0fE9q+rI9QysqpsnudFU6LzsWmuzrarq0lX1z0k+k+SPM9TjradG7bAkD0jygap6c1Wt1OBqbOm1iPtKDWhVXaeqPp3koxkast0+azRFm7hMkkdneJ4vqqr1jFlvTvdI8skkT8zKTdGS5Mgk/y3Jv1fVQxa1/jz2hjpVAAAA2N1pjAYAAABsh1kFCt9Z7+CqulOSDya5+wbW3i9DEdN7JjvJbbXbZPVGTmu5boZioG1v0LQJJycZ78j46I1OVlVXzLDT4rQ3dffZ6xj760n+JkOzsHldPMmzJo30NvMabsqkid87kjxmzqF3SfL2qtp/8Vltq+cn+Z2s/7vLSvKnVfXY/woMhXTvzrBL6XpdLMlbquoWc4zZlKr6gyTPSnLROYZdOcPn2R7ZHC3Drqhjj9vEfA/Nrv8f87xNzAcAAAAAAAAAwNbaVD3hyPHZdcPEk6YPuvujGRoYTXv4Vmy22t0fT/KRqdABSR65zuHHj47f0t3fWkhiG3fxJDfd5Bz3TvKhSV3gWnaHWsR9pQb0ckmutYnxlaHG8b1VtaHGhjtNVnWvJG/O2psmT7t0kldO1w5uh72hThUAAAD2BP7hDAAAAGypqrp6Zjf9+fw6x98ryeuTHDg6dV6Sv8vQMO1LSb6d5NAkRyW5Y5Lbja6/ZZI3VdXtu3tcOLNVfpLkn5N8IsmnknwrQwFXZdjh8ppJbpXkttm5CdShSV5dVTft7i+tMv8nk5wz+e8rJ7nk1LkfT86vZdbum3Pp7jOr6u1J7jMVvkdVHdndZ25gymOza1OsE9caVFV/nGFHvbGzkrwrQ8HZmUl+kKG47vpJ7pbk2qPrT8jwc/31ubJenBOz8y6mn87QKO1TGZ7LYRmKze6fXXejvH2S/5HkGVuf5uJNdkKcLlI6Pclbk/xbhud+eJKfSfLA7LpL7LOq6p0ZPg9enWS6cdhHkpyS5AtJvpvh53bHDEV30++1iyR5UVXdvLvPX9DTmqmqfi3Jb8049aNJru9N8pUMDduumuH36waTay6W5E1JXreVOWb4nP2XqePrZefP4rOT/Oc8E3b3J6rq1CRHT4WPraqndvcPNpDj40fH30ry1xuYBwAAAAAAAACALbbZesLRXPslOW4UPiPDhopjJyX506njwzNsuvjKedddhxOzc+3S8UmeudqASZO2h86YZ3fzvSQfTvLvST6boW7zu0kOylC/eL0MtW/XHY27ZpLXVNUdVqvL2l1qEadsdQ3o7uTsXPja/keG5/m9DDV1R2Sot7xLhlrVabdM8uIkD9rE2ldN8pxceL9zJ/mnJG9P8uXJ8ZUybK582+zcDLGSPL+qvtXdr99EDuuyF9WpAgAAwG5PYzQAAABgq91/RuzsDMUTq6qqq2YoSJpuxHN+kj9P8qfd/Y0Vhj6tqm6SodhiusDoVkn+OMmT1pH3Rp2X5A0Zdi78u+7+9loDquoqSf4oOxc2XTrJ85L8/ErjuvseU3O8NMmjpk5/pbtvMlfmm3Nidi5GOiDJI5L82QbmOm50/OUk/2+1AVV13+xabHJ2kt9MclJ3n7vCuEryC0men+TIqVNPqqr3dvdb5sh7EX4myY6dSL+W5AndPbP5VVU9JclfZCjemvbbVfUX3f3DrUtzy/zJ5H9/kOH39EXd/ZPRNS+qqt/O0DDxtlPxi2RoNPbpJHedxD6f5LHdPavY8TlVdfMMOzdOv/Y3ztB47VWbeSKrqaprJ/mDGafekSHfL8849zuT9/nzMjR2u2KSX9qqHJOku7+S5L8+R6rqi0muMnXJW7r7uA1M/dzs3Bjt8CQPyZzFnFV1syQ3H4VfstLvOwAAAAAAAAAAS7fhesIZ7pqhhmbayd19wYxrT85QO7j/VOyEbE1jtFdmaIS2ow7selX1M939wVXG3C9DDc0OZyT52y3IbSPOyfDze12Sf1rPxrRVdZskz87OtT23SfLErL3p51JrEbONNaC7ga8leWmSNyY5bYXfnf8yqbe8e5JnZWgKt8MDq+oBK9U6rsOTc+Hvy6eSHLfC78sfVtUtJzlPN9+rJM+rqvd09zc3mMOa9qI6VQAAANgjjLvdAwAAACxMVf1UZu9m9qq1CigmXpGdi31+kOSu3f3kVZqiJUm6+2MZCmneNTr1hKq60jrW3qhbdPf9u/uN6ymISZLuPr27H5bkaaNT96iq6yw8w63x9iRfH8WOm3eSqrptdi6YSZKXrfZ+qaojk7xkFP5skht19wtXa5LUgzdmKMAaN6P6o0lBynbaUdzz+SS3Wq1QqLu/l+Fn/M7RqcMzu4BwT3Bwht/zO3f382c0RUuSdPfXMxSMjXcBfUSSp0/++xNJbr1CU7Qd85yW2T+rR8+b+Jyelwtf6x1em+TnV2iKliSZvFfvkAuf90W2Jr0t96bs+vv2+A3MMx7TSV6woYwAAAAAAAAAANhSC6gnHDthRuykWRd299eya6OxYyabty5Ud5+TodHUtLXqkcbP5WUr1U5ts68kuXx3P6G737OepmhJ0t3/lOR2SU4ZnfrvVXXAGsOXVos4sa/UgH4oyZW6+6nd/aH1/A5O6i3fnmED2I+OTv/aJnLZUUv3iSQ/u1oTwe7+UIb31idGpy6TCzdmXbi9rE4VAAAA9ggaowEAAABboqqunqGo5TKjUz/IsDPeWuN/LsmtR+Hju/vv1ptDd5+X5IFJpneAOzCbK8BYa811FcKs4OlJPjx1XEmO31xG26O7z8+wQ+K0G1bVzeacalYB2LiYZOxXkxw2dfyDJHdbrcHUWHd/KclDRuHrJbn3eudYoB8neVB3n77Whd3dmf1+vuvCs9o+T+zu96910aSAcLx76EWTXCzJuRl+huPGabPmeV92LcA7pqrGjcsWoqpumOSYUfhzSY5dZ3HZp5McuxW5bZdJ0ea4gdnNq+rms66fpaoOy847rCbJu7r7c5vNDwAAAAAAAACAxdpsPeGM+Y5Icq9R+LTu/uQqw142niZbt4HiiaPjh1TVzE0Qq+qo7FpPtFbN3Lbo7vO6+4cbHHtukkdleI13uFKSu6wxbpm1iPtMDWh3/2Dys97I2LOzaw3bravqeptI6bwk9+vub61j/W8lud9kzLSHTz4btsLeVqcKAAAAuz2N0QAAAICFqKpDquoKVXXPqnphkn9NcqMZl/7iOgsBnjI6/ofufs28eU2KVJ49Ct933nm2w6TJ1ctH4Z9dRi4bNC7mSubYqbGqLprkQaPwe7v7P1YZc2iSXx6Fn9ndn1/vujt09z8mefcovIz3yiu7+yPrvXhSzPfPo/C8RWC7i88kefEc179+hfjL1yhyHHvd6PiAJDecY/w8Hjcj9qTu/tF6J+judyZ56+JSWooXZtfCtMfPMf5RGRrhTXv+pjICAAAAAAAAAGAhtqCecOzYJAeNYietMebNScZNr46rqq24x/LdSaY3xjwsyf1XuPbRGRpo7fDevWVzwMnGluNNK9dTE7nttYiLsBfUgK5bd/9bdq1b3MxzfU53f2aO9T+T5Dmj8MGZ432yXntpnSoAAADs9jRGAwAAAOZxh6rqWY8kP0zy5SRvS/KL2bVhzQ+SPLy7X7nWIlV1qSR3HIXnaZY09jej46tU1VU2Md9W+uzo+Ker6sClZDKnSSOqD43CD6uqg9c5xf2TXHwUW2uHxjsnOXwU+6t1rjfL+L1yh03MtVEv2sCY8c/9WotIZAleMikOW5dJYdGsHTrnfQ98dEbs2nPOsV53Hx1/Nbu+79bjBQvIZWkmRY9/PQo/pKrGv88r+aXR8RnZ85vFAQAAAAB7kUkTgDtV1QlV9ZSq+tWqemBV3XjZuQEAACzIttQTruD40fGPk7xqtQHdfW6S147CV0pylw3msNpaneSlo/A450yasj1qFJ7VFGxPNq6JvNVaA5ZUi7goe2wN6AbM/dquYiN1ky+cERvX5y3C3linCgAAALu9A5adAAAAALDX+26S1yR5end/aZ1jbpedd0BMkn/aRA5fmBG7aXbekXFLTHaKu32G3S6vl+TSSS6R5GKZ3bT+0NHxwUkum6FIbE/wkiS3nDq+VJJ7Z9cGSLM8enT8vXWMGxeEnNHdm3ldx++Vo6rq8O4+ZxNzzuOH2bWgaz3GO1nuX1WHdvf3FpDTdnrvBsb8Z5IbTh3/IMlH5pzjizNi623QtW5VdWSSq47Cb+7un2xguncm+X6Gz5I91XOTPHzq+KIZdvP9v6sNqqo7ZPg8nfai7j5/sekBAAAAANulqq6W5BZJbj7535/Ozjcwn97dRy0htblV1Q2S/K8k90pyyArXfDbD31Se2d3nbWN6AAAAy7aResKdVNWtklx/FH57d39zHcNflqFR27Tjk5yykVzW8JIM/z7cUQt5dFVdtbuna9TunGR6k9fvJnndFuSyMFV1hSS3yVATea0kh2WoibxIdq37TJLLjY6vvM6ltrsWcaZ9qQa0qq6eobnZjZJcPcPzvESG5zDrtR2/lut9bcc+1d2fnndQd3+mqj6RnT8PblFV+3X3BRvMZZa9rU4VAAAA9ggaowEAAABb7bQkz5mziOm2M2Kvn+wkuShHLHCuXVTVzZL8RoZCnItscrrDswcUxUy8KsmfZefnfFzWKCqqqqskOXoUfm13f3+N9cbvlUtW1cfWTnNF46KkZHivbFfByend/eMNjPv2jNhhGQq69iSf28CY746OT99Ag6zxHMnw81u0m82IzdvELUnS3edX1b8mufXmUlqe7v5AVX0kO/9cHpc1GqMlefzo+PwkL15kbgAAAADA1quqo5M8NUMztEstN5vNq6pK8j+TPC2zbxaeds0kf5jkoVX1sO7+ty1ODwAAYHexkXrCsRNmxE5az8Du/seq+lySa0yF71NVR6yzsdq6dffpVfV3Se40CVWGWrr/PXXZ8aNhr1lHzdxSVNUDkvxyhiZRsxqCrdd6N6zc7lrE8Tz7RA1oVe2X4XfqFzM0q9+MjW5GuqEauol/zs6N0S6eoWHfpzYx59jeVqcKAAAAewSN0QAAAIB5fD+zGxcdmOSSSX5qxrljkny4qo7r7letc50rzojdaJ1j1+vSC54vSVJVByb58wyNezZT/DNtKxo0bYnu/nZVvTHJw6bCd62qn+rur64y9LjsepPQS9ax5Pi9ctEkN17HuHlcOhtr2LURZ21w3KxmagduJpElOXsDY8bPfe45uvvHw/1qO9mKn9+RM2Jz73Q55VPZgxujTTw3O/+uX7eqju7uU2ddXFVHJrnvKPyW7j5ji/IDAAAAALbOTZLcZdlJLNCLsuvN+RdkuOn/i0kOSnK9DDfn7nDDJO+uqlt39+e3I0kAAIAF2q56wv9SVRdL8uBR+Kwkb5tjmpOSPH3q+KAkj0jyrHnzWYcTc2FjtCQ5rqp+t7svqKpLJvmFGdfvVqrq8klenuSOC5pyXfWQS6hFTLJv1YBW1XWTvCLJTRc05Uaf52Zr6MaOXCG+UXtbnSoAAADsERb1xQwAAACwbzitu28y43H97r58hj/MH5ddCwoOSvLyqrrXOtfZkqZlI5vdwW8Xk4KYv07yK1ns9y57WoOrcRHR/kkeudLFNXSkOnYU/mx3v28da11qztw2YuHvlVXManC2z+juRTz/3flnOGtHzG9vYr7NjN1dvDrJt0axx61y/QkZ/j9l2vMWmhEAAAAAsGw/SvIfy05iHlX1hOzaFO3VSa7c3T/T3Q/u7vt297WT3DLJR6euOzLJO6rqkG1KFwAAYFG2q55w2oOSXHwUe3V3nzfHHCcl6VFs/G+6RXlDknOmjq+cCxulPTzJwVPnPtXd79+iPDakqq6Q5NQsrilakhwwx7XbWYu4T9WAVtUNkrwni2uKlmz8eS66hm5Wnd5m7G11qgAAALBH0BgNAAAAWJjuPqu7X5bkJhlu9pi2f5KTq+qodUx1yQWntl2ekuQ+M+JnJPnLDLtK3jrJlTIUXhzS3TX9yLAj5p7u3UlOH8Uevcr1d0hytVFszR0aq+qi2bkwDHZ346LMZNg5d6M2M3a30N3nJvmrUfh+VXXZ8bVVtV+Sx47Cn83wmQMAAAAA7Jl+nORjSV6c5JeS3CzDd6mPWWZS86iqSyf5w1H4Od390O4+Y3x9d384ye2TfGgqfK0kT9y6LAEAALbfAusJp81qYHbSnHmdnqEh1LQbVNUt58xlPWudm+RVo/COWrrjR/ETF73+Arw0yTVnxD+W5I+S3DfJTye5XJJLJDloRk3k725i/W2pRZyyT9SAThrAvTbJZWac/sckT0vy80lunKGh+8WTHDDjub5sQSktuoZuVp3ehqhTBQAAgOWZp7s+AAAAwLp094+q6pFJLpudizwukaEBzp1mDrzQD0fH53T3bt0sraqOTPLUUfj8JL+R5Lndff46p9rjd33r7q6qlyX5X1Ph61TVrbr7AzOGjAuVfpL1Faudm+SC7Nz8/03dfd+5Eobt890ZsYttYr7NjN2d/GWSX8+Fv8sHZihiHd9IePckR41iL+ju8Q6+AAAAAMCe4WVJnj+5SXwnVbWEdDbsCUkOnTr+9yRPWm1Ad3+vqh6e5JMZvhNNkqdW1Qu6++ytSRMAAGA5FlBPmCSpqmsnue2MUx9Y0L8jj8/OTawX5SVJHj91fN+qOibJTadi5yd5+RasvWFVdc8kdx6Fz0xybHe/c46pNlwTuY21iPtaDehjk1x3FPuPJA/p7tPmmGdRz3XRNXSz6vQ2Sp0qAAAALMl+a18CAAAAML9JEcixSb4zOnXHqnrwGsO/OTo+vKoOX1hyW+PeSS46ij2lu581R0FMklxqgTkt00uTjJsVHTe+qKoOTXL/Ufhvu/uMtRbo7guSnDMKX3X9KbIIk90jWZ/x+zVJDtvEfJsZu9uY7ML7tlH4sVU1/v768aPjczN81gAAAAAAe6DuPntWU7Q90L1Gx8/u7h+vNai7P5fkTVOhSyS53yITAwAA2F1ssp5whxMWm9UuHlpV4xrATevuDyf5+FTokCQnjy57e3d/bdFrb9JDR8c/SXKvOZuiJZuviXxptrgWcWJfqgEdv7bfTXLnOZuiJYt7rouuoZtVp7ch6lQBAABgeTRGAwAAALZMd385O+/Ut8MfrtFM6eszYjdaTFZb5udGx2cnee4G5rnaAnJZuu7+QpJTR+GHVNUho9iDsuuOfS+ZY6nxe+VaVXXwHOP3ZbNuytpIk7NLbzaRfciZM2LX3sR819nE2N3N+PPyKknuvuOgqnY6nnhtd39rqxMDAAAAAPY+VXVoVd21qh5dVU+uqidV1SOr6uYzNm1YbZ6LJ2JdggYAACAASURBVLnJKDzPDeKnjI4fMMdYAACAPcom6glTVQdkaKy2lS6Rrft32bgm7vKj4xO3aN3NGNdEntLdH9rAPJuqidzGWsR9ogZ00kDu1qPwSd39xQ1Mt6jneq1NjJ1VfzerTm8z1KkCAADAEmiMBgAAAGy15yX5/Ch2tay+e+Os4plxQ5zdzZVGxx/s7vM2MM+44GRPNi4qOizJfUex40bHZyV5yxxrjN8rF0ly9Bzj92Xj3VeTobhvXtfYbCL7kI/MiN1sIxNNij1394aR8/h/ST49ij1+6r8fm12/z37elmYEAAAAAOx1Js3Q/i7D3yNOyXDj+Z8keUaSk5J8OMnXq+qPq+qS65jy8tn5u8vvz3kj8cdHx3dyYy0AALCX20g9YZL8fJLLjmJfS/Ivm3yMrZXHRr08yUr1hGcm+ZstWndDquqgJEeOwv+wgXn2T3LLBaS0HbWI+0oN6Pi7jGRjr+2RWVxjtA3V0K0w9rtJPrOJ+WZRpwoAAABLoDEaAAAAsKUmhSFPn3Hqt1e5seNdM2IPnjQC2l0dMTo+a94JquqIJMdscP3zR8f7b3CeRXp9dm2+9egd/1FVV09yu9H5V3T3j+ZYY9Z75RFzjN+XnTMjtpFCpTtsNpF9RXefmeQLo/C9q2oj39PeNbvucLrVtuxzprs7yV+OwnevqqtMdgQeF51+rLs/sKj1AQAAAIC9W1UdUVXvytAM7ZgkB65y+RFJnpLks1V1+zWmvtToeNZ376sZX39gkuvMOQcAAMAeY4P1hMnshmWP7u6bbOaRXRse3b6qFr5RZHd/M8nbVjj98u4e1+Us27geMtlATWSSeyQ5dJO5JNtTi7jsGtDtsqjX9sGbTWTKdavq2vMOqqprJbn+KPzh7r5gMWn9F3WqAAAAsAQaowEAAADb4eTsugPbFZP84qyLu/uMJB8Zha+aXXf02518f3Q8q3hkLb+S5JANrv/d0fEiiok2pbt/kOQ1o/CdqmrHzorHzRg23tlxLe9Mcu4o9tCNFMnsgz49IzbX7pyTHT2PX0w6+4x3jI4vn+SeG5hn5ufnFtvqz5mXJvne1PF+SR6bYXfX8Y6/z1vw2gAAAADAXmpyQ/sHk9x5dOq7SU7N8LeM1yU5Lcn0jbOXTvKuqrrrKtOfNzpe7Sb+WWZdf7055wAAANjTzFVPWFU/leTuo/DXM7tZ0UZyGduqeqgT54wv07geMtlYTeSvbTaRZNtqEZddA7pdNv3aTja6fMJi0vkvj9nAmFmfGeP6vEVQpwoAAABLoDEaAAAAsOW6+ydJfm/GqadW1UpFIH8wI/aMyQ5vu6Ovjo5vU1UXW+/gqrp+kqduYv2zR8eHV9UlNzHfooyLi/ZLcmxV7Zfk2NG5f+nuj84z+WQnzReOwvsneWVVXWSuTPcx3X1mki+Pwg+aNDtbr19JcrXFZbVPeP6M2DOq6qD1TlBVd05yn8WltG7jz5mFvvbd/Z0kLx+FT8iuRXTfSfLKRa4NAAAAAOydquqiSd6Ynb/P/HSSByS5ZHcf090P6e4HdvctMtyI/6Kpaw9KcnJVXWGFJb41Or7kKn/7muWnZsTcVAsAAOzVNlBPeFyGmrBpr5rMs1mvTnL+KPaoOWuo1uvtGf4dOP24bHd/cgvW2pTu/naSH4zCd5lnjqp6TJKjF5VTtrgWMcuvAd0u4+eZzPnaJvnfSa65gFymPWHS3H5dJteO68p+lGFzzoVSpwoAAADLoTEaAAAAsF1emeRTo9jlkzxu1sXd/cYkp43ChyV5x6SAZG5VdfGq+o2qesRGxq/hH0bHh2Yo/lhTVR2V5C1JDt7E+h+fEbvHJuZbiO5+f3Z93Y9LcqckVx7FN7rz5R9l110MfzrJGzfaHK6qrlJVz6mqG2wwpz3FeHfEKyd54noGVtWdkvyfhWe0l+vujyf5+1H4WkleMinSW1VVXTO7Ng/bLuPPmRtM7bq6KM8dHV82yc+OYid39/cWvC4AAAAAsHf60yTT3/W/I8lNu/v1s26g7+6vdvdjkzxpKnxEZt+wnwwbkEx/X7l/kpvPkd+tZ8QOm2M8AADAnmqeesJHz4idvIgkuvsbSd45I4+7L2L+0Vrd3V8bPc5c9DoL9L7R8dFVta6axKq6W5L/u8hktqEWcdk1oNti8p77zCj88Kq68XrGV9WjszUN4A5O8ob11HxOrnlDdv15v3LSxGwrqFMFAACAbaYxGgAAALAtuvuCJL8749RvVtVFVxj20CRnjWJXS/LBqvrtqlrzxpCq2q+qjqmq5yf5zwyNnC43R+rr9fokF4xiv1FVv1dVB6yS30OTvD/D80qS72xw/Q/MWP+ZVXWfqjpwg3MuyninxmskefYodl6SV2xk8u7+WpJHJenRqbsm+UhVPWK112CHqrpYVT24qt6Q5HNJ/luSWTuQ7k1ePCP2J1X1S1VVswZU1SFV9ZQMN48dnOTcrUxwL/XL2fXn9rAkb6mqK6w0qKp+Icl7c+Fn2A+3Jr0V/dPoeL8kf11V89zkt6rJDrjjxnFjz1/UegAAAADA3quqLp/kMVOhLyZ5QHev+d1qd/9ZkrdPhR5eVbv8fam7z0/yj6PwI9eZXyWZtZnPxdczHgAAYE+23nrCqrpDkmuOrvlUd39kgenMarJ2wgLn31O9dkbsNVX1gJUGTGrL/leSNye5yCS80ZrIWbayFnHZNaDbafzaHpjklKo6eqUBVXV4VT07yV/lwvuSF/Vcd9TS3TDJ+6rqlqvkcYsMTexuODr1jSRPWVA+u1CnCgAAANtvzX9oAwAAACzQa5P8TpLrT8Uum6FJ0DPGF3f356rqQRluPDlo6tTFkvx+kqdW1fsy3HDy1STnJLloksOTXCnDbmw/PTneUt39mao6Ocmxo1O/k+S4qnpdkn9N8r0kl0py7ST3TnL1qWt/kKEw43kbWP+rVXVKkukdGS+b5E1JzquqL2XYrW5clPGY7j5t3vXm9PIkf5hk/6nYdUfXvLW7v7XRBbr79ZOCqt8bnbrqZP1nVNWpSU7LUADz/SSXyPDeuEaSmye5UfaAHRsXqbs/VFVvTnKfqfD+GRpP/UpVvTFD8c15SS6T5GYZ3mNHTl3/xGhUNZfu/lRV/XaSZ45O3TPJ56rqHRmKt76aoUDwahleo+lirjOS/HWGn/92eXOGZpWXmor9TJIPV9V3k3wlMxrldfdN5lznL5Ics8K593X3x+ecDwAAAADYNz0uO/996Xe7+wdzjH9mLvy7y0FJ7pbkpTOuOznDTbA7PLqqntfdH1tj/idk15v7E43RAACAfcd66glnNSh7+YLzeHOGBk+XmIrds6qO7O4zF7zWnuSkJE/NzjWOh2bYSPGfk7w1Q23ZjzPUk90syc8nufTU9Z+cXLeohlVbVou47BrQbfbnGRpyTdfWXi7J31fVe5O8M0OD+Qsm8dskuXuG13+Hd2eoYRv/vDbi/yT5tcn810vygUlt8DuSfGlyzZUyfDdzuyTjTV87yeO7+xsLyGVF6lQBAABge2mMBgAAAGyb7r6gqn43u+429+TJDSLfnzHm3VV1uySvy1DYMO1iGW40uet43JL89yS3THKdUfyKWbt50Y+TPDBDYcxG/UaSO2T4uUw7KDsX30w7dIX4wkw1bbvnKpeduIB1fr+qvpKhqdJ4B73LJnnw5MHOHpfkFkkuP4rfMLvuqjj2p939gqrSGG1O3f1nVXVEhuLBaYckue/ksZLvJ/mFDIWE26a7z62q/5HkZTNOXzxDsd8ivClDQdv4Mz/Z/YsGAQAAAIDdx89N/fdPMvytaR7vS3J+Lqy1vV1mN0Z7dZKn5cK/xRyY5K1Vdbfu/sSsiavqwZmxadDEBXPmCQAAsEdaq54wQ/Or+4+HJXnFgvP4YVW9IclxU+EDMzR8Wunfbnu97v5xVT0ww7+PLzo6vWPT2tWckaFm8LgF5rTVtYjLrgHdFt19VlU9PMlbsnOTuSS5/eSxmn/L8Fz/fEEpfSHJw5O8YZJPZfge5nbrGNtJHtfdr19QLqsvpk4VAAAAts1+y04AAAAA2Ofs2DVv2mWSPGGlAd39oQxFNC/JUDyyUZ3k1CT/sIk5Vp68+9tJ7pzkA3MO/UqSO3f32ze5/icz3OTzuc3Ms0VWKzb6aoYdBjetu09Mcuskf7fJqc7NcCPTf246qd1cd38tyc9mvvfNeUl+vbufvDVZ7Ru6+7eS/I/MVwz35STHdPdpW5PV6rr7pCSPSfLdLVzjJ0leMOPUN5JsSwEbAAAAALBnq6pDktxsKvSlJEdU1VHrfWTYUOScqTlmbkLT3ednuHn3vKnwFZP8c1X9ZVXdtaquU1U3rKoHV9XbMvwN4sDJtV8eTXlOAAAA9h2r1RM+LLs25Hpfd5++BXmcPCN2whass0fp7o9m2Lj2q3MO/UCSW3X3Fxee1BbWIi67BnQ7TXJ9YJLvzDn0bUlu191nLzift2TYLHSe70XOSvLw7n7hInNZizpVAAAA2B4aowEAAADbqrs7ydNmnPr1qrr4KuO+2d3HJ7lGhl0YP5Gh0dlavpvkbzI0H7pqdx/T3R+cO/F16u4zMuyW99+SfH6Ny09P8j+TXKe737ug9d+fYbfCeyT5ywy7NX4lyfeSXLCINTborUm+ucK5kyaNkBaiuz/W3XdKcqskJ2XXG4pW8tUMBW6PSnK57n5od5+5qLx2Z939hSQ3SvJbWb2I7bwkr0ly0+5+5nbktrfr7mcluX6Sl2X1IrMzk/x+kut394e3I7eVdPdfJblCkkcneXmSj2bI74cLXGZW47cTu/tHC1wDAAAAANh7XS4XNh5LkqOSfGEDjyOm5rjUSotN/vb0iAw3tO5wUJLHJzklyb9nuNH/1UnuOXXNm5K8dDSdxmgAAMA+Y7V6wiS/NCM+q4HZIvx9kjNGsetU1W22aL09Rne/L8mNk/yfrP1v1tMy1N/dtrvXW7c3ry2tRVx2Deh26u43ZqgbfEFWr/26IMOmxPfp7nt195Z8d9Hdb0tyvSR/kdVr6b6R5LkZfu6v2opc1qJOFQAAALZeDd8dAgAAAOx5quoySW6WYYfISyc5NMn3MzRD+3KSTyU5vZf4BUhVXSvJLSc5XmyS35eT/Gt3f3pZee1rquoaGQpmLj15HJShWdy3M9zY9CnFJReqqhtlKGY7IsOuq99O8ukk7+/u7y0zt71ZVR2c5GeTXDnDTXsXJPl6hpvlPtbdy2xuuK2q6pVJHjoV6iTX6O61ig0BAAAAgL1AVR2d4ab0HU7v7qPmGH+zzN6AYTO+2N1XXWPdm2fYuOYWa8z14yR/mOQPJtc/ZurcE7v72ZtJFAAAALZCVe2f5OYZNoI8IskBGeo1v5DktO7+2hLT2xL7Sg3opHbtZ5JcO0ON5X4ZGuH9R5IPd/dZ25zPgRm+X7n+JJ8LMjQV+0KGOsaFbca7KOpUAQAAYLE0RgMAAAAAYLcxaXr5pSQHT4VP6e67LyklAAAAAGCbLaAx2q2T/NOC01p3DlX1c0nuneR2SS6f5PAkZyU5PcnfJHl5d39hcu37ktx2avjPdvc/LjBvAAAAAAAAAIA9ygHLTgAAAAAAAKb8YnZuipYkf7GMRAAAAACAPdY3R8d/29133a7Fu/tdSd611nVVdWCSm02Fzk/yz1uVFwAAAAAAAADAnmC/ZScAAAAAAABJUlUXS/Kro/Dnkrx9CekAAAAAAHuur4+Or7WULNZ22ySHTB1/sLt/uKxkAAAAAAAAAAB2BxqjAQAAAACwu3h6kiNHsWd19wXLSAYAAAAA2DN193eSfGIqdFRVXXNZ+azihNHxi5eSBQAAAAAAAADAbkRjNAAAAAAAlqqqLlVVz0jya6NTpyd50RJSAgAAAAD2fO8cHf/iUrJYQVVdPckDpkLnJHnNktIBAAAAAAAAANhtaIwGAAAAAMC2qqoXV9XHJo8vJ/lmkifNuPQ3uvu8bU4PAAAAANg7PC/J+VPHT6iq6y8rmWlVtX+S5yc5ZCr8+939wyWlBAAAAAAAAACw29AYDQAAAACA7XaNJDeePK6QpGZcc1J3//W2ZgUAAAAA7DW6+3NJXjIVOiTJ26vqevPMU1UHV9Vxa1xzwBzzHZjk5UnuPBX+UJJnzZMXAAAAAAAAAMDeSmM0AAAAAAB2NycnecyykwAAAAAAtlZVXbGqjho/klxudOkBs66bPI5YZYlfS/KvU8dXTnJaVf1BVV1plbwuUlV3rqr/m+RL2bnB2ix3q6rTquqXV5p30mDtvpN8Hjp16uwkx3b3T9ZYAwAAAAAAAABgn1DdvewcAAAAAADYh1TVqUnuMBX6YZIzkrw/yYndfeoS0gIAAAAAtllVfTHJVTY5zcu6+7hV1rhSkr9Ncp0Zpz+f5FNJzklyQJLDkhyV5BpJ9p++sLtrlTV+Pslbp0JfTvLJJGclOTDJZZPcNMnFRkO/leSe3f3BleYGAAAAAAAAANjXHLDsBAAAAAAA2Ld099HLzgEAAAAA2Dd095eq6hZJnp/k4aPTV5s81nLOnMtecfJYzT8mOba7Pz/n3AAAAAAAAAAAe7X9lp0AAAAAAAAAAAAAAGyV7v5edz8iyY2TnJzk7HUM+0qSVyR5YJLLrXHtJ5K8LMnX1kolyXsnc95OUzQAAAAAAAAAgF1Vdy87BwAAAAAAAAAAAADYFlW1X5IbJblekkslOTzJuUm+k+SLSf69u7+0wbmPSnLDJFdKcliGTYy/k+Q/knywu7+1uewBAAAAAAAAAPZuGqMBAAAAAAAAAAAAAAAAAAAAAAAAS7ffshMAAAAAAAAAAAAAAAAAAAAAAAAA0BgNAAAAAAAAAAAAAAAAAAAAAAAAWDqN0QAAAAAAAAAAAAAAAAAAAAAAAICl0xgNAAAAAAAAAAAAAAAAAAAAAAAAWDqN0QAAAAAAAAAAAAAAAAAAAAAAAICl0xgNAAAAAAAAAAAAAAAAAAAAAAAAWDqN0QAAAAAAAAAAAAAAAPj/7N15fFT1vf/x93cykw0SCJCwIzsoihtUQVzAurfWqkWtrbWLWpeuV722FtFqtdaqvfdqa7Uu1K3WqiAu2F8VFMUFQZQWUVH2NZAEsicz8/39cSBkJufMQiaZYfJ6Ph55JN/v+S6fcxLwjMx5BwAAAAAAAAAAAEg7gtEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApJ0/3QUA6WaM6SHp+FZd6yU1pakcAAAAAAAAAAAAAACA9siVNLhV+3Vr7c50FQMAAO/RAwAAAAAAAAAAAAAAWYL353USgtEA5w1Xc9JdBAAAAAAAAAAAAAAAQAf4mqTn010EAKBL4z16AAAAAAAAAAAAAAAgG/H+vA7iS3cBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAwGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIC086e7ACADrG/dmD17tkaOHJmuWgAAAAAAAAAAAAAAAPbZqlWrdNZZZ7XuWu81FgCATsJ79AAAAAAAAAAAAAAAwH6P9+d1HoLRAKmpdWPkyJEaN25cumoBAAAAAAAAAAAAAABIpab4QwAA6FC8Rw8AAAAAAAAAAAAAAGQj3p/XQXzpLgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACEYDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkHYEowEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIO4LRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKQdwWgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0o5gNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABpRzAaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgLQjGA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA2hGMBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACDtCEYDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkHYEowEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIO4LRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKQdwWgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0o5gNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABp5093AUBXZK1VOByWtTbdpQBAG8YY+Xw+GWPSXQoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACALoRgNKATWGvV0NCg6upqVVdXq6mpKd0lAUBcubm5KioqUlFRkfLz8wlKAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANChCEYDOlhdXZ02bdqk5ubmdJcCAElpamrSjh07tGPHDgUCAQ0YMECFhYXpLgsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAlvKluwAgm9XV1WndunWEogHY7zU3N2vdunWqq6tLdykAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAshTBaEAH2ROKZq1NdykAkBLWWsLRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHQYf7oLALKRtVabNm1qE4oWCARUXFys7t27KxAIyBiTpgoBwJu1Vs3NzaqpqdGuXbvU3NwccWzTpk0aMWIEf4cBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASCmC0YAO0NDQEBEkJElFRUUaOHAgQUIA9guBQECFhYUqLS3Vxo0bVV1d3XKsublZjY2Nys/PT2OFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALKNL90FANmodYCQ5AQMEYoGYH9kjNHAgQMVCAQi+nft2pWmigAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkK4LRgA4QHYxWXFxMKBqA/ZYxRsXFxRF90X/PAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEB7EYwGpJi1Vk1NTRF93bt3T1M1AJAa0X+PNTU1yVqbpmoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZCOC0YAUC4fDbfoCgUAaKgGA1PH7/W363P6+AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB9RTAakGLW2jZ9xpg0VAIAqePztb1lcPv7DgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2FcFoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANKOYDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaUcwGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIC0IxgNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQNoRjAYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg7QhGAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJB2/nQXgM5hjAlIOkbSEEn9JdVI2iTpA2vtmhTvNUzSYZIGSOouabOktZIWWWubU7kXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsgPBaGlijBkuaaKkCbs/HyGpqNWQtdbaoSnYp1TSTZLOk9TLY8wiSXdZa59p517nSvq5pEkeQyqMMU9JusFau709ewEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACC7EIzWiYwxJ0j6hZwwNNeQshTvd5qkRySVxRk6WdJkY8zjki6z1tYmuU93SQ9IOj/O0F6SLpd0tjHmO9baV5LZBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANnLl+4CupjDJJ2szglFO0HSbEWGollJSyQ9Len/SdoeNe1CSU8aYxL+uTDG5Eh6Sm1D0col/XP3Xkt3771HX0lzjDFTEt0HyGZDhw6VMablY8GCBekuCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACATkcwWmZolPR5qhYzxgyS9Kyk3Fbdb0kaZ62dYK2dbq09WdIgST+R1Nxq3Fcl3ZLEdr+VdHqrdrOkH0kaZK09ZfdeR0o6WNLbrcblSZptjOmfxF4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIUgSjdb5mScsk/UXSZZKOlFQk6Qcp3OMmSSWt2oskfdla+3HrQdbaRmvt/0qaHjX/58aYA+JtYowZLidYrbVvWGvvsdY2Re21QtKJigxH6y1pZrx9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkP0IRutcsyQVW2sPt9ZeYq2931q71FrbnKoNjDGjJH2nVVeTpIuttQ1ec6y1s3fXtkeeEgssmykp0Kr9iLV2Tox96iVdvLumPb6/O2ANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXRjBaJ3IWlsZK6AsRb4pKadV+1lr7WcJzLs9qj3dGJPvNdgYUyDp3DhrtGGt/VTS7FZdfjk1AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoAsjGC37fD2q/XAik6y1H0t6t1VXN0knx5hyiqTCVu23rbUrE6qwbU1nJzgPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWYpgtCxijOkn6dBWXUFJbyWxxIKo9mkxxp4aZ24sC+XUtsfhxpi+ScwHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAlvGnuwCk1MFR7Y+stbVJzF8U1R6XxF5vJ7qJtbbWGLNc0uFRe21NdA0AybPWaunSpVq5cqW2bdumxsZGlZaWauDAgZoyZYq6d++e7hL32fr167V48WJt2LBB9fX16tOnjw455BBNmDBBPl/7MkC3bdumhQsXatOmTaqvr9eAAQM0fPhwHX300e1e282KFSu0fPlylZeXa9euXerVq5f69++vKVOmqHfv3infDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyBcFo01ZDSQAAIABJREFU2eWgqPaqJOd/Hme91g5MwV6tg9EOkvRakmsASMD27dt166236rHHHlN5ebnrmNzcXE2bNk033nijjjrqqITWvfjiizVr1qyW9urVqzV06NCE5i5YsEBTp05tac+cOVM33nij53hjTMvXxx9/vBYsWCBJWrRokWbOnKnXXntN4XC4zby+ffvq+uuv15VXXpl0iNkHH3yga665RvPnz3dde9CgQbrssst03XXXye/368Ybb9RNN93Ucnz+/Pk64YQTEtprx44duuOOO/TYY49p48aNrmN8Pp8mT56smTNn6stf/nJS5wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+wOC0bLLyKj2uiTnr41q9zbGlFhrK1t3GmN6SerVzr2ix49Kcj6ABMyePVsXXXSRqqurY45ramrSvHnzNG/ePF166aW699575fdn9n8ibr31Vt1www0KhUKeY7Zu3aof//jHmj9/vv72t78pNzc3obXvuusuXXvttTHX3rBhg2bMmKGXX35Zzz77bNL17/HXv/5VP/rRj7Rr166Y48LhsN58802ddNJJ+ta3vqUHH3ww4fMBAAAAkN3qQ3Va3fCJmsKNSc3rE+inAXlD5DOxg6RDNqT1DZ+rKljRnjKzRq4vT8PyR6sgp1vK164J7dLa+s/UbJvbHMvz5WtYwRjl+wpSvm+qNIebtbbhM5UEeqt3oG+6ywEAANgv1IR2aUvjevXLG6zuOcXpLicjVTSXa0PjaoVt219kU5TTQwcUjJTfBFK+785gpbY2bdSQ/BHtug9vCNdrTf2nagjXp7C6jtM3d6D65Q6K+MVFbpz7/09VE4r975CFOd01uvDgVJYIAACAfRUOSrtWSsFaqfdEKc6/DwAAAAAAAAAAAAAAAKRLZqfeIFk9o9rbkplsra0xxjRIym/V3UNSZdTQ6H3qrLW1yezlUluPJOcDiOOhhx7SJZdconA48iGRESNG6KCDDlJhYaHWrVun9957LyIA7P7779e6des0d+7cjA1H+/3vf6/rr7++pT1mzBiNGTNG3bp10+bNm/XOO++ooaGh5fhzzz2nGTNm6Pbbb4+79p133qmrr766Tf9BBx2kUaNGKS8vT+vWrdPixYsVCoW0aNEiTZ8+Xccdd1zS53HDDTfo5ptvjugzxmjMmDEaNWqUioqKVFlZqffff1/l5eUtYx577DFt3rxZ8+bNy9jvEQAAAIDO8XrlS3p6218UVtuAgEQMyB2iqwbfqJ7+6Ax8x+bG9fq/DTeqKrijHVVmH598ml52iY4rOS0l61lr9fKOv+vFHX+TlY2xb44u7HeFJvU4MSX7ptKndct138bb1BCukySN7/4lfb//1Qr4CPUGAADw8tL2pzSv4mkFbVBGRueWfV9TS76S7rIyRsgG9fDmu7W0+q2Y47r5inTFoF9pWMGYlOwbtmE9te1+LayaJ0nKkV8X9f+xJhYn/29B7+5coMe23KOQgimprbMckD9KVw6a4RnW90ndcv15460Jhb0NzR+law+4I9UlAgAAIBnBOum9S6U1j7sfP/Q30kHXEZQGAAAAAAAAAAAAAAAyBmkq2aV7VHtffuV0vSKD0Yo6cJ/W3PZJmjGmTFJpktNGpGLvVLHBoFS+Id1lZL/SQTJZHCi1bNkyXX755RGhaIcddpjuvfdeTZ48OWJseXm5ZsyYoT//+c8tffPmzdMNN9ygW2+9tdNqTtTy5cu1cOFCSdJZZ52l2267TWPHjo0YU1lZqZ///Od65JFHWvruvPNOXX755Ro6dKjn2kuWLNF1110X0XfCCSfonnvu0bhx4yL6y8vLdcMNN+i+++7TG2+8oRUrViR1HrNmzYoIRfP5fLryyit19dVXa8iQIRFjrbWaM2eOfvKTn2jdunWSpFdffVUzZszQbbfdltS+AAAAALLHuoZVemrb/e1aY1PTOj26+X/1o8E3tjlmrdWfN95GKJqLsML627Y/a1jBGA3OH97u9VbUfaAXdjyZwL4hPbrl/zQ0f7T65w1u976p0hRu1J82/EaNdm9I+Uc17+nlHU/rzNIL01gZAABA5lpeszjiHtDK6ultf9HQ/FEpC/ja3/2z4tm4oWiSVBuu1h833qLfjnhYOab9//739s5XW0LRJCmkoB7ZfLeG5Y9Rn9y+Ca+zrWmTZm35Q7vrSYe1DZ/pqa336/sD2v4yocZwg+6Luv8HAABABmuqlF47Wap433vMh9dLDdulI+/qvLoAAAAAAAAAAAAAAABiyN5UoK4pOrBsX96JXC+pJMaaqdwn1pr76gpJM1O0VnqUb5CdzsMOHc38/ROp/9B0l9Fhvv/976upqamlPWXKFL3yyisqLCxsM7a0tFT33XefRo4cqWuuuaal//bbb9cFF1ygQw45pFNqTlRFRYUk6dprr9Xtt9/uOqakpEQPP/ywKisrNWfOHElSKBTSgw8+GBFGFu3KK69UMBhsaZ999tl66qmn5HcJ0SstLdWf/vQnDR8+XNdee622b9+e8DmsXbtWl19+eUs7Ly9Ps2fP1qmnnuo63hijs846S5MnT9YxxxyjVatWSZLuuOMOXXrppRo2bFjCewMAAADIHv+uWZKSdT6pW66GcL3yfQUR/duaN2lb86aU7JGtPqp5LyXBaB9Vv5fU+OU1izMqGO2TuuWuoQgf1bxLMBoAAICHl3c87dq/rOYdgtF2S+Y1T22oWp/Xr9TowoPbve/y2sVt+qysltcu1tTcryS+Tk3bdfYn/655XyEbUo7Jiej/1OP+HwAAABnIWmnRRbFD0fZY9Wdp/K+lQKreygkAAAAAAAAAAAAAALDvfOkuAB3KZtkcAAmYP3++li5d2tIuLi7WU0895RqK1trVV1+tr3xl78Mc4XBYd999d4fV2R5TpkzRbbfdFnfcb37zm4j2a6+95jl28eLFevfdd1va/fv310MPPeQaitbaNddco5NPPjluLa3dcccdqq/fmw959913e4aitVZWVqYnnniipR0KhTL2ewQAAACg4+0MVqZknbBCqgnuatNf1bwjJetns53BipSsUxVM7lrvDKVm31TZ6VF/qn5GAQAAss26hlVa0/Cp67Gq5sy610un6lBVUuNTdn/u8Voo2fvbZO/zM02jbVBjOPr3nUlVKbrOAAAA6ARrnpA2vZDY2FCdtHNFx9YDAAAAAAAAAAAAAACQIILRsktNVLtgH9aInhO9ZmfuA2AfzJo1K6J95ZVXasCAAQnN/e1vfxvRfvLJJ9XY2Jiy2lLl+uuvl88X/z9h48aN09ChQ1vay5Yt8xz75JNPRrSvuuoq9ejRI6F6ZsyYkdA4SaqtrdVDDz3U0h4+fLguu+yyhOdPnDhRxx57bEv7+eefT3guAAAAgOwStM0pW6vRtn3YvcHlAXhEStU1arQNadk3VRrD7vW7/VwBAABAer3qZc9j3EPtlexv2vK6L02W1/25W0hYLJl2374v3M4h2esAAACANKnfKi35cXJzPr6jbZ8NSxVLndA0G05NbQAAAAAAAAAAAAAAAHH4010AUopgNOmPkp5Ocs4ISXNStD+Qdm+++WZE+1vf+lbCc8eNG6cjjjhCS5culSQ1NDRoyZIlmjx5ckprbI+CggJNmzYt4fEHHnig1qxZI0mqq6tTTU2Nunfv3mbcokWLItrTp09PeI8pU6ZowIAB2rRpU9yxb775purr9z4wcu655yYU8tba1KlTtXDhQknS2rVrtW7dOg0ZMiSpNQAAAADs/7yC0XLkV64vt02/ldQQrnOd0+ASIBArrKvAV5hYkVmi2TYpaINt+lMWvJDkOqnaN1W86gnaoIK2WX4T6OSKAAAAMldtqFrv71roeTzT7vXSK7lotFQFdnkFmqUqGM3rNVu6WNkY59z259FrrE8+5fny2/S79QEAAKAT7NqHILP1/5Cq/i31PHj3Gp9Kb3xN2rXSaZceKx3zpFQ4MLW1AgAAAAAAAAAAAAAARCEYLbvsjGqXJjPZGNNdbQPLqhLYp9AY081aW5vEdmUJ7JM0a+02SduSmWOMScXWQEaorKzU559/3tLu2bOnDjzwwKTWmDx5ckswmiQtXrw4o4LRRowYodzcxB8WKSkpiWjv3LnTNRjtww8/bPm6Z8+eGjlyZFJ1TZgwQc8//3zccdHBdQMGDGgJbktU9Pl/8cUXBKMBAAAAXZBbUJckTe75ZV3Q94dt+q21+tGn5yistg9CuT3g7/Wwe2mgv24a/qckq92/PV/+uOZVtM3i97pGyfIKWPAbf4cGsqVKrOvQGG6QP4dgNAAAgD3e3vmqmm2T5/FUhXtlA2uTDUbr2ODiZNf3CqY+oeR0nVP2vaTr6igN4Xr9/LMLXI+5/Tx6XYcDux2mKwfdkNLaAAAA0A59p0pfWSEtvkLaMDvxeS8d4nzuNkyqXR15rHyhNHuQNPa/pG5DpZ6HSH0mSbLSJ3+Qts6XcntLPcdJRWMkhSVfrlT+llS/WSo5TBp6oVTQz1nPWon3bwIAAAAAAAAAAAAAABcEo2WXz6LaByQ5P3p8hbW2MnqQtXaHMaZSUuu0oSGSPm7HXtG1A9gH5eXlEe1Ro0YlHf43duzYiPa2bUllDXa46KCzeAKByIevm5ub24ypra1VQ8Pehzj2JWQs0Tnr16+PaP/0pz/VT3/606T3a62ioqJd8wEAAADsn4K27esbSQoY9xAqY4zyfAWqD7fNtk/mYfd8X3SufvbzOudGm5rgBa9gseKcElUEy9v0Z1pYRqyAiMZwg7rlFHViNQAAAJkrbMNaWDUv5phMC8Hdn6QiuNham8JgNPd68jLsNVWuyZORkVXbIDq3c/Z6PZJp5wUAAABJBf2lY5+V1j0tvX+V1FguHTxTskHpP7+JPTc6FK21lXfGnrvWo3/NY9IHV7sf8+VJg8+RAt2ljXOdIDVJ6n+qNPhsKbdE6neSlNvD6d/+rrTxBcnkSMMvds5110opv0wyfim/VKr8SFr9V0nWCWTrdUTsuqPVbZCaq6XiMZLxeY+zVqr+VNr8T8mGnPPoNji5vQAAAAAAAAAAAAAAQASC0bJLdDDZyCTnD49qr4iz1+SovZIJRoveK5m52a10kMzfP0l3FdmvdFC6K+gQlZWRWYY9evRIeo3oOZkWuuXzxXiT2T6qqqqKaBcVJf/AdnFxcULjduzYkfTa8VRXV6d8TQAAAACZzysYLcd4/y+/PF++RzBaMg+75ydYYfbwOudUBZR5BSz08PfyCEbLrLCMRut9HTKtVgAAgHT6uPYDlTdviTmG+6e93IK6YknFtWu2TbIKux5LNnjNa3yBrzDpujqSz/iUa/Jcg5/dzsHrOnfF14oAAAD7BWOkA6ZLfadJK38vjfultGtF/GC0zhZulNY+0bZ/8zznI5Z/3xR//ZV3OZ8Hny2FGpwws8IB0ohLpD5HSTYsrX1KWnadVLfOfY0BX5E2vRB/r6U/k3IKpeHfkXIKpKYKKdBDGvZtqaFcqt8obX/bOdZ9pFQ2xelv3imVHSfteN/5uvQYqfuw+PsBAAAAAAAAAAAAAJCFCEbLLv+Oao83xhRaa+sSnH9MnPWij7UORpskaW4imxhjukkan8ReXYrx+6X+Q9NdBvZT1kY+IGKMafeaqVgj0+Xl5UW0m5qakl4j0Tn7snY80d93AAAAAF2DVzCa3wQ85+T5Clz7kwtGc18jmyVz3ZJlrfVcp9hf4tqfbCBDR4t1HTKtVgAAgHR6verluGMIRtvLKxjNJ5/CLuFlsQJ7ExUr/NgtOCwWr3vhTHxNlecrUGPI5XWhyzl7XYc8k3nnBQAAgFby+0iH/db5uuQwaeCZ0sbn01tTOqx/NrL9xcPS5CekiqXSx7+LPTeRULQ9QnXSZ3+K7PvkfxKfv0fJ4dLYn0sDv+q0a1ZJ9ZulDXOkHYudALXaNXvH9zhIKj1WChRLvlyp21Cp71SpaETyewMAAAAAAAAAAAAAkEYEo2URa+1mY8xH2hs65pc0RdI/E1zihKh2rHfmz5N0aYy5sRyryJ+9D6y1W5OYD8BDr169Ito7d+5Meo3oOSUl7g9ht0coFEr5mu0RfY6VlZVJr1FRUZHQuD59+kS0Fy1apEmTJiW9HwAAAAAEbdC1P1YwWr7HA/huD+x7P8Sfn0B12cXrnFMR+hW0QYXl/jq52N/TtT/TwjJi1RMrWAIAAKAr2d60Vf+pXRJ3XCrCvbJdnq9A9eHaNv2puE9O5b1tQ9j995fl+wqTWqcz5PsKtCvU9t/Hknmt6PV6EwAAABlq8qPS0z3SXUX62bD01vnprsJb5QfS299OfPzOFc6Hm27DpCPulAZ/PTW1AQAAAAAAAAAAAADQgXzpLgAp91xU+7uJTDLGjJV0VKuuWsUOVHtFUut3PE/avUYiLo5qR9cMYB+VlpZGtD/99NOk1/jkk08i2mVlZa7j/P7IbM1g0P2BfDf7EjzWkXJycjRw4MCW9hdffKG6OveHVbwsX748oXF9+/aNaO/L9wgAAAAAJClom137YwWjeQV8uT387xUI0BUfdvc658Zwg6y17Vo7VvBFjxz3sPJMCxuLFRCXaSFuAAAA6fJG1cuyin/vGLRBz3v9rsbreiUT+JysWGs0JHlv63Xfnp+BYdOpeK3YFUO0AQAA9muBYumbVjr2WalodLqrQWeoXS0tPFvaMDfdlQAAAAAAAAAAAAAAEBfBaNnncUmhVu2zjTGjEpj331Htv1trPd/Zba2tk/SPOGu0YYwZLan1r5sLSnoigfoAJKCkpEQjRoxoaVdVVenjjz9Oao1FixZFtCdOnOg6rri4OKJdVVWV8B7/+c9/kqqpMxx99NEtX4fDYb3++usJz62oqNCHH36Y0NjJkydHtP/5z1gZlAAAAADgLWjdA6r9xu/aLyUXIOAVCNAVH3b3OmersJptU7vWjhVy1sPfy32ObVDYhtu1byrFCj9LRTgFAADA/q4p3Ki3d76a8HjCZXfzCCGOFVzcXrHWSCaguDnc7PmaLd9XmHRdHc07GK3tOXtdh674WhEAACArDP669NVPpNOWSQPPlHwByd8t3VWhI33yh3RXAAAAAAAAAAAAAABAXN5PSWK/ZK39zBgzS9L3dnflSnrEGHOiV9CZMeZrki5u1dUk6aYEtrtR0vmSArvbFxtjnrPWPu+xT76kh3fXtMeD1trPE9gLQIKmTJmizz/f+8fq8ccf1y233JLQ3I8//lhLlixpaefn5+vII490HVtWVhbRXrFihSZMmJDQPi+99FJC4zrTl7/8ZT3zzDMt7QceeECnnXZaQnNnzZqlpqbEHoQ/8cQTlZOTo1DIybB8/vnntW3btjbXEwAAAADiCXkGowVc+yUpz3g87G7dHnZ3DwTwCiHIZrHOuSFcr1xf3j6vHSt4odjf0/NYk21UvsmM70WsgIhG79+9AAAA0GUsrX5LteHqhMc3hhvULaeoAyvaP7jHonkHi6UkGC3G/WuzbVLYhuQzOfHXiXGPnImvqfI8w+YSD9HOxPMCAABAEkoOlY6fE9lnw1K4WcrJk2rXS3OGxF6j/ylSbolUu06yIWnIuVLP8dL8UzqubiRv62vSwnOl5l1SToFU0E/K7S11Gyw1bJdkpQGnS4Fi5+uCAc7nQHGchQEAAAAAAAAAAAAASB1fugvoaowxg4wxQ6M/JPWLGup3G7f7o0+cbWZKqmzVnizpX8aYsVG15BljfiTp6aj5d1pr18Y7F2vtF5L+J6r7H8aYq4wxrcPPZIw5UNKru2vZY4cSC2ADkISLLrooon3PPfdoy5YtCc39xS9+EdE+//zzlZfn/nD3EUccEdGeO3duQnu88soreu+99xIa25kuvPBCFRXtfcjoueee0yuvvBJ33saNG/XrX/864X1KSkp04YUXtrRramp09dVXJ1csAAAAAEgK2mbXfr/x/l0IeT6PYDSXAAGvB/nzMiSMqzN5XTcpduBBImKFN/Twl3TYvqkUKzwiFeEUAAAA+7vXq15Oajz3UA6rsGu/9+ua9t8je4V+7d0jse9NrHW8gt3SKbnXiu7XINbrJgAAAOynjM8JRZOc0Cwv3YZJ37TS1HnSMU9KJ78lnfKOdODVUv+TY+/xTa9I5ASUneB9zN9NGnzOvq+d7dY/I235f9LG56VV90srbpMWXyEtv0FaPlN6ZaL0whjphbHS08XS0z2kJ4zzsegi6dUT97bfvlja+IIU3v0LfUKNUuMOKdQg1a6Vdn4shWL80tEQr4EBAAAAAAAAAAAAAG15PyWJjvKmpAMSGDdQ0mqPY7MkXew10Vq7wRhztqRXJO0JKDtG0gpjzBJJX0jqIekISaVR01+QNCOB+va4TtI4Saftbgck/Z+kGcaYpZKqJQ3fvZdpNa9J0tettZuT2AtAAqZNm6bDDjtMy5YtkyTt3LlTF1xwgV566SUVFHg/vH733Xdrzpy9v/XTGKOf/exnnuMnTZqkwsJC1dXVSXKCxN5//31NmDDBc85nn32m73znO8meUqcoKirST37yE91yyy0tfdOnT9fs2bM1depU1zlr1qzR6aefrqqqqqT2uvHGG/XUU0+psbFRkvToo4+qf//+uvXWW5WTk5PwOitWrND27dt13HHHJbU/AAAAgOzgHYwW8JyT53N/XegWIOAVdtUVH3b3um5S/OCEeLxCBYyMuuf0SHpeOsSqJZMC3AAAANJhTf1nWtvwWVJz2nuPmS284hHyPV/XtP8eOd79a2O4QQU53eKu0xCu8zzmVX86JRqMZq31DtHOwPMCAABAipVOkcrfbNs/7rrY83ofLe14p23/2J+3r55jnpSe6+9+7KS3pJJDpeZq6fO/OHXnlUr5/aR/t/P3+V4Qkj78pbTidvfjx78g9TxYKhwsrXpA2jBbatwulRwmjbhEUlj68FfS1lfbV0e6rHk0sr16lvMRS6Cnc/6VyyRfQCo7Xlr/j8gxg8+RRv3QGRusltY/J1UskYyRhl4ojbzMCetrzVop3LQ3wC8clHy8NR4AAAAAAAAAAAAAsgH/+pulrLULjDFfl/SI9oafGUkTdn+4eVLSJdbaUBL7hIwx0yX9RdJ5rQ6VSTrVY9o2Sd+x1i5MdB+gK9myZYvWrFmzT3OHDh0qSXrwwQc1adIkNTU5v2lxwYIFOvbYY3XvvffqqKOOipizfft2zZw5U3/84x8j+q+99lqNHz/ec6+ioiKdd955evjhhyVJoVBIZ5xxhh599FGdfHLkb/psamrSrFmzdN1116miokIlJSWqrKzcp3PsSDNmzNCcOXO0fPlySdKuXbt04okn6txzz9X06dM1evRo5ebmat26dXrppZf0wAMPqK6uTvn5+TrllFMiguViGTZsmO6///6IkLjf/e53euONN/TLX/5Sp512mvx+9/9Er1mzRi+++KKeeeYZzZ8/XzNnziQYDQAAAOiimj2D0bz/l1+iD7tL3mEMXfFh9zzjfc7tDV/wvs75MQMTMiUsI2SDniF9EsFoAAAAb1S9lPQc7qH2cI9Gy/cVuvY32vZft3j32V4B0smsk4mvqbxee0SfR9A2K6yw69hMPC8AAACk2OBz2gajGb806Oux5w35hnsw2gEXxJ6XUygN+5a06v62x0b+UCroJ/WaKFUsjjzW7QCp5yHO14EiaezPnA9Jql3bvmC0HuOccK6BX3UPRsvvKw08Y2971GXOR7TRV3kHo522zDmHf5R41zHkPGndU+7Heh8lfel+qXCg9Ewf7zU6U3OVtG3B3nZ0KJokrX/G+XBT/pa0+IrE9ys7Xhr/a+f7tXW+1LBVsmGp15FSQX/n5za/zAlUa65xAtv8hVK3oVJuiRPGVr5IWvJTyeQ434+Rl0h9pznHWmuscMYEitse26Opyvl5zsl1Pw4AAAAAAAAAAAAAaINgtCxmrX3JGHOwpJvkhJZ5vUviHUm/t9Z6vKMg7j41ks43xvxD0n9JOtpjaIWkpyTNtNaW78teQFdwwQVx3vAVg7XOAyJHHHGE7rnnHv3whz9UOOw8nLBkyRIdffTRGjlypMaNG6f8/HytX79e7733noLBYMQ6J510km6++ea4+91888167rnnVFVVJUnatm2bTjnlFI0cOVLjx49XXl6etm7dqnfffVe1tbWSpH79+un222+PCAXLFLm5uXrxxRc1bdo0rVq1SpJzTZ9++mk9/fTTrnOMMbr33nu1bt26iGA04/Ump90uuugibdmyRb/4xS9avkfvvPOOzjzzTBUWFurwww9X3759VVBQoOrqam3fvl0rVqxoudYAAAAAELJB136/CXjOSfRhd8k78CtWWFe2CvgCypFfIbW95u0NrfCan+cr8Ayyc+a1L5AtVeLVkSl1AgAApENNcJfer37T9djYwkO1uv4T16At7qEcNslgtODu0N5Yr4niiX9/m9j9f0O4zrXfb/wK+Pa9vo7iFQYd/fMZ6/rkGe/XLwAAAMgSo6+UKpZKax512jkF0uQnpPzS2PNG/kDa+Ly07fW9fWN+4oRUSdJBv5BW3NZ23vibpR4HuQejDTnH+Xzk3dKCrzjBW5KUky9NuMcJL3PT7QD3MLVEHXC+87nPJCdEq3ZN5PGh30psndLJTo02Kng4p0AqGuWEdBUOkuo2tJ2bWyId9YATIub2b0VT/i51G+J8PeIH0ud/SaymbLLtdelfx6duvR3veAfRtTb0207gmr9Qat4lrX9WqlsfOabvNOfntP9p0ojvSatnSQ3bpb5TpdJjnHC1UINU/ZnzvS4YIMl4h64BAAAAAAAAAAAAQJYiGK2TWWuHdvJ+2yRdboz5iaRjJB0gqZ+kWkkbJX1grV2dor3+Iekfxphhko6QNEBSN0lbJK2V9Ja1tikVewGI75JLLlFJSYm++93vqqampqV/1apVLaFfbr73ve/pvvvuUyAQ/6GMgQMH6plnntFZZ52l6urquHsMGzZML76U+kb1AAAgAElEQVT4orZu3Zrk2XSewYMHa+HChbriiiv03HPPxRzbu3dvzZo1S2eccYb++7//O+JYUVFR3L2uvfZajR8/Xt/97ne1ZcuWlv66ujq99dZbCdVbUhLjN4MCAAAAyGpB2+zaHysEIM8j1Cz64XZrrecD77HCurJZvq9AteHqNv1uQRbJ8LzOJl85xi+/Cbh+r93C7NIhXh2EegAAgK5s0c5/ed63H9fzNG1qXKfGkEswWjvvMbOGey5azLDmxnCD/DkdF4yW6H14g+frqcwMmva6ptHXI9b5d8UQbQAAgC7HF5Am/1U69DdS7Won2MzfLf68QLE09RVpy7+kXSudULHSyXuPD/u29On/SsHavX25JdLQC6T8ftKB10gf37H32EHXSX1PdL4uPUY6/SNp04tSuMkJmyoeFbueCf8nvfE1qSHOe9iOnyu99U0puPvfBgafK439L+dr45NOeMlZp/ozp2/IeU6YWyLyy6T+p0ubXojsP+A8J1RLkkZfJS27ru3cA6+RAkXSwDOkDXMij5UeszcUbc/YjXPjnytSY09oYCxbX3M+b3pJWvKjvf3L48zrNVE67llp+7tS5QdS4WAnNC1Q7PxZDHR3xlUslWq+kHp/KfJnAQAAAAAAAAAAAAD2MwSjdRG7A8nmd9JeqyWlJGwNQPuce+65Ou6443Trrbfq8ccf1/bt213HBQIBTZ06VTNnztTkyZNdx3iZNm2a3nvvPV133XV6/vnnZW3bp1RKS0t18cUX61e/+pWKi4szOhhNkvr166dnn31Wb775pp588kktWLBAmzZtUkNDgwYMGKDhw4frG9/4hs477zz16NFDklRVVRWxxp7+eE499VStXr1aDz30kB544AF9+OGHrtdwj0AgoIkTJ+rkk0/WN7/5TY0aFeeNfAAAAACyUtiGFFbY9VjsYDT3ULPoh92bbZOsx/pd9WH3PF++azBaewPKvEIv9nyv8n0Fqgm1DdPIlMCxVAVHAAAAZJuwDWnhznmux0r8fXRI94l6rnyWFGp7PFPu9dLNeiSjxQtG65YT/5fXeM9PTfBvQ7jOtT/fV5h0TZ3B67Vi9P18o/W+Pl01RBsAAKBL6jbY+UhGTp4T5DXwjLbHehwoTfuX9OGvpKoPnZCnI+6SCvo7xw//nTTqcqlymVRyqNR9eNt6Rv0w8Vr6HCWdtkx653vS5pfdxxSPlQZ+RTpnm7Tj/d3nfEDbur/yiVS9SsrrLeX1SrwGSZr8mPTOxU6om3zS4HOkCX/ce3zot6WP75Qay/f25fWRhl/sfP2lB6T6rdKOd5x2z0OkyU9Encdo6ZTF0vtXSRufT64+ZJaKxdLsJP/cSc7PUW5P589P+cK2x7uPdAL56jdKhQc4P8s9D94dtla8d5y1kg1Ltlmq3+z8+cxp9Tow1CD58iRjkq8RAAAAAAAAAAAAAFwQjAYAabZmzZoOXb+srEx/+MMfdNddd2nJkiVauXKlysvL1djYqD59+mjQoEGaMmWKior2/SGRsWPHavbs2dq+fbtef/11bdiwQXV1derbt6+GDRumY489Vn7/3v/knHDCCTHDv6IlMzbaI488okceeWSf5k6ZMkVTpkxJaOyKFStavjbGqKysLOF98vPzdcUVV+iKK65QRUWF3nnnHW3evFkVFRVqbm5W9+7dVVZWptGjR2vs2LEqLMzMh2YAAAAAdJ6gDXoe8xvv/+XnFSAQ/fB/rDCrrvqwe57ntWtfaIXX/D375fnyVRPa5TIvMwLH4p2/V/AbAABAtvtP7VLtaN7memxKz1OUY3ISDqPqqvY1GK094t7fJri+1/16pgZNe4doRwWjxTj/rvpaEQAAACnS52jpxH95H+8+zPlIlYJ+0uRHpWf6uB/P3R1ylpMvlcV4/5gxUvE+/mLL3B7Scc9JwTrJ+CJDpiSpcIB08iLpo5lS1TKp56HS+Jv3Bsbll0qnvC3VrJbCzVLRKPdQqm6DpePnOMFWf/M74VboOtY8Gvt4zSrpP7+JPab7SKn2i7Y/O7m9nJ/DXZ/sbpdIQ86Txv1Cyu8r7fyPVP6mFKqXBn5VKj5QsiHJl+TjC6EGKRyUAt2TmwcAAAAAAAAAAABgv0YwGgB0ET6fTxMnTtTEiRM7bI8+ffronHPO6bD1M1Vtba2WLl3a0h49evQ+B8316tVLp59+eqpKAwAAAJClgrbZ85jfBDyP5RmPh91tg8I2LJ/xOe2YwWiZ+SB/R+uo0Aqva71nvzyTWJhdusSro73BFAAAAPur16tedu3PkV/H9DhJUuLBxV2XezBarNck7b4/t7HnJ7p+fbjOtT9zg9ESC4L2On+ffAqY3JTXBQAAAHSoPeFnbnoc1Hl1+GP8ksyikdIxj8een2hgnDHSuOulf9+ceG3tMeQ8qe/xUvMuadl1nbMnOkbNKvf+pgrno6VdKa26z/mI5vYz0PdEJzQtv0ySdUL+6tY763jp/SVp0NelwoFS+VtSU5VU+YHU6wgnmK3yQ+fP9shLpV6HS43bpZovpK0LpGC1tOU1qfcEadjF0sAznD2DtVLxWCmH17UAAAAAAAAAAABAJiEYDQCAdpo1a5bq6vY+4DJp0qQ0VgMAAACgKwjaoOexmMFoMR7Cb7KNyt8dwhXrYX+vgLBs5x1a0b7gL69rvWc/r+vdaDMjcCxeHe0NpgAAANgflTdt1orapa7HjiiarGJ/T0kx7vUIl5XkFYvmXDcjI+syor2hcg1xrn2i3xuvOjI3GM3rZ7Fe1loZY3a33c8/z5ffMgYAAADYbxgj9ZooVSxue2zYtzu/ns4w8Ez3YLS83lLjjtTtU3KYNOVve9sjL5PW/k3auULqfZR0wPmSL0cKNUn/uUXa+KITVlU2Veo5TnppfOpqQeba+mryc3a853xEq/40sr3pBe816tZJ65+Ns5GRDrpWql7lhPvZkFR2nBQOOu1ug6URP3BC1XJ7OWvuXOEEuxUOkvpMkkyOZPxSTn7sAEQAAAAAAAAAAAAArghGAwCgHTZs2KAZM2ZE9F100UVpqgYAAABAVxG0zZ7Hcoz3//KLFWrWGK5veUg/1sP+mfogf0eLFRTQHrGCBWLtmymBY/HOv73XBwAAYH/0RtU8z2PHlZze8jXBaPG4R6MZGeX58l3vidt77VJ1f+sdgJyZD0J7hWiHFVbQNitgciXFev3SNV8nAgAAIAuM/IH0XlQwWvGBUumU9NTT0XodKQ3/nvTFQ3v7ig+Ujn5E+ufRcn0dNvbn0sq72vb3Ptr5vOOdtsfG/DSyndtTGvXDtuNycqXxv3Y+Itb+knv4VY+DpTOWS5XLpHXPSKE6acg3pD5HS6+fKW2c23aOJA38qjThXql8obToQvcx8XQfKdWs2re52A9ZacXtkV1bX4tsf3DNvi/vy5XCTVJ+mTTgDCmnUPL5ndC1vic6IWzGSPVbnIC1hi1SyRFS7Rpp10qpaLQTQGiDzkduyb7XAgAAAAAAAAAAAGQogtEAAGjlmWee0ZIlS/Szn/1MpaWlMcd+8MEHOuecc1RRUdHSd+ihh2rq1KkdXSYAAACALi5WMJp/n4PRGlp97f4Qf4788ptAAhVmH68H/Ts6GM0riC5TwjLi1ZEpdQIAAHSWpnCj3t75quuxQXnDNDx/TEs7z2T2vV66WesRjGaM8ky+GtT2Xry9AcLxrn2i63sHo2VmgFh+nNeKAd+eYDT38yIYDQAAAPutEZdIwVpp5R+kxnKp71TpqAcl40t3ZR3DGOmov0iDviaVvykVjZSGTN8bXPbZnyLHFwyUxt8irf2bVL8p8tiI7znXLjoYzZcnDTqzfXUO/ZZ7MNqYHzufSw5zPiJq7e+93uirpG6DpYJveAejTfyT9O9fS/Wb2x47+mFp+MXO1407pGCNlN9Pyslz+p4wMU/H1Zf+LIWbpfevSn4u9n/hJudzwzbpi4cjj0W3E+XLlWSlkiOlgn7ShtlOf06B1Hea1HO8ZJulpkopWO8EvTVskfqfJo28ROp/irR1vlS7VtrxrtTjIKnHOGnA6W3/TmyqlIxfChTtW60AAAAAAAAAAABAAghGAwCglerqat122236/e9/r1NPPVUnnniiDj30UJWVlcnv96uiokLLly/XCy+8oLlz50Y8lJObm6tZs2alsXoAAAAAXUXQBj2PBWIEl8V6CL/1g/uN1j0MIFMf4u8MXqFy7Q5e8LjWe0IyvAIG2rtvqsSrozHcIGutjNmHh4IAAAD2Q+9XL1RduMb12PE9T4+4L/IM37WZca+XyfJ8BVKosk2/1/11ouIFHye6/v4WjOYV0ic559JdxZLiBzsDAAAA+x1jpLE/k8b8VLIhydcF3lZtjBNcFh1eduT/OEFnax53rkX34dJxcyR/gfTl16VFu8PKckukA6+WRvxAskFp57+lzx901ggUS8f83RnTHkO/KX32R2nXyr19PQ6WDrjAe06fY6RV97sfKz7Q+ewLSH0mSdvfjjxucqSBZ0qVH0qr7os65neCo/bI6+18RKw/NrLWPcbf7JxHdNjaAedLIy91vo4VjHZB2Kn1oxukyqVSqEE6/PfS+1d6z0HXtSdsLTqsMFQvbXrR+XCz+WXnI5Z+Jzl/rk2OtPbJvf09xjmhgf1Pcf6MGiOFQ87Pa7BG+vwhqWGrVDRKOvC/nL9XJCkcdNbi3w8BAAAAAAAAAAAQQxf4F3wAAJLX3NysuXPnau7cuQmNLygo0F//+lcdeuihHVwZAAAAAEhB2+x5zB8jGM0reEGKfMDd6yH+rvywu1eAgVcwQKLiXeuO2jdV4tURVkhB26yAye2kigAAANLHWqvXK19yPVbgK9TE4uMi+rzur+OFc3UVYYVd+41MjGvX3mC02PMTXb8hXOfaH+s1WTrFeq3XOqjP8/WL6bqvFQEAAJAljHECsLoyX0D6/+zdd3wc5YH/8c9s0aoXq1hWsS33btwwNrYxxWBMTSCUQAIJBFIuR5IjdwdJCKRwyd3lF3IJKZBASMhBOpcQSiAB23SI6QkYjLtxl9ykXWm18/vjsZBWO88WWbJW0vf9es1rd59nnjKzK2lmV/PdBXfB7G9DWxMUNHSGFhWNg9OegbYDECgAx2fKnSDM/zHMvBkOboCyY8DfC58HhMrhlNUmVKzxJdPvpM9AsNDepv598I9vwr6/x5dXnwoF9Z2Pp34BVp1rQt06jP8E5NfA1Oth5+PxIWez/gvyhiefb/158PrXE8tHXgCVi2DVOdC235SVTodjvtG5Ts0Z3oFVkz5n9n/lQjj50fi6wjHw+OmJbQCmfRleu8m7rvw4WLbKPFfrfgzh7dCy3QTRlU6Hoglm+1eeZd/WslnQ+GLn41AlRHbZ15fBYfsj3uX7XocXP2+WVO3f+n7qcQIFJmhw5IVwcB3sfcEEshVNhBGngi8H8kbAgbehYJRZcGDnY9C6D8rnmt8XAM1bYcdj4A+Z3wM5Jd5jxtqg6VXzO7Bkaufvt65cd+iEZ4qIiIiIiIiIiIiIiGQRfTojIiLSRWlpKX6/n/b29rTbHH/88dxyyy3MnTu3D2cmIiIiIiLSKVkwmj/JhTt+x0/QyaHNbU2o63qBu+1i/2y9iP9osF3obwsGSJdtX3cEomV7WEY6wRCRWJigT8FoIiIiMvhtCK9lc+Qdz7oFJSeT4wvFlfVVuNfg51jPTY70ODl1MFp6/dvWy/PlZzyno8EWyAzx+6RrSFq67UVEREREZIAJDTOLl2CRd3lulVl6U24FTL8h/fWDRXDKKvjbZ2DrHyHWCjWnw/w74terPQNO/iu8cye0NkLNChh7pakrqIfTnoVtD0LLNhh+YmfIUjITr4FtD8QHhk29HoonmOWcjbBzJQRLoWI++Lu8H1B3rncwWv159vFyyux1hWNMwFPM47PEmV8zdcXjYdY3vdtXLbX3DXD6GnPb3mqCojq25R6PMCmRTEUPwd6/maWr7Y/CW7ceWd8l06BiAQQKYc8zsPvpxHVC5VBzJpROg2izCf1b+73O+rpzYe53ze+XgtEmRC3aYgIFw7tgxDIT3JZM2wE48JYJnAwWH9k2iYiIiIiIiIiIiIiIDHIKRhMREeni3HPPZceOHTz00EM8+eSTvPrqq2zcuJG9e/cSDofJy8tj2LBhjBo1isWLF7NixQqOP/74/p62iIiIiIgMMcmC0QJOMGnbkC+XtvbEYLSuF7vbwr5swQ1Dge1C/yMNrbAFJnTsa3vgQ3aEZaQVjOa2UIj+sV9EREQGv5VND1jrlpSenlCmYLTkXFzPch9OnwQIx9wYETdVMFp6z02L9Tg/OwPEAk4QHz5ixBLq0gvRHrrniiIiIiIikkVC5bDw5xCLghsDv+VLW6oWm8VLsBhGXZjZuLmVsGy1CVQ7+A5ULobKBZ31OaVQd45324ZLTZDb1j90lk38jAlwsgmW2Ovy62DE6fH9AYQqoHJR6m0JFpoAt7amxLqyWZ33bfu2u7FXQKgK/v4f3vVnHQ6I+l/H3scHXdixEv6y1Lt+8e+h/lxzv+VdE1K390UonmRCqtpbTIBVfp3Zd2/fZgKvgsWwczWUTIUtv09ve2Tg2veaWZKJ7IH1d9nrt9xnlmQqFpqgxncfTm9e026AwrFQs9wETLZHYMv/Qds+GH6SCWHDgZJJ4Lrw7p/Na9xtN+GN9e8zr2+xa3kX9rwApdNNmONL/wbrf2bqSqbAsqcgJ8nvVRERERERERERERER6TcKRhMREemmvLycSy65hEsuuaS/pyIiIiIiIuIp6kY9y3348aX4x+eQL5eD7fsTyiNpXOxuCwcbCqwBZW7PgxcgdbBAXwQ+9KZ0tt8WtCciIiIymByINrHmwJOedZPzj6Eqpyah3HZ8reOnDt7BaDjJgtF6HirX6kZSrpNu/7bj9Ww9p3IO79OWWHNCnUK0RURERERkwPH1w7/HBwpg5PmZt/PnwuLfwq4nYd/rUH4slM9N3qZovAlQCu/sNociqDgO8muh8UVo3mzKfSGY90Pwh9KbU+0ZsOEXieWjk/w/5egPwYafJ5Y3XGa2yyZvhLmtXAS7nvDuF0x4EQ6e7xVUzI/vb+wVMNY+JPNu9S53XRMIt/o82PGY9zonPQJls+HBWdC8yXudJfdBtNmEL3U8B12N/AD4crz3sQx8u5/KbP3XvtLzsd46/FquXmYC1JpegdZGUzbmcvM7Ia/G/F7w50L0IOx/E8K7gJgJcYtF4NBmKBgJtWeaELEdj0GgEIonwLqfwObfmfJjf2h+Jve/AXueMeGC1ctM+GM22v8WvHwdbP6tfZ19f4fflMKKV0xwmoiIiIiIiIiIiIiIZBUFo4mIiIiIiIiIiAwwUbfNszzoBFO2DTmWgK+4YDRd7N6dNRjtCIIXXNdNEoxmxgs53vs8W8Iy0pnHkewjERERkYHiyX2PWgOMTyhb4VneF8eYg4lry0XD6ZNQuXTCh9PtP+wRMAbZG4wG5vXoHYymEG0REREREZE+5QvA8BPMktb6fph4Dbz8hfjyCZ+EQD4UT4QVL8O7f4a2/VB9MhSOSX8+026Anavjg7/GfMSMaTPpGtjyO4ge6iyrOsEEnhWOgec/SUKoWdEEEygHMPJC72C0hkvNbW6l2Y7tj8bXDz+pM1ztSDkO5JTBmCu8g9EKx0H1KeZ++bH2YLSaM8xzOvpiaA+b7coZBiXTwJ/Tud6Cn0PTyyYUz58L/nzAgUAehKqgZRs4Ptj9DLz7sAmpKptl9ltbkwnA2vaACZ7rGpLnFZrXXd4IE3Qlg8P2RxLL3vlp74/zzEfM0t38O6D+/RA9APv+AWXHmJ/ZTLQ2waGNUDw5/uekJ8K7TeDcWz8Ay/u1CVaeBedsOLJxRURERERERERERESk1ykYTUREREREREREZICxBS74ndRv99nCzSJu5wXu9mC0oXuxu22/HUnwQtRtI0a7ZTyzr20BA12fr/6UTmiHgj1ERERksIu57TzR9LBn3bBAJdMK5njWWY/NdfwEgNv9guku+mLfpRf6m3qdtlib9ZwtmwPE0gnqSxXsLCIiIiIiIkfJlOtM2NaG/wViUH9+fHBZThmMurBnfRdPgOUvwNb7IbzdhIGVz0veZtgcOGU1rP0eHFoPlUtg6r+bsLH8Wqg/Dzb/Jr5N1/mO+TBsuteEhHUYeQEMP7nz8XE/hZVnQuNL5nHpDDjuzp5tYzK1Z5igsvZu58Bd92fDhxO3B0x4mq/L57X+3M4wte4cxwRIlR2TfD7174NZ3/Sum3ytuW3eCsEiCBabx02vwwPTvNvM/DpMvR7cGLz2Vdj0K2g7CJXHmyC7muWw6v0mtE0kHc9+1Cw2TiA+oMyfBxULoGQKHNwA2+6PXz9UDgWjoe0AlM+H9hY4tAGKxsG4q6DieHDbYPtfIbIbgoWw/S+w7zXY8xzEvL9kLqlDG6FlB+QNz7ytiIiIiIiIiIiIiIj0GQWjiYiIiIiIiIiIDDBR1/ufeQNOMGVb24X4XUMAbIEAtvCBocC236JuG+1uNK1Quu6ShTaEHLOv7YEPPQ9k603pBE8cSXiciIiIyEDw2qG/sTe6y7NucelyfI7fs67jmK+7dqJE3ba0ju8HN+9gNAeHkNP7AcJphf6m0X+yY/VcX35Gczqa0gmbs4doD91zRRERERERkX7hODD+42bpC7mVMPYjmbUZNguO+4l33cK74ZXRsPWPECyFsVfAuI911geL4cRHYMv/wb7XoXwu1J4Fjq9znfxaWL4G9r9hyosmmP3Q23JKYcHd8NQlEIuYsuplMOVfO9cZscxsR1tTfNtRF/T+fNKRX5v8cVdlhwP8HR9M/7JZulvxUuf9/Wvh6Q+ZwKlgqQljm3o9vPh5eONb9nFGXQzbH4WI93tmMoR0/wKB9hbY8VezeInsMQvAgbWd5XtfgI339s0cAVq2KBhNRERERERERERERCTLKBhNRERERERERERkgGnv/s/DhwXSCOdK72J374v9beFgQ0GyC/0jsTD5/sKM+4y4yQITcg/f2gLZsiMsI63wiDTWERERERnIVjY+4FkecAIsLDnF2i7VMWbAP7SD0bxj0UwwWjqBz5lK79g2df/J5pDN51Tp7FPbPgpl8XaJiIiIiIhIFvCHYNZ/mcUmkAejL0rej+NAyeTenZuXkefB8KWw6ynIr4PSGeDrEnzvz4UT/gCrzoXWvaas7n0w9Yt9P7d05JTCsLkmSKqrYCkMPyGzvoonwGnPQtt+CBR2htXlVdvbzPpvmPwvnY9dF5o3wY7HTWhb5SKzDwHeuQueudy7n1NWQ9lMaN4Mr9wAm39rykPlMOV68AXBnwfEYOv9sO8fcPDtzLZPpEPLu/09AxERERERERERERER6UbBaCIiIiIiIiIiIgNMm9vmWZ5OSJbtgvWuF7jbLuQPOfbghsEuWYBBONbSs2C0JMELHSEZyQIGWmORfg/LSCcYIp11RERERAaqHa1b+UfzS551s4sWURQosbZNdYxZ4C864vkNbLZotPQCnzOVTqhaOgHF4ViztS7Xl9+juR0NtvO9roHOOlcUERERERGRISNUDnVn2eurFsP7t8PeNZBXAwX1R29u6Zj5dVh1DrSH48v8PTyHDxbHP85Psr1lM+MfOw4UjIIxlyWuO2yOvZ+icRAsgpIpsPg30NpkgtD8ocR1x12VWLb3RXhotnff026AGTfBr8ugrcl7nfMb4Tdl9vmN/hA0roF9r9vXkYHjiQvgQvv7eiIiIiIiIiIiIiIicvQpGE1ERERERERERGSAiVqD0VK/3WcLX+h6gbstTCBZcMNgZwtegJ6HLyQPRstLOW5PA9l6UzrbfiThFCIiIiLZbnXTQ9a6E0pXJG2bLARXx1DgWoLRHJwkwWg9D+VNd5+nCihOFrCW7Dnvb7bzva77xbZ/h/K5ooiIiIiIiAxhviBUzO/vWXgbcSqc+ixs+hVEm6HubBi+tPf6r15mtj/W7XPr8uOg6sT0+ymZAgUNcGh9fPmweZBXHV+WU5rZHLu3j6sbcbjPEnswWrLxpl5vguZcF+7xea/jC8FFYWjeCut+AgfXmSC40ZdAeAf8aaq9/1AlRHbZ66X3tbdA20EI9u/n7yIiIiIiIiIiIiIi0snyKYyIiIiIiIiIiIhkq3Y36lkecOwX53dIJ0Ag4npf7J7NF/H3teShFT0LX7AFJjj4CDo5aYzb/2EZttdKpuuIiIiIDESRWJin9/3Fs64+NIbRueOTtu+L8N0hwXGsx8lHFoyWXttkwWemvtmzPOAECPpSn7P1F9vrsWN7Y26MVjeSUVsRERERERER6UdlM2Dm12DO/+vdUDSA0DCY/xNwulyOMmweLP4N+Pzp9+P4YN73wZ/fWZZTBnNu6YU5VkGo3LtuxHJzO+la7/qqpfHrdTfqInPrOPbxqxab2/xamH4DLLgLJv6zmVPJFHu7QAHMv91ef8pKWPaEvb5gNHzQ+wsH3rPileT1ACMvSL3OYNP0an/PQEREREREREREREREulAwmoiIiIiIiIiIyAATdds8y9MLRrMFCIQ976fTdijIcULWulTBCDb2/ZyLc/if6JMFDPR03N4SdduIWkL6ulKoh4iIiAxWz+9fRYslBOuEshXvHdPZBJ0cHLzXOZKAr8HAde0XbzokC3wOJ22bTLr7PNXxbXiAnk8l26cArW4EF+99m+3bJiIiIiIiIiJ9oOFDcPYGOO6ncOKfYdlqEwKWqZrlcMZrMPdWOPZ2E9pVufDI5+fzw+gPJZYPPwkKR5v79efGh7t1GHWhuZ38L9A96L7mTCid3mXdi7zHH/+J5PMbfYl3+fSboGy2pZEDJVMhL8l+Lhpnbid9zrt++Mlm/uOutvcRqkgezlZ+rJlHtprwaXj/DsgbkVm79kN9Mx8REREREREREREREekRBaOJiIiIiIiIiIgMMNZgtO7/lO3BfrF7ZwiALXArWUjXYDn/xKEAACAASURBVOdzfIQc7+3veTBa6v2c44SyNiyjNRZJaz0Fo4mIiMhg5Louq5oe8KzL9xUyt2hxyj58js8awNvfIbj9zRbAZTjWIK4YMev5UioRN73j1lTH4bb6XF9+xnM6mlKFaCc7rs9VMJqIiIiIiIjI0FRQD2MugxHLwG//oqmUChtgwidh3JWQX9d785v1nyagLFAEvhyoPRsW/6azPr8OFt4Dvi5zH/sxGHuluV99Cpz4CIy8ACoXm9Cyxb+NH2Pcx8Hxd9ueMSZALZmGDyeW+XJg1MVmvw6bl1g/4lQIlUPBKCgc591v+bHmttYy/qgLzG1ejX1uBaPMPrMpGt85jpeL2uCCZnj/Lvs6ODD7Fnv1pM/BnP8xz0cyoy6CqqVQdgwc+yM4ZxPM/R/IrYLxn/QYNsklVFEFo4mIiIiIiIiIiIiIZJNAf09AREREREREREREMtMWswSjpfF2ny3cqyMEoN2NWoMEhvrF7iFfHpH2xDCAngZ/2dp1fY46wjK8Qhr6Oywj3fH7e54iIiIifeGdljfYEtngWbeg5GRyfOldCJrby8eYg0WyYDQfDrlJQpvDsRaCvpyMx0x3n6c6vg3Hmj3Ls/18yh6M1nL41r5/hnKItoiIiIiIiIhkMV8Q5n0f5nwH3Hbwe7yHMeoCqD0D9rwAReMgvza+fvgJZrEZfgKccD/8/T/gwDqoPB7m3AL+FO9PjTjVBHm9fD1E9kD+SFhwF+QfDixbeDc8dhoc2mAel0yBeT809x0HZnwVnr7UbFeHYDE0XG7uV51gAt7W/bizvvpUGH3p4fGXw6tf9p5bzZlmjNIZ0PRKYv3YK8GNwjt3JtaVTANfwCyBJO+Hjb4EiifZ66dcB7kVsOFeWHe79zqnrIaqRfY+pn7BPOfv/BTaW6D2HJhxI/y6xHt9BaOJiIiIiIiIiIiIiGQVBaOJiIiIiIiIiIgMMO1EPcsDvmDKtraL8cO62D2lXF8e+9sbE8ojPQz+8go7g8T9nK1hGemO39/zFBEREekLq5oe9Cx3cFhSujztfkK+PPA6xrQcKw4d9mA0cAg59osqI7EwRVgubkwi3UDfVMe3tn6yPxjNEqJ9eHuTnfcM9XNFEREREREREclyviCQ5LP0QEHy8LNUapabJVPjrjIhY+FdkDc8vq54Apz1Fux9AXw5JqTM1+Xyn9EXmRC3f/yXCS8rnQHTb4Ti8abe8cGxt5kgtL3PQ/FkGHFaZx/l82DM5SY0rKthc2Hip839hg/Bi5+Pry8cB1VLwI1Bfj00b46vH3NZ/OOJ18Cb30nc9rFXmDn486G92xcNlM6AUPnh/TAxsW2HgpH2OjDhbpOvNUtXeTXQsi1x/Ve+BMPmQdFYs/96gxvrvb66a9kO+16Hg+9A234TSld2jKl75yemvvoUs5+aXjP7snwetOyAyE4oGA3BosR+Y20mrC+nDPyHvwCk7QDseBxatoAThOhBs7SHoWAUFI4xQXfdgwVFRERERERERERERI6AgtFEREREREREREQGmGjMEozmpH67L9XF7snCALL9Qv6+Zt13PQytSDcwIVvDMtINhOtpcJyIiIhIttofbWLNgac866YUzKIyZ0TafaU6Ph+q3CTBaA5O0iCuiNvD4OJ0g39THIeHY82e5dl+PmWbX+S9EG0Fo4mIiIiIiIiI9DrHlxiK1sEXgIrj7G2rFpvF2rdjAt+8Qt8cB+bfAbXnwD/+0wRrTfosjLoYAvlmnUn/ApG98Nb3IXoAKhbAwl+YOTs+OOkv8OSF0PiiCTib8CmY9Ln4ccZ/CjbeC+EdnWXVp5hwNccH074AL3+hy7wCJuDNcczjspmQVwstW+P7LZ1ugtl6ImeYdzDawXfg/gmdcxx5oQn/Wv8z2P8G1J5p9lfN6bDhbnjjFvDnmHalx0DJZBMq1vIu7Hw8vu+RH4C8Oqg9A4afmF5YmhuDt38EW/4Ptj9iHo+7Gvx58OYt6W3r2u+mtx5A7dmw9Q+J5cPmwN6/pd9PXg2MWA5T/s0E/LVHYNuDsP8f0NoEB9aaELXqU6B0JjS9DIUNsOcFE/SWVw117zc/F+2t5uegr8LlRERERERERERERCSrKRhNRERERERERERkgIm6bZ7lASfJt1wfZrvYPeq20e5Gk4YBDPWL3UOWfZcsTC4Z277uPo49LKN/A8fSDo4Y4qEeIiIiMvg8ue8R2vEOK15SuiKjvrL1WK+/ufZcNHCcpCFj4R4ef6Z7XJ9qPVu97XwiW4Qc79di+L1gNO/9GnACaZ2LioiIiIiIiIhIlnEcqD/XLLb6Y26GGV+B9jAEC+Pri8fD6WsgvBtySsDn8R5R8Xg49Wl4+3YTiFV5vAlL6wi6mnq9Ccna/HsIFsHoS8w6783BB3O+DU9+ENzD78n68+CY/+oMT8tUoCD1OtsfNUtXm35tFi97nzeLTUe7N79tbstmQ+UiGHEaVC2CYHFimxf+Cd76QXzZ2z9KPfee8gpFg8xC0cCEzr1zh1mS+fs37HXPfzL+ccEoOPFhaG+Bkqner7Wu2iNwaBP4/JA/EnBN6F5PXzMiIiIiIiIiIiIi0i8UjCYiIiIiIiIiIjLA2ILR/E7qt/uSXYwfiYWTBjBk+4X8fc0WvtDT4C/bvu4ejmHb7/0dOBZx0xu/p8FxIiIiItmo3W1nddNDnnXlweFMLZiVUX/2Y72hfgxlT0ZzMKHQPnzEiCXU93Tfpdsu1XG47fg3z5ef8ZyOJltIX6sbIebG7IFvztA+TxQRERERERERGfR8AfAV2utzK5K3L2wwAWs29e83i83ID0DReNjyB/DlQN05UDI5+ZjJBJJsy9HSuMYsa/+nv2cyMBzaCPdP6nxcPBH2v9n52J8HbjvEWlP3lVsF4Z3J1ymbBSXTTFBf8QTY9zps/KW5bXwRChpMYF/NitQhbSIiIiIiIiIiIiLSYwpGExERERERERERGWCiHd+E3E3ASf0Pl7aL3cFcwJ8sxCrHCaWe3CBm23c9D17wDlRIDEbzHre/A8fSHT/dADURERGRgeDVg8/TFN3jWbekdDk+x59Rf/ZjzKF9DOUmDUZzcByHkC+XllhzQn3Pg4vTa5fq+N8aIJblQdO2IGgXlza31Xpcn+wcU0REREREREREpFeUHWOW3pA3onf6kf7TNRQNoD2D/51IFYoGJvys8UXY8HPv+kPrYdW5nY8X3A1lMyBYDE4QcsrgnTth2wPQsg0mfRaqToCCkenPU0REREREREREREQUjCYiIiIiIiIiIjLQRN02z/JgWsFo9ovxI7GwPazLycXn+NKb4CBlCwro7eCF7sEC9nH7Nxgt/eCIoR3qISIiIoPLyqYHPMsDTpAFJSdn3J+C0XrCAcy5Te8Go6UZ/Jui/7DHnMB+XJ8tkp0rJgvRzvbANxERERERERERkTijLoQNd/f3LGQwefrSFPUf7rxfOh1CFRA9BIEiCL8L+CBYBKUzoO59MOJUcJz0xj60GZo3mwC2QxuheBLUrDDtY+3gtoH/8OcQrfsgUAA+XUooIiIiIiIiIiIiA4PezRQRERERERERERlgbMFofif123224AUwQQC62N3Otu9s+ywVW7vugQnZGpaRSXCE67o46f7jroiIiEiW2h7ZwpvNr3jWzS1aRKG/OOM+Q44lBNcd2sFoLq61ruOo0naO0tMA4XT3ear+bfXZH4yW7FwxSYh2knYiIiIiIiIiIiJZp+YMmPBPsPZ7/T0TGYqaXrXX7X4a3v6Rue/PhfbD78nm15vwMwBfEEJVMGw2bP1j5uMHCqByCdScDi1bIX8kFI6F4olQONqEqfn8qftxXdj/pumvoD7zeYiIiIiIiIiIiIikQcFoIiIiIiIiIiIiA4wtGC3gBFO2zXFCODieQQORWNgaBpDtF/EfDUcreKF7OIZt3/c0kK23pBvM5hKjzW0lxwn18YxERERE+taqpgetdUtKV/Soz94O3x0skgWjdUSj9XaAcLrtUq3XYg1Gy894TkdTsnO+SKzFut06VxQRERERERERkQHFcWDud6FiAWz+vQmH2v10f88qfTnDIFQBgXwoPxbevi2z9mWzoXiC6UPhcNmrvcv7sR2haACxNvOa3bq1Z/1GD8G7D5ollfyRMGwOVC6C3U+BP88sW/8I4e3x6467Gnb81cw1VGmC1/LqoGAUDJsF4Z0Q3gFFE0zZwXfg4DoIlpoQuGGzzLZFdpvAtZxh5n7Ty2ZflEyFkilQdowJhxMREREREREREZEhQcFoIiIiIiIiIiIiA0zUjXqWpxOM5nN85Dghz1CucKzFGvJlCx0YSkJO74ZW2IIFuu/r3g586C2ZjB+JtZDjUzCaiIiIDFzhWAvP7H/Ms25U7nhG543vUb+2UKn+PtbLZo5zOBjNcnwecXt2fJ7ucb0t4Pi9emswWnYHiCU754voXFFERERERERERAab0R80C0DLDvh9tfd6+XUw6Vpw26HxRWjeBDtXmZCm6tPgzW97tysYBedsgFgUNv4Snv0oxFp7Pt+8WtOfr9tlYMmC0U5/CUpnQNt+EyYV6PblDXO/C64LTa/Cuh9D9CDUrIB37oJt93v3Oe+H8PzHvesuOAS/KrDP58y1sP5n8Nat0NoIReOhcCyEymHDL+ztpH80bzLLlt+nXvftH3VptznzwL6eqFgIs79tXkst20xoWm4V4Jjb6AETvLbjL3BwPQyba15zzVuAGOQOh8heyBsOweLOft0YOL6+n7+IiIiIiIiIiIikpGA0ERERERERERGRASbqtnmWpxOMBhDy5RFpT7yYP+KGk4R1ZfdF/EdDb4dWpBssEHJs4/Ys8KG3ZBIIF461UERpH85GREREpG89t38l4VizZ90Jpaf3uF97CG7/Huv1N9d1rXXO4Vvb8XlPgovb3aj1PCvT/m2vk2wPRvM7AQJO0HM/RGLhJOcv2b1dIiIiIiIiIiIiKeVW2utqz4JJ19jrbcFo+fXm1heAhkvMEovCX5fBzsczm1/1Mljw88RQNICp18PrNyeW170Pymaa+zkl9r4dB8pmwNz/iS/3CkarXgYjTvPuZ+SFicFrXQVLoHg8zPwqzPjK4dCqLmFUde+DJ863txfpbvdT8Of5vdtnoACih8z9ykWQVwP7/m7Ky2aCEzBhiWXHQMk0EwIX3mley4ECwAF/jglr84XAHzLhg3k1JojN5+8cy3Wh5V0TWrj/H6a+eGLvbUtrE7Rsh6Jx3r87REREREREREREBgC9syUiIiIiIiIiIjLARN2oZ3nASe/tvlxfHvvbGxPKw7EW60X+tsCGoaS3QyvSDaGzjuv2LJCtt2QSCNfT8DgRERGRbOC6LqsaH/SsK/AXMadoUY/7th9jDvXjJ3swWkc0Wm/uu946to26bdbztWwPRgOzT6PticFo4VhLkvMXnSuKiIiIiIiIiMgA5/igbBY0vphYN+qi5G2rlsDOVYnlEz3C1HwBWPQruK8WYim+qOHi2OG5OcnXq3ufdzBa/XnJ2yVTe6YJaQrviC8fdzUUjoYJ/wxruwSphcpNQBtA+bGw57nEPqff2HnfceJD0QCGLzUBUd33S/5IOGc93OMnYyc9Cn89JfN2oUqI7Mq8nQx8HaFoALueiK/b8+zRmUPVEhM02NoIhzZCy1bw55twtWAh5NVC8SSIRWDz700428R/horjoHUfvHw9bLynsz9fCKbfAFOu6/x94rqw7U+w+bfQvAVqzjB9OD7zM7hztSkvm2FC4LpqbQTHb36GY+1AzPzsioiIiIiIiIiI9AEFo4mISK/YtGkTt912GytXrmTt2rU0NjbS1tb5weSdd97J5Zdf3n8TFBERERERGUSirvc/yAac9P7RLFmAgC3kayBcxN/XugeWdehJQJnrutZ93f35sY1rC7E7WiJu+uMr2ENEREQGsnUtf2db60bPuoUlpxD05fS4b+sx5hA/fnKTBKM5fRCMlsmxdbJg5GT95PryM5pTfwg5uRziQEJ5xA3bQ7QdBaOJiIiIiIiIiMggMPZKeOFT8WVF46EyxRdjjL40MRgtpwxqVnivn1sJx94Oz14Jli9ZACd1IFqHYXNgxtfglS92lo35CIy6IL32Xvy5cMpqePajsPtpE8Q07Qsw8nDY2pxbTHjT9j+buoYPQWGDqas71yMYzYH69yUfM1QODZfDutvjyyd9zoQ1+UImCCpdEz4NxRPTX78rpwchbEsfhIPrTJhU44sQKITqk+HVGyG8s2fzkKFp5yrvsMVk3n3IXheLwMtfMIvN9kdhzWfN767WxC/aTClQCBM/A9O+BP4caDtofg7y66DpFdj6J/NzPP6TUFBvgtdClVA+14SquW7877zuj0VEREREREREZMhSMJqISD8bPXo0Gzd2Xkzz2GOPsXTp0v6bUA/cfvvtfPrTnyYSyeDDRhEREREREemxdss/xwac9N7uswcItFhDBGxthhJbOFwkFsZ1XZwM/ikv6rYRI+ZZ1z0cI9m4/SmT8XsSHiciIiKSLVY2PehZ7uCwuGT5EfVtO84Ox1oyPsYcTNIJRrMdJ/ckQDiTY9tk/YfbkwWjZX/YdLJzD9s+GgjbJSIiIiIiIiIiktL4T0DbPnjzOxDZY4K/FtxlwnySGXulCcN641sQPWTCuI7/JQSSfFHCmMtMaNYfxkKsNbF+5s3pz9txTGjZ6Etg7/NQMhWKJx95qFDxeFi2GtpbTdBR9zFHntcZlNbVhE/Djsdg+yMdK8Oc70DBqNRjzvuBWW/LfWb/NXwYxl5h6qZ9EV75UmKbmjNMKJTbHl/e8GHIHW4Cm6IHE9vl15nnrbv680wY3prPpp5vh8pFUGP5rKDpdXjr1vT7EulPPQlFA/Mz9vrXzJLM2z9K3VegCIJFULHA/D5t3moCJX05Zn7tERPe2HAZVBxr76e10fTV+BJED0DJNNOPiIiIiIiIiIgMKApGExGRI/LAAw9w9dVX47r2C1S6evzxxznxxBPfe/zlL3+ZG2+8sY9mJyIiIiIiMjhF3TbP8oATTKt99+CtDpFYi/Uif13sbt9vLi6tboSQk354XLLghe792IPsMg9k6029FR4hIiIiks32Rffy4oGnPeumFsyhImf4EfWf63gfY8ZoJ+pGCaZ5jD/YJAtG43Awmv28JvNQ3oxCf5Osm+y4N9eX5ELILGHbp+Ek54q2NiIiIiIiIiIiIgOK48DU62DKv0PscPBOuu1m3GSCuyJ7IK86vXb5dbDk/+Dx07v154fRF2c2d4DC0Wbpbd1D0VIJFsLSB2DP83BwHVQuhMIx6bX1+U3I27QvJNY1fAhe/w9ob+6yfg7M+k8YdxU8/3FoeRdyq2DOd6F8rlmn/jxYf1d8X/l1cMpqeGgOtO6Nrxt7JRRP8A5Gm/pF2PQrOLA2vnzc1fZtKpthrwuWQltTYnnNGbD4N3BwPYTKzTZ1aHzFbE97BEZdBFWLOutcF8I7IVRh5vinKd7jTv0izPwq7H8TGl+G3c+YAMBD62Hz7+zzFTkaogfMsvm3ydd76/sw4nTzM/Duw7BzFebzoySfL+UMg1n/DcNPhO2Pwr7XoOk1aNkG+/9h6qtPgeplUDrd/B3Iq4Xcit7cQhERERERERERyYCC0URE5Ihcd911caFoH/zgB7niiiuor68nGOy8WKeiQh8GiIiIiIiI9JY2azBaem/3JQvailgvdk8/9GuwSrYPwrGWjPZRxE0WmJBeMJpLjDa3lRwnlPa4vcn2WjnSdUVERESyyZNNjxCj3bPuhLIVR9x/smPIiNtCkKEZjJbsupWOXGD7eU3mx56ZHdvaA4rDsWaPFsZACBBLeq7oegfC6VxRREREREREREQGFcdJPxStK18w/VC0DjXLYc534OUvQPSgCbRa8DMoGJX5+NnEF4DKBWbpLQWj4OTH4G//DI0vmdCiWf8NJVPMUnuWCQXLrep8Exlg3q0mfGzLHwAXyo+D439hQuSWrYZnr4Q9z5n+p99onhOAmf8BL1/X2U/5cTDpszDhk/DsVbDjr5BfC5M+Bw2X2uddcyaeYU3D5sGI0+D1ryW2GXe1eQ2WTE6sK5sBZd/yHstxIO/wl7nk19nnNHypuS2eaJZRF3TWRZvh7dth52OQOwImX2uC7e6rM+FRXurfb9rl15twurzhUNAA5cfCc1ebwDWRvvDug2Z5T7Iv3cEEIT770eT1m35lllTKZpvfAfkjTUhjyxbYvxaCxeZn5uA6KDvG/K6qOgECRbDtftjzgqkrbIDKxSb00fEl9u+6cGij+bnOr/deR0RERERERERkCFAwmoiI9Nibb77JK6+88t7jFStW8Itf/KIfZyQiIiIiIjI0tLtRz/KAk15oQq7lgvxwrIVIzHKxu5P9F/H3Ndt+A6z7rSfrdw9MSD5uCzm+/gpGS3+bM90/IiIiItmg3Y2yet/DnnWVwWom5x9zxGMkDUaLhSn0Fx/xGAORm+TiFQdzUZstaKwnx5620C8vMdqJum0EnRyPsb0D1vwECPqyP+TOvk/t54rJzldEREREREREREQkhYn/DOM/Ac1bTDiXwm/sKo6F054BN5a4n7qGgnUVKIAl95nQNBwTPtcRnFYyBU59Ctpbwd/t/d6p/w41K2DnKhNyNPxECBx+L3TpH73n4CW/BsZcDu/c2WWuPpjyr1A+H9b/DJo3ddZVLoKa01P3m0qwCCqPh11PxpeHys0YNoF8mHSNWbqqXGQPi1r8W3t/x/wHPHmRd90FB83zAxBrh1ir2cfrfwFPW8LmVrwCudXw4udh/V2mLFgKE/4Jqk+G7Y/C2u9B277ONgUNJrytcIwZr3weRA/Bw8fa5y2SSuMas3jZtfrw7RP29juAdT+BZy5Pb7z682HYHDjwJuAzr+WcUvP3I2+EWWfnE7DzcROMWHs2hIaZ8i1/MIGSuVUw6iLTrruOn8FDG2D3UxAsMeGNwaL05iciIiIiIiIi0kcUjCYiIj32wgsvxD0+//zz+2kmIiIiIiIiQ0vUbfMsTzcYzRa+EImFCVsu5E8W2DBUJA+t8N5vNrb97DVOsnHDsRaK8PiHtaMgk8CJZNsrIiIikq1ePvgc+6J7PesWly7H1wsXqNmCqCDzY8zBxR6MRkcwmmM7r8l8v2XaJhILE/QlBqO1WPrJ9Q+M8DD7uWKLdR/pXFFEREREREREROQI+YJQ2NDfsxg4evLefG6Vva57KFqHshlmOdI5HHu7CWHb+icTTDb2is7ws1Ofgrd/BPv+ARXzTcCXr5cu9Zv5DVh5BrTtPzxnP8z6Fvh78OV7Yz7iHYxWfUrydiNOBV8IYpH48vJjO0PRAHx+6Pi8pPJ47758QRNyFiyEBT81S3fDl8L0L0PLdrOvA/lJJueQ/LOIo2T0pbDh7sTyQIEJcBMB2Pwbs3T32lcz6+f5T2Q+dv355vfHvteheAJE9prgyNY9EG2GfX83v+NireDPM7e5VRCq7Lxta4I9z0P0IFQtgRHLzXoH10PpNGhtAlyzbkd4pYiIiIiIiIgICkYTEZEjsGPHjrjHdXV1/TQTERERERGRoSPmthMj5lmXdjCa431RfsQNE3G9w65ykwQ2DBW9GYxmCxVz8BF04v/pNnlYRvrhZL0t4qa/zf05TxEREZGeWtn4gGd50MlhQcnJvTJGsuPsoXwMlTwW7XAwmi3Ey3JOk0w4w30dcVsopDix3BaMNkDOp2z7tDl2iDa3NaM2IiIiIiIiIiIiIoIJ/Zp8rVm6y6+FGV/pm3GrFsHyNbDlPhOwVXsGDJvTs76qTzahZIfWx5ePuzp5u5wys92vf72zzBeEaV+ytykcDcPmwt4X4strVphQtFR8QSioT73e1Ovg9ZsTy3OrILwzdft0lEw1YVI252yEgpGw8OfmcdsBaN4CeSMgpxTW3QHPXuHd1uv56HDMN6F0Jjy+3D72yAth0y/t9Sf80Yy/5ff2dWRo6BrItu81c7vz8fh1dvwl/f7e/I69LlAE0QPmfv5IqFgAw2YDDrjtEGszgWrRQ3DwbTjwlglZG3UxVBwLbQdNefMWaNkGG+81ZXtfMKGU9edBjeXnwnUPh7tlEB4Zi/ZemKWIiIiIiIiIeNKZt4iI9NjBgwfjHgeD6V2ALyIiIiIiIj0XdaPWuoCT3tt9tovyw7EW64X8ycK5hoqAEyTgBDyfg3AvBaOFfLk43b750hZk15Nxe0vUbUv6WuxuKId6iIiIyMC0LbKJt1pe86ybW7yYAn9Rr4wTdHJwcHA9osCG8jGU1/7oznZeE4mFcV034bg6mUyDjm3H4eFYs2d5ri8/o/77i22fHojuy7iNiIiIiIiIiIiIiPSzorEw+V+OvB9fEJatgueuhh2PmzCvyZ+Hkeenbjvjq1AyDbb+EXJKYPSHoHJB8jbH3wuPn25Cj8AEpc370RFvRpzas7yD0cb/E2y4Gw6sTawLlkJbU/pjjLwQNt0L+/7uUemYALS4/ougZHLn48Kx9r6X/A4ePtYERcV1G4CxV0LLu/a2s75lgvJswWjjroLaM03g1L2Wa4TGfRxm3ASvfsWEp0X2QNE4qDwe9rwAjWvs44vYdISiATRvgk2bkgf4Aex/A968JXXf635sllRyq81teHt8efUy8zM57ipYfxds+AVEdpu6k/4CFfPNz+PB9eA4sHMVtIehaglUHJd6XBERERERERHxpGA0EZEhwnVd1qxZwxtvvMHOnTuJRCJUVlZSW1vLokWLKCxM49tzuonFYn0wUxEREREREUkm6rZZ6wJOeoHVIV+uZ3kk1mINX9DF7kbIl0e0/UBCeaahFfYAusTnJugL4idAO4lBZBG3f8Iyemt7RURERLLV6qaHrHUnlK7otXEcxyHky/UM2uqvENzsYA9GczCBZ7bwZheXVjdCyPE+7/GS+fGt9/q252ygnE/Z9tm+6F57mwGybSIiIiIiIiIiIiJyBPLrYOmf2bgopgAAIABJREFUwI2B40u/nePA6IvMkq6isXDmG9D0GvhDUDTB9NObyudDw2Um4KhD6QwY/3Fz/9Ub4tcvGAXH3QWPLzdhRx1qz4a8anj7tsQxRn8QfAF4+frEusrjTeBcMhXzvcPYChrMXOvPg433xtfVnQuhYcn7HTYbcofb632hw7cBKJ0OTa8mrjPqQsitgnnfM4uXlneheYvpw58L/5vkORx3NbxtCb+rOgF2rrS3FelN3QPROmx/BHgE3v5hYt1fT07db+ViyK+H4klQNvPwz7/PBEYWTYCcMmjZZoLV/LnmZzyyG1obIb8G2iMmPHHbA4f7W2TCFWNR87N6aBPgQttB2Pu8uR15vvn9JCIiIiIiIjKAKRhNRGSQ2717NzfffDN33303u3bt8lwnJyeHk046iRtvvJH58+db+9qwYQMNDQ3W+hNPPNGz/M477+QjH/mIZ91NN93ETTfdZO3zscceY+nSpdZ6ERERERGRoSbqJoZjdUg/GM37wvUD0X24lgACW5jaUBNycjlEYjBapqEVmQbQhXy5NMcOevTTP2EZGQdHuEM51ENEREQGmnCshWf3P+ZZ15A7kZG5Y3t1vJCTS5jE46VMj7kGE3ssmgmTg+TnKJFYOKNzmN46ng/Hmj3LB0wwmmWe+9sb7W0yCKATERERERERERERkQEuk1C0Ix2nbEYf9u/AcXeYcLHdT5lgopHnm+ChqddBeAes+zHEIlA6Exb9GorHw8mPw1s/gJatMPwkmHwtHNpowoqat3T2P/EaE/A2/uOw7UHYtbqzzpcDU7+Yeo7+XJh6Pbz0r10nDtNvMPvn2NvBdWHL701V3Tkw/w5zPzQMhs2FvS/E9xmqNKFsTgCCJdC2L3HckR/ovD/mCljzmfj6wnFQtST1/PNGmKVD5eL4/dBh+k0mZM1m3g/hT5NTj9fdol+b53TnE/DCJ03AW6jChFMNmwsH3oSK46G92Tx3oXLzOBYx+/fZKzMfU8TG67Xf1/72afN7pOEywDGv//J50NpkAtOiB83vgmFzTfhaV64bH0gZPQSO3/QnIiIiIiIichQpGE1EZBC77777+PCHP8yBA4kXbHfV2trKQw89xEMPPcRVV13FrbfeSiCgPxEiIiIiIiLZKOq2WesCTnrncraAAK/grc42A+NC/r5mCzSIuJmFVtiCF2yhAvZgtP4Jy8g4GG0Ih3qIiIjIwPPsvsesx2tLSk/v9fFCvjzwCJ7qrxDcrOAmi0YzkgWfhWMtFFOa9nCZHq/aXh/W4/wBcj5lO99JFtA9ULZNRERERERERERERCSO44O6s8zSlS8A874Hs/8bWvdB3vDOuor5ZumqaByc+ixs+pUJSRt+ItQe7jOnDE56BN65E3auMmFkYy6DiuPSm+OUz0NhA2z+nQlUG3Ux1Jxm6oKFsOheaA+bz1UC3d6vP+YbsPJsE/zVsb2z/hN8h794s+5cWH9XfJu8EVCxoPPxxH+G1kZY+10TolZ5PCz4ec8C8mrP8g6HGnkBuO3ebXw5ZvtrzoRt9yfWVy2B3c9ArDW+3PGZIDaAqkWw4hWIHR7D509vvhUL4I1bzPbXnA6jLzX77h7Ltte9D5b8zozz9o9gz3OQO9wEseWNgMaX4PWvpTe2SG9pD5vXY28ac7l5ne9/w/xeyBthAtZ2PWF+VvJHmqA1X44JWswph433mt83FcdBw+VQMikxfM11TQBboCC+XERERERERIY0pd6IZJtYNP5bQqRv5NeZDysGsTvuuIOPfexjxGKxuPKxY8cyZcoU8vPz2bRpE8899xzt7Z0fItx2221s2rSJP/7xjwpHExERERERyULJgtH8RxiM1tttBiPbRf+ZhlbYgtRs+9kWUGALXuhrGW+vgtFERERkgHBdl1VND3rWFfpLmF10fK+PaTsGzDR8dzBxsQejOZh/hLcdI0PfH6/a1rcdn+f58jPqv7/07Fwx1AczERERERERERERERHpZ/5cyEvzffP8Gpj0GUs/IRj/cbP0xMjzzWLjt8yx+mRY/gJs+g3EwiaYrGsg26z/gn2vw94XzOOcMlj06/hrrRwHZtwI028wAUuBI/i8Y/wn4N2HYcdfOstmfLUzIKl4kgla6qr+/Wb/jfyAdzDaxM9A3m9g4//Gl49YHh9oB+kHonUomQLzb0ssL5sNjWsSy8d+tHOcCZ8EPhlfP/I8eOv70Lo3s3l4Of0l+Ns1sHNlZ1mwBGpWwMZ7Mu/P8ZtwupKp5rb789ATBQ0Q2Q3RA0fel2SXd34a//jA2s77W+6Lr1vzufjHO1fC37/Zs3Fzh0N4Bww/CUZdCIFCE4pY0AD5taa+PWJec74cwIG86p4FOYqIiIiIiEjWUOKNSLZp3gJ/aOjvWQx+Z6+HwtH9PYs+89JLL/GJT3wiLhTtmGOO4dZbb2XhwoVx6+7atYsvfelL/OhHnd8A8dBDD3HDDTdw8803x61bV1fH+vXr33t8yy238J3vfOe9x/fccw/HHZf4zTUVFRUsXboUgGeeeYaLL774vbprrrmGz3zG8gEQUF1dnWJrRUREREREhpaoG7XWBZ1gWn0kCxDozTaDkS0oINOAMluQgi14zRqW0U/BaJlub38FuImIiIhk6q2W13i3dbNn3fElpxD0pXfMnQl7+K6C0bx0BKMlC/HKOOjMzfR43nt923Gv7TnONpkGowWdHHxOhhcSiYiIiIiIiIiIiIjI0VEyGaZ/ybsutxJOfQaaXoLWRig/DoKF3us6viMLRQPT94kPwq4nTZBSxQIonX64fwcW/xYeWw7Nhz+nK58Ps28x90d+ADb8Arb/ubO/unOg9kyoXmaC37b8H+BC9Wmw8O4jm2syDR9ODEbLq4ERp6VuO+ZyeOP/Hdn4/lwomwmnPG4etzZCsNTsQ4BNvzLhZl4+aP/8LUHbAfh1sb2+ZKoJ1vNyfiPklJr70RYTkObPhUABrH6/CcjriWFz4cDb0NbUs/YysIV3mNsdfzVLJsZeATNvhtyq3p+XiIiIiIiI9CkFo4mIDEJXXHEFra2t7z1etGgRDz/8MPn5iR9EVFZW8sMf/pBx48bx+c9//r3yb37zm1x88cVMnz79vbJAIMDo0aPfe1xaWhrXV3V1dVx9V4WF5gOSDRs2xJWXlpZa24iIiIiIiEiiqNtmrQukGYyW6cXuPW0zGPVWaIUtSMEWQJdtYRmZb+/QDfUQERGRgWVl44Oe5Q4+FpWmcUFDD2RbCG626whGCzhB/ARoJzE8OtN9l/n63se3mR7nZ5tMA9wGynaJiIiIiIiIiIiIiIgHnx+GzTmK4wVh+FKzdFcyBc5+B/augWARFE80gWwAgTw44Q+w7QFofAnKZkHtWWb+vqAJVYseglgUckr6dhsmftoENK39HzNm6Qw4/pdmHqlM+BRsvAda3u0sG34i1KyAFz9vb9fV9JviH+eUxT+e9iV49cbEdmM+ml7/HYJF5jnZ93fv+pxS73KAYJfnIJAHgfrOxyNOtwejTbsBXvuKd92pT0PFcfFl79wFL3waogc6yyZfC2M+YuYe3mnGanwZdj4Oe//WuZ4vxwTIdQ+Ry683z2+sFRlE1v0Edq42gYJ5I/p7NiIiIiIiIpIBBaOJiAwyjz32GGvWdH77SHFxMb/85S89Q9G6uvbaa1m5ciX3338/ALFYjG9/+9vccccdfTpfERERERERyUxvBKNlevF6wAmk3fdgZ9t34V4KUrCFYtjKMx23t0RcBaOJiIjI4NPUtoeXDz7jWTe9cC7lwb75BulsO9bLBi6xJLXOe/dyfXkcih1IWKOvj1cjrvdzE441e5YPlACx3AwDsRWgLSIiIiIiIiIiIiIivcYXgIpjvev8Iah/n1m8BAr6bl5dOT445maYcRO07oPcivTbFo4xAV9v3wYH3oKKBTD+UybY652fwr7XO9f150N7t8+d/Pkw+oPJxxh1sQkXc7t91tbw4fTn2WHyv8IzlyeWVyw08971ZGJdyTRwnMTyDjWnw5rPJJbn10PJVHu7glGJZWMuM9t7aKOp9+fE1+dWQcOHzGLjutC8CXDMHBwH2iPwS8tnYKFyOOF+eOajsP8f9n4l+xxYC2/fDtNv6O+ZiIiIiIiISAYUjCYiMsjcddddcY8/9alPUVNTk1bbb3zjG+8FowHcc889/OAHPyAUCvXqHEVERERERKTnkgWj+Z303u4LOZldlJ/p+oOZ7cL/TIMUbCEXtv5tQQr9FTiWcXDEEA71EBERkYHjiX1/JmYJ5FpSenqfjZttx3rZwHXtdV2vpQj5cr2D0Xrp+NzG1r+tn1xf8i8wyhahDAPcBkrgm4iIiIiIiIiIiIiISK/yBTMLRetQMApmfj2+zF8Oy1bDujth32swbC6M/ShsfxRe+jfY/waUzoR5P4T8uuT9F0+Axb+HZ6+EyC4IFsOsb8HwEzKfa93Z4M+F9m6fi428AGpWgC8EsUh8Xf15qedXdQLsXBlfPu4qGH4iOH5w2+Pr8usht9q7P38OFI9PvS02jpMYuuYPQV4NtGxLXH/u96HiOCieaA9Guzhm+o3sgT3PwY7HIVQBvhzIKYNDGyBQCLEwvPyFxPb158Pm30DZbGhc0/Ntk0Q7HlMwmoiIiIiIyACjYDQRkUHmiSeeiHt86aWXpt126tSpzJ49mzVrzBun4XCYv/3tbyxcuLBX5ygiIiIiIiI9F3WjnuU+/PgcX1p92MK3emv9wcweWtE7QQq2fW0Lp+uvwLGMt9cNE3Njab9GRURERI62qNvGE01/9qyrCtYwKX9mn43dW+G7g0uSZDQ6k9Fs+663gs5sbP3bg9EGRoBYpsFoma4vIiIiIiIiIiIiIiIiHnLKYPLn4stqzzRLrM0EsaWr7myo3Q7NmyGvDnz+ns9pyR/giQ9A2z5TNu5qmPBPps9Fv4YnL+gMTqs5E6b8a+p+l9wHz10N2x4wwW1jPwZTrwfHB6MvgfU/i19/0mfjvznpaKg7B976QXyZPw9GnGbuj70CttyX2K5sdudcQ+VQc7pZbKZcB1vvh0PrTSBeZbfr9/43yXZ/0E1ef2GLeW62PwprPmdeDx1GXwIb700MoRvsWhv7ewYiIiIiIiKSIQWjiYgMIo2Njaxbt+69x6WlpUyePDmjPhYuXPheMBrA888/r2A0ERERERGRLBJ12zzLg076//wUcIL48BMjvX9s0cXunWz7ItMghYhrCUazBKBlW1iGLfAh4AStr9FWN0KuZftERERE+tvLB55lf7v3P0IvKV3epwGv1hBcyzHjUOAmCUZz4oLR+ja4uMBXxKHYgbTXtx0nD5RzqpCTYYh2huuLiIiIiIiIiIiIiIhIhjIJRevg+KBg1JGPPWIZnLcLml6B/FGQW9FZV3cWvH8n7H4GCkZC0YT0AsxySmHRLyHWbubZtc38n0D+SBM6FiyChstg/NVHvh2ZmnYD7H4aGl8yj31BOPY2yCkxj6uXQagCIrvj2zVcmtk4jmP2o03DZbD+rsTyydea27FXwLqfJNZXnwr+XLOMPB9qz4bILhPW5j/8+d6Mr8IfxniPO/ULMOMr8Ms8iLV6r3Pac7BzlQkbe/3r9m1IV+5wCO848n6SaWvq2/5FRERERESk1ykYTSTb5NfB2ev7exaDX35df8+gT+zatSvu8fjx43Ey/FaMSZMmxT3euXPnEc9LREREREREek/UjXqW+5303+pzHIeQL5eW2KG01s8dIBfxHw22gDJbAIKNLUjB1r/tOeivsAzb/EsCZexp834vIRIL67UkIiIiWWtl04Oe5TlOiONKTurTsbMtBDcb2GPR4vXGvnNd13o8Xxwo5VBresFoUbfNGhKcN0COg0O+UIbrD4ztEhERERERERERERERkR7yBWHYHO+6YJEJT+tRv36PsgDM/KpZ+lNeNSx7CnathpbtULUECkd31vtDcNJf4Inz4cBb4MuB8Z+Cidf07jxGnu8djDbyAnNbc6Z3MNqYy+Mf+3Mgvza+LK/GPm71ySa0bs534PlPJNZXHg/l88ziuvZgtJIpZj8+dxVs+pX3OufvhZyyzsdt+8GfB4c2mr4LG8zrItYOe56Dtd+FPc9C82aItZlrRCd+1gTVOQ7seQHW/9T0013rPvs2i4iIiIiISFZSMJpItvEF4t8oE8lAY2Nj3OOSkpKM++jeZu/evUc0JxEREREREeldtgvtA05m3wyZ68tLOxjNFjYwFFkDyjIORvNe3xYs0FuBbL3FFjRR7E8WjNYClHnWiYiIiPSnrZENvN3yumfdvOIl5PsL+3T8bDvWyw72aDSHzi8F6o1gtKgbJUa7Z11xoIx3Wzd79J/43CR7vgZKgJjP8ZPjhGh1I2mtr3NFERERERERERERERERGZQCeTDiVHt92Qw4ay0c2mxCuQJ98HlgzRkw9Yvw+tfMY8cHs79tAsmA/8/encfHUR72H//O7C3r9CFfMsjGF+bwgc0NxpyOCwRCEiAHOZq7JKGE8kubNnZ+ISRpaBNISEgoDTQl9JcmpKQOkNJgm9MhmBsbbIMNvvAtWedqj/n9MdjSaueZ3ZVWK630eb9e85LmeeZ55pnZtfyMtPMdTf4LNyStZ+jY5EukKe/L3XcgIk1cKu16OLM8MkYae4b7fcN7pWf/SnLSmdtM+UD395Ylo4bLpHCNNP2z3sFo4dFSqDazLFTtfq2anlluB6Rxp7mLn6kflSZfLK3yeO0Sze6xWLZ/HwAAAACAIYMrOAAYRhwn8yYRy++Xi3kqRh8AAAAAgOJJOUnP8qBV2DMQCrmBvVxu4i+FiNX/4AV3e1Mwmnf/pteg0EC2YjEGowVrPcv92gAAAAy2xw4+bKxbXLtswPdfrPDd4cTJMxjNdO4KCZXzO881Qe9gX6/+O1PmfmJ2Rd7jGWyFXSsSjAYAAAAAAAAAAIARbNSUgQlFk9zQsbnflN63RzrvUemKfdKsL3XX2yHp9F9KS/4gzfuOtPj30lm/dUPP8jHvu1J0QmZ/C38sBcLuemyidPp9kh3u3qbxo9KMz2f2M+2T3v03ftT9Wn+WFBmXXX/UB/2D1foqbPoMoyO9tFzavabvfae6pMShvrcHAAAAABSksLslAQBD2ujRozPWm5ubC+6jd5u6Ou8bPgAAAAAAgyPhJDzLg1aooH4KCTvjZvduxtAKJ//gBcdxjCFh5mA07/LOQQobMx1vtSE4QhrZwR4AAGDo6ki16ZlDqz3rjokdq4bo1AEfg2muR7CsQY8Px0csU6hc/ufOby5fHfCe33r17xfGVk5h01E7ppZUfn9jNF0fAQAAAAAAAAAAACiS6DgpusS7zg5IEy90l0LVnSi95wVp10Nu2NfEi6TqWZnbHP1BadJ7pP3PSFXTpVFHZ/dz7FeknSulzj3dZdM+KdXMfneMIems+6U1l0iJJrds3FnS3G8VPuZ8hMwPd9WrN7lLxvY10ugFkh11g+5qTpAsW5pwgRQZLXXulcJ10ssrpC13S6m4G/Z22r+5561lszTmZKlicu6xpbqk9relQ6+721fNcvfVsVMa1ej+Lbz5NSnVJlVOl0JVbj0AAAAAjFAEowHAMDJuXObTEzZu3FhwH6+//nrGen19fb/GBAAAAAAorqQxGK2wX/VFCwg7Ixitm+lcJJ2kkk4ir4C6pJNQWmlD/97BAuawjMEJGzPtt8KuVNAKeb5P/YIiAAAABsvaQ6sUd7xDtM6uXVqSMZjmgPF0pxzHkTUQT8ke4hzHMdb1PBvGebLhNfXc1idErcYQ/OvVf2e63dhP1K7IezyDrZDrP64VAQAAAAAAAAAAgDIWGy9N+7j/NqEqacJ55vqaOdKFa6Utv3BDv+qXSI0fytym/kzp8p3S/rVSZJzbZqACv8I1hW2faJZ2ryqszZ7HpAcazfUVDVKqQ4rvdwPOWjcX1n9P486S5nzVfQ3ssJTukgIRKdEqBSskWZKTlKyg5KSk1jek2EQ3qK51izT6JDfgzUuixW0fqsx/PJ173Nc61SE1XC7VHtf3YwMAAACAHAhGA4BhpK6uTsccc4zeeOMNSVJTU5M2bNigY489Nu8+nnrqqYz1RYsWFXWMI/HmHQAAAAAopmTaFIyWO5CrJ1P4gpdoAdsOd37nLZ7uVDCQ+3XwC14wBdaZXoOE06WUk1LACuTcbzGZjiFiRxWxo0qmst+nfscNAAAwGBzH0WNND3vWVQVqNK/y9JKMI2J5zwHTSinpJBSywiUZx1DiyC8YrfsD8qZ5ciEBwn4BvtWmYDSPNqZ9BhRUyC7sem0wFXKtWMi2AAAAAAAAAAAAAIapyqnSCV/33yYYk8YvGfixhAoMRhsI7du7v+9PKJok7X1cWvN4//robfwSqe0td3FSbtnML0pdTVK03g0/2/oLqW6eNOkvpMkXSzv+W3r15sx+XvoHaeaXpOpZUstGKZ2UGi5120XrJceRvO4ldRwp1S5ZASnAw7gAAAAAmBGMBgDDzJlnnnkkGE2S7r33Xt100015td2wYYPWrVt3ZD0ajeqkk04q6vgikUjGejweL2r/AAAAADDcpZT0LC84GM0q4GZ3Q1DDSOR3439nukOjAlU5+4g75uAF0+vit9+udKdigVE591tMfsFoUTumtlRLdhuHYDQAADC0vN7+knZ3bfesO6PmwpKFWeUK3w3ZIy8YzU/Pj01HDMHChQSjmea2lmxVBqqNbRzHyXggUIdhn9FAeYWHEaINAAAAAAAAAAAAoGwFIlLFUVL724M9kqFr96rsso0/zC47+IK7vPotc18bb8tc33R7YWMZc7I0+VLJDrqBaWMWSvWLpTJ6+BgAAACAgUMwGgAMM9dcc43uueeeI+s/+tGPdO2112rChAk52/7t3/5txvpVV12VFWTWX7W1tRnru3btKmr/AAAAADDcJZ2EZ3mwwA8BmAIEvHCzeze/c2EKVOit0yekwfS65NrvUAlGi9oxY5Ce33EDAAAMhjVND3mWW7J1Zu2FJRtH1GduHnc6VCnvcK7hzJHjU9sdRmYORss/lDdX6K9pfAmnS2Gr++9opjC2crueKiQYu5DrSgAAAAAAAAAAAAAoiakfkV69ebBHgXzsf8Zdept8qRSulWqOk0LV0oFn3UC39m3SpL+QImOlQExqeK9Uf45kWZJll3z4AAAAAAYWwWgAMMyce+65mjdvnl544QVJUnNzs66++mo9+OCDisXMN158//vf1wMPPHBk3bIs/fVf/3XRxzdt2jSFw2F1dXVJklatWqVEIqFQiBR/AAAAAMhHIm0IRivwV32F3MAeKbMb+QeS33kzBSFkb2cOaTD17xdOMBiBY6Z9Ruyo8f1SSDgFAADAQDuY2KeXWj0+XCvpxMqTNTo0rmRj8Z9jjtQ5lDkYzcojGK2QObJp26gd870W6kx3KGxHMta9+6nIeyxDQUHXigWEqAEAAAAAAAAAAABASZzwf6VEq7TxtsEeCfpqx+/Mddv/q/v7jT/s/j5UK4XrpMho92vG0rusx3qo2g1WAwAAADDkEIwGAEPMO++8o61bt/apbWNjoyTprrvu0mmnnXYkfGz16tU666yzdPvtt+uUU07JaLNv3z4tX75cP/7xjzPKb7zxRp144ol9GoefcDisM844Q6tWrZIkvf3227r00kv1uc99TjNmzFBFRebNIRMmTFA0yk0VAAAAAHBYSknP8qBdWOB0tICwM4LRuoWtiCxZcjyCGvINrTBtZ8lWyAp71vm9BnGn9GEZpmOI2DFjkMLIDfUAAABD0RPNf5CjtGfd4tr3lHQsvnO9ETqHSjvmYLQeuWhFCeU1BRy7ob+5gpFrj6x3pts9tyvk2mso4FoRAAAAAAAAAAAAQFmzA9LCW6UFt0g7Vkr7nnbDtFo2DfbIMJASTe7StqWwdpb9bqiaR6BaVshar/VgJaFqAAAAwAAiGA0Ahpirr766z22dd28SWbBggX70ox/pc5/7nNJp96aedevW6dRTT9X06dN13HHHKRqNatu2bXrmmWeUTGbeVH/BBRfom9/8Zt8PIofrr7/+SDCaJD388MN6+OGHPbddtWqVzjnnnAEbCwAAAACUm2TaEIxmFfarPr8b/Puz7XBnWZYidlSdHuEJXmVeTCENUTsqy/ABiYgdMfaX736LJekkjAF9ESvqE05R2nECAACYJJ2Enmx6xLNufLhBsyqK/+AYPyErLEu2Z1Bbqed6Q4c5GM3qkYxmmnt2OXGlnZRsK5BzT8bQXytXMFpmO9NrVW7BaFwrAgAAAAAAAAAAABgW7JA05XJ3OeZT0spZ3tud9ENp+mek302TOnZ4bzN+idS6RWrbOmDDxSBx0lLXAXcplBXMDlPLK2CtTgpUEKoGAAAA5EAwGgAMU5/+9KdVV1enT3ziE2ptbT1SvnnzZm3evNnY7pOf/KTuuOMOhUKhARvbxRdfrJtuuknLly9XKpUasP0AAAAAwHCUdBKe5UGrsOu4Qm7OL7cb+QdaxI55hh7kG/xl2s4U6iBJthVQyAor4XT1eb/FYgqOkNxgBFM4AsFoAABgqHi+5WkdSjV51p1du9QYVjtQusN327Pq/OZew5mTbzCa5RdcFlcsUJFzX3HHPD/3uxbqfU3g9fod7qecFBaMVl7HBgAAAAAAAAAAAGCEGnWUZEekdDy7bsJ5UiAszfyC9OLXvNuf96jkONILX5U23ialOqW6+dIp/yKNXtC93S8NnzeITZQu39m9vv4fpRf+j/e2l213A7feus/dX88xh+uksadJHTul8BgpEJV2/t7d3unxwNvq2W5Z8yvZ/QdiUorPcxaFk5Tie92lUHY4d6CaKWQtwEPMAAAAMDIQjAYAw9j73/9+nX322br55pt17733at++fZ7bhUIhLVmyRMuXL9fpp59ekrF97Wtf0+WXX65f/OIXeuqpp7Rx40Y1Nzero4NfqgEAAACAH1MwWsAq7Fd9hd3szh+o44m2AAAgAElEQVTQezKFL3iFpRWyXa7zHLVjSqSGejBazCcYbWSGegAAgKHnsaaHPMsjVlSnVi8p8Wje3bcxGI2/m/jxCy6LO52KKY9gNMM8NWJHFbRCCiiolJJZ9XEns52pn5idewxDSSFhZ4RoAwAAAAAAAAAAACgLgag05X1u2FhPdfPcEDFJmnSxdzDajM+7Xy1Lmv9d6YSvS+kuKVQjWXbmtpGxUtzjHs5jPpO5PuECSR7BaMEqN0TNsqXZ17lLPtIp96sdyK7r3CPteUyqminVHi81b5AePN67n+rZ0qHXvOtq5kjLXpGeu156/Qf5jQtm6S6pc7e7FCoQLTBQrcd6IFz8YwEAAAAGCMFoADDItm7dOqD919fX6wc/+IH++Z//WevWrdNrr72mvXv3Kh6Pa+zYsWpoaNCZZ56pqqqqgvtesWKFVqxY0eexzZkzR9/+9rf73B4AAAAARqKkk31DviQFrVBB/XCze9+Zzke+wV/G4AVD4NqRejuqllRzn/dbLH4BcBE72u/zAwAAMJC2d27RGx0bPOtOrj5HscCoEo/IZZoLjtQ5lCPHWGep+wnbfuHC+YbKmc7x4XltxI6qPd2as12HR7Cd2768rqcKuf4jRBsAAAAAAAAAAABA2Vj4I6ljp7RnjbtePUs68z/dwDNJqjtRmvYJ6c2fd7eJTZZmfyWzn+AoSYbPFjR+xDs0rPHqzPW6eVLVDKllU2b50Vdlh63lwysQ7bBovXTU+7vXYxPM2055n/Tqzd51jR91z9VJ33eD3faskZykNOtL0qijpWc+L22+w9z3pW9KO/5bWvdl7/rj/s4Nldv8M3MfcKU6pY5d7lKoQIUbkBbpFZ4W8ijLCFirlezCPqsOAAAA9BfBaAAwQti2rUWLFmnRokWDPRQAAAAAQD8knYRneWgAg9G42T2T6XzEnTyDFxxDMFqO12SoBI757S9qx4yhHn6BagAAAKWypulBY93ZdUtLOJJM5jnmyAxGk08wmoocjGaapx7uO2rHDMFoHb7rh5Vb0HS+14qWLIWtyACPBgAAAAAAAAAAAACKJDJaOn+11LpVSnVI1bO7Q9EOO+UuaeJF0u7VUmWjGwZWMSn/fcy+XtqxUmrd3F026zo3hK0ny5LO/p205mKp9Q23bOJSacEthR9XocJ1UqhGSmQ/qFdT3iftXiXtezq7rme42uRl7tLT1I/4B6ONapQmnO9dV3GUNPdb7vdjT5fWftx7u6kfk7bc41034QJ3jPEDUtfBXkuPMq/jHklS7VJHu9Sxo/C2wcpeYWl5BqyFav3D+wAAAAADgtEAAAAAAACAMmIKRgsWGoxmCK/y3LbMbuQfaKbzkW9AmWm7XAF0pv2WOnDMFPhgyVLICpvPz4gN9QAAAENFe6pVfz70mGfd9NgcTY40lnZAPZjCs0ZquKxvLJrVMxjNfK3S2e/5eezdr/kF/3am2z23K79gtPyuFSN2NOO1AAAAAAAAAAAAAICyUNlorrMs6egr3aUvRk2RLlorbfuN1LpFql/sBq15qZktXbJJOrTBDSqrmNy3fRbKst0AsTfuyiyvminVLZBmf0V64gPK+Mv9lCukqun+/Y49XQpWScmW7Lrx57nntmaONO4sae/jmfUzr+3+flSjeR+1J5jrZn9FmmQ41z2lU1KiyT887fDSO2TN69hGkmSru7S/XXjbUE1mWFrvgDWvkLXwaClU7b5nAQAAMCIRjAYAAAAAAACUEVMwWsAq7Fd9hdycH7YiBfU93PU3tMIULJbrNelvIFuxmPYXtiKyLdt4HKbjBgAAKJW1zY+qy4l71p1du8yzvFSGylxvqHAcv2i0bgEroJAVVsLpyqrLP7jYf35uCgrr3b/peqDsgtHyDNEuJGwbAAAAAAAAAAAAAEaMyBhp+mfy2/ZwWFipLfi+1LZNeud/3PXKadLZD7jjOeoK9/vNP5Xie6WJS6Xj/z53n5YlvXeL9JuxmeV2SDr2b7rXF/9O+vPnpR2/d4Owpn9WOvaG7vqxp7ghWonmzH4qjpKqZpj3H6rKPUZJsgPuaxQZk9/2PaUTUlfvUDWPQLXeZfEDUsr7YWsjRqLZXdq2FtjQksK1PoFqPgFrwSr3fQkAAICyRTAaAAAAAAAAUEaSTtKzPGiFCurHdHN/1nZWVDZP2sqQbzCCiWm7XK+JKXgg30C2Yok7pvEXFhwBAABQSmknrceaHvasqw7UaV7VKSUeUSbzHGqkhsuag9FsZV6fROyoEimvYLT8zp1pPn34NTGH1mW2MwejVeQ1jqEi3yA303kBAAAAAAAAAAAAAAxxoSrp3D+44WiJQ1LNsVLPzwo3XOIuhYqMka5KSK/9k7TrD1J0ohsSN35x9zbhWumM+yQnnbnPwwJRac6N0otfyyw//mvSmJO992sFpJrjCh9voeyQFB3nLoVKdeUIVPMJWEuN5M/fOt3no1BWwH2/hXqEpfkFqvUsC44iVA0AAGAIIBgNAAAAAAAAKCNJJ+FZPmDBaNzsnsV0TvINKMsVvGDe79AIHMsdHDE0AtwAAAB6er39Je1J7PSsO7P2woLn08U2VOZ6Q4U5Fi1bxI6pNXUoq7zfwcWW//y2dzvzPLm8rqnyv1bMbzsAAAAAAAAAAAAAwBA1akrx+7SD0pz/4y5+/B7afNzfSaMapbd/LQUi0tFXSw2XunXjzpL2Pp65/cSLpHBNv4Y94AJhKTbeXQqV6nSDweI+4WmmsnT2g+ZGDCclxfe7S2uBbe2QFKp1A9VCdVLNbGn656WxhnC+QqTi0r6npMhYN9CPB5gDAAAYEYwGAAAAAAAAlJGkk/QsD1qF/aov35vzo2V2E38pmM5JPM/gL2PwQo5zbdyvU9rAMdP4D4/PFJCQcLqUdlKyrcCAjQ0AAMBkTdODnuW2bJ1Zc2GJR5ONcNnezNFoljKfyHs4wKy3vOfnjv/8PGKZ5v/d7ZJOwhhiHSuza6p8rxXLLfANAAAAAAAAAAAAAFBGGj/kLr2d8Utp9TKp6WV3ffQi6ZR/Le3YSi0QlWIT3aUQjiOlOrzD07JC1jy2MXxmfURIJ6T4XneRpP1rpTfvdt9v486QxpwiVc+UAjEpOEoKVrpf7bBkWeZ+3/qV9Nx1Useu7rKTbpUmXCDVHJvf2BIt0p7H3PC2qunS3qeldFxqfUOKTpQmLXXLAQAAhgGC0QAAAAAAAIAyYrrZPmiFCuonYAUUssJKOP5PAjMFNIxkpnNiCgzL2s4UvGAIdMi931IHo3nv7/D4/ML04um4YoGKARkXAACAyYHEXr3c+qxn3dzKU1UbGlPiEWUzh+/mN8ccbhyfYDT1DkbrZ6hcX+e3Pfv321e5BYjlG45NiDYAAAAAAAAAAAAAoOQqGqT3vCgdet0Nhqqc5h9ENZJZlhSscJeKhsLaOo6UbM0OS+sdoNY7YC1xOFQtPTDHNNgO/NldTKxgZlDaka+jpP3PuOevt3VfNvcXGSPFGqT4HindJcX35x7jOkkTzpfmfls6sE5q3ybVnihN/gt3HJL7+qbj0rb/csPfxp4qjVmU2U/63XsW7MLuUQAAACgmgtEAAAAAAACAMpIyPH0raBX+q76IHVMilSsYjZvdezOdk/yDFwzBaDlC6Ez7LXVYRq7x+71n4ukOgtEAAEDJPd70sBx5f+Bycd17SjwabxHLMNczhOoOd45jDkbr/XlmY6hcHufOcRzj/PZwv8aA4h79d6bM1wIxu7zmvyErLEtWjnA6QrQBAAAAAAAAAAAAAIPEsqSa2YM9iuHNsqRQlbuMOqqwtk5aSrSYw9RMZfEDUqJZyvF5hSHNSbrHkGguTn/x/fmFofX2zv+6S2+BmBQZJ7W/7d3uwrXS/j9Lr39fan3TLas5Tjr2b6SjPuAGEsqRaua43zdvkNKdUuUxbvjaroelZJtUv1iqOqbwcQMAAPRCMBoAAAAAAABQRpJOwrM8aBX+NKaIHVVryv8Pr9zsni1iGYIR8gwoixsC1HKF0Jlei3wD2YrFPP53g9EM50caucEeAABg8CTSCT3Z7PFBP0kTw1M0I3Z8iUfkzRi+VeIQ3KHCL5TLUmYyWn/OXcLpMu4rkisYrce82G9OXm5h05ZlKWJHc15ncK0IAAAAAAAAAAAAAACyWLYUrnEXNRbW1km7oWKHg9JyBqr1WE8cGoijGV5SHeZQNEn6n1Ozy5pfldZ+3F0KMXqhVDFZsoLue6JqphSuk2Z8QerYKb34Nent/+duG6yUjvs7KTrBfS2j46TJl0qpTskKSJExUvN6qe0tafQCKdUubf6Z+5pH6qX6s6Sxp0nBCslxsp+6CAAAyhbBaAAAAAAAAEAZSRiD0Qr/VZ9fgNVh0TK7ib8UTOfEFBiW73a5ggXM+y1tWIZpf93BEeb3TL7nCAAAoFiea3nSGAZ8du17ZA2RD8LlE741svg9/bd3MJr3/DOfAGH/QDP3Ncln/u/3OkXtipzjGGoidizn+eNaEQAAAAAAAAAAAAAAFJVlu+FZ4TqpclphbdNJN1Std6Bawitkrdd6snVgjmckO/Csu/T2/A3ZZclW6cW/K96+Q7Xueygy+t33U6+vkdHeZYEKQtUAABhiCEYDAAAAAAAAykjSGIwWKrivfG5kzxXWNRIZgxGcTqWdtGzLNrZ1HMcYLJbr9ehP4EMxxR1DMJp1OBgtYmxb6rECAAA81vSQZ3nEiurk6nNKOxgfBKNlyj8Wze/c5Q4Q9ju/h/vNp//OdLvnNgEFFbILv1YbbPmEaHOtCAAAAAAAAAAAAAAAhgw7KEXGuEuh0olewWkHpd2rpA3fK/44MfASTe7StqWwdnaoV2Da6DwD1mrdtgAAoOgIRgMAAAAAAADKSMpJepb3JRgtnxvZ8wlPG2n8zluXE1fUMp+zpJNQWumC+/Wrj6c75TiOrBI9ocoUHnF4fLYVUMgKK+F0ebTNHU4BAABQLG93vqEtna971p1Ss0SxQEWJR2RmCsEt9VxvqHAKiEYzBhfnESrnNz893G9+wWje+4oGyvN6Kp9rxYjPdQ8AAAAAAAAAAAAAAEDZsENStN5dDpv0HqnhMmndddKBPw/e2FA66YTUudtdChWsMoeo+QWrBaukEfa5MAAACkEwGgAAAAAAAFAm0k7KGKrVl2C0fELP8rkhfqQxhVZIbviC33n1C17Ida5NgWtppZR0EgpZYd/2xWI6hp7jj9oxJVIEowEAgMG1pulBY93Zte8p4UhyM80x00qXdK43dJiD0axewWj5BJeZmALNevbrF1qXq59yDZrmWhEAAAAAAAAAAAAAAIx4406Xlj4jtWyW9r/71Q5LkbFSxRSp7kQp2SYlW92viVYp1eZdlmiVNt8x2EeEgZJscZf2twtrZwXMoWm5AtYCkYE5luEgnZT2PSUdeF6qmSONPVUKVkrxvVKoJvvcOWnJst1/px27pIpJUnCUuW/73ZiedEpS2g1XBAAMCILRAAAAAAAAgDKRdJLGuqBV+K/68rmRPWII4xrJ/M5bZ7pDNT5tfYMXcpxrv/3G050K2aUJyzAdQ8/xReyoWlLNWdsQjAYAAEqlPdWqZw897lk3I3a8JkWOKvGI/EWsoTHXGyrMsWiS1espqaZzF/eZex/ZxvGenwYUPBI+bQxGczqVdtKyLds8Ry7T6ym/MOhCtgEAAAAAAAAAAAAAACh7VdPdpb+6Dkpv/7/s8tN/KbVskl5e7t1u4e3SqKPcMKxHzvTeZuJF0mm/kLY/ID3z6ez6iilS7Vxp58q+jx/F56Sk+D53KVSgwiNEzSdY7XB5qMYNARuuWt6QnvigdPA573orIMUmSe3b/PupniUd8xk3IK1jl/TO/0iHXpe6DnhvHxkjTVwqVU6T9j/rBihOeZ/UcGn3+U51Sa98Q9rzuBSulWZ8Xpr07gNe0ynJSbj76Njlth+9wG3rOFLbFrcuFZcOrXdfz4bLpNjEvp0nACgTBKMBAAAAAAAAZSLpJIx1h2/aL0R+N7vnDk8baaI+5y1X8Ffc8QlGy3GufffrdKhS1b7ti8V0jD3HZ3pv+QXDAQAAFNPTzX9UwunyrFtct6zEo8ktmiN8t1RzvSHD8Y5Gs2RllfkFl+ViCk/LmNv6hNZ1OXFFrZg60+2e9bFARc4xDEV+1x6FbAMAAAAAAAAAAAAAAIB3Tf+MtO0/JSfdXRabLE25XNq92txu2selYIXbLjbRDU3qrfZEKTpOmv4p6ZhPukFrbW9LdXOlaH33do4jHXjWDeSqOV4KVUrxA9LeJ92wpdp50thTpa33SnvWuPvc9uvMfY09TQpWuWFxiWZp1x+kZJuU4nPiJZVqlzrapY4dBTa03FAur9C0XAFrgZhkZX9+a8hItEqrlkqtm83bOKncoWiSG0L2/Ffy33d8v/vvpqetv3C/BiulUFX2v90d/52739gkqWOnd91LX5fOfkByklKyQxp3hiTH3ZfjSJ17pJaNUvVs9+dDvnY+JL349264XN0CaeFt7/YtN3iu/W0pOkGKTXDfFyZdze5YTEF8Tto9z21vuT9XwjX5jxHAiEEwGgAAAAAAAFAmkk7SWDdQwWjc7J7N77zlCv7yC07Lda79gtNKGThmOoZIHuERpuAJAACAYko7aT3W9JBnXU1wtOZWnlziEeXmN8f0C9cdrhx5B6OpkGC0HKHFftv0nHv7ByN3KGrHjPPxfK65hqJ8ArIJ0QYAAAAAAAAAAAAAACjAhHOls34rvfotqWWzGzS08EdSICrVL3bDxpItmW3GneWGokluuNCiO6THL88MV7PD0tSPda9btlQ9y116syxpzKLMsshoqeESSZd0l838grscluqS7KA54OiwfWul3Y9KrVul2uOlUVOldFx64gPmNstelg6+KMX3SVv+zQ1j6qtQrXTsV6TIOKnrgNR1sPtrvOf6ATfMbURy3j0PBwtvakd6BKb1Ck3zC1gL17rvn4H29q/8Q9EGS7LVXfrCFIomuf9mHjnDu86yM39OTL7E/fkRqpLsd+89CkSldEra+4S072k38Gzbb6XOd7rbHXxOeuTMvo29p+pjpeh4ac9q8zbRCdLs66TwGCkQkYKjpPadUmSMNP5cN4Rx/5/c91X92W7g3Fv3Sa1bpNEnSXP+xm0DYFghGA0AAAAAAAAoE0knYawLWoX/qi+/m93L80b+gRSwAgpZYSWcrqy6XOELpnpbds5wO9+wjDxCH4qlP+ERcad04wQAACPXhvYXtDfxjmfdWTUXKdCHufNA85ubl3KuN9R5PW/UdO7yCQ82B5pFPb/3al8jqTPd7llfrkHTBKMBAAAAAAAAAAAAAAAMgIZL3aW3YEya/13pzz3CyIKV0tybstsv+YP07JekQ6+54WPzvifVHjew4w6E89tu7Knukq/Ri9xjqD3eXZ/9ZTcIqWWjG6QUGy/9Z62UaM5uO+YU6aK17ved+6R0l1QxKf99p7q6A8Jyhaj1rvN54P2wlo67oVmd3p/N8xWqNoSo+QWr1bn/DiyvT415OPh84eMarnqGoknSjv92l8FyaIO7+Ol8R3rhq/n192qv9Z0rpTf/VTr3Ee9QSABla+h94hsAAAAAAACAJ79gtL6EO+RzI3u53sg/0CJ2VImUVzCaf/iCX6iYleMPdiErLEu2HKWz6vIJfSiGpJNQSt5/yI1YucMjSjVOAAAwsq05+KBnua2Azqi9oMSjyY/fXG8kBqM5cgw12XNm0zVL0kko5SR9r5VM8/eeocT5hNaZXqNyvZ7KJyC7XI8NAAAAAAAAAAAAAABgSJrxeanmeDe8KFQtHfUB74CfCedLF6+X0knJLpO4kPHnSrsfzS6f9cXssopJmQFnM6+VXv1W9nYzPt/9fXRs4WMKhN3gtdj4wto5jpRsywxMix/IL2AtcajwcQ4XiUPu0ra1sHZWMDsszRSm1vTSgAwdZaJ9m7RytjT1Y1JwlBsON+4MafRJUrhWik7IP2QPwJBRJjMdAAAAAAAAAEmfJwuFrFDB/eVzI3s+4WkjUcSOqTWV/YfJXKEVpmCwfIIHLMtSxI6qM91e8H6LxS/YrOd7xfS+GYmhHgAAoLT2de3Wq23rPOvmVZ2qmuDoEo8oP0NhrjeUmILRLI9gtFzBZRWBSt96L5lzW/Nc/XD7Do/XTZKidoWx7VDWM/TYuA3XigAAAAAAAAAAAAAAAMVVf5a75KNcQtEkN6iodzBaqEZquDx322M+Jb1xp9S5p7usepYbHDcYLEsKVbrLqKMKa5tOSl1NPiFqPgFr6fjAHM9Q5yTd177n6w/42XJP9/eb78isO+dBaeJSAtKAMlJGsx0AAAAAAABgZEs6CWNdsA/BaPnd7J47sGskMp07v+AwSYr3IxhNcsPsvMMy/PdbLH6hHD2D9kzHMxJDPQAAQGk93vywMVRrce2yEo+mMKZgtFxzzJHE6/NIfgFdnemOfgejBayAQlZYCafLs3+3H+/XKJ8w6qEon9CziFWexwYAAAAAAAAAAAAAAIASm/pRqWO7tP67UuKQG2x2+i/dcLFcKhulC56UNtwiNb8qjV4kHf/3UrAMH1hoB6XoWHcpVLIjMzAt7hOidmT9gBvEZvg8HTDirF4mHfOX0sIfS4HwYI8GQB4IRgMAAAAAAADKRLGD0fK5ST+fG+JHItO5yxVQlk/wgh/TdqUKHPPbTySvYDRCPQAAwMBJpLv0VPP/etZNCh+l6bE5JR5RYaJ2TM0e5SNxDuU4aUNNdjKa33VNrnmyKXSud58RO6pEKjsY7XD/XoF2ucY2lOV3rViexwYAAAAAAAAAAAAAAIASsyzpuL+Tjr3RDe2KjiusfdV06eQ7BmZs5SIYk4KTpYrJhbVz0lKi2SM0LY+AtZT3Z6LKzqKfSH/+vHdd9SzpL9ZLlu2upxPSyyuk12+VUh1S/RJp3nekPyzybj/3ZmnOV6WWTdKh16Snr3HPd19M/ZjUcJm0c6W080E3RDDZJgWiUt0CKVwrJVqkvY/3rX+43rjLfV2nfniwRwIgDwSjAQAAAAAAAGXCLxgtYBX+q758wrjK9Ub+gWY6d6ZghcPijiEYzco3GM0UODYUgtGint/n2x4AAKC/1rU8obZUi2fd2XXLZFnZoVpDiWlOOBLnUI7hKaWWRzCaX0BXrnNnDC62egejxdSaOuTR3p3/5xuwVi5yhZ7ZCijYh2tQAAAAAAAAAAAAAAAAjGB2sPBQNPSPZUvhOnepnFZY21Q8OyzNFKLWu8xJDczx9MXEC6VgpZRsza6bfEl3KJok2SFp7rekE2+SUp1uIJ0k1S+W9qzJbj/l/W7wX/VMdxmzSHrH++GuOuUu6U9/6V13ZYcbgCZJUy7zP57OPdJz10tb73XXq2dLoVp37O3bpcar3fJEq7TxNv++vDRcLm3/rbl+yvukjl3SvqcL7/sw0/ksle33E4wGlAk+qQoAAAAAAACUiaST9Cy3FZDd848xecp1s7u7TX6BXSONKeDAFHx2pN4QmJDveTaFZeQKZCsW0/gtWQpbkSPr5mC00owTAACMTI81PeRZHrUrdHL14hKPpnDGOVSOOeZw5B2L5q3nPLS3XPNPY3Bxr9fCHFp3OBjNu5+oXeG7/6Eq1/VJxI4O+aBBAAAAAAAAAAAAAAAAAP0QiEixCe5SCMeRki3mMDW/gLWk94NR+2z8uW4g3NSPSpt+klkXqJBm/JV3O8vqDkWTpGNvkPY+kRn4NuX9UvWMzHaTLzUHo02+WLIC2aFx9Wd3h6LlI1ovnf7v7uI47lhN5n9X2ni7G2LWsVMK1UgtG6XWN723P365dOIK6eGF0oF13tuc9Rsp2SH9yuezcSfdJq37kmH8E6TzVkn3+dwDFaqREs3edXULpOmfkbb9RnrnEXMffkzHD2DIIRgNAAAAAAAAKBNJJ+FZHrJCfeovVzBa0Aoq2Me+h7u+Bn/FjYEJuUPqfPfrlCZwzBTA1jsYoa/BcQAAAH31Vudmbe3c5Fl3avWSvOdbg8k0Px+Z4bLe0WiWsj/EZVu2IlbUc67Z1+Di3u+XXKF1nel2z/p8wqiHolz/Xsrh3xMAAAAAAAAAAAAAAACAQWBZUqjaXUYdXVjbdELqasoMSzOFqGWUHXDb9jT2dOn0e93vF/xActLS1n+X0klp3BnSop9IlY35jWvyxdKSh6VNP5U6d0sTL5Lm3Ji9XcNl0rovK+vzb0d/yA00m329tOF73eWBqBtG1le5Hm4ZiErHfiWzrH2n9F+TvbcfNcX9OvNaae0nsusnLnW/Bn0+Pzbjr6RZXzQHox31fv9xW7Z00q3S2o9715+zUopNdI+tr8Fo8X19aweg5AhGAwAAAAAAAMpE0kl6lvc1vMx0c/+Reoub3U3MoRW5ghe863O9FoeZAghMgWXFZhy/FfVdP6xU4wQAACPPmoMPGuvOrn1PCUfSd8Zw2RxzzOHIKSAYTXLn0/GURzBazuBic/BvT36vTdJJGEOsY2UaIJbzWjHP6xcAAAAAAAAAAAAAAAAAyJsdkqLj3KUQjiOl2rtD02ITM/sIhKWT75BOuk2yg274VqEmnO8ufkZNcYPINtzSXRatl477qvv9vO9KdfOlnb+XIuOkqddIo+cXPpb+iI6XImOk+P7susPH13CZFLxWSrZl1k/9WPf345dIu1dl9zH1o+7XY/5SeuMuj/pr/McXHi1NOE+SpayAuegEd/yHtzM5+U7pmU+b63uH6AEYsvrw0xoAAAAAAADAYDDdbB+w+vb8A9PN/Ydxs7uZKRgtV/CXqd7UX/Z23q9JqcIy4o4p2C3Wa31wxwkAAEaW1tQhrWt5wrNuVsWJmhBpKPGI+oY5VN+Zzl1nn4OL85vfdqY7fK8B8p3nDzW5g9HK87gAAAAAAAAAAAAAAAAADEOWJQVHSRUNUt2J5mC1QLhvoWiFmPeP0tkPSDOvleZ+W7roGan2hO5xNl4tnf7v0knfL30omkVmrdIAACAASURBVCTZgcyAs8PGnyuNOtr9PlwrnfuoVDndXQ9Vu8d19JXd28+8NruPMadKY052v591XXZ42eRLpdEL3e8b3us9vhO/6b6Oky/Orpvxue7XL1jh3V5yg/GqZ5vru5rMdQCGlL7dMQkAAAAAAACg5FJO0rM82MdgtJAVliVLTu+nqLyLm93Non0MrTAHL+QXQmcKs4vnCGQrlnzHbxpn0kko5ST7HOYHAADg5enmPyrhdHnWLa5dVuLR9J1f+NZI4zje1yiW4UNp5lC5vgYXR3utm+bhnb77yBVGPVTluhY0XQ8BAAAAAAAAAAAAAAAAwIhmWVLDpe4yVM37rpTukrb8m5SKS5PeI53688xtxp4sXbpJ6tgtRca6gWo9TXmfdOavpNdvk9p3SBPOlxbc4h6/JNUeL134tPTGnVLrFql+sTTj8931R10pbX8gs087JDVc5n5/xn9I677kbhOqlqZ+XDr+a93bBqvMxxetl475tPT8V7zr03GpdavU9LK0f60UHiNNvUaKjpWctOQ42ccLYFBw9xkAAAAAAABQJhJOwrM8aIX61J9t2QpbEcUd77Crcr2JvxTMwQj+wQum+oiVX7CAXyBDKRjHn2dwhNtHpyoClUUdFwAAGLnSTkqPNT3sWVcbHKMTKheVeER9Zw73Ks1cbygxhTdbhu37Ok/ub/BvPN2hjpRfMJrPUymHsIjlfy1IiDYAAAAAAAAAAAAAAAAAlCk7KC38obTgB5KTlAIR87ax8ea6oz7gLibVM6X53/OuO/oqqWWT9OrNblBZZKx0xn1SbIJbH6yQTvkX6eQ7u8PUeqqb6wamJQ5llodHS7VzpYoGczCaJP1uauZ6723Do6WKKVL92e6+Nv5Yan7FDZSb9WVpwffdcXXuk+L7pMho6dBGN5Qt1S4l26TRC/3PLYCcCEYDAAAAAAAAykTSGIzW91/zRe2Y4qn8wgDQzRyMkCN4wRBCl++5HuywDHMwWqzXuvl4OtMdBKMBAICiebXtee1P7PasO6v2IgWs8nlqnymMKlf47sjiHY1mCurq9Dl3aSelLifuWdd7vm+a33amO3xfn3INmw5aQdkKKK2UZ32+wc4AAAAAAAAAAAAAAAAAgCHKDkgapM9YWpZ0wtelOTdKbW9JVTMky/bezksgIs34grT+O5nlM6+VAmEpNlE69xHp0Qv6Nr6uA+7S9GJ23eu3uku+Kqa4gWqxiVKkXho1RWr8iNS6xQ2Fa3ivW1eIdEJ69ovSsX8jVR1TWFugjBCMBgBDXHt7u5577jlt2rRJ+/btU2dnp2KxmMaPH6+ZM2dq/vz5CofDgz3MsnXOOedozZo1R9YdxxmQ/axevVpLliw5sr58+XKtWLFiQPYFAAAAYPhKpk3BaKE+9xmxY1LqoLkOnvyCEfyYAszyDUzoS+BDMZnG3/t8+L13ShXiBgAARobHmh70LA8oqDNqLizxaPrHGIJrCNcdzhx5/73GMgWjGYK6/Oae8bR3KJqUf/BvPN2pznS7Z11AwX5dqw0my7IUtWNqT7d61nOtCAAAAAAAAAAAAAAAAADot0BUqp7Vt7Zzb5Yi46S3/kOyQ9LRV0ozv9hdP/a04oyxv9q3uV87ezwE+I27ur//8+f73vfmn0on3SbN/CvvYDmgzBGMBgBDUCqV0q9+9Sv9/Oc/16pVq5RMJo3bRqNRXXTRRfrUpz6liy++uISjBAAAAACUWkre14f9C0bzvsE/V91I5xdQ5jiOLMNTaeKGALN8gwX6EvhQTPkHo5nfOwSjAQCAYtnbtUvr2573rJtfdZqqg7UlHlH/mOaEI3P+VFgwmilo2DcYzSdwrve8228ebgopjtox43VBOYjYUZ9gNK4VAQAAAAAAAAAAAAAAAACDyLKkY693Fy+BCqlymtT6ZmnHVWrrviRt+4106r+6xwsMI8T9AcAQ8+ijj2rOnDn60Ic+pEceecQ3FE2SOjs79cADD+iSSy7RokWL9Nxzz5VopIVpbGyUZVmyLEuNjY2DPRwAAAAAKEtJJ+FZHrT7E4xmDuQyhQvAHIyQVkpJx/ta3nGcvIPFTMyBD95hDMVmCo+IWJnjClsRcx8lGisAABj+Hm/6gxxDgNbi2mUlHk3/meaEI3H+5P2qSoZcNPO5c8znzu+89p53G0PrnA5zMFqgvK+n/K4HuVYEAAAAAAAAAAAAAAAAAAxpliU1fmSwR1Eae9ZIvz9B2vHgYI8EKCqC0QBgCPnGN76h888/Xxs3bswotyxLc+bM0YUXXqirr75a559/vmbOnJnV/tlnn9Vpp52mO++8s1RDBgAAAACUUCJtCEZTsM99+gVy5RvWNRL5BQGYAhYSTpfSSnvW5XuuzYEPnUo73n0Xkyn0ofe4bMs2hseZwtUAAAAK0ZWO6+nmP3rWNUQaNS02u8Qj6j/TXK8z3SnHMUaFDVPex2sZktH6EirnV9e7P2MwWrrTPEe2yjs8jGtFAAAAAAAAAAAAAAAAAEBZm3OjVLdgsEdRGoGINHr+YI8CKKq+3zEJACiq6667TrfeemtGWVVVlf72b/9WH/7wh3XUUUdltdm8ebPuvvtu3XLLLYrH45Kkrq4ufeYzn1FbW5uuu+66kowdAAAAAFAaSSfpWR60Q33u0y/gy69upPMLAog7HapUdXZ52hwIlm+wgN9r0uXEFR3g8AXTMXiNK2LHFE9lb+8XQAEAAJCvdS1PqC3d4ll3du0yWZZ3gNZQZprrOUor4XQpbEVKPKLBkzYGwZmC0czBZSadPnXhrGA0U/BapzrT7Z51sUCFsf9y4B+MxrUiAAAAAAAAAAAAAAAAAGCIC46SzntUWv9tac/jUmySVL9YClVL8X1S1wGp9U0pXCvtXi2lu6TWNwZ71H1z0g+l2MTBHgVQVASjAcAQcM8992SFop155pm677771NDQYGw3ffp03XTTTbrmmmt0xRVX6JVXXjlS95WvfEXz5s3TOeecM1DDHhZWr1492EMAAAAAgLylTMFoVt9/zed7s7uVX1jXSOQXUNZpCP7yC2XIN4TOL4Agnu4Y8DA7U6iZ1/soYkelVPa2fgEUAAAA+XAcR2sOPuhZF7MrtKj67BKPqDh8w3fTnQrbIycYTfIORjPF3ZnOnWluLpnn5yErrIAVyCgzzbMTTpfa062GMZV3eJjf+KN5BjsDAAAAAAAAAAAAAAAAADCowjXSvO8U3s5xpPZt0tpPSodekyJjpOh46Z1Hij/G/mp4r9T4ocEeBVB09mAPAABGuo0bN+raa6/NKDv99NP10EMP+Yai9TRz5kz98Y9/1LHHHnukLJ1O6yMf+Yj27dtX1PECAAAAAAZP0kl4lgetUJ/79AvSKvcb+QeSf0CZd8BC3DGHMkSsfIPR/MMyBpppH8ZgNM8+zOcBAAAgH1s7N+ntuPcT+U6rOc93zjSU+c0JSzHXG0ocYzCadzSa6brG77yZQ3+z+/J7TzUnDxY0pnLh937kWhEAAAAAAAAAAAAAAAAAMKxZljTqKOm8/5Uu3y4te1E669d96+uiP0tzvy1V9MgPmfVl6dxHpOP+XrIjUqg6u11kTO6+Ry+STvlXd7zAMBMc7AEAwEh3ww03qLW1+0nytbW1+s1vfqPKysqC+qmvr9evf/1rzZ8/X11dXZKkHTt26Jvf/KZuvfXWoo4ZAAAAADA4TMFoAavvv+bzu8Gfm93NQlZYlmw5SmfVdRoCFvxCGfIN7/ALVzDtt5jMwWjZ4+pLOAUAAEA+1jQ9aKw7q3ZpCUdSXL4huD4hu8OTdzCaDMFopmsX/2C0/of+SlJz8oBnedkHo/ldK1rlGT4IAAAAAAAAAAAAAAAAAECfBavMdWNPl/Y9lV1eO1cas9Bdjvtqdv2E86W53zT3+0ufwLPFv5cmnCcFIuZtgDJGMBoADKLXXntNK1euzCj7zne+owkTJvSpvzlz5uiGG27QzTfffKTsrrvu0ooVK1RXV9evsQ41mzdv1ksvvaQdO3aopaVFlmWpoqJC48eP19SpU3XCCSeooqJiwMcRj8e1Zs0abdmyRQcOHFB9fb0aGhp01llnDcj+d+3apT/96U/as2eP9u/fr8rKStXX12vRokWaNm1a0fcHAAAAYGgxBaMFrVCf+4xY5pv1o3mGdY1ElmUpakfVkW7PqjMFLJiCy2zZeb+GvmEZAxw45jiO8RgKCY8oRYAbAAAYvlqSzXqu5QnPutkVczU+PLnEIyoev7le5wgLlzXGohmeaOg393Qcx7Nd3DAv9Qo08ws5MwejDfzfqQaS3zETog0AAAAAAAAAAAAAAAAAGHEsSxp/nrT7j9l1J/9MWnWh1LEzs3zaJ/q3z/Boqcvjc4oTl0qTl/Wvb2CIIxgNAAbRrbfeKsfpvrVj7Nix+sQn+jexue666/S9731PiYR7s3xbW5vuvPNO3XjjjVnbfvzjH9c999xzZH3Lli1qbGzMaz+rV6/WkiVLjqwvX75cK1as8O3/sLfeest444okfexjH9Pdd9+dVR6Px3Xbbbfpzjvv1KZNm3zHFwgENG/ePF122WW6/vrrjSFl55xzjtasWXNkvefr4ae5uVlf//rXdffdd+vQoUNZ9VVVVbryyiv1jW98Q5MmTcqrT5NEIqG77rpLP/7xj/Xyyy8bt5sxY4ZuuOEGffKTn1QwyH/xAAAAwHCUdJKe5aH+BKP5hC9ws7u/iB0zBKN5ByyYgssidsz3OrmngBVU0Ap5huQNdOBY0kkqrZRnXdQjYM/03hroADcAADC8PdX8v8Z58eLa8v6AR8gKy5attNJZdaY55nBl+nuNJUMwmuU990wrpaST9LxmMob+evTld23UnDzoWe4XLFYO/K8VCdEGAAAAAAAAAAAAAAAAAIxAs6+X9qyWnB731zRcLtUeJ537R+nJq6SmF6VAhTTrS9KsL/Zzf38tvfQP2eXTP9O/foEyQGoKAAyihx9+OGP9mmuuUTgc7lef48aN0yWXXKL7778/Yz9ewWjlZNu2bbrooou0YcOGvLZPpVJat26d1q1bp6uuukrTp08v2lhefPFFLVu2TDt37jRu09LSon/5l3/R/fffr9/97nd93te6dev0wQ9+UG+++WbObTdt2qTPfvaz+slPfqKVK1dq8uTJfd4vAADlpjl5UK+2rdM78e0Dup+QHda02GzNrpirgBUY0H2NVK3JQ3q1bZ0OpZo1Z9Q8TY40DvaQMEy0JJv0Sts67YpvG+yhZAhYQTVGZ2jOqPkK2bmvB73CsCQp2K9gNPPN+uV+I/9AM507U/CXORitsFCBiB1VMpX9Xniy+X+0qf0VSZJlWZoUPkrHVZ6kykC1sS/HcfR6+0t6o2NDzsAy0/vv8Jiyy7zPzxsd63X/nruPrNcER2vOqPmaGJniu//dXTv0aus6NSU9nnQj9/06veI4zYgd5xs0V6p5Q6HCduTIPMO27D71sb1zqza0P6+WZHPebYJWSFNjszRn1DwFrOL+yeBgYp/Wtz2vuNOp40ctVH14YlH73xHfqvVtLyiRjmt6xRzNiB2fd8gggNxy/R8RtEKaFpulWRVzFbL7PhcBCpF2Unq86WHPutHBcTqhcmGJR1RclmUpYkc9w3cfb3pYr7W96NvetmxNjhyt40ctVCwwaqCG2S97unbp1bZ1OpjY57vdrq7Crt38rl1+u/duz2umzR3rPbf3mtuGrYix/4TTZeinvK+nCEYDAAAAAAAAAAAAAAAAAKCXycukJQ9Lm34qdb4jTbhQOu6rbl3NbGnZC1LnXilcJ9lFuEfjmL+U3vy51Nojb2Ls6dKk8n6YMJAPgtGAISblpNSU9L8RAP1XGxw76EEW27dv19atWzPKLrzwwqL0feGFF2YEo61du1aJREKhUHnenNbV1aWlS5dmhaKNHj1aJ5xwgsaPH69QKKSWlhbt2rVL69evV1tb24CMZf369TrvvPO0f//+jPLx48dr/vz5qq2t1e7du7V27Vp1dHTowIEDuvjii/W9732v4H2tXLlSV155pdrbM2+AmjhxoubOnavRo0erra1N69ev16ZNm47Uv/DCCzrllFO0du1aNTQ09O1AAQAoIzvjb+m2bct1KNVUsn0uqDpdn5h4fdHDQ0a6PV07ddu25TqQ3CtJ+q+9lj484a90es35gzwylLt34tt12/blakruz73xIJlVcYI+N/lrOW8uNwVT9efnkV+AADe7+zOdn850h2d53FBeaGBC1I6pLdWSVf5S6zNZZaOD4/TlKf9X4zwCqdJOWr/c/WM91fy/Be3fi2cwmuV9XLu6tmUFXfx2b0CfnHS9FlSd4dnmhZa1umvnLUop6T+Q/dKSuov1/nF/6RmQNRjzhkItqlqsayZ+qeDfXT3Z9Ih+ufvHcuT0ab/Hj1qoT0+6Ma+Qxnxs7dio27d/U21p9736X9Y9+sykr+r4IgXWPN38R/37O7fLUdot2C8trl2mD9Z/mnA0oAgcx9F9u+/QE81/yLntnFEL9NlJXy3azw/Azytt645cM/Z2Zu1FsodBiHnEjnkGo73Y+qe8+5gQbtCXGr6h2tCYYg6t315pfVZ37vxHY5BYPix5/z/vd+2yuun3Be3D6xrJtmxFrKjijn+YcE+xMg9G87tWJEQbAAAAAAAAAAAAAAAAADBiTTjfXUyi44q3r9hE6YKnpM0/lZpflcacLM34ghQwP/AVGC64gxsYYpqS+/QPb352sIcx7H1z2k81JjR+UMfw5JNPZpUtXFicG0NPOumkjPWOjg698MILWrRoUVH6z9ctt9yiFStWSJLOPPNM7dixQ5I0efJkPfHEE8Z2lZWVGes///nPtX79+iPrjY2Nuv3227V06VLZtp3V3nEcrVu3TitXrtRdd91VhCNxJRIJffjDH84IRZs4caJuvfVWXXHFFRljaW1t1T/90z/pW9/6lpqamnTjjTcWtK/169frqquuyghFW7p0qb7xjW/o5JNPztr++eef15e//GU9/vjjkqQdO3bo6quv1urVqxUIlP+NYAAA+Pnt3ntKHm7yXMtTWlh1tuZVnVrS/Q53K/fdl3GDuyNH/7H7Di2oOoMbbtEvv9v370M6FE2SXm9/WX9qXqWz697ju13S8Q6FClp9D8L2CxAoNLBrpDH9bIqnvcMSTOWFBtBFrPy3P5Dcq5X7/kOfmPTXWXWbO9YXJRRN8n6vFHJcaaV03zt3aG7lqVmBYGknpV/u/knuULR3rTq4UqdWn6sp0WlZdb/d+29DOhRNkv7cskYn1yzWcaMW5N2mM92hX+25s8+haJL0StuzWtfypE6tWdLnPnr6zd6fHwlFk9yfX/e+c7tuPuZf+x1c1pWO6z92/7Q7FO1da5oe1CnVS9QYm9Gv/gFIWzpfzysUTZLWtz2nZw6t0Rm1FwzwqADpsYMPeZYHraDOqBke78FihBO/07Vdjxz8rT5Q/6kijKg4HMfRL3f/pF+haJJfMFrxrl1Mr0HEjiqeyj8Yrdyvp/yvFQnRBgAAAAAAAAAAAAAAAACgJGLjpRO+PtijAEouO00GAFAS27dvz1gfP368xowZU5S+jz/++Jz7K4WxY8eqsbFRjY2NCga7sziDweCRcq9l7NixGf088MADGW0feeQRLVu2zDMUTZIsy9LChQu1YsUKbd26VUcffXRRjueHP/yhXnjhhSPrEydO1BNPPKEPfOADWWOprKzU8uXLdd9998m2bR08eDDv/aTTaV155ZVqa2s7UrZixQo99NBDnqFokjR//nw9+uijet/73nek7IknntC9996b934BAChHaSel19tfGpR9b2h7IfdGKMiG9uxzmnSSerPjtUEYDYaTcvn3ur79+ZzbJJ2EZ3l/gtFidoWxjlBCf6aAss50h2d53PEuLyToTJJigVEFbe/181WSXmt7saB+/Hi9V/zeW17a0i16u/ONrPId8bfUmmouqK/1bdn/ntx5Q/GOeSBt8Bi/nzc6NvQ7ZKQv+zXpTHfojY4NWeXNqYPa3bWj3/37He+GPH6WAsjt5dZnC9p+U8crAzQSoNuerp3GOfOCqjNUFawp8YgGRqFzKJNXCvx3PNDe6dpelMDqgOX97LdiXrtEDa+BqdykWK/lYIna3tcdIStsfB0AAAAAAAAAAAAAAAAAAACAYiAYDQAGyYEDBzLW6+rqitZ3NBpVJBLx3V85eeutt458P3fuXE2fPj3vtoFAQKFQ3wMCDkun0/rhD3+YUfazn/1M06ZN8213xRVX6Atf+EJB+7r//vv1yivdNxJ+8IMf1PLly3O2CwaDuueee1RfX3+k7JZbbilo3wDw/9m79zA56/r+/6/PHHZmctzNgUAJMWCMBAQRQQUMAaFgUBRRi1C/IlrlVxWlFbXW1hNopdJ+C/qzVdofWmurVRBPUMEDQUSI0SIIKIST4RSSzW4OuzOzc/j8/lg22Z293/fe95x39/m4Lq4rc99z3/dnDvchS+7nAtNNsVpU2Zc7su2h6q6ObHemqvqKhiq7A+cVqsNtHg1mklJ1REVf6PQwIrH2gfGsY16qgZvSD8wcHBgRWJF5rjKJeMGu2cYKIxSNMFq+Ejw9l4wXTFiVOyzW84cqu+W9nzQ9bmzMsiK7Sj2JzKTpq+bEG6ckDVUmn1/3BEybej2T96ditdCx64a49kQ4Hkx4frk5n2U973WQoM9xTL4J5/Ww726zXgMw2+0obYv1/GK12KKRAPvcOvg/5rx1vWe0cSSt9dyY13qWgfJ2VX21KetqhrDrgzgOyR0aOL0nkdFzss9ryjZWzTncmB79s0koaY51ujgk93wlAv5JyfPmTP4FTQAAAAAAAAAAAAAAAAAAAEAzEUYDgA6pDZX19vY2df216+vv72/q+jvlmWee6ch2b731Vj366KN7Hx977LF69atfHWnZj370o7HibFddddXePzvn9JnPfCbysvPmzdOFF1649/E999wzYdwAAMw0VnimHfIVYl3NVKza4apStdTGkWCmmU5hvSjHlbIP3h9Srv4gdDqR1qsWv6lmfSm9asm5da9ztsgmJwflJPt7V6gOBa/HCKxZXt57uhallkZ+vldVI35ysKbQhPNoyqUmfX/GrMyu1pHzXhJrfUHRrHpCWvmA97oZQa52iXvsasZnKTXvPRquBH/XJfs4Fkc+5PUWjAAhgHgGyvHCaNLkACfQTCPVon6x88eB8w7KHKKV2dVtHlHrrOtdr97U4obXU/blpsXImiHs/B3V3OR8nbroteb8Vy0+p6FotCQ9N7dGL5j74sB5r+h7jeYlF0Raz2mLztac5LyGxtJpc5Pz9ceLXjdhWsZl9cpFr+/QiAAAAAAAAAAAAAAAAAAAADBbNPavggEAXcs51+khNM2hhx6q++67T5K0ZcsWXXHFFbrkkkvaOobbbrttwuNzz40eCFi6dKlOO+00/eAHP5jyuUNDQ7rjjjv2Pj722GN18MEHRx+opJNPPlmXXnrp3sc/+9nPtHLlyljrAABguih6O6b1/DlHNBQKGrNt5Gk9U3py0vRmBUgwKizE0oyACmavsO/W6jlHKN2E40Rcg+UdeqL46KTpUUJIFV8OnN7ozf+nLHqt9us5UHfvuVOZRFYvnr9WB+dmTlyiVXJG0Mz63lkxCGs9lsXp/fT+FX+nX+z8sR4rbFZVFUlSsVrU5vy9gcsUqsPKJLI14wmOVy1OL9P+PQdOOY5lPQeGflcSLqF3/NEHdfvOH+uB4XsmfMc3D98XeB4POr9a+0ba9WhecoEGytsbWo8kPX/OkQ3vR/V4ZuQpbSs9NWl63ACr9VnmEnN1SO75k6bvKG3XUyN/iLyeuMKOvSU/0vD6CyHvT7NeAzDbBR1bJckpIa/qpOmeMBpa7Je7bjWP8ev6zphR/09kSc/+umTFZ3THzp/o0cKDgfvceBVf0e+GfxM4b6Dcr/mp5v5innpZ12Ipl9Lz5xwZuqxTQgdlD9FLFqzTspDr1BfMO0Z/edCntWn3bdo68nis8fW4jJ6bW6MTek9TTyIT+Jw/yqzQJSsu1527fqothYcDP5v5yV69YN4xetG842Jtv1u9ZsmbdVD2EN2759eam5yvlyw4ScuzKzs9LAAAAAAAAAAAAAAAAAAAAMxwhNEAoEMWLVo04fHOnTubuv7BwcHQ7U0n5513nq677rq9jz/wgQ/o+uuv1wUXXKAzzjhDBxxwQMvHsGnTpgmPX/rSl8Za/qUvfWmkMNodd9yhUmlf+OOQQw7Ro48+Gmtb1erEG3EeeuihWMsDADCdFEPiZO/8o79SLjm34W38dOD7+uYz/zppepSAEaILi5gQRkMjwvbVd/7RhzQnOa+Noxn1692361+f/PtJ08NCQmOs/aEZIcgj5h2jI+Yd0/B6ZpNMIhc43YpnFoxjXTZmGE2S+tJLdMaScyZMGyzv0F8/9DZzTAsjjvO4Ba+YtO56JV1Ka3tP19re0ydM/7tH/1Jbig9Pen6+Mvk9siJYS9MHaM3cF+rHA9+dvEzA/mSF6STpzw/8iBnAaKWbd3xb3972lUnT415nWJ/lc7Kr9O7lH500/c6dP9VXnr5y0vS4QTZL0Oc4phnn9bDjJfFaoHFVX9FgaUfgvL7UYu0ob2vziDDbee+1YfCGwHlzEvN0zPy1bR5R6y1KL418PVb1Vb3vgT9RRZMjygOl7VqRfW6zh1cX6/zdl1oaeL1Sr5W51VrZwsjzfj0H6Mwl57Vs/d3GOaej55+go+ef0OmhAAAAAAAAAAAAAAAAAAAAYBYhjAZ0md7UEl16yBc7PYwZrze1pNNDmBQqGxgYaNq6C4WCCoXChGmLFy9u2vrb7eyzz9bZZ589IY7285//XD//+c8lSatWrdLxxx+vE044QWvXrtWaNWuaPoatW7dOePy85z0v1vKrV0e7CWfLli0THn/961/X17/+9VjbqrVjR/BNjAAAzARh4YtMItuUbeSMWE2U/1AGSQAAIABJREFUgBGiK1Tsz5IwGhoRFvnJGlGrVrO2W6jm5b2Xc85cttTCMBrisz/L4O+dFeayzjXNGo8UHKqy4lXt2DesGFzQud063+eSc2KuJ/hzSSiptOuxhtpS9vjjXWdYxzrrs7TisWGh0ljjCRl/2U+OtsQV9v5wjQY0bldlZ2BgSRqNNRFGQ7s9XPi9Hi8+EjjvuIWv6EjctJskXEK96UXqLz0zad5gub8DIwpmxW479fcyAAAAAAAAAAAAAAAAAAAAAN2LMBrQZZIuqcXpZZ0eBtrgwAMPnPD46aefVn9/f1MCZvfee++U25tOnHP6xje+oY997GP6x3/8x0nRt82bN2vz5s3693//d0mjobQ3v/nNuuiiiyYF6OpVG65bsGBBrOUXLlwY6Xn9/c2/SWn37t1NXycAAN2iWC0ETk+7HiVcsinbaFawBOHCQiwlP9LGkWCmsQI5GZdt2nEirlwiOEjkVVXRF5R1dhjACgWmHD/m6wQraGaFvFodg8i4rJycvHykMdnBseDvaDPlktHPr9Y5IpvImefp4BBc8PufS8wJDRK2kvXZWxE9i3VdYh1vrOklP6KyLzUcWww7rzcjeBoWP+MaDWjcQGm7OW9ReqkUcIjyfvK5B2iWWwduMOet7V3fxpF0r97U4sAw2kA3hdGM6xvreg4AAAAAAAAAAAAAAAAAAADA7JXo9AAAYLY6/vjjJ03btGlTU9Zdu55cLqejjjqqKevulFQqpU996lN69NFHdcUVV2jt2rXKZDKBz928ebM+/vGP65BDDtE3vvGNNo+0MSMjzY9+cFMiAGAms2+qbU5gRgqP3lR9pWnbme3CAidlX27jSDDTWIGcrBFlaoewY5QVzhpTMfaHRiNGqI8dzzTCaFa8qknfR+dcSGgrXnCs1cygWcA4zYBbYm5IYC0oBNd9xwP7OsMOiwWxzqPZZPBnaYXRJDsgF2s8AWG6Mc0Io4XFz5oxfmC2GyhvC5yedj2al4z3CyOARu0qD+rXu28PnHfY3KO1X88BbR5Rd+pLLQmcHhY6bLdWXwsDAAAAAAAAAAAAAAAAAAAAmDkIowFAh6xYsUIrVqyYMO2mm25qyrpvvvnmCY9f+tKXqqenpynrHlOpdCYCsmzZMr3//e/Xrbfeqp07d+r222/XFVdcode+9rWaN2/ehOfu3LlT5557rq6//vqGt9vX1zfh8a5du2Itv3PnzkjPW7Jk4s1Ln/70p+W9b+i/L3/5y7HGCgDAdFKsFgKnZxLZpm0jLJZibR/xWdEbqTkBFcxeVizIihG1Qy4ZEiQKif1UfUVVVQPnEUbrDCsgVqzmVfWTPyszXtXE76Mda5u4be99aHCs1ewgWFDAzXrfcjEDa9bxoPUhOIs1/rIvq1SNfv6zX1vwZxkWILGCeXGEraNUbTwKHxY/C4umAYjGCimNhpdc4DwvfjkDWuP2nTerouA48Lre9W0eTffqTS0OnD5Y7v4wWjuivAAAADOVcy7lnHuJc+4C59wHnXN/45y72Dn3RufcC51zqU6PEQAAAAAAAAAAAAAAAKgHYTQA6KBXvvKVEx5/9atfVanUWPRh27Zt+u53vxu6nTGp1MR//1guB99cFGRgYCD+4Josk8nouOOO0/vf/35df/316u/v19e//nWtXr1673O893rve9+rajU4HhDVsmXLJjx+8MEHYy3/wAMP1LWdqMsBADBbFY2gS6aJN9WGxZPCAkaIJ18JCaj4xgMqmL3sm+87GEYL2XZY0Kfs7b+zpbi/rSOs75GX14gvTphW9iXzeNbMUJ8dRpt4ziz6ghmxaUecIlbQzIhgZRNzzLEWqnl5P/H1tSNMF1dYoKwQI1AWFo8LMickfteM65vhkLGHHcuiCjtWjviiKk3YBjCbDRghpb70YiOLBrRGxVf0s8EfBs5bnN5Ph889us0j6l596SWB0639uRPyxs9wOnktBgAAEMQ5d4hz7hzn3Gedc7c453Y55/y4/x7tgjE+zzn3JUn9ku6U9P9JulzSpZL+r6T/lnSXpF3OuZucc6/r2GABAAAAAAAAAAAAAACAOhBGA4AOet/73ifn9t1Ktm3bNl1zzTUNrfPKK6+cEFebO3eu3vGOdwQ+d8GCBRMeDw4ORt7OvffeG2tc419nq/T09Oicc87RnXfeqQMPPHDv9C1btuhXv/pVQ+s+5phjJjy+4447Yi1/5513RnrecccdN+G9uvnmmyfdyA0AAPYpVguB05sZdAm7QTcsyoF4aoM945WrxE1Qv7wRVGpmiCquHpdRwvixXFiQqOztkHbKpRseF+ILO9/UxrwKFfs418wYhB0Kqx2P/V3LJe1oVrNY+2DQuMKiXzkj8OVVVdFPvE7oxlBi2LateEjgc43AqPX+ZBI5OSNvFBYrjSrs+xV2LIu8/imuwcKuKwBMbUdpW+D0vtRSiTQa2uiePb80w15rF75SCZds84i6V18qOIw2WO7vmv/HYEVfO/l3MwAAgDHOuZOccz90zvVLekjS1yVdImmdpPkdHdw4zrmUc+6Tku6T9A5JC6ZYJCfpjyWd0+qxAQAAAAAAAAAAAAAAAM1EGA0AOuiwww7T+vXrJ0z70Ic+pK1bt9a1vvvuu0+f/exnJ0y74IILtGjRosDn77fffpOWj+qGG26INbZMJrP3z8ViMdaycfX29urss8+eMO2RRx5paJ0vf/nLJzz+r//6r8jLbtu2TTfddFOk5y5dulQvetGL9j5+4okndOONN0beFgAAs40Vvci4bNO2ERa9iRMsQbi8cYO01JyACmavbgwhOefM7YfFfsrejgQSRuuMbDIsalUTIgv5bHMh64nLiprVRgLDInzNDIya2zBec9C4rPN9Ljk3PE5Xs5wVp+tkjCNs23ECrNZ7ZL0/CZdQxpgXdk6OarjF5/WprsGsKCaAaAbK/YHT+9LB4SVJ8uqO8BJmllsHg382nnJpHb/w1DaPprv1phYHTi/7svZUdrV5NMGs83cn/24GAAAwzlGSTpMU/A9suoBzLifpO5L+VlJq3Cwv6beSbpD0n5K+++xjfusMAAAAAAAAAAAAAAAApi3CaADQYf/wD/+gOXP23fQxODios88+W3v27Im1nm3btukNb3iDRkZG9k474IAD9NGPftRc5uijj57w+Hvf+16kbf3whz/Uxo0bY42vt7d375+3b9+uUqm1cYtUKjXh8fgwWz1OPPFErVy5cu/jTZs26fvf/36kZT/5yU/Ger3vec97Jjy+5JJLYn8fAACYLYrVQuB0K/RRj7TrUVKpwHlxgiUIFxboKfkRcx4wFTuo1Nmb761YUVjMJywmlHLBxym0VpwoV3iIrHnfR2tMtees0FBbIjiu1ky5iOO0pkmjrzU0LDYpBhcc6+pkjCM8wBrtOsN7b75HVihPkuYYn/NwpfEwWtjYmxFGK0wRb+MaDWjMQGl74PRFqaVycsZShNHQXFtHntDvhn8TOO+Y+S/XvNSCNo+ou4WFCwfKwft0u9Vem41pR5QXAACgAUVJD3V6EM45J+nrks4YN7kg6ZOSDvLeH+G9f5X3/k+996/13h8haaGks55drrW/wRAAAAAAAAAAAAAAAABoMsJoANBhhx56qD73uc9NmHb77bdr/fr1evzxxyOt48EHH9Qpp5yi+++/f++0RCKhr371q1q6dKm53HHHHTchyvbtb39bmzZtmnJb559/fqRxjbdmzZq9fy6Xy/rpT38aabnh4WF97nOf0+7duyNva8+ePbruuuvM7dcjkUhMCpZdeOGFeuSRR0KXu+666/SFL3wh1rbe8pa36NBDD937+P7779frXvc6DQwMxFrPtm3bJr0PAADMNFbwKJPINm0bzjllk/EDRognLGDSjIAKZq9uDCFJdqzIGq8Uvi8kCaN1RMZlzUBMsUNhNCsUFjXUllBCadfTtPFYrNccdG63xppNzFE2JHJYu5x13WCd59sh4ZLKuODrFiseUmvEF1VVNXBeWDjO/gwav77Jh8TVSg2e10vVksq+HL59wmhA3UrVknZVgn8OGRZeApptw8CN5rwTe9e3cSTTw/zkQjPqPljub/NogpnXYh3+uxkAAMA4JUl3SfpXSRdKerGk+ZL+rJODeta7JL1m3OOnJB3tvf+Y9/6JoAW898Pe++9478+V9PZ2DBIAAAAAAAAAAAAAAABoFsJoANAF3va2t+nd7373hGm33XabDjvsMH3mM5/Rli1bApfbvHmz/uZv/kZHHHGE7rnnngnzLr/8cp1yyimh250/f77OOeecvY8rlYpe9apX6aabbpr03JGREV199dV62ctepq1bt6qvry/qy5MknXzyyRMeX3DBBfrCF76gX/3qV3r44Yf16KOP7v1v+/btE7b73ve+V8uXL9fb3vY2fe973wuNpG3cuFGnnHKKHnvssb3TXvayl2n16tWxxhvkve99r174whfuffzkk0/qhBNO0Le+9S1VqxNvQB4aGtInP/lJvelNb1K1Wo31fiWTSX3rW9/SggUL9k770Y9+pCOPPFL//M//HPr6d+zYoW984xs699xzddBBB+mqq66K8QoBAJh+it66qba5gZNWhkMwKiwyN1X8BAhj3XwfFgtqB+s4ZY1XCg+jpV264TEhPuec+VlOjnIFH+d6XEZJl2zamBodTy4xV84Fx96aydoHS35kwne96quTInPj1xEWp6t9jfZr7vDxwIi7Rb3OqDe6N8cMNDYhjNbC4GmU94VrNKB+O0MCSn0pO4zmWzEYzFqFal537PpJ4LwV2VVamWv85/0zTcIl1JteFDhvoLQ9cHq7mddiIaFbAACANvqKpAXe+xd579/hvf+S9/7X3nf+N7c451ZI+sy4SQVJp3rv7zcWmcR7/kcLAAAAAAAAAAAAAAAAppfgXxsNAGi7z3/+8+rr69OnPvUpeT96G9nu3bv14Q9/WH/913+tww47TAcddJD6+vrU39+vxx57TL///e8nrSedTuvKK6/Un//5n0fa7qWXXqpvf/vbGhwclCQ988wzOv3007Vq1SodeeSRymQy2rp1q+68804NDQ1Jkvbff39dfvnlOv/88yO/vje+8Y36yEc+oscff1zSaFSsNgY35vzzz9eXv/zlCdN27dqla665Rtdcc42cc1q1apUOOeQQ9fb2KpVKqb+/X7/97W/3rn/MnDlz9KUvfSnyOMOk02l97Wtf07p169TfP3qD4FNPPaU3vvGNWrZsmV784hdr4cKF2rp1q37xi18onx+9cXvhwoW6/PLL9c53vjPytg4//HBde+21esMb3qCdO3dKkh5//HG9613v0kUXXaQjjjhCK1as0IIFCzQ8PKzBwUE98MADk14/AAAznRVKySSyTd2OFUxpRjgEo8ICJo0GVDC75StDgdPDYkHtkEtYQaLg8UrhkcAUYbSOySbmBJ4Pao9rVgCy2VGuqDFPazzZZHPjopawfbBQyWteavQ7PeKL8kZuJ5uYszdOF+kzMM41nT4eZBNztFM7Jk2Pep1RCImLhn2/rNc9bBw3o/Lem8deqfHzepT3hWs0oH47ytvMeX3pJXY805NGQ/P8ctet5t8R1/Wub/Nopo/e1GL1l56ZNH0gJHjYLhVf1ogvBs7r9LUYAACAJHnvBzo9hhAfkTRv3ONPee/v69RgAAAAAAAAAAAAAAAAgHYgjAYAXeTSSy/VunXr9K53vUsPPvjg3unee91777269957Q5c/+uij9cUvflHHHHNM5G0eeOCBuvbaa3XWWWdp9+7de6dv3rxZmzdvnvT8gw8+WD/4wQ+0devWyNuQpFwup29/+9s666yz9MQTT8Ratpb3Xg8++OCE9yjIgQceqOuuu05HHHFEQ9sb7/DDD9ePfvQjnXHGGXrqqaf2Tt+6datuuOGGSc/v7e3Vd7/7XVUqldjbOvXUU7Vp0yade+652rRp097plUpFd911l+66664p19HX1xd7uwAATCfFaiFweibR3KhL1MgM6hf2Xpb8SBtHgpmmYAQUc8lOh9GM40oleLxSeEyIMFrnZI1zTu13zzrOZZv8XbTPWdHG0+xQmyVsH8xXhzRPC0b/HBLYGluHFaernWYFxDod48iZ36Fo1xlhEbCw75cVaCyEBBqjKPkRVWSHHBsNo0V5X8JicQDCDZS2B07PJeYqm8jJyQijAU3ivdeGgck/a5ekuYn5evH8l7d5RNNHX2pJ4PTBcvB+3U7W38uk9l1/AgAATEfOufmSzhs3aUjSlR0aDgAAAAAAAAAAAAAAANA2iU4PAAAw0amnnqr77rtPX/va13TKKacolQpvWGYyGZ155pn6zne+o02bNsWKoo15xSteoY0bN+q1r32tnAu+sW3p0qX6wAc+oLvuuktr1qyJvQ1JOuaYY3TffffpX/7lX3TWWWdp1apVWrBggZLJpLnMwoULtWHDBn3wgx/Ui1/84infD0l6/vOfr09/+tN64IEH9JKXvKSusYY56qijdP/99+uiiy7S/PnzA58zb948vfWtb9Xdd9+ttWvX1r2tVatWaePGjfre976nU089VZlMZspl1qxZo4suukg/+9nPdN1119W9bQAApgPrxtpMItvU7djRG6IbzRIWdSl7O64CTCVvBH46HUKytm+NVwqPCSUdv/+gU6LGM63jXLNDEFHPWdZ42rVvhG1n/Pk9LKIx9lrt0GBNGM0KJXbt8SDadYZ1PeLklHH2NdGcZHAYbbjBMFrYcUySStXGwmhR3peo7x2AyQaMgNKi9NLQ5bx8K4aDWeih/P16cuSxwHnHLTxFPYmpf0Y+W/WmFgdOt4KH7RT28xPr+hUAAACSpHMkzRv3+Frv/W7ryQAAAAAAAAAAAAAAAMBMwR2TANCFUqmUzjvvPJ133nkaGhrSr371K23evFnbtm3TyMiIMpmMli1bptWrV+voo4+OFMuayqGHHqrrr79e27dv14YNG/T4449reHhYy5Yt08EHH6y1a9dOiJKddNJJ8j7+zW4LFizQhRdeqAsvvDDS851zOvHEE3XiiSdKkvL5vO6991499NBDevrppzU0NCTnnBYsWKAVK1boyCOP1HOe85zI47nllltivwZpNNh21VVX6bOf/axuueUWPfLIIxoYGNDSpUu1fPlyrV27VnPn7rvBuN73Sxp9D1796lfr1a9+tQqFgu6880499thj6u/v19DQkObOnau+vj6tWrVKa9as0eLFwTc/AQAwExWrhcDpzb6pNpcIDofkK0Q3miXsJumwGBQQxnvftSGkXNKKadkRKCsSmFBSCcfvP+gU65xTe46wPttmh8hyRuxq8ni6N4w2PmoVdn4YOz/bcbp973nFV1T0xnWDsT+2ix12s48H49mRu5wZwB+dbwTZGry+Ga6Eh9EaPa/XBu8Cn0MYDajbDiOg1Jda8uyfgo8rhNHQLLcO3hg43cnpxN71bR7N9NKXXhI4fbDc3+aRTJYPua7pdLQaAACgy51c8/jmjowCAAAAAAAAAAAAAAAAaDPCaADQ5ebOnTshDNZqS5Ys0etf//q2bKseuVxOxxxzjI455phOD0WSlMlkdPrpp7dte9lsVuvWrWvb9gAA6HZWZCbT5DBaNhm8PqIbzVGqjpjBp7H5QD2KvmBGOjp9870Z06ojEph26aaMCfWxvku18c58NTgW1eyYp7W+QnVY3vu9oSwrftWuaGDSJdXjMhrxxUnzxp9frX0ioYTSrkeSHTYbv2wxJDqYa/JnEJc1/qjXGdbzrLDrmDlGRK/R65uplm80jBZ2nIzzHADBBsrhYTQ7twg0bmd5QP+7+xeB8w6f+2It6VnW5hFNL72p4F+aMlDun3Ad2Alh1wed/rsZAABAl3tJzeNfSJJzLifpdZLeJOlwSX8kqShpu6T/1WhA7b+897vbN1QAAAAAAAAAAAAAAACgeRKdHgAAAAAAAPXw3k+KzoxpdmTGCotYYTbEM1W8pNGACmavghF+ktoXf7K3Hz9IZAUEU4TROipqPLNQCT5nTBWvisv6bldVVcnvC01a3zUr0tUKVgRjfLTNHGdizt64h/WaowTWRtfV3M8gLmv8UeNeVuRuqusha7vDRsQvqqmWb/S8HiXcRrwWqN9AaVvg9L70kjaPBLPRzwdvUkXB17zrete3eTTTz1jAsFbZl7SnsqvNo5nIOjenXErpBH+fAQAACOKc65W0atykEUkPO+fWSbpX0tcknSnpEElZSQslPVfSGyR9UdIjzrn3tnXQAAAAAAAAAAAAAAAAQJMQRgMAAAAATEtlX1ZVlcB5GZdt6rassEjUYAnCTRUvsWJQwFRCQ0htjD8Fbj9CEKqWFRNKulRTxoT6RI1a5Y1YlBVWq5f13aodk7V/tDMamDP2wwlBM2OfGL9slPN02Lkm1+SgalzWZxY17mU9L5cMD76ZgcaQ41AU+cpUYbTGzutRrr/CjqUAwg2UtwdO3xdccoHzvXyLRoTZouIrum3nTYHzlqSXac3cF7V5RNNPX3qxOW+w3N/GkUxmnb87HagFAADocvvXPH5S0tmSfiLp4AjLL5Z0pXPuq87xQ2QAAAAAAAAAAAAAAABML/yDFwAAAADAtFSs5s15mSYHTqxITNRgCcJNFTgp+ZE2jQQzTXgIqbNhNCsIZcWzJKlixIRS3NPWUdY5p1Bznqp9PMaKU9XLioSNjmFYC9W398/By7dv3zADgROCZsHv2/hl7bDYvmXDQlntfM1Bosb1LHZoJPx6yAqn5atD8t7LueD4Ub3jGdPoeT3K9RfxWqA++cqwuf/0pUfDaM4IowGNunvPnWa8a23veiUcv+9rKvOTvUooGRiRHyhv10E6pAOjGmVfC3c2UAsAANDlemsez5P0H9r3y3Afk/T/SrpNUr+kRZJeLundklaOW+7NkrZKuqRZA3PO7SdpaczFntus7QMAAAAAAAAAAAAAAGDm465JAAAAAMC0VPR2GC2byDZ1W2ZwJSSygujyFTsEJUllX2rTSDDTWGGPhBLqcZk2j2Yi67hS8iOq+LKSAbGzkrEvpFy6qWNDPHaUa7jmcfCxbqp4VbPGMzqGcaEwY/9oZzQwSnjUigWOf9/MsNi484sV00q5lNKJninH2kpRv0MW63lTRfes962qqoq+oKyr77vZ6vN6WORuDPFaoD4D5e3mvEWpqe53980dDGadDYM3Bk5Pux4dv/CUNo9mekq4hHpTi7SjvG3SvIGSvX+3QzdEeQEAAKah2jDaknF//qak872f9D/L7nDOfV7Sv0t647jp73fOfcd7/7Mmje1dkj7WpHUBAAAAAAAAAAAAAAAAk/CrtQEAAAAA09L4uEutTJMjM7mkEVwhutEUYZ+lJJV9Wd4TWkB8YTffO+faPJqJwuJT1rHFigkRRuusnHHOqf3+5Y1j3VTxqrgyIXHQ8UFPK+7ZzjiFFYUbvw9Y54jx71vWOE+PX9ZaTzfEOKz3oVAJPz+OsUJhU0X3wr57U8XNQsdjxOzGNBpGixI94xoNqI8VRnNy6k0vGv2zcQnF1Toa8VRxix4Yvidw3jHz12pucn6bRzR99aWXBE4fKPe3eSQT2X83a+7PbwAAAGYY6992/lLSeQFRNEmS974g6bxnnzfe3zRxbAAAAAAAAAAAAAAAAEBLEUYDAAAAAExLxWrBnBcWhamHdaPuiC+q4itN3dZsNFVAxauqqnifEV+9saB2CAujWTGkctUKo6WaMibUxwprFWrOU+2KQSRcIlJwzApHWTHQVjDfu8r4oNnU75u1PxUivN6uOB4kgwNl+epQpDCodR6dKvoW9lk3EhYbnjKMVq573dLUQdXR5xBGA+oxUNoWOH1BsndciLWzcVnMTLcO3mjOW9e3vo0jmf76UsFhtEEjfNgueePvON0QqQUAAOhie4zpl3gf/gOWZ+f/Zc3k05xz+zVlZAAAAAAAAAAAAAAAAECLcdckAAAAAGBasqIYTgmlXU9Tt5VLBAdLRscxrLnJ+U3d3mwTJXBS8iUliT8hJiuMY0WI2iksAGBFjioKvtdtX6gEnWCFtcZ//7z3ZqivFd/HbGJO4LF1bEwVX9GIL5rLtosV5hq/D9iBwzmBfx5v/GdgHg9CzvHtYn2Hqqqq5EfU4zKhy1vn0am+W2GvvZEwWsH4zMaUfXDkMaqpgqrS6PfGey/nCDgBcQwY4aS+dHBoabwoIUcgSKGa1527fho4b2V2tVZkV7V5RNNbb2px4PSBUn+bRzKRHbsljAYAABAiKIz2mPf+1igLe+9vc849LOmQcZPXSfpmE8b2hTrW81xJ32nCtgEAAAAAAAAAAAAAADALcEcxAAAAAGBaKlYLgdOziWzTIxhWsEQijNYM+crUgZPRiIr9OQBBrLBP2D7dLlYQSrIjR1ZMKJUgjNZJVsyh7EsqVUtKJ9Iq+RFVVTGWb/73MZeYo0FNjl+M7RNWmGJs2Xaxg2b5cX+eej+2xlyo5lX1VSVcItJ6OiU8UDaknkR4GK3eY13a9SipVGB0MV8Juu82muEpwmWl6kjd65aiBVWrqkSKygGYaKBkhNFS+8JoTtbftQijoT4bd95iHtvX9a5v82imPytkOGiED9vFul4J+3sRAAAANBgw7Y6Y67hTE8Noa+ofzj7e+2ckPRNnGQL2AAAAAAAAAAAAAAAAiCPR6QEAAAAAAFCPonHjdKYlgZmQYEll6jgHwlk3SI9XrgYHoYAwVggpbJ9ul6RLKe16AufljahQydgPUo4wWieFxafGzlVhx7lWfB+nCo51SxjNDpoNjftz8Hk2l9z3vlmfgZfXiC9KkvIVKx7W+RhHeIB16uuMeo91zrkJ7+N4Uc7NlqmCp2U/OcTWzPXvfV4DrwGYrXYY4aS+9NI2jwSzhfdeGwZvDJw3L7lAR88/oc0jmv56U4sDpw+U++V95wKGdqS289diAAAAXewxScWaaU/FXMeTNY+DLxgBAAAAAADVtCxFAAAgAElEQVQAAAAAAACALkMYDQAAAAAwLRWrhcDprQijha2zYASMEF1YoGdM2RNGQ3x2CKn5x4l6WFEoa9xWTCjlUk0bE+ILizmMHd/CjnOt+D5a6xwbh/UdG122fXEKa1v5cTEwO6KRG/fnkM+gEv4ZdEOMI2wMYZ/VmEIDxzr7OFT/9c1UQbKKyqr6at3rjxKLG30eYTQgroGSEUZLLZly2c7lljCdPZi/V0+N/CFw3vEL/1jpRHBIGLY+I4xW9iXtqexq82j2sc7f3fJ3MwAAgG7kva9I+n3N5NpQ2lRqn5+tf0QAAAAAAAAAAAAAAABA+xBGAwAAAABMS9ZNtZlE8+/pSCfSSrl04Lx8xDgHbFMFVCSpRBgNdbCiOLnE3DaPJJgVQ7LGXSGM1pWyybB45ug5IixulUs2//tofrcqz44nLNQW8nqazYpyjd8HrLGOXzaXDAmLjcXgjPN12LLtkklk5eQC500V96r6ioo+OBYb5btlhtEaiIrlI0RjrePZVLz3kYNnUaJyAPbx3mugHBxGW5TeF0azjlek0VCPWwdvCJzulNDa3tPbPJqZoS9thwwHy/1tHMlE9t/NOn8tBgAA0OXurnncG3P52ud37qIQAAAAAAAAAAAAAAAAiIEwGgAAAABgWipWgyMg2URrgi5R4i2oTyFCuKRMGA11sMI+7Qw/hckaQSZr3NZ+YIUb0R5h552xc4R1rnBy6nGZ5o/J+I6PBaus8aRdT1u/T+Y+UBmW96OBHWus4+NvVghu/PIFI9YVtmy7JFxCGeN7NFWgzArFSlIuwjWRFU+LEjez5CtTL1vyI3Wte8QXVVU10nO5RgPi2VPZaV5r9KWihNGAeAbLO3TX7jsD5x0x7xgtTu/X5hHNDPOTC5VQMnCeFT9sB+vv/a36GQ4AAMAMUlsTPjzm8i+oefx4A2MBAAAAAAAAAAAAAAAA2oYwGgAAAABgWrJCIBmXbcn2rHDKVMESTC3Ke0gYDfWwojhW6LDd7OBi8PHN2g+SLtW0MSG+lEsr7XoC5+Wf/Syt41wmkVPCNf9HtFN9t6zxtHvfsM6tVVVU8iOq+qq5P4wfa4/LKGH8qHvsteaN9XRLjKPeAGvYOTSbCI6eRdluPkK0NEjFV1T0wfHa8cq+XNf641x3cY0GxBMWTOpLLzHnjfHyzRwOZoHbBn+oqiqB807sXd/m0cwcCZdUb2pR4LyBUgfDaNY1nRFpBQAAwF7fl1Qc9/hY51zwBV8N51yfpJfUTP5ZswYGAAAAAAAAAAAAAAAAtBJhNAAAAADAtFT07Q2cWOst1BkOwT5TRV8kqUQYDXWwojhWjKnd7ODiUOB0K4yWcummjQn1Mc8Rz34H2x3ps75be8djnLvavW+Evf58dVhFI6AhSdnkvmWdcyGveXQd1mvullBivQHWsIBZLsI1kRUjsY5DU4m6XL3B0zjXXVGuLwDss8MIJiWV0vxkb5tHg5mu4sv6+eBNgfOWpg/QoXNe2OYRzSxWzHCw3N/mkYwKC6d2S6QWAACgW3nvd0v61rhJGUnvibj4eySN/21Cj0n6bZOGBgAAAAAAAAAAAAAAALQUYTQAAAAAwLRkxVIyiWzg9EbZ4RCiG42K8h7WG1DB7NbtISRrHIVK8PGt7MuB09OE0TrODqONfpbtjvSZ361nx2GOJ9nefSMshFGoDoeeH2qXtdaVrww9uz4rqNodx4N6A6xh8a9sIvjaZbyc8Zx6w2hRw2X1ntfjXHdxjQbEM1AODqP1phcr4fb970TnXLuGhBnsrt13aGdlIHDeib3rJ3znEF9vanHg9IEOhdFCY7ddci0GAADQLs45X/PfSREW+1tJI+Me/7Vz7rgptnOcpL+pmfx33nsfb8QAAAAAAAAAAAAAAABAZ6Q6PQAAAAAAAOpRrBYCp2dCIiuNsKM3RDcaFeU9JIyGerQ7RhVXzohQWUEiaz9IEUbrOOs7NXZ8a3ekzxpP/tkohXXczbXoHGqxolzSaMis4iqRl7U/g7E4XfB+Ze2H7VZvgNWan3IppRNTHxvmWGG0iIGzWsMRg2r1ntfjXHdFjbQBGDVQCg6jLUotibQ899Yjjg2DNwZOT7seHbfwFW0ezczTZ+y31n7eauGx2+64FgMAAJAk59xyBf97yv1rHqeccyuN1ezx3jf1wst7/4hz7u+1L3SWkXSTc+6Dkv7V+30/aHHOpSS9XdIVknrGrWajpGuaOS4AAAAAAAAAAAAAAACglQijAQAAAACmpbHQSa1MItuS7VnxFmsciKbqK5HeQ8JoiKviKxrxxcB53RJCmiqmVcvaD5KOH/F1mh3PHItyGZG+Fn0Xp4p52tFAO1TWCplEVk5OXpNjOvnKkCqJsrls7Wu09utCdVgVX1bJjxjr6ZbjQX0BVmt+1M/S+g5aIbmpTBVyG1Oq87wedf1xnwtA2lHeFji9L10bWHKBzws6lgNBniw+ps35ewPnvWTBOs1JzmvziGae3vTiwOmD5f42j2RU2PVMu8O8AAAAU7hN0nMiPO9ASY8Y874i6a3NGtA4H5X0fElvfPbxPElfkPRp59wdknZIWiTpZZJ6a5Z9QtLrvTd+QAYAAAAAAAAAAAAAAAB0Ie6aBAAAAABMS8VqIXC6FRZplLXeesMhGGV9jrVKVcJoiCfs5vtuCSHlYofRgiNRKZdu2phQn6kid9Znan0HGh6PFQmr5OW9DxlPe8MUCZdQJpELHE+hmldFleDllFTa9UyYZn0G+epwaICzVZ9BXPbxIDweasW/on6W1nbrjYrlK9Gui8p1ntenCsXV+1wA0kBpe+D0vlRtGA1ozIbBG815J/aub+NIZq6+lB1G897LueDAYasUKvb1TLf83QwAAKDbee+9c+7/aDSAduG4Wb2SXhmy6EZJr/PeP9nK8QEAAAAAAAAAAAAAAADNRhhtFnHOzZf0cknLJS2RtFvSk5J+671/oInbSUs6QdIKSQdI2vPsdv7Xe/9os7YDAAAAYHazglqZloXR6guWIFzU8ErZE0ZDPGFBnG4JIYWFnIJY+wFhtM4zzxHPRiCsz7R1Mc/g8VRUVsmPKF+xxjO3JeMJkzXCaPnqkCpGDDCXnDMp6BEWGrRe79j2u0Hc48GYgvlZRjvO5YzPPGrgbNJyEYOx9Z7XrdcbPBbCaEAcA2UjjJZeOuFxe3NKmGnylWFt3HlL4LxDsofqoOwh7R3QDGUFDUt+REOV3ZqXWtDW8VjXBymXUjrREzgPAAAAk3nvi5L+H+fcNyV9SNIrJCWNp/9W0hWS/sN7H/zbBwAAAAAAAAAAAAAAAIAuRhhtFnDOnSDpbyWdIuMzd879RtK/SPqi997XuZ2lkj4h6RxJi4zn3C7pH73319azDQAAAAAYUzSCZNlEtiXbM4MrMQIdmKzVARXMXuEhpO4Io9nHleDjW9mIRKUcP+LrtGwyOK41FvyyIppWlKpRuZDYV6GaN8OBOeN1tFIuMUeD6p80vVDNq+qqgcsE7cN2wHR4ilBi+2NwQeq9zrDiX7lktNdlPa/oC6r4ipLOurfWGE/EoFq95/U4sTPitUB0FV/RzvJA4LzJgaXgNJpXXf9rCbPMnbt+qqIPjpyv61vf5tHMXL3p4DCaNBpBbHcYzTond8vfywAAAMZ471e2YRsN96a99z+W9ONn/63eyzT6i0vHfknqVkm3e+8fb3Q7AAAAAAAAAAAAAAAAQCdx1+QM5pxLS/qcpAsjPP2Fkv5Z0rnOuTd777fE3NZ6SV+WtN8UTz1e0vHOua9JutB7H+1OOQAAAACoUawG30ydCYnBNCKbDL5hN06gA5NZAahahNEQV1gIqVtuwLePK0Py3su5iffIWftByqWbPjbEkzXOPWPnCCtuZS3X+Hjs73ihOmyeu7IdiIRZY81XhlRJBMcAg8Jv5mdQCQ+jteq6Ia56rzOs1xb1uzUn5DMvVIc1Nzk/0nrGDEcMnpbqPK+HfZa1okbaAEg7yzvkFRyjXBQSWALi8N7r1sEbA+fNTy7UUfOOb/OIZq4FyYVKKKmqKpPmDZS36yAd0tbxNHq9AgAAgGDe+22SvtfpcQAAAAAAAAAAAAAAAACtQBhthnLOpTT6D59Or5lVknSnpMclzdVoEG3FuPknSrrZOXeC974/4rZOknS9pJ5xk72kX0t6WFKvpBdp9DdTjvlTSQucc2d574PvtgEAAAAAQ9VXVfTtDaMFRVikeIEOTJaPHFAZafFIMNNYMaGUSyud6I6QWM4IQlVVVcmPqMdlJkyv+OBIVMrxI75Os+Jehepo/NH6PuaSrQmRWd+t0THZobCw5VrF2mahmlfViPQEBdxyRlisUM1P6+PBVNcZ5ncrYuQu7DPPV4Zih9GiXhfVGzyNE6Qd2/8ATG1HaZs5ry81MYzm5Ixn+iaOCDPRA8P36OmRxwPnHb/wj7vmnDwTJFxSvalF2lGevG8PliL979+myhvn5G4JVgMAAAAAAAAAAAAAAAAAAADoPolODwAtc7kmR9GukrTMe7/We3+u9/413vvnPPu8h8c97/mSrnPOWXe37OWcWy7pOk2Mov1c0uHe+2O893/ivT9N0nJJ79NomG3MmZIui/vCAAAAAGDEF815GZdtyTaDIiwS0Y1GRX3/ykYQCrB0U/jJEhYuCooGWiGhlCMi0WlZI55ZfPYYZ30freUalUnY58J8SCisE3GKrBk0swNuQe+bHafrrhCcJWz8YRr9boXF+eJEyMYMV6IFT+sNo8UJ0kaNrwKQBsrbA6dnXHbS9YoVRiOLhqlsGLwhcLpTQmt7a/+XJhrVm1ocON3a31vJvl7pnmsxAAAAAAAAAAAAAAAAAAAAAN2FMNoM5JxbI+nimsnv996/z3s/UPt87/1Nkk7QxDjaiZLOibC5T0jqG/f4dkmneu/vr9lG0Xt/laQ/qVn+L51zz4mwHQAAAADYKyymFRaDaUTOCIyU/EjdcQ9Ej67wHiOufKX7b74PCxcFjb9EGK1rWYGtsWOcdawLi+M1IuGSZig0XxlSoRJ8Hs0ZkbJWCnvvrP04aJnQ9RjXDd10PLDGX6jmVfVVczn7PYr23Qp7D4brCIu1+rxuvd4gxGuB6AZKwaGkRemlivA7dIApDZS26+49GwPnHTnvWC1KL23ziGa+vvSSwOkD5f42j6T9kWAAAAAAAAAAAAAAAAAAAAAA0x9htJnpQ5r42f7Ie/+PYQt475+W9LaayZ92ziWtZZxzz5N0/rhJI5Le6r0vhGzneklfGTcpI+ljYWMDAAAAgFrFkNBFq26szYYERqzADKaWr0SLrhBGQ1xWEMeKD3VCLhlyXAmIB1j7QcqlmjYm1MeKS41FrazzVitjEFkjcranslMVlY3xtH//sN6DQnU4JKIxeZz2ZzCsghlK7J4YhzUWL68RXzSXazQ0kpwiohdXPmJMzQo9TiVO7Kw4RVQOwD4D5eAwWl8qOKwUxMs3aziYgW7b+UNVFXxMXtd7RptHMzv0phYHTh/sQBit0ZArAAAAAAAAAAAAAAAAAAAAgNmHMNoM45xzkl5VM/mKKMt67zdI+uW4SQdLOilkkfMkjQ+nXee9fzDCpi6vefwnzhl33wEAAABAgLAwWibRmr9e5JJ2YCRqBASTRQ2clKqE0RCPtV9asahO6HEZObnAefmA2FHFB8esUi7d1HEhPitCVazmVazmzVhMK0Nk1rqt+I3UmXCgFcTIV4YD9wNJygXsx3ZgLa9h63gwTUKJYYEyK4wWtr6oz63n+qbVwdM4Y/LyKlbN3+EBYBwzjJaeHEYb/d9QATxhNAQr+5J+Pnhz4LxlPQfq+XOObPOIZoc+I4w2ULKvBVvFDLmG/JwFAAAAAAAAAAAAAAAAAAAAwOxGGG3mOUzS+DtVRiTdEmP5/6l5/IaQ576u5vE1UTbgvb9f0p3jJs2VdFqUZQEAAABAkgohkYuMEUZpVFg8JWrcC5NFDZzUG1DB7GXtl50IP1kSLhESc5oYD6j6iqqqBj6XMFrnWZ+jl9dgeYe5XFDgq1lyxpjCYhjW62ilsH3A2o+DlgkLge00PoNWvv9xhb33YdcZVjwuzmdpHRetdYdp9Xk97jUX8Vogmh2lbYHT+1KTw2hAXHftvkO7KoOB807sXW/H9tCQoLChJA2W++XbHDKcDn83AwAAAAAAAAAAAAAAAAAAANBdUp0eAJpuec3jB733xRjL31Pz+FVBT3LO7S/pheMmlSX9PMZ2bpH00nGP10v6bozlgVljeHhYv/71r/Xggw9q+/btKhQKyuVyWrZsmVavXq0XvehF6unpacq2/vCHP+hLX/qSNmzYoAceeEADAwMqlfbdqHrNNdforW99a+CyGzdu1DXXXKPbb79dW7Zs0c6dO1Wt7rtp/5FHHtHKlSslSSeddJI2bNiwd167b8IBAADTX9G4qTbtepR0yZZsMyyMVk84BKOivneE0RCXFcMJ25c7IZeYG7gf1E4r+7K5DsJonRf2vRos99e1XKOsdQ+EjCeXsONirWIFzQrVvCpGDDDotYWFwAbKwTG4bjoehAdY7XOlNS9OaMT63AuVOsJoEZep97yer8QLnRGvBaKxjpPBYaXgiJUXP+NFsA2DNwROz7isXrbg5DaPZvboNcKGJT+iocpuzUstaNtYrOuVTkR5AQAAAAAAAAAAAAAAAAAAAEwPhNFmnkU1j4N/Bbut9vkHOecWeu931kx/Qc3ju733ce5Ku73m8eExlgVmvEqlov/+7//WNddco5/+9Kcql+0b4LPZrE4//XT92Z/9mV796lfXvc2rr75aF110kYrFOC1FqVwu613vepeuvvrqurcNAAAQV7FaCJyeaeFNtUmXVI/LaCSgPR0WLEG4qO9dyY+0eCSYaawYTpxYUDtYMYDaIFFYRCjl+BFfp2WT9YXRWvl9tNY9UAqO3zg5ZRLZlo3HYu0D+eqQKqoEzgt6bWFhMes1d9PxoMdllFBC1YAYnBURLVVHzGhinOhbzvj+DhuBSYv33oxS1ipV44fRqr6iog++BrQQrwWmNlItaqiyO3DeotTSSdOCs2hAsMcLj+qh/P2B845dsM4MpKJxwWHDUQPl7W0No+WNv5t1U6QWAAAAAAAAAAAAAAAAAAAAQHdJdHoAaLraO8UzMZcPev5hEaZtjrmdhyJsA5iVfvKTn+iwww7Teeedp5tvvjk0iiZJhUJB3/nOd3TmmWfq2GOP1a9//evY27zhhht04YUXxo6iSdJHPvIRomgAAKDtrOBRq4Mu1k27+QrRjXpFfe+s8AtgyVeC4zzddvO9FYOojfmE7QMpl27qmBCfFfeS7ChXQkmlXU+rhmR+1wfKwePJJHJKuPb/uDiXCN4HCtX8pEDgmKDXFhY5s+J03XQ8cM6Z47EiomFxUSt2Fvhc4zOIGjkbU/SFwLBbkHrO61YYNwzxWmBq1nlBCg8rAVHcOniDOe/E3vVtHMnssyC5UAnjnwKEhXtbwTofd1OkFgAAAAAAAAAAAAAAAAAAAEB3SXV6AGi62n/JfkDM5YOe/3xJv6iZtqrm8R9ibuexmseLnXN93vuBmOsBZpRPfOIT+sQnPiHv/YTpzjmtWbNGy5cv1+LFi7Vt2zb94Q9/0AMPPDDheZs2bdJxxx2nz3/+83rHO94Rebsf/vCHJ2zzvPPO09vf/nYddNBBSqf33WC/ZMnEG+G2bt2qf/qnf9r7uKenR3/1V3+lM844Q0uXLlUise+mm+XLl0ceDwAAwFSsMEZYmKYZcsk52lWZ/NcWohv1i/relX2pxSPBTGMFFOPEgtrBOm7V7hth+0DK8SO+Tsu4rJycvPykeVZwJpecI+dcy8aUTQZ/t0q+9vcqPPv8Fp9DLdZ2vbyK3jjfB+zHadejhJKqqjJpnvWauy3GkUvO0XB1z6TpVkS0NqA4XpzomxlGMwKTFitkF6RsfCZhwl6vuQzxWmBKVsBTknpTiydNcwo+dwWdAzG7DVf2aOOuDYHznptbo+XZle0d0CyTcEktTC0KvBYN2+9bIU7sFgAAAAAAAAAAAAAAAAAAAAAkwmgz0e9qHh/onFvuvX884vLHBUxbGDCtt+bxMxHXL0ny3u9xzhUkZWu201AYzTm3n6SlMRd7biPbBJrl4osv1pVXXjlh2vz58/XhD39Yf/qnf6oVK1ZMWmbz5s368pe/rCuuuELFYlGSNDIyone+850aGhrSxRdfPOV2f//73+vuu+/e+/iMM87Q1772tUhjvv766zUysu9G1ssuu0wf+MAHIi0LAADQiKIRPMq4bOD0ZrFu2q0n1IFRUcNoVtQGsOSrwUGfbrv53gwSxQqjpc15aA/nnLKJXOD5YKBc+3sMRrX6uxh3/dZ3sdXqeR9yATE155xyiTkaqu6Ose3OxOAs1nthnSvDrj/iRN+sYGTc65th47gbpJ7gadg1Q4/LaMQXA5aJF3cDZqMd5W2B0+clF6onkQmY07qoJ2aWO3b9NPDYLEnres9o82hmp77UkuAwmnF92gpVX4kVuwUAAAAAAAAAAAAAAAAAAAAASUp0egBoLu/905J+XzP5/0RZ1jk3V9LZAbPmB0ybV/M4uEoQrnaZoO3E9S5Jv43533easF2gIV/5ylcmRdFe/vKX67777tOHP/zhwCiaJK1atUqXXXaZ7r77br3gBS+YMO/973+/brnllim3vWnTpgmP3/CGN0Qed73L3nLLLfLe7/0PAAAgroIRRmt14MRavzUeTC1qdKXsyy0eCWYaa7+MEwtqB+u4kq/ECaPxuw+6Qcb4LAdLk2MUUuu/i3GDY52KhFlRrjBZI+IWN65Rz7ZbyTweGOfKQsU+h8b5PM1AYyVeVCzO8+s5r9ceF8frSwf/row812jAlAaM81RfanHMNfFzXuxT9VXdOnBj4LwFyV4dNf9lbR7R7NSbDt6Pg2JprRL285Kg2C0AAAAAAAAAAAAAAAAAAAAASITRZqr/qHn8QefcgRGWu1TSwoDpUcJowb/qO1ztv4SvXScwKzzwwAN6z3veM2Ha8ccfrxtvvFHLly+PtI7Vq1frxz/+sdasWbN3WrVa1Zvf/GZt3x5+g8vWrVsnPI66zUaXBQAAaESxGvxXkEwi29LtWhGbfDVeOAT7FCKH0ewoFFDLe28GdDoVf7JY8arafSMsIpRy6aaOCfWxzhED5f7A6XHDZXHFDU3kksFxrFar532wXlvc19zqzyAuK1BmnSutYFrGZZVwyRjbta5vop2j9z0/+vVQqY7zuvU+JJXS/GTQj7WlAtdowJSsQNIiIzjojPWQRcN4vx++W8+Ungycd0LvaVy/tklfakng9EHj+rQVwsJo3XYtBgAAAAAAAAAAAAAAAAAAAKB7EEabmT4vaee4x72SbgyLoznn/lLSxcbsaoRt1nPPC/fJAJIuueQS7dmzZ+/j3t5eXXvttZo3L14rcL/99tO3vvUt9fT07J32xBNP6NJLLw1dbvy2JSmdjn5DUiPLAgAANKLog2+szbQ4eGQGjCr2jb6wlaojobGn2ucCUZV9SRUFf7es8FCnWDGq2iBRWByQsER3sM4RVizKilE1S9zQRKeigT0uo0TMH1Nbry3+a+6uGIf1GViBMisUFjdyF/U4NJU4YbR6gqfWeLLJnB134xoNmNKO0rbA6VZQSc5KowH73Dp4Y+D0hBJau/D0No9m9upLLQ6cPlhqZxjNvp7otmsxAAAAAAAAAAAAAAAAAAAAAN0j1ekBoPm894POubdJunbc5CMk3e+c+xdJN0p6UlJO0lGS3i7p5eOe+7ik5eMeDwZsZk/N43runKxdpnad9fiCpG/GXOa5kr7ThG0Dsf3ud7/T97///QnTPvOZz2j//feva32HHXaYLrnkEn3605/eO+3f/u3f9PGPf1x9fX2By1SrUdqHwRpZthnuu+8+3XPPPerv79fAwICy2ayWLl2qNWvW6Mgjj1Qmk6lrveVyWRs3btTDDz+sbdu2qVgsaunSpVq5cqVOOOEEZbPZJr8SAAAQV7FaCJyeSbT2PJ1LGmG0mOEQjIoTXKknoILZK+y7lU12Jv5ksUJItceVsH0g6fgRXzeIGxZrdQgibnit1aE2i3NO2cQcDVej/Wgw5VJKJ3oC58V9Tzv1mi1WuLFQCT6mmaGwmN9FOyo2JO+9XMQIUt4YZ5Cyjx88NUNwiTkh12jRY23AbDVQDg4k9aWNMJrBe34XDkbtKG3T3Xt+GTjvhfNeqt50cKwLzddr7McD5e2xzvGNCLs+6LZrMQAAAAAAAAAAAAAAAAAAAADdg7smZyjv/XXOufdJ+r+SEs9Oni/pA8/+Z7lK0kJJ54+bNm3CaN77ZyQ9E2eZdvyjf8By5ZVXTrhhbMmSJbrgggsaWufFF1+sz372syqVRm+aHxoa0tVXX60PfvCDkqRHH31UBx98sLn8ySefHDj9mmuukaTQ8Vn70yOPPKKVK1fufXzSSSdpw4YNex/HuWluy5Yt+vu//3t985vf1NatW83n5XI5nXzyyTr//PP1+te/Xslkcsp133///brsssv0/e9/X7t27TLX+5rXvEaf/OQntXr16sjjBgAAzVWo5gOnxw2BxGUFV+IEvrBPnKBc2ZdbOBLMNGHfLSs81CnWeGqPK9Y+kFBSCZcInIf2ih3lMkJOzRJ3PK0OtYXJJaOH0cLGGTeu0cnXHMQKN1rXGXYoLN5xLpecFzi9orJKfkQ9Llp4fjhGhKye87odgpsTco0WfM0IYJT3XgOlbYHz+lJLA6c7Wf9PhTAaRv1s8IfyCv6lKif2ndHm0cxufangMFrJj2ioulvzkgtaPgbreiWplFIu3fLtAwAAAAAAAAAAAAAAAAAAAJieuGtyBvPeXyVpvaTfR3j6HknvlnSxpANr5j0d8PydNY+D75AxOOfmaXIYLSjABsxo//M//zPh8Vve8hb19PQ0tM6lS5fqzDPPDN3OdOS915tUPcUAACAASURBVGWXXaZVq1bp85//fGgUTZLy+bxuuOEGnXPOOdqyZUvocyuViv7iL/5CL3jBC/Sf//mfZhRtbL3f+MY3dPjhh+vKK6+s67UAAIDGFauFwOmZRLal27WiG3ECX9gnTlCu7EstHAlmmrDvVqsDinFZ4ylUasNowftAmphA17CiVubzWxzlijueuFGxZorzXoTtw7FjcDHfo1azrzOC4175ihUKa95nn48RO4tzPVSq47xuh+DmmK+hEGP8wGw0XN2jEV8MnNeXDg4qAWFK1ZJ+vvPmwHkH9Byk1bkXtHlEs1tfarE5b7DU35YxWJHSbDLHL68CAAAAAAAAAAAAAAAAAAAAYEp1egBoLe/9Tc65wyW9VtIZko6XtEzSfEnPSHpE0vWSvua9f1qSnHOH1qxmU8CqH6x5/JyYQ6t9/g7v/UDMdQDT2uOPP65HH310wrTTTjutKes+7bTTdN111+19fMcdd6hUKimdnp43zJfLZb3pTW/StddeO2ne/vvvryOOOEJLlixRsVjU1q1b9Zvf/EZ79uyJtO58Pq+zzjpLN91004Tp6XRaRx11lJYvX65MJqOnn35aGzdu1PDw8N4xXXzxxRoYGNDHP/7xhl8jAACIp2jcWJtpcfDIjm4QRqtHbfgpTMmPtHAkmGnCvlvdFkbLJecGTi/6gqq+ooRLSpLKvhz4vBRhtK4R97vV6u9i/EhYJ8No0d+LXCJ4n5GkXMzX0MkYXBBrPFbs0QyFNfF9yFeGtTC1KNJ6hivRI2Tlavwwmh2Cm2N+360YC4BRA6Xt5rxFqXhhNN/oYDAj/O+e27WnUvu7lUad2LueEFabLUj1KqGEqqpOmjdQ3q7lOrjlY7CuV1odCQYAAAAAAAAAAAAAAAAAAAAwvRFGmwW89xX9/+zdfZQkdX34+09VVz/OzM70zC4Py7LsCioBAYVFYIHFCIjL+cXEh9zk4rm/E0n8/WLIifeGXP3pzxuQHHz4eTw3JOolud5o4g1Jfh4fovcnETHyrCgPigIiyOOygLOzPTtP3T3dXd/7xzLLTPf3U13VD9XVM+/XORy3q7qrvtVdXVUza71X5Ksv/xfIcZzjRWTbqknPG2Oetzz10abHJ0Uc1quaHj8S8fXrVr1hZB+JuL7bVhTxUoO9Aefuu+9umbZr166eLPuss85a87hcLsuPf/xjOfvss2Xbtm3y1FNPHZn3l3/5l3LDDTccefxP//RPcu6557Ysc/PmwzfCvelNbzoy7Xd/93fl3nvvPfJ49XJX27Ztm3V6WFdffXVLFO3yyy+Xa6+9Vs4+++yW5/u+Lz/4wQ/kn//5n+WLX/xi4LKvuuqqNVG08fFxufbaa+X3f//3ZWxsbM1zy+WyfO5zn5OPfOQjUqlURETkuuuuk3POOUf27t3b4dYBAIBOVP2KdfqgIjNasATBorxvWhQKsNH2rayTOxIaS4p8wHGr4pelkBoVEZG6sUeEUg6/3kuKqHGHfke5oi5/kJGwoNhZs6BzfZTrgLSTSdz3R9uHtKCIdqyLvC8qgcagddifGyGMphzTggSF4NR4bYQIK7ARHaxPW6e74sq4V7TOc0T7vTppNIjcXvqWdXrWyckbN70p3sFAXCcl496klOqtEcRSfSaWMajn74QFqwEAAAAAAAAAAAAAAAAAAAAkS7Lu/EISXNz0+DbleT9reny64zgFY0zYO83Ob7O8DWtfSeRVH279l9vRW09+zJUdmwc7hn379q15fPTRR8vU1FRPlv26173Our6zzz5bPM+THTt2HJk+MTGx5nnHHHPMmvnNRkdHj/w5l8utmRf0uk7dcsst8ld/9Vdrpn3iE5+QD37wg+prXNeV3bt3y+7du+W6665rGeeKL3/5y/KFL3zhyOMTTjhBbrvtNnU78vm8XH311XLeeefJxRdfLJVKRYwx8id/8ify2GOPieu60TcQAAB0pOKXrdOzrv283yvajbuVRlmMMeI4g43vDpsoARUjvjRMQ1IJi1ohmfR4Tvj4UlxyAUGosr/UNozmJSzstJFFjVFFfX5U2YixiX6PJ3jd4ccaNM4o2zDIEJwmatxLD41E27askxNXXPGl9XeSUc7V0YKn0cNoZeX6L+cWJJeKFpUDcFip1hpLEhEZ9ybVmKweRsNG91zlSXmq8ph13hvH3yR55ViN/prwpuxhNOX732va728Gee0JAAAAAAAAAAAAAAAAAAAAIPkouKDZ7zc9/rztScaYF0TkoVWTPBG5IMJ63tT0+OYIrwXWhYMHD655XCwWe7bsXC4n2Ww2cH3D4rrrrlvz+A//8A8Do2jNJiYmrGE0Y8yaZXueJ9/4xjdCxd1WgmsrnnjiCfn6178eekwAAKB7Vb9inR41AhNVTokqNaTeUeBjo9NukNbUzHKfRoL1RovzRIkvxSUoYFReFUOqm7r1OZ6T7vmY0Bktnqk+v89xkJSTkoyTbf/Elw0yFJYPCAQ2C4poRNmGJMY4tLhX1VTEN42W6WUlmBZ12xzHUT+DciNCGC3Cczu5bqookba8W1A/+yixNmAjssWSREQm01siL8uI6XY4GHK3z35LnXfRxOUxjgSrFdP2fyVotj4Ty/q1yGoSr8UAAAAAAAAAAAAAAAAAAAAAJAdhNBzhOM4FsjZu9pgx5raAl3yt6fF7Qq7nZBE5Z9WkRRG5JcxrgfWkOVQ2MTHR0+U3L29mJp6bXHrpoYcekrvvvvvI47GxMfnkJz/Zk2V/73vfk5/97GdHHr/73e+W008/PfTrr7rqqjXBtW984xs9GRcAAGiv5tekIfZAUNZpDaL2UlD0hvBGdFECKiKdRVSwMVWU72OU+FJcgoIAq7dD2/8JoyVH1LhDHDGIYQmF5VLho3JBQbko26BFyAYp6DrDFhPVj3XRt017P7SYSbfPrXVwTi8rQdWcW1A/+5pZ5voBCFCq2cNoRc8eUgpCFm1jW2osyI/m7rDOe3X+VNma3R7ziLCi6E1Zp88qYcReqzTs5+9BRnkBAAAAAAAAAAAAAAAAAAAAJB9hNIiIiOM4BRG5sWnyf23zsn8Ukcaqx+9wHOfVIVb3wabH/90YUwnxOgAROI4z6CF07bvf/e6ax1dccYVs2rSpJ8v+zne+s+bx7/zO70R6faFQkDe+8Y1HHt955509GRcAAGivauw31YqI5AKCIr0QNmCEcKLG5OrGHsQDmpUb9n2r38eITqTdtBo3W/0dqftaGM3ry7gQXdT9K44YRJT4V1BwrN8iBc0CnhtpexN4PMgFxBtt50ztPNpJ9K2grDvKuTpK8LSTWFkl4Nge9H3SgiwAREpKGKmY1sNojgz/753Re98/9F2pmWXrvIuKl8c8Gqw2oYQOS7V4/jEd7Xclg4zyAgAAAAAAAAAAAAAAAAAAAEg+7pxcpxzH8YwJd8e44zijIvJNETl11eSvGGO+EvQ6Y8zjjuP8vYhc+fKkjIh80XGci7XQmeM4vykiv7dq0rKIfDTMOIH1ZnJycs3jQ4cO9XT5s7OzgesbBvfcc8+ax29605t6tuy77rprzePJyUl5+umnIy1jdaTt6aefFt/3xXVpjgIA0G9VX49bZN1cX9cdFN2IGvlC9Jhc3bffaA800/atQYafguTcgiw0Wn8mXL0dDbH/mkeLqiF+iQyj9Sg41m9R3oug9zlK7CyJMY6g8duOa9q1Ryf7lvZ+LEWInS350cJoxphIYX/92D7SNl47Kr0J7QPrzcHatHV6UQkpBTPdDQZDyze+3DH7b9Z5496knDF6Tswjwmpa6LBUPxD5XNwJPeSavEgtAAAAAAAAAAAAAAAAAAAAgOQgjLZ+/WfHcd4pIv8gIv/DGNNyd8vLQbR3isj1InLcqllPi8gfhVzPNSLydhEpvvx4t4jc6jjOHxhjfr5qXVkR+U8i8umm13/aGPNMyHUB60pzqKxUKvVs2ZVKRSqVtX3Cqampni0/Li+88MKax6eeeqryzOiee+65NY/PPffcrpbn+77Mzs4OZYAOAIBhU/WtHWYRiR6liSoovFZpEEaLKmpMrmZqfRoJ1puKElBMYghJ5HDEyBZGW/0dqSv7v+cSRkuKqPtXLoZQX5TzYhyhNk2U9y5onDl3pCfLGZSg8Vcaa49rvvHVWGw+wvtw5DXK/hg2Ylo3NamZ8AFTI0Z8aUgqwl9RqGEVNx8YviReC9j5piGz9YPWeYFhNCWiZAxhtI3q50s/kenaC9Z5F4y/RVIOfx09SEXP/ndDNbMsi/68jKb6Gw8dtp/NAAAAAAAAAAAAAAAAAAAAACQD/0/09csRkV9/+T/jOM5TIvKYiJREpCAix4jImSKSaXrdUyLyFmPMr8KsxBizz3Gcd4jIt1ct63wRecRxnPtF5EkRGX95XVuaXv7/icj/EXG71r1tRZEnP+YOehjr3rZi++f023HHHbfm8YsvvigzMzM9CZg9/PDDbdc3DGZmZtY8LhZ798E1L7sX5ufnCaMBABAD7aZaEZFsn8NorpOSnJu3joHoRnRBn6WNFoYCmpX9Rev0JIaQRPR41ergYs1XwmgOYbSkiBp3iGN/DDsmV1KSdpp/TRifKO9F0DblI1wHJDHGkXbT4jme1E29ZV7zca3qV8SIPULUSSi2oMTUtONpy/M6CMTWTC10LCcovJZ3RwK3mWs0wG6ucUh8aVjnTaab/zrnFY7Yw2jYuG4vfcs63ZWUXDDxlphHg2YTShhNRGS2NhNDGM1+Hk7qz2YAAAAAAAAAAAAAAAAAAAAAkoEw2sbgiMirXv4vyDdE5A+MMdNRFm6Muc1xnLeLyBfllfiZIyK7Xv7P5p9E5L3GGPtdNxuYl3Jkx+ZBjwJx2L17d8u0++67Ty677LKul33fffeteZzP5+X1r39918sdNMfp3U13y8v2m2m7YYz9hmQAANBbVb9ine6IG0vUJecWrEEv7WZf6MqNcLGVFYTREJYW3UtiCElEJJ/SgkSvHFdsoSQRES9kVAj9l0uFj1GlnUzoIFQ3wobC8qlCT3/mjiqXCv/dzAc8N8p3PKnHg5xbkIXGXMv05uNa0HWHdkwJXq/9NUshz9WdxMcOn9fD7aOVhh5Tzbl5STmeZJysLJtq62u5RgOsSjX9r4KKHn9JgXBmai/Jzxbvs857/di5Mu7xD4kM2rhXFFdc8cVvmVeqz8g22dnX9WvXCEm9FgMAAAAAAAAAAAAAAAAAAACQDO6gB4C+uUtEviwipTbPq4vIzSJyqTHmN6NG0VYYY74lIq8TkRvbrPMHIvIuY8wVxphod8AD68z27dtl+/bta6bdcsstPVn2d77znTWPzznnHMlk+h8J6bXNm9fegHfw4MG+LDuXy4nv+2KM6eq/HTt29Gx8AABApwWPsm4ulqhLTonMdBIE2eiihkpqhNEQkhbdyyf05nttXKu/Iw3CaImnnR9s4toXwwYnBh2miPJ+BL3PaTcT+jsRFFgbJO29aL7OCLruiLIvrigoMbWw5+qyH/1XvVrwMeo48i9H3bT9uNzgGg2wKdUPWKennYyMpMbU12k/cRnhH43YiO6c/bb62V80cXnMo4GN66Rkk1e0ztOOA71UUc7DnVyvAAAAAAAAAAAAAAAAAAAAANg4CKOtU8aYHxtj/icRmRKRk0XkHSLyJyLyERH5ryJylYhcKiKTxpjLjTG39mCdvzLGvE9EjhGRN4vIe0TkQy+v950i8ipjzHnGmK90uy5gvXjrW9+65vGXvvQlqdW6iz1MT0/LN77xjcD1DItjjz12zeNHHnmkZ8s++uijj/y5UqnIs88+27NlAwCA/qr6Fev0uG6qXYlvNNOCbdBFjcnVCaMhJO37mEtoCEmN+az6jmj7v+ek+zImROc5aUk74aLkcYXIwsa/Bh0NjPJ+aOfhqMsadAxOo42rOQwWJhQWhbYPLCmhyWZakDJI3V8O/dzAEFzq8DWgtr9HDbECG8XBmv3fySl6m9sEp/sfo8ZwqPnLcveh71jnHZvZLiflT4l5RNAUvc3W6bO1mb6u1zcNqRr773AGff0JAAAAAAAAAAAAAAAAAAAAINkIo61z5rDHjDFfM8b8tTHmemPMx4wxnzPG3GqMme/DOpeNMd8zxnzRGPOJl9f7VWPMU71eFzDs3v/+96+5yWx6elq+8IUvdLXMG264YU1cbWRkRN773vd2tcxBOf/889c8vu2223q27N27d695fMstt/Rs2QAAoL+qSvAo6+ZiWb8WYOskCLLRRQ2VEEZDWGXf/n1M6s332rgqhNGGTjZkpDOuSN+wRMLyEeKm7UKoYUOpcQVVo9LG1XzO1EJhrrihA31r19tdVEw77gapRTivB4XRVo6hYSKTAF5Rqh+wTi+m7QGl9kzng8FQun/+blls2P+a8aKJvW0Ce4hTMT1lna4dB3pFC9uLJDdaDQAAAAAAAAAAAAAAAAAAACAZCKMBwACdcsopsnfv3jXTPvjBD8pLL73U0fIeeeQR+dSnPrVm2nve8x6ZnJzseIyDdMkll6x5fNNNN8n8fG96jpdddtmax5///Od7slwAANB/2o21YWM03corN+9WlGAb7HzTiPyeEUZDGMYYdd8adPxJo8Z8Gu3DaCnH68uY0Jmwga8oIbBuhN3nBx0NzLkjEZ4bPNZ8yGUNeps1+ZR9/KuPByIilYY99pV3RzoK0RSU9S6FDJ4tKYHYoM8rynldC7SlncyR42CYyCSAV5Rq9iDSpLcl8HWO2I8xhjDahnPH7Les03NuXt44/qZ4B4NAE549eDjb5zBaUJw0qZFaAAAAAAAAAAAAAAAAAAAAAMlAGA0ABuzTn/60FAqv3Lg5Ozsr73jHO2RhYSHScqanp+Vd73qXLC8vH5l27LHHyp//+Z/3bKxxO/XUU+Wiiy468nhubk4+9KEP9WTZe/fulRNPPPHI4x/+8Ifyd3/3dz1ZNgAA6K+qsQePsk4ulvVrgQ+iG9FogbsgNZ8wGtqrmooa5khuCKn9caVu6tbnpJ10X8aEzoQNkUUJgXUjbHBi0NHAtJsWL2Tkr91Yh2WbNdr4m68ztNBILtVZZEQLylX9svjGb/t67TpoLDWuvkY7rtk0h+FWrB639t4FRVmAjeygEkQqpu0BJWC1ZypPyNOVx63zztn060SvEqaohNFKtZm+rjfo9yRhY7YAAAAAAAAAAAAAAAAAAAAANibCaAAwYCeffLL89V//9Zpp99xzj+zdu1f27dsXahmPP/64XHzxxfLoo48emea6rnzpS1+SLVu29HS8cWsOu332s5+VT3/606Fff+jQIalUWqMbnufJddddt2ba+973PvnqV78aeYy33nqrPPnkk5FfBwAAOlPx7WG0uG681kIqRDei6eT9qhvCaGivosRzRJIbQtKCbWV/8ciftf3fI4yWKGHPRfkBn7OaaXG+OIWJxXlOWtJu8D4fPk43+G220SIhzedNLTTSaQAyn7Kv14iRqnLttdrSquPVapu8CfU1NbOszmumbe/q75z23gWdF4CNbLamhNGUgFI79iwt1qs7Sjer8/ZM7I1xJAijmJ6yTi/VD4gx/fv2lgOuIYjnAQAAAAAAAAAAAAAAAAAAAAhCGA0AEuDKK6+Uq666as20u+66S0455RT5xCc+Ic8995z1dU888YR85CMfkdNOO01++tOfrpn3yU9+Ui6++OK+jTkub37zm+Xqq69eM+3P/uzP5G1ve5vcf//91tf4vi/f//735f3vf78cf/zx8uKLL1qfd8UVV8iVV1555PHy8rK8853vlHe/+93qskVEGo2GPPjgg/LRj35UTjnlFLn00kvl2Wef7WDrAABAJ6p+a/RURCTr5mJZvxYc0YIdsAt6v0bcMet0wmgIIyi6l4T4k40WaFodgiSMNhzCR7naR8B6IWyALQmRsDBjDTPOsN/z5B4P7O9D83lTO9Z1+lkGBdW06Nma8SjxsYI7Kq7y1xBRzuva9q4OuuVS9veOeC3QqubXZK4xa51XTAeH0RzHUeaQRtsoFhpzct/8ndZ5ry2cJsdmj495RGhHCx7WzLIs+Qt9W6/2c78rKUk7mb6tFwAAAAAAAAAAAAAAAAAAAMDw8wY9AADAYZ/5zGekWCzK9ddfL8Ycvolsfn5ePvShD8mHP/xhOeWUU+T444+XYrEoMzMz8swzz8hjjz3Wspx0Oi033HCDvO9974t7E/rmk5/8pDz77LPy5S9/+ci0b37zm/LNb35Ttm7dKqeddppMTU1JtVqVF198UR566CGZn58Ptewbb7xRSqWSfO1rXzsy7aabbpKbbrpJtmzZImeccYZMTU2J67oyNzcn+/fvl0cffVQqFXuQBQAA9N/qUNBqWkik17TgiBYEgV3Q+zXqjcvicuv1HGE0hBEU3UtC/MlGCxKVG0tijBHHcaRu6tbnpBx+vZckYfexvBJw6rXQ40nAdyNU9CzEc4Zpm23U64ym6x/tWNd5GE2P9ZUbSyJtGoxlJZ6WT41I2slI1bT+HiXKeT3M9Z+2DcRrgVaz9QPqPC2gtMIRLYyGjeL7h/5dambZOm/PxOUxjwZhTHhT6rxS7YCMpOxx8m5VlJ/7824hILIIAAAAAAAAAAAAAAAAAAAAAITRACBR/uIv/kIuuugi+aM/+iN5/PHHj0w3xsjDDz8sDz/8cODrzzzzTPmbv/kb2bVrV7+HGqtUKiX/8i//Iqeeeqpcf/31Uqu9cuPs/v37Zf/+/R0vO51Oy1e+8hX51Kc+Jddcc82a4Nn09LTceuutoZYxMqLfQAwAAHqr6tsDpVk3F8v6tQAb0Y1otIBKSjw1VlMjjIYQysp30RVXMk425tGEo4WMGlKXuqlJ2smoASHPaVMrQqzCRjpzARGqXgobyYorLho8hjDRs/bjDLvN2QRss412DmwOi2iB0U6Db/mU/jrtnB3mOXm3IJ6TVsJo9uBjlOWv/ry5RgPCKwWF0dLBYTTNyj/2gfXNN77cOXuzdd6ENyWnj74x5hEhjE1eURxxxYjfMq9Un5FtsrMv61XDpjFFggEAAAAAAAAAAAAAAAAAAAAML3fQAwAArHXJJZfII488Iv/4j/8oF198sXhecMMym83Kb/zGb8i//uu/yn333bfuomgrHMeRa665Rh577DF573vfK5OTk4HPHx0dld/6rd+Sr3/967J9+/a2y/7ABz4gTz31lPyX//Jf5IQTTmg7nrGxMbn88svls5/9rLzwwgty9tlnR9oeAADQuapyY21cgZN8yh6z0W74hZ32fuVTBUkroSctDAWspgVwcm5BHMeJeTThBAeJDm+PFhDyHP7dgyQJG3nIx3bOChfJ0s5tcQoz1jDRszBhsKyTk5STCjWuuOWU96H52KYe60J+5s08Jy1pJ2OdFyqM1rA/p5AaUY9TUc7rlYZy3bDq884rwUEtmAlsZAdr9jBawR1NRCwTyfXI4gNyoPaSdd6FE5cl9vy60aWclIx7Reu82fpM39Yb9LMZAAAAAAAAAAAAAAAAAAAAAAThzkkASCDP8+SKK66QK664QhYXF+X++++XJ554Qqanp2V5eVmy2awcffTR8prXvEbOPPNMyWazHa/r2muvlWuvvbaj1952222xvk5EZOfOnfK3f/u3cuONN8oDDzwgP//5z+XAgQOysLAgIyMjctRRR8nJJ58sp59+uqTT9qCG5phjjpGPf/zj8vGPf1yeeuopeeCBB2R6elpKpZK4ritjY2OydetWOfnkk+XVr361pFLc5AUAwCBU/Yp1elxhNC0UUPGXxBiT2PBS0miRkrxbEI8wGrpQbij7VoexoDgEhQEq/pJskgl1/9e+LxiMsJGHnBJw6rWwcZskRHBCRc9CxdPab0sStlejhd2az5tB59HO1z0itcZy67qV6Nna8difk3dHxHPTIo3WeTW/dV1Rl796v1Gv0ZSoGrCRler2MNpkenPb1zrCzzsb2e2zN1unp8ST3eOXxjwaRFH0NlsjaCUllNgL/bheAQAAAAAAAAAAAAAAAAAAALAxEEYDgIQbGRmRPXv2yJ49ewY9lERxXVd27dolu3bt6svyd+7cKTt37uzLsgEAQHcqvj1ukXVzsaw/r8RsfPFl2VQl68QzjmGnRVZyhNHQpYpy833YYNUgBIUBVmICehiNX+8lSdjgVj6mMFfK8STtZKRmggNU2rktTmECGWG+x6GeM4ShxJpZloapS+rl77wWGunmWJdPFWSuUWqZrq0rzHPy7oh4TsY6L8p5Xbv+Wx3Ly6fs+3HZXyReCzQp1aat0ye89mE0jRHT8WsxHA4svyiPLD5gnfeGsfNk3CvGPCJEMeFNWafPKqHEXhjGn80AAAAAAAAAAAAAAAAAAAAAJIM76AEAAAAAABBF1a9Yp4eN0XQraD3aTb9opQVOgsJoNZ8wGtrT4zzJvfk+G3RcaRzenoapW+dr3xcMRtj9LKcEnPohXHAsnnNo8BjajzPMtuRDRM+SHOMI+ixWH99Wjg3NujnWaYG8MGG0JSV4mk+NSFoJONaV45pNxdeDqq/82f7ercRrAbyipISQiukwYTR7ZJAw2vp3x+y/qZ/znom9MY8GUWnfb+140At6yHXw154AAAAAAAAAAAAAAAAAAAAAko0wGgAAAABgqFSVoFbWycWy/qDgSFmJlKBVWQmc5FMFSbv20FPdEEZDe1qgMMkhJNdx1TjASkygpuz/hNGSJex+lo8xBhEuOBZfqE0fQ28Cbr0KrA1K0GexOobWj2Od9r6UlejZCt/4avA0HxA8jXJeLwcs/5U/B7x3xGuBNUo1ewhp0tvS9rX2LBrWu2W/Kt8/9F3rvOOyO+TE/K/FPCJEVfSmrNNLtZm+rbPS0IPoAAAAAAAAAAAAAAAAAAAAABCEMBoAAAAAYGj4xpeqqVjnhYml9EIupd/AS3QjPC2gkutRQAUblxYoTHIISUSPA6xEBLX933O8vo0J0YU9F8UZgwgVE0vFvHdLFwAAIABJREFUF2pTxxBinGECbr0KrA1K0GdRXnWdUVauOfIB1ynt5FP291eLma6o+hUx4tuX6Y705LxeUY7tq79LQZ8r8VpgrYN1exitmN4c80gwLO6fv0sW/XnrvIsm9orjkMxLOu37PVufEWNMX9aph1yTey0GAAAAAAAAAAAAAAAAAAAAIBkIowEAAAAAhsayqarzsm4uljFknZw4Yr/pW4uUoJUWWckTRkOX9Jvvkx1G02JOKxHBuqlb52vfFwxG2MhDnKG+oKDniiSEA8MEvUJF3kI9Z/Dbqwn6LFaOBw1Tl5pZtj6nm23T1t0ujBY0P5/Sz+u1kOd1Y0yoEJwWdhMhXgusVm4sqd+JohcmjGb/WchIf8JKSIbbZ2+2Ts+7BTl700UxjwadmPCmrNOXTVWW/IW+rFMLogedswEAAAAAAAAAAAAAAAAAAABAhDAaAAAAAGCIVJWbakVEsiFjNN1yHEeNrhDdCK/cUAIn7oikuwyoYGMLE89JIi1mVG4sim8aYsS3zieMlixho1RxxTxF2kfP0k5GUo4X02h0Yd67cJG39qGNJB8PUo4naSdjnbcSIAsKsXYTudPeO+2c3Twum4I70nXwtGaWxZeGdd7q/SbjZInXAiGU6gfUeZPp9mE0x7F/z7B+PV3+hTxbecI679zxN8d6XYPOaWE0EZFSbaYv69SuEcLGhAEAAAAAAAAAAAAAAAAAAABsXIO/4w0AAAAAgJAqgWG0OCMzI9bARtD41osfzd0h3z/0XTWoMJraJKePvlHeXHybpJyUuhwtIpdz82J8ewAqbEAFG1vQvpVkWsyo4pelburq6wijJUuYcFfOzYsbcHzstXbBsTAhsTiECXqF+R6HCaWGDdgNSt4tSK2x3DJ95TqjEhAq6yqMllLCaAHhM5HDAUdNLiB4Gva8HjYE5zqu5Ny8co1GGA1YUapNW6c74gSGk9oypvPXItFun71ZnbdnYm+MI0E3xr1JccS1Bpdn6wdkm+zo+Tq135F0c70CAAAAAAAAAAAAAAAAAAAAYGMgjAYAAAAAGBpVv6LOizN6pK0rKAyyHtxRuln++Vd/E/icl+R5+WX5UfnV8n559zFXqc/TAiX51IjUTGsMRoQwGsLRAjpJiT9ptKBW2V8M3Pc9h1/vJUmYc1HcUa52Y0pKNDDM+xLme5x20+I56cDvTdLDaDm3IHON2ZbpK9cZQaGwMHE+jRYpCVpf0Py0kznyediEPa8HRc2a99+cW7COp902ABuJFjje5BUlFeK6wlGmk0Vbnxbqc3L//F3WeScXzpCjM8fFPCJ0KuWkZNwrymx9pmVeyTKtF/RodbKvxQAAAAAAAAAAAAAAAAAAAAAMnjvoAQAAAAAAEFbFL6vzsrGG0ew38QaNb9jV/Jp888BNoZ9/96HvyEvLz6vztUBJzs1L2snYx0AYDSFUGvq+lWRakKjil6Vu6urrtOAQBiPr5MRRkzGHaZ91v7QLT+RTyYgG5kMEvcJ+j9u9x3F/BlFpcbOV64ygyFc326aF58rKcXXFkhKGXVmedpyq+eHO60Hrb95e9VjaZhuAjeRgzR5GK3qbQy4h+DyH9eWeQ7eqIcs9E3tjHg26pX3PZ5VgYjd846u/I0n6z2YAAAAAAAAAAAAAAAAAAAAABo8wGgAAAABgaFT9inV62slIyknFNg4t3hIUKhl2jyw+IIv+fKTX3D93lzqvorxXebcgnuNZ52k35AOrad/DpMSfNFq8quwvBe772vcFg+E4TttQZ7tQWa+1C2UlJUwR5n0JG/1qt6y4P4Oo9FDi0pr/bXb4eqjzY4J+fWMPn7Wbv7I8z7WH0cKe17XtFWkN4wYdSwEcVlICSOHDaBrT5euRNL5pyB2zN1vnFb3Nctro2TGPCN2a8Kas00tKMLEb2u9vRJJ/LQYAAAAAAAAAAAAAAAAAAABg8AijAQAAAACGhnZjbdbNxToO7SbeoHDHsPvR/B2RX3P/vD2MVvOXpW7q1nl5d0Q8p7uACjauhmnIsqla5yUl/qTRQkjlxmKbMJr9+4LBabevhY179UrSxqMJ8x3NKeGuqMvKJ/x40C7uVW7ocdFuFFx7QLJmlqXm68chNUj58vLSXZ7XteXn3Ly4ztq/4tDibuv5Gg2ISgujTabDhdEccazTDWG0dedni/fLwfq0dd6FE5fFGidHbxTTShitPtPzdQWFVbXzNQAAAAAAAAAAAAAAAAAAAACsIIwGAAAAABgaVb9snZ6NOXCiBozWaXSj4pflpws/ivy6F5afk/3VZyzL09+nXCovaTdjnVfzlyOPARtL0L6VV4I/SaEFnyp+uU0YzevXkNChdnGqXCrec1a7mJgW4YpbyvEk42QDnxM2cJhPBX/fc23mD5oWbls5xmnHum4/y1zAcbISEDcpN+zzVkJr3QZPo2xvu6gcAJFSzR66KnrhwmiihNGw/txRutk63XM8OX/80phHg17QvuezfQijVZTf34gk5/oTAAAAAAAAAAAAAAAAAAAAQHIRRgMAAAAADA01jObkYh2HdhNvpbE+oxs/mb9XasYeJbts8p3y20f9gThKIOG+ubtapgXFSfLuiBp6qpt6iNFiIwuM7sUcUIxKDy4uBu77WnAIg9Mu9BB3pK9dqC3fJpwWp6D3Lu1kQu/v7b7vWngsKbRAWfnl6wztPNougtdO0L4QdO4uK9G0lfF0G0bT1m3bt7X9Pej8AGwkvvGlpASQiuktXS3bdPVqJM2vlvfLI0sPWue9YfR8GfMmYh4RemHCm7JOL9UOiDG9/RYHR6uTc/0JAAAAAAAAAAAAAAAAAAAAIJkIowEAAAAAhkZFCaPFHTzS1hcUDRlm983faZ2+KTUhv7H5Cvn14n+QE/OnWJ9z//xdLTdYB4fRCl0HVLBxlQPihHHHqKJSg4t+OXDfJ4yWPO3OSfGfs4LDE+3mxykozBXlfRumbbbJp+zbuhIY0UIj3UZGCgHHyaWGPX4moofRVpanBU9rIc/rWnjW9jlqn23Q+QHYSBYac+p1RdHbHGoZ9hyyCGm09eXO2X9T511U3BvjSNBLE2n793zZVNXzeae039+44krayfR0XQAAAAAAAAAAAAAAAAAAAADWH8JoAAAAAIChUTUV6/Ssm4t1HPmUPRyi3fg7zObrh+TRxQet884cu0BcJyUiIrvGLrA+Z7r2gjxXfXLNNC1wInL4s9RCTzWzHGbI2MC0WJCISE4JDSWFFjSq+mWp+fq+n1KCQxicdtGtuCN97YJi3ca0einovYvyvrXbpiRts01QKFFED4x2u11ZNy+OkjwKOr5q0bGV7dDiJ2GDp1G2V4vrrcdrNKATpfoBdV5RCSZh41n2q3LPoe9a5x2ffZXszL025hGhV4relDrvYE0/PnRCu3bIuQVxHD2xCAAAAAAAAAAAAAAAAAAAAAAihNEAAAAAAENEi1rEHUbTIjNlfzHWccThwfl7xBffOu/sTXuO/PkNY+eJo/ya4f75u9Y81gInOTcvrpMKCKjUwwwZG5i2b6WdjBrcSwotuGjEyKI/b53nSkpch1/vJU27EFm7+b3WLpbVLuQWp6CxRnnf2m1T3NcNUWnvw8p1hhYY7fazdB23o2scbV7h5eOadvwNG0ZTwyqWCJr2HqzHazSgEyUlfOQ5noylxkMtQwsaGTEdjwvJ8qO5O9Tj5p6JvUSthti4N6n+3D4bEE7shB5OTXawGgAAAAAAAAAAAAAAAAAAAEAycOck0GO2G0KM4YYgAMPN91tjKNwABwAYhKpfsU6P+8ZaLbqhhduG2X3zd1qnb04fLTtyrz7yeMybkNcWTrM+9/65u9b8XKTdZL/yvnqOZ51vxJeGaYQaNzYmNZ4zBDffB41xvn7IOj2d8NjbRpVLtQmjWWJO/dQultUunBanoO9BlPctaJuyTk5cJxVpXHFrd52hRSDzPdi38q490rjU0MNi2ryVZXUfRrNfX9k+Z+2zX4/XaEAnDtanrdMnvKkIsVXld4L8Nci6YIyRO2Zvts7LuyNr4tgYPiknJeNe0Tpvtj7T03VpP5tpQWgAAAAAAAAAAAAAAAAAAAAAWI0wGtBjrtv6tarVwt3kBwBJVa/XW6bZjncAAPRbVYlaZGOOHmnRjapfFt+0BkWH1cHatDxRfsQ6b9fYnpZQ6lljF9iXU5+Wpyu/OPK4XeBEC6iIhI+oYGMqN5Sb75XQT5IEjXGhMWedHvRdweAkLUTW7hwZd6gtSNB7F+V961VgbVC0bS03lsQYExCB7EEYTYmVaOsMmreyLC14Wjetv2uw0UJwtu3V3oNyQNgN2EhKtQPW6UVvS8wjQVI9VXlMnqs+aZ133vjFknGzMY8IvTbhTVmnl+r240On9PN38qPVAAAAAAAAAAAAAAAAAAAAAAaPognQY47jSCaTWTNtYWFhQKMBgN5oPo5lMpmWEAoAAHGo+hXr9LjDaFp0w4hRxziM7p+/S523a9OFLdNeP3auuJJquywtTpI7EkbLWOeLiNTMsjoP0KJ7w3DzfdAY5xuHrNO12BAGq12cqhfxqijSbjowohd3qC1IPiBaFuV9C1pOkrZXo21rQ+pSNzU9RNaLMJqyjCVfD4tp81aCj9r+F/acXlGjl61jVeO1piK+aYRaH7CeaeGjYnpz6GVovxE0YjoYEZLm9tLN6rw9E2+NcSTol6IWRqvN9HQ9+s9myb8WAwAAAAAAAAAAAAAAAAAAADB4hNGAPhgbG1vzeG5uTozhpiAAw8kYI3Nzc2umNR/nAACIi3ZjbdbNxTqOoOCKFisZRj+au8M6/bjsDtma3d4yfSQ1Jr828nrrax6Yv0d844uI/jmuxEzSrh7wqZt64JixsZW1OE/AdzYp0k5GUmIPnS0oYbQUYbREyrcJ8Q0izBW0ziTFKYLGEiVwGLyc5GyvJpfSt7XiL0lZudboxbZpyygrcbKavyx1U7POe+W8bg+e1n3761rWrW2v5dhum7ZCu/4ANpJSTQmjeeHDaFoajTDa8Juvz8qDC3db551SeIMcldka84jQD1oIUQsndqqfIVcAAAAAAAAAAAAAAAAAAAAA6x9hNKAPmoNBtVpNnn/+eeJoAIaOMUaef/55qdXW3qy8adOmAY0IALDRVf2KdXqUWEovBIVH1kt044Xqc7Kv+pR13tlje9TXnTV2gXX6bH1Gniw/KiJ6vGolZuIFxJ7CRlSwMWnfv2EIITmOowbc5utz1umeo0cEMTjt9rdB7I9B60xSnCJoLHl3JPRyehVYG5SgbS37S1JpBAdGu1FI2dddUc7dWrRs9bK0Y1XY2GmUsErQe7BertGAbmjho8n0lphHgiS6+9B31GPznuLemEeDfpnwpqzTZ+szPV2Pdv4ehmsxAAAAAAAAAAAAAAAAAAAAAIOn32kMoGO5XE7S6fSakND8/Lz88pe/lE2bNsno6Kh4nieuS5sQQPL4vi/1el0WFhZkbm6uJYqWTqclm80OaHQAgI2uqgQtsm4u1nEERTe06NewuW/+TnXeWZvs8TMRkTNG3yie41lvqL9//m45qXCqGlFZeV89J6Muv2aW1XmA9v1LUvgpSM7Ny0KjNYJmmyZCGC2psm1iD1oAr5+CAhR5JYQ1CL0KmvUqsDYoQdta9pfaBka7ob0/S2oYTb/uybnBwdOG1MU3vrhO8O9ItesG2/sUtA8dHivxJ2xcDVOXQ/WD1nlFJZRk44ijzOEfhhlmDdOQO2e/bZ036W2R142cFfOI0C9Fb7N1+mxtRowx4jjadzwaLeQ6DNFqAAAAAAAAAAAAAAAAAAAAAINHGA3oA8dxZOvWrfLss8+KMa/cDFSr1WRmZkZmZnr7r64DQFxWjm+9ujkKAICoqn7FOj1KLKUX0k5GXEmJL42WeRUl3jZMjDFy39wd1nkn5n9NptJHqa/Np0bklJEz5aGFH7bMe2D+bnnXUb+vvkcrN0inA2JPdVNT5wHt9q2k04JE841D1ulabAiDlW9zThrE/qit0xFHMk5ywteBYbQI0a/g5cR7zdCJoOuaufqs+OJb5/UiAqkdh8oNe5ys3NDDaIXUqIgERxzrpha4D/rGV8O4trEGvQdaoAXYKGbrB8Uo8bLJdPfRQLJow+1nC/dJqX7AOm/PxF5xnVTMI0K/TKTtYbSqqUjZXzxy/u6WGkQfQCQYAAAAAAAAAAAAAAAAAAAAwPDh7kmgTwqFgmzfvr0ljgYAw8pxHNm+fbsUCty4BAAYHC16lHVysY7DcRzJuwVZ9Odb5gUFQkREDtUPyrOVJ8VYoiY5Ny87cq+RjNs+UjNbPyjPVZ6UozPHyZb0MR2HS33TkH3Vp2S2fvDItFLtgEzXXrQ+f9fYhW2XuWvsQmsYbb5xSP699E05WPuV9XUrMZPggEq97fpFDsfdpmsvyIvL+0I9f8Wm1IQcnztRUiFu/F/2q/J05ReRYniuuLI9d5Js8ibaPrfmL8vTlcel7AfvU82Oy+4IjNd1quKX5enyL2TZVHu+7F45sPySdfqw3HyvxZAWG63HGpHg7woGp134bBAhMu07kHPz4jpuzKPRBX1X2wXnVguKn/UiHtZvrpOSrJOTqmkNwj6y+ID6ul5E97TPoFSftp7b91Wesj7fEffI9Vnayajrq5uaZET/TlT9ihpysh0z025GPMezXi88uvRj67VbGCnHkxNyJ8loalNHrweSoFSzR69ERIqePZTUSw3TkOcqv5S5xmyk123NnCCbM0f3fDzGGHlh+Vk5ULNfPx6V3ipHZ47bMP9AxO2z37JO95y07B6/JObRoJ+K3pQ670dzd0hRCadFdWjV7xhWG5ZoNQAAAAAAAAAAAAAAAAAAAIDBIowG9NFKHG3//v1Sq9UGPRwA6Fg6nZatW7cSRQMADFTd1KQh9ihWNkIspVdyqbw1rqFFshqmITe99Dn5/qHvBi437WTkPcf+qbx+7Fx9OS9+Tr4/98pyXls4Tf7zcR9Wo0qal5afl8/s+6jMKKGyZq64cubY7rbPe93oLkk7GamZ5ZZ5X5v+ovq6fGpEREQ8R/91hW2ZzcqNRbnx+Y/J4+WH2z7XZjxVlKu2XSPbcjvU5zw4f4988YW/DDUemwsn3iq/c9R/UoNEDy/cL5/f/ylrFCeMM0bPkSuPvVrSrh6jieIHh/5d/vHFz6nfwaQblpvvV74DzWwhRRERzyWMlkTt9rdBBFa080PSvhtB48m59u+HTVD8LGnbrMmlClKtt54DtHCNSG+ib3nlfT5Qe0lufP5jEZZTOLKvdxM8rfhL+jqUY2bOLchCY65l+rdm/iVwXWG8dfK35Tc2X7FhQklYX0r1aev0nJtXv082jmj7v/4PxOyrPCWf2XedzDVKodez2qkjZ8ofbP2AZN3eBLEP1Q/KXz/3Udm//Ezg87ZnT5Q/3naNjHrrO4r40vLz8vOln1jnnTV2wbrf/o1m3CuKI671Z4x/+dXf9n39UX9vAQAAAAAAAAAAAAAAAAAAAGBjst99C6BnCoWCnHjiibJz506ZmpqSTKY3N6UDQL9lMhmZmpqSnTt3yoknnkgUDQAwcFpwTER6doN8FFp8RAt43DF7c9somsjh8Nfn9/83OVQ/qC9nbu1yHlv6qXz1V19su+xm//fz/y10FE1E5OSR18uYN9H2eTk3L6eN7oo8npUbpF0nJa6krM+pm/bR6a9Of7HjKJqIyKFGSW58/noxxh53OFiblv9n/6c7jqKJiNw5+29yz6FbrfOWGgvyN/s/3nEUTUTkJwv3ys0zX+749au9WN0n//DiXw1tFE2kN7GgOESNBATFhjA4uVTyYg9aDCxp342g8eQjfD9Sjidpx/47uKRts6aTcfYi+tar92d1ZCkoeNruvF4OCKNpx8x+fsb/dvDL8pOFe/u2fKCfSrUZ6/SityXScqKGAX3jy//1/PUdR9FERB5efEC+eeCmjl/f7O9fuKFtFE1E5NnqL+X/fekzPVtvUt0xe7M676KJvTGOBHFIOZ5sCvFzfb8MS6QWAAAAAAAAAAAAAAAAAAAAwGDpdyQB6BnHcSSXy0kul5OjjjpKjDHi+756kz0ADJLjOOK6buSbHAEA6Leqr0eiosaEekG7mVcLeDwUIaLhiy8/W7hfzp+4tGWeFuN4aOFeuULeF3od08svhIoBrLZr7MLQzz1r7AJ5YP6eSMvPu69EVNJOWqqm0fKcMGG0XgRLDtanZV/1KTk+96qWeY8u/lh8aR1bVA8t/FAumHhLy/SHFx+Quuk+QvaThXvlbVve3fVyHlr4YdfLGLRhufl+9XcgjKDYEAYn6Jw0qCiX9h1I2ncj6L2LOta8W5BaozVgmbRt1kQdpyNOT0Kxq4NmXS1n1fiDIo7tzutacFZkcPv1Qws/lNePndvXdQD9cLA+bZ1eTG/uyfK1v+/YV31SSvUDXS//Jws/kHcddWXXy6n4ZfnF0s9CP//niz+RhqlLap1ed1X9ivzg0L9b523PnSQ78q+JeUSIQ9GbUmPs/TYskVoAAAAAAAAAAAAAAAAAAAAAg7U+/1/8QMI5jiOpVGrQwwAAAACGSlAYLZugMJoW8CjVZiItX4sH/GLpp9bpc41ZqZtaYHwkzPI1aScjZ4yeE/r5p46cJTk3LxW/HPo127I7j/zZc9JSNa2febuASs2vyUJjLvQ6g8zWZ+R4aQ2jzTVme7R8+2cwW4+2r0RdfvTl9GY8g7R630qyqOMclu3aaDwnLcdmjpcXlp9rmXd6hONoL2n7yrZcsvahCW9SRlPjstA4tGZ62snIUZmtkZa1LbtTHll6sHV6wrZZsy27U56u/CLS813H7Xq9x2V3iCOOGOnuH3RoPqdraqY1Xrdmvq/PzzhZdd3PVZ9sM8LOrYfzIjamUs1+bTjp9SaMpq+3N9+ZUm1GjDFd/2MOi435SJHjZVOVql+RQmq0q/Um1Y/mblfj3hdN7I15NIjL9txJ8nTl8djX64gjW7MnxL5eAAAAAAAAAAAAAAAAAAAAAMOn+zulAAAAAACIQTUgsJUbQBgtr4TRyg37TeVRAmGHn29fThBt3TaLjYVIy7508u2ST9m32SbjZuWyyXeFfv4pI2fK5szRRx57rj2iUvODw2gVfzH0OtvRAgHSZSym3fKjfI5BKn5ZfOP3YDm9Gc+gvLZwmhyT3TboYYRyxug5Mu5Nhnpuzi3IrrEL+zwidGqPJSSSEk/OH79kAKMRed3oWTKVPmrNtLSTkfPGLx7IeDSuk5ILJy5rmb57/BLJuPYIlubCibeKI2vjOTtyr5Ht2RO7GmNcdo9fHDp2KmLf5zox7hXl9aPndbUMz/Hk/PFLjzxOuxn1uXVTD1yWFkT1HE+NI+2euFQ8p3//JsywnxexcWlh5GI6Whit+djaTq++M740ZNlUu15Ou9CyTbexyKQyxsjtszdb5424Y3LW2AUxjwhxuWD8LZJ29PNzv7xhbLds8iZiXy8AAAAAAAAAAAAAAAAAAACA4dO/u4MAAAAAAOihql+xTnfEHcgNvTklElZWwlzadE0ncayyvyhjMh7quUtKGM0RR7Ju7sjjordFzh3/dbm4+LbI47l08u2SdtJyz6HvysH6r6zPGUuNy6kju+S3tvwva6ZrMZh2IYNyQIAu6+SsEZWqX7HGDirKZ2CMPYzgiCtZS7inYRpSM8utY1WWr+0rrrjWMJBvfGskwoiRql+JFLSzj8c+zpR4klYCdkkwmtokp46cJb+15T8OeiihjXqb5OrjPyZfm/4H+WX5EevnmnI8eVXuZLl88+8MTfBtI7qoeLmknJTcc+i78qvl/bI9d6JcOvl2Oalw6kDGk3Pz8qfHf0y+Nv338mT553JM9nh56+Q75YTcSQMZT5D/MPU/S87Ny31zd0rd1OXMsd2yd+q3Iy/njLFz5A+2/u9yW+l/SKl+QF5bOF3eseU9akwraXbkXyN/vO0auWXmK/J05XHxpWF93rGZ7XLBxFt6Grl7z9b/Taamj5KHFn4oc41S6Nc54soJuZPkLZPvkBMLv3ZkelCkrN4meFpTw2j6td+J+ZPlquP+XL598CvyTOUJMdJZJLRu6tbrDj2cCiRbqaaE0bxoYTSNFg/TvjPNP3ccWY4xUjX2n/3K/pL1NVG0Cy3brNcw2i/Lj8rz1aet884bvzhylBTDY1tup/zJto/KzTP/XZ6pPCENCQ6Vdmvcm5TTRs6Wt215d1/XAwAAAAAAAAAAAAAAAAAAAGD9IIwGAAAAABgKFSV4lXXtsat+y7v22JRtnA1Tt4axRESOyWyTF5f3WZbTGhBoFwVbaoSPry359jDacdkd8uEd/2fo5QRxHVfePPk2efNk9Khap2E02/u24voTPy+F1GjL9E8882fybOWJlulaxEELI5yYP1n+dPvHWqY/svigfGbfR61jNca07L/avr5r0x75vWP/15bpLy0/Lx996irrayr+UtdhNO09vWTyN+U3m4J26N7mzDHy3uM+MOhhoAcumLhMLpi4bNDDOKKY3ixXbr160MNoy3EcuXTy7XLp5Nu7XtYbxnbLG8Z292BUg/GawuvkNYXXxb5ez0nLO476PXnHUb/Xk+WlAv4aot15vW7soRbtOmHFa0dOl9eOnN5+cAHuPfQ9+fsXb2iZroVTgSSr+hVZ9Oet84rpLRGXZv/ZS7tG1q4lT8idJB844VMt02frB+XDv7zS+ppyY1EmvMmQ47Rrd9yx0cLIw+6O2Zut0x1xZM/EW2MeDeJ2YuHX5I8L1wx6GAAAAAAAAAAAAAAAAAAAAABg5Q56AAAAAAAAhFENCKMNQk4Jo9liWlpgS0Sk6G0OvZxKw/4evPKa8GG0xYY9jDZiCYcNQrrDMFrQe51z89bpWuQuahhNi0Roy/fFl2VTtazX/jlqy9H2xcPL6j7eUlYCMHl3pOtlAwDWP8dxOg6e1pWwrOf0/998yafs57lenFuBuJVqB9R52s+qBbXHAAAgAElEQVQjmqhJai36q13Date8ItF+3tF0EkYT9fp/eB2ql+TB+e9b550ycqZszhwT84gAAAAAAAAAAAAAAAAAAAAAAHgFYTQAAAAAwFDQbqjPOoMJo6kxrUbrzfpBQbNiOnwYrV0IYEmJndmfO2+dXnCTEUbTAiq1NiGDihLxyjo5cZ2UdZ4WZahEDJ84SiYiargsaogsOB7RfbxFj1nYQ3MAADTTgqftzutawEhbXi9p57llU5WGafR9/UAvlepBYbSpvq5bv7a1X8NmnKy4Yr9ut/2sFVUnYbT1l0UTuefQd6Qhdeu8iyb2xjwaAAAAAAAAAAAAAAAAAAAAAADWIowGAAAAABgKVb9inT6oOJMe02qNSAUFtoqePYxme40WqFrRLpy22pJvj6gVUskOo7ULGWghsFxKj4fpkTv7soz41umOYw+jBYbLbCE9bRuUfT3tZNR4RNS4m422X+UD3lMAAFbr9LyuhdO05fVSUNi02uaaDEgaLYw2lhqXtJuJtCwtBmyUfJh+bWv/jjmOo15n9iL62y7IaKNt27BqmIbcOftt67zN6aPllJEzYx4RAAAAAAAAAAAAAAAAAAAAAABrEUYDAAAAAAyFqrEHKLJuLuaRHKbfrN8akQq6gb+YtofRbFGuduGzJUtkS7PYsIfRRlJjoZfRT+kOAypRwwtB87RlGaWLYE9EBEfZooT08qkR+3qD4hFK3C0KLcgX9J4CALBap2G0uqlHWl4vBYZNI8RogSQ4WJu2TtcizYGUGLBG+1koKLJbcO3XvUs9+O61O+7YrLcw2kMLP5TZ+ox13oUTe8V1+OtjAAAAAAAAAAAAAAAAAAAAAMBg8f9sBwAAAAAMhapfsU7PuvmYR3JYXrlZv2aWpdEU8dBCV2knI6OpTdZ5ttdogaoVUSIdS0oYreCOhl5GP3UaUFHDCwFxEz1yp4TRlDCCo/yaJevk1HlRQnqB26DG3bqLR9RNTWpm2TqPMBoAIKzOw2j2c1AcYbSg81y5EXxNBiRNqX7AOr2Y3tLDtdivkXsaLu5B9Fc7rgTSyshD6o7Zb1mnp52MnDf+5phHAwAAAAAAAAAAAAAAAAAAAABAK8JoAAAAAIChoEXBcgMKowWttzlspcUA8m5BXc6yqbYE1sqN4MjVUpQwmq+E0VLJDqPV2gRU9PCC/nnpUbFoYTSN4zjq+pvXYYyRshJ8CNoGLR5RbhPTa6cSEH4JCrUBALBap+d1LZw26DBat+FRIG6lmhJG8zZHXpYjjnW61g7r5Pq8kLJHqKP8vKOpN/2MFUbU6/8ke6H6nDy29FPrvLPGLlDD3QAAAAAAAAAAAAAAAAAAAAAAxIkwGgAAAABgKFT9inV61s3FPJLD8q79Zn0RkUpT2EoPXRUCl9McWGt+3PL8NuG01RYbyQ6jpV178KTuBwdUtPc66H3Wo2La+20PI2iRiMPrV9bRNN66qUlD7LGGoG3Q427dxSO0kIVIcDAGAIDV0krITAufragp531teb2UdtNqgK3b8CgQt1JdCaOlo4fRotK+L8HX5/Z55R6E0bQgoxvwV6brKYx2x+zN6ryLipfHOBIAAAAAAAAAAAAAAAAAAAAAAHSE0QAAAAAAQ6Gi3FCfdfMxj+SwfEqPQjUHtbSx59y85ALGX2msfV1QpEpEZClkKKBhGuqyRtxkhNG0EEm7gIq2XbmU/j7rUTH7snzjW6c7jv5rlnzKHndoXkdQ/C5on9OWr4Xiwup0PAAArNbpeb1u7LFQTwmo9poWAW13TQYkiTFGSjV7GG3S610YTYuHNUejVwT9HFTQwmgRQtAa7biTdjLqa9ZLGK3il+Xeue9Z5+3IvVpOyJ0U84gAAAAAAAAAAAAAAAAAAAAAALAjjAYAAAAAGApVv2KdHnRDfT8Frbc5JlVWgmX5VEHyyk3/ttcFRapEwocCgp5XSA13GE17j4Le55wS+Co3lsSY8BEEJ2Cetr+E3VcOL0MPkWnL7zbcErTPDeq7BwAYPlrIrH0YzT5fu07oNS2e2u6aDEiSRX9elk3VOq+Yjh5Gc9Sr3tbrZmOM+n3RrsFF9ABvL757dV8Jo7l6GM22bcPoh4duU6PdeyYuj3k0AAAAAAAAAAAAAAAAAAAAAADoCKMBAAAAAIZCVbmBO+vmYh7JYSnHk4yTtc5rjlFpN5/n3ILkUuEDa5WGfTkrlgKiWqst+vPqvKSH0WptAipaCCwo4qVFT3xpSM0st0w3ahhBT6NpYbaw+8rhZQTEI5TldxuP0N7PtJORlON1tWwAwMahnteVQNGKuuU8HLS8XlPDow3CaBgepdoBdd6ktyXy8vQwWquaWRZfGtZ5HV3bhgxBB+kkuBihlZxYxhi5Y/Zm67zR1CY5a+z8mEcEAAAAAAAAAAAAAAAAAAAAAICOO1gBAAAAAJH9wws3yHTtxVjX+eLyPuv0bEDwqt/ybkGWG9WW6eWmWIYWp8q5BfGctKSdjDXA1RylKrcJn4UNBSwFPG8kNRZqGf2WVsIEWshgRfN7vyIovJALmFf2lyTjrg3gaWG0oEiEtv6WfUX5bBxxAvd1bRu6DaPp76c9VgEAgI2nxDTbndfrpm6drl0n9Fo+pYVNg2O1QJKU6vYwmisp2eRN9Gw9tivkoGvRoGtw9dq5y2tbET20rEWvDxv+MtoT5Udk//Kz1nm7xy+RtJuJeUQAAAAAAAAAAAAAAAAAAAAAAOgIowEAAAAAIttXfUr2VZ8e9DBERCTr5Aa27lyqIIcapZbpzUGz5scrVm74z7sFqTVaw2jNUap2EY524bQVS41563RXUgN9P1fzOgyjae91J+GFleWNS7FpavQwmh4uW2x6bB9/1s2L67jq8rVtqChhs7D093NwQUIAwPBJO/bgTrvzuhYw0q4Tek0734W95gKSoFSzh9EmvElxnVQP19R6jaxdS4oEX09qUcJefPe0405QGMxfB2G022e/ZZ3uiCMXTlwW82gAAAAAAAAAAAAAAAAAAAAAAAim31ELAAAAAMAQGGSgSYtRtcSulDjVSixLi2Y1hwTahQBqZllqfmtgrdmSv2CdXkiNiuPoca84dR5Gs8fj8ik9fhYUTbN9dkYLowW8d9r6m8fbaYgspyxfC62Fpb1ei1UAAGDT6Xldmx9fGC3c+RtIslLdHkYrpjd3tLygGHCzoO9K3tWvJ7V55UYfw2iBx5XhDqMdqh+UH8//wDrvdSO7ZCp9dMwjAgAAAAAAAAAAAAAAAAAAAAAgGGE0AAAAAMBQG0mNDWzdYWMZWuxqJZYVNmoVJsKx1CaeJiKy2LCH0UZSo21fGxctTFALCKgYYwLCYnr8LOvm1MCDbXnGKGG0gEiEtv7mz1gNkQWEIw7P708YTdvnBhkkBAAMH8/xrNPrph74ukGH0cJGcIEkO1ibtk4vep2F0TS2eHBQyCzr5tR5WoS3airSMI3og1tFP65k1NdoYeRhcdfsLeKL/X27qHh5zKMBAAAAAAAAAAAAAAAAAAAAAKA9wmgAAAAAgKGVdwuyM/+aga7fptxoDpoFx7q05TS/LigsEOU5S0oYreAmJ4ymBU+0kIGIyLKpii++dZ72HouIuI6rhr5sYTE9jKCH0fR9Ze3nVWloYTR9/CJBkb7uwmha+KXdeAAAWE07rwcFT0X0874WUO21sBFcIMlK9QPW6ZPpLZ0t0NGveZsFRXZdR/8ryqBrzW6vb7XjTiYgjDbMGqYud81+2zpvS/pYOblwRswjAgAAAAAAAAAAAAAAAAAAAACgPcJoAAAAAICh5Dme/Mdj3i8pxxvYGHIpJXbVFJMqBwQBRAKiWX5zYK19hEMLWa225CthtFSCwmhu9DCaLWK2QgubtJsfJbwQlIgIG1bRtkHb11Zo+1Dd1KTmB0dnglQa2r5LGA0AEF5aCQ7VzXLg67SAkRZa6zU1XquETIEkKtXsYbSit7mj5YXPorUPRGsK7og6rzlCHZUaXHT1MJpv7PHlYfCThXvlUKNknbdn4q2BgToAAAAAAAAAAAAAAAAAAAAAAAZlcHePAwAAAACG1p6Jy2W+MTuw9W9KFeXkkTNkKn3UwMYgEhDLaIpdVZRY2crr1WjWqpv+jTGhIl1LIcJoiw17GG0kQWG0tBI8CYp8BUVKtM9q9XxbLsAWKvPFHkZwAvrz+ZARPe0zbjv+gHBaxV+UtDsR+Hr9tZ3FLAAAWE0LmQUFT0VE6sp534spjKtHcAmjYTj4piGz9RnrvGK6szBaEGOMOM4r6TTtu9Lu2jYoChwmBB1EDaMpAcdhd3vpW9bpaScj541fHPNoAAAAAAAAAAAAAAAAAAAAAAAIhzAaAAAAACCyCybeMughJIIWh1p9s37Nr0nd1ANfr0ezXgkJLJuqGuRa85pG+1DAkhJGK7jJCaN1ElAJipQExRVEwsXpjjD2ZaxqQIRefs0sS8PUJfVy4EULPbSNRwTML/tlGZPOwmhqzKLN+wkAwGpayEy7RnplvhJGc+MJGOXdvHV6mFgtkARz9Vn1Z4ii12kYTb/oNWLEWTW/08hu3h1R53UdRlODi/afP0QOb9cw2l99Rh4vP2ydd/amPVJIUBgbAAAAAAAAAAAAAAAAAAAAAIDV3EEPAAAAAACAYaXdsP//s3evQZKlaWHfn5OXqszq7umunu7dZXeBXeEFA+Ky2l2WhWUGDCzM2FgXK5AEtqyLwxC6IFsKhxwmwjYKO8L2B4fsT3bYDiFHOPzFJqQIxw7Cus0uC5JASIAkECIwIUBcZnaqZ3q6srrzcvyhJ6ezqt/n5MlLZVX3/H5ftuu855aXOufNGvLPyWy08O88nDGPS+X7ebRtU/Rr0XGLUMDxLAmjXaIvxq8TRsue6yo6sV8NGo+Xx+kefz7zMEIeiWgKmy2+tifTUXGd5fGIfPxkg3jEujELAFiU3dfHDff1iPy+328IGG3TIJmjtZ2XwUV7bfJKOnbYXy+MVjXMec8alSLDsTz626266fz9uEUIukl23ek3BhefzDDay3deSseev/HiDs8EAAAAAAAAAAAAAABWI4wGAAAAaxp0hsXlo4Uv6zeFM+ZxqXQ/p4JZ7QIcoxahgHvTu8XlV7rXWh1jF/pVOUzQFFDJnutBZxhV1RxwyEJfi5G7uTpmxXU7DX9myeJ3Eadf2+wxZOG2uew9FJEHKdpIz0cYDYAV9DpJ8HT2oHG7LIzWq3obn1Mbw+T+OqnHMZ41R93gMjgav1pcvlftx5XOecz9TwfE0shuN5+7zg27y+PR68iuK3vJ54+IiFn95IXRRtPj+Aev/93i2AcHXxZfOPhduz0hAAAAAAAAAAAAAABYgTAaAAAArCn7sv6poFnDF/fncaksmrW4bVNgbdHx7M3l6yTxtIOGeNeuZcGTOmYxrafFsey5bhPxytYZzZaH5tpoij+MTr3O5eNl4ba5TtWN/WqwdP+rSmMWwmgArCALnk7qSeN2WRC1V5VDa9s2aJgb3S/EU+GyOZqUw2iH/VtLw8GZpq3O5sNKkeGIdnPJbH5+vOH8PA8u5mG0xx/Z5fcP3vi7cb8+KY49f/jijs8GAAAAAAAAAAAAAABWI4wGAAAAa8q+rH8yG0VdP/zyfFOUatAZnvrfs0bTdoG109s0hwLquo7j2d3i2EH3Wqtj7EJT8CSLGSw+X4vahBeydU6mj8cc6iSMUDVkIpribKdDeuV4RKu4WxLqa/veOauu6/Q5HXaF0QBoLwueZvf0ZePNAaPtGTaGTbcTT4Xz9No4CaP1bm2w1/ZBteyzUJu5bT4/Xz/6G5FfV/Y6+XUlm/9fVnVdx8t3Pl0cu9q9Hh+++g07PiMAAAAAAAAAAAAAAFiNMBoAAACsKfuyfh2zuF+fRET+xf39ahCdqhsRzUGrNoG1RcdLIh0P6vsxqSfFsYPu1VbH2IWmMNq4flBcngXA2kS8snVKz/v8NTmrqvJIRLfqxV61XxxbPO8sbNcm7pYFJtq+d84a1w9iFtO1zwcA5rL7elMYra7rdM7Sb5gnbFPT/S6LmcJlcjRJwmj9TcJoTU7Pk7P5eZu55EHyGWnZ551lLjq4uAu/NPon8VsPfr049o3Xvz36nd1cQwEAAAAAAAAAAAAAYF3CaAAAALCmLEQV8SiIlscAhkv3M4tZPKjvR0QezDpr2XrH0zfTsSudyxNG63fyMEEWSckCYG3CC9k6pdevjnIYLSIPozUdY/6azerp20G9s7J4Xpv9Z+/BZZqCL8OF9y8ALJOF0cYNYbRZTKOOWbK/3lbOa5mmOcRowzgT7EIaRuutH0arGua8Z+fJoyQS3fQ56tE65fnvpr972XVnryGMll2LLqvPHH26uLyKTnzTje/Y8dkAAAAAAAAAAAAAAMDqhNEAAABgTcNuUyzj+NT/njVYCF01RzfmgbU8UnV6/eZQwL2mMFr38oTRmoInk1k5ZpAFwNqFF5JoWXGf5TBaUyQiIn+/tHmN24TI0seQBCmWaXovtYnNAcBcPwmjTRrCaE3RtCy0tm3dqht71X5xrO3cDC7S0fiV4vKb/dvr77RqnvMuSiPRDZ+j5tIwWstgdCa77jRdV7Is8mV0NH41fvbNv18c+6qrH93stQcAAAAAAAAAAAAAgB0RRgMAAIA1NcWhTt6OXWWxruHCvxvCaG998X9Z8GzueEko4HiWh9EOLlUYLQ8TjOsHxeVpeKFFVCx7LUv7nK0bRltyjCyi9/D8ymGIU+uk4bX14hHNoTZhNADay+7rk3ocdV2+rzZF03YVRovI5wjrhkdhV8azB3F3+npx7LB361yOefbXOY1EtwkXL4kKryu7tux19tJtsuvUZfTjr/9YzGJWHHv+xos7PhsAAAAAAAAAAAAAAFiPMBoAAACsaa/aj07y0Xr0dhitHJdajAFkQavF7ZsiVYuOl0SwjqflMNp+NYhu1Wt1jF3oV3mYIIsZZIGSVuGFNFo2ilk9PbN0vTBaGlaZh9EaAittQmRNj2Edo4bI3n6L2BwAzGUhszrqmMXZ++xDk3qS7q/fEDDatizOlAVZ4bI4mnw+HdskjNY84300T67rOp2HtpvblsPATXPUNrLPEr2Gzx/Z/P+ymdTj+NydHyuOvav/3viyg6/e8RkBAAAAAAAAAAAAAMB6hNEAAABgTVVVpV/YP1kSu1qMAexXg6jSwNq9U/+7zGh6L+o6/+L+vend4vKD7tVW+9+VLKASkYdS0vBCQ3iuzTpn95s+vc2ViDQAMX+PnDS8xm3ibsvCa6vKo37D6FT+pARAe0339XESKZrMHjTsb3cx123fX2FXjiavpmOH/U3CaEsmvW+5X59EHbPi2Cbh4k1+92b1LP0ssdcQRqufkDDaP7779+KN6Z3i2HOHL5jDAwAAAAAAAAAAAADwxPB/AQ8AAAAbGHSHxeWPYlflL+4vxgCqqopBp7yf+fYn03Kk6qxpTGJc5yGR4yS+deXShdHy4MkkCahk8bhNomIRhTBaEnjoLPkzyyCJr70d0UtCZL2qH/1OHpSZy8Nr7aJ6j223wfMJAIuag6fl+3oWTFu2v23L7q/ZHA8ui6NxOYx2pXMt9juDcznmYkAsi+xGRPrZZ9GwWw5Qtw1Gl0yTKFpERK/z5IfRPnPnpeLyvWo/vv6Zb9nx2QAAAAAAAAAAAAAAwPqE0QAAAGADaYzqrS/sj5JoxvBMJCuPWs2jWe0DAFn8LCLieHq3uPyge631/nehU3WjE93iWBZ+y+IL2XPbdp1N4gunj5HFHeYRvfJx2px/RFN4rV1Ur+12bc8HAOaaAp+TWTmAlgXTInYbRssCTtkcDy6Lo8krxeWH/Vsb7rlqtdbJNP8dyaJnp9Zp+HxU1+uFypquK3tVUxjt8vuN+78avzz6Z8Wxr3vm+Ti4ZCFsAAAAAAAAAAAAAABoIowGAAAAGxgkX9ifR6VOkmjG2e3y/cyjWe3jVqNpHvK6N32zuPwgiXZdpH4SPcmCBtnjzp7btuucTE8/93WSRqiW/JklC6vMX+NREo/IgmqPr9cc6VtV2/cuACzTFDLL7uuTepJu028IGG1bOkebrhcehV05Gr9aXH7Y2yyM1i6L1hwPzObFi4ZJyGsakzSUvMzawcU1Q2y79PLRS+nYczde3OGZAAAAAAAAAAAAAADA5oTRAAAAYANZLGMeo8rjUqdjAMNutp/jU//bxnFDCOt4Vg6jXelea73/XcniBKVQyqyexv36pLh+Fgxb1O/sRa/qFcfOhsXqmBXXq5ZkIrLA2TyIlsXv2oQjmvafvQeXyUNtwmgArKYpODROw2hNAaPyPfs85HO09cKjsCuvTZIwWn+zMFqTxYBwNgetohP71WDpvprmnOv+/mXXm4iIvc5+OpbN/y+L0fRe/NQbLxfHvmT45fH+wQd2e0IAAAAAAAAAAAAAALAhYTQAAADYQBqjmj6MXGVBs7PbLYtarRK3Op6W42dNYwfdq633vyu9TjmiMp49eGxZFhWLyIMmZ2WRu7P7ruviarGki5aex8nb8bty4KH9+ZcDaiezUczq1WMOadSv2y7UBgBz/YYwWhZAG9eP3+8jIjrRiU7V3cp5tdF2fgCXzdG4HEa72bu94Z7zSW+bMNqgM4yqWjJxjoiD5PNRRMTxdL0wWnNwMb9OZdP/y+LvvfF30kj08zde3PHZAAAAAAAAAAAAAADA5oTRAAAAYANZJGoeuZoH0h7b7kzEKotajaZvhdGm7cNoWWAroiGM1rmEYbQkTlAKGjTFSbKgyVnDZL3H43blNEJnyZ9ZsvOYv15ZRG/QEIVYNOzm691fI97SNuoHAMs0BYeyUFG2vGlf5yGbH6wSrYWLcDQph9EO+89utN82UbOIprlky+hvQxx43d+/pjDaXrWXjtWXOI1W13V85s5LxbFnujfia699/Y7PCAAAAAAAAAAAAAAANieMBgAAABvIIlGj2XHUdZ1Gys5GrLL9nMyOY1ZP43590vqcRtM8jHZvVg6jXek+2WG0phhc6/hCy/DJbM0wQh5WGUVd12ngYZhE89ruPyIPUzTJzieL+AFApilmNk7DaJOV93Ue8rCpMBqX12h6L53LHfZu7eQcsrBz27nkfjVIw8PHDXP/Jk1htF5DGC0LI18G//z45+K3H/xGcewbb3z7zq+ZAAAAAAAAAAAAAACwDcJoAAAAsIGm2NW4fhCzmBXHzwYBht08unEyG610Tk2hgOPp3eLyg0sYRutXveLyUtDgZJo/R1nQpO16o8eiDuUwQhVV4/6z90odddyvTwrHmZ9XOZr3+Hr548zCGE2y913b5xMA5jpVJzrRLY5loaJsef+ShNHWubfCrhxNXk3HDvu3N9p304y3rh/Nk7O55NlAdHqcqsoj1Mm8eZnxrCmMll9bFh/XZfPynU8Xl3eiE5+8/h07PhsAAAAAAAAAAAAAANgOYTQAAADYwNnA2dxoei9GDcGMs5GNdD+z48b9ZMcumdXTdF8HncsXRutVe8Xl41IYLXlcvaoX/U55P2flcbrTz2edhdGq5jBaU1Cs6f2Snddj6zXuf/V4RPY+ajoOAGSyoFkWQBvPHhSX9zq7DaOl84Pp8aWOJfHO9tr4leLyKqq40bu54d6b57xzZ+fQc9nnnpK28/O2sutNxMPPDVnoOJv/X7TXxq/Ez735U8Wxr776dXHYv7XjMwIAAAAAAAAAAAAAgO0QRgMAAIANDLtXistPZsdprCvi8bjUsJPvZ9WoVRYKOG4ICFzpXlvpGLvQWyGgkkXFmmJkbdc9mY1O/ZxFULKQwlxT4OxkNkrfL20fQ7+zF72qVxxbJx5x9nG/fT4tQ20AsCi/r0+S5eWAUbaf85Ldh2cxjXFdjrfBRTuafL64/HrvZnST+eJ2PJonp3PJFebn2WekLOC7TNN15WHkuF307bL48Ts/FnXMimPP33hxx2cDAAAAAAAAAAAAAADbI4wGAAAAGzgbOJsbLQmanQ0CDDrD8n6mzYG1kuPpmystj4g4SAJvFymLfJWCBtlzlL0+q6x7NipWRzmMtiykkIUd5sfI4m6rPIa2cbc2spjaKucDAHO9TjloNp6V42JZMG3XYbSm+94691fYhaPxq8Xlh71bG++7KQa8OE/extw2i1CvE/2NiBgvCS5mjy2f/1+c8Wwcn3v9x4pj79l7f3zpwVft+IwAAAAAAAAAAAAAAGB7hNEAAABgA1mIalw/iHuzu8WxKqrY7wxOLcu+9H8yO06jApnjJBTQGEbrXFvpGLvQr/aKy0thtOw5yl6fVdZtGz1pikREPHw8neRPMaPZcZwkIb3txN1Wew/VdZ0+7lWeUwCYy4Jmpft60/Jdh9GyeG3E+nEmOG+vTV4pLj/sP7uzc8jmtqvMJbc1t51bdl15ksJo//jNn4i709eLY8/deCGqqvmzCQAAAAAAAAAAAAAAXGbCaAAAALCBpmjV0fjV4vL9zjA61emP5Fkg4EF9P+5Ny4G1zGhajnTcm5XDaJ3oNEY/LkoWPhkXggYnWwijpeGFM89nHbPiesvCaFVVxbBTDuCNpnkAb9DdPO6WvScy9+uTNACxSqgNAOa2FUbr7ziM1nTfaxtPhV3LPocc9m7v7BzycHH7zx353Hm9KOGy60rWEruMYbSXj14qLt+vBvHxZ75lx2cDAAAAAAAAAAAAAADbJYwGAAAAGxg2RKuOJuUgQSkG0BhYS/aTGc3KoYDjaTmMdtC9GlVWAbhAqwRURtNyeKHp9TkrC5CdjZ5skkXIjnF3eidmMS2OrRIiy8Joq4ZbTpLns+kYANCkX/WKyyf1pLi8FEKNyOcH52W/IeK0bpwJztud5PPDYf/WxvtuigEvBsSy+eewW46dlddNor9JdG2ZLIz26LqSldEuVxjt105+JX7l5BeLY193/ZtX+gwEAAAAAAAAAAAAAACXkTAaAAAAbKApEnU0LgcJhp3HYwCNYbRkP5njVcNonasr7X9X+jPjmQsAACAASURBVJ0kjDZ7PGhwksQRShG6TPYaPBZeSMIInWr5n1mGyfm8Nn6lYZttxCNWC7c0xSayuBsANFkleNq0fNdhtE7VSecTq4ZHYRdm9SwNK9/s3d7ZeWTzz9Xm5+V58Kpz27llwcUs+lZvlEbevs/ceSkde/7GCzs8EwAAAAAAAAAAAAAAOB/CaAAAALCBxjDapBy7KsUAmmJTWdggM5rei7oQ77o3vVtc/6B7OcNoqwRUspDXKlGx7LU8G12bxSzZQzmkcPoY5fNpeo23E4/IQ2clWWju4TGE0QBYXa/aKy4f1w+Ky/MwWm9r59RW2zkCXAZvTt+IST0pjh32b23hCPmcdzEgloUDmz4/nZXObafrhdGWXVeehDDa8fTN+AdvvFwc+9eGXxnv3f/iHZ8RAAAAAAAAAAAAAABsnzAaAAAAbKBbdWOv2i+OHY0/X1xeCks1xaaOxuVo1vXuYXH5LGZxvz55bPnxrBwQuPKEhdHGhaBBFiZZLSpWfg0m9TjGs3JEYdHyLFp+jOw1jogYdleJu5Uf76rhliyk1olO+n4HgCZZ0CwLOGUBo34SWDtP2f171fAo7MJr43KcOSLisLd5GK1qmvS+1Q+b1bO4n4TRVonsHiTz4HV/95ZdV56EMNpPvv6306Dk8zde2PHZAAAAAAAAAAAAAADA+RBGAwAAgA2lsatJOXY16D6+frfqpaGPbD+H/dvpOR1P3ywsu1tc96BzLd3PReonYbRS0GA0LccRhp1VomJ5pOFkISqXhRGqFn9myY6RvcZVVLFfDZbudy57vNnzk8lDcwdRNdYwAKAsC55moaJsebaf85Tdv1cNj8IuZPPKXtWPq91ndnIO92cn6Zy5ac7ddt1REnxeJr2udHZ/XVnHrJ7FZ+68VBy73j2Mr7329Ts+IwAAAAAAAAAAAAAAOB/CaAAAALChQbccoxrXD4rLs5BaGrVKvvh/syGMVtrmXiGWFhFxkJz/RVsloHIyGxXXHXSGrY83LATr5kYL+0/DaC16YdkxXp+8Vlw+6AxXCpFl+1813JKF1FZ5PgFg0SrB04iI8ezyhNGyuduq4VHYhTSq3Hs2OtXm/1mwinxuOp8nN809m+bcZx0kn49OZqOY1dPW+5lbdl2pkuenrsvz/137xeOfjVfGv1kc+8Ybn4pu1dvxGQEAAAAAAAAAAAAAwPkQRgMAAIANDVeMRQ2SuMaq0ambvYYw2vTxMNrxrBxGu9K9ttJxd2WVMFoWj1slvJBFTyIiThb2n4cRlgfMsmNksbUslpfJ3lurhtHy0Fz75xMAFvWqveLyLCSbBdN6nd2Hfwbd8hxt1fsr7MLR+JXi8sOGqPJqmua88zBaeS4Zsdp8smku33SMTHpdeSsolj2ybK6+a5+581JxeSe68ckb37HjswEAAAAAAAAAAAAAgPMjjAYAAAAbWjUWlcWxht3VIljXetejn0RGjguhsONpOYx20L260nF3JQujjQtBg22EvJrCdKOF/WdhhKpFGG3V98q23lujFcMt2wjNAcCiLGg2mU3Ky9OAUXl+cJ7y8OjqYSY4b0eTV4vLD3u3dnYO2VwyojlG/Pi6+eejpmNksuvKo89U5fn8ZQijfX78O/Hzb/50cexrr308bvRu7viMAAAAAAAAAAAAAADg/AijAQAAwIaavrBfkgW4VokEPNzPQRwkxx5NVwijdS5nGK2fhE/OBg0m9TjG9YPiuqs8p52qG/vVoDh2+vlcP4y26mu8aogsDaNNj6Ou2wcdthGaA4BFWdAsCxUtDxjtTh4eXT3MBOfttfH5htGa5rzz2WY2l+xEZ6Xf4abPWceFzzvLLAsu5o/t4sNon73zN6KOWXHsuRsv7vhsAAAAAAAAAAAAAADgfAmjAQAAwIYG3XLoLDPslr/gnwXT0v10DtJ9HZ8JddR1Hfdm5TDale7lDKP1Ou0CKifTcnghYvWQ1yAJkS3GHepNwmgrhs5WPv9k/WlM0hBESRZ6WTXsBgBzbYOnc+M0YNTb2jm1ld1fs/gTXKSjSTmMdrO/nTBaGyez4+LyYedKVNXyOfPb6zfMnUfJMZosu65k53bRWbTx7EH8xOv/b3HsC/a+KD40/ModnxEAAAAAAAAAAAAAAJwvYTQAAADY0LBTjpNlsgDaOvvJthlNT4etxvWDNDxy0LmkYbQkoDKenQmjNUQRVg2RZeGvxVBYXSdhtBaRh1VDZ6uGyLYVj8hic6uePwDMZff1bH6SLc/2c57S+cG0HBKFizKtJ/HG5Kg4dtg7/zDaPCA8mpbnnasGpbtVL/aq/eLYOr9/y64rWei4rmcrH2ubfubu5+LN6RvFsedufOdKsTkAAAAAAAAAAAAAAHgSCKMBAADAhlaNV2VxqdUjXlfioFsOox3PTocCjqdvpvs56F7OMFq/ZUClKfi1asgrW/9k9igUNg8+PG55kGDl0NnKsbymMFr7eES27qrvUQCYS4OnT0AYbZDc/xbnB3AZ3Jl8Pp2rHvZvb+UYWTzsoYfHzsLF60R2h8nnnVWiv3PZdaVf7b31rySMtvKRtuvlOy8Vlw86w/j49W/Z8dkAAAAAAAAAAAAAAMD5E0YDAACADa36Bf8sjrVyxKs7TMNZo+npsNW92d10P1e611Y67q5k4ZPzDKNlr83Z57NkeRYtYrBq6Kw7XGn9pvDaKvGWbN11YhYAENH+vr5s+aOA0e5k9791wkxwno7Gr6Zjh71bWzlGVS2f9Wa/G6tGgpu2WSX6O7csuNhJZ/QXl0b7lye/HL968kvFsY8/8y0x6Kz2eQEAAAAAAAAAAAAAAJ4EwmgAAACwoWF3xaBZ8uX+VUMBw86VGHbLoa3jM6GA44aw10Gyj4vWNqBykoQX9qr96FbdlY6ZvTaLx6hjVlynavFnluEWQ2cl+51hVEnQoU3cbS57ToUXAFhXf+Uw2qS4vFf1tnZObWX345PZKOr64oJJcNbRpBxGG3QOVv7Mso75b0M+l1wnjNYuBN3GeJaF0ebXlfI8ur7AMNrLRy+lY8/deGGHZwIAAAAAAAAAAAAAALsjjAYAAAAbWjlolkQJVg0FDDrDOOhcLY6NzoTR7k3vFtfbrwZpgOyiZQGVWcxiWk/f/nk0LYcXVn1dIvLX5mQ2evvfWRYhC5KdPqfVInSrrt+pOrGfxMtGSaBilXVXPR8AmGsbPJ0b1w9W2s95yuZodczifn2y47OB3GvjchjtZu/Wbk7grVBgNpdcJ7KbhaDPft5pI7vezK8r2Wz+osJob07fiJ+++9ni2JcefFV8wf4X7viMAAAAAAAAAAAAAABgN4TRAAAAYEOrB83K62dRrnw/wzjIQgHT06GA49mbyTEvb+iqKXyyGDU4ycILKz6fEXlMbTG8sEkYYdUYxDrxiGyb7HkqrpvE5tY5HwCIWD2MNpk1B4x2qSm2uhhPhYt2NCmH0Q772wujtYkBn0zLvxfrRHbz+Xn7ue1cdr3pd/Ye/qMqP7a6vpgw2t97/W+nkcjnb7yw47MBAAAAAAAAAAAAAIDdEUYDAACADTXFMs7qRCf2qv3i2CqBtf1qEJ2qm8YFzobQjqflMNqV7rXWx9y1tmG0LIqwyusyl70Gi9GTup4V16mq5X9m6VTd2K8Grc9nnXBd9p5oG4+Y1dO4X59s7XwAICK/r4+zMFo9Ke+ns/swWlNs9WyMFi7Sa+NXissPe7d3cvx5QHgxKrxo0F09spvObdf43UuvK29dn/Lo2+7DaLN6Fp+986PFsRu9Z+Orr358x2cEAAAAAAAAAAAAAAC7I4wGAAAAG1olaDboHERVlb9wv0rIax6oOkhCVcdnQgH3kjDaQedq62PuWr+zl44tRlROkuDXKq/LXPYatAkvZBmFs5riKo+tu8XHcDJtF0ZbjMA9vu/VYxYAEBHRT4Jmk0IYbVbPYhrlgFG/IZx6XgYN97+m+ybs2p3Jq8Xlh/1bWzxKPuudh9Gy34t1wsXDZO7cNvq7aFw/KC7vVb2IyMNou8+iRfzCvX8Ur4x/qzj2yeufim7V3fEZAQAAAAAAAAAAAADA7gijAQAAwIayL+uXNIU1VgusPdzPsFMOo53MjmNWz97++TgLo3UvbxhtHigomcweRVSyKELTc53JomWLcYc6SSNkIYWzVgrgrRGPyB5D23hE03qD5P0GAMv0kqDZ4j397WWFWNqy/Zyn/WoQVfKfU0az5fFU2JWj8eeLyw972wujtZnx5vPzdaK/SQh6jd+97Noyv67kYbRZcfl5evnOS8XlnejGN9741I7PBgAAAAAAAAAAAAAAdksYDQAAADaUfVm/uG43X7dpLDtmduw66ri/EPM6npXDaFcudRgtD58sRg1OpuXwwiqvy6NtsqjYo/DCpmG0VYIQ64TRsm1OWobRmtYbrhGbA4CIhjBaPSksu1xhtKqq0uDqYjwVLtL92Uncm90tjt3sby+M1kY2n1wvjJbMbZPPAE2ya0u/2lt5X+fp1Qe/Hf/03j8sjn342ifieu9wx2cEAAAAAAAAAAAAAAC7JYwGAAAAG+pXe9Fp+RE7i2osG8vWPWgImx0vxLzuTcuRhIPOkxlGG9cP3v73KAsvdFePeGWxhpPZKOr6YRBt/r+PqdqF0VaJnQ2624tHLMbdmpxM88DLOjELAIjI7+vTmMSsnp1aVoqlLdvPeds0PArn7Wj8ajp22NteGK0pBjwPCOfh4tXnkgdJPPq45dx2UXZt6VW9iIioqvJnuiyMfF4+c+el9JjP33hhp+cCAAAAAAAAAAAAAAAXQRgNAAAANlRVVQw75S/sn9UUltqvBq0Da8O3glkHDccdTR/FArJwQFNY7aL1q710bDFqcDIrh7zaviantym/PnXUcb8+efunkqZIxKljrBA7WycekcbdGoJni7KAWq/qRb+TvyYA0KTfEDSb1OPGn9vu5zxl99dREoCCXXtt8ko6dmOLYbRYMued1dOFefNp60R/B8mc/mR2Lw8WF9R1fSquvGgeXMwe2SrH2dSD2f34ydf/VnHsvXtfHF8y/IqdnQsAAAAAAAAAAAAAAFwUYTQAAADYgrZf8m8KXVVV1RhOO3W8t9Zrimwdz9589O/p3eI6V7rXWh3vIvSqXjq2GEw5SUJeg85w5WM2Pf/z0Fy9YRit7Wvcr/ai2/AcZLL3xGjWLtyShebanjcAlPS2FEZr2s95yu6vJy3vr3DejsavFpc/070R/c6ufm/qdC4ZETFcY36ehaAn9SQNnZVMY5KOzYPM2Xw+m/+fh39498fj3qz82e35wxejqtp95gAAAAAAAAAAAAAAgCeZMBoAAABsQdsv+S+LS7WNec0Da92qF/vVoLjO8fRRMOze9M3iOllo4DLoVN3oJH+6WIwgjJL4wnCNx9YUmptHHjYNozXF8U6vt95rk73HRklA7vH1yoGXtucNACXNYbTTwaKm2NFFhdHy+6swGpfD0aQcRrvRv7XV4zR1ueo6j+xGRAy2PD9f5ffv7HVmUe/tcFz24HYXRnv5zkvF5YPOQXzsmed2dh4AAAAAAAAAAAAAAHCRhNEAAABgC9p+yX9Z+GzYbbufR4GAbJt5CGtWT+MkiQZc6V5rdbyL0q/2issn9fjtf59My4+tbWTu9DZN4YWHz+emWYS2wbN1zv/h/suPoSlScXq97PkURgNgff3GMNr4zM8NAaMLCqPl91dhNC6Ho3E5jHazt90wWh4Pe6gpxts2Jn16m3zuPJq2C/9GRExm43SsV/UiIg8d7yqL9qujfxH/8uSXi2Nf/8y/sfbnAwAAAAAAAAAAAAAAeNIIowEAAMAWZLGMx9ZbEj5rvZ/FMFoSC5iHAkaz46iTr/MfdK+2Ot5FyeIn82BKXdcxSoIkbSNzi/aq/egkfy6Zh8XqelYcr6p2f2YZdLfzXkn3n7yH2oYj8jCaEAMA62sKmo3rB6d+bg4YXUwYLbsPCqNxWRxNymG0w/62w2hN6jiZ5jHedUK7TXPi7HNAydnrzKL5daWqsjDabtJon7nz6XTs+cMXdnIOAAAAAAAAAAAAAABwGQijAQAAwBa0/ZL/srhU6/0sxLUOkljA8exhCOve9M10Pwedyx5G6xWXT+qHwZRx/SBmMS2us07Iq6qqpaG5dNsohxTOWid+t4osHnG/PolZXX6uFo2m2wvNAcBcU9Bsfl/Pfj69n/Lc4Lzl4VFhNC6H18avFJcf9rYbRmua89ZRp7HAXtWLfmdv5ePtV4Ookv+cOZq1C/9GNF9X+tX8vJIwWhJG3qY3J2/ET9/98eLYv37wNfHuvfed+zkAAAAAAAAAAAAAAMBlIYwGAAAAWzDsto1dNcel1olmpSGvt0IBxw1htCvdSx5GS+IJ49mDiIgYJeGFiOXPdWbQLQfVTmajiHgYfChpl0XbXkQvM2zYbv4YmmQxi3XPBwAiInqdpjDa5NTP4/pBeR9VP6qq7R13u7K5Xpt7K5y3uq7jaPJqcexm//ZOzyWbn7edA5/1MFychQlXCaNN0rF5uPFiri4P/cTrfzONtz1344Udnw0AAAAAAAAAAAAAAFwsYTQAAADYgrZBs2VxqbbBgMXo10G3HAA7fisUcDwrh9E60Vk7ULAr80jBWfNoQBbxitgkLJaEF94KzdUxK45XLf/M0j5+t2bYrWG7ppDcsnXWPR8AiIjoVb10bDI7HQPKAkbZvGAXsjnTfH4AF+ne7G4aFDzs3drZedRxPpHdYfJ5Z5Xfvyw6FvHo+pTN57Mw8rbM6ml89vUfLY4d9m7FV1392LkeHwAAAAAAAAAAAAAALhthNAAAANiC9kGz5vWG3dUDa1mwah4KOJ6Ww2jD7pWoqqrV8S5KP4mozIMpo2ke+soCCstkr+XJbBQRsXEWofV7peV74bHtGvbf9HzNnUfMAgC60YsqyvOOs8GiLGB0kWG07P46nx/ARToav5qOHfZvb/VY2e/xQ3WMkt+JTSK7ebh4+dx2LgvHRTy6tmSP7LzDaP/03s/E58e/Uxz75I3viG7VPdfjAwAAAAAAAAAAAADAZSOMBgAAAFuwLHj29npLYlfto1mPwgIHSQDsePowjHZverc4fqVzrdWxLlKv2isun4cNsohXFVXsVftrHTN7DeahuSyN1qna/ZmlffxuvTBa03bZ87Uoi6dtErMAgKqq0rDZ2WBRHkYrB1N3IQ+ntg8zwXk5mpTDaJ3oxjPd61s9VnMYLeLk7TnzaZtEdrN56PzzThvZdSViMbpYfmznHUZ7+c5LxeXd6MU3Xv/2cz02AAAAAAAAAAAAAABcRsJoAAAAsAWDLcWu2gbWFsMCWShgHvI6nr1ZHM+CapdJFlCZhw1GSYxk0Bm2DpWdlb0G82BYXW8WRmgbGGv7Xjir3+mnz1v2fC06mY2KyzeJWQBARB42m9STMz+XA0b9JJi6C9l9+WQ2ilk93fHZwGlH43IY7UbvZnSq7s7Oo446RtNsLrne3DYiDwuvEiY8e52Z60bv7c8NVZVE3zac/zf5nQe/Gf/s3s8Ux37PtW+IZ3o3zu3YAAAAAAAAAAAAAABwWQmjAQAAwBa0jVgtW69tMGAxrpWG0aZvhdGmWRjtWqtjXaRlAZUshrBJeCGL3M2PVUc5jFBFElI4u/+WgbGN4hFpvOXe0m3T57Rl/A8AMsuCp3PjJIyWbb8LTffB+7OTHZ4JPO61ySvF5Tf7t7d/sCwe9pZsLpnFzdo4WBKCbmM8e1Bcvvh5I5vPn18WLeKzd15Kx547fPEcjwwAAAAAAAAAAAAAAJeXMBoAAABsQdsw2rLYVZtgQCc60a/23v75oHu1uN7xW6GAe0kY7UqnvN1lkgdUHoYNRucQRstey9GWwmj9ai+6UQ6+nTqPbjkA0Ub2+Eez0dJts+e07XscADJtw2hnf360/fL753lpug9m907YlaPxq8Xlh71bWz/WshnveczPB0kY7XjaPoyWXlc6j65LeRht1vo4q3gwux8/+frfLo69f/+D8bsGX3YuxwUAAAAAAAAAAAAAgMtOGA0AAAC2oM0X/bvRS4Mgq+xn2LkSVfXoS/sHSSjgZHYcs3oax7NyGC0Lql0miwG4ReO3wgYn0+1HvLLX4OStqFgWRlueiXhrrapqFcAbdIat9leSPf7s+Zqb1OMYvxWde/x8hNEA2Myy+/pcHkZrnkedp6b74IkwGhfsaJKE0fq3d3oedV2nvw+bzCUPkmDwKr972XUluy4tymb/m/rpu59NP6s9f+PFU5/5AAAAAAAAAAAAAADgnUQYDQAAALagTehq2D1Y+uX2NkGvQfd0MGuYhAIiIkaz4ziePrlhtCyAMg8bjLLwQovXI5O9BqPpvYf/qMtphFXCBW2iZ8MkeNdq/8njH83uNW53Mh01nI8wGgCb6VW94vKzwaI0YNRZHjA6L0337tEsv3/CLhyNkzBa79lzOFo+562jfjsmfNYmc8ls2+Np89x20aSeFJcvXpeq9LFtP41W13W8fPTp4tiwcyU+9sxzWz8mAAAAAAAAAAAAAAA8KYTRAAAAYAvaRKy2FcM6GwY4aNhmNL0X95Iw2pXOExBG6yQBldnDYMpJEkbbJLwwSLadRx6yLEIeUnjcOq/zKrJts1DFo/Hy8xmRPy8A0Nay4OnceFYOo2Xb70K/2otulOclJyvEmWDbZvU07kw+Xxw77N/a+vGWzXlHye9Dm89CmSwE3TR3PWtcPyguX7yuVFX5P5vWSRh5E7968kvxa/d/pTj2ievfGnud/a0fEwAAAAAAAAAAAAAAnhTCaAAAALAF+y2+6N8mLDXorr6fLBQQEXE8uxfHs3IY7aB7+cNo/WqvuHweUBklMYTNwgvl12k0exh5qGNWHF8ljNbuvbD9MNr8MWSy5zMif14AoK22YbSzPz/avhwm24WqqtJ52mhJeBTO0+uTo5gl89Obvds7Pps8xLtJZDeb2x4vmdsuyq8rC2G0ZNs6TSOv7+U7n07HnrvxnVs/HgAAAAAAAAAAAAAAPEmE0QAAAGALulU39qtB4zrZF/pXXeexMFrDNqPpvTiePrlhtCygMn4rbJCFF4adPBa3TBZtGNcPYlpPGrII7cNobSJjbd4LmewxjKZ5+CyiOYy2SWwOACIi+p1Nw2jl7XcluzefNNw/4bwdTV5Nxw77t7Z+vKYZbx11+vuwSWQ3m9vfn41iVpejcGdl15XTIebyo9t2GO3u5E78zN3PFce+/OBr4117793q8QAAAAAAAAAAAAAA4EkjjAYAAABbMljyZf8sVrWoW/Vir9pvXOdslKNTddN9/+hr/1eM6wfFsYPOkxtGm4cNRtN7xfFNIl6NobnZcUQSRuhU7cNoy94LnegsfR80ycITy8It2Xi/2otu1Vv7fAAgoiF4OnsywmhpeFQYjQv02rgcRtuvBuc038/nvNN6Eg/q+8WxNp+FMsNuOYzWFGI7a1JPist7C3PcKn1s2w2jfe71v5mez/OHL271WAAAAAAAAAAAAAAA8CQSRgMAAIAtWfZl/yxWtep+SgG2g045FvDPj38u3c+V7rVW53OR+kvCaCezUXE8iye00RRGO5keR11nYYT2YbSmY0Q8fA9UK4TWHt++/PiXhVtG0/L4MNkfAKxiWfD00c/lYFA2L9iVbI7WNswE5+FoUg6j3ejf2mg+uY5sbh6xfP7bpGku2jZMmMWiF69LWRhtm1m0WT2NH7/zN4pjN3u343df+cgWjwYAAAAAAAAAAAAAAE8mYTQAAADYkjaxq1b7WRJQKx1nnRDYQffqytvs2rKAymh2rzg+6AzXPmYpPDc3mh1HnaQRVslObCuil26fPP5l4Ygs7LLJ8wkAc23DaG0CRhchm+tlYVHYhaNxOYx22Hv2XI6XxcMi8rl5xKZhtIb5+TQ/5qKz15m5U2G0JCRX17NWx2jj59/86Xht8kpx7JtufGd0qu7WjgUAAAAAAAAAAAAAAE8qYTQAAADYkq2F0dbYz5XutVb7nquiioPOkx9GO5mNiuPDzuqhuEfbrhtGa/9nlmWv8SbhiIiIQfL4s/DZXBZOWye8BwBntQ2jtQkYXYRsLrfs/grn6SiJbN3s3z6fAzbUgJsigW0/C5U0RYOXhX/nJrNJcXm/s9vryst3Pl1c3qt68Q3Xv22n5wIAAAAAAAAAAAAAAJeVMBoAAABsybIv+7eNXa2zny87+OpW+577kuFX7DwCsI5+EkAZ1+OY1bO4n4TRBp3h2sfsVr3oV3vFsZOGMNoqloXGNglHPNx/efvR9DjqOj//LDS3yfMJAHPZfX1ST878fDnDaNn9VRiNi3Q0frW4/LB3a8dn0vy7MOiuP5/sVf10fj6a3Wu1jzbXlSqpvm1j/h8R8dsPfiN+8fhni2O/59on41rv+laOAwAAAAAAAAAAAAAATzphNAAAANiSLJYx1zYutSygVopmffL6t8cX7H1Rq/3vV4P4rlvf02rdi9ZL4m2Tehz3ZydppGBZeGyZ7DUYTY8jkmNmIYWSZe+FTcNo2fazmMa4fpBul8UsNj0fAIjIw2Zn701nQ2lzWVhtV7L74UgYjQv02qQcRrvZv30ux2ua82aRsn61t3HYcNgpz+9H03ZhtGwOvMsw2mfv/Gg69vyNF7dyDAAAAAAAAAAAAAAAeBr0LvoEAAAA4GmxLB7VNi61bL1SgO1a70b8+S/6r+MfvvHj8asnvxTTelbc9j3774sPX/2GeM/++1udy0XLAgqT2TiNeEW0j9Dl2x/EG9M7jy0/mR1HXSdhtKp9GG1Z/C4LP2xj/6PZcex19stj0/Jzuux8AaCN9L5ej0/9PD7z87LtdyWbX5zMRjs+E3hoPHsQb05fL44d9m6dyzGbw2hZZHezuXnEw/DxG9Ojx5YfJzG2s85eZ+ZOX1fOL4x2f3YSP/n63yqOfdH+l8QHBh/a+BgAAAAAAAAAAAAAAPC0EEYDAACALVkauyoEzdZZLwunXeleorFgUAAAIABJREFUi+cOX4jn4oVWx3kSZAGUcT1OwwsRm4fFBt2DiEI7YTQ7TsMITZGIs5ad36C7WTyi6b14MjuO63GYjhXPRxgNgC1oG0abzB6Ut+9cbBgtu7+Opu3CTLBtR5PPp2OH/fMJozXJIrvbmEtmv39NseRFk3pSXN5fuC7loePNw2g/9cZn0s8vzx++uFJkGQAAAAAAAAAAAAAAnnadiz4BAAAAeFosC6O1DQIsW2/ZcZ4m/YaASlMEYdA5n7DYSUMYLVYIoy0Ln20cdmt4jzTFW7JYQ9uoHwA06Sdhs7PBoixglIXVdiW7v57MRjs+E3joaPxKOnbY230YLZufb+Pzy0EyPz5uGSY8G2CcW7yupFm0DbtodV3HZ+58ujh20LkaH7n2yc0OAAAAAAAAAAAAAAAATxlhNAAAANiSwZJ4VNsgwLL13klhtCyAMqnHacSrG73oV3sbHTd7jkcNYbTOCmG0ZeGzTV/j/c4gquR8muItWcyibdQPAJpk9/XxmWBRFjDKgqm7koVCm2KtcJ6OJq8Wl1/pXou9zv65HDObY0ZEjGblSNmyz0ltZPto+/s3rh8Ul58Oo5X/s2keRm7nV0a/GL9+/1eLY5+4/q3n9loBAAAAAAAAAAAAAMCTShgNAAAAtmRbQbNlEap3UqQqC6jMYhbH07vFsUF3GFXVPlJW3EfyHJ9MjyOyMMIKxzzv+F2n6sSgMyyOZcGKh2PlsMQ7KcYHwPlJg6ez08GiLIyWbb8r2fzgQX0/pvVkx2cDeRjtZu/2js/kodE0i+yW56WrOEjCwsfTfG67aJL8jra5rmwaRnv5zqeLy6uo4rkb37nRvgEAAAAAAAAAAAAA4GkkjAYAAABbMky+rD/XNmg27C7ZT3fzsMCTot8QKrg7faO4fBvhuGG3vI/R7DjqrIsW7cNo+51B4/ggOf4qsuchi59FRJwkY++kGB8A5ycNo50JFo3rB8X1LjqM1hQKPZmNdngm8NBr41eKyw/7t87xqPmcN4/sNn++aSOf27YNo5WDi4ufN/L5/PphtDcmd+If3f3J4thXXPlw3N77grX3DQAAAAAAAAAAAAAATythNAAAANiSQac5WNY2aNa0n361d+FRkF1qeqx3J68XlzdFS9rKwgsns+OoY1YcWyWM1qm6ja/zNh5Dto+TaTlYUdd1nEzLUZfhkvc2ALTRq3rF5WeDRWdDaY+2v7xhtFFyf4XzdDT5fHH5Ye/8wmhV1RRGK0fKln1OauMgiUc3RX8XZWG0XoswWr1BGO1zr/9YTKN8TXvuxotr7xcAAAAAAAAAAAAAAJ5mwmgAAACwJcPky/oRqwXNhp18P9sIZj1Jmp6zN6flMFoWNVtFGhWbHadZhFXCaBHN57mVMNqK8Yhx/SCNNgwa3tsA0Fa/2isuXwwW1XWdBoz6FxxGa7p3n7SMM8E2HY1fKS4/zzBak+z3oOnzTVvZPkbTcoztrPHsQXF5r7MQRkuib3W9XhhtWk/js3f+RnHs2f674yuvfHit/QIAAAAAAAAAAAAAwNNOGA0AAAC2ZFuhq6Z1txH9epL0O3kA5W4SRttGVCx7nh9GxdYLI5x13q/zoDMsLs/CaCezUbqvYbIvAFhFFjwd14+CRbOYRp3ca9tGZs/LoJvfD4XRuAhHk1eLyw/7FxVGK88ns3npKvLob7sw2qQuB4BPX1eSMNqa8/+ff/On4s7k88Wx5258Z3Sq7lr7BQAAAAAAAAAAAACAp50wGgAAAGzJtkJXg27DfhrGnkZNAZS7k3IYbRtRsey1PJmO0jBCVa32Z5bGkN4WXudhpxyPyMItTVGJd1qQD4Dz0at6xeWLwaJxPW7Y/mLDaL2qH/1qrziWhUfhvIym99IQ2WHvYsJomW18hsnm521/9ybJtaW/cF2pkjDaumHkl+98OjnmXnzi+reutU8AAAAAAAAAAAAAAHgnEEYDAACALelXe9GJbnFs0Bm23k9TYK1p7GnUFEB5c1oOo20jKpbFG5riYVlGITPslsNlEXnUbBVZzGw0LccjsrDGw/N5Z73vADgf2X19Uo+jrh+GhyazyxtGi8jndFl4FM7La5NX0rGb/dvndtw8Hpbbxlwymx9P6nGMZw+Wbj+uy+u0ua6sk0X7rfu/Hv/8+OeKYx+59sm42n1mjb0CAAAAAAAAAAAAAMA7Q++iTwAAAACeFlVVxbB7EPemdx8bWyXWtVftRyc6MYvZY2NZ7Opp1a/20rE3JneKy7fxHGXxhtJr8shqkYimWN7+CiG9Vfd/b3a3+B69M/58w/kMNj4fAMgCRHXUMYtpdKMXkzoPo/U7Fx9GG3auxN1CnPX1yVHx/grn5bfu/3pxeRWduN67eW7HXSeMtpX5ecPnqdcmr7wdGht0htGtHv/Pn5N6Utx28brUqcr//6TGswcr/37/nTv/Tzr23I0XVtoXAAAAAAAAAAAAAAC80wijAQAAwBYNOuUw2ioxgKqqYtA5iOPZm4+NZcGup1WvEDWYu1+fFJdv4zkadq6svE1nxUhEdp771SC6VXfl4z+2/275MfzS8c/Hf/LL/17r/Qw6w+hs4XwAoN/Jg6fjehzdqjmM1jQv2JUsPPojr/xw/MgrP7zbk4GC673Drcwlt2m4hehv0/z8h/6/P/32v/erQXzFlQ/H977nT8dB92pEREzradRJ4DgLNi767Os/Gp99/UdXPOOyLx58KD4w/NBW9gUAAAAAAAAAAAAAAE+r8v/rcwAAAGAtWexqlTBaRMSwu539POk6VTc6K/75IguWnP8+Vg2jleMOg+S1X9W2InrvtPccAOenKWw2mT0Moo0bw2h5WG1XtnWfhvNy2Lt10afwmMEa0eGz2oaL79cn8Y/e/Mn4n3/jv3l7WVNwsb8QRqtWnM+v4/kbL5z7MQAAAAAAAAAAAAAA4EknjAYAAABblEWkVo1Upft5B8Y4eguxgjaG3S2EF9bYx6ohhSy+tq0Q2bb2s63AGgA03dPn4aK2AaOL4r7IZXfYP98w2jrxsGF383DxfmcQ1Qr/WfNfjP5JfH78OxERMa4fpOudvi6dbxjtSvdafOTaJ8/1GAAAAAAAAAAAAAAA8DQQRgMAAIAtut1/T3H5s/13r7SfW8l+bq24n6fBqs/dquuX7FeDuNq9vtI2N/u3V1r/9t75vsbZe3FV23g+ASAiYq/aT8fu1ycR0RxGWzWWeh7eiXMxnizv2Xv/ue6/V/Xj2grz5H61F9e6NzY+bqfqrPz799sPfiMiIib1JF1n8bry7Irz+VV9w/Vvi35n71yPAQAAAAAAAAAAAAAATwNhNAAAANiijzzzyceW9apefO21j6+2n2uP72ev2o/ffeWja5/bk+rD1z7Ret2bvdvxwcGXbnzMqqriI9e+sfX6Hxh8KA77t1Y6xlde+UjsV4PHlpde+3V8cPilcbO3edzho8980xbOBgAiBp2DdGw0PY6IiHFjGK239XNa1e+59o1RRXXRpwFFVXTiY888d77HqKr42qvt5+dfc/XjsdfJo4irWHWefDJ7eF2ZzNoFF7/m6tef2+/3oHMQ33Lj3zqXfQMAAAAAAAAAAAAAwNNGGO0dpKqqYVVVn6iq6k9UVfUXqqr6waqq/mxVVX+oqqoPVVW1lW97VFXVr6rqm6uq+qNVVf3Fqqr+dFVVv7+qqg9sY/8AAACX2Vdc+XD84Xd9Xww7VyIi4nr3ML7/fT8Yz/bfvdJ+PvrMJ+P33fqjMegMI+Jh8OvPvv+/jGu961s/58vuxWe/O77pxneeihaUvG//A/EDX/iXolNt588df+D2H4+PXXs+OtFtXO9Lhl8e3/++H1x5/wfdq/EDX/iX3n5v7FeD+K5b3xMff+ab1zndx3SqbvzAF/5QvG//A2ttv18N4t++9b3xsWvnG9cA4J1jvzNIo0NvB4ySMFonOtGpmu/Ju/DB4ZfFH33Pn4sr3WsXfSpwytXu9fi+9/2n8e699537sf7gu/5kfPTaN0U38lhhFZ346qtfF9/znj+1teP+m7f+cHzy+qdaRxLnwcXsuhIR0e88+ozxoYOvjH/3PX8mrnaf2exEz7jRezb+w/f+xbjRf3ar+wUAAAAAAAAAAAAAgKdVu28O8ESrquoTEfEfRcTvi4i9hlV/o6qq/y0i/oe6rl9b4zi3I+KHIuIPRcTNZJ2fiIj/vq7r/3vV/QMAADwpnjt8IT5541NxZ/JaHPZuxbod6k89+wfiW2/+3nhjchQ3es+uvZ8nXafqxh959/fHv3P7j8cr49+Mun58nau9Z+JGr/hRdG39Tj/++Hv/4/gjs++PVx/8dnGd673DjWJ1Hxx+afylD/5PcWfy+XimdyO6LSMPbb1r773xgx/4y3Fn8lq8OXmj9XadqhPv3nvv1s8HgHe2TtWJ/c7w7QjaotGSMFq/avrT9m59/Po3x8eeeS5eGf9mjGd5cAl2Za+zF7f7X7Czzwv9Tj/+xHv/QpzMRuk8+dn+7Rh2r2z1uN2qG9/znj8Vf/Bdf/LU54L/9V/9d/E743/12Prza824fpDu82x8+RPXvzU+/sy3bO33e7+zH8/23721eDMAAAAAAAAAAAAAALwT+HbrU6yqql5E/OWI+FMR0ebbMO+LiP88Ir6vqqo/Vtf1j65wrBci4ocj4l1LVv2GiPiGqqr+j4j4vrqu77U9BgAAwJOkU3XjZv/2xvvpVt047N/awhk9+fY6+/G+/Q/s/LiDzjDePzi/41ZVde6v8Y3eza2H4wBgHcPOQTGMdrIkjHY2XnTRHkZE33fRpwEX6rznyZmznwuu9a4Xw2iPgouTdF+la4vfbwAAAAAAAAAAAAAAuFjCaE+pqqqqiPg/I+IPFoZ/MSJ+ISJGEXE7Ij4aEYcL4++OiL9eVdXvbRNHq6rqmyPir0XE3sLiOiJ+JiJ+JSJuRMSHI2LxW97fGxHPVFX1++q6nrV8WAAAAAAAPMEGnYPi8nnAaDzLwmj+cwZQNuxcKS5fFlyMuHzRRQAAAAAAAAAAAAAAIKJz0SfAufkP4vEo2mci4qvquv7yuq7/QF3X31vX9aci4l0R8Sci4vWFdfci4q9WVXW96SBVVb0/In4kTkfRPhcRX1nX9Ufruv7ut47x/oj4cxGx+O2T74qI/2qNxwYAAAAAwBNomITRTqbNAaNeR7wIKBt0hsXloyVhtE50olt1z+28AAAAAAAAAAAAAACA9QijPb3+szM/fyYivq2u639ydsW6rid1Xf+ViPi2iLi/MPSuiPj+Jcf5oYg4XPj5J946zi+cOcb9uq7/x4j47jPb//mqqr54yTEAAAAAAHgKDLrlMNqygFGv2isuBxh2rhSXz4OL4/pBcbxXCS4CAAAAAAAAAAAAAMBlJIz2FKqq6qsi4gNnFv9AXSffKHtLXdc/HRH/y5nF39VwnA9FxL+/sOhBRPyxuq5PGo7x1yLiry4s2o+I/6LpvAAAAAAAeDoMO+Uw2snbYbRJcbxf9c7tnIAn26A7LC4fLbmuCKMBAAAAAAAAAAAAAMDlJIz2dPpdZ37+tbquf7bltn/9zM8falj3eyKiu/Dzj9R1/S9aHOO/PfPzd1dVNWhzcgAAAAAAPLkGneaA0bh+UBwXMAIyeXBxFBERk+T/b1DfdQUAAAAAAAAAAAAAAC4lYbSn05UzP//6Ctv+2pmfDxvW/f1nfv4rbQ5Q1/UvRMTfX1h0JSI+1WZbAAAAAACeXMPO2T9fP7QsYCSMBmQGSRhtHlxMrysd1xUAAAAAAAAAAAAAALiMhNGeTr915ufBCtueXfe10kpVVb0nIr5mYdEkIj63wnH+7pmfX1hhWwAAAAAAnkCDzrC4fDS9FxERk3pSHBdGAzJZGO3krTDaePagOO66AgAAAAAAAAAAAAAAl5Mw2tPppyLi/sLPX15VVfnbZo/7SGFfJb/7zM8/V9f1vZbHiIj4iTM/f+UK2wIAAAAA8AQadq8Ul5/MRhERManHxXEBIyAzzMJo04dhNMFFAAAAAAAAAAAAAAB4sgijPYXqur4bEf/7wqJBRPzJZdtVVdWNiD/z/7N370G2ZXV9wL+/3af7njN3YAaZGWAQGRkUmBJ5WoIgD8dIElO+5ZEyajQ+sICglq8KAYZoKkS0EsoiRKPySAoJQQQJhDg8FA1ItBBmBJIBh3dgiscwj3vvzNzbK390X+6hp0/3OX37nN2n7+dT1XX2Xnvtdb63qFpVQ+/+7i3DL58w/Yot5x+eOuCGj+yyHgAAAAAAh8yw2/4dHsfXN967cUe7fdvrqwqMgAmGK9sXo93WTmS9nZpYuGhfAQAAAAAAAAAAAACAg0kx2uH1y0k+Onb+b6vq2ydNrqrVJL+d5GFjw29L8toJt9x/y/nHZ8z3sS3nd6+qu824BgAAAAAAS2TUHd12/MT68SSZWGA0UGAETDDqti9GSzb2FvsKAAAAAAAAAAAAAAAsF8Voh1Rr7QtJnpjkvZtDoyRvqapXV9UPVtWDq+r+VfWoqvrZJNck+bGxJd6T5Adaa23CV1y45fyGGfPdkuTEluELZlkDAAAAAIDlMuxG247ftn486209J9dPbntdgREwyXCHYrTj68dyh2I0AABgBlV1v6p6SlX9elW9o6puqqo29vPRvjNuVVXnVdVHtuRsVfWyvrMBAAAAAAAAAMBeDPoOwPy01j5aVd+c5EeT/GSSRyR58ubPJJ9P8ptJfr21CX8psuH8LefH9xDxeJLh2Pld9rDGV6iqS5JcPONtl5/t9wIAAAAAsLvRytFtx1tabls/kZOTCow6BUbA9kY7FKOdWD82eV9RjAYAAGyqqick+ZUkj0zyVf2m2ZNfS3K/vkMAAAAAAAAAAMB+UYx2+K1s/tyWpCWpHeZ+Islzk/zBLqVoyZ2L0U7sIdvxJHfbYc29+Jkkz9uHdQAAAAAA2GfDbjTx2vH1WycWGK0qMAImGO5QjHb81ORiNPsKAAAw5qFJvqPvEHtRVY9K8qy+cwAAAAAAAAAAwH7q+g7A/FTVY5J8MMl/SPKY7P6/932S/H6Sj1fVP5vx69rsCfd0DwAAAAAAS2rUHZ147cT68dzRbt/22kCBETDBarc6cY84sX7MvgIAAJyN25J8pO8Qk1TVWpLfzZnnAm/uMQ4AAAAAAAAAAOwbxWiHVFVdmeTqJJeNDX8qyS8neViSC5OsJblnkr+f5OVJTm7OuzjJ71TVb1dVTfiKW7acj/YQc+s9W9cEAAAAAOAQGXaT/6/k4+vHcrKd3PaaAiNgJ8PuvG3Hj68fy8l1+woAADCVO5L8TZL/lOSnkjwiyV2SzPqC0UV6bpIrNo8/luQ/9pgFAAAAAAAAAAD2zaDvAOy/qro4yauSDMeG/zjJD7XWbtoy/bNJ3pLkLVX10iRvTHL3zWs/kY03Xr5wm685qMVoL0nymhnvuTzJ6/fhuwEAAAAA2MFqrWUlg5zKnYuKTqwfy8l2x7b3DcqvM4DJRt0ot5z60p3GT6wf32FfUYwGAAB82cuTvLS1dmLrhcnvFe1XVT0kyS+NDT09yTf3FAcAAAAAAAAAAPaVvyQ6nH4uycVj5x9K8uTtHtwa11p7d1U9JcnVY8PPq6rfb63dsGX61r8uuTgzqKrzc+ditBtnWWM7mzm3Zt0ty9l+LQAAAAAAU6iqDFdGufXUzXe6dvzU5GK01VqbdzRgiQ2787YdP37q1sn7SqcYDQAA2NBa+2LfGWZRVYMkv5czz3++qrX25qpSjAYAAAAAAAAAwKHQ9R2AufjBLecv3K0U7bTW2luTvHNsaJTkqdtMvW7L+X2nj7ft/C8s2wNmAAAAAADMbjShwOjE+rHcMaHAaFAKjIDJJhWjnVg/njva7dtes68AAABL7BeSPHzz+AtJnt1jFgAAAAAAAAAA2HeK0Q6Zqjqa5PItw2+dcZmrt5xv9ybJD245v/+M33G/LecfmPF+AAAAAACW0KQCo+Prx3JSMRqwB6OVyYWLJ9vJba/ZVwAAgGVUVQ9I8ryxoZ9vrd3QVx4AAAAAAAAAAJgHxWiHz4XbjH1mxjW2zr9omznXbjn/xqra/q9OtveYXdYDAAAAAOAQGk0oRjuxYzHaYJ6RgCW3t8JF+woAALBcqqpL8rtJjmwOva219rL+EgEAAAAAAAAAwHwoRjt8btxm7OiMa5y/5fyWrRNaa/8vyfvHhgZJHjvDdzxhy/mbZ7gXAAAAAIAlNbHA6NTkAqPVbm2ekYAlt5fCxdWyrwAAAEvnGTnzQtLjSX6qxywAAAAAAAAAADA3itEOmdbarUlu2jL8sBmXecSW889MmPe6Lef/dJrFq+qBSb55bOjWJP9zumgAAAAAACyz0coOBUbr2xcYDWp1npGAJTexcHH9WO6YUIxmXwEAAJZJVV2W5F+PDV3VWvtwP2kAAAAAAAAAAGC+Bn0HYC7ekeS7xs5/Msnbp7mxqu655d4keeeE6f8lyXOSrGyef19VfV1r7bpdvuaXtpz/19baiWnyAQAAAACw3BQYAfttNGFfOXHqWE7aVwAAgMPhd5Ic3Tx+X5Lf6CtIVV2S5OIZb7t8HlkAAAAAAAAAADicFKMdTq/OV5abPaWq/ntr7T/vdFNVHUnyyiTnjw3fkuQt281vrV1XVS9P8mObQ2tJXlZVV04qOquq707yo2NDtye5aqdcAAAAAAAcHpMKjI6v35r1nNr22qD8OgOYbLgyuXBxcjGafQUAAFgOVfXjSb5983Q9yU+01k72GOlnkjyvx+8HAAAAAAAAAOCQ6/oOwFz8QTbeCnlaJXlFVf37qrrXdjdU1ROTvDtnHqA67YWttS/u8F3PSzJ+/VuSXF1VD9yy/pGqemaS12y5/zdaax/bYX0AAAAAAA6R4YRitFtOfmniPYNanVcc4BAYdaNtx0/sUIy22q3NMxIAAMC+qKpLk7xobOjFrbX/3VceAAAAAAAAAABYBK9CP4Raa+tV9QNJ/iLJJZvDleRZSZ5RVe9P8ndJjif5qiQPS3LPbZZ6U5IX7vJdn6yq70vyliSn/4LkMUk+UFV/vfk9FyR5eJKLt9z+xiT/crZ/HQAAAAAAy2w0oRjt5lOTi9FWS4ERMNmwO7rt+In14+kmvCdK4SIAALAkXpLkws3jjyV5To9ZAAAAAAAAAABgIRSjHVKttQ9X1eOTvDLJI8cudUkeuvkz8fYkv5Pk2a21O6b4rndU1fcmeVnOlJ/V5vc+csJtr0ryE621U7utDwAAAADA4TFc2b4Y7ZZTN0+8R4ERsJNRN9p2/I52eyq17TX7CgAAcNBV1VOTfPfY0NNba7f2lWfMS5K8ZsZ7Lk/y+jlkAQAAAAAAAADgEFKMdoi11j5UVY9O8o+T/HSSRyUT/vpjw/Ekf5jkt1pr757xu95UVd+Q5KokT0lytwlT353kRa21186yPgAAAAAAh8Oo274YrWV94j2D8usMYLJhd3TitZa27bh9BQAAOMiq6qIkLx4belVr7c195RnXWrshyQ2z3FO102OLAAAAAAAAAADwlTzxf8i11k4meUWSV1TVBUkemeRrk1yY5EiSm5N8Mcm1Sa7ZnL/X77ohydOr6p8neUyS+ya5Z5Jbk3wqyXtba9efxT8HAAAAAIAlN5xQjLaTQa3OIQlwWIxWRjPfs1prc0gCAACwb16c5OLN4y8keXaPWQAAAAAAAAAAYKEUo51DWmtfSvLWBXzP7UnePu/vAQAAAABg+YwUowH7bNQdnfke+woAAHBQVdUDkjxtbOjfJTmvqi7b5dYLt5yfv+We9dbax882HwAAAAAAAAAAzJtiNAAAAAAAYGGGeyhGW+3W5pAEOCyOdKOZ71GMBgAAHGBb/yPnBZs/s/r+zZ/TvpQ7l6cBAAAAAAAAAMCB0/UdAAAAAAAAOHeMVmYvRhuU97wAk63UStbqyEz32FcAAAAAAAAAAAAAAOBgUowGAAAAAAAszLAbzXzPShQYATsbdbOVLq7W2pySAAAAAAAAAAAAAAAAZ0MxGgAAAAAAsDArNchaHZl6/qBWU1VzTAQcBsOV2YrRBrU6pyQAAABnp7X2N621mvUnyVVblnr5ljkX9vHvAQAAAAAAAACAWSlGAwAAAAAAFmrYTV9gtKq8CJjCaIZ9JUkGnb0FAAAAAAAAAAAAAAAOIsVoAAAAAADAQo1Wpi8wGihGA6YwS+FikgxqMKckAAAA26uqtuXnCX1nAgAAAAAAAACAg8gT/wAAAAAAwELNUmCkGA2YxmiGfaVSWfFrUgAAYExVfXW2f57ynlvOB1V12YRlbmmtfW4/cwEAAAAAAAAAwLnIE/8AAAAAAMBCzVJgpBgNmMashYtVNcc0AADAEvrzJPedYt69k1w/4drLk/zofgUCAAAAAAAAAIBzVdd3AAAAAAAA4Nwy7EZTz1WMBkxjtDJLMZp3RwEAAAAAAAAAAAAAwEGlGA0AAAAAAFioUXd06rmritGAKQy7WYrR7CsAAAAAAAAAAAAAAHBQeR06AAAAAACwUMOV0dRzFRgB0xh20+8rq7U2xyQAAMAyaq1dtoDvqDmv//wkz5/ndwAAAAAAAAAAwCJ0fQcAAAAAAADOLaPu6NRzB51iNGB3M+0rChcBAAAAAAAAAAAAAODAUowGAAAAAAAs1LAbTT1XgREwjdn2lcEckwAAAAAAAAAAAAAAAGdDMRoAAAAAALBQo+7o1HNXFaMBUxitTL+vKFwEAAAAAAAAAAAAAICDSzEaAAAAAACwUMNuNPVcBUbANGbZV1a7tTkmAQAAAAAAAAAAAAAAzoZiNAAAAAAAYKFGK0ennqsYDZjGqJtlXxnMMQkAAAAAAAAAAAAAAHA2FKMBAAAAAAALNexGU89VYARMY7Z9ReEiAAAAAAAAAAAAAAAcVIrRAAAAAACAhRp1R6eeq8AImMawO2/qufYVAAAAAAAAAAAAAAA4uBSjAQAAAAAACzXsRlPPXa21OSYBDosYiZDCAAAgAElEQVQj3TCVmmqufQUAAAAAAAAAAAAAAA4uxWgAAAAAAMBCjVaOTj13UKtzTAIcFl11OTJl6eKgBnNOAwAAAAAAAAAAAAAA7JViNAAAAAAAYKHW6kgqNdVcBUbAtEbdeVPNU7gIAAAAAAAAAAAAAAAHl2I0AAAAAABgobrqMuxGU81VYARMazh1MdranJMAAAAAAAAAAAAAAAB7pRgNAAAAAABYuGkLjFY7BUbAdEZTF6MN5pwEAAAAAAAAAAAAAADYK8VoAAAAAADAwk1bjDao1TknAQ6L4cq0hYv2FQAAAAAAAAAAAAAAOKgUowEAAAAAAAs3mroYbTDnJMBhMf2+ohgNAAAAAAAAAAAAAAAOKsVoAAAAAADAwg1XFBgB+2vYjaaaN6i1OScBAAAAAAAAAAAAAAD2SjEaAAAAAACwcKNOMRqwv4ZT7yuDOScBAAAAAAAAAAAAAAD2SjEaAAAAAACwcMNuNNW8VcVowJSmLVy0rwAAAAAAAAAAAAAAwMGlGA0AAAAAAFi4UXd0qnkDBUbAlIYr0xWj2VcAAAAAAAAAAAAAAODgUowGAAAAAAAs3LAbTTVPgREwrVE3bTHa2pyTAAAAAAAAAAAAAAAAe6UYDQAAAAAAWLjRytGp5ilGA6Y1nLoYbTDnJAAAAAAAAAAAAAAAwF4pRgMAAAAAABZu2I2mmqcYDZjWaMpitFX7CgAAAAAAAAAAAAAAHFiK0QAAAAAAgIUbdUenmrfaKTACpjOcshhN4SIAAAAAAAAAAAAAABxcitEAAAAAAICFG3ajqeYpMAKmNVqZshitW5tzEgAAAAAAAAAAAAAAYK8UowEAAAAAAAs3Wjk61TzFaMC0ht10xWirNZhzEgAAAAAAAAAAAAAAYK8UowEAAAAAAAs37EZTzVtVjAZMaTRlMZrCRQAAAAAAAAAAAAAAOLgUowEAAAAAAAs36o5ONU+BETCt1VpLl5Vd59lXAAAAAAAAAAAAAADg4FKMBgAAAAAALNywG001T4ERMK2qyqg7b9d59hUAAAAAAAAAAAAAADi4FKMBAAAAAAALt1prWclgxzldVtKVX2UA0xuu7F6MtqoYDQAAAAAAAAAAAAAADix/TQQAAAAAACxcVWW4MtpxjvIiYFajbud9JUkG9hYAAAAAAAAAAAAAADiwFKMBAAAAAAC9GHXn7XhdeREwq2F3dNc59hYAAAAAAAAAAAAAADi4FKMBAAAAAAC9GO5WjNYpLwJmM+xGu85RjAYAAAAAAAAAAAAAAAeXYjQAAAAAAKAXo92K0ZQXATPafV8ZpKoWlAYAAAAAAAAAAAAAAJiVYjQAAAAAAKAXQ8VowD4brthXAAAAAAAAAAAAAABgmSlGAwAAAAAAejHapcBotQYLSgIcFiOFiwAAAAAAAAAAAAAAsNQUowEAAAAAAL0Y7lpgtLagJMBhsfu+ohgNAAAAAAAAAAAAAAAOMsVoAAAAAABAL0YKjIB9ttu+smpfAQAAAAAAAAAAAACAA00xGgAAAAAA0IvhrsVogwUlAQ6L3fcVxWgAAAAAAAAAAAAAAHCQKUYDAAAAAAB6MVJgBOyz0Yp9BQAAAAAAAAAAAAAAlpliNAAAAAAAoBfDXQqMVhUYATMaKlwEAAAAAAAAAAAAAIClphgNAAAAAADoxWjXAqO1BSUBDovd9xXFaAAAAAAAAAAAAAAAcJApRgMAAAAAAHox3K3AqBssKAlwWAy70Y7XVxWjAQAAAAAAAAAAAADAgaYYDQAAAAAA6MVot2I0BUbAjEbd0R2vDzr7CgAAAAAAAAAAAAAAHGSK0QAAAAAAgF4MdylGW1WMBsxouDLa8brCRQAAAAAAAAAAAAAAONgUowEAAAAAAL0YrexcjDaotQUlAQ6LQa1mdYe9QzEaAAAAAAAAAAAAAAAcbIrRAAAAAACAXgy70Y7XBzVYUBLgMNlpb1lVjAYAAAAAAAAAAAAAAAeaYjQAAAAAAKAXKzXIWh2ZeH2gwAjYg1F3dOI1+woAAAAAAAAAAAAAABxsitEAAAAAAIDeDLvzJl5bVWAE7MGwG028phgNAAAAAAAAAAAAAAAONsVoAAAAAABAb0Yrk4vRFBgBe2FfAQAAAAAAAAAAAACA5aUYDQAAAAAA6M2wU2AE7K+d9pVV+woAAAAAAAAAAAAAABxoitEAAAAAAIDejBSjAftM4SIAAAAAAAAAAAAAACwvxWgAAAAAAEBvht1o4rXVToERMLsdCxftKwAAAAAAAAAAAAAAcKApRgMAAAAAAHoz6o5OvDYoBUbA7IY7FaPZVwAAAAAAAAAAAAAA4EBTjAYAAAAAAPRmuDKaeE2BEbAXo5XJxWir9hUAAAAAAAAAAAAAADjQFKMBAAAAAAC9GXVHJ15TjAbsxbCbXIxmXwEAAAAAAAAAAAAAgINNMRoAAAAAANCbYTeaeG1VgRGwByPFaAAAAAAAAAAAAAAAsLQUowEAAAAAAL0ZdUcnXlNgBOzFToWL9hUAAAAAAAAAAAAAADjYFKMBAAAAAAC9UWAE7Ldhd97Ea6v2FQAAAAAAAAAAAAAAONAUowEAAAAAAL0ZrRydeE2BEbAXo5XJxWgKFwEAAAAAAAAAAAAA4GBTjAYAAAAAAPRm2I0mXlNgBOzFsFOMBgAAAAAAAAAAAAAAy0oxGgAAAAAA0JsLBnfbdrxLl+HK5HIjgEnOX7lrugm/Bj1/5a4LTgMAAAAAAAAAAAAAAMxCMRoAAAAAANCbu6/eI/dau8+dxi8fPSjDbtRDImDZHemG+frzHnyn8UtWL81Fa/foIREAAAAAAAAAAAAAADAtxWgAAAAAAECvfuRez875Kxd8+fxug4vyQ/d8Ro+JgGX31Hv8dO6+esmXz8/rzs+PXfrzPSYCAAAAAAAAAAAAAACmMeg7AAAAAAAAcG77muHlueprX5KPHP9gulrJ/UdXZK070ncsYIldsnavPOeyF+f64/8nt7fb8vXnPTjDbtR3LAAAAAAAAAAAAAAAYBeK0QAAAAAAgN6NVo7mG85/ZN8xgEPkSDfMA48+pO8YAAAAAAAAAAAAAADADLq+AwAAAAAAAAAAAAAAAAAAAAAAAAAM+g4wi6p62+ZhS/K01toNe1znHkledXqt1tqV+5EPAAAAAAAAAAAAAAAAAAAAAAAA2JulKkZL8oRslKIlyfAs1hlurpWx9QAAAAAAAAAAAAAAAAAAAAAAAICedH0H2IPqOwAAAAAAAAAAAAAAAAAAAAAAAACwv5axGA0AAAAAAAAAAAAAAAAAAAAAAAA4ZM7VYrTB2PHJ3lIAAAAAAAAAAAAAAAAAAAAAAAAASc7dYrSLxo5v7S0FAAAAAAAAAAAAAAAAAAAAAAAAkOTcLUZ73OZnS/LpPoMAAAAAAAAAAAAAAAAAAAAAAAAAyaDvAGehzTK5qlaT3CvJdyT5F2OXrtnPUAAAAAAAAAAAAAAAAAAAAAAAAMDsDlwxWlWdmmZako9W1Z6/Zuz4DXtdBAAAAAAAAAAAAAAAAAAAAAAAANgfB64YLV9ZWrYf87bTNu//UJL/dhbrAAAAAAAAAAAAAAAAAAAAAAAAAPug6zvABG3O61eSv0ryj1prd8z5uwAAAAAAAAAAAAAAAAAAAAAAAIBdDPoOsI0/y+RitMdvfrYk70lyYso1W5LbktyY5INJ3t5ae+fZhAQAAAAAAAAAAAAAAAAAAAAAAAD2z4ErRmutPWHStapaz5nStKe01j6+kFAAAAAAAAAAAAAAAAAAAAAAAADAXHV9B9iD6jsAAAAAAAAAAAAAAAAAAAAAAAAAsL8GfQeY0VVjxzf2lgIAAAAAAAAAAAAAAAAAAAAAAADYV0tVjNZau2r3WQAAAAAAAAAAAAAAAAAAAAAAAMCy6foOAAAAAAAAAAAAAAAAAAAAAAAAAKAYDQAAAAAAAAAAAAAAAAAAAAAAAOidYjQAAAAAAAAAAAAAAAAAAAAAAACgd4O+A5yNqnpikm9L8rAklyS5IMnqjMu01trl+50NAAAAAAAAAAAAAAAAAAAAAAAAmN5SFqNV1ZOSvDjJ/ceH97hcO/tEAAAAAAAAAAAAwLSq6qIkt7XWbu47CwAAAAAAAAAAcHB0fQeYVVX9QpI3ZaMUbbwMre3hBwAAAAAAAAAAAFiAqrpvVb2iqm5M8tkkN1bVJ6vqV6tq1Hc+AAAAAAAAAACgf4O+A8yiqp6U5IWbp6fLzU6Xox1LcmOSO3qIBgAAAAAAAAAAAOeUqvqRJP9q8/TmJA9vrd02Ye43Jrk6yd3zlS9FvTTJryT5nqp6Qmvtc3OMDAAAAAAAAAAAHHBLVYyW5N9sfp4uRPtENorS3tha+3hvqQAAAAAAAAAAAODc87QkX52NZ/peukMp2iDJq5NctDnUtk5JckWS1yZ5/HyiAgAAAAAAAAAAy2BpitGq6vIkD8mZB6L+Msl3tNZu7i8VAAAAAAAAAAAAnHuqqkvy2LGh1+0w/YeTPCBfWYh2bZKT2XguMNkoR3tsVT2ltfbq/cwKAAAAAAAAAAAsj67vADN49OZnZePhqB9WigYAAAAAAAAAAAC9uCLJeZvHdyT50x3m/vjmZyX5UpJHt9Ye0lp7RJKHJ/lszpSmPX0OWQEAAAAAAAAAgCWxTMVol2x+tiTvba1d12cYAAAAAAAAAAAAOIddvvnZklzXWrtju0lVdc8kj9qc15L8amvtPaevt9ben+RZ2ShNqySPraq7zTM4AAAAAAAAAABwcC1TMVqNHX+4txQAAAAAAAAAAADAvceOr99h3uNypvTsZJLf22bO65J8afO4kjx0PwICAAAAAAAAAADLZ5mK0T41drzSWwoAAAAAAAAAAADg/LHjm3aY99jNz5bkXa21G7dOaK2dSvLesaH7n308AAAAAAAAAABgGS1TMdrfjh3fp7cUAAAAAAAAAAAAwOqU8x49dvyOHeZ9Zuz4rjOnAQAAAAAAAAAADoWlKUZrrV2T5NokleQRVXW3niMBAAAAAAAAAADAueqWseNtn+erqqNJHjo29Bc7rHdq7PjIWeQCAAAAAAAAAACW2NIUo236jc3PlSQ/32cQAAAAAAAAAAAAOId9buz4QRPmfHs2nvdLkpbkL3dY78Kx42NnkQsAAAAAAAAAAFhiS1WM1lp7eZLXJqkkv1hV/6DnSAAAAAAAAAAAAHAuunbzs5Lct6q+YZs5T938bEmuba3dtMN69x47/vw+5AMAAAAAAAAAAJbQUhWjbfqRJG9IMkjy+qp6QVVduMs9AAAAAAAAAAAAwP65NhsFZm3z/DeravX0xap6bJIfGLv+5kkLVdUgyRVjQ9fvb1QAAAAAAAAAAGBZDPoOMIuqeu7m4fuSfEuSi5L8iyQ/V1XvSvKBJF9Msj7Luq21F+xnTgAAAAAAAAAAADjMWmunqupVSZ6RjfKzK5O8v6r+OMkl2ShF65LU5vVX7rDcNyVZGzv/27mEBgAAAAAAAAAADrylKkZL8vyceXtkNo8ryXlJvm3zZy8UowEAAAAAAAAAAMBsfjXJP0ly183zByT5+s3j04VoLclrW2sf2GGd79n8bEk+3Fr74hyyAgAAAAAAAAAAS6DrO8A+OP3g1F7UfgYBAAAAAAAAAACAc0Vr7YYk35/kRM4UoX358ubYR5I8fdIaVdUlefLYve+YR1YAAAAAAAAAAGA5LGMxWu3jDwAAAAAAAAAAALBHrbW3JXlIklcnOZYzz+d9PslvJXlUa+3zOyzxXUnumzPP9L1pfmkBAAAAAAAAAICDbtB3gBk9se8AAAAAAAAAAAAAwBmttQ8neVqSVNVFm2Ofm/L265N879j5W/Y3HQAAAAAAAAAAsEyWqhittfanfWcAAAAAAAAAAAAAtjdDIdrp+e9L8r45xQEAAAAAAAAAAJbMUhWjAXCI3XhN8n9/Kzl1IvmaH0wu/c6kqu9UAAAAAAAAAAAAAAAAAAAAAAAsiGI0APr3mauTtz8paesb59e/InnwVcmDn9tvLgAAAAAAAAAAAAAAAAAAAAAAFqbrOwAA57jWkr965plStNP+9teSY5/sJxMAAAAAAAAAAPuiqi6sqvtU1df0nQUAAAAAAAAAADj4FKMB0K8b35fc9KE7j6/fnnziDxefBwAAAAAAAACAPauq76mq36uq66rqjiSfT/LRJH83Yf5lVfW4zZ9HLDIrAAAAAAAAAABw8Az6DnC2qmo1yaOTfGuSy5N8VZK7JElr7coeowEwjU//j8nXPv6a5AHPWlwWAAAAAAAAAAD2pKqelOTFSe5/emjKWy9P8idJWpLbq+rS1toX5xARAAAAAAAAAABYAktbjFZVR5P8bJJnJLl46+VsPCS13X1PS/Jrm6dfSPJNrbVt5wKwADdeM/na596V3Pb55MjdF5cHAAAAAAAAAICZVNVzkzw3G8/ubX1+r2WHkrTW2lur6oNJHpRkLclTkrx0fmkBAAAAAAAAAICDrOs7wF5U1Tcm+eskVyW5JNO/WTJJ/jjJ3ZNcluRhSf7efucDYAY3fWjytXYq+dQbF5cFAAAAAAAAAICZVNWzkjw/X/k84m1J/izJGzPd832vHjv+zn0LBwAAAAAAAAAALJ2lK0arqiuS/GmSr8tXvlny9Jsmd9RauyXJa8aGvn+/MwIwpba+czFaknzyjxaTBQAAAAAAAACAmVTV1yV5UTae42vZKET7xSR3b609Ickzp1zqDaeXTPKtVTXLy1IBAAAAAAAAAIBDZKmK0apqmI03SF4wNnxNkh9Pcr8kD8p0b5d8/djxlfsWEIDZHP9McurYznM+978WkwUAAAAAAAAAgFm9IMkgG8/tnUhyZWvtRa214zOu8/7N+5PkLtl4cSoAAAAAAAAAAHAOWqpitCTPSnJZNt4smSQvTvLw1trvt9Y+mjMPRu3m7ZtrVJKvrapL9jknwN7d+onkz5+cvO7eydWPTz7ztr4Tzc/xT+0+58QNye03zj8LAAAAAAAAAABTq6ojSb4rG8/itSTPaa29ay9rtdbWk3xwbOiBZ58QAAAAAAAAAABYRstWjPbMnClF+6PW2rM3H4iaSWvtliQfHRt60D5kAzh7J48lf/LY5OOvSY5/Ornhz5K3XZlc/8qktd3vXzbHpihGS5Kbr5tvDgAAAAAAAAAAZvWYJKNsvKD0WJKXnOV6nx47vvQs1wIAAAAAAAAAAJbU0hSjVdUVSe6djYeokuQXznLJj4wd3+8s1wLYH598Q3Ls43cef9cPJ3/01ckN71x8pnk6PmUx2o3XzDcHAAAAAAAAAACzumzzsyV5T2vttrNc76ax47uc5VoAAAAAAAAAAMCSWppitCQP3fxsSa5trf3dWa5349jxBWe5FsD++NirJl87/unk6scl17wg+ezbk7a+uFzzcmzKYrRPvXG+OQAAAAAAAAAAmNXFY8ef2Yf1ugnHAAAAAAAAAADAOWTQd4AZjD9Edd0+rDf+dsrz9mE9gLP3mT/Zfc41z9v4vPQfJt/6umRlbb6Z5un4/2fvvsPsLOv8j7/vaUlIIYUSCL1X6cIKCAKCggIWUHRXEVzLFt1V17KuhdV1159tXde2gmVVRBGkCdKb9F4iUhISkgAJ6ckkmUz5/v44MztnJqefM+fMmbxf13Wu8zz3/b3v5zuUk0nyzOd5sbS6xbdABKQ0sv1IkiRJkiRJkiRJkiSpVNn34I2rwX4zso5X1GA/SZIkSZIkSZIkSZIkSU2omZ6qOD7ruCtvVem2zDpeU4P9JKl67VNKr33xWnjuhyPXSz30lPjx270K1r80sr1IkiRJkiRJkiRJkiSpHK9kHe9Qg/0OyrO3JEmSJEmSJEmSJEmSpM1IMwWjLc063qoG++2WdbysBvtJUvVaxxevyTb3JyPTR730rC+9dvWfR64PSZIkSZIkSZIkSZIklWtu/3sCDk4pTax0o5TSocDWWUMPV9OYJEmSJEmSJEmSJEmSpObVTMFoL/e/J+CQajZKKc0A9s0aeq6a/SSpJiKga2nxumwrHoEVj41MP/XQazCaJEmSJEmSJEmSJElSk7ofWA0E0A6cV8VeH8s6nh8R86tpTJIkSZIkSZIkSZIkSVLzaqZgtLuBvv7jGSmlE6rY6zwyAWsAncCD1TQmSTXRtQx6Ostfd93BmVC1ZtS7ofRag9EkSZIkSZIkSZIkSZJGjYjoBX5P5l68BFyQUtqx3H1SSm8B3kUmYC2AX9WyT0mSJEmSJEmSJEmSJEnNpWmC0SJiBfBA1tCXUkopX30+KaVZwKcZvInqxojoK7xKkupgzTOVr33igtr1UU+960uvfeY7I9eHJEmSJEmSJEmSJEmSKvElMg88DWAqcFtKaf9SF6eUzgUu7l+fgA3At2vfpiRJkiRJkiRJkiRJkqRm0TTBaP2yb3g6CvhBOYtTStsCVwHTyNxEBfDN2rQmSVVa82zla5+8ALpX166XeiknGA1g2YMj04ckSZIkSZIkSZIkSZLKFhF/Br5D5n68AHYFHk4pXZRSOgXYZvialNKOKaXzU0r3ABcB47LWfyEiltTtC5AkSZIkSZIkSZIkSZI06jRVMFpEXAI82n+agPenlO5MKR1baF1KaWJK6UP9aw8mcwNVADdExF0j2bMklWzNM9Wtf+Gy2vRRT+UGoz39nyPThyRJkiRJkiRJkiRJkir1ceBGBsPN2oFzgWuBe/vHAEgpdQLzgP8BXp21BuB3EfH1ejUtSZIkSZIkSZIkSZIkaXRqa3QDFXg7mZulZvSfHw3cllJ6GXguuzCl9H1gL+AvGPpUyQQsAv6qTj1L0qZWPwPP/y9sWALbnZw5z2XaIdC9CtbOLbzffefDLu+C1nG173WklBuMtuj30NcNLe0j048kSZIkSZIkSZIkSZLKEhF9KaUzgO+RCUQbCDpLAyVZYxOyl2bV/Rj40Mh2KkmSJEmSJEmSJEmSJKkZtDS6gXJFxFzgTcDLDA062w44Jqs0AR8AjgfGD6tdCJwWEUvr1rgkZVv2IFz/apj9bzDnR/DHs2DBb3PXznozvOlpeP1dRTYNuOl46Oupdbcjp9xgtO6VsOSOkelFkiRJkiRJkiRJkiRJFYmIDRFxHvAOYDaDoWiblDI0EG0O8O6IeH9ENNFNL5IkSZIkSZIkSZIkSZJGStMFowFExP3AocB1DH2q5MB79s1T2XMJuBF4dUQ8XodWJSm3J78E3atKq528F7S0wdavgTc/W7h22b3w/M+r769eejfkHj/6kvxrFl09Mr1IkiRJkiRJkiRJkiSpKhFxaUS8CjgR+A/gj8ALQCfQDbwEPAp8Fzgd2CciftWgdiVJkiRJkiRJkiRJkiSNQm2NbqBSEbEYOC2ldBjwUTI3Um2Xp3wVcDPwnYi4vU4tSlJu0QeLriq9fvKeWcd7wHFXw+1vzl8//xLY/X2V91cvfd0QvbnnJsyCnc6GF36z6dyq2SPblyRJkiRJkiRJkiRJkqoSEbcCtza6D0mSJEmSJEmSJEmSJEnNp2mD0QZExEPAewBSSrsBOwIzgA5gKbAYmB0RfQ1rUpKydb5Qeu24rWD6IUPHtjkO2iZBz9rcaxbfAhtXQsfUynush971+efaJsC0Q3IHo21cMXI9SZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIapumD0bJFxFxgbqP7kKSCFt9Seu0+H4eW9qFj7ZPh0G/A/R/MvSZ64MXrYJdzKu+xHnoKBKO1jM8f7LZx5cj0I0mSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJElqqDEVjKbRIaXUDhwN7ARsB6wFXgQeiYh5DWxNarzVz8B955dWu+V+sM/Hcs/t8QGYfhj84fDc8y/fNPqD0XoLBKO1TYD2PMFo3QajSZIkSZIkSZIkSZIkjQYppYEnBAZwTkQsqXCfbYFfDewVESfWoj9JkiRJkiRJkiRJkiRJzcdgtDEopfRT4L012m5+ROxS4nW3Bi4A3gFMz1NzN/DNiLisRv1JzeX+D5Ree/j3oLUj//z0w2DPD8Oz3990bu6PoXs1zHoz7PJuaGktv9daWf8yPPc/MOciWPcCzDodDv0m9G3Mv6Z1AnTkCUbbuBIiIKWR6VeSJEmSJEmSJEmSJEmlOp5MKBrA+Cr2Gd+/F1n7SZIkSZIkSZIkSZIkSdoMGYymYtaXUpRSeiPwU2CbIqWvAV6TUvol8MGI6KyuPamJdK+BV+4srXbGq2Hb44rXTTsk/9yC32Zei66CYy5tTJDY2nlww5GwIethwIuuyrwO/Vb+da0ToGNa7rnohZ5OaJ9U01YlSZIkSZIkSZIkSZJUkYRhZpIkSZIkSZIkSZIkSZJqpKXRDZQjpXRASumW/tfNKaViIVy59ti2f+3APnuNRK9jyGXFClJKxwNXMDQULYCHgEuBG4Glw5a9G/hVSqmp/huUqtK1DKKvtNoZR5ZWN2Wf4jULLoOl95S2X6098cWhoWjZHv7H/OvaJkHH1Pzz6xZW1ZYkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkafRptlCqDwLHA8cBGyMiT9pOfhGxGOjO2ueva9jfaPEJYNcKXmcN2yeAHxe6UEppB+ByoCNr+C5g/4g4PCLOjoiTgR2Aj5L5Zz/gzcCXK/j6pObUs6b02hlHlFY3ucRsx+d/Xvq1a6W3KxPKVq62ydDSBu0FgtFuOArCBw1LkiRJkiRJkiRJkiSNEW1Zxz0N60KSJEmSJEmSJEmSJElSwzVbMNoZWcc/q2KfgbUJeEsV+4xKEbE0IuaV+wJOGrbVrRExt8jlLgCmZZ3fDZwUEU8N66krIv4LOHvY+o+llHau4MuUmk93GcFo00sMRuuYVrwGYG7BjMORsfgW6Flb/rqO/kC0ji3z13SvghWPVNaXJEmSJEmSJEmSJEmSRputso47G9aFJEmSJEmSJEmSJEmSpIZrmmC0lNJuwA79p33ANVVsdxzVuxAAACAASURBVDXQ23+8a0ppp2p6GwtSShOAdw4bvqjImj2B92YNbQTOjYgN+dZExBUMDbUbB3yhvG6lJlVqMFr7FJiyV2m1Le1kMh6LKaWmxhZeUdm6gWC01vEwbqv8dcsfrmx/SZIkSZIkSZIkSZIkjTav7X8P4MVGNiJJkiRJkiRJkiRJkiSpsZomGA04oP89gKcjYm2lG/WvfTpr6MBqGhsj3g5smXW+Ari8yJp3Aa1Z55dHxLMlXOurw87PTimNL2Gd1Nx6SgxG2/VcSCV+PKeUCRArpq+rtP1qJfpg4VWVre2YNng86/T8dT0+HFiSJEmSJEmSJEmSJGkUiXKKU0rtKaWdUkrvBz6bNfVEbduSJEmSJEmSJEmSJEmS1EyaKRht56zjOTXYL3uPnWqwX7M7f9j5LyNiQ5E1bxl2/pNSLhQRTwH3ZQ1NBE4uZa3U1LpLCEbb9gQ48PPl7VtKMBrAytnl7VuNZffDhpcrW9s+dfD40K/nr+upOB9TkiRJkiRJkiRJkiRJJUop9eZ7ZZcB8wrV5li7AXge+CEwJWuvCp/GJ0mSJEmSJEmSJEmSJGksaKZgtMlZx6tqsN/qrOMpeas2Ayml3YHXDhu+qMiamcBBWUM9wF1lXPa2YedvLGOt1Jx68gSjTdwVTrgJTn0cXncDjJtR3r6lBqMtvKK8favxSjkfB8Ok1sHjjmmZsLhcejorv4YkSZIkSZIkSZIkSZJKlQq8Sq0r9or+Pf4M/HbkvhRJkiRJkiRJkiRJkiRJo10zBaOtzzquRZBZdtBab96qzcN5DL1J7eGIeLTImgOGnT8eEeWkFN097Hz/MtZKzak7TzDa+G1g5okw9UBoac1dU0hLicFonfPK37tSa57JPb7tiXDmosJrezcMPW+fnLuuZ235fUmSJEmSJEmSJEmSJKkSUbykKgl4EHhTRHSP8LUkSZIkSZIkSZIkSZIkjWJtjW6gDEuzjneuwX47ZR0vq8F+TSml1Aq8d9jwRSUs3W/Y+XNlXnpOkf2ksacnTzBavuCvUrWWGIy2rkggWS2tfjr3+Jb7ZYLgCtnqL4aet07MXddTThajJEmSJEmSJEmSJEmSKnQH+YPRjut/D+B+YEOeuuEC6AJWAk8Bt0bEndU0KUmSJEmSJEmSJEmSJGlsaKZgtBf63xNwYEppRkRUFGiWUpoBvCprqI5pQaPOG4BZWefrgYtLWLfHsPMXclblN3/Y+YyU0rSIWFHmPlLz6M4TjNZWp2C0l66r7jqlWng1LLk999zkvaClyC89s04det4+KXddz9rye5MkSZIkSZIkSZIkSVJZIuL4fHMppT4GQ9PeERHl3kcmSZIkSZIkSZIkSZIkSUM0UzDavWSeENlBJhztb4F/rXCvvwFa+o97gLuq7q55nTfs/LKIWFnCuqnDzpeUc9GIWJtS2gBkJzptCVQVjJZS2gbYusxlu1dzTalk+YLR2qsMRmsZV3rt6mdgyl7VXa+QlbPhjtPzz0/ZO/M+9VWw8vEcBQmmHTp0qHVi7r16OitqUZIkSZIkSZIkSZIkSTWVGAxHkyRJkiRJkiRJkiRJkqSqNE0wWkR0pZTuBE7qH/pESul3EfFEOfuklA4A/onBG7HuiojNMl0npbQ18OZhwxeVuHzSsPP1FbSwnqHBaFWmQwGZ0Lsv1GAfqfZ68gSjtVX5n370ll57zd5wTh+kVN0185l/cf65lnaY8erM8azTcwejvX3Zpr21D/+46deztrIeJUmSJEmSJEmSJEmSVCsXZB2X8kBOSZIkSZIkSZIkSZIkSSqopdENlOnr/e9BJpjrupTSUaUuTim9GrgWmEjmKZXZe26O3gO0Z53PAW4vce3wpKINFVx/eJhanvQjaYzozhOM1l5lMFpfmf/73XQcbFhS3TXzWfFo/rltjoeOLTPH+38GtnvD4FzrFnDsZdAxbdN1bRNz72cwmiRJkiRJkiRJkiRJUkNFxAVZr9WN7keSJEmSJEmSJEmSJElS82uqYLSIuAG4jUyoWQDbA3eklC5KKb06pZSGr0kZR6SULgTuBHYY2A64MyKurU/3o9L7hp3/OCKiwr0qWVfptaTm1DNCwWi9ZQajvXInXH8kdM6v7rrDda+BFwt8pO73ycHjti3g+Gvh1CfhddfDmQtgx7fmXteWJzNx+UNQ8UeWJEmSJEmSJEmSJEmSqpVSaqp7ECVJkiRJkiRJkiRJkiSNfm2NbqAC7wQeBrYjE6zVBpzb/+pMKT0NrOifmw7sBQyk6gwEqiVgAXB2HfseVVJKRwH7Zw31Aj8tY4u1w84nVNDG8DXD96zE94BLy1yzO3BlDa4tFdadJxitrc7BaACd8+COt8AbH67u2tk9XL5t/vnpR8DMk4aOpQRT98+8CmmbmH9u1ZMw9cDS+5QkSZIkSZIkSZIkSVItvZBS+hFwYUQsanQzkiRJkiRJkiRJkiRJkppf0wWjRcSSlNIbgKuAXcgEnUEm7GwScNiwsf9bymAo2nPAGRGxpB49j1LnDzu/LiJeLGP9qAxG6/93Wta/15RS8SKpFnryBKO1NyAYDWDFI/DyLTDzhNzzfb0QPbBxOfT1wLitgIDoha5lmZqWdpiwPdx+OvSuz3+tAz9fWY8A7VPzzy2+zWA0SZKkRupeDa0ToaW10Z1IkiRJkiRJkqTG2B74PPDZlNI1wA8i4oYG9yRJkiRJkiRJkiRJkiSpiTVdMBpARDyZUjoM+C5wNtDCYBjakNKs4wT0Ar8EPhoRq0a80VEqpTQReMew4YvK3Gb4P7+ty+xhEpsGo60sswepuXTnCUZra1AwGsAtJ8Lu74fD/xtaxw2OL7gC7nxLdX1lm7B95Wu3OTb/XE/VeYqSJEmqxJo5cPe7YNkD0DEN9v4oHPA5MHhakiRJkiRJkqTNVRtwBnBGSul54IfATyJiaWPbkiRJkiRJkiRJkiRJktRsWhrdQKUiYkVEvAvYD/gW8ET/VBr2AngM+Dqwd0ScuzmHovU7C8hOYloMXFPmHs8OO9+5zPXD65dHxIoy95CaRwT05AlGa68yGK2vimA0gDkXwsP/OHi+6s+1DUUDmFjuR0SWcTPyz1UTCidJkqTK9HXDzcfDsvuBgI3L4YkvwLPfb3RnkiRJkiRJkiSp/jaSuU9v4CGmCdgN+A9gQUrpFymlYxrVnCRJkiRJkiRJkiRJkqTm07TBaAMi4pmI+HhEHAxsCewJHNX/2gOYEhGHRsQnI2JuI3sdRc4fdv6/EdFT5h5PDTvfo8z1uw07/1OZ66Xm0rseoi/3XFuVwWgd0/LPvelp2Oms4ns8+31Y8Vjm+KmvVdfPcFP2LRxuVoqZJ+ce7+uqbl9JkiSVb8kdsG7hpuPzL65/L5IkSZIkSZIkqdG2Bz4JPMfgg0yj/3gccA5we0rpiZTS36SUqrxRRpIkSZIkSZIkSZIkSdJY1zTBaCmlmSml07Ne04fXRMTaiJgTEff3v+ZGRGcj+h2tUkp7AcOfwHlRBVs9Oez8VSmlLcpYf3SR/aSxpXtN/rn2Ku/3POgrucd3+SuYshcc8xuYelDxfa47GC5OMPfH1fUz3LGXV79H6/jc470bqt9bkiRJ5Xnq67nHX7mrvn1IkiRJkiRJkqSGi4jlEfH1iNgbeD1wOdA7MN3/noD9ge8AL6aUfphSOrT+3UqSJEmSJEmSJEmSJElqBk0TjAa8Ffhd/+uXQFdj22la5w07/2NEPF3uJhHxEvB41lAbmwauFXL8sPPryu1Baio9IxiMtv2p0JZjj13ePXi8199Wd41K7fMx2HKf6vfJG4zmLwWSJEl1t3F5ozuQJEmSJEmSJEmjUETcHBFvB3YEPg8sIBOKBpmQtARMBN4PPJBSui+ldG5KKc+NIZIkSZIkSZIkSZIkSZI2R80UjDaVzI1RCXggIjob3E/TSSm1Au8ZNnxRFVv+btj5+0rsYx/gyKyhTuCGKvqQRr+edfnnWidWt/eE7eCEG2DL/QfPj7wItj9lsGa38+Cgr1R3nXJtc3ztrtkyLvd434ba7C9JkqTC+nrgyS/D9X8By+7PXxdRv54kSZIkSZIkSdKoFBGLI+LLwK7A6cC1ZILRyHpPwBFk7l97MaX0rf77yiRJkiRJkiRJkiRJkiRt5popGG15/3sALzWykSZ2KrBd1vka4NIq9vsl0Jt1/taU0p4lrPvUsPPfRITpRhrbetfnn2ubUP3+Wx0Fpz0Jb18BZy6C3c8bOt/SCvt/Bt4VsM1x1V+vmJmvh5NuhdY8gWblas3zYOBePzokSZLq4t73weOfg2X3Fq4r9H2vJEmSJEmSJEnarETGNRHxJjIhaV8BXiYTigaZewETmYemfgSYnVK6NaV0VkqprSFNS5IkSZIkSZIkSZIkSWq4ZgpGyw5Dm9iwLprb+cPOL4mIzko3i4hngZ9lDXUAP00p5UkwgpTSGcC5WUMbgQsq7UFqGoUCIlprEIw2oGMqpFS4Zud31u56+Rx3VW33yxew1ttV2+tIkiRpU53zYd4vS6vtqfi3mJIkSZIkSZIkaQyLiAUR8S/ATsDZwM3DSlL/67XAJcCClNKXU0o717dTSZIkSZIkSZIkSZIkSY3WTMFoj5B5QiTAXo1spBmllLYFThs2fGENtv4CsCLr/DXATSmlfYZdf1xK6e+BS4et/0ZEzK9BH9Loli8YraUDUp0/ind9D0x9Ven1bWVkUU7aDc5cAK158xErk2+/3g21vY4kSZKGWjsPHvkUg78dL8JgNEmSJEmSJEmSVEBE9EbEbyPi9WTuA/wGsIzMX0YEgwFp2wKfAZ5LKV2eUjqmUT1LkiRJkiRJkiRJkiRJqq+mCUaLiBeAe8nc9LR3SslwtPK8F2jLOn8yIu6vdtOIWAi8FdiYNXw08KeU0gMppV+nlP4ALAD+C2jPqrsG+Fy1PUhNIV8wWuuE+vYB0LYFnPIAHPqfhet2OhuO+gmcMPwBvVm23A+Ovw72/Sc45Bvwxkdgix1q2y9Ay7jc431dtb+WJEmSIAKe+BJcvTu88OvS1xmMJkmSJEmSJEmSSjcF2BLIfmJeZL0AWoEzgNtTStellHavb4uSJEmSJEmSJEmSJEmS6q2teMmo8jXg8qzjMxrYS7N537Dzi2q1cUTcllJ6C/BTYOv+4QQc3v/K5VfAX0dEb636kEa1nlEUjAbQ2gH7fBR2OgtuPBo65w2df+2VsMPpmeOVs/PvEwHbvyHzGkmt43OP924Y2etKqo3u1TD/N7DmGdj6WJh1GqSmyeeVpM3T0nvgic+Xv65nbe17kSRJkiRJkiRJY0ZKaQJwDvBBct9bloDu/tcWDAakJeAU4LGU0jsi4vd1aFeSJEmSJEmSJEmSJElSAzRVIkVEXAH8mMxNTm9KKX03pdRs4W51l1I6Gtgna2gj8ItaXiMirgUOAH4ArChQei/w9oh4V0R01rIHaVTrHWXBaAO22B7e/ByccDPs9xk4+tfwtmWDoWgAbYV6jAJzNWQwmtS8NiyBG4+B+/8anvoa3HE63Pd+iL5GdyZJKmTexZWt6/G3eZIkSZIkSZIkaVMppf1SSv8FvAj8iEwoWhqY7n+9BHwR2BnYHvg7YHb/XPS/tgB+k1LavZ79S5IkSZIkSZIkSZIkSaqfZgwV+yCwBvgo8CHguJTSN4CrImJZQzsbpSLiLgZvIhvJ6ywBPpxS+ihwNJkb1GYCncAi4JGIeH6k+5BGpXzBaAVDx+qkpRVmnpB55VIwvK1OwWgt43KP93XV5/qSKvfsD2HlE0PH5v4E9vgAbHVUY3qSJBX34rWVrTMYTZIkSZIkSSseh9lfga6lMP0QOPCL0Dax0V1JkhogpdQBnEXmPr/XDAz3v0fW+W3A94DfRURv1hbfA76XUnoj8DVgv/7x8cA/kglOkyRJkiRJkiRJkiRJkjTGNFUwWkrplqzTNcBkMjc7Xdg/vxBY0j9XqoiIE2vWpIiIjcCtje5DGlXyBaMVDB0bJUZDj63jc4/3bqhvH5LK98Tnc4+/8FuD0SRpNOusMNPaYDRJo0FfL0QPtOYJ2ZYkSZIkjZzVz8INRw7+Pd7im2HxrXDK/ZBaGtubJKluUkp7knkA6nuB6QPDZMLQov94LfBz4LsR8VSh/SLiupTSrcAfgUP7179+ZLqXJEmSJEmSJEmSJEmS1GhNFYwGHM/gkyJh8CapgadI7tj/CkozcLOVJI2ssRqMFnX6CG3J88PsfV31ub6k2ptzERz69UZ3IUkaLgKe/3nl63sNRpPUQH3d8PAn4PmfZn4Af7tT4KifwLgZje5MkiRJkjYfj35q04cbLX8IXroetn9jY3qSJNVFSqkVeAvwIeB1A8P975F1Phv4PvC/EbG21P0jYkNK6d+BS/uHdqy6aUmSJEmSJEmSJEmSJEmjUrMFo+VisJmk0a+Zg9FaOgpM1ukjuHV87vF1C+tzfUmVib78cx1T69eHJKl0L90A97638vXdJf/8kiTVRgSsnQOrn4FHPwmrZg/OLboa7nwbnHRbw9qTJEmSpM3KxlWw8He55xbfZjCaJI1RKaWdgQ8A5wHbDAyTualk4MGnvcAVwHcj4vYqLvenrOM8T9mTJEmSJEmSJEmSJEmS1OyaMRgtFS+RpFGmp4mD0VKBj91CoUe1lC8YDeCJL8EB/1K4T0mN8dz/5J8zGE2SRqdnvlPd+t7O2vQhSaXo7YL73g/zfpG/ZsntmdC0KXvVry9JkiRJ2lw9/vn8cwsuh0O+Wr9eJEn1NIfMPX0DN24MPGUvAS8B/wP8T0S8VINrrRt2DUmSJEmSJEmSJEmSJEljUFMFo0VES6N7kKSK9DZxMFpBdbrPdNzW+eee+Dxs93rY6qj69CKpNF3L4YEP559v37J+vUiSCls5GxZeARuWwIu/L23N9MNg+UObjvcYjCapjuZcWDgUbcBLNxiMJkmSJEkjbc1z8Ox/Fyio0wOXJEmN0ELmBpJgMCDtDuC7wO8iomcErpkwHE2SJEmSJEmSJEmSJEkas5oqGE2SmtacH+Ueb9uivn3UWtTpHtPph0DbxPxBG8//wmA0abRZeGXh+baJ9elDklTYgivgrrOhr7v0Ncf/AZ79LmAwmqQGm3dxaXWd80a0DUmSJEkSmd+jRYHws8550NsFrePq1pIkqa4SsBb4OfC9iJg9EheJiPlkgtgkSZIkSZIkSZIkSZIkjWHeJCRJI617bf651gn162NE1CkYrXU8bH1s/vlnv1ufPiSV7tnvFZ7v3VCfPiRJ+UUfPPT3ZYSiJTji+7D9KfkDLg1Gk1RPS+8urW79opHtQ5IkSZJU/IEp0Qdrnq1PL5KkensK+HtgVkT87UiFokmSJEmSJEmSJEmSJEnafLQ1ugFJGvNeuTP/XPvk+vUxEmaeVL9rTZhZv2tJqs7838DyBwvXGJwjSY23+mlYt7C02ld9Gfb/DKT+fPW2SbnregqEAktSLXUtK7121VP55/p6YeOKzHH7pEwwtyRJkiSpPJ0LYMXDxetWPwVTDxj5fiRJdRUR+ze6B0mSJEmSJEmSJEmSJEljS0ujG5CkMW/xLfnntn5t/fqoxt4fzTP+kfr10DGj8HznC/XpQ1Jxs79SvMZgNElqvGX3lV67/z8PhqIBtE3MXefnu6R6Wf1M6bUrH4NLp8Kjn4bejZmx3o1w/4fhsulw+daZ16VT4OYTMz/QL0mSJEkq3cIr88+1tMOs02HfT8LkPevXkyRJkiRJkiRJkiRJkiRJkppWW6MbkKQxLfrgqa/nn595Uv16qcbeH4UFv4N1WeFju50LW9bxie7jtio8f/2R8NaX6tOLpPw2rsgETxTTu27ke5EkbaqvN/M53dcN976veH3HdDjhJkhp6LjBaJIabf2i8uq7V8GfvpoJRDvsm/DwP8BzPxha09edCTe//nA480XoWQPLH4It94cJM2vXuyRJkiSNNYvyBKNN2Rve9Of69iJJkiRJkiRJkiRJkiRJkqSm1/TBaCmlg4HTgWOB3YHpwGQgImKTry+lNBWY0n/aFRGL69WrpM3Q0nvzz+3+19DaUb9eqjFpVzj5Hpj/K1jzHGxzHOx89qYBGSMpX/jGgA0vw7qFsMUO9elHUm6rny6tzuAcSaq/zvlw22mwanZp9ft8DPb6W5i026ZzbZNyr/HzXVK9dC2rbN3T34Ldz4e5P8tfs2EJXNKe+T1v9GXG9vk4HPK1+v4+WJIkSZKawcaVsPi23HM7nV3XViRJo1tKaQZwFnAksC2wHlgI3ARcHxEbG9ieJEmSJEmSJEmSJEmSpFGkaYPRUkoHAt8CXpc9XMLS1wG/7T/uTCnNjIh1te5PkoiAP38r//yMI+rXSy1ssT3s+/EGNlDCR/yL18Eefz3yrUjK78U/lFZncI4k1d99Hyg9FG2398Gh38g/ny+0tmdt+X1JUiU2VhiMBnDtASUUReb39QP+/A3Y6kjY6azKrytJkiRJY82qp+CPZ0P05J7f4cz69iNJqpuU0lbAq4CtgS5gLvBkxMCTBobUJuAzwD8DE3Js93fA/JTS30REiX/hLEmSJEmSJEmSJEmSJGksa2l0A5VIKZ0L3Esm5Gx4Uk5ssmCoK4EX+tdNBN5W6/4kiQi473xY8Nv8NT4hvTwTti1e0+fDg6WGWngVPHlBabU9nUODJiRJI6trObx8Y+n1+/5T4fm8wWgGX0qqk64qgtEqtfDK+l9TkiRJkkarZ38Iv98fVj2Ze36LHWHaIfXtSZI04lJKB6eUbgReAm4ELgYuAx4BFqWUPpVSas2qT8DPgC8BW5C5Zy/7fr+B812Aq1NK767H1yFJkiRJkiRJkiRJkiRpdGu6YLSU0tuAixj69MgELAAeZdOgtCH6n0r566yh02vdoySx9B6Y+5P88y3t0LFl/foZC2aelPnnVkjrFvXpRaq13g3w+Bfg5hPg3vfB8oca3VH5etbBHWeUsSCge9WItSNJGmbVnyieI55ly30Lz7cajCapwTYur/815/2y/teUJEmSpNFo/cvwyCco+OdNs06HVPD2DUlSk0kpvRO4HzgBaGUw1GzgtS3wFeCqlNLAfYkfBf6y/zgY/MVjYE1kvVqBH6eU9hvxL0aSJEmSJEmSJEmSJEnSqNZUwWgppe3IPEESBm+S+h6we0TsAry1xK2uHNgSOK5mDUrSgBevKzy/3Rvr08dY0jENdn1P4ZpiwWnSaBQBt54CT/4rLL4V5v4UbjoOlj3Y6M7Kc80+5a/pWlb7PiRJuW14qfTaPT5YvKZ9Uu7xnjWlX0eSquH3kpIkSZLUOAsuh561hWt2KOdhKpKk0S6ldATwc6CNoYFmAwbOE/AG4OMppcnAFxkahvYScA1wMfAHYAVDH4TaDnx7pL4OSZIkSZIkSZIkSZIkSc2hqYLRgM8DW5C5GaoPODsi/i4inu+fL/A44iEeALr7j2eklHatbZuSNnuzv1x4vmNqffoYa474QeH5znl1aUOqqSW3w5I7ho71dMIz/92YfiqxZg6sW1D+OsMsJKl+1j5fvGbA9qcVr2nfMvd47wbo7Sr9WpJUKb+XlCRJkqTGmf2VwvPtU2Abn1EnSWPM94FWhgagrSRzH96D/ccpa+4fgXOAKf3rlwFnRMQOEXF6RPxlRJwKbAN8ENjA4L1/J6SUdq/LVyVJkiRJkiRJkiRJkiRpVGqaYLSUUiuZm6UGbq76akRcVsleEdED/DlraJ/qO5SkLK3jC8+3G4xWkZa2wvOPfw6i1IxMaZR45ju5x5//WX37GNC7AZbeDyufKPz/U/TB8kdg+cPwxBcru1bX0srWSZLKV06A7HYnF68pFPTbvar0a0lSpbpXNua6i65pzHUlSZIkabToXgvrFxWu2f5UaO2oTz+SpBGXUjoSOJTB0LOlwFuBrSLiyIh4NbAV8BZgSX/dtsDH+rfoBk6KiKuH7x0RfRHxIzL3BQ4EqwGcNXJfkSRJkiRJkiRJkiRJkqTRrmmC0YCjyDxBMpG5Wer/VbnfwqzjHavcS5KGaptceL5QkISqs+yBRncglWfB5Y3uYNArd8E1+8INR8K1r4JbT4aNKzatW7coM/+HQ+EPh8G8X1R2vY3LqutXklS6tfNKqzt9DrSOK17XMS3/XK5fOySp1no6i9cc+K+1v+4z36v9npIkSZLUTB75p+I1O5w58n1Ikurpbf3vA/ftnRwRV0QMPmkrMq4ETgF6+of3IhN09ouIeLzQBSLiKuDW/msAHF7D/iVJkiRJkiRJkiRJkiQ1mWYKRtuj/z2AByJidZX7Za+fUuVekjRUX3fh+egpPK/8Dvr3wvNzLqxPH1ItrH6m8Hz0jXwP616EZ38A938YbjwGOucNzr18Ezz6z5uuuee9sGp2afuPm5F/rstgNEmqi1fugpeuK153+H/DpN1K27O9QNDvxpWl7SFJ1ehZV7zmwM/Bdm+o7XVL+TyVJEmSpLGkrxfm/wae+kbm/bkfFK5vaa/978UkSY12aP97AL+JiMfyFfYHoF3CYMAZwGUlXie7bv+yOpQkSZIkSZIkSZIkSZI0pjRTMNrWWccLarBfdtJIWw32k6SM7rXQXSQMYtIeheeV345vLTy//sX69CHVwqJrCs8//ImRvf7yR+C6g+GBD+f/Qaa5P4buNYPnG1fCkltL2//Af4U3PQ3bvDb3fNfS8vqVJJXviQsywZfFpDbY629L37dtIqTW3HMGo0mqh57O0urGbVX7a/s5J0mSJGlz0bsx82dLd70DHvlE5r2Y3c6Dji1HvjdJUj3tlXVc5C+5Abh22PnjJV5nIHAtAQWewCVJkiRJkiRJkiRJkiRprGumYLTIOs7z09dlmZ517E8zSqqdNc8Ur5lx+Mj3MVZN2avwfPTUpw81r+7V8Nhn4eYT4YG/gzXPNa6X9YsKzz/9LVhXpGa46IOnvwPX7AMXp8zr0U/DxlWb1j72z9D1SuH9+jbCpVMyU3VtCgAAIABJREFU+9z3flh4VeYaxUzeCw74Fxg3Azry3LPetaz4PpKkys25CJ74Ymm1O59T3t4pQcfU3HMbV5S3lySVK/qgd11ptTNeXfvrryz15zglSZIkqck9/Z+w7N7S63d8Oxz81ZHrR5LUKNmJl0+XUD+8ptS/GM5+staUEtdIkiRJkiRJkiRJkiRJGoPaGt1AGbJTO7avwX4HZB2byiGpdlYXuQd062Nh6oH16WWsmn44LH8w91xfd317UXPp7YKbjocVj2TOF98CL/wGTr4HJu9e/3561havWXQN7PGBTADNgL5eaMmTE3v/h2DOj4aO/emr8MKlcNpsaB0PfT2ZIImXri+v3zkXZV6lOPCLgz2P2yp3zUa/BZOkvCKGfvaX6/lfZAItS5HaYM8Pln+N9mm5Qy67zR6XNMJ615deu/M5mZDIjcsL142fCa/5BdxyUvE9bzoOzumr7nNakiRJkkar7L+DmPuT0te9bRmMm168TpLUjCZlHed4ItcmVmefRMSGEq+TXdde4prNSkppArAvsA+wNZl/N2uB5cCTwBMRPlFQkiRJkiRJkiRJkiRJza+ZgtFe6H9PwCEppfaIqCj9JqW0FzAra+jxapuTpP+z+s/55/b8Gzjka/XrZazq68o/t2p2/fpQ83nx2sFQtAFdr8BzP4RD/l/9++npLF7zwIcyL4CdzoJlD8KGxTDzRDjyQhi/TWau8wW47dT8/w+snQu/nlCbvov5i1/ALucMno+bkbuua2nucUnanEUfPP65zK9NvRth1pvhsP+E8VuXsUdkQjFLsc3xcNCXYeujy++1Y2ru8Y0Go0kaYaV8Hz1g/Fbwhofg3vfCkjvy1237usz32G94EB77bPEQ4aV3V/bZKUmSJEmj1ZI74eGPwcrHYOrBsNffFf57z2w7vMVQNEka27KfENBbQn0pNaNWSmk34Ajg8P73Q4HJWSXzI2KXOvZzKHAmcALwagqHxnWmlH4NfDsivCdSkiRJkiRJkiRJkiRJTaul0Q2U4R5gPRDABOCcwuUFfSTreHFEPF1NY5I0ROe83OM7vg2O+C60bVHXdsak3gLBaBsWwyv3ZEJFpOGe+2Hu8acaFFhYTqADwAuXQufz0LsOFl0NNx6bCb/p64HrDh4dwYDH/BZ2fffQsbzBaMtGvh9JajZPXACzv5L5jOxZA/Mvhnvek/m8L9XGFbDqydJqT7q18mCf9im5x7tXV7afJJWqZ1159ZN2gZNuhzc8DLu/H1qHBQZ3TIP9Pp05nn4YvO4PcMJNhfec+9PyepAkSZKk0ahnHbx8Czz1TbjptbD8QejrhuUPZAKmS7Xl/iPXoyRJdZBSOj6ldH1KaRkwB7gE+ARwHEND0erZ0/iU0hzgIeBzwNEUDkUDmAicBzycUvqPlFKxekmSJEmSJEmSJEmSJGlUamt0A6WKiK6U0s3Am/qH/i2ldFVErCxnn5TS0cAHyQSsAVxewzYlCdYtyj0+cef69jGW9RUIRgO48TUwZW847vcweff69KTm8NL1je5gqJ611a1f80wmPGfFw5kQnEYbvy1s/4ZNx8dtlbveYDRJGioC5v540/GX/pD5odQZR5S2T9fS2vaVT8u43OPRXZ/rS9p8lRswPGD6IXDkj+CQr8H8X8GyBzPfw+72Ppiy59DamSfChO1h/Yu595pzYWYvSZIkSWpWz/8S7vnL2uw1Ybva7CNJUuMcDJzc6CaGaQN2yzEewNPAC8BSYBJwwLDaVuBTwJ4ppXdERM8I9ypJkiRJkiRJkiRJkiTVVEujGyjTv/W/BzALuCGltE2pi1NKrwOuIvN1J6AX+Hqtm5S0mVtyW+7xCdvXtY0xrbdIMBrA6qfLe5K9FH31v2algQ7ZHv8XWDBKcl6PvBDaJm463jEjd33X0kwIkCQpo3cDrFuYe272v+Uez6VewWitHbnHezfW5/qSNl/Vfh/dMRX2/DAcdREc/JVNQ9EGTD2o8D6r/lRdH5IkSZLUKGueq10oGsDkPL+vkiSp+XUBcxrdBJn7HK8D3glsExH7RsQpEfHuiDgjInYHDgfuGLburcAX69uqJEmSJEmSJEmSJEmSVL2mCkaLiPuAS8iEmgWZm3n+nFL6XEppb3J8PSml1pTSiSmlS4CbgGlZ678dEfPq1b+kzcDCqyF6c89NmFXfXsayUn+44pW7YO28EW1FY0jXsvpfsxbBaLW23SmVrdvmeJj1ptxz4/IEo/V15Q8AkqTNUc/a/HMLryx9n1KD0aYfUfqeubTkCUbrMxhN0gjrrdP30X1FQrl/vz/0ddenF0mSJEmqpQW/q91e42fCtq+r3X6SJDVON/AocCHwQeAwYDLw/gb21AV8F9glIk6NiF9HRM6/CIqIh4ATgF8Nm/qnlNLOI9ynJEmSJEmSJEmSJEmSVFNtjW6gAucDewOHkAk3m0rmqYZfBIb89HVK6SlgV6B9YKh/TQLuBj5dj4YlbSb6euG+8/LPb7F9/XoZ6/b7JNx+Z2m1y+6HSbuMaDtqEp3zC8+vXwTjt65PLwMKBeA0wgFfgAO/AE9/Gx7+x/LWzjot/9ykXfPPvXgN7Pnh8q4lSWNVscDMNXNg8u7F9yk1GG3vj5RWl0++YLQwJEjSCOtZV5/r9G4oXvPUN2B//4hRkiRJ0ii28EqY9yugD3Z8O0w/DB79ZG32Hr8tnHATtDTjrSeSpDJF//tRKaVditTOzD5JKR1L5n69YmYWLxkxPwN+EBGb/KFgSqW0PiI2AHtERMlPG4uI3pTS+cAxwI79wx3A2cDXat+iJEmSJEmSJEmSJEmSNDKa7u7UiFifUjoFuITMEw4HbrpKwDgGg88SmQC1/1uaNXcDcHZE9Narb0mbgVf+WDiEYoLBaDWz7QkweU9Y82zx2rveATufPfI9aXRb/xJce1DhmnULYdrB9elnQLEAnHra6+/hVV/MHO/6VzD7y9C1rLS1HdNh53fmn5+wHUw9EFY+sencikfLblWSxqxivy4svBL2/VjxfbpeKV4zYRbscGZpfeXT0p57vHdj7nFJqpXeOgWjbXcyLL27cM2T/wq7vAsm7lSfniRJkiSpHM/+EB740OD5C5fWbu8dzoRjL4fGhcVIkuovAb+qYM1tZdQP3N9XVxGxot7XLCYieoCSQ9Gy1q1PKf0E+HzW8OswGE2SJEmSJEmSJEmSJElNpKXRDVQiIpYCrwc+BSxl8GaoyHrPftFfswr4LHBaRKyuW8OSxr71L8PNxxeu6ZhWl1Y2C21bwIm3wc7nlFa/fvGItqMmMPen0L2qcM3tb4Ybj4XlD9elJQB61tbvWvlM2RsOvAAO/ebg2LgZ8Pp7YNbpxddv90Z4/Z2wxQ6F62YcmXt848rSe5Wksa7YrwsLryhhj3Xw6Kfzz0+YBTu+DU6+B9onldffcC0ducf7DEaTNMJ6N9TnOju9o3hN73p4+r9GvhdJkiRpLFnxGFx/FFw6DW54DSy+tdEdjU0RMPvfRmbvg/4djvmtoWiStPnJfmBpsVf2vXulrvEXltp5ZNi5T3OUJEmSJEmSJEmSJElSU2lrdAOViogAvpZS+g5wDpmgtGPI3MSTHfi2ArgbuB74eUQUSUWRpDJFH9xyYvG61i1GvpfNyRbbw9EXwy7vygRaFTL/Ytj7H/zhjM3ZsgdKq3vlj3DzCXDqEzBxx5HtKSITXjNS9vs0HPzvla+fsiccdyVcsTOse2HT+SMvhN3PL32/9im5x7vXVNafJI1FPZ2F51+5EzYsgfHb5J5fOxduOy3/+l3eDa/5ReX9DWcwmqRG6e2qz3W23Ad2OzcTtFzIgsvgkK/5e05JkiSpFOsWwQ1/kQkZBlh6T+bveU59Eibt0tDWxpw1z8K6BbXf99BvwT7/UPt9JUnNIoqX1GSNqtMz7DzPX+pIkiRJkiRJkiRJkiRJo1PTBqMNiIgNwE/6X6SUEjCNzM08yyKiu4HtSdocLLkdVv2peF3r+JHvZXM08ySYMAvWL8pf8/DHYMHlcNzV0DG1fr1p9Fj4u9Jru1dl6vf+yMj1A/0/9JXn/u9tjoONK2HlY5XtvddHqgtFy7bjW+Dpbw8da2mHHc4sb5+2ybnHe1ZX1pckjUU9a4vXXL4tnLkQtpg1ONa7Ae7+K1jw28Jrpx9eXX/DGYwmqVH66hSMBnDkRZnvz1++GeblCZfsnAcrH4dpB9WvL0mSJKlZzfvlYCjagJ5OmP3lzAM5VDul/FlTJWYcMTL7SpJGsxcw3KzZ7DHs/KWGdCFJkiRJkiRJkiRJkiRVaNQHo6WUDgJOBvYDtuofXgo8BdwYEY9k10dEAMvr2qSk8kXAK3dlwqzWLcw8HX59/+uw78D0QxrdYemWPVhaXUoj28fmqnU8HPkj+OPZhX/A45U/wqOfhlf/oPieq/4EL/4h84M5Wx8D27zWf3/Nrn0KdJcRwFVK2GG1etblnzvsv2DKPnDZ9MwPhJVr/09X3tcme30WltwJKx7OnKdWOOL7/H/27js8ivNe+/h3dlWQRG+miI7pxQ2DjSvYuANuiUuKE6cnTk+cN8mJneqT3k5OihM7iePesA1umGLjgjumY3rvIARqSLvz/jHmSEgzszO7M7O70v25Ll1in/pDoN3ZlZ57Ke7mb53Cjvbt9Yczq09EpDXxep//1pfgnCahn8t/nDoUDaB8enp1OYkV2rcnlU8uIiFLRBiMZsRg8E3Wx6m/h8d6gploOW7r4wpGExERERHx4uAS+/b1/4AJf4VYPNp6WjO75y6ZKu4O3SYFv66IiOQ00zQHZrsG8e2aZrffyEoVIiIiIiIiIiIiIiIiIiIiIiJpytlgNMMwTgF+C5zlMuwOwzBeAb5umqbHZCIRyRkLprV8R3iAI+vzKxhtybezXYH0uQQuXwXPnAR1+53HbboXJvyvdbDdyYZ/w+s3g9nQ2Db0M1YQlNs8yW0lff0Fo6UTRuZX0iXMIV4M8SIovwo23eN/7Xa90q+rxVo9YNorsPtFqNkGPc+FDs3fXNqDwg727QpGExFptPNZb+O2zbKChUv7WuFAa/7obV7ZoPRrsxMrsm9PHg12HxGR5tyupcNU3NW6Ht49v2XfnoWRlyMiIiIikpc23+/cd3gtdBoRXS2tXRg/6xjxDYXXiYiI5DjDMCYAk5s1P243VkREREREREREREREREREREQkV+VkMJphGDOA+4B2gNGkyzw2pEnbWcBLhmHcYJrmrIhKFJFMGYYVVHRkXcu+6u3R15Ou5T/NdgVyTGm5FV728oecxzQcgaot0H6gfX/tPlj88Zbt6/4GA26AE84NpNRImSZsvAe2PwmFHWHQR+GE87NdVfSaBt150XAknDqacg1Ga2d9nvAnOLofdjztb23DSD3Gj3g76HNRZmsUOASjNSgYTUTk/2z8t/exs8qtYDI/IWRBPz4oGE1EsiWRpWA0gL6X2wejVa6KvhYRERERkXxTtcW9v3aXgtGCFPTPOnqeByO+HuyaIiIiEijDMAqBvzZrXmSa5hsB79MT6OFz2pAgaxARERERERERERERERERERGR1i3ngtEMwxgB3I8VigbHh6HZhaTxwdj7DMM41TRNnUIUyRelDsFoNXkSjLbhX7D0+9muQprqOz31mMrVzsFoj7n8zubO5/IzGO2978HKOxpvb/w3TH4Q+l+dvZqyoaHK5/iQg9FM0z3MIVZsfS7sAOfNgdq9VpDavtfh5Wvc1x5wQ3B1BqnQIRitXsFoIiIAVO/wP8dPAFn5TP/rp6JgNBHJFreQ4WM6DAtn787j7Ntr90DdASjuGs6+IiIiIiL5rmYnzD3bfUzdvmhqaSv8/mzETdcJcMGC4NYTERGRsPwSOLnJ7XrgyyHs8wXgthDWFREREREREREREREREREREREBIJbtAmz8BSvozPzgwwAagNeAh4CHP/hzPY1BaeYHc5q/26GI5LLScvv26jwIRtu9EBbflO0qpLl4MczY7D7m0Ar79n0p3hy3bm96NWXT0QpY/Zvj28wErPhJdurJpoZqf+N3vQCvfgzqK4OtY92dMGc0PNIVXrzceVy8+Pjb7XpY95ll/VPv0fuizGoMi1MwWrIOEgrQERGheku46/f/UPBrxgrt25P1we8lItKUW8jwMeN/Fs7eHUc49x1aGc6eIiIiIiKtwfq7Ur/+4fQzHElPUG8CU9QVLlgYzFoiIiISGsMwPgl8pVnz7aZpLslGPSIiIiIiIiIiIiIiIiIiIiIimcipYDTDMMYA59AYiAbwa6CXaZqTTdO8zjTND5umORnohfUOh01NNgxjXHQVi0hGSvrat9fkeDDaoVUw7/xsVyFOyvpDpzHO/bvm2bdvech93aMV6deULTuft0Knmju4BOoPR19PNiWq/M/ZdA8svCy4Gjb+B974jBWWUF8BRzY4j40V27e7hTAAdBwJA65Lv8YwFXZ07tu7KLo6RERyVc2OcNfvd1Xwa8aK7NuTCrwUkZDZPc9pqsdk6HNJOHuX9IECh9Dfnc+Fs6eIiIiISGtw4O3UY5bdDqYZeiltRn1AwWgXvgIFpcGsJSIiIqEwDONirDekbWo2cEcWyhERERERERERERERERERERERyVhOBaMBV3/w2cAKR/uyaZrfMk3zYPOBpmlWmKZ5K/DFJuMBQjjtLSKhKHUIRqvaHG0dfphJmDMq21VIKm7BH7vnQ0OzkCzThG2z3Nesz8NgtEPLnfvCDl/JJcl66yMde1+GtX8Npo71//A+1ikYrdAhgOGYS96BuENITbY5hUcArP97dHWIiOSq6hDDgftOh7jDY0smFIwmItniFox28q/gvGfCO7RvGND9DPu+VM8rRURERETasm2Pexu358Vw62grTBPe+Wrm63QeC51SvGmLiIiIZJVhGJOBR4HCJs0vAx82zdBSZ/8XGOPzY0ZItYiIiIiIiIiIiIiIiIiIiIhIK5RrwWgTPvhsAotN0/xTqgmmaf4FeAUrHA3g9JBqE5Gglfa3b6/aBDW7Ii3Fs5euzHYF4sXwr4Dh8BCXrINdLxzfdmgFHFnvvubRFhmduc/t91sPvBNdHdnWPAjPrzc/B/WHM69jz0Jv44wCiMWd+/tcZt9+0n9DvJ3vsiJT0su5b9/i6OoQEclVNSEGo/WaGs66TsFoiZpw9hMROSbhEMA4+CYY+Y3UgcKZKnc4v3doORxeF+7eIiIiIiL5ql1Pb+O2PRFuHW3FlocyXyNeAhP+kvk6IiIiEhrDME4F5gBN3yniDeAy0zSrw9rXNM09pmmu8PMBpPjFHBERERERERERERERERERERGRRrkWjDayyZ//5WPev5v8WW9XLJIvuk1w7tu7KLo6vHrzi7D9yWxXIV4Ud4VrXYKs9r12/O09L6Ve88DbkExkVlfUjh5w7nv1BtjxXHS1ZFNDAL/rOzvDyws/b8IcL3bvH/zxlm1GHAbc4K+mqBWUOfdVbYL1d0dWiohITqreYd/u9dCwEyMO/T+U2RpOYoX27TU7INkQzp4iImAFXtuJpbiWDkr5dOc+hTiIiIiIiNjrPM7buM0P+HtNXextfTz1mME3WW825GT6BuhxZmAliYiISLAMwxgHPA90atL8LnCRaZqV2alKRERERERERERERERERERERCQYuRaM1rnJn9/xMe/YWKPZGiKSy0r7Qvsh9n07no62llTW/A+s/d/U44bdYt9+yu+CrUdSKyiFftfY99XtP/521WZva27PswPuO59173/jM5CojaaWbGqoynyNmh1w8L305/v5OqcKc+h3DYy9HYwC63ZhJzj7USjrl3Z5kRnzX859b34e6l0CDUVEWru6vfbtncamv2ZRFzh3NpT0Sn8NN7Ei575ts8LZU0TapqrN8M434MUZsPIXUH/IflxUwWil5dDVIez93W9GU4OIiIiISL4xPb75TO0uOLQi3Fragj0LUo8Zcxuc+AX7vs7jw3tNSURERDJmGMYo4AWga5Pm5cA00zQrslOViIiIiIiIiIiIiIiIiIiIiEhwci0Yrem7F+53HNXSwSZ/7hBQLSIShZ7n2rdvvAcOrYq2FidbHoa3HQLPmjrxC9ZHQdnx7UVdod9V4dQm7oo62bc3D8qq2eFtvc0PZFZPlPYthiMb3MdUb4Fd86KpJ5sS1cGss+k/6c91Cm6wE08R5mAYMPY2uLYCLl0GV++D8hnp1xal0v7Ofck62PZkdLWIiOSaun327Z1G+V9r7A9hxma4ajf0uTizuty4BqPpPl1EAnJ4PTw7AVb/BrY/CUtuhZ3P2Y9NdS0dpH4znfvW/CG6OkRERERE8oXXYDSwrv0lM7V73Pv7XAbtB0LHYXDClJb9J342lLJEREQkc4ZhDAfmAT2aNK8GLjBN0+EHTiIiIiIiIiIiIiIiIiIiIiIi+SXXgtGa1uPjN6OPG5trfycRcdN7mn27mYBN90Vbi51EHbz8IW9jT/kNdBoBU16AE6ZCcTfofRFMXQBl/cKtU+zFy+zbN98PidrG2zuf9bbeloczrykqS2/zNm777HDryAWJmmDWWfUreOFcOPC2/7l+gtFi7byNKyiDzmMgVuC/nmwp7Ojev2NONHWIiOQip2C0zmOg/VB/a5WWQ1l/iBVmXpcbt2C0TfeEu7eItB1rfg91e72NjUUYjFbuEoy29DYwzehqERERERHJB76C0drAzy7CVuDyfnKFneCsJj/zOucJGHIzlPSBzmPhtD/BiZ8Pv0YRERHxzTCMocB8oFeT5rXAFNM0d2enKhERERERERERERERERERERGR4OVRkoaItErlM6G4h/0h5/1vRF9Pc2/dknqMUQDnzIL4Bwewu0+CqS+EW5d4U+AQjAbw2sfhrAehdp9zEImdZEPuB1GZJux/3dvYw++HW0suaBqC19zMrTDLR3Dhnpfg2dOsA0MdhkGn0RCLp55X6zHIARrvS1qjQpeDWCIibZ3T9UhxDxj3Q3j1I4DHkB23a6AguQWjiYgE5f0/eh8b5bV0x5FQNhCqNrXsq6+Amh1Q2je6ekREREREcl2ywfvY/W+AmQRD74mWNrfA/JlboaCk8XZhe5j49/BrEhERkYwYhjEIKxStT5PmDVihaDuzU5WIiIiIiIiIiIiIiIiIiIiISDj0m8Qikl3xYuh7mX1f8mi0tTR39CCsv9N9TL+r4eI3nf8Okl1uoSBbH4GanbD2T/7WPLIhs5qiULsb6g95G7t7PiQT4daTbYka+/ZYMZSWQ8fh/td8+Vp4ZjzMKoe9r7mP3XgPvHC297VjrTgYrUDBaCIithK10HDEvq+4Gwy8AabMhUEfs9pSHQqOLBjN5YCtiEgQ/AQnQLTX0oZhvSbgpC2EUIuIiIiI+GH6+FmEmYBVvwqvltbONKG+0r7vzPv1JiYiIiJ5yDCM/lihaE3f+W0zVijatuxUJSIiIiIiIiIiIiIiIiIiIiISHgWjiUj2lQ106EhGWUVL2+e490/6F5z9CHQ5KZp6xD+3UBAzCQfehTW/97dm7Z7MaopC5Sp/49f+OZw6ckWi1r493s76PPFuiJc2tvsJ76rdBS9eDg0O4WsVy+C1j3lfD6zAyNYq5WErI5IyRERyTt1+577i7tbnXlPhjH/BDSZcn4Bzn3KeU9A+2PqcOIWPiogEpWKpv/FRX0uP+5Fz37wpsPVxSGQ59D0f1eyG9f+A9XfB6t/Cxnvh8LpsVyUiIiIimfITjAaw5FZdB4IVcLblYVh6O7z9det5Rv1h9znJOjAdgqbL+tm3i4iISM4yDKMPMA8Y2KR5O1Yo2uasFCUiIiIiIiIiIiIiIiIiIiIiErKCbBdgw/zg8yTDMAZ6nNOr6Q3DMM7GR7KGaZoveR0rImFwyGjck+VvzT0LnfsKOsBgn2FHEj23YDSAd74KRw/6W7PhSPr1RMXvQaGtD8PwL4VTSy5wCm05FozW4wyYsQm2zYJYEfS+CJ6bCNVbvK1/9ADsfAb6XdWyb8vD/uuNteFgtM33weR7o6lFRCSX1O1z7jsWjNaCS855ZI8lLk+7DeWwi0iGDq2GZ0/1Nyfqa+mCUuh2Oux/w75/0VXQ9TSYMheKOkdbW77a+yosuKjlc+94iRUQ2v/a7NQlIiIiIpnzG4wGsOleGHtb8LXki6rNMG8qHFnf2Lbmt9BpFJw7G9oPcpjn8vONwo7B1igiIiK+GIZhNms63zTNhS7je2KFog1t0rzzg3kbgq9QRERERERERERERERERERERCQ35GIwGlinq+/PYO5CH+NNcvfrINI2xOLOfQffgy7jo6vlGNOE9f9w7h/00ehqkfSlCkY7vNb/mg2H06slSvWV/sZnO4QwbIla+/Z4SeOf2/WAoZ9uvN3zHNj0H+97LLoaupwEB5ekV+NxdbXLfI1cVZAiGA2gaiuU9Qu/FhGRXNJQ5dyXzmFVw3NOeGa6T3LuM5NQ+T50HBZNLdK6HdlgPT/b/6Z1kL5sIAy4DnpfmO3KJExL/8v/nE6jg68jla6nOgejARx4Cx7pAsNugZHfhLL+0dWWj16/2T6QPFEDb34e+s6AeFFj+5GNsOrXUF8BJ5wPg25yf50pSGYS1t0Ju+dDSW8YcjN0HhvN3iIiIiL5KJ1gtD2Lgq8jnyz57vGhaMccWgnLfwKTHH6WufLnzmt6eZ1eRESkjTIMoxz73yPs1ex2gcsbvh4xTdPlHXF81dMZmAuMaNJcBdwM1Pt401kATNPcFERdIiIiIiIiIiIiIiIiIiIiIiJRyNVAMBMr4MzvnGMiOgUuIoFINjj3bX0sO8FoS2517x/2xWjqkMykCkZz0uVkqNsP1Vta9tXnQTBasi7bFeQWx2A0lwCy4V/2F4wGwYSiAcdf0rQyXsJ9nugP19VDLFcvU0VEQuD0WAUQK7Zvb9fDeU5h58zq8aowxUHauWfC1IXQeUwk5UgrVbkWXjgHancd377hbph0Fwy+KStlSci9gnImAAAgAElEQVQStbDtcX9zOo1yD2wMy5BPwbq/pQ55eP+PVsDfpe9Bh6HR1JZvqrdD5Wrn/rr9sPdl6DXFun1oFTxzcuNz4E33wu6FcOY9oZcKwOJPwMZ/N95efxdMeQG6nx7N/iIiIiL5xumauXwmbJtl37d7HtQfgcL24dWVy3Y+49y3/Unnvg13OfelE8IvIiLSdrwMDPAwri+w0aHvX8BNAdVzEjCuWVsZ8HSa6+l3KkVEREREREREREREREREREQkb8SyXYAL0+dHOnNFJBeYSee+Qyuiq+OYimWw6pfO/ePvsA5cS+5LNxit/4ecgz7yIRjNLVzFSUN18HXkikSNfXu8xHlOtwkwZV449aRS2Ck7+0Yh7hDu09zeV8KtQ0Qk17iFeBoOZ1S6nALterZsL+0PHYcHV1sqZ97n3Fe3H9b8IbpapHVa+78tQ9EAMGHpDyCZIoxK/Nn7Ksy7AGb1h/kXQuX72amjck3qoLFjjALofy1MXZCdcN2up8CEv3gbm6iGp06E+wvgiYHw7rchWR9qeXmlelvqMUfWwXvfh/sMmDOqZTD4pv9YffOmBBhebePQquND0QAaDru/niQiIiLS1jld4/e+GPpd4zxv0VXh1JPrErVw9KBzf90+++fEqZ4npwq6FxERERERERERERERERERERERERERyQFZOC3oagsKLBNpe0r7OPfV7IyuDgDThKebv9lqM4M/EU0tEoA08z+HfQm2zbLvaziSfjlRSdSlHtNc3T4o6B98LbnALWzGTa8pcIMJtfvgsR7B1+WkqHN0e2VD/w/Blofcx2y6B044N5p6RERyQdLhsSrm8lgVi8OYH8BbXzq+fewPnMPUwlDUxb1//Z0w8W/R1CKtk1tgavVWOLIeOg6Lrp7WrGoLLLio8TlP9VZ49jSYvh7aRXg9DLBvceoxZz0C/a+2nsdHeb9nZ+inoL4C3v2Wt/FmAqo2WyFa1Vth8v3h1pcv3ILzj3njs97W2r0A5p4Fl62Csn6Z1WVn07327VsfgcRRiBcFv6eISNSObICa3VDSC8oGZv/xVkTyX7LBvt2Iw+jvWtdSdnbNtUJvu5wUXm25qG5/6jENlS1fm6na5D4nVph2SSIiIiIiIiIiIiIiIiIiIiIiIiIiIlHJqWA00zQHZrsGEcmCXhc490UdQrVrrnt/9zOg5IRoapHMJev9zzlhKhS2h8IO9v0NhzOrKQrJNIPRylprMFqNfXu8xNv8dt2hx2T3UI4gnTA1mn2yZeS3Ugejrf8HjL8j+gAOEZFsSTfEc9gXobQfbHnECkrrdy30vTT4+twUlEa7n7Q9Ttdyx1SuVjBaUJb/pOVz8IbDsOk/MOJr0dRgJq1wsdW/cR939uPQb6b151wJaRn5Teg8HhZM8zdv8wNQ0AFO/wsYaYZ7txZBvwbUUAUb7oKxtwW7LsDWR537HiqF0++EIQrWF5E8VbML5p4NR9Y1tpUNhClzocPQrJUlIq2AmbBvjxVAl/Huc9f+xbpmbku8BKMdPdQyGK1ytfP4XhdmVpOIiEgrF8XvLpqm6fkFTdM0FwI58gKoiIiIiIiIiIiIiIiIiIiIiEi02vhpOxHJCe0HQ8eR9n01O6KtZeN/3PtP+V00dUgwup6K798R7THZ+lzgEIxWnwfBaIk0gtG2zwHTDL6WXJBu2ExTp/wWirsHUw9AcTe45gAM/Ojx7f2vhf7XBLdPLup2Goz+bupxb381/FpERHJFJo9V5dPhzH/DpLujD0UDiHsIRks2hF+HtF7Jo+79bge+xbtkAtbfad934O3o6lh3Z+pQtFP/0BiKlmt6XwhXrEs9rrn1d8KSW4OvJ980VAW/pluAWSbcXhswE/D6J+HlD8O2J9N7ji4ikk2vXHd8KBpA1SZ46kRYcAm8ciOs+Bls+CfU7MxGhSKSr5yC0Yy4FRJ8+l+d5+5/M5yaclndvtRj6g+1bKva7Dy+rYXLiYiIiIiIiIiIiIiIiIiIiIiIiIhI3lIwmojkhtP+YN9ety+6A6TV22DTPc79Az8C3U+PphYJRrvu0OMsf3MG3mh9LszjYLSkQ7iKm2U/gLe+CGYy+HqyzTFspsT7Gt0mwKXLrNCZCX/OvKaZ26GoC5zxT5i6EE7+NUydD2feB7HCzNfPdeN/Ct0muY/Z8gDU7o2mHhGRbAvisSpbCjwEox09GH4d0nolUzwfVDBaMA6/79y36d7o6th8n3t//2th+C3R1JKuDkPgqjSuY1f9yvpoy8IIRqtYBttnB7+ul1q3PAQvzYC5k6HuQPA1iIiEoe4A7HnRuX/ns9bj9Xvfg8WfgNmjYLfLeBGRptyC0QCGfsZ57uE1rffNXZx4CUY7WtGyrWa7/djOY603qxIREREREREREREREREREREREREREckDCkYTkdxQ0se5r3ZXNDW8+QX3/vKZ0dQhwZr8AJQN8Db2jHug4zDrzwXt7cdsugcWXg6vfwpeuQGenQD3GfDC+fD+nyDZEEzdmUg3THDtn2H3wkBLyQmJGvv2eDt/65T0gsE3wYmfg37XpF/PkE9DvNj6sxGDE86FkV+HE86HWEH66+abY99rTsxkOAEGIiK5yDEYzedjVTbEPQSjeTnIK+IkedS9f8PdUBPRc8bWrGaHc19pv+jq2POSe/+A66OpI1PtusM1FVA+w9+8d78Fc8bAyl9Ag8PzmNas4Ug46y6+Kfivp59A8gNvw4qfBbu/iEhYanb6G19fAW98GpIOYUciIk2lCkYDOOsR+zENVdYbHLUlXl5Pafoz1K2zYPEnna89O44Kpi4REREREREREREREREREREREREREZEIKBhNRHKDWzBaze5oajjwlnNfURf/B5olN5T2gekbU4+7fDUM+kjj7cIOzmN3zIH1/4DN9zf+v9mzEN76Eiy6Ckwzo5IzlkwzGA1g+1PB1ZErwgibOfHzgOF/nlEAI7+Z/r6tSddTU4/Z92r4dYiI5AKncJV8CEYr8BCMtuOZ8OuQ1itVMBrA02Ogcm34tbRmRw8499UfiqaGnc+nHtNpdPh1BKWoE5z9OMzcBuc/B+c/D6XlqecdWgFLboV550PCw///1qShKpx16/bD7nnBrddQ7fw808mme6zwZxGRXGfW+59zeC3sfz34WkSk9fESjNZrqvP8vYuCrSfXHVqeeswr11lvlrPiDlh0pRUe7qS0b3C1iYiIiIiIiIiIiIiIiIiIiIiIiIiIhEzBaCKSGwo7OvclQjoY21QyAbUuAWyXLoVYQfh1SDgMA3qe69zfbSJ0HH58W3HP9Pba/hTsmpve3KA4HdAe8fXUc9f8LthacsGWh+zb4yXpr9lrCpz9KLQfat8/6ONw9mPQ5SQwYtbBri6nwJQXoOOw9PdtTfpdlXpM5Zrw6xARyQVhhHhGpahb6jFLvx9+HdJ6eQmGqtsPq38Tfi2tWd1+5776Sqg/En4Ni1JcH5b0hvZDwq8jSIZhhQ/0nga9L4STfu597v7XYdkPGm8nG2D17+Cp4fDkEFj6g/CCxLIlzL9PkCGddfv8z6ndAweXBFeDiEhYkmkEowHMnQwPlsAzJ8OmB4KtSaQ1OloBi2+Gx8vhuYmw8V5/87c8as17sBQeaAcPd4b5F0KFhyCtbPISjFbUGcoG2Y979Uao3Rt8Xblqx7Pexr3xWXjvu6nHlSgYTURERERERERERERERERERERERERE8odSfkQkNxgxK6QoUdOyr6E6/P3rK8BM2vdN/DuUlodfg4Rr1Hdg36stD/cZMTjtjy3Hl2ZwQOSdr8FlK9Kfn6lEnX17rBj6ToftT7rPP7weOgQcONBQBZWrrQNOnUZDrDD1HNOEqs0QK4K6Pdbfy4hDxxFQ2N7bvrsXgNlg31fgcQ0n/a60Pkzzg3o/uA8xYlYAwrExyQbAgFjcdpk2y8v9auXq8OsQEckFTsFosTwIRvPy+FbYIbz9kwk4sg7KBkK8OLx98k3VFuvrXtQl25VkLulwbdvcTo8HxsWeWzAaWEFQXq/B01H5fupQrGG35P81df9rYcUdcMhjYMXKn8Pwr0BBB1h8E2x9tLFv+Y+tsK3T/xJKqVnREGIAX5ChZOkEowEcWgVdTwmuDhGRMCQ9hNI6SdRa97evXm+FPPebGVxdIq2JacLCS2Hfa9btmu3w2kes174HXpd6/rYn4eVrjm9L1sGuF6yQwivWQrs03/glbE6v1RvNrvP7Xgbv/4/92HnnwSVL8/+5QSrJBqja6G3sxn95G6efdYqIiIiIiIiIiIiIiIiIiIiIiIiISB6JZbsAEZH/U1Bq357qcHQQ3A619poW/v4Svj4Xw9QFMOTmxrZBH4dLlkC3CS3Hl2QQjHZoJay/O/35mXIKj4i38xZMsum+4GoxTVj2I3i4Ezx7GjxzMjzSBTakOKhzeD08PQ6eHASz+lrznp8Ez02ARzrBe99zDjM8JlEL86Y493ce5//vY8cwrI9Y3Po4Fop2TKyg9R/SStcpv3Pvr9sLdQeiqUVEJJucgtHieRCMBlbAsZuwgo63z4bHesDsEfBIV1j163D2ySdVm+Hpk+CJAfBIN1h0DTTYhE/nC9P0Hs5RtSm//67ZlioYLRFyYPnO5937O46EEd8It4YoxArhotdhzH95n/N4H3i4w/GhaMes+ysc2RBcfdkW5us/h9cEt1aq7xcnr30EEhkEDomIRKH5m0qka9GVUB9i4KVIPju0vDEUram1/5t67rYn4KUZzv31lbDG5o1gcoWZsG83mr2XW7lLsOKhlbBjTnA15SqnELlMdDst+DVFRERERERERERERERERERERERERERCUpB6iIhIROKlgM3h0rAPYIN7MFpxt/D3l2j0mGx9TPx76rGl5Znt9fonYdfz0OFEqN4KBe1h0Meg62ktg7OClnAKRiuGAg/BaLueh7E+Durbqa+0wg1W/Qr2v358X0MVLL4JijpDuc0hLtOEl2ZaB8TsmElY8TOoWA5nP2YfOnb0oBXE5sQogD6XeP7rSEi8fC9UroEeZ4Rfi4hINuV7MNqoW2HZ7c79DVXW43uQ10BHNlrXC8cOVSeq4d1vQodhUH5FcPvkE9OEhZc3uYYyrSCldj1hgocD9rnI70Hwg0t03ZCuoymCnsIKrDJN2D0flnzbfdzZj0G8KJwaolZQCuN+BKO+Aw+VZb7egovh7Eeh89jM18q2hMP/s4Efsf4Pbnu8Zd+wL0O3063nmG73GXX7Ye9rwdxHuL2GlMrKn2f+fFtEJExuobSxQn/BaQ93gEl3Q68LMn+tVaQ12XiPffveRdbnhmrYvQCqt4ERs15rNxNQtQXW/in1+it+Ah2GQlEX6D0tt15bcAxGa/Yaf89zoLAz1FfYj3/rFqjZCV1OtsK+jFb4XnDJgIPROo2B9oODXVNERERERERERERERERERERERERERCRErfC3hEUkbxWU2rc3RBCMtvcV+/Z4iXNd0rqV9Ml8jc0PwPIfw4Z/wvv/A8+dDm98FpIOh3+CknQIV4kVQ2HH1PP3vgzb56S//+F18PRJ8PK1LUPRmnppJmx9rGX7wXecQ9Ga2v4kzCq3Drg3VbEMnhoORzY4z+15thXMJtnldBCuqcNrwq9DRCTb8j0YbeCNKQaYzn/HdG191P5xZJvNtUVbcXit/TXUlkes8Kl85BT462TumVC1OZxaWrtUQU9hPC9vqIYXr4D5F0Cixnnc+J9BpxHB759tBaXBBLEfXgtPj4cVd2S+VrY5BfAVlMGQT7ZsjxXDsC/CoBvh0qVwyu/gpP92Xn/umbD2r5nXmUkw2sZ/Zb6/iEiYnILP4iVw2Uo49Q/+1lv8CZg9ErY/nXltIq2F27XEkU3w/CR48XJ483PwxmesEPAlt3oLRTtm8U3w0gzrZxJHNmVYcICcXg9u/uYnsUIY+hnndaq3WF+f5yda9zNBh4jlAr9B4amM+Fqw64mIiIiIiIiIiIiIiIiIiIiIiIiIiIRMwWgikjviDgFkiQiC0Zbcat9e3D38vSU3xYuCOaTe3Po7Yeczwa/blFOARLwYDI8P/S9/CKq2+tt36yxYfDM8dSJUbfQ2Z9HVUF95fNuOZ73vWbsLFl5+fNsbn4O6ve7zJj/ofQ8Jj5cDa5Wrw69DRCTbnEJN8yUYrcNQOOMe9zFOYTfpevdb9u0b/hnsPvlky8P27XV7gw+mi0ryqP85Cy4Jvo624Mh69/5558GCi+HQysz2aaiGlb+E+wx4qAx2eAhkHvGNzPbMZT3OCWghE5Z+Hyo8BEznMseg0BLocymMvR2MD0IzirrC6X+BjsOs251GwoivwMhvQ0F75z3e/Bwsvd3//WLVVlj2Q3j1I7D61/7mNnVkffCPiSIiQXIKRosVWtf9w2+BGVug6wTvazYcgRcvgwaXIFSRtsTtzUve/or1xh9BqVgGK34S3HqZME0wk/Z9Rrxl25jve1t3479h2xPp15WrnO6P0zX4pmDXExERERERERERERERERERERERERERCZmC0UQkdxSU2bc3hByM5ra+gtHatqIQgtEA1v0tnHWPSToEo8XaQf1hb2skqp0DR+ws+zEsuhI23OV9zjGP9z3+9lKPB56O2b+4MUztaAXse819/Cm/hXY9/O0h4Sjrn3rMkQ3h1yEikm1O4SyxPAlGAxj0Ebh0qXN/QiEwWZWvITzpBKNVrmqdh+LDlGyAwymC0QB2PgdzRsPuF9PbJ1EL8y+EJd/2Pue8Z6zQ6tZq+C3BrWUmYWOKkMpclyrke+xtcOUOuOQ9mLHRPtzBMKDjcPd9lv8QXrzCe9jEkY0w90xYdjtsuheqNnub56Ty/czmi4iEyen6K1bY+OeyfnDRYrhspfVYPejj3tZ+fmLm9Ym0BoWdnPu2Pxn8fpvudw4ki5JbDXbBaIUd4FqPP8/Y8XR6NeUy08Obinh1yRLvb5ojIiIiIiIiIiIiIiIiIiIiIiIiIiKSI/QbsCKSO+Kl9u2JkIPRKtc497UfEu7ekttiBeGsu/0peOOz3kPKjknUwrvfhgdL4D7D+nhxOhx4p+U4O/FiaPCx55YHoWZ36nH1lbDip97Xba7hCDzaEyrXetvPzsJLrINVdfsB033s8K+kt4cEr89lEEsRdHH0YDS1iIhEYetj8PxkmDUAXvs41B2w2hM19uPjeRSMBlDsEjxasSK6Otoqu4Pkx7z1Je8BQLkknWA0gDc+F2wdrV3VJn+H7t/5Wnr7bJ8N+171Pj5WCN0mpLdXvjjhfDjnCSvIK9V1sRerfpEboRfpcgz5Lm78c7ue0GUcFHZ0XqfDsNR77XoBHiiCF86HJd+BuWfB7JHwyo1Qu/f4se//Caq3pV7Tq8rVwa0lIhI0p2vG5o9TRgw6jYQ+F8Oku72tXbEs83BJkdbA7TomDIlquD9u/TzhqeEwfxrsez3aGgDMhHOf0/PZwvbQeVzqtTfcBfVH0qsrVyUDDEbrMj64tURERERERERERERERERERERERERERCKiYDQRyR0FDsFoDSEHo70007lv7A/C3VvarnV/gxcvB9MlxKuhCmp2QaLOChOZMxpW/fL44LPtT8H8C44PFEu4HCbvc5m/Or0EF+xb7HyA3au6vTB7GGx/Mv013v5K6uC3S5eDYaS/hwSrsD2MSBGscbQimlpERMK27SlYdI312Fq9BTb+G+adbwXYNA9gOSZeEm2NmSooc+578TL/obDij1sw2pYHYfHN0dUSFKfrWoBupzv31e6CyveDr6e1qtnhb/zBd/1/fU0T1v7F35yBN0JxN39z8lH5dLh8NVxXBx+uzTwg7dUbg6krG5zCEP1+TToO9z52z0JY+XPY+4oVWLb5Ppg7GZJNgjtW/9rf/qnUbA92PRGRIDndFxuFznMMA6avh4IOqdd/73vW65xBBv6IiHeH34ddc2H+1OiDCt3CmA2XN6mZ4PF5xCvX+asn1/kJr3bT5/Jg1hEREREREREREREREREREREREREREYmYgtFEJHfEHYLREiEGozXUWMEUdow4dB4b3t4ie16CimX2fWv+CLP6w+O94cF28PQYOLLBfuzRg7DiZ423nULK4u2g9zT3Q0bNpQpJ2PsKLLjI+3qpvPGZ9Oeu+yvU7XPuv2QJdB6d/voSjvF3wMS7nPsVjCYircXaPwHNAlErlsKuF+DwGvs57QeGXVWwnK7nj9l8fzR1tFVuwWhgff2dQvhylVMwB8DZj7vP3fFMsLW0Zsl6/3N2Pu997KGV8FhP2D3P3x4n/cLf+NYgXgxX7XIf0/0M6Hqqc/+Wh8MPmA+LUxhivNjfOt0mZlbH4bWZhXan0lAT3toiIpkyHa4LUoVUth8Ml7wLQz7tPm7TvdbrnI92g033pVejSL5L5/r7mLKBx//cqvsZ6a3TUAXLbk+/jnSYCec+t+ezPTz+HXfMgQPv+KsplwUVIHni54JZR0REREREREREREREREREREREREREJGIKRhOR3FHgEKQQ5oHeytXOfX31LuoSgbdvafw/3lBjBQwsuhre/jIcPeB9nff/AKYJdQcg4XDIuqA9FHWG0/7gfd3qrdbn+iNWuMTGe6Dmg4P6Rytg/jTva2Wq9yXW38FJsh62PWXfFyuGLuPDqUsyYxgw5BNwpsNh2PpD0dYjIhKGhirY+Zx934KLIFFr39dxZHg1hSEWt4JYnWz4Z2SltEmG4d5vNsDWR6KpJShuwWgFpXC1SyjuoeXB19NapRPM8O43YOfc4++/qrbAhn/Bqt/Ae/8FS38Ai66FOaPdA4ztDP4ktOvhv67WoKgLTN8Ipf2bNBpw8q/hBhOmvQoXvwXdJtnPNxOwe0EkpQbO6Xs+VRhPcyec7/7c0Yt9r0HFcnj32+nNL+7m3Of0nF1EJBc4XRfEClPP7TAEJv4Nrk+mHltfCa/eCK9/yrp2WPtXqFjhr1aRfJVuMFpxd5i+AS5dal0X3mDCBS9CvCS99Tb8M7jwLS/SDUYD6HWBtz1W3OG9nlxnBvBv0/9a6H1x5uuIiIiIiIiIiIiIiIiIiIiIiIiIiIhkQUG2CxAR+T9xh2C0RIjBaIffd+4bdFN4+0p+KBsEh1aGu8eel+C502HS3dZBwIql6a/1/p+sQBInHYZan0/8PHQ/A1b+EjY7hFEds/LnMOB6eOW6xiDBWBGc/TjU7fX+/dn7Ihj6OTi8BpZ8x9ucpkp6w/lPW8ELz57q/O+y/Un79sIO/veUaBV1tm+vr7BC/1KFvYiI5KojG2G+xwO8zXUcEWwtUYiXOAe97XstmD0aFChjyy1E7JgjG8KvI0huf6dYkRWONuRTsP7vLfvdQrDleOkEMySPwoJp0HUCnDcbdr0Ar308mMP7RgyGfSnzdfJZ+4Fw6RLY+pgVSN3zHOg24fgxJ34e9i+2n//i5XB9wvpa5pNknX17rNjfOvFi6+uz6pfp17Lql5nNv/hd67lr3d6WfQpGE5FcFkRIpWFYwU1Pj0s9dv0/mk6E8T+B0d/1vpdIPjLTDEYbcEPL10hjhdbr9xvuSm/Nfa9Bz7PTm+tXJsFoA2+0nnOksvURWPVrGPkNf7XlonSeW53yWyjqar3hTZeToc8lel1dRERERERERERERERERERERERERETyVp6djhORVq3AIRitIcxgtLXOfeXTw9tX8kNUh/EPrbDC0TIJRQN4+xZ48wv2fQUdoKRP4+0uJ8G4H3lb95mTjg+WSB6FV2+AQ8u91zbx79BvJoy6Fdr18j7vmP7XWZ/j7eCS95zHVW2yby/s6H9PiVahQzBasl7BASKS3+ZNSS+MqmwQFLYPvp6wHT3o3m+ame/RcCTzNVojL4FxtTYBPbnMKSQJGoOSup5i37/3Zag7APWHYdWv4OUPwRufg13zYevjsPhmeOUGWPsXSLjs0xZkEmZ24E1477uw+BPBhKIBnPJ76HpyMGvls6IuMORmK9SheSgawKCPuM/f8nA4dYXJ6Xsx7jMYDWDsbZnVkq54KZz1EJT1g57n2o9J9VgpIpJNToGpsUJ/63QaA+2H+tzchPe+DwczfI1UJNelE0zc+yIY/2P7vpN/kX4tL5wDb38VDryT/hpeZRSM9lHvP69595tQ4eNnF7kqmcbzqxFfhcEfgzHfg76XKhRNRERERERERERERERERERERERERETymoLRRCR3FJTZtzdUhbfn3pft28tngqG7yDbvhClQNiDbVQSj44iWh2Ccvue8qD8EWx/zNrbTKCgtb7w9/qf+9yvp3fjnWAGM/La/+QUd/O8p0SpyCEYDeCuikEIRkaBtvNc5tDOVPpcEWkpkOpzo3h9EGEyi1r0/ncPDrUEyxdcFoHZP+HUEKXnUvt2IQeyDg/MdRzjPf7QbzBkF737LCola91eYPxUWXQUb7oLN98Obn4cXp0PCYa+2IJ1ghqbW/8P538qvS5fDcF37eWLE4Mz7nPvX3xVdLUFx+n8UK/K/VkEZnPY/mdXjV69pcOUO6H+tdTteYj9u478UyCgiucvxvthnMJphwOjvpFGAad1PirRmfq+/p6+H855xfvOP4m4w+nvp17Pm9/D8JNjxTPpreJFJMFosDqf9ES72GOD29Fgwk95ry0V+g6ebvjGOiIiIiIiIiIiIiIiIiIiIiIiIiIhIK6DUHxHJHfFS+/ZEdTj7NVTB7vn2fZ3HhbOn5Jd4EVzwknW4Od/1PKdlW7sToP2Q9Nc8ssHbuH7XHn+79zT/wYM9zjr+dmlff/MLFYyW89yC0TbcHUyQjohI1N79evpzB3w4uDqi1ONs9/66fZnvkahx72+rQQoNKb4uAHV7w68jSE5hZU1DkjqPAwz7cQDV21Lvs+t55+eGbUGmwWhBOWEKdB6d7SryS5+Lnfv2LICjh6KrJQhJh7CwWHF660UdMtp9IhR1arxd4BCMBrBrXvj1iIikw+m6IJ2QysGfhFN+AyU+X8db/Ru4z0BjXxoAACAASURBVGj8mD0SNj/kf3+RXOXn+nvoZ6H94JZvetLcwBsyr2nhpZB0CS/LlFuIeapgtGO6nARlA72N3b3A27hc5Tf0fcwPwqlDREREREREREREREREREREREREREQkSxSMJiK5o8AhGK0hpGC0ihXOB1D6Xh7OnpJ/yvrDlOfguobUQR+5bNgXW7YZBoz+f+HuW1oOI7/Rsm3Ip7yvccIU6D7p+Da/ByoLO/obL9ErdAlGA9j9YjR1iIgEpXob1O5Jf36+XncM+5L7gebqrZnvkSoY7fVPtc3ghGRt6jH5FjSadAhGMwob/1zcreW1Yjp2Pp/5GvnKzIFgNCMOJ/8q21Xkn6Iu0PcK+75kPex8Ntp6MuX0PR9PMxit/WAYcH369fgVb9fstksw2prfh1uLiEi6nO6LY4X27W4MA0Z8Da7cBtcehlFpvg5ZuRpe+TBs+Gd680VyjZ/r7+Ff9jau0ygovzK9epp6+RrnvoZqqN6e/tqmS+harMDbGoYBo7/nbeyuud7G5SrTJRittP/xt9sPhf4u/3YiIiIiIiIiIiIiIiIiIiIiIiIiIiJ5SMFoIpI74g7BaImQgtH2OLxbfEEZdD01nD0lf8XicOLns11FegZ/EtoPsu8bcjOcMwv6XR38vn0uh4vfhsIOLfsm/BlO/SP0vhgG3ADDv2Id3OpycuPHCefDuB/DeXOsA09NlfTxV0uBTQ2SWwpKoKirc3/VpshKERHJiGnCsh/BrH7przF9fcvHvnzR9WTr8d/J/Avgve9bX6d0pQpGA1j7p/TXz1cNHr4uTsHQucrpIHjzYI5BH818rzW/haW3g5nMfK18k3Q5cB+WE6ZCt0nQ5zLr+cDF71j3H+LfOU84921z6ctFiTr79lhR+mue8W/ockr68/2I+QhG29WGwxhFJLc5XS9mcl8MUNgexv8UzviP9Zphl5OtN0/wY5VCVKWV8Pq8bPBNVuCZV2c9CCf9HHpdaM2d9hrM3A7DbrGuvb3YNguObGxWbwO89WV4pDPMKofZI6Fiufe6jnELRnMLWG9u6Kfg7Meh31WAy2snK3/ufc1c5Pb/ZNprMPxr1s9QRn4TLlxkhYaLiIiIiIiIiIiIiIiIiIiIiIiIiIi0Ih7ffllEJAIFDsFoDSEFoy35jn17hxPBUG6k2Oh3FfS9ArY/lb0aSvpCzXZ/c4bf4t5fPsP6qN6WWYhLU6NuhZP+27nfiMHwL1kf6Sjr7298Uef09pFoDfmk8yHXRG20tYiIpGvzA7DstvTnn/wraD84uHqyoct4K+Sgept9/4qfQtlA6zBzOrwEox14N72181nSw2Nl9RY4vB46DAm/niA4BXbFmr2cNeRT8OYXMt9v+Q+tQOHBH898rXxiRhyYd119y39DSZ9hWCHea//csm/HHEgchXiGYTZujlbA7gVQvRWMAivoptvpVri4H2bSJQyxOP36YgVw5r0wZ2T6a3gVbx6M1s5+nIhILnMMRiu0b/fDMGDQjdbHMXPPgb2LvM0/tALW3Wm9jtmuZ+b1iGSLl2C0bqfDKb/1t26sEEZ92/po6rQ/WJ9X3AHvfTf1Ok8OhusaGq/nVv8a3v9jY3/lanh6LFx31N99Q1DBaAD9ZlofAI/1gtrd9uMOr4MOQ/2tnSucro2NAijtA6f+Jtp6REREREREREREREREREREREREREREIqbkHxHJHXGHYLRECMFoK3/h3NdhWPD7SesQL4azHoFzn4KR33YY4/D/OCiT7/c3vvsZ0Hm8t7Gl5TB9o/+amps63z0ULQglfaxAFa/0fZ0fhn7Wua9uX3R1iIhkYrWHg8sT74IPHYFzZ8MJU63HqbG3w7TFMPIboZcYieLu7v1bHkp/7QYPwWgNh60woLbEy9cFYPZwWP7TcGsJitPBeaNZqFasEKavD2bPxTdB3YFg1soXXoIZgqRQtOCVz7Rvr6+EA2+Ht+/BJTBnNCy6Ct7+Crz1RZh7Jrw003/IfdLlPjuWYbBbx+HRPCdsEYxW4jw2iIAhEZEwON0fGyHdb534eX/j3/gMzB4Bu+aHU49IFJyuv0v6wtgfwuQHrNfYg36zj0Efh4IO3sZu/Ffjnzf8037Mwsv97R9kMFpTbgFyT50Ippn+2tnkNShcRERERERERERERERERERERERERESklVIwmojkjgKnYLRaMJPB7ZOogyW3Ovd3OTm4vaT1iRdB38vh5J/D1AVQ2LGxr/xKuOYA9PF5IMir8XdAj7P8zZn4DzAM7+NL+/pbvykjBhe/Ayecn/4anvcynA//2+k4IrxaJDgdhjr3KRhNRPLBrhfgwJvuYwZ/EoZ8AgrKoO9lMPUFuGINjL0Nuk+Mps4opApG2zU3/bUTHgPAju5Pf498lKz1Ns5MwLIfwP63wq0nCKbDQfDmwWhgheYW9whm30VXBrNOvogyGK3XtOj2akt6nmc9rtipXBXOnqYJr38Gana07NsxGx7vA5Xve18vUefcFy/2X19ThgHnPG6FjYTJTzCaW5+ISDaZDtcFmYZUOhnwYRj2ZX9zjh6E+VPbXhCytB5O32fl02HsD6zvC6dru0yU9oFJd0Fxt9RjX78ZXpwBCy6FytX2Y3Y9DxUrvO8fVjBaqp/p3R+DRVfDax+HdX+HpEsducTx+bACdkVEREREREREREREREREREREREREpG1QMJqI5I64QzAaeA8/8GL3Avf+QR8Lbi9p3U44D67aAxe+DDM2wTmPWQe2h9xsP37KPJixBU78vLf1J90NF78N5z0DV++D0d/xF3I2czt0Gul9PECsEAo6+JsDUNofPlwLXSMMFvQTjOb36yDZ43QYVsFoIpLr9r0O8y9MPa7PxeHXkguCCqiy4/W5QV0bC0ZLeAxGAyt4ev3fw6slKI4HwW0OzRsxOPFzwey75yXY83Iwa+UDp69zGIZ+Krq92pJ4EXQcZd/3usPz00wdWuEeBlp/CJ473XsIY9Il3CaWYTAaQKdRMGMzTFsMA67LfD07zYPRXMcqGE1EcpRT2FgspCAeIwan/d56zfTc2f7ecOHFK8KpSSRsTsHEUQRe9b8GrlgH0163fu7gZvuTsDPFmKfHeH9jo7CC0Tp5eFOUrY/Bxn/DG5+Gl6+xQn5zndPztJhNULiIiIiIiIiIiIiIiIiIiIiIiIiIiEgrpGA0EckdBWXOfQ3Vwe1zaKV7f2mf4PaS1i9eDD0mQ9mAxrZ+M2HiXdB+CBgF0PNcuPx96DUFyvpZt70YfBN0PcUKUCnu5r2mrqdagWrp/l8u7up/zoUvh3dA0kmPydDuhNTjSvsd/+8jua24u317lMFo22fD/GkwewS8+QWor4xubxHJX8t+mHpMQXvo3UaC0coGhre2gtHsuYUK2Vn3V+8H2LMl6fMg+JjbYNStwez9zteDWScfOAUzZOqcWdDzPOt5QtkgOP2v0P/acPYS6OgSCFGxIti99r8FT49NPa7+EKz4qX3fkU2w6Gp4ehwsugYOvOO8TqworTJbrhOH7hPhzHth9Pes55MFZdDvauf7jo7Drf/HntZvFozmFlipYDQRyVWmw3VBUPfFTsr6Qd/L4JTfeZ+z63l4ajhseyK8ukTC4HT9HdXr60Wdofvp1s8dTr8z8/Xuj0Pl2tTjjh5w7sskGA3gCg/7H7NtFtwfg/kXeQ/xzQan58OGgtFERERERERERERERERERERERERERKRt0G/OikjuKCh17ksEGIx29KBz36j/F9w+0rYN+YT1kaxveaDJS0hXpzHOfQM/Cpvuse+b9hp0n+S9TjtFXaBqs/fx3SZahxejFiuA8T+D1292Hzfm+2AoCzZvtHMIRqveGs3+O56Fl2aCmbBuV66Bg0us8D/9PxIRN3tfTj1m3I+hsEP4teSCbqeFt7Zb0ExTR9taMJrDoWk3+9+yDsTnKtPnQfBYHE76bxh/BzQchlhx43PJwk7WY/nq38E7X0u994E3oaHKPcC7tQgjGK3PZdB3OpTPsH9OJMHr5BKMtuUh6OwhwNOLw+vguQnex2+b1bKt7gA8OajxdsUy2Pqo8xrxYu/7eWHEYPxPrMdlM2E9t6w7ABv+CbW7G8e1HwoXvwsFJdbfe+5Zx/c3V9jx+NvJOuexCkYTkVzlFLYb1WN5l3HWNcT2J72NP/y+9TrOuU9B38vDrU0kKNkORmtq6Kfg0HJY8/vM1pk9DGZsafw5Qd0B6+9T2AFME6q3wLwpzvOdwq+96jDUCqLf+az3Obuehz0L4JKl7tfS2eL0fDjTr5WIiIiIiIiIiIiIiIiIiIiIiIiIiEieULqDiOSOuEswWkNVcPtsf8K5r//Vwe0jAvaHmbqeBiW93ecNcQn7Gvpp+/aBH808FA2gqKu/8Z1dQtzCNuST7v2TH4Chn4mmFglG2SD79podsOO58Pdf95fGULRj9r0GB98Nf28RyW9uQb5lA+Dsx2D4V6KrJ9u6eghGW/yJ9AKZEjXextW1sWA0M42v5fMToXp78LUEpflj8jGpDoIbhhVQFC+2Qn+LujQGnLoFcjf3UHvY8C/v4/NVkMFoPc+BcT+x7vMMw2pTKFo0+riEwSz/UXD/zsvSCFjb8Uzjn2v3wqPd/M2PFfnf0wvDaLw/Ke4Kly6FoZ+zQjVGfAOmvWqFooEVtnHhK1Babr9WQRl0axYY5xQuBApGE5HclXAKRgs4pNLN2Y9aQbcdh3ufs+z20MoRCZzTc7dsXTeP/n7LgNd0bLgLanbDvKnW9d4jXeDRHvBod3hioPtcI575/ufN8T8nWQ8rfpb53mFwCj93CgoXERERERERERERERERERERERERERFpZRSMJiK5w+2AeoNL0IQf9YehYplzf9dTg9lHxE2sAE7+tfOBwm6T3AO/ekyGwTcd39b9DDjtD8HU5zcYreOIYPZN16S77ds7joQBH462Fsmc2/+nhRdD7b5w99/mEJ658hfh7isi+c00nQOcup8BMzZBvysbQ4LagtJ+qcds+Ce8e6v/tb0Go9VX+l87nzkdmk5l0VXB1hGkMA6CuwVy21l8Exx4O/39ckn1dtj6OOxeYN1vHWM6fJ27nAQF7b2tXX4lXJ+EC16EMd+DeEhBVuKsy7jGAEA7b34x8z2SDbD9Kf/zFl5qBaIBvHK9//nxiMJ42vWE0/8M5z8Dp/wK2vU4vr/DEJixBfpfe3y7EYPT/tSyzvIrnfdy+7cSEcmmZJ19e5SP7bECGP0duHw13GBa1xipHHgbqrfZ9x1aaV0DHXgn2DpF0uUUWGtkKRitXXcYlcZz8+b2vgqzymH3fOu2mYC6fXD0QOq5QQThGjGY8oIVWOvHpntg6W3w5hdg84OQqM28FgAzCQffg3V3wvbZ1s8nfc1XMJqIiIiIiIiIiIiIiIiIiIiIiIiIiLRt+s1ZEckd8RLnvoaqYPZ49jTnvvF3BLOHiBcDr4fOY61DQsmjUNwTDq+FjsOh/zUQb+c814jBxH9A/w/Bvteg4ygov8L/gR8nRV38je9xTjD7pqt8JsS/0DIkZeAN2alHMlPW3/r/73QAbddc6/snajU7o99TRPKHUygawEltNFjRMKxriqMH3cdteQhO/Y2/tb0GoyWP+ls33zkdrk9l/xtQsRw6jwm2niA4HgSPp79mOtfMK38OZz2U/p65YP3d8NYXG79/ekyG856FwvbO/3dK+8HU+fCITXByn0thwA1QvQU6jYK+09tW+GOumr4Jnuhv37fzuczXr1gK9YfSm7vlYeh7Geye53+uU6h4NhgGTH4QBlxvPR8v6mx9P3Q5qeXYLuOd13EKHhIRyTan+6ds3hcbBly2CuaMdB839xyYseH4tiXf+SDs/oNQ2ME3wcS7dN0i2eV0/R3LUjAawPCvwrLbnWsrv9K69ncLjd71fHp7d5sUXGhsr6lwyXuw9TGr3kQtrP976nnLf2R9Xvtn6/MVa6HD0PTrSDbAqx+BLQ82tpUNgHPnQOfR3tZwej4c0693iIiIiIiIiIiIiIiIiIiIiIiIiIhI26DfnBWR3BErsMLR7IIO6isyX79yDRx+37m/k8fDCCJB6Twm/QAKIwZ9LrE+glZsE3zgpKQvdHMJHIxCUWeY/AC8cj0kqq228pkw4mvZrUvSY8SgXW+o2mjfX7EUyEIwmg7MiliqtsKm/0D1Vuh5HvS/Vt8f4B5I1ZYPrI74Biz9vvuYmu2w7QnYOReKu8HAG6HjMPc5DR6D0dwObLdGToemvdj8YJ4Fo2XwfeUWyO1ky8PweDmc8msrnDif7veSCVj6X7CyWRD43lfgtY/COY+7BzMUdYHLV8P8C637foDO4+D0O6G0T7i1i39l/aBdL6jd1bKvegscPQRFnVr2JROw6V44+C6U9IITv2iF5jV3aGX6tVWuscL20pHO922YDAP6XWl9uI6LwdDPwLq/texLKBhNRHJUwiFcOJ7lkMpOI+D0v8FbX3IOQK7aCAeXQpdx1u3dC6yA26b+P3v3HSdXXe9//DWzfdN7L6SSBEJCIPTeI12QoldRwAJX9HcB9VqxYMGuV7nqtcBVUBSkd6T3ngBJCCSk9142m+zM/P445GY3O2f6zM7uvp6Pxzyy862f3cycPWfgvDP/T8Fjn68Hx+j6IcWsWkquHIPRKuvhgF/DC5e27qsdAEfcGpwDLX8QHj2psHsPO7uw63UbDROv3v181EXw5DnJz5HD3DU2uPYbdVFu/w3mqXOCzzqa27oQ7t0HJn0FJn4p+fl2c/EiXA9LkiRJkiRJkiRJkiRJkiRJ7UiB/vllSSqQmj7J2xvX5r/2on+k7h9U4Js5pPaqOotgtH2/Edzs3daGng5nr4BjH4HT5sERt0Fll7auSrkafm5437YlpaujhXYUgCIVy6a58MB0eP3LMO96ePo8ePHTbV1VeVh6V3hfZ75hdWyGr48nzoR5v4I3vgUPHAhrnks9Pr49s3UX3wrLHshsbEeQTzDa1oWFq6OQwm4EzytwMJHbtIal8PT58OxH89i7xOIx+NdxrUPRdllyexCQlggJZoi8H8zQfTycPh9OfBZOeR1OfsVQtHI24arwvs3zWrclEvDkWfDcx2Duz+C1L8E9k2BHkoD6TXNyr6thCWyem/28cVe0rzDCPfU5OHl73GA0SWUq7PgUrS5tHcmMuRTOXAK9poaPmf/H3V/P+034uDe+BffuC+teKVx9UqbCzr/bMhgNghCwZOcuYz69+3xs0InQZa/C7VndKwgpLKZ+h8Hp78Bxj2U3b9Et8NgMmPXt7ObNvKZ1KFpzb14Ltw9Nfr7dXGiAXif+nEmSJEmSJEmSJEmSJEmSJEmdShkkmUhSM9VFDEZLFVhx2F+hogxu7pLKQXWvzMbt9z0YfXFxa8lGVTcYeCx0G9O+b5xX6mC02v6lq6MFX1MSs38E21e0bHvnt7BxdtvUUy4S8dQBcW19Y3NbqukTnGdnY+cmmHVN6jHxHZmvN/Mr2e3fnoXdNJ2JxjWFq6OQErHk7fkEDoaFrWXqvT/DqifyW6NUlt4Jqx5PPeb5SzILoItWQt+DoddkiFYUrkYV3vjPh/dtej+YrGkbvHIl3BSBm6OtPy/Ztgj+0ev9/gq4uTL4+s1rw9c++eXUdS2+DV69OrPvobn9f5z9nHJSUZO8PWYwmqQyFRqMFnI8K7XafjD9t+H9c38WXKPFm2DR31KvtWM9vPGd4OsVj8Ajx8J9+8PL/wGN6wpXs7Sn0MCrNv78IFoJR98NQ88KwhBr+sDE/4R9vtZy3OFp3luZqu4Nxz4E1T0Ks14qlV1gwFFw6M3Zz5319eD4sH1V+rHb16Q+Z95l58bgfHvJneFjwsLPO3MAvyRJkiRJkiRJkiRJkiRJkjoVg9EklZeakGC0HXkGozWuhbXPh/ePOC+/9aWOpLp3+jEnvQiTvgQRTyVUBH0OCO9r2rb76+2rgkcsi4CcVBKJ8D7D9iRYGHLj63t/Lm0d5WbVk8EN9WE6+w2rA47Jfs7yB1KHfGUTALbu5cxuXu4Iwm6azkTj6sLVUUhh31M0j/dV15HhfWMvy2yNhVkG/rWVpSlust9l0xzY8m7yvrYOZlBuohXQY5/kfSsfga0L4d59Yc5PMlsvEQ8PKdxln69B7/3hlNezqzWdvf8jv/d7OQgLEoo3Bp9VFepaRpIKJey4FBb02BZSfW4E8MSZsHleZmst+WcQ+P2v42Hlo7D+VZj7U3jyrNSfE0n5CLumjZTB+XdNHzjyNjh3M5y9GqZ8t3Uwcvfxua9f1QM+tBUuTMA5a6H3tPzqzdbwc6HX/tnPW/koPHoKxNOcF69+Irtr8yfOgCUh/6iTwWiSJEmSJEmSJEmSJEmSJEnq5EwzkVRewoLRGvMMRpv7y/C+g36f39pSR1OTJhitblBw07tUTCPOT97etBXWz4Sbq+C2AcHjbzXw6tVBaEM+UgY+eNqsTi6RgKbNyfvm31DaWsrNsrtT93f2YKGKutzmbZkf3hfPMgBs09u51dDeZBMYt6fGNYWro5DC/q4jFcnbM9FjH+gyonV7z33hgP+CYR9Mv8a863Pfv1Te/T3M/1NmY1c9nry9HIIZlJs+05O3z/8j3DEy9TE2n/16TYbJ3y7cuiMvLNxabSUsSGjHeri1L9zWD2Z90/AdSeUj3pi8PSzosa2ctTy8b+ld8NwnMl/rhU+1blv1BCxNc60n5Srs2q2cPj+oqA7/hyKquucWgg5B8G1lfe515StaAcc/CntfCb0PzG7u+ldgUcg/GrDLtiXZ1/TE6clDKcOuh8vpdSJJkiRJkiRJkiRJkiRJkiQVkQkPkspLdRGC0RJxeOOb4f29puS+ttQR1Q1N3T/tlxDxFEJFVt0reXvjGnj4CEjscWPY7B/BnJ/mt2eqQJmwGwGlzmLH+vC+sMC0zmLjnNT90crS1FGuKmpzm7cpxc81kWUAWKq1OpJsA+OaK9dgtD1/3+8SyeN9FYkE57PR6t1tFfWw/0+CvoP/2LIvzM4yPfZtWwKvfQmevyT/tTr78as9G3JaafdrHowx9IzCrDn+/0HvaYVZqy2lCxLauQlmXROEGUpSOQgNRsvg/KiU6gZC/6PC+9c+l/8eS25r+TyRgA1vwsJbYOvC/NdX5xXbmry93AIIU8klDLf73jDh6sLXkq2q7rD/j+DkF+C87dBrauZzF9+Wur9hWW41vXBp67aw62Gv0yRJkiRJkiRJkiRJkiRJktRJmGoiqbzU9E7enuuN+k0NcM8+qcdkc9OD1Bl0GwPdJyTvO/DXMPyDpa1HnVNFffL25fcF4QHJLPjf/PaM78hvvtSRNSwP79u5KQii7ay2zEvdH6kqTR3lKprj97/2pfC+VEGWyXSWYLRsA+Oaa9oCse2Fq6VQwsLe8r0RfOhpcMqrsN/3YOoP4ZRXYODxQV9VNxj54fRrbH47vxqKYcH/wp1j4K0fFGa9zn78as/6HlS6vQYeD5Vddj/vkeYzmGQmfhEmfAH2+mgQsnHswzDtJ4WrsS1lGhC68K/FrUOSMhUL+WykogwDm8Z8qrjrL7hx99fxpiB49t594Onz4I6R8Ma1xd1fHVM8Bo3rkvfV9i1tLfnodxicsSi8P1IJXUYGj65j4MDrYcZMqKwrVYWZqaiBk54PArIzsfjW1NfO23IMRlt2XxC+2FzY9XA+QeGSJEmSJEmSJEmSJEmSJElSO+L/OSupvNQOTN6+5d3c1nvkaNg0O7z/yNshEsltbamjikTg8Fvg0ZOgodmNPPt9D8Z+pu3qUufSPFwhUxteD24gy/W4njIYzTxhdXINaW7sXPM89DukNLWUk/hO2JzmPDXfAKfOaumdsN+3k/cZjJZc2E3TmWpcA/VDC1NLoSRiydsLcSN4j4nBI5kp34dNc2HNM+HzN86B3tPyr6NQGtfCC5+CeGPh1sw12FBtr3YgVHYNQg+LbcgZLZ9HIjDhKpj9o8zmV/UMrjU76mcz0QyDhFY+Utw6JClTYecSmR7PSmnE+fDMhcVbPxEPAqxqegcBlvP/0LJ/5ldh4AnQd3rxalDHs2MdkEjeV9OOgtEAugyDczbAk2fDyn8FbbUD4OAbYPBJbVtbNqJVMOoiGHBc8L2sSxHUDnD3BOgyArqOglgjJJpg0S3BP/QR25ZbDY2rYfsKqBu0uy1hMJokSZIkSZIkSZIkSZIkSZI6NxMeJJWXbuOStzcsg52bs1vrxctg7Qvh/T0mwtAzwvulzqznPnD6Ajj+ySBA8OxVMOlLbV2VOpPK+tzm7Vif+56pgtE6alCDlKntK1P3L72zNHWUm60Lw29U3cUbVnOzYSZsmZ+8L93PfE+dIRgtHiP05vpMNa4pSCkFFXojeEVx963tD8c/DienuCF+9VPFrSFbi2+DWENh1zQYrf2KRKDb2OLvUz80CJHY0/DzMl9j0Akd+1y7ogyDhCQpldBgtOrS1pGJSAROnVvcPe4eHwQz7xmKtsvSO4q7vzqeVNdd7S0YDaC6Bxz7MJz8cnANddq89hWK1lyXYXDS88F/E0ll63uw6nGY/0dYeFMQiga5h6LtsmmP41nYZ9XFvh6WJEmSJEmSJEmSJEmSJEmSyoR3aEsqL93Hh/dtnge9psDmd2Ddy8Fj/StBCE6XkTD5O9BzUjB20zyYd33qvUZcWLCypQ6pohr6H97WVaizqsgxGK1hKdT0zm1uqmA0OnBYg5SJdGE7S+6AKd8rTS3lZPvq9GMMFoJBJ8Py+7Oft/RuGH9F6/b4zuzW2boAYtuhojb7GtqLTMPijnsMHjk6ed99U2HkR2C/7wY3hJeD0GC0EnycFa2E3tNgr4/Cghtb97/z38H7e/8fl8f7fPFt6cd0GwfHPAB37pXZmgY7tm/9DoP1r+Y+P1IZvAe7joa6wbDupZbnA30PgQN+BVVdW8/tMQmqesLODen3GfbB3GtsD2r7Zz72latg4hehtl/x6pGkipK2bwAAIABJREFUVOIxSMST95Vr0GP3cTD6Ynj398VZv3ENLH8AVj6avP/N78J+1xZnbxVXIg6xxiAMcNef8R2t25L1terfkXxOsrk7UpwfVfcp3fdfSJEI9N6/rasojEg0+G8ip86Bu/cu/PoH/xGe+3jyvkeOgRkzoee+wfOwfwCkukfh65IkSZIkSZIkSZIkSZIkSZLKkHc4Siov9cMgWhPcILKnZy6EhuWwc1PrvvWvwfIH4dTZ0GU4LLs39T7RKhj374WpWZJUeJU5BqNtW7b75rFspQraiURzW1PqKGJJzs2a2zQ7CKbtPrY09ZSLxjXpxxgsBOM/Dysezjy8a5cNbyRvzzYYLRGHrYs79usz05/JgKOgujfsWJe8/70/w8pH4ANvQnWvwtWXq3jIayZawvfV4A8kD0YDePuX0LQ5uLm9LcUaMwsfPPnlIMRqxiy4N4Pzpcq6/GtT2xl7efDaTfYZCsDoS+Dd/wmff+6m4LOZ6p7Z711ZBxOuhJlfSz2u11QYdk7267cntQMzHzvnx7D6aTjhKYhWFK8mSQqT7DP5XaJlGowGQbhvJsFoIy6EQ/8cXB/sWAuvfgEW3JB+3tv/lX+NuzSuDc6zO9vnTPGm9IFh+fZlG1KW7fVpsVV28fy7nHQfD4f/A54q8LlqtDoIMF79dPL+eyfDic8G55ANy5KPqelb2JokSZIkSZIkSZIkSZIkSZKkMuUd2pLKS7QCuo2FjUlCEDbNTT03tg3e+A4c9FtY82zqsacv8F9Vl6RyVtElt3kNS3PfM74jvG/9q7mvK3UEqW6Q32XpHdD9quLXUk4yCUaLVhW/jnI3+CQ45j741wnZzduxPnl7tsFoEAQf0IGD0bK5qb+mb3gwGgRh1Av+DOM/m39d+UrEkreXMnBw8ClQ2RWatiTvn/8nIAIH/U/bBVwsuT39mIEnBqFoAD0mQddRsGV+6jndJ+Zfm9pOj73hhKfhretg3Uu7jxN1Q2DE+TDmk6mD0SrrgDzCOSZ9JQh0WPhX2L4CmrZCVbcgiKSyC/Q/Cva9puMHgEUi2Y1f+xws+juMPL849UhSKimD0apLV0e2Mg0JGnlhcFyOVEBtfxj7mcyC0ZY/kF99AOtegWc+EoSKV/WESV+GCVdl/3sinUQiuF5KGhjWCLEdSdqKGVL2fn8iXtjvsyMy7Kr8DDqp8GtGq6D39PBgNIAHD0m9hq8VSZIkSZIkSZIkSZIkSZIkdRIGo0kqP93HJw9Gy8TSOyDx3xDfHj5m6o+hfkhu60uSSqOyPrd5Dcty3zNVMFrDctixAap75r5+udqyIAh+630AdBne1tWoXKV6f+zy3l+CG7s7ungTrHocYtth4c3px5cywKmcDTweqnunDuTa084NyduzCQHbZfvq7Oe0J5mExQ09M/izth9sfjv12AU3lEkwWsjfdbSE76uqbjDhapj1jfAx8/8I/Q6D0ReXrq7mVj+Tfszkb+3+OhIJXg9zfhI+PloTvG/VvvXcBw69Mbx//Odh7s9at4/6RP57RyIw5pLg0dmNuCCzc4Zd3v6FwWiS2kYsxXVfRU3p6shWJiFBwz4Ig2e0bOt7EOz1sczC0fKxfTXcP233850b4LUvwOJbYdjZ4WFiuYaUqX2qH9rWFWhPVV1h7ythzo8Lt2akCoaeDnN/mvsaBqNJkiRJkiRJkiRJkiRJkiSpk/AObUnlp/v43OduXwXLH4Ald4SPGfnh3NeXJJVGuQWjASy5E0Z9NPf1y00iEdyIO/tHu9smfQUmfzsIspCaizWmH7P+NVh2Hww+pfj1tJUt8+Hx02Hjm5nPiVYUr572Jlqd3fgdIcFomYSA7alxTfZz2pNMwuJ2BR1lchP1upfzq6dQ4iHfV6TE76uJXwxCjTbNCR/z/CUw5AyobYOb1FMF3Y35NOz7dagb1LI9XTDaXv8WBAGoYxt+TvJgtKFnlL6Wjmz0J7ILRlvzbPFqkaRU4imu+6LlHIzWJ3X/gdfDmE8m/6zj4D8G50VPnpXb3pFo6v5Nb8PdIf+9Y+3zwUOC4FpC5WfqD4MQs0S8MOtFq6Df4dB9AmyandsaBqNJkiRJkiRJkiRJkiRJkiSpkzAYTVL56bV/fvMfmxHe1+9wqBuQ3/qSpOKr6JLbvG1Lc98zXTDaq1d1rGC0Zfe2DEUDePNa6H8UDDqhbWpS+Up1g3xzj82AC+IdM1wvth3uHN3WVbRvFVmGKax7KXl7wmC0VsICxHaZ8AUYcmrwdXWa4IhdXroChp0FA47Jva5Nb8N7N8Ha54KwtX6HQd3QYM1hZ6c/VoQFvkVK/HFWRQ0cfR/cuVfqcY+dAie/WJqamgsLRht4Iky/Pnlf30Ohph80rk7SGYH9vluw8lTG+h4Kk78DM7+6u23CVTDktLarqSMacFz2c9a+BH0OKHwtKr1ty2DBDbBpLpBo62qk1HZuDu/L9ly+lKJVqfvHfCr8vDMSgWFnwr7XwKxrctg7TfjzC5dmv6Y6n2EfhPFXtHUVSiYSgVNeC0Lyt76X/3rRKohWwiE3wKMnwY712a9hMJokSZIkSZIkSZIkSZIkSZI6CYPRJJWfoadD/VDYtiR8TCSa27/Q7s0lktQ+VNbnNq9hWe57xtME7SQNDmnH5oUEpcz/k8Foai1dcGBz8/8Eoz9etFLaRKwR7hjR1lW0f9EcwhTe/jWMu6xlW7rjdTIdPRgtVVjcCU9Dv0N3P8/05/f2L4PH1B8GQUnZWvUEPHoKxLbtbltyR/DnvF/B6EvhoN+mXiMs8K3UwWgAXUfCmUvh9iHhY9a9BCv+BQOPLVlZxJvCb9Df873TXLQC9vk6vPzZ1n3n7wz61fFFIrDPV2DURbD+Veg5GboMb+uqOp5IBOoGQcPyzOc8cCAcejOMPL94dan4Ns6Bh4/o+Och6hzSBYC1tV5Tg99le+qyV3GDu1P9XLavDs6J1b5FKoJr2YqaJH9WJ++L1kBFdbOvQ+ZW1EGfA6HbuI4ZMN9R9NwXPvAmPHoirH66df+hf4G3fgAbZqZfa1eQY58D4YxF8PCRyY9dqdRkGHYuSZIkSZIkSZIkSZIkSZIktXMGo0kqP9EqOPZhePYiWPcCEIEeE6HX/tB7WvDotR/cfyBsmp3d2n2mF6NiSVKhVbRFMFoWwU8dwbJ7krcvvAkO+0tpa1H5izVmPvb5T2QXjBZvCm4gXfFQEHY04UoYfEr2NRbTO7+F7avauor2L5cwhde+AMPPgdr+u9vCwrJS6eiBJKl+Jl32CPXbsS67tV+9GrqNh6Gntd5zwY3w5rWwZX7QVjcEGpZmtu67vwseu+qr6gEDjoPJ34KqrkFbIpZ8brSNPs6qHxwEzT10WPiY5y6CMxeVrCR2rA8PDa9PE3A19jPQuArm/CwIsBtwDBz0B0PROqP6IcFDxZPL767XvxT8DmyrY56yl4jDnJ/A4tuCa9OtC9u6Iqlwcgk5LqV9vgpPfrB1e78U522FkOr47jEge/8XNJYiVCxaHRI0lkVfxgFn1Z4bK1BZD8c9Bq9eBe/+AZo2Q1VP2PfrMOICGHoWvHolzP8jxLaHrxOp2v11Vdfg+vLVK8P/AYtWdXSD7nvn9a1IkiRJkiRJkiRJkiRJkiRJ7YV3VUkqT93Hw0nPBjcUxpuCG2H2VNM3uzWHn9c6FECSVJ4qcwxG274SEgmIRLKf29mC0TqCxnXQtAWqe+2+cVbFEc8iGA1g6yLokiaQZ5dnPwoLb979fOUjcNRdMOTU7PYspoV/besKOoaKHMIUmrbCkjtgzKW72xI7s19n+8rs57Qn8RQ/k2hVy+fDPhgejhnmidPh+Meh/5HB79n4Tph9Hcz8WstxmYaiNdc8MGLDTFj3UrBXJAKJkKCJSBt+nNXvUDjyzuBnksy2xbBxNlR2CR6x7VDTBypqC1dDvCm4Vq6ohsa14eNq+qReJ1oRBNHt87XgZ5rL+ZOkzAw9MwiDzMbWhcFxsduYIAQRgjCNyvogTNL3bPl5+fPw9i/bugqp8CJRqKhr6ypSG3pWEPK68tHdbdEaGPfZzOb3PiC3fWPbIB5LHp6VT3h/0UVSB4MVIogsVeBY0j2r/d2m8hathGk/g6k/CsLz6wYGx0eAyjo48Ncw7efwwidh/p9C1tjj+rz5vPumwMa3Utcw7t8Le20pSZIkSZIkSZIkSZIkSZIklTGD0SSVt0g0POQk22C0Q/83/3okSaVR2SW3eYlYEHCWS/iOwWjtx7pX4LmLYMOslu3jPwdTf5z8hmTlJ9v3x5I7YHwGN6AvubNlKNouj58GR94BQ0OCh0pp+xpY82xbV9ExRHM4NgMsub1lMFqqELAwZR1KUABhAWLQOkRs0Am57THz67D/T+DFz8DaF3JbIxOrn4TlD8Dgk1MEo7XxcX7oaVA/LAhBS+aeia3b9vooHPBfUNUt931jjfD6l4PQnfhOGHwqjLwgfHy6YLRd9rw5X1LhDZ6RfTAawP3TgAiQaN037edB4I8hMuVhw5uGoqnj6nto+QeRRyJwxK0w5+ew/H6oGwz7fh16Tcls/sDjoKo77NyU/d5NW6C6R+v2Wdekn1vVE3pMTB04lk/YWFifobhS7qKVUD84pK8quFYMnRty7RWtghOfh1evhHd+m3zMtF/CuMuzq1WSJEmSJEmSJEmSJEmSJElqxwxGk9R+ZROMdvyT3uwtSe1JRX3uc5u25haMFjMY7f8suRP6HZZ5oEo+Eokg4KxhGVT3hqZN0HVU8NjT5ndh/Svw1IeSrzX358FNxZOvKWrJnVKsMbvxyYLRdmyA1U9B47rgtdVrCjxxRvgaT5wBp86B7uOzr3f9a7DyseA1NeBo6DI8s3k7N8Ga56BhRXCja+0AmPsLkoaRKHu5no8vuxe2LYH6ocHzXILR1r8KO9ZDda/caih3qX4me/7c64fCxP+Et76X3R6rHn8/oKcEFv09CEaLhwSjRcvg46wTn4Pbh2Q+fsGNUFEL03+T+55v/QDm/GT382V3B49kojX5nU9JKqzBM2DgibDiwRwmh5yHvPw5qBsCwz+YV2kqkHv3aesKpOKo7AZTvt/WVWSmulfweUAunwlU1MKU6+DFT2c/N1kw2tJ7g2uQVPa7FiZ9Ofv9JJW5FKGDqT4XqeoaXC/22AdevmJ3e2WX4L9x9p5auBIlSZIkSZIkSZIkSZIkSZKkdqAM7iSVpBxlGoxW2RX6HlLcWiRJhRWtgkgFJGLZz23aCjW9s5+XyCBoJ5GASIqb2zqKJ84AInD432D4ucXbp2krPHcxLPpby/ZIZXBz8ORvBs8TcXj9q5mF+Cy40WC0YohnGYy26nGIbQ9uLocgKO2JM7Pf9+694YIYRKKZjY83wdPnw+JbW7ZP/RFMuDL13DXPw5NnQcPyzOsbcQH0PgBeTbO23pciYK6iNnjNhLl9WHCD8JhPQiIkLCudW/vCEbfB0BSBfO1Vqp9JJMlHP/tdC/2PgqV3wrxfF6+uXM3/Q/A7YPWTyfuTfU+lVj8YJlwNs3+Y+Zx3fw/7fTe34NGmBph9Xebja/p0jnMWqb2oqIaj74X3/gLPfaxw68673mC0crBhVnbjR11UlDKkguu+Nww9C7qPa+tKSmPsp6DnvvDQYdnNa9rauu3d/0k958Rnoe/B2e0jqf2LZBAYP/6zwX/TXPJPiNbCmEuhbmDxa5MkSZIkSZIkSZIkSZIkSZLKTBncSSpJOartl9m44R+CaEVxa5EkFVYkApVdYOem7OcmuyF1l3gMlj8AK/8F9UNg9MVQ1T39vF0STZndwNYhJODZj8HA46G6V2GX3jIf3rsZZn41ZOsmeONbsHNzEIi16O+wbVFma29dAPGdQbieCie+I3n7gGNg5aOt2xNNQQDQuMuD9/HT5+e+980V0H1C8HXfg6HLSBh2VnDD+i5bF8GsbwZhSsm8ehW8dxP0mtKsMQ6rn4Eek2DQiUG4UTahaOOugAN+/v76BqNlpMe+sOqJ1u3R6iAY4L6pqee/8KngmBTPIMgymUQcnjoPzl4J1T1yW6PcrHkBltwOy+4OH5PseBiJwOCTgkfD8uCG63Jz+7DwvmiZfJw16uPZBaMlYvDSv8NhN2e/18pHMjtX2SWX8DVJxRWtgFEfDQIp1z5fmDVXPhL8fss0RFbFsf71zMd+aEtwrSupPPU7FMZ9Ft7+ZeZzYttat6U6vx7//wxFkzqrTD+v7HNA8JAkSZIkSZIkSZIkSZIkSZI6sTK5k1SSclA3JLNxE79Q3DokScVRUZ9bMFosJDQkkYCXLod3frO7bc5P4KQXoW5gEMKVTnxH5wrcijXAkjth1McKt+bqZ+DRk6BpS/qxc3+a2x4Lb4G9PpzbXCUXa0ze3nsarHoyCELb00v/HoT4dBkJse357b9pdss/3/wuHH4LDD0dVj4Ojxydfo31rwSPPW1+O4dQqAiMuSTLOWLEh4IwGBIt24efF4TWfWgr3JImKGTRreHBaEfeEbzmnrkwfH68EVY8CMPPzar0sjT/T/D8xUEgTiqRNCHRmQZO52P674LwtiV3FGa9dN9zqXTfG7qNhc3zMp+z8K/Qa2r216lLbs9ufLXBaFLZGnFB4YLRADa/C93HFm49ZW/b4szGHfeooWhSe1A7ILvxe4bXNiUJSmuu+/js1pfUzkTCuzrT58qSJEmSJEmSJEmSJEmSJElSnqJtXYAk5axucPoxR/zTG40kqb2qqMtt3v0HwFPnw4ZZLdtf+0LLUDSAbUtg1jeCrxfelH7tsDCejmzjW/mvEdsB8/4bHjoCHjoss1C0fLxgYFXBxXckb6/sCt1Gh8977Yvw9HlFqKcRXr0K1r+eWShaoY29DHruW/p927v+R8Ih/wv1Q4Pn0eogHGb69cHzyvogaCqVNc/SKlhtl+qeMOJ86DYu9RrblmRVdllqXAvPfTyDULRKiKS4KRugpn/h6kpm/OeCIMEDfhXUUwgNywuzTr4iERh2TvbzZl0D21elH7f6GXjsVPhHb3j399nt0efA7OuSVBrjr4B9vla49e6fCg8dGfxe2LqwcOsqMzs2wutfTj2mpl8QEjrg6JKUJClPVd2zG79nMNrmt1OP7zEhu/UldRwGo0mSJEmSJEmSJEmSJEmSJEkZMxhNUvtVPyS8b9RFcH4TDDuzZOVIkgqsojr3uYv+Bg8cBFsWBM/n/gJm/yj52Hd+C/NvaB2klkxnDEbL5Oeyp9j2lj+r1/8TXvwMrH6qcHWl279hZWn26izijcnbozXpg6yKZfM8uG9K6fftsQ/sd23p9+0o9vownLEIzlwC526Ew26Cyi67+7uMSD1/e4r39q4QsAlXpl6jYUXm9ZaT2PYgEC3eBLf2zWxONIMgstoiB6PVvX/dVj8E9vpoYdbsMakw6xTCxKuDwJtsxBpg4V+Dv0sIAu4ScUgkIB4LfoeteiIIE112D+xYn31doz6R/RxJpRGJwORvBZ9bjb44//WatsLqJ2H+n+D+A3M7Zig38SZ45NjUY87dDGctC0JCJbUPVd2yG79nMNrGOanHt9U1tKTSSBVOHjEYTZIkSZIkSZIkSZIkSZIkScpUBnfISlKZqhuUuj9aUZo6JEnFEcnzVDXWAHeOgklfhXd+k3rscxdltmZnDEZbfj9sXwO1GYTw7NwCz18MS+6ASBSGnwsjPwJzflL8Ovf0xjfhwF+Xft+OKhYWjFYNg04O/s47g0EnwaF/geoebV1J+xaJhIccpwtGq6gL74u+f4PxmE9CZVd45sPJx82+DhbeHBwjhpyavt62tmM9PPcJWHJ79nMzuem6JsOQtVwNOnH319N/C93Hw7J7g+fjPwfrXoY3swwb7Htw4erLV3UvOOk5mPkNeO/Pmc97+XPwyn9AIhac8ySaClfT6Iuhh4EbUtmLVkC3sYVds3E13DsFzlxY2HWV3Mp/wfpXwvvHfAqqupauHkmFUZltMNq2ls+X/DN8bO9p2YfqSuo4ogajSZIkSZIkSZIkSZIkSZIkSZmKtnUBkpSzilqoqE/eN/z80tYiSSq8Qt0o9uZ3goCAQojvKMw6bS2eTfhKAmZ+LbOhz30MFt0C8cYgmG7BjfDoiennFcO862HNC22zd0cU9tqvqAnC7/oclP8e9cPg4D9BpEzDbSd9BY65H2r6tHUlHVu6YLRUx/PmvzdGXghjPh0+dttiePw02PBGdvW1hacvzC0UDTJ7vVaGXFMVwqiPQ6/9dj+PVsDEL8DxjwWPYWfBuM9mt+aYT0HPyYWsMn9dR8Gh/wsXJlo+zgsJldwlEXv/zwKGovWeBgf8qnDrSSquwTNS99cPg3PWw/FPZr7mtkWw8rG8ylKGFt+aur/HPqWpQ1JhVWUZjBbb2uzr7cHnImGmfD8IipbUORmMJkmSJEmSJEmSJEmSJEmSJGXMYDRJ7duoj7duq+wKA44qfS2SpMKq7NrWFbQW39nWFRRGbHt24xfcAE3bUo9pXAdL7si9pmKY86O2rqDjiIeE+0RroKorHPcoTLgq9/WHngGnvAajPganvJ77Osn0PyoIb9v1qKjLfO7Ij8C4K+Coe2C/7xS2LiXXZWTq/g0zw/silS2f1/RNv9+8X6cf05a2LoTl9+c+f9BJ6cdUZhn8kE7X0TD2cjj873DQ79OPrxsQhP6kUzsQjrwjCP1qL2ESFdVw8svFW3/az2H/n8Koi2DUJ+DAX8MJTwehlZLahx77QI9Jyfv2/wl84C2o7gn9D4dpv8h83Xd+V5j6FG7rQnjnt6nH1A8uTS2SCivb8+OmZsFoS+8KHzfsbBh4fG41SWo/9vxsojmD0SRJkiRJkiRJkiRJkiRJkqSMpfg/cyWpHdj3Glj/Cqx5NnheURvcgF9R26ZlSZIKoNBBLYWQ6CjBaA3Zj3/7lzDxi+Fj1r8GiVh+dWWjsmsQ+LP41vAxi/4OjWuhpk/p6uqoYmHBaNXBn5V1MPWH0GUveOny7Nbe5xsw+Zrdz3tOgt4HwroXcyoVCMLQjvsXRJJkgSduhBcvg3f+O/UaZy6G+qGZ7Tf9d/DCpa3bR12U2Xzt1mVEVsMXNIzkjjWns6GpJ6ct68q0ns06MwpGuz4IkypXKx7Ob/6U76cf0+fA4L0c35HfXgDjPw/7/zj5ey+V6p5wwlPwxFnQuHqPvt7BNd7AY/Ovry303j8IWXzvz4Vfe8QFUNuv8OtKKp1IBA7+IzxxBjQsD9q6jAzOY7ru1XLs0NPh5SsyW3fhTTDiPBhyWvsJk2xvXrws/Zi6IcWvQ1LhVWX5eVTjut1fr3s1fNyIC3OrR1L7MvLDMPOrrdvrh6YOTZMkSZIkSZIkSZIkSZIkSZLUgv/3raT2rbYvHP94cMPR9uXQ/0io7tXWVUmSCqGqa3jfgdfDi58pXS27FCI0phxkG4wG8NqXoOtoGH5O8v7Z1+VXU7ZGnAdDz04djAZwa184aznUDSxNXR1V2Gt/VzDaLuMuC8I3MgmKABh9cctQtF2yDVVqrtdUOP6x8P5IBKZfH7yGHjkm+ZizV0Jt/8z3HDwDKrtA09aW7cPOzXwNBbIIRntu40HMmHU3G5qC8/9v/zzBHy+K89FD3n/9ZBKMBjDr27Dv17KttPi2vAfPX5L7/LNXBoFj6VR1g6FnwqJbct8L4NS50H1c7vP7HQanzYXVT0PDiqCttj/0OxxqeudXW1ub+kNYeifs3FS4NcdeZiia1FH0ORBOnQNrng/OgfodDhU1rcfVD4OKuszP5Z84A0ZfCgf9trD1Cja/C8vuTT+ubnDxa5FUeNkGo735HZj0peCacNOc8HFDTs2vLkntQ9eR0Gc6rH2hZfvw8wyslSRJkiRJkiRJkiRJkiRJkrKQx93mklQmolXQdzoMPcNQNEnqSCpTBKMN+yCMu6J0tewS31n6PYth41u5zXv1CxCPtWzbuQlevByWP5BfTZXdoH54+nHRahj5YZj2SxgyIwjJS+e1L+VXm8Jf+xXVrdvGfgb2/xlU9Ui95t5XwvSQoI5cg9H2+igc90hmYwccDcc/AV1H7doU+hwEZ7yXXSgaQP1gOOZB6PZ+KFTtAJj+m+A1quzUDsp46FcWfOf/QtEAEokIn705wc6mRNDQ54DMFpr1ddgyP5sqi6thBTz/Sbhzr/zWyeZ1fNDvg9+t0argMfRMGHF+5vMHnZJfKNou1b2CwIgxlwSPoae3/1A0CMI5J3+ngAtGYMr3CriepDZX1R0GnQADj0seigbB+VHfQ7Jb993fwd/qYf4NkEjkX6cCS+/KbJzhzFL7VJllMBrAg4fATRFY8s/k/cPPCz++S+p4jroLBhwbnL9V1AdhtVO+39ZVSZIkSZIkSZIkSZIkSZIkSe1KZVsXIEmSJCWV6kbUaDWMvhjm/wGatpSupo4SjDb3Z7nN27oA1r+6O2wokYAnzoKV/8ptvaoecNrbEKmEqm4Qb4Jb6sPHz5gZhFhVdtndNvbTMOaT8OgpsOLB5PMW3RIEqFXW5VanIBHy2o9UJW/f+3NBQFp8R3Dzd3wHNK4N/u4iFVBRl+am8EjmtfXaH054Aohm/3fc/wg47R1oWA4VtfkFMPU7FE6bC9vXQE0fiGTxPWi3aEVGwxrj1Ty64ZhW7Zu3w2NvwwkTge7jM9934S0wqQxCFHduhvsPgIal+a3T+8Dsxld1hSP+AU3bIBEPnq97FRb+Nf3cSAWMb4Ow0vZm7Kfh9a9A0+b81uk6Gk6dHQTYSep89r4SVj0WHKszFWuA5y6C7atg4tXFqqxz2fhG+jG1AzxWS+1VVQ7BaBtmpe4f/sHcapHUPtX2D4L7d2wMPm8yGFGSJEmSJEmSJEmSJEmSJEnKWrStC5AkSZKSquoa3hetgl6T4diHS1cPdIxgtMZ1sOKh3Oc/cCDM+WkQirb0rtxC0bqMhGEfhJNeDG4UrOkd/J2mC7WqG9IyFG2XSBTGXBI+L9YAKx/Jvk7tFm87yJnlAAAgAElEQVRK3h5NkbVdUR28j6NVwd9bl+FBYFh1z/Q3hKYKFZv+W+h/JPTYByZ+EU54Klg/1+C7SATqB+cXitZcbV9D0fI19jNph2xs6hHaN2dFYveTkf+W2Z5Lbs9sXDHt2Ah/755dKFq/w5O3Dz0jtxoq63f//u09FU58Drrvvbt/4Akw4w0Y//ngPTjoFDjqHhh8cm77dSbRKtjrI9nNqR8a/J6sHQC9pwVBoCc8bdCO1JkNmQFH3gWDToK6wVA3KPO5r30Bti4uXm2dybu/Tz9m8AeKX4ek4ohWQb8jCrtmtyxCmyV1HNU9DEWTJEmSJEmSJEmSJEmSJEmScpTiLnZJkiSpDQ06Cd78bvK+itrgz74HwYSrYfYPS1NTfEdp9imm9a9AIp7fGq/8B2xfCeteyW7ePl+Dyd9KPSZaHf5zruoePm/QyRCpgEQsef+S22HIqZnVqdYSIaGARQvnSREsNvIjMObSIu2rsrD3f8CSO1MGhG1qCj8edG1+z3HdwMz2XPs8vP3rIFCsfkiGhRbYMx/Ofs6oTwTBgMsf2N3WfQKM+VRhaup7EJw6u3X7tJ8WZv3OZvJ3YP6fgsDO5iKVcNjNMPycNilLUjszZEbw2GXVU/DYDGjanH7u3XvDeVuLV1sxNTXAhplAAvoc1HZBtOtfTz+mbhBMuLL4tUgqnv2uhYePLNx63cYWbi1JkiRJkiRJkiRJkiRJkiRJkjqBaFsXIEmSJCXV73CoH9q6feiZEGl2GlvKsKt4SDhUe1Ko7+GtH8CKhzIbO/YyOOru9KFoEITDhImm6KvqBnt9NLx/xSPp91ZyiXh4mF6qv6+8pAi62BWMqI6r2xg46YWUr6+NsR6hfV2aB6NV98x835cuh9uHwutfhUQi83mFsG0JLLsn+3lV3YLj60F/gDGfhv1/Bic+A7V9C1+j8lfTG85eAZO+GhzLolVBwOtJzxmKJil3/Q+Hk1+ECVelHxvbBhuTBF6Wu3WvwH37wYMHw4OHwAPTYVt4gGpRzfpm6v6uY+CU16DHxNLUI6k4+h8BtRmGLKdT1RMq6wqzliRJkiRJkiRJkiRJkiRJkiRJnYTBaJIkSSpPkSgcenNwA+ku3cbBAb9qOa7fETDpyy3bRl9SnJoSHSEYral0e03+NlyYgAN/BUM+kNmcVOFn6Uy5Lrxv63ulDzrqKBKx8L5iBaNFUlyqRlKEpqnjqB8M+3w1tHtjU3gwWn11s9dIVRbBaLu8eS2seDj7efnY8EaOEyPBcXP0x2H69bD357ILg1PpVXWH/b4N5zXA+Ttg6nXQe1pbVyWpves+Hqb+EI66JzjOpDLz66WpqVASCXj+Utg8b3fbupfgpc+WvpblD8KSf6Yec9rbUNu/NPVIKq6+hxRmnQHHFGYdSZIkSZIkSZIkSZIkSZIkSZI6EYPRJEmSVL76Hw5nzIej7oLjHoUZs4KwnOYiEdjvWjjtnSBI7ZTXYfpvi1NPfEdx1i2lVCFXhTT4AylDjUL1PiD3PWv7wonPhvcvfyD3tTuzeIpAwGhVcfbsOro466p9iVaHdm1IEYzWIgMxVcheKgtvym1erhqW5zbPEDRJUnNDZsBp82Cfr4WPWfwPmP3j0tWUr3Uvw/pXWrcv+SdsXVy6OmZ9Gx49KfWYg35viK/UkRTqXHvcZYVZR5IkSZIkSZIkSZIkSZIkSZKkTsRgNEmSJJW36l4w5FQYcDRUhIfk0G00jDwfek0Obkaf+KXC15IqIKq9SDSVZp9cf/4TrkrevtfHMptf2z+874VLs69HqV8z0cri7Dnu35O3D55RnP1UnqI1oV0bUwSjNcWbPUnEQ8eltOjW3OblatuS7OdUdoG+hxa+FklS+1bbHyZ/C3pNDR/z6lWw+Z3S1ZSPtc+H9y27uzQ1LPgLzPp6+nFV3Ypfi6TSqSpAMNr038CA4/JfR5IkSZIkSZIkSZIkSZIkSZKkTsZgNEmSJHVMoy4q/JodIRgtnkEw2oBj8tujz8HQ77Dc5g48HnpMatkWrYExn8xsfk3f8L5tS2Dn5tzq6sxSve4jVcXZs9cU6HfEHntFYexnirOfylNFbsFoseZZaN3H57Z30+bSBsZkErayp9GfhMq6wtciSeoYDvtr6v67xpamjnytezm8b/1rxd9/8e3w7EcyG1tpMJrUoVTnGYw2+NTgs4xIpDD1SJIkSZIkSZIkSZIkSZIkSZLUiRiMJkmSpI4p1zCcVDpCMFoilrq/y0g45iGY8gOo6p79+v2PgmMfzP3G32gVHP84jL4k+Dsc/AE45n7od2hm89OFEWyel1tdnVmqML1oZXH2jETg6Hth3Gehx0QYeCIceQcMObU4+6k8RatDuzbGwoPRmmKJ3U/6HQFVOQYa3DUWEon04/K14Y3U/X2mw4QvwJTrguDJ3gfAlO/D/j8qfm2SpPar+7j058ZrXypNLflY+2J4X+Oa4u0ba4QXPgVPnpX5nCqD0aQOJd9gtNEXF6YOSZIkSZIkSZIkSZIkSZIkSZI6oSLdxS5JkiR1QPEdbV1B/hIpQq4ilbDf9yBaARO/AGM+Cf/old36R9yWfyBATR846He5zU0XyLb4Vti5CbqOhi7Dctujs0mkCASMVBVv36qucMAvire+yl+0JrRra6xLaF/zXDQqqmHK9+DFz7Rct/f+sObZ9DXMux7GXZZBsXlY9I/wvn2/Cft+fffziVcXtxZJUscy7jJ46wfh/cvvhz4HlK6eTDWshK0LoKYfbHorfFwxg9Fe+iy8m+U1SWXX4tQiqW3UDsx97oBjYfCMwtUiSZIkSZIkSZIkSZIkSZIkSVInYzCaJEmSlKl4ioCo9iIRC+874Unoe/Du51U9sl+/OssgtVJ787vBA2D0JXDgfwdBcAoXTxGmF/WSUkVUER6MFk9EQ/ua9jzMjf00dN8bltwBlfUw/FzoNQWW3Q+vfQk2vB5ew0uXQ91gGHZmlsVnYcVD4X1Di7ivJKnjG/Xx1MFoM78W/I4cfk7pakolkYC3fwWv/L/Ugc67FCsYbecWeO9/s58X8dxY6lAGnRC8r/c8HtUNgpEfgZ0b4Z3ftp4XqYSj7w1CmiVJkiRJkiRJkiRJkiRJkiRJUk7C7ySWJEmS2rsJVxd2vQ0zC7teWwgLGOg6pmUoGkAkAt3HZ7d+JJJbXYWUaZDQu/8ThC689QOY+wvYurC4dbVXqUIpDH9QMUXDgwRiVT3D++JJGgccDdN+CvtdG4SiAQw+GWa8Bqe8lrqOJ8+ChpXp683VlvnJ22v6Qa/JxdtXktTxdR8P036ResxT58JLV8DG2aWpKZUFN8DLn80sFA2KF4y2aQ7Etmc3p6IOuo4qTj2S2kZ1LzjkxpbXvX0PhQ/MhqnXwfTfwGF/g2izQOfeB8CZS1KGPEuSJEmSJEmSJEmSJEmSJEmSpPQMRpMkSVLHNewcoIBBXfP/AItvL9x6bSERS94eDQm4GnFh8WoplhEXZD727V/Ca1+Clz8H906B1U8Xr672Kr4zvC9aVbo61PlEw8MEYtGuoX1NyYLRUum1Hww/L/WY5fdnuWiG4jthe0jo2iE3FmdPSVLnMv6zMO6K1GPe/iXcNxUW/7M0NSUz/0Z47uPZzWlcC4lsf/FnYNOc7OcMOR0q6wpfi6S2NfICOGMhHPZXOOFpOP4xqO6xu3/Eh+D0d+HQm+G4R+GEp6BuQJuVK0mSJEmSJEmSJEmSJEmSJElSR2EwmiRJkjquvtPh0L9ATd+W7ZVdcg90eumy4tx8XyrxpuTtkZBgtElfgbGX7Q4o6rlf0JbM2Mvzr68QRnwIBhyb/bydG+DVqwtfT3uXCHnNQPjrRiqEivBgtHi0S2hfLJdD9MF/SN3fsCyHRVPY8h48fjr8tRpIJB9TP6Swe0qSOq8RaQJAAeKN8OTZEGssfj172rkpCCrOViIGT5wJa1/Mv4Y1z8EzH4F/nQTP/lv28w/6n/xrkFSe6gcHx9F+hyb/LKl+CIw8HwYcnfIaRpIkSZIkSZIkSZIkSZIkSZIkZc5gNEmSJHVsIy+As1fCmYvhgljw5zkbYcabUFHXcmzdEDjldeh/ZPh6DcthwxvFrbmYwkKuIhXJ26MVcOCv4NwNcNZymPEaTPrP4GfVXEUdjLm0sLXm4/Bbcpu35tkgsKi59hyEVwjxneF9uQYMSpmIVod2xaJ14X25vGUr6+Ho+8L7m7bksGiIhuVw1xhYelfqcXseZyVJylXfQ4JHJh4+qri1JLP0niCkOKe5dwU1r3429/2X3QcPHwnv/QVWPJj9/HFXQFXX3PeXJEmSJEmSJEmSJEmSJEmSJEmS1ILBaJIkSer4IlGoH7r7z2gFdB8LJz4Dg06GLnvBiAvg+Meg1+TWgWl7um8/eORY2PxuScovqEQseXu0MvW8ilqoGxh8XdkFTnoeRpwf/OwGfwCOfQR67VfYWvNR0yf3uXfuBbd0gyfPhbsnwl+r4b5psOKRwtXXnsRDwvQg/etGyke0JrQrFqkN7WvKNctw8MlAJHlfId//s74ZfizepaIWqnsVbk9JUucWicAxD2Q2du3zsHNTcevZ07J785sfa4C5P819/pyfpA4DTqeqW+5zJUmSJEmSJEmSJEmSJEmSJEmSJLViMJokSZI6r15T4Jj74Iz5cNhN0G1M0J4ijOf/rHwUHj4KmrYVt8ZCCwu5ilRkt079EDjs5uBnd/Td0O+Q/GsrtOHn5T63aQss/gdsmh0EGK1/BR4/HTbOKVx97UUiRUhEpKp0dajzqUgVjJaiL9dgNAgCH5NZ+zw0rs1j4ffFm+C9P6cfVzswCLGRJKlQqrrB6EsyG7vulcLvn0jAlgWw+mmIbW/Zt/nt/Ndf9Pfc61r1RH571/bPb74kSZIkSZIkSZIkSZIkSZIkSZKkFgxGkyRJkvZU0yezcQ1LYcUjxa2l0BKx5O2RytLWUQqjPlbY9WLbgrC0ziYsTA8g2gFfNyof0erQrkSKYLSmfILRKruG9839eR4Lv2/WNdC0Nf24vmUYNilJav8qu2U2blOBw4CbtsKTZ8Odo+Chw+G2gbDi4d39jWsKs08uIaZNWyC+I/24ab+Eqh7J+wadkv2+kiRJkiRJkiRJkiRJkiRJkiRJkkIZjCZJkiTtKdNgNIA3v1u8OoohERJy1REDrgadDL2mFnbNjW8Wdr32IOw1QwQiXlKqiKJVoV0xwoPRYnkFo3UJ73vj27DuVXjz+/DKlTD3v2DrwszX3rkF3rw2s7Ejzs98XUmSMlWVaTDa3MLu+9Z1sOT23c93boR/nQDLHgieFyoY7ZUrs5+T6d6jPgqH3AgVtS3b9/8pdB+b/b6SJEmSJEmSJEmSJEmSJEmSJEmSQnXA9ANJkiQpTzV9Mx+7Y23x6iiGRCx5e6SitHWUQiQCh94E90wo3JqL/g6H3Vy49dqD+M7k7SlCq6Rii0XrQ/ua8gpG65q6//79Wz6f+VU46m7of3j6te/dJ7Maeu4Lg0/JbKwkSdnINBht87zC7vveX5K3P3Yy7PUx2LmpMPssuAEO+VN2czIJRqvsBlXdYejpcPp8WPkoxLZD/6Og2+icSpUkSZIkSZIkSZIkSZIkSZIkSZIUzmA0SZIkaU/ZBKO1t3CoeFPy9kgHvTSo7lHY9RIxSCSC0LXOItHJXjMqH11HBcfjPQNLKuqJ1w4MnRbLKxitS3bjd26Eh4+A0+ZBtzHh4zbNha0L069XOxAOvbn9/W6RJLUPVd0zG7f+FXjuYpj/h+B5RT0c/ncYMiP5+KYGeOsHsOpxaNoctFV2gwFHw9jLYcu74XstuCHj8jPSuBZq+gTn7Av/Cgvf/7069jIYeFyS8RkEozUPlKsbBCMvLFy9kiRJkiRJkiRJkiRJkiRJkiRJklqJtnUBkiRJUtmp7p352Eg7C68JDbmqKG0dpVLVs/Brzvxq4dcsZ/GdydsNblKxRaIw5tOt20d/glgiPJivKZbHnpX1uc27ayxsfie8f/FtqefPeAPOWg5nLYOek3KrQZKkdKI1mY1rWL47FA0gtg0e/wAs+EvrsYkEPHoSvPFNWPUYrHs5eKx6DGZdA3eOKkDhWXjr+0FNs66BZy6EpXcFv4f/dTy8d3Pr8Y1r06/ZPBhNkiRJkiRJkiRJkiRJkiRJkiRJUtEZjCZJkiTtKRHPfGy0unh1FEMiJDEoEh4y1K5V1kHvA5L3jb08tzXn/ASaGnKvqb0JC9OLdtDXjMrL5G/BlOug5+Tgse83YdrPicUToVNi4V3pxUNe75m4ayw8cixsmd+6b9m94fNGXBCEodUNhEgk9/0lSUpn5+b85r/5ndZtS++G1U+Gz2nKc8/m6galHzP7R/C3GnjjW637nrkQmra1bGtck37NSoPRJEmSJEmSJEmSJEmSJEmSJEmSpFIyGE2SJEnaU++pmY+taGfBaGGhPx055Gryt1sH2E35ARz4X7mtF9sOKx/Nv672Yvvq5O2RqtLWoc4pEoGJV8OM14PHvl+HSJQUuWg0heQ/ZiSWZ+jhykfhocMh1tiyfcf68DlDz8xvT0mSMtVnen7zN81pGSy2fRXM/Gp+a2ZjwPGZjYvvDO+7b0rL51sXpl+vymA0SZIkSZIkSZIkSZIkSZIkSZIkqZQMRpMkSZL21GUv6D4hs7HtLRwqEZIYFKkobR2lNPhkOOFpGHcFjP0MHHUPTPxCfms2rilMbeUskYC3roOXLk/e35HD9FT2YvHc+tKKFOBjkoblsPjW3c8TCdi2OHz84Bn57ylJUiZ67w81ffJbY1cw2qxvwe1DYcPM/OvKVEU1jL44vzU2z4N1L+9+vmlu+jlh11CSJEmSJEmSJEmSJEmSJEmSJEmSisJgNEmSJGlPkQgc/MfMxkbbWzBaU/L2SAcPuepzABzwczjw1zCkWQjRpC/ntl5Vt8LUVc5WPQ6vfTG8v72FAqpDSRV+1pRPMNrQM/KY3MwzH4YXL4d7JsF9+8HOTcnHjb0cqroWZk9JktKJVsKhN0G0Jvc1Yg2w/EGY9Q2I7yxcbZmIVsO+10DPffNb5/4DYO2Lwdeb5qQfv3NzfvtJkiRJkiRJkiRJkiRJkiRJkiRJyorBaJIkSVIyfQ+Cg29IP669BYolYsnbIxWlraNcDD8XiGQ/L58wifbivb+k7o+2s9e+OpR4IrwvVWhaWt0nQI+JeSzQzLxfw8a3YMOs8DGTv1mYvSRJytSgE+HMRXDIjTD+89nPjzXAnJ8Uvq5MRKuhfiic+BwcfV9+az0wHWZ9C7a+l35sWMCpJEmSJEmSJEmSJEmSJEmSJEmSpKIwGE2SJEkK031c+jGJncWvo7mdW2D2j+DxM+DFy2DbkuzmJ5qSt3fWkKteU+DQm6CqR3bz4juKU085efd/Uve3t1BAdSipws+a8glGi0Tg6HuDY0Ox1fSDmj7F30eSpD3V9oe9/g2Gn5P93LvHw/IHCl9TJqJVwZ+V9TD4ZOi+d37rzfoGkCJtdZemLfntI0mSJEn/n737jo/sru+F/zmSthfvet3WvdtUY7BxsE1wgiFwSR5aKAkhIaSQkEuAkHvTHi6hPJc0SCMJISEO3HATjAOEJJRQQzHFlBgwLtjGhV23NdtXqzbn+UO7rHZ2yhlpRpqR3u/XSy/p/OpXs6NBZ/DvIwAAAAAAAAAAAKAjTrIDAEAzK45pP2Zqf+/rOKisJf/5o8n9/3mo7c53J0+5Lll7ZrU1ak2C0ZZyyNXpz09OfU7yzdcn33xttTmLPRitrBAQcTCYAhbAVIunaKvQtErWnJY89WvJ3ruT5Ucly9YnYw8me++cDpIZWp6MrEtu+N/JDW+Y/T5zDXMBgLkaXr3QFXRmaPnh16tOTHbd1Pt9T3567/cAAAAAAAAAAAAAAAAAvm8Jpx8sbUVRnJ/kgiQnJ1mVZH+S+5PcmuT6siz3zmHtZUkuS3Jqks1J9iTZmuRrZVneMbfKAQDmUb8Fo9159eGhaEky/r3klr9IHv2mamuUU43bi+G51TbohoaTs168OIPRtnww+fqrk313Jkc9LHns3ybrz2k959a/br/uUg7TY8G1Cj+bczDaQWtOOfT1ik3THzNd8Ppk5fHJV142u/VPeOLsawOAbhgZ8GC0NafNz76n/9T87AMAAAAAAAAAAAAAAAAkEYy2pBRFsSHJy5O8ONOhZc1MFUXxX0muKcvy9zpY/9gkr03yvCRHNxlzbZI3l2X5z5ULBwBYKMuOmj583yoEaz6D0W76o8bt932i+hrlZOP2IbcGWXNqcvYvJbe+tf3YQQlG23FD8plnJLWJ6ev7P5185LHJ0+9Ilh/VeM5d1yTX/XL7tZdv7FqZ0Kla2byva8FoVZz335PxB5Nv/G7nc89+SdfLAYCODC9wMNrQiung0dGtFccvO/z6tJ9Ibr+q+3XNdOLTkmMu7e0eAAAAAAAAAAAAAAAAwGGkHywRRVE8J8lfJdlUYfhwksckOTlJpWC0oiiemuTvkxzXZuilSS4tiuJdSV5SluXeKusDACyIokiOvijZdm3zMfMVjFaWyfe+0rhv+391sM5U4/ZiuPOaFqOL/zI59tLk1rclD3y2+bhBCUb7xv86FIp20MSO5O5rkrN+7vD22kTyhRcnd/xDtbVPeGJ3aoRZaBV+NtnkZa5nHvGaZMMjky0fSEbvTfbekey6qfWci96SrDphXsoDgKZGFjAY7bxXJme8INl4YXL7O5L7Pp6sPnX6d/AHPtN4ztDyw6+PvyJZd26y+5bu13faTyTHPT458+eSIfdKAAAAAAAAAAAAAAAAMJ8Eoy0BRVG8JsnvNui6K8ktSR5IsjLJ5iSPSLKmw/WvSPL+JDNPppVJvprk9iQbklyY5JgZ/S9Isr4oimeUZdniSDsAwAI78amtg9Fq8xSMNrGrdf/4zmT5Ue3XqU02bi/cGiSZDsM744XJKc9OrtlwZKjYQYMQjDa5L7n7vY37vvjzyfE/lKw9M9lze7L1w8mXf6X62sc/MTnv5d2pE2ahVTDaVK2cv0IOOuWZ0x8H3fKXyVdf0fg15PQXJOe8dP5qA4BmhhcoGO2kH0se8+ZD12f97PRHknzpl5sHoxXLDr8eWpZc8vbkY4/vbn2P+r3kob/R3TUBAAAAAAAAAAAAAACAyqQfLHJFUbwqR4ai/WOSN5Zl+Y0G44eSPC7Js5P8SIX1T07y3hweiva5JL9QluWNM8atSPKSJH+U5OAJth9L8oYkv13x2wEAmH8rT2jdPzUPwWhTY8kn2/xqtvfOZPkj269VNglGG3JrcJiR1cnmpyZbPtC4fxCC0T799Nb9HzgrOfNFyZ1XJ1P7qq/7xE8lx146HUQBC6RV9tnUAuSiHeHclyabn5w8cG0ytTcZWj4dcHn0Rcmxl0+HMALAQhteuTD7nvEzzfuGV7ToW35k23GXJz++I7n9quSrr5x7bUmy6sTurAMAAAAAAAAAAAAAAADMivSDRawoiguS/N6MpokkP1mW5TXN5pRlWct0sNnniqKo8vx4bZKNM66vTXJlWZaHJYSUZTmW5M+KorgryftmdP1aURR/XZblnRX2AgCYfyOrW/ePbUsm9iTL1vauhruuTh78Yusxe+9INlYJRptq3F4Md1zWovcDVyX/vKlx33wE4s3F/geSez/Wftztf9/Zuhe/NTn+CbMqCbppqta8b7LJy9y8W3f29AcA9KuiSDY8ItlxxN/PSIqhpGzxP7j1hpYnx12R3Psf7cee8szW63Tat/yo5PxXJJsuST56afv921m1ee5rAAAAAAAAAAAAAAAAALM2tNAF0BsHQs3+LoeH372kVShavbIsJ9vscU6Sn5nRNJ7kRfWhaHVrvj/JO2Y0rUjymqo1AQDMu+E2wWhJ8h+XJJOjSVn2poab/qT9mL0Vc2ZrTX7Fq5SJu8SsODo5rkkI2NdfPb+1dKpKKFqnVhybnPHC7q8Ls9AqGK1VHwBQ56xfPLJt81Or3QfN9OM7kkf8r/bjHvI/p0PXmhle2byvWNZ67WMuSTY+qn0N7aw6ae5rAAAAAAAAAAAAAAAAALMmGG3xek6SR8+4/nhZlld1eY+fTDI84/q9ZVl+u8K836+7fm5RFC1OvAEALKCRCoEAO7+VXL06uWZD8pnnJPvv724N27/afsyDX2w/Zu9dyX0fb9xXDDduX+qGljfv6/a/czftv7e76534o8lTrqv28wDzoNYih3JSMBoAVHfef08uekuy4YJk9anJ2b+UPP6aZHJP9TVWn5qMrEo2Xth+7KrNbfpPbN7X6nfzZDpw7Yc/lpz+wmTlCcnRFyWX/mPyzK3Jyc9IVh7fvr7Vpybrzm0/DgAAAAAAAAAAAAAAAOiZkYUugJ55Sd31/+7BHs+su64UvFaW5Y1FUXwxySUHmtYkeXKSD3SxNgCA7hheVX3sxK7k7muSB7+UPP070wfz56o2UW3cHe9KfuAdyVCTgLOpseSjlzWfX7g1aKhV+MKd707Oe1nr+VNjyc4bkvXnz2+o2Ni2ua9x/quSR//R3NeBHphqEX7Wqg8AaODcX5n+mKuR1cmKY5OxB5qPaReMtv785n2Tu9vXsGJTcuk7j2z/wfcd2faddyWf/6kZDUXyiP/V/J4KAAAAAAAAAAAAAAAAmBddSGqg3xRFcXaSJ8xouiPJJ7u8xwlJLpjRNJnkcx0s8am666fOtSYAgJ6YTZjVvruS9x6XTI3Pff89d1Qf+8Bnmvdt+UCy77vN+x3+b6Js3rX71tZTb39ncs2G5MOPSa7ZmNz4pu6W1spcg9Eu/b/JhX/YnVqgB1qFn00KRgOAhfO4BqFkM7UNRjuved/UaOf1tHLGC5InfyE582eTc34leeInkrN+rrt7AAAAAAAAAAAAAAAAAB0bWegC6Ikfqrv+eFmWLRIdZuXhdddfL8tybwfzr627ftgc6wEA6I3hWQSjJcnYg8k3X59c8Pq57T92fz91sfoAACAASURBVPWxD3wuOf6Kxn0PXtd67u7bqu+zlLQKX2gVmrf9+uQLP3PoujaefO3Xkw2PSDY/uXv1zbTzW8k9H03Gv5fc+rbZr/OI1yWn/0T36oIemGpxh9sqNA0AqOiclybf/svO522of9u4ztqzWvevPCFZtiGZ2HFk37GXd15PO8dcMv0BAAAAAAAAAAAAAAAA9I2hhS6Annhs3fXnk6SYdmVRFFcVRfGtoih2FkWxtyiKO4ui+FhRFL9ZFMXpFfd4aN31rR3WWJ+8Ub8eAEB/aBV+1c7d75n7/hO7q4/9+v+b7Pr2ke1lmdz4h63nHuXXsYYm9zXvG17VvO+772/cfvf75lZPM7f+bfLBRyZffUXyzdfNYaEiOeOnulYW9EqtRfjZxNT81QEAi9bJz6g+dt3Zh75efXJy/A83Hnfs45PVJ7VeqyiSs3/+yPY1pyUbH1W9JgAAAAAAAAAAAAAAAGBgCUZbnC6qu77xQODZx5J8NMmLkjwkyfokq5OcmuSJSd6Y5JaiKP6iKIp2CSBn113f1WGNd9ZdbyqKYmOHawAA9N7wHILR9twxHUrWiS3/nnz+RckXXpxs/Ugysauz+f92bvLZ5yYfvzL52v9Mdt+WbPtC+3nrz+9sn6ViapbBaN/43cbtt751TuU0tG9r8qVfSMoupEFdfnWy9oy5rwM9NtXipXX/xPzVAQCL1uYnJY9+c7X7oYf8+uHXj3tncvTFh7cd/Zjksn+qtvfDX5Oc+pxD1+vOSa74cFL4vzMAAAAAAAAAAAAAAABgKRhZ6ALoic1116uTXJfkmApzlyV5aZLHFUXxtLIs72kybkPd9f2dFFiW5Z6iKPYnWTmj+agk2ztZp15RFMclObbDaWfNZU8AYJEbmUMwWm0smdybLFtbbfy335pc98uHrm+/Kjn2ss73ves905/v+3jynXckx/5g6/HrzkmOe0Ln+ywFky2C0YaWzV8drbz/pO6s89y9c3u+wzyaqjXv2zs+f3UAwKJ2/iuTs38p2XNbsuvm5LM/fuSYtWclxz/x8LbVJyVP+dJ0UPS+u5PVpyRrT6++77K104G9Yw8mY9uSdecmRTGX7wQAAAAAAAAAAAAAAAAYIILRFqf60LKrcigUbW+Styb5UJLvJlmT5IIkL05y+Yw5Fyb556IonlCW5USDPerTPUZnUedoDg9GWzeLNeq9NMlrurAOAMC04VVzmz/+YLVgtLKWfOO1R7Y/8Lm57b///uTua5r3H/v45HF/Xz28bamZahGMdvOfJee/osGc/b2rp96DX57dvGIkSS0ZWZcc/0PJRW8RisZAqZXN+27tKLYbAGhpZFWy4eHTH497Z/L5nz7Ud8KVyQ+8Ixle3nju2tM7C0Srt2LT9AcAAAAAAAAAAAAAAACwpAhGW2SKoliRZEVd88kHPn8ryVPKsry7rv+rSa4qiuJVSf5oRvvjkvxGkjc02Ko+OWM26Q+jSTa2WBMAYOEVQ3ObP7YtWXNa+3EPfjnZf+/c9pqNJ316/vccJJMtgtH2fie57e+Ss158ePu1L+xtTTPd94nOxj/rvmTlcb2pBebRVK11/7uvq+V5F8/x9RsAONwZL5z+AAAAAAAAAAAAAAAAAOghp4QXn+Em7TvTOBTt+8qyfFOSP65rfmVRFFUCy8qK9c11DgDAYNm/rdq4sft7W0cjF75p/vccNGWb9KXb/vbw6/3bku++t/WcqfG51TTTDW+sPnb5xmTFsd3bGxZQu2C0t3/W7SYAAAAAAAAAAAAAAAAAAAwiwWiLTFmW+5I0OiL+5lahaDO8OtMhagcdneSpDcbtqbteVa3ClnPq15yNv0zy8A4/nt6FfQGAxWz9ebOfu++uauPKBQjxWX3S/O85aC78g9b92z5/+PWuG9uHqX38h5LRe+ZWV5LsvTuZ2FF9/KrNSVHMfV/oA7U2L5kfu3F+6gAAAAAAAAAAAAAAAAAAALpLMNritLdB2zurTCzLcm+S99Y1X9FgaF8Go5VleX9Zljd08pHktrnuCwAscqc+/8i25Ucnz96WXPL25NJ3JcvWN577pV9Mtn+9/R7l1NxqnI1VgtHaOrFRRnALE7vbj9l2bfLhxyQPXDu7mg667e2djT/uirntB31kqk3+IAAAAAAAAAAAAAAAAAAAMJhGFroAemJHknUzru8ry/KODuZ/IcnPzrh+SIMxO+uuj+1g/RRFsTZHBqPt6GQNAIB58/DfSfbcntzxD0nKZNWJyRM+kKzYlJz14ukxt7wl2fb5xvO/+PPJeS9Ptv57suKY5IyfTjZddPiYhQhGW3vm/O85aNaclgyvTKb2Nx9TlklRTH89WSEYLUlG70k+fkVy7suSYjjZe2dy/BXJWb+YDA1XW+Obr6027qCzfq6z8dDHBKMBAAAAAAAAAAAAAAAAAMDiJBhtcbolySkzru/pcP7WuutNDcZ8u+76tA73qB//vbIst3e4BgDA/Bhallz6zuQxfzwdaHXUQ5Ni6PAxI+saz02S712XfP6nDl3f9jfJE/41OeHKQ21To92tuZ2jHp6sPnF+9xxUpzw7ueNdzfvLyaRYNv31RMVgtCSpTSQ3vfnQ9V1XJ/d9Mrns3YeC1pr5+muq75Mkpz43OfrRnc2BPlYr24/5yA1lfuRhbX6WAAAAAAAAAAAAAAAAAACAvjLUfggD6Ia667EO59ePX9lgzI1112d3uMeZddff6nA+AMD8W7Ep2fDwI0PRkmRZi2C0elP7k088KXnfycmXXzZ9Pbm3e3VWsfnJ87vfIBta0bq/Nn7o68kOgtEaues9yc5vNu67+/3JBx+V/N8i+ebrmq/x1P9KHvNnydqzkpXHJee9Irn4r+ZWF/SZqVr7Ma9+f4VBAAAAAAAAAAAAAAAAAABAXxlZ6ALoia/XXW/ocH79+AcbjKlPa3hkURSry7LcV3GPy9qsBwAwWDoJRjtodEtyy1uSXTdPh1h14gfekdz8p8n2r3a+b5Ic9bDZzVuKhpa37p8aS0bWTH89sWvu+9329uQxf3J42z0fTT777KRsE/S04YJk44GP814291qgT1UJRvvynUmtVmZoqOh9QQAAAAAAAAAAAAAAAAAAQFcMLXQB9MSHkpQzrs8simJlB/MfXnf93foBZVnek8MD2EaSXN7BHlfUXX+og7kAAP1nZBbBaAfd+9Hk1rd2NmfFMclZL579nuvPm/3cpaacaN1fGzv09cTuue9370ePbLv1be1D0ZLkjJ+e+/4wAKbK9mOSZNue3tYBAAAAAAAAAAAAAAAAAAB0l2C0Ragsy61JPj+jaVmSJ3awxFPqrj/TZNz76q5/tsriRVGcn+SSGU17k/xHtdIAAPrUsjkEo83GimOSM180y8lFsv4h3axmcZscbd0/NSMYbbILwWg7v5WUdalPd19Tbe65L537/tDnyrI84kekmXt29rYWAAAAAAAAAAAAAAAAAACguwSjLV5X1V3/WpVJRVE8PsljZzTVknywyfB3JZmacf2soijOqbDNb9RdX12W5f4q9QEA9K1l6+d3v5XHJCNrkif8W+dzT3xasuLo7te0WE21CUarzQhGm2gTjHb0Y5Infbb9nl/8+aQ21X7cTFd+Jhle2dkcGEC1iqFoSbJ1R+/qAAAAAAAAAAAAAAAAAAAAuk8w2uJ1VZIbZ1z/cFEULcPRiqI4LkcGql1dluVtjcaXZfntJO+Y0bQ8yd8XRdE0jaEoiqcnedGMpvEkr21VFwDAQBhZN7/7Ld904POGzude8rbu1rLYtQtGm6oYjLb+/OTyq5NjL0tWbW695u1/l9z+9uTrr0k+/az2NT76T5LjLm8/DhaBqVr1sffs7CBFDQAAAAAAAAAAAAAAAAAAWHCC0Rapsiynkrw8ycwj428qiuJPi6LYWD++KIork3wuyVkzmrcn+e02W73mwLiDLk3ysaIozq9bf0VRFC9L8p66+W8qy/LONnsAAPS/opjf/Zatn/48vKqzeatPbh/KxeHaBaPVxg99Pf5g4zGnPjd52reStWdOXxfL2u/7pZck33xd8t33tR535ouT81/efj1YJGodZJ1t3dm7OgAAAAAAAAAAAAAAAAAAgO4bWegC6J2yLD9aFMXLk/z5jOZfTfLLRVF8IcmWJKuSPCrJaXXTx5P8RFmW32mzx3eLonhWko8kWX6g+bIk3yqK4itJbk9yVJJHJzm2bvq/JXl1x98YAEA/GmsSiNUrB4PYhld3Nq9dyBdHahuMNpbc9KfJ7X+X7Ph64zHH//Dh4XlDyxuPm43jfrB7a8EAmKq1H3PQPYLRAAAAAAAAAAAAAAAAAABgoAhGW+TKsnxLURRTSf4oycHUjGVJHt9i2n1JnlWW5bUV9/hUURTPTPL3ORR+ViS56MBHI/+Y5BfKspyqsgcAQN9bqHCqkQ6D0c791d7UsZid8uPJg19q3n/DG5Ot/956jfXnH3599i8k//Ubc68tSTb/SHfWgQHRSTDavTvL3hUCAAAAAAAAAAAAAAAAAAB03dBCF0DvlWX5V0kemeQfkuxuMfTeJL+b5LyqoWgz9vhgkocneWuS7S2GfiHJj5dl+ZNlWe7tZA8AgL626ZJkZN387LVs/aGvVx7X2dxTntXdWpaC057Xur9dKFqSrD+vbs3nz76emTY/NVl1QnfWggFR6yDrbOuO3tUBAAAAAAAAAAAAAAAAAAB038hCF8D8KMvytiQvLIpiVZLLkpyc5IQk40keSHJ9WZZfn+Me9yf55aIoXn5gj9MO7LE3yZYkXyvL8jtz2QMAoG8Nr0gu+Zvk2hck5VRv97rwTTP2XVl93kP+R3LUw7pfz2K35tTkgjcm1//W7OYv25CsPL7Bmv9fcv3vzK22i98yt/kwgKZq1cfes7N3dQAAAAAAAAAAAAAAAAAAAN0nGG2JKctyNMnHerzHeJJP9nIPAIC+dNrzko2PSr70S8n9n+rNHsOrk1OfXX384/852f3t5NjLk2MuTYqiN3Utdg/7zdkHox3/hMaP+8N+OznhSdPPl+1f7XzdTY9N1p45u5pggHUajFaWZQqvfQAAAAAAAAAAAAAAAAAAMBCGFroAAABYVNafl1zwht6svWx9cvl7kuUbq8855VnJQ38jOfYyoWhztfrk2c3b/NTmfZsuTp706WRoeefrPnSWQW0w4Gpl9bETU8n4ZO9qAQAAAAAAAAAAAAAAAAAAumtkoQsAAIBFZ/mmuc0fXp1c8W/JxguT5RuS0XuTfXcnRz08GVl15PgVxyZjDxzZvvqUudXB4WoTs5u37qzW/SNrkrVnJbturL7mpkuSk35sdvXAgCs7CEZLktGJZMWy3tQCAAAAAAAAAAAAAAAAAAB019BCFwAAAIvOimPaj9lwQfO+/3Z9cvwPTYeiJcmqE5JNFzcORUuSR76+cftDfr19HVQ3tm1281ad2H7MU75ScbEiOe0nk8vfnQwNz64eGHC1ToPRxntTBwAAAAAAAAAAAAAAAAAA0H2C0QAAoNuWb2w/5ke+lGx+yuFtw6un29ed3dl+pz03WXfO4W1rz0xOe35n69DapsfObt6qk9qPGVmVnPHTrccMrUh+Yiq57F3JmtNmVwssAh3momV0oidlAAAAAAAAAAAAAAAAAAAAPSAYDQAAum1oODnxv7UeM7w8+cF/SS54Y3Li05IzX5Q86TPJpos732/5xuRJ1yYP+R/JCVdOf77yM8nK42ZVPk0c/8Ozm7dsfbVxJz+jdf+KTUlRzK4GWERqtc7GC0YDAAAAAAAAAAAAAAAAAIDBMbLQBQAAwKL0qN9Ltn6wcd9RD5/+PLw8edhvdme/lcckF/5Bd9aisfNfOf1vuv1r1edseGT1MLPNT05SJCkb9y/fWH1fWMRqTX5Emhkd700dAAAAAAAAAAAAAAAAAABA9w0tdAEAALAobXhE8v/c1rjvlGfNby10x4pNyZX/2dmc03+q+tiRNcnGC5v3Lzuqs71hkeowFy2jEz0pAwAAAAAAAAAAAAAAAAAA6AHBaAAA0Ctrz0ye+KnDA61OeXbysN9asJKYo2Xrqo8982eTc3+ls/Wf8IHmfa1C02AJqdU6G79fMBoAAAD0jU/cVOZX/6mWX39PLV+8vdP4cwAAAAAAAAAAAABgKRhZ6AIAAGBRO/4JybPuT773lWT1ycmaUxa6IuZqeHUyta9x3+YfSR7x2mTVCcma0zpfe/VJybkvS27588Pbi+HkjJ/ufD1YhDo9Mj063pMyAAAAgA79zWdqecn/OXRn/+efKPPuXxzKMy4sFrAqAAAAAAAAAAAAAKDfDC10AQAAsOgNL0+OfZxQtMXiob/ZuH3FpuTyq5NjLpldKNpBj35Tct4rptdLkg2PSH7w/ckxj539mrCI1DpMRhud6DRKDQAAAOi2qVqZ33nf4ffoE1PJq/+ltkAVAQAAAAAAAAAAAAD9amShCwAAABgoZ/5McutfJaP3HGpb/5DkKdclI2vmvv7QsuQxf5w8+s3J1Ggysnrua8IiUuvwvPToRG/q6Gej42W270uOW5eMDBcLXQ4AAADkc7cm2/Yc2X7D1mTrjjInbnD/CgAAAAAAAAAAAABME4wGAADQiTWnJk/6XHLTHyc7vpFsujh56G92JxRtpqIQigYNlB2OHx3vSRl9648/Wsvr/q3MztFk81HJX79wKD/6SIfLAQAAWFh3Ptj8jn7XaHLihnksBgAAAAAAAAAAAADoa4LRAAAAOrX2jOSiP1voKmBJqnWYjDY60Zs6+tG/Xl/mVe859ADdszN53l/XcuPrhnLqJuFoAAAA9KepTlPQAQAAAAAAAAAAAIBFbWihCwAAAACoquw0GG28N3X0o2u+cuSDMzqR/OV/OmEOAADAwmp1Z7pvCd27AwAAAAAAAAAAAADtCUYDAAAABkat02C0id7U0Y+uu6Pxg/MHHxaMBgAAwMJqFXS+d2z+6gAAAAAAAAAAAAAA+p9gNAAAAGBgdBqMtm+8N3X0o5vubd63e79wNAAAABbO/hbB5YLRAAAAAAAAAAAAAICZBKMBAAAAA6PsMN9r+97e1NGP1qxo3reUHgcAAAD6z54W4WdLKdQcAAAAAAAAAAAAAGhPMBoAAAAwMGodBqNt29PhhAG2alnzvt0tDqADAABAr+1tEX62d3zp3LsDAAAAAAAAAAAAAO0JRgMAAAAGRtlxMFpv6uhHy0ea9+0anb86AAAAoN7eFoHdrfoAAAAAAAAAAAAAgKVHMBoAAAAwMGqC0ZoaLpr37d4/f3UAAABAvVbhZ/vG568OAAAAAAAAAAAAAKD/CUYDAAAABoZgtObGJpv37RKMBgAAwAJqFYzWqg8AAAAAAAAAAAAAWHoEowEAAAADo+wwGG3naDI+2eGkAdUqGG33/qXxGAAAANCf9o41vy/dOz6PhQAAAAAAAAAAAAAAfU8wGgAAADAwarPI93pwT/fr6Eetg9Hmrw4AAACot69F+FmrPgAAAAAAAAAAAABg6RGMBgAAAAyMchbBaDtGu19HvynLsmUw2i7BaAAAACygyVrzvomp+asDAAAAAAAAAAAAAOh/gtEAAACAgVGbTTDavu7X0W8mp1qHxu0WjAYAAMACanXPOikYDQAAAAAAAAAAAACYQTAaAAAAMDBaBaONNHmXYykEo41Ntu7fJRgNAACAPjVVW+gKAAAAAAAAAAAAAIB+IhgNAAAAGBhli2C0jWsat+8YbTFpkWgXjLZXMBoAAAALqNWd+aRgNAAAAAAAAAAAAABgBsFoAAAAwMCoNTlJXRTJhlWN+3bs6109/aJdMFq7fgAAAOilVkHnk1PzVwcAAAAAAAAAAAAA0P8EowEAAAADo9lB6qEi2bC6cd+O0d7V0y/aBZ/tn2hxAh0AAAB6rNVd6WSzFHQAAAAAAAAAAAAAYEkSjAYAAAAMjGZnpYskG1Y17tuxr2fl9I3xtsFo81MHAAAANNIs6DxJJqfmrw4AAAAAAAAAAAAAoP8JRgMAAAAGRrNgtKGhZMPqomHfUghGG2sXjNamHwAAAHqpVTDaLffNXx0AAAAAAAAAAAAAQP8TjAYAAAAMjGYHqYeK5KjVjft2jvaunn7RNhhtYn7qAAAAgE7dfF+ydUeL5DQAAAAAAAAAAAAAYEkRjAYAAAAMjFqTc9JFknUrG/ft3r/4D1ePtQk+E4wGAADAQmp3Z37NVxb/vTsAAAAAAAAAAAAAUI1gNAAAAGBgNDsmPTSUrG8ajNazcvrG+FTrfsFoAAAALKSyTe7ZK94tGA0AAAAAAAAAAAAAmCYYDQAAABgYtVrj9iLJuibBaLuWQDBas8flIMFoAAAALCSxZwAAAAAAAAAAAABAVYLRAAAAgIFRa3KSeqhoHoy2ewkEo021OWE+KhgNAACABVRKRgMAAAAAAAAAAAAAKhKMBgAAAAyMZueoh4aS9Us4GK1Wa92/XzAaAAAAC0gwGgAAAAAAAAAAAABQ1chCFwAAAABQVbMAsCLJupVFGkWn7VoCwWhTbQ6YD3ow2te/W+aNHyzzlbvKDBfJRacXef3Ti5x+TLHQpQEAAFCBXDQAAAAAAAAAAAAAoCrBaAAAAMDAaHaQeqhI1q1s3Dc+mYxPllk+snhDtJoFxh00WUsmp8qMDA/eY3DjPWUu//1a9owdarv5vjIfuaHMja8byqa1g/c9AQAAAAAAAAAAAAAAAADQ2NBCFwAAAABQVa1sHI1WFMn6JsFoSbJ7f48K6hNTzRLjZhib7H0dvfAXnywPC0U7aNue5E8/XuEbBwAAYME1uZ0HAAAAAAAAAAAAADiCYDQAAABgYNRqjduHimRdi2C0XYs9GK3J4zLT/one19EL197W/PT8e7/qZD0AAMAgcPcGAAAAAAAAAAAAAFQlGA0AAAAYGM0OUrcNRhvtSTl9o1a2P2I+iMFotVqZm+9t3v+te5Jv3+d4PQAAQL+rcNsKAAAAAAAAAAAAAJBEMBoAAAAVPbC7zJs/WsvvvK+WD33DaVYWRq3JU68okg2rms+7b1dv6ukXU7X2YwYxGO3u7clom7r/5XqvRwAAAP1OMBoAAAAAAAAAAAAAUNXIQhcAAABA/7vzwTKX/34tW3YcbCnziiuLvPm58raZX80OUg8VybKRIsetS+7ffWT/1p1lkqKntS2kZoFxM7ULGOtHtz/Qfsxnbinz60/ufS0AAADMXpVctInJMstGFu+9OwAAAAAAAAAAAABQjRPsAAAAtPWGfy9nhKJN+9OPl7n+7irHWqF7mgWAFQfOTZ+4oXH/lu29qadfTNXajxmf7H0d3bZvvP2Ym+7tfR0AAAD03iAGegMAAAAAAAAAAAAA3ScYDQAAgLY+d+uRaVRlmbzxQ4LRmF/NgtGGDgSjndQsGG1H4/bFotnjMtP4VO/r6LbJCoFvt29Lxie9FgEAAPSzssJtW5VwbAAAAAAAAAAAAABg8ROMBgAAQFs33du4/eovCyNifjU7SH0wGO3EDUXD/q07FvdzdapCgNj4ZO/r6LaJCmFuU7Xktgd6XwsAAACzV+WufHSi52UAAAAAAAAAAAAAAANAMBoAAAAwMGpNTlIXB/LQNh/VuH/bnt7U0y8WbzBatUC7Ox/scSEAAADMSbOg85l27+99HQAAAAAAAAAAAABA/xOMBgAAwJzs3l8tuAi6odlB6qEDwWhHrWrcv2esN/X0i2aBcTONT/W+jm6bqFjzlh1ehwAAAPqZYDQAAAAAAAAAAAAAoCrBaAAAALRUtjm5es/OeSoE0jwArDgQjLZ2ZeP+xX64eqrWfsz4ZO/r6LbJisFoW3f0tg4AAADmpkqc9a7RnpcBAAAAAAAAAAAAAAwAwWgAAAC0NNYmTOkegUTMo2Y5fUMHgtHWrWjcv9iD0ZoFxs00NlnlGHp/magYjLbF6xAAAEBfa5O7nyTZOTp4960AAAAAAAAAAAAAQPcJRgMAAKCl0fHW/ffsdGiV+dMsAOz7wWgri4b9e8Z6VFCfmKq1HzPeJuSwH1UNRrtnh9chAACAQbdrkYeaAwAAAAAAAAAAAADVCEYDAACgpdGJ1v337Z6fOiBpHoxWHMhDW7uicf/+iWRyavGGZ1UKRqsYMtZPqgajbdnR2zoAAACYmyp35ILRAAAAAAAAAAAAAIBEMBoAAABtjI637t81Oj91QJKUTU5SDx0IRlu3svnc3Yv4gHWzwLiZxid7X0e3TVYIfEuSrYLRAAAA+lqz+/mZvMcEAAAAAAAAAAAAACSC0QAAAGhjf5swpV2LOGyK/tMsAOxALlrLYLQ9Y10vp29MVQgQG5/qfR3dNlGx5vt2JxOTFU7ZAwAAsCAqBaN5jwkAAAAAAAAAAAAAiGA0AAAA2hgdb92/a3R+6oAkaXaOeujAOxxrVzSfu31f18vpG80C42YabxNy2I+qBqOV5XQ4GgAAAP2pSpS195gAAAAAAAAAAAAAgEQwGgAAAG2MTrTu371/fuqAJKnVGrcPFdOf161sPvcPP1LlGPZgmmryuMw0iMFokxW+r4O2bO9dHQAAAMxNWeGWfNfo4r1vBwAAAAAAAAAAAACqE4wGAABAS6PjrfsdWmU+1Zo83Q7komXNiqQoGo/5/G2L97na7HGZaWwAg9EmpqqP3bqzd3UAAAAwN1XuyHcJ3wcAAAAAAAAAAAAAIhgNAACANkYnWvc7tMp8anaQeujAOxxFUaRsMmjZcE9K6gtTtfZjxjsIGesXnQSjbduzeIPvAAAAloJdowtdAQAAAAAAAAAAAADQDwSjAQAA0NLoeOuwIcFozKdakwCwYsbXTzy/8Zgdi/iAdaVgtMne19FtnQWj9a4OAAAA5qZZiPlM3mMCAAAAAAAAAAAAABLBaAAAALSxv02Y0q5FHDZF/2l2jnpoRjLaK65s/HbHjn3dr6df1CocMB/EYLRJwWgAAACLQpVgtJ3eYwIAAAAAAAAAAAAAkowsdAEAAAD05I0k1wAAIABJREFUt7GJ1v279s9PHZA0DwAbmpGFtmF14zFjk8n+iTIrlxWNBwywqVr7MeMdhIz1i4kOan5QMBoAAEDfqpCL5j0mAIAOFEXx6CTnJDnpQNOWJLeUZfm1hasKAAAAAAAAAAC6QzAaAAAALTULojpo12hSlmWKYvGFTdF/ak0CwGY++5oFoyXJ9r3J5g1dLakvtPs5TZKJyd7X0W2THQWjVTlmDwAAwEIoK9yy7R1Lpmplhoe8xwQALJyiKM5McnGSiw58fnSSdTOG3FmW5ekLUFqKoliW5FVJfj7JWU3G3Jrkb5O8uSzLNn/+CAAAAAAAAAAA+pNgNAAAAFpqF7g0WUv2TySrls9PPSxtzZ6OM89Mb1jVfP6O0cUZjDbVJDBuprEBDEab6CAYbdue3tUBAADA3FSNst69v3XgOQBALxRFcUWS38p0GNrRC1tNY0VRnJPknzId1NbK2Ul+L8lziqJ4flmWt/a8OAAAAAAAAAAA6DLBaAAAALTULhgtSXaOCkZjfjR7PhYzg9FaHKDesa+79fSLKj+n45NVj6H3j8kKgW8HCUYDAAAYfLtGBaMBAAviUUmevNBFNFMUxQlJPprktLquW5PckKRI8rAkZ83oe0yS/yiK4gfKsrx/XgoFAAAAAAAAAIAuEYwGAABAS1MVgol27U9OOKr3tSx27/piLVdfV2aoSJ7/2CLPu3hooUvqO2WTbK+hGcFoq5cnI0ONQ7UWazBalZ/T8ane19FtE1PVw9wEowEAAPSvZvfz9XaO9rYOAIAOjSX5bg4PHJtXRVEMJXl/Dg9FuyfJi8qy/I+6sU9JclWSEw40nZHkfUVRXF6WVX8jAwAAAAAAAACAhScYDQAAgJZqFY5J7HJodc5+/8O1/NZ7Dz3Y/3J9ma07annlk4SjzdTs+TgzGK0oimxY3Tgo695dZZLiyI4BVyU/bP9E7+votokOwtx2jiYTk2WWjSy+f18AAIBBVzWGY9f+3tYBANDCRJIbknw5yXUHPn8jyWVJPrmAdb0gySUzrr+X5NKyLO+oH1iW5YeLorg0yVeSbDzQfGmS5yX5px7XCQAAAAAAAAAAXeN0NQAAAC1VCkZzaHVO9k+U+YMPH/lAv/FDZcYnK54cXiKaPR+Luiys0zc1Hnfzfd2tp1/Uau3H7BzAAMNOgtGS5Hv7elMHAAAAc1P13Q3h+wDAAnlHkvVlWV5YluUvlGX5trIsv1qW5YL+yZGiKIaTvLau+dcahaIdVJbld5L8Wl3zG4qi8N+KAgAAAAAAAAAwMPzHLgAAALRUJXDJodW5+dpdyfYGgU7b9iTf3DL/9fSzsslJ6qG6YLTzTygajrv5nsUZNDdV4dvaMYChYZMdBqNt29ObOuhvd2wrc/3dZXbsW5w/3wAAsBg0u5+vt2u/3+sBgPlXluX2siz78c8AXZ7kjBnXW5L8Q4V5/+fA2IPOSnJpF+sCAAAAAAAAAICeEowGAABAS7UK51EdWp2bm+9r/vjd0qJvKWr2fCzqctDOPaHxuJvu7W49/aJKgOGOAQwwnOg0GG13b+qgP9VqZX7pH2o5+3dqufD1tZz527X881e8ZgIAQD+q+pv6rn6MIwEAWDjPrLt+Z1mWbd85PzCmPkDtWV2rCgAAAAAAAAAAekwwGgAAAC1VCkYbwMClfnLr/c37bmnRtxSVTZ6PQ/XBaMc3Hnf39qRstsgAq/JzumPf4H3vHQej7elNHfSnq64t87ZPl99//u/Ylzznr2vZtnuwnucAALAUVL0d3ek9JgCAmZ5Sd/2pDubWj33qnCoBAAAAAAAAAIB5JBgNAACAlqoELjm0Oje3tQg/u/ne+atjEDR7PtYHo52ysWg4bt/44ny+1mrtx0xMJaPjva+lmzoPRhOItZT8ycca/3sf96rawIUAAgAA04TvAwBMK4piRZKz65q/0MES19Zdn1MUxfK5VQUAAAAAAAAAAPNDMBoAAAAtVQlG2ztgYUv9Zu948wf5pnuE+8zU7PlY1OWgnbih+RpbdnSvnn4xVfFpsmPADphPVgh8m2n7vt7UQf+588EyN2xt3v+l78xfLQAAQHtVs4t37e9tHQAAA+S8JMMzru8vy3JX1ckHxm6b0TSc5Nwu1QYAAAAAAAAAAD0lGA0AAICWahWCifaM9b6OxWxyqnnfzfcltSrpdEtEs4PUQ3XBaJuPar7Glu3dq6dfTFUMENsxYMFhEy1+NhoRjLZ0fHNL6/73/ZfXTQAA6CdVf0PfNWCB3gAAPXR23fVds1ijfs45s6wFAAAAAAAAAADm1chCFwAAAEB/m6pwcnWvYLQ5aRX+tG88uXt7ctqm+aunnzXLiCvqgtGWjxQ5bl1y/+4jx27ZUSYpjuwYYFXD83YO2AFzwWg0s2+8df/HvlUmz5qfWgAAgPaaBZ3X271fyDEAwAEb6q7vn8Ua9XNa/FmZ6oqiOC7JsR1OO6sbewMAAAAAAAAAsDQIRgMAAKClWq39GMFoczPZ5jG+Y5tgtIOaHaQeapBzdtKGxsFotz3Q3Zr6QZUAwyTZtb+3dXRbs2C04aFkqsHPzY69DtAvFeNtnvSjE/NUCAAAUEnVu7VBC/QGAOihtXXXs/lNqX7OulnWUu+lSV7TpbUAAAAAAAAAAOAIQwtdAAAAAP2tVuHk6t4xYURzMdkk/OmgLTs8vgc1ez42CkY75/gGjUluumfxPZ5VAgyTZGzAwqKa/WwcW38c7IAdDtAvGeOTrfvbva4CAADzq1nQeT3BaAAA31f/Tvhs/vRJ/W9XTd5dBwAAAAAAAACA/jKy0AUAAADQ36oFo/W+jsVsom0w2vzUMQiaPR+LBhlo55/QeOxN93avnn4xVfGA+f7JMknjwLh+1Oxn47j1yb27jmzfvq+39dA/xtoEo23ZkZRlmaLRiwMAwCzcen+Zj9xQZvlI8rRHFDlxg98zoBce2L3QFQAA9K3Z/NWXxfeXYgAAAAAAAAAAWBIEowEAANBSlWC0PYLR5mSy1rp/q2C07yubPB+HGmQSPGRz47Hfvj+ZnCozMrx4ggxqbZ5DB41N9LaObmsajLaucfv2vb2rhf4y3iYYbd/4dFDe0Wvmpx4AYHH71+vLPO9ttew/8Pv0xtVlPvKKoVx0+uK5p/j/2bvzODnqOv/j7+qZyT2TmyQT7isBRBQvZFlF8b5W8WQFj3VX/Hlf6wEKKKIoiAouIMqxIIeCgghyiBwLBJCbJCSTkJPMlbmnp+fsru/vj84wPTP1ra7q6e6p7n49Hw8e6a5vVfWn6/h2VZHvO0Ch2e7nJ2ruIeQYAABgj74J72fnsI6Jy0xcZ64ulnRjyGUOkvSXPH0+AAAAAAAAAAAAAAAAyhzBaAAAAAAAX0GC0RLDha+jnBGMFpztePQaLn3YCkfS5AVGUtKWNmnV8ryWNq1SAQeYD2UJk4oa27mxtNZ733b1F7YeRMewJTQv06ZW6ZgDC18LCuOxrUYX3WtkJL3jCOnkYxzCMQAA08J1jb5w3VgompS+7nztj125l1VNX2FAiQl426qhJCHHAAAAe0Q2GM0Ys1vS7jDL8GwPAAAAAAAAAAAAAAAAYcSmuwAAAAAAQLS5WUK7JKlvsPB1lLORLAE/Td1Bhw+XP9uWiMUmD6g5dJnkMVmStKE5fzVFQSrAeSppXJhDKbCdG0vmeU/vHkgHV6D8DQU4lhtaOBZK1V3rjV5/rqvr/ml0/T+NPnml0Xf+zP4EAEyPR7dJu7q8235yR8ALcQAyIS7nCIgHAACQJPVMeL80h3XsNeE9V1oAAAAAAAAAAAAAAAAoCQSjAQAAAAB8BckYSgwXvo5ylswSjNaRKE4dpcAW1OcVgDarxtEBS7zn31BmgUlBs8CGkoWtI99swWh71XpPN0bqJaixIgxn6TclaWNL4etA/hlj9KXrJ3f2F91r1B4vr74bAFAaHttq//05/WajFMG8QCBhzhSC0QAAACRJmye83y+HdUxcZuI6AQAAAAAAAAAAAAAAgEgiGA0AAAAA4CtlCaLK1DdU+DrKWTLLNm7vK04dpcCWOeB4BKNJ0mErvKfv7MxPPVER5DyVpMGRwtaRT8YYezBanX25rv7C1INoGQ4Q8tfYVfg6kH9P7ZRe2D15+uCI9PCW4tcDAEB/liDwtY3FqQModSZEMlpTD4GDo7a2GTW0EMIIAECFapCU+ZR8L8dxLP9syGSO49RJyvznY1IiGA0AAAAAAAAAAAAAAAAlgmA0AAAAAICvIOMuh5NSMsUAzVzZwp9GdSbEANg9bFshZglGW1bn3dBZZmFzQQ+PoQBhUlHh952WzrPscEndBKNVhOEs/aYkxQfpN0vRX56x77e1jexTAEDxZQsCb48Xpw6g1IUKRusuXB2lIj5o9JYLUjr4dFeHneHq8DNcPd/E9TAAAJXEGDMkaeI/FfD6EKs4dsL7zXvWCQAAAAAAAAAAAAAAAEQewWgAAAAAAF9BA5cSDKXIWTJLwI9rpK7mTpm7rpO56dcyL24uTmER5Lre020xWYvneU/vSJTXYOKUZbtMVErBaH6Bgbb9KkldBKNVhKGR7PPE+V0qSbc+a++ft7YVsRAAAPZoyxKqXErX2ECpaO6Z7gqm3xevM7p349j7zbulj13myoRJmAMAAOXgzgnvjw+x7MR575hSJQAAAAAAAAAAAAAAAEAREYwGAAAAAPAVNBitjwCanCUDhFq1f/WjMj/6tMyvviFzylEy/7ix8IWVkJjlCcfiud7TO7KEG5SaoOfpYIAwqajwC0abXSPVzvJu60oUph5Ey3CWQElJ6h0ofB3Ir94Bo+d22dsf304IBACg+Fq6/X9/yi10GSiUMGdKc5bzrtwZY3T72snbYF2T9OjWaSgIAABMp5snvD/FcZyqbAvtmefkLOsCAAAAAAAAAAAAAAAAIotgNAAAAACAr6CBS4nhwtZRzvwCoEa192Rs4FRK5rzPywxXXhqd7Xh0LPPbgtEaWvNSTmSkAoTrSdJQsrB15JPfeVFTJS2c493W1V/ZA+grxUiAYzk+WPg6kF8vdvm3r2+SGlqicY4/vt3o89e6+vClKf32QVfGRKMuAED+9We51y230GWgUMJcLjX1FK6OUjCSkjotod9XP8p1JwAAFeZBSdsy3u+tyYFnXk6WtDLj/RZJD+exLgAAAAAAAAAAAAAAAKCgCEYDAAAAAPhyAwYu9RFAk7NkgG3cVrXX+AmJXmn9Y4UpKMJsx6NjSUZbPM+7YXBE6imjAK2gAYbDJRSMlvQJRqv2DUYrTD2IluEAgZLxysuOLHmNWYLRJOmwMwJemBTQAw1GbzzP1aUPGP3pKenUa4w+f135/KYAAMbLdt3RYQkvAjBemKulHR0FK6Mk+IXIbdnNdScAAKXMcRwz4b/j/eY3xqQknTlh8gWO4+zv8xn7S/rFhMnfM8ZM/4M1AAAAAAAAAAAAAAAAICCC0QAAAAAAvvwGY2ZKDBe2jnLmFwA1qqlmxeSJax/JfzERZzscY5YnHIvm2td17p3lM5g4aIDh4Ehh68inEZ/zoqbKvm8JpqgMQyPZz984gZ0lp6knWL/81I7p7b9/dpc7qT+97P+MmrvL53cFADAmW7gw159AMEGfL0lSc4/UO1C511Z+4eebdxevDgAAKo3jOHs7jrP/xP8kLZ8wa7XXfHv+W1KA0q6VlPkv5SyStMZxnLd5fIe3S3pE0sKMyWsk/aEAdQEAAAAAAAAAAAAAAAAFQzAaAAAAAMCX32DMTImhwtZRzvwCoEY1VtdPnjhrdv6LiTjb8RhzvKevmG9f11+eKZ9B1qmAX2UoWTrfOVsw2mJbMFpfYeqpBMYYbWw2aukxMmFSC6bBcIB+Mz4ouUF/xBAJjV3B5rt/0/Tu1zvWTZ5mjHTZgxxvAFCOsl13dBOMBgQS9hajobUwdZQCv9uYlp7i1QEAQAV6SNI2j/+unzDfSst82ySdn++ijDGupA9I2pkxeYWkuxzH2eQ4zs2O49ziOM5mSXdqfJDbdkknmqg/8AUAAAAAAAAAAAAAAAAmIBgNAAAAAOAraKZMH8FoOXFdE2gbN1WvmDwx0Zv/giIu5XpPtwWjHbTUvq6NLVJjV3mMBXIt22WioZHC1pFP2YLRFs3z3uldifLYp8W2qdXo2HNdHX6mq/r/dvW+X7uR3pbDyWDzJYYLWwfyq7E72HwbWwpbR66eb5ruCgAAhZDtuiM+GN1rJiBKwp4pDS2Ve275xZYMBbwXAgAA5cUY0yzprZKentB0iKT3S/o3SQdPaHtK0luNMRUcOQsAAAAAAAAAAAAAAIBSRTAaAAAAAMCXLYhqosRQ+AGrfYNGtzxtdNG9rtbuqswBr0G3b2N1/aRpprstz9VEn2tJkbMFozmOo+v+09IoaUdnPqqafkEDDAdLaAB10ufcqI5Ji+d6t3UkClNPOXNdo89c5eqxbWPTbl8rfePG6PbLQYPR4oOFrQP5tWV3sGNuU0RDMoaT0awLADA1foG9khQnJBwoiLb4dFcwfYLe4wMAgMpijNkk6XWSvitpq8+sW/bMc4wx5oVi1AYAAAAAAAAAAAAAAADkW/V0FwAAAAAAiLaggzH7Qg4Gb+01escvXT27a3SK0S8+6ugrJ1RWhne2QfajmmtWTJ7Y3ZHfYkqA7Xi0BaNJ0kdf4+jff+e9YHuZDLQOep4OjRS2jnzyOzdqqqTF87zbOvoKU085e2Sr9PCWydNvetLo0pONZlT7nGDTZChgMFrvgFS/oLC1IH8aWoPNtyngfIVgC+iUgh+XAIDSki2QtY8gViAQEzLsKzFcmDpKQdhtBQAA8sMYs38RPmNKD1uNMSOSzpV0ruM4r5J0qKTRf1mnSdImY8yTU6sSAAAAAAAAAAAAAAAAmH4EowEAAAAAfPkFgGRKhAxG++mdJiMULe0bfzT66KuNls+PXghPoSTdYPN1xzySfXra81tMCbAdjlU+eXqO42jvhdKurslt7X1GUukfb4GD0UootCdrMNpc77aORGHqKWcX/sP7AOobktr7ohksNhwwVLKlV1rtkSuJ6EkMGe3sDDZva1waSRrVTENon1/fFPS4BACUlmz9ezzkvTBQqcJmfYV9zlROgt7jAwCAyrYnAI0QNAAAAAAAAAAAAAAAAJQln2HDAAAAAAAEH4zZF3LA6m8emLxi10i3PFNZoz/9AlYyxWPzJk/sastvMSXAdjzGsmTjLPHYfFI69KkcBD1PB0cKW0c+ZQ1Gm+e909v7JGMqqx+Zqq3t9u3VEdFzZDhgyF9TN8dCqdi8O/i8xqRD76aDXzjOUAn1sQCA4LJdd8QHi1MHUOpst2nVlr+xEPY5UzkhGA0AAAAAAAAAAAAAAAAAAACVjmA0AAAAAICvoIMxE8Ph1jtgCQ+56uHKGv2ZdIPNF6+qk6sJQVAdzfkvKOKswWhZnnAstQSjbQoRxBNlbsDjyHbeRVHSJ3yoOibtVevdNpKSOhOFqalc1VTZ26IaHjgUMBitsbuwdSB/NjaH+/2frn3rF47jF5oGAChd2fp3gtGAYGzBaPNmeU9PVHAwWras72Sqsp6dAQAAAAAAAAAAAAAAAAAAoPIQjAYAAAAA8BU0GK1nIPg6E0P2lWYLuCo3fuFPEyVic8dP6OmQGa6skcK2ALCY4z191JJa7xmueMjIZBtxXAKCnqf9IQMMp9OIXzBalbRivr29uSf/9ZSzlE+wXkdEQ+b8wqkyNRGMVjIaWsPNP1371q9vCnpcAgBKi1/fL6WvsVNBL8iBCmY7S+bN9J5eSvev+ZatS6nk0DgAAAAAAAAAAAAAAAAAAABUhgobbg4AAAAACCvo+O7OvuADwVt77W1VWQKuyk22QfaZemN1kye2N+WvmBJgOx6zBaMtnmdve3Bz7vVERdDztJQGT9vOjeqY5DiOlnmcDqMIRgtnwCdwoD1E315MwwH7ToLRSsemkMFojd3Tc2z6hZ8NEYwGAGXHGBMo+LKUrrOBqKmd5T29bzCa9yLFkO2bV3JoHAAAAAAAAAAAAAAAAAAAACoDwWgAAAAAAF+uG2y+tnjwdfoGo1XYnWoy4PaVpHjMI92rvTl/xZSAXIPRDlhsbzvr1hA7IaKCBqOV0uBp27lRXZX+c0a1oyWWwLvmnsodQJ+LQZ+wj/a+4tURRpCAEklqi3MslIqOkCF8nYkCFZKFXygfwWgAUH6SAcNY44OFrQMoB8ZyuTdvpvf0RAndv+ZbtmdxlbxtAAAAAAAAAAAAAAAAAAAAUBkqbLg5AAAAACCsoIFLYcJzdvuEqFVaqEjQgfaSFI/VTp64e1f+iikBuQajfeCV9hnu3ySdWeLhaEHP06QrjSRLIyhqxHJu1FSNvV4x33ue5p7811POBnwG1XdENBgt6G9FxzSFZyG8sL//0xVAY+ubpOCBfQCA0uEXiJmJYDQgO9udqDUYbahgpURetnv8St42AAAAAAAAAAAAAAAAAAAAqAwEowEAAAAAfKUC5kW1hQjPae21j/CstBAbv4CViXq9gtEat+SvmBJgDUbL8oRj/yWO3neUvf3s24ye3lkagWFe3BC5bv0+IVhRYut7qjP29fI673nCBDVCGhyxt0U1GC1oAFWl/aaUMr/j0Mt0BdD4HXuN3dLQSOn+lgAAJgt6zVEq19jAdDKWyyRbMFpfBYd/ZbuiTNDnAAAAAAAAAAAAAAAAAAAAoMwRjAYAAAAA8GULopqoq19KpoLN3Nprb9veLnX3V06oSDJEoFWfRzCaeXFzHquJPlsAWMzJvuxZ7/N/DPK/j5TucRf0PJVKJ7TB9p2cjH29pNZ7x0c1zCuqBn0CPzoS0TsvjDEaDhgq2dGXnh/RNxQweGbUtAWjZTn2TrzE5ZgDgDISNMh6IGTAJ1CJrMFos7zv6xIVHIyWLfy8krcNAAAAAAAAAAAAAAAAAAAAKgPBaAAAAAAAX0EDl4xJh6MFsTtub0u60h3rSj9Q5KkdRm8+P6W6L6W077dT+uofXA0MT/5eYYLReqsmB6Op0oLRLIdGkGC0Q/fyb7/k/tI97lIhjqPSCUbz3h+Z+3rxPO9l2/tKd18WmzFGAz7HRHsEQ+ZSrj1UYaKhZOkc85XOFoxWU+U9PT44Ped5toCcO9ZJtzxTnFoAAIUXNIyV6w0gO9vV29yZ3tMTFXxeZbvS9buHAwAAAAAAAAAAAAAAAAAAAMoBwWgAAAAAAF9Bg9EkqTMRbL7dvf7tv7zHyARNvYmghhajV5/j6v5NUt+QtKtLuvAfRp+9ZvJ3yhawkqmjatHkic3bc66zFE0lGG3OTEf7Lba3j6SkxFBpHndhztNSCW2wdQGZ+3qJJRitI4JhXlGVTPkfP1EMRrMFaNlwPJSGoRHv6Us9MkElKT5YuFr8DAc4/s66NURaJQAg0oL0+xIhRUAQtnu82lne03sGpFSYm90yku1r93sE7wMAAAAAAAAAAAAAAAAAAADlhGA0AAAAAICvMGNQE0PB5rvxSf+VPr5detlZrja3ltZAT9c1+tZNrg47wzsQ5drHjLbsHv+dkiGC0Zqrl0+e2N0mkwyZElTCphKMJkn/9gr/GZ/cEbKgiCjHYLQg+9oWjBbFMK+oGrCEUY2KYqhY0ICSUS1ZwjgRDbbAO9t5HuVgtLWNKumAVwDAmKDXHYQUAblbMd97esqV2uLFrSUq3Cw5u6VyXw8AAAAAAAAAAAAAAAAAAADkimA0AAAAAICvbIMxMyWyDMw0xui6x4KtcEOztOr7rjY0l84A8yseNjr/bv96b3lmQjBaiO3bXL1i8kRjpK7W4CspcSnL9ooFfMLxrbc7OsxjM456z0UhdkiEVFQwWsa+XjzXex6C0YIbzBKM1jsoDSej1Q8PhwiUlKT7GqJVP8Zbu8vo8odcNXZ7t1uD0QKGsebbSMDjL4qhggCA8IJed2QLmwUg2a7K915gX6bJco1Y7rLdwZTKfT0AAAAAAAAAAAAAAAAAAACQK4LRAAAAAAC+wgQuJXxCSgaGjT7yG1cnXx4uoOaIM11dfH9phFVd/Uj273bfxvHzBA1YkaQmr2A0SWpvDr6SEmcNy3KCLV+/wNGj37U/DukbkoZGSi9EqSyD0WwheBn7esk87x3f1R+9MK+oyhaMJkmdicLXEcZwMtz8D23mWIiqs29zddQPXf3X1fZ9tNRynvcOFKoqf0EDcpp6ClsHAKA4gt6vlco1NjCdjOWSb2mto2rLbbotPLfcZbvHp88BAAAAAAAAAAAAAAAAAABAuSMYDQAAAADgK0zg0ieucPWPDd4L/PEJoz89lVsNX7zOTAoUixpjjNY2Zp9vQ8v498lQwWj13g0dBKMFDUaTpNpZjt59pL39hbZwNRWKMUa/f9TVKZe7+u+bXD3fZD8HbCFiXkplAHWQfb1ivn35LRHZj1E3ECAYrb2v8HWEMRQyGK0tXpg6MDVP7zT6wV+z/7Yvnuc9PT6Y54ICChq62NhV4EIAAEURNJA1yDUVAG9VMfu9XVN3tJ8FFYotRG4UfQ4AAAAAAAAAAAAAAAAAAADKHcFoAAAAAABfqRCBS+190tt+6eqKhyYvdNOTUxvMesIFrh7fHt0Bsa29Us9A9vm2d0iDI2PfIxli+zZVr/Bu6Gjxnl6GbAFgYYLRJOnrb7U/EtkQkZy5L11v9IkrjK59zOjndxsd8xNXj271PgfCBBgmhqN7HmUKEox20FL7vt9YOafFlAyWYDBa0ICSUfGhwtSBqblyjQnUdy2t9Z4+MCL1DhS/PxsJGGjaWKEhHgBQboJed5RK+DAwXUyWpK+VC72nN/cUoJgSkO06mT4HAAAAAAAAAAAAAAAAAAAA5Y5gNAAAAACArzCBS5JkjHTGrUbJ1PgFb1879Vq+9ocQKWJ50Dtg9L1bXB10WkqvPSflGfg2KmgIkzHSptax90EDViSpr6pW8di8yetsj0iSVxEECcsK4k2r7Qtc7rN+Ln3tAAAgAElEQVSfi+XFTqOL7x//ZfuGpGPPdT0HlIc5T+ODU62uOGzfycnYdTNrHB241Hu+jS2EEgUxECAYrSNqwWgh+k2pdI75SvO7B4Odo4cus7c9uytPxYQQNCCnqUJDPACg3AS9zh4gpAjw5ZeL5khaOvlRhySpO0AAfTkiGA0AAAAAAAAAAAAAAAAAAACVjmA0AAAAAICvsMFoktTULW0ImdV1w2ezJ1ut2ZIOjCqWL11v9OO/GW1rl57YIf3n1Ub/c593aNa29uB1vdg59npigFw2TdUrJk/sIBitKocnHO9/hff0u9ZLm1unN1Tr7uftn//zv1d2MNrEELxVltCkrW35radcDQUIRmvvi1bIXJCaM/VWaJhClCWGjAYD7sdDlzlaMMe77amdxT82gwbzbaMPAoCyEPQ6m5AiwJ/fqeQ40oI53s+EevoLU0/U+QXJSfQ5AAAAAAAAAAAAAAAAAAAAKH8EowEAAAAAfOUSjCZJG1rGFhwY9l/J8jrpA69w9LbDs693v++42t1b+CCUZ180uubRyZ9z8f3en93YHXzdPQNj60h656xZNVbXT57YTjDaxLCsIFavsC+06vuu3FwP/jy453l722l/NjITRkmHKbW3VILRLOfGxH2972Lv/djcHa0wr6gKcux0JApfRxhBg6lG9Q1p0jmD6dUU4jdzdo109L7ebU/vzE89YYwEPP4apjlgEwCQH0EvIQZCBrcCGOM4Ut1s77bu/sq8psp2nzZAMBoAAAAAAAAAAAAAAAAAAADKHMFoAAAAAABftnCibDZkZHWdfbv/iM6LToqpptrRrz4W01612dd9xJljoVWPbTW67jFX/9yW38Gyv7jHe30bmqX+ocltYUJeegbGXgcNWBnVXL1i8sSOlnArKWHWYLQcnnActty//bIHp28A9rxZ9rakK8Uzws2MMYEDG6Txy0aZ7StNDEZbucB7vjBhhZUsSDBae1/h6whjOBluftdI/QQHREqY38yZ1dIr9/UOQHxqR/H76aDHX0MLgXwAiqO7P30/dMvTRh199Dv5FnSLElIE+PO7LHIkLZjj3dY94D293GW7jMz2DxAAAAAAAAAAAAAAAAAAAAAApa56ugsAAAAAAERbkNAcL5tax17f9qx9JU+cHtPR+6UDT1Ytd7T5nJhe/SNXm3fb192RkI7+kasj6h1d/8/RdRt95jhHl53iyHG8A1TCuHu9veaOhDRn5vhpTd3BN1TmwN5kyOC5Jq9gtKatMsmknOryv823BfVNDMsK4rAVjvyiDq591Ohzbwy/3nzoyxJe1pmQ6manX4fN3YmXyMDyoCF4tmC0pp781lOughw/HSUejCalAwHnzsw+H4qjqSd4xzWzRjp6X++2DS3ScNJoRvXUf/eDGg4YaNrVL7XFpb3qClsPgMr2xHajEy5w9wTfGtUvkG79wtj9FaYu6P1wPyFFgC/fYDRHWjDbu627vzD1RF22vofgZwAAAAAAAAAAAAAAAAAAAJS7WPZZAAAAAACVLNdgtBc7xxYc9AmxmThov3aWo3VnxfThV/kP5n9ulzJC0dIuf8io6lRXH/+dq9884CqVa/GShnxqbvcICWrqDr7unoxgqpGAASujmms8gtH6eqS1a8KtaAqM68rc9ye5554q99LvyXS0FO2zrWFZOWQ/HL5CmuGTJffwFsmETR3Lk2yhQV0Zg8PDHubxwdIIbQgagle/wHvnt8WloZHS+K7TKcjx0zMQre3o1z/b9GYJG0RxNYb4zZxZLR250vs8T7lSS5FDEFMhAk0bWrPPAwBTccrlo6FoaU3d0lduCJm8DF9BbwfiXGsAvrKdSgvmeE/vLpFg73wjGA0AAAAAAAAAAAAAAAAAAACVjmA0AAAAAICvXLPFMkNPeiwDWV9W7z29ptrRH06N6Ten5JB2pXRg2v+71ujDl7o5B1v5BZ94BaPt7Ay+7sztkQwZjNY0Y2/P6WbN7eFWNAXmZ/9P5ox/l26/Srr2PJlPHi2zY2NRPjufwWhzZjr6/PH+C976bPj15kO242lKwWhD4euZDkH39coF9nW09OavnnIV5PjpjVgYwXDKu+hqnyedhJVES5gw0ZnV/ud5c5GD0cL0uRtbohUqCKC8NHUbzwDGh7dIW3bT/+RL0H6/uz/7PEAl83s04zjSgtne9+aVem5le5RFMBoAAAAAAAAAAAAAAAAAAADKHcFoAAAAAABftoHgPznR0YeOti/X1K2XQslswWg/PtH/tvS//jWm1+wfoEiLW56Rqk51dcjpKX3rJleDI8FGtSdTRr0+ITodfePX05Uw2h0PXldmyFDSJ4DNy721J3g3PPTXnEPgwjD3/CEdiJapp0Pm+l8U/LOl/AajSdK5Jzr6zHH2hT9wsavz73bl5poQmIP+IZM9GC0x9tovxM9L1EKubILu63qfwKTGEOFLlSpQMFrEQsVsx/yCOfZlSuW4rxTNIc7NWTXpfTurxru9qdjBaCH63IaWwtUBAH7XOY9uIxgtX4LeYnVzrQH48juVHNmv5XsHVdT78ajI9pUJRgMAAAAAAAAAAAAAAAAAAEC5IxgNAAAAAODLFkCzZJ70x89V6eFve99aDiWljj5pcMRoOOm9jgWzs3/+3V+d+q3rljbp/LuN/uVcV+ubjJ7bZfR8k1Ey5T3StDPhOfkl7X3j3ze0hqunp3/sc0dS4ZbtNLVqq1oyuWHXFmlnQ7iVBWTiXTKbnpF59iGZH3zCe6ZH7izIZ09kDcvK8TCZUe3ot5+IaWmtfZ5v3WR09u3FG4i9eXf2AIaujGMo7BjxeMRCrmyCBqPNny3NmeE9bxPBaFmVYjCareYZ1dK8md5t/9xeeWEKUdbYHXx/1FRJjuOofr53e1OIdeVDmE97MUvIJQBMxWxLYKQkbQ55fwK7oNfa3f2FrQMoZ45jD0YzJvszmnKU7ZnAwEhx6gAAAAAAAAAAAAAAAAAAAACmC8FoAAAAAABf2cKJ9l1kX7axW+oZsLfPDxCMNn+Oo+bz83P7+vSL0pFnuXrFD1297CxXS77m6ppHJie/7Y77r6dtQjDac7vChbJ0Z2yTZMhgNEm6cNEXvBseuzv8ynyYRK/cM0+Weddymc+8TuaLJ9hn7myRiRc+hcq1BPVNDMsK6/hD/Vfwg78avbC7OOE7G1uyf05XRvBC2GC0qIVc2di+l+NMfO+ofoH3vGHClyqV7ZzK1OvTj08HW81VjnTU3t5td6zlWIiSoKGFc2emz3FJWmEJRmvuyVNRAYXpc+ODHHcACsevP3phd/HqKHfZwolGdfVLJujMQAXyOz0cScvr7O1NRb7ei4Js15z9w8WpAwAAAAAAAAAAAAAAAAAAAJguBKMBAAAAAHxlC6JaVmcPpcoWjLZgTrAaltU5evr7+b+F7R2UPnml0X9c5eo7f3Z18u9c/eQOVy//gX9S0I6O8e//FjJwpy0jeC1p+aiFqU7r8n9ecpLndLN1fag6bIwxMs88KPOOpdK9NwZfcOemvHy+n2xBfbk694PZV/CqHwVIkMqDiceXl87E2OsgwVaZSiW0IUwI3kpLMFrQ8KVKFiTkKWphetZ+ICa99yjvc3ltY2kc94XSO2B04xNGtz5j1JmY3u1gjAkcbjF3xtjr+gXe+7bY53mYPjcesXMHQHnx+w1v6a3c37x8CxqImXKlxFBhawFKmW8wmuP/bKkS7+sIRgMAAAAAAAAAAAAAAAAAAEClIxgNAAAAAODLNhizas8dZXWVo+XzvefZ1WV8Q57mzw5ex1H7ONrww8Lcxl61xuhndxpd90+j02/OPvK9oWVsHmOM7m/wnm+/xd7TG7vHAnpGUt7zvGLwWfvna1+1VC2b3LDDUkgIZmRY5jsnynzpLeEX3rFxyp+fTaGC0Q5Y4ui0d/mvJD4obWwufMhEY4BB3139Y6+DhjWMGhwpjdCGMPs6KoFJpSjI4TM4Ig0noxOwkvIJzTvmQO9joatfau8rYFER9vROowO+6+qjl7l6/8Xp8M+ndkzf/uxMpI+pIObNHHu9whKA2NxT3O8Sps+NWqgggPJi+z2UxofoYmrC/Mp0+4SCA5Uu27lUXeVoWZ13W2N3dO5FiiVbpnP/cGUHPwMAAAAAAAAAAAAAAAAAAKD8EYwGAAAAAPAVJJxob0tYSWO3dPrN3iP2HWd84EkQq5Y7uuurMS2eG265fGtoHRuAmhiyB5985jjvgJ7+Yal3z6D5pCXQoMYk9bed77XW0FhTP3nijo2hB8Y+ttXoC9e5+tZlzXr2Z+fLvLlWWvO3UOsYZXZOPZgtG79ApKn6/rsdffx1/is6/ExXL+wOt40f2mz0lRtcffkGVw9uzr5sU4BB391TCEaTpLYSCIiyfa2Yx9OseksfdO1jhsHiWbg+oSqZeiMU9OH3u7R6uX25jS2FqSfqPnmFOy5Msalb+vINAXd8AWxqDT7v3IzrhHpLCGtzz9TqCStMnxsnGA1AAfn1R5n9PqYm6LWSNP4aHcB4frdlzp7bcNt9XSUGXge55gwaNgwAAAAAAAAAAAAAAAAAAACUIoLRAAAAAAC+ggSjrVzoPU9jt7SlzbutbpYUyyHN6q2HO9p+bkz3fzOmWz4f07qzYhq+JKa1Z6Xf//zDeUjIyqK7X2qLp1+3+wRMHXOAvZbGPQN7kynv9mqT1FsS91qXb6taMnlivEvavsFe0AS/fdDV6891dcn9Ruc/sZeO2fT/dNu8dwZefpIdG3NfNiDr8ZiHJxwzaxxd/R+Obv+S/8pe9SNXT+8Mloxz7WOujj/f1UX3Gv36XqM3ne/q6kf80xUaAwz67kqMfX4uwWi7e8MvU2y2EAqvbmOlZQC9JH3rTwSj+Ql6/NgCIKeDreaqmLS0Vlowx7t9S1vlHQvN3UbrmiZPX7NF2tY+PdujoTX452ae7ysswWjFDsogGA1AVPgFdnUlildHuQvza9nJdges/M6l0Us+231dU5GDcKMgSL73AMFoAAAAAAAAAAAAAAAAAAAAKGMEowEAAAAAfAUJoqpf4B0A1tRl5FiywXoGcq9p7kxHbzjU0fte4ejwekfVVY6OqE+//9pbY7r1izGtWpb7+oNoaE3/6ReMduTe9rbRIJcRWzCakorJaK9kq2d7e81S7wUfus3+oRkau4xOvWb8zh2KzdKZS88MNfh/nBChbLmyB/XlJxDPcRy980hHbz3MPk98MB2O1hb331LJlNFpfzbjanaNdPrNRsmU97LGGD26NXudXf3j1xlWm89xGxVBQhlH1fsEo/38bqMlX0vpw5emtL5p/Ep39xp94TpXR5yZ0nE/TenOdZUXnOUGGXGv0ghGiznpc3gfS1hnJYbE7Oy0tz26dXqO940twedNZoT+2K412vuk4WTxvkuoYLShwtUBAJbLSUnp320T8Dce/sJsxuYetjlg43cujd7Or/B5tlRpglxz9g8Xvg4AAAAAAAAAAAAAAAAAAABguhCMBgAAAADw5bre0zODqFZaQole7Bof4JTpW+/IT5CVl/e83NGGs6vkXlalR79bmFvfhpb0KFVbMFpVTFo6T1pa692+rSO9fNKyfWvMiCRpabLds71t79d4TjcNT1kqHm+fb3t/8LOzXq7m6hXeCzmOnGuekfOd32jAmaX1Mw7TgDNrrH3XFpmmbYE+P1dhwrKm4n8+nv24WfYNV/FB+2jlDc3pc2Cixm5pfZP3Mv95dbAB350ZAU+2c9RPtlC3KAizr1daBtCP6kxIf3pKetP5rjr60it2XaMPXOzqkvuNNjRLa7ZI77rQ1QMN0d82+RQ05Kl3CmGW+Zbt2Fg4x7vd9ntUzvz274s+oWmFtN37Z81Talwwmn2+HR251xNWmD53OCkNjVRWnwKgeLL1R1MJosaYoCGyUvo6H0B4o3dztmdLTT1FKyUyCEYDAAAAAAAAAAAAAAAAAABApSMYDQAAAADgK0g4kW3w6vomyTaO/KOvLlwwWqbXHuDoye/F9KGjx0+vnSUdtbf/sm89zN7W0Jr+0xYwtWSeFIs5Omip9/Kb9yyfTHm3V5tkej0p7wSZ9mUv815wZ4P39Az/c59/ikLDjEMmT3z3p+X8YaOSe6/W5xpP1OJDm3XUQU9q4apWfWuvc5RUVXq+h2/L+vlTYQ/qy+/nHLyXo6oAT03mf9nVbx/0Lmp9k30k8zqPtmTK6MYnggUvZAY8+Q2YnjvTe3pbPNDHTKswwWh+gUmZ2vukn92VXvHX/mj0yNbJ87zp564GKyjIKHAw2mBh6wgjlaUfWGAJRuuuwICYxJC9bXsRw8QyNfcEP78yw0P3Xyw5lr5+9De5GML2DvEInTsAyku23/Bv3GhkQoR6wVuYTUgwGmDndy6NXuPVz/dub/QIHC93QfoegtEAAAAAAAAAAAAAAAAAAABQzghGAwAAAAD4yhZAI0krF4ZPpVoyL8eCcvDKfR398XNVci8b+6/nwio9fUaVei+M6Yj68fN/9g2O3MuqdNfXqnTKMd7fbVdn+s/2Pu/PHP1+h+zlvfzm1vQo1xFbMJpGg9G8k2vaZ9Z7Tte252WSSe82SfFBoy9d7z/CdtOMQ8e9d367RrHvXCpnxf764e1Gv31iroZj6cStpFOjCxZ/TbMOi+v3dSep78G/+657qsKEZU1V0FWeeo3R2be5Gk6OL25Lm32ZrR5tW9qkPp8Qo0zdA5K7Z2P4hWIsq/We3mY5bqPE9r28gpFsA+i9nHeXUWuv0UX32jfct/5UOSEitrDBiXoHorNNrP3AniedC+Z4n73diQIVFGF+YQmbWqdnnzb3BJ83Mzx09gxH+y3ynm9jS/G+S9AwwVHxgP06AISVrT+68mGjm58uTi3lLEy/30wwGmDldyq9FIy2wPs6vjWeDhKvJEH6nqkEo7mu0VM7jK59zNXWtsratgAAAAAAAAAAAAAAAAAAACgNBKMBAAAAAHwFCaJauSD8ehfPza2efJs3y9FT34vpik85+smJju7+akyXnjx2u1xv+W5NPekNszvu3f5SMNoy7/bNu9N/2oLnakw63Gxpqt2zfVtqqfeCknTNudam6399t325PRpmHDL25u0fl7P6VS+9/f2j9gGzn1p5ueYP3qzH14dIvQnJdjxWFeAJxxsPzT7PqDNvNXrDz1x19I0VOLqPvTyxffIX2dAc/POMkXoH0699g9HqvKe3W47bKLEFdnmF4M2scTRnRvB1/+QO/4Hf1z9mKmbgfdBv2TNQ0DJCsR0bVXuOjQVzvNu7IxTuViyJYft33thSxEL2MMaoKURoTHLCvl613Hu+hiJ+l6BhgqOidO4AKC+2+4hM594RstPCJGGuHhq7K+9aAwjKBDg9bM+WjAkXrlsOgvQm/TkG8A4njU76rdGrz3F1yuVGB5/u8nsBAAAAAAAAAAAAAAAAAACAyCEYDQAAAADgyzbgPjOIKmww2pwZ0pyZHulG06Sm2tGnjo3p2++I6S2Hj69rxXzvZUYH5W7Z7T1cdXldej37L/ZeviOR/nNi6Muo6j3BaPuO7PRsf7BxrnpqFnm2mSvOlhmanMRitqzTrU8lvT8wwyWLTk2/eP075Xz9Vy9N7+k32tGRdXH911UjSvmldU1BkKC+fPnE68Ot9J/bpaVfd18KPWuL27fB3zdI/UPj2ze2hNtmXf3pP3MJRvOrLSrC7usz3hN8f134D//v35GQ1mwJvLqSFvRUHQ3iiwLrsbHnd2nBbO/2rkRh6omyhE9YQlO31FvksLj4oNQ/HHz+idcgB+/lfZ43dhXve4T9edvaVpg6ACBIf/TEDqmJsK4pCROIWYnXGkBQfj3R6BXePt6POCT5B4+XoyB9z8BIbuu+8mGjG58cv0dOu9nomRf5vQAAAAAAAAAAAAAAAAAAAEB0EIwGAAAAAPBlDe6qGns9b5aj+ZYgGi9L5k2tpmJasfUBz+nN3UbGGG1s8V5u1fL0n/O7t3u298TTyTAjSe+Bp9VKB5idkLjPs30k5eifh3/SUrWkJ+6dNMn96xVaM/t19mVG1+3M0IVf2i7npzfLmVP7Up37fzdYKsBzPQv16NZAs4aWLRApnz54tJPTsfraH7u6+Wmj7n77PIMj0lMTMu8aLMeSTeee4AVbeKEk7VXnHSLU1hfus6ZD2H196hvym453yzOVMSg8aNhH7+SsxWljO+ZHQ/MWzvVu747QdyiWRJYQsi1FDu1a1xRu/tfsP/69LYi1qSencnISNhgtbOglAAQVtD+6fS390FSE2XpdPtf/QKUzPieTs+c6fsEcR0trvec59ZoQKYVlIEgfnxjKrX//n/u8l/v9o/xeAAAAAAAAAAAAAAAAAAAAIDoIRgMAAAAA+LIF0FRPuKO0hZV4KZVgNDMyrOV3XejZlhh21BVPatNu72VX7wlGq7vvas/2QTNDg2v+bg2eqzEjkqSjB5/W0qT3hzx1wAfsxW/fMO6teeE5td5yk7qrFtqXyfDd+/dS31D6dWLIaM4XXfWECBX6+h/Hf7G71xu9+fyU6r+Z0ht+ltK1j+U2qNkW4hTLbyaWJGnOTEf/998xvf7A8Mt+8BJXj2QJh5sYlnPD4+EGIXftCUbzGzC9rM57+u54qI+aFraB87Z9PX+Oox+9P38Hwi/vMXLDJiCVoKBfsXewsHWEYQ3NGw1UsAR1VmJYSX+WYLS2IvcFd6wLd0599S3jLzbqLdcajV25VhRe2G5hU2th6gAAv3DcTH97rvyvZwopTL9fiSGsQD5k3sWNPkuZaEub1BavnP4syDcN8oxmzRajt/8i/Sxm2TdSOvrslDWs+IK/V872BQAAAAAAAAAAAAAAAAAAQPQRjAYAAAAAsHJdYx0IXgnBaNqyVvWd663ND/z0NxpOeretWu7IGKP56++1Lt992qc1kvTewFUmvWJH0uFDGzznOb3h1TJKD5iNx+Zp0Jn5UpvZ0TD2unm7zKdfo4/tfY21lomGktI1jxo932R05Flu4OCFUY9vTw/ANf1x3ft0n97xK1f3b5JaeqWHXpBOudzoqjXple7uNdrVFWwAbrZApHxbvcLRw9+p0uDFMX3lhPx+yMaWsdebWo2GLMeSzWjIky0sTpKWW4LRih2GlItc9vXHXpPfffSBi3ML8CslQcM+4iUQjFa153dp0Vzv42B3r6x9brlKDPm3t/cVd3us2+X9eXsvlOpmjZ927EHScQePn7Zygfe+7UhIQyPF+S5hg9F2dFTWMQegeIL2R0/uDL/uzoTRhmajrW1GxpZWWyHCfP3EUOVdawBB+Z1LTsYl3qHL7Pd0f322cs4vv/v8UdmCn5950eiN57n6+4b0s5i2uPTMi/mpDwAAAAAAAAAAAAAAAAAAACg0gtEAAAAAAFZ+YVhVE4PRFgYPJFo8r0ApVvm2o0F7jzSq2ox4Nt+62Z7wdugySR3Nmp9oss7TE6vTyBbv0LNqM5aStXp4k3UdFx57lQ4+aIMWrtqt/Q/epIsXnppu2LJWkmSM0baPv1Wv3/8BPTTnOOt6vHzxOqOXneVqe0eoxV5y3E9dDb1rb73lktme7Z/7vdGrzk5p+Tdd7fttVwefltKjW/0HOhc7GG3UjGpHF3zE0UUnOZpZnZ91NrSMfZmL7g0/wLurP72MXyjGsjrvDdM/LPUPRXtQeS77er/F+a3hr89JPf3R3k5TFTRUpXcgOtsh27Gxv+U4SLrSthz7s1K0vd3ox3/z32/tfUUqZo/Gbu/pnznO0f3/HdOn/8XRvx4infYuR3d+JabqqvEnfL1PCOuNTxYpGC1kXmJHkbcxgMoRtD/a1SX1DQbrIxu7jI4/L6UlX3N1xJmuDj7d1fJvuvpTkfrYKAobiNkzUJg6gFLndyplBqO95+X2G74711VOXxTkm3Zn6W/OuT18yD0AAAAAAAAAAAAAAAAAAAAQFXkaygsAAAAAKEdJnwGU1VXj3/uFlUy02J4nFilmZ4NqlNTBw1u0cebqSe1/qX2P53L7LpLmznRk1jVovttrXX9P1Xwl21ukuYdPaqvRWDDaEUPPW9fxja6PSDPSr9url+rLy3+h1UMb9eZND8jc/r9yXVdv3/d2bZlxkHUdhTT3kHZr23BSevrFsfdb26W3XOBq509jWjR38mBoY+xDgwsdjCZJjuPoC29y9IU3Sade4+q3D05tUPbGlozXzfZ17b9YnuF0Xf3pP/2D0extbX3SfjOzFDmNcglGq4o5elm9tM6eRxja3zdIH3pV/tYXNYGD0QYLW0cYtsH9o8fGIcvS4QpeXcbG5j3BlWXOGKN3X5Q9BaHYwWhNPd7TVy6QXrGPo8s/6d+Z77MwHczqdQycfZvRx19n5DiF/UHw+Sny1JEoTB0AECaw6+s3Gh29r/8CxkhfuG7yPG1x6cO/cfXsGTEduXeJBFznUdh+v3tAWlJbmFqAUhb0XHr3kfa2zbvzU0spCNLHd/fb2wZHjO5YF+4zi/FcBQAAAAAAAAAAAAAAAAAAAAgqNt0FAAAAAACiyxY+I0nVE+4oV4YIRltSIsFo2tEgSVo1vMmzubtqoef0VfPSYWjmzI+rzu2VY7w3ZE+sTiOq8WyrNmPBaCf23hK4ZEn68ZJvpz//3M/qtCt3T1somiQZJ9yjh/5h6eanvUcA+w0MjhX5CcdvTonpzq/E9I235T5yeFt7erCyZA8LkqSDlnpP79wTtpNzMFo8S4HTzBqMlmVff+y1+R3Nfe/GqQXgRZ2bPTtLktQ7UNg6wsgWmjerxtEBi73naWgt7/056vRbjDY0Z5+vmMFoKdeoxRqMFuy8nTfL0VsO827bvFt6YkeOxYVgO4Js1zadCf9gTwDIld+92kS/e9Do89f6/+cVipbpqkcqsy8LE0An+QcVAZXM71TKvBKsrrKH5frdN5ebIPdpfv3N49vTz1fCqOJvjgAAAAAAAAAAAAAAAAAAACBC+OutAAAAAACrpF8wWtX490FDTaPm5OkAACAASURBVKQSCkbbmQ5GO3xoQ6jF9t9xn8yWdVJPh2IyqnW9E6h6q+Yr6VR7ttWYkZdeL0+1hvr8++cer46qRdo441Cdt+SbWef/9b/nHiT12cX/1LWNn8h5eS8bW7yn+w0MjuU3CyuQtx3h6LwPxeReVpVTQJprpBd2p183WwZ4n/MBRwvneLd19Y+tx2bRXPvg5sgHo1n2d7Yt/dUTHJ34yvzV8djW8g4BCfrtekogGC3zWD/QEijY2pv/eqKmd8Do3DuC7dmOIgajtfba9119iHDVs95rf6T93K7Cn6+2vmlprff0oWT4UAoACCJsYNdUPbipvK+JbMJmWxKMBnjzO5ecCTd5+yz0vutri0tDI5XRFwX5lt399rnWN4XfTpnPVZ550ej7f3H17T+5WrOlMrY5AAAAAAAAAAAAAAAAAAAAooVgNAAAAACAVTJlb6uecEe5cmHw9ZZCMJpJpaRdL0iS3py4L9SydZ1bZK4656X3813vJJ6u2AKNODWebdVKjnv/kZeFSyVaM/sYfX75hVnn++dpMZ38uvChXld+ytH2n8R0yVf31msHHg+9vJ+mbu/pKZ+xuNMRjJbpvA/F9Kljwxfx0AtGA8PGGqDw+gMdLZjrvd6uRHqD+AXGVcfs51tbX7QHN9vCPrLt6zkzHd34uZgazo7pxlNj+peDgn3em1Z5T3/6xbFtXY6Chqr0Dha2jjBsx3zmsbFknveB0pkoQEER88qzfTqFCXIJTMiVrW+XwgWjve5AR4ev8G5rsARr5pPtnFnqc21TzAA6AJXDDZvYNUVP7JA6In79WAhhv3F3hMJkgSjxDUab8N7v+VJLBQQdS8H6eL8gRlvgvJ/RfwDhjrVGx/zE1Tm3G513l9Ebfubq948Gv8cAAAAAAAAAAAAAAAAAAAAA8oFgNAAAAACAVdJn3GPVhDvKvUMEo61cMM0pVkG0bJdGhiVJx/Wv0Uw3eCpQrdsn3f/nl94vTbZ7f0T1MiVicz3b5rrjR7gurg13C/+BfW7S/819g+88f/hsTK/e31HdbEcXfCT7PnEc6V8Okjb8MKZPHhvTvosdOcv2Uf3b3h6qtmwau7wHAPsFgE13MJokXXqyo2+8zVHtrODL3PqMUXOPvX3FfHuw2WjQjl+wVcyxh/XsjgercbpYg9EC7GzHcXTIMkcffJWjTwYMrPvSm+3n2PHnl+8gcL/zKlNvhEI+7MfG2OtF3l1r2Qa67Ogw+vffuop9NqVt3j85np5vlra2FWeb2ILRaqqkxZb9ZfPq/b3P64aWwn8X2/HnF/ra6RNaMd2MMfrD466O+2lKrzknpXPvcDU4Em47/v5RV286P738mbe6SvolmQLIm6Dhpvn0q39U3vkddjv3DVXeNgKmyplwaVc/3z6vX9huOQmSfdnlc42Zy3Vx1Z798J0/uxrOyOp3jfTfNxm50/HDAwAAAAAAAAAAAAAAAAAAgIpVPd0FAAAAAACiyy8YrXpChtDSeelwk5FU9vWuXj61uopiR8NLL2uU1MHDW7R+1hGBFq1L9Y57vzzZ4jlfS/Vy9cbqvNfhjl/H4vn5u4V3ZDR0SZWqq8ZGH3/lBEd/W2t0z4bJ81/wEUcnvdbRvJnS3JmTw2hmfeGHWvqVNrVVL81LfY2Wgc6+AWARiH6fUe3ovA85+umJRv+3WXrzz7MnTt3bIK1ttLf7BaO1Bw1Gq/VuayvVYLSQIXjvOtKR5D+A+/PHO3rVfvb2tY3SI1uMXn9QBBL48izo2PaBEWkkaVRTPf3bIGU5tTKPjcWW86Yzkf96pltPv9ExP3HV2pt9Xi9P7DA6cGnh92tjt/fBVr8gWOBhpkOXeU9vaA1bVXi2c2bRPEeOYzxDLBq7pFfsU9i6ghoYNoo56fNlJCX98Umj/7hqrOgndxhtaZN+/mGpdlY6aNLP7x509dlrxi+/rU26+jPT31cA5c72e1hID22uvFCcIOFEmRJDhakDKHV+p9LEy4262dLcmd7n0/aO8rwvmyjIfVq3T3j1hubwn1kVk1p6jOczitZeac0W6bhDwq8XAAAAAAAAAAAAAAAAAAAAyAXBaAAAAAAAK7/B9tVV49/HYo5WzJd2dvqvc2mttHheCQxi3dkw7u0hwy8EDkardfvGvV9hCUZrrl6u3ph3alVdanxq1eK6amULdwqq7SubVF11+LhpjuPoL1+I6Zy/Gd3zvFHPgHTQUunUN8b03qP895dTu1Bvn3GXfu++JS/1NXZ7BzBlCwCLiljM0fGrpGfOiOmc212tf3yLulJz1FyzYtK8w0npl/d4n2hLa6W62Y6WzPP+4oGC0WLS0lrvYLCoB6PZQijC7uv6BY5WLfMPTLropPRK62ZJvYPe83z/L67u+XqVd2MJCxqMJknxIWlRBJ4m2mquyghIXDzXe56OMgxG+5/7Tc6haJLU4P0TlXdNPd7T6+eHX9fq5d792pY2aThpNKOAAX6u5QCsqZL2Weh9HdTQavRuTe8PlTFG5/zN6Iy/ZD/pL3/I6PKHjF69n3TRSTG97kB77Rf+Y/L6rvun0U8/aLRiQYR+nIEyZPs93KtWOvWNjv7+vFFXDr97RtImy3XT5t3h11fqwlwrSVIfwWiAJ7+QwYlXDI7j6MAl3iHitv6p3AQJZezuT1/jTQyyTQyZrM/mvFTFpB6fsLUdnUbHTfM1LQAAAAAAAAAAAAAAAAAAACpHBIYyAgAAAACiKpmyt1XHJk9buSB7MNrq5VOrqVjM1ufHvT90eFPgZWvd8YlTyy3BaI019YpX1VnWkZFyM2uO9lnkHQITxkx3UE8ffokWHfFNz/bZMxz96P2OfvT+8Os+7bMH6/eXTqm8lwyOSA++IL159fjppRKMNurlezu64aQemd8fKVeO9j94s5pq6ifN94Dl0Bo9V5bM89737X3pQdDZtsuSed5t7X35CdorFNv3ymVff+JYR6ff7L3Cx06LvTSQ/LJPOPrYZd7z3btRuuVpo9kzpDev0qTgvlIVJuyjd0BaZAkcK6Ygx8Ziy3Ef1WC0jj6j53ZJ65uMDljiaN9FUmdC2rzbqG62dOxBjvZeOPmY60wYfe+WYDvxA6+Ubn568vRiBaM1dnlPr18Qfl2rLNcSKVfa2iatnpxDmTd+x9/q5d7XQRuLtI39/PzvwULRMj2xQ/rwb1ytOyumutmTj7+RpNG6psnLuUb645NGXzmhPPpJIKps/dHsGdIP3hfTD96X+7q//kdXv7xn8gc0dkt9g0bzZlXO+R0knChTgmA0wFPYu89Dl3kHo20ukWC0+KDRA5ukBbOl1+wvzawJ128GuU8bSUn9w9LcmeOn5xoe194n3fSk/YNdn388AQAAAAAAAAAAAAAAAAAAAMg3j2HsAAAAAACkJX0GPVZZgtGy+ddDoj+I3vR0SHdcPW7acf1rAi8/MRhthSUYbdOMQ6zrqMtcx8w5euvhgT/e6qup67T6696haFO1+uiDtGvV2frB7h/kZX1/f37yYNxSC0aTJLWlE2NiMnpv3+2hFl21PP2lbMFmSTcdVOU3ODnmSEtrLaXFvadHhS2EIpbD06xPHONo3szJ0z9znKPX7D928Hzk1THtZdleknTiJa7e+StXq89w9XxTtIPlggoVjDZYuDrCCBSMNte7U+hMSG6YL10EDzQYHXGmqxMucPXlG4ze+2tXR/3Q1Zt+7uqz1xh97DKjg093ddWa8Sf7/Q1GS74WLJ3gxZ/GdOgy723S0Fqc7dHc4/059QvCd+AHL7X3+w0FDsvwO/4OXe5d1KaW6T3mrnzY1bduyq2GXV3SlWu8l437hP/kGsgBILiU5ScgH9fFX3yTfSXPeQQVlbOwlw2J4cLUAZQ6v5BBx6PLOcRy7bqpSNeuU/HwC0b7fMvV+37t6g3nuXrtj101dYerO2jf090/eVrDFK49v+8TpBux2ygAAAAAAAAAAAAAAAAAAACUOYLRkFeO49Q4jnO84zifcBzn247jfMFxnA84jrP/dNcGAAAAlCvT0yFz9blyf/k1ud85Ue7F35W581qZVGrK6/YLRqv2uKOsX5h9FP67j4xqglWacV2ZEw+cNP3N/fdrjpsItI6JwWgrk97pAd1VC63rqHN7x97MmqPaWY5OfePUtt0pb5w9peWzWfHl03T6ERt1Us8NU17XhmaPYLQsAWCR1N700sv3xf8aatEDnXSgni3YTJIeekH6xBX2DVMVkzXoK+rBaEHCr4JaudDRZac4mp9xCrzvKOnXJ01e2VPfz/64bFu79F9XuzJ+o/tLRJiv0DNQuDrCCBIEYztvUq7U3pf/mnLlukafvsrV7izn43BS+o+rjGKfTekVP0zp33/r6s0/zx6KNmeGdO1/Olq50NHq5d7zNLSoKMdyh2W7L6sLv66ZNY72WeTd1tpb2O/i1zfZtvFG73zUvNnYbPTD21x9+kpX59/tqisxVuTd640+879T2yY//Kv38n0+YYnxiPQXQDnL57XSRPstlmbXeLfdsa70r3/CCPsT6dc3ApXMNxjNY9qhy7znbWgtzrVrrlzX6MOXuuNCpdc2St+8MVzNQb9it8c1V6HudwhGAwAAAAAAAAAAAAAAAAAAQDFVT3cByD/Hcc6SdOYUVvG/xphPhfzMpZJ+IOmjkjyHJTqOs0bSBcaYP02hNgAAAAAZTNM2mf98vRTvGpv48O0yknTPDdJ5t8pxch8ZbwufkaTqqsnTVi7Ivs5D9sq5nIIzxsiccZI0PHk0+ywzpLf13aNb6v4t63pq3fGjUFcPNYSupS6VkZIzK53mdNHHHP3mgdxGoh46tEmrD7OMLM4Tp2aGnHP+qO88sknXXzm1dXmFyPgNwo1FNfo9Ixjt+P7/U22qV/GqYClAC2/6icwB79CSV73LOs97f+0fjOQ4zp6AqMkbry1C4VBe/ILwcvGx18b0lsOM1jZKC+dKr9jHu2+sX+Do7UdId633X98jW6VnXpReuW9+6yy2MIPbu/sLV0cYQYJg6ufbl2/slvbKIYyrEB7bJm3vCLfMc7uk53Zl33G3fjGmYw6QltSmN8yq5Y68+oK+IampW1ppz+rMiy7L8bNwTm7rWzpP2uGx7QodfGcLqYjFpFXLvLfx7rjUlTBaODf/KZ73Nxi999euEkNj0359r9Gj342poUV6x6+m3pl29aevkSZeU8aHLAtI6h0kOQMoNNu1UlUerourYo6OXyXdsW5y25oXKuv8DhsE1D9cmDqAUud3Knk9tjrUcl0VH5Rae6XlPtf70+npF6WW3snTb3jc6PefMYoFTK8M2vd0eeT39xYooJFgNAAAUIqMMXLd8vhHTgCUFsdxFIvFpvR3NQAAAAAAAAAAAACg0hGMhilzHOedkq6SlC3e4FhJxzqOc62kU40xHn9VGwAAAEAY5uLvjg9Fy/TY3dK9N0knfDjn9SdT9rZqjwH32YLRZlRLi+flXE5BmVRK5vwvSg/cYp3nfTMe1y0KEowWH/f+gJHtqjHDGnFmBK6nzs0YSTsznRpTXeXols/H9P6Lw4ecfHDgr3Je9rnQy+XiyNcfqptmGn3o0tzDWDa1Sv1DRnNmjv1lcb9BuFVR/TvlbWPBaDPNsE5I3BcoXE+SFg63yVxymuZe/U4tq0sP/g5jdLz1Uss5Fx+UBkeMZtVEc+NZw6+mEPaxpNbRm1Znn+9lKx3dtT77QKmbnjR65b7R3H5BhRnc3txjJE3/97XVXJURMrBXXToYxivgs6k7OoF2Da2FGZB35nsdvefl4/fVKp9szI0tpReMtsTStxU6GM0vmG/1cvtyDa3SMQfmv57Tbx4fiiZJOzul4893tak1f5/T1S8tmjt+Wp9P6EbvQP4+G4C3IEGhU/GWwxzdsW7yh9zXIPUOGNXNLu41wTWPuLpqjdHgiPSeoxx9++1O4IChqQj7S91HMCQQmmcwms//dd7UGt1gNK9+c1RnQlpSG2w9QXM7uj2uuQhGAwAAlcwYo8HBQcXjccXjcQ0Pk14NYHrNmDFDtbW1qq2t1axZswhKAwAAAAAAAAAAAIAQ8vDvxqOSOY5zvKRbND4UzUh6UtKNkv4uqX3CYh+XdL3jOBx/AAAAwBSYvh7p4dv857n7uil9RtIn16rK44p+74X+f5G3fr6i+5d9b7xQuu0K31neffK/BgoaqHXHp7JUK6VDhl8IVc5s8//Zu+/wKKr9DeDvmU0DQgoJhA7Su14EVEQFARuKyvXaC9ixYa8/FRuK2JVrV7Bju4IdUVAQEZEi0ovUhISE9J6d7++PJZBk58zObDbJAu/nefIkO6fM2dnZKZucN1Vmt8bsT40ZfYTCBYOsBxHfCNj4mIE4T/WElJYVu3DbcSVQTeJcjaE2xvRX8L5qoPy0t7BrfTvkr22GMXn/c9VH34eq74B2k3BrE5ZVlyQztdrj3qWrHbeNN3OBrWuhdm3ByZ3dZ4vvC0azmXidVccBQrVR12EfduzCjapyEp4W7kwX+YWpOXU3Djd0Y656HPAYCq00YQk7c8LnddtTB/82oEVT4KYT/d8oiU0UWmiOB3UV0FbJNAU5umC0JsG9qZNjrdvVxTatyu7Y1DoBiI22Lt+8O7TbuMIryMgT/LbZujyUoWgAkJbrvyzfJnQjI983EXVPoUCcJnsQkStW4Z9A6K6V+rTRd9TiNhOFpfX33n7lZxOXvS2Yuw74bTNw3/8E49+vn/W7uVYCgELOuSeyZHc5YHW0SW6q/EJZK62v42vX2oi2+bd0u13cfzsNIcsp8q+YW0cBtU6Ph6Xlgp3ZvAYkIiKi+ldUVIRNmzZhy5YtyMrKYigaEYWFsrIyZGVlYcuWLdi0aROKijS/LCEiIiIiIiIiIiIiIiIiIj9hOm2YQuwCAIe5+LrdSadKqbYAPgcQVWXxrwB6i8gAETlXRE4C0BbABADlVeqdAeDRWjwnIiIiIiJa/ANQUW5fZ+E3kKL8oFdhF4wWYXFH2beN/UT8NglBD6VOybZ1kKl321dKaoXmJ52Gw9vaVzPEiwSvf3rQgOI/XY2p2maMblStbNpYhYfPVGhZJefs9H7AmocNdGqusOLRRhjbYTOGGH9jrPE9Fp74IxJvuN/V+kNBKQWjzWFI9mahkZRgdL59kF9N/2QC/2Tun0hrG4wWpnl7qBGM1qNsneOmCV5fCo2c1xNnfHml61VXhkTFN9LXsQu1aWgNGYx2cm9lGf5Y09JtwC/rD+zJ3k4n3APAzjAJRvM63Dd055xweR6AddhUbaTEAX/cZ2jDxnShf2t3hXYcNeWX6Pe1xMbWywNJirVenplfxyFvmu6V8p332jezLg/Va71ul+CYx72IGm+i5e0u03pqIc3ifVNQ6r+s0uo0oM0dJpJvMdHhbhNf/XVgHyuJwpHueOTkGsYJu6DYsgqg6Y0mLnjNREFJ3b+/n5vjv45pCwVZBXW/brdrsDs2Eh3Kgnm3dkuxXh7qANhQionUl2XkOe/H6X1atsV8+nxNMNqxnZ2v34ruPqxSSbngsrdMNLvZRLu7TLS/y8QHv9ff9SoREREd2oqKirBt2zaUlwf4vSkRUQMqLy/Htm3bGI5GREREREREREREREREROQQg9EODbtEZIuLr0yH/T4EILHK44UARojImqqVRKRURF4AcG6N9rcqpToE/7SIiIiIiA4NYpqQVYshi76rFnImCxyGTM35OOh1V3j1ZREe/2WJTRSO76pv0zYx/NKrRARyUb+A9dQrPwMAerayfw7NvHvggf/Ez9EFXzseU8/SNdUXxFRPjYmMUPi/UQZSn/LAfM33NesGD1rG+8bWIUnhrfu64pdXDsdbr5yGjhdfCqUaaNu3777vx3PzPsXgooWumn+xrEowms182nAMRhMR4I851Zb1KHUTjLY/hWZkwRxEm+5SzCq3SZxNMFpeGAejSQMGo7VNVLjnVGcrGvqUCa+bdLEgFJcJvlkpmLdOUFYR2nW5GXpqTngEG+mOBTX3jbaJ1vW2OP3kqx7sCnEwWuoUA+2a6ffdbi2ty9bvqtvX1iqwoVKwwWjJmmC0P7cF159Tgfa/lvHW5YGC0QpLBT+sFrz/u4nVqdavR0m5oOcDJn7/x+FgXYj0AEfafFKblus/pvwAYUi79oZ/7MgGzpqqf15EFJy6DpFtkwA0jbGvM2OJ4Nr36va9XVAiliFI5V7gf8vq/rji9jKvkMFoRJZ093eAL2DWSrcUzbVrevheU5RV6Mt2Fzjvx257VevT4n8h5Gmu0Y7sqHDT8OBPEqUBMkZu+FDw7iJB8d56O3OAS94SzN8Qvq8XERERHRwqQ9HE6UUUEVEDEhGGoxERERERERERERERERERORTR0AOgA5NSqiuAy6osKgMwVkS0U6pF5Aul1PQq7aIBPAjg8jobKBERERHRAU6yd0MmXgwsnedbEJ8E3PsG1ODTgGU/O+tjynVAcitfG5e8QQRRnfUvhXnrrScfHNPZ9RDqnLz5UMA66pbnoFr60kK6tbSvm+zNslw+smAOYjxelHgtEuVqOKXg++oLYoJMjQkHLdoCjZoAxYWIQjnmbj0J0+MvwaTku5DricO4nOloYhbhkeb3WTafs0Zwy0jfz3ahBOEWjCalJZDHrwLKqicj9CldhQRvNnI8msSmKhLM/Sk6sVKIC/I+xrSESx2PoXKbNInS18kP42A0UzOJqb5e64fPNDDoMMHol2wOhHtd977g1UvqZmB/bBGc8py5L1iqT2tg5g0GDksOzfrchH3szAlcpz7o5rd5avwLiE7NFQD/yuEUpLB5d+jG8s/jRsAQzB6ac9iy7YBpCow6eoPVRTBakiYYLT0PeOYHE7eOrJv/CRIoiKhVvPV+ZxeCt2K74MypJrbtqVwiuOo4hVcuVvte04w8QcvbAx+PnDi6E3DUYQptEn3nAQXgkqMVOrdQMK62TsXdbBEoWOAi/McU4O2FginnhNkJm+gAprtXC9Wh3DAUzh2g8OYC+3PVJ38KXrpQkNC4bt7fhWX6sg0ZdbLKatzOq3dzbCQ6lNgGo2mWd21hvXz5dt9E8gYLgLdhd4+dkS/QP9vqnN6npVpcY+YVW9eNbwRMPEPhpF4Kp7/o/rqy1Cb0rbxC8OkS/0GLADP+EBzXNfxeKyIiIjo4iAhSU1P9QtEiIyMRFxeH2NhYREZGhuW1IxEd3EQE5eXlKCgoQF5eHsrLy6uVpaamonPnzjw+ERERERERERERERERERHZYDAaBetCAFVn838uIhsctJuM6oFq5yqlrrMLVCMiIiIiOpTJczfvD0UDgNwsyF1nA7e/BGSmOu/nrrOBb9Khmia4Wn+FZp5khAHtH+meeYTCzTOsZ3CeeUR4/WGvbFgBTH88cMUBJ+77sXcr68CTSkmaYLQm/x6HER4PvvrLflXHFv2Kibsfrb4w+sANRlNKQdp3B9YtBQB4YOLy3Om4PHd6tXq6YLTVaft/PpCC0fDNdODHj/0WR6ICpxTMxkfx5wXsIt5bfYbzYxkPYFV0T/zRaKCjIVRuE8NQaBpjPUE7L4zvxrXhQ3WTdWTp9H4KP99h4JxXTOzO19d7fb7g0bMEzZuGdkcUEfznFbNaqNTfqcBNH5r48sbAIYvO1uG87p7CkKyy1nT7Rs3TUrcU63rr0sMjSCG7UPDbZvs6bROBj642MHO54OnZYvncYyKBVy5W6JAU+Pn00pzDducDi7f4ArPqgl0wWkKQp7iWcfrz8e2fCIZ2E/TvEPrXOFAwWst46/K03OoNswsFb/4q2J0PTPnev9PX5wteny+4daTCfacpPDArdCF6C+/WHz9O7wfLa5XZqwQPnlF9mdtwzadnC6ac464NEenVx7XSo2cFDkYr9wLHPG7i9MMVTu6lMKJXaI+9RTbBaHl5pQAahXR9NbkNRrMbL9GhzO6tpLss76m5dt22B1iVCvRpE5KhhVS+TTii3T1lTU4PPWk5/jVzNcFocTG+z2hO6wv89yKF6953d4ArKdeXZRboP1/4cU34BFMTERHRwaekpKRa2BAANG3aFG3atGnwz3+JiCIjI9G4cWM0b94cO3fuRH7+/hvD8vJylJaWIiYmpgFHSEREREREREREREREREQU3upxKikdZM6u8fhtJ41EZA2A36ssagLgpFANioiIiIjoYCJ//Qr89Kl12VM3uO9vzGGu21R4rZd7bO4mOyQpXHaM/2SDS49xFtpSX2Ttn5DLBwWuePgQqPbd9z0c2t3++SdHWcyCHTUWxoRncKSDgJZ5W0eiidRIkIk+wP8gukOPgFVmbh9juXxrFlBY6ptEaxuMFmafcIhFKFql/iXLArZvbBYiCtUn86R4M/DLluGYv2Uo3k69Em+fss22j6phcU01u1B+SfhOUDY1wYz1HYJ3XFeF9Y8YeONS+xWn3KYZcC2sTvNN+q/p65XA9j2hee3s3lc15diEW9WnQMFUlbqlWL9mOUXAxowQDyoIgybp95mXLlSYfbOBtQ8bGNxZYfK/Dax52MDsm33ff7vbwPRxCp+PN7B5koFLj3F2EBzSBYjW/KuMmcvr7niQrQnVaxoDRHiCe1N3b2lfPuAxE+UVoX9Ogfa/VppgtB3Z+3/emCE44mETd34qlqFoVT3zgyDpFhOv/RKa55ISZ19+Qjfr12PRP0BmfvUxFNgEfxBR3dMdj4I8rFpKiVMomhr4HLMu3Rd+eNJzJh75KrTXRIU2x5rcn2dDMtP0FULAzbUSABQzGI3INV1ehd3nL7NWhOe9bJ4mlAwAMlwEo+nuh2tKzbEYgyagLK5KjmRCEJmSpRX6MrtQyEIeF4mIiKgOVQ0ZAnwhRAxFI6Jwo5RCmzZtEBkZWW15Xl5eA42IiIiIiIiIiIiIiIiIiOjAEGbThulAoJRqCeDwKosqAPzqoot5NR6fWtsxEREREREdjGTK9aHtsKQIsmWNqyYVmomYER77ds+cqzB2sIJSvgmuYwcreNMYbgAAIABJREFUPHNueExCkIwdMB8ZB7lqcODKR50E9chH1RYlxSoc31XfJPmoQcCxo3wPIqOA8yZA3foCAKB7iv3qLsz9EJZbKTI68FjDmOrQPWCdHqXrtGXr033fbYPRwmP32m/FAm1Rd2NnwObNKzItl0eiAscUL8YluR/gkj3TcctI/ROvGhYXpw1GCziUBuM0/Ko+xDdWuHyIgfFD7Vd+3fsmREI3Qd9qknslJ0EAO7IF49420ftBLwY/4cXTs014a2xYN2EfBaVAhbfhAwi8DkPzerfW9/HGgvp9HhVeweTvTLS90wvjat/Xpt3WddslAuNPUBjRS6Fx9P4n1TXFt6zbznkYOPUMXPTucJy5cjJSom3SF2qIjVEYrsmqrNNgtCLrvhMbB99n5+aB68xaEXz/Otpj095jbvtm1seJfzL3v3+mfC/Ynm1Zrc5dfqz9cWxUX+tyEeD71dWffHG5ZVVb4RzISXSgCXQ8CpWYSIUNjxoY0sVZ/Ue+EqTnhe69bhuMVhYBefeJkK3LittnUmITHER0KLO7TdJdnTRronBsZ+uyb1aG5zVFgc099ortzsfs9D4tLdd/mS6cLb5KGFpiE/c31iU21352wWghvEUmIiIi8lMzGC0uLo6haEQUlpRSiIur/p9Lah7DiIiIiIiIiIiIiIiIiIioOgajUTD61Hj8l4gUumi/sMbj3rUcDxERERHRQUcKcgGXIWaOLPreVXVd+ExEgLvJxCYKb401UDLV9/XWWAPNgph0GWqSkwkZNxCY/UHAuurrNBhPfQmV6J+8cuYR+ufSvEVTGE98DjW3AGp2NowbnoSK8gWb9WgVIIyk4FvrAk+AJLpw1z5wMFrH8q2INq1nEK/d5ZtFq9sfgfAKRpO5n9mW9xxxdMA+WlekBl7R/FloHqsvNqtsr6aaYLS8AzAYrSHnNL1wvv3KX/lZcM//JGThaHaTy5dssW+bWyToO9HE9N8Ea9KARZuBOz4V3PJx8MFoQHjsM7oxe2qcm5o1URjU0bruc3MEa9Lqb4b++PcF93wutmF3lU7rp7ST92TxD5CbTwEW/wCsXAh5/UHIY1f41zNNSJFvQo2U+3YkKS2GpG/HGZ2sB7F2F7A+vW62SY4mnKE2wWhREQpdW9jX+ebv0D8f3du78jzUTROCWmECW7J8P3/pINiwLiQ2DhyM1r0l0CnZuuzPrdUf24Vj6Pyy3n0bIrLmNCg0FDq3UPjlTg/O6Be4boUJ/LgmdMc5u+uhHCMe+OkziGlzo1BLbrsuq4BfEC2RU1JRASl1Hnp7IAn2XXHG4dYHtZWB88YbhF0I7MJNQIHDkFin2ysjHyiv2F9bRJCr2YXiYvZvy4RG1nXslNoEP9oGo7lfFREREZEjIoKysuoXIrGxNr80ISJqYDWPUWVlZSH9h0tERERERERERERERERERAcbBqMdGq5RSs1RSu1USpUopfKVUluUUj8rpR5TSh3nsr9eNR5vdNl+U4D+iIiIiIhoW92kRsjX01zVrwgyGK1SZIRCZEQYJVbNegPI2xOwmnr6K6i4ZtryMf0VoiKsy0b09D1fFREJFVG9Up/WQNtE63bx0V6cUjDbutCjWdmBoueRAat4YKJb2QbLsrW7fN/t8gXCKhjt+dv0hWPvw2HX3oDkAHNz2jgJRtu8Cn2LlmuLqwZYxWmC0fLDIORKR/d6N+Rr7TEUfrnD/gD45HeChAkmXvm59gEddpPq1/6+BrLbPw1gd77g6EleJN5sWk6If+knwZIt+/t1G/aRU+Sufl0wNTuH1b4xpr/1DlPuBW74wKzzCSemKbj6XRNvLnC+nvMG+I9ZigthPnYF5LbT/RvM+xwy83VfPRHI+09BRreFnJwM87hoyIlNfd9HJEDO6YLTn+6vXffM5XWzPbI1/1KhNsFoADDaJqgUAN7+NfTPJ9CxqYt/nuo+G9KBvGLBrryQDwsAEBsNtNNcZ1w4SOGXOw10bmG/zZRSOL6bdZ1Xfq7+5IMJRvt+NSd5EYWK06DQUBrWw9mF2MVvSrWgntootAnbSY9IAXJ2Axv018S1pXsWjaP0bYI5PtKhTbxemC/cBjmjNeSU5jBvOx2Sk9nQwwopu8tuu/Dr/u2tC/NLgApv+F1X5Jfal78419mY3dynVb22LCnXf5YXVyUMLSGI63C7Y5tdMJpdyD0RERFRbZgWF02RkZENMBIiImciIvx/5291LCMiIiIiIiIiIiIiIiIiIh8Gox0azgcwHEBrANEAYgF0AHA8gHsB/KKU+kMpNcJhf11qPN7mcjxbazxOUkpppuwRERERER2itq0Lrl3zNsCJ/9GXb1kDyc5w3J1ukmldTravS7J8fuBKY66FGjTStkrbRIWJZ/hPzv13f+CEbvp2ER6FJ/+t/ILllAImn5iJeFOTlHKAB6OplPZAl34B63Uvsw4EnL3Ktx/a/V14uASjSWYqkJVmXdg0Eery++HxGDi9n/2AW5dXCUaLTdDWG/b8UEfjaqoJRsuzCM4KF+EYjAYAQ7oqJDWxr5NfAlz3vmDc2yZScwJPfDdNwapUwYeLTSzavD9IpMBmUv268hSYF/XzC/b6zysmFm+xX9+gSfsDwewCB62ERTCabt+wODddc7xCSpx1/bnrgA8X122YwtsLBW/Md7eOod2r7+RSXAi54ijgu/e0beSpGyDFhcA370BeuQ/IzdLWbVWxC4OKF1uWBbM9TFMwf4Ng4SZBYal1+2zNfpMY4L0UyM3DFTol29epGgQYCrr9rzLQo3G00oagrs8QbHB+GebKqL5A7gsGtk72wHzN/+u9Kw30bu3sANo1xXp5STmwLUuqPXZrQ3r4BZgQHah018Z1ea10Wl/nnR92r4lXfzaxOrV273vduQUAUiNa+YLLNv1dq3XY0R33m0Tr2xTbBAQRWZE3JgKfvAQU5AIV5cDiHyB3j2noYYWUbTCaTTu7AK+8MAz6tgqnrurzpc6OiW6OnKk5+3+22yZVA9ObN3Wxgr3KKvRldsFoPCYSERFRXbH6pxfKLnWXiKiBGRa/yKrrf+BDRERERERERERERERERHQgO0CnslMdGABgtlLqMRX4L4Rqzsh2NZ1PRAoA1Pyz7Hg3fRARERERHexk/fLgGsY1g5r4LtB/qL7OrDcdd1ehmWwf4XE3rLDxxxz78q6HQ938nKOu7j7VwA+3GLh5hML4oQofXKnw0dUGPAGSCM4fZGDh3QbuPU3h0mMUbj9JYf6dBq4aqE8bUgd4MBoA4LjRAat0L7UORvv9H+Dhr0zbACerQKSGIA+P1RcOHL5vUs5ZR9jvJ21HDgcuvA1qwjNQX2wFeg60rBcjNslZVcQ1sl5ffhhOJK/UEGEfTm2a5GyHm/6boO2dJl6ep0/1KywVjHnZRN+JJi56QzD4CRNDnjSRliO2r0+OJxH/VCRDzuoIKfSFKm5IF/yywdlzWLI3tt51MFoYhOl5Xewb8Y0Vppyj32lu/0SQW1Q3k05yigRXveOu751PVt+3ZNkvkLM7AtsdvLA/fAj56i1H6xmd/5Xl8uXbgW9XOh/z1ixB/0dNnDDFxJDJJo542MTSrf7tdYF6CY1r94Zuk6iw7AEDZ9hkb776S4iD0Rzsf900wWIb0oGNGaEdzzUnKEwfp/DF9UbIJn52a6Hv56W5VYPR3D+XqsEdRFQ7mgzrOr1W6pai0Eaf2VtNag4w/n1Bn4kmrnzHDHqSZ2HGbm1ZidEIuUY8JNhgcQd0w24cpW9THERwJB3ifpzhv2zV75AdG+t/LHXE7ghgdwljF4wWDqHNNe0ptC//c6vvPiEQN/dpqbn7f7YLZotvtP/nZk0UurRwvg4AKLa59rMLRiss40R/IiIiIiIiIiIiIiIiIiIiIiIiIiJyL0ymDVMd2QngdQBXARgCoBeAHgCOBXAjgO9r1FcA7gUwKUC/sTUeBzMltmabIP4vtT+lVAulVG83XwA6h2LdREREREShIiLAr9aBJQE1bw2lFNSVE/X9L/jScXfaYLQD8G5SSgMnQKl7XncVKjK8p8Iz5xqYeqGB8wcFDkWrNKCjwqNnGZg2zsCT5xgY3FkBkTYz6w+CYDTlIBjt8NK/tGUTZwlW7NBPpI0Jg00kqZuBZT9ry9XNz+77eWQv+zCFHoP7wBg/Ceqc66GiY6COP1Nb992dYy2XD+q4/2fdZPKM/PCdnKwbWTgEo8U1UvjqRucHwus/EPSd6EXENV6cMMWLXzfuf3Yv/iSYtaJ6/T+2AG3uNHHXZ/avz5exo4A9u4DPXgYArNjheEhYvt3Xt9v56eEQPqALCdDtGxcdpXBCN+uyXXnAA7Pq5n1w68fO+20UCbx72lakfPYIzGcnQN5/CuYbEyE3jQT2Bt8FIlOuB/5e5KiuLhgNAEa9aMLrMIlhxDMm/qqy323aDVzznn/4TbYm/CHRJujCqaYxCm9epn8/rkoNcTCag/2viyZYbEO6IN3Zy+lI0VQDL19k4JJjnF+DOHF4O33ZrBVVg9Hc952WG7gOETnTUCGy/xngfgVvLRBMnev8eCy/z4Y59S6U3n42XpyRals3NaIVsM06YDkUdMd9BqNRqIjXC6RttS777r16Hk3dsbvvsA1Ga6QvC4d7k5qyHYxpp4OgWN0x3kpqzv6Nm2fzW/u4mOqPzwwQ2F5Tgc3HakVl+hfYawKlFa5WRURERERERERERERERERERERERERExGC0g9RiACcDaCciV4vIGyLyq4isEZF1IrJQRF4SkVMADASwoUb7u5VS+hnX/sFogdMF/NX8s+yafQbrOgB/u/yaGaJ1ExERERGFxuZVQOo/QTVV/Yf6fuhztL7S2j8hu3c66s97MAWjPXKZfYUjhwFd+tXPYKxERuvLjANwg9fUpR/QsoNtlVMKZiPRu0dbPn2h9UTbRpFA4+iGT8uSr6frC4eOgUpsse9hoyiF64Zaj7llHHBSrxoLTx+n7XpM/hfo2sh/ZvV5A/f33zreuu3ObP2QG5o2fChM3g6n9VX4doLzwaxK9T2n+RuA45408fBXvgPsjD+CD22a33gIAEC+9e17O3Oc97V2l++7w/yrfXI0AVf1STdmj+blUEph6oWG9tw1da5g2bbQP68fVjvr85NrDGwc+QUueK4PMO0x4PNXIK/cB0x/PORjqtSzbC26lG3Uli/cFLiPV342sWm3//I/t/r296qyC637CEUwGgAkN9WfA9btgl9QW204CUbrlmJdZ+NuIEuzLSrFRgPbJwc+tvx+r4GYyLo59+mC3QBgfTqwNs23EYIJRsssAErLG/44QnQwcHs+DJWbhwd37LnpI0FGXuD3v/nyvZDbz0DpjP/imIz7sSLG/h5te2RbYNu6oMbkhO4UYhuMVlY3Y6GDVIXNCbXg0EgUtTuqxNkFowXzr7vqUFmFoLA0cL3M/MB13FwtpVb5OCDP5rf2sTWC0W4YphDtImTebnsXBTjuOdkuREREREREREREREREREREREREREREVYXJVFIKJRH5RkRmi4MZfyKyBMDRANbXKHpCKeVxukq3YwyyDRERERHRoWH+rODbHjcagC8ERr0wW1/v168ddVfhtV4e4fRuIUzInI+Bn7/QV+g/FOr/3oZSDRiu5bGZjWpXdoBQSgHHnWFbp7EU49GMidryv3ZYL09WuTDHD4X5wIWQZT/XYpS19NU0fVnzNn6LHhqtcOVxCpFV3k//agfMvd1AVET1fVElJAP/ucGy62gpwyfld2JQR9/j2GjgrlMUbh6xv482idbD2plWAPPifjDvPAvyS3jlhpuaYEaj4TPw9jm5t8L7VyokBxH3PnGWwLjaixWa/dqJddHdfD/s2IT8vBLcMsP5xy3r9gYbuQ1GKwiDCe1Ogqlq6tVa4daTrCuYArz4U2g+qsotEtz1mYn+j3ix0z+vsJpLjlbYPcXE2cseRsrTFwJezUm3DigAZ+Xp3/OzVthvDxHB9R/o6/y9s3pZdpF1vcQmtqtx5csbrD/qzi4CdjsIn3DKyf53WLL1vpaaA2QV6PvulAzMusFAm0SF2TfrP7p/41KFgR3r9mC4cqJ+/ZX7R3EQwWgAsCsvuHZEVF0w58NQaJ+k8PWNwf16seXtJvJL/AcuInhzgYkTb9+EfosuQKcua9GkRw6WxxwesM9NUZ2Bresge8OlKryC+2eaMK72wrjaixa3evHVX8Gf53Xb2TYYLcjjIx2ivDY7TEmYJX/Vgt270O6jGI+h0DTGuixHc43ZUHTXvDXttrkerOTmPi2tSn5enmaXaRrj25ZVdUhS+N91Btrt/bwg0PnDbnszGI2IiIiIiIiIiIiIiIiIiIiIiIiIiEKNwWgEEdkD4AJU/5v0HgCGaZrU/HNtm//VrVWzjYM/ASciIiIiOjRIsMFox42Gattl30P1rxOAw3pZr2PBl/ZjKPHNdqzQBBN5griblNJiOMhvDjlZ8iPkoUv0FfoPhfH891DJrepvUFaiNDN9AaB9t/obRx1Se4P77FyZ85a2LKvQenly3j/A378Bcz+D3HY65M+5wQ4xKFJcCEn9B9izS1tH9TjSb1mjKIXXLjGQ94KBDY8a2P2MgT/v96B7S+vZyOr6J7X991n1AX4bn4WCFw2kP23g8TFGtaC/1vHWfWZLLIq3bQV++xZy37mQ7z/QrqO+NVTYh1sXDPJt8yfG1P/ANkZ1RjkiYELhpIkZrtpu2u37fiAGo3mDDM27f5TaN+m/pp/W1v78ZJqCk58zMeV7wfLt+nrPnqdQNNXA9MsNJD53BTB9Uq3XHYxb9ryoLVuyxX57bMkC7E7p62vsjtpgtMa2q3FlYEd92ebM0K1He2yqcm3UJsG6TmkFsDHDuoNT+wAbJ3kwtLtvRx7RS+HGE/136hcvULh8SN1/rN+7tcLgztZllftHSZDBP6kBQgOJyJlgz4ehcGpfhfJXDBS8aCD7OQN/3Of8uDTiGRNZBdWPhY9/K7jqHcG8vI5YHd0L2yLbO+5vY9Teg9WnLwEA/vOKice+3t9/ZgEw+iUT0xeaKC5zf77Xne9sg9ECBAQRVVNus8OUhlnyVy3U5uOgBM1vonOKwuv/cO3RfGZR07hpmgN4FW62V1ru/sq5xdYN4zQfOZ3SR2HLEwZ2PGkg61n7Y3mOTU5foGC0cLiPJCIiIiIiIiIiIiIiIiIiIiIiIiKiAwuD0QgAICJLAcyusfgUTfVwDkb7L4A+Lr/ODNG6iYiIiIhqTdK3AeuXBdVWTXjaf+GQM6wrL50HKcr3X/8Xr8E8+zDISc1gXns8KnanWzaPcHE3KTs3wbxuGOTkJMiYTpAZzztvHALy+kTbcjX6yvoZSACqUROg91H+BU0TgYEj6n9AdaHvsUCLtrZVPDBxccHHrrpNqqiSeFNeBvl0ajCjc03StsC8YTjk1OaQ83rYV7Z5DaMjFTq3UEiKtU+xUB4P1FRN6JtpQp67BY2jFRpF+ffTRhMGBQCpEftDAeXdybZjqE+68CEVZsFoAKCUwp2nGJj87/odXLmKwj9RHfFjk2H4vaCNq7Y79wYTuQ1GKwyDCe3BhuY1iVZ46EzrSrvyUOvwzts/FSzeErjejcMUYiIVZNPfwJwZtVpnbaR4M3DjHuvj5bo0+7CGtWn2fa9O3f+ziNgEo4XuPdO8KRATaV2Wlhuy1cB0EETUWhOMBgArd1ov79Xaf1tMOUfh2fMUBnUEju0MvH+lwvgT6u84M6yH9bo+Xer7rgtGu2KIwn+O1I8zlK8H0aFMdz4MJsQ6GB5DoXG0QnxjhSM7KPx6l4GTewdu98cWoPmtJtre6cWXKwQv/mTi/74I/hy8PqorAECmTcK6XYKZK6zrjZsmSJhg4rTnvcjIc74+XU2PAqIjrMuKgwyOpENUhc0OU3JoBKMFurpJ0ITpfrkivILRdNe8NRWWwi8gsiY392lVQ2fzSqzrxNn8Nl8phdYJvuO5nZwi/T1ToGC0QgZGEhERERERERERERERERERERERERGRSwxGo6q+q/G4n6Zezalrzd2sRCkVC/9gtByrum6JSIaIrHLzBWBTKNZNRERERBQS6duBVh1dN1N3vwaV0t5/uS4YrbwM+L16NrLM/Rzy9I1AZqpvxuqq31Hxv9ctmzsNRpOyUsiNI4GVCwGvF8hMhbx0J+S795x1EAQpKYIsnw9ZswTy9yJg9WL7BsP+XWdjcUtd8wgQU2XGr1JQ4ydBRWiSXg4wKiICasIzgEeTILBXi1JNaoxGsjer+oIFX7odmiuSuhky9zPIud2BFQt8+7ady+6FSnR166zX9xigbRfrsp8+haRutixqHa/vMj2ixf4HW9dCcrP0letRsOFXDemOkw08NLp+B7guqjt+bTTYdbuCUiC/RLQhTzoNPaG9wiv4/R/rMidBMD1bWr8+ZRVAbnHw40rNETw3J3B6Qf/2gGEoiAjk9QeCX2HbzsG1O+ZUqE837ns4Kv8by2q78g3kFOmfz9pd9s/1h9WCCq+vTkEp4NXsZ4makItgKKXQSnOsS8sNXWiGrqeqx6aWcfoQR10oWLMm/suiIhQmDDew6F4P5t/lwQWDDBj1eBDsnqIve/VnUxuAcdRhwIxrDHTWnPpSc8IrxIToQBVu10rHdFb4doIH301wdrOYmgOcOdXEhI9qd0zYF/JbUoQF6yts65Z7ge9WAWe85PwCyC6st1GUdVkxA4DIDbtgtNJaXKCGGbt3eqDw6+RY6+UzVwAfLzFRVhEe1xZ7Cp3XXbLVvjzoYDTNLhMX47w/nXKv/vgWKBgt5+DJ+CMiIiIiIiIiIiIiIiIiIiIiIiIionrCYDSqakuNx7pZ2xtqPO7gcj016+8RkWyXfRARERERHZRUv2OhZqyFmvYn1BUPAt3+FbhRoyZQoy6zLutxJJDUyrJI/vyp+uNvpvnVeTZmnGXbCE/gYQEA/loA7PYPuZIfPnLYgTuyfD7kwj6QG0dArj4WMv4E2/rqvRVQRvjcGqt/nQD12q9Qlz8AXHgb1Es/Qp1xeUMPK6TU8WdCvboAuOh24PgzLeskeDWpMRp+wWh1yJx6N+S8npAHLnTcxrjywZCtXykFHDdaWy7n9YSI/wzqJtFAjCZfL8uTXH3BtvW1GWLIhFvYh1P3n27gp9sMDNj76UenZPv6tbU2qhvWRXcLqu3ObF8OphsFpUGtKiR2ZAsGPGYiv8S63Mm+kRKnL0vPC25cADDjD2cb8tguCpKbBblxBPDr1+5XNHA41B1ToaYthZrwtKum6ooHoZ74HCqlHdTVjwAAupfp3+/rdun7Wr7dfl3ZRcD8vZ8gZtsERCRahIHVhi4Ybdby0IVl2AXkVIrwKKQ0dddvUoi3RSh0baF/U41/X7BFc/qtPN/oXo9Ud6d5ItLQXis18O3NSb0V1j9af4PI8iT5fvBWYPVGZyfzP7YAf+90dm7QXSsZCmikub4uLg+PkCY6QFTYJEr9Maf+xlHH7O47AgWjHdlBX+H81wTd7zfx++aGf9/tKXQ+hnd+s6/r5j4tqxAoLvM10IU9x9f8l2VBSs+3Xh4oGC2roOFfHyIiIiIiIiIiIiIiIiIiIiIiIiIiOrCEz+xvCgc1/1Ra9yfSa2o87uJyPZ1qPF7tsj0RERER0UFNKQXVuQ/U2HthvLkI6pbn7Ou/tVhfZhjA0adYF37/AczXHoD50p2Qn78AFn1frXhJTH+kRra2bOpxeDcpbz5sXbD4B2cduCAlRZDHrrAMYrOibn0eqkOPkI+jttRhvaDG3Qdj/CSofsc29HDqhOr+LxjXPgbjsY+Bwaf5lSeaOa76a12R6rdMvN6gx6djvnwv8NGz7hqdeE7Ix6E0gXL7fPmmfxulkBxrXT2zMkxiL1n4TbBDCynTtF4e7sFoADC0u8Li+zwwX/Ng4yQPXruk7ga9Lro71kXpg9GePU+/7tRcwO309MKCUsjnL8Mc0wnmdcMgv31rGcZXFyZ8ZOKvHfpyJ0EwLWzCqmoTjLYqzVm90W13QU5vDaxY4Hod6p7XYTzzDdToK6GiY4Ax1zlve+vzUGPv3R8GesGtwPBz0aYiFU3MAss2a6dMhnn5UTCfuh7y9qOQDSsAAF5T8M3KwK/5zBW+OtlF+jqJjR0/BUd0QVyzVwOmLkHIJafHpraJ7vptkxB+B7ceLYFIp2G4VcRE+p5La81zSnN3miciDW8YXyt1aaHw5mX1M5BMT9K+65nSHOcn8zlrnJ0X7AIx9cFojodBBFTY7zBSHiBx6iAQ6Ghxej/7GluzgLFvmyiraNjwLbvr3po+XCy216duL103Z/q+52lCpONinPUzcbT9tn70a+uBFQfYTTOtbzmIiIiIiIiIiIiIiIiIiIiIiIiIiIi0GIxGVSXXeJypqfd3jcf9lFJupjHWnNlfsz8iIiIiIqpq9FVAp97WZWdeCdXWPqtYtdOUlxQB704GZjwP+b/z/Iq/iz1J22eE07vJEhezQmvrt2+BXVud1R15PtTZ19bteMiZlh38FsV7c111MazwZ/+FxaGddSsfPQd88LTrdmrU2JCOAwDQ+yjbYplyPSQ7w2+502A0vPck5Nevgx1dyOgmgodD2IdbVx5nYNtkAy9fpHDTcIW7T9U/iZcuVPhugoHnz1d4bUw+Xkm7HlPS70JKRbpl/b+je2FjVGfLssfPNDFhuIFmTazXtW2PaEOedAp+nw959mZfCOXKhZA7z4JMvLjOw9EKSwWzVtjXcbJvNI5WiI22LsvIdz+uSqnZgZ9/35KVOOGemv8vwBn16Qao0y6tvswwoKb9Gbjx6Cv8znkqIgLqwXfgmfA0upVttGy2Nh3AhuXAzDcgbz0CueoYyPcfYH06kFUYeLULNgQORkvQ/VuGIKXE6XeCJQ4vEQJxemzq3tL5wSrCAI51+68n6kF8Y4WOSYHr1VQZFKQLqkvLbdjQEqKDhe545AmTi6XzBii0jAt23je8AAAgAElEQVRdf31LVlouLzViULT3V1Rp6c7vP52e93WXOIYCYnTBaAd/jhWFUkWFffkyi/vdA5Dd2V8FOGwNcXCdtC4d+KGB/xXXHgfXyFXZXZ+6vb1at8v3PV8TjNa0kbNzwzn97et9skQs7/0KS+0HzGA0IiIiImpoHTt29P1zsr1f8+bNa+ghERERERERERERERERERERUQAMRqOqas6sTrWqJCJpAP6qsigCwBAX6xla4/G3LtoSERERER1yVEQE1CMfAq06Vi849VKoCc8G7qB5m6DWm+FpoS37V3uHk+1tZnLKb6G9FZCnb3JcV51zQ0jXTcFTCTUzuoFSpUkt0hhQYhEMVBQ46UBS/4H5yDiYx0X7vq44GuZlR8KccDLMe86BrPrdV++XmZCpd7kaE2IToG5/CWrQSHftHFBKQb29xLaOjG4HqbENdMFouyP8XwP5790Qt4lZIaY7ehgH6KdZbRMVrjnBwHPnGZh0toGvbjTQOmF/eaNI4NGzFK49XuGk3go3nmjgip67cGXO27hlz4t4JGOiZb9LGg1AkWGdfDY4bgcAoEMz6zGtT9eHqugUVnj8F/70KfDrV+46cmlDBuANsEt6HO4bKZqQlvS84MOaUgPkOTYyi/Bm2jUwbCMhLBxxvC8ULaW9ZbHq3AfqwXeAFu20XajzJlgvVwo4+1p0F+tEhvVRXasv8Hohj47D9uXrHA196TbgkjdNjHnZ+oWLjQYiI0Ib3jOwo77snd9CE8blNBitW4rzPgcdBiQ0Do8go5oW3eP+oFsZFKR7r4VDMMY/mYLL3jJx7BNe3DzDRGoOw9rowKO7VAuTXDQ0jlb4+qbaXbhFG17cVvAyStY0xYydF2vrVQb9pu0pd9x3WYAsqkq6475SQBPNbUsRg9HIjYoAO8zWtfUzjjpWmxxlw1CYd3vg40morveCZRcIbGX7Hn2Z2/u0dem+BrlF1g3jYpz106u1wpc36Ld1QanvPrKmQMe9cLj+IyIiIiIiIiIiIiIiIiIiIiIiIiKiA8sBOpWUQk0pFQNgTI3F82ya/K/G43EO19MD1QPYCgHMdtKWiIiIiOhQptp3h/HxOqjvdkN9uhHqxzwY974OFRkVuHFyq6DWWab0fY8d7DQYTZ9iI3ePgcz9zO2wrPta8CWQm+ms8jGnQvUaGJL1UgjEJ/kt6la23nHzm7JehOXeGCAYTVL/gYwbCMz+YP/C9cuAzX8DS+cBC76EXHs85N0nIfed62gs6s6Xod7/C2rGGqiv06DOvMrx83BLdekLHDvKto7cMBzi9e57nBxr/b7N8vgHo2HbemCbs/CjuuIm7EPKSrX92JU1pNP6KmyfbGDL4wbWPWIg53kD955mwKj6BPdk7PvxyJKlrteR+M9iAECPVtav/bpd4nrCfYFhnbAn377rriOXrn03cFCf0yCYFk2tl6fnuRhQDf/YnII8UoE3U69B/5LlgTs65WKoX0qgPlkP9XUajBd/0IaiVVIjzoP6aDXU3a/5Fx59ClT77vq2Hg+6tbYIuwOwLrqb5fK0qZNtx1PV+78LcjQBEYmNHXfj2Jj++p3gv/MEi/+pfViGNiCnRuhdj5bOk4k6JoVJipGFxCYKL5zvbnyVwWhJmkDOrMJaDipI+SWCknLB3zsFRzxs4t1Fgt82Ay/8KBj+tIkcTZBIICIC0+3BlCgEvA6DGhvSv9orrJzo7leRL+y6BasHvI21jxjIfSkST753HSJnrELyhwu1bbIiklCqorBSDnO8nrQAoaaVdGFOCkATzS1zQXheflK4qrAP9JPtG+ppIHXLLhjNyWHr+G4K/9JnAQMAfl7fsOfkbJfXOFmF+rG6fRrrd/m+55VYl8c3ct7XqH4KD43WvyrLtvkPrjBAMFoWg9GIiIiIiIiIiIiIiIiIiIiIiIiIiMglBqNRpbsAtKny2Avga5v67++tU2mMUqqrw/VU9bGIaP5Em4iIiIiIalJN4qBS2kFFRTtvlNw6qHWVqUjL5d1SfBPcHdElG+0tkxnPBzGy/aSoAObk8ZB7znHW4D83QD3yYa3WSSEW7x/KNcBFANSjuydaFxQGCEb7dGrA8DQAkNfudzaQgcOhzrgcqn13qNadoIy6/8hFTfrUvsKGFZDXH9j3UBdQs9sqGG1v+4akmwheNexDvp4G89xukJEJMMefANmyZn/Z3M98ZSPiYV41GLL2zzoesXtKKbRPUuiaohAZ4X9clZfv3fdz79LVaGRqEqY0EpZ+BQDonmJdvnaX+wn3RYYmzeqXmZAAoQ7B2pUrWLwlcD2nQTApcdbLgwlGy8gTnPKcF/maT7c8UoGftwzHufnOgkDVeROglIJq2QEqrpnjcajIKKhRl0E98hFw5DCgUx/g/FugHp0RsG2P/tYhMhsjO6MC/qFpaREtHY/LTpcWIemmmqYxCsfbfEL54KzAAXuBaI9NU8bDPL0NzFfvh3i9GNDReZ9tEms9rDp1/TCFNy51nrQUHeH7ntREE8hZz8EYizYL+k30Iv4mE42vN9HvIdPvPbsuHZi53H2Qyp9bBcOeMhE13kS7O72Y8Uft9zEip9yEyDak3q0VFl6fi5YVu/zKUirS930NLlqIdzKvw/XjeqP7VVegW4pCVISCMgyo1ochMbmp9rllepLwW6OjUKgJcLWSmuPsPW93TRobY11WyGA0ciPQNfTBEoxmU6YcHreG97SvmJEPR/cNdSXbJujMil1YrF2QnJV16b4GumC0OBfBaABw/+n6zzR25vgvC3TcyyxgiCwREREREREREREREREREREREREREbkT0dADoNBSSl0CYLaIpLtocxWAB2ssniYiW3VtRGSDUmo6gMv3LooCME0pNVwXdKaUOhPA2CqLygA85HScREREREQUpBZtg2pWpqIslx/X1cVMewkQDrHqdxcjqtKtCLB9PeS6YUBuVuAGHg/UA+9AnegwQI3qT3yS36JoKcNxhfMxv8lxtk07lm1BYym2Lty5Ceg9yG+x7EkH1i0FPnkxqOFaatfVUfhQqCnDAJ74DHL3v/WV3n8K8p8boZJaonlT6yrbI62PEfLwZVAjzw/BSIOjC6FQq3+HRGUA2RmQp27YX/D3IshNJwEfrvKFwj1w4f6ytX9CbjkVeO8vqKTQhDqFgmTt8u2Ppf4fpcjiH4A1f+x7HAEvjihZgd8aH+O4/8SlsyAFueiasRKAf7ud2YLerazbRkcApRX+ywvsAke2bwQO6+l4fE61v8tZ0JDjYLR4Batohm173E3WFxFc8LqJuev0dVZu7o9uZRuddXjW1VBd+rkaQ01q6NlQQ8921ab7MX2AH/2fe5kRjS2RHdClfHO15btCFIw2oGPdJPcM7a7wywbr1/L7VUBOkSChcfDr1gYRmeVAbibw3pMQpXDY1Q+jVytgdVrgPtskBD2ceqGUwuVDFI7rKjh2sonMAMFmSXmbIX/tQrPNAHC0X3lBKVBaLoiOrLv0psJSwYodwKpUwTXvOntv/7EFuGyw83XkFgnOnGoidW84yM4c4ILXBS2aCob1UNhTKFi6FejeEmjXLMySquigoAvN8YTZv0SSjX9h0Cs3YseGRfYVz70Jxo2vaos9hkJiY+sgoT2eZihW7lJ/duU6q6c7giil0CTKukYBg9HIjfIy+/LtDq8lw5xd0JfTYLQeDi5DZy4XHN2pYc67e9zlWGOPTTCa2wDr9Xv/MiBP8xFJnCbI0c6InsCcNf7LV6UCc1YL+rYFUuJ827oowG6c7XLbEBERERERERERERERERERERERERERMRjt4HMFgFeVUp8A+BjAPBGx/LNqpdQAAPcCqDlbcieA/3Owrgf3tk3c+3gwgDlKqStFZG2V9UQDuBrA0zXaP20XvkZERERERKGhYhpDOvcFNq101a5cRVouj/S46MRu5mtlFa8XyuO8UykrhUy6EvjxY2cNzr8Zatg5UL0GOl4H1aOE5paL78l6MmAw2jl5n2nL5JGxQGEe1NnX7F/2+cuQF+8AKsqDGakldd3jwJlXQTXWpI7VMXXs6ZA+RwN/2wRNLPoeGHUZulhvaqyP6govDHjgn/YjmWlQyZrkrDrm1YQPqTkfQT55xbowOwNYPAfyyxf+ZQW5wK9fAaOvDN0ga0E+fgHy33sAr0X6mMbAkj8dB6NFmyVoJCWQSVcieVssYNEuv0RQYVqHBsQ1Anbn+y8vVI31K926NuTBaDuzBRXOctEcB8F01rwX1u1y1r7Skq2wDUVLqshE57LN+gpVqIfeB4bZhBzWoe4p1kFxALAuuptfMFpaqILROtRNYMV/Big8/JX++uOSN018eaObi5nqdD0bVcNgv30XcuVE/Ku9wuq0wNdCbRIOjNCsrikKy+438OavgrVpwEd/+D+3LmUb0f76fhAAzaJ7AZ2WWPaVVQi0rqNAuDmrBZe+ZWJXnrt2ny0VvHRh4HqVXpsv+0LRqpo618SGDIXrP5B957LxQxWeP08hwnNgvNZ0YNCGyIbJbiZFBZA7zwJWzA9ceeBwqBueDFgtKdY6GC3T4x+2HIhVP1a0gZgKaKIJGgoUEERUjTfA/Wn6NkhpMVS0u/C/cGN3ReT0sNW9pf66tdKsFYLHxzgdVWhlOzyuVMqyCZvVfZzWJBootAhf3FMIZOYLcjXBaPGN3J8cWidYb+9pCwXTFvqW3zdK4eHRCoUBjnvFofsYhoiIiIiIiIiIiIiIiIiIiIiIiIiIDhEMRjs4NQJw6d4vUym1AcAWALkAvACSABwOIMWi7R4Ap4hIwKmgIrJDKTUGwPcAovYuPhbAaqXUnwA2A4gH0B9AzSmnXwG4393TIiIiIiKioA053XUwWpmKslwe5eZO0vQGrlNRBnicT/CVaY85DkVTX+6ESkh23Dc1gOatLRfHee3TTI4t+hV37HnWto48cxNw5FCo9t0hG/+CPHtz0MP0k9QK6vPNUIbDJKY6pCZ9AhndTlsuOzZCAeihmUReasRga2R7dCrf4t9400qgnoLRSssFny8TLNnqmwS+Os26XqxpP9tcPnoWWL3Yuuy796EaOBhNVv8BefcJYMFXrtseWbzUcd1Ec29az/xZSIj5F3CYxVhgICe7GL6PkqqLjbYORisyAgSjhdjUeYFDpSoZDuf6d2th/V7YugcoLhM0inLW0RfL7Md2esG3loGD1StdDnXnf6EaMMWmcbRC+2bAtj3+ZeuiumEUvqu2LMOjSZZzaWDHkHTjp3drhUlnK9z7P+vX5+uVwLYsQfuk4La5Noio6j6VmQoU5qJVfLyjPusqIKwutElUeOB037a7b5TgjEfSscXr2ycSvNl4f+dl+8JNkiuytP1kFQR+3hl5gpkrfOFjJ/VSOKZz4Ncsv0Qwdpr7UDQA6G71abmNh7603hk+XwZ8XuP48PI8Qf/2wBVDwiSxivYxTV+AnVd8AVhe8YWzVvsKsMx03Ub827rswxRgyVbrfTAMLk8BADL5GmehaADUk7McnQuTY4H16f7LszxJiJESV+PbU+h7LTwBLiB0Z3ulgCbWt8woLHV+/ULkKLh7xyagc5+6H0sDcXop3Ls1EGHANjh5TRqwPl3QLaX+z7m68K/YaKDAMsxMf6zQXXP2bOkLaLayLh3I0xwK44LI1Wvl4FL2sa8FRx+mAgZCMjCSiIiIiIiIiIiIiIiIiIiIiIiIiIjcYjDawc8A0H3vVyA/AhgrIjucdi4i85RSZwOYhv3hZwrAgL1fVj4EcJWIOEhIICIiIiKiUFBnXgWZ/rirNtpgNI+LTswAgTCAbxJwtLMZmrJzE/DuZEd11d2vMRTtAKDikyCdegObV1VbHiv68Kv7B6Xi3umnIhIVAfuX2R8BY++DjBtY67FWpS6+PSxC0QBAJbYA5uRCRmhmLYvvfdjNJvBlfVRX62C07RuAo06q/SADKCgRnPaCiQUbA9ftUhagUobNxxqb/3Y3sBCTz/4Lef5WX/JbEHqWOQ8eS/Rm7/s5wZujrZedkQurYDRd0Eex0RgCwCpmQP7+zXJ5sMa/b+LVn0MfjNa9pfVyEWDTbqBPG2f9zFyuH5uC4KY9L9m2V09+AXXMqc5WVsd6tNQEo8X28/0bhSoyPbU/tyY1ATok1bobrbtPNTB/gxffat7y7y4S3DcqyGA0zaWNUTMELycTbRKdBaM1bxrUUBpcr1bAii1HYR6OQJmKxkkFP6CJFO0rb+a12Kn2yrLPuMSGdMHIZ819++VDXwqmnKNw20n2597PlvqC1Opaep64Dvi46h3BOf0F8Y3d7XsiYhm8VZtALb8yyzZiH/7lcL124/QfiyDgWB0sq9YuQP2DkScM8vdk1e/AT586qqum/QkV4ezXlUlNrJdneZKqXfs4YQqQUwQkxQauZ8VQQJNo6zKrACQirYrA97XYsfGAD0azuwVyethKaKwwpr/Cx0vs7xFmLhfccXL9Hwx155UWTa2PCxkWQdSVdMeeVvFA0xgg3yIAbdk20Y6haYx+XTptHIb3TltoojDAcY/BaERERER0qBARLF26FGvXrkVGRgZKS0vRvHlztGnTBkOGDEFsbIAPIsLY9u3b8ccff2DHjh0oLi5GcnIy+vbtiwEDBsCo5e9MMzIyMH/+fKSmpqK4uBitW7dGp06dcPTRR9e6byurV6/GypUrsXv3buTl5aFZs2Zo1aoVhgwZgqSkOvzlBRERERERERERERERERERucJgtIPP8wB2AjgWQAcH9QsBzAYwVUR+DGaFIvKNUqoPgIcAnAcgUVN1EYCnROSzYNZDRERERETBU83bQEaNA75+23GbMhVpuTzKzZ2kOEgbKA88O1IyUyHvTgY+f8XRatXlDwCnXuKoLoWBY071C0brVroB8d4c5Hqqz8RtGgPc0XO9o1A0AMCKBcB374ZqpD5HnwKcdW1o+6wlFR0Dad8N2Lbev9DryyWPjVFoFQ+k5fpX2RnpnwQlAF7/qxm+Tfe1v/FEA8N7Wk8uX7RZ8NT3JgrLgFP6KIw/QSEqwlf3l/WC134R/J0qEAG6tgCuH2ZgWI/9fb27SByFogFAjzKL51hVZqq+LEmTiBVi4vUC370HeeLq/QsTWwDZGbXqt1vpBsd14737X+gE0+JF32tPESyTCHRBHwBQqqIRIxYz3xd9DynKh2pc+5Snjxa7C0UDAKdzYzolAx7DOrhg3S5nwWjr0wWr0/Tl73SeicPXrLQubN4G6p7XoAaOcDbgetCtpcLs1f7be32/84H8e6vtu7sjah+MNqw7oFTdhlXcfpKBb/+2vg75coXgvlHO+yqvEEz/TfDJEsGuPOs6Rs1rntwstIrv7Kh/XdBPuJLtGyCTxwMr5qMJgFH4zrJeFMrR1JuHfE+cX1lmgf06HvtG/ML67v5cMHawIClWv+98tDi44EkAyC12Xvfrv4JbT+LNJjoluwv+0gWjEOk0dHavpG6GXHu8o7rq/96GchH25Hv/+78psjzNEGV1bRJAZkHgYDRdmJNSQKzmeilQQBBRNQ4+E8HunXU/jjoWZDa0n1cvViguE3y9Un+OvOszwR0nh2Z9bujG064ZsDnTf/mGdH1fuu1lKKB7CrBkq3/ZcpuMcN3xys6AjtbH3Jo+Wxq4LwajEREREdHBLjMzE5MmTcJ7772H3bt3W9aJiorCiSeeiIkTJ+Koo45y1O/YsWMxffr0fY//+ecfdOzY0VHbefPmYdiwYfseP/jgg5g4caK2ftXP7E844QTMmzcPALBw4UI8+OCD+Omnn2Ba/OeQlJQU3Hfffbj++utdh5gtW7YMd9xxB+bOnWvZd9u2bXHNNdfg7rvvRkREBCZOnIiHHnpoX/ncuXMxdOhQR+vKysrClClT8N5772HnTuv7bMMwMHjwYDz44IMYMSJ8fodDRERERERERERERERERHSoauDpERRqIvI/EblIRDrCF1A2BMAFAG4GcC+A/wNwA4CLAPQHEC8iY4INRauy3gwRGQ+gJYATAYwDcA+AmwD8G0AnETmGoWhERERERA1H3TEV6DnAcf3yUASjOUlyqLCfHSm5WZBrjnMeivbpRqhx90E1dCIAOaY6+YchRKEcV2e/4bd8/FCFJmU5zjvfsgYy+8PaDK+6Y06FMWUmVEQYZs2362q93PTu+7FNgnWVnRGt4YWBArU/nee2FpMxfte5mLUCmLUCGPmsiWkLTZRVCPKKBbJ3pvbXfwkGP2Hi82XA96uAW2YIrnrHV/bDasHIZ018sFjw1w5g5U7g82XAiGdNfLty//HhK4cBM80qspDszXJU11JC8+DbuiCv3V89FA2odSgaAMRKIdo1KnRUN9Hc/z6pGpJW0x6xTgOxC0YrVo20ZXLjyMCDC2BPoeDCN9wnJxiarKTKfVUqygEAkREKnRpZb5N16eLXzsrM5fqybZMNXBDzq3Vhp95Qn20Kq1A0AOihyQxcm2FAzVi777EJhSxPkmXdRzMegAdey7KqlALuOa3uz9FDu+vLFm8BduU638du+1Rw9buCH9bo6xioGYyWiXaJgcPfPAYQr39LhR1J2wK5sA+wYr6j+knePZbLswrst/87v/mXe03gC5v3XnGZYF6A7Ew7boLRZq0IPt1lcyawNQvYkQ2k5gDpeb5wpuwiIK/EF6hUUg6UexmKRsGJacDLVMnPgZzX01FdddNTUCdf6Kp/XYhZlqcZio3GlmWDOur7y3JwWWUXTqS7XipgMBq5sfca1Y7YhT8fIOxOaW7ycuMbK8y8wYPMZw3ceYq+4Ys/OQjqDzGr4GUA6NHKepxZhUBmvvWW0V0DKAV0b2nd35pU/VaOsf6Iz9ZRh7lvo1NUZn9/RURERER0IPviiy/QqVMnPPvss9pQNAAoKyvDd999h6OPPhrXXHMNKioc/hOoBjRp0iQcf/zxmDNnjmVwGQCkp6fjpptuwjnnnIOyMuepyM888wwGDhyIH3/8Udv3jh07cP/99+OEE05AerpNunQA77zzDjp16oTJkydrQ9EAwDRNLFiwACNHjsQll1zi6vkQEREREREREREREREREVHocZb4QUxEckTkVxH5SESeF5HHReQxEZkqIh+IyDIRCTxb0d06y0RkrohME5EnRORFEflcRP4J5XqIiIiIiMg95fFATf4COOtqoFMf4IjjoZ79FjjJejJ6mYqyXB7lcbFSJ5MeywP8QfG37wAZOwL3c+woqPdWQKW0czY2Ch/tu1kunrT7ATwR+yGOaAcM7Ag8eY7C42croEAf8uTHMByHtwAA+g8FDj/Of3mH7sBFt0M98pHzvuqb0nzMI/snE+iC0R5u/n+I7lmAhB670aHLBrwTfxFeTbzKr97l0wQx15lImGDCc83/s3ff8U3V+x/HX9+ke9CWtoyydwGZiiKCIkNRZAiK4p4o4h7g1qu/K6I4roqgXlCc14kILtyKqCiKomyQPbso3W3y/f0ROtKeb3LSpgP8PB8PHuSc70yanJyc9vuOG8ckF6OeqbpY4ZUfNSu2ah5b4qbY4sqD1nDX++Xt1ttcy9C34Dd7FU3y7YWK1YTeux1ef6x6jUPDIC6x/F9YhFexuu9lurSNNjT2luDKLLsdgosY10HLerkO64SRKOu3AADyHT5SnNb/hrZzzPbhuIeqF2LgrPAS0Hu3475nIu5B4egTIzz/nxyDe1A47ufvpfMe6+Cy9Zuy+Gy1xjHJVfYcd0xy8eVa7/czUzDace2gZYKP41THXqhAkh/qSJem1nPafxDSSqLghJEAZDoTcCnrxJ1huV/yqftGhqRCjxaefa0SyoMuHAqGpMKyaQ76tK79x0ApxYq7zZe/7QYyrt2tmfWV/7pVgtGy0jm6DcT4CBkESIwGhynVrwHSL9wfUH1jMJqPw7HbRxrY56vN7T5fA0U1WEtoNxituETzmY95CFHfTuhY+8cU/cf3uK8ahHtoHO7zjkL/8gU6cx/69Ka22qvbn4Ozrg143CRTMFpIErnKOhgttbki0hAIlGZ9euTF9JFWKfMxPleC0UQgXP6D0UjbXfvzqGW+Lg9V5/Q4PkpxUX9zw0c+qfsQLlMwWrfm5jZr91jvN83eoaCNdU4xm8z5C9UKzVRKccmA4LynaA2FDT/zQQghhBBCiIDNmzeP8ePHc/Cg90WGDh06MGrUKM455xyOP/54nE7vX7A///zzjBo1qkGHo82cOZO77roLl8vzi74uXbowevRoJk6cyODBg4mI8P4d1oIFC7jnnnts9f3YY49xyy23lPVdqlu3bowZM4YJEybQv3//ssdt2bJlTJgwoUp9O+69914uvvhisrOzy/YppUhNTWXUqFGcd955nHbaaSQne3+50quvvsrpp5/eoH9GQgghhBBCCCGEEEIIIYQQQghxpKvH740XQgghhBBCCFHXVEIy6panvXcefTK6uBC+etdrd7EhGC00oGA0G+E2Jb4XAeuV/kOt1H9/QHXpa3dWoqExBKMp4Nb9M5n6+AVe+3VuAMFoGTYTt0JCUR/uRkXF2u+7oXEaXpwVFgmkJCjMS6w9doa24LKUF2o8nXsXulniIzhm5XbYvF/TMgG2pNvr8/ScT2o2qZysmrW347uF1Wqmbn0GNaZqGF1lqWluPl/jf5F/gsv7vsa7D5DjtP/8jg4zP1cKlJ+kp+8+gPHX2B6rom/WaZ8L+n0pzZbSbjf6XxfBqmXWFV+ZQecmD/Ehp1cp+uS3Al5eVfW9a9jjblb/y0Fqc8XebM0Pm627HtP70CRMwWgxcf7uRr1IbWYuu/JlNwsGjUZ//yFpTkMKA5Bcsp9jNs7n5BdmNZjwtz6tFanNrAMnFv+hucIiB7Oy+T9oWzmvjsqvlwNphIUoZoxXTHnd3IEp5Kch0kWF8NkbAbVp7LI+wPsKRsvyEVAWYQg3Aljwm/lxdjpg8XUOTu2u+PQvzWn/qfo6zy4ArbXf5++OLMi3kWEjRH04uQuM7FG7Y+iMvXqme70AACAASURBVOgpQ8p3bN+Avqnqe6qJ+t9qVIsO1Ro70ZAPm+5sTJ7DOhgtKgwSY2BHZtWytByN51OHma9womhDkGyOBKOJQPgLiwfYv7P251HLfJ1OVffMsWtzaN0YtlnksO7Mgqw8TXxU3Z2XmrJdU+IUjSI02QVVy7ZmaAZaPAKmkDWlzIHn+3yEPfo6h/Kli4/PCYGa9ZXmllMaxucEIYQQQghdUgL7a/YFH8Km5JaokCPzz5RXrlzJ5MmTcbvLT+B79+7NrFmzGDBggFfd/fv3c8899/Dcc8+V7fvkk0+49957eeihh+psznatWrWK777z/I5+7NixTJ8+ndTUVK86mZmZ3Hzzzbz00ktl+x577DEmT55M27ZtjX2vWLGC22+/3Wvf4MGDeeaZZ+jevbvX/v3793PvvfcyZ84cvv32W1avDuwbK+bPn8+DDz5Ytu1wOJgyZQq33norrVu39qqrtWbhwoXccMMNbNu2DYAvvviCe+65h+nTpwc0rhBCCCGEEEIIIYQQQgghhBBCiOA4Mv/iQAghhBBCCCGEbUopuP9VdKVgtCKsV02GBfJJ0l3zYDS2rfdd3newhKId5lRUrHmR9JY16LyDXoFlOt1m2FkgBo87vEPRAJTDen+FgELTAura8PGf/uss+kMzorsyLvquKNKdx9kH36vZpExhVUGiC/LQ/7klsEb9hqIumIrqO9hW9S5N7XUbXykYLc51gB2hLW1PK8pH9lm+ivTZVq/6AVXNYLRHPrXxZDDIK82U+OULcyjaIV2KNlju3xdifoBnfa15eqLiizXmoKyx/oLRYuvwRRiAlHiICbcOcvngdyg5fwzOmGnsdyUZ+0h2pYEugW8Xwklja3G2gRnVS7F2T9Uf2GerIb9IExnmO5zhrV9spKIBjkphsDorDQVMHuzgh01uXv3Jup/EwykYbd4DAbdJMgSjpf29C7A+Jq3Zbe4v3BDqsStL89Iy88/ql7sc9Grl+VnHGQ5hLrfnNRAbYR4fIC3Hd7kQpZyOQ/9UhduH/jmUuczXPoehLDpccWJnOP845fe4VlN6TGv/lawMHoe66UlUY5snMxYSY6yDW9OcieQ6rFPTosM9IZTWwWj+x/T1kTY63Ho+uRKMJgLh75oIwM7NtsI7GzJfQbPVvVtKKUb1Usz6yrrzL9bA+KOr13d1mD7XOh3QqjH8tatq2U6LY5PvvhQt4v0HnldW3WC0lCDmOs/5RnPLKcHrTwghhBCiRvbvQE/oUt+z+EdQb62D5m3rexq14vLLL6eoqDzseuDAgXz66adERVUNb09OTmbOnDl07NiR2267rWz/jBkzmDhxIj161HLSfYAyMjwJ1FOnTmXGjBmWdRISEnjxxRfJzMxk4ULPlwa5XC7mzp3rFUZW2ZQpUygpKSnbHjduHG+++SYhFgF6ycnJzJ49m/bt2zN16lTS0tJs34etW7cyefLksu3w8HDef/99RowYYVlfKcXYsWMZMGAAJ5xwAhs3bgTg0UcfZdKkSbRr18722EIIIYQQQgghhBBCCCGEEEIIIYJDgtGEEEIIIYQQQqAcDvSQs+HLt8v2Fakwy7phzgA61jYCboqLjEX6YBZstw6vKaXOuzmACYmGSj3wOvre8yzL9BM3oe76b/mO5UuCO3j77qir/x3cPuuDw/DidLvKbtZlMJodN72paTPZ/yr4MHchz+y5keYle2o2YO4BtNuNchhC5GpA79uBPu8o+w0cDtSUGagJ1wc0Tmoze4vgE9zeK+wbuzICGifaVzCaw3cwGvnVSw06WKD5Ym21mgKw6e8DuGc/Cq8/5rduJ0Mwmi9LN3ged6tAA4BOTSC1eWkwWpZlHRUTxGSBIFJK0bMlLNtkXf793nhOmjqbtCfetSyPcucSpfMB0HefA1/noZyBnDDUnlE9FY9+WvU1k18MS1bDmN7BGUdVfl3u+rvs5sPjlTEYrUPy4RFwovNy4LWZAbdLNBx70n9bic6JtXxNTHndfP4YaQj1GDvL3ObdyeWhaOAJSDLZkgY9/GRIph30XX44Ucp/MFeVIK4AgrwclmXKO+grgPAvf/u82inzmJbzrEZIma/Hx+E4PF7bgdK/fFmtdurfb6FOHFPj8U2v3zxHNOnOxpZlUWHmdum5/sc0nXU5HJ5QUSv5xeBya5xH6PNABJmdYLS922DLGmjXrfbnUw9q8kqZMc4cjHb2c27cz9fdOanbcMBwOjyfxa0+R+wy5Cn7CllrmRD43KobjNYiIfAQNpNN+4PSjRBCCCGEEA3CV199xa+//lq23ahRI958803LULSKbr31Vr755hsWL14MgNvt5oknnmDevHm1Ot/qGDhwINOnT/db79///ndZMBrAl19+aQxG+/nnn/npp5/Ktps3b868efMsQ9Equu222/j8889ZssT+74gfffRR8vPzy7afeOIJYyhaRU2aNOH111/n2GOPBTxhb0888QRPPfWU7bGFEEIIIYQQQgghhBBCCCGEEEIEhwSjCSGEEEIIIYTwqBRgUqysV02GBfJJUttYPPnr19C5aiqJPpCOPiPFd9sufeGYYQFMSDRYx59mLvv1q7KbOjcbNv9V8/Hik1GX3AktO0DvE1HhfoKeDgemsC93+YrqlLjgLGgOpnGzzWE2T+y5hXj3AQblLaVt8baaD+Z2ewKrGlkHZ1SXXv0z+paRUJjvu+KZV6Fad4bIWOhxvOd2gFKb2asX7/JeYZ9SsjugcaKsszEByFcRvhunVy/AbslfUFRSraYANFv0CKQ/bqtul8LAg9F+3wFaa9btsX4dHdO2QqRDjiHhIKaBpRNWcN5ximWbrO/bwpWaweeMY3/eSbCwanlySZrXtn7oCtQ9L9bGNAN2fAdIjLYOvznzWTdFsx2EOM1xHBk2QnMAFJWOZdvWld1MiVdMOEbx1i9VH9+Jxx4moTnfWvzgbTCFMqY7G8M3C2DkJV773W7NHzvM/Vk9QwuKNb8b2kSEwimVMmTaNIZQJxS7qtZfu8dGMFpOYO+lY3t7jg/xUf6Cv5StUC5z+FfgIWVKHSbPP9Eg6MIC9E0+ztlNjhkSlFA08BzPTXaEWr94o1Z+RlLz4VgdQdJsZLmago4UvoNk84og1s8pkxCAvWA0gJXfHtbBaHYuD1VHVLjiqBT40xBePOcbN1efFPxgbCu+wsxS4q0DxnZlWj8wxr4UtAgwGE0pz7lPdaQ0zFxnIYQQQggh6t38+fO9tqdMmUJKip/fax/y8MMPlwWjAbzxxhvMnj2b8HAfFxrqwV133YXDxhcNde/enbZt27JlyxYAVq5caaz7xhtveG1fe+21xMXZ++Bxzz332A5Gy83N9Qqba9++PVdddZWttgD9+vVj0KBBfPfddwB88MEHEowmhBBCCCGEEEIIIYQQQgghhBD1QILRhBBCCCGEEEJ4OLxXSRYp61ScysFoWmtY9iF60TwIj0INPbt84bvbHHhU1n7WNNS5N3puf78Y/fGrkHcQfv7cd8Ou/VB3z0U5q7m6UzQoKiIKHRYBRQVVC/ftQBcVosLCIXNfcMa7aBpq/DVB6avBcBheCxVehy0auYDD4zUzPOczrsucHfyOl38Gw86pcTfa5YJ3Z6F/+Bh++dJvffWv11BDzqrxuCnxEBMOOYW+6yW4sry2mwcYjBYe4lnAb7UgP9/hJ0hw23q01gEH7iz6w39aQqsE2J5pXXZqzme2x2rq2kuboq1sDWtjuw3AvoOwxpD71uVQaJ3WGg4aJhndcJMFrj5Rce3r1j+DRb9rnjgH0kjAKtAh2eUdjMaS19FDxqNOOKMWZmpNp+1CP30bfPmOZ8ewc1DXP4YzIZmRPRUv/2B938ImuxnZA07prmgUAQt+0+w7CEe3Udw+QnHAT95hKYeu9GLZsRHtcpWdpzwzUZFToPnoT09xowiYPk4xvFvDDqbSBzPRL/4fvP1MtdqbgtEOOOPQSxejKgWjWQXYVZRrcezbsNc65Azg6NYQHe79GIeGKDoke0LQKlu3V+OJOzLzN8eKXrtCMfHYugljEaLWLZhTrWbq3peDNoWkGHPZnhDr9NioXz6i8elHA1WThNJtBB2awpyU8pyTmeQWSjCasEfv2Wqv3vYNft6hGjZfr7aa5nQe117x5y7rEa55TXPZCZqwkNp/9ExBig7l+RxnZZchT9l07HE6IDkG4iKxfZ4aEVL9MNRAQ9iEEEIIIYT4p1i6dKnX9gUXXGC7bffu3enbty+//vorAAUFBaxYsYIBAwYEdY41ERkZyZAhQ2zX79q1a1kwWl5eHjk5OcTEVL2Qs2zZMq/tCRMm2B5j4MCBpKSksGuXIRm7gqVLl5KfX/6h6ayzzrIV8lbRySefXBaMtnXrVrZt20br1q0D6kMIIYQQQgghhBBCCCGEEEIIIUTNSDCaEEIIIYQQQggP5f3HwEUq1LJamLPSYsr3n0c/fn3Zpv7ybbh+Jurs68BtSKmoRGfugx8+QU+/0t5cux2LmvNttRd2igZqwvXw6iPWZe/NhnNv9ITeBMMp5wWnn4bE9Af9FYPRYko4XILROhdtrJV+9b8ugl4DUcktatbPvy+Dz/5nq6669pGghKKBZ0F7ajP4xU9+QrzbO5irRYn/hSJe42hNZKh1AFuB8hOMlp8D6bshKSWgMZdtsl79f8UgxayJit0HoFVjWLgSxs32DqEakLeMHoV/2h5LAddkzmFa0+kBzfH1nzRrDBlzqaV5LKt/htxs60qxhkSEBsDhULx4ieLSl6r+HDanQdpBzf4c67aJrvQq+/Tt4+GpJag+JwV7qt7jFBdB+m702Z29Cz5/E/3jp/DmGkb1TDAGowF8uAo+XOVd/uNmzXPf+A/MKeWgUjBacRHs2QItOgCQFKtYfL2T9BzN3mxPkJ7T0bDPY3ReDvrSY2HvtsAaxiV5zgEPZhLvsk77yHLGe14rlezMsqhcQV5R1X3r9prrP3q29XtjajPrYLTN+32PD5BmeB1U1iYRzuzTsH/GQgRCfzQ/sAYxcaj3t6HCg5cO1jg68DbR7lwS9/wBVH0/svN69hV0FO0jGM1fiK0QcOhayMIX7FXevqF2J1PLTEFfUPNgtCknK+YuNQ/wzXoY3q1mY9hhFSoNnjAzUzDaHkMwmqkvh8Nz3n5qd8Vbv9g7V42wvrxnS2xEcM9lqhOgLYQQQgghREOTmZnJpk2byrbj4+Pp2rVrQH0MGDCgLBgN4Oeff25QwWgdOnQgLMz6S9SsJCR4pyofOHDAMhjt999/L7sdHx9Px44dA5rXMcccwwcffOC3XuXgupSUlLLgNrsq3//NmzdLMJoQQgghhBBCCCGEEEIIIYQQQtSxwL4CSwghhBBCCCHEkcvpHZZUpKz/2Dm0QjWdm42ec1eVOvq1x9AlJaANKzkry0pHvzLD9lTVuMmykPIIpC6921imZ01D5+XAso9qPs6tz6DiEmvcT4PjMASeVQgobBRWQozrYNCGjIuEHi3gkbMU718T3MtMvQt+91+puj55rdpN9bZ1uM9oYTsUDUCdc0O1x7PSp7X/419SiXdQVUqJIc3LQL0xk8gS6+dKvsNGwMnfqwMa72CBZuM+67JTuylCQxStExVKKcb2USy4xsGgTtA+CSYn/8wH28fjwH6IFUPO5hb9BvGuTP91K7jlbfMYR7dWaK3RVw+yrqAUdDgqoPHq2vBu5udWk1vczDMETiSXWKdJ6etPQW/8Iyhzq9L3ljW4rx2KHp5QNRStVE4WLPwvp3Sv3hglNk9jwCIYDWDruiq7EmMU3VJUgw9FA+DjlwMPRQPU+MmoZ76AgaOIi7M+nzzgaAQZe9A53mkgu/wEo+UWVn0Ort1jfl32b2/9OKfEW+/PyPV/HPEVpNQuCVrEw8RjFcumOYgIPQx+zkL4obdvwH1u18De29t3R72yMqihaAAhTkV8VGBtotx5JG1bbllmJxjNFOakFET7WB+cK8Fowo4lb9ivu2197c2jDvgMRqth371bKUb2MJef+3wAJ3U26MUv4j67M+7TmuK+eST60PmSy0eQYmPDsetAvvV+U1/OQx+7B3exP9+aBKMFW7G9708QQgghhBCiQdu/3/t6eKdOnQL+vXVqaqrX9r59hl+Q1JPKQWf+hIZ6f/AoLi6uUic3N5eCgoKy7eqEjNlts337dq/tG2+8kXbt2gX07+67vX9vnZGREfB8hRBCCCGEEEIIIYQQQgghhBBC1ExIfU9ACCGEEEIIIUQD4fAONTIFo4VV/CT57ULIswjOSd8NOzb4Xvla0YE02LHRXt0OPWDYOfbqisOKCgtHt+oE2zdYlutz/Xzb+plXwYLnfNcZPA415spqzrCBU4ZgMneFReCuEtoU7+AvZ2ApQZdlvcTzu69BTXoQkltAi/bQqRcqwnt19xc3Oxj6eM0XnSvt5vScT2rcj4l+/h5o3w2at4O2XVEOc6ibLimGdb9B1n7ISkM/PMn+QDHxqDnfBGHG3kb1Urzwne/ja6LLe4FGSvGugMZwFOQSWZAJobFVyvJVpN/2+qclqH7DbI+3aqe5rI/FOpfRqfmMDvkDMveh7zzb9jg4Q1D3vYI6eRxaa1YNaUuHDmsocoTb78NC1+bQoYlCvzbTXKnfMFRCkxqNU9uax0GjCMgusC7PMYS8JLnSjH3qS/vBR3tRsfEBz0cX5sPqn2HvdgiPhLDyn5O+fZy9Pj59ldgLpzJ5sGL21wGE5wXIYRUGu209DDi91sasCV1cBDs2eUJs23WrsnBPFxag33oq8I5btIdRl6OSmqOmv0PjDRoerfrY5DuiKFRhuDZt5PfovnRuCsmxip1Zvn9GVs/B9Xus647pZe4nMcZ6f0auz+EBSM+xnuMVgxTPXyjfRSOOHLqkBNb9ag78NGnSCvXSiloLsm4SC1l59utH6TwS9/4JLaqWpdsIRnMbPtM6FMT4yH3LLbI5QfGPpt/8j/3Ku/5G52ajohvV3oRqQV6h5uct8P0m83t8MA4Xb1zpoNH11p9FM/PgnoVupp6qiI2o2WB62UfoGVeX7/j5c/R1w9GvrzZeAnM6IC5SgUWQc3YBaK2rHDNdho/VpcFoLROs+7NS02C0/u3hx80166NUQXGl64pCCCGEEPUluSXqrapfaiBqQXLL+p5B0GVmen/hSlxcXMB9VG7T0EK3HD5+b1ZdWVne34oRG1v190/+NGpk7zNxenq6/0oBOngweF88JYQQQgghhBBCCCGEEEIIIYQQwh75s1MhhBBCCCGEEB4Op9dmsbJeORlWoZr+frG5v7RdkJtta2j946e26gGoF5ahnE7/FcXh6fjTjMFoZPr+tnQ1cBTaRzCauu1ZGHlJDSbXwDlNwWiu8tuuEkblfMhfEdbBaO2T4IyCz/h7tyd5Js51gGG5X3J+9hvAoUCxip74CHXM0LLNQZ2gQzJs2l+1767N4bUrHPR90H9w2mk5n9LU5fvnXVP69vGeGx17wsPvoZq2qlpn9c/oO86CDEPqji9xiaj//oBq1qaGM61qaCpEh0OuIaQKINHlvegjpWR3QGM4cBPpzrcsK1A+UkBKLf8soPFW7bBe1B8bAW0Tvffpbxei/+9SyLeRYFTqpDOhSUvUkLNQR/UHQClF8zHjuGLpizzb+Go/Hfg2upcnyEB//LKxzuEQyqiUIrUZLN8SWLtkH8FoACyeBxNvDqhP/e1C9F0TApuIla3rcD9+PU9f/wSzv655dyYOqh7b9LZ11E4sUM3ov1ej778QNv/p2dFrEPzrVVRiM0/5+pXoy4+z1Zea+xP89SN6zQpUmy4w4oKyfgDifOQoPh9/ObfP7kHhoQDP64cq4v3kLlod99busT5+dGlufvQbR1vvT7cVjGa9P8kQtibE4Ujv3uI5Bm/4PfDGp11Qa6FoAP3aKtbvtR90Ge3OJUSXWJYdyLcOJKrIFHSkgPAQT0Ca26LO5v2aAR0a4ruAaFD2+0gHtrLhd+gdYFhhPXrrFzcXz9MUWr8EywTjmBEToZh9vmLya9Yv2n9/qHnqC828ix2MP7r64+kX7qu6c/cW3Ms+AqwDcR0KGhnOcYpdUFhSNbzMZXVgAZyHpt4igMzhyBoGo13QX/Hj5uAEDBcUmx8LIYQQQoi6pEJCoHnb+p6GOEzpShcLgvGZpjavpTQU4eHeX1BTVBR4qrzdNtXp25/KP3chhBBCCCGEEEIIIYQQQgghhBC1L/hf6yWEEEIIIYQQ4vBUIWzMhQOXss7SDju0WxcXwS9fGrvTH79qf+zXHrVVTb2zARUaZr9fcdhRF99R/cbHDIVxFuFGkdGo6e+gRl9+ZIfqKcNlHl0hrKekmFvSn+SEvO+rVOuYUMSnNzp44p6+LNgxgQU7JvDS7iu5IPsNY7CPvul03LPvRKd7gsNCnIoXhm8lIaTAq975od/wx5Zj6fXLc6y4aCPNwwypMoc8vvc2n+Xqtlk4viuEo473Wc+WjX+gH72mym5dUoK++5zqhaIB6v1ttRKKBhAZphhhnW0HQKMICD3tPK99KaeeGtAYDtxE6gLLsnyHjWC03VsCWiSyLcN6/1Ep4HCUPwN15n70/RcEForWYwCO//sfjutnloWilVIXTOXhfXdxXN5PZftCdDGXZJkDzqyMPrgYvXc7bF1nXSEkFAaMDKjP+tKjZeALsJIHneizXD97B9rl8lnHq376nuCEopVa8Byc15Wvx6wKXp+VWAWjsW19rY1XHbqwAP3Jq+iL+pSHogH8/h16bBvcs25HvzbTdigaSkGbVNSZV+O48wXU+bd6haIBPoPObmr2GIXu8vflp77QPLDY93GjcjCa1pp1e63rdmlq7ifRFIzm++0JgDQJRhP/AHrmtdULRet5AirAIMxAndEzsPpR7nzi3Acsy0rckO9nnazpqORweBYtR4dbl180TxbLilqw/rf6noFtW9M1E1/wH4oWTOf0U4T4+OuHgwVw9nNulv9dvdene+fffL0rjocSp/JW7HjyVPmJjmut+WfjdHg+o5kcsMijdhnyxEvz0FMCCEarHLoWqEsHBC+goaA4aF0JIYQQQghRbxo3buy1feCA9XUHXyq3SUhIqNGcrLgCuCZfFyrfx8zMzID7yMgw/DKpkqSkJK/tZcuWobWu0b9LLrkk4PkKIYQQQgghhBBCCCGEEEIIIYSoGetV7kIIIYQQQggh/nkc5cEUxcq8arI0GI3Nf0Jutrm/Ja8HaWIe6p2NqKatgtqnaHhUo8Zw83/Qj98QeFuHA258Es64DNb8jN6zDZV6NHQ9BpXcohZm28CYQt8qLnxwlZDgzuKzrafzQ9RxrAzvhVs56Fy0gZPueJJGTdoBTdAXToNXZtgb9/XH0K8/BrO+gl1/c+LDk/iLBL6MHky6M5G+Bb/SP385CtCP30Av4A9HPGe0WsBPUVXDd3avb02yK808XngknDweAHXezeg7z7Y3T1+Wf4bOSkPFV1go8ft3sH9ntbpTc39ChdTuZbfRvRTv/mq9oD+7ABx3voAeOwl2/Q0tOxCdejQJN7rIzLPXv0IT4bZYoQ/kVwgAICwcigqrVirIg7yDEN3I1ni7DeuGWiZUWoT/zQIo9pNgUom6wBy0p5KaE33N/Xw3awhfRJ9MujORPgUraVW8g/lxF6BNgYMVNCvZQ7//TkD/10fAwugrav05ESyXDFDMXRpYWESToadC+A3w5n+MdfSkE+C5pbYeBz22FkIFd29l4MPHcd6AZbye2Tvo3Sur6JwGFIym03ahbzkDNv9lrvS/J4wBQJaatUGF+w5KjI8KpEP/DlY63OzN9oScWEltZg7xSIxWWMUdZeR6wtaUMrc1BaOZwtaEONzoXZth+We26qr7XoHIKM/5Rtuu0Gdwrb/f9W1t/fo1ida5ON3mhcBZ+RBlCDcDcBvCiUqPEqZjEEBeoSYqPHiBQuLIok1PLl9t1v1mDK1uaBau1ASQkxwU8VGKAR3g2w2+6/Wf7mbpNAcDOgT2aN40L4un23xatn10/q98tH00ia4MXCu+Ae6ybOdQEOcjLDY7H5pW+tjkLxgtOQZCnVBsI+egpsFokWGKt69ycPZzgT9nKyuow6A8IYQQQgghaktycrLX9vr1gV8HXrfO+0tWmjRpYlkvpNJ1lpIS+yfV1Qkeq01Op5MWLVqwc6fnd2+bN28mLy+PqCj7F5FXrbL35SdNm3p/a8b69es5/vggfNmSEEIIIYQQQgghhBBCCCGEEEKIOuV/ZZ8QQgghhBBCiH+GCuEvRSrMWC3k67dx3zYafUUd/vFwn5MkFO2fZOxV1W6qlEJ16oUafQWOSQ+gThzzzwhFA6/XsBddYfGyy7NgIoxiTspbyg2Zs7gp42lG5nxCbFR5sJoadk7Aw+spJ6P/fRm4Smji2s+52W8zJXMOxx8KRasowZ3F11uHc23Gszi1Z069Cv7gx78H+g5FA9TMRajYQ98qP3BUwPO0nryG377B/eRNuO8Yj/u5e9DvzAq8n6hY1J3/RXUOfuhSZSN7+l/Er7r1Qw2b4AkIBFrE2+8/0ZVBlLZOUct1VEj/adLS3EnaLtvj7T5gnZrQvMKcdV4O+rHrbPdZSg043XeFCdfjQDM890vOzX6bLkUbiNL5dCraaKv/Mw5+hMNPQIu69hG70613J3RUPH+hCihAITkW1OTp4OuxXv8bfPwyOn0P7gcuwT0o3PNvxmT0gfSyavrHT2owe/+e+fFUzuqY7r9igNxWl9oz9+G+9zz0ht+DPl6g9FtP+w5Fq45ux/qtEhPuCQMJln3ZnuCyUjuzzHU7JJvLEmOs95e4fYccaa2NwWhJMYdLVI0QZlpr9N3n2m/QuTfqhDNQZ1+H6jesTkJA2yaWBwPZEeXOI95tSGDFE8765OduRj/j4sqX3fyd5v2ebnqHt3NsMx0vhAAgc1/gbdb/Fvx51JKtGfUz7oJr7B0gBs5w45jkYshMJflFWQAAIABJREFUF2t3+09w+22b5untPb32rYjsy7MJnusX7gLrUGnwHLMa+QhGO2DR1F8wmsOhaJXgc8plahqMBhBlvkwYkILi4PQjhBBCCCFEfUpISKBDhw5l21lZWaxZsyagPpYtW+a13a9fP8t6jRp5pyhnZfm4IFrJX38F+XpwEPTv37/sttvt5ptvvrHdNiMjg99/t3etfcCAAV7bS5YssT2OEEIIIYQQQgghhBBCCCGEEEKIhkOC0YQQQgghhBBCeDjLQ5GKlXnVZOjrD8OPn9bFjMqoSQ/U6XiifimloN+wwBod1d9/nSOdw2m93+0qv+3y8U3yzvIgC9W+O5w0NkgTsxZKCU/uvZW961uxbUMHlv89gGMKfjU3aNYG9U0+qveg8nkqhXr9z6DMR997Hrz7LCxdDK8+AksX2W6r3l6Pmv8r6sPdqNMuDMp8/GkcrWjayLpsZA/r/SkBBKN1KVxHjDvXsizPEVW+0cRHaGX6Htvj7TKs5UmJ8/yvi4vQkwZYV/JBvfiL/zoOB+rWZ6rsn5I5x9YYo3IW+67QujMqNEhJAnXkikEOsp9y0NtmJmlSDCinE/Xwe9C4qbGefuNx9Pj28Nkb5TsXz0Of3wNd4Ani0x+9XL1JN24KJ53pt1oj90H+t6gV+2fC8ts1v0wtpmcQ8jOj3IYwjK/eRU8Zgl7j/7lYG3RxEbq4CL54K7gdO0NQ46/xW83hUMT5CAIJVH4xZFd4qE3HjlCn53lp0jjaXLbbnJ/EwQJPeJoVX+MJcbjQ/70fAglzTGlXa3MxCQ1RtEuyXz/anUe8y7xoeOhjLm5+S7P4D5i7VNPrX25W7yoPSXIb8pKUjWC0Ah+n3kLw10+Bt9m2Dl1UGPy51IJ0m8GA4UHOU0yIVsy92H5Y6dfrodt9bn7Zoskv8v7nqnAAeHuF9cHgg1hPWLdr51bjGE4HxEaY55BtEcrqMhx7KgZDdm1u7rOiiCA8xmFB+jlJMJoQQgghhDhSDBw40Gv7tddes912zZo1rFixomw7IiKCo48+2rJukyZNvLZXr15te5yPPvrIdt26MmyY9+9/X3jhBdtt58+fT1FRka26Q4cOxVnhbx8++OAD9u2rRkC5EEIIIYQQQgghhBBCCCGEEEKIeiXBaEIIIYQQQgghPCqEKhUpc4BLmLb3B8fBomYuQkno1T9P5z4BVVejLq+liRxGHIbLPO4KCS4ul3Ud8ApGA1B3vwhnTQnCxHyLdx8gpWQ3TgxJMwAjLkQ9vxRlcR9Vq06o57+vxRn6cfZ1qGZtUO27o0LMoZK14f/GWi/4H97Nen9KvP2AgC5FG4g2BKPlOCqk/0REQaPG1p3s22l7PFMQUfNDwWh88TZsXWe7PwB1+X2ojoaUuMpOOKPKLjvBaIklaQzN/cp3pXbd7M2hgQlxKm4cZu85kxzr+V8pBb7CAbdvsD4OHUhHD09AvzMLvno38MmOuQL1vzWoB99AXfeorSYJI6Poe3E0vS+NY9nSFG6JWEjbhOol2IS5C+lZuMpcIT8H/fbT1eq7uvSKr3Bfcgx6SCx6SCzs2xG8zvuchJr5AarH8baqm0IcqyvhRjd3LnCTX6TZmWWdGtI8zhPKZtIi3hxqtNHH+rg0HyEvEowm6ov+43vcU4bgPq0J7sv7o1f/XL1+CvLgf0/ab3DMkDo/9ynVt7X9c5oonUeELiDU8Dk2u8C7r5xCmLmk/NiiDeFEPg4xZfLq9qOzOMzoHz4JvJHbDTs3B38ytSA9x/DiqeT49sEf+5IBnnC0+Cj/dUsd+5Cb6Gu9/8Vd7yZ6iovkm1w8/LH1/fktojcacBWbE78cCpwORUy4dXm2Rb6uy/Dx2Fnh2NOlmb1jYUQQDtWhhhz2QOXLcVEIIYQQQhwhLrroIq/tZ555hj177H1ZzB133OG1fe655xIebv2BoW/fvl7bixbZ+1KfTz/9lOXLl9uqW5fOP/98YmNjy7YXLFjAp5/6/0K2nTt38sAD9r9ILSEhgfPPP79sOycnh1tvvTWwyQohhBBCCCGEEEIIIYQQQgghhKh3EowmhBBCCCGEEMKjYjAa5lWTdRmMpp5bijrulDobTzQcamDVkCKfThpbOxM5nDgMK5XdFUKIXD5CfyoFW6iIKBw3PI56dKE5dK2OqDtfQCU0MZd3PQbOv60OZ3RIYnPUpXfV/biHXDJAcUIH732pzeC8Y03BaPb6beQ6QJIrjWh3nmV5rqqQMOAMgaQUy3r696W2xssp0MawoZR4hS7MR7883VZfXkbbD0xUSc1Rkx6ssv/XzccS68o2tnt4391E6ELffQ8aY3seDU3X5v7DFsJCIC6yfFtNvLna4+n/BNhWKdRd83DcOgsVGY1SCjXherhwWkDdRBRkMeO3iWzc1ofHzvJd96zeLpzKOxjjX/sfIFIX+G74e90FOOrNf6FvHAGbfIS1VUf341Bf5+F4agnqmKG2m9k99gTi4Y81932g2bzfuryFnzEjwxSt4q0TR9bvNQe5bMsw9ynBaKI+6P070VPHwh/fQ84BWP8b+qqB6F3VCE7atAqK/BzLSkVGoy69O/AxguSMnvbrRrnzUEC8K8t2my/Xlh8H3IZDQmm44oju5n7yimBftmbVDk1Grr2QKPEPsmGlsUjd8Lj5M9j29bU0oZorLNYs/1vz7XrN32n+60eEwr2jgv9ZUynFpSc4yHjSya2n2A9SrCyvCPKLId06L7rMzpAWuH382YXzUFGjSOvyA/lVjw/GYLQKw3Rt7ntepSJCq/8YlOpo/jgekILq5RALIYQQQgjR4AwZMoTevXuXbR84cICJEyeSn2+RfFzBE088wcKFC8u2lVLcdNNNxvrHH388UVHlv5NZsGABv/zyi88xNmzYwMUXX+zvLtSL2NhYbrjhBq99EyZM4KuvzF9As2XLFoYPH05Wlv1rOwD333+/V+DcK6+8wrRp03D5+hIpC6tXr+bbb78NqI0QQgghhBBCCCGEEEIIIYQQQojgkGA0IYQQQgghhBAezvJQpQhdyLkH3mRc9gLOcPzIqd3h5Mh1nJD3vTEoJ+g69oTUo+tmLNHwdDvWdlX15Ceo6Ea1OJnDhGnhvLvCimpfwWjOEMvdqv8I1LyfYcwVNZhczSjlfyG3uqAOg9E69IBL7kK98hsqNqHuxq3E6VB8drOD2ecrLhmgeGCM4qc7HSTFWj9e/oKCSrUt3ooCot3WaWW5jugKkwiBrsdYd/TLF7bGW7/XXNZ+57foce1h+wZbfZXpNRDVuGlATdSFU1GPLYbWncv29Sz8k5//HsDN6U9w+sGPOS3nE07L+YQrM+fy2dYRXHrgZd+dxsTDCSMDm3sD0sXGQ9i1mfdrVMUlohbvqp0Jjb4cddm9MGg0jLkC9Z8lqBHnV6mmRlxQJezRlh2buOG3a2kUYV0c5i7k2cXdWd7paa7JmMPFWa+wcPs4bs14wn/fGXvQuvZDcfS639AX9w1+x6MuQz31GcppCOH0oUV8zcM4rMxcopm5xPox9RXGprVGv/hvOm23XmznKxht7R7rssRoiIuqnfsphC/6tZmQWzXAU5/TNfBjjq9QtA49UPe9AiMuhIk3o+Z8h+p5QoCzDZ5Bney93iLc+TjxnAvHuw7Y7n9bBqQd9Dx+poexdAYje5rncvu7btre4abXA25aT3Mzd6kh6Uj842itYds668LhE1FnTYHmba3LtzXMYLSlGzTt73TTf7qbwTPdrN5trjs0FW49RfH9NAeDu9Tu++eM8YrTjqrVIVgb1hmXMp8jOQ7dxThDMFq2xeHXTjBa68b2HruocP91/EmJVxzbtub9FBTXvA8hhBBCCCGCYc+ePWzZsqVa/0rNnTuXsLCwsu2vv/6aQYMG8dNPP1UZLy0tjSlTpnDzzd5fDjJ16lR69jQnwMfGxnLOOeeUbbtcLkaOHMmSJUuq1C0qKuKFF16gf//+7N27l4SE+vv9lS/33HMPPXr0KNvOzs5m6NChTJgwgXfeeYc//viDtWvXsmTJEm688Ua6d+/OmjVriIiIYMwY+19E065dO55//nmvfY888ggDBw5k0aJFlJSYf2e6ZcsWZs2axZAhQ+jevTtffvll4HdUCCGEEEIIIYQQQgghhBBCCCFEjVmveBVCCCGEEEII8c/jKF/E2dS1j1d3XerZSBqE44bPcT81D359us6mo6bNQZmCnsQRTzkc6IvvhPkP+a/cd3Ctz+ew4DAsxHZX+OZzH3/kbwpGA1AdjkLdOgtunYUuKUafHFPNSdYeFROHbtYG9mytvTEmP4Q675Za6786IkIVV52kuOok/3VT4hXgPyRl/q7LAYjW1kGYOZWC0VT/EegPX6pace82dEkxyk9AlSmEKDxE0/LxiXAww++cvSQ2R13/WGBtDlHHDke9tgoAveA59OPX07F4M4/su6t6/U2bg4qJq1bbhqBRpKJJLOw7aK7Tp3XVQAYVl4iecD289VRQ56POnIzq2AN/ERCqdWeY/BD62Tt8B0JaWTyPn09N4qitd1KswryKXtp1BY0PbqPxwtsJ+J6VFMOBdIhPCrSlTzptN/zwsSfQ6LhT0Ff0D2r/ADRvg2Pq7Oo3txnKGEytE308S75fjJ73AB2aPYVVfOOe7elAE8um6/ZYd9klIR/95lxIbAaDxqDCDel6QgSR1hrefdZc4aOXYeTF9jssLjIWqdueRXU/FjVsQgAzrD2tEiAyFPL9BOxEVQj1TnBnBjTG5fPdLLzWidtw6lT6UfWKgYrr3rCutHRj+e28Ipj0imZQJ03nphKk+I+3fyfk51oWqfGTPTdadYadm6uU623r/Z4L1bX8Is3EF9zstpE/+MaVinP61d21HqUUH1zr4NQn3Xy5tnbGWBfehR6FfxnLS8PMTOG72flV95mC0RwVfvh2g69jghCMBjDnQs/juP/QZ4OEKFhyk4NeLWHsLDcf/em/j4JiDQ3uGSyEEEIIIf6JJk6cWO22pWH0ffv25ZlnnuHqq6/GfehLilasWEH//v3p2LEj3bt3JyIigu3bt7N8+fIqQVzDhw/nwQcf9Dvegw8+yIIFC8jKygJg3759nHrqqXTs2JGePXsSHh7O3r17+emnn8jN9XzWbNasGTNmzODiiwO4NlRHwsLC+PDDDxkyZAgbN3ounmitefvtt3n77bct2yilmDVrFtu2bWPhwoVe+3256KKL2LNnD3fccUfZz+jHH39k9OjRREVF0adPH5o2bUpkZCQHDx4kLS2N1atXlz3WQgghhBBCCCGEEEIIIYQQQggh6pcEowkhhBBCCCGEAEAph3Vcjj60GjM7wGCamjjqeFTq0XU3nmiQ1BmXoP0Fo/Ub6veP3v8xTEGC7gorqn0FBPkIRqtIhYTCiz+jL+3nu96jCyEvBz3zWjhoCKJo1sYTNJafg559p63xfRpxAbz075r3Y2Xc1Q0uFC1QdhbOR7tzyhb1R7utwxpyKwWj0aqTdWdaQ8ZeaNLS55gb91vv7xiRifNgut85lwmPRN39IvQ5ERWXaL+dybBzYNY0KLRIKrBBTX8HNXBUzedRz/wFo/Vtbb1fjZ2EfvfZwIPJTNp2hQ5H2a6uJlwP/UfAqh/QD08KaKgOnz5CpvoPC2LH8F7sWAbk/8CE7HdpUbIr0Fl7S98T1GA0vfI79N3neALXapGa93ON2tsN7QimEzuZzw30d4sASHKlWZan787EFIy2wRDk2OXPt9CfTfVsdOoFj7yPSkqxP2EhqmPvNp/F+uFJcOJoVGyCvf58BaN1PzaQmdU6h0PRpRms3O67XsWQ15Ti3RBpf4zSUDNtCEYrPcqEhyoSoyHd+rTJi9Yw73vNw+Pk88s/3vYN5rLWncv///ETi7bra2dONbDoD81Om2vGk2Lq/vnvdCg+u8lBj/vdrN4d/P7Xh3XCpQxB5ZSHmZmC0Q5YBaMZjj3OCh/77Z5jRQcpGK13K8Xqfzn4eh2UuDXDuioSD/08F13n4Kt1sGm/pn87xRlPu9lucRmgwE+gpRBCCCGEEIebK6+8koSEBC699FJycnLK9m/cuLEs9MvKZZddxpw5cwgN9f3FMgAtWrTg3XffZezYsRw8WH6x3jRGu3bt+PDDD9m7d2+A96butGrViu+++45rrrmGBQsW+KybmJjI/PnzGTlyJNOmTfMqi42N9TvW1KlT6dmzJ5deeil79pR/80VeXh7ff/+9rfkmJNi8viaEEEIIIYQQQgghhBBCCCGEECKo6u7rmIUQQgghhBBCNGxOwyJOt8vzf3otrB41iYyqu7FEw9Wklf86ccELmDnsOUyv4QrBaKaAMl/tLaiOPVF3/te6sEV71H9/QPUfgRpyFmrRTnM/F92OOvOqoAWOqQunwekXQ2lYnum4Vp2+r388aH3Vly7Nyhflm/Qu+L3sdozdYLRkH+E/+/0HSWUYgkRa7QksjEn951PU4DODE4oGqNh41MxF/isOGg09BpRvh0eibnv2iAhFA0iK8V3et431k0q16oS6dz7ExNV8Eu2PQs1YEHAQpmrdGTXyYjjlvICHjNCFTMx+i7d3nsdNGU/bD0Xz9fwL4rmU1hp93bCghaKp+16Bxk29dzZuhnr6c1QNf4atG9d9AMrwrj4K164AIKnEEIyWZ/61iSn0pX3R5vKNDb+j35nlb4pC1Ny+Hf7rvPOs/f5MQZYx9ZBuaEOXpv6PLVHO8vuUUhLYMTgzD3ILNW5DOFHFc6pYQ9iRlc9XGzoU/yyZhmTgmPiyMENVGpBW2bb1aFNiXz355E/7dRP9nFvWFqUUS6c5GNUz+H2vDeuM28efXZSGmcUZwhmzC6ruc7mr7qvYF0CjSIgK8z+/mCAFowEkxijGH604p5+jLBQNPI/vkFTFlYMc9GipiDBkO0gwmhBCCCGEOBKdddZZbNq0iRtuuIGkJPPvLUNDQznllFP4/vvvmTt3rq1QtFJDhgxh+fLljBkzxnidPDk5mdtuu42VK1fStauvC6QNQ7NmzXjvvffKAtK6detGfHw8ERERtG/fnmHDhvHcc8+xadMmRo4cCUBWlvcF2rg4e9euR4wYwd9//82sWbPo3bu33981hIaGMmDAAO6//37Wr1/PDTfcUL07KYQQQgghhBBCCCGEEEIIIYQQokZC6nsCQgghhBBCCCEaCFMokutQMJqdhffBkrGv7sYSDZZyONAde8LGP8yVghSAdCRQyoHl8njtWVGtiwrRt4+zbuxwoByB5eer0y6EIWd5gn4y9wMKGiVAy45eCwqU0wlzvkNfPci7gzapMOKCgMb0O6ewcNQdz6OvexR2bITWndGjW0Fhfs36ffEXz/04zMVGKLqnwCpzVh2phevLbkfbDUaLTYCwCCiyWNGf5j9MKivPen+Cy0eQX2Vd+kK3Y+3Xt0n1HgTPfIG+dqi5zhmXogacjk7bDZn7oE0qKiyI6QP1zFcwmlLQs4WP8iFnwYljYMvaqq/DkFD0Z2/Am//xOb6a+xOqc+8AZmzRxyV3ope8XqM+bI1z+X1w/q3oIbHWFYJwLqVdLtAa/WSQF2INHuf5eW1bB7kHIToWWncJ+L3BSpem/usE05heEBXuY2HboeN5kss6VC5NN0Jrbbk4zhSM1rKk0oH1m/fh6n/bmq8Q1Za+x28V/eXbqEvvstdfcZH1/lAbqTv1oEsz/3WiW7eGnXGQc4AUuwGXFazfi/X5NeU5vGAvmKjUr9sCnoY4Eh2wDuckvsICelMwWnYG/L0a2ncP/ryq6fft9oPa/IXu1qb4KMXCa53szdbsyoIQB+RVOvS5NAycYUglM1gf3hmXjWC02EiF1VEl2+Ljqp1gNKUULeJhg59LaMEMRrPLGIxmyOAUQgghhBCitm3ZsqVW+2/SpAlPPvkkjz/+OCtWrGDt2rXs37+fwsJCkpKSaNmyJQMHDiQ21nDt2IbU1FTef/990tLS+Oabb9ixYwd5eXk0bdqUdu3aMWjQIEJCyv8kfPDgwQEFa9ckhPull17ipZdeqlbbgQMHMnDgQFt1V69eXXZbKUWTJk1sjxMREcE111zDNddcQ0ZGBj/++CO7d+8mIyOD4uJiYmJiaNKkCZ07dyY1NZWoKPkiNyGEEEIIIYQQQgghhBBCCCGEqG8SjCaEEEIIIYQQwsMUfOF2oUtKYNff5rbtu0OPAbDwheDMpcA6jEf886hL70bfNcFcHmf+5vV/HFNwV2m44YovfbSt3iUiFR4JKe09/3zV634szFyEnvsAZO2H7sehrnoQVUtBGyomDlKPBkD7+dZ3n47qj5r0AKpjjyDNrP4tv9NB5BTzQv8uRevKbhuD0VSFxSBOB0opdHIK7NxctfJ+Hylsh2TlWS+2iXcd8NsWgBEXoK5/zDLEKBhUr4HwwBvoeydWLYxLhKOHeOolNYek5rUyh/rUOMY6wAGgSSzERPh+3FVIKJheQ517Q/uj0NOvtG577SM1DkUDUK06wayv0LeOgvycGvdn1G8oKjQM3fUYWPNLlWL98+eoMy4NqEtdmI9+ZQbMn16zuTVrA8cMhcXzqpb1OQlVumCubdeajWOhfbInxMMU8BFs5/TzcywoKQYg0RCMlu5IwJ2+D2eSd6JbYbEmzfD0aV6823vHjo3GcLV/Iq2153zEXeGfy3Dba9t96F+AbUpva3fAbXTZuAGMU7FMuw1z9XM/vOZq6sNi258ta+z/oA6zYLRUG8FoyXFO1PPfo5++jZTN2QGP8dcujdtw7HJUeHmbAoCsKAW5hZpoXwGO4siXnWG9v2IwWseenus0Vk/C7z9sUMFoWQHkUCdG+69T25o2UjRtZC7fPdPBTXMz+XJVAQcccQC0Ld5K85LdfB09uEr97aGtyHaaOyw9XsRFWpdn51c91zYGo1U6dLRL8h+MFt2QgtGK63YeQgghhBBC1DWHw0G/fv3o169frY2RlJTE+PHja63/hio3N5dff/21bLtz587VDppr3Lgxp59+erCmJoQQQgghhBBCCCGEEEIIIYQQopZIMJoQQgghhBBCCA+HIVTJ7YK9W8tCJCpTL/6C6tgD7Xajv/sAMvbWeCpq7FU17kMcIQaN9l2eaCMR4Z9CGcINtRutNfq1mea21QxGC4Q67hTUcafU+jhVxj3/NvTcfwXebtKDqAun1sKM6ld4qOKSAYqXllkHXXUpWl922xSMluOIKd8ofe4kWQej6S2r8Rf7kZVnvT/ObQ5GUzMWoAbU3aIVdfI4uP159MOTvPdf+wgqPKLO5lEfkmLMZfGGcAe7lFJw+kXQbyj6oj6QU+FnPuB0mHB9zQaoOFbPAaglVYOw3E/fBm89FZxB2qR6/m/Z0TIYjS/fQd85N6DnjH7hPnjzP9WfU7djUbO/QR0KwHXHNYaK7wdhEaiL76h+/zaEhSg6JMP6mp8i2jLhGD9HnTxPulmSIRjNrZxkbdxMYqVgtN0+shpblOyqunP1cnTnPrDhd8jJsgj8MgRgGQOxyutqY/hWxW1TuJeP/f7m4TWujbmXbovDQ4khGC0kgNSvOpTa3BzcWSolXqFadUI98j5t1mp4PLCExs9Wm0eomHvo6/hQmdaefsf2CWgq4gijs9KsC+ISy26q2AR0jxPg9++qtl//m99z7Lp0sMBevagwiAxrSDP3pnOzYeMfNCkq4NX3RlYp3xzals4dV1u2XRfW2div89BH9UaGU8Bsi8fPGIxW6WN/p6aKJat9Hwtj6iGIUYLRhBBCCCGEEME2f/588vLKf6F0/PHH1+NshBBCCCGEEEIIIYQQQgghhBBC1AUJRhNCCCGEEEII4eE0BKO5XLBjo7ldyw4AKIcDfdqF3mEb1VUP4UmiYVJKwXub0ePaW1fof2rdTqghcxiC0bZvQJ93lO/XsSlU7Ugw4HSwCkYbNxnem21u161f7c2pnl18vHUwWrzKZcilI1HR49APTyJaWwejFToiKMFJCK7yYLT4ZOvBFv4X3aQVXDjN83quRO/dTtbag+DoUnU+rizLLtW85ahOvQz3rvaokRdDq07oj+YDCjXyYlSPI3/hjc9gtKjgjKGSW8Brq9D/exKy0lDd+sEZl1k+Z4JNXfsIeuMf8OvXNesooQkqJs7TZ6tO5qieL97yhMHZoDP3wTvP1Gha6unPy0LRANRV/wedeqN/+BgaNUadej6qS+2n86Q2q5tgtDUPOHA4/Dxv9m4DINEQjAawf/N2Evt7v753Wh+SAEgp2V1ln776RN/zEKKhKTYEo4WG1e08bOrW3H+dlPjy2yd0DHyMD1dpUg05zI5qBqMBfPynZmyfhhsOJerAAcN7UFyS93bvQZbBaHz9HnrvdlTTVsGfWzXkFNqrlxhdu/OoCf3us+hnphq/FACgTfE2wt0FFDqqJpytDu9qbFd6vGhkCBU+kF91n8twMlk5GK1LU+t6FUXXw2E8wvBXKBKMJoQQQgghhKiOHTt2cM8993jtu+gie9fZhRBCCCGEEEIIIYQQQgghhBBCHL6O4FWvQgghhBBCCCECYgpG0m5I22NdltgcFVGeiqIumApdj6nZNC67F9WuW436EEcWldwCdeszUCkgR133KKpJy3qaVQNkCkbLzvAdigaQnxP8+QTqkrus94+/pmb9duoFF0z13tdvqCccqEtf6zYx8dBrYM3GbcBO6qK4Yaj36yksBGZfEUP0hEkQFg5AI9dBYx9ZzkNJI2XBaInGuvqF++Dnz6vu37IGfVZHskrCLdvFu6umjKhP0+slFK1s/J4DcNz+HI7b5/wjQtEAkmPNZcEKRgNQjZviuGY6jjtfQI2dhAqpm+/0UEqhHv8IBp5RtTA2AfX05zBotP+OOvYov92uu7Ga/u4D23PTbz/jCaitjvZHoRZuQ4V5v76UUqihZ+O4ex6O62fWSSgaQOem1Q8AWrexO2dmv++33kNnKro08z2OXrqo7HaTkv3Gepu3VD3+bN5vnVAS7c6hkTvn4DNdAAAgAElEQVTb7/yEqC963W9oO8eSEkMwmjM0uBMKkrAQxYRjfL/mkyuEe4aFKO44LbBjUUYuLNtkXVaT7M6/dhnjM8U/xYE06/1x3ufUqk3V8OBS+v4LgjmjaitxadthV74Cd+uT/vNH9JM3+QxFA3DipkPxZsuynSEtzO0OfVSPMwSjZRdU3edy++6rVNfm/g9GMVVz3GpdpCGMTYLRhBBCCCGEEADvvvsud955J/v3m6/Rlvrtt9848cQTycjIKNvXq1cvTj755NqcohBCCCGEEEIIIYQQQgghhBBCiAagblaXCSGEEEIIIYRo+JxO6/1uF2SnW5fFJ3ltqpg4mPUVLF8CW9ZC01awYxN67r8sm6tpc+CU82Dlt7BzM/Q8AdXhqJrcC3GEUmOuhD4nwa9fe8L6+pyEatu1vqfVsDgMr+HDhDpxDHr+Q6C9gyLUSWNr1q9SqKseRJ88Hv76EVp2hD6DPaFLs75ED4uv2mbCdaiQhhkCEixPnOPg3H6aHzZrosNhWFdFu6RDi+oPJX0kuQyBDcA+ZzJJrvTyYLS4JGNdAP3BXNSxw8u3P3oZPf1KALKccZZt4l1ZXtvqmumoqAaapnAES4lTgHWAS/gRcnVZOZ3w0Duw4ivYsBKKiyE5BY4djkpsBgW5fgPN1KkVwkmOH2GuuPJbtNYoP4k6+qOX4ZUZgdwNjxEXoAaNhuNOQYUb0jfqQWqz6rftUPw3/9t5AW8fHM8FLeZXKe/ZEl6+zEHPlv6DQfQrj5TdjtL5tCjeyc7QqkEm67YVcHqlfRv2WffZqWgTNchHEqLW6Sv6Q1Qs+qj+qF4DoecJ0LUfKrxSUk6xIRgt1JBu0wDcPFzx1i/mkLG2id6vzv8bq/jfz5q/K53ixLmyKFah5DmibY9dsedOTczHCCtrdmPrvUAcwTKsnzCqUjAarc3BaPz5I3rfjnoPC88ptF83sQGeyuviIvTkk2zXTy7ZDxa5zvtCko1tHIde6o0irM+rD+RXbWM3GK1/e885eWGJcXii6+EwHhFqfV8LfMxTCCGEEEII8c9x8OBBpk+fzsyZMxkxYgRDhw6lV69eNGnShJCQEDIyMli1ahWLFy9m0aJF6Aq/OwwLC2P+/KrXiYUQQgghhBBCCCGEEEIIIYQQQhx5jpCla0IIIYT4f/buOzyqKv/j+OfMTHoggSSU0HuVJoiAIIK42FgLKthWdC3outZ117ViXV3Xsquua8Gy9rVXXAvqCvpDsaBrwUWaSi+hhbQ5vz8Gkgxz78ydSSb1/XoeHnLP+Z5zv0kmk5lJ7icAANSYW6hSRYVs0UbnuT0v2pVkUlKlMYeF/kmy3y6UnILROvaQDj0ldDF4tbAcwI3p3Fvq3Lu+22i4fL7YNQ2Y6TVYuvxB2Vt+IxVvkzKyZGbeKDPU+0XqUffvPUTqPSR8LC1D+scHsjf8Wlr+bSgQbPJJ0gm/q5VzNnQjuxuN7O4QyGFCt6WCKMFo6wL5Uqkqg9FMy9Yu0Vm7vPe8Xp/1Nz2de5xKUlvo1y88ovGSgjIq8jkHo+UEi8IHeuwV7QxIksLI7MBKO1wydBojY4w0fELo355G/kJm5g2y910llZeFz/n90vEXS5OmVe2VliGddb3sPZdF7rWtSNqwWspv79qL3bC6Mjgwrvfh0vtkDjk57nV1oU8794C9aJ5beawkya+gpm35lzKDxZpReK+K/LkK2DJd0f0TXf6HMZ7Chezm9dLXC8L7Kv3OMRht8cZU2c3rZaqFAC/+qVRSZGhmz9L/xfleAfVgx1ZpwZuyC94MHaekyvYdLg0aLTNojLTX6Mj7t90acDDaPt2M7phmdN6TkfcvxkhDOu05ZvTmBT6d8mBQH+z60j1062u6b9VMndX+Tr3U4nDP506vdncwY4zRH5/3fh+3aYe0dqvUtqXnJWhCbDAo/bTEeTJvj8cHXfqEvgbdggt/XirVczDa1p3eawtzG04YoK2okF68V/a28+Nal1/h/IcD1vrdg9F2h5m1ynSeLyqWyiusAv6qj49rMNoeH8KsNKMJfaXXv3I9vbLT3eeSJd0lZ7zE5VsNAAAAgOaprKxML7/8sl5++WVP9RkZGXrkkUc0ePDgJHcGAAAAAAAAAAAAAGgICEYDAAAAAIS4BaMFK6Qtzhd+qmXrmNuavnvLDhojLZoXPn7WDZ5CLAB45PY13IiYg6ZLE6ZKK7+XOvYMBS0m+5z9R0gPLZTWrpTSMmTy2iX9nA3erpC9dFuiFhVbtNUfmdqx3r8rLGhXMJpy8iNqqvt7qzN07k9nSz+Fjp/s8oZm/3y6Jm/7t6xxDvXLrdgjGK1rP+/vA2pNtGC07SV110d9MsZIx18kHXGGtHmdlFcobd0orflR6tZfJjM7ctGhp0hOwWiStOK76MFoR3SJv8fTr2mwoWiS1DfBu9b9d7wfdjxl2ytas7iTvkvtrW5ly5RZeJiM2c/bZt9+EtlXyWK9kxUZhvdDoEsoRG30IZVjy5YXSYq8r+tZ6hJug7rh94ceA/n8oe9fvmrH1ef80eb8oVDQsPE9j/d4O2KdL3qdzy9Tfc6Y2HtHvO0Lfx+r1dh/XCF99aH3j1tZqfTlfOnL+bKP3RLqJ8slpSvQcIPRJOncCT6VlAd1yTPhwWRTBkmd8yKfb3YvMHrvdz4t3yD5X39QHe6dKUkaWPLfuILRstKq3j6m/zb98fmsuPp+9zur40bwfLhZWrtSKil2nuvSJ+zQpGfKHjVTeuoO5/oNq2u5ufhti+PxYO+2yesjHtbaUDj2vx/3vqh9V5l/fq78+7dKX0ROrw20cV3q2/Wlnt/CrZ9QYGJBtXnXYDSHp06HDzZ6/Sv3cMbsNNeppElz+S2UnQSjAQAAAJCUm5srv9+viooKz2vGjBmj22+/XcOHD09iZwAAAAAAAAAAAACAhoRgNAAAAABAiGswWlDastF5rmUrT1ubm56XvfP30hfvS4FUmRMulsb9MsFGATjyOYdLNTYmkCJ161/H5wxIhd3q9JwNWrWgsoKK9Y7BaOv8BaHSXcFoL2/po8u7LdCaQBtN2P6url13tbqXLZMklZhUXZ//h4g9Ti28L2obnctWVh106iUVdIj3PUEtaJHuHtqyo7QOG2kATGYLKXNXYkVaoZRf6F6bmy+bkycVOYTLLvtGGjbecZ39vzfib+zQU6STLol/XR3KyzbKy5I2bPe+Zu/iT5UT3BIxHlCFBpR+EzpY/7P3DZd/FzHUsfxHx9IN/nxpxQdhwWg/r90ppUTWdi1b7r0HKXQb2jPEq3rwVayArLAAL5cwLsc99gjVclljItZEOY/jHj6XXj2u8e1a5yE0zDSRxz614ubnZQ+pQbirtdK2Iue5FIcbfgNz4YFGmanSX9+2MpIOGmB009Hu37+MMeqaL9kTZ8gu/0B64zH1Lvk+rnNmVcuL6/7xP3V8UY4ez5nuef30+6xOebBCfl8o6Ciw5/9+yW/C3w74w2sc11XOmbB1Ps/rInvYfd7IHkz0PV3Xxeil2vvu8zXB8DiH70eVOveOGDIzb5R1C0ZbsbiWmkrc1p3ea/u0rd/Pp138uewdF0YE90fVopU0bH+Z826VSctQfsc06YvIELI1UYLRdoeZ5Ttk6e62flt4MFrQJefM94/LZEuGyxxwdOXYYYOMzn7MPRitnUvuZTKlu3zr2Fnm3icAAACA5uOII47QmjVrNGfOHM2bN09ffvmlli9fro0bN2rnzp3KyMhQ69at1aVLF40dO1aHHHKIxowZU99tAwAAAAAAAAAAAADqGMFoAAAAAIAQt2CBYIVU5BaMludpa5OdI/OHexJsDIAnbuGGXvQaUnt9oPEzVYEF+RXr9YO6R5SsC+SH3vD59ebXVke8NVRKDw09lXOsvk7rpwVLxyhF5foqbYBWB+ILa2lVsVFtKtbuOodP5tdXy5gmGIzRSKQFpJLyyPEzxvE5iapzH+nL+RHD9uO3ZI6aGTleXiZ78ZT4znHUWfJd4BKW0sD0bSfNWxI53raldMxwozvfqQrKSLGlumL99bE3jSMYza6MDI/JL3cIrpO0PpAnu+I7lZRZfb5Syv3qTa0K7O9Y2758lXTkmdLz/4jZgzn9GpmTf++5Z8CzjBaxaxIVSI1dU898PqOzxxudPT6+dcYYmctnKyip/3v/jWttdlrV90D7zjM6oSgzrmA0yfl7a+2pi/Ch5J/DmERC4eIJd5MCPlNZ66tRGF2085qqt/8r+bImKC1YoiEli9QyuDX0zrZuJ5MVmWBl/H7ZoftLn70XMWdnXyMz47Ja/7gX7bD6abPUvUBKT4n+eG9bifd9+7WvYWM1YDeslj1tpPcF086X75ybIobdws12+LJct/LZoCS/8txLtH5b+HFF0LnOv36l7JW3Sre+KjPiQElSx1ZGQztJn62MrD9uuKmXgEH3YLS67QMAAABAw5WXl6cTTjhBJ5xwQn23AgAAAAAAAAAAAABooAhGAwAAAACEuIUqBYPSFufQCJPTOokNAYiLcQk39GKYc9gLmqlqAWQF5esdS9b5C0Jv+P26463Iq/a/TN9LT+Qcp5OLHtN3qb3jbqFPyWIZSTrkVzKTT5QZOi7uPVB7Lphk9KfXI8NPDhtEMFpUA/d1DEbTJ+/IlpfLBPZ4ef6dZ2JuaS57QPabT6QtG2XG/VLa/8haajb5jhpmNG9J5O3o1mONpo0wGt1devmNpWq56E2dWPSYRhUviL3p+p9lrY0ZnGhLiqUX748Yz69wCUbz5+nB/3XSuecHdwV4TJRcTtFh5kUyh4+VBu0ne/2pUnmUxI/0jKh9AokygUDyIqoCLuk2TYj54/0a2vsu6S3va7LSqh18OV99UjrXel+QrJXKrVTuEhJVS2dJ5uYO55godZ4oSQrYMv124526ae1l0V9fyXdPFLNLvpLpMbBWugwGrW56w+qKF6yCVmqfI912nNGxw92fa27Y5joVZlDHeg5GO7pHXPVOoWiSooabue41/xVp4i+VkWqUlSZtdwiTiwhGc7lZ+m2FJMnOvq4yGE2STt3P6NwnIhedul/9PF53C0YrJhgNAAAAAAAAAAAAAAAAAAAAHtXgilkAAAAAQJPidwtGq5A2rnWey8lPXj8A4uP2NRxLarrMry6t3V7QuPmqXjJ0Cw3a5M8NveEP6O1vnbc5tfA+HdHxX7ox/5K4WxhY8rXMqVfKd+m9hKI1ABceaDSia/jYLccYdWpNMFo0ZsyhzhM7d0hrlkcM2/dfiL7h8RfJTD5Rvgtul++qR2QOOFrG13he4v/1WKMJfcPHLpkcCkUzxmjaPj49ut/numv1ed5C0SSptETauil23bN3Ow63drmP2+HL0un6/a5QtOgKR4+UMUbmwGPlm7tN5t0dUka2c/FQgkiRRB17us/1GiLtO1nKzol/39ZtE++pkTA+n/zHnqvZLf7ueU32rmA0uysMsXPZSrWsKEpGe2jCyk2Kbs27QA/lnCylR0nc6uAe6mUfubHW+nl5kXTZ86FQNElaVSRNu9dq6Xr38Li3vokdLJefLd1+nC9mkGlts+Vlsm89reCMEVJFubdFuQUy9zkE2+5S0CL+98H3zxsq33YLVlu/LfzjWOESBuhXKBhNX30ou3FN5fiZ44x+MSC8duZ4o0n9G1YwmpfHVgAAAAAAAAAAAAAAAAAAAIAkBeq7AQAAAABAA+FzCVUqKZa2b3Gey2+fvH4AxMckFo5jXl0lk55Zy82gUasWWJBb4Rw4tMnfSpL0xY62KomSMfBKC5dgqBhOLHpMyvhlQmtR+/JbGL17sU/vfCstXW81vo/RwA6EosXUe6j73IrFYSEntmSn9F6UYLQDj5Nv5g3u841Ai3Sj13/r01vfSN+vtRrT02hYZ4WHpKSkxr/xsm+kQWOiltgnb3ccdwt/9Mpvy9WmdXjPxu+XPWia9OL94cVd+kg9B9XofEBU+x8pPfbnyPGMbJm/vyeTli5bUSEt/a/0xQeyi+ZJX8yTNqyKuq0Ze3iSGm54fjWxpc57dou2+lvGrM3aFYymNSskST5Z7b/jP3q5xWFJ7BBN1YstDteMjBWu82bCVNmHrneefOcZ2X4jZKadX+M+/vmhcxpXjz8GVfGPyGCzYNDqlUXOwWi/HCxNGWKUGpAm9jVql1PHoWib18uec0DoMZdH5re3SAceJ9OqjWtNYQL5kr4liyrfzs+WVmyMrFm/LfzYNRjNVpuY96p0+KmSpIDf6LXf+vTvr6WVG60GFBqN6lF/j9fTXX4LhWA0AAAAAAAAAAAAAAAAAAAAeEUwGgAAAAAgxC0YzS0UTZLyOySnFwDxc/sajubwUwlFQ6RqIXu5wSLHks2+UCLAtEWTav30bcrXaL/iD6X042t9byQuI9Xo0EGSRCCaVyYjS7ZNJ2ntysjJld/L7jtZev2fsnMelT57L/peR56VpC7rVkrA6OC9pIPdbkcpac7jUdj5r8lECUaz81+TNq11nKtpMFq77Ar5fJHvi5l5o+zan6QPXw8NdOolc+OzEYEyQG0yp10p+/MP0txnw8dveUkmLT30tt8fCujrOUjm6LNlrZVWLZW+mCf7xTxp0QfSyu9DC9MyZGZcLjPyF3X9rtSfUQfrzAfu1y15F8Yszd59d7Wt6vnyIz+fqlZ9nO9vOpWt1MqUTrXRJZqgn1I6SBlZrvOmW3/ZXkOk7z93nLd3/V4aNVmmS9+w8Y3brW75t9VD86xWb5H26Sp1yzc6clgooOrVRdL6baFgs06tjZ77zL1H/5lBnTLaaHwf6aR9jYwxWrhCWuX8dEEn7OvT1L3r5/ueLS2RPTy+16vMba/LDJ8Qs65Dq/j78Skoa62MMcrPdq7xGozmU9WEnfeKzK5gNCkUNvuLAVJDeLyenuI8TjAaAAAAAAAAAAAAAAAAAAAAvCIYDQAAAAAQ4vPFrtlTfvva7wNAYuL9Gs7IlvnVpcnpBY1btdtSq4pNjiVF/hztMBlauqNFrZ46PVisL3/YO3QQcLmaHmhMOvdyDEazKxZLd1woPXt37D16DZb2GpWE5hqg1PiD0fTV/7lO2X8/IXvtKa7zrSo2yRjJ2vhPK0mFrZ1DSU1WS5mbX5DdsFratlnq3IdQNCSdSUmVueZx2XU/ST/9ILVuK7XrIhPl68oYIxV2lwq7yxx8kiTJblorbV4v5bWTadm6rtpvEEyrAk1ps1y3VMSuzdr9YS0prhxrEdymx388Scd3/GdY7eCdi7Rg6WitDbTR9yk9VDH5JAUnn6KKoFQeDAUglVdIFdZWe3vX/9VqwuqDUeb2WB8M28s61tbWectdwpwQXbFJl9Ldg9EkyVz9iOwJg1zn7YmDpfd3Vn6/KdphNXhWUD9trqpZsExasMzqqU8cd4jZ50PzrR6aL/3fUumu441e+sJ5TWpAuwK66p61Vva8+AIdzT3vywwY6am2VaaUFpBKyj3ubYOhmLIdW6WslsrPNnL6WG/wHIxW7Q7q47dli7fLRAnVqy+uwWgeP24AAAAAAAAAAAAAAAAAAAAAwWgAAAAAgJB4Q5XSM6XsnOT0AiB+PudwFkeDx8qcMUumbefk9YPGq1p4T25FkWPJJn8rvZs5TmU2jttdFOnBYo0sXqA71lykvIqNtbIn0CB06iV98k7k+Iv3ed7C3D6n+YRqpabHv2blYsdhW14ue3f0AFD/6MnqkyZ9uzr+00pSu9bRf8Ri8tpJee0S2xxIkCnoIBV0SHx9qzZSqza12FHjMmpCX3V6baVWpnSKWpeVuuuN0uKw8WO2PqvinzN0U97FWhfI10Hb3tJf1vxefgXVvny12pevlp6fJz1/VmLh5I1AUEYV8qvC+FWuwB7/h8Yr5Fe5CVT9b3wRtVU1vsraisr/q/aqXLd7Tn6VG+fzO+0VeY7IfsP3ruo3GNGvw/smf2V9iUlTqS8yrLDYZEgZ2dE/sJ16S936S0u/dq95/C/SCRdLkm543YaFotWme9+3uuQXVi997hyMNqGP1CK99h+72OLtsg/Mkt57QZJkDj1FOvkPMtW+luzsa6WvPvS2YadeMr+52XMomhQKlCzMlZau91bv3x1kVrRBymqpPJdP84Zt4R/LCpecOr+tFoxWulP6+C1p3C+9NVOHXIPRyuq2DwAAAAAAAAAAAAAAAAAAADReBKMBAAAAAELiCVWSpNZtm09IB9AYeAxWMKddJXPKH5PcDBo1U3Vbygk6B6Nt9uXo8/TBCZ/ijtUX6pxN90gTj5XefjrhfYCGznTuLZdcC2/rr3tKpmXrWuunwUuJDIuJaeMa2a2bZFq0Ch//cr60YVXUpebkS3Xw10bfrk7ss1SYy2NhoKnxTfm1bn5whqZ3fDRqXdbuu6uS8GA0I+lXRY/qV0XR10uSgsHEmmzgfJJ8qpBLLlKz9mTLY3Rih4cjxot96VJGZtS1xhhp5g2ylxzhWmPvuUw6bIY+29xaf36jJo9AoqsISne/a/XlT87zhw9OzvdHe+0p0n9eqjp+YJZUViJz+izZYFD6eoH00PWe9jJXPCRz0PSE+ugQTzCarRaMVthN+S7BaOu3hR9XuNw9VAat7WLnvSrTIIPRjOTwKJhgNAAAAAAAAAAAAAAAAAAAAHjVNP8UOQAAAAAgfv44g9GyWianDwCJ8RpuOHRccvtA41ctZC+3YrNjyU5fhhal75XQ9nsXf6qzNt0rc+XDMmdck9AeQKPRqXfN1o84sHb6aCwSCUaTpBWLI4bsBy9HX3PA0TID9tE+XRM7pSQV5iS+FkDDZNLSdezlJ+nN5ZOj1gX8u4KfSnbWQVdoKjKCzreXYpMhpWfFXG9GHSxzzROu8xXy6eJbF2v49ckP3YsWvFbbwWg2GFTw8mlhoWiVXnpAdslXsoe0lZ25v6f9zG9vSTgUTZJ6tvH+/vm063OxeoUk1TwYzYYHo2n+a7IVFc7F9Sjd5c/zEYwGAAAAAAAAAAAAAAAAAAAArwhGAwAAAACE+F2uWnSTlpmcPgAkxufxZZ4ufZPbB5qAqgv9c4NFrlULMkY4jh+zt3tQQPfSH/TUT8cr8M9PZSZNkwo6SOku30+aWyAUmqYufRJfO/oQmUyX9IymKjU1sXXLv5Mk2fIy2bnPyr75pPT0X93r+wyTueAOSVKH3MTDW3oUJLwUQANmRh+iA3a8r72LP3Wc7+lfU3VQUlxHXaEpSLfOt5diX4ZMhrfv+eaAo6R9I4P7PksbrPFd3tRtq/apUY81Nayz1LFV7QWj2fJy2cuPk9573rlg8zrZU/aWtm/xtuGMy2WOObdGPfVu6712d5CZveE0SVJ+tvPHpnowWjDoHjrn1x4haJvXSf/9yHtDdSQ9xXm8pFyy1v39AwAAAAAAAAAAAAAAAAAAAHaL86p3AAAAAECTFYgziCI9Izl9AEiMl2C0nDyZ3Pzk94LGrdptqVXFZteyFSmdHcd/MUB68BSfZt/1np7+1Khr6XJ1LVuugSX/1YHb31GrZz6TKeggSTIpqbKjD5HeeSZ8kz7DZNp2qvn7AtS3tp2ldl2k1cvjXmqO/W0SGmrgUtISWmZXLJY2rpGdub/089LoxWOnyFz5sMyuUMbC3IROKUk6bFDtBb8AaFjMSz/q6Bm3amHGsIi5X256RrbsLJmUVILREJeMoPPtpdykqFw+uWRJRTA3/Et2QovK42vzL9WsgitqocOaO3xwLYaiFW2Q/c1Eadk3tbKf+dtbMkPG1nifvu2MJG/hXj4FQ2/s3CEbDLoGoxUVSzvLrNJTjF7/yn2/3UFrYT57Xxo0xlM/dcUtGE0KhaNFmwcAAAAAAAAAAAAAAAAAAAAkycMVswAAAACAZiEl3mC0zOT0ASAxxsPLPN0GJL8PNH7Vbkt5FRviXt63vVFmmtE5543Vu0Of0UOrz9DV66/TVL2rVrc+VRmKVnm6i++SBlcLKOjaT+a6JxNuH2hIjDHS6IPjX3jQ8TJ7H1D7DTV0qemJrVv+rexfL44diibJXPjXylA0SWqfk9gp92mxWi0zCEYDmirTqkAXHlChUzY/EjZ+9JbndM3Pl0mfvRcacAtG67GXzNPfSQNHJblTNCbptsR1bsfa9Z73MSmpMjf8S5J0R6tzaiUU7aXf+DR5gGRq+K3tl0OqNrClJbLP3KngVScoeP8s2TUrQuOb1yt45yUKjk0L/bvnMtnvv1Dw7ksVvOoE2RfulS0vk73vytoLRbvn/VoJRZOkoc750I78qhZktmVj1McdS9ZJO0qsTn046G2/Xey/7vTeUB3JiPIS486yuusDAAAAAAAAAAAAAAAAAAAAjVegvhsAAAAAADQQgTiD0dIIRgMaFL8/ZokZeVAdNIJGr1oaQobdqdblG7QxkOd5eZ+2u7bx+2Uu+pvsGddIq5ZL3QfKBCJfjjQtcmXufCsUlFCyU+rUKxQmBTQRZvShss/dE9+a8/6SpG4auNS0xNZ9+JpUERkUEsHvl1q3DRvKSDVqnWm1cUd89ztn9FkhqUPMOgCNV8rZ1+n+l/J109o/6su0AepX8p3aVqwNTf5vkbTPJKnUJegqLUOmfVfp7rnSysWhupKdUvG2OusfDU/m+nTpOee5km6D49rLjJ2iO3pfr4v8F3iq/2Dp/rqr9Uw9kTMtYi7bFOvQvbJ02CC/Nm63WvRj6DH94wusfveM9dzTwQOlIZ1C309tebnsH46SPn6rct6+/oh0w79kLzlS2ri6auFjt8g+dktV3TvPSB++Ln36rudzu0rPlHl9rUwgpeZ77dIlz2hiX+ntb2PX+my1kLMNq9W9S578PqnCIfvs21XS92ukdVvd9/Nbh4VF62VfekBmymmxG6ojXfOkJ88wSg8Ypaco7F92gg/3AAAAAAAAAAAAAAAAAAAA0LwQjAYAAAAACEmJMxgtnWA0oEExvtg1e41Kfh9o/Hzht6UO5T97DkbLz5byssPDhUyLVlKLVjHXmqpv4mMAACAASURBVLadvfcINCZD94+vvms/T18zTVJK9KQMc9pVsg/MipzwEoomSS3zZHyR3y+HdTF66xtvW+w2rhcBjkBTZ1JSZfuNUN4XH2j8jv+Ezdm//1EadbBsSbHz4rSM0B7GSJ37JLtVNBKZa630nEOwlaTiAePi2mtLsdWVqedIHr4FFn/TUikqlzbKMRjtwKJ/S990kvqPUOsso/G7brLnTQz97yUc7djhRv84sdr3xi/+ExaKJkla+6Ps2QdIpTtjNz3/tdg1HphTr6jVULTdbp7q097XOX8uq/NX/wRtWKWU/Pbq7ivR98G2EbXH/CPO/aqx914pHTbD8XFOfcjNNDp2OI+VAAAAAAAAAAAAAAAAAAAAkLiG8ZuxAAAAAID6F++Forsu9AbQQPj9sWuycpLfBxq/PUL2CstXeV7at11tNwM0fiY1TTrp997rf/XHUJBOcxTt8Wh2rjTt/Jo9Bs1xDnm84rD4flRyyuZH1KNH68T7ANB4+N3/xpQ9+wDpx/85T6alJ6khNGYZUb7N7cwpjGuv17+y2lYRO+D++ZXHhELRJO2782OdtPnRsPnM4HZdsuEv0oI3I9YG/EYXHeTTwsujf5+cOd7oyTN8ysmsevxin7zdudhLKFpt6dBdOurspGw9tLNRew9Pr32qFiq3YbXstaeo96aFCZ/Xb12S8IrWSz//kPC+AAAAAAAAAAAAAAAAAAAAQENDMBoAAAAAICQl9gW1YdIzk9MHgMQYDy/zZLVIfh9o/Hzht6UO5T97Xtq7XTMNcwJi8J1xjac6c9trMgcem+RuGi5jjLTvZOe555fKpGdK/fdJ/AQ5+Y7DY3sZjUv52nFu9I75mrV2liZte1OHb31Fd646T/euminlxxdgA6CRihY+vG2z9PbTznMEicNBRpSXXYrLvO9TEbSafp+NWde/5Gsdvu3VsLF7V52t+34+S0dseVG/3jRbnywdpX12fiL7wCzXfYZ2NjpqqPt57jre4bnoR3Ni9pdUx5wrc/9HMkkMKezXPnZN9SAz+84z0v/9W13KViR8Tr9cgtEkaevmhPcFAAAAAAAAAAAAAAAAAAAAGhr3P3MOAAAAAGhe4gxGMwSjAQ2LL0pow26ZBKPBi/Bws8Iy78FofdvVdi9A02Hu/1D216Pc5295WWb4xDrsqGEy594su/hzaePq0EBKqswfH6h67Nm5l/TZe4ltnpvnOvWvAa9o4kdBfZU+sHKsXflq3b36txpY8rW0oVpxVkuZzOzEegDQuHh5jO0klWA0RMpIcZ8rLvW2x6fLrU6eHfRUO2fF4RFjKSrXjKJHNKPokYg5u/J7mU69HPeafYpPyzcGtXB51Vh+tvTqbxvW32EzVzwkc9D0OjlX77ZG73wbPaAuLMhsV1hc+/JVCZ+zetBahO1FCe8LAAAAAAAAAAAAAAAAAAAANDQEowEAAAAAQgLxBaMpjQu9gQbF5+GCdILR4MUet6WCivWel/Zpa2IXAc2U6TNMUaMz8gvrqpUGzXTuIz28MBQesmOrtPcBMl36Vs136h394xhNjnswWn73TvrwyXF6scXh+jqtn7qWLtfh2151vg/Mb59oBwAaG3+CP0rl+TIcpEcLRiuLvf4PzwV18xxv3wUf+PkMFcYZwGWPHyi9v1PGRD6mb5lhNO/3Pr3wudVXP0mdWkuHDzJql9PAHv+PnVJnp+rdNnaNz0aG2HUo9x48vaewoLU9bduS8L4AAAAAAAAAAAAAAAAAAABAQ0MwGgAAAAAgJCXOYLT0zOT0ASAxJkYwWmqaTLxf52ie9ghGy48jGG0AuU5AdDl5UtEG5znuoyuZ3Hxp8onOk90HJL5vt/7uk90GKMPu1LQt/4q9UbfEewDQyCQcjJZeu32gSTDGKD1F2ukQglZcGn3th0us51A0Y4OatP3tBDqU7Lh02YnHygzbXzp0hozfXzmXGjA6drjRscMT2jrpzNk3ymRk1dn5QqHQ0T8nTkFm7eMMrKvOKkoQ3fai8Nr1P8v+/TLp34+HBg4/VWbyiTKDxiR+/s/el333WSkYlBl/lMzeByS8FwAAAAAAAAAAAAAAAAAAABBNjCtmAQAAAADNRiDOMI40gtGABqXaBeuOMlrUTR9oAsIvts8v9xaM1rut1C0/Gf0ATYgvyn01wWje7DVaSstIbO34o9zneg6Scgs8bWMOPzWx8wNofKLdb0eTSjAanGWkOI8XO4SlVffwh95C0STpsG2vqbAG4Vt6+2nZP58je9UJie9RHyafVKen6902do3PBiPGOpT9nPA5U2yUG8q2qmA0+/NS2SO7VYWiSdLLs2XPPVD2nWcSOrd980nZ838hPXeP9MK9shccLPvqwwntBQAAAAAAAAAAAAAAAAAAAMRCMBoAAAAAICTgcnWum3SC0YAGxcR4mSczu276QOPnC78t5Vds8LTsoAFGxpjYhUBzRjBajZn0TGn0IfGv+9NzMvmF7vN+v7T/EbE3atNRZp9JcZ8fQCPlDyS2jmA0uMh0+Xa/vcQ9+CwYtLr3/djBaC3TpVO6LdOj5jr3ouxcmQc/ibmXJOm95xUcmyb74HWy5eUxy+1n7yn4mwMVnN7f2/61KZAi5eTV6Sm75oc+5tH4VREx1r1sqVKDJXGfr035GnUrW+Y6bzdXBVrbv//RuSgYlL3qBNnS+M5vrZW97yopGKw+KHv/1bLWe2gfAAAAAAAAAAAAAAAAAAAA4BXBaAAAAAAASbvCIPxRwjr2lMaF3kCDEuvrN7NF3fSBxs8kFow20D1vCMBu0QJ2AgSjeWVmXBH/olEHx9735D9I2bnuBbkFMrMXxH9uAI1XPM+RqzGEXcJFdprz+PZS9zWH3xl0n5QU8ElvXuDTxtt9mn1pD7V4/GOZd7bKnH1jRK054xqZnntJIw703LOdfa3sPS5BW7trfviv7AWHSF/8R/pxiee941LQwX0ur72Mr25/9cHvMzooRgZcuo0MIEu3JZq4Y27Udf3bR45dtv4m+RQlhOzRmyVJdsdW6T8vRd3fHtNLdueOqDVhVn4vrVoWOb7+Z2nxZ973AQAAAAAAAAAAAAAAAAAAADwiGA0AAAAAUCWeQI60jOT1ASB+JsbLPFkt66YPNH7GhB3mV6z3tKxfexO7CGju/FHuq1NdklIQwXTrJ/Pwp94XTJrmKSzFtOko8+AC6YgzpIGjpH0mST0HSWOnSEefLfPgxzI5eTXoHECjEy3QMppASu32gSYjy+Xb/badzuNl5VbvLXbf74gh0vuX+DSxn5HPV/V43KSkStMukLn5BWn/I6T9j5S55SWZI88Mzd/ycnyNP3u37JaNrtP2vqukivL49oxHZgupZWv3+XyHJLE6MHV49OdAA3d+5Tg+ZesrUde9fZFPz870aZpvro7c8oL+9eN0nbPpnpj92PU/Sx/Oif252LhGdlIrBe/6g2wwevCeJCnK516b1sZeDwAAAKBWrFixQpdffrnGjh2rtm3bKjU1VcaYyn8PPfRQfbcIAAAAAAAAAAAAAECtSfC3+QEAAAAATVJKqlRS7K02NT25vQCIT6zQhszsuukDjd8e4UFptlStyzdoYyB6GFD/+skiABoXn999Lp6AWsh0HyCdfo3sfVdGL2zXReaUy7zv266LzEV/q2F3AJqMRIPRUrhPh7Nsl2C07aXO4ys3STtc5kZ2k5472/2xhTFGGnWwzKiDI+d8PumON2QvnSrt2Bqrbam8TPbP54RC1vqPkCnsXjllt26WPogzaK26vQ+QFs6NXpPfPnqIbOu2iZ+/Bo4aajSoo9WiH53nD9v2muv4TJc9jx1u1Lal0ZFDpV/6rpd+mu+9oS8/lH3/Re/1T94mW7xVGrK/VNhNpv8I5zpr3fcwBGQDAACg4evatauWL19eeTx37lyNHz++/hpKwH333adzzz1XJSUl9d0KAAAAAAAAAAAAAAB1whe7BAAAAADQbMQTyEEwGtCwBGIFo7Womz7Q+Dlc2D66+KOoSwYWSnnZXBAPxBQ1GC2l7vpoKk66ROrQPXK8dTuZs66XuewBmfs/lOncu+57A9A0+BL8UWpKlAAnNGtZbsFoLte1rypy3+vs8TV7/G2GjZd5eKHMebdKLVrFXvDuc7KzTpY9YZDsc3+XJNlNa2UPqVkomRn3S6lNx+hF+YXRv66ycmrUQ6ICfqO7jvfJ5/Cp6NiiTIedNNZxXfvy1Tqu6OmIcaOgHj2t2mYV5XH1Y688Xnr32bjW6MX7ZWedJHvmfgpePk02GIxvPQAAAICke+2113TmmWd6DkV79913ZYyp/Hf11Vcnt0EAAAAAAAAAAAAAAJKAYDQAAAAAQJUUgtGARivW129my7rpA42fQzDakVtfjLrkiKGEogGeRAlGM4mG7zRjxhiZ2+dI/fepGuw3XObud2ROuFhm8okyOXn11yCAxs8fI3zYTTzPrdGsZLncNLYlEIx24r41fwxu2nWRmXqOzF/f9L6ovEz2tvMVHJsmO6VTjXtQQQeZPz0XvabHQCk1SjBaZnbN+0jQmJ5Gj59ulF4t47Z9jvTEzDRlTj9H5qUfpaH7R6z7y5rfa9z29yuPB+z8rxam/UYBf+LBaJKkmgSbvfe89MrsyPGoffBcEAAAAEi2Sy+9VNbayuPjjz9eb7/9thYvXqylS5dW/ps6dWo9dgkAAAAAAAAAAAAAQO1K8Lf5AQAAAABNUiAlds1u0S5IBVD3/DG+fuvxQnE0MiYynOmwba/Jb8tVYZxfTjySYDTAm0QDduDKtOsi3fO+tOQrKTVVKuwuE89jWgCIJkqgZVQBgtHgLDvdSLIR4ztcg9EiayWpR0EoILS2mJ57yQ4eK33xn1rb07P8Qpleg6W3imR/O0n6ekH4vD8gM/kk2fuvdt8js0VSW4zl2OE+HT7I6uNlUmpAGtJJSk8JfX5MqwLp9jnSj99Lq5ZL3fpLc59Vuzsv0dsrJuvr1H4qMykaWPJfBTr3CN/YLZDM56tZAFoU9um/yUz5dfhgmcsNVEosvA0AAACAZ999950WLVpUeXzIIYfoscceq8eOAAAAAAAAAAAAAACoG5FXOQIAAAAAmq+UOC7eTk1PXh8A4hcrBKaeLxRHI+KLfMkwr2KjJm6f61jes03own8AHvgTDNhBVMYYmZ57yXTuQygagNqVaKBlPM+t0axkutw0tpc6B6CtLnKub59TSw1VY254WjrwOCknv/Y3j6agMHT+tHSZO96QjjxTys6VjJF6DZa5+QWZ3kOiBvSbBvB8NyPVaFxvo327m8pQtN2Mzxd6nDLyIJk2HaWCDqFxSQNKv9GQkkUKqEJasTh8U7fQsb0nJOE92GX5t7KrloWPle50ry+NEpoGAAAAoMY++eSTsOOpU6fWUycAAAAAAAAAAAAAANQtgtEAAAAAAFUCBKMBjVaM8AWTmV1HjaDRM8Zx+Jp1s5QaLIkovelon4zLGgB78BGMBgCNCsFoqGXZLi+lbHPJnVrlEozWrmXt9FOdadlavqseke+Vn2Se+rb2T+DEH5Bata3qIT1Tvgv/KvPqKpk3N8s3e4HMPpNCk6kZ7vs0tue7+e1dp+xn71cduASjmf0Ocwy0rjXffRZ+HC38rMx5zlZUyG5aK7t9Sy02BgAAADQ/a9asCTvu2LFjPXUCAAAAAAAAAAAAAEDdIhgNAAAAAFAlnou30whGAxqUQEr0+awkXDmPpsk4v2Q4fOenmr9sf524+TEN3/mpjtnb6N/n+3TkUELRAM8IRgOAxsWf4P12rMfmaLayXF522V7qPL66yDqOt8tN7mNwU9hNatOpdjbrOUgaMNJ5buRBMg5fZ8bnk9nzdadWBe7naGzPd/MLXafs3y+tOnAJRlNKmszjX9VyU9Us3yMYr8QluU+SSiPn7DefyJ42UnZKJ9nDChW88xLZiopabhIAAABoHrZt2xZ2nJLCaw4AAAAAAAAAAAAAgOYhwT9zDgAAAABoklLSvNemEowGNCj+GBdCZLaomz7Q+Pnc/5bCkJJFemjV6VJOnnxn/lyHTQFNgznmN7LX/CpyolOvum8GABCbP8EfpcYTOo5mJdvlZZdtJc7jq4qcx9vn1E4/0ZirHpY9Z0LNNsnOkTnnT1KPQbLnTpSWf1c117qtzOnXeO+noFDOMXFqfM938wul1DSp1OET/8N/ZXfukEnPlNzCxPwBqV3XUHhjEgLH7PLvFBa95xB+VjVXIrt1s/TxW1JmtjRgpOwZY6rmy8ukp+6Q/eBlaeo5MlN/U+v9AgAAAA2FtVaffvqpvv32W61du1YlJSUqKChQhw4dtN9++yk7OzvuPYPBYBI6BQAAAAAAAAAAAACg4SMYDQAAAABQxevF2z5f4heIA0iOQIxgtIz4L7ZAM2Xcg9EqpWclvw+gKRpzqJSWIZUUhw2bSdPrqSEAQFQ+f2Lr4gkdR7OS5RaM5pA7VV5h9cWPzvV1Eow2aIzsxGOlt5+Ob93jX0nzXpXS0qXRh8i07RyauO9D6Z1nZJd9I9OpV2guv733jfOi1GY2rue7JjVNtnMf6X+LIidLiqVvPpGGjpMqyp038Adk/H7ZvPbSWpcbSU2sXBx+HCUYzf7nJeneK6Vtm6Pv+dMPsndcRDAaAAAAmqT169frhhtu0KOPPqp169Y51qSmpmrChAm6+uqrNXLkSNe9li1bpm7durnOH3DAAY7jDz74oGbMmOE4N2vWLM2aNct1z7lz52r8+PGu8wAAAAAAAAAAAAAA1AeuYgcAAAAAVIkVrLRbarqMMcntBUBcjN8vG60gs0VdtYLGzsv9ewbBaEAiTGYL6abnZf94jLRja2jwgKOlE39Xv40BABwZfyD6Y2w3XkPH0ezkZDiPb9oROfb8Z+77tGtZN6/JmEv+Llu8TZr/mrcF+0wKhZ5NOz9yr4ws6dBfKeHOs6OkwXkJd25gzJ9fkj2yq/PkhlWh/6MEo0mSug9ITjBa0fqwQzvvFffaj9+q/fMDAAAAjcgLL7ygk08+WVu3bo1aV1paqjlz5mjOnDk644wzdNdddykQ4Fe4AQAAAAAAAAAAAABww0/VAQAAAABVvF68nZqe3D4A1D6C0eCVz0OoAMFoQMLM3gdIL/8kffep1KajTNtO9d0SAMCNP8EfpQYIRoOz/GwjOcTtbdohlVdYBfxVsWFPfRx03ad9lIyw2mQys2Vuel526TfSzu2hIK6iDdJn78teN2OPYiMz4/LkNZNf6D6X1TJ5500Sk99etmNP6cf/RU4WbQj9HyMYzRx2quxHb0Q/0fQLpSduja+5rUWVb9oHr5M+eSe+9W68PNcEAACoC8FyaUcSAmYRKbOj5Gu6v6Y8e/ZsnX766QoGw5+/9ejRQ/3791dmZqZWrFihBQsWqKKionL+3nvv1YoVK/Tyyy8TjgYAAAAAAAAAAAAAgAt+og4AAAAAqEIwGtB0ZWTWdwdoLIyXYLTs5PcBNGEmNU3aa1R9twEAiCXREB+vz63R7ORHeRi9cbvUplq+13Ofudf2bVd7PXlhuvWrOmjTUfrF8VLXvrK3Xyh9/7nUuq3MWdfLDNw3eU10HyjltZc2rAofb9FK6jk4eedNppw8x2A0u/ZHGSlKMJpfkmT2P0L2qLOk5+5xPYXJzZftPlD64SvvfW3brOCvR4WCfAEAAJqiHT9KL3Wr7y6ahylLpeyu9d1FUnz++eeaOXNmWCjakCFDdNddd2n06NFhtevWrdMVV1yhf/zjH5Vjc+bM0ZVXXqkbbrghrLZjx45aunRp5fHtt9+uO+64o/L4iSee0L77Rj73ys/P1/jx4yVJH330kaZPn145d9555+n88893fV/atavjJ5kAAAAAAAAAAAAAAHhAMBoAAAAAoErAazBaWnL7AFD70jLquwM0FsbErkknaA8AADQD/gR/lBpIqd0+0GREC0Zbv60qGO2zFda1rn97KS3Fw2P2JDN9hsn8/d26O5/fL514sewdF4WPH3+RTKCR/tpDy9bO44//Rfbgk6RtRc7z1e6bzIwrZKMEoykjW+bE38lee4pk3W9XEQhFAwAAAKI67bTTVFpaWnm833776Y033lBmZuTPTwoKCnTPPfeoZ8+e+t3vflc5ftNNN2n69Onaa6+9KscCgYC6du1aeZybmxu2V7t27cLmq8vODj3pXLZsWdh4bm6u6xoAAAAAAAAAAAAAABqqRvobwgAAAACApEjxGoyWntw+ANS+VILR4JHxxa7JiJLoAAAA0FT4/Ymt8/rcGs1OXoxgtN0ufS7oWvfQDA+P15soM/U3Uqu2su/8SyorlZlwjMzkE+q7rcTl5LlO2ZOGuK+rHgSXkxe6zykrda7NyJKZNE3Kain72sPSey8k2GwNtG4rtWoj+ZrvbRcAAABNy9y5c/Xpp1Vhwi1bttRTTz3lGIpW3cUXX6z33ntPr7zyiiQpGAzqtttu0+zZs5PaLwAAAAAAAAAAAAAAjRG/eQoAAAAAqBIgGA1ostIIRoNHXi5WzyQYDQAANAP+BP/GFMFocJGeYpSd5jy3OxittNzqwx+ca3xG6tMuOb01FmbiMfJd/7R8N7/QuEPRJGlbUWLrqoVZG2Ok/PbutbtCrc3oQ+S77imZ659O7JyJOnSGfC+ukO+hT+SbvaBuzw0AAAAkycMPPxx2fM4556iwsNDT2j/96U9hx0888YRKSkpqrTcAAAAAAAAAAAAAAJoKgtEAAAAAAFVSUrzVEYwGND4Eo8ErY2LX5BYkvw8AAID6lnAwmkvyFSAp3yVjeN1WK0n6z/fS1p3ONT0KpBbpHh6vo1EwvYcmttDnDz/O7+Bem54Zfpzo/VqCzCV31+n5AAAAgLrwwQcfhB2feOKJntcOGDBAw4YNqzzeuXOnFi5cWGu9AQAAAAAAAAAAAADQVBCMBgAAAACoEkj1VpfisQ5Ag2H8/thFgCSZ2C8Zmtz8OmgEAACgnu0ZPuQVz5kRRZ5LMNrm4tD/ryyyrmvfOJ8f7zcpPfdKbJ1vj9tB6zbutRl73OD6DfcWhl1T7bvKPPixzJ69AgAAAI3cpk2btGTJksrj3Nxc9evXL649Ro8eHXb88ccf10pvAAAAAAAAAAAAAAA0JXX754ABAAAAAA2b14u3AzydBIAmy8uF67kFye8DAACgvvkTfO7rNXQczVJuhvP45h2h/z9c4hyMdvQwqWt+HQRaoe7sOzmxdXuGWecXutdmZIUvbd1WduRB0kdvJHbuaG3NekzauUPq1EvqPVQmLb3WzwEAAFArMjtKU5bWdxfNQ2bH+u6g1q1bty7suFevXjJxhg/37ds37Hjt2rU17gsAAAAAAAAAAAAAgKaGK9kBAAAAAFW8BqP5U5LbBwCg/ni5gCc3P/l9AAAA1DefP7F1AZ4zw12OWzBasWSt1WKX6+En9ScUrakxKanSdU/JXn5cfAv3CLM2bTrKOU5PUmpa5HmvflT25rOlea9IJcXxndtJ594yt74q07ZzzfcCAACoC76AlN21vrtAI7Vp06aw45ycnLj32HPNxo0ba9QTAAAAAAAAAAAAAABNEcFoAAAAAIBKJpDqfiFldQGeTgJAk2V8sWtatUl+HwAAAPUtwee+xufh8RSarZxMIzm8+lK0Q1q/Tdq8w3ld//YEozVFZv8jZPedLH00J45Fe9wWBo5yr82JDLU2WS1lZj0qW1YqPf1X2Xsui33O7gPle3ihbHmZVLpTKi2RMrJl0tK99w0AAAA0AdaGP58zXv7YTAy1sQcAAAAAAAAAAAAAAE0Nv5UPAAAAAKiSkuqtzp+S3D4AAPXHS5BHbuTF9QAAAE2OP4FgtBETa78PNCm5mc7jm3dYLV7jvq532+T0g/pnbnwmzgV7PGcbMFJq3yWyrvsAmSjP3UxKqjRhqhSI/TqfmXJa6P9AikxmC5ncfELRAAAA0Cy1bt067LioqCjuPfZc06pVqxr1BAAAAAAAAAAAAABAU0QwGgAAAACgiocLIeOqAwA0QiZ2SQ7BaAAAoBnw+eNeYs65OQmNoCnJzXAeLyqWFq+xjnM5GVJBiyQ2hXplAikyLyyXuvbztmCPMGvj98v85s9SalrVYGq6zG//Evvc7bvKnHpl9KLeQ6WDT/LWGwAAANDEFRQUhB0vXrw47j2+++67sOM2bdrUqCcAAAAAAAAAAAAAAJqiBP7MOQAAAACgyUpJ9VZHMBoANF2+GH9LISdfpvoF9wAAAE2VP85gtBETZXoMTE4vaDJyM53HNxdLi9c4z/VuKxnjIcAYjZbJayfd/6Hs5AKpvCxGceRzNjPul9L9H0kfvi4Fg9L+R8h06uXt3CddIg0aLfvRG9Ibj0nrfgpNtOkk8+urpInH8hwQAAAA2KVVq1bq0aOHlixZIknavHmzvvnmG/Xr5zHoWNL8+fPDjkeMGFGrPfL8EQAAAAAAAAAAAADQFBCMBgAAAACoEvAYjObn6SQANFkOF9mHyW9fN30AAADUN198wWjmpN8nqRE0JbkZzuObd0jfr7GOc73bclF7c2DSMmRP+r304HXRC13CrE23/lK3/omde/B+MoP3k868NqH1AAAAQHOy3377VQajSdJjjz2m666L8Th+l2+++UYLFy6sPE5PT9fee+9dq/2lpYUHG5eUlNTq/gAAAAAAAAAAAAAA1IUYVzkCAAAAAJqVFI/BaAGC0QCgyTIxQhcKCuumDwAAgPoWTyh4597S4LHJ6wVNRm6m8+PtdVuleUscp9SrbRIbQoNicvI8FPFrHgAAAEB9Ovnkk8OO77zzTq1evdrT2ksvvTTseNq0aRFBZjWVm5sbdrxq1apa3R8AAAAAAAAAAAAAgLrAb8wCAAAAAKp4DkZLSW4fAID644vxkmEewWgAAKCZiBWMlpMfqhk2Xua212ViPY4CJBXmOo+XB6U1W5zn9uoQI7wYTUdOfuwa7msAAACAejVhwgQNGTKk8rioqEjTp09XFVSUYwAAIABJREFUcXFx1HW33XabXnzxxcpjY4wuuOCCWu+ve/fuSk2t+rn/3LlzVVZWVuvnAQAAtcdaq29XWd3xdlB/fiNY3+0AAAAAAAAAANAgxPFnzgEAAAAATV7AYzBarIvDAdSPbv2lpV9HjnfoXve9oNEyxshGK8hvX1etAAAA1K/UNPe5fSbJ/PklqaxUJi297npCo9enbXz1qQFpYt/k9IIGKKd17BpDMBoAAABQE6tXr9ayZcsSWtu1a1dJ0gMPPKBRo0aptLRUkvTuu+9q7NixuuuuuzRy5MiwNevXr9dVV12lu+++O2z8kksu0aBBgxLqI5rU1FSNGTNGc+fOlSStWLFCU6ZM0VlnnaVevXopMzMzrL5du3ZKT+e1DQAA6tqWYqs3v5be+Nrq3/+1WrExNJ6XJV04ycrv4w9mAAAAAAAAAACaN65kBwAAAABUSUnxVuf3WAegTpkTL5G99pTI8V9fXcedoNHz+aSg818hNtkt67gZAACAetK5j/tcRpaMzycRioY4ZacbdWwl/bjJW/3EvlLLDC6AazZy8mPX+AhGAwAAAGpi+vTpCa+1NvSnZYYNG6Y777xTZ511loK7fp6ycOFC7bvvvurZs6cGDBig9PR0rVy5UgsWLFB5eXnYPpMmTdK1116b+DsRw4UXXlgZjCZJc+bM0Zw5cxxr586dq/HjxyetFwAA4Gz+EumYf0T+XsaG7dKnK6QRXeu+JwAAAAAAAAAAGhJ+YxYAAAAAUCWQ6rGOYDSgQdr/SGnEgeFjIw6Uxk6pn37QeJkowQtpmXXXBwAAQD0yuflSx57Oc/1G1HE3aEr6tvNeO2UwoWjNSkGH6M/HpNjzAAAAAOrE6aefrqeeekrZ2dlh4//73//04osv6qmnntL8+fMjQtFOPfVUvfrqq0rx+kfLEnDYYYfpuuuuk9/vT9o5AABAzYzrJaUFnOfOeMT5D9kBAAAAAAAAANCcEIwGAAAAAKiS4jEYze/yW1kA6pVJS5e58VmZWY9Jx18kc/WjMn96TiYto75bQ2NjorxsmE4wGgAAaD7Mib9znhh5UN02gialTzvvwVajehCC1ZyYVgXSsPExirhNAAAAAA3F1KlTtWTJEp133nnKz893rUtJSdFBBx2kefPm6YEHHkhqKNpul112mRYtWqQ//OEPGjdunNq1a6eMDH5mCABAQ5GZZjSul/PcFz9KvjMqNPKGCp37RFAfLrGy1tZtgwAAAAAAAAAA1DOuZAcAAAAAVEnzFnZjAsn/RW0AiTFp6dKEqTITptZ3K2jMfASjAQAASJImnyQtmi+99nDo2B+Q+c1NMj0H1W9faNT6tvNe27MgeX2gYTIX/U32+IHuBdGerwEAAACIsGzZsqTu36ZNG91+++269dZbtXDhQn377bdat26dSkpKlJ+fr44dO2q//fZTixYt4t776quv1tVXX51wb/3799eNN96Y8HoAAJBcBw0wevMb98Czj5dJHy+z/8/enUfLddV32n92zXcepCvJlmTLxgg8QGyMwRiS2C95ISFkaKATArwMTQIhhMQdIAkdXmKMkyYJazUm6SyGJoZOdwhTAoSX0A6TAYMbTAPG4NmWZE1X0p2nqlvDfv/YV7rz1ZV0Bw3PZ61aVWefffb5nVOnbg23zrf4r1+NvP0XAzf/ij+aIEmSJEmSJEk6dxiMJkmSJEma1tG9vH4Go0nSWW6JL9MWm9auDEmSpHUWslnC2z5I/I3/CAd2wZOvJnRtWu+ydIZ78pYALH6y21Hbu6C56Ilu55qw/YlLHx3BYDRJkiTpdJTJZLjmmmu45ppr1rsUSZJ0hvj5KwJv/dTxPysGuOX/i7zqWZEnbPIzY0mSJEmSJEnSucFvzEqSJEmSpnVsWF6/bHZ165Aknb5KzetdgSRJ0poLOy4lPOsXDEXTinjaBRCWce7azs2rX4vOQBm/5iFJkiRJkiSdDS4/P/DkLcvv/7UHlxeiJkmSJEmSJEnS2cBvzEqSJEmSprV0LO/kylx+9WuRJK2f2uTi84oGo0mSJEmnoqslcOPPHT8Z7Ymbl5GepnNP8GsekiRJkiRJ0tnia29Z/ud9R0ZXsRBJkiRJkiRJkk4zfmNWkiRJknRMyGSgrev4HQ1Gk6SzW6Ox+LySwWiSJEnSqXrPS44ferZz8xoUojPPcn7UQJIkSZIkSdIZYVN74P53ZXhCz/H7Dk2sfj2SJEmSJEmSJJ0u/MasJEmSJGm29u7j98kajCZJ56xS03pXIEmSJJ3xQgg8//Kl++zcfPzwNJ2Dgl/zkCRJkiRJks4mOzcHfvLODN/9kwyf+93FP/8zGE2SJEmSJEmSdC7xG7OSJEmSpNk6Nhy/Tza3+nVIkk5Pxeb1rkCSJEk6K5zXsXjwWSbAtRevYTE6c2T8mockSZIkSZJ0tsnnAldfGHjhUwOvvm7hz46HDUaTJEmSJEmSJJ1D/MasJEmSJGm25rbj98nlV78OSdLpqWQwmiRJkrQSLtq4+LxrdkB3y+LBaTqHBb/mIUmSJEmSJJ3N2psWbh+aiGtbiCRJkiRJkiRJ68hvzEqSJEmSZisUj9/HYDRJOncZjCZJkiStiOdeunjw2b+7ylA0LSJ4bEiSJEmSJElns45Fg9HWtg5JkiRJkiRJktaTwWiSJEmSpNnyywhGy+ZWvw5J0mkpGI4pSZIkrYhrL4KtnQvP++WfMvxKi8j4NQ9JkiRJkiTpbGYwmiRJkiRJkiRJBqNJkiRJkuZaTjBazmA0SZIkSZKkU5HJBP7yJfMD0P7DcwJPPs9gNC0i+DUPSZIkSZIk6Wy2WDDa4Pja1iFJkiRJkiRJ0nryTHZJkiRJ0mzLCkbLr34dkiRJkiRJZ7mXXhNoLgRu/VKDcg1e9LTAm24wFE1LyBiMJkmSJEmSJJ3NOpoCEOe1949BjJEQ/AxZkiRJkiRJknT2MxhNkiRJkjRboXD8PlnfTkqSJEmSJJ2qEAK/ciX8ypXZ9S5FZ4pgMJokSZIkSZJ0NtvSvnD7aAUOj8CmReZLkiRJkiRJknQ28RuzkiRJkqTZ8sXj98nlV78OSZIkSZIkSbNl/JqHJEmSJEmSdDbbuXnxeQ/0rl0dkiRJkiRJkiStJ78xK0mSJEmaLV84fp+swWiSJEmSJEnSmgt+zUOSJEmSJEk6m/W0QWfzwvMe7I1rW4wkSZIkSZIkSevEb8xKkiRJkmbLF4/fJ5tb/TokSaeflvb1rkCSJEmSzm0Zv+YhSZIkSZIknc1CCOzctPC8Pf1rW4skSZIkSZIkSevFb8xKkiRJkmYJywlGy+VXvxBJ0umnvWu9K5AkSZKkc1vwax6SJEmSJEnS2a6jaeH2an1t65AkSZIkSZIkab34jVlJkiRJ0myFwvH7GIwmSeema35uvSuQJEmSpHNbxq95SJIkSZIkSWe7XHbh9prBaJIkSZIkSZKkc4TfmJUkSZIkzZYvHr9PLrf6dUiS1s8v/YcFm8PL3rzGhUiSJEmSZglhvSuQJEmSJEmStMpyi5ztVWusbR2SJEmSJEmSJK0Xg9EkSZIkSbMtJxgtazCaJJ3NwiveCj1bZze++HcIW5+wPgVJkiRJkpLg1zwkSZIkSZKks10uu3C7wWiSJEmSJEmSpHOFZ7JLkiRJkmYrLCMYLZdf/TokSesmnH8xfOAb8OVPEHsfJ1z1s/DTv7zeZUmSJEmSMgajSZIkSZIkSWe7XCYAcV57rb72tUiSJEmSJEmStB4MRpMkSZIkzZY3GE2SBKFnK7z0PxLWuxBJkiRJ0jEh+C5NkiRJkiRJOtvlsgu31xprW4ckSZIkSZIkSevFYDRJkiRJ0mz5wvH7ZH07KUmSJEmSJEmSpLNXCOEi4ErgfKAVOADsBr4VY6yuY13dwNOBi4BOIABDwF7guzHGg+tVmyRJkqSVkV3k9xFq9bWtQ5IkSZIkSZKk9eKZ7JIkSZKk2ZYTjJbLr34dkiRJkiRJkiRJ0hoLIbwE+APgWYt06Q8hfBx4R4zxyBrVFIBfB94IPOc4fb8PvB/4uxhjbQ3KkyRJkrTCctmF2+uNta1DkiRJkiRJkqT1klnvAiRJkiRJp5l88fh9sgajSZIkSZIkSZIk6ewRQmgNIXwM+CSLh6IBdANvAO4NITx/DeraAnwZ+BjHCUWbchXwAeCuEMIlq1mbJEmSpNWRXeRsr5rBaJIkSZIkSZKkc0RuvQuQJEmSJJ1mCssJRvPtpCRJkiRJkiRJks4OIYQs8HHgBXNmHQa+DwwBTyCFjoWpeZuBz4YQfi7G+M1VqqsH+Crw5DmzqlN17QYawDbgaqA0o8/VwFdDCM+JMe5ejfokSZIkrY5cduH2usFokiRJkiRJkqRzxCK/ISJJkiRJOmc1tx+/Ty6/+nVIkiRJkiRJkiRJa+PdzA5FqwJvArbFGJ8fY/y1GOPVwBXAt2f0KwKfCSGct0p1vZf5oWjvn6rrmVN1vTTG+BzgvKntmBmVsA34wCrVJkmSJGmV5BY526tWj2tbiCRJkiRJkiRJ68RgNEmSJEnSbBfshKaWxeeHQMgu8pOUkiRJkiRJkiRJ0hkkhHAx8Ptzmv99jPFvYoyTMxtjjD8BnsvscLQNwJ+uQl07gJfNaf7PMcY3xBgPze0fYxyMMb6N+dvy/BDCM1e6PkmSJEmrZ9FgtMbC7ZIkSZIkSZIknW0MRpMkSZIkzRIKRbjyZxbvkMuvXTGSJEmSJEmSJEnS6vpTYOY/wD4SY/zsYp1jjBPAq4GZoWmvnQpYW0m/NGe6F3jnMpb7r8A9xxlLkiRJ0mkst8jvltbqa1uHJEmSJEmSJEnrxWA0SZIkSdJ87d2Lz8vm1q4OSZIkSZIkSZIkaZWEEJqAl8xp/ovjLRdjfBD4zIymHPCyFSwNYG7Q2u0xxsrxFooxRuBf5jQ/ccWqkiRJkrTqcouc7fWFe+H7eyKTtbi2BUmSJEmSJEmStMY8m12SJEmSNF++uPi8XH7t6pAkSZIkSZIkSZJWz/OB5hnT344x3r/MZW8Dfm3G9IuAW1aqMKBlzvTeE1j28TnTXadYi3TWGh8f5//8n//DQw89xJEjRyiXyzQ1NbF582Z27tzJVVddRaFQWJF17dmzhw9+8IPccccdPPjggwwMDFCtVo/Nv+2223j1q1+94LLf+c53uO222/jWt77F448/ztDQEI1G49j8xx57jB07dgBw/fXXc8cddxybl/ISJUnSmSSXXXze1bc0aC3C+34j8OrrFklQkyRJkiRJkiTpDGcwmiRJkiRpvqW+2J01GE2SJEmSJEmSJElnhZ+fM/21E1j2G0CN6e9hXhVC2Bxj7F2JwoCDc6ZLJ7Ds3L79p1iLdFap1+t84hOf4LbbbuOrX/0qtVpt0b6lUonnP//5/OZv/iYvfOELT3qdH/rQh3jTm95EpVI5oeVqtRq/8zu/w4c+9KGTXrckSTrzZMPS80cr8NqPRn5qW+SqC47TWZIkSZIkSZKkM5DBaJIkSZKk+XJLBaP5VlKSJEmSJEmSJElnhSvmTH97uQvGGMdCCD8CrprRfDmwUsFo35gz/bQTWPbqOdPfPcVapLPGV77yFd7whjfw4IMPLqt/uVzms5/9LJ/97Gd5+tOfzgc+8AGe9rQTeTjCF77wBV7/+tcTYzzhev/kT/7EUDRJks5Btcbx+8QIV9/S4JZfDRRz0NUMEcgEKOagszkQIxwcjtQbsL0r0D+ebk/WoJBLbddeDE0Fw9UkSZIkSZIkSacXz2aXJEmSJM2XLy4+L5dfuzokSZIkSZIkSZKk1XPpnOmHT3D5R5gdjHYZ8JVTqmjal4EHgCdNTf90COGpMcZ7lloohLAVePGMpirwsRWqSTqjvfOd7+Sd73znvICyEAKXXnop27ZtY8OGDRw+fJg9e/bMC0+7++67edaznsXf/M3f8Fu/9VvLXu/b3va2Wet82ctexmtf+1q2b99OPj/9//eNGzfOWq63t5f3vve9x6YLhQJ//Md/zAte8AJ6enrIZDLH5m3btm3Z9UiSpNPfPXuXH6j69s8s1ndu+0L9Ils74V/elOHK7YajSZIkSZIkSZJOHwajSZIkSZLmyxcWn5fzraQkSZIkSZIkSZLObCGEbqB7TvOeExxmbv8nnnxFs8UYGyGE/0AKWisCGeBTIYTnxRh3LbRMCGEz8BmgeUbzLTHG/StVl3SmuvHGG7n11ltntbW1tfG2t72Nl7/85VxwwQXzlnn44Yf5yEc+wnve8x4qlQoAk5OTvO51r2NsbIwbb7zxuOt94IEHuOee6TzDF7zgBfzP//k/l1XzZz7zGSYnJ49N33LLLbz1rW9d1rKSJOnMdtUFgc/fs/xwtFOxbxBe9XcNfvCODCEYjiZJktZHoxEJAV+PSJIkSZKO8Wx2SZIkSdI8IV9c8PchAcj6VlKSJEmSJEmSJElnvM450+MxxrETHOPQnOmOU6hnnhjjt0IILwT+AeghBa/dE0L4MPBFYDcQgW3Ac4HXARtmDPEB4F0rWVMIYdNULSfiCStZg3SiPvrRj84LRXvOc57Dxz72MbZt27bocpdccgm33HILr3zlK3nxi1/Mvffee2zem9/8Zq688kquv/76Jdd99913z5p+yUtesuy6T3bZr33ta8tehyRJOj096+IAi3+Db8X9aB9c+58b/PwVgQDs6Yf//u1II8LPXw5HRqGrGbpaAs0FyGQgTpXXXoLmAkxUodaAfBZKORguw8GhyCWbApkAlRq0N8HeARiZgJ1b0vJjFSjkoKUAoxUo5uDaiwPPv9xgFEnS4sYrkb+/K/IvP4zs6YfJOjQi1BvpuqMJrtoeeO6lUMwFclnIBMhmYKwSOTAEh0dgfBLqESpVGByHliIcHonUG9BahHwuPTcCNBVgSwf0tKZxchkIIT1PDo6n9Y5PQu9w5JkXBTIZ6G6G7d2BzmZoNKB/DA4MRXb3Ty/fPPUcmMvA/sE0VqmQnhsv3AAHh2BgPG1bSzE93w6OwWQ98r3dabt+7rJwrKamPAxOpOfY0XJk7wA8eiQ9V+/YkPpM1tPz9fmdacx6A3b1wcRk2sZGAx45DDs3wyWbAyMTUK2n/ZL2RWCkHDk0AvsGoJSHC7rTfm/E9DqhMXUZKad1V2pQrUMg1ZfLpNcAlWqaPzSRXlc8ZSu0lVLb3oG0f7e0w9hk2qYQ0n4EuOJ8uPz8wK9cCT+1PTA8AZ3N0+NO1tN6K1Prz4R0P5anphsNGC5H7juQXv/0jUbK1VTno0fSvu5qTnU9chgOjaTbF26A8zrgkk2B8ztTrfsGoFaHwYnIdx5L+2THhvSaqDH1uqlWnz6W6o10HI2W0zFwxda0T/vH0vHQ1Qyb2gOXbErb31pM6+tpg/sPpnEu6UmvvfYPpX0yPhmPratcTcdOrQH3H0jHy2Xnh2P3TT6baizmUl2tpbRtMcKOjYHLz0/HY0dT6lPKw4GhtP8na+n20ERa57auwAXdaTvy2VT/WCWtZ3N76jtSTvf9ldtTv/sPphqbCulYyGamH1czr7OZtD0HprYFOPaYDGH6diaTbmdCas+E2bfnXs9qm7P8QmMZ2idJkiStD89mlyRJkiTNVygsPi+XX7s6JEmSJEmSJEmSpNXROmd64iTGmLtM20nWsqgY45dCCJcCNwIvBy6aun3jEovdD7wjxvjJla4H+B3gT1dhXGlVPPjgg/zu7/7urLbrrruOf/3Xf6W1de6fgYXt3LmTL3/5y1x//fXcd999ADQaDV7xilfwgx/8gI0bNy66bG9v76zppYLYVnJZSZJ0ZvvZnSno4979a7fO7+6C7+6aH8b2xR/PnDqZsLaTW6a9BC97ZqBcTSEzh0ciE1XY1AYXbgiMT6bwksMjKTylEVMISimXgk4KuRTusq070FZKAR6TdXjscDwW9HI0rCUToG8sBeRctDEF0mQzKXwjE1IQSXMBeochl03LDE2koI8t7bChJYW1DIxPh+7EqXCeo0EihVwad6Kawkc6m6dDP0r5dD1amQ4O6WhKASl/9ZLA1i5DOCRppsla5Pr3NLh799L97tkb+ei34dTCRk9u2X/+/szlVj/s9L99Y3nreHD2Rw0LvtZ4aMZPQRwchq8/tNDY89t29S2rhCUNl+HOR+a3Dy3yye29++He/ZGP371wTSth/+Ds6eFyCpX90T64/SdLr3NP//LX8/3Hl7OfT20bZx+XSznR9axdoO96WzBsjRSmdiIha4sGty0x1moFvmVCWHLMcFJjrmR9J7uvlt6uZdUyZ8yhien3JfksdDUHWoopZLE+9fr/aEDn9O04r32yDud3BJ53OZTygUYjjZnLQDGfXvvHGBmtpHUXsun4OzQV6NmIqR5I8za2pvcUY5XU1tEcODwSuXffVOhkU3ovUmtEelrT+6NsZvq9S72R3qd0NsElm9J7o3v3pfU8/cIUkD1TvRHZP5jq7WiCfYPpr8CevvQ3MpuBkXIkn4XWYmC4HGkrBdpLs0NMq3X40b5ItZ7e041Pwq4jaTuO1relI91+5BBUaik88pkXp/DGGFPAYrmW3vsdvR1jGq+9lLa9rRjS9ay2FAiZzfheS5Kk053BaJIkSZKk+XIGo0mSJEmSJEmSJOmsNjcRqXwSY8w9JW95KUsn7uh3PSvL6Pst4CbgS6tUi3RGectb3sLo6Oix6c7OTj796U8vOxTtqE2bNvGpT32Kq666isnJSQD27dvHu971Lm699dZFl5u5boB8fvn/bz+VZSVJ0pmtqRD419/P8I7PRb5yf2R7F7z9FzP83Z2RT9x9bgRPDJfh/Xcstq0nsg8W7vvI4YV7HxlduH0hI2V4+NDx+52MxwdS0MsdD0buvSkzL4xAks5l/+VL8bihaJK0GhoRiFBf70JW1Nn6/mIttmvlgzfbSymgeXzyFIY+ifUuJZ9NIWalPDTlUyD0ia9v5e6PhQM7l1PDfC3FqbC00lRw2lRoWntTCpCb3QbtpbBAWxonBN+zSZK0GgxGkyRJkiTNVyguPi/rW0lJkiRJkiRJkiSddU7mrIxVP7MmhPBbwH8BWpa5yHXA7cC9IYTfjjHeuWrFSae5+++/n89//vOz2t797nezZcuWkxrvsssu4y1veQt//ud/fqztwx/+MDfddBNdXV0LLtNoNE5qXae67Er4yU9+wo9+9CP6+voYGBigVCrR09PDpZdeylOf+lSKxSW+V7CEWq3Gd77zHR599FEOHz5MpVKhp6eHHTt28OxnP5tSqbTCWyJJ0plpa1fgw6+afWL1cy+FG54En/lB5Mf7oTZ1cvrYJLQWU1DD4ZF0En0+CyHAZG2dNkAr4sAQ/N2dkd+9AfrG0kn3gxOwuQ3yucBkLXJgKB0LG1vTm9QHDqa+h0ciTQV48pbAkdEUZpDLQDGXjpn+schoJbXHqWPnyChcfSF0NAXqDWjESLmajqULuwOVWjq+6g0Ymojcsy8da8MT8Hh/ZGAculugqzlQKkDfSCQCm9oDuQxkM9DRlLZttAIXbYRrLwp8b0/k8X44PAqDY+mt9iOHoVKD518eaMQURHdeBzQVIJDmPXYkHeMb21INh4bTNm1shV+5MvArVwYOjUD/1L5rRHiwFwo5ODIaGZqAickUZJDPpkC+GNM21hpQyqWxmgppfZO12dfDZegfhSduTmMf3TdHL0f75rKwbyBtVyEH3S2B8UqkuzVtW62e+hVyUMxDcyHtpyOjabsyIe3vah02tAQ2tMJEFXqHIk2FQDaT7sdyNVLMBc7vTPs6E9L9PVqByTp0N8P/fVng2ZcY2nCmiDEeC9mo1SMTVdh1JB1z5WoK6wikY3F8Mh2HMU5fl6spsGNwPIWYhJDaW4vp+Mpm0jFeb6TH10g5PQ7z2dSn3kiPhVo9HWMHhqBSi/S0pcd0vZHGmKimxxikdUCq6+h0tQ5jlVRPT1tapphLj830tyb9/ao30vPa8AR0Nqf2C7pTzRHYsSHV9uFvnq0hPpKkc93wyfyEzyqrTiUBlqvpcjYZq6TLgaG5c04spDuEFJR2NDTtWNBaCdpKgbZ5bSlkrb1pbtvU+x1D1iRJOsaz2SVJkiRJ8+WX+AJzzl+hliRJkiRJkiRJ0hlvdM5000mMMXeZuWOekhDCnwC3zGm+G/hb4BvAfqABbAGuBV4H3DDV7wrgjhDCa2OMH13Bsv4W+OQJLvME4LMrWIO0LLfeeisxTp+otHHjRl7zmtec0pg33ngjf/VXf0W1ms4AGxsb40Mf+hB/+Id/CMCuXbu46KKLFl3+hhtuWLD9tttuA1iyvsVOhnrsscfYsWPHsenrr7+eO+6449j0zH1wPI8//jh/+Zd/ySc/+Ul6e3sX7dfU1MQNN9zAq171Kl784heTzWaPO/Z9993HLbfcwuc//3mGh4cXHfeXf/mXufnmm9m5c+ey65Yk6WTFx34CBMJFl653KcuSzQRe/7OB1//s0v2qtUg+N/u1w8RkCtT54r2RV3zYQJkzyVs/FXnrp+bfZz1tKezoaFDB4lYqB/xExpnbd6lllx73/oMnd7z+yz2R3/zvp+uxHudcn8yyy52e7ebPp/ndLSkEAqZD00pToWwT1RSy1VKA5zwxheS1FNO8o8v0j8VjYVn7BlOIVXdLCngbraS2egMKWajH6bC4Yg62dEyHdzUiNBrTt+uNFM5VjynYraNpOpwL0nQuk8InxiqpfbSctnqylsYYLqfbT9qcQr8mqtPLj0/CoeEUONFegs3tsKktzZuoptoHxuD8Tnji5sBl58GmtsBIJdI7PB0Qdng07a9aPQXfNeXTOsu1FBgyOXU9PpkC+OpT69/cDtmQgg3HKpHzOgMTkzBaTqF+I2XYPwR9U2GGldM23PJ0fWxJkiStvTj1GnS4nF4Hz5m72FILtmYz88PS2pumgteawry2FK4WFmhLr70NWZMknekMRpMkSZIkzZcvLD4vazCaJEmSJEmSJEnrOTk3AAAgAElEQVSSznindTBaCOH/At41p/km4OY4P+Vo19TlH0MIrwPeDwQgC3w4hPBwjPHOlagrxngIOHQiy3jShdbLF7/4xVnTr3zlKykUlvhf+DL09PTwS7/0S/zTP/3TrPUcDUY7U8UY+bM/+zPe9a53MTk5edz+ExMTfOELX+ALX/jCvGC2uer1Om95y1t43/veR6PROO64H//4x/n0pz/Ne97zHn7/93//RDdFkqTjiof2wpc+TvzwzTBZhpZ2+MxuQql5vUtbMXND0QCaCoGmAvza0+F9X458Z9fa16WVdXhkvSvQmax/bPZ039jCfT72nZUPwNrVt/y+ewdOfj0P9KbLQobL0DsMDy3yCce9++H2n5xKgN3xrObYkiRJOlPVGykAe3B8obknFrKWz84IWJsRmtZeCrTOazsaxBam+88IaCss8DmDJElrwWA0SZIkSdJ8+eLi83K+lZQkSZIkSZIkSdIZb2jOdHMIoSXGuMCpwIvaNGd63u/An4I/I4WbHfXRGOM7j7dQjPGDIYTtwNunmrLArcDTV7C2M1atHk/ppGot37YuyGXX70SZvXv3smvXrlltz3ve81Zk7Oc973mzgtHuuusuqtUq+fyZ+SNjtVqNl770pXz605+eN2/Lli085SlPYePGjVQqFXp7e/nhD3/I6OjyciAnJib41V/9VW6//fZZ7fl8niuvvJJt27ZRLBY5ePAg3/nOdxgfHz9W04033sjAwAA33XTTKW+jJEkA8ftfJ952C/zg6zAza3hsmPjaZ8LffIXQ1bN+Ba6yODoEfQfIdm3iK2/u5NZ/a3DXrsDYZDpZenwSJmtQqcEPHp+97JM2w4ZW2NQGzYX0Gi8EKFcjvcNQyEEpBxNVKFehlIf9g2nMXDZNdzfD/qEU5rW9G2p1aCmm60aEnxxYh50iSTqrvP8VgU99L/Kl+2a3ZzPQWkxP//WYAkfyWbigO1329EPfaHpeuuw8uGBDIJ+FoQkYLUPvcKRSg7FKGqvemB6n3kiBIT1taf6djyyv1p426GlNz5sT1fS8el4HDIzBo0dm1z00kaafug22tKfn2KGJFIFSzKXn51oDmvLQVIBGAzqaoL05bUcpB90tabyxCoxW4J69keYC7NwcqMdUx8GhSC4DI2XIBOgdgc1tsKE1BaQU85AN6Xl7oppCUoq59FyeyaTXEZCWzYS0TZmQXge0ldIHnYdG0jYV89NhLYUcFHOB/rHInv70WqGtlO6P5gK0FKBcg919cGg4tT9yOPKNh07teAkBcplU4xN6YOdmaC0GNrWnfdtSSLX2jaX901RI+68RU11DE/B4f6RvNL3e2daZQmN29UWyGdjSHjivM61rU1va/7lM6lupputHDsMPH49pPzbggu5AMZ/uw/sOpM8x+8fS/p5bO8x+SduUT6/jGnF6+gk9qdbeEajW0/HT2QwTkzA4AcMT0NWc7oOBcXjsyIntw6OPB0nS6alaT89j80OQlwrnXXheMbdIkFpToHVeuBq0lcICbemynv87kiSdeTybXZIkSZI0X26JL2xnfSspSZIkSZIkSZKkM1uMsS+EMAB0zWi+ALhvkUUWcuGc6VM8HS8JIWwFrp3TfNxQtBneDbwZaJqavjqE8NQY4z0rUd+ZbO8AXPyfPFtvLTz65xl2bFy/9d95553z2p7+9JXJB7z66qtnTU9MTPCDH/yAa665hm3btvHYY48dm/fe976XW2+99dj0xz72Ma69du7DGzZuTDvr+uuvP9b20pe+lP/9v//3semZ4860bdu2k9qOo9785jfPC0V7wQtewE033cQ111wzr3+j0eCuu+7iH//xH/nIRz6y5NhvfOMbZ4WidXR0cNNNN/Ha176Wtra2WX0nJib427/9W97+9rdTLpcBuPnmm3nmM5/JL/zCL5zk1kmSNEO1At+/Y+F5ex4k/vI24q++DiYrMNwH9To0tcLAoZQ+0bWJ8LP/jnDDi1aspBgj3P89uPfbxEN74fB+woVPJpbHoNhEyOag1AytnTAyAK0d0LUJJkZhZBAGj0BXT0rFaGpJP4gaGzA6BCODxN7dcHAPPHYfHJpOOysBfwTQvQWe91LCb91MKCzxY6prZHdf5K/+V+SbD6cgkPM7UkjJ4AR88+EU0Lap7WhQSqC5yLHAl3ItBXMEUkjH4/2RpnxqbzRS4Ee9AQeGUrjIBd3Q1ZxO1K41oG80hbFsboNrLgqEkMJpKlMhL22lFDLTWkwBL8PlFCoyPpmCRNpKKVgEUttENQWq5LJToTeTKXTnyGhk55bAhpa03rEKHJkK47ntzki5uujukSQt4ZOvz/DiqwOv+5n0/HpgKD1HbGyFENY2fCPGeGydk7X0t/1oWFg2MxWQdZxAkEYjEoFs5lwKDjnxbe0djjzUm56HxyZT2FyY2s/F3OxLLguD4ynQbEsHlPJnzr6NMfJg7/Rrjgu60/F0eGR6W3vaTv1YjzHyo31w775IPhtoKqQgm3w2vY7a3D79+uVJW1LoTaMR2TeYgvFqjbSPJ6pw0cbUb/8gnNcJl/TAwWF49HAK6qnU0njbuqZCCxtp+ZnXR2/X6inQrbtlOgwuMuN2TNONmG7PvF6oLZJeH868PXf5BZc7qTHjiY85p6aF6lup5ZfalrjAWMeWm/obtS77fIWXnzvWyZj5933m7WxIwZFH/+QfHD658c9UIaR9Wsilx/3R/Xs0OPPofVLMpfDsXCb1a8rDvftT32IuhZbuH4Le4enlN7SkfqWpy8zbMcJIJQV9Dk+k924j5engSJ2cSi097xwemTtnsR27+A5vLswOS2svTYWulcKx8LTpNmifap/dlt6fZ86p10qSdG7ybHZJkiRJ0nxLfclpqdA0SZIkSZIkSZIk6cxxH3DdjOlLOLFgtIsXGG8lXDln+tEY42PLXTjGOBZCuAu4YUbzM4FzPhhN5469e/fOmt68eTMbNmxYkbGvuOKKBdd3zTXXkMvl2LFjx7H2zs7OWf22bNkya/5cra2tx26XSqVZ85Za7mTdfvvtvO9975vV9u53v5s/+qM/WnSZTCbDddddx3XXXcfNN988r86jPvnJT3Lbbbcdm77wwgv52te+tuh2NDU18eY3v5lnPetZPPe5z6VcLhNj5Pd+7/d44IEHyGQyJ76BkiTN9LQbUhBY/8HF+3zmg0sOEb/8CXj9LYRXvPWUy4nVSeI7Xwl3/PPs9kVur4r+g/CP7yX2HyL8v7cdv/8MsV6HRj19n3DwcApqO/9iGOmfDm4b7odiE2zeDhvOB6bSBvoPpvnjIzAxli7DfVzQd5C/zmThsrZ0f1102ZqH2aynZ17U4NW3eba+JJ2oi7O9vOAbt9L43L4UbprJsqXUDLkCcXyYODYCLe0wNgy1agoTLRThwG5o64Tx0XR99Lktm4Mj+4EI2TxUJ6HUlAJTi1MpmF09afrwXii1pOe7fAE6U/B5HBsm9Gwlf9kzyG/YAn0HoFKGoT4Y7p/9fD86lFJe6jVCezexPA7jI4Rsjgakeob70nNnow5NbSnwdbg/BaI2tabrfY/CxvOgrzfVkc1CrQZbnwAP/xAKpbR8rZqCVtu709gToylcNV+E8WHY+0ja9tzU9ux/DHbfn7bvBa9Mz+UT43B4H9RrKbi1tSPt4wO7UnBrvZa2iZCuj14KpdQvNqBjYwqALTal+6AynvZv34F0X1UraazKRKq5Vk1hsY36VOppkZ62LnrqNSiWpu+/Rn327UYd6g1iSxsdnT10bN4OIUPj6GuMRj3V25j6MYWRgVRnvQb33gXdm+Dya9P+nrr/UqpPBtq6p7ZzSiaT9sXYcNpf+WLax7XJdN1oTK+vfvS6loJsx4Zgw5a0b4+Oc8GTCBddBlsuYGf35rS/hmqwvwa1KheWJ2B0EM7bARvPIx7ck+prNGbs90xa/8Ah4lB6fFCZSP36DsL2S9J2VCZg4BBXVCa4oqkVymPp2C41pWVCSPfHwKH0+q86SWPqvt5ar6Vw4WolbUeukI7LEHjyxGjaHx0b2N7cyvZIegxOltNjIpOZPk4yIa1r41YolgjXvwg6NqT7vjqZjpsYob+XeGgvYdO2tM+6NqVxZqZaHbsdZ0/PvV5O37m3T3acuMAr/VOp61jKFBDmtGVOcp3H7bNAfae6nccbbznrnNEnHq/PQvt4xvWxQDgCjRiIMdIgEDM5stlAMZ+l0dSajslalWwum/7eZnPpsZHNTV9mTWfJ/v0vzt/uKR961j10jB+g0dJJpWUDBWpsyo/TnJmkQoFGtQqZDDtaxskXcsRaDRp1+icL9B4uM1ZpkG9ro5Zvolxop1TI8JSWw5yfH2GYZpoH99EysIdKI0ulPEnjyEHquSKN5g4aA0fIDRzksZYn0t9opVQe4MLKboY6L+CBrmugtYPYtZl97U+iXM9Ao0FbY4Se7AitXe3Q1Eq2VqaVca7oGCJfK1MsD5KrjlOu5yiWB2mQIVz0ZEJlgpDJQHsX5PLEzs3EiTEyI33pPjq8P/1tqlVhdJD4wPfTc9BkBZ74U4TLnwlbL05/b6qTMDZC3DX1r7lMBqoVQltX+tswI3Azxsh4PcdILcdwLc9wNc/IsescI7UCw7X81PwCI9Xc1PRUv1nXhUXvRy3P+FTIeO+8sMATD1lrzU7Snp2kLTtJey5dt2UnyYbIUK3IcL1AyOXpLlXZ1p3h4s4qV5b2siE7znjrFvbX2jk8UOWi2m66myOPNzYyXoXNrQ1am3I82lvl4GQrFErkMpFaI1Cv16k1MtTzTdQi1Kt1apk89RhoCxM0F+BArZ09IwU68jV+6RnNvOTqsO6fb8RGIz1PZ7LQ3JZei4wPp+fgkQHo2EhoaSdWJ9PrgnoNHn8ovSaA9JlPeze0tK/ptsRGI4X9T4ylv6f5ArR2Eto6j7+wpLOCwWiSJEmSpPnySwSjFZsWnydJkiRJkiRJkiSdOe5ldjDas4B/Wc6CIYQW4KkLjLcS5n6Te4nkhkXNXWbjSdYinZH6+/tnTXd1da3Y2KVSiWKxSKVSWXR9Z4qbb7551vRv//ZvLxmKNtfc4LejYoyzxs7lcnzuc59bVrjb0cC1P/zDPwTg4Ycf5jOf+QwvetGLll2XJEkLCbkc8bn/Hj7516c0TvzA24n9vYTOHigUoLk9BXlUJ1Nww8bz0wmmPefDob2pPZNNoSOH9hJ7H08nbH/lU7D34RXaulN0+z/QuP0fYMuFKVhi68WEHZcSa1VCNkccOpJqHTicTlQfPDQdHrJcISwcgHAc8eIr4NF7ob2b8Kq3QaNOHB8lNE+F0wz1pZNis7l00m6tmgJAzrsQrvxpQs/WE17nvBqG++HIAThvB6GpZeE+MaZ15/KzThCOjUYK/qhOpoCTo4b60v4MwKZthOY2uppPudQl5bORan3+ycuZAI0Zd01TPlLKQ4ZIvQFj1UCtDpFAJkSa85FcJjJYzh5bZmtnpCnXYFtH5NKtWcargdHhcfpG4fAIPLF1hGypyGQo8OhQkR8fzM6rA2BDC/S0waGhOhtKNTaWakyUazRqNbL1KiOhmdFajiJVag0gZNhSnGBLW51iU4GvP97Mkcnlf8d1e3uVbIBGJksx06CzNUuDQFMe7j8II2XY2AqFHBRz6bqQTbfzWegfh4ExqNRgSwec3wG5LGQDZDOQywYKWegfi0xUodZID51sBs7rCNQbMfXJpUOhfzxSyKZ91jeW9kc+CxtbA81FGC3DaCUei3hobwrks9P3X60OtUbkwBBU69BWgskafPM0+VOjs0Muk47llZTPQr0x+2/Rcm2u9XLbrt+geO9dK1vUCjiZqMtTjsd87Cfz275/x6mOmlQn4bP/bWXGOlnjI7OnD+5e/XWODMDuB1Z/PQCjQ7OnH75n9YNyv/ullR9zsjL/vhrqS5fl2PcoAPE7/7ZkN+NktRqmIh1Z6icaZs47kePwxk3/mfdu+P157ZdW7uM1f3ftCYw07Xxg/s94zHb0n0MRKExdFtK9QNtTTqqq6fUdPTNt0X2WyRAajeXtx4d+QPzCR5e13oU0T102L2ddS2gQGMu0MJxpZyTTynCmneFMG6PZNoYzbYxk0vVwpo3RTBvD2em2kaPLZNP1WKb1+CvUkkbrBUbrywyrO3D0xkKfE+xYmYLm/Ys3z//4QQQiT2I3bYzTzjhtjFNikjIF2sIEO3mcPHXy5WGuOng7143fRZ5aCmtt7YShIxwLrs0Xpl8zZDLTn8+EkM75bOuCXC71naykz6NGB2d/jpPLp88w5ohHx1nq85t8gdi1eToouDIBHd0paO2H30yfgeQL6fOxo0Gw2akQyfYNad7R0Nujl0Y9fUYyMZrW0dqRPp+arMCRfWmchWp92vWE17ydcOVPL+vekXRmMhhNkiRJkjRffokPBZvb1q4OSZIkSZIkSZIkafV8EXjdjOnrT2DZn2b2dzC/H2PsXYmigME50wufeb+0uWdTjJ5kLdIZaW5Q2WIBXiers7OT3t7ph3xf3zJP7DyN3HPPPdx5553Hptva2viLv/iLFRn7q1/9KvfeO50V+fKXv5ynPnVuluTi3vjGN/KOd7yDcrkMwOc+9zmD0SRJKyI87zeIpxiMBsAn//rsDGI4uDtd7vvuse1bse08iVA0IIWiAQz3E//6rdPDLXe1MB2clsunE3O7p06Fr9emw9TqtXQy78RYCrIbH0lBKAuNB+lE4YsuTyf8jgxMB320dhCLzVAemw5Em2mxk487e+huPBm2/q9Ft+WLu38RgH35reRjGiMQGcp0sLl+iAaBQpzkssp9bK/uJRCphjyD2U5aGmN0NIYhm6XcyBGIFPKBsdhES32Y0GikE65rkwuG3kWgRo4cNWZGqw1l2mlvDDM/bu349uXOZ3d+O531IXZUd9McJ9JJ3JWJkxhtWo0s95SewlCmndZslc1Pv4ruOExvpUh9cpLOyX56hh8h7HtkwfuCfCHti+zUieRtnel+e84LCa0dUK8T9z8Kux6E3j1pmUwG9k+d6J3NpeM9l0/HQK6QThZvbk3XE6NpvYeK6Vgrj0N/L4wMwuDhdCxCGmvTNqiU0zEbYzrxPGQgTiWsNRrpNgE2bEnL1Krp+JysQF85Hcu9u3hspMi3mp7FUOtWWijTUumnVBvhcNsT2M8Gzht5hCx1vld6Gn/f8TI21PvJ0CBPnQsyhxjPt1PMNBgPTWRqFY40WtnQGODi7GGqjUA15OkplOmoHKZ54ggtjXFaKaddUhkjW6+SaW7mUKabMiUyIZIZGyTT1UP2p64jU2oiMzpIGB2gqTIAITARC9TLZTK1KvlGhTFK9MZOamQphiq5WCOWJzhSbaapMU42l6VYyHA3TybbqLGxvI/O8YN05yboLNQglyOTzdCaq1PMRfZmtnB/ZTMxBFor/TTFCfLUOBK6uCt3JY9mtlOJOVoKkVIOMtlAUy6SpUFXrkxrZpKxWpZ8pkExGylm6hRr45RyDYotzZSydUpU6Qhj5GsTlAcGuH34idxduXDWIdccKjw99yjPiPfSGifozFdoClWKpRwjjRIj9QKhMk5LuZ8L9n+b3p4riG3dDOa72XzhZrqf/TNsKZVpG+slOzZAKBQI+QIBGKtliUB26DDnVQ/Qn+0m09YB+Tzn9TRRHR5i93gro9lW6mTY1Ohj71CGA+NFtrdN8qS2YXLNLeRCg3y9QmFigGyIVIutxI4ectsuZiQ0U29AcyEdepAO16N/9iu1yOBYpFgdZWOhTN+BAeoxUGnupqm7ky1dOTKZQLUW6RtLYY2lPNRrDe49GBgvR0Ym6jy4r8Zgvcjw0AQtP/w3Cnsf4JLJR3jJyD/R1vBjL0nS6e8vD/2nBYPRXjt42zpUc5o40cDt00CGSFtjdEVef9TIMpppPRawNh2aNiNgbSpEbWTRILbUVs4sPyBa6+MBLlx4xswPOIrAhW8B4Nnjd3J55T5GMy1szB2hFMucVzvIwdwWHuq4hEoo0tYYoRryfLo9/f/kZ8a+zrbaPrKxTrE6SQyBkdZWNjb10dYYmfp8YJRqKNCX7SYfa+RijR3VXWyop/+r1UKOC6p7yMUak6HIWKaZ/mw3dTKUMyWOZDcwmO2iMZyhZXCMWshR6J+kQYbHNr2BQKS1MUopVviZyjfYk99Oo5Gh0cgwOtBCjhqbaoe5oPo4hVilszFAV32QOu1Mlgo8WriIkUwb2ZE6IUa6mgeZCCVGM60MZDupkSOGQFt9hI5Hhhl/5z9x5AUXMNC2nVw2hVv2DsMjhyPDEzA+CQeGoLMZJiahuwU2t8P+wbTrWwop6HxrZyCbSWHNh4YjD/RCSxGa8ikcvZibfs/TiLC7D34yFbaXz8KmNtjWBWMVqE+9H2oupLDyYh62d6WQ6UMjsG8QJqrQVoQjoyk8/TXPDrQWU9h6/xgcnAo839ye+sYIwxPQNHXK7/gkPPdS2NAS2DcYeegQHBqGf3zdUtGe0pnJYDRJkiRJ0nz54uLzmv1FCkmSJEmSJEmSJJ0V/hcwARw9W+BZIYQnxxjvX8ayr54z/c8rWNf+OdNPCiE0xxjHT2CMp82ZPniKNUmaIYSTiX44vXz5y1+eNf2yl72M9vb2FRn73/7t32ZN//qv//oJLd/c3MwznvEMvv71rwPwjW98Y0XqkiSJJz0Nrr4BvvfV9a5Ea6k6OR1QNjoEu+479TFjnA5tm2l0KF0Ws1AQF8DgYc7LL34i+7PH7+Tnxk/8uM3HGs21GUFj9Tol6un2JLRSmZ43WV50nADkqc1r72gMn3BNR22t7Wdrbc7b31MMRQPIUedp5R9MN3z128D89PBFzTxeAPqn3k4/8qO1DUSs1+HA7qkaTj2H/SLgoupumHuXzTlcXzX0P3hf7x+c8vqW7RDwwNqt7kTUSSeUZ1m5wI6bp8b9cfEy+rNdPHHykfmPg+MZ/dfp298D/mn5i86NDC8Cl89pu+Q4Y0Rmn5TcDtDZkyYmy9PBfTFCbFBq1Omo14/13zyvqB4am7aRrUywqVpJy1cqMNDLs082VFOSpNNQhsijD+3kVed/mDubr6O9Mcwb+9/P7/X/1/UuTeskR53OxhCdjSFg3ymNVSWXwtSyM0LVMu2MHgtbmxGqNjV/5Fi42uwgtmoorMwG6pTc2fxs7mx+9gkt8/WWn1mlak7ORzv/n7VZ0XfheBH6vVPvhYfLsGvObx090Hv85ZdSraews31zf/pshu/tXnqMv/jiia//E3fD3Lo/8IpIR/OZ/z9MaSaD0SRJkiRJ8y0VjNZkMJokSZIkSZIkSZLOfDHG8RDCp4CZ38r+I+A1Sy0XQtgJ/LsZTTXgH1awtHuAAaBraro0VeMHlrNwCOGFwNY5zd9cseqkM0B3d/es6aGhJcIpTsLg4OyzG+au70zwrW99a9b09ddfv2Jjf/Obs//kdHd3s2vXrhMaY2ZI265du2g0GmQy/tK9JOnUhBDg7bcRX//TcOjx9S5HmmVHdQ9PLd/DPaWnzpu3c/LhdahIOretZCDa3HGfWlkgWPFMNnj41JY9leUlSTqDXFDby1f3PJ+x0ExTnCCzttG7OovlqdHdGKC7MXDKY1VCgeHMdJjayLFwtekAtWPX2dn9RqbC1Y621YNxNtJaeugQPH3HelchrSyfSSRJkiRJ8+Xzi84KzW1rWIgkSZIkSZIkSZK0qm4CXgoc/QfZq0MI/xxj/NxCnUMIJeA2YObPpX84xvjIUisJIcw9u+WGGOPXFuobY6xPBbb91ozmd4cQ7owxLnnmbAjhAuD9c5rvjDEeWGq5c8W2Lnj0zw1WWgvbuo7fZzXNDSobGDj1k4GOKpfLlMvlWW0bNmxYsfHXyoEDs/8sXH755Ss29uOPzw6aufbaa09pvEajweDg4BkZQCdJOv2EjecRPv0w8ch+4if/Bnofh0Z9ukO1ArsfgO7N8MN1yBfeeRXECBOjMDYM5fFUU74AxWYYHYRadbp/vgDVyXS71AzN7ZDNQjYHLe2w8yrCRZfCjkthw3lwz53EW/9g7bdLy/LHR/6Kl237+3ntLxn+9DpUI0mSJGk1tMTx9S5BWlQxTtJTP0JP/cgpjROBcigxnGmfClGbDlVLwWrToWujU0Fqaf5CbW3E4P/3pON5+FDk6TvCepchrSiD0SRJkiRJ8+ULi89ralm7OiRJkiRJkiRJkqRVFGN8NIRwK/CWGc2fCiH8AfDBGOPk0cYQwqXAfwOum9G3D3jnKpR2M/AKoGlquhP4VgjhPwF/F+Pss2ZCCAXgN4D3ABvnjPW2VajvjJTLBnbM3Ts6K23dunXW9MGDB+nr61uRALMf//jHx13fmaCvr2/WdFfXyqXZzR17JYyMjBiMJklaUWHj+YQ3/PmSfWJ1kvjqq2HPg2tT0++9h/Dv33TcfrFWhWyOENKJjnFkAAiEts7jr2TnlVCZIH7oT6FeO8WKV0A2l76TWGqBI/vXu5p192sjn6b/QDc3bnkPtZAnE+vcdPhdPG/sS+tdmiSd/i6+HPJF2HpxChONEWIjPdeUmiBXILR2EIf6YGwEQkjhqI06dPZMPy+2dqTn1EYDcvkUNFqZgLERYnkstQ8cgslyGhugUITxUTi8H+77bpo3UwiQyabrrk0pgDWTTfMq49B3MLXHmPr0bE31TIxCUyu0dUJ7d1rf+Ggav3tzClAd7oORIRgbSsvmCjB0JN3e9+hUfaXpmi57Blx2DQwPpPVVxtO8GKGlIwWstnWlgNbxEfjG59K6N22DzdvTvh0fhpHB1DY09RlAsQk6NqRlW9oJLe1AnLof0iX296Z9P3QkjX20tuZWGDyStrm9Gy6+nJArQPcmqNeIvY+n/Z4vpNdApea0bL2e2mpVyGTSPs1m0/XM20cOEI/uJ6Z+vyJOXTcaMHh4uv6WdqhNwoHdcHhfuk+fcAWcf3H68fkDu9Jx0dYNXT1puaPK42m/1ibTsh0b0kyITZMAACAASURBVDE5MpD2VS6f7sPMVIjtVH0hk0mv55paCe3d0NRCPLgH7r8bHvg+DPfPPp6y2VR/ozH/cVBqhtbO6f3OVL9MFto60ryBQ6nWYgk2X5iOs0IpLVsopuX6DqZjqrkdOrrT/Z7NQlMbtLan4N6Bw/8/e3ceZ9ld1wn/86u1u6v39JI0WToJwZAQNuMy4AMqKEYeZH1kBpwRQVScBR/hUXFhURllEJ8HBQcHWRwEZHBhGR1FeAgOZJAJwQlZYJIQkgnZOp2kt3R39fKbP051ddWt6u6quvfWrbr1fr9e59V9zj3n9/vdc3/3c6tOnfpWsnFLytk7m1N6163Na79xS7JlR/OaDI8277GHdyXjh1MPH0yOjKeMrErWb2rm3IkxHjua+oG3NOd4Nus3N18zpiZloJm3hx6Z/n6b+Pp48t9p/y/d3Wfqvp3a54x9Tmlu0cY1y/gWsk+n25vTPpm5fqp2pu5z8EDzfjh4oHlfP/xA817ZsKWZ30ePNPl1Yjl6pMmnaestj8/FwMDs7/NTWb22eT/PZt2mic+WI01+H9jbfLat3ZisWdfk1Oq1yWVXNu/3kVXJHV9LbvrS3PvvhpHRZPzwzO3DI02+DI80Yx1dlaQkd38j2Xx2k9cznKJQUOv8ON32U+27VNqeT3+nanu+bZym7ZLmh5yrk2yf3Hf/xDLlD7fMoe2a5EBdnX1lLHuzJnszln1ZM7nszdiMbUeO1mw5dE8GjhzMAwObc8Po5bl+1eNPMd4ze+Kh/5GRejhD9WgG67EM5cS/x1JSs2twS/YMbMhQjubm0ccuuB9oxy3393oE0HkKowEAADA/m7b3egQAAAAAAADQSb+U5PIkV02sDyf5/SS/Vkq5Lsm+JBcleXKm/5bAeJLn11qn3L3fGbXWu0opL03y0SQTvyWZdRPj+nellC8nuTvJ8SRnJ7kyydpZmvqVWut/7fT4YKl7ylOeMmPbtddem2c961ltt33ttddOW1+9enWe+MQntt1ur5VT/gLT/I2Pj595p3mqJ35hGQAWURkeSd7196nv+83kxi81v8S+Zl3zy+lHx5tfJN+zO9m/p/ll7D0PLLyvn3xj8vyfmdu+Q9N/ybusm1+B0/LS1ybf94Lk5i+n3vSllHMfnaQmD+9OPfxIcvO1yT23N4VLtpzTFPLYuC1lx87meW7ZkWx7VFPQ48h4UzxjYKI4xcatTdGKo0eaogHHjzeFNR6892RhjPWbm1/KX7MuZWR02tjqF/4q9Qv/ObnvfzV93fSlpqjAngeac3/2BU3BkgN7ThbBGBxufiF+aLh5LR5+INn/8LzOyVLyMw+/Oy/d++HcMHpZHnv469l4fE+vh9R7o6ub13j/nmaObd3RvPcOHmiKOAAr22XfmfIHV6cMDp5535yyvEhHj60HDzRFyY4fa4p7bdjSfF2xwi303HfiikXnrnp0R+v4pq7Xwweb/wwOTSuOmyT1wN5k9z3JkSPJ5m0pm7Z1faynMpdzfKZ9ynNe3lwD2r+nKZ47ONR8bTe2fsbXjbBc1WPHknu/2RQrW702ueV/NN9PXfS45nPjvjuT9WelbNqa+si+5PCh5v0wurr53mpgIGXz9tSjR5vvi8bWT36PWMcPJ1/7clNQ7MLLJnosKaOrFjbWWpMbvph867bm+7nVY82YR0ab7wUHBpvvk4eGJ4tXZmAwWbsh2bil+V5u9Vhy/11NQcXR1c2+j+xrCrQ9eF9TnG3jlpPFFA8fbL7OP/v8lA3NHzqpD9yTfPWa5nvJx313ytSilKwY6yeWhfyZmhPvl/27bsuRkbUZ2rw1I8cPZfTYoTxy4HDuGl+XgbF1Gd+zN2vGH865Zw2l1GMZGD+Ysmlrc/1h7DHNfB9Zlex7sCnat2pNM6dPFEfdd19zvePwzfnmdV/Pn9y0IffWTdkxciAbBg9n37Hh7Ds2kvvH1+Ta/dvz1QNbU5f8VyksJ7ft6vUIoPMURgMAAGCmrec2f3XqoZYy8SOjyXc+szdjAgAAAAAAgC6otR4rpfxokj9K8uIpD21L8kOnOOz+JD/ezaJjtda/LKU8N8l7MvHH1CesTvI9Zzj8QJJfqrW+o1vjg6Xs/PPPz/nnn58777xzctunPvWpjhRG+7u/+7tp69/1Xd+VkZHl98vNW7Zsmbb+4IMP5lGPWsivFM3e9t13350kWbVqVR555JGOFl4DgMVU1m1K+Tdvm9O+9fjx5hfZ9+9piqHU48l5lzS/rP7IgWTHhSlr1qbee0fyxb9tfoH2in+S8qiLu/wsZio7Lkp2XJTyjP9r+vZudLZpa5Ir5rRreeqzU5767La7rPffldx9e1Og7djRZnloV+rtNzav0eq1TfGAiQIjGRpullVjzes2uropxnbsWHLsaOo3v5Zy7qNTDx2YLIhXLrys+YX/E0XgNpyVPHBPUkpTxG10dfML08MjzS/873uoKRQ3PJqctb0pOHf0aFMU4f5vNfufe3FyYG/WHxnPU8YPNX0NDjW/WL1hSzK2bqLgwEThgYHBpnDCoUeacSRN20fGmzGMH0oOHZwoXHe4KVB38ECz35q1zfEDA0lKcnB/MydH1zRtD48mIyPJ0Ehz7+iJIgV7H0q+dm2yZ3fqoUeaQj/nPSZZt7E5H+OHmuWBe5rCBY9+fPLQrua81tqcgxNFD46ON30myV23Jvv3Jhs2N8dt3JKUgaYQ2qo1KQMDp3699+9p2l491jyXq/889SufS47Xpo/hkeb8jq5uiiisWpNsO68psLZmfVNI78jhk3Pl2LHk4IHUv/9Y89o9sr8Z84nzVQaStetTrnhqsv28Zk4dO3ry34OPpD50f8rGrc25O3igKWpxcH9z/k+0c2BP8vDu5jW74NLknjua12jz9qbAxYYtyeBQ6pHDzfMbP3Ty2InxlDKQ+sje5nU5fqyZZ+s2J2vXN/NvZFXK6rHmvA8ONoUskmbfgcFm3h/cn+zfk/rVa5JHXZxy0eMmCg0+3BTaSW2KbBx+pNn3kf1NkZodO1PO3pkMjzSFefbvaR7b9qiU9Zua99PAYPMaHDvWjCc19b9/JvnMf5r+Ig4OJWdNFGLctLUplHFw/8TrurbZtv28iRd8omjy+KFmXp91dsrY+tQ9u5tjJopFlo0T3/McGU/GD6c+eG8zF1KasRzc37x3Vq1O2X5+6u57k6/+t+Tm/z6/wJl4XkmasR4Zb4p9JM28WzXWzM39Dzf9DQ6dfD3H1ic7H9sUobzthuY9tPOxzRw7fqzZ98H7ki/+zcT7dt3Jtudr89nNa3hg78KOX4oGB5MnPi3l1z8056Joi6WsHksePbfPPjiT0xUAKmPrmyzpI6WU5uuKEzZt7d1goAvK4GAy9XvAy75j+g4XXHpy3zXrms//E7acc/KxoaHme5CpbY+MJo+f+UdDFjzWUpIr/kmztOPE13EnzLOIY9lyTvJ9L2xvDKxoJ94v66a9Z4aTrMvYpuTbTmzavjHJxhnHzzC6Y/r6+s3N9zJTXHjx4/JrZ2jm0JGakcFkYKDkjt01f/blmr+7qebevcna0eSsseT+fcmBw8ldDzfrG9ckj9lesnFN8tW7aj5/68n2HrM9+fYLSr56V80Nd0/v6zt3JoMDyQP7k90HktXDyc6zktHh5KEDyb7DybHjyaEjTZ8DJVk13Cyb1jT/JsnYSNPGbbuSi7YmOzYkR48nDz/S7HPdyR/LpZTk3I3Nv0eONf2OH03GRpM1I8neg8nho9PHOTyYnL85+ebuZjwnnLMh2bH2SEZuuTY1JfsG1mXf4LoczVBG6+FsOfZABurxjNUD2XZ0Vw4MjOXhgQ3ZeeSOlNQMpObSw19LTcn9Q1tTUrPu+P7sHViXvQMbcqQMZSA1ZWI5UNbkWBnMjiN3Z8ux3TlcRrNvYG2OlaEcK4O5ZvV3Z9vR+3PloetysKzKhuN7M1SPZuz4gQznaPYOrMv9g1tTy0BGjx/K/omxHi8D2Xx0d/YNrs8fbnrl5PMbrEez5djubBg4mNF6OAP1eIaPH87WI/fn9qHzc7CsTi0l/2vo3Kyqh3K4jGZ1PZiakk3HHs6jx2/NJUduy9Mf/WNpbiWA/qEwGgAAADOUgYHU57w8+Y+/Pf2BH3hJ88MzAAAAAAAA6CO11v1J/mkp5c+SvCbJd59i1weTfCTJG2qtXf+by7XWvyqlXJbkp5O8IsmZKibcl+QDSd5Ra72j2+ODpeyHfuiH8h/+w3+YXP/ABz6Q3/7t387w8PCC29y1a1c+8YlPzOhnOTrnnHOmrd9000254orO/NL29u3bJwujHTp0KHfeeWcuuOCCjrQNAEtZOVGsaOOWZjmh9ZfVz74ged5PLfLoVpay7dwZv5ScLLzwW2n5t6Muflx7x194WWfGMVfbzp0s9jPn8zHLazHDzscueEhl7YbpG5754pRnvnj2nefT7rNesvBjz7DeTlvzfbwT/XRyDOXZL0ve+IHUR/YnI6NNkcIOaHeMUx+v44eTe25vCrolTbGzA3tOFiYZP5xs3ZFyzs4Z7dRam0KFQ8MzCkTXWlNKafYZP9w8/wUUka4P3JNc89fJ+MHmj2FvP695nw0MNsXChkdPFpBLmrEMNwW967FjTVG4h+5vCjgceqQpvjY41LQzNlHg8PDBZp99DyUXXZ6sWZ8yONgcf/3nU//mg815WbU6Zdt5E8eub/ovAyeLCKY2+20+uykcNzTUFIzb+2DT7923p+76VlP4adO25jmU0hSTGxqeKCK4rykId9bZTZHILec0Bfe27GgKxgAAwDK0avjk9wIXnFXymh8sec0Pdqbtg+NNcbR1o8m3nZ1F/eM1d+6uTVG0TTP7PXqsZnCg2X7seM2ufU2xtGM12bwmWbsqGRxojnnoQM0D+5tCaaPDJfXo8dTve8aiPY9ue+e9r87+MpZDA6ty1rHdc/6++sR3erPtX7ZdmeRJnRkgLBEKowEAADCr8pNvTEbXpH7qg81finvac1N+8k29HhYAAAAAAAB0Ta31z5L8WSnlwiRPTrIjyViSe5PckeQLtdbxBbS74LvNa60PJvmtJL9VSjk3ybcnOSfNnywvSfYk2ZXkK7XWW0/ZEKwwr371q/Pud7+7+YXzNEXN3ve+9+WnfmrhRUje/va358iRI5PrY2NjeeUrX3maI5aupz71qfnoRz86uX711VfnxS9uv3hEkjzlKU/JV77ylcn1T33qU8v2PAEAAN1R1qzt9RBOqYyMJhdcurBjS0kmipDN+tiJf0dXLXx8W85JfuQVCzt2cDBZu6FZkqZ45/bzpu80tDZZszbZtHX245/09JQnPX1B/U+aUjBx8Uo0AADAyrB6pOQ7dvam7/PPOvVX+EODJx8bHCg5e8Mpd82msZJNYyfXy9Bw6tqNyf6HOzHMJWFtPZC1xw7M65jTfv/0zZuTb1MYjf4y0OsBAAAAsDSVUlL+xS9m4E+uz8CHbsjAz7w5ZUh9bQAAAADoqme/bPbtq8dm3w4AdEWt9fZa65/XWn+/1vrbtdb311o/u5CiaB0e11211o/XWt81Ma7fqrX+Qa31o4qiwXSXXXZZrrrqqmnbfvEXfzH33Xffgtq76aab8ta3vnXatp/4iZ/I5s2bFzzGXnrmM585bf1DH/pQ9u3b15G2n/WsZ01b/6M/+qOOtAsAAAAAAMAKtXNhBaxXinr7Tb0eAnScwmgAAAAAAAAAAEtEecGrZt/+8tcv8kgAAGD5e9vb3pY1a9ZMrj/88MN5wQtekP3798+rnV27duVFL3pRxsdP1kY855xz8vrXL9+v0y+//PI8/elPn1zfu3dvXve613Wk7auuuioXX3zx5PqXvvSlvPe97+1I2wAAAAAAAKw85ap/3ushLG133NzrEUDHDfV6AAAAAAAAAAAANMpjnpj6E7+avO83T278zh9Inv/TvRsUAAAsU5deeml+//d/P694xSsmt11zzTW56qqr8uEPfzjnnnvuGdu45ZZb8sIXvjA333zylwkGBgbygQ98IFu3bu3KuBfL61//+jzjGc+YXH/nO9+ZCy+8MK95zWvmdPyePXsyOjqaVatWTds+NDSUX//1X89LX/rSyW2vetWrsnHjxrzgBS+Y1xg//elP56KLLspFF100r+MAAAAAAADoI895Rcq+h1P/0+8lD96XlJJsPz85+4Lk7m8kA4PJhrOSoeHkyHjz+DdvTradm5z/mGTtxmTN2uSBe5KH7k+OH09WjyXrNycH9iaP7E/2PJAcPtg8tn5zctb25K7bknu+2YzhrHOafY4emT62gYHmmNkMDjaP1dq5czE0nIytb577zsem7Hxs8tgrO9c+LBEKowEAAAAAAAAALCEDL/+11Kc9L/nqNcnOxyZX/JOUoeFeDwsAAJall7/85bnuuuvyzne+c3Lb5z//+Vx22WX55V/+5bz0pS/NeeedN+O4W2+9Ne9///vzO7/zOzl8+PC0x97ylrdMKyi2XH3/939/XvOa1+Rtb3vb5LbXvva1+dznPpc3vOEN+fZv//YZxxw/fjz/8A//kD/90z/N+973vlx//fXZuXPnjP1e8pKX5DOf+Uze+973JknGx8fzwhe+MC95yUvy8z//87O2nSTHjh3L9ddfn0984hP5yEc+kptvvjmf/exnFUYDAAAAAABYwUopyUtfm7zkNcme3cn6zSkDA13vt9aa1DprX/X48eT4saYo25HDTYG1gcGmGNrAYDI8mjIymnr4ULLvwWTjtpShptRT3b8n+fwnm0JtQ8PJ8EgyPJqMjCZDI8mq1U3xsxNF1dZvbgq/bdqWMjLa9ecNS4HCaAAAAAAAAAAAS0x59BXJo6/o9TAAAKAvvOMd78imTZvy5je/ufnlhST79u3L6173uvzyL/9yLrvsspx33nnZtGlTdu/enTvuuCNf//rXZ7QzPDyct7/97XnVq1612E+ha97ylrfkzjvvzEc/+tHJbZ/85CfzyU9+Mjt27MgVV1yRs846K4cPH869996b66+/Pvv27ZtT2+9617vy0EMP5S//8i8nt33oQx/Khz70oWzdujVPeMITctZZZ2VgYCB79+7N3XffnZtvvjmHDh3q+PMEAAAAAABg+SulJBu3LG5/pcz+2MBAcqJg2ujqZpltv9FVyeiO6dvWbkh+6Mc6OlboNwqjAQAAAAAAAAAAAAB97Td+4zfy9Kc/PT/7sz+bW265ZXJ7rTU33nhjbrzxxtMe/+QnPzl/+Id/mCuvvLLbQ11Ug4OD+chHPpLLL788b37zm3PkyJHJx+6+++7cfffdC257eHg4f/7nf563vvWtecMb3jCt4NmuXbvy6U9/ek5tjI2NLXgMAAAAAAAAACw/A70eAAAAAAAAAAAAAABAtz3zmc/MTTfdlA9+8IN5xjOekaGh0/+N6dHR0TznOc/Jxz/+8Vx77bV9VxTthFJK3vCGN+TrX/96XvnKV2bz5s2n3X/t2rV53vOel4997GM5//zzz9j2L/zCL+T222/PL/3SL+WCCy4443jWrVuXH/7hH8473/nO3HPPPfmO7/iOeT0fAAAAAAAAAJa3Umvt9Rigp0oplye54cT6DTfckMsvv7yHIwIAAAAAAAAAWJgbb7wxj3vc46Zuelyt9cZejQcAOn2P3tGjR3PLLbdM23bJJZecscAVzObAgQP58pe/nFtvvTW7du3K+Ph4RkdHs3379jzmMY/Jk5/85IyOjvZ6mIvu+PHjue666/K1r30tDzzwQPbv35+xsbFs27Ytl156aR7/+MdneHh4we3ffvvtue6667Jr16489NBDGRgYyLp167Jjx45ceumlueSSSzI4ONjBZ9RbcgsAAAAAAAD6g/vzFo+fptJRpZThJE9Ncn6Sc5LsT3J3kq/UWr/Zw6EBAAAAAAAAAAAAwKSxsbE87WlPy9Oe9rReD2VJGRgYyJVXXpkrr7yyK+1feOGFufDCC7vSNgAAAAAAAADLn8JoK1gp5U+TvLhl8x211p0LaGtrkjdNtLf5FPtck+R3a61/Pt/2AQAAAAAAAAAAAAAAAAAAAAAA6G8DvR4AvVFK+ZHMLIq20LauSnJDklflFEXRJjwlyZ+VUv6klDLWib4BAAAAAAAAAAAAAAAAAAAAAADoD0O9HgCLr5SyMcm/71Bb35vkY0lGpmyuSa5L8o0kG5M8KcmWKY+/NMn6Usrzaq3HOzEOAAAAAAAAAAAAAAAAAAAAAAAAlreBXg+Annhbkh0T/9+30EZKKecm+YtML4r2hSSX11qvrLX+aK31B5Ocm+TVSY5M2e85SX5zoX0DAAAAAAAAAAAAAAAAAAAAAADQXxRGW2FKKc9M8vKJ1aNJXt9Gc29KsmnK+jVJnllrvXnqTrXWw7XW30vyoy3H/3wp5YI2+gcAAAAAAAAAAAAAAAAAAAAAAKBPKIy2gpRSxpK8e8qm303yjwts65IkPz5l03iSl9VaD53qmFrrx5L88ZRNo0nesJD+AQAAAAAAAAAAAAAAAAAAAAAA6C8Ko60sv5Vk58T/v5HkjW209ZIkg1PW/6LWesscjntLy/qPllJWtTEOAAAAAAAAAAAAAAAAAAAAAAAA+oDCaCtEKeUpSf7llE0/XWs92EaTz29Zf99cDqq13pzkH6ZsGkvyg22MAwAAAAAAAAAAAAAAAAAAAAAAgD6gMNoKUEoZTfLenHy9/7jW+uk22js7yROmbDqa5AvzaOLqlvWrFjoWAAAAAAAAAAAAAAAAAAAAAAAA+oPCaCvDG5N828T/dyV5TZvtPa5l/fpa64F5HH9Ny/rlbY4HAAAAAAAAAAAAAAAAAAAAAACAZU5htD5XSnlyktdO2fRztdbdbTZ7Wcv6rfM8/rYztAcAAAAAAAAAAAAAAAAAAAAAAMAKozBaHyulDCV5b5KhiU1/U2v9UAeafnTL+p3zPP6OlvWzSimb2hgPAAAAAAAAAAAAAAAAAAAAAAAAy9zQmXdhGfulJE+Y+P+BJK/qULsbW9bvn8/Btdb9pZRDSVZN2bwhyUPtDqyUsi3J1nkednG7/QIAAAAAAAAAAAAAAAAAAAAAANAehdH6VCnlsiS/OmXTr9Vav9mh5te2rB9cQBsHM70w2rqFD2ean03yhg61BQAAAAAAAAAAAAAAAAAAAAAAwCIZ6PUA6LxSykCS9yQZndj05SS/18EuWgujHVpAG63F1FrbBAAAAAAAAAAAAJimlDJjW621ByMBmJvjx4/P2DZblgEAAAAAAADQUBitP706yXdP/P9okp+stR7rYn8LuaPIXUgAAAAAAAAAAADAvAwMzLz19ciRIz0YCcDcHD16dMa22bIMAAAAAAAAgMZQrwdAZ5VSLkrym1M2/W6t9R873M3+lvXVC2ij9ZjWNhfqD5J8dJ7HXJzk4x3qHwAAAAAAAAAAAOiSUkpGRkYyPj4+uW3//v1Zs2ZND0cFcGr790+/TXpkZCSllB6NBgAAAAAAAGDpUxitj5TmJ+TvTnLi7p5vJHljF7pasoXRaq33J7l/Pse4sQAAAAAAAAAAAACWj3Xr1mX37t2T63v37s3WrVvdDwgsObXW7N27d9q2devW9Wg0AAAAAAAAAMvDQK8HQEe9Msn3T1n/6VrrwS70s6dlfet8Di6lrM3MwmgPtzUiAAAAAAAAAAAAYEVoLSp05MiRfOtb30qttUcjApip1ppvfetbOXLkyLTt69ev79GIAAAAAAAAAJaHoV4PgI5605T//3WSW0spO89wzNkt60OzHHN3rXV8yvotLY9fMMfxnWr/B2utD82zDQAAAAAAAAAAAGAFWrVqVYaHh6cVG9q3b19uu+22rF+/PmvXrs3Q0FAGBvz9YGBxHT9+PEePHs3+/fuzd+/eGUXRhoeHMzo62qPRAQAAAAAAACwPCqP1l9VT/v/DSW5fQBuPmuW4JyX5xynrN7c8/uh59nFRy/pN8zweAAAAAAAAAAAAWKFKKdmxY0fuvPPO1Fontx85ciS7d+/O7t27ezg6gNmdyK5SSq+HAgAAAAAAALCk+VN4LMQNLeuPL6WsmcfxTz1DewAAAAAAAAAAAACntGbNmpx//vkKDAHLQikl559/ftasmc8t1wAAAAAAAAArk8JozFut9Z4k10/ZNJTke+bRxPe2rP+XdscEAAAAAAAAAAAArCwniqMNDw/3eigApzQ8PKwoGgAAAAAAAMA8DPV6AHROrXXjfI8ppXxvks9O2XRHrXXnHA79yySPn7L+E0k+NYf+Lk3yXVM2HZjLcQAAAAAAAAAAAACt1qxZk4svvjiHDx/O3r17s2/fvoyPj/d6WMAKNzIyknXr1mX9+vUZHR1NKaXXQwIAAAAAAABYNhRGY6E+mORXkwxOrL+glHJJrfWWMxz3iy3r/6nWeqjjowMAAAAAAAAAAABWhFJKVq1alVWrVmXbtm2pteb48eOptfZ6aMAKU0rJwMCAQmgAAAAAAAAAbVAYjQWptd5SSvnjJC+f2DSS5P2llGecqtBZKeW5SV42ZdN4kjd1daAAAAAAAAAAAADAilJKyeDg4Jl3BAAAAAAAAABgyRno9QBY1t6Q5KEp609J8ulSyqVTdyqljJZS/nWSj7Yc/7Za6x1dHiMAAAAAAAAAAAAAAAAAAAAAAADLwFCvB8DyVWu9q5TygiR/m2RkYvNTk9xUSvlykm8k2ZDkyUm2thz+n5P82mKNFQAAAAAAAAAAAAAAAAAAAAAAgKVNYTTaUmu9upTy/CTvz8niZyXJlRPLbD6c5JW11mPdHyEAAAAAAAAAAAAAAAAAAAAAAADLwUCvB8DyV2v96ySPS/KuJA+dZtcvJnlRrfUltdYDizI4AAAAAAAAAAAAAAAAAAAAAAAAloWhXg+A3qq1Xp2kdKCd+5O8qpTy6iRPTXJBkrOTHEjyrSRfqbXe3m4/AAAAAAAAAAAAAAAAAAAAAAAA9CeF0eioWut4ks/2ehwAAAAANQ/O7gAAIABJREFUAAAAAAAAAAAAAAAAAAAsLwO9HgAAAAAAAAAAAAAAAAAAAAAAAACAwmgAAAAAAAAAAAAAAAAAAAAAAABAzymMBgAAAAAAAAAAAAAAAAAAAAAAAPScwmgAAAAAAAAAAAAAAAAAAAAAAABAzymMBgAAAAAAAAAAAAAAAAAAAAAAAPScwmgAAAAAAAAAAAAAAAAAAAAAAABAzymMBgAAAAAAAAAAAAAAAAAAAAAAAPScwmgAAAAAAAAAAAAAAAAAAAAAAABAzymMBgAAAAAAAAAAAAAAAAAAAAAAAPTcUK8HAEvAyNSVW2+9tVfjAAAAAAAAAABoyyz3PYzMth8ALCL36AEAAAAAAAAAy5778xZPqbX2egzQU6WUH0ny8V6PAwAAAAAAAACgC55ba/1ErwcBwMrlHj0AAAAAAAAAoE+5P69LBno9AAAAAAAAAAAAAAAAAAAAAAAAAACF0QAAAAAAAAAAAAAAAAAAAAAAAICeK7XWXo8BeqqUsiHJ06ds+l9Jxtto8uIkH5+y/twkt7XRHsB8ySFgKZBFQK/JIaDX5BDQa3IIWApkEdBrKzWHRpKcN2X9c7XWPb0aDAC4Rw/oQ3II6DU5BPSaHAJ6TQ4BS4EsAnpNDgG9tlJzyP15i2So1wOAXpsIl090qr1SSuum22qtN3aqfYAzkUPAUiCLgF6TQ0CvySGg1+QQsBTIIqDXVngOfaXXAwCAE9yjB/QbOQT0mhwCek0OAb0mh4ClQBYBvSaHgF5b4Tnk/rxFMNDrAQAAAAAAAAAAAAAAAAAAAAAAAAAojAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8pjAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8pjAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8pjAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8pjAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8N9XoA0Id2JXlTyzrAYpJDwFIgi4Bek0NAr8khoNfkELAUyCKg1+QQAPQnn/FAr8khoNfkENBrcgjoNTkELAWyCOg1OQT0mhyiq0qttddjAAAAAAAAAAAAAAAAAAAAAAAAAFa4gV4PAAAAAAAAAAAAAAAAAAAAAAAAAEBhNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnhno9AGYqpQwmeXSSy5LsSLIhyeEkDyW5Lcm1tdYDHe5zOMlTk5yf5Jwk+5PcneQrtdZvdrKvxVJKuTzJE5NsTTKa5N4kdyX5Qq31UC/HtphKKZuSXJ7kkiSbk6xK8nCSXUm+XGu9rYfDm6GUcmGa121HkrVJ7klyR5Jraq1Hejm2lUQOdYYcasghFkoWdYYsasiiU/ZjfpyGHOoM86yx3HKIpUEOdYYcasih6Uop56U5F+cm2ZJkdZLxJHuS3JnmnOzq3QiXBjnUGXKoIYdYKFnUGbKoIYtYCDnUGXKoIYdmZ34AveAzvjNkeGO5fca7N2ZpkEOdIYcacoiFkEOdIYcacuiU/ZgfpyGHOsM8ayy3HGJpkEOdIYcacmg69+fNnSzqDFnUkEUshBzqDDnUkEMshBzqDDnUkEOzW9bzo9ZqWQJLmsD8uST/Oc039/U0y9Ek/yXJszvQ79Ykf5Bk92n6+0KSF7bZz0VJXpzkrUmuTrK3pY9vdug8rkvyK0m+dZrnszfJB5Jc3MPXu2vnI8lwkmcleUeSG84wl+rEufr1JGf3+D3woiTXnGacuyfm6pYFtH2mc3CmZWcvz80ivgZyqDPnUQ7Joalt7uxABk1dXtbLc7RIr4Ms6sx5lEWyaNnPjx6+BnKoM+dxWcwzOdSz+TGW5HuS/N9JPpjkfyY53tLXy3p1Hnq9yCE5JIe6dj4uSfJvk3w2zQ81znQ+apLrkvzLJKO9Oic9eh3kUGfOoxySQ7O1P5fsOd2ys1fnpgevhSzqzHmURbJoars7O5BDU5eX9eocLdLrIIc6cx7lkBxa9vPDYrH01+IzfmVluM/4WcftHr0eL3JIDskh9+j1epFDckgOuT+v14sckkMrOYcWcX64P+/050cOdeY8yiE51Nq2+/Pmd75kUWfOoyySRbO1P5f8Od2ys1fnZpFfBznUmfMoh+TQ1HZ3diCDpi4v69U5WqTXQQ515jzKITm07OfHGZ9HrwdgqUnyoTY+0D6ZZPsC+70qyX3z6OtPkozNo/3vTfK3Z/hQ6NgbM8l3panCOdfncyDJqxbxde76+Zg4Bw8ucC49lOTHejD/1yb58DzGeW+SZ82zj4W+v04sOxf7vPTgdZBDckgOdSGH0vlvZF+82OdnkV8LWSSLZFEXsmg5zY9eL3JIDq3EHFrM+ZHmwvFX01yQPlNfL1usc7CUFjkkh+RQ9+ZHkp9s4/319STftVjnpJeLHJJDcqi786ON99eJZedinZdeLrJIFsmirp2PnR3IoalL316vjhySQ3Joxc8Pi8XSn4vP+JWR4T7jTzlm9+gtgUUOySE55B69Xi+RQ3JIDrk/r8eLHJJDKzGHFnN+xP15czlHckgOyaEuzY+4P28+50oWySJZ1MX50cb768Syc7HOS68WOSSH5FDXzsfODmTQ1MW1ajk0l/egHJJDy3J+zGcZCkvBY06x/VtJbkkTrkNpqv49IcnAlH3+zyR/X0p5eq313rl2WEr53iQfSzIyZXNNU2X9G0k2JnlSki1THn9pkvWllOfVWo/PoZsnJvnBuY6pHaWUZ6apBjra8tAdSa5P8yY8N82bd3jisTVJ/qCUMlBrfeciDHMxzsfWJJtm2T6e5uL2vWkqpp6V5MqJf0/YmOQDpZRttdbf7fI4kySllMEkH0nywy0P7UrylYmxXpxmLpaJx7Yn+Xgp5Zm11s8vxjhXCDnUJjk0SQ51zyNpKlr3M1nUJlk0SRbN3s9ymB+9JofatEzmmRyabtHmR5KXJNmwSH0tV3KoTXJokhw6s5rmIv+taX6w8Eiav5h7YZLLc3J+JM178zOllGfXWj+32ANdZHKoTXJokhyiHbKoTbJokizqnn6/Xi2H2iSHJsmhWSyT+QH0J5/xbVomGe4zvsUyuzem38mhNsmhSXKoe1zzkEOnJYcmyaHZ+1kO86PX5FCblsk8k0PTuT9vaZFDbZJDk+TQmbk/79RkUZtk0SRZxELJoTbJoUlyqHtcq5ZDpyWHJsmhWSyT+TF3va7MZqlJcm1OVtG7Lsm/SnLxKfZ9VJI/zMzqe/81SZljf+dmZtXDzyd5bMt+o0n+TZo3/dR9/+0c+/m5WcZZkxxKc0GjIxUL01RPba2KeGuSH5hl301Jfr9l32Oz7duF17nr5yPNB/mJNvYleU+SZyRZPcu+Jcnz04RX65i6fj4mxvDWln7HJ+b/SMt+lyW5pmXfB5KcM8d+ph73xYk5M59laDHORy+XyCE5JIe6kkNpvvE6U8acavl8S3/vX4xz0sslskgWyaKufU20XOZHrxc5JIdWYg4t1vyY6OvhU/R11yyPvazbz30pLnJIDsmhrs6PVyT5WpqvvZ6dZNNp9t2Y5OfT/ABkav/fSrKh2+ekl4sckkNyqOtfD01ty7XqU58nWSSLZFF3zofr1XM/V3JIDsmhFT4/LBZLfy4+41dGhvuMn3W87tFbIkvkkBySQ13JobjmMZ/XQg7JITnUpa+Hlsv86PUih+TQSsyhxZofE325P+/M50gOySE51L354f68uZ8rWSSLZFF3vyaa2pZr1bOfIzkkh+RQd86Ha9VzP1dySA7JoRU+P+b1nHo9AEtNkv+eptrelfM45mdnmfD/dI7HvqfluC8kWXWa/Z83yxvrgjn083MTof+VJO9O8lNJnpymYuD3dvCN+eGWtm5Jsu0Mx/xCyzE3Jhns8uvc9fMxEdz3JXlNkrE5HnNWkpta+r85c/xCoI3zcVFmflHw3NPsvzozf9D4rjn2NfWYq7v5vJbrIofkkBzqbg4tYGyPSnK0pa//o5vnYyksskgWyaLuZdFymR+9XuSQHFqhObQo82Oir4fT/KWFv0ryponztH3isatb+npZN5/3Ul3kkBySQ12dH8MLOOaJSfa3jOEXu3k+er3IITkkh7r+9dDUtq7u5vNazosskkWyqLtZtICxrbjr1XJIDskh88NisfTn4jN+ZWS4z/gZ/bpHbwktckgOyaHu5tACxuaax9yOkUMn+5FDJ/uQQ8t0fvR6kUNyaIXmkPvzltAih+SQHHJ/3lJYZJEskkXu0ev1IofkkBxyf16vFzkkh+SQ+TGv59TrAVhqkuxc4HF/1jK5/moOx1zS8sF4OMklczju/S19vXcOx2w61QdCB4PqojQVB6e29T1zPPb/bznu5V1+nRfjfGyda2C3HPeEWc7jd3T5fPxxS3/vm8Mxj5mYsyeOOZLkojkcN7Wfq7v5vJbrIofkkBzqbg4tYGy/0jK2/9nNc7FUFlkki2RRd7JoOc2PXi9ySA6t0Bzq+vmY0t4p/4Ju3Hh14jzsXOBxckgOtbYjhzo3vl9vGcMXF3sMi/x8dy7wODkkh1rbkUOztze1rau7+byW8yKLZJEs6s75aGNsK+56tRySQ3LI/LBYLP25+IxfGRnuM35Gn+7RW0KLHJJDcqi7ObSAsbnmMffj5JAcam1HDi3T+dHrRQ7JoRWaQ+7PW0KLHJJDcqg756PN8a2o+/MmnvPOBR4ni2RRazuyaPb2prZ1dTef13Jd5JAckkPdOR9tjM216rkfJ4fkUGs7cmiZzo/5LAOh52qt31zgoe9sWf++ORzzkiSDU9b/otZ6yxyOe0vL+o+WUlad7oBa60O11kNzaLsdz06mzeMv1lo/P8djf6dl/Sc6M6TZLcb5qLXuqrUeWMBx/yNJ63mby3xakFLK6iQvatncOsdmqLX+zyQfm7JpKM2cpk1yqC1yaHofcqhNpZSSmXPhPZ3sY6mSRW2RRdP7kEXTLZv50WtyqC3LZp7JoRl9Lsb8ONHXPYvRz3Imh9oih6b3IYc6569b1h/dk1EsEjnUFjk0vQ85xILJorbIoul9yKI2rdTr1XKoLXJoeh9yaLplMz+A/uQzvi3LJsN9xp+0lO+NWankUFvk0PQ+5FCbXPOYNzkkh1r7kEPTLZv50WtyqC3LZp7JoRl9uj9vCZFDbZFD0/uQQ52zou7PS2RRm2TR9D5kEQsih9oih6b3IYfa5Fr1vMkhOdTahxyabtnMj/lQGG15+0rL+upSysYzHPP8lvX3zaWjWuvNSf5hyqaxJD84l2O77Gkt6387j2M/k2R8yvpTSinntD+kZat1Pu3oYl/PSrJmyvp/q7V+bY7Hts7ZF3RmSCyQHJJDnSSHGk9PcvGU9aNp/mIdpyaLZFEn9WMWmR/dJ4fMs05azByif8ghOdRJcmi6B1vW1/VkFEufHJJDnSSHWChZJIs6SRY1XK+eHzkkhzqpH3PI/ACWK5/xMryT+vHn0XSfHJJDnSSHGq55zI8ckkOd1I85ZH50nxwyzzqpH6+90n1ySA51khyazv15cyeLZFEnySIWQg7JoU6SQw3XqudHDsmhTurHHOrL+aEw2vJ2dJZtI6fauZRydpIntBz/hXn0d3XL+lXzOLZbzm1Zv2GuB9ZaDye5dcqmgSyN59QrrfPplHOpA36oZf3qeRz7XzN9rE8qpWxve0QslBySQ50khxqvaFn/q1rrvR1svx/JIlnUSf2YReZH98kh86yTFjOH6B9ySA51khya7oKW9bt7MoqlTw7JoU6SQyyULJJFnSSLGq5Xz48ckkOd1I85ZH4Ay5XPeBneSf3482i6Tw7JoU6SQw3XPOZHDsmhTurHHDI/uk8OmWed1I/XXuk+OSSHOkkOTef+vLmTRbKok2QRCyGH5FAnyaGGa9XzI4fkUCf1Yw715fxQGG15e3TL+tEkD5xm/8e1rF9faz0wj/6uaVm/fB7HdsvmlvWH53l86/5XtDGW5a51Pt3Txb5a5+J/m+uBE3P2qy2bl8JcXKnkkBzqpBWfQ6WUDUle2LL5PZ1ou8/JIlnUSf2YReZH98kh86yTFjOH6B9ySA51khya7l+0rH+2J6NY+uSQHOokOcRCySJZ1EkrPotcr14QOSSHOqkfc8j8AJYrn/EyvJP68efRdJ8ckkOdtOJzyDWPBZFDcqiT+jGHzI/uk0PmWSf147VXuk8OyaFOkkPTuT9v7mSRLOokWcRCyCE51EkrPodcq14QOSSHOqkfc6gv54fCaMvbi1rWr621Hj/N/pe1rN86616ndtsZ2uuF8Zb10Xke37r/UnhOi66Usj7JD7Rs/lIXu3xsy/pizsXzSynvK6XcWEp5qJQyXkq5b2L9T0opP1VKaQ18Tk0OyaGOWGE5dDr/LMnqKev3JPkvHWq7n8kiWdQRfZxF5kf3ySHzrCN6kEP0DzkkhzpCDk1XSvmXSX5syqajSf6/Hg1nqZNDcqgjVlgOuVbdebJIFnXECsui03G9ev7kkBzqiD7OIfMDWK58xsvwjujjn0fPxnWPzpJDcqgjVlgOnY5rHvMnh+RQR/RxDpkf3SeHzLOO6ONrr3SfHJJDHSGHpnN/3rzJIlnUESssi1yr7iw5JIc6YoXl0Om4Vj1/ckgOdUQf51Bfzg+F0ZapUsraJK9o2fyXZzistWLhnfPs9o6W9bNKKZvm2Uan7W5ZP2eex7fu/21tjGU5++kka6as70mXqutPfJPY+o3ifOdi6/6XzOPYC5O8LE0Ib0wynGTbxPpLk/xhkjtLKf/vxPuMU5BDk+RQZ6ykHDqd1vfUH9daj3ao7b4kiybJos7o1ywyP7pIDk0yzzpj0XKI/iGHJsmhzljROVRKGSulfFsp5cdLKZ9L8o6WXV5Xa72+F2NbyuTQJDnUGSsph1yr7iBZNEkWdcZKyqLTcb16HuTQJDnUGf2aQ+YHsOz4jJ8kwzujX38ePRvXPTpEDk2SQ52xknLodFzzmAc5NEkOdUa/5pD50UVyaJJ51hn9eu2VLpJDk+RQZ6zoHHJ/3sLJokmyqDNWUha5Vt0hcmiSHOqMlZRDp+Na9TzIoUlyqDP6NYf6cn4ojLZ8/VaSs6esP5zkj85wzMaW9fvn02GtdX+SQy2bN8ynjS64uWX9u+d6YCnl/CQ7Wjb3+vksulLKziS/1rL57bXW1mqQndI6Dx+ptR6YZxutc7fTr9tYkp9L8uVSyuUdbrufyKGGHGqTHGqUUq5IcmXL5ve02+4KIIsasqhNfZ5F5kd3yaGGedamHuQQ/UMONeRQm1ZaDpVSNpZS6tQlyf4kX0vy/iRPm7L7/iQ/VWv9nR4MdTmQQw051KaVlkNz5Fr13MmihixqkyxquF69IHKoIYfa1Oc5ZH4Ay5HP+IYMb1Of/zx6oVz3mBs51JBDbZJDDdc8FkQONeRQm/o8h8yP7pJDDfOsTX1+7ZXukkMNOdSmlZZD7s/rOFnUkEVtWmlZNEeuVc+NHGrIoTbJoYZr1QsihxpyqE19nkN9OT8URluGSinPT/KvWjb/Sq31wTMc2lqt+OACum89Zt0C2uikz7Wsv7CUsmbWPWf6F7Ns6/XzWVSllJEkH8n05/3NJP+ui932ah4eTXJ1kl9N8iNJnpzmrzY9Kclzk/xOZn4x85gkny6lXLCAMfY1OTSNHGrDCsuhM2mtVP25WuutHWi3b8miaWRRG1ZAFpkfXSKHpjHP2tCjHKIPyKFp5FAb5NAp3ZfkV5JcWGt9d68HsxTJoWnkUBtWWA65Vt1hsmgaWdSGFZZFZ+J69TzIoWnkUBtWQA6ZH8Cy4jN+GhnehhXw8+ipXPfoIDk0jRxqwwrLoTNxzWMe5NA0cqgNKyCHzI8ukUPTmGdtWAHXXukSOTSNHGqDHDol9+fNgSyaRha1YYVlkWvVHSSHppFDbVhhOXQmrlXPgxyaRg61YQXkUF/OD4XRlplSyhOS/MeWzZ9K8u/ncHhrcLdWp5yL1uBubXOx/VWaap4nbEzyxjMdVEo5L8lrZ3losJSyujNDWxb+KMl3Tlk/luTHF/DXkOajF/PwV5M8qtb6fbXWN9daP1lr/Uqt9dZa6z/WWj9Ra/1/klyQ5LeT1CnHnp3kL0opZQHj7EtyaAY51J6VkkOnNfGF9I+1bFbd+zRk0QyyqD39nkXmRxfIoRnMs/b0IodY5uTQDHKoPXJodtuT/EySV5VS1vd6MEuNHJpBDrVnpeSQa9UdJotmkEXtWSlZdFquV8+PHJpBDrWn33PI/ACWDZ/xM8jw9vT7z6NPcN2jg+TQDHKoPSslh07LNY/5kUMzyKH29HsOmR9dIIdmMM/a0+/XXukCOTSDHGqPHJqd+/POQBbNIIvas1KyyLXqDpJDM8ih9qyUHDot16rnRw7NIIfa0+851JfzQ2G0ZaSUcn6aiTg1LO9I8mO11jr7Uae1WMd0Ta11X5K3t2x+bSnl1ac6ppRybpK/SbLhVM12aHhLWinlN5L885bNr6u1/v0iD6Xr83Dim9fW6t2z7Xeo1vq6JP+65aEnJ/ln8+mzX8mhmeTQwq2kHJqD5yY5a8r6nv/d3v3HWpMX9B3/fJctIIJSi0AVdSn+wlBSFFMBTTcUDNSAsqAQmoYVtLbYJrVt0pSadGsbTNNo7R+NUotiKdBSBEREQMSVVuOvZlGoW0oqawVd5JdF9vey3/5x7tN77px75sycHzNzzrxeyflj5p4zZ57zfJ/33Od7J9+b5A17fo+ToUWrtGh7c2iR8bF/OrTKONvehDrEEdGhVTq0vRl36NNJHr30eEwWc0DXJfnXST529rwvSfIDSd5XSvn6Ec5zknRolQ5tb04dMle9X1q0Sou2N6cWdWC+uiMdWqVD25tDh4wP4Fi4xq/S8O1N6BrvHr0jokOrdGh7c+pQB+Y8OtKhVTq0vTl0yPjYPx1aZZxtb0Id4ojo0Cod2t6MO+T+vB1p0Sot2t6cWmSuen90aJUObW9OHerAXHVHOrRKh7Y3hw6d6vi4euwToJtSysOT/EKSL17afWuSp9daP3b5q1Z8prG9zcp8zdc0jzmGlyd5Zs5XZixJfqSU8rwsVkd9bxYrcX7R2fP+ds4vfh9O8qilY91Za11Z6bOUck3Xk6m13tLr7EdQSvl7Wax6veyHa63/quPrr+n6Xpd8HpMfh7XWf1tK+eYkz17a/dIkr93n+xwbHWqlQz3p0IqXNLZfW2ttriJNtGgDLeppZi06+PiYCx1qpUM9jdwhjpQOtdKhnubcoVrrfUluueRLNyV5Uynl+5P8yyR/52z/lyZ5VynlKbXW9w9zltOkQ610qKc5d6gLc9XraVErLepJi1aYr+5Ah1rpUE8z65C5amDSXONbucb3NLOfR/dm3uNyOtRKh3rSoRXmPDrQoVY61NPMOmTOY090qJUO9TSzuVf2RIda6VBPc+6Q+/N2o0WttKinObeoC3PVl9OhVjrUkw6tMFfdgQ610qGeZtahk5urtjDaESilfEGSdyX5yqXdH0/ytFrrB3sc6iTDXWu9u5RyXZK3JXn80pe+8eyxziey+MbhHUv7/mTNcz/U45RKj+cOrpTy3Ul+uLH7R2ut/6DHYXb5PI5lHP5gLv5H9htKKQ+tta4bIydNh9rpUD86dFEp5UuSPL2x+5XbHu+UaVE7Lepnbi0aaHycPB1qp0P9TKBDHCEdaqdD/ehQu1rr7Un+binlniTfd7b785L8h1LK1235G4aOng6106F+dKgzc9UNWtROi/rRoovMV3ejQ+10qJ+5dchcNTBlrvHtXOP7mcA1/ljGoXmPJTrUTof60aGLzHl0o0PtdKifuXXInMd+6FA7HepnAh3iCOlQOx3qR4fauT9vPS1qp0X9aFFn5qqX6FA7HepHhy4yV92NDrXToX7m1qFTnKu+auwToF0p5fOTvDPJX1za/aksVrL8Hz0P938b21/Y81wenNVwT2Ig11o/kuTJSV6R5J4OL/mlJE9Mcltj/617PrVJKaX8jSQ/losx/ckk3zvgaTTH4YNKKZ/b8xgPb2wfYhz+Rhb/1q64X5KvOcD7TJ4OdaND3ejQpa7Pxe/JfrvW+t93ON5J0qJutKibubbI+NiNDnVjnHUzkQ5xZHSoGx3qRod6+SdJ/nBp+wlJnjbSuYxKh7rRoW50qBdz1Uu0qBst6kaLLnV9zFe30qFudKibuXbI+ACmyDW+Gw3vZiLX+KndG7OOeY8zOtSNDnWjQ5e6PuY8WulQNzrUzVw7ZHzsRoe6Mc66mUiHODI61I0OdaNDvbg/b4kWdaNF3WhRL+aqz+hQNzrUjQ5d6vqYq26lQ93oUDdz7dCpjQ8Lo01YKeUhSd6e5OuWdn86yTNqre/d4pDN1S+/rOfrm8//ZK31U5c+cwS11ttqrX8ryVdlMSHyS0k+nOSOJH+a5OYkP5XFKqp/tdZ6S5LHNg7zW4Od8MBKKS/IItLL/+5fk+S7hlxBv9b6iVz8D2KSfGnPwzTHYp+VXTuptd6X5P80dvf6ZucU6FA/OtROh1aVUkqS72zstrp3gxb1o0Xt5t4i42M7OtSPcdY3m3gKAAARjElEQVRuKh3iuOhQPzrUTof6qbXekeTNjd3PGONcxqRD/ehQOx3qx1z1OS3qR4vaadEq89Wb6VA/OtRu7h0yPoApcY3vR8PbTeUaP6V7Y9qY91jQoX50qJ0OrTLnsZkO9aND7ebeIeNjOzrUj3HWbiod4rjoUD861E6H+nF/3jkt6keL2mlRP+aqF3SoHx1qp0OrzFVvpkP96FC7uXfolMbH1WOfAJc7+200b0vyDUu7P5PkmbXW39jysDc3tr+85+v/QmP7d7c8j4OqtX4oycvPHps8qbH962uOWS7bfyxKKc9N8uosVqm+4r8kedHZf9h62cPncXMWK0xe8eVZHZ9tmmOxz2v7uKOx3VzR9aTp0PZ0aJUOrfXUJI9e2r4ri2+qOaNF29OiVVp07hDj41Tp0PZ0aNUEO8QR0KHt6dAqHdraBxrbff/NHDUd2p4OrdKhrc16rjrRol1o0SotWst8dQsd2p4OrdKhc+aqgbG5xm/PNX7VBK/xU7k3ZpNZz3vo0PZ0aJUOrWXOo4UObU+HVunQOXMe3enQ9nRo1QQ7xBHQoe3p0Cod2tqs789LtGgXWrRKi7ZmrlqHtqJDq3RoLXPVLXRoezq0SofOncJc9VWbn8LQSimfk+StSb5xafftSb6l1vqrOxz6/Y3tx5dSHtTj9U/ZcLyjcraq6lMbu395jHM5pFLKs5O8LhcXQnxzkhfWWj87zlmtjJ1mINc6+6bm8RuOty8Pa2x//EDvMzk6NAwd0qEkL25sv7HW+sktj3VytGgYWqRFG95nFuNjHR0axlzG2UQ7xMTp0DB0SIc6uKex/YBRzmIEOjQMHdKhDmY7V51o0VC0SItivnotHRqGDulQm7mMD2BYrvHDmEvDJ3qNn/zPo8/Mdt5Dh4ahQzoUcx5r6dAwdEiHNrzPLMbHOjo0jLmMs4l2iInToWHokA51MNv78xItGooWaVEH5qp16KB0SIdirnotHRqGDulQmymPDwujTUwp5YFJ3pLk2qXddyZ5dq31Pbscu9b6R0l+Z2nX1bl4cdjk2sb2z+9yPhPw1CTXLG3/cq31gyOdy0GUUv5aFitX/pml3T+X5Pm11nvHOaskydsb29f2eO035eJF6KZa60d3PqOGUsrDsrqK6x/u+32mSIcGpUPjGb1DpZSHJrmusfuVfY9zqrRoUFo0ntFb1MHJj491dGhQJz/OJtwhJkyHBqVDbPKoxvYhvu+aHB0alA6x1pznqhMtGpgWzZj56vV0aFA6RJuTHx/AsFzjB3XyDZ/wNX7yP4+e87yHDg1Kh8YzeofMeaynQ4PSofGM3qEOTn58rKNDgzr5cTbhDjFhOjQoHWKTWd6fl2jRwLSItcxV69BAdGjGzFWvp0OD0iHaTHZ8WBhtQkop90/yxiRPW9p9V5Jvq7X+4p7e5k2N7e/seG5fneQvL+26Lck793ROY/lHje1XjHIWB1JKeXqSn05y/6Xd70zy3Frr3eOc1f/3jiR3LG0/6WyMdXF9Y7s5pvflBbnYyI8muflA7zUZOjQ4HRrPFDr015M8cGn7liTv3vJYJ0WLBqdF45lCizY56fGxjg4N7qTH2cQ7xETp0OB0iE2+ubE9icn9Q9KhwekQbWY5V51o0Qi0aN7MV19ChwanQ7Q56fEBDMs1fnAn3fCJX+OP4efRs5z30KHB6dB4ptAhcx6X0KHB6dB4ptChTU56fKyjQ4M76XE28Q4xUTo0OB1ik9ndn5do0Qi0iDbmqs/p0OHo0LyZq76EDg1Oh2gz2fFhYbSJKKVcneT1SZ65tPueJM+rtb5jj2/1miSfXdq+rpTyFR1e1xzEr6+13rm/0xpWKeVFSZ6+tOu9Waz8eBJKKX8lyc/k4jdI787im4C7xjmrc7XW25O8obG7OcZWlFK+Mslzlnbdm+S1ezy1K+/ziCTf39j9s7XWuu/3mhIdGpYOjWsiHXpxY/snTr0zXWjRsLRoXBNpUdv7nPT4WEeHhnXq42zqHWKadGhYOsQmpZRvSfLExu6fGeNchqJDw9Ih2sx1rjrRoqFpETFfvUKHhqVDtDn18QEMyzV+WKfe8Klf44/g59GznPfQoWHp0Lgm0iFzHg06NCwdGtdEOtT2Pic9PtbRoWGd+jibeoeYJh0alg6xyRzvz0u0aGhaRBtz1To0BB0i5qpX6NCwdIg2Ux8fFkabgFLK/bII6rcu7b43yfNrrW/d53vVWj+Y5KeWdt0/yatKKQ9c85KUUr41F3/jzd1J/tk+z2tXZxe+rs+9LsmPL+26N8mLa6337v3ERlBKeVKStyb5nKXd70nyrFrrHZe/ahQ3ZPHNyRXXl1Keve7JZ2P0J3Nxhc5X1lr/d8trvqqU8qw+J1VKeWQWn98jlnbfneQH+xzn2OjQ7nTonA5tVkr5S0m+dmnXfUle1fc4p0aLdqdF57To0tcaHxvo0O6Ms3NH1CEmRId2p0PndOhcKeWJpZTnbH7myuu+PsmrG7vfU2t9337ObHp0aHc6dE6Hzpmr7keLdqdF57RoM/PVq3Rodzp0TodWGR/AWFzjd6fh547oGn9D3KM3GTq0Ox06p0ObmfNYpUO706FzOnTpa42PDXRod8bZuSPqEBOiQ7vToXM6dM79ef1o0e606JwWnTNX3Z0O7U6HzunQZuaqV+nQ7nTonA6tOrXx0fkPw0H9RJLvaOx7WZKbSinX9DzWrR1WmvynWfwGmz97tv3kJO8qpXxXrfV/XnlSKeUBSf5mkh9qvP6Haq2/3+VkSimPyuXj7JGN7atb/qyfqbV+fMNbva+U8nNJfjrJr9da77vkXB6X5B8neWHjSy+rtd604fh7cejPo5TyhCQ/n+TBS7s/kOR7kzy8lNLndO+std7a5wV91Fp/r5Tyb5L8w6Xdbyil/P0k/67WeveVnaWUxyb591mM1Ss+kc3fQPz5JG8ppbwvyX9M8qazb15WlFIekuRFWazs/YjGl/9FrfX3OvyxjpkO6ZAOLey7Q+u8pLH9jlrrH2x5rFOiRVqkRQuHatFRjI+R6ZAOza5DyXDjo5Ty4CQPW/Pl5oTyw1re68NTmlzbMx3SIR26aF/j41FJ3lhKeX8WP0B7c5IP1Hr5b1kqpXxNku9J8tLGed15tu+U6ZAO6dBF+xof5qr70SIt0qKL9j0+msxXr9IhHdKhi2Y5PoCT5Bo/k4a7xp9zj97k6JAO6dCCe/TGo0M6pEML7s8bjw7p0Ow6lLg/b2J0SId06CL3541Di7RIiy5yj97wdEiHdOgi9+cNT4d0SIcumuX46KzW6jHyI0nd4+Paju95bZK7Gq+9L8lvJvnPSd6e5I8vOf7PJrlfjz/bLXv4M72qw/t8fOn5f5rkV7P4R/qaJO9sOY9/PvDf9UE/jyx+o9G+xtKNA3we90vytkve+6NZXIBen+S3zsbm8tfvSvJNHcd589h/kuS/ZTHB9uokbzp7j3vWfA6vGLsRA41NHdIhHTpAh9a85wOyuFFi+XjPHbMBU3nscexokRbdsMexdOMAn8cgLTqW8THmY4/jRocmPs4O/Xnk+Do01Pi4fk+fyTVj9+KAfxc6pEM6dJjP49suef6nz8bHW7K4AeL1Sd6V5NY1x789ydPG7sQAfxc6pEM6dJjP49pLnm+uev3npUVapEUHHB+N9zRfffnnokM6pEPGh4eHxwk+9thk1/iJN/zQn0eO7xrvHr2JPPY4bnRIh27Y41i6cYDPwz16E3nscdzokA7dsMexdOMAn4f78yby2OO40aGJj7NDfx45vg4NNT6u39Nncs3YvTjg34UO6ZAOHebzcH9ev78PLdIiLTrM53HtJc83V335Z6VDOqRDBxwfjfc0V33556JDOqRDxkfnx2UryTEDtdYbSynPSfKqJF94trskeeLZ4zKvS/LdtdbPHv4Md/LgJE/a8JxPJXlprfU/DXA+rFFr/Wwp5Tuy+M1Kz1/60sOTPGPNy/44yYtqrf91y7f9/CRP6fC825J8X631x7d8HzbQIR2agpE69JwkX7C0/bEsJvoZgRZp0RSM1CLjYyJ0yDiDsemQDs3YQ7J5fFzxa0m+p9b6Owc8n9nSIR2aMXPVE6JFWjRj5qsnQod0aMaMD+CkucZr+BS4R2/edEiHpsA9evOmQzo0Be7PmzcdMs5gbDqkQzPm/rwJ0SItmjFz1ROhQzo0Y+aqJ0KHdGjGjn58XDX2CTCeWuvbkjwuyY9lMVDX+bUkz6u1vrDWetsgJ9ffjyS5KYtVOdv8QZIfSPKYqf6jnJta62dqrS9I8u1ZjLV1PpnkR5M8rtb69o6HvznJy5P8SpI7Or7mfyV5WRa/4cR/Yg9Mh3RoCg7cocu8pLH96lrrPTscjx1pkRZNwUAtMj4mSoeMMxibDunQDLw7i9+K+7okH+74mtuTvCHJs5I82U1Xh6VDOjQD5qqPgBZp0UyZr54QHdKhGTE+gFlxjdfwKXCP3rzpkA5NgXv05k2HdGgK3J83bzpknMHYdEiHZsD9eUdAi7RoBsxVT5wO6dBMmaueEB3SoRk5qfFRaq1jnwMTUEq5fxarHn9ZkkdmsbrxR5LcVGv90Jjn1kcp5fOSPCHJo7NYqfOBWfwH5iNJfrvW+rsjnh4dlFIeneRrk3xRks9NcmuS30/yK7XWu3c47lVJviLJY5J8cZKH5nx8fCrJHyX5zVrrx3b6A7A1HWIqDtUhjoMWMRWHbJHxMW06BIxNh5iDUsojkjw2i3H+55I8KMk9ST6d5BNJ3p/kA0fwm31Okg5x6sxVHwctAsamQ8yB8QHMkWs8U+EevfnSIabCPXrzpUNMhfvz5kuHgLHpEHPg/rzp0yJOnbnq6dMhYGw6xBycyviwMBoAAAAAAAAAAAAAAAAAAAAAAAAwuqvGPgEAAAAAAAAAAAAAAAAAAAAAAAAAC6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADC6/wfh0VgquWOTFwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 5), dpi=300)\n", + " configs = get_known_configs()\n", + " to_display = configs[\"Relative humidity\"], configs[\"RAM available\"]\n", + " for i, config in enumerate(to_display, start=1):\n", + " plot = figure.add_subplot(1, 2, i)\n", + " coros.append(plot_sensor(config, plot, {}))\n", + " await asyncio.gather(*coros)\n", + "\n", + "display(figure)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAE0YAAAUsCAYAAAC9bUPVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdd5h1Z1kv/u8dAqEEEnoRSIBIVUA6AiYRPDSlKr0EIgiCla6IAVEPR1DPQQRF6aKIQEDqT8HQu1IUBUKJEECQloSSEHL//lj7lXnX7Cl7z57Z8877+VzXXGQ9az1l773WzsXMN/dT3R0AAAAAAAAAAAAAAAAAAAAAAACAZTpk2QsAAAAAAAAAAAAAAAAAAAAAAAAAUBgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAYKSqjq6qHv2csOx17aSqOmX0+k9Z9pr2Iu/zga2qThp/VxwI87vvAAAAAAAAAAAObgdq7gUAAAAAODgojAYAAAAAAAAAAAAAAAAAAAAAAAAs3aHLXgAAAACwO1XV0Uk+M0OXs5OckeSbST6V5F+SvCfJG7r7nEWvDwAAAAAAAAAAAFaqqsqQeztqdOr7SY7q7tN3flUAAAAAAMzikGUvAAAAANgzDkty6STHJLltkscnOTnJ6VX1tKo6fJmL2+uq6gVV1St+PrvsNQF7S1V9dvQ984JlrwkAAAAAAAAAYOQ2WV0ULUnOl+SEnV0KLEZVHTfK7XRVHbfE9cgrwgJ5pgAAAGA1hdEAAACA7XapJI9N8q9VdfNlLwYAAAAAAAAAAIA968R1zj24qmrHVgIAAAAAwFwOXfYCAAAAgAPKt5Kcusa5Cye5RJJLrnH+qCRvrKpju/tD27E4AAAAAAAAAAAADk5VdYkkd1nnkqsmOS7JP+3IggAAAAAAmIvCaAAAAMAsPtDdx613QVVdMcnPJHlUkquNTl8syd9V1bW6+3vbs0QWYaPPGUi6+6QkJy15GTPzfAMAAAAAAAAAe9T9khw2auskteL4xCiMtnQHau4GAAAAANgZhyx7AQAAAMDe0t2f7+5nJ7lekldOueRqSX5hZ1cFAAAAAAAAAADAHvfg0fEnszrDdreqOmKH1gMAAAAAwBwURgMAAAC2RXd/K8l9k/z7lNP33+HlAAAAAAAAAAAAsEdV1Y0ybOa50ouSvHDUdqEk99mRRQEAAAAAMBeF0QAAAIBt093fTfL7U07dqKousdPrAQAAAAAAAAAAYE86cXTcSV6c5A1JvrzBtQAAAAAA7CKHLnsBAAAAwJ73xilthyS5RpJ3zztoVR2S5MeSHJ3k0kkukeSMJF9JcmqSf+nu8+Ydf5Gq6oeSXDPDWo/IsOvoGUm+luQ/k7x/UkSObVBVF0pykySXT3KZJIcn+WqGe+XD3f2pJS5vU6rq0kluluSqGdb/zQyBzfd292nLXNt2q6ojMrz2H87w/Hw3yelJ3j3La6+qKyS5cYbn8PAMz9/nk7y1u89Y8LLnUlWHJblFkisnuVyS7yf5ryQfTfKh7u4lLg8AAAAAAAAAYFea5IPuPWp+275sSVW9NMmvrjh3w6q6Xnd/eJvXdf4MuaVrJ7nkpPm/kvzzLHNX1cUy5F6ukeTIJN9K8qUk7+zuzy900avnvmSSmya5WpKLZcgtfSG7NHdVVVdMcr0MmcJLZyiQ95UkX0zynp3ICVXVDye5YZIfSnJYhqzaF5K8o7u/vt3z70VV9SNJjsmQ/7tkkm9n+Fw/myF/+b1tnt+zPP+8u+WZvF6SK2bIDp6T5Ivd/eJN9pcB3gZVdYEkN8rwPFwqw/flGRlyse+dYZxjMjyb++6xs5P8d4Z86Hu6+zsLXjoAAAA7RGE0AAAAYFt191eq6owMQYqVLjXPeFV1qySPSPJTGYqhreVrVfX6JL/f3R+bZ655VdWlktw1yW2SHJvksht0Oaeq3pPkT5K8YrMF3arqs0mOWuP0UVW1mSJKx3f3KVPGPiXD2vd5a3cft8Y6PprkR1Y0fSXJD20lbFRV907y0lHzI7r7TzfZ/5Ak901yvyQ/keSC61z7mSR/m+Tp3f3f8614e1TVcUl+I8mtMxQUnHbNx5L8XpKXzlI4q6pOSPL8UfNVuvuzc6xzPO+Tu/ukDfqclOS3V7Z1d604f+MkT0xyh6zxe8yqemuSx3f3e9aZ52eSPC7JjyepKZecU1WvSvLY7v7P9dY862uYYZyjk5yU4Xtj/F25z5eq6jlJntHdZ806x2i+U7KJ53uyrs+sM9QDq+qBG8237z2ZBPtOzxAu2+eU7j5+w0Wvo6r+b5JfHjVff7vDywAAAAAAAADArvGzGYrVrPTC0T//6uj8g5P8yjyTTTI9/zRq/p8c1mQDv99Mcv8kF11jjE8keep6hXmq6roZ8jN3ylAwZto1707ymO5+52yvYn1VdWx+kFs63xrX/HOSZyf5y1k3/FtU7mYy1mWS/FqSn0lynXUuPbeq3pvkWUleNuvGq+tlpCZ5tQcm+fXsn6Vb6fuT3M4T18s7rZjvpIzeo5F/qtrwLXthd5+w0UWbsZ15xTXmu26G5/a2Sa6wzqVnVdU/JnnaZt7X0RzH5QB/ljeRw9vWZ3mN8XbDM3mRJL+U5CEZNqSdZupndqBngDe6r2cxZY0bfqdslE2tquskeWySuye5yJQhXphk3cJoVXWVDN+3d8jan2+SfLeq3p7kj7r7DeuNCQAAwO4z9T+mBAAAAFiwaUV81ir+M1VVXX1S6OxtSe6Z9YuiZXL+fkk+WlV/UVVrFsZapMnuol9M8udJ7pGNAxFJcoEMxbv+Nsm/Tv7ofyAZBxguneSOWxzzhNHx2Un+ejMdq+p2ST6a5EVJ/lfWKYo2cZUMhbM+XVVzhR0XraoOq6rnZgin/FTW/z3etZO8JMkbJ2GeA1oNfifJezIEwdbb3OHYJO+qqkdPGeeIqnpFktckuUWmF0VLhufvnkk+VlW32dLi5zC55/4tQzByve/Fy2UonvZvVXXDHVjawk1293zJqPm4qrrWvGNOdnx+wKj53YqiAQAAAAAAAMBB5cTR8beT/N2+g+7+UJKPjK65X1VNLVC0FVV1tyQfS/KLWaOQ0sTVk7yoqv52vI5JfuZJSf45yc9ljUJKEzdP8vaq+o2trfx/5j5fVf1JklMyZK+mFlKauEGS5yZ526RIzY6qqgtU1VOSfDrJ47N+AaZkyCHdIsOGnR+eFKtaxDqumOQdSZ6XtYuiJcN7eesk766q313E3HtRVV2+qv4qyYeSPCjrF0VLhk0a75LhfT25qjbKlm52HZ7l2efcLc/kTTN8dr+f9YtmTet7MGaAd0xVPTHDs/2ATC+KtlH/i03u648neWQ2/nwvmCGD+/qqentVXXnWOQEAAFgehdEAAACAnXDklLYzNtu5qm6dYfev288x9yEZgm9vrarNBBS26sezfiGnjVwryXuWUaBpC16S5HujtgfNO9gkKDZ+/Sd399c30ffRSV6XoVjYrC6a5I8nhfS28hluyaSI3xuS/PyMXf9XhvDGegGmA8FzMuyOudnfXVaSP6iqh/5PQ9WRSd6c5G4zzHuRJK+pqhvP0GdLJgHHP05y4Rm6XTnD99kBWRwtw66YYw/bwnj3zup/xzx7C+MBAAAAAAAAAAeQqjomQ0GalU7u7jNHbS8cHV8iQzGlRa7lfhkKsh0xQ7efy1BQa98YlaFA0ZOzfiGj/aZO8rtV9cgZ5l09yDD3S5I8Ysaut8yQZ5mpANFWTIpf/X9JfitzFNfJUMDsnVX1M1tcx1UzbAB58xm7/kZVPXUrc+9FVXW9JO9Lcp+svRHmeu6cIX959S2uw7M8+5y75Zn8iQzF4OYtgHUwZoB3xKSg2e9kzve3qo5K8s4M9/X55xjilkneV1U3m2d+AAAAdt7S/gNPAAAA4OBQVVfL9KI/n95k/59J8oqs/iP2OUnekqFg2ueSfDPDzn9HJ/nJJLcaXX+TJCdX1U9097iI13b5foad/v4tyX8k+WqGgnCV5GJJfjjJzTLseLeyCNThSf6mqn6suz+3zvgfS/KNyT9fOcnFV5z73uT8Rs7axDXr6u4vV9XrM4SK9rlDVV2mu788x5APyOqiWM+bduFKVfW/kzxuyqmvJfmHJB9M8uUMO8IemWE3wtslucbo+hMzvK+PnmnVi/O8JMevOP54hkJp/5HhtRyR5MeS3D2rdyP8iSS/luTp27/MxauqX0ny0BVNpyX5+yT/muG1H5nkphlCZBcbdf/jqnpThu+Dv0mysnDYB5O8MclnkpyZ4X37ySR3yv732oWSPLeqbtTd5y7oZU1VVb+eZNrunmdP1vq2JF/IEBK7Sobna9+OshdJcnJW7Gy8Tc5J8uEVx9fO/t/FX0/yn7MM2N3/VlWnJDluRfMDquoJ3f3tOdb48NHxV5O8fI5xAAAAAAAAAIAD04OzuoDSuAhakvxVkv+T/QsUnZjkZQtax42S/N6KtXwjyeszFM36coZcyrWS3CNDxm2l+1TVyd398gx5khNXnDstyWsz5Ge+miE/c5PJOOP8zNOq6rXd/dk5X8OjktxrxfGZSV6d5P1J/msy9zUz5JauNOp7pSRvqarrd/c3so0mmya+c7KWsX9N8tYMmb1967hMhsJld8iweeY+hyd5eVXdors/OMdSLpoh1/VDk+NO8q4k/5ghU3NWkktnyAfeNckFR/2fUFV/393vXWP8L+UH2Z3Dk1xtdP5T2Tj/N1O2ZwPbmlesqhsl+acMr3Wl85K8PcN7+5nJGi6U5IpJjk1y6+z/XP9whg1Gb9jd39zEmsY8yzM+y7vombxckldm/2ftfRkKtp2W4X24fIYc3M9tYryDIgO8Qx6S/Qv1nZUh1/vODPfkIRme6eMzvO/7mRRFe29WZ2aT4TN+Z4as7deTXCDD5/zjGTbkPmzFtZdN8rqqukF3n7a1lwQAAMB2q+5e9hoAAACAXaiqjs4QIlnprd193IzjPDbJ00bNX09yqe4+b4O+V8kQKjhyRfO5Sf4oyR9091fW6Xv9JH+R/YsjJckfdvejNpj36Kx+7Q/q7hes12/S9xNJPppht723bCZYM/mD/e8nuffo1Ou6+6c36j8Z4wVJHrii6bTuPnozfdcY75QMoaF91v3sq+pOGYIzKz2qu/9wjrk/kSEwss/nkxy13v1SVXfNEGhZ6etJHp/kRd393TX6VYadX5+TIWyz0p27+zUzLn8mU97n7+YHoZwvJfml7p5a/KqqDk/yrAyF5Fb6RpIrdPd3Npj7hCTPHzVfZZ4wVVWNf8n45O4+aYM+JyX57VHz2RlCKN/OEM56bndPC7lcNkPBxFuMTv15hnDLMybHn07y0O5+8xpruFGS12X1Z3+f7v7r9da/1mvo7g13Kq2qayT5UFaHHd8wWe/n1+h31yTPzg/CPd/JELSbdf5TMsPzvaLfZ5MctaLphd19wkb9poxz96wu6nZid29YAHE0zg2TfGDU/PTufsysawIAAAAAAAAADjxVdb4MhZ+usKL5C0muNC1rVFWvy1CIZ5/zklx11uIoVXVchgJOK+3LvSTJM5M8aVpRoao6LEO25RGjUx/PkAN6d4YCMRvlZy6XIT/z46NTf97dv7CJ13BSVmd3VmaXnp/k19d4DYdk2LzxqVmdf3lBdz9onvk3k3uZ9H1VhszXSu+arHetImP7ijf9Voa1r5zrs0mu291nbjDvOCO18v16b5Jf7O5/XqPv0Rk+rxuMTr2pu2+33ryT/sdl9T13fHefslHf7bANecWLZ8iKjsd4fpKTunvNAm+TzXufleS2o1Ov7O67bzDvcfEsb+lZnoyzW57J7+cHRfI+kuRh3f3uNfpecFqudC9kgBf5fTFPZnCNbOrKz+Y5SZ7Y3V9do/9+n01VXSDJO5LceHTpa5M8trv/fZ21XC7JHyS53+jU+5PcfNozCQAAwO5xyMaXAAAAAMynqi6f5NFTTv31RkXRJv4q+xdF+3aS23b3Y9cripYk3f2hDEGRfxid+qWqGu9wt0g37u67d/erNrvbYHef1t33SXLS6NQdqmraDnq70esz7Nq20gmzDlJVt8j+RdGSIUixXlG0y2R1iOKTGYIxf75WUbQk6cGrMuzyOC5G9fuTwmk7aV+46NNJbrZWUbQk6e6zMrzHbxqdOjLDTo4Hon1F0W7T3c9ZK3TS3f+V5Kcz7MC50v2SPGXyz/+WIbgytSjaZJwPZPp7talA1xY8O6uDZH+b5KfXKoqWJJN79dj84HVfaK1rd7mTs/p5e/gc44z7dJI/m2tFAAAAAAAAAMCB6PbZvyhakrxknazRC0fHh2SOjNMa9hVS+pXu/uVpRYiSpLvP7u5HZnXm5xpJ/n6yprOS/OQG+ZkvZcjPjHN096qqeTMl+/Is/7u7H7zOazivu5+R5OcybHS60glV9RNzzr+hqnpoVhdg+tMkt1yvAFOSdPc3Jpuqnjg6dXSSX5xjOfver9cmOW6tomiTuT+b5KeyOmP3U1V15Tnm3muelf2Lon0/yf0m9+GaRdGSpLs/leG7YJwhvFtV3XSOtXiWB5t6lnfZM7mv8NY7k9xqraJok7nXypUerBng7bbvs3lUdz98raJoydTP5qSsLor2+O7+mfWKok3G+lJ33z/Jk0enbpzkZzdeNgAAAMukMBoAAACwLSa78L0xyaVHp76dYWe0jfr/VJKbj5of3N1v2ewauvucDIGN/17RfP4kv77ZMWa12SDEGp6SYReyfSrJg7e2op3R3edm2CFvpR+tqhvOONS0glTjwNLYryQ5YsXxt5Pcbr0CU2Pd/bkk9xo1XzvJnTY7xgJ9L8k9NrMTbXd3pt/P490vDyS/ul4gaZ9JWOvpo+YLJ7lIhh0v79Hd48Jp08Z5R4bvqpWOr6px4bKFqKofTXL8qPnUJA/YTMHI7t63o+gBaxLyGxcwu1FV3WizY1TVEVm9w+Y/dPepW10fAAAAAAAAAHDAGBfTSZIXrXP9q5OMCwQ9qKoW9d/YvbS7/98mr/2tKW2Xmfzvr2xUUChJuvvrSZ4xar5Yhg1F53VKdz9hMxd292uTPHXKqV/ewvxrqqpDk/zGqPmN3f2ISY5qU7r7+Un+YtT8a1V12LTrN/DZDAW81ty8c8W8X8vq4jyHZCiYdtCqqmskueeo+Te7+682O8bk8/+FJOMiSY+fc1me5cG6z/IufSa/meSe3X3GHH0P2gzwDnlFd//hLB2q6uJJfmnU/Jzuftos43T3SVm90fa83w8AAADsEIXRAAAAgIWoqgtW1Q9V1R2r6s+TfCTJdadc+pBNFqx63Oj47d39slnXNQkp/N9R811nHWcnTIIgLx4133IZa5nT86a0nbDZzlV14ST3GDW/bbKj41p9Ds/qnQGf0d2f3uy8+3T3O5O8edS8jHvlpd39wc1e3N0fSzLebXTWgnS7xSeyOuC0nles0f7iyfuyWX83Oj40yY/O0H8WD5vS9qjuPnuzA3T3mzLsKnog+/Mk54zaHj5D/wdmKIS30nO2tCIAAAAAAAAA4IBRVZdJcsdR8z9397+t1WeSzxhn0I5KcusFLOn7WV0gaE3d/f4k/znl1Mez8UaSK41zL0lygxn6j81a1OxpScZ5wDtX1eW3sIa13CvD57VPZ3XBnM16yqT/PpfN6o1cN+PJMxZS+psM98pKB2rWa1Eek/3/O9fPZPWGmRvq7u8l+b1R8+3n2CDTs/wDGz3Lu/GZ/MPuPn3ONWzJHsgAb6fzkjx6jn6PSHL4iuOzsjpfvllPGR1fv6qOnnMsAAAAdoDCaAAAAMAsjq2qnvaT5DsZQhGvTfKQrC5Y8+0k9+3ul240SVVdIslPjppnKZY09rrR8VFVddTUK5fvk6PjG1TV+ZeykhlNClG9b9R8nxl27bt7kouO2jYKBt0myZGjtr/c5HzTjO+VY7cw1ryeO0ef8ft+9UUsZAmeP+NOkZ/OsMPj2Kz3wL9MabvGjGNs1u1Hx1/M6vtuM/5sAWtZmu7+cpKXj5rvVVXj53ktvzA6Pj0HfrE4AAAAAAAAAGDzHphknKt64Sb6vWhK24lbX07+sbtPm7HPh6a0zZqf+VSSM0bN8+Ze3tPdH52lQ3d/N6sLAR2aIde1aD87Oj6lu0+dZ6Du/lyS8WudNSv2rSQb5iFH8349qzOC25VT2vWqqpLcbdT8gu4eF4/brNePjg9LctMZx/As/8BGz/JueyY70zf43UkHbAZ4m72luz87R7/xPfby7h4/J5v1riTfGLUtIyMMAADAJimMBgAAAGy3MzMUNbvmZoqiTdwqSY3a3rWFNXxmStuPbWG8Tauqw6vqDlX1+Kp6UVW9rqreXlX/XFUfGv8k+ZPREIdl2PnuQDEuZHaJJHfaZN8HjY7PyurCSWPjUMLpc4SSVhrfK0fPUKhpEb6T1UXONuNTo+PzVdXhU6/c3d42R5/xbpvfTvLBGcf47JS2hX/uk52KrzJqfvWcQb43ZQhXHsjG33cXTvKAjTpV1bFJrj1qfm53n7uohQEAAAAAAAAAu96DR8fnJvnrjTp197uyunDNXSabeW7FPLmXaTmnty9gnHlzLyfP2e+VU9puNudYU00KaN1q1LyVTGGyOis2a6bwPd19zhzzjrNeR8wxxl5x3SQXH7XN/bl299eyeqPNWT9Xz/L+pj7Lu/SZPLW7P7/FNeznIMwAb5d/mrVDVV08yY+Omrfy/XBeVj9jO5IlBwAAYD6HLnsBAAAAwJ73gSTPnOzmtlm3mNL2iqra9O55m3CpBY61SlXdMMljMhQFu9AWhzsyyULDGtvor5P8YfZ/zSdkgwJnVXVUkuNGzX/b3RsVfhrfKxefhEvmNa2Y2KWyepe47XJad39vjn7jMFcyBObO2uJ6dto8u0WeOTo+bY4CWeMxku0JHN5wStusRdySJN19blV9JMnNt7ak5enu91TVB7P/+/KwJP9vg64PHx2fm6EAJwAAAAAAAABwEKiqWyS55qj5Dd39lU0O8aIkv7Pi+LAk903yzC0saxG5l0WNM2/uZa4cS5KPJvlekvOvaJuWk9mKa2XYpHOlB1bVT29hzCuPjmfNFI4L7G3WOOt1MBdGm5YVfWZVnb2FMS88Op71c/Usb+5Z3o3P5D9vYe79HMQZ4O0yz2dz8ySHjNqeUFWP3MI6jhkdb2uWHAAAgK1RGA0AAACYxbcyPaxx/gy79l1+yrnjk7y/qk7o7g135Jy44pS2626y72ZdcsHjJUmq6vxJ/ihD4Z7xH+TndcAEn7r7m1X1qiT3WdF826q6fHd/cZ2uJySpUdvzNzHl+F65cJLrbaLfLC6Z+UJK8/janP2mFVM7/5S23e7rc/QZv/aZx+ju7w0bWO5nO96/y0xp+/gWxvuPHMCF0Sb+JPs/69eqquO6+5RpF1fVZZLcddT8mu4+fZvWBwAAAAAAAADsPidOaXvhDP1fnOQp2T+vdGK2VhhtEbmXRY0zb+5lrhxLd59dVZ9N8sMrmqflZLZiWqbwimu0z2vWTOGisl4HYs5rUaZ9fuOih1s16+fqWd7cs7wbn8kvb3XCgz0DvI3m+Wym3UtX3epCRrYlSw4AAMBiLOr/mAMAAAAHhw909/Wn/Fynu6+Q4Q/EJ2Qo1rPSBZK8uKp+ZpPz7MQfmre6g9sqk0DEy5M8Iov9vcuBFnwaFzQ7X5L7r3VxDRWpHjBq/mR3v2MTc413HNwOC79X1jEtIHXQ6O5FvP7d/B4eOaVtvAPsLLbSd7f4myRfHbU9bJ3rT8zw75SVnr3QFQEAAAAAAAAAu1ZVHZ7kHqPmryd57WbH6O7Tkpwyar5eVd1wC0tbSGZlQfmZeS0yxzItJ7MVuzFTuJtzSgeKPfu5HgTP8m787M7YymQywNtqns9mN95jAAAA7CCF0QAAAICF6e6vdfcLk1w/Q7Gblc6X5CVVdfQmhrr4gpe2Ux6X5M5T2k9P8qdJ7pfk5kmulCEscsHurpU/SY7fsdVunzcnOW3U9qB1rj82q3dxGxdXW6WqLpzksNmWBkt10Slt39rCeFvpuyt093eT/OWo+W5VddnxtVV1SJKHjpo/meE7BwAAAAAAAAA4ONwryUVGbS/r7rNnHOeFU9pOnG9Je8YicyzTcjJbcaBmClmfz3V77MSzvBs/u3O32F8GePvM89nsxnsMAACAHXToshcAAAAA7D3dfXZV3T/JZbP/H/kvlqEAzq03GOI7o+NvdPeu/gN3VV0myRNGzecmeUySP+nuzf5R/4Dffay7u6pemORJK5qvWVU36+73TOkyLpr2/SQv2sRU301yXvYv/ioagZ8AACAASURBVH9yd991pgXDzjlzSts4qDuLrfTdTf40yaPzg2f5/BmCxr83uu72SY4etf1Zd/e2rg4AAAAAAAAA2E2mFS97WFU9bAFj37uqHtXd4/zaweIiSc7YQt+VpuVktmLaZ3KX7n71gudhZ037XC/e3d/Y8ZXsLTvxLO+pZ1IGeFeado9dv7s/vOMrAQAAYCkO2fgSAAAAgNlNQgAPyOpwxU9W1T036P7fo+Mjq+rIhS1ue9wpyYVHbY/r7j+eIRCRJJdY4JqW6QVJxsWKThhfVFWHJ7n7qPn/6+7TN5qgu89LMg5AXWXzS2QRqur8y17DAWRaYO+ILYy3lb67RnefluS1o+aHVtX499cPHx1/N8N3DQAAAAAAAABwEKiqaye52TZOcWSSu23j+LvdInMsiy5sNc4UJrJie8G0z/XonV7EHrQTz/JeeyZlgKdbZj50r91jAAAAzEhhNAAAAGDbdPfnkzxpyqnf26CY0n9NabvuYla1bX5qdPz1JH8yxzhXXcBalq67P5PklFHzvarqgqO2e2T1DoPPn2Gq8b1y9ao6bIb+B7PvTWmbJ8Ryya0u5CDy5Slt19jCeNfcQt/dZvx9eVSS2+87qKr9jif+tru/ut0LAwAAAAAAAAB2jRP3yBy71dXn6VRVF8jqYlbTcjJbcSBmCtmYz3V77MSzvNc+u72UAV5UNjRZbqG3vXaPAQAAMCOF0QAAAIDt9uwknx61XTXrB8jeN6VtXBBnt7nS6Pi93X3OHOPcfBGL2SXGBc6OSHLXUdsJo+OvJXnNDHOM75ULJTluhv4HszOmtF1sjnGO2epCDiIfnNJ2w3kGqqpDs7dCPv+Y5OOjtoev+OeHZvXvs5+9rSsCAAAAAAAAAHaNyUac9x81n5Pkw1v8+dpozOOqajcUtlmGuXIsGTIs46I703IyW/GRJN8dtd1uwXOw8w7ErOiBYCee5b32TO6lDPBCsqFVdcUk482Qd9J7p7T5fgAAADiIKIwGAAAAbKtJMOApU079ZlUdtka3f5jSds9JIaDd6lKj43FgbkNVdakkx885/7mj4/PNOc4ivSKrAxYP2vcPVXW1JLcanf+r7j57hjmm3Sv3m6H/wewbU9rmCXUeu9WFHCy6+8tJPjNqvlNVzfN72tsmucjWVzWTbfue6e5O8qej5ttX1VGTYPO4mOaHuvs9i5ofAAAAAAAAANj17pTk0qO2V3X39bfyk+SJozErKzJOB5m7zNnvblPaFprr6O7vJnnHqPnyVXXrRc6zi41zO8lyM4KLyhG9K8m3Rm13rKqLzzkeg21/lvfgM7mXMsB7Ihva3aclOXXUfJOquvoy1gMAAMDOUxgNAAAA2AkvSfKJUdsVkzxk2sXdfXpW7zJ3lSQnLHxlizMO54xDEpvxiMy/u9qZo+PD5xxnYbr720leNmq+dVXt21nvhCndnj/jNG/K6l0H711V15hxnIPRx6e03WSWAarqfEkevJjlHDTeMDq+QpI7zjHO1O/Pbbbd3zMvSHLWiuNDkjw0yV2TXHZ07bMXPDcAAAAAAAAAsLuNN1VLhlzaVr0syTmjthPm3OjuQHfzqrrOLB0mm6Pef9R8bpJ/XNiqfuDVU9pO2oZ5dqNxbidZbkZwITmiyca7bxw1XzTJo+YZj/+xU8/yXnom91IG+PTsn8NLZsyGTjx0C2tYlPE9dkiSJy1jIQAAAOy8g/EXtAAAAMAO6+7vJ/mdKaeeUFVrhQB+d0rb03fxTl9fHB3/eFVdZLOdJyGUJ2xh/q+Pjo/cJbsmjgudHZLkAZPg4ANG5z7c3f8yy+Dd/d9J/nzUfL4kL62qC8200oNMd385yedHzfeYFDvbrEdkvp0ED2bPmdL29Kq6wGYHqKrbJLnz4pa0aePvmYV+9t19RpIXj5pPTPJLo7Yzkrx0kXMDAAAAAAAAALtXVf1Qkv81av5KVhdUmll3fy2rN7q7YpLbbnXsA9T/nfH6x2Z4v1Z6dXeP83SL8JdJvjRqu2VVPW4b5tptxrmdZLm5rUXmFadlRR9bVbecczwGO/Es76Vncs9kgLv7vCQfGjXfsaqO2OwYVXWnJD8xz/wL9oys3jz5vlV1z2UsBgAAgJ2lMBoAAACwU16a5D9GbVdI8rBpF3f3q5J8YNR8RJI3zLqT3T5VddGqekxV3W+e/ht4++j48CS/vZmOVXV0ktckOWwL8390StsdtjDeQnT3u7P6cz8hya2TXHnU/rw5p/n9rN6t7wZJXjVvMKSqjqqqZ1bVj8y5pgPFONR55SS/upmOVXXrJP9n4Sva47r7o0n+adR89STP38xOw1X1w1ldPGynjL9nfqSqrrTgOf5kdHzZJOOQ40u6e7yjJQAAAAAAAACwdz0ow2aJK72su89d0PgvmdJ24oLGPtDcuqqeupkLq+r2SX5ryqn/t9glDbr7O5leROv3quqR845bVberqj+df2U74nNJvjlqW2Y+cGF5xclmqq8YNZ8/Q/5vrsJMVXVYVT20qn5tnv57xLY/y3vsmdxrGeBxNvRCSTZ7P1w3qzdFXopJYb5nTTn1vKq6+zxjVtX5quqeVTXt3gUAAGAXURgNAAAA2BGTHciePOXU46vqwmt0u3eSr43arprkvVX1m5vZvayqDqmq46vqOUn+M0Mhp8vNsPTNekWS80Ztj6mq36mqQ9dZ372TvDs/2L3xjDnnf8+U+Z9RVXeuqvPPOeaijAMSx2T1boTnJPmreQbv7i8leWCSHp26bZIPVtX91vsM9qmqi0zCDq9McmqSRya54DxrOoD8xZS2p1XVL1RVTetQVRec7Oj4hgxBnvFufGzsF7P6fbtPktdMdjieqqrukuRt+cF32He2Z3lretfo+JAkL6+qGy1qgu7+WFYXjht7zqLmAwAAAAAAAAB2t0mG5UFTTk0rZjavv8/qolN3qqpLL3COA8G+PMtvVtVz18rnTTJ5v5rklRkKWK30gu5+2zau8VlJXj1qOyTJM6vqVVV1vc0MUlVXqarHVdVHMuSg5irAtVO6uzPkDFe6TVX9flVdZglLWnRe8ReSfGbUdqkkb66qP6iqTWU+q+qmVfWMJJ9N8mdJrjbHWvaCnXyW98ozudcywC9I8v1R2yOr6slrvZ5JwbATk7wjySUyZHLPmWPuRXtikveN2i6c5O+q6i+qalPPeVX9SFU9JcknkvxNkk3dmwAAACzPhv9BKAAAAMAC/W2GP1BfZ0XbZTMUCXr6+OLuPrWq7pHk9UkusOLURTLsXPaEqnpHkncm+WKSb2T4Y/eRSa6U5AaTnyMX/kpWr/UTVfWSJA8YnXpikhOq6u+SfCTJWRkCA9dIcqfsH7z5dpLHJXn2HPN/saremP13iLtskpOTnFNVn0vyrawuHvbz3f2BWeeb0YuT/F7237X1WqNr/r67vzrvBN39iqp6UpLfGZ26ymT+p1fVKUk+kOQrGd6Li2W4N45JcqMk183Wduw74HT3+6rq1UnuvKL5fBkKTz2iql6VoUjcOUkuneSGGe6xlWG6X41CVTPp7v+oqt9M8ozRqTsmObWq3pBhB8ovZtip8aoZPqMfXXHt6UlenuH93ymvzlCs8hIr2m6a5P1VdWaSL2RKobzuvv6M8zwryfFrnHtHd0/bHRMAAAAAAAAA2JuOzw8Kzuzzye5+76Im6O6zq+rlSX5+RfP5k9wvyR8tap4DwJMybDyaDO/FParq5CTvT/LlDFmraya5e5IrT+l/WpJf284FdndX1f0yFO4ZF7W5S5K7VNWHk5yS5JNJ9mXSjsxQaOu6GTJQ43vqQPC8JLcbtT0+w+a0X8yQ6zl3dP413f2kRS9k0XnF7v5qVd0pw+e6sojXoUkeneSXq+rdGTaV/HySr2fI+h2Z5PJJfixDBvBgK2a4lh17lvfKM7nXMsDd/YWqemZW5wuflOS+VfWKJP8+WfMlM2QT75j974enZdjg+qhZX88idfd3q+quGYrHXWl0+sQMn88Hkrw1Q1HEr2XIwR6ZIet6/QzfD2tuWgsAAMDupDAaAAAAsGO6+7yqenKGAmkrPbaqnt3d35rS581Vdaskf5fVf9C+SJLbTn52g19OcpMMgZGVrpiNixd9L8nPZQgZzOsxSY7N8L6sdIGsvfPh4VuYb1NWBDbuuM5lz1vAPE+tqi9kKKp0wdHpyya55+SH/T0syY2TXGHU/qPZvxDXNH/Q3X9WVQqjzai7/7CqLpXkCaNTF0xy18nPWr6VITT209u0vKkmAaNfS/LCKacvmiHstQgnJ/lcVn/nJ3OExgAAAAAAAACAA9qJU9pesg3zvCT7F0bbN/fBVBjt6RmKx9xjcnyxDEWCxoWCpvl8kp/s7m9s09r+R3efNckUPj9DYaex62V1gaa94BVJ3pzk1lPOXX7yM/ahbVzPQvOK3f2vVXXjJK9M8iNTxjx28sPGdvRZ3kPP5F7LAP9mkttk9fN0tSSP3WAtL5v0v/cG1+2ISaG3m2RY10+MTp8vwwavN93xhQEAALCtDln2AgAAAICDzr5d01a6dJJfWqtDd78vyQ0yhCa+t4W5O8Ouc2/fwhhrD979zQwhgvfM2PULSW7T3a/f4vwfS/JTSU7dyjjbZL3CZ19M8qZFTNLdz0ty8yRv2eJQ303yN0n+c8uL2uW6+0tJbpnZ7ptzkjy6uzcKx7CO7v6NDDtrzhKG+nyS46ft8rgTuvtFGULAZ27jHN9P8mdTTn0lQ8ATAAAAAAAAADgIVNWRSe425dRfbcN0b8vqrNB1quqgKbTS3Z3kvklm3STxnUmO7e5PL35V03X3md39s0kenuT0LQ73nxmyibtad5+X5GeTvHTZa0m2J6/Y3Z/MUNzoDzNsHrkVH0iypUzmgWoZz/JeeCb3Wga4u7+d5Lgk75ulW4bCeveZfOfsGpOs662TPDHJ17Y43L9n9SbfAAAA7DIKowEAAAA7ahK4OGnKqUdX1UXX6fff3f3gJMdk+KP7v2X4A/xGzkzyugzFh67S3cd393tnXvgmdffpGXYje2SSjcIhpyX5rSTX7O63LWj+d2fYre4OSf40yTsyhC7OSrLMkMLfJ/nvNc69aFIIaSG6+0PdfeskN0vyogyFpDbjixl2fn1gkst19727+8uLWtdu1t2fSXLdJL+R4X1YyzkZdtz7se5+xk6sba/r7j9Ocp0kL0xyxjqXfjnJU5Ncp7vfvxNrW0t3/2WSH0ryoCQvTvIvGdb3nQVOM63w2/O6++wFzgEAAAAAAAAA7G73TXLBUdu7u/tTi55okmubVnDtxEXPtZt197nd/fAMxYHekvUzZ/+S5CFJbrWTRdFW6u7nJLnqZB3/mM1tUHhehrX/QZLjkxx9oGShuvsb3X3fDBnBk5K8Nsmnknw9W9t0dt71LDyv2N3f7u5HJTk6w2v8QJLN5Au/m+Ge/Y0MGasbb7VQ1YFsWc/ygf5M7rUMcHd/NcktMhSsW+/fnd9P8oYkt+jux+y2omj7TO7r301yVJJHZXh/ztlE13OTvCvJU5LcpLuvPdkkFgAAgF2sht/ZAgAAABx4qurSSW6Y5NJJLpnk8Ay7BJ6ZoRjWfyQ5rZf4C5CqunqSm0zWeJHJ+j6f5CPd/fFlretgU1XHJLl2hvvkkkkukCEo8s0kn0nyHwdLEbTNqKrrJrlekksluXCG9+njGYKlZy1zbXtZVR2W5JZJrpzkchmCTP+V5CNJPrRbw0bboapemuTeK5o6yTHLCtECAAAAAAAAAByMqupSGTaovFqGfN4ZGTZe/JftKFC3VVV1gQyZwitmyD5dPENBnDMzbOz5iSSf6O5FbgDINquqI5LcOMllMuT/jsiwieOZGYpGfTzJpxe5QeuBoqpOSvLbK9u6u6Zct5Rn+UB/JvdaBnjyem6Y4Vm6aIbP4VNJ3tXdX1vm2uZVVRdOcqMkV8jw/XBkkrMzvLYvZ/h+OLW7N1NADQAAgF1EYTQAAAAAAHaNSdHLzyU5bEXzG7v79ktaEgAAAAAAAAAAwK6z2cJoAAAAAAeaQ5a9AAAAAAAAWOEh2b8oWpI8axkLAQAAAAAAAAAAAAAAAGBnKYwGAAAAAMCuUFUXSfIro+ZTk7x+CcsBAAAAAAAAAAAAAAAAYIcpjAYAAAAAwG7xlCSXGbX9cXeft4zFAAAAAAAAAAAAAAAAALCzFEYDAAAAAGCpquoSVfX0JL8+OnVakucuYUkAAAAAAAAAAAAAAAAALMGhy14AAAAAAAAHl6r6iyQ3mhxeKskVktSUSx/T3efs2MIAAAAAAAAAAAAAAAAAWCqF0QAAAAAA2GnHJLneBte8qLtfvhOLAQAAAAAAAAAAAAAAAGB3OGTZCwAAAAAAgJGXJPn5ZS8CAAAAAAAAAAAAAAAAgJ116LIXAAAAAADAQe87SU5P8u4kz+vuU5a7HAAAAAAAAAAAAAAAAACWobp72WsAAAAAAAAAAAAAAAAAAAAAAAAADnKHLHsBAAAAAAAAAAAAAAAAAAAAAAAAAAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdIcuewGwbFV1RJJjVzR9Lsk5S1oOAAAAAAAAAMBWXCDJlVYcv7W7v7msxQCAjB4AAAAAAAAAsEfI5+0QhdFgCFy9etmLAAAAAAAAAADYBndO8pplLwKAg5qMHgAAAAAAAACwF8nnbZNDlr0AAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgKU7dNkLgF3gcysPTj755BxzzDHLWgsAAAAAAAAAwNxOPfXU3OUud1nZ9Lm1ruX/Z+/Owyyr6nvh//bpmrrpEehmVJtJQKIiyhtoGkRARcwbjfGS+JKHaHzVKDF4fRH1GgbjjUOccm/kxuGiYDSGoIISofFGmVFB0NgJIIJAM3dDz0ONZ71/dHdRw9nn7FN1qs6pU5/P8/RD77X3GvbuemBteq3vBmCaWKMHAAAAAAAAAMx41udNH8FoENE/8uDQQw+No446qlljAQAAAAAAAABopP7alwDAlLJGDwAAAAAAAABoR9bnTZFSswcAAAAAAAAAAAAAAAAAAAAAAAAAIBgNAAAAAAAAAAAAAAAAAAAAAAAAaDrBaAAAAAAAAAAAAAAAAAAAAAAAAEDTCUYDAAAAAAAAAAAAAAAAAAAAAAAAmk4wGgAAAAAAAAAAAAAAAAAAAAAAANB0gtEAAAAAAAAAAAAAAAAAAAAAAACAphOMBgAAAAAAAAAAAAAAAAAAAAAAADSdYDQAAAAAAAAAAAAAAAAAAAAAAACg6QSjAQAAAAAAAAAAAAAAAAAAAAAAAE0nGA0AAAAAAAAAAAAAAAAAAAAAAABoOsFoAAAAAAAAAAAAAAAAAAAAAAAAQNMJRgMAAAAAAAAAAAAAAAAAAAAAAACaTjAaAAAAAAAAAAAAAAAAAAAAAAAA0HSC0QAAAAAAAAAAAAAAAAAAAAAAAICm62j2AGA2SilFuVyOlFKzhwIwTpZlUSqVIsuyZg8FAAAAAAAAAADqZo0e0KqszwMAAAAAAACoTTAaTIOUUvT29saWLVtiy5Yt0d/f3+whAdTU1dUVCxYsiAULFkRPT4+FWAAAAAAAAAAAtCRr9ICZxvo8AAAAAAAAgHyC0WCKbd++PZ544okYGBho9lAA6tLf3x/PPvtsPPvss9HZ2Rn7779/zJs3r9nDAgAAAAAAAACAYdboATOR9XkAAAAAAAAA+UrNHgC0s+3bt8eaNWssuAJmvIGBgVizZk1s37692UMBAAAAAAAAAICIsEYPaA/W5wEAAAAAAACMJhgNpsjuBVcppWYPBaAhUkoWXwEAAAAAAAAA0BKs0QPaifV5AAAAAAAAAM/paPYAoB2llOKJJ54Yt+Cqs7MzFi5cGPPnz4/Ozs7IsqxJIwTIl1KKgYGB2Lp1a2zevHnUF3V3//vtkEMO8e8wAAAAAAAAAACawho9YKayPg8AAAAAAACgNsFoMAV6e3tHLVSIiFiwYEEccMABFioAM0JnZ2fMmzcvli5dGo8//nhs2bJl+NzAwED09fVFT09PE0cIAAAAAAAAAMBsZY0eMJNZnwcAAAAAAABQXanZA4B2NHKBQsTOBQwWXAEzUZZlccABB0RnZ+eo8s2bNzdpRAAAAAAAAAAAzHbW6AHtwPo8AAAAAAAAgMoEo8EUGLvoauHChRZcATNWlmWxcOHCUWVj/z0HAAAAAAAAAADTxRo9oF1YnwcAAAAAAAAwnmA0aLCUUvT3948qmz9/fpNGA9AYY/891t/fHymlJo0GAAAAAAAAAIDZyho9oN1YnwcAAAAAAAAwmmA0aLByuTyurLOzswkjAWicjo6OcWWV/n0HAAAAAAAAAABTyRo9oN1YnwcAAAAAAAAwmmA0aLBKX2jLsqwJIwFonFJp/JTBFykBAAAAAAAAAJhu1ugB7cb6PAAAAAAAAIDRBKMBAAAAAAAAAAAAAAAAAAAAAAAATScYDQAAAAAAAAAAAAAAAAAAAAAAAGg6wWgAAAAAAAAAAAAAAAAAAAAAAABA0wlGAwAAAAAAAAAAAAAAAAAAAAAAAJpOMBoAAAAAAAAAAAAAAAAAAAAAAADQdILRAAAAAAAAAAAAAAAAAAAAAAAAgKbraPYAmB5ZlnVGxAkR8fyI2C8itkbEExHxi5TSww3u66CIODoi9o+I+RHxZEQ8EhG3p5QGGtkXAAAAAAAAAAAAAAAAAAAAAAAA7UEwWpNkWXZwRBwbEa/Y9c9jImLBiEseSSktb0A/SyPioxHxRxGxZ841t0fE51JK35lkX2+OiPdHxPE5l6zPsuyKiLgwpfTMZPoCAAAAAAAAAAAAAAAAAAAAAACgvQhGm0ZZlp0cER+OnWFoFUPKGtzf6yLisohYVuPSFRGxIsuyb0bEu1JK2+rsZ35EfCUi/rjGpXtGxLsj4k1Zlv1pSun6evoBAAAAAAAAAAAAAAAAAAAAAACgfZWaPYBZ5uiIeE1MTyjayRFxdYwORUsRcVdEXBkR/ycinhlT7ayI+FaWZYV/LrIsmxMRV8T4ULR1EfHDXX3dvavv3faJiO9lWbayaD/QzpYvXx5Zlg3/uvHGG5s9JAAAAAAAAAAAAJjxrM8DAAAAAAAAgJlHMFpr6IuIBxvVWJZlB0bEdyOia0TxbRFxVErpFSmlM1NKr4mIAyPi3IgYGHHd/x0R/72O7j4ZEWeMOB6IiPdGxIEppdfu6uvlEfE7EfGTEdd1R8TVWZbtV0dfAAAAAAAAAAAAAAAAAAAAAAAAtCnBaNNvICJ+GRH/OyLeFREvj4gFEfH/NrCPj0bEkhHHt0fEaSmle0delFLqSyn9z4g4c0z992dZ9oJanWRZdnDsDFYb6b+klL6QUuof09c9EXFqjA5H2ysiLqrVDwAAAAAAAAAAAAAAAAAAAAAAAO1PMNr0ujwiFqaUXpZSekdK6csppbtTSgON6iDLssMi4k9HFPVHxFtTSr15dVJKV+8a227dUSyw7KKI6BxxfFlK6XtV+tkREW/dNabd3r4rYA0AAAAAAAAAAAAAAAAAAAAAAIBZTDDaNEopbagWUNYg/09EzBlx/N2U0m8K1PvUmOMzsyzrybs4y7K5EfHmGm2Mk1K6PyKuHlHUETvHDAAAAAAAAAAAAAAAAAAAAAAAwCwmGK39/MGY468VqZRSujcifjaiaI+IeE2VKq+NiHkjjn+SUrqv0AjHj+lNBesBAAAAAAAAAAAAAAAAAAAAAADQpgSjtZEsy/aNiJeOKBqMiNvqaOLGMcevq3Lt6TXqVnNL7Bzbbi/LsmyfOuoDAAAAAAAAAAAAAAAAAAAAAADQZjqaPQAa6nfGHP8qpbStjvq3jzk+qo6+flK0k5TStizLVkfEy8b09XTRNoD6pZTi7rvvjvvuuy/Wrl0bfX19sXTp0jjggANi5cqVMX/+/GYPccIeffTRuPPOO+Oxxx6LHTt2xN577x0vfvGL4xWveEWUSpPLAF27dm3ccsst8cQTT8SOHTti//33j4MPPjiOO+64SbddyT333BOrV6+OdevWxebNm2PPPfeM/fbbL1auXBl77bVXw/sDAAAAAAAAAABgcqzPmxjr8wAAAAAAAACoRDBae3nRmOMH6qz/YI32RjqyAX2NDEZ7UUT8uM42gAKeeeaZ+PjHPx7f+MY3Yt26dRWv6erqilNOOSUuvvji+N3f/d1C7b71rW+Nyy+/fPj4oYceiuXLlxeqe+ONN8arXvWq4eOLLrooLr744tzrsywb/v0rX/nKuPHGGyMi4vbbb4+LLroofvzjH0e5XB5Xb5999omPfOQjcc4559S9SOoXv/hFfOADH4gbbrihYtsHHnhgvOtd74oPfehD0dHRERdffHF89KMfHT5/ww03xMknn1yor2effTY+/elPxze+8Y14/PHHK15TKpVixYoVcdFFF8Vpp51W170AAAAAAAAAAADQeNbnWZ8HAAAAAAAAQOMJRmsvh445XlNn/UfGHO+VZdmSlNKGkYVZlu0ZEXtOsq+x1x9WZ32ggKuvvjrOPvvs2LJlS9Xr+vv7Y9WqVbFq1ap45zvfGZdcckl0dLT2fyI+/vGPx4UXXhhDQ0O51zz99NPxl3/5l3HDDTfEP//zP0dXV1ehtj/3uc/F+eefX7Xtxx57LC644IK47rrr4rvf/W7d49/t61//erz3ve+NzZs3V72uXv0wVQAAIABJREFUXC7HrbfeGq9+9avjT/7kT+LSSy8tfD8AAEB72zG0PR7q/XX0l/vqqrd3576xf/fzo5RV36gylIbi0d4HY+Pg+skMs210lbrjoJ4Xxtw5ezS87a1Dm+ORHb+JgTQw7lx3qScOmnt49JTmNrzfRhkoD8Qjvb+JJZ17xV6d+zR7OAAAM8LWoc3xVN+jsW/382L+nIXNHk5LWj+wLh7reyjKafxG+QVzFsUL5h4aHVlnw/vdNLghnu5/PJ7fc8ik5uG95R3x8I77o7e8o4Gjmzr7dB0Q+3YdOCoYoZKd8//7Y+tQ9b+HnDdnfrxw3u80cogAANAyrM+zPg8AAAAAAICJGxxKcfeaiMXzIg5bFjXXrQGzS2v/rTr1WjzmeG09lVNKW7Ms642InhHFiyJiw5hLx/azPaW0rZ6+KoxtUZ31gRq++tWvxjve8Y5xX1M85JBD4kUvelHMmzcv1qxZE3fccceoBUZf/vKXY82aNXHNNde07OKrz3zmM/GRj3xk+Pjwww+Pww8/PPbYY4948skn46c//Wn09vYOn7/qqqviggsuiE996lM12/7sZz8b55133rjyF73oRXHYYYdFd3d3rFmzJu68884YGhqK22+/Pc4888w46aST6r6PCy+8MD72sY+NKsuyLA4//PA47LDDYsGCBbFhw4b4+c9/Puprot/4xjfiySefjFWrVrXsnxEAADA9btpwbVy59n9HOcYHBBSxf9fz4y+ed3Es7hibgb/Tk32Pxt8/dnFsHHx2EqNsP6UoxZnL3hEnLXldQ9pLKcV1z/5L/ODZf44UqUq/c+Ksfd8Txy86tSH9NtL921fHFx//RPSWt0dExEvm/1/x9v3Oi86STUMAAHmufeaKWLX+yhhMg5FFFm9e9vZ41ZLfa/awWsZQGoyvPfn5uHvLbVWv26O0IN5z4F/FQXMPb0i/5VSOK9Z+OW7ZuCoiIuZER5y931/GsQvr/7ugn226Mb7x1BdiKAYbMrbp8oKew+KcAy/IDev79fbV8aXHP14o7G15z2Fx/gs+3eghAgBA01mfZ30eAAAAAAAAE/cfj6d47d+V48lNO49XHhpxzV+UYtE84WjATv62tr3MH3M8kU9O74jRwWgLprCfkSr1U7csy5ZFxNI6qx3SiL4bJQ0ORqx7rNnDaH9LD4ysjRes/PKXv4x3v/vdoxZdHX300XHJJZfEihUrRl27bt26uOCCC+JLX/rScNmqVaviwgsvjI9//OPTNuaiVq9eHbfccktERLzxjW+MT3ziE3HEEUeMumbDhg3x/ve/Py677LLhss9+9rPx7ne/O5YvX57b9l133RUf+tCHRpWdfPLJ8YUvfCGOOuqoUeXr1q2LCy+8ML74xS/GzTffHPfcc09d93H55ZePWnRVKpXinHPOifPOOy+e//znj7o2pRTf+9734txzz401a9ZERMSPfvSjuOCCC+ITn/hEXf0CAADtY03vA3HF2i9Pqo0n+tfEPz75P+O9z7t43LmUUnzp8U8IRaugHOX457VfioPmHh7P6zl40u3ds/0X8a/PfqtAv0Pxj0/9fSzveWHs1/28SffbKP3lvviHx/4m+tJzm6B+tfWOuO7ZK+P3l57VxJEBALSu1VvvHDUHTJHiyrX/O5b3HNawgK+Z7ofrv1szFC0iYlt5S/yvx/97fPKQr8WcbPJ///eTTT8aDkWLiBiKwbjsyc/HQT2Hx95d+xRuZ23/E3H5U3836fE0wyO9v4krnv5yvH3/8WEFfeXe+OKY+T8AwExifd40auM1etbnWZ8HAAAAAADAxKWU4vf+/rlQtIiIWx+IOPeKFJe9TTAasFN7rjiYvcYGlk1kJfKOiFhSpc1G9lOtzYl6T0Rc1KC2mmPdY5HOtNlhqmX/8uuI/ZY3exhT5u1vf3v09/cPH69cuTKuv/76mDdv3rhrly5dGl/84hfj0EMPjQ984APD5Z/61KfiLW95S7z4xS+eljEXtX79+oiIOP/883O/MLlkyZL42te+Fhs2bIjvfe97ERExNDQUl1566bgvQI50zjnnxODg4PDxm970prjiiisqfvVx6dKl8Q//8A9x8MEHx/nnnx/PPPNM4Xt45JFH4t3vfvfwcXd3d1x99dVx+umnV7w+y7J44xvfGCtWrIgTTjghHnjggYiI+PSnPx3vfOc746CDDircNwAA0D7+Y+tdDWnn19tXR295R/SU5o4qXzvwRKwdeKIhfbSrX229oyHBaL/ackdd16/eemdLBaP9evvqiqEIv9r6M8FoAAA5rnv2yorlv9z6U8Fou9TzzrNtaEs8uOO+eOG835l0v6u33TmuLEWK1dvujFd1/V7xdraOb2cm+Y+tP4+hNBRzsjmjyu/Pmf8DAMwY1udNm3Zeo2d9nvV5AAAAAAAATNydD0esWT++/Os/SXHZ26Z9OECLKjV7AEyp1GZ1gAJuuOGGuPvuu4ePFy5cGFdccUXFRVcjnXfeefF7v/fcZo5yuRyf//znp2yck7Fy5cpCX2L8m7/5m1HHP/7xj3OvvfPOO+NnP/vZ8PF+++0XX/3qVysuuhrpAx/4QLzmNa+pOZaRPv3pT8eOHc/lQ37+85/PXXQ10rJly+Kf/umfho+HhoZa9s8IAACYepsGNzSknXIMxdbBzePKNw4825D229mmwQp/CzMBGwfre9abhhrTb6Nsyhl/o35GAQDazZreB+Lh3vsrnts40FpzvWbaMrSxrusbNj/PeReqd35b7zy/1fSl3ugrj/3eWcTGBj1nAACYqazPe471eQAwC6QUUR5o9igAAAAAaDM/WC1yBqhNMFp72TrmeO4E2hhbZ2yb09kPMAGXX375qONzzjkn9t9//0J1P/nJT446/ta3vhV9fX0NG1ujfOQjH4lSqfZ/wo466qhYvnz58PEvf/nL3Gu/9a1vjTr+i7/4i1i0aFGh8VxwwQWFrouI2LZtW3z1q18dPj744IPjXe96V+H6xx57bJx44onDx9///vcL1wUAANrLYGrcwtO+NH6ze2+FDfCM1qhn1Jd6m9Jvo/SVK4+/0s8VAAARN228LvecOdRz6l32lDcvrVfe/LxSSFg1rTZvn4hK91DvcwAAgHZjfd5zrM8DgDZ33/+I+P5BEf+yIOLHr43Y/lizRwQAAAAAwCxS/TNbzDSC0SL+V0RcWWedQyLiew3qH5ru1ltvHXX8J3/yJ4XrHnXUUXHMMccMf9Gyt7c37rrrrlixYkVDxzgZc+fOjVNOOaXw9UceeWQ8/PDDERGxffv22Lp1a8yfP3/cdbfffvuo4zPPPLNwHytXroz9998/nnjiiZrX3nrrraO+RvnmN7+50CKykV71qlfFLbfcEhERjzzySKxZsyae//zn19UGAAAw8+UFo82JjugqdY0rTxHRW95esU5vhQCBamFdc0vzig2yTQyk/hhMg+PKGxa8UGc7jeq3UfLGM5gGYzANREfWOc0jAgBoXduGtsTPN9+Se77V5nrNVV80WqMCu/ICzRoVjJb3ztYsKVKVex7/85h3bSlK0V3qGVdeqQwAAGYy6/NGsz4PANrUg1+LuPt9zx0/9cOIf3tVxO/dG1GyFQ0AAAAAgKnn/0a3l01jjpfWUznLsvkxPrBsY4F+5mVZtkdKaVsd3S0r0E/dUkprI2JtPXWyLGtE19ASNmzYEA8++ODw8eLFi+PII4+sq40VK1YML7yKiLjzzjtbauHVIYccEl1dxTeLLFmyZNTxpk2bKi68+vd///fh3y9evDgOPfTQusb1ile8otDXIccujNt///2HF4YVNfb+f/vb31p4BQAAs1CloK6IiBWLT4u37PPn48pTSvHe+/8wylEed67SBv+8ze5LO/eLjx78D3WOdmb7/rpvxqr147P4855RvfICFjqyjikNZGuUas+hr9wbHXMEowEA7PaTTT+KgdSfe75R4V7tIKV6g9GmNri43vbzgqlPXnJG/OGyP6t7XFOlt7wj3v+bt1Q8V+nnMe85HLnH0XHOgRc2dGwAANBqrM8bz/o8AGhTD39zfNnWByKevTNi6fHTPx4AAAAAAGYdwWjt5Tdjjl9QZ/2x169PKW0Ye1FK6dksyzZExMjVDM+PiHsn0dfYsQMTsG7dulHHhx12WN3hf0ccccSo47Vr68oanHJjF1LV0tk5evP1wMDAuGu2bdsWvb3PbeKYyCKmonUeffTRUcfve9/74n3ve1/O1cWsX79+UvUBAICZaTCNf7+JiOjMKodQZVkW3aW5saM8Ptu+ns3uPaWxufrtL++e+1JjghfygsUWzlkS6wfXjStvtbCMagERfeXe2GPOgmkcDQBA6yqnctyycVXVa1otBHcmaURwcUqpgcFolcfT3WLvVF1Zd2SRRYrxQXSV7jnvfaTV7gsAAKaC9XnjWZ8HAG3q6R9VLl99ccQp10/rUAAAAAAAmJ0Eo7WXscFk9X1OLeLgMcf31Ohr5CfqDq3Qfz191VO3vS09MLJ/+XWzR9H+lh7Y7BFMiQ0bRmcZLlq0qO42xtZptUU9pVKp4W1u3Lhx1PGCBfVv2F64cGGh65599tm6265ly5YtDW8TAABofXnBaHOy/P/l113qyQlGq2eze0/BEbaPvHtuVEBZXsDCoo49c4LRWissoy/lP4dWGysAQDPdu+0XsW7gqarXmD89p1JQVzWNeHYDqT9SlCueqzd4Le/6uaV5dY9rKpWyUnRl3RWDnyvdQ95zno3vigDADGV93vRpwzV61udNjPV5ANBG0mCzRwAAAAAAwCwhGK29/MeY45dkWTYvpbS9YP0TarQ39tzIYLTjI+KaIp1kWbZHRLykjr5mlayjI2K/5c0eBjNUSqM3iNT7NcpKGtFGq+vu7h513N/fX3cbRetMpO1axv65AwAAs0NeMFpH1plbp7s0t2J5fcFoldtoZ/U8t3qllHLbWdixpGJ5vYEMU63ac2i1sQIANNNNG6+reY1gtOfkBaOVohTlCuFl1QJ7i6oWflwpOKyavLlwK75TdZfmRt9QhffCCvec9xy6s9a7LwCASqzPYzKsz5sY6/MAAAAAAAAAqJdgtDaSUnoyy7JfxXOhYx0RsTIifliwiZPHHFdbmb8qIt5ZpW41J8bon71fpJSerqM+kGPPPfccdbxp06a62xhbZ8mSypuwJ2NoaKjhbU7G2Hsc+2XPIop+uXPvvfcedXz77bfH8ccfX3d/AAAAgzlf4a0WjNaTswG/0ob9/E38PQVG117y7rkRoV+DaTDKUfk9eWHH4orlrRaWUW081YIlAABmk2f6n47/3HZXzesaEe7V7rpLc2NHedu48kbMkxs5t+0tV/5+WU9pXl3tTIee0tzYPDT+78fqeVfMe98EAIB2Yn3exFifBwAAAAAAQFEppVnxcSGgtlKzB0DDXTXm+G1FKmVZdkRE/O6Iom1RPVDt+ogYueL5+F1tFPHWMcdjxwxM0NKlS0cd33///XW38etf/3rU8bJlyype19ExOltzcLDyhvxKJrKwaSrNmTMnDjjggOHj3/72t7F9e+XNKnlWr15d6Lp99tln1PFE/owAAAAiIgbTQMXyasFoeQFflTb/5wUCzMbN7nn33FfujZTSpNquFnyxaE7lzVCtFjZWLSCu1ULcAACa5eaN10WK2nPHwTSYO9efbfKeVz2Bz/Wq1kZvnXPbvHl7TwuGTTfiXXE2hmgDADD7WJ83MdbnAQAAAAAAAFAvwWjt55sRMfJTb2/KsuywAvU+OOb4X1JKuSu7U0rbI+LbNdoYJ8uyF0bEH4woGoyIfyowPqCAJUuWxCGHHDJ8vHHjxrj33nvrauP2228fdXzsscdWvG7hwoWjjjdu3Fi4j//8z/+sa0zT4bjjjhv+fblcjptuuqlw3fXr18e///u/F7p2xYoVo45/+MNqGZQAAAD5BlPlDTAdWUfF8oj6AgTyAgFm42b3vHtOUY6B1D+ptquFnC3q2LNyndQb5VSeVL+NVC38rBHhFAAAM11/uS9+sulHha8XLrtLTghxteDiyarWRj0BxQPlgdx3tp7SvLrHNdXyg9HG33Pec5iN74oAAMw+1udNnPV5AAAAAAAAANRDMFqbSSn9JiIuH1HUFRGXZVmWuwo5y7I3RMRbRxT1R8RHC3R3cUSM/Fz5W7Ms+/0q/fRExNd2jWm3S1NKDxboCyho5cqVo46/+c1vFq577733xl133TV83NPTEy9/+csrXjv2S5X33HNP4X6uvfbawtdOl9NOO23U8Ve+8pXCdS+//PLo7y+2Ef7UU0+NOXPmDB9///vfj7Vr1xbuCwAAYLeh3GC0ztw63Tn/i6gvVdrsXjkQIC+EoJ1Vu+fJBn9VC15Y2LE491x/6ptUv41ULSCiL//bCwAAs8bdW26LbeUtha8XjLZT5Vi0/GCxhgSjVZm/DqT+KKeh3POjx5I/R27Fd6ru3LC54iHarXhfAAAwFazPmxjr8wAAAAAAAACoh2C0aZZl2YFZli0f+ysi9h1zaUel63b92rtGNxdFxIYRxysi4t+yLDtizFi6syx7b0RcOab+Z1NKj9S6l5TSbyPif4wp/naWZX+RZdnI8LPIsuzIiPjRrrHs9mwUC2AD6nD22WePOv7CF74QTz31VKG6H/7wh0cd//Ef/3F0d3dXvPaYY44ZdXzNNdcU6uP666+PO+64o9C10+mss86KBQsWDB9fddVVcf3119es9/jjj8df//VfF+5nyZIlcdZZZw0fb926Nc4777z6BgsAABARg2mgYnlH1pFbp7uUE4xWIUAgbyN/dzb7NrvnPbeI6oEHRVQLb1jUsWTK+m2kauERQj0AACJu2nhdXdebQ+2UolyxPP+9ZvJz5FrBx0X/bKq1kxfs1kz1vStWfgbV3psAAKCdWJ83MdbnAQAAAAAAAFAPwWjT79aIeKjCr2+Nue6AnOseiojPVOsgpfRYRLwpIkZ+Hu2EiLgny7I7syy7IsuyVRHxaET8z4joHHHdv0bEBXXcz4ciYuRK/s6I+PuIeDTLsuuyLPuXLMt+HhH/GaND0foj4g9SSk/W0RdQwCmnnBJHH3308PGmTZviLW95S+zYUX0jx+c///n43ve+N3ycZVn81//6X3OvP/7442PevOc2blx11VXx85//vGofv/nNb+JP//RPa91CUyxYsCDOPffcUWVnnnlm3HDDDbl1Hn744Xj1q18dGzdurKuviy++eNSCtn/8x3+MD37wgzE0NFRXO/fcc0/cfPPNddUBAADaR34wWmfF8oiI7lLlULNKAQJ5YVezcbN73nOLqB2cUEteqEAWWcyfs6jues1QbSytFOAGANAMD+/4TTzS+5u66kx2jtkuUk55T+57zeTnyLXmr8WD0bbnnssbfzMVDUZLKeWHaLfgfQEAwFSwPm9irM8DAAAAAAAAoB6C0dpUSunGiPiDiFg3ojiLiFdExJkR8dqIWDqm2rci4o9TSoX/5n/XtWdGxBVjTi2LiNMj4r9ExMt39b3b2oh4Q0rplqL9wGzy1FNPxcMPPzyhX7tdeuml0dXVNXx84403xoknnhg/+9nPxvX3zDPPxDnnnBPvf//7R5Wff/758ZKXvCR3nAsWLIg/+qM/Gj4eGhqK17/+9fHDH/5w3LX9/f3xla98JY477rh4+umnY8mSJfU8kmlzwQUXxItf/OLh482bN8epp54aZ555Znz729+OX/3qV3HffffFD3/4w3jf+94XRx11VNx7773R09MTb3jDGwr3c9BBB8WXv/zlUWV/+7d/GytXroxrrrkmBgcHc+s+/PDDcckll8Qpp5wSRx11VPz4xz+u/0YBAIC2MJAbjNaRW6foZveI/DCG2bjZvTvLv+fJhi/kP+eeqoEJrRKWMZQGc0P6IgSjAQDcvPHauuuYQ+1WORqtpzSvYnlfmvxzqzXPzguQrqedVnynynv3GHsfg2kgylGueG0r3hcAAFRifV7zWJ8HAAAAAAAAQFH5uySZ8VJK12ZZ9jsR8dGI+KOIyFvp8NOI+ExK6TsT7GdrRPxxlmXfjoj/LyKOy7l0fewMULsopbQu5xqY9d7ylrdMuG5KOzeIHHPMMfGFL3wh/vzP/zzK5Z2bE+6666447rjj4tBDD42jjjoqenp64tFHH4077rhj3EKfV7/61fGxj32sZn8f+9jH4qqrrhr+IuPatWvjta99bRx66KHxkpe8JLq7u+Ppp5+On/3sZ7Ft27aIiNh3333jU5/6VEt+mbKrqyt+8IMfxCmnnBIPPPBAROx8pldeeWVceeWVFetkWRaXXHJJrFmzZtwXPas5++yz46mnnooPf/jDw39GP/3pT+P3f//3Y968efGyl70s9tlnn5g7d25s2bIlnnnmmbjnnnvq/volAADQvoZS5U0bHVlnbp2im90j8gO/qoV1tavOUmfMiY4YivHPfLKhFXn1u0tzc4PsdtabXCBbo9QaR6uMEwCgGbYObo6fb7m14rkj5r00Htrx64pBW+ZQO6U6g9EGd4X2VnsnqqX2/LbY/L+3vL1ieUfWEZ2liY9vquSFQY/9+az2fLqz/PcXAABoJdbnNY/1eQAAAAAAAAAUJRhtmqWUlk9zf2sj4t1Zlp0bESdExAsiYt+I2BYRj0fEL1JKDzWor29HxLezLDsoIo6JiP0jYo+IeCoiHomI21JK/Y3oC6jtHe94RyxZsiTe9ra3xdatW4fLH3jggeFFRZX82Z/9WXzxi1+Mzs7amzIOOOCA+M53vhNvfOMbY8uWLTX7OOigg+IHP/hBPP3003XezfR53vOeF7fccku85z3viauuuqrqtXvttVdcfvnl8frXvz4++MEPjjq3YMGCmn3t/urn2972tnjqqaeGy7dv3x633XZbofG26tc9AQCAqTeYBiqWVwsB6M4JNRu7uT2llLvhvVpYVzvrKc2NbeUt48orBVnUI/c5Zz0xJ+uIjqyz4p91pTC7Zqg1DqEeAMBsdvumf8udt5+0+HXxRN+a6BuqEIw2yTlm26ici1Y1rLmv3Bsdc6YuGK3oPLw3932qNYOm857p2OdR7f5nY4g2AACzm/V5E2N9HgAAAAAAANWkFFHjGznALFFq9gCYHiml/pTSDSmly1JKn0wp/X1K6buNCkUb09dDKaXv7Orjk7v6vEEoGky/N7/5zfHggw/GueeeG3vvvXfudZ2dnfGa17wmbrvttrj00ksLLbra7ZRTTok77rgj3vCGN+R+hXHp0qXxgQ98IH75y1/GkUceWfd9TLd99903vvvd7w4vwHrRi14Uixcvjp6enjj44IPjtNNOiy996Uvx4IMPxutf//qIiHFfily0aFGhvk4//fR46KGH4pJLLomjjz665pcsOzs7Y8WKFXHxxRfH/fffH+eee+7EbhIAAJjRymkoylGueK56MFrlULOxm90HUn+knPZn62b3vGc32YCyvNCL3f0VDSholkYFRwAAtJtyGopbNq2qeG5Jx97x4vnHFp6fz1YpJxmtVjDaZPQ1KPi3t7y9YnlPaV7dY5oORd93+lL+85mtIdoAAMxu1udNjPV5AAAAAAAAANTS0ewBAMx2Dz/88JS2v2zZsvi7v/u7+NznPhd33XVX3HfffbFu3bro6+uLvffeOw488MBYuXJloS8o5jniiCPi6quvjmeeeSZuuummeOyxx2L79u2xzz77xEEHHRQnnnhidHQ895+ck08+OVKqvJmlknquHeuyyy6Lyy67bEJ1V65cGStXrix07T333DP8+yzLYtmyZYX76enpife85z3xnve8J9avXx8//elP48knn4z169fHwMBAzJ8/P5YtWxYvfOEL44gjjoh581pz0wwAADB9BtNg7rmOLP9/+eWHbI3e3F4tzGq2bnbvnqKAsrz6u/vrLvXE1qHNFeq1RuBYrfvPC34DAGh3/7nt7nh2YG3FcysXvzbmZHOmLHy3XTQnGK3G/LZg+3nz9VYNms4P6RsTjFbl/mfruyIAAK3P+rzarM+zPg8AAAAAAACg1QhGA5glSqVSHHvssXHsscdOWR977713/OEf/uGUtd+qtm3bFnfffffw8Qtf+MIJL2Tbc88944wzzmjU0AAAgDY1mAZyz3VknbnnurOcze6pN8qpHKWstPO4ajBaa27kn2pTFVqR96x399edFQuza5Za45hsMAUAwEx108brKpbPiY44YdGrI6J4cPHsVXljfrV3kknPz1P1+kXb31HeXrG8dYPRigVB591/KUrRmXU1fFwAADCTWJ83dazPAwAAAAAAAJh9Ss0eAADMdJdffnls3/7cBpfjjz++iaMBAABmg8E0mHuuajBalU34/alv+PfVNvvnBYS1u/zQiskFf+U969395T3vvtQagWO1xjHZYAoAgJloXf+Tcc+2uyueO2bBiljYsTgiqsz1hMtGRF4s2s7nlkVW8dxkQ+V6azz7on82eeNo3WC0vJ/FHZFSGnFc+f67Sz2RZZX/TAAAACbL+jwAAAAAAACA2UcwGgBMwmOPPRYXXHDBqLKzzz67SaMBAABmi8E0kHtuTtaRe65aqNnIjfvVNvu36kb+qVYtKGAyqgULVOu3VQLHat3/ZJ8PAMBMdPPGVbnnTlpyxvDvBaPVUjkaLYtsyp5do+a3+QHI8+oe03TIC9EuR3nU+2f++8vsfE8EAACmnvV5AAAAAAAAALOTYDQAGOE73/lO/Lf/9t9i3bp1Na/9xS9+ESeddFKsX79+uOylL31pvOpVr5rKIQIAAFQNRuuYcDBa74jfV97EPyc6oiPrLDDC9pO30X+qg9HyguhaJSyj1jhaZZwAANOlv9wXP9n0o4rnDuw+KA7uOXz4uDtr7bles6WUE4yWZdGdTU2AcK1nX7T9/GC01gwQ65nku6JgNAAAoCjr8wAAAAAAAAAoIn+XJADMQlu2bIlPfOIT8ZnPfCZOP/30OPXUU+OlL31pLFu2LDolexdaAAAgAElEQVQ6OmL9+vWxevXq+Nd//de45pprRm3K6erqissvv7yJowcAAGaLwTSYe66zSnBZtU34Izfu96XKYQCtuol/OuSFyk06eCHnWe8OycgLGJhsv41Saxx95d5IKUWWZdM0IgCA5vr5lltie3lrxXOvXHzGqHlRbvhuao25XivrLs2NGNowrjxvfl1UreDjou3PtGC0vJC+iJ33Mj8WRkTtYGcAAIBarM8DAAAAAACgmsqfVAVmI8FoAFDBwMBAXHPNNXHNNdcUun7u3Lnx9a9/PV760pdO8cgAAAAiBtNA7rmOKsFoecELEaM3uOdt4p/Nm93zAgzyggGKqvWsp6rfRqk1jnIMxWAaiM6sa5pGBADQPCmluGnDtRXPzS3Ni2MXnjSqLG9+XSuca7YoR7lieRZZlWc32WC06vWLtt9b3l6xvNo7WTNVe9cbGdSX+/6Szd53RQAAYGKszwMAAAAAAACgmlKzBwAArWTx4sUxZ86cuuqccMIJcfPNN8eb3/zmKRoVAADAaNWC0eZk+d9CmJPNyQ2oGrnBPW+zf6tu4p8OeRv984IBisp71rsD0Vo9LKNIMESrhLgBAEy1h3vvj0f7flvx3PGLTo2uUveosqkK92p/We67yWTnybWD0Yq1n3fd3NK8usc0HfICmSNGP5ORIWlF6wMAAIxkfR4AAAAAAAAAReTvkgSAWeiNb3xjPP3007Fq1aq47bbbYvXq1fHII4/E+vXro7e3N+bOnRt77rlnvOAFL4gTTzwxzjjjjDjhhBOaPWwAAGCWqRaM1pF1Vq3bXeqJgaH+ceUjN7vnhX3lBTfMBnkb/ScbWpEXmLD7WecHPrRGWEahYLS0I+bHwmkYDQBAc9208drccyctft24MsFo1aVIFctLkU1JgHA5laMv1QpGK/ZnsyN3nt+aAWIdWWeUohTlKI87VyxEe/a+KwIAAPWxPg8AAAAAAACAIgSjAcAYe+21V5x11llx1llnNXsoAAAAFQ2mwYrlpZgTpaxUtW53qSe2Dm0eV95XYLN7XjjYbJAbUJYmHrwQUTtYYCoCHxqpyP3nBe0BALSTLYMb4+4tt1U8d+S8o2NZ1/7jyvPm1+ZPu1UORousWjDaxEPl+lNfzWuKtp83X2/Vd6ps1zPdUd4+7pwQbQAAoNGszwMAAAAAAACgluq7JAEAAACAljOYBiqWd2adNet2ZzkBX6OC0Wx2Hys3GG0SwQsppSrBaDv7684qP/NWCcsoMo7JPCMAgJnitk3/lhtg/MolZ1Qsn4o5ZjtJeblokU1JqFyR8OGi7fdWCBiLaN1gtIhqP49CtAEAAAAAAAAAAACYXoLRAAAAAGCGyQtcmJN11KybF27Wl57b4J4fjDZ7N7vnPbfJBC8MpoEox1BOfzufdV7AwMg/r2YqEtoh2AMAaHflNBS3bry+4rk9O5bG7+zx8orncufm5k8REZEiJxktpubZFQv9rX3NQHkg952tlQPEigT11Qp2BgAAAAAAAAAAAIBGEIwGAAAAADPMYBqoWN6Rddasm7cRf2QIQF4gQF74wGyQ99wG00AM5YQe1FIttKE72/ms8wMfJh7I1khFgicmEx4HADAT/Me2u2L94LqK505cfHqUsjkVz+2e8401FIO5c/7ZpXIwWhZZdGeNDxAuFPpboP1qc/We0ry6xjSdioTN5Ydoz953RQAAAAAAAAAAAAAaTzAaAAAAAMwweUFcHVlHzbrFNrtX3uyfFw42G1Tb6F8kQKFivVQtMKFn1z/zAtlaIyyjUHjEBJ8PAMBMcdOGayuWd2QdsWLRabn1pmKO2U4qx6LtDEYrEvhcr2Jz29rtVxtDK79TFXmmec+ou4XvCwAAAAAAAAAAgJkj5S0eBGYdwWgAAAAAMMMM5ARidWSdNevmbVgfucE9byN/d5Yf3NDuqgUYTDR8oVrwwu6QjGoBA/3lvgn120hFgiGKXAMAMFM93f943Lv9lxXPHbNgZSzoWJRbdyrmmO0lf3VTkcDnehV55kUCinvL23PP9ZTm1T2u6ZL3vjcy0Nm7IgAAAAAAAAAAAADTQTAaAAAAAMwweRvxO7KOmnXzwhdGbnDPCxOoFtzQ7vKCFyImHr5QPRhtbs1+WyEso8i9TyacAgCg1d2ycVXuuVcuPqNq3WohuOZQESknGC2LrEow2sTnyEWfea2A4mrz9Gp/5s2W97438rnkPd/Z/K4IAAAAAAAAAAAAQOMJRgMAAACAGWYoDVYs78g6a9YtEiDQlypvdm/lTfxTrXpoxcTCF/ICE7IoRWfWVaDf5odl5P2s1HsNAMBM1FfujZ9s+lHFc8/rPjiW9xxWtf5UhO/OClmWO0+eXDBasbq1Aop7y9srlndkHdFZqv3O1ix5P4+777ecytGfKofCVftZBgAAAAAAAAAAAIB6CUYDAAAAgBlmMA1ULC8WjJYXINBb8fdF6s4GXVl37rlawQh58p9zT2RZNvz7RvfbKINpIAZzQvpGEuoBALSrOzffHDtyQrBeueSM4Tldns6sK7KofM1kAr7aQUop91wW1QKfe6vWraboM681v+2doe9T1Z5pRER/6osUlZ9tq98bAAAAAAAAAAAAADOLYDQAAAAAmGFyg9FKRYLR8ja7PxcCkBe4VS2kq92VslJ0Z5Xvf+LBaLWfc1fW3bJhGf3lvkLXCUYDANpRSilu3nhtxXPzSvPjFQtOrNlGKSvlBvA2OwS32fICuHbKcoO4ylHOfV+qpS8Vm7fWmofnne8pzat7TNOpVoh2tXl9j2A0AAAAAAAAAAAAABpIMBoAAAAAzDAD5ZxgtOioWTcv3Gt3CMBQGswNEpjtm91rBQXUK6/eyD+jVg7LKNp/s8cJADAVfrvjvnis7+GK545fdGp0lSrP4cbKm2PP9nDZasFopciip0po88SDi4s981rt95a3Vyxv9fep/PedHbv+mf98ZnOINgAAAAAAAAAAAACNJxgNAAAAAGaYoRisWN5R6qxZN28zfq/N7jXlh1ZMMHgh5QSjjXnOrRqWUbT/Zo8TAGAq3LzxuorlWWRx0uLTC7eTG0aVM1ecPfKD0SKy6M7yQ8YmOv8sGqhWq/28dlo/GC0nRHvX/VZ775nt74oAAAAAAAAAAAA0Rqq2fBCYVQSjAQAAAMAMM1jOCUbLOmrWrbXZvVoYQKtv5J9quc9ugqEVRQMTWjUso2gg3ESD4wAAWtXmwY1x95bbK5570R4vi6Vd+xVuq9b8fLZKVYLRssiqBnH1pQkGFxcN/q0xD+8tb69Y3urvU7WCoAWjAQAAAAAAAAAAADBdBKMBAAAAwAwzmAYqlndknTXr5m12H0wDMZQGq4YBzPbN7nkBZdXC5KrJe9Zj+8kPy2hu4Fjh4IhZHuoBALSf2zb9nxiKymHFJy0+o662WnWu12xVv/iYZVVDxnonOP8sOq+vdV3e+bz3iVbRnVX+WewdDkar/Fw7so5C76IAAAAAAAAAAAAAUJRgNAAAAACYYfKC0eZkHTXrVtuM31furRrA0Oob+adaXvjCRIO/8p712HCMvOfe7MCxvlSs/4kGxwEAtKKhNBS3bFxV8dxenfvEUXu8rK728ud6s30OlZ+MlsXOUOhSznKHiT67ovVqzcPz5r9zS/PqHtN0ygvp6099UU7l/MC3bHa/JwIAAAAAAAAAAADQeILRAAAAAGCGGUyDFcs7ss6adfM2u0fs3MBfLcSqK+uuPbg2lvfsJh68UDlQYXwwWuV+mx04VrT/ogFqAAAzweqtd8bGwWcrnjtp8elRyubU1V7+HHN2z6FS1WC0LLIsa/izK1qv1vw/N0CsxYOm84KgU6QYSP258/pq75gAAAAAAAAAAAAAMBGC0QAAAABghhlMAxXLOwsFo+Vvxu8r9+aHdWU9Ucpm9/9OzAsKaHTwwthggfx+mxuMVjw4YnaHegAA7eWmjddWLO/IOuP4RafW3Z5gtInIIiL/3Wbi8/OCwb812u8tb69YnjevbxXV3hWrhWi3euAbAAAAAAAAAAAAADPP7N7JCAAAAAAzUF4w2pyso2bdvOCFiJ1BADa758t7dnnPrJa8emMDE1o1LKOe4IiU0hSPBgBg6j3V91j8evuvKp57xYKVMX/Owrrb7M5ywr3S7A5GS5E/f8x2/TM/GG1i8/Oiz7xW+3nnWz8Yrdq7YpUQ7Sr1AAAAAAAAAAAAAGAiBKMBAAAAwAyTF4zWkXXWrNuVdUc2HCUwWl+5NzcMoNU38U+H6QpeGBuOkffsJxrI1ihFg9lSlGMg9U/xaAAApt7NG6/LPXfS4jMm1Gajw3fbRbVgtN3RaI0OEC5ar9Z1O3KD0ebVPabpVO2dr6+8I/e+vSsCAAAAAAAAAAAA0GiC0QAAAABghhlMgxXLiwSjlbJSdGXdFc/1lnfkhnzlhQ7MJt1ZY0Mr8oIFxj7rRgc+NEo9/U80PA4AoFX0lnfETzffUPHcC3oOi+VzD5tQu3mhUs2e67WyLNsVjJYzP+9LE5t7Fp3X5wUcD5/PDUZr7QCxau98fd4VAQAAAAAAAAAAmAbVPqsKzC6C0QAAAABghhlMAxXLiwSjRUR054UvpN4qYV2tvYl/OjQ6tKJosEB3ltdvc8PG6gmEm2h4HABAq7hj803RW95e8dwrF79uwu3mh+DO7vlTSvlLm7Jd/8ybn09k7jmUBnPfs+ptP+/npNWD0eZkHbnvlH3l3irvL619XwAAAAAAAAAAAADMPILRAAAAAGCGGUyDFcs7so5C9asFCORt8s8LbJhNGh1aUTSELrffNLFAtkapJxBuouFxAACtIKUUN2+4ruK5PeYsiJcvWDnhtvPnmLN9/lTtm487o9Ea+ewaNbcdTAO572utHowWkf9Me8s7qry/eFcEAAAAAAAAAAAAoLEEowHQEGvWrIm/+qu/ihNPPDH22Wef6OrqiizLhn9ddtllzR4iAABA2xhMAxXLO7LOQvWrBQjkhXzNhE38U21sYNluEwkoSynlPuuxfz55/eaF2E2XvlS8f8EeAMBM9uCOe+KJ/kcqnlux6LToLHVNuO3cOeYsnz+lKsFo2RQEo9Uzt64WjFytnZ7SvLrG1AzdWX4oc26Idk4dAACgsazPAwAAAAAAAGA26Wj2AABmu+XLl8cjjzy3meaGG26Ik08+uXkDmoCvfOUr8d73vjf6+vqaPRQAAIBZYSgNVizvyIr97778AIEduSECeXVmk7xwuL5yb6SUIsuywm0NpoEoR7niubHhGNX6baZ6+p9IeBwAQKu4aeN1FcuzyOLERadPqu28eXZveUfdc8x2UiQYLW+ePJEA4XrmttXa7x2qFozW+mHT1d498p7RTLgvAABmN+vzAAAAAAAAAGDmKTV7AADMbNdee228613vKrzo6sYbbxz1pcqLL754agcIAADQhgbTQMXyjqyzUP2xwVu79ZV35G7yt9k9/7mlSNGf6tuMVC14oTsbHY6RH2S3M5CtWRoVHgEA0Mo2Da6PX2z5ScVzR+3x8ti7a59Jtd+TVZ5jlmMoBnMCkWeDasFosSsYLf+9pv5Q3rpCf6tcW23e21OaV9eYmiHvmfZWeVfMqwMAADSG9XkAAP8/e3ceJldx2Hv/V71M94xG0khoAwQIIbFjFiMQIDYvAhTsxEsMxH68hmAnuRdCiK95c21JFwfj1yQ2tnFsEwK8jzEh18bGwSDHxpJAYMAIsACJ1QgQCC1IM0gz0z291PuHNKPpnlOnz+npvb+f5+FBp+qcqurTrVGdmarfAAAAAAAAAADaUazeAwAANLerr766YBP2X/zFX+hzn/ucDjroIMXj+zbkT5s2rR7DAwAAAICWlHEGowX7dp9f0Fbaudnd+5p24ncPUvnBUPcobf0CE4IFo1nllbFD6jCJwP1WkuuzMt5zAQAAGslDvb9WXjnPurOnLBl3+35zyLQdVFzBwo9bjk8umtmTi+bzXBN+7hlubrsnoNgMD2SUVH7AeV0zBIj5Pita70A4nhUBAACA6mJ9HgAAAAAAAAAAAACgHRGMBgAo2/PPP69169aNHC9ZskS33357HUcEAAAAAO0hZ7Oe5TETLDQh6diQn8oPKp13bHY3jb+Jv9pc902S876Vc35xYIJ/v4PqiNQrGC34aw57fwAAABpBzmb1YN+vPOumx2fpqK4Txt2HbzBaPqXu6KRx99GMrE8ymtGeQDJX0Fg5c09X6JeXvHLK2ozipsOjb++AtahiikcaP+TOfU/dz4p+zysAAAAAxof1eQAAAAAAAAAAAACAdhWp9wAAAM3r8ccfLzj+6Ec/WqeRAAAAAEB7ydqMZ3nQYDRX+EI6n1LKsZHfL7ChXfiHVnjfNxfXffbqx69fv3aqLUzgRD3HCQAAUK4/7H5MfdkdnnVn9pyviBn/j9tdQVRS+Dlma3EHo2k4GM24nmvC37ew17jmwoOOdpLR5ggPcz8rDjrvEc+KAAAAQPWwPg8AAAAAAAAAAADtxvotHwTQVghGAwCUbcuWLQXHs2fPrtNIAAAAAKB95G1OeeU96wIHoxnvTflpm1Laem/wT/oENrSLSgajuYIUjCKKm46ifv3CMoKHk1Va2gZ/zfUcJwAAQLlW77zXszxuOnTa5PdWpA+/eXY7z6H8Y9H2BqO5QrwczzR+UiHvtWsu7HouaJbnKdc9Hcj3K2OHQl0DAAAAYPxYnwcAAAAAAAAAAAAAaFcEowEAyrZ79+6C43g82AZ8AAAAAED5sjbrrIuZWKA2XJvyU/lB50Z+v3CudhEzcec9TlUoGC0RScoYU1jmCLIrp99KydqM72exWDuHegAAgOb0Zvo1vTj4jGfdyZPO1IToxIr0EzcdI0Ffxdp5DmV9o9H2cD3XpPMp2ZC/MjJs0LFrHp7KD3iWJyNdodqvF9c93ZXtC30NAAAAgPFjfR4AAAAAAAAAAAAAoF0F2ykJAGh61lo98cQTeu6557R161al02lNnz5dBx54oBYtWqTu7u7Qbebz+SqMFAAAAADgJ2szzrqYCbYhJhFJepan84PO8AU2u++RiHQqm9s1pjxsaIU7gG7sexOPxBVVTDmNDSJL2/qEZVTq9QIAADSqB3tXOOvO7llSsX6MMUpEkp5BW/UKwW0M7mCz4SA5V3izldWQTSthvJ97vISf33qf73rPmuV5ynXP+rI73Nc0yWsDAAAAqo31eQAAAAAAAAAAAAAAVA7BaADQ4rZv365rr71WP/rRj7Rt2zbPczo6OvSe97xHy5Yt06mnnupsa+PGjTr00EOd9eeee65n+S233KLPfOYznnXLly/X8uXLnW2uXLlS55xzjrMeAAAAANpN1o4NxxoWPBjNe+P6rmyfrCOAwBWm1m4SJql+jQ1GCxtaETaALhFJaiC/26Od+oRlhA6OsO0c6gEAAJpNKj+oR99Z6Vl3aPIIHZw8rKL9JUxSKY2dL4Wdc7USdyzanjA5yf8ZJZ1PhXqGqdR8PpUf8CxvmmA0xzjfye10XxMigA4AAABoRazPAwAAAAAAAAAAAACg8iL1HgAAoHp+/vOfa+7cufrmN7/pXHQlSUNDQ1qxYoUWLlyoyy67TNmse5M9AAAAAKC+sjbjrIuZYL8HwRUQ4BW8te+a5tjIX22uQIO0DRda4QpecIUKuN6zeoVlhA5Ga+NQDwAA0Hwe7VvpnK+d1XNBxftzzbXrFYLbEKxfNNoefsFnlQo6C9u+c57fJM9Trucdv4DuZnltAAAAQDWwPg8AAAAAAAAAAAAAgOoItlMSQO3ks9LApnqPovV1zZYirf0l8N///d916aWXKp/PF5QfdthhOvroo9XV1aXXXntNjz32mHK53Ej9D3/4Q7322mv6r//6L8VirX2PAAAAAKAZ+QWjRccZjFbpa1pRpUIrXEFqrvvsCigIG/hQKaFfL8FoAACgSVhr9UDvfZ513dHJOmniGRXv0xmCGzJ8t5VYuYPRjIwk9xxZqv581XW+a37eGekK1X69lPesmKjCSAAAAKqI9Xm10+Jr9FifBwAAAAAAAAAAAABA9fATdaDRDGySfnFovUfR+j74itQ9p96jqJqnnnpKX/jCFwoWXZ1wwgm68cYbdfrppxecu23bNn35y1/WD37wg5GyFStW6Ctf+YquvfbagnNnz56tV155ZeT4W9/6lm644YaR4zvuuEMLFy4cM55p06bpnHPOkSQ98sgjuuSSS0bqLr/8cl1xxRXO1zJr1qwSrxYAAAAA2kvWZp11cRMP1IZfgEAlr2lFrqCAsAFlriAFV/CaMyyjTsFoYV9vvQLcAAAAwnpx8BltHnrds+6Mye9TPBJszh2GO3yXYDQvw8FofiFeoYPObNj5vPf5rnmv6z1uNGGD0eKmQxETrdJoAAAAqoT1ebXTwmv0WJ8HAAAAAAAAAAAAVId79SCAdkMwGgC0oM997nMaGhoaOV60aJF+9atfqatr7G+jnz59ur7//e9r3rx5+od/+IeR8q9//eu65JJLdNxxx42UxWIxzZkzZ+S4p6enoK1Zs2YV1I/W3d0tSdq4cWNBeU9Pj/MaAAAAAMBYWZtx1sUCBqOF3exe7jWtqFKhFa4gBVcAXaOFZYR/ve0b6gEAAJrL6p33eZYbRbSo57yq9NloIbiNbjgYLWbiiiqmnMaGR4e9d+HP957fhp3nN5qwAW7N8roAAACASmN9HgAAAAAAAAAAAAAA1RWp9wAAAJW1cuVKPfHEEyPHkyZN0p133um56Gq0q666ShdeeOHIcT6f1ze/+c2qjRMAAAAAUJ5KBKOF3bweM7HAbbc6171LVShIwRWK4SoP22+lpC3BaAAAoPX0Zt7WH3Y/4ll3XPfJ2i8+oyr9NtpcrxFY5X1qzcifXPPzas9X09b7vUnlBzzLmyVALBkyEJsAbQAAALQj1ucBAAAAAAAAAAAAAFB9BKMBQIu57bbbCo7/5m/+RgcccECga6+77rqC4zvuuEPpdLpiYwMAAAAAjJ9fMFrUxAK1kTDhNuWHPb+VuTb+hw1ScIVcuNp3Bj7UKXAsdHBEG4d6AACA5rGm77+VdwRyndVzQdX6bbS5XiOw1l1n9uWiVX1+7uJq39VOMuIfkNAoEiED3Jol8A0AAACoJNbnAQAAAAAAAAAAAABQfQSjAUCLWbNmTcHxJz7xicDXHnPMMTrppJNGjlOplNauXVuxsQEAAAAAxi9rs57lEUUVMcG+3ecKD6jU+a3MHVpRmSAF1712hdPVK3As9Ou1KeWtd8gIAABAI8jajNb0/rdn3Yz4ATqy6/iq9V2pcK/W4pOMpn3JaK57V6mgMxdX++5gtOYIEAsbjBb2fAAAAKAVsD4PAAAAAAAAAAAAAIDqIxgNAFrIzp079fLLL48c9/T06KijjgrVxumnn15w/Pvf/74iYwMAAAAAVEbWZjzL4yYeuI2YiSuiaODz2ey+j+tehA1SSFtHMJojAK3RwjJcgQ8xn8/hkE1XazgAAADj9oddj+qd3E7PurN6zg8cQlwOZwiuY87YDqxPMJopCEarbnDxhMjEUOe75snN8kyVMCFDtEOeDwAAADQ71ucBAAAAAAAAAAAAAFAbsXoPAECRrtnSB1+p9yhaX9fseo+gKrZt21ZwPH/+fBljHGd7O/LIIwuOt27dOu5xAQAAAAAqJ2uznuVRE/xbfcYYJSJJDeb7A52fbJJN/LXgCihzBSC4uIIUXO273oN6hWW4xj85NkVvZ7y/l5DOp/gsAQCAhrW69z7P8g6T0MLJ76lq340WgtsI3LFohSpx76y1zvn8pFiP+od2BWo/azPOIOvOJpkHJyKJkOc3x+sCAAAowPq82mnBNXqszwMAAAAAAAAAAAAAoDYIRgMaTSQmdc+p9yjQpHbu3FlwPHny5NBtFF+zY8eOcY0JAAAAAFBZro32MRMP1U4y0hk4GM0VNtCOnAFloYPRvM93BQtUKpCtUlxBE5OifsFog5KmVHFUAAAA5XkjvVEvDT7rWbdg0lnqinZXtf9Gm+s1Bnc0mtG+0IFKBKNlbVZ55TzrJsWmaPPQ6x7tj31v/N6vZgkQi5ioOkxCQzYd6HyeFQEAQFNifR7GgfV5AAAAAAAAAAAAAADURqTeAwAAVI61hZtEwv42Si+VaAMAAAAAUDk5m/Usj5lwvwMhzAb2ZtnEXwsJM/7ghT3nu4LRvNt3vQdhA9kqxRmMFusJfQ0AAEC9PbBzhbPu7J4lVe+/UuG7rcQGDEZz3bswoXJ+93lyzDvY16v9VM7dTmekK/B46i3csyLBaAAAAGgvrM8DAAAAAAAAAAAAqsu6lw8CaDMEowFAC5k6dWrBcV9fX+g2iq+ZMsV7wwcAAAAAoD4yNuNZHjPxUO2ECTtjs/s+ztAKGzx4wVrrDAlzB6N5l6fqFDbmer2THMERUnsHewAAgMY1mOvXY++s8qw7rPMozU4eWvUxuOZ6BMs6jAoNSBhXqFzwe+c3l58U9Z7ferXvF8bWTGHTrmee8Z4LAAAAtALW5wEAAAAAAAAAAAAAUBsEowFAC5k+fXrB8QsvvBC6jeeff77geMaMGeMaEwAAAACgsrLOYLRYqHaSIcLOCEbbx3UvsjbrfG/GnptRXnlH+97BAu6wjPqEjbn67Yp0O0P6/IIiAAAA6uWRd1Yqbb1DtM7qOb8mY3DNAdP5lGyb/upDv9dtRv3ZOU92vKee5/qEqE12BP96tZ/KDzjbSUa6Ao+n3sI8//GsCAAAgHbD+jwAAAAAAAAAAAAAAGqDYDQAaCFTpkzRYYcdNnLc29urDRs2hGrj4YcfLjhesGBBRcY2zBhT+iQAAAAAgFM27wpG8w6jcnGFL3hJhji31fndN79AhaDnuQLrXO9Bxg4pZ3OB+q0k12tIRJI+IW7BwykAAABqwVqrB3pXeNZNjE7WCd2n12QcCeM9f8orFzh8t9VY+QWj7Vvm4JonhwkQ9gvwneQKRvO4xtVnVDHFI65Z5bAAACAASURBVOGe1+opzLNimHMBAACAVsD6PAAAAAAAAAAAAAAAaoNgNABoMYsWLSo4vv322wNfu2HDBq1du3bkOJlM6t3vfnfFxiZJiUSi4DidTle0fQAAAABodTllPctDB6OZEJvdHUEN7chv479foMJoaes+z/W++PU7VIfAMb9gNGc4hSUYDQAANJbnB9Zpy9Amz7ozJi+uWZhVJcJ328noLf7uUN7gwWiue2wUUXd0kvMaawvD2wYdfSajzRUeRog2AAAA4I/1eQAAAAAAAAAAAAAAVB/BaADQYj75yU8WHH/3u9/VW2+9Fejaq6++uuD44osvHrNQarx6enoKjjdv3lzR9gEAAACg1WVtxrM8FjK0wRUg4IXN7vv43YugoRV+AWqu96US/VaSq89kpNMZpBc0OA4AAKBWVvfe51luFNGinsU1G0fSZ27uF6rbyqysT+2+aDR3MFrwOXI5ob9WVhk7VNSOIxityZ6nwgRjh3muBAAAAFoF6/MAAAAAAAAAAAAAAKg+gtEAoMW85z3v0QknnDBy3NfXp0suuUSDg/4bZ775zW/q7rvvHjk2xujv/u7vKj6+uXPnqqOjY+R45cqVymS8N/UDAAAAAMbK5B3BaIqFaifMBvZEk23krya/++YKQhh7njukwdW+XzhBPQLHXH0mIknn56UeAW4AAAAuOzPbtW73Y5517+o+RVPj02s2Fv85ZrvOodzBaCZAMFqYObLr3GSk0/dZqPg6dztdgcfSCEI9K4YIUQMAAABaBevzAAAAAAAAAAAAAACovnC7JQEAVffWW29p48aNZV07Z84cSdLNN9+s0047TUNDe35T/apVq3TmmWfqxhtv1Kmnnlpwzfbt27V06VJ973vfKyj/4he/qHe9611ljcNPR0eHzjjjDK1cuVKS9Nprr+mDH/ygPv/5z2v+/Pnq6ircHDJr1iwlk2yqAAAAAIBhOWU9y2OReKh2kiHCzghG26fDJGRkZD2CGoKGVrjOM4oobjo86/zeg7StfViG6zUkIp3OIIX2DfUAAACNaE3fr2SV96w7u+eCmo7Fd67XpnOovHUHo43KRatIKK8r4HhP6G+pYOSekeNUfsDzvDDPXo2AZ0UAAAC0OtbnsT4PAAAAAAAAAAAAAND4CEYDgAZzySWXlH2t3btJ5KSTTtJ3v/tdff7zn1c+v2dTz9q1a7Vw4ULNmzdPxxxzjJLJpF5//XU99thjymYLN9W///3v1zXXXFP+iyjhyiuvHFl4JUkrVqzQihUrPM9duXKlzjnnnKqNBQAAAACaTTbvCEYz4b7V57fBfzzntjpjjBKRpFIe4QleZV5cIQ3JSFLGGM+6RCThbC9ov5WStRlnQF/CJH3CKWo7TgAAAJeszeih3l971s3smK0juiq/Md1P3HTIKOIZ1FbruV7jcAejmVHJaK6555BNK29ziphoyZ6cob+mVDBa4XWu96rZgtF4VgQAAECrY31eIdbnAQAAAAAAAAAAoJH4/V5VAO0lUu8BAACq49JLL9Wdd96p7u7ugvKXXnpJd999t+688049/PDDYxZdffazn9Uvf/lLxePxqo3twgsv1Fe/+lVFo6U3owAAAAAACmVtxrM8ZsI9x4XZnN9sG/mrbbzBX67zXO1KUsREFTcd4+q3UlzBEdKeYARXOALBaAAAoFE8uet3eifX61l3Vs/5zrDaahkO3/XiN/dqZTZoMJrxCy5LB+orbd3zc79noeIgtFR+wNlOMwkXjNZcrw0AAACoJNbnAQAAAAAAAAAAAABQPQSjAUAL++hHP6qXX35Zl19+uaZNm+Y8Lx6Pa/HixXrooYd08803V3XR1bB//Md/1Lp16/SlL31JZ511lmbNmqXOTjZPAAAAAEAprmC0qImFaifcZvfg57YDV/hCcTCCi+u8UvfZFcrQWMFonYR6AACAhvdA732e5QmT1MJJ59Z4NHv7Jly2LH7BZWkbbP7pmqcmIknFTFxReT9rFbfvaqcz0hVoHI0iTNgZIdoAAABod6zPAwAAAAAAAAAAAACgOsLtlgQAVNzGjRur2v6MGTP0rW99S//yL/+itWvX6rnnntO2bduUTqc1bdo0zZ49W4sWLdLEiRNDt71s2TItW7as7LEdffTR+trXvlb29QAAAADQjrI261keM+E20bDZvXzugLJxBi84AtdG6iNJ7cr1ld1vpfgFwCUiyXHfHwAAgGralHpFLw9u8Kw7ZdI56oxOqPGI9nDNBdt1DmVlnXVGZuTPfuHCQUPlXPd4eF6biCQ1kN9d8rrB/IBnO2GevRpBmOc/QrQBAADQDFifx/o8AAAAAAAAAAAAAEDzIRgNANpEJBLRggULtGDBgnoPBQAAAAAwDlmb8SyPVzEYjc3uhVz3I20DBi9YRzBaifekUQLH/PpLRjqdoR5+gWoAAAC1srr3XmfdWVPOr+FICrnnmO0ZjCafYDRVOBjNNU8dbjsZ6XQEow36Hg9rtqDpoM+KRkYdJlHl0QAA0FyMMYdKOkHSAZK6JW2W9Kqkh611fGO3vH7iks6QdLCk/SXtlvSmpCettRsr1Q+AcFifBwAAAAAAAAAAAABA5RCMBgAAAAAAADQRVzBaLGwwmiO8yvPcJtvIX22u+xE0oMx1XqkAOle/tQ4ccwU+GBnFTYf7/rRtqAcAAGgUA7nd+v07D3jWzes8Wgcm5tR2QKO4wrPaNVzWNxbNjA5Gcz+rpMY9P+/c+/9gwb+p/IDnec0XjBbsWTERSRa8FwAABGWMmStpgaST9/7/JEkTR53yqrV2Tplt+00jgji0nGAxY8xHJV0p6TTHKTuMMXdK+oq1dnu5gzPGTJe0XNJFkqY6znlY0r9Ya39abj8AAAAAAAAAAAAAAABAvRGMBgAAAAAAADQRVzBa1IT7Vl+YzfkdJhGq7VY33tAKV7BYqfdkvIFsleLqr8MkFDER5+twvW4AAIBaeaTvtxqyac+6s3qW1Hg0hRplrtcorA2WaRI1UcVNhzJ2aExd8OBi//m5KyisuH3X80DTBaMFDNEOE7YNAIAx5hxJV2tPGJpnoFczMsZ0S7pJ0sUlTp0q6QuSPmyM+ZS19ldl9HWBpFslzShx6umSTjfG3C7pMmttf9i+AAAAAAAAAAAAAAAAgHojGA0AAAAAAABoIlmb9SyPmXiodlyb+8ecZ5KKmEiotltd0GAEF9d5pd4TV/BA0EC2Sklb1/jDBUcAAADUUt7m9UDvCs+6SdEpOmHiqTUeUSH3HKpdw2XdwWgRFT6fJCJJZXJewWjB7p1rPj38nrhD6wqvcwejdQUaR6MIGuTmui8AADicIGlxvQdRScaYqKQ7JRUn7G6T9KSkPkmHSTpRktlbN1PS3caY91lr14To6xxJP5fUMarYSnpC0h8l9eztZ9qo+o9LmmSM+TNrbT5oXwAAAAAAAAAAAAAA1FOwX6sKoB0QjAYAAAAAAAA0kazNeJZXLRiNze5juO5J0ICyUsEL7n4bI3CsdHBEYwS4AQAAjPb8wDptzbzpWbeoZ3Ho+XSlNcpcr1GEWdiUiHRqd+6dMeXjDi42/vPb4uvc8+TmeqYK/qwY7DwAAEpIS9qkPQFilfaopItDXrMpxLnXqTAULSPpSkk/tNaOpLYaY46W9G+STttblJD0c2PMcdbazaU6McbMlnSXCkPRHpJ0qbV2w6jzEpIuk3S9pOHJ7QckfVXS/xPidQEAAAAAAAAAAAAAAAB1RzAaAAAAAAAA0ESyNutZHjPhvtUXdHN+ssk28deC656kAwZ/OYMXStxrZ7+2toFjrvEPj88VkJCxQ8rbnCImWrWxAQAAuKzuvdezPKKIFk1eXOPRjEW4bDF3NJqRKTgeDjArFnh+bv3n5wnjmv/vuy5rM84Q684me6YK+qzYbIFvAICGkJH0rKTHJf1+7/+flnSGpJVV6C9lrd1YhXZljJkr6fKi4j+31t5dfK61dr0x5r2S7te+cLT9JC2V9PkA3S2XNGXU8cOS3mdt4STGWpuW9G1jzGuSfjaq6kpjzA+sta8G6AsAAAAAAAAAAAAAAABoCJF6DwAAAAAAAABAcK7N9jETD9VO1EQVNx0lz3MFNLQz1z1xBYaNOc8VvOAIdCjdb62D0bz7Gx6fX5heOp+uypgAAAD87Mhs09O7H/esO757oXri+9V4RGO5w3eDzTFbjfUJRlNxMNo4Q+XKnd+Obt+vr2YLEAsajk2INgAgpNskTbLWnmitvdRa+0Nr7RPWOr7Z2fiWShr9DdlbvULRhllrByV9WtLQqOLP7Q1YczLGzJf0qVFFQ5I+XRyKVtTXz7Xnfg9L7B0vAAAAAAAAAAAAAAAA0DQIRgMAAAAAAACaSM5mPctjJha6rSAb9JttE38tuO5J8OAFRzBaiRA6V7+1DssoNX6/z0ytQ9wAAAAk6cHeFbLKe9adPeWCGo/GW8I45nruzIuWZq07GM0U5qK5Q+UC3DtrrXN+O9yuM6B4VPupnHue2xnpKjmORhI3HTJF4XNeCNEGAIRhrd3pF+bVTIwxnZI+WlT89VLXWWtfkPTzUUUxSX9R4rK/kBQddXyXtfbFAMMsHs/HjCnxWxkAAAAAAAAAAAAAAACABkIwGgAAAAAAANBEsjbjWR4z8dBtBdnIzmb3sRKOPYRBA8pc4WClQuhc70XQQLZKcY9/bzCazx7Ldg32AAAA9ZPJZ/RQ32886/bvOEjzO4+t8Yi8OcO3ahyC2yisfILRikK7xnPvMnbI2VeiVDDaqHmx35y82cKmjTE8KwIA4O88SaOTT39nrX0u4LW3FB1/uMT5HypxvSdr7QZJj44qmiBpcZBrAQAAAAAAAAAAAAAAgEZAMBoAAAAAAADQRDLOYLRY6Lb8AqyGJZtsE38tuO6JKzAs6HmlggXc/dY2LMPV377gCPdnJug9AgAAqJQndj2k3bk+z7qzei6QMcazrtaChG+1F3cwmsYEo3nPP4MECPsHmu15T4LM//3ep2Sky1nXqIKEufGsCABoY+cXHa8Kce2DkrKjjk80xsz0OtEYM0vS8aOKspIeCtFX8bguCHEtAAAAAAAAAAAAAAAAUFcEowEAAAAAAABNJOsMRouHbivIRvZSYV3tyBmMYFPK27zvtdZaZ7BYqfdjPIEPlZS2jmA0MxyMlnBeW+uxAgAAPNB7n2d5wiR1yqRzajsYHwSjFQoei+Z370oHCPvd3+F2g7Sfyg94nhNVTPFI+Ge1egsSos2zIgCgjR1bdPy7oBdaa/slPV1UfEzAftbtvT6ohwP2AwAAAAAhNMYvGwEAAAAAAAAAtD6C0QAAAAAAAIAmkrNZz/JygtGCbGQPEp7Wbvzu25BN+16btRnl5R2eVur98AtksNYvOqKyXOERw+OLmKjipsNxbelwCgAAgEp5LfWyXkk971l36uRz1RntqvGI3FwhuLWe6zUKGyIazRlcHCBUzm9+OtxusGA0776S0eZ8ngryrDgcjAwAQAM72BhzizHmWWPMTmPMkDFmy97jHxlj/soYM7WMdo8qOn4p5PUvFx0f7TivuLxa/QAAAABACO33/WoAAAAAAADUVhsumQTgQDAaAAAAAAAA0CTyNucM1SonGC1I6FmQDfHtxhVaIZUOX/ALXih1r5OO4IG8csrajO+1leR6DaPH7w6nIBgNAADUzuree511Z/VcUMORlOaaY+aVr+lcr3G4VzaZomC0IMFlLq5As9Ht+oXWlWqnWYOmeVYEALSIQyV9WnsCwXokxSXN2Hv8cUk/kPSaMeabxpjuIA3uDVIrDlN7LeS4is+f7zhv3jj7ebXoeD9jzJSQbQAAAAAAAAAAAAAAAAB1Eav3AAAAAAAAAAAEk7VZZ13MhP9WX5CN7AlHGFc787tvqfygJvtc6xu8UOJe+/WbzqcUj3T4Xl8prtcwenyJSFK7cn1jziEYDQAA1MpAbrcef+dBz7r5ncfqgMTBNR6Rv4RpjLleo/D7hY/GFAWjOe5dqdBiSUpb7/lpVLGR8GlnMJpNKW/zipiIe47cpM9TfmHQYc4BAKAJTJB0haQlxpgPW2ufLXF+T9HxgLW2P2SfW4uOXd9OLO6r+Dpf1trdxpiUpNGTpcmSdoZpx4sxZoak6SEvO2y8/QIAAAAAAAAAAAAAAKB9EIwGAAAAAAAANImszTjrhjfthxFss3vp8LR2k/S5b6WCv9LWJxitxL327dcOqluTfK+vFNdrHD0+12fLLxgOAACgkn7Xd78ydsiz7uwpS2o8mtKSJcJ3azXXaxjWOxrNyIwp8wsuK8UVnlYwt/UJrRuyaSVNp1L5Ac/6zmhXyTE0Ir9njzDnAABQJ1lJayT9RtI6SZsk7ZLULelgSWdK+qSkGaOuOVzSb4wxC621r/q03V10XM43u4qvmVjlvkZPZlx9hfXXkpZWqC0AAAAAAAAAAAAAAABgDILRAAAAAAAAgCaRtVlnXbWC0djsPpbffSsV/OUXnFbqXvsFp9UycMz1GhIBwiNcwRMAAACVlLd5PdB7n2fd5NhUHd99So1HVJrfHNMvXLdVWXkHoylMMFqJ0GK/c0bPvf2DkQeVjHQ65+NBnrkaUZCAbEK0AQAN6n9Luslau9VR/5SkXxhjvqw9wV7/S/smGLMk3WWMOdlaR0rr2LCy0hOOsYonDsVtVrqvKQH6AgAAAAAAAAAAAAAAABpKpN4DAAAAAAAAABBM1macdTET/ncgBNvs3pwb+aspaqKKmw7PulLhC676iCIlw+18wzIChD5UynjCI9K2duMEAADta8PAU9qWecuz7szJ5ylaxty52vzm5rWc6zW6sbFo7nsXJDzYHWiW9Pyz6/pUfsCzvlmDpglGAwA0K2vtP/mEoo0+L2WtvVrS/yiqOknSJWG6DDO+cVxT674AAAAAAAAAAAAAAACAumq8Fd8AAAAAAAAAPPkFo5UT7hBkI3uzbuSvtkQkqUxuaEx5ukT4gl+omDFeMQ/7xE2HjCKyyo+pCxL6UAlZm1FOWc+6hCkdHlGrcQIAgPa2eue9nuURRXVGz/trPJpg/OZ67RiMZp0ZHmPnzK5nlqzNKGezvs9Krvn76FDiIKF1rveoWZ+nggRkN+trAwBgNGvtjcaYxZI+OKr4ryX92HHJ7qLjcv5BLL6muM169BXW9yT935DXHCbp7gr1DwAAAKBu/Nc1AAAAAAAAAABQKQSjAQAAAAAAAE0ia70DqSQpbuKh2wuykT1IeFo7SkQ6tTv3zpjyUqEVrmCwIMEDxhglIkml8gOh+60Uv2Cz0Z8V1+emHUM9AABAbW0f2qJn+9d61p0wcaEmx6bWeETBNMJcr5G4gtGMx6a7UsFlXdFu33ovhXNb91x9+PpBj/dNkpKRLue1jWx06LHzHJ4VAQCt42sqDEZbaIzpsdb2epxLMJoka+1WSVvDXFPql0IAAAAAaBauX2oBAAAAAAAAAEBlReo9AAAAAAAAAADBZG3GWRcrIxgt2Gb3cvbbtT7XvfMLDpOk9DiC0SR3mJ2r3UrzC+UYPTbX62nHUA8AAFBbD/atcIZqnd2zpMajCccVNFVqjtlOvPI0/AK6Ss/PSwejRU1UcdPh275rPh4kjLoRBQk9S5jmfG0AAHh4TNLOUcdRSUc7zu0rOu4yxkwI2d+MomOvADavvqaH6cQY062xwWiuvgAAAAAAAAAAAAAAaAhE8wMYRjAaAAAAAAAA0CQqHYwWZJN+kA3x7ajcgLIgwQt+XOfVKnDMr59EoGA0Qj0AAED1ZPJDerjvN551B3QcrHmdrnyLxlDvENxGYm3eUTM2Gc3vuabUPNkVnFbcZql5eCo/EKidZhHsWbE5XxsAAMXsnonHa0XFniFk1tq3VRiiJkkHh+zykKLjFx3nFZcXXxe2nx3W2uKxAwAAAAAAAAAAAAAAAA2JYDQAAAAAAACgSfgFo0VNLHR7QcK4mnUjf7W57p0rWGFY2jqC0UzQYDRXWEYjBKMlPf8c9HoAAIDxWrtrjfpzuzzrzpqyRMaMDdVqJK45YTvOoazjdz4aj2A0v4CuUvfOGVxsioPR/EPrggasNYtSoWcRRRUr4xkUAIAGVvyPud8/hhuKjueF7Gtuifaq1c/6kNcDAAAAAAAAAAAAAAAAdUMwGgAAAAAAANAksjbrWR5RVBET/lt9pTa77zknWGBXu3EFHLiCz0bqHYEJQe+zKyyjVCBbpbjGb2TUYRIjx+5gtNqMEwAAtKcHeu/zLE9GunTKpLNrPJrwnHOoEnPMVuQdi+Zt9Dy0WKn5pzO4uOi9cIfWDQejebeTjHT59t+oSj2fJCLJhg8aBAAgpGlFx9t9zn2m6Pi0oJ0YYyZIeleJ9lzl7zLGhJlcnBGwHwAAAAAAAAAAAAAAAKDhEIwGAAAAAAAANImszXiWx028rPZKBaPFTEyxMttudeUGf6WdgQmlQ+p8+7W1CRxzBbAVByOUGxwHAABQrldTL2lj6kXPuoWTzg0836on1/y8PcNlvaPRjMaGcUVMxB1cVmZwcfHnpVRoXSo/4FkfJIy6EZX6+9IMf58AAAjKGDNN0tyi4jd9LllRdHxOiO7OlBQbdfyktXaL14nW2s2S1o0qiklaFKKv4nF5pwgDAAAAAAAAAAAAAAAADYhgNAAAAAAAAKBJZG3Ws7zc8DLX5v6ResNmdxd3aEWp4AXv+lLvxTBXAIErsKzSnOMvCqJwBVPUapwAAKD9rN55r7PurJ4LajiS8jnDZUvMMVuRDRGMJo0nuNgd/Dua33uTtRlniHVnkwaIlXxWDPj8AgBAk7hYhesot0ja4HP+rySNnkScZow5MmBfny46/lmJ84vrPxOkk73jOXVUUb+k/w5yLQAAAAAAAAAAAAAAANAICEYDAAAAAAAAmoRrs33UxMpqz7W5fxib3d1cwWilgr9c9a72xp7nCnyoTVhG2rqC3TqLjus7TgAA0F52597R2l1rPOuO6HqXZiVm13hE5WEOVT7XvUuVHVwcbH6byg/6PgMEnec3mtLBaM35ugAAKGaMmSnpfxcV/5e11julVZK1dkDST4qK/1eAvg6X9KFRRVlJPy5x2e2ScqOOP2yMmV+qL4/x/Ke1jm/sAQAAAAAAAAAAAAAAAA2IYDQAAAAAAACgSeRs1rM8VmYwWtx0yMg469ns7pYsM7TCHbwQLITOFWaXLhHIVilBx+8aZ9ZmnJ9jAACAcv2u735l7JBn3dk9S2o8mvL5hW+1G1cWiTHeSxzcoXLlBhcni45d8/CUbx+lwqgbValnQdfzEAAA9WKMOcIY84GQ18ySdI+kmaOKhyR9LcDlyySN/i0WnzbGfNCnr6SkWyR1jCq+2Vr7sl8n1toXJd02qqhD0q1723P19aeSPj2qaEjScr9+AAAAAAAAAAAAAABoFO5fZQag3RCMBgAAAAAAADSJjM14lsdMvKz2IiaiDpNw1jfrJv5acAcj+AcvuOoT7r2MAfv1D2SrFOf4AwZH7GmjNmMFAADtIW9zeqB3hWddT2w/Hde9oMYjKp873Kv95k9WjmA0x/nlzpPHG/ybzg9qMOcXjNbl23+jShj/Z0FCtAEA5TDGzDbGzCn+T9KsolNjXuft/W+ao/n9Jf3CGLPOGPNFY8x8n3FMNMb8raSnJJ1cVP1Va+0fS72WvefcUFT8E2PM3xpjRoefyRhzlKT7JZ0+qvhtBQ8rWypp56jj0yX9xhhzZFE/CWPM/5D0f4uu/2dr7asB+wIAAAAAAAAAAAAAAAAaQqzeAwAAAAAAAAAQTNYZjFb+t/mSkU6lc8HCALCPOxihRPCCHd+9rndYhjsYrbPo2P16UvlBdUW7KzouAADQvp7tf1JvZ7Z41p3Zc56iJlrjEZXPFUZVKny3vXhHo7mCulI+9y5vcxqyac+64vm+a36byg/6vj/NGjYdMzFFFFVeOc/6oMHOAAAUWSPpkADnHSjpFUfdbZI+7XPtcZK+Lunrxpg+Sc9I2i5pl6RuSQdJOl7e6yZ/aK29JsD4hn1J0jGSLth7HJf0HUlfNsY8sbfPuZJOUuEkZkjSh6y1m4N0Yq3dZIz5sKRfSRoOXTtD0npjzFpJf5Q0eW8/04suv0fSl0O8JgAAAAAAAAAAAAAAAKAhEIwGAA1uYGBATzzxhF588UVt375dqVRKnZ2dmjlzpg4//HCdeOKJ6ujoKN0QPJ1zzjlavXr1yLG1tir9rFq1Sueee+7I8dKlS7Vs2bKq9AUAAACgdWXzrmC0eNltJiKdUm6nuw6e/IIR/LgCzIIGJpQT+FBJrvEX3w+/z06tQtwAAEB7eKD3Xs/yqGI6Y/LiGo9mfJwhuI5w3VZm5f3zGuMKRnMEdfnNPdN571A0KXjwbzqfUio/4FkXVWxcz2r1ZIxRMtKpgfxuz3qeFQEATWKy9gSIldIv6e+stTeFadxamzPGfEzSv0m6aFTVDEnnOy7bKulT1toHQ/a1yhjzIUm3al/4mZF08t7/vNwh6VJrrXfSKYARrM+rLtbnAQAAAAAAAAAAAADKQTAaADSgXC6n//zP/9Qtt9yilStXKpvNOs9NJpM677zz9Jd/+Ze68MILazhKAAAAAECt5eT9fDi+YDTvDf6l6tqdX0CZtVbGeAc2pB0BZkGDBcoJfKik4MFo7s8OwWgAAKBStg1t1vr+Jz3rTpx4mibFemo8ovFxzQnbc/4ULhjNFTTsG4zmEzhXPO/2m4e7QoqTkU7nc0EzSESSPsFoPCsCABrOBknXSjpb0kmSgnyz7QXtCRq7yVq7vZxOrbW7JV1sjPmJpL+XtNBx6g5Jd0paaq3dVmZf9xpjjpW0XHuC2KY4Tn1E0vXW2p+W0w/QLlifBwAAAAAAAAAAAABAYyMYDQAazG9/+1t94Qtf0AsvvBDo/FQqpbvvvlt33323Tj75ZP3gBz/QSSedVOVRhjdnzhy9+uqrkqRDDjlEGzdurO+AAAAAAKAJZW3GWIaAlgAAIABJREFUszwWGU8wmnuPoCtcAO5ghLxyytqs4h5hddbawMFiLu7AB+8whkpzhUckTOG4OkzC3UaNxgoAAFrfg72/knUEaJ3ds6TGoxk/15ywHedP3u+q5MhFc9876753fve1eN7tDK2zg+5gtGhzP0/5PQ/yrAgAKIe1dk4V294i6R8lyRgTkTRf0mGSDpTUIykpaVDSTkmbJf2+3IAyR/8/kfQTY8yh2hPMdoCkCZLekvSqpIestUMV6GerpC8YYy6XdIakQyTNktQv6Q1JT1prXxlvP0CrY30eAAAAAAAAAAAAAACNj2A0AGggy5cv1/Lly2Vt4XYPY4yOOuoozZ49W/vtt5+2bdum1157bczirMcff1ynnXaavvvd7+rSSy+t5dABAAAAADWQyTuC0cbxbT6/QK6gYV3tyC8IIJ0fVNwjrC5jh5RX3vOaoPfaHfiQUt7mFTGRQO2UyxX6UDyuiIkoYZKeQWqucDUAAIAwhvJp/a7vfs+62Yk5mtt5ZI1HNH6uuV4qn5K1VsY4UsFaknc0mnEko5UTKudXV9yeMxgtn3LPkU1zh4fxrAgAaFbW2ryk5/f+V+u+X5FU9WCyvSFrK6vdD9CKWJ8HAAAAAAAAAAAAAEBzIBgNABrEFVdcoRtuuKGgbOLEibr66qv18Y9/XAcffPCYa1566SXdeuutuv7665VOpyVJQ0ND+qu/+iv19/friiuuqMnYAQAAAAC1kbVZz/KYRwhXUH4BX3517c4vCCBtB9WtSWPL8+5AsKDBAn7vyZBNK1nl8AXXa/AaVyLSqXTOIxjNJ4ACAAAgqLW71qg/v8uz7qyeJU0ZIuaa61nllbFD6jCJGo+ofvLWOxhNzmA0d3CZS8qnrmNMMJoreC2lVH7As64z2uVsvxn4B6PxrAgAAIDmw/o8AAAAAAAAAAAAAACaR6TeAwAASLfddtuYRVeLFi3S+vXrdfXVV3suupKkefPm6atf/arWrVunY489tqDu7//+77Vq1apqDbllrFq1Stbakf8AAAAAoJHlXMFopvzff+C72d0EC+tqR34BZSlH8JdfKEPQEDq/AIJaBI65+vD6HLk+W34BFAAAAEFYa7V6572edZ2RLi2YdFaNR1QZvuG7bTeH8v6ZjSvuzj33dM+RXfc0bjoUNdGCMtd8PWOHNJDf7RhTc4eH+Y0/GTDYGQAAAGgUrM+rH9bnAQAAAAAAAAAAIAx+pARgGMFoAFBnL7zwgv72b/+2oOz000/Xfffdp9mzZwdq4/DDD9f999+vo446aqQsn8/rE5/4hLZv317R8QIAAAAA6idrM57lMRMvu02/QK5m38hfTf4BZd4BC2nrDmVImKDBaPUNy3D1ESYYrRYBbgAAoLVtTL2o19Ive9adNvm9vnOmRuY3J2y3YDTrDEbzjkZzPdf43Td36O/Ytvw+U33ZnaHG1Cz8Po88KwIAAKCZsD4PAAAAAAAAAAAAAIDmQzAaANTZVVddpd279/0m+Z6eHv30pz9Vd3d3qHZmzJihn/zkJ+ro6Bgpe+ONN3TNNddUbKwAAAAAgPpyBaNFTazsNv02+LPZ3S1uOmQc315NOQIW/EIZgoZ3+IUruPqtJHcw2thxlRNOAQAAEMTq3nuddWf2nF/DkVSWbwiuT8hua3L9ykfvYDTXs4t/MNr4Q38lqS+7w7O86YPR/J4VTXOGDwIAAKA9sT4PAAAAAAAAAAAAAIDmU/6OSQDAuD333HO65557Csquu+46zZo1q6z2jj76aF111VW69tprR8puvvlmLVu2TFOmTBnXWBvNSy+9pHXr1umNN97Qrl27ZIxRV1eXZs6cqUMPPVTHHXecurq6qj6OdDqt1atX65VXXtGOHTs0Y8YMzZ49W2eeeWZV+t+8ebMeffRRbd26VW+//ba6u7s1Y8YMLViwQHPnzq14fwAAAAAaiysYLWbiZbeZMO7N+smAYV3tyBijZCSpwfzAmDpXwIIruCyiSOD30Dcso8qBY9Za52sIEx5RiwA3AADQunZl+/TErjWedUd2Ha+ZHQfWeESV4zfXS7VZuKwzFs24gtHcc09rred1ace81CvQzC/kzB2MVv2fU1WT32smRBsAAADNgvV55WN9HuvzAAAAAAAAAAAAAKCeCEYDgDq64YYbZO2+rR3Tpk3TZz7zmXG1ecUVV+gb3/iGMpk9m+X7+/t100036Ytf/OKYcz/96U/rtttuGzl+5ZVXNGfOnED9rFq1Sueee+7I8dKlS7Vs2TLf9oe9+uqrzo0rkvSpT31Kt95665jydDqtb3/727rpppv04osv+o4vGo3qhBNO0J/92Z/pyiuvdC6COuecc7R69eqR49Hvh5++vj595Stf0a233qp33nlnTP3EiRN10UUXafny5TrggAMCtemSyWR0880363vf+56efvpp53nz58/XVVddpc9+9rOKxfgnHgAAAGhFWZv1LI+PJxjNJ3yBze7+EpFORzCad8CCK7gsEen0fU4eLWpiipm4Z0hetQPHsjarvHKedUmPgD3XZ6vaAW4AAKC1Pdz3G+e8+OyeJTUeTWXFTYciiiiv/Jg61xyzVbl+XmPkCEYz3nPPvHLK2qznM5Mz9NejLb9no77sTs9yv2CxZuD/rEiINgAAAJoD6/O8sT6vEOvzAAAAAAAAAAAAAKDx8FNZAKijFStWFBx/8pOfVEdHx7janD59uj7wgQ/orrvuKujHa+FVM3n99dd13nnnacOGDYHOz+VyWrt2rdauXauLL75Y8+bNq9hY/vCHP2jJkiV68803nefs2rVL//Zv/6a77rpLv/jFL8rua+3atfrYxz6mP/7xjyXPffHFF3XZZZfpX//1X3XPPffowAMPLLtfAACaTV92p57tX6u30puq2k880qG5nUfqyK7jFTXRqvbVrnZn39Gz/Wv1Tq5PR084QQcm5tR7SGgRu7K9eqZ/rTanX6/3UApETUxzkvN19IQTFY+Ufh70CsOSpNi4gtHcm/WbfSN/tbnunSv4yx2MFi5UIBFJKpsb+1l4qO+/9eLAM5IkY4wO6DhYx3S/W93RSc62rLV6fmCdXh7cUDKwzPX5Gx7T2DLv+/Py4HrdtfXWkePJsak6esKJ2j9xkG//W4be0LO716o3u8OzPhnp1LyuYzS/8xjfDV+1mjeE1RFJjMwzIiZSVhubUhu1YeBJ7cr2Bb4mZuI6tPMIHT3hBEVNZX9ksDOzXev7n1TapnTshJM1o2P/irb/Rnqj1vc/pUw+rXldR2t+57GBQwYBlFbq34iYiWtu5xE6out4xSPlz0WAMPI2pwd7V3jWTY1N13HdJ9d4RJVljFEikvQM332wd4We6/+D7/URE9GBiUN07IST1RmdUK1hjsvWoc16tn+tdma2+563eSjcs5vfs8vPtt3q+cz00uB6z/O95rYdJuFsP2OHHO009/MUwWgAAABoBazPC471eazPAwAgGH4eCwAAAAAAAACoDYLRgAaTszn1Zv03AmD8emLT6h5ksWnTJm3cuLGgbPHixRVpe/HixQULrx555BFlMhnF4825OW1oaEjnn3/+mEVXU6dO1XHHHaeZM2cqHo9r165d2rx5s9avX6/+/v6qjGX9+vV673vfq7fffrugfObMmTrxxBPV09OjLVu26JFHHtHg4KB27NihCy+8UN/4xjdC93XPPffooosu0sBA4Qao/fffX8cff7ymTp2q/v5+rV+/vuA3dD711FM69dRT9cgjj2j27NnlvVAAAJrIm+lX9e3Xl+qdXG/N+jxp4un6zP5XVjw8pN1tHXpT3359qXZkt0mSfr7N6OOz/kanT35fnUeGZvdWepO+vWmperNvlz65To7oOk6fP/AfS24udwVTjefrkV+AAJvd/bnuTyo/6FmedpSHDUxIRjrVn9s1pnzd7sfGlE2NTdflB/0fTfcIpMrbvH685Xt6uO83ofr34hmMZrxf1+ah18cEXfxsW1SfPeBKnTTxDM9rntr1iG5+83rllPUfyNvSuVMu1Eenf84zIKse84awFkw8W5/c/3+G/t7VQ72/1o+3fE9Wtqx+j51wsi494IuBQhqD2Dj4gm7cdI3683s+qz83t+mvDviSjq1QYM3v+u7Xj966UVb5PQVvS2f3LNHHZlxKOBpQAdZa3bHl+1rT96uS5x494SRddsCXKvb1A/DzTP/akWfGYot6zlOkBULME5FOz2C0P+x+NHAbszpm63/OXq6e+H6VHNq4PbP7cd305v/rDBILwjg23fk9u6zq/WWoPryekSImooRJKm39w4RH62zyYDS/Z0VCtAEAQDNjfV7t1HuNHuvzgmN9HuvzAAAIrryfRwMAAAAAAAAAEBY7uIEG05vdri//8bJ6D6PlXTP3B9ovPrOuY3jooYfGlJ18cmU2hr773e8uOB4cHNRTTz2lBQsWVKT9oK6//notW7ZMkrRo0SK98cYbkqQDDzxQa9ascV7X3d1dcHzLLbdo/fr1I8dz5szRjTfeqPPPP1+RSGTM9dZarV27Vvfcc49uvvnmCrySPTKZjD7+8Y8XLLraf//9dcMNN+gjH/lIwVh2796tf/7nf9Y//dM/qbe3N/RvBF2/fr0uvvjigkVX559/vpYvX65TTjllzPlPPvmkLr/8cj344IOSpDfeeEOXXHKJVq1apWi0+TeCAQDg52fbbqt5uMkTux7WyRPP0gkTF9a031Z3z/Y7Cja4W1n9x5bv66SJZ7DhFuPyi+0/auhQNEl6fuBpPdq3UmdNucD3vKz1DoWKmfI32vgFCIQN7Go3rq9N6bx3WIKrPGwAXcIEP39Hdpvu2f4f+swBfzem7qXB9RUJRZO8PythXldeOd3x1vd1fPfCMRvl8janH2/519KhaHut3HmPFk56jw5Kzh1T97Nt/19Dh6JJ0u93rdYpk8/WMRNOCnxNKj+o/9x6U9mhaJL0TP/jWrvrIS2cfG7ZbYz20223jISiSXu+ft3+1o269rB/H3dw2VA+rf/Y8oN9oWh7re69V6dOOldzOuePq30A0iup5wOFoknS+v4n9Ng7q3VGz/urPCpAemDnfZ7lMRPTGZNb4zNYiXDit4Y26dc7f6Y/n/GXFRhRZVhr9eMt/zquUDTJLxitcs8urvcgEUkqnQsejNbsz1P+z4qEaAMAgObF+rzaqfcaPdbnsT7PD+vzAAAAAAAAAAAAGhPR/ACGjf1pNQCgJjZt2lRwPHPmTO23334VafvYY48t2V8tTJs2TXPmzNGcOXMUi+3L4ozFYiPlXv9NmzatoJ2777674Npf//rXWrJkieeiK0kyxujkk0/WsmXLtHHjRh1yyCEVeT3f+c539NRTT40c77///lqzZo3+/M//fMxYuru7tXTpUt1xxx2KRCLauXNn4H7y+bwuuuiigt+quWzZMt13332ei64k6cQTT9Rvf/tbffjDHx4pW7NmjW6//fbA/QIA0IzyNqfnB9bVpe8N/U+VPgmhbBgYe0+zNqs/Dj5Xh9GglTTL39f1A0+WPCdrM57l4wlG64x0OesIJfTnCihL5Qc9y9PWuzxM0JkkdUYnhDrf6+urJD3X/4dQ7fjx+qz4fba89Od36bXUy2PK30i/qt25vlBtre8f+/dpz7yhcq+5mjZ4jN/Py4Mbxh0yUk6/Lqn8oF4e3DCmvC+3U1uG3hh3+36vd0OAr6UASnt69+Ohzn9x8JkqjQTYZ+vQm84580kTz9DE2OQaj6g6ws6hXJ4J+fe42t4a2lSRwOqo8f7db5V8dkk63gNXuUul3st6SUa8nzvipsP5PgAAAACNhPV5rM9zYX0eAAAAAAAAAAAAADQ+gtEAoE527NhRcDxlypSKtZ1MJpVIJHz7ayavvvrqyJ+PP/54zZs3L/C10WhU8Xj5AQHD8vm8vvOd7xSU/fCHP9TcuXN9r/vIRz6iv/7rvw7V11133aVnntm3kfBjH/uYli5dWvK6WCym2267TTNmzBgpu/7660P1DQBAs0nn08rabF367s+/U5d+W1Xe5tSf2+VZl8oPeJYDQWTyQ0rbVL2HEYjr78Borq95sXFsSj8wcahniMDBicOUiIQL7Go3rmCEtCMYbTDnXd4ZDReYMK/z6FDn9+d2ydqxvzMnbNiYy8HJeeqIJMaUz+sKN05J6s+N/fd1t0dZ6XbG/n1K51N1mzeEtTvA14OC87OVeS/LuddevN7HYYMV+Hfd77NbqdcAtLsdmW2hzk/n01UaCbDPA70rnHVn9yyp4Uiq67CQcz2Xndntytt8RdqqBL/5QRhzO4/0LO+IJHRIcn5F+pjXdYyjPPh7E1HUOdZmMbfzCEU8lpTM7xobAAEAAAA0ItbnBcf6PNbnAQAAAAAAAAAAAECjIRgNAOqkeCFUT09PRdsvbu/tt9+uaPv1snXr1rr0+8ADD2jjxo0jxwsWLNCFF14Y6NqvfOUroRZ/ffvb3x75szFG1113XeBru7u7ddlll40cP/300wXjBgCg1biCZ2phMEdYVyWl8+7gqkw+U8ORoNU0U7BekK8rWev99yFmyt9wEo/E9Sf7XVzUXkx/Mu2SsttsF8no2EA5yf25S+X7vdtxBKy5LOo5T1Nj0wOfb5XXkB0bWJOqwL+jMRMb8/kZNid5uN7VfUqo9rxCs8oJ0hr0uNeVCOSqlbBfuyrxXkqVu0cDOe/PuuT+OhbGoM/rTTkCCAGEszMbLhhNGhvACVTSUD6t3/Xd71l3UGKu5iQPr/GIqufsngvUE9tv3O1kbbZiYWSV4Pfvd1ATohP1vql/6qz/k/0uGldotCQd1nmUjp3wbs+690z5oLqjkwK1s3jqh9UV7R7XWOptQnSi3j/1QwVlCZPU+VM/UqcRAQAAAOGwPq88rM/zx/o8AAAAAAAAAAAAAKiN8a0KBgA0LGNMvYdQMUceeaTWr18vSXr99dd1/fXX66qrrqrpGNasWVNwfMklwQMCpk+frsWLF+uXv/xlyXP7+/v1yCOPjBwvWLBAhx56aPCBSjr33HN1zTXXjBw/+OCDmjNnTqg2AABoFmnrDtM6ouu4cQUFDds29Ja2Zt4cU16pABLs4RfEUokAFbQvv8/W4V3HKV6BrxNh9WZ36I30xjHlQYKQcjbrWT7ezf/vnfqnmtFxoNbtflSJSFLvnnimDu1snXCJaul0BJq5PneuMAhXOy77xWfo7w/+mn7Xd79eTb2kvHKSpHQ+rZcGn/W8JpUfUCKSLBqPd3jVfvGZmtVxYMlxzOw40PezEjERXXrAF/Vw3/16YeDpgs/4SwPrPf8d9/r31fV3I2461B2dpJ3Z7eNqR5KO6HrXuP8elWPr0GZty2weUx42gNX1XnZGJmhu5xFjyndktmvz0GuB2wnL72tvxg6Nu/2Uz/2p1GsA2p3X11ZJMorIKj+m3BKMhir7/TsPOL/Gnz1lSUv9TGRaxyxddfB1eqTvt9qYetHz79xoOZvTcwN/8KzbmX1bE2OV3fhfLtdcLGZiOqLrXb7XGkV0UHKuTpl0tmb6zFOP7T5ZVx50rR7ftUZbhjaFGl+HSeiwzqN0Rs9idUQSnucckDhYVx38df3/7N17mCRlfff/z92H6e49zuzBhbAgkg1hQVAR5LiAwUeyRCNBExT9RdFEEg1KHjzEmCdBRH8STX6BeBkTkwtMHhONgogGImhgUQiQ1RAUEFg5CArr7uzMsrvTPdOH+/fH7MxO99zf6qqePs3M+3VdXBdd1VV197FqZqvec+/zt+vp0uPB12Z5elAvXnaCXrbslETb71e/vuYtOjR/hB7c+30tTS/XK1acpfX5w3s9LAAAAKAvLKSfRTk/j/PzAAAAAAAAAAAAAKDfEEYDgB5ZtWpV3e3du3e3df2jo6OR25tPLrzwQt1www3Tt9///vfrxhtv1EUXXaRzzz1XBx98cMfHsHXr1rrbJ510UqLlTzrppFgnXt1zzz0qlw+EP4444ojEf1GyVqu/EOfHP/5xouUBAJhPxiPiZO/8hT9SIb10ztu4feQb+vLP/37W9DgBI8QXFTEhjIa5iPqsvvMXPqgl6WVdHM2k7++5W3//sz+fNT0qJDTF+jy0IwR57LITdOyyE+a8nsUklyoEp1vxzJLxXZdPGEaTpKHsGp275oK6aaOVXfrjH7/dHNPKmOM8ZcWvzFp3q9Iuo02D52jT4Dl10//fJ/+3nh5/fNb9i9XZz5EVwVqbPVgbl75E3x65afYygc+TFaaTpN8/5MNmAKOTbtv1VX11x+dnTU96nGG9li/Mb9C71//prOn37r5dn3/u6lnTkwbZLKHXcUo79utR35fEa4G5q/mqRsu7gvOGMqu1q7KjyyPCYue915bRm4PzlqSW6YTlm7o8os5blV0b+3is5mt676O/papmR5RHyjt1WP4X2z28llj776HM2uDxSqsOLxypwzsYeX7BwMF67ZoLO7b+fuOc0/HLT9Pxy0/r9VAAAACAxDg/Lz7Oz3sy0bY4Pw8AsLgtnDgsAAAAAAAAAKC/EUYD+sxgZo0+esTf9noYC95gZk2vhzDrRKiRkZG2rbtUKqlUKtVNW716ddvW323nn3++zj///LqTr+666y7dddddkqQNGzbo1FNP1WmnnaZNmzZp48aNbR/D9u3b627/0i/9UqLljzwy3kU4Tz/9dN3tL37xi/riF7+YaFuNdu0KX8QIAMBCEBW+yKXybdlGwYjVxAkYIb5S1X4tCaNhLqIiP3kjatVp1nZLtaK893LOPom03MEwGpKzX8vw+84Kc1n7mnaNRwqHqqx4VTc+G1YMLrRvt/b3hfSShOsJvy4ppZV1A9ZQO8oef7LjDOu7znotrXhsVKg00Xgixl/xs6MtSUU9PxyjAXP3fHV3MLAkTcaaCKOh2x4vPaJnxp8Izjtl5a/0JG7aT1IupcHsKg2Xfz5r3mhluAcjCrNit736uQwAAACLF+fndU+vz9Hj/Lz4OD+P8/MAAIjP93oAAAAAAAAAAIBFgjAa0GfSLq3V2XW9Hga64JBDDqm7/dxzz2l4eLgtJ0g9+OCDTbc3nzjn9KUvfUl/9md/pr/8y7+cdVLZtm3btG3bNv3jP/6jpMkTsd7ylrfokksuadtf4mw8MW7FihWJll+5cmWs+w0Pt/8ipT179rR9nQAA9IvxWik4PesGlHLptmyjXcESRIsKsZT9RBdHgoXGCuTkXL5t3xNJFVLhIJFXTeO+pLyzwwBWKDDj+DVfL1hBMyvk1ekYRM7l5eTkAyciJwuOhd+j7VRIx9+/WvuIfKpg7qfDIbjw819ILYkMEnaS9dpbET2LdVxifd9Y08t+QhVfnnNsMWq/3o7gaVT8jGM0YO5GyjvNeauya6XAV5T3XASDzrlz5GZz3qbBzV0cSf8azKwOhtFG+imMZhzfWMdzAAAAQKdwft7iwfl58XF+3txwfh4AAAAAAAAAAAAAtF+q1wMAgMXq1FNPnTVt69atbVl343oKhYJe+tKXtmXdvZLJZPSxj31MTz75pD71qU9p06ZNyuVywftu27ZNl19+uY444gh96Utf6vJI52Ziov3RDy5KBAAsZPZFte0JzEjR0Zuar7ZtO4tdVOCk4itdHAkWGiuQkzeiTN0Q9R1lhbOmVI3Pw1wjRmiNHc80wmhWvKpN70fnXERoK1lwrNPMoFlgnGbALbU0IrAWCsH13/eBfZxhh8VCrP1oPh1+La0wmmQH5BKNJxCmm9KOMFpU/Kwd4wcWu5HKjuD0rBvQsnSyC1KBuXq+Mqrv77k7OO/opcfrBQMHd3lE/WkosyY4PSp02G2dPhYGAAAAgEacn5cM5+e1jvPzAAAAAAAAAAAA2od/egEwhTAaAPTIYYcdpsMOO6xu2q233tqWdd922211t0866SQNDAy0Zd1TqtXeREDWrVunyy67THfeead2796tu+++W5/61Kf0ute9TsuWLau77+7du/WmN71JN95445y3OzQ0VHf7+eefT7T87t27Y91vzZr6i5c+/vGPy3s/p/+uu+66RGMFAGA+Ga+VgtNzqXzbthEVS7G2j+Ss6I3UnoAKFi8rFmTFiLqhkI4IEkXEfmq+qppqwXmE0XrDCoiN14qq+dmvlRmvauP70Y611W/bex8ZHOs0OwgWCrhZz1shYWDN+j7ofAjOYo2/4isq1+Lv/+zHFn4towIkVjAviah1lGtzv+gsKn4WFU0DEI8VUpoML7ngPC/OQEBn3L37NlUVjgOfObi5y6PpX4OZ1cHpo5X+D6N1I8oLAAAAYHHi/LzWcH4e5+cBAAAAAAAAAAAAQD8gjAYAPfSrv/qrdbf/6Z/+SeXy3KIPO3bs0E033RS5nSmZTKbudqUSvrgoZGRkJPng2iyXy+mUU07RZZddphtvvFHDw8P64he/qCOPPHL6Pt57vec971GtFo4HxLVu3bq624899lii5R999NGWthN3OQAAFqtxI+iSa+NFtVHxpKiAEZIpViMCKr79f7Ubi4d98X0Pw2gR244K+lS8/TNbxmXMeegc633k5TXhx+umVXzZ/D5rZ6jPDqPV7zPHfcmM2HQjTpEoaGZEsPKpJeZYS7WifMOfCepGmC6pqEBZKUGgLCoeF7IkIn7XjuObsYixR32XxRX1XTnhx1VtwzaAxWzECCkNZVcbWTSgM6q+qu+MfjM4b3X2BTpm6fFdHlH/GsquCU63Ps+9UDR+h9PLYzEAAAAACx/n580N5+cBAAAAAAAAAAAAAHqFMBoA9NB73/teOXfgUrIdO3bo2muvndM6r7766rqTt5YuXarf/d3fDd53xYoVdbdHR0djb+fBBx9MNK6Zj7NTBgYGdMEFF+jee+/VIYccMj396aef1ve+9705rfuEE06ou33PPfckWv7ee++Ndb9TTjml7rm67bbbZl3IDQAADhivlYLT2xl0ibpANyrKgWQagz0zVWrETdC6ohFUameIKqkBl1PK+LXBplxvAAAgAElEQVRcVJCo4u0LdTIuO+dxIbmo/U1jzKtUtb/n2hmDsENhjeOx32uFtB3NahfrMxgaV1T0q2AEvrxqGvf1xwn9GEqM2rYVDwne1wiMWs9PLlWQM/JGUbHSuKLeX1HfZbHX3+QYLOq4AkBzu8o7gtOHMmsl0mjooh/s/S8z7LVp5a8q5dJdHlH/GsqEw2ijleG++TcGK/ray5/NAAAAACx8nJ/XXpyfBwAAAAAAAAAAAADoFsJoANBDRx99tDZv3lw37YMf/KC2b9/e0voeeughffKTn6ybdtFFF2nVqlXB+7/gBS+YtXxcN998c6Kx5XK56f8fHx9PtGxSg4ODOv/88+umPfHEE3Na5+mnn153+1/+5V9iL7tjxw7deuutse67du1avexlL5u+/dOf/lS33HJL7G0BALDYWNGLnMu3bRtR0ZskwRJEKxoXSEvtCahg8erHEJJzztx+VOyn4u1IIGG03sino6JWDSGyiNe2ELGepKyoWWMkMCrC187AqLkN4zGHxmXt7wvppdFxuoblrDhdL2McUdtOEmC1niPr+Um5lHLGvKh9clxjHd6vNzsGs6KYAOIZqQwHpw9lw+ElSfLi4lG0352j4d+NZ1xWp658VZdH098GM6uD0yu+or3V57s8mjBr/93Ln80AAAAALHycn9cZnJ8HAMBixh/RAQAAAAAAAAB0B2E0AOixv/iLv9CSJQcu+hgdHdX555+vvXv3JlrPjh079IY3vEETExPT0w4++GD96Z/+qbnM8ccfX3f761//eqxtffOb39R9992XaHyDg4PT/79z5866v5rZCZlMpu72zBO/WnHGGWfo8MMPn769detWfeMb34i17BVXXJHo8f7BH/xB3e33ve99id8PAAAsFuO1UnC6FfpoRdYNKK1McF6SYAmiRQV6yn7CnAc0YweVenvxvRUrior5RMWEMi78PYXOShLlig6Rte/9aI2pcZ8VGWpLheNq7VSIOU5rmjT5WCPDYrNicOFYVy9jHNEB1njHGd578zmyQnmStMR4nceqcw+jRY29HWG0UpN4G8dowNyMlHcGp6/KrJUzL3YhjIb22j7xU/1o7H+C805YfrqWZVZ0eUT9LSpcOFIJf6a7rfHYbEo3orwAAAAAFjfOz+sMzs8DAGCx4t+EAAAAAAAAAADdQRgNAHrsqKOO0l//9V/XTbv77ru1efNmPfPMM7HW8dhjj+nss8/Www8/PD0tlUrpn/7pn7R27VpzuVNOOaXupK+vfvWr2rp1a9NtvfWtb401rpk2btw4/f+VSkW33357rOXGxsb013/919qzZ0/sbe3du1c33HCDuf1WpFKpWSdEXXzxxU3/0uUNN9ygz3zmM4m29du//ds66qijpm8//PDD+o3f+A2NjIwkWs+OHTtmPQ8AACw0VvAol8q3bRvOOeXTyQNGSCYqYNKOgAoWr34MIUl2rMgarxT9WUgTRuuJnMubgZjxHoXRrFBY3FBbSill3UDbxmOxHnNo326NNZ9aonxE5LBxOeu4wdrPd0PKpZVz4eMWKx7SaMKPq6ZacF5UOM5+DeZ+fFOMiKuV57hfL9fKqvhK9PYJowEtK9fKer4a/j1kVHgJaLctI7eY884Y3NzFkcwPy9Mrzaj7aGW4y6MJM4/FevyzGQAAAICFj/PzonF+HufnAQAAAAAAAAAAAEA/IowGAH3g7W9/u9797nfXTfvud7+ro48+Wp/4xCf09NNPB5fbtm2b/uRP/kTHHnusfvCDH9TNu+qqq3T22WdHbnf58uW64IILpm9Xq1X92q/9mm699dZZ952YmNDnPvc5nXzyydq+fbuGhobiPjxJ0itf+cq62xdddJE+85nP6Hvf+54ef/xxPfnkk9P/7dy5s26773nPe7R+/Xq9/e1v19e//vXIk7Duu+8+nX322Xrqqaemp5188sk68sgjE4035D3veY9e8pKXTN/+2c9+ptNOO01f+cpXVKvVX4C8b98+XXHFFXrjG9+oWq2W6PlKp9P6yle+ohUrVkxP+9a3vqXjjjtOf/M3fxP5+Hft2qUvfelLetOb3qRDDz1U11xzTYJHCADA/DPurYtq2xs46WQ4BJOiInPN4idAFOvi+6hYUDdY31PWeKXoMFrWZec8JiTnnDNfy9lRrvD33IDLKe3SbRvTXMdTSC2Vc+HYWztZn8Gyn6h7r9d8bVZkbuY6ouJ0jY/Rfsw9/j4w4m5xjzNaje4tMQONbQijdTB4Gud54RgNaN3uiIDSUMYOo/lODAaLVqlW1D3P/0dw3mH5DTq8MPff9y80KZfSYHZVcN5IeWdwereZx2IRoVsAAAAAaBfOz+P8vJk4Pw8AAAAAAAAAAAAA+l/4z0YDALru05/+tIaGhvSxj31M3k9eRrZnzx596EMf0h//8R/r6KOP1qGHHqqhoSENDw/rqaee0iOPPDJrPdlsVldffbV+//d/P9Z2P/rRj+qrX/2qRkdHJUk///nPdc4552jDhg067rjjlMvltH37dt17773at2+fJOmggw7SVVddlegvU/7mb/6mPvzhD0//lc2f/exns042m/LWt75V1113Xd20559/Xtdee62uvfZaOee0YcMGHXHEERocHFQmk9Hw8LB++MMfzvornkuWLNHf/d3fxR5nlGw2qy984Qs688wzNTw8eYHgs88+q9/8zd/UunXr9PKXv1wrV67U9u3b9Z//+Z8qFicv3F65cqWuuuoqvfOd74y9rWOOOUbXX3+93vCGN2j37t2SpGeeeUbvete7dMkll+jYY4/VYYcdphUrVmhsbEyjo6N69NFHY/8VUwAAFgorlJJL5du6HSuY0o5wCCZFBUzmGlDB4las7gtOj4oFdUMhZQWJwuOVoiOBGcJoPZNPLQnuDxq/16wAZLujXHFjntZ48un2xkUtUZ/BUrWoZZnJ9/SEH5c3cjv51JLpOF2s18DY1/T6+yCfWqLd2jVretzjjFJEXDTq/WU97jHjezMu77353SvNfb8e53nhGA1o3a7KDnPeUHaNHc/0pNHQPv/1/J3mz4hnDm7u8mjmj8HMag2Xfz5r+khE8LBbqr6iCT8enNfrYzEAAAAAiwfn5x3A+XmcnwcAAAAAAAAAANCvOCsZwBTCaADQRz760Y/qzDPP1Lve9S499thj09O993rwwQf14IMPRi5//PHH62//9m91wgknxN7mIYccouuvv17nnXde3V863LZtm7Zt2zbr/i960Yv0b//2b9q+fXvsbUhSoVDQV7/6VZ133nn66U9/mmjZRt57PfbYY3XPUcghhxyiG264Qccee+yctjfTMccco29961s699xz9eyzz05P3759u26++eZZ9x8cHNRNN92karWaeFuvetWrtHXrVr3pTW/S1q1bp6dXq1Xdf//9uv/++5uuI+lfDgUAYL4Zr5WC03Op9kZd4kZm0Lqo57LsJ7o4Eiw0JSOgWEj3OoxmfK9Uw+OVomNChNF6J2/scxrfe9b3XL7N70V7nxVvPO0OtVmiPoPF2j4t04rJ/48IbE2tw4rTNU6zAmK9jnEUzPdQvOOMqAhY1PvLCjSWIgKNcZT9hKqyQ45zDaPFeV6iYnEAoo2UdwanF1JLlU8V5GSE0YA28d5ry8js37VL0tLUcr18+eldHtH8MZRZE5w+Wgl/rrvJ+rlM6t7xJwAAAABInJ8XF+fncX4eAAAAAAAAAAAAAPRaqtcDAADUe9WrXqWHHnpIX/jCF3T22Wcrk4luWOZyOb32ta/V1772NW3dujXRSVdTfuVXfkX33XefXve618m58IVta9eu1fvf/37df//92rhxY+JtSNIJJ5yghx56SJ/97Gd13nnnacOGDVqxYoXS6bS5zMqVK7VlyxZ94AMf0Mtf/vKmz4ck/fIv/7I+/vGP69FHH9UrXvGKlsYa5aUvfakefvhhXXLJJVq+fHnwPsuWLdPb3vY2PfDAA9q0aVPL29qwYYPuu+8+ff3rX9erXvUq5XK5psts3LhRl1xyib7zne/ohhtuaHnbAADMB9aFtblUvq3bsaM3RDfaJSrqUvF2XAVopmgEfnodQrK2b41Xio4JpR1//6BX4sYzre+5docg4u6zrPF067MRtZ2Z+/eoiMbUY7VDgw1hNCuU2LffB/GOM6zjESennLOPiZakw2G0sTmG0aK+xySpXJtbGC3O8xL3uQMw24gRUFqVXRu5nOdvs6FNflx8WD+beCo475SVZ2sg1fx35IvVYGZ1cLoVPOymqN+fWMevAAAAANApnJ9Xj/PzOD8PAAAAAAAAAAAAAPoRV0wCQB/KZDK68MILdeGFF2rfvn363ve+p23btmnHjh2amJhQLpfTunXrdOSRR+r444+PdTJOM0cddZRuvPFG7dy5U1u2bNEzzzyjsbExrVu3Ti960Yu0adOmupOezjrrLHmf/GK3FStW6OKLL9bFF18c6/7OOZ1xxhk644wzJEnFYlEPPvigfvzjH+u5557Tvn375JzTihUrdNhhh+m4447TC1/4wtjjueOOOxI/BmnyhLBrrrlGn/zkJ3XHHXfoiSee0MjIiNauXav169dr06ZNWrr0wAXGrT5f0uRz8JrXvEavec1rVCqVdO+99+qpp57S8PCw9u3bp6VLl2poaEgbNmzQxo0btXp1+OInAAAWovFaKTi93RfVFlLhcEixSnSjXaIuko6KQQFRvPd9G0IqpK2Ylh2BsiKBKaWVcvz9g16x9jmN+wjrtW13iKxgxK5mj6d/w2gzo1ZR+4ep/bMdpzvwnFd9VePeOG4wPo/dYofd7O+DmezIXcG8wG5yvhFkm+PxzVg1Oow21/16Y/AueB/CaEDLdhkBpaHMmv3/F/5eIYyGdrlz9JbgdCenMwY3d3k088tQdk1w+mhluMsjma0YcVzT62g1AAAAgMWJ8/MO4Pw8zs8DACAZ+9+gAQAAAAAAAABoJ8JoANDnli5dWnfiUaetWbNGr3/967uyrVYUCgWdcMIJLf3lzU7I5XI655xzura9fD6vM888s2vbAwCg31mRmVybw2j5dHh9RDfao1ybMINPU/OBVoz7khnp6PXF92ZMq4VIYNZl2zImtMZ6LzXGO4u1cCyq3TFPa32l2pi899OhLCt+1a1oYNqlNeBymvDjs+bN3L9an4mUUsq6AUl22GzmsuMR0cFCm1+DpKzxxz3OsO5nhV2nLDEienM9vmm2/FzDaFHfk0nuAyBspBIdRuNSF3TS7sqI/nvPfwbnHbP05VozsK7LI5pfBjPhi7JHKsN1x4G9EHV80OufzQAAAACA8/PqcX4e5+cBABCNP5YDAAAAAAAAAOiOVK8HAAAAAABAK7z3s6IzU9odmbHCIlaYDck0i5fMNaCCxatkhJ+k7sWf7O0nDxJZAcEMYbSeihvPLFXD+4xm8aqkrPd2TTWV/YHQpPVesyJdnWBFMGZG28xxppZMxz2sxxwnsDa5rva+BklZ448b97Iid82Oh6ztjhkRv7iaLT/X/XqccBvxWqB1I+UdwelD2TVdHgkWo7tGb1VV4WPeMwc3d3k0889UwLBRxZe1t/p8l0dTz9o3Z1xG2RQ/zwAAAAAAAAAAAAAAAAAAAACoRxgNAAAAADAvVXxFNVWD83Iu39ZtWWGRuMESRGsWL7FiUEAzkSGkLsafgtuPEYRqZMWE0i7TljGhNXGjVkUjFmWF1Vplvbcax2R9ProZDSwYn8O6oJnxmZi5bJz9dNS+ptDmoGpS1msWN+5l3a+Qjg6+mYHGiO+hOIrVZmG0ue3X4xx/RX2XAog2UtkZnH4guOSC8718h0aExaLqq/ru7luD89Zk12nj0pd1eUTzz1B2tTlvtDLcxZHMZu2/ex2oBQAAAAAAAAAAAAAAAAAAANCfCKMBAAAAAOal8VrRnJdrc+DEisTEDZYgWrPASdlPdGkkWGiiQ0i9DaNZQSgrniVJVSMmlCGM1lPWPqfUsJ9qvD3FilO1yoqETY6heSgsKqzWbmYgsG6c4edt5rJ2WOzAslGhrG4+5pC4cT2LHRqJPh6ywmnF2j5533rgqNP79TjHX8RrgdYUq2Pm52coOxlGc0YYDZirB/bea8a7Ng1uVsrxz9rNLE8PKqV0cJ4VPewW+1i4t4FaAAAAAAAAAAAAAAAAAADQX+ZwOQOABYYzyAEAAAAA89K4t8No+VS+rdsygysRkRXEV6zaIShJqvhyl0aChcYKe6SU0oDLdXk09azvlbKfMANoZeOzkHHZto0LydlRrrGG2+HvumbxqnaNZ3IMM0Jhxuejm9HAOOFRKxY483kzw2Iz9i9WTCvjMsqmBpqOtZPivocs1v2aRfes562mmsZ9Kda2Qzq9X4+K3E0hXgu0JiqctCqztsnSnIGAudkyektwetYN6NSVZ3d5NPNTyqU0mFkVnDdS7nUYrfdRXgAAAAAAAAAAAAAAAAAAAADzB2E0AAAAAMC8NDPu0ijX5shMIW0EV4hutEXUaylJFV+R5089oAVRF98757o8mnpR8Snru8WKCRFG662Csc9pfP8Vje+6ZvGqpHIRcdCZQU8r7tnNOIUVhZv5GbD2ETOft7yxn565rLWefohxWM9DqRq9f5xihcKaRfei3nvN4maR4zFidlPmGkaLEz3jGA1ojRVGc3IazE7GlqxDKI7WMRfPjj+tR8d+EJx3wvJNWppe3uURzV9D2TXB6SOV4S6PpJ79s1l7f38DAAAAAAAAAAAAAAAAAAAAYGEgjAYAAAAAmJfGayVzXlQUphXWhboTflxVX23rthajZgEVr5pq4nlGcq3GgrohKoxmxZAqNSuMlmnLmNAaK6xVathPdSsGkXKpWMExKxxlxUA7wXzuqjODZs2fN+vzVIrxePvi+yAdDpQVa/tihUGt/Wiz6FvUaz2XsNhY0zBapeV1S82DqpP3IYwGtGKkvCM4fUV6cEaItbdxWSxMd47eYs47c2hzF0cy/w1lwmG0USN82C1F42ecfojUAgAAAAAAAACS4N+KAAAAAAAAAADdQRgNAAAAADAvWVEMp5SybqCt2yqkwsGSyXEQ3pirOIGTsg8HoYAo1ufTihB1U1QAwIocVRWOCR0IlaAXrLDWzPef994M9XXi/WjH2ibHUPVVTfjxRMt2ghXmmvkZsAOHS4L/P9PM18D8PojYx3eL9R6qqaayn2i6vLUfbfbeinrscwmjlYzXbEpljvv0ZkFVafJ9EycqB6DeiBFOGsqGQ0sz8ZlDq0q1ou59/vbgvMPzR+qw/IYuj2h+G8ysDk4fKQ93eST17NgtYTQAAAAAAAAAAAAAAAAAAAAAsxFGAwAAAADMS+O1UnB6PpWXc+39y5RWsEQijNYOxWrzwMlcIypYnKywT9RnulusIJRkR46sz0EmRRitl6yYQ8WXVa5NvmZlP6Gaqsby7X8/FowxTX0movZd1rKdYAfNijP+v/nn2BpzqVZUzddir6dXogNlMSJgLT62rBtQWpnwOqt7m27XMtZkzOVa89hblDhB1ZqqsaJyAOqNlI0wWuZAGM3J+lmLMBpac9/uO8zv9jMHN3d5NPOfFTIcNcKH3WIdr0T9XAQAAAAAAAAA6Ef8mxAAAAAAAAAAoDsIowEAAAAA5qVx48LpXEcCMxHBkmrzOAeiWRdIz1SpEUZDclYIKeoz3S1pl1HWDQTnWSGksvE5yDjCaL0UFZ+a2ldFfc914v3YLDjWL2E0O2i2b8b/h/ezhfSB5816Dby8Jvy4JKlYteJhvY9xRAdYmx9ntPpd55yrex5nirNvtjQLnlZ8peV1x1n/9P2I1wKJ7TLCSUPZtV0eCRYL7722jN4SnLcsvULHLz+tyyOa/wYzq4PTRyrD8r53F6vZkdreH4sBAAAAAAAAAAAAAAAAAAAA6D+E0QAAAAAA89J4rRSc3okwWtQ6S0bACPFFBXqmVDxhNCRnh5Da/z3RCisKZY3bigllXKZtY0JyUTGHqe+3qO+5TrwfrXVOjcN6j00u2704hbWt4owYmB3RKMz4/4jXoBr9GvRDjCNqDFGv1ZTSHL7r7O+h1o9vmgXJqqqo5mstrz9OLG7yfoTRgKRGykYYLbOm6bK9yy1hPnus+KCenfhJcN6pK/+XsqlwSBi2ISOMVvFl7a0+3+XRHGDtv/vlZzMAAAAAAAAAAAAAAAAAAAAA/YUwGgAAAABgXrIuqs2l8m3fVjaVVcZlg/OKMeMcsDULqEhSmTAaWmBFcQqppV0eSZgVQ7LGXSWM1pfy6ah45uQ+IipuVUi3//1ovreq+8cTFWqLeDztZkW5Zn4GrLHOXLaQjgiLTcXgjP111LLdkkvl5eSC85rFvWq+qnEfjsXGeW+ZYbQ5RMWKMaKx1vdZM9772MGzOFE5AAd47zVSCYfRVmUPhNGs7yvSaGjFnaM3B6c7pbRp8Jwuj2ZhGMraIcPRynAXR1LP/tms98diAAAAAAAAAAAAAAAAAACgf3hOSwawH2E0AAAAAMC8NF4LR0Dyqc4EXeLEW9CaUoxwSYUwGlpghX26GX6KkjeCTNa4rc+BFW5Ed0Ttd6b2Eda+wslpwOXaPybjPT4VrLLGk3UDXX0/mZ+B6pj8/n/JssY6M/5mheBmLl8yYl1Ry3ZLyqWUM95HzQJlVihWkgoxjomseFqcuJmlWG2+bNlPtLTuCT+ummqx7ssxGpDM3upu81hjKBMnjAYkM1rZpfv33Bucd+yyE7Q6+4Iuj2hhWJ5eqZTSwXlW/LAbrJ/7O/U7HAAAAAAAAAAAAAAAAAAAAADzG2E0AAAAAMC8ZIVAci7fke1Z4ZRmwRI0F+c5JIyGVlhRHCt02G12cDH8/WZ9DtIu07YxIbmMyyrrBoLzivtfS+t7LpcqKOXa/yvaZu8tazzd/mxY+9aaqir7CdV8zfw8zBzrgMspZfyqe+qxFo319EuMo9UAa9Q+NJ8KR8/ibLcYI1oaUvVVjftwvHamiq+0tP4kx10cowHJRAWThrJrzHlTvPjTbEjmu6PfVE3V4LwzBjd3eTQLR8qlNZhZFZw3Uu5hGM06pjMirQAAAAAAAAAAAAAAAAAAAAAWN8JoAAAAAIB5adx3N3BirbfUYjgEBzSLvkhSmTAaWmBFcawYU7fZwcV9welWGC3jsm0bE1pj7iP2vwe7Hemz3lvT4zH2Xd3+bEQ9/mJtTONGQEOS8ukDyzrnIh7z5Dqsx9wvocRWA6xRAbNCjGMiK0ZifQ81E3e5VoOnSY674hxfADhglxFMSiuj5enBLo8GC13VV3TX6K3BeWuzB+uoJS/p8ogWFitmOFoZ7vJIJkWFU/slUgsAAAAAAAAAiMv1egAAAAAAAAAAgEWCMBoAAAAAYF6yYim5VL4j27PDIUQ35irOc9hqQAWLW7+HkKxxlKrh77eKrwSnZwmj9ZwdRpt8Lbsd6TPfW/vHYY4n3d3PRlQIo1Qbi9w/NC5rratY3bd/fVZQtT++D1oNsEbFv/Kp8LHLTAXjPq2G0eKGy1rdryc57uIYDUhmpBIOow1mVyvlDvxzonNc7IK5u3/PPdpdHQnOO2Nwc917DskNZlYHp4/0KIwWGbvtk2MxAAAAAAAAAEBcvtcDAAAAAAAAAAAsEpleDwAAAAAAgFaM10rB6bmIyMpc2NEbohtzFec5JIyGVnQ7RpVUwYhQWUEi63OQIYzWc9Z7aur7rduRPms8xf1RCut7t9ChfajFinJJkyGzqqvGXtZ+DabidOHPlfU57LZWA6zW/IzLKJtq/t2wxAqjxQycNRqLGVRrdb+e5LgrbqQNwKSRcjiMtiqzJtby3nMRDOLbMnpLcHrWDeiUlb/S5dEsPEPG59b6nHdadOy2P47FAAAAAAAAAAAAAAAAAAAAAPQXwmgAAAAAgHlpKnTSKJfKd2R7VrzFGgfiqflqrOeQMBqSqvqqJvx4cF6/hJCaxbQaWZ+DtONXfL1mxzOnolxGpK9D78VmMU87GmiHyjohl8rLyckH/qJ0sbpP1VTFXLbxMVqf61JtTFVfUdlPGOvpl++D1gKs1vy4r6X1HrRCcs00C7lNKbe4X4+7/qT3BSDtquwITh/KNgaWXPB+oe9yIORn409pW/HB4LxXrDhTS9LLujyihWcwuzo4fbQy3OWRTIo6nul2mBcAAAAAAAAAAAAAAAAAAADA/JDq9QAAAAAAAGjFeK0UnG6FRebKWm+r4RBMsl7HRuUaYTQkE3Xxfb+EkAqJw2jhSFTGZds2JrSmWeTOek2t98Ccx2NFwqpFee8jxtPdMEXKpZSLiMpZYauU0sq6gbpp1mtQrI1FBjg79RokZX8fRMdDreco7mtpbbfVqFixGu+4qNLifr1ZKK7V+wKQRso7g9OHMo1hNGButozeYs47Y3BzF0eycA1l7DCa992PGJaq9vFMv/xsBgAAAAAAAAAAAAAAAAAAAKC/ZHo9AHSPc265pNMlrZe0RtIeST+T9EPv/aNt3E5W0mmSDpN0sKS9+7fz3977J9u1HQAAAACLmxXUsgIrc2VHb6KDJYgWN7xS8YTRkExUEKdfQkhRIacQ63NAGK33zH3E/giE9Zp2LuYZHk9VFZX9hIpVazxLOzKeKPlUIfh5Ldb2qWrEAAvpJXLO1U+LiNNZj3dq+/0g6ffBlJL5Wsb7nisYr3ncwNms5WIGY1vdr1uPNzwWwmhAEiMVI4yWXVt32wXvBcRTrI7pvt13BOcdkT9Kh+aP6O6AFigraFj2E9pX3aNlmRVdHY91fJBxGWVTA8F5AAAAAAAAAAAAAAAAAABgcer+n4AF0K8Ioy0CzrnTJP0fSWfLeM2dc/8j6bOS/ta3+KfCnXNrJX1E0gWSVhn3uVvSX3rvr29lGwAAAAAwZdwIkuVT+Y5szwyuJAh0YLZOB1SweEWHkPojjGZ/r4S/3ypGJCrj+BVfr+XT4bjWVPDLimhaUaq5KkTEvkq1ohkOLBiPo5MKqUEmqwYAACAASURBVCUa1fCs6aVaUTVXCy4T+gzbAdOxJqHE7sfgQlo9zrDiX4V0vMdl3W/cl1T1VaVdOtZ6pscTM6jW6n49SeyMeC0QX9VXtbsyEpw3O7AUTqN5TkFADPc+f7vGfThyfubQ5i6PZuEazIbDaNJkBLHbYTRrn9wvP5cBAAAAAAAAAAAAAAAAAAAA6D+pXg8AneOcyzrnPivpu5LOUXQI7yWS/kbSHc65Q1vY1mZJP5T0+zKiaPudKukrzrn/65zrj6sOAQAAAMxL47XwxdS5iBjMXOTT4Qt2kwQ6MJsVgGpEGA1JRYWQ+uUCfPt7ZZ9C3Xrrc5Bx2baOC8nljX3P1D7CiltZy819PPZ7vFQbM/dd+R5EwqyxFqv7zHhmKPxmvgbV6DBap44bkmr1OMN6bHHfW0siXvOo580yFjN4Wm5xv55kTHEjbQCk3ZVd8grHKFdFBJaAJLz3unP0luC85emVeumyU7s8ooVrRXqlUgrHTUcqO7s8mrkfrwAAAAAAAAAA+kn4j+gAAAAAAAAAANBuUaEszGPOuYykr2syiDZTWdK9kp6RtFSTQbTDZsw/Q9JtzrnTvPfDMbd1lqQbJQ3MmOwlfV/S45IGJb1M0syrZ94saYVz7jzvffhqGwAAAAAw1HxN4767YbRQhEVqLRqCA6zoTaOyn+jwSLDQWDGhjMsqm+qPkFjBCELVVFPZT2jA5eqmV30leP+M41d8vWbFvUq1yfij9X4spDsTIrPeW5NjskNhUct1irXNUq2omhHpCQXcCkZYrFQrzuvvg2bHGeZ7K2bkLuo1L1b3aWl6eaz1TIl7XNRq8DRJkHbq8weguV3lHea8oUx9GM2ZF7vMjroCMz069gM9N/FMcN6pK/9X3+yTF4KUS2sws0q7KrM/26PlWP/821ZFY5/cL8FqAAAAAAAAAEAS/JsQAAAAAAAAAKA7Ur0eADrmKs2Ool0jaZ33fpP3/k3e+1/33r9w//0en3G/X5Z0g3Ou6Z9ycc6tl3SD6qNod0k6xnt/gvf+t7z3r5a0XtJ7NRlmm/JaSVcmfWAAAAAAMOHHzXk5l+/INkMRFonoxlzFff4qRhAKsPRT+MkSFS4KRQOtkFDGEZHotbwRzxzf/x1nvR+t5eYql7L3hcWIUFgv4hR5M2hmB9xCz5sdp+uvEJwlavxR5vreiorzJYmQTRmrxguethpGSxKkjRtfBSCNVHYGp+dcftbxihVG4xIYNLNl9ObgdKeUNg02/pMm5mowszo43fq8d5J9vNI/x2IAAAAAAAAAAAAAAAAAAAAA+gthtAXIObdR0qUNky/z3r/Xez/SeH/v/a2STlN9HO0MSRfE2NxHJA3NuH23pFd57x9u2Ma49/4aSb/VsPz/ds69MMZ2AAAAAGBaVEwrKgYzFwUjMFL2Ey3HPRA/usJzjKSK1f6/+D4qXBQaf5kwWt+yAltT33HWd11UHG8uUi5thkKL1X0qVcP70YIRKeukqOfO+hyHlolcj3Hc0E/fB9b4S7Wiar5mLmc/R/HeW1HPwVgLYbFO79etxxtCvBaIb6QcDiWtyq5VjL+hAzQ1Ut6pB/beF5x33LITtSq7tssjWviGsmuC00cqw10eSfcjwQAAAAAAAAAAAAAAAAAAAADmP8JoC9MHVf/afst7/5dRC3jvn5P09obJH3fOpa1lnHO/JOmtMyZNSHqb974UsZ0bJX1+xqScpD+LGhsAAAAANBqPCF106sLafERgxArMoLliNV50hTAakrKCOFZ8qBcK6YjvlUA8wPocZFymbWNCa6y41FTUytpvdTIGkTciZ3uru1VVxRhP9z8f1nNQqo1FRDRmj9N+DcZUMkOJ/RPjsMbi5TXhx83l5hoaSTeJ6CVVjBlTs0KPzSSJnY03icoBOGCkEg6jDWXCYaUQL9+u4WAB+u7ub6qm8HfymYPndnk0i8NgZnVw+mgPwmhzDbkCAAAAAAAAAAAAAAAAAAAAWHwIoy0wzjkn6dcaJn8qzrLe+y2S/mvGpBdJOitikQslzQyn3eC9fyzGpq5quP1bzhlX3wEAAABAQFQYLZfqzI8XhbQdGIkbAcFscQMn5RphNCRjfS6tWFQvDLicnFxwXjEQO6r6cMwq47JtHReSsyJU47WixmtFMxbTyRCZtW4rfiP1JhxoBTGK1bHg50CSCoHPsR1YK2rM+j6YJ6HEqECZFUaLWl/c+7ZyfNPp4GmSMXl5jdfMv+EBYAYzjJadHUab/GeoAE8YDWEVX9Zdo7cF560bOES/vOS4Lo9ocRgywmgjZftYsFPMkGvE71kAAAAAAAAAAAAAAAAAAMDixGnJAKYQRlt4jpY080qVCUl3JFj+3xtuvyHivr/RcPvaOBvw3j8s6d4Zk5ZKenWcZQEAAABAkkoRkYucEUaZq6h4Sty4F2aLGzhpNaCCxcv6XPYi/GRJuVREzKk+HlDzVdVUC96XMFrvWa+jl9doZZe5XCjw1S4FY0xRMQzrcXRS1GfA+hyHlokKge02XoNOPv9JRT33UccZVjwuyWtpfS9a647S6f160mMu4rVAPLvKO4LThzKzw2hAUvfvuUfPV0eD884Y3GzH9jAnobChJI1WhuW7fMbQfPjZDAAAAAAAAAAAAAAAAAAAAEB/yfR6AGi79Q23H/PejydY/gcNt38tdCfn3EGSXjJjUkXSXQm2c4ekk2bc3izppgTLA4vG2NiYvv/97+uxxx7Tzp07VSqVVCgUtG7dOh155JF62ctepoGBgbZs6yc/+Yn+7u/+Tlu2bNGjjz6qkZERlcsHLlS99tpr9ba3vS247H333adrr71Wd999t55++mnt3r1btdqBi/afeOIJHX744ZKks846S1u2bJme1+2LcAAAwPw3blxUm3UDSrt0R7YZFUZrJRyCSXGfO8JoSMqK4UR9lnuhkFoa/Bw0Tqv4irkOwmi9F/W+Gq0Mt7TcXFnrHokYTyFlx8U6xQqalWpFVY0YYOixRYXARirhGFw/fR9EB1jtfaU1L0loxHrdS9UWwmgxl2l1v16sJgudEa8F4rG+J8NhpXDEyovf8SJsy+jNwek5l9fJK17Z5dEsHoNG2LDsJ7SvukfLMiu6NhbreKUXUV4AAAAACOH8PAAAgCT4gycAAAAAAAAAgO4gjLbwrGq4Hf4T7LbG+x/qnFvpvd/dMP3FDbcf8N4nuSrt7obbxyRYFljwqtWq/vVf/1XXXnutbr/9dlUq9gXw+Xxe55xzjn7nd35Hr3nNa1re5uc+9zldcsklGh9P0lKUKpWK3vWud+lzn/tcy9sGAABIarxWCk7PdfCi2rRLa8DlNBFoT0cFSxAt7nNX9hMdHgkWGiuGkyQW1A1WDKAxSBQVEco4fsXXa/l0a2G0Tr4frXWPlMPxGyenXCrfsfFYrM9AsbZPVVWD80KPLSosZj3mfvo+GHA5pZRSLRCDsyKi5dqEGU1MEn0rGO/fMSMwafHem1HKRuVa8jBazVc17sPHgBbitUBzE7Vx7avuCc5blVk7axqXuiCJZ0pP6sfFh4PzTlxxphlIxdyFw4aTRio7uxpGKxo/m/VTpBYAAADA4sP5eQAAAK0iuAoAAAAAAAAA6I5UrweAtmu8UjyXcPnQ/Y+OMW1bwu38OMY2gEXpP/7jP3T00Ufrwgsv1G233RZ50pUklUolfe1rX9NrX/tanXjiifr+97+feJs333yzLr744sQnXUnShz/8YU66AgAAXWcFjzoddLEu2i1WiW60Ku5zZ4VfAEuxGo7z9NvF91YMojHmE/UZyLhsW8eE5Ky4l2RHuVJKK+sGOjUk870+UgmPJ5cqKOW6/+viQir8GSjVirMCgVNCjy0qcmbF6frp+8A5Z47HiohGxUWt2FnwvsZrEDdyNmXcl4Jht5BW9utWGDcK8VqgOWu/IEWHlYA47hy92Zx3xuDmLo5k8VmRXqmUcSpAVLi3E6z9cT9FagEAAAAsLpyfBwAAAAAAAAAAAABA/8v0egBou8Yz2Q9OuHzo/r8s6T8bpm1ouP2ThNt5quH2aufckPd+JOF6gAXlIx/5iD7ykY/I+/q/pOSc08aNG7V+/XqtXr1aO3bs0E9+8hM9+uijdffbunWrTjnlFH3605/W7/7u78be7oc+9KG6bV544YV6xzveoUMPPVTZ7IEL7Nesqb8Qbvv27fqrv/qr6dsDAwP6oz/6I5177rlau3atUqkDF92sX78+9ngAAACascIYUWGadiikl+j56uwfW4hutC7uc1fx5Q6PBAuNFVBMEgvqBut7q/GzEfUZyDh+xddrOZeXk5MP/GVkKzhTSC+Rc65jY8qnw++tsm/8uwr779/hfajF2q6X17g39veBz3HWDSiltGqqzppnPeZ+i3EU0ks0Vts7a7oVEW0MKM6UJPpmhtGMwKTFCtmFVIzXJErU4zWXIV4LNGUFPCVpMLN61jSn8L4rtA/E4jZW3av7nt8SnPeLhY1anz+8uwNaZFIurZWZVcFj0ajPfSckid0CAAAAQKdxfh4AAAAAAAAAAAAAAPMDV00uPD9quH2Ic2699/6ZmMufEpi2MjBtsOH2z2OuX5Lkvd/rnCtJyjdsZ05hNOfcCyStTbjYL85lm0C7XHrppbr66qvrpi1fvlwf+tCH9OY3v1mHHXbYrGW2bdum6667Tp/61Kem/5rkxMSE3vnOd2rfvn269NJLm273kUce0QMPPDB9+9xzz9UXvvCFWGO+8cYbNTFx4ELWK6+8Uu9///tjLQsAADAX40bwKOfywentYl2020qoA5PihtGsqA1gKdbCQZ9+u/jeDBIlCqNlzXnoDuec8qlCcH8wUmn8OwaTOv1eTLp+673Yaa08D4VATM05p0JqifbV9iTYdm9icBbrubD2lVHHH0mib1YwMunxzZjxvRvSSvA06phhwOU04ccDyySLuwGL0a7KjuD0ZemVGkjlAnM6F/XEwnLP87cHv5sl6czBc7s8msVpKLMmHEYzjk87oeariWK3AAAAANBJnJ8HAAAAAAAAAAAAAMD8kWp+F8wn3vvnJD3SMPn/ibOsc26ppPMDs5YHpi1ruB2uEkRrXCa0naTeJemHCf/7Whu2C8zJ5z//+VknXZ1++ul66KGH9KEPfSh40pUkbdiwQVdeeaUeeOABvfjFL66bd9lll+mOO+5ouu2tW7fW3X7DG94Qe9ytLnvHHXfIez/9HwAAQFIlI4zW6cCJtX5rPGgubnSl4isdHgkWGutzmSQW1A3W90qxmiSMxt8+6Ac547UcLc+OUUidfy8mDY71KhJmRbmi5I2IW9K4Rivb7iTz+8DYV5aq9j40yetpBhqryaJiSe7fyn698XtxpqFs+G9lFDlGA5oaMfZTQ5nVCdfE73lxQM3XdOfILcF5K9KDeunyk7s8osVpMBv+HIdiaZ0S9fuSUOwWAAAAADqF8/MAAAAAAAAAAAAAAJhfCKMtTP+34fYHnHOHxFjuo5JWBqbHCaOF/9R3tMYz4RvXCSwKjz76qP7gD/6gbtqpp56qW265RevXr4+1jiOPPFLf/va3tXHjxulptVpNb3nLW7RzZ/QFLtu3b6+7HXebc10WAABgLsZr4R9Bcql8R7drRWyKtWThEBxQih1Gs6NQQCPvvRnQ6VX8yWLFqxo/G1ERoYzLtnVMaI21jxipDAenJw2XJZU0NFFIh+NYndbK82A9tqSPudOvQVJWoMzaV1rBtJzLK+XSCbZrHd/E20cfuH/846FyC/t163lIK6Pl6dCvtaUSx2hAU1YgaZURHHTGeri8FjM9MvaAfl7+WXDeaYOv5vi1S4Yya4LTR43j006ICqP127EYAAAAgIWL8/MAAAAAAAAAAACA+YPzkgFMIYy2MH1a0u4Ztwcl3RIVR3PO/W9JlxqzazG22cq+hf0RIOl973uf9u7dO317cHBQ119/vZYtS9YKfMELXqCvfOUrGhgYmJ7205/+VB/96Ecjl5u5bUnKZuNfkDSXZQEAAOZi3IcvrM11OHhkBoyq9oW+sJVrE5Gxp8b7AnFVfFlVhd9bVnioV6wYVWOQKCoOSFiiP1j7CCsWZcWo2iVpaKJX0cABl1Mq4a+prceW/DH3V4zDeg2sQJkVCksauYv7PdRMkjBaK8FTazz5dMGOu3GMBjS1q7wjON0KKslZaTTggDtHbwlOTymlTSvP6fJoFq+hzOrg9NFyN8No9vFEvx2LAQAAAFi4OD8PAACgnfi3IgAAAAAAAABAd2R6PQC0n/d+1Dn3dknXz5h8rKSHnXOflXSLpJ9JKkh6qaR3SDp9xn2fkTTzz8qNBjazt+F2K1dONi7TuM5WfEbSlxMu84uSvtaGbQOJ/ehHP9I3vvGNummf+MQndNBBB7W0vqOPPlrve9/79PGPf3x62j/8wz/o8ssv19DQUHCZWi1O+zBsLsu2w0MPPaQf/OAHGh4e1sjIiPL5vNauXauNGzfquOOOUy6Xa2m9lUpF9913nx5//HHt2LFD4+PjWrt2rQ4//HCddtppyufzbX4kAAAgqfFaKTg9l+rsfrqQNsJoCcMhmJQkuNJKQAWLV9R7K5/uTfzJYoWQGr9Xoj4Dacev+PpB0rBYp0MQScNrnQ61WZxzyqeWaKwW71eDGZdRNjUQnJf0Oe3VY7ZY4cZSNfydZobCEr4X7ajYPnnv5WJGkIrGOEMqPnnw1AzBpZZEHKPFj7UBi9VIJRxIGsoaYTSD9/wtHEzaVd6hB/b+V3DeS5adpMFsONaF9hs0PscjlZ2J9vFzEXV80G/HYgAAAAAWJs7PmxvOzwMAAAAAAAAAAAAA9ApXTS5Q3vsbnHPvlfT/SUrtn7xc0vv3/2e5RtJKSW+dMW3ehNG89z+X9PMky3TjpH/AcvXVV9ddMLZmzRpddNFFc1rnpZdeqk9+8pMqlycvmt+3b58+97nP6QMf+IAk6cknn9SLXvQic/lXvvKVwenXXnutJEWOz/o8PfHEEzr88MOnb5911lnasmXL9O0kF809/fTT+vM//3N9+ctf1vbt2837FQoFvfKVr9Rb3/pWvf71r1c6nW667ocfflhXXnmlvvGNb+j555831/vrv/7ruuKKK3TkkUfGHjcAAGivUq0YnJ40BJKUFVxJEvjCAUmCchVf6eBIsNBEvbes8FCvWONp/F6xPgMppZVyqeA8dFfiKJcRcmqXpOPpdKgtSiEdP4wWNc6kcY1ePuYQK9xoHWfYobBk33OF9LLg9KoqKvsJDbh4F7aNJYiQtbJft0NwSyKO0cLHjAAmee81Ut4RnDeUWRuc7mT9mwphNEz6zug35RW+aPuMoXO7PJrFbSgTDqOV/YT21fZoWXpFx8dgHa+klVHGZTu+fQAAAADg/LxJnJ8HAADah38TAgAAAAAAAAB0B1dNLmDe+2skbZb0SIy775X0bkmXSjqkYd5zgfvvbrgdvkLG4JxbptlhtFCADVjQ/v3f/73u9m//9m9rYGBgTutcu3atXvva10ZuZz7y3uvKK6/Uhg0b9OlPfzrypCtJKhaLuvnmm3XBBRfo6aefjrxvtVrVH/7hH+rFL36x/vmf/9k86WpqvV/60pd0zDHH6Oqrr27psQAAgLkbr5WC03Opzv7laCu6kSTwhQOSBOUqvtzBkWChiXpvdTqgmJQ1nlK1MYwW/gxkiQn0DStqZd6/w1GupONJGhVrpyTPRdRnOHEMLuFz1Gn2cUY47lWsWqGw9r32xQSxsyTHQ+UW9ut2CG6J+RhKCcYPLEZjtb2a8OPBeUPZcFAJiFKulXXX7tuC8w4eOFRHFl7c5REtbkOZ1ea80fJwV8ZgRUrz6QJ/vAoAAABAV3B+XnycnwcAAAAAAAAAAAAA6CeZXg8AneW9v9U5d4yk10k6V9KpktZJWi7p55KekHSjpC9475+TJOfcUQ2r2RpY9WMNt1+YcGiN99/lvR9JuA5gXnvmmWf05JNP1k179atf3ZZ1v/rVr9YNN9wwffuee+5RuVxWNjs/L5ivVCp64xvfqOuvv37WvIMOOkjHHnus1qxZo/HxcW3fvl3/8z//o71798Zad7FY1Hnnnadbb721bno2m9VLX/pSrV+/XrlcTs8995zuu+8+jY2NTY/p0ksv1cjIiC6//PI5P0YAAJDMuHFhba7DwSM7ukEYrRWN4acoZT/RwZFgoYl6b/VbGK2QXhqcPu5LqvmqUi4tSar4SvB+GcJofSPpe6vT78XkkbBehtHiPxeFVPgzI0mFhI+hlzG4EGs8VuzRDIW18XkoVse0MrMq1nrGqvEjZJVa8jCaHYJbYr7frRgLgEkj5Z3mvFWZZGE0P9fBYEH47713a2+18W8rTTpjcDMhrC5bkRlUSinVVJs1b6SyU+v1oo6PwTpe6XQkGAAAAAAkzs9LgvPzAAAAAAAAAAAAAAD9hjDaIuC9r0q6Yf9/kZxzh0paP2PST733Pw3c9eGG2xsSDuuIhtsPJVx+wapUvZ4hEddx64ekTLq3F+Dcdddds6adcMIJbVn3y1/+8rrbxWJR999/v0488UStX79eTzzxxPS8v/qrv6r7y4r/8i//opNPPnnWOtesmbwQ7qyzzpqe9sY3vlH33nvv9O2Z651p/fr1welxXXbZZbNOujr33HN1+eWX68QTT5x1/1qtpnvuuUdf/OIXdd1110Wu+93vfnfdSVcrV67U5Zdfrne84x1avnx53X2LxaI+85nP6E/+5E9UKpUkSVdccYVOOukkbd68ucVHBwAAWjFeKwWn9yoyYwVLEC3J82ZFoYAQ672Vc/np0Fi/KER8b5VqRS1JL5MkVXw4IpR2/HqvXySNO3Q6ypV0/b2MhEXFzhpF7euTHAdk3UDffX6s95AVFLG+6xK/F41AY9Q2wvdNEEYzvtOiRIXgzHhtgggrsBjtquwITk8ppZWZoeA8J+v36qTRIG0ZuTk4PefyesWKs7o7GCjl0lqZWaWRyuwI4khluCtjMPfffRasBgAAwOLC+Xnd0+tz9Dg/Lz7OzwMAAAAAAAAAAAAA9Jv+uvIL/eDshtt3GPf7YcPt45xzS7z3ca80O63J+hatZ0akI/549l9uR3s9/vGUDl/T2zE888wzdbfXrVun1atXt2XdL37xi4PbO/HEE5XJZHT44YdPTx8cHKy730EHHVQ3v9GyZcum/z+fz9fNi1quVbfeequuueaaummf+MQn9MEPftBcJpVK6dRTT9Wpp56qK664YtY4p3z5y1/WtddeO337hS98oe644w7zcRQKBV122WU65ZRTdPbZZ6tUKsl7r/e85z165JFHlEqlkj9AAADQklKtGJyeS4X3++1iXbhbqhblvZdzvY3vzjdJAipeNVV9Vek+i1qhP9nxnPjxpW7JRwShirWxpmG0TJ+FnRazpDGqpPdPKpcwNtHp8URvO/5Yo8aZ5DH0MgRnSRr3skMjyR5bzuWVUko1zf6dZJJ9dbLgafIwWtE4/sunliifThaVAzBppDw7liRJKzOrzJisHUbDYvd06XE9UXokOO8VK89SwfiuRmcNZlaHw2jG57/drN/f9PLYEwAAAOD8vO7p9Tl6nJ8XD+fnAQAAAAAAAAAAAAD6Ef9CjEbvaLj996E7ee+flfTAjEkZSacn2M5ZDbdvSbAssCDs2rWr7vbQ0FDb1p3P55XL5SK3N19cccUVdbd/7/d+L/Kkq0aDg4PBE6+893XrzmQyuummm2KdPDZ1QteUbdu26cYbb4w9JgAAMHfjtVJwetIITFJ5I6pUVaWlwMdiZ10gbSn7iQ6NBAuNFedJEl/qlqiAUXFGDKniK8H7ZFy27WNCa6x4pnn/DsdB0i6tAZdrfsf9ehkKK0QEAhtFRTSSPIZ+jHFYca9xX1LNV2dNLxrBtKSPzTlnvgbFaoIwWoL7tnLcVDIibYXUEvO1TxJrAxajUCxJklZl1yZel5ef63Awz20Zvdmcd+bguV0cCWYayoYLBKOV4a5s34qs9uOxGAAAAICFh/Pz4uH8PAAAkAx/RAcAAAAAAACd5TktGcB+hNEwzTl3uurjZo947++IWOSrDbcvirmdoySdNGPSPkm3xlkWWEgaT4Rq/MuQc9W4vuHh7lzk0k4PPPCA7rrrrunby5cv11VXXdWWdd9+++364Q9/OH37zW9+s4477rjYy7/73e+uO6Hrpptuasu4AABAc+VaWVWFA0E5F/5L1O0SFb0hvJFckoCK1FpEBYtTyfg8JokvdUtUEGDm47De/4TR+kfSuEM3YhDzJRSWT8ePykUF5ZI8BitC1ktRxxmhmKj9XZf8sVnPhxUzmet9yy3s04tGUDWfWmK+9mU/wfEDEGGkHA6jDWXCIaUonH+wuI1V9+q/nr8zOO+XCsfoF3KHdXlEmDKUWR2cPmqEEdutVA3vv3sZ5QUAAACweHB+XnOcnwcAAAAAAAAAAAAA6FeE0SBJcs4tkfTZhskfbrLYFyRVZ9w+3zn3SzE21/in5P7Ve1+KsRyABJyb/3+N6dvf/nbd7QsvvFArVqxoy7pvu+22utsXXHBBouWXLFmiV7ziFdO3v/Od77RlXAAAoLlxH76oVpLyEUGRdogbMEI8SWNyFR8O4gGNitXwe6vT3xGtyKayZtxs5mekUrPCaJmOjAvJJX1/dSMGkST+FRUc67REQbOI+yZ6vH34fZCPiDeG9pnWfrSV6NsSY9tJ9tVJgqetxMpKEd/tUZ8nK8gCQBoxwkhDWTuM5jT/f++M9vvP3d9W2U8E5505dG6XR4OZBo3Q4Ui5OxfrW78r6WWUFwAAAADahfPzonF+HgAACxV/LgcAAAAAAAAA0B1cOblAOecy3se7Ytw5t0zS1yUdM2Py9d7766OW894/5pz7vKS37580IOk659zZVujMOfc6SW+bMWlC0kfijBNYaFatWlV3e/fu3W1d/+joaOT25oO777677vZZZ53VtnV/97vfrbu9atUqPfnkCQR+aQAAIABJREFUk4nWMfMksCeffFK1Wk2pFM1RAAA6bbxmxy1yqbw5rx2iohtJI19IHpOr1MIX2gONrPdWL8NPUfKpJdpbnf0z4czHUVX41zxWVA3d15dhtDYFxzotyXMR9TwniZ31Y4wjavyh7zXr2KOV95b1fIwliJ2N1ZKF0bz3iS4ctL/blzaN1y5Tey7kAxaaXeUdwelDRkgpGhfBLFY1X9Odo/8enLcys0ovWXZSl0eEmazQ4UhlZ+J9cSvskGv/RWoBAAAALDycn9cc5+cBAAAAAAAAAAAAAPoVYbSF62Ln3Osl/aOkf/Pez7q6ZX8Q7fWSPibpkBmznpT0rpjb+TNJvyFpaP/tUyV9yzn3O977H83YVk7SOyX9RcPyf+G9fyrmtoAFpfFEqJGRkbatu1QqqVSq7xOuXr26bevvlmeffbbu9jHHHGPcM7mnn3667vbJJ588p/XVajWNjo7OyxPcAACYb8ZrwQ6zpORRmqSiwmulKmG0pJLG5Mq+3KGRYKEpGQHFfgwhSZMRo1AYbeZnpGK8/zMpwmj9Iun7K9+FUF+S/WI3Qm2WJM9d1DjzqaVtWU+vRI2/VK3/Xqv5mhmLLSR4HqaXMd6PcSOmFV9W2ccPmHp51VRVOsE/UZhhlVQhMnxJvBYIq/mqRiu7gvMiw2hGRMl7wmiL1Y/G/kc7ys8G552+8tVKO/45upeGMuF/Gyr7Ce2r7dGydGfjofPtZzMAAAAACwvn5zXH+XkAAAAAAAAAAAAAgH7FmegLl5P0yv3/eefcE5IekTQiaYmkgyQdL2mgYbknJL3ae//zOBvx3j/jnDtf0jdnrOs0SQ85574n6XFJK/dva23D4t+Q9H8SPq4Fb/2Q9PjH+Yt2nbZ+qPl9Ou2QQw6pu/3cc89peHi4LSdIPfjgg023Nx8MDw/X3R4aat8L17judtizZw8nXgEA0AXWRbWSlOtwGC3l0sqnCsExEN1ILuq1DLHCUECjYm1fcHo/hpAkO141M7hYrhlhNEcYrV8kjTt04/0Yd0wppZV1jb8m7J4kz0XUYyokOA7oxxhHNpVVxmVU8ZVZ8xq/18ZrJXmFI0T/P3t3HibJXd95/vOLzKzKrOrqrupDRyO1JCRAlhCHEAaE1LKRhGg9BnN5PBaPx4Y16wfjGWaN1zasxwJ7AWMW7zDGDHgZG5tBuwwPYJtdZAO2dSFA6DBgJIMEultHH1Xd1VWZWZkZv/2jVa2srN83MvKKzKx6v55HjzojMiN+eUZkVcS7ugnFThkxNevzdN31ugjE1nwtdSwnKbxWiqYT7zP7aEDY0cYRxWoE520vtP4652lO4TAaNq8b578cnB4pp0tmX5nxaNBq1gijSdJC7VAGYbTwdnhUv5sBAABgc+D4vOwM+xg9js9rj+PzAAAAAAAAAAAAAACjijDa5uAkPfOp/5L8raRf8d4f6GTh3vsbnHOvk/QpPR0/c5Iueuq/kP9b0lu99+GzbjaxfM7pzJ3DHgWycPHFF6+bdvvtt+uqq67qedm33377msulUkkveMELel7usDnXv5PuVlbCJ9P2wvvwCckAAKC/qnElON0pyiTqUoymgkEv62Rf2MqNdLGVVYTRkJYV3RvFEJIklXJWkOjpz5VQKEmS8imjQhi8Yi59jKrgJlIHoXqRNhRWyk319Tt3p4q59O/NUsJ1O3mPj+rnQTGa0rHG0XXTWz/XkvY7rM+U5PWGb7OcclvdTXzs+HY93Wu00rBjqsWopJzLa8JNasVX19+WfTQgaL5m/ypoLs8vKZDOodoT+pel24PzXjDzUm3Lc6LysG3LzylSpFjxunnz9UM6TWcNdP3WPsKo7osBAABgc+D4vM2D4/M6x/F5AAAAAAAAAAAAAIBRwZ+927hukfQ5SfNtrleXdL2kK733P9tpFG2V9/7Lkp4r6eNt1vlNSW/03l/jve/sDHhgg9mzZ4/27NmzZtpXvvKVviz7q1/96prLL3nJSzQxMfhISL/t3Ln2KMTDhw8PZNnFYlFxHMt739N/Z555Zt/GBwAAbFbwaDIqZhJ1KRqRmW6CIJtdp6GSGmE0pGRF90ojevK9Na7m90iDMNrIs7YPIVm9FtMGJ4Ydpujk8Uh6nAvRROr3RFJgbZisx6J1PyNpv6OT1+KqKSOmlnZbXY47/1GvFXzsdBylp6Ju1uu43GAfDQiZrx8MTi+4CU3nZszbWd+4vDgpdTO6eeHvzef+stmrMx4NQiKX09b8XHCe9TnQTxVjO9zN/goAAAAAdIrj89rj+DwAANC54f3RNQAAAAAAAGwO/K0cAKsIo21Q3vt/9t7/G0k7JJ0r6fWS/oOk35X0v0l6u6QrJW333l/tvf9aH9b5pPf+bZJOkfQKSW+W9K6n1vsGSc/03r/Me//5XtcFbBSvetWr1lz+9Kc/rVqtt9jDgQMH9Ld/+7eJ6xkXp5566prLd999d9+WffLJJ5/4d6VS0UMPPdS3ZQMAgMGqxpXg9KxOql2Nb7Sygm2wdRqTqxNGQ0rW+7E4oiEkM+bT9B6xXv95VxjImNC5vCuo4NKd9JRViCxt/GvY0cBOHg9rO9zpsoYdg7NY42oNg6UJhXXCeg0sG6HJVlaQMkk9Xkl93cQQXO74PqD1eu80xApsFodr4b+TM5ff2SY4zckuOK4Wr+jrR74anHfqxB6dUzov4xHBMpffGZy+UDs00PXGvqGqD/8MZ9j7nwAAAAA2D47PS8bxeQAAAAAAAAAAAACAUUUYbYPzx/3Ae/9F7/2feO/f571/v/f+Y977r3nvFwewzhXv/T957z/lvf/Dp9b7Be/9/f1eFzDu3vGOd6w5yezAgQP6i7/4i56W+ZGPfGTNwVvT09N661vf2tMyh+XlL3/5mss33HBD35Z98cUXr7ncr78GCgAABq9qBI8mo2Im67cCbN0EQTa7TkMlhNGQVjkOvx9H9eR7a1wVwmhjZzJlpDOrSN+4RMJKHcRN24VQ04ZSswqqdsoaV+s20wqFRYpSB/rWrre3qJj1uZuk1sF2PSmMtvoZmiYyCeBp8/WDwelzhXBAqT3+NNtmc8fi17XUCP+a8bLZfW0Ce8jSXGFHcLr1OdAvVtheGt1oNQAAAICNh+PzknF8HgAA6By/EwIAAAAAAAAAZIMwGgAM0Xnnnad9+/atmfbbv/3beuKJJ7pa3t13360PfehDa6a9+c1v1vbt27se4zBdccUVay5fd911WlzsT8/xqquuWnP5k5/8ZF+WCwAABs86sTZtjKZXJePk3YoRbENY7BsdP2aE0ZCG9958bQ07/mQxYz6N9mG0nMsPZEzoTtrAVychsF6kfc0POxpYjKY7uG7yWEsplzXs+2wp5cLjb/48kKRKIxz7KkXTXYVopoz1LqcMni0bgdik56uT7boVaCu4iROfg2kikwCeNl8LB5G253cl3s4p/BnjOQlm07lp4cvB6cWopJ/c9lPZDgaJZvPh4OHCgMNoSXHSUY3UAgAAANh4OD4vGcfnAQAAAAAAAAAAAABGFWE0ABiyD3/4w5qaevrEzYWFBb3+9a/XsWPHOlrOgQMH9MY3vlErKysnpp166qn6vd/7vb6NNWvnn3++LrvsshOXjx49qne96119Wfa+fft09tlnn7h822236c///M/7smwAADBYVR8OHk26YibrtwIfRDc6YwXuktRiwmhor+orZphjdENI7T9X6r4evE7BFQYyJnQnbYiskxBYL9IGJ4YdDSxEBeVTRv7ajXVc7rPFGn/rfoYVGinmuouMWEG5alxW7OO2t7f2g2Zy28zbWJ9rIa1huFXN47Yeu6QoC7CZHTaCSHOFcEAJaPZg5T49ULk3OO8lW3+a6NWImTPCaPO1QwNdb9LPSdLGbAEAAACgHzg+z8bxeQAAAAAAAAAAAACAUUUYDQCG7Nxzz9Wf/MmfrJl26623at++fXrkkUdSLePee+/V5ZdfrnvuuefEtCiK9OlPf1q7du3q63iz1nrg2J/+6Z/qwx/+cOrbHzlyRJXK+uhGPp/X7//+76+Z9ra3vU1f+MIXOh7j1772Nf34xz/u+HYAAKA7lTgcRsvqxGsrpEJ0ozPdPF51TxgN7VWMeI40uiEkK9hWjpdO/Nt6/ecJo42UtNui0pC3Wa2sOF+W0sTi8q6gQpT8mk8fpxv+fQ6xIiGt200rNNJtALKUC6/Xy6tq7Hs1W276vGq2NT9r3qbmV8x5raz72/yesx67pO0CsJkt1IwwmhFQaiecpcVGddP89ea8vbP7MhwJ0pgr7AhOn68flPeDe/eWE/YhiOcBAAAAyBLH5yXj+DwAAAAAAAAAAAAAwCgijAYAI+Atb3mL3v72t6+Zdsstt+i8887TH/7hH+rhhx8O3u6+++7T7/7u7+qCCy7Q9773vTXzPvjBD+ryyy8f2Jiz8opXvELvfOc710z7zd/8Tb3mNa/RHXfcEbxNHMf6xje+oXe84x06/fTT9fjjjwevd8011+gtb3nLicsrKyt6wxveoDe96U3msiWp0Wjorrvu0nvf+16dd955uvLKK/XQQw91ce8AAEA3qvH6g6olaTIqZrJ+KzhiBTsQlvR4TUczwemE0ZBGUnRvFOJPIVagqTkESRhtPKSPcrWPgPVD2gDbKETC0ow1zTjTvs9H9/Mg/Di0bjetz7pun8ukoJoVPVszHiM+NhVtUWT8GqKT7bp1f5uDbsVc+LEjXgusV4trOtpYCM6bKySH0ZxzxhzSaJvFscZR3b54c3Dec6Yu0KmTp2c8IrRjBQ9rfkXL8bGBrdf63h8pp4KbGNh6AQAAACCE4/NsHJ8HAAAAAAAAAAAAABhF+WEPAABw3Ec/+lHNzc3pfe97n7w/fhLZ4uKi3vWud+nd7363zjvvPJ1++umam5vToUOH9OCDD+oHP/jBuuUUCgV95CMf0dve9ras78LAfPCDH9RDDz2kz33ucyemfelLX9KXvvQl7d69WxdccIF27NiharWqxx9/XN/97ne1uLiYatkf//jHNT8/ry9+8Ysnpl133XW67rrrtGvXLj3/+c/Xjh07FEWRjh49qv379+uee+4J/pVLAACQjeZQUDMrJNJvVnDECoIgLOnx2pLfpqWV9ftzhNGQRlJ0bxTiTyFWkKjcWJb3Xs451X09eJ2c48d7oyTta6xkBJz6LfV4RuC9kSp6luI643SfQ8z9jJb9H+uzrvswmh3rKzeWpTYNxrIRTyvlplVwE6r69T9H6WS7nmb/z7oPxGuB9RbqB815VkBplZMVRsNm8Y0j/6iaXwnO2zt7dcajQRqz+R3mvPnaQU3nwnHyXlWM7/2laCohsggAAAAAg8PxeTaOzwMAAAAAAAAAAAAAjBrOnASAEfIHf/AHuuyyy/Rrv/Zruvfee09M997r+9//vr7//e8n3v7CCy/UJz7xCV100UWDHmqmcrmcPvvZz+r888/X+973PtVqT584u3//fu3fv7/rZRcKBX3+85/Xhz70IV177bVrDqg6cOCAvva1r6VaxvS0fQIxAADor2ocPgB6Mipmsn4rwEZ0ozNWQCWnvBmrqRFGQwpl470YKdKEm8x4NOlYIaOG6qr7mgpuwgwI5V2bWhEylTbSWUyIUPVT2khWVnHR5DGkiZ61H2fa+zw5Avc5xNoGtoZFrMBot8G3Us6+nbXNTnOdUjSlvCsYYbRw8LGT5Tc/3+yjAenNJ4XRCslhNMvqycTY2GIf6+aF64PzZvM79LwtP5nxiJDG1vycnCJ5xevmzdcP6TSdNZD1mmHTjCLBAAAAABDC8XlhHJ8HAADS4w9fAAAAAAAAYLA4KhnAqmjYAwAArHXFFVfo7rvv1mc+8xldfvnlyueTG5aTk5N69atfrb/5m7/R7bffvuEOulrlnNO1116rH/zgB3rrW9+q7du3J15/y5Yteu1rX6u//uu/1p49e9ou+7d+67d0//3363d+53d0xhlntB3PzMyMrr76av3pn/6pHnvsMb34xS/u6P4AAIDuVY0Ta7MKnJRy4QOurRN+EWY9XqXclApG6MkKQwHNrABOMZqSc6N5cGZykOj4/bECQnnH3z0YJWkjD6XMtlnpIlnWti1LacaaJnqWJgw26YrKuVyqcWWtaDwOrZ9t5mddyue8Vd4VVHATwXmpwmiN8HWmctPm51Qn2/VKw9hvaHq+S0Zw0ApmApvZ4Vo4jDYVbRmJWCZG191Ld+pg7YngvEtnrxrZ7etml3M5bcvPBect1A8NbL1J380AAAAAYJg4Pi+M4/MAAEA6nJYKAAAAAAAAAMgGZ04CwAjK5/O65pprdM0112hpaUl33HGH7rvvPh04cEArKyuanJzUySefrGc/+9m68MILNTk52fW63vOe9+g973lPV7e94YYbMr2dJJ111ln6sz/7M3384x/XnXfeqX/913/VwYMHdezYMU1PT+ukk07Sueeeq+c973kqFMJBDcspp5yiD3zgA/rABz6g+++/X3feeacOHDig+fl5RVGkmZkZ7d69W+eee66e9axnKZfjJC8AAIahGleC07MKo1mhgEq8LO/9yIaXRo0VKSlFU8oTRkMPyg3jtdVlLCgLSWGASrysrZo1X//W+wXDkTbyUDQCTv2WNm4zChGcVNGzVPG09vdlFO6vxQq7tW43k7aj3a97WrXGyvp1G9GzteMJX6cUTSsfFaTG+nm1eP26Ol1+8+vG3EczomrAZjZfD4fRthd2tr2tE993NrMbF64PTs8pr4u3XZnxaNCJufzOYARt3ggl9sMg9lcAAAAAoF84Ps/G8XkAAAAAAAAAAAAAgFFAGA0ARtz09LT27t2rvXv3DnsoIyWKIl100UUD+wucZ511ls4666yBLBsAAPSmEofjFpNRMZP1l4yYTaxYK76qSZfNOMadFVkpEkZDjyrGyfdpg1XDkBQGWI0J2GE0frw3StIGt0oZhblyLq+Cm1DNJweorG1bltIEMtK8j1NdZwxDiTW/ooavK/fUe94KjfTyWVfKTeloY37ddGtdaa5TiqaVdxPBeZ1s1639v+ZYXikXfh2X4yXitUCL+dqB4PTZfPswmsXLd31bjIeDK4/r7qU7g/NeOPMybcvPZTwidGI2vyM4fcEIJfbDOH43AwAAALA5cXxeGMfnAQAAAAAAAAAAAACGKRr2AAAAAAAA6EQ1rgSnp43R9CppPdZJv1jPCpwkhdFqMWE0tGfHeUb35PvJpM+VxvH70/D14Hzr/YLhSPs6KxoBp0FIFxzLZhuaPIb240xzX0opomejHONIei6aP99WPxta9fJZZwXy0oTRlo3gaSk3rYIRcKwbn2shldgOqj797/BjtxqvBfC0eSOENFdIE0YLRwYJo218Ny38nfk8753dl/Fo0Cnr/W19HvSDHXId/r4nAAAAAAAAAAAAAAAAAAAAgNFGGA0AAAAAMFaqRlBr0hUzWX9ScKRsREqwXtkInJRyUypE4dBT3RNGQ3tWoHCUQ0iRi8w4wGpMoGa8/gmjjZa0r7NShjGIdMGx7EJt9hj6E3DrV2BtWJKei+YY2iA+66zHpWxEz1bFPjaDp6WE4Gkn2/VywvKf/nfCY0e8FlhjvhYOIW3P72p723AWDRvdSlzVN478Q3DeMybP1Nmln8h4ROjUXH5HcPp87dDA1llp2EF0AAAAAAAAAAAAAAAAAAAAAEhCGA0AAAAAMDZiH6vqK8F5aWIp/VDM2SfwEt1IzwqoFPsUUMHmZQUKRzmEJNlxgNWIoPX6z7v8wMaEzqXdFmUZg0gVE8tlF2ozx5BinGkCbv0KrA1L0nNRbtrPKBv7HKWE/ZR2Srnw42vFTFdV44q84vAyo+m+bNcrxmd783sp6XklXgusdbgeDqPNFXZmPBKMizsWb9FSvBicd9nsPjlHMm/UWe/vhfohee8Hsk475Dq6+2IAAAAAAAAAAAAAAAAAAAAARgNhNAAAAADA2FjxVXPeZFTMZAyTriin8EnfVqQE61mRlRJhNPTIPvl+tMNoVsxpNSJY9/XgfOv9guFIG3nIMtSXFPRcNQrhwDRBr1SRt1TXGf79tSQ9F6ufBw1fV82vBK/Ty32z1t0ujJY0v5Szt+u1lNt1732qEJwVdpOI1wLNyo1l8z0xl08TRgt/F/IaTFgJo+HGheuD00vRlF689bKMR4NuzOZ3BKev+KqW42MDWacVRE/aZgMAAAAAAAAARh1/LAUAAAAAAACDNaC/9wpgDBFGAwAAAACMjapxUq0kTaaM0fTKOWdGV4hupFduGIGTaFqFHgMq2NzSxHNGkRUzKjeWFPuGvOLgfMJooyVtlCqrmKfUPnpWcBPKuXxGo7GleezSRd7ahzZG+fMg5/IquIngvNUAWVKItZfInfXYWdvs1nGFTEXTPQdPa35FsRrBec2vmwk3SbwWSGG+ftCct73QPozmHCe7bDYPlH+ohyr3Bee9dNsrMt2vQfesMJokzdcODWSd1j5C2pgwAAAAAAAAAAAAAAAAAAAAgM1r+Ge8AQAAAACQUiUxjJZlZGY6GNhIGt9G8e2jN+kbR/7BDCpsyW3V87b8pF4x9xrlXM5cjhWRK0Yl+TgcgEobUMHmlvTaGmVWzKgSl1X3dfN2hNFGS5pwVzEqKUr4fOy3dsGxNCGxLKQJeqV5H6cJpaYN2A1LKZpSrbGybvrqfkYlIVTWUxgtZ4TREsJn0vGAo6WYEDxNu11PG4KLXKRiVDL20QijAavmaweC051cYjipLf4024Z148L15ry9s/syHAl6sS2/XU5RMLi8UD+o03Rm39dp/Yykl/0VAAAAAAAAAMCw8TshAAAAAAAAAEA2CKMBAAAAAMZGNa6Y87KMHlnrSgqDbAQ3zV+v/+fJTyRe5wk9qh+V79GTK/v1plPebl7PCpSUctOq+fUxGIkwGtKxAjqjEn+yWEGtcryU+NrPO368N0rSbIuyjnK1G9OoRAPTPC5p3seFqKC8KyS+b0Y9jFaMpnS0sbBu+up+RlIoLE2cz2JFSpLWlzS/4CZOPB8habfrSVGz1tdvMZoKjqfdfQA2EytwvDU/p1yK/QpnTOcUmI3pWP2o7li8JTjv3Knn6+SJZ2Q8InQr53Lalp/TQv3QunnzgWn9YEerR3tfDAAAAAAAAAAAAAAAAAAAAMDwRcMeAAAAAAAAaVXisjlvMtMwWvgk3qTxjbtaXNOXDl6X+vpfP/JVPbHyqDnfCpQUo5IKbiI8BsJoSKHSsF9bo8wKElXisuq+bt7OCg5hOCZdUc5MxhxnPdeD0i48UcqNRjSwlCLolfZ93O4xzvo56JQVN1vdz0iKfPVy36zwXNn4XF21bIRhV5dnfU7V4nTb9aT1t95f87O0zX0ANpPDtXAYbS6/M+USkrdz2FhuPfI1M2S5d3ZfxqNBr6z3+YIRTOxF7GPzZySj/t0MAAAAAAAAAAAAAAAAAAAAwPARRgMAAAAAjI1qXAlOL7gJ5Vwus3FY8ZakUMm4u3vpTi3Fix3d5o6jt5jzKsZjVYqmlHf54DzrhHygmfU+HJX4k8WKV5Xj5cTXvvV+wXA459qGOtuFyvqtXShrVMIUaR6XtNGvdsvK+jnolB1KXF7z/1bH94e6/0yw92/C4bN281eXl4/CYbS023Xr/krrw7hJn6UAjps3Akjpw2gW3+PtMWpi39BNC9cH583ld+qCLS/OeETo1Wx+R3D6vBFM7IX18xtp9PfFAAAAAAAAAAAAAAAAAAAAAAwfYTQAAAAAwNiwTqydjIqZjsM6iTcp3DHuvr14U8e3uWMxHEarxSuq+3pwXimaVt71FlDB5tXwDa34anDeqMSfLFYIqdxYahNGC79fMDztXmtp4179MmrjsaR5jxaNcFenyyqN+OdBu7hXuWHHRXsxFYUDkjW/olpsfw6ZQcqnllfocbtuLb8YlRS5tb/isOJuG3kfDeiUFUbbXkgXRnNywemeMNqG8y9Ld+hw/UBw3qWzV2UaJ0d/zBWMMFr9UN/XlRRWtbbXAAAAAAAAAAAAAAAAAAAAALCKMBoAAAAAYGxU43Jw+mTGgRMzYLRBoxuVuKzvHft2x7d7bOVh7a8+GFie/TgVcyUVoongvFq80vEYsLkkvbZKRvBnVFjBp0pcbhNGyw9qSOhSuzhVMZftNqtdTMyKcGUt5/KacJOJ10kbOCzlkt/vxTbzh80Kt61+xlmfdb0+l8WEz8lKQtyk3AjPWw2t9Ro87eT+tovKAZDma+HQ1Vw+XRhNRhgNG89N89cHp+ddXi/fdmXGo0E/WO/zhQGE0SrGz2+k0dn/BAAAAAAAAAB0g98VAQAAAAAAAACyQRgNAAAAADA2zDCaK2Y6Dusk3kpjY0Y3vrP4LdV8OEp21fY36OdO+hU546C324/esm5aUpykFE2boae6r6cYLTazxOhexgHFTtnBxaXE174VHMLwtAs9ZB3paxdqK7UJp2Up6bEruInUr/d273crPDYqrEBZ+an9DGs72i6C107SayFp2102ommr4+k1jGatO/Tatl7vSdsHYDOJfax5I4A0V9jV07J9T7fGqHlyZb/uXr4rOO+FW16umfxsxiNCP8zmdwSnz9cOyvv+vouTo9Wjs/8JAAAAAAAAAAAAAAAAAABGC8clA1hFGA0AAAAAMDYqRhgt6+CRtb6kaMg4u33x5uD0rblZvXrnNfrpuZ/R2aXzgte5Y/GWdSdYJ4fRpnoOqGDzKifECbOOUXXKDC7G5cTXPmG00dNum5T9Nis5PNFufpaSwlydPG7jdJ9DSrnwfV0NjFihkV4jI1MJn5PLjXD8TLLDaKvLs4KntZTbdSs8G3oerec2afsAbCbHGkfN/Yq5/M5UywjnkCUOQdhYbl74O3PeZXP7MhwJ+mm2EH6fr/iquT3vlvXzm0iRCm6ir+sCAAAAAAAAAGSJ3wkBAAAAAAAAALJBGA0AAAAAMDaqvhKcPhkVMx1HKRcOh1g5YW0NAAAgAElEQVQn/o6zxfoR3bN0V3DehTOXKHI5SdJFM5cEr3Og9pgerv54zTQrcCIdfy6t0FPNr6QZMjYxKxYkSUUjNDQqrKBRNS6rFtuv/ZwRHMLwtItuZR3paxcU6zWm1U9Jj10nj1u7+zRK9zkkKZQo2YHRXu/XZFSSM5JHSZ+vVnRs9X5Y8ZO0wdNO7q8V19uI+2hAN+brB815c0YwCZvPSlzVrUf+ITjv9Mln6qziczIeEfplLr/DnHe4Zn8+dMPadyhGU3LOTiwCAAAAAAAAAAAAAAAAAAAAgEQYDQAAAAAwRqyoRdZhNCsyU46XMh1HFu5avFWx4uC8F2/de+LfL5x5mZzxY4Y7Fm9Zc9kKnBSjkiKXSwio1NMMGZuY9doquAkzuDcqrOCil9dSvBicFymnyPHjvVHTLkTWbn6/tYtltQu5ZSlprJ08bu3uU9b7DZ2yHofV/QwrMNrrcxm5qKt9HGve1FOfa9bnb9owmhlWCUTQrMdgI+6jAd2YN8JHeZfXTG5bqmVYQSMv3/W4MFq+ffQm83Nz7+w+olZjbFt+u/m9fSEhnNgNO5w62sFqAAAAAAAAAAAAAAAAAAAAAKOBMyeBPgudEOI9JwQBGG9xvD6GwglwAIBhqMaV4PSsT6y1ohtWuG2c3b54c3D6zsLJOrP4rBOXZ/Kzes7UBcHr3nH0ljXfi6yT7Fcf17zLB+d7xWr4RqpxY3My4zljcPJ90hgX60eC0wsjHnvbrIq5NmG0QMxpkNrFstqF07KU9D7o5HFLuk+TrqjI5ToaV9ba7WdYEchSH15bpSgcaVxu2GExa97qsnoPo4X3r0LPs/Xcb8R9NKAbh+sHgtNn8zs6iK0aPxPk1yAbgvdeNy1cH5xXiqbXxLExfnIup235ueC8hfqhvq7L+m5mBaEBAACATnGMHoCNhuPzAAAAAAAAAAAAAGAtwmhAn0XR+rdVrZbuJD8AGFX1en3dtNDnHQAAg1Y1ohaTGUePrOhGNS4r9usPWB5Xh2sHdF/57uC8i2b2rjsQ+0Uzl4SXUz+gByo/PHG5XeDECqhI6SMq2JzKDePkeyP0M0qSxniscTQ4Pem9guEZtRBZu21k1qG2JEmPXSePW78Ca8Ni3ddyY1ne+4QIZB/CaEasxFpn0rzVZVnB07pf/7OGECsEF7q/1mNQTgi7AZvJfO1gcPpcflfGI8Gour/yAz1c/XFw3su2Xa6JaDLjEaHfZvM7gtPn6+HPh27Z2+/Rj1YDAABgPHCMHoCNhuPzAAAAAAAAAAAAAGAtfmMK9JlzThMTE2umHTt2bEijAYD+aP0cm5iY4C9SAgCGohpXgtOzDqNZ0Q0vb45xHN2xeIs576Ktl66b9oKZlypSru2yrDhJ8UQYbSI4X5JqfsWcB1jRvXE4+T5pjIuNI8HpVmwIw9UuTtWPeFUnClEhMaKXdagtSSkhWtbJ45a0nFG6vxbrvjZUV93X7BBZP8JoxjKWYzssZs1bDT5ar7+02/SKGb1cP1YzXusrin0j1fqAjcwKH80VdqZehvUTQS/fxYgwam6cv96ct3f2VRmOBIMyZ4XRaof6uh77u9no74sBAABgPHCMHoCNhuPzAADjg+0TAAAAAAAAACAbhNGAAZiZmVlz+ejRo/Kek4IAjCfvvY4ePbpmWuvnHAAAWbFOrJ2MipmOIym4YsVKxtG3j94UnP6MyTO1e3LPuunTuRn9xPQLgre5c/FWxT6WZD+PqzGTQmQHfOp+/V/KBlaVrThPwnt2VBTchHIKh86OGWG0HGG0kVRqE+IbRpgraZ2jFKdIGksngcPk5YzO/bUUc/Z9rcTLKhv7Gv24b9YyykacrBavqO5rwXlPb9fDwdN6HL7dunVb9zfw2R6atsra/wA2k/maEUbLpw+jWSe7EEYbf4v1Bd117OvBeedNvVAnTezOeEQYBCuEaIUTuzXIkCsAAACwimP0AGwUHJ8HAAAAAAAAAAAAAOsRRgMGoPWAhFqtpkcffZQDrwCMHe+9Hn30UdVqa09W3rp165BGBADY7KpxJTi9k1hKPySFRzZKdOOx6sN6pHp/cN6LZ/aat3vRzCXB6Qv1Q/px+R5JdrxqNWaST4g9pY2oYHOy3n/jEEJyzpkBt8X60eD0vLMjghiedq+3Ybwek9Y5SnGKpLGUounUy+lXYG1Yku5rOV5WpZEcGO3FVC687oqx7baiZc3Lsj6r0sZOOwmrJD0GG2UfDeiFFT7aXtiV8Ugwir5+5KvmZ/PeuX0ZjwaDMpvfEZy+UD/U1/VY2+9x2BcDAADA+OAYPQAbAcfnAQDGD/vbAAAAAAAAGCx+5QtglX2mMYCuFYtFFQqFNQcqLC4u6kc/+pG2bt2qLVu2KJ/PK4poEwIYPXEcq16v69ixYzp69Oi6g64KhYImJyeHNDoAwGZXNYIWk1Ex03EkRTes6Ne4uX3xZnPei7aG42eS9PwtP6m8ywdPqL9j8es6Z+p8M6Ky+rjm3YS5/JpfMecB1vtvlMJPSYpRScca6yNooWkSYbRRNdkm9mAF8AYpKUBRMkJYw9CvoFm/AmvDknRfy/Fy28BoL6zHZ9kMo9n7PcUoOXjaUF2xjxW55J+RWvsNoccp6TV0fKzEn7B5NXxdR+qHg/PmjFBSiJMz5nAEwjhr+IZuXvj74Lzt+V167vSLMh4RBmUuvzM4faF2SN57OWe9xztjhVzHIVoNAACA8cExegDGFcfnAQAAAAAAAAAAAEB7hNGAAXDOaffu3XrooYfW/AXKWq2mQ4cO6dCh/v7VdQDIyurnW79OjgIAoFPVuBKc3kkspR8KbkKRcorVWDevYsTbxon3XrcfvSk47+zST2hH4STztqXctM6bvlDfPXbbunl3Ln5dbzzpfzIfo9UTpAsJsae6r5nzgHavrVFnBYkWG0eC063YEIar1GabNIzXo7VOJ6cJNzon1iSG0TqIfiUvJ9t9hm4k7dccrS8oVhyc148IpPU5VG6E42Tlhh1Gm8ptkZQccaz7WuJrMPaxGcYNjTXpMbACLcBmsVA/LG/Ey7YXeo8GkkUbb/9y7HbN1w8G5+2d3afI5TIeEQZlthAOo1V9ReV46cT2u1dmEH0IkWAAAABsXByjB2Aj4vg8AAAAAAAAAAAAADiOsyeBAZmamtKePXvWHXgFAOPKOac9e/ZoaooTlwAAw2NFjyZdMdNxOOdUiqa0FC+um5cUCJGkI/XDeqjyY/lA1KQYlXRm8dmaiNpHahbqh/Vw5cc6eeIZ2lU4pesDo2Pf0CPV+7VQP3xi2nztoA7UHg9e/6KZS9su86KZS4NhtMXGEf3j/Jd0uPZk8HarMZPkgEq97fql43G3A7XH9PjKI6muv2prblanF89WLsWJ/ytxVQ9UfthRDC9SpD3Fc7Q1P9v2urV4RQ9U7lU5Tn5NtXrG5JmJ8bpuVeKyHij/UCu+2vdl98vBlSeC08fl5HsrhrTUWP9ZIyW/VzA87cJnwwiRWe+BYlRS5KKMR2NLeq+2C841S4qf9SMeNmiRy2nSFVX164Owdy/dad6uH9E96zmYrx8IbtsfqdwfvL5TdGL/rOAmzPXVfU0Tst8T1bhihpxCn5mFaEJ5lw/uL9yz/M/Bfbc0ci6vM4rnaEtua1e3B0bBfC0cvZKkuXw4lNRPDd/Qw5Uf6WhjoaPb7Z44QzsnTu77eLz3emzlIR2shfcfTyrs1skTz9g0J6DeuPDl4PS8K+jibVdkPBoM0lx+hznv20dv0pwRTuvUkaafMTQbl2g1AAAAxgfH6AHYSDg+DwAAAAAAAAAAAACeRhgNGKDVA6/279+vWq027OEAQNcKhYJ2797NQVcAgKGq+5oaCkexJjuIpfRLMVcKxjWsSFbDN3TdEx/TN478Q+JyC25Cbz71N/SCmZfay3n8Y/rG0aeX85ypC/Srz3i3GVWyPLHyqD76yHt1yAiVtYoU6cKZi9te77lbLlLBTajmV9bN++KBT5m3K+WmJUl5Z/+4IrTMVuXGkj7+6Pt1b/n7ba8bsi03p7efdq1OK55pXueuxVv1qcf+c6rxhFw6+yr9/En/sxkk+v6xO/TJ/R8KRnHSeP6Wl+gtp75ThciO0XTim0f+UZ95/GPme3DUjcvJ96vvgVahkKIk5SPCaKOo3ettGIEVa/swau+NpPEUo/D7IyQpfjZq99lSzE2pWl+/DbDCNVJ/om8l43E+WHtCH3/0/R0sZ+rEa72X4GklXrbXYXxmFqMpHWscXTf9y4c+m7iuNF61/ef06p3XbJpQEjaW+fqB4PRiVDLfTyFO1uvfPvn8kcr9+ugjv6+jjfnU62l2/vSF+pXdv6XJqD9B7CP1w/qTh9+r/SsPJl5vz+TZ+vXTrtWW/MaOIj6x8qj+dfk7wXkvmrlkw9//zWZbfk5OUfA7xmef/LOBr7/Tn1sAAAAAaXCMHoCNgOPzAAAjhegwAAAAAAAAAGAEhM++BdA3U1NTOvvss3XWWWdpx44dmpjoz0npADBoExMT2rFjh8466yydffbZHHQFABg6KzgmqW8nyHfCio9YAY+bFq5vG0WTjoe/Prn/j3SkftheztG1y/nB8vf0hSc/1XbZrf6vR/8odRRNks6dfoFm8rNtr1eMSrpgy0Udj2f1BOnI5RQpF7xO3bc/oeULBz7VdRRNko405vXxR98nbxzkd7h2QP9t/4e7jqJJ0s0Lf6dbj3wtOG+5cUyf2P+BrqNokvSdY9/S9Yc+1/Xtmz1efUR/9fh/GdsomtSfWFAWOo0EJMWGMDzF3OjFHqwY2Ki9N5LGU+rg/ZFzeRVc+Gdwo3afLd2Msx/Rt349Ps2RpaTgabvtejkhjGZ9Zg7yOf67w5/Td459a2DLBwZpvnYoOH0uv6uj5XQaBox9rP/66Pu6jqJJ0veX7tSXDl7X9e1b/eVjH2kbRZOkh6o/0n9/4qN9W++oumnhenPeZbP7MhwJspBzeW1N8b1+UMYlUgsAAIDxwzF6AMYRx+cBAMYTf0QKAAAAAAAAAJAN+4wkAH3jnFOxWFSxWNRJJ50k773iODZPsgeAYXLOKYqijk9yBABg0KqxHYnqNCbUD9bJvFbA47sdRDRixfqXY3fo5bNXrptnxTi+e+xbukZvS72OAyuPpYoBNLto5tLU133RzCW6c/HWjpZfip6OqBRcQVXfWHedNGG0fgRLDtcP6JHq/Tq9+Mx18+5Z+mfFWj+2Tn332G26ZPaV66Z/f+lO1X3vEbLvHPuWXrPrTT0v57vHbut5GcM2LiffN78H0kiKDWF4krZJw4pyWe+BUXtvJD12nY61FE2p1lgfsBy1+2zpdJxOri+h2OagWU/LaRp/UsSx3XbdCs5Kw3tdf/fYbXrBzEsHug5gEA7XDwSnzxV29mX51u87Hqn+WPP1gz0v/zvHvqk3nvSWnpdTicv64fK/pL7+vy59Rw1fV26D7ndV44q+eeQfg/P2FM/RmaVnZzwiZGEuv8OMsQ/auERqAQAAMJ44Rg/AuOD4PAAAAAAAAAAAAABob2MexQ+MOOeccrncsIcBAAAAjJWkMNrkCIXRrIDHfO1QR8u34gE/XP5ecPrRxoLqvpYYH0mzfEvBTej5W16S+vrnT79IxaikSlxOfZvTJs868e+8K6jq1z/n7QIqtbimY42jqdeZZKF+SKdrfRjtaGOhT8sPPwcL9c5eK50uv/Pl9Gc8w9T82hplnY5zXO7XZpN3BZ06cboeW3l43bzndfA52k/Wa+W04mi9hmbz27Ult03HGkfWTC+4CZ00sbujZZ02eZbuXr5r/fQRu8+W0ybP0gOVH3Z0/chFPa/3GZNnysnJq7eTRVu36ZaaXx+vWzM/tudPuElz3Q9Xf9xmhN3bCNtFbE7ztfC+4fZ8f8Jo9nr7856Zrx2S977nk0WXGosdRY5XfFXVuKKp3Jae1juqvn30RjPufdnsvoxHg6zsKZ6jByr3Zr5eJ6fdk2dkvl4AAABsXhyjBwAAAAwC4WEAAAAAAAAMFn/7CsCq3s+UAgAAAAAgA9WEwFZxCGG0khFGKzfCJ5V3Egg7fv3wcpJY6w5ZahzraNlXbn+dSrnwfQ6ZiCZ11fY3pr7+edMXaufEyScu56NwRKUWJ4fRKvFS6nW2YwUC+nWAn7X8Tp7HJJW4rNjHfVhOf8YzLM+ZukCnTJ427GGk8vwtL9G2/PZU1y1GU7po5tIBjwjd2hsIieSU18u3XTGE0UjP3fIi7SictGZawU3oZdsuH8p4LJHL6dLZq9ZNv3jbFZqIwhEsy6Wzr5LT2njOmcVna8/k2T2NMSsXb7s8dexUCr/murEtP6cXbHlZT8vIu7xevu3KE5cL0YR53bqvJy7LCqLmXd6MI108e6XybnB/E2bct4vYvKww8lyhszBa62drO/16z8RqaMVXe15Ou9BySK+xyFHlvdeNC9cH501HM3rRzCUZjwhZuWTbK1Vw9vZ5UF44c7G25mczXy8AAAAAAAAAAAAAAAAAAACA8TO4s4MAAAAAAOijalwJTneKhnJCb9GIhJWNMJc13dJNHKscL2lG21Jdd9kIozk5TUbFE5fn8rv00m0/rcvnXtPxeK7c/joVXEG3HvkHHa4/GbzOTG6bzp++SK/d9YtrplsxmHYhg3JCgG7SFYMRlWpcCcYOKsZz4I0/O+EUaTIQ7mn4hmp+Zf1YjeVbr5VIUTAMFPs4GInw8qrGlY6CduHxhMeZU14FI2A3Crbktur86Rfptbv+3bCHktqW/Fa98/T364sH/ko/Kt8dfF5zLq9nFs/V1Tt/fmyCb5vRZXNXK+dyuvXIP+jJlf3aUzxbV25/nc6ZOn8o4ylGJf3G6e/XFw/8pX5c/ledMnm6XrX9DTqjeM5QxpPkZ3b8gopRSbcfvVl1X9eFMxdr346f63g5z595iX5l9/+qG+b/P83XD+o5U8/T63e92YxpjZozS8/Wr592rb5y6PN6oHKvYjWC1zt1Yo8umX1lXyN3b979v2jHgZP03WO36WhjPvXtnCKdUTxHr9z+ep099RMnpidFyuptgqc1M4xm7/udXTpXb3/G7+nvD39eD1buk1d3kdC6rwf3O+xwKjDa5mtGGC3fWRjNYsXDrPdM6/eOE8vxXlUf/u5XjpeDt+lEu9ByyEYNo/2ofI8erT4QnPeybZd3HCXF+DiteJb+w2nv1fWH/ocerNynhpJDpb3alt+uC6ZfrNfsetNA1wMAAAAAAAAAAAAAAAAAAABg4yCMBgAAAAAYCxUjeDUZhWNXg1aKwrGp0Dgbvh4MY0nSKROn6fGVRwLLWR8QaBcFW26kj68tx+Ew2jMmz9S7z/w/Uy8nSeQivWL7a/SK7Z1H1boNo4Uet1XvO/uTmsptWTf9Dx/8TT1UuW/ddCviYIURzi6dq9/Y8/510+9euksffeS9wbF679e9fq3X+kVb9+qXT/2P66Y/sfKo3nv/24O3qcTLPYfRrMf0iu0/q59tCdqhdzsnTtFbn/Fbwx4G+uCS2at0yexVwx7GCXOFnXrL7ncOexhtOed05fbX6crtr+t5WS+cuVgvnLm4D6MajmdPPVfPnnpu5uvNu4Jef9Iv6/Un/XJflpdL+DVEu+163YdDLdZ+wqrnTD9Pz5l+XvvBJfjWkX/SXz7+kXXTrXAqMMqqcUVL8WJw3lxhV4dLC3/3svaRrX3JM4rn6LfO+NC66Qv1w3r3j94SvE25saTZ/PaU4wxr97kTYoWRx91NC9cHpzs57Z19VcajQdbOnvoJ/frUtcMeBgAAAAAAAAAAAAAAAAAAAAAERcMeAAAAAAAAaVQTwmjDUDTCaKGYlhXYkqS5/M7Uy6k0wo/B07dJH0ZbaoTDaNOBcNgwFLoMoyU91sWoFJxuRe46DaNZkQhr+bFirfhqYL3h59FajvVaPL6s3uMtZSMAU4qme142AGDjc851HTytG2HZvBv833wp5cLbuX5sW4GszdcOmvOs7yOWTpPUVvTX2oe19nmlzr7vWLoJo8nc/x9fR+rzumvxG8F5501fqJ0Tp2Q8IgAAAAAAAAAAMDo23u9GAAAAAAAAAADjZ/BnDwEAAAAA0AfWCfWTbjhhNDOm1Vh/sn5S0GyukD6M1i4EsGzEzsLXXQxOn4pGI4xmBVRqbUIGFSPiNemKilwuOM+KMlQ6DJ84IxPRLlzWGvfrNESWHI/oPd5ixyzCoTkAAFoVXCEYI2q3XbcCRlZAtZ+s7dyKr6rhG8oZ+xXAKJqvJ4XRdgx03fa+bXgfdsJNKlJOsRqBZQ0njLYRT/259chX1VA9OO+y2X0ZjwYAAAAYDOfcnKTzJT1L0nZJRUkLkg5IusN7/6MhDq8nzrmCpJdL2iPpVEnHJO2XdJf3/oEhDg0AAADAhtfpn9EBAAAAAAAAAKA7hNEAAAAAAGOhGleC04cVZ7JjWusjUkmBrbl8OIwWuo0VqFrVLpzWbDkOR9SmcqMdRmsXMrBCYMWcHQ+zI3fhZXnFwenOhQ/8SwyXNZY0m9++Zpr1erFe6wU3YcYjOo27BcdovK5KCY8pAADNut2uW+E0a3n9lBQ2rcblkdlnAtKwwmgzuW0qRBMdLcuKAXsjH2bv24bfY845lXJTWgqEnPsR/W0XZAyx7tu4aviGbl74++C8nYWTdd70hRmPCAAAAJuNc+6Zkl4s6aKn/n+hpJmmqzzovT+zi+UWJL1C0qsl/ZSOR9GSrr9f0n+T9DHv/eMdrus9kq7tdIxN/tJ7/8ud3sg5t0vSeyX9vI7H3kLXuVXSH3vvP9/D+AAAAAAAAAAAAAAAAIChIowGAAAAABgLVR+Ogk1GxYxHcpwVhQpFpJJO4J8rhMNooShXu/DZciN9GG2pEQ6jTedmgtOzVugyoNJpeCFpnrUsb3QRrL+HmhRl6ySkV8pNh9ebFI8w4m6dsIJ8SY8pAADNug2j1X29o+X1U2LYNF4ijIaxcrh2IDjdijQnMmLAFuu7UFJkdyqaDu7bLncQgra0+9wJ2WhhtO8eu00L9UPBeZfO7lPkooxHBAAAgM3AOfdTkt6l4zG0YNCrx+W/RNL1kuY6uNluSf9J0r93zv177/1/7/e4+sk5t0/SpySd1OaqF0u62Dn3GUm/6r3v/csUAAAAAAAAAAAAAAAAkDHCaAAAAACAsVCNK8Hpk1Ep45EcV4rCkaqaX1HD15VzT3/ltkJXBTehLbmtwXmh21iBqlXtwmnNlo0w2lQ0GpGPbgMqZnghIW5iR+6MMJoRRnAKBwQmXVFOkbziwDrSh/QS70MUDqNVeoxH1H1NNb8SnEcYDQCQVvdhtPA2KIswWtJ2rtwoS4MfAtA38/WDwelzhV19XEt4H7mv4eI+RH+tz5VEVhl5TN208OXg9IKb0Mu2vSLj0QAAAGATeYGkVw5w+bsUjqKtSPqepMclHZG0Q8fjbDuarjMr6dPOuZO89388wDF27amw3F9Lmmia7CXdKenHOn4fXiipuYD9JklbnXOv9d6v/wUFAAAAAHRlY/3eBAAAAAAAAKOHn0ABWEUYDQAAAAAwFqwoWHFIYbSk9Zbj5TXBMysGUIqmzOWs+Oq6wFq5kRy5Wu4kjBYbYbTcaIfRam0CKnZ4wX6+rOCYtSwrjGZxzqkYlYIRtNZ1eO9VNoIPSffBikeU28T02qk07NsnhdoAAGjW7XbdCqcNO4zWa3gUyNp8zQij5XcGpydxcsHpVjusm/3zqVw4Qt3J9x1L3dc7vk2n+/+j7LHqw/rB8veC8140c4kZ7gYAAAAGqCrpEUln93GZxyT9D0nXSbrVe7/mB93OOSfptZL+s6Q9TbM+7Jz7nvf+q12s8xckfbPDMabinDtN0he0Nor2dUlv9d7f03S9SUm/Kun/0NNJ91dL+t8lvbuDsQEAAAAAAAAAAAAAAABDRxgNAAAAADAWqnElOH0yKmY8kuNKUfhkfUmqNNaG0ezQ1VTicloDa2UjKvD0etKHApYaox1GK0Th4Ek9Tg6oWI910uNsR8WsxzscRrAiEcfXPxUMo7WOt+5raigca0i6D3bcrbd4hBWykJKDMQAANCsYITMrfLaqZmz3reX1UyEqKO8KwTH2Gh4FsjZfN8Johc7DaJ2y3i/J++fheaH96U5ZQcZIkWLFwXkbKYx208L15rzL5q7OcCQAAADYpGqSvi/pdknffur/35P0ckn/1IflPynpjyR93HtvfoHw3ntJX3TO3STpZkk/0TT7vzjnznvqOp143Hv/QKcDTum9kuaaLt8q6Qrv/ZpfnHnvqzo+/ockfbFp1m845z7hvX9wQOMDAAAAAAAAAAAAAAAA+i4a9gAAAAAAAEijYpxQPxmVMh7JcaWcHYVqDWpZYy9GJRUTxl9prL1dUqRKkpZThgIavmEuazoajTBavsuAinW/ijn7cbajYuFlxT4cTHDO/jFLKReOO7SuIyl+l/Sas5ZvheLS6nY8AAA063a7XvfhWGjeCKj2mxUBbbdPBowS773ma+Ew2vZ8/8JoVjysYkai7f3zKSuM1kEI2mJ97hTchHmbjRJGq8RlfetouDVxZvFZOqN4TsYjAgAAwCbzl5K2eu9f6L1/q/f+z7z3d3rf5ocD6X1L0jO99x9OiqI1894fkvQL0ppK8rmSLurTmHrmnHuWpF9qmrQi6Zdbo2jNvPd/reOP96pJSdcOZoQAAAAANqSOW9EAAAAAAAAAAPQfYTQAAAAAwFioxuFzPJJOqB+kpPW2xqTKRrCslJtSyTjpP3S7pEiVlD4UkHS9qdx4h9GsxyjpcS4aga9yY1m+gwP9XMI86/WS9rVyfBl2iMxafq/hlqTX3LDeewCA8WOFzNqH0cLzrf2EfrPiqe32yYBRshQvasVXg/PmCp2H0Zy517t+v9l7b75frH1wyQ7w9uO9V4+NMFpkh9FC920c3XbkBjPavXf26oxHAwAAgM3Gez+fFPPqw/IPpA2itdzuO5JuadWc6psAACAASURBVJn80/0ZVV9cIynXdPkL3vt7U9zugy2X/41zrti/YQEAAADYvJKOkAIAAAAAAAAAoH8IowEAAAAAxkLVOIF7MhrOeRw5l9eEmwzOa41RWSefF6MpFXPpA2uVRng5q5YTolrNluJFc96oh9FqbQIqVggsKeJlRU9iNVTzK+umezOMYB/4Z4XZ0r5Wji8jIR5hLL/XeIT1eBbchHIu39OyAQCbh7ldNwJFq+qB7XDS8vrNDI82CKNhfMzXDprztud3dbw8O4y2Xs2vKFYjOK+rfduUIegk3QQXO2gljyzvvW5auD44b0tuq1408/KMRwQAAACMlLtaLu8eyijCXtdy+S/S3Mh7f4+kbzVNmpb0yn4NCgAAAAAAAAAAAAAAABg0zmAFAAAAAHTsrx77iA7UHs90nY+vPBKcPpkQvBq0UjSllUZ13fRySyzDilMVoynlXUEFNxEMcLVGqcptwmdpQwHLCdebzs2kWsagFYwwgRUyWNX62K9KCi8UE+aV42VNRGsDeFYYLSkSYa1/3WvFeG6cXOJr3boPvYbR7MczHKsAACAkb8Q0223X674enG7tJ/RbKWeFTZNjtcAoma+Hw2iRctqan+3bekJ7yEn7okn74Oa+c4/7tpIdWrai18eNfxntvvLd2r/yUHDexduuUCGayHhEAAAAwEhp/QHESOwgO+dOkfT8pkl1SV/vYBE3SHpJ0+V9kv6295EBAAAAAAAAAAAAAAAAg0cYDQAAAADQsUeq9+uR6gPDHoYkadIVh7buYm5KRxrz66a3Bs1aL69aPeG/FE2p1lgfRmuNUrWLcLQLp61abiwGp0fKDfXxbJbvMoxmPdbdhBdWl7dNcy1TOw+j2eGypZbL4fFPRiVFLjKXb92HihE2S8t+PIcXJAQAjJ+CC59P3G67bgWMrP2EfrO2d2n3uYBRMF8Lh9Fm89sVuVwf17R+H9nal5SS9yetKGE/3nvW505SGCzeAGG0Gxe+HJzu5HTp7FUZjwYAAAAYOee0XH5sKKNY77ktl7/rve/ki9GtLZfP73E8AAAAAKCN8AdlAAAAAAAAAADjwT6jFgAAAACAMTDMQJMVo1oXuzLiVKuxLCua1RoSaBcCqPkV1eL1gbVWy/Gx4PSp3BY5Z8e9stR9GC0cjyvl7PhZUjQt9Nx5K4yW8NhZ628db7chsqKxfCu0lpZ1eytWAQBASLfbdWt+dmG0dNtvYJTN18NhtLnCzq6WlxQDbpX0XilF9v6kNa/cGGAYLfFzZbxP8DlSP6x/XvxmcN5zpy/SjsLJGY8IAAAAGB3Oua2SrmyZfFsXi/pV59zXnHOPOucqzrlF59wDzrkbnXPvc85d2sUyz2u5fF+Ht/9Rm+UBAAAAAAAAAAAAADBy/HgfugugjwijAQAAAADG2nRuZmjrThvLsGJXq7GstFGrNBGO5TbxNElaaoTDaNO5LW1vmxUrTFBLCKh47xPCYnb8bDIqmoGH0PK88dPVpEiEtf7W59gMkSWEI47PH0wYzXrNDTNICAAYP3mXD06v+3ri7YYdRksbwQVG2eHageD0uXx3YTRLKB6cFDKbjIrmPCvCW/UVNXyj88E1sT9XJszbWGHkcXHLwlcUK/y4XTZ3dcajAQAAAEbOr0pq/gHAEUn/1MVy/q2kyyXtljQpaYukMyTtlfRuSTc5577tnLuig2We03L5oQ7H9GDL5R3OubkOlwEAAAAAAAAAAAAAAAAMBWE0AAAAAMDYKkVTOqv07KGuP6TcaA2aJce6rOW03i4pLNDJdZaNMNpUNDphNCt4YoUMJGnFVxUrDs6zHmNJilxkhr5CYTE7jGCH0ezXytrnq9Kwwmj2+KWkSF9vYTQr/NJuPAAANLO260nBU8ne7lsB1X5LG8EFRtl8/WBw+vbCru4W6Ox93lZJkd3I2b+iTNrX7HX/1vrcmUgIo42zhq/rloW/D87bVThV5049P+MRAQAAAKPDOXempP/UMvkj3vuVAa3yIklfcc69z7lUX65mWy4/2cnKvPfHJFVaJm/rZBkAAAAAAAAAAAAAAADAsOSHPQAAAAAAALqRd3n9u1PeoZwb3lfbYs6IXbXEpMoJQQApIZoVtwbW2kc4rJBVs+XYCKPlRiiMFnUeRgtFzFZZYZPm+aHbdxJeSDqLKW1YxboP1mttlfUaqvuaanFNBePxbKfSsF67hNEAAOkVjOBQvc15xlbAyAqt9ZsZrzVCpsAomq+Fw2hz+Z1dLS99Fq19INoyFU2b88qNZU3nZjoYxVpmcDGyw2ixD8eXx8F3jn1LRxrzwXl7Z1+VGKgDAAAANjLn3ISkz0pq/oLxgKQ/6nBRj0r6sqTbJN0j6bCkWNIOSRdK+hlJVzWvWtK7dfwP2r6rzbJbf2nTTam9LKnYdLn7L1RNnHMnSeq0uH12P9YNAAAAIAvWH40EAAAAAAAAACA7hNEAAAAAAB3bO3u1FhsLQ1v/1tyczp1+vnYUThraGKSEWEZL7KpixMpWb29Gs5qiG977VJGu5RRhtKVGOIw2PUJhtIIRPKnFdhgtKVJiPVfN80O5gFCoLFY4jOBkRwVKKSN61nPcdvwJ4bRKvKRCNJt4e/u23cUsAABoZoXMkoKnklQ3tvv5jMK4dgSXMBrGQ+wbWqgfCs6bK3QXRkvivZdzT6fTrPdKu33bpChwmhB0EjOMZgQcx92N818OTi+4Cb1s2+UZjwYAAAAYKZ+U9JNNlxuSfsl7n/ZLx206Hjz7qvfeKgbcKumjzrmLJF0n6VlN837HOfdN7/3fJKyj9Zc2lZRja1aWNJewzG79mqRr+7QsAAAAAGOlkz+jAwAAAAAAAABA9wijAQAAAAA6dsnsK4c9hJFgxaGaT9avxTXVfT3x9nY06+mQwIqvmkGuNbdptD9nZ9kIo01FoxNG6yagkhQpSYorSOnidCcYpzi5hOP+rOXX/Ioavq7cU4EXK/TQNh6RML8clzWj7sJoZsyizeMJAEAzK2Rm7SM9Pd8Io0XZBIxKUSk4PU2sFhgFR+sL5neIuXy3YTR7p9fLyzXN7zayW4qmzXk9h9HM4GL4+4d0/H6No/3VB3Vv+fvBeS/euldTIxTGBgAAALLknPsDSb/YMvld3vub0i7Dex+uEIeve7tz7qWSviHp2U2z/tA59/967xtpF5V2nT3eBgAAAAAAAAAAAAAAABi6aNgDAAAAAABgXFkn7FfictO/7XDGalzKXs7Tt02KfjVbThEKWI6NMNoInRjfTRjNeqydIk26YuL67Djd+sfTDiPYkYiksFnzc1tplIPXaR+PsOdXeohHdBuzAACgmbVdryVs1yV7u19ICBj1U9HYR0u7XwYM2+H6AXPeXKG7MJpL2OdtVQ5FhtU++ptzOXP/fTlFCDqJ9blTSAwujmdH4MaF6815l81eneFIAAAAgNHhnPuPkn63ZfIfe+8/NMj1eu8PS/oFrf2Cca6kn064Wesvc8IF92Sttwn/gggAAAAAUhvP35sAAAAAAAAAAMZPftgDAAAAAABgXBWj8Dko5aaT9ZPCGatxKXM5a4JZ6QIc5RShgKXGYnD6dG4m1TqyUHDhMEFSQMV6rItRSc4lBxys0Fdz5G6VVxy8bpTQn7fid9Lx53ZLbqsk+z5Y4bZV1mtIsoMUaZjjIYwGAOhAPjKCp/FK4u2sMFreZfOrjZKxfa37mmpxTQXjfgGjYr52MDh9wk1qOhrEvv/aE2HMyG6u/bn8pdy0qvXKuulJ4ek0rM+VCeP7hyTFfvxO8Ck3lnXbkRuC884qPkenF5+Z7YAAAACAEeCce6ukP26Z/F+99+/MYv3e+zudc1+RdFXT5FdJ+ppxk1EOo31M0uc6vM3Zkv6mT+sHAAAAAAAAAAAAAGxQ43fkLoBBIYwGAAAAAECXSrlw7GpN0CzhxP3VuJQVzWq+bVJgrdly3P6clmUjnjaVEO/KmhU88YrV8A3lXG7dPOuxThPxsq5TjtuH5tJIij+U1zzP4fVZ4bZVkctp0hVV9evjEWlfOyFmzIIwGgCgA1bwtO7ribezgqh5l02QrJiwb1SNy4TRMPLm6+Ew2lxhZ9twsCXpVq0HIYQiw1K6fclSNKUFHVo3fbnH/XM7uGiH0cbx8Irbjt4Q/G4gSZfNXZ3xaAAAAIDhc879oqSPa+3Xmr+Q9PaMh/J3WhtGe17CdY+0XN7VyYqcc1u0Poy20MkyLN77JyU92eF4+rFqAAAAAAAAAAAAAAAAbBLRsAcAAAAAAMC4smJalbgs74+fPJ8UpSpGpTX/b1VupAusrb1NcijAe6/leDE4byo3k2odWUgKnlgxg+bHq1ma8IJ1nUpjfczBG2EEl5CJSIqzrQ3pheMRqeJuRqgv7WunlffefExLOcJoAID0rOCptU1vNz85YNQ/pcSwaX/iqcAgHa4ZYbT8zh6Wmv5Eduu7UJp9W3v/vPvor2R/rkxE9ueKtf8/qrz3unHhy8F5W3Lb9MItF2c8IgAAAGC4nHP/VscjaM3HSn5G0q/41V/mZOeBlstJsbN7Wy6f0eG6Wq9/2Hs/3+EyAAAAAAAAAAAAAAAAgKEgjAYAAAAAQJesk/W9YlV9RZJ94v6kKypyOUnJQas0gbVmy20iHSu+qrqvB+dN5bakWkcWksJoNb8SnG4FwNJEvKzrhB536zwp5+xIRM7lNeEmg/Oax22F7dLE3azARNrXTquaX1GsRtfjAQBglbVdTwqjee/NfZZCwn5CPyVt76yYKTBK5utGGK3QSxgtydr9ZGv/PM2+5JTxHand9512hh1czMIPy/+ix1ceCc57+bYrVYiy+QwFAAAARoFz7g2SPi0p1zT5c5J+yXsfD2FIrT9QsKvs0j0tl8/pcF3PbLl8d4e3B/D/s3enQZLmeWHff08eVZnV09NdPd27y+4Ci/CCYLmWXViWXWbAwMKsjThEIAksDEISWEjIlsIhh7EtobAjbEfIIfmVFLZD4AhZEZKFpAhpZ8ESYvYAZC4BkjiNkGDFMbNTPdPdldWdx+MX1dmdnf38nnzyrOruzydiYjqfO68n/1lV+U0AgCfWo/WlMQAAAAAAPJ6E0QAAAGBFWYgq4n4QLY8B3P+sS7adSUziTnk7IvJg1rxFyx2Pb6bzLrTOTxit28rDBFkkJQuANQkvZMtU3X9l+sd/eRitbh/T+2xSju8F9eZl8bwm288eg4vUBV/6rbrPagHAg7Iw2rAmjDaJcZRR/fnkTtHZyHEtUjeGGKwZZ4JdSMNondXDaEXNmHd+nDxIItF176PuL1M9/l33uZedd/ZqwmjZuei8+tDRByqnF9GKL7n8VTs+GgAAODtFUfyBiPjbETH7g4R/EBHfXJZl9beCbN/8G7LqN26n/uXc5c8pimKZby15z4LtAQAArKD+76MAAAAAAGBThNEAAABgRf12XSzj+IH/z+vNhK7qoxvTwFoeqXpw+fpQwK26MFr7/ITR6oIno0l1zCALgDULLyTRssptVofR6iIREfnjpcl93CREll6HJEixSN1jqUlsDgCmukkYbVQTRquLpmWhtU1rF+3YK/Yr5zUdm8FZOhq+VDn9Svfa6hstmn/YJY1E17yPmkrDaA2D0ZnsvFN3XsmyyOfR0fDl+Lmb/7xy3mc/9c717nsAAHiEFEXx/oj4uxExO9j/xxHxh8oy+faV3XjX3OV/ny1YluVvR8TPz0zqRMR7l9jXl85dfmGJdQEAAAAAAAAA4EwJowEAAMCK6uJQJ/diV1msqz/z75ow2t0P/i8Knk0dLwgFHE/yMNrBuQqj5WGCYXmncnoaXmgQFcvuy6ptTlYNoy3YRxbROz2+6jDEA8uk4bXV4hH1oTZhNACay17XR+UwyrL6dbUumrarMFpEPkZYNTwKuzKc3Ikb41cr5x12rm5ln/NP5zQS3SRcvCAqvKrs3LLX2kvXyc5T59FHXv3hmMSkct5zl9+/46MBAICzURTFV0bE34uI2YH+D0fEHyzL5BcMO1AURS8ivmFu8o8uWO3vz13+9ob7+v3xYITtVpzeBgAAAGt6dH5vAgAAAADAo00YDQAAAFa0V+xHK3lrPbgXRquOS83GALKg1ez6dZGqWccLIljH4+ow2n7Ri3bRabSPXegWeZggixlkgZJG4YU0WjaISTmem7paGC0Nq0zDaDWBlSYhsrrrsIpBTWRvv0FsDgCmspBZGWVMYv519tSoHKXb69YEjDYtizNlQVY4L45GH0/nrRNGqx/x3h8nl2WZjkObjW2rw8B1Y9QmsvcSnZr3H4/KB3xG5TA+er26c/C67hvj0w8+Z8dHBAAAu1cUxXMR8Q8jojcz+Uci4uvKsrx9Nkd1z1+IiDfNXB5HxD9esM7furvc1DcURfHWhvua9XfKsjxpsB4AAAAAAAAAAJwLwmgAAACwoqIo0g/snyyIXc3GAPaLXhRpYO3WA/9fZDC+FWWZf3D/1vhG5fSD9lONtr8rWUAlIg+lpOGFmvBck2Xmt5vevPWViDQAMX2MnNTcx03ibovCa8vKo379aBV+pARAc3Wv68MkUjSa3KnZ3u5irpt+fYVdORq9nM477K4TRlsw6L3rdnkSZUwq560TLl7nuTcpJ+l7ib2aMFr5iITR/sWNn4jXxtcr5z17+LwxPAAAj72iKN4dEf8oIma/2eNDEfE1ZVmu9g0i1fv5o0VRvH7Jdf5ERPzFucnfX5blv61bryzLX42IH5iZtBcR318URS9ZJYqi+NqI+LaZSXci4vuWOV4AAAAAAAAAOCs1H40EnjC7+/QQAAAAPIZ67X7cmjwcG7sfu6r+4P5sDKAoiui1+pXxs+n6J+Nmn9kZxyiG5Z3YK/Yr5x8n8a0L5y6Mlv/IYpQEVLJ43DpRsYjTQNhsOC4LPLQW9Od7SXztXkQvCZF1im50W3lQZioPrzWL6j203hq3JwDMqg+eDuPBzyufyoJpi7a3adnrazbGg/PiaFgdRrvQuhj7rfTz82uZDYhlkd2I09DuIv12dYC6aTC6yjiJokVEdFqPfhjtQ9dfqJy+V+zHFz39ZTs+GgAAeFhRFG+O6r9XfMPc5U5RFG9JNnOzLMuH3vAURfH2iHghImZ/2fHLEfHdEfG6omgWeb7rpCzL36mZ/x0R8TeKovi7EfF3IuJHy7KsfLNSFMU7I+K/joivn5v1sYj4bxoez1+8u/7h3ctfHBH/pCiKP16W5S/N7Gs/Iv5kRPyVufX/yqIAGwAAAAAAAAAAnDfCaAAAALCGNEZ19wP7gySa0Z+LZPVbB5Uf8p8G1pYJABxPbsVeKwmjjR+OuEVEHLQvNt7+LrSKdrSiHZMYPzRvWN6pXCeLL2T3UdNlTm/7awu3sXgfWdxhGtGrvo+bHH9EXXitWVSv6XpNjwcApuoCn6PJMKJdMf2chNGygFM2xoPz4mj0UuX0w+7VNbfcLCZwMs6fI1n07IFl0ujvcZRlGUtGDSKi/ryyV9SF0c6/j93+jfi1wb+unPeFTz/3QOgZAADO0Eci4pMbLPemiPg3ybwfiIhvq5j+tRFxaW7ap0fELzQ9uBkvRsSXLlimHxHfeve/SVEUvxoRvxERr0bEOCKeiYjPjYjXV6z7SkR89YL42j1lWf5WURTfEBE/FBHTNy/viYh/XRTFT0fEr8fpdf/8ePiXGf8oIv7bJvsBAAC4p3wUfjsCAAAAAMDjThgNAAAA1tBLPrA/jUqdJNGM+fXy7UyjWc3jVoPxrbjcuVI579b4ZuX0gyTadZa6RTdulw+H0bKgwWBcHRbLbtumy5yMH7ztyySNUERrwT6qwyrT+3iQxCOyoNrDy9VH+pbV9LELAIvUhcyy1/VROUrX6dYEjDYtHaONVwuPwq4cDV+unH7YWS+M1jRHVhcPzMbFs/pJyGscoxiWd2KvqA5B11k5uPgIfPjnxaMX0nnPXn7/Do8EAACeSK04jbB9eoNl/2lEfFtZlr+1zA7KsvzRoii+PiK+P+7Hz4qIeOfd/6r87Yj4E2VZ8YsWAACAlS3/5TUAAAAAALCK+k/sAgAAALWyWMY0RpXHpR6MAfTb2XaOH/h/E8c1IazjSXUY7UL7YuPt70oWJ6gKpUzKcdwuTyqXz4Jhs7qtvegU1f34+bBYGZPK5YoFf/iXBc6mQbQsftckHFG3/ewxuEgeahNGA2A5dcGhYRpGqwsY7e47X/Ix2mrhUdiVV0ZJGK27XhitzmxAOBuDFtGK/aK3cFt1Y85Vn3/Z+SYiYq+Vh9ay8f95MRjfip987cXKeZ/a/4x4c+8tuz0gAAB4/P21iPi/IuLfNlz+VkT8/Yj4irIsv2LZKNpUWZYfiIjPioi/HhFHNYv+RER8Y1mW31yWpR9gAAAAAAAAAADwSNrdp4cAAADgMZTGqMankassaDa/3qKo1TJxq+Nxdfysbt5B+6nG29+VTqsbVQ2C4eTOQ9OyqFhEHjSZ12sdxM3xawu3XZYPLXJqwReiZsdxci9+V/35pObHXx1QO5kMYlJOolUs18dPo37tZqE2AJjq1oTRsgDasHz49T4iohWtaBXtjRxXE1kEt27sAefB0bA6jHalc23NLeeD3iZhtF6rH0WxYOAcEQfJ+6OIiOPxrbjUubJwG/Pqg4v5eSob/p8XP/HaP0sj0c9dfv+OjwYAAHJlWb5li9v+SxHxl7a1/bl9/f04DZ1FURSXI+JtEfGJEfH6iDiI0y+rvR6n8bJfjIifL8tyvKF9/15E/GdFUfzZiHhPRHxyRLwhTuNrH4uIny3L8t9sYl8AAAAAAAAAAHCWhNEAAABgDVkkahq5mgbSHlpvLmKVRa0G47thtHHzMFoW2IqoCaO1zmEYLYkTVAUN6uIkWdBkXj8Joz0ct6tOI7SiPjyWHcf0/soier2aKMSsfjtf7vZkUDu/+riaRf0AYJG64FAWKsqm121rG/ppGK352AzOwtGoOox22H1mre02iZpF1I0lG0Z/a+LAqz7/6sJoe8VeOq88x2m0sizjQ9dfqJz3dPtyfN7FL9rxEQEAwJOlLMvrEfHRM9jvnYj4Z7veLwAAwPn/ShkAAAAAAB4X9Z/YBQAAAGplkajB5DjKskwjZfORqmw7J5PjmJTjuF2eND6mwTgPo92aVIfRLrQf7TBaXQyucXyhYfhksuIf+OVhlUGUZZkGHvpJNK/p9iPyMEWd7HiyiB8AZOpiZsM0jDZaelvbkIdNhdE4vwbjW+lY7rBzdSfHkIWdm44l94teGh4+rhn716kLo3Vqwmjn+QM+v3z88/G7dz5WOe89l79y5+dMAAAAAAAAAAAAAFikPL9/ngucI8JoAAAAsIa62NWwvBOTmFTOnw8C9Nt5dONkMljqmOpCAcfjG5XTD85hGK1bdCqnVwUNTsb5bZQFTZouN3go6lD9k9ciitrtZ4+VMsq4XZ5U7Gd6XNXRvIeXy69nFsaokz3umt6eADDVKlrRinblvCxUlE3vnpMw2iqvrbArR6OX03mH3WtrbbtuxFvO/IVCNpacD0Sn+ymKPEKdjJsXGU7qwmj5uaU8x3958eL1D1ROb0Ur3nvpq3Z8NAAAAAAAAAAAAACwnnP8p7vAjgmjAQAAwBrmA2dTg/GtGNQEM+YjG+l2Jse128n2XWVSjtNtHbTOXxitU+xVTh9WhdGS69UpOtFtVW9nXh6ne/D2LLMwWlEfRqsLitU9XrLjemi52u0vH4/IHkd1+wGATBY0ywJow8mdyumd1m7DaOn4YHx8rmNJPNleGb5UOb2IIi53rqy59fox79T8GHoqe99Tpen4vKnsfBNx+r4hCx1n4/+z9srwpfj5mz9ZOe9znvrCOOxe3fERAQAAAAAAj4fz+bsRAAAAAB4fCz6GBxARwmgAAACwln77QuX0k8lxGuuKeDgu1W/l21k2apWFAo5rAgIX2heX2scudJYIqGRRsboYWdNlTyaDBy5nEZQspDBVFzg7mQzSx0vT69Bt7UWn6FTOWyUeMX+97x1Pw1AbAMzKX9dHyfTqgFG2nW3JXocnMY5hWR1vg7N2NPp45fRLnSvRTsaLm3F/nJyOJZcYn2fvkbKA7yJ155XTyPGj9RcWH7n+w1HGpHLec5ffv+OjAQAAAAAAngyP1u9TAAAAAAB4dAmjAQAAwBrmA2dTgwVBs/kgQK/Vr97OuD6wVuV4fHOp6RERB0ng7Sxlka+qoEF2G2X3zzLLzkfFyvRbUReE0ZKww3QfWdxtmevQNO7WRBZTW+Z4AGCq06oOmg0n1XGxLJi26zBa3eveKq+vsAtHw5crpx92rq697boY8Ow4eRNj2yxCvUr0NyJiuCC4mF23fPx/doaTYXz01R+unPeGvTfHpx189o6PCAAAAAAAAAAAAAAANkcYDQAAANaQhaiG5Z24NblROa+IIvZbvQemZR/6P5kcp1GBzHESCqgNo7UuLrWPXegWe5XTq8Jo2W2U3T/LLNs0elIXiYg4vT6t5Ecxg8lxnCQhvc3E3ZZ7DJVlmV7vZW5TAJjKgmZVr+t103cdRsvitRGrx5lg214ZvVQ5/bD7zM6OIRvbLjOW3NTYdmrReeVRCqP9i5s/FjfGr1bOe/by81EU9e9NAAAAAAAAAAAAAADgPBNGAwAAgDXURauOhi9XTt9v9aNVPPiWPAsE3Clvx61xdWAtMxhXRzpuTarDaK1o1UY/zkoWPhlWBA1ONhBGS8MLc7dnGZPK5RaF0YqiiH6rOoA3GOcBvF57/bhb9pjI3C5P0gDEMqE2AJjaVBitu+MwWt3rXtN4Kuxa9j7ksHNtZ8eQh4ubv+/Ix86rRQkXnVeylth5DKO9ePRC5fT9ohfvevrLdnw0AAAAAADAk+P8/d4EAAAAAIDHkzAaAAAArKFfE606GlUHCapiALWBtWQ7mcGkOhRwPK4Oox20n4oiqwCcoWUCKoNxdXih7v6ZlwXI5qMn6/x5X7aPG+PrMYlx5bxlQmRZGG3Z+5MAfQAAIABJREFUcMtJcnvW7QMA6nSLTuX0UTmqnF4VQo3Ixwfbsl8TcVo1zgTbdj15/3DYvbr2tutiwLMBsWz82W9Xx86ql02iv0l0bZEsjHb/vJKV0c7XB3x+8+TX49dPfqly3hde+tKl3gMBAAAAAAAAAAAAAMB5JIwGAAAAa6iLRB0Nq4ME/dbDMYDaMFqynczxsmG01lNLbX9Xuq0kjDZ5OGhwksQRqiJ0mew+eCi8kIQRWsXiH7P0k+N5ZfhSzTqbiEcsF26pi01kcTcAqLNM8LRu+q7DaK2ilY4nlg2Pwi5MykkaVr7Subaz48jGn8uNz6vHwcuObacWBRez6Fu5Vhp58z50/YV03nOXn9/hkQAAAAAAAAAAAADAZp2vv9wFzpIwGgAAAKyhNow2qo5dVcUA6mJTWdggMxjfirIi3nVrfKNy+YP2+QyjLRNQyUJey0TFsvtyPro2iUmyheqQwoP7qD6euvt4M/GIPHRWJQvNne5DGA2A5XWKvcrpw/JO5fQ8jNbZ2DE11XSMAOfBzfFrMSpHlfMOu1c3sId8zDsbEMvCgXXvn+alY9vxamG0ReeVRyGMdjy+Gf/vay9WzvsP+m+LN+5/8o6PCAAAAAAAePycn9+NAAAAAADw5BJGAwAAgDW0i3bsFfuV846GH6+cXhWWqotNHQ2ro1mX2oeV0ycxidvlyUPTjyfVAYELj1gYbVgRNMjCJMtFxarvg1E5jOGkOqIwa3EWLd9Hdh9HRPTby8Tdqq/vsuGWLKTWilb6eAeAOlnQLAs4ZQGjbhJY26bs9XvZ8CjswivD6jhzRMRhZ/0wWlE36L37GZlJOYnbSRhtmcjuQTIOXvW5t+i88iiE0X781R9Jg5LPXX5+x0cDAAAAAAA8eZr8hRQAAAAAAKxPGA0AAADWlMauRtWxq1774eXbRScNfWTbOexeS4/peHyzYtqNymUPWhfT7ZylbhJGqwoaDMbVcYR+a5moWB5pOJmJymVhhKLBj1myfWT3cRFF7Be9hdudyq5vdvtk8tDcQRS1NQwAqJYFT7NQUTY92842Za/fy4ZHYReycWWn6MZT7ad3cgy3JyfpmLluzN102UESfF4kPa+0dn9eWcWknMSHrr9QOe9S+zA+7+IX7fiIAAAAAAAAAAAAAABgO4TRAAAAYE29dnWMaljeqZyehdTSqFXywf8rNWG0qnVuVcTSIiIOkuM/a8sEVE4mg8ple61+4/31K4J1U4OZ7adhtAa9sGwfr45eqZzea/WXCpFl21823JKF1Ja5PQFg1jLB04iI4eT8hNGysduy4VHYhTSq3HkmWsX6vxYsIh+bTsfJdWPPujH3vIPk/dHJZBCTctx4O1OLzitFcvuUZfX4f9d+6fjn4qXhb1fOe8/l90W76Oz4iAAAAAAAAAAAAAAAYDuE0QAAAGBN/SVjUb0krrFsdOpKpyaMNn44jHY8qQ6jXWhfXGq/u7JMGC2Lxy0TXsiiJxERJzPbz8MIiwNm2T6y2FoWy8tkj61lw2h5aK757QkAszrFXuX0LCSbBdM6rd2Hf3rt6jHasq+vsAtHw5cqpx/WRJWXUzfmnYbRqseSEcuNJ+vG8nX7yKTnlbtBseyaZWP1XfvQ9Rcqp7eiHe+9/FU7PhoAAAAAAODJdD5+bwIAAAAAwONPGA0AAADWtGwsKotj9dvLRbAudi5FN4mMHFeEwo7H1WG0g/ZTS+13V7Iw2rAiaLCJkFddmG4ws/0sjFA0CKMt+1jZ1GNrsGS4ZROhOQCYlQXNRpNR9fQ0YFQ9PtimPDy6fJgJtu1o9HLl9MPO1Z0dQzaWjKiPET+8bP7+qG4fmey8cv89VfV4/jyE0T4+/L34hZs/VTnv8y6+Ky53ruz4iAAAAAAAAAAAAAAAYHuE0QAAAGBNdR/Yr5IFuJaJBJxu5yAOkn0PxkuE0VrnM4zWTcIn80GDUTmMYXmnctllbtNW0Y79olc578Hbc/Uw2rL38bIhsjSMNj6OsmwedNhEaA4AZmVBsyxUtDhgtDt5eHT5MBNs2yvD7YbR6sa809FmNpZsRWup53Dd+6zjivc7iywKLubX7ezDaB++/kNRxqRy3rOX37/jowEAAAAAAAAAAAAAgO0SRgMAAIA19drVobNMv139Af8smJZup3WQbut4LtRRlmXcmlSH0S60z2cYrdNqFlA5GVeHFyKWD3n1khDZbNyhXCeMtmTobOnjT5YfxygNQVTJQi/Lht0AYKpp8HRqmAaMOhs7pqay19cs/gRn6WhUHUa70t1MGK2Jk8lx5fR+60IUxeIx873la8bOg2QfdRadV7JjO+ss2nByJ37s1f+nct4n7H1SvLX/th0fEQAAAAAA8Fhb4ssXAQAAAGDT/HgKmBJGAwAAgDX1W9VxskwWQFtlO9k6g/GDYatheScNjxy0zmkYLQmoDCdzYbSaKMKyIbIs/DUbCiuTn642iTwsGzpbNkS2qXhEFptb9vgBYCp7Xc/GJ9n0bDvblI4PxtUhUTgr43IUr42OKucddrYfRpsGhAfj6nHnskHpdtGJvWK/ct4qz79F55UsdFyWk6X3tUk/c+OjcXP8WuW8Zy9/9VKxOQAAAAAAgPX4vQQAAAAAALshjAYAAABrWjZelcWllo94XYiDdnUY7XjyYCjgeHwz3c5B+3yG0boNAyp1wa9lQ17Z8ieT+6GwafDhYYv/8G/p0NnSsby6MFrzeES27LKPUQCYSoOnj0AYrZe8/s2OD+A8uD76eDpWPexe28g+snjYqdN9Z+HiVSK7/eT9zjLR36nsvNIt9u7+KwmjLb2nzXrx+guV03utfrzr0pft+GgAAAAAAAAAAAAAAGD7hNEAAABgTct+wD+LYy0d8Wr303DWYPxg2OrW5Ea6nQvti0vtd1ey8Mk2w2jZfTN/e1Zp8n2ovWVDZ+3+UsvXhdeWibdky64SswCAiOav64um3w8Y7U72+rdKmAm26Wj4cjrvsHN1I/soisWj3uy5sWwkuG6dZaK/U4uCi610RH92abR/d/Jr8Rsnv1I5711Pf1n0Wsu9XwAAAAAAAAAAAAAAgEeBMBoAAACsqd9eMmiWfLh/2VBAv3Uh+u3q0NbxXCjguCbsdZBs46w1DaicJOGFvWI/2kV7qX1m983sPsqYVC5TNPgxS3+DobMq+61+FEnQoUncbSq7TYUXAFhVd+kw2qhyeqfobOyYmspej08mgyjLswsmwbyjUXUYrdc6WPo9yyqmz4Z8LLlKGK1ZCLqJ4SQLo03PK9Xj6PIMw2gvHr2Qznv28vM7PBIAAAAAAICIs/xCGQAAAAAAnizCaAAAALCmpYNmSZRg2VBAr9WPg9ZTlfMGc2G0W+MblcvtF700QHbWsoDKJCYxLsf3Lg/G1eGFZe+XiPy+OZkM7v07+/O+LEj24DEtF6FbdvlW0Yr9JF42SAIVyyy77PEAwFTT4OnUsLyz1Ha2KRujlTGJ2+XJjo8Gcq8Mq8NoVzpXd3MAd0OB2VhylchuFoKef7/TRHa+mZ5XstH8WYXRbo5fi5+68eHKeZ928NnxCfufuOMjAgAAAAAAAAAAAACA3RBGAwAAgDUtHzSrXj6LcuXb6cdBFgoYPxgKOJ7cTPZ5fkNXdeGT2ajBSRZeWPL2jMhjarPhhXXCCMvGIFaJR2TrZLdT5bJJbG6V4wGAiOXDaKNJfcBol+piq7PxVDhrR6PqMNphd3NhtCYx4JNx9fNilchuPj5vPradys433dbe6T+K6utWlmcTRvuJV38kjUQ+d/n5HR8NAAAAAAAAAAAAAADsjjAaAAAArKkuljGvFa3YK/Yr5y0TWNsvetEq2mlcYD6EdjyuDqNdaF9svM9daxpGy6IIy9wvU9l9MBs9KctJ5TJFsfjHLK2iHftFr/HxrBKuyx4TTeMRk3Ict8uTjR0PAETkr+vDLIxWjqq309p9GK0utjofo4Wz9Mrwpcrph51rO9n/NCA8GxWe1WsvH9lNx7YrPPfS88rd81Mefdt9GG1STuLD1z9YOe9y55n4nKfeteMjAgAAAAAAnhxn86UxAAAAABDhp1PAfcJoAAAAsKZlgma91kEURfUH7pcJeU0DVQdJqOp4LhRwKwmjHbSearzPXeu29tJ5sxGVkyT4tcz9MpXdB03CC1lGYV5dXOWhZTd4HU7GzcJosxG4h7e9fMwCACIiuknQbFQRRpuUkxhHdcCoWxNO3ZZezetf3esm7Nr10cuV0w+7Vze4l3zUOw2jZc+LVcLF/WTs3DT6O2tY3qmc3ik6EZGH0c7ijyt+8dbPxkvD36mc995L74t20d7xEQEAAAAAAEQ0/wspAAAAAABYjzAaAAAArCn7sH6VurDGcoG10+30W9VhtJPJcUzKyb3Lx1kYrX1+w2jTQEGV0eR+RCWLItTd1pksWjYbdyiTNEIWUpi3VABvhXhEdh2axiPqlusljzcAWKSTBM1mX9PvTauIpS3azjbtF70okl+nDCaL46mwK0fDj1dOP+xsLozWZMSbj89Xif4mIegVnnvZuWV6XsnDaJPK6dv04vUXKqe3oh3vufy+HR8NAAAAAAAAAAAAAADsljAaAAAArCn7sH7lsu182bp52T6zfZdRxu2ZmNfxpDqMduFch9Hy8Mls1OBkXB1eWOZ+ub9OFhW7H15YN4y2TBBilTBats5JwzBa3XL9FWJzABBRE0YrRxXTzlcYrSiKNLg6G0+Fs3R7chK3Jjcq513pbi6M1kQ2nlwtjJaMbZP3AHWyc0u32Ft6W9v08p3fjX9166cr57394rvjUudwx0cEAAAAAAAAAAAAAAC7JYwGAAAAa+oWe9Fq+BY7i2osmpcte1ATNjueiXndGldHEg5aj2YYbVjeuffvQRZeaC8f8cpiDSeTQZTlaRBt+v+HFM3CaMvEznrtzcUjZuNudU7GeeBllZgFAETkr+vjGMWknDwwrSqWtmg727ZueBS27Wj4cjrvsLO5MFpdDHgaEM7DxcuPJQ+SePRxw7HtrOzc0ik6ERFRFNXv6bIw8rZ86PoL6T6fu/z8To8FAAAAAAAAAAAAAADOgjAaAAAArKkoiui3qj+wP68uLLVf9BoH1vp3g1kHNfsdjO/HArJwQF1Y7ax1i7103mzU4GRSHfJqep88uE71/VNGGbfLk3uXqtRFIh7YxxKxs1XiEWncrSZ4NisLqHWKTnRb+X0CAHW6NUGzUTmsvdx0O9uUvb4OkgAU7Noro5fSeZc3GEaLBWPeSTmeGTc/aJXoby8Z059MbuXB4gplWT4QV541DS5m12yZ/azrzuR2/Pir/7Ry3hv3Pjk+tf+ZOzsWAAAAAACAh+32C2UAAAAAAHhyCaMBAADABjT9kH9d6Kooitpw2gP7u7tcXWTreHLz/r/HNyqXudC+2Gh/Z6FTdNJ5s8GUkyTk1Wv1l95n3e0/Dc2Va4bRmt7H3WIv2jW3QSZ7TAwmzcItWWiu6XEDQJXOhsJoddvZpuz19aTh6yts29Hw5crpT7cvR7e1q+dNmY4lIyL6K4zPsxD0qBylobMq4xil86ZB5mw8n43/t+Gnb3wkbk2q37s9d/j+KIpm7zkAAAAAAAAAAAAAAOBRJowGAAAAG9D0Q/6L4lJNY17TwFq76MR+0atc5nh8Pxh2a3yzcpksNHAetIp2tJIfXcxGEAZJfKG/wnWrC81NIw/rhtHq4ngPLrfafZM9xgZJQO7h5aoDL02PGwCq1IfRHgwW1cWOziqMlr++CqNxPhyNqsNol7tXN7qfui5XWeaR3YiI3obH58s8/+bPM7M698Jx2ZXbXRjtxesvVE7vtQ7iC55+dmfHAQAAAAAAAAAAAAAAZ0kYDQAAADag6Yf8F4XP+u2m27kfCMjWmYawJuU4TpJowIX2xUb7OyvdYq9y+qgc3vv3ybj6ujWNzD24Tl144fT2XDeL0DR4tsrxn26/+jrURSoeXC67PYXRAFhdtzaMNpy7XBMwOqMwWv76KozG+XA0rA6jXelsNoyWx8NO1cV4m8akH1wnHzsPxs3CvxERo8kwndcpOhGRh453lUX7jcGvxr87+bXKeV/09H+48vsDAAAAAACA5ezuS2MAAAAAYF7px1PAXcJoAAAAsAFZLOOh5RaEzxpvZzaMlsQCpqGAweQ4yuQP1g7aTzXa31nJ4ifTYEpZljFIgiRNI3Oz9or9aCU/LpmGxcpyUjm/KJr9mKXX3sxjJd1+8hhqGo7Iw2hCDACsri5oNizvPHC5PmB0NmG07HVQGI3z4mhUHUY77G46jFanjJNxHuNdJbRbNybO3gdUmT/PzJqeV4oiC6Pt5q8rPnT9A+m85w6f38kxAAAAAAAA1Kv/Eh0AAAAAANgUYTQAAADYgKYf8l8Ul2q8nZm41kESCzienIawbo1vpts5aJ33MFqncvqoPA2mDMs7MYlx5TKrhLyKolgYmkvXbfiHf6vE75aRxSNulycxKatvq1mD8eZCcwAwVRc0m76uZ5cf3E712GDb8vCoMBrnwyvDlyqnH3Y2G0arG/OWUaaxwE7RiW5rb+n97Re9KJJfZw4mzcK/EfXnlW4xPa4kjJaEkTfp5ui1+KkbH6mc9/sPPjdev/emrR8DAAAAAAAAAAAAAACcF8JoAAAAsAH9dtPYVX1capVoVhryuhsKOK4Jo11on/MwWhJPGE7uRETEIAkvRCy+rTO9dnVQ7WQyiIjT4EOVpt+HuqmIXqZfs970OtTJYharHg8ARER0WnVhtNEDl4flneptFN0oirP5BvJsrNfktRW2rSzLOBq9XDnvSvfaTo8lG583HQPPOw0XZ2HCZcJoo3TeNNx4NmeXUz/26j9J423PXn5+x0cDAAAAAAAAAAAAAABnSxgNAAAANqBp0GxRXKppMGA2+nXQrg6AHd8NBRxPqsNorWitHCjYlWmkYN40GpBFvCLWCYsl4YW7obkyJpXzi4Y/Zmkev1sx7FazXl1IbtEyqx4PAEREdIpOOm80eTAGlAWMsnHBLmRjpun4AM7SrcmNNCh42Lm6s+MoYzuR3X7yfmeZ518WHYu4f37KxvNZGHlTJuU4PvzqByvnHXauxmc/9QVb3T8AAAAAAEBz2/29CQAAAAAATAmjAQAAwAY0D5rVL9dvLx9Yy4JV01DA8bg6jNZvX4iiKBrt76x0k4jKNJgyGOehryygsEh2X55MBhGx/p/3NX6sNHwsPLRezfbrbq+pbcQsAKAdnSiietwxHyzKAkZnGUbLXl+n4wM4S0fDl9N5h91rG91X9jw+VcYgeU6sE9nNw8WLx7ZTWTgu4v65Jbtm2w6j/atbPxMfH/5e5bz3Xv6qaBftre4fAAAAAAAAAAAAAADOG2E0AAAA2IBFwbN7yy2IXTWPZt0PCxwkAbDj8WkY7db4RuX8C62LjfZ1ljrFXuX0adggi3gVUcResb/SPrP7YBqay9JoraLZj1max+9WC6PVrZfdXrOyeNo6MQsAKIoiDZvNB4vyMFp1MHUX8nBq8zATbMvRqDqM1op2PN2+tNF91YfRIk7ujZkftE5kNxuHTt/vNJGdVyJmo4vV123bYbQXr79QOb0dnXjPpa/c6r4BAAAAAAAAAAAAAOA8EkYDAACADehtKHbVNLA2GxbIQgHTkNfx5Gbl/Cyodp5kAZVp2GCQxEh6rX7jUNm87D6YBsPKcr0wQtPAWNPHwrxuq5vebtntNetkMqicvk7MAgAi8rDZqBzNXa4OGHWTYOouZK/LJ5NBTMrxjo8GHnQ0rA6jXe5ciVbR3tlxlFHGYJyNJVcb20bkYeFlwoTz55mpdnTuvW8oiiT6tub4v87v3fnt+Ne3fqZy3udf/OJ4unN5a/sGAAAAAACotMXfjQAAAAAAQFPCaAAAALABTSNWi5ZrGgyYjWulYbTx3TDaOAujXWy0r7O0KKCSxRDWCS9kkbvpvsqo/uO/IpKQwvz2GwbG1opHpPGWWwvXTW/ThvE/AMgsCp5ODZMwWrb+LtS9Dt6enOzwSOBhr4xeqpx+pXtt8zvL4mF3ZWPJLG7WxMGCEHQTw8mdyumz7zey8fw2P/rz4esvpPOePXz/FvcMAAAAAACwimZ/HwUAAAAAq9LtB6aE0QAAAGADmobRFsWumgQDWtGKbrF37/JB+6nK5Y7vhgJuJWG0C63q9c6TPKByGjYYbCGMlt2Xgw2F0brFXrSjOvj2wHG0qwMQTWTXfzAZLFw3u02bPsYBINM0jDZ/+f76i18/t6XudTB77YRdORq+XDn9sHN14/taNOLdxvi8l4TRjsfNw2jpeaV1/7yUh9EmjfezjDuT2/Hjr/5I5bw3739K/L7ep29lvwAAAAAAAAAAAAAAcN4JowEAAMAGNPmgfzs6aRBkme30WxeiKO5/aP8gCQWcTI5jUo7jeFIdRsuCaufJbABu1vBu2OBkvPmIV3YfnNyNimVhtKbfiFoURaMAXq/Vb7S9Ktn1z26vqVE5jOHd6NzDxyOMBsB6Fr2uT+VhtPpx1DbVvQ6eCKNxxo5GSRite22nx1GWZfp8WGcseZAEg5d57mXnley8NGtbXzr3Uzc+nL5Xe+7y+x94zwcAAAAAAAAAAAAAAE8SYTQAAADYgCahq377YOGH25sEvXrtB4NZ/SQUEBExmBzH8fjRDaNlAZRp2GCQhRca3B+Z7D4YjG+d/qOsTiMsEy5oEj3rJ8G7RttPrv9gcqt2vZPxoOZ4hNEAWE+n6FROnw8WpQGj1uKA0bbUvXYPJvnrJ+zC0TAJo3We2cLe8jFvGeW9mPC8dcaS2brH4/qx7axROaqcPnteKtLrtvk0WlmW8eLRByrn9VsX4guefnbj+wQAAAAAAFjftr5SBgAAAAAAHiSMBgAAABvQJGK1qRjWfBjgoGadwfhW3ErCaBdaj0AYrZUEVCanwZSTJIy2Tnihl6w7jTxkf96XhxQetsr9vIxs3SxUcX9+9e0Zkd8uANDUouDp1HBSHUbL1t+FbrEX7agel5wsEWeCTZuU47g++njlvMPu1Y3vb9GYd5A8H5q8F8pkIei6seu8YXmncvrseaUoqn9tWiZh5HX8xsmvxG/e/vXKee++9OWx19rf+D4BAAAAAAAAAAAAAOBRIYwGAAAAG7Df4IP+TcJSvfby28lCARERx5NbcTypDqMdtM9/GK1b7FVOnwZUBkkMYb3wQvX9NJicRh7KmFTOXyaM1uyxsPkw2vQ6ZLLbMyK/XQCgqaZhtPnL99evDpPtQlEU6ThtsCA8Ctv06ugoJsn49Ern2o6PJg/xrhPZzca2xwvGtrPy88pMGC1Zt0zTyKt78foH0nnPXv7qje8PAAAAAAAAAAAAAAAeJcJoAAAAsAHtoh37Ra92mewD/csu81AYrWadwfhWHI8f3TBaFlAZ3g0bZOGFfiuPxS2SRRuG5Z0Yl6OaLELzMFqTyFiTx0Imuw6DcR4+i6gPo60TmwOAiIhua90wWvX6u5K9Np/UvH7Cth2NXk7nHXavbnx/dSPeMsr0+bBOZDcb29+eDGJSVkfh5mXnlQdDzNXXbtNhtBuj6/EzNz5aOe8zDj4vXrf3xo3uDwAAAAAAYDmb/9IYAAAAAABYljAaAAAAbEhvwYf9s1jVrHbRib1iv3aZ+ShHq2in2/7gK/93DMs7lfMOWo9uGG0aNhiMb1XOXyfiVRuamxxH9sd/raJ5GG3RY6EVrYWPgzpZeGJRuCWb3y32ol10Vj4eAIioCZ5OHo0wWhoeFUbjDL0yrA6j7Re9LY338zHvuBzFnfJ25bwm74Uy/XZ1GK0uxDZvVI4qp3dmxrhFet02++Gfj776T9Ljee7w/RvdFwAAAAAAwGY1//soAAAAAFiFbD8wJYwGAAAAG7Low/5ZrGrZ7VQF2A5a1bGAXz7++XQ7F9oXGx3PWeouCKOdTAaV87N4QhN1YbST8XGUZfbj1eZ/+Fe3j4jTx0CxRGjt4fWrr/+icMtgXD2/n2wPAJaxKHh6/3J1MCgbF+xKNkZrGmaCbTgaVYfRLnevrjWeXEU2No9YPP6tUzcWbRomzGLRs+elLIy2yT+umJTj+Mj1H6qcd6VzLT7rwjs2uDcAAAAAAAAAAAAAAHg0CaMBAADAhjSJXTXazoKAWtV+VgmBHbSfWnqdXVsUUBlMblXO77X6K++zKjw3NZgcR5mkEZbJTmwqopeun1z/ReGILOyyzu0JAFNNw2hNAkZnIRvrZWFR2IWjYXUY7bDzzFb2l8XDIvKxecS6YbSa8fk43+es+fPM1ANhtCQkV5aTRvto4hdu/lS8Mnqpct6XXP7qaBXtje0LAAAAAAAAAAAAAAAeVcJoAAAAsCEbC6OtsJ0L7YuNtj1VRBEHrUc/jHYyGVTO77eWD8XdX3fVMFrzH7Msuo/XCUdERPSS65+Fz6aycNoq4T0AmNc0jNYkYHQWsrHcotdX2KajJLJ1pXttOzusqQHXRQKbvheqUhcNXhT+nRpNRpXTu63dnldevP6ByumdohNffOkrdnosAAAAAAAAy6v+uykAAAAAANg0YTQAAADYkEUf9m8au1plO59+8DmNtj31qf3P3HkEYBXdJIAyLIcxKSdxOwmj9Vr9lffZLjrRLfYq553UhNGWsSg0tk444nT71esPxsdRlvnxZ6G5dW5PAJjKXtdH5Wju8vkMo2Wvr8JonKWj4cuV0w87V3d8JPXPhV579fFkp+im4/PB5FajbTQ5rxRJ9W0T4/+IiN+987H4peOfq5z3+RffGxc7lzayHwAAAAAAAAAAAAAAeNQJowEAAMCGZLGMqaZxqUUBtapo1nsvfWV8wt4nNdr+ftGLr7n6zY2WPWudJN42Kodxe3KSRgoWhccWye6Dwfg4sm8+zUIKVRY9FtYNo2XrT2Icw/JOul4Ws1j3eAAgIg+bzb82zYfSprKw2q5kr4cDYTTO0Cuj6jDale61reyvbsybRcq6xd7aYcN+q3p8Pxj094j4AAAgAElEQVQ3C6NlY+BdhtE+fP2D6bznLr9/I/sAAAAAAAAAAAAAAIDHQeesDwAAAAAeF4viUU3jUouWqwqwXexcjj/3Sf9D/PRrH4nfOPmVGJeTynXfsP+mePtTXxxv2H9zo2M5a1lAYTQZphGviOYRunz9g3htfP2h6SeT4yjLJIxWNA+jLYrfZeGHTWx/MDmOvdZ+9bxx9W266HgBoIn0db0cPnB5OHd50fq7ko0vTiaDHR8JnBpO7sTN8auV8w47V7eyz/owWhbZXW9sHnEaPn5tfPTQ9OMkxjZv/jwz9eB5ZXthtNuTk/jxV/9p5bxP2v/UeEvvrWvvAwAAAAAAYDM286UxAAAAAACwDmE0AAAA2JCFsauKoNkqy2XhtAvti/Hs4fPxbDzfaD+PgiyAMiyHaXghYv2wWK99EFHRThhMjtMwQl0kYt6i4+u114tH1D0WTybHcSkO03mVxyOMBsAGNA2jjSZ3qtdvnW0YLXt9HYybhZlg045GH0/nHXa3E0ark0V2NzGWzJ5/dbHkWaNyVDm9O3NeykPH63/45ydf+1D6/uW5w/cvFVkGAAAAAAA4O36nAQAAAADAbrTO+gAAAADgcbEojNY0CLBouUX7eZx0awIqdRGEXms7YbGTmjDaMn/4tyh8tnbYreYxUhdvyWINTaN+AFCnm4TN5oNFWcAoC6vtSvb6ejIZ7PhI4NTR8KV03mFn92G0bHy+ifcvB8n4+LhhmHA+wDg1e15Js2hrdtHKsowPXf9A5byD1lPxjovvXW8HAAAAAAAAAAAAAPCYWPdvd4HHhzAaAAAAbEhvQTyqaRBg0XJPUhgtC6CMymEa8WpHJ7rF3lr7zW7jQU0YrbVEGG1R+Gzd+3i/1YsiOZ66eEsWs2ga9QOAOtnr+nAuWJQFjLJg6q5kodC6WCts09Ho5crpF9oXY6+1v5V9ZmPMiIjBpDpStuh9UhPZNpo+/4blncrpD4bRqn9tmoeRm/n1wS/Fb93+jcp577705Vu7rwAAAAAAAAAAAAAA4FEljAYAAAAbsqmg2aII1ZMUqcoCKpOYxPH4RuW8XrsfRdE8Ula5jeQ2PhkfR2RhhCX2ue34XatoRa/Vr5yXBStO51WHJZ6kGB8A25MGTycPBouyMFq2/q5k44M75e0Yl6MdHw3kYbQrnWs7PpJTg3EW2a0ely7jIAkLH4/zse2sUfIcbXJeWTeM9uL1D1ROL6KIZy9/9VrbBgAAAAAAAAAAAACAx5EwGgAAAGxIP/mw/lTToFm/vWA77fXDAo+Kbk2o4Mb4tcrpmwjH9dvV2xhMjqPMumjRPIy23+rVzu8l+19Gdjtk8bOIiJNk3pMU4wNge9Iw2lywaFjeqVzurMNodaHQk8lgh0cCp14ZvlQ5/bB7dYt7zce8eWS3/v1NE/nYtmkYrTq4OPt+Ix/Prx5Ge210PX72xo9XzvvMC2+Pa3ufsPK2AQAAAAAAdm+9L5QBAAAAAICmhNEAAABgQ3qt+mBZ06BZ3Xa6xd6ZR0F2qe663hi9Wjm9LlrSVBZeOJkcRxmTynnLhNFaRbv2ft7Edci2cTKuDlaUZRkn4+qoS3/BYxsAmugUncrp88Gi+VDa/fXPbxhtkLy+wjYdjT5eOf2ws70wWlHUhdGqI2WL3ic1cZDEo+uiv7OyMFqnQRitXOMDPh999YdjHNXntGcvv3/l7QIAAAAAAAAAAAAAwONMGA0AAAA2pJ98WD9iuaBZv5VvZxPBrEdJ3W12c1wdRsuiZstIo2KT4zSLsEwYLaL+ODcSRlsyHjEs76TRhl7NYxsAmuoWe5XTZ4NFZVmmAaPuGYfR6l67TxrGmWCTjoYvVU7fZhitTvY8qHt/01S2jcG4OsY2bzi5Uzm905oJoyXRt7JcLYw2Lsfx4es/VDnvme7r420X3r7SdgEAAAAAALZqxd+NAAAAAADAJgmjAQAAwIZsKnRVt+wmol+Pkm4rD6DcSMJom4iKZbfzaVRsM3/8t+37udfqV07Pwmgnk0G6rX6yLQBYRhY8HZb3g0WTGEeZvNY2jcxuS6+dvx4Ko3EWjkYvV04/7J5VGK16PJmNS5eRR3+bhdFGZXUA+MHzShJGW3H8/ws3fzKujz5eOe/Zy18draK90nYBAAAAAADOznJfHAkAAAAAAKsSRgMAAIAN2VToqteu2U7NvMdRXQDlxqg6jLaJqFh2X56MB2kYoSiW+zFLbUhvA/dzv1Udj8jCLXVRiSctyAfAdnSKTuX02WDRsBzWrH+2YbRO0Y1usVc5LwuPwrYMxrfSENlh52zCaJlNvIfJxudNn3uj5NzSnTmvFOkHeVYLo714/QPJPvfi3Ze+fKVtAgAAAAAAAAAAAADAk0AYDQAAADakW+xFK9qV83qtfuPt1AXW6uY9juoCKDfH1WG0TUTFsnhDXTxs2e9D7berw2URedRsGVnMbDCujkdkYY3T43myHncAbEf2uj4qh1GWp+Gh0eT8htEi8jFdFh6FbXll9FI670r32tb2m8fDcpsYS2bj41E5jOHkzsL1h2X1Mk3OK6tk0X7n9m/FLx//fOW8d1x8bzzVfnqFrQIAAAAAAAAAAADA4221rzQGHkedsz4AAAAAeFwURRH99kHcGt94aN4ysa69Yj9a0YpJTB6al8WuHlfdYi+d99roeuX0TdxGWbyh6j65b7lIRF0sb3+JkN6y2781uVH5GL0+/HjN8fTWPh4AyAJEZZQxiXG0oxOjMg+jdVtnH0brty7EjYo466ujo8rXV9iW37n9W5XTi2jFpc6Vre13lTDaRsbnNe+nXhm9dC801mv1o108/OvPUTmqXHf2vNQqqr9Paji5s/Tz+59d/0fpvGcvP7/UtgAAAAAAAAAAAAAA4EkjjAYAAAAb1GtVh9GWiQEURRG91kEcT24+NC8Ldj2uOhVRg6nb5Unl9E3cRv3WhaXXaS0ZiciOc7/oRbtoL73/h7bfrr4Ov3L8C/Ff/tofbbydXqsfrQ0cDwB0W3nwdFgOo13Uh9HqxgW7koVHf/Cl748ffOn7d3swUOFS53AjY8lN6m8g+ls3Pv++f/Pd9/69X/TiMy+8Pb7lDd8dB+2nIiJiXI6jTALHWbBx1odf/WB8+NUPLnnE1T6599Z4S/+tG9kWAAAAAADA7pVnfQAAAAAAADwhqr/6HAAAAFhJFrtaJowWEdFvb2Y7j7pW0Y7Wkj++yIIl29/GsmG06rhDL7nvl7WpiN6T9pgDYHvqwmajyWkQbVgbRsvDaruyqddp2JbDztWzPoSH9FaIDs9rGi6+XZ7Ez9788fgbH/sf702rCy52Z8JoxZLj+VU8d/n5re8DAAAAAAAAAAAAAAAedcJoAAAAsEFZRGrZSFW6nScwxtGZiRU00W9vILywwjaWDSlk8bVNhcg2tZ1NBdYAoO41fRouahowOiteFznvDrvbDaOtEg/rt9cPF++3elEs8WvNXx38y/j48PciImJY3kmXe/C8tN0w2oX2xXjHxfdudR8AAAAAAADrK8/6AAAAAAAAQBgNAAAANula9w2V05/pvn6p7VxNtnN1ye08Dpa97ZZdvsp+0Yun2peWWudK99pSy1/b2+59nD0Wl7WJ2xMAIiL2iv103u3yJCLqw2jLxlK34Ukci/FoecPem7e6/U7RjYtLjJO7xV5cbF9ee7+torX08+9373wsIiJG5ShdZva88syS4/llffGlr4hua2+r+wAAAAAAANiu7X7RDAAAAAAATAmjAQAAwAa94+n3PjStU3Ti8y6+a7ntXHx4O3vFfnzWhXeufGyPqrdffHfjZa90rsWn9D5t7X0WRRHvuPiexsu/pffWOOxeXWofb7vwjtgveg9Nr7rvV/Ep/U+LK5314w7vfPpLNnA0ABDRax2k8wbj44iIGNaG0TobP6Zlff7F90Thj/05p4poxRc8/ex291EU8XlPNR+ff+5T74q9Vh5FXMay4+STyel5ZTRpFlz83Ke+aGvP717rIL7s8n+8lW0DAAAAAAAAAAAAAMDjRhjtCVIURb8oincXRfHHiqL480VRfG9RFH+mKIo/VBTFW4ui2MinPYqi6BZF8aVFUXxrURR/oSiK7y6K4uuLonjLJrYPAABwnn3mhbfHH37dd0a/dSEiIi61D+O73vS98Uz39Utt551Pvze+7uq3Rq/Vj4jT4NefefNfioudSxs/5vPu/c98U3zJ5a9+IFpQ5U37b4nv+cS/HK1iMz/u+IZr3x5fcPG5aEW7drlP7X9GfNebvnfp7R+0n4rv+cS/fO+xsV/04muufnO86+kvXeVwH9Iq2vE9n/h98ab9t6y0/n7Riz9w9VviCy5uN64BwJNjv9VLo0P3AkZJGK0VrWgV9a/Ju/Ap/U+Pb33Dn40L7YtnfSjwgKfal+I73/Rfxev33rT1fX3j674j3nnxS6IdeaywiFZ8zlNfGN/8hj+1sf3+R1f/cLz30vsaRxKnwcXsvBIR0W3df4/x1oO3xX/yhj8dT7WfXu9A51zuPBN/8o1/IS53n9nodgEAAAAAAAAAAADgcVOWZ30EwHnR7JMDPNKKonh3RPznEfF1EbFXs+jHiqL4PyLir5Vl+coK+7kWEd8XEX8oIq4ky/xYRPwvZVn+vWW3DwAA8Kh49vD5eO/l98X10Stx2Lkaq3ao3/fMN8SXX/naeG10FJc7z6y8nUddq2jHH3n9d8UfvPbt8dLwtyt/uPlU5+m43Kl8K7qybqsb3/7G/yL+yOS74uU7v1u5zKXO4Vqxuk/pf1r85U/563F99PF4unM52g0jD029bu+N8b1v+atxffRK3By91ni9VtGK1++9cePHA8CTrVW0Yr/VvxdBmzVYEEbrFnU/2t6td1360viCp5+Nl4a/HcNJHlyCXdlr7cW17ifs7P1Ct9WNP/bGPx8nk0E6Tn6mey367Qsb3W+7aMc3v+FPxTe+7jseeF/wv//7/zl+b/jvH1p+eq4ZlnfSbc7Hl9996cvjXU9/2cae3/ut/Xim+/qNxZsBAAAAAAAAAAAAAOBJ4NOtj7GiKDoR8Vcj4k9FRJNPw7wpIv67iPjOoii+rSzLDy6xr+cj4vsj4nULFv3iiPjioij+VkR8Z1mWt5ruAwAA4FHSKtpxpXtt7e20i3Ycdq9u4IgefXut/XjT/lt2vt9eqx9v7m1vv0VRbP0+vty5svFwHACsot86qAyjnSwIo83Hi87aaUT0TWd9GHCmtj1Ozsy/L7jYuVQZRrsfXByl26o6t3h+AwAAAAAAZCq+0RIAAAAAALZAGO0xVRRFERF/OyK+sWL2L0XEL0bEICKuRcQ7I+JwZv7rI+IfFkXxtU3iaEVRfGlE/IOI2JuZXEbEz0TEr0fE5Yh4e0TMfsr7WyLi6aIovq4sy0nDqwUAAAAAwCOs1zqonD4NGA0nWRjNrzOAav3Whcrpi4KLEecvuggAAAAAAAAAAAAAAES0zvoA2Jo/Hg9H0T4UEZ9dluVnlGX5DWVZfktZlu+LiNdFxB+LiFdnlt2LiB8oiuJS3U6KonhzRPxgPBhF+2hEvK0sy3eWZflNd/fx5oj4sxEx++mTr4mI/36F6wYAAAAAwCOon4TRTsb1AaNOS7wIqNZr9SunDxaE0VrRinbR3tpxAQAAAAAAPJrKsz4AAAAAAAAQRnuM/ddzlz8UEV9RluW/nF+wLMtRWZZ/MyK+IiJuz8x6XUR814L9fF9EHM5c/rG7+/nFuX3cLsvyf42Ib5pb/88VRfHJC/YBAAAAAMBjoNeuDqMtChh1ir3K6QD91oXK6dPg4rC8Uzm/UwguAgAAAAAALKc46wMAAAAAAOAJIYz2GCqK4rMj4i1zk7+nLJNPlN1VluVPRcT/Njf5a2r289aI+E9nJt2JiG8ry/KkZh//ICJ+YGbSfkT8xbrjAgAAAADg8dBvVYfRTu6F0UaV87tFZ2vHBDzaeu1+5fTBgvOKMBoAAAAAAAAAAAAAAJxPwmiPp983d/k3y7L8uYbr/sO5y2+tWfabI6I9c/kHy7L81Qb7+J/mLn9TURS9JgcHAAAAAMCjq9eqDxgNyzuV8wWMgEweXBxERMQo+d6grvMKAAAAAAAAAAAAAACcS8Joj6cLc5d/a4l1f3Pu8mHNsl8/d/lvNtlBWZa/GBH/fGbShYh4X5N1AQAAAAB4dPVb8z++PrUoYCSMBmR6SRhtGlxMzyst5xUAAAAAAAAAAAAAOE/K8qyPADgvhNEeT78zd7m3xLrzy75StVBRFG+IiM+dmTSKiI8usZ8fnbv8/BLrAgAAAADwCOq1+pXTB+NbERExKkeV84XRgEwWRju5G0YbTu5UzndeAQAAAAAAWJZPpQIAAAAAsBvCaI+nn4yI2zOXP6MoiupPmz3sHRXbqvJZc5d/vizLWw33ERHxY3OX37bEugAAAAAAPIL67QuV008mg4iIGJXDyvkCRkCmn4XRxqdhNMFFAAAAAAAAAAAAAAB4tAijPYbKsrwREf/nzKReRHzHovWKomhHxJ+em/wDyeKfOXf51xof4Kn/b8H2AAAAAAB4zPRa1d/hMZicfu/GsLxTOf//Z+/uo2W/6/rQvz+z9z6ZyQnkgSQECoaQgFBBwdDLIqlXEBaoqxcFEbiUXmJv1dorpVeWFttqROtawq3epe2yVsviwStoxSAtRdMFQos8yC1QkCb0hgBBeTAKCSYn5yTn4Xv/2HM8k8mevWf2mZnf7L1fr7Vmze/h+/t+Pr/FWt9wZs+8fxsCjIAJ+mtbB6Pd247lVDs5MXDRugIAAAAAAAAAAAAAAKtJMNr+9aoknxvZf21VPWvS4KraSPKrSZ48cvgPkvzOhEuuGtv//Iz93Ta2/5CqunDGOQAAAAAA2EMGvcNbHj926miSTAwwWhdgBEww6G0djJZsri3WFQAAAAAAgBm01nUHAAAAAACQ9a4bYDFaa1+tqmckuSGbYWeDJDdW1VuTvDXJp5IcTXJxkqcl+cEkXz8yxYeTvKC1iX/RuGBs//YZ+7u7qo4l6Y8cPj/JHbPMAwAAAADA3tHvDbY8fu+poznVTuXEqRNbnhdgBEzS3yYY7eipe3JcMBoAAAAAAMCcVNcNAAAAAABwQAhG28daa5+rqqcmuS7JDyS5OskLh69JvpLkF5L8X61N+KXIpvPG9o/uosWjuX8w2oN2Mcf9VNWlSS6Z8bIrz7YuAAAAAAA7G6wd3vJ4S8u9p47lxKQAo54AI2Brg22C0Y6dumfyuiIYDQAAAAAAAAAAAAAAVpJgtP1vbfi6N0nL9o9n+ZMkP5nkN3cIRUseGIx2bBe9HU1y4TZz7sY/SHL9HOYBAAAAAGDO+r3BxHNHTx2ZGGC0IcAImKC/TTDa0ZOTg9GsKwAAAAAAAAAAAACwWlrXDQAro9d1AyxOVV2b5OYk/zrJtdn5f+9HJnl9ks9X1d+bsdxu/tviv0cAAAAAAAfIoHd44rljp47meLtvy3PrAoyACTZ6GxPXiGOn7rGuAAAAAAAAAAAAAADAHiMYbZ+qqmcmeVeSR40c/kKSVyV5cpILkhxKclmSb0/yxiQnhuMuSfJrVfWrVVUTStw9tj/YRZvj14zPCQAAAADAPtLvTf4o+eipe3KindjynAAjYDv93rlbHj966p6cOGVdAQAAAAAAmI/WdQMAAAAAABwQ6103wPxV1SVJ3pKkP3L4PyR5aWvtL8eG/1mSG5PcWFW/kuQdSR4yPPf9SW5N8potyqxqMNovJ/ntGa+5Msnb51AbAAAAAIBtbNShrGU9J/PAoKJjp+7JiXZ8y+vWy58zgMkGvUHuPvm1Bxw/duroNuuKYDQAAAAAAAAAAAAAAFhFfkm0P/1IkktG9j+V5IWttWPbXdRa+1BVvSjJu0YOX19Vr2+t3T42fPzXJZdkBlV1Xh4YjHbnLHNsZdjneK879XK2ZQEAAAAAmEJVpb82yJGTdz3g3NGTk4PRNurQolsD9rB+79wtjx89eWTyutITjAYAAAAAAPBAresGAAAAAAAgva4bYCG+d2z/NTuFop3WWnt3kveNHBokefEWQ28Z2798+va2HP/V1todM84BAAAAAMAeM5gQYHTs1D05PiHAaL0EGAGTTQpGO3bqaI63+7Y8Z10BAAAAAACYVXXdAAAAAAAAB4RgtH2mqg4nuXLs8LtnnOZdY/tP3WLMzWP7V81Y49Fj+zfNeD0AAAAAAHvQpACjo6fuyQnBaMAuDNYmBy6eaCe2PGddAQAAAAAAAAAAAACA1SQYbf+5YItjX55xjvHxF28x5pNj+99YVVv/6mRr1+4wHwAAAAAA+9BgQjDasW2D0dYX2RKwx+0ucNG6AgAAAAAAAAAAAAAAq0gw2v5z5xbHDs84x3lj+3ePD2itfSnJJ0YOrSf5mzPUePrY/u/NcC0AAAAAAHvUxACjk5MDjDZ6hxbZErDH7SZwcaOsKwAAAAAAAAAAAACwSlrrugNgVQhG22daa0eS/OXY4SfPOM3VY/tfnjDubWP73zfN5FX1uCRPHTl0JMl/mq41AAAAAAD2ssHaNgFGp7YOMFqvjUW2BOxxEwMXT92T4xOC0awrAAAAAAAAs/KrVAAAAAAAlkMw2v703rH9H5j2wqq6LMlzxw6/b8Lw30hycmT/+VX1mCnK/OOx/X/XWjs2ZYsAAAAAAOxhAoyAeRtMWFeOnbwnJ6wrAAAAAAAAAAAAAACwpwhG259+a2z/RVX10p0uqqpzkvx6kvNGDt+d5MatxrfWbknyxpFDh5K8oar629T4riTXjRy6L8mrd+oNAAAAAID9YVKA0dFTR3Lqfs/iOGO91hfZErDH9dcmBy5ODkazrgAAAAAAADxAa113AAAAAAAAgtH2qd9M8vGR/Urypqr6xap62FYXVNUzknwoybPGTr2mtXbHNrWuTzJ6/pok76qqx43Nf05VvTzJb49d//Ottdu2mR8AAAAAgH2kPyEY7e4TX5t4zXptLKodYB8Y9AZbHj+2TTDaRu/QIlsCAAAAAADYh6rrBgAAAAAAOCA8Cn0faq2dqqoXJHl/kkuHhyvJP0zyw1X1iSSfSXI0yUVJnpzksi2memeS1+xQ60+r6vlJbkxy+hck1ya5qao+MqxzfpJvTnLJ2OXvSPITs90dAAAAAAB72WBCMNpdJycHo22UACNgsn7v8JbHj506mt6E50QJXAQAAAAAAAAAAAAAgNUkGG2faq19uqq+NcmvJ3nKyKlekicNXxMvT/JrSf5Ra+34FLXeW1XPS/KGnAk/q2Hdp0y47C1Jvr+1dnKn+QEAAAAA2D/6a1sHo9198q6J1wgwArYz6A22PH683ZdKbXnOugIAAAAAAAAAAAAAAKtp60eksy+01j6V5GlJXpbkg9kMPNvO0SS/keSa1toPttaOzlDrnUmekORXktyxzdAPJXlBa+0lrbUj084PAAAAAMD+MOhtHYzWcmriNevlOS/AZP3e4Ynn2oQ/j1lXAAAAAAAAAAAAAABgNfnG/z7XWjuR5E1J3lRV5yd5SpIrklyQ5Jwkd2UzyOyTSf54OH63tW5P8kNV9Yok1ya5PMllSY4k+UKSj7XWPnsWtwMAAAAAwB7XnxCMtp312lhAJ8B+MVgbzHzNRh1aQCcAAAAAAAD72dYPpAEAAACAefEJFHCaYLQDpLX2tSTvXkKd+5K8Z9F1AAAAAADYewaC0YA5G/QOz3yNdQUAAAAAAAAAAAAAAFZTr+sGAAAAAACAg6O/i2C0jd6hBXQC7Bfn9AYzXyMYDQAAAAAAYCut6wYAAAAAAEAwGgAAAAAAsDyDtdmD0dZrfQGdAPvFWq3lUJ0z0zXWFQAAAAAAgFlV1w0AAAAAAHBACEYDAAAAAACWpt8bzHzNWgQYAdsb9GYLXdyoQwvqBAAAAAAAAAAAAAAAOBuC0QAAAAAAgKVZq/UcqnOmHr9eG6ny5HFge/212YLR1mtjQZ0AAAAAAAAAAAAAAABnQzAaAAAAAACwVP3e9AFGG8KLgCkMZlhXkmS9Z20BAAAAAAAAAAAAAIBVJBgNAAAAAABYqsHa9AFG64LRgCnMEriYJOu1vqBOAAAAAAAA9qvWdQMAAAAA7HPNR1DAkGA0AAAAAABgqWYJMBKMBkxjMMO6UqmsRTAaAAAAAAAAAAAAAACsIsFoAAAAAADAUs0SYCQYDZjGrIGLVbXAbgAAAAAAAPaq1nUDAAAAAAAgGA0AAAAAAFiufm8w9VjBaMA0BmuzBKOtL7ATAAAAAACA/cqDZwAAAAAAWA7BaAAAAAAAwFINeoenHrshGA2YQr83SzCadQUAAAAAAAAAAAAAAFaVYDQAAAAAAGCp+muDqccKMAKm0e9Nv65s1KEFdgIAAAAAAAAAAAAAAJwNwWgAAAAAAMBSDXqHpx673hOMBuxspnVF4CIAAAAAAAAAAAAAAKwswWgAAAAAAMBS9XuDqccKMAKmMdu6sr7ATgAAAAAAAAAAAAAAgLMhGA0AAAAAAFiqQe/w1GM3BKMBUxisTb+uCFwEAAAAAADYjdZ1AwAAAADsc81HUMCQYDQAAAAAAGCp+r3B1GMFGAHTmGVd2egdWmAnAAAAAAAAe5hfngIAAAAAsAIEowEAAAAAAEs1WDs89VjBaMA0Br1Z1pX1BXYCAAAAAACwX1XXDQAAAAAAcEAIRgMAAAAAAJaq3xtMPVaAETCN2dYVgYsAAAAAAAAAAAAAALCqBKMBAAAAAABLNegdnnqsACNgGv3euVOPta4AAAAAAAAAAAAAAMDqEowGAAAAAAAsVb83mHrsRh1aYCfAfnFOr59KTTXWugIAAAAAAAAAAAAAAKtrvesGAAAAAACAg2Wwdnjqseu1scBOgP2iV72c0xvk2Kl7dhy7Xv5ECgAAB0VVbSS5NsnXJXlYkruTfDHJx1prn5tzrSuSPCnJw5Ocl+RLSW5L8oHW2vE51lnaPQEAAAAAAAAAQBd86yO3vQAAACAASURBVB8AAAAAAFiqQ3VOKpWWtuNYAUbAtAa9c6cMRhO4CAAAXamqRyf5G0meMnz/5iQPGhlyW2vtUXOoc0mSVyd5UZKLJoz5QJJfaK39zlnWekGSH0nytAlDvlpVv5XkJ1trf3EWdZZ2TwAAAFvb+e+7AAAAAAAwD35NBAAAAAAALFWveun3BjkqwAiYo37v3KnGrdehBXcCAACMqqqnJ/nxbIahbRnoNed635HkDUku3WHoNUmuqarfSPKDrbUjM9Y5L8mvJXnxDkMvSvJDSZ5fVS9rrd04S51hraXcEwAAgPAzAAAAALrk0yngNMFoAAAAAADA0vV7504VjLbRE2AETGcwdTCaP5ECAMCSPSnJs5dRaBjC9rtJRj9QaEk+muQzSS5I8uQkF4+c/9tJHlxV391aOzVlnbUkv5XkO8dO/XmSjyX5WpIrh7VqeO6hSd5eVc9qrf3hqt0TAADAzmrnIQAAAAAAMAe9rhsAAAAAAAAOnv7UAUYbC+4E2C/6a9OtKxs96woAAKyIe5PcOq/JquoRSW7I/QPE3p/kG1prT2mtvbC19uwkj0jyiiTHR8b9L0n++Qzlfi73D0U7nuTlSR7RWnvOsNbVSZ6Q5IMj485J8rtV9bAVvCcAAAAAAAAAAFgJgtEAAAAAAIClG0wdjLa+4E6A/WL6dUUwGgAAdOB4kv+W5N8m+cEkVyd5UJK/N8car05y4cj+B5I8q7V28+ig1tq9rbVfSvLCset/pKou36lIVT06myFko763tfavWmv3jdW6Kckzc/9wtIckuX6nOkNLuScAAAAAAAAAAFglgtEAAAAAAICl668JMALmq98bTDVuvQ4tuBMAAGDMG5M8uLX25Nba97fWfrW19tHW2vF5FaiqxyR52cih+5Jc11o7Numa1trvDns77ZxMF1h2fZLRDyze0Fp7+zZ1jia5btjTaf/7MGBtoiXfEwAAAAAAAAAArAzBaAAAAAAAwNINeoLRgPnqT72urC+4EwAAYFRr7Y7twrzm5CVJ1kb2b2it3TLFda8Z239hVfUnDa6qQZIX7DDHA7TW/r8kvztyaD2bPW9nKfcEAAAAAAAAAACrRjAaAAAAAACwdP3eYKpxG4LRgClNG7hoXQEAgH3peWP7r5/motbazUn+aOTQ4STP3uaS5yQZ/cfHB1trn5qqwwf29Pwdxi/rngAAAKbUum4AAAAAAIADQjAaAAAAAACwdIPe4anGrQswAqbUX5suGM26AgAA+0tVXZbkm0YOnUjy/hmmeO/Y/ndsM/bbd7h2O+/LZm+nPbmqHrrVwCXfEwAAAAAAAACshCabHxgSjAYAAAAAACxdvzeYapwAI2Bag960wWiHFtwJAACwZE8Y2/9Ea+3IDNd/YGz/G2ao9cFpiwx7+uMpay3zngAAAEb45SkAAAAAAN0TjAYAAAAAACzdYO3wVOMEowHT6k8djLa+4E4AAIAl++tj+5+e8fpbd5hv1OOXVGuZ9wQAADCl6roBAAAAAAAOCMFoAAAAAADA0vV7g6nGCUYDpjWYMhhtw7oCAAD7zVVj+5+f8frbxvYfUlUXjg+qqouSXHSWtcbHP2bCuKXcEwAAAAAAAAAArCKPQwcAAAAAAJZu0Ds81biNngAjYDr9KYPRBC4CAMC+c8HY/u2zXNxau7uqjiXpjxw+P8kdO9S5p7V2ZJZaW/R2/oRxy7qnmVXVpUkumfGyK8+2LgAAAAAAAAAAB4dgNAAAAAAAYOn6vcFU4wQYAdMarE0ZjNY7tOBOAACAJTtvbP/oLuY4mvuHiD1ogXVGbVVnnrV2uqfd+AdJrp/TXAAAAAAAAAAA8AC9rhsAAAAAAAAOnsHa4anGCUYDptXvTReMtlGeHQUAAPvMeIjYsV3MMR48Nj7nMussuxYAAMCUWtcNAAAAAABwQAhGAwAAAAAAlq7fG0w1bkMwGjClwZTBaAIXAQBg39vNL/VX+Zpl1wIAAAAAAAAAgE55HDoAAAAAALB0g97hqcYJMAKmtVGH0staTuXktuOsKwAAsO/cPbY/XRr79teMz7nMOsuuNatfTvLbM15zZZK3z6k+AACwSE3GMgAAAADd8ekUcJpgNAAAAAAAYOn6vel+zyvACJhWVWXQOzdHTt217TjrCgAA7DuC0c6u1kxaa7cnuX2Wa6pqHqUBAIDO+f/2AAAAAAAsR6/rBgAAAAAAgINnow5lbYfnt/Syll75UwYwvf7auTuO2RCMBgAA+83XxvYvmeXiqjovDwwRu3OKOudW1eFZaiW5dIo6W9Va1D0BAAAAAAAAAMDK8WsiAAAAAABg6aoq/bXx3+fen/AiYFaD3vbrSpKsW1sAAGC/uWVs//IZrx8f/9XW2h3jg1prX0kyfvzrzrLWeO+Tji/kngAAAAAAAAAAYBUJRgMAAAAAADox6J277XnhRcCs+r3DO46xtgAAwL5z89j+VTNe/+ix/ZuWWGt8vkXV2e6eAAAAAAAAAABgpQhGAwAAAAAAOtHfKRitJ7wImE2/N9hxjGA0AADYdz45tv+NVbX9hw73d+0O82137mnTFqmqw0m+ccpay7wnAAAAAAAAAABYKetdNwAAAAAAABxMg52C0YQXATPaeV1ZT1UtqRsAANhabf6f0h9N0h85/KbW2ufOct4rkvydkUP3tNb+xdnMuRe01r5UVZ/ImdCx9SR/M8l/mnKKp4/t/942Y38/yQ9sc+12viX3/87mx1prf7bVwCXfEwAAwJRa1w0AAAAAAHBACEYDAAAAAAA60ReMBsxZf826AgDAnvCSJD+XM78ov+FsQ9GSpLX22ap6YpLnnz5WVZ9prd1wtnPvAW/LmRCxJPm+TBEiVlWPS/LUkUNHdrjuxiRHkwyG+0+rqse11j41RY/Xje2/bYfxy7onAACAEcLPAAAAAADoXq/rBgAAAAAAgINpsEOA0UZ5vgswm4HARQAAVlxV9ZL89OndJLckedkcS1yX5Nbh3JXkZ+c49yr7jSQnR/afX1WPmeK6fzy2/+9aa8cmDW6t3ZPkrTvM8QBV9dgkzxs5dCLJm3e4bCn3BAAAML3qugEAAAAA9rkmtx8YEowGAAAAAAB0or9jgNGhJXUC7Bc7ryuC0QAA6NyzklyRpA1fPz4M25qL1tqRJK8aOfTYqvq2ec2/qlprtyR548ihQ0neUFX9SddU1XdlM0jutPuSvHqKcj+V5PjI/nVV9dxt6vSTvH7Y02mva63dul2RJd8TAAAAAAAAAACsDMFoAAAAAABAJwYCjIA522ld2bCuAADQvZeObH+ktfa2eRdord2Q5CMjh/72vGvMqqoeUVWPGn8luWxs6PpW44avi3coc32SO0b2r0nyrqp63Fgv51TVy5P89tj1P99au22ne2mtfSbJL44dfmtV/XDV/VPeq+rxSd497OW0r2T6sLKl3BMAAAAAAAAAAKyS9a4bAAAAAAAADqb+jsFo/owBzGbndUUwGgAAnfv2ke3XLbDO65JcnaSSfOcC60zrD5NcPsW4v5bksxPOvTHJdZMubK39aVU9P8mNSU4HlF2b5Kaq+kiSzyQ5P8k3J7lk7PJ3JPmJKfo77VVJviHJdwz3N5L8yyQ/UVUfTXJXkkcPa9XIdfcleV5r7UvTFFnyPQEAAAAAAAAAwErodd0AAAAAAABwMA0EGAFzNlizrgAAsLqq6vIkF48cescCy43OfWlVPXKBtVZGa+29SZ6X5M9HDleSpyR5YZLn5IEBYm9J8uLW2skZ6pwczvdbY6cuzWb43ffmTDDdabcn+a7W2vumrTOs9d4s4Z4AAAAAAAAAAGBVCEYDAAAAAAA60d8hwGhDgBEwo77ARQAAVts3Dd9bkltba19YVKHW2p8m+fTIoSctqtaqaa29M8kTkvxKkju2GfqhJC9orb2ktXZkF3Xubq29OJshaB/aZuhXk/zrJE9orf3+rHWGtZZyTwAAANtrXTcAAAAAAMABsd51AwAAAAAAwME02DHA6NCSOgH2i53XFcFoAAB06pKR7S8uod4Xk1w13L50CfUmaq09asn1bk/yQ1X1iiTXJrk8yWVJjiT5QpKPtdY+O6dab03y1qq6Isk3J3l4ksNJvpzktiTvb63dN4c6S7snAADgIBN+BgAAAABA9wSjAQAAAAAAnejvFGDU82cMYDb93mDb8xuC0QAA6NaFI9tfXkK90RoXLKHeyhkGkr1nSbU+m2ThwWTLvCcAAID7q64bAAAAAGCfa3L7gaFe1w0AAAAAAAAH02CnYDQBRsCMBr3D255f71lXAADo1KGR7WV8d2+0xjlLqAcAAAAAAAAAAHDWBKMBAAAAAACd6O8QjLYhGA2YUX9tsO15gYsAAHTsnpHtS5ZQb7TGPRNHAQAAAAAAAAAArBDBaAAAAAAAQCcGa9sHo63XoSV1AuwX67WRjW3WDsFoAAB07Msj25cvod5ojT9bQj0AAAAAAAAAAICzJhgNAAAAAADoRL832Pb8eq0vqRNgP9lubdkQjAYAQLduHb5Xksur6qpFFaqqK5M8aovaAAAAAAAAAAAAK00wGgAAAAAA0Im1Ws+hOmfi+XUBRsAuDHqHJ56zrgAA0LGPJ7kvSRvuP3eBtb57ZPt4kv+2wFoAAAAcCG3nIQAAAAAAMAeC0QAAAAAAgM70e+dOPLchwAjYhX5vMPGcYDQAALrUWrsvyX9OUsPXj1XV5GTfXRrO+aPZ/MV6S/JfhrUBAABge034GQAAAAAA3ROMBgAAAAAAdGawNjkYTYARsBvWFQAAVtxbhu8tySVJXruAGj+X5NJshq8lyZsXUAMAAIADp3YeAgAAAAAAcyAYDQAAAAAA6Ey/J8AImK/t1pUN6woAAN17c5IvDbcryd+vqn8yr8mr6lVJ/o9sBq8lyZ9FMBoAAAAAAAAAsAe0nYcAB4RgNAAAAAAAoDMDwWjAnAlcBABglbXW7kvy49kMRWvD95+pqt+sqgt3O29VXVBVb07ysyPztiT/ZFgTAAAAAAAAAABgTxCMBgAAAAAAdKbfG0w8t9ETYATMbtvAResKAAAroLX2piRvz/3D0b43yS1V9dqqesy0c1XVVVX12iS3JHnRcK4M5/0PrbU3zLN3AAAAAAAAAACARVvvugEAAAAAAODgGvQOTzy3XgKMgNn1twtGs64AALA6/k6SP0jylJwJR7soySuTvLKqvpTkw0luTnLn8JUk5ye5IMnjk/xPSR4+PD4aiFZJPpLkpQu/CwAAAAAAAAAAgDkTjAYAAAAAAHSmvzaYeE6AEbAbg7XJwWgb1hUAAFZEa+3uqnpmkjckeV42A82SMwFnD0/yXcPXJDWyPXr925O8rLV299waBgAAgL/6pycAAAAAACxWr+sGAAAAAACAg2vQOzzxnGA0YDf6vcnBaNYVAABWSWvtrtba9yR5ZZKj2Qw1ayOvDI9t9crY2EpyLMmPtdae11r7y2XdBwAAAPuJ8DMAAAAAALonGA0AAAAAAOhMvzeYeG5DgBGwCwPBaAAA7DGttf87yeVJfjbJnbl/AFqb8Bodc+fw2stba/9i2f0DAABwUNTOQwAAAAAAYA7Wu24AAAAAAAA4uAa9wxPPCTACdmO7wEXrCgAAq6q19pUkP1FVP53kqUm+Ncm1Sf5akouSPGQ49KtJvpLki0nen+Q/J/mj1tp9S28aAAAAAAAAAGCOWuu6A2BVCEYDAAAAAAA6I8AImLd+79yJ5zasKwAArLjW2vEkfzh8AQAAAAAAAAAAHDi9rhsAAAAAAAAOrsHa4YnnBBgBuzFYmxyMJnARAAAAAAAAAAAAAABWm2A0AAAAAACgM/3eYOI5AUbAbvR7gtEAAAAAAAAAAAAAAGCvEowGAAAAAAB05vz1C7c83ksv/bXJ4UYAk5y39uD0JvwZ9Ly1By+5GwAAAAAAAAAAAAAAYBaC0QAAAAAAgM48ZOOhedihRz7g+JWDx6ffG3TQEbDXndPr57HnPvEBxy/deHguPvTQDjoCAAAAAADYK1rXDQAAAAAAgGA0AAAAAACgWy972D/KeWvn/9X+hesX56WX/XCHHQF73Ysf+vfzkI1L/2r/3N55+bsPf2WHHQEAAAAAAAAAAAAAANNY77oBAAAAAADgYPu6/pV59RW/nFuP3pxereWqwV/Pod45XbcF7GGXHnpY/tmjfimfPfo/cl+7N48994np9wZdtwUAAAAAAAAAAAAAAOxAMBoAAAAAANC5wdrhPOG8p3TdBrCPnNPr53GHv6nrNgAAAAAAAAAAAACAKbSuGwBWRq/rBgAAAAAAAAAAAAAAAAAAAAAAAADWu25gFlX1B8PNluR/ba3dvst5HprkLafnaq09cx79AQAAAAAAAAAAAAAAAAAAAAAAALuzp4LRkjw9m6FoSdI/i3n6w7kyMh8AAAAAAAAAAAAAAAAAAAAAAADQkV7XDexCdd0AAAAAAAAAAAAAAAAAwMHRum4AAAAAAIADYi8GowEAAAAAAAAAAAAAAAAwT034GQAAAAAA3TuowWjrI9snOusCAAAAAAAAAAAAAAAAYOVV1w0AAAAAAHBAHNRgtItHto901gUAAAAAAAAAAAAAAAAAAAAAAACQ5OAGo/3Pw/eW5ItdNgIAAAAAAAAAAAAAAAAAAAAAAAdZa113AKyK9a4bOAszLWVVtZHkYUmeneSfjpz643k2BQAAAAAAAAAAAAAAAAAAAAAAAMxu5YLRqurkNMOSfK6qdl1mZPvf73YSAAAAAAAAAAAA6FpVXZ3kiiT3Jrm5tfbpjlsCAAAAAAAAAADYlZULRsv9Q8vmMW4rbXj9p5K89SzmAQAAAAAAAAAAgLmoqn6Sh48cuq21NvFho1X13CS/lOSRY8c/mOQHWms3LaRRAAAADqDWdQMAAAAAABwQva4bmGDRn5RXkv+a5G+11o4vuBYAAAAAAAAAAABM45VJbhm+3pPk1KSBVfXCJDdkMxStxl7XJPmjqrp60Q0DAACwnwg/AwAAAACge+tdN7CF/5LJn6J/6/C9JflwkmNTztmS3JvkziQ3J3lPa+19Z9MkAAAAAAAAAAAAzNl3ZzPYrCV5XWtty+/SVdWFSf5NNh+O2oavGp4+fc3hJDdU1de31qb9rh0AAABMUDsPAQAAAACAOVi5YLTW2tMnnauqUznzpa0XtdY+v5SmAAAAAAAAAAAAYIGqapDkSTnzHbl3bDP85UnOz5lAtC8kuSHJiSTPT3L5cNwjkvzDJK9dQMsAAAAAAAAAAABz1+u6gV3weBEAAAAAAAAAAAD2mycmWcvmd+SOtNY+us3Yl+ZMKNr/SPKE1torWmuvHM7z/w7HVZLrFtYxAAAAAAAAAMCctLbzGOBgWO+6gRm9emT7zs66AAAAAAAAAAAAgPm6Yvjektw0aVBVPS7JVcNxLclPtta+dvp8a+3uqnp5kg8ND319VT2ytfYni2kbAAAAAAAAAABgfvZUMFpr7dU7jwIAAAAAAAAAAIA956Ej21/aZty3DN8ryV1J3jY+oLX24ar60ySPGB76xiSC0QAAAAAAAAAAgJXX67oBAAAAAAAAAAAAIOeObN+1zbhrh+8tybtbaycmjPvkyPbXnU1jAAAAsPnPUAAAAAAAWDzBaAAAAAAAAAAAANC9Gtne2GbcNSPb79tm3FdGth+8q44AAAA4YISfAQAAAADQPcFoAAAAAAAAAAAA0L27RrYfutWAqrosyVUjhz6wzXzro5eeRV8AAAAQ/7QEAAAAAGBZ1ncesrqq6hlJvi3Jk5NcmuT8bP+kzK201tqV8+4NAAAAAAAAAAAAZvCF4XsleeKEMd85sn1vko9uM98FI9tHzqIvAAAAAAAAAACApdmTwWhV9Zwkv5T7P/lyt48daWffEQAAAAAAAAAAAJyVT4xsX1RVz2mt3Tg25vuG7y3Jh1trx7eZ79Ej21+eR4MAAAAAAAAAAACL1uu6gVlV1Y8meWc2Q9FGw9DaLl4AAAAAAAAAAADQudbarUluyeZ32yrJL1fVFafPV9Urk1w7csnbJ81VVefl/g8evXW+3QIAAAAAAAAAzJcwIOC09a4bmEVVPSfJa4a7p8PNToej3ZPkziTbPQETAAAAAAAAAAAAVtW/zeZ35FqSK5J8qqo+nuTSJI/Mme/MHUvy/2wzz9Nz5rt1J5L89wX1CwAAAAAAAAAAMFd7Khgtyc8N309/uetPsvklsHe01j7fWVcAAAAAAAAAAABw9n4xyfcl+fpsfk9uI8nVORNydvqBor/QWvvzbeZ53sj4j7fW7l1MuwAAAAAAAAAAAPO1Z4LRqurKJN+UzS9qJckfJXl2a+2u7roCAAAAAAAAAACA+Wit3VdVz0ny+0kePzxcOfMw0UryO0munzRHVZ2X5Hty5rt2715YwwAAAOwvre08BgAAAAAAFmzPBKMledrwvZKcSvK/CUUDAAAAAAAAAABgP2mt/UlVPSnJ303y3CSXD099KsmbW2s37DDFdUkePLL/H+feJAAAAAAAAAAAwILspWC0S4fvLcnHWmu3dNkMAAAAAAAAAAAALEJr7XiSfzN8zep1SX59ZK6vzasvAAAAAAAAAACARdtLwWg1sv3pzroAAAAAAAAAAACAFdVaO5rkaNd9AAAAAAAAAAAA7Eav6wZm8IWR7bXOugAAAAAAAAAAAAAAAAAAAAAAAADmbi8Fo/33ke1HdtYFAAAAAAAAAAAAAAAAAAAAAAAwN6113QGwKta7bmBarbU/rqpPJnlCkqur6sLW2h1d9wUAAAAAAAAAAACLVlWPSPLoJBcleVCSaq29qduuAAAAAAAAAAAA5mvPBKMN/XyS1ydZS/LKJP+s23YAAAAAAAAAAABgMarq8iT/Z5LnJrl8iyEPCEarqm9J8ozh7h2ttX+5uA4BAADYX1rXDQAAAAAAwN4KRmutvbGq/laS70nyY1X1/tba73XdFwAAAAAAAAAAAMxLVfWS/EySH83mg0Rri2GTfq3+F0l+6vT5qnpna+3WBbQJAAAAAAAAAAAwd72uG9iFlyX599kMdXt7Vf10VV3QcU8AAAAAAAAAAABw1qpqI8nvJ3lVtn746aRAtM2Trd2c5D05E6b2krk2CAAAAAAAAAAAsEBbfWlqZVXVTw43P57kmiQXJ/mnSX6kqj6Y5KYkdyQ5Ncu8rbWfnmefAAAAAAAAAAAAsEuvS/KsbAagtWwGnL0vm2Fn9yX551PM8TtJnjHcfnaSn5l/mwAAAAAAAAAAAPO3p4LRkvxU7v+0y9Nf+jo3ybcNX7shGA0AAAAAAAAAAIBOVdUzk7w0Z74b9+kkL2mt/dfh+cszXTDaf0zyr4Zz/I2q6rfWji2mawAAAAAAAAAAgPnpdd3AHJx+KuZu1DwbAQAAAAAAAAAAgLNw/fC9ktyW5JrToWizaK3dluTO4e5GksfNpz0AAAAAAAAAgMVou00QAvadvRiMVnN8AQAAAAAAAAAAQOeq6qIk1+TMw0Jf0Vr7i7OY8qaR7ceeTW8AAAAAAADA/8/enYfZWdd3H39/ZyYLBAgh7Ci7yC7ghkUKCIorWhdcerkA1qV1aa1a21oRa/WxdXnaurUa3K2KIiAF2UFEWWSRgAghEEgCSci+LzPzff44Z545OZlz5pw525zJ+3Vd93Xu33p/x+BJZuY+n1uSJEnt0tfpAup0WqcLkCRJkiRJkiRJkiRJkiSpBV7I8MNOl2TmZQ3uVxqqtmeDe0mSJEmStgeZna5AkiRJkiRJkqTuCkbLzJs6XYMkSZIkSZIkSZIkSZIkSS2wT/E1gd81Yb81Jec7NWE/SZIkSZIkSZIkSZIkSWq5rgpGkyRNYCtnw0NfhoGNsP8bYN9XQESnq5IkSZIkSZIkSZIkSWqX3UrOVzRhvx1Kzrc0YT9JkiRJkiRJkiRJkiRJajmD0SRJnbfoWrjhTMjBQvvR78IxF8Axn+hsXZIkSZIkSZIkSZIkSe2zuuR85ybst1fJ+fIm7CdJkiRJkiRJkiRJkiRJLdfT6QIkSdu5TPjd+4dD0Ybc/y+wfkFnapIkSZIkSZIkSZIkSWq/p0rOn9HIRhHRCxxf0vVkI/tJkiRJkiRJkiRJkiRJUrsYjCZJ6qyVv4fVf9y2f3AzzL+4/fVIkiRJkiRJkiRJkiR1xuziawDPjIinNbDXy4Adi+cJ3NpIYZIkSZIkSZIkSZIkSZLULl0fjBYRkyLiTyPiHyPiwoi4JCKui4jrOl2bJKkGT/yy8tjjF7WvDkmSJEmSJEmSJEmSpA7KzAeAhcVmAH87ln0iogf4h6Ftgd9n5srGK5QkSZIkSZIkSZIkSWqd7HQBksaNvk4XMFYRMQ34G+B9wB7lw1R4r4uINwP/UmwuB56bmb4vSlKnrJxdeWzpb2HTMpgys331SJIkSZIkSZIkSZIkdc4PgI9SuAfufRFxRWZeU+cenwFOLGl/o1nFSZIkSZK2Z378SpIkSZIkSZLUHj2dLmAsIuJY4E7gAmBPCjeB1eoXwEzgQOB44MXNrk+SVIfVf6w8lgOw8PL21SJJkiRJkiRJkiRJktRZ/wqspvBp817g0oh4Vy0LI2L3iPg28BGGP62+CLiwBXVKkiRJkiYkw88kSZIkSZIkSZ3XdcFoEXEkcBPwDAqBaEM/cQ9qCEjLzLXARSVdr2t2jZKkGuVg9WA0gAWXtKcWSZIkSZIkSZIkSZKkDsvM5cAHGL43birwtYiYExGfBc4qnR8Rz4uIt0bE94C5wFsZvpduADgnMze382uQJEmSJE1Uo35sS5IkSZIkSZKkpujrdAH1iIipwOXAdIYD0WYD/w7cAEwBHqhhq0uBc4vnpze5TElSrTYsgoH11ecs/U17apEkSZIkSZIkSZIkSRoHMvO7EXEo8HEK98kFcAjw0bKpAfy2rJ0la/4+M69ufcWSJEmSJEmSJEmSJEmS1Dw9nS6gTh8ADmQ4FO0/gBMy81uZOQ/Yipk/qAAAIABJREFUWOM+NzB889dBEbFnk+uUpLFbNx9+fTb8fD+49hRYdH2nK2qdDQtHn7NxCWxe2fpaJEmSJEmSJEmSJEmSxonM/ARwDsP3xA3dM1cafjZ0D1yUzAlgM/D2zPx82wqWJEmSJEmSJEmSJEmSpCbptmC09zN8g9clmfnXmTlY7yaZuRaYV9J1RBNqk6TG9a+Ha14Ij18EG56AJb+C60+HR78HmaOv7zbrawhGA1gzp7V1SJIkSZIkSZIkSZIkjTOZ+R0K97Z9lUJA2lAAWrB1INpQ3yDwXeCIzPxeG0uVJEmSJEmSJEmSJEmSpKbp63QBtYqII4H9is0EPtLglnOBg4rnBwM3NbifJDVuwWWw/vFt+3/7NrjnY3DSj2DPk9tfV6tsqDEYbeVsmPnc1tYiSZIkSZIkSZIkSZI0zmTm48D7IuKjwAuLx9OBmcBkYCmwGPgNcF1mruxUrZIkSZIkSZIkSZIkSaPJ7HQFkrpB1wSjAccVXxO4LzMfaXC/0hvApje4lyQ1x2P/U3lswxNw7Z/CMRcUwtH2PAWip321tcL6GoPRFl4Oh5zb2lokSZIkSZIkSZIkSZLGqcxcD1xdPCRJkiRJkiRJkiRJkiYcQ9MkDemmYLQ9Ss7nNGG/TSXnOzZhP0lq3KJrRp8z+/zC674vh5N/Dr2TW1tTK214orZ5i68v/As2orX1SJIkSZIkSZIkSZIkSZIkSZK03fKTp5IkSZIkSZKkzuvpdAF1mFpyvqnirNpNLzlf04T9JKlxk3apfe4TV8DD/9W6Wtqhv8a33y2rYMOTra1FkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJktRR3RSMtrTkfPcm7HdwyfmyJuwnSY3rnTr6nFKPfKs1dbRL/4ba567+Y+vqkCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiR1XF+nC6jDouJrAMc3slFEzASOKOl6uJH9JKkpMmHT0tHnlVpxN6z4Pcx4VmtqarWBOoPR9n5R62qRJEmSJEmSJEmSJEkahyJiEvAC4GTgEGA3YGeAzDy9g6VJkiRJkiRJkiRJkiRJUtN1UzDab4BBoAeYGREvyszrx7jXuRQC1gDWAb9rQn2S1JhNy6B/Xf3rrjwO3jwIEaPPHW8GNtY+d/UfW1eHJEmSJEmSJEmSJEnSOBMR04C/Ad4H7FE+DGSFdW8G/qXYXA48NzNHnCtJkiRJkiRJkiRJkiRJ401PpwuoVWauAO4o6frniPpTgCJiP+BjFG4KS+CazBxsTpWS1IA1D4197ewLmldHOw1sqH3uQ//ZujokSZIkSZIkSZIkSZLGkYg4FrgTuADYk+EHgdbiF8BM4EDgeODFza5PkiRJkiRJkiRJkiRJklqla4LRiv695PxE4Ov1LI6IvYDLgBkM3yj2xeaUJkkNWjNn7GvvuwC2rG5eLe1STzAawLLftaYOSZIkSZIkSZIkSZKkcSIijgRuAp5B4T63HBqihoC0zFwLXFTS9bpm1yhJkiRJksaBNQ/DrefBlcfDbX8Bax/tdEWSJEmSJEmjyjGOSdq+dFUwWmb+CLin2AzgnRFxc0ScXG1dREyLiPcU1x5H4X0wgasz85ZW1ixJNVvzUGPrH/9Zc+pop3qD0R78v62pQ5IkSZIkSZIkSZIkaRyIiKnA5cD0ku7ZwHnAwcAR1BCOBlxacn560wqUJEmSJI0sE+7/LFzxLPjfo2H2pyAHO11V/dKPnnaN9Qvh2lPhkQthxT0w95tw7Smw4clOVyZJ0taW3Aw3v67w76TffQA2ryz0b1wCt78X/vcY+PUbYdkdna1TkiRJkjSu9HW6gDF4PXArMLPYPgm4MSIWAQ+XToyIrwGHAS8ApjD89MwAFgJvbVPNkrSt1Q/Bo98t/ABvn5cU2iOZcTxsWQVrH6m+323nwYFvgd4pza+1VeoNRlv4vzC4BXomtaYeSZIkSZIkSZIkSZKkzvoAcCDDD0H+D+BDmYVP00fEATXucwPD98odFBF7ZuaSJtcqSZIkSRry+3+EP3x2uD37fNi8Ap79pc7VpInt8Ytgw8Kt+9bPh/k/h8P+sjM1SZJUbumtcMOZw58jXHkvLP0tnHYVXHcarPpDoX/VffDElfDiX8OMYztXryRJkjSerX0E7v4IPPUb2PVoOOofYa9TO12V1DI9nS6gXpn5CPBKYBFbB53tA7ywZGoA7wJOBaaWzV0AvCIzl7atcEkqtex3cNXz4P5/gbnfgF+/Aeb/dOS5+70KXvkgvPiWUTbNwtN+BvubXW3r1BuMtmUlLPlVa2qRJEmSJEmSJEmSJEnqvPczHIp2SWb+9VAoWj0ycy0wr6TriCbUJkmSJEkaSQ7C3P/etn/urMKDwaVWuOtvRu7/3V+1tw5Jkqp5+BvbfoZw+e/gvk8Ph6IN6V8Dj36nfbVJkiRJ3WTT8kKeyPyLYeMiWHQt3PhyWH5npyuTWqbrgtEAMvN24ATgSgpBZzB8M1iWHJSNBXAN8LzMvLcNpUrSyO77Z9iyqra5Ox8GPX2wx5/Aq+ZUn7vsVnj0e43X1y4DG0fuP+lHldcs/EVrapEkSZIkSZIkSZIkSeqgiDgS2I/he+I+0uCWc0vOD25wL0mSJElSJSt+D5uWbdvfv8YHg0uSpO3bIxeO3P/gl0bu/+MXW1eLJEmS1M2evArWz9+6b2ADPPqDztQjtUFXBqMBZObizHwF8Fzg+8AiCjeEjXSsBi4GTsvMMzNzUWeqliQKT4NaeFnt83d+Rsn5oXDKKMFgj1UJFRtPBrdADow8tsN+sP/ZI4+tur91NUmSJEmSJEmSJEmSJHXOccXXBO7LzEca3G9lyfn0BveSJEmSJFUyuHlsY5IkSZIkSZJUi9veOXJ/pdBhaQLo63QBjcrMO4G3AUTEwcDTgZnAZGApsBi4PzMHO1akJJVa93jtc6fsDrsdv3XfnqdA307Qv3bkNYuvh80rYfKuY6+xHQY2VB7r2wFmHA+P/2Tbsc0rWleTJEmSJEmSJEmSJElS5+xRcj6nCfttKjnfsQn7SZIkSZIkSZIkSZIkqd0G1ne6Aqntuj4YrVTxCZmNPiVTklpr8fW1zz38b6Fn0tZ9k3aGE74At7975DXZD09cCQe+eew1tkN/lWC0nqmVg902rxy5X5IkSZIkSZIkSZIkqbtNLTnfVHFW7aaXnK9pwn6SJEmSJEmSJEmSJEmS1HITKhhN40NETAJOAvYH9gHWAk8Ad2fmvA6WJnXe6ofgtvNqmzv9SDj8QyOPHfou2O3Z8MvnjDy+6NrxH4w2UCUYrW8HmFQhGG2LwWiSJEmSJEmSJEmSJGlCWlpyvnsT9ju45HxZE/aTJEmSJE142ekCJEmSJEmSNMFllR9BVRuTtH0xGG0CiohvA29v0naPZeaBNV53D+AC4I3AbhXm/Ab4Ymb+rEn1Sd3l9nfVPvc5X4XeyZXHd3s2POO9MOdr2449ciFsWQ37vQoO/HPo6a2/1mbZsAge/m+YOwvWPw77nQUnfBEGN1de07sDTK4QjLZ5ZeFfsxGtqVeSJEmSJEmSJEmSJKkzFhVfAzi+kY0iYiZwREnXw43sJ0mSJEmSJEmSJEmSJEnt0tPpAjTubahlUkS8DLgPeC8VQtGK/gT4aUR8PyKmNaE+qXtsWQNP3Vzb3JnPg71OGX3ejCr3wM7/Kdz6drjljZ2LxV07D658Fsw+vxCKBrDwMvjFofDkVZXX9e4Ak2eMPJYD0L+u6aVKkiRJkiRJkiRJkiR12G+AweL5zIh4UQN7nUshYA1gHfC7RgqTJEmSJEmSJEmSJEmSpHbpqmC0iDg6Iq4vHtdFxJ5j2GOv4tqhfQ5rRa0TyM9GmxARpwKXAKV/HgncCVwEXAMsLVv258D/RERX/TcoNWTTMsjB0ecBzHx+bfN2OXz0OfN/Bkt/W9t+zTb7k7Bxychjd/1N5XV9O8HkXSuPr1/QUFmSJEmSJEmSJEmSJEnjTWauAO4o6frniIhK8yuJiP2Aj1G4hyuBazJrvWlFkiRJkiRJkiRJkiRJkjqr20Kp3g2cCpwCbM7MCmk7lWXmYmBLyT5/0cT6xosPAweN4XhD2T4JXFjtQhHxNOBiYHJJ9y3AUZn5nMw8OzNfAjwN+CCF/+2HvAr49Bi+Pqk79a+pfe7M59Y2b+casx0f/V7t126WgU2FULZ69e0MPX0wqUow2tUnQubYa5MkSZIkSZIkSZIkSRqf/r3k/ETg6/Usjoi9gMuAGcBQqNoXm1OaJEmSJEmSJEmSJEmSJLVetwWjvbrk/DsN7DO0NoA/a2CfcSkzl2bmvHoP4IyyrW7IzEdGudwFFG6iG/Ib4IzMfKCspk2Z+R/A2WXrPxQRB4zhy5S6z5Y6gtF2qzEYbfKM0ecAPFI147A1Fl8P/WvrXze5GIg2eXrlOVtWwYq7x1aXJEmSJEmSJEmSJEnSOJWZPwLuKTYDeGdE3BwRJ1dbFxHTIuI9xbXHUXgoZgJXZ+YtraxZkiRJkiRJkiRJkiRJkpqpa4LRIuJg4GnF5iBweQPb/QIYKJ4fFBH7N1LbRBAROwBvKuueNcqaZwBvL+naDLwjMzdWWpOZl7B1qN0U4Pz6qpW6VK3BaJN2gV0Oq21uzySGH+5bTS1zmmzBJWNbNxSM1jsVpuxeed7yu8a2vyRJkiRJkiRJkiRJ0vj2emAZhWAzgJOAGyNiIfDd0okR8bWIuA54CvgKsNfQEPAE8Na2VCxJkiRJ27UcfYokSZIkSZIkSapZ1wSjAUcXXxN4MDPXjnWj4toHS7qOaaSwCeL1wPSS9grg4lHWvAXoLWlfnJlzarjW58raZ0fE1BrWSd2tv8ZgtIPeAVHj23NEIUBsNIObatuvWXIQFlw2trWTZwyf73dW5Xn968a2vyRJkiRJkiRJkiRJ0jiWmY8ArwQWUQg4y+LrPsALS6YG8C7gVGBq2dwFwCsyc2nbCpckSZIkTQCGvEmSJEmSJKm1ssqPoKqNSdq+dFMw2gEl53ObsF/pHvs3Yb9ud15Z+weZuXGUNX9W1v5WLRfKzAeA20q6pgEvqWWt1NW21BCMtteL4JhP1LdvLcFoACvvr2/fRiy7HTYuGtvaSbsOn5/w+crz+secjylJkiRJkiRJkiRJkjSuZebtwAnAlRSCzmD40+lZclA2FsA1wPMy8942lCpJkiRJ+v/ftkmSJEmSJEmSpGbopmC0nUvOVzVhv9Ul57s0Yb+uFRGHAH9a1j1rlDV7A88q6eoHbqnjsjeWtV9Wx1qpO/VXCEabdhC86Fp4+b1w2tUwZWZ9+9YajLbgkvr2bcRT9bwdlIne4fPJMwphcSPpXzf2a0iSJEmSJEmSJEmSJI1zmbk4M18BPBf4PrCIwqftRzpWAxcDp2XmmZk5xifaSZIkSZIkSZIkSZIkSVJn9XW6gDpsKDlvRpBZadDaQBP262bnsvXjae7KzHtGWXN0WfvezKwnpeg3Ze2j6lgrdactFYLRpu4Je58+9n17agxGWzdv7Neo15qHRu7f63R4wXfhkv0qrx3YuHV70s4jz+tfO7baJEmSJEmSJEmSJEmSukhm3gm8DSAiDgaeDswEJgNLgcXA/Zk52LEiJUmSJEmSJEmSJEmSJKlJuikYbWnJ+QFN2G//kvNlTdivK0VEL/D2su5ZNSw9sqz9cJ2XnjvKftLE018hGK1S8FetemsMRlu/sLHr1GP1gyP3Tz+yEARXze4v2LrdO23kef31ZDFKkiRJkiRJkiRJkiSNbxGxM3BQSdfc8odVZuYjwCNtLUySJEmSJEmSJEmSJEmS2qin0wXU4fHiawDHRMTMsW5UXHtsSVcb04LGnZcC+5W0NwA/rGHdoWXtx0ecVdljZe2ZETGjzj2k7rKlQjBaX5uC0Z68srHr1GrBL2DJTSOP7XwY9IySybnfy7duT9pp5Hn9a+uvTZIkSZIkSZIkSZIkafx6M3B38bgdmNLZciRJkiRJkiRJkiRJkiSp/UZJpxlXbgU2AZMphKP9FfCpMe71lwyHwvUDtzRcXfc6t6z9s8xcWcO6XcvaS+q5aGaujYiNQGmi03RgRT37lIuIPYE96lx2SCPXlGpWKRhtUoPBaD113AO7+iHY5bDGrlfNyvvhV2dVHt/lmYXXXY+FlfeOMCFgxglbd/VOG3mv/nUj90uSJEmSJEmSJEmSJHWn3SncGwdwR2Yu72QxkiRJkiRJkiRJkiRJktQJXROMlpmbIuJm4Ixi14cj4ueZObuefSLiaOAjQBa7bsnM7TJdJyL2AF5V1j2rxuU7lbU3jKGEDWwdjNZgOhRQCL07vwn7SM3XXyEYra/B//RzoPa5lz8T3jwIEaPPHYvHflh5rGcSzHxe4Xy/s0YORnv9sm1rm1T+dlPUv3ZsNUqSJEmSJEmSJEmSJI1Pq4qvCSzoZCGSJEmSpO1U5uhzJEmSJEmSJElqsZ5OF1Cnzxdfk0Iw15URcWKtiyPiecAVwDSGn6z5+corJry3AZNK2nOBm2pcW55UtHEM1y8PU6uQfiRNEFsqBKNNajAYbbDO//tdewpsXNLYNStZcU/lsT1PhcnTC+dH/T3s89Lhsd4d4eSfweQZ267rmzbyfgajSZIkSZIkSZIkSZKkieXJkvPJHatCkiRJkiRJkiRJkiSpRapF8xvbL2lIVwWjZebVwI0UQs0S2Bf4VUTMiojnRUSUr4mC50bEN4GbgacNbQfcnJlXtKf6cemcsvaFmWN+tMtY1vn3kbYv/S0KRhuoMxjtqZvhqufDuscau265LWvgiSpvqUd+dPi8b0c49Qp4+X1w2lXwmvnw9NeOvK6vQmbi8jt9GpUkSZIkSZIkSZIkSZpI7is5P6hjVUiSJEmSJEmSJEmSJElSB/V1uoAxeBNwF7APhWCtPuAdxWNdRDwIrCiO7QYcBgyl6gwFqgUwHzi7jXWPKxFxInBUSdcA8O06tlhb1t5hDGWUrynfcyy+ClxU55pDgEubcG2pui0VgtH62hyMBrBuHvzqz+BldzV27dIaLt6r8vhuz4W9z9i6LwJ2PapwVNM3rfLYqvtg12Nqr1OSJEmSJEmSJEmSJGmcysyHIuJe4Fjg2IjYLzMXdrouSZIkSdJofOC3JEmSJEmSJEnN1HXBaJm5JCJeClwGHMjwbw+CQgDas8v6/v9ShkPRHgZenZlL2lHzOHVeWfvKzHyijvXjMhit+Gda159rRIw+SWqG/grBaJM6EIwGsOJuWHQ97P2ikccHByD7YfNyGOyHKbsDCTkAm5YV5vRMgh32hZvOgoENla91zCfGViPApF0rjy2+0WA0SZKkTtqyGnqnQU9vpyuRJEmSJEmSJGmi+E/gGxTuc/sU297nJUmSJEmSJEmSJEmSJEkTWtcFowFk5n0R8WzgK8DZQA8jP16ltC+AAeAHwAczc1XLCx2nImIa8May7ll1blP+v98eddawE9sGo62sswapu2ypEIzW16FgNIDrT4dD3gnP+TL0Thnun38J3PxnjdVVaod9x752z5Mrj/U3nKcoSZKksVgzF37zFlh2B0yeAc/8IBz9T2DwtCRJkiRJkiRJDcnMWRHxGuAVwDsi4sHM/NdO1yVJkiRJqsb7piRJkiRJkiRJaqaeThcwVpm5IjPfAhwJfAmYXRyKsgPg98DngWdm5ju251C0ojcApUlMi4HL69xjTln7gDrXl89fnpkr6txD6h6Z0F8hGG1Sg8Fogw0EowHM/Sbc9TfD7VV/bG4oGsC0et8iSkyZWXmskVA4SZIkjc3gFrjuVFh2O5CweTnMPh/mfK3TlUmSJEmSJEmSNFG8Gfg5hfvfPhsRV0XEaR2uSZIkSZIkSZIkSZIkSZLaoq/TBTQqMx8C/hYgInYC9gKGUnSWAoszc12Hyhuvzitrfzcz++vc44Gy9qF1rj+4rP2HOtdL3WVgA+TgyGN9DQajTZ4BG5eMPPbKB+Hej8PjF1XfY87X4NB3w4xnwQP/1lg95XY5onq4WS32fgksunrb/sFNje0rSZKk+i35FaxfsG3/Yz+Ew/6y/fVIkiRJkiRJkjSBRMSFxdPVwBoKD8A8AzgjItZQeEjokuJYrTIzy+8ZkyRJkiRpBNnpAiRJkiRJkiRJ6p5gtIjYG3heSdevM3N56ZzMXAusBea2s7ZuEhGHAS8s6541hq3uK2sfGxE7Zub6GtefNMp+0sSypcq9qJMaDEZ71mfgtndu23/gW2GXw+CFP4ErjoOVv6++z5XHNVZHJSdf3PgevVNH7h/Y2PjekiRJqs8Dnx+5/6lb2luHJEmSJEmSJEkT0zvY+lPoCUTxfBe2vfdrNFHcw2A0SZIkSZIkSZIkSZIkSV2hp9MF1OG1wM+Lxw+ATZ0tp2udW9b+dWY+WO8mmfkkcG9JVx/13XR3aln7ynprkLpKfwuD0fZ9OfSNsMeBfz58fthfNXaNsTr8QzD98Mb3qRiM5l8FkiRJbbd5+ehzJEmSJEmSJElSM2XJIUmSJEmSJEmSJEmS1LWyyt0P1cYkbV+6KRhtVwpPrwzgjsxc1+F6uk5E9AJvK+ue1cCWPy9rn1NjHYcDzy/pWgdc3UAd0vjXv77yWO+0xvbeYR940dUw/ajh9vNnwb5nDs85+Fx41mcau0699jy1edfsmTJy/+DG5uwvSZKk6gb74b5Pw1UvgGW3V57nTx0lSZIkSZIkSWqGaOIhSZIkSWo575uSJEmSJEmSJKmZ+jpdQB2WF18TeLKThXSxlwP7lLTXABc1sN8PgI8DvcX2ayPiGZk5Z5R1f1fW/klmmm6kiW1gQ+Wxvh0a33/3E+EV98HmlTBpOkTZfa09vXDU3xeOa0+FJTc1fs1q9n5xIaytWXqnjtw/4FuHJElSW9x6Dsz7/ujzBjZA346tr0eSJEmSJEmSpInroE4XIEmSJEmSJEmSJEmSJEmd1E3BaKVhaNM6VkV3O6+s/aPMXDfWzTJzTkR8Bzi32DUZ+HZEnF4p6CwiXg28o6RrM3DBWGuQuka1YLTeJgSjDZm86+hzDnhT64PRTrmsufv1Thm5f2BTc68jSZKkba17DOb9oLa5/esMRpMkSZIkSZIkqQGZ+Vina5AkSZIk1StGnyJJkiRJkiRJkmrW0+kC6nA3kMXzwzpZSDeKiL2AV5R1f7MJW58PrChp/wlwbUQcXnb9KRHxfuCisvVf8GY+bRcqBaP1TIZo81vxQW+DXY+tfX5fHVmUOx0Mr5kPvVPrr6uaSvsNjJjBKEmSpGZZOw/u/juGvx0fRf+Ys7clSZIkSZIkSZIkSZIkSZIkSZIkSZIkib5OF1CrzHw8Im4FXgA8MyIOy8yHOl1XF3k7W/9535eZtze6aWYuiIjXAlcBk4vdJwF/iIg7gUeA6cAJwB5lyy8H/qnRGqSuUCkYrXeH9tYB0LcjnHkHzPka3PXXleftfzbs+zLY5Qi4+sSR50w/Eo7/Aiy+HqbuDYe+Eybt0vyae6aM3D+4qfnXkiRJEmTCfZ+G+z4JOVj7OoPRJEmSJEmSJEmSJEmSJG13anzwpCRJkiRJkiRJqknXBKMV/Rtwccn5qztYS7c5p6w9q1kbZ+aNEfFnwLcZDj8L4DnFYyT/A/xFZg40qw5pXOsfR8FoAL2T4fAPwv5vgGtOgnXzth7/00vhaWcVzlfeX3mfTNj3pYWjlXqnjtw/sLG115XUHFtWw2M/gTUPwR4nw36vgOjpdFWSpGqW/hZmf6L+df1rm1+LJEmSJEmSJEmSJEmSJKlNDHmTJEmSJEmSJHVeVwWjZeYlEXEhcC7wyoj4CvDBzOzvcGnjWkScBBxe0rUZ+H4zr5GZV0TE0cAFwBuBGRWm3gp8PjN/1szrS+PewDgLRhuy477wqodhyU2w6FqYcRzsfQZM2W14Tl+1Gtv0S0+D0aTutXEJXH8GrJxdaD/wb3DwOfD8bxqOJknj2bwfjm1d/7rm1iFJkiRJkiRJkqStRMRBwHHAvsBOwJPAY8BvMnNLJ2uTJEmStl/R6QIkSZIkSZKkrlEtpcLYfklDuioYrejdwBrgg8B7gFMi4gvAZZm5rKOVjVOZeQtt+C1LZi4B3hsRHwROAg4A9gbWAQuBuzPz0VbXIY1LlYLRqoaOtUlPL+z9osIxkqrhbW36Z2XPlJH7Bze15/qSxm7Ofw2Hog155Ftw6Ltg9xM7U5MkaXRPXDG2dQajSZIkSZIkacW9cP9nYNNS2O14OOaT0Det01VJkia4iPg28PYmbfdYZh5Y5VqN3jBzUGbOq3dRRLwe+BDwggpTlkfEj4FPZObSBuqTJEmSJEmSJEmSJEmSOqqrgtEi4vqS5hpgZ+BI4JvF8QXAkuJYrTIzT29akSIzNwM3dLoOaVypFIxWNXRsnBgPNfZOHbl/YGN765BUv9mfGLn/8Z8ajCZJ49m6MWZaG4wmaTwYHIDsh94KIduSJEmSpNZZPQeufv7w7/EWXweLb4Azb4fo6WxtktQlIuJtTdwuKdxLtwpYBPwxM3248ugq3OjTGRGxE/AN4E2jTN0NeC/w2oh4e2Ze1fLiJEmSJEmSJEmSJEmSpBboqmA04FQKN2sNSSCKB8DTi0etN29FHXMlaewmajBau+6V7anwYfbBTe25vqTmmzsLTvh8p6uQJJXLhEe/N/b1AwajSeqgwS1w14fh0W8XPoC/z5lw4rdgysxOVyZJkiRJ2497/m7bhxstvxOevAr2fVlnapKk7vNtWndP27qIuAP4DvDjzPTGi5H9rNMFDImIXuDHwMvLhp4C7qYQencIcDzD91HuBVwaEWdk5q/bVaskSZIkSZIkSZIkSZLULN0WjDYSg80kjX/dHIzWM7nKYJvegnunjty/fkF7ri9pbHKw8tjkXdtXhySpdk9eDbe+fezrt6xtXi2SVItMWDsXVj8E93wUVt0/PLbwF3Dz6+CMGztWniRJkiRtVzavggU/H3ls8Y0Go0lS/WL5V3KCAAAgAElEQVT0KXXbicLDSU8FPhsR52Tm1S24Tid8GPjkGNY9B7iopJ3AhXWsvw14U53XrOeGl//D1qFoW4APAf+dmZuHOiPiSOCbwAuKXVOASyLimMx8ss76JEmSJEmSJEmSJEmSpI7qxmC0VtzwJUmt1d/FwWhR5W23WuhRM1UKRgOY/c9w9Mer1ympMx7+78pjBqNJ0vj00H82tn5gXXPqkKRaDGyC294J875fec6Smwqhabsc1r66JEmSJGl7de8nKo/NvxiO/1z7apGk7ld6E0RW6C9X/nS7keZmydg+wJUR8YHM/Er9JY4vmbkUWFrvuoj4WFnXDZn5SB1bbMzMefVetxYRcTDwwbLuN2TmpeVzM/MPEXE6cB3D4WgzgfOB97SiPkmSJEml2vTAcUmSJEmSJEmSthNdFYyWmT2drkGSxmSgi4PRqmrTL3Cn7FF5bPYnYJ8Xw+4ntqcWSbXZtBzueG/l8UnT21eLJKm6lffDgktg4xJ44n9rW7Pbs2H5ndv29xuMJqmN5n6zeijakCevNhhNkiRJklptzcMw58tVJrTpgUuSNDGcU3zdGfgEhXCroPBmeitwB/A4sBqYDOwGHAOcDOxdXJvAj4FfAjsAuwJHFuccwNYBaV+KiAcy8/qWflXjUETsALyprHtWJ2qp4HxgUkn72yOFog3JzA0R8Q5gNoX/NgDOi4h/rTPsTZIkSdL2LA15kyRJkiRJkiR1XlcFo0lS15r7jZH7+3Zsbx3N1q5feu52PPRNqxy08ej3DUaTxpsFFe/FLuib1p46JEnVzb8EbjkbBrfUvubUX8KcrwAGo0nqsHk/rG3eunktLUOSJEmSROF7tKwSfrZuHgxsgt4pbStJkrpVZn4nIp4BXEYhFA3gG8CnM3N+pXUR0QO8Gvg8cBDwBuCBzPxU2byXA/8OHEIhIK0P+AJwfJO/lG7weqD0qV4rgIs7VMtWiqFtry/r/txo6zLzoYi4BDi72NUHvAX4dHMrlCRJkrS16HQBkiRJkiRJkiRNKD2dLkCSJrwtayuP9e7Qvjpaok3BaL1TYY+TK4/P+Up76pBUuzlfrT4+sLE9dUiSKstBuPP9dYSiBTz3a7DvmZUDLg1Gk9ROS39T27wNC1tbhyRJkiRp9Aem5CCsmdOeWiSpy0XEjsAlwDOBfuDNmfnuaqFoAJk5mJk/B44Ffk3h3sDzI+IdZfOuAE4A7i7pPjYiXty8r6JrnFfW/kFmjpdfZp8JlD5x8beZ+cca136rrP3a5pQkSZIkSZIkSZIkSVLjskpMRbUxSdsXg9EkqdWeurny2KSd21dHK+x9RvuutcPe7buWpMY89hNY/rvqcwzOkaTOW/0grF9Q29xjPw1v7odnvKfQ7ttp5Hn9VUKBJamZNi2rfe6qByqPDQ7AxqWFw/BeSZIkSRqbdfNhxV2jz1td5fszSVKpTwFHUHha3ecy8yf1LM7MdRSCsJYDAXw5IvYom7MGeD2F4LWhW4pf0mDdXSUiDgH+tKx7VidqqeClZe0b61h7M4U/2yHHR8ReDVckSZIkSZIkSZIkSZIktYnBaJLUaouvrzy2R/n9lePUMz9Yof8D7ath8szq4+seb08dkkZ3/2dGn2MwmiR13rLbap971D9AlPwIoW/ayPN8f5fULqsfqn3uyt/DRbvCPR+Dgc2FvoHNcPt74We7wcV7FI6LdoHrTi98oF+SJEmSVLsFl1Ye65kE+50FR3wUdn5G+2qSpC4VEX3A24rNTcDnxrJPZi4F/qvY3AF4ywhzHgUuohCeBnDSWK7Vxc5l+GsHuCsz7+lUMSM4uqz921oXFsPxZpd1H9VwRZIkSZIkSZIkSZIkSVKbGIwmSa2Ug/DA5yuP731G+2ppxDM/CDvuv3Xfwe+A6eX3YLbQlN2rj1/1/PbUIam6zSsKwROjGVjf+lokSdsaHIDld8HS2+DWc0afP3k3eOldELF1v8Fokjptw8L65m9ZBX/4XCEcDeCuv4aHvw5bVg/PGdxSCDe/6jmF98vNK2HRdbBhUfPqliRJkqSJaGGFYLRdnglv2gynXArHfw5mHNfeuiSpO70Q2B1I4PZiwNVYXV1y/poKc64qvgbwtAau1VUiohd4e1n3rDFut39EfCsi7o+IFRGxOSIWF9vfj4h3RcRuY9j3iLL2w3Wun1vWPnIMNUiSJEmSJEmSJEmSJEkd0dfpAhoVEccBZwEnA4cAuwE7A5mZ23x9EbErsEuxuSkzF7erVknboaW3Vh475C+gd3L7amnETgfBS34Lj/0PrHkY9jwFDjh724CMVqoUvjFk4yJYvwB23G7u05XGp9UP1jbP4BxJar91j8GNr4BV99c2//APwWF/BTsdvO1Y304jr/H9XVK7bFo2tnUPfgkOOQ8e+U7lORuXwI8mFb7nzcFC3+F/C8f/W3u/D5YkSZKkbrB5JSy+ceSx/c9uaymSNEGUPrXuiQb3erLk/IAKcx4oOZ/R4PW6yUuB/UraG4AfjnGvg4pHqT2Lx5HAnwNfjIhvAP+UmWtH27AYpFYepvZ4nXWVz39GneslSZIk1SU7XYAkSZIkSZIkSRNK1wajRcQxwJeA00q7a1h6GvDT4vm6iNg7M9c3uz5JIhP++KXK4zOf275ammHHfeGIv+1gATW8xT9xJRz6F60vRVJlT/yytnkG50hS+932rtpD0Q4+B074QuXxSqG1/aN+lkeSmmPzGIPRAK44uoZJWfi+fsgfvwC7Px/2f8PYrytJkiRJE82qB+DXZ0P2jzz+tNe0tx5Jmhj2KTkf5Qlyo9qx+BrA3hXmrCg5n9Lg9brJuWXtn2XmyhZebxrw18DLI+K1mTnaL2x2LWuvz8x6f8m+pKw9vc71FUXEnsAedS47pFnXlyRJktRqhrxJkiRJkiRJkjqvK4PRIuIdwFeAqRRu3Cr9qXtSPT3nUgpPQzyAwg1HrwO+15JCJW2/MuG282D+TyvP8Qnp9dlhr9HnDG5ufR2SKltwGdx3QW1z+9cV3iujllxbSVLDNi2HRdfUPv+Ij1QfrxiMZvClpDbZ1EAw2lgtuNRgNEmSJEkaMue/4I73UvFDkjs+HWYc39aSJGmCWF1yfmSDex1Vcl7pySZTS843NHi9rhARewCvKuueNYat+oFfA9cC9wILgDXATsD+wMnA24A9S9YcBlwbESdm5mNV9t6prD2WP5vyNTuPYY9K/hI4v4n7SZIkSROA98NKkiRJkiRJktRMPZ0uoF4R8ToKNyLtUNoNzAfuYZTfJmTmIPDjkq6zml2jJLH0t/DItyqP90yCyU17EOv2Ye8zCv+7VdO7Y/Vxabwa2Aj3ng/XvQhuPQeW39npiurXvx5+9eo6FiRsWdWyciRJZVb9gbqe5Dn9iOrjvQajSeqwzcvbf815P2j/NSVJkiRpPNqwCO7+MFV/3rTfWT4cRZLGZkHxNYCDI+L5Dez11uJrluxbbu+SOU81cK1u8jag9AaUucBNde7xcWC/zDwtM/8lM3+RmXdn5sOZeU9mXpaZH6Hw8Nb/w9Z/ae4NXBxR9S/K8mC0jXXWB9sGo5XvKUmSJEmSJEmSJEmSJI1bXRWMFhH7AN8pNoduFvoqcEhmHgi8tsatLh3aEjilaQVK0pAnrqw+vs/L2lPHRDJ5Bhz0tupzRgtOk8ajTLjhTLjvU7D4Bnjk23DtKbDsd52urD6XH17/mk3Lml+HJGlkG5+sfe6h7x59zqQKn53pX1P7dSSpEf5bUpIkSZI6Z/7F0L+2+pyn1fMwFUlSiZuALRTujQvgqxFR91PiIuKNwEsYvsfumgpTTyg5n1fvdbrUOWXtCzOzjqfLQDEMbUkN8zZm5t8D7y8bOgF4cz2XrKe+BtZIkiRJGjP/CS5JkiRJkiTVqtpv6ev7Db6kiayrgtGATwA7UrjpaxA4OzPfl5mPFsdrfXu7g8INZAAzI+Kg5pYpabt3/6erj0/etT11TDTP/Xr18XXz2lKG1FRLboIlv9q6r38dPPTlztQzFmvmwvr59a8zzEKS2mfto6PPGbLvK0afM2n6yP0DG2FgU+3XkqSx8t+SkiRJktQ593+m+vikXWBPn1EnSWORmauByyncH5fAccBVEfH0WveIiHdSePjoULhaAt+vMP3MkvPfj6XmbhIRJwJHlXQNAN9u9XUz8yvAZWXdf1llSXkC6Q5juGz5mlFSTevyVeDoOg9TUyVJkiRJkiRJkiRJklSzrglGi4heCk9JzOLxucz82Vj2ysx+4I8lXYc3XqEkleidWn18ksFoY9LTV3383n8yAljd56H/HLn/0e+0t44hAxth6e2wcvYocduDsPxuWH4XzP7k2K61aenY1kmS6ldPgOw+Lxl9TrWg3y2rar+WJI3VlpWdue7CyztzXUmSJEkaL7ashQ0Lq8/Z9+XQO7k99UjSxPRhYGNJ+yTgDxHxtYh4UUTsUr4gIg6LiHdHxB3AfwGTGQ5Fm5WZs0dY83TgVIYfRnpzc7+Mcem8svaVmflEm6792bL2iRFR6Rcu4zoYLTOXZOb99RzA3GZdX5IkSRqfotMFSJIkSZIkSZI0oXRNMBpwIrALhd8WbAH+tcH9FpSc1/xETUmqSd/O1cerBUmoMcvu6HQFUn3mX9zpCoY9dQtcfgRc/Xy44li44SWwecW289YvLIz/8gT45bNhXqWHi49i87LG6pUk1W7tvNrmnTUXeqeMPm/yjMpjI/3dIUnN1r9u9DnHfKr5133oq83fU5IkSZK6yd0fGX3O017T+jokaQLLzEeBc4HBoS5gGvAu4BpgRUSsiIjHI2JRRGwAHgC+Cjyb4UA0gNuAD1W41Mco3D8YwKbi3hNWREwD3ljWPauNJdwOlP4SpRc4ssLc8qfQ7Fisvx57lrU79LQJSZIkSZIkSZIkSZIkqX7dFIx2aPE1gTsyc3WD+5Wu3+YpmpLUkMEt1cezvz11TETPKn+Abpm532xPHVIzrH6o+ngOVh9vhvVPwJyvw+3vhWteCOvmDY8tuhbu+Ydt1/z27bDq/tr2nzKz8tgmg9EkqS2eugWevHL0ec/5Mux0cG17TqoS9LvZz9VIaoP+9aPPOeafYJ+XNve6tbyfSpIkSdJEMjgAj/0EHvhC4fXhr1ef3zOp+d+LSdJ2KDN/BPw5sIatg86ieEwHnkYh/GpKSX8WjwCuAl6WmZWeMvA94LTicXKVeRPFG4DSJx0uBi5v18UzcxB4vKx7jwpzl7F1iBrA/nVe8oCy9pw610uSJEnabuXoUyRJkiRJkiRJarFuCkYrvQlofhP2K00a6WvCfpJUsGUtbBklDGKnQ6uPq7Knv7b6+IYn2lOH1AwLR7nH+q4Pt/b6y++GK4+DO95b+YNMj1wIW9YMtzevhCU31Lb/MZ+CVz4Ie/7pyOObltZXrySpfrMvKARfjib64LC/qn3fvmkQvSOPGYwmqR36a/yM5pTdm39t3+ckSZIkbS8GNhd+tnTLG+HuDxdeR3PwuTB5eutrk6TtQGb+BDga+AkwQCHsDIbDz0qPIQHMA96ZmS/LzFVV9r81M28qHne24EsYb84ra383s+1PNtxQ1t6hytwHytr13mxU/jSc8v0kSZIkSZIkSZIkSZKkcaubgtFKb+Cq8OnruuxWcu6nGSU1z5qHRp8z8zmtr2Oi2uWw6uNtv2dVXWfLavj9P8J1p8Md74M1D3eulg0Lq48/+CVYP8qccjkID/4nXH44/DAKxz0fg80j3O/++3+ATU9V329wM1y0S2Gf294JCy4rXGM0Ox8GR38cpsyEyTNHnrNp2ej7SJLGbu4smP3J2uYe8Ob69o6AybuOPLZ5RX17SVK9chAG1tc2d+bzmn/9lfc2f09JkiRJGo8e/L+w7Nba5z/99XDc51pXjyRthzJzQWa+CTgA+CDwY+BBYBmFsLT1wELgFuALwMuAQzPzws5UPD5FxGFA+ZNkZnWglPInOVR7mth9Ze0X1HqRiJgGHDvKfpIkSZIkSZIkSZIkSdK41U3BaKWpHfs2Yb+jS85N5ZDUPKsfrD6+x8mw6zHtqWWi2q1KsNzglvbVoe4zsAmuPRXu/wwsvh7mfAWu/hNYM7cz9fSvHX3Owsshc+u+wYHK829/D9z5ga3fi/7wOfjlCTCwsbi+vxAQ9+RV9dU7dxb8P/buOzyO8l77+PdRtST33jEYXDBgmunV9N4J7QQSckIaSU4K5KSQHt4USM9JQghJCL33YmxjbIPpxtjYYNx7r2qWtM/7x1jRSp6Znd2dmS26P9elS7tP/UkYbZu5Z9a1wcYe+AMnNAegsuOx3bvt0lMwERFPHf/2p2vJv51AyyBMGex3Q/p7lPdyb29S9riIRKylPvjYva6Eit6px3UZCBNfCrbmSydm/3daREREREQkXyV/BrH4ruDzLtkExz8EFT3Cr0lERLDWrrHW/t5ae6W1dn9rbX9rbYW1tpu1dri19nhr7TettS9YqzevXHy6w/0Z1toUB/iEyxjTF9inQ/NqnynPd7h/UhrbHQ+UJd1/11q7Lo35IiIiIiKSNr0UExERERERERERCcrv3TS90yYirQopGG357u8GOMQYU57pQruvADkkqWlONoWJiLSzfYF3335fgJM7HrcoaUs0evdtmxdfHVJ4Vj8LW95t39a4AT7+S27qaa5NPebNz8F9JXCvgRmXwxP7wEPdYdr50LC+bVztcnjmAFh0h/s6OxfDA1XOOveXw0M9iOyl4dH/hhFXtt2v7OM+rtHv4tciIp2UTcB734FH+8GD3WHm1dCwIfW8dmtYJxQziP4nwakvQ79j060UKnq6t+9SMJqIRCzI8+hWXfrCmW9D/xP8xw04GQaeAme+BYPOSL3uxleD1yAiIiIiIlII1k+H5yfAg1Xw/BGw+F/+n3smG3oRVAYIpRYREckBY0wp8MkOzXfmoJQraH+85jpgvs/4F4Dkq0QcbYwZE3Cv6zrcfyzgPBERERERERERERERERERERGRvFBIwWiv4RzoY4Eq4Er/4b6+nHR7XdxXfxSRIle71L192CUw4Y9QVh1rOUWpxScYrWEdbHjNCRUR6cgrAG3+L+Oto1U6gQ4Ayx+C2iXQUgernoJJxzvhN4lmeO7g/AgGPO5h2Pvq9m2ewWiboq9HRKTQvP9DmPcz529k8w5Ydi+89knn731Qu7bAtrnBxp46NbNQNIDy7u7tTdszW09EJKjmuvTGdx0Bp06DM9+BkZ+B0qr2/RW9YP9vObd7H+YEmk98yX/Nxf9IrwYREREREZF81FwHa6fA/NvhpRNg81uQaILNb8Ksa4Ov02NcdDWKiIhk72xgUNL9HcBDcRZgjBkAfLdD81PWen8AZK2tAx7u0HxzgL1GARclNTUD9wYsVUREREREMmZyXYCIiIiIiIiIiIiISFEpmGA0a20jMBnn0wID/NQY0zPddYwxxwI34ASsWeDRMOsUEaFulXt7zV7x1lHMEj7BaACTjoFn9ocdi+KpRwrHmhdyXUF7zTuzm7/jIyc8Z+YnnBCcXOsyAAafuWd7ZV/38QpGExFpz1pY/Pc929c875yUGlTjxvBq8lNS6d5um+LZX0Q6r3QDhlv1PgSOvAMuWg0T/gT7fBr2/184/XXodVD7sQNPgarB3mst+ltmNYiIiIiIiOSLJffAgzUw5RR49+vZrVU1KPUYERGR3Lm+w/37rbUZvclojBltjDkvzTkDgaeBAUnNu4BbA0z/AZD8wct1xpjzffbqAtwFVCQ132mt1QE0IiIiIiIiIiIiIiIiIiIiIlJQCiYYbbef7v5ugSHAi8aY/kEnG2NOBp7E+bkN0AL8KuwiRaSTW/+ye7vfCdWSnpYUwWgA2z9M70r2IjYR/56ZBjokm/NdWJEnOa9H/g3KavZsr+jjPr5xoxMCJCIijpYGqFvp3jfvp+7tbuIKRiutcG9v2RXP/iLSeWX7PLqiJ+z3eTjqTjj4Z9B9P/dxPcf7r7Ptg+zqEBERERERyZUdH8Nr14S3XjeP11UiIhIqY0y5MeZYY8wnjTFfNcZ8zxhzS67rymfGmAHAOR2as7nqwSDgSWPMHGPMTcYYzwdBY0w3Y8yXgNnA4R26f2KtXZxqs91jftuh+WFjzJeMMe0+qDHGjMW58OwxSc2bgB+m2kdERERERMJQRMfD6theEREREREREREREckDZbkuIB3W2teNMfcDV+B8anA4sMAY82vgQZwrKbZjjCkFTgL+G7gMJxCN3fN/a61dGn3lItJprHwKbIt7X9WQeGspZt32g4a1qcdtmAk7l0LXEVFXJMWgcRN06RfvnmEEo4Vt0Bmw5oX05/U/CYac695X6RGMlmh0AoBqhqW/n4hIMWre6d238ong6wQNRus9Ifiabko8gtESCkYTkYi1xPQ8OpEilPuZcXDFLigpj6ceERERERGRsKx4LLy1ugyEASeHt56IiOzBGHMc8A3gdKDSZciPXOacCVy+++5ma+03oqswr11L+2Mk51pr3whh3QOBnwM/N8ZsA+YCG4EdQFdgGDAe9+Mz/2qt/XEae30LGAectft+OfB74HvGmHd277kPcChtx0aCcyzlRdbaNWnsJSIiIiIiIiIiIiIiIiIiIiKSF0pyXUAGrgfexTmIxwI9gR8AH+z++g9jzHygFniRtlC01kuXvIpz0JCISDgSLfD6p737qwfHV0ux2/+m4GM3hXE8qxSF2mX+/fWr4qkjmV8ATi4c8H046Tk49Nfpzx3S8SLbSbru7d23+un09xIRKVapAjN3LAq2TtBgtNFfDjbOi1cwmm3Kbl0RkVSa6+LZp6Uh9Zj5t0Vfh4iIiIiISDZWPgEzroAZl8OyB533mGan8Vmbny4DYOJLUFJQ1+QTESkYxpgaY8w9wDTgPKALzvFvyV9e5gH/hRMM9j/GmPERl5uvPtXh/p0R7NEDOBa4ALgGuBA4jD1D0WqBz1prb0hncWttC07I3QMduvoDZ+IcF3kY7f89rAcusNZOT2cvERERERHJht9LNBERERERERERERERSVfBBaNZa+uBM4AptA86MzhXxEy+PxqooO0TBrv79ovAObsPGhIRCceGGf4hFFUKRgvNgInQbb9gY2d+ItpapDDUr4FnUxznXbcynlqSpQrAidOoG+GgH4AxsPd/QWWf4HMresNeV3j3Vw2Cnge6922ZnVaZIiJFLdXjwsongq3TuCH1mKohMPTCYOt5KSl3b2/Zld26IiKptMQUjDbo9NRj5v4IapdHX4uIiIiIiEgmFv4FXrkQlj8Ayx9yPjd7at9w1h56IVy0BnqOC2c9ERFpxxjTHefCn1fgfna9dWlr67R2BfBs0lyfD3SLkzHmWGBMUtMu4N9ZLjsf+BkwE6gPOOcj4NvACGvtHZlsaq3daa29AicEbZbP0M3A/wEHWGufz2QvERERERHJlO/LNBERERERERERERERSVPBBaMBWGs3AqcBNwMbaR981vo9+YvdY7YB38EJRdseW8EiUvzq18Lkk/zHVPSKpZROoawaTnkZ9roy2Pj6dZGWIwVg8T+gaZv/mGnnwaTjYfM7sZQEQPPO+Pby0n00HPhDOPT2trbKPnDaazDk/NTzB50Fp02H6qH+4/oc6d6+a2vwWkVEil2qx4WVjwdYow5mf8u7v2oIDLsETn8NyrumV19HJRXu7QkFo4lIxFoa4tlneICg7ZZ6+PB30dciIiIiIlJMtrwHLxwFD/WCF4+BdVNzXVFxshbm/TSatcffCsc97FxsRUREovIwkHz1qV3A3cCngetwD0vr6LGk26eFVlmBsNbOtNaapK/K3ccdZrPmOmvtd6y1xwFdcYLXzgE+C9wE3AJ8E/jM7vb+1trR1tpbs9179/4PW2uPBvYBLgW+DPwv8ClgIjDIWvsFa22Aq+iIiIiIiIiIiIiIiIiIiIjkhvW5zoBfn4h0LmW5LiBT1loL/NIY83vgSpyDt44DBtM+8G0LztUzXwDuttamSEUREUmTTcCUU1KPK62OvpbOpHowHHsvjLjKCbTys+xeGP1VnZzRmW16M9i4DTNg8kQ4+32oGRZtTdY64TVR2f9bcPCtmc/vvh+c+AQ8vhfULd+z/8i/wcjrg69X3t29vWlHZvWJiBSj5lr//g3ToWE9dOnv3r9zMbx8jvf8EVfDMf/OvL6OFIwmIrnS0hjPPj3GwD7XOUHLflY8Aof8Uq85RURERESCqFsFLx7thAwDbHzN+Zzn7LnQdUROSys6OxZC3Yrw1z301zDmq+GvKyIi/2GMuRQ4lbYLgr4GfMJau3J3/14Bl3q+dUlgvDGmq7U2D67eVRystQngw91fce+9BFgS974iIiIiIuJHxwyIiIiIiIiIiIiIiISpJPWQ/GatbbDW3mWtvcpaOxwoB/riBKRVWmv7WGvPs9b+QaFoIhKJ9dNg2wepx5V2ib6WzmjgqVA1xH/MO1+Dl06AXVvjqUnyz8rHUo9p1bQtvfGZaqmn7Tj2DvqfCD3HZ772qC9nF4qWbNhFe7aVlMPQC9Nbp6ybe3vz9vRrEhEpVs0BzkV6dIBzAnGylgaYfhk8ORK2L/Ce2/vw7OrrSMFoIpIriZiC0QCOvBOOugtGXOM9pnYpbJ0TW0kiIiIiIgVt6T1toWitmmth3k9yU08xC/JeUyb6TIhmXRERSfbtpNtzgdNaQ9HSYa1dC6zffbcEGBtCbSIiIiIiIiIiIiIiIiIiIiIiIpHL+2A0Y8x4Y8w3jTF3GWOe2v11lzHmJmPMIR3HW8dma+1aa21TLmoWkQCshfUzYNkDMP82ePtrMOMTMOk42PxurqtLz6a3go0zugpUJEq7wJF3QFlX/3EbZsDsbwVbc9sHMP92mPtTWDfN+fcqha28e3rjg4QdZqu5zrvvsN/BGW9AWU1ma48L+G890FrfgV6Htt03pTDh/6CyT3rreP03aNqReW0iIsWmuTbYuLe+1P7+3KxeMQcAACAASURBVB/DiodTzxt6fvo1+Skpd29P6KW4iESsJcZgNFMC+1wHx9wNl2xyng+7WRFDuLKIiIiISDHYMtu9fdGdkGiJt5ZiZyP4fVb2hT5Hhb+uiIj8hzFmEHBwUtON1lqfD5dTSr6iyn5ZrCMiIiIiIiK+iul482L6WURERERERERERESkUJXlugAvxphDgV8Dx/kMu9UYMxP4mrU2YDKRiOSNqafveUV4gJ2LoPceuYf5a/ZNua5ABp8F586H5w6Gxk3e45beAxP+5JzY7mXxv+D168E2t7Xt+1knCMpvnuS3qiHQtD34+KDBNNlI+IQ5lFZCaQUMvRiW3p3+2l0GZl7XHmv1g9NnOiGB9Suh/4nQbd/01ynv5t6uYDQRkTZrng82buXjULcKqoc44UAf/j7YvJq9M6/NTUmFe3tiV7j7iIh05PdcOkqVvZ3nw+um7Nm3/uXYyxERERERKUjL7vPu27EQeoyJr5ZiF8VnHWO+DiUegdEiIhKWo3d/t8AKa+0rWa63Oel2mle/EhERERERERERERERERERERERyY28THgxxlwATMcJRTNJX/8ZkvR1HPCKMebCuOsUkSwY4wQVualbFW8t2Zj701xXIK2qhzrhZX6ad0Ltcu/+ho0w69r2oWgAH/8V1k/PvsZcsNYJe5t+Kcz6NKybmuuKcqPjf9NUmndGU0cy32C0Ls73CX+EwWenv7Yxqceko7QLDD4DRl6fWSgaQJlHMFqzgtFERP5jyb+Cj318KNxfCQ90Cf63NOzHBwWjiUiutOQoGA1gyLnu7dvnx1uHiIiIiEgh8vuMBqBhbTx1dBZhf9bR/yQY87Vw1xQRETfJV8F6L4T1kh8QuoawnoiIiIiIiLgK+dgsEREREREREREREZFOLu+C0YwxY4D7gCqcTwbs7i9oH5Bmk766APcaY8bGW62IZKXaIxitvkCC0Rb/E+Z8N9dVSLIh56ces32Bd9+j/bz71ryQfj354L3vOGFvKx6BxXfBlNNg+SO5rip+zbVpjo84GM1a/zCHkkrne3k3OOkZuHg9XLgCjns49dp7XRVOjWEr9whGa1IwmogIAHWr05+TTgDZ0AiyxBWMJiK54hcy3KrbqGj27nmQe3vDemjcHM2eIiIiIiLFoH4NTDref0zjxnhq6SzS/WzET+8JcOpUKPV4P0hERMLUI+n29hDWSw5DawhhPRERERERERERERERERERERERkcjlXTAa8GecoLPW0DMDNAOvAQ8CD+2+3UT7kLQuwF/iLlZEslA91L29rgCC0da9DLOuy3UV0lFpJVywzH/Mtnnu7Rvf8J/XuCGzmnJp11ZYcHv7NtsC836Sm3pyqbkuvfFrX4JXPwlNYRxnnuTjO+CZcfBwb5h2rve40sr297v0c/5m1gxPvcegM7KrMSpewWiJRmhRgI6ICHXLo11/+OXhr1lS7t6eaAp/LxGRZH4hw63G/yyavbuP8e7b9kE0e4qIiIiIFINFf0/9/ofXZziSmbAuAlPRG059OZy1REQkiC1Jt3t4jgpucNJtJfuLiIiIiIhExua6ABERERERERERkYKhd9NEJIi8CkYzxhwAnEBbIBrAbcBAa+2x1torrLWfsNYeCwwEftlhiWONMQfFV7GIZKVqiHt7fZ4Ho22bD5NPznUV4qVmOPQ4wLt/7WT39uUP+q+7a2vmNeXKmhed0KmOtsyGph3x15NLLbXpz1l6N7x8Tng1LPk3vPFZJyyhaSvsXOw9tqTSvd0vhAGg+1jY64rMa4xSeXfvvg3T46tDRCRf1a+Odv1hF4e/ZkmFe3tCgZciEjG31znJ+h0Lg8+KZu+qwVDmEfq75oVo9hQRERERKQab30495v0fgNXhTqFpCikY7bSZUFYdzloiIhJE8lXbxmWzkDGmEjg4qWllNuuJiIiIiIiIiIiIiIiIiIiIRE1HEYpIq7wKRgMu2f3d4Pyt+rK19pvW2i0dB1prt1prbwa+mDQeIIKzvUUkEtUewWi1y+KtIx02Ac/sn+sqJBW/4I91U6C5Q0iWtbDycf81mwowGG3bXO++qMNX8kmiyfnKxIYZsPAv4dSx6M7gY72C0co9AhhanfUOlHqE1OSaV3gEwKK/xVeHiEi+qoswHHjI+VDq8diSDQWjiUiu+AWjHfIrOOm56E7aNwb6Hu3el+p1pYiIiIhIZ7bysWDj1k+Lto7Owlp456vZr9PzQOiR4qItIiIStnd2fzfACGNMNn+ILwFa38xvBmZlU5iIiIiIiIj4MbkuQERERERERERERESkqORbMNqE3d8tMMta+8dUE6y1fwZm0vYpwhER1SYiYase7t5euxTq18ZaSmCvXJTrCiSI0V8B4/EQl2iEtS+1b9s2D3Yu8l9z1x4ZnfnP+uQhb37Hu6/YdAzCS9ebn4OmHdnXsf7lYONMGZSUevcPPse9/eD/B6Vd0i4rNlUDvfs26vh7ERHqIwxGG3hKNOt6BaO11Eezn4hIqxaPAMZ9roOxX08dKJytoRe4t2+bCzs+jnZvEREREZFC1aV/sHErn4i2js5i+YPZr1FaBRP+nP06IiKSFmvtEiD5Tab/zWQdY0wl8J3WZYE3rbVZfnguIiIiIiIi3nyO2y44xfSziIiIiIiIiIiIiEihyrdgtLFJt/+Zxrx/Jd3W5YpFCkWfCd59G6bHV0dQb34RVj2Z6yokiMrecJlPkNXG19rfX/9K6jU3vw2Jluzqituuzd59r14Fq1+Ir5Zcaq7Lfo2ns3x64RdS11FppX//Ptfu2WZKYa+r0qspbmU13n21S2HRXbGVIiKSl+pWu7cHPWnYiymF4Zdnt4aXknL39vrVkGiOZk8REXACr92UpHguHZah53v3KcRBRERERMRdz4OCjVt2f3rvqYu7FY+lHrPPdc7Fhrycvxj6HRNaSSIikpbWD08NcI0xxuVDYm/GmBLgDtofi5fyAqUiIiIiIiIiIiIiIiIiIiIiIiL5It+C0Xom3X4njXmtY02HNUQkn1UPga4j3ftWPxtvLal8+AdY+KfU40bd6N5+6G/CrUdSK6uGYZe69zVuan+/dlmwNVcV2Anua57373/js9DSEE8tudQcwkWv61fDlvcyn5/O7zlVmMOwS+HAH4Apc+6X94DjH4GaYRmXF5sDvufd9+bnockn0FBEpNg1bnBv73Fg5mtW9IITn4aqgZmv4aekwrtv5ePR7CkinVPtMnjn6zDtAvjgF9C0zX1cXMFo1UOht0fY+7vfiKcGEREREZFCYwNefKZhLWybF20tncH6qanHHPB92O8L7n09x0f3npKIiATxW2A9YHGOh7vTGPMzY0x1qonGmP2BF4Grd8+3wMfA/dGVKyIiIiIiIs7LNxERERERERERERERCUu+BaP1SLq9yXPUnrYk3e4WUi0iEof+J7q3L7kbts2PtxYvyx+Ctz0Cz5Lt9wXnq6ymfXtFbxh2cTS1ib+KHu7tHYOy6lcHW29ZAR0nvHEW7FzsP6ZuOaydHE89udRSF846S/+d+Vyv4AY3pSnCHIyBA78Pl22Fs9+HSzbC0Asyry1O1cO9+xKNsPLJ+GoREck3jRvd23vsn/5aB/4QLlgGF6+DwWdmV5cf32A0/U0XkZDsWATPT4AFt8OqJ2H2zbDmBfexqZ5Lh2nYhd59H/4uvjpERERERApF0GA0cJ77S3Ya1vv3Dz4Huo6A7qNgwMQ9+/e7IZKyREQkGGttHXAtkMAJNisBbgbWGGPuA9olWxpjPmGM+Z4xZjowBzgZ54x8AzQCV1prbYw/goiIiIiIiIiIiIiIiIiIiIiISFbyLRgtuZ40joxuNzbffiYR8TPodPd22wJL7423FjctjTDj8mBjD70deoyBiS/BgFOgsg8MOgNOmQo1w6KtU9yV1ri3L7sPWhra7q95Pth6yx/Kvqa4zPl+sHGrno62jnzQUh/OOvN/BS+dCJvfTn9uOsFoJV2CjSurgZ4HQElZ+vXkSnl3//7Vz8RTh4hIPvIKRut5AHTdN721qodCzXAoKc++Lj9+wWhL7452bxHpPD78LTRuCDa2JMZgtKE+wWhzvg86z1REREREpL20gtE6wWcXUSvzuZ5ceQ84LukzrxOegJHXQ9Vg6HkgHP5H2O/z0dcoIiK+rLUv4ASgtYajgXPB0MuBbyQNNcC9wA+AY2h/7FwzcL219p2o6xUREREREREdJyAiIiIiIiIiIiIiEqYCStIQkaI09EKo7Od+kvOmN+Kvp6O3bkw9xpTBCY9D6e4TsPseBae8FG1dEkyZRzAawGvXwnEPQMNG7yASN4nm/A+ishY2vR5s7I6Poq0lHySH4HV04Qp4PI3gwvWvwPOHOycMdRsFPcZBSWnqeQ0Bgxyg7W9JMSr3ORFLRKSz83o+UtkPDvohvHoNgQ+e83sOFCa/YDQRkbB89PvgY+N8Lt19LNSMgNqle/Y1bYX61VA9JL56RERERETyXaI5+NhNb4BNgNE10TLmF5h/4Qooq2q7X94Vjvxb9DWJiEjarLV3GGMWAfcAA2j/QUHybZN03+6+vxH4hLV2ahy1ioiIiIiIiIiIiIiIiIiIiARlfU6V9OsTkc5FRxKLSG6VVsKQc9z7ErviraWjXVtg0R3+Y4ZdAme+6f0zSG75hYKseBjq18DCP6a35s7F2dUUh4Z10LQt2Nh1UyDREm09udZS795eUgnVQ6H76PTXnHEZPDceHh8KG17zH7vkbnjp+OBrlxRxMFqZgtFERFy1NEDzTve+yj4w4iqYOAn2/qTTluqk4NiC0XxOsBURCUM6wQkQ73NpY5z3BLx0hhBqEREREZF02DQ+i7AtMP9X0dVS7KyFpu3ufcfcp4uYiIgUGGvtFGBf4CZgBU7oWccvkm5vAn4EjFQomoiIiIiISJxM6iEiIiIiIiIiIiIiIhJYWa4LEBGhZoRHRyLOKva06hn//qP+Cft8Mp5aJDN+oSA2AZvfhQ9/m96aDeuh+6js6ora9vnpjV/4fzD6S9HUkg9aGtzbS7s434+8C6acCi11zv2ybtC8I9jaDWth2rlw4Uooq9qzf+v78FqafydKizgYLeXJVjooREQ6qcZN3n2VfZ3vA09xvo7+p3N/1dMw7Tz3OWVdw63Pi1f4qIhIWLbOSW983M+lD/oRLLjNvW/yRDj+URh8DpRWxFtXoatfB6ufBowT+l3ZH/oeCd32zXVlIiIiIpKNdILRAGbfDMMu1vPApu2w5gXYOs+53f94GHiq//vtiUawHkHTNcOiqVNERCJlra0FfgX8yhgzCjgOGAb0ASqAjcA64FXgHWt17WQREREREZH46aWYiIiIiIiIiIiIiEiY8jEYrfXTgKOMMSMCzhmYfMcYczxpJGtYa18JOlZEolDi3rw+x/9rrn/Zu6+sm0LRCoFfMBrAO1+FXVvSW7N5Z+b1xGXHx+mNX/FQkQejeYS2tAaj9TsaLlgKKx+HkgoYdAa8cCTULQ+2/q7NsOY55wStjpY/lH69JZ04GG3ZvXDsPfHUIiKSTxo3eve1BqPtweM5NMT4WOLzstv41CciEsS2BfD8YenNifu5dFk19DkCNr3h3j/9Yuh9OEycBBU9462tUG14Faaesedr79IqJxx0+GW5qUtEREREspduMBrA0nvgwO+HX0uhqF0Gk0+BnYva2j78NfTYH058Grru7THP5/ON8u7h1igiIrGz1n4EfJTrOkRERERERCQdBXbhYOVti4iIiIiIiIiIiEgeyMdgNHDe9b8vi7kvpzHekr+/B5HOoaTUu2/Le9BrfHy1tLIWFt3p3b/3f8VXi2QuVTDajoXpr9m8I7Na4tS0Pb3xuQ4hjFpLg3t7aVXb7S79YN//brvf/wRY+u/ge0y/BHodDFtmZ1Zju7q6ZL9GvipLEYwGULsCaoZFX4uISD5prvXuy+RkVRPTgXR9j/LuswnY/hF0HxVPLVLcdi52Xp9tetM5kb5mBOx1BQw6LdeVSZTmfC/9OT3GhV9HKr0P8w5GA9j8FjzcC0bdCGO/ATXD46utEL1+vXsgeUs9vPl5GHIBlFa0te9cAvNvg6atMOBk2Ps6//eZwmQT8PEdsG4KVA2CkddDzwPj2VtERESkEGUSjLZ+evh1FJLZ324fitZq2wcw9ydwlMdnmR/83HvNIO/Ti4iIiIiIiIiISMgUNCYiIiIiIiIiIiIikq6SXBfgweIEnKXzZZO+0p0rIrmUaPbuW/FofHUkm32zf/+oL8ZTh2QnVTCal16HQLXHyepNBRCMlmjMdQX5xTMYzSeAbPSX098njFA0oKgPfggS7vPEcP/HBRGRYuT1WAVQUune3qWf95zyntnVE1R5ihNpJx0DW+fGU4sUr+0L4cVjYd7PYO0kJ4Bo8d9h6hmw+B+5rk6i0tIAKx9Lb06P/f0DG6My8jNgAgRxffR7eHos7Pg4+poKVd0q2L7Au79xE2yY0XZ/23znd7rwj7D0Hnj9MzDrusjL/I9Zn4I3PwfLH4QPf+v8rdroE5InIiIi0tl5BaMNvdB7zrrJ0OQSnNtZrHnOu2/Vk959i//u3ZdJCL+IiIiIiIiIiIgEoFOTRERERERERERERETClK/BaNA+6CzIVyZzRSQf2IR337Z58dXRauv7MP+X3v3jb3VOuJb8l2kw2vDLvYM+CiEYzS9cxUtzXfh15IuWevf20irvOX0mwMTJ0dSTSnmP3Owbh1KPcJ+ONsyMtg4RkXzjF+JpPA6Y63UodOm/Z3v1cOg+OrzaUjnmXu++xk3w4e/iq0WK08I/QcNalw4Lc26BhMeJ9ZKZDa/C5FPh8eEw5TTY/lFu6tj+oXdoQkemDIZfBqdMhZKyaOty0/tQmPDnYGNb6uCp/eC+MnhiBLx7EySaIi2voNStTD1m58fw3nfhXgPP7L9nMPjSfzt9kyeGGF7tYtt8WPKv9m3NO/zfTxIRERHp7Lye4w86E4Zd6j1v+sXR1JPvWhpg1xbv/saN7q+JU71OThV0LyIiIiIiIiIiIhnSKUoiIiIiIiIiIiIiImHKwdmCvpajTwNEOp/qwd599WviqwPAWnj2IP8x+3wqnlokBBnmf476Eqx83L2veWfm5cSlpTH1mI4aN0LZ8PBryQd+YTN+Bk6Eqyw0bIRH+4Vfl5eKnvHtlQvDL4flD/qPWXo3DDgxnnpERPJBwuOxqsTnsaqkFA64Bd76Uvv2A2/xDlOLQkUv//5Fd8CRf42nFilOfoGpdStg5yLoPiq+eopZ7XKYekbba566FfD84XD+IugS4/NhgI2zUo857mEYfonzOj7Ov3tu9v0MNG2Fd78ZbLxtgdplTohW3Qo49r5o6ysUfsH5rd64Idha66bCpOPgnPlQMyy7utwsvce9fcXD0LILSivC31NEJG47F0P9OqgaCDUjcv94KyKFL9Hs3m5KYdy3nedSbtZOckJvex0cXW35qHFT6jHN2/d8b6Z2qf+ckvKMSxIRkXgZY0qAA4DxwHCgH1CFc2xdPbAe51i794B51lodcyciIiIiIiIiIiIiIiIiIiIiIkUjr4LRrLUjcl2DiOTAwFO9++IOoVo7yb+/79FQNSCeWiR7iab05ww4Bcq7Qnk39/7mHdnVFIdEhsFoNcUajFbv3l5aFWx+l77Q71j/UI4wDTglnn1yZew3UwejLboTxt8afwCHiEiuZBriOeqLUD0Mlj/sBKUNuwyGnB1+fX7KquPdTzofr+dyrbYvUDBaWOb+ZM/X4M07YOm/Ycz/xFODTTjhYgtu9x93/GMw7ELndr6EtIz9BvQcD1NPT2/esvuhrBsc8WcwGYZ7F4uw3wNqroXFf4cDvx/uugArHvHue7AajrgDRipYX0QKVP1amHQ87Py4ra1mBEycBN32zVlZIlIEbIt7e0kZ9BrvP3fhn53nzJ1JkGC0Xdv2DEbbvsB7/MDTsqtJRERiYYw5AbgBOAvoEXDaFmPMM8Ad1toZkRUnIiIiIiIiPvLk+AUREREREREREZEC4Hf5N10aTkRadfKz7UQkL3TdB7qPde+rXx1vLUv+7d9/6G/iqUPC0fsw0v6Qud+xzvcyj2C0pgIIRmvJIBht1TPF+yoh07CZZIf+Gir7hlMPQGUfuHQzjPiv9u3DL4Phl4a3Tz7qcziM+3bqcW9/NfpaRETyRTaPVUPPh2P+BUfdFX8oGkBpgGC0RHP0dUjxSuzy7/c74VuCS7TAojvc+za/HV8dH9+ROhTtsN+1haLlm0GnwXkfpx7X0aI7YPbN4ddTaJprw1/TL8AsG37vDdgWeP3TMOMTsPLJzF6ji4jk0swr2oeiAdQuhaf2g6lnwcyrYd7PYPE/oH5NLioUkULlFYxmSp2Q4CP+4j1305vR1JTPGjemHtO0bc+22mXe4ztbuJyISIExxuxvjJkKTAWuAHriHPAQ5Ks3cA0wzRjzkjFGV5MQEREREREREREREREREREREZGCpmA0EckPh//Ovb1xY3wnkNathKV3e/ePuAb6HhFPLRKOLn2h33HpzRlxtfO9vICD0RIe4Sp+3r8F3voi2ET49eSaZ9hMVfA1+kyAs993Qmcm/F/2NV24Cip6wdH/gFNehkNug1OmwDH3Qkl59uvnu/E/hT5H+Y9Zfj80bIinHhGRXAvjsSpXygIEo+3aEn0dUrwSKV4PKhgtHDs+8u5bek98dSy7179/+GUw+sZ4aslUt5FwcQbPY+f/yvnqzKIIRtv6Pqx6Ovx1g9S6/EF45QKYdCw0bg6/BhGRKDRuhvXTvPvXPO88Xr/3HZj1KXh6f1jnM15EJJlfMBrAvp/1nrvjw+K9uIuXIMFou7bu2Va/yn1szwOdi1WJiEheMsZcDrwBnEBb2Jl1+Wrl1tc6byLwtjHmkrjqFxEREREREWj/sq3QFdPPIiIiIiIiIiIiIiKFSsFoIpIfqgZ79zWsjaeGN7/g3z/0wnjqkHAdez/U7BVs7NF3Q/fdF04u6+o+Zund8PK58PpnYOZV8PwEuNfASyfDR3+ERHM4dWcj0zDBhf8H614OtZS80FLv3l7aJb11qgbCPtfBfp+DYZdmXs/I/4bSSue2KYEBJ8LYr8GAk6GkLPN1C033FBcpt4loAgxERPKRZzBamo9VuVAaIBgtyIm8Il4Su/z7F98F9TG9Zixm9au9+6qHxVfH+lf8+/e6Mp46stWlL1y6FYZekN68d78JzxwAH/wCmj1exxSz5p3RrDvruvB/n+kEkm9+G+b9LNz9RUSiUr8mvfFNW+GN/4aER9iRiEiyVMFoAMc97D6muda5wFFnEuT9lOTPUFc8DrM+7f3cs/v+4dQlIiKhM8ZcBtwLVNM+EK016AxgA/ARMAsnQG0hsDFpTPI8gBrgPmPMRfH8FCIiIiIiIiIiIiIiIiIiIiIiIuFSMJqI5Ae/YLT6dfHUsPkt776KXumf0Cz5oXownL8k9bhzF8De17TdL+/mPXb1M7DoTlh2X9u/m/Uvw1tfgukXg83xVbISGQajAax6Krw68kUUYTP7fZ62Y9DTYMpg7Dcy37eY9D4s9ZiNr0Zfh4hIPvAKVymEYLSyAMFoq5+Lvg4pXqmC0QCePQC2L4y+lmK2a7N3X9O2eGpY82LqMT3GRV9HWCp6wPGPwYUr4eQX4OQXoXpo6nnb5sHsm2HyydAS4N9/MWmujWbdxk2wbnJ46zXXeb/O9LL0bif8WUQk39mm9OfsWAibXg+/FhEpPkGC0Qae4j1/w/Rw68l32+amHjPzCudiOfNuhekXOeHhXqqHhFebiIiExhgzGrgL5xi+5EC07cBvgHOAvtbagdbasdbaY6y1R1lrx1hrBwD9gPOA3wE7aB+QVgb80xizX9w/l4iIiIiISOeUwXHFIiIiIiIiIiIiIiLiScFoIpIfyrt797VEdGJsskQLNPgEsJ09B0rKoq9DomEM9D/Ru7/PkdB9dPu2yv6Z7bXqKVg7KbO5YfE6QXvM11LP/fA34daSD5Y/6N5eWpX5mgMnwvGPQNd93fv3vhaOfxR6HQymxDmxq9ehMPEl6D4q832LybCLU4/Z/mH0dYiI5IMoQjzjUtEn9Zg5342+DileQYKhGjfBgtujr6WYNW7y7mvaDk07o69heornh1WDoOvI6OsIkzFO+MCg02HQaXDwz4PP3fQ6vH9L2/1EMyz4DTw1Gp4cCXNuiS5ILFei/HnCDOls3Jj+nIb1sGV2eDWIiEQlkUEwGsCkY+GBKnjuEFh6f7g1iRSjXVth1vXw2FB44UhYck9685c/4sx7oBru7wIP9YQpp8HWAEFauRQkGK2iJ9Ts7T7u1auhYUP4deWr1c8HG/fGDfDet1OPq1IwmohInvoDUE1bIJoFfggMs9Z+zVr7nLV2i9dka+0ma+0z1tqvAsOAH+9eo1VX4PeRVS8iIiIiIiJJcnxhbRERERERERERERGRIqOUHxHJD6bECSlqqd+zr7ku+v2btoJNuPcd+TeoHhp9DRKt/b8FG1/d8+Q+UwKHuxwHXJ3FCSLv/A+cMy/z+dlqaXRvL6mEIefDqif95+9YBN1CDhxoroXtC5wTnHqMg5Ly1HOshdplUFIBjeudn8uUQvcxUN412L7rpoJtdu8rC7iGl2EXOV9294EMrX9DTIkTgNA6JtEMGCgpdV2m0wryd3X7gujrEBHJB17BaCUFEIwW5PGtvFt0+ydaYOfHUDMCSiuj26fQ1C53fu8VvXJdSfYSHs9tO1oT8IRxcecXjAZOEFTQ5+CZ2P5R6lCsUTcW/nPq4ZfBvFthW8DAig9+DqO/AmXdYNZ1sOKRtr65P3bCto74cySl5kRzhAF8YYaSZRKMBrBtPvQ+NLw6RESikAgQSuulpcH5e/vqlU7I87ALw6tLpJhYCy+fDRtfc+7Xr4LXrnHe+x5xRer5K5+EGZe2b0s0wtqXnJDC8xZClwwv/BI1r/fqTYfn+UPOgY/+iyAqkQAAIABJREFU4D528klw1pzCf22QSqIZapcEG7vkn8HG6bNOEZG8Y4w5FjiFtlC0HcDF1trJmaxnrd0BfN8YMx14FKjZve5pxphjrLWvhlO5iIiIiIiIpM/kugARERERERERERERkYJTkusCRET+o6zavT3VydFh8DupdeDp0e8v0Rt8JpwyFUZe39a297Vw1mzoM2HP8VVZBKNt+wAW3ZX5/Gx5hUeUdgkWTLL03vBqsRbe/xE81AOePxyeOwQe7gWLU5yos2MRPHsQPLk3PD7EmffiUfDCBHi4B7z3He8ww1YtDTB5ond/z4PS/3ncGON8lZQ6X6bDwQslZcV/klamDv2Nf3/jBmjcHE8tIiK55BWMVloAwWjgBBz7iSroeNXT8Gg/eHoMPNwb5t8WzT6FpHYZPHswPLEXPNwHpl8KzS7h04XC2uDhHLVLC/tnzbVUwWgtEQeWr3nRv7/7WBjz9WhriENJOZzxOhzwveBzHhsMD3VrH4rW6uO/wM7F4dWXa1G+/7Pjw/DWSvX/i5fXroGWLAKHRETi0PGiEpmafhE0RRh4KVLIts1tC0VLtvBPqeeufAJeucC7v2k7fOhyIZh8YVvc202Ha7kN9QlW3PYBrH4mvJrylVeIXDb6HB7+miIikq0v7P5ucMLRbsg0FC2ZtfYl4IakdQE+n+26IiIiIiIikg2beoiIiIiIiIiIiEgn4veOmd5NE5FWCkYTkfxR6hGMFvUJ2OAfjFbZJ/r9JR79joUj/wZXWefr6H9AzwPdx1YPzW6v1z8NM6+EObfArE/BWzfCpjedcIeotXgFo1VCWYBgtLUpQgmCaNoOyx+GF4+G97/f/oSn5lqYdZ1zEpcba+GVC50TxFz7EzDvZ/DKRZDwOJFq1xZ4Zpx3faYMBp8V6EeRCHUMkXOzPcQAAxGRfFXowWj73+zf31wb/nOgnUuc5wu7tjj3W+rg3W/AyqfC3aeQWAsvnwtb32ttcIKU3i3gMKl0TwTfMjuaOjqDXSmCnqIKrLIW1k6G2Tf5jzv+USitiKaGuJVVw0E/gstD+p1OPRO2vh/OWrnW4vE7GXENDL3IvW/Ul+Hof+8ZptFR4ybY4BJAkgm/95BS+eDn4dQgIhIVv1DakvL01nqoGyz+B9StzKokkaKz5G739g3Tne/NdbDqGVj4F/j4DicE/INfwJtfcl4HpzLvJ86FSVY+6f1+Q654BqN1uLBI/xOgvKf3Om/d6Px+Nr6R+gIqhSoRcjBajwOg6z7hrikiIlkxxlQC5+Ecy2uBR6y194e1vrX2PuARnHA0A5xvjCmSN9hERERERETyVYBjYkVEREREREREREREJDAFo4lI/ijzCEZrjiEYbcNM9/bSKu+6pLhVDc5+jWX3w9wfOycAfvQHeOEIeOMG7zCvsCQ8TnYqqYTy7qnnb5jhnHiVqR0fw7MHw4zLYNPr3uNeuRBWPLpn+5Z3vEPRkq16Eh4f6pzgnmzr+/DUaNi52Htu/+OhwufEKomH14lwyXYoGE1EOoFCD0YbcXWKATb8k7FXPOL+OLLS5blFZ7FjoftzqOUPxxPOGwWvwF8vk46B2mXR1FLsUgU9RfG6vLkOpp0HU06FlnrvceN/Bj3GhL9/rpVVhxPEvmMhPDse5t2a/Vq55hXAV1YDIz+9Z3tJJYz6Iux9NZw9Bw79DRz8/7zXn3SME6CRrWyC0Zb8M/v9RUSilGhyby+tgnM+gMN+l956sz4FT4+FVc9mX5tIsfB7LrFzKbx4FEw7F978HLzxWScEfPbNsPCPwfeYdR28coHzmcTOpVkWHCKv94NLOgSjlZTDvp/1XqduufP7efFI5+9M2CFi+SDdoPBUxvxPuOuJiEgYjgK60nbW/O0R7HFb0u2uwNER7CEiIiIiIiL/UaDH57gp1GONRERERERERERERKSoKBhNRPJHqUcAWUsMwWizb3Zvr+wb/d6Sn0orwjlJvaNFd8Ca58JfN5lXgERpJZiAD/0zLofaFentu+JxmHU9PLUf1C4JNmf6JdC0vX3b6ueD79mwFl4+t33bG5+Dxg3+8459IPgeEp0gJ6xtXxB9HSIiueYValoowWjd9oWj7/Yf4xV2k6l3v+nevvgf4e5TSJY/5N7euCH8YLq4JHalP2fqWeHX0RnsXOTfP/kkmHombPsgu32a6+CDX8K9Bh6sgdUBApnHfD27PfNZvxNCWsjCnO/C1gAB0/nMMyi0CgafDQf+AMzu0IyK3nDEn6H7KOd+j7Ew5isw9iYo6+q9x5ufgzk/SP/vYu0KeP+H8Oo1sOC21OO97FwU/mOiiEiYvILRSsqd5/2jb4QLlkPvCcHXbN4J086BZp8gVJHOxO/iJW9/xbnwR1i2vg/zfhLeetmwFmzCvc+U7tl2wHeDrbvkX7Dyiczryldef48ztc914a4nIiJhaA0ps8B8a+2ssDfYvWbyG3oKRhMRERERERERERERERERERERkYKhYDQRyR9lNe7tzREHo/mtr2C0zq0igmA0gI//Gs26rRIewWglXaBpR7A1Wuq8A0fcvP9jmH4RLP578DmtHhvS/v6cgCc8tdo0qy1MbddW2Pia//hDfw1d+qW3h0SjZnjqMTsXR1+HiEiueYWzlBRIMBrA3tfA2XO8+1sUApNThRrCk0kw2vb5xXlSfJQSzbAjRTAawJoX4JlxsG5aZvu0NMCU02D2TcHnnPScE1pdrEbfGN5aNgFLUoRU5rtUId8Hfh8uWg1nvQcXLHEPdzAGuo/232fuD2HaecHDJnYugUnHwPs/gKX3QO2yYPO8bP8ou/kiIlHyev5VUt52u2YYnDELzvnAeaze+9pga794ZPb1iRSD8h7efaueDH+/pfd5B5LFya8Gt2C08m5wWcDPM1Y/m1lN+cwGuKhIUGfNDn7RHBERidO4pNszI9xnhseeIiIiIiIiEjqT6wJERERERERERERERIqKjoAVkfxRWu3e3hJxMNr2D737uo6Mdm/JbyVl0ay76il444bgIWWtWhrg3ZvggSq41zhf086Hze/sOc5NaSU0p7Hn8gegfl3qcU3bYd5Pg6/bUfNOeKQ/bF8YbD83L5/lnFjVuAnnoto+Rn8lsz0kfIPPgZIUQRe7tsRTi4hIHFY8Ci8eC4/vBa9dC42bnfaWevfxpQUUjAZQ6RM8unVefHV0Vm4nkrd660vBA4DySSbBaABvfC7cOopd7dL0Trp/538y22fV07Dx1eDjS8qhz4TM9ioUA06GE55wgrxSPS8OYv4v8iP0IlOeId+Vbbe79IdeB0F5d+91uo1Kvdfal+D+CnjpZJj9LZh0HDw9FmZeDQ0b2o/96I9QtzL1mkFtXxDeWiIiYfN6ztjxccqUQI+xMPhMOOquYGtvfT/7cEmRYuD3PCYKLXVwX6nzecJTo2HK6bDx9XhrALAt3n1er2fLu0LPg1Kvvfjv0LQzs7ryVSLEYLRe48NbS0REwpR8MEqUD87Ja+sAGBERERERkUilOH5ZRERERERERERERETSomA0EckfZR7BaM0RB6O9cqF334G3RLu3dF4f/xWmnQvW50Pw5lqoXwstjU6YyDPjYP4v2wefrXoKppzaPlCsxedk8sHnpFdnkOCCjbO8T2APqnEDPD0KVj2Z+RpvfyV18NvZc8Hoimx5o7wrjEkRrLFrazy1iIhEbeVTMP1S57G1bjks+RdMPtkJsOkYwNKqtCreGrNVVuPdN+2c9ENhJT1+wWjLH4BZ18dXS1i8ntcC9DnCu69hLWz/KPx6ilX96vTGb3k3/d+vtbDwz+nNGXE1VPZJb04hGno+nLsArmiETzRkH5D26tXh1JULXmGI6f5Ouo8OPnb9y/DBz2HDTCewbNm9MOlYSCQFdyy4Lb39U6lfFe56IiJh8vpbbMq95xgD5y+Csm6p13/vO877nGEG/ohIcDs+grWTYMop8QcV+oUxG5+L1EwI+Dpi5hXp1ZPv0gmv9jP43HDWERGRKAxIuh3lA3Py2gMj3EdERERERER86dhlEREREREREREREZF0KRhNRPJHqUcwWkuEwWjN9U4whRtTCj0PjG5vkfWvwNb33fs+/D08PhweGwQPdIFnD4Cdi93H7toC837Wdt8rpKy0Cww63f8ko45ShSRsmAlTzwi+XipvfDbzuR//BRo3evefNRt6jst8fYnG+FvhyL979ysYTUSKxcI/ssdVQbfOgbUvwY4P3ed0HRF1VeHyej7fatl98dTRWfkFo4Hz+/cK4ctXXsEcAMc/5j939XPh1lLMEk3pz1nzYvCx2z6AR/vDusnp7XHwL9IbXwxKK+Hitf5j+h4NvQ/z7l/+UPQB81HxCkMsrUxvnT5HZlfHjoXZhXan0lwf3doiItmyHs8LUoVUdt0HznoXRv63/7il9zjvcz7SB5bem1mNIoUuk+ffrWpGtP/cqu/Rma3TXAvv/yDzOjJhW7z7/F7P9gv4M65+Bja/k15N+SysAMn9PhfOOiIiEoXkKwJE+YFo69oG6B3hPiIiIiIiIuLL50LaIiIiIiIiIiIiIiLiSsFoIpI/yjyCFKI8oXf7Au++IbqKusTg7Rvb/o031zsBA9Mvgbe/DLs2B1/no9+BtdC4GVo8TrIu6woVPeHw3wVft26F871ppxMuseRuqN99ov6urTDl9OBrZWvQWc7P4CXRBCufcu8rqYRe46OpS7JjDIz8FBzjcTJs07Z46xERiUJzLax5wb1v6hnQ0uDe131sdDVFoaTUCWL1svgfsZXSKZkUV5a1zbDi4XhqCYtfMFpZNVziE4q7bW749RSrTIIZ3v06rJnU/u9X7XJY/E+Yfzu89z2YcwtMvwyeGecfYOxmn09Dl37p11UMKnrB+UugenhSo4FDboOrLJz+Kpz5FvQ5yn2+bYF1U2MpNXRe/8+nCuPpaMDJ/q8dg9j4GmydC+/elNn8yj7efV6v2UVE8oHX84KS8tRzu42EI/8KVyZSj23aDq9eDa9/xnnusPAvsHVeerWKFKpMg9Eq+8L5i+HsOc7zwqssnDoNSqsyW2/xP8IL3woi02A0gIGnBttj3q3B68l3NoT/NsMvg0FnZr+OiIhEJTkJPspgtOQPW33ewBcRERERERERERERERERERGJj/W5loBfn4h0LmW5LkBE5D9KPYLRWiIMRtvxkXff3tdFt68Uhpq9YdsH0e6x/hV44Qg46i7nRMCtczJf66M/OoEkXrrt63zf7/PQ92j44JewzCOMqtUHP4e9roSZV7QFCZZUwPGPQeOG4P9/DjoD9v0c7PgQZn8r2JxkVYPg5Ged4IXnD/P+77LqSff28m7p7ynxqujp3t601XkFmyrsRUQkX+1cAlMCnsDbUfcx4dYSh9Iq76C3ja+Fs0ezAmVc+YWItdq5OPo6wuT3M5VUOOFoIz8Di/62Z79fCLa0l0kwQ2IXTD0dek+Ak56GtS/Ba9eGc/K+KYFRX8p+nULWdQScPRtWPOoEUvc/AfpMaD9mv8/Dplnu86edC1e2OL/LQpJodG8vqXRv91Ja6fx+5v8y81rm/zK7+We+67x2bdywZ5+C0UQkn4URUmmME9z07EGpxy66M3kijP8JjPt28L1ECpHNMBhtr6v2fI+0pNx5/37x3zNbc+Nr0P/4zOamK5tgtBFXO685UlnxMMy/DcZ+Pb3a8lEmr60O/TVU9HYueNPrEBh8lt5XFxHJb8lveGT4BCGQ5AeVAInHIiIiIiIikrGiOluzmH4WERERERERERERESlUBXZ2nIgUtTKPYLTmKIPRFnr3DT0/un2lMMR1Mv62eU44WjahaABv3whvfsG9r6wbVA1uu9/rYDjoR8HWfe7g9sESiV3w6lWwbW7w2o78Gwy7EPa/GboMDD6v1fArnO+lXeCs97zH1S51by/vnv6eEq9yj2C0RJOCA0SksE2emFkYVc3eUN41/HqitmuLf38YBwA278x+jWIUJDCuwSWgJ595hSRBW1BS70Pd+zfMgMbN0LQD5v8KZlwOb3wO1k6BFY/BrOth5lWw8M/Q4rNPZ5BNmNnmN+G9b8OsT4UTigZw6G+h9yHhrFXIKnrByOudUIeOoWgAe1/jP3/5Q9HUFSWv/xdL0wxGAzjw+9nVkqnSajjuQagZBv1PdB+T6rFSRCSXvAJTS9LMT+hxAHTdN83NLbz3XdiS5XukIvkuk2DiQWfA+B+79x3yi8xreekEePursPmdzNcIKqtgtP8K/nnNu9+ArWl8dpGvEhm8vhrzVdjnk3DAd2DI2QpFExERERERERERySt6v05EREREREREREREJF0KRhOR/FFW497eXBvdnhtmuLcPvRCM/kR2egMmQs1eua4iHN3H7HkSjNf/c0E0bYMVjwYb22N/qB7adn/8T9Pfr2pQ2+2SMhh7U3rzy7qlv6fEq8IjGA3grZhCCkVEwrbkHu/QzlQGnxVqKbHptp9/fxhhMC0N/v2ZnDxcDBIpfi8ADeujryNMiV3u7aYESnafON99jPf8R/rAM/vDu990QqI+/gtMOQWmXwyL/w7L7oM3Pw/TzocWj706g0yCGZItutP7v1W6zp4Lo/XcLxBTAsfc692/6O/x1RIWr39HJRXpr1VWA4f/Ibt60jXwdLhoNQy/zLlfWuU+bsk/FcgoIvnL829xmsFoxsC4b2VQgHX+TooUs3Sff5+/CE56zvviH5V9YNx3Mq/nw9/Ci0fB6ucyXyOIbILRSkrh8N/DmQED3J49EGwieG35KN3g6eQL44iIiIiIiIiIiEgeCuFikiIiIiIiIiIiIiIinYxSf0Qkf5RWu7e31EWzX3MtrJvi3tfzoGj2lMJSWgGnvuKc3Fzo+p+wZ1uXAdB1ZOZr7lwcbNywy9rfH3R6+sGD/Y5rf796SHrzyxWMlvf8gtEW3xVOkI6ISNze/Vrmc/f6RHh1xKnf8f79jRuz36Ol3r+/swYpNKf4vQA0boi+jjB5hZUlhyT1PAjfq+rWrUy9z9oXvV8bdgbZBqOFZcBE6Dku11UUlsFnevetnwq7tsVXSxgSHmFhJZWZrRd3yGjfI6GiR9v9Mo9gNIC1k6OvR0QkE17PCzIJqdzn03Do7VCV5vt4C26He03b19NjYdmD6e8vkq/Sef697w3QdZ89L3rS0Yirsq/p5bMh4RNeli2/EPNUwWiteh0MNSOCjV03Ndi4fJVu6PsBt0RTh4iIiIiIiIiIiIiIiIiIiIiIiIiISI4oGE1E8keZRzBac0TBaFvneZ+AMuTcaPaUwlMzHCa+AFc0pw76yGejvrhnmzEw7n+j3bd6KIz9+p5tIz8TfI0BE6HvUe3b0j2hsrx7euMlfuU+wWgA66bFU4eISFjqVkLD+sznF+rzjlFf8j+huW5F9nukCkZ7/TOdMzgh0ZB6TKEFjSY8gtFMedvtyj57PlfMxJoXs1+jUNk8CEYzpXDIr3JdReGp6AVDznPvSzTBmufjrSdbXv/Pl2YYjNZ1H9jryszrSVdplw73fYLRPvxttLWIiGTK629xSfn/Z+++49uq7/2PvyR5z9jZibP3TsgCwl6BkJCEUUZ7KWW1hZb2Fkq5LaW0QCfQ9Wtp6aXQCaVlBMIegbASRgIJIZNMZyfO9oot/f744uulc3SOdDT9fj4eesQ63/WxI8lHsr5vhT9ux+eD4f8NcyvhokMwMsrXIQ+ugrcuhvUPRTdeJNW4Of8edoOzfqUjoWJudPW09OaF1m0N1VC9Nfq5Qzaha/4sZ3P4fDDqe8767njJWb9UFbIJRivo2/p60WDoa/N/JyIiqSz02b/H+ny+k+JxAaYm8xsUERERERHpWEKRu4iIiIiIiIiIiIiIiGMO32UsIpIAAYtgtMY4BaPtsvi0+KxCKJ8YnzUlffkDMOSrsPuNZFfi3sAroWhA+LZBV0FuF9jwN9jymLfr9poJxz4A2cXt2ybfB6VjYNszkFMOeV3hyGY4srG5T04nE4o24iaz4aml/F7uaskKU4Oklqx8c1uorwrf3vK2ISKSykIh+PgOWP6D6Oc479P2v/vSRfkEOPsDeG58+PZXzzCbmMfeEf33GCkYDWDt76Df56KbP101OPi5WAVDpyqrjeBtgzkG/BfseSe2tVb/0oTpjrkNfB3scwSCNhvu46X76dBwxATbZZfCyO9A2djE15EJTpoHD1vcZivnQb+LE1tPLBrrwh/350Q/53F/hYOrYd+S6Odwyu8iGG1HBw5jFJHUZnW+GMtjMUB2EYy7C0pHwaZHoGYr1O02gdJOrbwbBl4RWx0iqcDp87KBV5jAM6dO+Bes+iXseBkKesPgL5sArU9+Cnvfg72LIs9R+SQc3tD67wnBBljyLVj3B1N7yXA44d/QabTz2sA+GM0uYL2twVebv2ls/BtseQLLjYaf/AzG/9RViSnF7nZy1jvmMXH/h+bvmcNvNM+tREQkXfmAh+O8RuizdURERERERERERERERERERERERNKGgtFEJHVkWQSjNcQpGO3DW8IfLx7S8TbCizN9zofes2Dr08mrIb+32TjoxrCv27dXzDaX6kp4sk/0tbU08jv2m458fhj2NXOJRmFfd/1zOkW3jiTWoCvNhq5wGmsTW4uISLQ2PRJbKNqEu6FooHf1JEPZOCiosA45WHEXFPY3m5mj4SQYrWppdHOns6CD35XVm+HQp1A8KP71eMEqsMvf5uWsQVfDe9fFvt7HPzQBAAO/GPtc6SSU4MC8S462/z+U6Pl8JsR77X3t27Y9A431EIgxzMZO/X7YuQCqt4AvC8omQOcpJlzcjVDQJgwxN/r6/Flw/D/gmRHRz+FUoG0wWl74fiIiqcwyGC07/HE3fD4Y8HlzafLSSc4/iOLAClj3J/M6Zl632OsRSRYnwWidp8Axv3Q3rz8bRt5sLi1N+o35d8VP4KPvRp7nqYFwSUPz+dyqe2DNb5vbD66CZ8fAJfXuHhu8CkYD6DPHXAAe7wG1O8P3O7QOige7mztVWJ0b+7KgoBdMvDex9YiISDwlIrTMIklUREREREREREREREREREREREQkdSn5R0RSR8AiGK0xDsFon/zcuq14qPfrSWYI5MIJ/4GTn4YRN1v0sbgde2Wayw+L7nIcdBrnrG9BBZy3wX1NbZ3+qn0omhfye5lAFad0v04Pg79s3Va3J3F1iIjEYpWDjctT/wyfOwwnz4fup5vfU2Nuh7MWwYgb415iQuR2sW/f/Gj0czc4CEZrOGTCgDoSJz8XgPnD4OO74luLV6w2zvvahGr5s+G8T71Zc9EVUFflzVzpwkkwg5cUiua9ijnhjx89CFUfxG/dfR/CM6PgjfPhg2/A+9fDS8fDwjnuQ+6DNo/Z/hiD3UqGJeY5YbtgtHzrvl4EDImIxIPV47EvTo9bQ77qrv+718L84bDj1fjUI5IIVuff+b1hzA9h2iPmNXavP+xjwBchq9hZ3w1/af56/UPh+7w20936XgajtWQXIPf0EAilaQ6M06BwERHJFKE4X0RERERERCQhMukpWCZ9LyIiIiIiIiIikorsXoHSq1Mi0kTvnBWR1JFlFYxWC6Eg+DzKcmysgw+/Y91eNsGbdSQzBXKg90xz6XUOLJxtNpsDVMw1wWVvXAjb5nu/9rifQNcT3I2Z+gD4XHzAdEFvd/O35PPD9PehPAH3IZ/PbP5f/Stn/UuGx7ce8UbxYOs2BaOJSDrY8TJUvWffZ+CVMOhL5uve55pLJooUjLbjpejnbnQYAFa/F/J7Rr9OugnWOusXaoTlt0HP6dB5UnxrilXIYiN422A0MKG5uV2hbnfs674xF854PfZ50kUig9F6nJW4tTqSbqdAViE0HGnfdnAldD3O+zVDIVh8LdRsa9+2bT480QumvwslDgPJGuus2wK50dXYxOeDk56AV8+Cmq2xzWXHTTCaXZuISDKFLM4LYg2ptNLvYtizCNb8xvmY+n3w6ulwcZ15rVYk3VjdzyrOgzG3xW/dgl5w7J/hva9A3V77vouvgsp55rnCwVXh++x4EfavgE6jnK0fr2C0SH/Te9gPfc6HrCLoeiIM/BL4Y1gvUSyfDytgV0Qkg2xG7+MVERERERHpQFy8lzvVuXlfuoiIiIiIiIiIiIhIDBSMJiKpI2ARjAYm/CCr0Jt1di6wbx9wuTfrSObrfgqcvwuq3oeCCijsZ44Puip8MNppr0DxEPjkJ7D2vsjzH/sgdBoLtbug82TI7eyuvjlbzWYnN/zZkFUMDYfcjSvoC+etM+MTxU0wWumI+NYi3hl6Q/jNsApGE5FUt2cxvHpm5H69zo5/Lakgt2v85nYajFbXwYLRGh0Go4EJnv70f9M4GC3MJnafH4Z8BT6+I/Z1dy2EXW9CN5ehxOnK6uccD4OvTtxaHUkgB0pGhg/nXHwVDLrS+zUPrLAPAz16AF6YAqe97OyxJlhv3eaPMRgNoHQkzN5knr+v/hVseiT2OdtqG4xm21fBaCKSohotHo/j9Zqfzw+Tfg0jboL9y2DVPZFfv2/y+iw47YX41CUST1bBxIkIvOp7IfQ4Aw6ugfoqeO0c675bn4o837Oj4dJGZx9sFK9gtFIHH4qy5XHz74a/wrZn4MTHU3/jntXzNL/e3iEikilCoVD/ZNcgIiIiIiIiiZRB2dihDPpeRERERERERERERCSlOXiXsohIgtgFnzVUe7fOgU/s290GSUnHFsiFrtOaQ9EA+syBqX+GokHgy4JuJ8PMNdDjNCjsY647MfAKKD/GBKi4CUUrnwhnfxD9bTm33P2YM99MbCgamJ97XvfI/Qr6tP7/kdSW2yX88UQGo22dD6+eBfOHw3vXwdGDiVtbRNLX8h9G7pNVBD07SDBaYf/4ze0mGK0jsQsVCmfdH01AWioLutwIPvoHMPI73qy95FvezJMOrIIZYnXSk9DtFPM8oXAATPkj9L0oPmsJlNgEQuxf4e1ae9+HZ8dE7ndnMFE6AAAgAElEQVT0AKy4K3zb4Y3wxgXw7Fh440KoWmI9jz8nqjLbzxOALlPh+H/AqO+Z55NZhdDnAuvHjpJh5nbsaP42wWh2gZUKRhORVBWyOC/w6rHYSmEf6H0uHOPwQxAAdrwITw+Dynnxq0skHqzOvxP1+npOJ+gyxfzdYcqfYp/v4QAcXBu5X32VdVsswWgAsxys36TySXjYD69ON+e1qcrq+bBPwWgiIiIiIiIiIiIiIiIiIiIiIiIiItIx6J2zIpI6sgqs2xo9DEar32fdNvJ/vFtHOrZBXzKX4NH2G5qchHSVjrZu6/9fsPFv4dvOege6HOu8znByyuDIJuf9O081mxcTzZ8F434Mi6+y7zf6VvApCzZt5FkEo1VvScz6256HhXMg1GiuH1wN+z404X+6HYmInd1vRu4z9g7ILo5/Lamg86T4zW0XNNNSfUcLRrPYNG1n7/tmQ3yqCrncCO4PwPifwrifQMMh8Oc2P5fMLjW/y1f9Cpb8d+S1q96DhiP2Ad6ZIh7BaL3Ohd7nQcXs8M+JxHulNsFomx+FTg4CPJ04tA5emOy8f+WT7Y/VVcFTA5qv718OWx6zniOQ63w9J3x+GHen+b0cajTPLeuqYP1DULuzuV/RYDh7KWTlm+/7pRNat7eVXdL6erDOuq+C0UQkVVmF7Sbqd3nZWHMOsfUpZ/0PrTGv45z8NPSeGd/aRLyS7GC0lgZfDQc+htW/jm2e+UNh9ubmvxPUVZnvJ7sYQiGo3gyvnGY93ir82qniwSaIfvvzzsfseBF2LYBzltmfSyeL1fPhWH9WIiIiIiIiIiIiEj+hULIrEBERERERERERERHJKEp3EJHUEbAJRms44t06W+dZt/W9wLt1RCD8ZqbySZDf037cIJuwr8HXhD/e/79iD0UDyCl317+TTYhbvA260r592iMw+NrE1CLeKBwQ/njNNtj2QvzXX/eH5lC0JnvegX1L47+2iKQ3uyDfwn5w4uMw7BuJqyfZyh0Eoy36UnSBTI01zvrVdbBgtFAUP8sXp0L1Vu9r8Urb38lNIm0E9/lMQFEg14T+5pQ1B5zaBXK39WgRrP+L8/7pystgtG4nwdg7zWOez2eOKRQtMXrZhMF8/CPv/p+XRxGwtu255q9rd8Njnd2N9+e4X9MJn6/58SS3HGYsg8FfMaEaw2+Es942oWhgwjbOfAsKKsLPlVUIndsExlmFC4GC0UQkdTVaBaN5HFJp58THTNBtyTDnY5bfHrdyRDxn9dwtWefNo25tH/AajfV/hpqd8Mrp5nzvP2XwWFd4rAvM628/1heIff1TnnE/JngUVvw49rXjwSr83CooXERERERERERERFKcL9kFiIiIiIiIiIiIiIikHQWjiUjqsNug3mATNOHG0UOwf7l1e/lEb9YRsePPggn3WG8o7HysfeBX12kw8IrWx7ocB5N+4019boPRSoZ7s260jn0w/PGSEdDv4sTWIrGzuz29djbU7onv+pUW4Zmf/Dy+64pIeguFrAOcuhwHszdCn7nNIUEdQUGfyH3WPwRLv+N+bqfBaEcPup87nVltmo7kjfO9rcNL8dgIbhfIHc6iK6Dqg+jXSyXVW2HLE7BzQetPKQ5Z/JzLxkNWkbO5K+bCpUE443UY/T0IxCnISqyVjW0OAAznvetjXyPYAFufdj/utRkmEA3grUvdjw8kKIwnrxtMuQ9OfQ6OuRvyurZuLx4EszdD34taH/f5YdLv2tdZMdd6Lbv/KxGRZArWhT+eyN/t/iwYdQvMXAWXhcw5RiRVH0B1Zfi2A5+Yc6CqJd7WKRItq8BaX5KC0fK6wMgonpu3tftteLICdr5qrocaoW4P1FdFHutFEK7PD6e9bAJr3dj4N1j2A3jvOtj0L2isjb0WgFAQ9n0E6/4EW+ebv0+6Gq9gNBERERERERERkcwSitxFRERERERERERERERa0TtnRSR1BPKt2xqOeLPG85Os28b9xJs1RJzofyl0GmM2CQXrIbcbHFoLJcOg74UQyLMe6/PD1Aeg7+dgzztQMhIqZrnf8GMlp8xd/64nebNutCrmQOC69iEp/S9LTj0Sm8K+5vZvtQFtx0vm/pNoNdsTv6aIpA+rUDSA8R00WNHnM+cU9fvs+21+FCbe625up8FowXp386Y7q831kex9F/Z/DJ1Ge1uPFyw3ggeinzOac+ZPfgYnPBr9mqng0wfh/eub7z9dp8Epz0N2kfVtp6APnP4q/CdMcHKvGdDvMqjeDKUjofd5HSv8MVWdtxHm9Q3ftv2F2OffvwyOHohu7OZ/Q+9zYecr7sdahYong88H0/4F/S41z8dzOpn7Q9n49n3LxlnPYxU8JCKSbFaPT8l8LPb54NyV8MwI+34vnQSz17c+9uEtn4Xdf7bZaOAVMPXPOm+R5LI6//YnKRgNYNg3Yfnt1rVVzDXn/nah0TtejG7tzsd6Fxrb43Q45yPY8ript7EWPv3fyOM+/pH5d+195t9Za6F4cPR1BBvg7S/A5n81HyvsByc/A51GOZvD6vmwX2/vEBERERERERERSV0ZFH4WyqDvRUREREREREREUpLdS1B6eUpEmuidsyKSOvxZJhwtXNDB0f2xz39wNRxaY91e6nAzgohXOo2OPoDC54de55iL13LDBB9Yye8NnW0CBxMhpxNMewTeuhQaq82xijkw/L+TW5dEx+eHvJ5wZEP49v3LgCQEo2nDrIhxZAts/DtUb4Fup0Dfi3T/APtAqo68YXX4jbDsVvs+NVuhch5sfwlyO0P/z0PJUPsxDQ6D0ew2bGciq03TTmz6V5oFo8Vwv7IL5Lay+d/wRAUcc48JJ06nx71gIyz7PnzSJgh891vwzn/BSU/YBzPklMHMVfDqmeaxH6DTWJjyJyjoFd/axb3CPpDXA2p3tG+r3gz1ByCntH1bsBE2/gP2LYX8HjDkehOa19aBT6Kv7eBqE7YXjWjut/Hk80GfueZi288Pg6+Fdfe3b2tUMJqIpKhGi3DhQJJDKkuHw5T74f2vWQcgH9kA+5ZB2VhzfecCE3Db0vqHzGX0beYxuqB3PKsWCS8Vg9GyCmDS7+Hda9q35XWHEx8z50DbX4QF071du8/53s5XPAhGfrv5+sAr4I0Lw58jW3l6iHnuN/CK6P4G8+aF5rWOlo5sgmdHw6jvwchbwp9vtxSMw/NhERERERERERERSaI0eq9JJOn0vhkRERERERERERERSWseffyyiIhHcjuHP163N/a5N//Hvr2nx5s5RNJVjotgtDE/MJu9k63iPDh/B5z2CsxaCyc+DlmFya5KotX3Iuu26srE1dGK3sghwsHV8MIU+Oi7sPY+eOtieO8rya4qNWx92rqtI29YHeLw9rFwDqz9HXz8I3hhMuxZZN8/WOts3i2PwbYXnPXNBLEEox3Z5F0dXrLaCB5T4GCUHxlSsxXeugTeuTyGtRMs2Aivnt4+FK1J5ZMmIC1kEczg+yyYoWQYnLceznoHzvkIzl6iULRUNuIm67ZDa9sfC4Xgjbmw6Iuw+lfw4S3wzCioDxNQf3BV9HXVVMKh1e7HDb0hvd9U3fnY8MeDCkYTkRRl9fjkz0lsHeEMvgbmVELZBOs+6x9s/nrtH637ffwjeHYMVC3xrj4Rp6zOv5MZjAYmBCzcucvgrzSfj/U8CwoHeLdmTpkJKYynrtPgvHVw+mvuxm1+FF6bAcvvcDdu2e3tQ9FaWnEXPFkR/ny7JcsAvQ78OpOIiIiIiIiIiEhai/L9KqkolEHfi4iIiIiIiIiIiIiktBRIMhERaSEnjsFodoEV0x6BQAps7hJJBTllzvqN+wkMuiq+tbiRXQw9ToPiwem9cV7sg9HyuiWujlZ0mxJh5d1Qu6P1sXX3w4GVyaknVYSC9gFxyd7YnEy5nc15thtHD8Ly2+37BOudz7fse+7WT2dWm6adqNvjXR1eCjWGPx5L4KBV2JpTG/8OuxbGNkeibH0Kdr1u32fx1c4C6PxZ0OVYKBsL/oB3NYr3hn3Tuu3gZ8FkDdWw5Eb4pw8e9rd/vaR6M/yn7LP2ADycZb5ecZf13Gd/YF/Xlsdh6bedfQ8tHXOP+zGpJJAb/nijgtFEJEVZBqNZPJ4lWl5XmHK/dfvqX5nnaMEG2Pwv+7nq98HHd5qvd7wCr5wGzx0DH3wL6qq8q1mkLcvAqyS/fuDPglPmQ8VcE4aY2xlG/g+M/n7rfidEuG85lVMOp70EOaXezGcnqxC6nwzHP+x+7PLbzOND7a7IfWv32J8zNzl6wJxvVz5l3ccq/LwjB/CLiIiIiIiIiIiIiIiIiIiIiIiIiEiHomA0EUktuRbBaPUxBqPV7YW9i63b+10c2/wimSSnPHKf6e/BqFvAp1MJiYPOk6zbGqqbv67dZS6NLgJy7Nh9ip3C9kRgk8XG141/T2wdqWbXG2ZDvZWOvmG1+6nux2x/wT7ky00AWNUHzjYvZwKrTdNO1O32rg4vWX1P/hjuV0X9rduGXOdsjk0uA/+SZavNJvsmB1fB4U/DtyU7mEGi4w9A6ejwbTtfgSOb4NkxsOpeZ/OFgtYhhU1Gfx/Kj4FzPnJXayTDvxXb/T0VWAUJBevMa1VePZcREfGK1eOSVdBjMti9bgSwcA4cWutsrsonTOD3q2fAzgWwbyms/iW8Mdf+dSKRWFg9p/WlwPl3bmc46XG46BCcvxvG/7h9MHLJsOjnzy6Fzx2By0Jw4V4onxhbvW71vQjKjnE/bucCWHAOBCOcF+9e6O65+cLZUGnxoU4KRhMREREREREREUlD+tuCiIiIiIiIiIiIiIiXlGYiIqnFKhitLsZgtNW/tW6b+kBsc4tkmtwIwWj5Pc2md5F46ndJ+OMNR2DfMng4Gx7vbi7/yoWl3zahDbGwDXzQabN0cKEQNBwK37b+L4mtJdVsm2/f3tGDhQL50Y07vN66LegyAOzgmuhqSDduAuPaqtvjXR1esvq/9gXCH3eidDQU9mt/vNMYmPT/oM8FkedYe1/06yfKpw/A+oec9d31evjjqRDMINHpPCX88fUPwrz+9o+xsaxXNhbG3uHdvP0v826uZLEKEqrfB491gce7wvIfKnxHRFJHsC78caugx2SZu926bevTsOhK53O9++X2x3YthK0RnuuJRMvquVsqvX4QyLH+oIjskuhC0MEE32YVRF9XrPwBOGMBDL8Ryie7G7tvCWy2+NCAJtWV7mtaeF74UEqr58OpdDsRERERERERERERF/ThvCIiIiIiIiIiIiIibinhQURSS04cgtFCQfj4h9btZeOjn1skE+VX2LdP/C34dAohcZZTFv543R54+UQItdkYtvJuWPXL2Na0C5Sx2ggo0lHU77NuswpM6ygOrLJv92clpo5UFciLbtxBm59ryGUAmN1cmcRtYFxLqRqM1vb3fRNfDPcrn8+cz/pzmo8FCuCYe03bsQ+2brNyNEUf+6or4cNbYPHVsc/V0R+/0lnvWYldr2UwRsVsb+Yc9t9QPtGbuZIpUpDQ0YOw/HYTZigikgosg9EcnB8lUn4P6HaydfveRbGvUfl46+uhEOxfAZsehSObYp9fOq7GI+GPp1oAoZ1ownBLhsOIb3tfi1vZJXDM3XD2u3BxLZRNcD52y+P27TXboqvp3WvaH7N6PqznaSIiIiIiIiIiImlKH5YlIiIiIiIiIiIiIuKWUk1EJLXkloc/Hu1G/YYaeGa0fR83mx5EOoLiwVAyInzb5N9D3wsSW490TIGC8Me3P2fCA8LZ8LfY1gzWxzZeJJPVbLduO3rQBNF2VIfX2rf7shNTR6ryR/n9733fus0uyDKcjhKM5jYwrqWGw9BY610tXrEKe4t1I3jFLDhnKYz7CUz4BZyzBHqcYdqyi6H/5yPPcWhNbDXEw4a/wVOD4ZOfeTNfR3/8SmddpiZurR5nQFZh8/XSCK/BhDPyOzDiZhhwuQnZOO1lmHivdzUmk9OA0E2PxLcOERGnGi1eGwmkYGDT4C/Hd/4Nf23+OthggmefHQ1vXQzz+sPHd8V3fclMwUaoqwrfltclsbXEous0mL3Zut2XBYX9zaVoMEy+D2Ysg6z8RFXoTCAXpi82AdlObHnM/rlzdZTBaNueM+GLLVk9H44lKFxERERERERERETEMQW5iYiIiIiIiIiIiEjy6Z2zIpJa8nqEP3740+jme+UUOLjSuv2kJ8Hni25ukUzl88EJj8KC6VDTYiPPuJ/AkK8mry7pWFqGKzi1/yOzgSzax3XbYDTlCUsHVxNhY+eexdD1uMTUkkqCR+FQhPPUWAOcOqqtT8G4O8K3KRgtPKtN007V7YGCCm9q8UqoMfxxLzaCl440l3DG/xQOroY9b1uPP7AKyifGXodX6vbCu1+GYJ13c0YbbCjJl9cDsopM6GG89Z7d+rrPByNugpV3Oxuf3ck818zU12b8DoOEdr4S3zpERJyyOpdw+niWSP0ugbcvi9/8oaAJsMotNwGW6//cun3ZrdDjTOgyJX41SOapr8JyM1luGgWjART2gQv3wxvnw85XzbG87nDsX6DX9OTW5oY/GwZeAd1PN99LlU1QO8D8EVDYD4oGQmMdhBpg86Pmgz4aq6OroW431O6A/J7Nx0IKRhMREREREREREUk7bT8AIVNl6t/3RUREREREREQkoexeTusoL7WJSGRKeBCR1FI8NPzxmm1w9JC7ud67Dva+a91eOhIqZlu3i3RknUbDeRvgjDdMgOD5u2DULcmuSjqSrILoxtXvi35Nu2A0vZFDOrranfbtW59KTB2p5sgm642qTbRhNTr7l8Hh9eHbIv3M2+oIwWjBRmL+pNa6PZ6U4inLjeCB+K6b1w3OeB3OttkQv/vN+Nbg1pbHobHG2zkVjJa+fD4oHhL/dQoqTIhEW30vdj5HzzMz+1w7kIJBQiIidiyD0XISW4cTPh/MXB3fNeYPM8HMbUPRmmydF9/1JfPYPe9Kt2A0gJxSOO1lOPsD8xxq1tr0CkVrqbAPTF9s/iZi58hG2PU6rH8QNv3ThKJB9KFoTQ62eTyzeq063s+HRUREREREREREJE4y6O/i2pUqIiIiIiIiIiIiIgmiHdoiklpKhlm3HVoLZePh0Dqo+sBc9i0xITiF/WHsndBplOl7cC2svc9+rX6XeVa2SEYK5EC3E5JdhXRUgSiD0Wq2Qm55dGPtgtEy6U0pItGIFLZTOQ/G/yQxtaSS2t2R+yhYCHqeDdufdz9u63wYdkP748Gj7uY5sgEaayGQ576GdOE0LO701+CVU8K3PTcB+n8Bxv3YbAhPBZbBaAl4OcufBeUTYcDlsOGv7dvX/cHcv4+5JzXu51sej9yneCic+gI8NcDZnAp2TG9dp8G+pdGP92WZ+2DRIMjvBVXvtz4f6HIcTPodZBe1H1s6CrI7wdH9kdfpc0H0NaaDvG7O+y65CUZ+B/K6xq8eERE7wUYIBcO3pWrQY8lQGHQVfPpAfOav2wPbX4CdC8K3r/gxjLsrPmtLfIWC0FhnwgCb/g3Wtz8Wrq1de334MeHG1tucH+V0Ttz37yWfD8qPSXYV3vD5zd9EZq6C+cO9n//YB2HRl8K3vXIqzFgGncaY61YfAJJT6n1dIiIiIiIiIiIikgAKExMRERERERERERERcUs7HEUktRT0AX+u2SDS1tuXQc12OHqwfdu+D2H7izBzJRT2hW3P2q/jz4ahX/OmZhER8V5WlMFo1duaN4+5ZRe04/NHN6dIpmgMc27W0sGVJpi2ZEhi6kkVdXsi91GwEAz7Jux42Xl4V5P9H4c/7jYYLRSEI1sy+/bp9GfS/WTIKYf6qvDtG/8OO1+Bc1dATpl39UUraHGb8SfwftXr3PDBaABrfgsNh8zm9mRqrHMWPnj2BybEasZyeNbB+VJWfuy1SfIMud7cdsO9hgIw6Gr49H+tx1900Lw2k9PJ/dpZ+TDiRlj2fft+ZROgz4Xu508neT2c9111D+x+C858E/yB+NUkImIl3GvyTfwpGowGJtzXSTBav8vg+L+b5wf1e2HpzbDhL5HHrfl/sdfYpG6vOc/uaK8zBRsiB4bF2uY2pMzt89N4yyrU+XcqKRkGJ/wH3vT4XNWfYwKMd78Vvv3ZsXDWO+YcsmZb+D65XbytSURERERERERERDyk8DMRERERERERERERES9ph7aIpBZ/AIqHwIEwIQgHV9uPbayGj++EqffDnnfs+563QZ+qLiKSygKF0Y2r2Rr9msF667Z9S6OfVyQT2G2Qb7J1HpTcFP9aUomTYDR/dvzrSHW9psOpz8GrZ7obV78v/HG3wWhggg/I4GA0N5v6c7tYB6OBCaPe8HcY9vXY64pVqDH88UQGDvY6B7KKoOFw+Pb1DwE+mPq/yQu4qHwycp8eZ5lQNIDSUVA0EA6vtx9TMjL22iR5SofDmW/BJz+HqvebHyfye0O/S2DwtfbBaFn5QAzhHKO+ZwIdNj0CtTug4QhkF5sgkqxC6HYyjLk98wPAfD53/fcugs3/hv6XxKceERE7tsFoOYmrwy2nIUH9LzOPy74A5HWDIV91Foy2/YXY6gOoWgJvf8GEimd3glHfhRE3uf89EUkoZJ4vhQ0Mq4PG+jDH4hlS9ll7KOjt95mJFHaVenpO935OfzaUT7EORgN48Tj7OXRbERERERERERERSVMe/01ARERERERERERERKQDUDCaiKSekmHhg9Gc2DoPQn+AYK11nwn3QEHv6OYXEZHEyCqIblzNtujXtAtGq9kO9fshp1P086eqwxtM8Fv5JCjsm+xqJFXZ3T+abPyH2did6YINsOt1aKyFTQ9H7p/IAKdU1uMMyCm3D+Rq6+j+8MfdhIA1qd3tfkw6cRIWVzHH/JvXFQ6tse+74S8pEoxm8X/tT+D9KrsYRnwblv/Aus/6B6HrNBh0VeLqamn325H7jP1R89c+n7k9rLrXur8/19xvJb11Gg3H/9W6fdg3YfWv2h8feGXsa/t8MPhqc+no+l3q7JyhyZrfKBhNRJKj0eZ5XyA3cXW45SQkqM8F0GtG62NdpsKALzoLR4tF7W54fmLz9aP74cObYctj0Od86zCxaEPKJD0VVCS7AmkruwiG3wir7vFuTl82VJwHq38Z/RwKRhMREREREREREUlToWQXICIiIiIiIiIiIiKSdrRDW0RST8mw6MfW7oLtL0DlPOs+/T8f/fwiIpIYqRaMBlD5FAy8PPr5U00oZDbirry7+dio78HYO0yQhUhLjXWR++z7ELY9B73OiX89yXJ4Pbx+HhxY4XyMPxC/etKNP8dd/3qLYDQnIWBt1e1xPyadOAmLawo6crKJuuqD2OrxStDi+/Il+H418jsm1OjgKus+i6+G3rMhLwmb1O2C7gZ/BcbcBvk9Wx+PFIw24L9MEIBktr4Xhg9Gq5id+Foy2aAr3QWj7XknfrWIiNgJ2jzv86dyMFpn+/bJ98Hga8O/1nHsg+a86I250a3t89u3H1wD8y3+3rF3sbmIgHkuIalnwi9MiFko6M18/mzoegKUjICDK6ObQ8FoIiIiIiIiIiIiIiIiIiIiIiIiIiLSQSgYTURST9kxsY1/bYZ1W9cTIL97bPOLiEj8BQqjG1e9Nfo1IwWjLb0ps4LRtj3bOhQNYMVd0O1k6HlmcmqS1GW3Qb6l12bApcHMDNdrrIWnBiW7ivQWcBmmUPV++OMhBaO1YxUg1mTEzdB7pvk6J0JwRJP3b4A+c6H7qdHXdXANbPwn7F1kwta6ToP8CjNnn/MjP1ZYBb75EvxyViAXTnkOnhpg3++1c+Ds9xJTU0tWwWg9zoIp94Vv63I85HaFut1hGn0w7seelScprMvxMPZOWHZr87ERN0HvWcmrKRN1P939mL3vQ+dJ3tciiVe9DTb8BQ6uRp8CLynv6CHrNrfn8onkz7ZvH/xl6/NOnw/6zIExt8Py26NYO0L487vXuJ9TOp4+F8CwG5JdhYTj88E5H5qQ/CMbY5/Pnw3+LDjuL7BgOtTvcz+HgtFERERERERERERSWCb9PTCTvhcRERERERERERERSVcKRhOR1FNxHhRUQHWldR+fP7pPaNfmEhGR9JBVEN24mm3RrxmMELQTNjgkja21CEpZ/5CC0aS9SMGBLa1/CAZ9KW6lJEVjHczrl+wq0p8/ijCFNb+Hode1Phbp8TqcTA9GswuLO/Mt6Hp883WnP781vzWXCb8wQUlu7VoIC86BxurmY5XzzL9rfweDroGp99vPYRX4luhgNICi/jBnKzzZ27pP1fuw41XocVrCyiLYYL1Bv+19pyV/AEbfBh98vX3bJUdNu2Q+nw9Gfw8GXgH7lkKnsVDYN9lVZR6fD/J7Qs1252NemAzHPwz9L4lfXRJ/B1bByydm/nmIdAyRAsCSrWyC+V3WVuGA+AZ32/1canebc2JJb76AeS4byA3zb074Nn8uBHJafG0xNpAPnSdD8dDMDJjPFJ3GwLkrYMFZsPut9u3H/wM++RnsXxZ5rqYgx86TYfZmePmk8I9ddnIdhp2LiIiIiIiIiIiIiIiIiIiIiIiIpDC7aH7F9otIEwWjiUjq8WfDaS/DO1dA1buAD0pHQtkxUD7RXMrGwfOT4eBKd3N3nhKPikVExGuBZASjuQh+ygTbngl/fNM/Ydo/EluLpL7GOud9F1/pLhgt2GA2kO54yYQdjbgRep3jvsZ4Wnc/1O5KdhXpL5owhQ9vhr4XQl635mNWYVl2Mj2QxO5nUtgm1K++yt3cS78NxcOgYlb7NTf8FVbcBYfXm2P5vaFmq7N5P/2TuTTVl10K3U+HsT+C7CJzLNQYfqw/SS9nFfQyQXMvTbPus+gKmLM5YSVRv886NLwgQsDVkK9C3S5Y9SsTYNf9VJj6Z4WidUQFvc1F4iea310f3WJ+BybrMU/cCwVh1b2w5XHz3PTIpmRXJOKdaEKOE2n0rfDGBYn/YfoAACAASURBVO2Pd7U5b/OC3eO7HgPc+7+gMZtQMX+ORdCYizbHAWc5OjcWI6sATn8Nlt4En/4ZGg5BdicYcxv0uxQq5sLSG2H9g9BYaz2PL7v56+wi8/xy6Y3WH2DRro5iKBke07ciIiIiIiIiIiIiSRLSVk4REREREREREREREbe0q0pEUlPJMJj+jtlQGGwwG2Hayu3ibs6+F7cPBRARkdSUFWUwWu1O8wYSn8/92I4WjJYJ6qqg4TDklDVvnJX4CLoIRgM4shkKIwTyNHnnctj0cPP1na/AyU9D75nu1oynTY8ku4LMEIgiTKHhCFTOg8HXNB8LHXU/T+1O92PSSdDmZ+LPbn29zwXW4ZhWFp4HZ7wO3U4yv2eDR2Hlz2HZ91v3cxqK1lLLwIj9y6DqfbOWzwchi6AJXxJfzup6PJz0lPmZhFO9BQ6shKxCc2mshdzOEMjzroZgg3muHMiBur3W/XI728/jD5ggutHfNz/TaM6fRMSZijkmDNKNI5vM42LxYBOCCCZMI6vAhEnqPpt6PvgmrPltsqsQ8Z7PD4H8ZFdhr2KuCXnduaD5mD8Xhn7d2fjySdGt21gNwcbw4VmxhPfHnc8+GMyLIDK7wLGwa+bod5ukNn8WTPwVTLjbhOfn9zCPjwBZ+TD59zDx1/DutbD+IYs52jw/bznuufFw4BP7GoZ+zdvnliIiIiIiIiIiIuIthZ+JiIiIiIiIiIiIiHhKwWgiktp8fuuQE7fBaMf/LfZ6REQkMbIKoxsXajQBZ9GE7ygYLX1ULYFFV8D+5a2PD/sGTLgn/IZkiY3b+0flPBjmYAN65VOtQ9GavD4LTpoHFRbBQ4lUuwf2vJPsKjKDP4rHZoDKJ1sHo9mFgFlJ6VACD1gFiEH7ELGeZ0a3xrLb4Jh74b2vwt53o5vDid1vwPYXoNfZNsFoSX6cr5gFBX1MCFo4z4xsf2zA5TDp/0F2cfTrNtbBR981oTvBo9BrJvS/1Lp/pGC0Jm0354uI93rNcB+MBvD8RMAHhHkD/cRfm8Afhcikhv0rFIommavL8akfRO7zwYmPwapfw/bnIb8XjLkNysY7G9/jdMgugaMH3a/dcBhyStsfX3575LHZnaB0pH3gWCxhY1ZtCsUViZ4/Cwp6WbRlm+eKlmMtnnv5s+GsxbD0Rlh3f/g+E38LQ693V6uIiIiIiIiIiIiIiIiIiIiIiIiIiEgaUzCaiKQvN8FoZ7yhzd4iIukkUBD92IYj0QWjNSoY7f9UPgVdpzkPVIlFKGQCzmq2QU45NByEooHm0tahT2HfEnjzc+HnWv1rs6l47O1xLblDaqxz1z9cMFr9ftj9JtRVmdtW2XhYONt6joWzYeYqKBnmvt59H8LO18xtqvspUNjX2bijB2HPIqjZYTa65nWH1b8hbBiJuBft+fi2Z6G6EgoqzPVogtH2LYX6fZBTFl0Nqc7uZ9L2515QASP/Bz75ibs1dr3+WUBPAmz+twlGC1oEo/lT4OWssxbBk72d99/wVwjkwZQ/Rr/mJz+DVfc2X98231zC8efGdj4lIt7qNQN6nAU7XoxisMV5yAffgPze0PeCmEoTjzw7OtkViMRHVjGM/2myq3Amp8y8HhDNawKBPBj/c3jvK+7HhgtG2/qseQ5iZ9xdMOq77tcTkRRnEzpo97pIdpF5vlg6Gj64ofl4VqH5G2f5BO9KFBERERERERERERERERERERERERERSQMpsJNURCRKToPRsoqgy3HxrUVERLzlzwZfAEKN7sc2HIHccvfjQg6CdkIh8NlsbssUC2cDPjjhX9D3ovit03AEFl0Fm//V+rgvy2wOHvtDcz0UhI9udRbis+GvCkaLh6DLYLRdr0NjrdlcDiYobeEc9+vOHw6XNoLP76x/sAHeugS2PNb6+IS7YcSN9mP3LIY35kLNduf19bsUyifB0ghzy2dsAuYCeeY2Y+XJPmaD8OBrIWQRlhXJY13gxMehwiaQL13Z/Ux8YV76GXcXdDsZtj4Fa38fv7qitf7P5nfA7jfCt4f7nhKtoBeM+Das/IXzMZ8+AON+HF3waEMNrPy58/65nTvGOYtIugjkwCnPwsZ/wKIvejfv2vsUjJYK9i9313/gFXEpQ8RzJcOhYi6UDE12JYkx5MvQaQy8NM3duIYj7Y99+r/2Y856B7oc624dEUl/PgeB8cO+bv6mWfkE+PNg8DWQ3yP+tYmIiIiIiIiIiEic6YM5RURERERERERERETcSoGdpCIiUcrr6qxf38+BPxDfWkRExFs+H2QVwtGD7seG25DaJNgI21+Ana9CQW8YdBVkl0Qe1yTU4GwDW0YIwTtfhB5nQE6Zt1MfXg8bH4Zlt1os3QAf/wiOHjKBWJv/DdWbnc19ZAMEj5pwPfFOsD788e6nws4F7Y+HGkwA0NDrzf34rUuiX/vhAJSMMF93ORYK+0OfuWbDepMjm2H5D02YUjhLb4KN/4Sy8S0OBmH321A6CnqeZcKN3ISiDb0BJv36s/kVjOZI6RjYtbD9cX+OCQZ4boL9+He/bB6Tgg6CLMMJBeHNi+H8nZBTGt0cqWbPu1D5JGybb90n3OOhzwe9pptLzXaz4TrVPNnHus2fIi9nDfySu2C0UCO8/zWY9rD7tXa+4uxcpUk04WsiEl/+AAy83ARS7l3szZw7XzG/35yGyEp87PvIed/PHTbPdUUkNXU9HoZ+Hdb81vmYxur2x+zOr4f9t0LRRDoqp69Xdp5kLiIiIiIiIiIiIpJmMij8LJRB34uIiIiIiIiIiIiIpK0U2UkqIhKF/N7O+o28Ob51iIhIfAQKogtGa7QIDQmF4P3rYd0fm4+tuhemvwf5PUwIVyTB+o4VuNVYA5VPwcAvejfn7rdhwXRoOBy57+pfRrfGpkdhwOejGyvhNdaFP14+EXa9YYLQ2nr/aybEp7A/NNbGtv7Bla3/XfFjOOFRqDgPdr4Or5wSeY59S8ylrUNrogiF8sHgq12OEfp9zoTBtH0TYN+LTWjd547AoxGCQjY/Zh2MdtI8c5t7+zLr8cE62PEi9L3IVekpaf1DsPgqE4hjxxchJNpp4HQspvzJhLdVzvNmvkjfc6KUDIfiIXBorfMxmx6Bsgnun6dWPumuf46C0URSVr9LvQtGAzj0KZQM8W4+ca96i7N+py9QKJpIOsjr7q5/2/DahjBBaS2VDHM3v4ikGZ91U0d6XVlEREREREREREQyl8/mdVARERERERERERGH7LL5ldsvIk38yS5ARCRq+b0i9znxCW00EhFJV4H86MY9PwnevAT2L299/MObW4eiAVRXwvIfmK83/TPy3FZhPJnswCexz9FYD2v/AC+dCC9NcxaKFot3FVjluWB9+ONZRVA8yHrch9+Bty6OQz11sPQm2PeRs1A0rw25DjqNSfy66a7bSXDc36Cgwlz355hwmCn3metZBSZoys6ed7D8dNWcTtDvEigeaj9HdaWrslNS3V5Y9CUHoWhZkd+MmNvNu7rCGfYNEyQ46XemHi/UbPdmnlj5fNDnQvfjlt8Otbsi99v9Nrw2E/5TDp8+4G6NzpPd1yUiiTHsBhj9fe/me34CvHSS+b1wZJN384oz9Qfgo+/a98ntakJCu5+SkJJEJEbZJe76tw1GO7TGvn/pCHfzi0jmUDCaiIiIiIiIiIhIB5ZBOzm1K1VEREREREREREREEkTBaCKSvgp6W7cNvAIuaYA+cxJWjoiIeCyQE/3Yzf+CF6bC4Q3m+urfwMq7w/dddz+s/0v7ILVwOmIwmpOfS1uNta1/Vh/9D7z3Vdj9pnd1RVq/Zmdi1uoognXhj/tzIwdZxcuhtfDc+MSvWzoaxt2V+HUzxYDPw+zNMKcSLjoA0/4JWYXN7YX97MfX2ty3m0LARtxoP0fNDuf1ppLGWhOIFmyAx7o4G+N3EESWF+dgtPzPnrcV9IYBl3szZ+kob+bxwshvm8AbNxprYNMj5v8STMBdKGjeOBpsNL/Ddi00YaLbnoH6fe7rGnil+zEikhg+H4z9kXndatBVsc/XcAR2vwHrH4LnJ0f3mCHRCTbAK6fZ97noEMzdZkJCRSQ9ZBe76982GO3AKvv+yXoOLSKJYRdO7lMwmoiIiIiIiIiIiIiIiIiIiIiIiIiIiFMOdsiKiKSo/J727f5AYuoQEZH48MV4qtpYA08NhFG3wro/2vdddIWzOTtiMNr256F2D+Q5COE5ehgWXwWV88Dnh74XQf8vwKp7419nWx//ECb/PvHrZqpGq2C0HOh5tvk/7wh6Tofj/wE5pcmuJL35fNYhx5GC0QL51m3+zzYYD74Wsorg7c+H77fy57DpYfMY0Xtm5HqTrX4fLLoSKp90P9bJputchyFr0ep5VvPXU+6HkmGw7Vlzfdg3oOoDWOEybLDLsd7VF6ucMpi+CJb9ADb+3fm4D74BS74FoUZzzhNq8K6mQVdBqQI3RFKePwDFQ7yds243PDse5mzydl4Jb+ersG+JdfvgL0N2UeLqERFvZLkNRqtufb3yCeu+5RPdh+qKSObwKxhNREREREREREQks4WSXYCIiIiIiIiIiIiISEbxJ7sAEZGoBfIgUBC+re8lia1FRES859VGsRV3moAALwTrvZkn2YJuwldCsOz7zrou+iJsfhSCdSaYbsNfYcFZkcfFw9r7YM+7yVk7E1nd9gO5Jvyu89TY1yjoA8c+BL4UDbcd9T049XnI7ZzsSjJbpGA0u8fzlr83+l8Gg79i3bd6C7w+C/Z/7K6+ZHjrsuhC0cDZ7TXL4jmVFwZ+CcrGNV/3B2DkzXDGa+bSZy4M/bq7OQd/GTqN9bLK2BUNhOP/BpeFWl8utgiVbBJq/OxfD0PRyifCpN95N5+IxFevGfbtBX3gwn1wxhvO56zeDDtfi6kscWjLY/btpaMTU4eIeCvbZTBa45EWX9ea10WsjP+pCYoWkY5JwWgiIiIiIiIiIiIiIiIiIiIiIiIiIiKOKRhNRNLbwC+1P5ZVBN1PTnwtIiLirayiZFfQXvBosivwRmOtu/4b/gIN1fZ96qqgcl70NcXDqruTXUHmCFqE+/hzIbsITl8AI26Kfv6K2XDOhzDwi3DOR9HPE063k014W9MlkO98bP8vwNAb4ORnYNyd3tYl4RX2t2/fv8y6zZfV+npul8jrrf195D7JdGQTbH8++vE9p0fuk+Uy+CGSokEw5Ho44d8w9YHI/fO7m9CfSPJ6wEnzTOhXuoRJBHLg7A/iN//EX8Mxv4SBV8DAK2Hy7+HMt0xopYikh9LRUDoqfNsx98K5n0BOJ+h2Akz8jfN51/3Jm/rE2pFNsO5++z4FvRJTi4h4y+35cUOLYLStT1v363M+9DgjuppEJH20fW2iJQWjiYiIiIiIiIiIdFyhULIrEBERERERERERERFJOzbvzBURSQNjbod9S2DPO+Z6IM9swA/kJbUsERHxgNdBLV4IZUowWo37/mt+CyO/Y91n34cQaoytLjeyikzgz5bHrPts/jfU7YXczomrK1M1WgWj5Zh/s/Jhwi+gcAC8f727uUf/AMbe3ny90ygonwxV70VVKmDC0E5/FXxhssBDf4X3roN1f7CfY84WKKhwtt6UP8G717Q/PvAKZ+OlWWE/V9031PRn3p7z2N/QiVnbipjYqUWjo2C0+0yYVKra8XJs48f/NHKfzpPNfTlYH9taAMO+CcfcE/6+ZyenE5z5JiycC3W727SVm+d4PU6Lvb5kKD/GhCxu/Lv3c/e7FPK6ej+viCSOzwfHPggLZ0PNdnOssL85jyka0LpvxXnwwQ3O5t30T+h3MfSelT5hkunmvesi98nvHf86RMR72S5fj6qrav66aql1v36XRVePiKSX/p+HZbe2P15QYR+aJiIiIiIiIiIiIukvo8LPMul7EREREREREREREZF0pXffikh6y+sCZ7xuNhzVboduJ0FOWbKrEhERL2QXWbdNvg/e+2riamniRWhMKnAbjAbw4S1QNAj6Xhi+feXPY6vJrX4XQ8X59sFoAI91gbnbIb9HYurKVFa3/aZgtCZDrzPhG06CIgAGXdU6FK2J21CllsomwBmvWbf7fDDlPnMbeuXU8H3O3wl53Zyv2WsGZBVCw5HWx/tc5HwOMVwEoy06MJUZy+ezv8Gc/9/x6xAPXhHk8uM+u/04CUYDWH4HjPm+20rj7/BGWHx19OPP32kCxyLJLoaKObD50ejXApi5GkqGRj++6zSYtRp2vwU1O8yxvG7Q9QTILY+ttmSb8AvY+hQcPejdnEOuUyiaSKboPBlmroI9i805UNcTIJDbvl9BHwjkOz+XXzgbBl0DU+/3tl6BQ5/Ctmcj98vvFf9aRMR7boPRVtwJo24xzwkPrrLu13tmbHWJSHoo6g+dp8Ded1sf73uxAmtFREREREREREQkM+i1ThERERERERERERFJkBh2m4uIpAh/NnSZAhWzFYomIpJJsmyC0fpcAENvSFwtTYJHE79mPBz4JLpxS2+GYGPrY0cPwnvXw/YXYqspqxgK+kbu58+B/p+Hib+F3jNMSF4kH94SW21ifdsP5LQ/NuSrcMyvILvUfs7hN8IUi6COaIPRBlwOp7/irG/3U+CMhVA0sGlR6DwVZm90F4oGUNALTn0Rij8LhcrrDlP+aG6j4k5eT8ddv7fhzv8LRQMIhXx8/eEQRxs++8TSzpOcTbT8Nji83k2V8VWzAxZfC08NiG0eN7fjqQ+Y363+bHOpmAP9LnE+vuc5sYWiNckpM4ERg682l4rz0j8UDUw459g7PZzQB+N/4uF8IpJ02SXQ80zocXr4UDQw50ddjnM376d/gn8VwPq/ZNinkyfZ1qed9VM4s0h6ynIZjAbw4nHwTx9UPhG+ve/F1o/vIpJ5Tn4aup9mzt8CBSasdvxPk12ViIiIiIiIiIiIiDf0t2cREREREREREfGA3atMIdtWEelIspJdgIiIiIhIWHYbUf05MOgqWP9naDicuJoyJRht9a+iG3dkA+xb2hw2FArBwrmw89Xo5ssuhVlrwJcF2cUQbIBHC6z7z1hmQqyyCpuPDfkKDL4WFpwDO14MP27zoyZALSs/ujoFQha3fV92+OPDv2EC0oL1ZvN3sB7q9pr/O18AAvkRNoW7+FTJsmPgzIWA3/3/cbcTYdY6qNkOgbzYApi6Hg+zVkPtHsjtrE/GjJY/4KhbXTCHBftPbXf8UC28tgbOHAmUDHO+7qZHYVQKhCgePQTPT4KarbHNUz7ZXf/sIjjxP9BQDaGguV61FDY9EnmsLwDDkhBWmm6GfAU++h40HIptnqJBMHOlCbATkY5n+I2w6zXzWO1UYw0sugJqd8HIb8erso7lwMeR++R112O1SLrKjiIYbf9y+/a+F0RXi4ikp7xuJri//oB5vUnBiCIiIiIiIiIiIqKNnCIiIiIiIiIiIiIirvmTXYCIiIiISFjZRdZt/mwoGwunvZy4eiAzgtHqqmDHS9GPf2EyrPqlCUXb+nR0oWiF/aHPBTD9PbNRMLfc/J9GCrXK7906FK2Jzw+Dr7Ye11gDO19xX6c0CzaEP+63ydoO5Jj7sT/b/L8V9jWBYTmdIm8ItQsVm3I/dDsJSkfDyO/AmW+a+aMNvvP5oKBXbKFoLeV1USharIZ8NWKXAw2llm2rdrR4I2H//3K2ZuWTzvrFU/0B+HeJu1C0rieEP14xO7oasgqaf/+WT4CzFkHJ8Ob2HmfCjI9h2DfNfbDnOXDyM9Dr7OjW60j82TDgC+7GFFSY35N53aF8ogkCPfMtBe2IdGS9Z8BJT0PP6ZDfC/J7Oh/74c1wZEv8autIPn0gcp9e58a/DhGJD382dD3R2zmLXYQ2i0jmyClVKJqIiIiIiIiIiEiHovAzEREREREREREREREv2exiFxERERFJop7TYcWPw7cF8sy/XabCiG/Dyl8kpqZgfWLWiad9SyAUjG2OJd+C2p1QtcTduNHfh7E/su/jz7H+OWeXWI/reTb4AhBqDN9e+ST0numsTmkvZBEKGLdwHptgsf5fgMHXxGldSQnDvwWVT9kGhB1ssH48KGq55zi/h7M19y6GNb83gWIFvR0W6rG3P+9+zMArTTDg9heaj5WMgMFf9qamLlNh5sr2xyf+0pv5O5qxd8L6h0xgZ0u+LJj2MPS9MClliUia6T3DXJrsehNemwENhyKPnT8cLj4Sv9riqaEG9i8DQtB5avKCaPd9FLlPfk8YcWP8axGR+Bl3F7x8knfzFQ/xbi4RERERERERERERERERERERERERERERkQ7An+wCRERERETC6noCFFS0P14xB3wtTmMTGXYVtAiHSidefQ+f/Ax2vOSs75Dr4OT5kUPRwITDWPHbtGUXw4DLrdt3vBJ5bQkvFLQO07P7/4qJTdBFUzCiZK7iwTD9Xdvb14HGUsu2wpbBaDmdnK/7/vXwZAV8dCuEEvwJrtWVsO0Z9+Oyi83j69Q/w+CvwDG/grPehrwu3tcoscsth/N3wKhbzWOZP9sEvE5fpFA0EYletxPg7PdgxE2R+zZWw4EwgZeprmoJPDcOXjwWXjwOXpgC1dYBqnG1/If27UWD4ZwPoXRkYuoRkfjodiLkOQxZjiS7E2TlezOXiIiIiIiIiIiIiIikqQS/F0lEREREREREREREJAMoGE1EREREUpPPD8c/bDaQNikeCpN+17pf1xNh1HdbHxt0dXxqCmVCMFpD4tYaewdcFoLJv4Pe5zobYxd+Fsn4n1u3HdmY+KCjTBFqtG6LVzCaz+apqs8mNE0yR0EvGH2rZfOBButgtIKcFreRbBfBaE1W3AU7XnY/Lhb7P45yoM88bg76Eky5D4Z/w10YnCRedgmMuwMuroFL6mHCz6F8YrKrEpF0VzIMJvwCTn7GPM7YWXZbYmrySigEi6+BQ2ubj1W9D+9/PfG1bH8RKp+w7zNrDeR1S0w9IhJfXY7zZp7up3ozj4iIiIiIiIiIiIiIpLaMen9iJn0vIiIiIiIiIiIiIpKuFIwmIiIiIqmr2wkwez2c/DScvgBmLDdhOS35fDDuLpi1zgSpnfMRTLk/PvUE6+MzbyLZhVx5qde5tqFGlsonRb9mXhc46x3r9u0vRD93Rxa0CQT0Z8dnzaJB8ZlX0os/x7Jpv00wWqv3GNqF7NnZ9M/oxkWrZnt04xSCJiIiLfWeAbPWwujvW/fZ8h9YeU/iaopV1Qewb0n745VPwJEtiatj+R2wYLp9n6kPKMRXJJN4da499Dpv5hEREREREREREREREUkF+puoiIiIiIiIiIiIiCSIgtFEREREJLXllEHvmdD9FAhYh+RQPAj6XwJlY80bL0be4n0tdgFR6SLUkJh1ov35j7gp/PEBX3Q2Pq+bddu717ivR+xvM/6s+Kw59Gvhj/eaEZ/1JDX5cy2bDtgEozUEW1wJBS372dr8WHTjolVd6X5MViF0Od77WkREJL3ldYOxP4KyCdZ9lt4Eh9YlrqZY7F1s3bZtfmJq2PAPWH5b5H7ZxfGvRUQSJ9uDYLQpf4Tup8c+j4iIiIiIiIiIiIiISKpo9amVIiIiIiIiIiIi0bF7mUkvQYlIEwWjiYiIiEhmGniF93NmQjBa0EEwWvdTY1uj87HQdVp0Y3ucAaWjWh/z58Lga52Nz+1i3VZdCUcPRVdXR2Z3u/dlx2fNsvHQ9cQ2a/lhyFfjs56kpkB0wWiNLbPQSoZFt3bDocQGxjgJW2lr0LWQle99LSIikhmmPWLf/vSQxNQRq6oPrNv2fRj/9bc8Ce98wVnfLAWjiWSUnBiD0XrNNK9l+Hze1CMiIiIiIiIiIv+fvfuOl7Os8///uk5NTnovhAQSQu9VAghSpLgrRVDBhthx7bvquiqiu2v5Ka5lbasifBcLIGADpCiKFKlK7ySUBEJCek6Sc2au3x+TbOZMZu65p50y5/V8POaRXP2TcHKYOXPP+5Ykaejyk5ySJEmSJEmSJFXMYDRJkiQ1p2rDcJI0QzBazCSPj9oBXnU97PtlaB9b+f5Tj4Sjr6v+g78t7XDsn2DeO3P/DWe+Bl51LUxZkG59uTCCNY9XV9dwlhSm19LWmDNDgKOuhp0/AON2h+mvhlf+Crb7h8acp8GppaPk0KpM6WC03kzehYRTjoD2KgMNfjO/fy5KXPlA8vikg2G3j8O+X8kFT048EPb9Euz/1cbXJkkausbuXP658fK7+qeWWiy/s/TYxmWNOzezEe54D9x8avo17QajSU2l1mC0ee+oTx2SJEmSJEmSJGmIMPxMkiRJkiRJkqR6atCn2CVJkqQmlN000BXULiaEXIU22OeL0NIKu38cdno3XD6hsv2PuKL2QIDOSXDI/1S3tlwg27O/hJ7VMHoejNq+ujOGm5gQCBjaG3du+2g48JuN21+DX0tnyaF1mVElx/Jz0WjtgH2/CHe+r+++E/eHZbeVr+Hx78LO56YotgbPXF56bK/zYa/Pbm3v/i+NrUWS1Fx2Phce+nLp8SXXwqQD+6+etLpfhHVPQ+cUWP1Q6XmNDEa76wPwZIWvSdpGN6YWSQNjxPTq1047GmaeVL9aJEmSJEmSJEmSJEmSJEmSJEkaZgxGkyRJktLKJgREDRUxU3rsuJth8iu2ttvHVb5/R4VBav3twf/MPQDmvRMO+l4uCE6lZRPC9Fp8SakGai0djJaNLSXHegu/zc1/L4zdFZ77FbR1wewzYMK+sPha+NsnYeXfS9dw1/th5EzY/pQKi6/AC9eXHpvVwHMlSc1v7tuTg9Hu+0zu/5GzT++/mpLECI/9N9zzkeRA5y0aFYzWsxYW/r/K1wWfG0tNZcZxuX/Xhd+PRs6AHd4MPavgiR9suy60wVFX50KaJUmSJEmSJEmSAIjlp0iSJEmSJEmSpD5Kf5JYkiRJGup2+5f67rfyvvruNxBKBQyM3qlvKBpACDB2l8r2D6G6uuophHMn4gAAIABJREFUbZDQkz/MhS489GV49JuwblFj6xqqkkIpDH9QI7WUDhLItI8vPZYt0jntKDjg67DPf+RC0QBmngAn/Q1O/FtyHTefCt0vlq+3WmufKt7fOQUm7N24cyVJzW/sLnDAN5Pn/OUMuOuDsOrh/qkpydMXwd0fSBeKBo0LRlv9CGQ2VLamdSSMntuYeiQNjI4JcOjFfV/3Tl4Ar3kY9vsKHPx9OOwX0JIX6DzxQDjlucSQZ0mSJEmSJEmSpEEvGuQmSZIkSZIkSRp4BqNJkiSpeW1/OlDHoK6nfgzPXlW//QZCzBTvbykRcDXnrMbV0ihzzkw/97Fvwd8+CXd/CK7eF166pXF1DVXZntJjLe39V4eGn5bSYQKZltElx3qLBaMlmbAPzH5D8pwl11a4aUrZHthQInTt0Isbc6YkaXjZ5QOw8weT5zz2LbhmP3j2yv6pqZinLobb317Zmo3LIVb6P/4UVj9S+ZrtXgttI+tfi6SBtcOZcPIiOOzncNwtcOxN0DFu6/ic18Nrn4QFP4Nj/gjH/QVGThuwciVJkiRJkiRJ0kAaJmFig+HmuZIkSZIkSZKkYcFgNEmSJDWvyQfDgkugc3Lf/rZR1Qc63XVuYz5831+yvcX7Q4lgtD3+DeafuzWgaPw+ub5i5r+/9vrqYc7rYdrRla/rWQn3/kv96xnqYomvGSj9dSPVQ2vpYLRsy6iSY5lqvkW/4sfJ492Lq9g0wdqF8KfXws87KHlRZNd29T1TkjR8zSkTAAqQ3Qg3nwaZjY2vp1DP6lxQcaViBv58Ciy/s/Yalt0Ot74Z/nA83PaWytcf8sPaa5A0OHXNzH0fnbKg+M+SuraDHd4I045KfA0jSZIkSZIkSZLUFOIwCYCTJEmSJEmSJA04g9EkSZLU3HY4E057EU55Fs7M5H49fRWc9CC0juw7d+R2cOLfYeorS+/XvQRWPtDYmhupVMhVaC3e39IKB/03nLESTl0CJ/0N9vjX3N9VvtaRsNO76ltrLQ6/tLp1y27LBRblG8pBePWQ7Sk9Vm3AoJRGS0fJoUzLyNJj1fyTbeuCo64pPd67topNS+heAr/ZCZ7/TfK8wu+zkiRVa/KhuUcaNxzZ2FqKef53uZDiqtb+JlfzS7dVf/7ia+CGV8LCS+CF6ypfv/MHoX109edLkiRJkiRJkiRJanKGiUmSJEmSJEn5kvL3zeaXtIXBaJIkSWp+oQW6Zm39taUVxs6HV98KM06AUTvCnDPh2Jtgwt7bBqYVumYfuPFoWPNkv5RfVzFTvL+lLXld6wgYOT33+7ZRcPxfYc4bc393M18DR98IE/apb6216JxU/dpf7wiXjoGbz4Df7g4/74BrDoAXbqxffUNJtkSYHpT/upFq0dJZcigTRpQc6602y3DmCUAoPlbPf//3n1/6e/EWrSOgY0L9zpQkDW8hwKt+n27u8r9Cz+rG1lNo8dW1rc90w6Nfr379IxckhwGX0z6m+rWSJEmSJEmSJEmSmoOf1pQkSZIkSZIkqa4MRpMkSdLwNWFfeNU1cPJTcNhPYcxOuf6EMJ7/8+If4YYjoXd9Y2ust1IhV6G1sn26toPDfpb7uzvqtzDl0Nprq7fZb6h+be9aePZyWP1wLsBoxT3wp9fCqkfqV99QERNCIkJ7/9Wh4ac1KRgtYazaYDTIBT4Ws/yvsHF5DRtvlu2Fhf9bft6I6bkQG0mS6qV9DMx7Z7q5L99T//NjhLVPw0u3QGZD37E1j9W+/zOXVV/X0j/XdvaIqbWtlyRJkiRJkiRJkiRJkiRJkiRJktSHwWiSJElSoc5J6eZ1Pw8v3NjYWuotZor3h7b+raM/zH1bfffLrM+FpQ03pcL0AFqa8OtGg0dLR8mhmBCM1ltLMFrb6NJjj36jho03u/9z0Luu/LzJgzBsUpI09LWNSTdvdZ3DgHvXwc2nwa/nwvWHwxXT4YUbto5vXFafc6oJMe1dC9lN5ecd8C1oH1d8bMaJlZ8rSZIkSZIkSZIkSZIkSZIkSZIkqSSD0SRJkqRCaYPRAB78z8bV0QixRMhVMwZczTgBJuxX3z1XPVjf/YaCUl8zBAi+pFQDtbSXHMpQOhgtU1Mw2qjSYw98AV6+Fx78EtzzMXj027BuUfq9e9bCg/+Rbu6cN6bfV5KktNrTBqM9Wt9zH/oKPHfV1nbPKvjDcbD497l2vYLR7vlY5WvSnj33rXDoxdA6om///l+HsfMrP1eSJEmSJEmSJEnS8BHjQFdQoaFWryRJkiRJkiSpGTVh+oEkSZJUo87J6eduWt64OhohZor3h9b+raM/hAALfgq/261+ez5zGRz2s/rtNxRke4r3J4RWSY2WaekqOdZbUzDa6OTxa/fv277v03Dkb2Hq4eX3vnrPdDWM3wtmnphuriRJlUgbjLbm8fqeu/CS4v03nQA7vg16VtfnnKcvgkN/UtmaNMFobWOgfSzMei289il48Y+Q2QBTj4Qx86oqVZIkSZIkSZIkSVKzGSZhYiEMdAWSJEmSJEmSpGHCYDRJkiSpUCXBaEMtHCrbW7w/NOlLg45x9d0vZnJ3bxxOF/fEYfY1o8Fj9Nzc9+PCwJLWLrIjppdclqkpGG1UZfN7VsENR8A/Pg5jdio9b/WjsG5R+f1GTIcFPxt6/2+RJA0N7WPTzVtxD9z+Dnjqx7l2axccfhlsd1Lx+b3d8NCXYemfoHdNrq9tDEw7Cua/H9Y+Wfqspy9KXX4qG5dD56Tcc/ZFP4dFm/+/Ov9cmH5MkfkpgtHyA+VGzoAdzqpfvZIkSZIkSZIkSZIkSZIkSZIkSZK20TLQBUiSJEmDTsfE9HPDEAuvKRly1dq/dfSX9vH13/O+T9d/z8Es21O83+AmNVpogZ3eu23/vHPIxNLBfL2ZGs5s66pu3W/mw5onSo8/e0Xy+pMegFOXwKmLYfwe1dUgSVI5LZ3p5nUv2RqKBpBZD396DTx9ybZzY4Q/Hg8PnA9Lb4KX7849lt4E938Ofj23DoVX4KEv5Wq6/3Nw61nw/G9y/x/+w7Gw8Gfbzt+4vPye+cFokiRJkiRJkiRJklSxONAF1E9soj+LJEmSJEmSJGlQMxhNkiRJKhSz6ee2dDSujkaIJRKDQumQoSGtbSRMPLD42Pz3V7fnIxdAb3f1NQ01pcL0Wpr0a0aDy96fh32/AuP3zj32Oh8O+AaZbOkL7DK1XHuXLfH1nsZv5sONR8Pap7YdW3x16XVzzsyFoY2cDiFUf74kSeX0rKlt/YP/vm3f87+Fl24uvaa3xjPzjZxRfs7DX4VfdMIDn9927NazoHd9376Ny8rv2WYwmiRJkiRJkiRJkqRyDAyTJEmSJEmS0kr6aZo/aZO0hcFokiRJUqGJ+6Wf2zrEgtFKhf40c8jV3l/YNsBu3y/DQd+ubr/MBnjxj7XXNVRseKl4f2jv3zo0PIUAu/8LnPT33GOvz0JoISEXjd4S+Y+pZGoMPXzxj3D94ZDZ2Ld/04rSa2adUtuZkiSlNeng2tavfqRvsNiGpXDfp2vbsxLTjk03L9tTeuyaffu21y0qv1+7wWiSJEmSJEmSJEmSJEmSJEmSJElSfzIYTZIkSSo0akcYu1u6uUMtHCqWSAwKrf1bR3+aeQIcdwvs/EGY/z448new+8dr23PjsvrUNpjFCA99Be56f/HxZg7T06CXyVY3Vlaow49JupfAs7/c2o4R1j9bev7Mk2o/U5KkNCbuD52TattjSzDa/Z+Hq2bByvtqryut1g6Y947a9ljzOLx899b26kfLryn1GkqSJEmSJEmSJEmSJEmSJEmSJElSQxiMJkmSJBUKAV5xYbq5LUMtGK23eH9o8pCrSQfCgd+Ag74D2+WFEO3xqer2ax9Tn7oGs6V/gr99ovT4UAsFVFNJCj/rrSUYbdbJNSzOc+ub4M73w+/2gGv2gZ7VxefNfz+0j67PmZIkldPSBgt+Ci2d1e+R6YYl18H950G2p361pdHSAXt9DsbvVds+1x4Iy+/M/X71I+Xn96yp7TxJkiRJkiRJkiRJw1wc6AIqNNTqlSRJkiRJkiQ1I4PRJEmSpGImHwKvuKj8vKEWKBYzxftDa//WMVjMPgMIla+rJUxiqFh4SfJ4yxD72ldTySZce5cUmlbW2N1g3O41bJDn8e/Aqodg5f2l5+x9fn3OkiQprRmvhlOegUMvhl0+XPn6TDc8ckH960qjpQO6ZsGrb4ejrqltr98fDPd/HtYtLD+3VMCpJEmSJEmSJEmSJG0RDROTJEmSJEmSJKmeDEaTJEmSShm7c/k5safxdeTrWQsPfxX+dDLceS6sf66y9bG3eP9wDbmasC8s+Cm0j6tsXXZTY+oZTJ78YfL4UAsFVFNJCj/rrSUYLQQ46urc94ZG65wCnZMaf44kSYVGTIUd3wKzT6987W93gSW/r39NabS0535t64KZJ8DYXWvb7/7zSHWn8961tZ0jSZIkSZIkSZIkSZIkSZIkSZIkqSJ+kl2SJEkqpXNy+TmZDY2vY4uYhT/9Ayz909a+Rb+AE+6E0XPT7ZEtEYw2nEOudngjzD4DHvgCPHB+ujXNHoyW5u6VW4IppAGQSfgSTQpNS2XUHDjxXlj3LHSMg/axsHE5rFuUC5Jp6YC2MfDgf8KD/179ObWGuUiSVKvWroGuoDItHX3bI2fC6kcaf+6skxt/hiRJkiRJkiRJkiQNCSmuLZQkSZIkSZIkqQ6GcfrB8BZC2BXYB5gFjAQ2AEuBJ4C/xxjX1bB3O3AYMBuYAawFFgP3xhgX1la5JElSPxpswWiLLu0bigaw6WV47L9h/6+l2yNmiveH1tpqG+paWmHeOc0ZjPb81XDfZ2D9Ihi3Bxz8Qxg7P3nNE98vv+9wDtPTgEsKP6s5GG2LUdtv/X3npNwj3z5fgBHT4O4PVLf/9GOqr02SpHpoG+LBaKPm9M+5O7y5f86RJEmSJEmSJEmS1JzS3KhUkiSpGfk8SJIkSSUkPVX0aaSkLfwk+zASQhgPfAg4h1xoWSmZEMLfgMtjjF+qYP8pwPnAG4CJJebcClwQY/xl6sIlSZIGSvu43Ifvk0Kw+jMY7ZGvFu9/8Q/p94i9xftbfGnAqNmw03vhie+VnztUgtFWPgg3nwLZnlx76Z/h9wfDyQuhY1zxNc9cDne+r/zeHRPqVqZUqWzCDzfrFoyWxi7/BJuWw/2fq3ztTu+pezmSJFWkdYCD0Vo6c8Gj3YtTzm/v255zJjx1Yf3ryjfzNTB5QWPPkCRJkiRJkiRJktQE/LSmJEmSJEmSJEn1ZPrBMBFCOAP4LjApxfRW4ABgFpAqGC2EcCLwE2BqmakLgAUhhEuA98QY16XZX5IkaUCEABMPhGW3lp7TX8FoMcLLdxcfW/G3CvbJFO8PrZXX1IwO+g5MWQBP/ABe+kvpeUMlGO3+z24NRduiZyU8eznMe0ff/mwP3H4OLPzfdHtPP6Y+NUpVSAo/6y3xba5h9joPxu8Nz/8aul+AdQth9SPJaw78Noyc3i/lSZJUUtsABqPt8hHY8U0wYT946iJ48Ubomp17Dv7SzcXXtHT0bU87CsbsDGseq399c86EqUfA3HdAi6+VJEmSJEmSJEmSJEmSJEmSJEmSpP5kMNowEEI4D/hckaFngMeAl4ARwAxgL2BUhfsfBVwF5H8yLQL3AE8B44H9gMl5428CxoYQTokxJnykXZIkaYDNPDE5GC3bT8FoPauTxzetgo5x5ffJ9hbvD740AHJheDu+BbZ/HVw+fttQsS2GQjBa73p49oriY399J0x7FYyeC2ufgsXXwl3vT7/3tGNglw/Vp06pCknBaJnsANx9dftTc48tHvsO3PPh4t9DdngTzD+3/2qTJKmU1gEKRtvuH+GAC7a257099wC4432lg9FCe992Szsc8iO44Yj61rfvl2D3T9R3T0mSJEmSJEmSJEnD2ABczyRJkjQo+DxIkiRJklQ90w+aXAjhY2wbivYz4IsxxvuLzG8BDgVeBxyfYv9ZwBX0DUW7BXhXjPHhvHmdwHuArwJbPsH2j8C/A59K+ceRJEnqfyOmJ49n+iEYLbMR/ljmqdm6RdCxd/m9YolgtBZfGvTR1gUzToTnf118fCgEo/355OTxX8+DuWfDokshsz79vsfcBFMW5IIopAGSlH2WGQzvn+98Lsx4Nbx0K2TWQUtHLuBy4oEw5fBcCKMkSQOtdcTAnLvj20qPtXYmjHVs2zf1cDh9JTx1IdzzkdprAxg5sz77SJIkSZIkSZIkSRpGBsNFS3USm+jPIkmSJEmSJEkaskw/aGIhhH2AL+V19QBnxRgvL7UmxpglF2x2SwghzdfH+cCEvPatwLExxj4JITHGjcA3QwjPAFfmDX00hPD9GOOiFGdJkiT1v7au5PGNy6BnLbSPblwNz1wKy/+aPGfdQpiQJhgtU7w/tFZcVtN7xYXwy0nFx/ojEK8WG16CF24oP++pn1S270Hfg2lHVlWSVE+ZbOmx3hLf5vrdmJ1yD0mSBqsQYPxesHKb+2dAaIGY8D/cQi0dMPUoeOG68nO3PzV5n0rHOsbBrh+GSYfA9QvKn1/OyBm17yFJkiRJkiRJkiRJkiRJkiRJkiSpai0DXYAaY3Oo2Y/pG373nqRQtEIxxt4yZ8wH3pbXtQk4uzAUrWDPq4CL8ro6gfPS1iRJktTvWssEowFcdwj0djfuLnmP/Ff5OetS5sxmSzzFS5WJO8x0ToSpJULA7vtM/9ZSqTShaJXqnAI7vqX++0pVSApGSxqTJEkF5r17274ZJ6Z7HZTv9JWw12fLz9vt47nQtVJaR5QeC+3Je08+BCbsW76GckZuV/sekiRJkiRJkiRJktSUGnSdrCRJkiRJkiRJBQxGa15nAPvntW+MMV5Y5zPOAlrz2lfEGB9Pse7LBe3XhxASPvEmSZI0gNpSBAKseggu7YLLx8PNZ8CGpfWtYcU95ecs/2v5OeuegRdvLD4WWov3D3ctHaXH6v3fuZ42vFDf/Wb+A5xwZ7p/D1I/yCZcX9drMJokSent8k9w4Ldh/D7QNRt2ei8ccTn0rk2/R9dsaBsJE/YrP3fkjDLjM0uPJT03h1zg2tE3wA5vgRHTYeKBsOBncOpimHUKjJhWvr6u2TBm5/LzJEmSJEmSJEmSJCmtRt10V5IkabDzeZAkSZIkqQZtA12AGuY9Be3/bMAZpxa0UwWvxRgfDiH8FThkc9co4NXAr+tYmyRJUn20jkw/t2c1PHs5LL8DTn4698H8WmV70s1beAm84iJoKRFwltkI1x9Wen3wpUFRSeELi34Bu3wgeX1mI6x6EMbu2r+hYhuX1b7Hrh+D/b9a+z5SA2QSws+SxiRJUhE7vz/3qFVbF3ROgY0vlZ5TLhht7K6lx3rXlK+hcxIsuHjb/ldeuW3f05fAbW/O6wiw12dLv6aSJEmSJEmSJEmSpFIM/ZAkSZIkSZJSS/ppmj9pk7SF6QdNKISwE3BkXtdC4I91PmM6sE9eVy9wSwVb3MTWYDSAEzEYTZIkDUbVhFmtfwaumAqnLIbWhGCtNNYuTD/3pZth2lHFx57/Nax/rvRaP/xfQsKPUNY8kbz0qYvhzvdAZkMuYG2f/4TdPlbf8kqpNRhtwU9hzhvrU4vUAEnhZ70Go0mSNHAOvRhuOrH0eNlgtF1Kj2W6q6uplB3fBGN2gie+D61dMPv00q+nJEmSJEmSygghtAOHAbOBGcBaYDFwb4xxYZ3P2hHYF5gJjAaWAIuAW2OMKe+8JUmSJEmSJEmSJEmSJA1eBqM1p1cVtG+Mse63n9mzoH1fjHFdBetvLWjvUWM9kiRJjdFaRTAawMbl8MAXYJ8v1Hb+xqXp5750S+kP8i+/M3ntmifTnzOcJIUvJIXmrfg73P62re3sJrj3n2H8XjDj1fWrL9+qh2DJ9bDpZXjiB9Xvs9fnYYcz61eX1ACZhFe4SaFpkiQppfnnwuPfqXzd+MIfGxcYPS95fMR0aB8PPSu3HZtyeOX1lDP5kNxDkiRJkiQ1hRDC54Dzatjiohjj2RWeOQU4H3gDMLHEnFuBC2KMv6yhNkIIpwMfBQ4tMeXlEMIvgM/GGGu8k5IkSZIkSZIkSZIkSZI0cFoGugA1xMEF7dsAQs6xIYQLQwgPhRBWhRDWhRAWhRBuCCF8MoSwQ8ozdi9oP1FhjYXJG4X7SZIkDQ5J4VflPHtZ7ef3rEk/975Pw+rHt+2PER7+/5LXjvPpWFG960uPtY4sPfbcVcX7n72ytnpKeeKHcPXecM+H4YHP17BRgB3fXLeypEbJJoSf9WT6rw5JkprWrFPSzx2z09bfd82CaUcXnzflCOjaLnmvEGCnd27bP2oOTNg3fU2SJEmSJEn9IIRwIvAA8D5KhKJttgC4PITwvyGEUVWcMzqE8DPgMkqHorG5hvcBD4QQjq/0HEmSJEm1SLjTY+LYYDTU6pUkSYOXzyskSZIkSdUzGK05HVjQfnhz4NkNwPXA2cBuwFigC5gNHAN8EXgshPDfIYRyCSA7FbSfqbDGRQXtSSGECRXuIUmS1HitNQSjrV2YCyWrxPO/g9vOhtvPgcW/h57Vla3/7c7wl9fDjcfCvR+HNU/CstvLrxu7a2XnDBeZKoPR7v9c8f4nvldTOUWtXwx3vAtiHdKgDr8URu9Y+z5Sg2USvrVu6Om/OiRJalozjoP9L0j3emi3f+7bPvRimHhQ376JB8BhP0939p7nwewztrbHzIejroXg2xmSJEmSJGnwCCEcBVwFTM3rjsDd5ALMrgeWFSx7E/CzENL/oCOE0Ar8AnhjwdBLwHWbz7qHvp8wnAb8KoRweNpzJEmSJEmSJEmSJEmSpMGkbaALUEPMKGh3AXcCk1OsbQfOBQ4NIbwmxrikxLzxBe2llRQYY1wbQtgAjMjrHgesqGSfQiGEqcCUCpfNq+VMSZLU5NpqCEbLboTeddA+Ot38x78Hd75va/upC2HKYZWf+8xluV9fvBGevgimvDJ5/pj5MPXIys8ZDnoTgtFa2vuvjiRXbVeffV6/rravd6kfZbKlx9Zt6r86JElqart+BHZ6L6x9ElY/Cn85fds5o+fBtGP69nVtByfckQuKXv8sdG0Po3dIf2776Fxg78blsHEZjNkZQqjlTyJJkiRJkoavM4EUd5H6P2vTTAohzAKuADryum8B3hVjfDhvXifwHuCr5K7LA/hH4N+BT6Ws6UvASXntHuCjwA9ijP/3rkgIYXfgh8Chm7s6gatCCHslXAMoSZIkSZWp9GbBkiRJkiRJkiRVyWC05lQYWnYhW0PR1gHfA64BngNGAfsA5wD5d4jcD/hlCOHIGGNPkTMK0z26q6izm77BaGOq2KPQucB5ddhHkiQpp3Vkbes3LU8XjBazcP/52/a/dEtt529YCs9eXnp8yhFw6E/Sh7cNN5mEYLRHvwm7frjImg2Nq6fQ8ruqWxfagCy0jYFpr4IDv20omoaUbML1dU9UFNstSZIStY2E8XvmHodeDLe9devY9GPhFRdBa0fxtaN3qCwQrVDnpNxDkiRJkiSpei/EGBc2YN/zgQl57VuBY2OMfd4ojDFuBL4ZQngGuDJv6KMhhO/HGBclHRJCmAt8qKD7jBjjrwrnxhgfCiEcA9zI1nC0SeSupXtvij+TJEmSpIYxTEySJA1XPg+SJEmSJFXPYLQms/kuk50F3bM2//oQcEKM8dmC8XuAC0MIHyN3d8otDgU+Qe4OlYUKkzOqSX/opu8FYqZxSJKkwSe01LZ+4zIYNaf8vOV3wYYXajurGsf9uf/PHEp6E4LR1j0NT/4Y5p3Tt//WtzS2pnwv/qGy+ae9CCOmNqYWqR9lssnjv7gzyxsOqvH7tyRJ6mvHt+QekiRJkiRJw1gIYT7wtryuTcDZhaFo+WKMV4UQLspb10kusOycUms2Ow9oz2v/pFgoWt453SGEs4H7gS1p9u8IIXwlxvhUmbMkSZIk1cTQD0mSJEmSJEmS6slPCTef1hL9qygeivZ/YoxfA75e0P2REEKawLJq3sXxnR9JktT8NixLN2/j0sbWUcx+X+v/M4eaWCZ96ckf9m1vWAbPXZG8JrOptpryPfjF9HM7JkDnlPqdLQ2gcsFoP/qLLzclSZIkSZIkSVJDnEXfa/SuiDE+nmLdlwvarw8hjCg1OYQwEji9zB7biDE+BlyV19VGrmZJkiRJkiRJkiRJkgaFmPDxv6QxScOLwWhNJsa4Hij2EfELkkLR8nyGXIjaFhOBE4vMW1vQHpmuwsQ1hXtW4zvAnhU+Tq7DuZIkqZmN3aX6teufSTdvIF6pd23X/2cONft9JXl82W1926sfLh+mduOroHtJbXUBrHsWelamnz9yBoRQ+7nSIJAt8y3zhof7pw5JkiRJkiRJkjTsnFrQvjDNohjjw8Bf87pGAa9OWHI80JXXvi3G+EiqCret6bSU6yRJkiRJkiRJkiRJkqRBwWC05rSuSN/FaRbGGNcBVxR0H1Vk6qAMRosxLo0xPljJA3iy1nMlSVKTm/3Gbfs6JsLrlsEhP4IFl0D72OJr73g3rLiv/BkxU1uN1RhpMFpZM4tlBCfoWVN+zrJb4doD4KVbq6tpiyd/VNn8qUfVdp40iGTK5A9KkiRJkiRJkiTVWwhhOrBPXlcvcEsFW9xU0E56M/KEMmuT3Eyuti32CyFMq2C9JEmSpHoaiBvn1mSo1StJkgatIfc8SJIkSZI0mBiM1pxWFrRfjDEurGD97QXt3YrMWVXQnlLB/oQQRrNtMFph3ZIkSYPDnv8GO7wFCLn2yJlw9HXQOQnmnQM7nAXj9ii9/q/vhKcvgVvOgrs+CMvv2nbOQASjjZ7b/2cONaPmQOuI5Dn5b9b1pghGA+heAjceBfd8DO79OPzlDfD4dyFbwdfBA+ennwsw7x2VzZcGMYPRJEmSJEmSJEnSANizoH3f5huRplV456Sk2cPnAAAgAElEQVSEN5m3Oeu2tIdsrun+Cs6SJEmSVCtDPyRJkiRJkiRJqqu2gS5ADfEYsH1ee0mF6xcXtCcVmfN4QXtOhWcUzn85xriiwj0kSZL6R0s7LLgYDvh6LtBq3O4QCjKG28aUXv/ynXDbm7e2n/wfOPI3MP3YrX2Z7vrWXM64PaFrZv+eOVRt/zpYeEnp8dgLoT33+56UwWgA2R545IKt7WcuhRf/CIf9AkJIXnvfeenPAZj9epi4f2VrpEEsm+I6wt8/GDl+jzL/liRJkiRJkiRJUjN7Twjh0+RuDDoJ6AGWA4uAvwDXxhhvrmC/3QvaT1RYz5Nl9stXeDPTas7ar+CsP1S4hyRJkiRJkiRJkiRJkjQgWspP0RD0YEF7Y4XrC+ePKDLn4YL2ThWeMbeg/VCF6yVJkvpf5yQYv+e2oWgA7QnBaIUyG+APx8GVs+CuD+TavZXcSLwOZry6f88bylo6k8ezm7b+vreCYLRinrkMVj1QfOzZq+DqfeGnAR74fOk9TvwbHPBNGD0PRkyFXT4MB323trqkQSaTLT/nM1elmCRJkiRJkiRJkprZG4FjgJlAJzCa3A09Xwl8CvhzCOHOEMKxpbfoo/AauWcqrGdRQXtSCGFC4aQQwkRgYo1nFc6fX+F6SZIkSSoixR0tJUmSJEmSJEmqg7aBLkANcV9Be3yF6wvnLy8ypzCtYe8QQleMcX3KMw4rs58kSdLQUkkw2hbdz8Nj34bVj+ZCrCrxiovg0W/AinsqPxdg3B7VrRuOWjqSxzMboW1U7vc9q2s/78kfwQH/1bdvyfXwl9dBLBP0NH4fmLD5scsHaq9FGqTSBKPdtQiy2UhLS2h8QZIkSZIkSZIkaag6ELguhPBF4NMxxqRP+RdeV7e0koNijGtDCBvoe6PSccCKMuesjzFWeqetwtrGVbi+pBDCVGBKhcsqfENckiRJGmqSXkoYJiZJkoYrnwdJkiRJkqpnMFpzuobcTwy2fPp7bghhRIxxQ8r1exa0nyucEGNcEkK4D9h7c1cbcDhwXcozjipoX5NynSRJ0uDUVkUw2hYvXA9cX9mazskw7xy4q8pgtLG7VLduOIo9yePZjVt/37Om9vNeKPK18MQPyoeiAez41trPl4aATMr3yJethaljG1uLJEmSJEmSJEkadJ4HrgbuAB4GXgaywCRgf+AfgOPz5gfgU0AL8K8J+44uaHdXUVs3fYPRir3RXK9z8tXwhvY2zgXOq+N+kiRJkiRJkiRJkqRhJOmWZYm3M5M0rLQMdAGqvxjjYuC2vK524JgKtjihoH1ziXlXFrTfnmbzEMKuwCF5XetIH6gmSZI0OLXX8zryFDonw9yzq1wcYOxu9aymufWW+ZxBJi8YrbcOwWirHtr2JzfPXp5u7c7n1n6+NMjFGFP/cHPJqsbWIkmSJEmSJEmSBpU7yAWebR9jfHeM8YcxxltijA/HGB+NMd4aY/x2jPEE4CDg8YL1nwwhnJywf2FgWdobleYrfPOxcM/+PEeSJEmSJEmSJEmSJEkalAxGa14XFrQ/mmZRCOEI4OC8riy5u2cWcwmQyWufFkKYn+KYTxS0L40xVnPxliRJ0uDRPrZ/zxsxGdpGwZG/rXztzNdA58T619SsMmWC0bJ5wWg9ZYLRJh4Ax/2l/Jl/fSdkM+Xn5Tv2ZmgdUX6eNMRlK7jjw+KVjatDkiRJkiRJkiQNLjHGq2OM18VY/hYrMca7gFcAjxUMfSmE0Jr2yEprHORrJEmSJDXEEHt6nvaulZIkSWX5vEKSJEmSVL22gS5ADXMhuTC03Ta3jw4hfDTGeEGpBSGEqWwbqHZpjPHJYvNjjI+HEC4Cztnc1QH8JIRwTKmgs8131Dw7r2sTcH65P4wkSdKg1zamf8/rmLT51/GVrz3kB/WtpdmVC0bLpAxGG7srHH4pjJ4LI2dA95LSc5/6MUw+BNY/DyvvL1/j/v8FUw8vP09qApls+rlLVkUgNKwWSZIkSZIkSZI0dMUYXw4hnAncxdY3FHYFXgXcUGTJ2oL2yCqOLVxTuGd/nlOt7wCXVbhmHvCrOtYgSZIkDTKGfkiSJEmSJEmSVE8GozWpGGMmhPAh4FqgZXP310IIc4DPxRhX5M8PIRwLfJfcBUhbrAA+Veao84BTgQmb2wuAG0II74wxPpK3fyfwbuBrBeu/FmNclP5PJkmSNEiFfg7eaR+b+7W1wmvgu2blQrmUXrlgtOymrb/ftLz4nNmvh8N+vvXrJLSXP/eO96Srb+45sOuH0s2VmkC2gmsIF69qXB2SJEmSJEmSJGnoizHeE0K4Djg+r/sEDEYrKca4FFhayZrQ3++nS5IkSZIkSZIkSZIkaUgzGK2JxRiv3xyO9q287g8C7wsh3A48T+4CqH2BOQXLNwFnxhifLnPGcyGE04DfAx2buw8DHgoh3A08BYwD9gemFCz/LfCZiv9gkiRJg9HGEoFYjbLlwvHWrsrWlQv50rbKBqNthEe+AU/9GFbeV3zOtKP7hue1dBSfV42pr6zfXtIQkMmmn7vEYDRJkiRJkiRJklTetfQNRtu7xLzCdx4Kr4dLFEIYzbaBZStTnNMVQhgVY1xXwXFTU5wjSZIkSRWq4K6WkiRJkiRJkiTVwGC0Jhdj/HYIIQN8FdiSmtEOHJGw7EXgtBjjrSnPuCmEcCrwE7Ze7BWAAzc/ivkZ8K4YYybNGZIkSYPeQIVTtVUYjLbzBxtTRzPb/nRYfkfp8Qe/CIt/l7zH2F37tnd6F/ztE7XXBjDj+PJzpCZSSTDaC6u8EE+SJEmSJEmSJJW1sKBdKvDs8YJ24c1Iyymc/3KMcUXhpBjj8hDCCmBCXvds4OEaziqsXZIkSVI9xYTrlJLGJEmSmpnPgyRJkiRJNWgZ6ALUeDHG75K7i+X/AmsSpr4AfA7YJW0oWt4ZVwN7At8DtrlYK8/twOkxxrMqvIOlJEnS4DbpEGgb0z9ntY/d+vsRhTf6LmP70+pby3Aw5w3J4+VC0QDG7lKw5xurryffjBNh5PT67CUNEdkK3h9fvLJxdUiSJEmSJEmSpKbRXdAeWWJeYTDZThWeM7eg/VDC3HqfVUmomiRJkiRJkiRJkiRJkjSg2ga6APWPGOOTwFtCCCOBw4BZwHRgE/AS8PcY4301nrEUeF8I4UObz5iz+Yx1wPPAvTHGp2s5Q5IkadBq7YRD/gdufRPETGPP2u9reeeOSL9ut3+BcXvUv55mN2o27PNF+Pu/Vre+fTyMmFZkz/+Av/9bbbUd9O3a1ktDUCabfu6SVY2rQ5IkSZIkSZIkNY3JBe1lJeY9UNDeO4TQFWNcn/Kcw8rsVzi2IK99KPCbNIeEEEaRu5Fq2rMkSZIkSZIkSZIkSRoU4kAXIGnQMBhtmIkxdgM3NPiMTcAfG3mGJEnSoDTnDTBhX7jjvbD0psac0doFs1+Xfv4Rv4Q1j8OUw2HyAgihMXU1uz0+WX0w2rQji/+97/EpmH5c7utlxT2V7zvpYBhdeKN3qflVGowWYyT4vU+SJEmSJEmSJJV2SEF7cbFJMcYlIYT72Bo61gYcDlyX8pyjCtrXJMy9Fnh3wtokR9D32tB7Y4wvVrBekiRJ0rDmR08lSVK9+LxCkiRJklS9loEuQJIkSWoqY3eBff69MXu3j4XDL4OOCenXbH8a7P4JmHKYoWi16ppV3boZJ5Yem3QQHPdnaOmofN/dqwxqk4a4bAXvj/dkYFNv42qRJEmSJEmSJElDWwhhBHBaQfdNCUuuLGi/PeU5u9I3gG0dyYFqvwe689qHbt4jjbML2oU1S5IkSaq7pIuaDASRJEmSJEmSJKlSBqNJkiRJ9dYxqbb1rV1wzB/g9BVwVoRTl8Dxd8CpL8B2J207v3NK8X26tq+tDvWV7alu3Zh5yeNto2B0mTmFJh0C2/1jdfVIQ1ys8DrB7ir/6UqSJEmSJEmSpGHhE8B2ee0M8LuE+ZdsnrPFaSGE+SnPyXdpjHFDqckxxvXA5WX22EYIYWfg1LyuXuCnKeqTJEmSJEmSJEmSJEmSBg2D0SRJkqR665xcfs74fUqPnfR3mPYq6Bifa4+cDpMOgraRxefv/YXi/bv9c/k6lN7GZdWtGzmz/JwT7k65WYA5Z8Hhv4CW1urqkYa4bKXBaJsaU4ckSZIkSZIkSRo8QghvCSFMq3DNu4DzCrp/EmNcVGpNjPFx4KK8rg7gJyGEEQnnnAycnde1CTg/RYmfA/JvAXN2COG1CeeMAC7cXNMWP4oxPpniLEmSJEkqr9K7WkqSJEmSJEmSVCWD0SRJkqR665hQfs7xd8CME/r2tXbl+sfsVNl5c14PYwpuQj56Lsx5Y2X7KNmkg6tbN3K78nPaRsKOb02e09IJZ2bgsEtg1JzqapGaQKWX1nX3lJ8jSZIkSZIkSZKGvHcAT4cQLgohvCaEMKrUxBDCgSGEK4AfACFv6Hng0ynOOg9YkddeANwQQti14JzOEMIHgMsK1n8tKXxtixjjU8A3CrovDyH8UwghP/yMEMJuwI2ba9liOekC2CRJkiQ1lGFikiRpuPJ5kCRJkiSpem0DXYAkSZLUdFpaYeZJsPjq0nNaO+CVv4JHLoCX/gIjpsDOH4CJ+1d+XscEOO5WePgrsOJemLAf7PJhGDG1+j+DtjXtaFh2W+Xr2semmzfrFHj64tLjnZMghNLj0jCRzVY232A0SZIkSZIkSZKGjZHAWzc/siGEx4GFwCogA0wC9gGmFVn7MnBCjPGFcofEGJ8LIZwG/B7YElB2GPBQCOFu4ClgHLA/MKVg+W+Bz1TwZ/oksAdw4uZ2O/At4DMhhHuANcDczWflv5m4CTg1xrikgrMkSZIkVSsa+iFJkiRJkiRJUj0ZjCZJkiQ1wr5fKh2MNm7P3K+tHbDHJ+tz3ojJsN9X6rOXitv1I7n/pivuTb9m/N7pw8xmvJrcZxVKXCDVMSH9uVITy1Z4DWH3psbUIUmSJEmSJEmSBrUWYJfNj3JuBM6OMT6XdvMY400hhFOBn7A1/CwAB25+FPMz4F0xxkwF52RCCK8Hfgi8IW9oKnBCiWVLgbfFGG9Oe44kSZIkSZIkSZIkSZI0mLQMdAGSJElSUxq/F7z2yeJj25/Wv7WoPjonwbF/qmzNDm9OP7dtFEzYr/R4+7jKzpaaVKX3Vu3uaUgZkiRJkiRJkiRpcPkG8FNgUcr564ArgWNjjMdWEoq2RYzxamBP4HvAioSptwOnxxjPijGuq+KctTHGNwJnbN6rlJeB7wJ7xhivrfQcSZIkSQIgVnqFliRJkiRJklSZpB9B+eMpSVu0DXQBkiRJUtMaPReOuQn+fDL0rMr1bf862ONfB7Qs1aB9TPq5c98OO7+/sv2P/DVcNav4WFJomjSMZLOVzd9gMJokSZIkSYPGHx6JXPW3SEcrnHFA4JC5YaBLkiRJTSLGeCW5oDNCCOOBPYDtgWlAF7mbyK4kF2D2MHBfjDFTh3OXAu8LIXwIOAyYA0wnF7z2PHBvjPHpWs/ZfNblwOUhhB2B/YGZwCjgBXKBcLfEGDfV4yxJkiRJlfKTnJIkSdvweZAkSZIkqQYGo0mSJEmNNO1IOG0pvHw3dM2CUdsPdEWqVWsXZNYXH5txPOx1PoycDqPmVL5313aw8wfgsW/17Q+tsONbK99PakKVvj3e7cd/JEmSJEkaFP7n5izv+X9bX9l/6w+RX7y7hVP2MxxNkiTVV4xxJXBLP5+5CfhjP531NFCXsDVJkiRJkiRJkiRJkiRpMGoZ6AIkSZKkptfaAVMONRStWez+yeL9nZPg8Eth8iHVhaJtsf/XYJcP5/YDGL8XvPIqmHxw9XtKTSRbYTJad493GpMkSZIkaaBlspF/u7Lva/SeDHzmV9kBqkiSJEmSJEmSVDmvxZIkSZIkSZIk9Y+2gS5AkiRJkoaUuW+DJ74L3Uu29o3dDU64E9pG1b5/Szsc8HXY/wLIdENbV+17Sk0kW+Hnpbt7GlPHYNa9KbJiPUwdA22tYaDLkSRJkiSJW56AZWu37X9wMSxeGZk53tevkiRJkiRJkiRJktRcDFWVJEmSJFXPYDRJkiRJqsSo2XDcLfDI12Hl/TDpINj9k/UJRcsXgqFoUhGVvj3evakhZQxaX78+y+d/G1nVDTPGwfff0sI/7O2HyyVJkiRJA2vR8tKv6Fd3w8zx/ViMJEmSJEmSJNVd0lVNBoJIkiRJkiRJklQpg9EkSZIkqVKjd4QDvznQVUjDUrbC6wS7expTx2D0m79HPnbZ1r+gJavgDd/P8vDnW5g9yXA0SZIkSdLglPEzgZIkSZIkSZIkSZIkSZIkSZLytAx0AZIkSZIkSWnFSoPRNjWmjsHo8ru3/cvp7oHv/MlPmEuSJEmSBlbSK9P1w+i1uyRJkiRJkiQNfl5rJEmSJEmSpMZK+gmUP52StIXBaJIkSZIkacjIVhqM1tOYOgajOxcW/8v5yrX+OFiSJEmSNLCSgs7Xbey/OiRJkiRJkiSpIRLv9ui1O5IkabjyeZAkSZIkqXoGo0mSJEmSpCGj0mC09ZsaU8dg9MgLpcfWbPDCAkmSJEnSwNmQEFxuMJokSZIkSZIkSZIkSZIkSZKkfAajSZIkSZKkISPx5qpFrFjXmDoGo1GdpceG09+DJEmSJGnwWZsQfjacQs0lSZIkSZIkSZIkSZIkSZIklWcwmiRJkiRJGjKyFQajLVtb4YIhbGR76bE1CR9AlyRJkiSp0dYlhJ+t2zR8XrtLkiRJkiRJ0tDmz3MlSZIkSZIkSf3DYDRJkiRJkjRkxIqD0RpTx2DU0VZ6bHV3/9UhSZIkSVKhdQmB3UljkiRJkiRJkjQ0JFzUVOkFT5IkSc3C50GSJEmSpBoYjCZJkiRJkoaMrMFoJbWG0mNrNvRfHZIkSZIkFUoKP1u/qf/qkCRJkiRJkiRJkiRJkiRJkjT4GYwmSZIkSZKGDIPRStvYW3pstcFokiRJkqQBlBSMljQmSZIkSZIkSZIkSZIkSZIkafgxGE2SJEmSJA0ZscJgtFXdsKm3wkVDVFIw2poNw+PvQJIkSZI0OK3bWPp16bpN/ViIJEmSJEmSJKkMrzOSJEn14vMKSZIkFZf0GcFKPz8oqXkZjCZJkiRJkoaMbBU/2Fy+tv51DEbJwWj9V4ckSZIkSYXWJ4SfJY1JkiRJkiRJ0tCQdFGTn+SUJEmSJEmSJKlSBqNJkiRJkqQho5o7Pqzsrn8dg02MMTEYbbXBaJIkSZKkAdSbLT3Wk+m/OiRJkiRJkiRJkiRJkiRJkiQNfgajSZIkSZKkISNbTTDa+vrXMdj0ZpJD49YYjCZJkiRJGkBJr1l7DUaTJEmSJEmSpKGhmrtaSpIkSZIkSZJUBYPRJEmSJEnSkJEUjNZW4qccwyEYbWNv8vhqg9EkSZIkSYNUJjvQFUiSJEmSJElSjRIDwwwTkyRJw5XPgyRJkiRJ1TMYTZIkSZIkDRlJ1xBOGFW8f2V387+pXi4YbZ3BaJIkSZKkAZT0yrzXYDRJkiRJkiRJkiRJkiRJkiRJeQxGkyRJkiRJQ0a2xCepQ4DxI4uPrVzfuHoGi3LBaOXGJUmSJElqpKSg895M/9UhSZIkSZIkSZIkSRrkkt5gliRJkqT/n707j5MkrevE/42q6pmenu6Zhjm7BxFW5VLExWN11/VC3V113RWXdf0puL91d3FFXFAXDxRQVA7RVTxAEGRBhlNADmFGLndgmIFhDmaG6Z6h566qvrvuMytj/6iu6equiMiIqsysyMz3+/Wa11THE5n5zbgy4sl4PsnAEIwGAAAA9Iy877mHkoi9u7LbJuY7V09dtAo+W1h2gwAAAADbp+iqtJGXgg4AAAAAQPcJIgEAAACgw4q6oHRPAWsEowEAAAA9I2+sdBIRey/IbpuY61g5tbHUMhitO3UAAABAlqIblRor3asDAAAAAKAzjOQEANjAeRAAAABbIBgNAAAA6Bl5wWhDQxF7dyWZbYMQjLbYKhitRTsAAAB0UtH97ncf6V4dAAAAAAAAAAAAAED9CUYDAAAAekbeQOqhJOLiXdltk/Odq6cuWgajLXenDgAAAKjq4JGIsQm/FA4AAAAAUH/6cgGAbnDOAQAAgGA0AAAAoIc0c77nTiJiz87stumF/v9yfLFF8JlgNAAAALZTqyvz936x/6/dAQAAAIB+po8TAGAj50gAAGxNs5nGTfen8abPNOOO0TTS1DkmDJKR7S4AAAAAoKy8rsuhoYiLcoPROlZObSytFLcLRgMAAGA7tboX6QXvSuMXn9GdWgAAAAAAustgTQAAAAB6S/rRt0X6sb+JmJuO5F/8SMSzfzWS4eGu1rDSTONn3pzG1Z9f619L41d+MIlX/XhEkiRdrQXYHoLRAAAAgJ7RbGZPTyJiT04w2tQABKPlLZc1gtEAAADYTob9AQAAAAAAAFBKmq7eHA4AwLZIP/CGSP/w+Wf+feCLEUcfiuRFr+tqHVffuD4UbdVrrk3jh56axPc8saulANtkaLsLAAAAACirmTOSeijJD0abHoBgtJUWI8znBaMBAACwjVLJaAAAAAAAPUKHLgAAAMAgS9/75xsn/v1bI52b7modr/hodj/V//6HZlfrALaPYDQAAACgZ+Tddjc0FHHRAAejNVv05y4IRgMAAGAbCUYDAAAAAPpaYSeoDlIAYED5ohgAoOekczMRDxzY2LDSiPjke9v3OiXaDhzObv/Ql9pWBlBzI9tdAAAAAEBZeQFgSUTs2ZlEVrfo1AAEo620uG+g14PRvvRwGq/4+zS++GAaw0nEtzwuiZf/uyQed2my3aUBAABQgtvdAQAAAAAAAABggKTNiEgiEuM+oKc0V/LbZqe6VwdACEYDAAAAekjeQOqhJGLPzuy2pUbEUiON80b698uUvMC4NY1mRGMljZHh3lsGd42n8Z2vasbM4plpB4+kcc2dadz1O0Nxye7ee08AAAAAAAAAANBzUj+DAQB0g3MOgJ7WmIu46XkRD38wYmRXxOOfE/GNL49Ihra7MgCgxzh7AAAAAHpGM+fmuiSJuCgnGC0iYnqhQwXVxEqJ7/8XG52voxP+/FPpWaFoa47PRPzJJ9z4AAAA0AuMlQMAAAAAAAAAgAHw2Z+MuPctEUsnI+Yejrjz9yO+9NLtrgoA6EGC0QAAAICe0WxmTx9KIvYUBKNN9XswWs5yWW9hufN1dML1h/JHz7/vZiPrAQAAeoGrNwAAAACgvxX0gvrlCABgYDkPAhg4iyciRj+0cfp9b3V9DABUJhgNAAAA6Bl5X4O0DEab70g5tdEs8QVRLwajNZtpHDyc3/7l8Yh7jvhyDAAAoO7c1wgAAAAAAAAAAH3ugXdF5sifuQcjlie6Xg7AwHCTJn1KMBoAAAClHJtO44/+oRkvfn8zPnq7jhK2RzNn00uSiL0X5D/uyFRn6qmLlWbreXoxGO2hUxHzLer+u9scjwAAAOrOPTcAAAAAAL1Chy4AsN2cjwD0rGbBABA3EAEAFY1sdwEAAADU3wMn0vjOVzVj9JEf50jjBd+fxB/9R3nbdFfe9yBDScSOkSQu3xNxdHpj+9hkGhFJR2vbTnmBceu1Chiro3uPtZ7nurvT+JUf7HwtAAAAbF6Z2xqXG2nsGOnfa3cAAAAAoJ8Z3A0AsJFzJAAAADbPCHYAAABa+t2PpOtC0Vb9ySfSuO0hX1bSXXkBYMnpcdP792a3j57qTD11sdJsPc9So/N1tNvcUut5DhzufB0AAAB0Xi8GegMAAAAAtOYeOwAAAHhk4A9ARKQFXWZFbeSx0OhPgtEAAABo6bNf2dgxkqYRr/ioDhO6Ky8Ybej09yNX5QWjTWRP7xd5y2W9pZXO19FujRKBb/cej1hqOBYBAADUWZkblcqEYwMAAAAAAADQ5yRhAAAAEILRAAAAKOHA4ezp777Jl450V9733GvBaPv3Zv+CzNhEf2+rKyUCxJYana+j3ZZLhLmtNCMOHet8LQAAAGxemavy+eWOlwEAAAAAwJb09z1YAAAAAADUh2A0AAAAoGc0c+6tS07noe27OLv9+Exn6qmL/g1GK3cz5QMnOlwIAAAAW1LmB72nFzpfBwAAAABARxR1gpbpIAUA6EfOgwAAANgCwWgAAABsyfSCLyzpnrzvx4dOB6NdfEF2+8xiZ+qpi7zAuPWWVjpfR7stl6x5dMJxCAAAoM4EowEAAAAAAAAAAAB0gFBi+pRgNAAAAAqlLTpFxie7VAhEfgBYcjoYbffO7PZ+H1y90mw9z1Kj83W0W6NkMNrYRGfrAAAAYGvK3HIzNd/xMgAAAAAAaMUgSgBg2zkfAQAAQDAaAAAALSy2CFMaF0hEF+Xddzd0Ohhtz/nZ7f0ejJYXGLfeYqP3bhJYLhmMNuo4BAAAUGtlxtFNzvfedSsAAAAAwCr9mwAAAAD0AaH5QI0IRgMAAKDQ/FJx+/ikzi66Jy8A7JFgtJ1JZvvMYocKqomVZut5llqEHNZR2WC08QnHIQAAgF431eeh5gAAAADAoHJfCwAwqJwHAbCOsCVgnaIjgqPFZlhq9CfBaAAAABSaXy5uPzLdnTogIj8YLTmdh7b7/Oz2heWIxkr/dvCVCkYrGTJWJ2WD0UYnOlsHAAAAW1PmilwwGgAAAAAAAABCHQAAtpNzMaA+BKMBAABQaH6puH1qvjt1QET+D8QMnQ5G27Mz/7HTfTzAOi8wbr2lRufraLdGicC3iIgxwWgAAAC1VuYHX/UxAQAAAADUnYGxAAAAAAB0h2A0AAAACi20CFOa6uOwKeonLwDsdC5aYTDazGLby6mNlRIBYksrna+j3ZZL1nxkOmK54cZLAACAuioVjKaPCQAAAADoWUWdoO5pAQAGlfMgAICeU+ZmP4AuEYwGAABAofml4vap+e7UARH5X48Pne7h2H1+/mNPzbW9nNrIC4xbb6lFyGEdlQ1GS9PVcL8/ECEAACAASURBVDQAAADqqcytUvqYAAAAAAAAAAAAAKoSaEd/EowGAABAofnl4vbphe7UARERzWb29KFk9f97duY/9g+u6d8OvpWc5bJeLwajNUq8rzWjpzpXBwAAAFtT5kckp+b797odAAAAAKB36KsFALZZmS+YAQDoDOdiQI0IRgMAAKDQ/FJxu0GrdFMzZ3M7nYsWF54fkSTZ83zuUP9uq3nLZb3FHgxGW14pP+/YZOfqAAAAYGvKXJFPCd8HAAAAAAAAAACA7SMYDagRwWgAAAAUml8ubjdolW7K61odOt3DkSRJbv/rjuGOlFQLK83W8yxVCBmriyrBaMdndLwDAAD0sqn57a4AAAAAAGCTigaMGkwKAAwq50EAAABsgWA0AAAACs0vFX8hKRiNbmrmBIAl6/5+xpOy55no4wHWpYLRGp2vo92qBaN1rg4AAAC2psz97vqYAAAAAAAAAACgXwnMhJ7QpXBbvzPQZhYafUowGgAAAIUWWoQpTfVx2BT1k9dFN7QuGe0F35/d3TEx1/566qJZou+yF4PRGoLRAAAA+kKZe24m9TEBAAAAANSbAZYAQFc45wDoWUmS3+aaEgCoSDAaAAAAhRaXi9unFrpTB0TkB4ANrevh2Lsre57FRsTCcn9+kbLSbD3PUoWQsbpYrlDzCcFoAAAAtVXmalwfEwAAAADQu/rzniQAAAAABo1+LqA+BKMBAABQKC+Ias3UfETqVzvokmZOANj635TJC0aLiDg129ZyaqPVfhoRsdzofB3t1qgUjOY4BAAAUFdluo5mFyNWylzgAgAAAAD0FP2eAMCgch4EwHo+FwA6xzGW/iQYDQAAgEKtxqM2mhELy92pBfI2x6F1yWh7L8h//MR8W8upjZWcwLj1FnswGG25QjDa8ZnO1QEAAMDWlL3lZnqho2UAAAAAAAAAUHtCHQAAtk2ZX0EF6BLBaAAAABRqFYwWETHZp2FT1E/e9pisD0bblf/4ibn21lMXZfbTpUbvdUw3SgS+rRGMBgAA0Pum9DEBAAAAAGyz3rvHCAAAgF7gehMAqGZkuwsAAACg3lZKBBNNLURceXHna+l3b7+xGe/+QhpDScR/+rYkfuJb5ZmfK+9HJ4bWBaPtOi9iZCg7VKtfg9HK7KdLK52vo92WV8p/8SUYDQAAoL7K/oik8H0AAAAAoDcVdYIa+A0ADCrnQQAAPafszX4AXSAYDQAAgELNEn1ZUwatbtmrPtaMX3/fmYX9d7elMTbRjBf+gHC09fK2x/XBaEmSxN5d2UFZh6fSiEg2NvS4MvlhC8udr6PdliuEuU3ORyw30tgx0n/rFwAAoNeVvVdqaqGzdQAAAAAAAAAAANtA2BJABznG0p+MrgYAAKBQqWA0g1a3ZGE5jVd/bOOCfsVH01hq6JRaL297TM7JwnrcJdnzHTzS3nrqotlsPc9kDwYYVglGi4g4OdeZOgAAANiasr0bwvcBAAAAAOrMvWwAQBcIzgEA2D5dOhcrehmng8AawWgAAAAUKhO4ZNDq1tzyYMSpjECn4zMRd4x2v546y+vYHDonGO1JVyaZ8x0c78+e0ZUSb2uiB0PDGhWD0Y7PdKYO6u3+42nc9lAaE3P9uX8DAEA/KHuj0tSC83oAAAAAoAcZrQkAAAAtuHaG3mBfBepjZLsLAAAAoN6aJfqyVgetZgdR0drBI/kL+e4jaTz9qy3bNXnbY3LOInrCldnzHTjc3nrqokyA4UQPBhguVw1Gm+5MHdRTs5nGz1+dxl9dl0Yzjdi7K+KNzx6KH/9mx0wAAKibsrdKTS10tAwAAAAAgO4TmgYADCrnQQCcxecCQMc496ZPDW13AQAAANRbqWC0HgxcqpOvHM1vu7ugbRDl9dENnRuMdkX2fA+dikj7sKOvzH46Mdd7771yMNpMZ+qgnv76+jTe8H/TR7b/ibmIZ/1lM45P99Z2DgAAg6Ds5eikPiYAAAAAAAAAAADYHj029gzob4LRAAAAKFQmcMmg1a05VBB+dvBw9+roBXnb47nBaF/1qCRzvrml/txem83W8yyvRMwvdb6WdqoejKbzfZD88cez1/flv9zsuRBAAABglfB9AAAAAIBt5p4LAGDbOR8B6EuuNwGAigSjAQAAUKhMMNpsj4Ut1c3sUv5CPjCu43+9vO0xOScHbf/e/OcYnWhfPXWxUnIzmeixAeaNEoFv652a60wd1M8DJ9K4cyy//fP3da8WAACgtbL3NU4tdLYOAAAAAIDOcI8XAAAAAH1AiCFQI4LRAAAAKNQsEUw0s9j5OvpZYyW/7eCRiGaZdLoBkde3OnROMNq+i/OfY/RU++qpi5WSAWITPRYctlywb2QRjDY47hgtbn//rY6bAABQJ2XP0Kd6LNAbAAAAAKA19zAAAIPKeRAA6/lcAOgcx1j6k2A0AAAACq2U6BOZFYy2JUXhT3NLEQ/1YZDXZuVlxCXnBKOdN5LE5Xuy5x2d6L+OvrLheZM9NsBcMBp55paK2z/+5f7bzwEAoJeV/RHJ6QXn8gAAAAAAAACDzffGAADbpuzNflt9mU22AYNFMBoAAACFms3W8whG25pGi2V8//Hu1NEL8vpWh5KN067amz3voWPtq6cuygQYRkRMLXS2jnbLC0YbzunRmpjV9T0ollps9PPLXSoEAAAopezVWq8FegMAAAAADBb35gAAALBZrikBgGoEowEAAFCoWaLfeXZR5/RWNHLCn9aMTli+a/K2x6xgtK+7ImNiRBwY77/lWSbAMCJiscfCovL2jct2Z0+fMIB+YCw1ittbHVcBAIDuKvsjkoLRAAAAAICeVNgJ2n/3KgEAlOM8CACg9ziHA+pjZLsLAAAAoN7KBaN1vo5+ttwyGK07dfSCvO0xychAe9KV2fMeONy+eupipWSf80IjjYjswLg6yts3Lr8o4vDUxumn5jpbD/Wx2CIYbXQiIk3TSLIODgAAm/CVo2lcc2ca541E/PBTk9i/13kGdMKx6e2uAAAAAAAAAAAAaLuyv6wIbC/7ao+y3uhPgtEAAAAoVCYYbUYw2pY0msXtY4LRHpHXtzqUkUnw5H3Z895zNKKxksbIcP8EGTRbbENrFpc7W0e75Qaj7cmefmq2c7VQL0stgtHmllaD8h59YXfqAQD624duS+Mn3tCMhdPn04/alcY1LxiKb3lc/1xTQKeVvVdqfFLIMQAAAADA9jKIEgDYZsI4APqU4zsAUM3QdhcAAABAvZUJRptd6nwd/UwwWnl522PWcOkn78seRL28EnHoWPtqqoOVkt8PLbYIk6qbvH3jsj3Z6/bUXAeLoVaWckLz1rv7SOfroHNuvDeNn/6rZvzUXzXjbZ9rRupGJwC2SbOZxvOuPhOKFrF63vltv18ynRiIiPK3NS42XNsBAAAAAL3Id9oAAAAA9AFjN4AaEYwGAABAoWaJsd4zC52vo58ttwj4GZvQobgmb0kMDW0MynrCFREZkyMi4q7x9tVUByslMxnWhzn0grx949Ld2dMn5leDK+h/iyW25YOHbQu96po70/iOVzbj6s+n8Y7Pp/Ezf53Gr73P+gRge9xwX8TDp7LbXvFR4WhQVpV7pQTEAwAAAAB9xWBSAGBQOQ8C4Cw+FwA6xrk3fUowGgAAAIXKZAzNLnW+jn7WaBGMdmK2O3X0grygvqwAtJ07knj8pdnz39VngUlls8AWG52to93ygtEu35M9PU0jpgQ1DoSlFsfNiIgDhztfB+2Xpmk8/x0bD/Z/+sk0jk/317EbgN5w4735nz8vfn8aK4J5oZQqe4pgNAAAAAAAAIBB5l4MAIBtI2ALqBHBaAAAABRayQmiWm9msfN19LNGi2V8fKY7dfSCvMyBJCMYLSLiyfuypz94sj311EWZ/TQiYmG5s3W0U5qm+cFoF+U/7tRcZ+qhXpZKhPyNnup8HbTfzQ9GfOXoxukLyxGfPdT9egBgrkUQ+O2j3akDel2Ve6XGJt1YtebeY2kcPCyEEQAAAACoCQNjAQAA2CzXlMA6RYcEhwtgjWA0AAAACpUZd7nUiGis6HHarLzwpzUnZ8MA2NPylsJQTjDaFRdlN5zss7C5spvHYokwqbooek+X7c5Z4RExIRhtICy1OG5GREwvOG72or+7NX+93T5qnQLQfa2CwI9Pd6cO6HWVgtEmOldHr5heSOP7/2glvvbFzXjyS5rxlJc048tjzocBAAAAoL703wEAbOQcCQCg9ziHA+pDMBoAAACFygYuzbYYLE6+RouAn2YacWr8ZKTXXB3pe/8s0ofu6U5hNdRsZk/Pi8m6ZHf29BOz/dVJu5KzXM7VS8FoRYGBees1IuKUYLSBsLjcep5pn0s96YO35R+f7z3WxUIA4LRjLUKVe+kcG3rF+OR2V7D9fuHqND554My/7zka8Z/e0IzUT2ECAAAAQA/SrwcAAACujwE6yTGW/jSy3QUAAABQb2WD0WYWIy7e1dla+lWjRKjV8Rf8RDz68HWr/xh+UcRv/Z9InvGszhbWQ4Zyot8vuTB7+okW4Qa9pux+ulAiTKouioLRLtgRsWdnxPTCxrZTs52rifpYahEoGRExNd/5Omivqfk0vvRwfvsX7vdFDQDdd3ii+PNnNXQ5L6oZWFPlTG68xX7X79I0jY/cvnEZ3DEWccO9Ed/xNdtQFAAAAAAwQAa7jxYAqAPnIwAA28aPdwI1kjNsGAAAAFaVDVyaXepsHf2sKABqzfHJdQt4ZSXSP/j5SJcWO1dUTeVtj3kxBHnBaAePtKWc2lgpEa4XEbHY6Gwd7VS0X+wYjnhUThDjqTkd8INgucS2nBWcR709dKq4/c6xiIOH67GPf+H+NH7+7c141utX4o3XNSP15R9A35prca3bb6HL0ClVTpfGJjtXRy9YXok4mRP6/dYbnHcCAAAAQC35zhgAAABacO0MPUE/F1AjgtEAAAAo1CwZuDQjgGbTGiWW8bHhy8+eMDsVceeNnSmoxvK2xyQnGe2S3dkNC8sRk30UoFU2wHCph4LRGgXBaCOFwWidqYd6WSoRKDk9eNmRPW+0RTBaRMSTX1LyxKSD/vFgGt/9B814/T+m8bc3Rzz3bWn8/NX985kCwNlanXecyAkvAs5W5WzpgRMdK6MnFN1Xduio804AAAAA6D369QCAQeU8CGDw5AzuiRC2BNBRjrH0J8FoAAAAFCrb7zy71Nk6+llRANSasR37Nk68/XPtL6bm8jbHoZwejkdfmP9cr/xY/3T4lQ0wXFjubB3ttFywX+wYzl+3gikGw+Jy6/13WmBnzxmbLHdcvvmB7T1+v/qa5obj6Rv+bxrjE/3zuQLAGa3ChZ1/QjlV7mscn4yYmh/cc6ui8PN7jnavDgAAAAAAAAAAAAaMEEOgRgSjAQAAUKhoMOZ6s4udraOfFQVArRkd2b9x4s4L2l9MzeVtj0M5Pyqz7+L85/q7W/uno3al5FtZbPTOe24VjHZJXjDaTGfqGQRpmsaB8TQOT6aR1vyLjKUSx83phYhm2Q8xamH0VLn5Pn339q7Xj96xcVqaRrzhOtsbQD9qdd4xIRgNSql6iXHwSGfq6AVFlzGHJ7tXBwAAAADARr4XBwC6oOb3sAKwWY7vwBl1H7cE1INgNAAAAAqVzZSZEYy2Kc1mWmoZj43s2zhxdqr9BdXcSjN7el4w2tdclv9cBw5HjJ7qj07UZs5yOdficmfraKdWwWiP3p290k/N9sc67ba7j6Txz1/ZjKe8tBn7/1czfvTPmrVelkuNcvPNLnW2DtprdKLcfAcOd7aOzfry2HZXAEAntDrvmF6o7zkT1EnVPeXg4cHdt4ru91oseS0EAAAAAHTb4PZpAgAAANBHahBYtv0VAHUhGA0AAIBCeUFU55pdrN7lNLOQxgduSeNPP9mM2x8ezC6rsst3dGT/hmnpxLE2V1N/zZwUubxgtCRJ4ur/mtMYEQ+cbEdV269sgOFCDw2gbhTsGyNDEZdcmN12YrYz9fSzZjONn31LM26878y0j9we8cvvqe9xuWww2vRCZ+ugvQ4dLbfN3V3TkIylRj3rAmBrigJ7IyKmhYRDRxyb3u4Ktk/Za3wAAAAAoEfUYDApAMC2cB4EwHo+FwA6xzGWPiUYDQAAgEJlB2POVBwMfmQqjX/56mY883XN+J/vTONpv9OMP/lEyZSwPtJqkP2a8R37Nk6cONHeYnpA3vaYF4wWEfET35rfeLxPBlqX3U8XlztbRzsV7Rs7hiMu2Z3ddmKmM/X0s8/dG/HZQxunv/eLaW2DnhZLBqNNzXe2Dtrr4JFy891dcr5OyAvojCi/XQLQW1oFss4IYoVSqt5zM7vUmTp6gfuTAAAAAIBtpZMSANh2zkcAALaPczGgPgSjAQAAUKgoAGS92YrBaK/6WBq3PXz2tF9+dxqHJwer86xRMgtuYmjvxomTx9tbTA/I2xyHC3o4kiSJxzwqu+34TH9sb6WD0XootKdlMNqF2W0nZjtTTz977SeyN6CZxYjjNQ2aWyoZKnl4qrN10D6zi2k8eLLcvEemI5a3KbSv6NhUdrsEoLe0Or5PV7wWhkFV9eytaj9TPyl7jQ8AAAAAAAAAAL3DTTEAQDWC0QAAAChUdjDmTMUBq3/5jxufuJlGfODWweroLgpYWW96aPfGiaeOtbeYHpC3PQ4lxY+7NGPxRdQ39KmqsvvpwnJn62inlsFou7NX+vGZiNQv11Zy7/H85XWipvvIUsmQv7EJ20KvuOdo+XnTdPtC74rCcRZ76BgLQHmtzjumF7pTB/S6vMu0kZw7Fqr2M/UTwWgAAAAA0It07AEAbOQcCWDwOPZDzzMmC6gRwWgAAAAUKjsYc3ap2vPO54SHvOWzg9V51miWm296+KJoxjlBUCfG219QzeUGo7Xo4bgsJxjt7gpBPHXWLLkd5e13ddQoCB8aGYq4fE922/JKxMnZztTUr3YM57fVNTxwsWQw2uhEZ+ugfQ6MV/v83651WxSOUxSaBkDvanV8F4wG5eTdK7V7Z/b02QEORmt1X1ljZbD6zgAAAACg9+nTAwAAANfHAJ3kGEt/EowGAABAobLBaJPz5Z9zdjH/SVsFXPWbovCnc80OXXj2hMkTkS4N1kjhvACwoSR7+ppL92TP8ObPpJH2wS9ZlN1P5yoGGG6n5aJgtOGIfRfnt49Ptr+efrZSEKx3oqYhc0XhVOuNCUbrGQePVJt/u9Zt0bGp7HYJQG8pOvZHrJ5jr5Q9IYcBlreX7D4/e3ovXb+2W6tDyiCHxgEAAAAA2813IgBAF/TBvd0Ag6tgcI/jO/QG+ypQIwM23BwAAICqyo7vPjlTvtPryFR+23CLgKt+02qQ/XpTQxdtnHh8rH3F9IC87bFVMNolu/Pbrrtn8/XURdn9tJcGT+ftGyNDEUmSxBUZu8MawWjVzBcEDhyvcGzvpqWSx07BaL3j7orBaKMT27NtFoWfLQpGA+g7aZqWCr7spfNsqJs9O7OnzyzU81qkG1q980EOjQMAAACA2jJgFAAAAIB+0KVurqKX0dUGrBGMBgAAQKFms9x8x6bLP2dhMNqAXak2Si7fiIjpoYx0r+Pj7SumB2w2GO3xl+S3veyDFVZCTZUNRuulwdN5+8bI8Or/zxtJ4tKcwLvxST3gVSwUhH0cn+leHVWUCSiJiDg2bVvoFScqhvCdnO1QIS0UhfIJRgPoP42SYazTC52tA/pB3o1Ku8/Pnj7bQ9ev7daqL26Qlw0AAAAA9Cb3LgAAA0qiBQBn8bkA0DmOsfSnARtuDgAAQFVlA5eqhOccLQhRG7RQkbID7SMipof2bJx49OH2FdMDNhuM9mP/NH+GT98d8dIeD0cru582mhHLjd7o6FzO2Td2DJ/5e9/F2fOMT7a/nn42XzCo/kRNg9HKflac2KbwLKqr+vm/XQE0ecemiPKBfQD0jqJAzPUEo0FreVeiucFoix0rpfZaXeMP8rIBAAAAALqhN+4tAgAAAKAT9A0B9SEYDQAAgEIrJfOijlUIzzkyld9BNmghNkUBK+eaygpGGz3UvmJ6QG4wWosejsddmsSPPi2//eUfTuOWB3u347ZZIddtriAEq07yjj0j69b1lRdlz1MlqJGIheX8troGo5UNoBq0z5ReVrQdZtmuAJqibW90ImJxuXc/SwDYqOw5R6+cY8N2yvsh8LxgtJkBDv9qdUY565gDAAAAAAAA9DX34QH0J8d3AKAawWgAAAAUyguiOtepuYjGSrmZj0zlt91/PGJibnA6uxsVAq1mMoLR0ofuaWM19ZcXADaUtH7sy360uBvk/3yud7e7svtpRO+ENuS9p2Tdur50T/aKr2uYV10tFAR+nJit336RpmkslQyVPDGzOj/1t1gyeGbNtgWjtdj2nvm6pm0OoI+UDbKerxjwCYMoNxhtZ/Z13ewAB6O1Cj8f5GUDAAAAAPXle2IAAAAA+oDxEECNCEYDAACgUNnApTRdDUcr4+h0flujGfHRO3q/A+3mB9L4vtesxEXPX4nH/upKvOBdzZhf2vi+qgSjTQ1vDEaLQQtGy9k0ygSjPeHy4vbXfbp3t7uVCttR7wSjZa+P9ev6kt3Zjz0+07vrstvSNI35gm3ieA1D5laa5b9nWWz0zjY/6PKC0XYMZ0+fXtie/bxVQM5H74j4wK3dqQWAzisbxup8A1rLO3u78Pzs6bMDvF+1OtMtuoYDAAAAAGrIYFIAYGA5DwJgHdfHAJ3jGEufEowGAABAobLBaBERJ2fLzXd0qrj9jz+eRtrDnTEHD6fxLb/XjE/fHTGzGPHwqYjXfiKN//62je+pVcDKeieGH71x4vj9m66zF20lGG3X+Ul89SX57csrEbOLvbndVdlPeyW0Ie8QsH5dX5oTjHaihmFeddVYKd5+6hiMlheglcf20BsWl7OnX5aRCRoRMb3QuVqKLJXY/l72wQpplQDUWpnjfoSQIigj7xpvz87s6ZPzEStVLnb7SKu3PZcRvA8AAAAAAADQP3wnCgCwbXp4TCfQfwSjAQAAUKjKGNTZxXLzveeLxU/6hfsjvuFlzbjnSG91pDWbabzovc148kuyA1HefmMah46e/Z4aFYLRxkeu3Dhx4likjYopQT1sK8FoERH/7puKZ/ziAxULqol+DEYrs67zgtHqGOZVV/M5YVRr6hgqVjagZM3hFmGc1ENe4F3efl7nYLTbR6OnA14BOKPseYeQIti8fRdnT19pRhyb7m4tddFskbPbK9f1AAAAADBYBuS7At+FAwAAsGmuKQGAagSjAQAAUKjVYMz1ZlsMzEzTNK6+sdwT3jUe8cTfasZd473T8f3mz6bxmmuL6/3ArecEo1VYvuMj+zZOTNOIU0fKP0mPW8lZXkMlezhe9K+SeHLGYlzzI39aYYXUyEAFo61b15dcmD2PYLTyFloEo00tRCw16nUcXqoQKBkR8amD9aqfs93+cBpv+kwzRiey23OD0UqGsbbbcsntr46hggBUV/a8o1XYLJB/W+Nj9uY/ZiznHLHftbqC6ZXregAAAAAAAGDQuX8TgPV8LkBP6FIwftHLyObfDAuN/iQYDQAAgEJVApdmC0JK5pfS+I9/2YyfflO1Tpavf2kz/uLTvRFW9dbPtX5vnzpw9jxlA1YiIsaygtEiIo6Pl3+SHpcblpWUe/z+vUnc8Ov53SEzixGLy73XEdiXwWh5IXjr1vWlu7NX/Km5+oV51VWrYLSIiJOzna+jiqVGtfk/c49toa5e/uFmPO13mvHf3pq/ji7L2c+n5jtVVbGyATljk52tA4DuKHu91ivn2LCd8m5UumxPEiM5l+l54bn9rtU1vmMOAAAAAPSaXrtvodfqBQAAAKB99A0B9SEYDQAAgEJVApee8+ZmfOKu7Ae8+6Y0/vbmzdXwC1enGwLF6iZN07h9tPV8dx0++9+NSsFo+7MbTghGKxuMFhGxZ2cSP/zU/PavHKtWU6ekaRp/c0Mznv2mZvyv9zbjy2P5+0BeiFiWXhlAXWZd77s4//GHarIe626+RDDa8ZnO11HFYsVgtGPTnamDrbnlwTR++0OtP9sv2Z09fXqhzQWVVDZ0cfRUhwsBoCvKBrKWOacCsg0P5V/bjU3Uuy+oU1r92qVjDgAAAAAAANDXWn1pCkBvcnwHACoSjAYAAEChlQqBS8dnIn7wj5vx5s9sfNB7v7i1Duxn/FEzvnB/fTvBj0xFTM63nu/+ExELy2feR6PC8h0b2ZfdcOJw9vQ+lBcAViUYLSLil34gv0vkrprkzD3/HWk8581pvP3GNP7w2jS+/RXNuOHe7H2gSoDh7FJ996P1ygSjfc1l+ev+wODsFluy0IPBaGUDStZML3amDrbmr69PSx27LtuTPX1+OWJqvvvHs+WSgaajAxriAdBvyp539Er4MGyXtMVNjVc9Knv6+GQHiukBrc6THXMAAAAAoIYM7gYAAACgH+jnAmpEMBoAAACFqgQuRaz2fb3kg2k0Vs5+4Edu33otL3xXhRSxNpiaT+M3P9CMr/mNlfi231vJDHxbUzaEKU0j7j5y5t9lA1YiImaG98T00O6Nz3m8JkleXVAmLKuM731S/gPeVLCeu+Whk2n8xafPfrMzixH//JXNzAHlVfbT6YWtVtcdee8pWbfqzt+RxD+5LHu+A4d1xJcxXyIY7UTdgtEqHDcjemebHzR/dV25ffQJV+S33fZwm4qpoGxAztiAhngA9Juy59nzQoqgUNF9UklEXLaxqyMiIiZKBND3I8FoAAAAANBnDCYFAAaV8yAAzuJzAaBjnHvTpwSjAQAAUKhqMFpExNhExF0Vs7re+d9bJ1tdf2g1MKpbnv+ONH7/79O473jETQ9E/Ne3pvHnn8oOzbrvePm6Hjp55u9zA+RaGRvZt3HiCcFow5vo4fj335Q9/Zo7I+45sr2dgdd+Of/1//AfBjsY7dwQvCfmhCbde6y99fSrxRLBlfGueQAAIABJREFUaMdn6tU5Xqbm9aYGNEyhzmYX01gouR6fcEUSe3dlt938YPe3zbLBfPc5BgH0hbLn2UKKoFjRrpQkEXt3ZfcJTc51pp66a3V/kmMOAAAAAAAA0N/qdd8qAMBAEbAF1IhgNAAAAAptJhgtIuKuw2ceOL9U/CRXXhTxY9+UxA8+pfXzfvWvNePoVOc72G57KI233bDxdf7i09mvPTpR/rkn5888RyM7Zy3X6Mj+jROPC0Y7NyyrjCfty3/QE3+rGc3Nbvxt8PEv57f9xvvSSM/pZK5S6lSvBKPl7BvnruvHXpK9HscndMSXUWbbOTHb+TqqKBtMtWZmMTbsM2yvsQqfmRfsiHj6Y7PbbnmwPfVUsVxy+zu4zQGbALRH2VOI+YrBrcAZSRJx0QXZbRNzg3lO1eo6bV4wGgAAAACwbQaz3xYAAIB2cE0JAFQjGA0AAIBCeeFErdy1Lqvr5R8p7rz+058cih0jSfzJfxqKy/e0fu6vf+mZ0Kob703j6hub8fn72ttB/r8/nv18d41HzC1ubKsS8jI5f+bvsgEra8ZH9m2ceOJwtSfpYbnBaJvo4XjylcXtb7hu+7502b0zv63RjJheF26WpmmlH+OY7pFgtLy3dG4w2lV7s+erElY4yMoEox2f6XwdVSw1qs3fTCPmBAfUSpXPzPNHIv7pY7MDEG9+oPvH6bLb38HDAvmA7piYW70e+sAtaZyYcdxpt7JLVEgRFCs6LUoiYu+u7LaJ+ezp/a7VaWSrHyAAAAAAALaDfjsAAAAA+kCXxkEUvYqeNmDNyHYXAAAAQL2VCc3JcveRM39/+Lb8J7npxUPx9K9eDTx54pVJ3PN7Q/Etv9uMe47mP/eJ2Yin/24zvn5/Eu/4/Npzp/Gz35nEG56dRJJkB6hUce2d+TWfmI3Ydf7Z08Ymyi+o9QN7GxWD58aygtHG7o200YhkpP8v8/OC+s4NyyrjyfuSKOoqffsNafzcd1d/3naYaRFednI24qILVv+u2t883SMDy8uG4OUFo41NtreeflVm+znR48FoEauBgBee33o+umNssvyB6/wdEU9/bHbbXYcjlhppnDey9c/9spZKBpqemos4Nh1x+UWdrQcYbDfdn8Yz/qh5Ovg2jf17Iz74vDPXV2xd2evhOSFFUKgwGC2J2HtBdtvEXGfqqbtWxx7BzwAAAADQa3yPAAAMKudBAKzjR6cBOsgxlv401HoWAAAABtlmg9EeOnnmgQsFITbnDtrfszOJO142FM/65uLB/F96ONaFoq1602fSGH5uM37qr5rxl//YjJXNFh8RiwU1H88ICRqbKP/ck+uCqZZLBqysGd+REYw2Mxlx+/XVnmgL0mYz0k/9bTRf+dxovv43Iz1xuGuvnRuWtYnsh6fsizivIEvus4ci0m364qVVaNCpdYPDq27m0wu90dFZNgRv/97slX9sOmJxuTfe63Yqs/1MztdrORYdn/NMtQgbpLtGK3xmnj8S8dSrsvfzlWbE4S6HIK5UCDQ9eKT1PABb8ew3rYWirRqbiPif76yYvEyhspcD0841oFCrXWnvruzpEz0S7N1ugtEAAAAAgG1loDoAsO2cjwD0rqLBPY7v0Bvsq0B9CEYDAACg0GazxdaHnkzmDGT9hv3Z03eMJPGu5w7FXz57E2lXsRqY9j/ensazXt/cdLBVUfBJVjDagyfLP/f65dGoGIw2dt5jMqen13+k2hNtQfrq/xHpS/6/iI+8JeLtfxDpzzw90gcOdOW12xmMtuv8JH7+e4of+MHbqj9vO7TanrYUjLZYvZ7tUHZdX7U3/zkOT7Wvnn5VZvuZqlkYwdJKdtEjBT2dwkrqpUqY6Pkjxfv5eJeD0aoccw8c9oUg0DljE2lmAONnD0UcOur40y5lj/sTc63ngUFW1DWTJBF7L8i+Nh/UfatVV5ZgNAAAAACoI9/PAAAAANAHhOYDNSIYDQAAgEJ5A8Ff8cwk/sPT8x83NhGPhJLlBaP9/jOLL0v/278cim99XIkic3zg1ojh5zbj6168Ei96bzMWlst1zDVW0pgqCNE5MXP285yaTePodPm61ocMNQoC2LJ8cs8zshs+86FNh8BVkX78XauBaOtNnoj0Hf+7468d0d5gtIiIVz4ziZ/9zvwH/9hfNOM11zajudmEwE2YW0xbB6PNnvm7KMQvS91CrvKUXdf7CwKTRiuELw2qUsFoNQsVy9vm9+7Kf0yvbPeDYrzCvrlzx+q63bkju32s28FoFY65Bw93rg6AovOcG+5zQ0K7lL3EmnCuAYWKdqUk8s/lpxaiq9fjddHqLQtGAwAAAAAAAHrD4H3fC0ARnwsAneMYS38SjAYAAEChvACaS3dHvPvnhuOzv5p9abnYiDgxE7GwnMZSI/s59l7Q+vWvfcHWL10PHYt4zbVp/ItXNuPOsTS+9HAaXx5Lo7GS3eFzcjZz8iOOz5z974NHqtUzOXfmdZdXqj32ZLonjg1furHh4UMRDx6s9mQlpdOnIr371khv+0ykv/2c7Jk+97GOvPa5csOyNrmZnDeSxBufMxSX7cmf50XvTePlH+le5+A9R1sHMJxatw1VHSM+XbOQqzxlg9EuviBi13nZ844JRmupF4PR8mo+byRi9/nZbZ+/Xwd/nYxOlF8fO4YjkiSJ/Rdnt49VeK52qPJqD7UIuQTYigtyAiMjIu6peH1CvrLn2hNzna0D+lmS5AejpWnrPpp+1KpPYH65O3UAAAAAAO3ingUAAAAAekTZXxUG6ALBaAAAABRqFU702EfnP3Z0ImJyPr/94hLBaBfvSmL8Ne25fL3loYinvqwZ3/Q7zfiGlzXj0hc2422f25j8dnS6+HmOnROM9qWHq3X4TaxbJo2KwWgREa999POyG268tvqTFUhnp6L50p+O9IeujPRn/1mkv/CM/JlPHo50uvMpVM2coL5zw7Kq+p4nFD/Bb38oja8c7U7H7oHDrV/n1LrgharBaHULucqT976S5Nx/J7F/b/a8VcKXBlXePrXeVMFxfDvk1TycRDztMdltH73dtlAnZUMLLzx/dR+PiNiXE4w2PtmmokqqcsydXrDdAZ1TdDz6ytHu1dHvyt7bcWouInUjCOQq2j2SiLjyovz2sS6f79VBq3POuaXu1AEAAAAAsJHvQwCALnAPBkB/cnwHACoSjAYAAEChVkFUV1yUH0rVKhht765yNVxxURK3/Fb7L2GnFiJ+5q/T+C9vacavva8ZP/1XzXjFR5vxjb9dnBT0wImz//33FQN3jq0LXmvkvNSjVk7mPv59l/5k5vT03jsr1ZEnTdNIb70u0n99WcQn31P+gQ/e3ZbXL9IqqG+zXvnjrZ/gm3+3RIJUG5y7fWU5OXvm7zLBVuv1SmhDlRC8q3KC0cqGLw2yMiFPdQvTyz0ODEX826dl78u3j/bGdt8pU/NpvOemND54axonZ7d3OaRpWjrc4sLzzvy9f2/2uu32fl7lmDtds30H6C9Fn+GHpwb3M6/dygZirjQjZhc7Wwv0ssJgtKS4b2kQr+sEowEAAABADxrgexIAAADgDNfH0PP0cwE1IhgNAACAQnmDMYdPX1GODCdx5cXZ8zx8Ki0Mebr4gvJ1PO2rkrjrdzpzGfuW69N49cfSuPrzabz4/a077w4ePjNPmqbx6YPZ8331JdnTRyfOBPQsr2TP800Lt+W/fjw2Dg9fsbHhgZxCKkiXlyL9tWdG+vzvr/7gBw5s+fVb6VQw2uMvTeI3fqj4SaYXIg6Md75zd7TEoO9Tc2f+LhvWsGZhuTdCG6qs67oEJvWiMpvPwnLEUqM+X2ysFITmffs/yd4WTs1FHJ/pYFE1dsuDaTz+15vxE29oxr//i9Xwz5sf2L71eXJ2dZsqY/f5Z/7elxOAOD7Z3fdS5Zhbt1BBoL/kfR5GnB2iy9ZU+ZSZKAgFh0HXal8aGU7iiouy20Yn6nMt0i2t7iubWxrs4GcAAAAA6Dn68+gE2xUAvcDnFQBn8bkAnFF0qug0chMsNPqUYDQAAAAKlQknekxOWMnoRMSL3589Yj9Jzg48KeOJVyZxzQuG4pILqz2u3Q4eOTMAdXYxP/jkZ78zO6Bnbili6vSg+UZOoMGOtBF//+C/za1hdMf+jRMfOFB5YOyN96bxvKub8aI3jMdtr35NpN+3J+L6v6/0HGvSB7cezNZKUSDSVv3WDyfxU/+s+Ime8tJmfOVotWX8mXvS+J/vbMYvvrMZ193T+rFjJQZ9T2whGC0i4lgPBETlva2hjN6s/TnHoLffmBos3kKzIFRlvakaBX0UfS496cr8xx043Jl66u5n3tw8K0xxbCLiF99ZcsV3wN1Hys974brzhP05Iazjk1urp6oqx9xpwWhABxUdj9Yf99masudKEWefowNnK7osS05fhudd1w1i4HWZc86yYcMAAAAAANW51wYA2G7ORwAAto1xWECNCEYDAACgUJlgtKselT3P6ETEoWPZbRftjBjaRJrVDzwliftfORSf/pWh+MDPD8UdLxuKpdcNxe0vW/33Hz6rDQlZLUzMRRybXv37eEHA1Lc/Pr+W0dMDexsr2e0jaSO+f/aTuY8/NnzpxonTpyLuvyu/oHO88bpmfMcrm/G6T6fxmpsuj2+/+3/Eh3f/m9KP3+CBA5t/bEm522MbejjO35HEW/9LEh95fvGTffPvNuOWB8t18r79xmZ8z2ua8aefTOPPPpnG976mGW/9XHG6wmiJQd+nZs+8/maC0Y5OVX9Mt+WFUGQdNq7KGUAfEfGiv9UhX6Ts9pMXALkd8moeHoq4bE/E3l3Z7YeODd62MD6Rxh1jG6dffyjivuPbszwOHin/uuv39305wWjdDsoQjAbURVFg16nZ7tXR76p8Wp603CFX0b60dsqXd1031uUg3Dooc1/ZvGA0AAAAAKiZwbsnAQAAACoRtgQAVCQYDQAAgEJlgqj2780OABs7lUaSkw02Ob/5mi48P4nvekISP/pNSTxlfxIjw0l8/f7Vf7/wB4big78wFE+8YvPPX8bBI6v/LwpGe+pj8tvWglyW84LRohFDkcbljSOZ7cd3XJb9wM98OP9F1xk9lcZz33b2yl0c2hkvveylm79Nr0Io22blB/W1JxAvSZL4N09N4geenD/P9MJqONqx6eIl1VhJ4zfel55VczONePH702isZD82TdO44d7WdZ6aO/s5qzpWsN3WRZlQxjX7C4LR/vDaNC594Uo86/UrcefY2U96dCqN513djK9/6Up856tW4mN3DN4Xbc2SXy72QjDaULK6D39VTljnIIbEPHgyv+2Ge7dnez9wuPy8jXWhP3nnGsdnIpYa3XsvlYLRFjtXB0DO6WRErH5up24gaosqi3F80jKHPEX70trl/L6CvqVBU+acc26p83UAAAAAAAAAAEA1RWN7Bu8+IOhN9tXeZL3RnwSjAQAAUKjZzJ6+PojqqpxQoodOnR3gtN6L/nV7gqyy/Mg3JnHXy4ej+YbhuOHXO3Ppe/DwamdRXjDa8FDEZbsjLtuT3X7fidXHN3KW7450OSIiLmscz2w/9phvzZyeHrw5p+KzfdWvZr/wbTu/McZH9mU/KEkiedutkfzaX8Z8sjPuPO/JMZ/sPNP+8KFIx+4r9fqbVSUsayv+/KdabzdX/HIzphfyOw3vGl/dB841OhFx51j2Y/7rW8t1Qp5cF/CUt48WaRXqVgdV1vVVOQPo15ycjfjbmyO+9zXNODGz+sTNZho/9hfNeN2n07hrPOL6QxE/9Npm/OPB+i+bdiob8jS1hTDLdmu1bTxqV3Z73udRPytavw8VhKZ10v3ZH2uZVs4KRsuf74ETm6+nqirH3KVGxOLyYB1TgO5pdTzaShA1Z5QNkY1YPc8Hqlu7msvrWxqb7FoptSEYDQAAAAD6je+N6QTbFQC9wOcVAAAAmycYDQAAgEJlwonyBq/eORaRN478J76lc8Fo633b45P44m8OxX94+tnT9+yMeNpjih/7A0/Obzt4ZPX/eQFTl+6OGBpK4msuy378Pacf31jJbh9JG6vPs5KdIHP8im/IfuCDB7Onr/PnnypOUTh43tdtnPjD/38k7zoQjcc8KX5u9JlxyRPG42lf88V41BOPxIsu/71oxPDqfJ/9cMvX34r8oL72vs7XXp7EcIlek4t/sRlvvC67qDvH8r/MvyOjrbGSxntuKncDwPqAp6IB0xeenz392HSpl9lWVYLRigKT1js+E/Hqa1af+IXvTuNz926c53v/sBkLAxRkVDoYbaGzdVSx0uI4sDcnGG1iAANiZhfz2+7vYpjYeuOT5fev9eGhj7skIsk51q99JndD1aPDdI32HaC/tPoM/+X3pJFWCPUiW5VFKBgN8hXtS2vnePsvzm4fzQgc73dljj2C0QAAAACAbeH7JwCgK5xzAPQnx3foCfp/gBoRjAYAAEChVgE0ERFXPap6KtWluzdZ0Cb808cm8e6fG47mG878N/na4bjlJcMx9dqh+Pr9Z8//378rieYbhuOaFw7Hs789+709fHL1/8dnsl9z7f193eXZj7/nyGon4XJeMFqsBaNlJ9ccP39/5vS478uRNhrZbRExvZDG899R3EF593lPOOvfyRuvj6Ffe30k+x4Xv/ORNN5404WxNLSauNVIdsQfXfLC2Pnk6fibi34yZq77h8Ln3qoqYVlbVfYpn/u2NF7+4WYsNc4u7tCx/Mfcm9F26FjETEGI0XoT8xHN0wujKBTjij3Z04/lbLd1kve+soKR8gbQZ/mDa9I4MpXGn34yf8G96G8HpxM/L2zwXFPz9VkmuceB0z2de3dl770Tsx0qqMaKwhLuPrI963R8svy868NDLzgvia9+dPZ8Bw53772UDRNcM13yuA5QVavj0V9/No3339KdWvpZleP+uGA0yFW0Kz0SjLY3+zz+yPRqkPggKXPs2UowWrOZxs0PpPH2G5tx77HBWrYAAAAA0Dn62gAAAADoA4LRgBoRjAYAAEChMkFUV+2t/ryXXLi5etpt984kbv7NoXjzf07iFc9M4toXDMXrf/rM5fL+nPc2Nrm6YI5OZ7c/Eox2RXb7PUdX/58XPLcjXQ03u2zleGb7fSuXZT8wIuJtr8xtesefXZv/uNMOnvd1Z/7xr34qkid98yP//Jsb8js3//NVb4qLF94fX7izQupNRXnb43AHeji++wmt51nz0g+m8V2vbsaJmTMFrq3jLDfdv/GN3DVe/vXSNGJqYfXvwmC0i7KnH8/ZbuskL7ArKwTv/B1J7Dqv/HO/4qPFnfTvuDEdmIH3Zd/l5HxHy6gkb9sYPr1t7N2V3T5Ro3C3bpldyn/PBw53sZDT0jSNsQqhMY1z1vUTr8ye72AX30vZMME1ddp3gP6Sdx2x3is/WvGgxQZVzh5GJwbvXAPKKnOfVF7fUppWC9ftB2WOJnObDOBdaqTxk29M41t+rxnPflMaX/vips8LAAAAAIBeZJAyAD3B5xUA67iOAeggx1j6k2A0AAAACuUNuF8fRFU1GG3XeRG7zs9IN9omO0aS+M//fCh+9V8Pxfc/5ey69l2c/Zi1QbmHjmZ3Gl150erzPO6S7MefmF39/7mhL2tGTgejPXb5wcz260YvjMkdj85sS9/88kgXNyaxpIfuiA/e3Mh+wXVe9+jnrv7xHf8mkl/6k0emT86l8cCJlg+P//aW5VgpSuvagjJBfe3ynO+o9qSfvz/isl9qPhJ6dmw6fxn8w10Rc4tntx84XG2ZnZpb/f9mgtGKaquLquv6JT9Sfn299hPF7//EbMT1h0o/XU8ru6uuBfHVQe62cfpzae8F2e2nZjtTT53NFoQljE1ETHU5LG56IWJuqfz8556DfO3l2fv56KnuvY+qH2/3HutMHQBljkc3PRAxJqxrS6oEYg7iuQaUVXQkWjvD+6rsLo6IKA4e70dljj3zy5t77r/+bBrv+eLZa+Q33p/GrQ/5vAAAAACAzumx/jcD1fuD9QgAAABsRpf6FIpeRq8GsEYwGgAAAIVyg7uGz/y9e2cSF+cE0WS5dPfWauqmfff+Y+b08Yk00jSNA4ezH/fEK1f/f/HE/Zntk9OryTDLjeyuupFYDTB7xuynMtuXV5L4/FN+JqfqiLjpkxsmNT/05rj+gn+W/5i1507Oi9c+//5IXvX+SHbteaTOx/16uVSAL00+Km64t9SslbUKRGqnH396sqlt9dt+vxnvvyWNibn8eRaWI24+J/PuYM62lOfk6eCFvPDCiIjLL8oOETo2U+21tkPVdf3c72pvOt4Hbh2MbvSyYR9TG7MWt03eNr8WmveoC7PbJ2r0HrpltkUI2aEuh3bdMVZt/m993Nn/zgtiHZvcVDmbUjUYrWroJUBZZY9HH7ndcWgrqiy9UwXn/zDoim5gSk6fx+/dlcRle7Lnee7bKqQU9oEyx/jZxc0d3//8U9mP+5sbfF4A0H+SJBlOkuSJSZL8WJIkz0uS5DeSJPnlJEn+S5Ik350kSU5PYm9IkuTx697bryZJ8pzT72vHdtcGAAAAALAlAj4B+pTjOwBQjWA0AAAACuUF0Iycc0WZF1aSpVeC0dLlpbjymtdmts0uJXFquhF3H81+7JNOB6Nd9Km3ZrYvpOfFwvX/kBs8tyNdjoiIpy/cEpc1sl/k5sf/WH7x99911j/Tr3wpjnzgvTEx/Kj8x6zz65++PGYWV/+eXUxj1y80Y7JCqNAvvfvsN3btnWl832tWYv+vrMR3vXol3n7j5gY154U4DbU3EysiInadn8T//V9D8R3/pPpjf/x1zfhci3C4c8Ny3vmFal/ynDodjFY0YPqKi7KnH52u9FLbIu+ehrx1ffGuJH7337dvQ/jjj6fRrJqA9P/Yu+/wKKr9DeDvmU2DkEAgkFAEpEvRaxdFRcEuqFy71+5Pr+1i16tXxYINe+/itVwLKmJBEQuCqKACSgu9hkAI6SFt5/v7YwnZ7M6ZndnsbjbJ+3keHjIzZ86cnZ2+e95thpy+xJLK6LbDDW1oXl2ggiaoszWGlVSECEbLj/GxYPpid/vUdaMbXmx001xrbC4Mt0XuuT0srNganXYQEdmF4/r78s+Wfz0TTW6O+60xhJUoEvzv4uqepQRanQ/kl7ae45mTV+rkGc3c1YLjnvA9i8m60Yv97vNqw4of/6b1rF8iImrZlFI9lVLXKaU+B7ADwHIAHwN4FsBEAI8CeA3ADwCKlVLTlVInhbksaeS/3mEu93Sl1FwAa/xe20MA3tz1uvKUUs8rpTLDqZ+IiIiIiMLE8A4iIiIiIiIiImoR+JyLiOIHg9GIiIiIiIhIyzRF2xG8NQSjYfVf6LZjiXbyrIdfQnWt9bSB2QoigvZLvtPOX3T7xaiptV7BHvFVrAAMrlpmWeaOnAMg8D1uLDXaoVIl754m63Pq/96yDnLxgTi7x1vatgSqqgXe+kWwNFcwbILpOHihzvx1vg64UlGK7xaU4finTPywAsgrAeasAs5/TTB5rq/SbSWCTYXOHpqGCkSKtEFdFX66zYPK5w2MHxXZhSzPq/97xVZBlWZb0qkLedKFxQFAtiYYLdZhSOEI570++8DIvkenPR9egF9z4jTso7QZBKN5dp2XOqZabwfbSqA95rZU5VX207eXxXZ9LN5kvbweGUB6SsNxh/YFRvRrOK57B+v3tqAcqKqJzWtxG4y2vqB1bXNEFDtOj0e/b3Bf945ywbItgjX5AmnlnXjcvPzyqtZ3rUHklN2+pPwu8QZk6e/pPlvUevYvu/v8OqGCnxduFBw5ycQ3y3zPYvJLgYUbI9M+IiKieKWUehfAegBPADgJgOYJ+W4eAMcD+Fwp9ZlSKivKTWwUpVQ7pdT/AHwIYLhN0Y4ArgSwWCl1XEwaR0RERERE9lr55y0ULdyuiIioGeB1EBERNcDzAhFR1PDam1ooBqMRERERERGRll0YlicwGC3DeSBRp3ZRSrGKtPU56FGzGQlSYzl52kp9wtuALAAFW9C+PFdbpthIR81q69CzBKlPyRpUvUJbx9OHTka/vsuQMXAbevdbgeczrvBNWP0XAEBEsPa8YzC89yzMaTtCW4+Va94VDJ1gYl2Bq9l2G/GwiaoTe2D0C20sp//zbcH+93mRfZOJnrea6He7F7+ssX8IF+tgtDpJCQqPn6nwzDkKyQmRqTMnr/7FPPOd+4ePhRW+eexCMbLSrVdMRTVQURXfDzzDea97dYpsGz77EyiuiO/11FhOQ1VKdsbPegi1bfTWbAe1JrA2zONZc7Ruu+CBL+3ft+1lMWrMLpuLrMdfOkLhh5sNXHyYwuH9gdtPVPhqvIEET8MdvptNCOuHv8coGM1lXmJBjNcxEbUeTo9HmwqBskpnx8jNhYKRk7zIvN7EkLtN9LvDRPZNJj6K0TE2HrkNxCzeGZ12EDV3druSfzDayXvrb/i+Wtx6jkVOXmlRiOPNxC/ch9wTERG1AAM04zcD+AHA+wA+ArAAQOCZ8mQAPyqlsqPWukZQSnnga//ZAZPyAcyALyztDzS8lMgC8KlSyt2HQ0RERERERNRCtJ7n6kRE1BLxPEZE1CIxtIeoeeC+SkRxJEJdeYmIiIiIiKglqrXpQJngaThsF1YSqJM+TyyuyIYcJKIW/apXY3nyoKDpn6adbDlfz45AarKCLM5Be7NEW3+xpz1qt+cBqYODpiWiPhhtSNVSbR03Fp4JJPn+3p7QGf/KfgKDqpbj6BWzIF+8CdM0cVzPL7A6qa+2jmhK7b9dO626FliwsX54zXZg9OMmNjxsoGNqcGdosXmwGu1gNABQSuHqoxSuPgq44i0Tr8xu3IPe5Xl+f2/R19W7EyzD6QorfP/bB6Ppp+WXAb2SQzSyCYUTjOYxFIZ2Axbr8whd+2YZcPr+kasv3jgORquMbjvc0HXur9s2+mf5whWsDhnLt+wKrmzhRAQnPRM6BSHh++xxAAAgAElEQVTWwWi5xdbju3cA/raHwmsX2h/M98jwBbNabQP3fS4472CBUtE9Ibj9jK+gPDrtICJyE9h1w4eC/XrazyACXP1ucJn8UuCMl0wsusvAsB7NJOA6gtwe94t2Aplp0WkLUXPmdF86aZh+2sptkWlLc+DkGF9UoZ9WWSOYvtjdMmPxXIWIiCjGFgB4HcB0EVkdOFEp1R3AXQAu9xs9AMCHSqkjxO4DCWu/Iji0LJRNLso+BOBEv+EaADcAeFlEqutGKqUGA3gVwPBdo5IBTFVKDRORLS7bR0RERERErrSWDqOt5XUSERERERERERERUVNjMBoRERERERFp6cJnACDBaDjc3UUwWmYzCUbD+hwAwMDqFZbBaEWeDMvZBrYrAZABufs8pJslUGJClBFUrthIRw0SLetIkPpgtHElU/Gv7CccN/uBzFtx9IZZkIcux+2d78XqzKYJRQNg+brtVFQDnywQXDoiuEeuXcdgw91iGu2l8w38fT/BN8sEj80I7wt/a7f7OiunJCptWBAA9O1sHYy2Y1fYTtjBaKVAr07O2toUtMFoId7rsw9S+M/UyH0J87vlgtP3b7k9xM3Q2VkAgJKd0W2HG6FC81ISFfbs5AtbDJSzVQC03Pezzh1TBcscdHOMZTCa1xTkaYPRnL0n7VIURu8FfL0keNrKbcBv64EDe4ffRid0R5fMdtbrc0e5L6gu2oFtRNT62N2rBXq1kYG+ADD5Z8FjZ7S+Y5mbADrAPqiIqDWz25X8jywJHl9Y7qVvBs9hd9/c0ji5T7M73sxf53u+4oYnxs9ViIiIokQAfAFggoj8ZltQZDOAK5RSiwA85zdpBICzALznctmVIrLO5TyOKKX6ABgfMPoMEfk0sKyILFVKjQLwLerD0ToBuBvAP6PRPiIiIiIiImoqDKkjIiIiIqLmhvcxRM2C698Ro/jA941aJn69lYiIiIiIiLRq7YLRPA2HnYaaAM0oGG2DLxhtcNUyV7P1Xv89ZPVioLgABgRpZqlluRJPe9Qq68zyRKnZ/Xe2d6ur5f+QOhIFno5YnjQAkzJvCln+2XPDDzi4vNM8vLP5grDnt7I8z3q8XcdgowkyGo4dojDpdAPmyx7ceKz7BpgCrNrm+3uLpoP3xNMUMtpaTyusqK9Hp2OqvnNzvvVmGTd073eoNX3dKIVx+0auHb+uadkPhp2+uuJmEIzmv6336WxdZmtJ5NsTb0p2Ch6a7uydLYhhMNrWEv17181FuOqEMfpH2n9uiv7+qjs2dU6zHl9V6z6UgojICbeBXY01e0XLvibScfvdDgajEVmz25cC82P3yLC+68svBapqWsexyMmrLKrQl1qS6349+T9XWbhRcOenJm79yMTc1a1jnRMRUYtxhoicHCoUzZ+IPA/go4DR50e2WY12N9DgV3YmW4Wi1RGRnQAuAuD/VOrSXQFrRERERETUJJrbc7bm1l6yxE7MREQUF3g+IiIiImp2YvRMwW4pfKxBRHUYjEZERERERERatV79tISAO8ruGc7rbQ7BaOL1AptWAQCOLv/e1bzpO1ZDJk/cPdzetE7iKTQ6oEYlWk5LQG2D4TOHukslmtvmEFyV/XTIcvNuN/CPg92Her1xkcK6Bw28cF0PHLRzvuv57eQWWY/32jzUbIpgNH+TTjdw0aHuGzFnlWBntWgDFIb3UeiQal1vYblvhdgFxiUY+v0tvyy+nxLrwj5CvddtkxU+/KeBnPsMfHiFgcP6OlveUQOtxy/YWL+uWyKnoSolldFthxu6bd5/28hsZ72h7CiPQoPizL732RwUAoQTmBAu3bEdcBeMdnAfhcFdraflaII1I0m3z3S2ubaJZQAdEbUeZow/8f9tPVAQ59eP0eD2FRfFUZgsUTyxDUYLGLZ7vpTXCoKOAWfHeLsgRl3gvJ26H0CY/pfgkAdNTPxCMOlrwRGPmHj7F+f3GERERE1JRNaFOetzAcNHNbIpEaOUagPg9IDRD4eaT0RWAJjqNyoBwLkRbBoRERERERERERFRFLW+76gQEbUOPL4TERGROwxGIyIiIiIiIq1am36PnoA7yh4ugtG6d2jiFCsn8tYBNdUAgBEVc5FsOk8FSjPLgB8+3j3cuXa79SISslBupFpOSzUb9nDtlObuFv60Pabgx9QjbMu8f7mBA3orpLdRePzM0O+JUsBhfYFl9xq48FADPTspqKw90O3Y41y1LZTNhdYfdtgFgDV1MBoAvPgPhRuPVUhLcT7PtIWCLcX66V3b64PN6oJ27IKtDKUP69lW6qyNTUUbjObgzVZKoX+Wwt/3V7jQYWDdtUfr97GRj7bcTuB2+5W/kjgK+dBvG/V/d7Q+tLbYQJf1BYJzXzFhXO7FWutTjqWlW4A1+bFZJ7pgtEQP0Enzfukc0Nt6v87Ji/5r0W1/dqGvO2xCK5qaiOD9+SZGPOzFgRO9eGi6icoad+vx7V9MHPWob/67p5motUsyJaKIcRpuGklPfdv69m+367msqvWtI6LGUgGXdt3a68vahe22JE6yLwttrjHDuS727HofbvvYRLVfVr8pwM1TBGZTnHiIiIhiZ0HAcBullIso/6g6DkBbv+GfRWS5w3nfCBgeF5kmERERERGRpRj/qA0REREREREREVF08DkXEcWPhKZuABEREREREcUvu2C0hIAMoc7tfOEmNd7Q9Q7Kbly7YmJ9zu4/E1GLftWrsSRliKNZ070lDYaza/Msy+UlZKPESLeuw2xYR6f2kbuFVxBUveBBgqe+9/H4UQpf/iWYuSy4/ONnKpxzkEK7ZCA1OTiMJuXqe9F5fD7yEzpHpH2bNR2dbQPA4iD6PSlBYdLpCg+PE/y4Ejj6sdCJU9/lAH9t1k+3C0bb7jQYLc16Wn5zDUZzGYJ34jCFUA/lrxqpsH8v/fS/NgM/rxYM7xsHCXwR5rRv+84aoKZWkJjQ9OvAq9m1/LeNTpr9Zkd55NvT1IorBIc8aGJrSeiyVn5bL+jTOfrv6+Yi642tWwdngYf+BmRZj8/Z6rZV7un2mY7tFJQSy++6by4E/rZHdNvl1M5qgaF8+0uNF/jgd8Elk+sb/ft6wep84LEzgLQUX9CknVdnm7j8rYbzr80H/ntp0x8riFo63fkwmuasbH1fdHDbh6m8KjrtIGru7HalwMuN9DZAarL1/rSuoGXelwVycp9WZBNevWyL+2V6DCCvWCyfUWwtAeauBkb0d18vERFRM1FrMS4p5q2wdnzA8A8u5p0N32ur+4BpX6VUlojE4CkaERERERERRR3D+IiIqFng+YqIiPzwPoaIKIp4jKWWicFoREREREREpGXX2T7B03DYMBS6tgc27LCvs3Ma0KldM+jEuiGnwWD/6lWOg9HSzLIGw101wWhbErJRYlinVqV7G6ZWdUpPQKQeUOWPX4EEz+AG45RS+PRqAxO/FMxcKijeCfTtDFxxpIEx+9i/XyotA8clfY23zdERad/mIusAplABYPHCMBRGDgQW3mVg4hcmlsxfjUJvW2xJ7BpUtroWeHKm9Y7WOQ1Ib6OQ2c76hTsKRjOAzmnWwWDxHoym+8zL7XvdrYPCwCz7wKRnzvFVmp4ClFRal7nzUxMzb/BYT2zGnAajAUBpFdAxDp4m6trs8QtI7JRqXaagBQajPfeDhB2KBgA51qeoiMstth7frb37ugZlWx/XVucD1bWCpCgG+JmaDTDRA+yRYX0dlLNVcBKa9kQlIpj4peCuT0Pv9K/NEbw2R3BAL+CZcwwc3Eff9qe/Da7v3XmCh/8u6Nohjk7ORC2Q7nzYJQ244kiFb5YKCsM47wmAFZrrppXb3NfX3Lm5VgKAMgajEVmy+05j4BWDUgp9Mq1DxHXHp5bGyXdAiyp813iBQbblVRLy2ZwVjwEU24Strd8hGNHE17RERERR1C9guBbA9qZoiIWhAcM/O51RRMqVUn8B2Ndv9BAAreSqioiIiIgonrBTIjUFbndERNSMMTiHiIiIqOnYXYvxOo2IYiwOujISERERERFRvKr16qclGMHjuncIHYw2KLtxbYoVWbO0wfCA6hWO500zGyZOZWuC0TYndkOpJ11Th1/KTUpb7NHROgTGjWSzEgsGv4COQ26ynN4mSeH+UxXuP9V93bdf3g9vv9io5u1WWQPMXgUcPajh+OYSjFZn7x4K751TDHl7GEwo9O63ErmJ3YLKzdJsWnX7SmY76/d+e5mvE3So9ZLZznra9rL4fhite13hvNcXHKpwxyfWFf56u7G7I/nLFyic/bJ1ue+WA1MXCNokAUcPRFBwX3PlJuyjZCfQURM4FktOto1Omu0+XoPRCsoEf24CluQK9sxU6NkR2FEOrNwmSG8DHNpXoUdG8Da3o1zwn6nO3sTT9gU+WRA8PlbBaJsLrcd36+C+roGaawmvCazJBwYF51BGjN32Nyjb+jpoeYzWsZ3HvnEWiubvt/XAGS+ZWDzBQHqb4O2vplawODd4PlOAD34XjB/VMo6TRPFKdzxqkwTcM9bAPWPDr/uGD0w8OTN4AZuLgLJKQbuU1rN/u/3+RjmD0Ygsub37HJBlHYy2splEeJRWCmatADq0AQ7sDSQnujtuOrlPq/ECFdVAanLD8eGGx20vA6b8rl+wafPjCURERC3A6QHDv4mI27NfT6XUGwAOAtANQCqAQvgC1hYA+BHAFBFxG2G6V8DwKpfzr0bDYLTBAL5zWQcRERERETkS39/DiZzW8jqJiIiIiIgo8nhPSURERO5YdGMnIiIiIiIi8qm16fbh0QSjhXJ4//jvRC/FBcD0/zYYN6JiruP5A4PRumqC0VYk9dfWke5fR3JbHDPY8eK1rvO+i0E3WIeiNdag/fpi08D7cM+2eyJS3zdLgz/waG7BaACAfF9ijAHBmLIvXM06MNv3onTBZrWmL6jKrnOyoYDOaZqmlVqPjxe6EAojjKdZFxyi0C45ePylIxQO7F2/8Zx5gIEumvUFAONeMHHCUyYG3WViaW7L+FDOVTBaZfTa4YajYLRU64PCjnLAdPOiY2BWjmDI3SZGPW7iX+8JxjxrYp97TRz1mInL3xKc/bKg3x0mJs9tuLP/kCPIvN5Z/8yNDxsYkGW9TnK2xmZ9bCm2Xk63Du4P4P0664/7OVEOy7Db/gZkWzdqRV7TbnNv/GTilinhtWFTIfDGXOt5S23Cf8IN5CAi57yaU0AkrouvOUpfyZ8WQUUtmdvLhvLq6LSDqLmzCxlUFoec/ppr1xUxunZtjJ9WCfa4xcTYZ00cMcnEQQ+YyC1y126nx56iiuBxOY249rzTJkg3zm6jiIiIIkYp1Q7ApQGjPwmjqj0BXARf8FgHAIkAuuwaPg/ASwA2KKWe2LVMJ23rCKBjwOgNLtsVWF7/wRQRERERERERERERERFRVPELKETNgu2vCnM/jltufw2aqJlgMBpFlFIqUSk1Uil1gVLqVqXU1Uqp05RSvZu6bURERERELZUUF0D++xDMJ6+Heds4mM//G/LVOxCvt9F12wWjJVjcUXbLCN0L/6Rh8Zpg5SOmCRnXJ2j80RU/oK1Z7qiOwGC07rXW6QFFngxtHelmSf1ASlukpShccWTj1t35R7Zp1PyhdP3X7bhjyHKcU/xeo+tatsUiGC1EAFhc2p67+8+xpZ+5mrWP8gXq6YLNAGDOKuCC1/UrxmNAG/QV78FoTsKvnOqeofDy+Qrt/XaBsfsAz54TXNkfd4Z+XLZ2O/B//zUhLeChsZuXULwzeu1ww0kQjG6/8ZrA9rLItylcpim4eLKJbSH2x+pa4JLJAuNyL/52rxfnvmLi6MdCh6K1TQLeuUyhe4bCoGzrMjl5iMm2XKBZ71np7utKTlTYI7BL6C5bS6L7WuyOTbp1vNw6HzVilm8R3Pu5iYvfMPHoDBOF5fWNnLFEcOmbjVsn935mPX+ZTVhiaZwcL4haskheKwXq1Qlok2g9bfri5n/944bbU6TdsZGoNbMNRrMYNyDLumzO1thcu4bLNAVnvGg2CJX+azNw04fu2uz0JRZZXHNF636HwWhERNSCPQjA/6lOEYBXo7SsVADXAfhdKTXEQfnAnyOqEBFnH1TV2xYw3N7l/EREREREFAlx/FzTWnNrb2sV6n3i+0hERHGg2V0HERERERERUTxJaOoGUOQppSYAuLsRVbwpIhe5XGZnAPcAOAvBv1RZV2YugMdF5KNGtI2IiIiIiPxI7lrIZcOB0sL6kT994ftKy8z3gEnToFT4PeN14TMAkOAJHtc9sIuGhf5dwm5O1IkI5K5zgOrg3uwpUoVjy2ZiavopIetJMxv2Qh1UleO6Lelev5ScFF+a0zNnK7w0K7wPiAdUrcCgvTQ9iyNEJSZBTfwAt/28Av97o3F1WYXI2HXCNeI1+t0vGG1kxY9I85ag1OMsBShjyoOQPY9H5v4nasuMedY+GEkptSsgKnjl5cdROJQVuyC8cJx9kIHRewn+2gxkpAJ/28P62Nitg8JxQ4Cvl9jX9/MaYOFGYN+ekW1nrLnp3F5UEb12uOEkCKabTfe+zUVAlzDCuKLh17XAugJ38/y5CfhzU+g3bto1Bg7ZE8hM862YgdkKVseCsiogtwjors/qjIhCzfaT0Ta8+jq3A9ZbrLtoB9/pvqdlGMDALOt1vK0UKCwXZKRGPsXzhxzBmGdNlFfVj3v2O8Ev/zaQkwcc/1TjD6aFFb5rpMBrytIqzQwASir5hTaiaNNdK3kicF3sMRRGDgSmLw6eNndV69q/3QYBVVRHpx1EzZ3drmT12GqA5rqqtBLYWgJkx2mcx4KNQF5J8Pj35gvevlRgOEyvdHrsKbSIRSmJUkAjg9GIiKglUkqdBuCagNF3iMgOF9XUApgDYCaAPwFsAlAKoB2AngAOB3ABAP9PxwYAmKmUOkRE1tvU3S5gOJwo+sB5bH6KxTmlVBcAnV3O1jcSyyYiIiIiIiIiIqLWgB9QEhE1XzbHcAZmEjUPdvtqBPfjGC2GiJq5eO02TM2IUuoEAIsBXAlNKNouhwKYopR6WymVGpPGERERERG1cPL8vxuGovn7dQbw3ZRG1V/r1U9LsLijDBWMlpQAdArsxhEnxOuFPHIVMGuqtszYpPmO6kozSxsM71mzDonirod8uunXkzbZlxqT4FGYelV4t/J/3/kZ1NCDw5rXrWHDB2DKPxv3yGHFVqCiquFTTLtOuJ7IZ81ERn59MFqyVGNU+feOZ82ozoe8cDtSkwRZYYQ41fW37qzZ50orgcqa+H1SrA2/asSmlZmmcNQgpQ1FqzO0u7MNasrv8bv+nHLTuX1LcXy8Xl2bPX4hA13S9cEwuUVRaFSYcrZGZ53ePUbh5L3V7lA0ABhok41pFUYZaZEORsvUHNuiHYxmF8w3KFs/X87W6LTnjk8ahqIBwIYdwMhHTRz1WOQSJq3evzKb0I2ScLrpEpErToJCG2P0XtYVfZ8DlOyM/TXBWz+bGPWYF4c95MWD002YMUrocbuUMgZDErlmGYxmE6q/IkrXVZEwfbH+GLDDIsRMx+mXuoosrrkYjEZEROSMUmofAP8NGD0DwAsuqvkPgO4icpSITBSRz0RkgYisEpGFIjJNRG4G0AvAQ2h4i5EN4GNl/+tGgU/AwjnTB14xROpTuqvg+76gm3+fRmjZRERERERxig/RiIiIiIiIiHh/TNQSMLGMiOIHg9GoUZRSIwFMRcNftRQAvwP4EMA3ALYHzHYegP8ppbj9ERERERE1gpQVAz99bl9mxruNWkatTZ6GVeBMjwz7Xvjd2gP2fTya0IdPA5+/blvkpH8c7ihoIM1smMqSAC/6V69y1Zw24tdXJaU+NWbs3xTOOci6Ee3bAKsmGkj3NExIya7Nw42HV0KlhpGuFaZx+yl4XzJQc+LryFuxB0qXd8S4kk9c1THsnoYboF0n3MaEZUWTbM9tMDykaqnjedubxcD65VB563BcXxc9qHfZHYyWpi9TEOUAocaIdtiHHbtwI39fL2n+D/RNF7lJ8RIopmuz/3HAYyh0bW9dbnNR/LxvbsIRnOqSBvzr6OAdJSNVoYvmeBCtgLY6piko0gWjpYa3U2e2s54vGuvUn92xqVsHoF2y9fQ1+ZFdx7VewbYSwc9rrKdHOjBkS3HwuFKbrrjbSgERwY5ygfDDT6Ko8OrOhxG6VrILiu1yo4nyqtjt2y/OMnHhG4Lvc4Cf1wB3fCK48p3YLN/NtRIAlLvLwyZqNewuB6yONplpCh01P7O1IsrXro2RnKCflu/i/ttpCFlRRXDB4igF1Do9HlbVCDYX8hqQiIjim1KqJ4Av0DAkbD2Af4iLk9iuMLRtDspVisi/AVwbMGk/AOc4XR7C60XCkzIREREREVGLxVs+IiIiIiJqbngfQ0QUPTzGUssUp92GKcLOAbCni383OalUKdUDwMcAkvxG/wRgiIgcICJnisixAHoAGA+gxq/cGAD3N+I1ERERERHRvG+A2hr7MnO/hFSUhr0Iu2C0BIs7ymHd7Tvid+8QdlOiSjbkQJ67zb5Qp67ofOyJ2KeHfTFDvOjgDU4POmDn767a1GA1JrdpMG3yRQr3nqKQ7ZdzdvLewLJ7DfTprLDo/ja4qNcajDAW4yLja8w9+ltkXHOnq+VHglIKRvc9kektQBupxNhS+yC/QGu3A2u31z+Usw1Gi9O8PQQEow2qznE8awevL4VGztoLYz67zPWi60Ki2rfRl7ELtWlqTRmMdtwQZRn+GOiPDcCPK5r3g2OnHe4BYHOcBKN5HW4bunNOvLwOwDpsqjGy0oH5dxjasDFd6N/yvMi2I1BppX5by2hrPT6UTu2sx28vjXLIm6Z6pXznvZ4dradH6r3OyRMMf9CLpCtNZN/kMq2nEbZY7DdlVcHj6izdAnS/2UTm9SZ63Wbi8z+b97GSKB7pjkdOrmGcsAuKra4F0q41cc7LJsoqo79/PzkzeBmT5woKyqK/bLdLsDs2ErVm4eytA7Ksx0c6ADaSUhL107aVOK/H6X1aoUX4cKkmGO2wvs6Xb0V3H1anskZw4esmOl5nYo9bTfS81cS7v8buepWIiMgppVQX+H7os7vf6DwAx4hIfjSXLSLPAZgWMPoqm1kCo1VtnvZrBc4Txz+XQkRERETUkvHzUmoC/AELIiKKCzwfERG1OrwXIWr+7PZj7uNEFGMMRmsd8kRknYt/2x3Wew+ADL/huQBGi8gy/0IiUiUiTwM4M2D+G5RSvcJ/WURERERErYOYJmTJPMgvXzUIOZM5DkOmZn4Q9rJrvfppCZ7gcRmpCkf018/TIyP+0qtEBHLe3iHLqRdnAQD26mr/Gjp6d8CD4I6fY8u+cNymvaqWNRyR0jA1JjFB4T8nGch91APzZd+/add4kN3e17ZenRRev6M/fnxxH7z+4ono/Y8LoFQTrfueA3f/eWbJFBxaMdfV7FMX+AWj2fSnjcdgNBEB5s9sMG5QlZtgtPoUmmPKZiLZdJdiVrdO0m26SpXEcTCa7ll5LN7rHhkK/z7B2YJGPmrC6yZdLAw7qwVf/iX4IUdQXRvZZblpem5RfHyAoTsWBG4bPTKsy61z+uQrBvIiHIyWO8nAHh312+6AbOtpK/Ki+95aBTbUCTcYLVMTjPb7hvDqcyrU9pfd3np6qGC08irBN0sF7/xqYmmu9ftRWSPY6y4Tv6512FgXEj3A/jZParcUB7epNEQYUt6u8I9NhcCpz+lfFxGFJ9ohst07AGkp9mXe/03wz7eju2+XVYplCFKNF/hkQfSPK24v88oZjEZkye67ULrHFQOyNNeuW+P3mqK6Vj8t30UEidPvjuVb/BZCieYabf/eCv8aFf5JoirEbzNc8z/BW78Idu4qt7kIOP91weyV8ft+ERFR66OU6ghgJoABfqO3w/d9t5UxasaDAcOHKKV0PysUz8FozwMY6vLfKRFaNhERERERNSV2fiUiIqKY4DUHEVHLxOM7ERERucNgNAqLUqo/gAv9RlUDuEhEtF2qRWQqgDf9RiUDuDs6LSQiIiIiahmkMB9y/QmQfx4OufkUyJkDIXO/9E1cMMtZHZOuqp/HJW8YQVSn7qvvZDm8b1jNiCp57Z6QZdT1T0Jl+9JCBmTbl830FliOP6ZsJlI8Nklzfo4v+7rhiJQwU2PiQZceQJtUAEASavD9+mPxcu6V6F29DhneHbih4AncmT9RO/vMZX7BaDafgcRbMJpUVULuuQCobpiMMLRqCTp4Cx3V0cGsT9FpJ+U4p8RdyGHdOklN0pcpjeNgNFPzRcpYvdf3nmJg2jXOHp1d9U70PqCbv07Q4xYTJz9j4ujHTBxwv4m12yO3PDdhH5uLQpeJBd13bD0Bb1efzvEfpLAmP3JtWfugETIEc5DmHLZgI2BGMeAvGsFonTTBaFtLgMe/sbmAaaRQQURd21u/B3YheIs2CobcbeK4J02c/5pg6AQTV7xl+gI2d9lWImh7dWRe1yF9gPGjFB45XeHOkxXuOllh6T0G5t9hkXq7yxqLQMEyF+E/pgBvzI2ffY+oJdDdq0XqWskwFM48IHRlH/4uKKqI3v5dXq2ftnJb1Ba7m9u+PW6OjUStiW0wmmZ8/y7W4xduRIPrpHhid4+9rdR5m51emudaXGOW7LQu274N8MSZCp9fG95XRKpsQt9qagVTfgtutAjw/vz4fK+IiKj1UUq1BzADwDC/0YUAjhGRJTFsyrxdy63jATBYUzbwbN9WKZXqcnmBV1URecorIttEZImbfwBWR2LZRERERERxK06fWxIRERERERHFFu+PiZo9PuciojjCYDQK17nwfTGrzscOfznz4YDhM5VSKZFrFhERERFRyyJPXgf88UP9iOICyK2nQT59Bdie67yeW0+DlLrv61Cr6WyfYEAbvnLK3/Sd5+2mNQVZuQh488HQBQ84evefQ7rav4ZOmmC01L9fjNFD9IEjdfrzLNQAACAASURBVA6r+AkT8u9vODK5+QajKaWAngN3D3tg4pLiN7Fq9WDkr+iBR7bdgbu364PRlm6p/7s5BaPhyzeBb4ODzBJRi+PLZjiqor23YZ+nidvuwoE75ztuQt06MQyFNM2dd0lcB6NZjzdi+DTr5L0VZt1soHOafblXZgvyXXRyd0pEcMaLZoNQqcW5wL/+F7nQJzefV+woj9hiG0W3bQSelgZkWZfL2RofQQqF5YKf19iX6ZEBzLnVwM3HKe1xLiURmHyxQq9OoQ+EgzXnsPxSYN66kLOHzS4YrUOYp7jsdP3rvelDwR/ro/MehwpGy25vPX1LccMZC8sFj84wcetHJva9z8SGHQ3LvzJb4LnCxE0fmigsF9w1LXKvZ+5tHjxxloGbjjVwz1gDE8Ya6NvF9wJO3tt6nhlLgpfvNlzzsRlNv98RtSSxuFa6/9TQ55YaLzD8QRM3TzExc2nk9/MKm2C0kpLop5C5vWSway9Ra2a3K+myfffSXLtu2AEscf5ILKZKbQ5L+aXO63F66NlSFFyyWBOMlp7ie0Zz4jCF589z/xClskY/bXuZ/vnCt8t4DUhERE1PKZUG4CsA+/uNLgFwvIgsjGVbRMQEsCFgdGdN2QI0DFEDgJ4uF9krYNjJ9/uIiIiIiKi1i4PvVJADId8nvo9ERBQPeD4iIiI/vN8kIooiHmOpZWIwGoXrtIDhN5zMJCLLAPzqNyoVwLGRahQRERERUUsif/4EfDfFetqj17ivb9yeruep9VqP99jcTfbqpHDh8OAOlhcMdxbaEiuy/HfIJQeFLrjPCCi/YK+RA+1ff2aSRS/Yky6CMf5x7N8r9Ov/Yf0xSJWABJnkZp4n3WtQyCKfbhxnOX59AVBe5XswZxuMFmdPOMQiFK3OfpULQs7f1ixHEhr2Os7ybsOP60Zh9rqReCP3MrxxfGDfqYb8Q5R0wWillfH70NPUZH/FOgTv8P4KK+4z8OoF9gvOujFyYWV1lm5BUFgSAHzxF7BxR2TeO7v9KlCRTbhVLIUKpqozIMv6PSuqAFZti3CjwnDQA/pt5tlzFWZcZ2D5vQYO7avw8N8NLLvXwIzrfP//fJuBNy9W+PhKA2seMHDBcGcHwRH9gOQE62mfLoze8aBQE6qXlgIkeMLbqQdm208/YKKJmtrIv6ZQ219XTTDaJr8urKu2Cf52r4lbpggmfW3fxse/EXS63sTLP0bmtWSl208/coD1+/HLWmB7QABkWfTziIjIhu54FOZh1VJWukLFc6HPMTlbfeGHxz5p4r7PI3tNVG5zrCmeNQOyfYu+QAS4uVYCgJ0MRiNyTReMZvf8Zdqi+LyXLdGEkgHANhfBaLr74UC5Fr+BoAsoS29T/3eHNtZl7FTV6qfZhUKW87hIRERNTCmVCuBLAIf4jS4DcIKIzGuaViHwqsHu7LwsYLify2X1CVEfERERERHFRHw+0yQiIiKKWwzOISJqxuyO4Ty+EzULdtdivE4johiLs27D1BwopbIB7OM3qhbATy6q+CFg+ITGtomIiIiIqCWSSVdHtsLKCsg6d/0dajUdMRM89vM9fqbCRYcqKOXr4HrRoQqPnxkfoWiybRPM+y6G/N+hoQsffCzUfe81GNWpncIR/fWzZB58EHDYSb6BxCTgrPFQNzwNABiYZb+4c4v/B8u1lJgcuq1xTPUaGLLMoKoc7bQVW33/2wajxcfmVW/RHO2kgcbmkLN3rt1uOT4RtRi+cx7OL34X5+94E9cfo3/h/mFx6dpgtJBNaTJOw69ioX1bhUtGGLhypP3Cr3rHhETwIb9VJ/c6ToIANhUKLn7DxJC7vTj0IS8em2HCG7Bi3YR9lFUBtd6m/xDD6zA0b0g3fR2vzont66j1Ch7+ykSPW7wwLvf9W51vXXaPDODKIxVGD1Zom1z/ovpn+cYN2PwDDnxuDM57axRO+ethZCXbpC8EaJeiMEqTVRnVYLQK67oz2oZfZ9/OoctMWxR+/TraY9OuY27PjtbHibXb6/efSV8LNhZaFou6Sw6zP46dNMx6ugjw9dKGL35njWVRW/EcyEnU3IQ6HkVKSqLCyvsNjHDY9f6+zwVbSyK3r9sGo1UnQN56KGLLsuL2lVTaBAcRtWZ2t0m6q5OOqQqH9bWe9uVf8XlNUWZzj71oo/M2O71P21IcPE4XztbeL24lI9X9jXWlzbWfXTAavwdHRERNSSnVBsDnAEb4ja4AcJKIzG2aVgEAMgOGrT8Q8FkcMDzc6UJ2hcLtHaI+IiIiIiKKGD4MIyIiIiIiIiIicooxikTkBIPRKBxDA4b/FJFyF/MHfrFsSCPbQ0RERETU4khZMeAyxMyRX752VVwXPpMQ4m4yI1Xh9YsMVD7n+/f6RQY6htHpMtKkaDvk4gOBGe+GLKu+2ALj0c+gMoKTV075m/61dO6SBuOhj6G+L4OaUQjjmkegknzBZoO6hggjKZtuPcETIoku3vUMHYzWu2Y9kk3rHsTL83yPM3XbIxBfwWjy/Ue20/cafUjIOrrV5oZe0Oxp6NxOP9n0W19pmmC0kmYYjKaa8L1++mz7hb84S/DvTyRi4Wh2nct/W2c/b3GFYNgEE2/+LFi2BfhlDXDzFMH1H4QfjAbExzaja7Mn4NzUMVXhoN7WZZ+cKVi2JXYflVz5juDfH4tt2F2dE/dWUJoNXeZ9A7nueGDeN8BfcyGv3A2ZeGlwOdOEVJT6/q7xbUhStROydSPG9LFuxPI8YMXW6KyTIk04Q2OC0ZISFPp3sS/z5eLIvx7d7l13HhqgCUGtNYF1Bb6/P3MQbBgNGW1DB6MNzAb6BHbN3eX39Q2H7cIxdH5c4X4eIrLmNCg0Evp2UfjxFg/GBHant1BrAt8ui9xxzu56qMhoD3z3EcS0uVFoJLdVV9ciKIiWyCmprYVUOQ+9bU7C3SvG7GN9UPsrdN54k7ALgZ27GihzGBLrdH1tKwVqautLiwiKNZtQekr9uuzQxrqMnSqb4EfbYDT3iyIiIooIpVQKgGkARvqNrgQwVkR+bJJGAVBKZQLoEzDa7gOBrwKGR7pY3OEAEvyGF4jIVhfzExERERERUVzjE1giIiIiIopDdn0p+At7RM0E9+Nmie8NtVAMRmsdrlBKzVRKbVZKVSqlSpVS65RSs5RSE5VSh7usb3DA8CqX868OUR8REREREW2ITmqEfDHZVfnaMIPR6iQmKCQmxFFi1bRXgZIdIYupxz6HSu+onT5uP4WkBOtpo/fyvV6VkAiV0LDQ0G5Ajwzr+done3F82QzriR7NwpqLvfYPWcQDEwOqV1pOW57n+98uXyCugtGeulE/8aI7sOc/r0GmTaAZAHR3Eoy2ZgmGVSzUTvYPsErXBKOVxkHIlY7u/W7K99pjKPx4s/0B8JGvBB3Gm3hxVuMDOuw61S//dRkkPzgNIL9UcMgDXmRcZ1p2iH/2O8Fv6+rrdRv2UVThrnw0mJqNw2rbGLef9QZT4wWuedeMWIidjmkKLn/LxGtznC/nrAOC2yw7y2FOvBRy48nBM/zwMeTTV3zlRCDvPAoZ2wNyXCbMw5MhR6f5/h/dAXJ6P5z82H7aZX+6MDrro1DzkwqNCUYDgLE2QaUA8MZPkX89oY5N/YLzVHdbuRUo2SnIK4l4swAA7ZKBPTTXGecepPDjLQb6drFfZ0opHDHAusyLsxq++HCC0b5eyg/biCLFaVBoJB01yNmF2D9ekwZBPY1RbhO2szUhCyjKB1bqr4kbS/cq2ibp5wnn+Eitm3i9MJ++ETKmG+T4zjBvPBlStL2pmxVRdpfdduHX+/W0nlhaCdR64++6orTKfvoz3ztrs5v7NP9ry8oa/bO8dL8wtA5hXIfbHdvsgtHsQu6JiIiiRSmVBOBjAKP9RlcBOFVEvm2aVu12Nhp+Z3MrALtfSvoagP+T3uFKqUEOl3VRwPAnDucjIiIiIqJIY6dEahLc7oiIKA7wOoiIiIiIiIgagcForcPZAEYB6AYgGUA7AL0AHAHgdgA/KqXmK6VG66tooF/A8AaX7VkfMNxJKaXpskdERERE1EptyAlvvs7dgaPP0E9ftwxSuM1xdbpOptHsbB9NsnB26ELj/gl10DG2RXpkKEwYE9w59+/7AUcO0M+X4FF45O8qKFhOKeDho7ejvalJSmnmwWgqqyfQb++Q5QZWWwcCzlji2w7tOgbHSzCabM8FCrZYT0zLgLrkTng8Bk7e277B3Wr8gtHaddCWO+qpkY7alaYJRiuxCM6KF/EYjAYAI/ordEq1L1NaCVz1juDiN0zkFoX+UodpCpbkCv43z8Qva+qDRMpsOtXn1GTBPG/voGCvM140MW+d/fIOeqA+EMwucNBKXASj6bYNi3PTFUcoZKVbl/8+B/jfvOh+6eaNuYJXZ7tbxsiBDTdy2VkOufRg4Ku3tfPIo9dAdpYDX/4X8uIdQHGBtmzX2jwctHOe5bRw1odpCmavFMxdLSivsp6/ULPdZITYl0K5bpRCn0z7Mv5BgJGg2/7qAj3aJittCOqKbYKVzi/DXDlpGFD8tIH1D3tgvhz87+3LDAzp5uwA2j/LenxlDbChQBoMu7VyK7/oRhQpumvjaF4rnTjMeeV73m7ipVkmluY2br/XnVsAIDehq687x+rFjVqGHd1xPzVZP89Om4AgIivy6gTgw2eBsmKgtgaY9w3ktnFN3ayIsg1Gs5nPLsCrJA6Dvq3Cqf19/IezY6KbI2duUf3fduvEPzC9c5qLBexSXaufZheMxmMiERHFmlIqAcAHAE7wG10D4HQR+bppWuWjlMoC8J+A0Z+Jza83iEgFgCkBo291sKwBAE7zG1UL4F2HTSUiIiIiIrLBz3yJiIgoFnjNQUTUfNkdw3l8J2oW7L7wx+BbIoqxZtqVnaLgAAAzlFITlbL7XW4AQGCPbFfd+USkDEDg17Lbu6mDiIiIiKilkxULw5sxvSPUhLeA/Ubqy0x7zXF1tZrO9gked82KG/Nn2k/vvw/UdU86quq2Ewx8c72B60YrXDlS4d3LFN673IAnRBLB2QcZmHubgdtPVLhguMJNxyrMvsXA/x2oTxtSzTwYDQBw+NiQRQZWWQej/boWuPdz0zbAySoQqSnIvRfpJx44CnW33Kf+zX476XHMKODcG6HGPw41dT2w14GW5VLEJjnLT3ob6+WVxmFH8jpNEfbh1OoHnG1wb/4s6HGLiRd+0Kf6lVcJxr1gYtgEE+e9Kjj0IRMjHjGxpUhs358iTwbW1mZCTu0NKfeFKq7cKvhxpbPX8Nuu2HrXwWhxEKbndbFttG+rMOl0/UZz04eC4orofDBTVCH4v/+6q3vzIw23LVnwI+S03sBGB2/sN/+DfP66o+WMLf3ccvzCjcD0v5y3eX2BYL/7TRw5ycSIh0387V4Tf6wPnl8XqNehbeN26O4ZCgvuMjDGJnvzpR8jHIzmYPsboAkWW7kVWLUtsu254kiFNy9WmHq1gdCPdZ0Z0EVfz7Pf+wejuX8t/sEdRNQ4mgzrqF4rDchS6K7P7G0gtwi48h3B0AkmLvuvGRTm6lT5tnzttEqjDYqN9pBwg8Ud0DW7bZJ+np1hBEdSK/ft+8HjlvwK2bQq9m2JErsjgN0ljF0wWjyENgfaUW4//ff1vvuEUNzcp+UW1/9tF8zWvk393x1TFfp1cb4MANhpc+1nF4xWXo2wzwFERERuKaU8AN4BcIrf6FoAZ4mI9QOx8JYzUCk1xuU82QA+B+D/5KgawIMOZp8AX7hbnYuUUtoPXZRSKQDeAOB/5/KaiKx23GAiIiIiIgoDn4MREREREREREVELYPt9Lz4DI6LYipNuwxQlmwG8AuD/AIwAMBjAIACHAbgWQOCvYCoAtwN4IES97QKGw+kSGzhPGL9LHUwp1UUpNcTNPwB9I7FsIiIiIqJIERHgpzD7Z3TuBqUU1GUT9PXP+cxxddpgtGZ4NylVoROg1L9fcRUqMmovhcfPNPDcuQbOPih0KFqdA3or3H+qgckXG3jkdAOH9lVAok3P+hYQjKYcBKPtU/WndtqEaYJFm/QPT1PiYBVJ7hpgwSztdHXdE7v/PmawfZjCoEOHwrjyAajTr4ZKToE64hRt2bc2X2Q5/qDe9X/rOpNvK43fB9K6lsVDMFp6G4XPr3V+ILz6XcGwCV4kXOHFkZO8+GlV/at75jvBtEUNy89fB3S/xcStH9m/P5+1OwnYkQd89AIAYNEmx03Cwo2+ut32T4+H8AFdSIBu2zjvYIUjB1hPyysB7poWnf3ghg+c19smEXjrxPXI+ug+mE+Mh7zzKMxXJ0D+dQywK/guFJl0NbD4F0dldcFoAHDSMya8DpMYRj9u4k+/7W51PnDF28HhN4Wa8IcMm6ALp9JSFF67UL8/LsmNcDCag+2vnyZYbOVWwVZnb6cjFc8ZeOE8A+cPd34N4sQ+e+inTVvkH4zmvu4txaHLEJEzTRUie8YB7hfw+hzBc987Px7LrzNgPncrqm46Dc+8n2tbNjehK7DBOmA5EnTHfQajUaSI1wtsWW897au3Y9ya6LG777ANRmujnxYP9yaBCh20abODoFjdMd5KblH9yi2x+dQ+PaXh8CkhAtsDldk8Vquo1r/BXhOoqnW1KCIiosZ4HcCZAeNuB7BAKdXb5b8Ui/rrdAUwTSn1p1LqFqVUf11BpVSaUuoaAAvh++FSf/eLyJpQL2pXmacCRk9RSl2jlGpwd6KU2gvAtwAO9RtdAOCeUMshIiIiIiKqF7/fJyJ/Id4n/mgFERHFBZ6PiIhaHwYqERE1DR5jqWVqhl3ZyYF5AI4DsIeIXC4ir4rITyKyTERyRGSuiDwrIscDOBDAyoD5b1NK6XtcBwejhU4XCBb4tezAOsN1FYDFLv99GqFlExERERFFxpolQO7asGZV+430/TH0EH2h5b9D8jc7qs/bkoLR7rvQvsD+RwH99o5NY6wkJuunGc1whQfqtzeQ3cu2yPFlM5Dh3aGd/uZc6wd0bRKBtslNn5YlX7ypnzhyHFRGl92DbZIUrhpp3ebsdODYwQEjT75YW/W40qno3ya4Z/VZB9bX36299bybC/VNbmra8KE42R1OHKYwfbzzxizJ9b2m2SuBwx8xce/nvgPs+/PDf/A8u+0IAIBM9217m4uc17U8z/e/w/yr3Yo0AVexpGuzR/N2KKXw3LmG9tz13PeCBRsi/7q+Weqszg+vMLDqmKk458mhwOSJwMcvQl68A3jzwYi3qc5e1cvRr3qVdvrc1aHreHGWidX5weN/X+/b3v0VllvXEYlgNADITNOfA3LyEBTU1hhOgtEGZFmXWZUPFGjWRZ12ycDGh0MfW3693UBKYnTOfbpgNwBYsRVYvsW3EsIJRtteBlTVNP1xhKglcHs+jJTrRoV37PnXe4JtJaH3f/OF2yE3jUHV+89j+LY7sSjF/h5tY2IPYENOWG1yQncKsQ1Gq45OW6iFqrU5oZa1jkRRu6NKul0wWjg/3RVF1bWC8qrQ5baXhi7j5mop1+9xQInNp/btAqJdrjlKIdlFyLzd+q4Icdxzsl6IiIgi5AKLcY8AWBvGP5sP2nYbBuBhACuUUkVKqTlKqalKqbeUUp8opX4DsAPAMwACnxi9LCL3uXhttwGY7jecuKvejUqp6UqpD3YtbwkahqJVAzhNRLa4WBYREREREUUcPyMlIiIiIiIiIqJmwq7/BYPYiSjG4qQrKUWSiHwpIjPEQY8/EfkNvi9yrQiY9JBSyuN0kW7bGOY8REREREStw+xp4c97+FgAvhAY9fQMfbmfvnBUXa3XenyC07uFOCEzPwBmTdUX2G8k1H/egFJNGK7lsemNajetmVBKAYePsS3TVnbi/m0TtNP/3GQ9PlMVw7xyJMy7zoUsmNWIVjbS55P10zp3Dxp1z1iFyw5XSPTbn/bdA/j+JgNJCQ23RdUhEzjjGsuqk6UaH9bcgoN6+4bbJQO3Hq9w3ej6OrpnWDdr85YymP/YG+Ytp0J+jK/ccFMTzGg0fQbebscNUXjnMoXMMOLeJ0wTGJd7sUizXTuRkzzA98em1SgtqcT17zt/3JKzK9jIbTBaWRx0aHcSTBVocDeFG461LmAK8Mx3kXlUVVwhuPUjE/vd58Xm4LzCBs4/RCF/konTFtyLrMfOBbyak24UKACnluj3+WmL7NeHiODqd/VlFm9uOK2wwrpcRqrtYlz57BrrR92FFUC+g/AJp5xsf3tmWm9ruUVAQZm+7j6ZwLRrDHTPUJhxnf7R/asXKBzYO7oHw78m6Jdft33sDCMYDQDySsKbj4gaCud8GAk9Oyl8cW14Hy9m32SitDK44SKC1+aYOPqm1dj7l3PQp99ypA4qwsKUfULWuTqpL7A+B7IrXKrWK7jzUxPG5V4Yl3vR5QYvPv8z/PO8bj3bBqOFeXykVsprs8FUxlnyVyPY7YV2j2I8hkJaivW0Is01ZlPRXfMGyre5Hqzj5j5ti19+Xolmk0lL8a1Lf706KXxylYE9dj0vCHX+sFvfDEYjIiICALQHcBiAUwD8A8CpAPYHEPgBTzmAy0XkCjeVi4gXwJkA3g+Y1AXA8QDO2LU8/7P6NgCniMhsN8siIiIiIqIwsVMoERERUeTw2oqIqPlioBIROcTDBRE5wWA0gojsAHAOGn4nfRCAozSzBH5d2+a3urUC53HwFXAiIiIiotZBwg1GO3wsVI9+uwfVvkcCew62Xsacz+zbUOnr7VirCSbyhHE3KVU74SC/OeLkt28h95yvL7DfSBhPfQ2V2TV2jbKSpOnpCwA9B8SuHVGkdgX32bms6HXttIJy6/GZJWuBxT8D338EufFkyO/fh9vEsMjOckjuWmBHnraMGrR/0Lg2SQovn2+g5GkDK+83kP+4gd/v9GBgtnVvZHX1I9r6hy55Fz9fWYCyZwxsfczAg+OMBkF/3dpb11ko7bBzw3rg5+mQO86EfP2udhmx1lRhH26dc5BvnT80LvYNW5XUFzVIgAmFYydsczXv6nzf/80xGM0bZmjenSep3Z3+A323vPHnJ9MUHPekiUlfCxZu1Jd74iyFiucMvHmJgYwnLwXefKDRyw7H9Tue0U77bZ39+lhXYP9B04qAzVEbjNbWdjGuHNhbP23N9sgtR3ts8rs26t7BukxVLbBqm3UFJwwFVj3gwciBvg159GCFa48O3qifOUfhkhHRf6w/pJvCoX2tp9VtH5VhBv/khggNJCJnwj0fRsIJwxRqXjRQ9oyBwicNzL/D+XFp9OMmCsoaHgsfnC74v/8KfijpjaXJg7Ehsafj+lYl7TpYTXkWAHDGiyYmflFf//YyYOyzJt6ca2Jntfvzve58ZxuMFiIgiKiBGpsNpirOkr8aoTGPgzpoPokuqoivbz7t0DyzCHTxZM0B3I+b9bWluL5w8U7rGdM1j5yOH6qw7iEDmx4xUPCE/bG8yCanL1QwWjzcRxIREUXYMgAPAPgJgNM02xUAbgfQW0ReCWehIlImImfDF4L2i03RHQBeADBURL4KZ1lERERERETUDIR8mBxfz9GJiIiIiIh4n0LUTDCxrJnie0MtE4PRCAAgIn8AmBEw+nhN8XgORnsewFCX/06J0LKJiIiIiBpNtm4AViwIa141/rHgkSPGWBf+4wdIRWnw8qe+DPO0PSHHdoT5zyNQm7/VcvYEF3eTsnk1zKuOghzXCTKuD+T9p5zPHAHyygTb6WrsZbFpSAiqTSow5ODgCWkZwIGjY9+gaBh2GNClh20RD0z8o+wDV9V2qvVLvKmphkx5LpzWuSZb1sG8ZhTkhM6QswbZF7Z5D5MTFfp2UejUzj7FQnk8UM9pQt9ME/Lk9WibrNAmKbie7powKADITagPBZS3HrZtQyzpwodUnAWjAYBSCrccb+Dhv8e2cTUqCWuTeuPb1KPwa1l3V/Nu3hVM5DYYrTwOOrSHG5qXmqxwzynWhfJK0OjwzpumCOatC13u2qMUUhIVZPViYOb7jVpmY2R5t+HaHdbHy5wt9mENy7fY1700t/5vEbEJRovcPtM5DUhJtJ62pThii4HpIIiomyYYDQD+2mw9fnC34HUx6XSFJ85SOKg3cFhf4J3LFK48MnbHmaMGWS9ryh++/3XBaJeOUDhjf307I/l+ELVmuvNhOCHW4fAYCm2TFdq3Vdi/l8JPtxo4bkjo+eavAzrfYKLHLV58tkjwzHcm/jM1/HPwiqT+AACZ/ABy8gSfLrIud/FkQYfxJk58yottJc6XpyvpUUBygvW0nWEGR1IrVWuzwVS2jmC0UFc3HTRhup8tiq8v8eiueQOVVyEoIDKQm/s0/9DZkkrrMuk2n+YrpdCtg+94bqeoQn/PFCoYrZyBkUREFCMioiL47web5WwVkTtEZASAdvD9AOlJAC4HcAuAuwDcDOCyXeO7iMhAEXlQRBod4S8iU0RkOIA+AE4H8C8A/wZwMYCjAXQVkatEJL+xyyIiIiIiokiJr+eZRERERDHD4AwiolaIx34iIiKKHAajkb/AX4jcW1MusOtaZzcLUUq1Q3AwWpFVWbdEZJuILHHzD8DqSCybiIiIiCgitm4EuvZ2PZu67WWorJ7B43XBaDXVwK8Ns5Hl+48hj10LbM/1fQi55FfUfmL9o/VOg9Gkugpy7THAX3MBrxfYngt59hbIV287qyAMUlkBWTgbsuw3yOJfgKXz7Gc46u9Ra4tb6or7gBS/Hr9KQV35AFSCJumlmVEJCVDjHwc8mgSBXbpUaVJjNDK9BQ1HzPnMbdNckdw1kO8/gpw5EFg0x7dt27nwdqgMV7fOesOGAz36WU/7bgokd43lpG7t9VVuTehSP7B+OaS4QF84hsINv2pKNx9n4J6xsW1gTtJA/NTmUNfzlVUBpZWiDXnSaeoO7bVewa9rrac5CYLZK9v6/amuBYp3ht+u3CLBkzNDf4i7X0/AMBREBPLKXeEvsEffri6bOgAAIABJREFU8OYbfgLUlFW7B08q/dKyWF6pgaIK/etZnmf/Wr9ZKqj1+sqUVQFezXaWoQm5CIdSCl01x7otxZH7gF1Xk/+xKTtdH+KoCwXrmBo8LilBYfwoA7/c7sHsWz045yADRgwPggOz9NNemmVqAzAO3hN4/woDfTWnvtwifuGBKBLi7VppeF+F6eM9+Gq8s5vF3CLglOdMjH+vcceE3SG/lRWYs6LWtmyNF/hqCTDmWecXQHZhvW2SrKftZAAQuWEXjFbViAvUOGO3p4cKv85sZz3+00XAB7+ZqK6Nj2uLHeXOy/623n562MFomk0mPcV5fTo1Xv3xLVQwWlHLyfgjIiIKIiKmiOSIyJci8oqITBKR+0TkURF5bdf4qASUichaEflIRJ4RkYdEZLKIfC8ivCshIiIiIiIiIiKiZi4+PgcmIqJI4/GdqHmw2VcZfEtEMcZgNPK3LmBY12t7ZcBwL5fLCSy/Q0QKXdZBRERERNQiqb0Pg3p/OdTk36EuvRsYsG/omdqkQp10ofW0QfsDnbpaTpLfv2s4/OXkoDJPpFxsOW+CJ3SzAAB/zgHyg0Ou5Jv3HFbgjiycDTl3KOTa0ZDLD4NceaRtefX2Iigjfm6N1b5HQr38E9QldwHn3gj17LdQYy5p6mZFlDriFKiX5gDn3QQccYplmQ5eTWqMRlAwWhSZz90GOWsvyF3nOp7HuOzuiC1fKQUcPlY7Xc7aC2LxkDk1GUjR5OsVeDIbjtiwojFNjJh4C/tw6s6TDXx3o4EDdj396JNpX76xlicNQE7ygLDm3Vzo/jOJsqqwFhURmwoFB0w0UVppPd3JtpGVrp+2tSS8dgHA+/OdrcjD+ilIcQHk2tHAT1+4X9CBo6Bufg5q8h9Q4x9zNau69G6ohz6GytoD6vL7AAADq/X7e06evq6FG+2XVVgBzN71BLHQJiAiwyIMrDF0wWjTFkbuwze7gJw6CR6FrDR39XaK8LqIhP5d9DvVle8I1mlOv3XnG937kevuNE9EGtprpSa+vTl2iMKK+2PXiAJPJ98f3losXeXsZD5/HbB4s7Nzg+5ayVBAG8319c4afumDXKi1yayYPzN27Ygyu/uOUMFo+/fSFzj7ZcHAO038uqbp97sd5c7b8N+f7cu6uU8rKAd2Vvtm0IU9tw/8ybIwbS21Hh8qGK2grOnfHyIiIiIiIiIiouhrLc/BWsvrJIoR0wvUlDV1K4iIiIiIIoj3jURERBQ58dP7m+JB4FeldV+RXhYw3M/lcvoEDC91OT8RERERUYumlILqOxTqotthvPYL1PVP2pd/fZ5+mmEAhxxvPfHrd2G+fBfMZ2+BzJoK/PJ1g8m/peyH3MRulrN6HN5Nymv3Wk+Y942zClyQygrIxEstg9isqBueguo1KOLtaCy152Coi++AceUDUHsf1tTNiQo1cF8Y/5wIY+IHwKEnBk3PMItc1detNjdonHi9YbdPx3zhduC9J9zNdPTpEW+H0gTK7fbZa8HzKIXMdtbFt9eFSewic78Mt2kRZZrW4+M9GA0ARg5UmHeHB+bLHqx6wIOXz49eo3OSByInSR+M9sRZ+mXnFrv/2LG8rAry8Qswx/WBedVRkJ+nW4bxRcP4/2fvvqOjqP42gD93Nj2BJIQapAjSBQTBgqIodqzYey9YsPdeXhV7w94rVn4o2LuIiCi9hd7SSEIS0pOd7/vHElJ27uzMZjdswvM5h0N25rYtc3dmd+bZKSYWbtKvdxIE09EmrKopwWhLspyVO363bMix6cCCma77ULe/BuOpr6GOvwQqNg4Yf6Xzujc8C3XBHXVhoGfeAIw9DV1rMpFoWp9cufzxSTAv2hfmE1dB3noIsnIBAMBrCr5eFPg5n7bAV2Zrmb5MaoLju+CILojr+6WAqUsQcsnp3LRbqrt2u6ZE3uTWvzMQ7TQMt564aN99Sdfcpyx3b/NEpOGN4H2lPToqvHF+8wwkz5O2Y3+mstD5m/mPy5y9L9gFYuqD0RwPgwiosX/BSHWAxKlWINBscewQ+xLr84EL3jJRVbNzT6q02+9t7KM5Yrt/6nbXdU2e7/9iTYh02zhn7dx3vP1j/dAM64GVB3iZ5vF6LiIiIiIiIiIiIqIwCPRhMsMImkVlATB3IvDNMODPM4E8/fm8DYgA824FPm8PfJYC/DgGKPM/D5KItsv+EfjlKN82893+wKpXd/aIiIiIKBjNdN0BETWR7bbK7ThicY6lVorBaFRf+0a38zTlFje6PUQp5eYyxsZX9jduj4iIiIiI6jv+UqDXIOt1J1wCtZt9VrHqpllfUQa8Nwn4+FnIXaf7rf426Qhtm1FOjyYrXFwV2lR/fQNkr3dW9vAzoE66IrzjIWc69/BblOwtctXEIaW/+S8sD+1VtzLlGeDDJ13XU+MuCOk4AACD9rVdLY9fBdma67fcaTAa3n8M8ueMYEcXMroLwSMh7MOtS0Yb2DDJwEtnK0wcq3Db0fo78cJZCt9ea+DZMxReHb8NL2ddhcdzbkWnmhzL8otjB2JVTG/LdY+cYOLasQbaJVr3taFAtCFPOiV//wF5+jpfCOWiWZBbToTcd07Yw9FKKwVfLrAv4+S1kRCrkBRrvS53m/tx1crcGvj+D65YhINvb/x7Ac6oz1ZCHXNew2WGAfX2v4ErH3+x33ueioqCuvddeK59En2rVllWW54DYOV8YNrrkDcfhFy6P+S7D5GRA+SXBu525srAwWgpup9lCFKntvoXwVyHuwiBOJ2b+nV2PllFGcABbn96ohkkJyj0TAtcrrHaoCBdUF1WEb9wIwoF3XzkiZCdpdNHKHRuG7r2BlcsslxeacShbPtXVFk5zo8/nb7v63ZxDAXE6YLRWn+OFYVSTY39+nkWx7stkN27vwowbR3oYD9pRQ7ww07+Ka4CB/vI9dntn7o9vFqR7ft/myYYrU28s/eGU4bbl/t0rlge+5VW2g+YwWhERERERERERLTLa3EXJba08RLtJDXlwM9jgYznga3zgfVTfLe3zg9cd+kkYNljQHUhIF4g9zfg58Na4HxB1AxyZwK/jgOyvgMq84H82cCcy4GMyTt7ZOQI5zUiol0O92mJWj6b7Tjc1w4RETXGYDSqr/GV1ZY/NSEiWQAW1lsUBeBAF/2MaXT7Gxd1iYiIiIh2OSoqCurBj4AuPRuuOPo8qGufDtxAh65B9Zvr6ahdN6y7w4vt7T4I+yu0hwLy5ETHZdUpV4e0bwqeSmmc0Q1UKk1qkcaICotgoLLASQeSuRbmgxfCHB3r+3fxfjDP3xvmtUfCvP0UyJK/feV+nwaZfKurMSEpBeqmF6D2OdxdPQeUUlBvzbUtI8d3gzR6DHTBaFui/J8DefE2iNvErBDTzR5GC/00a7dUhcsPNvDM6QYePsnA9GsMpKfUrY+PBh46UeGKgxSOGKRwzaEGLh6QjUsK38L1Bc/jwdz7LNudGz8CZYZ18tmotpsAAD3aWY8pI0cfqqJTWuPxX/jzZ8Cf09015NLKXMAb4CXpcfja6KQJackpDv4LmswAeY7xZhneyLochtuTfPY6yBeK1qm75WrVe0+oe98FOnbTNqFOv9Z6uVLASVegn1gnMmTE9Gm4wOuFPHQhNs5f4Wjo/20Azn3DxPiXrJ+4pFggOiq04T0je+rXvftXaL6AcxqM1reT8zb32R1ISYiMIKPGZt/uftKtDQrSbWuREIyxNk9w/psmDnjUi+s+NpFZyC9oqeXR7apFSC4aEmIVZkxs2o5brOHFjSUvoWJZG3y8+Rxtudqg36yCasdtVwXIoqqlm/eVAhI1hy1lDEYjN2oCvGDWL2+ecYRZU86FMgyFX28KPJ+Ean8vWHaBwFY2FujXuT1OW5Hjq1BUZl2xbZyzdgamK3x1tf6xLqn0HUc2Fmjei4T9PyIiIiIiIiIiIiKikMv9zT8EraYEWP1m4LobPvZfVrwMKFocmrERtSZr3gJMiy+kVr7c/GOhZsTzuYiIWifO70REROROC72UlEJNKRUHYHyjxb/aVJna6PaFDvvpj4YBbKUAvndSl4iIiIhoV6a694PxyQqob7dAfbYK6qdiGHe8BhUdE7hy+y5B9Vml9G1fMMppMJo+xUZuGw/55XO3w7Jua+ZXQFGes8L7Hw01cGRI+qUQSE7zW9S3KsNx9Yn5z8Py1RggGE0y10IuHAl8/2Hdwox5wJrFwH+/AjO/glxxEOS9xyB3nuZoLOqWl6A+WAj18TKoGVlQJ1zq+H64pfYYDBwwzraMXD0W4vXuuN0+yXq7zff4B6NhQwawwVn4Ubi4CfuQqkptO3brdqZjBitsnGRg3SMGVjxooPBZA3ccY8CofwcLcnf8uXfFf677SF07BwDQv4v1c78iW1xfcF9iWCfsyTfvuWvIpSveCxzU5zQIpmMb6+U5xS4G1Mham7cgj9TgjczLMbzCwa/BHnUO1O8VUJ9mQM3IgvH8D9pQtFrqsNOhpiyFuu1V/5X7HQXVvZ++rseDvukWYXcAVsT2tVyeNXmS7Xjq++BvQaEmICI1wXEzjo0frn8RvPirYM7apn+Zrg3IafRFff/OzpOJeqZFSIqRhdREhefOcDe+2mC0NE0gZ35pEwcVpG0VgopqweLNgr0eMPHebMFfa4DnfhKMfdJEoSZIJBARgel2MiUKAa/DoMadaVh3hUX3ufsq8rns67F0xFtY/qCBohei8dj7VyL64yVo/9EsbZ38qDRUqhgskt0d95MVINS0li7MSQFI1Bwyl0Tm7idFqhr7QD/ZuLKZBhJedsFoTqatg/oqDNNnAQMAfsvYue/JW13u4+SX6sfq9m5kZPv+L66wXp8c77ytcUMU7j9e/6zM2+A/uNIAwWj5DEYjIiIiIiIiIqJdAr8zpOYW4DXXlF8tIWfm3Wy9POP5wHUbB6rVWv5M8OMhaq3WT7FeXrTY9jx1IiIi2ll4LELU4tl9phDCzxtsuwlZL0TU0jEYjWrdCqBrvdteADNsyn+wvUyt8UqpPg77qe8TEdGcok1ERERERI2pxLZQnbpBxcQ6r9Q+Pai+qlS05fK+nXwXuDuiSzbavk4+fjaIkdWRshKYkyZAbj/FWYVTr4Z68KMm9UkhluwfyjXCRQDUQ1vus15RGiAY7bPJAcPTAEBevdvZQEaOhTruIqju/aDSe0EZ4f/IRT38mX2BlQsgr92z46YuoGaLVTDa9vo7k+5C8PphHzLjbZin9YUcngJzwsGQdcvq1v3yuW/dYckwLx0FWf5vmEfsnlIK3dMU+nRSiI7yn1flpTt2/D2ociniTU3ClEbKf9MBAP06Wa9fnu3+gvsyQ5Nm9fs0SIBQh2BlFwnmrAtczmkQTKe21suDCUbLLRYc9YwX2zSfbnmkBr+tG4vTtjkLAlWnXwulFFTnHlBt2zkeh4qOgRp3PtSDU4C9DwF67QmccT3UQxa/LttI/+HWITKronujBv6haVlRnR2Py84eHUPSTANt4hQOsvmE8t4vm34inHZuenwCzGO7wnzlbojXixE9nbfZNbXJwwqrqw5ReP0850lLsVG+/9MSNYGczRyMMXuNYMh9XiRPNJFwlYkh95t+2+yKHGDafPdfn/67XnDIEyZiJpjodosXH//Dky2p+bgJkd2ZBqUrzLqqCJ1rsv3WdarJ2fFvVNksvJt3Ja66cBD6XXox+nZSiIlSUIYBlb47Utu30d63PE8a/orfF6WaAFcrmYXOtnm7fdKkOOt1pQxGIzcC7UO3lmA0m3XK4bw1doB9wdxtcHTcEC5bbYLOrNiFxbo9d2xFjq+CLhitrYtgNAC4+1j9ZxqbC/2XBZr38kp4mhoRERERERERERERtUIla3b2CIh2DV6b8yYZAtkC8DkiIqL6+L5ARBQ+nGOpdYra2QOg0FJKnQvgexHJcVHnUgD3Nlr8tois19URkZVKqXcAXLR9UQyAt5VSY3VBZ0qpEwBcUG9RFYD7nY6TiIiIiIiC1HG3oKpVqRjL5aP7uLjSPtAvcS3528WI6jUrAmzMgFx5CFCUH7iCxwN1z7tQhzoMUKPmk5zmtyhWqjC69A/8kTjatmrPqnVIkHLrlZtXA4P28VssBTnAiv+ATx38KqNT3fo4Ch8KNWUYwKOfQ247WV/ogycgp14DldYZHdpYF9kYbT1HyAPnQx1+RghGGhxdCIVa+jckJhfYmgt54uq6FYtnQyYeAXy0xBcKd89ZdeuW/wu5/mjg/YVQaaEJdQoFyc/2vR4r/T9KkTk/AMv+2XE7Cl7sVbEAfyXs77j91P++hJQUoU/uIgD+9TZvFQzqYl03NgqorPFfXmIXOLJxFbD7AMfjc6r7rc6ChhwHoyUrWH3gv6HA3ZcAIoIzXzPxywp9mUVrhqNv1SpnDZ54GdQeQ1yNoTE15iSoMSe5qtNv/z2Bn/zve5URi3XRPbBHdcOTOLNDFIw2omd4knvG9FP4faX1c/ndEqCwTJCSEHzf2iAisxooygPefwyiFHa/7AEM7AIszQrcZteUoIfTLJRSuOhAhdF9BAdMMpEXINgsrXgNZGE22q0BgP381pdUApXVgtjo8KU3lVYKFmwClmQKLn/P2bb9zzrg/FHO+ygqE5ww2UTm9nCQzYXAma8JOrYRHNJfoaBU8N96oF9noFu7CEuqolZBd26vJ8J+EklWLcQ+L1+DTStn2xc8bSKMa17RrvYYCqkJ1kFCBZ52KFfuUn+yi5yV080gSikkxliXKGEwGrlRXWW/fqPDfckIZ3c9gtNgtP4OdkOnzRfs12vnvO8WuMuxRoFNMJrbAOuM7WcGFGs+ImmrCXK0c9gA4Mdl/suXZAI/LhUM3g3o1Nb3WJcFeBlvdfnYEBERERERERERtT68KJGIiCg8TMDixz+pFWDoHRFRC2Yzh3N+J2r5uB0TUTNjMFrrczGAV5RSnwL4BMCvImJ5WrVSagSAOwA0vlpyM4C7HPR17/a6qdtvjwLwo1LqEhFZXq+fWACXAXiyUf0n7cLXiIiIiIgoNFRcAqT3YGD1Ilf1qlW05fJoN98fO/iwS7xeKI/zRqWqEvLwJcBPnzircMZ1UIecAjVwpOM+qBmldLBcfHv+YwGD0U4p/ly7Th68ACgthjrp8rplX7wEef5moKY6mJFaUlc+ApxwKVSCJnUszNQBx0L23A9YbBM0Mfs7YNz52MP6oUZGTB94YcAD/7QfycuCaq9JzgozryZ8SP04BfLpy9Yrt+YCc36E/P4//3UlRcCf04HjLwndIJtAPnkO8uLtgNcifUxjZMW/joPRYs0KxEsF5OFL0H5DEmBRb1uFoMa0Dg1oGw9s2ea/vFQl6DtdvzzkwWibtwpqnOWiOQ6C6a3ZFlZkO6tfa+562IaipdXkoXeVs1+GVfd/ABxiE3IYRv06WQfFAcCK2L5+wWhZoQpG6xGewIpTRyg8MF2//3HuGya+uib4k+F0LRv1w2C/eQ9yyX0Y1l1haVbgfaGuKS0jNKtPJ4V5dxt440/B8ixgyj/+922PqlXoftUQCIB2sQOBXnMt28ovBdLDFAj341LBeW+ayC52V+/z/wQvnBW4XK1X/5AdoWj1Tf7FxMpchas+lB3vZRPGKDx7ukKUp2U819QyaENkI+RlJmUlkFtOBBb8EbjwyLFQVz8WsFhaknUwWp7HP2w5EKt2rGgDMRWQqAkaChQQRNSAN8Dxac4GSGU5VKy78L9IY7dH5HTa6tdZv99a68sFgkfGOx1VaG11OK/UyrcJm9V9nJYYC5RahC8WlAJ52wRFmmC05Hj3bw7pKdaP99uzBG/P8i2/c5zCA8crlAaY98pD9zEMERERERERERFR5NpVLgrdVe4nERG1DHxfIiIiijx8fyYiIqIQYjBa6xQP4Lzt/0yl1EoA6wAUAfACSAMwFEAni7oFAI4SkYCXgorIJqXUeADfAYjZvvgAAEuVUv8CWAMgGcBwAI0vOZ0O4G53d4uIiIiIiIJ24LGug9GqVIzl8hg3R5KmN3CZmirA4/wCX3n7/xyHoqmvNkOltHfcNu0EHdItF7f12qeZHFD2J24ueNq2jDw1Edh7DFT3fpBVCyFPXxf0MP2kdYH6Yg2U4TCJKYzUw59Cju+mXS+bVkEB6K+5iLzSiMP66O7oVb3Ov/LqRUAzBaNVVgu+mCeYu973XdjSLOtySab91eYy5Wlg6Rzrdd9+ALWTg9Fk6T+Q9x4FZk53XXfv8v8cl001t6f1/PElUuKGAbtbjAUGCreWw/dRUkNJsdbBaGVGgGC0EJv8q/MvRg2H1/r37Wi9LawvAMqrBPExzhr63zz7sR1b8o1l4GDDQhdB3fIi1E5MsUmIVejeDthQ4L9uRUxfjMO3DZblejTJci6N7BmSZvwMSld4+CSFO6ZaPz8zFgEb8gXd04J7zLVBRPVfU3mZQGkRuiQnO2ozXAFh4dA1VeGeY32P3Z3jBMc9mIN1Xt9rIsW7FR9sPn9HuEn7mnxtO/klge93brFg2gJf+NgRAxX27x34OdtWIbjgbfehaADQz+rTchv3f2X9YvhiHvBFo/nhpV8Fw7sDFx8YIYlVtINp+gLsvOILwPKKL5y1wb8Ay0zXdcS/rss2TAHmrrd+DUbA7ikAQCZd7iwUDYB67EtH74Xtk4CMHP/l+Z40xEmFq/EVlPqeC0+AHQjdu71SQKL1ITNKK3liF7ngJLh702qg957hH8tO4nRXeFA6EGXANjh5WRaQkSPo26n533N14V9JsUCJZZiZfq7Q7XMO6OwLaLayIgco1kyFbYPI1eviYFf2/2YI9ttdBQyEZGAkERERERERERERURgEDBvgd1ZEtCvgXEdERNSy8L2bqEWw/cyB23HEYjAltVIMRmv9DAD9tv8L5CcAF4jIJqeNi8ivSqmTALyNuvAzBWDE9n9WPgJwqYg4SEggIiIiIqJQUCdcCnnnEVd1tMFoHheNmAECYQDfRcCxzq7QlM2rgfcmOSqrbnuVoWgtgEpOg/QaBKxZ0mB5kujDr+7eJxN3vHM0olETsH35fgpwwZ2QC0c2eaz1qXNuiohQNABQqR2BH4sgh2muWhbfdtjXJvAlI6aPdTDaxpXAvkc0fZABlFQIjnnOxMxVgcvuURWgUK7NxxprFrsbWIjJ5y9Cnr0h6A+bB1Q5Dx5L9W7d8XeKt1BbbmtuEayC0XRBH+VGAgSAVcyALP7LcnmwJnxg4pXfQh+M1q+z9XIRYPUWYM+uztqZNl8/NgXBxIIXbOurx/4Htf/RzjoLs/6dNcFoSUN8P6NQT56n6e+taYlAj7QmN6N129EG/ljpxTeaTf692YI7xwUZjKbZtTEah+AV5qFrqrNgtA5tghrKTjewC7Bg3b74FXuhSsXiiJIfkChlO9a381q8qLbLt8+4xMocweFPmztel/d/JXj8FIUbj7B/7/38P1+QWrjlFIvrgI9L3xWcMlyQnODutScilsFbTQnU8ltnWUfsw78c9ms3Tv+xCAKO1cGyBvUClG+NPBGQvydL/gZ+/sxRWfX2v1BRzr6uTEu0Xp7vSWuw7+OEKUBhGZCWFLicFUMBibHW66wCkIi0agIf12LTqhYfjGZ3COR02kpJUBg/XOGTufbHCNPmC24+svknQ937Ssc21vNCrkUQdS3d3NMlGWgTB2yzCECbt0G0Y2gTp+9Lp6vD8N63Z5koDTDvMRiNiIiIiIiIiIh2eS3tosSWNl4iItqF8T0r4nG/gohoF8S5n4iIiEKHwWitz7MANgM4AEAPB+VLAXwPYLKI/BRMhyLytVJqTwD3AzgdQKqm6GwAT4jI58H0Q0REREREwVMdukLGXQjMeMtxnSoVbbk8xs2RpDhIG6gOfHWk5GVC3psEfPGyo27VRfcAR5/rqCxFgP2P9gtG61u5EsneQhR5Gl6J2yYOuHlAhqNQNADAgpnAt++FaqQ++x0FnHhFaNtsIhUbB+neF9iQ4b/S68slT4pT6JIMZBX5F9kc7Z8EJQBeW9gO3+T46l9zqIGxA6wvLp+9RvDEdyZKq4Cj9lSYcLBCTJSv7O8Zgld/FyzOFIgAfToCVx1i4JD+dW29N1schaIBQP8qi/tYX16mfl2aJhErxMTrBb59H/LoZXULUzsCW3Ob1G7fypWOyyZ7657oFNPiSd+uoAyWSQS6oA8AqFSxiBOLK99nfwcp2waV0PSUpylz3IWiAYDTrMJe7QGPYR1csCLbWTBaRo5gaZZ+/bu9p2HoskXWKzt0hbr9VaiRhzkbcDPo21nh+6X+j3fGkDOAbXc0eO1uiWp6MNoh/QClwhtWcdMRBr5ZbL0f8tUCwZ3jnLdVXSN45y/Bp3MF2cXWZYzG+zxF+eiS3NtR+7qgn0glG1dCJk0AFvyBRADj8K1luRhUo423GNs8bf3W5ZXY9/F/X4tfWN9tXwguGCVIS9K/dqbMCf5kiqJy52VnLAyun9TrTPRq7y74SxeMQqSzs7N7JXMN5IqDHJVVd70F5SLsybf9+28U+Z52iLHaNwkgryRwMJru/FylgCTN/lKggCCiBhx8JoItm8M/jjAL1bnur5yjUF4lmLFI/x556+eCm48MTX9u6MbTrR2wJs9/+cocfVu6x8tQQL9OwNz1/uvm22SE6+YrOyN6Ws+5jX3+X+C2GIxGREREREREREREREREYcHQrVaMzy0RUevE+Z2oRbDbz+Y+OBE1MwajtTIiMhXAVABQSqUAGASgG4BOABIAGAAKAWwFsAzAQhHxhqDfXAATlFLXoi6UrTN8wWubAcwTkbVN7YeIiIiIiIKnbp4MWbMIWDbXUfnqUASjOUlyqLG/OlKK8iGXjwZyba7wrEd9tgqqUzdHZSkyqF57+n29EYNqXLb1dTze/qYGyyeMUUisKnT+dci6ZZDvPwrFMH32PxrGY/8LXXuh1K2PdTCaWXfY3zVFE4wWlQ4vDJSreCRJKQDgxo6T8Fz2aUDBxMzBAAAgAElEQVS2r8yXC0y8eYHCWfsoVFT7QuqUUpixUHDcC3WBQN8tEfy3HnjnIoUflgqOfd5Edb1PHhZtBqbONzH9agNHD/aF20x3GDDTriYf7b35jspaSukQfF0X5NW7gQ+fbLiwiaFoAJAkpegWX4qN5YFTlFLNwh1/1w9Ja6xAklwHo5WreOtgNAByzeFQb8wOOD47BaWCs153/2WJoclKEhEopSA11VBR0YiOUugVX4SVpcl+ZVfkCGofkNp6VqbN149vwyQD6e/+ab2y1yCot/8NeyiYW/01mYHLcw2oj5dDjmgHADChkO9Jsyz7UO49uLfjvfDCY9uXUsDtx4Q/tWdMP/26OeuA7CJB52Rnz8ONnwle+Nn+NWmgcTBaHrp1Dhwm4TGA5HhHw4gIkrUOcpaLECNvgWUwWn5J3bZm5d2//B83rwn8b77g4gOt65VXCX4NkJ1px00w2pcLgv9C1yoYhSiU4nbiN3+yrRBy+gBHZdXEJ6COPMtV+7oQs3xPO20Q7D49ffO+Zb3SwH3ahRPp9pdKGIxGbtRUBywieZk275otg907p5td4+QEhWlXe1BYJnj0W8Fj31q3/PzPJq45tHmTIq2ClwGgfxeF3zIsQh1LgbxtgvZt/B8A3cdpSgH9OivMXe9fYFmm/lGOs/6Iz9a+u7uvo1NWZX98RURERERERERE1DrwolCKNHxNEtGugHMdERFRxGFoElHL10zBaJwtiMiJnfy78RROIlIoIn+KyBQReVZEHhGR/xORySLyoYjMC0UoWqM+q0TkFxF5W0QeFZHnReQLhqIREREREe18yuOBmvQ/4MTLgF57AnsdBPX0N8AR1hejV6kYy+Ux9nknDTn5sKvaPhgN37zrLBTtgHFQ7y9gKFpL1L2v5eKHt9yDR5M+wl7dgJE9gcdOUXjkJAWU6EOe/BgGsOAP5+WHjwGGjvZf3qMfcPZNUA9Ocd5Wc1Oaj3mk7ursrinWRR7ocBdiB5Qgpf8W9NhjJd5NPhuvpF7qV+6itwVxV5pIudaE53ITxmXeBqFotd6bLfh3veDJ7xuGou0YkgB3/q+uXkaO/V2rNbxinrOCOuUO0i+aSHI2+oeiORUdAySn1f2LiWuwWt37Lvr1DByKBgCp3q07/o6CF0nebZblSg3rhJEE67cAAEC5YZPilDEP4jDIUmffhzWJAgF46m0CkrMR5t1nwhwdCzkozvf/IUkwR8fCfPUe9M22Di7LWF2IH5YKjMu8O17jxmVe/Ly84fuZLhht392B3VJt5qk9hkZkGEC/TtZj2rINyKtJAA4YBwDY6kmFV1kn7hxW+jO+M6/Dof2BwV19y7ql1gVdGAo4tD8w61YDw7qH/zFQSuHfu/QffzsNZFyeJZj8S+CyfsFohfnYuweQZBMyCABpiYChS/WLQPLafa7Kp3kLLJfbhRGZNsG6Py7V1/txGVBV43Rk/pwGo1XXCH6wGQfRznbAHuGfU2ThnzAvHw1zbDLMs/aEzP0JsjUXckwnR/XVba8Ap1ztut/2umC0qPYoVQmW6/p3UYjXBALlWe8eNaA7pFVKP8eXMhiN3PAGDkZDXlb4xxFmdh8PBbN7nJKgcN5++oq6wLRw0gWjDeyir7M823q5bvSGAnpY5xRj9RZ9P8GEZiqlcMGo0LyniACVTdhPIyIiIiIiIiIiIiIrvHy4deLzSuQOtxkiIqIWhaFpROQQp4tg8EGj1mkn/m48ERERERERNTeV2gHqxucbLtz7EEh1JfDL5w0WV2uC0aJdBaM5CLepsb8IWOYHDrVSr/8F1W+401FRpNEEoykAN215Arc8dU6D5VLqIhitwGHiVlQ01IwsqIQ2ztuONB7NxumtSyZLT1UI9EHn5uiuuCj9tSYP555pJr63CY6ZvxFYs0WwWyqwLt9Zm8eUfNu0QZUUNq2+E39MC6qauukFqBP8w+ga659n4sdlgT+sTvU2vK8pZhFKPM5f34kx+tdKhQqQ9PTHl8DJVzruq77fVojtBf12arOlxDQh958HLJplXfC9Sejb8WHMwDF+q76dV4F3F/m/dx32lIml9xvo30Uhp1jw1xrrpk/Ya/sgdMFoScmB7sZO0b+zft2l75qYOvp4yJ8zkOfRpDAA6FCzBSNWvYNDXpscMeFvw7or9O9sHTgxfaHgEosczMbe+UscfalmNN5eivIQE6Uw6WSFqz7UN6AL+YlEUlUJ/PCRqzrtvNYTvF0wWqFNQFmcJtwIAKbO0z/OHgOYfo2BIwcpfLdEcPSz/tt5cQUgIgFfv5sKgXIHGTZEO8Mh/YBxg8PbhxTkQK46tG7BxpWQ6/3fU3XUlKVQXXsH1XeaJh8239MOZYZ1MFpCDJCWBGza6r8ur0TgO+rQswsnStQEyZYwGI3cCBQWDwBbNod/HGFmtzsV7J7jgC5A93bABosc1s2FQGGZICWh+fZLddmu6ckKbeMExRX+69YXCA60eAR0IWtK6QPPc23CHu32oez0szlOcGvyL4Ibj4iM4wQiIiIiIiIiIqLmx4sSiVonbttEOx3TEloAPkdERLsezv1ELZ/Ndsx9cCJqZgxGIyIiIiIi2sUppYD73oc0CkargvVVkzFujiTNpgejYUOG/frhYxiK1sKphDb6j0zXLYOUbWsQWCb5DsPO3BgzvmWHogGAMqyX1wso1F1AHQ7fLA5c5quFgqMGKe1F3/XFm2U4ddsXTRuULqwqRKSiDPLsje4qjRwLdc4tUMPHOCrer5OzZlMaBaMle4uwKXo3x8NKsMk+K1fxtnVl0V9QQQajPfadgxeDRlltpsTcn/ShaNv1q1ppuTw3Sv8AT/5V8PyZCj8t0wdlnRgoGK1NM26ELqSnAEmx1kEuXy4Aas4+AZ6kW7HF217bRgdvHiA1wO/TgINPDONo3TluqMLybP8n7IelQHmVID7GPpzhk7nOvrgzGoXBSmEeFIAJYwz8tdrE+39bt5PWkoLR3nzAdZ32mmC0vLWZAKznpGVZ+vZiNaEemYWCt2fpn6u5dxoY2s33XCdrpjCv6dsG2sTp+weAvBL79US1PMb2f6re39v/GUq/zm6ZoVmXGKtwUF/g7H1VwHmtqeSE7sFVHDMe6vpnoNo53JmxkJZkHdya50lDqWGdmpYY6wuhtA5GC9yn3SFtYqz1eEoZjEZuBPpMBAA2r3EU3hnJ7M6FCvZuKaVw3FCFyb9YN/7TMuDkvYNrOxi641qPAXRrByzJ9F+32WJusm9LoWtK4MDzxoINRksPYa7zy78JbjwidO0RERERERERERFFnl3lotBd5X4S7Swt9/sgop2D70utF59bIqLWifM7ERERucNgNCIiIiIiIoIyDMihpwI/f7pjWZWKsSwb43HRsDgIuKmu0q6SbYXARuvwmlrqrBtcDIgilXrgQ8g9Z1muk6evh7rz9boFc74Pbee9BkFd8X+hbXNnMDQbp+nd8WdzBqM5cf3Hgh4TAp/MFWNW4oXs69ClJrtpHZYWQUwTytCEyDWB5G6CnLWn8wqGAXXVJKjTJrrqp39nZxfBp5oNr7Bv5y1w1U+iXTCaYR+MhvLgUoO2VQh+Wh5UVQDA6rVFMF96HPjwyYBl+2iC0ezMXOl73K0CDQCgT0egf5faYLRCyzIqKYTJAiGklMKQ3YBZq63X/5mTgoNveQl5T39uuT7BLEWClAMA5K7TgV/LoDxudhjC57ghCo9/57/NlFcD3y8FTtgrNP2oxttl5todfz56stIGo/Xu0DJOaJWyEuCDJ1zXS9PMPfnz5kNK2lhuE1d9qN9/jNeEepw4WV/n8wl1oWiALyBJZ10eMDhAhmTeNvv1LYlSgYO5/IK4XAR5GZbrVMOgLxfhX4GWNain9H1ajjOIkDK7x8cwWsa27ZbM/Tmoeur/PoE66IQm96/bfsuMROR72lmuS4jR18svDdynbq/LMHyholbKqwGvKfC00tcBhZiTYLScDcC6ZcDuA8M/np2gKVvKpPH6YLRTXzFhvtp8+6SmZsLwGL5jcavjiExNnrJdyNpuqe7HFmwwWtdU9yFsOqu3hKQZIiIiIiIiIiIiItohwOe3dr9aQiHC7wOJdjon56kTERFRM7M7FuFxClGLYPeZAj9viGB8bqh1YjAaERERERER+TQKMKlW1ldNxrg5knTyYdd/vwJ9/VNJpCgfcmy6fd1+w4ERh7kYEEWs/Y/Wr/vvlx1/SmkxsGZJ0/tL6QB1wR3Abr2BvQ6Cig0Q9NQS6MK+zLoTP9KTI+9DzvEv6U9MeTr7RqSYRRhdNhM9qzc0vTPT9AVWtbUOzgiWLP0HcuM4oLLcvuBJl0N17wvEtwEG7+/726X+nZ2VS/E2vMI+vSbLVT8J1tmYAIByFWdfOT+4ALvvlwBVNUFVBQB0/uoxIP8pR2X7VboPRluwCRARrMi23o5G9Kx3smOJJuEgKcLSCes5a1+FWaut79u0+YIxp4/HlrKDgWn+6zvU5DW4LQ9fAnX3W+EYpmv79wbSEq3Db0560UTVSwaiPPoTVQschOYAgEKjuWzDih1/pqconDZC4ZO5/o/vmfu0kJNkf7d44h3QhTLme9oBv00Fxl3QYLlpChZu0rdn9QqtqBYs0NSJiwaOaJQh06MdEO0Bqr3+5ZdnOwhGK3H3XnriXr75ISUhUPCXchTKpQ//ch9SplQLef1RRJDKCsj1NvvsOiMODUkoGuCbz3U2RVtvvAnzf0D7LofDagbJc5Dlqgs6UrAPki2rAtoE2GUiAuAsGA0A5v/eooPRwnUuVEKswp7pwGJNePHLv5m44uDQB2NbsQszS0+xDhjL3Gr9wGjbUkBXl8FoSvn2fYKRHpm5zkRERERERERERBR2kXd+ERERkTW+Z0U+PkdEREREREQUPAajERERERERkY/R8CrJKmWditM4GE1EgFkzIF+9CcQmQI09te7CdzPwL3HJ5FuhzrjO9/ef0yHfvA+UbQP++dG+4oCRUHe9AeUJ8upOiigqLgESEwdUVfivzN0EqaqEiokFtuaGpr/zboU6+cqQtBUxDM22UG877NrWC6BlbDOHl/yAa7a+FPqG5/wAHHZ6k5sRrxf4fDLkr2+AuT8HLK/u/wDq0FOa3G96CpAUC5RU2pdL9RY2uN3FZTBabJTvAn6rC/LLjQBBghsyICKuA3e+Whj4BJhuqcDGrdbrjiz5wXFfnbw56FG1HutjejiuAwC524Blmty3fttD60QE2KYZZGLkJgtccZDC1R9aPwdfLRA8fTqQh1RYnajUwdswGA3ffwg59GSoA44Nw0itSV4m5PmbgZ8/8y047HSoiU/Ck9oB44YovPuX9X2LmWBi3GDgiEEKbeOAqfMEuduAvXso3HaUQlGAvMNaRuNfH920CuL17thPeeFMhZIKwdeLfavbxgGPjFc4fGBkB1PJtq2Qtx4CPn0hqPq6YLQiTzJk5nSoRsFoVgF29ZVazH0rc6xDzgBg7+5AYmzDxzg6SqF3B18IWmMrcgSBftE50Bjr++AShTP3aZ4wFqKwm/pyUNXUPe+GbAjtk/TrsqOs02MT5n6NdsfsDcA/SSjfQdChLsxJKd8+mU5pJYPRyBnJXu+s3MaVAd6hIpvd1tbUnM59eykszrTu4coPBBcdIIiJCv+jpwtSNJTvOM5KpiZPWTf3eAygQxKQHA/H+6lxUcGHoboNYSMiIiIiIiIiIiIdBoIQUT3h+kUZol0St6dWi3MlEVHLZTeHc34nahlst1Vux0TUvHhFDhEREREREfmohoeIVSrasliMp9HFlP97FXLbycCfM4CfP4XceRrk0+d960xNSkUjsjUX8vW7vnZ+mxo4FG3gPlCv/AHVvZ+j9qmFOG2ift0XvoAsef7m0PR1xFmhaSeSGJqPeeoHoyXVNNNgmq5v1aqwtCv3nwfZsrnp7fzfRb7Xo5NQtKsfC0koGuC7oL2/de5HAylmw2CurjWZ7voRQbz12wAqVIBgtPISIN9dEBsAzFpt/QXJJaMVKl80sO4RA+seNfDFBP/X+qiyWRhcudhxXwrAlVvdB7x8+Ldgmeau7Xhelv4DlBZbF2qjSUSIAIah8NYF1oEJa/KAvG2CLSXWddO8+X7L5LaTIfN+C+UQLUl1FSR7PeSk3etC0QDgx48hZ+0JKS7AcUPsgyBmLAKunSK48G3BlwuA2WuAyb8Idr89cMBrLQONylZXAdnrdtxs30Zh+kQPtjxlYPF9BvKfMTBhTGR/PC9lJZAL93EfipbcHmjjS9FI8VqnfRR6UnzbSiObCy0K11NW5b9sRY6+/OOnWj/Gunl0zRb7/gEgT7MdNNYjDThpWEuOsCFqSL5+x12FpGSoH4ugUjuEbAztEt3XSTRLkZa90HKdk+3ZLugo0SYYLVCILRHg+ywE015zVnjjyvAOJszszpNqajDaVYfYN/BbRtPad8oqVBrwhZnpgtGyNcFourYMw7fffuQg5w9anOa4zok2caHdlxGe3EpERERERERERK0ZP/+iiMPXZOTic0MUMnz/JSIiIiIiImrVIvvKKyIiIiIiImo+Hk+Dm1UqxrJYdL1iUloMeflOvzLywZOQmhpAHAaKFOZD3pvkeKhq/ASopl45SxFHXXiXdp1MvhVSVgLM+rrp/dz0AlRyWpPbiTiGx3p5vYDCtjE1SPJuC1mXyfHA4K7AY6co/O/K0H7MtFfFgpC218C3HwRdVTasgHlsV+CHKY7rqNOvDbo/K8O6B57/2tc0DKpKr3EXVKY+egLxNdavlXIjLnADa5e66m9bhWBVrvW6IwcqREcpdE9TUErhxGEKU680MLoP0Ks9MKHDP/hy48kw3Jw0eOipuFE+Qop3a+Cy9dz4qb6PvbsriAjkitHWBZQCeu/pqr/mdvhA/Wur440m3pxpff871FinScnEIyCrrMNomkrWLYN59VjI4amQU/taFyopBKa9jiMGBddHjfNcNP9gNABYv8JvUVqSwsB0BY/RAvZjvnkXyNngupo6eQLUCz8BBx6H5GTr/ckioy1QkA0paZgGkhkgGK200v81uDxbv13u18v6cU5PsV5eUBp4HrELUtq9PdA1BThzH4VZtxqIi24BzzNRALJxJcwzBrh7b+81COq9+VCxDvYZXIjyKKQkuKuTYJah/YY5luucBKPpzqFWCki0nuIAAKUMRiMnvv/IedkNzZTuFSa2wWhNbHuvbgrjBuvXn/Gqi506B2T6WzBP7Qvz6E4wbxgH2b6/5LUJUmynmbuKyq2X69rybD/sHuPidwKaEowWatXOfj+BiIiIiIiIiIiIiJxgGFDLxeeOKIS4PREREUUeu/dnvncTtQh2x60hPKZtpm52HXzQqJWK2tkDICIiIiIioghhNAw10gWjxdQ/kvx9GlBmEZyTnwVsWun8A5WiPGDTKmdlew8GDjvdWVlqUVRMLKRbH2DjSsv1csYA+wZOuhyY+op9mTHjoU64NMgRRjilCSYz610E7q1Bj+pNWOJxlxJ0UeHbeDXrSqjLHgQ6dAW69gL6DIWKa3h19083GBj7VNMvOldi4piSb5vcjo68ejfQayDQZXeg5wAoQx/qJjXVwIp5QOEWoDAP8uhlzjtKSoF6+bcQjLih44YqvPaH/fya5i1ocDu9OtNVH0ZFKeIrtgLRbfzWlav4gPXl7++hRh7muL9Fm/XrhnX3X3Z8/3IcH7UQ2JoLueNUx/3AEwV173tQh4yHiGDRoT3Ru/cyVBmxztuwMKAL0LujgnzwhL7QyMOgUjs2qZ9w65IMtI0Diius15doQl7ae/O0bcqFI4Gvc6DapLgej1SWA0v/AXI2ArHxQEzd8yS3jXfWxnfvo825t2DCGIWXfg3fFz2GVRjshgxg1DFh67MppLoK2LTaF2K7+0C/wFmprIB88pz7hrv2Ao67GKp9F6hHPkO7lQI87v/YlBsJqFQx8K5ehQWJw9G3E9ChjcLmQvvnyOo1mJFtXfaEofp20pKslxeU2nYPAMgvsR7jJaMVXj2Xv0VDrYfU1AAr/tMHfup07Ab19r9hC7Lu2AYoLHNePkHKkJazGOjqvy7fQTCaqTmmNRSQZJP7VlrlcIC0S5OPn3VeOHMtpLQYKrFt+AYUBmWVgn/WAX+u1r/Hh2K6+OhSA20nWh+Lbi0D7p5m4pYjFdrENa0zmfU1ZNIVdQv++RFyzeGQD5dqPwLzGEByvILViZ3FFYCI+M2ZXs1hdW0w2m6p1u1ZaWow2n69gNlrmtZGrYrqRp8rEhERERERERER7Sp4USIRNcA5gShk+B4b+fgcERERERERURPwtFMiIiIiIiLyMTwNblYr6ysnY+oVkz+n69vLywRKix11LbO/c1QOANRrs6A8nsAFqWXa/2htMBq25tpWVQceB7EJRlM3vwiMu6AJg4twHl0wmrfub28NjiuZgSVx1sFovdoDx1b8gLVZvuSZZG8RDiv9GWcXfwRge6BYfU9/DTVi7I6bo/sAvTsAq7f4tz2gC/DBJQaGPxg4OO3oku/QyWv/fDeV3Hay7489hgCPfgHVqZt/maX/QG4/BSjQpO7YSU6Dev0vqM49mjhSf2P7A4mxQKkmpAoA0rz5DW6n12S56sOAiXiz3HJdhbJJAak15wdX/S3aZH3yS5s4oGdaw2Xy+zTIQxcC5Q4SjGodfBLQcTeoQ0+B2nM/AIBSCl1OGI9LZr6FF9tdEaABe8cP9QUZyDfvasu0hFBGpRT6dwbmrHNXr4NNMBoAYPqbwJk3uGpTfp8GufM0dwOxsn4FzKcm4vmJT+OlX5venI4B/7lNNqxAeGKBmkbWLoXcdy6wZrFvwdDRwP3vQ6V19q3PmA+5eF9Hbak3/gaWzIYs+xeqRz/gqHN2tAMAyTY5iq+mXIzbXhqMyu0BnhPHKqQEyF20mveWZ1vPH/266B/9donWy/MdBaNZL2+vCVsjaokka51vDl65wH3lo88JWygaAIzsqZCR4/yk2USzFFFSY7muqNw6kKg+3fm5CkBslC8gzbQos2aLYFTvSHwXoIiyxSYd2MrKBcBeLsMKd6JP5po4/01BpfUmuEMo5oykOIWXzlaY8IH1Rvt/MwTP/SR483wDJ+8dfH/y2r3+C7PWwZz1NQDrQFxDAW01+zjVXqCyxj+8zGs1sQDwbB96VxeZw/FNDEY7Zz+F2WtCc7FCRbX+sSAiIiIiIiIiIqIWguEmRPUEuz3Y1eM2RuQOt5nWi88tEVHLZTOH85iSqIXgdkxEkUNzxSwRERERERHtcuqFjXlhwKuss7Rjti+W6ipg7s/a5uSb9533/cHjjoqpz1ZCRcc4b5daHHX+7cFXHjEWGG8RbhSfCPXIZ1DHX9y6Q/WU5mMeqRfWU1ONG/OfwQFlf/oV2yO1Ct9dZ+Dpu4dj6qbTMHXTaXg761KcU/yRNthHrj8G5kt3QPJ9wWFRHoXXDl+P1KiKBuXOjv4NC9ftg6FzX8G/561ClxhNqsx2T+XcbLte3TwZxh+VwJ7725ZzZNVCyONX+i2WmhrIXacHF4oGQP1vQ1hC0QAgPkbhKOtsOwBA2zgg+uizGixLP/JIV30YMBEvFZbryg0HwWhZ6yAuvvDYUGC9fM90wDDqXoGydQvkvnPchaINHgXjoSkwJj6xIxStljrnFjyaeyf2Lft7x7IoqcYFhfqAMyvHb5sOydkIrF9hXSAqGhg1zlWbO8vg3dwHRXQYfZDtennxdojXa1umQfn87NCEotWa+gpw1gD8esKi0LXZiFUwGjZkhK2/YEhlBeTb9yHnDasLRQOABX9ATuwBc/JtkA+ecByKBqWAHv2hTroCxh2vQZ19U4NQNAC2QWfXd34SlWbd+/JzPwkemG4/bzQORhMRrMixLtuvk76dNF0wmv3bEwAgj8FotAuQJ64OLhRtyAFQLoMw3Tp2iLvyCWY5ks0iy3U1JlBeZV9fNysZhi/MKTHWev15b/LEDwqDjHk7ewSOrc8XnPla4FC0UDp9pEKUzdkP2yqAU18xMWdtcNunuXktfs1MxsNpt+CTNiejTNXt6HiX658bj+E7RtMpssij9mryxGvz0NNdBKM1Dl1z68JRoQt5rKgOWVNEREREREREREQRiN8NUHML9JrjazJi8SJyohDi9kREREREFHJ2x608piWiZmZ9lTsRERERERHteoy6YIpqpb9qsjYYDWsWA6XF+va+/zBEA/NRn62C6tQtpG1S5FFt2wE3PAt56lr3dQ0DuO4Z4NiLgGX/QLI3QPXfGxgwAqpD1zCMNsLoQt/qhxF5a5BqFuKH9cfgr4R9MT92KExloG/VShx8+zNo23F3AB0h594KvDfJWb8fPgn58Elg8i9A5loc9OhlWIJU/Jw4BvmeNAyv+A/7lc+BAiBPXYuhABYaKTi221T8neAfvpOV0R0dvHn6/mLjgUNOBgCos26A3HGqs3HamfMDpDAPKqV93bIFfwBbNgfVnHrjb6io8H7sdvxQhc//s/5CobgCMO54DXLiZUDmWmC33kjsvzdSr/Nia5mz9hUEcabFFfoAyusFACAmFqiq9C9UUQaUbQMS2zrqL8s6rwS7pTa6CP+3qUB1gASTRtQ5+qA91b4LEq+8D39MPhQ/JR6CfE8ahlXMR7fqTXgn+RyILnCwns412Rj5+mmQ122+4Dn+krC/JkLlglEKb8x092VVx7FHArHXAh8/qy0jlx0AvDLT0eMgJ4YhVDBrPQ58dF+cNWoWPty6V8ibV1Yn2UVQMJrkZUJuPBZYs0RfaMrT7k4V7NwDKtY+KDElwU2DgW1rNN3kFPtCTqz076wP8UhLVLA6MbKg1Be2ppS+ri4YTRe2RtTSSOYaYM4Pjsqqe98D4hN8+xs9BwDDxoT9/W54d+vtVydRSuEx9eGcheVAgibcDABMTThR7Syhm4MAoKxSkBAbukAhal1E9+Kyq7Ninja0OtJMmy/Nfv5TSoLCqN7A7yvtyze4V0AAACAASURBVO33iImZtxoY1dvdo3n9m4V4vsd3O27vXf4fvt54PNK8BfD++xuAOy3rGQpItgmLLS4HOjU6bAoUjNYhCYj2ANUOsoebGowWH6Pw6eUGTn3F/Wu2sYpmDMojIiIiIiIiIiKipuAFrkThZfeZe0v5NogoQjCUgYiIKPLYvj/zvZuIKHw4x1Lr1DKuxiMiIiIiIqLwqxf+UqVitMWifv0U5kvvA7O/05YJuWEHMxRtV3Li5UAQwWgAfEEmfYYCfYbueqcI6QKcpN6JVF7fVcgxqMbBZTNxcNnMuuoJdcFq6rDTIU6D0Wq7ueqQHX93xBacUfyptmyqWYhf1x+Omzs9ipdSL4NXRWFoxUK8knWlfSgaAPXEV1BtUn03DjzO1Ri1RIB5v8FcMBPI2QD0HAisW+a+nYQ2UNc9DdU39KFLjY0bEjgURA0cCQwcueN21xQ4DkZL8xYgQawLlxr10n867gZsWm3dSF6mi2A06/vSJaXubykrgTx5jaP26lOjjrEvcNpEGJNvxeGlPzdY3KdqFTJi+wZs/9htX8MI9Fxc/VjAdiLFAXsovHquwsQpgopqZ3U6tAHUhEcgG1cCs762LpQxD/jmXcioYyCTbwN++Mi3/NiLoK54CCo5DQAgs78Nwb3Qe2H2kagatxSfrUoLabsmLObgrbkw7zkL6txbofoMDWl/bsknz9uHogVj4D4BiyTF+sJAzBB9x5Zb3DC4bHOhvmzvDvp1aUnWy2tMX8hRW014iYhog9HaJ+1yex7UCokI5K4znFfouxdU98DvlaHUM80XDKQLDWoswSxDvOjTy7KKgE/mmvh5uaBTW4U7jlHYvX3d9qybvgwHm3xeCdDdJnSNdnFbc93XyZgX+nGEyfqCndPv1CsNpF0feII4cJKvzJi+wItnG+jfxX6jnrdB8PzGIQ2W/Rs/HC+mXo678x6BWVEOaLZ3j6HftwCAIos86kDBaIah0C0VWGN/+Ayg6cFoAJCg/5jQFafHF0RERERERERERK0PL0okap2CPE+AQU5EIdT0H/ehcOOcR0RE9fF9gahFYMAhEUUQzRWzREREREREtMvx1IUiVSv9VZPRHz7avKFoANRlDzRrf7RzKaWAkYe5q7TnfuEZTEtieKyXm966v7cHo1ny1OXnq16DgINPDNHArEWjBs/k3IScjG7YsLI35qwdhREV/+krdO4B9Vs51F6j68apFNSHi0MyHrnnLODzF4GZ04H3HwNmfuW4rvo0A+qd/6BmZEEdfW5IxhNIu0SFTprMsXGDrZenp1gvt9KvcgWSzFLLdWVGQt2NjjahlfnZjvvL1IQbpSf7/pfqKshloxy3V0u9NTdwGcOAuukFv+VXbX3ZUR/HlUy3L9C9L1R0iJIEmsklow0UP2dgL4eZpO2TAOXxQD36BdCuk7acfPQU5ORedaFoADD9TcjZgyEVviA++frd4AbdrhNw8EkBi7U1t2HKV92w5Qlgzm2CubdUY0jX4LqsL8G0SLQAgF8+h1x1KGRZ4NdiOEh1FaS6Cvjpk9A27ImCOvnKgMUMQyHZJgjErfJqoLjeQ62bO6I9vtelTrtE/bqsIv26bRW+8DQrdv0RtRTy+n3AygXOK6TvHrax6ERHKeze3nn5RLMMKV59iuLYJ7244RPB9IXAGzMFQ+83sTSz7qQNXbCjcnCNQ4XNrjcRlvztvs6GFZCqytCPJQzyNUGijcWG+GfcUhMV3jjf+UVIv2YAA+81MXedoLyq4T9vvQng03+tJ4Mv2/jCur2b12v78BhAmzj9GIotshu9mrnHU+/sjgFd9G3WFxeCxzgmRM8Tg9GIiIiIiIiIiKh140WhFGEYvhXB+NwQhQznulaMzy0RUcvFOZyIiIhCh8FoRERERERE5FMvVKlK6QNcYqSqOUazg3riKyiGXu16+g5zVVwdd3GYBtKCGJqPecx6CS5er3UZoEEwGgCou94CTrkqBAOzl2IWIb0mCx67X+476lyoV2dCWdxH1a0P1Kt/hnGEAZx6DVTnHlC9BkFF6UMlw+GhE60v+D98oPXy9BTnAQH9qlYiUROMVmLUS/+JSwDatrNuJHez4/50QURdtgej4adPgfUrHLcHAOrie6H20KTENXbAsX6LnASjpdXkYWzpL/aFdh/obAwRJsqjcN1hzl4zHdr4/ldKAXbhgBtXWs9DRfmQw1Mhn00Gfvnc/WBPuARqyjKoBz+CuuZxR1VSxyVg+PmJ2OvCZMyamY4b46ahZ2pwCTYxZiWGVC7SFygvgXz6fFBtB0v+/QXmBSMgh7aBHNoGyN0UusaHHQz1xJdQg/d3VFwX4his1OtM3DHVRHmVYHOh9ckTXZJ9oWw6XVP0oUarcvV959mEvDAYjXYWWfgnzKsOhXl0R5gX7wdZ+k9w7VSUAVOecV5hxKHNvu9Ta3h35/s0CVKGOKlAtOY4triiYVsllcAT39fNLbpzqG2mmB3KmvfQmVoY+etb95VME9i8JvSDCYP8EmcnOO7fK/R9XzDKF46WkhC4bK19HjaReHXDf8kTTSRe5UWH67149Bvr+zMvbi8IAG+1PvHLUIDHUEiKtV5fbJGv69UcHnvqzT39OjubC+NCMFVHa3LY3SrnvEhEREREREREREQUOgwDasH43BGFDrcnIiKiFoXHMUQtg922yu04gvG5odaJwWhERERERETkUz8YDfqrJpszGE29MhNq3yOarT+KHOpA/5AiWwefGJ6BtCSG5kpls14Ikdcm9KdRsIWKS4Bx7VNQj0/Th641E3XHa1CpHfXrB4wAzr65GUe0XVoXqAvvbP5+t7tglMIBvRsu698ZOGsfXTCas3bbeovQ3puHRLPMcn2pqpcw4IkC2qdblpMFMx31V1Ih2rCh9BQFqSyHvPuIo7YaON55YKJq3wXqsgf9lv+3Zh+08RZr6z2aexfipNK+7dEnOB5HpBnQJXDYQkwUkBxfd1udeUPQ/cmzLusqBXXnmzBumgwVnwilFNRpE4Fzb3XVTFxFISbNOxOrNgzDk6fYlz1lLy88quEXRvdveQDxUmFfcUHzBTjKmiWQ644CVtuEtQVj0L5Qv5bBeO57qBFjHVdzOve48eg3gnu/FKzZYr2+a4A+42MUuqVYJ45k5Oi/ENxQoG+TwWi0M8iWzZBbTgQW/gmUFAEZ8yCXHwjJDCI4afUioCrAXFYrPhHqwrvc9xEixw5xXjbBLIMCkOItdFzn5+V184CpmRJqwxWPGqRvp6wKyC0WLNokKCjlyQbUyMr52lXq2qf0x2AbM8I0oKarrBbMWSv4PUOwNi9w+bho4J7jQn+sqZTChQcYKHjGg5uOcB6k2FhZFVBeDeRb50XvsDmqK0yb0y4821e1jbdeX1TuPz9og9HqdTOgi/24asVFB/8Y1NpDfzjuSkVwOcRERERERERERERERK0LLyInCiFuT5GPzxER0a6Hcz8ROWM3W3AmIaJaUTt7AERERERERBQhPHWhSnFSiTOKPkaVikFVShdUD9gPVWtWoCpfH5QTcnsMAfrv3Tx9UeQZuI/jouqZb6ES24ZxMC2E7sJ5s94V1XbBaB7rj4nUfkcBb/4DmfoSMO31JgwweEoFvpBbnXMz5IPHm2E0AHoPBkYfD3XaNVBtUpunTwseQ+GHGwy8M0vw91qgVwfg2rEKbeKsH69AQUG1elavhwKQaFqnlZUaifUGEQUMGAGsWexfcO5PjvrLyNGv67X5d8hNZwDFNmlEVoYeCNWuk6sq6txbgH7DfOFcG3yBE0MqF+OftaPwaurFWB7TH7L9tbhb9WacVvwpDin73b7RpBTggHHuxh5B+jl4CAd0briNquQ0YHom5FjrwLwmOf5iqPZdISvnA+06Qo09HWrYQX7F1FHnQD56Cqipdtf+ptW4dt7VuD/uBRRbZAPFmJV4cfpQ3H7olXhjdgxKjUSM3zYVx5R8G7jtgmyIiKP5rClkxTzIJfuFvuHjLoK67hkojyaE00bXFIVwfDX5xPf6Nu3C2EQEePth9Nk4EhuS/APe7ILRlmdbr0tLBJITwvvcElmRD54ASv0DPOX0AcDvFe7mHLtQtN6Doc65BfL390BqB6ijzoHqZZMIFmaj+zibV+LMcnjg2xdO8RZhS5SzZJ8NBUDeNkH7Nkp7TULtIztuiMK3S6wL3fa5ibnrgYpqICEGePYMhYsP5G9W0fb3og0rrFcefibUKVdBPnsB2GwRcrghMoPRZq4UnP6qiayiwGXH9geGdVc4cx+FYd3D+/456WSFJZmCbywOV0JleUxfDK3UB9Ia2+9icjyQaZHRaLXf6SQYrXs7Z3NhQmzAIgGlpyjs0xOYs65p7VS43D0nIiIiIiIiIiJqPXgpJxHVxzmBKGQYNNh68bklImqlOL8TtQh2+2LcTyOiZsZgNCIiIiIiIvIx6oIuOnlz8X7mhb4b7UfDuPZHmM+9Cfz3fLMNR936MpQu6IlaPWUYkPPvAN55OHDh4WPCPp4WwdCE1Zjeur9r3AejAYDqvSfUTZOBmyZDaqohhyQFOcjwUUnJkM49gOz14etjwsNQZ90YtvaDERetcPnBCpcfHLhsusNwoncyLwYAJIp1EGZJo2A0td9RkBlv+xfM2QCpqYaKirbtTxdCFBsl2O2pM4FtLkPR0rpATXzSXZ3t1D6HQ33gCzWQqa9AnpqIParX4LHcO4Nr79aXoZKSg6obCdrGq/9n777Do6jzP4C/P7ObnpCEJAQCoZPQixQFBRQsqKBiwQYKnqJYz3L208N6ep5n1xPFdnbsXRF7+WEFESlKlR4ggZC6u9/fH5u22ZnZmc3uZnfzfj0PD9n5lvkkszM7u5l5Bx0ygO17jfvohVlIZg7UtIuBl+4LaT0ydQ6k9yAEis+QrkXAnNugHrrGPBBSz9vz8d0RuRi4/lrUSqJP05Obz0b7vRvQ/o2rYfs7c9UCZTuBrFy7I02pki3AN+95A432Pzw8oWidukG78uHgh1sMZQylrjkmz5Kv3oaafxN6dbwPevGNWzfuBKAfnrRyq/6UxdmVUC8+DuR0BMYeC0lKtl0zkV1KKeCVh4w7vPs0cPSZ1iesrTFskr89BBkwCnLoNBsVhk9hNpCSAFQGCNhJbRLqne3ZbWsdf3nKgzcudMBjcOpU/1b17IMEFz2v3+nL3xu/rqgBZj+jMLaPQlE+gxTbvB2bgMp9uk1ywhzvF4VFusFoasOqgOdCkVZZo3DqPGuhaM+fIzh5ZOQ+6xERvHmhhiPu8WDRivCsY2VSMQZV/2rYXh9m1s7g9GBPpf8yo2A0rcnGtxp8nR6CYDQAeGSG9+e4o+69QXYq8OGlGoZ0AY570IN3LYTPVdUqIOqewURERERERERERCHSZm4KbSvfZywItC24rcIv2J+x2ThuNyJ7uM8QERFFnTbz/piIiIgigXeYExEREREREQBAxOAtoqq7G3OPzWCalhg4GtJ3eOTWR1FJJs8M3GnkRIjwploAjekMzXma3FFtFhBkEozWlDgTIE98F7jfv96AzH0WyMg27tSxG+Sy+yBzLATgWTFpemjm0XP8eVEXimaXlRvn0zzlDTf1p3n0wxr2NQtGQ2Ef/cmUAnZtC7jO33foL++dvBuOvTsDjm+QlAK5+QXIUz9AioZaH2fk0JOBpJSgh8vtCyAHT215Ha2sQ4Z5+35d9ZfLcbMtH1cs6d4P6DXQcneZdjHk6Z8gVz9qe1W9PrgTu1fm45lNMzF1z+v417arsH51b0zb+4rtuXzsNEjVCpL6+QuomcOh7pwDdc+lUKcOCOn89WR+4GO+GauhHaE0ro/xuYH64i0AQK67RLd95xbj8KTVBkGOxctegnrgSqi5Z0DNGQdVstlGtURB2rbBtFn9czbUXhthYGbBaANGWZ8nAjRNUNwxcL+mIa8FtVtsraM+1MzoGq36o0xSgiAnTb9Pc0oB87/iRV8EYONq47auRb7/+41dFfp6WuitpQqbSq31zU2P/Pt3hyb46FIN/TuFZ/5ViX3gFoOgcjSGmRkFo5XpBaMZHCocTd72Wz3HSgtRMNrQQsHyuRpePlfD8+cIVt2iYXg3gdMheOsiDQsv0/DfGYIlN2goNPgYoCpAoCURERERERERERFFCd7EThRe3MeIQoj7ExERUWzhazdRbDDZVyP4nlbx/bM9/HlRnGIwGhEREREREXk5DG7i9Li9/++0dyN5i6SkRm5dFL06FAbuk5kb/jpihWa0DzcJRjMLxzAar0N6D4Zc+5h+Y+eekMe+gRwwCTLhRMhbm4znOeNqyNRzQxY4JjOuAo46E6gPyzM6rgUz98V3h2yu1lLcsfGmfCNDq5Y0fJ1uNRgtr8B4wh2Bw4F26a8GhVvthTHJvR9ADp4KycyxNc5wvowsyF1vBe449hhg0JjGx0kpkL89BDloSkjqaG256ebt+3XTf1JJYR/IDU8B6ZktL6LnQMgdr9kOwpSuRZCjzwQOP832KpNVNU7d8xJe3nQaLt11Pzq7LAZdmT3/QngupZSCuuhQoMxGeKAJufEZoH2+78L2HSH3L4S0cBt2bR/5AJTD+pk0rvgBAJDrMghGqzD+tYlR6EvPmjWND1YvgVrwYKASiVpu+5+B+yx4yPp8RgG66a2QbmhBcX7gY0uqo/F7KnDZOwbvrgD2VSt4DK4RaHpOlWEQdqRn4XJedEAAdhskA6dnQeqCpcUoGG3Dqqi72Of9Zdb75gQ4twwXEcGXV2mYMjj0c69ILILH5LKL+jCzTIPM5T1V/svcHv9lTecCgHYpQGpi4PrSQxSMBgA56YIThgtOHqkhp0nInYhgQl/BOWM1DOoiSE7QH89gNCIiIiIiIiIiarOi7HNdImptPCYQhQxfY6MftxERURvEYz9RzDM9h+M+TkSR5WztAoiIiIiIiChKGIUiueuC0azceB8qu7ZHbl0UtUTToHoPBn5fatwpRAFI8UBE0/94WXnvqFY11VBXH68/WNMgmr38fDlyBjDhRG/Qz+4dAARolw106e0TXiQOB/DIF1DnjfWdoFtfYNJ0W+sMWFNiEuSaR6Eu+hfw5+9A1yKoYwqB6sqWzfvE997vI8ZlJAsGFAC/GGfVoW/1qoav06wGo2VkA4nJQI3OHf0lgcOkSiv0l2e7TYL8miveD+g/ynp/i2ToWOCBj6EunGjcZ/IsyJijoEq2ALu3A936QhJDmD7QysyC0USAwZ1N2iecCIw7Fli3wn8/dCZAffQ88OK9puuXx/8PUjTURsU6c8y8FurD51o0h6X1/OVG4PQroCZk6HcIwbmUcrsBpaDuuaTFc/k4+Hjv9tqwEti3F0jLALoW235t0FOcH7hPKB07BEhNMglMqjue57r1Q+VKVDsopXSD+IyC0bq4mh1YP3sdOO9WS/USBW3n1oBd1KKXIbOuszZfbY3+8gQLqTutoLhj4D5pXbsCmzKB8jIUWA24bGLVNuPLN5oeIqwEE9X7cYPtMigelemHcyKrSfC3UTDanl3A2uVAzwGhrytISzZav9ApUOhuOGWlCt640IFtexQ2lwJODahoduhzK+CgOwxSyQysSiqC20IwWkaKQO+oskfn7aqVYDQRQecsYHWAj9BCGYxmlWEwmkEGJxERERERERERUXzgTaEUZRhEEwFB/qE4Zfa7iMj/8Tmi2Gbvd3sUS/g6RkQUu0yO4XyfQkQ28JBBRACD0YiIiIiIiKieUfCFxw3lcgGb1xqP7TkAGDQGeGNeaGqp0g/jobZHZl0Pdd004/bMXMO2NscouKs+3PCHRSZjg/uISJJSgIKe3n9m/QaMAu56C+rxm4DSHcCA/SHn3gwJU9CGpGcCfYcDAJROsI1lAw+AzL4J0ntQiCprfYuv1ZBygfHFQMU1Kxu+NgxGk9TGBw4NIgKVVwBsWuPfeYdJClud0gr931ZkucsCjgUATJoOufjfuiFGoSBDDgJueh7qhlP9GzNzgOETvP1yOwG5ncJSQ2tqn64f4AAAHTKA9GTzn7s4EwCjfahoKNBzINTt5+iPvfDOFoeiAYAU9gEe/ATqiilAZXmL5zM0ciIkIRGq3wjgt+/9mtV3CyGTZ9maUlVXQj1zB/DU7S2rrWM3YMRE4O35/m3DxkOcda8D3fu1bD06euZ5QzyMAj5C7eSRAY4FrloAQI5BMNpOLRuendvhyPVNdKuuVSgxePp0qt3iu+DP3w3D1doipZT3fMTT5J/b4Gufx566fzbH1H+tPLbHqIb12lhP0zblMag1wPfhU6vRHDqPA1n3m/UNFWPBaH0tBKPlZTogj34Fdf/fULBmj+11/LpZwWNw7NKa7N5GAUB6RIB91QppZgGOFP/27NJf3jQYrfdg7+c0ek/Cr96JqmC0Uhs51DlpgfuEW347QX474/Ytd2m49PHdWPRLFcq0TABA99r16OTagk/TDvbrvzGhEHscxhPWHy8yU/Tb91T6n2sbBqM1O3T0yA0cjJYWTcFotZGtg4iIiIiIiIiIiCi+8e7g2MVtRxQyTEogIiKKMXztJooJZufZETwH5xHDLv7EKD4xGI2IiIiIiIi8NINQJY8b2La+IUSiOXnie0jvQVAeD9QXbwK7trW4FDnu3BbPQXFi7DHm7TkWEhHaCjEIN1QeKKWgnr3LeGyQwWh2yP6HQ/Y/POzr8Vvv6X+Denyu/XGzb4bMuDIMFbWupATBzDGCJ7/W/8C7uGZVw9dGwWjlWnrjg/rnTq5+MJpatzzg3zEtrdBfnukxDkaTO16DjDkqwMyhI4ccD1z9KNQ/Z/suv/BOSFJyxOpoDbnpxm1ZBuEOVokIcNQZwMiJUGcMA8qbbPMxRwHTLm7ZCpqua/AYyIf+QVie+/8GvHRfaFbSra/3/y69dYPRsGgB1LWP23rOqHk3Ai/eG3xN/UdBHv4MUheA68lsDzR9PUhMhpx5TfDzW5DoFPTKA1a1/BTRkmkjAhx1KrzpZrkGwWgecaD09zXIaRaMtsUkq7Gza7P/wuWLoYqGAauXAOWlOoFfBgFYhoFYjX2VYfhW08dG4V4mywPV4bNeC7XXP6bY4DIIRnPaSP2KoL6djIM76xVkCaSwD+TO19FthQLutpfQ+NFy4zU0zT00Oz40p5R33uOG2SqF4owqLdFvyMxp+FIysqEGHQgs+cJ//KqfAp5jR9LeKmv9UhOBlMRoqtyX2rcH+H0pOtRU4X+vHu3XviahO4p6L9cduzKxyHBeR91b9XYGp4B7dH5+hsFozd7298kXfLjc/FiY3gpBjAxGIyIiIiIiIiIiIiIywSAnohDi/kRERBR1eL5LRBZFSf4aEUU5BqMRERERERGRl8MgGM3tBv783Xhcl14AANE0qCNn+IZtBKsVwpMoOokI8OoaqON76nc44IjIFhTNNINgtI2roU4baL4fG4WqxYMxRwF6wWjHzwFefdh4XP+R4auplZ05Wj8YLUv2YcKsoyFpx0P9czbSlH4wWrWWDBcccMLdGIyWlae/sjceg+pQCMy4yrs/N6O2bUTpir2AVuxfj7tUd0qZvxjSZ4jBdxc+cvSZQGEfqHefAiCQo8+EDBod8ToizTQYLTU065C8zsCzv0C9cA9QWgLpPxKYfJbucybU5MI7oX5fCvz4acsmyu4ASc/0zlnYx/iSu49f8obBWaB2bwcWPNCisuT+hQ2haAAg594C9BkK9c17QLv2kCNOhxSHP52nb8fIBKP9dpMGTQvwvNm2AQCQYxCMBgA71mxEzgG++/cm/UMSAKDAtcVvmTpvnHkdRNGm1iAYLSExsnVY1L9T4D4FWY1fH9jb/jre+UWhr0EOsxZkMBoAvLdM4bhh0RsORRFQZvAalJnr+3joWN1gNHz6KtS2jZD8wtDXFoTyamv9ctLCW0dLqFcegnrgSsM/CgAA3Wo3IMlThWrNP+FseVI/w3H1x4t2BqHCZZX+y9wGJ5PNg9GK8/X7NZXWCofxZIOrUBiMRkREREREREREbRfv5KTWwOdd9OK2IQoZpiXEgGC3EbctEVF84vGdKCZESWIZT/eJCADi+K5XIiIiIiIissUoGEl5gJKt+m05nSDJjakoMv1KoN+IlpVx1g2QHv1bNAfFF8nrDLniAaBZQI5c9C9Ihy6tVFUUMgpG27PLPBQNACrLQ1+PXTOv019+wvktm7fPEGD6lb7LRk70hgMV76c/Jj0LGHJQy9YbxcYXCy6Z6Ls/JTqBh89OR9q02UBiEgCgnXuv4RyljrqkkYZgtBzDvmrejcB3C/2Xr/sN6sTeKHUl6Y7L8vinjMgHO1slFK1h/YPHQLv6v9CufqRNhKIBQF6GcVuogtEAQNrnQzv/dmjXzoMcNxvijMzf9BARyN3vAgdN9m/MyIbcvxAYe0zgiXoPavy6xwDDbuqLNy3Xpl5+wBtQG4yeAyFvbIAk+u5fIgKZeBK06+dDu/iuiISiAUBRfvABQCt/H4Cpe14P2O+2qYLijubrUV++1fB1B9cOw35r1vkff9bs0P/NapqnHO08ewLWR9Ra1MqfoKwcS1wGwWiOhNAWFCKJTsG0Eeb7fF6TcM9Ep+CaI+0di3btA77+Q7+tJdmdv27mlRptXlmJ/vJM33Nq6eYfHlxP/WN6KCsKmsutLIddmQXutia17Fuoey41DUUDAAc86FW7Rrdtk7Oz8bi6t+qZBsFoe6r8l7k95nPV69cp8MEo3T/HLexSDMLYGIxGRERERERERERxrc3cqdlWvs8Y0Gaec/GI244odLg/ERERRR++PhMREVHoRObuMiIiIiIiIop+Dof+co8b2LNTvy0r1+ehpGcCD34CLP4QWLcCyC8E/vwD6vG5usPlqkeAw08Dfv4c2LQGGHwgpNfAlnwXFKfk2HOAYeOBHz/1hvUNGw/p3q+1y4oumsE+HCNk3LFQT93md9GejD+uZfOKQM69GeqQE4BfvwW69AaGHewNXXpwEdShHzoXrAAAIABJREFUWf5jpl0EcUZnCEio/OdkDaeMVPhmjUJaEnBoP0GP3Lqb6uuSPnLdBoENALY78pDr3tkYjJaZa9gXANSbj0NGHdb4+N2noW4/BwBQ6sjUHZPlLvV5LOffDkmN0jSFOFaQKTD6BXVSnHy6LA4HcNsC4IdPgNU/A7W1QF4BMOowSE5HoGpfwEAzOaJJOMnoScYdf/4cSilIgEQd9e7TwDN32Pk2vCZNh4w9Btj/cEiSQfpGK+jbMfixvWrX4oVN0/Hy3hMwvfNTfu2DuwBPn6VhcJfAwSDqmTsbvk5VlehcuwmbEvyDTFZuqMJRzZat3q4/Z5+aP9CCfCSisFNnHwCkZkANPAAy5CBg8IFAv5GQpGZJObUGwWgJBuk2UeCywwQvfW98EVX3HN+985bjBC98p7C22SlOprsUtZKACi3N8rqbztyng/ExQs9vW2DptYDi2C79J4w0C0ZDV+NgNCz7Fmr7n60eFl5ebb1vThSeyqvaGqg54y33z3PtAHRynbc78wzHaHW7ertk/fPqskr/MVaD0Q7o6T0nr3YZrh5prXAYT07Q/16rTOokIiIiIiIiIiKiaMKb2ImsCXJfYagdUQhxfyIiIoopPBcmihEm+2oE92MeMuziD4ziU5zcukZEREREREQtZhSq5HZDle3Sb2t+0y4ASUgEDpzs/QdArfgB0AtG69ILOHqm92bwJmE5REakaxHQtai1y4hemha4TxSTPkOA65+AuutCoLIcSEmDzLkdMsz6Teqm8xcNBYqG+i5LSgH++yXUbWcD61d4A8EmzQBO/1tI1hnt9u8p2L+nTiCHeJ9LeSbBaDucuUANGoLRpF1784/QP3sN7829Hy9lnYzqxAyc/frTOBiAB4IyTT8YLdNT5rug1yCzNVCYFPhnBzaoMMjQiUUiAoyY4P3X3P5HQObcBjXvRsBV69vmcACnXQEcdkrjXEkpwHm3Qj1ynf9c5WXAzq1AbifDWtTOrQ3Bgba+h2vmQY46w/a4SCjuaBywZ+bVjdMAAA54cMqel5HqqcSsgkdR5siCU9Xi7z2/x/VXH2gpXEiVlgDLF/vWVbNSNxht1a5EqNISSJMQ4FWbagD4h2b2rvnd5ndF1Aoq9gKLP4Ja/JH3cUIiVN8RwOAxkMEHAoPG+B/f6kVxMNqoHoJ7TxFc8oL/8UUEGFrYfJngo0s1zHzCgy/rdt2j976LeVvm4LxOD+DNjCmW153c5HAw60DBta9ZP8btrgC27wXy21keQnFEeTzApj/0G3OanR90K/bug0bBhZvXAq0cjLa3ynrfgqzoCQNUbjfwxqNQ//mrrXG5bv0/HLDdYRyMVh9mlp2q315WCbjcCk5H48/HMBit2Y8wLUkwoS/w3jLD1SM92bgtXJINcsarDV5qiIiIiIiIiIiIiIjaFrPfLfImZiJbmJQQA7iNiIjaHh77iYiIKHQYjEZEREREREReRsFoHjewR//GT7RrH3Ba6TscavCBwNKvfJefd5ulEAsisshoH44hcvipwIQTgY2rgS69vUGL4V5n/5HAkz8A2zcCSSmQnI5hX2fUqwvZS1bVyHDvwV6Hf2pHiaMuLKguGA2ZuX59mno4ezYu2nQ+sMn7+IVuH2D+5nMwqfxDKNEP9ctyNwtG697P+vdAIWMWjLavOnJ1tCYRAU67HDhuNlC6A8gpAPbuArb9CfToD0lN9x909ExALxgNADasNA9GO66b/RrPuSlqQ9EAoG+Qh9bxFZ/7PD6m/G1sW1WIlYlF6FG7DqkFkyFykLXJVnzvX1f1KixK8w/DW+Ps5g1RG3NUw7J168sA+B/retcYhNtQZDgc3nMgzeF9/dKaPG7a5jBrc3hDQX2WN3/c7Gu/cZp5P80BadomEnhuv6813++xSR/1378Dy76x/nOrrQF++Rr45WuoZ+/y1pNmkNLljN5gNAC4aIKGapcHVy7wvZjqmMFA1xz/95s98wSf/U3D+p2A470n0PnROQCAgdW/2gpGS0tq/Pqk/uW49rU0W3V/ulLh5JF8P9wmbd8IVFfqt3Ur9nkoyalQx88BXrxXv//OrSEuzr5yG+eDRfnhq8MOpZQ3HPvD56wP6tQd8szPyH1sL7DEv3m7s4PhUK1uV8/NMKrHG5iY16TdMBhN563TlCGC95YZX1CanmTYFDZJBlehVDEYjYiIiIiIiIiI4hqDjija8HkXvbhtiEKH+1PcYugdEVGc4vGdKCaYnotFbj/mEYOIAAajERERERERUT3DYDQPsGeXflu7bEtTyx2vQT1wFbDkc8CZCDn9CmDcsUEWSkS6NP1wqVgjzgSgR/8Ir9MJFPSI6DqjWpOgsjx3iW4w2g5HnrdrXTDaW3uKcX2Pxdjm7IAJ+z7FzTv+gZ616wAA1ZKIW3Ov9pvjrIJ5pmV0rd3Y+KCwD5DX2e53QiGQkWwc2lJRE8FCooCkZgCpdYkVSQVAboFx36xcqMwcoEwnXHbdb8B+B+uOU//3gf3Cjp4JzLjS/rgIykkX5KQBO/dZHzO88kdkevb4LXfCjQE1v3kflGy2PuH6lX6Lurj+1O2605ELbPjSJxht8/YqIMG/b/fa9dZrALzPoeYhXk2DrwIFZPkEeBmEcenO0SxUy2CM+I0xWY/uHJpBrRbHaHXjLISGSZyc+4TEna9BHdWCcFelgPIy/bYEnSd+lLnsUEFqInDfxwoC4PABgjtOMH79EhF0zwXU9FlQ678EPngWRdWrba0zrUleXM/vnsFpZZl4LvNUy+NPnacw8wk3HJo36MjZ/H8H4BDfr50O3z664xraxGecZnmcfw316/WvQcznNBwXoJYm37umxWF4nM7rUYOuRX6LZM7tUEbBaBtWhaio4O2tst63OL91t6da9TPUvZf5BfebysgG9hsPueRuSFIKcrskAUv8L7faZhKMVh9mlquTpVuvpNw3GM1jcEWX9t/roKpHQA45oWHZ5MGC8581vgSso0HuZTglG7x0VNXyUjUiIiIiIiIiIiKi0OFnrq0vyN99MOyHKIS4PxEREUUdnu8SxT7ux0QURRiMRkRERERERF5GwQIeN1BmFIyWY2lqSc+EXP1IkIURkSVG4YZW9Bkaujoo9knjRXu57hKsQU+/Ljucud4vNAc+Wq5w3MJhQLJ30YuZ07A8qR8Wrz0QCXBhWdIAbHXaC2vJdu9CB/f2unVokLP/AZE4DMaIEUlOoNrlv3z2OG4TU12LgV++9lusvlsIOX6O/3JXLdQVx9hbx/HnQbvUICwlyvTtCHz1h//y/HbASSMEDyxq/AVqgqrB30tuDTypjWA0tdE/PCbXpRNcB6DEmQO1YSWqaxV+3ghkLfsIW5zjdft2cm0Bpp4LvPbfgDXIOTdBzrjKcs1ElqVkBO4TLGdi4D6tTNME5x8sOP9ge+NEBHL9fHgA9P/sV1tj05MaXwPVogU4vSzVVjAaoP/aGjqRuCgl/OsQCSYUzk64G+DUpKGv1qIwOrP1SuPXvwJa2gQkeaoxtHop2nn2er/Z9h0haf4JVuJwQA0bD/z0mV+bmn8TZNZ1If+5l1UobCoFeuYByQnm53vl1dbn7dephYW1gNq5Feov+1sfcMpfoV1wh99io3CzCi3NcCpNeQA4kGPcBSXlvo/dHv1+jpKNUDfcDdz9DmTkoQCALtmCYYXATxv9+588QlolYNA4GC2ydRARERERERERERERRSez37PxWhwiW5TBL9aIiIgoSjFsiSjmRTA0jflsNvEHRnGKwWhERERERETkZRSq5PEAe/RDIySzfRgLIiJbxCDc0Ir99MNeqI1qEkCW5yrR7bLDkef9wuHAvQv9Ly76JXkQns88GWeUPYuViUW2SyiuXuW9zO+oMyGTpkOGjbM9B4XOpYcJ/vme/y9JJg/mxZimBh6gG4yG7xdBuVwQZ7OP5xctCDilXPc41G/fA3t2QcYdC4yfGqJiw+/4/QRf/eH/PLp7muCUkYIxPYG3PliLdks/wvSyZzG6cnHgSUs2QykVMDhRVVcCbzzmtzzXbRCM5sjBE78X4qK/euoCPCYaXnvcec7lkCljgcEHQd16FuAySfxITjGtkyhY4nSG73Ihp0G6TRyRax/DsKIHgYXWx6QlNXnwy9coTuga8rrIe42GSwGusF7LHukQuYlA14kAAKeqxcW7HsAd268z/3wl1zhRTP2xDNJrYEiq9HgU7vhA4e+vK3gU0CkT+M/JgmkjjN9r7iw3bPIxuEsrB6Od0MtWf71QNACm4WaGc339NjDxWKQkCtKSgH06YXJ+wWgGT0uHcgMA1PxbGoLRAOCsgwQXPe8/6KyDWud83SgYrZLBaERERERERERE1FbxpkRqDXzeRS8GORGFEI91UY+vR0REbZDJsZ+vC0SxwWxfDeF+bLqakK2FiGJdC+6YJSIiIiIiorjiMApGcwO7tuu3ZeaGrx4issdoHw4kMRly5jWhrYVim9b4kaFRaNBuR5b3C4cTH6/Qn+asgnk4rsvLuD33StslDKxeDjnrBmjXPMpQtChw2aGCkd19l911kqCwPYPRzMiBR+s3VFUA29b7LVafv24+4WmXQyZNh3bpPdBufBpyyAkQLXY+4j97rGBCX99lV07yhqKJCE4ZpeF/B/2MB7deYi0UDQBqqoG9uwP3e+Uh3cXtDY5xFVoazsFVdaFo5grG7A8RgRw6Ddon5ZBPK4CUdP3OwxhESmHUpbdxW5+hwAGTgPRM+/O2zw++phghmgbHtIswP+Nhy2PS64LRVF0YYtfajWjnLgtHeRTHXJKAu3MuxZOZZwDJJolbnY1DvdTTt4esnreWAte95g1FA4AtZcApjyqsLTG+xGjhb4EvP8pNB+45WQsYZBpqylULtfAleGaNBNwua4Oy8iDzdIJt6+Rl2P8etGdua/jaKFitpNz35+g2uB/KAW8wGpZ9A7VrW8Pyc8cJjhjg23fOwYLD+kdXMJqVcysiIiIiIiIiIqLY1UZu1+RN7FGE2yJ2cdsRhQxfl+IYty0RERFRW8czQiICAGdrF0BERERERERRQjMIVaquBPbt0W/L7RS+eojIHgkuHEfe2QJJTg1xMRTTmgQWZLn1A4d2O7IBAEsq8lFtkjHwdoZBMFQA08ueBVKODWoshV5uhuDTKzQsWgGsLVE4uFgwsDND0QIqGmbctmGVT8iJqq4CPjMJRjv0ZGhzbjNujwEZyYL3Ltaw8Ddg9XaFA3sL9usK35CUhET7E6/7DRh8oGkX9cI9usuNwh+tcigXOrT3rVkcDqjDTwHeeMy3c7dioPfgFq2PyNT4qcCz//JfnpIOefgzSFIylNsNrP0VWPIl1NKvgCVfATu3mE4rY6eEqeDoc+bEdrjklT3Y62gXsG9aXTAatm0AAGhQGF/xBd7KmBzGCilevZExBbNSNhi2y4QToZ68Vb9x0QKofiMhp/y1xXU8841+Glevaz1w/9c/2MzjUXh7qf6lR8cOAY4ZKkh0AhP7CjpmRjgUrbQE6oJDvOdcFsnFdwGHngzJ7mDYpyCIfEntj6UNX+emAxt2+fcpKfd9bBiMppo0fPUOMOUsAIDTIXj3Yg0fLgc27lIYUCAY3av1zteTDa5CYTAaERERERERERFRrOBtp0ThxX2MKHS4PxEREUUd0+BSvnYTxQaTfZXhxFGM24biE4PRiIiIiIiIyMsoGM0oFA0AcjuHpxYiss9oHzYz5SyGopG/JiF7WZ4y3S6lmjcR4JSlh4V89R1c23BQ5TdA8mkhn5uCl5IoOHowADAQzSpJSYPqUAhs3+jfuHE11AGTgPeegXr/f8BPn5nPNfW8MFUZWQlOwZGDgCONnkcJSfrLTaiv34WYBKOpr98Fdm/XbWtpMFrHdDc0zf97kTm3Q23fBHzznndBYR/I7a/4BcoQhZL85QaozWuAT17xXX7Xm5CkZO/XDoc3oK/3YMgJ50MpBWxZCyz5CmrJV8DSL4GNq70Dk1Igs66H7H9EpL+V1jP6SJz7+GO4K+eygF3T6w9X5Y3vl5/efBayi/WPN4W1G7ExoTAUVVIc2pTQGUhJM2yXHv2h+gwFVv+s264evAoYPQnSra/P8l37FO76UOHJrxS27gFGdQd65Aqm7ucNqHpnKVBS7r0QprC94NWfjGt0nOvBzDGCg4uBGQcIRAQ/bAC26L9dwOkHaDhxeOu87qmaaqgp9j6vkv+8BxkxIWC/ztn269HggVIKIoLcdP0+VoPRNDQ2qK/ehtQFowHesNkjBgDRcL6enKC/nMFoRERERERERERERBRfgrzhmDeRE4UQ9yciIiIionjFt89EBDAYjYiIiIiIiOppWuA+zeV2Cn0dRBQcu/twSjrkzGvCUwvFtibPpWz3bt0uZY5MVEgK1lZkhHTVyZ5K/LJmuPeB0+BueqJY0rWPbjCa2rAKuPcy4JWHAs/RZwgwaHQYiotCifaD0bDs/wyb1IfPQ90807A9270bIsH/0rSgvX4oqaS1g9z5OtTOrUB5KdC1mKFoFHaSkAi56TmoHZuATWuA9vlAx24Qk/1KRICCnkBBT8iRMwAAavd2oLQEyOkIadc+UuVHBcnOwzEd1uMud+C+afU/1urKhmUZnnI89+cMnNblGZ++Q6qWYvHaMdju7IDVCb3gnjQDnkkz4fYALo83AMnlBtxKNfm67v8mfXz6e0zamo33+MyldPuGar0ugzAnMlcpyUCycTAaAMg/noY6fbBhu5o+BPi8quH1pqxCYchcDzaVNvZZvA5YvE7hxe91ZwhY55NfKzz5NfB/a4EHTxO8uUR/TKITdQFdkaeUgrrEXqCjPPI5ZMD+lvpmpwJJTqDaZXFu5fHGlFXsBdLaITddoPez3mk5GK3JAeq7j6Eq90FMQvVai2EwmsWfGxERERERERERUfzhXZzUGvi8i17cNkQhw6SEGBDsNuK2JSKKXWbHcB7fiWKC6Xk292MiiiwGoxEREREREZGX3VCl5FQgPTM8tRCRfZp+OIuuIWMhs+dC8ruGrx6KXU3Ce7LcZbpddjuy8WnqONQqG887E8meSuxfuRj3brscOe5dIZmTKCoU9gG+X+S//I15lqeQe95vO6Faicn2x2xcpbtYuVxQD5kHgDrGTEJxErBiq/3VAkDH9ua/YpGcjkBOx+AmJwqS5HUG8joHPz67A5DdIYQVxZbRE/qi8N2N2JhQaNovLbHui5pKn+Un7X0FlZtTcEfOFdjhzMXh5Qvx721XwQEPOrm2opNrK/DaV8Br5wUXTh4DPBC44YBbHHDB2ex/73I3HHCJs/F/0fz6NvbRGvq6G/5vnKthXH0bHHCJ/vr15vJfh3+9vnM31uvxq1fne4OjoX+1JKFG8w8rrJQUICXd/AdbWAT06A+sXW7c57l/A6dfAQC47T3lE4oWSo9+rnDlEQpv/qx/gdOEYiAjOfTnLqpyH9Tjc4HPXgcAyNEzgTOuhjTZl9T8m4Fl31ibsLAP5MI7LYeiAd5AyYIsYG2Jtf6O+iCzsp1AWjvkGGzmneW+P0u3wbVjDtUkGK2mCvhuITDuWGvFRJBhMFptZOsgIiIiIiIiIiKKKAazUKTxORfDeIM5UehwnyEiIiIiilf86IOIAAajERERERERUT07oUoA0D6/7YR0EMUCi8EK8pcbITOvDXMxFNOk8bmU6dEPRivVMvFz8pCgV3Hv1stwwe5HgInTgI9fCnoeomgnXYtadPmd3PIipF37kNUT9RL8w2IC2rUNau9uSEa27/JfvgZ2bjEdKmdcgyOXC1ZsDW4rFWTxXJgo3mjHnI07n5iFU7v8z7RfWv3hqto3GE0AnFn2P5xZZj4eAODxBFdklNMAaHDDIBepTXuh3UmY3vkpv+WVWjKQkmo6VkSAObdBXXmcYR/1yHXA5Fn4qbQ9/vVB+K4IcnuAhz5V+GWTfvuUIeF5fVQ3zwS+eLPx8eNzgdpqyDlzoTweYPli4MlbLc0lf38ScvipQdXR2U4wmmoSjFbQA7kGwWgl5b6P3QaHh4agtTrqq3cgURmMJtC7CYXBaERERERERERERERE4J3dRCHF/YmIiCj6mLw+81yYKDaY7avcj6MYtw3Fp/j8U+RERERERERkn8NmMFpau/DUQUTBsRpuOGxceOug2NckZC/LXarbpUpLwdLkQUFNP7zyR5y3+1HIDU9BZt8U1BxEMaOwqGXjRx4amjpiRTDBaACwYZXfIvXlW+ZjDjkBMmAURnUPbpUAUJAZ/Fgiik6SlIxp18/AR+snmfZzOuqCn6qrIlAVxYsUj/7zpVJSgOS0gONl9JGQm543bHdDwxV3r8KIW8MfumcWvBbqYDTl8cBz/Sk+oWgN3nwc6o9lUEflQ80Zb2k+ufiuoEPRAKB3B+vfn4a6bbF1AwC0PBhN+Qaj4et3odxu/c6tKNngz/MxGI2IiIiIiIiIiIgokngzbPgF+zsRbhuikGEoQwzgNiIiIiKi4PBMkogABqMRERERERFRPYfBXYtGklLDUwcRBUez+DFPt77hrYPiQONFe1meMsNei1NG6i4/abjxRX89a9bgxU2nwfnMj5DDTgHyOgPJBq8nbS0QiuJTt+Lgx445CpJqkJ4RrxITgxu3fiUAQLlqoT55BeqjF4CX7jPuX7wf5NJ7AQCds4IPb+mVF/RQIopiMuYoHFLxOYZX/qjb3tuxrfFBdWWEqqJ4kKz0ny+VWgokxdprvhxyPHCAf3DfT0lDcHC3j/CfLaNaVGNL7dcV6JIdumA05XJBXX8y8Nlr+h1Kd0DNHA7s22NtwlnXQ066qEU1FeVb71sfZKZu+wsAIDdd/2fTNBjN4zG+nMuBZiFopTuAX7+1XlCEJCfoL692AYo3pxARERERERERUdwy++wrnj4Xi6fvhaiVmH5WHto/QEMU91T4/2gUtRL+XpGIKHaZHsN5fCeKCWb7cQjP00yPFjxcEFEdm3e9ExERERERUdxy2gyiSE4JTx1EFBwrwWiZOZCs3PDXQrGtyXMp211q2G1DQlfd5UcMAJ6YqWH+g5/hpR8F3WvWo3vtegys/hWH7luE7AU/QfI6AwAkIRFqzFHAogW+kxTvB8kvbPn3QtTa8rsCHbsBW9fbHirTLg5DQVEuISmoYWrDKmDXNqg544HNa807jz0GcsNTkLpQxoKsoFYJAJg8mBckE8UrefNPnDDrbvyQsp9f27G7F0DVngdJSGQwGtmS4tF/vrgkAS5oMMiS8iO3vQw1IaPh8c2512Bu3t9DUGHLTRkSwlC0sp1QF04E1v0Wkvnk/oWQoWNbPE/fjgKrF2lqqLsRo6oCyuMxDEYrqwSqahWSEwTvLTOerz5ozcdPnwODD7RUT6QYBaMB3nA0s3YiIiIiIiIiIiIisop3CMcuBjkRhQ6PhURERLGFr91EscEsGC2CVfCQYQ9/YBSnLNwxS0RERERERG1Cgt1gtNTw1EFEwRELH/P0GBD+Oij2NXku5bh32h7et5MgNUlwwSVj8emwBXhy62z8o+QWnIhPkX33iw2haA2ru+JBYEiTgILu/SC3vBB0+UTRRESAMUfaH3j4aZDhh4S+oGiXmBzcuPUroO67InAoGgC57L6GUDQA6JQZ3CpHZWxFuxQGoxHFK8nOw2WHuDGz9Gmf5SfseRU3bb4O+Okz7wKjYLRegyAvrQQGjg5zpRRLklW1YVvF9hLL80hCIuS2lwEA92ZfEJJQtDcv1DBpACAtfGk7dmjjBKqmGmrBA/DceDo8j82F2rbBu7y0BJ4HroRnbJL33yPXQa1eAs9D18Bz4+lQrz8K5aqFmndD6ELRHvk8JKFoADBMPx9alwNNgsz27DI97/hjB1BRrXDWU8Y3Q/nMV0e9/ID1giIkxeQjxqrayNVBREREREREREREQeJNlEThxX2MKIS4PxEREUUfvj4TERFR6DhbuwAiIiIiIiKKEk6bwWhJDEYjiioOR8Ausv/hESiEYl6TNIQUVYX2rp3Y5cyxPLw4v24ahwNy+f1Qs28CtqwHeg6EOP0/jpSMLMgDC71BCdVVQGEfb5gUUZyQMUdDvfqIvTGX/DtM1US5xKTgxn3zLuD2Dwrx43AA7fN9FqUkCtqnKuyqsHfcmV28AUDngP2IKHYlnH8LHnszF3dsvxa/JA1Av+qVyHdv9zb+vhQYdRhQYxB0lZQC6dQdeOgTYOMqb7/qKqCyPGL1U/RJLUkGXtVvq+4xxNZcMvYY3Ft0Ky53XGqp/5drx+PB9nPwfOYpfm3pUomjB6Vh8mAHdu1TWPqn95z+ucUKf1tg/ULFIwcCQwu9r6fK5YK6+njgu4UN7eq9p4HbXoa6ciqwa2vjwGfvgnr2rsZ+ixYA37wH/Pip5XUbSk6FvLcd4kxo+Vx1uuUIJvYFPl4RuK+mmoSc7dyKnt1y4NAAt0722YotwOptwI69xvM5lM7AshKoNx+HHPOXwAVFSPcc4IXZgmSnIDkBPv/SgzzdIyIiIiIiIiIiimkMQaLWwOddBAT7M+a2IQoZHuuiH7cRERE1xdcFothgtq9GcD/mEYOIAAajERERERERUb0Em8FoyQxGI4oqogXuM2h0+Oug2Kf5Ppc6uzZbDkbLTQdy0n3DhSQjG8jIDjhW8rtar5Eolgwbb69/936W9pm4lGCelCF/uRHq8bn+DVZC0QCgXQ5E83+93K+bYOFv1qaoN64PAxyJ4p0kJEL1G4mcJV/i4IovfNrUw9cCo4+Eqq7UH5yU4p1DBOhaHO5SKUakblfAqzrBVgAqB4yzNdeeSoUbEi8ALLwEVv7WDglwAbugG4x2aNmHwG+FQP+RaJ8mOLjuKXvJRO//VsLRpo0Q/Hd6k9fGJV/4hKIBALb/CXX+IUBNVeCiv343cB8L5Ky/hzQUrd6dJ2oYfov+tmzK0XQD7dyChNxO6KlVY7Un36/vSf+1OV8T6tEbgMmzdM9zWkNWqmDaCJ4rERERERGML+8QAAAgAElEQVQRERFRW8NbNSnS+JyLXdx2RJYFDF3g/hS/uG2JiGIXj+FEFBrMUiQiAIiOK2OJiIiIiIio9dm9UbTuRm8iihIOR+A+aZnhr4NiX7OQvQLXFstD+3YMdTFEsU8Sk4AZV1nvf+a13iCdtsjsfDQ9Czjlry07B83UD3n8+2R7vyqZWfo0evVqH3wdRBQ7HMZ/Y0qdfwjw5+/6jUnJYSqIYlmKyctcVWaBrbneW6ZQ7g4ccP/axpO8oWgADqj6DjNK/+fTnurZhyt3/htY/JHfWKdDcPnhGn643vx1cs7Bghdma8hMbTx/US/co9/ZSihaqHTuCRx/flimHtZV0MnC22ut6YWeO7dC3TwTRbt/CHq9DmWQhFdWAmxeE/S8REREREREREREREQUQaZ3dvOubyJfDEYjIiKKL3ztJooJfN8ao7htKD4xGI2IiIiIiIi8EgLfUOsjOTU8dRBRcMTCxzxpGeGvg2Kf5vtc6uzabHloUcc2GuZEFIA2+yZL/eQ/70IOnRbmaqKXiAAHTNJve20tJDkV6D8q+BVk5uouHttHMC5huW7bmIqvMXf7XBxW/hGm7H0bD2y5BI9umQPk2guwIaIYZRY+XF4KfPySfhuDxElHisnHLpW11udxexROnRf4Apb+1csxpfwdn2WPbjkf8zafh+P2vIGzd8/H92tHY1TV91CPzzWcZ1hXwfHDjNfz4Gk670W/fT9gfWF10kWQx76FhDGksF+nwH2aBpmpRQuA//sQ3Wo3BL1OBwyC0QBgb2nQ8xIRERERERERERFRPOLNsK2KN5EThYbpvmShnYiIiCKPr89EFCI8nBARABj/mXMiIiIiIiJqW2wGowmD0Yiii2YS2lAvlcFoZIVvuFlBrfVgtL4dQ10LUfyQx76BOnu0cftdb0FGTIxgRdFJLroTatXPwK6t3gUJiZBrH2889+zaB/jps+Amz8oxbHp5wNuY+K0Hy5IHNizr6NqKh7ZejIHVy4GdTTqntYOkpgdXAxHFFivn2HoSGYxG/lISjNsqa6zN8eN6hTPmeyz1fX/DFL9lCXBhVtnTmFX2tF+b2rgaUthHd675MzWs3+XBD+sbl+WmA+9cHF1/h03+/iTk8FMjsq6ifMGiFeZXXvkEmdWFxXVybQl6nU2D1vzsKwt6XiIiIiIiIiIiIgoBhiARtUFmf0BSmbTzmEBkXaD9hftT9AtyGzEFg4gohpkcw3l8J4oNZvtqCPfjCK2GiGIcg9GIiIiIiIjIy2kvGA1JvNGbKKpoFm5IZzAaWdHsuZTnLrE8tDjf7II/orZNivczv8wrtyBSpUQ16VoMPPWDNzykYi8w/BBIt76N7YVFwV/SmGkcjJbbsxDfvDAOb2RMwfKkfuhesx5Tyt/RPwbmdgq2AiKKNY4gf5XK98ukI9ksGK028PirX/XgzvetvQo+vnk2CmwGcKnTBgKfV0HE/5y+XYrgq6s0vP6zwrJNQGF7YMpgQcfMKDv/H3tMxFZVlB+4j6b8Q+w6u6wHTzfnE7TWXPmeoOclIiIiIiIiIiIiso53pUYN3iEc3ZQyyUXjtiOyLsD+ovP7OCIiIiIiig9890xEAIPRiIiIiIiIqF6CzWC05NTw1EFEwZEAwWiJSRC7+zm1Tc2C0XJtBKMNYK4TkbnMHKBsp34bj9ENJCsXmDRdv7HngODn7dHfuLHHAKSoKpyy5+XAE/UIvgYiijFBB6Mlh7YOigsiguQEoEonBK2yxnzsN38oy6Foojw4bN/HQVQIqHHJUBOnQfYbDxw9C+JwNLQlOgXTRgimjQhq6rCT82+HpKRFbH3eUGjzbaIXZNbJZmBdU8rwDioA+8p8+5Zshnr4OuDD57wLppwFmTQdMvjA4Nf/0+dQn74CeDyQg4+HDD8k6LmIiIiIiIiIiIhiidqyDvjqHaC2Ghh9JKR7v1auKNx42ylRy5ntR2ZtUfZHaYhaW8DgM75mERERRZ9gz4WJKHqY7KsM+45i3DYUnxiMRkRERERERF5Om2EcSQxGI4oqTW5Y15WSEZk6KA74XmCX67IWjFaUD/TIDUc9RHFEMzlWMxjNmkFjgKQUoLrS/tiDjzdu6z0YyMoDSncEnEamnGV/3UQUm8yO22YSGYxG+lKMgtF0ljX11DfWL1iZXP4uCloQvoWPX4L6+CVg8ULILS8EP0+kTZoR0dUV5Qfuo+ncqNG5dnPQ60xQJk+U8sZgNLV5LdTJfX3b35oP9c6TwI3PQCacaHvd6qMXoG6ZBXi835N6Yx5w1X8hR59pey4iIiIiIiIiIqJYopZ9C3X5ZKBir3fBozcAt7wAOXBy6xZGFBBvhm1dZjeRBwp6IqJGgY5lPNZFPQZnxL23lii8uUQhMwU4dZRgeDeGfBKRGb4uEMUEs3O4CJ7f8VSSiABAa+0CiIiIiIiIKEo4E+z1T2YwGlFUkQAf86SmR6YOin2a73Mp173T0rDDBwhEeEEDkSkGo7WYJKcCY46yP+6fr0JyC4zbHQ5g/HGBJ+rQBTLqMNvrJ6IY5Qjyb0wxGI0MpBq83O+rNr6Cx+NRePTzwFf4tEsGZvZYh//JLcad0rMgT3wfcC4AwGevwTM2CeqJW6BcroDd1U+fwXPhofCc2t/a/KHkTAAycyK6yu653p+5GQfcfst61q5Foqfa9vo6uLahR+06w3ZV2hhorR6+Vr+TxwN14+lQNfbWr5SCmndjQyha3UKox/4BxavPiIiIiIiIiIgozqn7rmgMRQMAVy3UXRfpfDZm9lkZP0ejcODzqvUFe6M4tx2RZYF+F8XfVcUxbttYcMf7Hhz7oAePf6lw90cKB93hwcLl3HZEbR5fn4mIiCiEGIxGREREREREAOrCIBwmYR3NJfFGb6KoEmj/Tc2ITB0U+yS4YLSBxnlDRFTPLGDHyWA0q2TW3+0PGn1k4HnPuBpIzzLukJUHmb/Y/rqJKHbZeY/chDDskgykJ+kv31djPGbKAx7jRgBODfjoUg277tEw/5peyHjuO8iivZDzb/frK7NvgvQeBIw81HLNav7NUI8YBG3V91nzK9SlRwFLvgD+/MPy3LbkdTZuy+kE0SJ76YNDExweIAMuWfkHkCWrakys+MR0XP9O/suuK7kDmtnF//+7EwCgKvYCX7xpOr86qQ9UVYVpHx8bVwNb1vkvL9kMrPrJ+jxEREREREREREQxRu3ZBfz2nX9DyWbg1/+LfEFEFEMYjEYUGoH2F+5PRK2lskZh7lu++2C1C5j7lvk1DkTUxjE0jSg2REnYN48YNvEYS3GKwWhERERERETUyE4gR1JK+OogIvskwMc8ae0iUwfFPhGfh7nuEkvD+nWSwJ2I2jqHybE60SAphfxIj36Qp360PuCwUyyFpUiHLpAnFgPHzQYGjgZGHQb0HgyMPQY44XzIE99BMnNaUDkRxRyzQEszzoTQ1kFxI83g5b68Sn95rUvhs1XG8x03FPj8Sg0T+wk0rfF8XBISgVMuhdz5OjD+OGD8VMhdb0Kmnuttv+ste4W/8pD3BkADat6NgNtlb047UjOAdu2N23N1ksQi4MQR5u+BBlYt011+zN63Tcd9fLmGV+ZoOEX7BFP3vI6X/zwVF+x+JGA9qmQz8M37gbfFrm1Qh2XD8+DVUB4LF6WbbHvs3h54PBERERERERERUazau9u47c/fG7/2uICa0vDXQ2QHb4ZtZSY/f24bIhsYjEYUrV77SaGq1n/5V38ALjf3TaK2jccAIiIiCp0gr+YnIiIiIiKiuJSQCFRXWuubmBzeWojInkChDanpkamDYl+z8KAkVYP2rp3Y5TQPA+rfOlkERLFFcxi32QmoJUjPAcA5N0HNu8G8Y8dukJnXWZ+3YzfI5fe3sDoiihvBBqMl8JhO+tINgtH21egv37gbqDBo278H8Or5xucWIgKMPhIy+kj/Nk0D7v0A6poTgYq9gcoGXLVQ/7rAG7LWfySkoGdDk9pbCnxpM2itqeGHAD98Yt4nt5N5iGz7/ODX3wLHDxMM7qKw9E/99snl7xoun2Mw57QRgvx2gqnDgGO1W4FNX1sv6JdvoD5/w3r/F/4DVbkXGDoeKOgB6T9Sv5/ZDVrCgGwiIiIiIiIiImqrxPvZ2ZLrgNUPAbVlxl0ZgkTU9pju98G2EbVBgV5DW/s1tnYvsOVDYN86IH8C0H5Y69YTlYLdRjweRru1Jn9z2cPNR0SGeIAgiglm59kRPAdv7dN9IooOWuAuRERERERE1GbYCeRgMBpRdHEGCkbLiEwdFPt0bmwfU/mt6ZCBBUBOOm+IJwrINBgtIXJ1xIsZVwKde/ovb98Rct6tkOsehzz2DaRrUeRrI6L4oAX5q9QEkwAnatPSjILRqvWXbzG5j+78g1t2/i37HQx56gfIJXcDGdmBB3z6KtTcM6BOHwz16sMAALV7O9RRLQslk3HHAh26mHfKLTDfr9IyW1RDsJwOwYOnadB0NkWXjFpMnjFWd1wn11acXPaS33KBB//7S5PJ3C5b9agbTgM+fcXWGLzxGNTcGVDnHgTP9adAeTz2xhMREREREREREbVlK+8Blt9uHooWb3hHahThtohuJp+3cz8isiHQ/tKK+1PVduDD0cCXJwI/XQG8vx+w4j+tVw9RFOFLHVFbx4MAEVnD2HAisoLBaERERERERNQogcFoRDEr0P6b2i4ydVDs0wlGm7r3DdMhxw1jKBqRJSbBaBJs+E4bJiKQe94H+o9qXNhvBOShRZDTr4BMmg7JzGm9Aoko9jkChA8bsfPemtqUNIOnRnkQwWjTD2j5Obh07AY58QLIfR9ZH+SqhfrPX+EZmwR1TGGLa0BeZ8g/XzXv02sgkGgSjJaa3vI6gnRgb8Fz5wiSm2TcdsoEnp+ThNRTL4C8+ScwbLzfuH9vuwrj9n3e8HhA1a/4IelCOB3BB6MBAFoSbPbZa8Db8/2Xm9bB94JERERERERERNSGrff/Awjxgbeexgdux/Az+YzcNBGG24bIugD7S2umLy27FSj71XfZj5cBFZtbpx6iKOLhSx0RGeIBgigmmJ1nR/AcnGGrdvEHRvEpyKv5iYiIiIiIKC45EwL3qWd2QyoRRZ4jwP7bijeKU4wR/3CmyeXvwqFccIv+x4lTGYxGZE2wATtkSDp2Ax75HPhjGZCYCBT0hNg5pyUiMmMSaGnKyWA00peeLNC7+KTCMBhN/0KVXnnegNBQkd6DoIaMBZZ8EbI5LcstgPQZAiwsg7r4MGD5Yt92hxMyaQbUY/8wniM1I6wlBjJthIYpgxW+WwckOoGhhUBygnf7SHYecM/7wJ+rgS3rgR79gU9eQccHrsTHGyZheWI/1EoCBlb/CmfXXr4TGwWSaVrLAtBMqJfuhxxztu/CWoMnKBBceBsREREREREREVFcUMDOb1u7CCKKWsEGo/EaLCIfAZMQwvM7M0tW3ae//I/HgEE3RLYWoijjbsVdk4iiAJOMiIiIKIT873IkIiIiIiKitivBxs3bicnhq4OI7AsUAtPKN4pTDNH8PzLMce/CxH2f6Hbv3cF74z8RWeAIMmCHTIkIpPcgSNdihqIRUWgFG2hp5701tSmpBk+NfTX6FwRuLdPv3ykzRAU1Ibe9BBx6MpCZG/rJzeQVeNeflAy59wNg6rlAehYgAvQZArnzdUjRUNOAfomC97spiYJxRYIDekpDKFo90TTvecr+h0M6dAHyOnuXAxhQ8xuGVi+FE25gwyrfSY1Cx4ZPCMN3UGf9Cqgt63yX1VQZ968xCU0jIiIiIiIiIiKKdSH7AxW8KZzCgGEDUSDI8DNuOyIbAuwv0bg/bX6vtSuIMkFuo2jctmSZh5uPiIzw+E4UI6LjPS2PGEQEMBiNiIiIiIiImnIyGI0oZgUIX5DU9AgVQjHP4MLem3bMRaKn2q/rHSdokJBdDEwU5zQGoxERxRQGo1GIpRt8lFJukDu1xSAYrWO70NTTlLRrD+3Gp6G9vQny4orQr0CPwwlk5zfWkJwK7bL7IO9sgXxUCm3+Ysiow7yNiSnG88Ta+93cToZN6qfPGx8YBKPJQZN1A61DZuVPvo/Nws9q9duU2w21ezvUvj0hLIyIiIiIiIiIiIiIKEaY3ijOW7uJrAu0v0Tj/hSNNRFFFoPRiNo6ngsTxTyGGEanQNuF243iFIPRiIiIiIiIqJGdm7eTGIxGFFWcCebtaWG4c57ik+h/ZDii6kd8vW48ppc+ixFVP+Kk4YIP/6ph6jCGohFZxmA0IqLY4gjyuB3o3JzarDSDj1321egv31qmf6FKx6zwnoNLQQ+gQ2FoJus9GBiwv37b/odDdPYz0TRI88+dsvOM1xFr73dzCwyb1MPXND4wCEZDQhLkuWUhLqqJ9c2C8aoNkvsAoMa/Tf32PdRf9oc6phBqcgE8D1wJ5XaHuEgiIiIiIiIiIqII4M2EFNP4/G1dJj9/5YlcGUSxLuBrMY91RNGIwWhERETxLHIv9PxojogABqMRERERERFRUwlJ1vsmMhiNKKo4AoQvpGZEpg6KfZrxR4ZDq5fiyS3n4Ntdx+LFczVM7MdQNCI75KQL9RsK+0S2ECIissbhDG6cndBxalPSDT52Ka/WX76lTH95p8zQ1GNGbnyq5ZOkZ0Iu+Cfk9leAbsW+be3zIefcZL2ePOMwsZh7v5tbACQaPBnW/ApVVeH92ihMzOEEOnYPPrwxALV+pe8CnfCzxrZqqL2lUIsWQH37PtTe3VCzDwT++MXb7qoFXrwX6vSBUAseCEu9REREREREREREYeNheBERBcvs7m3e2U1kXYD9JSqTEnhNpY+o3EYUCmZb1s3TaKI2jufCRDHP7ByO53dEFGFBXs1PREREREREccnqzduaFvwN4kQUHs4AwWgp6ZGpg2KfWPhbCslp4a+DKB4deDSQlAJUV/oslsNObaWCiIjIlBZk6JCd0HFqU9KMgtF0cqdcboUlf+r3j0gw2uADoSZOAz5+yd6455YBX70DJCUDY46C5Hf1Nsz7Bli0AGrdb5DCPt623E7WJ84x6ZsaW+93JTEJqmsx8PtS/8bqSuC374Fh4wC3S38ChxPicEDldAK2GzxJWmLjKt/HJsFo6os3gUdvAMpLzefctAbq3sshJxoEBRMREREREREREUUjFapEh3i6YTSevpdYx20R1UxvFOe2I7IsYOgC96f4xW0byzzcfERERBQCPKUgIoDBaERERERERNRUoGCleonJEOFftCKKJuJwmH/om5oRqVIo1lk5vqcwGI3o/9m78zhZ9oK++99fbb3NPnPOnDnn7vdyd9Z4lYsQhAsRCUFF8EV4IAoxL01iXPCRPElMhMgrbnGL0fgQn4fogxrQKK5IAsqDyEXhEZDlwt3XM2ebfaanl6r6PX9Uz9Jzuqt7eqaX6f68X68+3V31q6rfdFX9qqpP/b7dCZMfl37y92T/9Ruk4kYy8GXfJr35h/tbMQBAQ8b1Oruxot3QcYycyVzj4SvFq4f93mebz+fMRG++kzHv+C+y25vSJ/+kvQm+9pVJ6Nkbf+DqeeUK0t//js5/H30sJQ2unXDnAWN++g9kv/WGxiOXFpPnlGA0SdJNd3UnGG3tSt1b+5d/1Lzspz9y/MsHAAAAAAAABkV8XMFoJ0zLEBqcCKzHPkv5/AlNAw6BYDRgUKX93/+onkYDqEk73+U6BTgZerQf01wcFtdHGE0EowEAAAAA9rTbeTvIdrceAI4fwWhol9NGqADBaEDHzN95mfSHz0hf/Rvp9DUy89f2u0oAgGbcDv8r1SMYDY3NjRk1uvlkpSiFkZXn7t06/P5PN79TeCElI+w4mfyYzE/+nuxjD0ilrSSIa21J+uzHZd/91gOFjcxbf6R7lZk723xcYaJ7y+0SM7cge80t0tMPXz1ybSl5bhGMZl7zNtlPfTh9Qf/w7dJv/ezhKrextvvSvvfd0mf+7HDTN9POtSYAAAAAAAAwSOiBCSBVSiSMTUuEoW0B2tdif+FYDQykmF0TAAAcg1an+9ZaGdObH5kF0D/ceQoAAAAA2EMwGjC8cvl+1wAnhWknGG2s+/UAhpgJMjLPvpdQNAAYdJ2G+LR7bY2RM5dyGr28Vf/+dz/bvOztZ46nPu0yN94hc8fXyGRyMqevkfnGN8n86v3S3fdKmZy0cIPMO98nc/cLu1eJm+6WZheuHj4+Ld3y3O4tt5smZxsOtpeeTl40DUZzJUnmpd8ive57UhdhpuaSz+4wNlcVf9e9il+Skf2/f+xw0wIAAAAAAADDJE4LNjoEQlvQFWxXgy1t/XQ6DhhBLY+h7DODr9N1xLo9yQhGA0Yd57vAUOvh91x8pQZAIhgNAAAAALCf124wWqa79QBw/DK5ftcAJ0U7v5iSJWgPAACMANfrbDrPP956YGikBaNd2dx7/dknm9/Rc+eClPH7/yuH5rYXyPkvH5PzkVU5H/iqzMtf393lua7Mm//3q4e/6YdkvA731X6bmGk8/Dd/RvbxB6TNtcbj97VN5q3/Nn0ZuTGZN/9we9d5+331bw5XHgAAAAAAABhGNiUYjZ6ZANJCHdLaiE7HASOpRUhp2rEaQFelHbEidk0AANADXEIDo+GE3iEMAAAAAOgKv91gtGx36wHg+AUEo6FNpo3fUsilJDoAAAAMC9ftbLp2r60xcmbbDEb7V7/b/C7h//bW0f3tM/P675Wm52X/7LelakXm5W+QedX/1u9qdW5ytuko+5bnNZ9ufxDc5GzS5lQrjcvmCjKvfKNUmJD9k1+T/t8PdljZI5iZl6ZPS87obrsAAAAAAAA4oWISHXCS0Tu4v9I+/07HASOoZdIB+wwwiGJ2TWDEcb4LnHip5+G9249pMQ7g+ggjimA0AAAAAMAej2A0YGhlCEZDm9rprJ4nGA0AAIwAt8P/SiUYDU1kfaOxjLRZvnrcTjBaJbS6/9HG0ztGuu1M9+p3Epj73iBz3xv6XY3jsbnW2XT7wqyNMbJzC9LiE43L1kKtzYteLfOiV8t+/Pdl/823d7bcTvz9t8r5P36ld8sDAAAAAAAAjlMcNR/XsiMigNHWYSdy2hbgADr+n3yso2FlUsYRjAagKc53ARwjWhRgNPCTvAAAAACAPb7fXjmC0YCTh2A0tMuk3a5QM3Wq+/UAAADot46D0TLHWw8MlbkmGcOXN5LbdP7iIWmj1LjMzaek8Wwb5+s4Ecytz+9sQsetfz93rnnZbL7+faftWofMO365p8sDAAAAAAAAjlUcp4w8TNfLYeqmOUx/ywlHoMBgS1s/9rjaFmAUtNgnaAuHF+v2RCMYDRhxtOHAyZd6Tdu7fZzmBIBEMBoAAAAAYD8vaK+c32Y5AAPDuG7rQoAkmdZfGZqpuR5UBAAAoM8Ohg+1i2tmpJhtEoy2up08/9HfNr+b58M/wH/vD5Vbnt3ZdM6B7WDmdPOyuQMb3B1f014Y9lEt3CDz3k/LHKwrAAAAAAAAcJKkhheljTvp6HU6HFiP/dVpJ3LWG1CnZRIC+wwwiFLzhQGMOI7dwInQo2C01MUccfrhRHA0RlNvfw4YAAAAADDY2u287XE5CQBDq52O61Onul8PAACAfnM7vPZtN3QcI2kq13j4ajF5vv+RxjenfNsLpBvmehBohd554as6m+5gmPXc2eZlc4X6SWfmZb/u70mf+nBny06r1rt+QyoVpWufJd36fJlM9tiXAQAAAAAAAPRUaqIDaQ8A0nQYfkYnZuAAOv4Dgypt74vYNYERRyMA4HjQmgCQJH6eFwAAAACwp91gNNfvbj0AAP1j2ghbmJrrfj0AAAD6zXE7m87jmhnNTTYLRtuWrLV68FLj8a+8k1C0YWP8QObd7z/8hAfCrM3pa5qXDTJXL/ed75Ne/gYp02RjPKzrbpX5nYdkXv56mVf/I5ln30soGgAAAAAAAIaDTQs/o2sm+o1tsP9S/u+m4/aD9QrUa7VPsM8MPMLrRlJqvjCA4Zfa9nNcAE6GkxHoPUBVAdBFHf7MOQAAAABgGBkvaO9rZo/LSQAYWqaN31KYPt39egAAAPRbh9e+xuG3qdDcZN6o0Y1Da0Xpyqa0Wmw83Z0LBKMNI/PSb5F94aukT/3pISY6sC3cfW/zspNXh1qbwoTMu94nW61IH/hPsr/yb1ov86a75fza/ycbVqVKSaqUpdwYAWgAAAAAAAAYbqmJDofoeUkvTWAEddiJPDVQDRhBLY+hHGOHF+t20KXdwRCz+gAAwDFodTnAKQcwGrgrHwAAAACwxw/aK+f63a0HAKB/2gnymLq6cz0AAMDQcTsIRrvnvuOvB4bKVL7x8NWi1YMXm09363x36oP+Mz/+O4ec4MA1211fJy1cf3W5m+6SSbl2M34gvfz1ktf6ez7z2n+cPHu+TH5cZmqOUDQAAAAAAAAMv7SAIsKLMOgI5OuBDsPPUrtus96Aeq2SEPp0PKaNBVIRjAaMuk7PkwEMjI6vadFdBEdjNBGMBgAAAADY00ZHyEOVAwCcQGm/41YzSTAaAAAYAY576EnMP/+pLlQEw2Qq13j42rb04MXGN6ZM5qRT412sFPrKeL7MB5+QbrijvQkOhFkb15X53p+WgszewCAr830/03rZCzfIvO3fpRe69fnSN72lvboBAAAAAAAAwyROC0aLelcPACcQwWjA8RjUjv/sq0AagtEAAMBxaJWlSNYiMBo6+JlzAAAAAMDQ8oP2yhGMBgDDy2nxWwqTczL7O9wDAAAMK/eQwWj33Cdz893dqQuGxlS+8fDVbenBi43H3TovGdNGgDFOLDN7RvrV+2VfdUoKqy0KX33NZv7uN0u/+inp/g8lnTVf+i0y1z6rvWW/5R3Sc14k+6kPSx/+DenyM8mI09fKfNePSvd9O9eAAAAAAAAAGE1xSvhZHB5iRvTSRBfQ+3fApayftHXHegXqDWoSgk0JT8UBna4j2sNBl7aGInYRYMQRBHO2JPEAACAASURBVAyceFy3AhggBKMBAAAAAPZ4bQajuVxOAsDQatDJvs7cQm/qAQAA0G/O4YLRzFv+ZZcqgmEylWs8fLUoPXSx8U1Dt84TijYKTCYn+5Z/Kb333ekFm4RZmxvvlG68s7NlP/fFMs99sfTdP9bR9AAAAAAAAMBQilMSHWxKaNqJR+fX4cC66qvUfYWgCKB9rfYJgtGAQRRzOAPQDNeUAA5hQK8G+qdlGzpynwhGRItejgAAAACAkeK3GYzmEYwGAEPLtAhdOHW2N/UAAADot8OEgl93q/Tcl3SvLhgaU/nG59uXN6S/fKTxNM+a72KFMFDM5GwbhbjNAwAAAAAAAOiJtNCTeJiD0QAcXVrAYFqgEp2YgToD2/GfYDQg7U5jgtGAEUf4GXDype3Hx7iPp8aG05QAqOGOWQAAAADAnraD0fzu1gMA0D9Oi68MZwlGAwAAI6JVMNrkXFLmBd8g83Mfkml1HgVIOjvVeHgYSxfXG4979rkW4cUYHpNzrcvQ1gAAAAAAAAC9EacFo4W9qweAkye1B3dvOpgDw6HFPtGvfcYSkNo+2rVRlHYaDWDUcVwATobBuG5ttSguoYHRcIifOQcAAAAADD2vzWC0Vp3DAfTHjXdKj3356uHnbup9XXBiGWPS/8txbqFXVQEAAOivINN83Ne+Uuan/0CqVmQy2d7VCSfebfOHKx940n23d6cuGECTM63LGILRAAAAAAAAgJ6wacFohwlEoZcmuoHtarClJcJ0GJoGjKRW+0S/gtFIfeo6Ui5OtJjVB4w4GgEAAHB8uGMWAAAAALDH99sr57ZZDkBPmTe/o/Hw73pnT+uBIeA0/9rQjE30sCIAAAB9dN1tzcflCjKOQygaDm0sa3TNdPvl77tdmsiZ7lUIg2VyrnWZlOs1AAAAAAAAAMcoTgk9sWHv6gF0gkCZHkj5/5u0zz91HGFLQJ2WbdkABqMZ/m8XoyFt74s4nAFoiusU4CSwqefhvduPW14NjFyT0uIPHr0PBCOCO2YBAAAAAHu8oM1yBKMBA+ml3yrd84r6Yfe8QnrJa/tTH5xcaTfnZPK9qwcAAEAfmak56ZpbGo+7454e1wbD5PYz7Zd97XO5cX6knDrXurMEnSkAAAAAAACA3kjrTBhHvasHgAHVaUfxwehgDpwMg9rxn9QnIE47VeZwBow4GgEAvUFrA4wGgtEAAAAAAHv8NoPRXK+79QDQEZPJyvz4/5B5129Ib/ohmXe+T+Ynflcmk+t31XDSmJSvDbMEowEAgNFh3vzDjUd83d/rbUUwVG47036w1b03E4I1Ssz0KekF39CiENsEAAAAAAAA0BNRSviZJRAF/Ub338HWYfhZ30KegEHVap/o0/GY84D2ddyu0R4OujhlNyAYDUBTnO8CJ0PavtrD/ZgmA4BEMBoAAAAAYL9Me2E3xvO7XBEAnTKZrMzLXy/nn/4HmfveIBNk+l0lnEQOwWgAAACSpFe9RXr1d+y9dz2Z7/8ZmVue07864cS7/Uz7ZW851b16YDCZH/rF9AJp12sAAAAAAAAAjk9a6EkcHmI+J6wXZ2p9T9jf0ivbF6Snflda+/IAre9BqceI6rgTOesNqNMqgKxfbW5avQbmOAB0V1r4GcFowIjjWAigR2hugNHg9bsCAAAAAIABMjnTXjmC0QBgyJnmozK53lUDAACgz4zryvyr98j+wx+UFh+Xbv87MtOn+10tnHC3nzFqp2PLtdNSPpNybo6hZK59VvrWYQhGAwAAAAAAAHoiTgs9iVJvrcAIefg90l9/9977a18vff1vSg73WI62TsPP6NUN1Gu1TwxgMBowIqK0DGF2EQBNcb6LPrIx9121q+Ow7+NdDMFnBw3o9RHQZbTcAAAAAIA9k7PtlXPd7tYDADC4svl+1wAAAKDnzA13yNz7TYSi4Vi84DrJtNFh7tb57tcFJ5DDbR4AAAAAAABAT6SFnpD2AEnaeLg+FE2Snvod6cFf7k99MEA67EROr2+gXst9ol/7DOcBQJyy+0UczoARRxAwBsz5D0t/eo/0gYL0kZdKK5/vd43QpkG9GgDQW9wxCwAAAADYU5hsr3Olx68ZAsBQCyvNx2UIRgMAAACOYrpg9AOvaJ2M9qz5NtLTMHr45VIAAAAAAACgN9LCz2x0iBnRTXNoPfprjYd/9ee7v2wCtAZb6vohKAJoX4t9ol9tYVp4Kg7odB3RHg66tGA0MoQBAANj6TPSx18rLX9GikrSpY9LH32ZVDzf75oNOAK9AQwO7pgFAAAAAOwyjiONT7cuSDAaAAy3tLsSsgSjAQAAAEf1H1/fOvTs1vkeVAQnTzs/agAAAAAAAADg6NJCTw4VjIah9dWfazx86/GeVqMxOir3V1on8rS0GNYbUK/VPkEwGtAvqcFoHM6AEUegEgbIE/9diiv1wyor0vk/6k99TooB2VdbVWNAqtk7Lf/gUftAMCq4YxYAAAAAUG9ipnUZl2A0ABhZ2Vy/awAAAACceMYYfeNd6WVunW8dnoYRZLjNAwAAAAAAAOiJlB+VszHBaABS/h+n0/CzkevVDbQwqEkIBKQCBKMBAE6Gr/xM4+F//d29rccw4boVQI9xxywAAAAAoN7kbOsyrtf9egAABlMm3+8aAAAAAENhYbJ5hxnHSC+8qYeVwcnhcJsHAAAAAAAA0BNpwUYEoqDv6Ijcf2nroNNxaYFqwChq1db1qy1kX20fx6thFaXsBmnjAIyA1NAkjgvAiTAg+3HLqwGaFGAkcMcsAAAAAKBefrx1Gc/vfj0AAIMpSzAaAAAAcBxunGs+7p4bpJlC8+A0jDDDbR4AAAAAAABAT0Qp4WeHCkYbpl6aw/S3DDl6B/dZyueftm5Yb8ABAxqMlhaeavg/3mNBezjw4pRVFLP+AAAAABwT7pgFAAAAANQLMq3LEIwGAKOLYDQAAADgWNx3R/Ob4r/1+dwwjyboTAEAAAAAAAD0RlroSXyYYLSThiAL4MhSA2E6HQeMoFbhSmnH6m7q13KBARKnnSpzOANGHOe7wIk3IIHeLS8HelONAdLqAxm9TwSjgWA0AAAAAEA9v41gNNfrfj0AAAPJEI4JAAAAHIsX3iidm2o87rXPJfwKTTjc5gEAAAAAAAD0RFragx3mYDQAR0cwGnA8Wu0TfdpnCEYDUsPPCEYDAADtOOrVMTlgwGjgjlkAAAAAQL12gtE8gtEAAAAAAACOwnGMfur1Vwegve3FRrcvEIyGJgy3eQAAAAAAAAA9kRZ6cphAFHppoisGNCwIibT9vtNxwChqtU/0bZ8hGK1tHa8j2sNBlxqMxi4CjDjOd4ETb0CuW2kyAEgSPdkBAAAAAPXaCkbzu18PAAAAAACAIffGe4zygdEvfCRWKZRe9wKjf/EyQtGQwiEYDQAAAAAAAOiJtEQHG/WuHgBOoLTe252OA0bRgIZAHiYgFRhSUcpuEHE4A9AUDQSA4zN6LcqAXh8BXUYwGgAAAACgXhC0LuNyOQkAAAAAAHBUxhh98/Okb36e2++q4KQwBKMBAAAAAAAAPZEWekIwGoBUBKMBx2NAO/6nniOwH2M0xCmbelq+MIARwLEQGAIp+3EP93FaEwCSxB2zAAAAAIB6fqZ1Gc/vfj0AAAAAAAAA1HO4zQMAAAAAAADoibREh7RAFKAXCBsYAKb5qNTQJAKVgLa12if6ts9wHgCk7X5poWkARgFBwAB6g0toYDRwxywAAAAAoJ4ftC7jEowGAAAAAAAA9JzhNg8AAAAAAACgJ1LDi6LDzOjIVRkY9Dg9QVhX3ddp4ANBEUD7Wu0TfdpnCEg9hE7XEe3hoEsLPyMYDQCAEy71+5/eHej5GgqARDAaAAAAAOAgP9O6jOt1vx4AgMFTmOh3DQAAAABgtDnc5gEAAAAAAAD0RJQSfjbMgSj0Om0fnxWaSds2UscNcdsCdGRQg9EOE5AKDKc45ZBFMBow6jo8FwYwODq9pu2xAapKb7T8g0ftA8Go4I5ZAAAAAEAd004wmud3vyIAgMEzMd3vGgAAAADAaDPc5gEAAAAAAAD0RGonUAJR0MLI9c5FvbT13+k4YAS1akv7FSZIiCGgKGX3jNhFAADAMeAKGYBEMBoAAAAA4KAgaF2GYDQAGE33vKLfNQAAAACA0eZwmwcAAAAAAADQE3FKogOBKJAkY5qP6/o20iosiO7D/dVh+BnrDTigVVvap32G84BDoF0bVmmnyjGrHRhtqee0NBDAiZD6YwHHtx8fdTG0KMBo4I5ZAAAAAEA9P9O6jOd1vx4AgP75B29rONi86Yd6XBEAAAAAQJ20jnYAAAAAAAAAjk9a6ImNDjOjI1cFJ5Ct9rsG6KeOe3fTXgB1WqUh9C1MMOUcgf/LOx4ERQ68tPAzgtEAAMBxGNjLAQA9RTAaAAAAAKBeO8FoLsFoADDMzJt/WDp1rn7gt/0zmXM396dCAAAAAICE4TYPAAAAAAAAoCfitGC0lHGAJMVhv2uAvuo0/Ixe3UC9VvtEn/YZzgMAxSlJJGmn0QBGAee7wMnXadg3uoukOIwmerIDAAAAAOoFbQSjeX736wEA6Btz9ibp//wL6aMfkL34lMzzXyq95LX9rhYAAAAAwCEYDQAAAAAAAOgFmxZ6QiAKpPQOp7bbwWh0du2/DgMfUrcb1itQb0A7/nMeAChK2Q1iDmcAmuF8F8AhtGoyaFGA0UAwGgAAAACgnk8wGgBAMqfOSW/8QZl+VwQAAAAAsMsYrtIAAAAAAACAnoiPKRiNjt+jKa72uQJsd13XccBZp+OAEdTyGNqvfSbtHIH9uE7Hnwef46BLCz9LC00DMAI4FgInH/sxgAHCTwkDAAAAAOr5QesyLjnbAAAAAAAAAAAAAAAAAIAhFUdpI3tWjd4jtOlY2LDfNUDXpe0PaW0E+xjQvgENRksNSB3mcwRgT1owWto4AKOOBgI9RLjXidfyamDkVvGAXh8BXUYwGgAAAACgXjvBaJ7f/XoAAAAAAAAAAAAAAAAAANAPcUqwiU0LTQMkxdV+1wDdlhaMlNY7O3U6ApWAei069vcrCYH9GEg9VSYYDRh1NAIYEASWdy71mrZ3+/joBZ8BaIRgNAAAAABAPT/TuoxLMBoAAAAAAAAAAAAAAAAAYEgReoKj6HYH7Ja9g+k93H1pn3E3xgEjaFDbOs4RgNTwM4LRADRFyhF6icDyzvUoGC11MUecHsDw8PpdAQAAAADAgAnaCUbjchIAAAAAAAAAAAAAAAAAMKTi4wo9ad5L05aK0sUnpZXL0ulz0vz1Mq57iHljYNEBewR02FG8Rx3MgeHQYp/oWwhZ2jlC1LtqnAgdtmu0hwMvStkNCEYDRh2NAAZEtwPL0XW0Ju2pxL6WqzNaupTXLbNWGd/0u0rAsaInOwAAAACgXn6idRnP7349AAAAAAAAAAAAAAAAAADoh9SwlaMFsdj7PyT7mz+rX3v8euWiol6z+SfK223pOV8vvfv9MtOnjjR/HI21VltlKfCkwOuwM2m81wHb1sJdjKFj6lBJDe3pxjjgZKqEVhfWpLGsVKpK41lpLFPfJpaqVuXqTrsruU5tXMtwrD7tM6nhZ/0KaxtO1loVK1LW37ddYCCkhZ+lhaYBGHWc76J3SuWq3NiT7xCQdngnI9B7cGrSuTCyurwhXdmUKpEURlIYJ+dTxYpU3rf5bhddPf3k2/VM5Zy+tHWXHtm+SVeqc9qIan2B75e++E7pzrN9+VOAriEYDQAAAABQ77pbpVxB2t5qPN4YfpUSAAAAAAAAAAAA6CNjzI2SnifprKQxSYuSnpD0SWtttZ91AwAAAIZCnJLokBqIkjJZHMv+zPdKf/B/KZKjH7nlvVr0FzQWbej5pc9pZnlF629/UCunjIwx8kwsV1aeiZVxIq1WfW2Fniqxo63IUyUymvCqunlsU+cKZc1kQ02PuZo/ldWZ+YLmZ7MaGws0kXN0ekLK+sMbKBLFVo9clr50XrqyaRXHUmST1RhbqRpJz6xKTy9bXd6U1rYl3036807nJWOSzqYX16Unl5POpzuMkRwjGVk5+1/b8zKyyjolZZ2SYusosq5iOYo+NaVYFYWx0VbFyGrvszeyMkYykhyz93qnlDF7rzNurNlMVVk32p1Wkow9LYWfrpWz9eOMlf4qK8WPSrXxxiYfhjFWMo528ohM7R+z7++c87Z17VhJ1+S3lR0f15lzE7r92oxuvWFM3vikHG847x+11uriurRZrh++XUm2ncsbSThPKZQ2S9Lywz8lx8SKraOVcEqr4bSsNXJNJPfSs2Xyse5/xKoUSi+7zShwpfWSldl8jdy165JyJpJnQmWdbW1HeYX+nKpPRAojq82SVdaXpnLJOt3te24lu6/7985wa+1ur3Bb+7d+GklxLBvV2i/XlY1jqVqRjW0SBmltMj6sJK9lJOPImuRZjpss29pkGlkpilSNjbZjX55j5TpJoODpSUc3zvu64ZqCnnU20JnJJNhoLCPlg+EOCiyWrRbXpNVtyXWStmbn8ZVF6W+fScY7RvIcyXOlTC0QbG1burwhrWwl6891kjAo10nKViOpWLGKk9UgqwPPbQxb207auiubSfu4U7esJ03lkzZxZ9NxjbS0lXTK99ykDq4j5fykztVap/1qlOw7lTApu9P+RnGs1W3nqs8o64SaDqqqxkbFyFMxqu/mPOaHOjse6WzhOTpb/nUtZBZ1Njivs5nzOhss1p7PK9e3YLS0c4TOEqGstXrokvTAorRatJodM6pG0nbFqlRN1teF9WTdrW8n20AYS3EYKYqlami1WZYiaxRb7W4jyevkCLEzfLtqtFxMxvuuFLhJYJ0knV8z8t3kc61GyX5ayEinx7V7DHSM5Dg7x7Fk2/3sU3vt0b03WnkmSgaUv17a+vPDfyBfuUXr4boeXs1oK/RkZDXnb2vGL6tiHW2EgULryDOxPMfKN7Gm/IrmM9tayG7rTLakhWlXZ07ndfrMhKbnp3V60tGp8SOEng65OLZaLyXrNR9IfovPKS0YLW1cM6Wq1fp20obEtv65EknLW8n52cFxca29ObjIRpkt9kCphmUaTtdZuZM0/7brMILzv7AufWXRqrhZlmtDZZ2qZr2STmUr8p1kq0qOs6b+GCxz4Bi8N16SrjuT1Rvum9P1c8N1bm2t1Xo5p+3yfHJdZF1F1lXFBnq6fI0WH3q+VtZizRSk2TEj1ySf0TOrybn40mYyn4mcNJFNjjPFSnIcvLKZfH7ezrmLn5TNeNJ2VVotJsfQAcpsQp9cWJc+84Rk7ZSkkiTJVSjHxHJNJEexPBNq8vORpgvJuW0+kM5MGmX95Jw38JLzI99Nzn8dU/9cCKRckGx/Gc+okEkCrXaCrWztemynHdg9f985T4utbFRVXKnIGkdPr3mKjaNrZoyscevP5WOruLwtWyrKRnHyPo5l41iVSqzl9arCyKrgx5rKxnpiK6/xnKOiNyZXkbxCQUE20KlxozOT0sKk0ZkJaWFSGssO9nlRq/35uPb3jZLVlc3kmsiY2jVN7bomiqX1benSRnJNX6pKG6XauflqrMvrsaphrCiKFYeR4p3zcRmVYk/lSqTxwGo6b3fPnSuR0VLR1cNLrhY3rr5eai4r6adSS1xZqUhnM0f6PIBBQzAaAAAAAKCOCTKyz/u70v0falzA83tbIQAAAAAAAAAAAACSJGPM6yW9XdK9TYosG2PeL+nfWWuv9K5mAAAAwMlgP/J+2Z9/e5Lo4bi1ZA+n9mz23j/9cPOZPPx56do2l/eF+2X/4LVSpSz9zcd2h/95/qVa9BckSZvuuP6i8JK9iVbb/3tWwqyeKI1LqWf/SUjLtNnUvL+lqUykuVxVp8akXD6QF/jyAk9e4CtXep7yV35IgVNRYCqa8NY1460o65QUZAvKPmFVCJLOwTshObkgCTvy3aOFHVlrtVpMQqieWZWeWbG7r8+vWi1v7XV6fexK0glVkm6blx5fSoLNusHapDOstP9vM0oyqqXNaPzqiVLiqndCEqQkwCbNZigtlYMmY0+lTnsk6/tef7Z+1HR8RePaVsZEKrhVzQYljfuR8hlH4zlH2SAJ4ZsaczU5ESiTDRTkA40VAs1MeMoVssoErrK+NDuWbDueIznO8XXILletLqzvbDvJ9nNxXdoqRVqrhSWslR0VK0bVMNbWdqSHrxitlA7T1fIHm4+6Iu2P2fjAZ/b31r6l9mjiGWknKq838t2Z7dOSvrTzpj4oylWkCaekca+qvG81HVQ1nalqMhNrvOArN5ZVNp/R9JiryQlP2cBVLpBmC0YTub0gp7FMEojh7wvH8Nzj+dyKZavza9IzK9L5Nbu7LW2UpHJV2qokQXnhvmCwpU1pcU1aLx1LFfbpbrpHJUweW+UkBO14Ne7kX4o9Labsb5tVTw8ue3pw+bSkNzUtV/jLonyzuRuONeaFyrp2d5vIebFybrR3nHONfE8az+yE0RnlMo7GxgJlMt7uuJmCUeDtBV+4+wLhJnPSVNFVWDkl31RVcLcUOHuNvo1jXVhN2qArm9KFteT10pZUqiZhi8tbVmtFq+1yrPVS8tlf3jLaKO//vNpd70cL1CmHyWNjXyjkTiDajq2y9NiB0Mg09z9mtNd1faH2OKS1+rdWRpereV2uNm+znipJX9hIm2nSFnkKNe6UNReUNeZHKvixxrJSNnCUDRzNTbo6NZ1RYTwj33eVqQWjFIIk9GQnJCXwktCemcLgBD5GcXK8u7QhLa4mYULFShLS+dhiRV96sqIrG1aKQimKJMfRetnR4nZGq9VA8b599oy7plsyS7p9cktnphzNz2Z05kxBC2cnNTOTT23rDuYLP7Fk9cdfsPrbp6wuX95UtL2tqFxRqRSqUol0sVrQQ9VTsk3aDGAwZGqPY/Il6R0flZ43u6pX3mmUy3rKZhwVcp6yWXc3jNRzpHxgNDuWBDFlakGzOX/vemznPOg426HNktXfPiM9uWT11EpyHuQ60qnx5PpocU26sCZd2tgLj96uSg9dki5vvL/F3O2BZ6D7InmKrFTdt9mtr0hPrewv1ek22el0fu3RzvxytcdRXL3vFZyKFrLbmshKhZyjsaxRoXhZk1++Q9Onfkw5W1LWljQeb6oQbykfF1WIr1fuAaup2mnZwe+IxrPJ46ht0lPL0m/9dfpn++MfsnrBdVanJ8zuddrimnR+Odb5K2UtrsRa3HAURlYZJ1beDZUzFYXVWNU4CShbrI5rLe70szVKzsfTzsl7G+m09JlPS3e9uKfLBLqNYDQAAAAAwNUmZpqPc7mUBAAAAAAAAAAAAHrJGDMm6b9KemOLojOS/qmk1xljvsNa++GuVw4AAAA4Scrb0toRM4QP07dzeVH61NWn5b812erU/vit2DGtVMakiqQNSZcalXpR7dHEX8XNx0nyTaSCFynrxfKcvY764zmjwDPyHFsbbjUWJK+LVaP1kvSli65Wyof/4davXjz0JDiCFWdaK5pO3sSSSrVHahjNQVdvR44iZVTVuCkpMJECJ1beqSrvhrvbjO9IWd8q7yfbl2uSzteB76gUSl9cyuvJ7YKuhIUmy20UuOI0GY5uieRqJS5opaKkPWoZxtV+eEbWCZVxIuWcUGNeKN/dCbUycl2jjCflfemjTyWBhm9+7paymSQksxK7euDJsh5a8rRabRZIiEGyFR8IyaocZW62yetGXiVpcfddxpSUd4sadzdUjMd05Q/Tj5WJnRAF9FooTyuxp5VSITl+pWp/uyg4FY25FQWuVeBYTWYiTWcjZfzkHCif8zSWkTImVN63Gg9iZTKOctNTGit4ygdGWV+azu8Fz07lkuOcWzvmuU7yvhDsBYo+sWT1p18I9Rsf39Zfnc+pGjc7pjULX2nsQjSpC8VJfaKo/Zt7W378Q1alxx+Uokh/fvGUPrc2vW/smHbCZQFIn1sa1+f+4uDQg+1N63Mg18TKuLECV8q4tTbGk3zPKBcYGSNN5aWxrCPPd+W7Ru6BoFlrpYcuShfXrT71aKxKxDkyMOy24kAPFwOpuH/omDR9Y/OJQkk/l36+65pYGScJL/aMVeBZjde+A/JcyfMcea7Rp59ufm7y6/e3bvt++WPNrhWNpGzL6YfRUgffqwGDjt7sAAAAAICr+Sm/ZOLxBQkAAAAAAAAAAADQK8YYV9L7Jb36wKjLkj4raU3SzZKer72IhnlJv2+MeYW19hO9qiuAAWZrHUPMYZJcAAAYQlHU7xpo22T1u+Pf3O9qdEXVulqtulL1wIjVvlQHJ0gsV9tytW2zSZ/mdnKFgANKsadS7GlNmbZCst73+YMhevmG5YA0ZZtVOcxqJUz5YXIMva040FYc7J0DFVOLH2DVTvDRDkeRxkxZZeurLF9JwGezUND++LkHbu53FYCREllHxdBRMUzeX2zZBrVqcwhFA9C5yDoqRo608xVcRbpwqHMjdGq5Qsg3hg/BaAAAAACAqwUpX4K4BKMBAAAAAAAAAAAAPfQTqg9Fq0p6u6T3WGt3u/kaY+6U9KuS7q0Nykj6oDHm2dbaxV5VFgNi6dPSY7++995aKSpKlVXJ8SR/UsrOS8G05GQkx5ecIHm4gWT8vdc7w/eXaTTMeNrtyGlt+6/3D4tKycPGko0k1Z5tLMWhFG4kzzaqHx+HUrgpxVVp7UvJ3xluSPlrJK+wN4+d6cJiEhAWVa6el42TR7SdPJIPsP6zbDps//AW0+y8bjhtq/H75x1J4VZ93RXvvd75u6Ni7e+sMY6SLEVTC0tzas9mb5xxJS+fvN75nGwkVVb25pO/LtkOjJs8HE/yxpLtYXc+Kc/GlTKzUvZ0Ml1cldys5I1LXi4Zr1q5nfJuNlmvO9ueV5DiSm3YvroYtzZ+rMHfWwuIIyju6OIwWW/7t5GdbS4q7dvX4/rng8PCrdr6tlJUrs38KPtRl/fRqLzXTpSXOjCgMwAAIABJREFUpNx80nZ2zErVjaRd9sdVv62afdvqwe34wDa98964yT7hZmvteXZv33S82j7q1fYZ9gOMGHsMaUtH7CP+R2Ov1oY7cfR6AAAAYOTEcrVuCXIEAABAvaUywWgYPgSjAQAAAACu5qUFo3EpCQAAAAAAAAAAAPSCMeYmSd9/YPAbrLW/f7CstfbLxpj7JH1Ue+Fos5J+VNL3dLWiGDzrD0oP/ud+1wKDbH8ojG1eTNW19PkUnzyW6vRfs6CpfQFqTpCEZNkwvbxxrh5XulS/uMINtWBBPwmBqwt085JlSUk4nBxdFeaVFvR1VchXs+HtlI2TILzS5b1wvf1Bg3FVisvCCeb4kltIQtT8CcnNJAFvXiEJLXQytSC1fdunP5YM391ePcnNJduD4+9tG9lTSYDcbmDjvgBHW5VKV6TylSSEM5jZW5YTSMGUlDmVhF5KybD9wZhxJQml8ydrgW8H9sVGYYh1w9zk7zDeXpm68QeCHB0/Caxzs5KbT/aHuFoLmHP36i1Hctxer8XREEfH99nGjYLRrORqr+lv9HBrD0kmn3bwPMCRlLG7mZCy0h3VB/Q9K+/Rb4+/TkveXMd/CgAAAAAAAIDh49mqcvG2zL7/0zkzdkELwQXdlHtEdxW+rOsyT2rOX9Ksv6Tpj61p7s6flnRX/yoNdAG92QEAAAAAV/Mzzcd5R/l1WwAAAAAAAAAAAACH8KOS9v8H3X9rFIq2w1q7bYz5TklfkLTza0j/2BjzU9baR7tXTQA46Wx92FijvJuodHyL23r8+OYFHEVcleJVqboqbT/T79oMB8fX1aGJOvB+X+hiXdkD5dys5GT3jWvBWinaSgLb3FwtqHF/yNtOcGPt2c0mgXOytWEHyu9M43i1ADp338NJnt1sEqQnSdsXpa1HpYk7pLEbDyzvwLydIAmZk62F59l9IXq196XL0pd/ItlObZgs48wrk2C8uJqE45UuSXFp7+/fbc93Hqp/b60UVWX+SXXvc9ufh9cF5gYr87Zq3bDn6PP6peif6ef0dv2v9VfpE6sv0lJlWjlTVN4pata9Is9ECq2r0PoqxVmV4qymnFVNOJvKmJKypqzACXW+sqDHSjfoSjij1XBSy+GMLoTzWgwXVFHKfYBDylGka92nlFFFjonlmlCOsXJMLM+t6obs43pW/mFNByuq2EBGVivhtBzFyjhlTXprujbzlBYy57XpZLTh5rTuZrXlZrTpBdp0s9p0M9p0M9pyM9pyMqpGGUWRJ+PEMrLJs4lljJUxsTyvLMdJAvmsTTa45LSj/nUyTpI1srX3YTWjcmlcsXX2NmkZyRpNV4q6c+2y5subu9Na7T3vvm4wbrfMgXHlOKPzlQU9Xb5W58sL2o5zerJ0nSK6IGrGLGnWWVbWKSnnbmsmvyxrjYyxmnTXNO0vyzdVRdZVJFer1WktVha0Fk4o55b0rNxDmvRWJUmRdRXLUWRdVeKMtuOcCu6WfFORZ0J5JlTWKasUZ7QRje92gt7fGdqYBsMavN4pVzfsYDkrGbsX4JgchkzyemeafcHKe/NJyjk2VsHZUhR5qlpPxSirJ6vX6vHKjXq0eqO27NgRP/3hci5+WneWH1BGZYXyFBpPRZNXxQQajzc0Fy9pzl6RZyNFxlUoV5FxVZWvkslqLl5SoFJtL689HCtjrYxN1vnucLPv2bEysVXObmtel3TKXlJgqqoaT1Xjq+jltWqmtGKmku3GSOvOhObskqbMqiK5Co2n0PG05RQUGXd3e/XcUDmnqJy7LVdRrf2N5CqSZ0L9TeUFqiijyPX0TZMf1mo8qY14TBm3oqzZ1nSwrLxXVNV4KjtZXaqe0vnyWZ0vn9ViZUHnK2d1vrygxcqC1qPJfq/Cvrjb/aLOOItacC5oxluW71blulHyMJFcJ9KYtynfrcpYK8fdOxY5iuXsvDaxfKeq2WBFgVNRJQ5UijPajMa0Gk7p+x/+haZ1ePP8+/TiyU/Iyii2jmI5+hcP/WLT8v/2+h+Ta6KO/2bHxrou84RuzD6urbigi9XT2ogmlHVKKrhbCkxFUewpjD2Vo4yuVE7rQnlei9UFXajM60J1XovhGa3FUx3XAYPFtaFcm7QtjmI5NparSEZWjr06/Hj/8a7ZsMZlrtawnO10/kcYZrs3/07/xiPN/xiXeaR12aIeRlZnwgvJcTpa0mV3TkverGI59cfj/Y/aedT+x1PeNfpc9rkNajU6Jpw1FapbqhpfK2Z6d3heRZ3TeU1rWTmVtKgFhcaTr6oyKmtaKzqly/JVVdX4qhpfm2ZMrkJVTKCcU9K4u6EZd1m+qo0X3uZXK313Eup5EuooyQ0i3Tr9oG7JPbJ7nRZZV7F1VLG+lp+a0Xo8qbLJaNWd1OXsKVUqvqoVX2Wb0ZYd25tOyXSRXIXytBkXVLYZlW1yPVeM8wpMRb6pyjXJcWr//u+Y+Ko2oRjntRQ3Dsufcy5r1l3am17xzjcIe++NlatIU86qPlJ6Repn8WL/E7oYz+tCPK8NO9GFT3v4OTbSdLSinC0pF29rLrqiM+FFzUeXlIuLchTLtZEc2dpzLN9WFdiK1t0JLbszsjIK5Sljy8rHW5qM13R3+cu6PnxCp8PLKtgteUrOdzwTykkuyvdkJOcfNWnjJMUFV8Zsdf/DAHqMbyUBAAAAAFfzg+bjPC4lAQAAAAAAAAAAgG4zxuQkvf7A4J9sNZ219kFjzAclfXttkCfpTZLefbw1BAAAwFXi5p3TRsblv+zevC/8ryPPwkgD0ZvKuFJGJb1m+oN6zfQHj33+1kqb0ZiKcV4r1WldqJzRYuWMLldPaSWc1uXKnJaqc6paX5F1FVpPVetrKyqoFGdUsYFKcVYr4bTWwklVbco9hV1gFOu0f0nnMs/oXOa8zmae0Zngot71+I82neZnb367vvvse5RzW4eZWkkrflZPFqZ1PjeuVT+nNT+jNT+nz/oZfdyfVbyblhdJKtYeiVzt0bgLc+9sSprfXNJrn3lAt24udWUZ5TjQA1t36JnKOVViXxUbaDvKqRRntRZNark6o2Kc01Y0ps1oTOU4o2KU13I4rY1oXNU4CfdbDadUttmu1DFNzinqXOYZnQ0WNeWtKu8mHZYnvVVNeBu7ndfng4u6Nf+Qbsw+Jkf14SpZp6RZf6ntnErsiayji5V5bcfJNrMeTmg9mtBaOKFilNdmNKalcFYr1SmtR5N129BSOKONcFxluxPaNN16gV0w5a3obHBe5zLnNesvKeuUlHW2NeZuyTdVeSaUb6oquFtaCBZ1NrOohWBRc/6VpOO79VSuBeDN+kua9Zf78nf00zfrD49tXpthQYuVBT1TPqfNaExV6ym0nio20EY4rooNVLW+qrGvrbig7SiXBFjUjnXlOKutqKBKHKhsk21tK8qran2V44zWokmtVKd3gzOsjpacOudf1kKwqNP+ZeXdojJOWVPeiqa9VRXcLY27Gyq4W/qeB3+l6Tz+53O+Ua+Y+eiR6tEuI6vve/g/NRz36pk/0RvnP1A3LOds67u++qtXlb0z/yW968Z3daWOhxXGrlbCaV2qntZydUZbUUFr0UTt+JXXRjietD020FZU0OXKaV2pzqlifVXiQNtxTuvRhLajnLbikxv0+Lyxz+o2/6u6LfOgAqeinZQNR5HOTTyj08FlzXpLUuxpKZzVI9s364ubd+h8ZUFL1RktVs5osbqgbZvvvA7B5/Q1wWfkmVCBEynvVRSMbSjrlHRz9nHd5l+W70ZyHCvXsbXnWK4Ta9pbVd4tSYolVZScn+0LnG52kG4QstXcYcoe1iDUo0t1ONRnfBiD8Jntm7cxkuPuvm68xbWux+VNV//PxTfrgeLtKsdZFaO8NqJxleOMSnFWG9GYqtZXaD1F1lXV+loPJ1SMC8f1Bx1KwdnUddkndW3maVkZXaqckiSdCS5qIbOo+eDibrBccoxb1d2FL+lscD4JSlUtwNNEmvTWNOmt9+XvABo61e8KSD/xxDv0rx/7D3XDfuT6d+vf3/jOQ83n3Cef1GLlbMNxB88lt6J88h1ROQmTvVQ9ra2ooM1oTBvRuLaivFbD6eQavnYdsx6Oqxgn12/FKN+Xa/v9vmHsY6paX8U4p0fLNymUp8BUFJiKTnuXteCd11lvUWe98zrrnlfO3VY5Ts7lKllPvlcLJS8GmgrPJwH52QuqWl/OTBLy7IRGrvHkulY5r6wZf1WOo9p5R60ipvaPkSQrlUtSaas+zGzntetK2bwUb8vs/ADEMXNeFsleV2xdEDhhBuCrfAAAAADAoDF+pvlX8i6XkgAAAAAAAAAAAEAPfKOk/T3N7rfWfqXNad+rvWA0SXqdCEYDAAAARoYx0ri3qXFtaj64pNsLXz3S/KxV0uk0yms7zimsBdFUra/NaEylOKtKnISpbUaF3c781VqoyEY0vjtsJyRoMyoosq62ojFl3W09u/BFPafwBd2Ue1QLwaJ85+qOon+9fo8+tPzqhnW86Zq/0eMT45LGG44vO66ezk/qyfyUnihMacPvb0fe4/LI2Kx+/rYXa7KyLefAnZ/GSjOVoq4vrur6rVVdV1zVqfJWXR9dK2nLDbQaZLXpBbINYh6yk+f1nPAxTVVLKoSVjmOCynGgShzsBhgthbMqxVlV42TbSALWCrsBRUlQX7Zue9uK8irbzG5YRGS9ZB7W143Zx3R34Yu6LvuUzgbndTZzXhPuOoFmfeSaWGczi8cyr8g6u21NOc5oI6qFYMX+brBjMc6rHCfhRltxobaNJIFYv/D09+nJ8vUN5z3urus1s3+sWf+KnlP4gp6Vf3h3Gyq4dCzvp5LjadXPat3PKNoNrFzTvNY0X3vnx5GmqiVNVkvybdxsVh2xVrvb0FZc0Fo4qZVwWhlTVmg9bUTj2ojGtRpO6lLltPJuUbfkHtFdhS9pxltueCxr5Oef/n59pXhHw3G+c3zBu7GkTS+jNT+rbdfTWFjRVLWkXFSVkTTlrTaddtrfG2clbbu+vvbcn8t/qKxqnKkr++2nf/vY6nxUnhPpVHBFp4IrR57XTju0P/RzJZyuBayNaTvO7YXLVqe1Fk3W2qxAxbiwex61Ewy5E8a2Ewq5FRU6Dhp5TuHzGnO39Mn1F9UNv2f807r/BS+SY44eHGWttB5N6Ep1To9s36xLlVM6Xzmr+9fulTFW096yilFh9zMoxVmdDc7r6yb+Sv9g7o90ffbJo1XgeHdv4PCio8/iVCC9/dqfP/R05Xhvv9oJAj14vZWcZ/vajnPajMbqzrslaaUWcpScR9dCRWvTVa2vxcoZXanO6ebso3rFzEf0mtk/1j3jnz6W9gNAY++47qd1Jrig/7r4T2Rl9NYz79XbFt576Pm4pnkDlQSi7im4Rd2ce1Q35x499HJ2FKOcyrXzv51r9qpNrstWwymthlO16/jkPDoJmC3sXsfvfC+0HM5oK8pruTqrDy2/Sp4J9ZLJT+gPll7bdNmPvfCmo59TdMoqPQPTUf3/7NeJpGjj2Kt0kMl0HmILDCp6swMAAAAArhak/Lqj5/euHgAAAAAAAAAAAMDoetWB9x87xLR/ISnU3n2izzfGzFtrLx5HxQAAAACMFmOkwFQVOGua0lpPlrnqZ/X5qTN6rDCjlSCnNT+rBx4/LS03Lv8/br9FhbHZntRtEK0FuYbDlzN5PTw+t/s+F1Z0zfaaQuNqrRY2FDpu28tx41iTtQCiiWMJISrXHpK0F7rjSpqJYy2UNvT1V56QF3e2nKqSv821sdzUHsytxZJC0/iz2nY9rflZrQVZrflZrfrJc7nJjxF7cayJsKyJ2uc4US1rslrSeFiWFx89fMLIHntAVL+5JlbBLe4GlZ3R4b7iyDol/fOHfqnhuD9/3n16wfhnj1zHYWclVY0jNQhQbKbqOFr3M1r3kvZm3c9qrfYcN0gtjGW06QVarbX7zfahZgphRZPVkqYq28lztaTJSklT1e3d17movbAySbt/qqNQ41rTeLCma9ReEIOVVFF77WujUMrdKjihKrW2xxqp7Hi7n+H+z3PL9WUbfKZV42jdz2q11j7F5up4Sz8ONVUp6TH3JqnJzzJ8/Loz+tLZr0/auCCrqpOsm5fm/rP+7E+/T3GU9DG4+fq/lvPyv9J7dI+8LrdD+bCqid1jUnn3+JSNQx1Hjo+jWJ7dm9FOO5Ss1jWdyRz/V63FKKfIurWwtXFFcndDHiPrqmp9LYcz2o6yCpyqCu6W7sg/oNPBZUnS/1x+pf794/9Wq+GkXjT1l/rRG9+l0Gkv0rTVsdIYadJb16S3fqQwFWBQ7M+32WmHrdn3WtLOgcDIyrPxIY6Ax6NqHFkZGTdSzt1STluaziwdej4H27M0SXCyr3U/q6/4c3XHkC2vcV8zY+1u2ObkvmPvRLUst83ldi5ZY461MrXX5CLjpHCM1Xcu/Lq+c+HXjzQfk3L8Dkyl6bhO5d1t5d3tY5/vju/56i/pPYvf3XDcmeBC15Y7iNK+h9jPs1HHIfbAoCMYDQAAAABwtSZfVifjCEYDAAAAAAAAAAAAeuDuA+/vb3dCa+2WMeYLkp6/b/Bd0iF7DePkKlwrXfu6+mFORgqmJRtK5SWpdFEKN6W4IkUVyVaT1/vfR2Wl//x5Hzi+ZFxJTvJsXKm62nIyLbxKcoKkvJuRbCy52b1hxtk3XycZ7uWT91LS+3PXvte7wxuMbzhNo2lbjW+xbK+QrF/j7NV/5yEnKefmkr9JVrK1bn823vc+3hu+M86GUriVLNO40iffpKae++OSPy7F1WS7slGT+cf1y4/LUulSsj1GpWTdhMVkHlG5Vj7am5+NkjpF3et0gwFgXPVkP2q2X6eNNyZpQ9OM3Zw+fr/NR5qP88Zqn8W+/VY68L7JOBvtGwYAJ4OVdCE7rs9PndHnpxb0RGH6qjKNQnR2ZDJbXazd8Nj2Aj00fqrj6SPH0XImr+VM/hhrle73rrnryPNIwhrKu8FIO+E5hbByVXCClVRy/STcrBYCsRMi1yhQaFDlwqqmqrVwqNrfPB6W5RxDOIXRXgDVzvwDGx290l1078Snmo67Ift47yrSIyXH2wvpC7Iquoe7/zsyjtb8jFaD3G7Q3/4wrEG15QXa8gKdz030uyqHcvHzY1Kx8bhfvPPr9N/nO2+321F1PF3OjulSvtC0zEPTU1rZF7S545bbP6lz131BlxZv1djEZc3MPaXzJq/z6t1xopsahe2NVSupASTHJ649qpIkz8b6/9m783jJ8ro++J9f3bpLr/d2T3fP9Cw9PdMzMMzgDMIExhlAlE0kiqABxW0QlxA1atBgngSRPGqSx0fNo9FHY1BMFMWgAhoVFyQoIxhZwi7MwGzAMFsv0/tdTv6o27fr1l36LlV17vJ+v16nb51T5/zOt06d+lTd6qrv3Tl+OteN3znTVPNcI7MjgyO5Z+tYTl96X1721Nfk3m1jOdEcyk/mlmXtcc+ZE7ni5NFcPj1dcepoRsdPpySZTMnRweEcHdySo0MjOdYcXvS1Wa+ca1ZVlY75ZHpZafsNuX29tmZX082vZjXFKud+y25fr8xtnlU69tm23sw+Z/bRUU/Hesl8jbgy0+Sw6lhv1j47jsF86y12DOZb78LHYP7btvgxmHvbltKM7EK3rX29C92uObd/Fedtc2oyA1WVZjWZ5lTr50BVpTk1mWZ1bn4qg1NTGaim0qym0pya/llNZaDtcvvyUs1ukfmJnXvzkbH9KVW1qnrbbZs4m9Gzp2aal42Nn87g1OT069zWa4Zjg8M5OjiyrMbJa1GZbpLWqDqaplVpWz7dRK2q0phzXfvyKq22sK11zi2bO98xdtt1jY7xZq/bXu+5/XTUNM/2i92mxWqYtd/FrutcPt/tXaimWTV01j+930Vuby+b202mzJznR4a21PZc1k0lydlFHrNDje43Ruu1b7r4zfM2Rrti+N4Mr8Pbs5gqyUPD23Lv1rE8PLx1+ne41mutI8t4H+J1H/2LXHzG+2JsTGv7XQgAAADqMTS88HXL/MtbAAAAAAAAwIo8oWP+zmVuf1dmN0a7Psk7V1UR68e+Z7ambpiaPN80bXK6cVo1fv7y1NlWM6xqPDn3lZVS5l6eb9msy2k192pua2tU1sispmUDW6abfXW4+3eSO75p8dvx5X+YrPEvcK95izVGu+a7k+Hd/avlXOOnyVOtRmoDQ62f1URr+dRk6/LUmVYjtfYmUue2n9NUquO6zuUTJ843zVto+87LD70n+dTPz38bDrw02XNrWyO5tulcQ7qpM20bdDbrKt1dvtB6ze3JyN5kcDQzzQjbp8HtSZluWNhoW94YaTUXbG/Qd+5naX2dcOZnSqtRYTXV2ufAIn/Qby04fnfy9qsWvv5rl/GU/dYrkpP3z3/d8+5Ixr5kWaXNqKpk8uT57J48Of1YOPfYmGxdN/HYdDPCx5Lx4+fzfvxYqwFcNZFMTZw/N6fOTjfVnGgba7w1dqPZug8nT08/Xkpbprc3tJz+OTSWDO9pbX/2yPS+p5tynnm4NTW3thpiVpPT2zbPjzcw3Npu6szcx965xoztj8v2ZVPj083jYG061mx9SbcuE9PNcI52NMM50RyaaTDQC6cGBvPI8MINWZIkZeEKmoP1fjm2JNmW4TTan9/aX/eeW6ltvlEGsiPDGX34AzMNpkbHT2fH+JkMVFXrefa230mSTFYTee+xd+bDx/+u3zdtQ6hKyWODI3lscCT3bYxePRd0qjmYU83BfKFPDaK2TJzN6PiZNHv8HDs4NTXT0GP07OmZ5m9bJ8bnbXJ3ojmUo4MjefTiU9nzyc/n4ROXzlrnyv0fzi/feOPM/NaJ8Vx+6miuPHEkV548kr1nTnSlMcN4aeTo4EhOLbNB2Xij0dbg7Hwun1jgD12PNwZydHAkp5e5H9auRqN/r1svueyT89cwMJ7RXQ8suN2WrY/lykPv71VZtVrLzfZKVWXbxNk0UuVYl147Pjy8LQ8Pb8sHd53Pyu3jZ9JIlceaw11r0ATr1URjIBNJzvSpRUc3H3MzeZbRro25VrUa8JVMiax1aznN7ea/bnbjtiQ50RzOscGN+Vx2ornw++lvPHRT/vSiC7+OGZmcyL4zJ/LMhz672FsvfXFg+KO5ePgL+eKZ/bOWf9Wlb8/9W3Zmz5mTGZmaqKm6CztbBnJkaCRn5vk/ySrJ4aEtuXvbrtyzbSz3bh3LyUXuP0BjNAAAAOYzuEhjtAX+Ix0AAAAAAADojlLK7iSdHYbuXeYwnetfu/KK2NQaA0kGWk2L1up/F1/ynAuvoylabzUv0MSk20ppNUhq7EgGd7SWDe3qbw1LcelXJ3f951ajqHaNoeSpv9JqDMX6M9CnZkWreVyda0qWPj8214uqajV5a2+YNt/PqkoylRz+UPJXz59/rC//o2T4ounH+bmma0tovjjrusxdt7253XKMH281k2sMtWpvvx0zP6enieOtBnNl4Pyymds+dX7dmSaTU9MN8dp+ThxL7n/bwvXsvrljzOp8A72p05ndOLExu3FiabTWO/6Z1lgH/kkyvLeVnWWw9Vgc2ddq4HjBBqznLmeB6xqtx0xjsK2hY1uj1jRa1zW3JZ3tccpAq4nf+GOt+YGRVnPBieOzj2P75clTycSpuefC9DH6u/GP5PfP/q/l3febxA03/lnu/czNc5bvHF24WctqNdLIzuaujDZ3Z7S5KzsHdmWsuXvWstHm7uwY2JlGGVj+Do7fnbxvgYabQ2eT7edv75N23JK7T30qf/jwm/KJkx9a2Q2CHjnVHMqpNf6F7qc+/w35s7f/SCYmWq/nRrYczc3P/m+5f+vs1+Wf2rl35vKWibOtBmmnT6SxjPaQZ6cblJ1raLZYswJItXCDjkajf00ftm47kv2XfyxfuP+GWcsPXPWBDA6eWWAr6lKVkuOLfe+jS/qxDwBop7ld9zy8bUsmti7t/yHu3LEnd+y5sscVLc0z9v10/vSt/yrHH2v9bnbVte9N9YL35KcGvyKNaipXH3801x97MDcc/WIuP3WsK82sO1VJHh3akvu2juX+LTsX/J3u9EAzR8/9YYHBLTnlu7fQVf6HHwAAgLkGF/nPd39BDAAAAAAAAHqt8xPqJ6uqOrHMMR7smB9dRT2wto3sSR7/Q8k//FzdlWxeDV/yn9fg9uTgtyZ3/ers5Vd+k6Zo69nAli4OtshXtgY0NeuZUloNwZbqkucmY1+SHPnI7OX7nplc9sLu1rYevWmR8/irNlFzr+bW85eHVvnS+9Gp5KFNdOyW4bIDH8ng4KmMj8/O4quued+Kx9w7uD/7h69oNTkbmN3sbLS5O9sHdqys4dlSNbcva/WDWx6X77/ix3PnyY/l7Q+/KXee+liPCoON58BVH8rLXvGDue/umzIwMJ4rDn4oW7cdXXSbU82hfHLnvnxyZ5+KhA6Ngf41RkuS57zwZ/Onb/1XeeiL1yRJ9l/28Tzreb/U1xoAAOiOfr+W7JY9++7JN3/Xq3L4kcszsuWxbN12ZOa6qdLInTv25M4de/L2y67PaIZzfS7KNRlLM6XtDxBUrT/4UBrJPW9eeGe7n5zsvC6ZOpvx8SP5fDmV+4YGc3/jTE5lvPc3thu+8i+S5t5kZO+F14V1RmM0AAAA5lrsr/o0/SoJAAAAAAAAPdb5zfhTKxijc5sdK6xlRillX5LlfqL60Gr3C0vy5J/RGK1OZZGmOJvdzf+p1YDpnt9JUiUHXpo82bm6rvWrMdrg8hrl0EOlJE/9L8m7vyY5Pd17dusVyc2/WG9dsAk1B8/meV/7/+Qdb/+XmZhujnb5gQ/nqbe+JY0s3ryspGS0uSsHRg7lypFrc+XINTkwcihbB2rO2xXm/TVbb8gPXfETeXj8gdxz+s5MVHO/7Hxy6njuO/2Z3HP60/ni2ftTLWHcRjWVlIEkjZllVaZSLWlrWPt27HygV20BAAAgAElEQVQo19/4F3WXwQrMn/NVpjLV91q6riycsQON/jaz2Lb9SL7+W16TY0f3ptGYzPYdj/Z1/wAAdE+jz68lu6mUKrv33HfB9Y7mTP42n8/f5vPTG+b8z3NvbVx98wVG+VRr3ZmvzZ5Zbrn12nZFMnRZ3VVAT/g2OwAAAHM1Bxe+bsCvkgAAAAAAANBjnd+MP72CMTobo3Xj2/7/LMnrujAOdJ/GXKxVA0PJzb+QPOXnk1RJaVxwE9a4xiKfq+mmrjZgY9X2PDX5x/+QPPjXSaOZ7H16MrjqvrPAElw6dGWesO2m7B7cl9Hm7owe2J3mrSfy8XuGcmD3YK7f/6SU8qa6y1y5xiJ/yHaxBppJSinZO7Q/e4f2X3A3pz//R7nv72/PPVvHcnhoS4anJjI6fjpjZ0+3fo6fzo7xMxlIldz628nBb5zZdqqazGOTx3J04tEcmXgkRycO58jEIzk+cSxVDxoSHZl4NB898fddH7cfGmlkZ3NXxpoXZbS5O9sHdqR03I9VqpyeOpVjE4dzdOJwjk0eyempkzVVDP2ztbE9O5tj2dncldGBXRlujMxeoaqS05/PyNkTGdv2uIzuvDGjzd3Tj6ddGWwMzTvu6alT0/n0aI6MPzJz+ejEI9M/W/NTmezDrey+xsD8zSxKGtkxMDpzTHcOjKZZ5v6uUtLIjubo9LHcPXNMtzS25bHJI+eP3UTr2J08+0hy+gvJnmay5ZKknP/uwNaB7TPjnMu5HQNjOfnR1+XoXb+UI0MjOTK4JUcHR3J8cChVSrL/q5JtB1Z3EO78z3MWTZaSx5rDOXbxbTk6eTiPTRzZGE3yANaYHQOt55DR5q7sGBhLs8z9Ttl4NZ5jE4dnnndPTh2voVJgPgMLvJYEWC98mx0AAIC5hhb5oM1iTdMAAAAAAACAXqj6tA0AvVJKLtTchHWim40YFxtLE721Z2gsufxr6q4CNrySkqu3XJebtj8tN25/WvYt0PTryif2ubBe6VOD35HmWK49/kiuPf7IhVdubp012ygDGW3uymhzVw7kUI8qnOvI+CM5MrGEei+gSnJq6kSOTjdqONfY7ejEozkzdWbebQbL4HQDiPONhEabu7JtnkZnSTJQmtON0HamsYLn8LNTZ3Js4nCOTz6Wbvw6f7Y6k6MTh9saRLWaHp2cPLHqsZNksprQ0G0d2dbYke3N0TSy9HOzJNneHJ3VAGuseVF2DoxloAwsfZzSyPaBndk5MLZgY7PVGmlsycjQZbl46LIF15mqpnJ8usHjZLWE5hBVlZy4Jzn7SDJ6QzIwcuFtVuHPB/flyALX/eCB12Zs2/mGXwOlmZ3NXdk+sHNZ98V8djf2Zvfg3lWNkSSjAzsyeupoDpw6OvfKa38uufgrVreDd37vwtc97b1JWvfxicljOTpxJBPV2cXHmziV/OWz5r9uZF/y5X+YJDkzdXomQ49OPpoj460sPT3V+fco+qHKqamTOTZxZNEmfxcN7suVI9fkyk/8aq44eSQjk/Oc789/3zyjJ0cnHs39Zz6b+898Nved/kwOTzy84H6a08+TQ2WxBq+LqKaSk/cmE23Nk4Z2J1v2ZynvnZTpf0sp5y+3XUopHUvaLpW29dqvWWCs8+MtbayZf0v7CB3rzbqubdwyd+kFryvz3JZzl0qZ97r2/c+ppMyz/jzXzRq3LDDWYvdFxzYL3xeN1rXz1HXB++GCdS10P8weKUmmMpWJajwT1Xgmq4npy7N/zl2+0HUTmWy7PFGNZ6qav7HjlsbWHNr6hHzp9i+b9/qlas+z9teGE9V4djbHZl7rjg6cf9072tydnc2xDMzTCO1Czk6dydGJR3Ni8rFV1b0UVVr3T1VNpUo163KVKlPVZNvlqVSZXq+aXntm3am2dapU1VRrrOnL58euZi0/f/nc8qk5l+fse7rGqentWkumZi7PqqOjxql51pl7m8/vq1XL5OwaZ7abezvbb8+5ujaqVT+XrQVHP5qJC/z+uVCTXdaWkpKLhy7LRYMXz2pmvFDD9U67mnv6VCn0n8ZoAAAAzDW4yJt6w/4aLQAAAAAAAPTY8Y75lfwnXec2nWMCAADMqzk1mdHx0xk7ezqjO56QsV1Py86BXSv6UvxyjDZ35/Fbn5gdzbGe7mdT6mh2tvi623pXxzKMDV6UscGL6i6jL4Yaw9kzdEn25JK6S1mW01Oncqyt0dxjk8dSVb3s017lZFuTuyMP/VWODo7k+GKfe06yY2B0TqO7LY2t6Wy+M5XJfOHMvbnn9J154Oz9qdZIz/nBMtTWnGz3TKOSRuY2xWqURnYMjE03NNudnc1dGWqs42YPXdIojexsjmXncp5ftj6+dwV1aC7S6Oqa7YeyfWSNN9lerCHHQH+eUxqlkR3NsaW9hqimkpMLtaLbnmx5XFdr66apaionJ4/n2OThHJ04nGMTh3OmOpOLmntzYOSa7GiOtlZ812sWHmSR2/ekHbfMXD4+eSz3n/5sHhp/IANlIGPNi2YyaGtj+0wzqpXfmPHkgXcmxz6e7P5Hyd7b+tYwFuitocZw9g7tz97M3+Sa9WVu87bOBmtzG8bNadDWNn++udu5y53N3dqbwc1u2DZfk7jFmtu1jz3c2DL9PHZRxgZ3Z1tjx+qfy+r2plb9bzx7asH/BH7J5/93Rpqnky/96WSe93Q+d+buvPfYO1PSSLWBG+GtNRcNXtxqZjtyba4cuSYHRg5lpOE7uzAfjdEAAACYa3CRv8i1dUf/6gAAAAAAAIDNaa02RvulJP99mdscSvK2LuwbADagdf7lO0iS0ScmRz86d/nup/S/lg3iy8demNtGn9vfnR75WPLntyVpJdPw1MT5hHrKS5N9r+xvPXTfwDIaoy1nXTa1kcaWjAxtyb6hS+sp4O6PJ/e+OROlZLy0NQm76KnJV/5ZkmSwMZRmGVz20KenTuW+05/JvafvzOfO3J0zU6eXtX0pjewc2DXTROjczx3N0TSySBOpecYZLiPrv2kDKza03r8FvpzGnMs1OLqy7RZr5LbGNUoj25s7s725M5cOX9nTfW0f2Jnrtt2U63JTb3bQGEwufX5rAmDNKqWkZKDVlNdL0rVl3zOTB9+96CrPf/gf0mxMJhe9ZMF1vm3/P8/41NlMVOPdrrDrHhl/KB8/8YF87MQHctepT2RqkQbD3bR3cH8uGbo8zXmayw2UZnY2d2X0+GRGf/EnM3rkTEaPnM7242dTzvXafvZL0/jh/zSzvubVsHTr/VdiAAAAemGxv5y2dXv/6gAAAAAAAIDN6WjH/NZSyraqqk4sY4x9HfNHVllTqqp6MMmDy9nGF3dhAynNpJqouwrYWK78xuTj/77uKmB1nvAjyXu/fe7y6364/7VsEIONwQxm+U18VmV4TzLleX7NOfAN3RtrOY1petnEBrrp0CuTe9+cZlWl2f67yqHvSQa2rWrokcaWXLv1hly79YZVFgmrMzhw4XVqV1ULX9dc3WMxSXLTv0v+97+au/xJ/2H1YwMArFfX/fAFG6MNlMlUD2+5YE+7wcZQBjPUvdp65PKBbbl85GCed9FLcmryZP7h5IfzsRPvz12nPpGTk4v8N/rpLyaZmv+6kf0zF0uSnc1duXz4qlw+clWuGL46lw0fzJYlNJCvpu5J9XffN/+VE400Vvk7KmxWGqMBAAAw12KN0bZojAYAAAAAAAC9VFXVI6WUw0l2tS0+kOQTyxjmyo75T6+6MGBzu/kXkv/1qrnLH/8D/a8FNopDr5y/Mdr1P9r/WmClDnx98plfTx581/llFz87ufxFtZXECgxsqbuCze2G/yv52E/NXX7tPK+9VmoJX+Jd0bpQp4u/Mjn0Xcldv3p+2eUvTq58WX01QZet+z860I3GaAdfnvzDf5xuaDFt25XJFS9Z/dhzrPPjfc7Wy5OT99ddBQDQS/uf13oPbjFTSfXpXRvlFc4sWwa25kk7bsmTdtxy4ZXf/XXJ/W+b/7qXL9Lkdzmaa7+xHKxHjboLAAAAYA0aXPivTZatO/pYCAAAAAAAAGxanU3Qrlnm9ldfYDyA5bn8RcnQrtnLGoPJwW+upx7YCHZckzzxtbOXjd2YXPdD9dQDK9Hcljzrj5NbfqPVLPPL/mvyrD9KmhptrSuDowtft/vJ/atjs3rc9yc7nzB72TXfnYzd1L19NJfR7Kwx0L39Qi81BpKn/kry3L9JnvxzybPfmTz9d5OBRf5ANNB9izU/60azzW0Hkuf8dXL1K5JdX9pqiPicv05G9q5+7E6X/ePuj1mHm/7d/Ms14QaAjWNguPUe3NDuBVep/qiZfHF7H4tao677F/MvP/TK7u1jyO+h0AvNugsAAABgDRpcpEP9li781SYAAAAAAADgQj6a5Na2+S9L8odL2bCUsi3JjfOMB7ByW/Ynz/6r5O+/P3nk75KxJyY3/kRy0T+quzJY3278t8n+r0oe/J/J9kPJpS9IBv3hQtaZ5pbk6m9L8m11V8JKNbcmF39l8sV3zl4+ckmy58vqqWkz2XJJq7HTfb+fPPapZO8zWo1ZSunePgZGlr7u0EXd2y/0WinJ3ttaE1CPK74+ef8/n7t86+WLN01bjp3XJrf8WnfGSpLrXp188mfmLr/2Vd3bR50u+5pk21XJic+eXzY4mlzl9ToAbCgDI0lzcOHrP99I9lf9q2et2nNbsufW5OE7zi9rbu/ua7/mIt/HBVZMYzQAAACWZ9fFdVcAAAAAAAAAm8GfJvnutvlnLWPbZ2T2Z0Q/WFXVF7tRFKxpo09Mjs7TA3DfM/tfy0a166bkue9OqqmkNOquBuqz43GtxjWdDn7Lysbbe2trAqjTU/5j8s7nJKcfbM03hpOnvcFzfr8M706u+c7ejV8aySXPTR7488XX2/uMZGi0d3UAsPFsvTS55DnJA38xe/lV39bdJp/d9PgfSO5/a3L8rvPLDn1n672ljWBoNHnuXycffm3yyPtat+v6H01Gn1B3ZQAA/dcYSL7iHcnHfip56N3J9muSx39/svsp3dvHoMZo0AsaowEAADDX3suTXfuSww/OXj40nDz1OfXUBAAAAAAAAJvLO5KcSrJlev7LSinXVVX1ySVse3vH/B90szBYs65/TfK33zp3+XWv7n8tG50GKWx2T3h18nffM3f5tf+0/7UAdMvYlyRf/ZHkC+9IJk4k+5+XbL+67qropht/Innk75Lxo/NfP7w3ufkX+lsTABvDM34ved93JZ//46S5Nbnq9uTG/7vuqha27YrkeXck9/xucvzOVlP9y1+8dhu5rcTWy5Jbfq3uKgAA1obB7cmTfqp34zcHezc2bGIaowEAADBHaTRSfc13JP/138++4rkvT9m2s56iAAAAAAAAYBOpqupkKeUtSdq7PL0mySsW266U8rgkL25bNJHkTd2vENagA/8kufd3k8/9YduylyWXvqC+moCN6apvTz73P5LPvf38suteney5tb6aALphZF9y1TyNZtkY9jw1+ar3J/f9fnL2cHLZC5OtB5IH/ixpjLSa4Y3srbtKANajwZ3J09+cTE0kZWB9NBgb2Zc8/vvqrgIAoLequgvYHEopixzqdfDaGNYojdEAAACYV/nOH0+Gt6b6s99KpqaSZ74o5TtfX3dZAAAAAAAAsJn8eJJvTHLuT0zfXkr5g6qq3j7fyqWUkSS/nmSobfEbqqq6q6dVwloxMJw84/eSL/x5cviDye6bk0uenTR8ZBrosnN58/AdyZGPJHtuSXY9eX18+R+AzW3HoeT6H5m97NAr66kFgI3HezAAAAB0SaPuAgAAAFibSikp3/aaNH7zw2m86aNp/NOfTGn6j0oAAAAA6KkX3j7/8i3b+loGALA2VFX1mST/X8fit5RSvq+U0t78LKWUJyT5yyS3ti1+JIm/fsTm0hhMLvvq5In/Orn0+b6QC/ROo5nse2byuO9Ndj9FUzQAAGBFXnHb/L9LjAzOuxgAAGZ8yy2Lvy9dvvVf9qkScsmV8y4uX/MdfS4ENg6N0QAAAAAAAAAA1ojyklfNv/w7fqzPlQAAa8iPJvmTtvnBJL+Q5L5Syp+UUn63lPL3ST6W2U3RziZ5cVVVX+hfqQAAAADAcnzrLWXePss/8nzNlwEAWNwrnz7/a8bXPvSTyeBQ8oyv7XNFm9izXzp32Z5Lkxue1v9aYIPQGA0AAAAAAAAAYI0oj3tS8op/M3vhU5+bvPh76ikIAKhdVVWTSV6a5M0dV+1L8lVJ/kmSpyRp/9T7g0leVFXVX/elSAAAAABgRfaPlfzat89ujvbs65LXaIwGAMAFXL235Ke/YfbrxltP3pEfOvlfUn7yd1N27aupss2nvPLHkud+U9KYbuV06VUpP/vHKQMD9RYG61iz7gIAAAAAAAAAADiv8R2vTfXMr0s+ckdy8AnJl3xZSnOw7rIAgBpVVXU8yTeWUt6S5NVJbllg1UfTaqD2uqqqHupXfQAAAADAyn37rY089/oq7/5UlUP7Sp58IBloaIwGAMCFvfp5jbzgiVXe/ekqh7YczTOGhjJ8/adThobrLm1TKYNDKT/2xlQ/9HPJkYeTy69JKV7Tw2pojAYAAAAAAAAAsMaUa74kueZL6i4DAFhjqqp6S5K3lFKuSvLkJJcm2ZbkgST3JHlPVVVnaywRAAAAAFiBS8dKvvGpGicAALB8119acv2lJcmuJE+ru5xNrezYlezYVXcZsCFojAYAAAAAAAAAAACwjlRV9dkkn627DgAAAAAAAAAA6LZG3QUAAAAAAAAAAAAAAAAAAAAAAAAAaIwGAAAAAAAAAAAAAAAAAAAAAAAA1K5ZdwFsLKWUwSS3JTmQZH+S40k+n+SDVVXdXWNpAAAAAAAAAAAAAAAAAAAAAAAArGEao21ipZTfSfKyjsX3VFV1cAVj7U3y+unxdi+wzh1Jfraqqt9b7vgAAAAAAAAAAAAAAAAAAAAAAABsbI26C6AepZSvzdymaCsd6wVJPprkVVmgKdq0W5O8pZTym6WUbd3YNwAAAAAAAAAAAAAAAAAAAAAAABtDs+4C6L9SyliS/79LYz0ryVuTDLUtrpJ8IMlnkowl+dIke9qu/+YkO0spX1dV1VQ36gAAAAAAAAAAAAAAAAAAAAAAAGB9a9RdALX4mSSXTl9+bKWDlFIuT/L7md0U7T1Jbqiq6uaqql5aVdXzklye5AeSjLet9zVJfmKl+wYAAAAAAAAAAAAAAAAAAAAAAGBj0RhtkymlPCfJd0zPTiT5sVUM9/oku9rm70jynKqqPtG+UlVVZ6qq+vkkL+3Y/l+UUq5cxf4BAAAAAAAAAAAAAAAAAAAAAADYIDRG20RKKduS/Grbop9N8qEVjnVtkm9vW3Q2ye1VVZ1eaJuqqt6a5DfaFg0ned1K9g8AAAAAAAAAAAAAAAAAAAAAAMDGojHa5vLvkhycvvyZJD++irFenmSgbf73q6r69BK2+w8d8y8tpYysog4AAAAAAAAAAAAAAAAAAAAAAAA2AI3RNolSyq1Jvrdt0fdUVXVqFUO+uGP+15eyUVVVn0jyvrZF25I8bxV1AAAAAAAAAAAAAAAAAAAAAAAAsAFojLYJlFKGk/xazt/fv1FV1V+sYrxLktzUtmgiyXuWMcS7OuZfsNJaAAAAAAAAAAAAAAAAAAAAAAAA2Bg0RtscfjzJ46cvP5Tk1asc74kd8x+uqurEMra/o2P+hlXWAwAAAAAAAAAAAAAAAAAAAAAAwDqnMdoGV0p5cpIfblv0g1VVPbLKYa/vmL9zmdvfdYHxAAAAAAAAAAAAAAAAAAAAAAAA2GQ0RtvASinNJL+WpDm96E+rqnpTF4a+pmP+3mVuf0/H/EWllF2rqAcAAAAAAAAAAAAAAAAAAAAAAIB1rnnhVVjHfjTJTdOXTyR5VZfGHeuYf3A5G1dVdbyUcjrJSNvi0SSHV1tYKWVfkr3L3OzQavcLAAAAAAAAAAAAAAAAAAAAAADA6miMtkGVUq5P8m/aFr22qqq7uzT89o75UysY41RmN0bbsfJyZvlnSV7XpbEAAAAAAAAAAAAAAAAAAAAAAADok0bdBdB9pZRGkjckGZ5e9P4kP9/FXXQ2Rju9gjE6m6l1jgkAAAAAAAAAAAAAAAAAAAAAAMAmojHaxvQDSW6ZvjyR5Durqprs4f6qPm0DAAAAAAAAAAAAAAAAAAAAAADABtWsuwC6q5RydZKfaFv0s1VVfajLuzneMb9lBWN0btM55kr9UpL/vsxtDiV5W5f2DwAAAAAAAAAAAAAAAAAAAAAAwApojLaBlFJKkl9NsnV60WeS/HgPdrVmG6NVVfVgkgeXs03rsAEAAAAAAAAAAAAAAAAAAAAAAFCnRt0F0FXfleQr2+a/p6qqUz3Yz9GO+b3L2biUsj1zG6MdWVVFAAAAAAAAAAAAAAAAAAAAAAAArGvNugugq17fdvmPk9xZSjl4gW0u6ZhvzrPN56uqOts2/+mO669cYn0Lrf9oVVWHlzkGAAAAAAAAAAAAAAAAAAAAAAAAG4jGaBvLlrbLX53ksysY47J5tvvSJB9qm/9Ex/XXLHMfV3fMf3yZ2wMAAAAAAAAAAAAAAAAAAAAAALDBNOougHXpox3zN5ZSti5j+9suMB4AAAAAAAAAAAAAAAAAAAAAAACbjMZoLFtVVV9I8uG2Rc0kT1/GEM/qmP+T1dYEAAAAAAAAAAAAAAAAAAAAAADA+qYx2gZSVdVYVVVlOVOSr+gY5p551vvQPLv7g475VyylxlLKdUme1rboRJI/W/KNBAAAAAAAAAAAAAAAAAAAAAAAYEPSGI2V+q0kk23zLymlXLuE7V7TMf+7VVWd7l5ZAAAAAAAAAAAAAAAAAAAAAAAArEcao7EiVVV9OslvtC0aSvLGUsrIQtuUUl6U5Pa2RWeTvL4nBQIAAAAAAAAAAAAAAAAAAAAAALCuaIzGarwuyeG2+VuT/EUp5br2lUopw6WU70/y3zu2/5mqqu7pcY0AAAAAAAAAAAAAAAAAAAAAAACsA826C2D9qqrq/lLKS5K8I8nQ9OLbkny8lPL+JJ9JMprkyUn2dmz+R0le269aAQAAAAAAAAAAAAAAAAAAAAAAWNs0RmNVqqp6VynlxUnemPPNz0qSm6en+fx2ku+qqmqy9xUCAAAAAAAAAAAAAAAAAAAAAACwHjTqLoD1r6qqP07yxCS/nOTwIqu+N8k3VFX18qqqTvSlOAAAAAAAAAAAAAAAAAAAAAAAANaFZt0FUK+qqt6VpHRhnAeTvKqU8gNJbktyZZJLkpxI8rkkH6yq6rOr3Q8AAAAAAAAAAAAAAAAAAAAAAAAbk8ZodFVVVWeT/FXddQAAAAAAAAAAAAAAAAAAAAAAALC+NOouAAAAAAAAAAAAAAAAAAAAAAAAAEBjNAAAAAAAAAAAAAAAAAAAAAAAAKB2GqMBAAAAAAAAAAAAAAAAAAAAAAAAtdMYDQAAAAAAAAAAAAAAAAAAAAAAAKidxmgAAAAAAAAAAAAAAAAAAAAAAABA7TRGAwAAAAAAAAAAAAAAAAAAAAAAAGqnMRoAAAAAAAAAAAAAAAAAAAAAAABQO43RAAAAAAAAAAAAAAAAAAAAAAAAgNppjAYAAAAAAAAAAAAAAAAAAAAAAADUrll3AbAGDLXP3HnnnXXVAQAAAAAAAACwKvN87mFovvUAoI98Rg8AAAAAAAAAWPd8Pq9/SlVVddcAtSqlfG2St9VdBwAAAAAAAABAD7yoqqq3110EAJuXz+gBAAAAAAAAABuUz+f1SKPuAgAAAAAAAAAAAAAAAAAAAAAAAAA0RgMAAAAAAAAAAAAAAAAAAAAAAABqV6qqqrsGqFUpZTTJl7ctui/J2VUMeSjJ29rmX5TkrlWMB7BccghYC2QRUDc5BNRNDgF1k0PAWiCLgLpt1hwaSnJF2/z/rKrqaF3FAIDP6AEbkBwC6iaHgLrJIaBucghYC2QRUDc5BNRts+aQz+f1SbPuAqBu0+Hy9m6NV0rpXHRXVVUf69b4ABcih4C1QBYBdZNDQN3kEFA3OQSsBbIIqNsmz6EP1l0AAJzjM3rARiOHgLrJIaBucgiomxwC1gJZBNRNDgF12+Q55PN5fdCouwAAAAAAAAAAAAAAAAAAAAAAAAAAjdEAAAAAAAAAAAAAAAAAAAAAAACA2mmMBgAAAAAAAAAAAAAAAAAAAAAAANROYzQAAAAAAAAAAAAAAAAAAAAAAACgdhqjAQAAAAAAAAAAAAAAAAAAAAAAALXTGA0AAAAAAAAAAAAAAAAAAAAAAAConcZoAAAAAAAAAAAAAAAAAAAAAAAAQO00RgMAAAAAAAAAAAAAAAAAAAAAAABqpzEaAAAAAAAAAAAAAAAAAAAAAAAAUDuN0QAAAAAAAAAAAAAAAAAAAAAAAIDaaYwGAAAAAAAAAAAAAAAAAAAAAAAA1K5ZdwGwAT2U5PUd8wD9JIeAtUAWAXWTQ0Dd5BBQNzkErAWyCKibHAKAjclzPFA3OQTUTQ4BdZNDQN3kELAWyCKgbnIIqJscoqdKVVV11wAAAAAAAAAAAAAAAAAAAAAAAABsco26CwAAAAAAAAAAAAAAAAAAAAAAAADQGA0AAAAAAAAAAAAAAAAAAAAAAAConcZoAAAAAAAAAAAAAAAAAAAAAAAAQO00RgMAAAAAAAAAAAAAAAAAAAAAAABqpzEaAAAAAAAAAAAAAAAAAAAAAAAAUDuN0QAAAAAAAAAAAAAAAAAAAAAAAIDaaYwGAAAAAAAAAAAAAAAAAAAAAAAA1E5jNAAAAAAAAAAAAAAAAAAAAAAAAKB2GqMBAAAAAAAAAAAAAAAAAAAAAAAAtdMYDQAAAAAAAAAAAAAAAAAAAAAAAKidxmgAAAAAAAAAAAAAAAAAAAAAAABA7TRGAwAAAAAAAAAAAAAAAAAAAAAAAGrXrLsA5iqlDCS5Jsn1SS5NMprkTHZQCE0AACAASURBVJLDSe5K8vdVVZ3o8j4Hk9yW5ECS/UmOJ/l8kg9WVXV3N/fVL6WUG5I8KcneJMNJHkhyf5L3VFV1us7a+qmUsivJDUmuTbI7yUiSI0keSvL+qqruqrG8OUopV6V1v12aZHuSLyS5J8kdVVWN11nbZiKHukMOtcghVkoWdYcsapFFC+7H+bEIOdQdzrOW9ZZDrA1yqDvkUIscmq2UckVax+LyJHuSbElyNsnRJPemdUweqq/CtUEOdYccapFDrJQs6g5Z1CKLWAk51B1yqEUOzc/5AdTBc3x3yPCW9fYc77Mxa4Mc6g451CKHWAk51B1yqEUOLbgf58ci5FB3OM9a1lsOsTbIoe6QQy1yaDafz1s6WdQdsqhFFrEScqg75FCLHGIl5FB3yKEWOTS/dX1+VFVlWgNTWoH5g0n+KK1f7qtFpokkf5LkhV3Y794kv5TkkUX2954kX7/K/Vyd5GVJfjrJu5Ic69jH3V06jjuS/Oskn1vk9hxL8t+SHKrx/u7Z8UgymOT5Sf5Tko9e4Fyqpo/Vv01ySc2PgW9IcscidT4yfa7uWcHYFzoGF5oO1nls+ngfyKHuHEc5JIfaxzzYhQxqn26v8xj16X6QRd05jrJIFq3786PG+0AOdec4rovzTA7Vdn5sS/L0JD+U5LeSfCrJVMe+bq/rONQ9ySE5JId6djyuTfJTSf4qrf/UuNDxqJJ8IMn3Jhmu65jUdD/Ioe4cRzkkh+YbfynZs9h0sK5jU8N9IYu6cxxlkSxqH/dgF3Kofbq9rmPUp/tBDnXnOMohObTuzw+TybSxJs/xmyvDPcfPW7fP6NU8ySE5JId8Rq/uSQ7JITnk83l1T3JIDm3mHOrj+eHzeYsfHznUneMoh+RQ59g+n7e84yWLunMcZZEsmm/8peTPYtPBuo5Nn+8HOdSd4yiH5FD7uAe7kEHt0+11HaM+3Q9yqDvHUQ7JoXV/flzwdtRdgKlKkjet4gntD5NcvML9viDJF5exr99Msm0Z4z8ryTsu8KTQtQdmkqel1YVzqbfnRJJX9fF+7vnxmD4Gj67wXDqc5FtqOP+3J/ntZdT5QJLnL3MfK318nZsO9vu41HA/yCE5JId6kEPp/i+yL+v38enzfSGLZJEs6kEWrafzo+5JDsmhzZhD/Tw/0nrj+CNpvSF9oX3d3q9jsJYmOSSH5FDvzo8k37mKx9c/JHlav45JnZMckkNyqLfnxyoeX+emg/06LnVOskgWyaKeHY+DXcih9mnDvl8dOSSH5NCmPz9MJtPGnDzHb44M9xy/YM0+o7cGJjkkh+SQz+jVPUUOySE55PN5NU9ySA5txhzq5/kRn89byjGSQ3JIDvXo/IjP5y3nWMkiWSSLenh+rOLxdW462K/jUtckh+SQHOrZ8TjYhQxqn7xXLYeW8hiUQ3JoXZ4fy5maYS143ALLP5fk02mFazOtrn83JWm0rfOPk7y7lPLlVVU9sNQdllKeleStSYbaFldpdVn/TJKxJF+aZE/b9d+cZGcp5euqqppawm6elOR5S61pNUopz0mrG+hwx1X3JPlwWg/Cy9N68A5OX7c1yS+VUhpVVf1iH8rsx/HYm2TXPMvPpvXm9gNpdUy9KMnN0z/PGUvy30op+6qq+tke15kkKaUMJHlzkq/uuOqhJB+crvVQWudimb7u4iRvK6U8p6qqv+lHnZuEHFolOTRDDvXOybQ6Wm9ksmiVZNEMWTT/ftbD+VE3ObRK6+Q8k0Oz9e38SPLyJKN92td6JYdWSQ7NkEMXVqX1Jv+daf3Hwsm0/mLuVUluyPnzI2k9Nv+ylPLCqqr+Z78L7TM5tEpyaIYcYjVk0SrJohmyqHc2+vvVcmiV5NAMOTSPdXJ+ABuT5/hVWicZ7jm+wzr7bMxGJ4dWSQ7NkEO94z0PObQoOTRDDs2/n/VwftRNDq3SOjnP5NBsPp+3tsihVZJDM+TQhfl83sJk0SrJohmyiJWSQ6skh2bIod7xXrUcWpQcmiGH5rFOzo+lq7szm6lKkr/P+S56H0jyfUkOLbDuZUl+JXO77/11krLE/V2euV0P/ybJEzrWG07yz9N60Lev+1NL3M8PzlNnleR0Wm9odKVjYVrdUzu7It6Z5LnzrLsryS90rDs537o9uJ97fjzSeiI/N8ZjSd6Q5NlJtsyzbkny4rTCq7Omnh+P6Rp+umO/Z6fP/6GO9a5PckfHug8n2b/E/bRv997pc2Y5U7Mfx6POKXJIDsmhnuRQWr94XShjFpr+pmN/b+zHMalziiySRbKoZ6+J1sv5Ufckh+TQZsyhfp0f0/s6ssC+7p/nutt7fdvX4iSH5JAc6un58cokn0zrtdcLk+xaZN2xJP8irf8Aad//55KM9vqY1DnJITkkh3r+eqh9LO9VL3ycZJEskkW9OR7er176sZJDckgObfLzw2QybczJc/zmyHDP8fPW6zN6a2SKHJJDcqgnORTveSznvpBDckgO9ej10Ho5P+qe5JAc2ow51K/zY3pfPp934WMkh+SQHOrd+eHzeUs/VrJIFsmi3r4mah/Le9XzHyM5JIfkUG+Oh/eql36s5JAckkOb/PxY1m2quwBTlST/K61uezcvY5t/Ns8J/41L3PYNHdu9J8nIIut/3TwPrCuXsJ8fnA79Dyb51STfneTJaXUMfFYXH5i/3THWp5Psu8A2/7Jjm48lGejx/dzz4zEd3F9M8uok25a4zUVJPt6x/09kiS8EVnE8rs7cFwUvWmT9LZn7H42/vMR9tW/zrl7ervU6ySE5JId6m0MrqO2yJBMd+3pGL4/HWphkkSySRb3LovVyftQ9ySE5tElzqC/nx/S+jqT1lxb+R5LXTx+ni6eve1fHvm7v5e1eq5MckkNyqKfnx+AKtnlSkuMdNbyml8ej7kkOySE51PPXQ+1jvauXt2s9T7JIFsmi3mbRCmrbdO9XyyE5JIecHyaTaWNOnuM3R4Z7jp+zX5/RW0OTHJJDcqi3ObSC2rznsbRt5ND5/cih8/uQQ+v0/Kh7kkNyaJPmkM/nraFJDskhOeTzeWthkkWySBb5jF7dkxySQ3LI5/PqnuSQHJJDzo9l3aa6CzBVSXJwhdu9pePk+h9L2ObajifGM0muXcJ2b+zY168tYZtdCz0hdDGork6r42D7WE9f4rbv7NjuO3p8P/fjeOxdamB3bHfTPMfxH/X4ePxGx/5+fQnbPG76nD23zXiSq5ewXft+3tXL27VeJzkkh+RQb3NoBbX9647aPtXLY7FWJlkki2RRb7JoPZ0fdU9ySA5t0hzq+fFoG2/Bv6AbH7w6dxwOrnA7OSSHOseRQ92r79921PDeftfQ59t7cIXbySE51DmOHJp/vPax3tXL27WeJ1kki2RRb47HKmrbdO9XyyE5JIecHyaTaWNOnuM3R4Z7jp+zT5/RW0OTHJJDcqi3ObSC2rznsfTt5JAc6hxHDq3T86PuSQ7JoU2aQz6ft4YmOSSH5FBvjscq69tUn8+bvs0HV7idLJJFnePIovnHax/rXb28Xet1kkNySA715nisojbvVS99OzkkhzrHkUPr9PxYztQItauq6u4VbvqLHfNfsYRtXp5koG3+96uq+vQStvsPHfMvLaWMLLZBVVWHq6o6vYSxV+OFyazz+L1VVf3NErf9fzvmX9GdkubXj+NRVdVDVVWdWMF2/ztJ53Fbyvm0IqWULUm+oWNx5zk2R1VVn0ry1rZFzbTOaVZJDq2KHJq9Dzm0SqWUkrnnwhu6uY+1ShatiiyavQ9ZNNu6OT/qJodWZd2cZ3Jozj77cX6c29cX+rGf9UwOrYocmr0POdQ9f9wxf00tVfSJHFoVOTR7H3KIFZNFqyKLZu9DFq3SZn2/Wg6tihyavQ85NNu6OT+Ajclz/Kqsmwz3HH/eWv5szGYlh1ZFDs3ehxxaJe95LJsckkOd+5BDs62b86NucmhV1s15Jofm7NPn89YQObQqcmj2PuRQ92yqz+clsmiVZNHsfcgiVkQOrYocmr0PObRK3qteNjkkhzr3IYdmWzfnx3JojLa+fbBjfkspZewC27y4Y/7Xl7Kjqqo+keR9bYu2JXneUrbtsWd2zL9jGdv+ZZKzbfO3llL2r76kdavzfLq0h/t6fpKtbfN/+3/au/dgafK6vuOfHyD3y6oIiAhLUAmKGhAT8RI3BiyIJcgl3pVVvF8qmphKoaRCNGIuXquSUqIoipdIEBQFgRBdMBqvtQgoElFBUZY74i677C788secfc6cnjNzpmd6unu6X6+q80f3M9PT5zzf5z3n+Z2uPrXWP9nyuc2ZfXw3p8SOdEiHuqRDC5+Z5AFL2zdn8RvrWE+LtKhLU2yR+Tg8HTJnXeqzQ0yHDulQl3TorHc2tu8yyFmMnw7pUJd0iF1pkRZ1SYsWrFe3o0M61KUpdsh8AMfKe7yGd2mKP4/m8HRIh7qkQwvWPNrRIR3q0hQ7ZD4OT4fMWZemuPbK4emQDnVJh85yfd72tEiLuqRF7EKHdKhLOrRgrbodHdKhLk2xQ5OcDzdGO243n7PvtuseXEq5V5JPbDz/N1u83lWN7Ue3eO6h3Kex/Zptn1hrfV+S1y/tulXG8TkNpTlPa2epA49qbF/V4rm/kbPn+pBSyj33PiN2pUM61CUdWnhyY/uFtdZrOjz+FGmRFnVpii0yH4enQ+asS312iOnQIR3qkg6ddb/G9t8Mchbjp0M61CUdYldapEVd0qIF69Xt6JAOdWmKHTIfwLHyHq/hXZriz6M5PB3SoS7p0II1j3Z0SIe6NMUOmY/D0yFz1qUprr1yeDqkQ13SobNcn7c9LdKiLmkRu9AhHeqSDi1Yq25Hh3SoS1Ps0CTnw43RjttHNbZvTvL2DY9/cGP7VbXW61q83m81tj+uxXMP5UMa2+9u+fzm4z9+j3M5ds15evMBX6s5i/932yeezOyrG7vHMItzpUM61KXZd6iUcrckT2jsfmYXx544LdKiLk2xRebj8HTInHWpzw4xHTqkQ13SobO+vLH964OcxfjpkA51SYfYlRZpUZdm3yLr1TvRIR3q0hQ7ZD6AY+U9XsO7NMWfR3N4OqRDXZp9h6x57ESHdKhLU+yQ+Tg8HTJnXZri2iuHp0M61CUdOsv1edvTIi3qkhaxCx3SoS7NvkPWqneiQzrUpSl2aJLz4cZox+2Jje3fr7V+YMPjP7ax/fpzH7Xen11wvCHc2Ni+XcvnNx8/hs+pd6WUuyZ5ZGP37x7wJR/U2O5zFu9bSvmJUsoflVLeVUq5sZTylpPtny6lfE0ppRl81tMhHerEzDq0yRclucPS9puT/GpHx54yLdKiTky4Rebj8HTInHVigA4xHTqkQ53QobNKKd+Y5EuXdt2c5AcHOp2x0yEd6sTMOmStuntapEWdmFmLNrFe3Z4O6VAnJtwh8wEcK+/xGt6JCf88+jzWPbqlQzrUiZl1aBNrHu3pkA51YsIdMh+Hp0PmrBMTXnvl8HRIhzqhQ2e5Pq81LdKiTsysRdaqu6VDOtSJmXVoE2vV7emQDnViwh2a5Hy4MdqRKqXcOcmTG7uff8HTmncs/MuWL/vGxvaHllI+uOUxuvaOxvaHt3x+8/EP3ONcjtnXJrnj0vbf5kB31z/5T2LzP4ptZ7H5+I9u8dz7J7kyiwhfluSDktzjZPtLkjwjyV+WUn7g5N8Za+jQJTrUjTl1aJPmv6mfrLXe3NGxJ0mLLtGibky1RebjgHToEnPWjd46xHTo0CU61I1Zd6iUcqdSygNLKU8qpbw8yX9tPOQptdZXDXFuY6ZDl+hQN+bUIWvVHdKiS7SoG3Nq0SbWq1vQoUt0qBtT7ZD5AI6O9/hLNLwbU/159Hmse3REhy7RoW7MqUObWPNoQYcu0aFuTLVD5uOAdOgSc9aNqa69ckA6dIkOdWPWHXJ93u606BIt6sacWmStuiM6dIkOdWNOHdrEWnULOnSJDnVjqh2a5Hy4Mdrx+p4k91rafneSH7vgOZc1tt/a5gVrrdcmuaGx+25tjnEAr21sf8q2Tyyl3DfJvRu7h/58eldKuTzJv23s/qFaa/NukF1pzuF7a63XtTxGc3a7/nu7U5JvSfIHpZSP6/jYU6JDCzq0Jx1aKKV8fJKHNXY/c9/jzoAWLWjRnibeIvNxWDq0YM72NECHmA4dWtChPc2tQ6WUy0opdfkjybVJ/iTJs5L846WHX5vka2qt3zvAqR4DHVrQoT3NrUNbsla9PS1a0KI9adGC9eqd6NCCDu1p4h0yH8Ax8h6/oOF7mvjPo3dl3WM7OrSgQ3vSoQVrHjvRoQUd2tPEO2Q+DkuHFszZnia+9sph6dCCDu1pbh1yfV7ntGhBi/Y0txZtyVr1dnRoQYf2pEML1qp3okMLOrSniXdokvPhxmhHqJTyuCTf1Nj9HbXWd17w1Obdiq/f4eWbz7nLDsfo0ssb208opdzx3Eeu+vJz9g39+fSqlHLbJD+fs5/3G5L85wO+7FBzeHOSq5I8Ncljkjw0i9/a9JAkj03yvVn9ZuZjkryslHK/Hc5x0nToDB3aw8w6dJHmnapfXmt9fQfHnSwtOkOL9jCDFpmPA9GhM8zZHgbqEBOgQ2fo0B50aK23JPmOJPevtf7o0CczRjp0hg7tYWYdslbdMS06Q4v2MLMWXcR6dQs6dIYO7WEGHTIfwFHxHn+Ghu9hBj+PXmbdo0M6dIYO7WFmHbqINY8WdOgMHdrDDDpkPg5Eh84wZ3uYwdorB6JDZ+jQHnRoLdfnbUGLztCiPcysRdaqO6RDZ+jQHmbWoYtYq25Bh87QoT3MoEOTnA83RjsypZRPTPJTjd0vTfLDWzy9Ge7m3Sm30Qx385h9e2EWd/O8xWVJnnbRk0opH5nk2875o1uXUu7QzakdhR9L8g+Xtt+f5Ek7/DakNoaYw6cm+Yha6z+ptX53rfWXa61X11pfX2t9Za31BbXWf53kfkn+Y5K69Nx7JXleKaXscJ6TpEMrdGg/c+nQRiffSH9pY7e7e2+gRSu0aD9Tb5H5OAAdWmHO9jNEhzhyOrRCh/ajQ+e7Z5KvS/L1pZS7Dn0yY6NDK3RoP3PpkLXqjmnRCi3az1xatJH16nZ0aIUO7WfqHTIfwNHwHr9Cw/cz9Z9H38K6R4d0aIUO7WcuHdrImkc7OrRCh/Yz9Q6ZjwPQoRXmbD9TX3vlAHRohQ7tR4fO5/q8C2jRCi3az1xaZK26Qzq0Qof2M5cObWStuh0dWqFD+5l6hyY5H26MdkRKKffNYhCXY/nGJF9aa63nP2ujvp5zMLXWv0vyQ43d31ZK+RfrnlNKuU+SFye527rDdnR6o1ZK+a4kX9bY/ZRa6yt6PpWDz+HJf16bd+8+73E31FqfkuSbG3/00CRf1OY1p0qHVunQ7ubUoS08NsmHLm3/bZLndvwak6FFq7Rod3Nokfnong6tMme7G1GHOCI6tEqHdjfjDr0nyf2XPh6QxRrQ45P8QJK3nTzuI5N8Z5JXl1I+eYDzHCUdWqVDu5tTh6xVd0uLVmnR7ubUoi1Yr96SDq3Sod3NoUPmAzgW3uNXafjuRvQe7xq9I6JDq3Rod3Pq0BaseWxJh1bp0O7m0CHz0T0dWmXOdjeiDnFEdGiVDu1uxh1yfd6etGiVFu1uTi2yVt0dHVqlQ7ubU4e2YK16Szq0Sod2N4cOTXU+bjP0CbCdUso9kvyvJB+xtPuaJI+stb7t/GetuLaxvcud+ZrPaR5zCE9P8uic3pmxJPnBUsoTs7g76iuzuBPnvU8e9/U5ffN7U5L7LB3rhlrryp0+SymXb3sytdY3tDr7AZRSviWLu14v+/5a63/Z8vmXb/ta53w9Rj+Htdb/Vkr57CSPWdr9DUl+tsvXOTY6tJEOtaRDK57c2P7ZWmvzLtJEiy6gRS3NrEUHn4+50KGNdKilgTvEkdKhjXSopTl3qNb6gSRvOOePrk7y/FLKU5P8pyTfdLL/vkleVkr5tFrra/o5y3HSoY10qKU5d2gb1qrX06KNtKglLVphvXoLOrSRDrU0sw5ZqwZGzXv8Rt7jW5rZz6Nbs+5xPh3aSIda0qEV1jy2oEMb6VBLM+uQNY+O6NBGOtTSzNZe6YgObaRDLc25Q67P248WbaRFLc25RduwVn0+HdpIh1rSoRXWqregQxvpUEsz69Dk1qrdGO0IlFI+JMnLknzM0u63J3lErfVPWxxqkuGutd5YSnl8khcl+YSlP/r0k4913pHFNw4vWdr37jWP/YsWp1RaPLZ3pZSvTvL9jd0/XGv9Vy0Os8/X41jm8Hty9j+yn1JKuazWum5GJk2HNtOhdnTorFLKRyZ5ZGP3M3c93pRp0WZa1M7cWtTTfEyeDm2mQ+2MoEMcIR3aTIfa0aHNaq3vTfLNpZSbknzrye67JvmpUson7fgbho6eDm2mQ+3o0NasVTdo0WZa1I4WnWW9ejs6tJkOtTO3DlmrBsbMe/xm3uPbGcF7/LHMoXWPJTq0mQ61o0NnWfPYjg5tpkPtzK1D1jy6oUOb6VA7I+gQR0iHNtOhdnRoM9fnradFm2lRO1q0NWvVS3RoMx1qR4fOsla9HR3aTIfamVuHprhWfauhT4DNSil3S/LSJB+/tPtdWdzJ8o9aHu5vG9sf1vJc7pzVcI9ikGutf53kU5M8I8lNWzzl15M8LMl1jf3XdHxqo1JK+bIkP5KzMf2JJN/Y42k05/COpZQ7tTzGPRrbh5jD383i39otbp3kYw/wOqOnQ9vRoe3o0LmuzNnvyf6w1voHexxvkrRoO1q0nbm2yHzsR4e2Y862M5IOcWR0aDs6tB0dauU7kvzN0vZDkjxioHMZlA5tR4e2o0OtWKteokXb0aLtaNG5roz16o10aDs6tJ25dsh8AGPkPX47Gr6dkbzHj+3amHWse5zQoe3o0HZ06FxXxprHRjq0HR3azlw7ZD72o0PbMWfbGUmHODI6tB0d2o4OteL6vCVatB0t2o4WtWKt+oQObUeHtqND57oy1qo30qHt6NB25tqhqc2HG6ONWCnlLklenOSTlna/J8mjaq2v3OGQzbtf3q/l85uPf2et9V3nPnIAtdbraq1fl+SBWSyI/HqSNyW5PsnfJXltkp/M4i6q/7TW+oYkD2oc5vd7O+GelVK+MItIL/+7/5kkX9XnHfRrre/I2f8gJsl9Wx6mOYtt7uy6lVrrB5L8ZWN3q292pkCH2tGhzXRoVSmlJPmKxm53927Qona0aLO5t8h87EaH2jFnm42lQxwXHWpHhzbToXZqrdcn+cXG7kcNcS5D0qF2dGgzHWrHWvUpLWpHizbTolXWqy+mQ+3o0GZz75D5AMbEe3w7Gr7ZWN7jx3RtzCbWPRZ0qB0d2kyHVlnzuJgOtaNDm829Q+ZjNzrUjjnbbCwd4rjoUDs6tJkOteP6vFNa1I4WbaZF7VirXtChdnRoMx1aZa36YjrUjg5tNvcOTWk+bjP0CXC+k99G86Ikn7K0+9okj661/u6Oh31tY/ujWj7/7zW2/3jH8zioWutfJHn6ycdFHt7Y/p01xyzn7T8WpZQnJHl2FnepvsX/TPKkk/+wtdLB1+O1Wdxh8hYfldX53KQ5i22e28b1je3mHV0nTYd2p0OrdGitz0py/6Xt92XxTTUntGh3WrRKi04dYj6mSod2p0OrRtghjoAO7U6HVunQzl7X2G77b+ao6dDudGiVDu1s1mvViRbtQ4tWadFa1qs30KHd6dAqHTplrRoYmvf43XmPXzXC9/ixXBtzkVmve+jQ7nRolQ6tZc1jAx3anQ6t0qFT1jy2p0O706FVI+wQR0CHdqdDq3RoZ7O+Pi/Ron1o0Sot2pm1ah3aiQ6t0qG1rFVvoEO706FVOnRqCmvVt7r4IfStlHKHJL+S5NOXdr83yefUWn9rj0O/prH9CaWUO7Z4/qddcLyjcnJX1c9q7H75EOdySKWUxyT5uZy9EeIvJvniWuv7hzmrldlpBnKtk29qPuGC43Xl7o3ttx/odUZHh/qhQzqU5Csb28+rtb5zx2NNjhb1Q4u06ILXmcV8rKND/ZjLnI20Q4ycDvVDh3RoCzc1tm83yFkMQIf6oUM6tIXZrlUnWtQXLdKiWK9eS4f6oUM6tMlc5gPol/f4fsyl4SN9jx/9z6NPzHbdQ4f6oUM6FGsea+lQP3RIhy54nVnMxzo61I+5zNlIO8TI6VA/dEiHtjDb6/MSLeqLFmnRFqxV69BB6ZAOxVr1WjrUDx3SoU3GPB9ujDYypZTbJ3lBkiuWdt+Q5DG11lfsc+xa65uTvGpp121y9s3hIlc0tn91n/MZgc9KcvnS9strrX860LkcRCnln2Vx58oPWtr9wiRfUGu9eZizSpK8uLF9RYvnfkbOvgldXWt9y95n1FBKuXtW7+L6N12/zhjpUK90aDiDd6iUclmSxzd2P7PtcaZKi3qlRcMZvEVbmPx8rKNDvZr8nI24Q4yYDvVKh7jIfRrbh/i+a3R0qFc6xFpzXqtOtKhnWjRj1qvX06Fe6RCbTH4+gH55j+/V5Bs+4vf40f88es7rHjrUKx0azuAdsuaxng71SoeGM3iHtjD5+VhHh3o1+TkbcYcYMR3qlQ5xkVlen5doUc+0iLWsVetQT3RoxqxVr6dDvdIhNhntfLgx2oiUUm6b5HlJHrG0+31JPq/W+r87epnnN7a/Ystz+/tJ/tHSruuSvLSjcxrKv2lsP2OQsziQUsojk/xCktsu7X5pkifUWm8c5qwueUmS65e2H34yY9u4srHdnOmufGHONvItSV57oNcaDR3qnQ4NZwwd+pIkt1/afkOSX9vxWJOiRb3TouGMoUUXmfR8rKNDvZv0nI28Q4yUDvVOh7jIZze2R7G4f0g61DsdYpNZrlUnWjQALZo369Xn0KHe6RCbTHo+gH55j+/dpBs+8vf4Y/h59CzXPXSodzo0nDF0yJrHOXSoxYhGTgAADKBJREFUdzo0nDF06CKTno91dKh3k56zkXeIkdKh3ukQF5nd9XmJFg1Ai9jEWvUpHTocHZo3a9Xn0KHe6RCbjHY+3BhtJEopt0nynCSPXtp9U5In1lpf0uFL/UyS9y9tP76U8tFbPK85xM+ptd7Q3Wn1q5TypCSPXNr1yizu/DgJpZTPTPJLOfsN0q9l8U3A+4Y5q1O11vcmeW5jd3PGVpRSPibJ45Z23ZzkZzs8tVte555JntrY/cu11tr1a42JDvVLh4Y1kg59ZWP7x6femW1oUb+0aFgjadGm15n0fKyjQ/2a+pyNvUOMkw71S4e4SCnlc5I8rLH7l4Y4l77oUL90iE3muladaFHftIhYr16hQ/3SITaZ+nwA/fIe36+pN3zs7/FH8PPoWa576FC/dGhYI+mQNY8GHeqXDg1rJB3a9DqTno91dKhfU5+zsXeIcdKhfukQF5nj9XmJFvVNi9jEWrUO9UGHiLXqFTrULx1ik7HPhxujjUAp5dZZBPWxS7tvTvIFtdZf6fK1aq1/muQnl3bdNsmzSim3X/OUlFIem7O/8ebGJP++y/Pa18kb37aPfXySH13adXOSr6y13tz5iQ2glPLwJL+S5A5Lu1+R5HNrrdef/6xBPC2Lb05ucWUp5THrHnwyoz+Rs3fofGat9c82POeBpZTPbXNSpZR7ZfH1u+fS7huTfE+b4xwbHdqfDp3SoYuVUv5Bkocu7fpAkme1Pc7UaNH+tOiUFp37XPNxAR3anzk7dUQdYkR0aH86dEqHTpVSHlZKedzFj1x53icneXZj9ytqra/u5szGR4f2p0OndOiUtep2tGh/WnRKiy5mvXqVDu1Ph07p0CrzAQzFe/z+NPzUEb3HPy2u0RsNHdqfDp3SoYtZ81ilQ/vToVM6dO5zzccFdGh/5uzUEXWIEdGh/enQKR065fq8drRof1p0SotOWaveng7tT4dO6dDFrFWv0qH96dApHVo1tfnY+pPhoH48yec39n17kqtLKZe3PNY1W9xp8t9l8RtsPvhk+1OTvKyU8lW11j+55UGllNsl+Zok39d4/vfVWt+4zcmUUu6T8+fsXo3t22z4XK+ttb79gpd6dSnlhUl+Icnv1Fo/cM65PDjJU5J8ceOPvr3WevUFx+/Eob8epZSHJPnVJHde2v26JN+Y5B6llDane0Ot9Zo2T2ij1vrnpZQfSvJtS7ufW0r5l0n+e631xlt2llIelOTHspjVW7wjF38D8eFJXlBKeXWSn07y/JNvXlaUUu6S5ElZ3Nn7no0//g+11j/f4tM6ZjqkQzq00HWH1nlyY/sltda/2vFYU6JFWqRFC4dq0VHMx8B0SIdm16Gkv/kopdw5yd3X/HFzQfnuG17rTWNaXOuYDumQDp3V1XzcJ8nzSimvyeIHaL+Y5HW1nv9blkopH5vka5N8Q+O8bjjZN2U6pEM6dFZX82Gtuh0t0iItOqvr+WiyXr1Kh3RIh86a5XwAk+Q9fiYN9x5/yjV6o6NDOqRDC67RG44O6ZAOLbg+bzg6pEOz61Di+ryR0SEd0qGzXJ83DC3SIi06yzV6/dMhHdKhs1yf1z8d0iEdOmuW87G1WquPgT+S1A4/rtjyNa9I8r7Gcz+Q5PeS/HySFyd56znH/+Ukt27xub2hg8/pWVu8ztuXHv93SX4ri3+kP5PkpRvO47t6/rs+6Ncji99o1NUsXdXD1+PWSV50zmu/JYs3oOck+f2T2Vz+8/cl+Ywt57x57Hcn+T9ZLLA9O8nzT17jpjVfh2cM3YieZlOHdEiHDtChNa95uywulFg+3hOGbMBYPjqcHS3Soqd1OEtX9fD16KVFxzIfQ350ODc6NPI5O/TXI8fXob7m48qOviaXD92LA/5d6JAO6dBhvh6fd87j33MyHy/I4gKI5yR5WZJr1hz/vUkeMXQnevi70CEd0qHDfD2uOOfx1qrXf720SIu06IDz0XhN69Xnf110SId0yHz48OFjgh8dNtl7/MgbfuivR47vPd41eiP56HBudEiHntbhLF3Vw9fDNXoj+ehwbnRIh57W4Sxd1cPXw/V5I/nocG50aORzduivR46vQ33Nx5UdfU0uH7oXB/y70CEd0qHDfD1cn9fu70OLtEiLDvP1uOKcx1urPv9rpUM6pEMHnI/Ga1qrPv/rokM6pEPmY+uP8+4kxwzUWq8qpTwuybOSfNjJ7pLkYScf5/m5JF9da33/4c9wL3dO8vALHvOuJN9Qa/0fPZwPa9Ra319K+fwsfrPSFyz90T2SPGrN096a5Em11t/Y8WXvluTTtnjcdUm+tdb6ozu+DhfQIR0ag4E69LgkH7K0/bYsFvoZgBZp0RgM1CLzMRI6ZM5gaDqkQzN2l1w8H7f47SRfW2t91QHPZ7Z0SIdmzFr1iGiRFs2Y9eqR0CEdmjHzAUya93gNHwPX6M2bDunQGLhGb950SIfGwPV586ZD5gyGpkM6NGOuzxsRLdKiGbNWPRI6pEMzZq16JHRIh2bs6OfjVkOfAMOptb4oyYOT/EgWg7rObyd5Yq31i2ut1/Vycu39YJKrs7gr5yZ/leQ7kzxgrP8o56bWem2t9QuT/PMsZm2ddyb54SQPrrW+eMvDvzbJ05P8ZpLrt3zO/0vy7Vn8hhP/iT0wHdKhMThwh87z5Mb2s2utN+1xPPakRVo0Bj21yHyMlA6ZMxiaDunQDPxaFr8V9+eSvGnL57w3yXOTfG6ST3XR1WHpkA7NgLXqI6BFWjRT1qtHRId0aEbMBzAr3uM1fAxcozdvOqRDY+AavXnTIR0aA9fnzZsOmTMYmg7p0Ay4Pu8IaJEWzYC16pHTIR2aKWvVI6JDOjQjk5qPUmsd+hwYgVLKbbO46/H9ktwri7sb/3WSq2utfzHkubVRSrlrkockuX8Wd+q8fRb/gfnrJH9Ya/3jAU+PLZRS7p/koUnuneROSa5J8sYkv1lrvXGP494qyUcneUCSj0hyWU7n411J3pzk92qtb9vrE2BnOsRYHKpDHActYiwO2SLzMW46BAxNh5iDUso9kzwoizn/0CR3THJTkvckeUeS1yR53RH8Zp9J0iGmzlr1cdAiYGg6xByYD2COvMczFq7Rmy8dYixcozdfOsRYuD5vvnQIGJoOMQeuzxs/LWLqrFWPnw4BQ9Mh5mAq8+HGaAAAAAAAAAAAAAAAAAAAAAAAAMDgbjX0CQAAAAAAAAAAAAAAAAAAAAAAAAC4MRoAAAAAAAAAAAAAAAAAAAAAAAAwODdGAwAAAAAAAAAAAAAAAAAAAAAAAAbnxmgAAAAAAAAAAAAAAAAAAAAAAADA4NwYDQAAAAAAAAAAAAAAAAAAAAAAABicG6MBAAAAAAAAAAAAAAAAAAAAAAAAg3NjNAAAAAAAAAAAAAAAAAAAAAAAAGBwbowGAAAAAAAAAAAAAAAAAAAAAAAADM6N0QAAAAAAAAAAAAAAAAAAAAAAAIDBuTEaAAAAAAAAAAAAAAAAAAAAAAAAMDg3RgMAAAAAAAAAAAAAAAAAAAAAAAAG58ZoAAAAAAAAAAAAAAAAAAAAAAAAwODcGA0AAAAAAAAAAAAAAAAAAAAAAAAYnBujAQAAAAAAAAAAAAAAAAAAAAAAAINzYzQAAAAAAAAAAAAAAAAAAAAAAABgcG6MBgAAAAAAAAAAAAAAAAAAAAAAAAzOjdEAAAAAAAAAAAAAAAAAAAAAAACAwbkxGgAAAAAAAAAAAAAAAAAAAAAAADA4N0YDAAAAAAAAAAAAAAAAAAAAAAAABufGaAAAAAAAAAAAAAAAAAAAAAAAAMDg3BgNAAAAAAAAAAAAAAAAAAAAAAAAGJwbowEAAAAAAAAAAAAAAAAAAAAAAACDc2M0AAAAAAAAAAAAAAAAAAAAAAAAYHBujAYAAAAAAAAAAAAAAAAAAAAAAAAMzo3RAAAAAAAAAAAAAAAAAAAAAAAAgMG5MRoAAAAAAAAAAAAAAAAAAAAAAAAwODdGAwAAAAAAAAAAAAAAAAAAAAAAAAbnxmgAAAAAAAAAAAAAAAAAAAAAAADA4NwYDQAAAAAAAAAAAAAAAAAAAAAAABicG6MBAAAAAAAAAAAAAAAAAAAAAAAAg3NjNAAAAAAAAAAAAAAAAAAAAAAAAGBwbowGAAAAAAAAAAAAAAAAAAAAAAAADM6N0QAAAAAAAAAAAAAAAAAAAAAAAIDBuTEaAAAAAAAAAAAAAAAAAAAAAAAAMDg3RgMAAAAAAAAAAAAAAAAAAAAAAAAG58ZoAAAAAAAAAAAAAAAAAAAAAAAAwODcGA0AAAAAAAAAAAAAAAAAAAAAAAAY3P8H9Ry3/pQ2KlkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor, Config\n", + "\n", + "async def clean_magnitude(datapoints):\n", + " async for datapoint in datapoints:\n", + " if datapoint.data is None:\n", + " continue\n", + " yield datapoint.collected_at, datapoint.data[\"magnitude\"]\n", + "\n", + "TemperatureConfig = Config(\n", + " sensor_name=\"Temperature\",\n", + " clean=clean_magnitude,\n", + " title=\"Ambient temperature\",\n", + " ylabel=\"Degrees C\",\n", + ")\n", + " \n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 5), dpi=300)\n", + " configs = get_known_configs()\n", + " to_display = configs[\"Relative humidity\"], TemperatureConfig\n", + " for i, config in enumerate(to_display, start=1):\n", + " plot = figure.add_subplot(1, 2, i)\n", + " coros.append(plot_sensor(config, plot, {}))\n", + " await asyncio.gather(*coros)\n", + "\n", + "display(figure)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAE0YAAAUsCAYAAAC9bUPVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdd5h1Z1kv/u8dAqEEEnoRSIBIVUA6AiYRPDSlKr0EIgiCla6IAVEPR1DPQQRF6aKIQEDqT8HQu1IUBUKJEECQloSSEHL//lj7lXnX7Cl7z57Z8877+VzXXGQ9az1l773WzsXMN/dT3R0AAAAAAAAAAAAAAAAAAAAAAACAZTpk2QsAAAAAAAAAAAAAAAAAAAAAAAAAUBgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAYKSqjq6qHv2csOx17aSqOmX0+k9Z9pr2Iu/zga2qThp/VxwI87vvAAAAAAAAAAAObgdq7gUAAAAAODgojAYAAAAAAAAAAAAAAAAAAAAAAAAs3aHLXgAAAACwO1XV0Uk+M0OXs5OckeSbST6V5F+SvCfJG7r7nEWvDwAAAAAAAAAAAFaqqsqQeztqdOr7SY7q7tN3flUAAAAAAMzikGUvAAAAANgzDkty6STHJLltkscnOTnJ6VX1tKo6fJmL2+uq6gVV1St+PrvsNQF7S1V9dvQ984JlrwkAAAAAAAAAYOQ2WV0ULUnOl+SEnV0KLEZVHTfK7XRVHbfE9cgrwgJ5pgAAAGA1hdEAAACA7XapJI9N8q9VdfNlLwYAAAAAAAAAAIA968R1zj24qmrHVgIAAAAAwFwOXfYCAAAAgAPKt5Kcusa5Cye5RJJLrnH+qCRvrKpju/tD27E4AAAAAAAAAAAADk5VdYkkd1nnkqsmOS7JP+3IggAAAAAAmIvCaAAAAMAsPtDdx613QVVdMcnPJHlUkquNTl8syd9V1bW6+3vbs0QWYaPPGUi6+6QkJy15GTPzfAMAAAAAAAAAe9T9khw2auskteL4xCiMtnQHau4GAAAAANgZhyx7AQAAAMDe0t2f7+5nJ7lekldOueRqSX5hZ1cFAAAAAAAAAADAHvfg0fEnszrDdreqOmKH1gMAAAAAwBwURgMAAAC2RXd/K8l9k/z7lNP33+HlAAAAAAAAAAAAsEdV1Y0ybOa50ouSvHDUdqEk99mRRQEAAAAAMBeF0QAAAIBt093fTfL7U07dqKousdPrAQAAAAAAAAAAYE86cXTcSV6c5A1JvrzBtQAAAAAA7CKHLnsBAAAAwJ73xilthyS5RpJ3zztoVR2S5MeSHJ3k0kkukeSMJF9JcmqSf+nu8+Ydf5Gq6oeSXDPDWo/IsOvoGUm+luQ/k7x/UkSObVBVF0pykySXT3KZJIcn+WqGe+XD3f2pJS5vU6rq0kluluSqGdb/zQyBzfd292nLXNt2q6ojMrz2H87w/Hw3yelJ3j3La6+qKyS5cYbn8PAMz9/nk7y1u89Y8LLnUlWHJblFkisnuVyS7yf5ryQfTfKh7u4lLg8AAAAAAAAAYFea5IPuPWp+275sSVW9NMmvrjh3w6q6Xnd/eJvXdf4MuaVrJ7nkpPm/kvzzLHNX1cUy5F6ukeTIJN9K8qUk7+zuzy900avnvmSSmya5WpKLZcgtfSG7NHdVVVdMcr0MmcJLZyiQ95UkX0zynp3ICVXVDye5YZIfSnJYhqzaF5K8o7u/vt3z70VV9SNJjsmQ/7tkkm9n+Fw/myF/+b1tnt+zPP+8u+WZvF6SK2bIDp6T5Ivd/eJN9pcB3gZVdYEkN8rwPFwqw/flGRlyse+dYZxjMjyb++6xs5P8d4Z86Hu6+zsLXjoAAAA7RGE0AAAAYFt191eq6owMQYqVLjXPeFV1qySPSPJTGYqhreVrVfX6JL/f3R+bZ655VdWlktw1yW2SHJvksht0Oaeq3pPkT5K8YrMF3arqs0mOWuP0UVW1mSJKx3f3KVPGPiXD2vd5a3cft8Y6PprkR1Y0fSXJD20lbFRV907y0lHzI7r7TzfZ/5Ak901yvyQ/keSC61z7mSR/m+Tp3f3f8614e1TVcUl+I8mtMxQUnHbNx5L8XpKXzlI4q6pOSPL8UfNVuvuzc6xzPO+Tu/ukDfqclOS3V7Z1d604f+MkT0xyh6zxe8yqemuSx3f3e9aZ52eSPC7JjyepKZecU1WvSvLY7v7P9dY862uYYZyjk5yU4Xtj/F25z5eq6jlJntHdZ806x2i+U7KJ53uyrs+sM9QDq+qBG8237z2ZBPtOzxAu2+eU7j5+w0Wvo6r+b5JfHjVff7vDywAAAAAAAADArvGzGYrVrPTC0T//6uj8g5P8yjyTTTI9/zRq/p8c1mQDv99Mcv8kF11jjE8keep6hXmq6roZ8jN3ylAwZto1707ymO5+52yvYn1VdWx+kFs63xrX/HOSZyf5y1k3/FtU7mYy1mWS/FqSn0lynXUuPbeq3pvkWUleNuvGq+tlpCZ5tQcm+fXsn6Vb6fuT3M4T18s7rZjvpIzeo5F/qtrwLXthd5+w0UWbsZ15xTXmu26G5/a2Sa6wzqVnVdU/JnnaZt7X0RzH5QB/ljeRw9vWZ3mN8XbDM3mRJL+U5CEZNqSdZupndqBngDe6r2cxZY0bfqdslE2tquskeWySuye5yJQhXphk3cJoVXWVDN+3d8jan2+SfLeq3p7kj7r7DeuNCQAAwO4z9T+mBAAAAFiwaUV81ir+M1VVXX1S6OxtSe6Z9YuiZXL+fkk+WlV/UVVrFsZapMnuol9M8udJ7pGNAxFJcoEMxbv+Nsm/Tv7ofyAZBxguneSOWxzzhNHx2Un+ejMdq+p2ST6a5EVJ/lfWKYo2cZUMhbM+XVVzhR0XraoOq6rnZgin/FTW/z3etZO8JMkbJ2GeA1oNfifJezIEwdbb3OHYJO+qqkdPGeeIqnpFktckuUWmF0VLhufvnkk+VlW32dLi5zC55/4tQzByve/Fy2UonvZvVXXDHVjawk1293zJqPm4qrrWvGNOdnx+wKj53YqiAQAAAAAAAMBB5cTR8beT/N2+g+7+UJKPjK65X1VNLVC0FVV1tyQfS/KLWaOQ0sTVk7yoqv52vI5JfuZJSf45yc9ljUJKEzdP8vaq+o2trfx/5j5fVf1JklMyZK+mFlKauEGS5yZ526RIzY6qqgtU1VOSfDrJ47N+AaZkyCHdIsOGnR+eFKtaxDqumOQdSZ6XtYuiJcN7eesk766q313E3HtRVV2+qv4qyYeSPCjrF0VLhk0a75LhfT25qjbKlm52HZ7l2efcLc/kTTN8dr+f9YtmTet7MGaAd0xVPTHDs/2ATC+KtlH/i03u648neWQ2/nwvmCGD+/qqentVXXnWOQEAAFgehdEAAACAnXDklLYzNtu5qm6dYfev288x9yEZgm9vrarNBBS26sezfiGnjVwryXuWUaBpC16S5HujtgfNO9gkKDZ+/Sd399c30ffRSV6XoVjYrC6a5I8nhfS28hluyaSI3xuS/PyMXf9XhvDGegGmA8FzMuyOudnfXVaSP6iqh/5PQ9WRSd6c5G4zzHuRJK+pqhvP0GdLJgHHP05y4Rm6XTnD99kBWRwtw66YYw/bwnj3zup/xzx7C+MBAAAAAAAAAAeQqjomQ0GalU7u7jNHbS8cHV8iQzGlRa7lfhkKsh0xQ7efy1BQa98YlaFA0ZOzfiGj/aZO8rtV9cgZ5l09yDD3S5I8Ysaut8yQZ5mpANFWTIpf/X9JfitzFNfJUMDsnVX1M1tcx1UzbAB58xm7/kZVPXUrc+9FVXW9JO9Lcp+svRHmeu6cIX959S2uw7M8+5y75Zn8iQzF4OYtgHUwZoB3xKSg2e9kzve3qo5K8s4M9/X55xjilkneV1U3m2d+AAAAdt7S/gNPAAAA4OBQVVfL9KI/n95k/59J8oqs/iP2OUnekqFg2ueSfDPDzn9HJ/nJJLcaXX+TJCdX1U9097iI13b5foad/v4tyX8k+WqGgnCV5GJJfjjJzTLseLeyCNThSf6mqn6suz+3zvgfS/KNyT9fOcnFV5z73uT8Rs7axDXr6u4vV9XrM4SK9rlDVV2mu788x5APyOqiWM+bduFKVfW/kzxuyqmvJfmHJB9M8uUMO8IemWE3wtslucbo+hMzvK+PnmnVi/O8JMevOP54hkJp/5HhtRyR5MeS3D2rdyP8iSS/luTp27/MxauqX0ny0BVNpyX5+yT/muG1H5nkphlCZBcbdf/jqnpThu+Dv0mysnDYB5O8MclnkpyZ4X37ySR3yv732oWSPLeqbtTd5y7oZU1VVb+eZNrunmdP1vq2JF/IEBK7Sobna9+OshdJcnJW7Gy8Tc5J8uEVx9fO/t/FX0/yn7MM2N3/VlWnJDluRfMDquoJ3f3tOdb48NHxV5O8fI5xAAAAAAAAAIAD04OzuoDSuAhakvxVkv+T/QsUnZjkZQtax42S/N6KtXwjyeszFM36coZcyrWS3CNDxm2l+1TVyd398gx5khNXnDstyWsz5Ge+miE/c5PJOOP8zNOq6rXd/dk5X8OjktxrxfGZSV6d5P1J/msy9zUz5JauNOp7pSRvqarrd/c3so0mmya+c7KWsX9N8tYMmb1967hMhsJld8iweeY+hyd5eVXdors/OMdSLpoh1/VDk+NO8q4k/5ghU3NWkktnyAfeNckFR/2fUFV/393vXWP8L+UH2Z3Dk1xtdP5T2Tj/N1O2ZwPbmlesqhsl+acMr3Wl85K8PcN7+5nJGi6U5IpJjk1y6+z/XP9whg1Gb9jd39zEmsY8yzM+y7vombxckldm/2ftfRkKtp2W4X24fIYc3M9tYryDIgO8Qx6S/Qv1nZUh1/vODPfkIRme6eMzvO/7mRRFe29WZ2aT4TN+Z4as7deTXCDD5/zjGTbkPmzFtZdN8rqqukF3n7a1lwQAAMB2q+5e9hoAAACAXaiqjs4QIlnprd193IzjPDbJ00bNX09yqe4+b4O+V8kQKjhyRfO5Sf4oyR9091fW6Xv9JH+R/YsjJckfdvejNpj36Kx+7Q/q7hes12/S9xNJPppht723bCZYM/mD/e8nuffo1Ou6+6c36j8Z4wVJHrii6bTuPnozfdcY75QMoaF91v3sq+pOGYIzKz2qu/9wjrk/kSEwss/nkxy13v1SVXfNEGhZ6etJHp/kRd393TX6VYadX5+TIWyz0p27+zUzLn8mU97n7+YHoZwvJfml7p5a/KqqDk/yrAyF5Fb6RpIrdPd3Npj7hCTPHzVfZZ4wVVWNf8n45O4+aYM+JyX57VHz2RlCKN/OEM56bndPC7lcNkPBxFuMTv15hnDLMybHn07y0O5+8xpruFGS12X1Z3+f7v7r9da/1mvo7g13Kq2qayT5UFaHHd8wWe/n1+h31yTPzg/CPd/JELSbdf5TMsPzvaLfZ5MctaLphd19wkb9poxz96wu6nZid29YAHE0zg2TfGDU/PTufsysawIAAAAAAAAADjxVdb4MhZ+usKL5C0muNC1rVFWvy1CIZ5/zklx11uIoVXVchgJOK+3LvSTJM5M8aVpRoao6LEO25RGjUx/PkAN6d4YCMRvlZy6XIT/z46NTf97dv7CJ13BSVmd3VmaXnp/k19d4DYdk2LzxqVmdf3lBdz9onvk3k3uZ9H1VhszXSu+arHetImP7ijf9Voa1r5zrs0mu291nbjDvOCO18v16b5Jf7O5/XqPv0Rk+rxuMTr2pu2+33ryT/sdl9T13fHefslHf7bANecWLZ8iKjsd4fpKTunvNAm+TzXufleS2o1Ov7O67bzDvcfEsb+lZnoyzW57J7+cHRfI+kuRh3f3uNfpecFqudC9kgBf5fTFPZnCNbOrKz+Y5SZ7Y3V9do/9+n01VXSDJO5LceHTpa5M8trv/fZ21XC7JHyS53+jU+5PcfNozCQAAwO5xyMaXAAAAAMynqi6f5NFTTv31RkXRJv4q+xdF+3aS23b3Y9cripYk3f2hDEGRfxid+qWqGu9wt0g37u67d/erNrvbYHef1t33SXLS6NQdqmraDnq70esz7Nq20gmzDlJVt8j+RdGSIUixXlG0y2R1iOKTGYIxf75WUbQk6cGrMuzyOC5G9fuTwmk7aV+46NNJbrZWUbQk6e6zMrzHbxqdOjLDTo4Hon1F0W7T3c9ZK3TS3f+V5Kcz7MC50v2SPGXyz/+WIbgytSjaZJwPZPp7talA1xY8O6uDZH+b5KfXKoqWJJN79dj84HVfaK1rd7mTs/p5e/gc44z7dJI/m2tFAAAAAAAAAMCB6PbZvyhakrxknazRC0fHh2SOjNMa9hVS+pXu/uVpRYiSpLvP7u5HZnXm5xpJ/n6yprOS/OQG+ZkvZcjPjHN096qqeTMl+/Is/7u7H7zOazivu5+R5OcybHS60glV9RNzzr+hqnpoVhdg+tMkt1yvAFOSdPc3Jpuqnjg6dXSSX5xjOfver9cmOW6tomiTuT+b5KeyOmP3U1V15Tnm3muelf2Lon0/yf0m9+GaRdGSpLs/leG7YJwhvFtV3XSOtXiWB5t6lnfZM7mv8NY7k9xqraJok7nXypUerBng7bbvs3lUdz98raJoydTP5qSsLor2+O7+mfWKok3G+lJ33z/Jk0enbpzkZzdeNgAAAMukMBoAAACwLSa78L0xyaVHp76dYWe0jfr/VJKbj5of3N1v2ewauvucDIGN/17RfP4kv77ZMWa12SDEGp6SYReyfSrJg7e2op3R3edm2CFvpR+tqhvOONS0glTjwNLYryQ5YsXxt5Pcbr0CU2Pd/bkk9xo1XzvJnTY7xgJ9L8k9NrMTbXd3pt/P490vDyS/ul4gaZ9JWOvpo+YLJ7lIhh0v79Hd48Jp08Z5R4bvqpWOr6px4bKFqKofTXL8qPnUJA/YTMHI7t63o+gBaxLyGxcwu1FV3WizY1TVEVm9w+Y/dPepW10fAAAAAAAAAHDAGBfTSZIXrXP9q5OMCwQ9qKoW9d/YvbS7/98mr/2tKW2Xmfzvr2xUUChJuvvrSZ4xar5Yhg1F53VKdz9hMxd292uTPHXKqV/ewvxrqqpDk/zGqPmN3f2ISY5qU7r7+Un+YtT8a1V12LTrN/DZDAW81ty8c8W8X8vq4jyHZCiYdtCqqmskueeo+Te7+682O8bk8/+FJOMiSY+fc1me5cG6z/IufSa/meSe3X3GHH0P2gzwDnlFd//hLB2q6uJJfmnU/Jzuftos43T3SVm90fa83w8AAADsEIXRAAAAgIWoqgtW1Q9V1R2r6s+TfCTJdadc+pBNFqx63Oj47d39slnXNQkp/N9R811nHWcnTIIgLx4133IZa5nT86a0nbDZzlV14ST3GDW/bbKj41p9Ds/qnQGf0d2f3uy8+3T3O5O8edS8jHvlpd39wc1e3N0fSzLebXTWgnS7xSeyOuC0nles0f7iyfuyWX83Oj40yY/O0H8WD5vS9qjuPnuzA3T3mzLsKnog+/Mk54zaHj5D/wdmKIS30nO2tCIAAAAAAAAA4IBRVZdJcsdR8z9397+t1WeSzxhn0I5KcusFLOn7WV0gaE3d/f4k/znl1Mez8UaSK41zL0lygxn6j81a1OxpScZ5wDtX1eW3sIa13CvD57VPZ3XBnM16yqT/PpfN6o1cN+PJMxZS+psM98pKB2rWa1Eek/3/O9fPZPWGmRvq7u8l+b1R8+3n2CDTs/wDGz3Lu/GZ/MPuPn3ONWzJHsgAb6fzkjx6jn6PSHL4iuOzsjpfvllPGR1fv6qOnnMsAAAAdoDCaAAAAMAsjq2qnvaT5DsZQhGvTfKQrC5Y8+0k9+3ul240SVVdIslPjppnKZY09rrR8VFVddTUK5fvk6PjG1TV+ZeykhlNClG9b9R8nxl27bt7kouO2jYKBt0myZGjtr/c5HzTjO+VY7cw1ryeO0ef8ft+9UUsZAmeP+NOkZ/OsMPj2Kz3wL9MabvGjGNs1u1Hx1/M6vtuM/5sAWtZmu7+cpKXj5rvVVXj53ktvzA6Pj0HfrE4AAAAAAAAAGDzHphknKt64Sb6vWhK24lbX07+sbtPm7HPh6a0zZqf+VSSM0bN8+Ze3tPdH52lQ3d/N6sLAR2aIde1aD87Oj6lu0+dZ6Du/lyS8WudNSv2rSQb5iFH8349qzOC25VT2vWqqpLcbdT8gu4eF4/brNePjg9LctMZx/As/8BGz/JueyY70zf43UkHbAZ4m72luz87R7/xPfby7h4/J5v1riTfGLUtIyMMAADAJimMBgAAAGy3MzMUNbvmZoqiTdwqSY3a3rWFNXxmStuPbWG8Tauqw6vqDlX1+Kp6UVW9rqreXlX/XFUfGv8k+ZPREIdl2PnuQDEuZHaJJHfaZN8HjY7PyurCSWPjUMLpc4SSVhrfK0fPUKhpEb6T1UXONuNTo+PzVdXhU6/c3d42R5/xbpvfTvLBGcf47JS2hX/uk52KrzJqfvWcQb43ZQhXHsjG33cXTvKAjTpV1bFJrj1qfm53n7uohQEAAAAAAAAAu96DR8fnJvnrjTp197uyunDNXSabeW7FPLmXaTmnty9gnHlzLyfP2e+VU9puNudYU00KaN1q1LyVTGGyOis2a6bwPd19zhzzjrNeR8wxxl5x3SQXH7XN/bl299eyeqPNWT9Xz/L+pj7Lu/SZPLW7P7/FNeznIMwAb5d/mrVDVV08yY+Omrfy/XBeVj9jO5IlBwAAYD6HLnsBAAAAwJ73gSTPnOzmtlm3mNL2iqra9O55m3CpBY61SlXdMMljMhQFu9AWhzsyyULDGtvor5P8YfZ/zSdkgwJnVXVUkuNGzX/b3RsVfhrfKxefhEvmNa2Y2KWyepe47XJad39vjn7jMFcyBObO2uJ6dto8u0WeOTo+bY4CWeMxku0JHN5wStusRdySJN19blV9JMnNt7ak5enu91TVB7P/+/KwJP9vg64PHx2fm6EAJwAAAAAAAABwEKiqWyS55qj5Dd39lU0O8aIkv7Pi+LAk903yzC0saxG5l0WNM2/uZa4cS5KPJvlekvOvaJuWk9mKa2XYpHOlB1bVT29hzCuPjmfNFI4L7G3WOOt1MBdGm5YVfWZVnb2FMS88Op71c/Usb+5Z3o3P5D9vYe79HMQZ4O0yz2dz8ySHjNqeUFWP3MI6jhkdb2uWHAAAgK1RGA0AAACYxbcyPaxx/gy79l1+yrnjk7y/qk7o7g135Jy44pS2626y72ZdcsHjJUmq6vxJ/ihD4Z7xH+TndcAEn7r7m1X1qiT3WdF826q6fHd/cZ2uJySpUdvzNzHl+F65cJLrbaLfLC6Z+UJK8/janP2mFVM7/5S23e7rc/QZv/aZx+ju7w0bWO5nO96/y0xp+/gWxvuPHMCF0Sb+JPs/69eqquO6+5RpF1fVZZLcddT8mu4+fZvWBwAAAAAAAADsPidOaXvhDP1fnOQp2T+vdGK2VhhtEbmXRY0zb+5lrhxLd59dVZ9N8sMrmqflZLZiWqbwimu0z2vWTOGisl4HYs5rUaZ9fuOih1s16+fqWd7cs7wbn8kvb3XCgz0DvI3m+Wym3UtX3epCRrYlSw4AAMBiLOr/mAMAAAAHhw909/Wn/Fynu6+Q4Q/EJ2Qo1rPSBZK8uKp+ZpPz7MQfmre6g9sqk0DEy5M8Iov9vcuBFnwaFzQ7X5L7r3VxDRWpHjBq/mR3v2MTc413HNwOC79X1jEtIHXQ6O5FvP7d/B4eOaVtvAPsLLbSd7f4myRfHbU9bJ3rT8zw75SVnr3QFQEAAAAAAAAAu1ZVHZ7kHqPmryd57WbH6O7Tkpwyar5eVd1wC0tbSGZlQfmZeS0yxzItJ7MVuzFTuJtzSgeKPfu5HgTP8m787M7YymQywNtqns9mN95jAAAA7CCF0QAAAICF6e6vdfcLk1w/Q7Gblc6X5CVVdfQmhrr4gpe2Ux6X5M5T2k9P8qdJ7pfk5kmulCEscsHurpU/SY7fsdVunzcnOW3U9qB1rj82q3dxGxdXW6WqLpzksNmWBkt10Slt39rCeFvpuyt093eT/OWo+W5VddnxtVV1SJKHjpo/meE7BwAAAAAAAAA4ONwryUVGbS/r7rNnHOeFU9pOnG9Je8YicyzTcjJbcaBmClmfz3V77MSzvBs/u3O32F8GePvM89nsxnsMAACAHXToshcAAAAA7D3dfXZV3T/JZbP/H/kvlqEAzq03GOI7o+NvdPeu/gN3VV0myRNGzecmeUySP+nuzf5R/4Dffay7u6pemORJK5qvWVU36+73TOkyLpr2/SQv2sRU301yXvYv/ioagZ8AACAASURBVH9yd991pgXDzjlzSts4qDuLrfTdTf40yaPzg2f5/BmCxr83uu72SY4etf1Zd/e2rg4AAAAAAAAA2E2mFS97WFU9bAFj37uqHtXd4/zaweIiSc7YQt+VpuVktmLaZ3KX7n71gudhZ037XC/e3d/Y8ZXsLTvxLO+pZ1IGeFeado9dv7s/vOMrAQAAYCkO2fgSAAAAgNlNQgAPyOpwxU9W1T036P7fo+Mjq+rIhS1ue9wpyYVHbY/r7j+eIRCRJJdY4JqW6QVJxsWKThhfVFWHJ7n7qPn/6+7TN5qgu89LMg5AXWXzS2QRqur8y17DAWRaYO+ILYy3lb67RnefluS1o+aHVtX499cPHx1/N8N3DQAAAAAAAABwEKiqaye52TZOcWSSu23j+LvdInMsiy5sNc4UJrJie8G0z/XonV7EHrQTz/JeeyZlgKdbZj50r91jAAAAzEhhNAAAAGDbdPfnkzxpyqnf26CY0n9NabvuYla1bX5qdPz1JH8yxzhXXcBalq67P5PklFHzvarqgqO2e2T1DoPPn2Gq8b1y9ao6bIb+B7PvTWmbJ8Ryya0u5CDy5Slt19jCeNfcQt/dZvx9eVSS2+87qKr9jif+tru/ut0LAwAAAAAAAAB2jRP3yBy71dXn6VRVF8jqYlbTcjJbcSBmCtmYz3V77MSzvNc+u72UAV5UNjRZbqG3vXaPAQAAMCOF0QAAAIDt9uwknx61XTXrB8jeN6VtXBBnt7nS6Pi93X3OHOPcfBGL2SXGBc6OSHLXUdsJo+OvJXnNDHOM75ULJTluhv4HszOmtF1sjnGO2epCDiIfnNJ2w3kGqqpDs7dCPv+Y5OOjtoev+OeHZvXvs5+9rSsCAAAAAAAAAHaNyUac9x81n5Pkw1v8+dpozOOqajcUtlmGuXIsGTIs46I703IyW/GRJN8dtd1uwXOw8w7ErOiBYCee5b32TO6lDPBCsqFVdcUk482Qd9J7p7T5fgAAADiIKIwGAAAAbKtJMOApU079ZlUdtka3f5jSds9JIaDd6lKj43FgbkNVdakkx885/7mj4/PNOc4ivSKrAxYP2vcPVXW1JLcanf+r7j57hjmm3Sv3m6H/wewbU9rmCXUeu9WFHCy6+8tJPjNqvlNVzfN72tsmucjWVzWTbfue6e5O8qej5ttX1VGTYPO4mOaHuvs9i5ofAAAAAAAAANj17pTk0qO2V3X39bfyk+SJozErKzJOB5m7zNnvblPaFprr6O7vJnnHqPnyVXXrRc6zi41zO8lyM4KLyhG9K8m3Rm13rKqLzzkeg21/lvfgM7mXMsB7Ihva3aclOXXUfJOquvoy1gMAAMDOUxgNAAAA2AkvSfKJUdsVkzxk2sXdfXpW7zJ3lSQnLHxlizMO54xDEpvxiMy/u9qZo+PD5xxnYbr720leNmq+dVXt21nvhCndnj/jNG/K6l0H711V15hxnIPRx6e03WSWAarqfEkevJjlHDTeMDq+QpI7zjHO1O/Pbbbd3zMvSHLWiuNDkjw0yV2TXHZ07bMXPDcAAAAAAAAAsLuNN1VLhlzaVr0syTmjthPm3OjuQHfzqrrOLB0mm6Pef9R8bpJ/XNiqfuDVU9pO2oZ5dqNxbidZbkZwITmiyca7bxw1XzTJo+YZj/+xU8/yXnom91IG+PTsn8NLZsyGTjx0C2tYlPE9dkiSJy1jIQAAAOy8g/EXtAAAAMAO6+7vJ/mdKaeeUFVrhQB+d0rb03fxTl9fHB3/eFVdZLOdJyGUJ2xh/q+Pjo/cJbsmjgudHZLkAZPg4ANG5z7c3f8yy+Dd/d9J/nzUfL4kL62qC8200oNMd385yedHzfeYFDvbrEdkvp0ED2bPmdL29Kq6wGYHqKrbJLnz4pa0aePvmYV+9t19RpIXj5pPTPJLo7Yzkrx0kXMDAAAAAAAAALtXVf1Qkv81av5KVhdUmll3fy2rN7q7YpLbbnXsA9T/nfH6x2Z4v1Z6dXeP83SL8JdJvjRqu2VVPW4b5tptxrmdZLm5rUXmFadlRR9bVbecczwGO/Es76Vncs9kgLv7vCQfGjXfsaqO2OwYVXWnJD8xz/wL9oys3jz5vlV1z2UsBgAAgJ2lMBoAAACwU16a5D9GbVdI8rBpF3f3q5J8YNR8RJI3zLqT3T5VddGqekxV3W+e/ht4++j48CS/vZmOVXV0ktckOWwL8390StsdtjDeQnT3u7P6cz8hya2TXHnU/rw5p/n9rN6t7wZJXjVvMKSqjqqqZ1bVj8y5pgPFONR55SS/upmOVXXrJP9n4Sva47r7o0n+adR89STP38xOw1X1w1ldPGynjL9nfqSqrrTgOf5kdHzZJOOQ40u6e7yjJQAAAAAAAACwdz0ow2aJK72su89d0PgvmdJ24oLGPtDcuqqeupkLq+r2SX5ryqn/t9glDbr7O5leROv3quqR845bVberqj+df2U74nNJvjlqW2Y+cGF5xclmqq8YNZ8/Q/5vrsJMVXVYVT20qn5tnv57xLY/y3vsmdxrGeBxNvRCSTZ7P1w3qzdFXopJYb5nTTn1vKq6+zxjVtX5quqeVTXt3gUAAGAXURgNAAAA2BGTHciePOXU46vqwmt0u3eSr43arprkvVX1m5vZvayqDqmq46vqOUn+M0Mhp8vNsPTNekWS80Ztj6mq36mqQ9dZ372TvDs/2L3xjDnnf8+U+Z9RVXeuqvPPOeaijAMSx2T1boTnJPmreQbv7i8leWCSHp26bZIPVtX91vsM9qmqi0zCDq9McmqSRya54DxrOoD8xZS2p1XVL1RVTetQVRec7Oj4hgxBnvFufGzsF7P6fbtPktdMdjieqqrukuRt+cF32He2Z3lretfo+JAkL6+qGy1qgu7+WFYXjht7zqLmAwAAAAAAAAB2t0mG5UFTTk0rZjavv8/qolN3qqpLL3COA8G+PMtvVtVz18rnTTJ5v5rklRkKWK30gu5+2zau8VlJXj1qOyTJM6vqVVV1vc0MUlVXqarHVdVHMuSg5irAtVO6uzPkDFe6TVX9flVdZglLWnRe8ReSfGbUdqkkb66qP6iqTWU+q+qmVfWMJJ9N8mdJrjbHWvaCnXyW98ozudcywC9I8v1R2yOr6slrvZ5JwbATk7wjySUyZHLPmWPuRXtikveN2i6c5O+q6i+qalPPeVX9SFU9JcknkvxNkk3dmwAAACzPhv9BKAAAAMAC/W2GP1BfZ0XbZTMUCXr6+OLuPrWq7pHk9UkusOLURTLsXPaEqnpHkncm+WKSb2T4Y/eRSa6U5AaTnyMX/kpWr/UTVfWSJA8YnXpikhOq6u+SfCTJWRkCA9dIcqfsH7z5dpLHJXn2HPN/saremP13iLtskpOTnFNVn0vyrawuHvbz3f2BWeeb0YuT/F7237X1WqNr/r67vzrvBN39iqp6UpLfGZ26ymT+p1fVKUk+kOQrGd6Li2W4N45JcqMk183Wduw74HT3+6rq1UnuvKL5fBkKTz2iql6VoUjcOUkuneSGGe6xlWG6X41CVTPp7v+oqt9M8ozRqTsmObWq3pBhB8ovZtip8aoZPqMfXXHt6UlenuH93ymvzlCs8hIr2m6a5P1VdWaSL2RKobzuvv6M8zwryfFrnHtHd0/bHRMAAAAAAAAA2JuOzw8Kzuzzye5+76Im6O6zq+rlSX5+RfP5k9wvyR8tap4DwJMybDyaDO/FParq5CTvT/LlDFmraya5e5IrT+l/WpJf284FdndX1f0yFO4ZF7W5S5K7VNWHk5yS5JNJ9mXSjsxQaOu6GTJQ43vqQPC8JLcbtT0+w+a0X8yQ6zl3dP413f2kRS9k0XnF7v5qVd0pw+e6sojXoUkeneSXq+rdGTaV/HySr2fI+h2Z5PJJfixDBvBgK2a4lh17lvfKM7nXMsDd/YWqemZW5wuflOS+VfWKJP8+WfMlM2QT75j974enZdjg+qhZX88idfd3q+quGYrHXWl0+sQMn88Hkrw1Q1HEr2XIwR6ZIet6/QzfD2tuWgsAAMDupDAaAAAAsGO6+7yqenKGAmkrPbaqnt3d35rS581Vdaskf5fVf9C+SJLbTn52g19OcpMMgZGVrpiNixd9L8nPZQgZzOsxSY7N8L6sdIGsvfPh4VuYb1NWBDbuuM5lz1vAPE+tqi9kKKp0wdHpyya55+SH/T0syY2TXGHU/qPZvxDXNH/Q3X9WVQqjzai7/7CqLpXkCaNTF0xy18nPWr6VITT209u0vKkmAaNfS/LCKacvmiHstQgnJ/lcVn/nJ3OExgAAAAAAAACAA9qJU9pesg3zvCT7F0bbN/fBVBjt6RmKx9xjcnyxDEWCxoWCpvl8kp/s7m9s09r+R3efNckUPj9DYaex62V1gaa94BVJ3pzk1lPOXX7yM/ahbVzPQvOK3f2vVXXjJK9M8iNTxjx28sPGdvRZ3kPP5F7LAP9mkttk9fN0tSSP3WAtL5v0v/cG1+2ISaG3m2RY10+MTp8vwwavN93xhQEAALCtDln2AgAAAICDzr5d01a6dJJfWqtDd78vyQ0yhCa+t4W5O8Ouc2/fwhhrD979zQwhgvfM2PULSW7T3a/f4vwfS/JTSU7dyjjbZL3CZ19M8qZFTNLdz0ty8yRv2eJQ303yN0n+c8uL2uW6+0tJbpnZ7ptzkjy6uzcKx7CO7v6NDDtrzhKG+nyS46ft8rgTuvtFGULAZ27jHN9P8mdTTn0lQ8ATAAAAAAAAADgIVNWRSe425dRfbcN0b8vqrNB1quqgKbTS3Z3kvklm3STxnUmO7e5PL35V03X3md39s0kenuT0LQ73nxmyibtad5+X5GeTvHTZa0m2J6/Y3Z/MUNzoDzNsHrkVH0iypUzmgWoZz/JeeCb3Wga4u7+d5Lgk75ulW4bCeveZfOfsGpOs662TPDHJ17Y43L9n9SbfAAAA7DIKowEAAAA7ahK4OGnKqUdX1UXX6fff3f3gJMdk+KP7v2X4A/xGzkzyugzFh67S3cd393tnXvgmdffpGXYje2SSjcIhpyX5rSTX7O63LWj+d2fYre4OSf40yTsyhC7OSrLMkMLfJ/nvNc69aFIIaSG6+0PdfeskN0vyogyFpDbjixl2fn1gkst19727+8uLWtdu1t2fSXLdJL+R4X1YyzkZdtz7se5+xk6sba/r7j9Ocp0kL0xyxjqXfjnJU5Ncp7vfvxNrW0t3/2WSH0ryoCQvTvIvGdb3nQVOM63w2/O6++wFzgEAAAAAAAAA7G73TXLBUdu7u/tTi55okmubVnDtxEXPtZt197nd/fAMxYHekvUzZ/+S5CFJbrWTRdFW6u7nJLnqZB3/mM1tUHhehrX/QZLjkxx9oGShuvsb3X3fDBnBk5K8Nsmnknw9W9t0dt71LDyv2N3f7u5HJTk6w2v8QJLN5Au/m+Ge/Y0MGasbb7VQ1YFsWc/ygf5M7rUMcHd/NcktMhSsW+/fnd9P8oYkt+jux+y2omj7TO7r301yVJJHZXh/ztlE13OTvCvJU5LcpLuvPdkkFgAAgF2sht/ZAgAAABx4qurSSW6Y5NJJLpnk8Ay7BJ6ZoRjWfyQ5rZf4C5CqunqSm0zWeJHJ+j6f5CPd/fFlretgU1XHJLl2hvvkkkkukCEo8s0kn0nyHwdLEbTNqKrrJrlekksluXCG9+njGYKlZy1zbXtZVR2W5JZJrpzkchmCTP+V5CNJPrRbw0bboapemuTeK5o6yTHLCtECAAAAAAAAAByMqupSGTaovFqGfN4ZGTZe/JftKFC3VVV1gQyZwitmyD5dPENBnDMzbOz5iSSf6O5FbgDINquqI5LcOMllMuT/jsiwieOZGYpGfTzJpxe5QeuBoqpOSvLbK9u6u6Zct5Rn+UB/JvdaBnjyem6Y4Vm6aIbP4VNJ3tXdX1vm2uZVVRdOcqMkV8jw/XBkkrMzvLYvZ/h+OLW7N1NADQAAgF1EYTQAAAAAAHaNSdHLzyU5bEXzG7v79ktaEgAAAAAAAAAAwK6z2cJoAAAAAAeaQ5a9AAAAAAAAWOEh2b8oWpI8axkLAQAAAAAAAAAAAAAAAGBnKYwGAAAAAMCuUFUXSfIro+ZTk7x+CcsBAAAAAAAAAAAAAAAAYIcpjAYAAAAAwG7xlCSXGbX9cXeft4zFAAAAAAAAAAAAAAAAALCzFEYDAAAAAGCpquoSVfX0JL8+OnVakucuYUkAAAAAAAAAAAAAAAAALMGhy14AAAAAAAAHl6r6iyQ3mhxeKskVktSUSx/T3efs2MIAAAAAAAAAAAAAAAAAWCqF0QAAAAAA2GnHJLneBte8qLtfvhOLAQAAAAAAAAAAAAAAAGB3OGTZCwAAAAAAgJGXJPn5ZS8CAAAAAAAAAAAAAAAAgJ116LIXAAAAAADAQe87SU5P8u4kz+vuU5a7HAAAAAAAAAAAAAAAAACWobp72WsAAAAAAAAAAAAAAAAAAAAAAAAADnKHLHsBAAAAAAAAAAAAAAAAAAAAAAAAAAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdIcuewGwbFV1RJJjVzR9Lsk5S1oOAAAAAAAAAMBWXCDJlVYcv7W7v7msxQCAjB4AAAAAAAAAsEfI5+0QhdFgCFy9etmLAAAAAAAAAADYBndO8pplLwKAg5qMHgAAAAAAAACwF8nnbZNDlr0AAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgKU7dNkLgF3gcysPTj755BxzzDHLWgsAAAAAAAAAwNxOPfXU3OUud1nZ9Lm1ruX/Z+/Owyyr6nvh//bpmrrpEehmVBkFJCqivIGmQQRUgnkjMV4SL3mIxleNEoPxRdQYBuONQ5zyJnLjcFFITAxBBSUKeq8yo4IMsZNGGQSaubvpeajxrPeP7i5qOPucfapO1Tl16vN5nn7ovfZae62zq55m7aq1vhuAaWKNHgAAAAAAAAAw41mfN30Eo0FE/8iDww47LI4++uhmjQUAAAAAAAAAoJH6a1cBgClljR4AAAAAAAAA0I6sz5sipWYPAAAAAAAAAAAAAAAAAAAAAAAAAEAwGgAAAAAAAAAAAAAAAAAAAAAAANB0gtEAAAAAAAAAAAAAAAAAAAAAAACAphOMBgAAAAAAAAAAAAAAAAAAAAAAADSdYDQAAAAAAAAAAAAAAAAAAAAAAACg6QSjAQAAAAAAAAAAAAAAAAAAAAAAAE0nGA0AAAAAAAAAAAAAAAAAAAAAAABoOsFoAAAAAAAAAAAAAAAAAAAAAAAAQNMJRgMAAAAAAAAAAAAAAAAAAAAAAACaTjAaAAAAAAAAAAAAAAAAAAAAAAAA0HSC0QAAAAAAAAAAAAAAAAAAAAAAAICmE4wGAAAAAAAAAAAAAAAAAAAAAAAANJ1gNAAAAAAAAAAAAAAAAAAAAAAAAKDpBKMBAAAAAAAAAAAAAAAAAAAAAAAATdfR7AHAbJRSinK5HCmlZg8FYJwsy6JUKkWWZc0eCgAAAAAAAAAA1M0aPaBVWZ8HAAAAAAAAUJtgNJgGKaXo7e2NLVu2xJYtW6K/v7/ZQwKoqaurKxYsWBALFiyInp4eC7EAAAAAAAAAAGhJ1ugBM431eQAAAAAAAAD5BKPBFNu+fXs89dRTMTAw0OyhANSlv78/nnvuuXjuueeis7Mz9t9//5g3b16zhwUAAAAAAAAAAMOs0QNmIuvzAAAAAAAAAPKVmj0AaGfbt2+P1atXW3AFzHgDAwOxevXq2L59e7OHAgAAAAAAAAAAEWGNHtAerM8DAAAAAAAAGE0wGkyR3QuuUkrNHgpAQ6SULL4CAAAAAAAAAKAlWKMHtBPr8wAAAAAAAACe19HsAUA7SinFU089NW7BVWdnZyxcuDDmz58fnZ2dkWVZk0YIkC+lFAMDA7F169bYvHnzqDfq7v737dBDD/VvGAAAAAAAAAAATWGNHjBTWZ8HAAAAAAAAUJtgNJgCvb29oxYqREQsWLAgDjjgAAsVgBmhs7Mz5s2bF0uXLo0nn3wytmzZMnxuYGAg+vr6oqenp4kjBAAAAAAAAABgtrJGD5jJrM8DAAAAAAAAqK7U7AFAOxq5QCFi5wIGC66AmSjLsjjggAOis7NzVPnmzZubNCIAAAAAAAAAAGY7a/SAdmB9HgAAAAAAAEBlgtFgCoxddLVw4UILroAZK8uyWLhw4aiysf/OAQAAAAAAAADAdLFGD2gX1ucBAAAAAAAAjCcYDRospRT9/f2jyubPn9+k0QA0xth/x/r7+yOl1KTRAAAAAAAAAAAwW1mjB7Qb6/MAAAAAAAAARhOMBg1WLpfHlXV2djZhJACN09HRMa6s0r93AAAAAAAAAAAwlazRA9qN9XkAAAAAAAAAowlGgwar9Ia2LMuaMBKAximVxk8ZvJESAAAAAAAAAIDpZo0e0G6szwMAAAAAAAAYTTAaAAAAAAAAAAAAAAAAAAAAAAAA0HSC0QAAAAAAAAAAAAAAAAAAAAAAAICmE4wGAAAAAAAAAAAAAAAAAAAAAAAANJ1gNAAAAAAAAAAAAAAAAAAAAAAAAKDpBKMBAAAAAAAAAAAAAAAAAAAAAAAATScYDQAAAAAAAAAAAAAAAAAAAAAAAGi6jmYPgOmRZVlnRJwYES+MiP0iYmtEPBUR96aUHm1wXwdHxDERsX9EzI+IpyPisYi4I6U00Mi+AAAAAAAAAAAAAAAAAAAAAAAAaA+C0Zoky7JDIuK4iHjVrv8eGxELRlR5LKV0UAP6WRoRH42I34+IPXPq3BERn0spfWuSfb05It4fESfkVFmfZdlVEXFxSmndZPoCAAAAAAAAAAAAAAAAAAAAAACgvQhGm0ZZlp0SER+OnWFoFUPKGtzfb0XEFRGxrEbV5RGxPMuyf46Id6WUttXZz/yI+EpE/EGNqntGxLsj4k1Zlv1RSukH9fQDAAAAAAAAAAAAAAAAAAAAAABA+yo1ewCzzDER8bqYnlC0UyLi2hgdipYi4u6IuDoi/ndErBvT7JyI+EaWZYW/L7IsmxMRV8X4ULS1EfHDXX3ds6vv3faJiO9kWbaiaD/Qzg466KDIsmz4z0033dTsIQEAAAAAAAAAAMCMZ30eAAAAAAAAAMw8gtFaQ19EPNyoi2VZdmBEfDsiukYU3x4RR6eUXpVSOjul9LqIODAizo+IgRH1/u+I+B91dPfJiDhzxPFARLw3Ig5MKb1+V1+vjIjfiIifjKjXHRHXZlm2Xx19AQAAAAAAAAAAAAAAAAAAAAAA0KYEo02/gYi4LyL+V0S8KyJeGRELIuL/aWAfH42IJSOO74iI01NK94+slFLqSyn9XUScPab9+7Mse1GtTrIsOyR2BquN9N9SSl9IKfWP6WtVRJwWo8PR9oqIS2r1AwAAAAAAAAAAAAAAAAAAAAAAQPsTjDa9royIhSmlV6SU3pFS+nJK6Z6U0kCjOsiy7PCI+KMRRf0R8daUUm9em5TStbvGtlt3FAssuyQiOkccX5FS+k6VfnZExFt3jWm3t+8KWAMAAAAAAAAAAAAAAAAAAAAAAGAWE4w2jVJKG6oFlDXIf4+IOSOOv51SerBAu0+NOT47y7KevMpZls2NiDfXuMY4KaUHIuLaEUUdsXPMAAAAAAAAAAAAAAAAAAAAAAAAzGKC0drP7445/lqRRiml+yPiZyOK9oiI11Vp8vqImDfi+CcppV8WGuH4Mb2pYDsAAAAAAAAAAAAAAAAAAAAAAADalGC0NpJl2b4R8fIRRYMRcXsdl7hpzPFvVal7Ro221dwaO8e22yuyLNunjvYAAAAAAAAAAAAAAAAAAAAAAAC0mY5mD4CG+o0xx79IKW2ro/0dY46PrqOvnxTtJKW0LcuylRHxijF9PVv0GkD9Ukpxzz33xC9/+ctYs2ZN9PX1xdKlS+OAAw6IFStWxPz585s9xAl7/PHH46677oonnngiduzYEXvvvXe89KUvjVe96lVRKk0uA3TNmjVx6623xlNPPRU7duyI/fffPw455JA4/vjjJ33tSlatWhUrV66MtWvXxubNm2PPPfeM/fbbL1asWBF77bVXw/sDAAAAAAAAAABgcqzPmxjr8wAAAAAAAACoRDBae3nJmOOH6mz/cI3rjXRUA/oaGYz2koj4cZ3XAApYt25dfPzjH4+vf/3rsXbt2op1urq64tRTT41LL700fvM3f7PQdd/61rfGlVdeOXz8yCOPxEEHHVSo7U033RSvec1rho8vueSSuPTSS3PrZ1k2/PdXv/rVcdNNN0VExB133BGXXHJJ/PjHP45yuTyu3T777BMf+chH4rzzzqt7kdS9994bH/jAB+LGG2+seO0DDzww3vWud8WHPvSh6OjoiEsvvTQ++tGPDp+/8cYb45RTTinU13PPPRef/vSn4+tf/3o8+eSTFeuUSqVYvnx5XHLJJXH66afX9VkAAAAAAAAAAABoPOvzrM8DAAAAAAAAoPEEo7WXw8Ycr66z/WNjjvfKsmxJSmnDyMIsy/aMiD0n2dfY+ofX2R4o4Nprr41zzz03tmzZUrVef39/3HDDDXHDDTfEO9/5zrjsssuio6O1/xfx8Y9/PC6++OIYGhrKrfPss8/Gn/3Zn8WNN94Y//qv/xpdXV2Frv25z30uLrzwwqrXfuKJJ+Kiiy6K66+/Pr797W/XPf7d/vEf/zHe+973xubNm6vWfx0p0gAAIABJREFUK5fLcdttt8VrX/va+MM//MO4/PLLC38eAACgve0Y2h6P9P4q+st9dbXbu3Pf2L/7hVHKqm9UGUpD8Xjvw7FxcP1khtk2ukrdcXDPi2PunD0afu2tQ5vjsR0PxkAaGHeuu9QTB889InpKcxveb6MMlAfisd4HY0nnXrFX5z7NHg4AwIywdWhzPNP3eOzb/YKYP2dhs4fTktYPrI0n+h6Jchq/UX7BnEXxormHRUfW2fB+Nw1uiGf7n4wX9hw6qXl4b3lHPLrjgegt72jg6KbOPl0HxL5dB44KRqhk5/z/gdg6VP33kPPmzI8Xz/uNRg4RAABahvV51ucBQCOkgf6IR1ZFlEoRh7605s/mAAAAAABgNmjt36pTr8VjjtfU0ziltDXLst6I6BlRvCgiNoypOraf7SmlbfX0VWFsi+psD9Tw1a9+Nd7xjneMe5vioYceGi95yUti3rx5sXr16rjzzjtHLTD68pe/HKtXr47rrruuZRdffeYzn4mPfOQjw8dHHHFEHHHEEbHHHnvE008/HT/96U+jt7d3+Pw111wTF110UXzqU5+qee3PfvazccEFF4wrf8lLXhKHH354dHd3x+rVq+Ouu+6KoaGhuOOOO+Lss8+Ok08+ue7PcfHFF8fHPvaxUWVZlsURRxwRhx9+eCxYsCA2bNgQP//5z0e9TfTrX/96PP3003HDDTe07NcIAACYHjdv+H5cveZ/RTnGBwQUsX/XC+NPX3BpLO4Ym4G/09N9j8ffP3FpbBx8bhKjbD+lKMXZy94RJy/5rYZcL6UU1z/3b/G95/41UqQq/c6Jc/Z9T5yw6LSG9NtID2xfGV988hPRW94eEREvm/9/xdv3uyA6SzYNAQDk+f66q+KG9VfHYBqMLLJ487K3x2uW/Hazh9UyhtJgfO3pz8c9W26vWm+P0oJ4z4F/GQfPPaIh/ZZTOa5a8+W4deMNERExJzri3P3+LI5bWP/vgn626ab4+jNfiKEYbMjYpsuLeg6P8w68KDes71fbV8aXnvx4obC3g3oOjwtf9OlGDxEAAJrO+jzr8wCgEdIj90f64FkRTz+6s+DwYyI++++RLVnazGEBAAAAAEDT+W1te5k/5ngir5zeEaOD0RZMYT8jVeqnblmWLYuIen8DdGgj+m6UNDgYsfaJZg+j/S09MLI2XrBy3333xbvf/e5Ri66OOeaYuOyyy2L58uWj6q5duzYuuuii+NKXvjRcdsMNN8TFF18cH//4x6dtzEWtXLkybr311oiIOOuss+ITn/hEHHnkkaPqbNiwId7//vfHFVdcMVz22c9+Nt797nfHQQcdlHvtu+++Oz70oQ+NKjvllFPiC1/4Qhx99NGjyteuXRsXX3xxfPGLX4xbbrklVq1aVdfnuPLKK0ctuiqVSnHeeefFBRdcEC984QtH1U0pxXe+8504//zzY/Xq1RER8aMf/Sguuuii+MQnPlFXvwAAQPtY3ftQXLXmy5O6xlP9q+Ofnv67eO8LLh13LqUUX3ryE0LRKihHOf51zZfi4LlHxAt6Dpn09VZtvzf+/blvFOh3KP7pmb+Pg3peHPt1v2DS/TZKf7kv/uGJv46+9PwmqF9svTOuf+7q+J2l5zRxZAAArWvl1rtGzQFTpLh6zf+Kg3oOb1jA10z3w/XfrhmKFhGxrbwl/ueT/yM+eejXYk42+d///WTTj4ZD0SIihmIwrnj683FwzxGxd9c+ha+zpv+puPKZv530eJrhsd4H46pnvxxv3398WEFfuTe+OGb+DwAwk1ifN43aeI2e9XnW5wFAI6SUIv3Vuc+HokVEPHhfpL95d2Sf+GazhgUAAAAAAC2hPVcczF5jA8smshJ5R0QsqXLNRvZT7ZoT9Z6IuKRB12qOtU9EOttmh6mW/duvIvY7qNnDmDJvf/vbo7+/f/h4xYoV8YMf/CDmzZs3ru7SpUvji1/8Yhx22GHxgQ98YLj8U5/6VLzlLW+Jl770pdMy5qLWr18fEREXXnhh7hsmlyxZEl/72tdiw4YN8Z3vfCciIoaGhuLyyy8f9wbIkc4777wYHBwcPn7Tm94UV111VcW3Pi5dujT+4R/+IQ455JC48MILY926dYU/w2OPPRbvfve7h4+7u7vj2muvjTPOOKNi/SzL4qyzzorly5fHiSeeGA899FBERHz605+Od77znXHwwQcX7hsAAGgf/7n17oZc51fbV0ZveUf0lOaOKl8z8FSsGXiqIX20q19svbMhwWi/2HJnXfVXbr2rpYLRfrV9ZcVQhF9s/ZlgNACAHNc/d3XF8vu2/lQw2i71PPNsG9oSD+/4Zbx43m9Mut+V2+4aV5Yixcptd8Vrun67+HW2jr/OTPKfW38eQ2ko5mRzRpU/kDP/BwCYMazPmzbtvEbP+jzr8wCgIR76xc4/Y/38R5EGByLr6Jz+MQEAAAAAQIsoNXsATKnUZm2AAm688ca45557ho8XLlwYV111VcVFVyNdcMEF8du//fxmjnK5HJ///OenbJyTsWLFikJvYvzrv/7rUcc//vGPc+vedddd8bOf/Wz4eL/99ouvfvWrFRddjfSBD3wgXve619Ucy0if/vSnY8eO5/MhP//5z+cuuhpp2bJl8S//8i/Dx0NDQy37NQIAAKbepsENDblOOYZi6+DmceUbB55ryPXb2abB9Q25zsbB+u71pqHG9Nsom3LG36jvUQCAdrO696F4tPeBiuc2DrTWXK+ZtgxtrKt+w+bnOc9C9c5v653nt5q+1Bt95bHvO4vY2KD7DAAAM5X1ec+zPg8AJum26yqX926P2LF1escCAAAAAAAtRjBaexn7m4+5E7jG2DaVfpsyXf0AE3DllVeOOj7vvPNi//33L9T2k5/85Kjjb3zjG9HX19ewsTXKRz7ykSiVav8v7Oijj46DDjpo+Pi+++7LrfuNb3xj1PGf/umfxqJFiwqN56KLLipULyJi27Zt8dWvfnX4+JBDDol3vetdhdsfd9xxcdJJJw0ff/e73y3cFgAAaC+DaaBh1+pL4ze791bYAM9ojbpHfam3Kf02Sl+58vgrfV8BABBx88brc8+ZQz2v3jdt5c1L65U3P68UElZNq83bJ6LSZ6j3PgAAQLuxPu951ucBwOSkZ5+ocrLen5ACAAAAAEB7qf6aLWYawWgR/zMirq6zzaER8Z0G9Q9Nd9ttt406/sM//MPCbY8++ug49thjh99o2dvbG3fffXcsX768oWOcjLlz58app55auP5RRx0Vjz76aEREbN++PbZu3Rrz588fV++OO+4YdXz22WcX7mPFihWx//77x1NPPVWz7m233TbqbZRvfvObCy0iG+k1r3lN3HrrrRER8dhjj8Xq1avjhS98YV3XAAAAZr68YLQ50RFdpa5x5SkiesvbK7bprRAgUC2sa25pXrFBtomB1B+DaXBcecOCF+q8TqP6bZS88QymwRhMA9GRdU7ziAAAWte2oS3x88235p5vtblec9W38a9RgV15gWaNCkbLe2ZrlhSpymce//2YV7cUpegu9Ywrr1QGAAAzmfV5o1mfBwCTsLZKMNrQ0PSNAwAAAAAAWpBgtPayaczx0noaZ1k2P8YHlm0s0M+8LMv2SCltq6O7ZQX6qVtKaU1ErKmnTZZljegaWsKGDRvi4YcfHj5evHhxHHXUUXVdY/ny5cMLryIi7rrrrpZaeHXooYdGV1fxzSJLliwZdbxp06aKC6/+4z/+Y/jvixcvjsMOO6yucb3qVa8q9HbIsQvj9t9//+GFYUWN/fy//vWvLbwCAIBZqFJQV0TE8sWnx1v2+ZNx5SmleO8DvxflKI87V2mDf95m96Wd+8VHD/mHOkc7s3137T/HDevHZ/Hn3aN65QUsdGQdUxrI1ijV7kNfuTc65ghGAwDY7SebfhQDqT/3fKPCvdpBSvUGo01tcHG9188Lpj5lyZnxe8v+uO5xTZXe8o54/4NvqXiu0vdj3n04ao9j4rwDL27o2AAAoNVYnzee9XkAMAlrn8w/l8av7QAAAAAAgNlEMFp7eXDM8YvqbD+2/vqU0oaxlVJKz2VZtiEiRq5meGFE3D+JvsaOHZiAtWvXjjo+/PDD6w7/O/LII0cdr1lTV9bglBu7kKqWzs7Rm68HBgbG1dm2bVv09j6/iWMii5iKtnn88cdHHb/vfe+L973vfXX3N9L69esn1R4AAJiZBtP455uIiM6scghVlmXRXZobO8rjs+3r2ezeUxqbq9/+8j5zX2pM8EJesNjCOUti/eDaceWtFpZRLSCir9wbe8xZMI2jAQBoXeVUjls33lC1TquF4M4kjQguTik1MBit8ni6W+yZqivrjiyySDE+iK7SZ857Hmm1zwUAAFPB+rzxrM8DgEnY9Fz+ufLQ9I0DAAAAAABakGC09jI2mKy+16lFHDLmeFWNvka+ou6wCv3X01c9bdvb0gMj+7dfNXsU7W/pgc0ewZTYsGF0luGiRYvqvsbYNq22qKdUKjX8mhs3bhx1vGBB/Ru2Fy5cWKjec89V+QX2BG3ZsqXh1wQAAFpfXjDanCz/R37dpZ6cYLR6Nrv3FBxh+8j7zI0KKMsLWFjUsWdOMFprhWX0pfz70GpjBQBopvu33RtrB56pWsf86XmVgrqqacS9G0j9kaJc8Vy9wWt59eeW5tU9rqlUykrRlXVXDH6u9Bny7vNsfFYEAGYo6/OmTxuu0bM+b2KszwOAHNs2558bEowGAAAAAMDsJhitvfznmOOXZVk2L6W0vWD7E2tcb+y5kcFoJ0TEdUU6ybJsj4h4WR19zSpZR0fEfgc1exjMUCmN3iBS79soK2nENVpdd3f3qOP+/v66r1G0zUSuXcvYrzsAADA75AWjdWSduW26S3MrltcXjFb5Gu2snvtWr5RS7nUWdiypWF5vIMNUq3YfWm2sAADNdPPG62vWEYz2vLxgtFKUolwhvKxaYG9R1cKPKwWHVZM3F27FZ6ru0tzoG6rwXFjhM+fdh+6s9T4XAEAl1ucxGdbnTYz1eQCQo6/KzzRT5Rc4AAAAAADAbCEYrY2klJ7OsuwX8XzoWEdErIiIHxa8xCljjqutzL8hIt5ZpW01J8Xo7717U0rP1tEeyLHnnnuOOt60aVPd1xjbZsmSypuwJ2Ooxd5gNfYzjn2zZxFF39y59957jzq+44474oQTTqi7PwAAgME0WLG8WjBaT84G/Eob9vM38fcUGF17yfvMjQj9GkyDUY7Kz8kLOxZXLG+1sIxq46kWLAEAMJus6382/mvb3TXrNSLcq911l+bGjvK2ceWNmCc3cm7bW678/rKe0ry6rjMdekpzY/PQ+N+P1fOsmPe8CQAA7cT6vImxPg8AJqDcWv8/BwAAAACA6VZq9gBouGvGHL+tSKMsy46MiN8cUbQtqgeq/SAiRq54PmHXNYp465jjsWMGJmjp0qWjjh944IG6r/GrX/1q1PGyZcsq1uvoGJ2tOThYeUN+JRNZ2DSV5syZEwcccMDw8a9//evYvr3yZpU8K1euLFRvn332GXU8ka8RAABARMRgGqhYXi0YLS/gq9Lm/7xAgNm42T3vM/eVeyOlNKlrVwu+WDSn8maoVgsbqxYQ12ohbgAAzXLLxusjRe2542AazJ3rzzZ596uewOd6VbtGb51z27x5e08Lhk034llxNoZoAwAw+1ifNzHW5wHAeKmvxs8zy+XpGQgAAAAAALQowWjt558jYuSrYd6UZdnhBdp9cMzxv6WUcld2p5S2R8Q3a1xjnCzLXhwRvzuiaDAi/qXA+IAClixZEoceeujw8caNG+P++++v6xp33HHHqOPjjjuuYr2FCxeOOt64cWPhPv7rv/6rrjFNh+OPP3747+VyOW6++ebCbdevXx//8R//Uaju8uXLRx3/8IfVMigBAADyDabKG2A6so6K5RH1BQjkBQLMxs3ueZ85RTkGUv+krl0t5GxRx56V26TeKKfWWQRdLfysEeEUAAAzXX+5L36y6UeF6wuX3SUnhLhacPFkVbtGPQHFA+WB3Ge2ntK8usc11fKD0cZ/5rz7MBufFQEAmH2sz5s46/MAYIwtNYJMy0PVzwMAAAAAQJsTjNZmUkoPRsSVI4q6IuKKLMtyVyFnWfbGiHjriKL+iPhoge4ujYiRryt/a5Zlv1Oln56I+NquMe12eUrp4QJ9AQWtWLFi1PE///M/F257//33x9133z183NPTE6985Ssr1h37pspVq1YV7uf73/9+4brT5fTTTx91/JWvfKVw2yuvvDL6+4tthD/ttNNizpw5w8ff/e53Y82aNYX7AgAA2G0oNxitM7dNd86PiPpSpc3ulQMB8kII2lm1zzzZ4K9qwQsLOxbnnutPfZPqt5GqBUT05b97AQBg1rhny+2xrbylcH3BaDtVjkXLDxZrSDBalfnrQOqPciq2GbHaHLkVn6m6c8Pmiodot+LnAgCAqWB93sRYnwcAY/zq3urnh1rnZWkAAAAAANAMgtGmWZZlB2ZZdtDYPxGx75iqHZXq7fqzd41uLomIka+PWR4R/yfLsiPHjKU7y7L3RsTVY9p/NqX0WK3PklL6dUT8f2OKv5ll2Z9mWTYy/CyyLDsqIn60ayy7PRfFAtiAOpx77rmjjr/whS/EM888U6jthz/84VHHf/AHfxDd3d0V6x577LGjjq+77rpCffzgBz+IO++8s1Dd6XTOOefEggULho+vueaa+MEPflCz3ZNPPhl/9Vd/VbifJUuWxDnnnDN8vHXr1rjgggvqGywAAEBEDKaBiuUdWUdum+5STjBahQCBvI383dns2+yed98iqgceFFEtvGFRx5Ip67eRqoVHCPUAAIi4eeP1ddU3h9opReWNf/nPNZOfI9cKPi76tal2nbxgt2aq71mx8j2o9twEAADtxPq8ibE+DwBGS1+5pEYFwWgAAAAAAMxugtGm320R8UiFP98YU++AnHqPRMRnqnWQUnoiIt4UESNfj3ZiRKzKsuyuLMuuyrLshoh4PCL+LiI6R9T794i4qI7P86GIGLmSvzMi/j4iHs+y7Posy/4ty7KfR8R/xehQtP6I+N2U0tN19AUUcOqpp8YxxxwzfLxp06Z4y1veEjt2VN/I8fnPfz6+853vDB9nWRZ//ud/nlv/hBNOiHnznt+4cc0118TPf/7zqn08+OCD8Ud/9Ee1PkJTLFiwIM4///xRZWeffXbceOONuW0effTReO1rXxsbN26sq69LL7101IK2f/qnf4oPfvCDMTQ0VNd1Vq1aFbfccktdbQAAgPaRH4zWWbE8IqK7VDnUrFKAQF7Y1Wzc7J533yJqByfUkhcqkEUW8+csqrtdM1QbSysFuAEANMOjOx6Mx3ofrKvNZOeY7SLllPfkPtdMfo5ca/5aPBhte+65vPE3U9FgtJRSfoh2C34uAACYCtbnTYz1eQAwxvpnq58v1/f/LQAAAAAAaDeC0dpUSummiPjdiFg7ojiLiFdFxNkR8fqIWDqm2Tci4g9SSoV/g7Kr7tkRcdWYU8si4oyI+G8R8cpdfe+2JiLemFK6tWg/MJs888wz8eijj07oz26XX355dHV1DR/fdNNNcdJJJ8XPfvazcf2tW7cuzjvvvHj/+98/qvzCCy+Ml73sZbnjXLBgQfz+7//+8PHQ0FC84Q1viB/+8Ifj6vb398dXvvKVOP744+PZZ5+NJUuW1HNLps1FF10UL33pS4ePN2/eHKeddlqcffbZ8c1vfjN+8YtfxC9/+cv44Q9/GO973/vi6KOPjvvvvz96enrijW98Y+F+Dj744Pjyl788quxv/uZvYsWKFXHdddfF4OBgbttHH300Lrvssjj11FPj6KOPjh//+Mf1f1AAAKAtDOQGo3Xktim62T0iP4xhNm52787yP/Nkwxfy73NP1cCEVgnLGEqDuSF9EYLRAABu2fj9utuYQ+1WORqtpzSvYnlfmvx9qzXPzguQruc6rfhMlffsMfZzDKaBKEe5Yt1W/FwAAFCJ9XnNY30eAOyUhoYiNq+vXqlc+edwAAAAAAAwW+TvkmTGSyl9P8uy34iIj0bE70dE3kqHn0bEZ1JK35pgP1sj4g+yLPtmRPy/EXF8TtX1sTNA7ZKU0tqcOjDrveUtb5lw25R2bhA59thj4wtf+EL8yZ/8SZR3/VL07rvvjuOPPz4OO+ywOProo6Onpycef/zxuPPOO8ct9Hnta18bH/vYx2r297GPfSyuueaa4TcyrlmzJl7/+tfHYYcdFi972cuiu7s7nn322fjZz34W27Zti4iIfffdNz71qU+15Jspu7q64nvf+16ceuqp8dBDD0XEznt69dVXx9VXX12xTZZlcdlll8Xq1avHvdGzmnPPPTeeeeaZ+PCHPzz8NfrpT38av/M7vxPz5s2LV7ziFbHPPvvE3LlzY8uWLbFu3bpYtWpV3W+/BAAA2tdQqrxpoyPrzG1TdLN7RH7gV7WwrnbVWeqMOdERQzH+nk82tCKvfXdpbm6Q3c52kwtka5Ra42iVcQIANMPWwc3x8y23VTx35LyXxyM7flUxaMscaqdUZzDa4K7Q3mrPRLXUnt8Wm//3lrdXLO/IOqKzNPHxTZW8MOix35/V7k93lv/8AgAArcT6vOaxPg8Adnnu6Yih/KDOiIgoD03PWAAAAAAAoEUJRptmKaWDprm/NRHx7izLzo+IEyPiRRGxb0Rsi4gnI+LelNIjDerrmxHxzSzLDo6IYyNi/4jYIyKeiYjHIuL2lFJ/I/oCanvHO94RS5Ysibe97W2xdevW4fKHHnpoeFFRJX/8x38cX/ziF6Ozs/amjAMOOCC+9a1vxVlnnRVbtmyp2cfBBx8c3/ve9+LZZ5+t89NMnxe84AVx6623xnve85645pprqtbda6+94sorr4w3vOEN8cEPfnDUuQULFtTsa/dbP9/2trfFM888M1y+ffv2uP322wuNt1Xf7gkAAEy9wTRQsbxaCEB3TqjZ2M3tKaXcDe/VwrraWU9pbmwrbxlXXinIoh659znriTlZR3RknRW/1pXC7Jqh1jiEegAAs9kdm/5P7rz95MW/FU/1rY6+oQrBaJOcY7aNyrloVcOa+8q90TFn6oLRis7De3Ofp1ozaDrvno69H9U+/2wM0QYAYHazPm9irM8DgIh45rHadYYEowEAAAAAMLuVmj0ApkdKqT+ldGNK6YqU0idTSn+fUvp2o0LRxvT1SErpW7v6+OSuPm8UigbT781vfnM8/PDDcf7558fee++dW6+zszNe97rXxe233x6XX355oUVXu5166qlx5513xhvf+MbctzAuXbo0PvCBD8R9990XRx11VN2fY7rtu+++8e1vf3t4AdZLXvKSWLx4cfT09MQhhxwSp59+enzpS1+Khx9+ON7whjdERIx7U+SiRYsK9XXGGWfEI488Epdddlkcc8wxNd9k2dnZGcuXL49LL700HnjggTj//PMn9iEBAIAZrZyGohzliueqB6NVDjUbu9l9IPVHyrn+bN3snnfvJhtQlhd6sbu/ogEFzdKo4AgAgHZTTkNx66YbKp5b0rF3vHT+cYXn57NVyklGqxWMNhl9DQr+7S1vr1jeU5pX95imQ9Hnnb6Uf39ma4g2AACzm/V5E2N9HgCz3pona9dJlddsAAAAAADAbNHR7AEAzHaPPvrolF5/2bJl8bd/+7fxuc99Lu6+++745S9/GWvXro2+vr7Ye++948ADD4wVK1YUeoNiniOPPDKuvfbaWLduXdx8883xxBNPxPbt22OfffaJgw8+OE466aTo6Hj+fzmnnHJKpFR5M0sl9dQd64orrogrrrhiQm1XrFgRK1asKFR31apVw3/PsiyWLVtWuJ+enp54z3veE+95z3ti/fr18dOf/jSefvrpWL9+fQwMDMT8+fNj2bJl8eIXvziOPPLImDevNTfNAAAA02cwDeae68jyf+SXH7I1enN7tTCr2brZvXuKAsry2u/ur7vUE1uHNldo1xqBY7U+f17wGwBAu/uvbffEcwNrKp5bsfj1MSebM2Xhu+2iOcFoNea3Ba+fN19v1aDp/JC+McFoVT7/bH1WBACg9VmfV5v1edbnATDNerfVrlMemvpxAAAAAAAz1rotKbb0PX+8dH7E/J7qLwmCmUYwGsAsUSqV4rjjjovjjjtuyvrYe++94/d+7/em7Pqtatu2bXHPPfcMH7/4xS+e8EK2PffcM84888xGDQ0AAGhTg2kg91xH1pl7rjvL2eyeeqOcylHKSjuPqwajteZG/qk2VaEVefd6d3/dWbEwu2apNY7JBlMAAMxUN2+8vmL5nOiIExe9NiKKBxfPXpU35ld7Jpn0/DxVb1/0+jvK2yuWt24wWrEg6LzPX4pSdGZdDR8XAADMJNbnTR3r8wBoO/0Ffo9eLk/9OAAAAACAGeeex1Kc+9VyrHp6dPnX357Ff/9NwWi0F8FoADBJV155ZWzf/vwGlxNOOKGJowEAAGaDwTSYe65qMFqVTfj9qS96doVwVdvsnxcQ1u7yQysmF/yVd69395d3v/tSawSO1RrHZIMpAABmorX9T8eqbfdUPHfsguWxsGNxRFSZ6wmXjYi8WLSd9y2LLFKFGpMNleutce+Lfm3yxtG6wWh534s7IqUUWZbtOq78+btLPcN1AAAAGs36PADaTqFgtKGpHwcAAAAAMKNs3pHi1M+WY7NlpswSpWYPAABmsieeeCIuuuiiUWXnnntuk0YDAADMFoNpIPfcnCz/XQjVQs1Gbtyvttm/VTfyT7VqQQGTUS1YoFq/rRI4VuvzT/b+AADMRLdsvCH33MlLzhz+u2C0WipHo2WRTdm9a9T8Nj8AeV7dY5oOeSHa5SiPev7Mf36Znc+JAADA1LM+D4C21N9fu45gNAAAAABgjG/fm4SiMasIRgOAEb71rW/FX/zFX8TatWtr1r333nvj5JNPjvXr1w+XvfyA4QheAAAgAElEQVTlL4/XvOY1UzlEAACAqsFoHRMORusd8ffKm/jnREd0ZJ0FRth+8jb6T3UwWl4QXauEZdQaR6uMEwBguvSX++Inm35U8dyB3QfHIT1HDB93Z60912u2lHKC0bIsurOpCRCude+LXj8/GK01A8R6JvmsKBgNAAAoyvo8AIhI/QV+BlwuT/1AAAAAAIAZZeWTzR4BTK/8XZIAMAtt2bIlPvGJT8RnPvOZOOOMM+K0006Ll7/85bFs2bLo6OiI9evXx8qVK+Pf//3f47rrrhu1KaerqyuuvPLKJo4eAACYLQbTYO65zirBZdU24Y/cuN+XKi/CbdVN/NMhL1Ru0sELOfd6d0hGXsDAZPttlFrj6Cv3RkopsiybphEBADTXz7fcGtvLWyuee/XiM0fNi3LDd1NrzPVaWXdpbsTQhnHlefPromoFHxe9/kwLRssL6YvY+Vnmx8KIqB3sDAAAUIv1eQAQEYWC0YamfhwAAAAAwIzy6LrKL5yFdiUYDQAqGBgYiOuuuy6uu+66QvXnzp0b//iP/xgvf/nLp3hkAAAAEYNpIPdcR5VgtLzghYjRG9zzNvHP5s3ueQEGecEARdW611PVb6PUGkc5hmIwDURn1jVNIwIAaJ6UUty84fsVz80tzYvjFp48qixvfl0rnGu2KEe5YnkWWZV7N9lgtOrti16/t7y9Ynm1Z7JmqvasNzKoL/f5JZu9z4oAAMDEWJ8HwKxWKBit8s9HAQAAAIDZ65F1zR4BTK9SswcAAK1k8eLFMWfOnLranHjiiXHLLbfEm9/85ikaFQAAwGjVgtHmZPnvQpiTzckNqBq5wT1vs3+rbuKfDnkb/fOCAYrKu9e7A9FaPSyjSDBEq4S4AQBMtUd7H4jH+35d8dwJi06LrlL3qLKpCvdqf1nus8lk58m1g9GKXT+v3tzSvLrHNB3yApkjRt+TkSFpRdsDAACMZH0eAETBYLShqR8HAAAAADCj5AWjffR3snjjMdn0DgamQf4uSQCYhc4666x49tln44Ybbojbb789Vq5cGY899lisX78+ent7Y+7cubHnnnvGi170ojjppJPizDPPjBNPPLHZwwYAAGaZasFoHVln1bbdpZ4YGOofVz5ys3te2FdecMNskLfRf7KhFXmBCbvvdX7gQ2uEZRQKRks7Yn4snIbRAAA0180bv5977uTFvzWuTDBadSlSxfJSZFMSIFxO5ehLtYLRin1tduTO81szQKwj64xSlKIc5XHnioVoz95nRQAAoD7W5wFARAyMX7MxTnn8z+oAAAAAgNlrw7YUm3KWSJ5yRBZ7dAtGo/0IRgOAMfbaa68455xz4pxzzmn2UAAAACoaTIMVy0sxJ0pZqWrb7lJPbB3aPK68r8Bm97xwsNkgN6AsTTx4IaJ2sMBUBD40UpHPnxe0BwDQTrYMbox7ttxe8dxR846JZV37jyvPm1+bP+1WORgtsmrBaBMPletPfTXrFL1+3ny9VZ+psl33dEd5+7hzQrQBAIBGsz4PgFmvv8DPGQWjAQAAAAAjPLIu/9zBe0/fOGA6Vd8lCQAAAAC0nME0ULG8M+us2bY7ywn4GhWMZrP7WLnBaJMIXkgpVQlG29lfd1b5nrdKWEaRcUzmHgEAzBS3b/o/uQHGr15yZsXyqZhjtpOUl4sW2ZSEyhUJHy56/d4KAWMRrRuMFlHt+1GINgAAAAA0VKFgtKGpHwcAAAAAMGP8OicYrasjYv9F0zsWmC6C0QAAAABghskLXJiTddRsmxdu1peeX3ibH4w2eze75923yQQvDKaBKEflxcy773VewMDIr1czFQntEOwBALS7chqK2zb+oOK5PTuWxm/s8cqK53Ln5uZPERGRIicZLabm3hUL/a1dZ6A8kPvM1soBYkWC+moFOwMAAAAABfQVCUYrT/04AAAAAIAZ45F1lddUvmjPiFIpm+bRwPQQjAYAAAAAM8xgGqhY3pF11mybtxF/ZAhAXiBAXvjAbJB33wbTQAzlhB7UUi20oTvbea/zAx8mHsjWSEWCJyYTHgcAMBP857a7Y/3g2ornTlp8RpSyORXP7Z7zjTUUg7lz/tml8iKeLLLozhofIFwo9LfA9avN1XtK8+oa03QqEjaXH6I9e58VAQAAAKBu/X2165Qrv2QNAAAAAJidHllXufzgvad3HDCdBKMBAAAAwAyTF8TVkXXUbFtss3vlzf554WCzQbWN/kUCFCq2S9UCE3p2/TcvkK01wjIKhUdM8P4AAMwUN2/4fsXyjqwjli86PbfdVMwx20nlWLSdwWhFAp/rVWxuW/v61cbQys9URe5p3j3qbuHPBQAAAAAtZ0AwGgAAAABQn0fXVV5VedDe2TSPBKaPYDQAAAAAmGEGcgKxOrLOmm3zNqyP3OCet5G/O8sPbmh31QIMJhq+UC14YXdIRrWAgf5ygcXSU6xIMESROgAAM9Wz/U/G/dvvq3ju2AUrYkHHoty2UzHHbC950WjFAp/rVeSeFwko7i1vzz3XU5pX97imS97z3shAZ8+KAAAAANAA/QV+jlkuT/04AAAAAIAZ45F1lcsP3nt6xwHTSTAaAAAAAMwweRvxO7KOmm3zwhdGbnDPCxOoFtzQ7vKCFyImHr5QPRhtbs1+WyEso8hnn0w4BQBAq7t14w255169+MyqbauF4JpDRaScYLQssirBaBOfIxe957UCiqvN06t9zZst73lv5H3Ju7+z+VkRAAAAAOpWKBhtaOrHAQAAAADMCOVyikefq3xOMBrtTDAaAAAAAMwwQ2mwYnlH1lmzbZEAgb5UebN7K2/in2rVQysmFr6QF5iQRSk6s64C/TY/LCPve6XeOgAAM1FfuTd+sulHFc+9oPuQOKjn8KrtpyJ8d1bIstx58uSC0Yq1rRVQ3FveXrG8I+uIzlLtZ7Zmyft+3P15y6kc/alyKFy172UAAAAAYIz+6i9fiIiIcnnqxwEAAAAAzAhrt0b0Vd5KFgfvnU3vYGAaCUYDAAAAgBlmMA1ULC8WjJYXINBb8e9F2s4GXVl37rlawQh58u9zT2RZNvz3RvfbKINpIAZzQvpGEuoBALSruzbfEjtyQrBeveTM4Tldns6sK7KoXGcyAV/tIKWUey6LaoHPvVXbVlP0ntea3/bO0Oepavc0IqI/9UWKyve21T8bAAAAALSUQsFoQ1M/DgAAAABgRli/Lf/cfoumbxww3QSjAQAAAMAMkxuMVioSjJa32f35EIC8wK1qIV3trpSVojur/PknHoxW+z53Zd0tG5bRXy6wWDsEowEA7SmlFLds/H7Fc/NK8+NVC06qeY1SVsoN4G12CG6z5QVw7ZTlBnGVo5z7vFRLXyo2b601D88731OaV/eYplOtEO1q8/oewWgAAAAAUFx/gZ9FCkYDAAAAAHbZWPkdvhERsaS1lybCpAhGAwAAAIAZZqCcE4wWHTXb5oV77Q4BGEqDuUECs32ze62ggHrltRv5NWrlsIyi/Td7nAAAU+HXO34ZT/Q9WvHcCYtOi65S5TncWHlz7NkeLlstGK0UWfRUCW2eeHBxsXte6/q95corkFr9eSr/eWfHrv/m35/ZHKINAAAAAHUrFIxWnvpxAAAAAAAzwoacYLSOUsS8rukdC0wnwWgAAAAAMMMMxWDF8o5SZ822eZvxe212ryk/tGKCwQspJxhtzH1u1bCMov03e5wAAFPhlo3XVyzPIouTF59R+Dq5YVQ5c8XZIz8YLSKL7iw/ZGyi88+igWq1rp93ndYPRssJ0d71eas998z2Z0UAAAAAKCqlVDAYbWjqBwMAAAAAzAgbt1deU7lkj4gsy6Z5NDB9BKMBAAAAwAwzWM4JRss6arattdm9WhhAq2/kn2q5926CoRVFAxNaNSyjaCDcRIPjAABa1ebBjXHPljsqnnvJHq+IpV37Fb5Wrfn5bJWqBKNlkVUN4upLEwwuLhr8W2Me3luu/GrGVn+eqhUELRgNAAAAABpgoL9YvXJ5ascBAAAAAMwYGyovS4zFrb0sESZNMBoAAAAAzDCDaaBieUfWWbNt3mb3wTQQQ2mwahjAbN/snhdQVi1Mrpq8ez22n/ywjOYGjhUOjpjloR4AQPu5fdP/jqGoHFZ88uIz67pWq871mi3l56JFZFnVkLHeCc4/i87ra9XLO5/3PNEqurPK34u9w8Fole9rR9ZR6FkUAAAAAIiIgb5i9cpDUzsOAAAAAGDG2JgTjLZk3vSOA6abYDQAAAAAmGHygtHmZB0121bbjN9X7q0awNDqG/mnWl74wkSDv/Lu9dhwjLz73uzAsb5UrP+JBscBALSioTQUt268oeK5vTr3iaP3eEVd18uf6832OVR+MloWO0OhSznLHSZ674q2qzUPz5v/zi219gqkvJC+/tQX5VTOD3zLZvdzIgAAAADUpb/g7/nL5akdBwAAAAAwY2zIC0bbY3rHAdNNMBoAAAAAzDCDabBieUfWWbNt3mb3iJ0b+KuFWHVl3bUH18by7t3EgxcqL3geH4xWud9mB44V7b9ogBoAwEywcutdsXHwuYrnTl58RpSyOXVdL3+OObvnUKlqMFoWWZY1/N4VbVdr/p8bINbiQdN5QdApUgyk/tx5fbVnTAAAAABgDMFoAAAAAECdNuYsW1w8N5vegcA0E4wGAAAAADPMYBqoWN5ZKBgtfzN+X7k3P6wr64lSNrt/nJgXFNDo4IWxwQL5/TY3GK14cMTsDvUAANrLzRu/X7G8I+uMExadVvf1BKNNxM6FPHnPNhOfnxcM/q1x/d5y5Vcz5s3rW0W1Z8VqIdqtHvgGAAAAAC2lr2gw2tDUjgMAAAAAmDE2bqv8stnFe0zzQGCaze6djAAAAAAwA+UFo83JOmq2zQteiNgZBGCze768e5d3z2rJazc2MKFVwzLqCY5IqfIvYQAAZpJn+p6IX23/RcVzr1qwIubPWVj3NbuznHCvNLuD0VLkzx93v98wPxhtYvPzove81vXzzrd+MFq1Z8UqIdpV2gEAAAAAYwz0F6uXylM7DgAAAABgxthQ+X2tsbi1lyXCpAlGAwAAAIAZJi8YrSPrrNm2K+uObDhKYLS+cm9uGECrb+KfDtMVvDA2HCPv3k80kK1RigazpSjHQCq4uBsAoIXdsvH63HMnLz5zQtdsdPhuu6gWjLY7Gq3RAcJF29WqtyM3GG1e3WOaTtWe+frKO3I/t2dFAAAAAKhDf8Hfsw8NTfFAAAAAAICZYmNOMNqS1l6WCJMmGA0AAAAAZpjBNFixvEgwWikrRVfWXfFcb3lHbshXXujAbNKdNTa0Ii9YYOy9bnTgQ6PU0/9Ew+MAAFpFb3lH/HTzjRXPvajn8Dho7uETum5eqFSz53qtLMt2BaPlzM/70sTmnkXn9XkBx8Pnc4PRWjtArNozX59nRQAAAABojILBaFEWjAYAAAAA7LQhJxhtsWA02pxgNAAAAACYYQbTQMXyIsFoERHdeeELqbdKWFdrb+KfDo0OrSgaLNCd5fXb3LCxegLhJhoeBwDQKu7cfHP0liuvLHn14t+a8HXzQ3Bn9/wppZR7Ltv137z5+UTmnkNpMPc5q97r532ftHow2pysI/eZsq/cW+X5pbU/FwAAAAC0lMLBaOWpHQcAAAAAMGNszFm2uGReVvkEtAnBaAAAAAAwwwymwYrlHVlHofbVAgTyNvnnBTbMJo0OrSgaQpfbb5pYIFuj1BMIN9HwOACAVpBSils2XF/x3B5zFsQrF6yY8LXz55izff6UH4y2OxqtkfeuUXPbwTSQ+7zW6sFoEfn3tLe8o8rzi2dFAAAAACiscDDa0NSOAwAAAACYEcrlFJtyti0tnje9Y4HpJhgNgIZYvXp1/OVf/mWcdNJJsc8++0RXV1dkWTb854orrmj2EAEAANrGYBqoWN6RdRZqXy1AIC/kayZs4p9qYwPLdptIQFlKKfdej/365PWbF2I3XfpS8f4FewAAM9nDO1bFU/2PVTy3fNHp0VnqmvC1c+eYs3z+lKoEo2VTEIxWz9y6WjBytev0/P/s3XmcHGWB//Hv09Mz3TO5JmQSAkRICDcIGOW+AiIgouuBB14rIovXeqDrrusB7LreirqKJyJe/EBAUYFwbQj3lQDhNiSThDNkkkyume7p7np+f0wmme6pp7qqr+nj8369eJG6nnq6qqf7qern+Vas/nsgJYw7lNkZou3YBgAAAEBl0T8PAIAmMTQUbj3rVbceAAAAAAAAABrCppRkHV0qp9Z/t0SgLPHxrgAAtLrZs2dr1aodg2kWLlyo+fPnj1+FSvDLX/5S//qv/6p0Oj3eVQEAAACAlpCzWd/5cRPudp87QGDQGSLg2qaVuMLh0l5K1loZY0KXlbUZefLvyFwYjhG03/EUZf+lhMcBAADUi0X9N/rONzI6bsppZZXtamenvMHIbcxmEiYYzdVOLiVAOErbNqj8VC4oGK3+w6aDrj1cx6gRXhcAAABaG/3zAABAXRkKeS8yl6tuPQAAAAAAAAA0hA0D7mXdBKOhycXGuwIAgMZ2ww036Lzzzgvd6er222/Pe1LlhRdeWN0KAgAAAEATytqM7/y4aQ+1fWHw1oi0N+gc5M9gd/dxs7IastEGIwUFLyRMfjiGO8huOJBtvFQqPAIAAKCebcyu18Ob7/VdduCE16qnY+eyyk8a/zamp5yyjkDkVhAUjKZtwWju65roobyRQn8D1g1q9yZj9d8DyXVMUwHXiq5tAAAAAFQG/fMAAGgyYYPRPILRAAAAAAAAAEjrtriXddN9D00uPt4VAAA0ti9+8Yt5g7Df+9736pxzztGrXvUqtbfvGJDf09MzHtUDAAAAgKaUcQajhbvdFxS0lXYOdvffppUEHYOUNxjpGKVtUGBCuGA0K08ZO6QOkwi930pyvVfKXRcAAKCe3N1/izz5D0A7YerpZZcf1IZM20G1K1z4cdMJyEUzw7loAdc10due0dq2wwHFZqQio6Q896MZGyFALPBa0foP2ORaEQAAAKgu+ucBANBkciEfiEEwGgAAAAAAAABJq9b5z++ISztNqG1dgFojGA0AULJnnnlGS5cu3T59+umn6w9/+MM41ggAAAAAWkPO+neUjZtwoQlJx4D8lDeotOcY7G7qfxB/tbmOmyTncStl/cLAhOD9DqojNl7BaOFfc9TjAwAAUA9yNqs7N97ku2x6+0zt33Vo2fsIDEbzUprYNrnsfTQiG5CMZjQcSOYKGiul7ekK/fLjKaeszajddPjs2z9grU1xtcfqP+TOfUzd14pB1ysAAAAAykP/PAAAmlDYYLSw6wEAAAAAAABoaivX+fen3GMnKRYb+4BXoJnExrsCAIDG9dBDD+VNn3nmmeNUEwAAAABoLVmb8Z0fNhjNFb6Q9lJKOQbyBwU2tIrg0Ar/4+biOs5++wnab1A51RYlcGI86wkAAFCqR7c8oI3Z9b7Ljus+TTFT/s/triAqKXobs7m4g9E0EoxmXNc10Y9b1G1cbeFBRznJtsYID3NfKw46jxHXigAAAED10D8PAIAmFDoYzatuPQAAAAAAAAA0hJXr/OfP6altPYDxQDAaAKBka9asyZueNWvWONUEAAAAAFqHZ3Py5N8BNnQwmvEflJ+2KaWt/wD/ZEBgQ6uoZDCaK0jBKKZ201Gw36CwjPDhZJWWtuFf83jWEwAAoFSLNtzgO7/ddOioKa+vyD6C2tmt3IYKjkXbFozmCvFyXNMESUU81q62sOu6oFGup1zHdMDbqowdirQNAAAAgPLRPw8AgCYUOhgt5HoAAAAAAAAAmtrKPv8elXtMMzWuCVB7BKMBAEq2ZcuWvOn29nAD8AEAAAAApctad+fXuImHKsM1KD/lDToH8geFc7WKuGl3HuNUhYLRErGkjMn/ccIVZFfKfislazOB78VCrRzqAQAAGtOL6dVaNvi477LXTT5OE9omVWQ/7aZje9BXoVZuQ9nAaLRhruuatJeStcW3z98mWrva1Q5PeQO+85OxrkjljxfXMd2c3Rh5GwAAAADlo38eAABNKJcLuR7BaAAAAAAAAACklev858/uqW09gPEQbqQkAKDhWWu1ZMkSPf3003rllVeUTqc1ffp07bbbbjr22GM1ceLEyGV6nleFmgIAAAAAgmRtxrksbsINiEnEkr7z096gM3yBwe7DErFOZXObx8yPGlrhDqAbe27aY+1qU1w5je34nLbjE5ZRqdcLAABQr+7sX+BcdkL36RXbjzFGiVjSN2hrvEJw64M72GwkSM4V3mxlNWTTShj/6x4/0du3/uu7zlmjXE+5jtnG7Hr3Ng3y2gAAAIBqo38eAAAIJWzgmRcyQA0AAAAAAABA07LW6okX/ZfNnlbbugDjgWA0AGhyfX19+vrXv67f//73Wrt2re86HR0dOumkk3ThhRfqiCOOcJa1cuVKzZkzx7n8xBNP9J1/2WWX6eyzz/ZddtFFF+miiy5ylrlw4ULNnz/fuRwAAAAAWk3WujvJhg9G8x+4vjm7UdYRQOAKU2s1CZPUVo0NRosaWhE1gC4RS2rA2+JTzviEZUQOjrCtHOoBAAAaTcob1P2bFvoum5PcV7sn51Z0fwmTVEpj20tR21zNxB2LNhwmJwVfo6S9VKRrmEq151PegO/8hglGc9RzU26De5sIAXQAAABAM6J/HgAAiCRs4FnYADUAAAAAAAAATev/PejuTTl7mqlhTYDxERvvCgAAqucvf/mL9txzT1188cXOTleSNDQ0pAULFujII4/Ueeedp2yWH1IBAAAAoF5lbca5LG7CPQfBFRDgF7y1Y5vGGMhfba5Ag7SNFlrhCl5whQq4ztl4hWVEDkZr4VAPAADQeO7fuNDZXju++40V35+rrT1eIbh1wQZFow0LCj6rVNBZ1PKd7fwGuZ5yXe8EBXQ3ymsDAAAAqoH+eQAAICobNvCMYDQAAAAAAACg5f1kobsv5ZyeGlYEGCfhRkoCqB0vKw08P961aH5ds6RYc38E/vrXv9a5554rz/Py5s+dO1cHHHCAurq6tHr1aj3wwAPK5XY8eeoXv/iFVq9erb/97W+Kx5v7GAEAAABAIwoKRmsrMxit0ts0o0qFVriC1FzH2RVQEDXwoVIiv16C0QAAQIOw1uqO/ht9l01sm6J5k46p+D6dIbgRw3ebiZW7M4/R8FMOXW1kqfrtVdf6rvZ5Z6wrUvnjpbRrxUQVagIAAFBF9M+rnSbvo0f/PAAAUJKwAakEowEAAAAAAAAtr3/AvWzGpNrVAxgv/KIO1JuB56W/zhnvWjS/t/RKE2ePdy2q5pFHHtHHPvaxvE5Xhx56qH7yk5/o6KOPzlt37dq1+spXvqKf//zn2+ctWLBAX/3qV/X1r389b91Zs2apt7d3+/QPfvAD/fCHP9w+fcUVV+jII48cU5+enh7Nnz9fknTffffprLPO2r7s05/+tD7zmc84X8vMmTOLvFoAAAAAaC1Z6+782m7aQ5URFCBQyW2akSsoIGpAmStIwRW85gzLGKdgtKivd7wC3AAAAKJaNvi4Xhp6znfZMVNOVnssXJs7Cnf4LsFofkaC0YJCvCIHndmo7Xn/9V3tXtc5rjdRg9HaTYdipq1KtQEAAKgS+ufVThP30aN/HgAAKFnYwDMvV3wdAAAAAAAAAE3tyZf8509ISLGYqW1lgHFAMBoANKFzzjlHQ0ND26ePPfZY3XTTTerqGvs0+unTp+tnP/uZ9tprL/3bv/3b9vnf+ta3dNZZZ+nVr3719nnxeFyzZ8/ePt3d3Z1X1syZM/OWjzZx4kRJ0sqVK/Pmd3d3O7cBAAAAAIyVtRnnsnjIYLSog91L3aYZVSq0whWk4Aqgq7ewjOivt3VDPQAAQGNZtOFG3/lGMR3bfWpV9llvIbj1biQYLW7a1aa4cho7kDDqsYu+vn/7Nmo7v95EDXBrlNcFAAAAVBr98wAAQMnCBqOFXQ8AAAAAAABAU7pnufsBsz9/P6FoaA2x8a4AAKCyFi5cqCVLlmyfnjx5sq688krfTlejff7zn9cZZ5yxfdrzPF188cVVqycAAAAAoDSVCEaLOng9buKhy252rmOXqlCQgisUwzU/6n4rJW0JRgMAAM2nP7NOj265z3fZqye+TtPaZ1Rlv/XW1qsHVl7A0h0delzt82q3V9PW/9ykvAHf+Y0SIJaMGIhNgDYAAABaEf3zAABAWUIHo+WqWw8AAAAAAAAAde1rf3f3o3zVTgSjoTUQjAYATebyyy/Pm/7EJz6hXXfdNdS23/zmN/Omr7jiCqXT6YrVDQAAAABQvqBgtDYTD1VGwkQblB91/WbmGvgfNUjBFXLhKt8Z+DBOgWORgyNaONQDAAA0jrs23izPEch1fPcbq7bfemvr1QPrftChzKj+PNVun7u4yneVk4wFByTUi0TEALdGCXwDAAAAKon+eQAAoCwEowEAAAAAAAAIYcET7mVTG6NLIlA2gtEAoMncddddedPvf//7Q2974IEHat68edunU6mUFi9eXLG6AQAAAADKl7X+nWRjalPMhLvd5woPqNT6zcwdWlGZIAXXsXaF041X4Fjk12tT8qz7aTUAAADjLWszuqv/Zt9lM9p31X5dh1Rt35UK92ouAclo2pGM5jp2lQo6c3GV7w5Ga4wAsajBaFHXBwAAAJoB/fMAAEBZwgaehQ1QAwAAAAAAANA0rLW65Umrz/0pePxNN8FoaBEEowFAE9mwYYOWL1++fbq7u1v7779/pDKOPvrovOkHH3ywInUDAAAAAFRG1mZ857eb9tBlxE27YmoLvT6D3XdwHYuoQQpp6whGcwSg1VtYhivwIR7wPhyy6WpVBwAAoGyPbr5fm3IbfJcd331a6BDiUjhDcB1txlZgA4LRTF4wWnWDiyfEJkVa39VObpRrqoSJGKIdcX0AAACg0dE/DwAAlC1s4BnBaAAAAAAAAEBLyXlWH/y11WxCGWAAACAASURBVKk/8HTxLUEPl5WmEoyGFhEf7woAKNA1S3pL73jXovl1zRrvGlTF2rVr86b33ntvGWMca/vbb7/98qZfeeWVsusFAAAAAKicrPXv/Npmwt/qM8YoEUtq0Nsaav1kgwzirwVXQJkrAMHFFaTgKt91DsYrLMNV/ynxqVqX8b+XkPZSvJcAAEDdWtR/o+/8DpPQkVNOquq+6y0Etx4Ed+nZoRLHzlrrbM9Pjndr69DmUOVnbcYZZN3ZIO3gRCwRcf3GeF0AAAB56J9XO03YR4/+eQAAoGxerrLrAQAAAAAAAGgKNz8h/eH+cL0nuzqqXBmgThCMBtSbWFyaOHu8a4EGtWHDhrzpKVOmRC6jcJv169eXVScAAAAAQGW5BtrHTXukcpKxztDBaK6wgVbkDCiLHIzmv74rWKBSgWyV4gqamNwWFIw2KGlqFWsFAABQmhfSK/Xs4BO+yw6bfLy62iZWdf/11tarD+7OPUY7QgcqEYyWtVl58h9kODk+VS8NPedT/thzE3S+GiVALGba1GESGrLpUOtzrQgAABoS/fNQBvrnAQCAsuX8H4ZX8noAAAAAAAAAmsJfl4Z9pKwiP7wJaFSx8a4AAKByrM1v7FSiQUOjCAAAAADqS876d36Nm2jPQIgygL1RBvHXQsKUH7wwvL4rGM2/fNc5iBrIVinOYLR4d+RtAAAAxtsdGxY4l53QfXrV91+p8N1mYkMGo7mOXZRQuaDjPCXuH+zrV34q5y6nM9YVuj7jLdq1IsFoAAAAaC30zwMAAGUjGA0AAAAAAABAgWzO6soHwwWjvWNelSsD1BGC0QCgiey000550xs3boxcRuE2U6f6D/gAAAAAAIyPjM34zo+b9kjlRAk7Y7D7Ds7QChs+eMFa6wwJcwej+c9PjVPYmOv1TnYER0itHewBAADq12Buqx7YdLvvsrmd+2tWck7V6+Bq6xEs6zAqNCBhXKFy4Y9dUFt+cpt/+9av/KAwtkYKm3Zd85S7LgAAANAM6J8HAADKRjAaAAAAAAAAgFEeWmnV8TFP/QPh1v+3U4mKQuvg3Q4ATWT69Ol50//4xz8il/HMM8/kTc+YMaOsOgEAAAAAKivrDEaLRyonGSHsjGC0HVzHImuzznMzdt2MPHmO8v2DBdxhGeMTNubab1dsojOkLygoAgAAYLzct2mh0tY/ROv47tNqUgdXGzDtpWRtuCcANpug121G/dvZTnacU991A0LUpjiCf/3KT3nuXknJWFfo+oy3KNd/XCsCAACg1dA/DwAAlC1s4JmXq249AAAAAAAAAIy7nGf1tkv8xxcVeuuh0mMXxnT4HFN8ZaBJEIwGAE1k6tSpmjt37vbp/v5+PfXUU5HKuOeee/KmDzvssIrUbYQxNLQAAAAAoBxZzxWM5h9G5eIKX/CTjLBusws6bkGBCmHXcwXWuc5Bxg4pZ2vfIdr1GhKxZECIW/hwCgAAgFqw1uqO/gW+yya1TdGhE4+uST0Sxr/95CkXOny32VgFBaPt6ObgaidHCRAOCvCd7ApG89nGtc82xdUei3a9Np6iXCtGWRcAAABoBvTPAwAAZQsbjBZ2PQAAAAAAAAAN665l0gv9wess/nJM3i/adO3H23TgrvwWiNZCMBoANJljjz02b/oPf/hD6G2feuopLV68ePt0MpnUa1/72orVTZISiUTedDqdrmj5AAAAANDscvLv/Bo5GM1EGOzuCGpoRUED/4MCFUZLW/d6rvMStN+hcQgcCwpGc4ZTWILRAABAfXlmYKnWDD3vu+yYKafULMyqEuG7rWR0tx53KG/4YDTXMTaKaWLbZOc21uaHtw069plsa6zwMEK0AQAAgGD0zwMAAGUJHYxW+wekAQAAAAAAAKitKx50P0RWkiYmpH13rlFlgDpEMBoANJkPfvCDedM//vGP9fLLL4fa9otf/GLe9Hve854xHaXK1d3dnTf90ksvVbR8AAAAAGh2WZvxnR+PGNrgChDww2D3HYKORdjQiqAANdd5qcR+K8m1z2Ss0xmkFzY4DgAAoFYW9d/oO98opmO7T6lZPZIBbfOgUN1mZhXU2WdHNJo7GC18G7mU0F8rq4wdKijHEYzWYNdTUYKxo1xXAgAAAM2C/nkAAKAsYQPPCEYDAAAAAAAAmtbiVVZHfD2nX9wRHIx2zrFGXQkTuA7QzAhGA4Amc9JJJ+nQQw/dPr1x40adddZZGhwMHjhz8cUX67rrrts+bYzRZz/72YrXb88991RHR8f26YULFyqT8R/UDwAAAAAYK+M5gtEUj1ROlAHsiQYbyF9NQcfNFYQwdj13SIOr/KBwgvEIHHPtMxFLOt8v4xHgBgAA4LIh06elWx7wXXbwxMO1U/v0mtUluI3Zqm0od2cfEyIYLUob2bVuMtYZeC1UuJ27nK7QdakHka4VI4SoAQAAAM2C/nkAAKAsuWxl1wMAAAAAAADQUF7eaDX/u54eXFl83e++k1A0tLZooyUBAFX38ssva+XKlSVtO3v2bEnSpZdeqqOOOkpDQ8NPqr/99tt13HHH6Sc/+YmOOOKIvG36+vp0wQUX6JJLLsmb/4UvfEEHH3xwSfUI0tHRoWOOOUYLFy6UJK1evVpvectb9NGPflR77723urryB4fMnDlTySSDKgAAAABgRE7+nV/jsfZI5SQjhJ0RjLZDh0nIyMj6BDWEDa1wrWcUU7vp8F0WdA7StvZhGa7XkIh1OoMUWjfUAwAA1KO7Nt4kK8932Qndb6xpXQLbei3ahvJswFMQR/XzqUQoryvgeDj0t1gwcvf26ZQ34LtelGuvesC1IgAAAJod/fPonwcAwLgiGA0AAAAAAABoaX+432pruvh6u3ZLbTGC0dDaCEYDgDpz1llnlbyt3TZIZN68efrxj3+sj370o/K84UE9ixcv1pFHHqm99tpLBx54oJLJpJ577jk98MADymbzfzh9wxveoP/+7/8u/UUUcf7552/veCVJCxYs0IIFC3zXXbhwoebPn1+1ugAAAABAo8l6jmA0E+1WX9AA/3LWbXbGGCViSaV8whP85vlxhTQkY0kZ4/+jRSKWcJYXdr+VkrUZZ0BfwiQDwilqW08AAACXrM3o7v5bfJft3DFL+3ZVfmB6kHbTIaOYb1Bbrdt69cMdjGZGJaO52p5DNi3P5hQzbUX35Az9NcWC0fK3c52rRgtG41oRAAAAzY7+efnonwcAQI3lcuHW80KuBwAAAAAAAKChPPpcuPU+9wZC0YDYeFcAAFAd5557rq688kpNnDgxb/6zzz6r6667TldeeaXuueeeMZ2uPvzhD+v6669Xe3t71ep2xhln6Gtf+5ra2ooPRgEAAAAA5MvajO/8uIl2HRdlcH6jDeSvtnKDv1zrucqVpJhpU7vpKGu/leIKjpCGgxFc4QgEowEAgHrx8OZ7tSnX77vs+O7TnGG11TISvusnqO3VzGzYYDQTFFwW4pGKktLW3T4PuhYqDEJLeQPOchpJtGC0xnptAAAAQCXRPw8AAJQk5/8QspLXAwCgjj2/weqTf/QU+5fc9v/OudzT4y+4fwsEAAAAgGbX2xfumujdhxGMBhCMBgBN7Mwzz9Ty5cv16U9/Wj09Pc712tvbdcopp+juu+/WpZdeWtVOVyO+9KUvaenSpfqP//gPHX/88Zo5c6Y6Oxk8AQAAAADFuILR2kw8UjnRBruHX7cVuMIXCoMRXFzrFTvOrlCG+gpG6yTUAwAA1L07+m/0nZ8wSR05+cQa12bbvgmXLUlQcFnahmt/utqpiVhScdOuNvlfaxWW7yqnM9YVqh71IkrYGSHaAAAAaHX0zwMAAJERjAYAaBFrNlkd9Q1Pl9yeP+D/srutjv2Wp8eeJxwNAAAAQGvqXVd8nQWfjmnXboLRgGijJQEAFbdy5cqqlj9jxgz94Ac/0Pe//30tXrxYTz/9tNauXat0Oq2enh7NmjVLxx57rCZNmhS57AsvvFAXXnhhyXU74IAD9I1vfKPk7QEAAACgFWWtf+fXuIk2iIbB7qVzB5SVGbzgCFzbvjyW1ObcxpL3WylBAXCJWLLs4wMAAFBNz6d6tXzwKd9lh0+er862CTWu0TBXW7BV21BW7oEQRjs6+wSFC4cNlXMd45F2bSKW1IC3peh2g96AbzlRrr3qQZTrP0K0AQAA0Ajon0f/PAAA6grBaACAFvGbe6xe6Pdftikl/ej/rH75QQb5AwAAAGgtqYzVi45rpe+90+gthxjN6ZFiMa6XAIlgNABoGbFYTIcddpgOO+yw8a4KAAAAAKAMWZvxnd9exWA0Brvncx2PtA0ZvGAdwWhFzkm9BI4F7S8Z63SGegQFqgEAANTKov4bnMuOn3paDWuSz93GbM1gNAUEo6nCwWiudupI2clYpyMYbTBwekSjBU2HvVY0MuowiSrXBgAAAGgc9M8DAAChhA088zxZa2UMAyABAI3pxseCfu+T/ni/1S8/WKPKAAAAAECdWLPJvey0g4zmzuB+IDAawWgAAAAAAABAA3EFo8WjBqM5wqt8122wgfzV5joeYQPKXOsVC6Bz7bfWgWOuwAcjo3bT4T4+LRvqAQAA6sVAbose3HSH77K9Og/QbonZta3QKK7wrFYNlw2MRTOjg9Hc1yqpstvnndv+Hy74N+UN+K7XeMFo4a4VE7EkgzIBAAAAAACAqMIGo0lSLifFGfZVa9Za3fi4dM9yq71nSG+fZzQpyb1QAIjq6ZeDlw9mhj9zV6+X/vKI1bI1w/OnTpBev5/R/H357G11fCcDAIBSZHNWNz0h3bvCav9dpDPnGSXaaUOgfvT7dzOUJPVMrF09gEbBHXIAAAAAAACggbiC0dpMtFt9UQbnd5hEpLKbXbmhFa5gsWLnpNxAtkpx7a/DJBQzMefrcL1uAACAWrlv4/9pyKZ9lx3ffXqNa5OvXtp69cLa4CfIj2gzbWo3HcrYoTHLwgcXB7fPXUFhheW7rgcaLhgtZIh2lLBtAACanTGmTdJekg6QtKukKZLSkjZIWi7pIWvt1grvs13SMZJ2l7SLpC2SXpT0sLV2ZSX3BQAAAKCCcrkI62YJRqsxa63O+73Vr+7ccY/6B7da3fzZmKZPYhA1AIRlrdUrm4uv97dHpbN/42lDQTDA/1xv9eU3Gf3XP8WqU0HUPWutzv2d1a/v2vGd/MPbrG7+TEw9fCcDAACHbM7q/ZdaXfXQjjbEzxdZXf+pGAGrqBuF1z+jdTdWV0OgJrhDDgAAAAAAADSQrPV/enDctEcqxzW4f8x6JqmYoYPRaGGDEVxc6xU7J67ggbCBbJWStq76RwuOAAAAqCXPerqjf4HvssltU3XopCNqXKN87jZUq4bLuoPRYsq/PknEksrk/ILRwh07V3t65Jy4Q+vyt3MHo3WFqke9CBvk5jouAAC0CmPM7pLeLulkScdJmhywes4Yc4ukH1trry9zv9MlXSTp3ZJ2cqxzj6TvW2uvKWdfAAAAAKog59/nw5cXIUQNFbF4lfJC0STp0eelS263uuDNDKAGgLDWhghFk6Szfulp0P85sfqfG6zOOdZqj2l8/raiB3qVF4omSY88J/10kdVXzuA9AQAA/N38pPJC0STprmel399n9bH5tCFQH/odwWgTElJ7nPcpUIgRjQAAAAAAAEADyVr/nkBVC0ZjsPsYrmMSNqCsWPCCe7/1EThWPDiiPgLcAAAARntmYKleybzou+zY7lMit6crrV7aevXCHYs2lju4rMzgYhPcvi3czt1ObqxrqvDXiuHWAwCgGRlj/ihplaSLJb1JwaFoktQm6TRJfzfG/M0Ys3OJ+32jpMclfUyOULRtjpZ0tTHm98aYCaXsCwAAAECVRAlGi7IuKuKaJf53p698MMpdawDA8xvCrecKRZMka6UFj/P526r+/Ij/ub96Me8JAADgdvOT/m2Fz/2JNgTqx4YB//fj1MZ6/ipQM/HxrgAAAAAAAACA8LLWv+Nr3ES71Rd2cH6ywQbx14LrmKRDBn85gxeKHGvnfm1tA8dc9R+pnysgIWOH5NmcYqatanUDAABwWdR/g+/8mGI6dsopNa7NWITLFnJ3RjPKfyriSIBZodDtcxvcPk+Y4sFrWZtxhlh3Ntg1VdhrxUYLfAMAoML2ccx/QdIySWs03DdzT0mHKP8BtmdIusMYc4K19uWwOzTGzJf0F0kdo2ZbSUskrZDULek1knpGLX+fpMnGmLdaa72w+wIAAABQRV6EpjnBaDX3rQX+96afLrh625Kyum+FlMlJR82VuruM73aeZ/XkS9KTL1lZK+030+jVu0mxmNHmlNX9K6RpE6Utaekfa6w8KyXi0sCQFDNSsl06aT+jWVP9yweAUm1OWd27XPKsdNSe0hTH51ip+iv0E+eKvsqUgx2stXr2FenR56WcZ7XndKPXvEqKt9XXd823Hd/Jj72w4985z2rp89KKtdK8PaQ5PfX1GgAAQO396Db/NkQqI12z2CrrDS/frdvosNlSop32A2pvw4D/fILRAH8EowEAAAAAAAANxDXYPm7aI5XTZtrUbjqUsUOB67kCGlqZ65i4AsPGrOcKXnAEOhTfb62D0fz3N1K/oDC9tJdWZxu/2AAAgNpan1mrx7Y85LvskIlHqrt9Wo1rNJY7fDdcG7PZ2IBgNBUGo5UZKldq+3Z0+UH7arQAsbDh2IRoAwCw3cOSfi3pRmvt8sKFxpjdJH1V0r+Mmr2PpD8ZY4631hZ9PLkxZpaka5Ufina3pHOttU+NWi8h6TxJ35U0csP4zZK+Juk/o7woAAAAAFUSJbPYy1WvHojsukes/ulQo1uftHrHzzxt3nb7viMu/eZDRu85PJa3fv+A1Tt+6mnhM6PnWh09V/rYfKOP/t5qazrMnq0+f4rRN99uFIsxYBtA+a5favXuX3ga2NZtMBGXfndOTGe+tnKfMf2Ogf5RrSQYraLSGasPXWZ15UOjb0laHbCLdP2nYtpjWmN8z2xNW21JS2f8r6fFq3bM/8CRRpf+s6m7kDcAAFA73V3utug7fz76nozVrKnSDZ+K6aDdaDugtlzv0W6G2QC+YsVXAQAAAAAAAFAvctb/icBxE/0ZCGEG6DfaIP5acB2T8MELjmC0IiF0rv3WOiyjWP2D3jO1DnEDAACQpDv7F8jKf7DZCVPfWOPa+EsYR1vPEarb7ILyQUxBXzRnqFyIY2etdbZvR8p1BhSPKj+Vc7dzO2ON1WOp3XTIqHiHP0K0AQAtzkq6XtJh1tp51tof+4WiSZK19gVr7XmSPlGw6FhJ7w65v4skTR01fY+kk0eHom3bV9pa+yNJ7yrY/nxjzB4h9wUAAACgmqKEneX8+4egOp54MTi3+m2XeNqw1epdv9gRiiZJQ1npg7+2WrMpf/uL/mYLQtGG3bNc+sClYUPRhn33ZqsbHw+/PgC4bBrMD0WTpHRWev+lnvo2F83vD61/oDJl9fZVrk6QfrqoMBRt2JMvSZ/8Y4Tw1nG2cp30uatsXiiaJP3uPqufLeI9AwBAK5vVHX7d5zcMt4NDPMcKqKgNjmC0qY3VzRCoGYLRAAAAAAAAgAaStRnf+XHTHrmsMAPZGew+VsI4ghFCBpS5wsGKhdC5zkXYQLZKcdd/WzCa4/hIrRvsAQAAxk/Gy+jujbf6Ltul41Xau/OgGtfInzN8q8YhuPXCKiAYrSC0q5xjl7FDzn0ligWjjWoXB7XJGy1s2hjDtSIAAMW901p7hrX2obAbWGsvkXRNwewPFNvOGLO3pH8eNWtI0oesdd9os9b+RdLlo2YlJF0Qtq4AAAAAqsiLEDqS9e8fgur466PFB0J/4Rqrfp/Bq1lPunZJ/vZ/WlzZgdVXPshAbQDlu+ExmxeKNmIoK10X4nMwrP4KdWfr7atMORh2lU8o2ogbHx8OzqsHqUxwPZatka592H+dv1XwfQwAABrPblOLrzPa0uelf6ypTl0Alw1b/ed3dxV/mCnQighGAwAAAAAAABpIxhmMFo9cVlCA1Yhkgw3irwXXMXEFhoVdr1iwgHu/tQ3LcO1vR3CE+z0T9hgBAABUypLNd2tLbqPvsuO73yhj6qMzSZjwrdYS1GG9MBjNv/0ZJkA4ONBs+JyEaf8HnadkrPEe5RgmzI1rRQBAK7PWrixx058UTJ8YYpv3SmobNX2ttXZZiO2+VTD9LmNC3BAGAAAAUF22csFoGwesXuy38jwCQCrh+Q3F17nhMfexHj2QekvK6sX+ClRqlN/fz3kGUL5lr7iXPfJc5fbjFyJZinVbpc0pPv8qZVlA6IdnpRV1EkS3en3w8ruXW6UczaS7l1e+PgAAoHFMSkTfJqiNDFTDynX+1zg7T65xRYAGQTAaAAAAAAAA0ECyzmC09shlhRnIXiysqxU5gxFsSl6RTszWWmewWLHzUU7gQyWlrSMYzYwEo7l/Uax1XQEAAO7ov9F3fsIkdfjk+bWtTACC0fKFj0ULOnbFA4SDju9IuWHKT3n+ozvaFFd7LPq12ngLE6LNtSIAACV5uGC60xjTXWSbtxVMXxZmR9bapyTdP2rWBEmnhNkWAAAAQBXlcuHXzfj3D3niRavD/iennT7radYXPPWc7+lLf/YISCtTmBCfl/yfwyJJ+uFtVqnM8DlgUDWAenX9Uvd3xU8WWp3xo5z6Npf/fbKxgj9x9tZJWFej25yyWrc1eJ3v3FQfbYli5/x7N9dHPQEAQP3JRLjtMmJlH20L1JarvTunp7b1ABoFwWgAAAAAAABAA8nZrO/8UoLRwgxkDxOe1mqCjtuQTQdum7UZefIPTyt2PoICGayt3Q9yrvCIkfrFTJvaTYdj2+LhFAAAAJWyOrVcvalnfJcdMeVEdbZ11bhGbq4Q3Fq39eqFjRCN5gwuDhEqF9Q+HSk3XDCa/76SbY15PRXmWnEkGBkAAETid3PX/0aaJGPMTEmHFGx/d4T93V4w/cYI2wIAAACohiIPW8uTGdv/YGvaav53PC1eJY3cOu4fkL5xo9V3CAkpS/9A+cfvk1cMl3HWLyOc5wg2pzjHAEq3JWX1wMrgdW54XHr7T8v/DKtkMNqKtZUrq5WFCZi74gGre5aP/3dNbxnhJOTEAgDQ2oZKCEbrXVf5egAug0PWGbw/p6fwkbEAJILRAAAAAAAAgIbh2ZwzVKuUYLQwoWdhBsS3GldohVQ8fCEoeKHYsU46ggc85ZS1/k+KrgbXaxhdf3c4BcFoAACgdhb13+Bcdnx3fWVCuNqYnryatvXqh7vHuikIRgsTXObiCjQbXW5QaF2xcho1aJprRQAAqmavgumspKAhiQcVTC+11m6NsL97CqYPjLAtAAAAgGrwygtGu+4Rq3WOq4JL7yIJpBwbBsov44r7rbakrP6xpvyy/IQJtQEAlz8/HO574q5npadfKu87ZcPWyn0nlROShR3Cfodcdvf4H+9yvu9SGSmVGf/XAAAAxkemhGC0VbQ3UUOr17uXzempXT2ARkIwGgAAAAAAANAgsjbrXBY38cjlhRnInnCEcbWyoOMWFKxQbHmxYx2031oGjrlew+j6lRNOAQAAUAkDuS16aNOdvsv27jxIuyZ2r3GNgiVMfbT16kVQdzNjCoLRHMeuWGixJKWt/7FtU3x7+LQzGM2m5NnhQYzONnKDXk8FhUFHWQcAAIxxZsH0Q9baoFSEAwqmn424v+VFygMAAABQa16EEbqZoTGzlr7gXv3ZV6TBIQbzlqq/AsFogxnpzmXll+OyYm31ygbQ/IK+Q8auW973yQv9ZW2ep3dd5cpqZWED5h57fvzbEivLDALdWPxnYgAA0KSG3MNtnAghRy2tD3gM2m7dtasH0Eiij5YEAAAAAAAAMC6yNuNcNjJoP4pwg92Lh6e1mmTAcSsWWpG2AcFoRY514H7toCZqcuD2leJ6jaPr53pvFQuOAwAAqJR7N96mjB07aEySTph6eo1rU1yySPhurdp6dcP6d7g3MmPmBQWXFeMKT8tr2waE1g3ZtJKmUynPf8RcZ1tX0TrUo6BrjyjrAACAHYwxEyWdUzD7z0U226tgenXE3a4qmJ5mjJlqrd0QsRwAAAAAFWCtdd779JVJj5n17QXB269cJ+2/S9SaQZI2VCAYTZLe9L9B+dfleWaNlXzukxey1uqHt1n94g6rp18enjenR+rulF6/v9GFbzbqShgtesbqh7d5euwFybPSXtOlDx1jdNbhsaq9BgDjp3dt+O+g5Wul/gGrr/7V6o5/WG0e9bPbvjtLHzkuprfPG/48um+F1fdv9vTI81Ju20fg6vWVq/d9y8c/qKsR+J2vA3aRzjshpi0pq/OvCnccH1gpxf4lp50nS10dw/NGh4XsvpPUtu1rYk6P9L4jjM4+prLfGyvXlXfON2yVdm6xn9cBAMCwTIQ8+hErCeJFDQ34d2mVtKP9DSAfwWgAAAAAAABAg8ha9yNsqhWMxmD3sYKOW7Hgr6DgtGLHOig4rZaBY67XkAgRHuEKngAAAKgkz3q6o/9G32VT4jvpkImH17hGxQW1MYPCdZuVlauze4RgtCKhxUHrjG57BwcjDyoZ63S2x8Ncc9WjMAHZhGgDABDZNyTNHDXdL+lXRbYpfCb0K1F2aK3dYoxJSRr9xT1FUlnBaMaYGZKmR9xsbjn7BAAAAJpClFA0Scrkj5T87s3FA7dWrCUYrRTW2ooFo1XTF6+1+vfTiq/3+autLr4l//02Emrz8HNWD/RaXfiWmE79gZc3aLy3T7rlKauNg54+egLhaECzWdFXfJ0Ry9ZIJ37X06PPj13W2ycteMLT5Wcb7TvT6KTveUq5n/datodWSRsHrKZ0FQ+GbFWZrNUJ3xkOuhytt0+6/rHSAjvXbPKfPzr0rrdP+r+nrdZt9fT5Uyr3vdEb4b3q55olVl96E+8XAABa0VAJwWgbBmhvonZcwWhdHZIxvAcBPwSjAQAAAAAAAA0iLliMLgAAIABJREFUa909iOIm+q2+cIPdG3MgfzW1mTa1mw5l7NhfJYqFL7iWxxQrGm4XGJYRIvShUsoJj0jb2tUTAAC0rqcGHtHazMu+y46bcqraSmg7V1tQ27yWbb1659f1x3XswoQHuwPNkr7/9tt+iqSU5z9irlGDpglGAwCgsowxb5P0yYLZX7LWrvdbf5SJBdOlJOYOKj8YbVIJZRT6uKQLKlAOAAAA0Fq8iKNzRwWjZXNW37u5eLBab5+V/51UBEllpCHHswr//PGYDvAJmzvzZ2MDaIIcMku69uMxZUe9DaZ0SlvSUrJdmtolZb3hgbDv/rmnax/2L+epl6z238V9jjcNWv3s9uD3yh3LpLN+mR+KNtp3brI673jLgFygiVhrtWJt+PV/c0/x75zv3mx1yCxVLBStI+7+LL7uUasPHsVnksuNjyvSd1Klff9mq8+83ireVv452pKy6ttSXhnfuNHqS28quyoAAKABua5zPz7f6NOvN9r3K/6hsSvXSYd0VbFiwDZb0/7XWhMSNa4I0EB4fAMAAAAAAADQIIKC0UoJdwgzkL1RB/JXm+vYpYuELwSFihXrUNpuOmQct3TDhD5UQtZmlJN/D7SEKR4eUat6AgCA1rZoww2+82Nq0zHdb6hxbcIJauu1YjCalWuwxdg2s+uaJWszylnH6IltXO330aHEYULrXOeoUa+nwgRkN+prAwCg1owxh0j6bcHsmyX9NMTmhcFopTQMCxs8hWUCAAAAqBXPf/CtUya9/Z+9fdKaTcU3eTnEOhjrxX73sr1nSHvvbMb8d/Re0cJf5k6X5vTklzFjstGe04127Tbq7DCalDRqixkdOddd9v29wWFF966QBkOEFAW9n8K+3wA0jg0D0qYK/+T42AvSrU8VD1AL67QD3cseXFmx3TSle1dU7jyU4uVN0qp1lSurXMng59MCAIAm5graPWBXaU6PFHek6/T2Va9OwGgDQ/7zuzpqWw+gkdTfo7ABAAAAAAAA+MoGDOpvN9F7c4QZyB4mPK0VJWKd2pIb2wunWGiFKxgsTPCAMUaJWFIpbyDyfislKNhs9HvFHRzXeqEeAACgtvqG1uiJrYt9lx066UhNie9U4xqFUw9tvXriCkYzPsFoxYLLutrc2R9BwcU7/u1uq49sP+hz3iQpGWvMR4mODj12rsO1IgAARRljdpd0vfLDyFZJer+1tpTRirXaBgAAAEA12PxgtP+d+jH1ts/WYKxLA7FObTUTtCU2QT25ddopt0Gb7n2tzGpPbTFpzaZwTft+/1uVGOWuZVZ/W2p1/wqrF/qlNx9iNCWgy8bujp8Vzpxn9PNF4S+5ZveED1J7xzyjL1ztX/btz0gn7GN15YNWT78sjVxdela67hGrLWnfzSLr7ZNmTqlMWQDG34q11Sm3koGc//O2mP76qH+IKN9vwf766PjfAtz7y55uPT+mk/aLFhxaqBLnev1WadOg1eTO8uoCAAAaTybnP7+jTYq3Gb1qJ/8QtHf/wtOKr8e021TaDyiftVY3PCbd/KRV/4C03y7Su183HI6/1RGMNoFgNMCJYDQAAAAAAACgQWSt+5Gu8RKC0cINdi8e2NWKXMcuKDhMktJlBKNJw2F2/mEZwfutlKBQjtFBe67X04qhHgAAoLbu3LjAGap1QvfpNa5NNK5gtGJtzFZifPqeBQV0pbzBsoPR2kyb2k2HMnZsr6SRc+Nqj4cJo65HYULPEqYxXxsAALVijJkh6RZJu42a/bKkN1hrww5F3VIwXcoXcOE2hWWW4hJJf4q4zVxJ11Vg3wAAAEDjyuWPzv39lPdpcec89/rPSXouWtDJRm4nB/rZIk+f+KPV6KjqH9zqPsbTJ0kTk/6Dok/aT/r304y+tSDcOZrTE76ecwJC1H57r9Vv761+AM53b/Z0zcfaqr4fALWxom/8g7NcjJG+906jA3c1OmKOdH/v2HX6B+q3/uPt70utnnqp9O2nTZDWba1MXU7+vqdvvcPo306NlVzGhgqF4K1cJx08qzJlAQCAxjGU9Z/fvu3ydk6PfzBaJie96t89PfVfMe07k3A0lOcL11h97+b8a5jv3mS14DMxDTiC0boIRgOcSr/CBAAAAAAAAFBTlQ5GCzNIP8yA+FbkOnbFAsrCBC8Eca1Xq8CxoP0kQgWj0QsbAABUT8Yb0j0bb/VdtmvH7tqr84Aa1yiaUtuYzcha/6fBS2M7ngVd1xRrJ7tC5wrLLNYO9wu0K1a3ehbuWrExXxsAALVgjNlJ0q2S9hk1u0/SydbaZRGKqstgNGvtK9baJ6L8J2l5ufsFAAAAGl7Bfc9OW6Hkj1E2bCU4xmVwyOqL1+aHohUzZ5p7mTFG33h7TG96dciyAsLO/Hzm5PEdiP3nhyXP4/0ENIsVjpj+2QGfc+X48XuNfvXB4M+xyz5kdMW5Rqu+GdNnTh4e5nzaQf7bVCosq9lYa/WFq12/q4bz/Ldj6ohXqEKSvnitLSvIrr9C59ov8AQAADS/oZz//JH2zh7TgtuoYcPPAZfevrGhaNLwNc1//c3T1rT/dhMSVa4Y0MAIRgMAAAAAAAAaRFAwWpuJ3jslTBhXow7krzbXsXMFK4xIW0cwmgkbjOYKy6iHYLSk77/Dbg8AAFCuxZvv0tbcZt9lx089XcbU99McXW3CVmxDWfl3MjM+wWhBAV3Fjp0zuNgUBqMFh9aFDVhrFMVCz2JqU7yEa1AAAFqBMWaKpJsljR4av0HSG7YFhEWxsWB6esS6TNTYYLT+iHUAAAAAUClefnDJBMcDF8rR33rP2QjtvhXSxojHZ8/pxX9XeP3+4X57mNMTbd/VCiuK4pk1410DAJWywhESdeCu0q7dld3XxIT0sROMPnxs8NDlfz46pncfFtOsqTs+R6d2+a9LMJq/59ZLT79c+vbdXVKi3Wj+PsXXDcuz0i1Plr59/2BlwkhWriPUBACAVpRxBKO1tw23OYtdm//mHtoQKM8tT7rfQzc/KW12dGfs6qhShYAmQE9VAAAAAAAAoEFkbdZ3fkxtipnoz0AoNth9eJ1wgV2txhVw4Ao+277cEZgQ9ji7wjKKBbJViqv+RkYdZsdjatzBaPTCBgAA1XNH/42+85OxLh0++YQa1yY6ZxuqSBuzGUXpYja6HVqoWPvTGVxccC7coXUjwWj+5SRjjtEbda7Y9Ukilqz7oEEAAMaDMWaSpAWSXjtq9iZJp1lrHymhyGUF03tE3L5w/fXW2g0l1AMAAABAJXj5o3O7qhCMRnCMW29f9MHNs0OEmZ12oNH5Re5qz+mR9t052r5PO8hIV47vgOzePmn/Xca1Cg2nf8DqzmXSpKR05J5Ssr20e+nPrbe6b4W0987SwbtJsVj93pPfsHX4Na/ZPPx+7WiTjphjtO9M8VtClVhr9dgL0uJVVtltmZs7TzI6bm9p6oQdx3z1Oqu7l1sl240e7PX/PJkz3WhTyurFCkbpn3Zg6ee+2/HTWj/fb2N4ntWfHynve+Kfj6rO3+jXb/DUPzhcdiIuHT7baOoEadE/rB5eLa3dIu2xkzRzirRnj9Gu3dKS1VYDQ9Kld1bmu6/XEQYIAFFZa/X4C9LCZ6xe2igds5fRSftKXQnaOUA9GvIfbqOOtuH/v/Ego69eF9zeGByy6uzgbxzheZ7V0hekJaus/vPP7vdXJictW+O/fALBaIATwWgAAAAAAABAg8jajO/8dtNeUnnFgtHiJq54iWU3u1KDv9LOwITiIXWB+7W1CRxzBbAVBiOUGhwHAABQqlWpZ7UyVZgbMezIySeGbm+NJ1f7vDXDZf07ABmN7XQWMzElTNK3rVlqcHHh+6VYaF3KMYAxTBh1PSr299IIf08AANSaMWaCpBskHTlq9hZJb7TWPlBisU8VTO8Vcfs9C6afLLEeAAAAACrB8/Imu2zlU14IjnFbUUJAypwQwWj77WL0iRONfrLQ/752e5v07XfEIgdb7bOz0QePMvrtveMXjjYcJsdg8LDu+IfVWy/xtv8d7r+LdMOnYtpjWrRj+KPbPH32Kiu77dS/Y5702w/H6nJg/m1PWb3jp542jfk5xurj841++B6prY5D3RpROmP14cutrnig8LPBanJSuvbjMZ20n9HFt3j6/NUj7yP358iePdLmQaM7l1Xus+bLZ0R/wOuIqV1GfvUl+DPfQNrqrF96+tvS0svYs0f6zMnF/z6PmSvdvXzH9MzJUkdcWr3evc2jz0vn/W70eQx6f5X+3jv9IKlnkv935Y9us/rBu0suGgAkDX/vnvVLT3/Je/SNVVtMeuyCmPbbhXYOUG8yOf/57duC0ebtLh08S1r6vLuMVeuk/QgJR0ipjNX7f+Xp2ofDrf/4i/7zCdwE3AhGAwAAAAAAABpE1vo/wqbU8DLX4P7tyw2D3V3coRXFghf8lxc7FyNcAQSuwLJKc9bfJAOnR9SqngAAoPUs2nCDc9nx3W+sYU1K5wyXLdLGbEY2QjCaNNyeTud8gtGKBhe7g39HCzo3WZtxhlh3NmiAWNFrxZDXLwAAtApjTKekv0s6dtTsAUlvstbeU0bRjxdMH2yM6bI2dHrCMUXKAwAAAFBLXv7o3AmOBy6Ug2A0t5WlBKOFDLT60XuMTjnAaOEzNu8c7L6T9NbXGB36qtIGt172ocoFo33trUb9A1Lflvz5sZj067v899FbwjFrVTnP6gOXennn/6mXpM//ydOfPtoWupxla6w+c2X++bhmiXTCPlafPKm+Bklnslbvv9QvFG3YJbdbnXKA0VsOrW29mt3v7vMLRRu2KSW9/1eebjk/ps/9Kdxnx549RptTlQtFO/sYo4Nnlf5endrlPz+VGQ4cSLbX19/BePnpIltWKJok3ffFmHomFT+ef/hITItXS3c9azV3uvSu1xpNSEgTPukV3baSpnRK5x5n1LdF6uqQjp4rvet1Rt9c4H7/9vZZzenhPQOgdD9eaAtC0YblPOkTf/R02+fCt/MA1MaQIxitY1uqjjFGt342phmfc7dlVvQRjIbwfnmnDR2KJrkDhrs6KlMfoBkRjAYAAAAAAAA0CNdg+zZT2m0+1+D+EQx2d3MFoxUL/nItd5U3dj3/c1KrsIy0dQW7dRZMj289AQBAa9mS26TFm+/yXbZv18GamZhV4xqVhjZU6RKxpOTTsS1VcnBxuPZtyhsMvAYI286vN8WD0RrzdQEAUA3GmKSkv0qaP2p2StJbrLV3lFO2tfYlY8xSSQdvmxXXcPjazSGLmF8wfWM59QEAAABQJps/6LazCsFogxlpIG3VlSAEpFBvX/Tgnzk94dYzxujNh0hvPqSyx90Yo3m7S0tWl1fO2ccY/efpMefyXM7T5T4BbCtLOGat6sGV0nMbxs7/66NSOmOVCBnmdO3D/sf8miVWnzypjApWwd3LpTWbgte5erHVWw7l86iSrl4c/Hf58ibpc1eFD6zac7q0JV1urXY4fu/ytu92BKNJ0rot0m5Tyyu/WVyzpLzP55P3V14omg0obkJCettrjN72mvy/5ZP3l259qqxqRPL2eUbfPnPsd9mcHnflr1li9flT+AwCULqbn3B/xix8RurbbEOFTAKojZxnne2a9lE5htMmBpczfP+Av22Ec02Ra7SwCEYD3AhGAwAAAAAAABpEzmZ958dLDEZrNx0yMrLyvxnPYHe3ZImhFe7ghXAhdK4wu3SRQLZKCVt/Vz2zNqOczZYc5gcAAODn3o23KWOHfJed0H16jWtTuqDwrVZjHb3UjPEfuOUOlSs1uDhZMO1qh6cC91EsjLpeFbsWdF0PAQDQaowxHZKulXTyqNlpSW+11t5Wod38WTuC0STpbIUIRjPG7CfpiFGztobZDgAAAEAVeflBNRNs5YPRJGnVemn/XapSdEPr7Yu+zR7TKl+PqI6aa7RkdXmDbN97+PCAbtvfJ3VNkulI5C2fPWGrpLFpRKUcs1Z1kyM0I5OTVq+X9t55eJB+b5+UHfWgl50nS1Mn7Bhw/7Xr/ctZ9I8d/35hg9XmUd139pgmdXa4B+1vTVu9vHE46C8WKz64f90Wq7Wbd0xP6ZQ2+vwUcvezxd+Xz64lXK9Uo89zZ4e0+07DYYlPvFh825ufDL+fOT3ShISRHP0HozpqbnkBErtMcS9btZ5gtK1pq+fWS/etKK+cw+eEP0+ugIYPH2N061O1+xs/Yo7//CPnuN+/y9dWrz4AWsODq4KXP7NG6plUm7qgOGutVq+XBv27kKEFpP2H2kiSOkYNXTDG6A37S7c4Ql65FkYUdyyrTDnT+T4BnBh9BgAAAAAAADSIjM34zo+b9pLKi5mYOkxCaesfdtWog/hrwR2MEBy84FqeMOGCBYICGWrBWf+QwRHDZaTU1VbkUUsAAAAheTanO/oX+C7rjk/TqyceVuMalc4d7lWbtl49cYU3u7rol9pOLjf4N+0NajAXFIwW8Fj7OpYwwdeChGgDACAZY+KSrpL0xlGzM5LOtNbeVMFd/UHSlyWNPMf87caYva21xbpY/3vB9FXWOm4EAwAAAKgNL5c32eVVJxitt49gtEKDQ1Yvb4q2zev3k+Jt5QX8VMLH5xv97l6rTY4rugkJ6UNHG/1kof999cNnS/MnrZB3zvukfzwsdSRl3/xhmU9+R3pltexX36fZL+8n7fqrMduuYDB4KI8+Z3XR39zhQL190o2Pe7rgr3ZMwJgx0vx9pCvOjamrQ9qadu/n/562Ove33phB+h1x6X1HGP30fUYd8R3v2YG01Ud+a3X1YqusJ03tkr75DqNzj/N/CM3qdVbv/oWn+3uLvuTQ7lsxHFBhzPj/LTWKe5dbfeBSb8zf38zJw3/vL/RXbl87Tx4ORZuTkN5zmNH/e7B4yNWMSdIrm/2XvWOetM/O5Z3rnSZIk5LKC/8bsWKt1dFlBq81qq1pqw//xurPDw//PRdz2/kxvf2nnm+o4bQJ0j8flX8cg/5Ek46uqW99jdFeM6yefaV4fSrhHfP8Kzl3hrvyK/sIZwRQnslJqT/gsu2Ffit3TxbU0k1PWH3kcq+ibSU0l/a2/OnzT4nplqf8G1a0IRDGvcut3vXzEI3zkGbXQTg/UK8IRgMAAAAAAAAaRNYZjFb6bb5krFPpXLgwAOzgDkYoErzgGHsY9liPd1iGOxits2Da/XpS3iDBaAAAoGKe2Pqw1mXW+C47rvtUtZk232X1yBVGVSx8t7X4dyh1BXWlAo6dZ3Masv4jjArb+672bcobDDw/jRo2HTdxxdQmTznf5WGDnQEAaFbGmDYNB5b906jZWUnvttb+vZL7stYuM8ZcLunD22Z1SPqNMeb1rqAzY8w/SfrQqFlDki6qZL0AAAAAlMDLHyw5wdtaclG7dQ+HmDy/Yeyy3j4G5xdauS76Nj98j394VK3tv4vRnV+I6ds3WS1etSMQp81I8/YwOv8NRq/dw+j4va3e9ysvLzDnX08y+tpbrMzZb5Je3JZ2NZSSrrlE6p4ue9PvpeeXa3an/z3fjYPShq1WUyfwfnIZHLJ6/feDB0L/6DZPNzzuv8xaaeEz0pk/87THtODjfLJjP0NZ6bK7raZ2Sd99544yPnWlzQu62jAgnfc7qz17rF6/f/6+rLV60/96euLFwCqU5Pf3WX3gKN5DYazfavWGiz0NDI1dFjXcMYw9e3b8+7cfNjpwV+nGx63uWe7e5u5/j+l/brB6cKVVOjs8b/pE6dSDjL54Wvnn2RijOT3S0ufHLisMBWwln/ij1Z8Whwvo2GOadOJ+2747Flg9tO27o71NOmKO0edPMdp758LPAHd5rmDDZLvRvf8R0+f/ZHX5vTsK2GuGNDhU2RC/Gz4V07SJ7vfX195q9OW/jH0RK1v4PQOgMgqDlAq18ndTPents3rz/3qhwkPRujoK/p5PPdDomLnS3T5tX/62UUzQtVupit0TAFoZwWgAUOcGBga0ZMkSLVu2TH19fUqlUurs7NTOO++sffbZR695zWvU0dEx3tVsWPPnz9eiRYu2T9ugu7lluP3223XiiSdun77gggt04YUXVmVfAAAAAJpX1nMFozkeyxdCItYp5Xx6ysodLoDgYIQgrgCzsIEJpQQ+VJKr/oXHI+i9U6sQNwAA0Bru6L/Bd36b4jpmyik1rk15nCG4jnDdZmbl/3uNcQWjOYK6gtqeac8/FE0KH/yb9lJKef6PB25TvKxrtfFkjFEy1qkBb4vvcq4VAQDQryW9q2Def0p62BgzO2JZL7sCzka5QNLbJE3dNn20pFuNMR+x1j49spIxJiHpXyR9r2D771lrV0WsF9Ay6J9XXfTPAwBgFJs/SrvLlv47/zF7Gb200TqC0UoutmmVckxmT6t8PUr16llGvzsneIDsO19n9M7XjU1usI/cKTsSijZ6/qU78rPnZNyXjL190tQJESrbYv6+VFpfJOPQFYo22l3PSnc9W15b+fJ7rL5zppUxRqmM1f97wL+8y+8ZG4y2eJWqEoomSb+4w+oDR1Wn7Gbzp4dsRQfWF7Pn9B3vg3ib0ZfeZPSlN0ntH80p5wgWmTvD6Ncfqu6A/TnTCEYbbSBtddVD4T8f5u8zfH4O2s3ot0W+O0ZMKfGnv2kTjS472+iys/PnP/6C1cEXVS6d5pi9gpfvPcNIPr8vr1o/fB/CFe4GAMUMZYOXlxLAjMr7w/2WUDQU5Rd0eM5xRncvH9uG6OVvG0Vcvbjy1271dB8KqDcEowFAHcrlcrrqqqt02WWXaeHChcpm3VfQyWRSp556qj7ykY/ojDPOqGEtAQAAAAC1lpP/9WF5wWj+A/yLLWt1QQFlQZ1p0o4As7DBAqUEPlRS+GA093uHYDQAAFApa4de0pNbH/Zd9ppJR2lyvLvGNSqPq03Ymu2naMForqDhwGC0gPyRwnZ3UDvcFVKcjHU2dCf7RCwZEIzGtSIAoOV90Gfet7f9F9WJkm4PWsFa+7wx5u2SbpI0ks50jKQnjTGLJa2QNEXSPEnTCzb/u6SvlFAvoKnRPw8AAIyLXC5vssvx0IXRJielTT63Mt9/pNHVi6U7l429l7qyrzpBpI2sN+Ix2WuG1JVo3Pu7o9nbry26zq7ZF9XhpTUUS4xZ1tsnzdujGjVrDo+/WD9/b+u2Si9vlHbpllb2yTlI2y+ArZqv48WNVSu66TxepXA6l4N285//vXcafebKse+Js4+pzefi7B7/kKtW/X5b0Sel/J+n6+vVs6Lv41Ovj+nqJWMTZY6ZG70sSdqzR+rqcH8ORTF7mjQpGfzem93jPz+V2fG5CAClGMoFL1/Vot9N9ebJGreh0HgScelVO42dP2eaf7uzf0DqH7Dq7mqO+wKovEpfu02fJM2YVNkygWYSG+8KAADy/d//Z+++46Oq8v6Bf86dmcxMGqmEThIpgnRBpCiwKM2yigVRf7ZddW3oKutaHttaVldcF3tZH2Ctu4+AulgRBQUFDE1pQiAJEEJIL5NMvef3x0CSydxzc6e37/v14kXm1jN37tx77txzPvebbzB06FBceeWVWL16tWqjKwCwWq34+OOPccEFF2DcuHHYunVrmErqm/z8fDDGwBhDfn5+pItDCCGEEEIIITHJyZVbuOilQILRxIFconABIg5GkOGCkytfy3PONQeLiYgDH/x/krQvROERRuZZriTm3Vi2bRlhKishhBBC4t/39V+CCwK0pmTMCXNpAieqEyZi/UnYdFTQ3ky47bh426lt1871bmFoHW8VB6PpYvt6Su16kK4VCSGEkPDjnK8FcDGAqg6DGYCxAC4HMBPeoWjvA7iCc95F1x1CEgu1zyOEEEJIxHDPwJEUDcFoT1zk/aNon0xg5lB3UIiSj3f4Vbq4VlLt2/S/nxwfnZ959VFg+StdTieBI99RpjjuIIU9qPpBIWQskt7bzHHbezKGPuIdcHRSaY27DdNr62RM+KsLuX904fb3Qvc+DtUCTld0badotXp3+LaTyQBcPV75WDf/DIbkJM9hjImnD7YCQchVSU1YVh91fDmHmQ3A/HG+f04TTgFO6fzLItxBrP5INjLMPyM4+8sNGs7JBYI6EeA+5hFCiL/s6j8d0zEmTFZu4/jNIhe63+2uu+b+0YU+97pwyasu7K3g+PQXqmsSdReNYkhRCD8X1TsBYH1xCAtEYt6aPcE97lw/iUGS4uO3KEJCgYLRCCEkijz22GM455xzsG/fPo/hjDEMHToUM2bMwPz583HOOedg0KBBXvMXFRVhwoQJePPNN8NVZEIIIYQQQgghYeSQBcFo0Pu9TLVALq1hXYlILQhAFLDg4HbIUG54qHVbiwMfrJC5uFFjsIhCHzqXS2KSMDxOFK5GCCGEEOILu2zDjw1rFMf1Meaj0HxqmEsUOFFdzypbwXmiNeJTfr9MkIzmT6ic2rjOyxMGo8lWcR2ZxXZ4GF0rEkIIIdGHc/4ZgGEAXgNQpzLpRgCXcs6v5JxbwlI4QmIEtc8jhBBCSETJnr97mrl6MFou6nDbNIZnL2XISwd0EjB5ALB2oQSDngk78Lpk4MDxRPtNWV2pSrhXVorn3w+ex7BwRux3RuWtFvA/TNE8vSgYzddQuURisXGs2RvpUnj604ccr67t+vv/m+dk3Poux6YSoMYCtNgDW6/EgCRB8zWXDBxW+xWDAAAqGzn2Vfo+38Duvs8zrBfw9d0SemcqH+ty0xjWLpQwoo87EK0wB3j7BoZpp4YrGE15PYdrAYcz8c5vpTXa3vOwXsCaeyT0zPD9c9JJDN/cI2HaYEAvAT3Sgb/OZbjpbP8/85fmM/xuMkOq+PmqqrJSgD/PYnhgdtdlyE4FUgTr0br9CCFEiU1DMFritecJrxVbOS55VcbafUB1s7vuWmMBjtYDK7cBQx+R0UTN0olAqhH4f2cy/O91yvWJ3pmAQac874UvyWiy0vebeKtq4thToT5NqtEdRq3FvLEMT/w29n+HIiSU/O9LzY9AAAAgAElEQVQxSQghJKjuuusuLF682GNYWloa7r//flx11VXo16+f1zzFxcVYunQpFi1aBJvNBgCw2+246aabYLFYcNddd4Wl7IQQQgghhBBCwsPJle+w6iWNv5orUAv4UhuX6NSCAGy8FalI9x4ui++8ag0WUPtM7NwGU4jDF0TvQalcRskMm8t7erUACkIIIYQQrbY0rYdFblIcd3bGHDAWe41FRHU9DhkObkcS87PVeAyShQ1HRcFo4uAyEavKuCSvYDRR8JoVVlm586JZlyxcfixQD0aja0VCCCGJjXMescom5/w4gFsYY3cCmASgP4AeACwAygFs45yXRKp8hEQzap9HCCGEkIiTXR4vU2T1HON8uRyM5eCeGQx3n8thdQDmpPbLEXdwjPJvqS9+y/GPebH3O3moHBSEez1yAcND5zEcb3KH/+SmApIUJ9tt3Uqg8pDmyQscpYrD1ULlEt3yrbG7bdbt63oakaPPSl7DTgYfpS9QfqjjwSoIwxyJ29sb/duf1i6U8O8ijrv/I55/60MSepxoymY2AN2Suz7Ojc1n2P6wDq127nHuCQfRviJzd8heYW5YixNxooDKU3sA3y6UkG4C7E5tn6uavlkMa+7RwergMOoR8P12o4HhzWsYXr2Ko7rZPSzdBEgSwDlg1LvPubUWDrvTHYSWpGew2DiarED3NO3nZMYY8rOBXUe9x1HAJyEkEPYugtGsDqCyEejRLTzlSUSL1/j/0PD3b2SYMihOru+IX7JTAINevA/oJIZ+WcCBKuXx/1fEccNk2oeIJ7Vrt3d+x3DleAkumcPpAs5/Ue4yUP29G1lMtnUlJJwoGI0QQqLAsmXLvBpdTZ48Ge+//z769OkjnG/AgAF44okncM011+CSSy7Bzp0728bdc889GDVqFKZOnRqqYseFtWvXRroIhBBCCCGEEKKZSxSMxvz/mU+1szvTFtaViNQCyqyC4C+1UAatIXRqAQQ2uTXkYXaiUDOl/cgomQCX97RqARSEEEIIIVpwzrGu7jPFcWYpGePSzw5ziYJDNXxXtiJJSpxgNFFnPlETING2E9XNAXH93MCSoGOejwMV1bMd3I4WuVlQptgOD1Mrv0ljsDMhhBBCQodzbgfwbaTLQUisoPZ5kUPt8wghhJAOuGeH7p7OY6qTD3IeBDASgDvww5zkOX5gd/G8O8tjN7ApFKqVf8ZFvyx36Eo8BhnwPT/5NH2+vVRxOAXKiG1OwFjyKYOAHt3EHba7pwHHFZ5rVFLNIb7LQwDgJz/3p25mYGB3cVBmkh4Y0sMdUuWPQEPR7pzOsHiNd9nOHSKeRy1Er6Q68YLRRAGVZxYy5KW7P5/OdYRAmPzcV0T0OvXzbFaK5/pSjAwpftwWL8hRDkYrrfF9WYQQAgCyzOHUkMlVWkPBaKEiyzygOve4fKZadyUEAAbniYPRfioDbpgc3vKQ6Kd27Ta4h/uYo5MYdBIwqAfDmr3i3+iG9w48kJiQROAd0U8IISSs9u3bh9tvv91j2MSJE/H555+rNrrqaNCgQVizZg2GDGn/ZViWZVx99dWorqY7UYQQQgghhBASL5zcoThczwx+L1MtSCvWO/KHknpAmXLAgo2LQxmMTGswmnpYRqiJ1iEMRlNchng7EEIIIYRoUWrdj0O2A4rjJnSbrlpnimZqdcJw1PWiCRcGoyk3BBJd16htN3Hor/ey1PapBmedT2WKFWr7I10rEkIIIYSQWELt8wghhBASNWTPXvUFjjIMte0WTn655SPVxfXMEHec3HjQt6LFO4tNeXiaKX46n3KnE/yTtyBP7wb5LCOw4jWf5i9wlCoOL61xBxKQdodrOR5fJeOVtYm3XS4bq/6dEQVaHaTLpjbHGjie+kzGZa+5MPcVF+76t4wNxRwHBeFXagw6dyDW9CFAZrLyNBePYn6HogXDNROU1/37s8TdmlOMDN3TlMeV+LGdYp0o2CtfJUAuEfXPVt7XyhJwnyGEBIdd4cHQSkQBlqJpX10r45Z3ZSz4QMaOw3SMOolzjvc3y7hhqYzrl8hY9oOMow2ATfmZ8poU5sbP9R4JncvHifeT19dxNFmj+3u6fj/HXf+WccUbMp77SkZ9C8eROvc168lrjvtWyPjlSHS/j1iidk0ypp/n6ytU9i8AuLyLa2xCiJs+0gUghJBEt3DhQjQ3tz+CKCMjA8uXL0dqaqpPy+nevTs+/PBDjB49Gna7HQBQXl6Oxx9/3Otpl4QQQgghhBBCYpMoGE3H/P+ZT62DP3V2FzOwJDBI4PB+HJhVELCgFsqgNbxDLVxBtN5gEgejeZfLn3AKQgghhBAt1tV/Jhx3VsasMJYkuFRDcFVCduOTqAGRcmMg0bWLejBa4KG/ANDgrFUcHvPBaGrXiiw2wwcJIYQQQkhiovZ5hBBCCIkasnfP+v8cuRIz+32KckNvj+H3Vf8Nc5pXdbnIZy9l+NOH3r+nttjdne7zc6iDJQA0C4LRUo3hLUeocM7BH7oCWP9fv5chCkazOYGKBqB3pt+Ljiv7KzmmLpJR0RDYckb1BbYfDk6ZQsGoB84bDvz3Z8Bx4tB17QSGGyerH1MKcxk2lXgfk0qqQlHK2HOohmPKIhllHkFXHC99w+FP/mCSHmCMwWQAPvyDhLmvymjocEvx9P7A8/Miex4Y3Y/hlasYbn+v/T0unMFw6enq8xXkAMebvIcnYsheieA9F2SHtxzRThTMWCIIliOEkK7YNQZy3f0fjivOEC2D4/v9wOc7OT7fybGnwnP8q2s5Pl8g4ZyhdN1223scr61rrxAt+xHon+1/kNNTF9M2JdpcNZ7huiXifW3qszK+XSgh3Rx9+9Q7G2Vct6S9nv2fIuDhj90vWj26HbmvOT69Q8KUwdH3PmKNqH55y1QGxjy37+QBwJMXMzy40nsfmzsauPtc+jwI0YKC0QghJIL27t2LVas8b1g+/fTT6NGjh1/LGzp0KBYuXIinnnqqbdhbb72FRx99FJmZ8XUnqri4GD///DPKy8vR1NQExhiSk5ORl5eHgoICDB8+HMnJgkeeBJHNZsO6detQUlKC2tpadO/eHX369MFZZ50VkvVXVFRg06ZNOH78OGpqapCamoru3btj3LhxKCwsDPr6CCGEEEIIIdFFFIymZwa/l2lk4s76Jo1hXYmIMQaTZEKr3OI1ThSwIAoukyBp/gxVwzJCHDjGORe+B1/CI8IR4EYIIYSQ+NXkbMDWpvWK405NHom8pN6K42KBWl3PmmDhssJYNCYKRhPXPTnnivPZBPVSpUAztZAzcTBa6O9ThZLae6YQbUIIIYQQEiuofZ7/qH0etc8jhBASArL3g9dOte/DgeJTUWQag3JDbyRxB8Zat6Cn8xjAmPD3zZPOGcIg+kX1oY853v4ddbB0OHlbsFNnKXESjIafN2gPRTtzJtic6zyH1RxFwYtPCGcpqaZgtJOe/5p3GYp2zhDg6z3q03x+p4SeC72PCSe98zuGKYMYPtnBcdt7yt/xu89l+Ptq/8MiOhvQHXjqYgndzMD4AiDdzNDQwlFU5h7XP7vr40m+IKippDp45YxlL6/lnULR3NRC0V65iuHWd5UnsHQIfZx2KsPRZyVsKgGqm4FBecCwXoAkRf488IcpEuaPc+9Lw3oDeeldl6kgRzlkrzTBgtHqLNwj7K6jAgo/9ZCfrVwnKqsBZJlHxXeBEBJbtAajHWsEWu0c5iT3ceZwrTsE7fNfONbsFYc0A4BLBu5dLmPrUF0QShy7Dhz3DEU7SanepNXsYXTcJ9roJIb3fs9w5T+V69zbDgPvb+a4eUp07VMumePBld4By63K3Y3QYgce+6+MbwYn9vEmUM1WjiqFAGcAmDvaex9hjOH+2Qy/m8SxqQQ43sSRZgJO78dQmCtuC0kI8UTBaIQQEkGLFy8G5+21zpycHFx//fUBLfOuu+7Cs88+C4fDXXu1WCx48803ce+993pNe91112HZsmVtr0tKSpCfn69pPWvXrsW0adPaXj/yyCN49NFHVZd/UllZmWpl7dprr8XSpUu9httsNrzwwgt48803sX//ftXy6XQ6jBo1ChdddBHuvvtuYSOoqVOnYt26dW2vO34eahoaGvDwww9j6dKlaGxs9BqflpaGefPm4bHHHkOvXr00LVPE4XDgrbfewiuvvIJffvlFON3AgQOxcOFC3HDDDdDr6RRPCCGEEEJIPHJy5bushkCC0VTCF6izuzqjZBYEoym3RhIFlxkls+abGjqmh54ZFEPyQh045uROyFBuLWxSCNgT7VuhDnAjhBBCSHz7oeFrYb14SsacMJcmuAwsCRIkyPDuCCOqY8Yr0f0aBkEwGlOue8pwwcmditdMwtBfhWWpXRs1OOsUh6sFi8UC9WtFCtEmhBBCCCGxgdrnKaP2eZ6ofR4hhJCw4cohSHq4cKb1J8D6U6fpOWBrBUziMNCCHPHq9lRQEBEAWOzicSlJ4StHKPFv/k/ztOz/3Qc2YqLn/K0WZC6+B+muBjTqunnNU1LNMXkgddYFgC93df29Gtab4es94ukyk93BUFkpQK3Fe/zLVzJcOV4CAMwaBojCD88fEdxgtJF9gEtP9/ycuyUzTB+ifRmFucrDDyZYmJXIGpX9QuRclQDMMztlN5uTGKYO9qNgYeDrvpQvOL+V1yfWua28XjyuvyCIMFGJghkdLqCigQI+CSG+swvClZU8+xVHs5Xji50cO4/6tp4dRwC7kyNJn7j17TV7g39+V7tWJqSz/BxxnRsAvt7DcfOU8JVHi/2VwGHlJmtC6/YDNgeH0ZC4x5tAlahc24quhwGgezrDBSMBCNo+EkLU0V1ZQgiJoC+++MLj9TXXXIOkpMDuruXm5uKCCy7AihUrPNaj1PAqlhw+fBgzZ87Enj1dPDrnBJfLhS1btmDLli244oorMGDAgKCVZceOHZgzZw6OHhX/StHU1IR//vOfWLFiBT755BO/17VlyxZcfvnlOHjwYJfT7t+/HzfffDNeffVVrFq1Cr179/Z7vYQQQkisaXDWYZdlC47ZjoR0PQYpCYXmU3Fq8kjoGD0lIRSanY3YZdmCRlcDhqaMQm9jfqSLROJEk7MeOy1bUGE7HOmieNAxPfJNAzE0ZTQMUtfXg0phWACgDygYTdxZP9Y78oeaaNuJgr/EwWi+hQoYJROcLu99YUPDV9jfshOA++kxvZL64bTU05GqSxcui3OOX1t+xoHWPV0Glon2v5Nl8h6mvH0OtO7GiuNL215302dhaMpo9DT2VV1/pb0cu5q3oN5ZqzjeJJkxIPk0DDSfptrhK1z1Bl8lSca2eobEJL+WccRaij0t29Dk7OLxxB3omQEF5sEYmjIKOhbcWwZ1jmrstmyDjVsxLGUsuif1DOryy22l2G3ZDodsw4DkoRhoHkZPTiIkiLo6R+iZAYXmwRicPBIGyf+6CCG+kLkL39d/oTguS5+L4aljw1yi4GKMwSiZFMN3v6//AnstO1Tnl5iE3sb+GJYyFmZdSqiKGZDj9grssmxBnUO9B0yF3bdrN7Vrl5VVSxWvmYpbdytOr1S3TWJG4fIdXLlXXawHTVMwGiGEEEIIiQfUPk87ap9H7fMIIYSEgcuHnvUntVpUg9HSzeL7o2U1vq8uHlls4nEp4p9+Y8uK17RN1y0HGOJ9L4WZU8Ayu6PAUYYduhFe40toXwIAyDJX7QR90tAumkZcMNL9vb30dIY3vvPsfC+x9vGAO+hnaE9gd4XnMgZ0B6YMAsb2B4rKxOsy6IBZpwH//bnrcp83IvD2FgWCQIHqZqDJypFmSuw2Hb4GxBl07oCwOcOAz3Z6jz93aPxuz9xU5eH13rdR45ra+81NC185YoFaAE5JNQWjEUJ8Z1N+ZqOiRz/xP9iLc8ClnKGdMEqDfL2RnaJ+rUxIZ6f3A7qnAceblMcXlQF/X+3+oibpgLH5DGfkA5IUuf3Mn+8N58ChWmBgXvDLkyhEvwnoJKAv1TcJCRkKRiMkyri4C/VOehRGqGXocyIeZHHkyBGUlpZ6DJsxY0ZQlj1jxgyPhlcbN26Ew+GAwRCbndPsdjtmzZrl1egqKysLw4cPR15eHgwGA5qamlBRUYHdu3fDYlF4dE4Q7N69G9OnT0dNjedVQ15eHkaPHo2MjAxUVlZi48aNaG1tRW1tLc4//3w8++yzPq9r1apVmDdvHlpaPH/J7tmzJ0aOHImsrCxYLBbs3r3b4wmd27dvx/jx47Fx40b06dPHvzdKCCGExJCjtjK8cPgRNLpUHosVZGPSJuL6nncHPTwk0R23H8ULhx9BrbMKAPBRFcNVPW7DxG7nRLhkJNYdsx3BC0ceQb0zelvpDU4ejj/0frDLzuWiYKpAjkdqAQLU2V2daPtY5VbF4TbBcF8DE0ySGRaX9523n5s3ew3L0ufizr5/Qa5CIJXMZbxX+Qp+aPjap/UrUQxGY8rvq8J+2CvoYmWVDjf0uhtj0iYpzrO9aSPeOroILnTR0qAGmJZ5Pi7N/Z1iQFYk6g2+Gpc2Bdf0XODzb1cb6lfjvcpXwFWeWKVmWMpY3NjrXk0hjVqUtu7Dy0ceh0V276sfsWW4qdd9GBakwJofG9bgnWMvg+NEi5AaYErGHFze/UYKRyMkCDjneL/yNaxv+LLLaYemjMHNve4L2vGDEDU7LVvarhk7m5wxE1IchJgbJbNiMNqO5k2al9EjqQ8W9HkMGYboekz4zuYivHn0b8IgMS2Y4KmJatcua+s/9WkdStdIEpNgZCbYuHqYcEfmGA9GU7tWpBBtQgghhMQyap8XPpFuo0ft87Sj9nnUPo8QQkiYcD96u1stAHJVJ3nyYoYHV3rfJ66xUBARADTHeTAa5xrbCOj0YHf9HcwguKfXMx/5jaXYYfIORiulSygAwFENz6hLMwG9MpTDwU56cI77O3nfLIY1ezgOdLj19cgFDH0y27+zjDE8P0/C3FfltpA/swH4xzwJjDEsukzChS/JaBTcvnjiIoZLxjD8Ui6rdpw/Zwhw+emBHysKuwgmGpHA1ec6C/c51Cs/G9BJDE9cLKGoTPYIahjVF7h9Wvwe3zMEmaB1iRaMptzcECYDYDLE7+fvj4xkIN0ExeNhaQ3H5IG0vQghvrH7EIwWKNn/XLW4cCjIXTwK1S+hCfFi0DMsvoJh/pvKX8ayGmDh/3UcxzH/DIYl1wFJ+sjUMd7e6N+BY9ZiGfuekKCLYKhbLCupUd7ufTMBvY62KSGhQj24CYky9c5qPHTw5kgXI+49Xvg6sg2RjbTdsGGD17CxY4PTMfT000/3eN3a2ort27dj3LhxQVm+VosWLcKjjz4KAJg8eTLKy8sBAL1798b69euF86Wmej7aY8mSJdi9e3fb6/z8fLz88suYNWsWJEnymp9zji1btmDVqlV46623gvBO3BwOB6666iqPRlc9e/bE4sWLcckll3iUpbm5Gc899xyefPJJ1NfX+/xE0N27d+OKK67waHQ1a9YsPPbYYzjjjDO8pt+2bRvuvPNOfP/99wCA8vJyzJ8/H2vXroVOF/sdwQghhBA1K6uWhT3cZGvTDxibdjZGpZ0Z1vXGu1XV73t0cOfg+KDyNYxJm0QdbklAPql+J6pD0QDg15ZfsKnhW5ydOVt1OidXvsuqZ/53tFELEPA1sCvRiI5NNlm5taFouK8BdEamffpaZxVWVX+A63v90WtccevuoISiAcr7ii/vS4YL7x97DSNTz/TqKCdzF96rfLXrULQTvq1bhTPTf4O+pkKvcSur/hXVoWgA8FPTOpzRbQpOSxmjeR6r3Ir/HH/T71A0ANhpKcKWpg04s9s0v5fR0fKqJW2haID7+PXusZfx1Cn/G3BwmV224YPK19tD0U5YV/8ZxqdPQ755YEDLJ4QAJdZfNYWiAcBuy1ZsblyHSRnnhrhUhADf1X2uOFzP9JjULT72wWCEEx+zH8HqupW4rPvvg1Ci4OCc473KVwMKRQPUgtGCd+0i+gyMkgk2l/ZgtFi/nlK/VqQQbUIIIYTELmqfFz6RbqNH7fOofZ4aap9HCCEkImR/gtG6ToC5YpxyMBrg7rw7rLfvq40nFrVgtHh47s+urh+swv7wJHDmLLBThokn6lWAguoSxVEHK50A4mFjBUZLQFxBjjuwSGTuaGBgnvteR34Ow8b7JXy8neNIPTD9VIZJA7zvg5w7lGHbQxL+u4ND5sD5IxgG93BPd/Yghm0Pu8d1DFjLTgVmDGU4s9A93eYHJHy8g+OXcqBjlp5RD5xRwHDhyOB06O+TCegkwKVwuEv0YLSDfgQMngz1GNWXYetD7n2luAo4vZ97P0g3x2/H+8xk5YBBX8PlYl2dRfn8nhHbtyFDgjGG/Bzg5yPe49SCIQkhRCScwWhas47jVZkgaMhfBTnxW0cioTNvnIQai4zb39O2P76/meO84cCV48O/v8kyx/ub/fvelFQDX+0CZg8PcqESRInguq5AJSScEBI4CkYjhJAIOXLE85e2vLw8ZGdnB2XZw4Z537A6cuRI2Bte5eTkICfHXZvT69tPOXq9Hvn5+ZqX8/HHH3vMu3r1agwYMEA4PWMMY8eOxdixY/HQQw9B9ucmsoIXX3wR27dvb3vds2dPrF+/HoWF3h2tU1NT8cgjj2DYsGG4/PLLUVdXp3k9sixj3rx5Hk/VfPTRR/HII48I5xk9ejS++eYbzJs3r+1ppOvXr8e7776La665RvO6CSGEkFgjcxd+bfk5IuveY9lOwWhBtqdlu9cwJ3fiYOteDE0ZHYESkXixx+K9b0Wj3S3bNASjORSHBxKMZpYEj1eEOPiLuIkCyqyy8qMabVx5uC9BZwBg1qX4NL3S8RUA9lp2+LQcNUr7itq+pcQiN+GQ9QAKzIM8hpfbytDs0vDY3Q52W7Z5BaO56w3Be8+htMeyzadgtAOtewIOGTm53mAEo1nlVhxo3eM1vMFVh0p7OXoYA2vpqvZ+97Rso2A0QoLgl+Yin6bf37qTgtFIyB23H8Xulm2K48akTUKavluYSxQavtahRHY2F0VVMNox+5GgBFbrmHITh2Beu5gEn4FJSvYpZDdYn2WkmCTl6w4DSxJ+DoQQQgghhEQTap+Xr3k51D6P2ucRQggJE9nl+zwtzV1O0icDkBggK/SJLaVgNFhUbqWnGMNXjlDh6z5SHc9ueQrsynu6XlDPfBRsKVMcVVJhBwWjASXVXXc8L+wiGK17umen+exUhhsmd92RfkB3hj+eqzxdQQ7Dgunqy8hJY/idhvUESq9j6J+lHAJ2sIoDggfgJIJDtb7P0zHUo1cGwy1TE2f7ZQhuszXbAIeTwxCEIL9YUK/c3BCZvjUfTBgF2crBaP58/wghxBbEYLR0EzCyL/D9fuXxStdyieRIkJ93TQFFxF8XjGCag9EAYOU2jivHh7BAAj+XBzb/im0cs4cnRn062EqqlPePfApkJCSkvB/jRQghJCxqaz1/VcvMzAzask0mE4xGz7t0ndcXS8rK2m+wjRw5UrXRVWc6nQ4Gg/8BASfJsowXX3zRY9gbb7yh2Oiqo0suuQS33nqrT+tasWIFdu7c2fb68ssvV210dZJer8eyZcvQvXv3tmGLFi3yad2EEEJIrLHJNjh5GB/F0oFFbozIeuOVzF2wuJoUx1nlBHvEGwkqh2yHjVsjXQxNRN+BjkTHPH0AndJ7GwsUQwT6GU+BUfItsCvRiAITbIJgtFaX8nCzzrfAhAHmoT5Nb3E1gSs8TszXsDGRfqYBSJK8WwsPSPatnABgcXmfX5sVhnW9HO/vk022Rqze4KtmDccDj+mdwfks/dnWSpQ+x5Nag3BeV9t3g/UeCEl0tY6qrifqwCbbQlQSQtp9V/+FcNyUjDlhLEloneJjXU+kzlkNmQenY3owqNUPfFFoPlVxeJJkRH9TcMJRBySfJhiu/bORoBOWNVYUmgdDUmhSMjDZOwCCEEIIIYSQaETt87Sj9nnUPo8QQkiYiH6zZQyQBN27LOJ7o7ylGfzXrdBbG9FHUNUpq0nMHvaccxys4mhs5bAIbmMZdEBSPATrHClWHz/5Ak2LYSMnId9RqjjucIsZdmdi7ksdlWp4/sukAQymBHy2CLdZwX/dBr77JxRkKKcRlgT+/JyYVmfx/TuUyKEemSrN6RoEYWHxqF7QzCojwZ53yzkHP7QPfE8ReMlu8NpK8OKfwXf/5PEvT1Zu6+LP948Qktg4F19HaDWiD3DvLIa1CyVU/V3CP+aJIz0UmnjHrcZWjtJq7tGuvc6iMoMfJg+Ig+s8EhG9M4B8H56vc8C3ZraaNLRwbCnjsNjEB4aDAa73oCDci3StRCEEHHCHpBNCQicBf2ojhJDo0LkhVEZGRlCXn5GRgcrKyrbXNTXxcRfh+PHjEVnvd999h9LS0rbX48aNw/nnn69p3ocffhivv/46HA6HpulfeOGFtr8ZY3j66ac1lzM1NRU333wzHn/8cQDAL7/8gtLSUp+eAEoIIYTEElHwTDi0uiisK5hssji4yiFrq0cRoiSWgvW0HFecXPn7oGf+dzgxSAacl30Fllct6bA8Pc7Lme/3MhOFSafcwki031ll5Tu3ooA1kckZM/FT43eodWq7q8Uhw85tMDLPoDtrEM6jeqbHedlXKI7LNw3CiNQz8HPzZs3LUwrN8idIq1VhWwcjkCtcfD12BeOzBIK3jVpc4lYKouOYL1pV3q9VEEBICPFNncZzTDtqKEFCyy7b8GPDGsVxfY2FyDcNCnOJQmdKxmxsaVqPemdg93Wc3AmLqxFp+uDef/KX2vlbqxRdGs7J+q1w/HnZ8/DG0acDCsM9xTwEw1JOVxz3m8wL8XPzZk1BrDOy5iJZl+p3OaJBii4N52ZdjC9rl7cNMzITZmVdEsFSEUIIIYQQoh21z/MPtc9TR+3zCCGEBEQWBKPp9IA5FWiq8x7X7B2MxqzU87MAACAASURBVF0u8BcXAh+9DrhcgCSh/4itOATv38q1BDnFm1+OcFzymozi44DEAFlwGyvF+/lvMYdXHgLW/1c8wfTLwfppvIcy9hwU2O8Vjn5ljQN3zUzysYTxRdQB+qR+WcA1ExiqVJ6FF293VTnnwDvPgi99ArC700MKerwEZN7gNW1Jgne+r/fjVllhTuKGemSoNKerawFy0sJXlkiqEwWj+dbcMKbxXZvBH54PHD/S5bQZuY8BOX/yGi7ajoSQ+MM5R6sdaLS6/zW0Ao2tJ1638hP/t49rEgxvbAWcPj6LMM0EnDMEmD2MYdYwhj6ZnudxxsR1IdE1SzxxujhufY9j6QYOp+wOEVp+i4SB3d3b3Ren5IoDqc7IB2bR8/6InySJ4cHzGG78l7Yv5fbD7uMOY4HX2+1Ojpvf5nh7I4fMAb0E3DqN4bnLGHSS5/JLAwzB7+ralijjnAsDvxM51JqQcKBgNEIIiVPBqEhHi1NPPRW7d+8GABw+fBiLFi3CwoULw1qG9evXe7yeP197QEBubi5mzJiBTz/9tMtpLRYLNm7c2PZ63LhxKCgo0F5QANOmTWtreAUA33//PTW8IoQQErdsXPwL+ODk4QEFBZ1UZT+G446jXsODFUBC3NSCWIIRoEISl9q+NSh5OAxBOE74qt5Zi3JbqddwLUFILkEHfz0L7Ge+6Vm/Rfek3vi5eROMkgmnp52FAnP8hEuEilkQaCba70RhEKLliGQbuuOefn/Fjw1rUGYthgwXAMAm21DcuktxHqvcAqPkGYymFB7mXn4eeiT17rIceUm9VfcViUm4sde9+KFhDfa1/OKxjxe37FY8jyudX0XfDQNLQqouHXVO77tzviwHAAYnjwj4e+SP4/YKVDkqvIb7GsAq+izNUgoKzYO9htc6qlFhP6R5Ob5SO/Y6uPKTgX1hVdk+wXoPhCQ6pWMrADBI4PBu9cXjrgk/iTY/NX4nPMZPyZwTV/dEcpJ6YGG/p7Gx4RuUWvcrfuc6cnEX9rbsUBxX56yJmmA0UV1Mz/QYnDxCdV4GCX1NhTgjfQryVOqpw1LH4u6+T6GoaT0q7V03jO8oiRlxinkIJmXMQJKk3Buul7EfFvZ7Bpsav8Vh60HFzyZNl4FhqWMxOnWCT+uPVhfmXI2+pkLsat6KFF0azkifij6m/EgXixBCCCGEkKgQT9ei1D6P2ucRQggJE9mlPFySgLQM5WA0pWEfvgQsf6XDcmXkV27G9xne9+7LqhPrHo7TxTH7BRlH692v1QIGUuIg44s/cLl45KDRYA8t1bwsptMhf9okwLspAQDg7uU6XDyWo392/NSDfVWq8n1aMJ3hzzMZctMYmqwJ9L377mPwNx7yGJTvKFWc9GCCd76v9yOYqTA3+OWIFZkqzen8CZmLVaL9JjM5MY7FvNUCfs95gKXrB1cBQKarXnF4HTUnIyTqcc7RYncHkjW0BZmdDDjjXsM9As06BaC5fAw088f9sxnWF3MwAOMKGOYMY5g0AEjSi4/PksqhOxFqj09/wfHP79vf6cFqYPZiGbOH+3ZO654GFD0o4bFVHP/42r28dBMwqi9w1iCG+2Z5h0gR4ovfTZaQm8rx7iaO4uPufazFDvxaqTz9q+s4bp0a+D73l1Ucy35s/444ZeCFNRwFOcCd0zsHowW2rsN17t9P9Dr6rviiuhmw2JTHFSRwqDUh4UDBaIQQEiFZWVkerxsavJ/mFIj6es8f8zqvL5ZceeWVWLFiRdvrP/3pT/joo49w/fXXY86cOejZs2fIy1BUVOTxevz48T7NP378eE0NrzZu3Ojx5MrCwkKPJ2FqIXd6mtiBAwd8mp8QQgiJJTaVcLKbet0Hsy4l4HV8W7cK/3f8n17DtQQYEe3UQkwoGI0EQu27elOvPyNZlxrG0rhtbfoB/zz6N6/hakFCJ4m+D8EIghyeOhbDU8cGvJxEYpTMisNF4ZlWwbHO5GMwGgBkGnIwJ2eex7B6Zy0eOOD9xNWTZeqmsZwT0n/jtWx/6ZgeZ2XMxFkZMz2G/7X0bhy2HfSavtXlvY1EIVi5hp4YkjISa+o+8Z5H4fskCqYDgFt6PygMwAil1bUrsbJqmddwX+sZos+yv2kAbuvzsNfwTQ3fYtmxxV7DfQ1kE1H6HE8Kxnld7XhJ4bWEBE7mLtQ7ahXHZeqzUesUPG6RkBDhnGNd/WeK45KlVIxNOyvMJQq9LEOu5vqYzGXcue9yuOAdolznqEY/0ynBLp5fROfvTH2uYn3FX/nmQcgPYchz96SeuCDnypAtP9owxjAmbRLGpE2KdFEIIYQQQgjxGbXP047a55X6tC5qn0cIIcRvsqCHvqQDUgUPuWj2rsPwL9/zGtbfoZxmFWhn2Vjz7a9oC0XrSkr4mwgEFS/dA+zbJhzP7n4BTKfzaZkpAwYi72AlKvV5iuPf38xx3+zE7ewr+j79Yx7DgulS22tT+J/TGTH8K+/jUaG9RHHa0mr3fb94Cpn2RYMfzVkKc4JfjliRanQHyCgFXNYmUMhVnUU5Kqeb780NY9OGTzWHogFApiwIRqMm/4SEDOcczbYOIWYe/3OvkLOmjsPbgs/cf6uFGkeT5CTgyYulrifsRK0GJLpUjCcfbvH+gI81Aks2+PbBF+QA3ZIZ/n45w99VcqIJCcSFoxguHNX+rT1Sx9Hvz8pf1Hc2ctw6NfB1vrtJ+bvwzkaOO6d7Dgs0BN8lA0fqgPwEvt7wR4lK2HcBbUtCQoqC0QiJMhn6HDxe+HqkixH3MvSRr2F0bghVV6fwNCc/Wa1WWK1Wj2HZ2dlBW364zZ07F3PnzvVofLVhwwZs2LABADBgwABMnDgRkyZNwllnnYUhQ4YEvQyVlZ5xzgMHDvRp/kGDtHXCOXz4sMfrDz74AB988IFP6+qstla5EyMhhBASD9SCL4ySKSjrMAvCarQEGBHtrC7xZ0nBaCQQaiE/JkGoVaiJ1muVW7ts/OUIYTAa8Z34s1Te70TBXKJzTbDKAygHVYnCq8Lx3RCFwSmd20Xne7Mu2cflKH8uEnQwsMg8Clpcft/qGaJjneizFIXHqgWV+lQelfI7uXdoi6/Utg/V0QgJXKOrQTFgCXCHNVEwGgm3g9ZfccSm3IFiQrffRCTcNJpITEKGIQs1juNe4+qd0dPjTRR2G6nrMkIIIYQQkriofV74RLqNHrXP047a51H7PEIIIWHCBb3dmQSkKQej8aY6jw70XJaB/du9pqNgNLcPftLeOXho6LNfQ+vQPvE4QxLQf7Dvyxw4CgWrSoTBaH/9nOO+2b4vNh44XRyHBZcU+dmebb3UgtHiLhKsbK/XoD7OI4qTtjqAVjuQnKC39nwNRsvPdod+JCpJYshNAyoVMrEO1XLE4bdJ0RFB2GdO+J8HHBG8dI9P02e6lA/UFIxGiDdZPhFo1inMrOFEcFnn0LImK9DQyr0D0KwAj5FAs2A5tYd/86llwybCJvxZuYrosz6ZwVkOIb7o1fnp9B1UBOGZPBYbR5ng95stZd4B01p/6zklFzggaO5bUk3BaL4qEQTSmQ1AXnqYC0NIgqFgNEKijI7pkG1QvolA4kvv3r09Xh87dgw1NTVBaSC1a9euLtcXSxhj+Pe//41HHnkEf//7370alRUXF6O4uBj/+te/ALgbYl199dW44447gvYkzs4N49LTfaulduumcuXTQU1N8O8+NzU1BX2ZhBBCSLSwyVbF4QaWBIn59rRDkWAFlhB1akEsDm4PY0lIvBEF5BiZKWjHCV+ZJeVAIg4ZNm6FiYmDAURBgXpGP/NFgijQTBTkFeowCCMzgYGBK9wi9y1wTHkfDSazTvv5VXSOMElm4XlaOQhOefubpeSIPY1W9NmLQvRERPUS0fFGNNzB7XByR8Bhi2rn9WAEnqqFn1EdjZDA1TnEjzXLMuQCCoconmgt3EhYfVf3mXDcWRkJ2vumkwx9tmIwWl00BaMJ6jei+hwhhBBCCCGhQu3zEge1z9OO2ucFhtrnEUII0czlUh4uSUCqcjAamuvBW5rAX/gTsOlLoPqo4mT9HWWKw6ubgWYrR6op/gNkOOdYskH7PatrJ0ohLE0YlOwWjzvnCrBUbfUjD6OnoMDxPjbiTMXRTcrNNeNeUSnHFW/IcAmyDQs6dSY3xXAzLr51Lfj/Pg78uhVwnXiYVlYPYNJ5YLc+DWZsf2AxX7UEKPvVaxmZLkGSE4DalsQNRqtv8e2e+k1nx99xm3/+NviSJ4CKUuUJxkwFu+kvYKeNB+AOh1MKRisRN2mIO1uUT+/oH5xL8ei3Y71Pk2cIjj8NrYBL5tBJ8fe9IonHJXM0Wz1Dy7zCzE7839AKNLVyj2nbgs5siRdoFizXTvTvWKJ2CJLj/LNwuoL3BjMSODiWRI4kMYzooxzwV1YDHKrh6HciMHt/Jccf/y3jh4NAix3ITgFmDGV4fh5T3H+LSjkueElwsXnC1kPA6f3df3PO8Ut512VO0nO8da0Ol7wqo0ahWX9JNce0BAkbDpaDguuQghxErC8KIYkihn9qI4SQ2DZx4kSvYUVFRZg5c2bAyy4qKvJ4bTabMWrUqICXG0l6vR5PPvkkFixYgHfeeQcff/wxNm/eDJvN5jVtcXExHn30UTz//PN4/fXXMW/evAiU2D92e/BDP6hTIiGEkHgm7lQbnIAZQD30RuauiAUrxRu1gBMnd4axJCTeiAJyTIJQpnBQO0ZZXS2q412C70OgIUbEP+LwTEEwmii8Kkj7I2MMJsmseExVHiYOHAs1YaCZQjmFAW5SikrAmlIQXPQdD8T1DHGwmBLRedSkU/4sRcFogDtALk3vRwNpj2WENhhNLfxMFIBHCNGuzqn8iDgDS0Kqjh5rRsKr0VmPrU0/KI4bmjIG3ZN6hrlE0SlTr/z4RrWgw3ALdV2YEEIIIYQQQjqj9nm+ofZ5/qP2eYQQQjQTnTMknTgYrakB/N6LugwGyRcEowHA019wPHFR/HfQfPlb7efksf2B346K7W3C//mocBxb+JJfy2SShJTxZwN7/SxUHCo+zjF1kYwWlWpkfqfbNMYYbcbF924Bv+d8wNmpXUflIWDFq+BV5WBP/Z972s/fBn/mD4rLUQtGq7MAfTKDVuSY0iB4RuJ1ExmONXCs2we0OoC+mcCNZzP8eVZsH6M641++B/7U79Un2roWfMEM4K2NYPlDUJDDsKnE+9heGj23QEPq+/3i81r/7PjaP5Rwawuw/Tuf5smUxcefhlYgK/TPiyVEyCVzNHkEmZ0MKuNeYWaNrUBTx6CzDsObvX+qI2HSPxu4dSrD7dP8OwarZebE+8+LonqQPzKpmRGJkGXXSxj9uHKA2ci/yKh8TkKzDZj0jIzq5vZxFQ3Ash85dldwbLxf8gjQKj7OMe05GZYuju3jnpTR/KKEZCPDqp/Vp2VcxljrFjzQaz3OHrQQBTlQDkaLnuetxgxRQHPnsHRCSPBRMBohhERIv3790K9fPxw6dKht2FdffRWUhlerV6/2eD1+/HgkJSUFvNyOXKInVoVYXl4e7rnnHtxzzz2w2WzYunUrfvjhB3z//fdYs2YNmpvbrxgaGhowf/58GI1GXHTRRQGtNzPT8+5LY2MjcnNzNc/f0NCgabqcHM8a8FNPPYX7779f83oIIYSQRGOTlR9BaJRMisP9oRaWYpOtMOvoLmkwiEJvgOAEqJDEJQoLEoURhYPacaNVbkEGshXHydwFGco3UygYLTJEAWI2uRUylyExz6cLC8Orgrg/mqRkQbiY5zDOuWrgWKiJA8G0hboB7u3vW8Ca6HgQ+iA4EVH5ndwJh+yAQdL23Ra/N+XPUi2ApFW2IA0BBqOpBLs55MA7namFn6mFphFCtBEFKbmDl5RbaHHEeessEjE/NKyGC8rhwFMyZoe5NNErQ698DVHvjJ5eAcKQ2gjWxQghhBBCCCHxjdrn+Yfa5xFCCCEhJCu3+YAkAWmCYLRt64C6410uuo+jHBJ3QVZ4yOfL33I8EdipOia85EMw2sMXSF1PFMV4yR7xyPOuA0sy+r3szOxU1fE2B4fREP+BPCct2cBVQ9GyU4A0k+f20EmxuX34x//0DkXr6PtPwCsPgeX1A1/+inCyTLlOOK4ugZt01Ave+2m9gP+9Tgeni8PuBJKNsbn/dEVtn/Fgt4J/uhTstme8QgdPOliVGO0TFn0pqDfAHc4T99Z9pHlS9vI3QH01Mh/9k3CaOgsFoxH/OF3uQDPPMDOgsZW3B5ZZT4aZtQ/3CECzosvQGxJaaSYg3QSkm93/dzvxf5qZeQ83A+km1jbs5PhuZngEGvlKrYoY78FowawDZtKxnETIKSq3KxpagX/9yGFzwiMUraOfSoHNJcD4wvZhS3/gms8PK7dzXDWe4bmvxHXE0v0DkeuqgpHbgUMSePVVKMjJQ1FZ4oYNB1NptfLBOj8nPq/hCIkmFIxGCCERNGvWLLzxxhttr99++208/fTTMBj879BeVVWFTz75xGs9SvR6z9OA06ncuUhJXZ34ZkW4GI1GTJgwARMmTMA999wDu92OlStX4uGHH8a+ffsAuDt6L1iwABdeeCEkyf8bmHl5eR6v9+/f71PDq5Pl8XU9WucjhBBCEpVNEOhiDGKnWrXwpFa5hYLRgqTVpRKgwoP/1G6SOMSd7yMYjKaybrVAHycXX7PpGf3MFwmi/YiDw85tMLH285GTO4THs2AG9YnK1DkEzcatwhCbcIRT+BRoJgjBMknJwrJa5VZwzj0aIYQjmM5XagFlVtkCgyRo/N6JWnickmSV8DvRsnzRohKMpnYs00rtWGnnNri4Ezo6LhLitzpBkFKmIVsQi0ZIaLi4C9/Xf6k4LtvQHaeljAlziaJXpkG5V4Do+xwJrYLfcCJZFyOEEEIIIYTEP2qfFxhqn0cIIYQEmSwIPmUSWHqW8h18DaFoAJAEB1LlZjTqvB+CZXMCsswhxWhYkxZNVo59ldqnz4/1QJlftwhHsb4DA1r0BSOAZzeIx1c3A70zxePjzRaFDuQdDe6hPDwrBahVaDpx9ZlR/D1U2a/a7NsOnt0LKN4hnMTI7TDLLWhVuAeUyMFoRwVZzpknNpNex6D3zraMC9zlAvb8pH2GD/4B3PYMCgTBaCU1wSlXtDui8rNA3wQ4DvNft2qbUJKA/CFAYy2yXbXCyY42AKd0D1LhSExwOHlbKFmjR6gZdweWdQgta1IafuJ/tYBUElqMAWnG9lCy9gAzhrROAWdeYWYd5kk1IiquhdQy1eQ4D0YTBcT6I4Oev0giJNXE0DsDKK9XHv/05xyTBqgfa4rKOMYXtk/T1fWmx7ylwFXjgeNN4ml6OY9COvnrkiwDB35G/+xzFacVhXwRsRJBU8xCwXULISR4qGcQIYRE0J133ok333wT/ESkd1VVFZYsWYKbbrrJ72UuXrwYDkf7U1pSUlJw4403Kk6bnp7u8bq+XlAjV7Br1y6fyhVIGrpWSUlJmDdvHmbOnIlhw4ahvLwcAHD48GFs2bIF48aN83vZY8eOxccff9z2euPGjZg4caLm+Tdt2qRpugkTJoAx1rZPrF692qsjNyGEEELa2WSr4vBgBrqoddBVC+Ugvukc2NORUw48QIUkrlZBoFIwg6h8lcSMkCBBhvfTWtQCiZxc/EROPfO/Aw/xn9r5xupq8RhvdYmPc8EMgxAHhXnuW6KwMQBhCf0UfQeVyqUW+mUWBHxxyLBxq0c4XTQGJaqtu1VuRRo0BqMJAkZF28comcHAFMPx1MJKtVLbv9SOZZqX30UdzCq3IkWXFvB6CElUtY4qxeGZ+lyAotFIGP3S/JMw2OusbrMgsTjtGeCHTL1y65p6Z03U3GOwCoJTI3ltRgghhBBCCIl/1D4vuKh9HiGEEBIg7t1OBAAg6YC8vgEvfkLrJnyZOsNruNUBHGsEemm7/RyTynwMyYn2YDT+4+fg364AjpYAO753D5xyMdhNj4H1Gwx+5IB45mmXBLTuCYONMMmtsAranzS0JlYwmqjj80lXjFOuR141nuHFbzzbZPTsBowvCFbJQqCirMtJ+D8fBTtlGOASBD2ekOmqFwSjcSTiPecWG0eVIMCgX1YCbI/qcp9nkf/xR+SfdiuAQq9xVU1As5Uj1RRf287h5Hh5Lcemg+6AnG2HxdMaDfH13hVVlGqb7oxzwdKzgPQspMtNyHDVoV7nfaIqreY4a2ACbLc4trWMY8kPHNVNwKxhwDUTGL7ZC7z/E8eB4xzNNs9Qs9bAmykSP0kM7QFlpg5/mxnSToaZeYxn7SFnHYLNUpKiI9AsWNTeSrzHEwUzGC2TmhmRCLriDIbnvlL+xh6sBg52ETb23FccK7e5oGPAqH4MX/pwG+iDnzh+KXehWJCfn+5qaA9FO6miLOHDhoNlSxnHAeWm1SjIiZ9zFSHRioLRCCEkgoYOHYrZs2fjs88+axv25z//Gb/97W+9nkyoxe7du/Hss896DLv++uuRlZWlOH337p6POti9ezfGjh2raV0dy6yF0Whs+9tms/k0r68yMjIwd+5cvPjii23DSkpKAmp4NXnyZI/X77//Pu6++25N81ZVVeGrr77SNG1ubi5Gjx6NrVvdT7YoLy/H559/jjlz5vhWYEIIISRBiMK0jMwUtHWohd60qoR5Ed+0CjpIA8EJUCGJKxqDkBhjMEnJaJGbvcaphf04uTgkkILRIsOkUwu1akEG2lvSqn22ZpXl+EoUatY5JFAthC+YAaPCdQjes1K5ROd7sy5FPZxObtUUThfJMA61dfsSwCraRqLtIzEJRsmsuA61c7JWLSE+r3dVB2t1tVAwGiEBqHMqt3jINOTALiv/tqsUtEhIoL6r/1xxuJ4ZMLHbOWEuTXTL0Cv34HJyJ5pdjUjTdwtzibyJzt+RvDYjhBBCCCGExD9qnxca1D6PEEII8ZMsCkaTgB79A178GxW3ov/AYsVxB6soGO2knFREdZgOX/Eq+PN3eY9YtxJ83UpgSRGw7Cnh/KxXYMlbktmMNYfOwqT8dYrj6xOoyaRL5ihV2bduOpvhD1OU96Wn5zKUVHOs+tn9uncG8OkCCbooDffgTfVAs4Yg54O7wOcN6XKyTFcdjhp6eQ2vDbxJSkw6VCse1z/KgxqDgX/4iu8zLX8F+V98C/Tbojj67Y0ct0yNzu+TP2SZ48KXZU3hGMtvkUJfoGhQUdr1NIPHgP359fbX1/8P8tcewnalYDQK/4hp3+7lOO9FGdYTTQ//XQTc9W+ORivAqclS0EhMKbQM6HYi0KxjaJl7PPMKM0s3ASnG8DzEIdaobRHRpWK8qAtiMFpGMu1bJHIevYBhzR6O7SoBtmpKa9rrJKv3+HYCq2x0/xP5z5ErvYbxY2UoGMCgFL94tB6wOjhMiRC4G6Dv93NMeVZ8oBaFzxFCgoeC0QghJMKee+45rF27Fi0t7qu7+vp6zJ07F19++SVSU1M1L6eqqgqXXnop7HZ727CePXvi4YcfFs4zZswYj9f//e9/cc0113S5ri+//BKbN2/WXDbA3RjqpOrqajgcDhgMoeu4r9d7nuI6Nvzyx9lnn438/HyUlpYCAIqKirBq1Sqcf/75Xc77l7/8xeMpoV25/fbbccMNN7S9XrhwIc4++2yf9gdCCCEkUdhkq+JwYxADXQwsCTro4YJ3IJEvgSVEnVpAj4PbheMI6Yo4UCmyne9NklkxGK1zeFVHamFCekY/80VCV6FcHakHkQVvfxSVqfM5SzWoTVIOVwsms8ZyioYB7veqGizmagH07Z3RRIFfkQzjUA9g1VbP4JwLt5EoKA8AkqUUxflaXIG3QlUrezCC0axdhLdRHY2QwNQ5lB97nqXPRaVd9CRnamVIgqvSXo69LTsUx41Nm4xUfXqYSxTdMg3i1jV1zuqoCEazCq51whHKSwghhBBCCEls1D4vNKh9HiGEEOIH2aU8XJKAHv18W9bAkWC3/hVoagB/eD4AoJfzKLq56tGg805AK6nmmDwwfju7ltVqv1cVzQFx3OkAX/Kk+jRP/U48ct6dAZeBMYYzsAc67oRLoT1SfQLdjj9aDzgEX9sv7pQw4zTxd8qcxPDJ7TqU13FUNwPDewNSlIaiAdAWQOSDTLlOcXgwQzFiSZlKMFpf5Zzt+PLB837N1s+yHxJckKHzGnfvco5bpgZYrijywwFoCkUDgNN9rDLEIs65+Lg062qw6ZcBvQqBvgM9wpfYmKnov7oM200jvWYrPWYDQPemY9VTn7WHop3UkEBhrV3RSScCzdqCzE7+fSLQrENomTvIjHUKOHP/nZxEgWahJKnkWsZ7y7v6Vt/e4Wm9gF1HlcdFc5WaxL8UI8PWh3SY8bwLX++JdGk8jbL97D2wokw1tKusBhjcI3Rlihd//Uw9vZKC0QgJvQSJByeEkOh16qmnejw5EQB++OEHzJ49G0eOHNG0jP3792P69OnYs6e9Ji1JEt5++23k5uYK55swYQKSk9s7/65cuRJFRUVdruvaa6/VVK6OhgxpfyqM0+nEt99+q2m+lpYWvPjii2hqatK8rubmZqxYsUK4fn9IkoTbb7/dY9jNN9+MkpIS1flWrFiBV17x7ekm11xzDU499dS213v27MHFF1+Mujrlm0MiVVVVXtuBEEIIiTeiwCOjZAraOhhjMOmUb4SqBRgR36gFmAQjQIUkrmgMQgLEYUWi8gLq3wUdBaNFhJGZwATP8LJFKBhNFBSmNahNggQDSwpaeURE71np3C4qq0lKhkkl5LDzfKJ6g+g8Hw4S08HIlOstovCQzuzcBhnKN9zUguPEn0Hg9ZtWlXA1R4DndYfsgJN7B9Z6rJ+C0Qjxm0N2oNGl/DukWvASIcG2ru5z4bizM2aHsSSxIU3XDTrBM9HqndHx6GthXSzC12aEEEIIIYSQ+Eft89RR+zxqn0cIISSMZEFHSkkHZPcEkrQHjbKL/IdRgwAAIABJREFUbgIbOx0YP6N9GIACR5ni9AeVn4sTNyoatE87OC+Ke9KX7gHqq9Sn2a/8YBkAYL0KglIMZk5Blks5yam+Jd5jG9qp7Vfj8rUto3cmw8i+LLpD0YCgB6NlCe45H/PhuxpPKhqUvzd56YDJEOX7RoB4i/Zrzc4McCLPeVxxnNMFyHL8HI/W7tP2XpL0QO/MEBcmGjTWAoJ9h13wO7AzZ4H1G+Qd4NQzH/3tynWhsmP0kO5Y5ZI51uyNdClCQy8B2SnuQJVRfYGzBwLnjwCuPIPh5ikMf5rJ8MRFDC9cwbD0eoYVt0j4+m4Jmx+QsPdxCRWLJFhekmB/VUL18zoc/KsO2x/WYd2fdPjvHTq8+3sJr10t4W+XSvif8yQsmC7h2okSLh7NMH0Iw7h8hsE9GHpmMKQYGYWihZja1o2jU5qiykbfpp94inhrDcwLsDCEBMFLV0qIpkNmmqsR2S6FNoKVh9A/WzxfSZz/VhQMnHOs3Scen53iDhwlhIQW9ZgkhJAocMMNN2Dr1q14+eWX24atX78eQ4cOxQMPPICrrroKffv29ZqvuLgYS5cuxaJFi2Cz2TzGPfPMM5g+fbrqetPS0jBv3jwsWbIEAOByuXDeeefh7bffxowZMzymtdvtWLZsGe677z7U1tYiMzPTp4ZA06ZNw9KlS9teX3/99XjwwQcxfvx4ZGZmQuoQeZ6amoqcnJy29S5YsAD/8z//g0suuQQXX3wxpk6dirS0NMX1bN68GXfccQfKytp/yDzzzDMxaNAgzWUVWbBgAd5++23s2OG+mXj06FFMmjQJL7zwAubOnevxHiwWC5577jk88cQTkGXZp+2l0+nw4YcfYuLEiWhsdF/1f/311xgxYgQeeOABXH311cL3X1tbi9WrV+Ojjz7CypUrceaZZ2Lu3LkBvnNCCCEketm4qFNtcANOTFIyLC7vG6zBCA4hbmohc12FnxCiRtT5Xi0sKBxExylReQH1YDQDMwRcJuI7xhhMklkxhMk7lEv5OJfEjNAx76da+ku0b2ktj1lKCUvjBtF30MHtcHIH9Cf2aZnLXiFzHZdxMpyOKzwvrfN7FL/nCB8PdMmwOa1ew7XWM/wN3UsWBjQGIRgthIGnWrYL1dEI8V+DSoBSpl4cjBbnbbNImFnlVmxs/EZxXD/TAOSbA/+9P95ITEKGIQs1Du+OAXWO6GjBJKyLqQTdEkIIIYQQQkiwUPs8ap/XEbXPI4QQEjGyS3k4Y2A6HfiEOcC6lV0vR5KAiXPcsyanetynKbCXYLtppNcs8d7Ztd6HW8QXjgpdOfzBZRnYuhbYUwT+7YeBLWzSeUEpE0zJyHA1oErf3WtUg7hpU9yx2MTjukXuGXyhUaEeSOyrvg7lEOrS6sS8syw6RuWmhrccEVF+MKDZ8+2lqND39BpucwLHm4Ae3QJafNTQGhhzwQhAF+1Bi8FwTDncDADQK188LqcX+svliqO+OZQKm4PDGOdhhPGo3Lcc+7BI0rvrAummE/9O/m1mSDOdGOcxniG983AzYNSDwshiDK+uADavBlc7TonY0gHcrjiKx3kVydfr0ZF9gbH9gaJOm3lgdyBfJeSJkHAZlMcwZSBUA7P8NbovcLTBt0DBC5tXKYcvlu2FycDQs5ty8HdpDYd6bCOpbASsKl0fLhxF24+QcKBgNEIIiRIvvfQSMjMz8eSTT4KfuJJtamrC/fffjwceeABDhw5F3759kZmZiZqaGpSVleHXX3/1Wo7BYMDixYtxyy23aFrv448/jpUrV6K+vh4AcPz4ccycORMDBgzAiBEjYDQaUVlZiU2bNsFisQAAevTogWeeecanJ1NedtllePDBB9uesnn06FHcdtttitNee+21Ho20AKCxsRFLlizBkiVLwBjDgAEDUFhYiIyMDOj1etTU1GDnzp1eT/FMTk7GG2+8obmcagwGA959911MmTIFNTXuDoIVFRW47LLLkJeXh9NPPx3dunVDZWUlfvzxR7S2uu/6devWDc888wxuuukmzes67bTTsHz5clx66aVoaHBfcRw5cgS33nor7rjjDgwfPhz9+vVDeno6WlpaUF9fj3379ml+iikhhBASL0RBKUbJFNT1iAJTghEcQtzUAkwCDVAhia3VZVEcrhYWFA5mSRRIpFxeQD0kUE/BaBFjkpIVzwedj2uiAMhgh3KJ9m2t5THpwtNyU+07aHW1IlXv3qft3KYYenZyGWrhdF7vWXCuifTxwCQlowHeT1rWWs+wqoSLqu1fovfdIjhuasU5Fx57gcDP61q2C9XRCPFfrVP8BPpMQ464MV68t84iYfVT43fCa8QpGbPDXJrYkaHPVg5GUwk8DBcXd8LOlXsPRbouRgghhBBCCEkc1D6vHbXPo/Z5hBBCIkSWlYefCP9kNz0GvqcIOH5YdTHslqfAcnq1v779b+Av3QsAKHAohxsdrIrvezkNGm8R/3YkcOmY6Om0yp0O8L9cC3y7PCjLY3n9grIcmFLQTVboNQ2gPpGC0ezKw80GQIqzYCL+8n2BL6R3YVsIluhYFO8hjSKiYLSMOL9Nxh128BsnBrSMl47dhdMLNymOK6uJn2A0tSDGjp64SOp6ojjAv3xPeUSSEcjqIZyP6XTITxFXCn7znIxPF0jISI6vY3i8+2RH8OqxJkOnILMTf3c7EWjWMbTMPZ55hZmlm0ABewmK79wI/ueLgUbv9r5aMH1vYKByMJocx5drnHMs2eDbG8xMBp6fJ+HCl2TUnTispxiB1/+fRGGCJGoUdmdYuy/4X96XrpRwrBG48k0ZNnH3ofZy2A/i4aonlUc2N4BXlaMgp4diMFqiXp/54tNfxJ9xRjLw0Hl0TCIkHCgYjRBCosjjjz+OKVOm4NZbb8X+/fvbhnPOsWvXLuzatUt1/jFjxuD111/H2LFjNa+zd+/eWL58OS666CI0NTW1DS8uLkZxcbHX9AUFBfj0009RWVmpeR0AYDabsXLlSlx00UUoL1d++oJWnHPs37/fYxsp6d27N1asWIHhw4cHtL6OTjvtNHz99deYM2cOKioq2oZXVlbis88+85o+IyMDn3zyCVwuwRO+VJxzzjkoKirC/PnzUVRU1Dbc5XJh+/bt2L59e5fLyMzM9Hm9hBBCSCyxyVbF4UYpuKEuWkNmiP/UtqWDC1oYEaKBVRCgaNZFOhhNcFxxiVsPqoUJUTBa5JgE55zO+57oOGcK8r4oPmdpK0+wg9pE1L6DrbIFqUh3/60SsHVyGaJwus7DRAFikQ7jMAv3IW31DLUQMLX9SxTQaFUJaNTCwe1wQXwnNtBgNC3bRS0sjhCirs6h3NLBLKXA9P/Zu+8wN6qzbeD3kbRFu+tt7gXvrgGDDRgwpmNDDJjQQkgIJEA+SDAlkISQhIQ3gQQICeQl8AIJPdQQWgqE3rHpNiVgG2NsbK+Ne9tdb9FqJc35/pC36jyjGXVp7991+fJq5syZI2maZs7c4/FD8elwlGZaa8xtij3XDgDlniHYb8hhGW5R/qjxDTMObw5nvweT9LsMyNzxJxEREREREcD+eU6xfx775xERUZpoKRjNCwBQ43cD7p0HzH8ZetWSmGKqogqY+hWoifv0HzH9a8COYLQJXY3GWRT6za4tAfONql/fBzh2L4WN24ED6hWOnAR4cynQ6s2nUxeKdu5VKakHAOAvR9V2IRhtEF2Ob+s0L1flJRluSJrpptgH77g2bAwwaf/eYLSuVcZiq7YB4YiGz5tD62EGSIGChR6MhrlPAhGbNIed9wLKhgC1I4HmLcAnb8YUmRJcKE7euFXjwAmFsSxJ+7G+Vl7rQd3Qwni/drTWwD/+bB45cjyUxz4crq5WA+bbC/DuCuCOuRqXHVv4n2Mh+fGj7kJnHjpHodKvjAFoxT5+95Q4fdMlCYeiAYBHeEg0UNjPJH13hftpqv0Kh+6isOC3Hrz8mUYwBBw/RWFcDddhyh31Q+3H33GmwphqhWUbNbZ1AJ0h4IaX7Ff2IyYCB+8cXc4XXenBi4u1MdAMlgYevBaTuz7DrLZXUGM1i3Xqv/wSDeMfxDvLY+fdWODnilLh3Afl72zFHxi4S5QpDEYjIsoxRx11FBYvXozHH38c9957L+bOnYtwWD4RXFJSglmzZmH27Nk48cQTE0q8njlzJubPn4/LLrsMTz31VM8TMfsaPnw4zj77bFx++eWorKx03fEKAKZNm4bFixfjkUcewQsvvIBFixZh06ZNaG9vFzsmVVVVYe7cuXj22Wfx6quv4pNPPrH9PABgt912w1lnnYWLL74YZWWpv1Kwzz774LPPPsMVV1yB+++/v1+HtW4VFRU45ZRTcPXVV2OnnXbCnDlzEprXLrvsgvnz5+PZZ5/FzTffjDfffBPBoP2jQCZNmoSjjjoKp556Kg499NCE5ktERJQvpBtrSzylKZ2PHHoziHr5pJldqEtYO3jMBZEgIAT8ZDsISZq/1F7APkzIq3iaL1uchmdK27lUB0E43WdJ7cnUumE3n777d7sQje736veUoclUz4BwLDEoMWe3B86OM6TjEQWFEiUfE5V5zcFoHUkGo9ltxwAgZCUXjObkc3H62RFRrCYhQKm2aLjtdNqm4xaRG8sDn2GdcKPEwVVHothTYHeapFC1z9zbSgo8zCS78yfS8SsREREREVG6sH9ef+yfx/55RESUQZYQ5Nkn4ENVDQWO/ra7R9WMGBetw7JQH2o0FlnbDHSGNEqLCvOGTSl0aK9xCudOtw9QySb95lOpq2xMQ+rqKqtAdbM5GG3L1k4AhZ7mFNUuPM+10ILR8O4L8rjakcA2B79N6nbrtww2hFYai0UsYMN2YNwgyxduES6VVfsLc5vcTb/1tDxy6hHw3Pxiv0HWWfsBKxb1G6YATPJvwWeB2IdErdqailbmhnihk7XlGBShaACAjavlcaPr405eP6oUaJTH/+djjcuOdd0qypL2oLv+SN/aT+H0A3P32I/yl968Fvj8o6TqUDb96yLhCAo18uOFRe77FXaHx46tUTj7kEGy/6O8U1crj/v+YQrnzejeH0WXYa01bntdI2DTjb47FA0Adh6hcOEI8/KvP/8IesvvnDX0i09QP9U8auUW9vu10xmSP5/Jo8FQNKIMKsyjJCKiPOfz+XD66afj9NNPR3t7Oz788EN88cUX2Lx5M7q6ulBSUoKRI0di4sSJmDp1KkpKkr+ysvvuu+PJJ5/Eli1bMHfuXKxZswYdHR0YOXIkGhoaMH36dPh8vbuNI444wthBK57Kykqcf/75OP/88x2VV0phxowZmDFjBgAgEAjg008/xfLly7Fhwwa0t7dDKYXKykqMHz8eU6ZMQV1dneP2JNohqqqqCrfccguuv/56zJkzBytXrkRTUxOGDx+OcePGYfr06Sgv773BONHPC4h+BieccAJOOOEEdHZ2Yt68eVi1ahW2bt2K9vZ2lJeXo6amBrvssgsmTZqEoUPjRE0TEREVkKBlfqRTqm+q9XvMwSGBCEM3UsXuJmm7MCgiO1rrnA1C8nulMC05BEoKCfTAC4/ihfxskfY5A/cR0neb6iAyvxB2Fdue3A1G6xtqZbd/6N4/y+F0vZ95REcQ1MJxg7A+Zoq0PeqMyNuDvuSQO7/tDXpiIFuSxzcdEftgtGT36wMD74xlGIxGlLBtQoBSja+7k7HQ0YLBaJQibzQ/bxyuoDCjmr2T7dQUxd4MAADN4ezfERCwOa7Jdmg1ERERERENTuyf14v989g/j4iIMsiyzMOT7POhfEXQO+qeIIQRAUDjFmD30UnNKmdJgTLVaXw2h27ZGg3wiUSAMfXA6AZXIbp66wbg5UdS0xiPB5iSwsDW8bth9OoNxlGrNgZRyMFoWmus2AxENNAu5OVWFFAwmt6wCvrpe8Tx6nuXQ9/wo/gVTT4AanR9z1XjUWE5TG1be+EHo23arrFoHaA1UFYMbNhu/q1SVbirUtS6FeIote/hsQNH18UEowHAeGzEZ4i9FtqY/cugKdMUp6vTzN0y046csFZebjBp/7iT14wbib2XLMAnpVOM41dk/7li5MJKl99XHU/ZULrYbZscsgtG0+EQCjXyY1PsMy/iGlOd+nYQpdqMiQpKaZguS5ywV+y5AaUUDp8IvPCpXOcRuzk8p+Bmm7R5HeqF/aPb/exgYxfE7PaYQ3d2AEs/BiJhYJcpUEO4oSNyozCPkoiICkh5eXm/jkfpNmzYMHzzm9/MyLwS4ff7MW3aNEybNi3bTQEQfSLoMccck7H5lZaW4vDDDRcAiIiIBikpZKYkxcFopV5zfQzdSI2Q1SUGPnWPJ0pEUHeKIR3ZvvleDNNKICSwSBWlpE2UGGlZGhjeGbDMYVGpDvOU6uu0OqC17umEK4VfZSo00Ku8KFYl6NKxvUj77l+ldcIDD4pUMQA52KzvtEGb0EF/ir8Dt6T2Oz3OkMpJwa7dyoQQvWSPb+JNn2wwmt120k0ZIjJrCtsHo/H5ZpROLeEm/Lf1XeO4Pcr3w7DikRluUX6p9pl72zSFt/Y7DswGu+ODbP82IyIiIiIiYv+8/tg/j/3ziIgojbQQjObxJl/39y4H7rsGdaHVUNqCNoStXfh3C6/+zJPV88XpIgajpeEUtA6HoW/5KfDEnf1HNEwGbnoBqtb+eoYOdkJfey7w6uOpa9RJ50KNGJey6tR3LkH96zcbx63cloLlNUdtaNE46VYL7zfalysvzkhz0kpv3wb969OAj9+wL3jSucAHrwJzn7Qtpr55IbBqSc/r6kizWFZaXwtBV1jj3Ac1/vaes9DmdGyjcoXWGvjsA7nACd+LHTa63li0PtQIYI+Y4XfM1bjtjISal3Ps1ouKEuBnswbHg3O1ZUFffZY4Xn3jgviVjKnHFVv+gFPGPWocvbkVaA9qlJcU3vFQIXpnubsQ/Hrz8+SIkvfJW0lX4ZF+D0LO0C4Ebo/9fJ7CD9GlwlA3VGH2YQp3v9l/X3XYLsDX9jZPc9mxHsxdaiFg6Ep/+ETgyN2dzVu/+4Lzhgba0FC6HcCQmFFb24HWTo0hpTwuMrELjvvDyc6Pz/UTd0Df8nMgvOOLVwr69J9DnXc1lGdwHOcTJYvBaERERERERJSXtNYxoTPdUh0yIwWLSMFs5E688JJkA1Ro8OoUgp+AzIU/yfN3H0gkBQj6GIyWVU7DMzsj5n1GvPAqt6Rl24KFkO5CsSoxtq+bFNKVDqWeMnRFYoPR+oa2ie30lPV01pbes5OAtWhdqf0O3JLa7zTcSwq5i3c8JM23Qwjxcyre9Mnu150EtzG8lihxTaHNxuE1Rew5SOn3dvNLiMB8zHt49bEZbk3+6Q4wHCisQ2iLbMcQX1WGW9RL2jf7lA9FHv6eISIiIiIiIiIiokEiEjEPT8FNkOpr50Dfdw1KdBfGhdfiy6KdYsrMWQq88hlw9OSkZ5dzmoVufFX+NNzc+9TdsaFoALByMfT1F0Jd+y/byfXf/ugsFO3AWUBRCbBlHbDkw+iwvacDfYPtqoZCHXQMcPzZztvvgBo5Hg1qo3Hc6nY/whENn7fwbpye/UD8UDQAKC9Je1PSTt90SfxQtFN/HO2bc+XfgSfvhL75p2JRNXQUdFdvf95ihFBmtaPD0CenqYC7dPzpJeehaABQU8DBaHjxYXGUuuJ+qGGjY4ePrjc+Bnd821Kg9HhjXcs2auw6Mv+3R9J6MbYaePEnHkwek//v0ZHX/glsM+9/MHJ83PBRAMCoOny99Sncs+48nDPmLmORxq3AHmOSaCdlzAUPuQxGGzpI1hXKOP3XK80jyiuBXfdxVIfqkAOGdQEnozV3uFuPx9cCXg/XZcoPd5ypsH898OKnGp0h4NBdFH5ylIJHWIZnTFR48xce3Pu2xuJ1GhrAkFJg+q4KP54pT9eX1hp44W+u2lkfXg1T0DAANG4B9kpdznpBWbFF3n7tvZOz7ZT+dD70jRcPGKiBv18P7LIXcNRpyTSRaNBgMBoRERERERHlpbAOw4K5s1iJKk3pvKRgEaeBJWQvXniJFAZFFI9tEFIGw5+M85eCkGzC3KQwIa/iKb5schpqFRDCoqRgtURJy1Z3m4o9JT1/m2QyNNDvLcP2SFPM8H6BZsI64e+zDjvZT9vta/wpDlR1S/rOnIZ7SeX8XvvANzGg0WY75EQgEi8YLbn9upPjL7ttKRHZawqbH3HWG7hkvpivjd2TiZyL6AjeannJOG5Y0UhMKt83wy3KPzVFQ8VxzeGtWQ1Gk/bf2Q6oJSIiIiIiIiIiIsooLdzsrpIPRkPtKKC4BOgKor6r0RiMBgCPzNc4enJh3WQejmi0mp+viuo0dIHQr9iEmr3zHHRbC1SFzTn5Vx6NOw/12GdQYyYk0LrUqZ9QC7TFDo/Ag7XNQJ18WSIvbW3TeOFTZ2XzPRhNBzuBuU/ELafG7RL93+cDTrlIDkYbPnbH/+MArw+IRPuFVEdahGA0Dem6c757ZL676+bV2e2ylFb65UfkkXseZB4+qs44uL5pARCbowYA+M8nGj+fld/Lk2VpbBf2Y/edPYhC0QBou33k5P2dVTK6HgBwesujOHf07bBUbBDRyi0MRssHW1rd90WqL7DjE8oNeuOX8shpM+G55jFH9Xj/+zFwuzCPAu571+yyO28Dn99KeUQphdnTFWZPdz7N1DqFqXVJHN8t/a/rScZ9+Bi8nqsRMZyWWslgNNFKc3dqHLaL8zrsjm/1y49CMRiNyJEUnD0nIiIiIiIiyrygJTzmEUBJigNOpJAYp4ElZC9ewElId2WoJVRo7IOQshuM5heC2aTwLACICGFCPgajZZW0z+kcsJ8a+LqbFE6VKCkkLNqG+EFhdsFqqSYGBPZrp/lz6zutHCzWO61dUFYm37OJ03A9iRw0Yn88JAWnBaz26NOkEpTu/bqT4y+G1xIlJhDpENefmqJojyNVoB3UKfsWtM1Dc3ircdz06mPhScVNYQVuiLcaHpifLiuFHmaKfCxcwHd7EBEREREREREREQ0UMT8EFL7k+30oj6cnUGZqp3yT7OcbCu+G+zWxz2PrMbwiDTNc+I48zrKAVZ8bR+lQF3RHK7BupX39VcOAEeOTaGBqjB0p96XYZv+8tLy0aC1gOVw9yovz95qptizgy2VAVzB+4YkDHlx02sXGYupbP4z+7/MBo3qX3RrDwxIB9+EY+SJiaSzd6G6a6rL8XZbi2rJeHjfCHN6JMQ3Gwft2fChWtcp8iTmvbO8EpK5aNQXynKl4fdG01tDhELBysVhG7TbV2cxqRwLFpShCGOPCa41FVm4pvOOhQqG17lleFq1zN21lKTBheBoaRbTafHwPAGrnvRxXo2z6PlmRwtsuRSyNYEijyeWxX1KBUUQFTofDwBcLXE/ne/I27FRlPie1cmvhbX8SobVGeMC2eOVm82fTMEx4wLRlQXcF+/2zO761278QUX/sQU5ERERERER5KajlYLRST2lK5yUGrtiErJBzgYh9T6mwDmWoJVRopGAPDzwoVtl9dKe0XQnpLjEALSSsCz5VlLJ2kXtyKFfHgNfmbV288KpUtSfahj5BYcL6kcnQQCfBo1JYYN/PTQwW67N/kcK0fMqHIk9x3Lamk9NlSCKVixe6J31uFiwEtfAYUgfSvV+3C7nrxvBaosTYBSfV+uL1HGTnCErO3ObnjcOLVDEOqToyw63JTx7lQbWv1jiuKZTtYLTsh/ISERERERERERERZZ0UjOZN0QPxRtcDAM5pvl8ssjK7p4vTwi4Up25o6uaj13wB6weHxy930VegW5t7X7/wd1hn7g09cwj0McPk9JtuXz8vGjCVZTVjR4jj3IYb5IPlwg3PJmXZ7XaWEN20CdavvgX91eHQ35sWf4JJ04DJ+/cbpE74HlA8oG9uRRUw6/Te1zu2QwBQbTXDZK15cN5b1wyEhM28pLpAL5VprYGNq80jxzTI27gdAZ8DTez6QpxXSwFsj+y2qdV5/pwp/cVCWBfNhD6qGtb3D4Se/3L/8ZEIrNt/BT2jFPorFfbhocecLo/rQykFjIyG79V3NRrLFOLxUL6zLI0rn7JQf5kF7/kWPOdFMPMGy1Uds6crlBYxUInSYPkiedxxZzmuxmOT6JHMw4xzzcbtGt+4LYKaiy34L7KwbJPzaf1FwDmHcT0mGkivWgLrx7OgZ9VAX3e+WE59/wrziM4O1IdWGUcN9uOirrDGxY9aGHNpdJt10B8iePuL6DZZ+mwahvV/rVubYP32TOjjR0EfWdnvHz58XZ75muXQG79M0TshKmwMRiMiIiIiIqK81DfcZaCSFIfM+L1C4ApDN1LC7rsEgLAOF9TFHsocu5vvlcruRTO78Clp2yKFCTEYLbv8wj5n4PIXELZ18cKr3CqxCQftG+gphXtmMpxCCoXruw5I+4i+n1upsJ/uO61UTy6EcUifQ2fEfv/YTQoKixe6Z7fsxQs3s22PEGbXLdlgNCehZzxGI0qMFIymoFBdFA1bkg6heLROyVgf/BJLOxYax00bMh3l3iEZblH+qikaZhzeFM7uo9Ll32Z53pOfiIiIiIiIiIiIyI2IcK00xcFok7uW4PLNfzAW2bAdCHQV1pWdVdvM76e6DKj0p6Z/kO5og77wK8Ci9+IXjoShf3lydLo3n4L+/feBVUviTzdiJ6hzr5JvZM4w39g6DIlsN45r+mJFhluTfrMfdL5elOdZMJq2LOiffBV48ykg0GZfuHo4MOt0qBuejelfp+onQd30ArD3dKCyFtj/SKjb5kANHdVbaExDb1WRFuMsbnipsLZB3RIJFMj30CtRWzPQbt5+qF/9VZxMVVQBQ2qM486pM4ejNXXk//LUbBeMlv2ubQnTTZugfzgTWPA20NUJLPsY+hdfh/78o94yt10GPHxD3LrUr/4KNWyM85mPGg8AaBACQBq35P9yU2iufkbj6mc0vmxyP+3Ow4GbadqDAAAgAElEQVTLj1f44zcZpkTpoW/9pXlEiR9qRxCjE3b3LlhWYWyXLEvjqBstPPkx0Ba0L/vr4xVm7AqUFkX/HT4ReO1nHkwcyXWZqC/d2hw9H/HfuUCoSy5Ytzvw7UuAGnPIecP6d4zDB/tx0YUPa/z5NY2N24GIBcxvBI660cLSjRorhS6XfYPRtNbQl54EvPYPoM38G9iO/s5k6HA4scYTDSLZf4QEERERERERUQKCVqc4zi4UJhHSjbpdOoiIjsCrvCmd32ATL0BFw4KFCLw8jUEuJRoWlAl2wWidkQAqvJUxw8OWFIzGdSObpGCtzgH7qUyFQXiUB6UevzEIrG9YlBQcJYWBpoP42UX6BprF/9yk9anTwfvNie2B1xxQFrDaobWOG+Qo7Ufjhb7ZfdcBqwPmbobxdcQNRkvu4l28QNVoGQajESWiKbTZOLzSW90niJUdjyj13mh+Xhx3eM2xGWxJ/qvxmYPRmoXgw0wJCIGvuRBSS0RERERERERERJQpOiJcK01RMJoaXd/zMJvTtz+Ka4b/yliucSswaXRKZpkTVgk3qtbVpnAmbzwJNG1yXn7hO9DLF0H/525n5YeOhudf5tCfrBlVh2qrBa2GPkxNb70BnLBzFhqVHpu2u7sRvLw4TQ1JlwVvAys+jV9uyqHw3PqabRG118FQf3lFHj+6oWc7VBOR022+3KaxU21hXXtemUCgQD6HXtnasFoeN6rOftrR9UBr7LIzJrwewC4xw+1CxfKF3Xuoyn7XtsS9/GhsQF4kDP3MfVC7TYUOdQHPPeCsrkOPdzfvkdHlrE4KRsvuc8VoAMvSuPMN59vQE6cA//kh792gzNBrl8sjDzvRVV0ej0eeT4EEo731BfDpOmdlj9tT4XcnyZ8JEe3w+j+B7dvil9vvCCh/OXD6T6FvvSxmdH1gOWB4Pm0iAc+FYntA4+/vxW5/g2Hgple0eJw+YXif37LLFwKfzku8EaEu4P2XgYPZT5bIDo8YiIiIiIiIKC9JoRgKHhSp1PY88XvMgSXRdhTAVfUscxJwEtLCE1OJbEjrpxRClEl2AQBSyFEE5g6yvUEllA1SsFbf5U9rLQb1pWN5lMPaom2I6Ai6tPlRXJkMp5CCufquA3LAYZnx7776fgfi9sBmH58p0jJkwUJI2zzZaQdpPxpv2bJ771KQnBOdwnfWLZzkPj1eoCoQXW60LoyOIkSZ1CQEJ9UUmYOW+uI6R4nqtAKYt/1147j60okYXxrbuZ1k1b6hxuFNoez27JbDbgv1bg8iIiIiIiIiIiIig7AUjJaiYIfRDT1/1oVWQ2nLWKyxwG563dxmHj4u0aeBGeil/3U/0bKPgWWfOCtbt5v7+tNt3M5isFVzU2H1mfxsvbvydebLMblr2cfOyo2uT35eY3q3Q/VCIBEALFiT/KxyTSKBAgUbjGYX3DBsjP20I3cyDq4JmT/gQtgcSe9hSCng8+ZvgKD+x1/MI568K/r/+kagrSV+RTUjgCHuduqqbiIAoCHUaBw/mANActGG7cDG7fHLddt9dP6uF5SHli0QR6m63V1VZfeQZKtAgtH++6Xz91Gb/e7bRHlBL3X2e06N33Fe4aTzosdPA9gdFw3W/r+fb4yGoJk89Yn8mYzvG8Tv9LyPHYffMdFglprHihARERERERFlWNDqNA4v9ZTaXjRIhBRYAkRv7i33Gh6bQI4FIvEDTqIhKvn86DPKBinYx26dzhQpEAqQQ46kMCGfh8Fo2SSFOYR1CCErhCJPEUK6CxYiwvSpXx79njI0Izb8onudsAv19GcwnEIONAv0+Tv+eiy1udMKwNIWPMrjqJ5ssQ8oa0exp8R2+kS3dUWqGF74jKGLgYjQc9yBjjjBZSErftibHSeBqhYiCOkuFCv7z46I+msSOhLX+HqD0RSk31qDs2MEJW9+yxxx2354NZ+C55YUZNgsBB9minS8Yve7iIiIiIiIiIiIiKjgRKRgtBT1+xhT3/Nnie7CmPB6rC0aG1Ns5VYNiNd88k+L0AWitjyF73HJR64n0Xf/Fti20VFZNet01/WnmxpSg6qI+Qbfps0OgmzySHP8bgg9in3ACVPSu/7o91+Bfv4hYM0y5xP5ioFJ06C+81OoYaN762prgb7l587qSHEw2jdan8Q1w39lLPb0Ao3j0/w5ZlpjAs8pqsp+t6X0CAj9jvzlUPHCQCtrjYOru8wfsJv1N1c1d5j7W9TEuZSqtQaevgf6+ot6B06aFv2/shbYsBoYXQe0uF04FTBhT6iTZkN11+eCXt8I/djNwAY5HNE671Cgw2H/tFnfcX9fwMxvAbdehvquRuPolgDQ1K5Rk8pjhTz339Uat83RWLRWo7wEmL6rwqWzFMpK0v8ZuQ2qO+NAfm+UQetXyuOOPs1VVR6PPK5QQomWbHBeNu/CholSSFsW8J+7oN95HmjpsyP0FgGT9oP69iVQI8ZFh33u4HyErwg44hsAAOUvhz7gaODFv/crUi8Eo7UFga1twLBBeFuk3YMD1jXL44buuPVDd3ZAX3de0u3Qf70SOOUiqPJKd9N98Br0cw/GnDtQ5/wG6sBjkm4XUS5hMBoRERERERHlpaBw43RJWgJmbAJLIgGAmURJkW6Q7itshYAUPRyVBg8pCMlunc4Ur/KhSBUjpGMDggJCqFDIEoLRFDdC2WQXPhW0AijyFNlu59KxPMYLHMuVYDQ50Ky9z9/m/b3f2/u5Sd+BhkaXDqJU+RGISOFh2Q/jsA9gDaAqzvSJbuuUUvB7y9EWie2w7GTfLIkXeBrWQmf/FNXfU87qiBsqR0T9bROCk2qKhme4JTRYaK0xt/l547gKbyWmDjk0wy3Kf9U+c6/BpvBWaK1THiTvlBxSm/1jMSIiIiIiIiIiIqKMkYLRfCm6tWtAqFF9qNEcjJbdZ2mknBQoU5WiU9C6fTuw8B33E25aE7+M1wd8+xLg2O+6rz8DanadAKyLHd7iqYJe/D7U5P0z36g0aBKWoYEqSoB/XODBuJr0XW/Rr/0T+qrvApblfuKF70C/8R/grregakZABzuhf3ik48lVKoLRxk7o+XNKcJFY7K43NM6drrFfXeGE26zc4j7QxOspnPffT0Do2+OviD9thbmnVE3QHDTZ5KwbUU5rErppVccLRrvlZ8A/b+0/8LMP+r9etSSxRn32PvTLjwA3Pgu192GOJ9MbVkFfMCN+MOjAdkpmfgvq3Kscz7+bGjEOGkBDSA5nu+MNjf85tkDXQZfmrdA48kYLHX26M7+2ROOlTzXe+IUn7duqS//pbJ9XXgLcfobClHH83ihz9PpGcZwat4urupRNMppl5X8wmmVp3DnX2fsYXQWUFnFdpsFL3/BD4Kl7zCMXvQs95wngzjejx89LPrSvrLIW6rcPQg0d1TtsVF1MsfrQarGKW+do/PbEwbdOrtqWyG+46DGJjkSgLzk2sd/uBvqHRwJ3vAlVUuqs/Ov/hr7yDPP8tzelpE1EucQmX5aIiIiIiIgodwWtTuPwdASj2dXZKQQYkXN2AT3dwtocCEVkRw5Cyo1HLUqhUFK7pTAhn+KzD7LJLsyhe/tmt51Lx/Io1dndDmkZi06buXAKaV6BPmFocoiGv8/fNt9BxP47yIUwDrs22H1X3TqT2NbJ26HEj2/ihapFEIalE78IKIXlxZZLPNyNaLBqCgnBaL5hcafN/65ZlA3LAp9ifZe5w80hVUejyFOc4RblvxohGC2sQ2iLbM9wa3pJ++9c+W1GRERERERERERElBFSMJo3Rf0+htQA5ZU9Lxu6Go3FGhMI78llzcIl5JpUdQd45TFxlLroj8C0me7qUwrq1teg7nwL6vlN8FxwjW1IQjZVD680Dm/yVkPfdUWGW5M+ToOVmm/24Jg90nuzuH7g2uRurN6wCnjuwejfbz4FLF/ofNoUBKOpITXRbdEOZzb/XSx70yuFtS0qtNDJpATazMNL42+YVZ/lp6+qzk3mWYWAYCi/l6VE9mO6aVNsKFqqdXVCP3Kjq0n0f/4aPxTNqWP/HzxXPQRVkuA15Un7Y0x4HYoMDy8GgCuezO/lJpVueKl/KFq3d1cALy9O77zDEY33VsQv9+HlHmz7Pw/OPCg3j5mogK1vNA8/abbrquwO+bXO/23SG8ucl22I3x2RqGDpTWuAZ+6zL7R5LfDM/bbnI3DaxVAPfAT11BqoA47uN0qNjg1GGxXegBJtvg/zqqfzfxuUiMYEfsPVlEUfTo8PXgEWvScXPPrbULfP7fcPZ/9aLv/FAuCtpx23Qz+Y5LkDojzDXwFERERERESUl6Sbaks8ztLx3SjyFMGniozjAg7DOUgWL0AFAEIMRqMESKE4fk95hltiJoUhSe2OMBgtJ5V67cIzo/sIu3Arvzf1y6O4bEV2tMcuqM3m/aSaFMrVdx2Q2tp3Wr/XJlisOwxO2F/bTZspJZ5SKJg7zsYL97J0BEHhIqWTZUsMRksiVCzgIDRW2p7Fo7V2HHjmJFSOiHpprdEUNl/lry3q7Ykkba8YjUaJeKP5OeNwBQ+mVx+T4dYUhpoiuedgc3hrBlvSn/zbLPvHYkREREREREREREQZk+ZgNKUUMHbnntf1oVXGcoUW3tMsXBquTlH3B/3JW/LIvQ6BmvF1dxWOHA815VCoyftD+XOjD5Okdqi5fet9o6I3ahcIKZSor5m7Ax5PmkPRWpuBFYuSr2fB29H/P3nT3YRj6pOeNwBg+NiePxtCjWKxN5YWzjVmrTXWt7ibZv/6tDQlNwSEvkP+ivjTVlQZB9e2rxEncfvZ55qE9mPzXk5LW2LY7QNTUd6G+uoZyVVQUQUPNEaHNxhHe1Q0lIvsw4zeXJbez+gLc+ZhP3uOAfYdr1DkS+9+mMhoq3kbokbGhg7Fo2yOJS0r/7dHb7jYXkwYxvWZBrGF7zoKtNIL3ur5bWeijv4O1IQ9oLze2JEjx8cM8kBjTGi9sS6PAkLh/N8OubW51f003eHF+mP74161x4FQex7U/9+UQ2yn0QucHUvr9u3RIDWiQYTBaERERERERJSXgpY5BKTUk55AFyfhLZSYTgfBJWEGo1ECpGCfTAY/2SkVApmkdkvrgRTcSJlht9/p3kdI+woFhWJVkvo2Cct4d2CV1J4iVZzR5UlcByIdPU8/k9raN/xNCoLrO32nENZlN22meJQHJcJyFC+gTAqKBQC/g2MiKTzNSbiZJBCJP21IeBJnPF06CAvOnm7EYzQid9oiLeKxRo3PSTAakTvN4W34uHWecdxeFdMwtGhEhltUGIZ4q+CBobMTIIYfZoL0uz9d53CIiIiIiIiIiIiIclIkYh6eomA0AFAzTur5WwokGjTBaKnqDrBupTxu9/2AQ48HPC5uz+vzHeW68cPM1xzmlB8BbFjd07cj3zU56F5w8r6910n1p/OgH/wj9PN/g96+LXUNWbciNfW88xysM6cAT97lbrphY+OXcWLPA3v+PKn1abHYl01AV4HcfN8WBCJCd5YG4blGx+6Z+WvvOhyGfutpWHdeAeu2/4F++VHojgTSAOJJJhhtSI1x8PjWz8VJPt/opFG5S96PycuI/vzDNLVmgLYW6Aevg96xL9Sf/xfWNd+HdeYU6Pt+D71pDbTW0B/NgfXzE4GF76RmvtXDgb3sgyPiGlINANgjuNg4OmwBa5uTm0UhaA9qbLLZDKT7uNFJ/V/fl32VKIvahPTNqqGuq1LKZrteAMfVjS62FydP5XpNg5de8oGzgh+8Brz8qDx+173lcaPN4Y1TgguNwy0d/X022LQF3W97u4PR8MGrciGlgMNOiB2+93T7/cf8V2D95RfR4+wBgcN6wdvR4Q9eB33v71y3myjfMRiNiIiIiIiI8pIUBFKiStMyPyk4JV5gCcXn5DNkMBolQgrFkYIOM00OXDRv36T1wKtS10GW3POpIhSpYuO4wI7vUtrOlXj88KjUn6KNt2xJ7cn0uiHtWy1EENJdsLQlrg9921qsSuARTnV3v9eAUE+uhHEkGsBqtw8t9cR/srQ034CD0FKTiI4gqM3htX2FtfAk9DjcHHfxGI3IHbvApJoioad2Hxr53zmLMuut5hdhwXwD2IzqYzPcmsLhUV5U+2qN45pCWQxGk47phJBWIiIiIiIiIiIiooIUEa6TpjAYDd/4Qc+fdaFVxiJNHUBLR+Fc22kWnidmFyjjyvpG8/DDT4byeqFGjIP60fXRG1/j2W0q1JmXpqZdGTBhmPye/q/iXKBpUwZbkz7NcZ7/dtyewNmHRD8L/dD10BfMgL77N9B/mA193qHQ6xuTboMOdkLPPjjpenqskkOkJMprDsJzXc/51/T8vU9wAU7e/qRY9uTbnD0cL9dJwVYAcOvpHuw64JlQ03cFLjkqs4EguisIffmp0P9zCvDQ/wKP3Ah99VnQF82ETvG6rANt5hF+B9cGd4RZDVTZugbDhFy1Y2+20J5AqEGuaBb2ybYBn5YQtpoG+u7fQn9vf1i/OR169kHAi38HVn0Ofe/V0N/cGfqHR0JffAww76XUzNDrg/rl7VBF5j6ZjlVUAQBu2XCJWOTxD/J3uUmVxq324x99XyNipe9zWrnVvu5Dd8789pKoHykYTdhf2fF45GXZSuN6limNW5y9h7MOVjhxSpobQ5Sj9JfLgEdvSr6imadA2QW0j9jJeI7ipg0/EycptBB9J9qD7qepKQf0vBeBJXJQsbroj1Ajx8cOLy6B+sXtcuVrvgAeuzl6nP3DI2Hd/VsAgPXXK6O/2+69Gvru3wKP3+K+4UR5jndNEhERERERUV4K6swGnEj1diYYHEK94oW+AECIwWiUACkURwpjyjQ5cNHc204KRvOpopS1iRJT6vEjFOmKGd69fct0SJ+0bPW0R9h3ZXrdsHv/AasDxULgHACUenunVUqh1FOGDiu2U113CIf0nnMlKDHRAFa7ADO/g2MiKYxE2g7F43S6RANP3Rx3OTm+IKJe24TAJC98GOJ135GLyE5Eh/F2s7lT9PCi0di9zOZphhRXTdEwbAtvjhneHI7TozlN7IJTcyWkloiIiIiIiIiIiCgjMhCMpoZUA9c8Bn35aWjoahTLNW4F9s6Ny+VJCUc0WoVnd1Wn4BS0DrQD2zYax6mvn9v79yk/BA44GvjvG+bwBI8HmLAnsM90qJL8OTc+Ybg87tKRf8T3Vn6M2tqRmWtQmjQH5BCHOT/34JCdAZ9XQW9ZB333b/oXWLsC+qH/hbr0tuQa8YYcHobq4VDf/knMYL15LfCvJOebBqqyFnrETsCmLwEAD6w7B09Uft1Y9vlFwMdfauyzU36H3jTZdFGZOh744HIP5nwOLN2oMXW8wqG7AMW+DL/nN58C3n42dvgXC6D/dRvU7CtTN69Oof+Qk2C0CqF/QqgLE4Za2NJmDoB4eL7GudPzczmSlh/bYLRNa93PaPIBUDNOEkfru38DRITAtY5W4PV/mccteDv+vHfdB9jvCKhqYccS6oLu7ICq2w3Y7ytQI8bFrzOeHctSQ2gVyq02tHtik/V++S+NS49Jflb5zEkIyqufAbP2SM/8G23m/9JPPJi+K1BSlJ/rNuU/rTXQLgSjlVe6rs8uxEjr/A9GWyl0S6ofClxwuEJJEXBgg8KBDdF+30SDkb7/DympRx1/tv34omLo4WOBTWv6Dd8pvBaVkRZs91bFTLNyiwYwuNbNtgSC0arLAH3TT+UCp10MddrF4mg14yTggt9D3/Hr+DN78DrofWcAD1zruH3qgt8Du7D/LRUeBqMRERERERFRXgpa5mC0Ek9pWuYnB4cwdCNZTj7DRANUaHDL9SAkqR2dEfP2LazNHWSLGIyWdaUeP1ojsRe/u0O5Mh3SJy5bO9ohtseb2XXDLgij0+pARAmdwg3Tlnr8xmC0QKR9R31SoGpubA8SDWC1C/8q9cTvTOgXyiQajOY0uCzR/bqb4y4eoxG50xQ29zSsLhoKj+rtlMVOSZQKH7e+h5ZIk3HcjOpj+y1z5F61b6hxeFOWgtGk8zdA7hyLEREREREREREREWVEWLhO6vWmdj477QoAGBdeC58OIWzoV7JyC7D3TqmdbTa0yKeg7QNlnFrfKI8b09DvpRq/GzB+txTMNHc0DLMf/9gHGj/YLzNtSacmoYvEFScozJjY5/rouy8AlhVb8PV/A0kGo+l3n5dHNkyGOuPnscM3r4VOVTDarvukpp5udRN7gtHKdAAjwxux0WcO0XtmQQEEo9l0s6kui4agnbg3kM2gAf3Oc/LIt58FZl+Zupl1SMFoscFUMYbID26bUBnAfJj7Oj27QOPc6U4al3uahS5ONXb7sfWNruejDjrGvC3ZQT9xJ7Bxtet6Hc379rlQJfb9+1O9dqiKanTHDO0eXIoP/VON5Vo7NYaU5vc2KBnREBR7Ty/QmLVHej6jNeauIzjzQIWjJg/e74VyRKDNfOwHyEGeNjweeZnWVn4Ho2mtsVZYn286zYOv7cP1mUhrDbxjCCpOxOj6+GVG1cUEowHAxK5l+MA/LWa4k7DUQtOeQDBardUMrPlCHK8OcpC6u9chjuenb/ix47LY7yu2x/tE+YzBaERERERERJSXgpb5UY8lNiEryRADSxi6kTQnnyGD0SgRmQ6jcssvhFBJgUTSeuBjMFrWSctU9/Yt0yF9UnsCO0IppO2uP037UIkUygVEg8wiSngCpWFa+TvoDqczr1fSephpiQawSuN9yociT/xtQ5kUjOYw4GygDoeBaonu190cdzkNaSOiqKaQuVdDrS/O3Q47FMJTKylz5jabb+woUsU4uGpmhltTeGqE9VZaz9PN7ngmV36bEREREREREREREWVERHg4mC/F/T5G1QEAvLAwPvQlVhRPiCkSDcHI/5vTpTAZIEXBaOtWmId7PMCIAkiWi6O8RKGsGOjoMo//9/Ja/CCzTUqLZiFgb2AokX7mPnPB1iboYACqxH2/G93RBix8B3j5UbGMmnakecSwMcD4icDqpa7nGzOPMy9Nuo5+9jgIeP/VnpdHtr+Gh6u+YyxaCDfgS8tQWXE0FC0nrG+Ux61bCa116h6UFoh9uCUAwB//IY8YPlYcNXPoOjyKXY3jPljlpGG5SVp+pP2Y1hpYvtD9jPaLcy1+2kzg2fvd1xvP3ofFDUVLi4qqnj937VomBqM1bgH2GpepRuWeRgfPV2t0EJ6WqOYOc90jKp3XoVubgMXvA0GbxFyiRGzfJo/rs41xym4/m+e5aGgLAmEhQ26U+4+KqKDoriCw5EPgy6VAW0vyFY6qA8buHL/cznsCC96OGdwQajQGo63KzjNXs6pdONdh5/Cy5fJIXxEw+YD4ley2bzRgs605flmbELaBxHMHRAWAwWhERERERESUl7qDTgYq8aTn4qkU3iK1g5yxdMTRZ8hgNHIroiPo0uZHeORKEFK8MK2BpPXAq3iKL9vk8MzuUC4hpC9Ny2K8ME85NNBB57MUKvGUQkFBI/aKfiDSjohH6BSO2PcordedVgciOoyQNl+5ypUwjkQDWKXxTr9LaRmUguTiiRfk1i2U4H7daf1uyxIRsC282Ti8pmhgwJK5g5ZpW05ksi64Cl8EPjWOO6DycJR5HTwlnGxVFw01Dm8OZ6f3kt3xTKaDeYmIiIiIiIiIiIiySgpG86a234cqq4CuHg40b0Z9qNEcjFYgN7xKYTIAUJ2CU9D69X+bR4zcCSrVgXY5yueRx73aXJe5hqRRk3ApIyaUyC40an0jUD/J1Xz1G/+B/vWp8QuecLZxsFIKOPdq6CvPlLcvA1UNBWpGAI2f9Q7b8yDgsBOdTe+Q+uaF0Pf/vuf1pVtvFIPRVm3N/2vNTUKwT0oCGlNlfaM8rqMV2LQGGJmiwEcxGC3+tWBVXgldWWsMozmt/EOcJwSjrWsGrn3ewmVfVakLeMuQJqGbVrU/9n3ojjbonx7nfiaHnQDsdbBtEXXaT6DffhZoNvcfSUiJH+rsX6euPjeGVPf8efXmq/Bo1WnGYnOWauw1Lr+WmVRyEnqWzgBLt8GAA+kn7oC+6RLAEhKZiNIlgWA0eDxQ2oJWsQfYOs+T0dIeWE2Up/Ti96Ev+wbQtCk1FXo8UOdeBeWx+aG+g/p/l0E/cWfM8PquRmP5h+drPDQ72Qbml3bz7Waiw0a14Li7Z4nj1ewrocqGxK1HlfiBc66Avvln7hpgZ6ddgePPTl19RDkm/laPiIiIiIiIKAcFrU7jcClYJFlSvYkGh1CU9D0OFLIYjEbu2N18nytBSH7XwWjmDmw+NTg6WuayeCF30ncqLQNJt0cKCYsEoLW2aU9mgyk8yoMSm1A5KdjKAy+KVHG/YdJ3ELA6bAM40/UduCVvD+zDQ6XPyOl3Kc030VCxQMTZcVE4wf16vKC4RMsSEdAUMvdirPENDEYjSs7c5ufFcTOqj81gSwpXjU8ORtM68x0pOyPy8Uyu/DYjIiIiIiIiIiIiyogMBaMBAEbXAwAaulYZRzsJwcgHdjfgVybZBUJbFvDSw+aRoxuSqzyPxMsXam0SApDyiBRKVFM24M1bEbmS9Y2u5qmbtzgKRVNX3A9VO1Ief8TJUH951fF81a/+CvXnV6AuvBY45gyoH10PddOLUMUljutwNJ/qYcC4nXte7xX8FBdtu91YtjGNgTuZIm2LanLkUpjuCgJb1tmXueFHqZthp/kDUX6HD+3csQ8bqHzzF3j2R/Lt0L9+QuPNZc5mkSuCIY2A0I2qxvBx6QevBT6dJ9anHl0M9et7gGPOAA45Djj621CX3gr1u8fiBsaphklQd74JpDDITN0+F2razJTV50qf0KIJoUaUCP3VL360MI6JEuUk9KxxK9LW10DafjoJuNXLF0HfeDFD0Sg7yhMIRlPRR0mbWFnoz5NKUtAwkJrAaqJ8pCMR6MtPcxSKpv6+MH6F3/gB1M0vQc0yB07H1DlsDFAV28EBIjoAACAASURBVP+3PrRanOb9xvzeFrnVJgSjDS0HTpjS++/UaQo3fTOC5z6cijIt94VUZ/zc8bzVKT+E+tPTwEmzo8ftLoPWY+q7fS5UzfCk6iDKZWk4e065Sik1BMBhAMYBGAagFcA6AIu01ktTOJ8iAIcCGA9gNIC2HfP5r9a6MVXzISIiIiKiwU0K1JICVpIlh97YB5aQPafBK2HNYDRyxy4QJ1eCkOyCnEyk9YDBaNkn7iN2hEBI32n6wjzN7YkgjJDuQiAitcdh57MUKvX4jetrwGpHRAgD9HvLYjpq2QUNSu+3e/65wO32oFun+F062875he/cacBZzHQOA2MT3a9L79fcFgajEbnRFBaC0Yr6XygfvM/IpVQIRDowv2WOcdyE0t2xU+mEzDaoQEmBhiHdhfZIKyp8lRltj3R84FM+FHmKjeOIiIiIiIiIiIiIClKmg9E+ex/1oUbjaCchGPlACtOoLAW8niSvbC2eL49jMFqP5/6zEKedfXBmGpMGtqFEA7tebN0gV7RBvrnc6M2nnJXbbd+4RdSeB0HPPAV47Z/x6xvdEA0t+85P03/td+JUYM3ynpcz2+fg1tofxBRbvQ2IWDr5dTaLtgrdZXImCGSjg+Vz8fupm19ACEx0E4z2+Uexw9c3Yo8x9pM++r7GjIn5syxts+lqZVx+Xv2HPEFxSXQdH7sz1FfPTKg9akwD1Dm/gfXFAuCtpxOqo6eu2VdC7bp3UnUkpaK638uDAvMwt/xwY9GN2zVGVubPcpNKTo4JO7qATa3AyDR0NZCO5aqcBKO9ZrM+EKVTcQlUSan76ZQHHliw4I0Zpa38DiOyC6yuzo3bNogyb+E7wOa18cuN2wUY0wB4PGLYp7rg965Ct3pMmga890K/QdJ5IiB6LL1//eA4JgqFNUJC9vm/fuCJ+U2h334Jevt6ucIEjr/VgbOgDpwVrf/Fh6Gv+Z7rOgAAXzsHqsr8MF2iQsFgtEFAKXUogCsAHAnhO1dKfQLgDgB36gTju5VSwwFcBeA0ALVCmXcA3Ki1/lci8yAiIiIiIuoWFALJSj0JXGRwQAxccRHQQbHSHaBCg5d9EFJuXGGTtyvm7VtYCInyKZ7iy7ZSr7kXRnfglxSiKYVSJctvE/bVaQXE4EC/8D7Sye8pQzO2xgzvtAKwlPninmkdlgNMO+IEJWY+DM4k0eMMKfzL73X2vqRyQd2JiI7Aq2I7YNi2x2GgWqL7dTdhZwyvJXIuoiNoCTcZx8UGLJk7PWjhaZZEfc3b/jqC2hxyfnjNsRluTeGqLjIHowHREMRMB6NJ++Rc+V1GREREREREREREg48OdsaGthSXAFBAVyfgrwA624HSMqiSFF5Hz3QwGoD60Crj6MatgNY65qFk+aY5YL5GVRPnkrlubQbKK6E8HrnQ6qXiKDVpPyfNKwjxlpBla4IZaUe6NNt0Legb4qC7gsCmNXLhoLs+Cvpft8UvVFkLjHH2YCH11TOh4wWjDakBxmbuQUVq0rR+oTXSDfhhC1jXDOxkvBMxP6yO7foEID0hQibasoDt26Iv/OU9+66e4Us+jF9JWzN0JALldddXqF87WpuASARo324u4K9wVtGOfViM9Y0YWwOMrgLWt5iLLNuYX30XVm+Txw1cfnSwE9hg3q8DACZOtd+vuaAm7Q+dZDAaZpyUkrYkrKKq38s9g4vFYLRlGzO3vuaSpnaNFoe7r5Vb0hSMJsy/uqz3CESHQ0CbYaVf8WnqG0TkxK77JDadUlBCHzurQIPRyoqBYl9+/+YkSpjNOYV+Jk2D8hVBT9xXPm7fPcFzEKPrYgbt2/mJWDzfjqWd6gprBMPAkNLe7VF7l1y+osQwMM73qRL9jrolcZ5J7TZ4zlHR4JWaX7qUk5RSRUqpOwC8BeAY2Afh7Q3gdgBzlFI7JTCvYwEsAvADCKFoOxwC4J9KqYeUUrlx1yEREREREeWloGW+mbrEJgwmGaVe8w27bgI6KJYUADUQg9HILbsgpFy5AV/errTDlFsvrQc+VZTSdpF7pcK+p3sfIYVbSdMl3x55Ge+0OsR9V2kWQsKktgYi7WJ4pin4TfwOIvbBaOk6bnAr0eMM6b05XbbKbL5zu89N0uEw8DSU4H7dTZuchrQREdAS3gYNcxhlrU3AEpEbWmu80fy8cdwQbxX2qTgkwy0qXJXeKngMT5cFosFomZbs8QoRERERERERERFRyr34d+gTx/b/d8ww6GOGRv8+qgr6hDHQR1XDumgm9NrlqZlvJGIenoZgNLXj5lcpiKg9CGxuTflsM066Ab9aOAWtX3gI1rcmQh83Evpr42D95RfQwvei7cJnjjzVZUvzV7zsvGdWD81MQ9KkyaZrQc2Orhy6Kwh96dfsK5KCDw30oveA5QvjFzz5fKiiYmeV7n80ULd7/PqKTXd4p8kxp/d7WRdaLRa95638vgG/cau5/fXD0hsEoi0L1p1XQH9tXL/9mfWDw2H98mTo40dHh119VvzKImHg1ccTa8fT98I6ZVfo40ZBnzgWWLfSXNBhMJqSgtEWvgPPk3fgRzPlz/XVJcDf3jX3f8hFC9eal52yYmD4kAED1wuf6w7q1B+lqFUAjj0zGqaYqP2PgmqYnLr2JKKiut/LH26TAymldbjQrXDRfWDlltR/Rp0hjU6hG2F1GaA7WmH99kzoY0fEHrufOBZINryPKEHq5AsSnFDBo837qHzfCjV1CIHVuXHLBlHG6VVLoK+/MH5BX1HPNkV9SziW22UKsK853DUe03H1iMhmsfzKzHctTKvmDo1v3RFBzcUWqn5sYe+rInhneXR71WaT8V4+4Gez1hr6tv+RJ6gZARz97aTaqsbvBhz0VfcTDh0NzDwlqXkT5YM0PFaEcoFSygfgaUQD0foKAZgHYA2AckQD0cb3GT8DwMtKqUO11sLzCmLmdQSAJwH0PduqAXwEYAWAagD7Auh798wZACqVUl/XWjiSJyIiIiIiEljaQlBnNhjNFMICJBYaQr2k0JuBQtrmcQxEBlKYkE8VociTG0FifiEQyoKFkO5Csep/Rj2izR3ofIqn+LJNCvfqtKLhj9Ly6PemJ4hMWraibZKDwuymSxdpnp1WAJYQ0mMKcPMLwWKdViCvtwfxjjPEZcthyJ3ddx6ItKPcO7CHnT2nx0WJBp66CaTtXv+IKL5tIbmjQ42vfzCaEp8Jn+/dsyjdlnYsxIauNcZxh1QdnTP75ELgUV5U+2qxLRy7bjeHHF3+TamAsE/OlcBqIiIiIiIiIiIiIlsL3ob+0dHAY0ucBxRJhOAklYZgNOy4+bWhSw73+unjGg/NTm9oT7o1C5eFqw2noPW8F6F/f07vgJatwGM3Q/uKoC74fewE64XPbvf9oCqq3Dc2T8VbQuZjMrZva0Vlrbv+BblCWoaA3uVI/99PgI/m2FfkMBhNb1oD/ZP4Nzuri64DTvuJozoBQPl8wF9ehf7TRcDcJ/uPHDEO6psXAt/5qeP6UkHVjIAe09ATklVttaA60oRmb2zY0tXPaJy2v8ak0fm5TZICBBrS/RyyB64FHvrf/sMiYWDRewlVp393NrDnQVBjGpxP88Z/oP/3B84Klzq8Pmgzf/1/P8EvflOLV3Y/Ba8tMZc56z6N4UM0vrpn7i9P5/1NCNUbCqgByZT6uvPFetSv74X6yjdT1i41fCxw2+vQd14BLH4f6NrRZ7+tObZwRXX/4V87B+pHf0pZWxI2pH8w2q4hOei20EJAnDr7Pue3dafjM2qx2wf7AX3ld4F3zQ/gs1VaBviSPG4nGkgpYMIeUCedC5Vo+I3yQAl97KxIfve9c/O7jKjQ6UA79EVH2heqGgpM3AfqjEuh9joYAKBmfQdQCvqJO4HGz4CKSmDqTKiLroXyeBJrzGjzcfX9G8/H2SPvjBm+cks0BGzgcWi+OvVOC6981vt64VrgyBssfP47D55eIG93Bwaj4R9/tp2PumMuVGVtEi3dUc81j0aPv997AWga0Pcz0NZ73sFXBFQPB/Y6GOrCawfVOSoavHjXZOH6I2JD0W4BcKXWuqnvQKXULAC3A5iwY9BuAP6tlDpCa217NK2UGgfg3+gfivY2gHO11p/1KVcC4HwAfwLQfWfDiQCuAfArF++LiIiIiIgIXVqO5i9RpWmZpymEBWDoRrKcfn5hIRCKSJJLwU8Su+CigNWOYk//M+pSkJBPMUQi20qF8Mzgjm2ctDxK0yWrxCPvCwM2QWHZCKcoFQPNOmDB/FRm0+cmh9PlVhCcxK79dpJdtuzC+dyEkHXriDgLPE00GM1NIK3T8FUiAprC5t6LJao05nhFCkbL765ZlAlzm58zDlfwYHr1wEualKxq31BjMJq0vqeTfLySO8diRERERERERERERLY2r43elDj9a8nVIwUnpTEYbWRkI/xWBwKGc7KPf6Dx0OzUzzqTmoTLwtWGS+b66XvNhV98GPr8a2Jv/F3faC6/z3SnzSsIteXA1jiX3//9+Cc4+4LDMtOgFJOWIa8HqCiJ3tSOlx+JX5HDYDS8/CgQjNNn8vCTob59ibP6+lDVw6Cuecz1dGk1bSbw1D09L+tDq/GxIRgNAB54V+O6b+TfDfhdYY21hqwoAGgYlr73o7WGfvqe+AXdevFh4Hu/dt4OadtqUlbhrNyOfZjo6Xvwp0tPxdTfyaFO97xl4at7ep23LQs2tMg9LQaG6mmtgU/nmQsPHQ311TNS2LIoVT8J6tp/przejCkuBYqKgVDvg7m/1vo0nhpyYkzRwRiMprXGp+ucl0/HZ9Rs0xWwqmN9YqFoANQfn4CaekRijSJKJ6XgER4YbZ/kkPvc/C4jKnhvPgW02Ow4v/tLeM672jhKHf3txMMXTYTj6p0DnxuHd3QBm1uBEZWpa0K2rNyi+4WidQuGgYfmafzjA5tgtAH5qvqZ+8Sy6oLfQ42ZII53Q5X4oX78J+DHORAyTJRjEoyHpFymlJoEYOBjIX6mtb54YCgaAGitXwJwKIAVfQbPAHCag9ldBaDvGcl3ABzVNxRtxzyCWutbAJw6YPqfKqXqHMyHiIiIiIioh12Yll0YTDL8QsBISHclHO5BzkNX+BmTW4FI7t98bxdcZGp/iMFoOUsK2OrexknbOrtwvGR4lFcMCg1E2tEZMe9H/UJIWTrZfXbSemyaxrYe4bghl7YHUvs7rQAsLXfikz8jZ8uW3WfQkUCwWLr369L7NWF4LZFzTSFzJ4zaouEF8+Q3yq6m0BYsaJtvHDelYn/UFg3PcIsKX02R+fHzTeGtGW5J5kOCiYiIiIiIiIiIiNJi+aLk65CCk3xpCEYbOR5Q0UfeVFnbzc3R0UCffLamydz+2grDNa65T5or2bIOCBiuj29YZSyuRg2uW6B+c2L864ULVufvQ0+/FJahYRWIXitduzx+kBkAHXbWD0IvXxi3TDoCjrJF1U/q93pycLFYduGa/Nwerdoqh5kMDLdKqe3bosGdKeZkGe1nhYv9Y7zAs26j6oBSm35dyxdil+FAsc3uc8Ea583KlkU2X9/uowdse1tsrvNWp3NBy19KKWBASEV9V6OxbOOW/Nz+JCPQFb9MX6u2pv4zsgtGq974aWKVKgXU7Z7YtETpphSU8PhRK8+T0ZqFw+Wa9HSTJ8pp+osFtuNVw+QMtQTAaPP5i4Yu8/kOAGjMfPfCtLD7PbBwDdBp8xO+sk+3Rh3qAhoNCWvdMvl9Eg1iDEYrTL9E/+/2Fa31jXYTaK03APj+gMF/UEqJ0fhKqV0BnNVnUBeAs7XWnTbzeRLAA30GlQD4rV3biIiIiIiIBgraBF2k68baUpuAESlghuILRJyFrjAYjdySAnGk8KFs8HtttiuG8ABpPfCpNHSQJVekcKnuUCtpv5XOMIhSIeSsLdKCCMwdUrMRFCZ9Bp1Wh02IRmw75e+gA51iUGLuhHFIbdHQ6NJBcbpkg0a8cUL03Ao4DFOTgh7jcRN2FowTKkdEvZrC5mC0Gp/zzrNa6LRFBABvtbwIS3ji6eHVx2W4NYNDtW+ocXhzFoLRkg1yJSIiIiIiIiIiIsoFroNiTKTgJG/q+32o4hJg+FgAwMnb/2Mso3U00CefPDzPwnE3RzDlygi+d5+FF4TMjPoBp8l1JGJfcaCtf/lwCNgs3EXrNNinQBy/l0JFiX2Zm7ZMz0xj0mCl+VJpb6DV2hXOKpKCDwf65C378dXDgQNmOasrH8z8Vr+XZ7Y8LBaV1udcZxccMHBblCpaa+jbf5Weyt9/xXk7Ql3Ow9l23w9q7M6OiqriEuDI0+QC27ehPNKKU6bKwY3LNgHtwdzux/DsQrl9Zx084L2tbxTLqlnfSU2DCpA6qv9y1BBqNJabsxSIWLm9vKTaApe5itL+MhlSkJJHAeVvPJ5YpQccDTV0VOKNIkon5YFH6NOq83wb1CIEHVb744cs69ZmWLf8HNbsg2GduTesq8+CXvReiltIlBy9djms686HddZ+sM7YK/rvzL1hXfld6E/nRctoDf3UX4FHbCJdKqqAQ0/IUKsBDKkByitjBo+MbITfa/4Nu2Jzfm+Pui3bJL+Pxz7Q+HyjedzQcsDr6bPt2vSlnIQNAPsflWALicgNBqMVGKWUAnD8gMF/cjKt1nougPf7DGoAcITNJKcD6Buc9m+t9TIHs/rjgNenKiXcfUdERERERGRgF4xW4knPzwu/Vw4YcRoCQrGcBpyELAajkTvSeimFRWVDsSpB9Nm8sQKGsKOINl988KmilLaL3JNCqIJWAEErIIbFpDOITKpbCr8BshMcKAViBCIdxvUAAPyG9VgOWAugQ9oe5ElQol1AmRSMZlef07KJHN+kO/DUTZs0NIKW+AwPIupDDEYrig1Gi16GMsjzp1ZS+oR1CG83v2wcN7J4LHYrm5LhFg0ONUIwWlMoDb2V4xCDXG3OsxARERERERERERHlnDn/hg4mef1RCk5KQzAagJ4Ar+s2/VoscuXT+XON55ZXLZx5j8YLnwKL1gEPvKvRJXykDQMvc738qH3lnQOuRW/6ErCEB3ENsmC06jKFV37qwYQ4z1S67vn8fHCZHIwWvS6qL7cJZ+pLCj7sQ2/dAGwSAvcAoLQM6uYXo6FQBUINHQVU1va8ntX+Kg5vn2ssqzWwbGP+bJO6rdxibvPISsBfHD8MJBH6ziuAZ+9PS93oaIVe3+is7MbVzvoK7HUI1LX/ctUMdfENwOQD5ALrG3H7mQp1NuFzU39nQedoX4bF6zRuflVu255j+y87+i+/kCv79iWpalbh+e4v+72sD60Si85+IDeXlXTYuF3jkOvc7bdXb0t9eFxzh7m+6pIw1AsPuqtMKWD/I6GuuD/5hhGli1JQQn/yPM9FQ5O0PsfpyqxDXdAXfQX4x5+Bzz8CVi0BXn4U+idfhV74bhpaSuSe3vgl9AWHR4+/VywCVi+N/lu1BHj1cegfz4Je9B70PVdDX3+RbV3qphegyioy03Ds6O9rOIehANR3mCNhTv9rnm+QdvjFPxN7H09c2D9+Sd9/rVhW3fU2VFFxQvMhIncYjFZ4JgPoe7q5C8AcF9O/MOD1KTZlTx7w+j4nM9BafwZgXp9B5QAK6HEWRERERESUbp02IRclQjBKsuzCU5yGe1EspwEniQao0OAlrZfZCH6SeJTHJsypf3iApSOwYO6IwGC07JO+Rw2N5vA2cTpTwFeq+IU22YVhSO8jnezWAWk9Nk1jFwTWInwH6fz83bL77O2OM6TwODffpbRdlOq2k+79uttjLobXEjmzLbTZOLzGF+fuBiIHPm59D9sjzcZxM6qPlcP2KCmmYEMAaA5vzXjn/3z4bUZERERERERERESDzBEnQz3wEdSPrnc33YK3kptvloLRynUHRoU3GIs8Ml/nbGhMXxFL439fdN7O7lCrbvreq+0nCAy4Pr5eDk7ByPGO21EoDmhQ+OIPXly7x8dimRtf1ugK5/6yNJAUatUwDNCtTc4rktbvvp59QBylLrsLnpeboCbs4Xye+eK4/9fv5bWbrhCL/tHFep4rGreah8cENKaI7mgF/nVr0vWoG56R5/GPvzirZIO8rVR/fTe6r316LTy3vQ41bLS79vnLoW6bIxdYtxJDShU+uly+PXrZJuC9Fa5mmzG3zZGX9W9O7f9aRyLAgrfNhcdPhPLwFnGJ8nqBY87oeW0XjPbAuxrrm/NvG5SIB991/z5DEWCti92iE81C98TqkNznFoedEN22DPz37Hp4bnwOqsomLZEo2zweMRgtH36T2RHX53hdmd9+Fli5OHZ4MAD9xB1Jt4soFfQz9wHN5j62AICuTui//TEa8GdDXXYX1G5TbcukhRDubndctK09v7dJX2xKvP27jxow4IW/mQtWD4eaNC3h+RCRO2k6e05ZNG7A62Va66CL6RcOeH28qZBSahSAvfsMCgMQzrAYzQFwYJ/XxwJ4ysX0RINGR0cHPvroIyxbtgxbtmxBZ2cn/H4/Ro4ciYkTJ2LfffdFcXFqEmVXr16Nu+66C3PnzsXSpUvR1NSEUKj3RtX77rsPZ599tnHa+fPn47777sM777yDL7/8Ei0tLbD6PCVp5cqVqK+vBwAcccQRmDu39ykv+f7DnYiIiDIvKNxUW6SK4VXetMzTLhgtkeAQinL62TEYjdySwnDs1uVs8HvKjevBwGFhLXeeYzBa9tktV81hofdbnOmSJdXdZNMevyfOo7nSQAo067QCiAhhgKb3ZhcE1hQ2h8Hl0vbAPoBV3ldK49wEjUjfe2ckgWA0h9Mkul8PRNwFnTG8lsgZaTtpDlYyh1hpodMW0dzm54zDS1QpDqr8SoZbM3hUC8GGId2F9kgrKnyVGWuLdLySjVBeIiIiIiIiE/bPIyIiGnxUZS1QWQtdWQv8+VLnEy75CNj/qMRnnKVgNAAYE1qPDb6Bd3dGbWsHhlakpwmpsmorsM78HBajCQNPk7e12E/QOeBatBT2Uz0cqizHP6w0mv7/2Tvv8DiK849/5+5kFVvWqdiW5CbZFOMCprjSTDPYtFBCaIGYEpKQEAjwA0IzpgdIgACBQOi9mF4N2BhjwJhusI2LzlWSbVmy6p3ubuf3hyzpyrxzu6eruvfzPDz4ZmZn506zu7O773xmlAP4SZ23rblDQjSmPLFt6ilrifntlSUAVn5rviJf5DgIuXwJnTluivl9pRmirCLobfJIL22qWlGdfvcuLmKNyoriOC0Qtep7wN3DmOWBQ4ARY+n81T+Yq4eSSBYOjIn0QdjtkOWVwOYqxb5dHbvqK1DcF6gjQooWr5GYMjL1FutavIbu6yMGhLS3ViPrHDA4Ri3qxfQr6PpnZbsLNumHQcw1WOICjh+foHYlEZ2YT0dNIzAsht6xBiK0z+nRyGd2Hd87JaJMhiBgI+KiDSP9xkCB1FNitAihzPLHxXTmz5qxM8MkEl0/7WSxOkYyiCEje96WaBis3u+u7avxLrHJN+uAw0fHr0nxRjfW1mETwc/HtLL0YvUzNoZh4gOL0XofRSGfLTz6V5YfKoQokFKGvgUIffr1g5TSyqy00FEA340yTAB+vx8vvvgiHnvsMcyfPx8+Hz0BPicnB0ceeSTOO+88HHPMMVHv8+GHH8Zf/vIXeDxWXIqAz+fDn/70Jzz88MNR75thGIZhGMYqHsOtTM+O46Rau7Cjj8hGu8I9rROWMHrM/nZe2R7nljC9DUqGY0UWlAgoGUCokEgnEXIIfsSXbHLs0YnR4tkfqbrrvepoPAGBbFtO3NpDQR0DbUYL/PAr81TfTScWo75zKp0P+ohs2GCDoQh6oCSiXqOdlCZakb7lEv23lRBMUkgpSSllKF7DuhjNkH54pHoMSMHyWoaJTLvhQYu/SZlX5BgQlpZ64cJMKrPR7cKatuXKvAn9DyYFqUzPUYsNO6j3bUuoGK2NuDdLJUktwzAMwzAMwzCZB8fnMQzDMAwDAKKkDHLsFGDZ56bKS68nqncl0t0KfPSiWuwCxE2MFigjOrTlY3yTu7eynKsu9cVoP24yXzYnCyjtdqBANjUAusmsQJgYTVa71OXKhptvSC9k4vgSDHqhFrWOQcr8dXXpJUZrcktSpjSiRACrXOYro8SHgVASKQAYuqv5faUbAZJGACj2byeLfq35iVIVV5160n0F/boOACB9XmDBXMhlXwD9iyCmzoQYtW/E/cnXY3BvePAJHddAKv/bT2Dccn7Hv5d+BLQ1A0eeATHtRIjxB3a3pdql3r40hufKsgrl9VN+txDiN38FAJy4j8DDn6q/zeUvSxw1VmJMeWpFO3y3gc47aZ+QtmrOHeKg42PUol5MfmHXP/vJFhzV/AHeyZ+hLNpxPKdWX4klNTskXvpaYh0d0oqB+R2yU5WjqSHGoXjv/qg+bgs8W8htxLQTY9sIhkkkQkAQC1ik47oWtY0SLy2VWLaZvl8rjBQatHE1ndfG8b9MivD1/J7XUVIOjJnc83qiQEw7AfL5f4Wln9D4Gu4t+rNym3Xb03tMVEXIqyMxpBAQIuB7b3bRhfeZFt1OGIaJCluyG8DEnNCZ4tkWt1eVVzk9Q9M0o08la0zsg2Eyko8//hijR4/G6aefjnnz5mmDrgDA7Xbj9ddfx7HHHosJEybgm2++sbzPd955BxdccIHloCsAuPrqqznoimEYhmGYhEMJj+ItdKEm7bb5+aF7tJj97SjxC8NQtPnVUWupNvmekkGEynx0x4BDZMW0TYx1KLkXQEu5bLAjS/SJV5PIvl7vU7cn25YLm0j84+Jcm/oYcBttYYLATlTfTSc5o+R0qXQ+EEKQ7aEkojq5KCU7U5Yl/gZmJWedeKRbKXZTEc11nRLj6mB5LcNEhrouAHqxEsOYYWEDvRLiQU51oDETG/rbC2AjQgF04t54QF2PU0lSyzAMwzAMwzBMZsHxeQzDMAzDBCIuvx8YOMRc4cdu6hDZWEA2j2HnewAAIABJREFU74C86AjI2y6gC8VJjBYoI7p2261kMVeUE0YTxfYWiRMeMPcuGgAqikMmsn70YuSN2kLej1MSmljKftIQ+4AyPFN7Lpn/z3nm/06pgG6ydGWJRvqkIsJ9BQCgdr06/dd/Ce6zvY0QMRoA/LPmMmVRjw9YvSW9zCBUP6rUvG6X3nbIK0+EvOEs4JUHOq4vFxwA+f6z2n0Z918JzHu+B60FMHYyxFlXAgDE+XPocu8+2fHf1k1A8w7glQcg/3I45LN3dZd56nb1toq/edSUVarTF70FubLj/nzO8frjZ8LNBt7+IXX61Xcb6LYcNgqYUBGcFvSbh3IsfU5mOhD9CoI+/6tWff4BgEteSJ1+Emt+qZWYcLOBvz6v/45FfQEn8Sq/vjV2v889HxlYuEqd5/TvUGcceQbEiDExawPDJBxbx/LJKqRMr3H06i0Sk24xcNHzEv9dSJ8bnHn0NVp624HFdGwZPBz/yyQf45HZPa+kb3+Iax6FcMTp2U8kRk9UJh/Qtpjc5OpX03tMdMOb0bX/yXOC4y3ly/eRZcV510e1D4ZhooPFaL2P0Ej2Movbq8rvrkjbJeQz8XSWJPQtQbEQolBZkmEyiBtuuAGHH344fvnll6B0IQRGjx6N6dOn47TTTsPhhx+O3XbbLWz7pUuXYsqUKZYDoa666irIAK346aefjo8++gi//PILqqqquv47+eSTg7arra3F3Xff3fW5T58+uO666/DFF19gzZo1QdsOGWLyhTHDMAzDMIwJKDGGTkwTCyjJCEs3osfsb+eT1oIKGYYSKFqRBSUC6rwVemzojgGHSNJLEqaLbJEDQayKQwlncu15cQ1qzLGr+5ZXhq6rsLN8nK+hFNR+JSQ8krjeK47jLNEHNtiV5anvnGoyDur8RElEQwWKgViRvpFiNEIwSUGJ7FT4iL+JDt33JbdheS3DRIQSeAKA01EclkZd7yS9ljSTobT6m7Gk8RNl3sjcPTAkpyKxDcowbMKOAkeRMk933McDK7JbhmEYhmEYhmGYeMPxeQzDMAzDhCJGjIF46juIO9+A+MdrEM/8oN9AN3FbxbtPAsuX6ss44rQgXoCYpq9sxcj2NcpirrrUfs/z8KfW2hcqI5J3/SXyRu6QZ9k1LEZTIWw2TCvYgD08y5X5H68A/EZq96dA1m5VpztswJBCANUu85X59WI02dTQIZdSIKadYH4/6YhCknVUywdk8UtfTB8xSFu7RG2jOq+iWBMXtvgd4MuQ38AwIO+9FNLvV24iN60Bnv9XlC0FMOMsiPvnQ9w7D8K580R5wDGWq5GPzIZs3A65eS1dqCx250qhkazJR24AAAzqL3D9sfTv7fYCl79sBN2XJ5OLnqP7+GOzbEExhdLvB5bMUxcetS9EVvwWZu015AdPWR7prcLJja+Qxbc2pUY/iTW3vSuxqSFyOZsAnEQoaUOMQvEa2yT+PlcjUjKI6+Xf7o1NAxgmaQgIIsbOSJ/hDwDg9vck1m+PXK5QFxq06C39xu6WlLl2M5mJ3FYNPEFL5s0iXlgBse8hMWhRlPsXAjjqt+HpAE5qnKvcZksT0OpJz+OvJ6LtSQFOZikl8N7T6oJDRkLk5Ue9H4ZhrMOzJnsfK0I+DxZCDJFSbjS5/RRFWoEizRnyeYvJ+gEAUspmIYQbQE7Ifuqt1BOKEGIggAEWNxvZk30yTKy4+OKLcc899wSl5efn46qrrsIZZ5yBYcOGhW2zevVqPP7447jzzju7VpNsb2/H73//e7S0tODiiy+OuN+VK1fihx+6X+DOnDkTzzzzjKk2v/baa2hv757IetNNN+Hyyy83tS3DMAzDMExP8BDCo2yRo0yPFdSk3WhEHUwHZsVolNSGYSjaDLXQJ9Um35NCIktitDgFyDKmEUIgx5arvB7U+0LXMegg3n3Rav1UX4w30fwOuQqZmhACubY8tBhNFvadHBkcBfVbUNdK3fjDivSNFLJZHN+0EuddFdEIT3Vjhj4iG+3So9jGmtyNYTKR7T51tH8/ewH62LIVOb14pXImpnzROF95bgaAg50zE9yazKTQUaKU9FLj03hgSL8l2S3DMAzDMAzDMEw84fg8hmEYhmEoRF4+MOnIrs9yn2nANwuUZeX9V0AcdLzpuuXn70UuZI/T1K6S8g7pmq/j/WxlexXW9AmfPuNK3GPjqHhvmbVJrRUlAUIZj/oZdRhtIe+Wq13KYjpBT8ZQVoHxG7/H8uw9lNnLNgF7DU1wm6Kkapu6bw0rAhx2AWNzlfnKfBHiICjZHtDrhXsiOxeyqBTYXtOVNty7niy/mhDWpSK682eopDEQ+dnb6ozG7cDaZcCue4XnUXKsTnbfB1j5DZktTr0YYsSY4MRozmneduDrBUADPZVUxLJPl1fQeV/Ng/T5IBwO7D5IX82Kmo6/l+7vkigoOZXDBpSFzuKt+pmuiK9J5ugXPjV6D0/oFOxuPloucerE3hcb867J8dTwYpDCx/oYTZdYuApo01w2C/0K25JzAERev9g0gGGShc0GGyFGSzf/1zs/mmuwUxMaJL98X7+x398xxmYJKJMsln7U8zqOOxeiIHyB4kQjyiuUZ59hmvuyxWuAw0fHr03x4v2fojuhDnYC2VkBY8BN6sUFAADlI6LaB8Mw0cNitF6GlLJGCLESwO4Byb8FEFFJKoToC+BERZZKWRl6F6m2EuhpQ7AYLRZqzD8BuD4G9TBMQnniiSfCgq4OOOAAPPfcc9qVHHfZZRfcdNNNOOuss3DSSSdh2bJlXXmXXnopxo8fj2nTpmn3vXRp8ApUoatOxmPbBQsWmN4HwzAMwzCMCjchRou34ISqn2oPExmz0hWf1K+oyDChUMelFVlQIqDOK21+K2I0fsSXCmQTYrQGb7iMAoh/X7QqHEuWJIyScunIISRuOXZrYrRo9h1PyPMBca10++lrqJW/Jylo9FuTilkpH811PfS8GEhh1gDUtoevDdLGYzSGiUg9cZ0qdFgNxkiz6CwmrhjSwML6d5V5/e1OjM+fnOAWZSbOrGJAMd9LJUuLF7rnJSrZLcMwDMMwDMMwTLzg+DyGYRiGYSxhs9F5JkVJ0ucDVn0HfPVh5MJ2u8mGWUPY7ZCDhgKb1gIAKogJry5CDpUqrLUoSQqS3tTSk3yDcHe/75btHmDbZnW5st4tsDJFeSUOWzkfzxWcqsyu2pb6YjQpJVZvAW59V933RwzY+Y+dx44p/BHiIKpd6nRHFlBcZn4/6Up5RZAYLVuzUO66uo6/kRCpKyba2iSxeA3w/BJ1HxICGFqoqWCzpm+1NSuTZYTrj5h1NeSNs4AWhdFo4BBg+KjwbXL7Qu65P/DDZ9q6w9ry6RtAyw66wMTDLdWnZZ9pdJ7fD2zZAJRX4pBRAg6bhM+gi983X+LaowFnXvL6lt+QqNK8rrXbQtqm6Stiv8Ni1KpezoDBYUlHtHyIGwdcrSyeTnJGs7R4JCk7C+XwPQQpPGqIQSje5gaJf7ynOVABHNqyIDxx4hE93znDJBshIIgYO8NI7XuyQNraJao1w4BABjs1mdWuyBW4W0yJ0WRrM/DTF0BdTcSyTIZROhwYMwkiCsGe3LCqx7sXE6f3uI6YMPEI4NEbw5Knt3yIfxWrFwCqqpNIx4WU10YZGlkRGjKtuf8Sex8c3U4YhokanjXZO3kaQODV6f+EEE9KKTdF2O5GAOEKdHNiNJPLqATRBiDwMR8ru5mM5JdffsGf//znoLSpU6fi3XffRb9+5g6L3XbbDR999BGmTZuG5cuXAwAMw8CZZ56J7777DiUl9JIWtbW1QZ91gV6x3JZhGIZhGKYneAz1LUi2LUeZHisoiU2bYU0cwnTjNi1Gi7CiIsMEIKUkBTrJkj9RUPKq0GNDJxFyiKyYtomJjlxbHhoQvgxovU+9NKhVcZn19ljr67l2tRwr3kTzO1Dfzep3jvffwCqUoIy6VlLCtGyRA5swHzhPj2+sLfFoZTzkjeK6Tv0OdjiQby9ALcLFaG4eozFMRChBUlHWAGU6FeaQPqFZTCJY2foDtnjVE4b2d07n8WuCKHSo3w01EOPTeKATo6XaWIxhGIZhGIZhmN4Lx+cxDMMwDGMZoRGjmUDWb4G84gRg+dLIhYEOg068KKsIEKO5lEXe/rFjIr4tVMaSArT7JDY2WNumsjjge3y/yNxG7oD30Vs2AJJ4+1XKYjRRVoFTGm/EeeUPKfOf+sLAr/aOj+wvFvj8En9+TuK/C+k3nBUlAnJ7LbDDwozqSGI0StI3cAhEnOSIKUVZBbDsi6Ck22uvwhWDbg0r2toObNgODLO6lleCePoLA+c+IeH102UGO4HsLM05dcsGOs9HxNQ8fze9zf5HA1NmQlxwI+Q//xqcZ7dD/OFmsp+J82Z3XLMIIZuSec9ps0X5CPN1RUAUDYI89WLy+8vrTgf++xkG9bfh7zMF5rxFH9v/mtdx7L/wextmjkvONU/XvgfOCG+TXDCXruwItaCSCaGsIixpStuXZPHrXpf4/YESA/un3rgoWlwmQwTGDwXOniqweA0hRrMWThjGv+YZuPQlfYTR0U3v4LCW+WHp4szLe7ZzhkkJBGxSLQaU1P1HCmL2nNI3GyghHr9Lvx/4ZkHkStytQL7ONgvIn5Z0jGWsjN2ZzGLAYOCe9yGG7mp6E1m/BXjytp7td99DgKkze1ZHrBg9Edh1fIfAPwCljHQnFzwlcdoEiX456TUmilb+7wwNZdSJqY8/L6p9MAwTPT17Ws+kKvcBCPTtOgG8K4QI15vvRAjxNwBqpSegV3B3EM1VIn1G6gwTRy677DI0N3c/QHY6nXjllVdMB111MnDgQLz88svo06fbXLxp0ybceGO4xTeQwH0DQFaW+QlJPdmWYRiGYRimJ3ikemJtdpyFR6TAyB+DJZAyEK/RrpU9hZZlGLP4pBd+qPsWJR5KFpSMKlRIpJMDslgiNaCuEZQsipJRxQqroolkSQP7iGzYLD6mpr6b9e+cWjIO6m9ACcooUZhVyZ3Z81AkrIjRohGeUu3JsefScjceozFMRLZ71UvdUkKluE7MYXoNCxveVabbYMOBBUcmuDWZS6FDPVukwZtIMRo9nki1sRjDMAzDMAzDML0Xjs9jGIZhGMYyESRF0q+x4QCQD11rXooGAHW1kctES4AMpMK7jiw2b3n8mtAT1m+nHWUUlQGvueQ//mhqG9kW8L672kUXVMhVMo6ySuTJNkxtXazMfvVbwG+k7nSxl77WS9EAYEQJIP9FTbEjoGRWO5HVxPGXKbI9xbFzauNLZPFLXjQzlTHx1OyQmPW4XooGABUaqZv0+YAt4Yv/deENj5WVNfT5G+WVEDe9CGGzQZzwB4h/fwicenGHNOuMyyEe+ARCI9ASex8E8fBnEOdcR+/DCr+7Ojb1BGC78HY6c+U3wFfzAACzj7PhnYv0cWgtHuD0hw20ehJ/nlpfJ3GjRoz2632D4zGklMC859WFx06GyE2tWNiUpaAYyA1+BiQA/KH+v+Qm17yeutexaKiK4Arae2iHmG/+pTYU9RVw5qljg3oiRvtxo4woRbNLH17eeCqyQuO/jzkHonJ09DtnmFTBZoMgtAopPHwOI9I5pZPKYkBQsYafvGquErf+xCMNA3LOWSxFY/Rs3QR5w1mWNpH/vZ7OnDoT4uVVEH+4GTjitI5xd+B/R8+CuPIhiDvegMjqQ9eTQIQQEP9ZEJZuh4FfNb5ObvfPD9Po5LQT6hx19dECN/2Kjn8OXStAUmK0keMgIggbGYaJPY5kN4CJPVLKBiHEOQBeCUgeB2C5EOJBAO8C2AwgF8B4AOcCOCCg7EYAgcvKqdZXCV0GIJqZk6HbWFhagOQBAPSTUTUjAdBXbYaJIytWrMBbb70VlHbbbbehtLQ0qvpGjx6Nyy67DLfccktX2v/+9z/Mnj0bhYXqgZZhRP/CoCfbxoKff/4ZP/74I+rq6lBfX4+cnBwMGDAAe+yxB/bcc09kZ2dHVa/P58OSJUuwdu1abN26FR6PBwMGDEBFRQX2339/5OTkxPibMAzDMAxjFY/hVqZn2+J7nc61E2I0i+IQpgMrwpVoBCpM5qLrWzn25MifKCgRUuh5RXcM2AU/4ksFrIrF4i2CsCpei7eojUIIgRxbHloNc48GHcKBLJv6JaHV3zRZ35mCEje6/epzGikKs9gXaalYC6SUdGBCWHkr13XrwlNSBGfL04zRzMvaGCZTqfepBUmFWYQYjSCdVq1k4st271b80PyVMm+vfpPgzErRpd17IU7iOK73bbN0je8JuvFBqo3FGIZhGIZhGIbpnXB8Xs/g+DyGYRgmYxERFvfaupGUGUkpgfmvKPNI8p3WyltAlFV2Tb0frhGjvfCVxJFjUm+BHLOT7gPpFKMFyc4i4Q4UoxG/U9EgiOzUijtKCuUVAIDRnhVYnDdVWWTxGuDAXRPYJgu8/HXk95qVJQB++tJaxf4IC8RSYqsMke2JsoowDUiZrxpZsh1eER4H9JUrIc2yzGvfSfhN3KZVlmjOp1s2ADrBpkqy98lrZHHxu6shHN3xg2L8gRDjD4zcyMA6ho8CZl0N+f2nwNfzLW0bVle8+vQeE4Dl6vfQcv5ciEkdC3QdNVbglP0EXlxKH+uN7g4h6PHj49JSkrnf0m0qzAMKQmVUq76nKxu+R4xa1fsRQkCWVQBrlwWlj2hfS27z0lKJh85MzDv1RLB+u7rvDS0E1t0eLgR2Eq/yG1qjjw16ycT195ptt4ZL0QCIPdXjDYZJO4SADeqBRDrF3lVtM9fWSk34ofzoRXM7iyBGw6rvAUpexDCBrPwGsmEbhDNyXKyUElhAP9cRk6ZDDBoGnHEZ0mmkILJzIUvKgW2bg9IrvfQx9PJSieuOiXfLYouLWDN214HAGZMErnlNfQ6bWBny16x2qSsaOS7qtjEMEz08a7KXIqWcK4T4K4B/Aeh8K5MP4PKd/1HcC6AAwNkBaWkjRpNSbgGwxco2veUBBZOe3HPPPUE3rSUlJZg1a1aP6rz44otxxx13wOvteBje0tKChx9+GP/3f/8HAHC5XKisrCS3P+SQQ5Tpjz32GABo20cdT1VVVaioqOj6PG3aNHzyySddn63cuG/YsAH/+Mc/8NJLL6G2ll4dKzc3F4cccgjOPvtsnHTSSbBHWLkLAJYvX46bbroJb731FhobG8l6jzvuOMyZMwe77bab6XYzDMMwDBNb3EabMt2qCMQqlHDFiuCL6caKUM4nIwQOMUwAur5FiYeSBdWe0PMKdQzYYIctUkAukxAsS7kIkVOssNqeeIvadOTazYvRdO20KtdI5ndWQYkbqXEGLQqzdp7LtfdTpvvhg1e2o48wN7Gt1YKELJrrOi2Cy9OM0dRjRoZhOpBSot67VZlX6BigTBdkKEf6BGcx8eXThvchiSC+gwpnJrg1mU2hQx3I5ZXtaDGa0M/eP+5toMYrdjjgEFlx3z/DMAzDMAzDMAzH53XA8XkMwzAMYxFbhDiM6nWkGA31W4DWJmv722eatfJWCBDUjPX8TBZbuzU13/WYnXTfyahSoLDvzjFTtcv8hl5P1z8lJbCi/uaZRkWHjGdS2xI8UniOssiqWokDd03NuVq/0EPcLiYMl0CD+j0qSZRiNJEp/WrM5LAkGyQk8f65rhkJW+jHCmb6DwBU6HwL1S79xgoxmty4mi4/ZqKZJpljzKQei9Fi2p7QegkxGjauCfo4qRJ4cam+utVbJJBglcUqzYzXySMUiZvWKBI7EPH6nXsrZcPDxGiT22gB5o62jvNQSX68G5YYthNhfWUF4WnSMOD0N6BjinkwDT2YLrHaxIzvSW1L1BmjJ0S/Y4ZJKQQEEWOX5PUxLLHWpLx68kjNdbZ2g7lKIonRNqwyVw/DAEDjdsCEGA0NW4HmHXT+mEmxa1Oi6V8YJkabTF1/AazZKlPyvoyioVWS45XKEgG7TWDqyA6Zeygn7hPyHSnpYjn9/o9hmPjBsyZ7MVLKewHMALDSRPFmABcCuBjA4JC8GkX50Cu6eoYMgRCiH8LFaCoBG8P0at57772gz2eddRb69Alf7cQKAwYMwLHHHqvdTzoipcRNN92EXXbZBffdd5826AoA2tra8M477+A3v/kNNmzQ3yj7/X5ccsklGDt2LJ599lky6Kqz3hdeeAFjxozBPffcE9V3YRiGYRim53gMtzI92xbflaMp6YYVwRfTjRWhnE8qVsFjGAJd34q3QNEqVHvc/lAxmvoYyGKZQMpASa3I8nGWclltj1WpWCyx8lvojmHLMjiLv1G8occZarlXm58ShcXub99mQXZmZTzkjeK6Tovg8sjv4LbQfobJRFqNZrRLjzKvMMtEAAjDhOA1vPhsxzxlXlmfodgtd2yCW5TZFDqKybwGL7E0YoyhJKU59ty0CZhiGIZhGIZhGCa94fg883B8HsMwDMMEEGmBumqXMlm2NEKeGy7/0TLjLIgC+nlujwkQo+Ubzcgm4u6qTE5uTzRUuyaPAH43Nfw582XTA9KqiUmsKtrbA7ZzqcsE/JaZjMjOBfoV4NeNr5Bl5tEOvqTi2ibx02Z9mVP2E6g0NgLedn3BUCKJ0aop4d4wa/tJU0TlHsr0S+rUY/42L1BL3zYkjWe+NCdrrNCc1uUDV+k3VojRKLEeAIhhu5tqkxnE0b8D8gujr+CAYyCGj4pZewIRx59PZ37/adDHMycLpfApkMtflli2KbFSUJdG9nnx4eFjD7nsC7qyQ0+ORZMyB8U1fErblxgp6IvCQwtTUxobDZQgpDBk/VX5ygOQxw2B85nrleXrezBdIpLsNs9owWEtCjHjfofG7bzCMAnHZoNNqg1oFy2shM+fHucd3fWskwH5wNlTNHFBK78xtzM3HQMspYS85Vxz9TAMALOL/8pXHqAzR4wBdts7Ru1JPOLsv4elHdP8Dlm+zStQ86/ZkH5/PJsVM3TPtjrv0f52hA2hYYvH7AnsURaS+Mu3ynoEi9EYJik4kt0AJr5IKT8QQowBcDyAmQCmAhgEIB/AFgBVAF4D8IyUsgYAhBChd4oqR36oRtfqEhWh5bdLKest1sEwac3GjRvhcrmC0qZPnx6TuqdPn465c+d2ff7iiy/g9XqRlZWeE+Z9Ph9OPfVUvPJK+Muz0tJSjBs3DiUlJfB4PKitrcX333+P5uZmU3W3tbXhV7/6FT744IOg9KysLIwfPx5DhgxBdnY2ampqsGTJErS2tna16eKLL0Z9fT1mz57d4+/IMAzDMIw1PMTE2uw4C49o6QaL0aIhVPykwystBhoxGY2ub6WaGC3X3leZ7pFuGNIPm7ADAHxSHTznYDFaymC1b8W7L1qXhCVTjGb+t8i1qY8ZAMi1+B2SKYNTQbWHkj2SorAY/g5t/lYUOIpM1dPqNy8h8xnWxWi0CC6P7O+UjIVhmA7qvXQUQJHDmhgtPcKymHjzbfNiNPvVqyUe5JzBIqwE09/hhA02GAgPqqz3bcMQxD9IhxqvxFsSzDAMwzAMwzAMA3B8nhU4Po9hGIZhQrDpxWiyZh1UT7zlLecB2yJYlwIQ580GzrjcUtMsU14R9PGFTWfgV0PDr/kbG4B2n0QfR2o9y3cRr7MqSwQeOlNg10HAq99IlPQDzjnAhpP3DRSjuczvyBuwmBAlICq1Om2q9yKu/h/6XXUyDmhdhEV5B4Tlv7BU4qlzJRz21OlPhiGx1xy1iKKTa48RuGamgLzsArrQaX8DnvtneLpKZrUT2bwDaG5QZ2ZQvxLnzYZ8ZHZQ2iXb/407Si5Tlq/aBpRGkFslkpodElubzJWtLFH3ffnpG+QE+y5UUr5ql7KoOFctL4oWUV4JPDAf8olbgeVfAZvWBhcoKgUcivteZwkwaTrErGti2p6gtlXsAZx/A+TD6u8sv18EsVfH+WhAvsDiK224/g2JJz+noxkOudPAuttsyMtOzLmKEjUcvgdwxOjgNkgpgRfvVW8wYgxE3/4xbl3vRpRVhMW1CABfNxwPZ8FXym2ufV3iNxMkdhmYOteyaGkgQuicud3fTS58HfLuSzrS+6uvWVQ9Zogk4V29ejTsitgGcftr0e+UYVINISCIKLsWnx2z35S46Vepf85Zu5XO22UgMKlSYPaxAuVOYjw073nzO3Nr5hu99hAtM87OBQp4YdiMxPDTz2Vk5ChXWfUz8MStZL7472fpHQN5yEnA9WcEJWXLdvywZh/sOVItLLzqi0o8WnAzxLnXJaKFPYIab2TZgXJnx79P3Efg9Qtt+M8CA7WNwPQxAtcfEzIW/+A5eicszWeYpMBitAxASukHMHfnf1qEEEMBDAlI2iSl3KQoujzk8y4WmzUi5HOKrgeSeHx+iY2siIs7QwqR9Jcsn332WVjafvvtF5O6991336DPbW1t+O677zBhwgQMGTIEVVXdqx/dfffdQSsrPvfcc5g8OXylqpKSjhvBadOmdaWdeuqp+PLLL7s+B9YbyJAhQ5TpZrn00kvDgq5mzpyJ2bNnY8KECWHlDcPAF198geeffx6PP/64tu4LL7wwKOiqoKAAs2fPxrnnnov8/Pygsm1tbXjggQdwzTXXwO3uWC1rzpw5mDRpEmbMmBHlt2MYhmEYJho8xMqVyZLMUMISRo+V342SQjGMCqpvZYucLtFYqpCrOW+5jTbk2fsBAHxSHTxnF/x4L1WwKneIt5TLav3JlITpZGeh6K71VsYBWaJPyh0/VB+ihCLUuc5yXyQEjbp9qMtaEKMR5zQdOhEcKa+1IGFlmExku08dpWSDDQUO9SrQQjnNB2A1GgMAn9SrVw/MFjmY2H9aYhvDwCbsKHAUod4XHvFT76tLSBvI63eKCasZhmEYhmGYzILj8xJHsmP0OD7PPByfxzAMwzAhCL0YTSWokTvqgM/eorepHA3bkxFkOPHAOQDIyeuaUD6iXT2ekBIAWK/HAAAgAElEQVRYv71jInsqUbVN/Q6qohjIcghcNUPgKmKYIDe7zO8ocEJ9tVqMJsoyR2AVkbKOxVcmt36pFKMBwIfLgaPGJrJRehatBprUYacAgOo7bRjUv+P+xfh6vrpQvwIIZ4n6zahfE99Ys57Oy6R+NWy3sKQB/q3oazSjxdYvLK9qm8SUkakjHXhuifl34hXF6nT5zpORN/YHx9RIKcnzEobuarpNZhEVe0Bcb6KdyWD/YwBKjPbaf7vEaAAwvFjg8VkCIwcYuP4N9d+urgV460eJU/aLfz+TUsJFvKI970DF/n/5jq5s9KTYNCqTICSU/WpXYtTuwIoa9WZPfSFxw3Gpcx6KloYW9THgDAgblO880Z3uV4vR6ls6+rJVIUyLR2JLBLHkQL8ihmnsZIg+2Zb2xTCpjNCI0QDgsc8kbjze+jGWaKjr2ROzBH47JcK9NAD5+sPmd6YRo2nHVcfMgu3if5nfD9NrkNtrIY8fRmSaEKO9/wydWTkaIju9Y96EEJDDdwfWrQxK36N9BXJsPriN8LkVr+cfC3x4EJAGYjRXnfpvPLwYsNu6z63H7ClwzJ70vDL55qP0TsrjvxgtwzDhpNbMLyYVOCzk8wKi3LKQz3sKIfKklGZnmu0fob6MZWM9MOLv+lVImJ6z9hYbKpIsfN64cWPQ50GDBqG4mHj6bZGxY8PfIG3cuBETJkyAw+FARUVFV7rT6QwqV1paGpQfSr9+3S8ccnJygvJ020XLBx98gHvvDV7l4rbbbsMVV1xBbmOz2TB16lRMnToVc+bMCWtnJy+99BIee+yxrs/Dhw/HggULyO+Rm5uLSy+9FFOmTMFhhx0Gt9sNKSUuuugirFy5ErYIq4MxDMMwDBM73IZ6yaFsm/q6Hyuoibtuf1tUL/oyHSsCFQkDfumHPcWkVkxqQstzzMuXEkWORgjVZrRGFKM5UkzslMlYlVFZLW+VbIuyiXi3R79v823VtdPKd0imCI7CqtyLFo1Y+27ZIgc22GAoVly0cq22Jjy1LkZrI8Z/ObY85NitSeUYhumg3qteHq3AUUTKZGkxGpPpbHCvRZV7pTJvYsE05BLnaia+OB3FajEacfzHGur5TTLHngzDMAzDMAzD8XmJI9kxehyfZw6Oz2MYhmEYBZGuOdWu8LR1KwC/n95mRHIMUUIIyL4FXRPKK7yEXAdA1bYUFKMRk+4rzYwzq9USOCVeDwBAetqAump1GUKqkpHsnAi8p4eeCvbjJomjxqbOu8UXl9KT4LPswMCdzl7Z0khXkl8I2IlYLZ8mDqLGpU63O4Dicnq73obiGBIAKttdWJYTfo6sSszrLNP8uMlcuYLcDlG4krUmpk8GihoBYHst0E5Y/coqzDWqt6CTENRuUCaPHSygW+jtx03AKbFxqGup2QG4idNEZYniXFn1E1mXGDE6Rq3KIKi+4/dhbHErVtSo31//tKl3LBLYoH5tD2dg2GbA+clpqMVoPgNobQf6WnSVrYuwbtv05nnqjBFjrO2IYdKAEd4qrO0zQplXvQPY3gIUh/tiUwavT2IHcU4ZUmhy7E/db6lo9yiTpZTAWt21MoUMzUxi0c3pM3NZ1/SrZD3XiTmlw8PEaAJALjxwK9RDbSIXxsY1EGkwZ3Jbszp9iFOdTrKdsOYCQEkG3cMzTArBb4iZUM4N+fyIqpCUshrADwFJDgDqZT7UTAv5/K6FbRmmV7B9+/agz4WF1JNv6+Tk5CA7O/gpU+j+0oU5c+YEff7DH/6gDboKxel0KgOvpJRBdTscDrzxxhumgsc6A7o6Wb16NV577TXTbWIYhmEYpud4DPVLfqsSGKvkEFIlP3xRCT4yHWqCNIVXtkcuxDCg5TxW5EuJQicwaguQIfmkelVRh8iKeZuY6KDkmWT5OMtB7MKOPsJ8BEoyRWG5GkFgKDqJhpXvkIoyDkru5ZFuGDI8gL6NEKZZ/W5CCPJv0Oa3IEazUDaacZObkLTl2vLIv70VWRvDZCIqWRIAFGUNsFyXNBU1wvRmPml4h8w72DkzgS1hAinMUs8Ma/BFiDyOEZRkNRXHYgzDMAzDMAzD9D44Ps8cHJ/HMAzDMApEJDFauFxMfviCvsqZZ/WkRT3j8FO6/pkn2zDIV6ss9oJGHJUMmt0SW5vUeUqJTCifvW1+ZzvFaKhdT5fJNAGRBpHbFxACxze9SZa56e3U6k/LNHKbLDu6J3hXu8hyYsZvaTGaXx3bBQCoIYSEAwdDODJoUUziGKKEjXPeSp0+JKXE44vNteesKQIOe/g5Svp8wGYTwsZQyR7VfwCgLLOEjSJXE2NGnL9njgUG9ac3uzlB5ypK9AkAFQqHu3StoDc47BQ6j1GjuYbPqlhL5qWaoDFaGogQusKdr+2lzwds6V5gwOnfYbkuHZF+x1kNTyjTxYwkjp8ZJk6c0vSKNj8Vzzten8S1rxvY90Y/Jt5CLzpTaCIUXLY2AxvXWNi5WoyGuhpaHAsAh5xkfh9ML0P3rEA/7pOGAXxO607E0WdH2aYUgxgX/cq+WJnebstGjaNUf8ylCNQ4pUhxfpLtHhgPXgNj1gQYJ1TCOHUPGDefC7l5LVBDPBsaNAyCF/BhmKTARx7ThRDiAATLzVZKKRdoNnk15PMsk/sZBWBSQFILgA/MbMswvYnQQKjQlSF7Smh9dXWJmeQSS3744Qd89tlnXZ/z8/Nx++23x6Tu+fPnY9my7tUMzjjjDOy5556mt7/wwguDArreeOONmLSLYRiGYZjIeA0v/FAHkWQL9UrUsUInvWHxhnWsCFSA6CQqTGbiJo5HK/KlRKETAgR+D6r/sxgtdbAqd0iEDCJdRGE5dvNSOZ1Qzsp3oCRkyUQ3zlDJROlznfXvRv0elMykp2W9UVzT2wihao4tj/zbe2U7jx8YRkO9Vx1JVehQi5R0pE5IOpMMWv3N+KpxoTJv19wxKM8eluAWMZ0UOhRR9AAaCDFirHH71dfvZEp5GYZhGIZhGIbJHDg+LzIcn8cwDMMwBJEmOW7dCOntXuBRrvgaePUhsri48iGIiUfEqnWWEeffEPS5ot2lLPfoIolv16fOWx+dFKAywussuWEVIC18F+/O98oK6V0Xg/h9RyDijjfQV7biwJZPlflNbuDhT2lxQiKRUmLhKjpfBM6d14mrfnsl4CBitUJlVoH7p/pVaQW9r95IQTGgEFtVel3K4l4/cP/81OhD17wW+XyS1wc4/0CBO04mZAzvP21uZ76QBYSrXepyOXmA0/qiZ+mOuPF5dca2zUHX5k6yswTmX6q/rt/9Yfz72QVPqffRNxso6afIeOYOdUVFpRBFg2LXsAxB9O0P9C9S5h351Mk4cFf1djqhXTpRT0xxcHa+tt+6EfB3L9xa6G8g63rrB+tjxapt9Db/rLkMv26aG5YubngGYuxky/timFTnnMancdOW68j8VBSjnfWoxM1vS3y7Afh+I13OGSEUXEoJee5EazsPHRd11vX4TeQm4s43IfJj+y6ASSOERowW4RmB/OdFdOZ+h0JMODzKRqUWghCj3VpPH1c3l1wJtFmb/5cMKDFaQZ5CXH396R1j7tU/ANs2A5vWAu89DXn6OFICJ2Y/FcvmMgxjARajMQAAIUQegAdDkq+OsNkzAPwBn08UQhCPAYIIXUruRSll6mtCGSbNELoBfJrw0UcfBX0+/fTT0b+/ZqkOC8ybNy/o829+8xtL2+fl5WHixO4b8U8/Vb/QYxiGYRgm9nikelItAORohCKxwKzAiDGHVZmcT2pWVWSYANr86r4V73NENGTZski5WeAx4jMoMVoGrRqa4ljtX4mQQViRf+mEY/HGktBMU9bS903B80GORt6oumZS19FopG95xL6tXKutCE+jkZW5Ned23fFECVkYhgHqCTFSYRY9k0RoV9RjMpXPd3wEr1QHoh1cODPBrWECcRKiw3pvYiK4qWclyZTyMgzDMAzDMAzDxAqOz9PD8XkMwzBMWiMiTLWSEtiyofvj3NCpOAEccCzE0b+LTbuiRGTnAsVlXZ8pCREAPLAg9cVoNgEMLdRvK1+819rOvJ6O/9cQAqviMojs+C7amnZU7AEAOK75LbLIXR+kRn9a+Is+vyjwtUW1S12ovBLC4QDsRKyWXxPbWLtenV46XN+wXoYQAlBMwqdkjUBHH5JWJIdxoK1d4r75dBuePlfAdasN9Xfb8NBvbejjUN8ryqcJ0VUovpC+RIn1yip6xX2pZYbvrk43DGDzWmXWqDKB+0+nf6t/zpMwjPj1M69P4qfN6rzK4vDnC3LNMnVhADjC2r01EwB1zq1djzkz1efwhlagoTU1rmU9gZKEdInRql3B6QYtRvvH+1GI0YjwhANaF+Gi+gfCMw79NcShJ1veD8OkBULgyro7satHbe3ViQSTwbo6iRe/Ntemgkhh2Su+BjausdYAhfQUAPD6I+r03H5AEqXkTAoQpRhNtjQCrz9MVzvr2p60KrUoq1QmF9d8j3y7R5n3UOH5gDsdxGjqv3FhSKiiXP8LsIh4lqG7tx+yS5QtYximp/DMyV6KEMIhpbkZ40KIfgDeBDAmIPkVKeUruu2klKuEEE8AOGdnUh8AjwshDqNEZ0KI4wH8LiCpHcANqrIM09spKgpeaWDHjh0xrb+hIfghVOj+0oHFixcHfZ42bVrM6l60aFHQ56KiIrhcLkt1BAaBuVwuGIYBW6QVwhiGYRiG6TEeg5ZbZNviG3ykk25YlXwx1mVyPoN4scEwIVB9K5niJx05tjw0+8PvCQO/hx/qxzyUVI1JPCkpRouRcCzeWPktdL+zFdlZKso4dO1XndeosUc0fYv6PVotyM5aDWtiNCmlpQBN+tzeN6K8th9iM5GPYXob271blemFhEhJT2oFZTGJw5AGFja8p8wrcBRhr36TEtwiJhBKdFjv22b5WhwNtMg19SS1DMMwDMMwDMP0Pjg+LzIcn8cwDMMwBGauN9UuYPDIjn///CVdLlUmTZZVAHXVAIBd21eTxb5cmzrvfKrq1G0ZWgRkEeKh7o2XW9vZzgn3stqlzlfInDKeknLAkaXtT7/UdkxMduYlV970RZW+X19+ZHf75OYqdaHOPuAgYrX8fnoHhNhKlGWWGA1Ah5ho7U9BSbo+5KoDtjYBA5MY9rGiBmhSzpLsYO9hAsOKTfTx1mZzOwwRgMhqok9mmFivC933/uxtYPgoZdZugwSouIaN9UD1DmBwBOlmtFBSKAAYotrnz0vI8iJVxhXpSOkw4JdvlVmVnrUAdlPmueqA8akXamgaw5DYQUy9KOy8Ple7gtJzpFqKAgB+w3obtjSq0yvaCfHjkJHWd8Iw6cLOOJ1KrwursncNy9ZdM5LB2z9KnUsqiP6RQoF+0tw3U3jDF2GWujFV0cDMFMcy3UQpRgu9Rwlj8Ijo2pOKDBqqTBbedgzKakGTP1uZ39bYhrzSeDas5zQQYx5n6Fju56+sV57bFygotr4dwzAxgcVovZcLhBAnAXgSwNtSyrDZLTuFaCcBuBnA4IAsF4A/mdzP9QBOAND5GGYqgA+FEOdJKVcE7CsbwO8B3BWy/V1SSuIOlmF6N6GBUPX19TGr2+12w+0OfvJeXJx+A67q6uqgz2PGjCFKWmfDhg1BnydPntyj+gzDQENDQ1oGuDEMwzBMuuEx6AgDq1Iaq+jEa24/i9GsYlUm55XhLzYYRoWbECimoggJ6JAYqcRogceIj+j/DhuL0VIFq/0rJwGiPivXxUSI2iis/Ha6dubY+saknmSha7/bH3xeM6RBymJzLfwOXdsQ/dGsxNQnvfBK8wJTCQkDftgtvKIgxSq2XK34kuW1DKPGkH40+LYr87RiNCJwJNmrdDPJY0Xr99jqrVbmHVAwHXbBr6OTSaFD/W7IK9vRYjShnz2+s0jS7d6MYRiGYRiGYZjeBcfnRYbj8xiGYRiGwGaPXGazCwAgDQNYt5IsJg49OUaN6iFlFcCyzwEAJzfOxY0DrlYWW7YZuO51A6dNFNijLLkTyqu2qdMrzQy7ql3WdubdKQAhBFbIRIFVBITdDlk6DIdv+lhb7sdNwIHhzoeEsnqLPv/EfQL6+roV6kLllR3/txPvvnya2MYaol8NGqZvWG9EIbU6tHWBdpOfq5MrRnNpBCWjy4BRJuQA0uMGtteY2p/0exF09qX6T4YKG0VuX8hR+wIrvg7Lk//5e4fc9MgzIQoHBOUdtCuQZQe8hMPw0c8krj0mPte9b9fT8RSnTAjfp6xdT1d20PGxaFJGIg47BXLh68q88qZVyLLvpuwfVduA8Wp/SFrQ5AYMogt2SkJUUtAS31ZscwwIS9/UAPj8Eg67+eOloVXdgCK/Om5JHHKS6boZJu0QHRLuSq9Lmf3yUon/nJHA9kTgh43myvXPAew2/XmBFBDrtvG1I6xWamwEAPseYnkfTC9DK8bTxLg2N9B5ex0IUZziRjArFNDvWA7qW4XVbnW+a4sXo9Ue2bhT3yLxxOcS36wLH887+wJH7CFwwt5APbHGuzN0Sk21y3ojSoezeJFhkghHovdeBIBDdv4nhRBVAFYCqAeQB6AUwD4A+oRsVwVgupQywmPfDqSUG4UQJwJ4P6Cu/QH8LIT4GsBaAAU79xV6J/wWgGstfq9ez5BCYO0tvKJdvFGuqJBgBg8eHPS5pqYGdXV1MQmQ+umncDtx6P7Sgbq64DcIhYWx+8OF1h0LmpqaOPCKYRiGYRIANakWALLjLEazCTtybLnKNrB0wzq6v6UKSgzFMKG0Geon2qkoQgJoeVWgcNFrEGI0wWK0VMGq3CER/dFsm2ywI0uEPiZMHFZ+C913yrUwDkhFGUeWLQsO4YBP+sLyQs9rHsMNSbygjUYUm0fI1KjzaVi5KASxXuk1LcvRiddybX2135nHaAyjptG/AwbUEb9FWeGBjZ2I8FAjJsP5pP4dZboNdhzgnJ7g1jChOAkxGgA0eOsSIEZTX4dT9d6MYRiGYRiGyQw4Pi9xJDtGj+PzIsPxeQzDMAxDYIs8XpQ16yAAyKtPoQtNOxEYtW/s2tUTyiu6/jmmfTlO2/E8nis4VVn0prcl7v5Q4q2/2HDQbsl7N+Tapn4nXlESYcK9tx3YSszgrxwNVP0cnt4pRqMm2StkTgyAsgrkbFyDd9Yfi5nD3lQWOfgOAw332NA/Nzl9yTAk/reIngD/xCyBcmdH22S7B/h6vrKcKNspRnMQsVr+8FgPAJAtjUCjWvySicI9UVYRFu2SIz14b93ROGr428ptDr3LQOO9NvTLSU4fos5FAPDMeTZzk+N1oqtQvCHxMdUuZTGRgf2nEzHtREiFGA0A5P1XAq8+BNz3EcSA7vv0LIfAvEtsmHanodzu+jcknHkG/nJobJ8ZbW2SOO1hug/9drKi/zxxK1leFA2KRbMyk4NPILPsW9ZhWBGwZmt43rWvGThhbxPS3BSlQROqX9j52v7J28LyXth0Bg4b/kFYut8ANtQDlZo1F0OpJ8L3Cg21hEbssqf5yhkm3dg5bqhodymz61qAl7+WOHnf1IjR++9Cc4ulFkQIW5ZSAi/9my6w+z7Aym/C09s94WnVtGBN/Cn8fMZkGppjR7f4b0sjXeMV/+lBe1KQfPo90D9KXsWjdernWP/5xol/HxCvRtFsa5KYdqeBn9Vr9wIAHvpE4i+HCnLc4wwJVZSPzrHekAwVUzNMqsBitMxAABix8z8dbwA4T0qpuIWnkVIuEEKcAOBxdMvPBID9dv6n4jkA50spCc9+5uKwC1RYeDDApC9Tp04NS1u6dCmOPPLIHte9dOnSoM+5ubkYP358j+tNNrG06ba3qyfT9gSpuzFiGIZhGCZmeAy3Ml3AlhCpS44tTyn0oib7MjRtfnOylU5YjMaYhZLupaIICQBy7ZSQqPu8ohIlAYDDpFSIiT85dvMyqizRx7QQqieYFYXl2vOSuoJNjt38sZmrKWvlGE/V80GOLQ/N/vCXq6HnNd24gzqn6Per3qbV5LU6GvlYx3XdXB91++kIrRxbLuzCgT4iG+0yPAiCx2gMo6beS78KKnTwSwrGHHXeWixrWarMG58/GQUOnqicbAochbDBBgPhAf71vjoMQWVc90+NEVJ1LMYwDMMwDMNkBhyflzlwfJ51OD6PYRiGYXYiTEhRql2Q61cCi9QyKAAQl92X1HfxgYTKiO6ovYoUowFAsweY/YaBjy9Lngikaps6fQS9xk8HtevpCc9TZhBitJ1xadUu5WaCJ8CqKe94zzC95SOU+mpQ4yhVFnv6S4k/TUvOsbDgFzrvyhkCv50ScLwvfJ0u3NkH7ES8j4+IbazRCLEyUbhHHEuHt85HeU4rNrvV75Ce+0ri/AOT04eqCOfzAbsAew012SYrYrSAviQNg+5DZfF9z5fSHHIS8ODVdP7mKsi5D0JccGNQ8kG7CYwcoJZfAcC1r0mcu79EXnbs+tojGjHjlBGA3Ra8L1ntois79ZLYNCpDEXY75D7TgG8WhOXJahcqS9R94+dqoN0n0ceRGmM6qzRoQuecuYCsWq7M28f9Hbmda5s1MRrVBqdfIUabfrr5ihkmHdkp4a70usgiV75i4MS9bbDZknve2VRv/llsqHQoDJX0rJOz/w788q06z6d4xryZEKMNGgbRN74LRDJpgO4ZjO79QpNa1onS4RBDd+1Zm1KNPPo4cbZUo9y7GZuzysPy7l9WjnulTPhzrkcWSa0UrZN/f0z/fQvzutss12seEujIxPt3hkkheNm73ssiAC8BqI9QzgfgXQBHSCmPtypF60RK+Q6AsQAejLDPLwCcLKU8XUppbQY8w/Qyhg0bhmHDhgWlffBBuEk/GubNmxf0edKkSejTJ/6SkFhTUhL8lGz7dmKlnB7WnZOTA8MwIKXs0X8VFRUxax/DMAzDMDSU8CjblpOQB2w5hGQmGiFIpmNVVOJlMRpjEkq6l5uik++pdgUeI34Wo6U81PVBRaL6olnhRLLFFFZ+D93vnGXrY/qY0AnWkgn1W4SOM3TjDit9sZM8QqZm9lrdZlh/1EsJH622I3en1I3qx21+HqMxjIp6n3omSZbog772fHI76o5Lhq3rzWQCnza8T/7tD3bOTHBrGBU2YUd/h3qVR+o8EEvcxHU4mvEKwzAMwzAMwzCMVTg+LzIcn8cwDMMwBGYmoFe7gK8+ovPz8oH+KbSASIiMaJC/FnkR3vN+sgpwe5PzDkhKSYrRIoo4qInyAMSw3dQZXg+k3w/Ub1Hnlw5Tp2c4IkDMtKf7R7LcBz8l713i+5p97zc8REi0VHNM75TAwUHEpfiJGIiadep0ux0YMITeX29FIxkcY6wh85LZh9ZtU+9791IL8co6QV4ogQKQbZtp6V4GT8wX5ZXAqH31hb76UJk8bjC9SaMbWOKKvl0qdH23skTRh5Z+TJYXZZn7N48Z1Dmo2oXhxfQx/d2GuLQmIdRrQucKcgF8NU+Zl280o5iIKXDVWTsnU21wGjvCE7mfM72ejnONToy2dhstiU4kn/xi/lgviBQGtER9XQYAMXgE0CdbnekNF6OREtHBIyI0gskIohWjNSuuSQDg7H0rLQmHo+OZlYrGOgzz0vcuW5vi1CgNHy7v+b1gkLxRd9+vgcfiDJNcWIzWS5FSfielPAVAMYBRAE4EcBGAawBcDeBCAEcAKJJSzpRS0qNK8/vcIqX8I4BSAIcCmAXgqp37PQnACCnlFCnlKz3dF8P0Fo466qigz0899RS83p7JHrZu3Yo33nhDu590oaysLOjzzz8rVmeKkkGDBnX92+12Y/16Cy8aGIZhGIZJKh7DrUxP1KTaTvlGKJSwjaGxKpPzsRiNMQl1POakqAiJlPkEHCNU/3eIrLi0ibGOQ2QhS5ib9JQoEZlZ+VeypYFWfg/qOmy1rmTL4CiodoWKwcyIwqxA9YFWQjQZCiWk1OEzFCu5UfXrRHD2jjEg1d+tilgZJlPY7lWvk1PoKIkgnE7PFXCZ2OM12vHZDnWAbFmfYdgld3SCW8RQFDrUAVoNXmJ5+xhhSD88Uv0MJ9njT4ZhGIZhGIZhMgeOz9PD8XkMwzAMQyBMTLX66Ut6QjYATJmRkEU+TRMiAhEAjmrWS2OlBNbF91EySV0z0OxR5ylFMoFUu9TpRaVAP6c6z9sOuDXvvantMp3J3ePgGc3vkcWSKXao2kpPoj50VEhCtYuuaLfxHf+3U2I04j6DEqOVDO6YkJ5pjBxHZs1on0/mrVW/3k4Ia6OVNAagle6FEihCo/oPAJRXmK+zFyKOOlNfYOU3yuQZ4/TXkM9Wx1bCt5rwbQLATMXhIHV/80nTe96gDEdQYrSfl2Kmpm98vjZ9FwtsIELn+mUDWQ6hHc9WEGIUq9d1qg1Of0NYmpgyw1rlDJNu7LxH3Mv9AwoUx0Ana5I49umkzkJY8GCn/vqqvXeeeATgIOLvfYo4Y6oujYCXySC0z2Ho67lsJo7HfgU9a0+qkq9eaBU76jCx7Stys2Tc27tisM8hAV9Xez7SUVrR84YwDBM1LEbr5cgOVkopX5VS/ltKebOU8hYp5QNSyg+llDF3c0op26WU86WUj0spb9u537lSSnrZFYbJUP76178GvfDcunUrHnvssR7Vec899wQFb/Xt2xfnn39+j+pMFvvvv3/Q5wULFsSs7qlTpwZ9jtVqoAzDMAzDxB8PITzKtuUkZP+UgC0aIUimY1VUwmI0xixtxIq2qTr5nmqXm8VoaUe2SUlnoiR96SIJy7UgN40kQjUrSk2UUNUqVLtCr5mUKMwGm2lBX/B+eyYVo867OrwWrus6MVrnOdSMZJJhmG7qiVVdC7OiXeEufYNAmej4uukztPjVrxkPdqbYZK8MpzCrWJlOnQdiBSW2B1JXWs0wDMMwDMMwTO+D4/P0cHwewzAMwxDYTE61euEeMkuc/fcYNSZGDBgC2O1BSdduuwWDfHK0aE4AACAASURBVLXazWbea8BvJP490Mcr6X1Wqh97d0FOci2vABxEnI3XA7Rp3nvnWF+gLBMQI8d2/fusHc+Q5aq2AVIm530iJbXKzwGceSHvszYT097GTobo7DtUH/L7lMmk5Kh0uDq9lyPs9g75hYKza/5LbvftBsDjTXwfamuX+GmzOq8iwrmoE/nErcDHL5vfaaDMe7NLXaZfAQQlM8gUjj8fGDdVW0S+9O+wtNMmCBy4K73Nta9LPLfE6GnrAAD1LRKbaOcNTtxH8U69mhajicEjY9CqDIeS5myvwdEeWmB4yQsSLy6NTb9INPWt6nOns/OVfbWL3LbCq86zIs71eCXaiDBBlRgNoyear5xh0pGd95oO+PFg9Z/JYkfdY6DVk9x4vHoLobfDIo2Lqmm9hCguBbKIuGfVIifE+IiUXzIZhiZmUXdP2rJDnd5bJemU8G1HHa6uu53cbNqdBry+xJ2bDENiQ33P6rDbgMGBf8bn746uIj7HMExSYTEawzBMEhk9ejRmzAg22V9xxRWordW/YKT4+eefcccddwSlzZo1C0VFRVG3MZkcfvjhQZ+fffZZNDXFxud45JFHBn1+5JFHYlIvwzAMwzDxh5pYa1ZG01Nyicm7bkLYxqgxpN/yb8ZiNMYMUkqybyVb/kRBynz8kcVodpGBK4emMGYFX1ZEYD3BbJ9PtjQwx2Y+gDjSd8o1WVeyvzNFrl3d/sDzAQC4/eqIg1xb36hENHnEfltNCs9aCUGs7u9l5bpOCdqyRJ+u86AZySTDMN3Ue9UzAIocA7TbCSJwRLIYLeNY2PCOMj3HlouJBdMS2xhGi9OhFh42xFmMppOTpqqklmEYhmEYhmGY3gfH5+nh+DyGYRiGIRA9nGp13LkQlXvEpi0xQjgcwMChQWnjPD9hSdX+uLvmb+R2VduAd5fFu3XhnPpf9bunnCyglJi/20W1S51eVgH0yVbneT2AR/NuOTc1YwxSgjMuBwAUGI14f91MZZFmD1DXnMhGdUOJ0e49Nfi9p/R5gS0blGXFmZd3f7ATsVp+v1r+RkmOyjJTjAYA4jT1Oaegfi3e+r2H3O4/nyT+nfQ/59H7rCiJHJ8jV30P+chsazv1BcTTsFiPRDiyIO79AOLc68ky8t7LIOu3BqX1yxF4/2L9df7cJyR2EDIpK1w5l67jm2ttyMlS9CHqb376pT1uDwOt0MJx5XE4dHf6b3b2oxJN7vSLjWkghjeFJsRow73q/uiqM/87NGimCjiNEAnNzLN5ET4mA+ju479umotcTWzNI4uSe86hzh8qhkcSoxHXN/Hnf3T8w0GJ0YLHhlJK/f0ew+iuIzoxWhMhRusb6QFEmkJJlnfUodi/HUO96ntjjw945ZvEnZuqdwBef8/qGFoIOOwd/YIUl5shg+/hGSYVYDEawzBMkrnrrruQl9f9oqyhoQEnnngimputvfnZunUrTj75ZLS3t3ellZWV4brrrotZWxPNmDFjcPDBB3d9bmxsxFVXXRWTumfMmIGRI7tXy1iyZAkeffTRmNTNMAzDMEx88Uj1G7JskZOQ/VOCD5ZuWIMS3OnwGixGYyLjkW5SzJG6IqTI5xWfVK8qmiWIVUiZpGBWRGZFBNYTzAonki0NzLJlwWFS8heprenynSmo9oeOMyjRSI49OskIJZTzGG0wZOTVLqlxUL6dfiFMnddUhIrhOglsN/Xb6aQsDJPJbCeESIVZaoESwwSyzr0aLvcqZd6k/oew9CrFKCTEaPVeC8s4R4HuOYlZmS3DMAzDMAzDMEws4Pg8Go7PYxiGYRgCW8+mWomxU2LUkBijmCg+2LcZf65/EPtX0O9v5yZw0isAtPs0IqJiRBZmVLvU6WUVQBYhRvP7gVbN+DCHn2tTiPKKrn+Pbl9BlquK72sJJfUtkhQ6jBgQ0o+2bAAMIj6irLL733ZNrJZfcRxt2aguO2gYXU9vJ6DPhDLGrp6ADwDv/Jh4Oci7y/Tno0jIT16zvlNf9z2nrCV+DxZ/AOiQo+G3V9DCQgBY/HZYUk6WwKXT6WuJ26v/25tl8Rq6jl2oNesocQzL8GKDTmjh96PSRov0PT7g/Z/i0KY4U0esi+rMiyAYAlBJiNGqLKzBphMrFfobgj6L8kqiJMP0IkLuZY5reossmuj7sFAsidGK6Ouq9PuBSGOaPpQYrT34c3MD0Ebct/H4iAGiF6NR9235vVSM1o/4Xq0dC+eM9dCDnkSem5Zt7nkdQfdti96MrpK8fFomxzBMQmAxGsMwTJIZNWoU/v3vfwelLV68GDNmzMDGjcRgOoRVq1bhsMMOw/Lly7vSbDYbnnrqKQwYQD0tTQ9CA8fuv/9+3HXXXaa337FjB9zucOmGw+HAnDlzgtL++Mc/Yu7cuZbb+OGHH2Lt2rWWt2MYhmEYJjrchlqMlqiJ15RIhaUb1ojm9/JJFqMxkXET8hwgdUVIlLCtzeiOSKD6v4PFaCmF2WtRbpKvWaFQcr5EYkYW5xBZyLLp+7x5OV3yv7MKShISet2kRCPRCiBz7er9Skh4iLFXIK2GOoKqv8NJbuOV7WReKNT3DTzmqN9Od11gmEymwUuI0QiBUiTSb01cpicsrH+XzDvIOSOBLWHMUJilnpVR79vWEegcJ9o0YwiW5zEMwzAMwzAMk0g4Pk8Px+cxDMMwjALRw6lWYyfHph2xpnI0mbV/MW24+GlzYt8EbdhO5w01Mw91s0uZLMoqgCxiwj0ANNXTebksRiMJEBCU+mqQQ7wfWLs18W8U12rELSNCX4sS/QYAECgk0gmYfIr4riZ1hxbFpXQ9vZ2BQ0kB5ZAW9eJMALCpgcyKG7p9lvY3U8Ea6zsN7EdE/0HRIOv19lKE3a697sqN6r/B/iP1ks3VW3vULADAZk3/6ZcTvn/Z7gG2EfYHjVCQsUBxGaCRb03N0T97eGJx5AVGU411hJi0tL8AGrYCbYQ5DcDwdrUYbVODXmQbSL0mdM8ZIkZL2TE0w8SSkDHQ/m2fk0VjcS3qCQ2t5sfvEyo0mds2qcfJQPe9hIO4T/OFxBk3am4WM3l8zXQThRhNetzAyq/V1fVW4V6x/n5iamtqnJvmr+z5c4SKku4+ITdF+Z6pdHhkST/DMHGFxWgMwzApwDnnnIMLL7wwKG3RokUYPXo0brvtNmzYoDZir169Gtdccw3GjRuHH3/8MSjv9ttvx2GHHRa3NieKQw89FJdeemlQ2mWXXYbjjjsOX3+tvtkwDAOff/45/vrXv2Lo0KGoqalRljv99NNxzjnndH1ub2/HSSedhDPOOIOsGwD8fj++/fZb3HDDDRg9ejSOOOIIrF+/PopvxzAMwzBMNHiM8KBqAMi25SRk/5RwhBJ2MGp0v1dfW74yncVojBl00r1UkD+poARNgSJIFqOlB+alXIkJmDUrYEsFSZiZtpppp9njPHXPB+rfIfS6SZ3rov1b6oRqlPQsqD2EfCzP1g824jWEles69X0DhW45dvVvx/JahgnHa3jRGBpcuJPCLL0YjX65z2q0TKHZ34ilTZ8q83bPG4ey7KEJbhETCUp46JXtaDWIVVRjAHXfb4MdWUIz8YxhGIZhGIZhGCYOcHweDcfnMQzDMIwCQthjFjF01xg1JLaI0y4h884f9B2Z95ULuO51I66LbQTiIgQeAHDD8fq/jWxtBnYQNqyyCiArm964kRCjCQH0SUxsYloSMFFcAKj0upTFTntYJlyy9/ka9f6yHUBZQUhitUtdSeFAiLx+3Z8dmlgtvy88rWmHumw+vdBcb0c4sjrkaKq87xbikN3V2y2vRsLOQ0CH9IcSCh23F2CzmZgY/+EL1nfsDRCANBFmrXwzlsjMQZz2Nzrz6X9AusPfWx49DthrCL3Zda9LeLzR97cdrZIUQv1xGtF3ateTwo4gQSMTNUIIiDP/j8w/qfoJ7fYLaXdjyuLapu5TFc0rII/TxHeUVaDCqxajSakX2QbSQBwHdulDXxkSl7j3weYqZZi0JvgacNoOeqywuQH4Ym3yYvLe/8l82YH96XGRfPoOesPOewlKYO0NEaM1E2NrgMdHzE50Y3TieProxfC+1sm4qT1uUSoiymhRLAD8bsdTZN53G4BVtYk5Ny1Yod6P08J0ieGBa8q+82R0DWFJMcMkHc0yBQzDMEwiue+++1BYWIibb76562F9U1MTrrrqKvz973/H6NGjMXToUBQWFqKurg7r1q3DypUrw+rJysrCPffcgz/+8Y+J/gpx4/bbb8f69evx0ksvdaW9+eabePPNN1FeXo5x48ahuLgYHo8HNTU1+OGHH9DU1GSq7gcffBD19fV49dVXu9KeffZZPPvssxgwYAD22msvFBcXw2azobGxEZs3b8by5cuVq1wyDMMwDJMY3MSKgpRIJNZQwhFKCMKo0f1e/RwFaGkPH8+xGI0xg066lwryJxWUkKjN3wopJYQQ8ElF4BwAu+DHe6mE2T6WSwicYo3p9qTAsWFKemaiTDp9ZxXkOCNk/EOd66IXo9GyvjZ/KxDBwdhGyNNy7X2RJfrAI8Ofo1i5rpsZ/1HfgeW1DBNOg49eGp0SKHUitIEjTCbw+Y6P4ZXqQKCDnDMT3BrGDE5HMZlX7932/+ydeZwcRd3/P9UzszuzV3ZzX2R3E44gZzgEAyRyyX0piKIi8Mij4K2PeAuiiA94iwieqMAjigry45I73EICAQkhQHZyTpJNsvc5M12/Pza7mZ2pb3XP7szs7M7n/XrllZ2qPqpnqquru7/1LlQGzHLy0dIr3PdHnArOoEgIIYQQQggZExifJ8P4PEIIISQNJzDiVdUn/zeHBcktasY86LIw0J95nZ3f8Rp++oFT8Nk/mwedfvdejYYpwCVH5//5bnSHPMD2yPke+49F5bxZDUCfpY/RIYjRwnyubWXGvAF53K4+dmN/FK+X72tc9D0/dhG91kEoWJjv8zNCfW6cmim10rGoeSMp4jcAQMASq5UmRtNaA51CvSphMRqAAcnTFoNw546f4po/fB+Lv2/+7X7+qMZnji9M/fnWP+W26Ltnews09dv/kTOnzQGOPw/4808y85Ip8TRCu6RKvf6koY46DXrfw4HXXzDm6198GeqLPx+WFgoqPPElB7WfdcXtfv0ujR+cN7L6ZpN8fvkkYZumc2IQitFyhjrjEujrLzdK6Koe+xOw783iuh29QEevRnV4/PQLmoS62PD4L+SVysLAfkeg4ZF/ytvdDiyY7r3/1m5zW1qXbBkegXTQMVCjlBMTMi5Iq+d1bisejZ6I4xoeMi6++Psuum5wECkrbLvT2q3R4zPE99cXWqRob70C3PUrc2Z1HVTVLltxUBCjJdIKId2zKQVU1niUlJQEtnt3w7Vfaw197aXm5asmAfP3z1HBioz0+9z07MQW/HHTxbhwzu+N+Ude66L5R44/WfQIaevWeFHoHp99sMItz/iTszXsCp3UO7YA3f7ea2XAvjghYw5HThJCSBHxne98B0uXLsXll1+ON9/cPY2A1hqvvfYaXnvNrtk+5JBDcPPNN+Owww7Ld1ELSiAQwB133IH99tsP11xzDeLx3Te0mzdvxubNm0e87VAohL/97W+4/vrrceWVVw4LqGpubsbDDz/saxuVlfIAYkIIIYTklj7XHJxU7hRmVkZJwEbpRnZIApUAgqKsJk4xGvFBj3AuOnBQpiyzvo4hksgoiQQSOo6QKhMFQkHlYSsiBcWvpDNskVDlEr+SrELJRe1l8CM98y6n32MuL4JjNiFdA9PFIpJgdKTCt0hAXk+6ZvtZJuJUIKhCghjNLHzMZvupvzf7aIT4p8UmRgvZxWgShZyZm4wdrnbxZOv9xrza4BQcWPXOApeI+KEmWAcFBxqZQf0tiR2YC/sMkCNFFJsWSBJMCCGEEEIIISYYn2eG8XmEEEJIGqORMsxdkLty5INDjwWezXzWr2NNOPEEBUB+5/On5zQuOTqPZduFJJN5Z4OPlWNN5vRAAJi+B7AlKq/bvtOcHmY/xIYKlUFPmwts2wAAaIxHxWVjbcAjq4GTCzC2fL1FsDff9Eo0FjUvnI0YLV3c0NMFJJPmZatKXGw1qwF4eZkxq771NQDvMObd+pzGZ47PX7FSufNFuQ41yPMSDaEfuFXMU1/9FfSrz5ozU+7H0NlqXqa6zrsAJYY6/SJoQYyGh/4M/dkfQwWHn781EYUfvV/hC38x/9Z/ek7j+nP1iOSYTUJYRtAB5kg/X0wwP0yeAVXOd6w55bxPA3/5mTFr6ew2PLF5krjq3S9rfPjI8SFG641rbBaakfq4RcQ3qx6Y3YgK3YPpia3YFpyRsciAyNb7e2gRQvdq3bbhCVNneW6LkAmB4Zryzt4Xravc9yrwvkPzVSBpn/5jAWfWWMRoD94mr5jSz1ahMvOdaDxt8s6ONtNSQOUkyhXJAFmK0bBK6D8CwP7vggqMXJxf1HiI0QDgmO6nxLyWbuDpt4Fj9sphmdJ48i3AFZqicxZlI0bbVSceu3PEZVEUoxEy5vAqTwghRcYJJ5yAVatW4bbbbsPxxx+PYNDusCwvL8cZZ5yBu+++Gy+++OKEC7oaRCmFK6+8Em+88QYuvfRSTJ482bp8VVUVzj77bNx1112YN2+e57avuOIKNDU14Stf+Qrq6707qdXV1Tj11FPxi1/8ArFYDIcffnhWx0MIIYSQkdMnDKwtlOAkEjAHOkkDfokZ6fuKBCoQEkRPkhiKkFQkAU7YKd7ZW+1CooHjkQRCQcV5D4oJv5KHSMGuWf4kWdK1rZD4Kasf6ZkfMVi5CiOgivNFZVj4HtLbNrGt8/mbpxNUIYSUecY1X2K0pHmZikCl2E5lc13vTQr9hpTfOyIIByVhJiGlzM64OQK3wqkqClkmKV5Wda3A9vhWY94xtScV7fW11AmoACYFzdH1rQnLVOWjxHZvRgghhBBCCCFjCePzzDA+jxBCCElBjWKo1YIDcleOfCANfo1F0TgVqLbMTfp6LB8FymSdIJNpmOoj7icWNadP32NAiGORnOmd5ncgCPO5tieTpw/9eWDfq9ZFX48VZsKlVZb6esBcQ12KRc0Lp58ztvuHZFp8V0eLvGx1aYvR1F4Hinkztsl1aFtHPkpjZoclXKYq7KM9ir4u5zXuByVJ9lLrUQfFaL5ZINcpdLUD2zcZsw4ytQe7aO4AdnSOrDhN281t3bzJQMAx71NvEURVFDHkHGXpr1061S4osl1fio11lnAAm8gUU2ZB7TlwTtXH1xsXkUS26bQKwytqk2lyoypZRkfIxCLzGhDWfVhY3S6usapA/edU1srzrg4j6ABH2OZjtPWHUtvikDl+GfG+4Z+l/nU12xCyi2zFaJY6qhYtyUGBihQfYrTZiRimJprF/FWb89s2PbravP1ZkzzanTTqd0mtta098sLH90UIyS8cOUkIIUVIMBjEBRdcgAsuuABdXV1Yvnw53nrrLTQ3N6O/vx/l5eWYMWMG9t57bxxyyCEoLy8f8b6uuuoqXHXVVSNa9/HHHy/oegDQ2NiIX/3qV7jpppuwYsUKrF69Gtu3b0dnZycqKysxffp0LFy4EAceeCBCIbNQQ2LmzJm49tprce2116KpqQkrVqxAc3MzWlpa4DgOqqurMXv2bCxcuBB77bUXAhPV9kwIIYQUOX1urzG9UGI0SRTQ63ZD65HNDFaKSJKSiFOBIMVoZBT0JIW6NUJZUCGwiQF63W7UoFas/9L5QsYGv5KHsCBwyjV+5TbFIMHxJT3zJU/zPpZiOF4JSeyWft20XUdHvu9KxJP9GemS9Gx4eczLRJxKBJ0QYJgAOe5m7ivb7afWG7GPJkjVCCllWhLmyKXJIdPU6MNRPmZ7JROXJ1rvN6YHEMTiSScWuDQkG+qCU40StBZBlJgL8tFfIYQQQgghhJBcwfg8GcbnEUIIIQCcEYrRDj8BqsgHS6pZDTAOLX3xUZSHFD66WOGGR82DT7d1AN19GhXl+X1fFN1h3v/gYFYbetUL5ozB38UmE9q+2ZweGfvJ5ood9d7LoL/3MQDAue1/x5enX4PWgPm7/s69Gp8vwGslSUoEABcfZajDm5uMy2ac05LMCgASafFdnW3m5QCgqrTFaDjhfOBn/2POu+ZiLDrhXLy0KfN+YP1OINaqMas2v+1QS5dGmxBucrrFvzWM5x4Qs9TUWdAeYjSdTMp1iAKhTN5xODCrHoiZ5WL6qo8ANzwCFRx+H7t07wEpaIc5NB1NO4Cp1dkXp0mQRjXawjIoRisc7z4HuPZSY9aZrXdhSuXxohzx+/drXHN28Y8XeGy1xvE/csV8SXgGYKDvs/g0AEBjfxQvRDJl9VGfoQYtwvdYm0yTG1H4SEoF4V7z0sa1+OIrBxvzrvynxh0vJPH+wxW+caqCIwg2c0mrz/mI33eIwtRqQfgZ7weee1BcV51+8e4PohgtLc5YEqOVet+apGA7PzLvEXUsKi9+2kWjLEsRM2kKEKkCemQLcAAuLmm9BddN/ZIxf+XGfBVugMffMN/TH7dQYZLPoSABB5hbB2itgbt/M/LCFPmzPkJKAYrRCCGkyKmsrMSSJUuwZMkEtguPAMdxcNhhh+VtBs7GxkY0NmahDSaEEEJIweh1zdEG5Y5lusocEhFkNi5c9Os+lKvClGO8I0lWwhSjkVHSKwy+9yusGgtsYoBBmYAsRuPjvWLCr3ArUiAxV0AFEVJliGu7gEq6thUSP4IMP+exr2XGoSgxrvuR1AkEdp3zkmhkNG1dJFCB9vSAI8u+/CwTcSoRVOaAhWyu61L/L1WWFwmY63GP20V5LSFptMTNs7jVBr3FaBLaPISGTCC292/Bqq4VxrxF1e/CpCCDVIuZ2qB5tFirIErMBePx3owQQgghhBBSmjA+zwzj8wghhJQ0amRiNPWd/8txQfLAbPn6q994CT8892A0NWvc+6p5megO4B2z81S2lH2YaPAQo+lEAnj4DnPmrIHjVuVh6LJyoL8vc5lmQYxWzufanpz8YWCXGG2S247H152Ig+e/aFy0tRu45RkXFy0eoYDQJ02WVyB7zxgeP6B7uoCWbeaFZzcM/xy0yIF3Ca2GkMQNQMnLG1TddOgZ84CtZjHP79Z9FIuCtxrz5n/NRecNDgJ5lIJI7RAA3PBB77qrm1aJeeorNw/8IYmg3V2zD3ZZxHoUCGWglAJuehL6rHnmBV57Hvq6y6G+9uthyY6j8Nq3Hcz7slkg9bE/uFh5ZfbS7nWCnLFhqqXeClI3zKIYLdeoimrohYcCq5dn5FU8+Fs8/ZefY+GV8vrfu0/j66cVbyza82s1Tv6pLEWbFY8hrA19oUHKKwb6TJNnoD5urpeSyDadVkEyWesOb+MUhY+kVBDiWD+7YLUoRgOAVTHgqn9qtHQBPz4//+2PJIgFgLoKIOkC7z1E4YYPymUZFCcbOf79UAcu3v05KIjREsPj37UkjWXfiAxiixXXhmuXJKad3Qg1yYedfZyilIKe1QCs/Y91ue80f1sUo930hMYvLshPfP6OTo2XN5jz3r0PUB5SiISAHo+hCHPrgGBAwf3dd0ZXIIqKCRlz8vsUkRBCCCGEEEIIyTF9rnlaLr8ymtFi24806JdkIglObGK0uEsxGvFGlvMUb5Biua1dSQ4cT1InjPnS+ULGBr/1LCwInPKBP+FYYa6h9jJ4l9PPsUR8SM+KWcZh+y1S27fBtiGd0bR1kiDPjxitWxCeRgKVCAkCx4TQrpnodWWh6u6/zd/doLyWELKbFkGEVBfyI0YTZnikGG3Cs6z1AfF3XlJ7SoFLQ7JFOr+l9iAXyCLXse97EkIIIYQQQgghhBBCiBVnhGK0ypocFyQPzGoQs/TtP0QoqPC3y+Tjt8mCckF/QmNTqzmvYYrHYNvnHxSzVKrcShJSbd9kTo+M/WRzxY5SClhwwNDn/ftW4dvbvi0u/9OH8/9usUmQEn34CEM9kgbDA5nnTMAyiWUiLb5REqOVR6DKyuXtlApLzhKz5r/1gJjXlwAekr1jOUES64UCwBwf3g3955/ImY37DfzvCLKtQcGeTaxXXdpiPQk1eQaw9yJ5gfv/CN2a+ePOrVPYZ4Z5lVc3AYlk9m2WVIcabWEZQlukKGLID0eeLGbtteFR3PwRud9xw2MaSbd442RuekIjnpTzG+JR+wbCu2Ly9jkEjYIYzSYgTaVNCD2sS6Z1+NiukVJBEAgppX0Jz37zlEZXX/7bn7Zu8z7+e4lC848c7PiJg99d5KCiXIgl3LFFllYDUOd/dnhCSBCjxdMmBpf6R5QrkkFyJUZbcnZuylPM+JDvBuDiq9v/V8x/bm0uC7Sbp9+S845bOPAbT/IRgtgwBdCJOPD3m0ZemKpJUOynEDLmUIxGCCGEEEIIIWRc0ScItcpVuCD7twlHegRJCcmkRxCcRAIVCDlm0VNCU4xGvJEEhcUsQnKUI8oBBmUCcaH+U4xWXPitZ5ECyiD8CcfGPog3VwK3XAnWxgrbb5EqQ8tHWyd9Lz2C9GwQV7ui8DRiEZ5mc13vsWx/99+W747yWkKG0RI3RydODk7zXLd457sl+aTf7cOzbY8Y8+aUN2BBZN8Cl4hkS13QPINlSzx/I9h6k7IQnRBCCCGEEEIIIYQQQooZpSxDrcqF99Yf/EJ+CpNr5syX82JNAICyoMIegvgnuiO/g/DX7zSPVQaABo85fvQbK+TMPfbe/bc0oLV5szk9zOfavpi397CPe/e/KS76yiagL57fuiQJW4z1aHOTeWHHAWbMG54WtMRqJdMsNNuFOlUzWd5GCaHS6kwqlbobc8s7xPwXovmuP+bt108BAo6Pt+br18h5cxcM/C9J9gbFaDu2yNtgHZKZOc+ev/IpY7JNeLfB4qgzobVGk/AatsH82ha6v09uM3xIK0j22NogrF6BfWbI5/rWdmBjlvWikHi1kXv3W2wjABDe1d+trkO9fTKEzAAAIABJREFUIEaLtQG9Pq7l7b3mZard9uEJNcLJQchEQ7rX1Nra7gzS1QestnQRckWrOeQHkyKA4yjv/tCbL8t5SmXel0r32T1p8cvStbKafSOyi2zFaDFBTJsqV5+oWMT5qezTJ9/bvLguP/dl63eatzu3DmicOvAbT/Yx/KVhihqQ37WNYvLYaXNGvi4hJGdQjEYIIYQQQgghZNzgahd9uteY50eWkgvCATnQidIN/0gClXCOBCqkdJEEhcUsQgJkOcCgRFCq/0FlmYWUFBy/16JCyiB8ycQChRO1iWXwUU4/ArdcCdbGCttv0ZPSz+gR+hwRSz/Fi0jA/P1KMtNB+txeaLjmbTqVObmu9wpte+q5ZPtdKa8lZDg7E+aX/HUhj9EkpGRZ3vEUulzzwIOltadA2QKKSFEgnd+tiR3Q0gizUSKLXIu3L0YIIYQQQgghhBBCCCEABmRIEid8wJisjn9/ngqTW1RFtZy5Zf3Qn5KE7FO3azz9Vv6ERFHLWNV6r7HuwoBmAMCRJ+3+u0oQoyWEd9jhsZ9sbjygTjh/2OdTOh8Ul9UaiOZv7hYAshhtvmmuqFjUvPC0uVDpIjRJZgVk1CG9WdjuTEqOAABLz7aK5s6reEHMW7M1HwXajVR/Gv16e2JRMUsNSs1EMdouwV5KmzyMyhqoqkk+C1J6qPdcYF9gq/l7ff9h8jvvnz6S3XVve+eAuMbEoMjBb7kAsM3IF4tPFbP0hjU4ak+g2jJnu63PMpZorT2vse9v/6t9gcG+T9UkNMaj4mLrfFzLpXOhMj2ewEtqSMhEQYqxcl0ctxCYZrldG8TPuTda2gQxWq3fEOWtG+S8d564uz80iNS36WwdHtcUixoXU5SIkl3Y4xiH9+l0vB9o3mhetAT6X8qnGO30zvvEvCvu1HmRnrcIYf9zU2TG9T7uzeqnAPrvvxxdYSprRrc+ISQnUIxGCCGEEEIIIWTc0K+Ft2MAyh3L28ccUq7CUDA/LJUkJSQTSbISoRiNjBJ58H1xi9EkmdOgRDChE8Z86XwhY4NfyUMhRX02oecgxSAO9CP08iV587XM2B+vhO23GGwPkjqBuO43LjOaY5P27SVGs+VHAvJ1Pe7zuq619iWCk8RuAOW1hKTSk+wWz4m6oB8xmvleSCO/M3KTseWJ1vuN6RGnAofXLC1wachIqA2aI4H6dR+63c687FMSotuu2YQQQgghhBBCCCGEEFIUKHmolVp8CnDR13cnOA7U538Ctc+iAhQsN6iv/86c0bINum/g2W7DFHkw8THXufjri/l5NxTdYd7ujBqgotxjopZY1Jy+18FQkZRn09kKhSJ8ru2LY84E6vcZ+lilu3D3hveKi69tzl9RWru1OJC60VC3dSxqXtg0UNwi8kIyLb4rm+2WIKpuOtS3bxPzr0z8Ssy77XmNpJtPSaN52w2S1CoF3dcD7IgZ89RXbt79IRAwb2CwHm0RZI8zKA+ysuQsa7ZuM9tkPna0/Nv+7BGN791nnjTShCTWA4BGKSwjFpVXKgExx1igKmuA+oXmzAduhaNdPPIFuU/4zbv914lC0twBdJtDCwEAVzVfjfd0PWzdhgrvismrrsO8uCw3stX1QaSyVKbHHLKek1JBkDbpVc+jLKjwj8sdTPG4/Vgn3DPlklahLz3J51yI+gefEvPUFQZJkSSvjvcD/b0D29Sa/WsyOtInD922ITNtkJkNeS/OmOPzvKl12zA9YTZT9yWAM29wEU/ktl1qleSMKW2Qn3uz+jX3A3+9QcxXn77euzDh4h13QkgpQTEaIYQQQgghhJBxQ58wqBYAyn3KaEaLUkqUrlC64Z+epCA4cSoRGqVAhZQ2fuQ5xYgkM+pJdsHVSWiYgygoRisu/EqpCiXzBLylZyFVhoCyzGZbIPx8d/4kb94BycXcHgRUECFVZswbFJDZRKyjkdxJ3510zU4vl4kKp3LUwtO47oeLpDEvtd6UqXLKawnxQUtCjkqcHPIWo9ln1CMTkWjPGqzvfcuYd+Sk4wraryEjRxKjAUBLPD9TyUp9BL8yYUIIIYQQQgghhBBCCBkzHMtQq0AQzn99C+r/bYa64RGoe7dAvfeywpUtF+z3Tjlvl4inXn6sDAD41t3uwMD0HBMVHlk3eJQHgCgRUqd9dHhCdV12hSrnc20/KKWgrvzTsLTTOh/A1ITZgLZWEE/lgqylRLGoeeHZjZlpAUuMTSItDkLaLsUNQ6glZ0Fd8k1jXtWW1fjx+fL76YdW5atUQJPQFolSq1QkoRkAHLB4999SXdolRtPSdmZSjGbDM6YhZv5eHUfh8AZ5te/dp9He46/dkiSf4dCA6NOI9HtPngnF61DeUGf+l5z54iM4rEHhgDnm7KfeAhLJ4ptE0HYNfLXq0/jG9u8LEXYp7KpzqmoSwroPs+ObhX15H39Xnzm9UqfE80WqgEl+OnuETACk69Q/fwsAWLxAYdP1Dp7+snxPKt0z5ZI2H1IiCd1qaYiOOw9q+tzMdEmMBgAdrQP/t24HeoR4ZVO/nZQu0nmW/gxD6BcCKI0+9yz/582lLYJgH8BDrwNPrMlFgXYjyRnrKnf/tn7uzeqXGUSMg+x1ELC3j0kOwpTlE1IMjP2IN0IIIYQQQgghxCe9VjFaISUzlUbBhq18E4UX2pfh2bZHRKFCVaAGB1a9E8fVnYmAEma0gyyRCzsRaNcsgPIrUCGlja1uFTOSzKjX7UFCJ4x5AMVoxYYfcVfYicCxtI+5xks45kckVgj8CL38nMd+RKl+BXZjRcSpQDyZOVXiYD+j1yIqG5UYLSCI0SziM2BA4CgRtghP/V7X/YrgHOUg7ESEPhrFaIQM0hI3DzxQUFZxkid5GPhCioMnWu8X85bUnlLAkpDRMCk4GQqOUbjcmtiOuWjI+T6lZySj6a8QQgghhBBCCCGEEEJIQbBJVXZJ09SkKcBBRxeoQDlm+h5y3pb1QP1CzJ9m38QbW4ENO4F5OXZYrBPFaHaFh07EgeaN5syZ9cM/V03KrlCR4oirGBcYhAT79q3Gk8HMCrXW4ksYLZIUJhQA5pi8eJubjMsrk8DMJkZLpsV4xaL+t1vKNOxrTt+yDo1T5PfQD7+ucfL+uZ/YS2uNqFCHfInRYlFzulLD2yOpLg3Gz26PmfNnWNpwMsDJHwEe+JM5LxYVV5s/VeGFqLnOdfcDzzcBJ77De/dSG9QwRRa3aUnMMavenE5yw5z5YpZe/hjUEe/BntOBVzeZl3k9Bhxg8PuMJc83metwJAQs3PaUv42Ed73Trx24fjfEo9gcmp2xmE3CNkhXZhgkAKAiNZ5vVgMnaiSlQ5k85klrDaUUyoIK71oAXLRY4ZZnMs/p9YKAM1ckkho7hLDgSREf5+orT8t5Uj+42kOMNnUWsEPoGwGZ93yktFHKHM+aniaJaeumQ5XCc4DZDb4XbYxHrflPvKlxwjtydy1v7Ta3c5NShonMn6oA2NvDhs435Mw5C4Cgj7FYpVAXCBkHWKYxIYQQQgghhBBCios+t1fMK6T0SNqXTQwyEVjWcj9+H/sRVnevxNb+TcZ/b/e8jn80/wF/3nqTdVuSoCQSqBRFTxSjET9IAp1ikT9JSEKtHrfLWveDivMeFBN+rkWFlnJ5lalYpIF+vhc/53HICXkKA4tdjCaVb7CfYROF+ZHzSUiSEtv+bPkhVWb9Pfxe121Ss/T6K353FKMRMoQkOK4J1iHgo18hhS5QizYx6Uy0Y3mHOTB2YcVBmFEmTI1Mio6ACmBS0DTSB2hJ5GcqWVlaXdx9MUIIIYQQQgghhBBCCEHAMtmZM/6HYanyMDBlljlz63oAwMn7eQ9oXbczl6UaILrd/Nap3ktGtG3jbplQOumD76vNz8slVLi4Y46KCVVZk5E2XxhA/eOHtPh7j5YmqR5NAQLO8LqttZZFSQZxg3IcuR1IEaPpzjago8W8nEEgV9JIgoz+Prx72jZxtX8L8p/RsrUd6BFCWhqn+hjsH4ua06fOhior3/3ZEa41g/Woo9WcX+thriRQx5whZ66X5QinH2Tf7idudXHXSxrtPfa6J8mirGK9WNScTtFLflm0VM6LRQEApx0gn/ePrC6+aJnH3zCXadE8QEkCvnQG+z6HHw9AlqH4uY53C2K0ytTJWrMQsxAy7olUyXmtwy8gDcJ14+6VQDyRv/ZnYwuQFG6t9pjsYwOxqJiljjrNnGETo3Xu6hNJfSMAqPVjryUlgyjbHH7e6FjUvFiJ9L9URbXvZU/qegiOTor5b8Ry2ya1CmH/dSlhh8cv9N5OfXy9mKeOOs2fGC3MWEdCioHx/0SeEEIIIYQQQkjJ0Ov2iHnlBRWjmR9s2co33om7cdyz/Xbfyz/d9hC29gtTZEEWlISdCEKqzFwGitGID3qTct0qZiQhUa/bg4ROGPMAeAqgSGEpV2EoURkzgPRb5wsv8UQkUBwBvBEfQi+/57HXd1zo3yBbJLnZYD/DJvkazbFJ4rkeoV0dpFsQww5uT2qn4q6/67pt/+nHK7alHsdASCmxM26OwK0L+g0O4gytpcQzbQ+LIssltacUuDRktEjneasgTBwNrnbFZyTFfm9GCCGEEEIIIYQQQgghUJahVra88cTMecZkfet1A9mTFK460/5e6A/P5n4wflSYy6NhiseKWyyij7RBzapqUnaF4iDYrFCf/P6wz43xJnHZfb/l4s7lua9HX7rTvM1GUz1q3wl0d5g3JAm7pMHTyZT3arGoUDpQAJOO9D0DqF5+H+YKLsOn3gKeW5v7+iNJrQAPsdUu9J+uM2ekCxYCwsRlQ2I0s1hP2cQhZIDFpwIGUSMAoH0n9PbNxqxzD1E4/UB5s03bgff+0sVh17hY2yzXPUkW1SCI9bTWwCN/MW+sRMQcY4WqqJZlsY//Hdp1ccERcn/oC3/RuPU5wR40BiRdjcfXmPPePa8L6JcnqB/Grr6PmjITANDQb+5n3bkCcF17O9zVZ06vSI2BZD0nJYS64kY5c/mjwz7WWyRkZ9zgorM3P3I06Z4M8HFfBkDb7s32P9KcXhYGQuYxREN9Ikk6HKmC8iM3IiWEcO3WaeeMJAydVTrXJXXJN30tNyuxBdds+5aYf+cK4Jm3c9cmSWK02pTHM5Mq1LDP6Vw2/QU52vnIk4Bj3wcEhXYnFcryCSkKJsgTeUIIIYQQQgghpUCfa34hF1JlCCjLTJ05RpK32EQl451VXSvQ5QoBQALL258S83qF7yriVCCozAEf0oB8QlKRzsNikT9JSPKqHrfbWvel84WMDUopT1Gnl6gs13iJsopFTOHne/Er/fLaVqF/g2yRRYndw/5PZ6A/NPI2Qe7fmMVnXvmD2ws65oADv9d16XiBTDGurS0lhAzQIgiQ/IvRJIpvFlwyOlydxLLW+415dcGpOKDq8AKXiIyW2qA5OrFFECaOBun5DVD8fTFCCCGEEEIIIYQQQgiBYxlqZcsbT8wwi9EQWwfdM/AO+Fun24/1d0/pAZlLjuiLa2xuM+c1TPGYvEca0DxpKlRF1fC0qiylQpHijjkqOo5937CP8/tlMVpfAvj4n1z0xnNXj7a2y9sySoliUXljksBMElolUia/3CwcdzAETJ0j77MUqZkMVFQbs/T1l+Pqs+Tz/1O3515I1CRIrSrLgalVxqwhdHcn0CxMKJwugJPqkZsc+L9TaBCrBVMcGUIFQ1A3Pynm659fYUwvDyn8/TIHVeX27b+1Dfjm3RYxmiCUEcV6K+VYa1VCYo6xQl16lZy5/FGEQwpH7ykvctltGh15khNly8oNskjk3bUb/G+ofHdMnvr4d9EQlyVHj66WN5N0NfqEeaEr9O6CKosgk5AJx4IDxCx99UeHfa633AP9axXw+2fy0/ZIfaHJlUBNxMekqrGoOf20i6GUeX2llNzHGewTiX0jSmNJGkI9yxCjSRK/UhJ2Lj3H96Jf2vljHD1TOA8BXH6bm7NnRC1Cf6YuLezws8fLbdJHYY59RXkE6tq/QZVHgKCPcRd8JkRIUTBBnsgTQgghhBBCCCkFpIG15U64oOWQBvHaxB3jnRc6lmW9zvIO88v6uNuPhDa/6Yw4lQiq0QlUSOmS1En0a/P0YsUif5KQREg9yS4PMRpnOCo2vOqaX7lXrii28kj4OUfDgrgr221Firw98JJ79SRluehoqHDML+7iuh9xV26HRCHlru2FRnldl7YfdiJw0mZjl+RuE7mPRki2SGK0ySF/YjQlzKGmKUabcPynazl2JpqNecfUnlRQOTnJDXUhQYyWsEz1OkJsYlXpek0IIYQQQgghhBBCCCFFg7KJ0SbI83GbaGX5o0N/VnuE5a3ekqPyAFi/M3Oc8iAN5kfcQ2hpQLPpOLOVCpXzuXZWTJ0zIP/aRWNcFqMBAwOel63J3e7vfUV+bzl/miExFjUvXFYOTJ5pzpOEVsmUmMjmjeZlZuwBFZgg7UiOUEplSsNSaKg2xwMCwIr1wIaduX1X3STMKdQ4BaLMY4iU9jOD9GOURJuD9aijxZxP+Yc/ZjbIeW++LGYFAwqfOs5b+nLXSxqum1n3XFeLYjRJ8qmX3S3vqJTEHGOFpf0Z/G32nC7Xia4+4OHXc12okbFivbk9LAsCi9Vr/jeUKpWd1YCGeFRc9B8vy21wd7+8i8rUeD6K0UgJoZQC6heaM7WGTiaHPnrdA931Un7i9TYIXRCv8gwRixqTlSQdHqRqkjm9s3Xgf6lvJK1HSpdRitFKStg5U5DmC5wwPSbmvbJRFgRnS1uPOX1SmpzxwLlyH61x+wpzxrmfhBp8ZhH0HoulwhSjEVIMUIxGCCGEEEIIIWTc0Oean26VF1hwIgqMJqh0o9ftwaudL2S9Xqx/Azb3ZT4stslJwoEIQk6ZMS/uWt6QEgJ73YoIwp9iQRI+9bo9HmI0H7OUkILiJacKBwp7zfKSiUkSrkITUEGUKft0m34Fh5GA/XwPe+SPNZK4bbCNk9q60f6WYUs72WuRm/QkzXmDorXRCk+zOV4vqRwhBGiJm0VXdUF/YjQIYjQy8VjWYp4xL6iCOGrSiQUuDckF0nnemgcxWq/w/AYonv4nIYQQQgghhBBCCCGEiNjENzZp2jhCHXS0nLl5t8jq8nfb3w29tS1XJbIPoK33GoQfi5rTZxgG+VZnOXA+UtwxBsWGCgSAxO54gIN6X0VNss26ztrtuZM6vGV+HQoAWLKXoT5vFsRtM+uhJHFVQBg8nSpG6xbiLCb5fS9bYsxuFLMOKVtnbZbftvzmI6FJaIsa/fx0m94Ws9TBae2uRbCn+3qBfvNE0qiiGM0Pqtxi9tweg1751MA/gxBj6d7ecRE9cWBLe2Z6rA3oN88bLdehzWvlHb3jcM+ykFGy8FA5b9PAb7N0b/sm1jYXx2SCawWx48Fzgcg2Sz1LJVQG7HPI7s+zGnBYryAWgf3Yu2SvJSpT4xFLSUBDCABMEeS7ALB909Cf8ybb74Ny3QcapEXoxs6s8V5Xay3fm3md61Ifp2NAjKY7hXuKbMXXZOIj3jzsvmbp/j5g+2bzYjaR/ARDVVRntXyta+gAp/B2jp4RdQp9iJq0IRbH7gOEDbfn+80GJsdeMW5jmPjOhxgNEcY6ElIMTIwn8oQQQgghhBBCSgJRjKY8pqbMMdIg3t7kxJRurOx4HnFtlpKdNPl9OG/6x6AEQcKL7U9lpNnkJBGnUhQ9JbQQLUDILqzSvQILFLNFFi52Weu+JBwiY4eX6KHQkj4vUVvEQ5xWSGzfXUiV+a7vXue7JB4rFiRBWc+ufoZ0HfWS4Hlhqwu2a3ePIE0bLM9oxWjSvk11W6rvtusDIaWEq120CAKkupBpenT/FEeIJ8kV2/o3Y1X3S8a8RVVHoTrIYPvxSG3QHC3ZEt8+EJiYQ+zS6uLpfxJCCCGEEEIIIYQQQkjWSKKk8cbh8iQo+om7hv7++BKFMsucfWf9wsXydbl5xhzdYd7OjBogUuYhqTGIbQCYB99nO3A+zOfa2aI+dtXQ3xW6B1fs+KF1+X++nLv3FFFBCgMAR87PTNOxqHlhm7hBElqlCOF0r2CUYH0yklpn0qluieJbp8ttwEd+6+b0XVdUEPU1TPWWZen7b5UzDzl2+OegJEZLAh0t8nYo//DPh75kTu/phP7U8QP/ztsb7ieWQO/YMpR9wr7AUQu8N3/VPZl1ZeVGeXlRjBaLiuso/t55R1VUy23zrv7FuYcq7Ddb3saX7tSIJ8Y+cubXy8xlmD9NQd/3B38bef9nhktSZtWj2u1ERIgBePA1eVPdlvnQK3TK9ihGIyWG+u+r5cw3dsdrOY7CN0+T+x/rdwK98dy3Pa1CyE9dpY8JVVu3Az1CP9jrXK82x6PpzgExmtg/qspSfE1KAKGupt4zbF0//HMqM0tHjAYAOPO/fC9am2y15r/nJy7e3Dq6dime0IgnzXkVZWnlqVD4/AnDf29HAd84sQ9q5xYYSW2LnIB3gcKU5RNSDEyQJ/KEEEIIIYQQQkqBXkGMVmjhkbQ/mzRkPPNix5PG9JpALc6YegGOrTsdCyLvMC6zvOOpjKATuxitYtQCFVK69FjkhIWWUWWLKFx0e6x1n2K04sPrmlT4a5Y9oNIrv5DYxFzZfG/j6ZhNRALmYx0UjEiikdFKRios7WR3UghUgCxGG9yeJDyN+7yuS+JZ0+8o/ba26wMhpURnsl3sV9QF/c1MLoc3jX2AJ8kdT7Y+IOYtrTulgCUhuaQ2ZD7P+3WfeD0fKdLzGwcOQqrMmEcIIYQQQgghhBBCCCFFg02woybGMCwVDALHv9+c+crT0PEBk0XDVIXVV9uP+bSfuejPgQxEElo1mOf9GE4sakxWsxsyE7MdOB8p7pijouT0i4d9/MqOH+C2TReKiz/wGnImlFnbbN7OF9+joJThbWcsat6QTdwQFOK1kimTX/YKcQoUoxlR8/eTM2NRXHmG3A5tagX+79+5e1/dJLRFotRqF7qzDVj7H3PmKRdCpYs1pUH4yQTQYREOCNIQkok65+P+FnzteehrdgshAo7Cvz7v4OqzFE7cV17tN09qrNwwvO6d/nPXuGxNGKgznP5aayBmlnuqb97iWXSSG9TXfmvO2LIO2nVRWa7w5BX2/tD1/xrbuJmt7Ro7hNf+9dW9wKa18sqHvBtYchbUV38N9fHvDs+rnQaEK/D7zZeKqz+8ynzsXX3yLisHYyBrJkNV1sgLEjIBUfsdIebprw+/R7vkaAf/+z45Yu/rd+VDjGbe5iQ/YdySsBrwlk1VCX2cwX5RZ1t265HSxXTfBwx/1jOaujrBUOd/1veyTp93jOHZN45OXN1lEatWGsIOv3u2wi0XK7x3EXDhuxQe/JyD8575H3kjqff6kvQ8FYrRCCkKJsYTeUIIIYQQQgghJUGf7jWmlzvhgpYjEjA/2JIG/o5nOhJteL3rJWPeIdVHw1EDwRmHVR9tXKY5HsOGvuEvUyXBCTDwW0qip7i2POEkBLIsCADCgmioWJCERn1uD+KuXPcDgnCIjB1e0q1CS/q8hGKjlWnlEtt3l8335nVMxXTMJmyiREAWjI72uMqdCJSgPLK1r5J0bPA4JPmJX+FpNscryfUmYh+NkJHQkpCnR68ThEmk9Oh3+/BM2yPGvD3K56MxvE+BS0RyRV1QHjm2My63DyNB6juEnQrzoCNCCCGEEEIIIYQQQggZL6SLbcYxqn6hnPnvh4b+bJiqcNFi+dnutg7g4ddHX551O8zpjVPtz5V1vB9o3mTONA1oznbgPAfBZk/ddKCsfFjS+e134ivbrxNXeeyN3Ox63U5z+j4zhBU2NxmTlU2MFhCEVomUOIheYcA465PMgUcZk/UuadS5h8ir3v58bqQgrquxQahDXm0RnntQzFKNBruWNAg/mQA6bWK0Ons5yG6mzvYnOwCAFx+Bbtk29DFSpvCN0xw8+PkADpgjr3ZbSt2zSUIbpsL8nrRtB9DTaV7J1g6R3GISqQJAvB/YEQMA1FYofO8cuR24LUft0Ei5Z6Wl/u18WcxTn7oOzk8fhHPNX6BOvTCjniqlgFkNaIjLApnbBTmlVWwyOHkb6zkpVfY6WMzSPcP7kZctldse27k/UlqEcOE6P93YWNScXhYGpsy0rysJrAf7RVL/iNJYko4vMdp68zKTZ0CVF/e4o5wzw78IrqpfuFlK4fUY8JLw9frBKlYtz0xTSuHCdzm487IAbrnYwfH7KvneTClgxrzdn/3cK0SKe9wJIaXCxHkiTwghhBBCCCFkwiNJLQotRpMkMz2u9+wH442XOp6BC/MMZofXLBn6e1H1u6CExwzLO54a9lkSnISdCBwVsAhUEsZ0QgaR6lZIlYnCvWJBEi5qaHS5HcY8BwE4E2Qm4omEl4jMKz/XeMmyvERuhcRW1my+N69jKnS/IVuk72GwnyEJRkf7WzrKGVEfR8qr2NWuSe2vXzGaKFYxSNCk72Ai9tEIGQktgvgoqIKoDgiBRWlIQiONsQ3wJLnjhfZlYru5pPYUSq3GMZOCk8X79laLOHEkyOLUEgscI4QQQgghhBBCCCGETDwcQYg0Htn7IDlv/XBL1aJ5wnK7WL1l9O+KojvM26iX5/0YYNuG4QOcU5nZkJlW6e+92BDlxR1jUIwoxwECmbECi3plMcvrOahDWmtsF/xCc+sy33Fp1wW2CiO2Z8+XdxQU4tCSKfGNvcIEbuHiidMpOkwiQwDYMiDjWVQvv6dcvSU3RWjrARLmcFnM9fKRbZGlQUb5iW0QfrtgigyGgFITNYwCFQgACw7wt7DWwIY3jVmHzJPr3hspbdcOof0BgFrpZ4tF5ZUojCoctu86tvvcXmSpC29uBZLu2MXORIVmAwAW9ayQM/de5L3xWQ1Y2CcbTLe0mY+72yJGC+vegT+mzfbePyETkVkWEVEsOuxjVVhue6S+72hoFbqx4rUslVjUnD5SP1xEAAAgAElEQVSr3jvmTJK/drQO/z+dbMXXZOLjR4zWLgi+pszKfXmKHJXFM4/FyVfg+AgfHc0zIqtY1SBGS0drLf++WkOlStz9iNEqqr2XIYTkHY6cJCTHmDrnWnrJQggh4wTXzXy7wwFwhBBCxoI+t9eYXuiBtZJ0QxK3jWde7HjSmD41NAMN4b2GPlcHa7FPhTmAYHn7U8Pui6RB9oPfa1CZHy5quEjqpK9yk9JElOeMg8H3tjJ2JNqM6aEil72VKuGAhxjNIHPKJ16yLC9xWiGxnQfZfG+2YypXYTiquAPVvfoZkgQykoO6FXHMksbupCwWk/IGtzV6MZq5f2X6naXffiL20QgZCTsTzcb02uCULGSrUtDIyMpEigutNZa13m/MiziVw+TYZPwRUAFMCpqDCFsTlijpESDdm0lCaEIIIYQQQrKFMXqEkIkG4/MIIWQc4UygYVhHnCRm6Ru/OqyP/cHDFWotr6T/568a37/fHVW/XBJ6NHiJ0WJROc8gHFDBYHYDWykhGhmnXpiRdFqn+T0UADzz1uh32dkHJAWpVZ2p/m7fDMSFUdc2SY40eDqREgfRZ35XQjGaBUkQ8tjfAAAfOVLuH6/dDhx8dRJrm0f3bEASgQBCHUpBd7TImYe8OzPNJtpsFSY1qq7jfUKWqHM+7n/h6Gpj8qVL5O/8nleAj/7ORVu3ttafTx+X2X/Qz94P/d9HmVcoCwNTZlqLS3JIdZ3YN9D3/XHo7xP2lTeRcIGNlmYg37QKlx0AOLTtWTnzoKO9Nz6zHlVajh+U6n5Xnzm9wu2CMxhoVOVlnSRkYqLO/5yYpx/5S0baewWHYWs38OrG3L4bkdoT2/3gIHrlU+YMH7JPVSUIrNe8NPB/p1mMpqopRiPpSH233eeKlkR7pVqf3nOBr8Wm9mzEOT6cqh/+rcbPHhnZMyKp/wAAlWU+NtDaDPQKDdnJHxn+2Y8YrXqyj50SQvLNBHoiT0hx4BhedMXj/gb5EUJIsZJIJDLSTO0dIYQQkm/6BKlFeYGlR5J0o8/tgauFyJpxyM54M97qWWXMO6x6SUaAxaHV5pejOxPNiPauGfrsJTiRBCqAf4kKKU16ksLge0H0U0zYytiZbDem284VMnYUm4jM6xpZaFGbDdt3l833livB2lghHWtPshtaa4sEMgdiNEFWIu3Tlje4LUl4mtCZzxpMSCI40/FK30GPRexGSCnREjcHT9cFpxW4JKRYaep9Axv61hrz3jXpeJQ5PqbcI0VNbdA8eqwlIQyuGCHy9ZuDxwghhBBCSG5gjB4hZKLB+DxCCBlH+J5spvhRwRCw+FR5gT//eOjPqdUKT11hP/av/UPje/eNbFB+b1xjszAuuWGqhwQots6cXjcdSpJQVWUx2Lks7H9ZMoT66Ncy0sK6D8d3PmJc/q/LNeKJUUqtLFKYOlM4RCwqrzC7Qc4LCjFbyZQ+XY8Qp0AxmoiaKYjRAOiNb2FuncLvL5Lbg1c2Akde66Kzd+T1yFaHPGUggqwDBx0NZerb2wbhi2K0EhU1jAJ1+sVQX/gZUL+P57L6+suN6YsXKHzoCLnu/ek5jTNucNFiqT+nps07rV95Bvqr75NXmFVPCV4BUUrJ0p57fw/91isAgICj8PrVcn/oi38ZuzEEUvt19sGA2hI1Z575X+b2KQ2167v5wdYrjPktwiWvq8/cHlekxhNUCyIkQiY46sDFcuYfvw+9/o1hST96v3yuHnS1i57+3MnRpOtZXYX9uqT7+4BnBRGyDzEaqgVRYmcbdHcnIImssrm3I6WB1IdKlXR1tZmXKdH+tvrEd/0t2NGKP17i4ONLvfupn7tD48bHcyxG8xO+ujkqZqnLrhme4EuMVpp1gpBiY+I8kSekSFBKoaxsuHK0s7NzjEpDCCG5Ib0dKysr40N2QgghY0Kf22tML7QYTZJuaGixjOOR5R3CjC0ADqs5JiPt4Ooj4cA8i13qtiQ5SXhIjCZP4xDXwgyNhECW7o2Hwfe2MnYkzS9eJNkQGVu85FS5kFdlQ8gJWSV6hRa12YhYpGXZfG+27RTT8UpIx5pEAgkdl0VkuRCjCdvodmWxmJQ3KHyU6p/fa3qvKL3MLKsor9W9cHXS1/4ImchI4qO60FTf25Dn0svtzJNkbHiiRQhOA7Ck9uQCloTkizpJjBbfkdP9yPdmxd8XI4QQQggh4wPG6BFCJhqMzyOEkHHEBBNXqgOPEvP0P24a9vkdsxWuOcd+fbrxcQ2ts39vtH6nnNdgfrQ9hN4iiNEskqWsBrZSjDYyaqcaJWBLuuWYxPv+M7pd2qREtabQrFjUvHDVJChJzADIg6dTxWh95ncloqyPWM9Zfc/vAADnLLK3Qds7gb+tGPm7a1sdmuQVgijJOvbY25xuGYSv24R3d7Z6SUTUOR+Hc+srUI93Qz3eDRxzpris3rbRmH75u+1176m3gGVrzHWvLAiE08Kn9D9/AyQtsUx+BDIkt1i+c33Pb4f+3memQp3QlP/9pRyXKQtau831r2GqEgUhat/D/W18diMAYJoQd9RqvuShWwgPrEyJf7RebwmZ6Njuxe79w7DPc+qAoOVW9J8rcxO7l3Q1OoThUJ6S2GfuE7OULzGa5R5t2V2yhLaKgkWShh8xWqcgRqss0fo0ZZYsAE+lsxWRMoVffshB8mYHnzrO+xlRtnQJ/YegA5QFfbwziUXN6eEKoG768DRfYjT2VQgpBibWE3lCioTq6uphn9vb20f0cocQQooBrTXa29uHpaW3c4QQQkihkAbWljuFDT6yCVckWcl45IX2Zcb0OeUNmF0+LyO9MlCNfSsPNq6zouMZuHpgJizpdxyUmYQc+YFqQmfOlE3IID2SnMdyzhYLIVWGAMwP1jsFMVqAYrSiJOIh4hsLMZdtn8Ukp7CVJRvBoX07xXO8EuGAfKy9bjd6hL5GLo5N2kaPICeLu/1I6Lgxb/d13Sw8Tbjm9TL2LR2voW03pQ0i9T8IKSVa4oIYLehfjCap0ShGG/90JFrxUufTxrx3VCzC9LLZBS4RyQeSCFESJ46UfIpcCSGEEEIIGYQxeoSQiQLj8wghZJzhmCeNHLfU7yPnxdZBd7QMS9p3pn0QaqwN2CKML7YRtTymnjfZY+VY1JxuG3xflYUYrbz4J2QsRpRSRiHUvv2rxXVWrB/dPV2LPOebWWITi5oX9hI3SAPGEymxjT1CYShGk5knCMQA4O1XAQA1EYXZHqfvzctGXo9ahfDfmjAQcDwG4UuyDknyEbBcT1qFRjEbqSPJQAUCUIEAMM9y7XvrFWOyl6QTAB5/w1z3aiPIFF+v8TBo2cpI8oOtT7Tm5WEfp1bJi3b2js3zSUlOVhvsB9qENsWvgG/XcrWuuZ2T2k5JbFKpU66RFBqRUkaSpwIZ14mAo7D3DHnxFetzU6ROQYoGeEtite3aZuvnDTIjc3zS0LZff0HuX1NaRNLxJUajaC8V5TjA9LneC6YI5ZRSWDjTvvjrMaCnP7u+UVefOb2y3OcGYlFz+sz6zD657Z4MGLj3j1T63DEhJJ9QjEZIHkgPSIjH49i0aRMDrwgh4w6tNTZt2oR4fPhg5ZqamjEqESGEkFKnzzU/ac9GlpILbOKRiSLdiPVtwMa+JmPe4dVLxPUOrT7amN6a2IG1Pa8DkOVVgzKToEX25FeiQkoT6fwbDyIkpZQocOtItBvTg8rHrCyk4HjVt7Goj7Z9FpOcwlaWiOP/pVKuBGtjhe1Ye9xu9CbtgtHRUBEw77tXuHZL0rLUbUltlV/ZaTZiFdt3MFH6aISMBkl8NDk0rcAlIcXI020PiW3zkrpTClwaki9qg+aI/daEMOv8CJGu3+OhL0YIIYQQQsYPjNEjhEwEGJ9HCCHjEGeCDcM6/ER7/ubosI8n7y8IplL43v3Z98mjO8zrzKwBImUeMqLYOnP6rHp5Hb9yIaVkCRbxRJ14fkbaKZ0Pist/5/9p7OwahdRKCAuoLAeCSELf8VO4Xz4H7iePg/vJ46B/9x3zCl6imIAQ35hMedfWJ8RTUIwmomwD8Z//19D9/gffaW8Tnls78jK0dAtiKz8/W4dZrqAkEaNUjwBZYpSN1JGIqBM/IObpG78CnUxmpM/04ciQpDTp102dSABNq6zbspWR5Ad1guU7T+sPnXGQ3A5Fc/vq3TctwmWnLrFTXsmvGG3mQJ+qNmlu5/oSZumJJDapSI3jo9CIlDCmvvIQLz4K7brDki44Qm57rn9Q44o7XWxqGd37EUloCACV5jmSdxOLynle950AsPBQOe9Ns7gUAMWxxIDHMwQA6DSPzxH77qXATMszlEHS5PnnHqIQ8nCLZds36uozt2N+xWh6nSBjN/R7lFJ2OVp1XaZMjRAyJlieoBBCRko4HEYoFBoWqNDR0YG3334bNTU1qKqqQjAYhDPRXooRQiYErusikUigs7MT7e3tGUFXoVAI5eV+9cqEEEJIbukThBblTrig5bBJNyTp13jjxY4nxbxDa8zyMwA4qOqdCKqgcUD98o6nsWfFfqJEZfB7DSr5rUlcW962kJJHOv+KSfxkI+xE0JnMfMliSgMoRitWyj1kD5IAL5/YBBQRQYQ1FuRKaJYrwdpYYTvWHrfbUzA6GqTvp1sUo8n9nrBjF54mkYCrXTjK/oxU6jeYvidbHRooK+VPpHRJ6gTahGDHOkGUZEKJQSMcdD6eSeoknmw1D0KZHJyG/SstgWdkXFEXnGpMb43vgNY6Z4E8ksh1PEirCSGEEELI+IExeoSQ8Qrj8wghZJwzwQZEqvIw8MsnoC9baszXv7kK6vq7hz6HQwr3fsbBe290scUczoJfPKYxtcrFlWf474tLA2UbzI+1h7PFLEZTtkG9fgc7l4U5CHY0nPdpYMObwD2/G0qK6F4s7n4Gz1QsNq5y9P+6eO6rDmoi2X/votQqAuhvfgB46h5/G/ISxQiyPJ2I736b2itY2sLFH7cylqhPXQd9wxXGPH3zN6A+cQ2+fYbCD/9lfz/9i8dcfPLY7J8HtEpiIT+vuDrNwiBR1mEbgN8qiNEo/sgJasH+coTDujegr7kE6lt/GL6Oj2vB9k5zerpYT3/ePjGZ+tKNUDY5DMkLas8DoE/8APDQnzMzd26B7u2G2iW3/O7ZCj96yFyLvnefxu2XFr7vILVfk16615zhOIBNSJmCqq6FrqpFXb/Qzu3afyQt/L9bCPmvSI05rPJhHSRkgqIOPRb6oGOAleZxO/q6y6G+ctPQ5/95j8I37pL7QD/4l8YdL2g8+1UHs2tH1g5JQkPAh5QoFjWnH3osVJn3s07lONDHvx945C+ZmW+tlFdkO0LSkfptqRMriX33Eq5PM+Z5L9PXA93fN3ROT69RuPuTDs69yRWv+//7gMYtF/tvkyRBo6ecERgQHD94mzlTus8PBAGDGBkA778IKSIoRiMkDyilMHv2bKxfv37YDJTxeBw7duzAjh1jpH4nhJBRMti+8QUvIYSQsaLP7TWmZyNLyQUhVQYHAbjIfPjVK8jbxhNaa7zYvsyYtyCyL6aEpovrRgKVeEflIXil898ZeSs6nsa50/9L/I4GB0iHLLKnhI6LeYR41a1iRxISdSTbjOmSbIiMLRGPa9JY1EdpnwoKZap4BtZYxWhZSL/s2ylsn2Ek2Po17YlWuHCNebmQQErtUE/SHDnVk5TFaBWBKgB2iWNCx6110NWuKMY1ldX2HUiCFkJKhdbETmghtHdyaPTSQGrRxjf/6XwRLQlzcP2S2lPgKI9p/ci4oTZkHkHWp3vR43YNXb9HiyhEHwNJMCGEEEIImbgwRo8QMhFhfB4hhBQLljcfE1C8q/Y/EnrOfGDT2szM5x6Adl2olOM+cr7CxuscBD9hfncNDAzK/8KJGtVhf9e0dZIYbYp9fd3XC2zfbM60ya38DnYuK+yErRMNFQxBXfFLuK88Dax7Yyj9g+1/EcVoq7cAt/9b4xNLs+8PiVKrYA/wpE8pGgDlJUaThFbJlMlke4V4ijDflVg5SJ60F7f9APqCL6KiZjI+cLjCn1+Q2+rv3qvx38dohILZ1aNWIbQkXWxlpMMc4ycOpncs72DbJDFanY+CEF+c/GHggVvNeQ/9GfqjX4WqX5iTXaXWH/32f4CXzfHZAKD+usYu9iR5RV3yTWiTGA0AYuuAxn0BDIhi66eY+y9/fkHjto/lblIyv4hitJfvM2dM3wNKEH0amdWA2qat8v57gFlpzZ0oNtEphWW7Rkoc9bkfQV98uDnz3t9DX/w1qF2yorKgwq8vVLj0j3IfaEML8JunNL51+sjaIElsBAAVXlKiWNSYrI471/f+1ZEnQZvEaD1yrDLbEZKBLzGa0HevLGEx2kwfYjQA6GoDynaPKTx5f4XWnzoou8z8jOiPz2r8/iL/fSNJ0OgpZwSAFx8Ws8T7/EAQgLBTti+EFA0cPUlInqioqMC8efMyAq8IIWS8opTCvHnzUFHBl3GEEELGDkl6VK4KG4CklELEqUCX25GRZxOEAEBbYifW966FNkhNwk4EDeG9UeZ4P7FrTezEht61mFE2B9NCM0f8AtXVSWzsa0JrYudQWkt8O5rjW4zLH1Z9jOc2D6s+xihG60i24dGWe7Azvs243qDMxC5QSYh5qWit0RyPYUv/Rl/LD1ITqMUe4QUI+Bj43+/2Idq7JisZngMH88J7oiboPXNE3O1HtPdN9Lj2OpXOnPIGq7xupPS6PYj2rEG/tkwFNMZs7ze/dB8vg+8lGVJXMrOtAeznChk7vMRnYyEik86BsBOBo4onaNt2rnoJ51Kxyc9yIQ/LN44KoFyF0aczhbCrulaI6+VCuif9Bi2JZuO1fWNvk3F5BWeofxZScjREQsdRBvmc6HN7RZGTqc0MOWUIqqCxv/B698vGvpsfAiqI+vCeqArUjGh9QoqBlrgQOA2gLmgWJeWSpE5iQ+/baE/Ks8eamF1Wj6llM3JeHq01Yv3rsT1u7j9OD83GjLI5JTMA9YlWcyBsUIWweNIJBS4NySd1wSli3gvty1AniNOypS3lGUMq40VaTQghhBBCxg+M0SOETCQYn0cIIeOEInrHnlNm1pvFaACwJQrMnj8syXEUzjoIuHuleZWuPmDFOmDpPv52H91u7s/Xy4+1B9i6Xs6bJYtlVHWdv4l/yot/8rVxwT6HDhOjze8X6toulq0BPrE0+91saTen18XN7y1E5sy35weEmK14SlxdnxBTyDplZ3ajPf/1F4AjTsL5HmK0re3AG1uB/edkt/stgh+hzqOLruP9QLtgeJTEaAHLsN4287aUtC2SNWr2fPt1YOVTQJoY7ZPHKvziseyfP9VVpMQdWKRoiFQCM3wKKUh+mDFvQKZies4YaxoSowHA3FpZ7Lq1HZhZQK9Ke49GjzDveF2yxZwxLcsGcspM1L21Wsze0gbsO2t4miRYqkidaK2K7RopcbyEvK88A5y4+9qwYJqC1xSmy9aM/F2JJDQE7FIi3dcD7BTkiV7HmEq2clClgEhuJoEkEwgPMZp2XVlEXFW6YjQ1u9Hfc5IdW4G64ePVggGFI+cDzwm3+s0dwHSfIfiiWNVLzghAv/SknCnda9ruy0q4PhBSbFCMRkgeGQy82rx5M+Jx4ekCIYSMA0KhEGbPns2gK0IIIWNKQseRhFmKVZ6FLCVXhAMRo1xDkmQldRK3b70Rz7Y9Yt1uSJXh4llfwMHVR8rb2XIjnm3fvZ19Kg7Ax+d8TZQqSWzt34QbNn4bOwRRWToOHBxSbZ6pMZX9qw5DSJUhrjOfSP6j+RZxvUigEgAQVPLjCtM20+lJduGmTd/Dmz2veS5rYlKgDp+ceyXmhhvEZV7qeAa3xH7iqzwmjqk9GedP/29RSPRa53L8ZvP1RimOHw6qOgKXzPoiQo6Pp78+eK7tUdy25UbxHCx2xsvg+8FzIB2TSBEAgg7FaMWIV30bC8GKdH0otnPDVp6wYz4/TNjkZ8V2zBLhQAX6EpnXAElcA+RG+hYRvuft8a24adP3sthOxVBdH43wtNcVprKE3GaGnQp0JjOjne/bcYd1X344efJ5OGPqBSUjSiITi5ZEszE97ETE88mEglT/5ZCIjb1NuGHj1WiXgi092K/yEHxs9hUod3IjxG5L7MTPN3wbm/vXWZebV74An5p7JaqCE1uKuLV/E1Z3m0ctHVp99IQ//lJjUrAOCo7xHuOObb/K+/6zfW5BCCGEEEKIHxijRwiZCDA+jxBCxhEB78kWxyPqyJOglz9mzly/JkOMBgBnLVK4e6X8jmhVTGPpPv7erUYFsUij13wesaicN8MyqN7v4Naywk9+NxFRS86C/tftQ5+XdD+F2mQLWgN1xuXvfXVkMoeoMLZ9D22eJFZkkYeVLSK8X+1NmQA1Lkw+yjplRdVMhj7oGGClMKB9cxQAcPxCIBwCei2PAdaMQIzWJEga95js0ZZtXW8WKQHAdEF0ZRuA3ykY2igQyh3HnAH87moxW2+OZkRHnHXQyMRoe0xO2W4sKi949BmMSRpjVKgMevoeRvGq/vmXgHe8E6p2oHNy7EKFp98214em7YUVozXJcyViXnyDOePAo7Lah3rXyYg89wCmJpqxPTjNUAaNY9POmm7hUliZOmE4hY+kxFGVNdCHHgtI92Kx6LCPixcAU6uA7Z3yNh9dDby0XmPRvOyvKdJ5qxRQbjOSxKJyXjayM4vc2kioHMqZoPJyMgo8Ylx3xIC4MA5s+h55KdG44IiTBu5Rkh5jxmJNwJ4HZCQv3VvhubXmvtG/Vml8+Eh/bVKX1H/wcysdi8p5hx1nTrfdl1G8SEjRwKs9IXmmoqICCxYsQGNjI6ZMmYKystwMSieEkHxTVlaGKVOmoLGxEQsWLGDQFSGEkDFHEo4ByNkA+WyQ5COSwGNZ6/2eUjRgQPz1m83XoS1hnqVwWev9w6RoAPBG96v4+7ZbPLedzq83XedbigYACysPRnXQ+wVk2InggKrDsi7P4ABpRwXgwBxEmNDeA1r+3nzLiKVoANCWbMFNm66BFgJVdsab8dvNPxyxFA0Anmx9AM+0PWzM60524ubN145YigYAKzufx/07/jri9VPZ0rcRf9zys3ErRQNyIwsqBNlKAmyyITJ2hAPFJ3uQZGDFdm7YyhPJ4vwIqCBCyvwMrtiOWWIk5cyF9C1X30+qZMkmPPW6rvdYxGhSm5nP3/iBnX/Fys7n87Z9QvJJS9w8mqTOEKxoI9sgXFe7+OWma0YsRQOA17pW4J7tt3sv6JM/xH7qKUUDgPV9b+PWrTfkbL/FyrLW+8W8pbWnFLAkpBAEVBA1Pu7r88V4kdQSQgghhJDxB2P0CCHjEcbnEULIOEWYBHHcc/bHxSz9pbOguzMnEP3A4QpnHSRv8pO3a2zv8BbI9PRrxAQHUMMUj3dTW4R3PlNmQZVbYgqrzUKuDMoKH5c4ITnq9GEfI7oXv4x9Wly8oxe47XnzRJI2JKlV/VpznJ4JddWtUOUeMSphQYzWMxDjoJNJwBXKH6IYzQv1mR+IefqXXwMAVIUVfvURe/tw7k0uOnuzk1hJcqFRSRolwYczAtGm37aLeKL2PBD40JfkBW67PiPpuIXAx47JXjLTMCXlwx0/lcv0sSuz3jbJA7MazOkb34I+Yw509HUAwBUnyXXhN0+NTPA5UqS2K6hczElsNuapC7+c3U5OuxgA0BDPlMYBQJMhLKmrz/w9VKbGBFL4SAjUpzKvOYPoXw+/NpQFFW7+iGOXlAE49LsufvJw9v3pLmF4TGWZR9xgLGpOVwqYIUhiTUyZbZcUpRPiuyBiQKqrg+PDtpivZQCAmVnU1wmGqpsG9dkfyd/fILGoMflrp8rrXfg7jX+85K9/lBcx2vQ9oCqqzXm2Nke69yeEFJwsegeEkJGilEI4HEY4HMb06dOhtYbruuIge0IIGUuUUnAchzONEEIIKTr6XFkSla1MKBdIg3klgccrWUg0XLj4T+dyHFV7YkaeJON4pfN5XIDLfO+juT/mSwaQymHVx/he9tDqo7Gi45msth9xdj80DKkQ+nQyYxk/YrRcCEt2Jpqxsa8Je4QzZzt9vetluMgsW7a80vlvHF37noz017pWIKFHLyFb2fk8zpz2oVFv55XOf496G2PNeBl8n3oO+MEmGyJjh+2aNFZSLukcKLZzw/bdZVvWiFOBeDLzDX2xHbNEtuVUUDkRxaYKzUa1nZTy2ySOXtd1STgLjF29fqXz3zi4+si87oOQfLAz0WxMrwt5RXD7Q3rfsbFvLVoSlqlpfbKy8zmcO/2SUW+n1+3Bmu7/+F5+dddKJHUCgQna7+pze/Fc26PGvHnhPdEQ2bvAJSKFoC44RZSx55vxIqklhBBCCCHjE8boEULGC4zPI4SQcY4zMcVoKlwBvdfBwJsvmxe47w/AuZ8alhQOKdx5mYMpn3PRLoT2/fwxjW+fab/mrbc8sm7weJWlY0L8myQiGqRqkj1/EIrRcoIKBqEXnwo8c99Q2nkdf0d77HJ8fNaNxnUu+r3GexdpRMr895lEqVV/1N8GwhVQx5/nvVxEeN/R2zXwf1wYyQ0AQcobvFB7Hwx9xHuA5/+VmdnTCd3RAlVdhw8f6eCIRo19vilLP/70nMZl7/ZXhxJJLbZHjVNHJgfA5BlQYaG+ZCP9GKSaAqFc4nziu3DffBn490PGfL1+DdS83e/MHUfh5g8DFy1WOO6HLvp9hvkO1h/dtEpe6PzPQs3OjFcmY8DsRuDlZWK2/s23ob77Z1SFFRbOBFZvyVzm909r/OZCXbD7fkkMOq+8HQEY2sg582U5iIAqD0NX1qAhHsWLkUMz8qOGa3C3IFiK6F0xgYEAEKFwhBC15wHQJ34QeOj/jPl620ao6XOHPp+zSOH1qx386GGNGx6V3398+W8aHzpCY1q1/7aou9+8vQqvLmwsak6fNgeqzL8YWLQrXUIAACAASURBVAWD0NPn2qWzqVA6TEx4idG2CmK0SBVQMzk/ZRonqHM+DixaAqx4HPrHnzMuo2NRmL7h6rDCntOBt7aZt/3J21yccaCDYMDeJkn9h0o/zwZiUWOyuuhr8jo2YbV0708IKTgTM4qfkCJHKYVAYAQzOxBCCCGEEFLC2MRo5UUkRpMEHi1xw1RIFiR5wJruV43p7clWJHTcKh/xs32JkCrDQVVH+F5+v8pDEXYi6HV7fK8zt7xx6O+gCqFPZ/7mXgKVuBtHZ7Ld9z5ttCZ2YA9kBhq0J1tztH3zb9CayK6uZLv97LeTm/KMJal1q5jJtpzj5bhKjaAKYVbZHoj1b8jIOzCLdjSXSHVlbri46lBtcDKqApPQmRw+FXRIlWF62eystjW3vBGrul/KTC+yY5aYW96IaO+arJZ3cjAz+ZzyBigoaIxusGj6NV0iroW3l4P5rpxfpswBDXPLG7Ghb61HCUfORLguktKkJW7uG04O5kaMJu83N+dMS3wHtB590GhXsiMryXG/7kOf24uKQNWo9lusvND+hCj3Xlp7SoFLQwrFvPCeiPa+WfD9KijMLvcYiEYIIYQQQkgOYYweIYQQQgjJCzl4L1u07LGXKEbTT94DlSZGA4CAo3DRUQo/e8T8jvmelRrfPtO+26jlddI8rzHJsag5fVaDfb0qn3Kh8sLHJU5Y5mTG4R3X9Zi4eNIFnnwTeM9+/jbf2auxvdOc1xCP+tvIYcf5Wy4sSFx6BsVolliILMQQJc3Cw8xiNAB44RHguHMBAHvNULhoscItz5jboH+u1Ljs3f52ubFloN6ZaPSSNG6OmjNsbVFwJGK0uuzXIVbU0nOgBTEanrkXmDd8MjGlFBYvAH54nvr/7N13eBzF/T/w9+zd6Yok6+RuuUm2sXGhGJteDMGGQKhOIAmEGkIKCakkkMYvvZPeviGEkEYgQEJCTQi9JxTTYmywbGNkY2zJRbqTrszvD+ns0918ZndPp9NJfr+ehwdpZ3d2fNrbnbudeS8+8idv46t2HT8P3ya3Y9a+nuqiwacmNdtHzj1yG3QmAxUIYPYEczAaAKx6A5g9YTBaWOw1YVh7s7PJXDB1r9J2NGo0moWwUVM4W6cUbJIbp1IXZ2g8UR81ZyG0EIyGR+8ATn1fv0XNYxW+dhqswWipDHDn8xrnHOr9fdYp5PvWunRhdVurucDtc5nJxOneg9HYtyYTt2C0N14zl0+cxusSANU8F2ieC/3ys8BtvyleYdWz4razLcFoG7cDT7YCh8607186D0VdAhp1106gw/wAaeu5yBZYHWYwGlG1GMHfyBMREREREdFI0m0J2IoMQTBaVAhGS2TMk8r9BIT1rm+ux0bat0lnRhgFJFg2+nREA96/1Ktxwjh+9Ds8rz+v9gCMrdl9BzjomENUUll7MFoy2+l5n26kgAAMMCzGrX4/f0ebZDaBrJafhui9nvK0Z6jMie2DieEp7itWgf3qDkZD0NtTZiJODIvrjxzkFlGpjjIEiQQQxOENS4egNcCCukUYExrfb1lI1eDQhmOHpD0SRwVwZPz4ouWHNSxFjePv5vWR8bdCFTyPqDkyG9PCLnfTqsRhDcd6DjsFzMdcKRqCjdi/7tAB1RFUQRzesGzX7yFHvhOZ1vZHp0qBqEEVFG8+HxZfhqAavGfCDPfrIu25pGDkxpC/YLTCc6ubcr1nssigR1uerO6RW9CyyUDDIquV1hr3d9xhLKt16rGo/ogKt4gq5YiG4xBSbo9yLb+F9YdhVJBPsSciIiIiIiIiIqJhzhm54btq0dFyYdsasegtc+T7R8+sB1a/oaG1fL+l1RCkAQCTGoBIqH/deuc26P/8G/rRO6BXPgVseMVc6USXB3V4DRfiRPuyUQccXbRsemodZvTIDz7790r7sZPPFrDX4jUYzWNwg5KC0ZJ990ZTlvuawcrfoxmOrOej1/ufj96yt7zqSiGwyGSN5Tm0bsFoJYU0lnI9qWvwvw3ZHbBELBJDXgAcY7n2FZowqq++DZYHPe7PsaBVw3C96ifVA2xpAwAcNlM+DmznlHLbKTx7fkyPkExSSlARANTF0ZxaZywyXYfFgKXcWP96jh8g2mXRMWKRdD2qjygsdvnY86rPc1GXEGgYE7qwevMG6MfvBp550LxCqcFoXgW9j7OmPYl0fe79bKl3CImijePNy/dQasY8c8GKh6GT5nHBx+xt7yOv3OT++b6z27yOFNCo33y97zz0gFxpU7NcZnvIVlT47E9EFTd4s4OIiIiIiIiIyqg7a75rp+AMyYTeiBASlhCCuaTlklLCsRLZTtTD28CHLiEYTUEh7ER2/d4YHIdDGo7BsY0uj+40WDb6dIRUCI9suwdb0+abq/WBBsyvXYzTxp3Tb7kUBuMWZJCwBNCFVcQYotKdTRrDDpLC30AabKXgIGwI7snoDFK6+C6R9DeWjhUHjjEYKKuzxpAIDY3ubNJXoJ25PeZ2BhBESAiwqwZ1gVGYX7sIp407d6ib4lldcBQ+OfXruGXzdXgl8aLx7xpQQcyI7I0Tx75z2AS+7YmWNJ6IgArgkW334I2e1zEtMhPLRp+OWTGPj7Ets4gTxSemfh23bP4tXk38DxPDU/HW0W/H9MisIWmPzUlj3o2IE8V/tj+ItE7jgPrDcMKYM3zXs1/9wbio6TLc134b2tNvYk5sXywfd8GweZJTc3Q2PjzlSty95Sa0Jlchi4xxvUk103BE/Liyhtxd0PRxjNk8Hit2PoHtmXbP2yk4mB6ZheNGL8fM2Nxdy20hZWmXwNOUGIwm9/1mRvfGJZO/iLu23oS1ydXQKC0kNK3Txn6HHJxKVN3aU0IwWtBfMJpECg+T3jOFnzt21aM1urX5s18i22Xcxg+3oGWTkRqM9kriJWzobjWWHdpwrO9QUho+pkRacOmUL+GOLTdgbXI1MrAHlQ5UQ3A09qk9EKeMO3tQ90NERERERERERERUEY4z1C0YPMeeCXznEnNZ21ro7gRUuPgBpicsABwFZIVbKrM/n8WS2cBNH3Qwurb4nr0UaNU8ZvfPWmvg+u9D/+JzQNb9HrBym0zvNVyoZmD3pijPIcUPfHOg8aXNX8Y5k681bvLtOzWee03j+osd1Efs4z2kAJqATmNq6jVPTVRNLZ7WQ1QYj5fsG/dnC0arYTCaJ/sfJRbpW34J9Z7Ldv2+fKHCucI93dYtwAMvaxw123280BohpHFMLVyPv5KC0QIlTOv1GupInqkps+QRATf/Avj4D41F85oUzjlE4XeP2ccTKAWMivQGNuAf18jr+QmBocG1z6HAlFnAa6vlddpagfFTcNGRCpffbD4Gzr46i81XORUZrygFGdUmzBdHz9e7QvVxNL/eaix6vQNIpnS/UFsxYEn3jfWvYzAaUY6ata98Pbr++8AHvmYsuvJkB8t/nkXKPMQYP7pH48qTvbejUzqfFHRhdXcS+hvvA+65wV5hCdc3NWm699F6IY5vIwPp2pubB7ZTCEZjYGd/C4UAYa2BG34MnPuZoqLzD1O4+kGNlZvMm154rcZe4zUOnyX3j8TzUMHbXfd0Q3/zYuCf14t1Aej9Hm/8VLnc8rlMRQY2F4+IyofBaERERERERDQsJIXAq7BjDrsabFHH/AWXqZ0ZnTYGYwHAxJop2NhTPPAmaQgQcAsF68p4D1/rypqD0SaHm/HZ5u97rsfGUQ7eMvoUvGW0/1C1UoPRTK9bztdmXo1YoK5o+TfXfgrrksU3sKUQBykYYWZ0b3xi2teLlr/Y+TR+8tqXjG3VWhcdv9KxvnjUUTh/0seKlm/q2YAvrTEPSkxmuwYcjCa9pktHn4pTCwLtaODG1kzE+yZ/eqibQWVwRPx4HBE/fqibsUtjaCwubPrkUDfDlVIKy0afjmWjTx9wXQvrD8PC+sPK0KqhMTu2ALNjCyq+36AKYfn487F8/PllqS9guQ3hdl1Pa3NQi9RPyJlTuy/m1O7r3jiLx7fdi99uLB7cKAWnElWz7mwSndkdxrLG0DiftZk/e0l9ZKkvOT0yC5+e/p2i5R3prfjsKxcat0lkOhEPjvbYTjO3846J16fQDzcPdNxhXK6gcFT8rRVuDVXazNhcfDh25VA3g4iIiIiIiIiIiGj4USM3GE3VjgJ+ei/0JccYy/X/fRHqI8X3d0JBhZe/6mDW5+TAsvtfBj51o8Y15xffa1orBaONzVv32Yegf3aF/R+Qr6nZXu51wjOD0cpGBYPQRy8H7ru53/J3b78Bl4//GjaEJhu3u+N54It/0/j+O92C0cz39KakNiAoPIyuyDiPD6mM1JqXJ3LBaMJMbgAIMhjNC6UU9CnvBW79dXHhG+uhd7RD9YWExcIK91/mYMl3zOego7+bRddPnX5hPSavCuF6LV6eNdbWalysyhmM5jhArN7fNuSJuvgr0P/3BWOZfm011BTzw0d/c77C/S9rrNsq190QBRxHIfvtD8n7v+SbvtpLg0spBfz6cejjx8grtbUC+x2B0bUKcycBL7UVr7K1E7jlaWD5AYPV0t06u83XwNpO80PNMan0YLSW1Ati8dotwJyJ+e0yr1ebe4C416Baoj3F2ZcBfyj+vIVMBnrzBqhxxf3lt+2r8MBlDg79prkf1N4FbN6hMa7e23wrMdCwsAv75x+4h6LBpS8k8ROmVsNgNDJwDUbbZi5nYGd/M/cBRo0Gthd3dvWvvgic9UmoYP/PNGPqFB76jINxn5C/Hzr1p1ls+LaDsPD5TOw/FJ6HbviReygaAIybAhW0zDuwfS5jMBpR1Ri538gTERERERHRiNJtCUYbChEhGM0UpiUFbAFAY9A8asK0TTJjfg12b+M9GK0zYw5GqzUEhw2FUInBaLbXOuIUP7EUkEPu/AajSSERUv1ZZNGji7+1lf6OUj3Ssdhb18DDWxJCAEzUEQZ4ERER5VFKlRx4mhaCZYNq8J/5Eg2Yr3PluLYSVVp7ShjBDfnziMRvJLUU+iv1YaU+L+Dv846klGA0eH8G5bCxLd2Op3c8aiybV3sAxtZMNJYREREREREREREREe0RbA9NcUb4NKxZlgdQPXanWNQ8Bgi73Ma94T8amWzxa7t2i/n1np6XR6I9TLrvx20yfbQOCATc62EwWnlNm21cfN6231k3u/5J9/t1a4Rbos2pVtdtdxnb5G09KRgt2TeewBaMxvAGz9TUveTCB27t9+sClz/dP1903986IaSxZaz9LrnuTgAdm82FtjAQx8M5KF9dHGqkX4OGSpMlJOrffxGLHEfhK6faj4/GGKB3dACP32XZ/wy3FlKFqZjLWPq2tbt+PGCafAxc/4QcClJOUoBILG1+iKL13GRTF8f01DqxuPBa3CkFLOXG3zGAhqgfNdlyPSgIF8538AyFH79bPhfd/JT3sW9iIFFBF1b/68/eKhzsYDSGDpOJWzDajnZzOQM7+1GOAyw8Sl7hmfuNi8fUKVx6rHxO2toJ/PMluVqp/1B0HvL6PZHbecgajMY5c0TVgt+GEBERERER0bAgTagPq6EZfCSGaWWKJ+vbAs0aQ96D0dyCALqEsDPzuuabnTGnOoLRpACVlEuQQVII8QqrCBxlHkgihTIkfQafKCEmwm9wmd8gMnt4xMDDW+QwC3PQHBERUSEp8NTtui4FGEn1lZN0nevR3choj0+TJqoS7WlbMJrlCbdlIPdtzX3YGhWGA3O/3fRZy69SgtFGXiwa8Mi2fyKDtLFsSfyECreGiIiIiIiIiIiIiGgYkSbYjhDWIJBtQmoQesNhFrnMX+/qATYY5h9vEW4BNeXPSV73sr3yfEoB46e6rKKA+Hj3uhpGe98vuVJzDjAuX5x4yrrdpu3Ati77XbvWN83lLam1xuVF6uL2YMB8USkYre9gtgWjMbzBuzmLxCK9vv85obFWYYblmWArN7nf9d3SaV6nqSC3R2sNncy7D245N2KcJbHNb8hZrN7f+uTd3uZzEwBol+vP5EZ7vyAeBfD6q0DWEpA1e39rHTREjjhJLNJtrbt+tvV/Vm4qX3NsxAARLYwhLzUYLT4OEd2NSak2Y/GagmtxlxSMlmtXPYPRiPqZu1gs0utXWTddPF2+Hr1ofssaycFou+vXmQywxkPqLAA0NXvfec4kH8FoDB0mE7dgtJ3bzJsxsLOIOmiZXGjpJy92eRuv3Ch/PhPPQ3kfpbXWwOoV9p3kWPr6AFyC0eS5ekRUWQxGIyIiIiIiomGhO5s0Lh+qcCY5TKs4RMoWsNUYNI/GMG0jBVTluAWn5evKmkPUYoHqDkZzCzKQgsAiAfkLSTnkzlyXhnmAghK+QLcGl5mC9KR/g3Csh1SNGB7hN9zNRDquopbXlIiIKF+p13UpOE2qr5xswabdLn0yomojBaPVBxoQcvwNvJfCgLUQHyb3bc3vMaWU2M8sR+ivWyCjifRvG64yOoMHO8xPox4bmoB5tS4DQYiIiIiIiIiIiIiI9mQjPBgNAHDM283Lt22BXv2cuNlH3uL+2vzqoeL7Lh3CLaDG/Oypp+5zrXuXcZOhvEyQ9xAKokoNDiGzQ08AmlqKFp+w807M6llt3XT1ZnvVrUI2VXOq1VvbTn0fVNjjQ3qlydGJXDCaMJMbYHiDH/sdIZc9fFvRokuPlc9Bn/6LxrPr7fd93c5FOp1G9seXQZ88BXpZI7Lv2Q/6gb+JwQoAgPpGsUgpZZ+EX0gK5KMBU5NnyoV3/QH60TvE4rjLEPbGWkDf+BN5hSNOhproIwCGKkYt/6Bc+K/rd/149sHyuee5DcA1D1lC8cpEDBAxjf+ui0OVGEim+gKOpGvrw3mX8kxWIykM0dnVLgbQEPWjbCG9t/wSOm1+CCYAHFTcxd7lx//WuPDaLBI97mPgElKgYf4Qwyf/6VoPgN5+ztjJ3tbNN3YyEDDPjSkSHPyxxDQcSdfmXDBah7mYgZ3FjjtLLNLPPSqWLV+oMEX+KITL/qLxUpv5nCQHNOb90iE/LLqQOukC+woMRiMaFhiMRkRERERERMNCtzYHUIQdj4NRykyerF98E9E2gb8xZA5GM4VyuQWfdRlCtiSdGXMwWm2gOp4qFyoxQMVv8IKtTKpLC/eEpK/PbaFsfoL0ogHzwBZreIQQ7uaHFMhne02JiIjylRqMltbmgRyVCEazBpv6CKMlqgZbU+ZZAlJIs5XPyT7SZyFbyG7MMfd7u8rw3nM775iMtGC0FTufQEfaPDPkyPgJcBRvHxMRERERERERERER7cnUB74qlukLFkN3mx9w+s4DHfzhIoWDLZPyv3abxvMbdt970VqjXRjeFI/23pfSTz/g3uh8XgNmvISeMRitrFSoBupn9xUtDyGN+1uX4h3bbxK3PetXcrCM1hprhHnRLT2txe348p+A8z4LTN0LmLEA6n1fhrr4y27N300KqMqkoVM9QEpIlACAoL8HV+3JlOMAp11sLmx9CXpHe79Flx5rv8951HeyeHOHfO+3Q3hGXi74Sv/scuCGHwHb+g62tf+D/vw7gUdul3fqFvrjNfQDACIMRhtM6pJvimX6irdDr3zKWNbgEozWkNoK3PUHeb//7/ee2keVpw5cChy41FyY6oFuawUAjKtXuOZ8eSzNRddp3PL04I476ZSCjEzjvw0BpZ719YtahGC0Pz6hkcn2/lulcKX8dikGoxEVO+8KsUj/8vNimVIKn1gmn4uufUTjgmvdz0WdQnhaLhhN79wGfdmprvUAACZMhfLT1+mjgkFg/BRvK4cYOkwG0hjX3ESwHUKwMa9LRVQkBux/lLnwX3+Gzpo/p8fCCo9cbv98duS3s9iRLD7nSP2a2vDuv6u+Vv7eqp93fwJq+t72dRxLOxlOTVQ1OLKdiIiIiIiIhoXurHlAVdhxuas8SKLCZP2U7kGmIMRDCroKqRrUBUYZy0zbSAFVOX5COrqEYLSYU+e5jsFUaoCKGLxgCTeRQ+6EYDQhGEEJX7OEVUQs8xOkZ/03iOFuAwuPSOsUUtr8zTKD0YiIyKvSg9HM16BKBKPZrnOJjL1PRlRt2tPmWQCNoXFl3Iu5j1zW4OIyhP5K5xUrKRl5mHqgwzwwP6RqcGjDWyrcGiIiIiIiIiIiIiIiqjrjptgflmMJAXr3QQ4evSKARZZsst88svveS6IHSGXM6zX2Dc/TN/7Y1tpiXoPRmprd15k0gPAQMlJjJkJd8aui5RMyb+D6DedgZmy7cbtVbwDpjPm+XXsXsN08vBTTU2sNC+fAuehKOH98Hs5v/wt17md6Q7i8sgVUJTuBVLe5LBAoKRxiT6ZmL5QL77mxaNE3lsvnrh1J4E9Pyvd+24Whlo0x9Abe3f7b4kKtof90lXnDcBSqxiWsIxC0l+fjpPzBZQtMyGSgb7vWWBR3GUbb+MZLcuFBy6DCQ/NwcPJGvf2DcuGduwPvjptnf8jgrx6Qwz3LoVO47NSaxpAPJPS1b9vpqXXiKvf0HfJSqEm/dtU3lN4WohFKzVggF952LXTa/LBhANh/qr3um57S2GwJiQWALiloMZfte9/N9p3kG8j5ZqLHbd36WrRncgtG29luLq/jdclo/yPlsmfkIPspjQpfO13uI23t7D0v5ctmNZLC1ILa/Izxu6+X25RHveUd7ivZgs3DnDNHVC0YjEZERERERETDghQKFhmiYDTbfguDraQwgKgTE+vp0d1FAWuJjD3kqstPMFpWCEYLVHcwWsolQEUOXpD/XnKomL9gNIlSStx/4T601kgIgQ+2f4MUHpFwCdNzk7QEv9iC2oiIiPKVel2XgtOGOhhtoMGjRJXWnhKC0YJjfdelYB6oIGWHldI/jwXMA7r9fN6RpLU8OEzit/9fzdq612Nl13PGskX1R4jB3UREREREREREREREe5SjTjUvr4kAtSN/oqwK1QBTZonl+pUVrnXMmyRPfl2xfve9l3bLc3HiudtJGw3BVjYeJ+Cr5rn2FUI1QBOD0QaF5bWfpDeLZa8J89fXmG+HAgBaCoPRasID/7tGLOPmEp3yxOoQgxt8a5knFunVxeci27kHAJ59TS7rEIZKxmMKaGsFOs2hfdi+1by8Lm5tCwAg4GP8i+24o4FzuyasMl/7Rrnkmo3etkYutIWxUXWwHBf5/aGJo3pDFCW2c085SEFGtdrQ0XI71m0mTAMAzO9+UVzlmb5+nhTW1tuuXDBaY+ltIRqpbO/RHe3AG+vFYrd+UCYLvPC6ffdi0GJfN9bU/xIN5HwzfY639YI17uvQnkd6K2gN3Z0EeoQDvd5D/30PpCyfyeByTpjvcl56puCUtkMIPAeAur5+t9ZaDiPPFwgAk2e6r9dt+WIqWh3zK4mIwWhEREREREQ0THRnzd9whZ2heVpW1JGfvpYsCLaSg65i1noKA9YKfy9a3yU4LV9nprqD0UKOecBHOmsPUJFea9vrLIeKSa+3ORhBCono3b+wj4L2pnUKGZjDGmz/BjncbWDhEVKQBWAPjCEiIsoXEoLMpOCznJRw3ZfqK6eQExID2AYaPEpUae1pIRgt5D8YzS/p/WLvn5vLEmUIRpMCGR3LLdORFIz2QMcdYtmSxhMr2BIiIiIiIiIiIiIiouqlJkwD5i4uLjjuLChnz5iGpY4/Wy5c9azr9uccIo+juud/wFm/yuLe/2kxiAjoDRjRqR5P+8unJk33tuLhJwF1lqC7o06DilXHWLoRx/T+6nPBK98Sy5ZelcVzrxXfu5OC0cLZJCal2/ovXLIcaqABU1H5XieSlmA0Bjf4N+8guezFJ4sWHT8fGF8vb3LNQxrHfi+Db92ZRTqz+1hKpjSSwhCWxhh6g9H88hKsUOMjLC9iOe5owNSkZmC/I+QVnn8UOpMpWhwKql1hMSYt256X93n8WT5aSENB2cI07v8r9JregDDHUTjb0vdp2wZ0pwZv7IkUZBQzjLNRy95Z8n5UqAaI1uGkHbeL6zy/off/Ulhbb7v6OoC2fhjRnqplHjDFcu5paxWLFk4D5jfZq//g7/v3gQpJ791Yrhvr47OZOq7065z182g+P30p2oOIyWjAzg55MwZ2mh0mjyvV6162bnr8fGCs5WuVH92j8cE/ZNH6Zu95yRaevyuEdusmoNvDOP7D3gbl5TNZwjIumWF5RFVjz/hGnoiIiIiIiIa9pDChPuxEjcsHWzQgD44pDNSS2h5xoohY2p/M9N/OFlIFAF0egwIyOiPWVetUx2AuKYjELUBF+ndFAvLrLIeKmevK6qxxuVLy1yzRgHlQSuE+bOF3tmNOql8KivOq1PYQERHlK/W6ntbmsNCgEKBablIIqFufjKiaaK3RnjLPBBgdLF8wmhQeVhganWP7HBSTgtF8BEFLpPNOSMmTEEZKMFoym8Dj2+81ljVH9sL0yKwKt4iIiIiIiIiIiIiIqHqpr/8FmH9w7y+BALDkdKiPXTW0jaqksy+Tyx65Hbrb/JDTnKXzFJbOlcuvf1LjuB9k8fvH5Psw8RigP36CW0uLTfQWjKaitVBX3W5e/9AToD71E//7Jk+UUsCpFxnLzt32e3G7V98Ejvx2cTha6xbzcTQ9tQ5Owb0+9ckf+WytgS2gKtElB6MxuME35TjAKe81F656BnpH/2CDmqDCXR+zT5e9dyVwxc0a7/n17mOjwzIMJB4D9Pc+4rnNu9R5mEQf8nFM2AL5qCzU/5PPPwCgrzSHtISD8jbNO140F5x0IdScA7w2jYaQev9XxTL9oaN3haN9a7nCflPkev74xOCMPelJa6TNw9pRawpGm773gPanvvEX1OlOLEo8ZSz//eMamawWw9r6tcvLeZJoD6OUgvrBnWK5/u6Hrdve+mEH+0+V61+5CTj7avl8JL13a8OATnYBKx6WK8+J1UN99mqoeQe6rytQCw4Blr3bfcUQg4fJQAnBaNolGI2BnUYqEgNmLDAX/u1X0Fo+p4RDCnd/3P757Jf3axz6zSzWaYENLgAAIABJREFUb7WH58f7hhzrG3/s1mTgwKVQV/yf+3oA0LVDLmMwGlHVYDAaERERERERDQvdWfNgKtuE+sFk229hmFRCCCyLBmKICpP+TdvZQqoA70EBtvVigeEdjCa9RrbXOSIEfCUyXdYvaQvJz/qSjxevx0pvHXIQmVT/QINbbMfcUL33iIho+JGCzNyD0czlUj+h3KTwVLc+GVE16czuQI82j1hqDPkPRlO2p+kVLtFafL9IfXBADuAtx3svnRWC0RzbIKmREYz2xLb7xNDuo+LyU/2IiIiIiIiIiIiIiPZEauwkOL94AOpv66Bu2wjnq9dDhfecsTIqGIT6pGWy6YO3utbx3TPsU9YyWeBbd5rvw4SDQGTdc8CzD7nup8ikZs+rqrmLoW5YCfXnl6Cufqz3v9va4Hz7r1CcFD2o1KJjzcsBLO5+WtxuexL40b/7HzdrzM+JQnNqbf8F7/woVO0oP800swVUJTuBlJAoEWRwQynU4qVy4b+uL1q031SFWz7kPmX2hv9ovLyp91iyBqOFeoC2Vtf6iniZRO8nLI/BaINOjZ0E9Yfn5BXuvwV6wytFi3vMz30EAMzoWWPe13mX+20eDZUFh8hlO7dB3/RTAEC0RuGhz8jnnitvHZyxJ/YAsoKT2wnnDnyHM+YDAM7Y/hdxlVueBjqFjFAAiOq+sSvsaxEZqQnTgLmLzYWvrYbukd/4LWMVnvpCAAe3yPXf+F+NlRvN56Qu4b0bqwFw3y1ype/6WO9nqeuehrp9E9QJ58jreqTe+wX3lRiMRia2YLQdtmA0hmBJ1NGny4UugYn7T1W47kLbbDtg03bg6oc02i1TIuO5YcV/+K64jrr6Uai/b4Bz1W1Q9Y3Wfe5iCUbbk74HJKp2DEYjIiIiIiKiYaFbmMAddiIVbkmvgAqiRpkHJRSGUUmTzyNODJGA94C1ZMby+AMAXZZQrXydWfmLu2oPRku5BKhIQWC2EC8p9CSLDFK6+O6OFoMR5C9rpWA2r8dKbx2W8Aih/oGGR0ivZ0jVIKAsj7kjIiLKI17XhYCinLThOmyrr9zE4NEMg9Fo+GhPCbMAAIwOjvNdnxyMViyle5BFxlhWUt/WYxC0TSmBiz6ykquW1hoPdNxhLKsLjMKi+sMr3CIiIiIiIiIiIiIiouFBjZ5QniCl4WjKTLFIP/eI6+YtY+X5yG7iMZQWihYMAeOn+NpEKQXVNANqzsLe/0aN9r9f8s9yfM1Kvmzd9OHV/W/gbdxmvqE3PbWu3++qyZIQ4YMKhnqPNZNkJ5ASEiVqGNxQkskzxCL93KPG5bPGe6s6dyy1bZPXadxiPx5FXibih3wEo0UYjFYRE6YBgYBc/txjRYsOEk4tjtKYll5fXBAIAuP8XatoCE2abi//29W7fqwNK9QJb2spbGigbPXGdP8xbspHeKwoPg6IxDAzZQ79A4Dbn9Niu6LZLji5cfgMoCGSTZgml61b6br5UbPtH8Ruedrcf5ZCDWtrFPQK+fOZOvKU3s9SLfOgbNdRPyZMAxyXGBQ/fSnac9iC0XYKwWiBIBCRx7Tu8Zrkz2RY4f790Kzx7l8OPbJao0OYTlcXBoIB1RsMKf19J8+AmnMAVNznA6OzWX/rE9GQ4AxWIiIiIiIi8u26th9ic2pjRfe5sec14/KwJfBqsEWdGHoyxU9cSRSEZUjhVBEnhqAKIaRqjAFchaFUCZfgM69BAV2W9WoD9Z7qGGwhIZhACjLIKXztc2zBCxFLWSLbhRqn/w0TKRjNFhIh7b/oWBH+NgrKeqxL/4aBBqPJrycH2RARkXdBIUzT7bqe1uZHqkr9hHKLBqRgU3tYLVE1aU+bg9EcBDAqWL4BhqYesq0vauuDi33nAfZtATloWQq97jX8k9FWJ17E6z3rjGWHNSxFyOEkDCIiIiIiIiIiIiIiKrDvEXLZzT+H/tA3oMLyeKb6iMJx84C7XvC/68YYoNta/W94+Em9oVVU/WbuAzS1AK8XB6ucvuNvuL7hneKm/9sIrNuiMW1M73i9dmE45JjMlv4LyhEIkxOpNU+qT3QBqeIxpQCAIO/JlWTWvnLZ+lXGxfMmAXMmACs32at+9c3c/833hMfUArEtraXdMZ4w1X2dGu9hHirKMZuVoMIR6ENPAB76h7Fc33o1cPxZUHmBDCcsUPj3/4qPkpPHrkHY9FDICVPLFxpDg2/s5N4wzLQ8zk1rveuYmDYaeLGteJ2tncCK1zT2nVJiaqwgaRl+Fy0c41aG66BSCnpSM5auvUdc596VGsfPN5fV5s+F8BIgSbSHUktOh77vZnPhxrX2/hGA5QsVvnOX3IN54GWNy08oXi6FGsZqAKxfLe9w3sHW9pRCBUPQ46f2/nsl7F+TkXSt1cBOIRG5vrFf/44KHPpWsUj/+QfAWZ+09m8PbAYmx4ENQi4dAKzYALR3ms9bjbkhxRvXyk86nneQXDkRDXsuUalERERERERExV7rXoNXEi9V9D9TcBgAhFWkwv/63SIB84T9wkCzwt9zchP+vYZmuYVwuAWn5XRldhiXOwgM6euZL1hiMJr0WpcSvCDX5z8YTQ4u6yz43dz+sBOFo+SvcaR/Q1IINvNKfj2HLpCQiIiGn5AyDz5wu65LAUZSP6HcpOud1z4XUTVoT5mD0eLB0XBUOQfaFveRpb4kYO9PSqGE5XjvSecdWzBYdgQEo93fcbtxuYLCkfHjK9waIiIiIiIiIiIiIiIaDlRNGNj3cLFcf/R4aGlScZ8fvNNB8xj/+47HALS1yiuMnlC8bMosqA993f/OaEgox4G64lfGslN3/B3nd1xn3b75iiyeWtt7H69DGFbZmGnvv6CcwWhSSFVipxyMFvIegkW7KccBjj3TXPi//0Iniu8jK6Xw6/MdjHbJEvvabb3H0BrzbXW0jAX0H77rp7m72+DleKvxMV43Io9zpfJSH/62XPjcI9A/+Hi/RR86WuHEBf1XmzUe+PajJ5vrmDh9gC2kSlKBgHvQ4cqndv34mwvksd77fzmLR18p7xiUbvNzRwGgOJivqbk8O53UjPrsTpy57UZj8dotwPOvmzetzY0lqglDhatjzgJRVTp6uVik//wj180ParGX32kIr85ktRi2GHO6gWceMBcefBxU0Pzw5AFz60/5CJmlPYgUcKY1sENI5qprGLz2jABq1GigdpS5cNsW6M+dAW0JkQ04Ctde4KDecunfvAN4aaO5LN73UUjf9Qe5jbY+PBENewxGIyIiIiIiomFtKAOaxECzwrArIZwqF5YlhWYVBgm4BQGkdA9SWeExLXm6sjuNy2OBuqp5ykXpwWjmUU5RIcQOsIemmf52WgpGs7x20v4L21tqEJkU0icFrXklbS+FVRAREZmUel2XyisXjObt+k1UzdrT5hHcjaGxJdVnCwMuZHuvRB25PymVJTKDGIxmPa8M72C0bemteGbHY8ayBbWLMSZkmDhEREREREREREREREQEQJ3+AbnwhceBO+zhVXMmKjx7pYO/f9jf9LVGWzDaWZ+EunEV1A/vgvro96Au/S7Ud2+FuuYJqKYZvvZDQ0vtfyQw/+Ci5UFk8Ku2D+D2Wb+1bv/5v2YBAO3CELl4tiC4r5zBaFJIVbITSAljIULyw5rITh1/llwoTI4/bKbCyq84uPH9DmosWR0rN2q0CsFozWM08Lz5XqsrL8ebn2MiwjGblaImzwROvlBe4eafQ7/y/K5fozUKf73EwaOXO/jxuxVu+4iD/17yJmam1pi3n+SSVkPVx+X9rK/66K6fD5hmr+qKm7NlaNBuUogRAER0sv+CcoXy9dXz400fF1e5bYV5rE1M91206+LlaQvRCKWCQWC/I82FzzwAncnYt1fK2v8BgJc39X+fJizTkGLP3iPv65SL7DsaCJfzr2LwMJmUEoxWz+uSG3X+Z+XCh28DHjE/vDfn2LkKq77q4LMnymOQv3e3uf+QC0bDdd80bxgfB2UK0CeiEYPBaERERERERDSs1Qbqh2zfXsMypLCrXFiW11ArLyEcXS7haQDQmTEHo9UG6ly3rRQpmCBlCVDRWluCxeTws7ATEQMeTPVpLQSjWUIipP0X/o3FIDJLcERv+eAEo0nH3FAGEhIR0fATVOYRFmlteWQlhj4YzWsILlE125rabFzeGCwtGE1iCg+2BZmFHfnRb1IIb7dOIqPtg7rcyOcVecC5FIw8XDzUcTeyML9uSxpPrHBriIiIiIiIiIiIiIhoWGmyh7foR+9wraI+ovC2fRUOn+l9t/GYEoPRVMs8qJow1AFHQ73jw1BnfATq4OOhogwNGpb2XmRcrAAse+EnqJdvK+LuF4GetEaHMESuMdO++5fRE6HCZRzzJoVUJTqhU93mMgY3lG5is1ikH79LLBtTp/D2RQo/eKc8tvP25zReazffE25RGz03sUhTs/s6fo4JnuMqSs2Yb1/hsTv7/RoMKBw8Q+GSYxycsI9C3QpLgIyXY4Oqi1vQ4Zbd54qAozDDMiTngVXAjmT5xqEkLcPv+gWjhWqAsU1l2afqez3GZLZi/+SzxnWeWW/etjY3rr2uoSxtIRrRJlnCDNe84Lr5h462PwD19uf6n4s6bcFoz98nF5YzfLiAcqubwcNkYglG0zuFYDRel9y5hPvqR++0lgPA+FEKnz7e+8OZcxpjgN62RV5hio8vnArttb95ebR65lcSEYPRiIiIiIiIaBiLOjG0RGcP6f5NEpnCQDN7WJdUT+F2tmABP+t0CcFoMad6vriTAk+kIAMA6NHdyML8JC3pNQYARzli0JcpWEwORpC/oJWPlf5/r2RGCkaT2w/YQvoGFowmBb+4tYeIiCifdF23BZ4C8nVfClAtN68huETVrD1tfrT16NC40iqUBo0Y2EJ2HSXforT1NQfav5XOOzWWYLThLKPTeKjDPBFgXGgS9o7tV+EWERERERERERERERHRsLLXfkCDJd3jFfcJ+TnL5nu/zxQPdgM7t5kLB3HiPVWeOnCpXPbqC1g6V942q4EHVwHbhFv4DZm8Yyg+psQWCoSQKp3sAlJCqkSoMmMdRqRplnHCG9e5br50rnz+WbMF2CoMu52Q3uRat1EgAIyf6r5e2JL8V6jGx7o0cIuPtRbrtlb79q+vKbluqj62axUA4I310OndCWVL59n7POu2lqNVvZKW4Xc1Ou96NGEalFOmOIG84NzFif/62jSaG/dT31iethCNYGrRMXJhW6vr9mcssp+L/vSERk9697yYTiHbFwBqt7wqF7a4hIkOhNv5d+ykwds3DWPSsa8BKRiN1yV3+x0BBC2fadss/d88o6L+g9Fs4fkAgJkLfNeZo878iHn5R79Xcp1EVH4MRiMiIiIiIqJhKaiCOHfiRxFQwSFrQyQghF0VhEklLIEAgCU0K1sYsOYewiEFWeXrygrBaIEqCkZz/AejmULMcqRgE7dyP8ELtq9nvQarSP8G6VjLkY6htE4hlbWHztgkM9Kxy2A0IiLyLiQEDqW15RFzkAOMpKC1chPDa4UgU6Jq1J4yB6M1Bi0TWCz8DElwC4iWxBz5SdeFIdR+iYGLjhyMltXm8OXh4Nmdj2Nbpt1YdlT8rdaAOiIiIiIiIiIiIiIiIhWqgbr4y/IKWzdCP3anp7ref5SPYLSdr8mFDEYbWQ4+HgibH2oKAJ+t/wfCliGiy74v38trzO6e9K4+elVJzRNFhHueiU4gJaRKhMLlbcMeRAUCcjDG6hXQafsYyVnj5fNP65saHcLQ3PgdP/faxP7GT4GyhQbk+DkmQiPzYV/VSjXPBU66UF7hb7+ybm8NTpu7uJQm0VA6/CRgvyPt69zww10/fnKZwljLkPyHVkkP6PavWzj9hbPJ/mN8ytl/mjh914/NqVZfm9bqvnE/dQ3law/RSHXM28Ui/fBtrpsfMgN4xwFy+ZOtwNwvZrFyY+85qcsynDf28uPmgn0OgwoO4nyueQfay/nZkEykh/9qLQew87rkSsXHQp17ubxCW6vnuq44wV84WjwG4Il/iuXq/M/5qq+fJacD+xzWf9m8g4Cjl5deJxGV3dDNHiciIiIiIqJh66j4idiREZ6UUAGjAo3Yu3Y/jAmNH7I2AJawjIKwq6QQVpbbXgzNypv0r7X2FNLV5SEYrTNjDkarraJgtJAQeGIL+bKFlEh/q/xyU1yAKagsC/NgKmXJn496DNGT/sau7bcEpyWznQg5cev28ralhVkQERHlk4LMbIGnAJAWrvvBCgXjyiG4DEaj4SGrM+hIbzGWNYZKC0az0VpD5Q0qkd4rbn1bWyiwlyBoGzEYTQhwHO7ub7/duDykanBoA59CTURERERERERERERE7tQp7wWSndA/vsxYri87FfhnO5QUFNVnwiiFq89VuOg69zCQ+L+vMReEaoCxTa7b0/ChgkHgd89AnznHWL7wl2dixXWbMOcb9b7rjuePcV24pNQmmkWFhz0lOwEnYC5jsNWAqPOugH7yX+bCP/8QOPtT1u2/eprC5/9afP55ZTPQLgwDiWeF4IRFx0DtdwT0NV8xl09qsbZlFz/BaDUM1qs09emfQf/vP8DqFcZyvX4V1NS9zBu3tZqXn/HhfuMqaHhQNWHgqtuAG38M/Qtz8Ib++WeBE86FahyHvSYoPPUFB9M+Yx5v/sE/aLy/TJelZNq8PKKT/RdMmm5esRR5QUQtfoPRcuN+6kob1060J1HhKPTcA4GXniwuvO1a6M/8wnpNUUrhTxc7ePaLWax6w7zOmjeBC6/N4uHLA+gUsn2BvPdu4T4u/ILtnzBgSinoeQcBLz5hXqHJY5+L9iy2YLQd5ofM8rrkjbrg89BvbAD+YfjOZtN66EymN9TaxfuOVPjGHd6DYuNRQP/kSnNhwxioAXxPpKK1wHdvBf71Z+iX/gs1a5/ePl2seuZXEhGD0YiIiIiIiKgER8SPG+omVAUpHCp/sn4qm0Jam+865raXQ7N2j7bo0d1iIFe/bTLuQQFdQjBazKmeL+5KCVCxhZTYwhUAb+F0uwjfv9rGKkj1p3QPMjqNQF/AixT04BoeYSlPZBOoR2lf1IthFi6vJxERUT4pyEzqI+0uF4LRnMoMFo465qdSewmrJaoG29Md4meIxmCpwWhyp1dDQ+WVlxqyG3WESQQoQzCaGLgoP61bSx8Aqtzr3WuxKvGCsezAUUchVkXB2EREREREREREREREVOVOOBcQgtEAAE/8EzjqVNdqDmxWEAdf5YmntpoLJkyDcuSHV9IwNWFab2hYqsdYPGvlP3Bwy7vx+Bp/1TbmgtGa55Y/iCgi3NPs3AFEzGMNfIVgUbG8IJ5C+sFboVyC0VqEW+QvtcnbxDNCcELzXGDBIfKGlrb24yfsjMdPxSmlgLMvg/7SOeYV7r0JOPdyc9nGteY6m2aUqXVUaaomDJz9KejffxvYKYQmPvg34JSLAABTGhUOnwk8/Ip51R1JjfrIwK9NyZS5XxXR/ROOlNfARg9UfRy6Lg7s7MD0HvOxLonlxhLVNZStPUQj2vS9zcFoAND6EtAyz7p5wFG48mSF9/xa/gz26KvA+q0aXeauOAAgqhPmgkoEk+17uByMFh83+Pun4ccWjCZcwxWD0TxTb/8gtCkYLZMGNr8GTHQPY53SCAQcIOM+RRJAQeh5ob0XeavEQsXqgVMugurrxxFR9eG3wUREREREREQlkibsJ7OJvJ/l4IxcuJRcz+5tbaFf+bo8BAV0ZYVgtCqaGF9KMJr0Wis4CKuIdX9yOF3x6ykHI8g3qG3BZvl/22TGfNPIPTxCLk8OIDyi1DALIiKifNJ1PWW5rgPydT9kCTAqp4jQR/PaLyMaalvTm8WyxlBpwWjK0uctlDCFDMM99DegAmL/vctDELSNdN4JWQMXh2cw2v0dd4hlS+InVrAlREREREREREREREQ03Kn6ODB1L3mF9as81TN7AhD3MOyoUQojGjfZ035oeFGOA+y9WCzX61fh4Bn+w2NGZbf3/uBhYrZvceF+6xvrgZQwFoLBVgMztkkue9OSbtZn4VT/x1CjMAFfzTsI2Gt/IGB+UKCaKx/P/fgJRgtW5iGCVGCuHLSg1682L0+nes8FJpMG4XxElWV5fxceEy1j5fNO65vlaU5SuOSEC4LRPAc2ehXrnXPQkvIXjFar+8YS1TeWtz1EI5SyXIe8fgY7qMW9D7TqDaBTCEaL6gQcafzc+Kme2jAQ6i3vMBcccHT5w49phJCOCw3sFAK26hmM5pnt83Wbt35BMKCw2Ee3OJ7YKBfO2s97RUQ0bDEYjYiIiIiIiKhEEcf8ZL9E3mR9W3BGLlxKrKdfYJa3AI6Eh6CAzswO4/LaQL2nfVRCSJkHcdgCVKTXOuJEXW96SEFf+SF3ORrmx1I4lq9ZpPA7oP/fVvo3SMFtOdIxBMiBFF6I7WEwGhER+RB0hMDTrOURc5CD0YLKPLC03KLC9TWtU0hl7aFuRNWgPWUeRVmjwqh1BqPv338AlBiyG5D7rjnRgHt4dCmk80qN8PkDALJ6+AWjJTJdeGLbfcaylsgcTI3wKdREREREREREREREROSPetfHxTL9xD891REOKVxyjPvk9YbMNnMbzrvC035o+FFnXioXXvdNXDz6CdT6yJBqyHQgkBvn19Q8oLaZKClgpq0VSHWby0KVeQjcSKUcB1h0jLlw0zroNS9Zt997ksLBLf72GReC0bDkNKj4WOCt7ykuG9sEHHumtx34CcvzE6JGZaMmz5QL21rNy99YD2TN44wxyedBSFVHnfERufDem/r9+um3yn2eA7+exfbEwMejdKfNyyPZZP8FZQ5GU2d/CgAwPvMGoj7G8sT6Hvat6hrK2h6iEWvpO8Ui/aNPeapi1niFU11yg678WxZdPeZzUkyanzTnAKhgBcby7r0I2O+I/suUgjrTcj6mPZs0d0xrYIf5uwbUMRjNK1XXIAac6t9+3XM9H1vqPdgwvkUOglSnX+y5HiIavhiMRkRERERERFQiabJ+v0Azy82+XLiUFJqVv60tYC1fV3an+zrCzYmYJbyr0qTAE40sMjpjLJNeay8hXtI6iax70JwXtvCHRL+/s3l/UnBbjqMCCKuIa/1+iWEWDEYjIiIfpMDTtBZGZvWRAlGDqjKDhSOWvlG3ITyVqNq0p83BaI2hsSU/LdG2VeHQKFPIMOCtLyn1z7sG2D+XAxdtT9cefsFoT2y/D906aSxb0nhihVtDREREREREREREREQjgTrlvUC0zlz41H3QPUIYVIEvn6Jw1Zn2e1WNWXMYkZJCkWjYU0efDkyfI5bv/fWluO/cDag3D5Er0pgXaCWGmA1EkxButHkD0GV+cK2vECwyUh+9SizT5+4PnbI/oO/Lp/qbSms6F6nf/Acq3DseVH3qp1AXfhHYa//e0KFl74b6xQPeA39qPB7QABCy3dOmwaQu+Za5oK1VWL5Wrmzi9IE2h4aYOvSE3pAek03roNs37/p1wWS5v9OTBs75tRCg50NSeLZnpHDMyKQyH3unXASgdxxRc8pyzBeI5cYS1TOAhsgLNWo0MHUvc+GmddD/vN5TPddf7FjDGh9+Bbj5KXNZrTbPJ1Gf+omnfQ+UUgrqO7cCZ3wYaJkHHHgs1Ddugjr8pIrsn4YhWzDaznZzWT0DO32RPmP/917o//zbUxXvPNDBje93EPcwNa3hHz8yF0TroCZM87Q/IhreGIxGREREREREVCJpsn4ym4DWvZPnbaFUESfa7/+FEhlvAWv9t7EHBWit0ZU1D7yJBeo97aMSbIEnUphB/uuVz0vwgrROMlMc5qCFYARliYmwhbP1D9Izh0d4CncTgvq8HjuFtNbiaxoNMBiNiIi8kwJPpWu6W7k9wKh8otZg0/KEpxINpq0pIRgtOHYAtXoPVJM+C3np28r989JDfwH5vFLjyOcVqf9frbTWuL/jdmNZXaABC+sOq3CLiIiIiIiIiIiIiIhopFDnf1YufOxOb3UohY8tdTC1UV4nnjEEo8090FP9NHypMy+VC9MpLFxxLf77eW9TIePZbbt/mSSEmA2ENBFca+C11eYyBlsNnFuolMt5aOlcYMlsb7tydAb1hWNtIzFg5oJdv6pgEOqCz8G55nE4N6yE88VroSZM9bYDAMpPWF4Ng/WGzDThoHlzgzmMr63VvH58HFRMCBilYUWd/gG58N839vv1GDnzE/94Dti4bWBjUqRgtLDOC6yNxID4uAHtp5AKhoC+IBI/wWi1uTF3dQxGI/Js/yPFIv2P33iqIhxS+OZyB2csksf+3fAf8/koJs1FGYzwYYGK1sK59HtwrnsazlW3Qx3+tortm4YhKRitayeQyZjLeF3yx/L+17df57maty9S2HyV4xqA3mj6jggADn2r530R0fDGYDQiIiIiIiKiEkmT9TWy6O570pI0cT+sInBUAIA90MpLwFq+LpeQjh7djbROG8tigeq54W4LRktp81P9pAAwLyFe0jqm1z33NymkpC/QAQRUEDXKPDAlv91SsJ2XcDcpYMLrsVMopXuQhfmLfy/tISIiypGu67ZgNK212GcJWfoJ5WS73klhpkTVpD0tBKOFBhKMZtO/nyz1z730JWPCZyS3zztuhjpwsRJeTjyPjT2vGcsOb1iGkFOZcygREREREREREREREY1AM+bLZa++ULbdGCe9VnDiPQ2RFsvxBQCvPo9po4E6D/lQ8Uz77l/cwrRKYTse168yL/cTgkVGKlprf+1dzkNKKXzlVG/Tacdm3ix+bNjE6dZxor7V+LhPzeNn6EjHXDYLvLG+aLFuaxXqGYRzEQ0NS39Iv/p8v9/nT5bPGVoDL7w+sKZ4Ckab1Fzec1devQAwP+m9D7gruLSeATREXqkyfgabP9n//muluSijRvuvjKgizNc83bXDuBwAEBs1SG0ZoWznpTX+zksBR+HQGfZ1xma2GJer5nm+9kUb22FZAAAgAElEQVREwxeD0YiIiIiIiIhKJAVRAbsD0eQwgKhrPVlk0dN3Y1IKzCrktl5XZqdYVutUTzBayJEHfEghKVIAmJfgBWkd099PQ3o6l/2msbSP3N8sqzO7AvUKSeF5XuqXjkE3tsCXaN7xS0RE5EYKRktZgtGyyEAjK9QXLEu73Nj6EIkBhjMRVYIYjBYsPRhNWfq8hf3khBASbfsctXsdc/93oO896bxTYwlGk85F1eqB9tuNyxUcHBk/vsKtISIiIiIiIiIiIiKiEWXxsWKR/uN3y7abUdntRcvUae8rW/1UpRYcAkzdSy5/4G8IvfwfnHWwe7hLPLNt9y9NzQNvWwEVjgJjJvnbKDRyHtY0lNQJ54pl+rpvuG5/xF4K7zrQ/RianlpXvLDcAY01Ee/rMhht6FjCFfW75iH76y9Dp/PGIrz0H/PKDPgcOeYcIJfd+mvodSt3/XreoQq2TLJXNktj0r3pNg+pRySbNx59sI69vnrP2fZHONr8IO5CU1N9YYJ1DEYj8uzYM+Wyjs3QXfL8oELv8dCPLhTVhjGAsxcOTuAiUTlIx2bC8l6Juo9ppd3Uce+WC1evgO7plssN9pogn0/CThoT0xvNhcdb2kFEIwqD0YiIiIiIiIhKFA3YwjK6+v2/UCQv6MoeupELWJNDqvqvbw8K6LQFowWqJxjNFniSzprDDKQAMG/BC0JombFO801oW0gEIB8vXv7GXoLIxH+DEEjhxnYseQmbIyIiygkJwWhpSzCaLTRNClort4AKoEaZB5Z67ZsRDaX21Gbj8tGhcaVX6mNAkxgSbfkclSMGo3kMjJZI5x3beWVgQ1Arqz31Jp7d+bixbJ+6xQP72xMRERERERERERER0R5PBUPAwceZCxOd0Lf+uiz7CRgeXKMWLilL3VS9lFJQ3/uHdR196TJ8f+GzOOcQ+33LxmxH7w91DVD1jeVqYn8+g2YUg63K45zPyGU93dC3/NK1it+cr3DWQfZjqKWntXhhucOF/BwTNTx+hoqK1gKN4+UVrv0a9P87BwCguxPAk/8yr8dgtBFDKQWc8RGxXH/waOjX1wAAFk1XuP598jT+D/x+YKNSksIQu4jOCySxhPsNhOo7puf3vISbXnsXmlKvu26zK3SyrmFQ2kQ0EqnG8VCfu0Ze4eafe65rxjiFr53uL9Cs1jAGUH3+N77qIKooaYxr0jKvKmIer0pmasos6+cy/Ym3+aqvxfKs5+mhDjjSHL6mGb72Q0TDF4PRiIiIiIiIiEpkC4dK7gq7ksK6onk/W4LR+ib+uwWe5XS5BAV0ZeVgtFhVBaPJwQQp3WNcLgYveAgVk/6WpjqzpQajuexDCtHrbZ/7F+1SwITXY6e4XbagNgajERGRd9J1Pa1T0Np8XbWFplUqGA2Q+wilBo8SVUoq24Md+U9Bz9MYtIwiGIDCt7MYEu0luNglVLhU0rmlxpGfzi6dp6rRQ9vuRtYwUQgAlsRPrHBriIiIiIiIiIiIiIhoJFIHLhXL9J++Nzj3VhYdU/46qSqpSc1QP/23vEJ3AuG//hS/vdDBN5bL4/UaMn3BaIMUBgPAf8hRqHJjHUYyFQxCffR7YrmX81A4pPD7ixxccYJ8DLWkWov3PZTBaAzWG1pu55L7b4F+bTXw4K3iKmowz0dUcWq/I+TC7Vuhb//trl/PWKxw5mL5fLOhvfS+UzJtXh7OC0Yr+7krJ6/ek3fehrWrZ+G97fawpGmp9b0/1MUHp01EI9XSMwHHHAmir/umr6ouPtJvMFrBXBSlgMkMI6IqJgWjJSzzqiKcH+WXOuW9cuGzD0KvedFzXc1j5PPSdGw0F7zlDM/1E9Hwx2A0IiIiIiIiohLVqDAc4aN1YlcwmjlcKj8MQAq0yt/eFlKVr8slBKsrYw5GC6sIAiroaR+VEFJyMIEUZiAFlHgKXhBDyxLI6kzB0tKC0cRglVwwmiVgxUsQme3fUIqEJWQv7CFsjoiIKEcKMtPQyKLwOtsrrYVRWwBClgCjcpPCmaRAVqJq0Z7eIpYNJBjN3uPd3U/WWov9UG99W3MwsK2P6oX0WSJo+fwh9f+rTVqn8HDH3cay8aEmzIntW+EWERERERERERERERHRiGSbBP/aK8A2+T5VvsuFQKJ9kyuKF05s9lQnjRCTZ9rLX3gMALDvZPnuZVO6rfeHxvHlalURNXUvfxsw2Kp8psySy9rWAluEyfMF5jfJZbN6XjHs1+XY9Csc8b5ukMF6Q8p2zOW8+CT0848NrA4aPlyvVY/3+3WW5XL0ZGvpzejqNi+P5o/ZaWopfQc2k/qH/SkARyQeFlcfm96MWt035q6ewWhEfqhgCKgfbS5M90BnzQ/SNBldCzT6yIAqCkYb2wRVw34tVTExGM08lw4AEOb8KN/GTgZs54KCvpDNXpZ+0uye1eaCidM8109Ewx+D0YiIiIiIiIhKpJQSJ+wnXcKu8sMAwioCJQasdfb7v5tEptP6tLvOzA7j8ligzlP9lSIFqAByUIoYvGAJnvOyTmG94svr8vAcKQAid4wkLX9jL+FubsFrfsmhflE4il8pERGRd7brekoIKUpneyz1VS7MtdzXV6JKaU+/KZY1hgYSjObtiZHdOgkN84CrgQQXD+S9l9VZ8bNEjSUYTQ+TYLRndjyG7bkn3xc4qvEE9uGJiIiIiIiIiIiIiKg8Fh9rL29r9VTNafsr43zlM7f/pWiZKgjeoJFNjZkI7HeEvML6VdCZDI7ZWw51OGnn7b11LTltEFrY5+jl/tYPVe4hcCPewqOtxfqLZ0E//YBrNW/bRyFiGNJSk+3GyTtvKy44cKnHBnrk9ZioCUNJAQ9UEeoY9/e7/v7HgBVyKBT2P7KMLaIhN3MBYAvIfPWFfr+esUh+D//03qx17L9NR5d5u3h22+5fJjWXVLcrQ73Te9aKqzfmxrREa3tDnojIn9n7mZeneoAtbZ6rUUrhHZZzUqF+5xNg8M4pRGUjHN9JYexpJMa+dglUMAgccYpYrv97r+e6FkwG5kwwl7399V+b989gNKI9CkfAExEREREREQ1AJGB+MsTusCvzl6f5YQBKKUQccz257ZMZc0hVoQzSSGk5SKRLCN+qrbpgNDnwJC0EqEjhcQMJFQMMwWhCwIPj8jVLRAhf2xWiJwSRBVUIIcf9BrAcvOYtVK9ouwG8nkRERPnsgafm67oUmOZWX7lJ11epj0dULdpT5mC0WqceYcfHU6d9yA8Qk0J2AYifffJFA+YAaq+B0SYZIRQNAILO8A9Ge6DjDuPyGhXGIaOOqXBriIiIiIiIiIiIiIhopFKRGNS3bhHL9Q0/8lTPpLjCby9QCOQNuTopcRc+tvXHxStPZDDankZd9lNruf7MaYiEFP74Pgd1od33AZXO4qdtl2J2z+reBSeeN3htbJnrb4NQeHAasgdS4QjUd/8ur/DcI9CXLoO+0XA+ydMQU/jdhQ7CecNVa7LduKbtYozNbOm/8uyFUGH3e92+eD0meOwMvcPeBrzjEvs6OzuAVc+ayw44mkFQI4xSCuoL18orbN0E3bF77M5+U+XAlXv+B3z6ptLGprQLQ9ji+Q/WG6x+1NimooDH5pQcjKZzoTN18cFpD9EIpz5l6R/f/SdfdX3lVIWDmr2t25BhMBoNM1LIWWKneXnEPFaV3KkPf0su/Nefof/3X2/1KIXfvdfB+Pr+yz+3ZAeO7LjHvNEEBqMR7UkYjEZEREREREQ0AGIYVd+E/YQQmhEtCMmSQ61yoVneAwCk8DMA6MrsMC6PBeqNy4eKowJwEDCWScFvUviC9Np6XWcg4Qv99yGFO+RC9Mz78dJ+wBa85i1Uz+t2XttDRESUYwv4TGfNAWhSYBpQ2WA0KcBJ6uMRVYv29Gbj8sbQ2AHW7O3JeMmM/B6RQs/6rWP5fFTqU3Jt55UaZQtGq34buluxOvGiseygUUsQq7IgbCIiIiIiIiIiIiIiGt7UYScCoyeYC//1Z8/3c95ziIPXv+Pglg85eOZTnbi5dTkiurt4xUkMRtvTqOl7Q938qrzC43dDr3oWx89XaD3lbtyy/h24/rWzsX7VTLy/4+redeoaoELyfcCycAtKysdwq7JSBx8HjJtsXUf/6kroLvOY2Zy3L1JY/y0HN3/QwY1L/ovW1bPxru03Fu/v9PcPqL1GNR4fahYc5OOYXKlAAOrS70H98fmSQp3USRcMQqtoqKm5i6F+dLdYrv/wnX6/X3iEPObmqn9qrN3if4RKhxSMlu0LRquLQ9UPThCZcpyiUJKmdJu4vs6NOaprGJT2EI14k5qBiHlMnf7F53xVNX6UwoOfdvBey3kpZ9f5JIeh1VTtxGA0YV6Y8L4id2rcZOCMj4jl+pqveK5rcbPC6q85uOOjDn7/XoVXvu7gS69+XB6xzHMR0R6FwWhEREREREREAxARJuznQqWSQmhG4XZyPbnQLO/hVomMHOTVmTE/5SImhHYNpZAQeiIFGkj/bum19bpOMtP/tddCNIJy+ZpFClbJ/Y0TQniEFKhWvJ49pM8vr8cuERGRG1uQmXRdT+u0cTkAhCwBRuUm9tEypQWPElVKe+pN4/LG4MCC0bzFotnDA6V+cb6oEOSVQVoMSnZTcuBiiUFslXR/+x1i2VHxEyvYEiIiIiIiIiIiIiIi2mPstZ9ctuEVz9WMq1c4dX+FfdQaONIjazjhdc80tskenvJ4bxhNY/cbOHnn7XjHjlswMbNpd/kgBcHkU5Oava882CFte6I5C+3liU7guUdcqxlbr3DaQoXT267D+Iz5IWTw87f2qsZjWJ7X9WhQKaWgpu4Fde5n/G88GMcPVYeW+XLZy8/0+3WGZciO1sDdL5YQjCYMYYtntvX+MNjHXkH9QWQQFcYMXdDx294fony4H1EplFJA0wyxXHf7G9MaCiq860APwWi580muHbymUbVjMFpFqelz5MIn/wWdyXiuqy6icPx8hbMOdtAyVgFr/yevPHGaXEZEIw6D0YiIiIiIiIgGQArLyIVRyeFS/cMAogGpnq5+//eiyxKE1ZU1B6PVBuo9118pUjiBKSglqzPo1knj+lJgWL6QU4OgChrLCoPFNLLG9ZRLTIQUcJYLRJPC77wER9jql45BN3JQG7/4JyIif2yBQykxGM0WYGS+Zg8GuY9WWvAoUaVsTQvBaKGBBaPZ5AcIS31QBQdh5f7Ua1ufs9T3n3S+AYAaRx5ILvX/q0Ui04knt99vLJsZnYspkebKNoiIiIiIiIiIiIiIiPYIauESufD1Nf4rbGs1Lw+GgDGT/NdHw55SCjjoOLFc//X/oLt2ADs7zCvUNQ5Sy/I0tXhfl8FoZacsx0eOfu4x7xXazl0LDvFej1chj4FnPHaqi4fjrghDZEYsFbeMw3nqvn5hIG+dbx9nvnaL//23C0PEGzN918amZv+V+mGo//yO3xlXXb7jr70/JEsb105EAKbuJZdtXOu7ukPlnLVd4tn+wWg4aKnv/RBVlnC9TTIYbVAcaDknpFPAm6+XXrflvKZi1TcHkogGD4PRiIiIiIiIiAZADKPK9IZcSYFmhdu5hVr5CbfqypjDz2xlsUD1PX0p6JhDVFLZnqJlUqgYIAeaFJJC7grr1tIDuVwemCO1I7kr/M78Rbv39psD1JLZBLLaf5iDGOoX8BbURkRElBOyBKNJAWgpXXy9BwAHDhwVKEu7vPDaPyCqNu0pczDa6OC4AdYsd3q9BKNFnGjvBAYXMeHzEQB0ZUoLRrMHLsrnKf/P462sx7bfK4ZEL4mfWOHWEBERERERERERERHRHuPU94lF+pMnQafM93zFbe65wVwwYSpUoHL3iKm6qPOukAs3rYN+9wLop+4zl9fHB6VN/UxiMNqQOv4sYP7B9nV++3Xov1/jrb62VvPyyTOgwoMwbrLGazCax/WoItTMBcCpF3nfoCYCjJ4weA2iobf8g2KRvuwU6K7esfsHTFe44HB5zMzXb/c3QiWV1ujsNpc1ZPuC0SZO91WnX8pwHfz41h9iek//IJOPbP0pZves7v2lc/ugtoloJFMf+oZYpr94NnTW35yRWFjh82+zj+VryPQPIVbjJvvaB1HFSeNTE8I8u4g8VpXcqaYW4JT3iuX6y+dBi5PwZLprB7DNnBqrLvyi7/qIaHhjMBoRERERERHRAEghUbmQq1xAWtF2BSFWUqhVItMXjJbxHowmBWwBlmA0pwqD0YRwAlOggS2cRAo0KRQV1isOtzN/Keu4fM0itSP395JC9CKWUIh80YC8XncJ4S1eQ/2IiIjc2AKHpKAiabmtrsEg9Q/8hNYSDYX2tDkYrTE0ZkD1egk1A2x9SY+hv5Zw4FLff7ZgtBolT0LQVRyNprXGAx13GMtGBeLYv34QnlpOREREREREREREREQEQNU1ADP3kVe4+0+e69LZLPDvv5gLBznQg6qbmjEfOPNSeYWtG4HH7zaXVSQYrdn7ugy3KjsVq4f64V1Ql/+fdT393UugN2+wr5PNApvWmffz/q+V3EYrr8FoXtejilGf/AnUlz1e5yZN9zzWgoYndfKFcuGT/wJu+tmuX68+V2HWeHn1N3d4H6OyzTI0PJ7Z1ts2P9epUoyZWLRoRqoVj7YehR9u/AQ+seX7+Ov6t+OqTZftXqFz2+C2iWgEU00tgBTW+urzwNP3+67zE8vs16jc+QSwB7MRVQ2p3yUFB0YGIQB5D+Nc9jO5cMXDvf/51bZWLnvr2f7rI6JhjcFoRERERERERAMghUQlsl3QWoshZYUhVlI9yWwXsjqDbp303KZERg5G68yag9FqA8M7GM0WBuc5fMFj8Em2xGAEOVglAa21GPAQFULzvNYPyMEUNlJ7pBA/IiIiiS3MLCUGo6V91zUY5GBTBqNR9UpkOsW+XGNwbEXaIAU7e+1LhlVEDB7usvT9bWzBaEFLMJoUjFwNVnatwKYe8wD+w+PLKn7OJCIiIiIiIiIiIiKiPUzLPLFI33ez93pWr5DLJjZ7r4dGJLXv4aVtWDf4wWgqVgc0eLwHy2C0QaHCUai3nQecd4W8UjYLPHirvaI3XwdSPeaypuaS22fl9ZjgsVN1lFJQxywHxk12X3mwg6lo6LmEuOb3iZRSuPQtcgjR31d4H6PSYQtGy3b0/jDYx9+EacbF4zObcUn7L/DtNz6Hk3begX7/4kVvGdw2EY10sxeKRfrem3xXF7MNmwPQkM0LM+RnMxoO/AbShr3NNyMXe+0vFvn6fiinbY15eSAAjJvivz4iGtYYjEZEREREREQ0ALawq5TuQRbmp0oUBgJEA3LoRjJruXNpYAsK6MrsMC6PVWEwWkgFjcv/P3v3HSbJVd9t/3uqu2e6J+zMbNDuKq4kJFACBYQkkHclgoRkko2JIhkcCA8YY4IJNvYLGAfA5sEIv4Bfg7EJxg/2izESIIIQGGwRTJBF1kqAVkLSzmyY6d7t7jrPH7O92zNzftVVHad37s916dJOneqqM6m7uqf6rlDQoFK3v0ZW0CTteuUVUYfwH52dkl9At35WvLwO+EpgP415haN5K9ezP08rjJHE+rlL+/UEAKAhcpEi5YJjVqjIWl5YJWG0dh5bgX6Zrd1rjs0UNnW07aQjXu+PHCdbx5LLA9HmfpyzI9TGcXMr1TgpjGbftzR/XqvNjXOfDC6PFOnSqSv7PBsAAAAAAAAAALDWuHMusQfv/En6Df3cXted9ZAMM8JR6cwLpaiNt0Cu39z9uYScc3G69U45q7fzWOPc2cnfB/+zHydvYNdOe6xXYaGRYrr18lwQa9Vq8XMnSe6slPcRGFpuYioxFrv8mOihp9pn3/z4nvT73X/AHlvXeL/Ahi3pN9iOMx4sjWa74La76hk9mgywRiQ9B/vpDzNvbiSf/B6Y6XpTGG1rcggSWB2yhtGyPY7BkPS8+Jb/yr69XTvDy485Xi4ffq8hgKMXYTQAAAAAADqwPHDWUK7Pq5wQzFge2TC3Ey8kbsfad0js6+a2xqLVF0bLu/DlZ6qhMJrxeeVdXoWoxWVsDrHjdEu/nt4Ko7W4skhSUCzp58Wa14r1ErefPR5h/Rwl7QcAAIsVNLMCaNU4fBXefNTfkz3N44P6wqqOJWFt210NnyXp5DSdX9/h1tOdNLL8GLrBet4Tkvb4PC3r/kZafN5ghY6t4/9B2129R9/ef3Nw7IETD9FMIeWV6QEAAAAAAAAAANr1qKfaY3f8QP7276Xbzl077bGH/1qmKeHo4zYdJ12ZPaLijj25B7MJ7OcpL2290pNeLFdKdxEptOnCR0mnnWuPf/Qd8uWEvzXv2hlePr5OmpzpZGa2wmi69QijrVruSS+WRhK+jzPHSL/87P5NCAPjnv5ye3D/Hvl9c4c/PO9Ee9U/+aTXwVq681TmE8Jo4/7Q/d3kdKpttcsVx6SnpngcbPbgR/ZmMsAa4R73PHvwG1+Q/9Dbunpu67p475EPthBGwxBo8b6uFQrp3m+GZO4Jz7cHb71Z8fO3y9/909Tb87t2hge29ud5PoDVhTAaAAAAAAAdKOXCJ6tU4gUz1iWtjEuVIns7WaNWVihgISEgMJ6bzLSPfshnCKhYUbGkGFnadStxecnH1h+KrJBCQ1LgrBKXzZ+XtJ9DIRpR3oWvfNFOPGL55314PilDbQAANLMf12vG8nDAyNpOr1iPw7HqqvpwvA0YtNnafcHlU/n1yhnHi91x5DjZPJbMcHxuPUeyAr6tJN2vLEaOM54QM2Bfmvu0vOLg2I7pq/s8GwAAAAAAAAAAsBa5yRm5P/moOe6f82D5WvhvwkvWu+v28MBpD5IbX9fu9HAUca/6G7nnvynbjbZu68lclnPn/pLcOz+XvM6L/6Ivc1nLXC4n947PJK7j3/YSe3DXzvDyY09uedHctiUFtZrlevl3fnTCnXOJ3Ns/vRjxPOE06fhTF//bdoZ09bPl/ubGxbgjjnru0dfI/c7b7BWajnWcc3rxw+37lVf/S2dhtJyvaaRxXluvwo5N3PNen37lU86SGy32bjLAGuCOO1Xut95gjvtrXy194WNd219e9cV/lMalqQ1d2y7QM1mP3YkQd4U7+Qzpma+yV7jlP+Vf+fj04cZdO8PL+/Q8H8DqQhgNAAAAAIAOLA+cNZRbBM2WBwGKUSm8nXpyYC1kob4/03JJGjMCb4NkRb5CQQPra2R9f7Ksuzwq5mW9ENsijGaEHRr7sOJuWT6HtHG3NKyYWpb5AADQkI/CfziuxuG4mBVM63cYLelxr53HV6AfZqv3BpfP5Dd2vO2kGHDzcXI3jm2tCHU70V9JqrYILlqfm338PzjVuKov7/l0cGzLyPE6feycPs8IAAAAAAAAAACsWWdfbI/VqtLXk4NRkqRdRhjtzAvbmxOOOi6Xk7vm5dIjnpz+Rn18w7R74MPswYmp3oW1sIQbXyf3ur+zV/jcP8tXwn/L9tb9UC9/jnJ5KUrx9l5iDauaO/tiRX/8j4o++F1FH/qfxf8+8N+KXv1uuWNPGfT00E+/8nz793XXziUfnr7Z3swHvuJTRUPmjWt6jsULR86AGet9YNY5J/3yc9KtvGFrT+cCrBkXXZE47K/7QPf3uXUbx7QYDll/TgsjvZnHGuQufWzyCj+5RfrBN9NtzHh+5gijAWsSYTQAAAAAADpghaiq/qDm433BMSen0Wjp1Y6sN/1X4gUzKmBZMEIBiWG0aDLTPvqh4MIvMIfCaNbXyPr+ZFk3bfQkKRIhLX4+kfFSTDleUMUI6XUn7pbtZ8h7b37eWb6mAAA0WEGz0ON60vJ+h9GseK3UfpwJ6LXdtXuCy2cK/btio3Vsm+VYslvHtg2t7leGKYz23/v/Q/vqe4Jj26ev4iQ0AAAAAAAAAADQP9ObpPUJdY/b/qf1Nu4y3vC6+aQ2J4WjlTvl7HQr5nLSMSf0djLLPf43govd01/e33msdacmXETqYEW687bw2Fz47+zadFznczI456TCaOsVCaMBQ8HlctJm47Fn2bHOOcfZ53Xcu1+6J/wWhCXmD4TPZxn3h86rmZhanFMfuFNTPj6PFluvA6C14+8njST8Pu1M8Rwsqy08N8NRKs3xONI58fTWobnbbm25Ge/9iqjsYYTRgDWJMBoAAAAAAB1IilbNVu8NLh+NSorc0qfkViDgoD+g+XqKv242KdfDkY75OBxGixQlRj8GxQqfVANBg0oXwmhmeGHZ19MrDq7XKozmnFMpCgfwynU7gFfMdR53s34mLAd8xQxAZAm1AQDQ0K0wWqHPYbSkx7208VSg36znITP5TX2bgx0uTv+8wz52bi9K2Op+xWqJrcYw2o2z1wWXj7qiLlp3eZ9nAwAAAAAAAAAA1jLnnPSYXzfH/TtfJb/7bnvcezOMpq28+R7LXPFUaSTFG9ePOV4un+/9fJq4q5+z8o+OI6PSFU/r6zzWOne/c6TTzjXH/ef+OTywP3xhKq1b34VZJSCMBhxdjHCQf8crlhwPXXo/aTrhdOzPfq/1uSrzB8LLxxsX+5yYbrmNrnnkU9KtN7L63q8ADCM3NiE94sn2Crtul6/VurtTwmgYFlkvKtsq5IXU3MSUdPmvJa9kvf7TbO9uacF4HyX3RcCaRBgNAAAAAIAOlBKiVbO1cJAgFANIDKwZ27GU43AoYKEeDqON5SYWT1BbZbIEVMr1cHgh6fuznBUgWx496SSLYO1jX31OserBsSwhMiuMljXcUjG+nkn7AAAgScGFTziu+fDJF6EQqmQfH/TKaELEqd04E9Brc8bzh5nCxo63nRQDbg6IWcefpVw4dhZe14j+GtG1Vqww2pH7FauMtrrCaD+t/EQ/qXwvOPaQqcsyPQcCAAAAAAAAAADoBvfcP0wc9y/YIX+gEh7cc59UNv72yhtesYzbcpLc2z4pTc4kr7j15P5MqIk780K5N35EOu6UxQUnnyn3l9fLbT6h73NZ6/eQ2FsAACAASURBVNxbP2EPvv9P5H/83ZXL982GtzUx1aVZGUaKrdchjAYMjy3bzKHm46EocvrWH9pv77/mvV53700+X2X+YHj5kTBaj++/mriZY+T+4H2tV0xznwcgFfd775DOeLC9wnV/3939Ea3GsMj43jiXJ4zWTe6V10qPfqY57tOE0XbttMeO3ZZ1SgCOAoTRAAAAAADoQFIkarYaDhKUopUxgMQwmrEdy0LWMFo0kWn7/VKIjDBavDJoUDHiCKEIncX6HqwILxhhhMi1fpmlZMxnd/WehNt0Ix6RLdySFJuw4m4AACTJEjxNWt7vMFrkIvN4Imt4FOiH2MdmWHl9flPf5mEdf2Y7Pg8fB2c9tm1oFVy0om++ozRy931x7jpzbMf0VX2cCQAAAAAAAAAAwCKXy8n91hvsFe68TfqyESpKelMsYTQEuAddKveJO5NX2rqtL3NZzm1/vKIP3yp3w5yiv/+m3AMfOpB5rHVuZpN03g5z3H/8PSsX7t8TXrlVhK9TI6Ot18mFL0YIYPVJDActOx46Yb3T6Zvt1T/w1RZhtAPh5WONc8B7ff+13GW/2jpGM5riPg9AKm60KPdXnzLH/Qff2t0dJoQfgVUlYxgt1fE4UnOjJUWvfa/0q88Pr7BrZ+uN7DJeJxoZldZvaXdqAIYYYTQAAAAAADqQGEarhWNXoRhAUmzKChtYyvV5+UC8a76+L7j+WG51htGyBFSskFeWqJj1vVweXYsVG1to/QJ60ZhP0ve4O/EIO3QWYoXmFvdBGA0AkF3eha+oVfXhS1faYbT+n+yZ9hgBWA321/eq5mvBsZnCxi7swT7mbQ6IWeHApOdPy5nHtvX2wmit7leGIYy2UN+v/9p7Y3DsfqWzdOwobw4CAAAAAAAAAAADcuLpicP+1q+FBxLf8JpQC8Ga5qJIOuUse/yE0/o4m8D+R9Of84ceOeF+9titX1+5bN9seN2Jqe7Mx5IqjNbfiwgC6MDxCfc9kvytNy/5+LRj7HVvvi15V/Ph0+403rjg4Lr+htHcyKhUbHHe/kixP5MB1gg3NiHlcuHBhf2pt/PcS8Pnzb149zuPfLD5hCxTAwYoYxgtz7F2LzjrmGjXztY3nr07vPyYExZfCwCw5vCbDwAAAABAB3IupxEXPjFhtnpfcHkoLJUUm5qthqNZU7nwHyxjxTrgKyuWL8ThgMD4kIXRqoGggRUmyRYVC38Par6qahyOKDRL8/K5tQ/reyxJpVyWuFv4880abrFCapEi8+cdAIAkVtDMCjhZAaOCEVjrJevxO2t4FOiH3dVwnFmSZvKdh9ESL6Z3qB8W+1gHjDBalsjumHEc3O7vXqv7lWEIo31lz+fMoOSO6av6PBsAAAAAAAAAAIAmD3mUNL7OHr/hI+Hld+0ML998Im94RSL38CfZg5c/sX8TwaqU+PNx681LLj7sDx6QDoT/xq3JHoeFSinO3833/yKCANp0yaOlUsJ537d/f8mHT3qwfSLOR7/uddce+5yV+QPh5eP+0Hk1m0+059Erp5+XPE4YDei+E4xA9e675CvpzrN73APD90VP3fNPRz7oc2wRaFviSa4Bhf6fl74mbDEu8rtrp/xt/5N8231z4eVTGzqaEoDhxSvEAAAAAAB0yIxd1cKxq2Ju5fo5lzdDH9Z2ZgqbzDkt1Fde4WWhvi+47lg0aW5nkApGGC0UNCjXw3+0KUVZomJ2pKHSFJWzwgguxcss1j6s77GT06hL/0dg6/O1vj4WOzQ3Jpf1DwUAAMgOnlqhImu5tZ1esh6/s4ZHgX6wjivzrqCJXMIbUbroQFwxj5mTjrnTrls2gs+tmPcr0XBc8S/2sb44d11wbCo3o3MnL+7zjAAAAAAAAAAAAI5wpXG5N3zIXuHeO+Vv+KcVi/1dt4fXt95ECzQ85Xek7Y9fuiyXl3vNe+WOPXkwc8Lqcf5l0oMuNYf9215y5IP9xhvvJWliuntzCkkVRhuOv2kDkNzYpNz/80F7ha9cJ187cv7KNRc5jSa0D+//B7HuuC98Do4ZRjt0Xo3b2v9jKffKdyaPj6a/4DmAdNyr32OO+RdetiQGa3nsg6TXXH3kPSLOx3rrXa/QRZWbj6zU62MioFuyvt8pTxitJ7ZuM4f8s86Tv+U/7XHr+dnEVIeTAjCsCKMBAAAAANChYi4co6r6g8HlVkjNjFoZb/xfnxBGC91mPhBLk6QxY/6DliWgUonDV+srRun/gFoKBOsayk3bN8NoKV4/t/axp7Y7uLwYlTKFyKztZw23WCG1LF9PAACaZQmeSlI1Xj1hNOvYLWt4FOgHM6qc36DIdf5nQSf72LRxnJx07Jl0zL3cmPH8qBKXFft66u00tLpfccbXJ83JYf3wvYVv6Z7qruDYw6avUM5xlXAAAAAAAAAAADBY7sJHyr30L81x/+4/kI/jpQt3GWG0AcQ8MFxccUzujR+R+9Ati/9/y8fl/u3nclc9c9BTwyrgnJN75bvsFf713fK/+Nniv5PCaJM9joAUU/wNnTAaMFTcxY+We9nb7RW+ev3hf+Yip39/iX0+z76KdO2N4fNWyuG3KWi8cd5OQpCkZ44/Lfk+ayT9xcIBpHTKWfbYD78l3fq1lptwzumNT4i069lf1aduv1p3/+AE/c7sstDhOEEiDImsYbSR0d7MY61rEbv373+zPbjPCqMRaATWKsJoAAAAAAB0qJQxFlU04hpZo1Pr8wlhtPrKMNpCHA6jjecmM+23X7KE0ax4XJbwghU9kaRK0/btMELrF9CtfVixNSuWZ7F+trKG0ezQXPqvJwAAzfIufEUtKyRrBdPyUf/DP8Vc+Bgt6+Mr0A+z1XuCy2cSosrZJB3zNsJo4WNJKdvxZNKxfNI+LOb9yqGgmPWZWcfq/fbFueuCyyPldOn0lX2eDQAAAAAAAAAAgGHbGfbYrp3SnT9ZuuzeO4Orus2E0dCac07u+PvJ7XiC3EVXyvU6YoXhsvnE5DDCN25c/L/1xnup92G0sYnW6xBGA4bPKWebQ/7mzy5ddWPypv72pvB5K/sPhJePNc5537ItecM94KJI2nyCvcLY6nzPAjDMXHFMmjnGXuFrn0u9rWPq9+oRC1/Q+nh26UBpQi7PRTsxLDKG0fLh89vRGTcxJa1bb6/w9c+tDOc3WOFqnu8DaxZhNAAAAAAAOpQ1FmXFsUq5bBGsyfyUCkZkZCEQCluoh8NoY7kUJ1YMgBVGqwaCBt0IeSWF6cpN27fCCC7FC+hZf1a69bNVzhhu6UZoDgCAZlbQrBbXwsvNgFH/T/a0w6PZw0xAr83W7g0un8m3OIuyi6xjSSk5RrxyXfv5UdI+LNb9ypHnVOHj+dUQRruv+gt9Z3/46p3nTl6k6XzCCSQAAAAAAAAAAAD9dPYl0sioPb5r59KPrTe8Tvfv71sAjk5utChdcLk57q/9ffnvfV3aNxteIZeTSj0+vzbN9gmjAcPnjAvtsY+9S/FfvlTxG58r//G/1YnVOxI3dZ9xisyccWr4dLxn8R9TG1JMtAceerU9lnCfDKADl1xlDvnP/7O8T3n+mxWLJUaEYZIURg4pEEbrmYT7Jh08IO2+Kzxm3RdNcF8ErFWE0QAAAAAA6FDSG/ZDrABXlkjA4nbGNGbsu1zPEEaLVmcYrWCET5YHDWq+qqo/GFw3y9c0cjmNumJwbOnXs/0wWtbvcdYQmRlGqy+k/4OWuhOaAwCgmRU0s0JFrQNG/WOHR7OHmYBe213tbRgt6Zi3cbRpHUtGijL9Dic9z1oIPN9ppVVw0f7cBh9Gu2nuU/IKXx1v+3TCCaUAAAAAAAAAAAB95kaLci9/pznu//39Sxfw5nsAPeSe/yZ7cPYX8r/5UPk/vCY8PjEjlzWskFWx9TmZLhe+GCGA1cuNjErbzrBX+Ni7pE/9o/xfvFB68un6zW0/StzebfeuPHdlzrim53T90LHVgI6l3FN/Vzrx9JUD17xCLrQcQMfcs15lD/7o2/J//kL5er31hqxo9cRUexMDBoEw2qrhnv1qqWSfB+xf8+Tw+9yM14kcrxMBaxZhNAAAAAAAOlTMhUNnllIu/MKeFUwztxONmdtaWBbq8N5rPg6H0cZzqzOMlo/SBVQqdeMvu8oe8ioaIbLmuIPvJIyWMXSWef7G+nXVzBBEiBV6yRp2AwCgIW3wtKFqBoz6f7Kn9fhqxZ+AQZqthcNo6wvdCaOlUYnDl6QtReOZThpPOnYuG/tI0up+xZrboLNo1fig/mPPZ4JjW0dO1Gmls/o8IwAAAAAAAAAAgGTuqmdKo8a5cJ/9J/l48YIwPo6l+b3h9XjDK4AucPc/X3r4ryWvVA6fW6vJPkRASinO382Fz7kBsLq5Z7wy9brPvfE3Esdf/MGVF9ObM06dmY73SPmCNBK+WHivuWOOl/ubm+Re817pSS+WnvNauf/9GbnffsNA5gOsBe64U6Vn/b69wif+P+mr17fcjt+/JzwwwXMzDBHCaKuGO+E0uY98317h1pulb3955XIz0sh9EbBWEUYDAAAAAKBDpci+gkGIFUBrZzvWbcr1pWGrqj9ohkfGolUaRjMCKtV4WRgtIYqQNURmhb+aQ2HBK1LIDik0yxo6yxoi61Y8worNZZ0/AAAN1uO6dXxiLbe200vm8UE9HBIFBqXua9pbmw2OzeR7H0ZrBITL9fBxZ9agdM7lNeJGg2Pt/P61ul+xQsferzy5tJ++se/L2l8PvyFo+/Sje3+FcgAAAAAAAAAAgHb80uPssR9+a/H/83sk41ws3vAKoFvcOQ9t74aTM92dSIBLE0bL9/8iggC6YOtJqVc9+cCPE8e/e+fKZXPGNT2n6nuliemBnk/iJqflrnqmope8RdHz/lDuvO2c3wL0mHvABYnj/sZ/bb2ReSuM1odYLNAtWR9v8oTResnNbJJOOdscX37f5L2X9twXXpmAPrBmEUYDAAAAAKBDWeNVVlwqe8RrXGO5cBhtIV4aClioG1e0kzSWW51htELKgEpS8CtryMtavxIf+etxI/iwUusX0DOHzjLH8pLCaOnjEda6WX9GAQBoMIOnQxBGKxqPf83HB8BqMFe7zzxWnSls6so+rHjYosV9W+HidiK7JeP5Tpbob4N1v1JwjRNbjDBa5j11141z1wWXF6OSLpq6vM+zAQAAAAAAAAAASMc98GHmmL/hw/K33Srd/n17A7zhFUC3POjS9m7XjwhIKcXf0fP9P1cGQBfc70GpV91Qv09njIcvhihJd+yWvn671665xbNYqjWv+QPhdafiOSJGwFp01kVSLiGmetstrbexzwqj8dwMwyRjGK1AGK3nzk14PnbHsteF9s1KC/vC627Y0r05ARgqhNEAAAAAAOhQ1jf4W3GszBGvXMkMZ5XrS8NW87HxwqCk8dxkpv32ixU+6WUYzfreLP96hqR5+byYNXSWK2VaPym8liXeYq3bTswCAAAp/eN6q+VHAkb9Yz3+tRNmAnpptnqvOTaT39iVfaS5eqv1u5E1Epx0myzR34ZWwcXIPKIfXBrtjsqPtLPyg+DYResuVzHK9nwBAAAAAAAAAACgbx71VHvsw38l/6xz5V+ww16HN98D6BJ32oOkSx+T/YaTM92fzHKlFBc2JowGDCU3NiGNpTtH30l6zXFfSlznwjfFOu6Vsbb/eV0//IW93nR9D2E0YA1y6zdLj/8Ne4XvfV3xe/9I3iecC7d/Lryc+xQMkxTnuC5RGO3NPHCY+5Xn24P/+Wn5/3PtkY937bTX3bqtSzMCMGwIowEAAAAA0KFSLmPQzHhzf9ZQQCkaVykXDm0tLAsFLCSEvcaMbQxa2oBKxQgvjLhR5Vwu0z6t703zPrzi4DouxcsspS6GzkJGo5KcEXRIE3drsL6mhBcAAO0qZA6j1YLL8y7hinY9Yj0eV+Jy8kkiQJ/N1sJhtGI0lvk5Szsavw32sWQ7YbR0Ieg0qrEVRmvcr4SPo/0Aw2g3zl5njm2fvqqPMwEAAAAAAAAAAMjGTUxJZzy4/Q2M8+Z7AN3j3vBhud9+Y7Yb9SMCQhgNOKq51/5t6nWfVvqK3v/rrWMuX/qR9Jh3hM9ll6TpeI6IEbBGuZf+lXRJwjll73+zdP0/2OP794SXTxKtxhDJHEbr/wW71xq37Qzpma8yx/1f/a781z67+MGu28MrjYxKG7Z2f3IAhgJhNAAAAAAAOpQ5aGZECbKGAopRSWNR+KSI8rIw2nx9X3C9UVc0A2SDZgVUYsWq+/rhj8v1cHgh6/dFsr83lbh8+N9WFsEKki2dU7YIXdb1Ixdp1IiXlY1ARZZ1s84HAICGtMHThqo/mGk7vWQdo3nFOuArfZ4NYNtdDYfR1uc39mcCh0KB1rFkO5FdKwS9/PlOGtb9TeN+xTqaH1QYbX99r76276bg2Olj52jr6Al9nhEAAAAAAAAAAEBG7YbRxibl8v2/aBaAo5fLF+Se8Qq5v//v9DeanOndhBqKKc5zzXF/CAytjcemX3f/Xj3jYqdSitPjdt5nj03X9xCYBdYo55zcC96cuI7/9Aftwf1z4e0SW8QwyRpGI0LcF+4hj0oc95/60OI/7toZXmHziXIRaSRgreK3HwAAAACADmUPmoXXt6Jc9nZKGrNCAfWloYCFeL+xz9UbukoKnzRHDSpWeCHj11OyY2rN4YVOwghZYxDtxCOs21hfp+C6RmyunfkAACBlD6PV4uSAUT8lxVab46nAoM3WwmG0mUL3wmhpYsCVevj3op3Irn18nv7YtsG6vylEh674Z5wQ4/1gwmhf3fM5MxK5Yzrhyp4AAAAAAAAAAACrhDvt3PZuON2nC/8AWHuOPVkam0y1qpuY7vFkJI2va71OjlgDMLROOStdAFGS9s/JOadzO7hOnvOx1sV7pekN7W8EwHBrdaxz+/ftsf17wsv7cUwEdE3GMFphpDfTwFInn5kcfL79e5Ikv2d3eHzTcT2YFIBhQRgNAAAAAIAOJcUylosUacSNBseyBNZGXVGRy5lxgeUhtIV6OIw2nkt3gscgpA2jWVGELN+XBut70Bw98T4OruNc65dZIpfTqCumnk874TrrZyJtPCL2dR3wla7NBwAAyX5cr1phNF8Lbyfq/8meSbHV5TFaYJB2V+8JLp/Jb+rL/hsB4eaocLNiLntk1zy2beN3z7xfOXT/ZEff+h9Gi32sm+auD45N5zfogRMX9XlGAAAAAAAAAAAAbbj8idK69dlvt3Vb16cCAJLkRovS1c9Kt/JkHyIgkzOt18kTRgOGlSuOSVdek27ln/9YkvTbOzIGXZqsi/cqkpfbenLb2wAw3Foe69zzc8W/9xj5O29bObZ/LnwbwmgYJsYFck1RrjfzwBJuasPia0SWW29W/EfPlH76w/B4P56bAVi1CKMBAAAAANChLEGzYjQmZ7zQmiXk1QhUjRmhqoVloYB5I4w2Fk2k3me/FSL7yhvNEZWKEfzK8n1psL4HacILaV8+T4qrrFi3i59DpZ4ujNYcgVu57ewxCwAAJKlgBM1qgTBa7GPVFQ4YFRLCqb1STHj8S3rcBPptrnZvcPlMYWMX92If9TbCaNbvRTvh4pJx7Jw2+tus6g8Gl+fd4lXorDBa/7No0q3z39Q91buCY5dOXaGc42QcAAAAAAAAAACw+rnxdXLXfl46d7tUsM8FW4GYB4Aeci/6c2n741uv2I8ISJo3+BNGA4aae+lfSk/6X9LMMdJUwjk8P/yWfL2uZ10S6a+f3l4cbbq+Z/EfRGaBNc296M+lS66yV/ivz8i/4DL5hSPvMfJxLM3vDa8/MdXlGQI9lDWMlsv3Zh5Ywf3+u6XjT7VX+Ow/STf+S3hsIkVQGsBRizAaAAAAAAAdst6sH5IU1sgWWFvcTikKh9Eq8YJiHx/+eMEKo+VWbxitESgIqcVHIipWFCHpa22xomXNcQdvpBGskMJymQJ4bcQjrM8hbTwiab2i8fMGAEAreSNo1vyYfnhZIJbWaju9NOqKcsafU8px63gq0C+z1fuCy2fy3QujpTnitY/P24n+GiHoNn73rPuWxv2KHUaLg8t76ca564LLI+X0sOkr+jwbAAAAAAAAAACA9rmTHqDoHZ+R+/Tu9Lch5gGgh1w+L/fH/yhFLd5amyZa1qnJFG/wzxNrAIaZyxcUveStcv//HXIf/6ncy95ur/yNz0uSXnhZpA//VvY42nR8KIy25aR2pgrgKOHyebk3fDh5pd13SV/42JGP5/dK3riEaD+OiYBuIYy2arnRotxbP9HejScJNAJrGWE0AAAAAAA6ZL1ZP7huzl43aczap7VvL68DTTGvhTgcRhtf1WE0O3zSHDWo1MPhhSzflyO3saJiR8ILnYbRsgQh2gmjWbeppAyjJa1XaiM2BwCAlBBG87XAstUVRnPOmcHV5ngqMEgH4orm433BsfWF7oXR0rCOJ9sLoxnHtsZzgCTWfUvBjWTeVi/de/Bu3TL/9eDYeZOXaCrPle8AAAAAAAAAAMDwcfmCdPWz06180v17OxkAa57LF6Rii3NM00TLOlUck/ItzoVpNQ5gKDjn5KJIOuYEe6Uf/Pfhf15ySvYw2lR9bvEfmxP2AWBNcKNFaWtyJNF//xtHPtg/Z684QZAIwyTj4ycR4v465gRpNPv70lw/npsBWLUIowEAAAAA0KGCG1GU8im2FdVoNWatO5YQNltoinnN18ORhLFoOMNoVX/w8L/LVnghl/3FUivWUInL8oeugOOtK+GkvLJIlthZMde9eERz3C1JpW4HXtqJWQAAINmP63XVFPt4ybJQLK3Vdnqt0/Ao0Guz1XvNsZl898JoSTHgRkDYDhdnP5YcM+LRCymPbZtZ9y15t3hii3Ph53RWGLlXvjh3nbnPHdNX9XUuAAAAAAAAAAAA3eQe9ZTWK01MSRdf2fvJAMCZFyaP9yEC4pxrHWAjjAYcXR78cHPI/81r5d//Zvn9e3TCeqdL75dt09PxnsV/EA8BIEkPf3Ly+Mfepfj3HqP49c+Qf9Pz7PUmprs7L6CXUr6v67AcYbR+cvmCdPkTs9+QQCOwphFGAwAAAACgQ845laIWV447JCksNeqKqQNrpUPBrLGE/ZbrR2IBVjggKaw2aAU3Yo41Rw0qcTjklfZ7svQ24e+Pl9cBXzn8UUhSJGLJPjLEztqJR5hxt4TgWTMroJZ3eRUi+3sCAECSQkLQrOariR+n3U4vWY+vZSMABfTb7to95th0F8Nora6mF/t603HzUu1Ef4vGMX0lnreDxQHe+yVx5WaN4KL1mWXZT6cOxgf0lT2fDY4dO3KSTi2d2be5AAAAAAAAAAAAdN0FD5d7/pvs8akNcn/2L3Kj2S+ICQBZuZf/dfIK/QoLTbaIjRBrAI4qbrQknXqOOe7f+0fy/+sR8gv79YHnRTr72PTbnqrvkUZLciOjXZgpgGHnnvMaaccTklf6r89In/uo9K0v2euMEyTCECGMtuq5l7xFOm9HthsRaATWNMJoAAAAAAB0Qdo3+SeFrpxzieG0Jfs7tF5SZGsh3n/k3/V9wXXGc5Op9jcIeWe/wNwcTKkYIa9ilP0EuaSvfyM05zsMo6X9HhfciHIJXwOL9TNRjtOFW6zQXNp5AwAQku9SGC1pO71kPb5WUj6+Ar02W703uHxdblqFqF+/N948lpSkUhvH51YIuuZrZugspK6aOdYIMlvH89bxfy98fd+XNB+Hn7vtmLl68WrhAAAAAAAAAAAAQ8o5J3fNy+Wuv0fu7Z+Se8vH5d7yb4v/vfvLcv96h9wDHzboaQJYK7ZsSx6f6FMEpNWb/HODOVcGQO+4Rz4leYUff0f63Ed10ganb70+0nW/ky4FMB3vIRwC4DBXHFP0xo/IvehP299IaUIuTzgKQ4Qw2qrnJmfk3v4p6VdfkP5GrWLSAI5q3FMDAAAAANAFad/k3youVYxKS4Jm9v4Wt5NzeY26og74yop1FupHgmHz9fA2rdDAahC5nCJFihWvGGuOIJSN+EKpjc8tKTTXiDx0GkZLiuMtXa+97431M1Y2AnIr1wsHXtLOGwCAkOQw2tJgUVLsaFBhNPvxlTAaVofZWjiMNl3Y2NX9JJ0z4r0d2ZWkYpePz8vxgkaidFe4XX4/0yx/OBxnfXL9C6PdOHddcHkxGtOF67b3bR4AAAAAsnHOnSLpQkkPPvT/8yU1X5nmdu/9tja33emTkpO99zs73AYAAAAAdJUbXyedf9mgpwFgjXO5nPyWk6S7bl85ODkjl+/TOSqt3uRfGOnPPAD0z9ZtLVfx131A7jG/LuecHvGAdC8TT9X39C/qCGB4PPDS9m/LfQqGTsYwWpTrzTSQyDknXXC5/Mfele4GhF+BNS1dJhoAAAAAACRK+yb/YouAWimXdjtHAgHWbRohrNjXVTGiHeO5yeDy1aLgwid01Hz18L8r9fDn1uprHb5NUnhh8evZ6TuQ0gbP2pn/4vbDn0NSpGLpetbXkzAaAKB9hcQwWnXZxwkBowGF0ezHV8JoWB1mq+Ew2vp8d8NorU4aSYrxpo1JL72NfexcrqcL/0pSLa6aY3m3eB0pK3TcryzazvIPdUflR8Gxi9c9vO3nBwAAAAB6wzl3mXPuU865+yT9WNKHJb1c0g4tjaIBAAAAAABgtdrxhPDyi6/s3xwmZ5LHi5y7CRx1LnxE63W+/eXD/8zn0kVepuO51rFFAGvP6edJG49t77aE0TBskq7+u1wUyUXkdgbmgsvTP9fZfEJv5wJgVeOeGgAAAACALrBiGSvWaxE+S72d5jCaEQtohALK8YK88Xb+sdxEqv0NihU/aQRTvPcqG0GStJG5ZiNuVJHxckkjLOZ9HBx3Lt3LLMVcd35WzO0bP0NpwxF2GI0QAwCgfUlBs6o/uOTj5IDRYMJo1uMgYTSsFrO1cBhtptDtMFoSr0rdjvG2E9pNOia2ngeELL+fada4iXEGQwAAIABJREFUX3HGCTHWc6lu++LcJ82xHTNX9WUOAAAAADI5V9IVktYPeiIAAAAAAABoj3vay6RTz1m6cOs2ud94ff8m0SpiVGrvXFIAq5dbt14azXZe9t8/t3XoZbq+Rxpf1+60ABylXD4v9/J3SCPF7DeeILaIIZMljJbL924eaMmNr5N76V9JuVzyivlC+3FHAEcF7q0BAAAAAOiCtG/ybxWXSr2dprjWmBELWIgXQ1jz9f3mdsai1R5GC790UfOLwZSqP6hY9eA67YS8nHMqReOaj/etGGsVFnNK9wJ6O/G7LKx4xAFfUezrilzyi8blevdCcwAANCQFzRqP69bHS7czmD9r2OFRwmhYHXZX7wkun8l3N4yWdMzr5c1YYN7lVYhGMu9v1BXlFMlrZZy4HKcL/0rJ9ysF15iXEUYzwsjdtL+2V1/b96Xg2APGHqTNI8f1fA4AAAAAuuaApJ9JOrUH2/5PSU/NeJuf9WAeAAAAAAAARwW3YYt07Rekm2+Q//F35LadIV34CLnJmf5NotW+ipy7CRyN3PPfJP/2lyWu4w9U5EYXQ0ZXn+OkFhf3m473EDECEOQe9hjpA9+Uf8oZ2W44MdWbCQG9QhhtqLhffrZ05kPkr32V9NVPhVdav0Uuivo7MQCrCvfWAAAAAAB0QSmXNnaVfIJCO9Esa5uNUMBCQhhtPLfKw2jRiELds2p8UJJUNsILUuuvtaWYKwXDaJW4LGkx+BCS9uXzbkX0LKWE21XissZafM+tmEW78wEAQJLyUVIYrbbk46o/GN6GK8hl+YN1F1nHeo3jA2CQvPeard0bHFtf2NTXuVjH52mPgZdbDBePaSFe+ZymVbi42fL7mWaNcONg7l0W/ceeG8x42/bpq/o8GwAAAAAZVCXdIulrkm4+9P/vSHqYpM/3YH8V7/3OHmwXAAAAAABgzXJjE9KOJ8jteMJg9j85nZw6KhFGA45KW7e1XufuO6QTT5ckzYxJk0VpX8Vefao+J03cvzvzA3DUcceeIn/NK6R//Iv0NyK2iKFDGG3YuJPPkF78F/JWGO34XlyPDMAwIY0IAAAAAEAXpA2atYpLpQ0GNEe/xnLhkx4WDoUCQhEBSYoUtR0o6JdGpGC5RjTAinhJnYTFwl+TRmjOKw6Ou5Qvs6SP37UZdku4XVJIrtU67c4HAABJyjv7j8e1eGkMyAoYWccF/WAdMzWOD4BBmo/3mUHBmfzGvs3DqzeR3ZLxfCfL758VHZOO3D9Zx/NWGLlbYl/XTXuuD47N5DfqnIkLe7p/AAAAAG17v6R13vvzvPe/6b1/t/f+G94nPAEBAAAAAAAAlpucsceck0aK/ZsLgP45+2KpMJK4iv/E38nfd5ekxYsLjiWvrun6HiJGABK587Znu8HkVG8mAvRKlgtwR7nezQPZHHc/adNxwSF3wcP7PBkAqw1hNAAAAAAAuiB90Cx5vVIue2DNClY1QgEL9XAYrZQbl8vyou8AFIyISiOYUq7boS8roNCK9b2sxGVJ6jiLkPpnJeXPworbJWw/6evV0IuYBQAAOeXljKtwLQ8WWQGjQYbRrMfXxvEBMEiz1XvNsZnCpq7uy/o9XuRVNn4nOons2uHi1se2DVY4Tjpy32J9Zr0Oo90y/w3dV/1FcOzS6SuVc5x8AwAAAKxG3vtZ731l0PMAAAAAAADAkEsKo5UmVv15vgDa46Y2SE/+neSVPvQ2+SecpPj118gfqOjPnph8fzAdz8lNEkYDkODBj5Ae9Evp1ye2iGGT5dg5Z1/0G/3lcjm5X3/dyoGtJ0m//Oz+TwjAqsK9NQAAAAAAXdAqeHZ4vRaxq/TRrCNhgTEjALZQXwyjzdf3BcfHo8lU+xqkvAtf2qoRNrAiXk5OI260rX1a34NGaM5Ko0UuXX8+ffyuvTBa0u2sr1czK57WScwCAADnnPKuEIwTLV9mh9EG9ycNO5yaPswE9MpsLRxGi5TTulx3r9iYHEaTKoePmZfqJLJrHYc2nu+kYd2vSM3RxfDn1usw2o1z1wWX55TXw6Ye1dN9AwAAAAAAAAAAAAAGLCliVGjvPFgAw8H99hukU86Sf8Nzklf83D/Ln3CanvLs1+s5f2efxzJd3yNNdPdcIQBHF5fLSW/9hPR/3in/rS9JP/qO9Iuf2utzn4JhQxhtaLnHPlc65jj5Gz4q3Xen9IAHyz3xhXIbtgx6agAGjHtrAAAAAAC6oNil2FXawFpzWMAKBTRCXgvx/uC4FVRbTY5ECpZqhA3KRoykGJVSh8qWs74HjWCY952FEdIGxtL+LCxXiArKu0Iw/mB9vZpV4nJweScxCwAApMWwWSiMVvO1ZR+HA0YFI5jaD9bjciUuK/Z1RS7X5xkBR8xWw2G06fz6vv5senmV69axZHvHtpIdFs4SJlx+P9OQU/7w8wbzKtsdHv8n+cXBXfqf+W8Ex86ffKjW5bniJgAAAAAAAAAAAAAc1SZn7LHqgf7NA0DfOeekK54m/9Xrpc98OHnlGz6i0d/4o8RV1sV7pQnONQGQzI0Wpaf/ntzTf0+SFL/00dLXPx9emfsUDB3CaMPMXXSl3EVXDnoaAFaZ9t4hDAAAAAAAlkgbsWq1XtpgQHNcywyj1Q+F0epWGG0y1b4GKe/CLzQ3wgZWDKGT8IIVuWvsyyscRnApX0BPGxjrKB5hxlvmW97W/JqmjP8BAGBpFTxtqBphNOv2/ZD0OHggrvRxJsBKu2v3BJevL2zq/s5aXE3POpa04mZpjLUIQadRjVdGGaWlzzes4/neZdGkm+auM8e2z1zdwz0DAAAAAAAAAAAAAFaF6YS/7S/s6988AAyMO/281ivdeZv8wQN63IPCw2dVblFOsTSxrruTA3D023KSPUYYDcOmxTmuS+S4KDYADAPCaAAAAAAAdEHaMFqr2FWaYECkSAU3cvjjsdxEcL2FQ6GAeSOMNh6Fb7ea2AGVxbBBuQdhNOt7We5SGK3gRpRT6yuLlHLhAEQa1udfjsstb2t9TdP+jAMAYEkbRlv+8ZHbD+7KXEmPg9ZjJ9Avs9V7g8tn8hu7vq9WR7y9OD4vGmG0hXr6MJp5vxIduV+yw2hx6v1kcTA+oK/s+Vxw7PjRk3VK8f492S8AAACAoXaic+7vnHO3OOdmnXMHnXN3H/r4H5xzv+WcWz/oSQIAAAAAACCDDVsGPQMAg3bF01rHh7yXvnq9XnBZJOdWnsv+m3N/u/gPIkYAsjrmeHtscqp/8wC6IUMXTbnBnZcOAEiPe2sAAAAAALogzRv9c8qbQZAs2ylF43JNV7EYM0IBlXhBsa9rIQ6H0ayg2mrSHIBrVj0UNqjUux/xsr4HlUNRMSuMlvYVdOecSrkx7a/vbTGPUqrthVifv/X1aqj5qqqHonMr50MYDQDQmVaP6w12GC35OKqXkh4HK4TRMGCzNSOMVki4qnQPeO/N34dOjiXHjGBwlt89637Ful9qZh39d+pr+24yn6vtmL56yXM+AAAAADjk5EP/NTvm0H9nSrpG0tucc++R9Afe+/CTjg45546RlPVJ56m9mAsAAAAAAMCwc8717O/SAIaDW79ZuvYL8u94ufSNz0v1enA9/9on64pP3KmPPi3Wn/3tj/Wt0QfqAQe/r+fNvU8vmv2bxZUmiBgByMatm7GPRYgtYthkOe+SMBoADAXurQEAAAAA6IJSLkXQLDfW8s3taYJexdzSYFbJCAVIUjle0EJ9eMNoVgClETYoW+GFFN8Pi/U9KNfnF//hw3/2yRIuKEallmG0khG8S7V94/Mvx/OJt6vUywnzIYwGAOhM3oX/JLE8WGQGjKLWAaNeSQqWlmP78RPoh9mqEUbLb+jB3uxjXi9/OCa8XCfHktZtF+rJx7bNar4WXN58v+TMz637p6B773Xj7CeDY6VoXBeu2971fQIAAABYM8YlvVTS1c65X/Xe39KDfbxQ0ut7sF0AAAAAAAAAWJPcyWfIve3fJUnx40+Udt8dXvGGj+hXzr9MT9i5IzxOxAhAVusSzjMctc+dBVYlwmgAcNSJBj0BAAAAAACOBmkiVklBjSzbWR4GGEu4Tbk+r3kjjDYeDUEYLTICKvFiMKVihNE6CS8Ujds2Ig9WFsEOKazUzvc5C+u2VqjiyHj46ynZXxcAANJqFTxtqMbhMJp1+34ouBHljGvNVDLEmYBui31dc7X7gmMzhY1d31+rY96y8fuQ5rmQxQpBJx27Llf1B4PLm+9XnAv/2dQbYeRO7Kz8QD898JPg2CVTj9BINNr1fQIAAAAYajVJX5D0OkmPk3S+pNMknSfp8ZLeIukXy25zuqQbnHMn9W+aAAAAAAAAaMvTXhZe/msv6u88AKwO284wh/wPvyXtm7NvSxgNQFbnXxZeXhiRNp/Y16kAnSOMBgBHG8JoAAAAAAB0wWiKN/qnCUsVc9m3Y4UCJGkhntdCHA6jjeVWfxit4EaCyxsBlbIRQ+gsvBD+PpXjxciDVxwczxJGS/ez0P0wWuNzsFhfT8n+ugAAkFbaMNryj4/cfnB/gHbOmcdp5RbhUaCX9tRmFRvHp+vzm/o8GzvE20lk1zq2XWhxbNvMvl9pCqMZt/VmGrl9N8590hzbPv3oru8PAAAAwFB7naTjvPeXe+/f5L3/N+/9N733P/Le/7f3/uPe+1dIOknSn2rp9V22SPqYc1kujQ4AAAAAAIB+c1deE16+41f6PBMAq4G74mn24L+/T/5Fl4fHRkblRou9mRSAo5bbuFW6IHC/ctGVcmOr/z1HwBJZ/iyaJ4wGAMOAMBoAAAAAAF2QczmNuuQ/JFpv6M+6zoowWsJtyvV5LdSHN4xmBVSqh8IGVnihFNmxuFasaEPVH1Td1xKyCOlfQE8TGUvzs2CxPody3Q6fSclhtE5icwAASFIh6jSMFr59v1iPzZWEx0+g12Zr95pjM4WNXd9f0hGvlzd/HzqJ7FrH9gfismIfjsItZ92vLA0xhz+7bofR9tXm9I19Xw6OnTF2ro4ZObar+wMAAAAw3A7F0H6RYr2K9/7Vkl68bOh8SQnvomvLtZLOzvjf47s8BwAAAAAAgKOGO/VsuT98v1Q89Lf1sUm5l/1vuXN/abATAzAYVz1LKrVxLvz4VPfnAmBNcH/wPunsi48sOP8yude8Z2DzAdqWJYyWI4wGAMOAe2sAAAAAALqkmBvTgVrFHk8Rusq5vEbcqA76A+Y6y6MckcupGI0FIwTX7/5nVf3B4HbGouENozXCBuX6fHC8k4hXYmguXpCMMEKU4QX0Vj8LkSKNuNHU21vOCk+0CrdY4wU3opzjZSQAQGfM4Gk8HGE0MzxKGA0DtLsaDqONumKPjvftY966r5nPY9I8F7KUcuETPRshtjTB55qvBZfnm45xnfm5dTeM9uU9N5jz2TFzdVf3BQAAAGDt8d6/0zl3haTHNS1+oaQPdnEfv5DUMtbWzGV5EwIAAAAAAMAa5B71VOnyJ0o/+5F03KlyhZHWNwJwVHJRJP3RP8i/6ley3XCCMBqA9rgNW+TedaP8vXcufryRi3tiSBFGA4CjTjToCQAAAAAAcLRo9WZ/K1aVdTvFwHbGonAs4PsL3za3M56bTDWfQSq0CKNV4nJw3IonpJEURqvUF+S9FUZI/wJ60j6kxZ+BTt4kVDR+HlqFW8r18HjJ2B4AAFm0Cp4e+TgcDLKOC/rFOkZrFR4Femm2Fg6jTRc29v1N59axudT6+DdJ0rFo2jChFYtuvl+ywmjdzKLFvq4vzX0qOLY+v0lnj1/Qxb0BAAAAWMPevOzji51z0wOZCQAAAAAAAFJz+YLctjOIogGQjj81+20meBkYQGfcxmOJomHIZThvNsr1bhoAgK4hjAYAAAAAQJekiV2l2k6LgFpoP+2EwMZyE5lv02+tAirleD44XoxKbe8zFJ5rKMcL8kYaIUt2olsRPfP2xuffKhxhhV06+XoCANCQNoyWJmA0CNaxnhUWBfphthoOo83kN/Rkf1Y8TLKPzaVOw2gJx+d1e5/Nlt/PNCwJoxkhOe/jVPtI4zv7v6bdtXuCY780/WhFjhNtAAAAAHTFf0mabfo4J+nMAc0FAAAAAAAAAJDVCadL287IdpuJqd7MBQCAYZHlgsI5ztcEgGFAGA0AAAAAgC7pWhitje2M5yZTbbvByWksGv4wWiUuB8dLUfZQ3JHbthtGS/8yS6vvcSfhCEkqGp+/FT5rsMJp7YT3AABYLm0YLU3AaBCsY7lWj69AL80aka31hU292WHCOSNJkcC0z4VCkqLBrcK/DbW4FlxeiPp7v3Lj3CeDy/Mur4dOPbKvcwEAAABw9PKLhec7li3u0RNFAAAAAAAAAEC3OefkXnGtNDmT/kaT072bEAAAwyBTGC3fu3kAALqGMBoAAAAAAF3S6s3+aWNX7Wzn/mMPTLXthlNLZ/Y9AtCOghFAqfqqYh/rgBFGK0altveZc3kV3EhwrJIQRsuiVWisk3DE4vbDty/XF+S9PX8rNNfJ1xMAgAbrcb3ma8s+Xp1hNOvxlTAaBmm2em9w+Ux+Y59nkvy7UMy1fzyZdwXz+Lwcz6faRpr7FWdU37px/C9Jdx/8ub638K3g2PmTl2oyz1V7AQAAAHTV8hf8eaEfAAAAAAAAAIaIe+BD5f7x23Kv/4D0jFe2vsEE554AANY4wmgAcNQhjAYAAAAAQJdYsYyGtHGpVgG1UDTr0qlHaevIiam2P+qKeuzGp6dad9DyRryt5qs6EFfMSEGr8Fgr1vegXF+QjH1aIYWQVj8LnYbRrNvHqqvqD5q3s2IWnc4HAADJDpstf2xaHkprsMJq/WI9HpYJo2GAdtfCYbT1hU092V/SMa8VKSu4kY7DhqUofHxfrqcLo1nHwP0Mo900d705tmP66q7sAwAAAACaLC9mh59AAgAAAAAAAABWLTdzjNwjn6zot9/QOnw2ThgNALDGuQz5HMJoADAUuLcGAAAAAKBLWsWj0salWq0XCrBN5qf1shPfpK/v/ZJ2Vn6guo+Dt90yepzOm3iotowen2oug2YFFGpx1Yx4SekjdPbtx7S3PrdieSVekPdGGC3DlUVaxe+s8EM3tl+OFzQSjYbH6uGvaav5AgCQhvm47qtLPq4u+7jV7fvFOr6oxOU+zwRYVI0Pan99T3BsJr/8/e/dkRxGsyK7nR2bS4vh47312RXLF4wY23LL72calt6v9C6MdiCu6Ct7PhscO3H0VG0rntbxPgAAAACgwTm3UdIpyxbfOYi5AAAAAAAAAAC6ZOs26YffMofdpmP7NxcAAFajscn06xJGA4ChwL01AAAAAABd0jJ2FQiatbOeFU4bz01q+8xV2q6rUu1nGFgBlKqvmuEFqfOwWDE3JgXaCeV4wQwjJEUilms1v2Kus3hE0s9iJV7QlGbMseB8CKMBALogbRitFh8M3z4abBjNenwt19OFmYBum63dZ47NFHoTRktiRXa7cSxp/f4lxZKb1XwtuLzQdL9kh447D6PdvPeL5vOXHTNXZ4osAwAAAEAKT5XUfDn0uyXdOqC5AAAAAAAAAAC6oUUYTVu39WsmAACsSm5iKv0Zn4TRAGAoRK1XAQAAAAAAabQKo6UNArRar9V+jiaFhIBKUgShGPUmLFZJCKMpQxitVfis47Bbws9IUrzFijWkjfoBAJCkYITNlgeLrICRFVbrF+vxtRKX+zwTYNFs9R5zbCbf/zCadXzejecvY8bx8ULKMOHyAGND8/2KmUXrsIvmvdcX5z4ZHBuLJnTB5KWd7QAAAAAAmjjnNkt63bLF/+Z9p89uAAAAAAAAAAADteWk5PGtJ/dnHgAArFaTM+nXJYwGAEOBMBoAAAAAAF1SbBGPShsEaLXeWgqjWQGUmq+aEa+c8iq4kY72a32NywlhtChDGK1V+KzT7/FoVJQz5pMUb7FiFmmjfgAAJLEe16vLgkVWwMgKpvaLFQpNirUCvTRbuze4fDw3qZFotCf7tI4xJakchyNlrZ4npWFtI+3vX9UfDC5fGkYL/9nUDiOn85Py9/SzAzuDY5dMPaJn3ysAAAAAw805d3/n3GMz3maLpE9I2ty0+KCkN3dzbgAAAAAAAACA/nNbtyWv0GocAICj3cRU+nWjXO/mAQDoGjKWAAAAAAB0SbeCZq0iVGspUmUFVGLFWqjvC44VcyU5lz5SFtyG8TWu1BckK4yQYZ+9jt9FLlIxKgXjcVawYnEsHJZYSzE+AEDvmMHTeGmwyAqjWbfvF+v44KA/oLqvKef4kwv6ywqjrc9v6vNMFpXrVmS31PG2x4yw8ELdPrZtVvO14PI09yudhtFunPtkcLmT0/bpR3e0bQAAAACD5Zw7XuFzMLcs+zjvnNtmbGa/9z70BG+rpI87574j6R8k/Yv3/ofGPCYlPVvS67Q0iiZJb/Te/8TYNwAAAAAAAABgWJxxoT120gPkxib6NxcAAFajyZn0646Fz0sFAKwuvEsHAAAAAIAuKRlv1m9IGzQr5VpsJ9d5WGBYFBJCBfvqe4PLuxGOK+XC2yjHC/JWF03pw2ijUTFxvGjsP4tiNGaE0cLBCkmqGGNrKcYHAOgdM4y2LFhU9QeD6w06jJYUCq3EZY3nJvs4G0DaXb0nuHymsLGHe7WPee3Ibucnj1jHo0nR32ZWcLH5+YZ9PN9+GG1vbU7f3PeV4NiZ4+dp08jWtrcNAAAAYFX4kqSTUqx3nKTbjLH3S3pOwm3PkfRnkv7MObdH0ncl3Stpn6QJSSdIepDC54K+23v/hhTzAwAAAAAAAACsdmdeKJ19sfTdr64Yck9+8QAmBADAKjM5nX7diQzrAgAGhjAaAAAAAABdUoySg2Vpg2ZJ2ym4kYFHQfop6XPdV9sTXJ4ULUnLCi9U4gV5xcGxLGG0yOVUjEqqxOXgeDc+h1I0ptnA8ko9HKzw3qtSt+azdmJ8AIDeybvwnySWB4uWh9KO3H71htHK9QXCaOi72dp9weUz+d6F0ZxLCqOFI2WtnielMWbEo5Oiv82sMFo+RRjNdxBG+/KeT6uu8H3a9umr294uAAAAgDVrStLDUqw3L+l3vffv6fF8AAAAAAAAAAB94pyT3voJ+WtfLd18g7R3Vtr2ALnHPk/u6mcNenoAAAxehjCayxJRAwAMDGE0AAAAAAC6pGS8WV/KFjQrRfZ2uhHMGiZJX7P99XAYzYqaZWF9nRfDaGFZwmjS4jx7GkbLGI+o+oNmtKGY8LMNAEBaBTcSXN4cLPLemwGjwoDDaEnHGJWUcSagm2ar9wSX9zKMlsT6PUh6fpOWtY1yPRxjW64aHwwuz0dNYTQj+uZ9e2G0uq/rprlPBcc2FDbrrPHz2touAAAAgDXjVkl/ImmHpPMlpalO/0DS+yS9x3t/b++mBgAAAAAAAAAYBDc2Kffyvx70NAAAWJ0mMsTOsqwLABgYwmgAAAAAAHRJUiwjS+gqad1uRL+GSSGyAyj7jDBaN6Ji1td5MSrWXhhhuVI0pjndl2n/WRSj8HukrDCaFWmTpJKxLQAAsrCCp1V/JFgUqy5vPNamjcz2SjFnPx4SRsMgzNbC73GfKQwqjBY+nrSOS7Owo7/pwmg1Hw4AL71fMcJobR7/f2f/zZqrhY/3t08/WpHLtbVdAAAAAKuH935bD7d9t6TXSpJzLpJ0mqRTJR0naVpSUVJZ0qykXZJu9t6HC9oAAAAAAAAAAAAAcLQbm5QKI1I1fDHdJSZnej8fAEDHCKMBAAAAANAl3QqaFXMJ20kYOxolBVD21cJhtG5ExazvZaVeNsMIi+9LSi8xpNeF73MpCscjrHBLUlRirQX5AAC9kXfhP0k0B4uqvppw+8GG0fKuoIIbWRJya7DCo0CvlOvzZohsJj+YMJqlG89hrOPztL97NeO+pdB0v+KMMFq7YeQb5z5p7HNEl0w9oq1tAgAAAFibvPexpO8f+g8AAAAAAAAAAAAAsIxzTn7zidLPftR65cnp3k8IANCxbO/YBQAAAAAApoIbUaRccKwYlVJvJymwljR2NEoKoOyvh8No3YiKWfGGpHiYlVGwlHLhcJlkR82ysGJm5Xo4HmGFNRbns7Z+7gAAvWE9rtd8Vd4vhodq8eoNo0n2MZ0VHgV6ZXftHnNsfWFTz/Zrx8Ns3TiWtI6Pa76qatz6yn6hoKGU7n6lnSzaXQd+pu8vfDs4dsHkpZrIrWtjqwAAAAAAAAAAAAAAAAAAADAde3K69SYIowHAMMgPegIAAAAAABwtnHMq5cY0X9+3YixLrGvEjSpSpFjxijErdnW0KrgRc2xvbS64vBtfIyveEPqeHJEtEpEUyxvNENLLuv35eF/wZ3Suel/CfIodzwcAACtA5OUVq66c8qp5O4xWiAYfRitF49oXiLPuqc0GH1+BXrnrwM+Cy50iTeXX92y/7YTRunJ8nvB8anftnsOhsWJUUs6t/PNnzdeCt22+X4pc+HpS1fhg5t/vz899whzbPn1Vpm0BAAAAAAAAAAAAAAAAAAAgha3b0q03wQVuAWAYEEYDAAAAAKCLilE4jJYlBuCcUzEa00K8f8WYFew6WuUDUYOGA74SXN6Nr1EpGs98myhjJMKa56grKudymfe/Yvu58Ofwg4Xv6BU/embq7RSjkqIuzAcAgEJkB0+rvqqcSw6jJR0X9IsVHv3YPe/Tx+55X38nAwRM5We6cizZTaUuRH+Tjs//+LYXHf73qCvqzPHzdM2WF2ksNyFJqvu6vBE4toKNzW7ac71u2nN9xhmHnVQ8TdtKp3VlWwAAAAAAAAAAAAAAAAAAADjCHX8/+VYrRZE0fUw/pgMA6FD40ucAAAAAAKAtVuwqSxhNkkq57mxn2EUupyjjyxdWsKT328gaRgvHHYrG9z6rbkX01trPHACgd5LCZrV4MYhWTQyj2WG1funW4zTQKzP5jYOewgrFNqLDy6UNFx/wFX1z/1f0//78Tw/Oha74AAAgAElEQVQvSwouFprCaC7j8Xw7dkxf1fN9AAAAAAAAAAAAAAAAAAAArEnbH996nfN2yI1N9H4uAICOEUYDAAAAAKCLrIhU1kiVuZ01GOPIN8UK0ijluhBeaGMbWUMKVnytWyGybm2nW4E1AACSHtMb4aK0AaNB4XERq91MobdhtHbiYaVc5+Hi0agol+HPmj8sf1f3VX8hSar6g+Z6S++XehtGG89N6oLJS3u6DwAAAAAAAAAAAAAAAAAAgLXKHXuy3Ev/UnLGOaG5vNwr3tnfSQEA2pYf9AQAAAAAADiabCps0Y/Kt6xYvqGwOdN2Nha26OcHdgaWZ9vO0WBDYbN2Hbwj0/qdGnVFTeSmtL++J/Vt1hc2ZdrHppEtweXd+h5vKoS3n1U3vp4AAEjSiBs1xw74iqTkMFrWWGovrMVjMQyXLSPH93T7eVfQZG5K+1IeJxfciCZz0x3vN3KRNhY2657qrtS3ufvgz7WhcIxqvmau03y/siHj8XxWD516pArRSE/3AQAAAAAAAAAAAAAAAAAAsJa5J75QetgvS9/+D+muO+Tvvl0qTcid+0vShY+SGy0OeooAgJTSX1odAAAAAAC0dMH/Ze/O4+yu63vxvz5nlpyTCSQBEsImhB0RAUVQca1KXapWtO5XRa9LW5dbrVWrrVWrVm9rl9vFq7+6XrVqRVGLdUMEpSIugCAqsoY1SICQZLJM5vv7Y0IZJuecOTOZcyYz83w+HueR+X4+78/n8w7JfDmTmfM6ez5ip7H+0p8T9jhlavvssfM+g2VRHjB00rR7m6tO3ONhHdfu1b8iq+tH7vKZpZQ8eI9TO64/pH5Elg/sM6Uzjh16cBaVnf8xvdmf/XSsbhyZvfp3PdzhpD0fOQPdAEBSry1uOTe8fVOSZFvbYLTZf6+XB+1xakpavIMYzLKSWh6y56O6e0YpOWFJ58/Pj19ySgZrrUMRp2Kqz5M3j47dV0ZGOwtcPH7JQ7v2+V2vLc5jl/1OV/YGAAAAAAAAAAAA4F5l1cEppz0v5UVvSu2N/5zaq9+f8oinCkUDmGMEoy0gpZRGKeVhpZSXllLeUEp5aynlNaWU55RSjiilzMirPUopA6WUx5RSXlRKeVMp5Q9LKc8opRwyE/sDAADszu4/dGKeu/KVadSGkiRL+5bnVQe8NXsP7DulfU7a8xH53X1elHqtkWQs8Os1B/5F9uhfOuM97+6evPez88hlT7xPaEEzByw6JK896J2plZn5547TV5yRh+zx6NTS17busMYxedUBb53y/ov7luS1B73zv/9uLCr1PHWf5+eUPR8znXZ3Uit9ee1B78gBiw6Z1vpFpZ6n7fOCPGSP7oZrALBwLKrVW4YO/XeAUYtgtFpqqZX2/0/uhdWNo/KiVa/LUN8es90K3MeSvqV55QFvzr6DB3T9rGetfFlO2uOR6UvrsMKSWh645OQ8f9UfzNi5T9nnuXnE0tM6Dkm8J3Cx1X0lSQZq936NccTiY/PCVa/Okr49d63RCZb1751X7P+mLBvYe0b3BQAAAAAAAAAAAACA+aqzVw4wp5VSHpbkfyX53SSDbUpvLKX8a5K/r6pq3TTOWZHkHUmek2SvFjUXJPlAVVVfmOr+AAAAc8Wjlj8pj1h2Wu4cWZfl/ftkujnUp+19eh6319OzfuSOLOvfe9r7zHW10pfn7fuqPHPFGblt282pqp1rlvTvmWX9Tb8UnbaB2kDO2P+P8rzRV+U3W29tWrO0f/kuhdWtbhyZd67+YO4cuT179i9LX4chD51aObh/3nrI3+XOkXXZMLK+43W1Usu+g/vPeD8ALGy1UsuiWuO/Q9DGG54kGG2gtPun7d46Zelj8pA9H5Xbtt2cbaOtA5egVwZrg1kxsF/Pvl4YqA3kpfu/IZtHh1s+T957YEUafUMzem5f6cvzV/1BnrXyZff5uuD/u+n9Wbvtpp3q77nXbKu2ttxzYvjyw5Y+Lqfs+dgZ+/xeVFuUvQf2nbHwZgAAAAAAAAAAAAAAWAi8unUeK6X0J/m7JH+QpJNXwxyQ5M+TvLKU8pKqqv5zCmc9KcnHkqycpPThSR5eSvlUkldWVbWx0zMAAADmklrpy14DK3Z5n77Sl+UD+8xAR3PfYG1RDlh0SM/PrdcaObDevXNLKV3/M17Wv9eMB8cBwHQ0aoubBqNtniQYbWJ40WwbCxE9YLbbgFnV7efJrUz8umCP/qVNg9HuDVwcablXs3uLz28AAAAAAAAAAAAAAJhdgtHmqVJKSfKZJM9qMv2LJFckGU6yIslJSZaPm983yVmllKd3Eo5WSnlMki8lGRw3XCX5SZKrkyxLcmKS8a/yfkGSPUspv1tV1WiHvy0AAAAAAOawem1x0/F7Aoy2jbYKRvPtDKC5Rm2o6fhkgYvJ7he6CAAAAAAAAAAAAAAAJLXZboCu+Z/ZORTtvCTHVVV1TFVVp1dV9YKqqk5LsjLJS5PcNa52MMnHSylL2x1SSjkwyZm5byja95McW1XVSVVVPXvHGQcmeV2S8a8+eWqSv5zG7w0AAAAAgDmo0SIYbfP29gFG/TXhRUBz9Vqj6fjwJMFotdTSV/q61hcAAAAAAAAAAAAAADA9gtHmrz+dcH1eksdXVXXZxMKqqkaqqvpokscn2TJuamWSV01yzjuSLB93fcGOc66YcMaWqqr+IcmzJ6x/fSnl4EnOAAAAAABgHqj3NQ9GmyzAqL8MNh0HaNSGmo7fE7i4rdradL6/CFwEAAAAAAAAAAAAAIDdkWC0eaiUclySQyYMv7aqWryibIeqqn6U5MMThp/a5pwjkrx43NDWJC+pqmpzmzO+lOTj44YWJXl7u74AAAAAAJgfGrXmwWib/zsYbaTp/EDp71pPwNxW72s0HR+e5L4iGA0AAAAAAAAAAAAAAHZPgtHmp0MnXK+pquqSDteeNeH6iDa1z0/SN+76zKqqruzgjPdNuH52KaXeSXMAAAAAAMxd9Vr7AKNt1dam8wKMgFZaBy4OJ0lGWrxv0ID7CgAAAAAAAAAAAAAA7JYEo81PQxOub5jC2jUTrpe3qX3GhOuPdnJAVVVXJLlw3NBQktM6WQsAAAAAwNzVqE385+sxkwUYCUYDWqm3CEa7J3Cx5X2l5r4CAAAAAAAAAAAAAAC7I8Fo89MtE67rU1g7sXZds6JSyqokx48bGkny/Smcc+6E6ydNYS0AAAAAAHNQvdZoOj68fWOSZKQaaTovGA1opVUw2uYdwWjbRrc2nXdfAQAAAAAAAAAAAACA3ZNgtPnpoiRbxl0fU0pp/mqznT24yV7NPGDC9aVVVW3s8IwkuWDC9bFTWAsAAAAAwBzU6BtqOr55dDhJMlJtazovwAhopdEqGG37WDCawEUAAAAAAAAAAAAAAJhbBKPNQ1VV3Z3kE+OG6kleNtm6UkpfkldPGP54i/L7T7j+dccNjrlqkv0AAAAAAJhn6rXm7+ExPDr2vhvbqq1N5wcEGAEt1PuaB6NtqTZntNreMnDRfQUAAAAAAAAAAAAAAHZPgtHmrzcnuXbc9ftLKY9vVVxKGUjyoSQnjhs+J8kXWiw5fML19VPs77oJ13uXUpZPcQ8AAAAAAOaQRm2o6fjm0eEkaRlg1C/ACGihUWsejJaM3VvcVwAAAAAAAAAAAAAAYG7pn+0G6I6qqtaVUh6b5MyMhZ01kny9lPLvSf49yS+SDCfZJ8nDkrwyyVHjtvhhkmdVVVW1OGLZhOu1U+xvQyllc5L6uOGlSe6Yyj4AAAAAAMwd9Vqj6fiW0eGMVqMZGR1pOi/ACGil3iYYbXh0U7YJRgMAAAAAAAAAAAAAgDlFMNo8VlXVtaWUU5K8JMkrkjw4ybN3PFq5PckHkvzvqmrxSpExSyZcD0+jxeHcNxhtj2nscR+llJVJVkxx2WG7ei4AAAAAAJNr9A01Ha9SZcvo5oy0CjCqCTACmmu0CUbbPLqp9X1FMBoAAAAAAAAAAAAAAOyWBKPNf307HluSVElKm9o1Sf48yb9NEoqW7ByMtnkavQ0nWd5mz+n4gyRvn4F9AAAAAACYYfVao+Xc8OjGlgFGAwKMgBbqbYLRhre3DkZzXwEAAAAAAAAAAAAAgN1TbbYboHtKKacmuSLJvyQ5NZP/eR+U5KNJri+l/M8pHldNvcNprQEAAAAAYI5q1IZazm0eHc62amvTuX4BRkALA7WBlveIzaOb3FcAAAAAAAAAAAAAAGCOEYw2T5VSHpfkW0kOGTd8Y5I3JzkxybIkg0lWJXliko8nGdlRtyLJh0spHyqllBZHbJhw3ZhGmxPXTNwTAAAAAIB5pF5r/U/Jw6ObMlKNNJ0TYAS0U68tbjo+PLopI6PuKwAAAAAAAAAAAAAAMJf0z3YDzLxSyookn0lSHzf8lSQvrKpq/YTyW5N8PcnXSykfTPLVJHvvmHt5kquSvK/JMbtrMNo/J/n8FNccluSsGTgbAAAAAIA2Bspg+tKf7dk5qGjz6KaMVNuarusvvp0BtNaoNbJh+107jW8eHW5zXxGMBgAAAAAAAAAAAAAAuyOvJJqfXp9kxbjrXyR5dlVVm9stqqrqB6WU5yT51rjht5dSPlpV1doJ5RNfXbIiU1BKWZKdg9HunMoezezoc2Kvk/Wyq8cCAAAAANCBUkrqfY1s3H73TnPD21sHow2UwW63Bsxh9dripuPD2ze2vq/UBKMBAAAAAAAAAAAAAMDuqDbbDdAVvzfh+n2ThaLdo6qqbyc5f9xQI8lzm5ReOeH64M7ba1q/rqqqO6a4BwAAAAAAc0yjRYDR5tFN2dYiwKi/CDACWmsVjLZ5dDjbqq1N59xXAAAAAAAAAAAAAABg99Q/2w0ws0opQ0kOmzD87Slu860kjxx3fUqTmismXB8+xTMOnXD98ymuBwAAAABgDmoVYDQ8uikjgtGAaWj0tQ5cHKlGms65rwAAAAAL0tY7ko3X7zw+dL+kNphsW5809ut9XwAAAAAAAAAwjmC0+WdZk7FbprjHxPp9mtRcNuH6gaWUxVVVberwjFMn2Q8AAAAAgHmo0SIYbXPbYDTfzgBam17govsKAAAAsIBsvSu54PnJTV9LUrWvXXZ88sgvJHtMfJ9mAAAAAAAAAOiN2mw3wIy7s8nY0BT3WDLhesPEgqqqbk5y6bih/iSPmMIZj5lw/bUprAUAAAAAYI5qGWC0vXWA0UBtsJstAXPcdAIXB4r7CgAAALCA/PDlyU1nZ9JQtCS585Lk3CclVQe1AAAAAAAAANAFgtHmmaqqNiZZP2H4xClu8+AJ17e0qPvihOszOtm8lHJ0klPGDW1M8o3OWgMAAAAAYC5r9LUJMBptHmDUXwa62RIwx7UMXBzdlG0tgtHcVwAAAIAFY9v65IYvTW3N3Vcmt1/YnX4AAAAAAAAAYBKC0eancydcv6LThaWUVUmeNmH4/Bbln0qyfdz16aWUIzo45k0Trj9XVdXmDlsEAAAAAGAOE2AEzLRGi/vK5u2bMuK+AgAAACx0d1+ZtHhTirZu+PLM9wIAAAAAAAAAHRCMNj99dsL1c0opL5xsUSllUZJPJlkybnhDkq83q6+q6sokHx83NJjkY6WUepsznp7kJeOGtiZ5x2S9AQAAAAAwP7QKMBoe3ZjR+7wXx736S383WwLmuHpf68DF1sFo7isAAADAAnHNJ6e3bsNVM9sHAAAAAAAAAHRIMNr89G9JLhl3XZJ8opTy96WU/ZotKKU8NskPkjx+wtT7qqq6o81Zb08yfv7hSb5VSjl6wv6LSimvSfL5Cev/pqqq69rsDwAAAADAPFJvEYy2YeSulmv6y0C32gHmgUat0XR8c5tgtIHaYDdbAgAAANg9rPtJ8su/n97a6z83s70AAAAAAAAAQIe8Ffo8VFXVaCnlWUm+n2TljuGS5LVJXl1KuTTJ1UmGk+yV5MQkq5psdXaS901y1g2llNOTfD3JPa8gOTXJz0spP95xztIkD0qyYsLyryb5s6n97gAAAAAAmMsaLYLR7t7eOhhtoAgwAlqr14aajm8eHU6txftECVwEAAAAFoQrP7hr6++4OFl+wsz0AgAAAAAAAAAdEow2T1VV9etSyqOTfDLJSeOmaklO2PFouTzJh5P8r6qqtnVw1rmllGck+VjuDT8rO849qcWyzyR5eVVV2yfbHwAAAACA+aPe1zwYbcP2u1uuEWAEtNOoNZqOb6u2pqQ0nXNfAQAAABaEdRft2vrbLxKMBgAAAAAAAEDPCUabx6qq+kUp5WFJnp/kVUkemrR49ceY4SRnJvnHqqp+MMWzzi6lPCDJO5I8J8nyFqU/SPLXVVV9YSr7AwAAAAAwPzRqzYPRqoy2XNNffDsDaK1eG2o5V6VqOu6+AgAAAMxLN5yV3PDlZPjmseu7rmhde8L7k4v/pP1+P3xFcvl7kqX3T6oqGdmQ3Hb+2Nzx702OeGUy2OpHhgEAAAAAAABgevzE/zxXVdVIkk8k+UQpZWmSk5KsTrIsyaIkdye5I8llSX62o366Z61N8vullNclOTXJwUlWJdmY5MYkP62q6ppd+O0AAAAAADDH1VsEo7XTXwa60AkwXzT6GlNeM1AGu9AJAAAAwCy6/L3JJX/aWe2Bz0iO+eOk1JKfvjFpES6fJNl47dhjokveklz/ueTx5yUDS6bRMAAAAAAAAAA0JxhtAamq6q4k3+7BOVuTfKfb5wAAAAAAMPc0BKMBM6xRG5ryGvcVAAAAYF7Zdndy+bs7rz/pH5JSkmPekBz20uScJyTrfjz1c+/4aXL5XyYn/NXU1wIAAAAAAABAC7XZbgAAAAAAAFg46tMIRhuoDXahE2C+WFRrTHmNYDQAAABgXrn9wmRkY2e1tUVJY/97rweXJ4e/cvpn//x9yfAt018PAAAAAAAAABMIRgMAAAAAAHqm0Tf1YLT+0t+FToD5oq/0ZbAsmtIa9xUAAABgXth6V3L9F5ILX9H5mgN+JykTfoR8/yfvPDYVX9wvWfOlZNvd098DAAAAAAAAAHYQjAYAAAAAAPRMvdaY8pq+CDAC2mvUpha6OFAGu9QJAAAAQI+s/1XytROS7z0r2XhNZ2saByQPfOfO44sPSI5/z671c/4zkq8/JNl43a7tAwAAAAAAAMCC55VEAAAAAABAz/SV/gyWRdlabemovr8MpJTS5a6Aua7etzh3bb+j4/r+MtDFbgAAAAB64OI3JxuvbV+z9AHJ/k/a8fH9k/2fktRXNK+9/5uSlY9NLv6TZO13p9fT+l8ml749edjHprceAAAAAAAAACIYDQAAAAAA6LF6bXG2bu8sGG1AeBHQgUZt8ZTq+2vuLQAAAMAcNrotufErk9cd8NTkhPd0vu8+Jycnfyj56lHT7+2GLyVVlXjDCwAAAAAAAACmSTAaAAAAAADQU42+xVm//Y6OavsFowEdqE81GK34NikAAAAwTaPbk/VXJNvuSqrRGd68JKUv6R9K+hYlm9c2L9t8a1KNTL7dykdPvYUlhyWNA5LhG6e+Nhn77zJ8c7J4/+mtBwAAAAAAAGDB8xP/AAAAAABAT00lwEgwGtCJxhTuKyUlfb5NCgAAAEzH2vOSb00jbGw2rDg1WfX4qa+r9SUPeFty0e9P/+wvHZA8+P8kR716+nsAAAAAAAAAsGD5iX8AAAAAAKCnphJgJBgN6MRUAxdLKV3sBgAAAJiXtq1Pvv3Y2e5icqtOS1Y+Kjn69WMhZ9NxxKuSxv7JdZ9NNl6T1FclBzw16asna85MUiVb70xu/XbrPX78mmT5A8d6AQAAAAAAAIApEIwGAAAAAAD0VL3W6LhWMBrQiUbfVILRfIsUAAAAmIYbzkqq0dnuor29T05+6+szs9eBTxt7THTI8+79+MuHJxuuar3HtZ8SjAYAAAAAAADAlNVmuwEAAAAAAGBhadSGOq4dEIwGdKBem0owmvsKAAAAMA1X/stsdzC55SfuXuet/0Vv+gAAAAAAAABgXvF26AAAAAAAQE/V+xod1wowAjpRr3V+Xxkog13sBAAAAHZDo9uTn709ueYTSaklB56enPBXSZ+vkZvaeH1y0R8ma7+bjNw92910rvQnh7+it2ce8apkzReSVM3n156XfLq0Xr/02OSo1yWHv7wr7QEAAAAAAAAwN9VmuwEAAAAAAGBhadSGOq7trwlGAyY3pfuKwEUAAAAWmkvenFz+7mTTmmTjdckv/za56JWz3dXuafuW5JuPSG766twJRSt9yd4nJ4/9WrLXg3p79qrHJY/89+mvv+vy5IevSK7++Mz1BAAAAAAAAMCc1z/bDQAAAAAAAAtLvdbouFaAEdCJqd1XfIsUAACABaQaTa76yM7j1/y/5IT3J/UVve9pd3bjl8cC5KbqoNOTUz83vTNHtyafW9y+5og/TB78983nSknKLL5X9kGnJ0+5PPmPY6e/x6/+KTn0xTPXEwAAAAAAAABz2ix+FxwAAAAAAFiIGrWhjmsHBKMBHWj0dX5fEbgIAADAgrJ5bbJ13c7j1Uiy5gu972d3t+4n01u3+iVJrW96j/5GsuTw9vsvPab1+tkMRbvH0Oqktmj66++8OBndPnP9AAAAAAAAADCn7QbfCQcAAAAAABaSeq3Rca0AI6ATU7mvDNQGu9gJAAAA7GaqkdZza8/vXR+7s6pKrvpocv4zk5//1dTXDyxL9jtt13o45AWt52oDyf1+b9f277b+RnLQ6dNfP7otWX/FzPUDAAAAAAAAwJwmGA0AAAAAAOipRt9Qx7WC0YBONGpTua/0d7ETAAAA2M2MtglGu+7TybYNvetld/WTNyQXvjRZc+b01j/260nfol3r4di3JIe8cOfxgaXJo85K6it3bf9eOOkfk30fO/31Zx+XjGycuX4AAAAAAAAAmLP81D8AAAAAANBT9Vqj41oBRkAnpnZfEbgIAADAAlK1CUZLkjX/nhz6kp60slvavDb51f+ZvO6YP0n2f9K916WWDC5Plh479vGu6luUPPyTyYM+kGy+JamqpNqWLDs+qc2RfyNdtFfyuHOSTTckd/96bOw3FySXvLXzPa7//ML++wgAAAAAAABAEsFoAAAAAABAjzVqQx3XCjACOlGvLe641n0FAACABWXb3e3n1353YQdR3XbB5OFxSbLfbyf7Pqbr7aS+Yuwxly0+cOyRjIXHTSUYbaH/fQQAAAAAAAAgiWA0AAAAAACgx+q1Rse1A2Wwi50A88WiWj0lJVWqSWvdVwAAAFhQNq1pP7/h2p60sdsYHUlu/npyw1nJHT9J1v148jWL9k5WnNr93uajZcclQ6uTjdd0Vr+hwzoAAAAAAAAA5jXBaAAAAAAAQE81+oY6ru0vA13sBJgvaqWWRbVGNo9umrS2v/gWKQAAAAvIxusnmb+uN33sDkaGk+89K7np7M7X1BYlJ38o6VvUvb7ms1JLTvlQct4zkpENk9dvvLbrLQEAAAAAAACw+/NT/wAAAAAAQE8NlkUpKalSTVorwAjoVKO2uMNgNIGLAAAALCCb1kw+P7o9qfX1pp/ZdP1npxaKdvKHklWPT5as7l5PC8Gqxye/c0Vy8zeT4RuTxQcm29YnP37dzrWb1iSj25Kaf78BAAAAAAAAWMi8mggAAAAAAOipWqmlXmtkWIARMIPqtcUd1fWXwS53AgAAALuRTde3n69GkuGbkqGDetPPbLrxK53XHv/u5PCXd6+XhWbxgclhZ9x7fedlzeuq0bFwtCWH9qYvAAAAAAAAAHZLtdluAAAAAAAAWHg6DTAaqAkwAjrT6DgYzXtHAQAAsABsujG58ezkun+bvHbjtV1vZ9YN35ysObPz+n1/q3u9kAwd0npuwzU9awMAAAAAAACA3ZNgNAAAAAAAoOc6DUbrLwNd7gSYL+p9nQYuuq8AAACwANx6bvLdp3RWu/a7XW1lVo1uSy54YfLF/Ttfc8DTkr1P6V5PJANLkkUrms8JRgMAAAAAAABY8ASjAQAAAAAAPdfoOBitv8udAPNF5/cVwWgAAABwH5f+2Wx30D1X/E1y7ac6q73f7yUn/VPyyC8kpXS3L5Ilq5uPbxSMBgAAAAAAALDQeTURAAAAAADQc/U+AUbAzKrXGh3V9ZfBLncCAAAAc9Cmm5LF+892FzNvzZmd1z7ic93rg50NrU5u/+HO4xsEowEAAAAAAAAsdLXZbgAAAAAAAFh4GjXBaMDMqnd8X/HeUQAAALCTu3812x10x92/7KzumDd2tw92tmR18/E7f9bbPgAAdldVlYxsnO0uAAAAAABmhWA0AAAAAACg5+q1Rkd1A4LRgA51GrjovgIAAABNbLx2tjuYWWvPT84+Idm2fvLavsXJYS/rfk/c19Ahzcfvuiw565Dkl//Qy24AAHYf1WhyyduSL+6ffG5J8pUjk2s/PdtdAQAAAAD0lGA0AAAAAACg5xq1oY7q+gUYAR2q93UWjOa+AgAAwIJQ+pK+xn0fex7Tun7DtT1rres2XJuc++Tkzksmr131hOTx5yZ7HtXtrphoyerWcxuvS378uuSqj/auHwCA3cXP3plc/u5k8y1j13dfmVzwguSmr89uXwAAAAAAPdQ/2w0AAAAAAAALT73W6KhOgBHQqUat02C0wS53AgAAALuBQ5479pjo/Gcla76w8/jGa7veUs/8/L3JyIb2NU++LFl2bG/6obmhNsFo9/j1/00OO6P7vQAA7C6qKrnqQ83nrvpwsv9v97YfAAAAAIBZUpvtBgAAAAAAgIWn0TfUUZ1gNKBT9Y6D0bx3FAAAAAvY0CHNx+dLMNrm25JrPjF53eDy7vdCe0MHT15z56Vj4SAAAAvF5rXJ8M3N5275dm97AQAAAACYRX7qHwAAAAAA6Ll6rdFRnWA0oFONDoPRBtxXAAAAWMhaBaNtuKanbXTNlf+SbN88ed3gsu73Qnt9g0n/kmRkQ+ua7cPJ5luTxqre9QW74pZvJ7/+cLL+ipDAke0AACAASURBVPuOb7sr2XjdfceWHZ+c/MFkn4f2rj8Adn+3ntN6btudybYNycCS3vUDAAAAADBLarPdAAAAAAAAsPA0akMd1Q3UBBgBnal3GIwmcBEAAIAFbcnq5uPDNySj23rby0zbvjm58p86q+3r7I0b6LJHf2Xymiv+uvt9wEy44cvJd347uf6zyZ2X3vcxMRQtSe68JPnGw5K15/W+VwB2T5tuTC54fvuasx+QVKO96QcAAAAAYBYJRgMAAAAAAHquXuvshYcCjIBONfo6DEarDXa5EwAAANiNDR3SfLwaTdb9pKetzLhrP5VsXttZbSnd7YXOLH3A5DW/+Jvu9wEz4fL3JtX2qa8T/gfAPX76x5PXbLxOqCYAAAAAsCAIRgMAAAAAAHqu0TfUUZ1gNKBT9VpnwWgDpb/LnQAAAMBubMkhSVqEgl32zl52MrOqKvnFBzqrXfbA7vZC5xbtnQwsnbxuZFP3e4FdsX1rcvuF01t741dmthcA5qY7Lk6u+7fOam/7Xnd7AQAAAADYDfipfwAAAAAAoOfqtUZHdQOC0YAONToMRhO4CAAAwILWP5SseHhy2/d3nrvp7GTt95KVj+h9X7ti45rkh69M7vp5Z/X7P6m7/dC5UpKDnplc/ZH2dec+JVn5yGTVaXPv7yfz0y3fTm49J9l659j1yIYk1fT3++Grkr56sufRyfbhZMu6ZNVvJfs+dufakU1jwTmXvyfZeE0yuFey5zHJsuPGPt7vCcnKR02/FwB6b8M1yddOnFo9AAAAAMA8JxgNAAAAAADouUZtqKM6AUZApwbKYGrpy2i2t61zXwEAAGDBO+ZNyW1Paz536VuTx507Flg1F6z7SfKd3062/Kaz+hWnJsf+aXd7Ymoe+M5k3Y+SOy9tXbP23LHHZe9Kjn9PcuxbetUd7OziNyc/f9/M7vnr/7vz2OV/mdz/LckJ77l3bOudybcefd/Ply2/SW47f+xxz7rj3pEc9+cz2yMA3XHb95NvTjH4dcPV3ekFAAAAAGA3UpvtBgAAAAAAgIWnXmt0VCfACOhUKSWN2uJJ69xXAAAAWPAO+J1k74c2n1t7XnLLN3vbz6645G3tQ9EOembytGuSh38qefx5Y6FvA3v2rD06sPiA5LQfJL/1rc7qL/3zZPiW7vYErdx91cyHorXz8/cmG6659/qqj7QPEbzHZe9INt3Yvb4AmDkXv2nqazZeM3kNAAAAAMAcJxgNAAAAAADouYEymL70t62ppS+14lsZQOfqfZMHow0IRgMAAGChKyU54T2t5y/506SqetfPdI1uS275Rvuao1+fLDkkOeT5ycpHJrX2/ybJLOlvJKsel6x89OS11Uhy8yR/7tAtN/9n78+84cv3fnz95ztbU436PAGYC7bemdz2/amv27Rm7LkwAAAAAMA85rv7AAAAAABAz5VSUu9rZOP2u1vWCC8CpqpRa0xa0+/eAgAAAMm+j032fVxy67d3nlv34+SGLyYHnd77vjo1Mpxc95mk2t66Zu+HJise3rue2HWrnpCs/e7kddf9W3LI85Kaf+chyfYtye0XJrXBJCUZ3ZLsfXLSV98xvzVZd1Gycc2un3XLN6dWv+z45M5Ldu3Mn/5xUt937OPbf9D5unU/Sg47Y9fOBqC77rys/fxJ/5T86A93Hq9Gk43XJ3sc1p2+AAAAAAB2A4LRAAAAAACAWdGoLW4bjCa8CJiqem1o0hr3FgAAANjh+Hcn32gSjJYkl7wtOeDpSa2vtz114vYfJd99SrJ5bfu6kz/Ym36YOYe/PLn2k8n6X7avu/lrydnHJY/5WrJkdW96Y/d0x8XJuU9Ohm++73h9VfKYs8fC0c59UrLxut73tuTw5NFfTn5wRnLrOdPfpxpJLnje1Ndd+c/JsuOSI141/bMB6J7f/CD51iNbz9//LcmhL24ejJYkt35HMBoAAAAAMK/VZrsBAAAAAABgYarXFred768JLwKmpl5rTFojGA0AAAB22OeU5MCnN59bf0Vy3ad7208nqtHk+8+ZPBTtaVcly4/vTU/MnPrK5AkXJCf+TXLwJEFQ63+Z/FDg04JWVcn3n7tzKFqSbL5lbO6/XtybULSlxyYHPWvscfBzkxP/d3LaBcnQ/cYC/E7+v8nyB913TW0wOeiZycpHd6+vi35/8qBBAHpvdHvyvWe3rzn+3Un/UFLft/n8D18+830BAAAAAOxG+me7AQAAAAAAYGFqTBaMJrwImKLJ7yv9KaX0qBsAAFg4ytgT7TcmqY8b/kRVVdfu4r6rk/yPcUObqqr6613ZE5jgge9KbvhykmrnuUvfntzvOUnfYM/bamndT5INV7ev2fuUZMmhvemHmbdor+SY1499vM/Dkx+/pnXtLd9MtqwbW8PCc9dl7UO/7v5V73o5+o+Sw17WfK5vMDn8FWOPZrZvST5bbz43E677XHLcn3VvfwCm7vYLk01rWs/v96Tknu9nDa1ONt/avM7zIAAAAABgHhOMBgAAAAAAzIq6YDRghtX73FcAAGCWPD/JX+XeZKUzdzUULUmqqrqmlHJcktPvGSulXF1V1Zm7ujeww7LjkoOfl1z36Z3nNl6TXP2vyRG/3/u+mhndnqw9d/K6vU/peiv0yD4PnaSgSu7+dbLo5J60QxdVVbJ5bbJo72TbXcn2zZOvWfPF7vfVqb134e9g36LkIf+SXNSle+3dV3ZnXwCmb/0v2s/vM+757NKjk9t/0Lxuw1WTB6ONjiTVSNLXxRBOAAAAAIAuEIwGAAAAAADMisYkAUYDxbcxgKlpCFwEAICeK6XUkrzznsskv0ry4hk84iVJjk9y+I7rdycRjAYz6YHvSK7/bFJt33nusnclq1+c9Lf/mrurRkeSn74xufojybb17Wv7h5IjXtmbvui+vR6crHx0sva7rWu+cUpy+q1JfWXv+mJmXfWR5NI/S4Zvmu1OpmfVE8ZCJnfFoS9Nrv1Uctv3Zqan8a79ZPLwT8z8vgBM3ej25OI3Jb/4m9Y1g8uTQ8+49/qYNyZXf6x57c/+InnMf7Q4ayT58euSa/9fsn1Lsv8Tk4d+LBlcNs3mAQAAAAB6qzbbDQAAAAAAAAtTfdIAo8EedQLMF5PfVwSjAQBAFzw+yeok1Y7HW6qq2jRTm1dVtTHJm8cNHVlK+a2Z2h9IssfhyWEvaz43fHNy5T/3tp+JfvYXyS//bvJQtAN/N3n8ecnS+/ekLXqglLGwj6P+V/u67z6tN/0w8276WnLhy3obilYbSOr77vpj6bHJ0a9PHnXWrvfUNzi2z+Gvuu94s3MXrdh5/arT2u+//spd7xGAXXfZu9qHoiXJEy5Ihu5373W757Y3nZ3c/M3mcz/9k7Hn8dvWJ6NbkhvOSs5/5tR7BgAAAACYJf2z3QAAAAAAALAwNQQYATNssvvKgPsKAAB0wwvHffzjqqq+ONMHVFV1Zinlx0kevGPoBUnOmelzYEF7wJ8lV398LDRhosvfmxz+imRgz973VVXJVf86ed2Rr01O+vvu90Pv9Q8lD/7b5O4rk5v+o3nN7Rcmd16WLHtAb3tj13Xy+T3TDvq95NRP9f7cySzaKzn5X8Ye03Hj2cl3n9J87ppPJMe/a/q9ATAzrv5I+/mj/ihZevTO4/s/eSwErdWe+z3hvmNVlVz/bzvX3npOMnxL0ljVWb8AAAAAALOoNtsNAAAAAAAAC1N90mA07+8CTM3k9xXBaAAA0AVPHPdxN9NN7tm7JHlyF8+BhWnxgckRf9B8buu65IoP9Lafe2z5TbL5lsnrBGLNf8uOaz9/58960wcz69bv9P7M+Xq/WHZs67m7fH4AzLqtdySb1rSvaXUvb/c8qNlzoK13JMM3N6+//vPtewAAAAAA2E0IRgMAAAAAAGZFQ4ARMMMafe4rAADQS6WUg5PsM27oq108bvzeK0spB3XxLFiYjn1L0r+k+dxl70juuLh3vYxuTy5/b/LFVZPX9g8l93tW93tidq1+UVLa/Oj7Bc9PfvjKZPPa3vXE1Gy4NvmvlyRfPTo5a/XYY+u63vZQ+pNDnt/bM3tl6ODWczeclVSjvesFgJ3dck77+f4lyUHPbD53yP9ove6uy5Oq6ryPanvntQAAAAAAs0gwGgAAAAAAMCvqkwQYDQgwAqaoLnARAAB67fgdv1ZJrqqq6sZuHVRV1Q1Jfj1u6IRunQULVn1FcvQftZ7/2onJltt708sPX5Fc8qeTB/nscWTyW+ckg8t70xezZ+kxyaPOal/z6w8l33hYMrKxNz3RueFbx/5srvl4sv6XycZrxx69tPh+yWP/s32A2Fz3oL9tPfej1/auDwDua/jm5Httgnz3OCJ53DnJ4LLm88uOTe7/5tbrb/nmhIEpBKUBAAAAAOym+me7AQAAAAAAYGFqTBpgNNijToD5YvL7imA0AACYYSvGfXxTD867KcnhOz5e2YPzYOE5+g3Jr/4x2XpH8/lrP50c9Zru9jB8y1h4UjulP/ndNUljVXd7YfdywO8kR7567O9oKxuuTq7/QnLoi3rXF5O75hPJ5lumvu4Rn0+WHT95Xf/ipBoZ+7j0JyObdp5ffMDUz59r9jqp9dyV/5Q88B3Jor171w8AY65u89x2YM/kqb+afI8jX5P8/K+az132rmS/0+69rrZPrT8AAAAAgN2QYDQAAAAAAGBW1CcLMKr5NgYwNfVao+38gGA0AACYacvHfTyNtJMpG3/Gsh6cBwvP4NLk/m9KLn5z8/nf/Ff3g9Fuv2jyMIf9nyQUbaHa44jJa37zX4LRdje/+a/prVv5qKQuC7Vjexzefn7dT5L9ntCbXgC4V7v/D654RGd7tHvuu+W2+16PjnS2JwAAAADAbqw22w0AAAAAAAALU2OyYDQBRsAUNWpDbef7a+4rAAAwwwbHfdyLn0ccf8aiHpwHC9ORbYLPrvtMctPXZ/7M7VuSqz6SXPiK5LynTV5/v9+b+R6YGw46ffKaX38w+Ux/ctm7k613dL8n7mv85/MFLxp73Pa9qe+z8jFC0aaqsSpZ8cjW87/8h6SqetcPwEK36Ybk5/87ufHLrWs6fV5baklfizcIWv/LZP2v7r2uBKMBAAAAAHOfYDQAAAAAAGBW1CcJRhsQjAZMUb3VC0J2ELgIAAAzbtO4j1f04LzxZ2xqWQXsmv7FyVGvaz1/7hOTS/9i5s7bvjn5zhOTC1+WXPXhyesPPSM5+Lkzdz5zy+IDkwe+a/K6anty6duSrxyZDN/S/b4YM/Hz+dpPjj223Da1fYZWJyd/sDs9zncnf6j13E1fTX7yht71ArCQ3fXz5D8fklz8J61ragPJIS/ofM9HfL713FePSm6/aOxjwWgAAAAAwDwgGA0AAAAAAJgVjb72wWj9ZbBHnQDzRX8ZyECbe4dgNAAAmHHjk2YO7sF548+4tQfnwcJ1wO+0n7/83cnwDH0arjkzWXvu5HW1geQpVySn/OvYxyxcx76189otv0muFLDVM51+Pt/j2Lclp3xk7PGwTyYP/WjyuO8kT7k82fOorrU5ry09OjnwGa3nf/m3yYare9cPwEJ1+XuSzZOEsz7u3Kk9r93nYe3nL3nb2K+j7YLRqs7PAwAAAACYRYLRAAAAAACAWVGvNdrO95f+HnUCzCft7i0DgtEAAGCmXbXj15Lk4FLK4d06qJRyWJJDmpwNdMOSQ9vPVyPJrefMzFk3/Wdndcf+2VjgTykzcy5zVylJfWXn9Vd/tHu9cF83f31q9Ue8MjnsjLHH6hcmh74k2fcxSX/77x8wiaX3bz9/8zd60wfAQnZzB89xJ3vOPdHg8mRgaev5284f+7VqF4wGAAAAADA3CEYDAAAAAABmRV/pz2BZ1HK+X4ARMA2N2lDLOfcVAACYcZck2Zqk2nH9tC6e9bvjPt6W5OIungUMrU72OLJ9zZX/lIxs2rVztqxLrv1kZ7X7P2nXzmJ+OfgFndduur57fXCvajRZ84XO65c+IGkc0L1+FrL9nth+/uqPJSPDPWkFYEHZekdyw5eTm76WbLm9fe3yE5LGqqntX0r758TbN4/9OioYDQAAAACY+wSjAQAAAAAAs6ZeW9xybkCAETAN9Vqj5ZxgNAAAmFlVVW1N8t0kZcfjT0oprdOKp2nHnm/MWABbleS8HWcD3VJKcuJfJ7XWb2yQ276f/PteyfpfTe+Mm7+ZnHVIZ7WrX5zs9eDpncP8dPQfJUsO67z+yg92rxfGQhLPe0YysrGz+r56cuL7x+41zLwVpyYHP7f1/O0XJl87Idlwde96Apjvbvl28qWDkvOenpz75Pa1fYuTE943vXOOfVubySqpqqQSjAYAAAAAzH2C0QAAAAAAgFnT6GsdjCbACJgO9xUAAOi5z+z4tUqyIsn7u3DGXyVZmbHwtST5dBfOACY68KnJEy9qXzO6JfnRq6e+9+i25L9emIzc3bqmvio58rXJI89MHvpRAUrc19BByWk/SE76x2Tfx+be/0W0cNHvJ5tv60lrC9KVH0xu/HLr+f2elBx6xtjjge9KfvtHyf5P6l1/C00pycM/1T488O5fJT/+o971BDCfjW5LvvfszgJCj3tH8sQfJfudNr2zlh2bPLzdl8RVMioYDQAAAACY+/pnuwEAAAAAAGDhqtcEGAEzq919ZcB9BQAAuuHTSd6dZFXGUmleVUq5saqq98zE5qWUNyf5w4wFr5Ukt0YwGvTOsuOSB30g+cnrW9fc8s1k6x3J4PLO9117frJ5bfuax30nWXp053uy8NT3SY78w7HH1juTf5/k7+CNX0kOe2lvelto1nyh/fyDPuDzuddKLTnmDclFf9C65qb/SEY2Jf2t/00VgA6sPT/Zum7yuqHVyXF/vuvnDd2v9Vw1mlSC0QAAAACAuU8wGgAAAAAAMGsagtGAGSZwEQAAequqqq2llLck+VjuDS97VynlgUl+v6qqO6azbyllWZJ/TvKccftWSf60qqqtM9E70KF9Tp285pZvJUsfkCxZnfTV7x0f3ZZsWZc09h0LaRi+JRndOhZQ1U59ZbLHYbvWNwvL4LJkz2OS9Ve0rrn5G8mhZySjW5IN17TeZ+tdGftfTpLFByYDe8x4u/PGtg3JpjXJby5oXePzefbs8/D289X2sc+FZcf2ph+A+WrNmZ3VrZjkvtyxWuspwWgAAAAAwDwhGA0AAAAAAJg19Vqj5dxATYARMHVtAxfdVwAAoCuqqvpEKeUZSZ6ee0PMfi/J40spH0ny4aqqruxkr1LK4UlekeSMJHvl3kC0KslXqqr62Mz/DoC29n5IsvzE5I6ftq753rPHfq0tSg57WfLgv0su+8vkF3+TjGyc+plH/3Hi63im6v5vSn7wktbz13927DEVpS858OnJQz8mIG28bRuSH5yR3PDFsXCtdnw+z57lxyf7PTG5+T9b15z9gOTBf58c9dre9QWwUB31upnZp5TWc+c8LjnyNa3nq9GZ6QEAAAAAoMsEowEAAAAAALOmURtqOddfvFAKmLp6u2A09xUAAOim/5HknCQn5d5wtL2SvCHJG0opNyf5YZIrkty545EkS5MsS3JMkpOT7L9j/J5Xet+z14+TvLDrvwtgZ6UkT/h+8rnWX3P/t9EtyZX/PBaWNHzz9M576EeTQ18yvbUsbIe+eCy87Pxnztye1fZkzZlJrf7/s3ff4XFddf7H32ekkVXcbcklbrHTnR7SExISUigJoZelZhd2YYEsS1nI0kLgt7CFXcrCshD6AqEEUoFU0kmB9B7HvUlx72rn98fISI7vHc2MZkYa+/16nvvo6nzPPeer2BnZ8tzPhZP/r3zr1rr73gdLfzn4vPkXwyEfrXw/Svfi38BjX4BHL02f86eLoGUOzDi/am1J0l5nv7/LBQ6XRSa91HFH7kjT21WmHiRJkiRJkiSpsgxGkyRJkiRJkiRJw6axrim1ZoCRpFI01aXfpJ31dUWSJEmqmBjj5hDCmcD3gVeTCzSD/oCz6cCr+o40YcD5wOuvBN4RY9xctoYlFac+/ed4iUoNRZt/saFoGpqZr4Hj/hfufU951136S+j6FmRHl3fdWtS9BZb8vLC5h36qsr1ocHWj4PDPweo/QMft6fMW/sBgNEmqpNlvKN9aIU8w2mBid/n6kCRJkiRJkqQKGsJPQiVJkiRJkiRJkoamKdOSWjMYTVIpGjPpwWi+rkiSJEmVFWPcFGN8LfBhYBu5ULM44KBvLOngBXMDsB34WIzx1THGjdX6OiSl2Pcdld9j/OGV30N7vvFHlH/N3k7Y/Gz5161FmxZA747B5405AOoaK9+PCjPY6+uGx6rThyTtiXo7B58zbn759htKMFqvwWiSJEmSJEmSakP9cDcgSZIkSZIkSZL2Xo2ZptRa1gAjSSVoMhhNkiRJGnYxxv8MIfwQ+AfgfcCEgeWUy8KA83XAN4CvxBifr0yXkoo270JY+IPKrT+qFfY5v3Lra+8x6VgYfxisf6S86/72qN3HRk3afSzTAJOOg8O/AOPLGIIynLatggc+Bh23wZbFhV0z768r25OKM+9CePabEHuT6xufgmVXw4zzqtuXJO0Jutbnr8+4ABrbClpq2faFXP38T1iy/Vm62T3ELBsamFs3lfNGtTBlx5bie40Go0mSJEmSJEmqDQajSZIkSZIkSZKkYdOUaUmtGWAkqRT5Ahd9XZEkSZKqJ8a4BvhUCOFzwPHAacDJwD7ARGBnksxaYA2wArgTuBW4J8bYWfWmJeXX9mI4+Wdw55vKu27IwMTj4MTvQ3363+ulgoUAL/k93P1OWHV9ZffasSZ5fNmVsPoP8PKHoWVWZXuotJ7tcMPJsPm5wuaPmgz7vxcO/khl+1JxJh4Np/4GbssTQHnb+XD6dTD9ZdXrS5L2BJ3r8tdP/FFBy7R3ruQ/lnyCHXF73nl/7l7DsweewsefuJXxXfnn7sZgNEmSJEmSJEk1wmA0SZIkSZIkSZI0bAwwklRujZnm1FrW1xVJkiSp6mKMXcAdfYekWjf7jbmjexv07oCeHfC7Y2Db8tLWO/abMOetkB1d3j6lpmlwxu+h465cqFea5lnQ2wnbV5W/h64N8Nz34LDPlH/talp2ZWGhaOPmw5k354LRQqbyfal4M86D1z4Pv5qcPueprxiMJknF6lyfv17gn3XvWP/7QUPRdtqYbeTB8dM4vWNhQfP/otdgNEmSJEmSJEm1wX9xlCRJkiRJkiRJw6apriW1ZoCRpFI01aUHoxm4KEmSJElSmdQ3QcN4aJoCYw8sfZ3pLzcUTZU1bn7+kK6xB8L8iyu3/5p7K7d2tTx/T2HzWk+FxjZD0Ua6hom5I82a+6rXiyTtKfKFBB92ScHLLNr+dFHbLm0eV9R8AKLBaJIkSZIkSZJqQ/1wNyBJkiRJkiRJkvZejZmm1JoBRpJK0ZgxGE2SJEmSpKqa/UZYfXPx1006AVpmlb8faaCGcTDtZbDi2uT67Dfm6n/+EMSe8u/fcSfcdsHu443TYMb5MP1l5d+z3Bb9qLB5s99Y2T5UHiHkfq2e+WZyvXMtdG02tFKSCtW9DbatTK/PflPBS7V35lknaetSwkh7DUaTJEmSJEmSVBt8HJMkSZIkSZIkSRo24+onJI5nyNBYlx5uJElpRteNJZPyz6Cj68ZWuRtJkiRJkvYCc98Fcy8s7pq6Zjjxh5XpR3qh4/4Hxh+2+/i8d8O+74Dm6XDijyHTUP69uzbAsit3P579H/jDy+Hxfyv/nuW08Eew4/nB5x3+eWg7rfL9qDyO+AI05wmm3LK4er1IUq3bsii9dvBHYewBBS2zvXcbG3vWFbV1d6auqPkAxK7ir5EkSZIkSZKkYVA/3A1IkiRJkiRJkqS916TsFKY1zGRl59Jdxuc1HUxjpmmYupJUy0ZlGjmg+TCe3PrQLuNt2elMbpgyTF1JkiRJkrQHy2ThhMvgsE/D2gcgdvfXenZA73bIjoXYC91bYNwhMPFFkPFtzKqS5hlw7gOw/mHYvABCPUw8Blpm9s+Z8ybY5+Ww5j4Ysx+0zIbt7XBFAT9POuar0LMdHvxY8b09+jnY/72QHV38tZXW2wMPXZxe3+c82O89MOk4aGyrXl8auoYJcN4zcPmo5PqWxTB+fnV7kqRatf7h9Nrhlxa8TEfnytTa3MaDeG77k7uNd4XkBwXl1ds9+BxJkiRJkiRJGgF8R4EkSZIkSZIkSRpW75j2D3x92efY3LMBgAn1k3nr1PcPc1eSatmbpvwdX1v2GdZ0tQPQnBnNhdM/PMxdSZIkSZK0h2uZnTukkShTBxOPyh1psmNh6pn9nze2wfGXwT1/nX/tue8qPRitezOsuWfXfUeKTU/D1mXp9YM/Bm2nVK8flVddQy40MOnXeOvi6vcjSbUo9sLjX0yuNc+AupQAygTtnSsSx+tDPXObkoPRujMlBKNFg9EkSZIkSZIk1QaD0SRJkiRJkiRJ0rCa1TiPS/b9Bgu2PUEm1LFf0yE0ZAp/k7gkvVBbwzQ+OeerLNz2FJ1xBwc0H0Zjpmm425IkSZIkSVKtmf5yCHUQe5LrU14C2dG5Y9LxuZCzYq28fmQGo21emF7LjoNJx1WvF1VGy+zkYLTl18L+761+P5JUa5b+CtY9mFxrO72opdq7ViaOT85OTf238+5QQjBar8FokiRJkiRJkmpDCT8BlSRJkiRJkiRJKq+muhYOHf0iDmk5ylA0SWUxKtPIQS1HcPjo4wxFkyRJkiRJUmmapsLhn0+uNUyEI77Y//lR/54LDCvWE/8KT329tP4qafNz6bVjvwF1DdXrRZXRPDt5fMW18NCnqtuLJNWa3h54+NPp9YP+oajlOjpXJI63NUynPmQTa92ZuqL2ACAajCZJkiRJkiSpNtQPdwOSJEmSJEmSJEmSJEmSJEmSJI1I8z8ObafB6ptgxxrIZKFlDuxzHrTM7J/Xdgq87EFYfg1sfnb37ZH24AAAIABJREFUdVbdABseT97jzxfBzFdD8z4V+RJKsmVh8njDBJjzlur2ospoSQlGA3js87nfkxOPrl4/klRLll8NG59Mrs18DUw8pqjl2jtXJo63ZqeRTQtGC5mi9gAMRpMkSZIkSZJUM2oqGC2EcHPfaQTeHGNsL3GdKcBPd64VYzyzHP1JkiRJkiRJkiRJkiRJkiRJkvYwrSfmjsGMngMHvj+59uDF6cFosReWXQkHvK/kFstuc0ow2j7nV7cPVU6+YDSApVcYjCZJaVbdkFIIcNjnil6uvWtF4nhbw3R6Y09irauUYLReg9EkSZIkSZIk1YYSfgI6rE4HTuv72DiEdRr71th5SJIkSZIkSZIkSZIkSZIkSZJUGW2n5q8v/ims/TP0bK9OP4PZ/Fzy+Oi51e1DlTPY78nNC6rThyTVorTXyJmvhfHzi1pqa89mNvdsTKy1ZadRH7KJte5MCbcFRoPRJEmSJEmSJNWGWgtGAwjD3YAkSZIkSZIkSZIkSZIkSZIkSQWbejZMOj693nEH/O4Y+MV4eOyLEGP1enuhGGH9Q8m10ftWtxdVzrhDcgE+aRb/DLa3V68fSaolK3+fPD7puKKXau9cmVprbcgTjBbqit6L3q7ir5EkSZIkSZKkYVCLwWiSJEmSJEmSJEmSJEmSJEmSJNWOTB2cedPg83p3wEOfgGVXVr6nNM98M73WYjDaHuXkn8GYA9Lrd721er1IUq1YeUN6rYQA0Y6uFYnj2dDA+PpJZDMpwWiZEm4LjN3FXyNJkiRJkiRJw2BvDUarH3DuT3QlSZIkSZIkSZIkSZIkSZIkSZVV3wInfL+wuYt+XNFWSt67hMAXjWCZejj2v9Prq26Abauq148k1YIFl6XXRs8tern2zpWJ463ZqWRChvqQEowWSrgtsLez+GskSZIkSZIkaRjsrcFokwecbxm2LiRJkiRJkiRJkiRJkiRJkiRJe48JRxU2b8Pjle0jn23JAS0ANE2rXh+qjnGH5a9vfKo6fUhSrdj8XHptzAFFL5cajNYwHSA1GK0rU8JtgVtXFH+NJEmSJEmSJA2DvTUY7cV9HyPgT3QlSZIkSZIkSZIkSZIkSZIkSZU34XCYfOLg8zY+ATeeBluXVb6ngXq7Ycui5Nr4IyDsrbcg7MGapsDM16bXtyyuXi+SNNJ1boC19yXXQgayo4tesqMr+da2toZcGGlaMFpvyNCb2Edd+mZbFua+10uSJEmSJEnSCFfL/yoZi5kcQsiGEGaFEP4G+OcBpUfK25YkSZIkSZIkSZIkSZIkSZIkSSlOvxZmvR7qx+Sf134bXH8S9GyvTl8AT301vXbiD6vXh6or369tWlCeJO1tYoQbT02vn3ZdScu2d65MHG/LTgcgmxKMBtCdFIJ22rX5w9Ge/lpR/UmSJEmSJEnScBhxwWghhJ60Y+A0YFG+uQnXbgcWAt8Cxg5Y66oqfnmSJEmSJEmSJEmSJEmSJGkQIYRjQgivCyGcF0LYb7j7kSSprBomwCk/h9etg1ctyj9361JYVsW3vD/1X+m10XOr14eqq74ZZlyQXDMYTZJy1j0A6x9Jr489oOglN/dsZGvv5sRaW0MuGK0+XzBaJuHWwOnnwOvWp2/66KVF9ShJkiRJkiRJw2HEBaORCz1LOwqdN9gR+9Z4Evhl5b4USZIkSZIkSZIkSZIkSZL2XiGExhDC3AFH3SDzzw8hLALuBS4HfgM8FUK4I4RwSBValiSpejJ10DwLGibmn7fgsur0A9C1MXk81EN2dPX6UPW1zEke37K4qm1I0oi19v70Wl0zNM8sesn2zhWptbaGaUD+YLSukHJrYHY0NO2TXOtcDzvWFtyjJEmSJEmSJA2H+uFuIEVk9yC0cgrA/cAbY4xdFdxHkiRJkiRJkiRJkiRJkqS92YeBz/WdLwPmpE0MIbwB+AnJD1M9CbgnhHB6jPFPFehTkqThEQLMfjM889/pc1ZdDz8J0DABOtf1j9c1Q8/W3PmUM5IWh/GHwry/yX1Ms+L3sORyWPcgdG1InjPxRYN+KapxacFoa+6Bm86E+tHQdioc8H6oaxzaXjHCc9+FlddD41SYdyFMOGJoa0pSpW1emF6b9XrIFH+bXnvnysTxUaGRsXUTAMjmCUbrzqQEowG0ngRLfpFQiLDydzDnLcW0KkmSJEmSJElVNRKD0W4jF4yW5LS+j5Hc0yC3F7hmBHYA64EngFtijLcPpUlJkiRJkiRJkiRJkiRJkjSoC8iFnEXgshhj4vsDQwgTgG8Bmb65Ax+wuvOaFuCKEMKBMcZC3z8oSdLId+S/5A9G22lgKBr0h6IBrL45+ZrVN8GC78IZN8Lk43avP/ttuPc9g+994g8Gn6PaNnpO8nj3lv7fX8uvguVXwxk3Q6au9L3u/VtY8O3+zxd8B864HlpPLn1NSaq0x7+YXjvmP0tasqNrReJ4a8M0Qsj9lbg+XzBayPNafML3UoLRgLv+Cma9oaQwN0mSJEmSJEmqhhH308sY4+lptRBCL/1vcHpjjHFJVZqSJEmSJEmSJEmSJEmSJElFCSE0AUfS/76/a/JM/wAwjv5AtOXAFUA38Bpgdt+8GcAHgX+tQMuSJA2P7BiYdi6s/F1l1u/eBE98CU791a7jvd3wyGcHvz7TAGP2q0hrGkFa5hQ2r/02WHU9TH9ZaftsXrhrKBrkQv4e+xc4Pd8fFyVpGG14Ir128MegYUJJy7Z3rkwcb2uY9pfzfMFoXZlM+uL1LTD3nfDc95PrK34LM84roEtJkiRJkiRJqr48P/0cscLgUyRJkiRJkiRJkiRJkiRJ0jA7DKgj976/LTHGP+eZ+1b6Q9GeAg6NMV4UY/xw3zr39c0LwDsr1rEkScNl7jsru/7qW3Yf2/QMbFsx+LUtcyDU4q0HKkqhwWiQ/PupUMt+kzy+4lqIMbkmScOt/Q/ptdFzSl+2M/n7cGt2+l/O6zPpwWjdg31/nnJmem0or+WSJEmSJEmSVGH1w91AkS4ZcL5+2LqQJEmSJEmSJEmSJEmSJEmD2bfvYwQeT5sUQjgI2K9vXgQ+HWPcsLMeY9wcQvgA8Me+oQNDCDNjjEsr07YkScNg2tnk8j8rFAzVuQ4e+iSEAbcQbFlY2LUzXlWZnjSyNIyDttOg/dbB524u8PdOkhW/Ta/t6IDGttLXlqRKWfun9Nr0V5a0ZIyRjq6VibW2hml/Oc+GIQSjTX95em3Lc/mvlSRJkiRJkqRhVFPBaDHGSwafJUmSJEmSJEmSJEmSJEmSRoApA86T7/bOObXvYwA2Ab9+4YQY470hhGXAjL6hwwGD0SRJe46GCXDsN+G+v6vcHo99ofhrJhwJB324/L1oZDr6y3DLubmAsnyW/hJ6eyBTV979Ny8yGE3SyLP+MVhwWXq9ZWZJy27q2cD23m2Jtbbs9L+cZ6gjEIgJ4andg70Oj5oILfsmh6EuuxJ6uyFTU7cXSpIkSZIkSdpLDPJYCEmSJEmSJEmSJEmSJEmSpJI0DzjflGfeyX0fI3BTjLE7Zd6jA85nDaUxSZJGpP3/Fl7+CBzwwdLDoeZ/EkIZAk4O/TSc+is46w5omjL4fO0ZJh6d+z14wvdzv5dmXJA+d/VNpe3RszW9lhTcI0nD7cF/Sq/N/+eSl23vXJFaa2uY9pfzEAL1IZs4rysUcGvg4Zek11ZcN/j1kiRJkiRJkjQMDEaTJEmSJEmSJEmSJEmSJEmVEAacJ9/FnXPSgPPb88xbM+B8bEkdSZI00o0/FF70FTh/UWnXH3EptMweWg/7vj0XojLzNVDfMrS1VHuapsDcd+R+Lx34wfR5y35T2vqbF+WpGYwmaYTp2Q4rf5teb5lT8tIdXSsTxxszzYyuG7fLWH1K6Gl3poBbA1v2Ta+V+louSZIkSZIkSRVmMJokSZIkSZIkSZIkSZIkSaqETQPOpyRNCCFMBfYbMHRXnvUG3gkeUmdJkrQnqG+CSScUd83+78t9nHL60PZuG+L12nNMfFF6bcFlsP353cc3L4KNT0GMu9d6dsC2Felrrvxd8nWSNFy2LIbYm15vO63kpVd3Jr8etmWnEcKuf+WtD8lZ492hgFsDJx6dXlv6a+jtGXwNSZIkSZIkSaqymg5GCyG8JIRwaQjhmhDCvSGEp0IIzxV5LBjur0OSJEmSJEmSJEmSJEmSpD3Q8r6PATgsZc7LB5zvAP6cZ73xA863DKEvSZJqw2GfhkxyEMpuRrXCgR/MnR/4IWiYWNqe4w+DWa8v7VrtebJjIDs2udbbCVe0wj3vht4u2LEGbjgFrtoXrjkIrjsMtizd9ZoNjwF5gs/ab81dt3lRub4CSSpdjHDve9Lrs94IY/cvefmOtGC0hum7jWVDQ+Lc7kzd4BvVN0PTPsm1rvVw5UxYc//g60iSJEmSJElSFdUPPmXkCSGcA3yVXZ8SWerTH32ckCRJkiRJkiRJkiRJkiRJ5ffwgPOJIYRzYoy/f8Gcd/V9jMC9McauPOvNHXC+qhwNSpI0ok1/GZx5Kyz8AWx6JhcqtX11rjZ6Low5AOoaYfQ82P+9MGZerjZ+Ppx9Nzz7LVj3IMSewfeqa4LJJ8KBF0F2dOW+JtWe4y+DO/KE5S34Dow7BNpvh447+8c3PJa77pw/9o/d9VeD77fhMbjzzXDO3aX3LEnlsPJ30H5bev3knwxp+faulYnjScFo9SE5KLUrZArb7Nhvwm3nJ9e2rYRbXwEXLCs8kFWSJEmSJEmSKqzmgtFCCB8FvrjzU/qDzUoJOCs1TE2SJEmSJEmSJEmSJEmSJOURY1wQQniG3ENQA/CNEMJLY4wLAUIIHwZOHnDJlWlrhRBGs+vDVBdUoGVJkkae1hNzR7HGHgBH/0f5+9HeZ/S+g89Z8N1ceN8LrbkHti6D5hkQI2x8srA91/wRNi8sbG9JqpRFP02vtZ4KhYaSJYgx0tGZHIzWmp2221h9SL4FsDtTYA+j5+avb2+HVTfB9HMLW0+SJEmSJEmSKqymgtFCCOcAX+r7NPYdO8PNtgLrgXxPi5QkSZIkSZIkSZIkSZIkSdXzHXLv+4vAvsCTIYSHgDZgJv3vA9wO/DjPOqfT/37BbuCxCvUrSZKkgcYeBHXN0LM1fc6GR9Nrq2+F2W+Aro3F7bvxqfzBaDFCCOl1SRqqjU+k1yYeM6SlN3SvpTPuSKy1NUzfbaw+ZBPndhcazjZmHmTH5n8t3vikwWiSJEmSJEmSRozSH00xPL7Y93HnG6GWAe8H5sQYR8cYZ8QY9y32GLavRpIkSZIkSZIkSZIkSZKkPdtXgCf7ziOQBY4BZtEfdBaBL8cYO/Ks8+oBcx+KMeUOckmSJJVXfQvMu7D06+9+K/ysAX41ubjrHv9i8viin8K18+Hno+Hmc2DzotJ7k6Q0z3wL1t6fXp/3N0Navr1rRWqtrWHabmPZTEPi3IKD0eoaYb/3DNLUbYWtJUmSJEmSJElVUDPBaCGEecAR5N7UBHAPcGiM8RsxxiXD15kkSZIkSZIkSZIkSZIkSUoSY+wEziEXjrYzCC3Q/17AAFwBfCZtjRDCaOC1A665qSLNSpIkKdnR/wXzL84F61RL+62w4re7ji2/Fu56C2x4HHq2wqrr4YZToGd79fqStOdb+CO47+/S64dfCuPnD2mL9s6VieMtmTG01I3Zbbw+1CfO78rUFb7pkV+CQ1P/6g3Lfg09nYWvJ0mSJEmSJEkVVDPBaMCJfR93viHq7THGTcPYjyRJkiRJkiRJkiRJkiRJGkSMcSlwJPBe4LfA48AT5ALRXhdjfH2MsTfPEu8ExpJ7/2AArq1ow5IkSdpVpg6O+AK8YQtkGqq37zP/s+vnz35r9znblsPya6rTj6S9wzPfzF+f89Yhb9HeuSJxvLVhWuJ4fcgmjneHIm4NDBk4/LNw+OfT56y4rvD1JEmSJEmSJKmCaikYra3vYwQeiDE+M5zNSJIkSZIkSZIkSZIkSZKkwsQYu2KM34oxviLGeGjf8boY4xUFXH4ZMGHnEWO8o7LdSpIkKVHIwNiDqrffugd3/Xz51cnzFlxW+V4k7R1i3P21Z6D60dA8Y8jbdHStTBxvKzYYLVPCrYHjDkmv5fvaJUmSJEmSJKmKaikYLQw4f3bYupAkSZIkSZIkSZIkSZIkSVUTY9wWY9yw8xjufiRJkvZq+76tvOvNe3d6besSuONNsOxquP+i9Hmrri9vT5L2XlsWQs+29PrsN0GmfsjbtHeuSBxvy05PHE8NRgsl3Bo47dz02ubnil9PkiRJkiRJkiqgloLRlg84rxu2LiRJkiRJkiRJkiRJkiRJkiRJkvZGB/4DzH5z+dY7/FI44gvp9SWXw23nw9NfTZ8Te6FnR/l6krR36u2Bq+al1yefBEf/59C3ib10dK1KrLU2TEscz6YEo3VlSrjFrr4J2k5Prm1ZWPx6kiRJkiRJklQBtRSM9tiA85nD1oUkSZIkSZIkSZIkSZIkSZIkSdLeKFMPJ/1f+dZrGA8HXjT0dZZdOfQ1JO3dVt2Qv37WHZAdPeRt1nU/T3fsSqy1NUxPHK9PCUbrDiXeGjjr9cnjGx6D7q2lrSlJkiRJkiRJZVQzwWgxxkeAR4EAHBNCmDDMLUmSJEmSJEmSJEmSJEmSpBKFEGaEEF4cQrgghPC2EMLbh7snSZIkFSAEGH/E0Nepa4S6UVDfAtmxQ1ur/bah9yNp75bvdWT8EbnXvjLo6FyZWmvLTkscTw1Gy5R4a+DoucnjnevgmW+UtqYkSZIkSZIklVH9cDdQpP8AvgfUAR8GPjm87UiSJEmSJEmSJEmSJEmSpEKFEGYDHwLOB2YnTPlhwjWnAi/p+3RdjPFrletQkiRJBZlxAax/aGhrZMf1nzfPhA2Plb7WM/8Nm56GcYf2j9U1wKTjYPorc+eSlE/H7em1ma/Je+nWns08vPlelu9YTCTmnbtqx9LE8TF142iqa0mspQajhRKD0VpPyYVT9mzfvfbAR2HSCdB2SmlrS5IkSZIkSVIZ1FQwWozxByGEVwKvBT4WQrgzxvjb4e5LkiRJkiRJkiRJkiRJkiSlCyFkgEuBj5J7OGpImJZ29/jzwGd31kMI18UYF1SgTUmSJBXqoItg9c35g4QG0zC+//y4b8MNJw2tp1U35I4XmnImnHYV1DcPbX1Je67n/wgdd6TXD/xgamlNVztfXfoZOrpWDqmFtobpqbVspszBaNnRsN974an/TK7feCocfxnMu7C09SVJkiRJkiRpiEr86eewegdwFblQtytDCJ8LIYwf5BpJkiRJkiRJkiRJkiRJkjQMQghZ4HfAx0l+oGtaIFquGOMTwC30h6m9pawNSpIkqXgNE+CMG+GMm+Cof4d9zhvaepNeVJ6+kqy+CRb/tHLrS6p9D3w0vXbMV3YNcnyB69dcMeRQNIDW7LTUWn1IDkbrytSVvuH8j0N9S3r9zx+C7q2lry9JkiRJkiRJQ5D0BqMRK4Tw6b7Th4CTgMnAPwP/GEK4G3gcWAf0FrNujPFz5exTkiRJkiRJkiRJkiRJkiT9xWXAS8kFoEVyAWe3kws76wQ+X8AavwJe0nd+NnBp+duUJElSUeoaYOoZueOAv4fLm4q7vnlm/3kmm/t869Ly9rjT8mtg3l9XZm1Jta1zPXTckV4fs3/eyx/Zcl9Z2mhrKD4YrTtkSt+wsQ0OvAge+3/J9a6N0H47TD+n9D0kSZIkSZIkqUQ1FYwGfJZdnwy58w1SzcAZfUcpDEaTJEmSJEmSJEmSJEmSJKnMQghnAm+l//1+zwJviTHe31efTWHBaNcCX+9b49gQQmOMcXtlupYkSVLR6hqh9VTouH3X8cwoaBgH29t3v2bKmbt+3jK7csFo6x+Bpb/OndePhsnHQ3ZsZfaSVFs2L8xfn3xSaqmzdwfru9eUpY2Dmo9MraUGo2WGEIwGcPBH4On/hq4NyfUn/wNiD0w6Fhpbh7aXJEmSJEmSJBVhiD/9HBF2PkGyFKGcjUiSJEmSJEmSJEmSJEmSpF18pu9jABYDJ+0MRStGjHExsL7v0yxwUHnakyRJUtkc9lmoa9p1bP7F8KL/hlC/6/jYA2Huu3Ydq2RQ2eYFcPtrcsctZ8OvWmHRTyq3n6TaseqG9Nphn8uFO6Z4vmtVWVo4esxJzG7cL7WeGowWhnhrYMMEOOnH6fVVN8Ctr4Ar2uDRL0As9RY+SZIkSZIkSSpO/eBTRhzDzCRJkiRJkiRJkiRJkiRJGuFCCBOBk+h/+OlFMcbnh7Dk433rARwAPDiEtSRJklRuU8+As+/OBY51roN9XgEzXpWrNe0DSy6HrUth0vG5ULTG1sLXDvUQu3PnDRNz6z73vdJ77e2Eu94KradCy8zS15FU+x78p/TaYZ/Ke2l758rE8UCGQ1uOGXTrprpm9m86lBPHnUEI6bfMZdOC0TJDDEYD2OeVMGZ/2PRM/nkPfxJaT4IpLxn6npIkSZIkSZI0iFoLRvMnp5IkSZIkSZIkSZIkSZIk1YZTgJ13abfHGK8a4noDQ9XahriWJEmSKmHCEbnjhVpPzB15rz0aVlyXXHvTDggvCADasQaWD+WPmBGW/hIO+tAQ1pBU07YsSa9NPXvQyzu6ViWOT85O4b0z/rnUrnZTnxKM1hXqyrPB7DfBo5cOPm/x5QajSZIkSZIkSaqKmgpGizHeOtw9SJIkSZIkSZIkSZIkSZKkgkzr+xiB+8uw3qYB56PLsJ4kSZJGklmvhcc+v/v45BN3D0UDmPvOIQajAWvu7T/v2Q5dA/7ImamHhglDW1/SyLbxqfTahCMHvbyjc0XieGvDtMTxUqUFo3VnEl4bSzHpuMLmbXq6PPupcD3bc0f9GMjU5c4zoyAE6OnMfa9K+h4pSZIkSZIk1biaCkaTJO3B1j8CT3899480s14P01+R+4caSZIkSZIkSZIkSZIk1aqJA87XlWG9pgHnXWVYT5IkSSPJhCOh7XRo/8Ou4wdelDx/+itg9H6w+dn+sUwWpp4NK64tbM/FP4PlV0P3Fsg0QG/nrvWWOXD4pbDvWwv8IiTVlDX3pNf2/7tBL+/oWpk43pqdWmpHiepD8i2A3eUKxJp2Low9GDY+kX/e6lvg2e/Afn9Tnn2VbsH34J4Lk2vZsdC1EeqaciFpc98JR/1bLiRNkiRJkiRJ2kP4OABJ0vBbdSP89kh49n9h4Q/h1vPg0UuHuytJkiRJkiRJkiRJkiQNzcYB52PKsN6UAedry7CeJEmSRprTr4H9/x7G7A+tp8LJl8PsNybPrWuAs++EOW+Dln1h6lnwkt/DaVfDMV+BiS+C7PjcUdeUvAbkQtFg91A0gC2L4O63wcobhvylSRphYoSHP5Vcqx8No/cddImOzlWJ460N04bS2W6yoSFxvDtTRyzHBpl6eOltsO87oGV2/rn3vhuW/rocuyrN8mvSQ9EgF4oG0LMNutbDU/8FD11cnd4kSZIkSZKkKvExAJKk4RUj3P8BiL27jj/2BZh3ITTPGJ6+JEmSJEmSJEmSJEmSNFQdA873H8pCIYQ64KgBQyuHsp4kSZJGqPoWOPbrhc9vbIOTfrj7+IEfzB07LfkF3PGG0vta8B2Ydlbp10saedY/kl6bccGgl3f1drKu+/nEWmu2vMFo9SGbWusOGbIvvB+jFI2T4cTv587XPwLXHZ4+d8F3YOarh76nkj377eKvWXAZHPEvkKkrfz+SJEmSJEnSMMgMdwOSpL3c+odg45O7j/d2wtIrqt+PJEmSJEmSJEmSJEmSymXnXeYBODCEMJQn5L0MaO47j8Afh9KYJEmS9jLjDh3a9esfLk8fkkaO9Q+l18bNH/Ty57tWE4mJtbaGMgejZfIHo5Xd6HmQGZVezxcqp6FbflXx13SuhW3Lyt+LJEmSJEmSNEzqh7uBoQohZIETgVOBecBEYAxAjPHMYWxNklSIFb9Lry35xa5PapMkSZIkSZIkSZIkSVLNiDE+EUJYDuxDLhztw8CHil0nhJABLt65LPBQjHF92RqVJEnSnm/cwTDxWFh7X2nXb3wSenZAXZ6gIO2ZOjfAI5dAx23QvRm2LIae7blaYxs0TNh1fmYUTDoODrsEmqdXv18VZtmVcPfb0+tz3jLoEh1dKxPHAxkmZdtK7SxRfUi/BbA7k4Hesm4H9c0w6/Ww6MfJ9a1LYfm1sM8ryrzxHqbjTnjqq31BcuX+RUpw/UmwbUXuvHkmnPBdmPrSyu8rac+w5n548su5QOBxh0J2NCz4LrwwBHTGq2Deuwf/HrD4clj4Y+jZBjNfA/u/F0KoWPuSJEmSpD1PzQajhRBayL1B6v1A6wvL7Pa37b9c92bgC32frgWOjTEmP55DklR5+Z4U9PzdsGMNjJpUvX4kSZIkSZIkSZIkSZJUTv8HfIzc+/reH0K4LsZ4Q5Fr/D/ghAGff7tczUmSJGkv8uLfwJ1vhI47Srv+hpPh3PvL25NGtt4uuPHU9Pe8b2/PHS+0/mFYcS284gloGFfZHlW8hT+Gu9+WXq9vgZZZgy7T0ZkcjDYx20p9yJbaXXJLedbrDpmy7vUXx34zFya58ank+q2vzL2uznhVZfavde23wc1nQW9n9fbcGYoGufC6m8+C064xwE7S4NbcBzeelgsxA9jwWPrcZVfCsqvglMtzIZpJnvkfuO+9/Z+vvikXLnvUl8rXsyRJkiRpj1ehn3xWVgjhcOBPwCVAG7k3TBXqamASMAc4Cjir3P1Jkoqw8cn0WuyB5ddUrxdJkiRJkiRJkiRJkiSV278CG8k97LQOuDKE8J5CLgwhTA4hfB/4KP0PS10FfLcCfUqSJGlP1zwdzrodXvZAadev/ROse7i8PWlkW35N/geB57NtJTzzzfL2o/J4/Iv56/v9bUHLtHclB6O1ZqcW29GgsqEhtVaxYLTsaDhnkDDIxw24SfXkl6sbipbmiX8b7g4k1YKnvtLBKQYhAAAgAElEQVQfilaQCI+lfD+NMfm15+mvQ/fWktqTJEmSJO2dai4YLYRwCHArsD+5QLSdb3YKFBCQFmPcDPxiwNBry92jJKlAsTd/MBrAst9UpxdJkiRJkiRJkiRJkiSVXYxxLfBB+t/v1wh8M4TwTAjhX4DzB84PIRwXQnhbCOFHwALgbfS/P7AHeFeMcQTcWSxJkqSaNe4wqGsq7drn7ypvLxrZhvrrvfK35elD5dO5ATY8ln/OmP0KWqqjMyUYrWFasV0Nqj5kU2tdmbqy7/cX2dHQOCW9vuYe6O2q3P61rGOEfL9ovzV3744k5dNxZ/HXrPszdCeEqW1fBZuf2328Zyusvrn4fSRJkiRJe6364W6gGCGERuAaYBz9gWiPAF8BbgFGAU8UsNSVwIV952eWuU1JUqG2rcr9UDMf3zwgSZIkSZIkSZIkSZJU02KMPwwh7Ad8ktx7/wIwD/jYC6YG4O4XfB4HXPOJGOP1le9YkiRJe7RMHcx4NSz+SfHXPvu/sPZP0DwTZrwKJhxR/v7Ub+2fYNnVuXCmGRcUHFg1JKtuhJU3QOdaWP2Hoa3VfhusvB6mnV2W1lQGWxYOPmfGBQUt1dG1KnG8LVuJYLT0WwC7Q6bs++1i5mvhmW8k12JvLvxm7IGV7aHWdG2CHR3D3UW/2y6Afc6H2W+A7Njh7kbSSLJpASz5OWxZVNr191wI9aMh1MGEI2HWG3KvgWm2JX/vlCRJkiQpSU0Fo5F7auQc+kPRvgr8Y4y5xxaEEGYXuM4t9L9Rat8QQluMsb3MvUpSabYshQc+nHvSwpj94NDPwNQzhruryti2fPA529uhcz00jK98P5IkSZIkSZIkSZIkSaqIGOOnQwgLgG8ATfS/DzAMON/5OewaiLYDeE+M8UdValeSJEl7uqO+BBsegfWP7Doe6uHwS+GhTyRft+6B3AHw2OfhpJ/ArNdVtte91cIfwx/fkQteAnj0Ujj9d9B6YuX2fPjTuX3K6ZZz4Ogvw0EfKu+6Ks3mAoLRmgYPNuuOXaztSg6+am2oRDBaNr2XTIWD0Q77LLT/ATY8nly/9lB4w2aoG1XZPmpFjHDj6cPdxa6WX507nv4anHETNE4e7o4kjQQdd8EfXg5dG0pfY/HPdv38yf+EI780tL4kSZIkSepTa8FoH6D/DVC/iTH+QymLxBg3hxAWAfv2DR0MGIwmafh1b4UbToGtS3Kfb1sBN58JJ/4Q5rwVQsh/fa3ZWkAwGsCmZ2DSsZXtRZIkSZIkSZIkSZIkSRUVY/xBCOEW4GPAu8gFpEF/GNpAAegB/g/4bIxxUVWalCRJ0t6heQaccx88/0fY+ERuLDse2k6F5n2gcx088a/51+jtggc+AjNfA6HCwUR7m95uuP8D/aFoAF0b4cF/grNuq8yeW5fDY18o7dpDPgHPfgs61ybXH7oY5l4IDeNK70/lMVgw2uGfL2iZNV3tRHoTa63ZKgejVfr1p7EVzn0ALk8JPovdudAtQyJz1twL6/6cXAt18KKvkfxjkASd63Pfj5r3gUxD7vvO1qXQMAEaxsPWZRCyuV+j+98/+HrrH4YF/wvzLy74y5G0B3vo4qGFoiXZ9DQ8+rn0euwu736SJEmSpD1azQSjhRAOAfbp+zQCHx3ikgvoD0abC9w6xPUkaeiWXdUfijbQ3W+HBz8OJ/8s94/te4ptBQajrX/EYDRJkiRJkiRJkiRJkqQ9QIxxCfD+EMLHgFP6jpnAJKABeB5YDdwF3BRjXD9cvUqSJGkPVzcKppyWO15o7IGFrbFlMWx4AsbPL29ve7tVN0JXwl8FOm7PPYy8vrkCe96waxBbMQ68CDY9BUuvSK73bIf2W2HG+aX3p/LYMkgw2uh989f7tHeuTBwPBCZnpxTb1aAyIUMd9fSwe6BMV6au/5MpZ5R9bwDqGmDScbnQryQrrjMYbacVv02vNc+E/d9bmX0LCUaD3K+VwWiSurfm/mxSCeseSK+VO4hNkiRJkrRHq5lgNODIvo8ReDTG+NwQ1xv4LyQ+ckXSyLD4p+m1bSvgxhfDYZfkwtHaTqv9J4ttLTAYbfk1MO/CyvYiSZIkSZIkSZIkSZKkqokxbgWu7zskSZKkkWXqS4FA7haWQTz4T9B6ErS+GCYfD5lsf61rM6y+Ofeg6MY2CHWwfRW0zIFp58CoSRX6AmrcxqfSaz3byhuM1rMD1twDj1xS2vUTjoSmKTDjNenBaABLfwWd63Lno1qh9WRo8HamqtucJxgt1MGUMwtapqMrORhtQv1kspmGUjobVH2opyfuHozWPfC+kkM/XZG9AZh2bnow2srfQ4wQQuX2rxWrb06vTTu3cvvOeRss+tHg8zruhCW/hMknQfP0yvUjaWSKETY+AYvy3MNYSSt/Dwd9GHo74fk/wtalufFQBwQYfxiMP7T275mUJEmSJJVFLQWjtQ44f6YM6+0YcF6BR8VIUglW3TD4nEc+k/s4/eVw6q9zT96pVdtWFDZv9c3+I5kkSZIkSZIkSZIkSZIkSZKk6miZBQd/BJ74t8Hnrrg2dwA0z4Kz786FzTx/D1x/Qv5rT70CZr566P3uafK9bzwWEFZXqE0L4A8vg00l3qZU1whH/EvufPabYMG3of3W5LkLf5g7dsqOzd0PMPWM0vZW8WJv//+rSeb/cy7krgAdncnBaK0NU0vprCD1mSw7erbvNt6d6QuPmfX6XOBepez/Xnj0c8m1bSvg7nfA8d+p7XtchiL2wp//ETpuT59z8Icrt//8jxcWjAZwx+uBAMd8BQ78QOV6kjSy9GyHu98JSy4fvh5W3wJXtOV66dmWPGf6K+GUn0F9S3V7kyRJkiSNOLUUm9044HxH6qzCDXysyqYyrCdJQ5cdW/jcFdfBs9+qXC/V0F3gy2/XBtiW/A+HkiRJkiRJkiRJkiRJkiRJklR2R/0rvPgqOOD9MPst0FhA4NHWJfDgx3IBOXe9ZfD5d7weOjcMvdc9Tr7bnXrLt8197xs8FG3c/Nyv/8EfgZfeBmfdAQd/FA79NJxzL0w/NzcvUwdnFPCg9J26NsKdb4LertL7V3FWXJde2/ftcPglBS/V0bUqcbw1O63YrgpWH7KJ493TzoGTfpI7MvUV25+mqXD8Zen1RT8qPJhrT7T8WnjqK+n1Qz4BY/ar3P7jDoFXLYGDP1bgBRH+9EHY8GTlepI0sjz7ncJC0Y78Irz4ylxgaKbve092HLSeAs0zYMoZuT8bzXxdaX10rksPRQNYcQ089dXS1pYkSZIk7VEq+NPOsnt+wPnkMqw3d8D5mjKsJ0lDV9c4+JyBnvtebT+dpTvPDzFfaOOTuSenSZIkSZIkSZIkSZIkSZIkSVI1zDgvdwDc+Vew+CeDX7P0V3DgRbD5ucHnxh5Yfg3s+1dD63NPE0J6LfaUZ4/OdbCqgCCzee+Ggy7adaz15OS5mSwc+il49NLCetjRAe23wtSXFjZfQ7Pop+m1/d9X1FIdnckPfm9tqFwwWjYtGG3Om2H8WRXbdxcTjspfX/ILmPfX1ellpFnyi/z1ySdUvoeWmXDUl3JHz3a4vGnwa5b8Ag77VOV7kzT8lg7yOgUw6Xg45J9y5zPOhyM+nz439sLlzdC7ozz9DbTk5zD/E+VfV5IkSZJUU2opGG3nozQCMMhPUfMLIUwCDh4w9OxQ1pOksogRdjw/+LyB1j0A6x6CCUdUpqdKy/d0hxfa+CRMPaNyvUiSJEmSJEmSJEmSJKkqQghZ4ETgVGAeMBEYAxBjPHMYW5MkSZLSTT6hsGC0nu3w1FcLX/fJf4fWEyHUQfNMCJnSe+zalHtYdyY5QGmP0Ntd+rVdmyAzCuoaYNMCIA5+TbFhRpNPLG7+yt/DuEOhaWru8+3t0L0ZGibkDpXPloXptfGHFrxMT+xmTVd7Yq01W7lgtPqUYLSu2FmxPXcz9iDIjoOuDcn1jruq18tIs+np9FrIwMQXVa8XyH0vmHA0rPtz/nmrroe5b899/+nakAuNbJoB9OaCKOtbqtKutIsYYduKCgRuhb7XsPXQND33/8merGvjrvcqbszzOrVTMX/uCRmYfDy031Z8b4NZ92Du9YgAnWsHmZyBlllD+zO0JEmSJGlEqqVgtLuAXiADTAohnBFjvLnEtS4kF7AGsAW4vwz9SdLQ7FgD3VuKv+63R8Kbe/M/FWuk6tle+NyNT1auD0mSJEmSJEmSJEmSJFVcCKEF+BDwfqD1hWVSUglCCG8GvtD36Vrg2BhjAQkGkiRJUhnNeQs8/iXYtnzwuYt+XPi66x6Eq+blzkdNgsMugQP+vrjetq2Cu94C7bdCXRPMfRcc/V+QqStunREjz3vjYwnBaNtWw11/Be235ILRJh4NHXcOfl3rqTDpuOL2mnoWjD8C1j9U2Pwn/j13JJl4LJzyMxg9t7gelOz5u5PHs+OKCn9a09VBLz2JtbaG6gejdceuiu25exNNcOAH4dFLk+vdm+Cq/eCkn8DkIv/fqWVblsCae9Lrc94GzdOr189OB38U7npz/jkdd8CVc9Lr018JJ/3QoEZVz+Kfw4Mfzx9mWQ6ZLMx6Axz37dxr255k4J97Ym/h19WPgf3+tri9DvpI7nWkmH0K9cuJhc9tmADzL4aDPlyb91hKkiRJkhLVTAR2jHEdcN+AoUtDKP5vqCGEfYCPk3sDVQRuiLESf+uWpCLlezrMYB65pHx9VFPPtsLnPv21yvUhSZIkSZIkSZIkSZKkigohHA78CbgEaCNv0sFurgYmAXOAo4Czyt2fJEmSNKhRk+Dsu2HuOysXVLVjDdz/flj6m+Ku+8MrYHVf+EX3Fnj66/DIpyvTYzXku12ot4RgtNsugNU35f779GwbPBRt/BG5YI2X/K74cI1MPbz0D3DA+2HcodA8K3fUjy6+77X3wU1nQm9yCJeKsPTX6bWTLy9qqY6ulam1ydmpRa1VjBERjAa58MZ5706vb14AN58BO9ZWr6fhFCPccEp6ve00OP471etnoDlvglOvgGnnlr7GimvgzkHC1aRyWX1rLtCr0qFoAL1dsOj/cn/u2tPcdn7/n3sKNeuNcNbtMO7g4vaacR68+GqY/gpomd3/557mWVDXWNxaQ9G5Dh74KCz+afX2lCRJkiRVXM0Eo/X5yoDzE4D/KebiEMIU4CpgAv1vqvpyeVqTpCHa9Ezp1z56CXRtLF8v1VJMMBrAmvsr04ckSZIkSZIkSZIkSZIqJoRwCHArsD+59+7FnSUKCEiLMW4GfjFg6LXl7lGSJEkqSMtMOOF7cP6Cyu7z3HcLn7vhCVj3593HF/64fP1UXZ6/JsQig9E2PAlr/lj4/GnnwssfhKP/Heqbi9trp4bx8KKvwSsegQsW546DPlTaWlsWQfsfSrtW/Z75ZnqtyKDDjs7kYLTx9ZNoyIwqaq1iZFOD0UoICxyK/8/efYfHUd1tH/8eraolW5Z777gXsKm2AYNN7wkQAk+AUEMq6SEJLaQ8SQhvypMQkkACCaEaTHXoBowxNsXghnvvkqtsWdqVzvvHSPFqvbN1drQr3Z/r2ks7c86c81Pbnd2duccY5/8jltB+WP+4P/W0tMp34cAG9/bj7ncCE1tK34vglJlw8gupj7HlJTiw0buaRKKxFj78VvLP8+la9wiEkjy/LZvtWQJV85Lb5nM1MPlRqBiX2py9z4Ypz8MFaw/t91y4zhn3cgujfpTauKlYlcQ+tIiIiIiIiGS9nApGs9Y+CixoXDTAdcaYt40xJ8bazhhTaoz5UuO2R+IcVGWBl621cS7zIiLik33L09t+/XRv6vBTssFoy36bmTpEREREREREREREREREREREJCOMMcXA80B52OqFwLXAIGAECYSjAc+E3Z/qWYEiIiIiIqnqdXbmxt69KPG+buFDB9ZDfa039fguxkuEhmByQ215Kbn+Hcck19+PcZP5e5DoYoU6lfZPaqgdwejBaF0LeiQ1TrLyXYPRkvyf8EJBh/g/t7byd7t7oXtbQQco7edfLbF0HJ3e9ttne1OHiJuNM6IHvWZafQ1Ur/Z/3kxJ9rG3/VAIFGemlibdT83s+OH2tJHnHhERERERkTaiBS83kLKLgblA58blScAsY8xWYGV4R2PMvcBQ4ASgiENXmjTAJuALPtUsInK4vcthzUNwcDv0PN1ZjqbiKAjuif8m63vXwoDLIZC5Kwx5LtlgtE0vOB9k50X/QE9EREREREREREREREREREREss7XgQE4x+4B/B74lrW2AcAYk+gZ6G9w6Pi/gcaYbtba7R7XKiIiIiKSuMHXwuYXMzP2/jXw8iTAgglA9SqoCQtjKunpfK2JHtD0X3W7oaR7ZmrMJBMjGM2GoKEelvzCCVGp2Rx7rHg/o2bzBmDglYn3T0avc6GoK9TuSH7bD2+Gpb+EDiNgyI3Q/1Lv62vNrIW9S6O3FXWGQGFSw+2o2xp1fdfCnslWlhS3YLSgrcvovK4GXQsLb3NvX/FHJ6Bx5Peh6yT/6vLL/nXw8Y9g7cPufQZ8IXvOfyntBz1Og62vpLb9nM/Dojuh+ykw7hdQWB5/G5F4DmyGj2+B7W87+z4t5dWTmp+PVzoABlwBR3w59j5JNln7KCz7LVS9l9x2g6/JTD3huk9xAmJjBUl65eA2CNVAfknm5xIREREREZGMy7lgNGvtamPMucDTQE8OHejUEwi/tIYBbgi7T1jfjcC51tpKX4oWEYlU9T68Ps0JPANY9Vf3vr3Pg9G3QtU8eCXWh0EWXp0Cp70NeTny8J5sMFpwN2x/C3roor8iIiIiIiIiIiIiIiIiIiIiOeJrHApFm2GtvTmVQay11caYtcDAxlUjgDYXjGaMKcC5oGw/nOMmq4HNwEfW2rUtWJqIiIhI29P3MzDhD/DB1zIzfuUc97ZEw76CORqMRowQkoYQzP8SrPqb99Oe9Ax0HO39uOAEdEybBXO+ALs+TH77mi3Obdvr0FAHA//H8xJbrXWPured+HTSw+0IRv//61rQMsFooYZQRud1NeqHENoLS+9277PpOdjyMkx7E7oc519tmVZbBS8dDwejh+T91/jf+FNPoiY/Bu9eBVv+Aw3B5Lff+6lzq3wXzngf8gLe1yhtR3AfvHw8HNjQ0pVA3c7myzVbnL/zul0w+sctU1MyVv8D5n4xuW0KyuGIm2DEdzNSUjMmD05+znn82f4Wh94qBkoHQmnfxvUeWf4HGPk978YTERERERGRFpMjyTnNWWvnGWPGAw8AZzWtjvjabBOcT0UM8ApwlbU2zjuPIiIZtOiuQ6Fo8bQf6gSddZ0I562A545w71s1F9b8EwYn+WZmS6k/GH39pEfhncuit216TsFoIiIiIiIiIiIiIiIiIiIiIjnAGDMS6N24aIF0z7RbxaFgtEHAm2mOlzZjzCDgGODoxq/jgfZhXdZZawd4ME9X4E7gc0Anlz5zgHustdPTnU9EREREEjTsqzD0KxDaB6H90YNm8kvB5ENhubMc3AvWOseTh/bDCyMzV1/drsyNnVExgtEObnECQLx26mvQ41Tvxw1XPhLO+gDqdjvH/X/w9dTGWXq3gtGSsfhn7m0dRiQ1VIOtp7JuW9S2boUtFIxmUwi48kJeAI76NVQcBXOucO/XUAvL/691BaOtfTh+KNqoH0OgyJ96ElVYASc/C6EDsG8lzByX2ji7FsC216Dn6d7WJ23L+scTC0Wb+gaUDUpvrmf6p7bdst/CiO9BoDC9+TNtaQIhjAOvhLF3NS4YKOnlb7hhaX8nIDa479D+aaAdFHdx7jeEnAC1R+LUdME656sNwbNDiHo6+ZJfKhhNRERERESklcjJYDQAa+024BxjzATgG8BUnKsfRrMHeA34g7W2xQ+EEpE2zjbApmcT798+LAit/RDnCglvnufef92juRGM1hAEWx+9raQ39LvUeZM70p7Fma1LRERERERERERERERERERERLxyZONXCyyy1q5Oc7zdYffL0xwrZcaYKcAtOGFoUUPKPJ7vLOAfQLc4XScCE40xDwM3Wmv3Z7o2EREREQGMgYIOzi0RTf2agtKKu8PB6EFLaavbHb9PNjIxgtGq5jlhGF6rSDEgKBWFHdO7WPjujyFUA/kl3tXUmtVWubcVdU5qqJ3BSuqJ/vfXtSCzwWgFeVkWjNYkkXC5qnmZr8NPle/F7xN+LlC2yW8HFWOhqAvUVqY2RtU8BaNJeirnxu/T71LoPiX9ubqcAJXvJr9dbRVUr4by4enXkCnBatizKH6/iiOhtF/m64mnoL1zi5TXeKr74Oth1V+jb9vnwubfQ0E5BKPs69YfdEKIY+1PioiIiIiISE7I2WC0JtbaD4Ar4b9XXuwLdAYKgUpgG7DYWtvQYkWKiITbvz7xvkVdoNNRzdd1OxnyyyBUHX2bba87H2AXdky9Rj/U17i35Zc4Vw2KFoyWs1ctExEREREREREREREREREREWlzuobdX+HBeLVh99t5MF6qjgR8Ofu3MYRtBs4xkU0s8CGwGugIHAV0CWu/AuhgjLlQx06KiIiI5IB+l8Dy/8vM2It+Aqv/7gTfbHvdCWUb/1sY+IVDARTZyFr3tn1evLSI0OvspAOy0tZhBJSPhD1LUtt+9qVOuBFA2SAnPCby3AOB0AE4uDV6W+nApENTdgS3uLZ1KeyR1FjJyjfRg9GCti6j88ZVcSSUDYHqle599i2Hd6+CrpNh4FUQKHTvmwt2L4jdnlcEfc7zp5Z09LsEVtyb2rarH4TdC2HrK855Pv0ugZLeENoPHUfDoKsTDwyVtmfLy7Dqb7H75BXBmDu8ma/fJakFowGsfgCO+pU3dWTC/rUJdDLQ97OZrsQb/S5xD0brd2nz5YpxsP3Nw/vVH4Btb0CPU72vT0RERNq2fatg7cON7+XEeO/K5EOnCc7roqKMX2NLRKRVy+JPMZLXeDXJdK8oKSKSWdteT7zv8G9D5FV9CtrD+N/AvBujb2NDsHkmDPh86jX6IRQjGC2v2D3YLVevWiYiIiIiIiIiIiIiIiIiIiLS9hSH3a917ZW48rD7+zwYz2u1wEZgsBeDGWP6AE/RPBTtHeB6a+3SsH5FwI3A3UDTwUbnAT8FfuhFLSIiIiKSQWN/Ars/ge1veT925btAWBBIcC+8dw1sfBpOmgEmz/s5vWDr3du8DkYrHwlH/8HbMRNhDEz8N8w6C2rcw7ZcbX6++fKn98CJ06H3ud7U11qse8y9bdK/kx5uR13031WHQAXFeSVJj5cMt2C0kA1ldN64jIHJj8Ksc+DgNvd+ax5ybuseg1NmHn6uTK6o2xU70DBQDBMfhsIK/2pK1difOuFmO2Ynv231yuZheOufaN6+6n6YNis3fg7iryW/ggXfj90nrwgmPw7lI7yZ84iboHIurH88+W2X/hra9YNhX/WmFq8lEq57/ANQ2i/ztXihxzQY9WNY/NPm64d8yQlNC3fsX+H5odHHeX0qnPqawtFERETEOzs/gNdPc14TJmLdv2HVX2Dqm1DSPbO1iYi0Yq0qGE2ygzGmAJgE9AN6AtXAZuAja+3aFixNpOXtXQ7vXZtY3/KRMPxb0duG3OAkBf/n6OjtW1/N/mC0+hjBaPklUOASjBZUMJqIiIiIiIiIiIiIiIiIiIhIjqgMu9/Fg/EGhd2v8mC8dASBxcD7wPzGrwtxjp17w6M57gTCzyCeA0yz1h4M72StrQV+b4xZDzwd1vQtY8x91tp1HtUjIiIiIplQWAFT33DCaWYe6c+cm56DbbOyNywilWC0bifBEJeLjzeprXLCmAo6OMtlg6BiPAQKY2+XKRXj4PzVUPke1Gxy1hX3cM4l2LUA6nbCnCsSG6uhDhbcAr3OcYKqxDH/Jve2ivFJD7cjGD0YrWthj6THSpZ7MFow43PH1WkCnL/GCeybfWnsvtteg00vQN8L/anNayvudW8b9k0YcxsUupwPk22KOsHUWbBnkRP2VlgBJT1h33KorQTb4ITZVc1Lfuzdn8Dqh2D4NzwvW3JY3R5YeEfsPkO+BOPvhvxS7+YNFMOkR2HsXVC9Ckp6O/sTDWHXcVj8M/fQww++Dt1PgY6jvKvJC9bCyvti9ykfBYOu9qUcTxgD4+6CI26ELa+ADUKP06B0wOH7N+2HOL/b+oNRh+KTW7N3X1dERERyz6K7Eg9Fa7J3mbO/Nua2zNQkItIGKBitFTLG/AO4yqPh1llrByQ4b1ecA7E+B3Ry6TMHuMdaO92j+kRyy7wbEu979J9if8DaaYJzxYpoH6qsfsC5mlfv82DAFZAXSL5Wr9RshZV/ca72cmA99D4fxt/jfPDqJlDi/kFQ3W7njVt9WCsiIiIiIiIiIiIiIiIiIiKS7bY2fjXAUekMZIzpDIwIW7UynfHS9CDw58iAMgDj0TEtxpgjaH4cYB1wdbQ5m1hrZxhjHgzbrgi4HbjGk6JEREREJHNMnhOS1ft82PSsP3Oufyx7wyJiBaOF9kdf3/UkGHB5ZurJpEAxdD/58PUlZzpfV94H299KbKw9i+DgVifYSKCh3v1vqV2flALxdgS3Rl3ftSDzP/OCbA5GA8gvgb4XO2FGbv+nTba8lLvBaNvfdm8b+pXcCUVrkhdwnn8qxh1aF36/XT946/zUxl77sILRpLnKOVBfE7vPETd5G4rWxBjoMNS5AVSMbd6+eaZ7MBoWFt0Jkx/3vq50HIz+nNTMsBz9H2zXBwZ/MXYfY5yQW7ffW+UcCFZDQZn39YmIiEjbYq0T2pqKrS8rGE1EJA15LV2AZL047zQ5jDFnAYuAm3AJRWs0EXjSGPMvY0wG3qESyWLBfbAjxgcg4TofG/3DzUgVMY4X3fAkzL0K3vmcs8PdEqrXwsxxsPB2JxQNnA/qnxvifJDlJlDiXGkmGlsf/0MyEREREREREREREREREREREckGc4CGxvudjTHppC5cgxOwBrAfeD+dwoi/y6YAACAASURBVNJhrd0VK6DMI5cD4VdDfMpauyKB7X4ZsXypMabYu7JEREREJKN6ne3fXCv/Agvvci7UveNdaAj5N3c8sYLR3JQN9L6ObJDs38S6x5xAMIGajWBd/q5L+6c05I66LVHXdyvMfDBafrYHo4ETUtPzrPj91ufw3+m+GDntZYP8q8Mv3U+GQLvUtt05H6pXe1uP5K7qtbDwJ7H7tOsH5aN8Kecwvc6J3b7+CfjgZtjzqT/1xFOzBRb/b+w+JgC9z/WnnpYS7/e2f60vZYiIiEgr1BB0grGX/wmW3g31B1IbZ8c7sOp+2L3Y2/pERNqInApGM8aMNsa83nh7zRjTLYUxujdu2zTO0EzU2opMj9fBGDMFmAGE/z4s8AHwBPAKUBmx2RXAI8aYnPobFElLbRXYhvj9ADofl1i/DsPj99kwHSrfTWw8ry28Aw5uj9724Tfdt8svi32VnAMb0ypLRERERERERERERERERERERDLPWrsLmB+26i5jjHHr78YY0xv4Ac5xaRZ4xdpED8TJWRdFLP89kY2stUuB98JWlQKne1WUiIiIiGTYgCug64nx+5X0hE7HpD/fwttg/pfhlYnw5rkQrE5/TC8oGO2QwddDpwmJ9//wm/D2RRBK8YTd1mTzf9zbjv5T0sM12AZ2BLdGbeta0HLBaMFsCkYDGHMHFPeI3aduF7z9mdz7Ow3ug2qXYLSBVznBcK1NQQc4MjKDPQnPDoZPf+tdPZKbVtwLzw2GqrnuffIKYfw9kBdw75NJfS+CnmfE7rPsd/DCCPj4VrDWn7qi2TADnh0Ey38fu9/o2519xtZs2M1QNti9/bVTsyv8V0RERHJD3S5nP+LVk+D9r8CC76U33nvXwYuj4aPvt+x+pIhIDspv6QKSdCMwBefAppettS5pO+6stduMMUGcA30scD3wXS+LzALfAe5IYbujcYLMmljggVgbGGP6AE8BhWGr3wGubzzAqqlfEc7v726g6Z3484CfAj9MoVaR3BPal3jfzgl+SN0+wWzHNf+ErhMTn98L9bVOKFuy8ttDXj4UxAhGe/l4uHhX6/zQSERERERERERERERERERERKR1+R3w78b7xwN/xjmWLCHGmO7As0BF4yoL3ONlgdnGGNMDGBe2KoRzXF6iZgHhV2Y8C+dnKCIiIiLZrqAMTn0Z1k+HqnnQUAeBIigb5LTvXQ7lI6DvZ5zgoU3PQeVcqN0O5MGWmZBfCt2mAAbWPQrB3YnNveUlJ7hkZBacYpNKMFrpAM/LyApFnWDqLOfY/J3vHwr32DAdandE32bTc7DyrzD8G76VmZXmf8m9rWJs0sPtDlURcgkh61roRzBa9NMA3WpqMR1HwZkfwIanYNFPYvydPgur7odhX/O3vnR8crt729Cv+leH34Z9FTofDZtnwsHG0zlX/jnx7T/8JvQ5/9BzmbQtBzbC+1+FeNc4OPN96DjGn5qiCRTByc/B+idhzuWx+y7+KfS5wPm/8FvoAMy9CuoPxu43dRZ0P9mXklpUu15w5nx4slP09todsPEZ6PdZf+sSERGR3Lbk17Bjdvx+eQUw6Frnfqga1v4rdv+lv4Li7jDiW+nXKCLSRuRaMNoFYfcfTGOcB3GC0QzOVRWz4FMb71hrK4HKZLczxvwgYtUb1trVcTa7k0MHnAHMAaZZa5u9s2KtrQV+b4xZDzwd1vQtY8x91tp1ydYrknOCSQSjJXr1rsKK+H0AVj8Ax96b+Pxe2Pa6sxOfrMLGQLTCcvc+wT2w6yPoND612kRERERERERERERERERERETEF9baR40x38MJ+jLAdcaYkcAPrbVvu21njCkFvgDcDnTDCUQD56KqyYSE5aLREcufWGv3J7H9nIjlUWnWIyIiIiJ+ChTDwCucWzx9zndubspHwQdJhA5teDI3g9FMANr1zUwt2aCgDAZd5dya1GxyAtDcbJjetoPRgjHOZeh8bEpD7qjb4trWtaBHSmMmI98URF2fdcFo4ATVDPsqdD0B/hMjOGjD9NwKRtv2mntb2UD/6mgJXY53bk2SCUYDJyhvxHe8rUlyw4YZ8UPRRv2wZUPRmuQVwIDPQ6AE3r4odt8N01smGG3b6xDcG7tP7/PaRihak8IK6HYybH8zevuG6QpGExERkeRseDKxfqUDD+U31B+MH4wGsOB70PkY6HZi6vWJiLQheS1dQKKMMYOAPo2LDcDzaQz3HND0KclAY0y/dGprDYwxJcBlEavvj7PNEUDYpyrUAVdHhqKFs9bOoHmoXRHOgWsirV+iwWgFHaDD0MT65hXgHC8aTyJ9PLZxRmrbNQWjBYqhqIt7v50fpja+iIiIiIiIiIiIiIiIiIiIiPjtYqCKQ+Fmk4BZxphNwEPhHY0x9xpjXgN2AH8Eujc1AZtxwtJau5ERyyuT3H5VnPFEREREpK3oc15y/fetgF0Lmt/2b8hMbbE0hJLrb+shLz8ztWSrrpNjt+94G6yN3ac127/Ova1sUEpD7ghGD0YrC5RTEihNacxkFOQVRl0fasjCYLQm5aOgoKN7+/Y3c+vvtGaTe1thJ//qyAaDr0uu//on4cDGzNQi2W3f8vh9ukzKfB3J6HMBVIyP3Wfvp/7UEmlfAm8Tds2yn6cfYu0XJfIzExERkdzVUA+h/VBbBQc2Oc/9uxdB3e7kxqmvdbbbu9x5fywR4ftdgWLodEz8bWw9vPM52PHu4e/Bhd/qdkP1mkMhw9Y673XU1yb3fYmI5Lhcete/6QqIFlhmrY1x6Y7YrLXVxphlHDrYZwywPs36ct3FQHnY8i7gqTjbXA4EwpafstYm8iz/S5oHql1qjPlyrEA1kVYhlGAw2sCrwSSYW2mMs6NcXxO7X4PPO7m2ATY+m9q2hRWH7vc+H1Y/EL1fKJmL4IqIiIiIiIiIiIiIiIiIiIhIS7HWrjbGnAs8DfTEOQ7QNN7vEdbVADeE3Ses70bgXGttpS9Ft6whEcvJHt8YmQDQ2RhTYa3dlUZNIiIiIpKLSvvDwCthzUPx+wLU7YKZRx2+vsMIOHE6lI/wtj43tj65/qNvz0wd2WzgVbDs97GDmp7qDpOfgO4n+1dXtlgY429i9K0pDfnhvjlR13ct6BF1vdfyTUHU9SGbZJCgnwLFMOLb8EmMn/nTveDEJ7M/yKdut3OifTSDrnbO72lLhn4NVv0t8f5V78GMvlA+2nk+6TA0c7VJ9lj7KCz/Q+w+nSZAz9P9qSdRxsBxf4NXT3Y/H3DjDFj+Rxj6FX9rq14Tu72kl7OP0NYMuR4W/yx62875TjBjuz7+1iQiItKW2AaoP9h4qzl0v+EghGqcr5Fthy3XHNrGrS1aX9ewcAPdpzjvixR1jl3/kl/Bgu8n9z3nlzmvi8KNugVmX3wozMxNzRZ4ZWKC87SHI26CdY/AgQ3O6+yRP4DRt7W916Ei0iblUjBa/7D7kVczTMUqDgWj9fNgvFx3bcTywwkElV0Usfz3RCay1i41xrwHHNe4qhQ4HUgxRUkkRwQTCEbrfiqMuS25cRMJRgPYvRg6jkpu7FRVzYODW1PbNvxqQOPvjhGMlnI+poiIiIiIiIiIiIiIiIiIiIj4zFo7zxgzHngAOKtpdcTXZpvgBKIZ4BXgKmttigek5JyOEcvbk9m48eKxB4HisNXlOBdMTYsxphvQNcnNBqc7r4iIiIik4bgHoOMY+Oi7qY+xdym8cTqcvwbyfDgVKdlgtGFfz0wd2aykO5wxF+ZcAdvfit6ndgfMOhMu2ADFXfytryXteAc2THdvLx/p3uYi2FDHpwc+jtrWrbBX0uOlIt9E/98L2jpf5k/Z6B87oWKf/iZ6+8Gt8PppcNEmKKzwt7ZkfHCze9voJM8Dag0qxsJZH8O8G6FqbuLb7VkEb5wB562EvEDm6pOWt2sBzPl87D4jvw+jfuTPvkWyOh0F096Al44HtwDK978K7Y/wN9htf4xgtCNugpG3QIk/gZ1ZpbQ/HPsXmHdD9PbXp8G5n/pbk4iIiN9sA9TXphYwlkww2WFhZwehIRtfl1rY9gbMvhSmvubebeOziYeilY8Ekw8VR8Hwm6HiyObtfS+CKTOdEOk9S2DP4tTLbxLaB0t/dWi5/iAsvANKB8KgK9MfX0Qky2XhOwau2ofd3+PBeHvD7nfwYLycZYwZDJwUsfr+ONv0AMaFrQoB7yQx7SwOBaOBc6CbgtGkdXO7QkTpQDjur1DcDTqMTP6N/UBx/D7gXInCr2C0Hck8HEQwYd9/YYUTFrft9cP7hfanPoeIiIiIiIiIiIiIiIiIiIiI+M5auw04xxgzAfgGMBXo6dJ9D/Aa8Adr7Zs+lZgtyiKWE7hq4mFqaB6M1t6tY5K+DNzu0VgiIiIi4oe8AIz4jnN7ug/UbEptnAMbYfss6DHN0/KiSjYYLZvDlDKpXR84+QV4Isbufv1BWP84DP2yf3W1tDX/dG/rOjmlIRfv/9B9yAJ/AmjyTUHU9SEb9GX+tIy53T0YDZyT7Dc8BYOv9a+mZG1+Ifp6E4B2ff2tJVtUjIUz3m2+bsMMePui2NvtXws7ZkP3kzNWmmSBWI/FACf8Ewb+jz+1pKrTBDj1ZXjtVPc+ax7yNxit2iUYbexPYfSP/KsjG8XaR927DPYshfIR/tUjIiJtk7XQUOt9GNlhfaO0ZWU4WRbY9gYcrHQPjA8PHYulsBOck0DQWc/Tm+8fzvsSrLwvsTmSseYhBaOJSJuQS8Fo4Qf2eBFkFv6uf5KfmLQ61+BcVbPJh9baBXG2GR2x/Im1NpmUojkRyz6lNYm0oKBLMFpxN+gxNfVx8xIMRtu/NvU5krVvefT13afCCQ/BjN7u29YfbL5c4PIhbag6tdpEREREREREREREREREREREpEVZaz8ArgQwxgwC+gKdgUKgEtgGLLbWNrRYkS0rMhjtYNResdUA4ekQkWOKiIiISFs04tvw4bdS337PkuwLRut6IhgTv19rVVAGZYOgerV7nz0JnLjbmsT6fjuOS2nILXUbXNv6FA9MacxkFZjCqOsbaKDB1pMXfpH6bFPQHkoHwn6XQB9wHl+ylW2A4N7obSYf8nLpFM0Mq0jwf2zvEgWjtXbxnnsqjvSnjnSVj3ICEN32Tfx87LLW/fzAMn+ei7Jau75OWG7drujtexWMJiLSZvw3nCyBgLFQTVgoWYxgskT7NtS29Hcvh7FQszF6MFr1atjxTmLDJPpaJ9KE38LO92HnB6lt72bba96OJyKSpXLpXbfKsPv9PRivX9j9Kg/Gy0nGmABwVcTq+xPYdGTE8sokp14VZzyR1ifkEozmFvyVqECCwWgHUryyVyr2Lou+vnykEwQXS5cTmi8HSqP3CyWTxSgiIiIiIiIiIiIiIiIiIiIifjPGtAfCz8pbFXkBTmvtaiDGGfwCWJ+2EREREZHWrv/l8MmtqR+L/cE3YOV90O8yGP0jMHne1tckmWC0ITdkpoZcMuQGWPAD9/aV98Gah6CgHLqfCuPviX5CcGsQOgA7Zru3D/5iSsNWBre6to0qHZ/SmMnKNwWubSEbojCbg9HA+Tv9+Bb39k/vgYFXQcVY/2pKxO7F8O4XoKEuevuAK/ytJ9uVDYQep8HWV2L3m/9l2PISHHU3tB/iT23ivWA1fPB1WP33Q+vyG7P5Y+1rdDkBOo7ObG1eKe4GfS6CDU9Gb9/1EWx6EXqfnfla9i6DUHX0ttIBmZ8/2+Xlw+BrYend0dvf/ixMfhz6XeJvXSIikll7lsJH34OquU4wmQ05X0XC1UcJrFv3GLxzWeJjDLkxtbkDxTD5SXjpaKj1ONbm8YiMivB9RZMHgXYQKIGukxpfew32dn4RER9k6BOIjFjf+NUAY4wxnVMdqHHb8HdJfUwLyjpnAr3DlmuAfyewXeQ7juuj9nK3LmK5szGmImpPkdYi6BKMlu9TMNqWmenNk6iNz8H2N6O3tR8a/0o4kW8EF7hcrNbtjVwRERERERERERERERERERERyRafBz5qvM0Dilq2nJwReWBMSQpjRG7j1cE2fwJGJ3m7wKO5RURERCRdJd1h2pvQ6WhINURpzxJYeBt8+B1vawuXaDDa0f8HA/8nc3XkihHfgzF3uLfbeuf4+5pNsPaf8NrJ0JBE+FwumXWWe9vQr0KnCSkNWxXcHnX9uLLjCJg450h4JD/GPEHrEtqVTUZ+H0bfHrvPK5Oheq0v5STkwEZ4ZZITfOTmyF/6V0+umPwE9PvcoYAsNxufgZdPgIOV/tQl3nvzvOahaOA834SqiZnZf/JzGS3Lcyc8CGWD3NvfPAe2vpbZGhpC8MII9/ayge5tbcm4X8Run30prJ/uTy0iIpJ5BzbDyxNh8/NQW+nsgygUTaKJDLpe/2TioWilA+CYe6H/51Kfv2wAnDYHup4IXr6H0LTv/d998DC2wVlXuwM2znBee9Xu9G5uERGf+PPOqzfmArVAIU442leAn6Q41pc5FAoXAt5Ju7rcdU3E8nRr7e4EtusYsRz9HX4X1tpqY8xBIDzRqRzYlcw4kYwx3YCuSW6maFPxh1swWkGawWh5SRwvunc5dBia3nyx7F4Mb53v3t5hmPO141jY/UmUDgYqIq6WFCiNPlaqVykTEREREREREREREREREREREb90wTneD2C+tVZHWycma4PRrLXbSfJ4QWNM/E4iIiIi4p9OE+DM+dAQhLwCsBaCe2kWYLL017D457HHWfVXGHcX5Lsc752ORILRKsbD0K94P3cuMgbG3A7lo2H2xfH771kCW1+FXmdkvjY/7VkC299ybz8i9b+XquC2qOuHthuT8pjJyjcFrm0hG/StjpQZA2PvgNJ+8N610fuE9jkhS2Pv9LU0V6sfhOAe9/b8Uijq7F89uaKwHCY/6gQ5ffQdWPY79761lbDu3zDs6/7VJ97Y9TFsn5X8dme+n3v/N/ntYOoseKafe5/l/wc9pmauhq2vuLcFiqG4R+bmziV5+TDoGlj9gHuf5b+Hfp/1ryYREcmcNQ9CMJFYDGl5BgIlkF8CecXO/kug2FkXeT8vRlu0vuFjzjySqAG9DbXNl2O9Rol0wZq0vvP/6jAUTnvLCe9zC/Cb0ffwgDOv1O6AdY/ovTQRyTk5E4xmra01xrwNTGtc9R1jzNPW2oXJjGOMGQ18l0PPaO9Ya9tkuo4xpitwXsTq+xPcPPKSDTUplFBD82C0NNOhACf0Ls7lQ0RaSMglGC0/zT/9RK+GBfD8MPh8g/OBUias+7d7W14BdD7Wud/7/OjBaBdXHV5bgcsVYjK1Yy8iIiIiIiIiIiIiIiIiIiIiXmk6e9gCG1uykBwTedZ1UhcLNcaUcXgwms4MEREREZHm8hpDloxxQmzCdRwbf/tQNexdBp3Gx++brESOkS+NEU7SVnUYnnjfnfNbXzBa1Xz3trxCKBuQ0rD1NsTOYGXUts4F3VIaMxUFuR6M1qTDsNjtO9/3p45E7IzxNwXQ/ojMnZ/TGuTlQ+fj4veL9b8r2WvD9OS3MXlQNtj7WvxQ0ssJQwy5nIqc6ceuqhjjtx+qx6JwHYbGbq963wkG1s9MRCT3Vc1r6QpyjHEPGGu6Hy+0LGrfOGMGisHk+/PcGyiKHjpWHxaMZi3smJ3YeMO+6U1d4Zp+NtF0PwU2Pef9nE302ktEclDOBKM1uhsnGM3iBHPNNMZcbK2dm8jGxphjgSeBUpyrUNrGMduqK4Hwd8VXAW8muG1kUpFLLGlMNUBFjDFFWpegSzBaQZrBaA1J/vu9ejKc+CQUZ+ADuF0L3Nu6TTn0gfmoW5w3fLf8x1kOtIOJ/4TCisO3c7uCmILRRERERERERERERERERERERLLdlrD7hS1WRe5ZEbHcP8ntI/vvtNbuSqMeEREREWlrep0D+WXxj9l+eSIc8ycYdLUTduIVG4rfZ+AXvJuvtSgf6YTaRbuIeaRPboXh33Q/Xj+X1B+EFffCh99y79PnQvcTj+PYFazE0hC1rUtBj5TGTEV+nvvL6lAi/zPZovPx0K4fHFgfvX3zizD7MueE8MHXQV7A3/oAdi+CNQ/Cxmdi9+t/mT/15LLe58YOkwJY+y8o7e/8vlMMMBQfhQ44j7mL7kp+255nQmFH72vyQ14A+l0Kq/8evf3ARidwI1Dk/dxbX4OFt7m367GouX6XwoIfuLfXH4CNM6DvRf7VJCIimZFouFW2iRYcFjVkzCVwLK8Y8hMMMQvvm1fQ+oNB81yC0RrqnK/bZ8PyPyQ+Xv/PeVNXwvNdltlgtDUPOq/R+l2cuTlERDyWU8Fo1tqXjTGzgCk4oWa9gLeMMf8E7gPmW2tt+DbGGAMcDdwIfAEnCMw23t621r7o2zeQfb4YsfxA5M8vCalsl+pcIrkplKFgtGg76LHseBteOg6mzXI+OPBKcJ/zAZSbkd87dD+/HUx5EfYsgZpN0OloKOoUfbt8l8zEnR/o6gwiIiIiIiIiIiIiIiIiIiIi2W1R2P2BLVZF7lkasTwkye0HRSwvSaMWEREREWmLCsrgpBnw9mchuMe9X0MtvHctbH8TTnjQu/ltffw+fRRmcRhjYNJjMOts2L8mfv/XToVpb6YcGJYVGoLw+mnxT4g/OokTnyNUBre5tnUuyMAF613kG/fTAIMNQd/qSFteAE56Gv4zwb3P+sec29ZXYPIT/p43smMOvHFG/GDI/pfDsJv9qSmXFbSHE5+G2RdDcK97v8U/g1V/g2lvQYeh/tUnyak/6Dx3VL2X/LYVR8Kxf/G+Jj8ddTdseh5qd0Rv3/Qs9LvE2zlXPQDvXRe7z/AYwaBtUdlAOOGf8G6MEN23PwOTn4R+n/WvLhER8db+DVBbmfr2foWRHdZWqPPiM8ktULy+FtY/Ae98PrH3nEweHHUPdDnO2/ri6X8ZVL0Py/5f5uaYfQmM+hGM+2nm5hAR8VBOBaM1ugz4EOiJE6yVD1zdeNtvjFkG7Gps6wQMBZpSdUzjegNsAC71se6sYow5HhgVtqoe+EcSQ0S+u1uSQhmR28R5xzghfwKeSHKbwUCcS3iIeCDoEoyW73MwGsD+tfDWRXDWh+nNHV7DU93d2zsdAz2mNV9nDHQc5dxiiXUFqj2LoOOYxOsUEREREREREREREREREREREd9Ya5cbYz4BxgJjjTG9rbWbWrquHLAoYnmsMaadtfZAgttPijOeiIiIiEh8PabCZ7bBzvfhlcmx+655CEb+AMpHeDN3vJNUu5+iE4ndlA+H81bA7gVwYLNz8fOVf47et2oebJgBAy7zt0YvbXohfija8G9DceoBZm7BaB0CHSnK8y9ULt8UuLaFbJ1vdXii03g4/V14+YTY/TZMh50fQOej/akLnICueKFokx6D/m32tMTk9TzNeT5Z9FPn5+vm4DZY9js45o/+1SbJ2fhM4qFoJz176H7ZIGcfweRlpi6/FHWCC9bC4y7nus3/irfBaA0h+ORWnFOiXUz4HQSKvJuztRj4P9DnQngixnmbn9wKfT+jfUoRkVy16C73tnE/h25TogecBYohr0iP/62V235RQy0s+kVioWhTXoQuE6Gw3NvaEmHyYMI9MOoHTkBacC/kt8OJxwHqaxrD9QLNt1vzD9jwVOLzLP01DP8mFHX2qnIRkYzJuWA0a+12Y8yZwLPAAA69qjc4AWgTItb9d1MOhaKtBC6w1m73o+YsdW3E8kxr7eYkts/KYLTG32lSv1ejHVfxS8glGK2gBYLRAHZ9BFtfhx6nRm9vqAcbgrqdzhupRV0A6+z011Y5ffIKoKQXvHm+szPtZsxtqdUIUNDRvW3bLAWjiYiIiLSk4F4IlDpXcBQREREREREREREREYnuD8BfcY7d+wmHH7smEay1W8IC5cA51nMy8HKCQ0yJWJ7pUWkiIiIi0tYEiqDrJBhyI6y8L3bfra95F4zWEOdE1dKB3szTWuUFoNME5wbuwWgA217L7WC0ba/H79N+cFpTuAWjdS6IcXH5DCiIGYwW9LESj7Qfmli/ra/6F4xmLWx7I36/bidlvpbWJlAMA6+MHYwGzmOSZK+tCf5+xv0M+pyX2VpaSn47KO4BB7ce3hbaB/W13gWV7V0GNXFO+dU+kbuCMigfBXsWR2/fu9T5PZb09LcuERHxxu6F7m2Dr4Pirv7VItkjz2U/rHqNs28VT1Fn6HWWtzWlorgb9D478f771yUXjNZQ54TM97kg+dpERHyWkxHr1tpFOAFoj3Io7MyG3f7bleaBaA3AQ8Ax1tqlftacTYwxpcDnIlbfn+QweyKWk9o7NMaUcXgw2u4kaxDJLUGXYLT8FgpGA3h9Krx3vfOma7gNM+DRfHisGJ7uBc/0g8fbOVe0eKIDPDvQuc3oA4/kwdZXYs9T0iv1Grud6N4W7yo8IiIiIpIZ+1bBS8fBEx3hqW6w8CfOAUEiIiIiIiIiIiIiIiIRrLX3Ay/gHMN3tTHmey1cUq54OmL5i4lsZIwZDhwXtmo/iQeqiYiIiIhE1zuBcJMPvg7b3vTmOCIbJxgtkXrE0X0K5Je6t6/6m3MCbS6yDbDmoTidDPQ6J61pqlyD0bqlNW6y8ghgXE4FDNmQr7V4oqgTdJkYv9+in8CBOMFAXrAWNkyH+prY/TodAyU9Ml9Pa9T+COgwLHafvctg6T1QOVfHpWajyjmJ9etzUWbraGkdx0RfX38wscDORG1/M3Z7fqnzPC/u4u0zfvxjqF7rSykiIuKh4D6omuverlC0tiuvMPr6RXcmtn2fC72rxU+9U3jfY/XfYfHPYfVDULPF+5pERDySk8FoANbaXdbay4GRwP8DmmJdTcQN4GPgbmCYtfZqa21kqFdbcwkQnsS0DXg+yTFWRCz3T3L7yP47rbW7khxDJHdY61z1IZqCNIPRGtIIRgPng8wPv3loec+n8LbHb0CXJvsQEaaos3tbOqFwIiIiIpKahiC8NgWq5gEW6nbCupZEtwAAIABJREFUwtthxb0tXZmIiIiIiIiIiIiIiGSvz+MEfRngF8aYl4wxp7RwTdnuYSA8DeIzxpgjEtju+xHLj1trdZCNiIiIiKSn5xnQ/7I4naxzXNG7V6YfZhMrGK3vxamd8NlWFbSHCb+L3ef54bDxGX/q8Up9Lcz+HATjnCI29idQ2i+tqSpdgtG6FPgbjmWMId/kR20L2qCvtXhm/D1Q2Cl2n/oaeGEEbHsjc3U0hJzHrtmXxO5X0BEm/L/M1dHaGQMT/hA7rBHgo2/DyyfA/JucAETJDtvegD2L4/cb+X0oH5H5elrSMTGOmZ51NlSvTn+Ojc/C+19xbzd5zvN7uucltnbDboaO49zbVz/g7AdteMq/mkREJD3Va+H5GPsaY+/yrRTJQoGi1LfNL4VRP/KuFj+VDYQxdyS3zcZn4OMfwdyrnP+pbXFCeUVEWkj0d0NziLV2OfBtAGNMGdAdaErRqQS2WWv3t1B52eraiOWHrE360iBLI5aHJLn9oIjlJUluL5Jb6mvc34zPT/MNyMIKOLg9etu5y+CTH8P6J2KPseJeGHIjVIyDpb9Or55IHUbEDjdLRI/TYWuUC9c21KY3roiIiIgkb/tbcGDj4evX/RuGftn/ekREREREREREREREJKsZYx5ovLsX2IdzUc9pwDRjzD6cC59ub2xLlLXWRh4H16pYa1cYYx4ErmlcVQj8wxgz1S3ozBhzAXB12Ko6IMFLoIuIiIiIxJCXDxMfhoFXw6wzY/dd+y/oMQ0GXZX6fG7BaKUDYPJjThiIJG7wtXBgMyy8LXp7/UF473roeRYECv2tLVXrn4QNT7q3l4+E4x6ALselPVWVSzBa54JuaY+drHxTQNDWHbY+FGVdTuhyHJz9CWx+IXYIVnAvvHcDnLfcCdfy2qbnnceuWI65F3qdA6V9vZ+/Lel5Gpy9EFb/HRbFCa1YeR/0uwR6TPWnNnFnLcyN81Zcnwtg+Heg22R/ampJ7QdD52MbLzIdxce3wqSHUx+/IQjvXRe7z5kfQcXY1OdoK0q6w2mz4YkY52821MK8G5zH+HTCVERExB+f3Ao1m9zb+3/ev1ok++Sl8FxeMd5536T/ZVAUJ7g7m4253bmwwbbXAQPdp0JxF3h2cPxtg3tg/o1wztLMvOYWEUlDzgSjGWN6AMeGrZptrd0Z3sdaWw1UA6v8rC2XGGOGApHvLt2fwlCLIpbHGmPaWWsPJLj9pDjjibQuwRjHbaZ7ZYZxP4/+ZueAL0CHoTD5cXjxSNj9cexxZh6ZXh1uTvTgigmB4ujr63UxWxERERHfLb07+vod7/hbh4iIiIiIiIiIiIiI5IqrARu2bIGmI6o7cPjxbPGYxjFaNBjNGNOH6Mdg9ohYzjfGDHAZptpaWxljmtuBi4CKxuWJwKvGmOustZ+G1VIE3AD8JmL731hr18UYX0REREQkcSYPep0Bx/4V5l0fu++iu2DAFU6gWircgtF6n6tQtFT1Od89GA2gdgdUvgvdT/avpnRsnBG7/Zj7PAlFO9hQQ3X93qhtXQojX/5lXoEpoCbK+pAN+l6LZ9r1hiE3QFEXePuz7v2qV8KexdBxtPc1bHw6dnvHsXDEl7yft60qGwhj7oSlv45/XtCGpxWMlg32LIH9a9zbz/oIKjJ0Xlq26nOBezDaxhlOmFyqoRI75jjPy24GXqVQtGQUlEHv82HTs+59aqtgx2w93oiIZDtrY78WNHlQ2s+/eiT75CUZ9t7rXJjyXGZqaQldjndu4cbe5QQKxrN3Gez9FMpHZKY2EZEU5dKnAZ8Bnm68PQzUtmw5OeuaiOXZ1tplyQ5ird0CfBK2Kp/kDlCbErE8M9kaRHJKKIPBaL3OhvwoYwy44tD9oV9Jb45UDf8WlA9PfxzXYDQ9FYiIiIj4rm5n/D4iIiIiIiIiIiIiIiKx2bBbrpoNrIlyeySiX2+XfmsAlyvSOKy1G3GOnawLWz0JWGKMmW+MecwY8x9gA/B7oCCs3/NAAke5i4iIiIgkqdtJ8ftUr3ICb7a/7dx2LYCGUOJzWJe+JpD4GNJchxFQ1DV2nw3Tk/s9tZSG+tgnw+eXeRbQU1m3zbWtS0E3T+ZIRr4piLo+5PY/k0u6TIz/P775BecxZf9652911ydQ+R7U7Up93oOVsOah2H0SedyT5BgDXRP4ua75B+xeBLYh4yVJhIYQ7F4IwWrY+YF7v8IK6DDSv7qyRa+z3dvqD8Cm552LTtftTn7sne/Hbu+WIyGm2SSRn9nWVw49x4iISHaq3QGhavf2LhMhL/prJmkjAkXJ9W8Lr/WS2XesXpW5OkREUpRLwWgdca70aID51tr9LVxPzjHGBIArI1bfn8aQkZfD+GKCdQwHwi+7sh94OY06RLJf6IB7W6A0vbFLesKpL0P5qEPLx93vXI2ryaBrYNzP05snWd2meDdnnssLkYY4V4YREREREW80hGDRT+GlE9yvbgbO1VdEREREREREREREREQOZzy8tSnW2lnARcCOsNUGOBq4FDgDiEw3eAS4zFpb70eNIiIiItLGdBgK/S+P3+/jH8KrJzm3mUfBU91g80uJzbF3WfT1Jj/xOqW5QCGM/nHsPsv/ANO7wuaZ/tSUiu1vwdM93cPzAEZ8DwrKPJmuMrg16vo8AnTM7+LJHMlwC0YL2qDPlWRASQ844iux+yz4gfOY8kx/eLQAZo6Dl4+HJzvB3GugIYmfQ6gGZl8GT8UJDCzqAkO/lvi4krhRP3A/X6hJaD+8OAZm9IWq+f7UJbDxOZjeBV4cC0+0h7lXufcdfZvzHNPWVBwJ3ae6t791Prwy2Xl8mndTYsGjDUF473r46DvufcpHQb9Lkq+3rRt4JZQNit1nyS8PPcf851ioib4PICIiLWjhHbHbR/3IlzIki8V7fRGudAAMirGf21p0nQw9piXW983zYO/yzNYjIpKkXApG29n41QJbWrKQHHY20DNseR/wRBrjPQyEHzj1GWPMEQls9/2I5cettUo3ktatvsa9Lb8k/fG7HA/nLIKLd8GFm2DwNc3b8wIw6ha43PpzVYgep8G0N5JPVnYTKI6+vl4PHSIiIiK+mPtF+ORWqJobu1+s/V4REREREREREREREWmrBmbgFucsttbFWvsiMBr4M7ArRte5wMXW2st18VkRERERyagTHoIJv4de5ya+Td0ueOs8OLg9dj9rYZ/LSZgmkPh8crhhX4cTn4rdJ7gb3roAarb5U1Mygnth1tlQu8O9z5AvwZhbPZuyKhj977VTQRcCLfD36BaMFmoNwWgAE34Lx/41tW1X/x2W3p14/0V3wvrHYvfpMBxOf9cJhBTvdT8Fpr0Fg6+P37dmM8w6S+cR+eHAJnj7IgjuSaz/8JszW082OyWRwFcLK/8My34fv+un98Cqv8Xuc9psz8I/25TiLs7j+cjIU5td7JwP71yW2ZpERCQ5uxbAinvd26e9Db3O9K8eyU55CQT2lg2CEd919g2Ku2W+ppZmDJz8PBz5v9DzTOhyAhR0dO//1gXOe3MiIlkil4LRwsPQSlusitx2bcTyo+kc/GStXQE8GLaqEPiHMcYlwQiMMRcAV4etqgPuTLUGkZwRKyAi4EEwWpPCjs4Oaiz9fXhT7uRnvR3PLWCtvtbbeURERETkcPvXwdqHE+sb0vk1IiIiIiIiIiIiIiLSnLV2XSZuWfB9DbDWmjRvVycx33Zr7U1AD+BU4IvALcDXgc8Cg6y1J1hrp2fi+xURERERaSYvAMO+BlOeg/NWgEnw9KSGIKx/InafXQvc2xSMlr6+FzknAMeSyO+pJWx8Nv4xaqN+6OmUlcGtUdd3Kejh6TyJys9zCUZraCXBaMbAkOtg8HWpbZ/osY6J9j3pWWg/JLVaJDFdjoXj/gJnzIvft7YKtryc+ZraunWPga1PrO+AL2S2lmyXF4Dy0Yn1TeQxJ16fEd91zh2U1BR3cwJBRt6SWP/tb8HBGGGsIiLir1jPk+WjoNtk/2qR7OWWR9AkrwDOXQ5H/QpKWuZ1fYsIFDkBsafMhNPnQJ8L3Pvu/RR2fehfbSIiceRSMNpHQFO0pC6zkCRjTHfgnIjVceLjE3I7za9AORF41RgzPGL+ImPM14DIT0Z+kw0HqYlknFswWl5h4h8Ce2XgldBxbOL985PIoiwbBBdugIBrPmJq3MbTlV5EREREMqt6LXz0fQ69HI9DwWgiIiIiIiIiIiIiIiIZZa2ts9a+Ya39h7X2f621f7DWPmWtXdPStYmIiIhIG9V+CPS/PPH+e5aCbTweyUY5LmnvUvdty0cmV5tEVzE+fp+9jb+naL+jlrJnSez24m5Q0svTKauC26Ou71zQzdN5ElVgXILRbCsJRmvSKYG/0Wj2LIaG0KG/XbdbcB8c2Bh7rMIKKO2fWh2SvA7DIVASv1+s5wjxxpJfJN6301GZqyNXVCT4M9j7KdgG98elhnrYuyzOXCk+NkpzCT/HWKjZnNFSREQkTLTnx3B7YuwH6jlSmuTFCUbrOM4Jt23r4u0Pxfp/ExHxWX5LF5Aoa+16Y8xc4ARgmDFmqLV2eUvXlUOuovnve5G1NoFLKcRmrd1ojPkM8BJQ2Lh6ErDEGPMBsBooB8YDXSM2fx64Nd0aRHKCWzBaIm/aey2/HZwxH1bcCx/e7N6v36XQ6yzoMAJePj56n/KRcNRvYNvrUNzDuTJPQQfva3Z7IdJQ6/1cIiIiIuJ8gLDop7DoDudD+EQpGE1EREREREREREREREREREREpO0ZeydsfAZC++L3XfFHWH2/c5HsQAm06wtHfAmG3QzGQHWMzN+eZ3pXc1vW90Io6Q01m9z7rPiTcwPnvIFh34AhN/hTX6Rts2DBLVA1N3a/ITd5foJzZXBr1PWdC7p7Ok+i8l2C0YKtLRit/2Xw8Y+gblfy2z4a/WeUtMHXQ6Awfj/xRkF7GHgVrPxz7H4LfuAE2425U4EGXqs/CB/cDLWVifUvKE8uGLW1OuJGWPdw/OOt6w/AI2n8zZb0gj4XpL69HNL7PGf/88CG+H1nHgkTH4EBl2W+LhGRtmrFfTD/S4evD5RA10kw5iew9Few+QX3MVrqtapkn7w4r+GO+LI/dWS7/pfDJ7dBcE/09ne/AAvvhCHXw4jvOu/XiYi0kLyWLiBJv3a5L/F9MWL5fq8GttbOAi4CdoStNsDRwKXAGRweivYIcJm1tt6rOkSyWiiLgtHA+XBm+Dfgwk1QOuDw9pOegcmPwaCrIb/MfRxrodeZcNSvYMS3MhOKBhAojr6+/mBm5hMRbwX3wsq/wUffg43PJRewIyIiLaPyXVh4W/KP2aHqzNQjIiIiIiIiIiIiIiIiIiIiIiLZq2wQnPISdD4eTH78/k3HgdfXwL7l8OG3YNnvnXX710bfpv1QKO7iSbltXqAYTn8Hep6VWP89S2DejbDq75mtK5pdH8Mbp8cPRRvzExhzm6dTW2upCm6P2taloIencyXKLRgt1NqC0Qor4LQ50H2q+/kkmVLSG0b9GMb93N95BY7+PQz/tvM7iGXxz+DjH/hTU1vy7lWw8r7E+lYcBafNhpKWCYnMKl0nwUnPQqcJYDJ0unbn4+C0dyC/hc5DbG0CRc7fb6+zIb80fv85n4dNz2e+LhGRtmjV/dFD0cB5v2Drq/DKRNg4w32MAVdAt8mZqU9yT6DIva24GwyOjFxpo4q7OPuXsVSvhAXfh6WK9RGRlpVTwWjW2hnAAzihW+caY/5oTCKfmLRtxphJwPCwVXXAv7ycw1r7IjAa+DMQ63Icc4GLrbWXW2v3e1mDSFarz7JgtCbtesF5K+HU12DkLTDpMfhsFfQ5/1CfmG+a2oyXCCgYTSSXHdwOr0yGedc7L4DfOh/eu07haCIi2W7tv1PbLqSXeSIiIiIiIiIiIiIiIiIiIiIibVLXE+CMd+GyWrgsBBMfTm77FX90vlavid7e84z06pPmSvvDKS/CxEcS36bpd+SnVX+DhjihX8feB2Nu9TyQZm/9boK2Lmpbl4Juns6VqDYTjAZQPhymvgqX7nceU3qemfk52/WDizbCuLsgL5D5+aS5vAIYfzdcuAHG/SJ235V/hfpaf+pqC2q2wvrHE+tbUA5nfQgdR2e2plzS+xw48324LOjcAu28Gzu/PZz+LpQN8G5MgdJ+MOUFuGSv8xwT7xzPFff6U5eISFuz/E/pjzH0q+mPIa1HXqF727j/9a+OXNBxFAz7Rvx+y/8I1qc8CRGRKHIxVOxGYB/wDeBLwMnGmN8Az1prq1q0sixlrX0HJ0wu0/NsB24yxnwDmAT0B3oA+4FNwEfWWpdPqERaObdgtGy4UkNeAHqc6tyiifnGnk87snkuCc0N+hBDJOutuA92L2y+bvXfYcgN0OX4lqlJRETi2/xiatspGE1ERERERERERHZ9Aot/DrWV0OkoGHNHYldbFxERERERERGR1sHkOWewlI9Mbrt9KyBYDftdTjspG5h2aRJFMr+nXR9DQ72/gVE7P4jfp8PwjExdGdzm2taloEdG5oynoC0FozVpekzpMBy2/Cezc5WPyuz4khhj4oduBffA/rXQYZgvJbV6299MvG+HEZmrI9eZPOfWYRjs+sibMctHOP8TkhlNzzFu53422fmhL+WIiLQpDSHYlebjq8mD9kd4U4+0Du36urdl6L2DnPb/2bvv8Diqe//j76Nmyb33XrCNbYwNphubTiB0QighIZWUm/IjJIGEm5BcEkKSG0hCSGghhBog9GqqaTaYYoptjLstNxV3SZa02vP7Y6SrlTWzO7s7O7srfV7Ps49Wc86c+dqWV7M7cz7Hz99J7Xpo2AZd+mW+HhERF3kVjGaMeSnm291AD2B/4Lbm9nKgornNL2utPS6wIgVrbQPwcrbrEMkpXh+OJVpNIBfkQo2Fpe7bm/aGW4eIJO+jn7tvX/+QgtFERHKZ182FiSgYTURyQbQJbAQKPUK2RUREREREJHN2rYB5h7Zex9v6Imx9GU5627khVUREOiVjzBcDHM7i3B+4E9gCfGKtlqgWEREREclJvac7oVs7l/rf58Ee3m3dFIyWEb2nQa+psPPjxH1tBJ4/AgpiwrmKusOA2TDp/0FR1+DqqnzDWYy5akH8fl1HQv8jgztujGqPYLQuppRuhXF+VjOoyLhPBWzsyMFoLUZfCMtvyPAxLsrs+OLf4BOgS39nERYvT06CCd9yFm3vc2B4tXU0lQvgjfP999f/k8RGXxRcMJr+vnPD3i3w2rkw7qsw9DPZrkZE8pmNwqp/wKanYceHsGdVa9u4rzsLz3UdmrXyQpXMZwVehnxGYU3S1tBT4f3LwTa13d59HPQ/NDs15bIR58C734doQ/x+1e/A0JPCqUlEZB95FYwGzMW5samFxcnjbok8H9H88Hujk0mir4hI6jpqMFpY95UWeExmj9aHc3wRCd6q22HmH7JdhYiI7MtaWHNX6vs3KRhNRLIo2gjvXQ5r/ulMwB9yEhx2hy52ioiIiIiIhGnxT9ovbrTtXdj8nCYJiIh0bv8kc/fp1RhjFgF3Av+21upmEhERERGRXGEMzH4E5p8Guz9Nf7zuo9MfQ9ozBo5+BOZ/FnYtT9y/+u322zY/B5ueguNfhYIApqptfBJePcsJYoun22iY8zgUFKZ/TBdVDVtct/cvGYwxxrUt04pMiev2SGcIRus3Cw65Bd75bvBzSUwhTP6xE74muaGwC8x9Gl49E+o2efdb8TdY8y849gUt3J6KzfOc39O+GJjwbSeMTuKb+D3nd+qq20j9Y1EDE77p/J1LbtjwH+dx6O0w7ivZrkZE8tU734UVN7m3rboVNjwEpy6BsiHh1hW2SB08Mz39cQ77R/pjSMfScwIc9QAsuAQiu51t3cfBnCe0oKOb0gFw9ONOUHLjDu9+r5wM526Dkj7h1SYi0izfgtHcKNhMRHJfPgejFbhfOHOE9BJcWOq+vbY8nOOLSGps1LutpHd4dYiIiH+b58HCL6W+f+Oe4GoREfHDWmelrF2fwuIfw84lrW0bn4DXzoHjX8laeSIiIiIiIp1Kw04of8S9besrCkYTERFoXQA1SN1xFlydC1xrjPmytXZeBo4jIiIiIiKp6LkffPYTJxjttXPaXtdPVrcxwdUlbfUYD6cug90roG6zs+3VM+NPit1X1QLY9AwM9xuwE8fH1yQORTv6MRh2mhPsliHVjRWu2/sVD8zYMRMpMsWu2ztFMBrA+K/DmIth+wfOIh0FRYBxfl5sivNbCoqg9wFQ3CPQUiUA/WbBmRvgwZ4QibNwb6QGlv4Ojn44vNo6io+vgWhD4n7Hvwq9p2keiF8FxXDoLXDgb51zn5a5NW99DfasdN/n2Oeh5TXeFEDvqQqeyFUf/wrGXqJwFRFJXt1W71C0Fg3bYdXtMPWqcGrKlg0BnLeZIijN3nszyWEjzoZhp8P2xVDUHXpOzOhnB3lv6ElwTiXs+Aienendb809MPG/wqtLRKRZPgaj6beOiOSfSB4Ho8U72Y8XehQkr2A0gI/+x3mTrzclIrln5S3ebbogJiKSmz79S3r7N8W58UREJGhN9c6NQmvv9u5TMd8JTeu5X3h1iYiIiIiIdFYf/ty7bcPDMOO68GoREZFcFHtjh/XYvq99ZzS79bUxbUOAZ4wx37PW/jX5EkVEREREJCOMcSahjv0KvP/D1MYo7AolvYKtS9oyxrm/ouUeix7jYds7yY1RMT/9YLRIHVS/Fb+PKYQhJ2V8DkFV4xbX7f2LB2f0uPEUGfepgJFoJwlGA2d+Sf9Ds12FhMUUOKEG6+6L36/ilVDK6VCaGqDqjcT9xn0NBs7OfD0dUZe+bf/uDvglvHlR+36lg2Hw8eHVJempWec8uiu0V0SSVP22v34rb+74wWhBnLsd8Mv0x5COq6AI+h2c7SryR0ER9J0BQz4Dm59x71MxX8FoIpIVeRWMZq1VhLaI5KemPA5GiyvFFXWS1WWAd9tHP4chJ0D/w8KpRUT8qd8Gi77l3V6sm1NERHLGjiVQ/ijsrYBNT/nbp+9BsO3d9tvjrcgnIhK0VbfFD0VrsXmegtFEREREREQybfdKWHFjnA4hLbgkIiK56svNX3sAPwf64QSZRYGFwCJgPbALKAH6AtOA2UDLbHML/Bt4FigDegP7N/cZRduAtOuNMcustS9l9E8lIiIiIiLJGX566sFopQODrUUSG3FW8sFom5+BxcWwaxlsfRlK+sGwU2HYaU7gi0kwLSzaCCt85FwPPQUKuyRXWwqqGytct/crzt7PY3FBsev2RtuJgtGk8xl+RuJgtIbtUP4EDP2MM6lfWkXqnNfn3Sug22ho3AUbHoHqhWB9XL8ZfmbGS+w0hpwMBV0gWt92u/6O88+u5QpGE5HkRff661dbDouvhB4TnPc+ZdkLZs6Y3SvTH0O/P0WCN+JM72C0DQ/B4p9Crykw7BQo6RNubSLSaelTHhGRMKy61X17Uddw6wiaDSkYre8MKOrmHbSx5m4Fo4nkmvLH4rcXdQunDhERiW/Do/DGec4NZX7Nfbb55jMFo4lIlq2911+/mrUZLUNERERERERw3qPFmzxTsxaa6kOZrCgiIrnHWnunMWYC8DhOKBrArcA11toNXvsZYwqAM4A/AGOAzwHLrLW/2qffKcCfgHE4AWlFwP8CMwL+o4iIiIiISDp6jIfpv4YPfpb8vof9I/h6JL4J34ZNz0Lla/732bnUebRo3AWf3ug8Rl0Ah98FBYXu+0Zq4dUzYcvz8Y/RdSQceJ3/mlIUsY1sj1S5tvUvHpTx43spMiWu2yMKRpOObPhZMPI8WP9A/H6vng6jLoQj7kocxNhZNGyHl09xQtBSMfYSJ8xLgtGlLxx8Iyy6tPW6Wq+pMPWq7NYlyXvlM/C53VDcPduViEg+iUb89136W+dr6SA45jnoMz0zNWVDUz1UvJLeGFP/G3rtH0g5IhJj9Bfg7Uu925de63ztPg6OfV5BsSISCgWjiYhkWuMe77bCsvDqyIiQgtEKS2HAbNj8rHv7ir/CrHgr0ItI6FbcFL+9yecKByIikjk2Cu9+N4lQNAOzboKhJ8Gaf7p3UTCaiISp6k1//eo2ZrYOERERERERSbxgio3C7hXQe2o49YiISE4xxnQFHgUmAo3AxdbaBDNZwVobBR4xxswDngGOAn5hjFlvrf1nTL+njTGvAa8ABzZvPsAYc4K1NsGMehERERERCdWUn8LQU+HlE2Fvhf/9+h+RuZrEXUlvZ5Lr1ldg+3tgm1rbdnyUOKBoX+vucybYDjvFvX3tPYlD0Y56AAYfDyV9kjt2CrY1VmE95kv0Lx6c8eN7KTLFrtsVjCYdWmEJHHkf7PcdqHwTPrjSu++6e6H/oTDxe+HVl8tW/C21ULTRF8P4b8CAI8GY4OvqzMZ/DQbOhq0vQ9lQGHSswrXy1Zo7ndclERG/fM/dibF3Kyz+CRzjMbc6H8V7Lzn6YjjkZifcdcvzUNu8vlK0AXZ8CF1HwNivQF+tjSSSEUVd4dgX4KXj4/fbswo+vgYOuz2cukSkU1MwmohIpsVbIam4R3h1ZMLgBCe2QSrL3sVDEUnSugdg2zvx+yg4R0Qk+3Yth9pyf30PuAamXNm6gl6RxwX4SJxQYBGRINVX+++7c5l3W7TJuXAKzs1FhaXp1SUiIiIiItIZ1WxwJkYmsmuZgtFERDqvXwGTcVbgu85PKFosa22NMeZs4BOgL3CjMeYpa21lTJ/dxphzm/u03Bd5IqBgNBERERGRXNNnOhx6B8w/1V//siFQ2CWzNYm7wi7OQppDT2q7veK15IPRADY+5h2MtvGJ+PsOOApGfi75Y6aoqnGLZ1u/4oGh1bGvIuM+FTBiIyFXIhIyUwADj3Yeq26FPau9+y65FsZ9HYrKwqsvV5U/nvw+A46CI/4VfC3SqudE5yG5o88M2P64iqP7AAAgAElEQVR+cvuUP65gNBFJTqphxpvnQaSu45zbxHvvN/ky589ZVAZjvxReTSLSqsd4f/02PgYoGE1EMq8g2wWIiHR4W1/ybhtwdHh1pGPi9z22h7iCSkm/+O0168OpQ0QSW/KbxH0UjCYikn3Vb/nvO+WnraFoAEXd3Pvp9V1EwrLrU/99d3wAD/aGxVdAU4OzrakB3v4W/KcvPDzAeTzYE148zpnQLyIiIiIiIv6VP+bdVlAMw06HyT+GHhPCq0lERHKGMaYI+GLzt/XAdamMY62tAm5u/rYMuNClzxrgQcA0bzoylWOJiIiIiEgIBh7tfQ/SvgYdm9laJHl9D4KiFBaJX3mL83nirhWwcylseBQ2PAIbn4KdS+LvO+i41GpNUXVjhev2noV9KCnIXlBfsSl23R6xDSFXIpJFiX4v7N0Cr57uvMZsfh4ad4dTV7ZE6qDyTajbAnsrYdNzzmvrhkeSu1e4hX7vSmc0+cfu23tO8t5nyzznHGb3SrA2M3WJSMcSTTEYDQtr74FNz0Ld1kBLyoqqBd5tvaaEV4eIuOs6ErqPS9yvvho2POycD218CioXtM7XEREJkPsyESIiEgwbhWV/8G4ffHx4taRj4vedD8RrY8LHxl4CvUJc0b1L//jtzx0KZ28OpxYR8daw3QmeSKSpNvO1iIhIe9Em53U62ggLv5y4f0lfOPYFMKbtdgWjiUi21W1Mrn/jTlh6nXOh5aA/wns/gJV/b9sn2uiEmz93MJy5CSK7Ydu7zgXWssHB1S4iIiIiItLRbPQIRus5ET77Sbi1iIhILjoK6A9Y4G1rbToXE+YBVzY/PxP4k0uf53BC0wwwPI1jiYiIiIhIJhV3hylXwQdXxu9X0gcm/yicmsS/oq4w7efwfgr/Nq+emfw+3UbB+K8nv18aqhq3uG7vVzww1Dr2VeQRjNZoUw1ZEMlDky6D8kehvsq7z5YXnEeLQ26G8d/IfG1h2/AwvPkFaKoLZrxuo2H8pcGMJZJPhp8G/Q6D6oWt23pOhjlPwBPjvfeb/1nn68A5MPth6NI3s3WKSH6LRlLf9+2Y90MTvg0H/RkKCtOvKUzRRnj7Uqgtd2/ve7Cz+J6IZJcxcMD/wIIvODkZ8bx2TtvvS/rA7Edg0JzM1ScinU7eB6MZYw4ETgdmA+OAvkAPwFpr2/35jDG9gZ7N39ZbaztANK6I5Kyqhd5t474OhSXh1ZKO7mPgxAWw7j5nFYOBc2DUee0DMjIp0Ypge7c4b4i76p5WkazatdxfPwXniIiEr2YdvHJq4pU1W0y6DPb7DnQf276tqLv7Pnp9F5Gw1Fentt/y62HcV2H1nd599lbA/cXOe96WCzmTfggzfh/u+2AREREREZF80LADtr7i3jbyvFBLERGRnDUy5vmmNMeKXTFvlEefZTHP+6R5PBERERERyaQpV0CvybDmbtjwkLOIY8M2p633NBh6Coz9CvTcL7t1irvJl0OPiVD+CNQ2L3C3ZV7wxxl8Ahz+r9AXtatudJ9u1r84u4vrFRn3OSgRm0bIgki+6TUZTnoLVt4KS3/rb5+3L4X+hzu/XzqKus3w+nlgm4IZb+ovYMI3tYiodE5F3eDYebDyFqh+G/pMh3HfgNL+cNzL8OIx8fevmO8Exh52ezj1ikh+ShhmbHDWGUpgxU3Qd6ZzT3w+WfE3WH2Hd/uBPs/rRCTzRl8AZUNh3f2w+1PY+pK//Rq2w6tnwFmbnFB9EZEA5G0wmjFmGnA9EPuO0s/MxGOAh5qf1xhjBltra4OuT0QEa+GT673b+80Kr5YgdB0Kk3+YxQJ8vMRveib0laBEZB+bnvXXT8E5IiLhe+sb/kPRxn4ZZv6vd7tXaG1kT/J1iYikoiHFYDSAp6f66GSd9/UtPvlf6H8ojPxc6scVERERERHpaHYua55w4zHhbviZ4dYjIiK5akjM8wSr4iXUcve0AbxmaG6Ped4lzeOJiIiIiEimDT/DeUh+Gn6a82hxbwYWnDvsjqyE9FQ1eASjlQwMuZK2ioz7VMBIwpAFkQ6m+1g48FqY+H14fCw01SXeZ939HSsYbf1/ggtFm/wjOODqYMYSyVfFPdznTvaZ4W//9f+GQ26BgsJg6xKRjiPqcc7e92A4eZHz/LnDoXph4rHW3pd/wWjr7o/f3n1MOHWIiD+D5jgPgMfGQM1af/s17oTNz8KIszNWmoh0LgXZLiAVxphLgIU4IWf7fmqeKAr3MWB9837dgHOCrk9EBGvhra86K1d50QrpySkblLhPtCHzdYiIt/LH4eNf+usbqWkbNCEiIplVvw22PO+//+QfxW/3DEZT8KWIhKQ+jWC0VJU/Fv4xRUREREREctWKm+GpKbDzY/f2riP8TxIQEZGOblfM8/3THGtKzHOv1VpKY577mBErIiIiIiIigRlxbrDjlQ1xHllQ3Vjhur1/cfghbbGKTbHr9ojVXArppMoGw4Rv+eu75DfQuAua6jNbU9AitU7d0Sbna8tj2e+CO0bQr98iHUlJL+g+PnG/SA3s3Zz5ekQkf3ktOhcbftzvYH9j7fqk9ZwgGlBQaiZFI7DjI+/2LgOg68jw6hGR5PSblVz/6kXO+xgRkQDkXTCaMeYc4HagLHYzsAFYTPugtDastVHg3zGbTg+6RhERqhbA6ju82wuKnQ/FxL/Bxzt/b/EUdo3fLpKrmvbCh7+AF4+FhV+Gbe9mu6LkRWrh1WRW7LNO8reIiIRj51IS54jH6DU5fnuhgtFEJMsatoV/zLX3hH9MERERERGRXFS3Bd6/nLifNw07HUzc2zdERKTzKG/+aoCxxphD0xjr4uavNmbcfQ2O6VOZxrFEREREREQkWft9O+Dxvgsm/KlvdU011ER3u7b1Kx4YcjVtFXkGo0WwWrRaOqspP/UXWgTwYC94sAe8MAd2rchsXena9Aw8NRUe6ObUfX9Rc/3Nj9oNwRyn32HJBx2IdDYTv++v3+o7M1uHiOS3aKP79th50+O+DoWl7v1i1W1sPSf4Tz9nTmouhhBVLYR/l8H9xRDxWvMI2O87UFDk3S4i2TXhO2AK/fdf+lvnfcwTE6H88czVJSKdQl4FoxljhgAt7wxbPq29CRhnrR0NnO1zqMdahgTmBFagiEiLTc/Ebx/ymXDq6EhK+sCYL8bvkyg4TSQXWQsvnwQf/wq2vgyr/+lcZKt+J9uVJefJScnvU18dfB0iIuIumdWnxl+auE9xd/ftEfebwUREAqdzSRERERERkezZ8HD8G1YBhiezmIqIiHRw84FGnPv9DHCTMSbple+MMZ8HTqT1vsHnPbrOjHm+NtnjiIiIiIiISBoGHQNznkpvjMKu0Hs6zPwj7H9FMHUlqapxq2dbv+JBIVbSXlFBiWdbxEZCrEQkh3TpB8fOg9EX+esfbYSKV+GFo3IzQARg23sw/zTYuSSzxxn3VTj2OS12I5LIxP+CWTdBn5nOuYqXD6+CXZ+GV5eI5Bc/wWh9DoBjX4BBx0FxL38haY07nTmpCxLMvw5bzXqYdzg07Y3fb8K3YOrPw6lJRFIzaA7MeRIGHg1FPZzzocKuYBIEGu7+FF49I//my4tITsm36NSfAy3vGpuA8621/4lp97u0xSKcm62KgX7GmDHW2jXBlSkind6Sa+K3l/QOp46OZtbfYdXt3u01a0MrRSQwFfOdi2qxIjXw6Y1w+D+zUlLSdq9KbbWh+mroMS74ekREpL09SbzlHXpq4j7Fvdy3N+2Fpnoo7OL/eCIiqVAwmoiIiIiISPYs+U389uKeMFBr1ImIiMNau8sY8yRwFs79fQcCzxljLrTW+rrQbIz5GnAjreFqUeBuj+4nxTz/IOXCRUREREREJDXDToEL95neda/PwJ1Dbobx3wi+piRVN1a4bi+gkD5F/UKupq3iOJOOI7aRYrTYvHRS3cfAEXdDnwPh/R/522dvBZQ/BqMvyGxtqVj1D7BNwY139OMw/LTgxhPpjCZ8y3kAPDMDti9277f6n3BgguupItI5+QlGAxhwJBz3gvM8UgsPdPM3fvkjULcVyrIb5vx/1tzlo5OBmTcopFUkHww92XnEWvZHeP+Hiff95Ho48p7M1CUiHV5BtgvwyxhTCFyAc3OTBa7bJxTNN2ttBPgkZtOk9CsUEYmRKIW7WMFoKSlIkOf54X+D9ZuRKZIjPv2L+/Y1d4ZbR4umvVD1Nuz4KP7/JxuFbe87KxF9dHVqx6qvSm0/ERFJXjIBskNOTNwnXtBv407/xxIRSVXjjuwcd+OT2TmuiIiIiIhIrmjcA3Ub4/cZegoUloRTj4iI5IvLgdjl4I8Elhpj/maMOdYY03PfHYwx+xljLjXGLAJuBkpwQtEscLu19iOXfUYAc2ldYPW1YP8YIiIiIiIikpIBs/31G3RsZuvwqapxi+v2fsUDKDCFIVfTVpHxDj6LWI+gBZHOZMjJifvE8go2yrYdQeb9G+g3K8DxRISe+3u3Bfr/V0Q6FBtx3x4n/JiirtBtjM/xo7BzSfJ1ZcrS3ybu02O87i8RyWe94pwTxdr6kvIfRCRlCRJmcsphQMsNUA3A79IcrxyY1vx8RJpjiYi0VdTDCRfyEi9IQtJTvQj6H5LtKkT82/BwtitoVfkGvPmF1vCcwcfDUQ9ASZ+2/Wo3wssnpf9BWUN1evuLiIh/e9b663f6Kijskrjfvr8bYjVsh9KB/o4nIpKqSE3iPtN+BR/9PNjjfnoTDPtssGOKiIiIiIjkk/d/lLjP8DMzX4eIiOQVa+0aY8xXgLtwFnO1QDfgG80PjDG7gN04AWi9mr+CE4ZG8z4GeAu4zONQV9C6WOxe4PlA/yAiIiIiIiKSmjFfhMoE2dX9D3cmxeeAzfUbXLf3Kx4UciXtxQtGa7QNIVYikqN6TYE+B/oPPFv2O2jYBpN+CL0mZba2aBMsvwE2PQP1lW3buvSDvgdBUz1Uvw3VbwV33CEnQtng4MYTERhzMay7171t09Owazn0nBhuTSKS+6IeQcYF3uf4gPOa8/Gv/B3jpeNg1Pkw/lIYNDep8gJRtdC5337nRxDZk7j/6IszX5OIZM7g46BsCNRtjt9v7xZ4ehqYQigscz4DmvIzKO0fTp0dSd1mWPIbqHoLovXt26ddDSPOCr0skUzKp2C0lk+3LbDIWrsrzfFi92+34qSISFq83qC28Er2lsSmXwsfXOndvuo2BaNJ/tj1afx2GwVTEL9Pumo3wcbHYfsHsPLvbdu2vACLfwqH/K3t9gVf8h+K1qUf1HsEoHltFxGRYFW+AZufSdzv4Buh+1h/YxbHCfpt2OFvDBGRdERqE/eZ9t9Q9SZsfja44/p5PRUREREREelIok2w4T9QuwG6jmh/LWFfBcUw5ORwahMRkbxirb3fGBMFbsG5X69lSeiW4LNezY92u8b0ew4431rrtXLCXcADzc/3xOknIiIiIiIiYRr3FdizGpZe697e/3A46qFwa/IQtVEW7HrRta1/jgejRTRPRQSMgaMfgxfmtC4Yn8iq25xrIScuyGyQ0VtfgTX/8m7f+nLwxxw4Fw6/K/hxRTq7oSfDgCOd+/TdzDscTlwIPfcLty4RyW2pBqNNvQrqNsHqO8A2JT7Ouvth/UPOOdGwU5KvM1UVr8NLx7sH9bgZfylMiTNXXERyX0ExHDMPXjsHdieYLx87J736Ldj0FJz8LhT3yGyNHUl9tXOeWbPOu0/D9vDqEQlJPgWjDYh57r70RnKiMc/z6e9BRHJd4x5oTBAG0T03VjLKSyPOjh+MVrcpvFpE0rXxyfjt710OB/0xc8ff9j68fFL71YZirf4HzPhd65vLhh1Q4fOC27RfwX7fhtfOhopX27fXVyVfs4iIJOejX8JHVyfuZ4pgv+/4H7eom7NKg9tFFQWjiUgYIj7nM3bJwAoyDTugJE5ApIiIiIiISEfR1OBMHKpe6H+fsV+BErdMGxEREbDWPmCMeRP4A3A2rfftWZfuJubrGuDX1tp/JBg/iV9aIiIiIiIiEhpTAAf+Bqb9HGo2QFMdFBRB6SAnHKBscLYr/D+f1n7k2da/OPt1FscNRvMIWhDpbLqNhDPWOIvIN9VC4y5n7sZHv/Dep2E7fHoTHPynzNRUsw7WBBxQdvK7rc+LujffU2ehxwSINoCNQukAz91FJE0z/gjzDnVva9gOK/6e2TlhIpJ/vM7X45zjA07w0KG3wszrYfcKwMIHP4u/eLiNwLLrwg1G++QP/kPRpv3SeX8oIvmv91Q4bbnznqe+Gp47xF+I4+4VsP5BJ0xf/Flzd/xQNJEOKp8CwWJvfioMYLy+Mc81a1tEgpMo0Rag38GZr6OjSrRSglY5kkQad8HS66BqIfScDJN+AD2yFFZYtzF++/LrYfIPoesw/2PaKHz6V1jxV9i13Nm2/09g/yvbT0T64KfxQ9HAuSD2YE/n+bivwoCjnWMk0mM/ZzUCY6Ckn3uf+urE44iISOpW3e4vFA1g1AXJjW2MEwrk9lqulQVEJNNs1LlhzY9+h8Dau4M9/o4PYeDRwY4pIiIiIiKSi5bfkFwo2ohz4cDrMlePiIh0CNbacuB8Y8wQ4FzgCGA60B/oDdQD24F1wELgBWCetdYtPE1ERERERETySWEp9JyQ7SriWlm31LNtQEn2g9GKFIwm4l/Xoa3PI3vAO/fQUfl65mqpfBP3tQFSNPh46DszuPFEJHndx8Zvr3ojnDpEJH9EPeY+F/iM+yjuDn1nOM/7HhQ/GA2gagFEm6AgiFgOH5I5lxp2aubqEJHs6DbKeUy6DJb93t8+la8rGC0ZmXzPKpLD8ikYLTa1Y6hnL/+mxjxXKoeIBKcliMjLgNnQe1o4tXRUfQ+Gbe+4t0V1MU/iaKqHF+bC9ved77e+BOsfgBMXQI9x4dcT2ZO4z8YnYfw3nACaFvE+kHr7m7Dq1rbbll7nJGefusS5oSAacYIkNj+XXL2rbncefky7urXmLv3d+zToFExExJO1bV/7k7Xmbnjra/76miKYcGnyxyju4x6M1qjscRHJsKY6/31HXeCERDZsi9+vdDAccTe8dHziMV+YAxdE03udFhERERERyVWx1yBW3+F/v3OqoUvfxP1ERESaWWs3A39pfoiIiIiIiIjkhMqGzZ5tk7vNCLESdwpGE0lR/8OhdBDs3erdZ9cnsOg7bbdtexdq10P/I6F0YOt2UwC9D4ARZ0MXl4Xkd6+CdfdDUTcY9XnYszqYP0eLEWcHO56IJK+0PwycAxXz3dur34at82HQnHDrEpHc5TX3ucD7HN/TiLNhya8TH++N82DYGTDyHOe8JEhVC2HTs1D5GlS/BZEaf/t1Gw19sv/eSkQyZPRF/oPRVt8BZcNgyIkwcHZm68pVteWw4RFo2A5DTob+h4CNQvnjznvKipeh+3jocyBseCjb1YpkRT4Fo61v/mqAGcaYYmtT+8TWGLMfMCxm04fpFici8n92feLdNuHbMMPnyZx4i9Z7t+1cEl4dkn82Pd0aitaivhJW3gwzfhd+PX4+7Fn0TecBMPJzUP2OczFu8HFw6G2tF9dq1sMrp3j/H9izGv5dFkzdiRx+N4y+oPV7twt9APVV4dQjIpJPbBQ+/G/nd1NTAww7DQ66AUoHJDGGdUIx/Rg4F6ZfAwOOTL7Wkt7u2xsUjCYiGeb3oik4N56c/C4s/BJUvOrdb9Axzjn2ye/ABz9LHCJc9WZqr50iIiIiIiK5quI1eO8y2PEB9D4Q9vuv+Nc9Yw0/S6FoIiIiIiIiIiIi0iFUNroHo/UvHkRpQUj3YsdRaLynAjYqGE3EW0ExHHYnvH6u9wL3TbWw4ib3Nq8J6Euvg+NehG6jWretvR8WXAw24ny/5Br3hYhTNfwsGHNJcOOJSOoOvhGenubd/uJcmPZLmPbz0EoSkRzmdb4eJ/zYU9+Z/vpteNh5fPpnOGZecPd2LP8zvPv91PY97J9OyKyIdEx9psMB/+PMj/RjyTXOY/pvYMqVma0t12x7H14+sXWu/UdXO+eXFa/A+gdb++2tcOYwiXRS+XTWsACoAyxQBlwQv3tc34t5vtVauzydwkRE2qhZ6759xDkw669Q1DXUcjqkpjjBaHu3QuUCJ1REZF8rb3bf7jd9OmjJBDqA80amZo1zwW3jE/D8bCf8JhqBZw7MjWDAox6CMRe13eYZjBbgxT0RkY7io1/Ckt84r5GR3bDuXljwRef13q+G7bDzY399j3859WCf4p7u2xt3pTaeiIhfkdrk+ncfDcfPh5Pfg3Ffg8J9blIt6QP7X+E873sQHPMsHPtC/DFX/zO5GkRERERERHJRpBa2vATL/ggvHA3b3nFWDN62yAmY9qvXlMzVKCIiIiIiIiIiIhKiyoYtrttP6ntuyJW4KzAFFHmEo0UUjCYS39CT4LSVMCPA+SN7VsHSmPEa98B7P2gNRYP05k0MPgHmPAUnLXJCRE58C456EIqyH9QoIkDvqc7/z3g+/iXUbgynHhHJbVGP8/WCFILRAIp7+++77V1YdVtqx9lXww5Y/BP//addDeO/AYfcAmdXwKA5wdQhIrlr6lVw6lI45FaYeYPzGpDIhz+Huq2Zry2XfHhVaygaABbe+U7bUDQ/hp/p/D3PvAH6HRpoiSK5wHuZiBxjra03xrwIfLZ506+NMY9ba3ckM44x5kjgUpyANYCHAyxTRMT7g6rY1T8kPdE4wWgAzx8BPSc6H/73GBdOTZIfNj+X7Qra8lppyK/dnzrhOdvfc0Jwsq10EAw9uf32Lv3d+ysYTUSkLWth9T/ab9/8rDMptd8sf+O0+UAsgwq6uG/XzVUikmnJBgy36DsDDr3VubFt3X1Q/Y5zDjv2y9BzQtu+g4+DsqFQt8l9rFW3OWOJiIiIiIjkqzX3wIIvBDNW2ZBgxhERERERERERERHJopqm3dREd7u2DSjJnc9Bi0wxkdjQpWYRr6AFEWlVNggm/j/44Kfe4STJ2vR06/Mtz8PeACfzH3QD9Nrfed7v4ODGFZHg9J4av91Gnfls474STj0ikrui7c/hAfAIPk6oIMn9Nj0F+/84tWPF2voyNO3117eoB0z7RfrHFJH802uy8wDY9j6svCV+fxuBLfNgzMWZry0XRBvbvpdMx0E3KMdEOrS8CUZr9mucYDQLDAPmGWM+a62t8LOzMeYY4CGgADBABPhDhmoVkc6q4hX37WVDQy2jQ2tKEIwGsGu5s5L9Ca9nvh7pGGwUTEG4x0w10CHWh1elP0ZQDr0Nirq1317Sz71/fZUTAmRMZusSEckXTXuhtty9bcmv4ehH/Y0TVjBaYYn79qaGcI4vIp1XuufRJb1hwrdgQoJ+vad7B6MB7FzaetOZiIiIiIhIPtm9MrhQNIAeid5giYiIuDPGFAOHAOOAvkAPwFhrf5XVwkRERERERKRTqmzY7Nk2sDi3gtGgrt32iBY1FfGnoBAGHecsXByE2g2w9j7AwLLfBTMmQNeR0GNicOOJSGYUlsKA2VD5mnef9Q/BmC8mH2KUDbXlUP2287zvLOg2Irv1iHQkXufrBcWpjZfsXNidy2Dt/e5tvSZD72lgm2Dbu7Bnrfc4yZxDlfRJqkQR6aB6T4PSQYlDpJdcCz32g74zU39tzFU2CjuXOPOQrIWG6uDG7joyuLFEclAevItqZa19yxhzP3A+TjjawcAnxpjrgQeAdrOvjTGFwFzg68DncALRaN7/T9batZmvXEQ6jfInnDd+bsqGhVtLR9ZjAuzdkrhf5RvOG/DuozNdkXQE9dVQOiDcYwYRjBa0ISc5K5Eka+BcGPZZ97YuHsFo0XrnA3N9SC4i4ojs8W4rf8z/OH6D0frO8j+mmwKPYLSogtFEJMOaQjqPjiYI5X5qCpzf0PEuuIiIiIiISMe34ZHgxiodDIOOCW48ERHpFIwxRwGXAycCXVy6tAtGM8acDJzX/O02a+3lmatQREREREREOqPKRvdgtGJTQs+i3JnQ7wSjtdeoYDQR/6b9AqrehMZd6Y9lI/Dmhantu9934dO/tN9uCuHAa50QNxHJfQf8Cl45FZpq3ds3PwPPHgxzn4auQ8OtzS8bhcVXtg94nHQZzPh98gFMItJeNOBgtGTVV8KbF3i3lw115gP5nZPkx/4/CW4sEclfBUUw/Vp466s4MT8edi2DeYdBz0kw95mOkw/RsANePQsqXgl+7J6TwZjE/UTyWF4FozX7KjARmIHzqtcbuLr50Wb2tTFmGTAGaDkjNM37GOBN4IowChaRTiLaBG99xbs9Vz+0ykf7/xjmx1lFIVb12x3nxFfSU7MufnvdxiwEo8UJwMmGqb9wLvAt/xO89/+S23fYqd5t3cd4t216EiZ8K7ljiYh0VIkCM3evgh7jEo/j9yLExO/56+fFKxhNN1eJSKZFPG4cCVrT3sR9lv0vTNFHjCIiIiIiksPKH4O19wFRGHEu9D0IFv84mLFLB8GxL+THyuYiIpITjDHdgFtwFkaF1kVOY3ndCb0EuBgoaB7rLmvtB4EXKSIiIiIiIp1WZYP74u0DigdTkENhIEXG/TPZiO7dE/Gv/2Fw0tuw9l7YubR9+4aHMl/DxB/AzD/CwKNhy/NQv83Z3m0UjDgHBhye+RpEJBiD5jqvKU9P9e6z4wN49/sw+8HQykrKxqfah6IBfPJHGDAbRpwZfk0iHU3gwWgBB+HUbQp2PIBe+wc/pojkp3Ffhh7jnQU9l18fv++uT2DRN+GYZ8OpLdM++mVmQtEARn0+M+OK5JC8uzvVWltnjDkJuB84ltYboQzO6pEtwWcGJ0Dt/3aNaZsHnGetbQqrbhHpBCpfjx9CUaZgtMAMOhZ6TIDdKxL3fePzMOq8xP2kY6vbDE9Pj9+nthz6HBhOPS0SBeCEab/vwgFXO8/HXAxLroH6an/7lvSFUed7t5cNgd7TYMdH7du2L066VBGRDivR74Xyx2DyZaxdtZsAACAASURBVInHqa9M3KdsGAxP8+Kk18WXpgb37SIiQfFaUS9oQ050VgWN5+NfwegLodvIcGoSERERERFJxoqbnZvEWqwP8Cb74WfC7Ie14qSIiPhmjOkJvAZMpXWB01gt9/a5stZuMMY8DZzW3Pd8QMFoIiIiIiIiEpiKxs2u2weUDAm5kviKjfuipgpGE0lSz4lwwC/d2+4N4fpHt9HOdZaR5zoPEclvvafArL/Bom9599n4ODTVQ2GX8Orya/0D8dsUjCaSPhtx3+4RfNwhdOQ/m4gkb+Bs59F9DLz7vfh9N8+Dhu1Q0iec2jJp/b8zN7ZeZ6UTyMufcmttlTHmBODy5seAlqZ9vrZoCUrbAfwe+J1C0UQkUHVb4MW58ft0hBOvXFHUFY57Bd6/HNbdl7h/3VYoG5TxsiSHrf4nNO6M32f+aTDgKDjoT9B3ZihlEdkTznHi6TkRRl0IU37auq1LPzhhgfN/bOPj8fcf8hmY+QfoOjx+v36HugejNexIvmYRkY4q0e+F8kcTB6NFamHxFd7tZcOcVe5mXg/F3ZOvMVaB+81VRBWMJiIZ1rQ3nOOM/Dx8dHX8Pk11sPzPzjmxiIiIiIj4s/0DePtS2LUcek2G6b+GQcdku6qOx1pY8uvMjD39Wpj8I4WiiYhIsh4CptF6b18D8ADwMhAF/uljjEdwgtEATgCuDLZEERERERER6cwqGzyC0YpzKxityLgvaqpgNJEAjTof1t2f2WP0PzSz44tI+Pol+H8dbYDaDdBjfDj1xNNUD427oLR5ev7uT737bn8/nJpSsbcKoiHdVyySrojH4uAF7uf3HUJH/rOJSOoSnTMBYKFqIfSe1rqpdFBuva407oai7u730DXscOaKRuqgzv3zpkAU5GVklEhS8van3Fprgd8bY/4CXIBzo9NRwFCgIKbrduBN4DngLmttglQUEZEk2Si8dFzifoVdM19LZ9J1KBx5L4y+0Am0imfdvTDxB5qc0ZlVL/LXr/J1ePFYOOUj6DYiszVZ6/1hVhD2vwIOvDb1/XtOgDmPwaOjoHZ9+/ZDb4NxX/U/XnFP9+2Nu1OrT0SkI4rUxG+vfA32VkDpQPf2PavhlVO99x99ERxxd+r17UvBaCKSLU314Ryn1yQYe4kTtBzPhv/AjN/rPaeIiIiIiB+1G2He4U7IMEDVAuc6zykfQ/fRWS2tw9m9wrmpPmgzr4dJPwh+XBER6dCMMecCx9MairYA+Ly1try5fZTPoZ5tGRKYbozpbq3NgRXJREREREREpCOobNziun1giYLRRDqd/b7r3BcWjfl/1WsqTP8NvHamM5csHf2P8BkGICJ5pe8MGHQsbH3Ju8+8w+D0tekvcp6qxj3w1tecRduj9dBtNHQfC9Vve++z6xOYd6QzF6H7mNBKjWvzPFj0bdizKtuViKQv5ZCfOPeuT/4xLPtdiuMGSIE9IuKm3ywYMNuZKxnPK6e0/b6oG4y6AA6+EQq7ZK6+RCpeg7e/7iwM23UEzPgDjDrPadvxESz4UnjBskavs9LxFSTuktustXuttXdYay+01o4EioH+OAFpXay1/ay1p1lrb1QomohkRMV82Lk0cb/C0szX0hkNPh7KhsXv895l8MLRTrqudE7lj/jv27gzuf6paqqj9Z7vfQycA72npz72ft9LLxQt1oiz2m8rKIbhZyY3TlEP9+2RXcnXJCLSUUV8zNt5eJAzgThW01547XPw+DjnoqOXvgenV9++FIwmItkSDSkYDeDQ2+GwO2D0F7z71KyFHR+GVpKIiIiISF5be09rKFqLSA0suSY79XRkfj5rSkW/WZkZV0REOrqfxjz/GDihJRQtGdbaLUBF87cFwOQAahMRERERERGhrqmGPU3u084GFOdaMJr7pNdGBaOJBGfAEXDM8zD0VOg5CcZ9HY6fD8NPg6OfgMEnQulgKB3k/ogVu73nZCd07ZjntBCnSEc15wmY+P+82+urYeEloZXTzsIvw/p/t96LW7M2fpBbi6o34cVjINqU0fJ82bXcWVBeoWjSUXgEH6dl3FfgiPtg4Nw45ys+zkVMoff++57zuO6vwB4RcWEMHPOMMxe+ZxKX/CM1sOo2JzciW2o2wEvHO+cj4Cxc+sbnofJNaNwNzx/tPxStdFD7+Zl+X19b6HVWOoGc/yk3xkwHTgT2xwk8A6gClgHPW2vbvCpYay2wLdQiRSR51kLlG1C3EWrLnXCHuubHQX9x0vHzRfU7/vrpA+vMKCyFQ2+F18+LP8Gj8nVYfAUc8vfEY+5cCpuedSbmDDgKBh6tf798V9wTGpMI4PITdpiuSK1320F/di6e/aev80YtWVOuSL2udmP9zEmv3v6e870phFl/gy79khunuKf79sbd6dUnItKR+H3Nf+e/4OiYEM+P/wc2PJR4v+Gnp1aXF69VaaK6uUpEMqwpxGA0UwBjL3EeB/0JHh4I1uWmjg2PQJ80wo1FRERERDqL7Yvdt6+6HWbdDAWF4dbTkbm9d0lXl/7Q77DgxxURkQ7NGDMEODBm03ettXEumCf0CTCw+fkEYFEaY4mIiIiIiIgAUNm4xbNtQEluBaMVG/dFTSMKRhMJ1qA5zmNfw05xHiIiboq6wkF/hMrXYJvHvNPyR52AtGTnZqWrvhrKH0ncz0vNOtj6Igw5MbiaUrHmLrCR7NYgEqSCDMR9mCIYfb7z8PLkZNj1SfxxBh0Dxz4fv8+9BYD1rkNExE1RNzj4T87zl0+Gzc/533fNXTDzeih0/3wko9beA9GG9ttX3wEDZkPjDn/jdBsDZ6z21/eNi2Ddve5tmfgdIpJjcvan3BgzE7geOCpOt2uNMW8Al1lrfSYTiUjOePnE9ivCg5PUnk/BaIt/nO0KZOhn4LPL4JkDnQ/ovKy9B2bd5Exs97L6X/DWV9t+ODb+G04QVLz9JLeVDUsuGC2VMLJkReOEORR2cd6QDT8b1t6V/Nilg1Ovq91YA+DEN2DrfKgrh4FzoMf45Mcp7uG+XcFoIiKtNj/rr1/5o06wcNdhTjjQ8r/426/bmNRrc7PvigQt3D7cExEJUrxz6Uzq0tc5H3ZbGa/ildDLERERERHJS+vu827bvQJ6TQqvlo4uE9c6Jv1Q4XUiIpKKw5u/WmCDtfbVNMeLXTQ15FljIiIiIiIi0lFVNmx23V5kiuldlFtvP4s8FjVVMJqIiEgO6TXFOxjNNjlhRAOODLemncvSX2Br7b3ZD0bb8WF2jy8StO5jgx/TT1BOrymJg9F6Tcl8HSIivaYmF4wW2e0EtvackLmavCz7nfv2VbdBcS//4/Se6r9vvNdSo3v5pOPLybMJY8wZwL1AKWBimlriYmO3HQW8aoy50Fr7aEgliki6jHGCivasbN9WuzH8elL18a+zXYG06DrcCS97/TzvPpE9ULMeuo92b99bBQu/1H77yltg1IXuK73kOmud5OONj0NxTxhzsZPS3tkkuwpEZE9m6ogVNxit1Pk666/QUA2bnk5ubGMS90lGYSkMPSm9MYo8gtEiCkYTEfk/a/7lv++jw51gsmRCyIL+/aBgNBHJlqYsBaMBDPusezDarmXh1yIiIiIikm9q1sdv37tFwWhBCvpax8C5MOmyYMcUEZHOInZlrw8CGC/2l1z3AMYTERERERERobLRPRitf/EgCnJsgfUi4z4dMBJN8p55ERERyZyxl8CaO73bnz+q7fcTvg0H/I+ziG+Q6rfBh/8NFa/Czo/TH2/Nnc5j1AUw9SrotX/6Y/pV8Tp88kfY+ER4xxTJtNJBMPDo4Mf1eM/Qxtgvw4b/xBsExnzRx8Gsd5OfOkRExnzR+R0f7/VkXy8c7dxv2GL0RTDzeigdkF4tVW/Bst/D9sXugbIN2733Xfl3/8cZ+2X/feO9lup1VjqB3PpkFjDGTALuA8pwAtAsbQPRWmZy25hHKXCvMWZyuNWKSFq6DnPfXpcnwWir74QPr8p2FRJr2OmJ+8RLMH84zsluMknDueSDnzlhbxv+A6vvgJdOgPXxPqzooCI1SfbPcDCatfHDHAq6OF+Le8Dcp+DsCjhzAxz1UOKxR10YTI1BK/YIRmtUMJqICAC1m5LfJ5kAsuFnJj9+IgpGE5FsiRcy3KLHfpk5du8D3LfvrXBuHhEREREREXd1m+H52fH71FeFU0tnkey1kXj6zoLjX4ZCj8+DRERE4otdFnlXAOPFhqHtDWA8ERERERERESobtrhuH1A8JORKEisyxa7bG63u3RMREckZg+bCYXf477/iJicsLcjFg6ONzpgrbgomFC3Wuvtg3pGwe2Ww43qpfANeOg7KHwnneCJh6DMDjnsFCkuDH9sUJu4z7FQ4+K9Q4hLIWDYEjnoQ+s5Mr44CBfaIiA99DoDZDzuvPX7t3edznLX3wLzDIVKXeh3V78CLc51Mhj2roGZt+0c8fu7XK+kDB/0JRpzlv654r6V6nZVOIBd/yv+OE3QWG4bWCLwDbGj+fjhwEFBC23C0m4EMxOKKSEZ0He6+vTYPgtG2vgILL8l2FbKvwi5wxjp4bJR3n51LYOjJ7bdXvR1/7PrK9GrLhoYdzQnJMWwTLLkGRp6TnZqyJVKbXP8tL8CbX4RZN0Jxz+DqWHkrLL/BCb+Jt4JHYZe237ckVHdzX4msjSEnpV5fJnkFo0XroalBk6lERGrXZ3b8kecFP2aB+81VRBuDP5aISCw/N31M/01mjt1zknfbzqUw8CjvdhERERGRzmzVPxJ//rFzCXBuKOV0CkEtAlPSF45/JZixRESks4pdMrmXZy//hsY812oFIiIiIiIiEojKRvf7tAeU5E8wWsTq3j0REZGcMvYSWPcAbH7GX/9dy2DTUzDi7GCOX/6YM2amNO5w5srNuC5zx2jxyQ2JF3A/6iHoMz3ztYgEobg3lPbP3PjGZ4TIft+GCd+EmvVgI862gi7O/H9jwqtDRGTEmTD8DKjbCE0x66O9/nnY/p6/MfasckJUR1+YWg2f/qXtsYMy848w7DQntLLbKDAFye3v8TmQ06bXWen4cuqn3BgzFSfYzOIEoFngf4HfWGu379O3N3AlcHnM5iONMQdYaz8MqWQRSUfZMPftdTkejLZzGbx4TLarEC/dRkKvqd6rGGx5ESb/sP329Q/EH7dhR/q1hW3zPCd0al/bF0Pjbu+gqo6oyUfK8r7W3gU1a+CE14KpYc3d8PY3Wr9vjPMzVdDFfXu8EAaAnpNh1PnJ1xaGeAFzla/B4OPCq0VEJBfVbcrs+EFdHI1V4BFqmeiCo4hIutze58QacCQM/Uxmjl02FIp6QGR3+7bNzykYTURERETEy7Z3E/f56GqY+vNgbqwUaAwoGO2EN6CoazBjiYhIZxW7Et2UdAYyxnQBDozZVJ7OeCIiIiIiIiItKhs8gtGKB4dcSWLFxv3ePQWjiYiI5KAeE/wHowGsvjO4e/8rApoTF8/mZ8IJRqtakLjPwNlQOjDztYjkg4IkIkRMAXQfnZk6FNgjIskwxglmjNVriv9gNIBVt6cejObnfCMV/Y+EHuNT3z/ea7peZ6UTSDJKMOPOaf7aEor2PWvtj/YNRQOw1u6w1v4E+E5Mf4AMzPYWkYzo6hGMVrMu3DqSYaPw1P7ZrkISiffh39aXILJPSJa1UP5o/DHjhVjlKq9wOMh8+EouiTY6j1RUvg4rbg6mjlW3++/rFYyWKMzuM+9BoUdITbYVxal91W3h1SEikqtqMxgOPOx0KPT43ZIOBaOJSLbEC0ab8QeY+0zmJu0bA/0Pd29L9L5SRERERKQzK3/EX7+K+Zmto7OwFt77Qfrj9J4GvRIs2iIiIpJYy13KBhhtjEnnl8s5QMsFigiwMJ3CRERERERERADqo3vZ2dRu6hoAA0qGhFxNYkUek14jNhJyJSIiIpLQyHOT67/xcfj0Jmjclf6x480tDMqOj9pv2/gUvHsZLP091GxIb/ztH8DiK6AuwXyLgXMViiYSK1eCcpIJaBMRcTPyc8n13/oSvPlF5/Ha5+Cx0fDyKc4c/yaXuUjb3oMProI3LoLdKwIpuY1uo6HfwemNEe81Xa+z0gnkWjDarOavFlhorf1roh2stX8H3sC5cQrgkAzVJiJB6zrSfXvNWqjbEmopvr16VrYrED8mft9JKXcTrYctL7TdtnMJ7FkVf8wG9wudOc1a77ZtSaQj57t9g/CSteib0Lg7/ToqXvHXzxRBQaF3+9BT3bcf+FsoLE26rNCUxVktrUr3qouIJLxQl47Bx2VmXK9gtKa6zBxPRKRFk0cA49hLYPIPEwcKp2v4Ge7bd34Mu1dm9tgiIiIiIvnK7w3I5Y9lto7OYv0D6Y9RWAaz/p7+OCIi0ulZa9cAsR+cXZnKOMaYLsDPWoYFFllr07whQERERERERAQqG7znrwwszsVgtGLX7RGb4mLiIiIikjkDjoKpv0hun3e+A8/Phvrq9I4dRjAawJ7Vrc8XXwHzPwvLr4fFP4bnZsGOJamNu/FJeO5QWHpd/H7dxsAhurYtnZAx3m25EpRT4P7eRUTEt2GnwsQkFwhde5fz2PAQ1KyDzc/AW1+Dl0+Cpr2t/dY/6JxrLPk1rLs32LoBuvSDI+7xzrzwK95req4EYYpkUK4Fo02OeX5nEvv9K+a5lisWyRf9Znm3Vb4WXh1+LfqOk7gvua9LX/hcnCCrqgVtv694NfGY296FaFN6dYWtYZt325sXwqbnwqslmyK16Y/xZJqnF/FC6vZV2CV++9gvtd9mCmHUhcnVFLaibt5tNWth1R2hlSIikpNqN7lvT3fVIlMII89LbwwvXhco6jZBVCtPikgGRV1WaQEoSHAuHZThp3u3KcRBRERERMRd7wP89Vt3f3KfqYu7DY8k7jP2EmexIS+nr4YBRwRWkoiIdHotF4QN8AVjjMuFb2/GmALgVtreX5hw0VURERERERERPyob3e/fK6CQPsUDQq4mMa9gtEbrsdigiIiIZI8xcMDVcMqHye2340NY9Y/Uj7u3EvZWpL7/8fPhxLdg5g2J+77/E+drzQZY+rt96tgKS69N/vjWwuKfeN8z3GLuM3DqEug5MfljiHRkuRKUkyt1iEj+MgVw0PVw2gonZOzQf0Dv6amNVTG/9b46G4X3fwTWxxzIWX93jtvyiKelz9xngrv/Lt5raa4EYYpkUK4Fo/WOef5eEvu19DX7jCEiuazrMOg+zr1t09Ph1pLI8hthxU2J++33Xfftfj4AkmAVdYUR57q37btaQs06f2NuzLMJ7pufjd/+9jfaJht3VJEAFoiu2wTbP0h9/2T+nhOFOYw4F6Zd3fpGprgXzP4PdBuRcnmhmfrf3m2LvgWNcQINRUQ6uvpK9+29pqU+ZkkfmPMklA1OfYx4Ckq828ofzcwxRaRzqlkH7/0Q5p/h3DDRuNO9X1jBaF2HQ1+PsPf3Lw+nBhERERGRfGN9Lj6zdwvsTHG1aGlV8XLiPlN/ARO+7d7We3rmPlMSEZHO6k9ABWBx7vG73RjzG2NM10Q7GmP2B+YBFzXvb4GVwP2ZK1dEREREREQ6k8qGLa7b+xcPotAUhlxNYsXG/d69iJ/JvCIiIpIdvac59/cnI9HcwHjSve5e2BX6HwKT4iy21WL3p87X8sdwPsLfx9p7kj9+bTnsXBq/T+lgGHoyFJUlP75Ih2DiNOXI+xgFo4lIUHqMh9EXwrgvw9SrUh9nXfNtBrs+9ZcvUdwLJlzqHLfl4TVXvmxIa5+hJ0Nxz9TrjBXvtVSvs9IJ5NpPea+Y59WevdrbHvO8R0C1iEgYBs6BPavab19zF0z+MfSa3L4tbOsfhHc9As9iTfi281j9j7ZBTCV9YcTZmatPvJX0ct++b1BWnfsKT+2suz9//i2rFsKe1fH71K6HLS/CsFPDqSlbmmqDGWft3dAnxRRpr+AGN4UJwhyMgWm/gMmXw5410HNS/iQ6dx3p3Rath/LHYcxF4dUjIpJL6qvct/faH7a+mNxY034JYy9xPkwrcF8ZMhBxg9Eeh5EeIbUiIsnYvQrmHd4aILnxce++ic6lgzTiTNi2yL1t+Z9h4vfCq0VEREREJB/4DUYD57y/99TM1dIZJFr5e+ip0H2083zQsbD1pbbtEy7NSFkiItJ5WWtrjTFfAp7EWcy1APgJ8B1jzNPA+tj+xpjPA/sBJwKH48zsaJndsRe4wFrrMrtKREREREREJHmVjZtdtw8oGRJyJf4UeUx6jdjGkCsRERGRpAz5DKy713//rS/Bir85c8f6HZZcANiOj5OvL1Yy9+TuWQ0rb4EPf+bdZ9F/QY8JUNwD+s50FpDf+TFsexdsBGo3OfcVdB8NZcNg01OJjzv0FP81inQ2Jk5oWpjyZd6riOSXwcc7gWCpBMRvfBx2/n/27js8jure//h7dleSVVzl3ns3pts0B2x6MaYGCEloCSUhjSTkF3IhnRsCCUlubgoJkBB6B5tmbAOmmG7ce+/dkiVb0u7O749BV21mdnZ3Zov0eT2PHmvnnDnnK1lazc7O+cxSqFrnrX9hp5bb+l0Mi37RcvuAK5Kvxwu351I9z0obkGs/5aFGnydxZXSTviHHXiKSe3qdbgWJNWfGYN0jMN7moCCTYjXw9qXe+h75O+uEz+TX4bOfwL750OVoOPwuKO0XbJ1iL1xqv339ozDxfgi3sx57vXvChif9qSsTFtzhrd/m6W0gGO2gP+MsvRt2f2D9rnc5Krl9kwlGC7Xz1i9Smn8LwxKlW2+ZoWA0EWm7nILROo2FsqFwYJX3sUr6QqlLGKVf3ILR1j0Ex/87+BpEpPVb/oeGULREQhkMRus7DT5zuIBjwR0w/ObceUNZRERERCQXJBWMNh3G/Di4WtqCSHuIVtq3FXSEExu95zXpefjkO7DlZSgqh6E3wLAbM1OniIi0KaZpvmoYxk3A/9JwjV97oPmFOQbwSLPH9SFoUeBa0zQ/CbJWERERERERaVt21DoEoxXkajCa/Q1TFYwmIiKS48beZoWdHdrmfZ8Pb7L+7TASTn654QZYiexfnHR5TbitFWguegA+SHDzrZV/Tq+e5or7wOhb/R1TRPxnKPZDRAJQ2AmOuAs++V5q+88Y7b1v2GbNf+fDYOjXrWDYemVDYcS3U6snEYeA/IRtIq2EfspFJLv6ToOibvaLnHd/kPl6mvvo5sR9jAhMeq4hBb/rRJjyerB1iTcRh2A0gPe+Cic+Dod2OQeR2IlHcz891zRh9/ve+lauCLaWXBA75Nw2bSM8l0Rw4Y634JWjrQVD7YdDxzEQCife75DHIAdI7o4a+aagfbYrEBHJXU7HI0Xd4LCfwbtX0rDmJwG3YyA/JfNmp4hIqlb8yXvfTB5LdxgFpQPt7xJTtw8OboGSPpmrR0REREQk18WTuDvj7g/AjOviyHSE7BfFAdZ7I43vJF5QBhP+EXxNIiIigGma9xmGsRp4GOhB0zc/Gn/eOAzN/PzxLuCLpmnOyUStIiIiIiIi0nbsrHMIRivsmeFKvIk4nANWMJqIiEiO6zgazvwINjwJ22bBttcgXutt34pl8OktcNLT3vrvX+TcNvhqa13cop9D7KB9n0zerDhZR94LAy6F4twMsRUREZEMGPld6HIULPoF7HwbyidC2SCrbc0D/s0TsglGAzjmr9D7bNgxF8oGQ/9LoV1X/+ZtzO06SgWjSRugn3IRya5wEfQ5B9Y82LLN60mdoNTuhdX3uffpdxGM/Ql0PjwzNUly3EJBNj4FB7c2TeP14sAa6DA8vbqCdmg71O331nf7bIjHvIV75Su3E7QlfaHDCKhYntyYb19i/duuJ5z0DHQ7zrnv2ofgva94HzuXTxynK6JgNBERW7FD1l2S7BSVQ/dJ0K4HrP239WGErMXBTjIWjOaywFZExA/JBCdAZo+lDcM6J7DsHvv2yhUKRhMRERERacyMJdd36d0w+ofB1dOamSbUVdi3Hf+obmIiIiJZZ5rmbMMwhgI3At8E+jt0NT7/dxfwv8A9pmlWZqBEERERERERaUNq4zXsi+62betekJthGxHD/tq9uriC0URERHJeSR8Y+R3ro15dBTzZMfG+m16w1h6EHQI66pkm7HMIRjvmLzDsBuvz9Y/Bvs/s+zW+WbERATPJa3qD0u9CGPntbFchIiIiuaD7JJg8s+X23e/D/iX+zBEutt9uGND3fOsjm0KKjJLWTz/lIpJ9pQMdGlzCHjJh8wz39on/gsFJhB1J5rmFgphx2PMpLP9DcmMe2pH7wWgVS5Prv/IvMOKbwdSSC2KH7LfXnwSe8ADMPhVi1dbjSHuIeryW+tA2ePNcmLYJIjYvbvYtTC4UDZqeOG5tEi62MhK0i4i0UjX2F1UBUPT5nQJ6TrE+jvuX9XjzdHjzPPt9ImX+1ufEKXxURMQv+xYk1z/Tx9KH/dw5GG3WZCtEufc5EC7MbF357uB22DIdMKzQ76Lu0HUCtB+a7cpEREREJB3JBKMBzL/VuqC5rR8H1lXA1ldh32Lr8+4nQc9T3c+3x2ucL0ov7RdMnSIiIkkyTbMKuBu42zCM4cCJQD+gHCjECkPbDrwLfGKappmtWkVERERERKR121W33bGtW2FuBqMVOASjRU0Fo4mIiOSlgg7QcSzsdwgzq2dGYdd70GEk1FVa7xsXdIRISdN+B7dC3T77MTqOafjcCDnPFWp07evhv4FPb3GvLVO6HpftCkRERCTX9TjVx2C0HF/zb4SzXYFI4HIxGK3+IqaJhmEM9LhPz8YPDMM4iSSSNUzTfMtrXxEJgsMJlB1Z/tXc8YZzW6S9QtHygVswGsAn34HavcmNGT2Qej2ZUrkquf4bn2zlwWgOoS31wWjdjoPz18Gm56yTtr3OgFcnQPUGb+PX7oGtL1sLtJrb8GTy9YZy/EVSOhIFo61/BE54ODO1iIjkkppdzm31wWgtuL0Jmam/JS4vu93er5MFkAAAIABJREFUJBUR8WL/MnjlqOT2yfSxdKQEyo+F3R/Yt8+9ELocbd2BprBTZmvLVzvfhTlntHztHS62wkH7X5KdukREREQkfckGowGsexjG3eF/Lfmiaj3MmgIHVjdsW/576DgavjAdygY57Ofy/kZBB39rFBER8YFpmiuAFdmuQ0RERERERNqmnbVbbbeHCNGloFuGq/EmomA0ERGR1mf0rfDelxP3mzW55baBV8KEfzQEd2yf47y/52C0RtfkDrwclv0ODm5OXF+QinvDIK3pFRERkQSG3Qhr/wV1+9Mfy8jFSKZGcr0+ER/k6k+5ATyaxr5vJNHfJHe/DyJtQ8gliXTvZ9B5fOZqqWeasPqfzu2DPJxkkuxLFIxWuTL5MaOVqdWSSXUVyfXPdghh0GKH7LeHixs+b9cNhn6t4XH3SbDuP97nmHsRdD4c9s5PrcYmdbVLf4xcFUkQjAZQtRFK+wVfi4hILolWObelsljV8JwTnp6uE53bzDhUrIAOwzNTi7RuB9ZYr892f2gtpC8dCAMug16nZbsyCdKC/0p+n8YXa2RKl6Ocg9EA9nwET3WG4TfDqO9Daf/M1ZaP3r/WPpA8dhA+vBH6nA/hRnchPLAWlt5j3dmwxykw6Cr380x+MuOw6j7YPhuKe8GQa6HTuMzMLSIiIpKPUglG2zHX/zryyfwfNw1Fq7d/CSz6JUx0eC9zyW+cx/Rynl5ERERERERERESkDdlZZx+M1qWgm2MAWbYpGE1ERKQVGnQlxOvg/WuS33fdf6CoHI6613r83pX2/Yp7Q1GXRhvcgtEaXatZ3AtOexuW3Al7PoXaPVDY+fM1jGbLfVNZs5nIkOtg7O3Qrrv/Y4uIiEjr0nHk58cud8G6h9IbK1PrNFMVUlSStH65+lNuYgWcJbtPvRx/dhGRJuJR57aNz2QnGG3+re7tw7+RmTokPYmC0Zx0PgJqdkP1hpZtdXkQjBavyXYFucUxGM0lgGzEt5ILRgN/QtEA2xPCrYWXcJ/n+8NldXoxJiJti9PfKmh6p6XG2rncibKgU3r1eFWQYCHtzONhyhvQaWxGypFWqmIlvD4JDm1run3NAzDxfhh8VVbKkoDFDsGmZ5Pbp+No98DGoAy5Dlb9PXHIw4o/WQF/Z38G7YdmprZ8U70ZKpY5t9fshp1vQ8/P73a4fym8fETDa+B1D8P2N+D4NN+48mre1bD23w2PV98Pk1+HrsdmZn4RERGRfON0zNx3Gmx6zr5t+yyoOwAFZcHVlcu2vuzctvkF57Y19zu3pRLCLyIiIiIiIiIiItKK7azdZru9W0GvDFfinVMwWpw4MTNG2MjQTeVERETEX4OvSi0YDazrGY/8HVRvdO7T/AbEbkEfoWbHG2UD4di/JVfTIz4t9T/8NzD6h/6MJdKqKE5DRMRRp7Fw/L+tD4BoFTw/EGp2ZbUs3xlaiy+tn0ucc9aZSX6ksq+I5AIz7ty2f3Hm6qi3byEs/a1z+/g7rQXXkvtSDUbrf6lz0Ec+BKO5has4iVb7X0euiB203x4udt6n/BiYPCuYehIp6JideTMh7BDu09zOd4KtQ0Qk17iFeDq92dj5SPu7HZX0hw4j/KstkeMfcW6r2Q3L/5i5WqR1Wvm/LUPRADBhwe0QTxBGJcnZ+S7MOhWe6w+zT4OKFdmpo2J54qCxekYE+l8CU+ZkJ1y3y5FwzF+99Y1Vw4vD4NGI9YbKpz+07u4nlupNifscWAWf/cS6WGbG6JbB4Ov+Y7XNmuxjeLWN/UubhqIBRCvdzyeJiIiItHVOx/i9zoR+FzvvN/fCYOrJdbFDULvXub1ml/1r4kSvkxMF3YuIiIiIiIiIiIi0MTvrttpu71aYu8FoBQ7BaABRU9eiiIiI5C3DgG4npbZv7V44uA32L3Hu0+WoZhtcIgbcQtO8Gv7N9McA6HSYP+OIiIhI2xUphVGpBK3meAilgtGkDci1n/INKLBMpO0p6e3cdtD+TabAmCa8lOBEyeCrM1OL+CDF/M/h34RNz9m3RQ+kXk6mxGoS92muZhdE+vtfSy5wC5tx03MyXGHCoV3wTDf/63JS2Clzc2VD/0thwxPufdY9BD2+kJl6RERyQdzhb1XI5W9VKAxjb4ePmr1ZOO52f96E9Kqws3v76vtgwt8zU4u0Tm6BqdUb4cBq6DA8c/W0ZlUbYM4ZDa95qjfCK0fD1NXQLoPHwwC75iXuc+JT0P8i63V8Jp/37Ay9Dur2wac/8NbfjEHVeitEq3ojnPBosPXlC7fg/HofXO9trO1zYOaJcM5SKO2XXl121j1sv33jUxCrhXCh/3OKiGTagTVwcDsU94TSgdn/eysi+S8etd9uhGHMj61jKTvbZlqht50PD662XFSzO3GfaEXLczNV69z3aX5XbxERkQwyDCMEjAXGA/2BbkAx1vWCB4EdWNcPfgYsNk1T1xGKiIiIiIhI4ByD0QpyNxgtkiAYrYgE18mLiIhI7hpyHeycm9q+VeuhYpn72I0ZKa699GrwVdZNsr1cH+qkdAD0PNW3kkRERKQNG34TrH3QPUi2hVy4ftqlhlCuRUaJ+C+nfspN0xyY7RpEJAvcTkxkOoRq20z39q7HQXGPzNQi6YuncLejHlOgoAwK2tu3RyvTqykT4ikGo5W21mC0g/bbw8Xe9m/XFbqd4B7K4aceUzIzT7aM+kHiYLTV/4Txd2Y+gENEJFtSDfEc/g0o6QcbnrKC0vpdAn3O9r8+N5GSzM4nbY/TsVy9imUKRvPLol+2fA0erYR1/4GR381MDWbcChdb9jv3fic9C/2mWZ/nSkjLqO9Dp/Ew5/Tk9lv/GETaw7F/Df4Ck1zn9zmgaBWsuR/G3eHvuAAbn3Zue6IEjr0PhihYX0Ty1MFtMPMkOLCqYVvpQJg8E9oPzVpZItIKmDH77aEIdB7vvu/Kv1rHzG2Jl2C02v0tg9HcLnLveVp6NYmIiKTIMIxJwPXAWUBHj7vtNQxjBnCfaZpvB1aciIiIiIiItGl18Tr21O2ybetW2DPD1XiXKBhNRERE8tigL0PtblhyFxzalty+H98Mez52bm8/pOnjoK9b7XKUdc3vJ7c0vRapsUiZdf1ouARi1Y1qC1vr+Sb+S4EfIiIi4o9IKZzyKsy7Fna8AfHabFeUPkPHSdL66adcRLKvbDB0GAUVS1u2HdyS2VrW/se9/ch7M1OH+KPLUVgpuEncRLjbCda/EYdgtLo8CEaLpRCMtnkGdD4id0IF/JRq2ExjR/4e3jjbCpDzQ1E5nLcSPvo2rHuoYXv/S6D/xf7MkavKj4YxP4bFv3bv9/F34ISHM1OTiEi2pfO3qu9U6yNbwh6C0eJRvRkpqUt0krliGZDF34HWIh6D1ffZt7ldIOG3VfclDkU76o8NoWi5ptdpcN4qeDHJ0JjV90FhRzjit8HUlS+iVf6PufHpYILR3M4NmDF4/xrY+goM/BL0OgPCRf7XICISlHcua3khYtU6eHEY9DoTCrtApzFQ3Nt6jivulZUyRSQPOQWjGWHrYutj/wYfXG/fZ/eHwdWVq7y8H1G3v+W2qvXO/dtauJyIiGSdYRijgT8Dk+o3JbF7F+BK4ErDMOYAN5mmucLnEkVERERERKSN2xPdgUnctq17Qe8MV+OdgtFERERaMcOwbmg84jvWOoNIMTzi8fS62zW/A6+0myylEpNSv94hetD6Wsw4HNrZ0N6um3XNQDxqtYUKoGanFZimm7iLiIiI30r6wuRXrWOTugprW7gdPNUpu3WlSms2pQ0IOM5ZRMSjo/9ov71mV2ohT6mo3tQ0oKi5gVdC12MzU4v4o11X6HZicvsM/JL1b0EeB6PFHcJV3Cy8HT76hnUCsbVxDJsp9j5G+TFw9kKY+AAc85f0a5q2GQo7w3EPwpQ34Ih7YMpsOP4R6wRuazf+V1A+0b3PhseanugWEWnN/PhblS1e3mys3Rt8HdJ6xRO8HqxYlpk6WrtKl/WE6zIYVrv+Eff2/pfAiJszU0uq2g+BC1M4jl16t/XRlgURjLZvIWye7v+4Xmrd8AS8dT7MPAFq9vhfg4hIEGr2wI43ndu3vmL9vf7sNph3NUwfDdtd+ouINOYWjAYw9OvO+1YuBzOJm+C0Bl6C0Wr3tdx2cLN9307jrJtViYiIZIhhGJcCH2CFohk03NWu+Uc9u7b6/SYDHxuGcVGm6hcREREREZG2YUftVtvtBgblBT0yXI13EZfrzeviCkYTERFpFQzDChIDOPy/0x+v/fCW24bdaN+3uE/68zVX/7UYISju0fBhfB5zEIpAuND6utt1VyiaiBejfmC/vf2wzNYhIpKPIsUNxyORUud+RgaCZBNxq8FQMJq0fgpGE5HcUOxyN51D2zJTw4c3ubf3nZaZOsRfJzwGpQO89T3uIejw+Um+SJl9n3UPwRvnwvvXwTtXwCvHWHddeP0UWPFn6+4E2ZZqmODKv8D2N3wtJSfEDtpvD7dLbpzinjD4Khh2A/S7OPV6hnwNwkXW50YIenwBRn0PepzStpKZO9icUG/MjAcTYCAikoscg9GS/FuVDWEPbzh6Wcgr4iRe696+5gE4mKHXjK3ZwS3ObSX9MlfHjrfc2wdcnpk60tWuK1y8D/qen9x+n/4AZoyFJXdZd59pa6IHghl33lX+fz+TCSTf8zEs/rW/84uIBOWg/cIPR3X74IOvQdwh7EhEpLFEwWgAJz5l3ydaZd3gqC3xcj6l8XuoG5+Dedc4H3t2GO1PXSIiIh4YhnEJ8AhQQtNAtPqgM4CdwApgHlaA2kpgV6M+jfcDKAUeNQzjgsx8FSIiIiIiItIW7Ky1v2amc6QrBTl8s+sCw7m2qKlgNBERkVan/yXpjzHg0pbb+pxnfzP3IdekP5+IBG/AF+0DcZxCD0VExF4+r+3P59pFPFIwmojkBrdgtIPbM1PDno+c2wo7J7+gWXJDSW+YujZxv3OXwaArGx4XtHfuu2UGrP4nrH+04edmxxvw0Tdh7oVgms77ZkI8xWA0gM0v+ldHrggibGbYjTRcr50EIwKjvp/6vK1Jl6MS99n1bvB1iIjkAqdwlXwIRvNyJ6YtLwdfh7ReiYLRAF4aCxUrg6+lNavd49xWtz8zNWx9LXGfjmOCr8MvhR3hpGdh2iY45VU45TUo6Zt4v/2LYf6tMOsUiHn4+W9NolXBjFuzG7bP8m+8aLXz60wn6x6ywp9FRHJdKoskKlfC7vf9r0VEWh8vwWg9pzjvv3Ouv/Xkuv2LEvd55zLrZjmL74S5F1jh4U5KArijt4iIiA3DMEYAD2Bdl9g4EK0CuBc4B+hqmmZP0zRHmaZ5vGmaE03THGmaZg+gG3Ae8EegkqYBaRHgX4Zh6Db3IiIiIiIi4ouddfY3ZOxW2CvDlSQnomA0ERGRtqVsMEx0eT/Yiw4jWm4rKIMvvACRsoZtfc+HMbelN5eIZEZxTzjxSQgVNWwb+GUYfnP2ahIRkcyyC8gUaWUUjCYiuaGgg3NbLKCFsY3FY3DIJYDt7AVKTM1nhgHdv+DcXj6h5cm9ou6pzbX5Rdg2M7V9/eK0QHvk9xLvu/xef2vJBRuesN9ud0cLr3pOhpOehrKh9u2DvgonPQOdDwcjZC3s6nwkTH4dOgxPfd7WpN+FiftULA++DhGRXBBEiGemFJYn7rPgJ8HXIa2Xl2Comt2w7HfB19Ka1ex2bqurgLoDwdcwN8HxYXEvKBsSfB1+MgwrfKDX6dDrNDj8N9733f0+LLy94XE8CsvuhRdHwAtDYMHtwQWJZUuQX4+fIZ01u5Lf59AO2DvfvxpERIIST3GRxMwT4PFiePkIWPeYvzWJtEa1+2DetfBsX3h1Aqx9OLn9Nzxt7fd4CTzWDp7sBLNPg30egrSyyUswWmEnKB1k3+/dL8Ghnf7Xlau2vOKt3wfXw2c/TtyvWMFoIiKSMf8DlNAQiGYCPwP6mab5PdM0XzZNc6/TzqZp7jZNc4Zpmt8B+gG/+HyMemXAnwKrXkRERERERNqUnbVbbbd3K1AwmoiIiOSYwVfBxftg0nMw8V/J7TvsJue2nqfCRTvh1Ddh6hpr/HCRc38RyS39psHFu2HKbDh/Axz/b62FFxHxlZHtAtwZioyS1k9HNiKSG4yQFVIUO9iyLVod/Px1+8CM27dN+AeU9A2+BgnW6B/BrndbLu4zQnC0zTWzJWksEPnku3DO4tT3T1esxn57qAj6TIXNL7jvX7ka2vscOBCtgopl1gKnjmMg5Pxm7P8xTahaD6FCqNlhfV1GGDqMtO5I4cX2OWBG7dsiHsdw0u8C68P8/Brs+ucQI2QFINT3iUcBA0Jh22HaLC/PqxXLgq9DRCQXOAWjhfIgGM3L37eC9sHNH4/BgVVQOlBvwDZWtcH6vhd2znYl6Ys7HNs2t9XjgnGx5xaMBlYQlNdj8FRUrEgcijX85vw/pu5/CSy+E/Z7DKxY8hsY8W2ItId5V8HGpxvaFv3CCts69q+BlJoV0QAD+PwMJUslGA1g/1LocqR/dYiIBCHuIZTWSeyQ9Xz77uVWyHO/af7VJdKamCa8cTbses96fHAzvHelde574GWJ99/0Arx9cdNt8RrY9roVUnjeSmiX4o1fguZ0rt5odpzf5xxY8T/2fWedDGctyP/XBonEo1C11lvftR4veNd7nSIikgGGYZwATKEhFK0SuNA0zVmpjGeaZiVwh2EYc4FngNLPxz3NMIzjTdN815/KRUREREREpK3aWecQjFaY28FoYSOMQQiTlmtg6hSMJiIi0noVdoS+51ufb3oONj3rbb+ywe7t4XbQfVJ6tYlI9kRKoccp2Zt/wGWwXjdUFZFWquep2a4AOo5zbnMJzxdpLRT/JyK5I1Jivz3R4mg/uC1q7Xl68PNL8HqfCVPmwJBrG7YN+iqcNR/Kj2nZvziNYLT9S2D1A6nvny6n8IhwO2/BJOse8a8W04SFP4cnO8IrR8PLR8BTnWFNgoU6lavhpcPghUHwXB9rv9cmwqvHwFMd4bPbnMMM68UOwazJzu2dDkv+67FjGNZHKGx9GM3Sn0OR1r9IK1VH3uveXrMTavZkphYRkWxyCkYL50EwGlgBx26CCjrePB2e6QbTR8JTXWDpPcHMk0+q1sNLh8PzA+Cpcph7MURtwqfzhWl6D+eoWpffX2u2JQpGiwUcWL71Nff2DqNg5C3B1pAJoQI4430Y+1/e93m2NzzZvmkoWr1Vf4MDa/yrL9uCPP9Tudy/sRL9vjh570qIpRE4JCKSCc1vKpGquRdAXYCBlyL5bP+ihlC0xlb+b+J9Nz0Pb53v3F5XActtbgSTK8yY/Xaj2b3c+roEK+5fAltm+FdTrnIKkUtH+dH+jykiItLSTZ//a2CFo12faihaY6Zpvg5c32hcgBvTHVdERERERETatpgZZXfdDtu2bgU9M1xN8gocFr5GFYwmIiLSNvQ513vf3ucEV4eIyIjv2m8ff2dm6xARSUfj/In/Y8Cgr2S8lBZ6ToHCzi2395gC4cLM1yOSYQpGE5HcEXYIRgt6ATa4B6MVlQc/v2RGtxNgwj/gCtP6OO5B6OSQklvSN7253r8G3rkcFtwO866Gj26G3R9a4Q5BizkFoxVBxEMw2rYEoQRe1FXAhqfgteNg4R1NFzxFq2DeVdYiLjumCW9NsxaI2bbHYfGv4a0LIO6wkKp2L8wY41yfEYHeZ3n6UiRAzUPk7FT4GGAgIpKr8j0YbfSt7u3RKv+PgQ6stY4Xavdaj2PV8On3YdOL/s6TT0wT3jgX9n1Wv8EKUvo0j8Okkl0Ivnd+MHW0BbUJgp6CCqwyTdg2C+b/0L3fSc+0npP1kRI47OdwqU/f0zlnwr6F/oyVbTGH78nAK6HvBfZtw78Fx/2nZZhGczW7YadNAEkq3M4hJbLkN/7UICISFLdQ2lCSdxR7sj2seRCqN6VVkkirs/Yh++0751r/Rqth8wxY+TdYdZ8VAr7kLvjwm9br4EQW/9K6McmmF5zPN2SLYzBasxuLdJ8EBZ2cx/noZuv7s+uDxDdQyVdxn4PROo5NfAdwERGRNBmGUQSchxVcZgJPm6bp263hTdN8FHgaKxzNAKYahtFKThqKiIiIiIhINuyu20kc+/PM3Qt7Zbia5EUUjCYiItK2DbjMCsNIZNT3oePI4OsRkbar/BgY9o1m2ybAsBuyU4+ISCrG/heUDmq67YjfQrtu2amnsVAEjv1b02sti8rhyLuzV5NIBiVYMSYikkERh2C0aAaC0Xa+Y789XOxcl7Ruxb3TH2N9s2t8V/wPDPkaHPMXCIXt9/FD3GGxU6gICjok3n/n29bCqz4p3g2ichXMPh2q1rr3e2sanPQ09Luw6fa9nziHojW2+QV4ri+cs6hpgOG+hTBrCtTsdN63+0lQ6LKwSjLDaSFcY5XLodtxwdciIpJN+R6MNvBLsPCnLh1M62uMFPs358an7f+ObHoG+p7n3zz5pHKl/THUhqfg6D97CyTNNU6Bv05mHg/nr4PSAYGU06olCnoK4nV5tBrevhS2zHDvN/7XrfOCjEiJ9TqmJkEoXSKVK+Gl8TD+VzDm//lTW7Y4BfBFSmHAF2HTs023h4pg+Degw3DociRsfc16PTz/R/bjzDwejvkrDLs+vTrTCUZb+y8Y91/pzS8iEqS4wyKJcDGcvQC2vAwff8v7ePOuhkgZnPA49DnbnxpF8p3bscSBdfDW1PSDb+ddZf3baRxMegHKBqY3nl+czgc3f78kVABDvw5L77LvX70BPvz8wslBX4EJ/7Qu/GlNkg0KT2Skw515RURE/DURKPv8cxP4XQBz3ANc9PnnZcBxwJsBzCMiIiIiIiJtwM66rY5tXQt6ZrCS1CgYTUREpI2LlMDJL8HmF2H3+y1viFjQEXqcDD1OyUp5ItKGGAYc/Sfod4G1Vr/jKOh1FhSUJd5XRCRXlA6AMz+EzdOtm0L3PBW6Tsh2VQ36XwIdRsPWlyHS3sqAKOmb7apEMiKU7QJERP5P2CGALJaBYLT5t9pvL+oa/NySm8KFTcO2/LL6PuugM0hOARLhIjA8/ul/+1Ko2pjcvBufg3nXwovDEoei1Zt7EdRVNN225RXvcx7aBm+c23TbBze4h6KBtRhTsi/uYXFXxbLg6xARyTanUNN8CUZrPxSOe8i9j1PYTao+/YH99jUP+jtPPtnwpP32mp3O4Xu5rvkb9F7MOcv/OtqCA6vd22edDHPOhP1L0psnWg1LfguPGPBEaeJQNICRt6Q3Zy7rNsmngUxY8BPY5yFgOpc5BoUWQ++zYdxPG+5wU9gFjv2rFYoG1hvoI78No35oBfA4+fAGWPDT5J8XqzbCwp/Bu1fCsnuS27exA6v9/5soIuInp2C0UIF13D/iZjh/A3Q5xvuY0QPw5jkQPehPjSL5zu3mJR9/O/1QtMb2LYTFv/RvvHSYJphx+zbD5kYyY3/ibdy1/4ZNz6deV65yej5O1eCr/B1PRETEXv3drkxgqWma8/ye4PMxG5+k1B22REREREREJGW763bYbu8UKacwVJThapIXMexvGhL1++YbIiIikrvChdD/IjjiLjjq3qYfh/1MoWgikjmGAT2nwLjbrfAehaKJSD4qKofBX4Wxt+VWKFq9TmNg1Pdh2PUKRZM2RcFoIpI7IqX226MBB6O5ja9gtLatMIBgNIBVfw9m3Hpxh2C0UDuoq/Q2RqzaOXDEzsJfwNwLYM393vep92yfpo8XeFzwVG/3vIYwtdp9sOs99/5H/h7adUtuDglGaf/EfQ6sCb4OEZFscwpnCeVJMBrAoCvh7AXO7TGFwGRVvobwpBKMVrG0dS6KD1I8CpUJgtEAtr4KM8bA9jdTmyd2CGafBvN/6H2fk1+2LtporUbc7N9YZhzWJgipzHWJQr7H3QEXbIGzPoPz19qHOxgGdBjhPs+in8Gb53kPmziwFmYeDwt/Cusehqr13vZzUrEivf1FRILkdPwVanS3+dJ+cMY8OGeJ9bd60Fe9jf1aDl4gIJINBR2d2za/4P986x51DiTLJLca7ILRCtrDJR7fz9jyUmo15TI/F62dNd/7TXNERETSM6bR5+8EOM/bDnOKiIiIiIiIJKUqVmG7vVOkS4YrSU3EKLDdXpfKNVciIiIiIiIiIiIiOUhXwIpI7giX2G+PBRyMVrHcua1sSLBzS24L2d9FKW2bX4QPrvceUlYvdgg+/SE8XgyPGNbHm1Nhzyct+9kJF0E0iTk3PA4HtyfuV1cBi3/lfdzmogfg6e5QsdLbfHbeOMtaWFWzG+sG1C5GfDu1OcR/vc+BUIKgi9q9malFRCQTNj4Dr50Azw2A974KNXus7bGD9v3DeRSMBlDkEjy6b3Hm6mir7BaS1/vom94DgHJJqhfpfXCDv3W0dlXrklt0/8l3U5tn83TY9a73/qECKD8mtbnyRY9TYNLzVpBXouNiL5belRuhF6lyDPludBfmdt2h82FQ0MF5nPbDE8+17XV4rBBePwXm/whmngjTR8E7X4JDO5v2XfFnqN6UeEyvKpb5N5aIiN+cjhmb/50yQtBxFPQ+EyY+4G3sfQvTD5cUaQ3cjmOCEKuGR8PW+wkvjoDZp8Ou9zNbA4AZc25zej1bUAadDks89pr7oe5AanXlqriPwWidx/s3loiIiLvGF9gEecDReGxd1CMiIiIiIiIpq4rZn1suDbfPcCWpKXC41iRq5uF1YiIiIiIiIiIiIiI2FIwmIrkj4hCMFg04GO2tac5t424Pdm5pu1b9Hd48F0yXEK9oFRzcBrEaK0xkxhhY+tumwWebX4TZpzYNFIu5LCbvfU5ydXoJLtg1z3kBu1c1O2H6cNj8QupjfPztxMFvZy8Cw0h9DvFXQRmMTBCsUbsvM7WIiARt04sw92Lrb2v1Blj7b5h1ihVg0zyApV64OLM1pitS6tz25jnJh8JKctzuag3sAAAgAElEQVSC0TY8DvOuzVwtfnE6rgUoP9a57dA2qFjhfz2t1cEtyfXf+2ny31/ThJV/TW6fgV+CovLk9slHfafCucvgshr44qH0A9Le/ZI/dWWDUxhist+TDiO8993xBiz5Dex8xwosW/8IzDwB4o2CO5bdk9z8iRzc7O94IiJ+cnoudrjbvNVmwNTVEPGwQOSz26zznH4G/oiId5UrYNtMmD0l80GFbmHMhstNao7x+DrincuSqyfXJRNe7ab3uf6MIyIi4k2PRp8HebDReOyeAc4jIiIiIiIirVx1zP56tpJQfgSjRRzew4v6dY5ZREREREREREREJMsUjCYiuSPsEIwWCzAYLXrQCqawY4Sh07jg5hbZ8RbsW2jftvxP8Fx/eLYXPN4OXhoLB9bY963dC4t/3fDYKaQs3A56ne6+yKi5RCEJO9+BOWd4Hy+RD76e+r6r/gY1u5zbz5oPncakPr4EY/ydMOF+53YFo4lIa7Hyz0CzQNR9C2Db61C53H6fsoFBV+Uvp+P5eusfzUwdbZVbMBpY33+nEL5c5RTMAXDSs+77bnnZ31pas3gKd4nd+pr3vvuXwDPdYfus5OY4/K7k+rcG4SK4cJt7n67HQZejnNs3PBl8wHxQnMIQw0XJjVM+Ib06KlemF9qdSPRgcGOLiKTL6e7xiUIqywbDWZ/CkK+591v3sHWe8+lyWPdIajWK5LtUjr/rlQ5s+r5V1+NSGydaBQt/mnodqTBjzm1ur2e7efwat8yAPZ8kV1Mu8ytActgN/owjIiLiTeO7HAT5Jm/92AbQJcB5REREREREpJWrih2w3V4aLstwJamJOKwJiDq95yciIiIiIiIiIiKSZxSMJiK5I+IQpBDkgt6KZc5tfXQXdcmAj29u+BmPHrQCBuZeBB9/C2r3eB9nxR/BNKFmD8QcFllHyqCwExz9R+/jVm+0/q07YIVLrH0IDn6+UL92H8w+3ftY6ep1lvU1OInXwaYX7dtCRdB5fDB1SXoMA4ZcDcc7LIat25/ZekREghCtgq2v2rfNOQNih+zbOowKrqYghMJWEKuTNQ9mrJQ2yTDc280obHwqM7X4xS0YLVICF7mE4u5f5H89rVUqwQyf3gJbZzZ9/qraAGv+BUt/B5/9Fyy4HeZeAjPGuAcY2xl8DbTrlnxdrUFhZ5i6Fkr6N9powBH3wBUmnP4unPkRlE+039+MwfY5GSnVd06/84nCeJrrcYr7a0cvdr0H+xbBpz9Mbf+icuc2p9fsIiK5wOm4IGR/t/km2g+BCX+Hy+OJ+9ZVwLtfgvevs44dVv4N9i1OrlaRfJVqMFpRV5i6Bs5eYB0XXmHCqW9CuDi18dY86F/4lhepBqMB9DzV2xyL7/ReT64zffi/6X8J9Doz/XFERES8a5xuH2QwWuM3kF3elBARERERERFxVx23D0YryZtgNPv38OoUjCYiIiIiIiIiIiKthP3tIUREsiHsEIwWCzAYrXKFc9ugq4KbV/JD6SDYvyTYOXa8Ba8eCxMfsBYC7luQ+lgr/mwFkjhpP9T6d9iN0PU4WPJbWO8QRlVvyW9gwOXwzmUNQYKhQjjpWajZ6f33s9cZMPQGqFwO83/kbZ/GinvBKS9ZwQuvHOX8/7L5BfvtBe2Tn1Myq7CT/fa6fVboX6KwFxGRXHVgLcz2uIC3uQ4j/a0lE8LFzkFvu97zZ46oAmVsuYWI1TuwJvg6/OT2NYUKrXC0IdfB6n+0bHcLwZamUglmiNfCnNOhyzFw8nTY9jq891V/Fu8bIRj+zfTHyWdlA+Hs+bDxGSuQuvskKD+maZ9hN8Luefb7v3kuXB6zvpf5JF5jvz1UZL/dSbjI+v4s/W3qtSz9bXr7n/mp9dq1ZmfLNgWjiUgu8yOk0jCs4KaXDkvcd/U/G+8I438JY37sfS6RfJTqYqQBV7Q8RxoqsM7fr7k/tTF3vQfdT0pt32SlE4w28EvWa45ENj4FS++BUbckV1suSuW11ZG/h8Iu1g1vOh8Bvc/SeXUREcm0xidxglyB3fgPpYcUZxERERERERF7VbFK2+2l4fy47rzAsH8PL2p6uI5MREREREREREREJA/k2eo4EWnVIg7BaNEgg9FWOrf1nRrcvJIfMrUYf/9iKxwtnVA0gI9vhg9vsm+LtIfi3g2POx8Oh/3c27gvH940WCJeC+9eAfsXea9twj+g3zQYfSu06+l9v3r9L7P+DbeDsz5z7le1zn57QYfk55TMKnAIRovXKThARPLbrMmphVGVDoKC/LjzZBO1e93bTTP9OaL2d+ps87wExh2yCejJZU4hSdAQlNTlSPv2nW9DzR6oq4Sld8Pbl8IHN8C22bDxWZh3LbxzBaz8K8Rc5mkL0gkz2/MhfPZjmHe1P6FoAEf+Aboc4c9Y+aywMwy51gp1aB6KBjDoSvf9NzwZTF1BcvpdDCcZjAYw7o70aklVuAROfAJK+0H3L9j3SfS3UkQkm5wCU0NJZg10HAtlQ5Oc3ITPfgJ70zxHKpLrUgkm7nUGjP+FfdsRd6Vey+uT4OPvwJ5PUh/Dq7SC0b7s/f2aT78P+5J47yJXxVN4fTXyOzD4KzD2NuhztkLRRERERERERERERBJwCkYrCeXHdXsRI2K7PerXNTwiIiIiIiIiIiIiWaZgNBHJHZFS++3RquDm3Pm2/fa+08DQU2Sb12MylA7IdhX+6DCy5SIYp985L+r2w8ZnvPXtOBpK+jY8Hv+r5Ocr7tXweSgCo36Y3P6R/LhzV5tW6BCMBvBRhkIKRUT8tvZh59DORHqf5WspGdN+mHu7H2EwsUPu7aksHm4N4gm+LwCHdgRfh5/iDncvNUIQ+nzhfIeRzvs/XQ4zRsOnP7BColb9DWZPgbkXwpr7Yf2j8OGN8OZUiLXhO6WmEszQ2Op/Ov9fJevsRTBCx36eGCE4/hHn9tX3Z64Wvzj9HIXs73DsKlIKR/9PevUkq+fpcMEW6H+J9ThcbN9v7b8UyCgiucvxuTjJYDTDgDE/SqEA03qeFGnNkj3+nroaTn7Z+eYfReUw5rbU61n+B3htImx5OfUxvEgnGC0UhqP/BGd6DHB7aRyYce+15aJkF601vjGOiIiIiIiIiIiIiCRkmiZVMfsbdJaF8+O684hh/x5e1EzzWiARERERERERERGRHKHUHxHJHeES++2x6mDmi1bB9tn2bZ0OC2ZOyS/hQjj1LWtxc77rPqnltnY9oGxI6mMeWOOtX79Lmj7udXrywYPdTmz6uKRPcvsX5Mcb1G2aWzDamgf8CdIREcm0T7+X+r4DvuhfHZnU7ST39ppd6c8RO+je3laDFKIJvi8ANTuDr8NPTmFljUOSOh0GGPb9AKo3JZ5n22vOrw3bgnSD0fzSYzJ0GpPtKvJL7zOd23bMgdr9mavFD3GHsLBQUWrjZTpktOsEKOzY8DjiEIwGsG1W8PWIiKTC6bgglZDKwdfAkb+D4iTP4y37HTxiNHxMHwXrn0h+fpFclczx99DroWxwy5ueNDfwivRreuNsiLuEl6XLLcQ8UTBavc6HQ+lAb323z/HWL1clG/o+9vZg6hARERERERERERFppWrMQ8SxPy9ekufBaHUKRhMREREREREREZFWQsFoIpI7Ig7BaNGAgtH2LXZegNLn3GDmlPxT2h8mvwqXRRMHfeSy4d9ouc0wYMz/C3bekr4w6paW24Zc532MHpOh68Sm25JdUFnQIbn+knkFLsFoANvfzEwdIiJ+qd4Eh3akvn++HncM/6b7gubqjenPkSgY7f3r2mZwQvxQ4j75FjQadwhGa3xRX1F5y2PFVGx9Lf0x8lUuXAxphOGIu7NdRf4p7Ax9zrNvi9fB1lcyW0+6nH7nwykGo5UNhgGXp15PssLtmj12CUZb/odgaxERSZXTc3HIflGFK8OAkd+FCzbBJZUwOsXzkBXL4J0vwpoHU9tfJNckc/w94lve+nUcDX0vSK2ext6+2LktWg3Vm1Mf23QJXQtFvI1hGDDmNm99t8301i9XmS7BaCX9mz4uGwr9Xf7vREREMsv8/N+JhmFMCuIDmJDNL1BERERERERah6pYpWNbabgsg5WkzikYLWo6vOcnIiIiIiIiIiIikmc8XmUsIpIBYYdgtFhAwWg7HO4WHymFLkcFM6fkr1AYht0IO+dmu5LkDb4GygbZtw25Foq6wtqHYOPT/s7b+1yY+E8osLlr1jF/gY7jYMsMKOwC7bpB1QaoWtfQp7CTFYo26vvWgqfGinsnV0skP+7c1aZFiq2fhdo99u2NfzZERHKZacKiX8DCO1IfY+rqln/78kWXI+DMj+Hlw+3bZ59qLWI+7Bepf42JgtEAVv4ZBlya2vj5Kurh++IUDJ2rnBaCNw/mGPRl2PVeenMt/70VpjvudjDa2H0E4i4L7oPSYwpEq6xgu4KOMPpW6HxY5utoDSY9D486/Mxueh4GfDGz9aQjVmO/PVSY+pjH/RsqlsPeT1Ifw6tQEsFo29pwGKOI5Dan48V0nosBCspg/K+g4xhY/xgc3Aw1O61Aaa+W3g2Dr0qvDpFc4PV12eCrrMAzr058HJb9Hra9DiV9YOj1VoDWkv+G3R/C7nmJx9j0HBxY2/T9hHgUPvkerPqrVXuHkXDik9BprPfawD0YzS1gvbmh11nvaax7CDY+S0P2SjNLfgOH/3dSJeYUt5+T09+znhP3zbfezxx5i/XaSkREJHcYwKMBz2F+Po+IiIiIiIhISqpjBxzbSvIkGK3A4eZGUbebb4iIiIiIiIiIiIjkEQWjiUjuiDgEo0UDCkab/yP77e2Htb2F8OJNvwuhz3mw+cXs1VDcx1o4mIwRN7u39z3f+qjeBM/1S722xkbf6r7oyAjBiG9aH6ko7Z9c/8JOqc0jmTXkGmtBl53YoczWIiKSqvWPpReKdsTdUDbYv3qyofN4KOnrHHKw+FdQOtBazJwKL8Foez5Nbex8Fvfwt7J6A1SuhvZDgq/HD06BXaFmp7OGXAcf3pT+fIt+ZgUADP5q+mPlEzPDgXmX1bX8P5TUGYYV4r3yLy3btsyAWC2E0wyzcVO7D7bPgeqNYESg8xFQfqwVLp4MM+4ShliUen2hCBz/MMwYlfoYXoWbB6O1s+8nIpLLHIPR7BdVJMUwYNCXrI96Myd5vxHF/sWw6j7rPGa77unXI5ItXoLRyo+FI3+f3LihAhj9Q+ujsaP/aP27+E747MeJx3lhMFwWbTieW3YPrPhTQ3vFMnhpHFxWm9xzg1/BaAD9plkfAM/0hEPb7ftVroL2Q5MbO1c4HRsbESjpDUf9LrP1iIiIJCcToWUO6agiIiIiIiIi3lTFKm23GxiUhEozXE1qIoZDMFq+3TxTRERERERERERExIGSf0Qkd4QdgtFiAQSjLbnLua39cP/nk9YhXAQnPgVfeBFG/dChj8PPsV9OSPLGyl2Pg07jvfUt6QtT1yZfU3NTZruHovmhuLcVqOKVfq/zw9DrndtqdmWuDhGRdCzzsHB5wv1w6QH4wnToMcX6OzXup3D6PBh1S+AlZkRRV/f2DU+kPnbUQzBatNIKA2pLvHxfAKaPgEW/CrYWvzgtnDeahWqFCmDqan/mnHcV1OzxZ6x8kemLIRWK5r++0+y311XAno+Dm3fvfJgxBuZeCB9/Gz76Bsw8Ht6alnzIfdzlOTuUZrBbhxGZeU3YIhit2LmvHwFDIiJBcHo+dlhUkbZhNybX/4Ovw/SRsG12MPWIZILT8XdxHxj3MzjhMescu983+xj0VYi099Z37b8aPl/zoH2fN85Nbn4/g9EacwuQe3EYmHmameI1KFxERCR3mQF/iIiIiIiIiKTFKRitOFRKKJ3z1hnkFIxWl+mbJIqIiIiIiIiIiIgERFfOikjuiDgFox0CMw6GT1mOsRqYf6tze+cj/JlHWqdwIfQ51/rofRa8db612Byg7wVWcNnci2HLdP/nHn8ndDsxuX0m/BOMJG7GXNInufEbM0JwxkfQJQO/Q4ZhLf5ffq+3/h1GBluP+KP9UOc2BaOJSD7Y9jrs+dC9z+BrYMjV1ud9zrE+WqNEwWjbZqY+dsxjAFjtbijulfo8+SZ+yFs/MwYLb4deZ0D50cHWlC7TYSF482A0sEJzi7pBzc705517AZz6Zvrj5ItMBqP1PD1zc7Ul3U+GSClEq1q2VSyFbsf5P6dpwvtfh4NbWrZtmQ7P9oYzPoAOHgPJYjXObeGi1GqsZxgw6VmYfToc3JzeWG6SCUZzaxMRySanRRLphlQ6GfBF2DUPVvzR+z61e2H2FPhijXWuViTfOP2e9Z0K424Pbt6S3jDxfvjwBqjZ7d73/Wth0/PWa4WKZfZ9tr0G+xZDpzHe5g8qGC3Re3qPhqDfhRApg24nweCrIZQHC9ocXw8rYFdERHLaBhRaJiIiIiIiInmiKn7AdntpuCzDlaTOKRgtqmA0ERERERERERERaSUUjCYiuSPsEIwGVvhBpNSfebbPcW8f9BV/5pHWr8fJcOEO2PMRlPSF0gHW9iHX2gejTZ4F7YfBkjth5V8Sjz/xAeh0GBzaAeXHQFF5cvVN22wtdkpGqAAi7SFqfxcsRyX9Yeoqa/9MSSYYreOoYGsR/wz/lv1iWAWjiUiu2/U+zD4tcb/eZwZfSy4o6hbc2F6D0WraWDBazGMwGljB06v/kcfBaDaL2I0QDLsBFv0i/Xl3vAU73obuSYYS5yun73MQhl6XubnaknAhdBhtH875/rUw5Br/59y/2D0MtG4/vHosTH7d23NNvNa5LZRmMBpAx9Fw/nrr9fvye2H9Y+mP2VzzYDTXvgpGE5EcFXN4Pg7qnJ8RgqP/AKO+D/sWwLJ7Ep+/r/fmeTD51WDqEgmSUzBxJgKv+l8MPU+FihVQuwfeOMu57+YXEo/30li4PObtxkZBBaN19HBTlI3PWP+u/TdsmQEnPZPcDWWywel1WkiXd4iISO4yTXNgtmsQERERERER8ao6Zn+tfEm4fYYrSV2BgtFERERERERERESklfNwlbKISIa4BZ9Fq/2bZ/8S9/Zkg6SkbQsXQbcTGkLRAPpNgwn3Q9kQMCLQ/Qtw7groORlK+1mPvRh8FXQ50gpQSSYUrctRcObHqf8sF3VJfp/T3s5sKBpY3/d2PRL3K+nX9P9HcltRV/vtmQxG2zwdZp8O00fChzdBXUXm5haR/LXwZ4n7RMqgVxsJRisdGNzYyQSjtSVuoUJ2Vv3NCkjLZfEkF4KPvQNG3+rP3J98z59x8oFTMEO6Jj0H3U+2XieUDoJj/wb9LwlmLoEOLoEQ+xb7O9fuj+ClcYn71e2Hxb+ybzuwDuZeBC8dBnMvhj2fOI8TKkypzJbjhKHrBDj+YRhzm/V6MlIK/S5yfu7oMML6OfY0frNgNLfASgWjiUiuclok4ddzsZPSftDnHDjS400QALa9Bi+OgE3PB1eXSBCcjr8zdX69sBN0PdZ63+HY+9If79EwVKxM3K92j3NbOsFoAOd5mL/epufg0RDMPsM6rs1VTq+HDQWjiYiIiIiIiIiIiPihKnbAdntpqCzDlaQuomA0ERERERERERERaeV05ayI5I5IiXNbzMdgtNq9zm2j/59/80jbNuRq6yNe13JBk5eQro5jndsGfhnWPWTfdvp70HWi9zrtFHaGqvXe+5dPsBYvZlooAuN/De9f695v7E/AUBZs3mjnEIxWvTEz8295Bd6aBmbMelyxHPbOt8L/9HMkIm52vp24z2G/gIL8uaNkWsqPDm5st6CZxmrbWjCaw6JpN7s/shbE5yozyYXgoTAc/t8w/k6IVkKoqOG1ZEFH62/5snvhk+8mnnvPhxCtcg/wbi2CCEbrfQ70mQp9z7d/TST+6+gSjLbhCejkIcDTi8pV8Oox3vtveq7ltpo98MKghsf7FsLGp53HCBd5n88LIwTjf2n9XTZj1mvLmj2w5kE4tL2hX9lQOPNTiBRbX/fME5u2N1fQoenjeI1zXwWjiUiucgrbzdTf8s6HWccQm1/w1r9yhXUe5wsvQp9zg61NxC/ZDkZrbOh1sH8RLP9DeuNMHw7nb2h4n6Bmj/X1FLQH04TqDTBrsvP+TuHXXrUfagXRb33F+z7bXoMdc+CsBe7H0tni9Ho43e+ViIiIiIiIiIiIiABQ7RCMVhJWMJqIiIiIiIiIiIhIrlC6g4jkjrBLMFq0yr95Nj/v3Nb/Iv/mEQH7xUxdjobiXu77DXEJ+xr6NfvtA7+cfigaQGGX5Pp3cglxC9qQa9zbT3gMhn49M7WIP0oH2W8/uAW2vBr8/Kv+2hCKVm/Xe7D30+DnFpH85hbkWzoATnoGRnw7c/VkWxcPwWjzrk4tkCl20Fu/mjYWjJbKBW2vTYDqzf7X4pfmf5PrJVoIbhhWQFG4yAr9LezcEHDqFsjd3BNlsOZf3vvnKz+D0bpPgsN+aT3nGYa1TaFomdHbJQxm0c/9+39emELA2paXGz4/tBOeLk9u/1Bh8nN6YRgNzydFXeDsBTD0BitUY+QtcPq7VigaWGEbp70DJX3tx4qUQnmzwDincCFQMJqI5K6YUzCazyGVbk562gq67TDC+z4LfxpYOSK+c3rtlq3j5jE/aRnwmoo198PB7TBrinW891RneLobPN0Vnh/ovq8RTn/+k2ckv0+8Dhb/Ov25g+AUfu4UFC4iIiIiIiIiIiIiSamKV9puLw3nz41PnYLR6hSMJiIiIiIiIiIiIq2EgtFEJHe4LVCPugRNJKOuEvYtdG7vcpQ/84i4CUXgiHucFxSWT3QP/Op2Agy+qum2rsfB0X/0p75kg9E6jPRn3lRNfMB+e4dRMOCLma1F0uf28/TGmXBoV7Dzb3IIz1xyV7Dzikh+M03nAKeux8H566DfBQ0hQW1BSb/EfdY8CJ/emvzYXoPR6iqSHzufOS2aTmTuhf7W4acgFoK7BXLbmXcV7Pk49flySfVm2PgsbJ9jPW/VMx2+z50Ph4jHu+D2vQAuj8Opb8LY2yAcUJCVOOt8WEMAoJ0Pv5H+HPEobH4x+f3eONsKRAN45/Lk9w9nKIynXXc49i9wystw5N3QrlvT9vZD4PwN0P+SptuNEBz955Z19r3AeS63/ysRkWyK19hvz+Tf9lAExvwIzl0GV5jWMUYiez6G6k32bfuXWMdAez7xt06RVDkF1josXgpcu64wOoXX5s3tfBee6wvbZ1uPzRjU7ILaPYn39SMI1wjB5NetwNpkrHsIFtwBH94E6x+H2KH0awEw47D3M1h1H2yebr0/mdT+CkYTERERERERERERCVJVrPUGo0UVjCYiIiIiIiIiIiKthK6cFZHcES52botW+TPHK0c7t42/0585RLwYeDl0GmctEorXQlF3qFwJHUZA/4sh3M55XyMEE/4J/S+FXe9Bh9HQ97zkF/w4KeycXP9uk/yZN1V9p0H4ppYhKQOvyE49kp7S/tbPv9MCtG0zrd+fTDu4NfNzikj+cApFAzi8jQYrGoZ1TFG7173fhifgqN8lN7bXYLR4bXLj5junxfWJ7P4A9i2CTmP9rccPjgvBw6mPmcox85LfwIlPpD5nLlj9AHz0jYbfn24nwMmvQEGZ889OST+YMhuesglO7n02DLgCqjdAx9HQZ2rbCn/MVVPXwfP97du2vpr++PsWQN3+1Pbd8CT0OQe2z0p+X6dQ8WwwDDjhcRhwufV6vLCT9fvQ+fCWfTuPdx7HKXhIRCTbnJ6fsvlcbBhwzlKYMcq938xJcP6aptvm/+jzsPvPQ2EHXwUT7tdxi2SX0/F3KEvBaAAjvgMLf+pcW98LrGN/t9Doba+lNnf5RP9CY3tOgbM+g43PWPXGDsHqfyTeb9HPrX9X/sX697yV0H5o6nXEo/DulbDh8YZtpQPgCzOg0xhvYzi9Hg7p8g4RERERERERERERP1THDthuLwl7vIlgDihQMJqIiIiIiIiIiIi0crpyVkRyRyhihaPZBR3U7Ut//IrlULnCub2jx8UIIn7pNDb1AAojBL3Psj78VmQTfOCkuA+UuwQOZkJhJzjhMXjncohVW9v6ToOR381uXZIaIwTtekHVWvv2fQuALASjacGsiKVqI6z7D1RvhO4nQ/9L9PsB7oFUbXnB6shbYMFP3Psc3AybnoetM6GoHAZ+CToMd98n6jEYzW3BdmvktGjai/WP51kwWhq/V26B3E42PAnP9oUj77HCifPpeS8egwX/BUuaBYHvfAfe+zJMetY9mKGwM5y7DGafZj33A3Q6DI69D0p6B1u7JK+0H7TrCYe2tWyr3gC1+6GwY8u2eAzWPQx7P4XinjDsG1ZoXnP7l6ReW8VyK2wvFan83gbJMKDfBdaHa78QDP06rPp7y7aYgtFEJEfFHMKFw1kOqew4Eo79O3z0TecA5Kq1sHcBdD7Merx9jhVw29iaB62Psbdbz9ElfYKsWsReLgajRUrg6P+FD77Wsq1dDzjpaesYaOtrMOcMf+fud6G/47UfAqN/0PB48FUw92L7Y2QnLw6zXvsNviq192Devtg619FY1Xp4aSyMuQ1G/8j+eLuxeACvh0VERERERERERETk/1Q5BKOVhvInGC3i8N6CgtFERERERERERESktfDp9ssiIj4pKrffXrM7/bE3POXe3svnxRwi+aowiWC0cXdYi72zre9UuHAbTJ4F562Ek56BSGm2q5JU9b/Eua16U+bqaCKPAlBEglKxHF49Fj77Maz8C7zzRfjwhmxXlRs2v+jc1pYXrA7z+PPx1jRY+WdY9HN49RjYNc+9f/yQt3E3Pg1bXvXWtzVIJxitar1/dfjJaSF4WoGDZmq7HdwM71wG730ljbkzLB6D2VNahqLV2/ScFZDmdDFk/V1lO4yAqWvg9PfgrM/gzE8UipbLRn3fua1yZcttpglzL4B5X4Xl98L8H8GMMVBrE1BfsSz1ug5ugsrlye83/BfDx+AAACAASURBVFv5FUbYXPlE++1xBaOJSI5yen4KFWa2DjtDvwbTNkHnI5z7rHmg4fOVf3Put+jn8NI42POJf/WJeOV0/J3NYDSwQsDsjl2G3tBwPNbrdCgd5N+chZ2tkMIgdTsBpq6CKW8kt9+GJ+CNs2HhL5Lbb8FPW4aiNbb4V/BcX/vj7cYcA/Ta8HkmEREREREREREREZ+Ypkl1vNK2rSTcPsPVpC5iOAWjRTHNFK+REhEREREREREREckhOZBkIiLSSGGAwWhugRUnPAbhHFjcJZILCjt76zf+ThhybbC1JKOgPfScDO2H5vfCeXEPRmvXPXN1NKGfKRGW3g2HtjXdturvsH9pdurJFWbcPSAu2wubs6mo3DrOTkZdBSz8qXufeK338Rbcltz8+cxp0bQXNbv8q8NPZsx+ezqBg05ha16t+w/seCu9MTJl8wuw4033Pu9f5y2ALhSBrhP/P3v3GeZWfedt/JY0fdx7t3HFBoyNwfTeHXpCKMmmV9iQPEvabsqm955N2M1uCmwCaSS0UBIILfSOKabZuPfumfF4RtLz4uB101GXRtLcn+vS5dG//kbWaCTNOV/BwJkQjRWvRhXftI+F9215I5isux2evBKujcB10X3fL2lfAn8c+EZ/DK6rC75+/qvha5/xRPq6lv4JnvpEdt/D7g75bu5zKkmsMXV73GA0SRUqNBgt5PGs3JqGwtyfhfe/9IPgNVqiG5b8Lv1aOzbCc18Jvl51F9x1Etx2CDzxL9C5oXg1S3sLDbzq4fcPonVwwi0w5vwgDLFxMMz4Vzjwc3uOOybDz1a2GgbBSX+Dhv7FWS+dulYYfjwcdV3uc+d/Pnh82L4m89jt69I/Z96pa3PwfHvZTeFjwsLPe3MAvyRJkiRJkiQVyY5kJ90h78O2xvqUuZr8hQWjAaHfnyRJkiRJkiRVE4PRJFWWxpBgtB0FBqN1rof1j4T3j7+osPWlWtIwKPOY0x+DAz4NEZ9KqAQGHxre192+6+vta4JLPIeAnHTSfTqaYXsSLA458fX1X5e3jkqz5v7ghPowvf2E1eEn5j5n5R3pQ75yCQDb8ER2Jy/XgkIOZutcW7w6iinse4oW8HPVZ0J435TLsltjcY6Bfz1leZqT7HfasgC2vZa6r6eDGZSfaAz6H5i6b/Vd0LYYbj0IFnwvu/WSifCQwp0O/BwMOgTOfCa3WjPZ/18K+3mvBGFBQonO4L2qYr2WkaRiCXtcCgt67Anp3jcCuO882PpKdmst+3MQ+P33U2D13bDxKXjp+3D/+enfJ5IKEfaaNs3JS2XTOBiO+xNcuBUuWAuzvrZvMHK/afmvX98f3toGlybhLeth0JzC6s3VuAth4CG5z1t9N9x9JiQyPC9ee19ur83vOxeWhXyok8FokiRJkiRJklQybfGtoX2tsb5lrKQw9WmD0TweQZIkSZIkSVL1M81EUmUJC0brLDAY7aUfh/cd/vPC1pZqTWOGYLTmkcFJ71Ipjb84dXt3G2x8Fq6rhz8NDy6/a4SnPhGENhQibeCDT5vVyyWT0B1yMNDCq8tbS6VZcUv6/t4eLBRrzm/etoXhfYkcA8C2vJxfDdUml8C4vXWuK14dxRT2fx2JpW7PRv8DoXX8vu0DDoJD/wPGvjnzGq9clf/+5fLaz2Hhr7Ibu+be1O2VEMyg/Ayem7p94S/hxgnpH2ML2W/gTJj55eKtO+HS4q3VU8KChHZshOuHwJ+GwvwvGr4jqXIkOlO3hwU99pTzV4b3Lb8ZHn5P9ms9+sF929bcB8szvNaT8hX22q2S3j+INYR/UER9v/xC0CEIvq1ryb+uQkVjcMrdsP+VMOiw3OZufBKWhHxowE7ty3Kv6b5zUodShr0erqT7iSRJkiRJkiRVqbTBaNHqCUarSxuMVsCxZJIkSZIkSZJUIUx4kFRZGkoQjJZMwHNfDO8fOCv/taVa1Dwmff+cH0PEpxAqsYaBqds718Gdx0JyrxPDXvwOLPh+YXumC5QJOxFQ6i12bAzvCwtM6y02L0jfH60rTx2VKtaU37wtaW7XXA/aSrdWLck1MG53lRqMtvfv+50iBfxcRSLB89low662WAsc8r2g74hf7tkXpqtCH/val8HTn4ZH3lf4Wr398auajT67vPvtHowx5tzirDnt/8GgOcVZqydlChLq2gLzvxCEGUpSJQgNRsvi+VE5NY+AYceH969/uPA9lv1pz+vJJGx6Hhb/HtoWF76+eq94W+r2SgsgTCefMNx++8P0TxS/llzV94NDvgNnPAoXbYeBs7Ofu/RP6fs7VuRX06Pv37ct7PWwr9MkSZIkSZIkqWDt8W2hfc2x1jJWUph0wWhdBqNJkiRJkiRJqgGmmkiqLI2DUrfne6J+dwf85cD0Y3I56UHqDfpOhn7TU/cd9lMY9+by1qPeKdaSun3lbUF4QCqL/rewPRM7Cpsv1bKOleF9XVuCINreatsr6fvTHHzUK0Tz/P7XPx7ely7IMpXeEoxWyMFs3dsgvr14tRRLWNhboSeCjzkbznwKDv46zP42nPkkjDgl6KvvCxPelnmNrS8XVkMpLPpfuGkyvPDN4qzX2x+/qtmQw8u314hToG63g4L7Z3gPJpUZn4Lpn4T93hGEbJx0J8z5XvFq7EnZBoQu/m1p65CkbMVD3huJVWBg0+QPlnb9Rdfs+jrRHQTP3nogPHAR3DgBnvtqafdXbUrEoXND6r6mIeWtpRBDj4Zzl4T3R+qgdUJw6TMZDrsK5j0Ldc3lqjA7sUY4/ZEgIDsbS69P/9q5Pc9gtBW3BeGLuwt7PVxIULgkSZIkSZIkCYC2ROpgtOZoC7FIrMzV5K8uzXvG3WEfwCFJkiRJkiRJVcQjZyVVlqYRqdu3vZbfenedAFteDO8/7gaIRPJbW6pVkQgc83u4+3To2O1EnoO/DlM+3HN1qXepy+MT1zY9E5xAlu/jetpgNPOE1ct1ZDixc90jMPTI8tRSSRJdsDXD89RCA5x6q+U3wcFfTt1nMFpqYSdNZ6tzHbSMKU4txZKMp24vxong/WcEl1RmfQO2vATrHgyfv3kBDJpTeB3F0rkeHv0gJDqLt2a+wYbqeU0joK5PEHpYaqPP3fN6JALTPw4vfie7+fUDgteatfreTDTLIKHVd5W2DknKVthziWwfz8pp/MXw4KWlWz+ZCAKsGgcFAZYLf7Fn/7OfhRGnwpC5patBtWfHBiCZuq+xioLRAFrHwls2wf0XwOq/B21Nw+GIq2HU6T1bWy6i9TDxXTD85OB72ZAmqB3glunQOh76TIR4JyS7Ycnvgw/6iLfnV0PnWti+CppH7moLO2HNYDRJkiRJkiRJKlh7fGvK9pZY3zJXUpj6NB962F3Ih2xKkiRJkiRJUoUw4UFSZek7NXV7xwroSv0HqFCPXQbrHw3v7z8Dxpwb3i/1ZgMOhHMWwSn3BwGCF6yBAz7d01WpN6lryW/ejo3575kuGK1WgxqkbG1fnb5/+U3lqaPStC0OP1F1J09Yzc+mZ2HbwtR9uX6aZW8IRkvECT25Plud64pSSlGFnghe4k9mbRoGp9wLZ6Q5IX7tP0pbQ66W/gniHcVd02C06hWJQN8ppd+nZUwQIrG3cRdlv8bIU2v7uXasAoOEJCmd0GC0hvLWkY1IBM56qbR73DItCGbeOxRtp+U3lnZ/1Z50r7uqLRgNoKE/nHQnnPFE8Brq7FeqKxRtd61j4fRHgr+JpNP2Oqy5Fxb+EhZfG4SiQf6haDtt2evxLOy96lK/HpYkSZIkSZKkXqAtnvqD5lqjfcpcSWHqIuF/w+tOpvuwaEmSJEmSJEmqDp6hLamy9JsW3rf1FRg4C7a+ChueCC4bnwxCcFonwMyvwIADgrFbXoFXrkq/1/hLi1a2VJNiDTDsmJ6uQr1VLM9gtI7l0Dgov7npgtGo4bAGKRuZwnaW3Qizvl6eWirJ9rWZxxgsBCPPgJW35z5v+S0w7Yp92xM5fppl2yKIb4dYU+41VItsw+JOvgfuOiF1322zYcLb4eCvBSeEV4LQYLQyvJ0VrYNBc2C/d8Cia/btf/U/g5/vQ75bGT/nS/+UeUzfqXDiHXDTftmtabBjdRt6NGx8Kv/5kbrgZ7DPJGgeBRse3/P5wJAj4dCfQH2Kg4L7HwD1A6BrU+Z9xr45/xqrQdOw7Mc++XGY8SloGlq6eiQpnUQckonUfZUa9NhvKkx6L7z289Ks37kOVt4Bq+9O3f/81+Dgr5Zmb5VWMgHxziAMcOe/iR37tqXq26d/R+o5qebuSPP8qGFw+b7/YopEYNAhPV1FcUSiwd9EzloAt+xf/PWP+CU8/O7UfXedCPOehQEHBdfDPgCkoX/x65IkSZIkSZKkXqYtvjVle0us2oLRwo9Z6sr1w0clSZIkSZIkqQJ5hqOkytIyFqKNwQkie3vwUuhYCV1b9u3b+DSs/Cuc9SK0joMVt6bfJ1oPU/+5ODVLkoqvLs9gtPYVu04ey1W6oJ1INL81pVoRT/HcbHdbXgyCaftNKU89laJzXeYxBgvBtI/BqjuzD+/aadNzqdtzDUZLJqBtaW3fP7O9TYYfDw2DYMeG1P2v/xpW3wVveh4aBhavvnwlQu4z0TL+XI16U+pgNICXfwzdW4OT23tSvDO78MEznghCrObNh1uzeL5U11x4beo5Uy4P7rup3kMBmPQ+eO1/wudfuCV4b6ZhQO571zXD9Cvh2c+lHzdwNox9S+7rV5OmEdmPXfBdWPsAnPoPiMZKV5MkhUn1nvxO0QoNRoMg3DebYLTxl8JRvw5eH+xYD099EhZdnXney/9ReI07da4Pnmf3tveZEt2ZA8MK7cs1pKzSTgaqa/X5dyXpNw2O+SP8o8jPVaMNQYDx2gdS9986E057KHgO2bEi9ZjGIcWtSZIkSZIkSZJ6obZE6mC0PrF+Za6kMHVpjk3sTuZ4jJ0kSZIkSZIkVSDP0JZUWaIx6DsFNqcIQdjyUvq58XZ47itw+M9g3UPpx56zyE9Vl6RKFmvNb17H8vz3TOwI79v4VP7rSrUg3QnyOy2/Efp9vPS1VJJsgtGi4Z/K2GuMOh1OvA3+fmpu83ZsTN2eazAaBMEH1HAwWi4n9TcOCQ9GgyCMetGvYdpHCq+rUMl46vZyBg6OOhPq+kD3ttT9C38FRODw/+m5gItlN2QeM+K0IBQNoP8B0GcibFuYfk6/GYXXpp7Tf3849QF44Vuw4fFdjxPNo2H8xTD5A+mD0eqagQLCOQ74TBDosPi3sH0VdLdBfd8giKSuFYYdDwd9ofYDwCKR3MavfxiW/AEmXFyaeiQpnbTBaA3lqyNX2YYETbg0eFyOxKBpGEz5cHbBaCvvKKw+gA1PwoNvD0LF6wfAAf8G0z+e+++JTJLJ4PVSysCwTojvSNFWypCyN/qTieJ+n7XIsKvKM/L04q8ZrYdBc8OD0QD+emT6NbyvSJIkSZIkSVLB2uOpjwNqifUpcyWFiUQi1EXq6E5x7JjBaJIkSZIkSZJqgcFokipPv2mpg9GysfxGSP4nJLaHj5n9XWgZnd/6kqTyqGvJb17Hivz3TBeM1rESdmyChgH5r1+pti0Kgt8GHQqt43q6GlWqdD8fO73+m+DE7lqX6IY190J8Oyy+LvP4cgY4VbIRp0DDoPSBXHvr2pS6PZcQsJ22r819TjXJJixuzHnBv01DYevL6ccuurpCgtFC/q+jZfy5qu8L0z8B8/89fMzCX8LQo2HSe8tX1+7WPph5zMwv7fo6EgnuDwu+Fz4+2hj83Kq6DTgQjromvH/ax+ClH+zbPvE9he8dicDk9wWX3m78Jdk9Z9jp5R8ZjCapZ8TTvO6LNZavjlxlExI09s0wat6ebUMOh/3emV04WiG2r4Xb5+y63rUJnv4kLL0exl4QHiaWb0iZqlPLmJ6uQHur7wP7XwkLvlu8NSP1MOYceOn7+a9hMJokSZIkSZIkFawtJBittcqC0QDqIg0pg9G6/LuRJEmSJEmSpBrgGdqSKk+/afnP3b4GVt4By24MHzPhbfmvL0kqj0oLRgNYdhNMfEf+61eaZDI4EffF7+xqO+AzMPPLQZCFtLt4Z+YxG5+GFbfBqDNLX09P2bYQ7j0HNj+f/ZxorHT1VJtoQ27jd4QEo2UTAra3znW5z6km2YTF7Qw6yuYk6g1PFFZPsSRCvq9ImX+uZnwqCDXasiB8zCPvg9HnQlMPnKSeLuhu8ofgoM9D88g92zMFo+33T0EQgGrbuLekDkYbc275a6llk96TWzDauodKV4skpZNI87ovWsnBaIPT9x92FUz+QOr3Oo74ZfC86P7z89s7Ek3fv+VluCXk7x3rHwkuEgSvJVR5Zn87CDFLJoqzXrQehh4D/abDlhfzW8NgNEmSJEmSJEkqWHt8a8r2lmjfMldSuLpIfcr2VGFpkiRJkiRJklRtDEaTVHkGHlLY/HvmhfcNPQaahxe2viSp9GKt+c1rX57/npmC0Z76eG0Fo624dc9QNIDnvwrDjoeRp/ZMTapc6U6Q39098+CSRG2G68W3w02TerqK6hbLMUxhw+Op25MGo+0jLEBsp+mfhNFnBV83ZAiO2OnxK2Ds+TD8xPzr2vIyvH4trH84CFsbejQ0jwnWHHtB5seKsAP0ImV+OyvWCCfcBjftl37cPWfCGY+Vp6bdhQWjjTgN5l6Vum/IUdA4FDrXpuiMwMFfK1p5qmBDjoKZX4FnP7urbfrHYfTZPVdTLRp+cu5z1j8Ogw8tfi0qv/YVsOhq2PISkOzpaqT0ulKfAALk/ly+nKKpT/b4P5M/GP68MxKBsefBQV+A+V/IY+8M4c+Pvj/3NdX7jH0zTLuip6tQKpEInPl0EJLf9nrh60XrIVoHR14Nd58OOzbmvobBaJIkSZIkSZJUsLbEtpTtrbHq+xDBupDjqLrzOcZOkiRJkiRJkiqMwWiSKs+Yc6BlDLQvCx8Tieb3Ce2eXCJJ1aGuJb95HSvy3zOR4SCAlMEhVeyVkKCUhb8yGE37yhQcuLuFv4JJ7y5ZKT0i3gk3ju/pKqpfNI8whZd/ClMv27Mt0+N1KrUejJbuQLZTH4ChR+26nu3t9/KPg8vsbwdBSblacx/cfSbE23e1Lbsx+PeVn8Ck98PhP0u/RljgW7mD0QD6TIDzlsMNo8PHbHgcVv0dRpxUtrJIdIefoL/3z87uojE48PPwxEf27bu4K+hX7YtE4MDPwMR3wcanYMBMaB3X01XVnkgEmkdCx8rs59xxGBx1HUy4uHR1qfQ2L4A7j6395yHqHTIFgPW0gbOD32V7a92vtMHd6W6X7WuD58SqbpFY8Fo21pji34bUfdFGiDXs9nXI3FgzDD4M+k6tzYD5WjHgIHjT83D3abD2gX37j/oNvPBN2PRs5rV2BjkOPgzOXQJ3Hpf6sSudxizDziVJkiRJkiRJKSWTSdriqT8wqDXWt8zVFK4+kvpDhAxGkyRJkiRJklQLDEaTVHmi9XDSnfDQu2DDo0AE+s+AgYfAoDnBZeDBcPthsOXF3NYePLcUFUuSii3WE8FoOQQ/1YIVf0ndvvhaOPo35a1FlS/emf3YR96TWzBaojs4gXTV34Kwo+lXwqgzc6+xlF79GWxf09NVVL98whSe/iSMews0DdvVFhaWlU6tB5Kku01a9wr127Eht7Wf+gT0nQZjzt53z0XXwPNfhW0Lg7bm0dCxPLt1X/vv4LKzvvr+MPxkmPklqH/j01eT8dRzoz30dlbLqCBo7m9Hh495+F1w3pKylcSOjeGh4S0ZAq6mfBg618CCHwQBdsNPhMN/YShab9QyOriodPL53fXMp4PfgT31mKfcJROw4Huw9E/Ba9O2xT1dkVQ8+YQcl9OBn4X737xv+9A0z9uKId3ju48Bufu/oLE0oWLRhpCgsRz6sg44a/C5sQJ1LXDyPfDUx+G1X0D3VqgfAAd9HsZfAmPOh6euhIW/hPj28HV2Pzmtvk/w+vKpK8M/wGKfOvpCv/0L+lYkSZIkSZIkqbfrSu4IDQ1rqcJgtDqD0SRJkiRJkiTVMM+qklSZ+k2D0x8KTihMdAcnwuytcUhua467aN9QAElSZarLMxht+2pIJiESyX1ubwtGqwWdG6B7GzQM3HXirEojkUMwGkDbEmjNEMiz00PvgMXX7bq++i44/mYYfVZue5bS4t/2dAW1IZZHmEJ3Gyy7ESa/f1dbPgdtbV+d+5xqkkhzm0T3Ovht7JvDwzHD3HcOnHIvDDsu+D2b6IIXvwXPfm7PcdmGou1u98CITc/ChseDvSIRSIYETUR68O2soUfBcTcFt0kq7Uth84tQ1xpc4tuhcTDEmopXQ6I7eK0ca4DO9eHjGgenXycaC4LoDvxccJvm8/xJUnbGnBeEQeaibXHwuNh3chCCCEGYRl1LECbpz2zleeJj8PKPe7oKqfgiUYg193QV6Y05Pwh5XX33rrZoI0z9SHbzBx2a377xdkjEU4dnFRLeX3KR9MFgxQgiSxc4lnLPBn+3qbJF62DOD2D2d4Lw/OYRweMjQF0zHPZTmPNDePQDsPBXIWvs9fp893m3zYLNL6SvYeo/F/e1pSRJkiRJkiT1Qm3xraF9rdE+ZaykOMKC0boMRpMkSZIkSZJUAwxGk1TZItHwkJNcg9GO+t/C65EklUdda37zkvEg4Cyf8B2D0arHhifh4XfBpvl7tk/7KMz+buoTklWYXH8+lt0I07I4AX3ZTXuGou1079lw3I0wJiR4qJy2r4N1D/V0FbUhmsdjM8CyG/YMRksXAhamokMJiiAsQAz2DREbeWp+ezz7eTjke/DYh2H9o/mtkY2198PKO2DUGWmC0Xr4cX7M2dAyNghBS+UvM/Zt2+8dcOh/QH0Bnywb74Rn/i0I3Ul0waizYMIl4eMzBaPttPfJ+ZKKb9S83IPRAG6fA0SA5L59c34YBP4YIlMZNj1vKJpq15CjKj+IPBKBY6+HBT+ElbdD8yg46PMwcFZ280ecDPX9oGtL7nt3b4OG/vu2z/9C5rn1A6D/jPSBY4WEjYX1GYor5S9aBy2jQvrqg9eKoXNDXntF6+G0R+CpK+HVn6UeM+fHMPXy3GqVJEmSJEmSJO2jLb4ttK81VjvBaO3xrWzt3vzGmDqaY3kely1JkiRJkiRJPchgNEnVK5dgtFPu92RvSaomsZb853a35ReMFjcY7f8suwmGHp19oEohkskg4KxjBTQMgu4t0GdicNnb1tdg45Pwj7emXuulHwYnFc/8QklL7pXinbmNTxWMtmMTrP0HdG4I7lsDZ8F954avcd+5cNYC6Dct93o3Pg2r7wnuU8NPgNZx2c3r2gLrHoaOVcGJrk3D4aUfkTKMRLnL9/n4iluhfRm0jAmu5xOMtvEp2LERGgbmV0OlS3eb7H27t4yBGf8KL3w9tz3W3PtGQE8ZLPlDEIyWCAlGi1bA21mnPQw3jM5+/KJrINYEc/8r/z1f+CYs+N6u6ytuCS6pRBsLez4lqbhGzYMRp8Gqv+YxOeR5yBMfhebRMO7NBZWmIrn1wJ6uQCqNur4w6xs9XUV2GgYG7wfk855ArAlmfQse+1Duc1MFoy2/NXgNks7BX4UD/i33/SRVuDShg+neF6nvE7xe7H8gPHHFrva61uBvnINmF69ESZIkSZIkSerF2hNbQ/taaigY7Y4N13PHhuv/7/rwhjG8Zei7OaBPmY7/kiRJkiRJkqQiqIAzSSUpT9kGo9X1gSFHlrYWSVJxReshEoNkPPe53W3QOCj3ecksgnaSSYikObmtVtx3LhCBY34H4y4s3T7dbfDwe2HJ7/Zsj9QFJwfP/GJwPZmAZz6bXYjPomsMRiuFRI7BaGvuhfj24ORyCILS7jsv931v2R8uiUMkmt34RDc8cDEsvX7P9tnfgelXpp+77hG4/3zoWJl9feMvgUGHwlMZ1tYb0gTMxZqC+0yYG8YGJwhP/gAkQ8KyMrl+CBz7JxiTJpCvWqW7TSIp3vo5+Ksw7HhYfhO88tPS1ZWvhb8IfgesvT91f6rvqdxaRsH0T8CL385+zms/h4O/ll/waHcHvPit7Mc3Du4dz1mkahFrgBNuhdd/Aw+/s3jrvnKVwWiVYNP83MZPfFdJypCKrt/+MOZ86De1pyspjykfhAEHwd+Ozm1ed9u+ba/9T/o5pz0EQ47IbR9J1S/k5LQ9TPtI8DfNZX+GaBNMfj80jyh9bZIkSZIkSZLUS7TFt6Vsb4o2E6uEY5JyVJ/Ne8/A6h3LuGr51/jU+G8ztinFBxdLkiRJkiRJUgWqvndtJWmnpqHZjRv3VojGSluLJKm4IhGoa4WuLbnPTXVC6k6JOKy8A1b/HVpGw6T3Qn2/zPN2SnZndwJbTUjCQ++EEadAw8DiLr1tIbx+HTz72ZCtu+G5L0HX1iAQa8kfoH1Jdmu3LYJEVxCup+JJ7EjdPvxEWH33vu3J7iAAaOrlwc/xAxfnv/d1Meg3Pfh6yBHQOgHGnh+csL5T2xKY/8UgTCmVpz4Or18LA2ft1piAtQ9C/wNg5GlBuFEuoWhTr4BDf/jG+gajZaX/QbDmvn3bow1BMMBts9PPf/SDwWNSIosgy1SSCfjHRXDBamjon98alWbdo7DsBlhxS/iYVI+HkQiMOj24dKwMTriuNDeMDe+LVsjbWRPfnVswWjIOj/8zHH1d7nutviu75yo75RO+Jqm0ojGY+I4gkHL9I8VZc/Vdwe+3bENkVRobn8l+7Fu3Ba91JVWmoUfB1I/Ayz/Ofk68fd+2dM+vp/0/Q9Gk3irb9ysHHxpcJEmSJEmSJElF1xbfmrK9Nda3zJUUR10Ox8omiPPYlvsMRpMkSZIkSZJUNSrkTFJJykPz6OzGzfhkaeuQJJVGrCW/YLR4SGhIMgmPXw6v/teutgXfg9Mfg+YRQQhXJokdvStwK94By26Cie8s3pprH4S7T4fubqWuyAAAIABJREFU1J+6t4eXvp/fHot/D/u9Lb+5Si3embp90BxYc38QhLa3x/85CPFpnQDx7YXtv+XFPf99/mtwzO9hzDmw+l6464TMa2x8MrjsbevLeYRCRWDy+3KcI8a/NQiDIbln+7iLgtC6t7bB7zMEhSy5PjwY7bgbg/vcg5eGz090wqq/wrgLcyq9Ii38FTzy3iAQJ51IhpDobAOnCzH3v4PwtmU3Fme9TN9zufTbH/pOga2vZD9n8W9h4OzcX6cuuyG38Q0Go0kVa/wlxQtGA9j6GvSbUrz1lLv2pdmNO/luQ9GkatA0PLfxe4fXdqcISttdv2m5rS+pykTCu3rT+8qSJEmSJEmSVKHa46mPXW2J9ilzJcUxuH5YTuNX7VhWokokSZIkSZIkqfiiPV2AJOWteVTmMcf+2RONJKlaxZrzm3f7ofCPi2HT/D3bn/7knqFoAO3LYP6/B18vvjbz2mFhPLVs8wuFrxHfAa/8J/ztWPjb0dmFohXiUQOrii6xI3V7XR/oOyl83tOfggcuKkE9nfDUx2HjM9mFohXblMtgwEHl37faDTsOjvxfaBkTXI82BOEwc68Krte1BEFT6ax7iH2C1XZqGADjL4a+U9Ov0V4DB3d1roeH351FKFodRNKclA3QmNvBcTmb9tEgSPDQnwT1FEPHyuKsU6hIBMa+Jfd5878A29dkHrf2QbjnLPjjIHjt57ntMfiw3OuSVB7TroADP1e89W6fDX87Lvi90La4eOsqOzs2wzP/ln5M49AgJHT4CWUpSVKB6vvlNn7vYLStL6cf3396butLqh0Go0mSJEmSJElSj2tLpP4Q5dZY3zJXUhyz+xxFJN2HduwlLBhOkiRJkiRJkiqRwWiSqlfL6PC+ie+Ci7th7HllK0eSVGSxhvznLvkd3HE4bFsUXH/pR/Did1KPffVnsPDqfYPUUumNwWjZ3C57i2/f87Z65l/hsQ/D2n8Ur65M+3esLs9evUWiM3V7tDFzkFWpbH0FbptV/n37HwgHf7X8+9aK/d4G5y6B85bBhZvh6GuhrnVXf+v49PO3p/nZ3hkCNv3K9Gt0rMq+3koS3x4EoiW64foh2c2JZhFE1lTiYLTmN163tYyG/d5RnDX7H1CcdYphxieCwJtcxDtg8W+D/0sIAu6SCUgmIREPfoetuS8IE13xF9ixMfe6Jr4n9zmSyiMSgZlfCt63mvTewtfrboO198PCX8Hth+X3mKH8JLrhrpPSj7lwK5y/IggJlVQd6nM86WXvYLTNC9KP76nX0JLKI104ecRgNEmSJEmSJEnqaWHBYC2xPmWupDgmt8zgn0ZcQZ9Y/6zGtyUMRpMkSZIkSZJUPbI4Q1aSKlTzyPT90Vh56pAklUakwKeq8Q64aSIc8Fl49b/Sj334Xdmt2RuD0VbeDtvXQVMWITxd2+CR98KyGyEShXEXwoS3w4Lvlb7OvT33RTjsp+Xft1bFw4LRGmDkGcH/eW8w8nQ46jfQkN1BRAoRiYSHHGcKRos1h/dF3zjBePIHoK4PPPi21ONe/BYsvi54jBh9VuZ6e9qOjfDwe2DZDbnPzeak68YsQ9byNfK0XV/P/Rn0mwYrbg2uT/sobHgCns8xbHDIEcWrr1ANA+H0h+HZf4fXf539vCc+Ck/+CyTjwXOeZHfxapr0Xuhv4IZU8aIx6DuluGt2roVbZ8F5i4u7rlJb/XfY+GR4/+QPQn11Hjwv9Wp1uQajte95fdmfw8cOmpN7qK6k2hE1GE2SJEmSJEmSelpbfGvK9tZojn8jqiBH9D+Ruf2OZ13XarqTwXHOz217nBvWXbPP2PaQ71+SJEmSJEmSKlG0pwuQpLzFmiDWkrpv3MXlrUWSVHzFOlHs+a8EAQHFkNhRnHV6WiKX8JUkPPu57IY+/E5Y8ntIdAbBdIuugbtPyzyvFF65CtY92jN716Kw+36sMQi/G3x44Xu0jIUjfgWRCg23PeAzcOLt0Di4pyupbZmC0dI9nu/+e2PCpTD5Q+Fj25fCvWfDpudyq68nPHBpfqFokN39tS7kNVUxTHw3DDx41/VoDGZ8Ek65J7iMPR+mfiS3NSd/EAbMLGaVheszEY76X7g0ueflopBQyZ2S8Tf+LWIo2qA5cOhPireepNIaNS99f8tYeMtGOOX+7NdsXwKr7ymoLGVp6fXp+/sfWJ46JBVXfY4nvcTbdvt6e/C+SJhZ3wiCoiX1TgajSZIkSZIkSVKPa4tvS9neEqvuD72KRqIMaxjJqMZxjGocx+jG1MfhtcW3kUwmy1ydJEmSJEmSJOXHYDRJ1W3iu/dtq+sDw48vfy2SpOKqq8CDDBJdPV1BccS35zZ+0dXQ3Z5+TOcGWHZj/jWVwoLv9HQFtSMREu4TbYT6PnDy3TD94/mvP+ZcOPNpmPhOOPOZ/NdJZdjxQXjbzkusOfu5E94OU6+A4/8CB3+luHUptdYJ6fs3PRveF6nb83rjkMz7vfLTzGN6UttiWHl7/vNHnp55TF2RP+20zySYcjkc8wc4/OeZxzcPD0J/MmkaAcfdGIR+VUuYRKwBzniidOvP+SEc8n2Y+C6Y+B447Kdw6gNBaKWk6tD/QOh/QOq+Q74Hb3oBGgbAsGNgzo+yX/fV/y5OfQrXthhe/Vn6MS2jylOLpOLK9flx927BaMtvDh839gIYcUp+NUmqHnu/N7E7g9EkSZIkSZIkqce1xbembO8TK/IxVD2sJeT7SRBne6KjzNVIkiRJkiRJUn7SHJkrSVXgoC/Axidh3UPB9VhTcAJ+rKlHy5IkFUGxg1qKIVkrwWg5HtQQ74CXfwwzPhU+ZuPTkIwXVlcu6voEgT9Lrw8fs+QP0LkeGgeXr65aFQ8LRmsI/q1rhtnfhtb94PHLc1v7wH+HmV/YdX3AATDoMNjwWF6lAkEY2sl/h0iKLPDkNfDYZfDqf6Zf47yl0DImu/3m/jc8+v592ye+K7v52qU19SdVhlnUMYEb153Dpu4BnL2iD3MG7NaZVTDaVUGYVKVadWdh82d9I/OYwYcFP8uJHYXtBTDtY3DId1P/7KXTMABO/Qfcdz50rt2rb1DwGm/ESYXX1xMGHRKELL7+6+KvPf4SaBpa/HUllU8kAkf8Eu47FzpWBm2tE4LnMX3223PsmHPgiSuyW3fxtTD+Ihh9dvWESVabxy7LPKZ5dOnrkFR89Tm+H9W5YdfXG54KHzf+0vzqkVRdJrwNnv3svu0tY9KHpkmSJEmSJEmSyqI9sS1le0usAj/MuQCtab6f9sRWmmMtZaxGkiRJkiRJkvLj0beSqlvTEDjl3uCEo+0rYdhx0DCwp6uSJBVDfZqDDA67Ch77cPlq2akYoTGVINdgNICnPw19JsG4t6Tuf/FbhdWUq/EXwZgL0gejAVw/BM5fCc0jylNXrQq77+8MRttp6mVB+EY2QREAk967ZyjaTrmGKu1u4Gw45Z7w/kgE5l4V3IfuOjH1mAtWQ9Ow7PccNQ/qWqG7bc/2sRdmv4YCOQSjPbz5cObNv4VN3cHz/y//MMkv35XgHUe+cf/JJhgNYP6X4aDP5Vpp6W17HR55X/7zL1gdBI5lUt8XxpwHS36f/14AZ70E/abmP3/o0XD2S7D2AehYFbQ1DYOhx0DjoMJq62mzvw3Lb4KuLcVbc8plhqJJtWLwYXDWAlj3SPAcaOgxEGvcd1zLWIg1Z/9c/r5zYdL74fCfFbdewdbXYMWtmcc1jyp9LZKKL9dgtOe/Agd8OnhNuGVB+LjRZxVWl6Tq0GcCDJ4L6x/ds33cRQbWSpIkSZIkSVIFaItvTdneGqvAD3MuQLqgt7b4NgbXDy9jNZIkSZIkSZKUnwLONpekChGthyFzYcy5hqJJUi2pSxOMNvbNMPWK8tWyU6Kr/HuWwuYX8pv31CchEd+zrWsLPHY5rLyjsJrq+kLLuMzjog0w4W0w58cwel4QkpfJ058urDaF3/djDfu2TfkwHPIDqO+ffs39r4S5IUEd+Qaj7fcOOPmu7MYOPwFOuQ/6TNy5KQw+HM59PbdQNICWUXDiX6HvG6FQTcNh7n8F91Hlpmlk1kM/s+gr/xeKBpBMRvjIdUm6upNBw+BDs1to/udh28JcqiytjlXwyAfgpv0KWyeX+/HhPw9+t0brg8uY82D8xdnPH3lmYaFoOzUMDAIjJr8vuIw5p/pD0SAI55z5lSIuGIFZXy/iepJ6XH0/GHkqjDg5dSgaBM+PhhyZ27qv/Tf8rgUWXg3JZOF1KrD85uzGGc4sVae6PE56+euRcG0Elv05df+4i8If3yXVnuNvhuEnBc/fYi1BWO2sb/R0VZIkSZIkSZLU6+1IdNKVTP0hsS3RNMcsV6GWaGtoX3t8WxkrkSRJkiRJkqT81fV0AZIkSVJK6U5EjTbApPfCwl9Adxn/QF8rwWgv/SC/eW2LYONTu8KGkkm473xY/ff81qvvD2e/DJE6qO8LiW74fUv4+HnPBiFWdbsdsDHlQzD5A3D3mbDqr6nnLfl9EKBW15xfnYJkyH0/Up+6ff+PBgFpiR3Byd+JHdC5Pvi/i8Qg1pzhpPBI9rUNPAROvQ+I5v5/POxYOPtV6FgJsabCApiGHgVnvwTb10HjYIjk8D1ol2gsq2GdiQbu3nTiPu1bt8M9L8OpM4B+07Lfd/Hv4YAKCFHs2gq3HwodywtbZ9BhuY2v7wPH/hG62yGZCK5veAoW/zbz3EgMpvVAWGm1mfIheOYz0J36U2ez1mcSnPViEGAnqffZ/0pYc0/wWJ2teAc8/C7YvgZmfKJUlfUum5/LPKZpuI/VUrWqzyMYbdP89P3j3pxfLZKqU9OwILh/x+bg/SaDESVJkiRJkiSpIrQn2kL7WmN5/I2ogkUjMZqjrXSk+J7b4gUevyRJkiRJkiRJZRLt6QIkSZKklOrTfPpatB4GzoST7ixfPVAbwWidG2DV3/Kff8dhsOD7QSja8pvzC0VrnQBj3wynPxacKNg4KPg/zRRq1Tx6z1C0nSJRmPy+8HnxDlh9V+51apdEd+r2aJqs7VhD8HMcrQ/+31rHBYFhDQMynxCaLlRs7s9g2HHQ/0CY8Sk49R/B+vkG30Ui0DKqsFC03TUNMRStUFM+nHHI5u7+oX0LViV3XZnwT9ntueyG7MaV0o7N8Id+uYWiDT0mdfuYc/Oroa5l1+/fQbPhtIeh3/67+kecCvOeg2kfC34GR54Jx/8FRp2R3369SbQe9nt7bnNaxgS/J5uGw6A5QRDoqQ8YtCP1ZqPnwXE3w8jToXkUNI/Mfu7Tn4S2paWrrTd57eeZx4x6U+nrkFQa0XoYemxx1+ybQ2izpNrR0N9QNEmSJEmSJEmqIO1pAsFaYmmOWa5SfULC3gxGkyRJkiRJklQt0pzFLkmSJPWgkafD819L3RdrCv4dcjhM/wS8+O3y1JTYUZ59Smnjk5BMFLbGk/8C21fDhidzm3fg52Dml9KPiTaE3871/cLnjTwDIjFIxlP3L7sBRp+VXZ3aVzIkFLBk4TxpgsUmvB0mv79E+6oi7P8vsOymtAFhW7rDHw/67H7OcfOI7PZc/wi8/NMgUKxldJaFFtmDb8t9zsT3BMGAK+/Y1dZvOkz+YHFqGnI4nPXivu1zvl+c9XubmV+Bhb8KAjt3F6mDo6+DcW/pkbIkVZnR84LLTmv+AffMg+4sDly+ZX+4KPwTsCtadwdsehZIwuDDey6IduMzmcc0j4TpV5a+Fkmlc/BX4c7jirde3ynFW0uSJEmSJEmSJEl52ZYmEKy1BoPRWmJ9oWvVPu1tiW09UI0kSZIkSZIk5S7a0wVIkiRJKQ09BlrG7Ns+5jyI7PY0tpxhV4mQcKhqUqzv4YVvwqq/ZTd2ymVw/C2ZQ9EgCIcJE03TV98X9ntHeP+quzLvrdSSifAwvXT/XwVJE3SxMxhRtavvZDj90bT3r83x/qF9rbsHozUMyH7fxy+HG8bAM5+FZDL7ecXQvgxW/CX3efV9g8fXw38Bkz8Eh/wATnsQmoYUv0YVrnEQXLAKDvhs8FgWrQ8CXk9/2FA0Sfkbdgyc8RhM/3jmsfF22Jwi8LLSbXgSbjsY/noE/PVIuGMutIcHqJbU/C+m7+8zGc58GvrPKE89kkpj2LHQlGXIcib1A6CuuThrSZIkSZIkSZIkKW/t8dSBYI2RJuoipfqQ2J7TGk0d9taeJiBOkiRJkiRJkiqJwWiSJEmqTJEoHHVdcALpTn2nwqE/2XPc0GPhgH/bs23S+0pTU7IWgtG6y7fXzC/DpUk47Ccw+k3ZzUkXfpbJrG+F97W9Xv6go1qRjIf3lSoYLZLmpWokTWiaakfLKDjws6Hdm7vDg9FaGna7j9TnEIy20/NfhVV35j6vEJuey3NiJHjcnPRumHsV7P/R3MLgVH71/eDgL8NFHXDxDpj9LRg0p6erklTt+k2D2d+G4/8SPM6k8+zny1NTsSST8Mj7Yesru9o2PA6Pf6T8taz8Kyz7c/oxZ78MTcPKU4+k0hpyZHHWGX5icdaRJEmSJEmSJElSQdpCAsFaY33LXEl5tMRSB6O1hQTESZIkSZIkSVKlMRhNkiRJlWvYMXDuQjj+Zjj5bpg3PwjL2V0kAgd/Fc5+NQhSO/MZmPuz0tST2FGadcspXchVMY16U9pQo1CDDs1/z6YhcNpD4f0r78h/7d4skSYQMFqiT0nsM6k066q6RBtCuzalCUbbIwMxXcheOouvzW9evjpW5jfPEDRJ0u5Gz4OzX4EDPxc+Zukf4cXvlq+mQm14AjY+uW/7sj9D29Ly1TH/y3D36enHHP5zQ3ylWlKs59pTLyvOOpIkSZIkSZIkSSpIeyJ1IFhYgFi1Cwt8C7sdJEmSJEmSJKnSGIwmSZKkytYwEEafBcNPgFh4SA59J8GEi2HgzOBk9BmfLn4t6QKiqkWyuzz75Hv7T/946vb93pnd/KZh4X2Pvj/3epT+PhOtK82eU/85dfuoeaXZT5Up2hjatTlNMFp3YrcryUTouLSWXJ/fvHy1L8t9Tl0rDDmq+LVIkqpb0zCY+SUYODt8zFMfh62vlq+mQqx/JLxvxS3lqWHRb2D+5zOPq6/NTxGXeq36IgSjzf0vGH5y4etIkiRJkiRJkiSpYG3x1IFgrb0sGK0tvrXMlUiSJEmSJElSfgxGkyRJUm2a+K7ir1kLwWiJLILRhp9Y2B6Dj4ChR+c3d8Qp0P+APduijTD5A9nNbxwS3te+DLo8oCNn6e73kfrS7DlwFgw9dq+9ojDlw6XZT5Upll8wWnz3LLR+0/Lbu3treQNjsglb2dukD0Bdc/FrkSTVhqN/m77/5inlqaNQG54I79v4dOn3X3oDPPT27MbWGYwm1ZSGAoPRRp0VvJcRiRSnHkmSJEmSJEmSJBWkLb4lZXtLtDb/1tsSEvjWHhIQJ0mSJEmSJEmVxmA0SZIk1aZ8w3DSqYVgtGQ8fX/rBDjxbzDrm1DfL/f1hx0PJ/01/xN/o/Vwyr0w6X3B/+GoN8GJt8PQo7KbnymMYOsr+dXVm6UL04vWlWbPSAROuBWmfgT6z4ARp8FxN8Los0qznypTtCG0a3M8PBitO57cdWXosVCfZ6DBzVMgmcw8rlCbnkvfP3guTP8kzPpWEDw56FCY9Q045Dulr02SVL36Tc383Hj94+WppRDrHwvv61xXun3jnfDoB+H+87OfU1+bB8tLvVahwWiT3lucOiRJkiRJkiRJklQUYYFgrbHa/FtvazR1MFpb3A8YliRJkiRJklQdSnQWuyRJklSDEjt6uoLCJdOEXEXq4OCvQzQGMz4Jkz8AfxyY2/rH/qnwQIDGwXD4f+c3N1Mg29LroWsL9JkErWPz26O3SaYJBIzUl27f+j5w6I9Kt74qX7QxtKst3hrat3suGrEGmPV1eOzDe6476BBY91DmGl65CqZelkWxBVjyx/C+g74IB31+1/UZnyhtLZKk2jL1Mnjhm+H9K2+HwYeWr55sdayGtkXQOBS2vBA+rpTBaI9/BF7L8TVJXeqDyiVVqaYR+c8dfhKMmle8WiRJkiRJkiRJklSwtkRYMFpt/q23JSTwrS2+jWQySSTfD0CWJEmSJEmSpDIxGE2SJEnKViJNQFS1SMbD+069H4Ycset6ff/c12/IMUit3J7/WnABmPQ+OOw/gyA4hUukCdOL+pJSJRQLD0ZLJKOhfd17P8xN+RD02x+W3Qh1LTDuQhg4C1bcDk9/GjY9E17D45dD8ygYe16Oxedg1d/C+8aUcF9JUu2b+O70wWjPfi74HTnuLeWrKZ1kEl7+CTz5/9IHOu9UqmC0rm3w+v/mPi/ic2Oppow8Nfi53vvxqHkkTHg7dG2GV3+277xIHZxwaxDSLEmSJEmSJEmSpIrRHt+asj0sQKzahQW+xemmM7mdpkhzmSuSJEmSJEmSpNyEn0ksSZIkVbvpnyjuepueLe56PSEsYKDP5D1D0QAiEeg3Lbf1K+ET5LINEnrtf4LQhRe+CS/9CNoWl7auapUulMLwB5VSNDxIIF4/ILwvkaJx+Akw5/tw8FeDUDSAUWfAvKfhzKfT13H/+dCxOnO9+dq2MHV741AYOLN0+0qSal+/aTDnR+nH/ONCePwK2PxieWpKZ9HV8MRHsgtFg9IFo21ZAPHtuc2JNUOfiaWpR1LPaBgIR16z5+veIUfBm16E2d+Cuf8FR/8OorsFOg86FM5bljbkWZIkSZIkSZIkST2jLb4tZXtYgFi1a00T+NYecltIkiRJkiRJUiUxGE2SJEm1a+xbgCIGdS38BSy9oXjr9YRkPHV7NCTgavylpaulVMZfkv3Yl38MT38anvgo3DoL1j5QurqqVaIrvC9aX7461PtEw8ME4tHwg9G6UwWjpTPwYBh3UfoxK2/PcdEsJbpge0jo2pHXlGZPSVLvMu0jMPWK9GNe/jHcNhuW/rk8NaWy8Bp4+N25zelcD8lcf/FnYcuC3OeMPgfq/DRtqeZMuATOXQxH/xZOfQBOuQca+u/qH/9WOOc1OOo6OPluOPUf0Dy8x8qVJEmSJEmSJElSuLAwsJY0x6JVs9ZoeDBaW3xrGSuRJEmSJEmSpPwYjCZJkqTaNWQuHPUbaByyZ3tda/6BTo9fVpqT78sl0Z26PRISjHbAZ2DKZbsCigYcHLSlMuXywusrhvFvheEn5T6vaxM89Yni11PtkiH3GQi/30jFEAsPRktEW0P74vk8RB/xi/T9HSvyWDSNba/DvefAbxuAZOoxLaOLu6ckqfcanyEAFCDRCfdfAPHO0tezt64tQVBxrpJxuO88WP9Y4TWsexgefDv8/XR46J9yn3/4/xReg6TK1DIqeBwdelTq95JaRsOEi2H4CWlfw0iSJEmSJEmSJKnndCW66ExuT9nXJxYeIFbNmmPhx9iFhcRJkiRJkiRJUiUxGE2SJEm1bcIlcMFqOG8pXBIP/n3LZpj3PMSa9xzbPBrOfAaGHRe+XsdK2PRcaWsupbCQq0gsdXs0Bof9BC7cBOevhHlPwwH/GtxWu4s1w+T3F7fWQhzz+/zmrXsoCCzaXTUH4RVDoiu8L9+AQSkb0YbQrni0Obwvnx/ZuhY44bbw/u4iHgjWsRJungzLb04/bu/HWUmS8jXkyOCSjTuPL20tqSz/SxBSnNfcm4Oa1z6U//4rboM7j4PXfwOr/pr7/KlXQH1tfoK4JEmSJEmSJEmSJNWC9sTW0L6WGg1Gi0ViNEdbUva1pbk9JEmSJEmSJKlSGIwmSZKk2heJQsuYXf9GY9BvCpz2IIw8A1r3g/GXwCn3wMCZ+wam7e22g+Guk2Dra2Upv6iS8dTt0br082JN0Dwi+LquFU5/BMZfHNx2o94EJ90FAw8ubq2FaByc/9yb9oPf94X7L4RbZsBvG+C2ObDqruLVV00SIWF6kPl+IxUi2hjaFY80hfZ155tlOOoMIJK6r5g///O/GP5YvFOsCRoGFm9PSVLvFonAiXdkN3b9I9C1pbT17G3FrYXNj3fAS9/Pf/6C76UPA86kvjYPkpckSZIkSZIkSZKkWtEWD/9gzNZY7X4QVljoW7rbQ5IkSZIkSZIqhcFokiRJ6r0GzoITb4NzF8LR10LfyUF7mjCe/7P6brjzeOhuL22NxRYWchWJ5bZOy2g4+rrgtjvhFhh6ZOG1Fdu4i/Kf270Nlv4RtrwYBBhtfBLuPQc2LyhefdUimSYkIlJfvjrU+8TSBaOl6cs3GA2CwMdU1j8CnesLWPgNiW54/deZxzWNCEJsJEkqlvq+MOl92Y3d8GTx908mYdsiWPsAxLfv2bf15cLXX/KH/Otac19hezcNK2y+JEmSJEmSJEmSJKmk2uNbQ/taorUbjNYa8r21pbk9JEmSJEmSJKlSGIwmSZIk7a1xcHbjOpbDqrtKW0uxJeOp2yN15a2jHCa+s7jrxduDsLTeJixMDyBag/cbVY5oQ2hXMk0wWnchwWh1aQ5ye+mHBSz8hvlfgO62zOOGVGDYpCSp+tWl/iTofWwpchhwdxvcfwHcNBH+dgz8aQSsunNXf+e64uyTT4hp9zZI7Mg8bs6Pob5/6r6RZ+a+ryRJkiRJkiRJkiSpbNri21K2N0QaqU9znFq1a4mlPh6uPeT2kCRJkiRJkqRKYjCaJEmStLdsg9EAnv9a6eoohWRIyFUtBlyNPAMGzi7umpufL+561SDsPkMEIr6kVAlF60O74oQHo8ULCkZrDe977suw4Sl4/hvw5JXw0n9A2+Ls1+7aBs9/Nbux4y/Ofl1JkrJVn20w2kvF3feFb8GyG3Zd79oMfz8VVtwRXC9WMNqTV+Y+J9u9J74DjrwGYk17th/yfeg3Jfd9JUmSJEmSJEmSJEll055IHQQWFhxWK/rE+qVsb0tsLXMlkiRJkiRJkpS7Gkw/kCRJkgrUOCT7sTvWl66OUkjGU7dHYuWtoxwiETjqWvjL9OKtueQPcPR1xVsPNJzYAAAgAElEQVSvGiS6UrenCa2SSi0ebQnt6y4oGC3DgW63H7Ln9Wc/C8ffAsOOybz2rQdmV8OAg2DUmdmNlSQpF9kGo219pbj7vv6b1O33nAH7vRO6thRnn0VXw5G/ym1ONsFodX2hvh+MOQfOWQir74b4dhh2PPSdlFepkiRJkiRJkiRJkqTy2RZPHQTWJ5bl39GrVFjwW3s8dVCcJEmSJEmSJFUSg9EkSZKkveUSjFZt4VCJ7tTtkRp9adDQv7jrJeOQTAaha71FspfdZ1Q5+kwMHo/3DiyJtZBoGhE6LV5QMFprbuO7NsOdx8LZr0DfyeHjtrwEbYszr9c0Ao66rvp+t0iSqkN96k+C3sfGJ+Hh98LCXwTXYy1wzB9g9LzU47s74IVvwpp7ofuNg8nr+sLwE2DK5bDttfC9Fl2ddflZ6VwPjYOD5+yLfwuL3/i9OuUyGHFyivFZBKPtHijXPBImXFq8eiVJkiRJkiRJkiRJJdceEozWUuPBaK0hwWhtIbeHJEmSJEmSJFWSaE8XIEmSJFWchkHZj41UWXhNaMhVrLx1lEv9gOKv+exni79mJUt0pW43uEmlFonC5A/t2z7pPcST4cF83fEC9qxryW/ezVNg66vh/Uv/lH7+vOfg/JVw/goYcEB+NUiSlEm0MbtxHSt3haIBxNvh3jfBot/sOzaZhLtPh+e+CGvugQ1PBJc198D8L8BNE4tQeA5e+EZQ0/wvwIOXwvKbg9/Dfz8FXr9u3/Gd6zOvWV/bB8JLkiRJkiRJkiRJUq1ri29L2d4aTR0cVitaoqn/3h12e0iSJEmSJElSJTEYTZIkSdpbMpH92GhD6eoohWRIYlAkPGSoqtU1w6BDU/dNuTy/NRd8D7o78q+p2oSF6UVr9D6jyjLzSzDrWzBgZnA56Isw54fEE8nQKfHwrswSIff3bNw8Be46CbYt3Ldvxa3h88ZfEoShNY+ASCT//SVJyqSrwE98fv4r+7YtvwXW3h8+p7uInzLdPDLzmBe/A79rhOe+tG/fg5dCd/uebZ3rMq9ZZzCaJEmSJEmSJEmSJFWz9kTqv123xGo7GK015Ptrjxfxb/mSJEmSJEmSVCIGo0mSJEl7GzQ7+7GxKgtGCwv9qeWQq5lf3jfAbtY34bD/yG+9+HZYfXfhdVWL7WtTt0fqy1uHeqdIBGZ8AuY9E1wO+jxEoqTJRaM7JP8xK/ECQw9X3w1/OwbinXu279gYPmfMeYXtKUlStgbPLWz+lgV7BottXwPPfrawNXMx/JTsxiW6wvtum7Xn9bbFmderNxhNkiRJkiRJkiRJkqpZW3xbyvbWWG3/PTgs+K0tsY1kspBPIJUkSZIkSZKk0jMYTZIkSdpb637Qb3p2Y6stHCoZkhgUiZW3jnIadQac+gBMvQKmfBiO/wvM+GRha3auK05tlSyZhBe+BY9fnrq/lsP0VPHiifz6MooU4W2SjpWw9Ppd15NJaF8aPn7UvML3lCQpG4MOgcbBha2xMxht/pfghjGw6dnC68pWrAEmvbewNba+Ahue2HV9y0uZ54S9hpIkSZIkSZIkSZIkVYX2kGC0lmjq4LBa0Rrrl7K9O9lFV3JHmauRJEmSJEmSpNwYjCZJkiTtLRKBI36Z3dhotQWjdaduj9R4yNXgQ+HQH8JhP4XRu4UQHfBv+a1XX9ufEgjAmnvh6U+F91dbKKBqSrrws+5CgtHGnFvA5N08+DZ47HL4ywFw28HQtSX1uCmXQ31tH1wnSaog0To46lqINua/RrwDVv4V5v87JLqKV1s2og1w0BdgwEGFrXP7obD+seDrLQsyj+/aWth+kiRJkiRJkiRJkqQe1RZP/Xff1lhtHwvamib4Lew2kSRJkiRJkqRKYTCaJEmSlMqQw+GIqzOPq7ZAsWQ8dXskVt46KsW4C4FI7vMKCZOoFq//Jn1/tMru+6opiWR4X7rQtIz6TYf+MwpYYDev/BQ2vwCb5oePmfnF4uwlSVK2Rp4G5y2BI6+BaR/LfX68AxZ8r/h1ZSPaAC1j4LSH4YTbClvrjrkw/0vQ9nrmsWEBp5IkSZIkSZIkSZKkqtBrg9Fi6YLRtpWxEkmSJEmSJEnKncFokiRJUph+UzOPSXaVvo7ddW2DF78D954L/5+9O4+P667v/f/+zqbdliyNFie24zh7AtkJWYCQBZJSoATKvhVoadNLgUJb2lsaKC3w47LcUlpogQa4BUpICaUUAmHPBiQBErKROImdxYtGtixb6yzn+/tDsS3NnO+Zc2bVjF7Px0MP63y389FYOkejmfM+t10pzT4ebb7N+7ev1pCrgdOk874kJddGm+dl61PPSvLQZ4L7Wy0UEG0lKPwsX00wmjHShd9aPDbUW0da6his/34AACjWOSxtfo208SXR537zeGnnd2pfUxix5OK/iW5p/WXSmhOqW+/XV0kKSFs9KM+bwQEAAAAAAAAAAACgVeVtTgt23revOyA4rB0EfX0znn9YHAAAAAAAAACsFFzJDgAAALh0DJUfU/B/s0RdWE/68W9L4z8+3Lb9K9Jlt0m9R4dbw3MEo63mkKujXi5t/F3p7vdJd7833Jx2D0azIQIiDgZTAE1QCPgWDQpNC6Vnk3T5L6WZx6TUWim5RlrYI81sXwySiaWkRJ90z/ule/6u8v1UG+YCAEC14t3NriCaWGr5dtd6af/99d/vkS+s/z4AAAAAAAAAAAAAAHUxW5hx9vW0eTBa3CTUGevSvDdX0jdbIBgNAAAAAAAAwMq2itMPVjdjzAmSTpV0pKQuSfOSxiVtlXSntdb9l//yayclnS9po6QxSdOSdkj6pbV2W3WVAwAANNBKC0bbfs3yUDRJyu6VHvgn6YyPhFvDFvzbTby62lpdLC5teUN7BqM98S3prndLs9ultSdLT/uMtObY4Dlb/6X8uqs5TA9NFxR+VnUw2kE9Gw5/3jG4+LHUqe+TOkekO95S2fqjF1deGwAAtZBo8WC0nk2N2e9Rr27MfgAAAAAAAAAAAAAANTcTEADWE+trYCXN0R3r9Q1GmylMN6EaAAAAAAAAAAiPK9lXEWNMv6S3SnqDFkPLXArGmF9JutZa+8EI66clvVfSyyStc4y5RdJHrbX/GbpwAACAZkmuXbz4PigEq5HBaPd/2L999w/Cr2Hz/u0xnhqoZ6N0zB9KWz9VfmyrBKPtu0e68XckL7e4Pf4T6TtPk164TUqt9Z/z6LXSbX9Ufu3UQM3KBKLyrLuvZsFoYRz/v6TsHunX74k+95g317wcAAAiiTc5GC3WsRg8Orcj5Pjk8u1Nr5Aevrr2dS21/nnS0Hn13QcAAAAAAAAAAAAAIBJrrX62/4e6b+ZXmvGCA77mCjPOvu54b61LW3F64n3am8+UtM8WBaMtePP6yb5v6+G53yhnS98jG1dcmzqP0TP7L1dvYk3d6gWAYtZa/Xz/j3XvzC814/mHXQ4kBnV633k6qef0BlfXmqbyk7px3/XanX1CR3Uep2f2X6Zk8U0rQ8h5Od2479vaNv+ghlPr9Yz+y7Q2wTUGAAAAAIDaIf1glTDG/K6kT0oaDDE8LulMSUdKChWMZoy5XNLnJA2XGXqepPOMMV+U9GZrrfsVBgAAgGYzRlp3ljRxi3tMo4LRrJX23uHfN/mrCOsU/NtNPHpN7ejsf5bS50lb/1XK3OQe1yrBaL/+m8OhaAfl9kmPXStteePydi8n/fQN0rZ/D7f26MW1qRGoQFD4Wd5xmKubp1wl9T9VeuIb0twuaWabtP/+4DlnfULqGm1IeQAAOCWaGIx2/Nulza+SBk6XHv68tPv7UvfGxd/BMzf6zyl+893IhVLfcdKBB2pf36ZXSMPPkI5+oxTjuRIAAAAAAAAAAAAArCRf3v1J3TT13arWSJqUUrGOGlW0cvXE+3zbl4YL5bysPvbYX+vR+a2Ba/165jb9fP+P9Y6NH1BfwnFzXgCosa+Of0Y/2vc/ZcfdPHWDXj78Zj1z4PIGVNW69uX36sPb/+JQaOYdB27SndM/1Vs3vE/xCNeUFGxB//j4e7R17p5DbT+d+oHeufGD6k+GuYQZAAAAAIDyYs0uAPVnjLlK0jUqDUV7VNL3JH1Z0nWSfiopclCZMeZCSV/X8lA0K+kOSV+VdIOkiaJpr5L0ZWMM34MAAGBlW1/mhTGvQcFouf3B/dmpcOt4ef92Q2aypMUwvM2vkZ79HSmWdI9rhWC0/Kz02Nf8+372Jmn64cXPpx+WHvhn6T9S4UPRRi6Wjn9rbeoEKhAUjFbwbOMKOWjDi6SnXy09+9vSb98nnfVP7mPIUa+Sjr2ysfUBAOAn3qRgtCOeL535UWndmZKJSVt+Tzrv36XT3i+tPdk9zxSdW2NJ6ZzP1r6+0z4onf8l6dg/kuLR74QKAAAAAAAAAAAAAKif8ezOqkPRJHdgWLvpjvf6ts8Wpg99/svpW8uGoh00ntuhW6a+V5PaAKCcvbmMfrzv26HHf3PPl5W3ufIDV7Eb911/KBTtoK1z9+qemTsirXPPzB3LQtEkaW8+oxunrq+6RgAAAAAADiL9oM0ZY94h6T1FzV+W9AFr7a99xscknSvpxZKeG2L9IyV9TdLSK8RulvT71tr7lozrkPRmSR+WdPAKtudL+jtJfxXyywEAAGi8ztHg/kIDgtEKC9IPy/xqNrNdSj21/FrWEYwW46nBMoluaexy6Ylv+Pe3QjDaT14Y3P+NLdLRr5e2XyMVZsOve/GPpPR5wcFxQJ0FZZ8VmpCLVuK4K6Wx50iZW6TCjBRLLQZcrjtLSl+wGMIIAECzxTubs9/Nr3P3xQPuxu0XUjZ8gfSSfdLDV0u/eHv1tUlS1/rarAMAAAAAAAAAAAAAqLkHZu+qyTp98bU1WWel64n5B8BNFw4c+vz+mTsjrfmb2bv03MEXV1UXAITxwOzdsgq4m3KR6cJ+7VjYro2dx9Sxqtb2mxn/8+j9M3fpqb1PC7+O43x8/8xdev7QqyqqDQAAAACAYqQftDFjzKmSPrikKSfpldbaa11zrLWeFoPNbjbGhPn+eK+kgSXbt0i6xFq7LCHEWrsg6ePGmEclXbek60+NMf9ird0eYl8AAACNl+gO7l+YkHLTUtL/jmo18eg10p6fBY+Z2SYNhAlGK/i3m3jkstre06+W/nPQv68RgXjVmM9Iu0Lcke/hz0Vb9+xPSSPPqqgkoJYKAe9xyDsOcw3Xd8ziBwAAK5UxUv9TpH0l98+QTEyy4d9UqFhKGr5Q2hXirtwbXhS8TtS+1FrphLdJg+dIN5xXfv/ldI1VvwYAAAAAAAAAAAAAoC7Gsztrss5JPafXZJ2Vrjvu//7m2SXBaJlctMc0k9tVVU0AEFbU45MkjWd3EYwWwPWYRj4XZP3PBZwjAAAAAAC1FGt2AaiPJ0PN/k3Lw+/eHBSKVsxamy+zj2MlvW5JU1bS64tD0YrW/Lqkzy9p6pB0VdiaAAAAGi5eJhhNkr57jpSfk6ytTw33/9/yY2ZC5sx6jl/xQmXirjId66RhRwjYXe9ubC1RhQlFi6ojLW1+Te3XBSoQFIwW1AcAAIps+YPStrHLwz0PWuol+6Sn/E35cSf++WLomku8091nksFrD50jDZxWvoZyuo6ofg0AAAAAAAAAAAAAQF1UEpJT7MiOzbpo4Pk1qGbl63EEo80Upg997gq3cdmbyyhvc1XVBQBhZCoIw6zFeaJdzRVmdaAw5ds3ETHQzBWANl2Y0lxhNnJtAAAAAAD4If2gff2upDOWbH/fWnt1jffxSknxJdtfs9Y+GGLe/6flgWovNcZcGRSoBgAA0DSJEIEAU/dK13RLyTXS6HOks/9J6hyuXQ2Tvyg/Zs/PJL0leMzMo9Lu7/v3mbh/+2oXS7n75sdr+/9cS/M1vtPS+t+Wzv5EuJ8HoAG8gBzKPMFoAACEd/z/koyRtn5ayk5K639LOuMj0jU94dfo3igluqSBEHfT7hor07/e3Rf0u7m0GLh20fekO94u7bpB6j5SOuEd0sizpNuulCZuleZ3B6/RvVHqOy54DAAAAAAAAAAAAACgaVwhOcd2nayjuoJf740ppg2dW3RSz+nqjHXVo7wVpyfe59s+6y0Go817c9pfmPQdc0rPWbp75vaSditPe3LjGklx4zEA9TXuCDnb0nWipgv7tTv7REnfRMSwx9UkKPxsIrtbni0oFuK6Es8WtCdordwubYgfXVGNAAAAAAAsRTBa+3pz0fb767CPFxVthwpes9beZ4z5maRznmzqkfQcSd+oYW0AAAC1EY/wxofcfumxa6U9P5de+MjihfnV8kLeUW3bF6Wnf16KOV6IKixIN5zvnm94auArKHxh+1ek48uE0RUWpKl7pDUnNDZUbGGi+jVOeId0xoerXweog0JA+FlQHwAA8HHcHy9+VCvRLXWkpYWMe0y5YLQ1J7j78gfK19AxKJ33hdL2Z15X2vbIF6VbX72kwUhP+Rv3cyoAAAAAAAAAAAAAQFN51lPGEcRyQf9zdPaaZzW4opXPFYw2U1h8Dd4VNCdJL0q/TvfM3CGr0juZZrI7CUYDUFfWWmWyO3z7zl17sXYsPOobjJZxhKkh+LEpKK/J/B4NJsvfOH5ffq/yNh+wn13a0EkwGgAAAACgejVIasBKY4w5RtLSv+Zvk/TDGu9jVNKpS5rykm6OsMSPirYvr7YmAACAuqgkzGr2Uelrw1IhW/3+p7eFH5u50d33xDek2cfd/Vz871D6Zo5DDmwNnvrwF6Rr+6Xrz5SuHZDu+0htSwtSbTDaeV+STv8/takFqIOg8LM8wWgAADTPuT6hZEuVDUY73t1XmIteT5DNr5Ke81Pp6N+Tjv1j6eIfSFveWNt9AAAAAAAAAAAAAABqZiq/Vznr/97cdHJ9g6tpDd2xXt/2nM0q6y04g+biSmgktV79iUHfftc8AKiVGe+A5rxZ377h5JjSyVHfPo5Pbpls8GMTFJYZZVzYdQAAAAAAKIdgtPb07KLt71trAxIdKnJK0fZd1tqZCPNvKdo+ucp6AAAA6iNeQTCaJC3ske5+X/X7XxgPPzYTkFO757bguQceCr+f1SQofCEoNG/yTumnr5MK84vbXlb65Tulnd+tbX1LTd0r3f8P0l1XSVv/tfJ1nvK30lGvkIypXW1AjRUCnuEGhaYBAICQjr2ysnn9xX82LtK7Jbi/c1RK9vv3pS+orKYgQ+dIT/836exPSCMX1n59AAAAAAAAAAAAAEDNZHLuoJXhVJkbda1SPfE+Z99sYdoZXjOUGlHMxJV2PK6E3gCot6AQr3RqzHl8msrv1YI3X6+yWlrQeVSSJkKGypULnwu7DgAAAAAA5RCM1p6eVrR9qySZRZcYY642xtxrjJkyxswYY7YbY75njHmXMeaokPs4qWh7a8Qai5M3itcDAABYGYLCr8p57KvV7z93IPzYu/5a2v9gabu10n3/J3juWn4d85X3v8uUJCne5e57/Ov+7Y9dV109Lls/I33rqdIv3ibd/bdVLGSkza+uWVlAvXgB4We5QuPqAACgbR35O+HH9h1z+PPuI6WRi/zHpZ8hdR8RvJYx0jFvKm3v2SQNnBa+JgAAAAAAAAAAAABA23GF5PTE+9Qd721wNa0h6HGZ8Q44Q3LSybEn/x317S8XrgMA1RrP7vBt7zCdWhMfcB6fJIK5XMqFWo6HDL0sdw4Iuw4AAAAAAOUQjNaeziravu/JwLPvSbpB0uslnShpjaRuSRslXSzpA5IeMMb8kzGmXALIMUXbj0ascXvR9qAxZiDiGgAAAPUXryIYbXrbYihZFE/8j3Tr66WfvkHa8R0ptz/a/G8eJ930Uun7l0i//HPpwEPSxE/Lz1tzQrT9rBaFCoPRfv0e//atn6qqHF+zO6Sf/75ka5AGdcE1Uu/m6tcB6qwQcGidzzWuDgAA2tbYpdIZHw33fOjEdy7fPvcL0rqzl7etO1M6/z/C7fuUq6SNv3t4u+9Y6cLrJcPLGQAAAAAAAAAAAACwmo3n/ENyDoZ4oVRPUDBaYdoZXjOcOhiM5v/YukLqAKBWnMGNqVEZY7QumVbMcXk0xyh/mTKBcWED5coFrBGeCQAAAAColUSzC0BdFP/VuVvSbZKGQsxNSrpS0rnGmOdZa11/hegv2h6PUqC1dtoYMy+pc0nzWkmTUdYpZowZlpSOOG1LNfsEAABtLlFFMJq3IOVnpGTIu9A9+Cnptj86vP3w1VL6/Oj7ffSri//u/r70yOel9DODx/cdKw0/K/p+VoN8QDBaLNm4OoJ8/YjarPPSmeq+34EGKnjuvpls4+oAAKCtnfB26Zg/lKYfkvb/RrrpJaVjerdIIxcvb+s+Qrrs54tB0bOPSd0bpN6jwu832bsY2LuwR1qYkPqOk4yp5isBAAAAAAAAAAAAALQBVxALwWhuCZNUh+nUgp0v6ZstTLuDh558TNMp/8d2IrdbBVtQ3MRrVywALOEKNzt4fIqbhAaTw75hX+UCwFajrLegffk9gWPCPm7lAtT25fco6y0oFesIXR8AAAAAAH4IRmtPxaFlV+twKNqMpE9J+rakxyX1SDpV0hskXbBkzumS/tMY8yxrbc5nH8XpHnMV1Dmn5cFofRWsUexKSVfVYB0AAIBF8a7q5mf3hAtGs5706/eWtmdurm7/8+PSY9e6+9PPkM79XPjwttWmEBCM9puPSye8zWdO6ZtH6mbP7ZXNMwlJnpTok0aeLZ31CULR0FI86+7bGim2GwAABEp0Sf2nLH6c+wXp1tce7hu9RHr656V4yn9u71HRAtGKdQwufgAAAAAAAAAAAAAAIGncEYw27AjvwqKeeJ8W8qXvbZ3MT2gqv9d3zsFANFfonKeCJnMZDaVGa1coACzhDG5ccsxPJ8f8g9Ec54vVbCK3u/yY7C5Za2UCbmJprXWG1i21JzeusY4NkWoEAAAAAKAYwWhtxhjTIak4Sv3IJ/+9V9Jl1trHivp/IelqY8w7JH14Sfu5kv5C0t/57Ko4OaOS9Ic5SQMBawIAADSfiVU3f2FC6tlUftye26X5JtyZ6NKfNH6frSQfEIw284j00L9JW96wvP2W19S3pqV2/yDa+Ct2S53D9akFaKCCF9z/lds8vezsKo/fAABguc2vWfwAAAAAAAAAAAAAAKDBrLWhQnJQqjveq735TEn79vmtzjnp5GLg2VBqxDkmk9tFMBqAunGFmy0NbBxKjUo+b/ef8AlLW+3ChMUt2HntL+zT2sSAc8yBwpQWbPlLiTO5nQSjAQAAAACqxlXC7SfuaJ+SfyjaIdbaj0j6WFHz240xYQLLbMj6qp0DAADQWuYnwo1bGK9vHX5O/0jj99lqbJn0pYc+s3x7fkJ6/GvBcwrZ6mpa6p4PhB+bGpA60rXbN9BE5YLRPnsTTzcBAAAAAAAAAAAAAAAAoF1MFSaVs/7vv1wakoNSPXH/y8K2zT3g2x5TXOuSizfh7Yx1aU3cPyAnTMgOAFRipnBAM94B376lYZiu478rSHM1C/uYTGSDQ+XCHvszZdYBAAAAACAMgtHajLV2VpLfJeIfDQpFW+LdWgxRO2idpMt9xk0XbXeFqzBwTvGalfhnSadE/HhhDfYLAADa2ZrjK587+2i4cbYJIT7dRzR+n63m9A8F90/cunx7/33lw9S+/2xprgYvts48JuX2hR/fNSYZU/1+gRXAK3PI/N59jakDAAAAAAAAAAAAAAAAAFB/49kdzr7hFMFoQbpjfb7t4zn/x3QoOaK4iR/aTqdGfccRPASgXoJCtYaXhKG5jk97cxPK21zN62plYYPKyh3bM7lw60yEHAcAAAAAQBCC0drTjE/bF8JMtNbOSPpaUfOFPkNXZDCatXbcWntPlA9JD1W7XwAA0OY2vry0LbVOevGEdM5npfO+KCXX+M/9+R9Ik3eV34ctVFdjJboIRitrvV9GcICc/52plpm4Rbr+TClzS2U1HfTQZ6ONH76wuv0BK0ihTP4gAAAAAAAAAAAAAAAAAKB9ZLL+QS3dsV71xP2Dv7Ao6uNTHDSUTvoHz4UNxwGAqFzhXEmT0prEwKFt1/HJytOe3HhdamtVYcMsyx3bQ6/jOG8DAAAAABAFwWjtaV/R9m5r7bYI839atH2iz5ipou10hPVljOlVaTBacd0AAAArwyn/WzrqNZLM4nbXeumi70odg9KWN0hHvVJae7J7/s/eJD3yRenmV0q3/4m05/bSMc0IRus9uvH7bDU9m6R4Z/AYaw9/ng8RjCZJczul718o/eId0i//XLrpZdKDn5S8CN8Hd783/FhJ2vLGaOOBFYxgNAAAAAAAAAAAAAAAAABYPVxBLcMp/1AcHNYT7400Pp1cv3zb8RgTegOgXlzHl3RyTDFz+JLooeSIzMFrPEKusVrVKtBsIhsuFJPwTAAAAABALSSaXQDq4gFJG5ZsR/0rzo6i7UGfMQ8WbW+KuI/i8XuttZMR1wAAAGiMWFI67wvSmR9bDLRae5JkijKGEwF3U9t7m3Trqw9vP/Rp6Vn/LY1ecritMFfbmstZe4rUvb78OEgbXixt+6K73+Ylk1z8PBcyGE2SvJx0/0cPbz96jbT7h9L5X5GM/wu0h9x1Vfj9SNLGl0rrzog2B1jBPFt+zHfusXruyWV+lgAAAAAAAAAAAAAAAAAAK14mW3yp06J0kmC0crrjAe9x9pFOjS7fdjzGmdwuedZbFlIEALUw7gjxKg5qTMZS6k8MajI/UTKWYK7D8janvbnSx8jPRJnHLWzA2p7cuAq2oLiJhxoPAAAAAIAf/vLYnu4p2l6IOL94fKfPmPuKto+JuI+ji7bvjTgfAACg8ToGpf5TSkPRJCkZ4U0DhXnpB5dK1x0p3f6Wxe38TO3qDGPsOY3dXyuLdQT3e9nDn+cjBKP5efSr0tTd/n2PfV361mnSl4x099+617j8V9KZH5d6t0idw9Lxb5PO/ixCrxkAACAASURBVGR1dQErTMErP+bdXw8xCAAAAAAAAAAAAAAAAACw4rmCWIpDclCqJ94bafxwURDacFFQ2kF5m9O+/J6K6wIAl0zWccxPlh6PhnzaFtcgGO2gPblxWYV7X3W5xy1s4JyngiZzmVBjAQAAAABwIRitPd1VtN0fcX7xeL+/UhenNTzVGNMdYR/nl1kPAACgtUQJRjto7gnpgU9IP36BNPmraHOf/nlp4Izo+zxo7cmVz11tYqng/sKSXOHc/ur399BnS9t23iDd9GJp353Bc/tPlQZOlY5/i/SCrdIVu6UzPyZ1rKu+LmAFCROMdvt2yfNs/YsBAAAAAAAAAAAAAAAAANSNtdYZ1JJOEoxWTncsWjBacdicK3RICh+QAwBRuMIwh33CMP3agtZYjVxBc35mvAOaLUz79s0WpjVTCH8j+XH+DwAAAAAAVSIYrT19W9LSq7+PNsZ0Rph/StH248UDrLU7tTyALSHpggj7uLBo+9sR5gIAAKw8iQqC0Q7adYO09VPR5nQMSVveUPk+1xxf+dzVxuaC+72lwWjhX+hz2nVDadvWf5VsiCSoza+tfv9ACyiEzDub8H9dHgAAAAAAAAAAAAAAAADQIvYXJrVg5337XIE4OKwnHv49zjHFNJgcXtbWHe9Vb3yN7/goYTsAEMZsYVrTBf+bladT60vbHAGZHJ8Oixpi6Ro/EXGdCUeoKQAAAAAAYRGM1oastTsk3bqkKSnp4ghLXFa0faNj3HVF278XZnFjzAmSzlnSNCPpu+FKAwAAWKGSVQSjVaJjSDr69RVONtKaE2tZTXvLzwX3F5YEo+VrEIw2da9ki1KfHrs23Nzjrqx+/8AKZ60t+RFx2TlV31oAAAAAAAAAAAAAAAAAAPUVFG7jCsTBYVGC0QaTw4qbREm7M3goR/AQgNoKCt9KJ0dL2oZSpW2StCc3Ls8WalZXK4saEucaPx4x6IxzBAAAAACgWgSjta+ri7b/NMwkY8wzJD1tSZMn6VuO4V+UtPSvQ1cYY44NsZu/KNq+xlrHrVsAAABaRdL/Tmh10zkkJXqkZ30z+tz1z5M61tW+pnZVKBOM5i0JRsuVCUZbd6Z06U3l9/mzN0lexBdiL7lRindGmwO0IC9kKJok7dhXvzoAAAAAAAAAAAAAAAAAAPU37ghW6Yr1RAr9Wq164r2hx7oC0NKO4KGoYTsAUI4rfCtpUupPDJa0+4WlSVJBeU3mJ2paW6vKBITNRRkfNegs6n4BAAAAAChGMFr7ulrSfUu2LzLGBIajGWOGVRqodo219iG/8dbaByV9fklTStLnjDHONAZjzAslvX5JU1bSe4PqAgAAaAmJBr+xIvXki3qp/uhzz/nX2tbS7soFoxVCBqOtOUG64Bopfb7UVeYOhQ//m/TwZ6W7rpJ+ckX5Gs/4v9LwBeXHAW2g4IUfu3MqQooaAAAAAAAAAAAAAAAAAGDFcYVvpVNjMsY0uJrW0x2LEIyWcgSjOQLTJgi9AVBjmdwO3/ah5KhipvRyaNdxS5IyjpC11SZqiKVr/ETEx5PHHwAAAABQLYLR2pS1tiDprZKWXjL+EWPMPxhjBorHG2MukXSzpC1Lmicl/VWZXV315LiDzpP0PWPMCUXrdxhj3iLpq0XzP2Kt3V5mHwAAACtfo99YkVyz+G+8K9q87iPLh3JhuXLBaF728OfZPf5jNr5Uet69Uu/Ri9smWX6/P3+zdPffSo9fFzzu6DdIJ7y1/HpAm/AiZJ3tmKpfHQAAAAAAAAAAAAAAAACA+svk/ANahh1hXVguGUspZTpCjXUFDA0lR33bM9ldspYbmAKoHXcYpv9xqDPWpb74Wv+1CG9UwRa0Jzfu27cukfZtd4Veus7Ha+MllysfWsezEe6IDQAAAABAEYLR2pi19gYthqMt9SeSdhtjfmKM+bIx5uvGmG2SbpB0zJJxWUmvsNY+UmYfj0u64snxB50v6V5jzG3GmK8YY66X9Jikj0tamgDxTUnvruBLAwAAWHkWHIFY9XIwiC3eHW1euZAvlCobjLYg3f8P0rdOlSZu9R8zctHy8LxYqnb1DT+zdmsBLaAQ4fXxnQSjAQAAAAAAAAAAAAAAAEBLG3eG5BCMFlZ3vDfUuLQjbG7Y8Vgv2HntL+yruC4AKOYKM3Mdn4L6XCFrq8lkbkIF5X37Tuw5zbfd9bi5/m9O7Dndtz1ns9qfnwxRJQAAAAAA/ghGa3PW2k9IulLS7JLmpKRnSHq5pBdK2lQ0bbekZ1trvxNyHz+S9CJJmSXNRtJZkl4q6bmSiuPjvyzp5dbaQqgvBAAAYKVrVjhVImIw2nF/Up862tmGlwT33/MB6Rdvk/bd5R6z5oTl28f8fvV1HTT23NqtBbSAKMFou6a4EyUAAAAAAAAAAAAAAAAAtCprrTOgJSgkB8v1xPtCjXMFoAU91gQPAagl5zE/IAxzKDXqv5YjyGs1yeTcx+iTHIFmU4VJLXjzy9qy3oKm8nsjrSNJ4wH7BwAAAACgHILRVgFr7SclPVXSv0s6EDB0l6T3SDreWntLxH18S9Ipkj4lKSjG/aeSXmKtfaW1dibKPgAAAFa0wXOkRLg3DVQtuebw553D0eZuuKK2tawGm14W3L/jf8qvseb4ojVfXnk9S41dLnX5v5ALtCsvQtbZDm5ECQAAAAAAAAAAAAAAAAAta39hnxbsvG+fK8QLpcIEoxnFNJj0f19yT7xPXTH/mzkHhe4AQBRzhVntL/i/+Xc4IKDR1Udwo/sxWBMf0BEdm53zJopC5Yq3l9rYeYx6Yv7nmaB5AAAAAACUk2h2AWgMa+1Dkl5jjOmSdL6kIyWNSspKyki601p7V5X7GJf0R8aYtz65j01P7mNG0hOSfmmtfaSafQAAAKxY8Q7pnE9Lt7xKsoX67uv0jyzZb2f4eSf+mbT25NrX0+56NkqnfkC68y8rm5/slzpHfNb8e+nO/11dbWd/orr5QAsqeOHH7pyqXx0AAAAAAAAAAAAAAAAAgPoKCrVJB4TkYLmeWG/ZMeuSaSVM0rfPGKN0ckyPLjxU0pfJEnoDoDaCQrTSAWGY6ZT/jcYncrtkrZUxpuraWlXG8ZimU6MaTKYVU0yeSt+cncnu0hEdRx3aHnecj2OKaTCZ1lBqVDPzB3zWIZwOAAAAAFA5gtFWGWvtnKTv1XkfWUk/rOc+AAAAVqRNL5MGTpN+/ofS+I/qs494t7TxxeHHP+M/pQMPSukLpKHzpFX8ol5VTn5X5cFoI8/yf9xP/itp9NLF75fJX0Rfd/BpUu/RldUEtLCowWir/Q0NAAAAAAAAAAAAAAAAANCqMjn/QJXOWLd642saXE3r6o6XD0ZLJ/2DhQ71pxzBaI7/IwCIynU8SZiEBhKDznlDjqDMrF3Q/sKk1ibW1aS+VuR6TNPJUcVNQuuSaU3kdvvMWx6o5gqtW5dMK24SSidHtX3+wbLrAAAAAAAQRazZBQAAAABtZc3x0ql/V5+1k2ukC74qpQbCz9lwhXTSX0jp8wlFq1b3kZXNG7vc3Td4tnTpT6RYKvq6J1UY1Aa0OM+GH5srSNl8/WoBAAAAAAAAAACoJ2PMe4wxtoqPzzX7awAAAACAaoxn/QNdhpNj3DAzgp54X9kxw6n1gf1pR/BQxvF/BABRuY75Q8lRxUzcOS+dcgc7rvZjVCbrH0yWTi0e013H9omiec51npzv+j9Y7Y8/AAAAAKA6iWYXAAAAALSdlPtuRKHEu6ULvykNnC6l+qW5XdLsY9LaU6REV+n4jrS0kClt795QXR1YzstVNq9vS3B/okfq3SLtvy/8moPnSEc8v7J6gBZnIwSjSdJcTupI1qcWAAAAAAAAAAAAAAAAAED9ZHL+gSoHA10QTnest+wYVzjOoX5X6E1up6y1BNUBqJorRKvc8akn1qeuWI/mvJnSNXO7dIxOrkl9rcazniZywYFmQ6lRaba0v/j86zofDz15bnAGrOV2cY4AAAAAAFQs1uwCAAAAgLbTMVR+TP+p7r7fulMaefZiKJokdY1Kg2f7h6JJ0lPf599+4jvL14HwFiYqm9cVfAc9SdJld4RczEibXild8BUp5r7rFdDOvKjBaNn61AEAAAAAAAAAAAAAAAAAqK9KQ3KwXE+8r+wYV/DZoX7HYz7nzWqmcKCiugBgqUrDMI0xSicd4Y1Z/2Cw1WAqv1c56/9G6oOP6bDj2J4pClQr3j7o4Pwhx+PPOQIAAAAAUA2C0QAAAIBaSw2UH/Pcn0tjly1vi3cvtvcdE21/m14q9R27vK33aGnTy6Otg2CDT6tsXtcR5cckuqTNrw0eE+uQXlGQzv+i1LOpslqANhAxF01zubqUAQAAAAAAAAAA0AyvkLQ5wgd30wIAAADQsqy1zpCc4TIhOVguVDBambC5oGAi1/8TAEThDsMMDm6U3Meo1Xx8coWZSYcfU1eg2d5cRnm7+CbsvM1pby7jO+7gfM4RAAAAAIB6SDS7AAAAAKDtxOLS+t+SdnzLPSaekp75X9L9H5UyN0mdaem4t0jrzoi+v9SAdOkt0n0fkiZ/KQ2cLh3/NqlzuPKvAaVGLpImbo0+L7km3Lgjf0d65Avu/o5ByZjo+wfajOdFG08wGgAAAAAAAAAAaCO7rLXbml0EAAAAADTCdGFK896cb1+5EC8s1x3vDew3Ms5wnIPWxPvVYTq1YOdL+sazO7W56/iqagSwus17c5oqTPr2DafWl53vOi+4wtZWA9fX3hPrO3RecAWaWXnam8toOLVee3MZWfm/gfvg/KBzRCa3i3MEAAAAAKAiBKMBAAAA9XDaB93BaGtPWfw3npJOfldt9tc5JJ3+odqsBX8nvH3x/3Tyl+Hn9D81fJjZ2HMkGUnWvz81EH6/QBvzHD8iLnPZ+tQBAAAAAAAAAAAAAAAAAKif8YAwm2FHkAv89ZQJRhtIDCkZSwaOMcZoKDWqJxa2lfRN5HZVUx4AaCLrPo6ECcNMp/zDHTO5nbLWyqzCG5RnHMfmpY/VUHLEPT+7U8Op9YHhcgfnB50jVnM4HQAAAACgOrFmFwAAAAC0pf6nSC94yL9vwxWNrQW10TEoXfLjaHOOenX4sYkeaeB0d39ybbR9A20qYi6a5nJ1KQMAAAAAAAAAAAAAAAAAUEeZnH+QSmesS71x3lMZRU+sL7A/HTJoLp10Bw8BQDVcx5G4EhpIDpWd7zo+zXmzmvEOVFVbq3IFki0NmkvFOtSfGPSf/2SwmitgrT8xqFSs49D2kPMcQXgmAAAAAKAyBKMBAAAA9dJ7tHTxj5YHWm14sXTyXzatJFQpGfzGkGWO/j3puD+Otv6zvuHuCwpNA1YRz4s2fp5gNAAAAAAAVowf3G/1J//h6Z1f9fSzh6PGnwMAAAAAAAAAVhNXSE46OSZjTIOraW3d8d7A/uHk+lDruALUMllCbwBUx3UcGUqNKG7iZecHBTyu1mOU8zxa9Fi5A812Bq9TNM8ZnukIaAMAAAAAoJxEswsAAAAA2trIs6QrxqW9d0jdR0o9G5pdEaoV75YKs/59Y8+VnvJeqWtU6tkUfe3uI6Tj3iI98I/L201c2vza6OsBbSjqJdNz2bqUAQAAAAAAIvr0jZ7e/P8OP7P/xx9YfeUPYvqd07l4DQAAAAAAAABQatwRpBIUfgN/qViHkialnPV/Q1065R9mUzIu6QhGc4TmAEBY47kdvu2u406xNfEBpUyHsnahpG8it1Obu46rqr5WY611BpKVBJqlRrV17p6ScQcD5dyhdcXr+P9fTeRWZzAdAAAAAKB6sWYXAAAAALS9eEpKn0soWrs46V3+7R2D0gXXSEPnVBaKdtAZH5GOf9viepLU/xTpmV+Xhp5W+ZpAG/EiJqPN5aJGqQEAAAAAgForeFb/+7rlz9FzBend/+U1qSIAAAAAAAAAwErnDnQhGK0SPfE+Z1/Yx9QVejNd2K/ZwnRFdQGAFHDMDxncaIzRUNJ/rCvYq51NF6a0YOd9+4qP5cVBaQdlngw0yziCzYrPHa51DhSmNO/NBdYLAAAAAICfRLMLAAAAAICWcvTrpK2flOaWvPi65kTpstukRE/168eS0pkfk874qFSYkxLd1a8JtBEv4vXSc7n61LGSzWWtJmel4T4pETfNLgcAAAAAAN28VZrwuR7qnh3Sjn1W6/t5/goAABDSm40xfy3pREmDknKS9kjaLukmSddba29sYn0AAAAAUBPWWmVy/iE5w45wLgTrjvVqn/b49rkCz0rGOUJvJOmmfd/VQHKootpckialLV0nqi+xtqbrNoJnC3piYbt2ZR/37R9IDGpT53FKxpINrgxovgVvXo/M/UYHClOH2nY6flaihGGmU2Pakd1e0j7uOJ+0i4LNa/v8Vu3JjR9qm8jtdo4vPpa7HuM9uV26bf9PtMexVsk6AeeSG/ddr/7EoLO/EnGT0KbOLRpMjtR0XQCAv8nchLbNP6i8Lb1IJ2U6tLnreK1J9DehMgAA0M4IRgMAAACAKHo2SpfeLN3/MWnfr6XBs6WT3lWbULSljCEUDfBhI46fy9aljBXrYzd4+ttvWk3NSWNrpX95TUy//VQuLgcAAAAANNf2Pe5n9PvnpPW8LxIAACCslxdtd0jqlbRJ0jMl/ZUx5nZJf2mt/V6jiwMAAACAWpku7NecN+vbFyUkB4f1xHt9241MYODZUv2JQSVM0jcM4esTX6iqviAvSr9Ol657Ud3Wr7Xp/H596on36+H5+wPHrUukdeWR79b6jo0Nqgxovodm79OndrxfM4UDocYPp9aHXtt1LJvI7gq9RqvJZHfqnx5/n8ZzO0KN74x1qTe+PGwynfJ/3PI2r6t3ftS5VnEQ2kBiUHElVFC+ZOx1mc+Hqq8SF/Y/Ty8ZfoNiJl63fQDAauZZT/898SV9Z++1geOMjK5I/54uXveCBlUGAABWg1izCwAAAACAltO7WTrr49IlP5RO/5DUsa7ZFQGrhhcxGW2u9P1Xbeu/77R6x1cXQ9EkaeeU9LJ/8fRowMXnAAAAAAA0W4GnrQAAALV2lqTvGmP+3hhT87unGGOGjTEnR/mQtKXWdQAAAABob5ncTmdfcRALwumO9/m29ycGlYylQq0RM7HQIWq1dF3m83po9r6G77dS35j497KhaJK0N5/RF3Z9vAEVAStDwRb02Z0fDh2KJrnDznzHOs4PQeeUVvel3Z8MHYomLYaLFv/JcKjC43rx/03MxDWUGqlorWr8aN//6FfTP2v4fgFgtbh/9s6yoWiSZGX1n5l/0+PzjzSgKgAAsFoQjAYAAAAAAFqGjRqMlq1PHSvRtXeUPjhzOemff8wV5gAAAACA5gp6Zjq7ip67AwAAVOEJSZ+W9PuSLpB0kqQTJJ0v6S2SvlM03kj6K0nvr0MtV0q6O+LHf9WhDgAAAABtbE9ut297h+nUmnh/g6tpDz3xXt/2qEFzzQqmu2fmF03Zb1TWWt1x4KbQ4x+d36pMtn1Dm4ClHpq7V/vye0KPjymudcnh0ONdIWoHClOa9+ZCr9MqDuSn9JvZuyLNSadKH6PueK96HOGZLr3xNeqK95S0VxqyVq3b9/+kKfsFgNXg9v03Rhof5XdhAACAcghGAwAAAAAALcOLGoyWq08dK9Ft2/wfnA9dTzAaAAAAAKC5goLOZxYaVwcAAEAL+rmk50raYK39A2vtZ6y1N1tr77PW/sZae4u19hPW2ssknS3pwaL57zLGvLDhVQMAAABAleYKs77taxPrZIxpcDXtYWPHFt/2zZ3HR1rnqM7jalFOZNOFqabsN6r9hUnNef7fvy67s0/UqRpgZdm58Fik8Zs6j1HcxEOP9wv9OqgdAwjHszsiz3Edw2t1LtjcpHPEruzjTdkvAKwGUX9X5XdbAABQSwSjAQAAAACAlhE1GG02W586VqL7d7n7DswTjgYAAAAAaJ75gOBygtEAAADcrLXfstZ+19qgqNlDY2+X9HRJDxR1fdCYCFeQAgAAAMAKsGDnfds7Yp0NrqR9nN53rvoTg8vaumLduqD/0kjrnLv2IvXE+2pZWigFFRq+z0pUEr6UyQW8+Q9oI7sjBnldvO4FkcYPJIYUV8K3rx1/zqJ+TX3xtTpnzbN9+y4aeL5iIS83jymmiwae79t33tpL1BNr/Dkik92lgm2N8wQAtJqo55t2POcCAIDm8X+WDwAAAAAAsAKVv+xnucmZ+tSxEvV0uC8mn5yR+nhPIAAAAACgSaYDws9WU6g5AABAvVlr9xpjXiHpdknmyeYTJD1b0vdqtJt/lvTViHO2SPqvGu0fAAAAwCqw4BGMVmt9iX796Ya/1zf3/Ie2zz+osdQGPX/oVRpMjkRaZ21inf5s44f03xNf1Lb5B5TzAu6OUoE5b0Y5W/rigbVeTfdTL64gCKOY4iauvC19vDJZwiOwOoxnn/BtT5kOdca6JS3+QWusY6Oe2X+5Tut7eqT1YyauweSwxnOlAWyVhBaudJmc/9cUV2JZgGUyltTmzuP1gqFXqy+x1nfOCT2n6o+P/Bv9YPIbenxhm/zu02CM0REdR+migefrhJ5TfdfpTw7qnZs+uHiOmHtQeZuv4Ctz8+RpujBV0l5QXntz40qnxmq6PwBY7eYKM77HXUnqMJ2+gdaZ7E5Za2WM8ZkFAAAQDcFoAAAAAACgZXgRg9EmpiNOaGFdSXcw2oGAC9ABAAAAAKi3mYDws5ms1eHMDgAAAFTLWvsLY8x3JT13SfNlqlEwmrV2XNJ4lDlc/AIAAAAgqgVvzredYLTqDKVG9fqxt1W9znBqTG9c/84aVFTq/+38R926//sl7Z5aIxht3BG+tKHzaG3o2Kybp24o6XOFGwHtZnfOPxjteUMv16XrXlSTfaRTY77BaBOO0MJW5gp7O7XvHL1p/Z9FXu/EntN0Ys9p1ZalkdQRetP6P696HT8L3rze/uDLfft2Z58gGA0AaswV+itJrx37E316x4dK2rN2QfsLk1qbWFfP0gAAwCoRa3YBAAAAAAAAYfncgCzQxHR96liJUgHx9/v93ycIAAAAAEBDuIK8y/UBAACgYtcXbT+1KVUAAAAAQIUWPP8/HhOM1v5ixv9yR8+2RjBaxieQSZKGk2NKJ/0De1zhRkA7yXoL2pvL+PaNpI6o2X5cP2eu0MJW5gp7SydHG1xJ43TEOjWQGPLtG8/6H38BAJVz/Z6aMEkd23VK5HkAAABREYwGAAAAAABahkcwmlPcuPsOzDeuDgAAAAAAigWFn81mG1cHAADAKrKtaDvdjCIAAAAAoFILnv8bnjpMV4MrQaPFFPdt91RocCWVyWQdQUWpMaVT/mFFe3LjKtjW+PqASmVyO2Xl/ybgmgajOX7OXCFirSzoeNPOhlPrfdt3E4wGADWXyfkHnKWTo+pNrFF3rNe3f9wxDwAAICqC0QAAAAAAQMsgGM1tIe/u208wGgAAAACgiYKC0YL6AAAAULG5om2SAwAAAAC0lAVb/LRmUUess8GVoNFixv9yR896Da4kOmttQHjEmNJJ/7CigvKazE3UszSg6VyhVTHFNZQcqdl+0kn/YLTJ/ISyXvu8MDlbmNaMd8C3z3WsaReuIL3x3BMNrgQA2l+5EE5XGGcmSzAaAACoDYLRAAAAAABAy7ARg9Gm5qRsPuKkFhUUjHZgfnU8BgAAAACAlWlmwf28dCbbwEIAAABWj6Giba6uBgAAANBSFjz/O0ESjNb+jONyR08rPxjtQGFK855/qF86NaahlH9gkyRnoBrQLnZn/UOrhpIjiptEzfbjCmiRpD258Zrtp9kyOf+gGskdDtcuhlPrfdtd4XsAgMq5Q39Hl/0bdh4AAEBUBKMBAAAAAICW4VWQ77VnuvZ1rETBwWiNqwMAAAAAgGKzAeFnQX0AAACo2DlF21wVCAAAAKClEIy2esWNIxjNrvxgtEzWHQAxnBxVZ6xLa+ID/nMDQo6AduAKRhtJHVHT/Qwmh50Bi+0U0uI63iRNSmsS/seZduH6ntmX3+MMpwQAVMZ1vkknF4NIXYGkmSy/2wIAgNogGA0AAAAAALQMW0Ew2r5V8Bq3tTYwGG0/wWgAAAAAgCbKB1yrlCs0rg4AAIDVwBjTKemKouYfNaEUAAAAAKiYOxitq8GVoNFcgUaeWiAYzRG61BnrVm98rSQpnRr1nxsQqga0g/EGBaMlTFLrkkO+fe0U0uIKUxxKjirmCJhsFyPJ9c4+jqUAUDsL3rymCpO+fUNP/k57MCCtWCa3U7aSi38AAACKtPczXAAAAAAA0Fa8SoLRZmtfx0qTLwSHxh0gGA0AAAAA0ERBz1nzBKMBAADU2l9IWnpFaUHS/zSpFgAAAACoyILnfzfMjlhngytBo8VN3Lfdsyv/BQVXMFo6OSpjzKHPo8wF2oG1VrsbFIwmBYe0tAtXAJgrfLGdrEumlTAJ377d2R0NrgYA2teEI4RTkoafPNemU/7n3HlvTtOFqbrUBQAAVheC0QAAAAAAQMsICkZLOP7KsRqC0Rbywf37CUYDAAAAAKxQBa/ZFQAAAKxMxpjXGGNGIs75fUlXFTV/zlq7vXaVAQAAAED9LVj/NzylDMFo7S5m/N8I6Gnlv6Aw7gwqGvP9fKlM1h08AbS6A4UpzXn+b+YdSa2v+f6GHAGEE230c+YOYvQ/xrSTmIk7v85xRwAfACA61++nMcU1kExLkoYd51xJGg8IVgMAAAiLYDQAAAAAANAybEAw2kCPf/u+uYBJbaJcMNoMwWgAAAAAgCYKemaeX/nXMQEAADTLGyU9Yoz5vDHmecYYxyshkjHmLGPM1yT9qySzpOsJSX9d5zoBAAAAoOYWPP83PHXECEZrd8ZxuaNnV/4LChlXMNqSAB9XmM9EbldLfI1AJXYHhFWNpI6o+f6cAYSOMLFW5Ap5SwcE1LSTYcf3ze7sjgZXAgDty3XeHEqOKG7ikqTe+Fp1LmRZYgAAIABJREFUxrr85zt+NwYAAIgi0ewCAAAAAAAAwvIcV1IbI/V3SZkDpX37/G8y11bKBaOV6wcAAAAAoJ6Cgs7zhcbVAQAA0IK6JL32yQ/PGPOgpG2SpiQVJA1KOlXSiM/cvZIus9b6XyUJAAAAACtUwRaUtznfPoLR2t/BkIVinl3ZLyhYa53hEcNLQppcgU05m9X+/KT6k4N1qQ9oJlcwWlesR73xtTXfnyscbE9uXAWbV9y09mXVC968pgqTvn2uY0y7GUmt923fnXOH8AEAonGG/qYOn2eNMUonx/TYwsOl89sokBQAADRPaz+DBwAAAAAAq4rrQuqYkfq7/fv2zdWvnpWiXPDZfC7gCnQAAAAAAOos6Flp3pWCDgAAgGIxScc/+VHO9yW93lr7eH1LAgAAAIDay3rzzr5OgtHanlHMt92T1+BKopkpHNCc538X13RySTCaI7BJksZzOwlGQ1tyBaONpI6QMabm+1sa2LKUJ097c5mWDw/LZN33QVh6vGlnI6kjfNvHsztkra3L9xUArDauYLPic006NeofjOYIVgMAAIjC/y+FAAAAAAAAK5DrWmkjqb/Lv2+f/3uN2kq2bDBaY+oAAAAAAMCPK+hckvKFxtUBAADQYv5B0pckbQ85fkbSdZIusdZeQigaAAAAgFa1EBCM1hFzvEkMbSPWosFo47kdzr6lIUzd8V71xPt8xxEegXYVFIxWD0MBAYSZnDtUrFVMOL6GmOIaSA41uJrmGE6u922f92a1v7CvwdUAQHtyBXEWB4y6Qjnb4ZwLAACaL9HsAgAAAAAAAMJyBaPFYlJ/t5FUOmA1BKMtlAtGK9MPAAAAAEA9BQWjPbC7cXUAAAC0EmvtdVoMOpMxpl/SyZI2SBqR1K3FG+PukzQp6T5Jd1lriZ0FAAAA0PIWbEAwmulsYCVohriJ+7Z7K/wpryvUrMN0ak28f1lbOjmqmcKB0jUIj0CbGs/6BweOpPzDrarVEevU2sQ6TeX3lvRlsjulntPrst9GyeT8jzdDyRHnMbTdDAd874xnd2htYqCB1QBA+8l5WU3mJ3z70kUBpK5jMqG/AACgFghGAwAAAAAALcN1IXXMSGu7/fum5upXz0pRNhgt15g6AAAAAACI6je7pR37rNb3m2aXAgAAsGJZa/dJurnZdQAAAABAIyx47jd8dcQIRmt3xsR82z3rNbiSaFyhZunUmIxZ/hpIOjmmbfMPlq5BeATaUN7mNOH4+RhJHVG3/aaTo/7BaG0QQOg6VqRTo77t7ag3vkbdsV7NetMlfePZHTq2++QmVAUA7WMit1tW/hfvpFNjy7eT/uefWW9aM4UD6on31bw+AACwevj/pRAAAAAAAGAF8hzBaEZSn+M9bwfmHZPayEKZ4DOC0QAAAAAAzVTumfm1d7T/c3cAAAAAAAAAQDjz3ryzL0UwWtuLOS53tFrhwWiuoKLkWGlbqrRNkjI5gtHQfiayu+U5fn7rG4zm+DlrgwBCV7jbkCOYph0ZYzScWu/btzv7RIOrAYD24/q91CimweTwsjbX77ZSe5x3AQBAcxGMBgAAAAAAWobrMulYTFrjDEarWzkrRrYQ3E8wGgAAAACgmWyZ3LO3fYVgNAAAAAAAAADAogVHMFrSpBQ38QZXg0aLOf6PC7bMm+SabNwRHuEXFJF2hBdN5HbJlntRBWgxrpAqI+MML6uFdMr/56wdAgidQYwBwTTtyBWsN57b0eBKAKD9ZLL+IZzrkmklTHJZ25r4gFKmw3+dNjjvAgCA5iIYDQAAAAAAtAzPcdNHI6nPEYy2fxUEo7kel4MIRgMAAAAANBOX8AAAAAAAAAAAwnIFo3XEHG8QQ1uJOS53tCrzJrkmcwYV+YSgucKL5r05TRemaloX0GyuYLR1yWElY6m67XfIEbo2kdstz67s40mQnJfTZH7Ct88VutiuhlPrfdtd33MAgPBcgWZ+5xpjjPP323HH78gAAABhEYwGAAAAAABahue4kjpm3MFoB1ZBMFqhzBXmcwSjAQAAAACayJKMBgAAAAAAAAAIacGb821PmY4GV4JmiBn/yx29FRyMNlM4oFlv2rfPL7gnKLxoPLerZnUBK8HunH9I1UjqiLrudzjl/3OWtznty++p677raW9+XNZxW6q0IwyuXbm+hzLZXSrYQoOrAYD24gz9dQSguX6/dQWsAQCA/5+9O4+O5Czsvf+r6kVSt7bRqFujGW941djgGTtgsyRsISwhQGLWhPAmARJ4sydkuQnJzfoGSHJzk8ube8EkkJATDA4xEAw2YFZjY8DYI49taWzP2GN7tHRLo7VbvVbdP8Zjy9P1VFdL3a1evp9zOBxXtaofaaqrt3q+haAIowEAAAAAgLZhmkdt29JgF4fRnCrnfOUIowEAAAAAdhBhNAAAAAAAAABAUHnX+4SvHruvySPBTrAV8lzeypEbUzhC8o5H9IeG1GvYn/22BbSjVGHGc/mYRzSwnkZ9AoTpNg4QpgzHCEuWdkfGmjyanZWMeO9DjspaLM43eTQA0FlMQTNTAM0UTEsX2vc5FwAAtAbCaAAAAAAAoG2YAmCWpIFey3PdaheE0cpVJpi3exjtnsdd/fS1ji7+o7L2/3FZb/tnR48sMKseAAAAANoF7+AAAAAAAAAAAEHlHVMYzXDlTHQU2/Ke7ui6Va4euoNShnBE1OrRUGhXxXLLspSIGOIRhm0B7Wq+cMJz+VhkX0PvNxbqVzw04LluoY0jLQuGqNuu8KgidqTJo9lZSUOER5LmDUE+AEB1Zbekk8W05zrTa1he2wIAgEYhjAYAAAAAANqGaSK1bUkDhvPeCiWpUOrsKdimYNxpJUcqVauntaipWVc//AFHn7rT1UMp6ci89O/fdXXVXzlaXG/P3wkAAAAAAAAAAAAAAACAtwJhtK5mG6Y7OmrdMFq64B18SETHZVneF3xNRPd4Lm/nYBNwpkx5TevlVc91Y9HGhtGkzoy0mI833seUTha1ezQSTniuSxmCfACA6haLaeNr74QhSmlavl5eVba8XrexAQCA7kMYDQAAAAAAtA3H9Q5hWZY06HPe25r3uXIdI0jzLF9q/Dga4R+/7mo9X7l8YV36h68SRgMAAACAdmB4Ow8AAAAAAAAAQIU8YbSuZlshz+WO28JhNENkKRExh4o6MdgEnGneJ07VnDCa92PQFBdrB+bjjfcxpdMlo3s9l88XZpo8EgDoHH6vR0cjY57L/V73LhQJ/wIAgK0jjAYAAAAAANqGYzi3ybakAZ/z3lY7PYwW4JyvXLHx42iE24+aZ8/fcBcz6wEAAACgHfDuDQAAAAAAAAAQlDGMZvU1eSTYCbZhuqOjcpNHElzKEFlKRM2holFjsIlwBDqHKYzWY/VqKDzS8Ps3PQbTbRxoMR0jTMeUTmcK7PlF+QAA/kwB0eHwbkXtHuO6sBXxXJfi9S0AANgGwmgAAAAAAKBtmCZSVw2jbTRkOC3DcatPMW/HMJrjuDri8z3Y/bPSg/NMrwcAAACAVhfgbSsAAAAAAAAAAJKkvOt9sleP7XOCGDqGbRnCaG6Aq4fukHTREEaLmMNopmBTxllTprxWl3EBO22+MOO5PBndK8uyGn7/CWOAcFZuG36BWXbLWiymPNf5hRg7WTK613N5qui97wEAqtvKa1vbss3Pu4btAQAABEEYDQAAAAAQSHrN1d99xdF7P+PopsPt92UwOoNj2PUsSxr2uSDo/GpjxtMqygHO+WrHMNpjS9JGlXF/bpLjEQAAAAC0ujacVwAAAAAAAAAA2CF5J+e5nDBad7AN0x0dtWYYLVteN4bMkj6hoqRPWCJd8LmaKNBG5gsnPJePRfc15f5HDY/BvJvTenmlKWOop6Xigsoqea7zi9V0MtO+tFI6qZzT4VfVBoAGMb0W9XttK5kjnekCYTQAALB1hNEAAAAAAFUdX3R15V84+p3/cPW+m1y9+oOOfvv61jzJBJ3NNJHatqRI2FJywHv9zEpnz8A2BeM2qxYYa0XH0tVvc+sDnf1vCwAAAACdIMg7t2KJ93cAAAAAAAAAAMJo3c62Qp7LHbc1z1lNF80RM79Q0WB4lyJW1LBN4hHoDKkdDqMlI3uM61I+j91WteAz5tHoWBNH0jrGonuN61KFmSaOBAA6h+m1aLUIZ8LwvMtrWwAAsB2E0QAAAAAAVf3lF1ydWH76sn/4qqvJx5iwiuYyBcAs69T/7x32Xn9iqTHjaRXlAOd8FbwvEtfSsoXqt5luv3NTAAAAAAAe2jHoDQAAAAAAAACoP3MYra/JI8FOsA3THR21ZhjNFN6JWFENhUeMP2dbtjEe4Rc/AtqF45aNIZRmhdH6Q0PqNTx3pAvtF2lJGf6eg6Fdxt+z0+0KjypsRTzXzRvCfAAAM8cta6Ew77kuETUHRyVzOC1d4LUtAADYOsJoAAAAAICqbnuoskblutL7biKMhuYyhdHsJ8Jo+0xhtGXv5Z3C9HfZrFBu/DjqrRTgXLZjC1KhxLEIAAAAAFqZG+BtW5A4NgAAAAAAAACg85nDaL1NHgl2gm15T3d05cgN8oVDk5niSqORPcbf5bRE1BSPaL9gE3CmxWJKJdf7ir7NCqNZlqXRDgoQmo4N1UI1ncy2QkoaQjymcCUAwGyptKCyvJ+/TeGzJ9cbXtuulpeUcza2PTYAANCdCKMBAAAAAKqaNnz3e/2drXeSCTqb6bym02G0vcOW5/qZ5c7eV8sBAmIF7++nWloxQMyt7EhH040fCwAAAABg64K8K98oNnwYAAAAAAAAAIA2kDdMmu+xepo8EuwE22e6o6MAJ8o1WdoQV0oawhCbmYJNpm0C7WS+cMK4Lhnd27RxmCIu7RggNMXcEoZjSbcw7U9++yAAwFu6YH4dOlolxOkXTlvw2S4AAIAfwmgAAAAAAKBtOIaZ1NYTPbTxIe/1C+uNGU+r6NwwWrCg3fHFBg8EAAAAALAtptD5Zmu5xo8DAAAAAAAAAND68q73B8Y9dl+TR4KdYFkh4zrHbcEwmiGu5BeGePI2hnhaOwabgDPNF2Y8lw+Hd6vH7m3aOIyPs2L7Pc6Mx5sAIcZONhbd57k8ZdgHAQBmKcPz42Bol3qrvB/bFRlVSGHPde34vAsAAFoDYTQAAAAAwLas5YKFi4B6ME2ktp8Iow0ZvmtZzzdmPK3CFIzbrFBu/DjqrRhwzCeWOQ4BAAAAQCsjjAYAAAAAAAAACMJ1XeUd75O9mhnSwc4J+Ux3dNR6J8GZ4hFBQkVJQzxttbysnLOxrXEBO22+cMJzuSli1SiJyB7P5eniXFPHsV2u6xrHPGr4HbtFMrrXc/l84YTcIF9UAwCeZI5wVn+uCVkh7Y4kDdttr+ddAADQOgijAQAAAAB8VftCcHalSQMBZA6AWU+E0foN5751+uTqcoALYRZKjR9HvZUCnsc2s9zYcQAAAAAAtifI6earzO8BAAAAAAAAgK5XdAty5X0yFGG07mBbPmE0N8CJck20Uc5ovex9Eq0pxvS02/gEJhaIR6DNtUwYzfA4y5TXlC2vN3Us27FSXlLRLXiuSxgii93CtE/l3ZxWy0tNHg0AtLe0KfobMMJpigObtgsAAFANYTQAAAAAgK98lZjSLEEiNJGp02c/EUYb6PFe3+lhNFMwbrN8qf2uelYMGEY7wXEIAAAAAFpakAtxr2y03/tWAAAAAAAAAEB95R3ziV6E0bqD5TPd0RTN2ynpojlelozurfrzu8KjCils2DbxCLS3VKuE0XyiYX6P4VaTLpiPCUlDhKZb+B1vTYE+AIC3tCHOawqeVdzO8LybKsxseUwAAKC7EUYDAAAAAPja8L641JNmV5i0iuYxBcCeDKP1Wp7r1/MNGlCLKAc436tQJXLYioKG0WaXOQ4BAAAAQLtb7fCoOQAAAAAAAACgOt8wmtXXxJFgp4SskHFd2Q14QlmTmEJFYSui4fDuqj9vWyHtjiQN226fYBNwpo1yVivlJc91zQ6jDYVHFLYinuva6XG2YIi4xex+xUL9TR5Na+kPDSoeGvBcR4gHAIJzXMf4fOMXGn3a7aJ7PJe3U4wUAAC0FsJoAAAAAABfG0X/9fNrzRkHIJnDaNYTPbT+Hu/1uaJUKnduPCtQGK21zgkLJGgY7cRyY8cBAAAAANieIO/ICaMBAAAAAAAAAPLuhnFdj93bxJFgp1g+0x0dBThRrolSRe8w2mhkTLYVbNpmIuodmUgbtg20g1TRHKMai+5t4kgk27KViJgiLe3zOEsZQoymY0i3SUa896v5wokmjwQA2tdK6aSKbsFzXdDnm6QhoLZcWlTByW95bADQbR7NHdVD2fu0Ujop1+3c+ZBAEOGdHgAAAAAAoLVteH+u/aRV83lIQN2ZPsuznwijDfic+7aWk3bF6z+mVmAKxm1WKDV+HPVWCnge2wxhNAAAAABoaUHOzeEzJgAAAAAAAABA3jFfRYMwWnfwC4q99+g7Zcna0naHI7t1Rf/z9LrEzypk1Tal0nVdfX35Rt2+/BXNF54KPjnyvvJnwhCEqOW2t618RXesfL2mcW7WG+rTxX3P1JvGflFD4ZEtbwc47YHsYX1+4RN6NHdUjut/cqdriBhGrKh2hRONGJ6vRHRcs4XHKpbfuPAJfXHhU00fz1aYjzfe0bduMxbdq4dzRyqWf23p8/rG0he3vN14qF/741fojcl3KBbq384Qm+r+zN26afH6QI/XzWKhuCZiB/XGsXeoPzTYwBECrc1xHT2eP6apzKSms4c0VzihXrtPL9n1Gr1w+JVNGcPDGw/o8wv/roc3jqjkbn8iSDw0oEvjB/XG5DvVF/KeVOMXDA36fOMXUPvtB39my6/lTWzL1rm9F+o5gy/SC4ZeJtsK1XX7ALBTvnzyBt21dpskKWr1aDSyR4nouK4ceJ6eM/iiHR4d0FyE0QAAAAAAvnJVPkNfNZ+HBNSdKQB2+usRvzDaer5zw2jlAN9ZF7zPiWhpxYBjnl+TiiVXkXB9vygDAAAAANRHoDAanzEBAAAAAAAAQNczhdEs2YpY0SaPBjshJHPMwBQGCmKxOK9blj6rjLOmt+35tZp+9utLn9en0x8NfPukTxDiTImoOTJR1tYjGJnymu5e/44eyx/TnzzjH2uOwQGbPZo7qg8+9mfb2ielUyFAv/hho4waYi6u3G3/TjvN7xjSTZLRfZ7Lt/tvvFpe1ndXv675wgn97jkfkGW1/nnKR7NT+t+P/+WWnjPXyiv6/to3NVM4rj849+925PEK7JTFYkrTmUlNZQ/pSPYeZcprT1u/IumT8x+S6zp60a4fb+hY5vKP64OP/4lyTv2uMLhaXtIdq1/XfGFGv3PO+z2PZ+nCnOfPxkMDgeOQI5GEbNlyPCKp23ktb1J2pYc27tdDG/fr28tf0k+PvVvn9V1c9/sBgGZLF56KVRbcvGYKxzVTOK69Pefs4KiAncG7EgAAAACAr42C//rV+n3WDlRlmkdtP/EJR3+P+WeXsnUfTsswBeM2K7ThuRtBw2iueyqOBgAAAABoTQHetvIZEwAAAAAAAADAGEbrsXvbIkaC7bMaHGH53so3K0IXflzX1deXb6zpPhKR4GG0ZA233YqF4rwOr9/Z0PtA57t1+ea6BMTGDPGqRksYwmidoJbjTScbi+5t6PYfyT2g47kHG3of9XL7yi3bjg+dyD+ihzeO1GlEQGvaKGd0aO0OfXL+w/rTY7+sPz72S/r3+X/UXWu3+b5W/Gz641opnWzo2H6w9u26RtE2ezh3RMdzD3muSxdnPZfX8lwTtiIaiSS2NLbteix/TH/z6O/rurkPKVte35ExAEA9uK6rdNE7Vsnrf3QjwmgAAAAAAF8bRf/1a97nIQEN4VReOEaSZD9xzttAr/ln/+ZLQaZht6ey4e+yWTuG0UoBfq/TTiw1bhwAAAAAgO1xA7wlX93o3PftAAAAAAAAAIBg8oYAQI/lc8VMdJT+0KBCCjds+2WVdCL/SODbZ8prWiymarqPPT1nNeS2W/Vo7mjD7wOdrV770N6ec+qynVrt6Tl7R+63GfZEG38MaQd7e85t+H2YQkKt5vH8wy21HaBVlN2SHsrerxsXrtPfHP99/e5Db9O1M+/Xt5ZvUqo4E3g7eTen/1r49waOVJrJP9rQ7T9qOJ7NF7z/DrUGRvdEd+5515WrW1du1p8+/Cv6zspX5QY5YQkAWsx6eVU5J+u5rpOjz4BJ4z4lBAAAAAB0hI2C/3omraKZHMPudvpaoPEeybK8J1x/52jn7qumv8tm+TYMoxVruGDZzErjxgEAAAAA2J4g78hXie8DAAAAAAAAQNfLO94fFvfYfU0eCXZKj92rS2LP0v3Zuxt2H+nCnC6OPSvQbWsJZUjSrvCoLuy7NPDtd0fGdH7vhI7lpmu6n1qki7MN2zY6n+u6dduHnjP4orpsp1YX9l2q4fBuLZcWd+T+GyURGde5vRft9DBawlh0n87pvdAY+6mHdHGuYduup6yz3lLbAXaK67pKFWc0lTmk6eykHsgeVs4QYa7VHStf04uGf1zn9F5Ql+2dyVENkyi2wPS8njKE0cai+2ra/lWDL9K9mTtrHlc9rZdX9G9zH9TtK7foLWPv0r6e83Z0PABQiwWf152J6HgTRwK0BnunBwAAAAAAaG0bRf/1TFpFM5kmUttPfMJhWZZnFE2SIqGGDKkllJ3qtyk09vuxhqgljLaw3rnhOwAAAADoBqv1Of8UAAAAAAAAANDG8m7ec3mP3dvkkWAn/dz4b+ic3gsbtv1aYmfpQvAg1HB4t9697w9lW7WdrPgLe39L49FzavqZWtTyOwBnWi+vbjskE7Yi+vnx31Jyhybxh6yQ/t9979VwePeO3H8jjIQTete+/ybLsqrfuEu8ffw9Ncd7atEux9JMuT5Bs3ptB2imtdKK7ly9Vf8290H90bFf1J89/Cu6PvUR3bP+vbpF0STJlatPpz4q1zRxZZvKbqPDaJXBHcctG4NpyejemrZ/5cAL9PKRa2Rp55+jjm5M6X2P/LZuSP1LXfcBAGiklOF1Z4/Vq4HQUJNHA+y88E4PAAAAAADQ2jYK/h/WE0ZDMzmGANjmr0x+dEL6qsfFE5c7+HuMQGG0UuPHUW+1hdEaNw4AAAAAwPYEOReUz5gAAAAAAAAAAHnDZHXCaN1lIDys/3bu32qhMKeUIdAQxC0nP6vp7GTF8lriNqb7T0b26k1jv/jkfw+EhrSv59yao2iStDsypj867x80V3hcS6WFmn/+tAeyh/XlkzdULE8XZ+W6LgElbIkpkiJJ79z7e+q1+3x/Pmr16JzeCxS1e+o9tJqc3Xu+/vL8a3Uif1xr5ZUdHct2DYaGtbfnXNmWvdNDaSnJ6Lj++LwPaq7wuJZLi1vezt1rt+u2la9ULPd7LLSKsltWzsl6rvupxM9rX8+5Fcu/cvIzOpK9p2J5trxW9/EB9VZ0Cjq6MaWp7CFNZyb1WP5YXbcftsIKW1HPx9VDG/fp0Pp3dMXA8+t6n5LkyntyyBX9z9cLhn8s8HbuWrtNt6/cUrHc67XwyeKCSm7Rczu1Ridty9ZPJv4fvXzkGj2WO6ayGhN6c11H3175sibXv+t7O0eObln6rO5cu1VvSL5DV/Q/j9fFAFqa6XVnIjrO8QtdiTAaAAAAAMBXrkpMabWDY1NoPaZ51Pamz/V+82W2vjpd+WXQsvf3vB3BCTDBvB3DaCXCaAAAAADQEYKE0Vb4jAkAAAAAAAAAul7e8b6KBmG07jQa3aPR6J4t//yxjWnvMFpxLvA2TBG1fT3n6dL4FVse25ksy9J4z9ka7zl7y9vosXo9w2gbTlaZ8pr6w4PbGSK6VLrg/XjpsXrbLixiWyGd3Xv+Tg8DDWRbtvb2nKO9PedseRs5J+sZRlsozslxy1sKYDbLRjljXDcRu9xz/z+8/n3PMFqmzInZaD2O62gmf1xT2UlNZw7poY37VXQLdb2PfT3naSJ2QPvjB3Vh36Wazk7qQyf+yvO2N6T/Vc+MP1sRO1rXMTiudxgtEd1T0+vPbDnjHUYrzslxnacFNlPFGeN2EtHxwPe5WSzUr0vil2/pZ4O6rP+HdHj9+7o+9REtFlO+t10uLeqfZv5al8au0JvGfknJLf5eANBopvdgiQjHLXQnwmgAAAAAAF9574t+PGnV+zwkoCFMATB700XPhmPet8mXpFzRVW+kfU7CCKrs/d3X0xQac6GdhirWMOZFvn8HAAAAgJYVoIvGZ0wAAAAAAAAAAMJoqCvTpOF0YVau6wYKOqUK3pGIVgwp+EUr0sVZwmjYknTROw44Gt3TVlE0ICjTc0fJLWmptKjdkWSTRxRcxlkzrouHBmpannU4MRutYbm4qKnsIU1nJjWdndRaeaWu2x8Kj2h/7IAm4gc1ETugwfDw09Y/K/4cTcQOeMZ2F4vz+vrSjXr57mvqOiZH3pNDLNmey02ShsBwyS1qubSokUjiyWXzhROetx0O71av3VfT/Tbbs/qfo0til+tLJz+tr5z8jEpuyff292fv1l8+8ut6+cg1esXI6+setgOA7TK9B0tsIxwPtDPCaAAAAAAAX6YQ1WmrGwp8ggiwXY4hALZ57zOF0SRpKSOND5vXt6tqj1NJKvp/v9OSSjWF0YJMswcAAAAA7AQ3wFu2TF4qO65CNp8xAQAAAAAAAEC3MobRrNaejI/WlIzu9VxecPNaKS9pODzi+/Ou6xonJJu2vZMGQkPqsXqVdysfR6nCjJ7Rd8kOjArtbqE457k8EWFSPjrTqM++nS7MtnQYLVs2x8xiof6alvttC2iknLOhB7P3aiozqensIc0VHq/r9nusXl0Yu+zJGNp49GzfuVCWZen1yV/QXz3y23I9gmU3n/wPXT30Eg2Fd9VtjI7rPYkiZIVq2o7v8aw497QwmjkG3Hqveb1E7R69ZvStumrwxfpAI2cQAAAgAElEQVTU/LWeIbvNSm5RX1z8lL6/+k29KfmLuqz/h5o0UgCozhhGMwR8gU5HGA0AAAAA4KtacKnkSLmi1MdFMtAEpt1x85zpYZ9z4JY3OjOMVjYE4zbLt2EYrVhDGG2B798BAAAAoGUFTVmv5fyD5wAAAAAAAACAzpZ3NzyX99i9TR4JOkEiao5BpAozVcNo6+VVbThZ7223YBTKsiwlouN6PP9wxbq0IW4FVJMueO87frEVoJ31hWIaCA1prbxSsS5dnNOEDuzAqILJlNc8l4cUVo/l/VoqbnuH0TKE0dAkjlvW8dxRTWXu1nR2Usc2jshRDZMIqrBk69zeCzQRO6iJ+AGd33eJwlakpm3s6zlPPzz0ct26cnPFupyzoRsXPqG37vmVeg1ZjkeATZJs2TVtJxbqV39oUOvl1Yp16cKsLok968n/ni+c8NzGWGRfTfe508ai+/RrZ/2pfrB2m/4z9c9aKS/53j5dnNM/nvgLXdH/PL0++fanxeIAYCdky+vG13R+n3EAnYwwGgAAAADAV7UwmiStbBBGQ3OY9sfNF+nxm0C97H2OUtsL8jgtlIJOQ28dpQDBt9MIowEAAABA+1vdIIwGAAAAAAAAAN0s7+Q8lxNGw1b0hwYVs/uVdSpPLksXZnVx7Jm+P58qzhrXJaJ7tz2+RkhEDGG0gvl3AfyYonrJ6HiTRwI0TyIy7h1Ga/FjqSlmFg/1y9p8sv0msdCA5/KssybXdY0/B2xHujCrqeykpjOHdCR7WBtOpq7bH42MaSJ2UPvjB3RJ7HLFQt4BwFr8xOhP6/tr31LOI5p7+8oteuHwq3R27/nbvh9JclzvSRSWVVsYTTp1PPMMo53xOjdVmPH8+WSLvub1Y1mWnj34w7osfqW+sHidvrH0BWNs7rS717+j+zN368dH36yX7nqNQhYJFgA7Y8Enap6I8B4M3YlnZQAAAACAr3KAMNFqTtoz1PixdLp//66j67/vyrakt1xl6c3Pqf2Li07nGtpe9qbvXGNRKWx7R7U6NYwW5HFaqN+Fk5qmWA4ecyOMBgAAAACty/R+/kwrG40dBwAAAAAAAACgtRFGQ70louM6nnuwYvmZMQgvpgBOj9WrwdDwtsfWCAlDrCrI7wucaaOc1bpHHEqSRiN7mjwaoHkS0XEdy01XLG/1Y6lXCFSSbxQqblhXcksquHn1WLwGw/Zlyms6kj2s6cwhTWUntVicr+v2++y4JmKXayJ+UPtjBzQarf9z1EB4SD+++026If0vFetcufp06p/1m2f/ZV1igq4h4hVSqOZtJaJ79HDuSMXyza9zC05eJ0tpz58fa8Mw2ml9oZjekHyHnjv4Ul03/yHPv8NmeTenz6T/VXesfF1vGXuXLopd1qSRAsBTUgXvMFrEimooPNLk0QCtgTAaAAAAAMCXE2Di6iqTVrftAzc7+oMbnvpjf27S1cyyo9/6MeJom5n2x81hNMuyNBzzDmXNrbqSOu/KVUH6Ybli48dRb8UaYm4rG1Kx5CoS7rx/XwAAAABod0HDaKve890AAAAAAAAAAF3CFEaLEkbDFiUjhjCaIXr2tNsUZzyXJ6LjdYleNELCEKtKGyZXA34Wiub9xhThAzqB+Vja2mG0THnNc3k8NGD8Gb91mfIacVpsSckt6tjGtKYyk5rOTurR3FFj7GsrQgrrGX2XaH/8gCZiB3Vu7wWyrdqjYbV68a5X69blL3lGEh/cuE+T69/VwYHnbvt+yq73JArLqn1uUSJiiuY+9Ryf8jm2JaP7ar7PVnNW7zP0nnPepztWv6bPpP/VeKw8bbbwqP7nY+/V1YMv0TWJn9NAuDWDyAA6kynEOxoZk72F5wGgExBGAwAAAAD4ChRGY9LqtuSKrv765so/9PtucvUrL3EVJfT0JNP+eOY5Ruft9g6jHanvxYVahhPge8KVNgwY1hJGk6STWWlssDFjAQAAAABsXcAuGvF9AAAAAAAAAOhyecf7g+IeiygHtsYUb0oZJhs/7TaGSESyhYNQpt8346wpU17zDeAAZzJNyg8prF3h3U0eDdA8yehez+Xp4pwc12nZKEW27HHyvKSY3W/8Gb912fK6RiKJbY8Lnc91Xc0WHtN05pCmspN6KHuf8m59JxmNR8/WxBMhtItil6nX7qvr9oMIWxFdk/h5fXjmfZ7rb0h/TJfFf0gRO7Kt+zFF5GxtIYxmeG2YLszKdV1ZlqWUIQYcUli7I8ma77MV2Zat5w+9TJf3X6XPpf9Nt618perPfHf167pn/Xt63ejP6oeHX96U+B4AmEK8hKnRzQijAQAAAAB8BQkuMWl1e+5+VFrKVi5fWJfuPSFdeW7zx9SqXMNMavuMMNrEHkt3Hq+88ZHZoFOx20s5wK+17LGPtbpSjWG0hXXCaN3okQVXKxvSubul4RghSQAAAKAVmd7Pn2k150ridT0AAAAAAAAAdKuCm/dc3rMD4QN0hkSkegzCxDghOeIdzGkFScPvK0npwpzifYTREFy6MOe5fDQ6RhwEHc0Unii6Ba2WljQcac0wYMYQRouHfMJoPusyjvf2AElaKS1pOjOp6eyp/62UTtZ1+4OhYV0SO6D98QOaiB1omcfd5f1X6ZLYs3Qke7hi3UJxXt9YvlE/NvJT27oPxzWE0bYQZTS9Fi64ea2UlzQcHtF84YTnbUajexTqsOf7/tCg3rrnV/T8oZfpuvkP6fH8w76333Ay+mTqw7p99av66bF369zeC5s0UgDdyhSnTkT2NHkkQOsgjAYAAAAA8OUEmLjKpNXtOTJv/iM/MO/qynP5255m2h/PPDfpYsPnfdPe52i0vSABw+U2DBgWaw2jrTVmHGhNjuPqlz/h6p9udeW40nBM+sjbbL3+hzhmAgAAAK0maKZ8tb4XDAYAAAAAAAAAtJm84/1BcY/d2+SRoFMkDXGbzTEIL67rKmWYkGzaZisYCo8oYkVVdAsV69LFWZ3Xd9EOjArtyjQpf5RJ+ehwfuGJVHGmZQJNZ8o63idSx0LmKGbICqnXjinnVF6BO1vmxGw8peDk9eDGfZrOHNJUZlIzheN13X7EiurCvks1ET+o/bGD2tdzrm/AdqdYlqXXJ96h9x3/bbmqnMRx0+L1unrwJRoMD2/5Psoe25UkW1sIo0XNx7N0YVbD4RGlCjOe68eirRsD3q5n9F2i3z/3b/Wt5Zv0+YVPeB4DN3s095D++vjv6keGX6nXjr7VNyoJANuxYIhTm0KXQDcgjAYAAAAA8BUojNaGwaVW8lDKvO4Bn3XdyDXsj/aZYbQx79s9tqSqV3lsR0Eep8vZ9vvdaw6jcWGyrvKx211d+62ndv7lrPTGDztK/Q9bowPts58DAAAA3cD0fv5MK3zGBAAAAAAAAABdq+yWPWNOEmE0bF3CJ2J2OgbhZb28YgwktPKEZMuylIiMe8ZK0gXvyBVgkmZSPrpULNSveGhAGY8wWLowp4tjz9qBUVWXKXufSB2vEvCJh/o9n/NM20N3cFxHj+ePaSozqansIR3bmFLJLdVt+5YsndXzDO2PH9RE7IAu6NuviB2t2/Yb6aze8/SCoZfp2ytfrliXczZ048In9DN7fnnL23ddQxjNCtW8rbg9oD47rg0nU7EuXZzVRbpM84UTnj+bjHRuGE06FYZ8ya6f0JUDz9cNqX/R99e+5Xt7V66+tXyT7l67XT+V+HldPfjitpqbA6D15Z2cVspLnuv8PtsAOh1hNAAAAACAryDBJSatbs9Rn/jZEe9zCrqWaX88M4x29i5LUuWNs4VT++twrP5j20mO93dfT1MsSxsFKdbT+PHUS+1hNFcSXy51i7+/xfuAkHyPo/KHbb5oBAAAANoQ8X0AAAAAAAAA6F4FJ2dc10sYDVvkF4NIFWZ0Uewyz59LFc0nbyajrR2JSEQNYTSf3wnwki56x/QS0T1NHgnQfInIuHcYzfC4aAVZQ8gsZvuH0WJ2vxZVOaHBtD10rsViStNPhNCOZO/xfAxsx0g4oYn4AU3EDmoidrn6w4N13X4zvWb0Z3Tn2q3KOZUnuty2coteOPwqndX7jC1t25H3JApbds3bsixLiei4Hs09VLEuXZiV67rGMNpYdF/N99eOhsIj+oW9v63nZ16mT6Y+bPx7nLZWXtHH5/5Bt6/coreMvUt7e85p0kgBdDpTmFqSEhHeg6F7EUYDAAAAAPgKEkbLeF+kEQFlCuY/8vRsgH+ALmLaH8/sH+0dNm/jxHLnhdHKAXeT5Y32CqOVAgTfNlvyvkAnOtDxRVf3zZjXf+9h6erzmzceAAAAAP7cgO9bV81z3gAAAAAAAAAAHS7vE0brsfuaOBJ0EsuylIzu1fHcgxXr/EJh6YL3yUm9dp8GQkN1G18jmCZMpwutG/NB6yk4eS2XFj3XMSkf3SARGdcjuQcqlrfysTTrGMJoIf8wWjw04Lk849Q3ioXWs1HO6Ej2sKazk5rOTCpV9Dk5ewt67Zgujj1T+2MHNRE/oGRkb8dc+HogPKxX7X6TPpP+14p1rhx9Ov1R/cZZf76l39dxvSdR2FbtYTRJSkYMYbTirNbLq54BYUkaa/EYcL1dEr9c7z3v73XLyc/ppsXrVXT9J8o9tHGf/uqR39JLd71GPz76ZvXynhXANpkCvLZC2hVJNHk0QOsgjAYAAAAA8OUECBOt5xs/jk5W8r6giyTpyLzkOK5suzO+ANou00TqM/884z7nHZ1Yki7rsO9oygEDYstZ/2hcqyn6PDa8EEbrHvf6X4hJnznk6urzOW4CAAAArSJo9n218kK6AAAAAAAAAIAukXd9wmhWbxNHgk6TiOzxDqMZ4meSlDKEbxKR8ZYPeiSj457LU4ZJ1oCXxWLKuC5h2MeATpKIGiKTLXosdVxHmbJ3GM0UPjvNFE7LGraH9lV2S3p44wFNZyc1lTmk47kH5ajGK5n7sGXrvN6LNRE/oP2xgzqv7yKFrM5NWbx4+Cd06/LNWijOV6x7IHtY96x/TwcGrq55u6Z/E1tbC6OZnrfThTmlfF4PJ6P7tnR/7SxsRfTK3W/QcwZ/RP+R+mfds/4939s7KuuWpc/qzrVb9cbkO3Ww/7kt/14BQOsyBXhHI2MKWaEmjwZoHZ37ahIAAAAAUBflADNXM4TRtsUv/pQtSI8tSefubt54Wplj2B/P/O4gGraUHJBSHheqOrHsSuqsLxsc0x/mDCttNsGcMBpMsv4XYNIt97vSNc0ZCwAAAIDqTKHzM63lgibUAAAAAAAAAACdJu+YT27qsQmjYeuSUe8rqfrFbUzr2iEIlYh4j3G9vKKNckZ9oXiTR4R2ZHoMWLK1O5Js8miA5jMdS9OFObmu23Lhm7yzIdcQU4rZ3uGz0+K2dzgtU/Y4ER9txXVdpYozmsoc0nR2Ug9kDyvn85p7K5KRvdofP6iJ2AFdHHtmV73OiNgRXZP4BV07837P9TekP6ZL41cqYkdq2q7jGsJo1hbDaKbjWXFW80Xvq5X32TENhIa2dH+dYHdkTO/e94e6Z/17un7+IzpZSvvefrm0qI/MfECXxa/Um5K/2BbvGQC0HvPnEN7BXqBbEEYDAAAAAPhyAlwAhjDa9pSq/I0fWSCMdpppIrXt8d3yvmHvMNpR/+8k2lKQgKEkrZovqtqSTGG0kC2VPR43yxkm0HeLQpWdfqPYpIEAAAAACCTou7V2C3oDAAAAAAAAAOon55hPbooSRsM2JCLek4j94japwoznzyQj3pG1VuIXYkgX53RO6IImjgbtKl2Y81w+EhlV2Kot8AK0o6ThWJp3c1otL2sovKvJI/KXKa8b18VD/mG0mGG93zbRutZKKzqSvUdT2UOazkxqqbRQ1+3HQwOaiB3QROyA9scPaiSSqOv2282B/qt1Ud8z9eDGvRXr0sU5fXP5C3rZyE/WtE3HEDm0FNrSGE2vDXPOho5mpzzXJaP7Wi4AuRMu779KE7EDunnx0/rKyc+orJLv7e/L3KW/eOTX9YqR1+vlI9coYkebNFIAnWCh6P0ezBS4BLoFYTQAAAAAgC8nwMzVTJ4Y0XaUDPGn004su5L4UkEy749eYbSLxizd/VjlD0zPdt7+GiRgKEn5NotFmR4biX5pbrVy+TIT6LtGwf87xarHVQAAAADNZQqdn4kwGgAAAAAAAAB0r7whjBa2IgpZW4sAAJKUjHrHzE7FbZY0FB552nLXdZUuzhq21foTkofDuxW2Iiq5lScMpguzOqeXMBqqM03KHzWEBoFO4xuZLMy2XBgt63hcTfwJ8dCA78+awmlZhzBaOyg6BR3dmHoyhPZY/lhdtx+2wrqgb7/2x67QRPyAzup5hmzLrut9tDPLsvSG5Nv1/uPvketx2cAvLl6vqwdfooHwUOBtuq735JDQFv/uSZ/n7vsyd3kuHzO8fu5GUbtHr028VVcNvkifSn1YR7KHfW9fcov6wuIn9b3Vb+jNY+/SpfErmjRSAO3OFKf2e10KdAPCaAAAAAAAX8HCaI0fRycrVg2jNWcc7cC0P3pdjGbC8P3NtPfnhG2tHHCCea7UXpE902MjOegdRlvKNnY8aB35KmG0E8syXs0VAABgKx5KufrSfa6iYenVz7K0d5jXGUAjpM3nagMAAAAAAAAAOpwpjNZj9zZ5JOg0iUi1uM3Tw2jr5RXlHO+rufhtq1XYlq3RyJjmCo9XrDMF34AzpQve+0o7PAaAeojbA+qz49pwMhXr0sVZXahLd2BUZpmyd8TMkqVeO+b7s6ZwWqbMF/ityHEdzeSPayo7qenMIT20cb+KbqGu97Gv5zxNxA5of/ygLuy7VFG7p67b7zRn956v5w+9TLetfKViXc7J6saF6/TTe94deHtleU+isLS1MFp/aEi9dp/n69vV8pLnzyQjhNHOtKfnLP36WX+uH6x9W59OfdT4tzstXZzT///4n+mK/ufrDcm3a1dktEkjBdCOik5BS6UFz3XEqdHtCKMBAAAAAHwFCaOtE0bblpL3BV2eNEMY7UmuYX+0PZoE+w3nXjyYkkplV+FQ54QMnCr70Gn5ygtAtjRjGM1w4bKlynMP0KEKVcJo2cKpUN5IvDnjAQAAne3zk67efK2j3BOvp3fFXH3pN209+7zOeU8BNJrp/fyZZleIHAMAAAAAAABAtyq4hjCaRRgN2xMPmeM2qeKsLtRlT19mCEJJUjLaHlGoRGTcO4xW6MAry6Ih0kXvfSURZVI+uoNlWUpEx/Vo7qGKdX7PEzvFFEaL2f2yLf+YUszu91yeNWwTzbdcXNRU9pCmM5Oazk5qrbxS1+0PhUe0P3ZAE/GDmogd0GB4uK7b7wavGX2rfrD2bc/42LdXvqwX7nql9vWcF2hbrus9OaTaY9nEsiwlIuN6LH8s8M+MRfdt6b46nWVZevbgj+iy+JW6cfE6fWPpi3LlP5nn7vXbdX/mLr169C16ya6fUMgi7wKg0kJxXq68T7Jsl88hgEbhmRMAAAAA4CtIGC1T3wvMdB3CaMGZ9kev6dL7xy3J40PBYlk6mpYu6aBzM8oBJ5jnq8SkWo3psZEY8P63Xco2djxoHQVDNG+zB+al557f+LGgMb57zNUHv3bqq51XXib97HMt4hgAgB3hOK5+5RNPRdGkU687r/orR861oZ0bGNBmAr5tVb5E5BgAAAAAAAAAulXeMYTR7L4mjwSdxi9uk/aI26SKM57b6bVj6g8N1X18jZCIjkseFxpNF1sv5oPWU3bLWiymPNclIkzKR/dIRgzPHS14LM2W1zyXx0Le0bPN4obbFNy8ik5BETu6rbGhdjlnQw9m79VUZlLT2UOesdPt6LF6dVHsmZqIH9D+2EHtiZ7FObrbNBge1itH3qjPLny8Yp0rR59OfVS/ftafBfo7O4bQVkhbP1ctEd1TUxgtGd275fvqBn2huN6YfKeeO/hSfXL+w3o4d8T39nk3pxvS/6I7Vr6mt4y9WxfGLm3SSAG0C9PrS0u2RsLJJo8GaC2E0QAAAAAAvpwq0S5JWvc+HwkBFasEfmaWg04f7nymv4RtV35BdPGYZFveMbWp2Q4LowV4nEp6WsyhHZgeG6OG7+iXN06FK7z2B3SWfIB9+cicq+eez77Qjr50n6tX/cNTB7brvifdOyN94PX8ewIAmu+Oh6XHl7zXve8mR3/wqq1diRPoNm4NH23MLBNGAwAAAAAAAIBulHc2PJf32L1NHgk6kSluk/IKo3ksk6REZE/bREOShniVVwgOONNSMS1H3idwjkY66ORboIpE1Ht/b8VjacZZ91xuip5tFgsNGNdlnXUN2SNbHheCcdyyjueOajp7SFOZSR3bmDYeh7fCkq1zey/QROygJuIHdH7fJQpbkbptH6e8ZNdP6NaVL2mxOF+x7kj2Hh3OfF+X919VdTuO6z05xLK2fp5arWFTwmjBnN17vt5zzvv0nZWv6rPpjyvjeEcqT5spPKq/e+wP9dzBl+qnEj+ngXB7RJcBNF66MOe5fCQyqojNcza6G2E0AAAAAIAvr6jUmTKFxo+jk5WqfGe16HHVvm5lCvV5dbB6I5aeMSodTVeum5pz9ZNqjxOUggjyOJWkfKmx46g3Uxgtafj+3XWl1Zw0HGvcmNAaCgG+65/2/l4ALc51Xf3adZUH+w9+zdXvvtzV6EDnHLsBAO3hu8fML7bf+xlXv/cKVyHCvEBVtSTfZ5alZ+5r2FAAAAAAAAAAAC0q73hfoZUwGuohETWEwoqVcRuvZVJ7BSJMv+9KeUl5J8fjCr5ShseAZA5FAZ3IFBJKF+fkum5LxTKzZe8Yj1/07KnbmONpmfK6hsKE0RohXZjVVHZS05lDOpI9rA2nvpNGRiNjmogd1P74AV0Su9z33xn1EbGjuibxc/rIzF97rr8h9S+6NH5F1SidKYpnaxthNMNrQy/D4d28VqyBbdl6wfCP6UD/1frswsd1+8otVX/mjtWv6Z717+l1ibfpBUMvk22FmjBSAK1soeg9AarWsCXQiQijAQAAAAB8lQ0hqs3W840fRycrVfkbL3hfwKkrmQJgpu+V9497h9EePVm/MbWCII9TScoVGzuOenJd1xxGGzT/3FKWMFo3KASI/J1Yavw4UH93PSo9lKpcnitKtx2VXnew+WMCAHS3bJUQ+OET0sGzmzMWoJ25NZTRZlZcqYNi5ttxLH3qvfGFSRFhBAAAAAAAANDxCKOhkZKmuE1htiJuky6YwmjtMyHZb/J0ujCns3rPa95g0HYWCt6T8gdDuzgmo6uYjqU5J6v18qoGwkNNHpFZtuwd1Yrb1WNYMTvus10mMtRLprymI9nDms4c0lR2UovF+bpuv8+OayJ2uSbiB7U/dkCjhCx3xMH+5+nCvsv00MZ9FetSxRl9c+km/ejIa40/77quXMPlB21rG2G0GsI6Y20UA24l/eFB/eyeX9Xzhl6mT81/SI/nH/G9fdZZ13Xz/0ffWblFbxl7l87pvbA5AwXQkkyfQ4xGeD4HCKMBAAAAAHyZQlSbFUpSqewqHGKC5laY4k+nncxIZcdlAqxk+IpHMv1pxgYtz5862WHf0QZ5nEpSPkBMqlX4/U6Jfu9/V0lazjZmPGgthSrHTUlay9VQXkDL+Nwh87/b4ROuXneQ50IAQHNVC4EveF9wF8AZagqjLTduHO1iLefqp/63o69Nn/rvi5LSZ37Z1qV7eT0MAAAAAAAAoHMZw2hWX5NHgk6UMETN8m5Oq+VlDYV3SToVo0gVZry3EWmfSMSuyKhCCqusypMG08VZwmjwlS56T8pPENlBlzE9d0inHietFEbLON4nsMRC1cNoUbtHESuqolt59cCs02En3TdRyS3q2MYRTWcmNZU9pEdzR+Uq4NXQAwgprGf0XaL98QPaHzuoc3ovkG2F6rZ9bI1lWXpD8u36wPHf8QycfXHxk7p68MXqD3tfKd7x2Udsbf3f1+94dqZkdN+W7wfSBX0T+v1z/4e+ufxF3bjwCeWcDd/bP5J7UB84/nt64fAr9ZrRnwl03AbQeczvwdon0A40CmE0AAAAAICvoMGlTF4aijV2LJ2qVCXw47jS0uxJ7b73S9LaSenqV8g6+6LmDK7FOIbveUzTgncbvhNYzHRWMKkc8DvSdgqj+QUDTf+ukrREGK0r5IvVb7NWJWKC1vRfk+bj87F0EwcCAMAT0lXO72yn19hAu5hd2ekR7Lxf/YT7ZBRNkh5MSW+51tHkn9iyLOJoAAAAAAAAADpT3vWeMN5j9zZ5JOhESZ+oWbow82QYba28orzrHelrpwnJISuk3ZGkUsXKyFu64D3hGjgtXZzzXJ6IEEZDdxkIDanH6vV8XkgXZnV+38QOjMpbtux9gkvQwE48NKDl0mLF8kyZKwYG5bquZguPaTpzSFPZST2Uvc/4mmKrxqNnayJ+QBOxg7oodpl6bQLCreic3gv03KGX6jsrX61Yt+FkdePidXrL2Ls8f9ZxfcJolr3lMQ2FdhkDiGcaa6MYcKsKWSG9dNdrdOXAC3RD6mO6c+1W39u7cvTN5S/qrrXbdE3iF3TV4Is4PwjoImW3pMViynMd78EAwmgAAAAAgCqChtHWCaNtWSlA1GrhN9+skbknPgwP/Z70x/8q60ff2NiBtRHb8B3P7rj38sUOu3hV0MdpLkBMqlX4hdH6ItJAr7Tm8V3xUqZxY0LrKFQJSkrSqv/FldCCVjdc3fO4ef33H+msqCUAoD3MLfs//5yKLnMSElBNLa/kZqs87jqd67r6wuHKv8G9M9Idx6TnXbADgwIAAAAAAACAJsg73uEIwmioh3hoQH12TBtO5ZU308U5XajLJEmpQmVI7LRkpH3CaNKpkJtnGK1IGA3+0gVDGK2N4oBAPViWpWR0rx7LH6tYZwoI7pSMIYwWt4OF0WJ2v5ZVGUYzBddwykppSdOZSU1nT/1vpXSyrtsfDA3rktgB7Y8f0ETsgIYju+u6fXL/LZIAACAASURBVDTOa0ffqrtWb/OM4926/CW9cPiV2ttzbsU6R+aT5G1tPYxmWZYSkXHNFI5Xve1YdN+W7wdPNxwe0dv3vkfPz7xMn5z/sOdr883Wyiv617m/1+0rX9Fbxt6t8Z6zmzRSADtpsZiWI+/JpUnegwGE0QAAAAAA/oIGlzLVLxwCA78A1GkLKwVdfPo/ymW5f/PL0o+8Vla0p5FDazmm/dGUITCF0Y7M12U4LaMcIK4nSflSY8dRT36Pi0hI2hUzhNGyhCm6QTHAvuy1f6C1Pbbkv/6+GenInKtL9uz8Y/z7j7j62G2u0muuXn6ZpXf+sMWVuQCgQ2WrvNfttOgy0ChuDa2zmZXGjaMdFMvSSUP0++N3uHreBbzuBAAAAAAAANCZCKOhkSzLUiK6V4/mHqpYtzmGZoqG9dkx9YcGGza+RkgYQm6pAmE0mDmuowVD8Gk0sqfJowF2XiK6xzuM1mLH0mx5zXN5LDQQ6OfjIe+Amim41q0KTl4PbdyvqczdmspMBopM1SJiRXVR32WaiB/QROyg9vWcy7mpbWooPKJX7H69/mvh3yvWuXL06dRH9Wtn/WnFv6/jmieG2FZoW2NKRIOF0ZLRvdu6H1SaiB/Qe8/7B92y9FndvPgfKrr+JyU+uHGf/r9HflMvG3mdXrX7TbwnBjqcX7yc92AAYTQAAAAAQBVOwODSOgGaLSsF+BunQ8mnL8isSvd9V7rihY0ZVIsy7Y+m7/t291uSKmdf54rSStbVUKwzvigMGjAstFEYreQTRgs/EUZ71OOiWkuVF/REByoECEqu5Rs/DtTXiSphNEna/98dOddu74v97frmEVev+l+OcsVT//2fd7m661Hp/7y1M55TAABPV+11x6IhXgTg6Wrooul45UWou4pfRO5oqpa/JAAAAAAAAAC0F8JoaLRkZNwzjLZ5ErIpGpaIjLddmCQR9Z5A7TfpGlgtLRljHabYHtDJjJHJFjqWuq6rjOMdMDMFz85kCqhlHO/gWrdwXEeP549pKjOp6ewhHd2YUsmt3wn5liyd1fMM7Y8f1ETsgC7o26+IHa3b9rGzXrrrtfr28pd1spSuWDedndS9mR/oWf3PftpyVz5hNNnbGk8iQFwnpLB2R5JVb4faReyIXrX7jXrOwAt1feojujdzp+/tHZX15ZM36Pur39Ibk+/Ugf6r2+79CIBgFgreYeqh8Iiidk+TRwO0HsJoAAAAAABffpMxN8v4X7ACPvwCUKfNeH2pevg7XRdGM+2OtuE7npG4eVvvv9nV+67pjC8GggYMT0d82kHR53ERCZn/bQlTdId8sfqT0xrBzrYzsxLsRcddx11dee7OHb//+ktOxfH02m+5+u+vdjU+3BnPKwCAp1SLC/P6Ewgm6OdLkjS7Iq1uuBrs687XVn7x8wdTzRsHAAAAAAAAADSbMYxmEUZDfSSi3nGb9KZJyOnijOdtktG9DRlTIyUNMZ/l0qIKTp4J1vCULnpPypfMsT2gk5mfO1onjFZ0Cyq53ieJm4JnZzIF1LJl7+BaJ1sspjSdmdRU9pCOZO9RplzfONxIOKGJ+AFNxA5qIna5+sODdd0+WkfU7tFPJX5O/zz7t57r/zP1UV0aP6iQ9VTuw3F9wmjW9sJoScPxbLNEdI9sa2cvYN3pRqNj+uWz/kj3rH9P189/xDOct9lSaUHXzrxfz4w/W29KvlOjvB4DOo4pXk6YGjiFMBoAAAAAwJffZMzNMvnGjqOT+QWgTjsR9jipprev/oNpcab90TbMlR4fMm/rc4dcve+a7Y+pFZQDPk7zpRpmou+wamG03aYwWvd9/143ruvqyJw0HJPGBtXSVxQqBDhuruUkx3Flmw4QaDknloLd7hsP7GwY7aZ7K5e5rnTtra7+5DXsbwDQaaq97lgmjAYEUksYTZKOzEvPOa8hQ2l5fp/Fza00bxwAAAAAAAAA0Gx51xBGswmjoT5Mk4pThRm5rivLspQyhG5MYZxW5jfmheK89vac08TRoF2YJuXH7H7FAwaWgE5ieu7IOuvKlNda4nHhF+6K297BszPFDLerdxSsFW2UMzqSPazp7KSmM5NKGSKpW9Vrx3Rx7JnaHzuoifgBJSN7W/ocbdTXlQMv0DeWv6CjG1MV61LFGX1z+Sa9dNdrnlxWlvlkNUvbC6MlAoR+x6L7tnUfCO7y/qt0Sexy3bz4H7rl5OdUlv8VXO/N3Kkjj9yjV4y8Xj82co0idqRJIwXQaObPIQghAhJhNAAAAABAFUHDaOuE0bbEcdxAf+OZsMeXqpnV+g+oxZUNF8AxdY8uSJi3NT0nnVhytW9X+3+x6JgvDPQ0ee+LgbWkamG0kX5LUuWDZynTPvG3VvLAvKuf+6ij7z586r9f/Szp42+3tSvemo+Pgv/3fk/KFKQBzo1tGyeWg91u2nxR0h11f33PhQEAtIhqrzvWcrz+BIKo9ZFyZM7Vc85rzfcjjeYXkcsHfC8EAAAAAAAAAO0o75jCaN13AVE0RtIQCsu7Oa2VVzQQGlLaMCE5aQjjtLKRSEK2bDmqPMEwXZgljAZP6YL3yVmjTMpHl/KLTKYLs4r3tUIYzXxV6XgoWBjNFHjL+my7XZXdkh7ZeFBT2UOayhzS8dyDns+VW2XL1nm9F2sifkD7Ywd1Xt9FClnkHLqVZVl6Q/Id+sDx3/Fc/4WFT+qqwRepPzQoSXJd874YskLbGksiUv25PBkgnob66bF79brE23TV4Iv1qdS1eiB72Pf2RbegGxev0/dWv6k3j/2S9scPNmmkABopXfR+D2YK9ALdhlfSAAAAAABfphDVmTJ5V1JtE1bXc65umZIeW3L14ostPeus7pvwGvTveyJc+QWDu5yu8S/e/hxDRc4URrMsS594p6Wf+Sfvnzt+Utq3q16j2zlBA4a5NppAXfJ5bIRtaXfce91ipjHj6WSO4+od//JUFE2SvnBYes9/uProz7fmUSZoGG0tRxitnRxNBTuYPTDXmgGaQqk1xwUA2B6/YK8krREJBxoi3fkXnTYK+h4fAAAAAAAAADqJ67o+YTRO/kB9+E0qThVm5EZd5V3v/dAvjNOqwlZEI5GEForzFevSRe8AHGDaN9oxDgjUw1BolyJWVEW3ULEuXZzVeX0X78Coni7rmL9gjwUOo3nfLuO0fxjNdV2lijOayhzSdHZSD2QPK+ds1PU+kpG92h8/qInYAV0ce6b6QoYT3dGVzu29UM8dfInuWP16xboNJ6MvLHxSbx77JUnyjfTZsrc1juHwboWtiEpu0Xibsei+bd0Htma852z9xll/rjvXvqX/TH1Mq2X/q42nijP64ON/qisHXqA3JN6u4cju5gwUQN05blmLhjCaKe4OdBvCaAAAAAAAX0EnY67XOBl8ftXVK//e0eTjp5e4+p9vtvQbP7q9D+vbTbVJ9qfNep1QsLxY38G0AdP+aAqjSdKbn2MOoy10yETroI/TvPk7rJbj99iIhKTdhu/pF9v/+/em+84x6bajlcs//QNXH/pZV9Fw68XR8gHDaKsb0t7hxo4F9XOk8hxMTw8EvF0jmAKdUvD9EgDQXqoFWde950UAOINbY+wrU3lOedeo9W8FAAAAAAAAAJ2g6BbkGiIAhNFQL/2hQfXZMW042Yp1p2JQ5g/pk5HKi9u2g2Rkr3cYreA98RpYMOwbo5E9TR4J0Bosy1IiMq6ZwvGKda1yLM2UvU+e7rX7FLKCZQRioQHP5dlye55sv1Za0ZHsPZrKHtJ0ZlJLpYW6bj8eGtBE7IAmYge0P35QI5FEXbePzvPaxNt019rtKriVE69uXb5ZLxx+lcZ7zpbjmsNolrW9uVa2ZSsR2aPZwmPG27Tra95OYFmWnjP4Ij0z/mx9fuET+ubyTcb3yKfdtXab7lv/gX5i9Gf04l2vVsgKNWm0AOplqbSokut9ojLvwYBTCKMBAAAAAHz5BUA2y9QYRvvAze6mKNop77ne1Zuf7WrPUOtFeBql5P859ZOWbY+yz0p9v6BrB6bdMeTzHY9lWTprl/T4UuW6hXVXUvvvb4HDaG0U7akaRjNcSGsx05jxdLL/9VXvHWg9Ly2st2ZYrBAwKjm3Kk1wkZS2kMm7evRksNvOr0nFkqvIDkT7/I5NQfdLAEB7qXZ8X6vxvTDQrWptfdX6OVMnCfoeHwAAAAAAAAA6Sd4xX42GMBrq5XTc5tF85VUkU4VZ48/12XHFDcGYVpeIjkvZuyuWnwrBAU/nuq5x30hEmZSP7pWMeofRUi1yLM0awmgx23AVag9xw203nKzKbrnlYztFp6CjG1Oazk5qKnNIj+WP1XX7YSusC/ou1f7YQU3ED+isnmfI3makCt1lODyiV+x+vT6/8ImKdY4c/Wf6Y/rVs/67HJlPVgtp+4/DRHTcN4w2FiWMttP6QnG9aewX9byhH9V18x/SI7kHfG+fd3P6z/RHdcfq1/SW5Lt0QWx/k0YKoB5MYWpJShBGAyQRRgMAAAAAVBF0MuZ6jRNWP/zNyg07rvTZQ67e/aL2D1UF5RdY2WzN68vGpXR9B9MGTPujXWWXGe03hdG2P6ZWEPRxmis2dhz1VDWM1m/Ja2r9wvqpk3Msq3uOI9t1bMG8Ay22ahgtYORvZrkz4ofd4MFU8Nu67qno3dkjjRuPiV8cJ99Gx1gAQHDVXnesmefoANjENbztCNve0fhaP2fqJITRAAAAAAAAAHQj3zCa1dfEkaDTJaN7PcNop2JQ3h/SJ6N72/Z8NNNEasJo8JJx1rThZD3XMSkf3SwR9b5Cb9onqtlMWcf7hPhaop6xkDmitlHOqD88WPO4GslxHc3kj2sqO6npzCE9tHG/im6hrvexr+c8TcQOaH/8/7J33+FxVIfawN+ZLZJW3dJKstzBxqaFltAuaUAaKRdISOAmkOTmBpIQQgmhhl5DS0IJLRA+SgoQIISSEEIJYDCYYoyxZWNbLpIsrbq0K22b8/0hy15J58zOrLbM7r6/5+HBmjMze3anz5zzzr5YWLYHvHpJWudPxeeI2v/Gq/3PoS/WPaXsw+A7WDX8Nuo8jcrptTSE8Zkdz8v0clS4qqf9GZQec0p3wdlzr8XSgefxROB+5b5+XFu4FTduOR+HVB2Bo/0nodLNZUmUD1TX5hWuapS5yrNcGyJnYjAaERERERERmbLaGTNo8znSiCI85L7XBH70aXvzymeyzr8yQ64qGNCgJza86XHGw9RsUgajJXnG41c8q11rI4jHyQyL65Fqu3OimEn4kFsHGhTP6qNxoDcI1Fl/yVnR85i8PMqp4YFhi8Fobf2ZrQelz5oOe+kPbf05CkYzWffMQtOIiCh/Jdu/MxiNyBpVMFpFKdAv6VsRLOJgNNVvNS4WF3C78rPzFREREREREREREZFKWIwoy0r00izWhAqd3ysPg/gotApb9A3yafI4EEoV5tMbDeDBbbemPF8X3JhXthAfr/wkg2Icbjg+iLcHX0VbuBUGzBubhuLqBoOqdYmoGPg98vW/PbxpWvtSu2rd9fhYxYGYU7rLhOFBxbbrsxGmYRaiFjSGUIGdwWhCCHwQXI61oZXKMMVMGjVCWBdahaH4QFrnW+2egd19+2BJ+b5Y4tsHVW4Hvlma8ppXL8Ex/u/i3o4bpeV/6rwDc0t3VU6vIx3BaOrjeWMehwEXKl3TcVjN57FPxUF4ovt+vD7w76TTvD74b6wYXoaj/Sfi0OrPQU9DoF4hyvWxLJ08mhfzS3fDAVX/BbfmyXV1yKYuRdBuPt+HIEo3BqMRERERERGRKavBaAPqdklTBMPqmSYLuCo0ZuFPkwX1clQmvuVjoAciEobmLZ5GJaoAMD3J85f6Sg2ytzne+6rA3SeKvH+AY3U7DaX3RVgZFTULRnMBM01eYNMxwGA0O+ImbZ16gtmrhx1m4VSJ2hmMljdaOu2Nn6tla7ZvsrpeEhFRfjHb9wNj59hxQ8CV7KKEqMipLlsrSuTBaPl0/Zpuya7xg2Gg2peduhARERERERERERFlS9hQv42GwWiUTn5Ps3T4YLwfiMsbpDR45dPkA1X4hYDA0oHnpzXvVwaAV/v/idNmX4YyFx9eOFFftBu/3XIxuqLt05qPVytBlas2TbUiyj+qYMCwGJ32vtSuf/Q8iu83n4X9Kw/dMSwUH5KO69PVYWdTxnWpG15PDk18pOv3eKn/acvzdqoSrRSLfHthSfk+2N23L5q8s/O+TwE53wGVh+HFvqewcbRlSllvLIDe4YBy2nQEXJkFnTZ4Z017/pQZle5qnNh0Gg6tOhJ/6rwD7ZFNpuOHjGH8sfN2LB34N05o/NGUQE0CHu66Gy/3P5PraqTNy3gGywZfxI9n/RIeneFo+SQQ3SYdzmBqop2KrLs5ERERERER2WU1cKl32OKIADoH1WWuInuWlKyTfaJBvWrqwO7pNVbIN6r1MVkGgVlI1ivrUq+PU1jdToPhzNYjnVTbhlsHNE1Do2RzGNeR3heAFbwRk8CBbhv79myKWNx3Mhgtf6y1GYzW1p+bddMs/CzMYDQiooIjhLAUfJlP59lETlOp6Ms2POrMa5FsSPbNizk0joiIiIiIiIiIiAqXKhhNgwaP5s1ybaiQpdK5WBUulg/qPI3QkLmGua2j6/DG4AsZmz9Nz4t9T007FA0A6j1NDAuioub3NOW6CjvEEcNjXX+AIXY2pA1OCi4bV24SdjZZiVYKF9zSsmBC8FpHeEvehqJp0DG/dBG+OOM4nDHnSly/6AH8ZPYvcXjtVzGzZA73c5QVmqbhuIYfpDStDte0P9/svLYxj8OAi8Wuvt1x/vyb8HX//6JESx4g3jq6FtduOhsPd96NkXgwCzXMD+3hzQUVijZuTWgFVgy/ketqkE2BSId0uJPOP4lyjcFoREREREREZMowrI0XkL9oSMo0GK3IrlRjFn9fABjSJQ8nu+U3wApVqsFoC+rUZZc+aWMhOJTVYLR86jyt2jbc25/ned0a6hXP6zsGircDfSpGTcI+uuVtJXLOSkAJAASGuC7kix6bIXy9OXo2axbKx2A0IqLCE7MYxjok76dDRAmE4nSvokQ+PJhH16/pluxeXDH/NkRERERERERERFS4VMFoJXopQyoorRpSCDlrSCFMzSk8uge17vqMfsaq4DsZnT+lblXw7bTMx+9lp3wqbjXuOkcFtfbGAmgPb97xd8iQd+TwuSotz1PTNGWQWmLw2od5ts+v9zTisOov4IfN5+D6hffjnHnX42v+b2M3315wa55cV4+K1Pyy3XBg1WdsTaNBh1uThxfaUeupV4YgNngYjJYPXJoLR8z4Gi5ZcBsOqDws6fgCBl7qfxqXbTwVbw2+DKFqxFVECvn65YPg8lxXgWzqiwWkw+sZjEa0Q5F1NyciIiIiIiK7rAYu2QnP6TIJUSu2UBGrHe0BYEiXPJzs2pq+yuSBVIPRjtlPPcJLa4FL8jwczep2GjOAaCw/HmREFduGJ+FFRzOr5eN0DKS/PoVsxKRTfY9Dg9GsHit6+GKjvGH3+J+rABrVvgmwHthHRET5wywQMxGD0YiSU12JKoPRwhmriuMlu8Yv5t+GiIiIiIiIiIiICpcyGE0rzXJNqNBVuqsxp2QXy+NXuKoxp9T6+E60R/n+GZ1/IFJcL/jNF4YwEIhuS8u8Mr0OETmdrunYvXzfXFdjgq5o+45/JwaXJVIFnan4FOOHjJ3z74o6e59fppdjv4pDcELjj3H5gjtw+S534n+afoz9Kg9Vfj+iXPjv+u/AqykazUjMK10Ijz79gEaX5sKS8n2mDHdrbiz2fWza86fsqfHU4QfNZ+O02ZdaCrUbjPfjDx2/xm+3XoyO8JYs1NC5Cvn6JRBJz/k/ZUdcxDFihKRl1e7aLNeGyLkYjEZERERERESm4hbzogI2wnM6B9U9PIstxMYsYGWyQVkwWtv69FUmDyiD0ZLc4Zhfr+FrU5/f7HDFUwLvbs6PwDAZw0auW8gkBMtJVPsed8KybqqSj2MnqJGA0ai6zKnBaFYDqIrtmJLPzNZDmVwF0Jite239QDiav8cSIiKayuo5R76cYxPlkuplo6pgtOEiDv9KdkYZ5D6HiIiIiIiIiIiIClBYKILR9LIs14SKwdH+k+DRkgdLaNBxjP8kuDVPFmqVOZ+bcTRq3HUZm39PtAtxwTcKOk1/rAcxYbNRlsT80kX4RNWn0lAjovx2VN23UC5ry58jnZG2Hf8OKYLRfLq9ILByl/z7BeNDO/7ttDAZF9xYVLYnvlr/bZwz9zpcv/B+/HDWufhkzRdQ723KdfWIlGo99fjuzNOhW4j68GolONp/Yto++8t1x6NML58w7Et130KFW9E5gxxt9/J9ceH83+Kr9f9j6RpnbWglrm49E38LPKAMKC903WkKD3aiQv5uhWgkru7wpDovIypG7lxXgIiIiIiIiJxNFUQ1WV8IiMUF3C4t6bidg+qy1m6gPyRQ40s+n0IQsxFoNSx5mCq2rENx/FJjVAFguoUf4dKv6XhyhfoH/3+vC+w3Nz9/TavbKTAW2lDty1xd0kX1nbSERVRfqUHWZdypYV5ONWrSJq0n6LyQJyEEIhZDJXuGx8bXtPzctotJ2GbbyJwFoyVZ94693cBTp+lc54iICoTVIOuR6bclJyp4ymC0Uvl1XbCIg9GShZ8X829DREREREREREREhUvVIbtEL81yTagY7F6+L86ddz3eGVqKQETecbzGMwP7VByEXcqWZLl26ef3zsS5867HW4P/wdZwK4TqwU0SYTGC94ffnDLcQBy90QD83pnTrSqlUcAkFOHjlZ+EliSIxa27Mb90NxxU9Rl4dcXbjoiKyNzSXXHuvOuxfOhVbItsUT4DT7cNo6vRE+2aMjwxGC0xuCyR3UANVZBaYvCaat8yv3QR/J5mW583HdXuWizy7YVFvj1RyiBdylP7VR6KX8y7Du8PL0N3ZOp2DgBNJbOwb8UhmFkyJ22fO79sEc6bdwOWD72KYHwIe5Tvhz3K90vb/Cn7PLoHX6r7Jj5R+Sn8peturAq+bTp+HDH8s/eveGvwPziu4f+wT+VBWaqpMwSi8pDPbB/LpmM4PoDVofemDB+KD2DUGOGxMU8EDfk5HAD4XPYCbokKGYPRiIiIiIiIyJTVwCUhxsLR/Baen3Wp79sgZgDPfiBwwoH5HSjyziaBsx8xsHwTUOMDjt1fwzXHaCjzTvxedoLRBmUPJ7esm2ZN84tqfbQSjLZbg3n57S8J/OZb9uvkBHEb61Eokrl6pJOhaDGQuKzrFPd5u4edF+blVEIIjJisE90ODJmLG+pQhcnCsbF1vpztshxPFYzmcclDaYZGc7OdJwvIefYD4In3gGPYPoCIqCBYDWPNl3NsolxSnb2pztWDRbxdJTvTNbuGIyIiIiIiIiIiIspXYWNEOpzBaJQpzSXz0FwyL9fVyJpq9wwcOePoac0jbIzizHXHS8sC0W0MRnOYQEQe+FDhqsL/Nv88y7UhKgz13iZ8se4bWf3Mx7ruw/N9T0wZ3hVpBwDERBRhIQ+YtRuooRo/ZAzv+KzeaEA6zhfrjsPHKg609XlEBMwrXYh5pQuz/rl+70x8qe64rH8uZVa9twk/mfVLrBhehke6fo++WLfp+L2xAO5svwZ7l38CxzX8H+q9jVmqae6MHcvkv0s+Hcu6I524eOMpirJtmF26IMs1olQkhs9OZjfglqiQmce6ExERERERUdGzGowGAL1Ba+N1DZqX/+Z5kfIb6ZygZZvAx68y8NJaYDgMbO0Dbv63wMkPTP1OyQJWEvW4Zkwd2NGacj3z0XSC0XwlGubVqcujcSAYzs/1zs52mi+hDapdQOKyrlc8r+9xYJiXU8Xi5uuPE4PRVAFaKlwf8kM4Kh+uClwdkrfjybiIhfXv0idtpFUSEZGjWdnvAwwpIrJCdY1XqejPNjACxO1c7BaQZF87FCnO34WIiIiIiIiIiIgKW9iQNwRgMBqRc5Topah21UrLVCFclDuBqHyZ+D0MsCPKJ43eWdLhnZE2CCEQiqs7cJTbDEZTjR/cHtrRE+2CgLx9JPctRETOoGka9q08GBcvuBWfn/F16HAlnWZl8C1c0Xoanu15BFFD0ai/QPRGA8pjWb2nKcu1SV2tpx4uuKVlgei2LNeGUhWMD0mH63ChROP9MKJxDEYjIiIiIiIiU3b6oAbD1sZ75G3zmb7VCux1qYF1nfnV0dMwBM551MDuF8tvkj60TGB918TvFLMRjNbhltxk7Q9AxGymBOWx6QSjAcB/72s+4tubbFbIIQoxGM3KslYFozkxzMupRpI8t3JiqJjVgJJx25KEcZIzqALvVNu5k4PRVrYhrwNeiYhoJ6vnHQwpIkrdzGr58LgBBOTtfgqekSRnN1+u64mIiIiIiIiIiIjsYDAaUX7we+XBN6oQLsodVVidahkSkTOpgtFGjBCG4gPKQA0AKNcVb6ZV8OnyBpuh7cFoqv2KBg31nkZbn0VERJlVopfiaP+JuHD+b7CobK+k40dFBH/vfghXtZ6ONcEVWahhbpgFOufTscyluVDnaZCWMbQ6f4yHz05W7qqAplnsKElUBBiMRkRERERERKaSdcZMFEzSMVMIgT8uszbD1R3A4osMrO7Inw7m974mcMNz5vV94r1JwWg2ft8Ot6QxghBAX6f1meS5uOL30i3e4TjnCxp2N2nT8ZVbbCwQBymqYLSEZV1XLh+HwWjWjSYJRhscBSIxZ+2HIzYCJQHgxRZn1Z8mWrlV4J5XDbT1y8uVwWgWw1jTLWpx/XNiqCAREdln9bwjWdgsEQGqs/LZNepp2hXniIUu2RVMvlzXExEREREREREREdmhDEbTyrJcEyIy4/fIG2B2sfO946iWSYNiGRKRMzV6m5VlXZE2hIygstznUjTAVCh3yYPUxsPXAtFt0vJadz08utfWZxERUXbMLJmDR3HcowAAIABJREFUM+Zcge/NPBNVLpOGWtt1Rdtx89ZLcG/7jeiP9WahhtmlOpbVuOvg1UuyXJvpqfc2SYd3K74jOU/IkHc68SnOyYiKFYPRiIiIiIiIyJSdwKWgSUjJSETgm3ca+M499gJq9rzEwO9eyo+wqvtfT/7dXlwzcRyrASsA0C4LRgOA7uJpUKIMy7L4IoTmGg1vnK++HTIcBsLR/AtRKshgNFUIXsKyrq+QL/i+kPPCvJwqWTAaAPSq20zkRCRmb/xX13FdcKornjKwz+UGfni/ehn5Fdv54EimamXOakBO+0Bm60FERNlh9XotX86xiXJJKE75/JUa3IrLdFV4bqFLdo3PfQ4REREREREREREVorCQNwQo0UuzXBMiMuNXdL5XBQxQbgghEIjK2xarliEROVOFqxpluvxN0p2RdoS2h5ZN5tG8tgNeVEFq46EdAUXgIvcrRETOpmkaDqz6NC5ecCs+XXMUNAsRM8uHXsHlG0/FC31/R1zYfLO9g6lCw+o9+Xcs8yvqzGuz/BGKy4PRynV74bZEhY7BaERERERERGTKTuDSSfca+Pdq+QQPLxf46zup1eGnfxRTAsWcRgiBlW3Jx1s96f5izFYwmuKNTz0MRrMajAYAlaUavry3uvyjgL06ZYoQAg++YeDEewz84lEDH7artwFViJhMvnSgtrKsZ1arp1/vkOXodCMWgtG65ffacyZsMxgtIG/zQTn27maBy/6e/Nhep3imMyR/UXTGWQ1dbOvLcEWIiCgrrAayWjmnIiI5l66+tmvvd/a9oExRhciN4z6HiIiIiIiIiIiIClHYkDcE8DIYjchRGrzydqw90W0wCigwId8NxPsQFfLGon6P4iXNRORImqah0TtLWtYZaUNQEajhU4SpmSl3VUqHB+PDMIShDlzkfoWIKC/4XBX4VuPJOHfedZhXuijp+KPGCB7tuge/2vRzbBhZk4UaZl5XAYV8qsLcVOFv5DzK8zhFWC1RsWIwGhEREREREZmK2whc6h4GPv8bA/e+OnWiR9+eXmfWI24y8FarczvEdg4CA/KXVk7Q2gOMRnd+j5iN37fdrXho2FM8Ny1VAWB2gtEA4KzPqW+JrHZIztxpfxI46V6Bh5YJ3PicwMHXGHhjg3wbsBNgGIw4dztKZCUYbVe/etmvKZ7NYlpG8zAYzWpAybihcGbqQdPzh6XC0r7LL29ng5EoMDiS/f1Z1GL7zbYiDfEgIio0Vs878iV8mChXRJKkr1m18uEdAxmoTB5Idp7MfQ4REREREREREREVooghb+BRwmA0IkdRhd/ERAx9sZ4s14ZUAorABwDwexlgRJRvVKGUnZE2hOLytwf7FCFnZny6PIRDwEDYGEEgIm+czf0KEVF+mVu6EL+Yey1OaPyxct+faGu4FTdsPg8PbrsVw7HBLNQwc1ShYX5FyJiTqcLceqPdiAm+eTMfhAz5eZwqrJaoWDEYjYiIiIiIiEzZCVwCACGAi58UiMUnTvj0yunX5cy/2EgRS4PBEYFfPmFg1wviOPCquDTwbZzVECYhgLWdO/+2GrACAMOuSgxJbjqLbockeWWBlbAsKz67RD3BPSbLOVu29Ar87qWJX3Y4DBx6rSHtUG5nOx2Sv1zVcVTfSUtYdCUeDbv45eOt2cZQIitGLDzv6HFaMJrNF4vmyzpfbH7/irVtdLdGddmKrWmqjA1WA3LaizTEg4io0Fg9zx5hSBGRKbNcNA2AX9G+rt9CAH0hYjAaERERERERERERFaOwIb8pzGA0ImepNwkMMAvjouwKROXLwqdXsJM9UR5q9M6SDu+KtiNoyBv5lruSB93YmWYoPoDuaKe0TBWaSUREzqVrLnyy5gu4ZMGtOLjqcEvTLB14HpdtPBWv9f8Lhsh9vyu7DGEoj2X1eXgsUx1/BQz0RLuyXBtKRTAuP4/zucqzXBMiZ2MwGhEREREREZmyG4wGAO39wGqb7Rv+fHLyZKul68cCo7LltD8JXP2MwMZuYPkm4P/uF7jtRfnN243d1uu1pXfnvycHyCXT7pbcuOwpnsYkqvXRlcIdjqP3lQ//5ypgXWduQ7We+1D9+Tf+q7iD0SaH4C1WhCZtCKS3PoUqbCEYrXvYWSFzVuqcaLBIwxScLBgWGLW4HHdr1FDjk5e9szn766bVYL6N3AcRERUEq+fZDCkiMme2KWkaUOOT3xMaCGWmPk5nFiQHcJ9DREREREREREREhSks5I2aSjQGoxE5SZnLh0pXtbQsELX4hmHKOFVInd+bf4EPRKQORgtEtmEo1i8t86UUjKYOTtwa3ggD8gaUfq86NJOIiJyt0l2Dk2b+DGfNuRrN3rlJxw8aQ3io8zbcuPl8bBndkIUapk9/rAcxIe/E0JCHx7I6T4OyrDvCa7N8EFIEo5XrDLMmSsRgNCIiIiIiIjKVSjAaAKzetnPCkYj5TJqqgGP21fD5PZLPd955BroGMx+EsmKLwANvTP2c370k/+w2+TNFqYGRnfOI2XxJRpu7eerAbgajTQ7LsmLJTPVEiy8yYKS68qfB8x+qyy54TEBM6iVtp6qD+RKMptg2Ji/ruXXy5djR76wwL6eysu70BDNfDzusBlONGw5jyjZDudVu45hZ5gH2VzxjfXdzeupjR9Ti+teS44BNIiJKD6unECM2g1uJaCdNA6rK5GX9oeI8p0p2nTbCYDQiIiIiIiIiIiIqQGFDEYymK24iE1HO+D3ycC1VGBdlXyAqXxYNimVHRM7W6JX0HwBgII7No+ulZakEapTqPmiQt8veOLJWOV29J//CZIiIaKKFvj1w/vyb8HX/9y0FlG8cbcG1m87GI12/x0g8P95+2W0S5JyPxzKvXoIad520jKHV+SEYH5IOTyXglqiQMRiNiIiIiIiITKnCiZJZnfBM/YqnzXt03nKCDo9bw2+P19Fg4RncnpfsDK1atkHgj8sMvLkxvZ1lf/28fH6rO4BQeGqZnZCXgZGd/7YasDKuwy1plNBTPDcslcFoKdzh2D3Jfeu7XsldB+wKk+cIMQMYSmgHKISwHNgATJzWyVRfaXIw2qwa+Xh2wgqLmZVgtG75S0hyJhKzN74hgBCDAxzFzjGzxA3sN1fe0OadTdnfT1td/1q2MZCPiLKjPzR2PfTEuwI9w9zvpJvVX5QhRUTmzE6LNAA1PnlZ/4h8eKFLdhqZ7AUERERERERERERERPlIHYyWvEM2EWWX36sIRlOEcVH2BSLydsWqZUdEzub3zFQGlm0Nt0qHpxKooWs6fLp8uk2j66TDq90zeL5GRFQgXJobR8z4b1y84FbsX3lo0vEFDLzY9xQu33gqlg++4vi286pz5HJXZd4GUfkVgW5mIXDkHCFD3lmrPE/XR6JMYTAaERERERERmbISmiOztnPnv59aoZ7J8gt1fP2AsQd1i5s0rLtKx6IG83n3BIH9rzTw7d8bOORaA9+5R+Dgawz88H4jbTdSn1ulnk9PcOqw9n7rn5vYsTdmM3iuXRaM1r4BImYzKShPqYL6JodlWbH7TPOJHnojdzflh5OEl/UmrIN2V/mhPOlYbjUETxWM1j6Q3voUKivrT0+eB6MB+RMIWCzaB6zvuEo8wP5z5WWrtwGRWHb31RGLgaZ9ISAgf4EPEVHaLG8VmHfe2PXQsbcb2OdyIyehkYXM6vVwiCFFRKZMg9E0oKZMXtafHy8TTbtk+x4GPxMREREREREREVGhiYs4okJ+85NBG0TOo+p8H4gwGM0JhBDoirRLy1TLjoiczauXoNZdLy0zIG/UmGqghioYplURjOb3MHCRiKjQ1Hrq8X/N5+Cnsy+xtJ8fiPfh3o4bcfPWS9AZactCDVMTUISF5fM5cr1XXvcuXps5niEMBOPyzlo+V2WWa0PkbAxGIyIiIiIiIlOpBqNt6d054ahJiM3+8yaGU1WWavjgUh3HHWAeWvX+VuBPb06s3D2vCrhOGQtMu/NlA/FUKw8gbFLnbsl9p/Z+6/MeSAimiloMWBnXIbupPDwArFxqb0bTIAwD4sW/wrj2FBh3/BKiJ3tvklCGZaUQjLbHTMDrVpe/th45e2NJstCgvoTO4XZX86HR/AhtsBqC11wjX/iBISAczY/vmktW1p+BEWf9jmb7Z5VBBqM5SpuNY2aJG9h7lnw7jxvAtiyHIMZtBJq2dCYfh4hoOk68x5gQ/tneD5z+Z5vJy2TK6uUAQ1iJzCXblGp88uH9eRLsnW4MRiMiIiIiIiIiIqJiEzHUD1tKGYxG5Dh+rzwcIRDdBkPwmXWuDcUHEBby/apq2RGR8zV6Z9kaP9VADVWgWkxEpcP9ikAWIiLKf3uU74dfzv8tvlJ3AtyaJ+n4LaH3ceXG0/G3wIOIGOEs1NCe7qg8LKw+j4PRVKFu3YoQOHKOsDECAfn1c7meWsAtUaFiMBoRERERERGZSjVbLDH0ZEDRkXWvZvlwj1vDX07RceeJKaRdYSww7ccPCRx3h5FysJVZ8IksGG1zr/V5J/4eMZvBaO3e2dLhYunT9mY0DeK6H0Nc/D/A0/cBD10P8d39ITatycpnpzMYzVei4SefMZ/wyRX255sOydanaQWjOe/5gpTVZT2rRj2PbYPpq0+hsrL+DDosjCASl1fabXKnk2ElzmInTLTEbb6dd2Q5GM3OPnfNNmeFChJRYWnvF9IAxtfWA+u7uP9JF6v7/f5Q8nGIipnZrRlNA2rK5NfmxbptJbuVxWA0IiIiIiIiIiIiKjRhk2C0Er0sizUhIiv8shf8AoiKCAZjfVmuDU0WiMgDHwD1siMi52vwKjpeKKQaqGE3UI37FSKiwubRvTiq/lu4aP7N2LN8/6TjxxHDP3sfxeUbf4r3h9/MQg2tC0TkYWH5HB5crzgOd0c7GVrtcCFD0jl1u1QDbokKFYPRiIiIiIiIyJSqI/g1x2r4hsk9zfZ+7AglUwWjXX2s+WXpDz+p4xPzLVRS4Yn3ANcpBhZdGMc5jxoYjVrr1R6LCwyahOj0DE+cT19QoGvIer0SQ4ZiNu8zvlB5hLzg1b+nHAJnh3j+L2OBaIkGeiD+9OuMfzaQ3mA0ALj2WA0/OEw98TG/M3DDcwaMVBMCUxAKi+TBaMGd/zYL8ZNxWsiVitVl3WwSmNRmI3ypWFkKRnNYqJhqna/xqafJl/W+WHTY2DZLPWPLtlTxkqn2bAej2djntvBFS0SUQWbnOW9sZDBauli9xOrnuQaRKbNNSYP6XH5wFFm9HneKZF+ZwWhERERERERERERUaMLCJBhNK81iTYjIigaT4ICuqDqUi7IjoFgGpboPFa6qLNeGiNKl0TvL1vjlKQZq2A1UMzsmEBFR4fB7Z+Insy7Cyc3nocZdl3T83lgAd7RdjTvarkZPVPIW4CwTQiAQVQSjeZqyXJv08XvldY+JKAZiSTqmUU4F4+pgtHJXagG3RIWKwWhERERERERkShVAU18BPPwjF147V35pGY4BPcPAaFQgEpPPo8bCyxyfO2P6l67rA8ANzwn817UGVrULvL9V4MN2gVhc3tO0NygdvEP3pHtPLTbv0Q6Edn5uNG5v2l5RiYCrfmrB1vXA5hZ7M7NIDPVBrH0PYsWrEJedJB/p9X9k5LMnU4ZlpbiaeN0a7j5Jh9/k2e85jwpc8XT2OmKv60oewNCXsA7Z7SM+5LCQKxWrwWjVZYDPKx+3ncFoSeVjMJqqzl43UFEiL3uztfjCFJysrd/68vC4AE3T0FwtL2+3Ma90sPNpW/gskYgyqEwRGAkA63LfhqRgWD3X7g9lth5EhUzT1MFoQiS/R1OIkt0TGIlmpx5ERERERERERERE2RI21I1TvLqiMQgR5YzPVYFyXd7oMhBhMFquqYLR/J4maFqKbyEmopyzG4zmSzFQw+50fg+D0YiIioWmadi38mBcvOBWfG7GMdDhSjrN+8Nv4vKNp+EfPY8iJnLX6Gk4PohRQ97Qsz6fg9FM6q4KgiNnCCmC0TRoKNMVDSqJihSD0YiIiIiIiMhUsnCiuTPU07b1AwMj6vJqC8Fo1T4NHTek5/L13S3A3pca2PdyA3tdaqD+TAMPvD41+a1ryHw+gUn3nt7fai+UpT/hN4nZDEYDgJtnnCovWPac/ZmZEMFBGJd8B+KoJogfHATx0yPUI/dugxjKfAqVoQjqmxyWZddndjOfwWV/F/ioKzvhO2u2Jf+cvoT78XaD0ZwWcqWi+l6T2+VomobmGvm4dsKXipVqm0o0aLIfzwVVnV0asM9sedmzK7kuOInV0MLyEuxojDdTEYzWMZCmSllkZ587NMr1jogyx2x/9FFX9upR6JKFE43rC429UZCI5Mw2Dw1Ak8mL6duzfL7nBMnOOUOR7NSDiIiIiIiIiIiIKFvMgtFK9NIs1oSIrPJ75R3w2fk+9wIR+TLwexleRJTPGrzNtsYvTzEYrdxl8rZxiXwOkyEiotSU6mU4xv9dXDD/11hYtmfS8aMigie7H8RVrWeiJfh+Fmo4VbfJdUo+nycztDp/BePyzqtlejl0LXnoIFExYTAaERERERERmUoWRNVYpQ6lShaMVmMxwL6xSsO7F6X/EnZwFPjuHwT+9z4D5z1m4Du/N3DNswY+dpl5UtCmnol/P2MzcCeQcO8qpvio2nivcvrH6k+QDhcbVtmqh4oQAuK9VyC+6AdeeMT6hJvXpuXzzSQL6kvVtV9PPoMDrrSQIJUGk9cvmd7gzn9bCbZKlC+hDXZC8GYpgtGshi8VMyshT04L01PuB3Tgq/vIt+WVbfmx3mfK4IjAI8sFnnxPoDeY299BCGE53KLcu/PfzTXyZZvt7dzOPnfIYdsOERUWs2P4tsHiPealm9VAzLgBBMOZrQtRPjMNRtPM7y0V43Udg9GIiIiIiIiIiIio2IQNeSNDt+aBS3NnuTZEZIXfIw8PYOf73OuKypeBapkRUX6oddfDo3mTj7idT08tGM1nI1Ct0lWNMpfFDiFERFRwmkvm4sw5V+K7Taej0qV4C3qCzshW/HbrxfhD+00YiKn7zGWCKsC5RCtFlUvRISlP1CtCq83C4Cj3gsawdHiq4bZEhYzBaERERERERGRK1RnTtf2K0u3S0KS4f7m1T5iGPFWXWa/HPnM0rL48M5ex9y0VuO4fAn98U+DCx5P3fG/ZtnMcIQReapGPN69OPrytf2dATzQuH2ff0RXqz8dcbHM1Ti3YpKiIDSIagTjvWIjTjrQ/8aY10/78ZDIVjLagXsMFR5nPZGgUWNOR+ZCJNgudvvtCO/9tNaxh3Gg0P0Ib7CxrpwQm5SMrq89oFIjEnBOwEjcJzTt4F/m60BcCuuXPDQreu5sFFpxv4Ft3GTj6d2Phn+9syt3y7A2OrVNWVJTs/PdMxfPGjoHsfhc7+1ynhQoSUWFRHQ+BiSG6ND12jjL9JqHgRMUu2bbkdmlorJKXtfU751okW5JlOocixR38TERERERERERERIUnbMgfsJfopVmuCRFZ5fcqgtEUoVyUHUIIBCLt0rIGxTIjovygazoavM3WxoWOUj21wLJyG4FqDFwkIiJN03BQ9WdxyYLb8KmaL0FD8s5dbw39B5dt/Cle7HsKcaHoVJdmqgDnem8TNG2aHdJyzO+RB6OpwuDIGULxIenwMgajEU3BYDQiIiIiIiIyZSWcaLYirKStH7jwcXmPfU2bGHhixeImDf88Q0ddub3p0q2lc2cH1GBYHXzyg8PkN0dDEWBwe6f5mCLQwCNieGbzV5V1aPNIHmxuWmO7Y+yyDQKn/tHAOXd1YMV1N0AcXgksfcbWPMaJzdMPZkvGLBBpui76soZvH2Q+oz0uMfBRl73f+NV1Aqf/2cDP/mzglXXJp2230Om7fxrBaAAQyIOAKNXX0iV3s5oV+6CHlgl2Fk/CMAlVSTTooKAPs+PSEvkzHQDAmiJ9rvPde40JYYrt/cDP/mxxwWfA2k7r45YnnCc0K0JYOwamVx+77OxzhxiMRkQZZLY/Stzv0/RYPVcCJp6jE9FEZpdl4+3KVNd1xRh4beWc02rYMBEREREREREREVE+CAtFMJrGYDQip1J2vo90sM1eDgWNIYwY8ofXDDAiyn8Nsv4DEj5XRcohLz5XpeVxVSGZRERUfHyuChzfeArOmXc95pYuTDr+qBHCI12/x682nY2NI5nvi6YKCatXXNfkE79X/h26I0XagSZPBOPyjn12QmqJigWD0YiIiIiIiMiUlWC0WbXycdr6gfUBeVlVKaCnkGb1uT00tF6r46WzdTzxEx0fXKojcruOlZeO/X3jcZl/U0N/CAhsD+bvNgmYOniBui5t2zv2xhQvt3CLGI4MvqCcPuCqnzpwqA9oXa2u0CR3v2LgkGsN3P6SwA3LG3Dw2h/jqYovWZ5+ik1rUp/WIuX6mIY7HCUeDff/r4anTzOf2QFXGnh3s7WGOw8tM/CZGwzc8oLArS8IfPYGA/e/bp6u0Gah03dfcOfnpxKM1jVof5psU4VQyHYbsxQd6AHgnL+ykZUZq+uPKgAyF1R1dumAvxKoUbzkbn2g+NaFjn6BDyQvAF26HtjYnZvfo6XT+ucmbu8zFcFo2Q7KYDAaETmFWWBXXzB79Sh0do6WvfzdiZTMtqXxUz7VdV17loNwncBKX6ERBqMRERERERERERFRAQkbimA0vSzLNSEiq1RhOGExiqF4ET7gcYhApENZxgAjovzX6J1laTzfNAI1yl3Wp1WFZBIRUfGaV7oQ58z9FY5v/BHK9PKk428Nb8T1m8/FQ9tuw3A8cx2dVCFhhXAsU4W7BaIMrXaykCoYzUZILVGxYDAaERERERERmbISRNVcIw8Aa+8TUL1saGAk9TqVl2j41G4avravhj2aNbhdGvZsHvv7zM/pePKnOhY3pj5/K1o6x/5vFoy292x12XiQS1QVjIYYdAg0xDql5d0ev3zCV59Sf2iCtj6BUx6YuHDDeiku8V9iq/P/BDZC2VKlDupLTyCepmn40t4aPre7epyh0bFwtMCQ+S8Viwtc8JiYUGdDABc+LhCLy6cVQuCNDcnr2ZfwQr9UgtECJuutU1gJZRzXbBKMduNzAvVnxnHcHXGsap84065BgVP/aGDPS+I47Fdx/OOD4rvpb1h80JEPwWi6NrYNz1GEdRZjSMzmXnXZGxtys76vsfHioVhC6I/qXKN7GIjEsvddbAWjhTNXDyIixekkgLHjNhszpIedn7FjgL85kYrZtjR+OT/T5N5SsbFyzhmKZL4eRERERERERERERNkSNuSNCUv00izXhIis8nvUIVtm4VyUWV2K375EK0WVy6ShJRHlhUZvs6XxphOoYSdUjYGLREQko2sufKrmi7h0wW04uOqzlqZ5beBfuGzjqVg68DwMYfLm4BQFovLz5EI4lqnC3UaMEILGUJZrQ1aplo3PRkgtUbFgMBoRERERERGZMhT3ExODqGYpnpVv6ZsY4JTonC+mJ8hK5isf07D6CheMu1x44/zMXPq2bBvrpaoKRnPpgL8C8CueK27sGZs+pvh9PSIKAPDHuqXlgdmfkA4XLe8oajzRnHPlH7yi9GPocCtu7GoatAfeg3benRjRSrHKuztGtITGZ1vXQ7RvtPT5qbITljUdt307+XrT+HMDQ6Pq3sqrO8a2gcna+oFV7fJp/u9+ax2+exMCnlTbqJlkoW5OYGdZz1J0oB/XGwT++g7w2RsM9AyPzdgwBI75nYHbXxJY3QEsXQ8cdbOBl1uc/9ukk9WQp8FphFmmW7J1o9YnL1cdjwqZ2fLdYhKalkmt8sOaVHxCMJp6vE09qdfHLjv73EgMCEeLa59CRNmTbH80nSBq2slqiCwwdp5PRPaNX82p7i21D2StKo7BYDQiIiIiIiIiIiIqNmFD/sY+BqMROVeFqwqluryhlip0gDJPHfjQBC1NLyAmotxp8M6yNN50AjXKbUxrFpJJRERU6a7BSTNPx5lzrsJM79yk4wfjQ3hw2624afMF2DramrZ6jBojGIrLG6GpQsXySb1JuFt3xMZb7SmrQnF5h1Q752JExYLBaERERERERGTKSjiRqvPqqnZA1Y/8Wx/PzgP2AxdoePuXOr6x/8ThlaXAPrPNp/3c7uqyls6x/6sCpuorAF3XsKtfPv267dPH4vJyt4iNzScuT5DpbtxLPuHmFvnwBLe9aJ6i0OJdNHXgl78P7S9rEJu9BD9qOxZ1u3Vgn13fRu3iTpzTcBVicI2N99pTST9/OtRBfen9nIUNGlwW7ppU/8zA3a/IK7WqXd2T+QNJWSwu8Mhya8ELiQFPZh2my0vkwwN58NIPO8FoZoFJibqHgev+OTbjMx8WeH3D1HE+e6OB0SIKMrIcjCZvf5oT8ST7gRpFMFp/EQbEBMPqstYshokl6hiwvn0lhofOrwNUbfPGj8nZYHfvMOSgbYeICkuyY/jPHxEQNkK9SM7OT8hgNCI1s21p/ByvuVpe3iYJHC90VvY9DEYjIiIiIiIiIiKiQsJgNKL8o2maMkSAwWi5E1AEHzC8iKgwNHqbLY03nUANO6FqDSZBLEREROMW+fbEBfNvwjH+76FES36dv2F0Da7ddBYe7boXI/FQ0vGTCUTU1yd+b/4Ho1W7auHRvNKyQJTBaE4VVASj+fTKLNeEyPkYjEZERERERESmkgXQAMCsWvupVPVZDLDfb66Gh3/kgnHXzv8Gbnbh3YtdGLxZx56TnhGe/CkNxl0u/PNMF048WP7dtvaO/b9bfh9qx/db1CCffl3nWC/XqCoYDePBaPLkmu4SxYPNjR9CxGLyMgBDowKn/cm8h+1a724T/tbuXgr9vDugzZyPy58WuHt5OSL6WOJWTPPgprozUbr7EB6sOgHDr/zLdN7TZScsa7qszvKUBwSueMpAJDaxcusD6mk2SMrWB4BhkxCjRP0jgLH9xzALxWhU3A8NKNZbJ1F9L1kwkqoDvcz1/xTNJWnxAAAgAElEQVToHBS45QX1D3fOX4snREQVNjjZ4IhzfhPlfmD7nc4an3zr7Q9mqEIOZhaWsLYzN8u0Q/6yJanE8NAyr4Z5M+TjrdmWve9iNUxw3JDF/ToRkV3J9kd/eE3g8XezU5dCZme/38FgNCIls01pRzBajfw8vnNoLEi8mFjZ90wnGM0wBN7ZJPDQMgMbAsX12xIREREREREREZEzKYPRtLIs14SI7PArAnFU4VyUeapQOtWyIqL84nNVoNKVvNH0dAI1XJobpXryc7ByvdJWiBoRERU3l+bG52YcjYsW3IL9Kg5JOr4BAy/0PYnLW3+KtwdfndaLgrsV4WAuuFHrrk95vk5hFlqt+u6UeyFD3rFvOgG3RIWKwWhERERERERkykoQ1awa+/OtK0+tPulWUarhnV/quPd7Gq45VsNzZ+i44zs7L5ebFd+tfWDsh+kakpfvCEZrlJev6xr7vyp4ziPGws388W5p+ca4Xz4hADxwrbLoT7c+p55uuxbvop1/fOHb0JYcsOPPB99Q30z+3qx7UD36ON5aZSP1xibV+ujKwB2OT++WfJxxlzwp8KnrDPQM76zg+DKWWd469YustvGSRCGAwe3tAU2D0arkw7sV662TqAK7ZCF4JR4NPvkLTqSuedb8ociflomi6Xhv9VsOjGS0Grao1g3X9nWjxicv73dQuFu2BCPq77wmB8+4hBBotxEaE5u0rBcrXsjUksXvYjVMcJyTth0iKiyq64hE1z5rc6dFU9g5e2jrL75zDSKrrLRLU91bEsJeuG4hsLI3CaUYwBuJCZxwt8DHrzJw4j0CCy80eLwgIiIiIiIiIiKinAsLRTDa9pd3EpEz+T3ysK0uRTgXZZ4yGE2xrIgo/zR4FS9XTzDdQA2fnnx6v1fRoJOIiMjEDI8fP5x1Lk6dfbEyzCvRQKwX93TcgFu2XorOSFtKn6kKbq7zNEDXXCnN02nqFcflQITXZk4VisuD0Rg8SzQVg9GIiIiIiIjIlKrDfWIQld1gNJ8X8JVI0o1yxOPW8L1DdZz7RR1H7jGxXjMVL1Ua75S7vkveXbWpamw+8+vk0/cEx/4/OfRlnHt7MNrc6GZp+Stt5RjwzJCWiXuvgAhPTWIR6z/Ak+/E5B+Y4PYZp4z945AvQTvrtzuGD4QENvUknRw/vC+KuFla1zRYCepLl5MOsTfTN1sB/1nGjtCzwJD6N/jXaiAUnli+Zpu936wvNPb/VILRzOrmFHaX9cVfsb68bv63+ffvCQJL11ueXV6zuqkOytuf5oRy3dh+XKpRvKiuL5iZ+jhZ0CQsob0fGMxyWNzQKBCKWB9/8jnIwgb5dt7Wl73vYffwtiGQmXoQEVnZHy3fBLQzrGta7ARiFuO5BpFVZnui8TO8OfJbHADMg8cLkZV9z0g0tXn/4TWBR96euEQueFzgvS08XhAREREREREREVHuhA1VMFpplmtCRHY0eOVhW4FIO4SVN+dQWoXiwwjG5W/NZYARUeFo9M5KOs50AzXKXZVJx2HgIhERTcee5fvjl/Nvxpfrjodb8yQdf01oBa5qPR1/734IEcPeGyWV4cEFdI6sCpkLRLP4BnqyLGKEERXyjjXlevLzMKJiw2A0IiIiIiIiMqUM7kp4KUJFqYZqRRCNTH0ehdfP3PCydHhHv4AQAmsU9wgXb7+nWN3fKi0fGBq7gRWNyRt/uDEWYHZE8EVpeTSu4c09vquoNYDlL0wZZPz9XiwtO0g9zfi8NS9uPq0V2q8eh+ar3FHP+edbSwV4f6AWb2ywNKptyQKR0unr+2sprasHXm3g8XcF+kPqcUajwDuTMu9abN5v7t0evKAKLwSAhip5iFBA/mIJR7G7rE/5VHrT8Z54rzgaZlkN+xicmrWYM6p1fjw0r7ZcXt7voO+QLcEkIWTrsxza9UG7vfE/MX/i36og1vaBlKqTErvBaHZDL4mIrLK6P3p6JfdD02Hn1+szOf8nKnZm/V607efxNT4NfkWbnlMesJFSWACs7OOD4dT277e9KJ/uwTd4vCAiIiIiIiIiIqLcUQej2WiUSERZp+p8P2KEEDTkAV2UOWahBw2e5izWhIgyyUowmpVgMzNWgtX8inBMIiIiqzy6F1+uPx6/nH8z9vDtl3T8mIjh2Z5HcEXrz7ByeLnlz+lWnCfXK65n8pHqu3RHGIzmRKG4ulPfdANuiQoRg9GIiIiIiIjIlCqAxj3pilIVViKTL8FoIhpB0z9vlpYFIxr6hmJY2yWfdsn2e4pVL94vLR8VXowu/ZcyeM4jogCA/UffhT8m/5B3Fhyjrnzr6gl/io/eR+cTj6LfVaueJsH5LzVgePtLNIJhAd9PDQzYCBU66+GJX+y5VQKH3xBH89lxfOq6OB5allqnZlWIk57eTCwAgK9Ew39+oeOQXexP+/XbDbyeJBxucljOn9+y1wm5b3swmlmH6cYq+fCuPGhzpOo4r1rW1T4NVx6dvhXhN88LGHYTkPKQ1a84KG9/mhPK0LzxQAVFm9hiDCsJJQlGC2R5X/DsB/a2qTOOnHiy0aw412jrS7VG9tndLaztzEw9iIjMwnETPfN+4Z/PZJKd/X4xhrASpUPiVdwSRVuz9QEgMFQ8+zMr39TKPZql6wW+8OuxezGNP49j/yviyrDim/5VPL8vEREREREREREROU/YkN/0LNFLs1wTIrLDLBQnwA74WReIdEiHezQvqtzW2g4TkfNZCTos16fXWaPcSjCah8FoRESUHg3emTh19sX4YfM5qHHXJR2/J9qJ29uuxJ1t16AnqujUl0B1bVJIIZ+q7zIQ71OG0VPumAWJTzfglqgQMRiNiIiIiIiIlAxDKDuCF0MwGtavRHPvKmXxy7+6E5GYvGxxkwYhBKpXvaCcvv+C7yMak//ALjE2Yw3AHuHV0nEubPk4BMY6zA7pFRjVSnaUiU0tO//d0Qrx/U/g+NkPKOsyWTgGPPCGwIftAntfalgOXhj3VutYB1wRGsIL7w7ji7818NJaYNsg8OpHwIn3CNy3dGymXYMCW/usdcBNFoiUbktmanjtPBdGf6fj9CPS+yFrEu6tr+0UCCvWJZXxkCdVWBwANCmC0bIdhpSKVJb18Z9I7zI65nepBfjlE6thH0MOehaiqrNr+3FpRrl8PegahHKfW6iCYfPy7uHs/h4fbJV/3uxaoGpSW+ZDdwUOWzhx2Kwa+bLtCQLhaHa+i91gtE09xbXOEVH2WN0fvb3Z/rx7gwKrOwQ2BASEKq22SNj5+sFw8Z1rEFllti1pCad4uzWqr+n+vqJ4ti+z6/xxyYKf39si8OnrDfxr9di9mMAQ8N6W9NSPiIiIiIiIiIiIKN1UnXRLNAajETlZlasW3oR2q4kCUXlIF2VOV0T+hhy/pwm6xm7ERIWi0Tsr6Tg+C8FmptPryQM5GgooTIaIiHJP0zTsV3koLl5wK46sPRq6hRicFcPLcMXG0/Bcz2OIiah0nKgRRV+sW1rm9yje4pmHzL5Ld5Sh1U4TjA8ry3yu8izWhCg/8I4GERERERERKZmFYbkmB6PVWg8kqqvIUIpVum1qwexoG9yKG6RPrlM/NNytEUBPB6qD8oYGADCgVyG6Xh565hY7U7KWRNYq53Hzofdh4a6rUbu4C/MXrsXvak8ZK1i/EgAghMDGb38Oh8x/Ga/6DlPOR+anfxTY61IDrT22JtvhsF8ZCB81G0feXiYt/9GDAgdcEUfT2Qbmnmtg4QVxvLHBvKNztoPRxnndGm76poZbTtBQ4k7PPFu27fwyt7xgv4N3X2hsGrNQjMYq+Q8TigChsLM7laeyrOclfzmMLX9/HxgIOft3mi6roSqDI875HZKtG/MV60HMADamuD/LR63dAlc/Y77cutXPUzKirV8+/AeHaXjpFzq+/18aPrkIuOAoDf84XYfbNXGDbzYJYX3k7SwFo9nMS+zJ8m9MRMXD6v5oax8wPGptH9nWJ/CZ6+OoP9PAnpcYWHihgaazDfw1S/tYJ7IbiDkwkpl6EOU7s00pMRjtKx9TX/D944Pi2RdZ+ab9SfY3Vz1tP+SeiIiIiIiIiIiIKFfCQhGMpjMYjcjJNE2DXxGME4gwGC3bAorAA9UyIqL8VO9tTBoWM91gtHIL0/s93LcQEVH6leplOLbhe7hg/q+xa9nuScePiDCe6L4fV7eeibWhlVPKe2NdEIrWWPUFFIw2w+NXnh8EIgxGc5qQIhitRCuFW/NkuTZEzpemrrxERERERERUiGImHSjdrol/m4WVTFY3vWdtWSM2t8CDGBZG1mNNyZIp5X+r/Ip0urkzgPISDeKDFlQbg8r5D7iqEeveBpTvMaXMg53BaHuGP1TO4+d93wS8Y//udvvxs6ZfY0l4DQ5f+zLE0/8PhmHgC3Ofxnrvrsp5ZFL5IvmbNQAgEgPe3bLz7w3dwJE3Gdj8Kx0zyqd2hhZC3TU408FowFgjnlM/q+HUzwKnPGDg7lem1yl7TcK95TUd6nnNr4M0nK4vNPZ/82A0dVlgGJgnf1mjI6QSjObSNezVDHygziO07V+rgW8ckL75OY3lYDR5+9OcUHXuH183FjWOhSvIdhlrOrYHVxY4IQS+fEvyFIRsB6O1D8iHz6oB9p2j4Z7vmu/M59SOBbPK1oErnhL49kECmpbZA4LJoUiqJ5iZehAR2QnsOusRgf3nmk8gBHDqH6eOExgCjrvTwIqLdew9O08CrtPI7n6/fwSoT/7SXKKiY3Vb+vLe6rJ1XempSz6wso/vD6nLRqMCz35g7zOzcV+FiIiIiIiIiIiISCVsqILR5C/kJCLn8Hua0BZunTI8EGUwWrapwugYXkRUWNyaB3WeRtP9bLk+vcYrPpf59GW6D+VJxiEiIpqO5pJ5OGvO1Vg2+CIeC/w/DMcVHRG22xbZit9suQifqPw0jm34HqrdtQCALsU5sgYN9Z7C6Vji0tyY4fGjO9o5paxbEaBMuROMD0mHTzfclqhQmcdCExERERERUVFThc8AgHvSFeUsG8Fo9flyn2ZTCwBgcWSttLjfVSsdvrhiLAxNXPJtVBmD0IT8hxzQqxCFPMnfLXYGox07+ITlKgPA1fXnjn3+tSfjgj905SwUDQCEZu/WQygCPP6uvAewWcdgPct3OO48Ucc/Ttfx88+n3nN4Y/dYZ2VAHRYEALv65cN7t4ftpByMJr+P6hjKYLQky/r4A9Pbm/uFNdMLwHM6I3l2FgBgcCSz9bAjWWheqUfDgjr5OC2dhb08x134hMBqC20LsxmMFjcEtimD0axttxWlGo5UvPhpXRewfFOKlbNBtQapzm16g+bBnkREqTK7Vpvs968I/OQh8/9koWiJ7nu9OPdldgLoAPOgIqJiZrYpJZ4Jul3qsFyz6+ZCY+U6zWx/81br2P0VO1xsOUJEREREREREREQ5IoQwCUYrzXJtiMguv1ceuhWIsPN9tqlCklTLiIjyV6N3lml5mat8WvMvTxLK4ffMzPhLbImIiDRNw8HVh+PSBbfhkzVfhIbkx563hl7GZRtPxUt9T8MQcWUoWI27Dh7dm+4q51S9p0k6PMBgNMcJGfKOPMnOwYiKFZu3EhERERERkVLMLBjNNfFvq6EmQB4Fo20eC0bbI7za1mTzN70Isf4DYKAHOgQqDXkC1aCrGjHNLS3ziOiOfzfFp76xwcxL5Z9Bj2sG1nh3w/X1Zycd/9b/Sf3B5Ml1b+KhtpNSnl5mjeKeq1nHYD0Hz1Y/v6eG67+hw7jLlVJAmiGAj7rG/t2h6OB91TEaan3ysr7QzvmozChXd252fDCaYnkn+6XPOELDsfulrx7LNhR2CIjVbzeQB8Foiev6LopAwc7B9NfHaQZHBK591tqS7cliMFrnoHrZNdsIV730q+pb2u9vzfz2qto3+RUvPwzH7IdSEBFZYTewa7peWVvY50QqdrMtGYxGJGe2LU1uKz2nVn7VFxgCwtHi2BdZ+Zb9IfVYq9rt/06J91Xe2yJw0d8MnPtXA0vXF8dvTkRERERERERERLkTFREIyB/GMxiNyPn8HkUwmiKkizJjJB7CUFzeENWvCEggovzV6G1WlpXpPrg0l7LcCp+eJBiNgYtERJRFPlcFTmj8EX4x9zrMLdk16fijRggPd92NX236BVYNvy0dRxUils9Ux+duhlY7TjAu78jjcyk6pRAVOQajERERERERkVIsri5zT7qinFVrfb75EIwm4nFg60cAgMODL9qatqp3PcR9V+34u9qQJ/H06TWIah5pmRuxCX9/cy97qURLyw7GT5puTjremxfo+M5B9kO9/vA9Da3X6Lj9jNk4cOQt29Obae+XD4+b9MXNRTBaouu/oeN7h9qvxKsfCYxEhDJA4ZBdNNSUy+fbFxz7QcwC49y6ensLDDu7c7Mq7CPZsvaVaHjkRzpartDxyCk6/iv5cw8AwGcXy4e/u2Xnb12IrIaqDMpfzJsTqnU+cd2or5CvKL3BDFTIYfa7wmSnMEkqgQmpUu3bAXvBaAftomEPRZualiw8s1NtM36Tc5tsBtARUfEw7CZ2TdPyTUCPw88fM8HuN+53UJgskZOYBqNN+tvs/tK2Igg6Bqzt482CGFWB82bGX4Dw7EqBg68xcNXTAtf/U+BT1xl48A3r1xhEREREREREREREdoUNdaMUBqMROZ+q8/1wfBAhRWdvSr/uqPoBEQOMiApPo3eWsiwdgRrlSeahCsUkIiLKpPlli3DOvOvwrYaTUab7ko6/JbwBH4belZY1FOA5sioQmaHVzqO6Vi5PEk5LVKzcua4AEREREREROVfMpN+ja1Iw2mwbwWizanKcYmXFtlYgGgEAHBZaihJjFGGLDa0qjWHgpcd2/O2PdWOLZ87Uj3A3IqiXS+dRbkzs4VpXaS/b/Jg5jyYd5y8n6/j4/LFlcdM3NZz1sHnHW00DDt0F+P13dSxuGl+Gc9D8+S8AG2xVz1Rbn7weZgFguQ5GA4A7vqOhrgK46z8CQxZDpJ58T+Dze6grP7NaHWw2HrRjFmyla2NhPZ2SzuNdQ9bqmCvKYDQLC1vTNCxqBBY1An0hDa+tT96p/LTDdbzYIl/JPnODgRWXTO/taU5ltl0lGnRQyId63dj57xnyXWvBBrps6hE4/zGBP79l7/t92AFsCAjs4s/8TlQVjOZxAXWK5aXy8fkaPuyY+l1btmV++arWP7PQ194QMLcuM/WZLiEEHl4ucMsLAuEY8PX9NZxxpIZSj/V14sE3DNzzqsBwGDhqbw0XfVmD2+WAAzNRgbMabppOv/23wOX/XVzbt93feTgsMDXmiYjMaJM2meZq9bjt/cA8h55XpZOV7Ms+k2C0VM6Lx0/fznvMQCQhq98QwC8eFfifA4Wl63EiIiIiIiIiIiIqXBEjjLbwJsRENK3zHYz1KctKNAajETmdqvM9ALw3/EZGwnNmePyo8zSkPL0QAoHoNgzEeqXlDd6ZqHbPSHn+2TBqjKAtvAmGGHsD9kcjq6TjuTU3at1F8ICNqMg0eJuVZekI1Ch3mc/D71Xv+4mIiDJJ11z4dO1R2K/yUDwWuA9vDr6U0nzqTa5j8pXqO/VGA1gbWgkN5v0Sq90z4Pc0QZvcoI/SLmTIO/T5kpyDERUrBqMRERERERGRklkwmnvS/TB/xVi4STSefL5L8uH+4aaWHf/0IIaFkfVYVbqnpUmr4hNTqJpi8jexbXM3YVCvks/DmDiPuur0XcJrEAjf7poQWnL6ERqeWSnw/Oqp49/0TQ0nHKihogQoL5l6g7P01MvhPz2AgNuflvq1KcJzTAPA7OXGZYTXreH6b2j41bEC/1kHHH5j8sSpF1qAlW3qcrNgtG6rwWiKl3YF8jUYzeY99qP21gCYdwr/yWc0HDBPXb6yDXh9vcAhuxbeDX6rYR8jUSAaE/C4c/8bxBWbVuK6UafYbnqD6a9Prg2EBA6+xpAGIFqxfFN2gtHa+uUrW3ONtcDDRLs1yoe3dNqtlX2qbWZGhQZNE9IQi7Y+YN+p+ag5MRIR0LWx7SUaBx5+W+B/79tZ6bc3CawPADceB1SWIumDzd+/YuDkByZOvzEA3P+D3O8riAqd6niYSa+uK8yAUTNWwokSBcOZqQdRvjPblCafblSVAeUl8u2ptacwr8sms3Kd1m8SXr06hZd8unRg24CQ3qPoHASWrgcOW2R/vkRERERERERERFQYXu57Bn8N3IuYiCUfOY1KLL7IlIhyp8ZdB7fmkYYmPrjt1ox97oLSxThl1vmoctfYmq4n2ok72q5BW7jVdLwlvn3ww+ZzUebyTaOW6SeEwNM9f8Y/eh6BgeQNB+o9TdC1wnwpLFExa/TOUpalI1DD51I0Pt8uE6GXREREdlS5a/C9mWfg0Ooj8ZfOO9ER2WJrer+38I5lquBSAwZ+s+UiS/No8s7GT2ZdhHqvosMGpUUwPiwdXp7kHIyoWDmg2zARERERERE5lVlne/ek5+S6rmFmdfJ5+iuBuoo86MS6uWXCn4siH1metNKYeINqpiIYrcPdhEFdftOqKj4xtaquKn3BaIHT104IRQPGgk/+dqqOC47ScOB8YHEjcNRewN9O1XHGkToaqzRpKBoAaJW1+IJ3Rdrq19Y/FsA0WbIAMKfQdQ2fWazhvYt1HHcAsIexHjOj8l7JkRjwm+flG5q/Eqgq06YXjKYD/kr5j+P0YDRVCIXdZd1co2Fxknvyt5ygYXYtUGXSlvKiv+UgfSQLrAajAcCQQ4I+VHV2JdzprCuXj9NTgMFot70kUg5FA4AW+SEq7doH5MObLZw7TLakSb4jWB8AIpLjRzoZihXQ4wLm1MqnaenMfZCQEAJXPm2g/KcGyk41UPITAxWnGRNC0cbd86pAzekGDrrawLIN5nW/+d9Ty//4pkCHIgiPiNJHdTxsqAQu+oqGg3cZO6e3+58qfBIA1nVl5rs4mZ1zJQAYdsj5EpHTmIUMTj6z0zQNu9TLx12bhSBcJ7ASytgfGjvHmywYFtjca/8zXTowYBK2tqmX53dERERERERERETF6qPQh/hL111ZD0UDgBK9LOufSUT26JoOvyf7b0veONqSUvDaPe03JA1FA4A1oRX4S9edKdQss94dXopnev5iKRQNYHgRUaGqctWiVHGelI5ADZ+uaIS7XSGGyRARUX7azbcXzp9/E46uPwlercTydLm4hsm0+jR8p22Rrbi97co01IbMhBTBaD59+gG3RIUofb2qiYiIiIiIqODE4uoytyRqe1YNkna+XJIn9w7Fhg8n/L1bZK3laSuNiYlTTYpgtDZPM4ZcVYp5JKTclPowZ4YGYHqdUEuMUby7x+2YsefZ0vIyr4Yrj9Zw5dH2533ByQvx4B3Tqt4Oo1HglY+Aw5dMHJ4vwWjjPjZbw59PGIB4cG8Y0DB/4Tq0e5qnjPeyYtUa31bqK+TLvnt4rBN0st9FHazm7E7Nqu+VyrI+6VANFz4un+GyC3Ro2thM7zpJw/F3ycd7YQ3wxLsCZV7g8MWAx+3AlS4FdsI+BkeAGeZtHbLCyrpRp1jvnRqM1jMs8P5WYFW7wIJ6DXNnAL1BYF2XQFUZcOiuGmbXTl3neoMCv3zC2kI8Zj/g8XenDs9WMFpbn3x4s72XtgIAFivOJeIGsCEALMlgmxuz9W9Jk/w8aE2WfmMzN/5L4OK/2dvvL98EHHengQ8u1VFVNnX9i8YEPmifOp0hgIffFjj9iMLYTxI5lWp/VOYFLvuajsu+lvq8z3rYwG+en/oBbf3A8KhARWnxbN9WwokSBRmMRiRl9+pzt0ZgZdvU4evyJBhtaFTg5bVATRnwiflAicfeftPKdVo0DoQiQPmk9nyphsd1DwOPvq3+YKMws8KJiIiIiIiIiIjIgjcHX87J52rQ4NG8OflsIrLH752JjsiWrH/uquDbGI4NosItb4c7WVekHa2j6yzPf8XQMsSbYnBpzumCu2zgJVvjM7yIqDBpmoYGTzM2h9dPKfO5ph+o4dXNg2WqXCk0/CQiIsoQt+bB5+uOxcerPolHu+7Be8NvJJ0mHSFiTlOil6LaVYuBuKLjhkUdkS3oinSggdcSGROMD0mHpyPglqgQSbqxExEREREREY2JmXR6dCmC0ZL55CLnd6IXAz3As/+fvfsOc6Ja2AD+nsn2hS1soxepSlERuSoWELuIyrXfa0Gxo9jrp2LvXa5eK/aGXkVsiAURVLChUhaQKtv7bpYtyZzvj7DsbnLOZCab7Gbh/T0PD5uZM2dOksnJzGTOO6+0mnZg7RLby/sHo/XQBKOtiRusrSOlZR3xSTh8D9ur17rC+waGXaUORWurYaMH4u+hd+L2otvDUt8XKwMH43a2YDQAQLEvMcaAxHE1HztadGh335PSBZt5TF9QldXgZEMAWZrzosXq86hRQxdCYYRwNuus/QS6KH6jP+9AgX37N288p4wxkG1xHnnK0yaOftzEsFtNrMyL7mA5uxwFo9VFrh1O2ApGS1Z3CmVuwHTypNvBwlyJ4beZmPiIicvfkjjuKRN73mFiwsMmLnhV4rRnJQbdbGL2ktYf9m9yJTKvtJdOsOV+A0Ny1K9JbmH7vB75ler19Exz3oEPytL3+7kRDsuw2v6GdFc3ak1Bx25zLy02cd2c0Nrwdznw0hL1stUW4T+hBnIQkX1ezVdAOPaLp0/QV/K7IqhoZ+Z0t8HdEJl2EHV2ViGDQtHlDNbsu65pp33Xtli8TqLPdSYmP2Xi4AdNjL3HRF6Fs3bb7XsqagOn5bZh3/MWiyDdKDuMIiIiIiIiIiIionaU37C5Q9bbI67PjpsdElF06xs/sEPWKyFR2GD/R+y8emf9Wb2sQ41mwHpHKXAYQNc3oWPeGyKKvH4J6nEIPeP6hqX+/pr6ByUO5z4aERFFpW6xWbig1w24pNf/ITM2R1suO7YnEl1J7diy9tMnTPv/FZ7SsNRDarVmjeHAQ9YAACAASURBVHJ6OAJuiXZGDEajsBJCxAohxgshzhJCXC+EuFQIcaIQon9Ht42IiIiIaGclK0shX7kP5mNXwrxhCsz/3Aj52euQXm+b67YKRotRHFH2TA/+I9exI6P7hzBpmpBTdguYfmjtN0gy3bbq8A9G6+VRX3hR4UrX1pFiVjU/SEhC1wSBCw9p22t35iGJbVo+mB6X34Sbh6/G6ZVvtbmuVfmKYLQgAWBRqSRvx5+Tqz9ytOhuwheopws2A4Dv1gFnvah/YVwGtEFf0R6MZif8yq5e6QLPnimQ2uIjMHlP4KnTAyv75Zbgp8s2lADnv2JCWo3u7yScPIXKbZFrhxN2gmB0nxuvCZSof0PoEKYpMXW2iaIgn8cGD3DubAnjAi/2usOLM54zcejDwUPRkuKA16cJ9EoXGKa5qVFuAdplWy7VvO459m7Y2kp8rECfbup5hVWRfS5WfZPuNV6tzkcNm9X5EnfMMzH1JRMPzTdR7m5u5PwVEue93LbX5I6P1MvXWIQlVkdJf0G0MwvnvpK/fhlAYqx63qd/dv79HyecfkVa9Y1EuzLLYDTFtCGa69JyC9tn3zVUpilx8jNmq1DpP7YC17zrrM12n2KFYp8rUsc7DEYjIiIiIiIiIiLadRU3RPhHb41xaUd0yHqJyLn9Ug9FnFDcubQdFDfmOyjrvD+r9UbPxWZe6UFpY5Ht8qmudOzVZb8ItoiIOtJBaUfCgKvVtGSjK/bqun9Y6h+Xqt4XOyTt6LDUT0REFCkjuozB//V/AsdknIoYERMw/5D0YzqgVe3j4LSjwlKPlMHHqlBovNKDOlM92CKZwWhESoE9OXV6QoiZAG5rQxUvSynPcbjOLAC3AzgVgHJYohBiCYBHpJTvtaFtRERERETUgszbADltf6C6vHni4o8hAWDBW8CDc9t0Rx5d+AwAxLgCp/VKC17n4OyQmxNxUkrIW08HGgJHsyfIehxRswAfpBwftJ6ufsn9w+pzHbclpeVd5hJ8aU5Pnibw34WhjUQdUr8Gw3bX3/EiHERsHMTd7+CG79fgzZfaVpcqRMZqEK4RrdHvLYLRxtd+i67eKlS77KUApc+5F3LAUcjcR3/S/binrE82CyG2B0QFvnjF0XO9jpJVEF4oThtr4LDdJf7YCqQnA3v1UfeNPdMEjhwOfL7Cur7v1wO/bQH2Ds+N1TqMk8HtFbWRa4cTdoJgeqbql99aAWSHEMYVCT9uADY6vJnO738Dv/8d/I2bO93AfgOAzK6+F2ZodwFVX1BTD+RVAL30WZ1hUa7ZftJDvNlSVhdgk+K1i3TwnS6kwjCAoTnq17ioGih3S6Qnhz/F85tcieOeMuGub5721FcSP9xoILcAOOrxtnem5bW+fST/fcrqes0CAKrqmJxBFGm6fSVXGPaLXYbA+KHAp38Gzluybtf6fDsNAqptiEw7iDo7q4+S6rTVEM1+VXUdUFgFdLfY3+9Iv24BCqoCp7+1TOK18yQMm+mVdvueckV+f1WEAhoZjEZERERERERERLRrqjO3ocpbHrxgGHWP641xqUdgfNqx7bpeIgpdt9gsXNX3bswpehEb69bAIz3ttu6iBgfBaA7KNnF7o+cOtKWNxTAR/FqgeJGAgUl74LTsCxFndExgHRFFXu+EAbi8z0z8r/gVFNRvwYDEoZiSNRWpMeG5GHRc2uHwSg8WVnyKgoYt6BHXBxO7HY99Ug4MS/1ERESRFGfEY1Lm6Ribcgg+LX0Xf7p/QhdXKg5KO3KnPt8wossYnNvjGswvm4Ot9ZsgLa/c07Nz3EGhsQrfTjIYjEakwmA0ajMhxNEAZgMIFm9wAIADhBCvA7hQSqm4VJuIiIiIiJyQ/7mxdShaSz/OB76aA0w8OeT6PV79vBjFgPtgwWhxMUBGlJ6jkV4v5EPTgYUfaMtMjluGD2AnGK31hRADGjciVjagUcTZbk+K2WIkbbwvNSbGJfDBJQZO+I/zE4z/3PYRxIiLHC8XipH7D8GceImTngn9ROiaQqC2XiIpvnnQsNUgXFf4s2bCo7g5GC1eNmCi+2tb4XoAkN5QDPn0TUh+5WjkpPgGfzvRNN46S/OZq64D6holEmKj88XThl+1Iewjs6vAhGHBy43oJfD5iuA/AMz5WWLvvtH5+tnlZHB7fqUE0PHPV9dmV4uQgewUXzCMKuAzryJ6Au1yCyOTLnDbcQKTRrV+r4ZaZGOuLuh8wWiZmr4t0sFoVsF8w7rrl8stBPbbLfztufl/rUPRAGBzGTD+IRNrCsO3nvJaoFty62k1FqEbVeqbGBFRGNkJCm2Lw3YX+PTPwJV8nQtUbZNISWzffYJXvzcxe4lEXSMwaU+B648UtgOG2sLpN3UNgyGJHFMGo1n86rymMHqD0VT9ZpMyN5DZ1V49ujBefxWKfS4GoxEREREREREREVE4lTQo7m653e0DnkZGbPhv1GmIaL1DJhFZ6ZswCFf1vcd3g+IQB99beTH/YfxSvThgenGjg2A0TdmD047G95VfolEG3gmr1oyeO9BaPddHBr+JOOELQRMQbbqpNhF1HkOSRuL6fg8qb3waDgenH42D04+GKU3uoxERUaeUHdcTZ/eYEbHvymg0JuVAjEk5EKYMPqbvirWnwiMbA6YzGC1y3FbBaK4oHXRL1MF4JEJtIoQYD+ADtA5FkwB+BvAugC8AlPgt9i8AbwrBI2EiIiIioraQNZXA4nnWZea/0aZ1eCzOY7kUe/S9061PEvZMRfSeSHz3CWDei5ZFjv33QbaCBrr6XQgRAy8GN6xz1JxE2WJ0a0JzaszkvQROH6tuRGoisO5uAymu1gkp3T0FuPqgOojkFEdtaIspowW8/zXQeMyLKFjTB9Wru2FK1f8c1THy9tYboNUg3LaEZUWSLMlr9Xh4/Urby6aalcCm1RAFG3HkQOfZ4juC0SwGXpdGzzU7ASId9mHFKtyoJTvhadHOdPB7RV5F5NrhhK7NLfsBlyHQQxOWsLUiet63sgjcNiC7K3D5oYEflPRkgWxNfxCpgLYmpilRoQtGSw7tQ53ZRb1cJF7Tlqz6pp5pQBfNTVbXF4f3NfZ4JYqqJL5fr54fzlA0AMivDJxWbRG6UVQNSClR5paQdpM9iMgRVfgnEL59pRG99BVlX23CXd9+n+1nFpo4+yWJr3OB79cDN/9P4uLX22f9TvaVAMAdeJ08EcE66EvV22R2FQGhrE3WRHjftS3iLW5LV+zg+NtuCFlFbWDByggF1NrtD+sbJbaWcx+QiIiIiIiIiIhoZ6EL4XEhBt1is2EII+z/iKhzE0JEpG/Iju2pXF9xg4NgNE3Z7NgeSHapL6xye6uV0zuCrv1pMRlIMBJ3vFZRe502EUVMpD/33EcjIqLOblfcR7Z1rKWJGzKlt51bu+twW4Rv645LiXZ1PBrZNZwOYICDf9fYqVQI0RvA+wDiWkxeDGC4lHKMlPIUKeURAHoDmAGgZVzocQDuasNzIiIiIiKipV8AnsBU/laWfAJZG/qP8lbBaDGKI8qRvawH4vdKC7kpESU350LOusG6UEYPZB1xDPbsbV3MkF6keQPTg8Zs+9lRm1q9jPGJrebNPkfgjuMFurfIOZs0Clh1h4HdsgSW35WIc/qtx4HGnzjH+BxLDv0S6dNvcbT+cBBCwOg1AJneUiTKOkyutg7y87ehBNhQ0jyQ1jIYLVrPUfsFow1ryLW9aJrXl0IjT90dx300zfGqm0KiUhP1ZaxCbTpaRwajHTlcKMMf/f2yGfh2Tece7G13wD0AbI2SYDSvzW1D950TLc8DUIdNtUVOCrDsZkMbNqYL/Vutv8FzWFTX6be19CT19GAyNDfDKamOcMibpnohfN97fbup54frvc4tkNj/Xi/iLjbR/Zr2uxNTvuJzU1MfOK3Jynyg17UmMq800e8GE/N+79x9JVE00vVHdvZh7LAKim3wAF0vM3H6syZq6iL/+X5sQeA6Zi+RKK2J/LqdrsGqbyTalYXyaR2So54e7gDYcEqI1c8rqrJfj93jtHJF+HC1Jhht3ED761fRHYc1qWuUOPtFE92uMNHnehN9rzfxxo+8cygREREREREREVFnV9ygvqAgIzYbLuFq59YQ0a4sK079I3ZRY76tG7Y0mg0o95Ro6u6pHYBe642eu8/qwiqzYm3eCZaIiIiIiKgFXfipKXndV6TUasK3Y0QM4kR8O7eGqHNgMNquoUBKudHBP/VZvkC3A0hv8XgJgMOklKtaFpJS1kspnwBwit/yVwkh+oX+tIiIiIiIdg3SNCFXLIX84bNWIWfyO5shUwveCXndHouA/xjFdU3pyQIHD9Yv0zs9+tKrpJSQ/xoVtJx4ZiEAYPce1s+hm7cMLgSeAJxc87HtNu1ev6r1hITWqTGxMQL/d6yBvIdcMJ/1/Zs73YXuqb629csQePHmwfj2mT3x4jPHoP+/z+q4u1v0Hbrjz1Oq5uCA2iWOFv/g1xbBaBbnVaMxGE1KCSxb0GrasHonwWjNKTSH1yxAvOksxazpNUmxCEariuJgNN21Su3xXvdOF7jxaHsrGv+QCa+TdLEQbGuQ+OQPiW9yJRo84V2Xk6bnVURHsJGuL/DfNnqnq8tttHvmqx0UhDkYLe9BA3266bfdId3V89YURPa9VQU2NAk1GC1TE4z28+bQ6rMr2PbXPVU9P1gwmrte4ouVEq//aGJlnvr9qGuU2P1WEz9usNlYB2JdwD4WZ2rzKwPbVB0kDKlge/jH3+XACbP0z4uIQhPpENleaUDXBOsyb/8kcdFrkf1s19RJZQhSoxf436+R71ec7ua5GYxGpGQ1FkV3umJIjmbftTB69ykaPPp5xQ7GzNgYu+OrU3GNVJVmH22f/gKXTwz9S6I+yL0Zpr8p8eoPEtu2l9taAZz5osSitdH7fhEREREREREREVFwRY15yunZcT3buSVEtKvLiu2hnF5n1qLGG/wONSWNhZCa2/lkx/VAkqG+GKlGM2i9I+jCKrPi1K8NERERERGRFaGJGzIV4yIpPHTh20lG144b+0kU5RiMRiERQgwGcHaLSQ0AzpFSaodUSyk/APByi0nxAG6LTAuJiIiIiHYOsrwY8sqjIS86CPLa4yFPGQq55BPfzF8X2qvjwUual3HIG0IQ1Ql760/C7D8wpGZElHzh9qBlxJWPQXT3pYUMCXJjtUxvqXL64TULkOCySJpr4aiaz1tPSAgxNSYaZPcGEpMBAHFoxNebjsCzeRejf8NGpHvLcFXpo7il+G7t4gtWtQhGsxhLG23BaLK+DvL2s4CG1skII+pXIM1bbquONLM5RaeLdOP0Kmchh02vSXKcvkx1FAejmZqR4O31Xt9xvIG50+2dOrvk9cgN9F62UaL3dSYmPWni0IdNjLnLxIaS8K3PSdjH1orgZdqDLiTA5fd27ZYV/UEK64vD15YN9xpBfwgZpvkO+3ULYEYw4C8SwWgZmmC0wirgkS8i90NcsCCiHqnq98AqBG/5Fonht5k48jETZ74gMWKmiQtfNVvdzbaoSiLp0vA8r/12A2ZMFHjgJIFbJgncOklg5e0Glt2sv5v3ekWgYI2D8B9TAi8tiZ7PHtHOQHesFq59JcMQOGVM8Mre/VmiojZyn293g37e2qKIrXYHu+FETZz0jUS7EstgNM30wdnq6b9tQav9pGhidYxdVG2/zXZ3zfMU+5hV29RlUxOBR08RmHdZaJeI1FuEvjV6JOb8FNhoKYG3l0Xne0VERERERERERET2FDfkK6dnxQW5iI6IKMysAhmLG9V9lZ0yAga6xWQj2aW+GEk3aL0j6J6DLjSOiIiIiIjIiiHU15JJBqNFjNtUH2PqjkmJiMFoFLozALQcKfe+lHKtjeXu93t8ihAiIXzNIiIiIiLaucjHrgB++aZ5QmUp5PUnQn74HFCivhujsp7rT4Ssdp5o49Gcx4oxoA1fOX4v/eB5q3kdQa5dDrx8b/CCYw7d8efwHtbPIUMTjJb8z6k4bLg+cKTJuNrFmFl8V+uJ8Z03GE0IAfQduuOxCybOrXwZ6/7aA8VreuOBoptxW4k+GG1li+s4OlMwGj55GfgyMMgsFh4cVTPfVhWp3tYjnO8uuhX7bltmuwlNr4lhCHTVHHlXRXUwmnq60Y5nsyaNElh4rYGsrtblnlskUexgkLtdUkqc/IzZKlTqzzzg8jfD9yODkzyBMnfYVtsmum3D/2tpSI66XG5hdAQplLslvl9vXaZ3OvDd9QauPVJo+7mEWGD2VIF+GcE7wj0032HF1cDSjUEXD5lVMFpaiF9x3VP0z/eadyV+2RSZ9zhYMFr3VPX8/MrWC5a7JR6ab+L690zsfaeJzWWtyz+3SMJ1oYlr3jVR7pa4dW74ns+SG1x49FQD1xxh4PbJBmZONjAw2/cEJo1SLzN/ReD6nYZrPjy/4z93RDuT9thXuuuE4N8tjV5g/3tNXDvHxIKV4f+c11oEo1VVRT6FzOkug1V7iXZlVh8lXbbv7pp9181lwAr7p8TaVbVFt1Rcbb8eu11PfkVgyUpNMFpKgu8czTEjBf7zL+cnUeoa9fNKavTnF75cxX1AIiIiIiIiIiKizqy4sUA5nSE8RNTeurpSEa8ZgqgLcWxdRt2fdYvNRKwRi2SX+iJBt+ngR54IMqUXJQ2FynlZceyTiYiIiIjIOUMTN2RKBqNFii58O4nBaERaDEajUJ3o9/glOwtJKVcB+LHFpGQAR4SrUUREREREOxP5+2LgqznqeQ9Nd17flAGOl/F41dNdFkeT/TIEzt4/cIDlWfvbC21pL3L1z5Dnjg1ecM8DIVoEe40fav38M+MUo2CPPQfGjEewT7/gz/+bTYcjWfolyMR38jzpfsOCFvlwyxTl9E2lgLveN4jWMhgtys5wSEUoWpPRdb8GXT7JdCMOrUcd53iL8O3GiVi0cTxeypuGl47abFlHyxAlXTBadV30DlA2NefR2zsE76DBAmvuNPD8WdYrzrk6/Cf+V+YjICwJAD7+A9hSFp73zupz5a/CItyqPQULpmoyJEf9nlXUAuuKwtyoEIy9R7/NPHWGwPwrDKy+w8ABAwXu/6eBVXcYmH+F7//vbzDw8lSB9y82sP4eA2ftb68TPHAQEB+jnvfhb5HrD8o1oXpdE4AYV2gf6qFBbj495m4TjZ7wP6dg218PTTDa3+XNf68rktjrDhPXzZF48HPrNj7yhUTGlSae/TY8zyUnxXr+IUPU78cPG4ASvwDImsjnERGRBV1/FGK3qpSTIlA7K/h3TG6hL/zwiMdM3DkvvPtEbou+pnLhfMiS4Be4t4WTfSUA2MZgNCLHdMFoVudf5i6PzmPZKk0oGQAUORgzozse9penuAeCLqAsJbH577REdRkr9R79PKtQSDf7RSIiIiIiIiIiok6rwaxHhUd9k1CG8BBRexNCaPueokYbwWiaMk1Bj7pB6LpB6+2t3FMCL9Q/2GTFBrmQioiIiIiISEEbjAYGo0WK26u+kFAX1k1EDEajEAghugPYs8UkD4DFDqr4xu/x0W1tExERERHRzkg+eGl4K6yrhdy4ytEiHs15rBiX9XKPnCJwzgECQvgGuJ5zgMAjp0RHKJos+hvmnVMhzz8geOF/HAFx51utJmV0ETh4sH6RzH+MBcYd63sQGwecOgPiqicAAENzrFd3RuWbUL5KsfHB2xrFRL+hQcsMq8/Vzluz/SZ3lsFo0bF5NVv+nXbWUGNr0MWzPCXK6bHwYP9tS3Fm5Rs4s+xlXHm4/om3DItL0QajBW1Kh7EbftUeUpMEzj3QwMXjrVd+yesmpAzfAH3VIPcmdoIA/i6XmPqSieG3eXHAfV48PN+E1++FdRL2UVMPeLwdH0DgtRmaN7ynvo7nv2vf5+HxStz/mYne13lhXOD791exumyfdODiQwQO20MgKb75SQ3O8U0bsvUb7DvrOPzr1Yk4/o/7kRNvkb7gp0uCwERNVmVEg9Fq1XWnJ4Ve58Cs4GXmLg+9fh1t37S9z+3bTd1PbChp/vw8+LnElnJlsYg7d5x1P3bsSPV8KYHPV7Z+8tsalUUtRXMgJ1FnE6w/CpeEWIG1dxk4cJC98nfOkyisCt9n3TIYrSEG8tX7wrYuFafPpM4iOIhoV2Z1mKTbO+mWLDBuoHreJ39E5z5FjcUx9vIt9tts9zgtvzJwmi6cLbVFGFp6svMD6zqLfT+rYLQwHiITERERERERERFROytpLNDOawoSIiJqT9maYLTihuDBaEUNecrpTWFryYZ6ELpu0Hp7K26w6JMZVklERERERCEwhHqAqCkZjBYpuvDtJEMd1k1EDEaj0Izwe/y7lNLtYPklfo+Ht7E9REREREQ7HVlTCTgMMbPlh88dFdeFz8QEOZpMTxZ48RwDdbN8/148x0C3EAZdhpusKIGcui8w/42gZcXH+TAe+ggiPTB55fi99M8lK7srjPveh/i6BmJ+OYzpD0DE+YLNhvUIEkZS86l6hitIEl206xs8GK1/4ybEm+oRxKsLfKNoddsjEF3BaPLr9yzn737YfkHr6OlRX4TTyqK5yLI472m2eL26aoLRqjphMJrowPf6idOsV/7MQokb/yfDFo5mNbj8p43Wy1bWSoycaeLl7yVW5QM/rAeunSNx5TuhB6MB0bHN6Nrs8vtu6pYsMLa/uuxjCyRW5bffCP2LX5e48X1pGXbX5JhRAkKzoculX0BecRSw9AvgjyWQz90Gefd5geVME7LWd1GebPRtSLJ+G2ThFhy3m7oRqwuANYWReU0qNOEMbQlGi4sRGJxtXeaTP8P/fHQf76bvoSGaEFSPCWzcfiPtj2wEG0ZCelLwYLSh3YHdMtXzft7U+rFVOIbOt2ucL0NEanaDQsNhYLbAt9e5cNyo4GU9JvDlqvD1c1b7QxVGKvDVe5Bm5C7AcFp1gwcBQbREdkmPB7LefuhtZxLqp+K4PdWd2h/B88Y7hFUI7JK/gBqbIbF2X6+iaqDR01xaSolKzSaUktD8WqYlqstYqbcIfrQMRnO+KiIiIiIiIiIiIooSRZqgIQMGMmJt3M2MiCjMdKGMxRZBjsHKZG+vM8mlvhiz1lQPWm9vRY3qPjnFlYYEI4Qff4iIiIiIaJdnCPUAUQkGo0WKW3OMmaw5JiUiBqPtKi4UQiwQQmwVQtQJIaqFEBuFEAuFEHcLIQ5yWN8efo/XOVz+ryD1ERERERHR5sikRsiPZzsq7wkxGK1JbIxAbEwUJVbNfR6oKgtaTDw8DyKlm3b+lNECcTHqeYft7nu+IiYWIqZ1oRE9gd7p6uVS4704qma+eqZLs7LOYvd9ghZxwcSQhrXKeau3X49ilS8QVcFoj1+tn3nOzRhw0XRkBjlf2ctOMNr6FRhZ+5t2dssAqxRNMFp1FIRc6eje7458r12GwLfXWneAD3wmkTbDxDML2/5DgNWg+tU/roIsDkwDKK6W2O8eL9KvMJUD4p/6SuKnjc31Og37qKh1Vj4STM3Godo2poxWbzCNXmD6G2bYQux0TFPigldNvPCd/fWcOiawzXKbG+bd50FePSlwgW/eh/zwOV85KSFffwhycm/IIzNhHhQPeWhX3/+HpUGeNAiTHh6tXfeHv0Xm9SjX3FKhLcFoADDZIqgUAF5aHP7nE6xvGmRx7ffaQqBqm0RBVdibBQDoEg/00exnnDFW4NvrDAzMtn7NhBA4eIi6zDMLWz/5UILRPl/JaAyicLEbFBpOE4bZ2xH79wuyVVBPW7gtwnYKY3KAimJgrX6fuK10zyIpTr9MKP0j7dqk1wvziashj+sJeVQWzKsnQVaUdHSzwspqt9sq/Hp0X/XM6jrA442+/Yrqeuv5T35tr81OjtNa7lvWNerP5aW0GA+TFsJ+uFXfZhWMZhVyT0RERERERERERNFNFyKUEZsNl+jk17MRUaeUFacORitqyLO8DswjG1HWWGxZZ7Krq3K+2xsdwWjFmrBK3WtCREREREQUjKGJG/JKbzu3ZNdR661WTk/SHJMSEYPRdhWnAZgIoCeAeABdAPQDcDCAmwB8K4RYJoQ4zGZ9g/web3bYnk1+jzOEEJohe0REREREu6jNuaEtl9ULOPRk/fyNqyDLi2xXpxtkGsnB9pEkf1sUvNCUiyDGHm5ZpHe6wMzjAgfn/nM0cMgQ/XIxLoEH/ikCguWEAO4/tASppiYppZMHo4mcvsCgUUHLDW1QBwLOX+HbDq0GBkdLMJosyQNK1RegoGs6xLm3wOUyMGmUdYN7NrYIRuuSpi034fHxttrVVROMVqUIzooW0RiMBgAHDhbISLYuU10HXPK6xNSXTORVBB/4bpoSK/Ik3lxq4of1zUEiNRaD6nMbc2D+a1TABV0nP2Ni6Ubr9Y29pzkQzCpwUCUqgtF024biu+nCgwVyUtTlv84F3lwa2TCFl5ZIPL/I2TrGD229kcttbsjz/gF89pp2GfnQdMhtbuCTVyCfuRmoLNWW7eEpwNhtS5XzQnk9TFNi0VqJJX9JuOvVy5drtpv0IJ+lYK6YKLBbpnWZlkGA4aDb/poCPZLihTYEdU2RxFr7u2GOHDsSqHzCwKb7XTCfDfz32jQDw3va60AH56in1zUCm0tlq8dOrS2MvgATos5Kt28cyX2lY0bar3zATSb+u9DEyry2fe513y0AkBfTwxdc9tefbVqHFV2/nxyvX2abRUAQkYp8fibw7lNATSXgaQSWfgF5w5SOblZYWQajWSxnFeBVFYVB36pw6pbe/8Ven+ik58yraP7b6jVpGZieFcI1VA0e/TyrYDT2iURERERERERERJ2XPoSnZzu3hIjIJztWHQK2zXTDbaoHlwNAaWMRJNQ/smfFNgWjqe92W2fWwistfihpJ8WNmj45tns7t4SIiIiIiHYWQhM3ZGqOn6jtdOHbyYb6mJSIGIxGzcYAmC+EuFsIq/tyAwD8R2Q7Gs4nt3QxeQAAIABJREFUpawB4H9ZdqqTOoiIiIiIdnZyzW+hLZjSDWLmq8Do8foyc1+wXZ1Hcx4rxuWsWVFj2QLr+YP3hLjiMVtV3XC0gS+uNHDFYQIXjxd4Y5rAWxcYcAVJIjhtrIElNxi46RiBs/YXuOYIgUXXGTh/X33akOjkwWgAgIMmBy0ytF4djPbjBuCOeaZlgJMqEKkjyDvO0c/cdyKaDrlP2Mt6O+l9+ETgjKshZjwC8cEmYPd9leUSpEVyVgspier1VUfhQPImHRH2Yddf99jb4F7+XqL3dSae/kb/o4C7XmLK0yZGzjTxr+clDrjPxIEPmMivkJbvT4UrHRs8mZAn9Id0+0IV1xZKfLvW3nP4aXtsveNgtCgI0/M62DZSkwQePEm/0VzzrkRlbWSCmipqJc5/xVndWx9ovW3JX7+FPLE/sMXGG/vFm5DzXrS1nsnV85TTf9sCfPqH/TZvKpUYfZeJQx40ceD9Jva6w8QvmwKX1wXqpSW17QPdK13g11sNHGeRvfnfb8McjGZj+xuiCRZbWwisKwpvey48RODlqQIfXGog+Glde4Zk6+t56uuWwWjOn0vL4A4iahtNhnVE95WG5Aj00mf2tpJXAVz8usSImSamvWJa3p3birtIfdduAKgzElFppEKGGixug67ZSXH6ZbaFEBxJu7gv3w6ctuJHyL/XtX9bIsSqB7DahbEKRouG0GZ/ZW7r+T9v8h0nBOPkOC2vsvlvq2C21MTmv7slCwzKtr8OANhmse9nFYzmbkDI3wFERERERERERETUsYpb3tixBYbwEFFHyYpTB6MBQHFDgcU8daiYgEBmrO9CnyRDf2eZWs3A9fake35WrwkREREREZEVQ6jHRknJYLRI0R1fJmnCuomIwWg7u60AngNwPoADAewBYBiAcQAuA/C5X3kB4CYA9wSp179XDWVIrP8yIdyXOpAQIlsIMdzJPwADw7FuIiIiIqJwkVICi9WBJUFl9YQQAmLaTH39331kuzptMFonPJqU9cEToMSNzzkKFZm4u8AjpxiYdYaB08YGD0VrMqa/wF0nGJg91cADJxk4YKAAYi1G1u8EwWjCRjDanvW/a+fNnCux/G/9QNqEKHiJZN564NeF2vniikd3/H34HtZhCsMOGAHj4nsgTroUIj4B4uDjtWVf3XqOcvrY/s1/6waTF1VH7+BkXcuiIRgtJVFg3mX2O8JL35AYOdOLmAu9OORBLxava352T34lMXd56/LLNgK9rjNx/XvW789HXY4FygqA954GACz/23aT8NsWX91Ox6dHQ/iALiRAt2386x8ChwxRzyuoAm6dG5nPwVXv2K83MRZ49ZhNyHnvTpiPzoB8/SGYz8+EvPxwYHvwXTDywUuBP3+wVVYXjAYAxz5pwmszieGwR0z83mK7+6sYuPC1wPCbck34Q7pF0IVdXRMEXjhb/3lckRfmYDQb298gTbDY2kKJQntvpy21sww8/S8DZ+5vfx/Ejj376OfNXd4yGM153fmVwcsQkT0dFSJ78hjnK3jxO4lZX9vvj+WP82HOuh7115yIJ99WD7hpkhfTA9isDlgOB12/z2A0Chfp9QL5m9TzPnutnVsTOVbHHZbBaIn6edFwbOKv3EabttoIitX18Sp5Fc0vbpXFr/YpCa0fHx8ksN1fjcVptdoG/RvsNYF6j6NVERERERERERERUZRgCA8RRZsUVzriRYJyXlGD/rflokZ1MFpaTAZiDd+Pv8kWg9DdHRyMZkoTJY2aPjmWfTIREREREYXG0MQNmWAwWiSY0kStyWA0Iqc64VB2smEpgCMB9JFSXiClfF5KuVhKuUpKmSulXCKlfEpKeRSAfQGs9Vv+BiGEfsR1YDBa8HSBQP6XZYerp74EwJ8O/30YpnUTEREREYXH+hVA3oaQFhWjx/v+GLGfvtDqnyGLt9qqz7szBaPdebZ1gX0mAINGtU9jVGLj9fOMTviC+xs0Cujez7LIUTXzke4t085/eYl6oG1iLJAU3/FpWfLjl/Uzx0+BSM/e8TAxTuCS8eo2d08BjtjDb+Kkqdqqp1R/gMGJgSOrT923uf6eqeplt5brm9zRtOFDUfJxOGakwKcz7DdmRZ7vOS1aCxz0gIk75vk62LeXhR7atCjpQACA/NS37W2tsF/X6u3XSdnMv9qhQhNw1Z50bXZp3g4hBGadYWi/u2Z9LfHr5vA/ry9W2qvz3QsNrDv8A5z+2Ahg9t3A+89APnMz8PK9YW9Tk90bVmNQwzrt/CV/Ba/jmYUm/ioOnP7zJt/23lK5W11HOILRACCzq/47ILcAAUFtbWEnGG1IjrrMumKgVPNaNOkSD2y5P3jf8uNNBhJiI/Pdpwt2A4A1hcDqfN+LEEowWkkNUN/Y8f0I0c7A6fdhuFwxMbS+5/K3JIqqgn/+zadvgrzmONS//R/sX3QLlidYH6Ntie0NbM4NqU126L5CLIPRGiLTFtpJeSy+UGt2jURRq14lxSoYLZRbd0VQg0fCXR+8XEl18DJO9pbyWpwOqLL41b6L3xih6RME4h2EzFu93rVB+j07rwsRERERERERERFFl0azAeWeEuU8hvAQUUcRQiArrrtyXrEm/AwAihvU87JbBD0mu7pql3drBq63l0pPGRql+gcZhlUSEREREVGoDKEJRpMMRouEOrMWUnN1oNUxKdGuLkqGklI4SSk/kVLOlzZG/EkpfwKwH4A1frPuE0K47K7SaRtDXIaIiIiIaNewaG7oyx40GYDvx3/xxHx9ucUf26rO41VPj7F7tBAl5IJ3gIUf6AuMHg/xfy9BiA4M13JZjEa1mtdJCCGAg46zLJMkt+Guopna+b//rZ6eKSphXjwe5q1nQP66sA2tbKN5s/XzsnoFTLp9ssC0gwRiW3ye9u4DfH2NgbiY1tuiSMsETp6urDpeNuDdxuswtr/vcZd44PqjBK44rLmOXunqZm3Nr4H571EwrzsB8tvoyg03NefRjY7PwNvhyOECr08TyAwh7n3mXAnjAi+Wa7ZrO3Ljh/j++PsvVFfV4cq37Z9uyd0ebOQ0GK0mCga02wmm8rdHT4GrjlAXMCXw5FfhOVVVWStx/XsmRt/pxdbAvMJWztxPoPhBEyf+egdyHj4D8Gq+dCNAADihSv+Zn7vc+vWQUuLSN/Rl/tzael55rbpcerLlahz5aLr6VHd5LVBsI3zCLjvb34BM9baWVwGUWlwnuVsmMHe6gV7pAvOv0J+6f/4sgX37R7Yz/GOmfv1N28e2EILRAKCgKrTliKi1UL4Pw6FvhsDHl4X282L3a0xU1wU2XEqJF74zceg1f2HUD6djt0GrkTysAr8l7Bm0zr/iBgKbciG3h0t5vBK3fGjCuMAL4wIvsq/yYt7voX/P615ny2C0EPtH2kV5LTaYuihL/moDq0+h1akYlyHQNUE9r0Kzj9lRdPu8/optjJtxcpyW3yI/r0qzyXRN8L2WLfXLEPjfJQb6bD9fEOz7w+r1ZjAaERERERERERHRzqeksVA7UDObITxE1IF04YzFDQXaZYob1fNa1hUr4hAjYpXlar1hvPgoBFahb1mx6qA4IiIiIiKiYIQmbsgEg9Eiodarv3gw2QhhYBrRLoLBaAQpZRmA09H6mvRhACZoFvHvcS3u1a3lv0zH3jqBiIiIiCiKyFCD0Q6aDNF70I6HYu9DgAF7qNfx3UfWbajzjXb0aM5juUI4mpT122Ajvzns5E9fQt5+pr7A6PEwHv8cIrODL9iK04z0BYC+Q9qvHREktgf3WZlW8aJ2XqlbPT2zagPw5/fA1+9BXj0J8uevQ21iSOQ2N2TeBqBMf2GNGLZPwLTEOIFnzzRQ9YSBtXcZKH7EwM+3uDC0u3o0srj0AW39I1a8ge8vLkXNkwYKHzZw7xSjVdBfz1R1neWyC7Zt3gR8/ynkzadAfv6Gdh3traPCPpw6fazvNb9vSvs3bF3cQDQiBiYEjphZ5GjZv4p9/3fGYDRviKF5txwrdgz69/fV6rZ/P5mmxJGPmXjwc4nftujLPXqqQO0sAy+fayD9sfOAl+9p87pDcWXZk9p5P220fj02lgJWX+lr/DZHbTBakuVqHNm3v37eevVNrEOi7Zta7Bv1SlOXqfcA64rUFRw9Alh3jwvjh/o25MP2ELjs0MCN+snTBc49MPKn9Yf3FDhgoHpe0/ZRF2LwT16Q0EAisifU78NwOHqkQOMzBmqeNFD+mIFlN9vvlw57xERpTeu+8N5PJc5/ReKbqv5YGb8HNsf2tV3furjtndWcpwAAJz9j4u6Pm+svqQEmP2Xi5SUmtjU4/77Xfd9ZBqMFCQgiaqXRYoOpj7LkrzZoy+mgNM0v0RW10XUfrjLNOQt/U2cHv2jMyeuVX9lcuHKbesEUzSmno0YIbLzPwN8PGCh91Lovr7DI6QsWjBYNx5FERERERERERETkjC6ER8BAt5jsdm4NEVGzLE04Y3FjnnaZ4gZ1n9ayLiGEdiC622LwenvQhb4lu7oiycXB80REREREFBqXcCmnS8lgtEhwm/pjSx7bEekxGI0AAFLKXwDM95t8lKZ4NAej/QfACIf/jg/TuomIiIiI2kwWbgbW/BrSsmLGw4ETDzxOXfiXbyBrA+9gJj94FuaJAyCP6AbzooPhKS5ULh7j4GhSbv0L5iUTII/MgJyyG+Tbj9tfOAzkczMt54vJ09qnIUGIxGRg+D8CZ3RNB/Y9rP0bFAkjxwHZvS2LuGDi3zXvOKo2w9Mi8aaxAXLOrFBa55jM3whz+kTIo7MgTx1mXdjiPYyPFRiYLZDRxTrFQrhcELM0oW+mCfnYlUiKF0iMC6ynlyYMCgDyYpov7pGv3m/ZhvakCx8SURaMBvguirruKAP3/7N9G9co4rAhrj++TJ6AH2t6OVp26/ZgIqfBaO4oGNAeamhecrzA7cerCxVUoc3hndfMkVi6MXi5yyYIJMQKyL/+BBa83aZ1tkWOtwiXlan7y9x86x+yVutvQgoAWNniOkMppUUwWvg+M1ldgQT1TVuRXxm21cC0EUTUUxOMBgB/bFVP36Nn4Gvx4EkCj54qMLY/MG4g8Po0gYsPab9+ZsIw9brm/OL7XxeMdt6BAifvo29nON8Pol2Z7vswlBDrULgMgaR4gdQkgX36CSy+3sCRw4Mvt2wjkHWVid7XefHRcoknvzLxfx+E/h28Jm4wAEDOvge5BRIfLleXmzpbIm2GiWMe96Koyv76dCVdAoiPUc/bFmJwJO2iPBYbTN2uEYwWbO8mTROm+9Hy6ApG0+3z+nPXIyAg0p+T47SWobNVdeoyKRa/5gsh0DPN159bqajVHzMFC0ZzMzCSiIiIiIiIiIio09GF8HSLzUSsoflxnoioHWTFaoLRNP2WV3pQ2qi+6ah/Xcmurspytd7A663bky6sUvdaEBERERER2SE0cUMmvO3ckl2DW3NsKWAgwdBcKElEDEajVj7zezxKU85/6FqWk5UIIbogMBitQlXWKSllkZRyhZN/AP4Kx7qJiIiIiMKicAvQo7/jxcQNz0Lk9A2crgtGa2wAfmydjSy/fh/y4cuAkjzfiNUVP8Lzv+eUi9sNRpMN9ZCXHQ78sQTweoGSPMinroP87DV7FYRA1tVC/rYIctVPkH/+AKxcar3AhH9GrC1OiQvvBBJanMgSAuLieyBido6LyURMDMSMRwCXJkFgu+x6TWqMRqa3tPWE7z5y2jRHZN56yK/fgzxlKLD8O9+2beXsmyDSHR06643cH+g9SD3vqzmQeeuVs3qm6qssbHkX102rIStL9YXbUajhVx3p2iMN3D65fRuYGzcUixMPcLxcTT1QXSe1IU86HT2g3eOV+HGDep6dIJjdu6vfnwYPULkt9HblVUg8tiB4esHovoBhCEgpIZ+7NfQV9h4Y2nL7Hw0xZ92Oh8dWf6IsVlBtoKJW/3xWF1g/1y9WSni8vjI19YBXs52lh/G3GyEEemj6uvzK8IVm6Gpq2Td1T9GHOOpCwbolB06LixGYMdHADze5sOh6F04fa8Box05waI5+3n8XmtoAjH8MAN6+0MBAzVdfXkV0hZgQdVbRtq+0/0CBT2e48NkMeweLeRXA8bNMzHirbX3CjpDfulp8t8ZjWbbRC3y2AjjuKfs7QFZhvYlx6nnbGABETlgFo9W3YQc1ylh90oOFX2dqboT44XLgnZ9MNHiiY9+izG2/7E+brOeHHIym2WRSEuzXp9Po1fdvwYLRKnaejD8iIiIiIiIiIqJdBkN4iChaZcWp+yG3Wa0cZF7aWKwd1J8V173V4yRNMJrbrHHYyvAqbmCfTERERERE4WcITTCadDjQiGyp9aqPLZNcydr3gogYjEatbfR7rBu1vdbvcT+H6/EvXyalLHdYBxERERHRTkmMGgfx9mqI2T9DnHcbMGTv4AslJkMce7Z63rB9gAz1D9/y569aP/5kdkCZRxOmKpeNcQVvFgDg9++A4sCQK/nFWzYrcEb+tgjyjBGQlx0GecE4yIsPsSwvXlsOYUTPobHY+xCIZxdDnHsrcMbVEE99CXHcuR3drLASBx8P8d/vgH9dAxx8vLJMmleTGqMREIwWQeasGyBP3R3y1jNsL2NMuy1s6xdCAAdN1s6Xp+4OKQNHUCfHAwmafL1SV2brCZvXtKWJYRNtYR923TLJwFdXGxiz/ezHbpnW5dtqddwQ5MYPCWnZreW+HEwnaupDWlVY/F0uMeZuE9V16vl2to2cFP28wqrQ2gUAby+z90KOGyQgK0shLzsMWPyx8xXtOxHi2lkQs3+BmPGwo0XFebdB3Pc+RE4fiAvuBAAMbdB/3nPVN1EFAPy2xXpd5bXAou1nEMstAiLSFWFgbaELRpv7W/jCMqwCcprEuARy1NdJamWE+bUIh8HZ+g/Vxa9LbNR8/TZ93+jejzxnX/NEpKHdV+rgw5sjhgusuav9GlHqyvD94fVg5Tp7X+bLNgJ/brX33aDbVzIEkKjZv97WGB0hTdRJeCwSpZYtaL92RJjVcUewYLR9+ukLnPasxNBbTPy4vuM/d2Vu+2145Xvrsk6O00rdwLYG3wK6sOdU/1uWhahQfcPKoMFopTUd//4QERERERERERGRM0UNecrpukAiIqL2km0RBqYKENMFPQKBwWLJLvUde1SBa+1JG1bpF+xGRERERETkhKGJGzLBYLRI0B1bJhsOB58Q7WKiZ/Q3RQP/S6V1l0iv8ns8yOF6dvN7vNLh8kREREREOzUhBMTAERDn3ATjhR8grnzMuvyLS/XzDAPY7yj1zM/fgPnsrTCfug5y4QfAD5+3mv1TwmjkxfZULuqyeTQpX7hDPWPpF/YqcEDW1ULefZ4yiE1FXPU4RL9hYW9HW4kBe0BMvRnGxfdAjBrX0c2JCDF0bxgX3Q3j7neAA44JmJ9uVjiqr6cn8EI86VXf4a8tzKdvAt561NlCh54U9nYITaDcDh+9ELiMEMhUX7ODkqYwie3kkk9CbVpYmZrz6NEejAYA44cKLL3ZBfNZF9bd48KzZ0au0bnxQ5Ebpw9Ge/RU/brzKgGnw9PdNfWQ7z8Nc8puMC+ZAPn9p8owvkiY8ZaJ3//Wz7cTBJNt8XtBW4LRVuivn2tlcu8CyEk9geXfOV6HuPE5GI98AjF5GkR8AjDlEvvLXvU4xDk3NYeBnn4VMPEU9PLkIVlzR9PVD94P89x/wHzoUsiX7oJcuxwA4DUlPvkj+Hv+4XJfmfJafZn0JNtPwRZdENf8lYCpSxByyG7f1DvdWb290qKvcxvWHYi1G4bbQkKs77n01DynfGdf80Sk4Y3ifaVB2QIvnN0+DSlxZezYn6mvsP9lvmCVve8Fq0BMfTCa7WYQAR7rDUY2Bkmc2gkE6y0mjbIusakUOOclEw2ejg3fstrv9ffmUmm5f+p013V9ie//Kk2IdEqCvXpmTrZ+re/6WN2wbUE20xL1IQcRERERERERERFFseJG9d3UrAKJiIjaQ2pMN8SKOOU8VYCYKiwNANJiMhBnxLealqQJRqv1dtyPHVJKFDeo++SsWAajERERERFR6AyhCUaTDEaLhFrN2B3dsSgR+TAYjVrK9Htcoin3p9/jUUIIJ8MY/Uf2+9dHREREREQtTT4f2G24et7x0yB6W2cViz6a+XW1wKv3A28/Dvl/pwbM/qzLEdo6Y+weTdY5GBXaVt9/ChRsslf28NMgTrwosu0he7r3C5iU6q10VMUE98LAidvCeyGKfOsx4I2HHS8njj0nrO0AAAz/h+Vs+eClkOVFAdPtBqPhtQcgF38cauvCRjcQPBrCPpyadpCBzfcbePpfApdPFLjhaP2TeOoMgc9mGHj8NIFnp1TjmfxL8WDh9cjxFCrL/xm/B9bFDVTOu/d4EzMmGuiWrF7X5jKpDXnSqflxEeSjV/hCKP9YAnndCZAz/x3xcDR3vcTc5dZl7GwbSfECXeLV84racGPPvPLgz39k3R845Eb/+wXYI+ashTjmrNbTDANi9s/BF558XsB3noiJgbjtFbhmPIwhDeuUi60uBLD2N+DD5yFfvBPy/P0hP38DawqBUnfw1X63NngwWprutgwhyknRbwQ/2dxFCMZu3zS0u/3OKsYAxjm99UQ7SE0S6J8RvJy/pqAgXVBdfmXHhpYQ7Sx0/ZErSnaWTh0j0D0lfPWNrPtDOb3eSEDt9p+o8gvtH3/a/d7X7eIYAkjQBaPt/DlWFE4ej/X8XxXHu52Q1be/CNJtHWhjPym3EPiig2/FVWZjH7klq/1Tp4dXudvHwlRrgtG6Jtr7bjhptHW5d3+SymM/d711gxmMRkRERERERERE1Ll4ZCPKGouV87LiGIxGRB1LCIEsTUijKkBMFZYGqEPFkg31XTfd3jZcWNZGVd4K1Ev1j0Dsk4mIiIiIqC2EJm7IBIPRIsGtCd1OZjAakSUGo1FL/iOr81SFpJT5AH5vMSkGwIEO1jPe7/GnDpYlIiIiItrliJgYiDvfBHr0bz3j6LMgZjwavIKsXiGtt8iVrZ23d1+bg+0tRnLK78N7KCAfvtx2WXHS9LCum0In0vwzuoF6oUkt0hhTpwgGqg1+IYrM2wDzzqkwD4r3/TtvP5hn7wNzxpEwbzwJcsWPvnLffgg563pHbUKXNIhrnoIYe7iz5WwQQkC89JNlGTm5D6Tfa6ALRiuOCXwP5H9ugHSamBVmut7D6KRns3qnC1x4iIHHTjVwz4kG5l1moGda8/zEWOCuEwQuOljgiOEClx1q4LzdCzCt4iVcWfYk7iyaqaz3p8QxqDXUyWcHpPwNAOjXTd2mNYX6UBUdt8cVOPGrOcDiec4qcmhtEeANskm6bG4bOZqQlsKq0MOa8oLkOSaatXgh/0IYlpEQCnsd7AtFy+mrnC0GjoC47RUgu4+2CnHqDPV0IYATL8JQqU5kWBM3uPUErxfyrqnY8luurab/shk48wUTU55Wv3Fd4oHYmPCG9+zbXz/vle/DE8ZlNxhtSI79OscOANKSoiPIyN8PNzrvdJuCgnSftWgIxthQInH2iybG3efFFW+byKtgWBt1PrpdtSjJRUNSvMDHl7dtxy3e8OLqmqdRt6or3t76b225pqDf/LJG23U3BMmiaqLr94UAkjWHLbUMRiMnPEE2mE2r26cdEdaWHGXDEPjmmuD9Sbj290JlFQissqVMP8/pcVpuoW+Bylr1gikJ9urZo6fAR9P1r3VNve840l+wfi8a9v+IiIiIiIiIiIjIvtLGIkjNAFhdGBERUXvSBYIVNQYOhVSFpenqSNIMRnebHfdjR3GDOtgNYJ9MRERERERtYwjF+CAApvS2c0t2DbWa0O0kTUg3Efl00qGkFG5CiAQAU/wmf2OxyP/8Hk+1uZ5haB3A5gYw386yRERERES7MtF3KIx3ciE+K4aYsw7iyyoYNz0HERsXfOHM0H74bhD6us85wG4wmj7FRt4wBfLr95w2S13Xdx8BlSX2Cu9/NMQe+4ZlvRQGqRkBk4Y0rLG9+OWlT0K5NQYJRpN5GyCn7gvMf6N54ppfgfV/Ar98A3z3EeRFB0O++gDkzafYaou47mmI13+HeHsVxMf5EMefb/t5OCUGjQTGHWtZRk6fCOltPhmd2UX9uS11BQajYfMaYLO98KNIcRL2IRvqtfVYzetIx4wU2HK/gY33Gsi900DF4wZuOsaA0fIJlhXt+HOful8cryN9w1IAwLAe6vc+t0A6HnBfY6gv/pKfvuqsIocuejV4UJ/dIJhszW8GhVUOGuRng8VXkEt68ELehRhd91vwio76N8S3dRDvroH4OB/Gk19oQ9GaiMNOhXhrJcQNzwbO3O8oiL5D9cu6XBjSU/1jVm78EOX0/Fn3W7anpdd/lKjQBESkJ9muxrYpo/UbwX++kVi6oe1hGdqAHL/Qu2Hd7ScT9c+IkhQjhfRkgSdOc9a+pmC0DE0gZ6m7jY0KUXWdRF2jxJ9bJfa6w8SrP0h8vx544kuJiQ+bqNAEiQQjpYTptDMlCgOvzaDGjrR3X4E/Zjr7KfKJgiuxcsxLWH2ngcqnYvHAa5cg9u0VyHxziXaZ0pgM1Is4/CEH2F5PfpBQ0ya6MCcBIFlzyFwTnbufFK081oF+csvadmpIZFkFo9nptg4eIrC3PgsYALBwTcd+J5c73Mcpdevb6vRprNk+nqeqTj0/NdF+XceOErh9sv5d+XVzYOPcQYLRShmMRkRERERERERE1KnoQngEBDJjHdwljIgoQrI1wWiqELSihsCwNEAdKpbsUl9Yphu83h5KGtXBbglGErq4NHctJCIiIiIissHQxA3pAvOpbdxe9YV0Sa7kdm4JUefCYDRqcj2AXi0eewF8bFH+9e1lmkwRQgy2uZ6W3pFSai7RJiIiIiIifyI5BSKnD0RcvP2FMnuGtK4GEaucPiTHN8DdFl2y0fZ58u3HQ2hZM1lbA/P+iyHaf04KAAAgAElEQVRvPMneAidPh7jzzTatk8IsNTCUa4yDAKi7imeqZ7iDBKPNmRU0PA0A5LO32GvIvhMhjjsXou9QiJ67QRiRP+Ui7pljXWDtcsjnbt3xUBdQU6wKRtu+fEfSDQRvGfYhP54N85QhkIenwbz4EMiNq5rnff2eb95hqTDPPwBy9c8RbrFzQgj0zRAYnCMQGxPYr8qnb9rx9/D6lUg0NQlTGmm/zAMADNVck7q6wPmA+1pDk2b17YeQQUIdQlVQKbF0Y/BydoNgcjTXg4USjFZUJXHUY15Ua85uuaQHCzdOxCnV9oJAxakzIISA6N4PIqWb7XaI2DiIY8+GuPMtYJ8JwG4jgNOuhLjr7aDLDhutDpFZFzsQHgSGpuXHdLfdLiuDssNSTStdEwQOtjhDedvctv9Ap+2bHrwY5qReMP97C6TXizH97dfZK73NzYqoSycIPH+W/aSl+Bjf/xnJmkDOdg7G+GG9xKiZXqRebiLpUhOjbjcDPrO5hcCHvzkPUvl5k8SEh0zEXWyiz3VevL2MPwJT+3ESItuRhvcUWHJpJbp7Ai/WzvEU7vh3QO0SvFJyCS6dOhxDzz8PQ3IE4mIEhGFA9ByA9Myu2udW4srA94n/gFsT4KqSV2HvM2+1T9olQT3PzWA0ciLYPvTOEoxmMU/Y7Lcm7m5dsKgato4bIqXcIuhMxSos1ipITiW30LeALhgtxUEwGgDcMkl/TmNrReC0YP1eSQ1DZImIiIiIiIiIiDqTYk0IT1pMBmINGzdyJSKKMFWoGQAUN7YOdvRKL0obi5RlVeFqyS71b866wevtwf85NcmK7Q5h94c2IiIiIiIiBUOorxMzGYwWEbWm+thSF9JNRD4xHd0ACi8hxJkA5kspCx0scz6A2/wmz5ZSbtItI6VcK4R4GcC52yfFAZgthJioCzoTQhwP4JwWkxoA3G63nUREREREFKLs3iEt1iDUFzEdNNjBD+kyyImwFT86aFGLaqUEtqyBvGQCUFkafAGXC+LWVyAOtRmgRu0nNSNgUrxswEHuRViUfJDlov0bNiJJblPP3PoXMHxswGRZVgjk/gK8+2RIzVXqM9hW+FC4CcMA7nsP8oZ/6gu9/hDkyZdBZHRHluY86ZZYdR8h7zgb4vDTwtDS0OhCKMTKHyHjioDyIsiHpjfP+PMHyMuPAN5c4QuFu/WM5nmrf4a88mjgtd8hMsIT6hQOsrTAtz3WB55KkUu/AFYt2/E4Bl7sVbcc3yftb7v+9F/mQtZUYnDRHwACl9taLjFcfY0Y4mOAek/g9BqrwJEt64ABu9tun119r7f3o4rtYLRUAVU0w+YyZ4P1pZQ4/TkTX+fqy/yxfjSGNKyzV+EJF0AMGuWoDf7E+BMhxp/oaJmh+48Avgx87g1GPDbG9sOgxvWtpheEKRhtTP/IXJg3fqjAt2vV7+XnK4CKWom0pNDXrQ0iMhuByhLgtQcghcCAC+7AHj2AleprE1vplRZyc9qFEALnHihw0GCJcfebKAlyrWdG1XrI3wvQbT0A7Bcwv6YeqG+UiI+N3MWZ7nqJ5X8DK/IkLnzV3md72Ubg7APsr6OyVuL4WSbytoeDbK0ATn9OIrurxIRhAmVuiV82AUO7A3268UJUCj9daI4rym6JJNf9jrHPXIa/1/5gXfCUy2Fc9l/tbJchkJ6kDhIqc3XDNuEs9aeg0l45XQ8ihEBynLpEDYPRyInGBuv5W2zuS0Y5q6Avu+M1htnYDf3wN4n9duuY790yZznWKLMIRnMaYL1m+5UBVZpTJCmaIEcrh+0OLFgVOH1FHrBgpcTI3kBOiu+1rg2yGZc7fG2IiIiIiIiIiIioYxU3qH/oVoUIERF1hCxNf1TjrUKttwZJ2wPOyhtL4IXiIjiow9WSDfVFlttMN0zphSECbzIZacUN6rBK3WtARERERERklwFNMFqw8aAUklpN6HaSJqSbiHwYjLbzOQ/Af4UQ7wJ4B8A3UkrlZdVCiDEAbgLgP1pyK4D/s7Gu27Yvm7798QEAFgghpkkpV7dYTzyACwA87Lf8w1bha0REREREFB4iIQly4Ejgrz8cLdcoYpXTY538rm818rWpiNcL4bJfqWyoh7xnGvDlO/YWOO0KiAknQeyxr+11UDtKy1JOvrH0gaDBaCdVvaedJ+88B3BXQZx4YfO095+GfPJawNMYSkuVxCX3AsefD5HUMXdnEOMmQY7YD/jTImjih8+BY8/GIPVLjTVxg+GFAZfijh6yJB8is2MuoPFqzqOLBW9BvvuMemZ5EbB0AeS3HwTOq6kEFs8DJk8LXyPbQL7zBOR/bgS86guvVPat+9l2MFq8WYdEWQd5zzRkbu4CKJarrpPwmOrQgJREoLg6cLpbJOlXuml12IPRtpZLeGz+pmI3CGag5rOQq76GTOunTbAMRcvwlGBgw3p9gRbE7a8DEyxCDiNoaI46KA4AcuOHBASj5YcrGK1fZAIrTh4jcMc8/f7HmS+Y+Oiy0C9S1NVstPzx79NXIafNxN59BVbmB98X6pXWOUKzBucI/HqLgRcWS6zOB95aFvjcBjWsQ99LR0EC6Ba/B7DbT8q6St1AzwgFwi1YKXHWiyYKqpwt994vEk+dEbxck2cXyR2haC3N+trE2iKBS9+QO77LLh4v8PipAjGuzvFeU+egDZGNks1M1tZAXncCsHxR8ML7ToSY/kDQYhld1MFoJa7AsOVgVPWoaAMxBZCsCRoKFhBE1Io3yPFp4WbI+m0Q8c7C/6KN1R6R3W5raHf9fmuTucsl7p1it1XhVW6zX2lSahE2qzudlhwPuBXhi2VuoKRaolITjJaa6PzLoWea+vWevURi9hLf9JuPFbhjsoA7SL+3LXynYYiIiIiIiIiIiKgdFDWqg9FUIUJERB0h26I/Km4sQD/XoO1/6+9omBkXeA2U1WD0WtONLq4UB60MD/bJREREREQUKYZgMFp7cmuC0ZINBqMRWWEw2s4pEcBZ2/+ZQoi1ADYCqATgBZABYE8AOYplywAcJaUMOhRUSvm3EGIKgM8BxG2fPA7ASiHEzwDWA0gFMBqA/5DTeQBucfa0iIiIiIgoZAdOchyM1iDilNPjnBxJmt7gZTwNgMv+AF85+27boWjio60QaZm266YOkNVTOTnFa51mMq52Ma4te9SyjHzkcmCf8RB9h0Ku+x3y0StCbmaAjB4Q76+HMGwmMUWQuOddyMl9tPPl3+sgAAzTDCKvNxKwKbYvdmvcGLjwX38A7RSMVt8o8f6vEj9t8g0CX6m5JqmLaT3aXL71KLByqXreZ69DdHAwmly5DPLV+4Dv5jledp9tv9gum25uT+tZNBdpCXsDAxRtgYGK8m3wnUpqrUu8Ohit1ggSjBZms74JHirVxLA51n9ItvqzsKkM2NYgkRhnr6IPfrVu26SaT5WBg60LnQtx3X8gOjDFJileoG83YHNZ4LzcuCE4Fv/P3n2HR1Htfxx/n9n0QhKSUIKA0ouI2EWxYBd7vfZesKBe61WvXq+/a0WvDXvvHbH3ih0vYgEJiNIJSSC975zfH5uQsufszm42Db+v5+Fhd+a0bJmd2Z3zmXdbLVvrsyTLRWjbTWPSTJCxeYobDlVcOdP8/Lz1Mywr1gzKju4xtwYRtXxNFa2CylL6Z2R4arOjAsI6woAsxTUHBB67q6ZoDry+gD/9gddEpn89z6w8aUO4SU5DsbWd4orwf/faMs2seYHwsb3HKHYcGv45K6/RnPx45KFoACNN35aHcN0b5hfDq3Ph1Tbbh/s+1Ww1CE7buZskVokNXDcQYOfXgQAsvw6Es7b6F2aZG3EdHVw3wjZcDXOWml+D3WD3FAB981neQtEAdcvrnj4Lc9IgvyB4ebEvmyRdE9H41lUGngtfmB0I26e9UpBqPmSmstb7/osQnoK7V/wOQzfv+LF0Ea+7wmPzIM4hZHDygtWQX6AZ0bfzP3Nt4V9piVBhDDOzbyts+5yj+wUCmk0WFkCZZVPYK4pcvf4edmX/85Zmh81U2EBICYwUQgghhBBCCCGEEKJnKayzhPAkSAiPEKJ7yIjrTbxKoF4H/whRWLeawUnDNtw26eXLIskJ/gEl1We/QG6lv7zTg9G01hTWrTKu6yPbZCGEEEIIIUQ7OZgvOO/iYT6oiIjWmirXMEkLSAlxLCqEkGC0vwIHGNn4L5yPgJO11iu8Nq61/lQpdSjwOM3hZwrYpvGfyXPAGVpr+UQUQgghhBCik6iDz0A/cWNEdazBaObvvMxcD1cIaKiHRG8zNPXK3+Gpmz2VVVc8KKFoPYDKyEYPGQtLfm21PE3bw6/+ud0qrnxiP+JpCNu+fv95OPkq9CnbtnusLanjL+kWoWgAKqsPfFiK3tMya7nxSh0jQgS+5CcMNwejLV8E2+/d/kGGUVGj2f8ul9mLw5cdVhem0NoQX2ss+SWygcWYfuVe9J1/DyS/RWF0nffgsSz/+g23M/0l1nLr15ZiCkazBX1UOylowBQzoH/52rg8WlOfcXngs9gHo40MvtgnEHhafi+EzQd4a2fWj/axKTTT1t0Tsr665TXUjvt566yDjepnCUZL2yJwGYUWinzt/2zNToXB2e1uxuqK/Ry+WOTnHctb/qlvNFdNiTIYzbJr47QNwSspYkCWt2C03B76O9aY/jDvz+35lC2pU4nsXfEBqbpqw/refsOLqlFx6IxLFhVo9vqvu+F1ed0bmluPUFy8d+jP3lf+FwhS62gFZTrigI8zntQcsZUmIyWy157W2hi81Z5AraB1xjo6dPiXx35DjTN4LJqwY/WwrFW9MOU3Rr5ukL+nf/0WPn7ZU1n1+A+oOG8/V2anmpcX+7Jb7ft44WooqYLsMBdZs4UTOQpSE83rTAFIQlg1hD+uZcXiHh+MFuoQyOtmKzNFcdhWihfnhD5GmPWj5tJ9On9jaPtc6ZNu3i6sNZ/jBNi3Pf0zID0Jyg0BaHOXaesY0pPsfdkM8Bje+/hXLpVhtnsSjCaEEEIIIYQQQgghRM/h1w0U1681rsuNlxAeIUT34CiHnPh+rK5bFrSusH618XZLuQnmE8hSfPYfkKv8FRGOsv0q3XKq3Srjutx4y0lwQgghhBBCCOGRwnxuvtt2boRotzpdS4M2ny+aGuJYVAghwWgbozuBlcBOwGAP5SuB94EZWuuPoulQa/22Umpz4DrgaCDLUvQbYLrW+pVo+hFCCCGEEEJET+UOQE85Bd56zHOdOhVvXJ4QyZGk9vBFWH342ZG6aBX6qZvh1fs9datOvQb2O8FTWdEN7LhfUDDaiNpFZPhLKPW1nombngSXjs73FIoGwLzZ8O5TsRppwA77wiFnx7bNdlKJSehBI2BZfvBKfyCXPC1J0T8DVpcGF1kZH5wEpYGHfurNOwWB+udPdthjtHly+TdLNNPfc6msg303V0zdVZEQFyj7eb7mwc81v6zSaA3D+8C5uzvsPqq5rae+0Z5C0QBG1Rn+xpaKzFdIBCC7c04G0n4/vPs0+qYzmxdm9YH15hNHvRpRu8hz2Qx/8xOd6Rqe9EbrqjAmEdiCPgBqVSJJ2jDz/Zv30FXlqJT2pzw9/11koWgAXrMKh+SAzzEHFyxc4y0YLb9AM9983hwATw6dxfgFP5tX5g5A/eNB1LZ7ehtwJxjRT/H+/ODHO3+Lv0H5la1eu4Vx7Q9G230kKNWxYRWX7O3wzi/m/ZA35mmumuK9rfoGzRNfa16ao1lTZi7jtN3nKS2mf8ZQT+3bgn66K718EfrmqTDvC1KBKbxrLJdAPen+MsoNV8stCnOu6H/e1kFhfVe8qjl5oiY7zf7aef676IInAUqrvZd966fo+sm60GVITmTBX7ZgFCFsujq7V69agj57F09l1dWPoSIIewq8/4PfFMW+3iSY9k3CKKoIH4xmC3NSCtIs+0vhAoKEaMXDdyIUruz4cXSwKLOhgzxwvKK6TvPWz/bPyMtf0Vy6T2z6i4RtPAN7w5Ki4OWLCuxt2R4vR8HIvjBnafC6H0NkhNu2V6Fss6l5m9vWK/8L35YEowkhhBBCCCGEEEII0XOsqy/ExW9cZwsSEkKIrtAnob8xGG1t3Wrj7VZ14/OMyxNVEj7i8BvOT630h7jqTQcprFtjXZebIGGVQgghhBBCiPZxlPmkY+1lPqiISKhjylRf++dgCbExk2C0jYzWeiYwE0AplQmMBQYCfYEUwAFKgPXAAuAnrbX5V4vI+l0LTFVKXUBzKFs/AsFrK4G5Wus/2tuPEEIIIYQQInrq0hnoJT/DgjmeytfHIhjNS5JDQ+jZkbq0GH3WJFgbYoZnC+rlxai+Az2VFd2DGrJ50FTbBOo5c/3D3JpzSavlU3dTpNaVeJia2+jPBej3n4vFMAN23A/nltdi114sDRxuDkZzmw/7B2RagtHi8vDjUK2SSdOVAFzc52buWnMUNJ5b8/o8l0dPVhy7naKmPhBSp5TirZ80B97T/KX3e79q/rcUnjhV8cF8zQF3u9S3+Obh55Uw80eXN89z2G9cINzmTY8BM70bisnxF3sqa5SZG33dCOgH/wnP3tZ6YTtD0QDSdCUDkytZXh0+RSnLLdlwu2VIWlvrdFrEwWjVKtkcjAbo8/dCPfJN2PGFsq5Sc+zDkScnOJasJK01Sil0Qz0qLp74OMWQ5FIWVWYElV1YoGl6QJrqmcz60T6+ZTc75D35pXnlkLGox3/o8FCwSI2ynLv821oH9cJv6L17A+CiKPZlG8v+39pruLbPtfjxhexLKfjH/h2f2rPbSPu67/6ENaWafhnenoeLX9bc83Ho16TT9qpIpUUM7Bc+TMLnQEayp2F0C3r1n+hjIwgx8q8zBqMVVzS/10ye/Dr4cfO78NqPmtN2NterrtN8GiY7M5RIgtFenxd9uospGEWIWErqwl/+dHkJ+ujRnsqqadNR+xwbUfu2ELNiX29rEOx2mwa2+8Z6leH7DBVOZNtfqpBgNBGJhvqwRXTRqhCfmj1DqE/OSHaNM1IUs87zUVKlueldzS3vmlu++2OX8yd3blKkKXgZYFR/xWf5hlDHSigq1+SkBz8Atq/TlIKR/RRzlgYXWLDK/ignmb/iC2n7zSKvY1NVF/r4SgghhBBCCCGEEEII0X0U1ttDeHLiJRhNCNF95Mabg8EKW4ShFdabg9FsQY9KKVJ9aZT5S4LWVfrDXAWwA9jGn6AS6eXL6uTRCCGEEEIIITY2DuZz7Ny2cyNEu1WFOKZMccJc5VmIv7guvm686Eha6xKt9Zda6+e11ndqrW/UWv9Haz1Da/2s1npuLELR2vRZp7X+RGv9uNb6Jq313VrrVyUUTQghhBBCiK6nfD7Uza/BIWfCkM1hy11Q/30H9jZPRq9TCcblCaHzTlqzzSJvqT50MBrvPOktFG2nKain50koWk80aIRx8Q2F13BT2nNsORC23RRuOUJx46EKKuwhT0EcB+Z94b38VrvB+EnBywePhOMuQV3/vPe2OpvlSh20uFLHgExzkX/nXk3i6AoyRxUyeNginsw4jgeyzggqd+rjmqRzXDIvcPGd5eKc6W8VitbkqW80PyzV3PZ+61C0DUPScNVrzfXyC0L/aU22qpnrraBNtYf0i3bSBcuDQ9G8ik+AjOzmfwlJrVara59k5KbhQ9EAsvzrN9yOw0+a5eoilZYv0FPMHwEAVDshUpzy56I9BlnabH9DdD+i+Fq8BXTBctx/HoM7KRG9S1Lg/93TcCcl4j54DSPWmIPL8n8v4YP5GudM/4bXuHOmn49/a/15ZgtG234z2CQrxHZq2PhuGQYwsq95TIXlUNSQAjtNAWC9Lwu/Mifu7Fn5Me+5FzJ5FIwbEFg2MKs56MJRMHkUfHW5w4RBHf8YKKX44Wr7199eAxl/W62Z8Un4skHBaCXFbD0Y0kKEDAJkp4JjS/XrhvRD/4qofLZ/nXF5qDAiN0Sw7ofz7fU+XAB1wRfs9cxrMFp9g+aDEOMQoqvtNKzjtyn6py9xz5qEu0cG7rGbo+d8hF6/Fr1/X0/11RUPwBHnRdxvji0YLS6HSpViXDeqvyLZEghU5OGC3rZDWqXs2/hKCUYTkfCHD0ajyDzhoScJ9fVQNLvHmSmKE3ewV7QFpnUkWzDaGPOcHAB+s8wvtI3eUTDYnFPM74X2fqIJzVRKcfLE2HymaA217dhPE0IIIYQQQgghhBBCdJ6WgUItZcT1JtFJMq4TQoiukJtgCUZrDBNztZ8iS9ijLVQNIMVn/mG6yu2CYDTLNjk3oX+3PAdNCCGEEEII0bM4lnlorpZgtFirDHFMaTsOFUIEdOF144UQQgghhBBCdDaVlYu6+O7WC7feHV1fC5+80mpxvSUYLT6iYDQPX4Q1hJ4ErH8MH2qlHv4aNXIrr6MS3Y0lGE0BlxRO57Lbj2+1XFdGEIy2zmPiVlw86q3VqJR07213Nz7Lm9PfnEyWl6WwT7EOWBk/gFPzHmr3cK6Z5fJ+iOCYH5fDkkLNJlnwZ7G3NveveLd9g6oIvpJjzH0xK6pq6pJ7UAcHh9G1NarI5cMF4Sf5Z7W5amWmW0qFz/vrOzXB/lqpUWGSnr54HQ4/x3NfLX22UIec0B9KU7aUdl30dSfCz1+ZCz51MyP63MBb7B+06t25NTz5c/Bn1563u8y/zmFUf0VBmebrJeamD96ycRC2YLS0jHB/RpcYFeKizmc86TJz0kHoL9+iyGdJYQByGwrZZvET7P7QjG5z4t2EQYpR/cyBE2/+pDndkIPZ1hNfa085r07b90tpEQlxipsPV5z7rL0BW8hPd6TrauGD5yKq09tv3sCHCkYrCRFQlmQJNwKYOdf+OPscePN8h33GKt77VbPfncHv87Ia0FqHff2uKIFqDxk2QnSF3UfClHEd24deV4A+d3LzguWL0BcFf6baqOfnowYMjarvbEs+bLGvN1WOORgtJQGy02DF+uB1RRWawFGHXahwolRLkGyFBKOJSIQLiwcoXNnx4+hgoXanot1zHN0fBvWGZYYc1pUlUFKlyUzpvP1SW7ZrXoaiV5KmrCZ43dJ1mp0Nj4AtZE0pe+D52hBhj6H2oUIZGeI4IVIzPtFcvHf3OE4QQgghhBBCCCGEEELYNQUKtdUnRIiQEEJ0Bdt2qdxfSrW/imq3kgZtvnKLLVQNINVyjl2l5cKkHcm2Tc6Nj+GPOEIIIYQQQoi/LAfzPDS37UXjRbtVWY4pk5wUfCqSybpC/PVIMJoQQgghhBBC/MUppeBfT6PbBKPVYZ41mRDJkaTb/mA0luWHXr/VbhKK1sOplHT7JOk/F6CrylsFlulij2FnkdjtsJ4digZguVJHy4BC2wTqjvDOL+HLvPGTZt+xyjrpu6Vkt4ojy19t36BsYVUxomuq0HdeHFmlbfdAHX8ZaqvdPBUf2ddbs5ltgtEy/KWsiN/E87BSQmSfVavkkHX1z1+jogxGu+W96H9AqWrKlJjzkT0UrdHIukXG5Wvj7A/wjE81dx+j+GiBPSjrkHDBaOmd+CaMQF4mpCWag1xenwcNxx2ML+1yCv051jZy/UWgG+DzWbDrIR042sgcOF7x25rgJ+yD+VBdp0lOCB3O8OIcD6logNMmDFaXFKGAqbs5fP27y9PfmtvJ7knBaI/+O+I6OZZgtKI/VgHmbdIC8zmdACRaQj1WlWge/8r+XM25ymH8wMBznWHZhPndwHsgPcxFzos6/wLAoofyOY3/VIvbjf8cZV8XapljWZeaqNhlBBy3vQq7XWsvffCg6CrudhjqojtQvT3uzBhkp5mDW4t82VQ65tS01MRACKU5GC18n6EOaVMTzeOplGA0EYlw34kArFziKbyzOwsVNBvtn6WU4sDxihmfmBv/aAEcvnV0bUfDdlzrc2Bgb/h1VfC6lYZtU+i2FAMywweetxVtMFpeDHOd7/9Mc/HesWtPCCGEEEIIIYQQQgjRMdbWWUJ4QoQICSFEVwi1XSqsX021337VvlDBYrZgtCp/558wUlhnuBoksk0WQgghhBBCxIZjmYfman8nj2TjV2k5pkz19aAJJUJ0EQlGE0IIIYQQQgiBchz05CPh45c2LKtTCcayCZGE0GsPATf1ddZVurwElpvDa5qoY/8ewYBEd6X+/Sz6mmON6/R/L0Jd9XDzgu/ej23nQ8aizv5PbNvsCo7lzek2fyHdmcFoXlz0gmbw1PCz4BPcWu5ZcyH9G8wn+nhWWYp2XZRjCZFrB712BfrYzb1XcBzUuTejjpoWUT+j+nmbBJ/ltp5h39u/LqJ+UkMFozmhg9Goju4ksPIazUe/RVUVgN//KMW971Z49rawZYdbgtFCmb0o8LibAg0AhveBUf2bgtFKjGVUWgyTBWJIKcUWm8BXv5vXf1mQya6X3UfRf18xrk9xK0nR1QDoq4+GT6tQvu5x1ZoDt1Dc+l7we6a6Ht6fDwdvGZt+VNv35ao/Nty86XBlDUYbmtszAk50VQU8Mz3ietmWbU/x3B/RFenG98S5z9r3H5MtoR6HzLDXeWVqcygaBAKSbP4sgnFhMiSLOv8CwB1GqfDBXEFBXBEEeTnGdap10FcE4V/hlrWqp+x9GscZRUhZqMfHcXrGeztSes7HUdVT/3kRtcvB7e7f9v6tclIp9vU2rktJsNcrtp8Hv4Ftr8txAqGiJtX14Hc1vo30dSBizEswWsEy+HMBbDam48fTBdrzTrn5MHsw2pEPuLgPdt4+qWvZYPicwLG46ThilSVPOVTI2iZZkY8t2mC0AVmRh7DZ/F4Yk2aEEEIIIYQQQgghhBAdrLDeEowWLyE8QojuJTMumzgVT4MO/r2tsG41Va75B+E0XwbJPvOFtwBSHPMPzJX+zj9hRLbJQgghhBBCiI6ksASj4WE+qIiILWzbdgwqhGgmwWhCCCGEEEIIIQLaBJjUK/OsyYRIjiS1h8mT//sURgSnkujSYvQBeaHrjtwHVC0AACAASURBVNwKttkzggGJbmvH/ezr/vfJhpu6sgyW/Nr+/jJzUSdfCZsMhS13QSWGCXrqCWxhX27zF9J5GbGZ0BxLh91n/8L8v2suJtMtZVLVbDatX9b+zlw3EFjVyxycES09/3v0xVOgtjp0wUPPQg0aAcnpMG7HwO0IjbJfrLKVTH/rGfZ5DeaTpGxSzNmYAFSrpNCVi6MLsHv/V6hriKoqAP3euAWKb/dUdmRt5MFo81aA1pqFa8zvo202bRHpUGFJOEjrZumELRy7veKr381/26wfNbsdfRiFVbvCrOD1uQ1Fre7rG05H/fOxjhhmxHYcCtmp5vCbQ+91qbvPIc5nj+NY5yE0B0C1/fFv2cINN/MyFUdto3hxTvDje8x2PSQ053PDE++BLZSx2NcbPpsJU05utdx1NT+tsLdneoXW1GvmWeokxcPebTJkBveGeB/UGy5k9dsaD8FoFZF9lh6yZWD7kJkSLvhLeQrlsod/RR5SplQPef2JbkHX1qAvCrHPbrPN5JiEokFge26zIt785k358QNy+u+FaQtS5CHL1RZ0pAgdJFtVB+lhdpmEALwFowH8+HmPDkbz8vVQNFISFZvnwS+W8OL7P3M5e9fYB2ObhAozy8s0B4ytWm9+YKxtKRgQYTCaUoF9n2jkdc9cZyGEEEIIIYQQQgghRAdxtZ+iugLjutwECeERQnQvjnLIje/H6rrlQevW1q+m2m8+6adPmFCxVJ8lGM2N7mKh0aryV1DhLzOuk22yEEIIIYQQIhYcZQlG0xKMFmtVlmPKFMsxqBCimQSjCSGEEEIIIYQIcFrPkqxT5lSctsFoWmv46i30G49CYgpqjyObJ7674b8I0zMuR/3twsDtL99Ev/M0VJXD9x+Grjh6W9TVj6B8Uc7uFN2KSkpBJyRBXU3wyrUr0HW1qIREWL82Nv2deDnq8HNi0la34VjeCy3ehwN6+YGe8Z7Zq+IDzl9/X+wb/u4D2PPodjej/X54ZQb663dgzsdhy6vrnkFNPqLd/eZlQloiVNSGLpflL2l1v3+EwWiJcYEJ/KYJ+dVOmCDBZflorSMO3Hnjp/BpCQOzYPl687p9Kj7w3FdffwGD65ayNGGw5zoAa8thgSX3bWRjaJ3WGsotg0ztvskCZ++iOO9Z83PwxjzNf4+GIrIwBTrk+lsHo/H+s+jJh6N2OqADRmqmi1ah774UPn45sGDPo1HTbsOXlcuULRRPfm3+2xKmukwZB3uPVfRKgplzNWvLYevBiiv2VZSGyTts4rT98W/FYrTfv2E/5Z5jFBU1mrd/CazulQQ3HqbYa0z3DqbS5evRj/0fvHRPVPVtwWilvgz07DdRbYLRTAF2LVUatn2LCswhZwBbD4LUxNaPcXycYmhuIAStrYUFmkDckV24Mbb0zOmKY7brnDAWITrczPujqqaueTJmQ8gJ8dv/mjhzemzKnLfpvf/WQHCSULGHoENbmJNSgX0ym8paCUYT3ug1S72VW74ozCdU9xbq3dbenM7thyh+WWXu4ZxnNKfupEmI6/hHzxak6KjAcZzJKkuesm3b43MgNw0ykvG8n5oUF30YaqQhbEIIIYQQQgghhBBCiJ5tfUMRfsxXtMuN93glPyGE6ES5Cf2NwWiFdaupds0neIQLFUvxpRuXV/nLIx9gOxTV2y9OKttkIYQQQgghRCw4mM9z120vGi/ardJyTGkL5xZCNJNgNCGEEEIIIYQQAW1S/utUvLFYgq/NZMrXHkTfPm3DXf3xSzBtOurI88G1pFS0odevha/fRd94hrexjtkOdf/nUU/sFN3UUdPg6VvM6169D/52YSD0Jhb2PjY27XQnjiV4pWUwWloDPSUYbUTd4g5pV193IozfGZU7oH3t/OdU+OB5T2XVebfEJBQNAhPaR/WDOWHyEzLd1sFcAxpWRdaP1iTHmwPYalSYYLTqCiheDTl5EfX51e/m2f+nT1LMOEaxuhQG9oZZP8Jh97X+oWVi1VeMq/3Fc18KOGf9/Vze98aIxvjst5oFloy5UU3nm83/HirNV+sk3ZKI0A04juKxkxWnPB78PCwpgqJyTaHlwqfZ/uKgZfqKw+Gu91ETdo31UFv3U18HxavRR45oveLDF9DfvAcvLODALbKswWgAb/0Mb/3cev03SzQPfBY+MKeJ0/bHv/o6WPMnDBgKQE664s1pPoorNAVlgSA9n9O992N0VQX6lO2gYFlkFTNyAvuA5evJ9JvTPkp8mYH3ShsrSwyFW6iqC1620HzBcgBuPdL82TiqnzkYbUlh6P4BijxeAHhwNhw6oXs/x0JEQr/9RGQV0jJQry1DJcYuHax3auR1Ut1Kstf8BAR/Hnl5P4cKOkoNEYwWLsRWCGj8LmTWQ94KL1/UsYPpYLagL2h/MNq5uysemW3v4LN82GtM+/rwwhQqDYEwM1sw2hpLMJqtLccJ7LfvM1bx4hxv+6pJ5q/3PElPiu2+TDQB2kIIIYQQQgghhBBC/FXNLnmfd4tf6tQ+G7Q5FA3CBwkJIURXsAWE/VA+2zqRP1yoWKpjnpRe6fd4wkgI+VW/8PH611lZuxTd9iKMbdRrw0kyQJyKJzMuu91jEUIIIYQQQghHmc+1z6/6hat/9zjHs5PFqXiGJI9k3+yj6NNNv6/6ueJ7Pi95hzV1K9CNJ09W+M1zjFIcczi3EKKZBKMJIYQQQgghhAjwtQ5LqlMJxmLxLYrpyjL0/VcFldHP3AaHToUwP9xvUFKMfupmz0NVh02ViZQbIXXK1WhLMJqecTkcdDp89Xb7+7nkHlTGRnhiiGMJPGsRUNgroYE0fx0VlqsaRiojGQb1hhN2VIzoozjk3thdFWTLmnkxayvIu8/ACZdFVVUvW4g+ZzKUFnmuo46+IKq+bCYMUsxZGnoSfE5D66CqvAZLmpeFem46yVlnUUHwa6Xa8RBw8sf8iILRyms0i9ea1+0zRhEfpxjU+LY9ZALMPMfh9g9cVq6HfdT3XD/7cBy8h1gx+UgunvscN/ovo8SX5bnaxS/Z+9h6kEJrjT57krmAUjB0c+9j7AJ7jVFgeRz7XOySZgmAyW0wp0npaXvDY9+jhm0RoxG2aPvPBejp58Ev34DfcnJ2RQnMepi9j4wuVLMhgk1aUDAawNKFG4LRmmSnKbJ7ykV93nky8lA0QB0+FXY9FP3QtWQsNe9Pljq9YN0adEUpKi1jw/JVYYLRKmuDX5+/rbG/L3cYYt5fzMs0v9bXVYbfjoQKUtosB+oaYJcRiulHKJLiZX9V9Hx6+SL0pQfByiXeKw0Zi7rtzZiGogHE+RSZKVBS5b1OiltFzrLvIC66YDRbmJNSkGrexAFQKcFowov3n/Nedll+x42jE4QMRmtn21sOVEwZFwi7Nfnbgy7Fd8QuIFy/+Rj6iRuhohRGb4O6/D5U30H4QwQp9k4xryutNi+3teVrPA9tt5Hw4hxv421PMFqs1fshQc5QEUIIIYQQQgghhBDCkxq3inWW3+I7Wy9fJklOmIvoCSFEF8hNMJ+fZgsVC9QJPXE+xXJuZVU7g9Hyq37h7uX/wo89hNKL3Ph+1vACIYQQQgghhIiEwnxsUa/rus33UiZr61cxv/JHLht8C73jc7t6OK3MLf+Kh1fdivY4vynV11MmlwjRdeS0UyGEEEIIIYQQAU7rL7NswWitJjB+PguqyoMLFa+GFYtCz3xtqbQIViz2VnboONjzaG9lRY+iEhLRA4fD8kXG9fpvo0M3cOhZMPOB0GV2Owx1cPe8akW72U52cVuE9fgbGFy/gl99YyNq+tSSx3lw9TmoM6+H3AEwYAgMH49Kaj27+6O/O+xxe/vD0ZR22b/i3Xa3Y6Mf/CcMGQP9N4NNR6Mc+4lCuqEeFs6FkkIoKULfdKb3jtIyUfd/FoMRt3bgeMVDX4Tevmb717W6n1e/KqI+nJpKkmvWQ7whGE2FP9lVf/s+ats9Pff380r7ugmDgpcdNKqag+J+gvVr0Vce6bkffHGoa59C7X4YWmt+nrwpQ4cuoM6xJH55NLo/DO2j0M9Mtxfadk9UVp929dPR+mdAryQoqzGvr7CEvOT47UGB+pRt4e0CVHpmxOPRtdUw/3soWA6JyZDQ/DzpKw7z1sZ7T5N+wmVM3U1x36cRhOdFyDGFwS7Lh4n7d1if7aHr62DF74EQ283GBAXO6toa9It3Rd7wgCFw4GmonP6oG1+m9yINtwY/NtVOCrUqAf/vi5mXuhUj+kJuumJlSejnyPQazF9jLnvweHs7tnC6dZUhuweguMI8xtMnKR48QU48FRsP3dAAC/9nD/y06TMQ9fgPHRZk3Sc9wmA0XUV2wS8wIHhdsYfz1l3LMa2jIC1E7lul/Tx7ITbQL9zpvfCqP9CVZajUXh03oA5QVav5/k/48nf7Z3wsNhfPneHQa5r5WHR9Ffxzlstl+yjSk9rXmf7qbfTNZzcv+P5D9Pl7oZ+db/0KzOdARrI5lLWsBrTWQdtMv+WwuikYbZMse6BxW+0NRtthCHwTQTZmKDX1EowmhBBCCCGEEEIIIURPFC5ESAghukqf+Mi3T7lh6tgmpVe5FbjajTqU7OP1r7c7FA1kmyyEEEIIIYSIHZ+K3QVHO1uZfz0/lM9mr96HdvVQWvlg3WueQ9HAHs4thGgmp50KIYQQQgghhAhwWn+ZVa/MMycTWhTTX75pb69oFVSWeepaf/Oep3IA6qGvUL6e+8WbCGPH/azBaKxfG7Kq2vlAdIhgNHXpvTDl5HYMrpvz2YLR/M23/Q0cWPEWvyaZg9GG5MABNR/wx+pA8kyGv5Q9Kz/muLLngMZAsZb++zZqmz023J00HIbmwu+GC4OM7g/PnO6w1fXhg9P2q3iPvv7Qz3d76SsOD9wYtgXc9Cqq78DgMvO/R//jCFhnSd0JJSMb9fDXqH6D2znSYHuMgtREqLSEVAFk+4tb3c9rWB1RHw4uyW61cV2NCpEC0uS7DyLq7+cV5i/+05Ng0+zWy/Tns9D/dwpUe0gwarLrodBnE9TkI1Cb7wCAUor+Bx/G6bMf497eZ4dpILSDxgeCDPQ7T1rL9IRQRqUUo/rBd39GVi83RDAaAG8+Csf8PaI29eez0FcdFdlATJYuxL19GndP+y/3fdr+5mwcgrdtetlCOiYWqH30H/PR/zoBlvwSWDB+Elz3NCq7X2B9/o/o07b31JZ65Fv49Rv0gh9Qg0fCvsdvaAcgI0SO4oOZp3HFfeOobQzwnLaHIjNM7qJpu/fbGvP2Y2R/+6PfO9W8vNhTMJp5eY5crElsRPTqPwPb4EXzIq+83/EdFooGsO2mivwC7ycMpLqVxGnzyeWl1eZAopZsQUcKSIwLBKS5hjJLCjUTh3bHTwHRrRSGSAc2WTQPtowwrLALvTjH5aRHNbVh5nfEYpuRlqS47zjF1GfMb9r/vKW56yPNoyc5HL519P3ph64NXrj6T9yv3gbMgbiOgl6WfZx6P9Q2BIeX+U0bFsDXOPQBEWQOJ7czGO34HRTfLIlNwHBNvf2xEEIIIYQQQgghhBBCdF99EvK6eghCCGEU6fZJoegTJlgs1TIpXaOpcatIsQSnhbOkemFU9drqEy/bZCGEEEIIIURs2I5/eoqlNZb5h12kQdeztGZxRHUy43p30GiE2HhEF1EvhBBCCCGEEGLj0yJszI+DX5mztBMaF+v6OpjzsbU5/c7T3vt+5lZPxdTLi1DxCd7bFT2OOukf0VfeZg84zBBulJyKuvFl1EGnbdyherYrEeoWYT0N9VxcfAc7VX0ZVGxYVh3vXejw339uxcwVRzFzxVE8vvoMji97zhrsoy/aH/e+K9HFgeCwOJ/iob2WkhVX06rccfGf8dOf2zF+zgP8cOJi+idYUmUa3V5wacj16tIZOF/UwuY7hiznyeKf0LeeE7RYNzSgrz46ulA0QL22rENC0QCSExT7mrPtAOiVBPH7HdtqWd4++0TUh4NLsq4xrqt2PASjrf4TbUsSMVi2zrx88zxwnOZXoF5fiP7X8ZGFoo2biPN/z+NMm74hFK2JOv4yblp7FdtXfbthWZyu5+QSe8CZyUHlb6ILlsNSywlscfEwcUpEbXaVcZtEHhSRO2mXkOv1vf9A+/0hy7QqX7wmNqFoTWY+AMeO5tODf45dm22YgtFYlt9h/UVD19ag330afeKE5lA0gHlfoA8ZjDvjCvQz0z2HoqEUDB6FOvRsnCsfQh13SatQNCBk0NlF/W6j1m3+XL7rI82/3wy93WgbjKa1ZmGBuezIvvZ2sm3BaKE/ngAokmA08Regp58XXSjaFjuhIgzCjNQBW0RWPsWtJsMtNa5rcKG6LnR921bJcQJhTqmJ5vUnPhqbECEhWsmf29Uj8GxpseaYh8KHosXS0dsq4kKc/VBeA0c+4PLdH9G9P92Vf/DpqgxuyL6MF9MPp0o17+j4f7M/Nz4ncIxmU2rIo/Zb8sSb8tDzIghGaxu6FqlTJsYu5LGmPmZNCSGEEEIIIYQQQgghOtHW6Tt39RCEEMKod3wumyWN9Fx+dOqEsMFmqSHWV/jLPffVUrW/kgq/+XfrSG3dS7bJQgghhBBCiNgYkzqhq4fQLjWuec5TVymuX4s2zSux8BHH2NStOnBEQmwczLPchRBCCCGEEEL89TjNwRT1yj5rsikYjSW/QGWZvb33n43RwALUy4tRfQfGtE3R/aheveHvd6JvvyDyuo4DF94BB5wKC75Hr1mGGrU1jN4GlTugA0bbzdhC31qGEfkbyHJL+GDp/nydsj0/Jo7HVQ4j6hax6z/uoFefzYA+6BMuh6du9tbvs7ehn70NZnwCq/5gl5vO5Fey+Dh1N4p92WxV8z92qP4OBejbL2A88JOTyQEDZ/JtSnD4zur8QeT6i+z9JSbD7ocDoI79O/rKI72NM5TvPkCXFKEyc5qXzfsCCldG1Zx65FtUXMd+7XbQeMUr/zNP6C+rAefKh9CHnAmr/oBNhpI6amuyLvSzvspb+wpNkmuYoQ9UtwgAICER6mqDC9VUQVU5pPby1N9qy3lfm2S1mYT/2UyoD5Ng0oY63h60p3L6k3rOv/hixmQ+St2dYl82E2p+ZGD9Cp7IOB5tCxxsoV/DGrZ9+Cj0wyECFg46vcNfE7Fy8kTFI7MjC4vos8c+kHgBvHCntYw+cyd4YLanx0Ef0gGhgquXsvNN23PsxK94dv2WMW9emaJzulEwmi5ahb74AFjyq73Q8/+1BgAZ9RuMSgwdlJiZEkmD4ZW32dwUlAVCTkxG9bOHeGSnKkxxR+sqA2FrStnr2oLRbGFrQvQ0etUS+O4DT2XVtU9Bckpgf2PT0TBhtw7/vNtqkPn9a5OqK/G59nDOkmpIsYSbAbiW8xOathK2bRBAVa0mJTF2gUJi46JtL65QdRbOtYZWdzezftREkJMcE5kpiolD4fMwF4Hc4UaX2Zc7TBwa2aN50aMl3D34vQ33t67+H28vP4hs/zr8P3wGXGWs5yjICBEWW1YNfdscNoULRstNg3gf1HvIHm5vMFpyguKlsxyOfCDy12xbNZ0YlCeEEEIIIYQQQgghhIiNPbMOYVTK+K4ehhBCWB3X71zuXXE96xoKQ5brE5/H0X3OCNteipNuXVflLwf6RzpECuujuzhrWwfmHMegxKExaUsIIYQQQggh+iYM4Ni+U3mu4H50ZDMJuoVay5ynrrK2brXnsj7iODXv4rDh3UIICUYTQgghhBBCCNGkRfhLnUqwFov79CXc+56Gb96zlom5CbtKKNpfySFnQRTBaEAgyGT4eBg+vsdMGI8ZW4CTbjF52R+YhZxAPbtWzWbXqtnN1VOag9XUnkejvQajNXVz7u4bbvehkL+VvWQtm+WW8OnSvbi0703cl3UmfhXH+JqfeGD1OaFD0QA1/Q1Uelbgzs4HRjRGK61h7me482ZDwTLYdAz8uSDydlLSURf+FzUi9qFLbU3ZInwoiBqzLYzZdsP9AZl4DkbL9q8jRZsLVzot0n/6bAIrfjc3UrQqgmA089/SP7P5tq6qQN92vqf2WlIT9w9d4KhpODMuZ6/Kj1stHl63mPzEEWHbP6D8bZxwz8V5t4Rtp7vYaZjiwRMU057X1NR7q5ObDmrqjejli+Crt82F8ufCO0+iJ+6PnnEFfPBcYPkBp6LO/j9URjYA+pt3Y/BX2N3zzT7UTZnPy4uzY9qui2EbvH4t7jXHok64HDW8a08U1y/eHToULRpjtgtbJC0xEAbixuh30rVlrYPLVpbYyw7Nta/Ltvx+2OAGQo56WcJLtNbWYLSctL/cnofYCGmt0Vf/zXuFEVuiBoX/rIylTbMDwUC20KC2UtwqkrU9vWx1Kbw4x+Xj3zR9eymu3F+xWU7z+9m2+XI8vOWLKmBQiNA18Re3fm3kdfLnxn4cHWTpuq7pd+Y5DtkXhd9A7HxzoMxuI+De4xxG9Q/9pp67THP38i1aLfsheSvuzTqLfxbdiFtTDZb3u8+x71sAlBrOzQoXjOY4ioFZsCT04TPQ/mA0gBT714QR8Xp8IYQQQgghhBBCCCGEgDGpE0j12cN5OlqcimezpBHkJPTrsjEIIYQXeYmDuGaze/ijJp919ebf4HLj+zE4aTjxTvgfPZKcZBwcXIJ/sKl0LSeNhFFomRwfp+I4pu/UsPUTVCKbJY+kd3yIk2GEEEIIIYQQIgo7Z+7D+LQdWFz9KzXdLGisyYLKH5lT/kXQ8u423sJ687Ffui+DQ3JP3HA/xUljWMqYLv3uT4ieRILRhBBCCCGEEEIE+JpDkeqVfdZk/LM3QW2MgzXCUGf+u1P7E11LKYXedk/4/kPvlTbfoeMG1FM4PvNy1998uzEYzcjX/DWRGjIWvesh8NlrMRpcsHgauKPgEv5VeD1VTgp9GwrwGU4m2qDfYNQLv6Gc5vAhpRQ8+wv62M3bPR59zbHNd2a/GVFd9VI+VFXAoBGouBjMOvegd6qiby8oKAteN2WcuU5eJvyyylv7I2sXkuZWGtdVOSnNd/oMtAejFa+BwaM89bfKEm6UlxH4X9fXoc+c6KmtltRjc8KXcRy45B709PNaLT93/f1c0O/2sPUPrAjzehk0AhUfoySBTnL6JIeTJ2q2u8Hlx+Xhy+ekgfL54KZX0YcMhnUFxnL6udvhtvPA32K79Oaj6C9mwcuLUUkp6LefjG7QvfvCuInw2cyQxXq55Tz/xkDWv1XFH0Uax23g1Gfi+WlldN02SbH9qPbJK+hv3oM730ON3qZ9nURB19cFbnz0Ymwb9sWhDj8nbDHHUWQkew9lDKe6HsqqIaNxM2TbdsT7Aq9Lm96p9nWrS+3hJeU1gfA0k1D9CdFT6If/BYvmea+Qt1mHjcUmPk6xWQ4s9pgplepW0cs17DA12uM2P2U1TYFImhe+13zzD4cxeYFltmBH5SEYrSbErrcQ/Ppt5HWWLUTX1aISun/iXrHHOSGJMT5bIStV8chJitOe8JbK+mk+jLnW5bsrHcbmtV6XEAe+xhTEl34wt/d6+oH8s+hG/CuXwhBzHz4H0pPsYygzZDf6LcP3tcjiHd3fYzBaDB7jhBg9TxKMJoQQQgghhBBCCCGEd3mJg8lLHNzVwxBCiB4hwUlkZIrlpLkIKaVI8aVT4S8NWlflL4+qTdvk+Jz4fuyYsUdUbQohhBBCCCFErKTHZTAhPfL5Op3Fr/09IxjNEoqdlzhIjv2EaAcnfBEhhBBCCCGEEH8JLUKV6pQ9wCVB13XGaDZQ099ASejVX8+ICREVVwee1kED6UEcy9c8bosEl5ZhRG35Ws90Vlc/BkecG4OBhZbplpLXsDp0KNq+J6AenN0qFK2JGjgc9eCXHTjCMI48H9VvMGrI2E4LRWvyf4eYEzn2GmNenpfpIcGj0ci6RaRagtEqnBbpP0kp0Ku3uZG13pOmVgefRwZA/8ZgND56CZYu9NwegDrtWtQwjye87XRA0KJz198ftlp2QxF7VH4SutBmY7yNoZuJ8yku3NPbaya38UI1SinY7wR7weWLzNuh0mL0Xlnol2fAJ69EPtiDT0c9vwB1/XOo82/1VCVrSgpbnZTKlqdk8NXsPC5OmsWmWdEl2CS4tWxR+7O9QHUF+qW7o2o7WvqHT3BP3gY9OR09OR3Wrohd4xN2RU1/HTVuR0/F+/aKXdcAWRe6XDnTpbpOs7LEnBrSPyMQymYzINMeahQqbKkoRMiLBKOJrqJ/+hL33Mm4+/XBPW0H9Pzvo2unpgqev8N7hW0md/q+T5OtBnnfp0nRVSTpGuItx7HNoWgBFbUw/f3mbYu2hBOF2MRsUNW5h86ih9Ffvxt5JdeFlUtiP5gOUFzhLZhsR0uYWHucPDEQjpaZEr5sk+1ucEk9r/W/jGkuqef6yb3Iz03vmP+euUlbogF/vT3xy1GBgLU0S55dmeHcLL/l8NjXYtszsp+3bWFSDDbV8ZYc9khVy3ZRCCGEEEIIIYQQQgghhBA9QKrPfBJIpd/j1YHaKKxbY1yeG98/qvaEEEIIIYQQ4q8kyTFf9by2uwWj1cuxnxAdQYLRhBBCCCGEEEIEtAxGwz5rsjOD0dQDs1Hb791p/YnuQ+0cHFIU0q6HdMxAehLHMlPZbRFC5A8R+tMm2EIlpeBccDvq1ln20LVOoq58CJXVx75+9DZw3KWdOKJG2f1Rp1zV+f02OnmiYqehrZeN6gfHbmcLRvPWbi9/KTn+IlLdKuP6StUiYcAXBzl5xnJ63mxP/VXUaGvYUF6mQtdWo5+80VNbrRzkPTBR5fRHnXl90PL/LdmOdH+Ztd5Na68mSdeGbnvSwZ7H0d2M7h8+bCEhDjJa/M6kjvl71P3pOyOsqxTqqkdxLpmBSk5FKYU6ahqccHlEzSTVlHDz3GNYvGwCtx0RuuwRW/rxqdbBGNcV/ptkXRO64rzOC3DUS35FX7gv/B4irC0aY7dHfVqFc9f7C1GGMgAAIABJREFUqG28X7HI67YnEje9o7n2dc2SQvP6AWH6TE5QDMw0J47kF9iDXJats7cpwWiiK+jClejLDoGfvoSKUsifiz5rZ/SqKIKTfv8Z6sJsy5okp6JOuTryPmLkgC28l01xq1BApr/Ec52Pf2veDriWTUJTuOK+Y+3tVNXB2jLNzys06yq9hUSJv5BFP1pXqQtutx+DLc/voAG1X2295rs/NJ/na/4oCl8+KR6uOTD2x5pKKU7ZyWHdHT4u2dt7kGJbVXVQXQ/F5rzoDVbGDcANcdqFr3FVL/O5WZRWB28frMFoLboZ7fFcqaT46B+DJsPsh+MRqYkuh1gIIYQQQgghhBBCCCGEEKJTpTjmk0Cqog1Gq19tXJ6bIJPjhRBCCCGEECKcREswWk13C0ark2M/ITpCXFcPQAghhBBCCCFEN+FrDlVK0rX8rfQF6lQCdZn9qR+9A3VLFlJXbA/KiblhW8CorTunL9H9jNnOc1F1x7uo1F4dOJgewjZx3m0xozpUMJrP/DWR2mFfePR79Mz7YNbD7Rhg9JQKP5FbHX8p+plbO2E0wNBxMOkg1FHno9KzOqdPA5+j+ODvDk98pfn2DxiSCxfsoUhPMj9e4YKCmmxavxQFpLrmE7kqndQWg4iD0dvAkl+CC875yFN/+QX2dUNWfo6+5G9QFiKNyGT8zqjefSOqok64DEZOCIRzLQsETmxR+wvf/zGRB7NO47eEUejG1+Im9Ss5quwldq/6PHSjaZmw05TIxt6NjPTwEI7u1/o9qjKy4c1V6APMgXntctBpqJwB6EU/Qu8+qD2ORk3YJaiY2vd49HO3Q0N9ZO2v+J0L5p7HdUn3UGbIBkpwa7n3zfH8Y/I5PPJNApVOKoeVz2T/infDt71uDVprT9uz9tAL56JP3yH2DR94KurCO1A+SwhnCAMyFRD7QKDp79vbDBXGprWGx29g+PJtWZYWHPAWKhjttzXmddmpkJHSsc+tECb6melQGRzgqY8eDZ/XRLbNCRWKNnQc6vjL0N++D1m5qH2PRw0JkQjWwSYN97ZdSXKr8RHYF870l1IY5y3ZZ9k6KCrX5KQrtC0YrfH/KVso3v3VXOiKV1zmLIWaekhJgDv/pjhtZ7lmlWj8LFq20Lxyr2NQR5yLfvkeWGkIOVzWPYPRZi/SHP2gy+rS8GX3GAUTBimO2U4xYVDHfn7efLji11WadwyHK7HyW8IIxtfaA2mdxj8xIxlWGTIaTfudXoLRBvX2ti1MSQxbJKy8TMV2m8J3f7avnZoId8+FEEIIIYQQQgghhBBCCCG6Qqov3bi80i2Pqr3C+jXG5bnx/aJqTwghhBBCCCH+SpIswWgNuh6/bsCnuj42ya8bKK5fa1yXGy/BaEK0R9e/w4UQQgghhBBCdA9Oc9BFX/9anl51SuBOziScCz7EvetR+N/dnTYcdfn9KFvQk9joKcdBn3QlPHFD+MJb7dbh4+kRHEtYjetvvt0QeTAagBq6OeqSGXDJDHRDPXp38xURu5JKy0D3GwxrlnZcH1NvQB17cYe1H42keMVZuyrO2jV82TyP4URPrDoNgFRtDsKsaBOMpnbYF/3W48EFC5ahG+pRcfEh+7OFECXGaTa5/RgojzAULbs/atptkdVppLbbC/VMINRAz3wAffs0htUv4Za1V0XX3uX3o9IyoqrbHfRKVvRJh7UhzukzhVmojGz0UdPgxbtiOh516FTUsHGEi89Qg0bA1BvQ9/4jdCCkyZuP8v0+OWy+9ErqVUKrVY+vOp3e5cvoPesKIv7LGuqhtBgycyKtGZIuWg1fvxMINNp+744JRes/GOey+6Kv7jGUMZYGZYd4lXz5JvrRfzO0312Y4hvXLC8GzOFJC83nqTIyqxr9wiOQ3Q8mHYxKTIp4zEJESmsNr9xrL/D2kzDlJO8N1tdZV6lL70WN3Q6151ERjLDjDMyC5HioDhOwk9Ii1DvLXR9RH6c94TLrPB+uZdep6VD19J0V5z9nLjR7cfPtqjo48ynNpOGaEX0lSPEvr3AlVFcaV6nDpwZuDBxhDEbTy/LD7gt1tuo6zTEPeQtFe+4MxdHbdt53PUopXj/PYZ87XD7+rWP6WJg4knG1v1rXN4WZ9bLsHpQZLlppC0ZzWjz5XoOv02IQjAZw/wmBx7Gw8dggKwXev8hh/CZwyAyXtz2Ez9XUa+h2r2AhhBBCCCGEEEIIIYQQQojWrMFofvOFRkOpdWsobTCf/5abIJPjhRBCCCGEECIcWzAaQI1bbT2G60zr6gtx8RvX9ZFjPyHaRWaYCyGEEEIIIYQAQCnLIaJunI1ZFmEwTXtsviNq1Nad15/oltQBJ4cvtO0eKCWTaoHmdIa23BYzqkMFBIUIRmtJxcWjHvs+fLlbZ6GuewbSs+yF+g1G/f0u1FQPAXhe7Ht8bNoxOezsbheKFikvE+dT3YoNk/pTXXNYQ2WbYDQGDjc3pjWsKwjb5+JC8/JhSevxlReHrb9BYjLq+udRT/yAGrGl93o2ex4NifYfUMJRN76M2u3Q9o+ji/UJ8xvRVoPMy9UhZ3rerniy6WgYurnn4uqoaagn56KueDDiroa+dwvrF/blqZUnc2jZa9xacDlLFw3jqPJXIm6rlWJLqlaU9I9foE/eGn3LVPQdF6GPGRvT9puoR8Nv80PxGtoRS7sMt+8b6C/eACDHX2RcX7zaHp60yBLkOPKXF9H3XIa+7kT01F3QRasiGK0QUSpYFnK1vulMdHkEYWChgtHGbue9nU7gOIqRHi6c3TLkNa9+dUR9NIWaaUswWtNWJjFekZ1qLtOW1vDol+FDasVfwPJF9nWDRrT+P6hufuzH005v/KRZWeKtbE5a5x+/+xzFBxc5jOmgc4vyE4bjV5agcprDzGzBaKWmYDTLpsLX4rDf6z5WaoyC0bYcqJh/ncNLZzk8d4Yi//8cth6siPMp3jjf4cO/OzxwgmLeNQ4DLV8D1IQJtBRCCCGEEEIIIYQQQgghhOgOUn3mC8dW+kNcXdKiqN5+vlCfeJkcL4QQQgghhBDhJIYJRusO1oY4Tzkn3sNJz0IIKwlGE0IIIYQQQggR4LNM4nQb0+qLI5tI3i7JKZ3Xl+i++gwMXyYjp+PH0VM4tvdwi2C0UOEYtvoGatgWqCsfNq8cMAT18NeoHfZFTT4C9cZKezsnXoE69KyYBY6pEy6H/U+CprA823Ytmran3R6ztrrKyH7Nk/JttqyZt+F2mtdgtNw8e4OF4cOB1pm7YeCayMKY1J3voXY7FJWRHVE9a3vpmajpb4QvOOkgGDex+X5iMurSe1E7HxiTcXS1HPN5fhtsNdj8olIDh6OueQLSMto/iCGbo26eGXEQpho0AjXlJNj72Ii7TNK1HFP2Ii+tPJaL1t3NgAaPQVehXn8x3JfSWqPP3xNKIwgPDEFd+xT07tt6Ye9+qLs/RLXzORzUu/MDUPYaHWLlbz8AkNNgCUarsv9sYgt9GVK3pPnOonnol2eEG6IQ7bd2RfgyL9/rvT1bgG5aF6QbejCyb/htS4qv+W/Ka4hsG7y+CiprNa4lnKjlPlW6JezI5MP5EowmgPWWZOC0TFRjsLSyBaMty0fbEvu6yLu/eC+bHWbfsqMopZh9ucOBW8S+7d8SRuCGOO2iKcwsw3JuVllN8DK/G7ysZVsAvZIhJSH8+NJiFIwGkJ2mOHxrxdHbOmS3CLlTSjF5lOKMSQ7jNlEkxZvrSzCaEEIIIYQQQgghhBBCCCF6ghTH/KNWlb8i4rYK68zBaA4+suJzI25PCCGEEEIIIf5qkkIEo9V2k2C0wjrzecqZcdkkODE8iU+Iv6C4rh6AEEIIIYQQQohuwhaK5G8MRvMy8T5W1q3tvL5Et6UcBz1sC1j8k71QjAKQNgZKORinx+vAjGpdV4u+4jBzZcdBOZHl56v9ToDJRwSCftYXAgp6ZcEmw1qFFymfD+7/An32pNYNDB4F+x4fUZ9hx5SQiPrHg+jzb4UVi2HQCPRBA6G2fV90q8fmBP6OHi49STE2D362Z9UxqjZ/w+1Ur8Fo6VmQkAR1hhn9ReHDpEqqzMuz/CGC/NoauRWM2c57eY/UlpPgno/Q5+1hL3PAKaiJ+6OLVsP6tTB4FCph4/nhIlQwmlKwxYAQ6ycfAbscDH/+Fvw+jItHf/AcvHBnyP7VI9+iRmwZwYgNbZx8Jfr9Z9vVhqd+TrsWjrsEPTndXCAG+1La7wet0Xdc0O62WtntsMDztWwhVJZDajoMGhnxZ4PJyL7hy8TSweMhJTFEYFLj9jzHbw6VK9K90Fobg/hswWibNLTZsH72Gpz9H0/jFSJqxfarSjfRH7+EOuUqb+3V15mXx3tI3ekCIz1cPC110CBYmQEVpeR5DbhsIb8A8/41zTm84C2YqMn/lkU8DLExKjWHc5LZIvjbFoxWtg7+mA9DxsZ+XFGat9x7UFu40N2OlJmimHWej4IyzaoSiHOgqs2mz69h55stqWQW+Ykj8HsIRktPVpi2KmWGw1UvwWhKKQZkwqIwX6HFMhjNK2swmiWDUwghhBBCCCGEEEIIIYQQojtJ9ZnP/an0l0fcVmG9eXJ8dnwffKrnn5MohBBCCCGEEB0tVDBaTXcJRrMc++XGezjhWQgRkgSjCSGEEEIIIYQIsAVfuH50QwOs+sNed8hYGDcRZj0Um7HUmMN4xF+POuVq9FVH2ddn5FjX/eXYgruawg1/+DhE3ei+IlKJyZA3JPAvVLmx28H0N9CP/BtKCmHs9qizrkd1UNCGSsuAUVsDoA3BNp5tvgPqzH+jho2L0ci63ndXOiSfa5/oP7Ju4Ybb1mA0ldJ8x+eglELn5sHKJcGFC0OksDUqqTIHKWT6S8PWBWDf41HTbjOGGMWCGr8z/Ps59DXHBK/MyIatJwfK5fSHnP4dMoau1DvNHOAA0Ccd0pJCP+4qLh5s76ERW8KQzdE3nmGue94t7Q5FA1ADh8OMT9CXHAjVkV+51bNt90DFJ6BHbwML5gSt1t9/iDrglIia1LXV6KduhidubN/Y+g2GbfaANx8NXjdhV1Rc4+fApqPb14/BkNxAiIct4CPWjt42zLagoR6AbEswWrGThVu8Fl9O60S32npNkeXl07/tD5krFlvD1f6KtNaB/RG3xT+/5Xar+27jvwjrNN3WbsR19IZ+I+in5TrtWsYa5u9oNVZbG4b74fy5wPsT1cOC0UZ5OE8gN8OHevBL9N2XkrekLOI+fl2lcS3bLqfF29sWAGSiFFTWalJDBTiKjV/ZOvPylsFow7YIfE9jehF++Va3CkYrieC8ouzU8GU6Wt9eir697OtXT3e46JH1fPxzDaVOBgCb1i+lf8NqPk3dLaj88viBlPnsDTZtLzIs52aVVQfva1uD0dpsOjbLCR+MltqdgtHqO3ccQgghhBBCCCGEEEIIIYQQ0Ujxma/2U+VGft5RYZ1lcnzCxneemRBCCCGEEEJ0hHiVgMJBE3xiXbcJRqszX/Bajv2EaD8JRhNCCCGEEEIIEeBYQpVcPxQs3RAi0ZZ6bA5q2Di066K/eB3WFbR7KOqQs9rdhthITDoo9PpsuXLCBsoSbqhdtNboZ6bb60YZjBYJtf3eqO337vB+gvo97lL0I9dFXu/M61EnXNYBI+paifGKkycqHv/KHHQ1si5/w21bMFqF0+LEr6bXTo45GE3/OZ9wsR8lVeblGa49GE3dPBM1cf8wLceO2v0wuOJB9E1ntl5+3i2oxKROG0dXyDGf5wdApv3CO54opWD/E2HbPdAnToCKFs/5xP3hqGnt66BlX1tMRL0fHITl3n0pvHhXbDoZPCrw/ybDjMFofPwy+spHInrN6IeuhRfujH5MY7ZD3fcZqjEA183oDS0/DxKSUCf9I/r2PUiIUwzNhfz27yJ6ctQ2YbY6VYGTVHMswWiu8lGyeAnZbYLRVofIahzQsCp44fzv0CMmwKJ5UFFiCPyyBGBZA7Gay2pr+FbL+7ZwrxDLw42jVb8ext50X/QMDZZgtLgIUr860aj+9uDOJnmZCjVwOOqW1xj8m4bbI0to/GC+vYeWuYehtg9taR1o95AJEQ1FbGR0SZF5RUb2hpsqPQs9bieY90Vw/fy5YfexO1N5jbdyKQmQnNCdRt6ariyDxT/Rp66Gp1+dErR+SfymjBg231h3YcIIa7u+xkP1XpZdwDLD42cNRmtz2D+8r+L9+aG3hWldEMQowWhCCCGEEEIIIYQQQgghhOjJUn3pxuWV/gpc7eLYztU0KGx7sb1GufFy7qsQQgghhBBCeKGUIslJotoNnnxU212C0azHfhKMJkR7STCaEEIIIYQQQogAnyUYze+HFYvt9TYZCoByHPR+J7QO24hWF4Qnie5JKQWvLkEfNsRcYId9OndA3ZljOdlm+SL0sZuHfh9HcKJOjzNxfzAFox02FV69z15vzLYdN6YudtKO5mC0TFXJ5FOmoFIPQ990JqnaHIxW6yTRgI84/M3BaJm55s5mPfz/7N13eFvl3cbx+zmSLHkkTmI7w9khgwwCgbDCCJuwd6CMQmhLgQ7a0pc9CqVQKB28BUrZ0EIZYa9SRtn0BcreOwkhyxmOR7yk5/1DSWxZ50hHsuT5/VxXrljPOj8nWkc65z6yg0dKx50Zfzy3Y5ct0pqPayRnUnI90TWuS5qbX5OZsLnHb5c/Zr/jpZETZB+/TZKR2e94mc227/Q6OlvKYLSi3GzDVAyX7nhP9q4/SWuqZKZsLe1/out9JtfMj6+Q/fxd6c3nOrbQwMEyJaXxNUdO8I7qeeaeeBicD3b1cmn+1R0qy/z56Y2haJJkfniJNGEL2VefkPoPktn7GJlJ+U/n2XRo5wSjfXSxI8dJc79ZtlCSVOYRjCZJK75cpLLtEh/fi92fkiRJlS3JX2Tak3dOXQfQ3TR7BKOFCjq3Dp+m+DhOoHJA6887jM98G4+9Z7Wpx7HoTpbBaJL0xPtWB8/ovuFQ6ATVHq9BpeWJt7fYyTUYTc/dL7tskcyQkbmvLQu1jf7GlRXnt46OsPddK3v1GZ4XBZCk0c0LFY41qNFJTjj7MDzZc96G54v+HqHC1S7HZUU93ky2D0abNMR9XFvFXfA0HvE4CoVgNAAAAAAAAAAA0BMUOe4HTFnF1Bhbp8KA/y++VjQtdW2vKODkeAAAAADwK+wUugajNXSDYLSYjaqqyf1kCfb9gI7rxWe9AgAAAAAy4hWMZGNSlfsX8yobJhNpTUUxx54hTZ7ZsTJOvEBm7JQOrYHexVQMl/nl1VK7gBzzk9/JDB7RRVV1Q17BaGtXpQ5Fk6R1tbmvJ1MnnOveftipHVt3wubSsWcktm29ezwcaNKW7nNKBkib79ix7XZjsycZnbZ74uOpICj95fslKp57klQQliT1j9Z4rrEmsD5pZGMwWpnnWHvDhdLrTye3f/2R7OHjtaYl7DpvQCw5ZcQ8ubJLQtE2bn/6LDln/VXOWdf1iVA0SapwvwCqpNwFo0mSGTREzqmXyTnnBpmDT5IJds41PYwxMn94XNpx/+TOfgNl/vy0tNOB6Rcav1nrz2Oneg6zLz7suzZ779XxgNpsjJsm89BCmYLEx5cxRmb3I+Scd7Ocn17ZKaFokjRxSPYBQJ98PlWHrH0w7bhLDzGaNDT1duxLj2z8eXDLCs9xX36d/Pzz5Qr3hJLiWK36x9amrQ/oKvaTt2T9PJe0eASjBUK5LShHCoJGc2emfsxXtDlWvSBodPY+mT0XraqTXvnCva8j2Z0ffOsZn4m+orrKvb008T21GZ0cHryB/dWxuawoay1R6zvsKlXgbley7/9H9k8/TxmKJkkBxbRJ85eufYuDw73nrd9VL/UIRlvbkNwWjaVea4PJw9I/GZUk57jlXaFHGBvBaAAAAAAAAAAAoCcoCXgfMFUX9X+sZXOsSatb3L8brAhxcjwAAAAA+BVx3A/A6w7BaKtbqhRVi2vfYPb9gA7rnLPLAAAAAADdXyDg3h6LSmtXuvcNKE+4aUpKpWv+Lb32L+nrj6UhI6VvvpC96SLX6ebM66S9jpbefkFa/KU0fQeZTaZ15LdAL2UO+oE0Y7b05nPxsL4Zs2XGTO7qsroXx+Mx3EOYnQ+Sve1SySYGRZjZB3dsXWNkfvhr2V0Pkz74jzRivDRjl3jo0jXPyu4xIHnO3J/IBLtnCEiu/PFIR0dtbfXql1bFYWmPyUZjy9efVL8+6aM86hHYIGl5oELl0ZWtwWil5Z5jJck+fJPMNnu23n78dtnLfiBJWhModZ0zILom4bY59TKZom6aptCLVZYaSe4BLuFe8umyCQSkS+dL//239NnbUnOzVFEpbbOnTNlQqaEubaCZ2btNOMn2c7wHvv2CrLUyaRJ17OO3S3+7PJNfI27OsTI7HShtu5dM2CN9owtsOjT7uZs0f6W7Fh+re2sO07HDb0vqnz5Cuv1ER9NHpA8GsX+7YuPPRXadhjcv1uJQcpDJJwsbtG+7ts+Wu685oekLdSAfCcg7+/3tpKJ+stO2k9l8R2n6DtLkrWXC7ZJymj2C0UIe6TbdwC/2NLrnDe+QsTFliY/OSw42uut1q6/avcUpja5Rswmp3vF/Ve+2K08Y7P0c4eajJfL1WoBebJX7Hca0C0bTKO9gNL3/H9nl33R5WHhto/+xZd3wrbxtbpI9Zbbv8RUtKySXXOflwQrPOc76h3r/iPv76mqX47L8BqNtNy7+nrzR/ZgqSVJxFzyNR0Luv2tDijoBAAAAAAAAAAC6i6KA9xdbdbEalWuIr3WqmpfJehx3NbiAk+MBAAAAwC+vYLTGbhCMtrxpiWdfeUEHTqQAIIlgNAAAAADABl6hStGobPUq9772J+1KMqECaYf9438k2Y//K7kFo43YRNrvhPjJ4G3CcgAvZtREadTEri6j+3Kc9GO6MTNhc+m8W2Sv/LG0rlYqLJY55TKZGf5PUk+5/sQtpIlbJLaFC6W/viR76felBR/HA8HmHCcd8z852WZ3t+04o23HuQRymPh9qSJFMNqKYLnUpI3BaKb/II9DuNZ7/gE9cdGfdc+AI9VY0E/ff/B27SIpJqNqxz0YrTRWndiwyWaptoA8qUzODtyo3iNDpycyxkgzd4v/aW/bvWVOuVT2hgullubEvkBAOvqX0p5Hta4VLpRO/o3sdecmr1VbLa1cKpV7H9xoVy7dGByY0e9w9g0y+34343mdYdJQ74C9VO5fNFeSFFBMR629V0WxdZpXeb2qAwMUtM06f9wbOu+sHXyFC9k1VdKHryXW1fSJazDap6sKZNdUybQJAf50cZOk5NDM8U2fZ/hbAV2gvkZ67SnZ156K3w4VyG46U5o+S2b6DtJms5Kf3zboxsFo24w1uuooo9PuSn5+MUbaYmT7NqOnfu7ohFtiemn9Q3e/msd1w5JTdPKwq/VwvwN8bzvS5ulg3g5G5zzg/zludb20vEYa0t/3FPQiNhaTFn/h3lnW7v3B6Enxx6BXcOG3X0ldHIxW0+B/bOWA7hMGaKNR6aHrZf/4s4zmlUfdLxywPOAdjLYhzGxgkXt/9TqpJWoVDLT++3gGo7X7JywOG+22qfTE+56bV0nEuy9fIh45440eLzUAAAAAAAAAAADdScQpkpEjq+QvbeqiNb7XWdHsfnK8kaNBwcFZ1wcAAAAAfU3YIxitIZbBQYx5ssIjGK1/YKBnoBsA/whGAwAAAADEeQWjxaLSWvcTP9V/UNplzaZbyU7fQXr35cT2ky/1FWIBwCevx3APYvb6jrTb4dKiz6QR4+NBi/ne5pStpVv/Ky1fJIULZcq4GseGkL2IbVS/6FrVBJJTO6oC68OC1gejqbQ8aUxbfxl4kn6y+FRpcfz2XaOf1M3f/kBzav8la9xD/QZE2wWjjZns/3dAzqQKRqtr7Lw6upIxRjr6dOngk6Q1K6SySqlmlbTsG2nsFJkil6vE7neC5BaMJkkLP0kdjHbw6Mxr/MHF3TYUTZI2zfKpdXb9Cwm3D6x9VMs+HalPCiZqbPPXKqrcX8bs6G+xj99IrqvxUz1bnByG92VwdDxEbda+G9u+XlAtKfm5bnyTR7gNOkcgEH8P5ATir19Om9tt+wKp+gLxUNCE9va32/2cNM9JPc4JyLTtMyb92kk/O4m/Y5sx9q/nS++/6v/frblJeu8V6b1XZO+4Ml5PsUdKV7D7BqNJ0k92c9TYEtMZ8xODyQ6cLo0qS97fHFdh9Pz/OFqwUgo8cYuGX3+KJGla4wcZBaMVh1t/PmJKrc55oDijup/7xOrIrdkf7pOWL5IaPa5QOHpSwk0TKZI99BTp7qvcx69cmuPiMlebwfvBiUPyV0cmrLXxcOx/3el/0rAxMn97W+U31kjvJHcvT3HiirP+oV7ez6ueeGBiRZt+z2A0l12nAzY3euJ973DGkrBnV96EPY5CaSAYDQAAAAAAAAAA9ACOcVQUKHYNQauP1vpeZ0WT+/d5g0LlCjkeV5oBAAAAACTxChhrjHkcj9mJvEKxKwo4Pw3IBYLRAAAAAABxnsFoMWntKve+/gN9LW0uf0D26jOld16QggUyx/xS2vmgLAsF4MpxD5fqaUwwJI2d0snbDEqVYzt1m91am6CyimiVazDaikBFfOj6YLRH1k7SeWNf07LgYO1W95x+veJXGtf8tSSp0RToN+VnJa1xYuUNKcsY1byo9cbICVLF8Ex/E+RAv4h3aEt9UycW0g2Yon5S0frEinClVF7pPXZAuWxpmVTtEi779UfSlru4zrP/92Tmhe13gnTcGZnP60RlJUZlxdLKOv9ztlr3pkpja5Pag4pqatNH8RtV3/pfcMEnSU0jWr5xHboyUC4tfCkhGO3b5Q2SyzGpY5oX+K9Bit+H2od4tQ2+SheQlRDg5RHG5bpGu1AtjzkmaU6K7biu4XjU6nOOs36ej9Aw00ve++TEFQ/I7tuBL8+hRdvnAAAgAElEQVStlWqr3ftC3f9g7F/sYVRUIP3vM1ZG0l5TjS4/zPv1yxijMeWSPXae7IKXpCfv0MTGzzLaZnGbvLhxr/9NR1eX6s7S7/ie/50brE64JaqAEw86Crb/OyAFTOLPwUDiGNd5G/tMwjzH97zkGjZsN7kGk3pNz3lpamnzuztOLwyPc3k92mjUxKQmc8plsl7BaAs/zVFR2avJ4GKLk4Z07f+n/fRt2at+kRTcn1K/gdKWs2VO+4NMuFDlI8LSO8khZMtSBKNtCDMrd8nS3aCqNjEYLeaRc+b89VzZxpkyux62sW3/6Uan3uEdjDbUI/cynyIeLx0Nzd51AgAAAAAAAAAAdCfFTj/XYDS3Ni9Vze7BaBUh7wsqAgAAAACShT2C0Rq6RTAa+35APhGMBgAAAACI8woWiEWlaq9gtDJfS5uSUpmzrsuyMAC+eIUb+jFhi9zVgZ7PtAYWlEer9KXGJQ1ZESyP/+AE9NSHVgc/PUOKxJvuLp2rD8OT9dpXOyikFr0fnqqlwczCWgZGV2lwdPn6bTgy3/+VjOmFwRg9RDgoNbYkt5+0M/8nKY2aJL33SlKzff1pmUNPSW5vaZb95YGZbePQk+X83CMspZvZdKj08hfJ7UP6S0fMNLr62dagjJBt0vlVv0m/aAbBaHZRcnhMeYtLcJ2kqmCZ7MJP1Nhs9fYiacD7T2lJcLbr2GEtS6RDfig98Ne0NZgfXCzz3TN91wz4Vtgv/ZhsBQvSj+lijmN06i5Gp+6S2TxjjMx5NysmacrzH2Q0tyTc+hpon52vY6qLMgpGk9xfW3OnM8KH8r8NY7IJhcsk3E0KOmbjWKdDYXSptmtaf/5Acop3UzjWqC0a31X/2PoTJwYNlSlOTrAygYDsjNnSW88n9dmbL5aZd27O/92r660Wr5HGVUiRUOr3e7WN/ted3IXH+NiVS2W/t63/CUf9TM6PLk9q9go3q3eKPZdybExSQGXeQ1RVm3g7GnMfF6haJHvBH6Q/PCaz9R6SpBEDjWaMlN5alDz+yJmmSwIGvYPROrcOAAAAAAAAAACAbBUFSiSX7zbqY7XJjR5WNC1xbefkeAAAAADITKQ7B6N57fsVsO8H5ALBaAAAAACAOK9QpVhMWuseGmFKB+WxIAAZMR7hhn5s6R72gj6qTQBZRUuV65AVgYr4D4GArno6+az99yKb6R+lR+q71Xfok4KJGZcwqfFTGUna93iZOcfKzNg54zWQOz/f0+i3TySHn+w/nWC0lKZt5xqMpjeelW1pkQm2+3j+2flplzTn3iT70RvS2lUyOx8kzT4kR8Xm36FbGr38RfL96A9zjY7a2mjWOOmRJ79S/3ef0rHVd2j7da+lX7TqW1lr0wYn2sZ10kM3JrWXRz2C0QJluuXzkfrJz2LrAzx2lzw2MfyU02UO2EmavqPsb06UWlIkfkTcv5AFOsoEg/mLqAp6pNv0IuacGzVj4jXS0/7nFIfb3HjvFU0Kjcp5XZCslVqs1OIREpWjreRzcZdt7C6N2l2SFLTN+umqq3X58nNTf75S7n1wjP3ifZlNpuWkyljM6vInrc5/0CpmpWGl0h+PNJo703tfc6XP8z6mj+jiYLTDNslovFsomqSU4Waea73yqLT7QSosMCoOS3UuYXJJwWged8uAjUqS7M2XbAxGk6QTdzT6yT+SJ524Y9e8X/cKRltHMBoAAAAAAAAAAOghigPuV8ypi2YQjNbsdXJ8ZhcZBQAAAIC+zisYrbGLg9FiNqYVzUtd+wjFBnKjA2fMAgAAAAB6lYBXMFpUWrXcva+0PH/1AMiM12M4nYKIzPFn57YW9GxO60eGXqFBqwMD4j8EgnrmY/dlTqy8QQePuFeXlZ+RcQnTGj+UOfECOWdfTyhaN/CLPYy2HpPYduURRiMHEYyWitlhP/eOhnpp2YKkZvvCg6kXPPp0mTnHyvn5n+RceLvMrofJOD3nI/7v72S026aJbWfMiYeiGWN01DaO/r7j27pm6Wn+QtEkqalRqlmdftx917o2D/J4jqt3ivUDnbk+FC21ylnbyhgjs8dcOf+ulXmuXip0PzhWMwgiRR6NGO/dN2ELabs5Uklp5usOGpJ9TT2EcRwF5v5EN/f7i+85JeuD0ez6MMRRzYvUP1qdj/LQi7WYkP5Q9nPdWvpdKZIicWu4d6iXvf2ynNXzyLvSuQ/EQ9EkaUm1dNT1Vl9VeYfHPf1R+mC58hLpT0c6aYNMc822NMs+fY9i87aWoi3+Jg2okLnBJdh2vYp+mf8Ozt8u3fizV7BaVW3iv2PUIwwwoHgwmt5/VXbVso3tP9zZaO+piWNP2cVozyndKxjNz3srAAAAAAAAAACA7qA40M+1vT5a42t+1LZoZbP7sdecHA8AAAAAmQl7BKM1dHEw2pqWlWqx7gfGDS5g3w/IhWBXFwAAAAAA6CYcj1ClxnVS3Vr3vnI+oAG6DZNdOI55bIlMpCjHxaBHaxNYMCDqHji0OjBQkvRO/RA1psgYeLSfRzBUGsdW3yEVHpTVXOReeT+j537p6NmPpa+qrHaZZDRtOKFoaU2c4d238NOEkBPb2CA9nyIYbY8j5ZxyqXd/D9AvYvTETx09/ZH02XKrHcYbbTlKiSEpoYLMF/76I2n6DimH2Lv+5NruFf7oV8C2aPCgxJpNICC711HSQzcmDh49SRo/vUPbA1KafYh0x++S2wtLZP7yvEw4IhuNSl99IL3zkuy7L0vvvCytdL9C9QZmpwPyVHD3c/zu/XXafWtVE+ifdmzx+mA0LVsoSXJkNbv+RT3Sb/88Voje6qF+B2he4ULPfrPb4bK3/sa989n5spO3ljnqZx2u42+vuqdxbXJOTNG/JgebxWJWj77rHox20ObSgVsYFQSl3Tc1GlrayaFoa6pkf7Rr/D2XT+anV0p7HCkzcLDnmMos8iWdL97d+HN5ibRwVfKYqtrE257BaLZNx8uPSQecKEkKBowe/6mjf30oLVplNbXSaPtNuu79esTjKBSC0QAAAAAAAAAAQE9R5LgHo9VFa13b21vZvEIxuX/pU8HJ8QAAAACQkYhnMFp9J1eSaEXzUs++itDQTqwE6L0IRgMAAAAAxHkFo3mFoklS+fD81AIgc16P4VQOOJFQNCRrE7I3IFbtOmSNE08EOOrdPXO++cEty7TjulelyNE5XxvZKyww2m+6JBGI5pcpLJYdPFJavii5c9FnstvNkZ74m+w//y699XzqtQ45OU9Vdq5Q0GifzaR9vO5HobB7ewr2lcdlUgSj2Vcel1a7X4G3o8FoQ0uicpzk38Wccpns8sXSq0/EG0ZOkLnsvqRAGSCXzPcukP32S+nf9yW2X/mwTDgS/zkQiAf0jZ8uc9ipstZKS76S3nlZ9p2XpXdfkhZ9Fp8YLpSZd57Mtnt39q/SdbbfRz+86UZdWfaLtENLNjxd1bbuL9/+7YkaOMn9+WZk8yItCo3MRZXohRaHhkuFxZ79ZuwU2QlbSJ+97dpvrzlT2n6OzOhNE9pX1Vld+S+rW1+2WrpW2maMNLbc6JAt4wFVj70rVdXGg81GDjK6/y3vGgM/jOmEWUa7TJKO287IGKP/LpSWuO8u6JjtHB2+Vde87tmmRtkDMvu8yvzxCZmZu6UdN3xg5vU4islaK2OMykvcx/gNRnPanDxjX35UZn0wmhQPm917qtQd3q9HQu7tBKMBAAAAAAAAAICeojjg/sVOXbTG1/wVzd4XKSsPDcmqJgAAAADoq7yD0dZ1ciWJVjR969peEihVYcD7uFAA/hGMBgAAAACIc5z0Y9or56plQLeR6WO4sETm+LPzUwt6tjb3pYHR1a5DqgOlqjeF+qre/cqY2YrE1um9L7eK3wh6nE0P9CSjJrgGo9mFn0pX/UK679r0a0zYXNps+zwU1w0VZB6Mpvf/z7PL/usfsr8+wbN/YHS1jJGszXyzklQ5yD2U1BT3l7niQdmVS6XaNdKoSYSiIe9MqEDm4jtlVyyWFn8pDRoiDR0tk+JxZYyRKsdJleNk9jlOkmRXL5fWVEllQ2X6D+qs8rsFM7BCBw5eoCuj6ccWb/hnbWw9oKJfrFZ3fnOcjh7xt4Sxmze8q9e+mqXlwcH6LLSJonOOU2zOCYrGpJZYPACpJSpFrW3z8/q/24xJGB9L0ddufixhLes6NlfbbfEIc0Jq60xEiqQ+AMb86nbZY6Z79ttjN5deaNj4elNdb7X5RTEtXtM65rWvpde+trr7DdcV0tZ56ytWt74i/d9X0jVHGz38jvucgqDWB3R1Pmut7GmZBTqa616Qmbqtr7EDi6RwUGps8bm2jcVjyuprpOL+Ki8xcvu3Xuk7GK3NE9Trz8iuq5NJEarXVTyD0Xz+uwEAAAAAAAAAAHS1Iq9gtFita3t7K5rcg9EGBMtU4GRxfAwAAAAA9GFhj2C0xi4ORlvuse9XERrayZUAvRfBaAAAAACAuExDlSJFUklpfmoBkDnHPZzF1eY7yZx0kcyQUfmrBz1Xm/CeAdFq1yGrAwP1XNHOarYZ3O9SiMTWadt1r+mqZaerLLoqJ2sC3cLICdIbzya3P3SD7yXMn/7Zd0K1CiKZz1n0qWuzbWmRvTZ1AGhg1hxNCksfL818s5I0dFDqr1hM2VCpjC810blMxXCpYnj28wcOlgYOzmFFPcv2u22qkY8v0qLQyJTjigvW/9CUeEDFETX3ad23hbq87JdaESzXXrVP6/fLzlRAMQ1rWaphLUulB16WHjg5u3DyHiAmo6gCipqAWhRs93e8PaqAWkyw9W/jJI1tHeNsHBvd+HfrWhvnbehTQC3GfftuayVvI7nexLVb640l1evyuymwcXyjCavJ5SSHdaZQKnQ/sWKjkROlsVOkrz70HnPn76VjfilJuvQJmxCKlkvXv2B1xt5WD7/tHoy22ySpXyT3713sujrZmy6Snn9QkmT2O0H67lkybR5L9uZfS++/6m/BkRNkfnyF71A0KR4oWTlA+qrK3/jAhiCz6pVScX+Vefw3r6xN/LeMeuTUBWybYLSmBun1p6WdD/JXTCfyDEZr7tw6AAAAAAAAAAAAslUccL9gaH20xtf8Fc1eJ8dzQWoAAAAAyFTEIxitIdYga22XnW+xotn9RISKAvb9gFwhGA0AAAAAEJdJqJIkDRrSd0I6gJ7AZ7CC+d6FMieck+di0KOZ1vtSacw9GG2NU6q3I5tnvYmrlv5CP1p9nbT7XOmZe7JeB+juzKiJ8si18Df/krtl+g/KWT3dXiiLK+KuWiZbs1qm38DE9vdekVa6H2S6gfnu2drnQ6OPl2b3v1Q5gPfCQG/jHPh9XXHLPH1nxN9Tjive8HTVmBiMZiQdX/13HV+der4kKRbLrshuzpHkKCqPXKQ+7a7+R+jY4bclta9zIlJhUcq5xhjplEtlzzjYc4y97lxp/3l6a80g/e7JjrwDSS0ak659zuq9xe79B2yen9dH++sTpBcfbr1900VSc6PMDy6SjcWkD1+Tbv2Nr7XM+bfK7PWdrOoYnkkwmm0TjFY5VuUewWhVtYm3ox5PDxuD1tazLz8m0y2D0Yzk8i6YYDQAAHLPGDNW0haSKiWVSFoiaYGkV6y1vPoCAAAAAABkqdhx/2KnLlrr66T7FU1eJ8dzgT0AAAAAyFTYIxjNKqZm26QCk8V5CDmwosn9fIXBhGIDOdM7L0UOAAAAAMhcIMNgtOL++akDQHb8hhvO2Dm/daDnaxOyNyC6xnVIg1OodyObZbX8Vuve1Mmrr5e54DaZky7Oag2gxxg5sWPzt94jN3X0FNkEo0nSwk+TmuxLj6Ses+thMlO30TZjstukJFWWZj8XQPdkwhHNPe84PbVgTspxwcD6g9wbGzqhKvQWhTH3+8s6UyhFitPON9vvI3PxPzz7o3L0yz98qpm/yX/oXqrgtVwHo9lYTLHzjkoIRdvo4Ztkv3hfdt8hsqfM9rWe+emVWYeiSdL4wf5/P0fr/y+WLpSkjgej2cRgNL3yuGw06j64C0U8Ls9HMBoAALljjDncGPOKpC8l3S/pakm/lXSbpOckLTXGXGuMKe+6KgEAAAAAAHquokA/1/aYomq06b8nXtHsfnJ8BSfHAwAAAEDGIk7Es68hts6zL5+std77foRiAzlDMBoAAAAAIC7gcdail3BRfuoAkB3H58c8ozfNbx3oBVpP9B8Qq/Yc9Vrh1q7tR2zlHRQwrulL3b34aAX/9qbMnkdJFcOliMfrSV8LhELvNHpS9nNn7StT5JGe0VsVFGQ3b8EnkiTb0iz77/tkn7pLuud/vcdP2lLm51dJkoYPyD68ZZOKrKcC6MbMrH21a/0L2mrdm6794wPLWm80ds3BFOiZItb9/rLOKZQp9Peab3Y9VNouObjvrfDm2mX0U/rjkm06VGNHbTlKGjEwd8FotqVF9rwjpecfcB+wZoXsCVtJdWv9LTjvPJkjftKhmiYO8T92Q5CZvfR7kqTyEvd/m7bBaLGYd+hcQO1C0NaskD74j/+COkkk5N7e2BI/GAwAAGTPGFNijPmHpHslbZ9i6CBJp0h63xizd6cUBwAAAAAA0IsUewSjSVJdtCbl3JiNqqppmWtfRQHBaAAAAACQqYhT6NnXVcFo1dHVarZNrn0VocpOrgbovTI86x0AAAAA0GsFMwyiiHh/oASgC/gJRistkxlQnv9a0LO1uS8NjK7xHLYwNMq1fe+p0i0nOLr5mud1z5tGY5oWaEzzAk1r/EB71D2rgfPfkqkYLkkyoQLZWftKz85PXGTSljJDRnb8dwG62pBR0tDR0tIFGU81c3+ah4K6uVA4q2l24afSqmWyp8yWvv0q9eCdDpS54DaZ9aGMlQOy2qQkaf/puQt+AdC9mIe/0WHz/qD/Fm6Z1HfQ6vmyzSfLhAoIRkNGCj0OvmkxIbXIkUeWVBJz6b2yu7WeiPHr8rN1UcX5Oaiw4w7YPIehaNUrZX+8u/T1RzlZz/z5aZktdurwOpsONZL8hXs5isV/aKiXjcU8g9Gq10kNzVaRkNET73uvtyFoLcFbL0jTd/BVT2fxCkaT4uFoqfoBAIA3Y0xA0t2S9m3XtULSW5KqJW0iaYZar34xRNJDxpg9rLUvdVatAAAAAAAAPV1xwPvCRvXRWpWFBnv2r25ZqahaXPsqQkM7XBsAAAAA9DXhFMFojV0UjLaiaYln32BCsYGc8XHGLAAAAACgTwhlGoxWlJ86AGTH+PiYZ+zU/NeBnq/NfaksujLj6ZsOMyoKG/3otJ303Iz5unXpSfpV1SU6XM9p4B/u3hiKtnFzv7xG2rxNQMGYyTKX3JV1+UB3YoyRZu2T+cS9jpbZatfcF9TdFUSym7fgY9n//WX6UDRJ5hf/uzEUTZKGlWa3yW36LVX/QoLRgN7KDKzQL3aN6oQ1tye0H7b2fl387bnSW8/HG7yC0TbZTOaeT6Rp2+e5UvQkEdvo2Ve/vMr3OiZUIHPpvZKkqwb+KCehaA//2NGcqZLp4EvbQVu0LmCbGmXnX63YhccoduNFsssWxtvXVCl29RmK7RSO/7nuXNnP3lHs2rMVu/AY2Qevl21plr3hgtyFol33Qk5C0SRphns+tKuA2gSZrV2V8n3HFyuk+karE2+L+VtvPXvv1f4L6iSFKT5ibGjuvDoAAOiFfqvEULRmST+RNMJau7e1dq61ditJ0yS92mZcWNKDxhiOvAYAAAAAAPCp0CmSkfuXZ3XRmpRzU50cX8HJ8QAAAACQsUiKYLSGLgpGW970rWt7sdNPRSnCtgFkJtjVBQAAAAAAuolghsFoYYLRgG4lEEg7xGy7VycUgh6vTRpCoW3QoJaVWhUs8z190pD1ywQCMqf/Wfaki6UlC6Rx02SCyR9Hmn4DZK5+Oh6U0NggjZwQD5MCegkzaz/Z+6/LbM5pv89TNd1cQTi7ea8+LkWTg0KSBALSoCEJTYUFRoOKrFbVZ/a8c9KkhZKGpx0HoOcKnXqJbny4XJcvP0fvhadqcuMnGhJdHu/8/F1pmz2lJo+gq3ChzLAx0rX/lhZ9Gh/X2CCtq+20+tH9FFVFpPvd+xrHbp7RWmanA3XVxN/o9MDPfY1/6avZumbQKfpH6VFJfSVmnfbbrFj7Tw9oVZ3Vu9/E39Pf+ZrV/8y3vmvaZ5q0xcj466ltaZE961Dp9ac39tsnbpcuvVf2jEOkVUtbJ95xpewdV7aOe3a+9OoT0pvP+d62p0iRzBPLZYKhjq+13ugyo903lZ75OP1Yx7YJOVu5VONGlyngSFGX7LOPl0ifLZNWpDiPJmBdJlZXyT58k8yB30tfUCcZUybddZJRJGgUCSnhT0mWb/cAAOjrjDHjJJ3WrvkIa+1D7cdaaz80xuwu6RlJG9KayyRdKOnkvBYKAAAAAADQSzgmoEKnWPWx5O940wajNS91be8fGJDyZH4AAAAAgLugCSlogmqxLUl9XRWM5rXvV1EwtJMrAXo3gtEAAAAAAHGhDIPRIgSjAd2KcdKP2Wz79GMAJ/G+NLzlW9/BaOUlUllJYriQ6TdQ6jcw7VwzZJT/GoGeZMbszMaPmezrMdMrhVInZZjvXSh700XJHX5C0SSpf5mMk/x6ueVoo6c/8rfEBjtPIMAR6O1MqEB28tYqe+cl7VL/YkKf/cs50vb7yDZ6HEwRjh/MboyRRk3Kd6noIYqWW+l+l2ArSeum7pzRWmvXWV1Q8CPJx0vguo/6K6QWaZVcg9H2qP6X9NFIacrWGlRstMv6u+xpu8f/9hOONnem0V+PbfPa+M6LCaFokqTl38ieuqvU1JC+6FceTz/GB3Pi+TkNRdvgisMdbXWJ+/9lW4G2/0ErlyhUPkzjnEZ9FhuSNPaIv2a4Xhv2+guk/ee5vs/pCgOKjObO5L0SAAA5dqGktm9sbnULRdvAWrvOGHOCpPckbfgC8HvGmCustV/mr0wAAAAAAIDeozhQ4h6M5tLW1oqmJa7tFQXDclIXAAAAAPRFYadQLS5B1Y1dFYzmte8XYt8PyKXucWQsAAAAAKDrZXqiaJirlgHdSiCQfkxxaf7rQM/XLmSvssX9w3o3m3JhEyCJKQhLx53pf/zx58SDdPqiVO9HSwZIR/2sY+9BS91DHs/fP7OvSk5Yc7s22WRQ9nUA6DkC3teYsqfuKn3zuXtnOJKngtCTFaZ4mWsorcxorSfet6qNpg+4f2DREfFQNEnbNbyu49b8PaG/KFanM1b+XnrtqaS5wYDR6Xs5+u95qV8nT9nF6K6THJUWtb5/sXf9yX2wn1C0XBk+Tjr01LwsPWOU0TAfu9eO2oTKrVwq++sTNHH1f7PebsB6JOFVV0nfkm8CAEBvZYwplHR4u+bL082z1n4q6cE2TUFJR+ewNAAAAAAAgF6tKNDPtb3e5UT8tlY0e50cz8F1AAAAAJCtiON+HkFDVwWjee37EYoN5BTBaAAAAACAuFD6E2oTRIryUweA7BgfH/MUux+oAyRwEu9Lw1u+9T114tA+GuYEpOGcdLGvceaPj8vsMTfP1XRfxhhpuznufQ98JRMpkqZsk/0GSstdm3eaYLRz6EPXvln1r+ii5Rdpz9qndEDNo7p6yWm6fskpUnlmATYAeqhU4cO1a6Rn7nHvI0gcLgpTfOyyrtn/OtGY1XdusGnHTWn8UAfUPpbQdv2SU3XDtyfr4LUP6furb9YbX22vbRrekL3pIs91ZowyOnSG93auOdplX/Q//0xbX14d8ROZG/8jk8eQwsk+jl1qG2Rmn50v/d+/NLp5YdbbDMgjGE2SatZkvS4AAOj29pbU9ku5V621H/uce0u724fmpiQAAAAAAIDer9gpcW2vi9amnLeiiZPjAQAAACDXwsb92NzGLghGs9Z67/sRig3klPdlzgEAAAAAfUuGwWiGYDSge3FShDZsUEQwGvxIDDerbPYfjLYpn98DnsyNr8p+f3vv/isfkZm5eydW1D2Zn1wh++nb0qql8YZQgcw5N7W+9xw1QXrr+ewWH1Dm2XXv1Ee1+39iej8ybWPb0JalunbpTzWt8UNpZZvBxf1litwPfgXQy/h5j+2mgGA0JCsMefeta/K3xpsLrL57c8zX2H8uPCCpLaQWzau+XfOqb0/qs4s+kxk5wXWtm09wtGBVTP9d0NpWXiI99tPudR02c/6tMnt9p1O2NXGI0bMfpw6oSwgyWx8WN6zF/WAoP9oGrSWpq856XQAA0O21T5F/LoO5L0pqUetxojOMMUOstctyURgAAAAAAEBvVhRwPzakPkUwWszGtKJ5qWtfRYhgNAAAAADIVsRxPza3oQuC0Wqi1Wq0Da59gwu4ADuQSwSjAQAAAADigpkFoynMid5At+L4OCGdYDT40e6+VBGt8j110hCTfhDQR5lJWypldEY5X4BJkhk1Sbrtv/HwkPoaaatdZUZv2to/cmLqf8dUSr2D0crHjdSrd+2sh/odoA/DkzWmaYEOqH3M/TmwnANVgT4jkOVXqewvw0UkVTBac/r5Z90f0xX/9PcqeNO3J6kywwAue/Q06YUGGZP8nr5/odHLZzp68G2r9xdLIwdJB0w3Glrazd7/73Rgp21q4pD0YxybHGI3vMV/8HR7CUFr7dWuzXpdAADQ7U1rd/tVvxOttXXGmPckzWjTPFUSwWgAAAAAAABpFAfcj7esi9V4zlnbslrN1v2qSBUFHG8CAAAAANnqTsFoK5q8j88kFBvILYLRAAAAAABxoQyD0SJF+akDQHZMmmC0grBMpo9z9E3tgtHKMwhGm0quE5BaaZlUvdK9j+fojcyAcmnOse6d46Zmv+7YKd6dY6eq0DboqLX3pl9obPY1AOhhsg5Gi+S2DvQKxhhFQlKDSwjaOvdzIzZ69QvrOxTN2Jj2rHsmiwolu3NEdve5MlvOlvabJxMIbOwrCBrNnWk0d2ZWS+edOfUymcLiTttePBQ69f+JW5DZsNcqDQ0AACAASURBVAwD69qyShFEV1edOLbqW9m/nCv96854wwEnysw5Vmb6Dtlv/60XZJ+7T4rFZHY5VGarXbNeCwAAZGRyu9ufZzj/CyUGo02R9GyHKgIAAAAAAOgDPIPRot7BaMubU50cP7TDNQEAAABAXxX2CEZr7IJgtOXN7hdILXSKPPclAWSHYDQAAAAAQFwwwzCOMMFoQLfS5oR1V4V8sAq/Ek+2L2/xF4w2cYg0tjwf9QC9iJPiuZpgNH82myWFC6XGLL7A3OVQ777x06UBFdKaFWmXMQecmPm2AfRMqZ63UykgGA3uCr2C0Vza2rrtVX+haJK0f+3jquxA+JaeuUf2mXuk156WueSu7NfpbHOO69TNTRySfoxjY0ltwz0OiPIjZFPcUWpbg9Hst1/JHrlpYv8jN8s+dqt04d9kdjs8423bp+6SvWSeFIv/TvahG6Qz/yqz3/EZrwUAAPwzxgySNKhd88IMl2k/fkL2FQEAAAAAAPQdRYES1/blTd/q0ap/uPYtblzg2l4c6Oe5HgAAAAAgvYhHMFpDnoPRFjZ8rk/r30/YzufrPnQdWxEaJmNSXAAVQMYIRgMAAAAAxAVDmY2PEIwGdCvGSd1fxEE18MlJvC+VR1f6mrbXVMMH+EA6BKN1mIkUyc7aV/r3fZnN++39MuWV3v2BgOzsg6WHbki90OARMtvsmdG2AfRggSy/SiUYDR6KCqTV9cntdY1W7QOKN4jFrK5/IX0wWv+IdOiwr3XVe5d4DyoZIPPnp2XnzUxf7PMPKLZTWObE86XjzpIJpn482Leel73p19LK7IO/shYMSaVlnbrJMeXxf/O1Dd5jAoomtY1r/koFsUY1OeGMtje4ZZnGNn/t2W/XVG28B9m/nOM+KBaTvfAYaccDZAr8b99aK3vDhRtD0dY3yt74K2nf77IfCABAfg1od7veWluX4RrL290u7UA9AAAAAAAAfUax437MZU20Wo+vvDujtSpCw3JREgAAAAD0WeEuCEZ7tOofGe3/VRSw7wfkWpozZgEAAAAAfYUJBKRAirCO9sKc6A10K+kev0X9OqcO9Hwmu2C0ad55QwA2SBWwEyQYzS8z7/zMJ22/T/p1v3uWVNL+fOM2BlTI3Pxa5tsG0HNlso/chiHsEh5KPLKo6pq85xxwdcy7U1LQkZ76uaNVf3J089mbqN+dr8s8WyNz6mVJY81JF8uM30zaeg/fNdubfy17nUfQ1oYxX34g+/N9pXdelL75wvfaGakY7t1XNkzG6dxDHwKO0V5TUo+J2EbXtt3r/51y3hSXY6POrbpcjlIE5P39CkmSra+RXnw45fr2iAmyDS4JfV4WfSYt+Tq5vepb6dO3/K8DAACy0f7s22yO6G4/p8NfFhhjBhtjpmbyR9ImHd0uAAAAAABAZyoK5O6YS4LRAAAAAKBjIh7BaI15CkZb2vgNodhAN5DlZc4BAAAAAL1SsECK+vwwKOz+YRKALmLSnARe3L9z6kDPZ0zCzfJola9pk4eZ9IOAvi6Q4rm6wCMpBUnM2MnSbW/KHr+lvwl7HuUrLMUMHiHd8prsHVdKn78nFZVIq5ZJw8ZIg0fIHHuGTGlZx4oH0LOkCrRMJRjKbR3oNYo9Xu5rG9zbm1usnv/Ue72Dt5DOmONou3GJ78VNqED2qJ/LjJks+9itkozMAfNktt073n/lI7KzM/hc575rZb97lkz/Qa7d9oYLpWiL//UyVdRP6j9IWrHYvb+8aw4mOnym0fw3vcPKpjW879p+YM2jeqJkjue8Z0539MoX0r1/fUaNa6p19Nq7dUjNQ2nrsVXfSu+8nP7/YtUy2T0Hxu8jp1ya/n3S2lXefauXp60LAAB0SPtgNI93jim1/+Kv/ZrZOFXShTlYBwAAAAAAoNsqyWUwWsHQnK0FAAAAAH2RVzBaQ56C0T6oezPjOez7AblHMBoAAAAAoFWoQGr0+WFQQSS/tQDITLrQhqJcnOuEPqHdSfFh26RBLSu1Kpg6DGgKFzYB0nMC3n3Bgs6roxcw46ZKP7hY9oYLUg8cOlrmhHP9rzt0tMzpf+5gdQB6jWyD0UI8p8NdiUcwWl2Te/ui1VK9R9+2Y6X7T/V+b2GMkbbfR2b7fZL7HEe66knZsw+X6mvSlS21NMv+7kfS7IOlKVvLVI7b2GVr1kgvPZJ+DS9b7Sr999+px5QPSx0iO2hI9tvvgENnGE0fYfXuN+79+9c+7tl+iseac2caDelvdMgM6SDnN9LiV/wX9N6rsi+kD1Db6K4/yq6rkbaYLVWOlZmytfs46x3+1j5YGwAA5F2KF+aczgEAAAAAAOjzhofHKGwiarTZZNUnmlg0LQcVAQAAAEDfFXbcz2VtjHV8n81NTXRNxnMmFLLvB+Ramkv/AgAAAAD6lEwCOQhGA7qXYLpgtNxdvRC9nMuJ7bPW/SfllGmVUlkJJ8QDaaUMRgt1Xh29xXFnSMPHJbcPGipz8m9kzr1J5sZXZUZN7PzaAPQOTpZfpYZSBDihTyv2CkZrdG9fUu291qm7dOz9t9lyF5nb/itz2h+kfgPTT3juftmLvit7zHTZ+/8iSbKrl8vu27FQMrPzQdLgEakHlVemflwVl3aohmwFA0bXHO3IcfmvGNGvWfsft5PrvGEtS3Vk9T1J7UYx/f17bRaLtmRUj73gaOm5+zKao4dulL3oONkf7qjYeUfJxmKZzQcAAPlW2+62+yWwU2s/p/2aAAAAAAAAcFHghDWn7IgOr7Np0eacHA8AAAAAHRRx3L8ub4ity8v26qI+Ljrbxg6le6q8oGsu8gr0Zlle5hwAAAAA0CuFCEYDeqx0j9+i/p1TB3o+l2C0Q2oe0qP99vOccvAMQtEAX1IEo5lsw3f6MGOM9Kd/yl54rPTha/HGyTNlLrxdZvgmXVscgN4hkOVXqZnsW6NPKfa4a9RmEYx27HYdfw9uho6WDv+RtMXOsvNm+pvU0iz7x5/J/vFnHd6+JKliuMxv75c9cRvvMZtMk7760Lu/qCQ3tWRhh/FGd/7A6IRbrBqa423DSqV//DCsovE/kp0zV/bCY6S3nk+Y9/tlZ2pJcKheKN5ZkjS14QP9rfQaBQN/bR2UYTCaJKkjwWbPPyA9erN04PcT21PWwb4gAAB51l2D0a6VdG+GczaR9FAOtg0AAAAAANBp9i47TIMLhumd2v/T6uaVGc0tDBRpQuFUzR64b/wYFwAAAABA1sIewWiNeQpGq4+6f7U+IFimitCwjbdLAv01pXiGZpXukZc6gL6OYDQAAAAAQKtgyP/YgnD+6gCQuUCax28XniiOHsYkhzPtX/u4ArZFUeP+ceIhBKMB/mQbsANPZuho6boXpC/elwoKpMpxMpm8pwWAVFIEWqYUJBgN7koiRpJNaq/3DEZLHitJm1QopydPmPGbyW6+k/TOizlb07fySpkJm0tPV8v+dM/WsNMNAkGZOcfJ3vgr7zWK+uW1xHTmznR0wHSr17+WCoLSFiOlSCj+/2MGVkh/+qf0zWfSkgXS2CnSv+/T0KvP0DML5+jDgslqNiFNa/xAwVHtgl29Askcp2MBaCnYe/4s0z4YrdnjDiplF94GAAAy0T4qt8gYU2ytrctgjcHtbq/pYE2y1i6XtDyTOZz8CwAAAAAAeqoZ/WZpRr9ZXV0GAAAAAPRpEa9gNNugmI3JcTkXqiPqYu7BaNv230UHVRyX020B8JbbRzYAAAAAoGcLZXDydkEkf3UAyFy6EJguPlEcPYiT/JFhWXSVdq/7t+vw8YPjJ/4D8CGQZcAOUjLGyIzfTGbUJELRAORWtoGWmexbo08p8rhr1DW5B6AtbR+Dsd6w0hwV1Ia59B5pjyOl0vLcL55KRWV8++GIzFVPSof8UCoZIBkjTdhc5ooHZSZukTKg33SD/d3CAqOdJxptN85sDEXbwDhO/H3KtnvJDB4hVQyPt0ua2vSRtmh8V0FFpYWfJi7qFTq21W55+A3WW/Cx7JKvE9uaGrzHN6UITQMAAB1mrV0paXW75lEZLjO63e3Psq8IAAAAAAAAAAAAAIDO5xWMJkmNsRTHuGWpPlrj2l4U6PrjFYG+hGA0AAAAAECrIMFoQI+VJnzBFJV0UiHo8Yxxbb54xUUqiDUmDb38MEfGYw6AdhyC0QCgRyEYDTlW4vFRSq3HMTlLPILRhvbPTT1tmf6D5Fx4u5xHF8vc/XHuN+AmEJQGDmmtIVIk5xf/K/PYEpmn1si5+TWZbfaMdxZ4H9Sknra/Wz7Ms8u+9ULrDY9gNLPj/q6B1jnzyVuJt1OFnzW799loVHb1ctm6tTksDACAPuujdrfHZzh/XJr1AAAAAAAAAAAAAADo1sIpg9HW5Xx7ddFa1/biQA87XhHo4QhGAwAAAAC0yuTk7TDBaEC3Egyl7i/Ow5nz6J2M+0eGMxve1Ctfz9axa+7QzIY3dcRWRv/6maNDZhCKBvhGMBoA9CyBLJ+30703R59V7PGxS12Te/vSauvaPnRAft+Dm8qx0uCRuVls/HRp6rbufdvuJePyODOOI9P+c6eBFd7b6Gn7u+WVnl32L2e33vAIRlMoLHPn+zkuqo0F7YLxGlNcTbMpuc9+9Ibs97aVPXCk7P6Vil19hmw0muMiAQDoU9q/8G/vd6IxpljS9DTrAQAAAAAAAAAAAADQrUVSBKM15CEYrd4jGK3IIRgN6EwEowEAAAAAWoXC/scWEIwGdCuBNOELRf06pw70fI73R4ZbNL6rW5f8QP9ZdZDu/qGj3ScTigZkwhzxY/eOkRM6txAAgD+BYHbzMgkdR59S4vGxS22je/uSavf2YaW5qScVc+FtHV+kpFTmR7+Vuew+afSkxL5BQ2R+cLH/eiq8w8R63P5ueaVU4HFn+PID2Yb6+M9eYWKBoDR0TPbhjWnYBZ8kNriEn7X2NcrWrJF9dr7sf/4pW7Na9qQdpC/ei/e3NEt3XyV7zDTZ+VfnpV4AAPqAf7a7vUsGc3eS1HbH5i1r7bIOVwQAAAAAAAAAAAAAQCfqzGC05lizGq37cXPFgR52vCLQw2V5ND8AAAAAoFfye/K242R/gjiA/AimCUYr5IoU8Mn4uJZCpDj/dQC90Q77SeFCqTHxizez53e6qCAAQEpOlqFDmYSOo08p9gpGczl+piVq9c437uM7JRht+g6yu8+Vnrkns3l3vi+9/JgUjkiz9pUZMireccOr0rPzZb/+SGbkhHhf+TD/C5elGFvUs/Z3TUFYdtQk6fN3kzsb10kfvSHN2FmKtrgvEAjKBAKyZcOk5R53ko5Y9Gni7RTBaPbFh6XrL5Bq16Rec/GXsledLnO4R1AwAABI5UlJ6yRtOMp7e2PMptbaj33MPaHd7QdyWRgAAAAAAAAAAAAAAJ0h7EQ8+xpzHIxWH6v17CsO9KzjFYGejrPYAQAAAACt0gUrbVAQkTEmv7UAyIgJBGRTDSjiihTwyc/zeyHBaEA2TFE/6fIHZM85QqqviTfueph07P90bWEAAFcmEEz9HtuL39Bx9DmlHhcsXF2f3PbAW97rDO3fOZ/JmDP+IruuVnrlcX8TttkzHnp21M+S1yoslvY7XllXXpIiDc5PuHM3Y373sOwhY9w7Vy6J/50iGE2SNG5qfoLRqqsSbtqXH/Ue+/rTud8+AABIYK2tN8bMl3Rcm+YzJc1LNc8YM1HSIW2aWiTdmfsKAQAAAAAAAAAAAADIL8cEVGDCarKNSX0NuQ5Gi3oHoxUFOD8P6Ew97whhAAAAAED++D15u8A7YR9AN0UwGvxyfHxkSDAakDWz1a4yjyyWufY5mfmfy7n4ThkCdACgewpkeY2pIM/rcFde4h4LtrpeaokmxvDd/XrMc51hKTLCcskUlci5/AGZ29+Wuf5lmafXyNz3hcx5t7gMNjLzzstfMeWV3n3F/fO33Twx5cOkEePdO6tXxv9OE4xm9j8x/Ya+84vMi6up3vijveUS6Y1nM1/DjZ99TQAA4OVXkprb3D7BGHOg12BjTETSLZLa7pzcZK39Ij/lAQAAAAAAAAAAAACQXxHH/eq0uQ5Gq4vWePYVOZxPBXQmjjwFAAAAALQiGA3ovQqLuroC9BTGTzBaSf7rAHoxUxCW2Wx7mSEju7oUAEAq2Yb4EHgJD+Up3kavqku8ff9b3mM3HZqbevwyYyfLTJ4pEy6UGTxCZu+jZW58VZq2vRQulIaNkfnV32WmbZe/IsZNk8qGJbf3GyiN3zx/282n0jLXZrv8m/gPnsFoAUmSmX2wdOjJKTdhBpTH/+0yUbtGse9vr9hOYdmbf53ZXAAAkBfW2i8lXdWueb4x5sfGmIQdEGPMZEnPSJrVpnmlpIvyWyUAAAAAAAAAAAAAAPkT9ghGa8xxMFp9rNa1PWQKVOCEc7otAKkRjAYAAAAAaBX0G4zGBzhAjxN2//AXSGJM+jERgvYAAEAfEAhmNy8Yym0d6DVSBaNVtTmO5q2F1nPclGFSOOTjPXuemUlbyvnLc3KeXiPnnk9kdjs8v9sLBGSO/WVy+9GnywSzfKx2tf6D3Nvv/L3s1x9JtdXu/W2em8y881Nvo7BE5tj/8bef19Ynb2Y2HgAAdIazJD3R5nZI0p8lLTLGPGGMuccY84akD5QYitYk6RBr7ZLOKxUAAAAAAAAAAAAAgNyKeASjNeQ4GK0uWuPaXhzol9PtAEivhx4hDAAAAADIi5DfYLRIfusAkHsFBKPBJ+PjWgqFKRIdAAAAeotAILt5fvet0eeU+QxGO/v+mOe4W+f13WufmcN/LA0cIvvsvVJzk8xuR8jMOaary8peaZlnlz1uC+95bYPgSsvizznNTe5jC4tl9jxKKu4v+/ht0vMPZllsBwwaIg0cLDl9974LAEAuWGujxpi5km6UdGSbrsGS5nhMWy7peGvti/muDwAAAAAAAAAAAACAfAp7BKM12twGo9VHa13bixzOpQI6G8FoAAAAAIBWQYLRgF4rTDAafPJzsnoRH+YDAIA+IJDlV6kEo8FDJGRUEpZqG5P7NgSjNbVYvfql+3zHSJOG5q++nsDsfoTM7kd0dRm5UVud3bw2YdbGGNnyYdKSBe5j14dam1n7yszaV/aFh2TPnZvddrOx3zw5Z13XedsDAKCXs9bWSjrKGDNf0umStvMYukrS3ZIutNau6Kz6AAAAAAAAAAAAAADIl4hHMFpDLLfBaHUewWjFAc6lAjobwWgAAAAAgFahkL9xBKMBPQ/BaPDLmPRjBlTkvw4AAICulnUwWji3daBXKS9xD0ZbUWMlGb34mVTT4D53kwqpX8TH+3X0CGbiDNmXHsl8ohNIvF0+3DsYLVKUeDvb57UsmTOu7dTtAQDQV1hr50uab4wZK2lLSZWSiiUtlbRA0svW2qYuLBEAAAAAAAAAAAAAgJzqtGC0WI1re1GgX063AyA9gtEAAAAAAK2CBf7GhXyOA9BtmEAg/SBAkoyTfsiA8k4oBAAAoIu1Dx/yi31mpFBWIn29Mrl9zfrjch5913rOffJn6d+rowcZv1l285x294NBg73HFra7QuXkmfEwbOt9P8uJYWNkLr1Xpn2tAAAgp6y1X0n6qqvrAAAAAAAAAAAAAAAg38JOxLW9McfBaPXRWtf24kCJazuA/CEYDQAAAADQyu/J20F2JwGg1/Jz4vqAivzXAQAA0NUCWe77+g0dR580wP2ChVpTH//71S/cA6sO21IaU27yVBW6xHZzspvXPsy6vNJ7bGFx4tRBQ2S33Uv6z5PZbTtVWRfdITXUSyMnSBNnyITdD0IDAAAAAAAAAAAAAAAAACBTEcf9AMyGWENOt1MXrXFtL3IIRgM6G5fnBQAAAAC08huMFgjltw4AQNcxPsIWBpTnvw4AAICu5gSymxdknxneSr2C0dZJ1lp9uty9f88phKL1NiZUIHPJ3ZlP/H/27j3KsrOsE/DvO+dUneqq7nR3SOdCEuhcCQkYQJCrEklAgZEAIjoIGhGHhTdQRnGWo5AZlzoizBqdYXS8wQg6423AcURcusRRkFkjwvKGw02iokBUwO6qVHdSteePatJ1Oafq3HfVOc+z1l7p8+1vf/vtXbve6jrZ9attYdbl4iu6z51v7zzva96cPOUrknaXm7FfD7o+5Zc+lPKU56U842tSHv54oWgAAAAAAAAAAACMVLtLMNqZ9XtGep5uwWhLzSMjPQ+wtwF/zTkAAADTqLTmU/UyseXbSYCpVXr4XQrHLx5/HQAAdRvwe9/S8Lup6O7oYkk6vPvy2ZXk708nn1npfNyNlwlGm0blyc9O9bgvTd7zG30ctO1eeNjju889ujPUuixdkHLnm1Pdezb5hR9J9WPfvfc5r35YGm96b6r77k3OriZnzySHDgtAAwAAAAAAAAAAYCIWugSjrY44GG1l/XTH8aXm4ZGeB9ibp/IBAAA4b26+t3nNufHWAUB9egnyOLbzh+sBAKZOc4BgtMfcOvo6mCrHFjuPf2alygc/2f246y8ZTz3Ur/zAL/V5wLbv2W56bHLZg3fOu/qmlF2+dytz88lTnpe09n6frzzr6zf+25pLWTyScuwioWgAAAAAAAAAAABMzKSC0ZbXugWjHRnpeYC9CUYDAADgvB5+ELKveQAcQGXvKUcFowEAM6DR7PuQ8k0/NIZCmCbHOj+Xk8/ek3zwk1XHfUcPJSc8TzO1Smsu5a13JScf2tsB28KsS7OZ8s2vTebb5wfnF1K+9XV7n/uykykv/t7dJ13/yOTpL+qtNgAAAAAAAAAAABiDdpdgtDMjDEZbq+7L6vpKx32LgtFg4gb4NecAAABMrbn53uYJRgOYXo09fpfC0YtSNv/APQDAtGr2GYz2mFtTrnnYeGphahxb7Dz+mXuSD36y877rL0lK6SHAmAOrPODS5Cf/INWXnkjuu3ePyTu/ZytfdHvyk+9J/uDtyfp68uRnp1x5XW/nftF3Jp/3hFTveUfyjrckd398Y8fFV6a85NXJrc/3PSAAAAAAAAAAAAC1WugSjLY6wmC0lbXlrvuWGodHdh6gN4LRAAAAOK/VYzBa07eTAFOrww/Zb3HRZZOpAwCgbo3+gtHKi141pkKYJsc6P5eTz6wkH/pk1XHf9ZcIRZsFpX0o1YtelfzM9+0+sUuYdbnqxuSqGwc7981PSrn5SclL/+1AxwMAAAAAAAAAAMA4tbsEo91X3Zu16r40y/A/87qyfrrrvsWmYDSYtD1+yhEAAICZMtdjMFpLMBrA1Cp7hC6ceOBk6gAAqFs/oeAPuj65+QvHVwtT49hi539v330qeddHOh9z3SVjLIh9pRx9QA+TPOYBAAAAAAAAAADAbFnoEoyWJKvr94zkHMtrp7ruW2oeGck5gN55YhYAAIDzeg5GmxtvHQDUp7HHW4YPEIwGAMyIvYLRjl60MedRt6T8+7en7PXvKEjywGOdx+9bTz75T533PfzyPcKLmR5HL9p7jl4DAAAAAAAAAADAjJlMMNrpjuOt0sp8aY/kHEDv+vg15wAAAEy9Vo/BaHv9cDhQj6tuTP7yz3eOX3715GvhwCqlpNptwkWXTaoUAIB6ze/yAMMXPDXltb+a3Hs2pb0wuZo48B5ySX/z51vJrTeMpxb2oaMX7j2nCEYDAAAAAAAAAABgtrR3CUY7M6JgtJW1Ux3HFxtHUopfcguT5olZAAAAzpub621es8d5wESVF35n5/GXvGaidTAFGt3fNiyHL5hgIQAANXrQQ7rvO7SU0mgIRaNvhxdKrjje+/xbb0guOORhmplx9KK95+zy/RoAAAAAAAAAAABMo4VdgtFWRxSMtrx+uuP4UvPwSNYH+uOJWQAAAM5rzfc4TzAa7EtPfk7ymNu2jj3mtuQLn1VPPRxcu/0Wk/bi5OoAAKhROXZRcsW1nfc99DETroZpcsOlvc991s1C0WbKict3/34s2Xs/AAAAAAAAAAAATJn50k7pEpM0qmC0lbXOwWiLgtGgFoLRAAAAOG+ux2C0Zmu8dQADKe2FlB/45ZQ735K84JUpr3lzyg/+Skq7+2/EgI7KLm8bLghGAwBmR3nhd3Te8dinTbYQpspDLu092Orx1wjBmiXl+InkUbfsMck9AQAAAAAAAAAAwGwppaTdWOi478yIgtGW1051HF9qHhnJ+kB/BKMBAABwXru3sJvSmhtzIcCgSnsh5SnPS+Nl359y61ekzLfrLomDqCEYDQAgSfKlL0qe8bXnXzdbKS9/Xcq1n1dfTRx4N1za+9xrT4yvDvan8sof3X3Cbt+vAQAAAAAAAAAAwJRaaBzqOL46omC0lbXTHccXG4dHsj7Qn1bdBQAAALCPHL2wt3mC0QCmXOm+q935fyIAAEyj0mym/Kv/kuqff1vydx9Lbvj8lOMX110WB9wNl5Yk1Z7zrjyeLLZ3+bc5U6lced3ud0cRjAYAAAAAAAAAAMDsaY85GG15vXMw2lJTMBrUQTAaAAAA5x19QG/zms3x1gHA/rWwWHcFAAATV04+NDn50LrLYEo86kFJKUm1Rzba9ZdMph4OmIZgNAAAAAAAAAAAAGbPQpdgtDMjCkZbWTvVcXyxeWQk6wP98cQsAAAA5y0d7e2HK1tz468FgPrcd7b7vrZgNAAAGMbxpZJX3Fb2nHfdJXvPYQYVj3kAAAAAAAAAAAAwexYaCx3HV9dXR7L+8trpjuNLjcMjWR/ojydmAQAAuF9pNJIjx/eeKBgNYLqtr3fftyAYDQAAhvXDz9s79Oz6SyZQCAdPL7/UAAAAAAAAAAAAAKZMu3Go4/iZ9XtGsv5Kl2C0xeaRkawP9McTswAAAGx1wYV7z2kKRgOYWQud/ycCAADQu1JKvuSm3edcf8ne4WnMoOIxDwAAAAAAAAAAAGbPQpdgtNURBKOtV+tZWe8cjLbUPDz0+kD/PDELAADAVkcfsPecZmv8dQCwP7UX664AAACmwmVHuwefNUryuKsn6svn2QAAIABJREFUWAwHR8NjHgAAAAAAAAAAAMye9hiD0VbXV1Kl6rhPMBrUwxOzAAAAbLV4ZO85rbnx1wHA/rQgGA0AAEbhqou673vMyeTCpe7Bacyw4jEPAAAAAAAAAAAAZs9Cl2C0MyMIRlteO9V132Kjh5+5BUbOE7MAAABsNd/ee45gNIDZJRgNAABG4taHdg8+e84jhaLRRXFvAAAAAAAAAAAAMHu6BaOtjiQY7XTXfUvNw0OvD/RPMBoAAABbzfUQjNZsjb8OAPalIhwTAABG4nFXJZcf67zvWTcLv6KLhsc8AAAAAAAAAAAAmD3tLsFoZ0YQjLay3jkYrZFGFhqLQ68P9M8TswAAAGzVSzBaSzAaAAAAwDAajZIfet7OALQXP6nkhssEo9FF8ZgHAAAAAAAAAAAAs2ehSzDa6giC0ZbXTnUcX2weTime6YQ6+El2AAAAtuopGG1u/HUAAAAATLmvekzJ4nzJf/it9azelzz3USXf8sUeoGEXDcFoAAAAAAAAAAAAzJ5xBqOtrJ3uOL7YODz02sBgBKMBAACw1fz83nOavp0EAAAAGFYpJbc/Irn9Ec26S+GgKILRAAAAAAAAAAAAmD3tLsFoZ9bvSVVVKWXwX0y7vHaq4/hS88jAawLD8cQsAAAAW821957Tmht/HQAAAADAVg2PeQAAAAAAAAAAADB7FkrnYLT1rOfe6uxQa6+sn+44vtg8PNS6wOA8MQsAAMBWc/N7z2kKRgMAAACAiSse8wAAAAAAAAAAAGD2tBudg9GS5Mz6PUOtvbzWORhtSTAa1MYTswAAAGw11957TrM1/joA2H+WLqi7AgAAgNnW8JgHAAAAAAAAAAAAs2dhl2C01aGD0U51HF9sHBlqXWBwnpgFAABgi9JLMFprbvyFALD/XHC87goAAABmW/GYBwAAAAAAAAAAALNnnMFoK2unO44vNQ8PtS4wOE/MAgAAsNX8/N5zBKMBzKbH3FZ3BQAAALOt4TEPAAAAAAAAAAAAZk97l2C0M0MGoy2vdw5GWxSMBrXxxCwAAABbzbX3ntNqjb8OAOrzZS/uOFxe8MoJFwIAAMAWpdRdAQAAAAAAAAAAAEzcXGMuzXT+2dbVIYPRVtZOdRxfah4Zal1gcILRAAAA2KqXYLSmYDSAaVZe+B3Jicu3Dn75N6Zcfk09BQEAALCheMwDAAAAAAAAAACA2bTQONRxfHV9deA1q6rK8trpjvuWGocHXhcYjp9kBwAAYKv5HoLRWnPjrwOA2pQHXp38+O8lv/0LqT751ymPfHLyhc+quywAAAAagtEAAAAAAAAAAACYTe3GQpbXT+0YP7N+z8BrnqlWs561jvsWm0cGXhcYjmA0AAAAtpoTjAZAUk5cnnzVt6XUXQgAAAD3K8V3aQAAAAAAAAAAAMymhcahjuOrQwSjLa/tDFr7nKXm4YHXBYbjVwkDAACw1dz83nOacrYBAAAAAAAAAAAAAAAAAJiMdpdgtDNDBKOtrJ3uum9RMBrURjAaAAAAW/USjNaaG38dAAAAAAAAAAAAAAAAAACQ5FBjseP46hDBaMtrp7ruW2wsDbwuMBzBaAAAAGw11957TlMwGgAAAAAAAAAAAAAAAAAAk9FuHOo4Pkww2sr66Y7jhxpLaZTmwOsCwxGMBgAAwFbzvQSjtcZfBwAAAAAAAAAAAAAAAAAAJFnoEox2ZohgtOW1zsFoS83DA68JDE8wGgAAAFstXrD3nNbc+OsAAAAAAAAAAAAAAAAAAIAk7S7BaKtDBaOd6ji+2Dwy8JrA8ASjAQAAsNWDrk8OLXXfX0pKszm5egAAAAAAAAAAAAAAAAAAmGkLYwhGW1k73XF8qXF44DWB4QlGAwAAYIsy304e8UXdJ7TmJlcMAAAAAAAAAAAAAAAAAAAzr1sw2pkhgtGW1091HF9qHhl4TWB4gtEAAADY6YILu+9rtiZXBwAAAAAAAAAAAAAAAAAAM6/dWOg4vjpEMNrK2umO44LRoF6C0QAAANhprt19X2tucnUAAAAAAAAAAAAAAAAAADDzFhqHOo6fGSIYbblLMNpi8/DAawLDE4wGAADATvPz3fc1BaMBAAAAAAAAAAAAAAAAADA57S7BaKtDBKOtrJ3qOL7UEIwGdRKMBgAAwE6t3YLRWpOrAwAAAAAAAAAAAAAAAACAmbfQJRjtTLWa9Wp9oDWX1093HF9sHhloPWA0BKMBAACw01y7+77W3OTqAAAAAAAAAAAAAAAAAABg5nULRkuSs9WZgdZcWescjLbUPDzQesBoCEYDAABgp7n57vtarcnVAQAAAAAAAAAAAAAAAADAzGvvEoy2un5P3+udXT+Te6uzHfctNo/0vR4wOoLRAAAA2KHMtbvvbApGAwAAAAAAAAAAAAAAAABgchZ2CUY7M0Aw2sra6a77lhqH+14PGB3BaAAAAOw0P999X2tucnUAAAAAAAAAAAAAAAAAADDzdgtGWx0gGG15/VTXfUtNwWhQJ8FoAAAA7NQSjAYAAAAAAAAAAAAAAAAAwP7Qbix03TdQMNra6a77FgWjQa0EowEAALDTfLv7vmZrcnUAAAAAAAAAAAAAAAAAADDzGqWZ+dL551/PDBCMttIlGG2hcSjN4mdpoU6C0QAAANhpbpdgtNbc5OoAAAAAAAAAAAAAAAAAAIBshJZ1sjpAMNry2qmO44uNw32vBYyWYDQAAAB2mpvvvq8pGA0AAAAAAAAAAAAAAAAAgMlqjzAYbWX9dMfxpeaRvtcCRkswGgAAADvNtbvva7UmVwcAAAAAAAAAAAAAAAAAACRZ6BKMdmaAYLTltc7BaIvNw32vBYyWYDQAAAB2as1139cUjAYAAAAAAAAAAAAAAAAAwGS1uwSjrQ4QjLaydqrj+JJgNKidYDQAAAB2mm9337dbaBoAAAAAAAAAAAAAAAAAAIzBQpdgtDMDBKMtr53uOL7YONL3WsBoCUYDAABgp7ldgtHand80AgAAAAAAAAAAAAAAAACAcekWjLY6QDDayvqpjuNLzcN9rwWMlmA0AAAAdpqb775vUdI9AAAAAAAAAAAAAAAAAACT1W4sdBwfJBhtee10x/HFpp+jhboJRgMAAGCnuXb3fYuS7gEAAAAAAAAAAAAAAAAAmKyFxqGO42cGCEZb6RKMttT0c7RQN8FoAAAA7LRbMNohb+gAAAAAAAAAAAAAAAAAADBZ7S7BaKsDBKMtr53qOL7Y8HO0UDfBaAAAAOw0N9d1V1k8MsFCAAAAAAAAAAAAAAAAAAAgWegSjHamz2C0+6p7c6Za7bhvqennaKFugtEAAADYaW6++75DS5OrAwAAAAAAAAAAAAAAAAAA0j0YbbXPYLSVteWu+5aah/taCxg9wWgAAAD05/gldVcAAAAAAAAAAAAAAAAAAMCMaXcNRlvta53ltVNd9y02j/S1FjB6rboLAAAAYB86cUVy/OLk05/aOj7fTr7gtnpqAgAAAAAAAAAAAAAAAABgZi10CUZbXjuVH77ru3pe50zVPUhtsbHUd13AaAlGAwAAYIfSaKT6shcn//UHt+546gtSli6opygAAAAAAAAAAAAAAAAAAGZWu0swWpX1fHT1L4Zef67MZ77RHnodYDiC0QAAAOiovOQ1SXsx1W++JVlfT77o9pSX3Fl3WQAAAAAAAAAAAAAAAAAAzKCFLsFoo7LUPDLW9YHeCEYDAACgo1JK8jWvSvmaV9VdCgAAAADMjmfekfyvN+4cP7Q06UoAAAAAAAAAAABgXzncvGCs6x9pHh3r+kBvGnUXAAAAAAAAAADAhvLcl3Uef/H3TrgSAAAAAAAAAAAA2F8unDuRy+avHNv6Dzv8+WNbG+idYDQAAAAAAAAAgH2iXP+I5Ov+9dbBL3hq8pyX1lMQAAAAAAAAAAAA7CMvvPSbc6ixOPJ1r1p4SG49fvvI1wX616q7AAAAAAAAAAAAzmu8+HtSfdGzkz95d3LyocnDH5/Smqu7LAAAAAAAAAAAAKjdVYcekldf9YZ8YPn9+cf77h56vUYauXLh6lx36KbMNeZHUCEwLMFoAAAAAAAAAAD7TLn24cm1D6+7DAAAAAAAAAAAANh3Lmgdy2OP3lJ3GcCYNOouAAAAAAAAAAAAAAAAAAAAAAAAAEAwGgAAAAAAAAAAAAAAAAAAAAAAAFA7wWgAAAAAAAAAAAAAAAAAAAAAAABA7Vp1F8B0KaXMJXlikgcluSzJ6SR/m+R9VVV9rMbSAAAAAAAAAAAAAAAAAAAAAAAA2McEo82wUsp/S/KV24bvqqrq5ABrnUhy57n1Luwy591JXl9V1S/3uz4AAAAAAAAAAAAAAAAAAAAAAADTrVF3AdSjlPKs7AxFG3Stpyf50yQvS5dQtHOekOSXSilvLqUsjeLcAAAAAAAAAAAAAAAAAAAAAAAATIdW3QUweaWUY0n+84jWuiXJW5PMbxqukvxRko8mOZbkkUku2rT/q5NcUEp5dlVV66OoAwAAAAAAAAAAAAAAAAAAAAAAgIOtUXcB1OJ1SR547s+nBl2klHJFkl/J1lC0dyW5qaqqR1dV9fyqqp6W5IokL09y76Z5X5bk+wY9NwAAAAAAAAAAAAAAAAAAAAAAANNFMNqMKaXcluTF517el+R7h1juziTHN71+d5Lbqqr6wOZJVVWdqarqR5I8f9vx315KefAQ5wcAAAAAAAAAAAAAAAAAAAAAAGBKCEabIaWUpSQ/sWno9UneP+Ba1yX52k1DZ5PcUVXVardjqqp6a5I3bRpqJ3n1IOcHAAAAAAAAAAAAAAAAAAAAAABgughGmy0/kOTkuT9/NMlrhljrBUmam17/SlVVH+rhuH+37fXzSykLQ9QBAAAAAAAAAAAAAAAAAAAAAADAFBCMNiNKKU9I8k2bhl5aVdU9Qyz5nG2vf6aXg6qq+kCS/7NpaCnJ04aoAwAAAAAAAAAAAAAAAAAAAAAAgCkgGG0GlFLaSX465z/eb6qq6reGWO/SJDdvGrovybv6WOKd214/fdBaAAAAAAAAAAAAAAAAAAAAAAAAmA6C0WbDa5I85Nyf707yyiHXe9i2139cVdVyH8e/e9vrm4asBwAAAAAAAAAAAAAAAAAAAAAAgANOMNqUK6U8Ksm/3DT0iqqq/mHIZW/c9vrDfR7/kT3WAwAAAAAAAAAAAAAAAAAAAAAAYMYIRptipZRWkp9O0jo39BtVVf3cCJa+dtvrv+rz+Lu2vX5AKeX4EPUAAAAAAAAAAAAAAAAAAAAAAABwwLX2nsIB9l1Jbj735+UkLxvRuse2vf5UPwdXVXW6lLKaZGHT8NEknx62sFLKxUlO9HnYNcOeFwAAAAAAAAAAAAAAAAAAAAAAgOEIRptSpZQbk/zrTUPfU1XVx0a0/OFtr+8ZYI17sjUY7cjg5WzxjUlePaK1AAAAAAAAAAAAAAAAAAAAAAAAmJBG3QUweqWURpKfStI+N/TeJD8ywlNsD0ZbHWCN7WFq29cEAAAAAAAAAAAAAAAAAAAAAABghghGm04vT/K4c3++L8lLqqpaG+P5qgkdAwAAAAAAAAAAAAAAAAAAAAAAwJRq1V0Ao1VKuTrJ920aen1VVe8f8WlOb3t9aIA1th+zfc1BvSHJL/Z5zDVJ3jai8wMAAAAAAAAAAAAAAAAAAAAAADAAwWhTpJRSkvxEksVzQx9N8poxnGrfBqNVVfWpJJ/q55iNywYAAAAAAAAAAAAAAAAAAAAAAECdGnUXwEh9Q5KnbHr90qqq7hnDeT677fWJfg4upRzOzmC0zwxVEQAAAAAAAAAAAAAAAAAAAAAAAAdaq+4CGKk7N/3515N8uJRyco9jLt32utXhmL+tqursptcf2rb/wT3W123+P1ZV9ek+1wAAAAAAAAAAAAAAAAAAAAAAAGCKCEabLoc2/fkZSf5ygDUu73DcI5O8f9PrD2zbf22f57h62+s/7/N4AAAAAAAAAAAAAAAAAAAAAAAApkyj7gI4kP502+vPK6Us9nH8E/dYDwAAAAAAAAAAAAAAAAAAAAAAgBkjGI2+VVX1d0n+eNNQK8mT+ljilm2v3z5sTQAAAAAAAAAAAAAAAAAAAAAAABxsgtGmSFVVx6qqKv1sSb542zJ3dZj3/g6n+x/bXn9dLzWWUm5I8thNQ8tJfrPnvyQAAAAAAAAAAAAAAAAAAAAAAABTSTAag3pLkrVNr59bSrmuh+Nete31L1RVtTq6sgAAAAAAAAAAAAAAAAAAAAAAADiIBKMxkKqqPpTkTZuG5pO8sZSy0O2YUsrtSe7YNHQ2yZ1jKRAAAAAAAAAAAAAAAAAAAAAAAIADRTAaw3h1kk9vev2EJL9VSrlh86RSSruU8i1JfnHb8a+rququMdcIAAAAAAAAAAAAAAAAAAAAAADAAdCquwAOrqqq/qaU8twk70gyf274iUn+vJTy3iQfTXI0yaOSnNh2+K8l+Z5J1QoAAAAAAAAAAAAAAAAAAAAAAMD+JhiNoVRV9c5SynOSvDHnw89Kkkef2zr5+STfUFXV2vgrBAAAAAAAAAAAAAAAAAAAAAAA4CBo1F0AB19VVb+e5GFJfizJp3eZ+p4kz6uq6gVVVS1PpDgAAAAAAAAAAAAAAAAAAAAAAAAOhFbdBVCvqqremaSMYJ1PJXlZKeXlSZ6Y5MFJLk2ynOTjSd5XVdVfDnseAAAAAAAAAAAAAAAAAAAAAAAAppNgNEaqqqqzSX6n7joAAAAAAAAAAAAAAAAAAAAAAAA4WBp1FwAAAAAAAAAAAAAAAAAAAAAAAAAgGA0AAAAAAAAAAAAAAAAAAAAAAAConWA0AAAAAAAAAAAAAAAAAAAAAAAAoHaC0QAAAAAAAAAAAAAAAAAAAAAAAIDaCUYDAAAAAAAAAAAAAAAAAAAAAAAAaicYDQAAAAAAAAAAAAAAAAAAAAAAAKidYDQAAAAAAAAAAAAAAAAAAAAAAACgdoLRAAAAAAAAAAAAAAAAAAAAAAAAgNoJRgMAAAAAAAAAAAAAAAAAAAAAAABq16q7ANgH5je/+PCHP1xXHQAAAAAAAAAAQ+nw3MN8p3kAMEGe0QMAAAAAAAAADjzP501Oqaqq7hqgVqWUZyV5W911AAAAAAAAAACMwe1VVf1q3UUAMLs8owcAAAAAAAAATCnP541Jo+4CAAAAAAAAAAAAAAAAAAAAAAAAAASjAQAAAAAAAAAAAAAAAAAAAAAAALUrVVXVXQPUqpRyNMmTNw39dZKzQyx5TZK3bXp9e5KPDLEeQL/0IWA/0IuAuulDQN30IaBu+hCwH+hFQN1mtQ/NJ7ly0+vfrarqs3UVAwCe0QOmkD4E1E0fAuqmDwF104eA/UAvAuqmDwF1m9U+5Pm8CWnVXQDU7Vxz+dVRrVdK2T70kaqq/mxU6wPsRR8C9gO9CKibPgTUTR8C6qYPAfuBXgTUbcb70PvqLgAAPsczesC00YeAuulDQN30IaBu+hCwH+hFQN30IaBuM96HPJ83AY26CwAAAAAAAAAAAAAAAAAAAAAAAAAQjAYAAAAAAAAAAAAAAAAAAAAAAADUTjAaAAAAAAAAAAAAAAAAAAAAAAAAUDvBaAAAAAAAAAAAAAAAAAAAAAAAAEDtBKMBAAAAAAAAAAAAAAAAAAAAAAAAtROMBgAAAAAAAAAAAAAAAAAAAAAAANROMBoAAAAAAAAAAAAAAAAAAAAAAABQO8FoAAAAAAAAAAAAAAAAAAAAAAAAQO0EowEAAAAAAAAAAAAAAAAAAAAAAAC1E4wGAAAAAAAAAAAAAAAAAAAAAAAA1E4wGgAAAAAAAAAAAAAAAAAAAAAAAFC7Vt0FwBS6O8md214DTJI+BOwHehFQN30IqJs+BNRNHwL2A70IqJs+BADTydd4oG76EFA3fQiomz4E1E0fAvYDvQiomz4E1E0fYqxKVVV11wAAAAAAAAAAAAAAAAAAAAAAAADMuEbdBQAAAAAAAAAAAAAAAAAAAAAAAAAIRgMAAAAAAAAAAAAAAAAAAAAAAABqJxgNAAAAAAAAAAAAAAAAAAAAAAAAqJ1gNAAAAAAAAAAAAAAAAAAAAAAAAKB2gtEAAAAAAAAAAAAAAAAAAAAAAACA2glGAwAAAAAAAAAAAAAAAAAAAAAAAGonGA0AAAAAAAAAAAAAAAAAAAAAAAConWA0AAAAAAAAAAAAAAAAAAAAAAAAoHaC0QAAAAAAAAAAAAAAAAAAAAAAAIDaCUYDAAAAAAAAAAAAAAAAAAAAAAAAaicYDQAAAAAAAAAAAAAAAAAAAAAAAKidYDQAAAAAAAAAAAAAAAAAAAAAAACgdq26C2CnUkozybVJbkzywCRHk5xJ8ukkH0nyh1VVLY/4nHNJnpjkQUkuS3I6yd8meV9VVR8b5bkmpZRyU5JHJDmRpJ3kE0n+Jsm7qqparbO2SSqlHE9yU5LrklyYZCHJZ5LcneS9VVV9pMbydiilXJWNj9sDkxxO8ndJ7kry7qqq7q2ztlmiD42GPrRBH2JQetFo6EUb9KKu53F/7EIfGg332YaD1ofYH/Sh0dCHNuhDW5VSrszGtbgiyUVJDiU5m+SzSf4qG9fk7voq3B/0odHQhzboQwxKLxoNvWiDXsQg9KHR0Ic26EOduT+AOvgaPxp6+IaD9jXeszH7gz40GvrQBn2IQehDo6EPbdCHup7H/bELfWg03GcbDlofYn/Qh0ZDH9qgD23l+bze6UWjoRdt0IsYhD40GvrQBn2IQehDo6EPbdCHOjvQ90dVVbZ9sGWjYb4iya9l45v7apftviRvT/LMEZz3RJI3JPmHXc73riRfPuR5rk7ylUlem+SdSf5p2zk+NqLreCTJdyf5+C5/n39K8rNJrqnx4z2265FkLsmXJPmPSf50j3upOnet/k2SS2v+HHheknfvUuc/nLtXLxpg7b2uwV7byTqvzQQ/BvrQaK6jPqQPbV7z5Ah60Obtjjqv0YQ+DnrRaK6jXqQXHfj7o8aPgT40mut4IO4zfai2+2MpyZOSfFuStyT5YJL1bee6o67rUPemD+lD+tDYrsd1Sb4/ye9k439q7HU9qiR/lOSbkrTruiY1fRz0odFcR31IH+q0fi+9Z7ftZF3XpoaPhV40muuoF+lFm9c9OYI+tHm7o65rNKGPgz40muuoD+lDB/7+sNls07X5Gj9bPdzX+I51e0av5k0f0of0Ic/o1b3pQ/qQPuT5vLo3fUgfmuU+NMH7w/N5u18ffWg011Ef0oe2r+35vP6ul140muuoF+lFndbvpf/stp2s69pM+OOgD43mOupD+tDmdU+OoAdt3u6o6xpN6OOgD43mOupD+tCBvz/2/HvUXYCtSpKfG+IL2v9McsmA5316kk/2ca43J1nqY/1bkrxjjy8KI/vETPLYbKRw9vr3WU7ysgl+nMd+Pc5dg38c8F76dJIX1nD/H07y833U+YkkX9LnOQb9/PrcdnLS16WGj4M+pA/pQ2PoQxn9N7JfOenrM+GPhV6kF+lFY+hFB+n+qHvTh/ShWexDk7w/svHG8Z9k4w3pvc51x6SuwX7a9CF9SB8a3/2R5CVDfH79vySPndQ1qXPTh/QhfWi898cQn1+f205O6rrUuelFepFeNLbrcXIEfWjzNrXvV0cf0of0oZm/P2w223RuvsbPRg/3Nb5rzZ7R2webPqQP6UOe0at7iz6kD+lDns+redOH9KFZ7EOTvD/i+bxerpE+pA/pQ2O6P+L5vH6ulV6kF+lFY7w/hvj8+tx2clLXpa5NH9KH9KGxXY+TI+hBmzfvVetDvXwO6kP60IG8P/rZWmE/uL7L+MeTfCgbzbWVjdS/m5M0Ns35Z0n+dynlyVVVfaLXE5ZSbkny1iTzm4arbKSsfzTJsSSPTHLRpv1fneSCUsqzq6pa7+E0j0jytF5rGkYp5bZspIG2t+26K8kfZ+OT8IpsfPLOndu3mOQNpZRGVVX/aQJlTuJ6nEhyvMP42Wy8uf2JbCSmPiDJo8/993OOJfnZUsrFVVW9fsx1JklKKc0k/z3JM7btujvJ+87Vek027sVybt8lSd5WSrmtqqrfn0SdM0IfGpI+dD99aHxWspFoPc30oiHpRffTizqf5yDcH3XTh4Z0QO4zfWirid0fSV6Q5OiEznVQ6UND0ofupw/trcrGm/wfzsb/WFjJxm/MvSrJTTl/fyQbn5u/XUp5ZlVVvzvpQidMHxqSPnQ/fYhh6EVD0ovupxeNz7S/X60PDUkfup8+1MEBuT+A6eRr/JAOSA/3NX6bA/ZszLTTh4akD91PHxof73noQ7vSh+6nD3U+z0G4P+qmDw3pgNxn+tBWns/bX/ShIelD99OH9ub5vO70oiHpRffTixiUPjQkfeh++tD4eK9aH9qVPnQ/faiDA3J/9K7uZDZblSR/mPMpen+U5JuTXNNl7uVJfjw70/d+L0np8XxXZGfq4e8neei2ee0k35qNT/rNc7+/x/O8okOdVZLVbLyhMZLEwmykp25PRfxwkqd2mHs8yY9um7vWae4YPs5jvx7Z+EL+uTVOJfmpJLcmOdRhbknynGw0r+01jf16nKvhtdvOe/bc/T+/bd6NSd69be7fJ7msx/NsPu495+6ZfrbWJK5HnVv0IX1IHxpLH8rGN1579Zhu2+9vO98bJ3FN6tyiF+lFetHY/k10UO6Pujd9SB+axT40qfvj3Lk+0+Vcf9Nh3x3j/rvvx00f0of0obHeH1+f5C+y8W+vZyY5vsvcY0m+PRv/A2Tz+T+e5Oi4r0mdmz6kD+lDY//30Oa1vFfd/TrpRXqRXjSe6+H96t6vlT6kD+lDM35/2Gy26dx8jZ+NHu5rfMd6PaO3T7boQ/qQPjSWPhTvefTzsdCH9CF9aEz/Hjoo90fdmz6kD81iH5rU/XHuXJ7P2/sa6UP6kD40vvvD83m9Xyu9SC/Si8b7b6LNa3mvuvM10of0IX1oPNdaSfFZAAAgAElEQVTDe9W9Xyt9SB/Sh2b8/ujr71R3AbYqSf5vNtL2Ht3HMd/Y4Yb/qh6P/altx70rycIu85/d4RPrwT2c5xXnmv77kvxEkn+R5FHZSAy8ZYSfmD+/ba0PJbl4j2O+c9sxf5akOeaP89ivx7nG/cn8//buPFqatKDv+O8ZEBjWUZBBQBj2oLiAmAhqHA0YiEeQJS64MIL7cqLRHA9CTlATjYnrOfEoUQTEJRIEREEgiANuuJ1BQEcEdVCUQVZxhlnhyR99573d1ff27equ7qqu+nzO6T+q3q7l9vu837rvc+vUTb4jyW3W3OaOSf68cfzLs+Y3Alt8HvfO8jcFj13x/vOz/IPGn1rzWPPbXLrLr+tQXzqkQzq02w5tcG53S3Jj41ifvcvPYwgvLdIiLdpdiw5lfPT90iEdmmiH9jI+jo71gcx+08LLknzP0ed04dGfXdo41iW7/LqH+tIhHdKhnY6Pj9pgm09NclXjHL5rl59H3y8d0iEd2vn3Q/P7unSXX9chv7RIi7Roty3a4NwmN1+tQzqkQ8aHl5fXOF+u8dNouGv80nHdozeglw7pkA7ttkMbnJs5j/W20aHj4+jQ8TF06EDHR98vHdKhiXbI/XkDeumQDumQ+/OG8NIiLdIi9+j1/dIhHdIh9+f1/dIhHdIh46PV19T3CXjVJLlow+1e2BhcL1tjm/s1LozXJbnfGts9t3Gsn11jm48+7YLQYajundkTB+f39VlrbvuaxnZP2fHf8z4+j49dN9iN7T7lhM/x03f8eTyvcbznrLHN/Y/G7E3b3JDk3mtsN3+cS3f5dR3qS4d0SId226ENzu3pjXP7y11+FkN5aZEWadFuWnRI46Pvlw7p0EQ7tPPPY25/p/4G3bjx6qbP4aINt9MhHWruR4e6O7/vbZzD6/d9Dnv+ei/acDsd0qHmfnTo5P3N7+vSXX5dh/zSIi3Sot18Hluc2+Tmq3VIh3TI+PDy8hrnyzV+Gg13jV86pnv0BvTSIR3Sod12aINzM+ex/nY6pEPN/ejQgY6Pvl86pEMT7ZD78wb00iEd0qHdfB5bnt+k7s87+pov2nA7LdKi5n606OT9ze/r0l1+XYf60iEd0qHdfB5bnJu56vW30yEdau5Hhw50fLR5nRd6V2u9YsNNf6Kx/LlrbPOkJDebW35RrfWta2z3g43lLy6l3GrVBrXW99dar11j39v4gmRhHL++1vo7a277Q43lr+7mlE62j8+j1vruWuvVG2z3p0man9s642kjpZTzkzyxsbo5xpbUWv8yyUvmVt08szHNlnRoKzq0eAwd2lIppWR5LDy7y2MMlRZtRYsWj6FFiw5mfPRNh7ZyMONMh5aOuY/xcdOx3rmP4xwyHdqKDi0eQ4e68/LG8n17OYs90aGt6NDiMXSIjWnRVrRo8RhatKWpzlfr0FZ0aPEYOrToYMYHME6u8Vs5mIa7xh8b8r0xU6VDW9GhxWPo0JbMebSmQzrUPIYOLTqY8dE3HdrKwYwzHVo6pvvzBkSHtqJDi8fQoe5M6v68RIu2pEWLx9AiNqJDW9GhxWPo0JbMVbemQzrUPIYOLTqY8dGGB6Mdtssay+eXUi44Y5vHNZafs86Baq2XJ/mDuVW3SfL562y7Y/+6sfzKFtv+ZpLr55YfXkr5uO1P6WA1x9Ndd3isf5vk1nPLv19r/Ys1t22O2cd3c0psSId0qEs6NPM5Se4zt3xjZr+xjtNpkRZ1aYwtMj52T4eMsy7ts0OMhw7pUJd0aNH7Gsu36+Ushk+HdKhLOsSmtEiLuqRFM+ar29EhHerSGDtkfACHyjVew7s0xp9Hs3s6pENd0qEZcx7t6JAOdWmMHTI+dk+HjLMujXHuld3TIR3qkg4tcn/e+rRIi7qkRWxCh3SoSzo0Y666HR3SoS6NsUOjHB8ejHbYbjxh3S1Oe3Mp5S5JPqWx/e+2ON6ljeVHt9h2V+7eWH7zuhvWWq9L8ra5VedlGF9TX5rj6dSx1IFHNZYvbbHtb2fxXB9cSrlw6zNiUzqkQ13SoZmnNpZfVmu9ssP9j5EWaVGXxtgi42P3dMg469I+O8R46JAOdUmHFt2zsfwPvZzF8OmQDnVJh9iUFmlRl7Roxnx1OzqkQ10aY4eMD+BQucZreJfG+PNodk+HdKhLOjRjzqMdHdKhLo2xQ8bH7umQcdalMc69sns6pENd0qFF7s9bnxZpUZe0iE3okA51SYdmzFW3o0M61KUxdmiU48OD0Q7bfRvLNyZ5z4r3P6ix/MZa69Utjvd7jeVPbLHtrnxMY/kDLbdvvv+TtjiXQ9ccT+/c4bGaY/H3193waMy+qbF6CGNxqnRIh7o0+Q6VUu6Q5AmN1c/uYt8jp0Va1KUxtsj42D0dMs66tM8OMR46pENd0qFFX9VY/q1ezmL4dEiHuqRDbEqLtKhLk2+R+eqN6JAOdWmMHTI+gEPlGq/hXRrjz6PZPR3SoS5NvkPmPDaiQzrUpTF2yPjYPR0yzro0xrlXdk+HdKhLOrTI/Xnr0yIt6pIWsQkd0qEuTb5D5qo3okM61KUxdmiU48OD0Q7bExvLf1xr/ciK939CY/ltJ77rdH91xv76cH1j+ZYtt2++fwhf096VUm6f5JGN1X+4w0M+sLG8z7F4j1LKc0opf1ZKeX8p5fpSyruOln++lPJ1pZRm8DmdDulQJybWoVW+LMn5c8vvTPIbHe17zLRIizox4hYZH7unQ8ZZJ3roEOOhQzrUCR1aVEr55iRfMbfqxiQ/1tPpDJ0O6VAnJtYhc9Xd0yIt6sTEWrSK+er2dEiHOjHiDhkfwKFyjdfwToz459EnMe/RLR3SoU5MrEOrmPNoT4d0qBMj7pDxsXs6ZJx1YsRzr+yeDulQJ3RokfvzWtMiLerExFpkrrpbOqRDnZhYh1YxV92eDulQJ0bcoVGODw9GO1CllNsmeWpj9YvP2Kz5xMK/bXnYtzeW71hK+eiW++jaexvLH9dy++b7H7DFuRyyr09y67nlf8qOnq5/9J/E5n8U247F5vvv12LbeyW5JLMIX5Dko5Lc+Wj5y5M8K8nfllJ+9OjfGafQoXN0qBtT6tAqzX9Tz6u13tjRvkdJi87Rom6MtUXGxw7p0DnGWTf21iHGQ4fO0aFuTLpDpZTblFIeUEp5cinltUn+V+MtT6u1vrGPcxsyHTpHh7oxpQ6Zq+6QFp2jRd2YUotWMV/dgg6do0PdGGuHjA/g4LjGn6Ph3Rjrz6NPYt6jIzp0jg51Y0odWsWcRws6dI4OdWOsHTI+dkiHzjHOujHWuVd2SIfO0aFuTLpD7s/bnBado0XdmFKLzFV3RIfO0aFuTKlDq5irbkGHztGhboy1Q6McHx6Mdrh+IMld5pY/kORnztjmgsbyP7Y5YK31qiTXNlbfoc0+duDyxvJnrLthKeUeSe7aWN3317N3pZSLkvznxuofr7U2nwbZleY4/FCt9eqW+2iO3a7/3m6T5NuS/Ekp5RM73veY6NCMDm1Jh2ZKKZ+U5KGN1c/edr8ToEUzWrSlkbfI+NgtHZoxzrbUQ4cYDx2a0aEtTa1DpZQLSil1/pXkqiR/keS5Sf713NuvSvJ1tdYf6uFUD4EOzejQlqbWoTWZq16fFs1o0Za0aMZ89UZ0aEaHtjTyDhkfwCFyjZ/R8C2N/OfRmzLvsR4dmtGhLenQjDmPjejQjA5taeQdMj52S4dmjLMtjXzuld3SoRkd2tLUOuT+vM5p0YwWbWlqLVqTuer16NCMDm1Jh2bMVW9Eh2Z0aEsj79Aox4cHox2gUsrjknxLY/XTa63vO2PT5tOKr9ng8M1tbrfBPrr02sbyE0optz7xncu+6oR1fX89e1VKuUWSX87i131Fkv+xw8P2NQ5vTHJpkmckeUySh2T2W5senOSxSX4oy9/M3D/Jq0sp99zgHEdNhxbo0BYm1qGzNJ9U/dpa69s62O9oadECLdrCBFpkfOyIDi0wzrbQU4cYAR1aoENb0KFTvSvJ05Pcq9b6032fzBDp0AId2sLEOmSuumNatECLtjCxFp3FfHULOrRAh7YwgQ4ZH8BBcY1foOFbmMDPo+eZ9+iQDi3QoS1MrENnMefRgg4t0KEtTKBDxseO6NAC42wLE5h7ZUd0aIEObUGHTuX+vDVo0QIt2sLEWmSuukM6tECHtjCxDp3FXHULOrRAh7YwgQ6Ncnx4MNqBKaV8SpKfa6x+VZKfXGPzZribT6dcRzPczX3u28sye5rnTS5I8syzNiqlfHyS7zzhj25WSjm/m1M7CD+T5F/OLX84yZM3+G1IbfQxDp+R5G611s+ttf63Wuuv1Vovq7W+rdb6hlrrS2ut/ynJPZP89yR1btu7JHlRKaVscJ6jpENLdGg7U+nQSkffSH9FY7Wne6+gRUu0aDtjb5HxsQM6tMQ4204fHeLA6dASHdqODp3swiTfkOQbSym37/tkhkaHlujQdqbSIXPVHdOiJVq0nam0aCXz1e3o0BId2s7YO2R8AAfDNX6Jhm9n7D+Pvol5jw7p0BId2s5UOrSSOY92dGiJDm1n7B0yPnZAh5YYZ9sZ+9wrO6BDS3RoOzp0MvfnnUGLlmjRdqbSInPVHdKhJTq0nal0aCVz1e3o0BId2s7YOzTK8eHBaAeklHKPzAbifCzfnuQraq315K1W2tc2O1Nr/eckP95Y/Z2llP9w2jallLsneUWSO5y2245Ob9BKKd+X5Csbq59Wa33dnk9l5+Pw6D+vzad3n/S+a2utT0vyrY0/ekiSL2tzzLHSoWU6tLkpdWgNj01yx7nlf0rywo6PMRpatEyLNjeFFhkf3dOhZcbZ5gbUIQ6IDi3Toc1NuEMfTHKvudd9MpsDenySH03y7qP3fXyS703yplLKp/dwnoOkQ8t0aHNT6pC56m5p0TIt2tyUWrQG89Vr0qFlOrS5KXTI+AAOhWv8Mg3f3ICu8e7ROyA6tEyHNjelDq3BnMeadGiZDm1uCh0yPrqnQ8uMs80NqEMcEB1apkObm3CH3J+3JS1apkWbm1KLzFV3R4eW6dDmptShNZirXpMOLdOhzU2hQ2MdHzfv+wRYTynlzkn+X5K7za2+Mskja63vPnmrJVc1ljd5Ml9zm+Y++/D9SR6d4yczliQ/Vkp5YmZPR31DZk/ivOvR+74xxxe/dyS5+9y+rq21Lj3ps5Ry0bonU2u9otXZ96CU8m2ZPfV63o/UWv/nmttftO6xTvg8Bj8Oa60/UUr5/CSPmVv9TUl+scvjHBodWkmHWtKhJU9tLP9irbX5FGmiRWfQopYm1qKdj4+p0KGVdKilnjvEgdKhlXSopSl3qNb6kSRXnPBHlyV5cSnlGUl+MMm3HK2/R5JXl1I+s9b65v2c5TDp0Eo61NKUO7QOc9Wn06KVtKglLVpivnoNOrSSDrU0sQ6ZqwYGzTV+Jdf4lib28+jWzHucTIdW0qGWdGiJOY816NBKOtTSxDpkzqMjOrSSDrU0sblXOqJDK+lQS1PukPvztqNFK2lRS1Nu0TrMVZ9Mh1bSoZZ0aIm56jXo0Eo61NLEOjS6uWoPRjsApZSPSfLqJPefW/2eJI+otb61xa5GGe5a6/WllMcneXmST577o886ep3mvZl94/DKuXUfOOW9f9PilEqL9+5dKeVrk/xIY/VP1lq/o8Vutvk8DmUc/kAW/yP7GaWUC2qtp42RUdOh1XSoHR1aVEr5+CSPbKx+9qb7GzMtWk2L2plai/Y0PkZPh1bToXYG0CEOkA6tpkPt6NBqtdYPJfnWUsoNSb79aPXtk/xcKeXTNvwNQwdPh1bToXZ0aG3mqhu0aDUtakeLFpmvXo8OraZD7UytQ+aqgSFzjV/NNb6dAVzjD2UcmveYo0Or6VA7OrTInMd6dGg1HWpnah0y59ENHVpNh9oZQIc4QDq0mg61o0OruT/vdFq0mha1o0VrM1c9R4dW06F2dGiRuer16NBqOtTO1Do0xrnq8/o+AVYrpdwhyauSfNLc6vdn9iTLP2u5u39qLH9sy3O5bZbDPYiBXGv9+yQPT/KsJDessclvJXlokqsb66/s+NQGpZTylUl+KosxfU6Sb97jaTTH4a1LKbdpuY87N5Z3MQ7/MLN/aze5WZJP2MFxBk+H1qND69GhE12Sxe/J/rTW+idb7G+UtGg9WrSeqbbI+NiODq3HOFvPQDrEgdGh9ejQenSolacn+Ye55QcneURP59IrHVqPDq1Hh1oxVz1Hi9ajRevRohNdEvPVK+nQenRoPVPtkPEBDJFr/Ho0fD0DucYP7d6Y05j3OKJD69Gh9ejQiS6JOY+VdGg9OrSeqXbI+NiODq3HOFvPQDrEgdGh9ejQenSoFffnzdGi9WjRerSoFXPVR3RoPTq0Hh060SUxV72SDq1Hh9Yz1Q6NbXx4MNqAlVJul+QVST5tbvUHkzyq1vqGDXbZfPrlPVtu33z/+2qt7z/xnT2otV5da/2GJA/IbELkt5K8I8k1Sf45yeVJnpfZU1T/Ta31iiQPbOzmj/d2wntWSvnSzCI9/+/+F5J8zT6foF9rfW8W/4OYJPdouZvmWGzzZNe11Fo/kuRvG6tbfbMzBjrUjg6tpkPLSiklyVc3Vnu6d4MWtaNFq029RcbHZnSoHeNstaF0iMOiQ+3o0Go61E6t9ZokL2msflQf59InHWpHh1bToXbMVR/Tona0aDUtWma++mw61I4OrTb1DhkfwJC4xrej4asN5Ro/pHtjVjHvMaND7ejQajq0zJzH2XSoHR1abeodMj42o0PtGGerDaVDHBYdakeHVtOhdtyfd0yL2tGi1bSoHXPVMzrUjg6tpkPLzFWfTYfa0aHVpt6hMY2Pm/d9Apzs6LfRvDzJZ8ytvirJo2utf7jhbi9vLN+35fb3biz/+YbnsVO11r9J8v1Hr7M8rLH8B6fss5y0/lCUUp6Q5PmZPaX6Jv83yZOP/sPWSgefx+WZPWHyJvfN8vhcpTkW22zbxjWN5eYTXUdNhzanQ8t06FSfl+Rec8vXZfZNNUe0aHNatEyLju1ifIyVDm1Oh5YNsEMcAB3anA4t06GNvaWx3PbfzEHToc3p0DId2tik56oTLdqGFi3TolOZr15BhzanQ8t06Ji5aqBvrvGbc41fNsBr/FDujTnLpOc9dGhzOrRMh05lzmMFHdqcDi3ToWPmPNanQ5vToWUD7BAHQIc2p0PLdGhjk74/L9GibWjRMi3amLlqHdqIDi3ToVOZq15BhzanQ8t06NgY5qrPO/st7Fsp5fwkv57ks+ZWfyjJF9Raf2+LXb+5sfzJpZRbt9j+M8/Y30E5eqrq5zVWv7aPc9mlUspjkvxSFh+E+JIkT6q1frifs1oaO81Anurom5pPPmN/XblTY/k9OzrO4OjQfuiQDiV5SmP5RbXW9224r9HRov3QIi064ziTGB+n0aH9mMo4G2iHGDgd2g8d0qE13NBYvmUvZ9EDHdoPHdKhNUx2rjrRon3RIi2K+epT6dB+6JAOrTKV8QHsl2v8fkyl4QO9xg/+59FHJjvvoUP7oUM6FHMep9Kh/dAhHTrjOJMYH6fRof2YyjgbaIcYOB3aDx3SoTVM9v68RIv2RYu0aA3mqnVop3RIh2Ku+lQ6tB86pEOrDHl8eDDawJRSbpXkpUkunlt9bZLH1Fpft82+a63vTPLGuVU3z+LF4SwXN5Z/Y5vzGYDPS3LR3PJra61v7elcdqKU8u8ye3LlR82tflmSL6m13tjPWSVJXtFYvrjFtp+dxYvQZbXWd219Rg2llDtl+Smu/9D1cYZIh/ZKh/rTe4dKKRckeXxj9bPb7mestGivtKg/vbdoDaMfH6fRob0a/TgbcIcYMB3aKx3iLHdvLO/i+67B0aG90iFONeW56kSL9kyLJsx89el0aK90iFVGPz6A/XKN36vRN3zA1/jB/zx6yvMeOrRXOtSf3jtkzuN0OrRXOtSf3ju0htGPj9Po0F6NfpwNuEMMmA7tlQ5xlknen5do0Z5pEacyV61De6JDE2au+nQ6tFc6xCqDHR8ejDYgpZRbJHlRkkfMrb4uyRfVWn+zo8O8uLH81Wue279I8q/mVl2d5FUdnVNfvqux/KxezmJHSimPTPIrSW4xt/pVSZ5Qa72+n7M655VJrplbftjRGFvHJY3l5pjuypdmsZHvSnL5jo41GDq0dzrUnyF06MuT3Gpu+Yokr9lwX6OiRXunRf0ZQovOMurxcRod2rtRj7OBd4iB0qG90yHO8vmN5UFM7u+SDu2dDrHKJOeqEy3qgRZNm/nqE+jQ3ukQq4x6fAD75Rq/d6Nu+MCv8Yfw8+hJznvo0N7pUH+G0CFzHifQob3Tof4MoUNnGfX4OI0O7d2ox9nAO8RA6dDe6RBnmdz9eYkW9UCLWMVc9TEd2h0dmjZz1SfQob3TIVYZ7PjwYLSBKKXcPMkLkjx6bvUNSZ5Ya31lh4f6hSQfnlt+fCnlfmts1xzEL6i1Xtvdae1XKeXJSR45t+oNmT35cRRKKZ+T5Fez+A3SazL7JuC6fs7qWK31Q0le2FjdHGNLSin3T/K4uVU3JvnFDk/tpuNcmOQZjdW/VmutXR9rSHRov3SoXwPp0FMayz879s6sQ4v2S4v6NZAWrTrOqMfHaXRov8Y+zobeIYZJh/ZLhzhLKeULkjy0sfpX+ziXfdGh/dIhVpnqXHWiRfumRcR89RId2i8dYpWxjw9gv1zj92vsDR/6Nf4Afh49yXkPHdovHerXQDpkzqNBh/ZLh/o1kA6tOs6ox8dpdGi/xj7Oht4hhkmH9kuHOMsU789LtGjftIhVzFXr0D7oEDFXvUSH9kuHWGXo48OD0QaglHKzzIL62LnVNyb5klrrr3d5rFrrW5M8b27VLZI8t5Ryq1M2SSnlsVn8jTfXJ/meLs9rW0cXvnXf+/gkPz236sYkT6m13tj5ifWglPKwJL+e5Py51a9L8oW11mtO3qoXz8zsm5ObXFJKecxpbz4ao8/J4hM6n11r/asV2zyglPKFbU6qlHKXzD6/C+dWX5/kB9rs59Do0PZ06JgOna2U8qlJHjK36iNJntt2P2OjRdvTomNadOK2xscZdGh7xtmxA+oQA6JD29OhYzp0rJTy0FLK485+59J2n57k+Y3Vr6u1vqmbMxseHdqeDh3ToWPmqtvRou1p0TEtOpv56mU6tD0dOqZDy4wPoC+u8dvT8GMHdI1/ZtyjNxg6tD0dOqZDZzPnsUyHtqdDx3ToxG2NjzPo0PaMs2MH1CEGRIe2p0PHdOiY+/Pa0aLtadExLTpmrnp9OrQ9HTqmQ2czV71Mh7anQ8d0aNnYxsfaXww79bNJvrix7ruTXFZKuajlvq5c40mT/yWz32Dz0UfLD0/y6lLK19Ra/+KmN5VSbpnk65L8cGP7H661vn2dkyml3D0nj7O7NJZvvuJrvarW+p4zDvWmUsrLkvxKkj+otX7khHN5UJKnJXlS44++u9Z62Rn778SuP49SyoOT/EaS286tfkuSb05y51JKm9O9ttZ6ZZsN2qi1/nUp5ceTfOfc6heWUv5jkv9da73+ppWllAcm+ZnMxupN3puzv4H4uCQvLaW8KcnPJ3nx0TcvS0opt0vy5Mye7H1h44//a631r9f4sg6ZDumQDs103aHTPLWx/Mpa699tuK8x0SIt0qKZXbXoIMZHz3RIhybXoWR/46OUctskdzrlj5sTyndacax3DGlyrWM6pEM6tKir8XH3JC8qpbw5sx+gvSTJW2o9+bcslVI+IcnXJ/mmxnlde7RuzHRIh3RoUVfjw1x1O1qkRVq0qOvx0WS+epkO6ZAOLZrk+ABGyTV+Ig13jT/mHr3B0SEd0qEZ9+j1R4d0SIdm3J/XHx3Socl1KHF/3sDokA7p0CL35/VDi7RIixa5R2//dEiHdGiR+/P2T4d0SIcWTXJ8rK3W6tXzK0nt8HXxmse8OMl1jW0/kuSPkvxyklck+ccT9v9rSW7W4mu7ooOv6blrHOc9c+//5yS/l9k/0l9I8qoV5/F9e/673unnkdlvNOpqLF26h8/jZklefsKx35XZBegFSf74aGzO//l1ST57zXHe3PcHkvxOZhNsz0/y4qNj3HDK5/Csvhuxp7GpQzqkQzvo0CnHvGVmN0rM7+8JfTZgKK8Ox44WadEzOxxLl+7h89hLiw5lfPT56nDc6NDAx9muP48cXof2NT4u6egzuajvXuzw70KHdEiHdvN5fNEJ7//g0fh4aWY3QLwgyauTXHnK/j+U5BF9d2IPfxc6pEM6tJvP4+IT3m+u+vTPS4u0SIt2OD4axzRfffLnokM6pEPGh5eX1whfHTbZNX7gDd/155HDu8a7R28grw7HjQ7p0DM7HEuX7uHzcI/eQF4djhsd0qFndjiWLt3D5+H+vIG8Ohw3OjTwcbbrzyOH16F9jY9LOvpMLuq7Fzv8u9AhHdKh3Xwe7s9r9/ehRVqkRbv5PC4+4f3mqk/+rHRIh3Roh+OjcUxz1Sd/LjqkQzpkfKz9OulJckxArfXSUsrjkjw3yccerS5JHnr0OskvJfnaWuuHd3+GW7ltkoed8Z73J/mmWuv/2cP5cIpa64dLKV+c2W9W+pK5P7pzkkedstk/JnlyrfW3NzzsHZJ85hrvuzrJt9daf3rD43AGHdKhIeipQ49L8jFzy+/ObKKfHmiRFg1BTy0yPgZCh4wz6JsO6dCE3S5nj4+bvD7J19da37jD85ksHdKhCTNXPSBapEUTZr56IHRIhybM+ABGzTVew4fAPXrTpkM6NATu0Zs2HdKhIXB/3rTpkHEGfdMhHZow9+cNiBZp0YSZqx4IHdKhCTNXPRA6pEMTdvDj47y+T4D+1FpfnuRBSX4qs4F6mtcneWKt9Um11qv3cnLt/ViSyzJ7Kucqf5fke5PcZ6j/KKem1npVrfVLk/z7zMbaad6X5CeTPKjW+jbdgAcAAAUCSURBVIo1d395ku9P8rtJrllzm79M8t2Z/YYT/4ndMR3SoSHYcYdO8tTG8vNrrTdssT+2pEVaNAR7apHxMVA6ZJxB33RIhybgNZn9VtxfSvKONbf5UJIXJvnCJA9309Vu6ZAOTYC56gOgRVo0UearB0SHdGhCjA9gUlzjNXwI3KM3bTqkQ0PgHr1p0yEdGgL3502bDhln0Dcd0qEJcH/eAdAiLZoAc9UDp0M6NFHmqgdEh3RoQkY1Pkqtte9zYABKKbfI7KnH90xyl8yebvz3SS6rtf5Nn+fWRinl9kkenORemT2p81aZ/Qfm75P8aa31z3s8PdZQSrlXkockuWuS2yS5Msnbk/xurfX6LfZ7XpL7JblPkrsluSDH4+P9Sd6Z5I9qre/e6gtgYzrEUOyqQxwGLWIodtki42PYdAjomw4xBaWUC5M8MLNxfsckt05yQ5IPJnlvkjcnecsB/GafUdIhxs5c9WHQIqBvOsQUGB/AFLnGMxTu0ZsuHWIo3KM3XTrEULg/b7p0COibDjEF7s8bPi1i7MxVD58OAX3TIaZgLOPDg9EAAAAAAAAAAAAAAAAAAAAAAACA3p3X9wkAAAAAAAAAAAAAAAAAAAAAAAAAeDAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgdx6MBgAAAAAAAAAAAAAAAAAAAAAAAPTOg9EAAAAAAAAAAAAAAAAAAAAAAACA3nkwGgAAAAAAAAAAAAAAAAAAAAAAANA7D0YDAAAAAAAAAAAAAAAAAAAAAAAAeufBaAAAAAAAAAAAAAAAAAAAAAAAAEDvPBgNAAAAAAAAAAAAAAAAAAAAAAAA6J0HowEAAAAAAAAAAAAAAAAAAAAAAAC982A0AAAAAAAAAAAAAAAAAAAAAAAAoHcejAYAAAAAAAAAAAAAAAAAAAAAAAD0zoPRAAAAAAAAAAAAAAAAAAAAAAAAgN55MBoAAAAAAAAAAAAAAAAAAAAAAADQOw9GAwAAAAAAAAAAAAAAAAAAAAAAAHrnwWgAAAAAAAAAAAAAAAAAAAAAAABA7zwYDQAAAAAAAAAAAAAAAAAAAAAAAOidB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9M6D0QAAAAAAAAAAAAAAAAAAAAAAAIDeeTAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgdx6MBgAAAAAAAAAAAAAAAAAAAAAAAPTOg9EAAAAAAAAAAAAAAAAAAAAAAACA3nkwGgAAAAAAAAAAAAAAAAAAAAAAANA7D0YDAAAAAAAAAAAAAAAAAAAAAAAAeufBaAAAAAAAAAAAAAAAAAAAAAAAAEDvPBgNAAAAAAAAAAAAAAAAAAAAAAAA6N3/B89nvm568KCIAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor, Config\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 5), dpi=300)\n", + " configs = get_known_configs()\n", + " to_display = configs[\"Relative humidity\"], configs[\"Ambient temperature\"]\n", + " for i, config in enumerate(to_display, start=1):\n", + " plot = figure.add_subplot(1, 2, i)\n", + " coros.append(plot_sensor(config, plot, {}))\n", + " await asyncio.gather(*coros)\n", + "\n", + "display(figure)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAE0YAAAmZCAYAAAAwyqtnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdd5RkVbX48e8eZkiSGXIaJAoIKElRkiBREZAgQRyCOYvx93yK+MxZjKBkQRHBwEMMKPoQUBBEJKkIKEgecmZm//44NVJ9+1Z3pe7qnvl+1uoFd997ztlVdavWmu5d+0RmIkmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmDNGXQCUiSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJknoQEVn5OXrQOUmavPxMkSRJkiRJkiRJkiRJkqT5S0QcXa0dG8txgxIRM2pq5GbOL+tLkiRJkqT2TR10ApIkSZIkad4WEVOBDYDnAEs1fhYAHgEeBm4FbgZuzswnBpSmJEmSJEmSJEmSJEmSJEmSJEmSJEmSpAGzMZokSZIkSeq7iFgI2Bs4HHgxsEgbw56KiL8AlwG/AX6emfeMXZaSJEmSJEmSJEmSJEmSJGk0ETEDuKmDIU8ADwIPADcCVwKXAj/NzCf7nd9cEfES4IKaUz/LzF37tMb2wK9HuGSHzLywD+scCpw8wiVrZubNva4jSZIkSZIkTURTBp2AJEmSJEmat0TEnsDfgTOAl9JeUzSAacDzgNcB3wHujIgvj0mSktQnEXFzRGTTz0mDzkmSJEmSJEmSJEmSJEkasIWA5YC1gV2A9wM/BG6LiE9FxGJjtO4RLeIvjYjVx2jNqsMn2DySJEmSJEnSpGNjNEmSJEmS1BdRfA34EbBqH6acAoxXIZIkSZIkSZIkSZIkSZIkSRpb04H3An+JiBf2c+KIWArYp8XpKcDMfq43gldGxBK9TBARzwa27VM+kiRJkiRJ0qQzddAJSJIkSZKkecY3gNe1OPdP4FfANcDdwCPAYsDSwDrAZsAmlF0iJUmSJEmSJEmSJEmSJEnSxPYI8PcW5xYFlgGWbXF+DeD8iNguM//Up3wOBhYe4fxhEfHRzMw+rdfKosABwPE9zHE4EP1JR5IkSZIkSZp8bIwmSZIkSZJ6FhF7Ud8U7QrK7o6/Gq2YKCIWBXYF9m78PKvfeUrSRJeZFjRKkiRJkiRJkiRJkiRpMrg8M7cf6YKIWBV4OXAUsFbl9BLAWRHxnMx8qg/5HFE5ToY2F5sB7Aj8sg9rVd1H2Sh2rsPpsjFaREwBXlMJz6I0mtM8KjOPBo4ecBqSJEmSJEkTxpRBJyBJkiRJkia3iAjgCzWnzga2zswL2tlhMTMfzcyzM/PVwCrAO4G/9TdbSZIkSZIkSZIkSZIkSZI0HjLz1sz8OrAJpaawai3g9b2uExGbAs+rhL8APFmJHd7rWi18F5jddPyCiHhOl3PtAqzadHw/8NNuE5MkSZIkSZImIxujSZIkSZKkXm1N2Umx2W3AzMx8opsJM/OBzPxiZr6n1+QkSZIkSZIkSZIkSZIkSdLgZOYjwMHAdTWnX92HJY6sLgl8CTi3Et8nIpbuw3pV/wZ+Xol124StOu504PEu55IkSZIkSZImJRujSZIkSZKkXu1WEzspMx8a90wkSZIkSZIkSZIkSZIkSdKEk5mPA5+oObV5RCzT7bwRsTBwUCV8YWb+Ezi5El+I0qBtLJxQOX51REztZIKIWBbYc5R5JUmSJEmSpHleR79YkyRJkiRJqrFGTeyP455FCxGxPLA5sHzjZzZwF3AncGlmPjjA9IZo5Lo+sBawFPAs4CFgFnAb8IfMfHicclkK2KIplymNPH6ambeMUw6rA88HVgaWBh4GbgIuy8zbxymHRYAtgZUo989iwL3A3cBVmXnjOOSwJPACYB1gScrzcDdwRWZeP4brbgSsTXncywKPNta9mfIaPDVWazfWXwDYFNgAWAFYGHgE+HNmXtDm+GdT3lOrAEsACwD3NX6uB67OzDlj8gAmiIgI4LmU+2c5YBngAcrn4E2U+2jMn4NB3ceSJEmSJEmSJEmSJEmaUM6viU0B1gMu6XLOfSj1Zc1Oafz3PEqNynJN544AvtLlWiP5MXAPML1xvAKweyPerkOABZuO/5yZfywlQBPD/FiXFRGrUB7vDErt0yLAg5Sayn9S6ukeH1iCfRIRC1JqBtcHVqS8tlAe5yzK63rDOOUylVL7uyHlPTUHuJ1S83ZpZs4ejzzaNRFqTSVJkiRJmtfYGE2SJEmSJPVq+ZrYI+OeRZNGgcFbgAMojbVaVQU9HRGXACcBJ493oURELE7Z3XFnYHtg9VGGzI6IK4FvAqdk5pNdrHkS8Jqm0C2ZOaPp/G7Au4AdKMVKVYdRnq8x0Wji9BrgTZTGbHUyIn4HfCozz20aezNDG/WdnJkzu8hhCmVX0EOAbSkNuVpdexNwJvDZzLynw3VOYuTXYlPgg5R7ZFqLOW4BPgd8ox+NyiJiY+AdwC6UhnStPBwRv6S8Bpd2uMb2wK8r4R0y88LG+dWB91J2ca0WLAL8BqhtjBYR61AKHV8CvIjSXHAkD0TELyiv3+/bzH8GpbiqlddExGtGOA9AZtZ+LkVEVkIfycyj28mtMs+6lOdxd0qxVSv3RsTPKM/BlV2scxIT7D6WJEmSJEmSJEmSJEnSxJSZd0fEgzzTcGmu6XXXt+mIyvGjwFmN9Z6OiNOBtzed3zQintdNrcxIMvPJiPhOZa3D6awx2uGV4xN6TqwPxqMuq7HO1cBGTaG7gVV6qSmKiAOB0yvhN2fm10YYMx3YG9gJ2I7S5G4kT0bEpZSGez/opilcRBwNfLg51qrGrJ8a9V17UWpGtwIWGuX6u4FzKa/ttWOQzwrA+4GZlE1969wVEWcCx2Tm3f3OoV3jVWsqSZIkSdL8asqgE5AkSZIkSZNe3S53a9TExkVEHAD8Dfg0sBmtm6JBaRq/DfBt4KqI2HbsMywi4tPAXcBpwKGM3hQNSqOyzYHjgRsjYps+5rNYRJxF2SFzJ+qboo2pRsOp3wIn0ropGpTX9MXATyLiexGxaB9z2BW4mrJj6M6MUKjSsCbwPuAfEfH2Ua5tN4cpEfFR4HLglbRoJtWwBvBl4PcRUdeksN01V2oU5f2J0vxupKZoUHYz3Au4JCJ+GBHLdLt2JY8jgOuAN1PfFK3VuGUj4grgr8AnKa/daMV3UHbv3Be4NCJ+FBGtCqkmjYhYNCK+BlxDKfocqSkawLKUJnR/jIhTI6Lt532UPMb9PpYkSZIkSZIkSZIkSdKk8HBNrNoorS0RsSaloVOzszOzeY2Ta4ZWm6n1y7crx3u0Ww8TEZsDGzeFnqTUFw7MAOqyTqwcLwfs0W6+LcysHD8BnNHq4kYjvduB44D9Gb0pGsCClMZYZwJ/iYgNu8p0HEXE+hFxA3AlpSHbtozSFK1hOUqN4V8i4viIaGdMuzntDlxL2dx1pHtmecrmyddFxKv6tX4nJkKtqSRJkiRJ8zobo0mSJEmSpF7dURPbf9yzACLiv4HvAqt0MXxD4BcRcVB/s2ppS0YvhBjJqsAFEfHqXhOJiGcBF1CaFw1ERKxFaYr24g6H7g/8NCIW7EMO7wb+F9igi+GLA1+MiG9FxNQecphCKZT5IJ01p3se8NuIWKyLNTcB/kBpjtXNDpOvoBSwrdvF2OY83gN8C+im0d3ilOegF3sCf4iIVXucZ2AaO5X+CngjpfFjR8MpO1deFBHtNGocKY9xv48lSZIkSZIkSZIkSZI0adQ1PHqwy7kOZ3jN0ynNB5l5JaWBUbODI6KX+r1amXk18Mem0FSg3Rq/wyvHP87Me/uSWPfGuy7rNOCpSuywbhdurLlTJfzDzLxvhGFb03ntVbPnUOrpqutONCsCvdT8BXAkpd6rq8aGQyaLeDnwI6CTTVqXBU6PiNf1un4nJkKtqSRJkiRJ8wP/4SxJkiRJknp1MVAtKtgpIt6amceOVxKNpmjH1Jx6Gvg18EvgNsrvQ1YDdgdewNCiqAWB0yLi6cw8c2wzHiIphVdXA9cBd1MKvWZTiiCeDWxB2dlyWtO4acDxEXFNZl7Rw/rHURq1zfVv4Dzgz8BdlN0416AUKPVdRCxJaea0Ws3pfwA/pOw4eR9lt8HnUppxrdi4Zlvg8z3m8EnKbnxVs4BfUIrV7gIepRTmbQjsCqxXuf4I4H7g3V2m8jHg4Kbjf1EKaK4G7gEWoxROvZKyg2Cz9Si7cr6l3cUau4z+ujFvsznA/1He3zdRHtMilIZ82wE7MrTh1TrAeRGxWWY+0O76TXYG3t90/EQjrwspzRefbqy9VU2udR4GLqO8n/4GPAA8RHmPL00pSNqB8lw2Wwf4XkRsl5lPt5j7SeCqpuMNGPq+vA/4Zxs59lVELEJ5zjaqOX0PcA7PvKeX5Zn7aOXKtRtQmqNtmpmzukxnXO9jSZIkSZIkSZIkSZIkTQ6NDTTrNk78RxdzTQFmVsK3UTYJrToF+EzT8VLAPsDpna7bhhOAzZqODwc+N9KARpO2A2vmmWjGsi6LzLwrIs6j1AfOtXtELJ+Zd3WR76HAlEqsk+d1NnAFcA1wPXAvpbYzKHWV61DqUF9UWWcx4LsR8bzM/FcXeQ/CfTzz2t5IeZwPU+oGp1NqJncGqptubknZELWXDZXXBI7lme87J6V28Tzg1sbxasBulOe6ue43gG9ExL2Z+YMecmjLBKo1lSRJkiRpnmdjNEmSJEmS1KvzgMcoxQ/NvhwRLwU+nZkXjWUCEfEi4MM1py4CjsjMv9ac+5+IeCGlyGX95umA4yLi95l5S/+z/Y85wM8pBVc/z8y7RxsQEdOBD1EaBs0t7FgIOJnSLKwbqwIHNf7/MeADwNcys7rrIsAHx2KXTOALDC+WeYhS8HF8ZmZ1QES8DXgPcDTld1xvojSs6lhE7M3wQpX7KI26TsnMx1uMC2Av4BvA8k2njoqI32bmjztMZaWmPB4CjgJOyMzZNWv/P0ojwPdXTr0hIj6RmbeNtlhELA18n+GNxk4Ejs7MVs29Pt4oUPwqsEtTfC3K++mVo61d4708c0//AHhnq4KwEe7B+yk7hp4FXNziHq7OtTXwJWDzpvDWwDuAz9aNycx/A5s2zXEzpXHgXD/OzJmjrT0GvsDwpmizgU8BH627jyPincC7gI9SPkvmWo1SrLZPF3mM630sSZIkSZIkSZIkSZKkSaWutug+SjOmTu1CqX9rdlpmzqm59jTKZn3Nm0Eewdg0Rjud0ghtbp3TBhGxVWb+foQx+1CaKM11G6W+cCIYl7qsJicwtDHaVOAQuts8dWbl+FbKJrsjeRI4m/KYf9XORqERsQbwCYY2t1sW+DrwsnaTHYA7gJMom25e3uK98x+NmsndgC9SmsLNtV9E7JuZZ3WZx3t55v1yPTCzxfvl4xGxZSPn5uZ7AXw9In6Tmfd0mcOoJlCtqSRJkiRJ84Vqt3tJkiRJkqSONBp6faXF6ZcD/xcRt0bECRHx2ojYJCL61qy9UTDwbYYWLEFp2LZji6ZoAGTmJZTd466unFqS1o+pX/bOzF0y8zvtNEUDyMx7MvNtwGGVUxtFxM5d5jH3eXsE2DUzvzRS4VKrwo1uRcQLGP54Hm7kclxdU7RGHk9m5scoTd1mUwpbFqq7dpT1l6c0Amv2N2DjxvotH28W51CKt26tnP5E497sxIKUxzEL2CYzj69rJtVY+6nM/ABwfOXUAgx/Plv5KjCj6Xg2cEhmHj5CU7S5699IKXCqPnf7RMRWba7fbO59eCyw30i7ZLZ4Tf4NrJyZb83M37RTfNeY62JgG+D8yqm39fNzaqw1mkO+vhKeAxyWmf/V6j7OzNmZ+RlKYWX1Ods7Irppcjfe97EkSZIkSZIkSZIkSZImgYhYibJZZtUZozVkauGImtgpdRdm5h0MbzS2Q0Ss2cW6I8rM+ymNppqNVgtTfSwnt6q5GWeDqMs6D7izEpvZzrrNGjVV61TCJ7dxr22Rma/MzHPaaYoGkJm3ZOZBlI1em+0eEevXDJkI/gCslpkfyMw/tPMebNRMngdsBVxZOf2uHnKZ2xTtGuDFIzURzMw/UO6tayqnlqNsIjomJlitqSRJkiRJ8wUbo0mSJEmSpH74EHDJCOdXoRT2HAf8CXgoIn4fEV+OiH0jYoUe1t4DWK8S+yewf2Y+OdrgzJxF2V3wseq8EVGdt2/aLZhpMfZkyu6LzY7sLSPen5m/7XGObry5JvaeRmHUqDLz+5SdJbv1dkojvLkepTRlqxafjJTDv4BXVcIbAHt2mdNhmXlVm9e+H6gW1Owy2qDGvX1AJfxfmfmdNtel0bTu9QzfrfX97c5R8Qfgna2a4Y2Sy5OZWX0Ptzv2ceA1lNd+rtWAbpsNDsI7a2JfzMxT2xncKFb775pTR/WQ05jfx5IkSZIkSZIkSZIkSZocImItSpOs5SqnHgU+0cV80ykbtza7PDOvHWHYydVpGLvN+06oHL8qIhapuzAiZgA7VMLVBkwDMYi6rMx8GjitEn5uRGzWYQp1r+2oz2svtZ3AMcBlTccBHN7DfGMmMx9tPNfdjL0POLQSfmFEbNBDSk8C+2TmvW2sfy9lM9BqjfDBjc+GsTARa00lSZIkSZqn2RhNkiRJkiT1rFHAsjvwkzaHLAxsCbwV+D5we0RcGBGHR8TCIw8d5i01sXdn5iPtTpCZNzF8p7igvmnXRFHd2fLFPcx1I/DVHsZ3JSKWAvarhK+jNNDrxIeB+7tYfzHgTZXw5zLzH53OlZm/Ay6ohPfudB7gN5n54w7WnUXZIbPZphEx2u/93sPQ3w3eBHy23XWb1n8K+HglvFsX72MoDfEGsstpZt7F8N1Je3lPjZuIWAXYqxK+i9KwshOfp+xg2eyFEfH8LtIar/tYkiRJkiRJkiRJkiRJE1BELBwRq0TEHhFxHPBnYOOaS1/bSWOhJocCC1Zi1Zq6qh8B1aZXM8eoRuUC4Jam4yWBV7a49jBKveJcv83Mv49BTuOuh7qsamM5gJntrhsRiwL7V8K/zcwb252jG41NQaubWU6KOrROZeZfgCsq4V4e67GZ+dcO1v8rcGwlvBAd3CftmqC1ppIkSZIkzfP8YpkkSZIkSeqLzLwfeAWl4KjTopwAtgO+DdwQEQe3NShiwca4ZncA53S4PsA3gerudy/tYp7xUm1gtFJErN7lXCc2CnLG24sohSjVXOZ0MklmPgx8r4v1dwKWqsS+3cU8c/1v5bh6b7bj+C7G/KFyvBiwSquLIyIouyU2O6mHpmTVhlYLAVt1OMffMvO3Xa7fL9X31AsGkkXnXgIsUImd0klzSPhPk7u6+6+bz8Exv48lSZIkSZIkaaJrNAHYMSKOiIj3RcTbI2K/iNhk0LlJkiRJUp9sFxFZ9wM8BtwKnAu8Fli0MvZR4ODMPL3LtQ+vHD8FnDHSgMYGsGdWwqsBO3eZw0hrJXBSJVzNmUZTttdUwnVNwSazjuuyMvNahtcTHRQR1XrDVl4JLF6Jndjm2F5VH+/zI2LaOK093vpZc9dNzVndJry79ZBDKxOx1lSSJEmSpHne1EEnIEmSJEmS5h1zd7uLiDOAXYGDgD2AJTqYZnXgtIjYCXhDZj4xwrXPBxauxH6YmdUGZ6PKzDsi4iJg+6bwehGxbGbe2+l8nWoU7LwY2ATYCFiO8rwtxvCmRzB8t0soz90/u1j+112M6Ye6Iphqk612nQu8vsMx1WKS2zLzltor23NT5XhGRCzVaBrYrt90sW7dLpZLAv9qcf3GwNKV2MVdrAtAZs6KiAcaa871PDp7LBd2u34rEbEKsDXl8a5LyW8JYBGG7rA614qV424bDY63F9XEzupyrjOBT7cx/2jG4z6WJEmSJEmSNA+JiGcDWwCbN/77fIZ+gfmWzJwxgNQ6FhEbAR8CXs7wv2PNveZvlC9kfy4znxzH9CRJkiRp0B6ibIJ5TGZ2VRcSES8ANqyEz8vMe9oYfjKlUVuzw4Hzu8llFCdS/n04t1Zp+4hYMzOb68x2AtZoOn6I7mt/xsU41mWdCGzZdLwMsCfw/TbGHlY5frjNccNExGLAtpTHuwGwLOXxPguYUjNkscrxQsAKlEaBE1pErEWp69wYWIvyOJegPIa617b6WnZbc3d9Zt7Q6aDM/GtEXMPQz4MtImJKpxv0jmIi1ppKkiRJkjTPszGaJEmSJEnqu0ZjsnOBcyNiAWBTStOvzSlfZFmP+mZfzWZSCkf2H+Ga59fELu803yaXMbQxWlAaPP2yhzlHFBFrA+8H9mVoY6luVHeka0cCf+px3W49t3L8GHB9l3Nd2cWYasOnpSOil+eiWtAEMB1ot1jl8czspvjpgZrYSPdSXaOrYyNipCaEo6nu6Dq9w/FX9LD2EBGxL/AmSjFSXeFZu7p5Pw1C9XPwaeCqbibKzFsi4i5g+RHmH8143ceSJEmSJEmSJrmI2B74AOXvR8sMNpveRUQA/w0cTf2XhZutA3wcODAiDsrMv4xxepIkSZI0UVwOHNttU7SGI2pip7QzMDN/FxF/B9ZuCr8iIqa32VitbY1anF8BOzZCQamL/HDTZYdXhn0vMx/pZx79MoC6rDOAz1Mars01k1EanEXEGgytAwU4s9PnNSI2A95Daca2yCiXj2YpJmhjtIiYQnlPvZbSrL4X3dbc/bGHNa9gaGO0xSkN+7qtRa0z0WpNJUmSJEmaL9gYTZIkSZIkjanMnE0pWvhP4UJELApsBewA7Aes32L4fhHx1sw8tsX5uuZL1/WQ7rVtrtEXEfEh4P9RdtPrh26aCD2cmY/2af1OLVs5/lfjfulYZt4WEU8B0zoYtmrleFFgk27WH8GywN/bvHZWl2s8VRMb6XmoPm5o/R7sVvW1Hc1dvS4YESsDpwIv6XWuhsnSlKv6GXVTZj7ew3zXMbQxWqefgeN1H0uSJEmSJEma/DYFdh50En10PMO/nD+H8qX/m4EFgQ0oX86d67nABRHxwsz8x3gkKUmSJEl99Aj1tVHTgKWBlWrO7QBcFhEzM/OMTheMiGcBB1TCsygbubbrFOCYpuMFgUOAL3aaTxtO4JnGaAAzI+IjmTknIpYG9qq5fkIZVF1WZj4QEecABzWFd4mIlTLz9hGGzmR4w/IT200uIqYBXwDeSG8N4JpNyFq0iHgO8B3KBsL90O3jvKGHNesaoC3fIt6tiVZrKkmSJEnSfKFfv5iRJEmSJElqW2Y+mpm/zswPZeZzgF2Ba1pc/sFGI7U6S9fEetkx7b6a2DI9zNdSRHwV+Aj9a4oG3TURerCP63eq+vo90ON8nY4fk9e2opOdIusaQ42FTpuWdaPTHTJ7ug8jYhXgQvpXfAeTZ1OJ6vuo110jq5+DC43wGVxnvO5jSZIkSZIkSfOuJ4AbB51EJyLirQxvivZdYPXM3CozD8jMvTNzPWBL4Mqm65YHfhoRC49TupIkSZLUL5dn5qY1Pxtm5sqUOqWZDG9QtCBwakS8vIs19wcWr8S+m5lPdjDHKUBWYtV/0/XL2Qyt51mdZxqlHczQ+sHrM/OSMcqjKxOgLqva0GwB4NWtLo6IAA6thP+WmRe1s1ijKdr3gTfT3+/eTrgNIiNiI+A39K8pGnT/OHupHa0bu1QP89WZaLWmkiRJkiTNF2yMJkmSJEmSBi4zfwZsAfy05vTywJ4thlYLnKDsQtmturF1a/QkIg4B3lRzahbwbeBwYBtgBqXp0SKZGc0/wJp9SufpPs3TjWpTuE6K0+o80e6FjUZP/WxKN5nUNRQctF7vw5OAdWrifwI+AewNPB9YEVgCWLDmPfWRHnMYlOpnVC+fga3G9/1zUJIkSZIkSZIanqL8LvdbwOuBzSi/kzxykEl1IuCbghUAACAASURBVCKWBT5eCR+bmQdm5m3V6zPzMmBb4A9N4XWBd4xdlpIkSZI0/jJzVmaeDGxKaR7dbAHgtIiY0eG0dQ3MTukwr1soDaGabRQRW3aYSztrPQ6cUQkf1vjv4ZX4Cf1evw9OYrB1WRcAt1Rih9Vd2LAd8OxKrNpcbSTvA15RE78N+BpwCPBCYDVK862Fax7vDh2sNxCNBnBnAsvVnP4dcDTwMmATSg3v4sDUmsd6cp9SmrB1v/N5rakkSZIkSQPVSXd9SZIkSZKkMZOZj0XEq4AbgemV0zsyvDAK4KGa2LN6SKNubN0aXWsUlHy65tQngWMy87E2p5oXdoer7tTXazHKEh1c+zgwh6EbB/wwM/fuMYfJoO4eWzoz76+JT3gRsQewUyV8F3Boo+liuybre+ohhu5w2ctnYKvxff0clCRJkiRJkqSGk4FvNL4kPkREDCCdrr0VWKzp+DrgqJEGZObDEXEwcC0wrRH+QER8MzPvG5s0JUmSJGkwMvOJiHg1sAJDm0YtQdlIdMd25omI9YAX1Zy6tE//jjycoU2s++VE4I1Nx3tHxA7A85piTwOnjsHaXZsIdVmZmRFxMvChpvD6EfGCzLy0Zki1adps2mycFxHLAx+ohJ8G3gN8JTPb3fxzMtShvQ54TiV2I/CqzLy8g3n69Vgnct3v/FxrKkmSJEnSQE0Z/RJJkiRJkqTxkZkPUnYYrFqvxZC6L4YsVRNrV93YWT3MV2c7YKVK7NjM/EAHTdEAluljToNSff2W7XaiiFiQoV86GlFmzgGqjcDW7Hb9SeaemtiM8U6ijw6sHM8GXt5h8R1M3vdU9X3Uy2dg3fgnMvPRHueUJEmSJEmSpGEy8766pmiT0Msrx1/KzKdGG5SZfwd+2BRaAtinn4lJkiRJ0kTRaCp1KPBg5dRLIuKANqc5or9ZDXNgRCza70kz8zLg6qbQwsBplcvOy8w7+r12jyZKXdZJQFZiM6sXRcRiwCsr4Z9n5m1trrMnUH3935eZX+ygKRpMjjq06mv7ELBTh03RoH+Pdck+j+3bJrHzea2pJEmSJEkDZWM0SZIkSZI00dTtuDi9xbV318Squ9h1YoOaWF0TqV68tHI8B/hYF/M8uw+5DNq/KserRMTSXc71XKDTbT/vrByvGxELdbn+ZFJ93AAbj3sW/VN9T52fmd3s3DpZ31PVz8E1e7yPq5+D/f4MlCRJkiRJkqSBi4jFImKXiDgsIt4bEUdFxKsjYvOIaLu2NiIWBzathDv5gvj5leN9OxgrSZIkSZNKZt4KfKjm1McjYtpIYyNiKqWx2lhagrH7d9mJleOVK8cnjNG6vZgQdVmZeRNwYSX8qohYuBLbH3hWJVZ93kdSfbz3AV/pYPxcE7oOrdFA7oWV8CmZeXMX0/Xrsa7bw9i6jZfv6mG+OvNrrakkSZIkSQNlYzRJkiRJkjTRPFATa7Xb3hU1sc17WHuLynG2WKMXq1WO/5qZdY2qRlMtTJmM6oqkXtDlXN2Mq66/CLB9l+tPJnXP+27jnkUfRMSCwPKV8P91Mc8CwJZ9SWr8VT+jpjL8S3htiYjVGf58/rGbuSRJkiRJkiRpImo0Q/sVMIvSlOwE4FPAZ4FTgMuAOyPik21u5rIyQ2txH+nwi8RXV4539Iu1kiRJkuZxXwf+UYk9GzhilHEvA1aoxO4Arurxp2q0PLp1KvBki3N3Af87Rut2ZQLWZVUbnC0J7F2JzawczwJ+3MEa1drO32dmq9dsJBO9trP6uwzo7rVdnv41Rtusj2MfAv7aw3x15tdaU0mSJEmSBsrGaJIkSZIkaaKpFi/B8N3W5roCeLwS26tRTNORiFgB2KYSviEzZ3U61yimV447nr+xO+Ze/UlnoC6piR3U5VwHdzHmFzWxQ7pcfzK5GHikEtujzS94TTTV9xN08Z4CdgcW6zKHauPGjj9/enRxTazbnWv3a3N+SZIkSZIkSZpUImJ6RPyC0gxtB2DaCJdPB94H/C0ith1l6mUqx/d3mFr1+mnA+h3OIUmSJEmTRqPR1DE1p/5rlEbRdQ3LDsvMTXv5YXjDo20jYu1uH18rmXkPcG6L06dmZqvNYwdlItRlNfsB8GAldtjc/4mItRhe//mdzHyigzX6Uds5nfJ7h4msX6/tAb0m0uQ5EbFep4MiYl1gw0r4ssyc05+0/mN+rTWVJEmSJGmgbIwmSZIkSZImmpfUxG6suzAznwJ+XQmvSHdNw14HTK3Eft7FPKOpNqSqKzIZzUHASn3IZaAy8yrg+kp434hYs5N5IuLFdLfL4s8Y3ljvwG4KbCaTRnHh+ZXw4sBRA0inV9X3E3T3nnpXDzk8VDnuRyFfJy4AZldir46IZ3UySURMBV5bc2osPgclSZIkSZIkadw0vtD+e2CnyqmHgAuB7wFnAZcDzV+cXRb4RUTsMsL0T1aOR/oSf5266zfocA5JkiRJmmxOA/5aia1Kfe0KEbESsFslfCf1zYq6yaXq8D7MW+eEDuODNBHqsv4jMx+l/Pu92Y4RsVrj/2fWDDuxw2X6Udv5ZmDhLsaNp55f28bmvm/tTzr/cWQXY+o+M37aayI15staU0mSJEmSBs3GaJIkSZIkqScR8fJOG1mNMNdawP41p1rtlAjw1ZrYZyNi0Q7WXQN4fyWcLebu1e2V43UjYka7gyNiBeCz/UxowL5ROV4Y+EZELNDO4IhYrGaOtjR24TyuEl4AOD0iFulmzknkYzWx9zaazE0amfkA8GglvHMnc0TEkcD2PaRxX+X42T3M1bHM/DdwTiW8AvDhDqd6B1At1PpdZl7ZbW6SJEmSJEmSNGiNvxedw9Df3d4A7AssnZk7ZOarMnO/zNyC8kX845uuXRA4LSJWabHEvZXjpSOiky9A122E45dqJUmSJM3TMnM28NGaUx9o8W+qmZS6rmZnNObp1XeBpyux17Rbv9ah8yj/Dmz+WSEzrx2DtXoyQeqyqqqNzqYAh0bEFODQyrmruqh7qtZ2bt3J5pQRsSHwgQ7XHITq44QOX1tKbdo6fcil2Vsbze3b0ri22pztCeCkfiYF832tqSRJkiRJA2NjNEmSJEmS1Ks9gL9GxIkRsX63k0TEypQvplQbmt0N/HKEoecB11diMygFB1PbWHdp4Ec16/4kM6u7UvbD/9XEPtXOwIhYhtIkrpudCCeqE4BbK7GdgZMjYqGRBkbEUpTnY8Me1v8Ew3dAfD5wTuPe6FhErBERx0bERj3kNaYaRV8/qISnUR73tt3MGRELRcTrIuKdPSfYmYsqx9tHxO7tDIyIXYEv97j+1ZXjjZp2Ih0vX6iJHRURr2pncETsQn2zvM/1lJUkSZIkSZIkDd5ngObf1/8UeF5m/qDuC/SZeXtmvg44qik8nfov7EP5G8fDTccLAJt3kN8La2JLdjBekiRJkiar0xle97cy8Iaaaw+riZ3WjyQy827gZzV57NaP+StrZWbeUfm5q9/r9NGg67KGyMxLGH7PzAR2BFavxE/oYolqbeditLk5ZWNz3B8DI9Y8TgSNe65aG3twRGzSzviIOIyxaQC3EHB2O3WbjWvOZvjzfXqjidlYmC9rTSVJkiRJGiQbo0mSJEmSpH6YSikwuS4iLo2It0RE3Q73w0TEohHxBuBK4Lk1l7wnMx9vNT4zEzgCqH555RXAz0faQS4itqIU71QLOu5n+E5y/XI+8FAltn9EfGuk3QUjYmfgUp75Ms2DY5TfuMrMh4DX1Zw6GPhLRLw6IoZ8ASgiVoyIt1CKnLZrhG8C7uxi/TuA1wBZObUL8MeIOKTNBnvPiogDIuJs4O/AW4C63UsnktdTnrdm04ELIuIzEbFiO5NExFYR8TngZuCbwFp9zXJ0Z9bEvhcR+7YaEBELR8SHKE0R5+7Y2O176uLK8RTg+xHRyRffepKZFwNfr8nj1Ig4OiIWrBsXEQtExLuAHwLVa87JzHP6n60kSZIkSZIkjY/GpjxHNoVuBvbNzMdGG5uZn6dszjPXwXW/N8/Mp4HfVcKvbjO/AA6pObV4O+MlSZIkaTLLzDnAR2pOvT8i/rPJaURsB6xTueb6zPxjH9Opa7J2RB/nn6wGXZdV58TK8drAlyqxJ4HvdDH3D4A5ldh7IuKjI9UQRsSBwCXAsxuhyVDbWX1tpwHnR8T2rQZExFIR8SXg2zzzveR+Pda5NcLPBS6KiC1HyGMLShO7ar3x3cD7+pTPMPN5rakkSZIkSQMx6j+0JUmSJEmSOrRV4+fYiLgZ+D1wLXAPcC+lKGAJYA1gY8pufa0agp2ZmSePtmBmXhwRHwGOqZzaAbg2Ii4AfgXcBiwArAbsDmwNRHU64PWZ+c/R1u1GZt4XEV8APlQ5dQSwV0R8H7gCuA9YilIs8zKGFnHMBt7O8CKfSSkzfxoRHwP+q3JqbeAUYHZE3ElpWDcdWI6hr9uTwKEML1CrNstrtf4PGsVYH62cWhM4FfhsRFwIXE4pnnmEcg8v1chxc8q9POF3e2yWmfdGxJ6U5oDNzeemAu8G3hYRlwC/BW6l3JMLUR73SsDzKI99ufHMu8YplB0omxuyLUZpTnYF8BNKAdFTwPLAZpT31LJN11/buK6bwqgfAbOAZZpiWwGXRcRDwL95pnDrPzJz0y7WGslRwDZA8+6RUym7lr4xIs4B/kz5LF4a2ADYB1i1Zq5/MfTLgpIkSZIkSZI0Gb2BoZtCfCQzH+1g/Ocof0+iMc+uwEk1151G+RLsXIdFxNcz80+jzP9Whn+5H2yMJkmSJGn+cSbwQWDDptgKwJuAzzaO6xqUndrnPH5EafC0RFNsj4hYPjPv6vNak8mg67LqnAp8nFIHOtdzKtf8JDPv7XTizPxrRJxGqUVs9kFgZkScRam/ephSK7YesCdDn59HKY+1usnlRPMFSkOupZpiKwK/jojfAj+jNJif04hvDexGef3nuoBSk1t9vrrxaeBdjfk3AC6NiIuAn1Jq2aDU/e5KqZGrq/t9Y2be3YdcWppfa00lSZIkSRoUG6NJkiRJkqSxNKPx042T6WDXxcz8aEQEw3eRnEYphti1jWmeAg7LzLqdDvvpf4DtGj/NlqV8SWckSSn8urD/aQ1OZn4wIpJSRFS1ALBy46fqCeDgzLyoZre9tncjzMz/iYh/A19l+O57KwAHNH7mKZn5l8YOimcztKEWlC951d2nE0pmPhUR+1EavC1aOf38xs9IbgP2AGZ2uf7jEfFOymdW1eKUArgxl5mPRcRLgHOB6o6ZywOvb3Oq64BdM3NWP/OTJEmSJEmSpAF4adP/zwbO6nD8RcDTPFNruw31jdG+CxzNM1+Engb8JCJ2zcxr6iaOiAN45kv+VXM6zFOSJEmSJqXMnNPYELVar/feiPg6pW7sldVhwHf6nMdjEXE2Q+uHplEaPrX6t9s8b9B1WS1yuj0izm/M28oJPSzxNkrt1fqV+KrAO0YZ+xSwH6U52oSWmbMi4mDgxwxtMgewbeNnJH+hPNYv9Cmlm4CDKXWMC1Aan23T+BlNAm/IzB/0KZeRF5tPa00lSZIkSRqEKYNOQJIkSZIkTXqnUgqN7u/TfP8AXpGZMzNzdicDM/MY4EDg312sey3w0szsa9FUncx8CngFpYFRJ+4H9s/M4/qf1eBl5n8DOwN/a3PIn4AXNxW0LF05/0CH658AvBD4VSfjajxO+RLUP3ucZ1xk5t+ArYDPU3Yo7MXlwHk9J9WhzLwS2AW4vcOhlwIvyMybe1z/FOBI4KFe5ulVY8fLHYBvUL6s19Fw4HTgRZk5Ke5dSZIkSZIkSWolIhYGNmsK/QuYHhEz2v2hbNjS/PevtaiRmU9Tvrz7ZFN4VeCKiPhaROwSEetHxHMj4oCIOJfyd4RpjWtvrUzZr7+5SZIkSdJkcBbw50psOeCtwEEMb8h1UWbeMgZ5nFYTa3tj13nVoOuyWhip8dntwM+6nTgzHwB2ouTfiX8DO2XmuNfOdauR6350sAFtw7nANpl5X5/z+TGwF539XmQWZWPdca2pnV9rTSVJkiRJGm82RpMkSZIkST3JzN9l5iHA8sCOwDGUP/Y/3ME0d1Kaq+0BrNcocOg2n+8CawPvBa6gNPtp5WnKboZHAhtn5m+6XbdTjQKaPSlflKkWdlXdBXyG8tycNda5DVJm/gLYEHgZcCJwNXAPMJvS6Owq4DhKsdXzM/NygIhYnOFFcLO6WP9Pmbkj8ALgFIZ/GamV2ynFca8BVszMAzPzrk7XH5TMfDQzjwJmAEdTGpy105jwccr7/f8BG2bmFoMq7srMi4BNgE8zenHU5ZTX6kWZ2e5rPNr63wZWAQ6jNIy8kvLefawf83eQx6OZ+UZgI0oR4B2jDJkFnAFslpkH97tgTZIkSZIkSZIGZEWeaTwG5fffN3XxM71pjmVaLZaZvwcOofzefK4FgTcC5wPXUf4e9F3K38Pm+iFwUmU6G6NJkiRJmm9kZlLqlareDby+Jl7XwKwffg3cVomtHxFbj9F6k8ag67Jq/IRSU1jnlE435K3KzNuAbYG3UDb6HcktwH8D62fmb3tZdxAy8xxgY+CbjFznNge4kLLp8cszc0x+d5GZ5wIbAF9l5IZtdwNfoTzvZ4xFLqOZX2tNJUmSJEkaT1F+dyhJkiRJktRfERGUJkHrAKsDSwCLUxqVPQg8RPkD/9WZOVrjnl7yWAHYgtK4bTlKs6e7Kc2CLm00KBu4iFidsoPcCpTn6nHKLoLXAH9Of4kzooh4KfDzSnjHzOx1Rz4iYm1Ksc2yjZ8FKY3/HqB8Ker6ebEwJSKW5Jn3zrLAkpTip4co9+YNwD96LSQbCxGxALA5pcnedGAqJe+bgMvH8jNnoml8Fm9M+SxeHliK8hl8N888H3MGl6EkSZIkSZIkDRcR21O+lD7XLZk5o4Pxm1G+jN1PN2fmmqOsuznwNcrv10fyFPBx4GON649sOveOzPxSL4lKkiRJkjQW5se6rIhYF9iSUn/6LOARShOsP2fmDYPMrZ8iYiFgK2A9Sr3gFEojvBuByzKz441qe8xnGuX3Kxs28plDqTm+CbhkgtYtzpe1ppIkSZIkjRUbo0mSJEmSJGnSi4gvAm9vCs0Bls7MkXYNlCRJkiRJkiRJE1AfGqO9ELi4z2m1nUNjQ5c9gW2AlSmbVswCbgH+Fzg1M29qXHsR8KKm4S/OzN/1MW9JkiRJkiRJkiRJkqRJZeqgE5AkSZIkSZJ6ERHLAEdUwlfZFE2SJEmSJEmSpPnWPZXjn2fmLuO1eGb+AvjFaNdFxDRgs6bQ08AVY5WXJEmSJEmSJEmSJEnSZDBl0AlIkiRJkiRJ3YqIAE4GFqucOm4A6UiSJEmSJEmSpInhzsrxugPJYnQvAhZuOv59Zj42qGQkSZIkSZIkSZIkSZImAhujSZIkSZIkaeAi4tCI2KnDMUsAZwMvq5y6HzitX7lJkiRJkiRJkqTJJTMfBK5pCs2IiHUGlc8Ijqgcf2sgWUiSJEmSJEmSJEmSJE0gNkaTJEmSJEnSRLA18IuIuCEiPhkRO0TEMtWLImJaRGwREf8D3ATsVTPXWzLz4bFOWJIkSZIkSZIkTWg/qxy/diBZtBARawH7NoXuB743oHQkSZIkSZIkSZIkSZImjMjMQecgSZIkSZKk+VxEfAN4fc2peyhfBHoCWAqYDiw0wlTfzswj+5+hJEmSJEmSJEkaLxGxPfDrptAtmTmjwznWBq4DpjZCjwObZ+Y1/cixFxGxAHA+sFNT+N2Z+bkBpSRJkiRJkiRJkiRJkv4/e/cdZldd5w/8faaldxJCSEJIUSBIR5CiCLrYVkXFFdYCKIKr+0OxLbsqqCyru7rqrgW7riKyomJdsAUbKkgRUFqAkGAoIb3PJHN+f5wh0yczaTfl9Xqe88z99s+dmXufBE7el51GXa0LAAAAAIA+7JVkZpLZSfZN36FolyY5d0cUBQAAAAAA7NzKspyb5MsdugYn+XFRFAcNZJ+iKAYVRXHWZuY09DXeZW5jkq+lcyjajUk+PpC6AAAAAAAAAAB2V4LRAAAAANgZ/DbJvC1c+7MkzyrL8r1lWZbbriQAAAAAAGB7KopiclEU07peSSZ2mdrQ07y2a68+jrgwye0d2lOT/LEoin8timJKH3UNKYriOUVR/FeSBekcsNaT5xVF8ceiKP6ht33bAtZOa6vnjA5DS5O8tizLjZs5AwAAAAAAAABgj1D4t6IAAAAA7CyKojgkyYlJnp5kRqp/oDQ6yZAkG1L946DFSe5J8qskPyvL8i+1qRYAAAAAANgaRVHMS7LfVm7z1bIsz+rjjClJfpLkgB6GH0hyd5JlSRqSjEoyLcnMJPUdJ5ZlWfRxxouS/KBD18NJ/pJkSZLGJHsnOTzJsC5LFyd5YVmWf+htbwAAAAAAAACAPU1DrQsAAAAAgCeVZXl7ktuTfKrWtQAAAAAAALu+siwXFEVxdJLLk/x9l+HpbdfmLBvgsZPbrr78Nslry7J8YIB7AwAAAAAAAADs1upqXQAAAAAAAAAAAAAAbC9lWa4qy/LVSQ5N8vUkS/uxbGGSK5KcnmTiZub+OclXkzy6uVKS/KptzxOFogEAAAAAAAAAdFeUZVnrGgAAAAAAAAAAAABghyiKoi7JIUkOSjI2yegk65KsSDIvyV1lWS7Ywr2nJXlakilJRqX6EOMVSe5P8oeyLBdvXfUAAAAAAAAAALs3wWgAAAAAAAAAAAAAAAAAAAAAAABAzdXVugAAAAAAAAAAAAAAAAAAAAAAAAAAwWgAAAAAAAAAAAAAAAAAAAAAAABAzQlGAwAAAAAAAAAAAAAAAAAAAAAAAGpOMBoAAAAAAAAAAAAAAAAAAAAAAABQc4LRAAAAAAAAAAAAAAAAAAAAAAAAgJoTjAYAAAAAAAAAAAAAAAAAAAAAAADUnGA0AAAAAAAAAAAAAAAAAAAAAAAAoOYEowEAAAAAAAAAAAAAAAAAAAAAAAA1JxgNAAAAAAAAAAAAAAAAAAAAAAAAqLmGWhcAtVYUxagkz+rQtSBJc43KAQAAAAAAAADYGk1JpnRo/7Isy+W1KgYA3KMHAAAAAAAAAOwm3J+3gwhGg+qGq+/VuggAAAAAAAAAgO3gJUm+X+siANijuUcPAAAAAAAAANgduT9vO6mrdQEAAAAAAAAAAAAAAAAAAAAAAAAAgtEAAAAAAAAAAAAAAAAAAAAAAACAmmuodQGwE1jQsXHNNddk5syZtaoFAAAAAAAAAGCLzZ07Ny996Us7di3obS4A7CDu0QMAAAAAAAAAdnnuz9txBKNB0tyxMXPmzMyePbtWtQAAAAAAAAAAbEvNm58CANuVe/QAAAAAAAAAgN2R+/O2k7paFwAAAAAAAAAAAAAAAAAAAAAAAAAgGA0AAAAAAAAAAAAAAAAAAAAAAACoOcFoAAAAAAAAAAAAAAAAAAAAAAAAQM0JRgMAAAAAAAAAAAAAAAAAAAAAAABqTjAaAAAAAAAAAAAAAAAAAAAAAAAAUHOC0QAAAAAAAAAAAAAAAAAAAAAAAICaE4wGAAAAAAAAAAAAAAAAAAAAAAAA1JxgNAAAAAAAAAAAAAAAAAAAAAAAAKDmBKMBAAAAAAAAAAAAAAAAAAAAAAAANScYDQAAAAAAAAAAAAAAAAAAAAAAAKg5wWgAAAAAAAAAAAAAAAAAAAAAAABAzQlGAwAAAAAAAAAAAAAAAAAAAAAAAGpOMBoAAAAAAAAAAAAAAAAAAAAAAABQc4LRAAAAAAAAAAAAAAAAAAAAAAAAgJprqHUBAAAAAAAAAMDOoyzLtLa2pizLWpcCu42iKFJXV5eiKGpdCgAAAAAAAAAAAMBOTTAaAAAAAAAAAOzByrLMunXrsnLlyqxcuTLNzc21Lgl2W01NTRkxYkRGjBiRwYMHC0oDAAAAAAAAAAAA6EIwGgAAAAAAAADsodasWZOFCxempaWl1qXAHqG5uTmLFy/O4sWL09jYmEmTJmXo0KG1LgsAAAAAAAAAAABgp1FX6wIAAAAAAAAAgB1vzZo1mT9/vlA0qJGWlpbMnz8/a9asqXUpAAAAAAAAAAAAADsNwWgAAAAAAAAAsId5MhStLMtalwJ7tLIshaMBAAAAAAAAAAAAdNBQ6wIAAAAAAAAAgB2nLMssXLiwWyhaY2NjRo4cmeHDh6exsTFFUdSoQtj9lGWZlpaWrFq1KitWrEhLS0unsYULF2bGjBledwAAAAAAAAAAAMAeTzAaAAAAAAAAAOxB1q1b1ymUKUlGjBiRfffdVygTbEeNjY0ZOnRoxo8fn7/+9a9ZuXLlprGWlpasX78+gwcPrmGFAAAAAAAAAAAAALVXV+sCAAAAAAAAAIAdp2MYU1KFNQlFgx2nKIrsu+++aWxs7NS/YsWKGlUEAAAAAAAAAAAAsPMQjAYAAAAAAAAAe5CuwWgjR44UigY7WFEUGTlyZKe+rq9NAAAAAAAAAAAAgD2RYDQAAAAAAAAA2EOUZZnm5uZOfcOHD69RNbBn6/raa25uTlmWNaoGAAAAAAAAAAAAYOcgGA0AAAAAAAAA9hCtra3d+hobG2tQCdDQ0NCtr6fXKAAAAAAAAAAAAMCeRDAaAAAAAAAAAOwhyrLs1lcURQ0qAerqut+209NrFAAAAAAAAAAAAGBPIhgNAAAAAAAAAAAAAAAAAAAAAAAAqDnBaAAAAAAAAAAAAAAAAAAAAAAAAEDNCUYDAAAAAAAAAAAAAAAAAAAAAAAAak4wGgAAAAAAAAAAAAAAAAAAAAAAAFBzgtEAAAAAAAAAAAAAAAAAAAAAAACAmmuodQF0VhTFAUkOTTI5yZAk65I8nmRukj+VZbl6K/ZuTHJ8kqlJ9kmyKsnCJLeWZTlv6yrvdtb+SQ5LMinJ8CSPJHkoyQ1lWbZsy7MAAAAAAAAAAAAAAAAAAAAAAADY9QlG2wkURTE6yQVJzkkVWtabjUVRjXXTagAAIABJREFU3Jbk6rIsPzSA/ccneX+Sv0sytpc5NyT5z7Isv93vwnve5xVJLkzyjF6mLCmK4qok7yvL8omtOQsAAAAAAAAAAAAAAAAAAAAAAIDdR12tC9jTFUVxepK5SS5J36FoSVKf5Mgkbx3A/s9PcmeSN6WXULQ2xyW5uiiKrxdFMay/+3c4Z3hRFFcm+VZ6D0VLWw1vSnJnURSnDvQcAAAAAAAAAAAAAAAAAAAAAAAAdk+C0WqoKIqLk/xvknFdhuYn+VmSK5N8N8nvk6zegv1PSnJNkgkdusskN6cKMPtpkie6LPv7JFcWRdHv342iKOqTXJXkVV2GFiX5SdtZt7Sd/aS9k3yvKIoT+nsOAAAAAAAAAMBAzZ8/P+95z3ty4oknZu+9905TU1OKoth0feUrX6l1iQAAAAAAAAAAAAC0aah1AXuqoijenuSSLt1XJvm3sizv6GF+XZJnJHl5klP7sf/kJN9J0tSh+7dJzi3L8q4O8wYlOS/JR5I0tnX/bZJLk/xzP5/Oh5K8oEO7JcmFST5XlmVzh7MOSvKFtueRJIOSXFMUxdPKsnykn2cBAAAAAAAAADvAtGnT8tBDD21qz5kzJyeddFLtCtoCn//85/OP//iPWb9+fa1LAQAAAAAAAAAAAKAf6mpdwJ6oKIpDU4WJPaklyellWZ7ZUyhakpRl2VqW5W/LsrwwyaH9OOb9ScZ0aN+Q5DkdQ9Ha9l1fluV/JXlll/UXFkWxXz+ey/QkF3TpPr0sy092DEVrO+svSU5J8rsO3eOSXLy5cwAAAAAAAAAABuLHP/5xzjvvvH6Hol1//fUpimLTdckll2zfAgEAAAAAAAAAAADopqHWBexpiqJoSPKldP7en1eW5dX93aMsyw2bOWNWktd16GpOclZZluv62POaoii+2mHdoFSBZedsppyLkzR2aH+lLMvv9XHO2qIozkpyR5Kmtu7XF0Xx72VZPrCZswAAAAAAAAAA+uWiiy5KWZab2meeeWZe//rXZ8qUKWlsbL/VYa+99qpFeQAAAAAAAAAAAAD0QDDajnd6kiM6tH9eluWXt/EZZyap79D+TlmW9/Vj3YfTOVDtlUVR/ENvgWpFUQxJ8ooe9uhTWZb3FkVxTZJXtnU1tNV8aT9qBAAAAAAAAADo0z333JPbb799U/sFL3hBrrjiihpWBAAAAAAAAAAAAEB/1NW6gD3QeV3al22HM07r0u5X8FpZlncl+UOHrmFJ/qaPJacmGdqh/buyLO/uV4Xda3pZP9cBAOycWlYkC76T3PfZZNUDta4GAAAAAAD2aH/84x87tV/xiq6f+wYAsIdZdmdyxweSez+drF+SbFiblK21rgoAAAAAAAAAoJuGWhewJymKYmaSZ3XompdkzjY+Y2KSQzt0bUjy2wFscX2SYzq0n5/k+73MfV4Pa/vr16lqe/J38PCiKPYuy/KxAewBALBzWL0g+flJ7YFoRX1y/FXJ1JfXtCwAAAAAANhTPfZY59sPJk+eXKNKAABqbMV9ybWHJxtWt/f98c3tjye9MDnua0nTmB1fGwAAAAAAAABAD+pqXcAe5tld2j8vy7Lcxmcc3KV9e1mWq3uc2bMburRnD+Cs3/X3kLaa7hjAWQAAO69b39keipYk5cbkd69JNq6rXU0AAAAAALAHW7VqVad2Y2NjjSoBAKihJbck1x3dORStq4U/Sm56y46rCQAAAAAAAABgMxpqXcAe5uld2r9LkqIoiiSnJPn7JMck2TfVz+aJJPcl+VmSb5ZlOa8fZxzUpT13gDXev5n9OjpwG5x1eJezfjHAPQAAam/+Vd37Nq5NFnw3mXbGjq8HAAAAAAB2IWVZ5pZbbsndd9+dxx9/POvXr8/48eOz77775oQTTsjw4cMHvGdra+t2qBQAYBfSvDz59cuTluWbnzv/quTIjyeDx2//ugAAAAAAAAAANkMw2o51VJf2XUVRTEvyxSQn9zB/att1SpIPFEXx+STvLMtyTR9nzOzSnj/AGh/q0h5XFMWYsiyXduwsimJskrFbeVbX+bMGuB4AYOe26DeC0QAAAAAAoBdPPPFELrvssnz961/PokWLepzT1NSUk08+OZdcckmOOeaYXveaN29e9t9//17Hn/3sZ/fY/+Uvfzlnn312j2Pvf//78/73v7/XPefMmZOTTjqp13EAgJopy+SmNyWr5/Vz/sZk8R+SfV+0XcsCAAAAAAAAAOiPuloXsIfZp0t7aJKb0nMoWleNSf4hyW+Koui6T0eju7Qf7395SVmWq5Ks69I9qh/nrCnLcvVAzkr32no6BwBgF1bWugAAAAAAANgpXXPNNZk+fXo+9rGP9RqKliTNzc259tprc+yxx+a8887Lhg0bdmCVAAC7qAXfTh66cmBrfvm3ycb17e2NzckdH0x+eFDyf0cm9302KVu3bZ0AAAAAAAAAAD1oqHUBe5iuYWJfTrJX2+PVSS5P8n9JHk4yLMmhSc5JckKHNYcn+XZRFM8qy7KlhzOGd2mv3YI61yYZ3KE9Yjue01FP5wxIURQTkowf4LIZW3suAAAAAAAAANA/X/rSl3LuueemtbVzsMaMGTNy0EEHZejQoZk/f35uvPHGbNy4cdP45z73ucyfPz8/+MEP0tDglhcAgF5Nen4y49zk/s8PbN1Vg5PxJyQT/ya5432dx246P1l6azL5tGTQuGTMYUld25/JHvtl8vj1SdOYZOzRyYgZSfOyZOi+yaO/SFY/lOzzN8mIWUlRbJOnCAAAAAAAAADsvtwluoMURTEoyaAu3ZPbvv4lyfPKslzQZfyWJF8uiuLtST7Sof8ZSd6d5NIejuoaWLZuC8pdm2RMH3tuy3P62nNL/EOSi7fBPgAAAAAAAAB01bohWfNwravY/Q2d3B4ysZu57bbb8qY3valTKNphhx2WT33qUznuuOM6zV20aFHe+9735rOf/eymvmuvvTbve9/7ctlll3WaO3ny5Dz44IOb2h//+MfziU98YlP7yiuvzLHHHtutnr322isnnXRSkuT3v/99zjjjjE1jF1xwQd761rf2+lwmTpy4mWcLAFAjDcOSYz6X7HNqcuO5SfPS9rG6pqS1ufe1i35TXT2Z+9nq2lrjjk2W/SnZ2HYb6eSXVH2DxyeLb0we/VkydGoy6XnJ6EPbAteOSOoaq/mr5iWL/5AUdcm+L66e04bVSVFf9dUPStY+ksz/VjV/ysuqP2MPRMuqqr7B/fis3nWPV9+zsjXZ53lJ47a4HRYAAAAAAAAA9ly75120O6f6XvqXp+dQtE3KsvxoURT7Jnlbh+63FUXx8bIsV23m3HKAde7sawAAdh2lP+4AAAAAALuZNQ8n39+/1lXs/l78YDJ8Wq2r2C5e//rXp7m5PYjjhBNOyHXXXZehQ4d2mzt+/PhcfvnlmTlzZt75zndu6v/whz+cM844I0972tM29TU0NGTatGmb2qNHj+6018SJEzuNdzR8eBVcMW/evE79o0eP7nUNAMAuYerLk3FPT3736uSJ3yXPvSFZeV9yw5m1rWvx7zu3H/5edXW06oHk8eu3zXk3X5A0jkqmnJZsXFddQ6cm089Kxh5ezVl4bXLXR5Lld1RBZx01DKsC2B66snN/XWPS2tL9vNFPq0Lp6odWAW1No5Ipp1cBdWsXJkv+mBQNyYhZyV7HJOsXJy3LkwnPTJbcWs2bcEIybL9t8/wBAAAAAAAAYBcjGG0HKctyTVEUrUnqugz9Z1+haB28N8k5SUa1tccmeX6Sb3WZ1zUobchAa+1hTU/hazvqHAAAAAAAAABgNzBnzpzccsstm9ojR47MVVdd1WMoWkfveMc78stf/jI//OEPkyStra352Mc+li996UvbtV4AgN3CsCnJyb9IFt+YjDuqCu1qGJZsWF3rynasluXJA1/p3Hffp5Pjr6zC4v70z72v3bC6eyha0nMoWpIsu6O6OrrrIwMqN0kV5jb7X5Kppyet65MV9yarH0we+Umy4u5kw6pk3WPt8+sHJyOe0vYzHpEMm5pMeFYy9oikblBSFAOvAQAAAAAAAABqQDDajrU6yYguff/Tn4VlWa4uiuI7Sc7u0H1SBKN19el0/55szowk39vsLAAAAAAAAABgi331q1/t1H7zm9+cSZMm9Wvthz70oU3BaEly5ZVX5jOf+UwGDRq0TWsEANgt1dUn459RPa4flJwyJ7nu6bWtaWdQbkh+c3qtq+hdy/LktndVV39sXJcsu726enLEx5KnXiAgDQAAAAAAAICdXl2tC9jDLOvSfqwsy3kDWP/7Lu0De5izvEt7/AD2T1EUw9M9sKxr3T2dM7QoimEDOSvJhH6cMyBlWT5eluWfB3IluX9rzwUA6FlZ6wIAAAAAAGCn8Zvf/KZT+9WvfnW/186ePTtHHHHEpva6dety8803b7PaAAD2KOOOTl78QDK4622c7NZueVvyYL8+zxkAAAAAAAAAakow2o51b5f2IwNcv7BLe1wPc+7r0t5vgGd0nb+kLMulXSeVZbk4Sdf+qVt5VtfaAQAAAAAAAIDdwNKlS3P//e2fWzZ69OgceGBPnwfXu+OOO65T+6abbtomtQEA7JGG75+87LHk9OXJ0ZfXuhp2lJvfmmxYUz0uy+oCAAAAAAAAgJ1MQ60L2MP8OckpHdrrB7i+6/zBPcy5q0t75gDPmN6l/Zc+5t6VpONdxzN7OH8gZw1kLQAAAAAAAACwi1i0aFGn9qxZs1IUxYD2OOCAAzq1H3/88a2uCwBgj9c4Mpl1XnUlycZ1SYpk1f3V4+H7J0tuTn7x3L73GTolqRuUlC1Ja0sy7phk/PHJre/Y7k+BAWhZlvzvsJ7HBo1PGoYnG1YkE5+b1A9OBu+TNC9O1j6aHPL+ZNTsZPFNSV1TMubwpNyQ1A/asc8BAAAAAAAAgN2eYLQd6/Yu7dEDXN91/uIe5tzZpX1IURRDy7Jc088zjt/Mfl3HOgajPSPJD/pzSFEUw5IcMoCzAAB2QT5VFwAAAADYzQydnLz4wVpXsfsbOrnWFWxzS5cu7dQeNWrUgPfoumbJkiVbVRMAAD2ob/vM3lEHtfdNfE7v8yf+TXLydb2P9xaMVjcoedW65BsDC8vdZPShybI/9TzWMCyZ8Oxk4Q+3bO891fpF1ZUkD32z+/hfv9/72iGTkoPenaxZkCz9U/LoT5MJz6p+n8YckUw8uQrLWz2/ClprWZE8/L2kaKjGJr80qWts32/NwuSxOUlRJJOenzSN2bbPFQAAAAAAAICdmmC0Hev/UqVjPHkXx/SiKAaXZbmun+sP7tJ+uOuEsiwfKYri9rSHjjUkOSHJT/p5xkld2v/Xx9xrk7yxj7V9OTGdf/9uLcvysQGsBwAAAAAAAGBHq2tIhk+rdRXsgsqy84eJFMUWBmBs4z0AAOinyS+pgqy6mnVe3+umvDxZ8O3u/Yd9aPNn1g9ONvZwi21Rnzz318m3xyWtLd3HX/iXZNjUZOP6ZN43kiduSAaNS4btn9x0/ubP7csZrcnczyY3vann8ef8KhkxMxk8MVlwdfU9a16ejDks2e/vqnrvuKTvkLFd0dqFyc0XdO57/JfV10euS/7yb72vnXt5++P6ocnGXj4LeviMZNTsZMPKpGlsFa7W2pIsvbV6PPE51c95+jnJ+OOqgLzm5cn6J5KUybD9Ooev9aVsrepfeV8yYlYV8lbU9W8tAAAAAAAAAFtNMNoOVJblwqIofpfkuLauxiSnJPlRP7d4Xpf2r3uZ9920B6MlydnpRzBaURQHJDmmQ9fqzay7LsnaJEPa2s8oiuKAsizv3txZSc7q0v5uP9YAAAAAAAAAALugsWPHdmovX758wHt0XTNmzJitqgkAgAGYeX73YLShU5NJL+p73bRXdw9Gq2usQsKSZNILk4U93Ea735nJyKdUIWJdHXxx0jgimXxaMv9/O49NeFYVipYk9YOSGWdXV1KFZ93y1p7D1vpjn1OTokgmPb/n8bFHJxNObG9PPb26upr9L70Ho71kXjJ0SnJlfe91HPah5LZ/6nnsqE8l085IGkYk3+xnCNjOpLdQtCRZdX919ebRn1ZfH/pm73PqBiWt67estiSZ8Ya2B0Wy4q6keWkV1DdkUvKUtySD965C4oqG6uufLqqC2SY8Kxl5QDJ8ehW6NuVl1e/30tuSNQuTvY5NBnX4O9PG5iqIrc6t/gAAAAAAAMCeyf8t3fG+nPZgtCS5MP0IRiuK4sQkT+/Q1Zrkx71MvyLJe5I8eVfEy4qimFWW5X2bOebdXdr/W5Zlr3d/lGW5piiKq5O8psseZ/d1SFEUT0lyWoeuDUm+sZnaAAB2PWVZ6woAAAAAAGCnMH78+E7te++9d8B73HPPPZ3aEyZM2KqaAAAYgEnPS46/KvnLh5JVDyTjT0ye/pmkvqnvdVNemhz+H1XA2YbVVXDUcV9PhuxTjU89vedgtP1fk4x8anLXR5MNK9v7G0Yk019bPX765UnzsuTRts8AHndMcvyVvdfSODKZ9prk/s/3+2lvUtQlT31b9XjYfsm0v0/mXdF5fPZF/dtr7BHJ4InJukc79488oAqbK4pk5huTuZ/rvnbGG5ID35nc++lkzfzOY42jk+lnJw1tn3d85H8lN/+//tW0p9iaULQkuf8LPfcvuz155Nre1z3+y+p60p/6+buSJPVDqtC1Q/81WXxTsurBKmCtcXhSNCYjZiV1bbeMr16QrH4oGXNI9fsOAAAAAAAAsIsSjLbjfTlVGNqBbe2Ti6K4sCzL/+xtQVEUE9rWdfS/ZVn2+LFnZVneVxTFV5Oc09bVlOQrRVGc0lvQWVEUL0lyVoeu5iTv39yTSXJJklclefJj5c4qiuK7ZVn2+FF2RVEMbnsuHe+E+WJvzwUAAAAAAAAA2PWNGTMmM2bMyP33V7cHLFu2LHfddVcOPPDAzaxsd8MNN3RqH3300du0xqIotul+AAC7nf1eWV1lWYV39deB70ieekGy5q9VqFjHtfv9XTL/W53D0aa9Jpn43Crs6Tm/TG57V7L0T8mYQ6uQtWH7VfOaxiQnX5esezxpbUmG7rv5Wo7676R+cHLvf/c97/TlyW0XJY/9Ihk6JTngbcmkU9vHj/1KMvppycIfJ4P2SmacW4XH9UddQ3LYh5I/nJOUrW19TVXfk9+bqaf3HIy236uqELaD35vceG7nsdn/1B6KliSzzk9W3JXc95n+1cXOaePa5K7/qK6BGLJvsu+LqoC0Jbckj/2883jTmOq1NPm06jU0bGoVXDhsWjLmsKRpVPvc1o1JuaG61ixMhk5KGoZVY2WZpKx+LwEAAAAAAAC2EcFoO1hZlhuLorggybVJnvw/wB8timK/JJeUZbm04/yiKJ6T5DNJZnToXprknzdz1MVJTksypq19XJKfFUXxhrIs7+6w/6Akb0zy0S7rP1qW5UP9eD4PFEXxiSTv6NB9dVEUFyb5XFmWzR3OOjDJF9pqedLi9C+ADQAAAAAAAADYhZ1wwgmbgtGS5Iorrsill17ar7V33XVXbr755k3twYMH58gjj9ym9Q0aNKhTe/369dt0fwCA3caWBMrWNSbDp3Xvrx+cPPO7yaM/T5bdnow9Mtn75PYzxh6enPzTvvcePKH/ddQPSo76r2Taq5OfHNPznHFPr8Kkjv5U7/vUNSQHvbu6tsT01yUjZiYLvluFok19efXcn7T3KVX42Z0fbO+b/Z7qe5MkM9+QDJmYzPtGFVY15eVVyFynGhuToz+dHPiuZN7Xk9vfu2W1smta+9dk7md7H29eWl1Lb+t7n0F7Jeuf6HmscXTSsqzt8cgq0G/GG6vX5BM3tO1dJJNekIw/rgpgaxxVvX7qB3feqyyTjevaw/02Nle/wy3Lk3WPJSNmCV8DAAAAAACAPYhgtBooy/KnbeFoHT9u7v8leVNRFL9P8tckQ5IclmS/Lsubk5xRluWDmznj4aIoXpbkuiRNbd3HJ/lLURQ3J3kgyagkRyQZ32X5D5MM5O6Hf0oyO8nz29qNqZ7be4uiuCXJyiTT287qeDdMc5LTyrJ8ZABnAQDsQspaFwAAAAAAADuN1772tfnqV7+6qf3JT34yb3nLWzJx4sTNrr3ooos6tV/1qld1CzLbWqNHj+7UfuQRtzMAAOwQdY3JpOdV144y7qjex0Y8ZcfUMP746upJUSSHfCCZ+cZk6Z+S0Yckw6Z0nrPvi6prc4ZPSw5+TxVudc8ntrrsfusrUItdR18/wydD0ZKkZUVy/xerq6u7/r173/AZVahfw/Aq8GzVvGTDyr5raRyZjH9msvqBKmCttTlZcnPSNDYZPj1Z8sdq3pgjklnnJavnJ+sXJQ9fk6xfnJQbq/HpZ1evrVUPVO8/409MBu+dbFhVBRXWb9u/awIAAAAAAAADJxitRsqy/GRRFBuTfCTJ0LbuxiQn9rHssSQvK8vyhn6ecX1RFKcl+Uraw8+KJEe1XT25Msm5Zfnk//nt1zkbi6J4ZZIvJOn4cXMTkvR2l8rjSV5XluWv+3sOAAAAAAAAALDrOvnkk3PYYYfltttuS5IsX748Z5xxRn784x9nyJAhva772Mc+lu9973ub2kVR5G1ve9s2r2/69OlpampKc3NzkmTOnDlpaWlJY2PjNj8LAIAaK+qqsLFlt3cf2/+1O76e3gydXF3bwuTTeg5GK+qSsnXbnJEkIw9IXnRXe/vx3yR3XJI89vMq2OqkHycjD0zu+Xhy5wfb5zWMSA56V3L7QD7bmV3WqvsHvqZlRbLwh937m5ckS5a0t5fektx4Xu/7PPDl6toS445JhkxKRh1UfR00Llk5N3nom8mah5OppycjZlWvq5Vzk33/Nhl9cLL20WTYfknL8mTtI1XQYcPIpGlMUle/ZbUAAAAAAADAbkwwWg2VZfmZoih+kuSSJC9JMqKXqY8muTzJx8uyXD7AM35cFMXBSd6fKrRsTC9Tf5/kI2VZfnsg+3c4Z1WSVxVFcXWStyc5tpepS5JcleTisiwXbclZAAAAAAAAAMCO9+ijj2bevHlbtHbatGlJki9+8Yt5xjOesSl87Prrr8+JJ56YT33qUznmmGM6rXniiSdy8cUX59Of/nSn/ne961055JBDtqiOvjQ1NeX444/PnDlzkiTz58/Pi1/84px//vmZNWtWhg4d2mn+xIkTM3jw4G1eBwAAO8j0s5JbLuzcN2y/ZO+Ta1LOdjfhxGSfU5NHrmvvG7x3cvyVyc97ec4HvD25+6Pd+8cdmxRF8sTvuo8ddFGXc09ITvlZ93mHfKC6yrJqF0X1ddFvk0eu7T5//AnJc36VPPg/ybyvJxvXJlNflTzlzcmvXpr89fs9P4ckOfK/kmV3JPd/vvc50B+L/1B9ffi7PY93/R2be/nA9h8yKZnysmTFvVWQ4NqFSeOIZPW8ZPiMZOmtSf3QKoBw7JFVMNvkl1QBa/VDk41rkpZV1dqV9yStLcnYo5K6huq1tnFNFTBXNCSNo5LWddVcAAAAAAAA2MkIRquxsizvT/KaoiiGJDk+yeQkE5M0J1mU5E9lWfbwcXQDOuPxJG8qiuKCtjP2aztjdZK/Jrm1LMsHt+aMDmddneTqoij2T3JEkklJhqUKd3soyW/LsmzeFmcBAOz8yloXAAAAAAAA28wZZ5yxxWvLtrCDI444Ip/85Cdz/vnnp7W1NUly880359hjj83MmTMze/bsDB48OAsWLMiNN96YDRs2dNrnuc99bj74wQ9u+ZPYjAsvvHBTMFqSXHvttbn22h5CGZLMmTMnJ5100narBQCA7eypFyTrFiX3fjLZsDIZe3QVElZXX+vKto+iLnnm96ugpkW/SYbPTGadnwybmsw8v3uA09DJyaGXJvOvStY83Hls5huSDWu6B6PVD0kmv3iAdRWd25Nf0nMw2ow3VHOnv666utbam5N/lkw8JWndkDzwpaTc2H3O8d9Mbn1XsmZ+97HjrkimnVk9XvzHZN1j1XljDq36vlF0X7M5B7072dic3POxga9l97Z2YfWe1JMV97Q/XnV/svBH1eObL+jn5kV6vJ+tYUQy9fRk1dzk8V91Hpv5xmT/s5KxhydFfTL/6ur1OWTf6nU18ZTej2tZVe05aEIydFI/awQAAAAAAICKYLSdRFmWa5P08HFo2/SM5iRzNjtx25z1YJJtErYGAAAAAAAAAOw+zj333IwZMyZnn312Vq1atal/7ty5mTt3bq/rzjnnnFx++eVpbGzcbrW96EUvyqWXXpqLL744Gzf2EJgAAMDuo6hLDrssOeQDyYZVSdPoWle0/dU3JU/9f9XV0VH/XQWGPfDlpNyQjHxqcuJ3kvrBySnXJ79/XRWC1jQuOfAdyfRzqvkr7k7u+0ySMmkam5x49dZ/H6edmdz/hWTJze19445Jpr6y9zX7nJrc9+nu/XWNyZjD2h43JBOf2z10rX5otX7JLcld/959bNILO9RxVPcz9joueeKG7v1Hfzq56z+rYKiOZp6XHPah6nFvwWj1g5PTVyaP/iy57Z+qwLbmpclBFyV/+bee18Bm9fIhnxtWVqGBPZn7uerqScffxfHHJ0OnJGsWJCvuTdYv6jx3+PTqfWPNgqRxVJLWZMjkKghu5T3JsOnJhGcme5+UlK3JoLHJ+iVJ44ikaOgcoFiWXdqtVfBhfVPnM1tbqq912++/IQAAAAAAALD9CEYDAAAAAAAAAGCHesUrXpFnPvOZueyyy3LFFVfkiSee6HFeY2Njnv3sZ+fiiy/Occcdt0Nq+5d/+Zecdtpp+drXvpYbbrgh9957b5YvX561a9fukPMBANjB6hr2jFC0vtQ1JMd8Ljnio0nzsmTYlPaxETOS5/4m2bAmqR/SHkhUNCRHfyo59NJk9fxk1Oxqn63VODI55RfJA/+TLLstGX1YMvMNVVhYbyY9P9nned1Dz/Y/Kxk0rr19yAeTxTcSLAWJAAAgAElEQVQmzUva+w69tPr5z74oWXJT8ljbZ1DXD06O+1rSNKrvevd7VfdgtLrGZMorkvHPTH75t8nqts+a3ufU5NDLOtT3uuTBr3bf82mXVN/LSc+rro72eW7y85N7ruXwjyS3vqPnsVlvSo78RLL2keShq6pAqvWLkykvq4Lwhu2XLP1T8tM+/t41+SXJot9Wj1ubqzXL7uh9PnuOJ38verPqgeT29/Q9p7egwJ4Mn5Gsur9zX+PIZNyxyfI/J2v/2nnsmC9Vr6U1D1fz1j2WrH4omf+tZOV9SV1TMvm05ClvrkIzN6yuroe/mzz4P9X725RXVK/3jqFsSbJhbdKyPBkysf/1AwAAAAAAsFlFWfbyyT+whyiKYnaSO59s33nnnZk9e3YNKwIAdjnfKHrun35OcuwXd2wtAAAAAAB92LBhQ+67775OfbNmzUpDg89Vo3ZaW1tz88035+67786iRYuyfv367LXXXpk8eXJOOOGEjBgxotYlbhfb6/X45z//OQcffHDHroPLsvzzVm0KAFvBPXrADtHaktz98eSvP6gCjaaclhx0UVJX33neqnnJgquT5qVVmNqEEzvssbEKY1uzMNnrGcngvfp37o3nJw98qWrXD02O/0YVIpYkZWsV1NQ4Ohk6uXOo0qO/SH5xSuf9iobkxfcnw6b2fN7iPybXHd3z2HHfSG59exV+1tUL/5yMOmgzz2VD8s3G3sfP7OXfHfR279TmDNor2bg+2bCy7znrew7S3mTMEcnSW7asBtgSYw5PNq5LVtzVuf/Z1yUtK5ObL6jC0kYdnLQsTcY+vQppXPijZN2iKnxt9j8nk16YDNmncwDjivuqtaMPqeaVG9qDIdc+Ur1vNAxJxh7V+/sE7cqyCsQbMilJWYVRzv9W9XOYeW4y6/xaVwgAAAAAwC7G/Xk7jjubAQAAAAAAAACombq6uhx99NE5+uhe/nE/AADA5tQ1Jge9s7r6MnxacuA7etmjPhl7ZHUN5Nxjv5gcemmy6oEqpKthSPt4UZeMflrPayeenBzzheS2dyfrF1fBacd+pe+woxEz2sKSWruPjT8+mfGG5M4Pduk/YfOhaElS11CFMS27vfvYfmf0vm7cscni33fvP+YLVSDRHZf0vO4FdyZD9u49WG3YfslL5iXL/5L8qJdAzVNvTMa1/V2ybE1W3l+F3o07Klm/pAqiaxyVpKxC55b/ufo5NS9LBo1Nivrk/i8kC77T+/ODrpbe2nP/nFM7t598Xay4p/vcW99RXVvr4Pclrc3JyrnJ4huTEbOSfU6tgthGHZQ0jEiaRifNS6owsFUPJCmr94sNq5PV86v3xbFHJhvWJMvuqN7XRsxKHroqeeS6JK1V0OS4o5J1jydLbk4aRyZjj07qm7b+OWwP65ckd/9nMvezvYcr3vSm6nrZ48ng8Tu2PgAAAAAAYLMEowEAAAAAAAAAAAAAwJYask91DdSM1yfTz67ChgbvXQV59aVpTDLhpOSxX3TuH3t0Fah28MXJxvXJA1+sQo/2OTU55ov9r2fmG5M/vqVzX8OI3sPkkmS/v+sejFY3KJl8WhXC1FMwWsOI9iCip16Q3POJ7nMOaDtzxFOr0Lg1D3ceH7JPMuaw9nZRl4yc1d4evFf3PUcfXF0dTXp+++O7PpLc2ku43pll9fXnz0ke+3nPc05fmTQMTVbel9x4frLy3upnVjQkM85Jhs+sQqju/2Lbcy6SckP3fRpHJS3Lez4DOrrzA53ba+b3/vu5NXoLDzzxO8mkF1TvYSvursIVh+zdeU5Z9v3etn5xsmZBMvLApH7Q1tW5fkly98eq19eGlf1b85vTk+dcv3XnAgAAAAAA25xgNAAA2G7KWhcAAAAAAAAAAADszIq6ZMjE/s8/5ovJnL+pwreSZOjU5Bn/Uz2uq08O/3By2L8l5cakrnFgtcz6h2Tj2uSe/06aFyfjT0wO+3Ay5pDe1zzlzcnyO6uwr6QKPTvhqmTQ2KRpdDJsWrJ6Xuc1U19RPe+kCoeb+9lk47r28aaxybQz2p/TIf+a/P6stN+PVSSHXDrw57c5k17UczDafq9qfzz9rJ6Dp+qHJI3Dq8cjn5o8Z07v5xzx0eraXGBUa0vyxO+SuqYqBK5+cNK6MWldn5StyYKrk7/+KFn0m2SvY5OppyfL/5z8+bKe95vwzOr7tuDbPYfRwUD9+mUDXzP++Op9Yc2C5PFfdR5rGlO9py27PRl7ZBVutnFdMupp1XvC3icnrc3Joz+rvrZuSJ74bbL0tiqYbUs8/sukeVn1fgUAAAAAAOw0BKMBAAAAAAAAAAAAAMCuYPi05IV/SZb8sQrHGntkUj+o85yirj14bCCKIjnwHckBb6/2rqvf/Jq6xuSYL1ThZasfSsYc2l5PUZc885rk+hckaxdWfeNPTA7/SPv60U9Lnv3T5I73VaFeY45Mjvx4Mmhc+5zpr02G7ZfMvypJXTL15cnezx7489ucUQck089JHvhSe1/T2OSgf2pv73NqUjQk5YbOa6edOfDz+gpFS6rv7YRndumrT+qGVo+nn1VdHa1b1Hsw2gEXJhNOrK7D/yNZckuy9pFk4ilJ44hqTtmaLL6xOvuRnyR/+ufOexzx8apv45r+PEPobtFvq6snzUurK6ne4560+qFk4Q+3X02r5yVNh22//QEAAAAAgAETjAYAAAAA/H/27js8zurO2/g9Rb1LtmxLstwbtjHYmF4NobcACYGQTkJ62c2mbMiml01v+242bbPJBkgjpIcNSSiB0AnVNmCMe2+SrK6Z949jZTSaGVnFtlzuz3Wda+Y5v3POc55pBlvzlSRJkiRJkiRJkqRDRTQOY07cf+tHIhAZRChaX0XjQuuvagFctiqEcOVXQtmMzECw2lPh7D8PvP64M0Lb3074DtSeAZv+DMUNIXisbHqqXjg2BLs9+u5UX+l0mHvj/t/bYBSMgfLZ0LQsvT9WBLVnpo6jeTDmhMz5kWjqtVW9CCZeAZvvgqI6GH8OxAoh0QF/f3/28x/zOTjqX8L97jbYei889QnYfDdMegXM+ReoXhhqT9wIy76UfZ3iRigcB8ke2PFoZr32zHBN2+5PBWlJw7VrKVQZjCZJkiRJkiRJ0sHEYDRJkiRpv0mO9gYkSZIkSZIkSZIkSZIkaXRF4zDm+NHexeBEIjD11aHlMvtdUHsabPxTCAyrvxDyqw7cHgcSicC8f4P7Xknaz6/NeS/kVwx9vfJZofVVMjn3+OpjU/fjRSFMbfw5mePiRTDtDbmD0c5/CAprw/2eDtj4xxDWN/YUyCtPH5tMwu5V4X5+JbSth542+MNx2dcunQbHfQPuvCD3dZxyC9z7itz18jnQtDR3XYeW+66FydeM9i4kSZIkSZIkSVIfBqNJkiRJkiRJkiRJkiRJkiRJkiQNVvXC0A5Gk6+BgjGw8ofQ0woNl8PkV+679SecC9F8SHSm99ecALVnDn6d8jlQNgOan0vvH3tKKhQNIFYA9RfnXicSgdLJqeP8Smjfknv8/I9B3fnhPFvuzT5m0tW5g9GO/SLM+adw/6ZIjj3F4Zou2PEELP8q7HwyXNPs90DrWrj/tbn3p9HRthGKxo/2LiRJkiRJkiRJ0h7R0d6AJEmSJEmSJEmSJEmSJEmSJEmS9pEJL4GTfwCn/QymXBfCw/aV/Eo4+X9D+FevsafA6b+AaDz3vP4iETj+W5BXnuorHAeLvjbyPRaMgZJJWc4ZD48NwLQ3ZZ9bf2m4bbw6SzECjVemDuOl2deYfkO4rToaTvwunP8gnPkbGH82TH1N+mPX15iTYMkfs9cAzn0Aznswd724Ea5N5q4DnHPPwHWAhpfufczhpmXFaO9AkiRJkiRJkiT1YTCaJEmStL8k9/IDRpIkSZIkSZIkSZIkSZIkHWoaXwYv3QCn/hTOuRvOvguKJgx9nXFnwsXL4aQfwCm3wIVPQfXCke8vEoFZ78nsn/IqKKwN9ydeDnmVmWOmXR9u534QCmrSa7PelR641ju2v8mvHHh/M9+RvX/GW6B6EUTzMmvxEqicB6VTc69bc1y4PfoT2euTroHaU8N15FLcCKfclLs+5mSomJe7PljRgpGv0V9eJRz9SXjZLqhcMLS5Xc37fj+SJEmSJEmSJGnYhvDreCRJkiRlMPxMkiRJkiRJkiRJkiRJknSkKRwDjVeNfJ2i8SGwbF+b/a4QJrby+9C9G+ovg3k3pup55fCSu+H+18H2R0Ow2/yPQsMloV61AM57EFb+CNrWw/hzYOIV6eeY9U5Y8zNoXZvqa3gpjDlx4L3NuAFe+B507Ur1lU6HiVdBvAgaXwEv/jB9ztQ3QLw4tAnnwYbbM9edcH64nXQNPPkRSCbS69NeH27LZ+XeW+U8iBXmrk+8MgS3PfLO7PVrEiGYLtEDt+T4ylJxI8z/CDzwhuz1M38PpVNgy725x0w4D8aeCj0dkOyCuotCqFy8ONSP/gT89UpIdKXmNF4Nq3+cfb3uluz9kiRJkiRJkiRpVBiMJkmSJEmSJEmSJEmSJEmSJEmSpMPL9OtDy6VyPpz/MHS3QqwoBHr1VToV5n849/zSKXDu/fDC96HleRhzCkx9XeY6/ZXPgpfcA898DnY9A2NOgPkfD6FoACd8OwS3rfkpRPJg8rWw4NOp+Yu+Dve8FHY9neqrPSOMAyibBqfdBg+8Hjq2QqwYjv1cCHeDEMD2yHsg0ZG5t6l7wtMmXglrfp5ei8Rg0tWQ7IZH3gX0+8WyE69KXXs0FoLaNvwh8xxzPwBjT8v+2MSKYdwSiOXD7lXZxwAc8zmoOjp3veESeMm98OLN0NMGDZeG/eQKRlv5g1DPK8295sGkuw1aXoDdK8Prt3J+eL0mE+F5a98EdRdAfjU0LQ21kknQ0w6dO6FgDERzfKUs0QORaOq57OkIz0WiI5y3pxW6mqBtQzhvXnl4L8RLDtz1S5IkSZIkSZIOewajSZIkSftNcu9DJEmSJEmSJEmSJEmSJEnS6IkXD39ucT3M+9DQ51XOh5N/mL0WK4DF34Djvh6O+wetlc+A8x6Etb8MwWqV80PwV6wwNabhEqjfBLtfhOLG9BCswrGw5I9w37XQujbVv+hr0HhluD/vw7D5TujYlqrPeV+4XoBZ74TlX03V8qtg7r+m73PytZnBaNECmPgyKBwD1Ytg+yP95lwTQtEAao6HaD4kOtPH5FWEcLm9qVkcWl8VR4XHrL91v4afloX7jS+HCeeFELHVP4GmZTD+JSFobPw5sOF2WPrF8Dy1roGyWVA+M+yzqwnW3Jq+9rTroXgiNFwOFXMgmrf3vSeTsO5XsOonsOlP0NUM098UXqtPf3rv8wEee+/gxgFMegWsuiWzv+FyWP/77CF62VQvCo/dzLdD0QTo6QyvgaZl0Lk9hLmVzQghdOWzYcffQ2Dbzidg55N7HqdLobA2PP6RvBCyJ0mSJEmSJEk64hiMJkmSJI2I4WeSJEmSJEmSJEmSJEmSJGkf6x+I1le8OISIDTg/CqVTs9dqT4PLVodgtLxyyCsL43tVLQjhay/eDO2bQyBYwyWp+sIvw9hTYMMfQwDWlFdB2fT0c0y+Dpqfg2f+PYSGFdbCyTeHUDSA034B91wB2x8Oxw2Xw8KvpObnV8Kka2Dl/6SvO+0NIZRsOOKlex+z+ieh9fXi/4aWTduGECKXy4rvhNsnPxJuy+dA6TSY9jqoXgwlEzPnPPFhePpT6X3Lv5I5bl/JFooGsPa2oa2z/ZHQ9hbeNlD9wTemH0ficNrPQ6Bc9aLwOuqvuzWE7kVj4floehYiMSidAokuKBwH8aKhXYskSZIkSZIkaVQZjCZJkiRJkiRJkiRJkiRJkiRJkiQdSSKR7KFcvUqnwrwP5Z7b+LLQBlr/6I/DUR8MAWxl09LD10omwvkPhVq8BPKrMtc4/luhf/VPIZoPk6+F+R8b3PVlM5hgtP2taWlo638z2js5NCS74e7LDuw5y2ZC41XhtdfdBsu+AF1Nqfr8j8GU63IHD0qSJEmSJEmSRsxgNEmSJGl/SSZHeweSJEmSJEmSJEmSJEmSJEmjJ14E5TNy14sbctdi+bDoy7DwSyFobaQKx498DR3+mp+Fpz+du/7kR0IDGH8OFNVDrACqF0NPK6z/PWz4Q6hXL4LaM2HGm6FsOnTuhFgxJLugYxsUT9w3r21JkiRJkiRJOswYjCZJkiSNhOFnkiRJkiRJkiRJkiRJkiRJ+8++Co6a+FJYddO+WUsC2HhHn4NvZda3PxLasi/ufa3iBpj/Uag5HqKF0LQ0hPmVToa2DZBXDiWTQrha925Y+QPYfBdsvQ/KZkDJZJhwPhRNgPaN0NUM064P9zffBXmV4T0QzQs//2wgmyRJkiRJkqSDmMFokiRJkiRJkiRJkiQdISJZvuiU9BdASKMikUhk9GV7j0qSJEmSJGkfmXglTH09vPC90d6JlKl1LTxw/fDm7vh7aGtvS+9/7L2ZY/MqoacVEp3huOGyELRWcyJULYCieiABRXUhbA2gYytE4xArgqVfgA3/B+WzYdLLYexp4Xj3Kqg7H8qmQzIBkejwrqVXTyfE8ke2hiRJkiRJkqRDlsFokiRJ0n7jlwklSZIkSZIkHVyi0cwvInV1dZGXlzcKu5GObN3d3Rl92d6jkiRJkiRJ2kciETjhO1B7Oqz5eQii2vHYaO9q8IomQLwUYoUhlGr1T4c2v+ZEiBdDcQOs/MH+2aMOfl0704/X/jLcbrxjaOtsuQdWfDu975Es4wrHQfumcL98NjQ/D8l+fzcaK4Se9tznGnsKJHrCa3f82dBwORSNH9w+ezohmhfe/5IkSZIkSZIOGQajSZIkSSNi+JkkSZIkSZKkQ0ckEiE/P5/Ozs5/9LW0tFBcXDyKu5KOTC0tLWnH+fn5RPxyniRJkiRJ0v4VicDU14QG0NUEP63IPrZkCsy7ESKxEKLWtBy23Q+l00JQ0xMfzjFvElz2Yghy2ngHPPx2aHl++HuuPQPO/ktmsNOvZuRe96KlUD4LundDNB6Cp/o66X8gmYSWF0JIWncLTDgftvwVnvp49jVP/Rn89arM/uJGuHQF3DLAL+C4dAXsegb+/gHo3A6Vx0DZNCACz3499zwd+npD0QCalmUfM1AoGsCWe8PtNmDNz+Cht2SOqVwQAtC2P5xZK50aggW7W8NrvXt3eB32tENRHdRdBJEotG2AWAFMflUIdCuohq5dkOgK7+uC2rBeNBbe34lOiBelnyuZNIRNkiRJkiRJ2gcMRpMkSZIkSZIkSZIk6QhSVlbGtm3b/nHc1NTE2LFjDWSSDqBkMklTU1NaX1lZ2SjtRpIkSZIk6QiWV567NvcDMO31ueu5gtEaXx5uozGoOw8ufW7P+H+Dpz4xtP3N/xgc9f7sQUuz3x1C1/qb+XaomB3u55XmXjsSCeFkR38s1ZdfmT0YbdobYcJ5EC8JoVJ9TXlVCF/Lpf7SEExVOhXqL86sT3k13L44+9ySSbB7Ve61pV47H89da3khtGza1sOKb6f3rf7p4M8biUOye+/jiifCxKtgxyOw+e7sY07+EVTOh9Z1IYyxa1cIeysYA2NOgvbNUDY9BLVtvAOi+VB3YXif93TA2l/CM5+B5ufDZ9vY02Duv0LV0ennaV0H638LRGH8kvDe7JXoguYVUDYjfIb1Z/CbJEmSJEmSDhCD0SRJkqT9JjnaG5AkSZIkSZKkDP2D0bq6uli3bh319fWGo0kHQDKZZN26dXR1daX1l5cP8CVcSZIkSZIk7T+TroFVN6f3RaJQf8nA86a9MTNQCWDyddnHz/sIrP4JNC0feN1rB/nzp41Xh7C1zu2pvmg+TLt+cPOzqT4uhDet+Vmqr7AW5rw3hC+ddivccyV0t4Ra3UVw1PtS+1n948w1p71hL+dcCMWN0Lo6vX/CeXDWH+CmIf699bizYfF/wG9mD20eQOE4aN80tDmRGCR7hn4uHR4GE4oG0LoGln954DH3vXLk++nV3RLej73vyWyhhn01XAY7/p49iLDmRNh2f7hfMhmIwO6V4XjMSTDjLeFzLxKBRA+0PA9F9dC8HLbcC9GC8HlaMAZ2PQn5VelhbJIkSZIkSVIWBqNJkiRJI2L4mSRJkiRJkqRDS2FhIXl5eWmhTM3NzaxYsYLy8nJKS0uJx+NEo9FR3KV0eEkkEnR3d9PS0kJTU1NGKFpeXh4FBQWjtDtJkiRJkqQj3NwPwaa/QPvG9L6iCQPPm/1PsO5X6UFak6+DqqOzj4/G4Ow74aG3wtpfZB8z4y2D33fhGHjJvfDIu2D7Q1AxFxZ8CqoWDH6N/iIROOUWeOG/YfPdUDolBJuVNIb6hHPhik2w9X4oqoPymSFEDmDm22DNz9ODospnQd2FezlnFE78b7j7cuhuDn3FjbBwT4jUjLfCc/8vc16sEHraM/snvzLsbajGngLlR2UPu8uldBpcvAx6WqG7FTb8AWJFUHsmPPbP8OKPhr4PaX8YKBQNYO0vc9d6Q9EAdr+YXtv6t9D+9uqB13/ozQPX8yohryy02jOhcDy0rYeCaogWQtdOSHSFcLWJV0Ll3OzrJJPQsSWst/Nx6GqCinlQNG7g80uSJEmSJOmgYzCaJEmSJEmSJEmSJElHkEgkQl1dHatXryaZTP3yh66uLrZt28a2bdtGcXfSkaf3PRmJREZ7K5IkSZIkSUemyrlw/kOw+qchiGf8S0IA2N5UzIZz74eVPwhhQbVnwJRXDTynaDycfiss/wY88o7MeuPVQ9t7xWxYcvvQ5uxNNAbTrw8tm3gxjF+S2V97Gpz1e3jmc9DyAow9FY79AkQH8fW18Uvgkudg058hXhIey/yKUGu8Knsw2kk/DAFu63/XZw9nwqSrwx7HngJb7u03KQInfBceeH3mehOvguqF2YPRGi6D9X+AREd6f+NV4fqi5ZBXDlNfm6pVLgCGGIxWNAEmviy8nvIqYOzJUDIJnvn38Npsfi41duY7oGAsdO2CbQ9C8cTw+kp0wbNfz32OxpfD6p8MbV/S/ta1MzSAXc8MPPbJj8DY08JnzIbbYceje1+/oCa8Z8aeFoIwW56HLfdB57ZUaNyEC6B8NtSeGgIOi+pD4GQkCp3bQ9haNDay65QkSZIkSdKgRfr+kLN0JIpEInOBp3qPn3rqKebOzfFbIyRJkvpLdMEt+dlrk66FU/xNb5IkSZIkSZIOTq2trRnhaJIOrEgkQmNjI8XFxftszaeffpp58+b17ZqXTCaf3mcnkCRpiPwZPUmSJCmLrha4+9IQ0NNr6uvhhO+AAfrpkkl4/EPwzGdSfTPfDgu/AiRg7W2w/VGonB/CzWJ7fq5328Pw53NCcBhAtACO+xpMfxMs/SI89t7UenUXw6m3hDCkPy2BzXelavEyOOeuEKR033WQ6Az9tWfA6bdBfmX2fe9aCr89KrO/dFoI3nvuPzNrJ3wXpmUJbevV1RLOX1Cde0zHdvh5Tfba6b+EhkvT+5LJ8Bi1roP7roGdTwIRGHdWCFF76M25zyUdiWKFUDIFWtdC+UxIJqBlJZCEwnEhLDFWEgIaJ18HHZth8z2w4Q9hfsVcqLsQJl0DpZOBSFizY1uY37EFtv4NYsUhHDGvfBQvVpIkSZIk9efP5x04BqPpiOcPXUmSpBHp6YQfF2SvGYwmSZIkSZIk6SDX2trK+vXr6erqGu2tSEecvLw86urq9mkoGviDV5Kkg48/oydJkiTl0NMBG26HXU9DzfEwbomhaANpfh52PAaVR0PZzME9Vm0bYfXPgARMOD+EGP1jvRUhfKhsOlQvhmgs9He3wdLPw+a7oXQKzHwHVB0dau2bYctfoagBqheGAKSB3HFGWKevY78A48+G/zsJetpT/UX1cPEyyCvd+3Xtze+OgZ2Pp/fFS+ClGyCvbOC5XU0hkKn32v76Clj94+xjr+3zvcSu5nCOSDQcv3hLCFrL5pRboGpheMy3PgjJHmi4BNbcCve/LvucCx6HrffBQ2/JrJVOg5YVua+pqD48X1ULobsZln0p91jpYFQwFqJ5kFcBkT2fVXUXwJTXhPfP8q/A7lVhTP2lMOak8Bm5/OvQtBTat8C8G6H2tDA/vzoEsCWT0LQcttwD2x4IIW9l06HhpSG8zT+TJEmSJEnK4M/nHTgGo+mI5w9dSZKkETEYTZIkSZIkSdIhLplM0tHRQVNTE83NzXR2do72lqTDVn5+PmVlZZSXl1NQUEBkP3ypyB+8kiQdbPwZPUmSJElHrM5d8NBbYf3voKAapr8J5rwvhA1tuQ+e+mQILao5ARZ+AYob9s151/4S7rkKkt2pvgWfhrkfHPpa634Hd12U2T/+HFjyx9zzOrbBL+og0e/fHKoWwgWPZJ/T8iL8akpmfzQPrtoRgtcAEl3Q/ByUToVYYWrczidh+6NQOA5qz4B4Ufbz/KQ8BKRJGrqCMdCxNXstvxoKx4YxBWMgXgata2HznaFefwmUzwnhbD2tUD4rhIRGolAyCfJrINkFRXVQNiMVtNhXMhHmRPNDPde/syS6obslfEb0/ZyQJEmSJGmE/Pm8A2cvv5ZCkiRJ0vAZQixJkiRJkiTp4BeJRCgsLKSwsJDa2lqSySSJRAJ/0Zq070QiEaLR6H4JQpMkSZIkSZJ0kMqvCL9kOZnMDO8ZezKc9bv9c96Gy+Ccu+HFH0HPbqi/DCZePry1JpwbAshaXkjvn37DwPMKamD2e+CZf0/1ReIw/99yzymdHELitj2Q3l9/aSoUDUJQWsVRmfMr54e2N3M/AI9/KLN/zMmw9b69zx+MyvkhqC2Xy9dCcX24n0zAjsdg9yooHA9Vx8CLN8GDb8w+N5qfGTjXa/y5MOlqeOANuc+9t+ucfB3sXglb7s09RkeuXKFoAJ3bQ2N59vq6X4c2FEUTINkTgs5IQvfu9Nf/mJOgejGs/D50NYXwxYGUl8UAACAASURBVB2PZl9r/LlQvQialsGYE8J7r3I+7FoagtrKZkHlXOhqCe+B4onhMynZBbGiEMTWvhnW3gadO6H+4uyfRYkuIAJRv74tSZIkSdJI+H/WkiRJ0oj4xUBJkiRJkiRJh5dIJEIsFhvtbUiSJEmSJEmSdHgYjV+YMPak0EYqGg8haw/eAJvvhJJJMOdfoPGqvc9d8BkoPwrW/wbyymHKq6H29IHnnPpjuPMi2PV0OB57Ciz+5ogvI039ZdmD0SZdHQKNtj+UWcsadBaBeHEIaupv9j/Dyh/Cpj9l1qIFIQDtH8tEQ1hT9aJU35gTcu//kmfht/Ohuzm9P14Kp98KrWtzzz3uG1B3AfxqWvb69DfB8f8VAqNuzvFvRQs+BdOuhyc/Cmt/Be2bwuti7Cmw7SFoWpr7/NJQtW0YuL71b6H1yhWKBrDx/0IDWPuLke/t7+9P3a89M4TC7Xwi1Tf2NJh8DTRcEcLVIrEQ9DZciZ7weTHQnynJJJAM4yRJkiRJOsQZjCZJkiRJkiRJkiRJkiRJkiRJkiRJkjIV18OZvwmBO0MJeYtEYOqrQxuskklw4ZPQ/GwIECudPOTt7lXl3BDu1Tccre4imPYGyKuE+1+TPn7sKXD8t+FPS6B9Y6p/9nsgVgxPfzJ9fDQf6i8GktmD0eovguhefkFNxVwomQK7V6b315wYHqOZb4NnPptem/FmiJdAcWPYQ6Izc91xZ0PhAMFMZTPCbSQaxmbbf8PlUFgLi/9faNm0bwmBVuWzIZYPNw3wupnxNnjuP7LXJl0Lq27KPVc6WGy+M7Nvyz2hPfTW4a0ZKwaSkF8Nbesy66VToageelph+yOZ9VN/Ej4POrZCwVioOhq6miC/Jnw+xApHJ7hTkiRJkqRBMhhNkiRJ2m+So70BSZIkSZIkSZIkSZIkSZIkSRq5AxWgE4lA+az9e465/woTr4Qt90H5zBA4Fo2FELdkTwjqat8EE86DhV+CvHI470FYdUsIKBq3BOovge4W2Pq3VIBYNB9O/D4U1MDk62DXM7D086nzFjfCgs9m3VKaSBSO/ybccwV07w59BTWw6Kvh/oJPh7CkVbcACWi8Go56X6jFi0Iw25pb09esOgYqZof75bOhaVnmeRtemrp/1Pthy92Q6Er1TbwSKo7a+/4Lx4bWq/FlsPqnmeN6H6tcwWjHfn54wWjnPQg1i2H3anj8Rtj59/DY1yyG0mnQshKqFoSxOx4PYXPVC8NzXtwAd14ILS+krxnNS38spP2tpzXcZgtFg/Aa7f867euvLx/ceSrmhvdETyvES0MYZtsmaLwqhCBu+CNsfyjUzrkrfM6tuTV8VpbPgp522PU0FE+E6uMg0RHGjDk5fK42LYdtD0PJnnq8eGiPgyRJkiTpiBVJJg1r0JEtEonMBZ7qPX7qqaeYO3fuKO5IkiQdUnra4cdF2WuTXgGn3Hxg9yNJkiRJkiRJko5oTz/9NPPmzevbNS+ZTD49WvuRJMmf0ZMkSZIkHdYSPSF4a/fqEARUNC69vvPpEJ4WL4G6CyC/cvBr714FG24PIUMTzoei8YOb174Z7roEtj0YjkunwZm/TQXOPfef8NBb0+fUXQxn/jq9b/M98Nw3oX0jjH8JzHkvROOD33+v9bfDneen9xXUwKUvQrIbbh0fwpT6Kp0GlzwHf/8ALP1c5przPgIv/i+0rEjvLxwHl68JQWbD1dMRgp+6dsK4s0N4HsCtE8Jj0d+ir8Gsd4T7bRthwx+gcALUHBfWIgG3TRz+fqTDXXEDtK5NHY85GWKF0N0Ku18MQYYtL4SQxTEnQVEddGyFkikhhDGvPMzrboFoIZAI8yVJkiRpP/Dn8w6cYfwtlCRJkiRJkiRJkiRJkiRJkiRJkiRJ0hEuGoPqRaFlUzk3tOEomQTT3zT0eYW1cO790Pxs+EXgFfPCPnvNeAsQhee/BZ07oP4iOCZL+FjtaaGNVN15cPKP4KmPh3CjmhPghO9AXmmoz3wbLPtS+px5N0IkAlNeBcu/AonOVC1aAFNfEx7Xe68N4WoARGDBp0YWigYQK4DJ12S5jgvhhe+l90Wi0HBZ6rhoPEx9bebchpfC2l+MbF8A1yRgx2Ow8ofhsSyZDBMvh6pj4GfVueeddTtsfzQ8NvlV4Xnv3g0Vc6G4Hrqaw7XsegY23w1rfja8/dWeDrVnhtCqjq2w8wloWja8tXTk6BuKBrD1vvTjDXsCCZ/+9NDXnvVumP+RoYVSSpIkSZIOCgajSZIkSftLMjnaO5AkSZIkSZIkSZIkSZIkSZIkHWkiESiflbs+44bQDpTJ14aW6IZov6+1HvsFKJsOa24LYWlTXgMNl4Za5Tw487fw2L/Azqegcj4c9w0onRJaUUMI8Up0wcQrYNyZ++8a5n4QNt4Brav79N0IJY17nzvt9ZnBaPFSaHwZvPDfgzv/Ue8Pz2v1wtD6m/XuECLX38QrYMK5oe3N+LNh1jvgF/XQtj77mKpjQzhbNmf/JQSsZfPUp+CJG7PXZr4Tnv1a9tr0N0HtGSE8q2MbbH8INv0l+9h4CYxbEgLeWlZkH6Mjy/KvhPft2X8KoZGSJEmSpEOGwWiSJEnSSBh+JkmSJEmSJEmSJEmSJEmSJEnS3vUPRYMQ9jXjLaFlM/4cuOCx7KFqY08K7UAomw7nPwRrboXWdTB+CYw7a3Bz6y+Gxd+EJz8C7ZugYi6c9D8QLYBVN0NP+97XaLx64PrEl+YIRrtqcHvsa+6H4OG3ZfZXHQsz3wYPXJ9ZK5qQOxQNoO787MFoeZVQs3jgvfQPn+vpDIFyO58Ij+WkV0BBdebcnnaIxEOg2rYHoaAmhMr1tMGTn4C2tSFcb8K5UDoNWp6HOy/MvZdJr4BVt+Su6+C06ylY8d0QbihJkiRJOmQYjCZJkiRJkiRJkiRJkiRJkiRJkiRJkqSDV7ZQtQOtsBZmvHl4c2fcANPfBN3NkFee6l9yBzx+Ywhvqj4OFn4JXvgeLP3CngERWPhlqD524PXHngZz3ttnHjD5Oph45dD32nAZPPIOSCb69V8OdReFALT+tUnXDLxm1UIonwVNy9P7p1y3J2AuAvT7xfUFY6GoPnOtWH54PPcmVhhui8ZBwyXp/Yu+lDm+fEZ4jts3Z9ZO/hFMvjYE9K35WfbzXd0RHpvVPw3Pw45HIV4WnvOieujYAonOve9b+97GPxqMJkmSJEmHmIPgb4IkSZKkw1Vy70MkSZIkSZIkSZIkSZIkSZIkSdLhLxJJD0UDGHsKnPOX9L5jPw+z3gO7noaqY6FwzODWPvbzMOU1sP0RqDgqBK1FIkPfZ3E9HPf/4OG3pgLQxi2B2e8O+1/4FXjknanxVcfAnPftfX9n/AbuuhSaloa+iVfAMZ+FeAnUXwLrfpU+Z8abIRob+v5Hov5SWPGd9L5oAUw4P9yf+prswWhVC0NgG8Dka0IbSMe2EJ7WshJqjoNpb4T8ilT9pgGet4uXw29m5a6fcze0b4I1P4fVP4Nk98B7ORJ0bB3tHUiSJEmShshgNEmSJGlEDD+TJEmSJEmSJEmSJEmSJEmSJEn7UHFdaENVOS+0kZpxA0w4D7beByWToeZ4iO75SvKsd4SgtM13QnEjjF8Sws32pmw6XPQ0tLwAeRXpgW+n3BzC1tbeBvEymPpamPfhkV/HUM37N9jyV2haFo4jUTjua1BQHY7HvwQKa6F9c/q8qa8Z2nkKauCYz+SuT3sjrPh2Zv/cD0H5TJj5dnj2G5n1ya+C2tPC/car4NgvwK5noHAsVB4drmf3GvhlY/bzzv4naLgc7jg9997m3gid26CrGV7839zjDiadO0Z7B5IkSZKkITIYTZIkSZIkSZIkSZIkSZIkSZIkSZIkSVJK6eTQsqmcG9pQRSJQNi2zP14MJ3wHjv92GDNaSibCeQ/Cxj9C24YQAFcxJ1WPFcCSP8G9V4fAsVgRzHpnCCrbl6ZclyUYLQKTXxnuNrw0ezDapKvTj4vrQ+uraALEiqGnNXP+5FdC9UI46X/hb9dl1iecDws+kTrOFYxWvQhO/Rk8+RFY+YPsY16+G6L5IXAvmYTdL4bAvObngQSUTodYfhiz8c+w/KvQ/GwYByFcbsprQlBdsge2PwJrbs1+LoPRJEmSJOmQYzCaJEmStN8kR3sDkiRJkiRJkiRJkiRJkiRJkiRJh4bRDEXrlVcGE6/IXa+cBxc9DW0bIb86hHfta7Wnw/Hfgkf/GbqbIb8qBMf1hrSNOwuO+iA885nUnFnvDsFlexONQ+NVmYFlZTOg6thwv+GycM7+gWLT3pB+XLkAdj6eeY5Z7w6herP/OXswWtnMEIbXKxKB0inhfsHxmePrLwxtbzbdBX86M7O/ezfseBwqjoJo3t7XkSRJkiSNOoPRJEmSpBEx/EySJEmSJEmSJEmSJEmSJEmSJOmIUjR+/64//Y0w9XXQugZKJkEkmqpFInDMp8OY7Y9C5Xwonzn4tRd+GXa/CJvvDsfFE+G0W1PBdHmlcM5d8LdXw46/Q+E4mPfhEKjW18QrMoPRogVQf3G4Xzkfak6Ebfenj5nx1sHvdSjyq3LXfn9MuK27KDye2x6E4voQBldzIuRXQF55CLsrGAvRWGruqp/A8/8FXU3h2ub+KyQT0LYOihtD2NxgJLqBSPrayWTqcU90Q7IHYgVDumxJkiRJOhwZjCZJkiRJkiRJkiRJkiRJkiRJkiRJkiRJB5NoHEqn5K6XThm4nktBNZx9J7SsCGFflQvSw7oghJpd8Bh0NUO8NBXe1dec98L2h2Hdr8NxrBBOvhnyK8NxJAJn/Q4efDNs+AMUjIEZb4FZ7xz6ngdjoGC0Xut/m7q//WFY+8uhnWP7w/DkR9P78sqhYh5E88Nj0L0bonnhudn6AOx6au/rxsuguzm9b+Y7wmNVOi398U8m0oPyevsSXWEPXbugZSVUHJU7ZC1bSNvedLeF57qnFSZcAEXjBj9XkiRJkobIYDRJkiRpf0kmR3sHkiRJkiRJkiRJkiRJkiRJkiRJUrpIBMqm731cXlnuWrwYTv8lND8Lu1dBzQmQX5E+Jr8KTv1x9jCvfW0wwWj7Q1cTbL0vs3/TENboH4oG8OzXQxuJSDQ89gBFE6BqEbRvgqal0N0SQu9mvh3aN0PReGjbCKtugspjoP4iqL8ENt4BT308XGevaD7M/1hYs2kpxEpgzIlQOS/09T7fiZ5wG4nsCW/rhp62EBwXLx7ZtUmSJEk6rBmMJkmSJI2E4WeSJEmSJEmSJEmSJEmSJEmSJEk6EkUiUD4rtAHH7edQNIB4CeSVpwd4Hel6Q9EA2jZA22/S690t8MxnM+dtuz+0Jz6cfd1EJzz+wZHtrXwWVB8PhbXh9VF1LDRcDvGizLEHIlhPkiRJ0kHFYDRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0qErEoG6i2HVTaO9Ew1G0/LQ+iuZAoXjoLghhNz1tMHW+yDZA7FCqF4cbiecD+POgEQP5FeGllcBsYIDfy2SJEmS9jmD0SRJkqT9JjnaG5AkSZIkSZIkSZIkSZIkSZIkSZKODIu+DDseg6alo70TDdfulaFty1LraYct94T7G/+YfX6sEPIqIb9iz+2ewLT8ysH1x0tCyJ4kSZKkUWUwmiRJkjQihp9JkiRJkiRJkiRJkiRJkiRJkiRJo66wFi58ErbcDY/fCB1bofnZ0d6VDqSedujZCO0bhzc/EusTmDaEQLXe/rwKiMb27TVJkiRJRyCD0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJh75oDMadBefeG45bXoBfTcs+9pjPwriz4fbFudcrmQy7X9zXu9TBKtkDndtDG6542eCD1DL6KyBWuO+uR5IkSTpEGYwmSZIk7TfJ0d6AJEmSJEmSJEmSJEmSJEmSJEmSdOQqboT8KujckVmbdC2UTITF/wkPvSWzXjEXLnoKkkl44sOw7MvQ0wrVx8EJ34aqY8K4nk74cUH281ceDRc+njpe8T144A3Zx16xBbpbYPWP4e8fyKzXnAhta0NYW7wENtwOkSgkE6kxeeUhmKttXeb8vHLoasp+bu073c2hsXZ486MFITCtNzxtUIFqffrjpRCJ7NNLkiRJkg40g9EkSZKkETH8TJIkSZIkSZIkSZIkSZIkSZIkSTooReMw7XpY+vn0/rqLQygaQMNl8PDbIdmTPqbx6nAbicCCT8LcD0GyKwSP9Q2eiuWH0LJt92eef/Z70o/Hn5N9nyWToaAGCsfAUe8PbTB6Q9Ei0cxa5w7Ych+UToPyWdDyAvx6evZ1cu0foGohnP8wPPt1eORdg9uXhi/RAe2bQhuOSLRPoFqfwLS0oLUs/b1ha3nl4X0jSZIkjSL/i1SSJEmSJEmSJEmSJEmSJEmSJEmSJEmSdHha8GkgCS/8Twidqr8EFn8zVS+aEI4fuiEVNDb+HJj1zvR14kVAUfZzTHpFZrBYrBAaLk/vK2kMfWtvS++f9a70sLXByhaI1iu/CuovSh0X1eUeO+Mt0Lw8hKn1d/THwt5mvRPGvwS23hfC4RouD6FwK74LD1yfe+2r22DjHXDXJdnrp/4Edq+GFd+BpmW519HgJBPheezcAbuHuUa8NEtgWsXgg9Zihfv0kiRJknTkMRhNkiRJ2l+SydHegSRJkiRJkiRJkiRJkiRJkiRJknRki8bh2M/DMZ8LoVHRWOaY6ddD3fmw+a9QOhmqjwvzBmvm26DpGXj+W+E4rxJO+2kIiervlJvhsffDul+H+rTrQzDZ/hYvgqqFsOPR9P5oHtRdCJvvghe+l17Lq4RxZ6eOK+aE1lfdxbnPWTIphGTVngHxEujul9RVdyE0vizcL50C91yZfZ0574Oln8teW/hlGLcEunZC5649tzuha9ee2779fes7IdGVe+9Hsu6W0Fg7vPnR/MxAtVxBa/378ytC8N5wggIlSZJ02DAYTZIkSRoJw88kSZIkSZIkSZIkSZIkSZIkSZKkg18kApEsoWi9ihtg8iuGt3Y0Dsf/Fxz9KWhdDZXzQ+BYNrFCOO6roR1o8z4Ef305JHtSfTPfAYVjYMEnYfvDsPOJPfssghP/OwSqDaRoHCz4DDz+wcxa48vDbV4ZHPsFeOitwJ7vYxWMhQWfSo2tOTH7+tF8qJyX+/xVx0LV0QPvMZtkEnraBxmolqO/f9CbgkQntG8ObTgi0RCW1j8wLS9HkFq2+lCCDSVJknTQ8b/mJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEkaqcIxoR2sJl4BZ/0frPwf6GqC+oth6utDrWgCnPcAbP0btG+B2tNC32DM/UAIP3v47am++kth/kdTxzPeDNXHwYY/QH41NFwGxfWpenEdjD8HNt6Rvnbjy6DmhNznLps+uD32F4mE0Ld40eCvs79EV3gchxqo1tvftQuSieGd+3CWTEDnjtCGmz0XLxlkoFqO/lhheI1IkiRpVBiMJkmSJO03ydHegCRJkiRJkiRJkiRJkiRJkiRJkiSljF8SWjaxQhh31vDWnfk2mH4D7HgMCsdBSWPmmJrjQsvl5Jvh3lfApj+HUKr6y2Dxf0K8FMpmQPNz6eOrj0sPVzvQonlQUBPacCQT0N2SPUjtH+FpAwWt7YRE5769psNF9+7Q2tYNb340PwSmVR8HM24IQX4j1fIirL0NCmuh7qIQwiZJkqSsDEaTJEmSRsTwM0mSJEmSJEmSJEmSJEmSJEmSJEkiGoeaxcOfXzgGzr4DOraH0LG8slRt8Tfh7ktD2BVAfhUs+urI9jvaIlHIKw+NicNbo6d9gEC1QQStdbfs00s6bCQ6oWMLbPh9aH3N/yjEyyBeDPESiO25TTsuhtievlgRPP4hWPrvIQyv15iTofZ0mP5GaN8S+pI9UHVMmNereQV0N4f3xbpfQaI7vDd2PAYbbg9jSibBUe+HKa8Oe5AkSTrEGYwmSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIODgXVmX3jl8BFz8D634fQtAnnQXH9gd/bwSZWCEXjQxuORDd0NWUGpg0laK1v2NeR4MmP7pt1tt4X2jOfHflau1fBQ28NrXBcCN2LFYfnpuFyaLwKEh3Quh5e+C5s+gsU1UHZdFj8X1AxO6yz7WHY/jAUjof6SyAaG/neJEmShsFgNEmSJGm/SY72BiRJkiRJkiRJkiRJkiRJkiRJkiTp8FDSCDNuGO1dHF6i8RBEly2MbjCSSejePbxAtd77Pe379pqOdO2b0o+Xfzm0/trWh/bbOeE4mgeJrvQx5bMhVgSdO/Y8XztTtcJxMO4siJfBzieguxkmnA/z/g3yK1LjeoPzItFw27Q8tNKpUHFUqn+wOneE11zh+PD6lSRJhyX/lJckSZJGxPAzSZIkSZIkSZIkSZIkSZIkSZIkSdIRKBKBvNLQihuGt0ZPO3TuSoWnDRSo1hvO1be/u3nfXtORqn8oGkDTstzj2zfBqlvS+3Y9A8u+lH38hPOhYytsfzh7PZoPZTMh2QPF9SGQbfuj4Txl06GnbU8oWksqbA2g5gSoOhZiBSGkLb8ytLzKzPt5FYapSZJ0iPBPbEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJB14sUIoKoSiccObn+iB7qaBg9Q6d2UGqvUNYEv27NtrUqYNfxi4nuiEXU+F+01L02sDBbRteyC0wYqX9gtLyxKg1huiljGuAqJ5gz+XJEkaNoPRJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSdOiJxiC/KrThSCahpzUVmNayAu6+bN/uUQeP7pbQWDu8+fGS7GFqOQPWDFaTJGk4DEaTJEmSej33X7DyB+EvMRsuh7k3hr8UHUgyeWD2JkmSJEmSJEmSJEmSJEmSJEmSJEmS9q1IJIRdxUuguB4q58JVO2HZF2H1T6BpeeacvAoorIXu1vB9xO7dkOg88HvXgde9O7S2dcObnzNYrWIvoWp7xsTy9+31HG6SSWh+DlpXQ/FEKJ0G0Tj0dIZQukgk99zOXZBXPvAYSdIBYzCaJEmSBLDsy/DoP6WOd/wdWtfBCd8a/pqGpkmSJEmSJEmSJEmSJEmSJEmSJEmSdGjJr4CjPx5a7/cEe9og2QOxYojGMuckuveEpPUJS+vec/vns7Ofp+FyaH4edj01/L1G86DhClj94+GvoQNnpMFqseLcwWlHerBa63q4/7Ww8Y/Z63kVUD4b2jfB7hdzr1N7Znhv5leE7xlvuRealsHuldnHVx4NY06Cogmw/REoqAnvyfqLIBINYxLdsPRzsPluyK+GadfD+CV7al2h7X4RWteGevWiENCWTEDLCyHsrXs3tKwMz2XDZSGcUZIOYwajSZIkSQDP/kdm38rvw8IvQV7pAd+OJEmSJEmSJEmSJEmSJEmSJEmSJEkaZZFIuI0XDzwuGodoOeSVZ9YWfRUeeVe/daOw6GshdOm+a7KvedX2EGrV0wo/HwM97ZljprwaTvgOcAusuS18L7JtQwhrmvpaKJ0WQpfW/w5W3QLdLVA2E2pPD8eb74RoPpTPgaZnwlgdvHpaoa0V2tYPb36saHihar33D9Zgte5W+Mt5A4cMdu2CbQ/sfa3Nd4Y2WDufCK2vF74fbiNRiJdD1870+qqb975urDg839k8+CZYcgd0bINEB1TMC59RpdMh0QnNy6HpWahaAOWzBn8tq34Cj7wzhMcV1MDib0LjVSEgcstfQ3hbtAAq5kDZjPDZEYlCV3P4fMqvDJ8hLSuguDGEy/XqagGS4TWY7A6ffa1rofY0KJ06+D1KOmIYjCZJkiR1bAv/k91fogvW/gKmvGqAycn9ti1JkiRJkiRJkiRJkiRJkiRJkiRJknSIm/5m2Pq3EEQGEInD8d+CkokQOyccJ7vT55TPCkFUkQjES2DWu+GZz2auPfX1qfsTLw8tmxk3hNa/D0LoUW8AXDIBzSugoBq6mmDdr0P4Ud1FkFca9ppXFr6Xue7X0L0b8qth7S/D9zETnUN7bArGQMfWoc0ZSOXRIQCrc2e4VbqeNmhrC+F5wzGUYLW8isxarGDfXk+vNT8fOBRttCQTmaFog5UrFK3Xn88Z3Dolk2D+R8PzESuGwloonw3bH4I1t8LW+8Pz2j8MrmMb/PVlw9l5pnhJ+KwYyLglIbSxYysU1YXPkoIaGHsabL4rhNrFiqFwDBROgO2PhKC26uNgwaegdPK+2aukg4bBaJIkSVKiO3etu2UECxuaJkmSJEmSJEmSJEmSJEmSJEmSJEnSES2WDyffBPM/Ds3PQc1iKBwbaoVjYPob4bn/TJ9z1AdSYWUAR38SiMCyL0GiIwSUzf8ojDlp5Pvre55IFMpnhPsFNTDrndnnFNTA1Nemjidfk33cTZHs/TUnwHn3p47bNsKqm2H978K1LfoK/PGUEM6UMfd4OPdvsPPJEIiVVwGNLw9Bc30leqC7eU9I2s5wm+t+1j6D1TKMOFitcHCharn6cgWrbXtw+Nd0uNu9Cu5/3ejuYW+haACb/hzaUDU/C+t/A6f8GOrOH/p8SQctg9EkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZKk/SUSCYFjvaFjfR33DSidDut+BXnlIXBs4hXpY6IxOObTMPPt0LoaihtCO9iNW5I97Gjm29KPi8bD7PeE1mvam+CZz2TOnfGWEOBWtSC0XKKxVLDWcGQEq+0afKjaP4LVksM79+Gqpx16NkL7xuHNzwhWqwi32x7Yt/vUoaWrCe68INyPl0G8GNo3heNZ7w6fqQN9Vkg6KBmMJkmSJI1E0r+UkiRJkiRJkiRJkiRJkiRJkiRJkiRJwxSJwpx/Cm1viutCO1RMfX1mMFp+VWbwWzbT3wgrvgUd21J9pdOh8eX7do+5jDRYLZmAruYBgtP6BKjlqhmslm6kwWo6/HU3h9Zr+VdC+//s3XmUpGV9L/Dv09PD7AMM+zrs83+RdwAAIABJREFUIqIggqi4YBTFaFSMihqNGI9LjN6cmOS6JIbojcvNek2iSdRcJDcmUYlKFuOGmiCIYPS4gSKyqOwwIMwwCzM894/qoatrumvp7qrqmfp8zqnz9rP/CoZz6h3q/fb4quQZ30xWHTm82oCeCEYDAIB+/cWQ0DQAAAAAAAAAAAAAAAAAYFQd9pJk403Jle9OttyV7H588ri/T8ZXdF678vDkjEuTq/4w+dmVyZqTk4efm4wv73/d86GMJbvt3nitWNv7+vpAsnV9+1C1KQFrLX33/6yxB9AIS/vsKcnTL09WHTXsaoAuCEYDAIC2yrALAAAAAAAAAAAAAAAAAADY+ZSSHPfbyUN/sxHUtdueva1ffUxy6of6U9tCV8aSxasbrxWH9r6+1slgtV5D1bZfd/Zgtcd/LPnKC6cf2/dJyVO+1PgzmjTe69XvS37w5433fsDTk+PPTf7jhGTbxmn2/nhy6POT9dcl916TXPpLyebbpz9ryd7J5jumH1u8R3LUq5MDz0xu/lxy0380/r3VrcmipcmqY5LlhzTm/vD9vb1/ptpyV3LteckJ7xx2JUAXBKMBAEBbdY7jAAAAAAAAAAAAAAAAAAAjrIz1HorG3JSSLF7VeOWQ3td3Cla7/2edg9bqtnl/W10bX5Uc8Ixk5ZHJ+h/tOH7YSydD0ZLGn9GHvKHxanboC5Przp/at2h5csDTGj+vPLzxOvg5yY9mCPF7/MeSi35ux/7FuyfPXzdZx35PTk5898zv6VH/J7nu75Mfvq/x72fPE5NVRydb7002r2vUtHVDstseybd+J7n72zPvNZ2Hvz35zrkzj5/6t8mm25JvvaW3fZsd/7bku/9r9uvn6vZLhnc20BPBaAAA0DdC0wAAAAAAAAAAAAAAAAAA2MnMS7DahumD06YLUZvvYLVjfyNZvDI54V3JpS9O6gOTY/s9OTn8Zd3t84i3J3d8Nbn36ka7LEpOeV+yePXUeWvPnj4YbY8Tkn2emCw7KNl449Sxw395ajhbJ2OLkyNf0Xh1ctCzkjuvSO74WrJoSbJibbLx5uSyc6aff+J7kuPe1Pjn9N237zi+/JDkyF9pjM8UjLbi8OQJFySfedT04/s+MXnEO9oHox307OTGf5l+7HEfSfZ4RHL7xckVr5t5j3bWXze7dcDACUYDAID08JcGAAAAAAAAAAAAAAAAAADAzEppBJMtXpksP7j39bUm2+7rPVRt2YHJwc9JjpgID1v7wkbfdX+XpCb7PCE5/KVJGeuujhVrkzOvSG65KNl0WyNUbfUxO87b9/RGeNh9P5naf8QrkrFFyZP+JfnyM5NNtzT6939aIySsn/Y6pfHabut9ydd+ZWpI3Hb7/Vzjeshzpw9G2x4kV8aSVcdMBsU1O+mPkzUnNfa69Ys7jh/dKcysJA8/d/pgtDKeHPK8ZNHS5J7vd9injbmE7QEDJRgNAABSh7QWAAAAAAAAAAAAAAAAAACYopRkfEXjtfygue217+Mbr9lavDo55Kz2c8bGk6d8Kbnkxcm6KxprjvkfyUPe0Bhfc1Ly3J8kd30zWbJ3suKwxnscpPHlyQFnJjd9emr/8kOSNY9q/LzniclRr06u+cDk+O7HJce8frJ96AuS771z6h6LVzf2TpIjztkxGG3JXslBz54446Tkrm/sWN/Dz22cv+KwZMP1U8cOfk4jFC1JFu8+83t84qeSy16RbLlr+vGZ+oEFRzAaAAC0NZe/VBCaBgAAAAAAAAAAAAAAAAAAu7xVRyZnXp5suTsZX5WMLZo6Pjae7HXKcGrb7qQ/S3525WTw2PjK5DHnJWVscs4pf90IMbv9K8mqo5JDfjHZbY/J8Ye9Nbn7O8mN/9JoL949ecInGsFrSXLYS5ONtyRXvifZsq4RdvbY/5eML5sYf8n0wWiHvqBRx2n/lPznM5PNdzb6dz8+OelPJ+eNr5j5/S3ZJznmDcl33zH9+Lb7kus+kqz77+TWLyTbNifH/kYjGG7rfY33sPrYZPGqyTW1Jvd8v7H30r1nPhuYV4LRAAAAAAAAAAAAAAAAAAAAAABgrppDxBaa1cckP/+t5Nb/TLauT/b7uWTZflPnlJIc9MzGazrjy5MnXZisvy6578Zkr5OTRUunrj/ut5OH/mZy/73JbrtPXX/Ua5KbP5vc8vnJvoe/Pdn9uMbPe5+aPPv65PZLGgFlax6VLFoyOXfPE5JFy5JtG1vqWpns+chkyV4zB6MlyVdfOrV9xa9OP2/1Q5NlByS3fnFq/6l/myw7qBEut+nWRh1b1ycbfpysPCJZvDrZ/4zG+xhbPHMdc7HptmTpvv3ZGxYIwWgAADAXtQ67AgAAAAAAAAAAAAAAAAAAgM4Wr04O/oW577Py8MZrJmVsx1C0JFm8Mjn93xvBZ/f8INnncckeD99xzoFPn37f8RXJ4S9LrvnA1P4jXpGML0tWPyR59AeTy1/V2/tpdc9VjVerr72y89p2wWxJI1ht+cGN97L/U5IDn9UInLv3R42QtaX7JOOrki13Juuvb8xbdkAjEG3x7slXX5Yc9Kzk5L9ojMEuSDAaAAD0i9A0AAAAAAAAAAAAAAAAAACASWOLk/1Ob7xm4+T3NQLebvhoUsaTtWcnj/iDyfHDfmnuwWj9tPHGxitJbv1i8q3f6X2Pa89Lbrs4ecIFyZ4nzG99sACMDbsAAAAYPgFmAAAAAAAAAAAAAAAAAAAAC97YePLIP0qe++PkOdcmJ747GVs0OT6+LFlz8vDqG5T11ySfPTW5+v1J9bw8uxbBaAAAMCduEgEAAAAAAAAAAAAAAAAAABaMo14z7AoG44HNydd/Lbn2/w67EphXgtEAAKBvCdhC0wAAAAAAAAAAAAAAAAAAAAbqyF9JjnzlsKsYjD0fmRz20mFXAfNqfNgFAADA8AkwAwAAAAAAAAAAAAAAAAAA2CWUseTRH0wOeX5y+yXJirXJwc9O7r8nKYuSMp5svi3JWHLXN5P7703WX5Pc84PkjkuTrRuG/Q66M74yOe2jyaIlw64E5pVgNAAAmFMwmlA1AAAAAAAAAAAAAAAAAACABaWU5MAzG6/tlu47+fOKQxrXNY+cfv0dX0tu/WKy7IBkvycnFx42ixoWJXVb7+u69ei/SVYf3b/9YUgEowEAQO1XuJnQNAAAAAAAAAAAAAAAAAAAgJ3O3qc2XklSH5h53tL9kk237ti//JDkuT9Ott6XXPvh5L6fJnscn6x9UVLGkq0bkw3XJ5vvSNZfl6y/Ntnr5EYQ26IVyb8/dOYz15ycHPfm5NBfnMs7hAVLMBoAALQNMCsDqwIAAAAAAAAAAAAAAAAAAIAFpowle56U3PWNHccec37yX89JHtg8tX/t2Y3r+PLkmNftuG58WbL7RPjZvk+Y7tBM+xz8PqclZ3yll+phpzM27AIAAGD42gWjdVo6h7UAAAAAAAAAAAAAAAAAAAAsfEe9ese+PU9MDnha8tjzk7HFk/37nJYc9+a5nXfcm2ao47Vz2xd2AuPDLgAAAIauX+FmQtMAAAAAAAAAAAAAAAAAAAB2fke9Otm2Kbn6L5JNtyb7PzV59AeSUpK1Zyf7Pim5/eJk2YHJXo+eGpQ2q/Nelfzog8nmOyf7Vj8kOeSsue0LOwHBaAAA0JZwMwAAAAAAAAAAAAAAAAAAgJFWSnLsrzde9YGkjE0dX7Z/cugL5u+8lUckZ1yaXPVHyc++1whbO/5tyfiK+TsDFijBaAAAMKfwM8FpAAAAAAAAAAAAAAAAAAAAI6M1FK1fVh+TnPrBwZwFC8iA/gsDAICFrF24WenTvgAAAAAAAAAAAAAAAAAAAAA0E4wGAABVgBkAAAAAAAAAAAAAAAAAAADAsAlGAwCAzCUYTagaAAAAAAAAAAAAAAAAAAAAwHwQjAYAALVf4WZC0wAAAAAAAAAAAAAAAAAAAAC6JRgNAAAEmAEAAAAAAAAAAAAAAAAAAAAM3fiwCwAAgOFrE4xWSoelQtUAAAAAAAAAGKxSyniSk5I8LMk+SXZLsj7JjUmuTvK9WuvW4VUIAAAAAAAAAACzIxgNAAD6FW4mNA0AAAAAAABgp1FKOSLJKUlOnrielGRV05Qbaq2HDaG0B5VSjk7y20nOTrK6zdSNpZSvJPmrWusnB1IcAAAAAAAAAADMA8FoAADQjnAzAAAAAAAAgF1WKeX0JG9JIwxtzXCrmVkpZTzJ76VRazff/VyW5Iwk65IIRgMAAAAAAAAAYKchGA0AADKX8DPBaQAAAAAAAAA7sROTPG3YRbRTSlmW5IIkP98yVJN8L8mPk9ydZGWSI5IcG98PBQAAAAAAAABgJ+WLLwAA0LdwM6FpAAAAAAAAADupzUl+muTIYRZRSilJ/ilTQ9E2JfnDJB+otd44zZrlSc5I8qIkWwZRJwAAAAAAAAAAzBfBaAAAUNsEmJUyuDoAAAAAAAAAGIb7k3wvydeTXDFx/U6S05J8aYh1Jcnrkjy7qX1zkqfUWq+aaUGt9b4kFya5sJTie6IAAAAAAAAAAOxUfOEFAADSJhitr2sBAAAAAAAAGLLzk/x1rXVT60AZ8i/SKqUcmuQ9TV2bkjy1XShaq1rr1nkvDAAAAAAAAAAA+kgwGgAA9C3cTGgaAAAAAAAAwEJWa71r2DW08TtJVja131lrvXJYxQAAAAAAAAAAwCCMDbsAAAAYuirADAAAAAAAAICFo5SyKslLmro2JHnvkMoBAAAAAAAAAICBEYwGAACZQzCaUDUAAAAAAAAA5t/ZSVY2tf+51nrvsIoBAAAAAAAAAIBBEYwGAAAAAAAAAAAAsLA8uaX9+aFUAQAAAAAAAAAAAzY+7AIAAGD4ap+27dO+AAAAAAAAAOzqHt3S/mqSlFKWJTkryYuSPCzJgUk2J7kjyTfTCFD7x1rrvYMrFQAAAAAAAAAA5o9gNAAA6CXAbOPNyU8+mdz3k2T/M5KVh/evLgAAAAAAAABGTilljyRHNXVtSXJtKeVJSc5L0vo/qpcm2T3JkUmen+RdpZR31Fr/fBD1AgAAAAAAAADAfBKMBgAA6TIY7d4fJRedntz300b7yvckR5zTr6IAAAAAAAAAGE37t7RvSvK8JB9LMtbF+r2SvLeUckqSV9Rat85zfQAAAAAAAAAA0DeC0QAAoNtgtO+9czIUbbtrPzz3fQEAAAAAAABg0h4t7ZVJ/j6ToWg3JHlfkq8kuTPJmiSPT/JrSQ5rWvfSJLcm+a35KqyUsm+SfXpcduR8nQ8AAAAAAAAAwK5PMBoAANR2AWZl8sdrz+t7KQAAAAAAAACMvNZgtL2bfv54kpfXWje2zLmslPKXSf4uyQua+n+zlHJhrfXieartdUnOnae9AAAAAAAAAABgB2OdpwAAwK6uXTAaAAAAAAAAAAzUTN/tvCLJS6YJRUuS1Fo3JXnJxLxmvzuPtQEAAAAAAAAAQF8JRgMAgNqvYDSBawAAAAAAAAD0bP0M/b9Va93abuHE+Btbup9WStl3XioDAAAAAAAAAIA+Gx92AQAAMHztAsyEmwEAAAAAAAAwUNMFo91Qa/2vbhbXWr9SSrk2yRFN3U9K8vF5qO39s9jnyCQXzsPZAAAAAAAAAACMAMFoAAAAAAAAAAAAAAvH3dP0XdbjHl/L1GC0h86+nEm11tuS3NbLmlLKfBwNAAAAAAAAAMCIGBt2AQAAMHy1zdgcvqBd2+0LAAAAAAAAANO6Icnmlr6be9zjppb2XrMvBwAAAAAAAAAABkcwGgAACDADAAAAAAAAYIGotW5L8oOW7tagtE5a5y+dfUUAAAAAAAAAADA4gtEAACCC0QAAAAAAAABYUL7d0t6jx/Wt8++cQy0AAAAAAAAAADAwgtEAAKBvwWgC1wAAAAAAAACYlU+3tB/W4/rjW9o/nUMtAAAAAAAAAAAwMILRAACgCjADAAAAAAAAYEH5tySbm9qnlFLWdLOwlLJnkke3dF88X4UBAAAAAAAAAEA/CUYDAIC0C0YrA6sCAAAAAAAAAJKk1npvkguaupYkeX2Xy1+fZGlT+4Yk352n0gAAAAAAAAAAoK8EowEAQNtgtIW4LwAAAAAAAAA7k1JKbXmd3sWytyXZ0tR+aynlsR3OeWyS323pfnet1f/ABgAAAAAAAABgpzA+7AIYjFLK4iSnJTk0yQFJ1ie5Kck3a63Xz/NZhyc5McmBSVYmuTmN3zh5aa31/vk8CwCg/3w3HAAAAAAAAGBXVko5ONN/n3L/lvZ4KeWwGbZZX2u9Yz7rqrVeV0r5w0wGnS1J8rlSyv9M8qHm7+OVUsaTvDLJHyfZrWmby5OcN591AQAAAAAAAABAPwlGG6BSyu8nOXcOW5xfaz2nxzP3SfL2JGcnWTPDnEuT/Gmt9Z/nUFtKKc9P8sYkM/1GynWllI8m+b35/gIYAMCc+MXYAAAAAAAAAKPsK0nWdjHvoCTXzTB2fpJz5qugJr+X5CFJXjDRXpnk/UneVUq5LMm6NL4b+Jgke7SsvTHJL9Zat/ShLgAAAAAAAAAA6AvBaLuwUsozknw4yb4dpj4uyeNKKR9J8ppa64Yez1mZ5INJXtRh6pokv5rkeaWUl9daP9vLOQAA/dOnYDSBawAAAAAAAADMQa21llJelkYA2muahvZIcmabpZcnOavWelM/6wMAAAAAAAAAgPk2NuwC6I9SyulJPpWpoWg1yX8n+XiSzye5o2XZLyX5x1JK138uSimLknw0O4ai3Z7kcxNnfSNT00b2S3JhKeXx3Z4DANBfAswAAAAAAAAAWJhqrZtrra9N8tQ0vvu3rc307yY5J8njhKIBAAAAAAAAALAzGh92ASPuxUku62H++m4mlVIOTvKJJLs1dV+S5FW11qua5i1J4zdI/nGSxRPdv5DkD5K8tcua3pPk55va9yd5Y5IP1Fq3NJ11XJIPJXnsRNeSJJ8qpTy81npzl2cBAPRHbReMJjQNAAAAAAAAYFdWaz1sAGeUedjjoiQXlVL2SfKYJAck2TvJvUluTXJprfWncz0HAAAAAAAAAACGSTDacN1Sa72+D/u+PcmeTe1Lkzy11rqpeVKtdXOSPy+l/DjJJ5uG3lhK+Zta6w3tDimlHJHk11u6X1BrvbB1bq31ylLKU5JclMlwtL2SnJvktV28JwCAPmoTftY2NG0O+wIAAAAAAADALNRab0/yr8OuAwAAAAAAAAAA+mFs2AUwv0opRyd5eVPXliTntIaiNau1firJ+U1dS9IILOvk3CSLm9ofni4UremcjUnOmahpu1dOBKwBAAxRuwAz4WYAAAAAAAAAAAAAAAAAAAAAgyAYbdfzkiSLmtqfqLX+sIt1/7ul/cJSytKZJpdSliV5foc9dlBrvTrJp5q6xtOoGQBgeKrwMwAAAAAAAAAAAAAAAAAAAIBhE4y26zmrpX1eN4tqrVcl+VpT14okT2uz5OlJlje1v1pr/X5XFe5Y0/O6XAcAMARzCE0TuAYAAAAAAAAAAAAAAAAAAADQNcFou5BSyv5JTmjq2prkkh62+HJL+xlt5p7ZYW07F6dR23aPLKXs18N6AID5VR9oMybcDAAAAAAAAAAAAAAAAAAAAGAQBKPtWo5vaX+71rqhh/WXtrQf1sNZX+32kImavtPDWQAA/VMfSK54bbsJAysFAAAAAAAAAAAAAAAAAAAAYJQJRhuu15RSvlBKubGUsqmUcm8p5fpSyn+WUt5ZSnlCj/sd19K+psf1P+qwX7OHDvAsAID+ufFfkw3Xzzxe5xKMJlQNAAAAAAAAAAAAAAAAAAAAoFvjwy5gxL2opb0kycoka5M8MclbSylfT/KWWusXutjvqJb2j3us54aW9l6llD1rrXc1d5ZS1iRZM8ezWucf3eN6AID5cdWfDLsCAAAAAAAAAAAAAAAAAAAAAJKMDbsAOjo5yedKKe8spZQOc/doad/Wy0G11vVJNrV0797FOffVWjf0clZ2rG26cwAA+u/2iztMqAMpAwAAAAAAAAAAAAAAAAAAAGDUjQ+7gBF1Y5JPJ7k8yVVJ1iV5IMleSU5K8qwkT2+aX5K8NY0gu7e02XdlS3vjLGrbmGRpU3tVH89pNt05PSul7Jtknx6XHTkfZwMAu6q5BKMJVQMAAAAAAAAAAAAAAAAAAADolmC0wbo8jcCzz9daZ0rJuDTJX5ZSTk7yD0mObhp7cynlslrrhTOsbQ0s2zSLGjcm2bPNnvN5Trs9Z+t1Sc6dp70AAJIZP7YBAAAAAAAAAAAAAAAAAAAAMJ/Ghl3AKKm1frrW+rk2oWjNc7+e5DFJrm4Zek8pZVG3R/Za4wJfAwAwBD62AAAAAAAAAAAAAAAAAAAAAAyCYLQFrNa6LsmLMzWN49gkT55hyfqW9rJZHNu6pnXPQZ4DALBz65yHCwAAAAAAAAAAAAAAAAAAAMCE8WEXQHu11m+UUj6X5OlN3Wcm+cI00wWjJe9P8vEe1xyZ5MJ5Oh8A2OUINwMAAAAAAAAAAAAAAAAAAAAYBMFoO4fPZGow2iNmmPezlvY+vRxSSlmZHQPL7u7inOWllBW11g09HLdvF+f0rNZ6W5LbellTSpmPowGAXVUVjAYAAAAAAAAAAAAAAAAAAAAwCGPDLoCuXN/Sninw7Ict7bU9ntM6f12t9a7WSbXWO5O09h86x7NaawcAWCAmgtFmFZAmVA0AAAAAAAAAAAAAAAAAAACgW4LRdg4bW9rLZph3VUv7qB7POaKlfWWbufN9Vut+AAALRG25AgAAAAAAAAAAAAAAAAAAANAPgtF2Dnu3tO+YYd53W9qPKKUs7+Gc0zrs127ssd0eUkpZkeQRPZwFADB8VTAaAAAAAAAAAAAAAAAAAAAAQD8JRts5nNrSvmm6SbXWm5N8u6lrPMnjezjn9Jb2f7SZ+5kOa9t5Qhq1bffNWuutPawHABicBwPRZhOMJkwNAAAAAAAAAAAAAAAAAAAAoFuC0Ra4UsrSJM9r6f5ymyWfbGm/ostzjs3UALYNST7XZslnk2xsaj92Yo9unNPSbq0ZAGABEW4GAAAAAAAAAAAAAAAAAAAAMAiC0Ra+NyU5qKm9Lcm/t5n/kYk52z2vlHJ0l+c0+1itddNMk2ut9yW5oMMeOyilHJPkrKaurUn+oYv6AACGpLZcAQAAAAAAAAAAAAAAAAAAAOgHwWgDUkp5WSllvx7XvCrJuS3dH6613jDTmlrrD5Oc39S1W5IPl1KWtjnnOUnOaerakuTtXZT4+0nub2qfU0p5dptzliY5b6Km7f621vqjLs4CABiOWqdeZ7MWAACA2as1uefq5P57hl0JAAAAAAAAAAAAAAAA0GeC0QbnlUmuK6WcX0p5ZillxUwTSyknl1I+keQDSUrT0I1JfreLs85NcldT+3FJvlBKObblnCWllDck+XjL+j9pF762Xa312iTvbem+oJTy+lJKc/hZSikPTXLRRC3b3ZnuAtgAABYAIWcAAAADt+4byYVrk397SHLBmuTy1yYPbBt2VQAAAAAAAAAAAAAAAECfjA+7gBGzLMkvT7weKKX8MMn1SX6WZFuSvZKckGS/adauS3JmrfWWTofUWn9aSnleks8m2R5QdlqSK0sp/53k2iS7JzkpyT4ty/8tydt6eE9vTvKwJM+YaC9O8hdJ3lZK+UaSe5McMXFWc8jbliRn1Vpv7uEsAIAhqC1XAAAABmLrxuSLZyRb1jXadVtyzd8kKw9PjnvTcGsDAAAAAAAAAAAAAAAA+kIw2vCMJXnIxKuTi5KcU2v9abeb11q/XEo5K8mHMxl+VpKcPPGazj8meVWtdVsP52wrpbwwyYeSnN00tG+SM2dYdluSl9daL+72HACA4ZkIRKuzCUYTpgYAADBrt3x+MhSt2TUfEIwGAAAAAAAAAAAAAAAAu6ixYRcwQt6b5B+S3NDl/A1JPpnkqbXWp/YSirZdrfXTSY5P8tdJ7moz9bIkz6+1vqTWumEW56yvtb4oyQsm9prJuiR/leT4Wutnej0HAGAoHgxEE3IGAAAwUN//s+n711872DoAAAAAAAAAAAAAAACAgRkfdgGjotb6yTSCzlJK2SPJw5IckmS/JMvTCKm7O40As6uSfLvWum0ezr0tya+WUn49yWlJ1ibZP43gtRuTfLPWet1cz5k464IkF5RSDk9yUpIDk6xIcksagXCX1Fq3zMdZAACDIxgNAAAAAAAAAAAAAAAAAAAAYBAEow1BrfXuJJcM+MwtSb40oLOuSzIvYWsAAAtGnU0wmjA1AACA2XNPBQAAAAAAAAAAAAAAAKNmbNgFAADAgvZgIJoH8gEAAAAAAAAAAAAAAAAAAAD6STAaAAC0JRANAAAAAAAAAAAAAAAAAAAAYBAEowEAQFu15drLUqFqAAAAAAAAAAAAAAAAAAAAAN0SjAYAAO1sDzcTcgYAADBg7sMAAAAAAAAAAAAAAABg1AhGAwCArnggHwAAAAAAAAAAAAAAAAAAAKCfBKMBAEBbteU6m7UAAAAAAAAAAAAAAAAAAAAAdCIYDQAA2poIN6tCzgAAAAAAAAAAAAAAAAAAAAD6STAaAAC082AgmmA0AAAAAAAAAAAAAAAAAAAAgH4SjAYAAG1NBKLV2QSjCVMDAACYtVndhwEAAAAAAAAAAAAAAAA7M8FoAACMttLtR2IP5AMAAAAAAAAAAAAAAAAAAAD0k2A0AABGXKePxLXlCgAAwECUMuwKAAAAAAAAAAAAAAAAgAETjAYAwGgrHT4S1zr12ovZrAEAAKDBPRUAAAAAAAAAAAAAAACMHMFoAACMtk7BaPEgPgAAwIJz65eGXQEAAAAAAAAAAAAAAADQB4LRAAAYbWVRhwm15QoAAMDQfe9dw64AAAAAAAAAAAAAAAAA6APBaAAAjLhuPxLPJhhNmBoAAEBf3PKFYVcAAAAAAAAAAAAAAAAA9IFgNAAARlvp8JG41qlXAAAABsTZzKyOAAAgAElEQVR9GAAAAAAAAAAAAAAAAIwawWgAAIy2TsFoDz6I74F8AAAAAAAAAAAAAAAAAAAAgH4SjAYAwGgrizpMmEswmjA1AAAAAAAAAAAAAAAAAAAAgG4JRgMAYLSVDh+Ja516BQAAAAAAAAAAAAAAAAAAAKAvBKMBADDiuv1ILBgNAAAAAAAAAAAAAAAAAAAAoJ8EowEAMNpKp4/EteXagypMDQAAYPbcUwEAAAAAAAAAAAAAAMCoEYwGAMBo6xSMtj3cTMgZAAAAAAAAAAAAAAAAAAAAQF8JRgMAYMR1+kgsEA0AAAAAAAAAAAAAAAAAAABgEASjAQAw2kq3wWizCUgTqgYAAAAAAAAAAAAAAAAAAADQLcFoAACMtrKoy4lCzgAAAAAAAAAAAAAAAAAAAAD6STAaAACjrXT4SFzr1CsAAAAAAAAAAAAAAAAAAAAAfSEYDQCA0dYpGC215doLYWoAAAAAAAAAAAAAAAAAAAAA3RKMBgDAaCuLOkyYCDerQs4AAAAGyn0YAAAAAAAAAAAAAAAAjBzBaAAAjLgOH4kffBDfA/kAAAAAAAAAAAAAAAAAAAAA/SQYDQCA0VY6fSSeQzBaFaYGAAAAAAAAAAAAAAAAAAAA0C3BaAAAjLaOwWgThJwBAAAAAAAAAAAAAAAAAAAA9JVgNAAARltZ1GFCbbkCAAAAAAAAAAAAAAAAAAAA0A+C0QAAGHEdPhLXuQSiCVMDAACYPfdUAAAAAAAAAAAAAAAAMGoEowEAMNrGxjtMqC1XAAAAAAAAAAAAAAAAAAAAAPpBMBoAAKOtLOowYSIQrQpGAwAAAAAAAAAAAAAAAAAAAOgnwWgAAIy2jsFo2wlGAwAAAAAAAAAAAAAAAAAAAOgnwWgAAIy2Mt5+vG4PRBOMBgAAAAAAAAAAAAAAAAAAANBPgtEAABhtZVGHCROBaFUwGgAAwILiPg0AAAAAAAAAAAAAAAB2OYLRAAAYbd0Go8UD9wAAAAAAAAAAAAAAAAAAAAD9JBgNAIDRVjp8JK6C0QAAAIaiug8DAAAAAAAAAAAAAACAUSMYDQCAEdflg/YeyAcAAFhg3KcBAAAAAAAAAAAAAADArkYwGgAAtFVbrgAAAAAAAAAAAAAAAAAAAAD0g2A0AABoSzAaAAAAAAAAAAAAAAAAAAAAwCAIRgMAYLTVDoFnncYBAAAYDvdrAAAAAAAAAAAAAAAAsMsRjAYAAG1NPGjvgXsAAIABcx8GAAAAAAAAAAAAAAAAo0YwGgAAdMUD+QAAAAuL+zQAAAAAAAAAAAAAAADY1QhGAwBgxHV4kL7WqVcAAAAAAAAAAAAAAAAAAAAA+kIwGgAAtFVbrgAAAAAAAAAAAAAAAAAAAAD0g2A0AABGXKfAszkEo1VhagAAAP3jngsAAAAAAAAAAAAAAAB2NYLRAACgne3hZkLOAAAABsx9GAAAAAAAAAAAAAAAAIwawWgAANAVD+QDAAAAAAAAAAAAAAAAAAAA9JNgNAAARlvtFHhWW649bT6LNQAAAHSl4/0cAAAAAAAAAAAAAAAAsLMRjAYAAG1NPGjvgXsAAAAAAAAAAAAAAAAAAACAvhKMBgAA7QhEAwAAGI6O92Pu1wAAAAAAAAAAAAAAAGBXIxgNAIAR1+2D9rN54N5D+gAAAAAAAAAAAAAAAAAAAADdEowGAABdEXIGAAAwUKUMuwIAAAAAAAAAAAAAAABgwASjAQBAWxOBaFUwGgAAwEB1vA9znwYAAAAAAAAAAAAAAAC7GsFoAACMuA4P0j/4IP4sHrgXpgYAAAAAAAAAAAAAAAAAAADQNcFoAADQ1hyC0QAA+P/s3XuwpHld3/HPr89hZ4bdhAUEEQmsi4giQSVUqZALJpS38hIMojFFSWIMhff7pSICqdxMImXQqBWDQmlEAhJQg2i4WepiNLArGkCBheG27LrsCuzsmZk93b/8sWfc3p5+ntPdp5/znH769aqa2tPP9WvZ1XWeZn7vAeiOGDUAAAAAAAAAAAAAAAAMjjAaAAC0Olhob8E9AAAAAAAAAAAAAAAAAAAAQKeE0QAA2G4LB89WCaOJqQEAAKzOMxUAAAAAAAAAAAAAAABsG2E0AABo81fhNAvyAQAAThbPaQAAAAAAAAAAAAAAADA0wmgAANDqYKF9XWXBvUX6AAAAAAAAAAAAAAAAAAAAAIsSRgMAYMsdFi8TNwMAAAAAAAAAAAAAAAAAAAA4DsJoAADQpl4KowmkAQAAnCye0wAAAAAAAAAAAAAAAGBohNEAAKDNhb+4+791hQX3q5wDAADAAc9UAAAAAAAAAAAAAAAAsG2E0QAA2HKHLLS/9c3Jb3xWctsfHc84AAAALEaMGgAAAAAAAAAAAAAAAAZHGA0AAA7z8Xcmb3tO31MAAAAAAAAAAAAAAAAAAAAADJowGgAAdKb2PQAAAAAAAAAAAAAAAAAAAADAxhBGAwBgu1XxMgAAgM3keQ4AAAAAAAAAAAAAAACGRhgNAAAAAAAAAAAAAAAAAAAAAAAA6J0wGgAAdKb2PQAAAMCAeeYCAAAAAAAAAAAAAACAoRFGAwBgy1lIDwAAcCJVz2sAAAAAAAAAAAAAAACwbYTRAAAAAAAAAAAAAAAAAAAAAAAAgN4JowEAsOVqh5fu8NoAAADbzjMXAAAAAAAAAAAAAAAADI4wGgAAAAAA3ZmM+54AAAAAAAAAAAAAAAAAgA0hjAYAAAAAwPq9+78mv/4ZycuvSt74pcm5D/Q9EQAAAAAAAAAAAAAAAAAnnDAaAADbrdYuL97htQEA4AQ7+7LkD5+VfOJdyfh8ctNvJa9/cjK+2PdkbJTDnqk8cwEAAAAAAAAAAAAAAMDQCKMBAAAAALBe7/3Fy7fdcWNy65uPfxYAAAAAAAAAAAAAAAAANoYwGgAAdKb2PQAAAPTjw/9r/va3/cvjnYOB88wFAAAAAAAAAAAAAAAAQ7Pb9wAAANAvC+lZo3PvT25+Q/LxdyanH5J88hclVz8uKaXvyQAATobxhb4nAAAAAAAAAAAAAAAAAOAEE0YDAABYhw+8Mvndp+Wy2N6jvjV5wk+KowEAAAAAAAAAAAAAAAAAAMAhRn0PAAAAg1Xr4ccwDPt7yXXPyGVRtCR5139JPvK/j30kAAAYPM9cAAAAAAAAAAAAAAAAMDjCaAAAbDkL6VmDD/16Mr6zef/Nbzy+WQAAAAAAAAAAAAAAAAAAAGBDCaMBAAAc1U2/2b7/xhcfyxgAACdf6XsANoqQNQAAAAAAAAAAAAAAAGwbYTQAAOiMRfzb45DAx86Z4xkDAAC2imcuAAAAAAAAAAAAAAAAGBphNAAAtlu1kJ41uP369v1X/83jmQMAAIbE8xoAAAAAAAAAAAAAAABsHWE0AACAo9jfS26/of2YndPHMwsAAGwT4TQAAAAAAAAAAAAAAAAYHGE0AADojEX6W+HmNxx+zOSu7ucAAIChKaXvCQAAAAAAAAAAAAAAAIBjJowGAMCWEy/jiN7+Y4cfM7nQ/RwAADA01fMaAAAAAAAAAAAAAAAAbBthNAAAgKOY3HX4MR9+TVIn3c8CAABbRTgNAAAAAAAAAAAAAAAAhkYYDQAAulIt0t8Ko53FjvvAK7udAwBgE5TS9wQAAAAAAAAAAAAAAAAAnGDCaAAAbDfxMo5swbjHu36m2zEAAGDreJ4DAAAAAAAAAAAAAACAoRFGAwAAOIqy4GPVzW/odg4AAAAAAAAAAAAAAAAAAADYcMJoAADQmdr3AByHstP3BAAAMFCeqQAAAAAAAAAAAAAAAGDbCKMBALDlLLTnqDxWAQBAL6rnOQAAAAAAAAAAAAAAABgaK/gBAACOonisAgAAAAAAAAAAAAAAAAAAgHWwgh8AADpT+x6AY1H6HgAAAAAAAAAAAAAAAAAAAAAGYbfvAQAAoF/iZRzR5ELfEwAAnBx3fjC57a0tB4jKsozDntc8zwEAAAAAAAAAAAAAAMDQCKMBAEBXqkX6W2H/zr4nAADoX63JH/9w8vYf63sSAAAAAAAAAAAAAAAAADbYqO8BAACgV+JlHNX4XN8TAAD078OvEUWjA+WQ/Z7nAAAAAAAAAAAAAAAAYGiE0QAAAFZVa/Kxt/c9BQBA//78p/qegEESPgMAAAAAAAAAAAAAAIBtI4wGAACdsYh/8G5/a98TAACcDDe9dsEDS6djAAAAAAAAAAAAAAAAALDZhNEAANhy4mUcwUde3/cEAAAbxu/frFH1fgIAAAAAAAAAAAAAAIChEUYDAABY1cW/7HsCAAAAAAAAAAAAAAAAAAAAGAxhNAAA6EqtfU9A18Z7fU8AALBhSt8DsEkOfabyzAUAAAAAAAAAAAAAAABDI4wGAMCWs5CeIxjf2fcEAAAAAAAAAAAAAAAAAAAAMBjCaAAAAKva3+t7AgAAAAAAAAAAAAAAAAAAABgMYTQAAOhM7XsAujYWRgMAgP545gIAAAAAAAAAAAAAAIChEUYDAGC7VQvpOYLxnYsfe8UDupsDAGBTlNL3BAAAAAAAAAAAAAAAAACcYMJoAAAAqxrvLX5snXQ3BwDAphAmZineLwAAAAAAAAAAAAAAALBthNEAAKAzFvEP3v4yYbT97uYAAIBtJLQHAAAAAAAAAAAAAAAAgyOMBgDAlrOQniMY37n4sZO7upsDAGBTlNL3BGwU7xcAAAAAAAAAAAAAAADYNsJoAAAAqxrvLX5s3e9uDgAAGKTDQtZC1wAAAAAAAAAAAAAAADA0wmgAANCVapH+4C0VRht7TwAAAAAAAAAAAAAAAAAAAEALYTQAALacUBVHsH/ncsfXcTdzAAAAAAAAAAAAAAAAAAAAwAAIowEAAKxqvLfc8XW/mzkAADZG6XsABkXoGgAAAAAAAAAAAAAAAIZGGA0AADpjkf6g1bp8GG1yVzezAABsDL8jswzvFwAAAAAAAAAAAAAAANg2wmgAAGy3aqE9K5pcWP6cur/+OQAAAAAAAAAAAAAAAAAAAGAghNEAAKAzomuDNj6//DkTYTQAYNuVvgdgSISuAQAAAAAAAAAAAAAAYHCE0QAAAFYxvrD8OVUYDQAAAAAAAAAAAAAAAAAAAJoIowEAsOVq3wOwqSYrhNEmwmgAALA+nucAAAAAAAAAAAAAAABgaITRAACgK9Ui/UEbn1/+nCqMBgAAC/NMBQAAAAAAAAAAAAAAAFtnt+8BOB6llPskeVKShyf5lCR3JPlwkutrre9b870+LcnnJnlokquS3JTkbJLraq13rfNeAADQm8mFFc7x6zAAsOVK6XsCAAAAAAAAAAAAAAAAAE4wYbQTqJTyK0m+bmbz2VrrNStc60FJnn9wvQc0HHNdkhfUWn912evPXOdpSb4nyRc2HHJbKeVlSX601nrrUe4FALA+te8B2FRjYTQAAOiX5zkAAAAAAAAAAAAAAAAYmlHfA3BvpZSvyuVRtFWv9WVJ/jTJs9MQRTvwxCSvKKX8UinlyhXuc1Up5aVJXp7mKFoOZnh2kj8tpXzJsvcBANg8FukP2vj88udMVoipAQAAAAAAAAAAAAAAAAAAwJbY7XsA7lFKuTrJz6zpWk9O8qokV0xtrknemuTGJFcn+bwknzS1/58k+eullH9Ya50seJ+dJC9L8uUzu/4iyfVJPpbkkQf3Kgf7PjnJq0spT6m1/t4S/2cBAKxfFS9jRatEzlaJqQEAAPN5ngMAAAAAAAAAAAAAAIDBGfU9APfy40keevDzJ1a9SCnlYUlemXtH0X4/yWfXWp9Qa316rfWLkzwsyXcmuWvquK9M8q+XuN2/z72jaHcl+fYkD6u1fsnBvf5WkscmefPUcaeSvKqU8ilL3AsAAE6OcUMYbXSq5RxhNAAAAAAAAAAAAAAAAAAAAGgijHZClFKekuSfHbzcT/KjR7jc85Pcf+r1dUmeUmt9x/RBtdYLtdYXJnn6zPnfU0p5xGE3KaVcm7vDatO+ttb6U7XWizP3enuSf5B7x9EemOS5h90HAGBz1b4HoEuThjDazum7/8wz3utuHgAAAAAAAAAAAAAAAAAAANhwwmgnQCnlyiQ/N7XpBUluWPFaj0ryjVObLiZ5Zq31fNM5tdZXJXnJ1KZTWSxY9twk95l6/eJa66tb7rOX5JkHM13yTQeBNQCAnoiXsaJxw6/YO6eTUVMYrfHXcgAA4DKHPa95ngMAAAAAAAAAAAAAAIChEUY7Gf5dkmsOfr4xyfOOcK1vSLIz9fqVtdZ3LXDej828fnoppaHmkJRSziR52iHXuEyt9c+TvGpq027unhkAADbL5ML87aNTd8fR5hFGAwC2Xul7AAAAAAAAAAAAAAAAAABOMGG0npVSnpjkW6c2PavWuneESz515vUvLHJSrfUdSf7P1KYrk3xxyylfkuS+U6/fXGt950ITXj7T1yx4HgDAZqm17wno0rghjLZzKtk5M3/fRBgNAAAW55kKAAAAAAAAAAAAAAAAto0wWo9KKaeS/Hzu+f/DS2qtrzvC9R6S5HOmNu0n+f0lLvGmmddf1nLslx5ybpvfzd2zXfJ5pZRPXuJ8AIA1stCeFY0bImc7p+/+s8w5AADA8sSoAQAAAAAAAAAAAAAAYHCE0fr1vCSPPvj5L5J87xGv99iZ12+rtZ5b4vzrZl5/9hL3evOiNzmY6U+WuBcAAJw8kwvzt49OCaMBAMBalL4HAAAAAAAAAAAAAAAAAI6ZMFpPSimPT/J9U5u+q9b60SNe9jEzr9+95PnvOeR60z7rGO8FALChat8D0KUbf2H+9h1hNAAAWI/Dnqk8cwEAAAAAAAAAAAAAAMDQCKP1oJSym+Tnk+webHptrfWX13DpT595/f4lzz878/qBpZT7zx5USnlAkgcc8V6zxz9qyfMBANajWkjPij7+zvnb924WRgMAAAAAAAAAAAAAAAAAAIAV7B5+CB34oSSfc/DzuSTPXtN1r555fcsyJ9da7yilnE8yXXG4X5LbD7nPnbXWc8vca85s91vy/LlKKQ9O8qAlT3vkOu4NAHA50bXBOn9r8777XJWMGsJoE2E0AAAAAAAAAAAAAAAAAAAAaCKMdsxKKY9J8iNTm55Ta33fmi5/1czrvRWusZd7h9H+Wof3mTbvPqv4liTPXdO1AABgvvGdzftGVyQ7DWG0/VV+dQYAGJLS9wAMihg1AAAAAAAAAAAAAAAADM2o7wG2SSlllORFSU4dbHpLkheu8RazwbLzK1xjttQwe83jvA8AwDGwkJ4VjFt+BX7oVzSH0Sar/OoMAAAAAAAAAAAAAAAAAAAA20EY7Xh9Z5IvOPh5P8k/r7WOO7zfKpWPk3wOAFzurjuSOul7Cpiv+pVnsCYXmvdd+43Jzpn5+9qCagAAwL15pgIAAACOWSnl2lLK15VS/mMp5U2llI+XUurUn/f1PeOsUsp9SynvmZmzllJe3PdsAAAAAAAAAACwit2+B9gWpZRrk/zrqU0vqLXesObb3DHzuqHG0Gr2nNlrHud9VvHTSV6+5DmPTPLqNd0fgONyx43Jdc9IPvoHyalPSh793cljfjAppe/JgG0wbgmjXXF1snO64TxhNAAAWBvhNAAAAGANSilPTvLDSZ6Q5AH9TrOSf5Pk2r6HAAAAAAAAAACAdRFGOwallJLk55Lc92DTjUme18Gttj6MVmu9Jckty5xTBHQANs/4YvK6L0rufP/dr8/fkvzxDyenHph8+jf3OxsbyEJ6VjBpCaONTgmjAQAAAAAAwOb43CRf3PcQqyilfEGS7+h7DgAAAAAAAAAAWKdR3wNsiW9O8venXj+r1rrXwX0+NvP6QcucXEq5KpcHy/5ygfvct5Ry5TL3SvLgBe4DAPPd+uZ7omjTzr7s+GeBVqJrgzVuC6NdIYwGAADHwjMXAAAA0KkLSd7T9xBNSilXJHlR7vl7oJ/ocRwAAAAAAAAAAFib3b4H2BLPn/r5NUneXUq55pBzHjLzenfOOR+utV6cev2umf2PWHC+puNvq7XePntQrfWjpZTbk9x/avPDk7zjCPeanR0Amr3tR+Zvv/n1xzsHsL0mDWG00RVJKcmoIYw2EUYDAIDFCZ8BAAAAx+auJP8vyf9N8kcH//2TJE9K8sYe52rzo0kec/Dz2SQvT/J9/Y0DAAAAAAAAAADrIYx2PM5M/fzlSd67wjU+dc55n5fkhqnXs2GyT1/yHtfOvH57y7HvSPLEmXstE0abvdcy5wKw7eq47wkYkmqhPSsYN4XRTt39352GMNpYGA0A2HKl9D0BAAAAAMx6SZKfrbVe9j/mlRP6fVYp5XOS/ODUpmcn+fyexgEAAAAAAAAAgLUa9T0Aa/WnM68fV0q57xLnP+mQ67Xt+8JFb1JKuTLJ45a4FwDcm5AVG8N7dbAmDWG0ncPCaHvdzAMAAIN02MJjz1wAAADA0dVab58XRTupSim7SX4+9/zDuC+ttf5mjyMBAAAAAAAAAMBaCaMNSK31piRvm9q0m+RvL3GJJ8+8bvvLUq895Nw2fyf3/KWsJLm+1nrzEucDsPUsfAZ6Nm4Io40OC6NtzHoKAAA4ATz/AwAAAMzx/Ukef/DzbUm+q8dZAAAAAAAAAABg7YTRjkGt9epaa1nmT5IvmrnM2TnH3TDndv9z5vU/XWTGUspnJvn8qU3nkvx2yym/lWRv6vUXHlxjEc+ceT07MwC0q5O+J2BQLLRnBZOGMNrOpTDamfn7hdEAAGB9quc5AAAAYLuUUh6d5LlTm7631npLX/MAAAAAAAAAAEAXhNGG578nGU+9/ppSyqMWOO8HZ17/j1prY7Wh1npnklccco3LlFI+I8lTpzbtJ/nlBeYDgCkWPrMhLNIfrnFDGG10KYx2uuE8YTQAYNuVvgcAAAAAgI1UShkleVGSg/9RMm+otb64v4kAAAAAAAAAAKAbwmgDU2t9V5KXTG26IsmLSykNZYaklPLVSZ45telikucvcLvnJblr6vUzSylf1XKf00l+4WCmS15Ua33PAvcCgHvUSd8TANtu0hBG2xFGAwBoJx7Mgcl+cu6soDQAAADA4r4tyZMOft5L8qweZwEAAAAAAAAAgM4Iow3Tc5PcPvX6iUleV0r5zOmDSimnSinfnuTlM+f/eK317GE3qbXemOQ/z2x+RSnl20op0/GzlFI+K8nrD2a55KNZLMAGADMsmmaNLMJnFU1htNEhYbTJee85AAB4508kv/rA5NXXJK/6G8lHXj//uEN/d/a7NQAAALAdSinXJPm3U5ueX2t9dz/TAAAAAAAAAABAt3b7HoD1q7V+sJTyNUl+K8mlQNmTkry9lPKWJDcmuV+Sxyd50Mzpv5HkOUvc7oeSfHaSLzt4fZ8kP5nkOaWUtyb5RJJrD+5Vps67mOSptdablrgXANytTvqeABZkkf5gjRvCaJeCaKOGMFqdJHU/KffpZi4AgBOvHH4Iw/bBX0ve+t33vN77UPI7X5F8xZ8lVz68v7kAAAAATrafS3Llwc9/nOTH+xqklPLgXP73Dg/zyC5mAQAAAAAAAABgmITRBqrW+qZSylOTvDj3/CWkkuQJB3/meWmSb661jpe4z7iU8vQk/y3J103tenCSL2047ZYk31hr/d1F7wMA9yY2xTp5P7GC8fn520en7v7vTkMY7dK5I2E0AAC21Pt+6fJt4/PJB1+dPPrbj38egDbnziZ/9sLk9huSBzwhecwPJKce2PdUAADAlimlfFOSpxy8nOTuv+O33+NI35LkuT3eHwAAAAAAAACAgRv1PQDdqbW+Jsljk/xskttbDv2DJE+rtX5DrfXcCve5o9b69Um+9uBaTW5L8jNJHltrfe2y9wGAv1InfU8AbLvJhfnbdxYMowEAwLZ6/8vnb3/Ld6xwMaFroEN3fjh53d9L3vmC5OY3JO/4D8nr/m5y8WN9TwYAAGyRUspDk/ynqU0vrLX+UV/zAAAAAAAAAADAcdjtewDmq7W+KUlZw3VuSfLsUsp3JnlSkkckeUiSc0k+lOT6Wut7j3qfg3u9IskrSimfluTxSR6a5MokH0lyNsnv11ovruNeAGw7C5+Bno0bwmijRcJoe+ufBwAAAFivs7+cnDt7720fe3vyoV9LPu0Z/cwEAABso59OcvXBz2eT/EiPswAAAAAAAAAAwLEQRtsSB0GyNx7Tvd6bZC2xNQCYq076noBBEdpjBZOGMNrOpTDameZzx+fXPw8AwMY48r8FwVY55Hmtep4DOnT998/f/of/QhgNAAA4FqWUr0/y1VObnl1rPdfXPFN+OsnLlzznkUle3cEsAAAAAAAAAAAMkDAaALCBLHxmg9SaFPGHwRk3hNFGl8Jop1vOFUYDALaZ5zkANpznegAA4BiUUj4pyQunNr201vqbfc0zrdZ6S5Jbljmn+N/MAQAAAAAAAABYwqjvAQAAllYnfU8AbLtJQxhtRxgNAADWx4JZAAAAYGu9MMmDDn6+Lcl39TgLAAAAAAAAAAAcq92+BwAAWF7tewCGpHo/sYJxQxhtdOre/51nIowGAGwzoSuWcdjzmuc5AAAAYHhKKY9O8o+nNv1EkvuWUq455NSrZ15fNXPOpNb6/qPOBwAAAAAAAAAAXRNGAwA2T530PQEsoUb8YYAmDWG0nUthtN2k7CZ1//JjxsJoAAAAAAAAQKMzM6//1cGfZf2jgz+XfCyXx9MAAAAAAAAAAODEGfU9AADA8mrfAwDbrimMNjp1z887p+cfI4wGAABr4vsBAAAAAAAAAAAAAAAAGBphNABg89RJ3xMwKBbSs4JxQxhtRxgNAAAAAAAAAAAAAAAAAAAAViWMBgBsICErNkj1fh2kSUMYbbRIGG1v/fMAAPSuLHjYgsdBEs//wIl1y+/1PQEAADBgtdYbaq1l2T9Jnj9zqZfMHHN1H//3AAAAAAAAAADAsoTRAIDNUyd9TwBsu3FDGG06hrZzpuHc8+ufBwCgb4sGzy/lKC4AACAASURBVISDWSfvJ6AvH/6NvicAAAAAAAAAAAAAAIDBEkYDADaQhc+sk/cTK5g0hNFGp+75eTqSNk0YDQAYpAXDaACwKUZXNO97z4uObw4AAGAwSil15s+T+54JAAAAAAAAAABOot2+BwAAWFqd9D0BLEF4bZDGDWG0nakw2qghjDYRRgMAhmjBMFoRUANgQ4yuSCYX5++7cOvxzgIAAHSulPKwzP/7lA+Zeb1bSrmm4TJ31Fo9MAAAAAAAAAAAwBEJowEAG0hoCuhZU9xsNBVG22kIo42F0QCAASrFoxo98KYDOnTqQcn+HfP3Xf24450FAAA4Dr+X5BELHPepSd7bsO8lSZ65roEAAAAAAAAAAGBbjfoeAABgaXXS9wQMSbWQnhWML8zfviOMBgBsK1810wHPa0Cfrnx48777Peb45gAAAAAAAAAAAAAAgC1jtRoAsIEsjGaTeL8O0qQhjDYSRgMAtlQpfU/AVvK8BXTJZwwAAAAAAAAAAAAAAPRht+8BAACWVid9TwBsszpJJnfN37cjjAYAbKtFw2gCagBsiNoSRmvbBwAAbKRa6zXHcI9OvxyrtT4vyfO6vAcAAAAAAAAAAByHUd8DAAAsz8JD1sn7iSVNLjbvG02F0UZNYbS99c4DAHASFF81AzA0bf84g3+4AQAAAAAAAAAAAAAAumK1GgCweaqFh2yQKrw2OOMLzft2psJou2cazj+/3nkAAE6E0vcAbCPPW0CX2j5jfP4AAAAAAAAAAAAAAEBnhNEAgM1j4SHQp0lLGG00FUYbnW44XxgNABgiYTS64Pkf6FHrP87gH24AAAAAAAAAAAAAAICuCKMBABvIwkPWqeuF9hbyD854wTDaTkMYbSyMBgAMUBFGA2BoWr6D9A83AAAAAAAAAAAAAABAZ4TRAIDNU4XRgB5NWsJoO8JoAMC2EkajD8JEQIda42e+nwQAAAAAAAAAAAAAgK4IowEAG8jCZ6BH47Yw2un5P9/rfGE0AGCAiq+aARialvhZazQNAAAAAAAAAAAAAAA4CqvVAIDNU1sWJcKyOl/IaqHs4ExawmijU/f8LIwGAGyVsubjIDn0eUqYCOhS22eM7ycBAAAAAAAAAAAAAKAzwmgAwAay8Bno0bgljLazQBhtIowGAAxQETwDYGja4me+nwQAAAAAAAAAAAAAgK4IowEAm6e2LUqEZVnIypImLWG00RVTPzeE0cbCaADAEAmj0QXvK6BHteU7I99PAgAAAAAAAAAAAABAZ4TRAIANJGTFBmlbRMtmGjeE0Ub3ScrUI9bOmYbz99Y/EwBA7wSs6MJhz1Oet4AutcXPfP4AAAAAAAAAAAAAAEBXhNEAgM1T2xYlAnRscn7+9tGpe7/eOT3/uHHD+QAAm6z4qhmAgWn7DtL3kwAAAAAAAAAAAAAA0Bmr1QCADVT7HoBB8X5iSeML87fvCKMBANus9D0AW8nzHNClts8Ynz8AAAAAAAAAAAAAANAVYTQAYPPUSd8TwBIslB2cSUMYbbRgGG1y0ecYADA8RRgNgIFpe3b3XA8AAAAAAAAAAAAAAJ0RRgMAAFjG+IhhtLZrAABsrAW/ahZQA2BjtMXuhfABAAAAAAAAAAAAAKArwmgAAGy3aiErS5o0RM12lgijTc6vbx4AgJNA8IwuHPa85nkO6FKdrLYPAAAAAAAAAAAAAAA4EmE0AADolIX6gzNuCKONZsJoo5Yw2lgYDQAYGmE0AAamNX7m+x4AAAAAAAAAAAAAAOiKMBoAAMAyJg1htJ2ZMNqOMBoAsE2E0dgA++eS87f2PQWwMVriZ63RNAAAAAAAAAAAAAAA4CiE0QAA2HIti1xhnnFTGG0mhLZzpuUae+ubBwDgJCi+aqYPCz7PjS8m1z0jecX9k1c+KPntJyV7N3U7GrD5WuNnvk8CAAAAAAAAAAAAAICuWK0GAABdqhbKDs6kIYw2OnXv17OhtGnj8+ubBwAABmtNz1PXf2/yvl9KJnfd/frW65Lf+cr1XBsYsJbPoNZoGgAAAAAAAAAAAAAAcBTCaAAAAMsYC6MBAMDJsEA4rdbkvb94+fbb3pLc8d71jwQMR2v8TAgfAAAAAAAAAAAAAAC6IowGAMCWs5CVJU0awmg7M2G00RXN1xBGAwC2Vul7ADbKGt4vkwvJXR+bv+/srxz9+sCAtXxn1BpNAwAAAAAAAAAAAAAAjkIYDQAAOiW8NjhNYbTRTBitlGTn9PxjhdEAAGABXT9PCfUBLVrjZ77vAQAAAAAAAAAAAACArgijAQAALGPcEEbbOXX5tlFDGG0ijAYADI3AFD2oC4SJ2o4p3rdAi7YwWms0DQAAAAAAAAAAAAAAOAphNAAAttsiC+mPdoOOr8+xG+/N374zJ4I2b1uSjIXRAADgeLQ9kwmjAW3aPj983wMAAAAAAAAAAAAAAF0RRgMAAFjG/h3zt+9eefk2YTQAAOjQImEi8SJgRXWy2j4AAAAAAAAAAAAAAOBIhNEAAACWsX9u/vbdqy7ftnNm/rHCaAAAsIA1RM1q2zXK0a8PDFjb54foIgAAAAAAAAAAAAAAdEUYDQCALdfxQtbWRfhspMYw2pWXb9s5Pf/Y8d765gEAAFq0PJMVYTSgRZ2stg8AAAAAAAAAAAAAADgSYTQAAIBlrCWMdn598wAAbBQhKtZpkRB12zHej0CL1viZED4AAAAAAAAAAAAAAHRFGA0AAGAZTWG0HWE0AGCLFYEpTqjWsJH3LdCmJX5WhdEAAAAAAAAAAAAAAKArwmgAAGy5rheyWig7OPt3zN++OyeMNmoIo02E0QAA4Hi0PJMJ+gFtWsOKbfsAAAAAAAAAAAAAAICjEEYDAABYxv65+dt3r7p8205DGG0sjAYAAIeqh4SmD9t/6DHCaECbls+PRT5/AAAAAAAAAAAAAACAlQijAQAALGp8Man78/ftXnn5NmE0AABYXJ0kt9+Q7N203ms2EkYDWrR+frTtAwAAAAAAAAAAAAAAjmK37wEAAKBXtXZ9g46vz7Ean2veJ4wGAABH86qH3RNFe9hXJ5MLh5ywyPOWZzJgVS2fH51/nwQAAAAAAAAAAAAAANtLGA0AAGBR+8uG0c7MP1YYDQAALncpipYkH3z1eq5ZJ837SlnPPYBhavv8aNsHAAAAAAAAAAAAAAAcyajvAQAAoF+17wHYJEuH0U7PP3a8t555AAA2jRAVx67tmc/7EWjTFj/zfRIAAAAAAAAAAAAAAHRFGA0AALpULZQdlMnF5n2jU5dvawyjnV/PPAAAsNUWed4SRgNW1PadTm2LpgEAAAAAAAAAAAAAAEchjAYAALCoyX7zvtF95mxrCKNNhNEAgKERmOKEaosXFe9boE1b/EwIHwAAAAAAAAAAAAAAuiKMBgDAdqsWsrKE2hZG2718205DGG0sjAYAAMej7ZlPGA1o0fadUVt0EQAAAAAAAAAAAAAAOBJhNAAA6JTw2qBMWsJoRRgNAACO1SKh67ZjijAa0KDWtH+n4/seAAAAAAAAAAAAAADoijAaAADAoqowGgAAbJZJyz5hNKDJIeGz2vbZAgAAAAAAAAAAAAAAHIUwGgAAW+6Qha5HvnzH1+d4tYbR5jxeCaMBAECHFnje8kwGrOLQzw6fLQAAAAAAAAAAAAAA0BVhNABgWO64se8JgCGbNITRym5SyuXbd840XEcYDQDYVnN+Z4JOTVr2eT8CTdo+O5LUQ/YDAAAAAAAAAAAAAAArE0YDAIbl+h/oewJgyGpDGG20O3/7zun528fCaADA0AhMcULV2rxvXtwYIGn/7Lj7gGMZAwAAAAAAAAAAAAAAtpEwGgAwLB/41b4nYON0vZDVQtlBmTSE0cqyYbS9BRZZAwAA7Rb5nbrtGGE0oMmkfXc9ZD8AAAAAAAAAAAAAALAyYTQAYLMICQF9qkuG0UYNYbQ6ab4WAACwPq3xImE0oMGh30H6jhIAAAAAAAAAAAAAALoijAYAbJb9O/qeANhmTTGzUUMYbachjJYk4/NHnwcAALbZQvH0lmOKMBrQpC2qmEOiiwAAAAAAAAAAAAAAwFEIowEAm+XiX/Y9AUOz0EL6I92g4+tzrCYNYbQijAYAACdS6zOfMBrQ4NDwme97AAAAAAAAAAAAAACgK8JoAMBmuUsYDehRbQijjYTRAADgZGqLGwmjAU0OCZ8dGk4DAAAAAAAAAAAAAABWJYwGAGyWi8JoQI8mDWG0IowGALAYISrW6f+zd+9hsp11nei/v+4dsjck3OWqBoQoIIrgOMhFBVHQUUEYhfF2BJTjMKMw4hzHyyCCjOMI4x1UznhBOSpyFRkRPdwEQYEBQUJQIEBUIhEIhiR772R3vfNHV8+uVLqqV92ruj+f5+mnV631rvf97dR6Vq9VWe+3DgguSpI2pk05HoERDgw+63D+AQAAAAAAAAAAAAAApiIYDQDYLILRmLsFT2QdNwmfzdMmDUY7MbqvnmA0AABYvHHhRoLRgFEO+DznwOA0AAAAAAAAAAAAAABgWoLRAIDNcp1gNGCFRgWjbY0KRjs+uq8dwWgAwCFSAqZYU8KqgWkcGHzm3AIAAAAAAAAAAAAAAIsiGA0A2CzXCkYDVqg3IhitRgSjbZ07uq+dk7PXAwAAR1mn0LNxbQT6ASMcFIx2YHAaAAAAAAAAAAAAAAAwLcFoAMBmOfPpVVfAodNlIv06989StRHBaFujgtGOjQ5N2zk1n5oAADaK62OWbFx4UQlGA0Y56O+Vv2cAAAAAAAAAAAAAALAogtEAgM0ybkIzwKL1RgSjjQo/S5Lt4/uvF4wGAAAz6hJMNK6NYDRghIM+g/QZJQAAAAAAAAAAAAAALIxgNAAAgK6aYDQAgNl0CbKCeRKMBkzh1OUHNPD3DAAAAAAAAAAAAAAAFkUwGgCwWZpJh8zZwo8px+yh0hsRjLYlGA0AoBP3dCxb643eVoLRgBHe/5zx28edWwAAAAAAAAAAAAAAgJkIRgMANoxJ9MAKtRHBaDUmGG1rRDBaTzAaAHCYCJhiFTp8RjA2jM9xC4zwgecd0MBnlAAAAAAAAAAAAAAAsCiC0QAAOOJMZGUCo4LRtsYEox07sf/6HcFoAMBR5PqbZeuN2SYYDZhSG3duAQAAAAAAAAAAAAAAZiEYDQDYMCbRs2GaY/ZQ6Y0IRqsxwWhbx/dfLxgNAAAWzz0ZsCjOLwAAAAAAAAAAAAAAsBCC0QCAzdJlwqFJicCitCmC0bZHBaOdnL0eAICN436NOep0/z+mTdXcSgGOIn/TAAAAAAAAAAAAAABgEQSjAQBwxC16EqtJsodKb0Qw2tY0wWinZq8HAAAYr/XGbBSMBszAlzMAAAAAAAAAAAAAAMBCCEYDADZMlwmHJiUCC9JGBKOVYDQAgE6EyDBXM35GUILRgFmMC14EAAAAAAAAAAAAAACmJRgNAACgq1HBaFuC0QAAuhGMxrKNO+YEowEzEPYJAAAAAAAAAAAAAAALIRgNANgwHSYcmpTIJBZ+vDgeD5XeiGC0GhOMtjUiGK0nGA0AABau9cZsFIwGzGLc+QUAAAAAAAAAAAAAAJiWYDQAYLMIPQNWqY0IRtsaE4y2PSIYbUcwGgBwiFTXgCn3dMxTl+PJMQcsiM8pAQAAAAAAAAAAAABgIQSjAQCHkEmJwIL0RgSj1bhgtBP7rxeMBgAAi9d64zYurQzgMBp3fgEAAAAAAAAAAAAAAKYlGA0A2DAmLTNvCz6mmmP2UGnTBKMd33+9YDQA4Chyfcw8dTqeHHPAgvibBgAAAAAAAAAAAAAACzFm9v7mqqoLkzw8yZ2TnE5ycZKXtNauWGlhAMAcmPQMrNCoYLQtwWgAALCWxgYX+fwAmEVv1QUAAAAAAAAAAAAAAMChtPbBaFV1pyRfObDqBa21a0e0rSTPSvLkJFtDm3+mqp7UWvvNBZQJAKyTsZOeAWbQGxGMVtMEo52cvR4AgI3jfo0la4KLgAXxGSQAAAAAAAAAAAAAACzE2gejJfkPSb6vv/y/Wmu/PqbtTyZ5ysDrvRkJleS8JL9WVdVa+435lwkALIUJh8zdoo8px+yh0rtu//W1PXqfkcFop2avBwBg47g+Zp66HE9j2viMAZiJ4EUAAAAAAAAAAAAAAFiErVUX0MHXZTfYLElGBppV1ecm+X+yO8tpMBBtb9/WX/7FqrrjYkoFABZvxknPALPond5//fa5o/cZFYzWE4wGABwmdXATWAmfEQALIlwRAABmVlW3rqrzV10HAAAAAAAAAACwXtY6GK2qbp3kLgOr/mhM86fk+v+eVyb510kekeSl2Z2Z15KcSPKD860UAAA4EkYFo22NCUbbGhGMtiMYDQA4TDqGwwiRYdlab9zGpZUBHEJjzy8AAMAoVXVBVf1WVX0qyceSfKqq/r6qnllVJ1ZdHwAAAAAAAAAAsHprHYyW5PMHlv+ptfaR/RpV1XZ2Q9D2ZjH9SWvt4a21l7XW/rC19k1JXpDdcLRK8uiqqkUWDgAsSpdJyyY2M4GFBzM4Hg+VnRHBaNtjgtG2BaMBAMBi+IwAWCXnFwAASJKq+s6qurT/c1FVjfwfZ1X1hUneluTbktw0Z5/nu0OSH07ytv6XqQIAAAAAAAAAAEfYugejXdD/3ZJcPKbdv0hyq+w+JJUkz9ynzY/m7AyF2yS5+zwKBACWbOEhVgBj9EYEo22NCD9Lku0RX2wvGA0AOEw636u5p2PJWm/MNscjMINx5xcAADhaviXJZya5Y5LXt9b2/R9qVXUsyQuT3Dq7z/m1oZ9Kco8kL1lCzQAAAAAAAAAAwBpb92C0Ww0sf2JMuy8bWL6stfbnww1aa3+X64er3XPG2gCAdWViM7Aoo8LMtkd+8X2yPSI0TTAaAABHzbzv1zv15zMCYArHb9ehkfMLAABU1VaSBw6setmY5v9Xks/L2SC0JHlPkr8aWvfAqnrMnEsFAAAAAAAAAAA2yLoHo50YWL56TLv793+3JH8ypt3fDizfdtqiAIBVMuGQeVvwMSWo73DZ2fcL7pOtKYLReqcdHwDAEeT6hyUbe83teARG2D5xcJvWW3wdAACw/u6R5Mb95euSvGFM2+/q/64k/5zkfq21e7XWvjjJfZJ8LGdv1p+4gFoBAAAAAAAAAIANse7BaGcGlsfNQLj/wPKbxrS7amD5vKkqAgBWrMukZRObgQXpjQhG254iGC1Jdk7NVg8AwNpwH0YXqzhOBBcB0/AZJAAAdHSX/u+W5P2ttev2a1RVt0vypf12LckzW2tv3dveWnt3kidlNzStkjywqm6xyMIBAAAAAAAAAID1te7BaFcOLH/mfg2q6u5JbjOw6i1j+hsMV9uZoS4AYK2ZlAgsyM6oYLQx4WfjtvUEowEAR0xzv3akzf3979Df2DEdj8AIrUOoYpc2AABw+N1xYPlDY9p9ec6Gnp1J8uv7tHlZkn/uL1eSL5pHgQAAAAAAAAAAwOZZ92C0S/q/K8m9qmq/RIFHDCxf0Vq7eEx/txxY/vSsxQEAK2ASPXO36GPKMXuo9EYEo22dO3qfrTHBaDuC0QCAo8b18dG2ivdfcBEwjS7nK3/TAAAgyXkDy1eObJU8sP+7JXlLa+1Tww1aaztJ3jmw6q6zlwcAAAAAAAAAAGyidQ9G+6vsPgzVkhxP8vjBjVV1LMl391+2JG88oL+7DSz//ZxqBACWqsOEQ+FpwCK0NjrIbHtMMNq2YDQA4AhwH8ZKzPgZgeMWGKV1CFXs0gYAAA6/czq2u9/A8uvHtPvHgeWbTlwNAAAAAAAAAABwKKx1MFpr7fIkb+6/rCT/raq+o6puXFV3SvJ7ST5nYJcXj+qrqm6X5PYDq94/32oBAGA/JtofGu1MRr6fW4LRAAA6EUR1xK3i/XfMAdPocu5wfgEAgCRXDSzfYr8GVXWTJF80sOrPx/S3M7A85n/AAQAAAAAAAAAAh9laB6P1/Vx2Q9Fakpsk+c0kn07ywSSPzNlZB5dlTDBakq8ZWL4qyd/Mu1AAYAk6TaI3KZEJCGagq53To7eNDUY7MaZPwWgAABwhq7j/ar1xG5dWBrBpOpwfxp5fAADgyPj4wPLdR7T5qiTb/eWW5C/H9HfzgeVrZqgLAAAAAAAAAADYYGsfjNZae0mSl+ZsOFoN/GRg/Q+01sYkFeRRe10meWtrEjAAYDP5Ew6sSG/M7cb28em2CUYDAA6Nrvdq7umYI+HpwKJ0Cj1zfgEAgCTv6f+uJBdU1T33afNv+r9bkve01q4c098dB5Y/MYf6AAAAAAAAAACADbT2wWh935rk13I2DG1PJTmd5Ptbay8ctXNVfVaSr83ZGQqvXkSRAMC6MCmRSSz4eJHHe3jsjAtGO3f0tq0bjd7WE4wGAMBRsoL7o7H3ZO7XgFE6nB86hacBAMCh957sBpjtXUT/TFWds7exqh6Y5JsGtr9qVEdVdSzJPQZWfWi+pQIAAAAAAAAAAJvi2KoL6KK1dm2SJ1TVs5M8PMkF/U3vS/LS1tpHD+jia3P22ymT5A/nXyUAsBwmLQMrMi7EbGtMMFpVsn082dln//3WAQAcau7pjrZVvP+Ci4AJtV5y6vIuDRdeCgAArLvW2k5V/W6S783uRfJDkry7qv4wyW2yG4q2ld0vQG1JfntMd1+SZPAbhy5aSNEAAAAAAAAAAMDa24hgtD2ttb9J8qwp9ntekufNvyIAYC01kxKBBdg5PXrb9phgtCTZGhWMdnK2mgAA1kbH+zD3a0fb3N//Dv2NG9PxCOznb36hW7smeBEAAPqemeQ7kty0//rzknxuf3kvEK0leUlr7b1j+vnG/u+W5AOttSsWUCsAAAAAAAAAALABtlZdAADARDpNWjaxmXXieDw0emOC0bYOCEbbPr7/+v3C0gAAgDkSXARM6JLf6NZOMBoAACRJWmuXJ/nXSU7lbBDa/9ncX/fBJE8c1UdVbSV59MC+r19ErQAAAAAAAAAAwGYQjAYAbBghU8CK7IwJRhsVfHbQdsFoAMBh0SnEOnFPd9TN+/3v0N/YY9PxCOzjU+/u2FAwGgAA7GmtvTbJvZK8MMk12Q1DqySfSPJLSb60tfaJMV08PMkF/X2S5I8WVy0AAAAAAAAAALDujq26gINU1SX9xZbky1prH52ynzsmeeNeX621u8yjPgBgHZnYDCxAb0ww2ta54/cVjAYAAFnN/brPCIAF6Z1ZdQUAALBWWmsfSPItSVJVt+6v+3jH3T+U5JEDr1893+oAAAAAAAAAAIBNsvbBaEnu1P/dMlu9x4b6AgA2kj/jzFFbwvG0jDFYjt51IzZUsrU9ft/tE/uvF4wGABw5ro+PtFXcH7XeuI1LKwM4hJpgNAAAGGWCQLS99u9K8q4FlQMAAAAAAAAAAGyYrVUXAAAwkS6TqAVRAYvQdvZfXweEoiXJ9vH91/cEowEAh4X7MFag0/2/YxNYkJ5gNAAAAAAAAAAAAAAAWATBaAAAAF2MDEbrcFs1KhhtRzAaAHDECLI+4lbx/o8Z0/EIDJvkvNAEowEAAAAAAAAAAAAAwCIcW3UBS3TOwPJ1K6sCAJhRl8mJJjbT1TKOFcfjoTEyGG374H23BKMBAOxyfXy0reD9b73ljwlsrt7p7m0FowEAQGdVdfMk5yep1tqlq64HAAAAAAAAAABYb0cpGO22A8ufXlkVAMCMTKIHVmSWYLTtUcFoJ6evBwBgrbhXYxVmDU933AJDJgkw7wlGAwCAUarqG5M8PMmXJblTkq3+ppZ9nlmsqjsl+ez+y6tba/9r4UUCAAAAAAAAAABr6ygFoz2s/7sl+ftVFgIALFgzsRlYgNbbf/1MwWgTTLgGADgU3K8daau4Xx91HQ+wn0nu05tgNAAAGFZVD0vyC0nuureq4653SfKn2f3w6NqqukNr7YoFlAgAAAAAAAAAAGyAtQhGq6rPPrhVkuSOVV2flUqSnJvk9kkemuQHBtb/1SSdAABrpNMkahPt6Wgpk/Idj4dG29l/vWA0AADoaM73R13u6ca2cb8GDJnkPr0nGA0AAAZV1Y8l+bHshqFVrn/j3TImJK219pqqujjJ3ZPcKMljkvzK4qoFAAAAAAAAAADW2VoEoyX5cA6egVRJ3jTDGIMPVr10hn4AgJUyaRlYEcFoAACjdQ0dXko4MetrFe+/Yw6YwCT36U0wGgAA7KmqJyX58f7LvZvx00nemuTKJF/foZsXDvTxdRGMBgAAAAAAAAAAR9bWqgsYUvv8HLS9y09y9oGrtyR55cL+BQDAGjDpmTUi+OHwmCkY7cT+6wWjAQDAYrXemG3u14AhPcFoAAAwqaq6MMmzs/s/6lt2A9F+MMmtWmsPSvJ9Hbt6xV6XSb6sqoafHQQAAAAAAAAAAI6IdQtGW5S9h6RekuQbWjPbCQA2lz/jzJPjiQnMFIx2fP/1k0y4BgA4FFyDH2lz/2i+S3+OOWACkwSY9wSjAQBA3zOSHMvuM3qnkjyktfbs1trJCft5d3//JDk/yYXzKxEAAAAAAAAAANgkx1ZdQN/zx2z7zv7vluSlSa7q2Ofet09+KsnFSd7QWvvI1BUCAOuhyyRqGajAIswSjLY1IhhtkgnXAABrzX0YXaziOBk3puMWGDLJfXoTjAYAAFV1bpKH5+xN9n9urb1lmr5aa72qujjJvfur7pbkb2evEgAAAAAAAAAA2DRrEYzWWnvcqG1V9Z05++DUD7TWLl1OVQAAMA8m2h8aswSjbQtGAwDY5fr4SJt7kHmX8PTenMcEDrVJ7tN7gtEAACDJA5Kc6C9fneS5M/b30ZwNRrvDjH0BAAAAAAAAAAAbamvVBXRUqy4AAFgXXSZRm2hPV44VJrCQYLST09cDALBWOl5bzz0YCw4y7phzPAJDJglGu+i/JL0RnxUAAMDRcaf+75bkra210zP2d+XA8vkz9gUAAAAAAAAAAGyoY6suoIPHDSx/5askPgAAIABJREFUfGVVAABrwqRlYEVGBaNtzRKMNsGEawAA2HgruKdvveWPCWyuSe7Tr/pg8tYnJF/664urBwAA1t9nDCz/4xz62xqxDAAAAAAAAAAAHCFrH4zWWnv+qmsAADaN8DTWiePx0OiNCEYrwWgAAN25Pj7a5vz+ty79jWnTaX/gSOmdnqz9Jb+Z3PtZybm3Wkg5AACwAQYvos+dQ3+DF9dXzKE/AAAAAAAAAABgA619MFpV/djAy59rrV05ZT83S/LkvdettWfMWhsAsAJdJi2b2ExXjhUm0RYQjNYTjAYsWWtJ1aqrAA4j19asK8cmMIlJg9HSkkuen9z9KQspBwAANsA/DSx/5hz6u9eIvgEAAAAAAAAAgCNk7YPRkvx4kr2ZS7+ZZKpgtCQ3H+pLMBoAbCQTmoEVmSkY7cT+63cEowFLcuZk8o7vT/7hFck5N03u/NjkHv9JSBqwAu7pjrSVhJT1xmxzPAJDpjlPnf74/OsAAIDNcUn/dyX5oqq6SWvt6mk6qqr7JPmMgVXvmLU4AAAAAAAAAABgM22tuoCO5jlL14xfADj0TGxmjaxk4j8LMVMw2vH91wtGA5blzd+afOBXk5OXJVf+TfKuH07e+1OrrgqAI2fe90cd+nNPBkxkXJjiCF0+FwAAgMPrrdn9otOW5Jwkj5+hr6cMLH+ktfaRWQoDAAAAAAAAAAA216YEowEA9JnQzDw5npjEiMnRXSZAb40IRms7Se/M9CUBdHHq48nf/8EN17/rR5IzVy+/HuCQ6nhtLaTqiFvF+z9uTMcjMGSav1OC0QAAOMJaaztJ/md2v6y0kjy9qj5r0n6q6pFJvjW7N+stye/Os04AAAAAAAAAAGCzHFt1AUtUA8tTfN37fFXViSR3S3JBkjskOT+735p5ZZJPJHlPkotaa3NJSaiqc5I8IMlnJ7l9kquSfDTJO1trH57HGANj3TnJF2X333VeksuSfCTJm1tr181zLADYn4nNwAK0nf3Xd5kAvT0iGC1Jdk4lW+dNVxNAFx/53Yy8PnrTY5IHvXKp5QBHnfs15qnD8dRW/r8DgI0iGA0AAKbwE0kek93n826e5PVV9fDW2kVddq6qxyb55exekFeSk0l+fjGlAgAAAAAAAAAAm+AoBaPdbGD5mlUUUFWPS/KVSe6b5C5Jtg7Y5aqq+v0kv9ha+6spx/yMJE/P7sNntxzR5s1Jfqa19pJpxhjo55uSPCXJ/UY0+WRVvTDJj7XWPj7LWAAcYc0keuZpGceTY/bQ6I0KRjvosj4HB6OdIxgNWKCdU6O3ffR/JmeuSY7deHn1AHB0reSefsyYPmMAhk0TprglGA0AgKOttfa+qvrFJE/O7o34nZO8o6pekOT3k3xyeJ+q+qwkD03y3Un+Zc5+6WlL8rTW2uXLqB0AAAAAAAAAAFhPHWbwHxpf1P/dkqwqlOsnknx7kgvT7b/9eUken+TtVfWzVTVRkF1VfW2S9yR5YkaEovXdP8mLq+oFVXWTScboj3NeVf1ukhdldCha+jU8Mcl7quphk44DALs6TFo2sRlYhDYqGK3DBOixwWgnp6sHoKuDAhw/+fbl1AEccl3vw9yvHW0reP+nCTkCjrApzlNdPhcAAIDD7weS/Gl2A85aknOSPDbJHyX5iwxcbFfV1Uk+nOR5ORuKtrf9Za21Zy+raAAAAAAAAAAAYD1NFLS1qarqwiQ/NLDqvauqZcg1ST6Y5NIkV2Y3LO2WSb4gye0G2m0n+Q9J7lRV39TaqESGs6rqQUlenuRGA6tbknckuSTJzZPcO8mtB7Z/W5KbVtU3ttZttlhVbSd5YZJ/NbTpn5K8M8k/J7lLf6y9b/a8bZI/qKqvaq29qcs4AACwcgsLRjs1XT0AndX4zQd/zAAAczLnYLROwejj2gjqA4ZM84ULgtEAACCttV5VPSLJc7MbiLZ3cb33AXUbWHdicNeBdr+e5N8utlIAAAAAAAAAAGATrEUwWlW9tmPT36uqSVIDzk1y+yQXDK1/zQR9zNPVSV6R5FVJ3pzkPaMCyKrqS5M8M8lDBlZ/Y5KnJHnWuEGq6jOTvDTXD0X78yRPaK1dPNDu3CTfk+TZ2f2WziT5hv64P9Lx3/RTuX4o2nX9Gp/XWrt2YKx7JPkfSe7XX3VukpdX1Re01i7rOBYAzGHSMwyYZrLr5IMsYQyWYpZgtK0xwWg9wWjAgtXW+O2C0YBlWso1OAxwzAET6fS9QdcnGA0AAJIkrbVTSR5fVa9K8tQk9xzVtP+7+j8fTPJjrbXfXXyVAAAAAAAAAADAJliLYLQkD8rBiRGV5L5T9D34rZNJ8qkkL5iin3m4Z2vtui4NW2t/UVUPTfL8JN8+sOlHq+oXWmunx+z+9CS3GHj95iRf1X/4bHCM00l+oaouTfKygU1Pqapfba19ZFyNVfU5SZ48tPqbW2t/sM+/571V9ZDshtLthaPdKsnT4ps+AZiIYDRgRWYJRjt2YvS2HcFowIIdFIzWO7OcOoDDTfgUXcz9OOnS35iQI8ctMGya84JgNAAAuJ7W2ouSvKiqHpzkq5M8MMlnZfdZsRsl+XiSj2X3mbZXJ3lVa77BAwAAAAAAAAAAOOuAmbGHwuA3TH46ybe21j6+kkI6hqINtO8l+fdJrh5YfbMkDx61T1VdmOQ7B1Zdm+Sxw6FoQ+O8PLsBbHvOzW5g2UGeluScgde/uV8o2sA4J5M8tl/Tnu/qB6wBAMB6myUYbevc0dsEowELV+M3tzGBMQBzJ4jqaFvB+y/8DJiIYDQAAJiX1trrWms/0lr78tbanVtrN22tHW+tfWZr7Ytba9/XWnulUDQAAAAAAAAAAGDYOgWj1YifLm1G/Vyb5PIkr89uiNfdWmuvXvC/Y65aa1cmedPQ6ruO2eVbkwzOwHhpa+39HYb6b0OvH11Vx0c1rqoTSb7pgD5uoLX2t0lePrDqWHZrBoCOOkxONOmZzpZwrDgeD4+ZgtGOJXVs/22C0YBFqwM+/jHnDJiLjte9ro9ZunHHnOMRGCYYDQAAAAAAAAAAAAAAVm0tgtFaa1ujfvaa9H/uNK7tPj8nWmu3b619ZWvtJ1prl63wnzmLTw69Pn9M20cOvf6NLgO01i5O8pcDq26S5KFjdnlYkhsPvH5La+19Xcbap6ZHddwPAEyiB1ZnlmC0JNkekTssGA1YtAOD0c4spw4AmHsQWZfw9N6cxwQOtWnOGYLRAAAAAAAAAAAAAABgrtYiGK2DWnUBK3bB0OuP7teoqm6X5F4Dq84k+fMJxnn90OuvHdP2aw7Yd5w3Zre2PfeuqttOsD8AHEB4GuvE8XhoLCoYrScYDVi0g4LRRpzfABbC9fGRtpKw83FjOh6BYVOcFwSjAQBwxFXVa/s/r6mq28zQz20H+5pnjQAAAAAAAAAAwGY5tuoCOviznJ2FcOQSA6rqc5Pcd2BVS/KGEc3vOfT63a21qycY7s1Drz9/TNvhsd7SdZDW2tVV9ddJ7j001se69gHAUWbSMvPkeGICiwpGO3NyunoAuqoD8uYFowFz4dqaLlZwnLTe8scENtc0AY6C0QAA4EE5e9M/4n+IdXK831fiwyYAAAAAAAAAADjS1j4YrbX2oFXXsCpVdfskL0oyOKPixa21D4/Y5R5Drz8w4ZAfPKC/QXefw1iDwWj3SPLaCfsA4Ejq8vyzZ6SBBZg1GG1rxDyQ3pHLfwaWbmv85t6Z5ZQBkMT9GnPVKcBoTJtpApCAQ26KMEXBaAAAkCQVH/wAAAAAAAAAAABzsvbBaEdJVR1Lcovsho59fZLvSXLTgSaXJPneMV3cdej1pROW8JGh17eqqlu01q4YqvOWSW4541jD7S+ccH8AgA3h+f9Do42YHN11AvT2iGC0HcFowILVAcFoo4IfAWDuVnB/JPwMmMQ05wzBaAAAAAAAAAAAAAAAMFeC0Vaoqn4uyZM7Nn9dku9orV0+ps3Nh16Pa3sDrbWrqupUksHEhpsluWKo6fA417TWrp5krH1qu9mE+wNwVHWZnGjSM105VpjEqOCgzsFoJ/ZfLxgNWLgav7mdWU4ZwOHW9draNfjRNvf3v0t/IwKOO+8PHC2C0QAAYIUGn2X0wTUAAAAAAAAAABxhgtHW3yuSPKe19icd2p439PrkFOOdzPWD0c5f4DiD9htnYlV1mySfMeFud5nH2AAsS5fJiSY2AwswczDa8f3XC0YDFq22xm/vXbucOgBgFffrwviASbRxYYojHHS9DQAAdHXrgeVJv6QTAAAAAAAAAAA4RDY2GK2qbpXk7klukeRmSSaaddBa+61F1LUAX5tku6pOtdb+7IC2w4Fl0yQsnMzuf9NRfc5znHF9TuvfJXnanPoCAJidSfiHh2A0YGPV+M2965ZTBkASQdYs37hjzvEIDJvmvHDA9TYAANDVl/d/tyQfXWUhAAAAAAAAAADAam1UMFpV3Tq7wVffluSuM3a3DsFoz0jycwOvTyS5VZIvSvLIJF+Z5JwkX5fk66rqOUme3NqoRIYbmGb2xjrvAwDp9CdEEBWdOVaYgGA0YFPVAVnyvWuXUwdwyHW9tnYNfqTN/X69S3+OOWACU52nnGcAAGDARBfIVXVOktsneWiSHx3Y9NfzLAoAAAAAAAAAANgsGxOMVlWPSvLrSc7P9F+93vr7rsUMhdbaJ5N8cp9Nb0ryS1X1wCQvSHJBf/2/z2542neN6PKqodcnpihreJ/hPpc5DgDckNAzYFUWFYzWE4wGLJhgNADWxprd0/uMAbgBwWgAALCfquryRZ6V5MNV0z7ad71nAl8xbScAAAAAAAAAAMDm24hgtKr6tiS/lf0D0QZnGwxvH9429VNXq9Bae1NVPTjJ25Lcqr/68VX1itbaH+yzi2C05LlJXjThPndJst9/TwA2lsmIrBPH46ExMhjtgMChPVsjgtF2BKMBiyYYDViGjte9gqiOuBW8/445YBKtt+oKAABgXXV97m6W5/P2vvT0fUlePEM/AAAAAAAAAADAhlv7YLSqunOS52X3oae9h5/eneRlSU4m+al+05bkcUlumuQOSe6f5AHZnf3bklye5JlJPr3E8mfWWvtQVT0jyc8PrP7B7B/k9c9Drz9jkrGq6rzcMLDsUx3GuXFV3aS1dvUEw92mwzgTa61dnt33urMZvqUUgJUwoZl5cjwxgZHBaNvd9t8eFYx2crp6ALo6KMBRMBoAm6pT6Nm4Nu4JgWFTnBcEMAIAcHTsPbu3KJXk7Uke01q7boHjAAAAAAAAAAAAa27tg9GS/MfshnXtzSp4epJntNZaVV2Qs8Foaa09f3DHqrprkp9O8o3ZDQn7niQPba1dtozC5+j3cv1gtC+tqpu31obDxN4/9PqCCccZbv/J1toVw41aa5+oqiuS3GJg9WcnuXiGsYZrB4ARZp30DDClhQWjnZquHoCuDgoEF4wGLJX7tSNtJeFBjjlgEtOcM5xnAAA4Ev4soy9+v6L/uyV5a5Ku//OrJTmd3S/UvDjJ61prb5ylSAAAAAAAAAAA4HBY62C0qtpK8u05+1DVi1prT++6f2vtA0keVVVPT/LUJPdI8odVdb9N+lbJ1trlQ0FkW0nunOSdQ02Hg8nuOuFQnzP0+r1j2l6c5P5DY00SjDY81iT7AgBsEJNjD42Zg9FO7L9eMBqwcFvjN+8IRgPmYCWBV2yeeR8nHfobe2w6boEhrTfFPs4lAAAcfq21B43aVlW9nL3Jfkxr7dKlFAUAAAAAAAAAABxaB8yMXbkvTHJ+kuq/fsY0nbTWnpbk5f1+7p3kSXOpbrmGg9zO3afNe4Zef2FV3XiCMR5wQH/jtt2v6yBVdZPsvrddxwKAs7pMNDQZka4cK0xi5mC04/uvF4wGLFrV+O09wWjAMrkGZ9kcc8AknDMAAGBKB3wQDQAAAAAAAAAA0N26B6Pds/+7Jbm0tfbecY2rxs70/eGB5e+atbBlqqrjSW49tPpjw+1aa5cleffAqmNJHjjBUA8aev2qMW3/+IB9x/my7Na2552ttRv8ewBgeiYwAgsgGA3YWILRgDUinPiIW8X7P2ZMxyMwbKrzgnMJAABH3tP7P89I8qkV1wIAAAAAAAAAABwCxw5uslK3HFi+aJ/twzMNjic5uV9HrbW/qaqLk9w9yedV1ee31vbrcx09JNcPsbsmyT+MaPuyJF848PpxSf7koAGq6m5J7juw6uoD9nt1dv9bn+i/vl9V3a219r6Dxkry2KHXL+uwDwD0mWjIhjHR/vBovf3XzxqM1hOMBqxY77pVVwAcCq576WDu90cd+nNPBkxkxL3/WM4zAAAcba21p6+6BgAAAAAAAAAA4HDZOrjJSp0/sHzFPtuvHtN+P387sHz3qSpasqraSvLUodV/3Fq7dsQu/1+SnYHXj6qqCzsM9Z+GXv9+a21kQkNr7ZokLz6gjxuoqs9N8siBVWeS/E6H+gCgr8tEQ5MR6cqxwgTazv7rZw1G2xGMBizaAX/veqM+YgBYBNfgR9sq3v9xYzoegSHThCkKYAQA4IjrP98GAAAAAAAAAAAwN+v+UNJg8Nk5+2z/9NDrOx7Q31UDy7ebqqIpVdX3VdXtJ9znnCS/luS+Q5ueM2qf1tr7kzx/YNWNkvxmVY1IYUiq6hFJHjuw6tokXb7J88eTXDfw+rFV9fAx4xxP8hv9mvb8Wmvtgx3GAgDYUCbHHhqjgtG2OgajbQlGA1bkoKAGwWgAbCphRMDcOa8AAMAULq2qp1XVQc/uAQAAAAAAAAAAdLLuwWgfH1i+6fDG1tq1Q23ueUB/g8Fk581Q1zS+K8kHq+oFVfUNVXX+qIZVdaKqviXJO3P9wLIk+e3W2msPGOtpSa4YeH3/JP9/Vd1taJxzq+r7krxoaP//3lr7yAFjpLV2SZKfH1r94qr63qoaDD9LVd09yWv6tez5RLoFsAHAWV0mPZsYTWeOFSYwKhitOgajbY8KRjs5XT0AnR30987fQ2AOOt+HOeccbat4/8eN6XgEhkz1uaJzCQAAR94dkvxYkg9V1Uur6qGrLggAAAAAAAAAANhsx1ZdwAH+dmD5whFtLkryFf3lhyT57f0aVdVNkvzLgVVX7NduwU4k+bb+T6uqDyT5cJJPJbk2yflJLkhyjyTn7LP/K5M84aBBWmt/X1WPSvLqJHsBZQ9I8t6q+l9JLklysyT3SfIZ+4zx1An+TT+U5POTfG3/9TlJfjHJU6vqHUk+neRz+mPVwH7XJnlka+2yCcYCgJhoyMZpvVVXwLwsLBjt1HT1AHR2wPWTv1UALMsqgsyFpwMTmeba2HkGAAD6jiV5RJJHVNWHkvxqkt9orX18/G4AAAAAAAAAAADXt7XqAg7w3iQ72Q3UunNV3XifNm/s/64k31xVF4zo64eSnDfw+qK5VTmdym7Y21cn+ebshqU9PMm9csNQtJNJfjTJo1prp7t03lp7fZJHJvmnoTH/RZJHJ3lYbhiK9rtJ/k1roxIf9h1np9/fC4c23SbJ12T33/bFuX4o2uVJHtFae2MAYCFmnIx45prk/b+a/MXjk/f9XHL6k/Mpi6Ppop9cdQXMy86IS/Gtc7vtLxgNWJUDA2EEOQBLJKTqiJv3+9+lvzFtHI/AsGnOC84lAABwbXafDdu7OK7sfpHmTyX5u6p6QVU9cFXFAQAAAAAAAAAAm2etg9Faa1cleUf/ZSV5yD7N9gK5WpITSf6kqr58b2NV3ayqnpndYLG9h68+meQvF1L0aE9I8swkb0nSKdwsyfuSPDXJ57bWfrK1dt0kA7bW/ijJPZP8SpIrxjT9iyTf1Fr71tba1ZOM0R/nqtbav8luCNpfjGn6ySS/nOSerbU/nnQcAEiy+ImGO6eSNzw8edu/TS75jeQd35+85sHJ6U8sdlxWYxkTV//hFYsfg+XojQpGu1G3/bdPjO7XJGpgoQ44x7TecsoADrmu1zOue1g2xxwwCecMAACYwh2S/GCSD+Tsl2e2/vK5Sb4lyRuq6q+r6t9V1fmrKRMAAAAAAAAAANgUx1ZdQAevTvIl/eWHJ/nDwY2ttYuq6g+SPCK7D1RdmOR1VXV1kiuT3CbJdr/53jdT/tKkIWOzaq29Lcnbkjy1qs5JcvfsfjPmHZOcl+ScJFf1a/5wkne21saFmXUd9/IkT6yqJyd5QJILktwuydVJ/qE/zodmHac/1ouTvLiq7pzkPtl96O0mSf4xyUeS/Hlr7dp5jAXAUdZlcuIMExg/+sfJx15z/XWfenfyoRckd3vy9P0Cm6834lJ2+9xu+28fH9P36fHbAWZxUPiiYDQAlmYFgUNj/w4KQAKGTHVt7FwCAMDR1lr7ZJJnJ3l2VT0kyROz+5zfsZy9YK4kn5/kF5P8t6r6nSS/2lp7xz5dAgAAAAAAAAAAR9wmBKO9MMl/zu7DUd9SVf+xtfbPQ22enOS+SW6bs982eV7/Z8/e+rcn+clFFz1OP5Tt3f2fZY15bZLXLWmsDyWZS9gaACzdu354//Xv+A+C0eCo2zm9//qtOQSj7ZwSjAYs0EFBDYIcgHnoei5xzjnSDgrrnLzDObUB2DPNOcN5BgAA9rTWXpPkNVV12yRPSPLdST57b3N2n9+7SX/9d1fV25P8cpLfa62dWkHJAAAAAAAAAADAGtpadQEHaa1dlOSLk3xJkq9IsrNPm0uTPCTJe7L78NT/2ZTrf+vkq5I8tB9MBsAm2zmd/NUPJ6+6d/LahyWXvmTVFbE0HSYazjLR+sr3Tb8vG8jEVSbQGxWMdqNu+28dEIwGsCqtt+oKAGBxxn5G4J4QGDbFeWHuoY8AALD5Wmsfa609M8mdkzw8yR/l7AX34PN8X5Lk15J8tKp+tqrutvRiAQAAAAAAAACAtXNs1QV00Vp7Z4c2F1fVfZI8KskjklyY5OZJrkjyriQvbK29dqGFArA8f/6Y5O//4Ozrf/zT5AG/l1zw6NXVxHJ0mmhoMiKwADsjgtG2z+22/7ZgNGBVDro2EowGLJHwmCNuzu+/zwiAeVtEaPA1H01O/WNy83slW9vz7x8AANZYa60leWWSV1bVZyX5niSPS3L7vSbZDUi7eZInJXlSVf1ZkucmeVlr7czyqwYAAAAAAAAAAFZta9UFVNUrq+oHquo+VVWz9NVa22mtvai19u2ttfu21j6vtfalrbXvEYoGcIhcfen1Q9GSJC15/3NXUg4AR0Tv2v3Xb92o2/6C0YBVOSg0ZhHhD8DRI/CMTlZxnIwZ03EL3MAU54W/fHzSu+6G63dOJ2/818nL75j88RcnL79D8om3z14iAABsqNba37XW/nOSz07y6CSvGWpS/Z8vT/J7Sf6uqp5ZVRcst1IAAAAAAAAAAGDVVh6MluRfJfnpJG9L8omqenlVPamqvmDFdQGwrv72l/Zff/kbllsHK9JlcqKJzXRkEjxdtV4y6gvpt87t1sfYYLSTk9cE0NlBf+/8PQSWyTnnSHMPBqy7ac9TF/3XG67766clf/fSs69PXZ68/mv2D1EDAIAjpP/lpy9urX11ks9N8t+TfCK7Hxy1nA1Iu22SH07ygap6aVU9cFU1AwAAAAAAAAAAy7UOwWh7KsnNk3xDkp9N8ldV9U9V9aKq+ndVdbfVlgfA2jj98VVXwEqZRA2swM7p0du25xGMdmqyegAmcsD1U+stpwyAJO7pmK8Ox9PYkCPHIzBsyvPC+597w3Uf+u0brjv9ieSyP51uDAAAOJxumuRmSQb/R1ob+EmS7SSPSPKGqnpVVd1luSUCAAAAAAAAAADLtk7BaIMPM+196+OtkjwqyS8muaiqLquq36mqJ1TVXVdUJwArZ9IqBxg76RlgCr1rR2/bulG3PrbGBKj1BKMBC3TQtZFgNGAu3IfRxSqOE8cmMIFpr41PfeyG605+dP+2l/z6dGMAAMAhUVUnqurxVfWXSd6e5LuS3HiwSZIzSU72lwefKXxYkndV1dctsWQAAAAAAAAAAGDJ1iEY7T8leVWST+dsIFqyf1DabZM8JsmvJPmbqrq0qp5fVY+tqguWWzYAKyP06mjz/jNXjic66p0evW1c4NmgqmT7+P7bdgSjAYt00N87fw+BJXJPd7TN+/3v1N+YNo5H4AaWcF7oXbf4MQAAYA1V1T2q6heSfDTJ/5vkX+Tss4J7zwdeluTHk1yQ5A5JvjfJRTkbkNayG6L2+1V1l2XWDwAAAAAAAAAALM/Kg9Faa89qrX19klsmuW/OBqVdlYOD0j4zybcn+bUkl1TVJVX1P6rq26rqDkv8ZwAASzPjpGeAaeyMCUbb7hiMliRbgtGAVTjg2qj1llMGAKzifl34GTCRGc4ZXc83vWunHwMAADZMVd2o/yzfG5P8dZJ/n+RmOftMYPrLr0/y6CQXtNae0Vr7x9bala2157bWvjDJ1yW5eGC/40m+f1n/DgAAAAAAAAAAYLmOrbqAPa21XpK39X+eVVVb2f1WyAcleXCSByQ5b3CXgeW9B57ulORx/Z9U1QeSvC7Ja5O8vrV2+eL+BQAsjwmtACxZb0ww2taNuvezfTy5bp/1gtGARToooEEwGjAXXe/V3dOzbOOOOccjMGSWa+OdU8mxEx3GODP9GAAAsCGq6sIk35PkO7P7hanJ7jN+e1+OWtn94tTfTvKc1trF4/prrb2qql6X5E1J7tPf/6sXUz0AAAAAAAAAALBqaxOMNqwflPbW/s9PV9V2doPSHpzdsLQHJLnJ4C4Dy3tBaRcmuWuSJyRJVV2c3aC017XWXrrI+gFYoIOCHTjkurz/jhG6cqzQUe/a0du2zu3ez/bx/dcLRgNWSjAaAMsy73swnxEAczbLZ88713QLRuvtl5gOAACbr/983yOT/NvsPuOXnH2Orw28vijJLyf5rdbaVV37b62dqqr/muRF/VWfNXPRAAAAAAAAAADAWlrbYLRhrbWdJH/Z//mpqjqW5EuyG5L24CRX2fZoAAAgAElEQVT3T3LjwV0GlvcesLpH/+eJ2aB/OwDDTGg90rpMThSeB8zbzunR27bnEIzWE4wGLNIB10aunYBlcs452lbx/o8d0/EIDJvhvHDmmuTcWx3cTjAaAACHTFVdkOT/TvL4JLfZW53dC+zWX95J8vIkz2mtvWGG4d47sDzB/6QDAAAAAAAAAAA2ycaGg7XWziR5S//nv/aD0v5ldkPSHpTkftk/KK1yNigNgI1k0ioAS9YbE4y2daPu/YwKRjtzcrJ6ACZy0PVzbylVAIecwDPWlmMTmECb4dr4zNXd2vWunX4MAABYTx/M9Z/JG3xO77Ikz0vyvNbaZXMY65qhMQAAAAAAAAAAgENoY4PRhvWD0t7c//kvVXVOkvsm+eYkT4hviASAQ6LL882egaYj4Q10NW7S8tYEtxpbI4LReqcmqwdgEgf9vZsl/AFgYq7Bj7Z5v/8z9ueeELiBGc4LO9ecXR53fmlnph8DAADW01Z2L6Zbzgak/VmS5yR5Wf+5vnmr+KAJAAAAAAAAAAAOrUMTjLanqm6R5CuSPDjJg5J8fs5+GyUAh4FJqwAs287p/dfXdrK13b2fYydG9C8YDVgkwWjAMnS9V5/wnv66TydXvi+5+Rcm2777YvMt6DOdqz+SnHvr5NhNljcmcEjNcM44MxiMtjO6Xe+66ccAAID1VUmuSvLbSZ7b2v9m787DLMnq80B/J6sa6G5WsQq1gG6QtSC0IckbaECDtdmSNVibLVndNjOjsWfRWLN4bGvzjD22Rx7b8iNrNF4k2mgxFthIxrIshA1oYRGLhNqgBbpo9oaGpmmglsy8x39UZtetrBtxI27cLW6+7/PU05kRceOcIg4nTkTl78v6n1bRSK31rlwOYgMAAAAAAAAAAHbY6IPRSimPTPIVuRKE9ozMDkKb3qYSCgBGq8NtXHgesGyThmC0vQf1O8/eQ2ZvF4wGrNS8tZG1E7Cl7vgbyW//9aQeJGeuT778Hyc3f8eme8UQy35ev+/tycs/J/n47yZ71yW3/LnkS3/06vDi1jbdA4EThsxTh9PBaC3hw4LRAADYPW9P8qNJ/nmt9f5NdwYAAAAAAAAAABi/0QWjlVIenquD0L4wV4eelVyuZjoZhPbWJK8++vOadfQVgFVRtHqqCT1jqYwnOmoqWu4bjHamRzDaJ84l73v55cLqz/j65BGf168tgGPz1k9toQ0Ay9b1me69P5+89fuufH94PnntdyaP+sLkkc9YTd8Yn3f82JWvJ/vJO/5xcv1nJM/4/qmDPPcBfQxYGx9MB6MdtjRxafE2AABgC9Van77pPgAAAAAAAAAAALtl64PRSikPS/LsXAlC+6Ike9OHZHYQ2ltyJQjtV2qt966jvwCsgeAG5lL0DCxZU0FzOdPvPF2D0T782uRVX5Psf/zy97/1vcmzX5Lc9Cf7tQeQZP7ayPoaWIYlP4e945/MbuPci5Iv/n+W2xZrtIbn9Tt/vEcwmvcHwAlDfinDYcdgtHqweBsAAAAAAAAAAAAAAHAKbF0wWinlxlwdhPbFSabTBsqMj02SvDlXB6F9fLU9BQA2Q9EysAHrDkZ78/dcCUVLLhdNv+G7ks/4hqTMeiQCGGBI+ANAbx3nnPe/fPb2t/+QYLRRW8M955N3nWjSfQ7oY8CccfCJqdO0BKNN9hdvAwAAAAAAAAAAAAAAToGNB6OVUm5I8qxcCUJ7ZuYHoe0neWOuBKH9Wq31EzOOA2AnKWg93bpcf2OErowVOlp1MNpkKhjt4keTj7zu2mMu3J185PXJY/5QvzYB5t7vJmvpBQBsJqSspU2hacBJdcDa+GN3TH3Tch7BaAAAnFKllEcn+eYkfzDJ45OcT/LeJL+c5N/XWi9tsHsAAAAAAAAAAMAW2XgwWpKPZX4Q2qUkb8jVQWjn19A3AGCMFDbTxfm7k3e/dNO9YCyWFYy21xCMdjD1eHPxnubP3/9OwWhAf/PWRkPCHwCOdX4O87zGmnlHAPQyYM5478uSZ/5wUkoyaXiPkCQTWQ8AAIxfKeUxSb4gyWOTXExyZ5I7ar32hXMppST5K0n+apLrZ5zuf0hyVynlL9Zaf3F1vQYAAAAAAAAAAMZiG4LRzuZylcF0INqFJK/LlSC019VaL2ygbwBspZbitFovF56xuxQ0swznfjJ53a2CYOhuWcFoZxqC0SZTjzttBdJnHtyvPYAkc8Md3A+BdfJMd8pt4vq3tWk8AicNmBc+9Z7kvjuSRz6j+T1CktSDxdsAAIANK6V8UZIfSvKcJHsndn+olPIPkvzdWi8vio9C0W5P8u25+ucDjxffx9uekuTflFJuq7X+1Gp6DwAAAAAAAAAAjMU2BKNNq0l+OcnfSfKaWlUGADCDIupTrsv1N0Zocf7u5LXfGeOEXppCg8rJeo85zlw/e/vhdDDaxebP7z2oX3sASYf1s3siAOvingNsuaGhwR985fxgtMn+sDYAAGBDSinfluSfJzmTq0POjj0+yf+d5CtKKV9fa50k+e4k35HLLwWmw9COPz/9suBMkh8vpbyl1vq2FfwVAAAAAAAAAACAkehZxb9Sxz/k9Lwkr0hyXynll0sp31tKeXYp5boN9g2ArdJWRKvAFpjjzp+IuYLemgqay5l+59lryKaeTGVCH15q+bxgNGARc+57Q8MfAJJ0X2Nbi7Nu3iMBPQz9pRzn33f0Rcsauy00DQAAtlQp5cuSvCiXfxFrydVBZ5n6viT5miT/SynlYUl+MFcHon0gycuT/HSSX0xyb64OWbsuyQ+v6u8BAAAAAAAAAACMQ0NV/lq9Pcnn5NrfInl9kuce/UmSC6WU1yV5dZJXJXldrbUlMQCA3dVSnFbr7N9LzA7pUpyosJkWd/74pnvAGC0rGK00ZVNPFUy3jdEzD+7XHkASwWgAbI2hgUNjaRMYsYFzxnHwufAzAAB2z/+X5EyuDjm7N8k7jr5+apJH5Uo42l9Kcl+Shx9t+0iSF9Ra/830SUspe0lekOQfJHnI0We/spTy1FrrO1f8dwIAAAAAAAAAALbUxoPRaq1PL6U8JslzcjkE7TlJPvdo93S0zfVH+56T5AeSXCylvD5XgtJeW2u9uI4+A7BhrQWtil133soLmo9/uTU7a7K/6R4wRksLRms4/jiUqNbknf+0+fN7gtGABcxdP1n7AOtkzjndNnH95wTsA1xlaDDa0XsnwWgAAOyQUsofTPIluRJ69uEk35Xk52q9/HBdSilJviHJjyV5XJLHJ/meo1PsJ3lerfWtJ89da50k+SellLuTvCxXFuXfnORvr+rvNFallOtz+WcrPyfJY5M8NMknknw0yR1JfrvWerC5HgIAAAAAAAAAwHJsPBgtSWqt9yR5ydGflFIelyshaM/J5R/kSa4OSntIkq84+vN9SS6VUt6QyyFpr07y67XWCyvvPABbRkErGVbYXPYULu46PwfOIpYVjJa99vPf+5vtH+/dHkAyd418HM4IMIjncbrYsmA0gJOGro2P3ztNvF8EAGCn/Kmj/5ZcDjn7qlrrb00fcBSQ9nOllHNJfiOXfy7xD+Tyg/lPzgpFO/H5ny+l/Mdc/sWqNcmXLvev0F0p5ZYkX3bUhy/L5VC4h00dclet9Slr7M+XJPnGJF+Z5MuTXNdy+CdLKS9O8sPz/jcHAAAAAAAAAIBtthXBaCfVWj+U5F8e/Ukp5fG5EpL23Fz+oank6qC0Byd51tGf702yX0r5jVwOSntVLgelnV955wFYg5aC1iGBWIzEqq9xmX8I4zbZ33QPGKPGYLSGoLMmTccfF15fuHteR/q1B9CJYDRgjTy3s26tY854BE4aOC88EMhvjQ0AwE75kqP/1iT/8mQo2rRa61tLKf8iyZ+d2vzSju28NJd/NjBJnt67lwOUUp6T5K/kchjap62z7SallIck+U9JbunxsRuT/Pkkt5ZS/m6S76u1+gdyAAAAAAAAAABGZyuD0U6qtd6d5MVHf1JKeUKuhKQ9J8lnHR06nWTyoCR/5OjPX83loLQ3Jnl1klfVWl+xjr4DsG4KWndepyL6AeOg7BlGu04wGouoDQXN5Uy/8zQdfxy8dvbGOf0wQQGLmDN3NM1xAH10XqdYz5xqG1nPGnNAD0PnqeP3Tk0B6w8cd5DsjeKfaQEAILnyS0yT5OUdjv+FXB2M9taO7RwHrpUkj+74mWX5oiRfteY25zmb2aFoNcnvJnl3knuSPDTJ55849kySv5zks0op31rrAynOAAAAAAAAAAAwCqP8ifta6weT/IujPymlfHquhKQ9N8lTjw49GZT2h4/+/OWM9O8OQKKglfmGjJEy/xDGzc98s4imgubewWh7DTuOQonOXD+vI/3aA0g6hDuYWwBYl20LRnMPBE4aGBo8OXrvNC8Y7fBCsvfQYW0BAMD6PGLq69/tcPzJYz7SsZ17pr5+eMfPrNrFJO/NlZ9H3JTDJL+U5PYkr6y13nPygFLKM5P8vSRfMbX5+Ul+MMn3rqGPAAAAAAAAAACwNE1V+aNSa/1ArfWna63/ba31s5LclMu/dfLHk9x5fNjRf0skngCMW2uwg4LW3bfia9wYWsTOmOyvv825gTRsvaUFozUcX48Kr/fm5TcbS8Ai5swddWD4A0Av1jOn2iaejTyPAX0MnTNqx2C0ycVh7QAAwHpNp/re1+H4j09/U2u90LGd6eOu6/iZZdpP8ptJ/mmS70ryzCQPS/Jfb6Avxy4m+UdJnlJr/bpa64tnhaIlSa31TUm+MsnPnNj1v5VSnrzifgIAAAAAAAAAwFLNq7ofpVrr+0spb0vyuCSPT/LEJA/ebK8AWJ6W4jTFrqdAh2s8aBy05KfWmhT5qqO3iWC01MjmHbmlBaM1hC8en39eOJH7HLAQwWjAOlinMELW18A1Bs4Lx++d5q2xD7vmQgAAwFaY/ofOOSnAnY/ZNrcn+bFZIW5lcz8jcCHJ02qt7+36gVrrYSnlBUmeleQzjzY/KMm3JPmh5XcRAAAAAAAAAABWY2eC0UopX5jkOUmem+TZSR650Q4BsDqtRasKWhmo9YeahVvthHqw6R4wRo3BaA1BZ42agtEmV/+3uSM92wPI/NAXwWjAOgmiOuU2cf2NOaCHoWvj4/dOTe8RjglGAwCArVJrvXfTfTip1nqQpHMo2tTnzpdSfiLJ909tfm4EowEAAAAAAAAAMCKjDUYrpTwjV4LQviLJo6Z3T31dG7YDsJMUu+68TkX0Q8ZBS8hRPVwgBAmSvPOfJU/7bzbdC4ZoKowuZ/qdp+n444JpwWjASsybO8wtAKzLtgWjuQcCJw2cFyaC0QAAgK3wlhPfP3EjvQAAAAAAAAAAgAWNJhitlPL0XB2E9ujp3VNf11ypWihT+96b5D9O/QFgtFqK0zqFZjFuK77GpSVHdW5gETT43X8gGG3smgqaewejNYQrPjC/uI8BqzBnbrHGAZai6zrGeoc1864I6GXgnFH3j/47JxhtcnFYOwAAAO0OTnz/oI30AgAAAAAAAAAAFrS1wWillM/NlSC0/yLJY6Z3T33dFIT2gSSvylEQWq31nSvsLgBr1VacptiVZNg4aAgtSuYXNEKT+96WHF5Izjxk0z1hUUsLRms6/iiUaF44kVAHYCUEowGwJhtZz3qPBPQwdJ6aHGUPzHu+P/jUsHYAAADaPe3E9x/YSC8AAAAAAAAAAGBBWxOMVkr57FwdhPa46d1TXzcFoX04Vweh/e4KuwsAbMyKi5ZLad4nGI0hDi8KRhuzpQWjNYQvPnD+eeFEghuABcwLdxC6CKyVOYd1M+aAPgaGBtfjYLQ57xHf+r3J8141rC0AAFiv4wfsP1RKecqcY58w/U0p5dm5+uf/On2OQb7pxPdv2EgvAAAAAAAAAABgQRsPRiul/FQuB6JN/2BTlyC0jyZ5da4Eof2n1fYUgK3RGtyg2HXndQnuGBLu0RRalCR1YGEkp9vk4qZ7wBDLCkZLUzDa5Or/NnekZ3sAyfy5wxoHWIKuz2HCGE+5DVz/tjFnPAInDZ0XJh2D0T706mHtAADAZpQkP7PAZ17V4/iabiFqNCilfFmSP3pi87/eRF8AAAAAAAAAAGBRGw9GS/Knc/UPNDUFoX0syWtyJQjtrevsJADbREEr8wwZBy0/Yz2voBHaHApGG7WmwLK2MMVZ9hqC1I7nl3nBaO5zwELmzB3CXwFYm02sZ62hgT4Gzhl1/+i/1tgAAOykPqFl04vrPkFnHuQHKKVcl+T/P7H5V2qtb1hyO49L8tieH3vqMvsAAAAAAAAAAMBu24ZgtGPHPzh1/INQ9yf5lRwFoSV5S61SAABI2n8O1q1i9636GrcFoyloZIDD85vuAUM0BSOWhqCzRg1Bag/ML/PmGfc5YAHzXqdY4wBL0XWdYj3DunmPBPQwdG08OTg6T4dfsFBrUvrkQwAAwFZY5GHaA/j6/FCSL576fj/J/7SCdv5ikh9YwXkBAAAAAAAAACDJ9gSjlSSfTPJruRKE9sZaVeYCMENrsIOfpyUZNA5KQ2hR0q2gEZocXth0DxhiWcFoTccfP/rMzYJ2nwMWYW4BYEv43SfA1hs4T9U+wWiHSdmWf6oFAIBW744XyVuvlPLnk3z3ic0/WGv9zU30BwAAAAAAAAAAhtiGn7b/vlwOQntDrcfVAgCwIAW2p8Cqr3Fp2SezlQEEo43b0oLRGsIXHzj/nHnGfQ5YxLy5Qy49ALus7T5ofQ2cNHRemOwfnadDMNpkP9nbhn+qBQCAdrXWp2y6D7QrpXxNkh87sfnlSf7WBroDAAAAAAAAAACDbfyn7Wutf3PTfQBgbBStnmpdihOHFDA2hRYl3QoaoclEMNqorToY7TgQbW44kXsgsIh5c4e5BYB12cQ9x30O6GNgaPDx74DqEj5c95NcP6w9AADg1Cul/NEkL01y3dTmX03yrbWuLBX+R5P8bM/PPDXJz62gLwAAAAAAAAAA7KCNB6MBwHIpdmWo0rxLMBpDHApGG7Wmgua2MMWZxzcEqR3PL/MKp1dWuwDsto7BsqVlHQSwTOYc1ql1DW19DZww9Ll7chyM1uE94uGlq2MLAAAAeiqlPDPJv01yw9TmNyT547XWT62q3Vrrh5J8qM9niveBAAAAAAAAAAD00LOKHwC2QUtxmsCYU6DLNR4wDtpCjuYFFkEbwWjj1lTQ3BR01qhhjjmeX+bOM+5zwIpY5wBrZU1zem3i2htvQB8D54y6f/TfDsFox8cCAAAsoJTyBUl+Kckjpja/JclX11o/vpleAQAAAAAAAADAcghGA2B8WkMbFLvuvlVf45bfUtyloBGaCEYbt2UFozWFLx6f/+D+fucD6KJTeLBgNGAAIeV0tZGx0tamsQucNHBemBwcnabDe8SJYDQAAGAxpZTPS/LLST5tavMdSb6q1vqxzfQKAAAAAAAAAACWRzAaADtGQSsZVmhd2oLRBIYwgGC0cVtaMFrD8cfzy/kPzutIv/YAknSaO6xzgHUSpMY6GW9AH0PXxfU4GK3DeQSjAQAACyilfHaSVyZ57NTm30nyvFrrPZvpFQAAAAAAAAAALJdgNABGqKWgVbHr7ut0jYeMg5blUVMwEnQxEYw2aksLRmuaY+rl+e3C3XP64T4HLGLV6ycA6GoT9xvvkYA+Bs4Lx2FnXd4jCkYDAAB6KqU8Lcl/SPKEqc2/n+Qra61z/qERAAAAAAAAAADGQzAaAOPTWrSqoHX3rfgal9LS9GS1bbPbDgWjjVpjMFrPR6q2ILU6SS58cF5H+rUHkHQLfbHOAQbpu0axpmGdjDegh6GBifXg6L8dgtGqYDQAAKC7UsrNuRyK9sSpzXfmcijaBzbTKwAAAAAAAAAAWA3BaADADhpSwNiyPOpS0AhNBKONW1NgUFvQ2czj2x7BJsmFeb/IXagDsAjBaABsi21bz25bf4DNG7gunvQIRptcGtYWAABwapRSnpTLoWifObX5rlwORXvvZnoFAAAAAAAAAACrIxgNgBFqK1pV0Lr7VnyNS2lpWjAaAwhGG7em///3DUabF754/oNz+uE+Byyiy9whGA1YJ2saVmx63WwNDfQxdM6oB0fn6LC+nuwPawsAADgVSilPTPLKJE+Z2vy+XA5Fu2sjnQIAAAAAAAAAgBUTjAbACLUUpyl23X1drvGQcVDalkcCQ0Zvk3OEYLRxW1YwWtvxdZJcuHteR/q1B5Csfv0E0HcOMeecXhu59gL2gT6WMC/Uw26/YEEwGgAAnDqllHriz3PmHP+4XA5Fe9rU5g8keW6t9c4VdhUAAAAAAAAAADbq7KY7AAC9tRbRKmhlqNK8a9KhoJHtVg8217ZgtHFbWjBaS/jiR9+cnH/fvI70aw+gMwGwAKzDutazNVee762hgR7qEtbF9aDbe0TBaAAAsFVKKTdl9s9TPuHE92dLKU9pOM0naq33LKk/j0zyiiSfM7X5k0lekGS/pQ8z1VrftYx+AQAAAAAAAADAOghGA2CEBKOdbl2u8arGgfE1ehstODV+Rm1pwWgtx//yszv0wzgCFtFh7lhGAARwivVdo1jTsGK1TuWitYw362vgGkuYFyYHze8RrjpOMBoAAGyZX03y5A7HfUaScw37bk9y25L680VJvuDEthuT/MKC52v5LXEAAAAAAAAAALBd9jbdAQBYKgWtp8Amr7HxNXqC0VhUU2BQ6flI1ff4azsy8PPA6dQlGM38AsA6bOJ+4x4H9LCMdXHdT9IheLgKRgMAAAAAAAAAAAAAgFkEowEwQm3FaYpdSVY2DgSGjN/k0ubaNn7GrR7O3l7O9DvP4GA0gAV0ugd1CG4AWBprY1atNnzddhxAspR5YXLQ/B7hquM2+J4KAAAAAAAAAAAAAAC22NlNdwAAoJcuwR4rC6BSMD16k/1N94CxWlowWs/jr+3IwM8Dp1OX9ZNgNGAIaxQ6Wltg9FQ7QqqBPpaxLq5dg9G8pwIAgG1Sa33KGtooPY59VZLOxwMAAAAAAAAAwC7Z23QHAKC31oJWxa67b5PX2PgavbrJglPjZ9SWFYw29BFMqAOwEMFowJaxpmHVrhpj3iMBfSxhXpjsJ598d7fjAAAAAAAAAAAAAACAawhGA2CEWorTFFeTZGWFzcbX+B1e2nQPGKtlBaP1DlK7piMDPw+cSp3WMOYXANZhE/cb9zigjyXMGfUg+dhvzT9OMBoAAAAAAAAAAAAAAMwkGA2A8WkNdlDsuvNWHk5mfO20usmCU+Nn1Opk9vbS85Gq7/HXdmTg54HTqcPc0TTPAXTR+znNmubUWlvgeMd2BKADJy1jXTzZTz722x3aEowGAAAAAAAAAAAAAACzCEYDYIQEV51uXa7xqsaB8TV6kw0WnCq4H7d6OHt7OdPvPEOD0YwjYBGd5g7BaMA6WdOwalNjzBoa6GUJc8bh+WT/4/OP2+R7KgAAAAAAAAAAAAAA2GKC0QDYLYpdWaUqMGT0Jpc23QPGamnBaD2Pv7YjAz8P0MA6GoC12MT9RsA+0MMy1sWHF7od5z0VAAAAAAAAAAAAAADMJBgNgBFStHq6dbj+Kwv2MPZGb7K/wcaNn1FbWjDawEcwwUXAQrrMHQJggSF6rlGsaVi1q8aY8Qb0sYR1cedgtE2+pwIAAAAAAAAAAAAAgO0lGA2A8WktoFbsykBt40vx/vgJRmNRSwtG63n8tR0Z+HngdOoSLCsYDYB1WNd6dqod75GAPpbx/u/wYrfjBKMBAAAAAAAAAAAAAMBMgtEA2C2Cq3Zfp2s8ZBwomN5pk0ub7gFj1RiM1veRaugjmHkIWECX9ZNgNGCtrGlYJ+MN6GMJc8bkQsfjBKMBAAAAAAAAAAAAAMAsgtEAGCHBVafbioPRWoNDjK/R22TBqeDGcWsKDCpn+p2nd5AawDKsOlgWwBxCR2t7Lppqp61Nz2nANZYwLxx2DEa7eM/wtgAAAAAAAAAAAAAAYAepygdghARXsUoKpnda3WAwGuNWD2ZvL2f7nadvkNo1/TAPAYvoMHc0BUACrIQ1zem1pmt/1brZeAN6WMa6+PBit+Pe85Jk0vC+AQAAAAAAAAAAAAAATjHBaACMT1sojMCYU6BLsMeAcdBa/Gh8jd7k0gYbN35GrR7O3t436KwMfQQzjoAFdFkbCUYDhuj7DObZnbUSsA/00TAvPPHrup9i0jEY7cLdyQd+qft5AQAAAAAAAAAAAADglBCMBsAIKWg91VZeQC94b6dN9jfYuPEzavVg9vZytt95+gapXduRgZ8HTqcuc4dgNADWYV3rWetmYEFN7/9u+fPdz3F4ofux527vfiwAAAAAAAAAAAAAAJwSgtEAgB00pABa8N5O22gwGqNWD2dv3+sbjDbwEUxAI7Aq5hdgrcw5rNrUGGu9xxmLwAm1ITC4lOQzn9/tHJOL3dt778uSS/d2Px4AAAAAAAAAAAAAAE4BwWgAjJCC1tNtxddYwfRum1zaXNsCZ8ZtcjB7eznT80RDH8GMI2ARXeaOhgAIgE6sUehoI89FxifQR9OcUbqf4rBHMNrkUnLXi7sfDwAAAAAAAAAAAAAAp4BgNAB2i+ChU6DLNR4yDlo+a3yN32R/g40bP6NWm4LRzvY7T+8gtWs6MvDzwKnUZQ1TBaMB62RNw4pdde/znA/00RaM1jEc7fBCvybvfGG/4wEAAAAAAAAAAAAAYMcJRgNgfFqLVhW0MpTxtdM2GozGqNXD2dv3+gajDXwEE9wALEQwGgDbYl3r2al2rKGBPprWxeVMOgejTXoGo33k9cl9v9PvMwAAAAAAAAAAAAAAsMMEowEwQm2hDYpdd16XguYhRc+C93bb5NIGGzd+Rm1yMHt7OdPvPEOD0YwjYCFd5g7zCzBEzzlEUNUptolr7zkf6KExGG0vKR2D0Q4v9m/33O39PwMAAAAAAAAAAAAAADtKMBoAu0Vx9Smw6mCPluA944AeVzUAACAASURBVGv86v6me8BY1cPZ28vZfucRjAZswqqDZQF6M+ewarXha4B5WoLROp+iJRjtEU+fvf3ci5JJw7sHAAAAAAAAAAAAAAA4ZQSjATA+QhtYpdbxZeyN3mSDwWjmrvGqNakHs/eVM+vvC0Bvqw6WBYCO1rWenW7Hcz7QR236pQl7SUq3cxxeaN731BfM3n7+fcndr+x2fgAAAAAAAAAAAAAA2HGC0QAYIQWtp1uHazyo0Lrls42FkYzG5NIGGzc/jVbb//f3zq6vHwALE4wGrFjfZzBhr6yV8Qb0UA9nby99gtEuNu978p9O9h48e9+dt3c7PwAAAAAAAAAAAAAA7DjBaADsGMWuO2/lBfSC93baZH/TPWCMmoqik6SsOxjNPAQsoMv6SQAsAGuxrvVsx3aE9AEnNa2Ly15SOgajTVqC0R786OSmb5y9773/Krl0X7c2AAAAAAAAAAAAAABghwlGA2CEWopWFbSSZFChdesYMr5Gb6PBaMbPaNWD5n3lzPr6kcQ4AlbH/AKskzmHFbvq2d54AzqqNY1zRp/n/8MLzfvKmeSWW5s/9+6f7d4OAAAAAAAAAAAAAADsKMFoAIyP4KpTbtXXWPDeTptc2lzbxs941cPmfXtn19ePxDgCFtRh7jC/AIOYQ+hqA2PFeySgs5Y5oewlKd1OM7nYdJLL53nCH0uu//TZh5x7Ybc2AAAAAAAAAAAAAABghwlGA2CEFLSebl2u8ZBxYHzttMn+pnvAGNWD5n3lTP/zPfrLF++LeQhYyKrXTwB9mXNOrbUFcdaGrwFa1EnLzh7BaIcXZm8/foewdzZ5ynfMPubDv5bc/45u7QAAAAAAAAAAAAAAwI4SjAbACLUUtK6twJad1VoAaXyNXt1kMJrxM1qTtmC0s/3P9/S/tnhfjCNgEV3WyK1rIIB5rFHYNh2D0bxHAqa1rYnLXlKWFIyWJDff2vz5c/+8WzsAAAAAAAAAAAAAALCjBKMBAOPSKdhjQGFz22cVTI/f4aVN94AxqofN+xYJRnvi1w7oi3kIWESXucP8AqyRNc0ptoFrb7wBnc0JRut8mosN55gKRnvk05NP+9LZx915u+BiAAAAAAAAAAAAAABONcFoAIxPa0GrYtfdt+pgD+Nrp9X9DbZt/IxWPWjeN13U3NUiYWoPMI6ABXS6B5lfgHUy57BiV937POcDHbWGke0lKd3Oc9ghGC1Jbrlt9nGfenfyoVd3awsAAAAAAAAAAAAAAHaQYDQAdovgIQZrGUPG1/hNNhiMpuB+vOph8769BULOSsdC6pl9MY6ARXSYO8wvwBDmEDpb11jpGowGMKUtGK30CUa70HCOE8FoT/62ZO+62cfe+cJubQEAAAAAAAAAAAAAwA4SjAbACLUVtCp23X1drvGAcdBa0G98jd7k0qZ7wBhNDpr3nSxqXjnzELCILnNHSwgEwNJZ05xamwjR85wPdDYvGK3raS7O3r534h3Cgx+dfMY3zD72PS9N9j/RvU0AAAAAAAAAAAAAANghgtEAGJ/aFtqgoJWhFEzvtMn+Bhs3fkartgWjnV1fP05qC2wDmNYlhObgk6vvBwCsjecvYAFt753LXlJKt/McNgSjzXqHcPOts489+GTynpd0a49xuvCh5EO/mnzsjuUEhx58MrnnDcnBp4afCwAAAAAAAAAAAABgwwSjATAuh5eST7yzef8yCojYbl2u8aBx0PJZ42v8NhqMxmjVw+Z9e+sORqvJB1+Z/LtnJi9+SPILX5h86FfW3AdgJ73mG5MPvGLTvQBGq+ezkmerU2xN1/6qMeY5H+io9Rdy7CXpGIx2cP/s7eXMtdue+DXJQx43+/g7b+/WHuPzOz+c/NyTk19+dvILz0j+/Zcn97f8u0eX873kUckv/cHkJZ+W/P6PLa+vAAAAAAAAAAAAAAAbIBgNgHF56/fOOUBB6+5b8TVuLYA0vkZvcmlzbSu4H6/JQfO+WUXNq3Tf25JXf31y75svB7Z97K3Jf3he8vHfX28/gJHpeA96zZ9M9htCHABgrDyLAV21vRcse0npGIzWeI4Z7xD2rkue/O2zj//Qq5JPnBvWJtvnI7+RvPkvJYcXrmz76Bsvh1Uvcs+6+z8mb/6fr/xCiMnF5Df+QvLh1y6nvwAAAAAAAAAAAAAAGyAYDYBxufOFm+4BozCk6Lnts4qpR++4QHAjjJ/RqofN+8rZ9fUjSd7zkuTw/NXbJpeSd71ovf0ARqbjPejwfPLen19tVwCSWBufZuu69rXh67bjAOYEow3VFK5+y23NnznneX/nvP/fZeb95747kvsXCL5/5z+bvf3dP9v/XAAAAAAAAAAAAAAAW0IwGgDjcvHDcw5Q0Lrz6oqvcdv5V902q1c3GYzGaNWD5n1NRc2rcvEjs7ff8X+ttx/AuPRZw5x74cq6Aeyyvs9Knq1Yta7BaABT2oLRs5ekDDt/0zuER31B8qgvmr3v3O3eSe6aC3c37zv//v7ne9dPzd7+u3+//7kAAAAAAAAAAAAAALaEYDQAdosisVOgyzUeMg7aPjsZcF62wuTSBhs3P43WpCUYbe/sYue87pGLfQ5gIT3uQesOfATgdNnEe5vWNj2nAVNqy7u/ssJgtCS5+dbZ2z9xZ/LhXx3WLttlcrF5X1s4PwAAAAAAAAAAAADAKSIYDYAdo6CVDCy0bvms4L3xm+xvrm3jZ7zqYfO+smAw2md/92KfA1hIn3uQV0XAAvquda2NT7E1XfurxpjxBnQ0LxitrDAY7Sl/pvkdw7nbh7XLdjm80LyvLZwfAAAAAAAAAAAAAOAUUe0KwI5R7Lr7VnyNWwv0ja/R22QwGuNVW4pS24qa23ze/5484XlT59lLnv7Xksd/ZfLgxyx2TuMbaNIngGjReQ0AtkrHYDQhfcBV2oLRlrBO3msJV3/I45Inft3sfXf9y+TgU8PbZzscXmze590OAAAAAAAAAAAAAECSpOUn8AFghBS07r5O13jIOBCMttMmlzbYuPEzWvVw9vayl5Sy2DnP3pA85xeTe9+cfOJc8thnJTc88cr+X/zS5KNv6nfO8x9MbvzMxfoD7Lge96A9wWjAOlgbn1qbeG/jXRHQVW0LRttLsuA7gAfOMWetfcttyft+/trtB/cn7/nXyc3fPqx9tsPhheZ9beH8AAAAAAAAAAAAAACnyN6mOwAAsFXaCiAVU4/fZH/TPWCMJg1FqfMKmufZO5M8+suSJ3/L1aFol0/e/3yX7h3WH4Bk+NwGnFKeldg2XceksQtMaXsvmDUEoz3xjycPfvTsfedeOKxttsdEMBoAAAAAAAAAAAAAwDyC0QDYMQpad1+XazxkHLR91vgavY0Goxk/o9VUlFrOrrDRRYqt2wq4gdOtzz3IqyJgHayNT681Xfurgs2NN6CjtmC0speUFQejnXlQ8uQ/M3vfB1+ZfPI9w9pnOxxebN7XFM4PAAAAAAAAAAAAAHDKqHYFYMcodt19m7zGxtfoTS5tru1q/IxWPZy9faXBaAtoK+AGTrc+96B5YQ0Ay2BtzFoJQAe6mhOMNlSXtfYttzbsqMm7XjS8D2ze4YXmfU3h/AAAAAAAAAAAAAAAp4xgNADGo0vhtOJqksXHwbzPGV/jV/c33QPGqKkodZXhQaX0/0xTgBtAn9CXZQQ+AKePZyU6W9dYmWrH+AS6ag0c30uywLP6tC7vER71JckjPn/2vjtvN6ftgsnFln2C0QAAAAAAAAAAAAAAEsFoAIxKl6IvhWE7b6XFf/PObXyNWq3JZJPBaMbPaDUVpe6dXWGjiwSjtRVwA6dbn2C0FYY+AjzA2vjUWlugT234+uRhxiIwpe25uuxl8P2ry1q7lOSWW2fvu//3knteN6wPbN7hheZ9TeH8AAAAAAAAAAAAAACnjGA0AMajU7Gqgtbdt8JxMHeMGV+jtvHCQuNntOrh7O0rDQ8SjAYsUZ/Ql+JVEQA74OD8la8nlzbXD2Bk5gSjDX3uLh0D1p/y7c3vHM7dPqwPbN7agtEWeLcEAAAAAAAAAAAAALAlVLsCMCIdCs/6hD7ANeaMH+Nr3Cb7m+4BY9VUlNq1oHkRZZHiVcFoQJM+wWirDH0EdlffZyXPVqfXmq79m//S5f/e8/o5BxqLwJS24LOlBKN1XGtf/+nJp3/17H13/Yurwx8Zn8nFln1LfH+596DlnQsAAAAAAAAAAAAAYM0EowEwHkKpSNKtaLnhmFqT+9+ZHHyyYf+84kZjcNSawq3W1r7xM1r1cPb2lYYHLRCMNrRAG9hdfe5BxasiAHbAB19x+f73npdsuifAmLQ+V+9lcCB5n/cIN986e/v+fcn7fn5YP9iswwvN+yY931+2PevtXdfvXAAAAAAAAAAAAAAAW+TspjsAAN0NCMRid3QJ9ph1zEfflLzm+cmn3p3sPSh52n+XPOJzkzt/Irn0seQzvj55xg8Mb5vt5fqxqE0Eo5VFgtEa+gnQZ4280tBHgCPW5qfYOq99Td7+d+cfA/CAluCzsjf8/tVnrX3TNyTXPTLZ/9i1++68PXnytw7rC5szudi8r+73PFfL8YLRAAAAAAAAAAAAAIARE4wGwHjUlsK0B45R0MoMB59KXvm8K4WEk0vJ7/3Dq4/5nf83uf/355zI+Bq3TV+/TbfPwpruPysND1okGK3DfRJgrr1NdwAYpb5rXWtj1sA7IqCvtufqsjc8kHyvx3uEMw9JnvxtyTt+7Np9H/z3yafen9zwxGH9Yf1qTQ4vNO//zf/j8v7P//5uofltIWt7D+rfPwAAAAAAAAAAAACALaHaFYAR6VLQquh19y0wDj7wi1dC0dq87+eX0Dbba9PXb9Pts7CmwueyysepBYLRIhgNaNLjHrTS0EcATr21hpUJ2Ad6ag0+2xseSN53rX3LbbO310nyrp8a1hc2Y3Jp/jG//YPJ2/5Ot/MdtgWjXdftHAAAAAAAAAAAAAAAW0gwGgAjIhiNZKFrfMffXFLTQodGrW/B+5nrV9MPxqfp//urDA8qCwSjmaOAJn3ugSsNfQR2Vt+1tjCqU2yN1976GOirbd4oexk8h1338H7HP/rLk4d/9ux9517ofjpGk5Ygs2nvetHw8xXBaAAAAAAAAAAAAADAeKl2BWA8uhS0KgYjyTVFil0Lzvqel5Hpef2ef3fyrJckX/X65BGft4TmjZ/Rqoezt680PEgwGrBMfYLRVhj6CABrJWAf6Kk1GO3M8Ofu6x7V7/hSkptvm73vvrclH33TsP6wfocXuh1339u6Hdf23vvMg7qdAwAAAAAAAAAAAABgCwlGA2BEFLSSxcKlDpcUjCbYatz6Xr/rHpY86U8lj/nyZO/Bq+kT49BU+Lxt4UFNAW4AgtGArePZ6vRa47UXHAz01haMtte+v4sHPbL/Z27+jjSGp9/5wiG9YRMml7of2+U+1vbeu1zXvS0AAAAAAAAAAAAAgC0jGA2A8RBKRVcnx8pkScFoivdHbsj1ayhAXVv7bFRT4FhZ5ePUAmNO8APQpM86WjAasBBrXbaRgH2gp9bn6jL8ufu6h/X/zA03JU/4Y7P33fUzy/uFEGyfLgH4be+99wSjAQAAAAAAAAAAAADjJRgNgBHpUnimoHX3LXCNDy9srm22yIDrV5YQjCbcccQa7j+rDA9aaMwJRgOa9AlG86oIWAdr41Nrnc9FgoOBvhrnjXL5OX3ovHL2xsU+d8uts7df+mjyvpcv3h/Wr899cHLQ4Zj95n2C0QAAAAAAAAAAAACAEVPtCsB4dCkaEjx0CnS5xieOmVxaUtPG16j1Kl49GUq1hGA0xqseNuxY5ePUAmNO8APQqE8w2gpDHwFgnbqsjz3nA1dpCkY/fv4fOGecfehin7vpG5PrHj5737nbF+8P260ODEbzYwAAAAAAAAAAAAAAwIj5iWgAxqNT4IuCVnJtYfPk4rJOvKTzsBkDrl9ZxrLZ+BmtpvvPSsODBKMBG7KUex5w+vRc6wqjOsXWee2NM6Cnxuf/vfb9XZ29ccHP3ZA86Vtm73v/LyTn7168T6xZj3tTl2C0tmP2znZvCwAAAAAAAAAAAABgy6h2BWBEuhQNKXrdeYsU0B9eWFbjSzoPG9Fn7JSToVQLhFRd24ElnIONqIezt68yPOiaMdhBUz8BBBABW8e8dHqt8doL2Af6apw3lhSMdsNNi3/2lttmb6+HyV0/vfh52V6TDsFok/2Wnct4nwkAAAAAAAAAAAAAsBmC0QAYkQ7FqkIfToENBuQZXyPX5/qtIhiN0WoqfC5nVtjoIsFoAwu0gR3W4x5oLgFgV9QOgTIA0xqf/4//OXXgWvlRX7z4Zx/zR5KHPm32vjtvX/y8rFmfZ7OhwWie7QAAAAAAAAAAAACA8RKMBsB4CGlg4wSjjduA61eWEIwmWG+86uHs7WWVj1OLjDn3SaBJn3uQ+xWwgN5rXXPNqbXO56LD8/OP8ZwGXGVOMNqQOeNz/9dh7xFKSW7+ztn7PvZbyb2/ufi52U6TgcFo/j0FAAAAAAAAAAAAABgxwWgAjEiXwjMFrSSrGwfG16j1Kl49GUq1hGA0xqupkLScWV2bi4TxKXgFmvS5B5pLgG0grIplOPjUpnsAjE3jWvg4GK0hOL2LW16w+GcfOEdDMFqS3Hn78POzXWqHYLS2Y6ynAAAAAAAAAAAAAIARE4wGwHh0KuRR7LPTNl3Mten2GWjA9VskpOqke9+UvO7PJa94VvKbfzXZv3/4OVmPpsLnssrHKcFowDL1uQda7wBrMPfZyly0u9Z4bQ/PdzjIWAOmNAajHz//D3ju3ju7+GeP3fjk5PHPnb3vXT+VTPaHt8Fq9Xm/POkQjNZ6zb0nAgAAAAAAAAAAAADGSzAaACPSoZBHcBXJCseB8TVuPa7fNUFoS1g2X/hQcucLkw//WvK2v5W86usUrI5GU2H0mfV2Y56mADeAPvdAIYvAQjwrsYUOPrXpHgCjMycYbcg7x7KEYLQkufm22dsvfjh5/79bThtsh9rhvWHbu0XPdgAAAAAAAAAAAADAiAlGA2A8OhWeKcbebRu+voL3xm1Q8erJoLQl+PCvJve8bvnnZfkaA8dW+Ti1yJhT8Ao06HUPtN4B1mHOXOPZa4et8doenu9wkLEGTGl6/j8ORhvy3L23pGC0z3x+cvbG2fvufOFy2mCFetx3JgcdTtd2jHscAAAAAAAAAAAAADBegtEAGBHBaKde5+L4VY0D42vc+ly/k6FUKwhGS5Lf/sHVnJflqg2Fz+XM6tpcJIyvqZ8Afe6B5hJgIX2fleYd79lrZ60z9O7wwvraAnZD41p4b87+DsqSgtGue2jypG+eve/9L08u3LOcdti81tCzI5P9ls97tgMAAAAAAAAAAAAAxkswGgDj0aWQZ50FtmyxFY0DxWQjt4XBaPf/3mrOy3LVw9nbyyofpwSjARtiPQ1sBXMRy+A9EtDTvGD0QcFoSwxXv/nW2dsn+8ldP7O8dliBHvedSYdgtNoSjGY9BQAAAAAAAAAAAACMmGA0AEZEIQ+bHgObbp9BhhS8lxUFoy2zKJbVmVcYvRKLjDnBaECTPvdAcwmwBvPW5sKqdtgar21TwDFAk8bn/+N/Th2wVt47u/hnT3rcVyQ3PmX2vnO3L68dNqt2CEabtASjCdAHAAAAAAAAAAAAAEZsiT+FTx+llDNJnpbk85I8MckjklxMcm+SdyZ5Y631k0tu87okfzTJk5J8epJPJHl/krfUWt+15LZuTvJFufx3e2iSDyS5K8mv19r668sBmnUq5FE8vds6Xt+VFdEbX+PW4/pdE4S2omA0OcXj0BSoUFZ4/RYJ45sIfgAa9FkbCSMCFmHuYBt5jwT0NicYbVDo/hL/SbbsJTd/Z3LH/3ntvo++KfnYHckjP3957bE8vZ7NugSjtRwjGA0AAAAAAAAAAAAAGDHBaGtUSnlSkucneV6SZyd5eMvhh6WUVyT5kVrrvx3Y7mOT/PUk35rk0xqO+fUkf6/W+tKBbX1Tku9J8ocbDvloKeXFSb6/1nrPkLaA06hD0ZBibFbJ+Bq3QcWrKwrAKmdWc16Wq6mQdKXXb5EwPgWvQJM+90BzCbAO8+Ylz147a53P1QJhgL4a5429Ofs7WGYwWtIcjJYk525PvviHltse69cWenas9XdRWU8BAAAAAAAAAAAAAOO1ooQHTiql/HSSu5L8/SR/PO2haElyJsnXJHl5KeXflFIev2C7X5vkjiR/IQ2haEf+SJKXlFJ+spRy4wLtPLSU8jNJfjbNoWg56sNfSHJHKeWr+7YDnHKdimcV++y0zgXUqxoHxte49bl+J0OpFgmp6tKM5fgo1MPZ21d5/coCY07wA9CkTwiNIFhgK5iLWIKmdfzVB628G8CINAajHz//D3ju3ltyMNrDnpo89tmz9537yW6hWmxAn2ezDtdw0hKM5j0RAAAAAAAAAAAAADBikhjW5w80bH9fklcleXGSlyZ5S66trPgTSV5TSnlCnwZLKc9J8rIkj5vaXJO8KZcDzF6R5J4TH/v2JD9TSveUh1LKmaP+f9uJXR9O8ktHbb05V/+0/+OT/Fwp5Vld2wHoVnimoHW3bbqYy/gatyHXTzDa6dZUGH1mhW0KRgOWqc890FwCLKLvWnvO8UIad9gar631MdDbnGC0ReeVcjbZu26xz7a55bbZ2y98MPnALy2/PdarS7hd6zHugwAAAAAAAAAAAADAeEli2Iy3JPkfkzyt1npTrfW5tdZvq7V+U631S5I8Kck/PvGZP5DkZ0spnRISSik3JflXSR40tfnXkjy91vqltdZvqbV+VZKbknx3kulfKf71Sf5Gj7/P307ydVPf7x/9/W6qtX71UVvPTPL5SV47ddyDk7yslPLpPdoCTrMuhdGKp3db5+LDFY0D42vcel2/E0uubkuw/lYarMXS1MOGHat8nFpkzCl4BRocXuh+rPUOsA5z5xpz0e5a57XtsD523wOmNb57HBiMdvaGxT43z5O+KTlz/ex9525fTZusT+0QjFb3W/a5xwEAAAAAAAAAAAAA4yUYbX1qkn+b5MtqrV9Sa/2RWus7Zx5Y6/tqrd+V5L8/setZSb61Y3t/Pcmjpr7/9STPq7W+/URbF2ut/zDJt5z4/PeUUp48r5FSyi25HKw27ZuP/n6XTrT1tiT/Za4OR3t0kh+Y1w7AZV0KeRT77LRFiw+X14ENt88wPa7fNUFoqwpGsxwfhaa5Z2/Lgu0aA9yAU2/SIxhNyCIAu2Lj7xCA0WmaNx54f7NoMNqNi31unusennzm82fve+/Lkkv3rqZdFtcnrKxLMNqkLRjNfRAAAAAAAAAAAAAAGC9JDOvzzbXWP1FrfWPXD9RafzTJS09s/rPzPldK+awkt05tupTktlprYyV0rfVlSaZ/ffyD0y2w7AeSXDf1/QtrrT/X0s75JLcd9enYC44C1gDaKeSha/FhnwKzXgSjjduQ67eiYDTL8XFoDBxb4fW7JpyvA/dJoMnB+e7HrmwdBey2vnPHvOPNRTtrnfeZTsHBxhowbU4w2qLP3WdWFIyWJLfcNnv75FJy14tX1y6r1xZ61ukY74kAAAAAAAAAAAAAgPGSxLAmtdZ3LfjRf3Ti++d2+MyfSXJm6vt/VWv9/Q6f+zsnvv+WUspDmg4upVyf5JvmnOMatdbfS/KyqU1nc7nPAHN0KVZV0LrTOhcfTo2DZRZdCwoZt17X70Qo1SIhVZ2aOTP/GDavae5Z6fUTjAYs0WGPYDTF88A28OzFMnRaHxtrwJTG5//jf05dcM44e8Nin+vicc9Nbrhp9r47X7i6dllQjzE0OehwupZjrKcAAAAAAAAAAAAAgBETjLb93nLi++tLKY+c85n/6sT3P9GloVrr25O8fmrTjUm+quUjX51kuprjtbXW3+nS1ow+Pb/j54BTrUMhj2Kf3bZQ6M8yx4TxNW5Drt+Kls3FcnwU6uHs7Su9foLRgCU6vND9WOtpYC3mzTXmot21zmtrfQz01PhcvTdn/xxnb1zsc13snUlu/s7Z+z7y+uS+rv9sx9ZpCz07Ntlv27m0rgAAAAAAAAAAAAAArJskhu0366feH9R0cCnlCUm+8MTnf61He6868f3Xthz7NXM+2+ZXcvXf7YtLKY/v8XngNOpUeKZ4eqc1hRNde+DUl8ssADO+xq3P9TsRSlUWCKnq1MyZ1ZyX5WqaR1Z5/RYacwpegQaH53scbC4BFrD0UEXPXixBl3cIAkGBaY3P/wOD0c7cMP+YIZqC0ZLk3O2rbZueetx3hgajuccBAAAAAAAAAAAAACMmGG37Pe3E9wdJ7mk5/vNPfP/WWusne7T36ye+f3qPtl7btZGjPv12j7YA0q1oSLHPTluk+HCZwWiKycZt0PVbVTCa5fgoNAUqrPT6LTDmOodHAqfK5KBbQf0x6x1gHcw1p9gar/1Sg9KBU2Hu8/+C88rZGxf7XFcP/+zkMX949r5zL0om3heM0qTDc1zrs577IAAAAAAAAAAAAAAwXpIYtt83nfj+jbW2VnR93onv39GzvXfOOd+0z11jW8Bpd/87kt/7kfnHKa7ecR2Lua4aB8ssADO+xq3H9Sul/ftlEYw2Eg3zSDmzwjYXCUZT8ArMcHih3/HmEmAhS35W8my/u9Z5bTvd04w1YFrTvHH0/mbRtfLZGxb7XB833zp7+/n3JXe/cvXt002f+2CXgOvJfsvnPdsBAAAAAPxn9u49WpezrhP8r/Y+J3cSAiSQgEnOISAqOgrYNiiIDghoNzdpURBPutsZp132co3jmqvdtmt6pp1erbO6HXW6l445It6gBWy8gEIj0ly0EW0VlcA5uXAJCSSE5Jycy95vzR9nn/Ced7/PW5e3qt6n3vfzWSuL7Kq3qh5StZ9L7f37bgAAAAAAYLwkMWSsKIorIuIfzmx+c8VhN898fWfDy94xpDgpEQAAIABJREFU8/Vji6K4ek7bHhMRj1nyWrOff0rD44FNcdebI37ryyM+/vOrbgmr1qaYq8sCMMX5I9fk/s2GUvUVjNZnsBadSfYjPS6n2oTxKXgF5tl9uOEB5jvAEKr6Gn0RHSh3V90CYGxS6+rz72/avhs8cHm745q48dURWxfP33fsaP/Xp3uTJYPRzKcAAAAAAAAAAAAAgBETjJa3fxERT5j6+vMR8XMVxzx65ut7mlywLMuHIuLUzOaralznZFmWJ5pcK/a3bd51gE032Yn4wD+oKPCZpthnrdUO/Zl6DjoNChI6NGpLBdv1FIxmOj4OqUCFrT6D7do8c/ooYI7d2SV+FfNpYACVc3N90foa8N7Weh/gWQOmJIPRzr+/abnu3h4gGO2iR0c86eXz933iNyLOPNB/G6ihwbhT1ghGKxf83ESAPgAAAAAAAAAAAAAwYgdW3QDmK4riFRHxAzOb/7eyLO+rOPSKma8fbnH5hyPikqmvH9XjdabNu04jRVFcGxHXNDzsycteF+jR3b8XcfbzDQ5Q0LreWhRzpQKN2lgqWIvVa3L/ZkKpip4CzIo+g7XoTLKQtM9guxbBaApegXl2Gy7X9SVAK9ZK5MiYBjRVEYzWdq584LJ2xzV1+JaIO39t//bdUxF3vjHi5u8dph10o04w2mTBZ6ztAAAAAAAAAAAAAIARE4yWoaIo/quI+MWZze+IiJ+tcfhsYNmpFk14OCKuXnDOLq+z6JxtfH9E/GgH5wFy8bk/avZ5wVXrrXYx1/Rz0GUBmOdr3Ja5fy1Cqmqdts9gLTqTCljsM9iuaBOM1mEQJLA+jv1CwwPMd4AhVPQ11vZrbMB7W+cdgmcNmJbsN4qK/RUOXN7uuKae8MKIS6+LePjT+/cdPyoYbWwWhZ498pmzC3Ya4wAAAAAAAAAAAACA8ZLEkJmiKG6IiN+KC0PC7oiI7y7LVlVa63YMQAVdy1qrW3w4PWS2LVicf+IOz8XgmkylZkOp2oRU1bqO6fgopPqR3O5fp/0dsBaOvyHiIz/e7Bh9CZAFay86IDgYaKpy/d9yrnzJ49sd19TWdsRNr5u/7973Rjz4sWHawQIN5jhljWC0ckEwmrUdAAAAAAAAAAAAADBimVXyb7aiKK6NiN+LiCdObb47Il5YluW9NU/z0MzXl7Zoyuwxs+cc8jrApmucCal4eq21KebqsgCsVUYp+Vjm/vUVjLbdz3npVipQodf71+KZU/AKzLrtZ1ocZL4DtND12t3aa30NeW9rBaN51oBpqT5hb43edt39uGe3O66Nw0fS+47/4nDtYHl/+X9Uf2ayIDzNeyIAAAAAAAAAAAAAYMQOrLoBnFMUxWMi4vcj4qlTmz8bES8oy/K2Bqfa9GC0n4mINzY85skR8dYOrg3kQPH0mqtbzDX1HHRaAOb5GrVG/cNsKFVPwWhyikci0Y/kFoxWu48ENsZn39f8GMXzQBasvdbXkMFoxjSgodS7o2Lv/U2bfuXAFRFXfXn7NjV11ZdHPOZZEff95/37jh2N+Mp/9sX/PwyvyfvJydmIe98fcc2CYL3JmUUXq38tAAAAAAAAAAAAAIDMCEbLQFEUV0XEOyLiK6c23x8RLyzL8i8bnu6Bma+vadiWK2J/YNnna1znsqIoLi/L8kSDy11b4zqNlGV5T0Tc0+SYougr6ATohuIdppS7LQ4SjMZ5De7f7Pygr/nCVp/BWnQm1ff0WUjc5pkT/AB0wnwHGIBQc4ZQa37sWQSmpfqN82v0Fn3GwauGDyI7fMv8YLSTd0bc8wcRj/+mYdtDe7e/fnEw2u7D6X3eEwEAAAAAAAAAAAAAI+ZPgq9YURSPiojfjYhnTm3+QkS8uCzLP21xyttmvr6x4fGzn7+vLMv7Zz9UluXn4lx427QblrzWbNsBWlDQutbqFnNNF9l3WQCmeH/klrl/fU2bTcdHIdWPFH0G2wlGA1ZEXwK00nSuXfV5a6/1NeS9NaYBDaXe/S0TmL91sP2xbd34nenrHrt10KYwq+E4eNvPLt6/KBjNfAoAAAAAAAAAAAAAGDFJDCtUFMXlEfHbEfG3pzY/FBEvKcvyj1qe9q9mvr654fGHZ77+yIDXmj0fQAuKfdZam6COTsM9PF+j1ijYbqbgdZkC2IWXMR0fhXJ3/vY+71+bZy7VToBGzHeADAilpgt15seeNeACqfeIe+v/Z/1U81NuXdS6Na1d/NiIJ750/r67/n3E2YeGbQ/9WRSMJvQaAAAAAAAAAAAAABgxSQwrUhTFpRHxtoj4hqnNJyPi28qyfN8Sp/6Lma+/qiiKyxoc//UV51u079l1L7IXCvdVDa4FUI+C1jVXt5hr+jkQjMZ5y9y/voLRtvs5L91KFZL2ev/aPHMKXoEOKJ4H2mi8Fq/6vLXX2hryvY0xDWgq1UedDy9//H8dcdHVzc65imC0iIhDR+Zv3zkRcdebhm0LUzoeBxcFo3lPBAAAAAAAAAAAAACMmGC0FSiK4pKI+M2IeP7U5lMR8dKyLN+zzLnLsvx0RPyXqU0H4sLwtSrPn/n6dxZ89ncrjl3kuXGubed9uCzLzzQ4HtgUjYtYFU+vtTZFzV0WQgveG7km9282lEow2kYrdxM7+lxOtXjmBD8AXTDfAbKgL6IDtebHnjVgWqpP2Fv/X/yYiG9+Z8RVT69/ylUFo13/4ohLrp2/79jRYdtCf3YWBKNZ2wEAAAAAAAAAAAAAIyYYbWBFUVwUEb8RES+Y2nw6Il5eluU7O7rMm2e+/vs12/a0iPi6qU0nIuIdCw55e0RM/8b9s/fOUcctM1/PthngnMnpZp9X7LPeaof+TD0HnQYFeb5GbZn+oRCMttFS/Uif96/NMycYDeiEvgQYgLX7Bhvw3icDjgESkuv/qTX6Y74m4tv+POJV90U87y3V59w62E3bmto6GHHja+fvu+fdEQ8dH7Q57OlyDlSWEbsLgtGs7QAAAAAAAAAAAACAEROMNqCiKA5ExK9HxEumNp+NiFeVZfn2Di/1hoiYrvp6ZVEUT6lx3P808/Wvl2V5KvXhsixPRsSbKs6xT1EUT42IV0xt2omIX67RPmAT7TYMRhNctd7qhv6UgtGYp8H92xdK1VMwWm/npVOpQIWiz+WUYDRgRYQVAa103Hfoi9bYkMFodebHnjVgWqpPmLNGv+jqeoHpWxct1aKlHL4lve/46wdrBj2ZnImF45j3RAAAAAAAAAAAAADAiAlGG0hRFNtxLrDsZVObdyLi1WVZvq3La5VleVtEHJ3adFFE3FoUxSUL2veyiLhlatOZiPixGpf7Z3Eu3O28W4qieOmC61wSEb+w16bzfr4sy4/XuBawiSbJfEY2Uptirg4LwBTnj1yT+zdT8NprABb5S/QjdQqgh5QKcANoRPE8MISqubm1F10wpgFNJcaf5HuhGqHmqwxGu/qrIq7+6vn7jh/1rnMlOvxvvvvwcNcCAAAAAAAAAAAAABiYhIfh/H8R8R0z2/7XiPhwURQ3NfwnGXA25Ucj4v6pr58TEb9fFMXTpj9UFMXFRVH844h448zxP1GW5R1VFynL8lhE/OuZzW8qiuIHiqK4oNqjKIovi4h37rXlvM9FvQA2YFPtnm54gGKftVbWLWqeeg5qH9PwvIzPUsWeNQpdW/FMjUIqcKzXwLw2z5zgB6ADwhGAQQhG21hDjjN1goONe8C05HvE1Bq9TjDawbat6cahW+Zvf+hYxL3vHbQpdKwqGK3T9+IAAAAAAAAAAAAAAMM6sOoGbJDvmbPtX+7909Q3RcS7F32gLMtPFEXxyoh4e0ScDyj7+oj4SFEUH4qIYxFxVUQ8IyKumTn8bRHxTxq053+OiK+IiJfsfX0wIn4qIv5JURR/EhEPRsThvWtNV4mciYhXlGX56QbXAjbN7qlmn1fQut7aFHMJRuMRTe7fTGFr0VMwmgLFcUjdp2K7v2u2eeY8T0An9CVAGx2vlazt6YL5MdBUcvxJrNHrBKZvXVT9mT7d9JqID/9wRLmzf9/xoxHXPnf4NtGNqmC0iHPPdF/vNQEAAAAAAAAAAAAAelTjN/YZq7Is3x0Rr4iIe6c2FxHxrIj4joh4UewPRfuViPjOsix3G1xnd+98vzaz69qIeHFE/L2IeGZcWDlyT0S8rCzLP6x7HWBDTU43PEDx9HqrW9Q8/Rx0WAitqHrcdk4ucXBfBYT6rFFITY3rFEC3JhgNWFLbUCFhRMAQ9DUbbMB7X2t+7FkEpiX6hOT6v8bafdXBaJdcE3H9t87fd8evL/m+jOY6HHd2agSjGecAAAAAAAAAAAAAgJESjLbmyrL87Yh4ekT8vxFx/4KPfiAiXlWW5WvKsjzR4joPlWX5nXEuBO0DCz56X0T8bEQ8vSzL3216HWAD7Z5qeIBCn7VWP7dz6pgug9E8X6P2x99X/7PFbGFrT8FogqzGIXWfiu0eL9rmmfM8AdPazlv0JUAOrL3ogjENaCi5/k+s0VPbp606GC0i4vAt87fvPBhx15sHbQoNFQfS+3ZrBKN59wgAAAAAAAAAAAAAjNSC36amS2VZ9pSmUeva90TEPyqK4gcj4usj4saIeEJEnIiIT0bEh8uyPN7Rtd4UEW8qiuJQRDwjIq6PiMsj4u6IuCMi/lNZlme6uBawIZoGowmuWm91C7mmn4NOi788X6M1ORtx8hPtj69T6NqK4sRRSIYy9pgz3eaZaxMeCayXT/9exG0/HfHwpyOue1G7c5hPA2007juqPq8vWltDjjMf+3fVnzHuARdI9QmpYLQa7wW2DrZuTWeu/7aIix8bcfpz+/cdvzXi0GsHb9LGajrubC0ZjGZOBQAAAAAAAAAAAACMlGC0DbIXSPYfB7rW8YjoJGwN2HCT06tuATlpFXImGI2IePBjDQ+YLXjtKRhNEf44pALHFhWnLq1NMJqgPdhon3xbxHte9sW+4HN/1PJE+hIgA+bJayy3e5tbe4DVSvQJyQC0Gmv3rYtat6Yz2xdF3PiaiI/+1P59d78z4sRdEZd/yfDtolqxZDCad0UAAAAAAAAAAAAAwEjV+FPmALBCkzMND1DQutZqF3JNfa7L4i/F+SPWNGRq5vPJAthlKU4chXJn/vZFxalLE4wGNPRXP9FNP2C+AwxCX0MuPIvAlOR8OrVGH0kwWkTE4SOJHWXE7a8ftCmbreG4U2yn9wlGAwAAAAAAAAAAAADWmGA0APJW7jY9oJdmkIuahVzTgR6dFn95vkaraBEydeEJOmnGPsJnxmGSCEbb6jEYrc0zq9gVNldZRtzz7o5Opi8B2uh6XmuevL4yu7fm0MAFUn1UYo1eJ0g/l2C0q58RcdXT5+87dtQ7qlwtevdU64/KuK8AAAAAAAAAAAAAwDgJRgMgb6kwmhQFXOutdsGyYDRmNQyZ2hdK1VMwmvCZcSgTY1HRYzBaq2fO8wQb6/S93Z3LfBpoo+m6q7Kv0RcxFM8aMCU1PiUD0Gqs3bcOtm5Op4oi4vCR+fse/GjEZz8wbHs2VsNxZ9G7pzo/OxEACgAAAAAAAAAAAACMlGA0APJW7jY9oJdmkIk2wWhdBgUJChmxJYPN9gWldURx4jikCk1zC0ZrPGYCa+PEnd2dy9gEtNK076hYW1l7ra/c7q1xD7hAqk9IrNGTgWlTti5q3ZrO3fTaiGJ7/r7jR4dtC8tLBflfwDgHAAAAAAAAAAAAAIyTYDQA8laruOeCA3ppBrmoWcg1XdjcaZGz52u0GgebzX6+r2A0z9QopMairT6D0VrwPMHmOtlhMJr5DtBG5+FS+iIGIhgNmJZaVyffK9V4X5RTMNql10Vc96L5++741YjdU8O2ZxM1fXeTCrKLSAf5L3M9AAAAAAAAAAAAAIBMCEYDIG/lbsPPK2hda7Xv71TBl2A0ImL5YLOegtHqhv2xWqlgtKLHYLTGYX4R+ijYYCfu6u5c5tNAG437DvOWzZXbvc+tPcBqpcazxI9T66zdtzMKRouIOHzL/O1nH4j4xFsHbQo1HLwyva/WH5WxvgMAAAAAAAAAAAAAxkkwGgB5m9Qp7pnSNEiNcalbbF9OFzZ3WPxVKpgercYhUzOfL3qaNnum8ldO0n3PVo/BaK3C+DxPsLF2T3Z4Mn0J0EbHoRvmyWsss3srEBSYlhp/ku+VarwvKrZbN6cXT/y7EQcfPX/fsaPDtoVqi37eUScYzTgHAAAAAAAAAAAAAIyUYDQA8lanuOeCzwtGW2t17+90wVenxV+ZFXDTQMOQqX0Fr21CqupQnJi9Rf1OkVkwmgAR2GAdfv8rnAfaaNp3VM5bzGsYimcNmJbqExI/Tq0TxH/q3tat6cX2JRE3fdf8fXe/PeLkp4Ztz8ZpOO4s+sMxdf6ojHdFAAAAAAAAAAAAAMBICUYDIG9Ng84Eo6232sX2UwVfgtHoRE/3XvhM/hYVmfYZjFanuHoffRRsrE6L3fUlQAudz2v1RWsrt4AWazJgWqpPSK7Ra6zdT97Zujm9OXRk/vZyEnH7G4ZtC4st+sMxtf6ojHEOAAAAAAAAAAAAABgnwWgA5K1Wcc/05wWjrbcVB6PlVsBNfUXTae9MYWtvfYtnKnuLxqGtHoPR6hRXA5zX6XxH4TzQQuO+o2IebO3FYIx7wLTU+JNYo9d533TtN7ZuTW8e+7cirvzS+fuO32oc7lPT/7aL3kkuCvNvez0AAAAAAAAAAAAAgEwIRgMgb5OGYUSC0dZb3WL7Cz7XZZGzQrLxWjJkqq++RfhM/hYFoxU9BqMVbZ5ZfRRsri6///UlQBsN57VCOjZYZvfeswhMS/UJyQC0Gmv3676ldXN6UxQRh26Zv++Bj0Tc96FBm8MCi95L1fqjMt49AgAAAAAAAAAAAADjJBgNgLzVKu6Z/rxgtLVWO0Rqqoixy+ApIVYj1rTYfaawtbe+RRF+9iYLxqGtHoPR2oT5CXWADdbh97/5DtBG532HeQ0DMe4BF0j1CYk1elWo+VP+UcQVh5dqUW8OfXck/38du3XIlmyYhnOcRe+lFu175HLGOQAAAAAAAAAAAABgnASjAZC3psFoE8Fo661mIVfZUzCa4vzxWjYwqq9gNMWJ+Vs0DhWZBaPpo2Bzme8Aq9a4H6rqa/RF6yu3e5tbe4CVSr0/SgagVfyY9Vn/z1LN6dVlT4p4wgvn77vjVyJ2Tw/bHuZb9E6y1s9OjHMAAAAAAAAAAAAAwDgJRgMgb43DiIQMrbXaxfaTxL8ve32FZOPV8N7NFrwKRttckwVFpls9BqMli64X0UfB5urw+9/YBLTScd9h7bW+cru3xj3gAqk+KvHj1EVr9xteHVFk/mPYw0fmbz9zX8Qn3zZsWzZGw3FwUfhZnWA04xwAAAAAAAAAAAAAMFKZ/0Y+ABtvUSDNPB/9qYj3vCLiP/9gxAN/3U+bWJ26hVzThdadFn9lVsBNjwYKRvNM5a88m95X9BiM1kZuIRPAcDr9/teXAC00XndV9TX6IoYiMAaYkhrPkgFoC4LRiu2lm9O7J7084uCV8/cdPzpsW5hv0c9H6vzsRDAaAAAAAAAAAAAAADBSgtEAyFc5icbF0OUk4hNvifjov4l4x9dF3PfhXprGqtQt5BKMxqwl713TkMa6FCfmb9G97zUYbUFxdZI+CjZXh+OJsQloQ99BbZnNWYULAxdI9QmJNXqx4MesYwhGO3BZxA3fMX/fp3474uHPDNueTdB03Fn0xxrKOu8rjXMAAAAAAAAAAAAAwDgJRgMgX4uKfuo4+4WIv/6JbtpCHuoW21/wuS6DQhSSjVbjezdT8Lpsf5QiQCJ/i4pMtzILRtNHwebq9PtfXwK00HReW9lv6YsYijUZMC0x/iQD0Bas3Xt9Z9Chw7fM317uRtzxy4M2hTnKnfS8qc4fcvDuEQAAAAAAAAAAAAAYKcFoAOSriyCi29+w/DnIR+1CrqlisU6LvxTnj9eS925RONZyJ+7pvHRmUZFp0WORc7LoehHPE2yuDr//Fc4DrTTtOyr6LYGvayyze2vcA6Yl+4REANqitXuxvXRzBvG450RccfP8fceODtsW5ks9l3XeVxrnAAAAAAAAAAAAAICREowGQL4WhdE0sXu6m/OwerXD8gSjMaNpsEIxU/DaVxGh4sT8LSoy3RKMBmSiy/Hk7Be6OxewOTqf1wpOYyieJWBaqk9IBKMlt8d4gtGKIuLwkfn7Pv9nEff/6bDtWXstxp3UO/Faf8jBOAcAAAAAAAAAAAAAjJNgNADyVauwp4YTd3ZzHlavbrH99Oe6LNAXYrW56oTyPf2ftjlxi2MY1KKQzqLHYLQ2SzUBIbDBOvz+P31vxKRuGC3AnsZrpWX7LfOe0cptzmqdD0xL9VHJ8PJFwWh9vjPo2KHXpfcdOzpcO5gv9XOSOn9YxjgHAAAAAAAAAAAAAIyUYDQA8lUniKiOE7d3cx4yULeQa7qIUTAaEc2DE2YKWxcFNT7z30R8659HfNWPNW6VZ2oEFt37Pouck0XXi2QWMgEMp+vx5L4PdXs+YAN0Pa81r1lfud3b3NoDrFZqPEsEoC1auxfbS7dmMJffGPH4b56/7/Y3REzODtuetdZi3Hnwo4lT1fnDMsY5AAAAAAAAAAAAAGCcBKMBkK9JncKeGk7c0c15WL26oR/lVMFXl0EhXYX1sQINiwCL2WC0Bff+5u+LePTTmzcpIroPkKBzi4pMt3ILRgM2V8fF7vcLRgMaarruKiv6rWX3Q13CqoFpqfFl9j3RF3ekz9XnO4M+HDoyf/vpeyM+9TvDtoULve+187fX+fmJcQ4AAAAAAAAAAAAAGCnV9gDkq6sQqp0T3ZyH1asdjDaZ/+9LX18w2mgtG5ywqNBwmUJXgQ75S977ot/wslbn9jzBxup6PHnw492eD1h/nYduVPVr5j3jldm9ExgDTEv2CYk1ejIwLSKK7aWbM6gveWXEgcvn7zt266BNWWtt1m4PfCTi9H1zzlXnD8sY5wAAAAAAAAAAAACAcRKMBkC+ahX21LD7cDfnIQN1C7mmC8wEoxHRvPh+prB10b1fKhxLcWL2UmPRMoF4tbR4rgTtwQbreDy5+HHdng/YAE37oWWDz8x76IpnCZiW6BNSAWiL3gmNLRjt4BURN/y9+fs+9baIU58dtj1c6NQ9+7fV+fmJd0UAAAAAAAAAAAAAwEgJRgMgX4LRmFW2CEarfUyX12ft9BWKpzgxf5PEWFT0HIzWKnDP8wQbq+vxZHK62/MB689aibpyWwN5doELpILRUmv0RGBaRP/vDfpw6Mj87ZOzEXf8yrBtWVsLxsHHfl163+7J/dsmZ2tczzgHAAAAAAAAAAAAAIyTYDQA8jXpKIhIMNr6qFuwPP25ToPRegrHYgBNi+9nClt7u/eKE7OXCukUjAZkpePv/13BaEBDjcOuKj5fdb7cwrVoILd7l1t7gJVKvkdMBaAtCEbbGmEw2rXPi7j8pvn7jh8dtCkb6XlvTe+b9zOOVJj/NAGgAAAAAAAAAAAAAMBICUYDIF+pMJqmBKOtj9qFXNOFzYLRiOWDE/q694oT85cai3ovcG6xVBMQApur6Xjy7F+KuPpr0vsngtGAphr2Q5XzlmX3Q03WZMAFUuNLIgBtUah5sb10awZXbEUc+p75++77UMTn/2LY9qylBXOYix+XfqZ2Ts45VZ2fn5gzAQAAAAAAAAAAAADjJBgNgHx1FUQkGG2N1CxYni6y77LIWTDaiDUsAixmCl67CmrcR3Fi9iaJe1/0HIy2qLg6yfMEm6vh9/81Xx/xkj+JuO5F8/fvCkYDGuo6XGrp4DTyldm9E4wGTEuNP8k1eiIwLWKcwWgR6WC0iIjjR4drxyYqiojty+bv220ZjGacAwAAAAAAAAAAAABGSjAaAPnqKohoRzDa2qgdTDZV8CUYjYhoXnw/G4zW071XnJi/1Fi0JRgNyEnLANCLHjN//0QwGtBQ43mt4DNy4VkDpqXGs0QA2myw/gX7RhqM9qgnR1zz3Pn7jv9SOkCebmxfOn/7vJ9x1LkX3j0CAAAAAAAAAAAAACMlGA2AfHUVRLQrGG1t1C3kKqcKmwWj0YXegtEU4WcvVWRa9ByM1map5nmCzdV4vrMX4LB98fzdu4LRgKYGDt0w7xmv3O6dwBhgWqqPSgagLVi7jzUYLSLi8C3zt5+6O+LT7xi0KWunahw8cNn87bsn55yrTkhdZuMuAAAAAAAAAAAAAEBNgtEAyFcqjKYpwWjro3bB8nTBV5dFzgqmR6tx8f1MwWtX/dE+nqnspYpM+w5GK9os1RS7wuZqOc5tJYLRJoLRgIYah0tV9VvL7oe6PEvAtFSfkFijJwPTYoBA9R7d8KqI7Uvn7zt+dNi2bJQi/d993s846ryvFAAKAAAAAAAAAAAAAIyUYDQA8pUKo2lKMNoaqVnINV3w1WXx12S3u3MxsCWL3cue7r3ixPylxqItwWhARpoGgBaC0YCOdT2vrezXzHvGK7N7Z00GTEv1CckAtEXBaNtLN2dlDl4Z8SXfPn/fJ94Sceb+YduzVirGwe3L5m/fOTnnVHV+fpLZuAsAAAAAAAAAAAAAUJNgNADy1VUQkWC09VG7YHmq4KvLIue+wrEYQMvAmEcO7+veK07M3iRRZFpkGIzWNBgJWCNN5zt749x2IhhtVzAa0FTDfkjw2ebKbs4qGA2YluqjUgFoC/q0vgPV+3b4yPztkzMRd/zasG3ZFEURcSARjLbbMhhNACgAAAAAAAAAAAAAMFKC0QDIVyqMpqndU92ch9WrW8j1ibdEPPBXe18IRiOWL76/+qu7accsxYn5SxWZFts9X9hSDWig8Ti3F+ywlQhGmwhGAxpqPK9dMhgtu3AtRsuzBFwg0SekwssXvSvs/b1Bz679pojLnjR/37FbB23KeqkYd7Yvnb993h9/qfPzE+8eAQAAAAAAAAAAAICRUm0PQL66CqHj4sQhAAAgAElEQVSaVzTEODUp5Prtr4y4/Ze7Lf4SjLZBigu//LL/cf7HnvL9S15HEX72Ut/3fRc4p4quF/I8weZqON8p9sa57Uvm7xcsDDQ1eOiGec945XbvcmsPsFLJ8ayYv3lRMNXYg9G2tiMOfc/8fZ/7YMQDfz1sezbFgcvmb985uX9bKsz/wg8t1RwAAAAAAAAAAAAAgFURjAZAvmoV9tQgGG2NNCi2L3cj/ui/nV801pZgtBFrWgQ4U/D6mGdGXP93Ltx28WOXD0YbPECCxlL3qFVwWQOC0YAmypbj3PbF83fvnl6qOcAGajyvrei3GvdrsATPG/CIVH+QCEbbvjR9qkuesHRrVi4VjBYRcfzocO1YJ1VjTuqZmvczjkXBfI9cz7tHAAAAAAAAAAAAAGCcBKMBkK86hT11CEZbH02DyXZORHzyrau7PhlZstB9azviuW+KeMZPRjzxpRFP+6GIF7w34tFfsWSzFCdmL/V9X2z3fOEWSzWBDrDBWgajbSWC0SaC0YCmup7XVvVr5j3jleG9sy4Dzkutq1Ph5Zc+PuLKp+3ffvCqiOu+pbt2rcqVXxrxuGfP33f89RET70q7cz68+rL5ux/82P5ttdZtxjgAAAAAAAAAAAAAYJwEowGQr65CqHYEo62N3VPNj/n8n3fYAIVko9U0MKoo9m/bvjjiaf99xDe+NeIZPxFx1ZzC1+YN6+Ac9GpVwWipouuFPE+wsZoGupwf57YTwWi7gtGAhpr2Q5Xz84r9AmHplLU+sCc1ns17T3Te0/9pPBJq9ci2H4nYOtBZs1bq0JH52x/+ZMRn3jlsW9ZCxRxm+9L52+95d8QHv/fCMLo678rNmQAAAAAAAAAAAACAkRKMBkC+yp2OTqTAdW3srjjkbtJRWB8rkGkRYNMACYaXLIrueSnV5vyKXWGDNf3+3wtu2EoEo00EowENdT2vXTY4jXzlOGfNsU3AiqT6gwVr9Ju+K+Kb3h5x+B9E3PiaiG94Y8SX/XAvrVuJG1+dXjccOzpsW9bZ+fC9rYvSn/n4z0d87N9+8etawWjePQIAAAAAAAAAAAAA47Qmf64cgLVUdhRCpfhnfeycXO31u3omGYFioOsowM9e6vu+2O75wm2C1zxPsLEaB7pUBKPtnDh3zmKo8RAYv6br7qp+yzp+feU4Z/W8AXuS4egV8+LrXnjun3V00aMjnvTyiDt/bf++T7w54swDERddNXy71tVWxY/uj90a8dTvP/fvkxrBaMY4AAAAAAAAAAAAAGCk2lTbA8AwJjvdnEcw2vrYfXi11xeMNl6NA2MGon/KX7IouudgtEIwGtBEw/HkfLDDRVfP33/mvogHb1uuScBmaTqvrZqfV57PvIcO5bpeBFYg1R9seGDw4Vvmb999OOLONw7alPGrGHO2Di7ef98fn/vfyU69+ZcxDgAAAAAAAAAAAAAYKcFoAOSr7CgYrWlQBPkSjEZrTYsAByp4FYyWv9T3favgsgbanF+xK2yuxt//e+PcY58VyTHv3j9cpkXApul8XlsVnGbeM1453jvrMuC8RB/V9zuA3D3hhRGXXjd/3/Gjw7Zlbe2ty4oD9T6+e6rmeY1xAAAAAAAAAAAAAMA4bfhv8gOQta5CqAQPrQ/BaLTWsPi+GCgYLctQAC6QDEbb7ve6rYquPU+wuVqOcxc/NuLRT5//mdP3LdckYMM0XXdXBZ9Vnc+8hw55bwScl+wPhnpPlKmt7YibXjd/373vjXjwY8O2Z8yqwl27DkYTJgsAAAAAAAAAAAAAjJRgNADyVe50eC4FQGth5+SKG6BYerRy7QMU4I9A6h71vZQSjAY00Hg8mQp22L4scU6BsEADXc9rzZPXV5ZrsxzbBKxGqj/Y8GC0iIjDR9L7jv/icO1YW3vP2NbBeh+f1AxG8z4bAAAAAAAAAAAAABgpwWgA5KvLMAZF1eth9+HVXr+cZFrETfeGKnj1PGUvNRYV2/1et8359U+wwZp+/0+Nc1sHEqfsMKQYWH+N19wV/VbV+cx76JJ3RsB5qfGl8OPUuOrLIx7ztfP3HTuqL62tYg6TWp/N2j1d83LuCwAAAAAAAAAAAAAwTn6TH4B8TboMY1AAtBZWHYwWoZhstDINTvA85S91j3oPRrNUA5poOM4VU8FoRaLwvtO5OLD2Op/XVvVrmc7vqSHHe5djm4DVSI1nQwXoZ+7wkfnbT94Zcc8fDNuWdXN+jVYcrPf53VM1T2yMAwAAAAAAAAAAAADGSbU9APkqdzs8l/ChtZBFMFqHzyUDaloEOFTBq74pe6nv+b6Dy1qdX7ErbKzGc93pYLRE0GMpGA1oomE/VFbMWyr7NfOe8crw3nlnBJyXGp8KwWgREXHjd0ZsJYK7jt06aFNGq2oOtJUIrp41qRmMZowDAAAAAAAAAAAAAEZKMBoA+eoyjEEB0HrYObnqFghGG6uqosNVybVdfFEyGC0RJNQZwWhAE0sEgBaJwntzHqCJztfc1vAMyDsj4BGpebUfp0ZExMWPjXjiS+fvu+vfR5x9aNj2rJW9NVpqfTZrVzAaAAAAAAAAAAAAALDe/CY/APmadBiMpqh6/MpJxOT0qlshJGS0GgbGFEX1Zzqhb8peqoC072C0osVSTdAebK6m3//T49xWKhity7k4sPYah25U9FtV5zPvGa8s712ObQJWIvkOYKj3RCNw6Mj87TsnIu5607BtGaWKMWfrYL3T7NZ9T26MAwAAAAAAAAAAAADGSTAaAPnqMoBKmNX47Z5adQvO8SzRpSxDAbhA6nu+TXBZE63O73mCjdU4kGgq2KFIBKN1GlIMrL+Bg9HMe+hS43EUWF+p8UUw2iOuf3HEJdfO33fs6LBtWSt7z1hqfTar7rtyYxwAAAAAAAAAAAAAMFKC0QDIV9lhGIMCoPHbObnqFuzxLI1T0+CEgQpeBe3lLxmMtt3vdQWjAY0sMc6l+rMu5+LA+ut8zV3Vr5n3jFeO9y7HNgGrkegP+g5HH5OtgxE3vnb+vnveHfHQ7UO2Zv1sHaz3uYlgNAAAAAAAAAAAAABgvflNfgDy1WVgkAKg8dt9eNUtOGciyGqUykyD0RTg5y81fvReFN3i/I2fc2BtNJ3rFlPj3NaB+Z/ZOdG+PcDmadoPVc1bqs5n3kOXvDMCzkv2B0O9JxqJw7ek9x3/xcGaMU4Vc5jU+mzWbs1gNO8eAQAAAAAAAAAAAICREowGQL4mO92dS5Hr+JUdPg/L6DKwjwFlXASof8pb6nu+2O73uq2C1zJ+zoHuTc5G3POeiOOvjzh5Z8ODp4IdikTh/bFfiHjoeOvmARum6zltZTCaddl4ZThntSYDzksFbxaC0S5w9VdFXP3V8/cdPyrAtI3zz1hqfTatLCN2T9c7rzEOAAAAAAAAAAAAABgpwWgA5KvTICwFQOOXSUGdAvyRavj8tC14ffI/bH6MZypvqQJSwWjAKp39QsTvf+O5f97/PREP/GXDE0wHoy3ozz7YYlwDNlTTNXfVvEUw2trKMiwnxzYBq5Eaf/w4dZ9Dt8zf/tCxiHvfO2hTRqVqHNw6WOMcOxGTU3UvWPNzAAAAAAAAAAAAAAB58Zv8AOSry0LnVLAN45HLPbzvQ6tuATk7dKT5MUId8pa6P62Cy5pocf4sQyaAXvzF/x7x2fe3P346AHTrQPpzn/mPETsn218H2Bxdr9cqz5fJ+pD1kMv7BmD1UuvqtgH66+ym10QUibXE8aPDtmUt7D1jqf+m0yZnI3ZrBqMZ4wAAAAAAAAAAAACAkRKMBkA+dk5EPHTsiwVok53uzq0AaPxyCfx5z0vPFZ8xLo2fn5YFr9c+N+Lm/67ZMfqnvCWD0bb7vW6r4LVM+kmgf3/1r5Y8wdQ4V1V4f/bBJa8FbIam85Cqz1fsnwgXHq8c56w5tglYjVR/4Mep+1xyTcQTv23+vjt+XcByUsWYs3Wwxil26gejCZMFAAAAAAAAAAAAAEbKb/IDsHrlJOKPfyDiTVdH/OaTI/7DzRH3/1k6jKYVBUDjl1Gh8mc/sOoW0NiAz8/1L272+U77OrqXGj96XkoJRgN61SAYbXKm36YA66Fp2G9VcHHV+cyh6ZKwauC8VH9QtAzQX3eHjszfvvNgxF1vHrYto7f3jFWtzyLO/UGZusFoufyxEQAAAAAAAAAAAACAhgSjAbB6f/WvIm776YjJ2XNfP3Qs4l0viNg90d01FLmOX0738GP/dtUtoLGGRYBLFbw2PFaoQ95S96fY7ve6rYLRAGqaHueq+rPybL9tAdZD1+u1yvNltD6koQwDWnJ63wCsWKqPEow21/XfFnHxY+fvO37roE0Zj4pxcKtOMNrZiMnpmtczxgEAAAAAAAAAAAAA46TaHoDVO/76/dtOfzbi0+/o7hqKXNdARsXTWxevugU0VTZ9foYMRtM/ZS11f/oORmuzVGv8nAOba2qsqiq83z3Tb1OANdF0Tls1b6k4n3BhOmUeDZyX6A+El8+3fVHEja+Zv+/ud0acuGvY9ozZ+fDq4mD1Z8udiN1T9c7rvSMAAAAAAAAAAAAAMFJ+kx+A1XvgL+Zvf/hTHV5EAdDo5VTEtS0YjQ4Jdchb6v70XRTd6vwCHYCaiqlgtKIiGK08229bgPXQ9XqtKvDVHHq8cgzzzel9A7Bayf5gmQD9NXf4SGJHGXH7nD+IsumqxsGq4OqIiMnZ+sFo3hUBAAAAAAAAAAAAACMlGA2AzaDIdQ1kVMS1JRhtfJo+P0sUvBYNjxXqkLdkMNp2v9dtE4yWY8gEkL+q/mxyZph2AOPWeM1dNW+pOJ81/ojlOGf1PAHnpfoowWhJVz8j4qqnz9937Kh3FbXtPWNVwdUREeVO/WA0cyYAAAAAAAAAAAAAYKQEowGwGQQPjV9ORVzbgtFGJ+cizJyebfZL3Z++g9FaLdUyfs6BjMyEOmxVFN5PzvbXFGCNdDynrZojW+PTpZzXi8CwUv1Bm/DyTVEUEYePzN/34EcjPvfBYdszdlsHqz8z2YmYnK53Pu8dAQAAAAAAAAAAAICR8pv8AGwGBUBrIKNC5S3BaOPT8PkpiurPpA9u9nGhDnlL3Z++i6JbnT+jfhLI1+wYVwhGAzrQdM1dFUQlGG19ZRlC5p0RcF6qP1jmPdEGuOm16QD5Y7cO2pT8VYyDVeuziIjybMTuqW6uBwAAAAAAAAAAAACQKcFoAGwGwWhrIKMirm3BaOMz5PMjGG2tJIPREgW/XWkTjJZlyASQn6bBaGf6awqwPhqvuZcNRrPGp0Pm0cB5qf5gqQD9DXDpdRHXvWj+vjt+tUGI1ybbe8a2DlZ/dLJT/7+pORMAAAAAAAAAAAAAMFKC0QDYEAqARi+nIq4twWjrb8iC14yebfZL9T1tgssaaXN+gQ5AHTNj3FZF0OPkbH9NAdZH5+u1quA04cLjleOc1ZoMOC8VjObHqZUO3zJ/+9kHIj7x1kGbkreKcXCrIrg64twarXbYXI7jLgAAAAAAAAAAAABAtRq/XQ0AayCnUC1ayqiIa+vgqltAU2XT52eJYLSi4bEToQ5ZS4VuFBVBQstqVXSdUT8J5Gt2nCoqXg1NzvTXFmCNNF1zVwWfVZxPMBpd8s4IOC/ZHwwZoD9ST/y7EQcfHXH28/v3HTsaceOrh2/TmJxfp1WtzyIiyp2Iyel65zXGAQCstaIonhERT4mIJ+5t+mREfLQsyw+vrlUAAAAAAAAAANANwWgAbAYFQOOX0z1UhD9CGQdGeZ4yl+h7cgxGaxwACGym2VCHipCHydneWgKskc7Xa1XBaBmtD2koxzlrjm0CViPVHwhGq7R9ScRN3xVx28/u33f32yNOfirisuuHb1duqt7d1PmDHOVOxO6pmtczZwIAaKMoisMR8bUR8ay9/31GRDxq6iN3lGV50wqaFkVRHIyI/yEivjcinpz4zMci4uci4ifLsvSSHwAAAAAAAACAUWpRbQ8AY6QAaPRyCvwRZDVCDZ+fYpmC16bH6p+yNkl8v7cJLmui1fkz6ieBjM2OUxXjkGA0oI6moRtV67uq81mTjVdOa/vzhMYA56X6qL7fAayLQ0fmby8nEbe/Ydi2jM7eOq2o8TfNJmfqB6N5VwQAUFtRFM8viuLtRVF8LiI+HhG/GhE/HBHfGBeGoq1MURRPiYgPRMS/iEQo2p6bI+LHI+L9RVHcPETbAAAAAAAAAACga36TH4DNoMh1DWR0DxXhj8+gxfcNg9E8T3lL3Z9iu+cLC0Zjxs7JiLvfGfHAR/IMFGE4y97/2fDPqnny5Mxy1wM2Q7nT8fkEozEgcyvgEanxZ5kA/Q3y2L8VceXT5u87fqv+NiIq393Ued/0X360fjCan4sAADTx1RHxLRHxmFU3ZJ6iKJ4QEb8XEc+Y2fWxiHhrRPxmnAt0m/bMiHhHURTX9t9CAAAAAAAAAADolmA0ADaDAqDxy6lwThH+Bhiw4NXzlLnU+NHzUqqwVGPK3e+K+I1rI971gojf+opz/7tzYtWtYlWWntc2DEYrzy55PWAj1A3neETV+q5ivzX+iGW0tn+E5wnYk3r/OBsuzHxFEXHoyPx9D3wk4r4PDdueUdl7xrYvqf7oZ98XcerTNc9rjAMA6MDp2B84NqiiKLYi4i0RcePU5k9HxIvKsnxKWZYvL8vyZWVZ3hwRL4mIu6c+dygi3lwUFjYAAAAAAAAAAIyLansANoOi6TWQUfH0RJDV+Az4/DT9nXL9U95SwXXFdr/XbROMllOAJN3ZPRXxnpddGIT2mXdF/NmPrK5NrNbSgZoNg9EmZ5a8HrARug5GqwxttCajQ9ZkwCNWFI6+Tg69Lv1O49itgzYlTxVzoK0DEdf/nerT1J17eVcEANDU2Yj404j4uYj4voh4ZkQ8KiK+d5WNiojXRsTXTX19X0Q8pyzLd8x+sCzL342I50TE/VObnxMRr+61hQAAAAAAAAAA0DG/yQ/AhlDkOno5FSorwh+hpkWAy/zB7KbBaJ6nrKX6nr6D0Vot1RS7rqVP/oeInYf2b7/tp4dvC3lYdtyYDfCsOt/k7HLXAzZD42C0KoLR1leOc9Yc2wSsRCpEqmkI/ia77IkRj3/B/H13/ErE7ulh2zMW08/Y1/50xBVP7ua8Ob1TBwDI39GIuLIsy68py/K/Kcvy35Vl+SdlWa70JXlRFNsR8WMzm3+oLMvbU8eUZXk8In5oZvM/L4o2f5kJAAAAAAAAAABWwy+7ALAZFACtgYwKlRXhj0+qsDVlyIJXz1PeUven77qBVufPqJ+kO7e/Yf52YVWba+lxY3aMq5gnT84seT1gI0waBqNVzc+r1vDm0HTJOyPgEanxyY9TGzl8ZP72M/dFfPJtw7ZljC6/IeJb/7yjk3lXBABQV1mW95dl2XX6fxe+ISIOTX39yYj4pRrHvX7vs+c9OSKe02G7AAAAAAAAAACgV36TH4DNoGh6/HIqVPY8jdCARYBNQ9VyerbZLxmMtt3vddsEozUNAGQcJsYcZi07bsyMU1XjkBA+oI7djmtGK+c15tCjleWcNcc2ASuRmhsPGaC/Dp708oiDV87fd/zosG3JTXIcnHnGDlwa8ew6WRdV1zNnAgBYA6+Y+foXy7L6Fxb2PjM7qXxlZ60CAAAAAAAAAICeCUYDYLWGKohVALQGMipUFoy2AQYsePU85S1ZFJ1hMFpO/STd0Ucwa9lnYjbUQTAa0IXGwWhLBp8JDh2xDOes3hkBj6gZWsViBy6LuOE75u/71G9HPPyZYdszVode28FJjHEAAGvgxTNfv7vBsbOffclSLQEAAAAAAAAAgAEJRgNgtQYrPlUANHo5FSoLqRmhIYvvGxbLep7ylro/rYLLmhCMxp5yZ9UtIDdLhwHNBqNVnO/kXUteD9gIjYPRKlSt/8yh6VJO7xuAFUusq3t/B7CGDt8yf3u5G3HHLw/alLw0fHfzpJcveTnvigAAxqwoiosj4uaZzR9ocIr3zXz9lKIoLlquVQAAAAAAAAAAMAy/yQ/Aig1UfKrIdQ1kVMSlCH98GhcBNgw3W+ZY/VPeksFo2/1et03RtWLX9WTMYdbSz8TsOFUxDn3855a8HrARmgajVc1bKufI5tDjleOcNcc2ASuRHH+WeU+0oR73nIgrZvMb9hw7OmxbxqBIPGPblyx5YnMmAICR+9KImP6h5D1lWX6h7sF7n/3s1KbtiHhqR20DAAAAAAAAAIBeCUYDYLWGCgQSPDR+Od1DITUjlHGhu+cpb6m+p01wWROtzp/xc0575c6qW0Bulh03Zgvuty+tPubMA8tdE1h/k4bBaNUnXLzbHJou5fS+AVixxLo6FVpFWlFEHD4yf9/n/yzi/j8dtj3ZaPjuZuviJS9njAMAGLnZtOE7W5xj9pintGwLAAAAAAAAAAAMSjAaAKslGI3aMgr8UYQ/Qg2fn2UKXpse63nKW+r+FNvzt3fGUo09+gj2WXZeOzNOHf771YecumfJawJrrSwjdpsGo1XMz8uq/cbH0aq6tyuRY5uAlUj2UdborRx6XXrfsaPDtWMUEu8Tty9Z8rzGOACAkXv0zNdtXtbPHnNVy7YAAAAAAAAAAMCgDqy6AQBsuqECywSjjV5OxdOK8DfAEsFoTY8V3Ji5xP3pOxit7fnLcrlgP/IzWTDmuN+badl5yOwzc8WhiGufF3HPe9LHTJoGHgEbZXKmxUFV67uKObI5NF3yPAGPSIxP1l3tXH5jxOO/OeIz79q/7/Y3RHzNv4zYOjh8u1ap6TvuZYPRjHEAAGN3xczXD7c4x+wxj2rZlgsURXFtRFzT8LAnd3FtAAAAAAAAAAA2g2A0AFZrqMIcBUBrIKN7KBhtfHIK1pvlecpb8v5s9XvdoufzMx6L+ohy0n9IH/lZetyYE+rwvN+MeNOj04fsCkYDFuijj6haw5tDj1iGazPvjICIindHgtFaO3RkfjDa6XsjPvU7EU966fBtylLiGdu6eLnTGuMAAMZuNhitzYu42WC02XO29f0R8aMdnQsAAAAAAAAAAPZRbQ/AaglGo66cgq0U4Y9Q0+dnmYLXhsd6nvKWuj9bPYdRtQ5Gy6ivpBsLg9H0Hxtp0kMw2kVXRbzyM+lDBKMBi7TpI6rWd4LR1liO89Uc2wQMb0FfILy8vRu+PeJAInfh2K2DNiUPDcec7UuGvR4AALlrM8EzKQQAAAAAAAAAYJT8Jj8AKzZUYJlgtPHL6B4qwh+fnIL19sno2Wa/ZChH30upluF8WT/rtCIYjX2WHDeKRP9yybULLnl6uWsC62334e7PWRmMZg5NhzxPQERFX7BMgP6GO3B5xA2vmr/vU2+LOPXZYduTq9Q6bdlgNGMcAMDYPTTz9aUtzjF7zOw5AQAAAAAAAAAgSwdW3QAANtzuqWGuowBo/HIK+xFEM0INn59UMWIfx3qe8pa6P8V2v9ctijhXeN2078uor6QbgtGYtfR9XzBObV8WsXty//ah5uzAOLXqI6rmLBX7jYHjldPa/hE5tgkY3qK+QDDaUg4diTh26/7tk7MRd/xKxJf+48GbNBrLBqMZ4wAAxi7nYLSfiYg3NjzmyRHx1o6uDwAAAAAAAADAmhOMBsDqTM5GvOeVw1xLMNoayOgeKsJnoYbFshPPU9ZS40ffwWgREcVWi/5GwevaKXcW7NN/bKReg9EuEYwGNDfpoY+oWsMbA+mSd0ZAxOLgxmJruHaso2ufF3H5TREnbt+/7/jRzQpGSz5niXXa1sVLXs8YBwAwcg/MfH1Ni3NcO/P151u25QJlWd4TEfc0OaZY5o+TAQAAAAAAAACwcfwmPwCrc88fRHzuA8NcS9H0+C0qThya52mEmj4/Q/5StgLFrKW+34coim5zjZz6SrqxcMzRf2ykZechiwqPti+Zv10wGrBIqz6ias5SFYxmDByvHOernicgYnFfoHh/KcVWxKHvmb/vvg9FfP4vhm3PmKTWaHWZMwEAjN1tM1/f2OIcs8fMnhMAAAAAAAAAALIkGA2A1fnI/zXctRQArYGMiqcFo41P47CoZQpeGx7recpbavwYIhit1XIto76SbizqIyb6j4209Lx2wTi1dfH87ZPTS14TWGuTnebHVM3Pq/o6c2i65HkCIhaPPcX2cO1YV6lgtIiI40eHa8fKNXxvs2wwmvdEAABj9zcRMf3i4tqiKB5V9+CiKK6MiMdNbdoNwWgAAAAAAAAAAIyEYDQAVufu3x/wYoLRRi+ncDtF0yOUcRGg5ylzqWC0AYqitw60OCjjZ512FoXN6D8209L3fUEwWqrofvfUktcE1lrZIhit+qQVu42B45XhfFXYLBBREYzmx6lLe9STI6557vx9x3+pXdDqWkms05YNRsvpnToAAI2VZXk6Ij4+s/nZDU7xnJmvb9s7JwAAAAAAAAAAZM9v8gOwGRQArYEVFE+nih4VTY9Qw+enWBAa0/Wx+qe8pUI3hiiKLloEo5UZBk2wnEXBL0JhNtOy933ROCUYDWijVTBaVfBZxRzZHHq8cpyvmlMBEbHwD2sIRuvG4Vvmbz91d8Sn3zFoU1an4Ti4dfGS1zNnAgBYA7878/XzGxw7+9nfWaolAAAAAAAAAAAwIL/JD8DqtAl8aUvR9Pit4h6mCs8UTbNQ02A0z1PWkn3PAEuprTbjZIZBEyxHMBqzlr7vgtGAjk3aBKNVqAxGMwbSIc8TELG4LxCM1o0bXhWxfen8fcePDtuW3KQCrFNrtLpyDCQFAKCpN898/bqiKLarDtr7zHdXnAsAAAAAAAAAALLlN/kBWJ2tg+2PveJwwwMEo43fCoq4BKOtj8ZFgA3DzZbhecrXoudmiKLoVgGiCl7XjmA0ZvUZjJaa+0xOL3lNYK2ViWC07csirn5G6qCKkwpGW18Zzlc9T0DE4lDO6swB6jh4ZcSXfPv8fZ94S8SZ+4dtzyo0fUe5bDCan4sAAKyDP4yI4/Q6OiYAACAASURBVFNfPyn2B57N890R8cSprz8eEf+pw3YBAAAAAAAAAECvBKMBsDqtAl8i4ut/NeJb3t/smEWFbYzDKu7htmC09TFk8X3DUDX9U74WFkVnGozWOASQ7AlGY9ay40axYJxKFd3vnlrumsB6mySC0bYOLO5zFqnq64yBdMnzBERUjD1+nNqZw0fmb5+cibjj14ZtS1YSc6ZUeHVd3jsCAGSnKIpy5p/nL/p8WZa7EfGjM5t/siiKmxZc46aI+L9nNv9IWZogAgAAAAAAAAAwHn6TH4DV2TrY7rjLbwzBQ5toBWE/qcIzRdMj1PD5aRvg0OZYz1PGVlwUvdUyQJT1UibCZiL0H5tq6fsuGA3oWGqsWhTyWhnmWrXfGn+8MgzyNacCIlYfjr4prv2miMu+ZP6+Y7cO2pTVaDgOptZofV0PAGDDFUXxpKIobpr9JyKeMPPRA/M+t/fP43po2hsi4oNTXz8mIt5XFMW3zPn/8KKIeH9EXD21+X0RsclJxAAAAAAAAAAAjJBKewBWp20wWrEdjYPRFE2PX2XhfA+2BaOtjcbPzxLBaE15nvK1sCh6u//rLwoTSVLwunYW9RGCXzeTYDQgN5NEMNrWgUj3ORVzlqoxzhyaLnmegIjFfYFgtO5sbUccel3EX/6f+/d97oMRD/x1xFVPG75dK5eYMy0bjOa9AQBAU++NiBtrfO6JEXE8se9oRNzSVYMiIsqynBRF8YqI+EBE3LC3+bqIeHtRFLdFxF/GuUnlV0TEzTOH3x4RryzLVfzCBQAAAAAAAAAAtOc3+QFYnVaBL3EujKZoGFr0hb9pdy0ysoIiri3BaLTRsH9SoJivhcFoAyyltgSjERXBaMajjbTsfV80j07NfQSjAYuUiWC0tmv+iOo58sQYOFo51uCaUwERsfDd4xDh6Jvk0JH0vuNHh2vHSjQcB5cORstw3AUAoJWyLD8dES+MiA/P7HpKRLw8Il4W+0PR/iQiXliW5Wf6byEAAAAAAAAAAHRLMBoAq9Mq8CX2CtEaBg/9zb9udy3ysYoirm3BaOuj6fPTsI9ZhucpYysORmsTJqLgdf0sCobRf2ympQM1F/RfBy6bv333xJLXBNbawmC01Ly6Ys5S2dcJFx6vDOer5lRAxOrD0TfJlU+NeNyz5+87/vrNDEBNBVinwqtrM2cCAFgnZVl+NCK+LiL+l4g4tuCjH9/7zN8uy/JjQ7QNAAAAAAAAAAC61jKRBgA6UBxsedx2ulBokcnZiK2W1yQDKyjiShWeKZoeoSGL7xv2T56nfK26KLpNMFqOQRMsRzAas5a974vm0QeumL/97IPLXRNYb5NEMNrWgXZr93MnXbzbGEiXPE9AREUop2C0zh06EvHZ9+/f/vAnIz7zrojrXjh8m3K0fclyxy8drA0AsFnKsrxpgGss9Re6yrI8GxE/HhE/XhTFMyPiqRFx/d7uT0XER8uy/NByrQQAAAAAAAAAgNUTjAbA6rQNKSu2o3HwUIRgtLErVxD2s3XR/O2Kpsen6fPTOsChzbEKFLO16qLoLcFoRCy8p8ajzbT0fV8UjPao+dsFowGLlIlgtEUhr1Xz88r9xsDRWsXavornCYhY3BcMEY6+aW58dcSHfjBicnr/vmO3rm8wWtNxcNlgNO+JAADW2l4AmhA0AAAAAAAAAADWkt/kB2B1WgW+xF4hWovQIoWuI7eC8Kjti+dv9yyNUMZFgBPPU74W9DtDFEUvChNJyTFoguUsCugzHv3/7N15nB11ne//d50+3emEbE0WCGFJmsVABJFlDCEoRFCEi6AyUURJ1JlRYO7AOIA63gDKHRnc8OfAT9QLphkUETEgLsAV2VFAFgmGRbISMHtCtt5yTt0/Omm6T9e3Tu3beT0fjzyg9m84RdW3vqc+79OYwn7ubgGezYZgtJ0EowFwUTUEo5XKCvTs3rdT98WuAbaAT/SpAEju9xarKbl2NIqWsdK+ZzkvW7VQ6nkz2fakztBnssrhxqDoMwEAAAAAAAAAAAAAAAAAAADIKYLRAADpsZoDbtfkHuhgQhFQvqUR9lMiGK1xBQ1wCLAt51N2uRZFJ/AoFShAlGC04nH5TLl+NKbQn3uAYLRegtEAuDBdl1xDXg33N7sqbX1VqnQHOyZyIIP9Vc4nAJJSD0dvRO3znOdXOqWVtyfalOT4vA9alnmM2tPh+E4EAAAAAAAAAAAAAAAAAAAAQD7xJj8AID2lEMFoQUKLKHTNuRSKp5sIRisOv+dPiGA038GNFChmlmvxaAKPUq5hIgZphEgiPRQ4N6bQn7vLfapsCEbbSTAaABf2Tuf5Vlm++tWr7pZ+MVG6+2Dp9V/WOSbPZLlUrUgbnki7FUNxPgGQ0h8DaER7nyINn+S8bFlHsm1JnUufqak1xH4ZJwIAAAAAAAAAAAAAAAAAAACQT7zJDwBITylA4IsUIhiN8JBcS+PzKxGMVhhZDovifMout+uOldFgNApei6XevY/rR2MK+7m7BXg2m4LRtoU7JoBiMwWjuT7z1/RZtrwiPfJhqXuDx2PyfJ9Lf/la2i1wRp8KgOR+LUhiDKARlZqkKZ90XrbuUWnrq8m2JxEBxm3CBKPRZwIAAAAAAAAAAAAAAAAAAACQU7zJDwBIj9UccLsm90AHEwpdcy6FsJ8mgtGKw+f5E+Qa89bG/lbnfMqwlIPRAgWIEoxWKFVD0MxuXD8aU+jP3eU+VTYEo1V7pe6NIY8LoLBM9yurbO5X1wYXr7jNHLDmuD33wFxatTDtFjjjfAIgpR+O3qja55qXLbs5uXakzW0s0vTjHZ4QjAYAAAAAAAAAAAAAAAAAAAAgn3iTHwCQnkCBL+oLRvMbPCSJIqCccytOjEup1Xk+RdM5lOGwqDTObXjj+tkk8ChlBbhP1oaMIN/s3jrLuR81pDiD0ZoNwWiSdMd46fVfhzw2gEIyBZqVyrue3522qelnLbo8mmMi2zY9m3YLnNGnAiDJPRzdcD9DeGMOk/Y81nnZ0o7ijZsFGbdpMoxRx3U8AAAAAAAAAAAAAAAAAAAAAMgAgtEAAOkJEvgiSVZJgYLRKHTNuRSKuJpHOs+vdCfbDqQgSPhiwG25NmWXW/GtlcCjVNAAURRHtU7oC9ePxhQ2GMAKGIwmW3rsY1LX+nDHB1A8pvuVVTY/94cNNqv2hNseGIg+FQAp/TGARtY+13n+jpXS2oeSbUtqXJ7TQgWjFSxYDgAAAAAAAAAAAAAAAAAAAEDD4E1+AECKAgZdWU3ugQ7Gw1HommtpFHGVTcFoncm2A+HZCQbr+b0+cW3KsJSLogMFiKYQIon4VHvdl3P9aEyhP3eX+1TZLRhN0s5tDRRMAMAzU8iZVTYHvYYORqtzjwT8qNKnAqA6/Wy+To3VAR+TSi3Oy5YuSLQp8QswblMKEYzGOBEAAAAAAAAAAAAAAAAAAACAnOJNfgBAeoKGOlhNcg10MB4vhWAtRCiFIi5jMFpXsu1ABPyePwGuMUFxbcout8+GYDQkoV5oDMFojSnWYLQ96m/etSbk8QEUjul+VSqb+zNVgtGQIfSpAEjpjwE0smHjpMlnOC977Q6pd1uy7UmFy3Na07AQ+2WcCAAAAAAAAAAAAAAAAAAAAEA+8SY/ACA9QcOAAgejUeiaa3YKRVzNo5znV7vTaQ+C8/t5WWGC0Xxuy7Upu1zvUwk8SpUCBKNxbSqWeqEvXD8aU9jP3e0e19Raf/tqT7jjAygeU8iZ5RKMVi/8s+4xCUZDhOhTAZDqBKM1JdeORtU+z3n+zu194WiNzMtzmgk/yAAAAAAAAAAAAAAAAAAAAAAgpwhGAwCkJ2jhqdUULLSIIqCcS+HzK480L6t0JdcORCDDYVEU4WeXa1F0Ao9SpiARVxk+1+FfvdAY+jaNKfR9w6UfbZWkUov75tXukMcHUDim+1WpbA56NYWpeT4mwWiIEM9kACS5jj0mMQbQ6Ca9X2qd6Lxs6YJEmxKvAOM2YYLRGCcCAAAAAAAAAAAAAAAAAAAAkFO8yQ8ASE+YYDS3QIeoj4dssFMo4iqPMi+rEoxWbAGuMUG35dqUYSkXRZuCRFxR8Foo1TqhL1w/GlPoQLw696mm4e7LKwSjAahhCjmzyuag13rhn3WPSTAaIkSfCoBU51rA16mxKzVLB5zrvGztg9K25Um2JnluPwRTChGMlsaYOgAAAAAAAAAAAAAAAAAAAABEgDf5AQDpSTwYLWyIBNKVwufXPNK8rEIwWr4kWAToVsjohGtTdrl+Ngk8SpmCRNxQ8Fos9UJjCPFoTGE/93r3qXrBaNWecMcHUDym+5VVNge9EoyGLKFPBUByHwNIIhwdUvs887JlNyfWjFgFGbdpGhbmgCG2BQAAAAAAAAAAAAAAAAAAAID08CY/ACA9QcOArJL/4CGJQte8SyPsp+wWjNaZXDsQnu/zJ8A1JiiuTdmVdlF0kGA0Cl6LpV7oC9ePxhT6c68XjNbqvrzaHfL4AArHFHJWKpv7M1WC0ZAh9KkASC5jAFawsWj413aE1Hak87JlHQUPg3c5x+o9o7kq8n8zAAAAAAAAAAAAAAAAAAAAAEVGMBoAID1BC0+tkoKFFgUMYkNGpPD5lUeZl1W6kmsHIpBkEaDP6xNF+BmWcjBaiWC0hkcwGpzEHow23H15hWA0ADVMIWdW2dyfMYWpeWUTjIYI0acCIMk4BpDE8z/eMnWe8/xtS6V1jybalHgEGLcphQhGK3SYHAAAAAAAAAAAAAAAAAAAAIAi421+AEB6ghSeWk27/hkgGI1C13xLo4ireaR5WaUzuXYgAj7PnyDXmLc29re6TWhjZrl9NkkURlsBgtEoeC2WeqEx9G0aU9j7Rr17XL1gtGpPuOMDKB7T/apUNvdnTGFqXtULDwX8oE8FQJKqhmsBwWjJmvJxc/9hWUeybUmUy3NaoOD83Rh3BAAAAAAAAAAAAAAAAAAAAJBPvM0PAEhPkFCH3cFoQZiK25ATKYT9lEeZl1W6kmsHUhAmGM0nivCzy/U+lcCjVKDCV4LRCqVe6AvXj8YU+nOvF4zW6r682h3y+AAKxxRyZrkEo9UL/6x7TILRcifLAb70qQBIMgdI8VVqolonSJNPd1624mfSzh3JtidyAe6HYe6hWb7/AgAAAAAAAAAAAAAAAAAAAIAL3uYHAKQnSOFpmGA0Y3EbciFIkF5YTcNlDA8hGC1fkiwCtHyGqlGEn2Eu1x0rgUcpU5CIKwpeC6VeaAzXj8YUezDacPflFYLRANQw3a+ssjnolWC0xpPGM71X9KkASObrVKjxaAQyda7z/J1bpdcWJtuWpPgdT/SMcSIAAAAAAAAAAAAAAAAAAAAA+UQwGgAgPUkHo1HomnMpFHGVmqSmVudllc5k24KQ/J4/cRUjOslwQECjcwtvyGwwGgqlXuhLlgNGEJ+wfdp6Bfemvs9u1Z5wxwdQPFVDyFmpbO7PmLbxyiYYLX8y3G9hvAiA5BKMxlepidvndGnYOOdlyxYk2pTIBfrxhjDj4gSjAQAAAAAAAAAAAAAAAAAAAMgn3uYHAKQoQFFsmEI0wkPyLa3Pr2m48/xKV7LtQEhJFgH6DFWjCD+7XK87CTxKlQIEowUqsEVm1QuN4frRoML2ieoFoxn6PrtVukMeH0Dh2Ib7lVU292cGbhPkWa9eeCiyJ8tjMvSpAEjmawHBaMlrapEO+LjzstX3S9tfS7Y9iXB7Tgsx1sM4EQAAAAAAAAAAAAAAAAAAAICc4m1+AEB6qgEKT62m4Mej0DXnUiriamp1nv+HuRTj54nfIkDLZ7jZ4I39rR7kWohkuIU3JFEYbQUIRkvrWol42HXuM/RtGlPYz73ePa5eMFqVYDQANUzBaKWyuT8zMPyz2uP/mDyL5Q/BaAAyz3Sd4qvUVLTPMyywpeX/nWRL0hcq3IxxIgAAAAAAAAAAAAAAAAAAAAD5xNv8AID0BCk8DRWMluEiXNSX1udnCkar7JCe+bdk24KC4tqUXSkHo5UCBKOFKpZF5lQNQTO7EeLRmEIHatYLRjP0ffqPHyDACECxme5Xlksw2sAwtUpXgGMSjJY/GX7uoU8FQDKPPZZCjEcjuLZ3SmPe7rxsaUeOxz8SbjffiQAAAAAAAAAAAAAAAAAAAADIKYLRAAApClCUEyoYjULXfEu4aGxke98/S8PM66z4KcVlueH3/KkTGuO6qc9tuTZll+tnk8CjlClIxFVeC4PhqF7oC9ePxvPaL6SXrw25k3rBaMPdl1e6Qx4fQOHYLsFopqDXsMFoNsFouZPlZ2f6VAAkl+sUX6WmwrKk9rnOy7a+Im14Itn2xM11PDHMWA/jRAAAAAAAAAAAAAAAAAAAAADyibf5AQDpCVJ4GioYLcNFuKjPTriIa7+z+/7pds51r5O61ibTHoTk8/zxG242iM8uNkX42eV237ASeJQadUiAjSh4LZTNz7kv5/rRWDY+Kz06J/x+6t3jynWC0aoEowGoUTUEo5XK5qDXathgtCrP+HmT5c+LPhUAyXwtSOL5H86mnGsem126INGmRCfAuE3rxBCHY5wIAAAAAAAAAAAAAAAAAAAAQD4ZKtNQNJZlNUs6XtL+kiZJ2ibpDUnP2ra9POJjTZV0pKR9JI2U9DdJKyQ9btt2b5THApBziQejUeiab0kVUVvS/nOkI67aNVnnnMtycTfekmQRoN+CWc6h7HINRgsTnufR3rP9b0PBa7EsvsZ9OX2bxrLqzog+8zrXr2ET3JdXeyJoA4BCsQ3BaFZZsgz9KTtkMJokVXulpmHBtkUKMvzcQ58KgGQeAyAYLT3DJ0mT3i+98Zuhy1b8VDr6O1JTa/LtioXLc1r7POn5+QH3yzgRAAAAGptt26pWq7L5DhVAwizLUqlUkpXEuyUAAAAAAAAAAAAAUFAEo6XEsqx2ScdKOmbXP4+SNGrAKits254SwXEmSPqKpI9K2tOwzuOSvm3b9h0hj3W2pM9LOs6wykbLsm6TdLlt2+vDHAtAQQQJA7JC3LoodM23OF9UnTBLOvG3Uufr0rDx0rBxby2rG8bHC7T54PdzCvFiot8AR65NGZZyUXRTq9Q8Rup908dGXJMKo+rh2sD1o7G88NWIdlTnHrf3Ke7LK90RtQNAYZiC0Upl83N/dcA2VYLRGkKWA6HpUwGQZB4DCPFDHQivfZ5zMFrvm9Kqu6QDPpp4k0IJMsY9Yt8wBwyxLQAAAJA/tm2rq6tLW7du1datW9XTw4+9AEhXS0uLRo0apVGjRqm1tZWgNAAAAAAAAAAAAADwgZ85T5BlWSdalnWvZVkbJC2R9FNJl0h6jwaHokV1vA9IekHS+TKEou0yU9LPLcu6xbKsPQIcZ6RlWbdKul3mUDTtasP5kl6wLOv9fo8DoICCFJ6WwmR6ZrgIFx5E/PkNn9RXWHfM9X2haM0jpdFvGxyKJtUPQKKAGrUIRisOU3hDkkXRY6b73ICC18KoegifynLACLKrXohQ2xHSO79lXu7l3ATQWKqGYDSrbA43HximFjRw0e4Nth3SkeV+i5dAWgDFZ7xO8VVqqiafITWPdV62tCPZtsSqTlH0u24Ktts4f2wEAAAAyJgdO3ZoyZIlWr58uTZs2EAoGoBM6Onp0YYNG7R8+XItWbJEO3bsSLtJAAAAAAAAAAAAAJAbvM2frCMlvU/uIWWRsCzrREl3Spo4YLYt6Wn1BZj9X0nrazY7V9KtllUvAWbQcZok3SbpYzWL1km6b9exntHghIa9JN1lWdYsr8cBUFBBwoBMRdVxHQ/ZEXUR1yH/U5rxI+mQC/pC0UzqBSBVKcbPB7/nT4hfaPUdjJbhgIBGl4Wi6Kbh/tan4LU4bEPIzKB16NsggKbW+usc+nlzOFqVQiIANUz3rFLZHG4+KBitK9hxeRbLlyw/99CnAiCZrwXevzJDHJpapSnnOC9bfa+0441k2xNawHGb5qC/r5Xh+y8AAAAQoR07dmjlypXq7WXMEEB29fb2auXKlYSjAQAAAAAAAAAAAIBHvM2fDd2SlkS1M8uy9pX0C0ktA2Y/Jmm6bdvH2LY9x7bt90naV9JFkga+EXSGpP/t43D/Kem0AdO9kv6npH1t237/rmMdLentkv4wYL1hku60LGuSj2MBKJpAwWg+A4cGHY8ioHyL+vPzGHxFMFr+dW+QNj6b3PH8FsxShJ9dpvtGkkXRXgKMBiEYrTCqBKMhJiWP15WRU5znV7ojawqAgjDds6yyOdy8SjBa48nwmEzn62m3AEAWZGEMAM6mznWeb1el5T9Oti1xseqMVZeag+2XAH0AAAA0gN2haDb9XwA5YNs24WgAAAAAAAAAAAAA4JGhMg0x6pX0F0l/kvTUrn8uknS8pAciOsZXJLUNmH5c0sm2bQ+qMrRtu1vSdy3LWilp4YBFn7cs6/u2ba9wO4hlWe3qC1Yb6O9t276rdl3bthdblvVeSfdLOm7X7HGSrpD0OQ9/JwBFFCSoLEwhGuEh+Rb1S6z1is3616tzztkU42dWtSI99VlpyU3yHRbl9fxw3NZngCPXpgzLQFG078JXXvgvDJtgNMTEa+BiaZjz/CrBaABqmO5ZVlmyDP2pgdtUCUZrCFkOq+98o+/5sRQijB9AAZjGALg2pG7c30mjp0lbXhq6bNkC6dBLwo3lJSnoGLcVMBiNcSIAAAAUnG3beuONN4aEojU3N2v06NEaOXKkmpubZeXlmQFAYdi2rd7eXm3btk1btmxRb2/voGVvvPGGDjzwQK5PAAAAAAAAAAAAAOCCYLRkdUi6oTagTFJkX25blnWwpIE/nd4jaZ7TMXezbftOy7I6Bmw3TH2BZZ+uc7grJA18E3+BUyjagON0WpY1T31BcC27Zn/Gsqyv27a9tM6xABRRkDCPUMFoGS7ChQdRF3F5DUarU/xIMX52vfQtacmNATdOMhiNa1NmGT+bBIPR0LiqBKMhJp6D0Vqc51d7omsLgGIwBaOVyub+1MD7XIVgtIaQ9eeeTc9K445JuxUA0mS6TiUZjg5nliVNnSv9+UtDl725WNr4dAGu4XXGIn0H5+9GMBoAAACKraura1DYkCSNGjVKkydPJmwIQOqam5s1YsQITZgwQa+//rq2bt3av6y3t1fd3d1qbfX43S0AAAAAAAAAAAAANCDe5k+Qbdub3ALKIvJxSQPTOH5h2/ZfPWx3Tc30HMuyjN+4W5Y1XNLZdfYxhG3br0i6c8CssvraDKARBQrzCPHiIuEh+ZZWETXBaPn11++lc1y/BbNcm7Irj0XRNgWvhWF7uL9w/UAQXoPRmoY5z7crUpVzD8AApjBPq9z3x4kdQTCaKZANGZXxYLQtL6fdAgBpMz5fZXgMoJFM/aR5PGbpgkSbkoqgwWiMEwEAAKDgBoYMSX0hRISiAcgay7I0efJkNTcPfr7fsmVLSi0CAAAAAAAAAAAAgHzgbf7i+VDN9I+8bGTb9ouSnhgwaw9J73PZ5P2SRgyY/oNt2y95auHQNn3Y43YAiiZI0FWYMJq0grUQkaiLuDy+CFvvnCMYLbu2Lw+xcYgXpeuF6dUi2CjDchiMFvm1EqkxhcwMxPUDQXgNRisZgtEkqdodTVsAFIMpoKzULJU8BKMFvabwjJ8vmf+8st4+ALHLYzh6IxkxWdrrZOdlK26VKnl5RjGN29QZiwwajMY4EQAAAAquNhht9OjRhKIByCTLsjR69OhB82qvYQAAAAAAAAAAAACAwXibv0Asy9pb0jsGzNop6TEfu3iwZvoDLuueWmdbN4+or227vdOyrL18bA+gKAKFeYR4gZHwkHyLuoja68uw9UKubILRUMNvMBoF+NmVy6JoCl4LwxQyM2gdrh8IoGm4t/VKLeZl1Z5o2gKgGExhnla570+9bSpdwY7LM36+ZL3fwvkEwDgG4HecB7Fpn+c8v2ej9MavE21K4kbsF2y7rN9/AQAAgBBs21ZPz+DvK0aOHJlSawCgvtprVE9Pj2ybdzwAAAAAAAAAAAAAwCTLFf3w7+0108/btr3dx/aP10xP93GsP3g9yK42LfJxLABFZNsKFN4SJoyGIteci/pFsIiC0aoEoxVSmF+R9nud4tqUXcbi0Qw/RvHSbHGYQmYG4vqBIJpaPa43zLys0h1NWwAUgynMs1Tu+1Nvm6DBaAQM50vWg1my3j4ACchjOHqD2fcsqXm087KlCxJtSnABx2322D/Z4wEAAAA5UK0OfY5rbm5OoSUA4E25PPQ7E6drGQAAAAAAAAAAAACgD2/zF8thNdOv+tx+SZ39DXRogscCUESBC05DhBVRNJ1vkRcpez2X6nSXCEZDrXpherWqBBtllum6k+miaApeC8MUMjNoHa4fCKDkMRit1GJeViUYDcAApnuWVe7746QaQTAaQVY5k/HPi/MJQB7D0RtNebi0/xznZW/8Rupck2x7ouTlRxr2/VCAHTNOBAAAgOKyHX4wygrzA2gAELNSaeg4k9O1DAAAAAAAAAAAAADQh7f5i+WgmumVPrdfUTM9zrKsttqVLMvaU9KeIY9Vu/7BPrcHkHeBgzxCvMRIeEjORfwimNcXYkt1Qq4IRiuoENcav8FoWQ8IaGgEoyFFXu4v9G0QRJPXYLRh5mXVnmjaAiD/ejaZg81KLsFolR3StuW7/j1oMBr3wVzJevAY5xMA03Ug02MADah9nvN8uyKt+EmiTQkkTLHz2MOTPR4AAAAAAAAAAAAAAAAAAAAApIi3+YtlbM30Wj8b27a9TVJtJeIYD8fZYdv2dj/H0tC2OR0HQJEFLTgN8+uuWS/ChbvIi7g8nkv1Qq5sgtGKKUwwms8uNgX42WW8b2T4MYqC1+Kwd3pYh+sHAvAajNbkEoxW6Y6mLQDybftK6bdHm5db5b5wNJNfvU1647chgtF4xs+VzH9eWW8fgNhtes55vu8AfMRq/ExpZO3vRO2ytCPZYh4TLwAAIABJREFUtkTKw1hkc5CvUhknAgAAAAAAAAAAAAAAAAAAAJBPLpVpyKGRNdOdAfbRKWlglfSoGI8zkNNxfLMsa6KkCT43OzCKYwPwK2DBqd/AoYEID8m5tIqU65xzVYLREBLXpuwyhTeEuRfFjoLXwqgSjIaYeA1GK7WYl1UJRgMg6c9flrYvMy+3ynIN+aj2SE98Rpp8ZrDjcx/MmYwHj1U5n4CGt+JWw4IQ4fmInmVJ7XOl5+cPXbb5z30Bd21HJt8uz0KM27QQjAYAAAAAAAAAAAAAAAAAAACgcWS5oh/+1QaWdQXYR21gWe0+kzxOEBdIesHnn7siOjYAP3ZuD7hhiEK01xYG3xbps6Mu4vJ4LllN7ssJRkNYpvAtZEAGgtH8FvNGfq1EamyC0RATz8Fow8zLqj3RtAVAvi2/xX15qdz3x03n36RNzwQ7Pv3ofMn855X19gGIVfdG87ItLyXXDngz9ZPmZUs7kmtHpDyMVTcHCEbL/P0XAAAAAAAAAAAAAAAAAAAAAJwRjFZsQVIRsrwNgCJZ/0Sw7cKE0ax9UNr0XPDtkbKIi7gsgtHgwk7wcyXYKLuMxaMJPkYd+A8+N6CbXRgEoyEuJa/BaC3mZZXuaNoCoNissjz1mzr/FvAABH3kStaDWbLePgDx6lpjXta7Obl2wJs9DpD2mu28bPmPMz5eG2Lcpnl0gMMxTgQAAAAAAAAAAAAAAAAAAAAgnwhGK5ZtNdPDA+yjdpvafSZ5HABFtu7RgBt6DLMyee3OcNsjPZEXcXkNRqvTXUoyQAvJSTLwhWCj7DKFI4QJ6fRrxGTp4AsGzys1u2xAwWtheCnkJsADQTR5DUZrMgfEVglGA+BBqVw/aFqSegIGztCPzpmM91s4n4DG5uV+hWyZOtd5fvc66Y3fJtuWKHj5EY/mMQF2zDgRAAAAAAAAAAAAAAAAAAAAgHwiGK1YCEaT/n9Jb/f558yIjg3Aj54NwbYLG0bzwlfCbY8UGYqoJ8ySWtoC7M9rMFqdwkgvwTXInyQDXwg2yrAMBKNJ0jHXSTM6pCnnSodeKp3yeLLHRzqqO+uvQ4AHgvAajCZJpWHO86s90bQFQLFZ5b6QxXp2bg22f/rR+ZL1zyvr7QMQL4J/82f/j0jlkc7Lli5ItCmJaRlrXjZ6mmEBwWgAAAAAAAAAAAAAAAAAAAAA8qmcdgMQqTdrpif42diyrJEaGli22cNxRliWtYdt29t9HG6ih+P4Ztv2Wklr/WxjefkVdgDRCxzkwf+zDcs2FHGNbJeO+S/p+SukTc9Kex4j2Tul1+9235/X6z/BaI2pkmQwGsFGmWUKR0g6GM2ypPbz+v5IUqXLvK7pWon8sQlGQ0yG7+N93aZhUmXH0PlJ3icB5JdVlhTj8xL3wXzJevAY5xPQ2Nyes5FN5T2k/c92DkF741dS9wZp2LjEm1WXcdzGw1j1yIOk1r2krjWD5zeNkA78B+nZS3wcDwAAAAAAAAAAAAAAAAAAAACyLeGKfsTsrzXTB/jcvnb9jbZtb6pdybbtDZJq5+8f8li1bQdQdFWC0eCXoYjLKkltR0rvuUs6a6X07l9IYw+P7rAEozWmKsFokEt4Q9qPUW73QgpeC4NgNMSh7Uhpj/28r19qcZ6f5H0SQH6VyvWfp8LIetAWBsv855X19gGIFcFo+TR1nvP8aq+0/NZEm5KIUpN02BeHzj/2eqllT8NG3N8AAAAAQJKmTJkiy7L6/zz44INpNwkAAAAAAAAAAAAAANSRdkU/ovVizfRBPrdvr5lenOCxavcHoOiCBnlYBKM1LGMRtdM54aWL4/Fcsursi2C0YqokGYxGgWJmmT6beteF2BGM1hCqBKMhAntMeevfRx4onXCHv+1Lw5znV3sCNwlAA7EIRsNAGf+8OJ+AxkYwWj5NPGHwM89AyxYk2RIfQo7bTLtYmvVzaconpP0+LL37l1L7PPP3JjbjRAAAAAAAAAAAAAAAAAAAAADyqZx2AxCpF2qmj7Asa4Rt2zs8bn98nf3VLps5YPo4SXd7OYhlWXtIOsLHsQAUUtCC07TDaJAeQxGXU0CRl9AiryF79Qr5d7zmbT/Il2qSwWgEG2VXRoPR3K5fFLwWh5fgTa4fqOe059/qq4ye5v/61WQIRksyQBRAfpXK8fabuA/mS9aDxzifgMZGMFo+WSVp6lzpha8MXbbxaWnzC9LYtyffrkB8/CDM/h/p++Npe8aJAAAAAAAAAAAAAAAAAAAAAOQT6TIFYtv23yQ9P2BWWdIsH7s4sWb6ty7r3lNnWzcnaHAo37O2ba/xsT2AIghacJp2GA3SYyyidij68nSeRBSMtuSHUvcGb/tCfiQZ+EIBfnYZrztp34vcrl8UvBaGvdPDOlw/UI8ljTms70+QfnSpxXl+kgGiAPLLKtd/ngol40FbGCzzwWgZbx+AeFU6024Bgmo/z7xsWUdy7fAsrnEbgtEAAAAAAAAAAAAAAAAAAAAAFEvaFf2I3sKa6U952ciyrGmS3jVg1nZJ97lscq+kgZUix+3ahxfzaqZr2wygEQQO8vAYZoUCMhRxOYZ8RBmM5mFfK3/ubV/Ij0QDXyjAzyxTOELqIZ0EozUEgtEQBStk37k0zHl+tSfcfgHkn+2hzxF3MBr3wZzJ+HMP5xPQ2CpdabcAQY1slyac4Lxs2S1S1cOzdRaEfXYzbe+lzwYAAAAAAAAAAAAAAAAAAAAAGZR2RT+i92NJA6u4PmxZ1sEetvtCzfTPbNs2VoLYtr1DUm0KTO0+hrAs6xBJHxowa6ekn3hoH4CiCVpwGrZACPllCihyCgjyElrk9VzyUsj/l//tbV/Ij0qCwWh2lSLFzMpoMJrb9YtzqTi8FG+vffitf7dt6a83SL87UbpvpvTydzkfoNDDPk2GYLQk75MAssn4fDZAKe5gtIwHbWGwrH9eWW8fgHhVXYLRxr3LvAzZ0D7PeX7Xaulvbr8BlYLYntNNY0WMCwAAAAAAAAAAAAAAAAAAAADIJ4LRCsa27b9K6hgwq0XSAsuyWk3bWJZ1pqR5A2b1SPqKh8NdKal3wPQ8y7I+6HKcVkk/2tWm3W60bXuJh2MBKJrABafcuhqXqYgrYDCaV14K+Xesiu54yIZqwoEvFOFnk/FzSfte5BbsSMFrYdgegtEkacsrff/8y39IT50vrX1IWv8H6emLpOfnx9c+5EPYUOFSs/P8aq/zfAANxEP/1SrHGyhLHzpfMv95Zb19AGJVcQlGO+ifkmsHgtn/bKlpuPOyZR3O8zMn5LObqc+V+fsvAAAAAAAAAAAAAAAAAAAAADgrp92ARmNZ1r5y/u++d8102bKsKYbdbLNte73LYa6Q9CFJbbumZ0r6nWVZ/2Db9ksD2jJM0j9J+lbN9t+ybXuFy/4lSbZtL7Us6/+TdMmA2T+3LOvzkn5g23bPgGMdKun/7GrLbhvkLYANQBHZlWDbhQ13QH6Ziricir48Fd97PJfiLORHdiUdjKaqJA8hfEiWn+tOklzvhQSjFYbX4KkVP5Wm/7v08neHLnvlOunwK6USj/6NK+T1yjKcO0H78gCKw0vIRqnsLWg6cBu4FuVK1oNZOJ+AxuYWjDblE8m1A8E0j5b2+4i0/Jahy1bdKfVsklrahi5LRVzjNqaxIsaJAAAAACBJtm3rmWee0UsvvaS1a9equ7tbEyZM0OTJkzVr1iyNHDky7SYG9tprr+mpp57SqlWr1NnZqfHjx+vwww/XMccco1Ip3HeSa9eu1SOPPKI33nhDnZ2d2meffdTe3q4ZM2aE3reTxYsXa9GiRVq3bp22bNmiPffcU5MmTdKsWbM0bty4yI8HAAAAAAAAAAAAAAiG6ujkPSrpAA/rTZa0zLCsQ9I804a2ba+yLOvDku6V1LJr9vGSFluW9bSkpZLGSDpK0oSazX8lab6H9u32RUnTJX1g13SzpP+SNN+yrGckbZXUvutYA9/K75H0Idu2/+bjWACKJHDBKcFoDcve6Ty/1Ow008MOvQajEVbVkCoJB6PZFfV1o5AtGQ1Gc2NT8FoYpvterUVXSJNOlbrXDV3W+6a06Tlp3DHRtg35ETZU2NQP8np+AiguLyFXVtzBaBkP2kKNjH9enE9AYzMFo417l9TU4rwM2dI+1zkYrdojrbhNOvhzybfJl7DfexCMBgAAAABpWr9+vb72ta/plltu0bp1Dt/bSmppadHs2bN15ZVX6l3vepen/c6bN08dHR3908uWLdOUKVM8bfvggw/qpJNO6p++4oordOWVVxrXtwZ8r/ie97xHDz74oCTp8ccf1xVXXKHf//73qlaHjqPutdde+vKXv6wLL7zQd4jZs88+q0svvVQPPPCA47733Xdfffazn9UXv/hFlctlXXnllfrKV976LeYHHnhAJ554oqdjbdiwQd/4xjd0yy236PXXX3dcp1QqaebMmbriiit08skn+/q7AAAAAAAAAAAAAACil+GKfoRh2/aDkj4kaeBbFpakYyTNkfR+DQ1Fu1XSx2zbe1rRrnXnSLqtZtFESadK+ntJR2vwG/lrJZ1p2/YjXo8DoICCBqOFDXdAflUNARyWQ86rl9Air+cSwWj5FDYcqppGMBoyp2r4XLIQjGZsAwWvhWG67znpWm1exvWlwYUNRjPk6ROMBsDL/cVqirnfRJBVrmQ9eIw+E9DYTMFozaOSbQeCm3iSNGI/52VLFyTalFSYxroJ0AcAAACA2N15551qb2/XtddeawxFk6Senh7dc889mjFjhj772c9q587sf9/2ta99Te9+97v1u9/9zjG4TJLWrFmjf/mXf9HZZ5+tnp4ez/v+9re/rWOPPVb333+/cd+rVq3S/Pnz9Z73vEdr1qwJ9HeQpJtvvlnt7e265pprjKFoklStVvXoo4/qlFNO0Sc/+Ulffx8AAAAAAAAAAAAAQPQyUNGPuNi2/RtJb5d0g6RNLqv+UdLZtm1/3Lbt7QGOs8227Y+pLwTtjy6rbpT0PUlvt237Hr/HAVAwgQtiuXU1LFMAh1Nwmafie69BIR72VRrmcV9ITsiiv0rSwWgZDwloWKbPJQv3IlPBK+dSYfgJnurZbF7WNDx8W5BfYQOJTAGxpuBIAA2kTp/DauoL6IgzaJogq3zJej816+0DEC9TMBrPU/lRapKmftJ52YYnpC0vJ9seI8OYZegfhDFtTzAaAAAAAMTppptu0kc+8hFt3bp10PwDDzxQZ5xxhj760Y/quOOOU1PT4LHyH/zgBzrjjDMyHY72zW9+U1/+8pdVqfSNxb/tbW/TBz/4QZ1zzjk68cQT1draOmj9hQsXav78+Z72/a1vfUv/9m//1r/v3Q477DCdeeaZmjNnjmbMmNH/3+3xxx/XnDlzhqzvxeWXX665c+dqy5Yt/fMsy9K0adN0xhln6OMf/7g+8IEPaMKEwb8zfcstt+i0007L9GcEAAAAAAAAAAAAAEVXTrsBjca27SkJH2+tpPMty7pI0vGSDpC0t6Ttkl6X9Kxt28siOtbPJf3csqypko6StI+kPSStlrRC0mO2bfMTagD6BC1gDhvuIEmvXC8dcmH4/SBZpnOm5NSdiTAYzUshf3mEt30hOXbYor+EiwYJdcgmUzhCFPeisKyS4byh4LUwqn6C0VxysDc8KbUdEb49SFfg+1rI4nrHfpb8BfcBKKZ6IVLWrutHrMFoBFnlS8Y/L57JgMZWNQWjtTrPRzZNnSv95WvOy5Z2SEcalhWBMViNcSIAAAAAiMtzzz2n888/X9XqW2OfRx55pK6//nrNnDlz0Lrr1q3T/Pnz9f3vf79/3j333KPLL79cX/ta9p5XFy1apEceeUSSdNZZZ+nqq6/WtGnTBq2zadMmff7zn9eCBQv6533rW9/S+eefrylTphj3/fTTT+uLX/zioHknnniirrvuOk2fPn3Q/HXr1unyyy/XDTfcoIcffliLFy/29ffo6OjQVVdd1T9dKpV04YUX6pJLLtH+++8/aF3btnXXXXfpoosu0sqVKyVJ999/v+bPn6+rr77a13EBAAAAAAAAAAAAANEgGK1B7AokeyChYy2TFEnYGoACC1xwGjLcQZL+9M9S60Rp/78Pvy8kxxQQYzl0Z6IMLSp5KOQvNUd3PEQk40X3tSjCz6YsB6OZ7ocEhBSH3et93d7N5mVP/qO04qfSCbdLLW3h24V0BP1/21gc73V7Qz+I+xaAusFou64fcfabuBblS9b7qVlvH4B4VQzBaKVhybYD4Yw+RBp/nLT+D0OXLbtZOuIqb2O9cQr9Yw4mhj4X9zcAAADAkb1zp7RuVdrNaAwT9pVVLuZryp/5zGfU0/PW7wTPmjVL9957r0aMGPrjihMmTNANN9yggw46SJdeemn//GuuuUbnnHOODj/88ETa7NXGjRslSZdddpmuueYax3Xa2tr0ox/9SJs2bdJdd90lSapUKrrxxhsHhZHVuvDCC7Vz51vvgH34wx/WbbfdprLDeTJhwgR973vfU3t7uy677DKtX7/e899hxYoVOv/88/unhw0bpjvvvFOnnnqq4/qWZemss87SzJkzdfzxx+vVV1+VJH3jG9/QP/3TP2nq1Kmejw0AAAAAAAAAAAAAiEYx3zgAAGRf0ALmsOEOuy2/lWC0vLH9BKN5KHDzfC55KOQfdbDHfSExeSv6y1t7G4bpc8lAMJoxZCSuAlskzhQI6qTHJRhNktbcL/3qMOl9f5BGTgnVLKQkUN85gn6zUz9LMvfLADSOev3XMdP7/unl2SyuNiBbMv95Zb19AGJVNQRTNxGMljvt85yD0Tpfl9b8Xpp0SuJN8iZsqLUpQJ9xIgAAAMDRulWy57wt7VY0BOtnL0uTpqTdjMg98MADeuaZZ/qnR48erdtuu80xFG2gSy65RA899JB+9atfSZKq1aquvfZa3XTTTbG2N4hZs2bp6quvrrvef/zHf/QHo0nS73//e2Mw2lNPPaUnnniif3rSpEm66aabHEPRBrr00kv1u9/9Tvfdd5/H1vcFmnV2dvZPX3vttcZQtIEmTpyon/zkJ/q7v/s7SX1hb9dee62++93vej42AAAAAAAAAAAAACAaGajoBwA0pMAFsRHdulYtjGY/SI4pIKbkUGhvDAwatJK343oKWSNrNnPCFt0fnfQLjRQpZpIpiCjOgA/PTAWvBDoUhp/gqd46wWiS1LVaev5/BW8P0hUkiCyKQOGSKRgtYMgxgAKp0+c48NN9/4y130S/J18y/nlxbwMam58fZEC27T9HKhkC7ZYuSLQpzuIaAzQ9/zHmCAAAAABx6OjoGDR94YUXap999vG07X/+538Omr711lvV3d0dWdui8uUvf1mlUv33r6ZPn64pU6b0Tz/33HPGdW+99dZB0//8z/+sMWPGeGrP/PnzPa0nSdu3bx8UNtfe3q7Pfvaznrc/9thjdcIJJ/RP//KXv/S8LQAAAAAAAAAAAAAgOgSjAQDSEbTg9JALo20H8sMYUORQoJh0MBoF1BkUsuhv8unRNMMrwqyyyfS5ZCEYzXido+C1MEyBoE4qHl+UX/7jYG1B+gL1NSIIRjNd7/ycnwCKya3/evAF0sGf2zUR4/BzleewXMn6M0/W2wcgXqb+LcFo+dMyVtrvQ87LVi2Uet5Mtj2ehX1+IxgNAAAAAJL06KOPDpr+xCc+4Xnb6dOn66ijjuqf7urq0tNPPx1Z26IwfPhwzZ492/P6hx56aP+/79ixQ9u2bXNc7/HHHx80PWfOHM/HmDVrlufwuUcffVSdnZ3902effbankLeBTjrppP5/X7FihVauXOlrewAAAAAAAAAAAABAeASjAQDSESTcYfg+0vjjom8L8sH2U6DooYtjeQ1G87AvwkGyJ2xR+8j2aNrhGUWKmWQMZMzCY5ThGkagQ3GY7nuO6/K5F16QvnMU1ypTEISf8xNAMbldl9520Vv/HmugLPe/XMlCf+Wk+6Qpn3ReRuA50NhM/dsSwWi5NHWu8/xKp7Ty9mTbMkRMY4CmsW6bMUcAAAAAiNqmTZu0ZMmS/umxY8cOCgbzYubMmYOmn3rqqUjaFpUDDzxQLS0tntdva2sbNP3mm87B5H/+85/7/33s2LE66KCDfLXrmGOO8bRebXDdPvvso+XLl/v6U/v3X7p0qa+2AgAAAAAAAAAAAADC441+AEA6ghSczr6fYrRG5qdA0VMQiNdgNA+F/BRQZ1CIovsx06NrhldZCAnAUMZgtDgDPjwyXucoeC2Maq/3df2EVFUrUikD5zD8CdTX8NjXcd2F4Vyh7wPArf86sJ8SZ6As16J8SfuZZ2S7NOkUacWtzsvTbh+AdJl+9MAUFIxs2/sUafgkqfNvQ5ct65AO+ofk21SP1x/xMGKcCAAAAACSsm7dukHTBx98sCyfz3XTpk0bNL127drQ7YpSbdBZPc3NzYOme3uHfte9fft2dXV19U/vv//+vtvldZvXXntt0PTFF1+siy++2PfxBtq4cWOo7QEAAAAAAAAAAAAA/sVYmQYAgAu/BafNY6Qx0+qvh+LyU6CYeDCaj0AaJMMOUfQXZ3iDCUX42WT6XLIQjGa6hnEuFYefe4uvYLRu/21B+tIKRjOFEpv6ZQAaiFsw2oC+kmUpkuuRE/o9OZP257XrOc8Y+pl2+wCkys8PMiD7Sk3SlE86L1v3qLT11WTbM1CYMUs3pgJ87m8AAAAAELlNmzYNmh4zZozvfdRuk7XQrVIp+vdmNm/ePGh61KhRvvcxevRoT+tt2LDB977r2bp1a+T7BAAAAAAAAAAAAAC4441+AEA6fIc7xFRIjfwwnTOORc0RvqDnJSSLYLQMClP0l0Z2cExFkQjHeN3JQL60sQ2cS4XhJ3jKz7qVTqk8wn97kK4gwWhRXKucAmilgEFtAArFLWSj9vpjNcXzzETQR76k/XntDowx3R+5twGNzXSfMvWHkX3tc6UXv+68bNnN0hFfTbY9dYX9/sO0PeNEAAAAgKMJ+8r62ctpt6IxTNg37RZEzq4JvbZMYdU+RLGPrBs2bNig6Z6eHt/78LpNkH3XU/u5AwAAAAAAAAAAAADixxv9AIB0+C04bYAXwFCHqUCx5NCd8RIE4vWccgxeq0EBdfaEKbpPI/Qq7ZAAOPMVyJg0wzWMc6k4/ATI+Fm30uW/LUhfoL5GBP1n0/WOUFgArn2OpILReA7LldT7qbuD0Ux9+bTbByBVprBpgtHya8xh0p7HShufGrpsaYd0+JXZCL6PDMFoAAAAgB9WuSxNmpJ2M5BTe+6556DpN9980/c+ardpa2sL1SYnlUq2xtBr/46bNm3yvY+NGzd6Wm/8+PGDph9//HEdd9xxvo8HAAAAAAAAAAAAAEhXkd74BgDkie8CZoLRGp6fAkVPRW1ezykPxWOmtiE9eQtGo0gxm7IcjGY8TzmXCsNPgIyf+1Cl039bkL4gfY0o7mdOAbQSfR8A7v3t2utPbP1rgqzyJeXPqz8c3XA+ErQHNDY/P8iA/Gif6zx/x0pp7UPJtqWfYdwm7A/DmLa3GScCAAAAgKhNmDBh0PQrr7ziex8vv/zyoOmJEyc6rlcuDx6b2LnT+3d0QYLH4tTU1KTJkyf3Ty9dulQ7duzwtY9FixZ5Wm+vvfYaNB3kMwIAAAAAAAAAAAAApI9gNABAOvyGFoUtDEL+mQoUnYLRPHVxPJ5T1d7661BAnUFhiv5S6CKHCXJDfEyfSyrhebVMBa+cS4XhJ3jKT4hapct/W5C+QH2NCPrPpiBI+j4A3K4DQ4LRYgqVrXItypXU+6m77oumvnzq7QOQKj8/yID8OOBjUqnFednSBYk2JX6m5z+C0QAAAAAgam1tbTrwwAP7pzdv3qwXX3zR1z4ef/zxQdPHHnus43qjR48eNL1582bPx/jLX/7iq01JmDFjRv+/V6tVPfSQ9+DyjRs36s9//rOndWfOnDlo+r777vN8HAAAAAAAAAAAAABAdmShoh8A0Ih8hykQjNbwTOeMU5G9l9Air2F7noLRfATSIBlhitrTCL2iCD+b/Fx3kmYMdKDgtTC83H92617vfd1Kp/+2IH1BgsiiCBY2BUHQ9wEgt/5rQsForm1A5qT+zLM7GM0U+pl2+wCkytS/LRGMlmvDxkmTz3Be9todUu+2ZNsjxTduYxzPZJwIAAAAAOIwa9asQdM//vGPPW/74osv6umnn+6fbm1t1dFHH+247sSJEwdNL1682PNxfvOb33heNyknn3zyoOkf/vCHnrft6OhQT0+Pp3Xf+973qqnprbHgX/7yl1q7dq3nYwEAAAAAAAAAAAAAsoFgNABAOghGg19+ChQ9BVt5DUbz8FJdlXCQzMlbMBpFitmU5WA04zWMQIfC8BM89aaPX/uudPlvC9IXJBgtiiEfYzBakPYAKBS3/nZtXymu/jVBVjmT8ue1OzDUGDDMvQ1oaKbnL1N/GPnRPs95/s7tfeFomRH2+w/D9vSXAAAAACAW55133qDp6667TqtXr/a07Ze+9KVB0x/72Mc0bNgwx3WPOuqoQdN33323p2Pce++9evLJJz2tm6Rzzz1Xo0aN6p9euHCh7r333rrbvf766/rqV7/q+ThtbW0699xz+6e3bdumSy65xF9jAQAAAAAAAAAAAACpIxgNAJAOvwWnFsFoDc8UPuZUoBhl4b2XYDQKqDMoZ8FoFClmk+lzyUIwmjHQgZC9wvATjOZHpTOe/SJeQfoaUfSfTde7uM5PAPnhGoxW00+Jq+/Ec1i+pP7Ms+u8NN7b0m4fgFT5GXdEvkx6v9Q60XnZ0gWJNqVPTOM2xuc/xokAAAAAIA6zZ8/WkUce2T/95ptv6pxzzlFnp/t3sddee63uuuuu/mnLsvSv//qvxvWPO+44jRgxon964cKF+tOf/uR6jL/+9a+aO3duvb9CKkaNGqWLLrpo0Lw5c+bogQceMG6zfPlgP5p6AAAgAElEQVRynXLKKdq8ebOvY1155ZWDAuf++7//W1/4whdUqfj7bmHx4sV6+OGHfW0DAAAAAAAAAAAAAIgGwWgAgJT4LTiNIRiNotd8MQVwlJwKFD10cbyGhVR7669DOEj2hAqHSqOLTJFiJpnCNtIIzxvCdA3j3lYYpsL8sAhGy6dA/dYI+s+O/SzFd34CyJEsBKPR78mVtD+v3WMAxoBhgvaAhuZr3BG5UmqWpnzCednaB6Vty5NsjYuwz2+G7QnQBwAAAABHq1ev1vLlywP92e3GG29US0tL//SDDz6oE044QU888cSQ461fv14XXnihPv/5zw+af9lll+mII44wtnPUqFH66Ec/2j9dqVR0+umn67777huybk9Pj374wx9qxowZWrNmjdra2vz8J0nM/Pnzdfjhh/dPb9myRe9973s1Z84c/fznP9fzzz+vl156Sffdd58uvvhiTZ8+XS+++KJaW1t15plnej7O1KlT9YMf/GDQvK9//euaNWuW7r77bu3caf6+c/ny5br++us1e/ZsTZ8+Xb///e/9/0UBAAAAAAAAAAAAAKHxRj8AIB2+C05jCEar7pSaWuqvh2wwBXBYDt0ZT6FFXoPReuqvQwF1BoUouk8j9CrtkAA4MwajxRTu4Ycx0IGC18KIK3Sz0hXPfhGzAPeJKO5npusdfR8Abv3XIcFoMfWvuRblS+rPPLvHAAznY++bibUEQAb5GXdE/kydK730bedly26WDr88wcbENW5jGutmnAgAAAAAnJxzzjmBt7V3fSd/1FFH6brrrtPnPvc5Vat9459PP/20ZsyYoYMOOkjTp09Xa2urXnvtNT355JNDgrhOOeUUXXXVVXWPd9VVV2nhwoXavHmzJGnt2rV6//vfr4MOOkhHHHGEhg0bpjVr1uiJJ57Q9u3bJUl77723rrnmGs2dOzfw3zMuLS0t+vWvf63Zs2fr1VdfldT33/T222/X7bff7riNZVm6/vrrtXLlSt11112D5rs577zztHr1an3pS1/q/4z++Mc/6oMf/KBGjBihd77zndprr700fPhwbd26VevXr9fixYv7/1sDAAAAAAAAAAAAANLFG/0AgHRUfRYw13mRKRB7pySC0XKj2u083ymwI+lgNFPxJNITpug+jWC0MEFuiJHhc8lCMJrxGsa5VBjV3nj2W+mMZ7+IV6D7WgT9Z1MQRFzBfQDyw/W6VBuMFlffiX5PvqT9ee26L5rOxw1P9J3XqTwPAkidqX9b4mvUQmg7Qmo7Utr03NBlyzqkt8+P5/sHP8IeP+32AwAAAECD+sd//Ee1tbXpU5/6lLZt29Y//9VXX+0P/XLy6U9/WjfccIOam5vrHmPy5Mm64447dNZZZ2nr1q11jzF16lT9+te/1po1a3z+bZKz33776ZFHHtEFF1yghQsXuq47btw4dXR06PTTT9cXvvCFQctGjRpV91iXXXaZjjjiCH3qU5/S6tWr++fv2LFDjz32mKf2trW1eVoPAAAAAAAAAAAAABAtqnwAAOmwfQajRRHsMKQNBDrkxpuLzcucChS9FN57LRbzEkzDuZRBdohtU+gi22Hai9gY71UZeIwyBTZwLhVHXPeWSlc8+0W8ggSjRVEYbwqC8N2XB1A4bteB2n5KXMFoYcKQkby0P6/d90W34LP1TyTTFgDZY3r+MgUFI3+mznOev22ptO7R5NoR27iNy/2NsSIAAAAAiNXZZ5+tJUuW6KKLLtL48eON6zU3N+t973ufHnvsMd14442eQtF2mz17tp588kmdeeaZsgzfAU6YMEGXXnqpnnvuOR166KG+/x5J23vvvfWLX/yiPyDtsMMO09ixY9Xa2qr29nadfPLJ+v73v68lS5bo9NNPlyRt3rx50D7GjBnj6Vinnnqqli1bpuuvv15HHnmk8b/hbs3NzZo5c6auvPJKvfLKK7rooouC/SUBAAAAAAAAAAAAAKHwRj8AICV+C2JjCEarEmaVG0s7zMscCxS9hBZ5PKf2/aD0yn+5r0M4SPaEKbp3K5SPDaEOmVQ1/L8dV7iHL6ZrGOdSYcTVT6l0xrNfxCxIIXsE9zPT9W7zIun5K6XJ/0Mad0z44wDIH7f+9pD+dEz9a57D8iX1YLSmwf908tK3pQm3J9MeANliev4iGK04pnxcevYS5xC8ZR3SxBOSb9MgIb//cCvotqsZGcsCAAAAgPQsX7481v1PnDhR3/nOd/Ttb39bTz/9tF566SWtW7dO3d3dGj9+vPbdd1/NmjVLo0aNCnyMadOm6c4779T69ev10EMPadWqVdqxY4f22msvTZ06VSeccILK5bfGMk488UTZPsKy/axba8GCBVqwYEGgbWfNmqVZs2Z5Wnfx4rd+WNOyLE2cONHzcVpbW3XBBRfoggsu0MaNG/XHP/5Rf/vb37Rx40b19vZq5MiRmjhxog455BBNmzZNI0aM8P13AQAAAAAAAAAAAABEizf6AQDp8FvAXOeXGoO1gWC03Hjx6+ZlTgWKUQZbTXyP1NIm9Wwyr8O5lD1pB6Mde4P01Oe8rx/iBVPEyXAelTJQTGo6TzmXiiOue0ulK579Il5B7mtR9J/dgiBe+Ir0wleld90oHfip8McCkDNuwWhN7tNRSTtoCz6l/Hk1tfb90+15b+vLybQFQPaYnr9KfI1aGK0TpMmnS6vuGrpsxc+ko78rlfNc8Oz2/MdYEQAAAAAkpVQq6dhjj9Wxxx4b2zHGjx+vj3zkI7HtP6u2b9+uZ555pn/6kEMOCRw0t+eee+q0006LqmkAAAAAAAAAAAAAgJhEmBoCAIAPfoPRXAt7AqoSZlUITkX2noKtPJ5TpWbp3XdJ5ZHmdewqYURZEyokIYIu8n4fkvaYMnhe82iXDQh1yCTjvSoLj1GmaxjnUmHE1U+pdMazX8Qr0H0timC0emFGtvTMxVKlJ/yxAOSL63Wppq8UV6is73EFpCrtILuSh2C0OMaeAOSD6fnLLSgY+TN1rvP8nVul1xYm1AjTGHLYexDBaAAAAACAYuvo6NCOHTv6p4877rgUWwMAAAAAAAAAAAAASEIWKvoBAI3IbwGzp6Arv23ojX6fSF7JoUDRy/li+Sg2m3iC9OHV0vR/N69DUX7GhCj4i+J60zpROvkh6aDPSXseLR34j9LJD5vXTzskAM5M/1/XDQpKgOk8JaSxOOLqp1S64tkvYhbgPhHF/cypn1Wrd4u0+v+GPxaAfHHrvw65/sQ0BE0fOl/S/ryadgWjuQbHEIwGNCzbEIzmpT+M/NjndGnYOOdlyxYk2pTIuY11M1YEAAAAAMi5VatWaf78+YPmnXfeeSm1BgAAAAAAAAAAAACQFILRAADp8F0QG0NxatVQ8IZ8sZwKFL10cXyeU+U9pH3+h3k5wWjZEqboPqogxj32l/7ue9Kpf5Le9QNp1MHmdSlQzCbTeZSJYDTTNYyAkMKIq59S6Yxnv4hXoPtaBP1nx36Wg82Lwh8LQM64BaPVXH9i6zvR78mVrASjVbrTbQeAbDIFo3ntDyMfmlqkAz7uvGz1/dL21xJoRFxjgG7Pf4w7AgAAAACy5Y477tC///u/a926dXXXffbZZ/Xud79bGzdu7J/3jne8QyeddFKcTQQAAAAAAAAAAAAAZABv9AMAkpdWsEMtU8Eb8qXk0J3xFGwV4JxyK+i3d0oa5n+fiEkGgtGG7thlGaEOmWQKPIztHPHD0AZC9oojrn5KpSue/SJeqQWjeQwzcuqPASg2Y4CsQx8lrmA0wqlzJivBaITEAnBgCqamn1s87fOkV/7LYYEtLb9Fmv6lpFvUxxiA73V7t7EqxooAAAAAANmydetWXX311frmN7+pU089Ve9973v1jne8QxMnTlS5XNbGjRu1aNEi/epXv9Ldd98te8B7EC0tLero6Eix9QAAAAAAAAAAAACApPBGPwAgeUGKl8MWBjkxFbwhX6yAwWhBzim3YkjOp2wJFCCzW0yhV27nJWFW2WQMRosp3MMP0zUs1LmPTIktGI0wkHwK8P92FCGOXoMgnPpjAIrN+FzvFIwWU/+afk++pP15eQlGi2PsCUD22bb5+Yt+bvG0vVMa83bpzReGLlu6QDrsi/HeD2IbA3Rpc9r3YAAAAAAADHp7e3X33Xfr7rvv9rT+8OHDdfPNN+sd73hHzC0DAAAAAAAAAAAAAGRBTFVpAAC4CBKM5lbYE1RcgSNIlmNAUVzBVi7FkIHOa8QnRJFhXMENrvulQDGTshyMZrzOEbJXGHEFbla64tkv4hWoeD6C/rPX6x2BEUDjMQVsOF034uo7EfKRL2l/XiUPwWhxjD0ByD636xP93OKxLKl9nvOyra9IG55ItDlvCXsPctuesSIAAAAAQLaMHTtWTU3+vjs4/vjj9fDDD+vss8+OqVUAAAAAAAAAAAAAgKzhjX4AQPICFcMSjAaDkkN3xlOwVYBzyq2gn/MpW8IU3ccVjOZ2zqUdEgBnfgI/kmYZzifOpeKo9sazX9cwEGRXgP+3o7ifeQ2CMF2TABSXsZ/kcO2JLRiNcOp8Sbmf2rQrGG3nDpeVuJ8BDcltTM9p3BH5N+Vc6bkvOPclli6Qxs+I8eAxhZS5PZMFCtoGAAAAACA+Z511ltasWaN77rlHjz32mBYtWqQVK1Zo48aN6urq0vDhw7XnnnvqgAMO0AknnKDTTjtNxx9/fNrNBgAAAAAAAAAAAAAkjDf6AQDJC1K8HEfYQpUgq0JwCuyIKxjNrRiSovxsCRUOFVMwmut5SYFiJpn+v44tPM8PUxs4lwojrsDNSlc8+0W80goW9hpmVOkOfywAOeMnGC2mvhOBsPmS9ue1Oxit4hKMZscUTAsg29yevbwGBSNfhu8tTTpVeuPXQ5et+Kl09Hfeum8kJuzzm9v2jBUBAAAAALJn3LhxOvfcc3Xuueem3RQAAAAAAAAAAAAAQEZloaIfANBoAgVIxRCMFlfgCJIVNBgtSNieWzgIQXsZE6LgL7bQK5dzLu2QADgzBqN5DAqKk+kaxrlUHLEFo3XGs1/EK8j/21EEC3sNguC8AhqP8brkFIwWU9+JcOp8Sbuf2h+M5nLP2rk9mbYAyBa3MT23H0lAvrXPdZ7f+6a06q4YDxxTSJnr8x/BaAAAAAAAAAAAAAAAAAAAAADyh2A0AEDyghQvRxHsUIsgq4JwKq720sUJEozmUgxp9/rfH+ITpug+rmA0ChTzx3QeZSEYzXid41wqBLsaX3hIpSue/SJegYLRIrifeQ2CIBgNaDzGfhLBaDDJSDBa03DzOgSjAY3JLZTaa1Aw8mfyGVLzWOdlSzuSbYsUwfcfLs9/aYeTAgAAAAAAAAAAAAAAAAAAAEAABKMBAJIXqBAnhmA0t6I35IdTUbOnIJAA51R5hHlZ7xb/+0N8QgWjxRh6ZTo3KVDMJlPYRlzheX6YCmY5l4ohzqAXAqxyKqX+s9d7IucV0Hj89JPi6jv1bIxnv4hH2v3U0q5gtGn/al6nSuA50JDcfjyDYLTiamqVppzjvGz1vdKON5JtT1j8IAMAAAAAAAAAAAAAAAAAAACAgslART8AoOEECvuIIRjNregN2dI82rysZezQeV4K712LxUzHGifjudi11v/+EKMwwWhxdpEJs8oVY+BHjOF5npnOU4pdCyHOUI5KV3z7RnzSChZ26mc5IRgNaECG65JjMFpMfaeu1fHsF/FI+5mnaVcw2rgZ5nXSbiOAdLj9eEaJYLRCmzrXeb5dlZb/OJ5j2qZxm7DPby7bG48J/D/27jxejqrO//+7+y5JLiEJkIUlkIWwRnYYFtkRdBgEv1+ZEXAUZpRBdBzUUb8wuMCMgqM/BxzRr8go4AiI4yiRr05QJICIgIQlskbMiiRkD1lu7tb1++Nyk7vUOV3bqTrV/Xo+Hnk86KquqqN1uuqc6vt5NwAAAAAAAAAAAAAAAAAAAOAvgtEAAPlLEoyWJMSqbjscho4gW6bi5AM+Hr7cVeF9tUUaNTF8HcFofklV8OdwiGwMXaNA0U+mwA8PgtFM90XCHBqDrTA/LQKsSirBfSKLoM/xs6O9j8A9oPmYxhxh4yRXY6fOFW72CzeKHqcOBKO1tEtH/bvhTczLgKZkm39VCEZraLv9mTTuwPB1i28rWaCY7fuTMv3vAAAAAAAAAAAAAAAAAAAAAIB+BKMBAPKXJBjNWtiTUM1h6AiyVTOE2O3+NsMGUYY4CfvU6MnhywlG80yKovssgmTMOw9fXHRIAMLVDPcrp30kKkL2GlYQSEvudLd/gtHKKdF9IoPxc7VNat+1/vvoV+Xy2n3SEx+S5n9MWv1o/fe/Okd67APS/I9La55w3z6Ug/G6FDZGcTR26l4v9XW52Tcc8CQYTZJ2mh7+HuZlQHOyPSOuEozW0CoVacbF4es2viCtm+/goKbnNinnb7YflilVwBsAAAAAAAAAAAAAAAAAAAAA9POhoh8A0GyKCnYYLiAYrTRM56raFr48SmiRrVjMxhSM1kUwmlfSFLS7DL0y7psCRS+ZgjwrLfm2I7QNhOw1rGf/Sfrd5e7237fN3b7hTpLPdtKxznB7vL3+ewhGK4+F35QefIf0ys3Sy1+T7j9FWn6P+f0v/Kv08LukRd+VXr5R+sWx0qv35tde+Mt0XQob77ocO21b6W7fyFbR49TBwWjGeyRjaaAp2Z4RVwhGa3gz3md+Xrf49nzbkopt/sdzRwAAAAAAAAAAAAAAAAAAAADlQzAaACB/pqAZm6yCHQar9WS/T2QvCMx9Jk0wWtKwvVGTwpdvIxjNL2kK/lwOkQ37LjokAAamwA8fgtEI2WtIXWulF7/s9hi1bqmWYCyGgiW5T2R0P6u2139PL8FopVDrlRZ8ZuiyoFf6/efC39+3Tfr9tSOXP3yutPHF7NuHkokRjFZ1GYy22t2+ka2i5zzVUYNfhL+n6DYCKIbtGbEP83+41bGXNOVt4euW3Cn1dWV8QEfPbWzPw7m/AQAAAAAAAAAAAAAAAAAAACghgtEAAPlLEoyWNMTKhmC0crAWJ7YalrsMRpsYvrx7fbL9wY00BX+R+k/SfRv6HQWKfjLdr7wojKYvNaTF38/nHNa2uT8GspWkX2QVLNwyqv576FPlsOrh8DHrht9LnStHLv/TvVKfIfTu0Yv6A4zRvIzXpZCxtGnelgXm9SVSdDDaoKBP05yPsTTQnGqW4KuW0fm1A8WZeUn48u510ms/y6cNqedvtu0ZtwMAAAAAAAAAAAAAAAAAAAAoH4LRAAD5S1RoGlLY85bPpmsHAQ7lEPSa11XbTCvq7zdpsVnVEA5Ss7QT+fM1GM3YNylQ9JIxyNODaZSxn9KXSm3jc/kch3tW+WQ1fk5icJCMSa8hPAt+6fyTeV3PGyOXbVlmfv/6Z6TVv0nfJpSXMUA252C0osO2EF3RoWPVQf2QsTSAwfosz4gJRmsOU98ltY0LX7fotmyP5SxcmGA0AAAAAAAAAAAAAAAAAAAAAI3Fg4p+AEDzSVAMGxZiNe0iqW18+Punv6/+Pm1Fb/BHrce8zhSMVmlx0xZpaDH1YLYAN+QvVdG9wyGyKZCv6JAAhDOdF5fXmMjoS0iBe1b5JPlsZxX0GSUYrY9gtFKwhVOFhVzVu9+9/LV07UG5GcdJIdce0xwqk3aYgmzhnaLHqZUIwWhFtxFAMUzPiCtVx+Ge8EbrGGmf94Sve+3nUufrOTQiZbC17UdAnIWxAQAAAAAAAAAAAAAAAAAAAIA7BKMBAPKXqNA0pLBn/IHS6fdLU9+1Y1nrTtLsz0jHfbf+LglGKwdbeIupODFSEEjCYjNTGBshM55JUfCXVZBMKNO+KVD0kiloo+pBMJqxn9KXyi1lIXRUNe5Z5ZPks51RfyIYrXHYgs5Cg9HqBIFsfiVde1ByMQJkXYbKEIxWIgWHjg0J6DONpQlGA5qS6RlxdbQ9bAqNZebF4cuDPmnpnRkeyNVzG1tf5VkRAAAAAAAAAAAAAAAAAAAAgPLhp84BAPnLKhhNknY7Wjr5J8naQTBaOdR6zOtMIWW20Icdb0rUHGNRPyEzfkl0nXmTy2A0077TtBfuGIM2fMiXNlzD6EuIgjDP8kny2c7qflYdVf89BKOVg22MXOsaucw01h4QELDQ1EzXpbBrT9VlMBpjn9Io+lwNnsubgo6KbiOAYpieEbeMzrcdKNbEE6Sxs8LDfxfdLh34cccNSBvCRzAaAAAAAAAAAAAAAAAAAAAAgMbiQ0U/AKDpJAl2SFsYFNaMkOJ/+McWjGYKKYsSjJa0T5mOSciMZ3wNRjP1OwrwvWQKRosUvuiYsZ9S7FpqLsY7YbhnlVCGwcJxtbTXfw+Bw+Vgu3+FncN6YVY+3A9RHGOAVMgYxTSHyqQdpiBbeKfo0LEh/dAy5yP0EWg+BKNB6p+Pz7w4fN2GZ6X1z2R0IEf3GdvzzKLvwQAAAAAAAAAAAAAAAAAAAACQAMFoAID8JSpcdhAUQoBDOdjCW6pt4csjhTQk7FOmgIgaITNeSVXw53KIbNg3xfd+MvUjL4JgDNcwil0RBfes8kn02c5o/FyNEozWmc2x4JYtfDFsblQvzMplmCz8ZxwnEYwGg6LHqYPn8oTHABisRjAa3jTjfeZ1i253e+y0QenW7XnuCAAAAAAAAAAAAAAAAAAAAKB8qGAEAOSvyGCHwQhGK4daj3mdMRgtyhAnYZ8yFfXbAtxQgBQFfy5DPkxFihTf+8kUtOFDEIyxDRS7IgLbvRV+SnKfyOpaFTUYjZBP/9lCEZMEo7mYo6E84oyTTOHSmbSDcXR5FHyuKhGD0RhPA83H9IyYYLTms9M0acrp4euW3OH5XNoyNmeuBgAAAAAAAAAAAAAAAAAAAKCEPKjoBwA0nUTBDgSjNS1bwZkprKHS4qYtkrmon2A0v6QJSHAaekWYVakYAz8cXmMiI2QPKXDPKqECx8/VUdHeV+vK5nhwxzauDpsb1Q2z4p7T3EznP2S8WzdkLwXTeA3+KXqcOuSaZpnzFd1OAPkzPSOuEozWlGZcHL68a7X02v+k378xpCzt/M22Pc8dAQAAAAAAAAAAAAAAAAAAAJQPwWgAgPwlKjIlGK1p2cJbqm3hy6OEFiUNCzEV9dcImfFKqmJ2h0NkU+gaxfd+Mp0XH4LRjAF+FLuWm4PxThiC0cqnyPFztT3a+/o6szke3AliBqPVC4u1Ba2h8cUZJ9UN2UvTDoLRSqPoOc/gubz1eQBzM6DpmJ4RtxCM1pT2ebfUOjZ83eLb821LHNZ7G8+KAAAAAAAAAAAAAAAAAAAAAJSPw6o0AABMPAlGqxGMVgq2wIU0wWhJ+5SpqN8WNIECpCj4qxcCkoqp31F87yVT0IYPwWimvlR04ATiqfVJ6+ZL65+Wxh0g9W7O6bgEo5VPgvtaVvezyMFojK29Z/vsh82N6t1TCFlsbsZxUsi1xxQunUk7GPuUh0fBaLYwbPoU0HwIRsNgrTtJ+5wvLbpt5Lo/3St1rZVG7ZbiAK5CyizPugOC0RrS8nukZXdLLR3StPdIe5xVdIsAAAAAAAAAAAAAAAAAAACATBGMBgDIX5Ii04qDYDTCG8rBFoxmKrCPFASSsE+ZjknIjF/SFLO7DEYz7ZsCRf8EgYzFqk7D8yKiL5Vf7xbp1+dLK+bmf2zCjMon0X0to/FzS9RgtM5sjgd3bEG+YXMjU/DVAMa/zW3TK+HLQ4PRHIbK1uun8EfRgWODQ85t4/mi2wkgf6YfzyAYrXnNuCQ8GK3WIy25Szrg7x0cNOX8jXtbc3npa9JTH9vxetGt0nHflWZeUliTAAAAAAAAAAAAAAAAAAAAgKx5UNEPAGg6RQY7DNbXlf0+kT1beEu1LXx5lML7pGF7pmA0Qmb8kqrgz+UQ2dTvKFD0jq0PuQz3iIy+VHoLbyomFE0izKiMihw/VyMGo/USjOY9W+BwWLBd3WA0y/7Q+Fb/Onx5+64jlxGMBqn4UJZKxGA0UzgygMZl+vEMgtGa1+STpJ2mh69bfFu6fTsLtLfN/7i3NZRan/TctcMWBtLv/7n48RYAAAAAAAAAAAAAAAAAAACQIYLRAAAFSFCckTTEytoMQ9Eb/FLrNq8zFdhbi5zfNO7AZO2pGoLRCJnxTIoisCj9J+t9OyuKRGK2kA0fgtHoS+W39AfFHZswz/JJUtyc2f0s4jg8LFgLfrEGo4XMjer1O64lzatns/TGS+HrJp80chnBaJCKD+qoRgxGK7qdAPJnCkarjsq3HfBHpSrNuDh83br50obnHBwz7fcfBKM1jY2/l7rXj1y+ZbG08cX82wMAAAAgV8uWLdNnPvMZnXTSSZoyZYra29tVqVS2/7vtttuKbiIAAAAAAAAAAAAAAJkhGA0AkL9ERaYOgtFMRW/wS19X+PKW0ckLxqZdKLVPSLZtxRCMFlaMhOKkCYcqIhgtTZAb3LAGo/kwjTJd/+hLpbH+meKOTZhRCRU4fo46dicYzX+xg9HqBE5xLWlem18xr5v6rpHLXI6dCLEqkYLP1ZC5vO0eSZ8Cmo7pGXHL6HzbAb/MfL953eLbU+zYUUiZ7Tk5IfqNpWezed3mRfm1AwAAACiZ6dOnDwkQe/DBB4tuUmy33HKL9t9/f33xi1/UI488olWrVqmnx/LdDwAAAAAAAAAAAAAAJedDRT8AoNkkKVx2UUhNMFo51AznqToq+T6Puy35ttW28OV9W6Wudcn3i4ylKGZ3GnplKFIk0MFDlnNSacmvGcY2GPopxa7lYCtizcO2VcUeH/ElGj9nFSwc8brC2Np/QcbBaLagNTS2TX8IX15tl3Y+YORyp8Fodfop/FH0nGdwMJqtTxbdTgD5IxgNYcbOlCafHL5u8felWtYhwWnnb7bteVbUUFo7zOs6X5O2/kl68grplydKT35U2rIsv7YBAAAAcObnP/+5LrvsMnV1GX5ccpgHH3XGYEIAACAASURBVHxwSBDcNddc47aBAAAAAAAAAAAAAAA4QDAaACB/iYpMswp2GITwhnLoM/xRX5rixJb25NsOLqYe7g/fTL5fZCtVMbuD6832XZuG3xQoescWsuFDMJqxnxLkUApblro/xr4flFp3Cl/36HvdHx/ZSnRfy+qRT9RgtM6MjgdnbEFmocFodfpd5mEQKI1NfwxfPnamVA0ZJ7kcOxGMVh5FB44NmYsRjAZgENMz4irBaE1vxsXhy7etlFb8IuFOXT0DJBitadjGvxt+L91/irTw36XVv5EW3iTdf7LUuTK/9gEAAABw4qqrrlIw6EfSLrroIv3qV7/SwoULtXjx4u3/zj///AJbCQAAAAAAAAAAAABAtghGAwDkL1HhcoLinWP+r309wWjlYDpPaYLR0qhagtEWfDa/dsAuTTG709ArQ5Eixff+sQajeTCNMrUhoNi1FPIIRmsZI9W6zeu7N7pvAzKU4LNdySjoM+p1hWA0/9mC0WphwWh15m0BwWhNq3dz+PIxexo2cDl2YhxdHkUHow26L1rH84yngaYTNg6Sinv2CH/s85dSS0f4usW3Z3ustPM3272N546NxRZQ/YdvSJuHhRhvWSot+6HbNgEAAABw6uWXX9aCBQu2vz777LN1xx136PTTT9d+++2n6dOnb/83duzYAlsKAAAAAAAAAAAAAEC2PKjoBwA0nwSFOOufib/NXu+U2saZ1weWYAD4w1ScWB2VbzsGVCzBaPBHogDGN7kMvTLum+J779iKRp2G50VlKpil2LUUet5Itt2U06K/t2WMPQRp7ePJ2oBiJCpkzygYbcKh0d7X15XN8eCOLcgsLIy43njKdo1BYzP1pWpb+HLb2Gm3P0vZlhTjfuTLp1AWwmMADObbjzLAH207S3v/7/B1r94jda/Ptz1Wtvkfzx0bSpKA6vlXZN8OAAAAALl58sknh7w+//zzC2oJAAAAAAAAAAAAAAD5IhgNAJC/JEWmvVvib9Oxl3T6/eb1tQQFJMifKWSjqOLEKsFopZAqGM1h6JWpAJ/ie//Y+pAPwWjGvkSxayn0dSbbbqqhIDtMS50AUYI+SybBfSKrczxuP2ncQfXfVyMYzXu2ILMkwWhJCvLRGExzadN1xxZCdfRN0pE3SlNOl8bOTNAWgtFKw6s5jyU8xqt2AsgFwWiwmXlx+PJat7T07vj7Mz63SRlsXbHd23hW1FAIBgYAAACazuuvvz7k9dSpUwtqCQAAAAAAAAAAAAAA+SIYDQCQv0RFpgkLg3Y7Rjr5HkM7KOQvBVNxYrVO4IsrBMmUg6/BaKZrGcX3/rH2IR+mUab7In2pFGqGe5vNmb+Rdt43+vsrbfb1BH2WS5L7RJbn+IQ7pPZd7e8xjdngD2swWkhgY71+F/QRstCsTHNp03XHFoxWaZEOvEI641fSyT9N0BjGPuXh0bmy9Umf2gkgHwSjwWbyaVLH3uHrFt2Wa1PsbN+fMGZvKHyvBQAAADSdzZs3D3nd1lbne2AAAAAAAAAAAAAAABoEldAAgAIkKDKtJAxGk8xBVjUKSErBt+JEgtHKIU3QmLVIPiXjvilQ9I4tGM1peF5Epr5EQE05xA2QOuEOadIJ0opfRN+mWucP4rmflUuS+1qW53jXI6RzF0mrHpQeflf4e2pd2R0PbliD0UKuS1GCZoM+rifNyDSXNvUF29hp8JgmyTg8TSAy8uVTGLStr/nUTgD58O3ZI/xSbZFmvE96/rqR69Y+Lr3xsjTugBg7dPTcxvr9Cc+KGgrfawEAAABeC4JATz31lF566SWtWrVKXV1dmjRpkvbaay+deOKJGjt2bOx91mo8swQAAAAAAAAAAAAANCcqFwEA+UtSZJqm2NlUnB1QQFIKppCNoooTqwyfSiHVNcNl6JWhSJHie//YzknVg2A0U19KEj6K/MUNRhsYy8QJjKl3v3IZAonsJblPZD1maR8vTT1Pmni8tOa3I9f3EYzmvcBBMFqth/FxMzLNpY3BaLZ7zqAxDcFojc2rOQ/BaAAGqRnmZ1WC0fCmGReHB6NJ0qLbpcMN62JJ8cMwkuz3NoLRGgrfawEAAABeWrNmja677jp9//vf1+rVq0Pf097ertNPP13XXHONjj32WOO+lixZohkzZhjXn3baaaHLb731Vv3N3/xN6Lprr71W1157rXGf8+bN06mnnmpcDwAAAAAAAAAAAABAEaiEBgDkL1EwWorCVFOhPgUk5WAKj6mOyrcdA0zF/vCLr8FoprAHiu/9Y+tDTsPzIjL2JYpdS6GvM977B8YycfpevftVjXFQuSS4T7gas5jGYHED/5C/WsxgtCj9jjlVczKdd2NInuUR9JAxTZJgNMbRpeHTubKG8DGeBpqOaRxb1I8ywD/j9u8PiA6z+HtSLc5zSEf3mYotWM2jezDSIxgYAAAA8M4999yjmTNn6oYbbjCGoklSd3e35s6dq+OOO06XXXaZenv5jgUAAAAAAAAAAAAAABuSPQAA+cu7GNYUChHU+v9ZC2JRuFpX+PKiihONxf5vCoI6hWjIRaoCMZfXBNO+Kb73jrUPeXDfMF1nfAqcgFncAKntY5kYfa9eKBZhRuWSJPSw3pglKdMYzDRmgz9swWi1kOtSlIAHriXNyRSuabr3WIM9B93bkszNCYYoEZ/GqZY5O+NpoPn0efbsEX6aeYm05rcjl3f+SXr9AWmPM9PtP/XzZNu9jeeODYWgewAAgGzUeqWtrxbdiubQMdXdd1Ye+O53v6tLL71UtdrQ54r77ruvDj74YHV0dGjZsmV64okn1Ne343n2t7/9bS1btkz33nuvWlsb9/8fAAAAAAAAAAAAAADS4Bt1AEABci4ytf2BXdBHMJrvTOExRRUnRgmaqbTl0xaYpQlIsAY3pESYVXnYzonLPhIZIXulljQYLU7fq9a5FxFmVDIJ7hP1xixJtYwKX24KlIA/bMFoYdelKOMp2z7RuEz3ENPc2zbnHjw+Jhitsfk057H1NZ/aCSAfYQGxEsFoGGqfv5Ke/IfwQOhFt0UPRnMWUmYLVuNZUUPheQ4AAEA2tr4q/XRG0a1oDuculsZOL7oVTjzzzDO6/PLLh4SiHX744frGN76hE044Ych7V69erc9+9rO6+eabty+bO3euPve5z+m6664b8t6pU6dq8eLF21/feOON+trXvrb99V133aXjjjtuRHsmTpyoU089VZL02GOP6cILL9y+7oorrtDHPvYx4/+W3Xffvc7/WgAAAAAAAAAAAAAA8kcwGgAgf3kXmdpCIWq99YNDUCxjMJohlMO1eiEjfdvoU15IcZ1xGnpFmFVp2EI2fAhGI2Sv3Po6471/IGgmTmBMvV9er1FIWypJPtuuxiNVwxgsLCAAfrEV0IeOuSP0O64lzcl03k1zJevYadC9LVEwGmOf0vDpXFn7mkftBOBerc8c9EowGgZrnyDt/b+kpT8Yue7Vn0jdG6X28SkOYAs2i7K5ZXtnYWwoBMHAAAAAgDc+8IEPqLu7e/vrE088Uffdd586OjpGvHfSpEn61re+pVmzZulTn/rU9uX/+q//qgsvvFCHHHLI9mWtra2aPn369tcTJkwYsq/dd999yPrBxo4dK0lasmTJkOUTJkwwbgMAAAAAAAAAAAAAgK8SVJsBAJBS3sWwtmAQWzgA/GAK2agWVJxYL2TEFOSGfNVSFIglCWSIvG/CrErDGozmwzSKkL1Si3uvqBfKmWQbxkDlkuQ+kaTfRGEKRmMM5D9T6IcUfv6iFNxzLWlOpvNuDEaLOnZKEoxGMER5+DTnsfQ15mYok84V0jP/JN13vDT3z6SXv04AUly2cN+inj3CXzMuDl/e1ykt+6+IO3H1GbUFq3FdaCiEUwMAAABemDdvnp566qntr8eNG6e77747NBRtsE9+8pM655xztr+u1Wq64YYbnLUTAAAAAAAAAAAAAIAy86GiHwDQbPIuXLaFQlDI7z9TyEaLIZTDNVvQnkQoiC/SXGcqLdm1YwTT8Jvie+/YAhGc9pGICNkrt7j3ioFQzjjb1QvFopC2ZDwKRmsxBETYQiXgB2swWufIZVHGU7Z9onGZ5tHGuZLtEfSg61uS8FmC0crDp3Gqta8RHoMS2LxYeuJyac4M6YXrpbWPSet+J83/B+n5LxbdunKxzbFM4140r93PlMbsGb5u8e0pd24LNouyOfe2psF3WgAAAIAXbr996DzwIx/5iPbc0zBnHOZLX/rSkNd33XWXurr4ng0AAAAAAAAAAAAAgOEIRgMAFCDnYlhbKASF/P4zBqMVVJxYL2SEYDQ/+BqMZipSDChQ9I6tD/kQjGacytGXSiHuvWLg3hMWXGQyEKZmQiFtuSQJk6kX5pqUKZy2j4IN7wW2YLRtI8cjUcZTXEuakylc0zRXqlrGTkHaYDSPwrZg59W5soTPeNVOYJiNL0iPvl+6dz/plW+FB9Mu/DrPGOIgGA1xVFuk6X8dvm71I9KmV/JtzxDc25pG0ufe9AMAAAAgU4888siQ13/914b5YojZs2fryCOP3P5627Ztmj9/fmZtAwAAAAAAAAAAAACgURCMBgDIX94FGLZQCFNBN/wRVuQpSVVDKIdr9YLRagSj+SHFdcZpMJqhSJHCNP9Yg9E8mEbRl8otTsCZtGMsEysYrd79ijFQqST5bNcbsyRlGoMRDus/ayh0MHJ9lH7HtaQ5mQLxjPcey9hpyJgrSTBaikBk5MyjcaptPM94Gj5aN1/69buln71FWvKf9mvftlXStpX5ta3sbM/xCEZDmJkXm9ct/l6EHRiCC03PeSKzbU9YYkNJGk5NmDkAAACQmfXr1+uPf/zj9tcTJkzQQQcdFGsfJ5xwwpDXv/vd7zJpGwAAAAAAAAAAAAAAjcRRlSwAABZ5F5naQiGSFpEgP6YAh2p7vu3Yftw6wydCQfyQJiDBaeiVad8UKHrHdq9yGZ4XGX2p1OKGaA6MZcbF+IP6eqFYjIFKJsFnu96YJSlTQIQpzBb+sAajqf/a1DJojB1lPBXU2ScakykQz3TvsY2dBo+5kozDCUYrD58Cx6x9zaN2Aqselp6/TlpxX7ztfPq8+c72HI9gNIQZf7C06zHSupCC9UW3S4dcU0ygvi1YLeBZUUNJGk5d2yZpTKZNAQAAKLWOqdK5i4tuRXPomFp0CzK3evXqIa/3228/VWIGXh944IFDXq9atSp1uwAAAAAAAAAAAAAAaDQEowEACpBzcZ4tFIJQEP+ZCt2LCiaqFzRDMJofUgWjOexbpj+GpWjZP7Y+5EMwGn2p3OLeKwbGMuMPlnaaJm1ZGmGbNvt6xkDlkuSzXanTB5KqjgpfTjCa/+oFo/Vtk9rG7XgdZTyVtCgf5Wa6hxiD0SzhIIP7WaJgNMY+peHTubL2SY/aieYUBNKKuf2BaKsfSbgP+nFkq35tXkcwGkxmXhwejLZ1mbTqIWnKaeZtnYWU2QrwCUZrKL2bEm7XKbXvkm1bAAAAyqzaKo2dXnQrUFLr168f8nr8+PGx9zF8m3Xr1qVqEwAAAAAAAAAAAAAAjaiAn6wGADS9vIvzbEFWFPL7z7tgtDrHJRjNDzVPg9GMw2+Klr3jezCasS9R7FoKfZ3x3j8wlqlUpONuj7eNCWOgckkyfraFA6fRYghG6yMYzXtBhGC0Ie+P0O8IWWxOpvNuuu5EDaFKFIyWYtyPfHkV1EQwGjxU65OW/Uiae5T04NnJQ9H6d5ZZsxreyzea11UJRoPBtAukanv4ukUR5+wj2ILN0m7Ps6KG8uzVybar8b0FAAAAkJVgWOh1xfSjZjFksQ8AAAAAAAAAAAAAABoNwWgAgPz5FIxGIb//TMEtrsI+6qm22dcTjOaHNAEJSQIZ0u47oEDRP5Z7lcs+EpXpD6MJciiHuPeKwfeeKaf0F2HX3abOfZIxUMkk+GzXC8dLqmoKRmMM5L1a3GC0COOpevtEYzLN0UzXnV0ON+9r530HvSAYrbF5NE61FhkyN0POaj39QUo/f4v0yF9K659Ov0/mhdH1bDKvq/cMEM1r1G7SXu8MX7f8R1LPZsvGju4zUYNoUW7b1iTfljk7AAAAkJldd911yOuNGzfG3sfwbXbZZZdUbQIAAAAAAAAAAAAAoBF5UNEPAGg6SQpxJr01+fFswSCmgm74w1ToXmnJtx0DWkZJE08wr69RYOSHFAV/TvuWqQCfAkXv2EI2fAhGM07lCHIohbhBQsODZsbuG/6+4dsc9sXs2oBiJRk/uwqRbRkdvrzW5eZ4yE69uU+SYDRCFpuT6bybrjsdU6Vdjx65fNKJ/cEiAxKNsRhHl0aRoSxHfGXYAsJj4IHeTmnhN6V795Meu0R646Xo2044VDriq+b19OPo2nY2r7OGKKLpzbwkfHnvFmn5fyfYYcr+VqmYn2nWutPtG/74073JtyUYDQAAAMjMpEmThrxeuHBh7H28/PLLQ15Pnjw5VZsAAAAAAAAAAAAAAGhEPlT0AwCaToLivFkfSn644WEig1HI7z/TObKdV9cOu868jgIjP0QJ8jBxGYxmCnsICLPyjm+hjMOZCrQpgC+HuOOP4UEzpmCqIdu0Sfu8J7s2oFhJPtuuxkoto8KX9xGM5r2gTiBikmA0gqabk+m82647J9wpdey94/VO06Xj/3PY9gkeVacZ9yNfRY5TZ/7N0Ne2vsZ4Gq71bJJe+LL00xnSkx+RtiyNvu1ux0mn3Cv9+TPStL+yvJFnDJGZnuPN+rt824Hy2ePt0mhD0fqi2ywbOvx8towJX97X6e6YyFeac8ncDQAAAMjMLrvson333fFDVhs2bNCLL74Yax+PPvrokNfHHHNMJm0bUCHwHQAAAAAAAAAAAADQAAhGAwDkz1RkOuFQadoFI5dP/2tp2oXJjzc8TGQwikH852M40ZRTzOsIRvNDqmA0l0Nk0x+fUnzvnZrp2uPJFMrYDgrgSyHu+GN40EyUYLRKq7TzvuaQGsZAJZPgPmEbA6dRNQSj1RgDea9WLxhtWJF9lHAgQhabU5Lw6nH7Se98RXrbw9KZj0jvXCiNnT7sTQSjNbYC5zyjdhv62jqmZ24GR7rWSgs+L82ZJj3zf6Rtr0ffdve3SWc8IJ31qLTXOW8GZRPwlwnTc7zJp+baDJRQta3/e4swqx6UNi+Jt78sCtZNwWi9BKM1jDT9hLkbAAAAkKkTTzxxyOs77rgj8rYvvvii5s+fv/316NGjddRRR2XWNkkaNWro93ldXfzAEQAAAAAAAAAAAACgfDyp6gcANBVTcV61XTrhDumsx6UDruj/946npONvl6opQrBsxdkUg/jPFNziKuwjqvGzw5cTjOaHVMFoDkP3TAX4FC17yHBOigxlHMJQCElfKoe4448RwWiGYufBBu6Tuxr+iJ4xULkk+WzbxsBptHaEL6fY3n91g9GGjWOjjKfq7RONyXQPqTdHa2mXJp8kTXprf5jIcEkCaAlGKw+vxqkESiFHnSukpz7ZH4j23D9L3eujbzv1POmsx6TTfylNOW1oII7tmkk/js70HC9KGDUw42LzusXfC18eOAy0N83Vhgcgo8RS/GkHz4EAAACATL3//e8f8vqmm27SypUrI2171VVXDXl9wQUXjAgyS2vChAlDXq9YsSLT/QMAAAAAAAAAAAAAkAeC0QAA+TMVLleq/f8m/pl01I39/3Y9Illx9JD9EoxWasb+UnA4kalAkmA0P5QtGE0OiyKRjK/XngH0pXIzhX6aDA+aiVKkPzD+MYXUxG0DCpbgsx0WOpQFUzBf31Y3x0N26oWY1RIEozGfak6me0jaQMZEwWiE/5SGT+eqYggZlsR4GpnZvFh64nJpzgzppa9KvVuibVepStMuks5eIJ18jzTxWPP7jDz6vPlu+PhnAMFoiGKXQ6Vdjghft/j2mCFotntTRMzVGp91DFMHz4EAAACATJ1++uk6/PDDt7/euHGjLrzwQnV22sOpb7jhBs2ZM2f760qloo9//OOZt2/mzJlqb2/f/nrevHnq6eHHbgAAAAAAAAAAAAAA5ZKyWg0AUlj3tNS9tv+/BxeI7DRdGrdfIU1CXkzFeY7yOm2FghSD+M/XcCKC0fyWqujeZXawoXjNp5AA9DOGwfiSLU1fKrW4QULDg2ZMxc6DDYRiVQzhWIQZlUuSz3bagCKTlo7w5UFff/CWq0A2pBfUKXgZPo6N0u+YTzUn0z3EFMYZWZJgtBSByMiZT+NUS6gI42mktfEF6fkvSUvvjHeNqrZJMy6RDv60tPOsKBuYV9GPowkC83M8gtEQ1YyLpfVPj1y+eZG0+hFp8kn5tcUYjGYvykeT4DkQAAAAMMTKlSu1ZMmSRNtOnz5dkvSd73xHxx9/vLq7uyVJDz74oE466SR94xvf0LHHDg27X7NmjT7/+c/rm9/85pDln/70p3XooYcmaodNe3u73vrWt2revHmSpGXLluncc8/Vhz70Ie23337q6Bj6fd/uu++u0aN5HgIAAAAAAAAAAAAA8AvBaACK88yV0spfjFx+8JXS4dfn3x7kx1ScV3UUdFWp9AdDhBV+UAziP9M5chX2EVXV8AeBNYLRvJAmIMHVtUgyBzUODgiFH0z3qqJDGQcYQz/pS6UQd/wxPGgqSpH+wH3SFFLDGKhcfApGazUEo0lS71apfbyb4yK9WtxgtAjjqXr7RGMyBeKlve7YQs1NCEYrD5+CmioV9YejhYydfWonymXdfOn566TlP1GseVnLGGnWZdJB/yh1TI2+XYWAv9Rq3eZ1pud+wHDTL5Ke/mT4HHvx7SHBaKbrg+UzHZUpGK2XYLSGkSaYmlBrAAAAYIgLL7ww8bbBm3/fceSRR+qmm27Shz70IdVq/c9j5s+fr+OOO06zZs3S7NmzNXr0aC1fvlxPPPGEenuHjsvPPPNM/cu//Evy/xF1fOITn9gejCZJc+fO1dy5c0PfO2/ePJ166qnO2gIAAAAAAAAAAAAAQBIJqs0AAEjJWJzn8LY0PFBkAMUg/jMVuhcdTmQKpRkeKIFipAlIcNq3TEWOFC17x9SHXAbnxWLoSxTAl0Pc8cfwoJkoRfoDgWimkBrGQOWS5LNtCsVLy1RsL0l9W90cE9lwEYxGyGJzchVebQv5MbaFsU9p+HaujEF8nrUT/lv1sDTvHdLco6XlP1bkULS28dLsq6XzlkpH3RAvFE2qEyZJP47E9gwvShg1IEmjJ0l7/UX4uqU/7A+PzotprtZHMFrDSPPdA3M3AAAAwIlLL71Ud999t8aOHTtk+SuvvKI5c+bo7rvv1qOPPjoiFO1v//Zv9bOf/UxtbYa/Z8vAOeecoy984QtqafHlbxwAAAAAAAAAAAAAAIiHYDQAQP5MxbDWgr6UTAXaFIP4zxTc4irsIyqC0fyWJhjN5RDZdJ3zLSQA/oYyDjDeMyMW4aM4QU2xz9Pw891qCabavk2dYDTGQCWT4D6RNqDIpLXDvC7Pon/EE+XaM2IcG6HfcS1pTqbzXsQcLdW4H7nybc7D3AxpBIH02v9IvzxJuv8UacV90bcdNUk67Lr+QLTDvtAfqpSI5dkF/TgagtGQlRkXhy/v3SQt/8mwhQ6f2xCM1vhqKb57qBeUDQAAACCx888/X3/84x91xRVXaOLEicb3tbW16ayzztJvfvMbfec733Eaijbg6quv1oIFC3TllVfq5JNP1u67764xYyJ81wwAAAAAAAAAAAAAgAcKThQBgDAEejS+AoLRTAXaFPL7z9dwIoLR/JamCNhl3yLMqjyMfciXbOlK+GIK4P1nCvw0qbRKlWHnuxqhSL/65h/Sm8ZAcduBYiX5bLsKKGqxBKNRcO+vKEXww4vsaxECpyiub06me4irQEYbgtFKxLdxqmk8zdwMFrU+6dWfSM9fJ61/Ot62HVOlgz4l7ftBe9BsVLbnqMwLo7EFDBGMhjj2/Atp1G5S19qR6xbfLs14b/19DJ/3J2G6tjBPaxxpvnvguzAAAAA0uSVLljjd/+TJk3XjjTfq3/7t3zR//ny99NJLWr16tbq6ujRx4kRNnTpVJ554onbeeefY+77mmmt0zTXXJG7bwQcfrOuvvz7x9gAAAAAAAAAAAAAAFIVgNADFyaLQA+VURNiMqUCbUBD/mQp2iii6H4xgNL+lCUhwGrpHmFVp+BrKOICQvfKKW4gaFm4VpUh/4D5pul9SEFsuSe4TrsZKtiCP3q1ujon0ogSY9Q4LTIgynmI+1ZxM9xBXgYw2jKPLw7dzZRxPe9ZO+KHWIy25U3rhS9IbL8XbduwsafaV0vT3SS3t2bWJYLT0bM/wCEZDHC3t0rSLpIVfH7lu5f3SluXSTnv3v3YZwNkyJnw5wWjlEgTSxuekLUulSW+V2nfZsS7Ndw/M3QAAAIBcVKtVHXPMMTrmmGOKbgoAAAAAAAAAAAAAAKVHMBoAPwWB9OL/Jy3+Xn8AyT7nSwdfJVU9CSNBOqbiPFtBX1qmAm1CQfznazhR1VAgWSMYzQupgtFchjQSZlUavl57tiNkr7Tijj3Cwq1Mxc6DDYx9TGOgKCFJ8EiC+0S1LftmSPb+10cwmreCCJ/54ePYKOMp5lPNqXdL+PIiwqvTjPuRL+/GqYa5mXftRKF6O6VFt0ovfrk/oCaOCYdKs/9J2vt8R8+0bc8ueMYQCcFoyNLMS8KD0RRIS74vzb6qzg4y+CEh01yNAOvy6O2UHj5PWvnL/tfVNum426SeTdLax6RFtyXfN3M3AAAAAAAAAAAAAAAAAAAAlAzBaAD8EwTSgs9Jz39hx7INz0obfi+99QdSJYMCERSsgGA0U4F2jWIQrwWBudDdFPSSl1ZDoZmtqBL5SRWM5jL4ijCr0igixDMOQvbKK+7YIyzcKkqR/sDYxzQGoiC2XJLcJ1wFFFWqUnWUVOsauY6Ce39FCUMcMY6N0O8IWWw+G18wrytijkYw4LiqPwAAIABJREFUWol4NucxjaeZm0HqD6D5w7ekl74qbXs93ra7HSe95Wppz79w+xzbNjelH0fT12leZ/pBBMBklyOk8W+RNj43ct2i26SDr3zzmuDwuY0pGM3W1+GX57+4IxRN6p9vPfrebPbNcyAAAAAAAAAAAAAAAAAAAACUjCdV/QCakykcpk965f+OXL7sh9JL/+a2SciHsTivgGA0ikH8ZivkdBpeFYGpQJJgND/4GoxmKlxeMVfavNjdcRGfqQ8Vfe3ZjpC90oo79ggbw5iKnQcbCFQzhdQQDlsyCT7bLgOKWjvCl1Nw768kwWhRxlPMp5rPq/eY17kKZLRZMVda8Hlp5QP9wdrwl2/jVGOolGftRL661vZfU+ZMk575dLxQtClnSGc8IJ31qLTXOe5/3MMa2k0/jsT2DK9lVH7tQGOoVKSZl4Sv27RQWvt4vR2kb4PxhzyYp5XGwpvc7ZvnQAAAAAAAAAAAAAAAAAAAACgZgtEA+Gfbyv4itDBPf1Lq2Zxve5A9UzGstaAvJVMwBIX8frOFMRQdTtRCMJrX0hTdu7wWmYbfW5ZKP50p/ea90YJL4J7vwWimfupb4ARGiluIGjaGMd2DBhvoq4TDNoYkn22XAUWmcL6+re6OiXSSBKP1bIqwX64lTWfZf5nXFRGMJknP/bP0wBnS7y5nLOQz784NQcMYpHOF9NQn+wPRnvtnqXt99G2nnied9Zh0xv3SlNPcB6JtZ3l2QT+OpmtN+PJqu+NnQ2hY099rfm606LY3/8NhkKtxnkYwWmn0bHS375e+KnU73D8AAAAAAACA1Hr7Av36D4F+8Tw/CgYAAAAAAAAAgEQwGgAf1QsVeuPFfNoBd4xhMw5vS6YCbQr5/WYLbSmq6H4AwWh+s4Xq1eMy+KpegfTSO6WF33B3fMRQQIhnHMb7GsF63osbSBZ2riMFo1XN20vS0rvitQPFSvLZNgUDZ6GlI3x5L8Fo3oobjBYE0ron629DyGLz2bDAvK5W8FzolZulNb8ttg2w8CyoyTiup8igqWxeLD1xuTRnRn9gTO+WaNtVqtK0i6SzF0gn3yNNPNZtO01tMCEYLZqnPx2+PMp8CwgzZndpj3eEr1v6A/tz4yxCFY3Pq7vS7xvlt+kP0o8mSIu/X3RLAAAAAAAAAAyyaVug/54f6JJba9rjkzWd8pWarvox3/UAAAAAAAAAACARjAagUIZCj3qhQlEL1OAvU3Gey7AZUzAEhfx+s4VbuQyvisJUaFZ0GAD6+RqMFmX4/fLXHB4fkdVMIZ4FX3sGtIwKX16j2NV7WQSjVdujb28LxyLEqjySfLZdhsi2GoLR+uhT3opy7Rk8jt20MNp+CeRsPrsebV43aqK747buFO19K+931wYkFwT+BTWZnkH51k64sfFF6dH3S/fuJ73yrehjrWqbtO+l0jkvS2+9Q5pwiNt22lhDlOjHkfRuCl9OMBrSmHlx+PKejdKrc9weu8qzIkTw2/dJmxcV3QoAAAAAAAAAku55OtCkT9T0lzfX9L3fBlr7ZonE08ul5ev4QScAAAAAAAAAAAhGA+CfekUa9YLTUAKmYDSHYTOmYAgK+f1mC3CwBb1I0uFfDl9+0KeSt2cwU5Ek1yg/pApGczhEbokQZrRlibvjIzpTH/ImGM10DaLY1Xtxxx7VtpHLKpXo16q2ceZ1656M1xYUJ8lnO6zvZMVYcN/t7phIJ8q1Z/A4dv0z0fZL0HTzGTvLvG787PT7n3pe+PIDroi2fffG9G1A9lzfHw65NsFGBKM1pXXzpV+/W/rZbGnJf0Z/dtAyRjrgY9K5i6Rjvy3tbLkW5soQjkY/jsY0p9q2Kt92oLHs9U6pfZfwdYtu7w8LDWULO4yI59WIatmPim4BAAAAAAAAAElH7CN1G/7s4h/u4vseAAAAAAAAAAAIRgPgn3pF/xRxlJ+xOM/hbckUjEYhv99qlgLVeuFEU88dGdpRaZH2fnf6dklSlUIzr6UKRnMYfGXqN/CPMRjNkymUMZSIYDTv1WKOPVrGhC+f8X7zNnu8Y8d/736m+X29W+K1BcVJ8tkeNTn7dgwwBdTG7d/ITxAlGK1z0H9HHNNyzpuPbZydRSDjwVdKrWOHLtv/o1LHPtG2rzEf81KW8+Th/aw6Ktk83zSuJ1CqMa16WJr3Dmnu0dLyH0syBRMN0zZemn21dN5S6agbpI6pTpsZG/04HdO1afZn8m0HGkvLaGnaBeHrVt4ndb7m7tg8K0JUCz5XdAsAAAAAAAAASJq2W0WHGb5+mvOsVP27Ph16TZ8+cHtNP1sQqFaL+B0XAAAAAAAAAAANwpOqfgBNqVIJX16vWJLQofIzFee5DJshvKGcbEX3prC7AeMOkE65V9p5v/7XO02T3voDaeKx2bSthWA0r6UpAnYZjNZqCDiCh0z3Kof9Iw5TsSvXIP/FDWU13W+O+Ko08YTwdQdfueO/J51k3jf9pTzqhUeHGT0x+3YMIHS4fGpRgtG2hf+3TZTANTQW0+d8vw9ns/+Jx0ln/kY66JPS9PdKx39POuprUoth7DMc9zY/ZXVe2neVTvzRjnn+uAOlU/+fNP7gBDszPJc0zQNQPkEgvfY/0i9Pku4/RVpxX/RtR02SDruuPxDtsC9Ioye5a2caBKOlY7o2TXprvu1A45lxSfjyoCa9/qvwdabvy+IwjZcYH2E4X374AQAAAAAAAIDeeZj9+fBzr0m3/ibQO2+q6Yq7AwUB4WgAAAAAAAAAgOZRJ1EEAApQ79fr+XX7BlBAMBrhDeVkOz9Rwon2OFN650Kpe4PUNj6bArMBBKP5zRaqV4/La1ELwWilYepDvgSjmYpdGSf5L6tgtFG7Smc+Ir3+gPTs1dK6J6V9PyjNulTa9agd76u2SKMnS9tWjdwH96zyqHXHe/++H3TTjgHVtvDlhA77K3YwWmfE/XLOm47pPlYvuDqOXQ6VdvnK0GWmUNjhkgRJwr1aRmOOSlWaem7/v55NUtvO6fYVhkKC8gtq0vIfS89fJ61/Ot62HVOlgz7VP5Zq7XDTvkyZnl/Qj+sKauYxtmkOBkS12zH94Z1vvDRyncvgQuPzasZHGC7D70kAAAAAAAAApHLuYRV94WfRvtv5xrxAHzm1ogP3cNwoAAAAAAAAAAA8QTAaAP/UC/QgwKH8jMU/DsOIqoZbHoX8frOFW8UJJ2qfkL4tw5kKzWrb+gupswxhQ3ypgtEcBl9RXFse3gejUexaWnHHHrbrRqUi7X5G/z/rPgyhjFGDj1C8uKGHO89y044BhA6XT+xgtIjzbs5586kVNEYyhcIOl1UAF7KV1bO8wWFmaULRhu9rCIeBNXCr1iMtuVN64UvhYUQ2Y2dJs6+Upr9Paml30z4XjAF/9OO6bHNnnt0grUpFmnGx9OxV+R7XFCRLiD6G47sLAAAAAAAAwBtHTZMOmCK9/Hq09z+0MNCBe/CMDwAAAAAAAADQHBwm0ABAQvWKJQlGKz9TcZ6xKDUDhDeUk+38mMLu8mIqkgxq9CsfeBuMZggngn+KuFfFYSt2DaL9giQKEvcekcV1wxikx7i6NOKGHlYdhzmYxmGMgfzlKhgtyn7RWEyfc9fzM9PYZzjubX7K7LxkORYnUKph9HZKC78p3buf9Ngl8ULRJhwinXCXdM5L0r4fKFcomkTAXxq2IE2C0ZCFGe+L+QwpgyI24w95dHN/wzAUTQIAAAAAAAC+qFQq+p8roj9PXrvFYWMAAAAAAAAAAPCMJ1X9AJqT4Q/v6xVL2oqWUBIEoyGimiXcymV4VRS2IkmK8YuXptjPh2A0W99HPkzhekVfewa0WMJBCKnxWy1uMFoGRfmmkCzuV+VRixmM1uo4iNM0tub6468gwrkZPNeOOu9mPtV8jGMkx8FotrHPYNzb/JTVeclyLG56BkVwTHn0bJJe+Ir00xnSkx+RtiyNvu1ux0mn3Cv9+bPS9AukqifzvNjox4nZrkuuQ4bRHDr2kqa8Ld9j2oJka935tQP+8+WHHwAAAAAAAABIkqZPrOj1r1Y1fbf6712/1X17AAAAAAAAAADwheOKNQBIoK9O0T9FruVnKs5zWYxRNYU3UMjvNVvQguvC+3psRZJ926S2nfNrC0YyBTZE4vBaFDXgqNYlVTvctQP1+R6MZi123Sa1tOfXFsQTN0Qoi2A00z4IHC6PenOk4VyHOTC2Lp8o52bwXDvqvJtz3nxM9zHXYyTb2Gcwnhn5KbNgtCznaoYfbDCF+cMfXWull78uLfx3qXt9vG2nnCG95Wpp8qlSxdQHSoSAv+Rs16Us5mCAJM28RFr5i4hvzuCaZAuS7euib2OQBrgHAgAAAAAAAA1m0s4VLbq+RUvWBHpllfSub9a0NeQ3LzYQjAYAAAAAAAAAaCIEowHwT88G+3qKXMvPWJznMIzIFKIVN5wE+bKFWxUdTmQrJOM6Vbw0wWguQxpbxkR7X982qZVgtEIVca+Kw3oN6pLa8msKYoobIhT1upFkH72d6feNfNRiBqO5LnhnbF0+QU/99wwJRot4fYiyXzQW033MFJiYFYLRys3HYDQCpcqnc4X04lelV74l9W6Jt+3U86SDr5ImHuumbUUxfibox3URjIY8TH2X1DZO6nkjn+PVfV49Pp92oAQIRgMAAAAAAAB8NX1iRdMnSn99XEXffjgYsX7D1pHLAAAAAAAAAABoVASjAShQwj+8p8i1/EyBRS7DiExF2nHDSZAvW7iG68L7eghG81uqYDSHhWFxgtFQLOO9quBQxgG2cJC4AUrIV9zgqGoGRfmme1aNa00p1Pri39cIRsNwtQgBZrXu/v5WbYk+FmE+1XyMYyTH87OW9mjv497mp8zOSw7BaKKQwDubF0svfFladGu8uU6lKu1zgTT7SmnCIe7aVyjD8wsC/uojGA15aB0j7fMe6Y+31H9vFs8jeVaEqFx+FwcAAAAAAAAgExMMv6u7fmu+7QAAAAAAAAAAoEgEowEoHwo4ys9UnOeyGIPwhnKyhYAUHU5kK5KkGL94aYLRXIpaXEsfKp7vwWgtlmLXPsZKXos79siiKN+0D0IYy6HWHX8b12EOhA6XT5RgNKl/vl3tiH59YD7VfEzn3PUYyRb0MRj3Nj9ldV6yfG5k2heBUv7Y+KL0/PXS0jvjzfGrbdKMS6SDPy3tPMtZ87xAP06OYDTkZebF0YLRsmB9VsQYCYO4/GEQAAAAAAAAAJnYxRCMtoFgNAAAAAAAAABAEyEYDUD5UMDRAEzBaA4LqQlGK6eaLRit4GGMrUiS61TxfC0CbhkT7X30oeIVEeIZhy0chBBZv8UNjiIYDUk+067DHBhbl0/UYLS+bVJrjGC0qPtF4zDdx0yBiVmxBX0Mxr3NT5kFo2X53IhAKW+tmy89f520/CeSgujbtYyRZl0mHfSPUsdUZ83zCsFoydkC6aOGcQJRTDxBGjtL2vxKnTdmEFRVtf2QB8+KvBfEuOel5snzTQAAAAAAAABGpmC09QSjAQAAAAAAAACaCMFoAIqT9BfJKXItP2NxnsNijGpb+PI+CoK8ZgvXcBmkF4WtSJLrVPECS6hekaIG1dCHimfqQ0VfewYQzlhecYOjogYqJtlHX2f6fcO9JONV12EOpgAk+pS/ghjBaFL0c0kYXvMxjpEcP2aOel3rfM1tO5BMZsFoGT43Mj2XJFCqOKse7g9EW3FfvO3axkv7/710wBXS6Elu2uYt02ciz3CdklrzePjy6qjk31sAYSoVaebF0oLPuj+WLUiW70H8l+fzbK5zAAAAAAAAgPd26ago7DuftZulIAhU4TkfAAAAAAAAAKAJ8HPAAMqHsI/yMxWZZlngOpwpvGHpXVLN0wAl2IuBig4nqraai/+5ThXP22C0iAFH9KHieR+MRrFradXiBqNFDFRMsg+uNeVQSxKM1p59OwYzjYGW/1iqRQzgQr6inpfaQDBaxOtD3Gsays8Uhud6jBQn8HHjS+7agWR8DEYzfjVCMFqugkB67X+kX54k3X9KvFC0UZOkw66TzlsqHfaFJgxFk/kzQcCf3bY10rNXha+zzbWBpGa8X1K9ArUMCtgI0S+3XK/dFEwCAAAAAAAAvpsyLnz5G9ukVZvybQsAAAAAAAAAAEUhGA1A+fR1Ft0CpFZAMJopvEGS1j7h7rhIx1R0L/kRTkTQjL8IRkNaxhBPD649kj30aNvr+bUD8W14Nt77swhGqxr2sfy/pV7G1t574+X427gORqu2mdetesjtsZFM1GC0vpjBaFuWjly29TVp4TekJ/9Beu6L0hrmWw3FNEczhZFnJU5Qzas/cdcOJFPLan6T4XMj0zOo136e3TFgFtSkZT+S5h4lPXi2tPqR6Nt2TJWO+pp03hJp9lVS+3hnzfSe8VkqwWhWtgC+njfyaweax077SFNOc3+cSquMgVdJAreRsxyv3bVu6ZVbpF+eLP3XBOmZq7j+AQAAAAAAAJ45aA/zuhdey68dAAAAAAAAAAAUiWA0AOWzZXHRLUBam03nsKBgtJe+6u64SGfFL8KXV6pSxVDklSdTWE1mRd9IzNdgtDGWv1YZjBDQ4pn6kMsQzzgqVXMw0a//l/TGwnzbg2jWPim9+JV420QNVLTuwxKu9tA5Us3TayakjS9K886Kv12cAKEkbGPr5693e2wkEzcYLep4dusy6f7TpO4N/a9X/1b6f/tLT/69tPDr0oLPSL88Xvrjd+O3GX4y3TNch8dWY1zXTPNIFCer4Ocs+5lpXL/iPstzK6RW65EW3S79bLb0yF9K65+Ovu3YWdKx/yG984/SAf8gtXa4a2dpGPqxKegb/Tb9oegWoBnNuNj9MSoV81yQH2HwX57Ps7vXS0/8nbT611LPRumFL0n/NV56g+sjAAAAAAAA4ItJO1c0aefwdc+/FuTbGAAAAAAAAAAACuJJVT+A5pQw1OiNl/v/aB/lVOuRNiwIX+cybKZqCW947efujot0Xrk5fLktjCNPpqAZCs2K52swWtTCbYLRimcMRnMc+hGHLSBk/hX5tQPR/e7y+NvYQs0i78MSrvb6A9Lax9MfA268+OVk28UJEEq0f8tY7PUH3B4byQS90d43MI6NM55d9aD0+Af7//uJv5N6tww7dk166uNSX3f0fcJfpr7keo5mCoQNs+Y37tqBZDILRsvwuZGtz756T3bHQb/eTmnhN6V795Meu0R646Xo2044RDrhLumcl6R9PyC1tDtrZumYPhMEo9n5+swIjW2fd0utY83rs/oRkKrphzy6stk/3PHh2v3kR4puAQAAAAAAAIBB9p8cvnzlG/m2AwAAAAAAAACAohCMBqCc1v6u6BYgqQ3Pmde1jXN3XFvBqy8hWxipfdfw5TVPQhVMhWYEoxUvavjHcLuflW07wuz/9/XfU+tx3w7YGYPRPLpnmK6RkrT6kfzagWh6t0jr5sffbswe6Y9db4z1/PXpjwE3Ft2WbLs2S8F9Fny6FiKaqGOL7cFoMUNa//RTaetr0kbDfK/njWTXQPinqDFSnLCQKae7aweSyWp+k1cw2lOfyO44za5nk/TCV6SfzugPW9myNPq2ux0nnXKv9OfPStMvkKoehVT7wviZ8CBcx2e2Z0aTT86vHWgurTtJ+5zv/jgthpDsPoLRvOdDMNrKX0q9W4tuBQAAAAAAAIA37WR45NvrweNEAAAAAAAAAADyQDAagHJa83jRLUBS3evM6/b8c3fHrVoKXm3rUCxT8XSLIZAsb6Z2EIxWPFNgg02lKu3/4ezbMpwtzGpA0mA3ZMd0Dny6Z0w5zbyud7MUBPm1BfX1bJYU85yMntwfCJHWpBPs69c/lf4YKEZrSADaLkdK7bu4PS7BaOUTNZRo4P4Xdzxb65E2LLC/p29LvH3CT6YxUiWHwKKx+0Z7X8sYt+1AfJnNbzL8OsOncX0j6lorLbhGmjNNeubT0rbXo2875QzpjAeksx6V9jonXjBi0zF8JnwI1/GZ7ZnRnn+RXzvQfGZcYlmZ0bWuagpG43m195I8z3ahZ2PRLQAAAAAAAADwpjbD1/C9njxOBAAAAAAAAADANYLRABQnTVHbWoLRSstWkL/bMe6OawtvyKOAG8nUDAVbR30933aYEIzmr1rEwvsDPyFNOETa4x3SST+Wpp7ntl1StGC/qO2HO6Zz4FMY0BFftq+nGN4vpnvagNadhr4ePVk65WdSNYNxyq5H13kDYROltOc50qFfGLqs2iYdco37YxMmUz5BxGC0WsJgNKl+8BHjm8ZgOo95XBfe8rlo7+vrctsOxJfV57+S4dcZPo3rG0nnCunpT/UHoj13rdS9Pvq2e50rnfWYdMb9/SHQBKLVZ/r/iLmgne2adOAn8msHms/kk6Sdpoevq7ZncwzTc8ca4yPv+XLtZt4GAAAAAAAAeKPV8PVoD8FoAAAAAAAAAIAmQfUPgHJa+7gUBBTIlZGpWH54GEjWrMFo3A69ZQpkGDUx33aYEIzmr3rBHAOO/KrbdoSpjqr/nqjthzumc+BTGNDoydLbHpLuPyV8fdArifBPb/R2mte9a7nUvqu09AfSpoXSTtOkff5KGrVbNseuVKQJh0kbns1mf/DDPu+WZl4i7TxLevUeqXWsNO090sTj3B+b8XP52AKqBwtSBKPVC6NifNMYAsNfWOdxXWgdE+19BH/4J6vPf5bB9j6N6xvB5sXSC1+WFt0a7zNYqUr7XCDNvrI/tBzxGMMCPQnX8ZXpmjT1XVwb4FalKu37QWnBZ0auy+pHY1oMzx0JjvWfaZwtSQdfKb3wpXj7O+DjUuefpGU/jLcdY2kAAEaoVCozJB0uaU9JYyWtkLRU0qNBEPUXKZy0a1dJR0uaIWmC+n8FZ6OkVyX9LgiClUW1DQAAAEA2Wg1fj/byVRAAAAAAAAAAoEnwF/4AyqlrjbRlsTR2ZtEtQVymX5t3XURtK2qj4M1fpkCGlogF8a4Zg9Es4TdwL/D8rz5MBYqDERxSPNM58C0MqKXDvC7olRShvyEfNUvIUOtOUmuHtO/fuju+9d4ZuDsu3Km+OQ7Z6y/6/+V6bM+uhagvTjBarTfZWKR3S502ML5pCMYxUg5hrFXD/Gs4whz8k1kwmikEKsm+CBDOxMYXpeevl5beaQ90Ga7aJs24RDr40/0hr0jI8Jnw/blI0YoM+QQO+sf+oKoNC3Ysm3yytM97stm/abxkeyYBT1iu3XucFT8Ybe93SWNnxQ9G47sNAAC2q1Qq50v6hKTjDW9ZV6lU7pb0uSAI1uTUpoqk90j6iKQT67z3aUnfkvTdIODLZwAAAKCMWqsVhf1dV2+Mr+UAAAAAAAAAACgz/sofQIEq6TZf8zjBaGVk+nvLapvb49oK2yh681NQk2rd4etMgWR5MxWamQLdkA/fQzei9F/f/zc0g6KCPOOyBTrQj/xiuzdEDXpJw5d7J7JT5Dn17VqI+qIGo9V6k49lezfb11N71xhM44s8AhOjXveYj/knq3FppsFo3MtSWTdfev46aflPFCtkt2WMNOuy/mCgjqnOmtc0TJ+JgOBjqyJDPoGW0dLbH5de+Q9p8yvShEOkaRdJLe0Z7d8QkN9HcKz3bKGWSZ4bVUcle27AWBoAAFUqlbGSbpF0QZ237irpckn/u1KpXBwEwX2O27W7pDslnRZxkyMk3Szp7yqVygVBELzirHFAA9i6daueeuop/eEPf9CaNWu0bds2jRkzRlOmTNH++++vI444Qu3t2czdli1bpm9/+9t66KGHtHDhQq1fv149PTu+x7n11lt1ySWXhG77xBNP6NZbb9Wjjz6q5cuXa+PGjarVdswnFi9erOnTp0uSTj31VD300EPb1wU8MwIAoHTaDF9d9PIbOQAAAAAAAACAJkH1DwC/veVz0rL/kt54ceS6tU9I0y/Mv01Ix1SQ77og1VbYRtGbn2zFWr6Eu5jaUaN4qFCB5z+HVzUUKA5GcEjxjEGenk2hbO2hH/mlr9O8Lo/7WtX2h/opA4tRjJYxxR2bMJnyCSIGowUOg9EI7GwMprF2HvPqyMFoBH94J7NxaYbBaL6N68ti1a+l578orYhZ6902Ttr/o9IBV0ijJ7lpWzMyhgVSDWNlupdxXUBeWkZLB/y9m32bnjsSduU/2zPt1gTz/5bRBKMBAJBApVJpkXS3pLOHrVot6WlJGyXtq/7QsYEvV6ZImlOpVN4WBMEjjto1SdI8SQcOW9XzZruWqn8yOFXSUZIGDwSOkjSvUqmcGATBUhftA8qqr69PP/zhD3Xrrbdq3rx56u01P8ccPXq03v72t+uDH/ygzjnnnMTHvOWWW/TRj35UXV3xnmP39vbqwx/+sG655ZbExwYAAOXTagpG8/xPZAEAAAAAAAAAyAp/5Q/Abx17SROPNQejoXwKC5qxFARS9OanogNkojC1g+KhYvkeBtUSIRiN4JDimc6Bb2FAtvbQj/xiujdUR0mVHILJ8jgG8lXkeIjxc/lEvSfUepOH/PZssq/3fYyGaEznMY8xUtTrXo1gNO9kNS7NMoDPt3G9z4JAWjFXev46aXXM+u5Rk6QDPy7t92Gpfbyb9jU1QzBaQDCalXG+z49noAEYf8iD8ZH3bNfuKD+0EbZNku1s38sAANAcvqShoWg9kj4h6dtBEHQPLKxUKgdL+g9Jx7+5aJSkeyqVyiFBEKxw0K4bNTIU7VuSPh8EwarBCyuVygRJ/0fSp7Vj4jhV0s2S3uGgbUApPfDAA7r88su1cOHCSO/ftm2b5syZozlz5ujoo4/WzTffrCOPPDLWMX/+85/rsssuUxAEsdt79dVXE4oGAEATajF8FdTLV0EAAAAAAAAAgCZB9Q8Av43ZS9r1GGnRbSPXbV2We3OQgaKCZmxFuBTD+skWLkYwGmx8D92oRui/vv9vaAaFBXnGZLuH0Y/8Yro3eHFPi//H98hBvUCLIvsOoRHerce7AAAgAElEQVTlU+uJ9r6gN/lYtrdOMFrUNsBfQSAFhp+ezmOMFPW610fwh3eyGpdWDH/5n2hfno3rfRTUpOU/7g9EW/90vG07pkoHfUra94NSa4eb9sH8mSAYza7IkE/ANdMPMjA+8p9pnC0lm/+3jJKqLVK1Ld5cjO82AABNrFKpzJR0xbDFfxkEwZzh7w2C4IVKpXKGpF9pRzjabpI+L+lDGbdruqSLhi2+PgiCfwp7fxAEGyRdValU/iTp64NWvb1SqRwbBMHjWbYPKKNrr71W11577YiAskqlooMOOkhTp07VbrvtptWrV2vZsmUjwtOefPJJHX/88brpppt06aWXRj7uVVddNeSYF110kT7wgQ9o7733Vltb2/blEydOHLLd66+/rhtvvHH76/b2dl155ZU6++yzNWnSJFWrO54RTZ06NXJ7AACA/9oMf57Ta3mcCAAAAAAAAABAI+Gv/AEUqFL/LWP2lHoMxdW17vDl8FtRhWe2ohKK3vxUIxgNCdU8/6sPU4HiYLYwR+TDeL/yLAzIFkJCMJpf+jrDl7eMybcdKI9694Ii+w5hG+UTxAlGM1yv6undXH/fKDfbZz+PMVKUgGHJPpdEMYxj62q8e0qmwWiejet9UuuRltwpvfAl6Y2X4m07dpY0+0pp+vv0/7N35mGyVPXBfk9Vr9OzL3fnLqz3sgUVRcBEEIOiohE3EpKoMaJGE4ggBpMP8YoGUZOg0cQVEp+AfqhB9CPKoiiCiBiQ5V7gwl2469zZZ7qn16rz/XG6Z+mZ6mWmp7t67u99nn6661TVqV8tfc6p5byFHVqa+IRpPP8T0lYrSSMln4Kw1Hi1l6R95H9KtYmsBdSphXsXdrRKMdoCzwcFQRAEYXnwcSA4Y/jm+aRoBbTWSaXUu4AngEKF/R6l1A1a6501jOvCouF+4BMVzPcl4L3AqUV5iRhNOKK5/PLLufHGG2eltbW1cfXVV3PJJZewfv36OfM899xz3HzzzXzuc58jnTbi6Uwmw6WXXkoikeDyyy8vu9xnnnmGxx9/fGr4da97Hf/1X/9VUcy33347mcz0c5LXXXcdH/nIRyqaVxAEQRCE5ibgcUsz68hLMAVBEARBEARBEARBEARBEIQjgxr2JBIEQVgComvM28zno5oH+QX/4LXfvPZzrSglRpNOb/6klFys0g7xS42I0fyJ36UblYj9/L4ORwJeQiK/yTRLxSOCPX/hVTf4QvZZgbBYqD/l6oJGHjul2taCP6n0/NnNLbwtmxUx2rKn1D6sRxup0nLPSS9tHEL1eLVLqz63r+HtDLkWNJdcEp79MvzwOHjoXdVJ0TpPgbNuhTc8Dce8R6RodcPjPyES29J4nu+LMFFYBni9kEHaR01AKQnxAtpAVv5YqPbagdzbEARBEI5QlFJR4K1FyZ8pN5/W+lng9hlJAeBPahgawNFFw3dprcs28LTWGvhhUfJxNYtKEJqQ//iP/5gjRXvFK17Btm3buPrqq+eVogEce+yxXHfddTz++OOcfPLJs8ZdccUV3HfffWWX/cgjj8wafutbi4uc2s973333obWe+giCIAiC0HwEPC4N5uRWkCAIgiAIgiAIgiAIgiAIgnCEIGI0QRD8iwpApE/EaMsNr47US90htdEduIXqKdUBxxcSGbw7cbvSeaih+F3WYnl0UJyJiEMaT6Pqq2opFY8cR/7C12I0wZeIGE2oJZWeP+tFiNFyZcRoIuxsfkr99/0kRnNF/OE7vOq0auuyhUhBPPPyWbu+kWQnYNtn4Y5N8MgHIbGn8nl7zoA/uAMu+B1svBgsEUvVFa//hIjRSuNVJkm5ICwHvK47iuzK/5Rsay+gfi1I8qoV0cqxIgiCIBy5vAZomTH8K611pcbwm4qGL6pNSFPEiob3VTHv3qLhrkXGIghNy7PPPsuHPvShWWlnnXUW//M//8O6desqyuP444/n3nvvZcuWLVNpruvyp3/6pwwODpact7+/f9Zwpctc7LyCIAiCIDQ3XmK0/SOQc0R8KgiCIAiCIAiCIAiCIAiCICx/RIwmCELjUKr0+Ohq07lLxGjLC6/O8Evd8axUpxK/SW4EQ0kxWrR+cZTCqxO3dB5qLH6XQdkViNFEHNJ4GlVfVUupeOQ48hdOcv70utVpZdregv8o9x8WMZpQDZWeP7uLEaNNlB7v9zaaUJ5S+7AeMqRKyz0nDVoeAvcVXnVa1WK0Gh5nci0I0kPw+LXwgw3w2FWQ6i87yxQrz4Pzfgrn/wrWXVj+Oq+wRHhtdxGjlcSrLVvLMkYQGoVX3SriWP9TUmq5gEc6CpK8attbXtevBEEQBGH589qi4fuqmPd+YObFjxcppVYuOqJpDhUNV1PBF087vMhYBKFpufLKK4nHp1/w0tnZyfe+9z1aW1urymfFihV897vfJRQKTaXt37+fT37ykyXnm7lsgGDQ43nIGs8rCIIgCEJzE/S4dfHoXgh9wOWln3L45Q65Ny4IgiAIgiAIgiAIgiAIgiAsX6T3jyAI/iW6xnx7idG0iNGaEq+O1EstmikllvCb5EYweAoZlHe5UG9EjOZP/C5rsSp4Vl3EIY2nUfVVtZQSOshx5C+86oa6ya3kIbimo5zIqpGiWL/XtcJcKj1/1rmFd4TPxkuPP3QPbP7bheUt+INGn1dXXGdqcywrn5w3Ct7t0qrFaDV8z4vf2vX1JHkQnv4n2PFvkEtUN+/aN8JJH4PeM5YmNqE6vP4TJeU6gmd9JsJEYTng9UIGR8RovqfUefZC2kCFMq3aawdyb0MQBEE4cjm5aPhXlc6otU4opZ4AXjQj+SSgCgN5Se4vGn5xFfO+pGj4N4uMRRCakqeffpof/ehHs9Kuv/56Vq1ataD8TjzxRK688ko+/elPT6V94xvf4Nprr6Wrq2veeVx34ddrFjNvLdi2bRtPPPEEQ0NDjIyMEIlE6OvrY8uWLZx66qmEwxW8HHAecrkcDz/8MDt37mRgYIB0Ok1fXx8bN27k7LPPJhJp4EuiBEEQBMEnBMq80+W3e+C1N7o8ea3Fxl55kZEgCIIgCIIgCIIgCIIgCIKw/JCn/AVB8C8FMZpXR1btmk8tO0UKS4+X4GGpRVclO5WUuXMsNIZSAhnlkxv4IkbzJ6WEDX7Aq4PiTPy+DkcCXvIGv3WULiV0EDGav2i4GK0Eyf2NjkCYj3L/4UYeO+XEaHu+A+vf7p82m1BetFfgmRvhhMsXtoyR/y09/sCd8Pg1cOrWheUvNJ6S59V1aCNVs4zhR6H3ZUsXi1AdnmK0KkUdIkZbHPFdsO0G2HkTuFUIcpQF698BJ10NnacsXXxC9XiK0USKXBKv+uxILBeE5Yflcd3RlevVvqeU1HIx97CqvXawUFG2IAiCIDQ/W4qGn6ty/ueZLUY7EfjpoiKa5l7gGeCE/PDvK6VO1Vo/XmompdRa4C0zkrLArTWKSRCaihtvvBE943pJb28v7373uxeV5+WXX85nP/tZsllz/yWRSPC1r32Nq666CoDdu3ezadMmz/nPPffcedNvuukmgJLxKY/7b7t27WLjxo1Tw+eccw4///nPp4Z1FdeM9u7dyw033MBtt91Gf7+35zEajXLuuefyzne+k7e85S3Ydvnzl+3bt3Pdddfxox/9iPHxcc983/jGN7J161aOP/74iuMWBEEQhOVGJdX3ZAaO/pjL3/6hIhqE1vxlYqWgJWSGlYJkBnIudERhPAnpHGQcCNmwrgtetVnR1ybP+QiCIAiCIAiCIAiCIAiCIAj+Qp7yFwShgZS5eday1nyXEma52coEM4J/aJRopmQHbpHr+RKvzlp+EMgUEDGaP/G7DKqSY9jv63Ak4CWn81tH6VLxDP4auotfBC80DK+OpdUKQRZMmbb3vjtg3RvrE4pQGeXqgkaWR+XEaA9cDKOPw+99qj7xCOWpVLqaPACPXbV0cTz5STjmLyG2fumWISwdpcqlegjHq5Et3nUGvOFpaD+h/LTC0uNVBlV9fl9LMVqZY9bN+U+KvFDGtsNT/wh7bilfh8/ECsKmd8GJV0HbsUsWnrAIPK9plpDrCN71mbw8Q1gOeF6vrkKIKTSIUmK0RbSBqm1vPfcVOPUTC1+eIAiCIDQhSqluoLso+YUqsyme/riFRzQbrbWrlPoLjGgtjLlA8l2l1Pla693zzaOUWgncDrTMSL5Oa32gVnEJQjPx4x//eNbwn//5nxMKhRaVZ19fHxdeeCHf//73Zy2nIEZrVrTWfOpTn+KTn/wkmUym7PTJZJI777yTO++8c46YrRjHcbjyyiv5whe+gOuWvn6VTCb5zne+w/e+9z0+97nPcdlll1W7KoIgCIKwLHhiX+Vi03++e3Evzulq0Xz/AxavPEHkaIIgCIIgCIIgCIIgCIIgCIJ/WCY9ewRBWJZE15hvEaMtLxolmuk+3XtcNZ1ChfrhJRfzkxjN8ojFS+om1Ae//6etCuotEaM1nkaJPKulVDyPfAiO/6v6xSKUxu/12mNXiRjNb5QTWVUjCKo1ldS12z4DW66CUMfSxyOUR2cbHcE0z30Nfu+TjY5CWAhuiePIb20kgOe/Di/6bKOjEMC7bV1tO6iW0qJyx6yTAqu1dstrBMO/hac+DXv/G6iiI4QdhWPfB1uugJZ1SxaeUAs8RDlaxGgl8RSj+bAuE4Rq8ZKvJ/fXNw6hetxSL/dZRBuo2vZWqt/UI/JCIUEQBOHIorNoeFJrnagyj8NFwzW9MK61flAp9QbgFqAPI157XCn1DeDHwB7Myf864DzgUqBnRhZfAeSi7AxyjmbfSKOjODJY1wUBu3H3tPbt28fu3btnpZ1//vk1yfv888+fJUZ76KGHyGazBIMlnnX0Mblcjosvvpjvfe97c8atWrWKU045hd7eXtLpNP39/fzud78jHo9XlHcymeSP/uiPuOuuu2alB4NBTjvtNNatW0c4HObQoUM8/PDDTE5OTsV0+eWXMzIywrXXXrvodRQEQRCEZuMlGxU/+N3ihGeVMjIJ7/2Wy/atFrbl3X5zXI2lQDXyuSVBEARBKCKZ0RwYhawDjgbXBVfDxh7oaFlYnZXKalwXoiH/13ta65Ixam22zwvDkMrC6g5zzeaFYbN+azogaIOVbwMk0prJDIRsaI/OXv9EWjM6Cd0xiAQhnYPBOPSPQyxk8g7aZj9obZaXc8HJ7xPHhUPj0BqGgGUuauYcyDhm2tFJaI/AizeArSCVg4NjMDgBqzshmYGJlIn70BhYCk5ZB2s7a7efMjlNOmfi2jNstsO6LhP/gVHzrTWsaDfrEQvPXW4mpwnaJqZsTjOegrH8O9Yd16x3LAQB22yH9ggEA2pqf2Uds/yADaGAv48/QRAEQRAEQRCEpUae8hcEwb9UJEYr/2ZCwWc0quPZUW+GX3mMKyedEBqDk5w/3UtG1gi8OhV5yW+E+lDpf3r925c2Di8qEXpKudR4GiXyrJaSHSM1ZMZESuQXvKSZ9arX1r4BDv7Ye/z4M5AahEhvfeIRyuNnSWbn75WfRjsw8iisPGfJwxEqwE/nzofuEjFas+KkvcdVIv+tBa3HQvy5yqYd/PXSxiJUjlfbutp2UC3FaOXyclIQbFIx2uH74alPwcGfVDdfsB2O/2s44TKI9C1NbEJt8ZLWiBitNF6S31qWMYLQKFqPmT99ch8kXoDY+vrGI1RBibJbWXD8h+DZf60+24UI+Seeh/bjqp9PEARBEJqX4gsAHg8qlKR4nrYFxuKJ1voepdQW4HLgEmBT/vflJWZ7GrhGa31breNRSq3ASNqqwaPBWn/2jcDRH5Pz53qw89MWGxt4+/GBBx6Yk3b66SVerlkFL3nJS2YNJ5NJHnvsMV760peybt06du3aNTXuX/7lX7jxxhunhm+99VZe/vKXz8mzt9dsrHPOOWcq7eKLL+bXv56+3j0z35msW7e4lxxcccUVc6Ror3vd67j22mt56UtfOmd613V56KGH+Pa3v83NN99cMu8PfvCDs6RoHR0dXHvttbznPe+hrW12kZlMJvnyl7/MP/zDP5BKmXvsW7du5YwzzuCCCy5Y4NoJgiAIQnNy+gZFVS9AWiTPHYbg+11OXQfpLDzTP/90loKWkHmno86H19sKtmWEJlkHwgEjRUnljChlfTd0RI0IJJGGgbiRffS2mumzDrRFjFwknjbzn3G04oa3KHpbIZmFyYwRr7RFYF2XQmtNKmukboNxM6+rzXiATM7E0BMzsVmWmSfnGEFLJGhiGU7AUMKsz6p2IyZ5YRj2j0IsbGLOOia9JWTkLLZl4pxIaXpbFas7oLPF5DeaNNuoIHtxXCNUCQfNekWCZl0Oj5v8bMtIT9rCZvp42myzeAo6WmDzKuiOiRBFEARhPh58XnPtHS73bC893dnHwNouRdYxgk/bUqSymkNjpg5J5Ux5nXNMORwKGPlWgaBtPq42ZXpvq6nXNKYu1Jh6J5GeFn31T8AJK0391NkCazsVsXxdNZaE/nEj7g9Ypi4IBUz9YCsYT00LxUYn4fiVZtzopKmTlJqWjOXc6fq4JWTyiwTNZzxlYspW8C7kcnS1QCJj1rOAlY/DL7SG4eKXKSxl4g3aRriWyeU/+d+WAssyAr2sY7ZjPK3Z0W/q/3iJxyTnY0UbrGw3++zgmMkzvcBHwCNBk89M1nVBX6tp44QD5ng9pk8xmX8seGOv2e/94zA6qUlmpsV0WQcOT5h13DVotsExfWacq818sbykLuuYbRgNwVAcJtJwxiZF0DbjtqyGaNAc2zp//A1MmPbQZAZWdShWtBmZ3lDcLCsaNNMVhIXpnDl+V3eYZR6egAOjmo29inDA/Bdslf+e+ck3hQ5PmGMeoNA6Umr6XeOWMulK5X/P+FbMTVvacWr+6a355ys5Tk2vW/E01Y6bE2uNxvldICk0H66rp87hCseX1hrHNeWCHHOCIAiCcGThs179giAIMyiI0VQpMVrWe5zgT7z2mbXEVVKgBWIbILFn7jg/SyeOZLzkYgvpyLNUiBjNn3h1cC3m+A8tbRxeVCKNkHKp8TRK5FktXh3hC2RHRYzmF3Ie/WgC0fosf8MfwyNlyr1cHBAxmm8oJclcVZs32S+Y1a+BQGv+mClBLlGfeITy+Kl9qn30JIxQHW6JJ34qkf/WgrUXwjP/XNm0XrJtof54ta2rPb+v6fWAMg9FeElt/YrWRoL71Kdh4JfVzRvug81/C8f9lZw7NBue54PSsbsknrJGn53vC8JC6D3Te9zAAyJG8zOlrmkrGzZ/GPb9ACb3Tqf3ngmD87wRaP07pn/bC7ju5Mi5vCAIgnDEUSxGW8hFgeILUUtlWy+cuFTSNe9B4FrgniWK5a+Ajy9R3oJQM/bt2zdreOXKlfT09NQk75NPPnne5b30pS8lEAiwcePGqfTOzs5Z061atWrW+GJaW6eLkUhk9nXRUvMtlLvuuosvfOELs9Kuv/56PvrRj3rOY1kWZ511FmeddRZbt26dE2eB2267jZtuumlqeMOGDdx3332e6xGNRrniiis488wzOe+880ilUmit+Zu/+RueeeYZLKvMMxKCIAiCsIz4g+PgpDXw1IH6LvfxfaXHu3quMKScQGTX4Pzpe0emfw8VXZp8pl/zn7/yfsZkppitEgpSj9qztM/BBCz44h8r3vdKaQcJgiDMZNeg5g1fdBmdLD/tA8/D7PK6dNldLLUqSDzBSKvGK7yC+PShmUMLry9m5+NNQZRVaXzVMDLPdvaTFA1Me+Tr99c/qMMT5lMLiqVoYF7ysG9kdtr9Oxa+ns8drmbaapazmG3vs4OpJizHdSpNpUK1+URySzFuqWR44ykjuJzMmLZ6d8xIDR13WlpZ7vtgXsxZ4HNvU6RzJt/WMHRGjQRxJGHmsZSph8ZT5rwmnRc+FtY9aBvJYSEOMBLPgQl45pAmkTGi54EJk09vK8TCakoUaSsjHUykNas6FBt7jUB62wFN1oFNvYpjVxjZZkfULKd/3IgSbWVEiCMJzYFRI/rMOuZcLZeXRIcC05LRcMDUKenctIQ6k8t/O2YZxWVqa14inZhx3rm2E/raTB7pnCk/07np34X5WsPTEu6p3xEjK52THoa2iJo7XwRiISPbFgRBEAShMchT/sKSoJTaBJwGrME87HUQ2AM8qLUWk5WQp8yJQMta822FvKeRw6n58OoMa5UQ4NWK4z4Aj/3d3PRKJUpCfWl2MZrW06+dEOpLpVKxvrOXNg4vrIDpzFaq7CklwxHqg2d91WSnUFo6xPsGL7mGVad6LdwNL/sKPPw+72n8JE4SStdnp36yfnHMhx2Cl34ZfvXnpaeTY8o/LHZfdL8Ejnkv/Ob9NQjmyLvZv2woKUarU3128t/D8MNG7FEOKYP8gy/FaGVoluNHu7D3+0aINvJodfO2rIMtH4Fj/tK8UEBoQjw6P8h5YGm8rsf4TYQuCAsh0gvtm2H86bnjBh6AjX9c/5iEyihZdlvQugnOfwj2fBviO2HlOXDURXDf640ctYAdmf1CkIW0n7zk/oIgCIJw5LCQC5hLftFTKfVe4J+BWIWznAXcBTyplHq/1rqCC2qCsPwYHh6eNdzV1VWzvCORCOFwmHR6+tp58fKaha1bt84afv/7319SilZMsfitgNZ6Vt6BQIA77rijIrlbQbh21VVXAfDcc89x++23c9FFF1UclyAIgiA0Oy1hxY8vs/g/P9D89GnNUV3w8QstbnlYc/OD8uxFte/lWxop2tKTc+ED/6U58xjNqetq/1y662osS5HJaYK2ESB0RMlLEipbntaanANPHYTdgxBPa9ojivaoETQMxY2wYEW7ESfYFrRHze9kFlZ3QHvUxLB3GLpiRhSxe9Dst64YrGo3wpt4Gjb1QEvIyCJSWSOkGIibY2I8CcOTMJHS9LUqzjoGOlpKr0cyoxlOmFiDtslDKSO7CNpGuBAOgFIKrTWuBrdIcFHJb8eFJ/eb70jQbOdUFjpbzIWFTF5w0RYxy48EjRRjNAk5x+QxGIeJFKxsNxKOVNaIIyIBM5+jzT4M2bCuy+xHjRlO5mURXS1mnJJ+DsIi0Fo3/Bj6xA91RVI0QRAEoT5obdoigLzXs0quvK0R53dey5wvvbHnn/OJuPePmk8pUtnZArppSq2P97jYHIlaQaymaJ1HstYagbYZ44rniwSlTS4IgiAIlSJP+Qs1RSn1VuDDgNcryYeVUt8BrtFae7z3RRDyRNeY71LCLFfEaE2Hl+ynHh3PvJYhAiJ/0sxiNLQpn+wSYkdh6ahEdrj6AlANfHuaHYFcwnt8pXI3YeloZH1VS5xKXhgv1AU/1GvHXgodJ8Hdr5h/vJe8TWgMpeqCji31i8OLTX8Gu74Fh+72nqZZpDJHAovZF+0nwKt/YaQ5yoaH31u7uITmolS7wgrXJ4ZwD7zqXhj6DUzsgI4TYejX8NvL5k4rZZB/8GpbN1SMVuZBDb8fP24Wdt8C266fX35TitZj4aS/g41/Jtctmh2v6xoiRiuNVztb2fWNQxCWir6z568bBsWD4WtKld2F8r5lDWz58Oxxf3A7bPsM9N8LLRvguPdD31nT4xci5JfrQ4IgCMKRR3GXiOgC8iieZ95uFgtFKfX3wHVFyY8AXwbuBw5guhmtAl4OXAqcm5/uZODnSqn3aK3/o5ZxCUIzUCwq8xJ4LZTOzk76+/unhoeGhmqafz14/PHHeeCB6XPGtrY2PvOZz9Qk75/97Gc8+eSTU8OXXHIJp556asXzf/CDH+Saa64hlTLnKXfccYeI0QRBEIQlQY+bNoNq725wJHNZ26X45rtmd5Q+bwu89mS44zF4+pCRNAVtI3GKhcyd0KE4jCWNPEopI1JK5yAUgHjKyLaE5uK0rS6v3mL2YzIDARtWtpljZCgOP3tGY1tGhLWhx8gD9o1MS7k25A/vnGs+WcdIuA6Ne0vmWkLTcq9MzhxLazrMuPGUyXsy4xWxH+R9JoZoEE5YBaOTRkKQSMOBMbN+YERilaBU9UI+P/OqzXBMnyKZAatwKyJkyolo0IjU2iJw+gZFNGj2dThgypuJNChgOKEJ2EZOt2sQoiEjfEvnzPQHx4xELhQwx4vjGmFKOAB9rWYPzRTNacxvR5v95LjmmG6LTM+rMMtQysQ5ljTLS+W7liWzZj+lsuZz3EozfTIzXfYl85KMglCut9UI8MBMl8yafFe0wYvXK1683iwjnjYiukKpfGjcbI+sY7adbUE6L6Cb/miSGfOfcbWJbWW7Wa+gbfJ3XHhivxH6jadMmT0yaY5ZxzXyvn2jZrktITO+IMzb0GO2Qzhotlkya7ahxixLY7ZDW8TkN5Y08a7pNLEOxk15ErLNfrItk98je6aPlZPzXfsKZUf/OGQcs91sZdKtvOiwI3+VrLCNCq4PpUy8kxmzXdoiZntEAmY+pfJCRmX+ky0hIwuxlNnug3EjA9zYY2SKL1qv+M9fLaM/pCAIgiAIvieRNp/+8eIxCxOt2da0TG2OUC2iiM2Sr80Wsc2WrzElXwsFRLQmCIIgLE+arFe/4FeUUq3A14CLy0zaDXwAuEgp9U6t9U+WPDihObGjEMzfNREx2vLCs+NZPcRoHp3bKpEoCfXHUyCzkOeQl4hSnbLdlHQwbhSVyA4b/b+3woCI0XyN1z6wmuwUykk2OgKhgNe+qHe91vVi73F+F4AcaZQ61/GLpLH3zNJiNOlM7R8W8/8+6m1GigZw7F9CYjc89alFBCMPJDUtpY4jq47nPnYYVrzCfADGn5l/OimD/INX27qhYrQy+LVd5KTg+W/C9hsgsaf89DPpPAVO/BisfxtYIoBaFngK36UnS0m8rhs12/m+IHjRezY8/4256aOPQ3YCgm31j0koj+f1ajXdY2Q+7DCcco35zDt+Ae0nv7aDBEEQBGHp8LUYTSn1KuCTRcnXAlu1ntMde3f+822l1KXAv3wJIP4AACAASURBVGP6odrAN5RSz2mta2XM/TJwW5XzHAP8oEbLFwRfoEq115uEe++9d9bwn/zJn9De3l6TvO++e/Z9xHe84x1Vzd/S0sLLXvYyfvGLXwBw//331yQuQRAEQQDQrguP/QL931+B+74Pb/pL1JVfanRYFaGU4u2nK95++sLzePQFzUuuk3tKzcY92+dLnfsczv7RuVM9eaD65RVLz7SeP2+/k8zCY3vnpqeq7Iq0nKRoAD99Gn76dCUrtcxWvGqWev0Xl//OwYXNd3Cs8mm9yo8D85QHlYoGx8o83h6f5/2dw4np/P/fE0f6cSkIgiAIQrPjuKZNNH+7aGGytVCgWKI2W6jWOo9QzXyreeeLhcG2mv8+iCAIgtD8yFP+wqJRStnAd4DXFY0aAB4FxjAPNr2Iaen/SuAHSqlXa61/Wa9YBZ9R6sGg6Nrp8SJGW1547bN6dDzzEkiIgMifeHVir2dH6HJYJWJxUhCszYOCQpVU8p9utBjNDpceX4ncTVhavPaBX2RElSIdGf2Dp/CzzvVaqfJHRHr+olRd4BdpQ7njV8ogf6D14gRRgaI+fX4SFQv1xZ3niTMwUrRGdv7yKoukDPIPnhKiKttB1U6/GPx2/GQnYMe/w9Ofh1R/dfP2nAEn/T2sfUNj/6vCEuCxP7V0YimJ1zWhZjvfFwQv+s6eP127MPgQrP7D+sYjVIhH2e0pwayQBYnR5PqQIAiCcMRR3A20RSkV01pX2I0TgBVFw7XsJv4pZp8A/ofW+hPlZtJaf1UpdRTwD/kkG7gRWIQ6YVb+h4HD1cyzHARSQvPR3d09a3hsrIqe3xUwOjr77168vGbgwQcfnDV8zjnn1CzvX/5y9qPB3d3d7N69u6o8Zkradu/ejeu6WNYiz5UEQRCEIxo9dAj+51voH30T9u+cHvGDr+NOJlAf+xoqUKLvQpOjXReGDnJabzuffFOMa+7Qy072JAiCIAiCIAiCIAhHIpkcDOe8ZLULk61FgzOEafMI1WLzithmiNZmzNMahpaQ3DMUBEEQqkee8hdqwfXMlqJlgQ8DX9VaT70jRCl1IvB14Mx8Uhi4XSl1itb6YL2CFZqEljXTv0uJ0bSI0ZoOL2FRPTqeeQkkRIzmT/wikClFqVj81on6SKIS6Vmj//flOvQ3Oj7Bu43RbB2lpSOjf/BLvaYsI7BxM3PHSd3lL0rVBX4pi0SM1hzo3OIEKcXtFj+1x4X64niI0Rp9TIgYzf94ta2rPXbqeawtRihZS9JD8MwX4dkvQGakunlXngcn/z2sOEeEaMsVL1mO9F4pjef1abu+cQjCUtF2HIT7ID0wd9zAAyJG8yuul7RxkWXTQsTW0o4WBEEQjjC01kNKqRGga0byemB7FdlsKBresejAAKXUWuDlRcllpWgzuB64Aig0Cl6ilDpVa/14LeJrZtZ1wc5Pi1ipHqzrKj/NUlIsKhsZqfIaWwlSqRSp1Oz2c09PT83yrxcHD85+dPekk06qWd579+6dNfzylxcXadXhui6jo6NNKaATBEEQfMTPvof+yj/MP+7uW9F334p+218DGoYPm/su0RiMDpjfXStQr/wj1JkX1CwkrTU8+yg89WuYjKOHD6G6VqJTCVQoAoGgiSHaCvFRaGmHzl7IpGBi1KS1dprrjLF2sAPgupBKwNgQemwIDuyEvTvgwC5ITQJwdWsHb1PreaTvVWRPOpvoOa9nMmcxGIeABeMpeHyvJhI0HZ1ftB5cDavaFbZlNodSpuP1QFwTtCESAEfDRApCNhyegMkMhAMQtCEWNt/7RkyH6FgY2iOQysFIvuP2//lBc9zrspTZHoIgCIJ/+MA5imsvVAzG4Z/u1uwd1gQs6IopgrYRcWjAcU0ZHrBgfTes7YSDYzAQN9OcsBLWdiqCARhPQjwNg3FNOgepLNiWeZOBUqY+UMrkFQtDOgs/f9bUk7YFqazm0Dj0tZphS4FtKQI2rGiHFW0m/3QWAjb0tprYfvQ7TTQEK9sVHVH4zW5NNAhvOk2xvluRdUz9e2jM5NvXZmIIWGbYcaE9qmiLmLo3HIDVHeb3YNzUz1lnOibHhXQOBiY0QVsRDZnfh8ZNjB1RRSxk1jEcgIwDyYzZXp0t0BOD4UmIp0z8hW0TC0/HpLUZt6INklkTQ9A2bYGgDaGAme7J/TAwYeZtCUE0ZPIfnYSca6bV2sR/y8Oae7ZrhuJm31oKOqMmn3DA5BkKmHZJKKBwXIinNcmM2baRINi2mW9jDxzTB7GworfVLKM7ZrZLIm2W3R4x+6uw3caTsHdEM5wwca3uMHkentBkcmYZfW2m3dOef/QtYJvjJ5k1271/HJ46oIkEzfZZ3aEIBczynzus2T9qYvjWrzRDCThuBXS1wIYehaWgf1xj5dd3XZci50LOKRwDcFQ3xEJmOVnHHAdtEbMPhxNmfTqiZhtNpOCxvZqHd8GhcRO3paCn1eSRccyx7GpIZOD4FdAZUwzHNWNJk3/OnW7/hQMm/6EErGjVtEYUEymz3FQODoyabfmqE6b/m1MfPXu4sP27Wqb1PVoX/c4fY5oZv4u/fTJOM//0giAIfiOZNZ/DE/ON9Sq4vAs0pYolarOFarE58rXCeOU5XyggsjVBEITljk960grNilLqaOCyouS3aa1/UDyt1nqbUuo84F6m5Wg9wMeB9y9poELzEZ0hRlMlxGiuiNGaDtej41kpAV6t8OpA4tXhRGgsXp1vygml6omI0fyJVzkzk0aLx+xw6fGVrIOwtHjWV012CiViNP/gtS8W0kF1sdhREaM1A6WEDX65aF/u+JUyyB8s9r8dKNrPixUTiayleXE9xGhWmbbtUuNVFkm95h+82tZVi9HqeKw1+vhJHoSn/wl2/Bvk5n11mzdr3wgnfQx6z1ia2AT/4CVGYxFC1COB5XK+LwheKAV9Z8G+ObdqYfCB+scjVIhH2e1Z1lfIQs7f5FxeEARBODLZDpw1Y/hYqhOjHT1PfrXgtKLhnVrrXZXOrLVOKKUeAs6dkXwGcMSL0QK2YmNvo6MQ6sHatWtnDR86dIihoaGaCMyeeuqpsstrBoaGhmYNd3XVzmZXnHctmJiYEDGaIAiCsDjO/2P4t6sh43H/G+C2L5bMQv+/m+FDN6DeUdyNpnp0Love+k742fdmpxd9LwnxMY7lCY6deAJ23giJt6I++hWIxirqUKxzORgfgmTcXJseGTDStY5e82x+Mg72CCQmIBSGjh4jcItEIZeDbGZK3kZyHCYGIZ3i6hMP82x2Jb9yNnOo92RWbd7EsSstOqNGsnFo3Ag0osFpWUosZKQdGiNp0Ri5x/5RIynJ5IxcI5R/7OrgmBGiHLtCsaLNSGgcDU8fhH2jmjUdipcfbZY3OmmEL4NxiATNtCHbSE3AiD0mMzCWNJ2yO6Jm+em88KUrZjx1BZnOSF7qclSXkYU42kw3lJfx/N9HNFt/JM/WCIIgVEuQLFfv/Dg9n9hGz/gIXwmGIBiCYBjiYzA5bn5n0+YZxnDUDA/sh5Y2kx6JmZfQFuyfw/0mcztg2g7hKERbIBQ14zt6INICI4chFMkvL8R7O3pNHsk4tLShNm6BjZtNXZnLwuggenwYUhr6C5YkDUz//nAgb0kayhnLVcCGkSH4wbCpZ7U2FQz572jMxHlgF/SugeFD0N5jrF9ODlYcZUSpuSxrXdesZ3s3tHWCZUMyYerrcBQS4zB0CBJjZl27VsDgAdj3nNker/wjs6zU5PQ2CrewEqC1HeLjRirrZDEKMMz2KnxCUTrau8w2beuEWIcRwSbjkE1zSiBk5k+Mm/bCxAhkUnTlsmZd27uNINbJcW0wzLWtHWYdQxGzXq5jpnNn/nbAcaAlBl0roWcVjMyIDUweKLOP4qP5/DTseMxsg2NOgfFh80mMm22glBHTKpV/ebll8rAsE3sgaI6LwjEUyBvPHCcfm8Nm1+GVuZzJN5UwMtxkHCyb82NtsO5YOOp4Pn/GOujsM/vIyZlPLgt9SdPeau+GFWvNcTYxYtZbKZjIx5PLoUcHYdew2eeZtFmP8WHoWwtdfSafkX7zUtEV7SZ+yzax2gEIKBgahtFBM3wwf8yOHDbrm0mb/R4Mm+PDts12SSXM+EiL+b+5rjlWUklIJ2Gvmt6GSpll9qwyyz3rdai+tWZ9Xcd8a40eGYDBg9CzEtW7xvwfC8dboRWti75n/Z4nrdrpZj0PXSKPUtPNM712NS7K/M0BjcJ1NRplhGpuPq0gVMuna62mZGxT06DQ+XnzJQauzuetFVrr6em0NmkwvXw9+/f08hQaPZ1XPs0sd/Z00zI4NXvczHjzy52afuZ3fvkzpyuOc/Z8am6ezIhz5jrM2H5m+ul8CmlMza/QloUVsAkph925XhI5m82hfgKWNsJES2FbCluBbSssy8gwrfzHthVXbPN+rrM7mKLLThEOaCzbJulYrAoniagsGRXG0ZBzNBuicaIB1+wzRzOSDTGci5JIQzAArrKxlSZsa1ZEUnQF0uQIEM1N0J4bIaMDZCbTuOkUTjCKG4zgpNOMpgOM2e1MEiHkpFin+2kJwZ7QBgZ1B0kVoT/XSjpnDqZowEEDm9rSqEAAhSadcWmxsqyMpNnUMk5YZwjbmmwmSzYYI6kihFSOaEDjBCL0xjSR9lYCTopQNm72w1A/dmqC5+Jt7E628mJnG2sy+4mPJ9keO4XDsY1sWhWkw0oRJkPYSRAeOUCEDOEghMMBtLJIBDuJuyHiToi4EyTuhJjIBc1v1/xOuCEmcoXxQSacEGktzxEuJVobEedEyohpi8aWmtNzTACHVjtDm5Wm1crQapvvoHIYcyKMu1GUbdETyrCqzWFdKM6G4DDtgTSJlhXE3TCZeJJuZ4icCmJForwwbrM5OkRrSLNvRHMwtJZwOEDOVeS0heO4ONrCsYM4KoDjanKOecFLKylaoxYHnQ72JyK0B7O84eVtvPsPgthWZX3BdGLc1IeFdkogBKOHzW87aOroQN7JkBg3v13H1LV2ABWOorWeur6jXdfU+WODpv4NRaC9y7SpEuOm3s5lYfVG094Y6YfJuKmb9z4Lh/aYunzL6Wb8yqNQsfbK1kVrM28wBJSX2OlczrQhtEZZFtpxYOgg9O81bYpA0GyDjm5YdxzKlpciC8KRgNTOwmL5ODDTZnTzfFK0AlrrpFLqXcATQCif/B6l1A1a651LF6bgT0o0XmaK0UoJs0SM1nx4Ch7qUCV5LaPRgiRhfrw6IS9WxFBLRIzmT3QFssNGCxHLySOkXGosunDJfx7qUV/VEimL/IOf6jU7Atk5V5DlePEbXsIGP5VD5Y5fOab8wWL3Q7F0yk/tcaG+OB4PhtdTVjXv8j2OSZ0zZamIbhqP1/lNteWJFSo/Ta1olBAkvgu2fxae/6a3jHA+lAXr3wEnXQ2dpyxdfILP8JDlaBGjlcTrupHXSzUEoRnpPXt+MdrEc/WPRagMz7K7EWI0OZcXBEEQjkieZLYY7Uzgh5XMqJSKAafOk18t6CwaPrSAPIrnER2YcERx1llnzUl75JFHeM1rXrPovB955JFZw9FolNNOK/YZNh+VSFAqJZOZ52Vdi0TLC3gEQRCERaLau9GvfDPc/e1F5aP/9Sr0w3cbCVgwBLE2I3XIZKCzx8gbCvKVvBRDx8dMR07LguHDRsTy9G9rtGY14KffRf/0uwDojl5YvQGOOj4vwQgaQcnooOlEOzpohBtLxPH5zxSBoOmgC/Cqt5mOvsm4EYeEIzA+Mi0dKUhCLJvjV61Hnfgy6F1txtkB07n2qDWolrap7LXW4ORYsTFnOgUnEzBuE0nG6c5mIBOm+7knzDqv2QSbTjQxpJN0h1voDmZZlxyGXbvMfu9eaeJKTcJY2khCsvlPtNUITYbywp10EhLjbOzqgw2bOS0EsG7Jtm29CFguOXeR17gFQRCq4NP9/8Ca7aXlpo2i7mey++a7L/zQwvPb8/Ts4Z/fvvC8asHggdnDowOVzzs2CAf3VL/M+Bjs3VH9fAthbIZofuQw7HseHvpJ/Y+jpSA1aT5Qfr8NHTTfzz1edt2XxbYpotCKkqeZlh/f2XgfD0dfNid9XXYfu7cfP88cQr3JEiBhxZiwWonnPxNWK4n8t0mLMWG1Ebdi86YnrNjUfBNWG46f+gAtQ3LYjDpRRh2Pl60XSABLdymjJHfshEtvcQnoLO06TpsbJ6aTREgzqaIcsvr4/czDdOpxAtkkvzf5v1wy9m263NEFLW9K7znzekqN0a2dRs6rLMhljCw2l4WDu6cnCoWnX06Qv2aj27rMdZ7C9ZvCd0H+O3MZeZkaWe/7TXrDZtQ7r0b94cVzxjmuZjIDbREjGR1PGel9MgPtUSPSH09BT8y8WGs+UlmNAkKBuffQhhMarY0MvyVkhPm2ZfLP5FenJWTSXA2hQF5UpzUTKYjlu+EcHoeV7UawKQjC/EhNKiwYpVQUeGtR8mfKzae1flYpdTvw9nxSAPgT4LraRig0NdEZb08UMdrywmuf1aOjstcyREDkT/wkkPFCxGj+pJL/dKP/9+WOY6nfGouXjAiaT6zRKKGDMBc/1Wtey5S6y1941VV+KocsEaM1BbUWo5Xb72VZjo8gHCF4SZrKSX+XmnLnZVZr/WIR5serfV21GK3ENcKqKVMW1bsOG9sOT/0j7LmlMtl3ASsIm94FJ14FbccuWXiCT1EiRlsQjXxxhyDUi9ZN86dnFvaglFAHlkraKGI0QRAEQaiUHwOXzhg+p4p5f5/Zz2A+qrXur0VQQHEDLraAPIovjsUXGIsgNCXr169n/fr1vPDCC1Npd911V03EaHffffes4TPOOINQqI4vd6gRvb2zfYnDw8OsXbvWY+rq8z5wwHRWjkQiTE5O1lS8JgiCIAgLRb3h3ehFitEAePhuz1FN/2TEWF6A5hdx28xOvD+9rapZvfaFDkXMfTUnB65/7q/1Rs+AjT/zHP++ka+RUC08FTmJntwgMT1JRoUYsHtZn92LjUPYTbMh+wIbs3uYtFoYsrtpcycI6BwBHAI6R1BnyakAe4LrWZnrp88ZZFK18HzoaE7IPEubGyeoM1jaRaOIW61kVRBH2bhYdDmj2OQYszrYFdqIRvGa+N2cnH6KoM4SIEeOAJNWCxkVosMZI6NCOMomo0IcCqxkd3AD98ZehYNNtzPMutx+2t1x1mQPENYZVuUOkVVBFJq41UpEp+h0xngudDRJFSWkM9g4pFSEVbl+VuX6sXFod8e5s/W13B89mwm7nZgbpzfq0umMMKDbcRzNsG4j6k5yWvpxOp1RYm4CR9mEdIZ2ZwJXWUTdJAcDqxgK9BJz41jaxd5wHFasFdvNYY0exhrYi51NYeFiawcL10xH0W/tYuNCIMjqwBjJRIaArXEjbWQDLdihEKHDO7FwGbU7Cegcw3YXw3Y3q3L9tLiTWLiEdIZgKMBgoBflOqBderKDOChSVhS7s4eIypHRNvvUCrI5TXtmiEzWJUmY29rfwuPhU0hYLbS4SVr0JBE3RX9gJQOBPlblDqG05s62C6o6bm2dw8UipDP0usPEnDgtOkmbM06rTuBiYWtnarsM2j2kVRiFxtIuFi6qoxsrGMTKplHZFNFcHEtBVgVIOTbKdQi6GSatKINWj1keWWztgOswYncR1mna3DgOFk9GTkZply5nhHZ3gg53nDZ3HJSF0i5t7gRB5TJutzOouhm0u7G0S1QnCeosI3YXhwKrFvQ/DpAjrHKELdd8qxwdKkHAzZLOap5Ux3jOe3J6G63uBG0kCekMVsAiSYS4asFysvRkB4joFONWO+lgjKy26Qyk6F6/mhUtDrHMKFZmEmXbWJaFApI6iKvBSifIpjKEQhYDVg/doTRHtyXJpTJsy61lx2Q7q9Uo4YBmV6qDDivJCmucdePPEHGTBNZuIKA0oWyCqJVh8vAQWlkETjubiZWbyWVztGRGUW4OtEbnP7ianAOj4xnCbopw2CblBnCwSLs20SC0tEdp7Wgh58BkBsbTCjfn8Mg+m10TUU7uGOfn/T10hh1yLsQzFrGJAwR1lqMzu/irkX/n/MQ9C9pfgiAIglBP7t3zWto2D89Jv2Ts1gZEI8xHkByd7hid7lhN8tNAWoXnCNXM8PTvmSK2uNVKXMWYsNuIq7nytbjVivZ6flTwNTkVZFh1MWx1zRn3w8gfmh9RoP1PuXzVPwGwJb2duNVKtzNCxE2ywhlgwO5ld2gjSms6XHO+vTN09FReR2X3YmsHR9nsDR4FwOnJRwjpDA42WilyBBmz23GwcZTN2ux+1mf3EtUpwjptzke0Q1aFmLRaGLPacZRNSoUZsbuJWzGyKkirmyCjgoR0FgLwwvHrUFozHOgB4NzEz3CwmbRiuFhopViffYHe3BDrsy9g4xDSGRSaiE4zZHezJ7iBcasNWzvsD67hsL2CDdk9HJXbTw6bnAqYDwFyTgDnmza5Bw7htPeRcyHnwKFxeL4Kf27QhlXt5n0GrgtjSSNNK54mGgSlIOdCoop3oAP0tkLAgsG4mb+Y1jC89iQjVTs0Zs6NbMtI2QrLSmRMHK5rfp+yFo5ZoTg0qtk1BPtH4NDnLWyRrAnLDHnKX1gMrwFaZgz/Smv9tNfERdzEtBgN4CJEjCbMJLpm+reyzGe+Dl1axDFNRyM7nnl1IKmmw6lQP7xkPn4So5USALjSeahhVCRGa/D/3i4jj2i0uO1Ip9T2b7aO0tKR0T941mtl3kixFHjVpVJ3+QsviYyfyqFy7TIpg/zBosVoRfs5sNhyq+kf/z1y8ZR8+lyMFhQxWsPxlH1WeX6vailGK0O96rDh38JTn4a9/01V5aMdhWPfB1uugJbmf1u4sEA8H2zxT8cNX+IpH/JRO1sQFkuwY/703Li51yYPxvkPL6nlYvfVQsTW8qIFQRAE4cjkJ0AS85g5wJlKqc0VPgf3rqLh/65hXAeKhk9QSrVorSeryOPFRcOHFhmTIDQdr33ta/nqV786Nfytb32L66+/nmBw4dcbBwYGuOOOO+YspxlZvXr1rOFt27Zxyimn1CTvlStXTonRUqkUL7zwAhs2bKhJ3oIgCIKwKF70Sjj1bHj8gUZHIjSSjD+fa1qV83Zt/37ifr506LI6RrM4guTocMenhkM6O3VbvM8Z5JT0U1wYv7PqfFcky/dsfn38x7w+/uOq8y7m2OzO2Qnb71tchvnHJ1oLv+NzT/F7nSEAOt0xjs7unptHGlanJ2YlBYGIk4SB4anhE3huzqynDDxVcahpFWJ3cAO2dtiY3YONYwR1booAOeJWKy3upBG+LVMG7R6eDJ9IjgCtbpyITk9JByJuiqhO0erGieokCRUzYkKdxqrg+Y9nQsdxd+w8RuwuVucOcW7iPo7J7lp4sDsWPmvFeB0+v6vDsgVBEARhmRDVKe7ffQ5vXncbg4E+AN48fjsfG/xMgyMTlgoFRHSaiJOeausvFhdFUkVnCdUK34ki+dqE1UqiaJppMdt0WtJqKb9goSFsD28BmBKcFXOQ1XPS5pv2kejpJZezN3gUD/HyBURYmp/Fzp2T9mjktKrz2RE+rvQEB5h7d70Ksg7sHSk/TXYR3dIHy7zCLJ6G7/5vdXn2j8M922efg+4fgfU9VQYnCD5HnvIXFkPxkxz3VTHv/ZjLuIVj8EVKqZU1fGOm0AzkEt7jWtbMHlZB0POoU10RozUdXoIHqw6dW706t3nFJDQWz073fhKjBcxxNV8nbxGBNA63grPLRovHynVIk3KpsZQ6PqwmO4WSjoz+wU/1mlcZJHWXv/CUyPioHCp3/Ipszx8sdj8UCxwX0rFeWB64Hq+0afQxUWr5Ug75A686rdp2UD2uHRVY6nbR4fvhqU/BwZ9UN1+wHY7/azjhMoj0LU1sQhPhIcvxkusIBs92tsdLNQShGfESo2kXcnFTnwj+wlPauMiyaSFia7k+JAiCIByBaK0nlVLfBf5sRvJHgXeXmk8pdTzw5hlJOeCWGob2ODACFF4ZHsnH+JVKZlZKvQFYW5T8y5pFJwhNwmWXXcbXvvY1tDadAgYGBrjpppu49NJLF5znjTfeSDY7/dxiLBbjve9976JjbQRnn302t91229Twfffdxzve8Y6a5H3WWWfx6KOPTg3fddddTbudBEEQhOWFUgq23oJ+x2ZIy/N1gr/YlN3Nxsxudoc2zhl3YqYSf7cg1IawznBCZrZtq82Nz/t7udLrDHHO5P0VTduqS/SPm4cTMjvmbF9BEARBEI4Mzkw+zL4dR/O7yKmszB1mXW5/o0MSmgwLTUxPEnMmWekcrkmeDtaULC1eJFcrlqiZ9NnytbjVSkLFmLDbiOe/sypUk9gEQaiOXYMiRhOWHz7qTSs0IScXDf+q0hm11gml1BPAi2YknwSIGO1IIllCvRotei7PCs7fAVfEaM2HV8czL2lZLfGSSDRakCTMj1cH9kZ3ui/GjpjOZMVI56HGUcl/utHiMTtceryUS42l1PFRj/qqlkhZ5A+09pbJNEKMViw5KiAiPX/hVRb5qRwqd/zm5JjyBYutC4rLjMWWW7r8GzEFn+J41WVl2rZLTaljUtpCjUe73pKmqsVodbxBvhTHjtZGhPbUp2Cgyj7I4T7Y/Ldw3F9ByEN2Ixx5KBGjLYhmaGcLwmIJdXqPy4yJGM2XeJTdXmV9pZS8n6KAec7PpA0tCIIgHLlcC1wMFMzs71JK/bfW+o75JlZKRYCbgJkXLL6htX6+1EKUUsUV8Lla6/vmm1Zr7eSFbTMtQtcrpR7QWj9ZZjnrgX8vSn5Aa32w1HyCsBw58cQTueCCC7jzzjun0j760Y/ypje9iZUrV1ad37Zt2/jsZz87K+3d73433d3di461Ebz61a+eNXzLLbdwww030NbWtui8X/Oa1/ClL31pavjrX/+6iNEEQRAE36B6VqHuGUVvfwR9963QxJW0ZAAAIABJREFUv3f2S3lzOdj/PHT2wbZfg1PBC3trybGnglIwOQGTccikjMQtGIZIC8RHIZuZnj7SAqlJM0+0FSIxsCywA9DaAUefhDrqOFh3LDg5OLwf/bVr6rtOQkUo4IuHLufC9bfPGXfJWC1d3IIgCIIgCIIgNIoADi9JPVp+QkGoEzYuHe44He54zfLMECwSqpnfiXnka4X0cvI1d7EvmRSEI4Cdg5pXnqAaHYYg1BR5yl9YDFuKhp+rcv7nmS1GOxH46aIiEpqLkmK01bOHreD804kYrfnw2mde0rJa4nXSo+t8s1qoDK/ONwEPmUujEDGa/6jkP93o/70lYjRfU2r7N1tHaRFd+YNSdYKXpGwp8ZKQSN3lL7RHu9lP5VA5oY2X6FaoL74To0k7p2nxknyWa9suNSJG8zelzr2qFqN5XB9cCmp57GgX9n4fnvo0jFT5IEvLOtjyETjmLyHQUruYhOWBpyxHxGgl8SqX5IEZYTkRLCHRzI4BR9UtFKFCvKSWixajlRDLhrogMzw3Xa4nCoIgCEcoWuudSqkbgStnJH9XKfVh4Kta6ynjgFJqC/B14KwZ0w4Bn1iC0LYCfwoULtR2Ag8qpT4GfFNrPTlzYqVUCPhj4HNAb1FeVy9BfILQFHz+85/nvvvuY3LS/GVGR0e56KKL+MlPfkJra2vF+QwMDPDWt76VTGZaQrJ69WquuaZ5pSInnXQSr3zlK/n5z38OwPj4OFdffTX/+q//uui8L7jgAo455hief944Ix9++GG++c1v8hd/8ReLzlsQBEEQaoXacjpqy+klp9Gui77yQvjNPfWJaeutqHMvKjuddhywLJQyHR11OgmhyNRwWVZvQP/TZUayttRYFrge10EjLRCOQs8qCEXg6d8ufTw+54LEXXx/79u5dPWXGAz00ZMb5LOHr+as5K8bHZogCIK/CUfhlDONSLRvjRGFatfUQeEoKhID24aWNpicQMfHjBg1lwXXQXWtABQ6k0K1dhi5qOtCIGjEo5mUkZamk6A1enQAsmlAmTpMKUjGYegQvPAM7HlmdnwdvRDOPy/V2QfdK8z9QKVMXYkyvwsflIk/k4JwC7R2QlcfKhSenk8p9NgQjI9AcgLiY0aMatkmFq1h7w7zu2cV7N9ptsEr3ggbN8PEKKCNcDWVNL9bWs16B8NmGU7OtINiHSaPzj4IhSGdgvgIdOfF845jpm3tgFgHqrXdbDet8y/U1fntNmiEruPDkMjLV4JhiLbA2LDZJx29qHXHmG3f0Wu2T/9ek38wZPZ1IGjSM2mTlsua9bZts31m/rZtGB00y06MTb/gd+rbNdsuFDHxR1vNsgYOwOB+GD4MG7fAinVm3Q/vN3nG2lGF9dfabDftguugJ0Zh6CC0dUIgZGS33SshYPaPsuzpGC3LxJlMQCQK7T3mWOnfi37+CXj2MXNcoc3+LXyUBYf3zj7OAkFYedS82x5lQXu32cfjI5BKmG2/Yq2JLxwxx1qkxaz/6ICJKdpqtkswbGJuaTX/o0zKbM+OXlRvvi/w2JCZPhCA7lVmmaGQOT7Ghsx+yqSm91t7t5m+EKPron/4Ddj+iDkWIjHIZcz/rqXNbMNQJL/dbBNfenK2NJgZ7eFC23hmG1lVOp2aPd1842a1vRc4XalllptuqfKteF2K56tDbEu9zvNNp5Q51iZGTPkVjppjMhw1//FC+ec607+nhnNFn/w0EyOmbA4ETfp8Lx4PhU0ZOD5slgfm/5mvh4jGTJk8ctjE1bsGYm1wcI/5nxWItZv/YvcK6Flt/p+TcfOfPLQHNmw2/8fEuPmvbzzRlAfBEBzeBz+fK22uiEJ9FgxPxz9zXCUvWw9FTJk2eNBsrwLRVujoMdsvGDLbpVBv9e81ZYvt0e+m1Dmz17iS59kLmGdB42ocd6XXDhaxnBDQrRRzXyszmf8MVpWf1pBSYSZ0lDgR4joy/ZsW4npmWpSEjpDNaXpSB7BzaYacGM+oDfxv5EVopYi5k7TqSRIqyoTVyqjdNWeZvbkBbFzGrHZiboIXZZ8kqDPY2iHgmm9bO9jKxVIwrDoYsToJkOP54DEcDK6eZ00EYWnZ5fHXEoRmxke9aYVmQinVDXPaIi9UmU3x9MctPCKhKUn1e48r7ujn1fFx580w9FDNQhLqwMSO+dPrIXjwWkZuEh79yNIvX6iOxJ75061FihhqjVdH7p03w/Bv6hqKkGf0ifLTNFrIUU4AMLlfyqVGkp1HdligHiLPWnLgTshNNDoKwfEQycDiBUMLwWuZB34snV/9xOiT86f7qRwqd/yOPCb1mR/waldXSvF+Xmy5Je2c5uXwL+ZPt30sRtt2A0RX1i8WYS5uiXOvRorRyj1QceBOyNXgrWfaNXmNP13dfK3Hwkl/Bxv/DOwSQhPhCMdDljP4a6lrS+F1zuMnAbEgLJZQCTHaU/8ILWvqF4tQGWPb509frLSx1EOMwbb5xWgD9y9tPfJ715sH1AVBEATBn/wdcBJwQX44CHwR+D9Kqf8FJoCjgRczu/dBBniz1vpgrQPSWu9TSl0C3AYUKtG2fFw3KKV+CxzAWLJXAacD81me/l5rfX+t4xOEZmHz5s188Ytf5D3vec9U2oMPPsgFF1zArbfeyrp168rmsWPHDt7ylrewfft0+92yLL71rW/R19e3JHHXi2uuuYbzzjtvavhLX/oSmzZt4oorrqho/rGxMcLhMJHI7Gu+gUCArVu3cskll0ylfeADH6Czs5OLLiove5nJPffcw9FHH83RRx9d1XyCIAiCUAuUZcENP4D/+U/0U3kxVTRm5AsFscP4MCQmTOfxsSHTsT0xAQP7zL3JQNBMGwgamUNHD+z43ewF2QHUp/4v6uzXVxaXPfs6mwpX94JO9YcXw9mvh0MvwM4nTcdxrc26ZFLoHb+D/c+bDvMdPSburhWozl7TOb8z/4m1mw7/yjK/hw9DZw+0dZltFGlBKYXO5YyELZMyHdaDIQiGUeG59431ru3w65+gD+9Dda9E73wKxgaNPCASM1KWaMzElkkZmYgdADtovlMJsx92PGYkJ37GDpjO/snZz62+Mf4jLtzxIw4E1rA6dxCL/D3uQNBIQQJB87ED5tgaHSgSgsygs89IS5Q1LWSolIJoINZhvgNBc413T5X3wAvMFCCEwmafFdJdxwgdCkRaoKXd7OOO7rxQKGr2aVsn9K01x2syAYMHpiUrrmOO533PLSwuQRCakze/D+vDX6hqlgVoR6qaThfqVdeFjh7TplgCFqA1aSiNjLeey67VsirJR7uukQ7lMhBtQwWa+xkY9eq3NzoEQagLOjUJgRAqEEAPHjRt0oJsMZkw51Iz6g6t9fS5lVJzzglnTsfAftN271pRuTy7VKwD++HALiN6jMbybfU206ZPjJtzkYK4UlkmXVlG5lnII5c1UriZYsvEGIwOmnPJjh6zDUIRc46TGIfWzqkyTWcz8Nzj0N4Fa46uyXoJzUcs/1ko2nWnxKAq2DcrfTKjsSwLSwHZDKGQBfQaAWe0BXT0/7N35+GWpXV96L/vqTo1dA1d1d3V88xMM2iDE6IQwAkjoBghqKHVaKIxN0aMEUwuiT5ouKKJCRi5EUGJKFeUSeMQEFAwDtgo0LTQDT0ATTc9VHfX0F3je/9Yp6rO2Wfa++xh7eHzeZ71VK111vDutd/zXfu8e+3fTtl05r2UenyhAOL8ljNF648eaQqj7rs0eehADt7xqfz+Xx3KnQc356qdhzM/dyIHj2/OgWOb88DR+Vy//+z87f492VxO5nidyyce3N3Ho4PGLV88kVXvMYcJNdl/4dCmPR3zh2uth3rcxxc75te4S5+ZV1b54OMdv9dMTL5RFHhY7cNt9Xhy42uGf3wGo40CMmtZrVDbF/6gmRhPa304fxTWKx5x9D65NK4m7YPS9/5lMzG+2ij4udq19L6/VtRzEqz2t1Eb1vuA9sHPuJ5Ng03b157v1bH79YtpMzfGhdFuffPo2kHvei6MNsICYff+RTtfxrDnicnjX5Fc/o8UDGF9q93Y88DHm4nejFMBYujXpm3NdfPkCh+Auu0to28PfRjiDUqrvRa7/2PdffnIRj35Z3KmpgsAjJda64lSynck+ZUkL1r0o/OTfOMqm30xyUuHWXSs1vr2Usrzk7whyeJvAdie5OnrbH4oyU/UWl87rPbBpPje7/3eXH/99Xnd6153etkHP/jBPP7xj88rXvGKfOd3fmcuu+yyZdvdfPPNedOb3pTXvOY1OXJk6RdivfrVr15SUGxSPetZz8rLXvay/PzP//zpZT/2Yz+WD3zgA3nlK1+ZpzzlKcu2OXnyZP7yL/8yv/Vbv5U3vvGN+ehHP5orr7xy2XoveclL8t73vje/+qu/miQ5evRoXvjCF+YlL3lJfvRHf3TFfSfJiRMn8tGPfjTvete78ta3vjU33nhj3ve+9ymMBkBryubNybd8b8q3fG9P29Xjx5JaU+ab9zpPfZD91P+bok4Hk/MuaaWARTlrV3L1Nc3U+bON7vTsc8/8f/OZ+5zK5s1NIbVu2nXV45KrHne6Df183L0eeehMMbDjx5MH701u+2TzgfyzdpwppnZq2jzfFLirtfmg/4H9TaGR7TubfTx8uPlQ9LGjpwvdZOv2pkDA7r3N/++7qzn4qUIBW7Y1xeCOH03uuDXZtr05zu5zUrZub/rC/Xcn93yhOfZFVyWHHkw5fjSX1toUBNi6vTnW9p0rFgA4XSRhoTjaqT63bL0TJ5p+d3iheMHe85vHfargwuGDTRu2bG8+3L1GEZ96YH9y+6eaPrzj7KYfbVk4d8eONudr83xy9OGUnWefbmdqTU4cX9bGWmuy/4vJ4QNNu87a1Vexg3rnbcnffaj5QrNjR5u2bdnWPCdbtyVbz0r2XZycd3FzDo481JznA/ubIg0njjUFGT7656m3f6p53stc817+pk1NoYcdu5PHf1my94Jm/VP97NS2Bx9oigRu2doUbjvyUHLk4abQxalibAf3JwcfTPbuS65+QtPegw8kB+5vttt9TvP8nDje9LmjDzdtmJtbaM/Cv4cPNNvVk822u/Y0heW2NEUIc86Fzf4euLcpZpE0+9u2PTlxMjl2pCleePJEctGVzT5Lac7JFz/X7P/Y0eYxPHy4KSZw+EBy1eObgoWb55u+cOhA8/NzL0h27mnO81xJjh1r9n3q92v/F1N/6780bT52pDne7nOaYiD7Lk45+9zUAwvFFE+cSDlrZ1Pk79wLlz7RRx9uzul5FzaP98F7m/mzFurGL/Sl3PXZpr0H7m+Kdmw768zzvlB4JOdf2pzbv/rjpiDj9e9vHtupfnj8WNM/6snmsaQkF13RFO3bu+9Mcb3tO5tz9eB9zbG2bGv2v21H87v38OFm+YkTzeM/+9zkysel7N2X+tmbkh27Uy5e+Nvn5ImmnQ/c0/zs7z6YPPFpTbvf89Yz56GU5rGee1Ezv3nzmd/HUzbPNwUFHz7cFCF56FBTdHLX3iZnjh5p+vauvc05S5rnfv8Xz+z//Eub/dz8sabgw1rmFvpQmTtz/k5lZq1N/6snm3Y8tMaXmq9UuHDnnqaPHTuanH9ZU1T0Rf9q7fa0oJSy9LoIQ1Lm5hayvZ9SMcColW1nnfn/eRct/eFZy78D59Rr4/X+diylNNfsASr7LmleR6zk1OuG9fZxqrjzKVu3NdM5K3wB9vyWZX8/lvktyeOe2m2TYUVlbm7FPlvm5rJj8a1U84s+H7F55WJlze/i0t/HsmVr8/dUkuzam12P2ZsXP6b79h07XvORzyYf+FTNHfcnO7Ym+3Yl9xxMDjyc3H0g2b092b0tufq8ZNt8ctt9yYdvrfnTTyXPflxy1Xklj74geeCh5Of/uOboieTYieTyc5LnPblk17ZmP3c92Gz/mAuTHVuS2+9L7j2UHD+RHDmeHD1ec/xksnVzsm2+ZPf2ZMvCLV/n7EjuPpjcek/NFeeWXLC72W7/4eTSvclr/6Tms/uTay5OHrkvOXdXySV7kpM1+fz+5PP7ax4+3vwpeuJkcuhIUpM8dDQ5d2eyb2dyyd6SLz5Yc+u9TbvO2ZE87sKSreVoNv/v38jmeryZcjybTv//xOnlZ9XD2VKPZf+mPXn0kZtSUnOyzOXiY3ekpGb/pnOS1Jx18nAOze3MgbmdOVq2ZC4nU1JTUnOo7EgtJVcdvSXb6sM5Urbm0NyOnMimbMqJfHHT+dleH8rFx+/I9pMP5ViZT03JWScPZ0uO5XDZnrs3n58Tmcu2+nAOzu3MiWzKyTKXvSf2p6Tm187+7nx4+1Oy7/g9ueD4XTmrHs6ukwdz9on7s60eycNla847cW/u3HxhDs3tyI6Th/K5zZfkZJnLkbI1O04eyomyKXtOPJCrjt2Sq47emid93/+d5BHddzyYAO7yZ6M6X1U/tIF9dG7T3avfNZRSzk/S69fvSfZJMDdGH/5nOEZR4MEHSqfDuBVGG7f20J16ot3jt1EIicHwQWkGrY3rSL9FjWiXHGLUlhVG8zqGDm33ibK5uYGunmy3HfSu17+Lpnl88NyvSK75yeSSf7h6sSvoVHyb10CtV/QXJs2WPcnDnd9RxcQZZjYZHwKAFdVaDyZ5cSnlbUleluQrV1n1viRvTfLKWuvdI2jX75dSHp/knyX5vqx/v9tdSd6c5LW11tuG3T6YFK997Wuzd+/evOpVr2qKLiQ5cOBAXv7yl+cVr3hFHv/4x+eyyy7L3r17c++99+a2227LJz/5yWX7mZ+fzy/+4i/mB3/wB0f9EIbm1a9+dW6//fb89m//9ull7373u/Pud787F198cZ74xCfm3HPPzZEjR3LnnXfmox/9aA4cONDVvn/5l385+/fvz9vf/vbTy97ylrfkLW95S/bt25cnP/nJOffcczM3N5cHH3wwd9xxR2688cY8/PDDA3+cADBqZfPS9zgXF3k6XSxFwZShKls7xkL37kuueGz3O7hgefHcdS0UAVtm0/bkqsctW1xOFRzae/6ZhYuLAKxWgKBzH1m9INrp9TZtas7B3lU+dtVlUYMkKbv2Jtd8xUqNaQocnLJl66IflebnK3wxWimlKYqwUmGEDSgXXpFceEX3G5wqTLH7nKXLL3lEX8X5psKAnpMlrnxcypc+Y81VBnreL3tU9+te8+WtPedrHXfZz17566n339MUSTvngnV//zfq1N/PnYUKa63JPXckn/l481mt8y5JzruoKey2RlHFFY9x+EBy9+ebInC79i4UVCtNsbuF/5dSmmOePNlkGQAATJn5zSVfflXy5VcN5i+Sf/MNA9nNWB231q2pv/WjTZHsKfDNB/9w4PssR74tyucwbXyalo3qLIy2katHZ2G05SWMe/dDSV45gP0wCnuvTfZfv3z5Sh+o3XzW8mVMl1F8kFohoumwecy+wWLc2kN39q33xdlDpt9MLtcSBm3zIP4M6vWYMmiitV2AaLH5PW23gFHozAwZQqe2x2xKSTbtSI539wEsxsj87jS3bdb11mxsXeP7MDbvSI4fWr58tevmrh5ueB2mC56dXPOK5IJ/oCAavZvbuv46dG+cXmfDIGzZqzDaNNjUZ9ZvO3/1n+24Itn/t/3tHwCmWK31bUneVkq5Ksm1SS5OsiPJnUluS/KhWuvRDex3wwMAtdb7kvxskp8tpVya5ClJLkqyJ80gywNJ7k7ykVrrzRs9Dky7n/7pn84znvGM/NAP/VBuuumm08trrbnhhhtyww03rLn9tddem9e//vV56lOfOuymjtSmTZvy1re+Nddcc01e9apX5dixY6d/dscdd+SOO+7Y8L7n5+fzO7/zO/m5n/u5vPKVr1xS8Ozuu+/Oe97znq72sWOH96gAAAAWK4uLKA7rGKvcz1JKaQo3dlG8cd1jnLWrq6KVpZREUTQAAJhZpZTUCy9Pbv9U200ZX5+9af11YML4OnkGpctPr/W9DdPkEd+38vIv/3+XLzvvq4fbFtq3bwTP8TnX+sDgNDjvaW23YKm2C2yxMY97WbvH128m085HJNuH8K1n/XqCusATa/djkm3DvylhGRk02cbpb6MdlzX9mOm154nJlo5vsd12frLr0e20h/E0DteV87+m7RbQq63nJXuekJz7Zd2tv/PqZPcaN0A+9bW9Lb/iRcnc/Mo/G4VLnpd8/V8kz35PcuGzFEVjY8ZtjGySbdrWfJELTJN9X9t2CxiEfrN+z5OT7St8GGXHlcnVq7xPCwAsUWu9pdb6O7XW/1Zr/U+11jfVWt+3kaJoA27X52qt76y1/vJCu3621vpLtdbfVhQN1vec5zwnn/jEJ/Ibv/Ebefazn53Nm9f+jumtW7fmW77lW/LOd74zH/7wh6euKNoppZS88pWvzCc/+cl8//d/f84555w119+5c2de8IIX5B3veEcuv/zydff94z/+47nlllvyEz/xE7niiivWbc+uXbvy3Oc+N6973evyhS98IV/2ZV2OJwMAAAAAADCdvvYFbbdgrFVF45hCpVa1qehdKeVJSf5u0aJ7a609faK/lPIvk/zXRYt+t9b6wj7b9R+S9FUZ4uMf/3iuueaafnZBt47en7znmcn9i7rSOU9NnvP+ZHPHt/s9cGPy3mf6dvtpdfmLkq9+S1JGUK/zhv+U/N3Lh38chuMx/zp5yi+03YqlDt6SvOdrk8Ofa7sldOuyb0+e/tbRZM5qTjycvP+bk7v+pL020JsylzztLU0BhXFz+PPJH3xJcuSetltCL8qm5Kt/M7n8H43+2MceTN77nOS+vx79senPtguT53wg2T1GRaluf1vyoRcl9WTbLaEX83uSbfuSA2t8E0jZnHzN25JLn7/8Z7f9f8mHXhw178k5T0me9d7lBfRG7e4/T973Dcnxg+22g+59+euTR/5AcscfJn/6/OTkGp8lLnPJV/3P5Mp/vPo6K72+Wa9/fuynko+NsMhwmWvGwK55eVN4Evp17EDyJ1+X3PuXbbdk8j35Z5NrfqLtVsBgeV9t8m09N3n2+/p/3fCZX0v+4nty+u+3Mpd81ZuTy16YvP+5ox+jfvHRdgvUzpAbbrghT3jCExYvekKt9Ya22gMApZRrknz81Hy/9+gdP348N920dIz7UY961LoFrmAlhw4dyt/8zd/k5ptvzt13352jR49m69atueCCC/LoRz861157bbZunb0v4zx58mSuv/76/P3f/33uueeeHDx4MDt27Mj555+fxz72sXnSk56U+fmNv76/5ZZbcv311+fuu+/O/v37Mzc3l127duXiiy/OYx/72DzqUY/Kpk2bBviI2iW3AAAAAAAA+lMPH0z99y9O/up/977x1u3Jlm3J9p3JvV9IThxvls/NNV90fuoz58ePDa7Bo7JzT3L5o1Oe9tyUl6qjMQruzxsdhdHYkFLK1Uk+vWjR4VrrjtXWX2UfP57k1YsW/Xqt9aV9tuv8JPt63OwRSd55akZhtBE7cm9zQ/7+65O9X5I86oeSzWetvO7BzyS3vDm598NJfOh+KszvSS58VnLVS5O5Ed7g87l3JZ9/d/LQHaM7Jv3Zui+56BubgkSltN2a5Q59NvnMm5oPYNcTbbeGxcqmZNsFSWpy4mhy/tcmV790PD54dfyh5NNvSL74geSO30vmtiX7ntZ2q1jJzkcml397cv7XtN2S1R2+I/nUf00+sfDy+oJnJ5tm78bsibHzkU1BtPOf3l4bjj3YZNDdH0pOPNReO+hO2dQUkb7qu5OdV7XdmuXu/lBy61uST/+P5jX+ub6tfXzNNX97n+pLn/m15It/2hQs37rvzLVj16OTy78j2fdVq+/qix9MbvvN5KZfaubPeWqy7fyFw8wnB25OHlg0nrvrUc3EdNi0Ldn39OTq70m27Gm7NY37P5bc+hvJ/R+Pon1j7KzLk8u+Lbno684su/evk9vemjx4Y5MjFz832XpeU3yzbO7+tfjRB5LPvDG578NNUbSrr0u27F17m8++vbmGfe4dyY7Lk92P7evhrWhuPtnzJclV35XseuTg989sO/pAMyZ19595Xb8R2y9OLnlecum3tN0SGI6Dn0k+8+vJfX8T76tNkrnknGuTK78r2T2gv6Huel9y++80769c9u3JBc9olp8ao777T5PjhwZzrPV87TtH+57gDHPjFQDjRmE0YNbJLQAAAAAAgP7VkyeT2z6ZfObjydnnJBdcnuy7JNm8JTn6cLJpc/Pv8aPJ/NZkx+7k5MmklJS5pvjZqTpLZYWaBfXwweSu25Pd5yR7z2/uu/vczcntn0wuuKIppPbgfcmhB5PU5OCDTTu27UgOH2imTfPJpk1NWzbPn2nTg/uTXXuSPfuSkyeST/xV6ic/khx6IJnf0rR385Zkfr6Z37I95aydTXtrTdl2VnL2ucm+i5vjbTsrOf+yZM95Kz4Whsf9eaOjMBobUko5N8k9HYt31lq7vmO6lPKaJC9btOi/1lr/1SDa14tB33QFAAAAAAAAANAWN14BMG4URgNmndwCAAAAAACA6eD+vNGZa7sBTKZa671J9ncsvrzH3VzRMX/TimsBAAAAAAAAAAAAAAAAAAAAAAAw9RRGox83dsw/ssftr15nfwAAAAAAAAAAAAAAAAAAAAAAAMwIhdHox8c75r+q2w1LKTuSPGmd/QEAAAAAAAAAAAAAAAAAAAAAADAjFEajH3/YMf/MHrb9miSbF81/pNZ6V98tAgAAAAAAAAAAAAAAAAAAAAAAYCIpjEY//ijJQ4vmv6qU8tgut72uY/7tA2kRAAAAAAAAAAAAAAAAAAAAAAAAE0lhNDas1no4yds6Fv/b9bYrpTw6ybcuWnQ8yVsG2DQAAAAAAAAAAAAAAAAAAAAAAAAmjMJo9Os/JDm2aP66UsrzVlu5lLItyRuTbFm0+A211k8Pp3kAAAAAAAAAAAAAAAAAAAAAAABMAoWi+bsXAAAgAElEQVTR6Eut9TNJfrFj8dtKKT9cSllc/CyllMcleW+Spy1afG+S/zjcVgIAAAAAAAAAAAAAAAAAAAAAADDuNrfdAKbCTyS5Jsk3LczPJ/lvSf59KeX6JAeSXJ3k2iRl0XZHk3xrrfULI2wrAAAAAAAAAAAAAAAAAAAAAAAAY0hhNPpWaz1RSvmOJL+S5EWLfnR+km9cZbMvJnlprfXPht0+AAAAAAAAAAAAAAAAAAAAAAAAxt9c2w1gOtRaD9ZaX5zkHyX5izVWvS/Jf0/yhFrrH46kcQAAAAAAAAAAAAAAAAAAAAAAAIy9zW03gOlSa31bkreVUq5Kcm2Si5PsSHJnktuSfKjWerTFJgIAAAAAAAAAAAAAAAAAAAAAADCGFEZjKGqttyS5pe12AAAAAAAAAAAAAAAAAAAAAAAAMBnm2m4AAAAAAAAAAAAAAHSjlLJsWa21hZYAdGeljFopywAAAAAAAABoKIwGAAAAAAAAAAAAwESYm1t+6+uJEydaaAlAd1bKqJWyDAAAAAAAAICGd1QBAAAAAAAAAAAAmAillGzatGnJsoceeqil1gCs7/Dhw0vmN23alFJKS60BAAAAAAAAGH8KowEAAAAAAAAAAAAwMXbs2LFk/sCBAy21BGB9Bw8eXDK/c+fOlloCAAAAAAAAMBkURgMAAAAAAAAAAABgYuzatWvJ/OHDh3P06NGWWgOwuqNHj+bw4cNLlimMBgAAAAAAALA2hdEAAAAAAAAAAAAAmBg7duxYMl9rzWc/+9kcP368pRYBLHf8+PF89rOfTa11yfLODAMAAAAAAABgqc1tNwAAAAAAAAAAAAAAurVp06bs2rUrBw4cOL3s6NGj+fSnP53du3dn9+7dmZ+fz9yc7w8GRuvkyZM5duxYHnzwwTz44IM5efLkkp/v2rUrmzZtaql1AAAAAAAAAJNBYTQAAAAAAAAAAAAAJspFF12Uo0eP5siRI6eXnTx5Mvfff3/uv//+FlsGsLKtW7fmoosuarsZAAAAAAAAAGPPV+EBAAAAAAAAAAAAMFE2bdqUyy67LJs3+45gYPzNz8/nsssuy6ZNm9puCgAAAAAAAMDYUxgNAAAAAAAAAAAAgIkzPz+fyy+/PDt27Gi7KQCr2rFjRy677LLMz8+33RQAAAAAAACAieBr8gAAAAAAAAAAAACYSFu3bs3ll1+eY8eO5YEHHsgDDzyQY8eOpdbadtOAGVVKyfz8fM4+++ycffbZCqIBAAAAAAAA9EhhNAAAAAAAAAAAAAAm2vz8fM4777ycd955qbWm1pqTJ0+23SxgxszNzaWUklJK200BAAAAAAAAmFgKowEAAAAAAAAAAAAwNU4VJZqbm2u7KQAAAAAAAAAA9MgdHwAAAAAAAAAAAAAAAAAAAAAAAEDrFEYDAAAAAAAAAAAAAAAAAAAAAAAAWqcwGgAAAAAAAAAAAAAAAAAAAAAAANA6hdEAAAAAAAAAAAAAAAAAAAAAAACA1imMBgAAAAAAAAAAAAAAAAAAAAAAALROYTQAAAAAAAAAAAAAAAAAAAAAAACgdQqjAQAAAAAAAAAAAAAAAAAAAAAAAK1TGA0AAAAAAAAAAAAAAAAAAAAAAABoncJoAAAAAAAAAAAAAAAAAAAAAAAAQOsURgMAAAAAAAAAAAAAAAAAAAAAAABapzAaAAAAAAAAAAAAAAAAAAAAAAAA0DqF0QAAAAAAAAAAAAAAAAAAAAAAAIDWKYwGAAAAAAAAAAAAAAAAAAAAAAAAtE5hNAAAAAAAAAAAAAAAAAAAAAAAAKB1m9tuAIyBLYtnbr755rbaAQAAAAAAAADQlxXue9iy0noAMELu0QMAAAAAAAAAJp7780an1FrbbgO0qpTyvCTvbLsdAAAAAAAAAABD8Pxa67vabgQAs8s9egAAAAAAAADAlHJ/3pDMtd0AAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgNaVWmvbbYBWlVLOTvKMRYs+m+ToBnb1iCTvXDT//CSf7qNpAL2SQ8A4kEXAOJBFQNvkEDAOZBHQNjkEjINZzaItSS5bNP+BWusDbTUGAAZ4j94ps3qNB8aHHALaJoeAtskhoG1yCBgHsghomxwC2jarOeT+vBHZ3HYDoG0L4fKufvdTSulc9Ola6w397hegW3IIGAeyCBgHsghomxwCxoEsAtomh4BxMONZ9JG2GwAApwzqHr1TZvwaD4wBOQS0TQ4BbZNDQNvkEDAOZBHQNjkEtG3Gc8j9eSMw13YDAAAAAAAAAAAAAAAAAAAAAAAAABRGAwAAAAAAAAAAAAAAAAAAAAAAAFqnMBoAAAAAAAAAAAAAAAAAAAAAAADQOoXRAAAAAAAAAAAAAAAAAAAAAAAAgNYpjAYAAAAAAAAAAAAAAAAAAAAAAAC0TmE0AAAAAAAAAAAAAAAAAAAAAAAAoHUKowEAAAAAAAAAAAAAAAAAAAAAAACtUxgNAAAAAAAAAAAAAAAAAAAAAAAAaJ3CaAAAAAAAAAAAAAAAAAAAAAAAAEDrFEYDAAAAAAAAAAAAAAAAAAAAAAAAWqcwGgAAAAAAAAAAAAAAAAAAAAAAANC6zW03AKbI3Un+Y8c8wCjJIWAcyCJgHMgioG1yCBgHsghomxwCxoEsAoDp5BoPtE0OAW2TQ0Db5BDQNjkEjANZBLRNDgFtk0MMVam1tt0GAAAAAAAAAAAAAAAAAAAAAAAAYMbNtd0AAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgNYpjAYAAAAAAAAAAAAAAAAAAAAAAAC0TmE0AAAAAAAAAAAAAAAAAAAAAAAAoHUKowEAAAAAAAAAAAAAAAAAAAAAAACtUxgNAAAAAAAAAAAAAAAAAAAAAAAAaJ3CaAAAAAAAAAAAAAAAAAAAAAAAAEDrFEYDAAAAAAAAAAAAAAAAAAAAAAAAWqcwGgAAAAAAAAAAAAAAAAAAAAAAANA6hdEAAAAAAAAAAAAAAAAAAAAAAACA1imMBgAAAAAAAAAAAAAAAAAAAAAAALROYTQAAAAAAAAAAAAAAAAAAAAAAACgdZvbbgBnlFI2JXlkkscnuTjJ2UmOJNmf5NNJPlxrPTTgY84n+eoklye5KMnBJHck+Uit9dZBHmtUSinXJPmSJPuSbE1yZ5LPJflQrfXhNts2SqWUvUmuSfKoJOck2Zbk/iR3J/mbWuunW2zeMqWUq9I8bxcn2ZnkC0luS/LntdZjbbZtlsihwZBDDTnERsmiwZBFDVm06nH0j3XIosHQ1xqTlkWMBzk0GHKoIYeWKqVcluZcXJrkvCTbkxxN8kCS29Ock7vba+H4kEWDIYsasoiNkEODIYcacoiNkkWDIYsasmhl+gfQBtf4wZDhjUm7xrtHZjzIocGQQw05xEbIocGQQw05tOpx9I81yKHB0M8ak5ZDjAc5NBhyqCGHlnKPXvdk0WDIooYsYiPk0GDIoYYcYiPk0GDIoYYcWtlE949aq6nFKU1Q/kiS30vzR31dYzqe5A+SfPMAjrsvyS8luXeN430oyQv7PM7VSV6U5OeSvD/Jgx3HuHVA53FXkp9M8vk1Hs+DSd6c5BEtPt9DOx9J5pN8Q5LXJvn4On2pLpyrn0pyYcu/A9+e5M/XaOe9C331vA3se71zsN50ZZvnZoTPgRwazHmUQ3Jo8T6vHEAGLZ6ua/Mcjeh5kEWDOY+ySBZNfP9o+XmQRYM5jxPR12RRa/1jR5KnJ/nXSX4jyaeSnOw41nVtnYe2Jzkkh+TQ0M7Ho5L8TJL3pXlDY73zUZNcn+RfJNna1jlp8bmQRYM5j7JIFq20/27yZ63pyrbOzYifBzk0mPMoh+TQ4v1eOYAMWjxd19Y5GuFzIYsGcx5lkSya+P5hMpmma3KNn60Md41fsd3u1Wt5kkNySA65V6/tSQ7JITnkPr22Jzkkh2Y5h0bYP9yjt/b5kUODOY9ySA517ts9er2dL1k0mPMoi2TRSvvvJn/Wmq5s69yM+HmQQ4M5j3JIDi3e75UDyKDF03VtnaMRPQ9yaDDnUQ7JoYnvH+s+jrYbMMtTkrf0cSF7d5ILNnjcb0pyVw/H+p9JdvSw/2cm+aN1LgYD+4VM8hVpqm92+3gOJfnBET7PQz8fC+fgvg32pf1JvquF/r8zyW/20M47k3xDj8fY6O/XqenKUZ+XFp4HOSSH5NAQciiD/wP2RaM+PyN+LmSRLJJFQ8iiSeof4zDJIlk0i1k0yv6RZtD4Y2kGo9c71nWjOgfjNMkhOSSHhtc/kvzTPn6/PpnkK0Z1TtqeZJEskkXD7R99/H6dmq4c1Xlpa5JDckgODe18XDmADFo8GbOWRd0cTxbJoontHyaTaTon1/jZyHDX+FXb7F69MZjkkBySQ+7Va3uKHJJDcsh9ei1PckgOzWIOjbJ/xD163ZwjOSSH5NCQ+kfco9fLuZJFskgWDbF/9PH7dWq6clTnpa1JDskhOTS083HlADJo8WSsWg518zsoh+TQRPaPXqbNoU2PXmX555PclCZUN6ep9vfkJHOL1vmHSf60lPKMWuud3R6wlPLMJO9IsmXR4pqmuvpnkuxJ8qVJzlv08+9MsruU8oJa68kuDvMlSb6+2zb1o5TynDRVQLd2/Oi2JB9N88t3aZpf2vmFn52V5JdKKXO11teNoJmjOB/7kuxdYfnRNIPad6aplHpukqcu/HvKniRvLqWcX2v9hSG3M0lSStmU5K1Jntvxo7uTfGShrY9I0xfLws8uSPLOUspzaq0fHEU7Z4Qc6pMcOk0ODc/hNJWsp5ks6pMsOk0WrXycSegf40AW9WlC+posWmpk/SPJS5KcPaJjTSo51Cc5dJocWl9NM8B/c5o3FQ6n+bbcq5JckzP9I2l+N99bSvnmWusHRt3QFsiiPsmi02QRGyWH+iSHTpNDw2PMWhatSxadJotWMCH9A5hOrvF9mpAMd43vMGH3yEw7OdQnOXSaHBqeaR/3kEN9kkOnyaGVjzMJ/aNtcqhPE9LP5NBS7tEbL3KoT3LoNDm0PvforU4W9UkWnSaL2Cg51Cc5dJocGh5j1XJoTXLoNDm0ggnpH91ruzLbLE9JPpwz1fOuT/LDSR6xyrqXJHl9llfd+7MkpcvjXZrl1Q4/mORxHettTfJ/pfllX7zuz3R5nB9ZoZ01ycNpBjIGUqkwTdXUzmqINyf5uhXW3Zvkv3Wse2KldYfwPA/9fKS5gJ/ax4Ekb0jy7CTbV1i3JPnWNKHV2aahn4+FNvxcx3GPLvT/LR3rPT7Jn3ese0+Si7o8zuLt/mKhz/QybR7F+WhzihySQ3JoKDmU5g+u9TJmtemDHcd70yjOSZtTZJEskkVDe000Kf1jHCZZJItmMYtG1T8WjnX/Ksf63Ao/u27Yj30cJzkkh+TQUPvH9yX5+zSvv745yd411t2T5EfTvPmx+PifT3L2sM9J25MskkWyaOiviRbvy5j1yudIDskhOTSc82HMurfzJYtkkSya8f5hMpmmc3KNn40Md41fsb3u1RuTKXJIDsmhoeRQjHv08lzIITkkh4b0emhS+kfbkxySQ7OYQ6PqHwvHco/e+udIDskhOTS8/uEeve7PlSySRbJouK+JFu/LWPXK50gOySE5NJzzYay6+3Mlh+SQHJrx/tHTY2q7AbM8JfnrNFX2ntrDNj+0Qkd/cZfbvqFjuw8l2bbG+i9Y4Rfqii6O8yMLYf+RJP8jyQ8kuTZNpcBnDvAX8jc79nVTkvPX2ebHO7a5IcmmIT/PQz8fC4F9V5KXJdnR5TbnJvlEx/FvTJcvAPo4H1dn+YuB56+x/vYsf4Pxl7s81uJt3j/MxzWpkxySQ3JouDm0gbZdkuR4x7G+ZpjnYxwmWSSLZNHwsmhS+sc4TLJIFs1oFo2kfywc6/4037Lw+0n+48J5umDhZ+/vONZ1w3zc4zrJITkkh4baP+Y3sM2XJDnY0YZ/O8zzMQ6TLJJFsmjor4kW7+v9w3xckzrJITkkh4abQxtomzHr7reRRWeOI4vOHEMWTWj/MJlM0zm5xs9GhrvGLzuue/XGaJJDckgODTeHNtC2mRv3kENySA4NL4cmpX+0PckhOTSjOeQevTGa5JAckkPu0RuHSRbJIlnkHr22Jzkkh+SQe/TanuSQHJJD+kdPj6ntBszylOTKDW73to5O9ftdbPOojgvikSSP6mK7N3Uc61e72GbvaheCAQbU1WkqDS7e19O73PZPOrb73iE/z6M4H/u6DeqO7Z68wnn8siGfj1/rON4bu9jm0Qt99tQ2x5Jc3cV2i4/z/mE+rkmd5JAckkPDzaENtO0nO9r2qWGei3GZZJEskkXDyaJJ6h/jMMkiWTSjWTT087Fof6t+e27cdHXqPFy5we3kkBzq3I8cGlz7fqqjDX8x6ja08Jiv3OB2skgWde5HFq28v8X7ev8wH9ekTnJIDsmh4ZyPPtpmzLq37WSRLOrcjyya0P5hMpmmc3KNn40Md41fdkz36o3RJIfkkBwabg5toG0zN+4hh+SQHBpODk1S/2h7kkNyaEZzyD16YzTJITkkh4ZzPvpsn3v0ut9OFsmizv3IopX3t3hf7x/m45rUSQ7JITk0nPPRR9uMVXe/nRySQ537kUMT2j96meZCa2qtt25w09d1zP+DLrZ5SZJNi+Z/t9Z6Uxfbvbpj/jtKKdvW2qDWur/W+nAX++7HNydL+u9f1Fo/2OW2r+mY/57BNGllozgftda7a62HNrDd3yXpPG/d9KcNKaVsT/LtHYs7+9gytdZPJXnHokWb0/Rp+iSH+iKHlh5DDvWplFKyvC+8YZDHGFeyqC+yaOkxZNFSE9M/xoEs6svE9DVZtOyYo+gfp471hVEcZ5LJob7IoaXHkEOD87865h/ZSitGSBb1RRYtPYYsYkPkUF/k0NJjyKE+GbPeEFkkizqPIYuWmpj+AUwn1/i+TEyGu8afMc73yMwqOdQXObT0GHKoT7M67iGH+iKHlh5DDi01Mf2jbXKoLxPTz+TQsmO6R2+MyKG+yKGlx5BDg+Meve7JIlnUeQxZxIbIob7IoaXHkEN9MlbdMzkkhzqPIYeWmpj+0QuF0SbTRzrmt5dS9qyzzbd2zL+xmwPVWm9M8peLFu1I8vXdbDtkX9sx/0c9bPveJEcXzT+tlHJR/02aWJ396eIhHusbkpy1aP7/1Fr/vsttO/vstw2mSWyQHJJDgySHGs9I8ohF88fTfFMdq5NFsmiQpjGL9I/RkEX62iCNMouYHnJIDg2SHFrqvo75Xa20YjLIIlk0SLKIjZBDcmiQ5FDDmHXvZJEsGqRpzCL9A5hUrvEyfJCm8X1phk8OyaFBkkMN4x69kUNyaJCmMYf0j+GTQ/rZIE3j2CvDJ4fk0CDJoaXco9c9WSSLBkkWsRFySA4NkhxqGKvujRySQ4M0jTk0lf1DYbTJdHyFZVtWW7mUcmGSJ3ds/6Eejvf+jvlv6mHbYbm0Y/7j3W5Yaz2S5OZFi+YyHo+pLZ39adW+NADf2DH//h62/bMsbeuXllIu6LtFbJQckkODJIca39cx//u11jsHuP9pJItk0SBNYxbpH6Mhi/S1QRplFjE95JAcGiQ5tNQVHfN3tNKKySCLZNEgySI2Qg7JoUGSQw1j1r2TRbJokKYxi/QPYFK5xsvwQZrG96UZPjkkhwZJDjWMe/RGDsmhQZrGHNI/hk8O6WeDNI1jrwyfHJJDgySHlnKPXvdkkSwaJFnERsghOTRIcqhhrLo3ckgODdI05tBU9g+F0SbTIzvmjye5Z431n9Ax/9Fa66EejvfnHfPX9LDtsJzTMX9/j9t3rv/EPtoy6Tr70xeGeKzOvvh/ut1woc9+rGPxOPTFWSWH5NAgzXwOlVLOTvLCjsVvGMS+p5wskkWDNI1ZpH+MhizS1wZplFnE9JBDcmiQ5NBS/6Rj/n2ttGIyyCJZNEiyiI2QQ3JokGY+h4xZb5gskkWDNI1ZpH8Ak8o1XoYP0jS+L83wySE5NEgzn0PGPTZEDsmhQZrGHNI/hk8O6WeDNI1jrwyfHJJDgySHlnKPXvdkkSwaJFnERsghOTRIM59Dxqo3RA7JoUGaxhyayv6hMNpk+vaO+Q/XWk+usf7jO+ZvXnGt1X16nf214WjH/NYet+9cfxwe08iVUnYn+bqOxX81xEM+rmN+lH3x8lLKG0spN5RS9pdSjpZS7lqY/5+llB8opXQGPauTQ3JoIGYsh9byj5NsXzT/hSR/MKB9TzNZJIsGYoqzSP8YDVmkrw1EC1nE9JBDcmgg5NBSpZR/keS7Fi06nuS/tNScSSCLZNFAzFgWGbMeLDkkhwZixnJoLcasN0YWyaKBmOIs0j+ASeUaL8MHYorfl16JcY/BkkNyaCBmLIfWYtyjd3JIDg3EFOeQ/jF8ckg/G4gpHntl+OSQHBoIObSUe/R6Jotk0UDMWBYZqx4sOSSHBmLGcmgtxqp7J4fk0EBMcQ5NZf9QGG3ClFJ2Jvm+jsVvX2ezzkqFt/d42Ns65s8tpeztcR+Ddm/H/EU9bt+5/mP6aMsk+2dJzlo0/0CGVFV/4Y/Dzj8Qe+2Lnes/qodtr0pyXZrw3ZNkPsn5C/PfmeT1SW4vpfznhd8zViGHTpNDgzFLObSWzt+pX6u1Hh/QvqeSLDpNFg3GtGaR/jFksug0fW0wRpZFTA85dJocGoyZzqFSyo5SymNKKS8tpXwgyWs7Vnl5rfWjbbRt3Mmi02TRYMxSFhmzHhA5dJocGoxZyqG1GLPukSw6TRYNxrRmkf4BTBzX+NNk+GBM6/vSKzHuMSBy6DQ5NBizlENrMe7RAzl0mhwajGnNIf1jiOTQafrZYEzr2CtDJIdOk0ODMdM55B69jZNFp8miwZilLDJWPSBy6DQ5NBizlENrMVbdAzl0mhwajGnNoansHwqjTZ6fTXLhovn7k/zKOtvs6Zj/Yi8HrLUeTPJwx+Kze9nHENzYMf+V3W5YSrk8ycUdi9t+PCNXSrkyyb/vWPyLtdbOKpCD0tkPD9daD/W4j86+O+jnbUeSH0nyN6WUawa872kihxpyqE9yqFFKeWKSp3YsfkO/+50Bsqghi/o05VmkfwyfLGroa31qIYuYHnKoIYf6NGs5VErZU0qpi6ckB5P8fZI3JfnaRasfTPIDtdbXtNDUSSGLGrKoT7OWRV0yZt0dOdSQQ32SQw1j1hsmixqyqE9TnkX6BzCJXOMbMrxPU/6+9EYZ9+iOHGrIoT7JoYZxjw2RQw051KcpzyH9Y7jkUEM/69OUj70yXHKoIYf6NGs55B69gZNFDVnUp1nLoi4Zq+6OHGrIoT7JoYax6g2RQw051Kcpz6Gp7B8Ko02QUsq3JvnhjsU/WWu9b51NO6sUP7SBw3dus2sD+xikD3TMv7CUctaKay73T1ZY1vbjGalSypYkb83Sx31rkv9niIdtqx8eT/L+JP8uyfOSXJvm25q+NMnzk7wmy1/EPDrJe0opV2ygjVNNDi0hh/owYzm0ns4K1R+otd48gP1OLVm0hCzqwwxkkf4xRLJoCX2tDy1lEVNADi0hh/ogh1Z1V5KfTHJVrfV/tN2YcSWLlpBFfZixLDJmPUByaAk51IcZy6H1GLPukSxaQhb1YQaySP8AJopr/BIyvA8z8L70YsY9BkgOLSGH+jBjObQe4x49kENLyKE+zEAO6R9DIoeW0M/6MANjrwyJHFpCDvVBDq3KPXpdkEVLyKI+zFgWGaseIDm0hBzqw4zl0HqMVfdADi0hh/owAzk0lf1DYbQJUUp5cpJf71j8x0n+exebdwZ2Z1XKbnQGduc+R+3301TxPGVPkv+w3kallMuS/NgKP9pUStk+mKZNhF9J8uWL5k8keekGvgWpF230w3+X5JJa6z+otb6q1vruWutHaq0311r/ttb6rlrrv0lyRZL/lKQu2vbCJL9bSikbaOdUkkPLyKH+zEoOrWnhBfR3dSxW1XsNsmgZWdSfac8i/WNIZNEy+lp/2sgiJpwcWkYO9UcOreyCJP88yQ+WUna33ZhxJIuWkUX9mZUsMmY9QHJoGTnUn1nJoTUZs+6dLFpGFvVn2rNI/wAmhmv8MjK8P9P+vvQpxj0GSA4tI4f6Mys5tCbjHr2RQ8vIof5Mew7pH0Mgh5bRz/oz7WOvDIEcWkYO9UcOrcw9euuQRcvIov7MShYZqx4gObSMHOrPrOTQmoxV90YOLSOH+jPtOTSV/UNhtAlQSrk8TQdcHJK3JfmuWmtdeas1jWqboam1Hkjyix2Lf6yU8q9W26aUcmmSP0xy9mq7HVDzxlop5aeTfHfH4pfXWv90xE0Zej9c+KO1s2r3Sus9XGt9eZJ/2fGja5P8416OOa3k0HJyaONmKYe68Pwk5y6afyDJ2wZ8jKkhi5aTRRs3C1mkfwyHLFpOX9u4McoiJogcWk4ObdwM59CDSa5aND0izTjQtyX5z0nuXljvsiQ/leRjpZQva6GdY0sWLSeLNm6WssiY9eDIoeXk0MbNUg51wZh1D2TRcrJo42Yhi/QPYFK4xi8nwzdujK7x7tWbIHJoOTm0cbOUQ10w7tElObScHNq4Wcgh/WPw5NBy+tnGjVEOMUHk0HJyaONmOIfco9cnWbScLNq4WcoiY9WDI4eWk0MbN0s51AVj1V2SQ8vJoY2bhRya1v6xue0GsLZSyvlJ/neSSxYtvjPJ19Va7155q2UOdsxvpCJf5zad+2zDzyT5ppypyFiS/JdSyrenqYr6t2kqcF68sN4P5sxF73NJLl20r4drrcsqfJZSruy2MbXWW3tqfQtKKT+Sptr1Yr9Qa/25Lre/sttjrXA+xr4f1lpfV0r5+iTPW7T4h5K8ZZDHmTRyaE1yqEdyaJnv65h/S621s3o0kUXrkEU9mrEsGnr/mCWyaE2yqEctZ1QVJ7cAACAASURBVBETSg6tSQ71aJZzqNZ6MsmtK/zoI0neXkr5d0leneSHF5ZfnuQ9pZSvrrV+fDStHF+yaE2yqEeznEXdMGa9Mjm0JjnUIzm0jDHrLsmiNcmiHs1YFhmzBsaaa/yaXON7NGPvS/fMuMfK5NCa5FCP5NAyxj26IIfWJId6NGM5ZMxjQOTQmuRQj2Zs7JUBkUNrkkM9muUcco9ef2TRmmRRj2Y5i7phrHplcmhNcqhHcmgZY9VdkENrkkM9mrEcmrqxaoXRxlgp5Zwk70ny6EWL70nynFrrTT3saioDu9Z6tJTybUn+V5InLfrR0xem1dyb5gXDHy1adv8q697SQ5NKD+uOXCnl+5P8Qsfi/15rfVkPu+nnfExKP/zZLP0D9itLKXtqrav1kakmh9Ymh3ojh5YqpVyW5Os6Fr9ho/ubZrJobbKoN7OWRSPqHzNBFq1NFvVmDLKICSSH1iaHeiOH1lZrPZzkX5ZSjiX51wuLdyf59VLKUzb47UJTQRatTRb1RhZ1zZj1InJobXKoN3JoKWPW3ZNFa5NFvZm1LDJmDYwz1/i1ucb3Zgyu8ZPSD417LCKH1iaHeiOHljLu0R05tDY51JtZyyFjHoMhh9Ymh3ozBjnEBJJDa5NDvZFDa3OP3upk0dpkUW9kUdeMVS8ih9Ymh3ojh5YyVt0dObQ2OdSbWcuhaRyrnmu7AayslHJ2kj9O8sRFi/enqWB5Q4+7e6Bjfl+PbdmZ5YE9Fh241vr5JE9L8vokx7rY5H1JnprkUMfyOwfctLFSSvnuJL+cpSH6xiT/YoTN6OyHZ5VSdvS4j/M75ofRD/8qze/aKZuSPH4Ixxl7cqg7cqg7cmhF12Xpa7G/q7X+TR/7m0qyqDuyqDuzmkX6R/9kUXf0te6MSRYxYeRQd+RQd+RQT34yyR2L5r80yXNaakvrZFF3ZFF3ZFFPjFkvkEPdkUPdkUMrui7GrNcli7oji7ozq1mkfwDjyDW+OzK8O2NyjR+3e2RWY9xjgRzqjhzqjhxa0XUx7rEmOdQdOdSdWc0h/aM/cqg7+ll3xiSHmDByqDtyqDtyqCfu0VtEFnVHFnVHFvXEWPUCOdQdOdQdObSi62Ksek1yqDtyqDuzmkPT1j8URhtDpZRdSf4wyVMWLX4wyTfWWv92A7vsrHp5RY/bd65/X611/4prtqDWeqjW+s+TPCbNQMj7knwuyUNJDiS5Mcmvpame+uxa661JHtexmw+PrMEjVkp5cZpwXvz7/htJ/ukoK+fXWu/N0j8Mk+TyHnfT2Rd7qejalVrrySS3dyzu6UXONJBDvZFDa5NDy5VSSpLv6VisqncHWdQbWbS2Wc8i/WPjZFFv9LW1jUsWMVnkUG/k0NrkUG9qrQ8leUfH4m9soy1tk0W9kUVrk0W9MWbdkEO9kUNrk0PLGbPujizqjSxa26xnkf4BjBPX+N7I8LWNyzV+nO6RWYtxj4Yc6o0cWpscWs64x/rkUG/k0NpmPYf0j42RQ73Rz9Y2LjnEZJFDvZFDa5NDvXGP3hmyqDeyaG2yqDfGqhtyqDdyaG1yaDlj1euTQ72RQ2ub9Ryapv6xue0GsNTCt9D8ryRfuWjxwSTfVGv9qw3u9saO+Uf2uP3VHfOf2GA7hqrWekuSn1mY1vNVHfN/uco+y0rLJ0Up5YVJ3pymOvUpv53kpQt/qPVkAOfjxjSVJU95ZJb3z7V09sVetu3FQx3znZVcp5oc2jg5tJwcWtWzkly1aP5ImhfTLJBFGyeLlpNFZwyjf0wzWbRxsmi5McwiJoAc2jg5tJwc2rBPdsz3+jsz8WTRxsmi5WTRhhmzlkMbIoeWk0OrMma9Dlm0cbJoOVl0hjFroG2u8RvnGr/cGF7jx+UemfUY95BDGyKHlpNDqzLusQY5tHFyaDk5dIYxj+7JoY2TQ8uNYQ4xAeTQxsmh5eTQhrlHTxZtmCxaThZtmLFqObQhcmg5ObQqY9VrkEMbJ4eWk0NnTMNY9dz6qzAqpZTtSX4vydMXLT6c5JtrrX/ex64/3jH/pFLKWT1s/9Xr7G+iLFRTfVbH4g+00ZZhKqU8L8lvZmkBxHckeUmt9UQ7rVrWdzqDcVULL2aetM7+BuW8jvl7hnScsSOHRkMOyaEk39sx/7u11vs2uK+pI4tGQxbJonWOMxP9Yy2yaDRmpa+NaRYx5uTQaMghOdSFYx3zW1tpRUtk0WjIIlnUBWPWcmio5JAcijHrNcmi0ZBFsmgts9I/gNFyjR+NWcnwMb3Gj/370guMe8ihoZJDcijGPVYlh0ZDDsmhdY4zE/1jNXJoNGaln41pDjHm5NBoyCE51AX36MmioZNFsqgLxqrl0FDJITkUY9WrkkOjIYfk0FrGuX8ojDYmSinbkrwryTMXLX44yfNqrX/az75rrV9I8tFFizZn6UVhPc/smP+DftozBp6V5MpF8x+otd7UUluGopTy3DQVK+cXLf79JC+qtR5vp1VJkj/smH9mD9t+TZZefD5Sa72r7xZ1KKWcl+XVW+8Y9HHGkRwaKTnUntZzqJSyJ8m3dSx+Q6/7mVayaKRkUXtaz6IuTH3/WIssGqmp72tjnEWMMTk0UnKI9VzaMT+M115jSRaNlCxiVcas5dCIyKEZZsx6bbJopGQRa5n6/gGMlmv8SE19ho/xNX7s35c27iGHRkQOtaf1HDLusTo5NFJyqD2t51AXpr5/rEYOjdTU97MxziHGmBwaKTnEetyjJ4tGQRaxKmPVcmhE5NAMM1a9Ojk0UnKItYxt/1AYbQyUUrYk+d0kz1m0+EiSF9Ra3zugw7y9Y/57umzbY5N8xaJFh5L88YDa1JZ/2zH/+lZaMSSllK9L8jtJtixa/MdJXlhrPdpOq077oyQPLZr/qoU+1o3rOuY7+/SgvDhLs/GuJDcO6VhjQw6NnBxqzzjk0Hcm2bZo/tYkf7LBfU0VWTRysuj/Z+/Ow2S7ynrxf98QCEMgYQqjJMyDyhiUgJiDgAIKGFBAZAjkyiDOIALXIaAXLj9F8YqCoJAwKoMEZFTEwxAIMo+KTIkQmQmEEDKv3x+7jqfO7urumrqquvvzeZ5+yF6119qrqtZ+O+x+867lWYVYtJkdvT42IhYt3I5eaysei1hR4tDCiUNs5id7xyvxYH+riUULJxaxEc+s9xOHto44tLt5Zr0OsWjhxCI2sqPXB7BYfscv3I6O4Sv+O347/F3ac4/9xKGtIw4tzyrEIc89RhCHFk4cWp5ViEOb2dHrYz3i0MLt6HW24nGIFSUOLZw4xGbk6O0nFm0dsYiNeFa9nzi0dcSh3c2z6hHEoYUTh9jIyq4PhdGWrKoOTvLKJPccar4wyc+11t46x0u9LMnFQ8f3q6obj9Gvv3hf2Vo7b37TWqyqeniSuw81fSRdxccdoaqOTfK6HPgvRm9P98v//OXMar/W2rlJXt1r7q+xNarqJkmOG2q6KMnL5zi1fde5RpLf7TX/Y2utzftaq0QcWixxaLlWJA49snf8wp0eZ8YhFi2WWLRcKxKLNrrOjl4fGxGLFmunr7VVj0WsJnFoscQhNlNVP53k6F7z65Yxl0USixZLLGIjnlmLQ4sgDhHPrEcSixZLLGIjO319AIvld/xi7fQYvuq/47fB36U999hPHNoi4tByrUgc8tyjRxxaLHFouVYkDm10nR29PtYjDi3WTl9nqx6HWE3i0GKJQ2xGjp5YtAhiERvxrFocWgRxiHhWvYY4tFjiEBtZ9fWhMNoSVdWl0gXS+w41X5Tkga21N8zzWq21zyQ5eajpMklOqqrLrtMlVXXfHLjTzQVJnjrPec1q8Atv3HPvl+QFQ00XJXlka+2iuU9sCarqmCRvSHK5oeZ3Jrl3a+37o3stxYnp/qVkn+Or6j7rnTxYoy/KgZU5/7a19rkN+ty0qu49yaSq6prpPr9rDDVfkOQZk4yz3YhDsxOH9hOHNldVt05y26GmS5KcNOk4O41YNDuxaD+xaGRf62MMYtHsrLX9tlEsYoWIQ7MTh/YTh/arqqOr6rjNz1zT7/ZJXtJrfmdr7ePzmdlqEotmJxbtJxbt55n1+MSh2YlD+4lDm/PMejSxaHZi0X5i0VrWB7AsfsfPTgzfbxv9jj8xcvVWhjg0O3FoP3Foc557rCUOzU4c2k8cGtnX+tiEODQ762y/bRSHWCHi0OzEof3Eof3k6E1GLJqdWLSfWLSfZ9XjE4dmJw7tJw5tzrPqtcSh2YlD+4lDa+209TH2m2FLvDDJA3ptT0ny4ao6asKxvjJGhck/SLdzzZUHx3dM8raq+l+ttf/Yd1JVHZLkUUme1ev/rNbaGeNMpqqum9Hr65q944M3eK/ntNa+scmlPl5Vb0zymiTva61dMmIuP5TkyUke3HvpKa21D28y/lxs9edRVbdJ8uYkhw41fzrJ45IcUVWTTPe81tpXJukwidba56vqz5M8Yaj51VX1W0me31q7YF9jVd08yd+kW6v7fDOb/4vDtZK8vqo+nuSlSV47+JeWNarqikkenq6i9zV6L/9Ra+3zY7yt7UwcEofEoc6849B6Tugdv7W19sUpx9pJxCKxSCzqbFUs2hbrYwWIRWLRrotFyeLWR1UdmuRq67zcf5h8tQ2u9aVVerA2Z+KQOCQOHWhe6+O6Sf6hqj6R7o9npyT5dGujd1iqqlskeXSSX+7N67xB204nFolFYtGB5rU+PLMenzgkDolDB5r3+ujzzHo0sUgsEosOtCvXB7Aj+R2/S2K43/H7ydVbOeKQOCQOdeTqLY84JA6JQx15essjDolDuy4OJXL0Vow4JA6JQweSo7ccYpFYJBYdSI7e4olD4pA4dCA5eosnDolD4tCBduX6GFtrzc+SfpK0Of7sGfOae5Kc3+t7SZL3J/n7JG9J8rUR4/9jkktN8N5On8N7OmmM63xj6PzvJnlPupvzZUn+aYN5/OGCv+st/TzS7WQ0r7W0dwGfx6WSvGnEtb+a7hfPK5N8YLA2h18/P8mdx1zn/bG/neTd6R6svSTJawfXuHCdz+Gvlx0jFrQ2xSFxSBzagji0zjUPSZcgMTze/ZcZA1blZ45rRywSi06c41rau4DPYyGxaLusj2X/zHHtiEUrvta2+vPI9otFi1ofx8/pMzlq2fFiC78LcUgcEoe25vP42RHnnz1YH69Pl/zwyiRvS/KVdcY/N8ndlh0nFrQ+xSKxSCzams9jz4jzPbMe/VmJQ+KQOLSF66N3Tc+s1/9sxCKxSCyyPvz48bMDf+YYk/2OX/EYvtWfR7bf73i5eivyM8d1Iw6JQyfOcS3tXcDnIVdvRX7muG7EIXHoxDmupb0L+Dzk6a3IzxzXjTi04utsqz+PbL84tKj1cfycPpOjlh0vtvC7EIfEIXFoaz4POXqTfR9ikVgkFm3N57FnxPmeVY/+rMQhcUgc2sL10bumZ9WjPxdxSBwSh6yPsX9GVZJjB2ut7a2q45KclOTqg+ZKcvTgZ5RXJPml1trFWz/DmRya5JhNzjkryS+31v5uAfNhHa21i6vqAel2VHrg0EtHJLnHOt2+luThrbV3TXnZw5LcaYzzvpfkN1trL5jyOmxCHBKHVsGS4tBxSa4ydPz1dA/4WQKxSCxaBUuKRdbHChGLrDVYNnFIHNrFrpjN18c+pyV5dGvtY1s4n11NLBKLdjHPrFeEOCQO7WKeWa8QsUgs2sWsD2BH8zteDF8FcvV2N3FIHFoFcvV2N3FIHFoF8vR2N3HIOoNlE4fEoV1Mjt4KEYvEol3Ms+oVIQ6JQ7uYZ9UrQhwSh3axbb8+Dlr2BFi81tqbkvxQkuelW6DrOS3Jz7XWHtxa+95CJje5Zyf5cLpqnBv5YpKnJbnhqt6Mu01r7ZzW2oOS/Hy6tbaebyV5bpIfaq29Zczh/z3J05OcmuT7Y/b5zyRPSbezif/zusXEIXFoFWxxHBrlhN7xS1prF84wHjMSi8SiVbCgWGR9rDCxyFqDZROHxKFd4O3pdsR9RZIvjdnn3CSvTnLvJHeUcLX1xCKxaBfwzHrFiUPi0C7lmfWKEYvEol3E+gB2Fb/jxfBVIFdvdxOHxKFVIFdvdxOHxKFVIE9vdxOHrDNYNnFIHNoF5OhtA2KRWLQLeFa94sQhcWiX8qx6hYhD4tAusqPWR7XWlj0HlqiqLpOu2vGRSa6ZrqrxmUk+3Fr7wjLnNomqulKS2yS5froKnZdN939czkzy0dbap5Y4PcZQVddPctsk105yhSRfSXJGklNbaxfMMO5BSW6c5IZJrpPk8OxfH2cl+XKS97fWvj7TG2Bq4hCrYqviENuDWMSq2MpYZH2sPrEIWDZxiN2gqq6R5Obp1vlVk1w+yYVJzk7yzSSfSPLpbbCrz44lFrHTeWa9+sQhYBWIRewG1gewG/kdz6qQq7d7iUOsCrl6u5c4xKqQp7d7iUPAsolD7AZy9FafWMRO51n16hOHgGUTh9gNdsr6UBgNAAAAAAAAAAAAAAAAAAAAAAAAWLqDlj0BAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAHqq6qiqar2f45c9r0Wqqr2997932XPaiXzO21tVndiPFdvh+tYdAAAAAAAAAMDutl3zXgAAAACA3UFhNAAAAAAAAAAAAAAAAAAAAAAAAGDpDl72BAAAAIDVVFVHJfnCBF3OT3J2ku8k+VySDyc5LcmbW2sXzHt+AAAAAAAAAAAAMKyqKl3e25G9ly5OcmRr7czFzwoAAAAAgEkctOwJAAAAADvGIUmunuRGSX4qyZOSnJLkzKp6ZlUduszJ7XRVdVJVtaGf05c9J2BnqarTe3HmpGXPCQAAAAAAAACg525ZWxQtSS6V5PjFTgXmo6r29PJ2WlXtWeJ85CvCHLmnAAAAYC2F0QAAAICtdrUkT0zyiao6ZtmTAQAAAAAAAAAAYMc6YYPXHllVtbCZAAAAAAAwlYOXPQEAAABgW/leks+u89rlk1wlyVXXef3IJG+pqmNbax/ZiskBAAAAAAAAAACwO1XVVZL87Aan3CDJniT/upAJAQAAAAAwFYXRAAAAgEl8oLW2Z6MTquq6Se6d5PFJbth7+UpJXl1VN2+tXbg1U2QeNvuegaS1dmKSE5c8jYm5vwEAAAAAAACAHeohSQ7ptbUkNXR8QhRGW7rtmncDAAAAACzGQcueAAAAALCztNa+1Fp7bpJbJfmHEafcMMmjFzsrAAAAAAAAAAAAdrhH9o4/k7U5bPerqsMWNB8AAAAAAKagMBoAAACwJVpr30vyi0n+fcTLD13wdAAAAAAAAAAAANihqurodJt5DntxkpN7bZdL8uCFTAoAAAAAgKkojAYAAABsmdbaeUmeMeKlo6vqKoueDwAAAAAAAAAAADvSCb3jluQlSd6c5GubnAsAAAAAwAo5eNkTAAAAAHa8t4xoOyjJTZO8d9pBq+qgJLdJclSSqye5SpKzk3w9yWeTfLi1dsm0489TVV0nyc3SzfWwdLuOnp3kW0n+K8n7B0Xk2AJVdbkkP5LkWkmOSHJokm+mWysfba19bonTG0tVXT3JHZLcIN38v5MuYfN9rbUzljm3rVZVh6V77zdOd/+cl+TMJO+d5L1X1bWT3D7dfXhouvvvS0ne0Vo7e87TnkpVHZLkTkmul+SaSS5O8tUkH0/ykdZaW+L0AAAAAAAAAABW0iA/6Bd6ze/cl1tSVS9P8htDr92uqm7VWvvoFs/r0unylm6R5KqD5q8m+dAk166qK6XLe7lpksOTfC/JV5Kc2lr70lwnvfbaV03yo0lumORK6fKW/jsrmndVVddNcqt0OYVXT1cg7+tJvpzktEXkCVXVjZPcLsl1khySLlftv5O8u7V21lZffyeqqh9KcqN0+X9XTXJuuu/19HT5lxdu8fXdy9Nfd1XuyVsluW663MELkny5tfaSMfvLAd4CVXWZJEenux+uli5enp0uL/Z9E4xzo3T35r41dn6Sb6TLDz2ttfb9OU8dAACABVEYDQAAANhSrbWvV9XZ6RIphl1tmvGq6s5JHpfk7umKoa3nW1X1piTPaK19apprTauqrpbkuCR3S3Jskmts0uWCqjotyXOSvGbcgm5VdXqSI9d5+ciqGqeI0l1aa3tHjL033dz3eUdrbc868/h4kh8aavp6kuvMkmxUVb+Q5OW95se11v5qzP4HJfnFJA9J8uNJLrvBuV9I8sokf9Ja+8Z0M94aVbUnyVOS3DVdQcFR53wqydOTvHySwllVdXySF/War99aO32Kefav+9TW2omb9DkxyR8Mt7XWauj12yf53ST3yjrPMavqHUme1Fo7bYPr3DvJ7yS5Y5IaccoFVfXaJE9srf3XRnOe9D1MMM5RSU5MFzf6sXKfr1TV85I8q7V2zqTX6F1vb8a4vwfz+sIGQz28qh6+2fX2fSaDxL4z0yWX7bO3tXaXTSe9gar68yS/1mu+9VYnLwMAAAAAAAAAK+Pn0hWrGXZy759/o/f6I5P8+jQXG+T0/Guv+X/ysAYb+P3vJA9NcsV1xvjPJH+0UWGeqrpluvyZ+6QrecPL+wAAIABJREFUGDPqnPcm+e3W2qmTvYuNVdWx2Z+3dKl1zvlQkucm+dtJN/ybV97NYKwjkvxmknsn+cENTr2oqt6X5C+T/P2kG69ulCM1yFd7eJLfyoG5dMMuHuTt/O5G+U5D1zsxvc+o51+rNv3ITm6tHb/ZSePYynzFda53y3T37U8lufYGp55TVW9L8sxxPtfeNfZkm9/LY+Thbem9vM54q3BPXiHJryb5pXQb0o4y8jvb7jnAm63rSYyY46YxZbPc1Kr6wSRPTHL/JFcYMcTJSTYsjFZV108Xb++V9b/fJDmvqt6V5M9aa2/eaEwAAABWz8j/mBIAAABgzkYV8Vmv+M9IVXWTQaGzdyZ5YDYuipbB6w9J8vGq+puqWrcw1jwNdhf9cpLnJ3lANk+ISJLLpCve9coknxj80X876ScwXD3JT8845vG94/OTvGKcjlV1jyQfT/LiJD+ZDYqiDVw/XeGsz1fVVMmO81ZVh1TVC9Ilp9w9Gz/Hu0WSlyZ5yyCZZ1urzh8mOS1dIthGmzscm+Q9VfWEEeMcVlWvSfL6JHfK6KJoSXf/PTDJp6rqbjNNfgqDNffJdImRG8XFa6YrnvbJqrrdAqY2d4PdPV/aa95TVTefdszBjs8P6zW/V1E0AAAAAAAAANhVTugdn5vk1fsOWmsfSfKx3jkPqaqRBYpmUVX3S/KpJL+cdQopDdwkyYur6pX9eQzyZ34/yYeS/HzWKaQ0cEySd1XVU2ab+f9c+1JV9Zwke9PlXo0spDRw2yQvSPLOQZGahaqqy1TV05J8PsmTsnEBpqTLQ7pTug07PzooVjWPeVw3ybuTvDDrF0VLus/yrkneW1X/Zx7X3omq6lpV9bIkH0nyiGxcFC3pNmn82XSf6ylVtVlu6bjzcC9Pfs1VuSd/NN1394xsXDRrVN/dmAO8MFX1u+nu7YdldFG0zfpfabCuP53kV7L593vZdDm4b6qqd1XV9Sa9JgAAAMujMBoAAACwCIePaDt73M5Vddd0u3/dc4prH5Qu8e0dVTVOgsKs7piNCzlt5uZJTltGgaYZvDTJhb22R0w72CBRrP/+T2mtnTVG3yckeWO6YmGTumKSZw8K6c3yHc5kUMTvzUn+14RdfzJd8sZGCUzbwfPS7Y457rPLSvLHVfWo/2moOjzJvyS53wTXvUKS11fV7SfoM5NBguOzk1x+gm7XSxfPtmVxtHS7YvY9ZobxfiFrf8c8d4bxAAAAAAAAAIBtpKpulK4gzbBTWmvf7bWd3Du+SrpiSvOcy0PSFWQ7bIJuP5+uoNa+MSpdgaKnZuNCRgdcOsn/qapfmeC6awfprv3SJI+bsOuPpctnmagA0SwGxa/+KcnvZYriOukKmJ1aVfeecR43SLcB5DETdn1KVf3RLNfeiarqVkn+LcmDs/5GmBu5b7r8y5vMOA/38uTXXJV78sfTFYObtgDWbswBXohBQbM/zJSfb1UdmeTUdOv60lMM8WNJ/q2q7jDN9QEAAFi8pf0HngAAAMDuUFU3zOiiP58fs/+9k7wma/+IfUGSt6crmPbFJN9Jt/PfUUl+Ismde+f/SJJTqurHW2v9Il5b5eJ0O/19Msl/JPlmuoJwleRKSW6c5A7pdrwbLgJ1aJK/q6rbtNa+uMH4n0ry7cE/Xy/JlYdeu3Dw+mbOGeOcDbXWvlZVb0qXVLTPvarqiNba16YY8mFZWxTrhaNOHFZV/zfJ74x46VtJ/jnJB5N8Ld2OsIen243wHklu2jv/hHSf6xMmmvX8vDDJXYaOP52uUNp/pHsvhyW5TZL7Z+1uhD+e5DeT/MnWT3P+qurXkzxqqOmMJP+Y5BPp3vvhSX40XRLZlXrdn11Vb00XD/4uyXDhsA8meUuSLyT5brrP7SeS3CcHrrXLJXlBVR3dWrtoTm9rpKr6rSSjdvc8fzDXdyb573RJYtdPd3/t21H2CklOydDOxlvkgiQfHTq+RQ6MxWcl+a9JBmytfbKq9ibZM9T8sKp6cmvt3Cnm+Nje8TeTvGqKcQAAAAAAAACA7emRWVtAqV8ELUleluT/y4EFik5I8vdzmsfRSZ4+NJdvJ3lTuqJZX0uXl3LzJA9Il+M27MFVdUpr7VXp8klOGHrtjCRvSJc/8810+TM/Mhinnz/zzKp6Q2vt9Cnfw+OTPGjo+LtJXpfk/Um+Orj2zdLlLf1Ar+8PJHl7Vd26tfbtbKHBpomnDubS94kk70iXs7dvHkekK1x2r3SbZ+5zaJJXVdWdWmsfnGIqV0yX13WdwXFL8p4kb0uXU3NOkqunyw88Lslle/2fXFX/2Fp73zrjfyX7c3cOTXLD3uufy+b5fxPl9mxiS/MVq+roJP+a7r0OuyTJu9J9tl8YzOFySa6b5Ngkd82B9/WN020wervW2nfGmFOfe3nCe3mF7slrJvmHHHiv/Vu6gm1npPscrpUuD+7nxxhvV+QAL8gv5cBCfeeky+s9Nd2aPCjdPX2XdJ/7AQZF0d6XtTmzSfcdn5ou1/asJJdJ9z3fMd2G3IcMnXuNJG+sqtu21s6Y7S0BAACw1aq1tuw5AAAAACuoqo5Kl0Qy7B2ttT0TjvPEJM/sNZ+V5GqttUs26Xv9dEkFhw81X5Tkz5L8cWvt6xv0vXWSv8mBxZGS5E9ba4/f5LpHZe17f0Rr7aSN+g36/meSj6fbbe/t4yTWDP5g/4wkv9B76Y2ttZ/ZrP9gjJOSPHyo6YzW2lHj9F1nvL3pkob22fC7r6r7pEucGfb41tqfTnHt/0yXMLLPl5IcudF6qarj0iW0DDsryZOSvLi1dt46/Srdzq/PS5dsM+y+rbXXTzj9iYz4nM/L/qScryT51dbayOJXVXVokr9MV0hu2LeTXLu19v1Nrn18khf1mq8/TTJVVfUfMj61tXbiJn1OTPIHvebz0yWhnJsuOesFrbVRSS7XSFcw8U69l56fLrnlWYPjzyd5VGvtX9aZw9FJ3pi13/2DW2uv2Gj+672H1tqmO5VW1U2TfCRrkx3fPJjvl9bpd1yS52Z/cs/30yXaTXr9vZng/h7qd3qSI4eaTm6tHb9ZvxHj3D9ri7qd0FrbtABib5zbJflAr/lPWmu/PemcAAAAAAAAAIDtp6oula7w07WHmv87yQ+MyjWqqjemK8SzzyVJbjBpcZSq2pOugNOwfXkvSfIXSX5/VFGhqjokXW7L43ovfTpdHtB70xWI2Sx/5prp8mfu2Hvp+a21R4/xHk7M2tyd4dylFyX5rXXew0HpNm/8o6zNfzmptfaIaa4/Tt7LoO9r0+V8DXvPYL7rFRnbV7zp99LNffhapye5ZWvtu5tct58jNfx5vS/JL7fWPrRO36PSfV+37b301tbaPTa67qD/nqxdc3dpre3drO9W2IJ8xSunyxXtj/GiJCe21tYt8DbYvPcvk/xU76V/aK3df5Pr7ol7eaZ7eTDOqtyTF2d/kbyPJXlMa+296/S97Ki80p2QAzzPeDFNzuA6uanD383zkvxua+2b6/Q/4LupqsskeXeS2/dOfUOSJ7bW/n2DuVwzyR8neUjvpfcnOWbUPQkAAMDqOGjzUwAAAACmU1XXSvKEES+9YrOiaAMvy4FF0c5N8lOttSduVBQtSVprH0mXKPLPvZd+tar6O9zN0+1ba/dvrb123N0GW2tntNYenOTE3kv3qqpRO+itojel27Vt2PGTDlJVd8qBRdGSLpFio6JoR2RtEsVn0iXGPH+9omhJ0jqvTbfLY78Y1TMGhdMWaV9y0eeT3GG9omhJ0lo7J91n/NbeS4en28lxO9pXFO1urbXnrZd00lr7apKfSbcD57CHJHna4J8/mS5xZWRRtME4H8joz2qshK4ZPDdrE8lemeRn1iuKliSDtXps9r/vy6137oo7JWvvt8dOMU6/T0vy11PNCAAAAAAAAADYju6ZA4uiJclLN8g1Orl3fFCmyHFax75CSr/eWvu1UUWIkqS1dn5r7VeyNufnpkn+cTCnc5L8xCb5M19Jlz/Tz6N7UFVNm1OyL5/l/7bWHrnBe7iktfasJD+fbqPTYcdX1Y9Pef1NVdWjsrYA018l+bGNCjAlSWvt24NNVU/ovXRUkl+eYjr7Pq83JNmzXlG0wbVPT3L3rM2xu3tVXW+Ka+80f5kDi6JdnOQhg3W4blG0JGmtfS5dLOjnEN6vqn50irm4lztj3csrdk/uK7x1apI7r1cUbXDt9fJKd2sO8Fbb9908vrX22PWKoiUjv5sTs7Yo2pNaa/feqCjaYKyvtNYemuSpvZdun+TnNp82AAAAy6QwGgAAALAlBrvwvSXJ1XsvnZtuZ7TN+t89yTG95ke21t4+7hxaaxekS9j4xlDzpZP81rhjTGrcRIh1PC3dLmT7VJJHzjajxWitXZRuh7xhP1xVt5twqFEFqfoJS32/nuSwoeNzk9xjowJTfa21LyZ5UK/5FknuM+4Yc3RhkgeMsxNta61l9Hru7365nfzGRglJ+wyStf6k13z5JFdIt+PlA1pr/cJpo8Z5d7pYNewuVdUvXDYXVfXDSe7Sa/5skoeNUzCytbZvR9Fta5Dk1y9gdnRVHT3uGFV1WNbusPnPrbXPzjo/AAAAAAAAAGDb6BfTSZIXb3D+65L0CwQ9oqrm9d/Yvby19v/GPPf3RrQdMfjfX9+soFCStNbOSvKsXvOV0m0oOq29rbUnj3Nia+0NSf5oxEu/NsP111VVByd5Sq/5La21xw3yqMbSWntRkr/pNf9mVR0y6vxNnJ6ugNe6m3cOXfdbWVuc56B0BdN2raq6aZIH9pr/d2vtZeOOMfj+H52kXyTpSVNOy73c2fBeXtF78jtJHthaO3uKvrs2B3hBXtNa+9NJOlTVlZP8aq/5ea21Z04yTmvtxKzdaHva+AAAAMCCKIwGAAAAzEVVXbaqrlNVP11Vz0/ysSS3HHHqL41ZsOp3esfvaq39/aTzGiQp/Hmv+bhJx1mEQSLIS3rNP7aMuUzphSPajh+3c1VdPskDes3vHOzouF6fQ7N2Z8BntdY+P+5192mtnZrkX3rNy1grL2+tfXDck1trn0rS32100oJ0q+I/szbBaSOvWaf9JYPPZVyv7h0fnOSHJ+g/iceMaHt8a+38cQdorb013a6i29nzk1zQa3vsBP0fnq4Q3rDnzTQjAAAAAAAAAGDbqKojkvx0r/lDrbVPrtdnkJ/Rz0E7Msld5zCli7O2QNC6WmvvT/JfI176dDbfSHJYP+8lSW47Qf++SYuaPTNJPx/wvlV1rRnmsJ4Hpfu+9mlZWzBnXE8b9N/nGlm7kes4njphIaW/S7dWhm3XXK95+e0c+N+5fiFrN8zcVGvtwiRP7zXfc4oNMt3L+212L6/iPfmnrbUzp5zDTHZADvBWuiTJE6bo97gkhw4dn5O1+eXjelrv+NZVddSUYwEAALAACqMBAAAAkzi2qtqonyTfT5cU8YYkv5S1BWvOTfKLrbWXb3aRqrpKkp/oNU9SLKnvjb3jI6vqyJFnLt9nese3rapLL2UmExoUovq3XvODJ9i17/5Jrthr2ywx6G5JDu+1/e2Y1xulv1aOnWGsab1gij79z/0m85jIErxowp0iP59uh8e+SdfAh0e03XTCMcZ1z97xl7N23Y3jr+cwl6VprX0tyat6zQ+qqv79vJ5H947PzPYvFgcAAAAAAAAAjO/hSfp5VSeP0e/FI9pOmH06eVtr7YwJ+3xkRNuk+TOfS3J2r3navJfTWmsfn6RDa+28rC0EdHC6vK55+7ne8d7W2menGai19sUk/fc6aa7Y95Jsmg/Zu+5ZWZsjuFV5SiuvqirJ/XrNJ7XW+sXjxvWm3vEhSX50wjHcy/ttdi+v2j3ZMnqD30XatjnAW+ztrbXTp+jXX2Ovaq3175NxvSfJt3tty8gRBgAAYEwKowEAAABb7bvpiprdbJyiaAN3TlK9tvfMMIcvjGi7zQzjja2qDq2qe1XVk6rqxVX1xqp6V1V9qKo+0v9J8pzeEIek2/luu+gXMrtKkvuM2fcRveNzsrZwUl8/KeHMKZKShvXXylETFGqah+9nbZGzcXyud3ypqjp05Jmr7Z1T9Onvtnlukg9OOMbpI9rm/r0Pdiq+fq/5dVMm8r01XXLldtaPd5dP8rDNOlXVsUlu0Wt+QWvtonlNDAAAAAAAAABYeY/sHV+U5BWbdWqtvSdrC9f87GAzz1lMk/cyKs/pXXMYZ9q8l1Om7PcPI9ruMOVYIw0KaN251zxLTmGyNlds0pzC01prF0xx3X6u12FTjLFT3DLJlXttU3+vrbVvZe1Gm5N+r+7lA428l1f0nvxsa+1LM87hALswB3ir/OukHarqykl+uNc8S3y4JGvvsYXkkgMAADCdg5c9AQAAAGDH+0CSvxjs5jauO41oe01Vjb173hiuNsex1qiq2yX57XRFwS4343CHJ5lrssYWekWSP82B7/n4bFLgrKqOTLKn1/zK1tpmhZ/6a+XKg+SSaY0qJna1rN0lbquc0Vq7cIp+/WSupEuYO2fG+SzaNLtFfrd3fMYUBbL6YyRbk3B4uxFtkxZxS5K01i6qqo8lOWa2KS1Pa+20qvpgDvxcHpPk/23S9bG944vSFeAEAAAAAAAAAHaBqrpTkpv1mt/cWvv6mEO8OMkfDh0fkuQXk/zFDNOaR97LvMaZNu9lqjyWJB9PcmGSSw+1jcqTmcXN023SOezhVfUzM4x5vd7xpDmF/QJ74+rneu3mwmijckX/oqrOn2HMy/eOJ/1e3cvj3cureE9+aIZrH2AX5wBvlWm+m2OSHNRre3JV/coM87hR73hLc8kBAACYjcJoAAAAwCS+l9HJGpdOt2vftUa8dpck76+q41trm+7IOXDdEW23HLPvuK465/GSJFV16SR/lq5wT/8P8tPaNolPrbXvVNVrkzx4qPmnquparbUvb9D1+CTVa3vRGJfsr5XLJ7nVGP0mcdVMl6Q0jW9N2W9UMbVLj2hbdWdN0af/3iceo7V2YbeB5QG24vM7YkTbp2cY7z+yjQujDTwnB97rN6+qPa21vaNOrqojkhzXa359a+3MLZofAAAAAAAAALB6ThjRdvIE/V+S5Gk5MF/phMxWGG0eeS/zGmfavJep8lhaa+dX1elJbjzUPCpPZhajcgqvu077tCbNKZxXrtd2zPOal1HfX7/o4awm/V7dy+Pdy6t4T35t1gvu9hzgLTTNdzNqLd1g1on0bEkuOQAAAPMxr/9jDgAAAOwOH2it3XrEzw+21q6d7g/Ex6cr1jPsMkleUlX3HvM6i/hD86w7uK0xSIh4VZLHZb7PXbZb4lO/oNmlkjx0vZOrq0j1sF7zZ1pr7x7jWv0dB7fC3NfKBkYlSO0arbV5vP9V/gwPH9HW3wF2ErP0XRV/l+SbvbbHbHD+Cel+pwx77lxnBAAAAAAAAACsrKo6NMkDes1nJXnDuGO01s5IsrfXfKuqut0MU5tLzsqc8memNc88llF5MrNYxZzCVc5T2i527Pe6C+7lVfzuzp7lYnKAt9Q0380qrjEAAAAWSGE0AAAAYG5aa99qrZ2c5Nbpit0Mu1SSl1bVUWMMdeU5T21RfifJfUe0n5nkr5I8JMkxSX4gXbLIZVtrNfyT5C4Lm+3W+ZckZ/TaHrHB+cdm7S5u/eJqa1TV5ZMcMtnUYKmuOKLtezOMN0vfldBaOy/J3/aa71dV1+ifW1UHJXlUr/kz6WIOAAAAAAAAALA7PCjJFXptf99aO3/CcU4e0XbCdFPaMeaZxzIqT2YW2zWnkI35XrfGIu7lVfzuLpqxvxzgrTPNd7OKawwAAIAFOnjZEwAAAAB2ntba+VX10CTXyIF/5L9SugI4d91kiO/3jr/dWlvpP3BX1RFJntxrvijJbyd5Tmtt3D/qb/vdx1prrapOTvL7Q803q6o7tNZOG9GlXzTt4iQvHuNS5yW5JAcW/z+ltXbcRBOGxfnuiLZ+ou4kZum7Sv4qyROy/16+dLpE46f3zrtnkqN6bX/dWmtbOjsAAAAAAAAAYJWMKl72mKp6zBzG/oWqenxrrZ+/tltcIcnZM/QdNipPZhajvpOfba29bs7XYbFGfa9Xbq19e+Ez2VkWcS/vqHtSDvBKGrXGbt1a++jCZwIAAMBSHLT5KQAAAACTGyQBPCxrkyt+oqoeuEn3b/SOD6+qw+c2ua1xnySX77X9Tmvt2RMkRCTJVeY4p2U6KUm/WNHx/ZOq6tAk9+81/1Nr7czNLtBauyRJPwHq+uNPkXmoqksvew7byKiEvcNmGG+WviujtXZGkjf0mh9VVf3n14/tHZ+XLtYAAAAAAAAAALtAVd0iyR228BKHJ7nfFo6/6uaZxzLvwlb9nMJErthOMOp7PWrRk9iBFnEv77R7Ug7waMvMD91pawwAAIAJKYwGAAAAbJnW2peS/P6Il56+STGlr45ou+V8ZrVl7t47PivJc6YY5wZzmMvStda+kGRvr/lBVXXZXtsDsnaHwRdNcKn+WrlJVR0yQf/d7MIRbdMksVx11onsIl8b0XbTGca72Qx9V00/Xh6Z5J77DqrqgOOBV7bWvrnVEwMAAAAAAAAAVsYJO+Qaq+om03SqqstkbTGrUXkys9iOOYVszve6NRZxL++0724n5QDPKzc0WW6ht522xgAAAJiQwmgAAADAVntuks/32m6QjRPI/m1EW78gzqr5gd7x+1prF0wxzjHzmMyK6Bc4OyzJcb2243vH30ry+gmu0V8rl0uyZ4L+u9nZI9quNMU4N5p1IrvIB0e03W6agarq4OysJJ+3Jfl0r+2xQ//8qKx9nv3cLZ0RAAAAAAAAALAyBhtxPrTXfEGSj874863emHuqahUK2yzDVHks6XJY+kV3RuXJzOJj/z97dx4maVnei//79KwsAwwwIEsUWdxQYxRUEEVwTfQkaAyuiRijHIInag4aDWFRE40/RJKjxiWK4kE9xBhAcwx4RIgiKuBKxAVcGDZlhGGYYXqmZ6af3x/VM3RXV3VXddd09XR/Ptc1F7zPuzx3VXf1VE3f7/dJsqFp7Lk9noOZtyP2iu4IZuK1PNdek3OpB7gnvaGllAOTNC+GPJO+1WLMzwcAAIB5RDAaAAAAsF2NNAa8vcWu00spS9qc9v9ajL14JAhottq7abu5YW5SpZS9kxw3xfk3N20vmOJ1eulzGd9g8aqt/1NKOSTJU5v2f6rWurGLOVp9r7yii/Pns3tbjE2lqfPY6RYyX9Ra70ryi6bh3y+lTOXfaZ+TZJfpV9WV7fZzptZak/xT0/DvllIeMtLY3Bym+b1a6zd7NT8AAAAAAAAAMOv9fpIVTWMX11ofN50/Sf6m6Zolo3qc5pkTpnjeC1uM9bSvo9a6IcnVTcP7lVKe0ct5ZrHmvp2kvz2CveojuibJ/U1jzyulLJ/i9WjY7q/lOfianEs9wHOiN7TWekuSm5uGn1hKeVg/6gEAAGDmCUYDAAAAZsKFSX7aNHZgkte0OrjWenvGrzL30CQn9byy3mluzmlukujEqZn66mprm7Z3neJ1eqbWuj7JRU3DzyilbF1Z76QWp328y2kuz/hVB19aSnl4l9eZj37SYuyJ3VyglLIgyZ/2ppx54z+atvdP8rwpXKflz8/tbHv/nPlEknWjtgeSvDbJC5Ls23TsB3s8NwAAAAAAAAAwuzUvqpY0+tKm66IkQ01jJ01xobsd3VGllMO7OWFkcdQ/bhrenOTLPavqAZe2GDt7O8wzGzX37ST97RHsSR/RyMK7lzUNL0vyP6dyPbaZqdfyXHpNzqUe4Nsztg8v6bI3dMRrp1FDrzR/jw0kObMfhQAAADDz5uM/0AIAAAAzrNa6Jck7Wux6aymlXRPA37UYe88sXunrzqbto0spu3R68kgTylunMf/qpu09Zsmqic1BZwNJ/mSkcfBPmvZ9v9b63W4uXmv9TZKPNA0vSPLpUspOXVU6z9Ra70pyW9PwiSNhZ506NVNbSXA++1CLsfeUUhZ3eoFSyjOT/EHvSupY88+Znn7ta633JfnfTcOvTvI/msbuS/LpXs4NAAAAAAAAAMxepZQDkjy7aXhVxgcqda3Wek/GL3R3YJLnTPfaO6h/7PL4N6fxfI12aa21uZ+uFz6W5FdNY8eUUv5qO8w12zT37ST97dvqZb9iq17RN5dSjpni9WiYidfyXHpNzpke4FrrcJLvNQ0/r5Sye6fXKKX8fpKnTWX+Hjs34xdPfnkp5cX9KAYAAICZJRgNAAAAmCmfTvLjprH9k/z3VgfXWi9Ocn3T8O5J/qPbley2KqUsK6W8qZTyiqmcP4mvNW3vmuSsTk4spRyU5PNJlkxj/htajP3eNK7XE7XWb2T81/2kJM9I8uCm8fOnOM27Mn61vscnuXiqjSGllIeUUt5XSnn0FGvaUTQ3dT44yRs6ObGU8owk/1/PK5rjaq03JLmyafhhST7eyUrDpZTDMj48bKY0/5x5dCnlt3o8x/ubtvdN0tzkeGGttXlFSwAAAAAAAABg7npVGosljnZRrXVzj65/YYuxV/fo2juaZ5RS/raTA0spv5vkjBa7/ldvS2qotQ6mdYjWO0spr5vqdUspzy2l/NPUK5sRtyZZ0zTWz/7AnvUrjiym+rmm4UVp9P9NKZiplLKklPLaUsobp3L+HLHdX8tz7DU513qAm3tDd0rS6ffDYzN+UeS+GAnm+0CLXeeXUv5wKtcspSwopby4lNLqexcAAIBZRDAaAAAAMCNGViB7W4tdbyml7NzmtJcmuadp7OAk3yqlnN7J6mWllIFSynGllA8lWZlGkNODuii9U59LMtw09qZSyjtKKQsnqO+lSb6RB1ZvvG+K83+zxfznllL+oJSyaIrX7JXmBolDM341wqEkn5rKxWutv0ryyiS1addzkny7lPKKib4GW5VSdhlpdvi3JDcneV2SpVOpaQfy0RZj7y6lnFxKKa1OKKVaAjpkAAAgAElEQVQsHVnR8T/SaORpXo2Pyf15xj9vL0vy+ZEVjlsqpZyQ5Kt54GfY4PYpr61rmrYHkny2lHJEryaotd6Y8cFxzT7Uq/kAAAAAAAAAgNltpIflVS12tQozm6ovZHzo1O+XUlb0cI4dwdZ+ltNLKf/crj9vpCfvDUn+LY0Aq9E+UWv96nas8QNJLm0aG0jyvlLKxaWU3+7kIqWUh5ZS/qqU8oM0+qCmFMA1U2qtNY0+w9GeWUp5Vyllnz6U1Ot+xZOT/KJpbO8kV5RSzimldNTzWUp5Uinl3CS/TPLhJIdMoZa5YCZfy3PlNTnXeoA/kWRL09jrSilva/d4RgLDXp3k6iR7ptGTOzSFuXvtb5Jc2zS2c5J/LaV8tJTS0eu8lPLoUsrbk/w0yf9J0tH3JgAAAP0z6Q2hAAAAAD30L2n8gvrwUWP7phES9J7mg2utN5dSTkzyxSSLR+3aJY2Vy95aSrk6ydeT3Jnk3jR+2b1Hkt9K8viRP3v0/JGMr/WnpZQLk/xJ066/SXJSKeVfk/wgybo0GgYenuT3M7bxZn2Sv0rywSnMf2cp5bKMXSFu3ySXJBkqpdya5P6MDw/7s1rr9d3O16X/neSdGbtq6yObjvlCrfXuqU5Qa/1cKeXMJO9o2vXQkfnfU0q5Ksn1SVal8Vzslsb3xqFJjkjy2Exvxb4dTq312lLKpUn+YNTwgjSCp04tpVycRkjcUJIVSZ6QxvfY6Ga6N0RQVVdqrT8upZye5NymXc9LcnMp5T/SWIHyzjRWajw4ja/RY0Yde3uSz6bx/M+US9MIq9xz1NiTklxXSlmb5I60CMqrtT6uy3k+kOS4NvuurrW2Wh0TAAAAAAAAAJibjssDgTNb3VRr/VavJqi1biylfDbJn40aXpTkFUnO69U8O4Az01h4NGk8FyeWUi5Jcl2Su9LotXpEkj9M8uAW59+S5I3bs8Baay2lvCKN4J7mUJsTkpxQSvl+kquS3JRka0/aHmkEbT02jR6o5u+pHcH5SZ7bNPaWNBanvTONvp7NTfs/X2s9s9eF9LpfsdZ6dynl99P4uo4O8VqY5LQkf1FK+UYai0relmR1Gr1+eyTZL8nvpNEDON/CDNuZsdfyXHlNzrUe4FrrHaWU92V8f+GZSV5eSvlckh+N1LxXGr2Jz8vY74d3p7HA9UO6fTy9VGvdUEp5QRrhcb/VtPvVaXx9rk/yn2mEIt6TRh/sHmn0uj4ujZ8PbRetBQAAYHYSjAYAAADMmFrrcCnlbWkEpI325lLKB2ut97c454pSylOT/GvG/0J7lyTPGfkzG/xFkiem0TAy2oGZPLxoU5I/SqPJYKrelOTYNJ6X0Ran/cqHu05jvo6Math43gSHnd+Def62lHJHGqFKS5t275vkxSN/GOu/Jzkyyf5N44/J2CCuVs6ptX64lCIYrUu11veWUvZO8tamXUuTvGDkTzv3p9E09vztVF5LIw1Gb0xyQYvdy9Jo9uqFS5LcmvE/85MpNI0BAAAAAAAAADu0V7cYu3A7zHNhxgajbZ17PgWjvSeN8JgTR7Z3SyMkqDkoqJXbkhxfa713O9W2Ta113UhP4cfTCHZq9tsZH9A0F3wuyRVJntFi334jf5p9bzvW09N+xVrrf5VSjkzyb0ke3eKax478YXIz+lqeQ6/JudYDfHqSZ2b86+mQJG+epJaLRs5/6STHzYiRoLcnplHX05p2L0hjgdcnzXhhAAAAbFcD/S4AAAAAmHe2rpo22ook/6PdCbXWa5M8Po2miU3TmLumserc16ZxjfYXr3VNGk0E3+zy1DuSPLPW+sVpzn9jkmcluXk619lOJgo+uzPJ5b2YpNZ6fpKjknxlmpfakOT/JFk57aJmuVrrr5Ick+6+b4aSnFZrnaw5hgnUWv86jZU1u2mGui3Jca1WeZwJtdZPptEEvHY7zrElyYdb7FqVRoMnAAAAAAAAADAPlFL2SPLCFrs+tR2m+2rG9wodXkqZN0Ertdaa5OVJul0k8etJjq21/rz3VbVWa11ba31RklOS3D7Ny61MozdxVqu1Did5UZJP97uWZPv0K9Zab0oj3Oi9aSweOR3XJ5lWT+aOqh+v5bnwmpxrPcC11vVJnp7k2m5OSyNY72UjP3NmjZFe12ck+Zsk90zzcj/K+EW+AQAAmGUEowEAAAAzaqTh4uwWu04rpSyb4Lzf1Fr/NMmhafzS/Ydp/AJ+MmuT/N80woceWms9rtb6ra4L71Ct9fY0ViN7XZLJmkNuSXJGkkfUWr/ao/m/kcZqdb+X5J+SXJ1G08W6JP1sUvhCkt+02ffJkSCknqi1fq/W+owkT07yyTSCpDpxZxorv74yyYNqrS+ttd7Vq7pms1rrL5I8Nslfp/E8tDOUxop7v1NrPXcmapvraq3/kOTwJBckuW+CQ+9K8rdJDq+1XjcTtbVTa/1YkgOSvCrJ/07y3TTqG+zhNK2C386vtW7s4RwAAAAAAAAAwOz28iRLm8a+UWv9Wa8nGulraxW49upezzWb1Vo311pPSSMc6CuZuOfsu0lek+SpMxmKNlqt9UNJDh6p48vpbIHC4TRqPyfJcUkO2lF6oWqt99ZaX55Gj+DZSf49yc+SrM70Fp2daj0971esta6vtf7PJAel8RivT9JJf+GGNL5n/zqNHqsjpxtUtSPr12t5R39NzrUe4Frr3UmekkZg3UR/d25J8h9JnlJrfdNsC0XbauT7+u+SPCTJ/0zj+Rnq4NTNSa5J8vYkT6y1PmpkkVgAAABmsdL4N1sAAACAHU8pZUWSJyRZkWSvJLumsUrg2jTCsH6c5Jbax38AKaU8LMkTR2rcZaS+25L8oNb6k37VNd+UUg5N8qg0vk/2SrI4jUaRNUl+keTH8yUErROllMcm+e0keyfZOY3n6SdpNJau62dtc1kpZUmSY5I8OMmD0mhk+nWSHyT53mxtNtoeSimfTvLSUUM1yaH9aqIFAAAAAAAAAJiPSil7p7FA5SFp9Ofdl8bCi9/dHgF101VKWZxGT+GBafQ+LU8jEGdtGgt7/jTJT2utvVwAkO2slLJ7kiOT7JNG/9/uaSziuDaN0KifJPl5Lxdo3VGUUs5OctbosVpraXFcX17LO/prcq71AI88niek8VpalsbX4WdJrqm13tPP2qaqlLJzkiOS7J/Gz4c9kmxM47HdlcbPh5trrZ0EqAEAADCLCEYDAAAAAGDWGAm9vDXJklHDl9Vaf7dPJQEAAAAAAAAAAMw6nQajAQAAAOxoBvpdAAAAAAAAjPKajA1FS5IP9KMQAAAAAAAAAAAAAAAAAGaWYDQAAAAAAGaFUsouSV7fNHxzki/2oRwAAAAAAAAAAAAAAAAAZphgNAAAAAAAZou3J9mnaewfaq3D/SgGAAAAAAAAAAAAAAAAgJklGA0AAAAAgL4qpexZSnlPkr9s2nVLkn/uQ0kAAAAAAAAAAAAAAAAA9MHCfhcAAAAAAMD8Ukr5aJIjRjb3TrJ/ktLi0DfVWodmrDAAAAAAAAAAAAAAAAAA+kowGgAAAAAAM+3QJL89yTGfrLV+diaKAQAAAAAAAAAAAAAAAGB2GOh3AQAAAAAA0OTCJH/W7yIAAAAAAAAAAAAAAAAAmFkL+10AAAAAAADz3mCS25N8I8n5tdar+lsOAAAAAAAAAAAAAAAAAP1Qaq39rgEAAAAAAAAAAAAAAAAAAAAAAACY5wb6XQAAAAAAAAAAAAAAAAAAAAAAAACAYDQAAAAAAAAAAAAAAAAAAAAAAACg7wSjAQAAAAAAAAAAAAAAAAAAAAAAAH0nGA0AAAAAAAAAAAAAAAAAAAAAAADoO8FoAAAAAAAAAAAAAAAAAAAAAAAAQN8JRgMAAAAAAAAAAAAAAAAAAAAAAAD6TjAaAAAAAAAAAAAAAAAAAAAAAAAA0HeC0QAAAAAAAAAAAAAAAAAAAAAAAIC+E4wGAAAAAAAAAAAAAAAAAAAAAAAA9J1gNAAAAAAAAAAAAAAAAAAAAAAAAKDvBKMBAAAAAAAAAAAAAAAAAAAAAAAAfScYDQAAAAAAAAAAAAAAAAAAAAAAAOi7hf0uAPqtlLJ7kmNHDd2aZKhP5QAAAAAAAAAATMfiJL81avs/a61r+lUMAOjRAwAAAAAAAADmCP15M0QwGjQari7tdxEAAAAAAAAAANvBHyT5fL+LAGBe06MHAAAAAAAAAMxF+vO2k4F+FwAAAAAAAAAAAAAAAAAAAAAAAAAgGA0AAAAAAAAAAAAAAAAAAAAAAADou4X9LgBmgVtHb1xyySU59NBD+1ULAAAAAAAAAMCU3XzzzTnhhBNGD93a7lgAmCF69AAAAAAAAACAHZ7+vJkjGA2SodEbhx56aA4//PB+1QIAAAAAAAAA0EtDkx8CANuVHj0AAAAAAAAAYC7Sn7edDPS7AAAAAAAAAAAAAAAAAAAAAAAAAADBaAAAAAAAAAAAAAAAAAAAAAAAAEDfCUYDAAAAAAAAAAAAAAAAAAAAAAAA+k4wGgAAAAAAAAAAAAAAAAAAAAAAANB3gtEAAAAAAAAAAAAAAAAAAAAAAACAvhOMBgAAAAAAAAAAAAAAAAAAAAAAAPSdYDQAAAAAAAAAAAAAAAAAAAAAAACg7wSjAQAAAAAAAAAAAAAAAAAAAAAAAH0nGA0AAAAAAAAAAAAAAAAAAAAAAADoO8FoAAAAAAAAAAAAAAAAAAAAAAAAQN8JRgMAAAAAAAAAAAAAAAAAAAAAAAD6TjAaAAAAAAAAAAAAAAAAAAAAAAAA0HeC0QAAAAAAAAAAAAAAAAAAAAAAAIC+E4wGAAAAAAAAAAAAAAAAAAAAAAAA9N3CfhcA81GtNcPDw6m19rsUgHFKKRkYGEgppd+lAAAAAAAAAABA1/ToAbOV/jwAAAAAAACAyQlGgxlQa82GDRuydu3arF27NkNDQ/0uCWBSixcvzrJly7Js2bIsXbpUIxYAAAAAAAAAALOSHj1gR6M/DwAAAAAAAKA9wWiwna1fvz533HFHNm3a1O9SALoyNDSUu+++O3fffXcWLVqU/fffPzvvvHO/ywIAAAAAAAAAgG306AE7Iv15AAAAAAAAAO0N9LsAmMvWr1+flStXargCdnibNm3KypUrs379+n6XAgAAAAAAAAAASfToAXOD/jwAAAAAAACAsQSjwXayteGq1trvUgB6otaq+QoAAAAAAAAAgFlBjx4wl+jPAwAAAAAAAHjAwn4XAHNRrTV33HHHuIarRYsWZbfddsuuu+6aRYsWpZTSpwoB2qu1ZtOmTVm3bl3uu+++MSvqbv35dsghh/gZBgAAAAAAAABAX+jRA3ZU+vMAAAAAAAAAJicYDbaDDRs2jGlUSJJly5blgAMO0KgA7BAWLVqUnXfeOStWrMjtt9+etWvXbtu3adOmbNy4MUuXLu1jhQAAAAAAAAAAzFd69IAdmf48AAAAAAAAgIkN9LsAmItGNygkjQYGDVfAjqiUkgMOOCCLFi0aM37ffff1qSIAAAAAAAAAAOY7PXrAXKA/DwAAAAAAAKA1wWiwHTQ3Xe22224aroAdViklu+2225ix5p9zAAAAAAAAAAAwU/ToAXOF/jwAAAAAAACA8QSjQY/VWjM0NDRmbNddd+1TNQC90fxzbGhoKLXWPlUDAAAAAAAAAMB8pUcPmGv05wEAAAAAAACMJRgNemx4eHjc2KJFi/pQCUDvLFy4cNxYq593AAAAAAAAAACwPenRA+Ya/XkAAAAAAAAAYwlGgx5rtUJbKaUPlQD0zsDA+LcMVqQEAAAAAAAAAGCm6dED5hr9eQAAAAAAAABjCUYDAAAAAAAAAAAAAAAAAAAAAAAA+m5hvwtgZpRSFiV5SpIHJ9kvybokdyT5bq31lz2e66FJHpdk/yS7JrkzyS1Jrqm1burlXAAAAAAAAAAAAAAAAAAAAAAAAMwNgtH6pJRycJIjkxwx8t/HJ1k26pBbaq0H9WCeFUneluTFSfZsc8w1Sd5ba/3cNOd6UZK/THJUm0PuKaVclOTMWutvpjMXAAAAAAAAAAAAAAAAAAAAAAAAc4tgtBlUSnl6kremEYbWMqSsx/P9bpJPJNlnkkOPTnJ0KeVTSU6utd7f5Ty7JvnnJC+Z5NA9k5yS5IWllFfWWi/vZh4AAAAAAAAAAAAAAAAAAAAAAADmLsFoM+txSZ49ExONhLBdkmTxqOGa5DtJfp5kjyS/k2TvUftfnmS3UsoJtdbhDudZkOSiJL/XtGtVku8mWZPkkJG5ysi+fZNcWkp5Zq316i4eFgAAAAAAAAAAAAAAAAAAAAAAAHPUQL8LIEmyMcnPenWxUsqBSf4tY0PRvp7k8FrrEbXWE2utz05yYJLXJ9k06rj/luRvu5ju7zM2FG1Tkv+R5MBa63NG5npCkkcn+cao45YkuaSUsl8XcwEAAAAAAAAAAAAAAAAAAAAAADBHCUabeZuSfC/JR5OcnOQJSZYl+bMezvG2JMtHbV+T5Jm11h+NPqjWurHW+r+SnNh0/l+WUh4y2SSllIPTCFYb7Y9qre+vtQ41zXVjkmdkbDjaXknOmmweAAAAAAAAAAAAAAAAAAAAAAAA5j7BaDPrgiS71Vp/p9b6mlrrR2qt36m1burVBKWUw5K8ctTQUJKTaq0b2p1Ta71kpLatlqSzwLKzkiwatf2JWuulE8wzmOSkkZq2evVIwBoAAAAAAAAAAAAAAAAAAAAAAADzmGC0GVRrXT1RQFmPvCzJglHb/1ZrvamD897dtH1iKWVpu4NLKTsledEk1xin1vrTJJeMGlqYRs0AAAAAAAAAAAAAAAAAAAAAAADMY4LR5p4XNG1/vJOTaq0/SvKtUUO7JHn2BKc8J8nOo7a/UWv9cUcVjq/phR2eB3PSQQcdlFLKtj9XXXVVv0sCAAAAAAAAAACAHZ7+PAAAAAAAAADY8QhGm0NKKQ9K8tujhjYn+XoXl7iqaft3Jzj2uZOcO5GvpVHbVr9TStm3i/MBAAAAAAAAAAAAAAAAAAAAAACYYwSjzS2Pbtr+Qa31/i7Ov6Zp+/Au5vpGp5OM1HRDF3MBAAAAAAAAAAAAAAAAAAAAAAAwxwlGm1se1bR9c5fn/2yS6432yBmcCwAAAAAAAAAAAAAAAAAAAAAAgDluYb8LoKcObdpe2eX5tzRt71VKWV5rXT16sJSyZ5I9pzlX8/GHdXk+AAAAACM2100ZrsNdnbOoLE4ppaNjh+twNtdNUyltzhkoA1lYFm23628a3pSa8V/LBWVBFpTZ/8+5w3U4A8V6HAAA3ai1dvzefL4aGt7YcnxhWZiBsmC7zdur97db6uZsqVt6UNH2181nxS11S7bUzRMeU1KyaGBxL0oDAAAAgDmr1prUmjLg9+0AAAAAAJAIRptr9mjavqubk2ut60opG5IsHTW8e5LVTYc2z7O+1np/N3O1qG33Ls8HAAAAmPdWbvhZPnvXR/OLwZ9mON3dZL/bguU5Yren5gUrXpkFbYIENg5vyEW//nB+sO66rB9e14uSd3gDWZCH7vSw/NE+f5YHLz2kZ9f9yfobcsmqT2blhp+1DkbLwjx0p4flxfu+NgcsOahn8/bKms2r8+lf/VN+uv6G7L5wzxy3/Pk5dvnv9bssAIBZ7cf3fz///pvP5NaNP88BSx6SF+97ch6ytHktrPnt6/f+v1yx+tL8aui2lvuXDuyUR+78uLzsQX+eXRYs69m83117Tb5497/krqE7ctDSh+VlDzol+y4+oOvr3Lnx1vyfX38oPx/8SbZk4gCx2WKPhXvlybsdn+fv/dK2oXCj3/9vrBsmvN5BSw/Lmx9yzvYoFQAAAAB2eHXD+tR/eGNy9b8nCxakPvcVKa99R8qC7bcgBAAAAAAA7AgEo80tuzZtD07hGoMZG4zWqnu8V/OM1pMu9VLKPklWdHla7+5gBQAAAJgh92xalX+89YwMDq+f0vn3bVmdr6z+fLbUzXnxvq9teczH7nhP/uv+66dT5pwznC352eCP8g+3npEzD3pf9li017SvecfGW/KB296ezXVT22O2ZHNuHrwx/7DyjJz50Pdl2cLmtQv6Z7gO5x9vPWNbWMVdm+7IRXd9JEsGlubJux/f5+oAAGanOzauzIdvf9e2UKlfbrgp5608PWc89H9lr0X79rm62eH6+67Op379gQmP2TA8mO+u+0buvm1V/urB56SUMu15f7L+hnz0jvdsCyy+afC/8t6Vf52zHvqB7Lyg+Vfl7a3bcl/ee+tf5/4ta6dd00y6d/Pdueyez6aU5L/t/fJx+5vf/wMAAAAAU1ffcVLy1UsfGPj0ualJyinv7FNFAAAAAAAwOwhGm1uau7AnXpq5tcEkyye4Zi/nmeiaU/XnSc7q0bVgTqm15jvf+U5+/OMf56677srGjRuzYsWKHHDAATnmmGOy6669ehnOvFtvvTXXXXddbrvttgwODmbvvffOYx7zmBxxxBEZGGi9kn2n7rrrrnzta1/LHXfckcHBwey///45+OCD8+QnP3na127lxhtvzA033JBVq1blvvvuy5577pn99tsvxxxzTPbaa/o32wMAAHPHD9ZdO+VQtNGuve+q/OE+r8rCsmjM+H2b780P7//2tK8/V20YXp/vrvtGjlv+/Glf6/r7rp4wFG20+4fX5gfrrstT9njWtOftlV9u+GnLUIRr1lwhGA0AoI3P/+bCbaFoWw3Vjfn2fV/Ps/d6YZ+qml2uve+qjo9dueHm3DF0Sw5YctC05/3Wmq9sC0Xbau2WNfmv+7+dJ+52bMfXuWHddTtcKNpo31jzlTx/r5eNC5v7xeBPhKIBAEAL+vOmRn8eAPNZ/c0dydVfGL/jsgtT//vf9WQhCAAAAAAA2FEJRpvb6hw7B5iC3/zmN3nnO9+ZCy+8MKtWrWp5zOLFi3P88cfn7LPPzpOe9KSOrnvSSSflggsu2Lb9i1/8IgcddFBH51511VU57rjjtm2fddZZOfvss9seP/qXuscee2yuuuqqJMk111yTs846K1/5ylcyPDw87rx99903p59+ek499dSum6S++93v5k1velOuvPLKltc+8MADc/LJJ+ctb3lLFi5cmLPPPjtve9vbtu2/8sor8/SnP72jue6+++6cc845ufDCC3P77be3PGZgYCBHH310zjrrrDzzmc/s6rEAAABz051Dt/bkOoPD67Nm8+rstWifMeO/Grot1T/hTOhXG3sTBnDn0Mouj+/N175X7tzYup5fzbI6AQBmizs33pofrLu25b47unxvOJf9usvwrTs33taTYLQ728zb7n1v+3p27PfD926+OxuG12enBbuMGZ9tn0cAAKDf9OfpzwOAKfvyRUmLvwdzz6+TdWuSZXvMfE0AAAAAADBL9H4pLfppXdP2TlO4RvM5zdecyXmAabrkkkty8MEH57zzzmvbdJUkQ0NDueyyy/LkJz85J598cjZv3jyDVU7NO9/5zjztaU/Ll7/85ZaNUUny61//On/xF3+RF73oRRkaGur42u9973tz5JFH5oorrmh77dtuuy1nnHFGjj322Pz617+e0mNIkk9+8pM5+OCD8+53v7tt01WSDA8P5+qrr86znvWs/PEf/3FXjwcAAJibNtdNPbvWxuHBjsYYa0OPnqNurzPbvjbt6u/V8wMAMNdcsfrStvtm23u9fhruMqi5V89du/ex3V5/w/D6XpTTV62eC9+jAADwAP15+vMAYDrqrTdNsLP135EAAAAAADBfLOx3AfSUYLTkn5J8tstzDknS/u4D2EGdf/75ec1rXjOuceiQQw7Jox71qOy8885ZuXJlrr322mzZsmXb/o985CNZuXJlvvCFL2Thwtn518R73vOenH766du2H/7wh+fhD394dtlll9x555355je/mQ0bNmzbf/HFF+eMM87Iu9/97kmvfe655+a0004bN/6oRz0qhx12WJYsWZKVK1fmuuuuy5YtW3LNNdfkxBNPzNOe9rSuH8eZZ56Zd7zjHWPGSil5+MMfnsMOOyzLli3L6tWrc/31149pnLvwwgtz55135rLLLpu1XyMAAGD72zzcu5tmBlvc2D4XbuLf3nr1HHUbLDA4y7427erfXDdlc92UhWXRDFcEADB73bv5nlx731Vt9wuXHa27YLRevT9vd51urz8XvpatHsNs+zwCAAD9oj9Pfx4ATNuvVrbfN+r9AwAAAAAAzEd+Wzu3rGnaXtHNyaWUXTM+sOzeDubZuZSyS631/i6m26eDebpWa70ryV3dnFNK6cXUPVM3b05W3dbvMua+FQemzOGGle9973s55ZRTxjRdPe5xj8sHPvCBHH300WOOXbVqVc4444x8+MMf3jZ22WWX5cwzz8w73/nOGau5UzfccEO+9rWvJUlOOOGEvOtd78ojHvGIMcesXr06f/mXf5lPfOIT28bOPffcnHLKKTnooIPaXvvb3/523vKWt4wZe/rTn573v//9Ofzww8eMr1q1KmeeeWY+9KEP5atf/WpuvPHGrh7HBRdcMKbpamBgIKeeempOO+20PPjBDx5zbK01l156aV7/+tdn5crGL8CvuOKKnHHGGXnXu97V1bwAAMDcsbm2Xqn+d3Y9Ks/a8wUt971n5VsznPHNs61u8G8VlpYkyxfundfs/+YuKt3xXb3mS7lmzZfHjfcqeKHdc72oLM6mFl/n2RawMFEwwobhwey6QDAaAMBWV63+92yu7UOOZ9t7vX6qtdtgtN48d+2Cf7u9/uBw61+fH7ns2By3/Hld17W9bKqbct6tp7fc1+oxt3t+Dl76iLxonz8dN754YOn0CgQA6DH9eTNoDvfo6c/TnwcAPfHrW9vvGxaMBgAAAADA/DY3Ow7mr5uath/S5fnNx99Ta13dfFCt9e5Syuoky0cNPzjJj6YxV3Pt89eq21JPfHi/q5jzyr/8JNnvoH6Xsd28+tWvztDQAzdOH1vQ57oAACAASURBVHPMMbn88suz8847jzt2xYoV+dCHPpRDDz00b3rTm7aNv/vd785LX/rSPOYxj5mRmjt1zz33JEne/OY3t11hcvny5fn4xz+e1atX59JLL02SbNmyJR/72MfGrQA52qmnnprNmx+4GemFL3xhLrrooparPq5YsSIf/OAHc/DBB+fNb35zfvOb33T8GG655Zaccsop27aXLFmSSy65JM997nNbHl9KyQknnJCjjz46T3nKU3LzzTcnSc4555y89rWvzUMf+tCO5wYAAOaOTXVTy/Hli1bkoJ0e1nLfTgM75/7htePGW93YvmFL67CrXRfs1vb6c9VNgz9sOb69gxf2WLhnVm36VcfH98tE9WzYMphdF+w2g9UAAMxeg1vW52v3XjbhMYLRpq4XwcXDdbjt16DrYLQ2n6n2Xbz/rPpMVWtNSUnN+CC6Vs9pu+dh+aK9Z9XjAgBoS3/ejJnLPXr68/TnAUBPrLm7/T7BaAAAAAAAzHMD/S6AnmoOJju0y/MPbtqeaHm1Xs/VTagaMIErr7wy3/nOd7Zt77bbbrnoootaNl2Ndtppp+X5z3/+tu3h4eGcd955263O6TjmmGM6Wonx7/7u78Zsf+UrX2l77HXXXZdvfetb27b322+/nH/++S2brkZ705velGc/+9mT1jLaOeeck8HBB24aOe+889o2XY22zz775NOf/vS27S1btszarxEAALD9bW4TjLawLGp7ztIFO7Ucb3XD/sba+mb3pQMTf76ci9o95l6FVrQLcNh94V4tx9sFLPTLRM+DYA8AgAd8fc2XMjhJeFcvwr3milZBXRPpxXvPjcMbenb9dl/rpQtm12eqUkqWDLT+rNjq+7Ht42pzDQAAmGv05z1Afx4ATNPa1e33DQ/PXB0AAAAAADALCUabW/6rafuxpZRuuqqfMsn1Jtp3VKeTlFJ2SfLYLuYCunDBBReM2T711FOz//77d3Tu3//934/Z/sxnPpONGzf2rLZeOf300zMwMPlfYYcffngOOuigbdvf+9732h77mc98Zsz26173uuy+++4d1XPGGWd0dFyS3H///Tn//PO3bR988ME5+eSTOz7/yCOPzFOf+tRt25///Oc7PhcAAJhb2gWjLZogGG1JaX2j+sYWN/gPbml90/9Os+wm/pnQ7gb/XoRWDNfhtuELeyzcc7vN20sTB6PNrloBAPplc92Ur6z+wqTHtXpvPl+1C0ZrFwbdm2C03r23HRy+v+X4TrMwbLr9Z57xz0e750gwGgAA84X+vAfozwOAadqyuf2+4S0zVwcAAAAAAMxCgtHmkFrrnUl+MGpoYZJjurjE05u2/2OCYy+b5NyJPDWN2rb6bq31112cD0zg6quvHrP9ile8ouNzDz/88Dz+8Y/ftr1hw4Z8+9vf7lltvbDTTjvl+OOP7/j4Rz7ykdv+f/369Vm3bl3L46655pox2yeeeGLHcxxzzDEdN7ddffXVY1ajfNGLXtRRE9loxx133Lb/v+WWW7Jy5cquzgcAAOaGdsFo7UICkvahZq1udm9303+7cLW5rJuQgG4N1Y1tAx/2WLhXy/F2QWr9MlFAhGAPAICG6++7OvduvnvS4zYMD2a4Ds9ARbNfu/fJ7YLFevH+fHCC97bdXr/d8TsN7NLVdWZCN89pu8e1dBYGvgEAwPagP28s/XkAMDV1yyTBZ4LRAAAAAACY5xZOfgg7mIuTPHbU9quSfGmyk0opj0jypFFD909y3uVJBpNsvSv0qFLKI2qtP+6gxpOati/u4BygA6tXr87Pfvazbdt77LHHmMajThx99NH5zne+s237uuuuy9FHH92zGqfrkEMOyeLFizs+fvny5WO216xZk1133XXccd///ve3/f8ee+yRQw89tKu6jjjiiI5Wh2xujNt///3zy1/+squ5mh//z3/+8zz4wQ/u6hoAAMCOb9MUgtGWtAn4anXzf7uwq6UL5mMwWusb/DfVoWyumyZ8ziczUbjCHgv3bDk+OLw+tdaUUqY8by9N9BgGBaMBAKTWmi/f0/mvRIfqxiydh4HE49TWwWhLB3bO2i1rxo1PFNjbqYmCfbsJRhuuw22v1S54uZ/afVbsLhht9j0uAADoNf154+nPA4ApWnfvxPsnC04DAAAAAIA5TjDa3POpJH+TZMHI9gtLKYfVWm+a5Ly/atr+l1rrhnYH11rXl1L+NckfN13jVRNNUkp5WJIXjBranOTTk9QGdGjVqlVjtg877LCub5J+xCMeMWb7rrvumnZdvdTcSDWZRYvG3py+adP44ID7778/GzY88CNvKk1MnZ5z6623jtl+wxvekDe84Q1dzzfaPffcM63zAQCAHdPmNsFoiyYI6Wp3o3qrG/bb3ey+U5uQsLlsohv8NwwPZtcFUw9Gmyh4YY9Fe7UcH86WbKpDWVyWTHneXproMUy0DwBgvrjx/u/kjqGVHR+/YXhQyFSS1rFoyU4LdklafBzqxXvPicLPNg4PdhxQvHF4MLXNI9hpwS5Trm97aff91ipsrm2I9jz8rAgAwPyjP288/XkAMEW3/GTi/cOC0QAAAAAAmN8Eo80xtdabSikXJPnTkaHFST5RSnlGu6CzUsofJDlp1NBQkrd1MN3ZSV6SZGtXw0mllItrrS2XZCulLE3y8ZGatvpYrfVnrY6ft1YcmPIvk/ySi+lbcWC/K9guVq9ePWZ799137/oazefMtqaegYGBnl/z3nvHrri1bNmyrq+x2267dXTc3Xff3fW1J7N27dqeXxMAAJj9Ng0PtRxfONA+pKtdqFmrm//bBQLMx4CGicLgNg4PZtcFnX0mbGVwS+tQgSTZfWHrYLSt8y4emB3BaIMThEe0C00AAJhPvnTPxV0dv2HL+mThntupmh1Jm2CxNu/PJ3pf2qmJgtFqajbWDVlaJv9MNDjB++DZGDbdPhitxWfFLa2foyXz8LMiALCD0p83c+Zgj57+vKnRnwcA49UP/83EBwwPz0whAAAAAAAwSwlGm2GllAPT+nl/UNP2wlLKQW0us67W+psJpjkryQuSbF227egkXy6l/Fmt9cejalmS5LVJzm06/9xa6y0TXD9JUmv9eSnlH5OcNmr4X0spf5nkI7XWbXfnllIemeSjI7VsdXc6C2CbV8rChcl+B/W7DHZQtY69QaTb1Shb6cU1ZrslS8beSD401DpcYCKdnjOVa0+m+esOAADMD5vr5pbji0r7YLR2N6q3umm/XaDVfLzZfekEwQWDWwYfWDZgCjZOELywx8LlbfcNDg9mWfaY+sQ9NNFjmChYAgBgPvjl4E25afC/ujrHe6iG2iYYrd37816E8k52jQ3Dgx2FRQ8O39923+wMRmvznDaFoNVa235/7jQPPysCADsm/XlMh/68qdGfBwAt3PLjifcPb5mZOgAAAAAAYJYSjDbzrk7ykA6OOyDJL9rsuyDJSe1OrLXeVkp5YZLLkyweGX5KkhtLKd9O8vMkuyd5fJIVTaf/e5IzOqhvq7ckOTzJ745sL0ryviRnlFK+k2RtkoNH5hrdvTGU5AW11ju7mAuYxJ577jlme82aNV1fo/mc5cvb34Q9VVu2zK5f1DY/xuaVPTvR6cqde++995jta665JkcddVTX8wEAAGyum1qOL5wgGK3dDfytgq3a3+w++27i394mCoObbvhCq1C6JFlSlmangV2227y9sqVuzqba/iaj2VInAEC/fHn1xV2f4z1UQ7tgtHafSSYK7O1Uu/fn3c7RHCg22tIJ3uf3S6dhc5vrpmxJ65DuiQKlAQBgrtCfNzX68wBgrLplS7JukvcRw8MzUwwAAAAAAMxSA/0ugO2j1npVkhckWTVquCQ5IsmJSZ6T8aFon0nyklprxx0RI8eemOSipl37JHlukj9K8oSMDUW7K8kf1Fq/1uk8QGdWrBj7sv7pT3/a9TV+8pOfjNneZ599Wh63cOHYbM3Nm1vfBNHKVBqbtqcFCxbkgAMO2Lb985//POvXd3fT0Q033NDRcfvuu++Y7al8jQAAAJK0DaOaKBitXYBAq+CFdmEM8/Fm90UDi7KwtF5jYrqhFe2CFZYO7DRJINv0Qx96YbI6ZkudAAD9sGroznx37Tdb7jt0p8OzpCxtuc97qIZ2wWjtPpNsrpuzabh1gHSnJgs+G9zS2fv/weH7W44vLIuyaKD9Z7Z+aRei3fy9ONH35kSfXwAAYK7Qnzc1+vMAoMldtyZbJvm7fXh2BZ0CAAAAAMBME4w2h9Vav5jk0Uk+lGSiLodvJnlRrfVltdbWHdoTz7Ou1vqSNELQWnf2N9yT5INJHl1rvazbeYDJLV++PIcccsi27XvvvTc/+tGPurrGNddcM2b7yCOPbHncbrvtNmb73nvv7XiOH/7wh13VNBOe/OQnb/v/4eHh/Od//mfH595zzz35/ve/39GxRx999JjtL33pSx3PAwAAsFWtNZtr6ybZRWVx2/Pa3ajefHP7cB3OxuENLY9td8P8XNcufGFDm+epU+2CBZYu2DkLyoIsLkvanDe9QLZemawOoR4AwHx2xerPp2a45b5n7XlCx2FU81brXLTstKB9WPNkwWaTmey57/T6gztY0HT778X1E26PttOC+flZEQCA+UV/3tTpzwOAUe74xeTHbBGMBgAAAADA/CYYbYbVWg+qtZZp/jmpi/nuqrWekuRBSY5P8qokb03yF0n+MMnBtdajaq2f68Fj+9da61FJDk7yopE53joy5/FJ9qu1/nmtddV05wLaO+aYY8Zsf+pTn+r43B/96Ef59re/vW176dKlecITntDy2OaVKm+88caO5/niF7/Y8bEz5ZnPfOaY7X/+53/u+NwLLrggQ0NDHR37jGc8IwsWLNi2/fnPfz533XVXx3MBAAAkyXC2tA1YWFgWtj2vfbjX2Jv7h+rG1DYpBPM3GK2zoIButQte2BpiN9vDMiarY7bUCQAw09ZuXpNvrLmi5b79Fv9WDt/lCVnaJuBruuFec0W7zyQ7TRAutr3en2/VLvCs0+Mmqr2f2n3uaA7Mnuj5aRfEDQAAc43+vKnRnwcAo6y6Y/JjhgWjAQAAAAAwvwlGmydqrUO11itrrZ+otf59rfV9tdZ/q7V2sNRM13P9otb6uZE5/n5kzitrrZ11JQDT8id/8idjtt///vfnV7/6VUfnvvWtbx2z/ZKXvCRLlixpeezjH//4Mdtf+MIXOprj8ssvz7XXXtvRsTPp5S9/eZYtW7Zt++KLL87ll18+6Xm333573v72t3c8z/Lly/Pyl7982/a6dety2mmndVcsAAAw722qm9ruW1gWt923dGBpy/Hm8IANW9rf7N8uXG2um+lgtJ22BaN1FmbXLxuaghLG75/e8wMAsKP6z3u/mE1tfj36zD1PyEAZaBsk1Wn41lzXPhhtl7bnTPd98mTvXzsNrWv3mWrWBqO1Cekb91lxgsc/X0O0AQCYf/TnTY3+PAAYZaiDf2cUjAYAAAAAtLBhU83f/t/hPPu8LTnqXQ/8ufyHrXsuYUcmGA1gjjn++OPzuMc9btv2mjVr8tKXvjSDgxP/AvW8887LpZdeum27lJI3vvGNbY8/6qijsvPOD9wkcfHFF+f666+fcI6bbropr3zlKyd7CH2xbNmyvP71rx8zduKJJ+bKK69se87/z96dh0lSFXi//53IzKrM3rt6VRqGpUGWEZARQWiYpllGQQFHXhWdYUa9jo6+iuMdF1zxOtdtZoSZC47ggOAyyAVZbNEWkIaWRkAaEBQa6JamAemNql4rMysz47x/FFVdWRUnMqJyz/x+nofHjjgnIk5GllXnZJ7ziw0bNuj000/X9u3bY13r4osvLpvQ9oMf/ECf/vSnVSrF+wL7iSee0KpVq2IdAwAAAKAzFP2wYLSUs8wVslW0RRXGnDMsiMG1YL7T1SugzBW80DsajOYIZAsJr2ukSsERrRLgBgAA0EhDfl73bP95YNnMZJ9eP/1kSXvDcMeLGr7V6VzBaGEBXPUKLo5aPiLr7wncn2nR8ZTrno4fG7rub8r0hI5FAQAAgE7C/LzJYX4eAABj5AlGAwAAAAAAABCf71u96VJfX7zV6s4npQee3fvfy7sJRkPnIRgNAFrMpk2btGHDhkn9N+Kqq65ST0/P6Pbdd9+tk046SQ888MCE623btk0f+chH9IlPfKJs/6c+9SkdeeSRznZOnz5d73znO0e3S6WSzjrrLN1+++0T6g4NDem73/2ujj/+eG3evFmzZ8+Oc0sa5gtf+IJe+9rXjm7v3LlTp556qt7xjnfoxhtv1GOPPaa1a9fq9ttv18c//nEdccQRevLJJ5VOp3XOOedEvs4BBxygK6+8smzfN7/5TS1ZskTLly9XsVh0HrthwwZdfvnlWrZsmY444gjddddd8V8oAAAAgLZXtO5gtJQXPxhNKg9fCAtiCAsh6GTuYLTqghdc93rker2uYLQWCcuoFNrRKu0EAABopN/s+JX2lHYFli2b/dbRPnur9/WaL3iSTtKknCFc1QcXhx8fFiId5Txpb2rsNjWCa5xXsEMq2b0LMF2vy/WzDAAAALQi5uc1D/PzAAB4xVC+cp2YgZ4AAAAAAAAAOt9da6VVzzS7FUDjJJvdAABAufPPP3/Sx1o7vEDkmGOO0WWXXaYPfehD8n1fkrRmzRodf/zxWrx4sY444gil02k9//zzevDBBydM9Dn99NP1la98peL1vvKVr+jmm28efSLjli1b9Fd/9VdavHixjjzySPX29mrz5s164IEHtGfPHknSwoUL9Y1vfKMln0zZ09Oj2267TcuWLdO6deskDd/TG264QTfccEPgMcYYXX755dq4ceOEJ3qGueCCC7Rp0yZddNFFo+/R/fffr7PPPltTpkzR6173Oi1YsECZTEa7du3Stm3b9MQTT8R++iUAAACAzhQWjOYKCJDCQ81y/qCmacYr/w5e7G5k1GvSEVvZWVz3rtrghawzMGH4epmEK5CtNcIysqXwYIhqg+MAAADaTcmWdOfArYFlaS+jJTPPGLPd2n29Zhv53ms8Y4zSXka7SxPHRVUHo1Xo31YKBh6R9fcE7s+0aIBYpRDtKYlpktz3t1VfFwAAABCE+XnNw/w8AACG2XyEzxmtX/+GAAAAAAAAAGgr9zwTPK8S6FQEowFAh/rABz6g2bNn673vfa927949un/dunWjk4qCvO9979N3vvMdpVLuhfQj9tlnH/3kJz/Rueeeq127dlW8xgEHHKDbbrtNmzdvjvlqGmfffffVr3/9a334wx/WzTffHFp3zpw5uvbaa3XWWWfp05/+dFnZ9OnTK15r5Kmf733ve7Vp06bR/YODg1q9enWk9rbq0z0BAAAA1FdhssFoibBgtL0Tb7OOMKteL1NxoUmncgejVRf85QpWGAkmqNd1a6VSMETU4AgAAIBO8eiu3+jlQvD3IEtm/pUyiamj2/UK3+10RiPBaDsnlFXbT65076O+N64A4bQ3NXB/s4WHaI8NRnOPFQEAAIBuw/y8yWF+HgAAkqIEo/ml+rcDAAAAAAAAQFtZ17pfAwJ14TW7AQCA+jnvvPO0fv16XXjhhZo7d66zXiqV0hlnnKHVq1frqquuijTpasSyZcv04IMP6pxzznEujp83b54++clP6tFHH9Vhhx0W+3U02sKFC3XTTTeNTsA6/PDDNWvWLKXTaR144IE67bTTdMUVV2j9+vU666yzJGnCkyJnzpwZ6VpvetOb9Oyzz+ryyy/X0UcfXTFgIJVK6YQTTtDFF1+sp59+WhdeeOHkXiQAAACAtlYMCUZLhQWjhS52Hwz8d9TjO91IUNl4uVJ1oRXue52W5A4YaJVgtErBEEVbVMF3/7wCAAB0Emut7ugPXtSdUFLLZr+1bJ+zj9kifb1ms3I92dDULVSuZsFojvcwkwh+z5vN9bMojR8rhgc7AwAAAN2G+XmTw/w8AEDXG8pVrlMiGA0AAAAAAABAuXVbXfMqgc6UbHYDAKDbbdiwoa7nnz9/vi699FJ961vf0po1a7R27Vpt3bpV+Xxec+fO1aJFi7RkyZJIT1B0OfTQQ3XLLbdo27Ztuueee/TCCy9ocHBQCxYs0AEHHKCTTjpJyeTePzlLly6VtdE7XXHqjnfNNdfommuumdSxS5Ys0ZIlSyLVfeKJJ0b/bYzR/PnzI18nnU7rwx/+sD784Q+rv79f999/v1566SX19/erUCho2rRpmj9/vg455BAdeuihmjKFxSUAAABAtyvYIWdZMiQYLWlSSppUYLDa2AXursXumS5e7O4KXnAFHkTlutcjgWiue15t4EOtRGlH3s8q5UVf5AUAANCunh58XBvz6wPLjp1xsmal5pTtGwnDHS/fIn29ZnMFoxmFhcpVd+8q3fuooXU5f0/g/lYdU4WHaI8dKxKiDQAAgPbD/LzKmJ/H/DwAQIPlI3yO6ROMBgAAAAAAAGAva63WbQkue80C6ah9wx8QBLQjgtEAoEt4nqdjjz1Wxx57bN2uMXfuXL397W+v2/lb1Z49e/Twww+Pbh9yyCGTnsjW19enM888s1ZNAwAAANChgoLNRoQFo0nDAQK7Szsm7I8SjNbbxYvd04ngRTDVhlZUCqFzBQy0UzBazh/UNM1oQGsAAACa646BW5xlp/WdO2Gfq3+dbZG+XrO5g9GM895V00/2bUl5mwutE/X8rvcw402N3a5GSJkeefLky59QFmWsSDAaAAAAwPy8emJ+HgCg4wzlK9fxJ35WBwAAAAAAAKB7bdst7XBMYfzuBZ6OeDXBaOg8XrMbAABAu7v22ms1ODg4uv3GN76xia0BAAAA0A2Kthi4P6GkPBP+kV/aSwfuz/mDgf8uP7Z7F7vXK6CsUgidO/Ah+D1qtCjtaJUQNwAAgHp6IbdBT+x5OLDsz6e+Xq/u3W/C/pEw3PGqDd/tHMHBaDLGee+q6SdHC/2N9t7kSsHtyDgCl5vNGKN0hHuaK7mC0VrzdQEAAADoDMzPAwB0nHyEzxlLpfq3AwAAAAAAAEDbWLfFXXbwgsa1A2gkgtEAAKjCCy+8oC984Qtl+y644IImtQYAAABAtyj4Q4H7kyZZ8Vj3Yve9E29di91d4QPdwHXfslUEL1hrnaEXI/faHfjQGmEZ0cIjWiPEDQAAoJ7uHLjFWXZ639sC97tDcFujr9ds1pWLJqNeZ+Dz5O9drYLRrLXK+nsCy1o5QCxKGDQh2gAAAAAajfl5AICONJSrXMcnGA0AAAAAAADAXs9sCZ5UOa1Xmj+9wY0BGoRgNAAAxvjJT36iz372s9q6dWvFuo888ohOPvlk9ff3j+476qijdMopp9SziQAAAACgoi0E7k95PRWPjRSM5ljs38qL+OstLCTAuhIbKsjbnKyCjx0JyYjyfjVTrcIjAAAA2ll/Yase2vnrwLL90wdrcebwwDJXCG6+ij5mJ3H1lY1MXfrJtQr9HbJ5+fIDy1o5bNo55intfc3usSLBaAAAAACiYX4eAACS8hE+x7TBnzECAAAAAAAA6E7rtgTvXzxfMsY0tjFAgySb3QAAAFrJrl279LWvfU3/9m//pje96U069dRTddRRR2n+/PlKJpPq7+/X448/rp/97Gdavnx52cKknp4eXXvttU1sPQAAAIBuUXAEoyVNquKx7oCvwcB/j9XbxYvdXQEGVr4Kdkg9pjf2OfMhwQvp0WC04Hs+EpbR7C8vwl7DCILRAABAp1s5sFy+SoFlp/e9zdlnc/WvrazyNqe06d7+txQejBYWKjdZkfq2pcrBaNmQ8LRWDpuuKkQ70bqvCwAAAEBrYX4eAACShvKV65SCP3MGAAAAAAAA0J3WO547dPB8QtHQuQhGAwAgQKFQ0PLly7V8+fJI9TOZjL7//e/rqKOOqnPLAAAAAEAqOoLRUlUFo41d7B68kD+T6N5ghrAAg6w/qB4vfjBaWGBYpWC0VgnLcP2slNchGA0AAHSuwdJu3bv99sCyealX6ahpxzmPdfX1pOE+VFh5dwgORpPcoXLZCMFlLmGBZiPyNiff+vKM5z5PaY+zLJOYOqm2NUKUsaIrPI6fVQAAAABxMT8PANDV8hG+Q/cJRgMAAAAAAACw1zObg+dUHjS/wQ0BGsg9WxcAgC40a9YsJRKJWMeceOKJWrVqlc4777w6tQoAAAAAyrmC0ZKRgtGCA77GBly5gqzCwsE6Xa+XdpZFCQcLPi5KMJr7nrdC4FiUNkz2/gAAALSDVdtXKG9zgWWn9p0jz7i/cwgLk3IFUHUT6whGMzLOe5e3k79vUfvXeT/4/Y5ynkwLj6nSjiDssf15V3hcN48VAQAAAMTD/DwAAEQwGgAAAAAAAIBYrLV6Zktw2eJ5jW0L0EjJZjcAAIBWcu6552rz5s1asWKFVq9erccff1zPPfec+vv7lcvllMlk1NfXpz/7sz/TSSedpDPPPFMnnnhis5sNAAAAoMsUqgpGcy12z435N8Fo44UFGEw2oCxXcgeGjQSxhYVl5EqDUrJvUteulWjBaIR6AACAzlTwh3T3wG2BZdMSM3X8jFNCjw/rX2dD+ordzhh3MFquNPm+Z9QwuryfVSYR8t75ewL3e/LUY3on1bZGcIdoD98Xa23IWNE9bgEAAACAsZifBwCApKHwhy9IkkoEowEAAAAAAAAYNjAo7XBMcTx4gWlsY4AGIhgNAIBx5syZo/e85z16z3ve0+ymAAAAAECgYj2C0cYEL+T84BCG9CthXd2oN+S1hwWchXGFCvSatDyTkCSlQwIXmh04VrIlFexQxXrNbicAAEC9PLjzHu0sDQSWLZ11pnq88BCssD5m1JCuTmWtDSk1zn5y1h+UtVbGxJ/ok3WMg4LqzdIcZ7l7PDVlUu1qFHeI9vDPYsEOycqPdSwAAAAABGF+HgCg6+UjBKP5BKMBAAAAAAAAGLZ1l7tsv77GtQNoNK/ZzqQG5QAAIABJREFUDQAAAAAAAAAQT9ERRhUpGM0RIDB28b4ryCrtuUO6Op1nEuo1wcEVkw3+ct/nvaECPaZXRsHhCa7AhUaJGtbR7aEeAACgM/nW150DtwSW9ZhenTz7zRXP4RnP2ceMGtLVqazcwWhGRmkTHMTlq+QMkq6kVv3brCM4ORMSetwKXOO9kXFL2M9kN48VAQAAAAAAgNiGCEYDAAAAAAAAEF3/HnfZnKmNawfQaASjAQAAAAAAAG2m4Acv9E95PRWPHRu6NdbIYveSLargCF7r9sXu7ns3udAK13G9Y67jGU+9Xm0D2WolalhHt4d6AACAzvT47t9q89CLgWUnzDxN0xIzIp3H1cfs9nDZ8GA0KZ0Ivm/S5PvnrkCzieevEIzmB89AyrT4eKq3wngn7GfS9XMMAAAAAAAAIMBQhM9/fb/+7QAAAAAAAADQFlzBaD1JaWpvY9sCNBLBaAAAAAAAAECbKdrgYLSkSVY81hVuNrK4P2yRf7cvdk8nwu9dXHk/+CnQ469T6T1rlqhhHc1uJwAAQD3c0X9z4H5Pnk7tOzvyedxhVN3eh3IHo0kmdGxS6/553PO7ytNeaz+WMVMhpC8scK7bx4oAAAAAAABAVNZaaShfuaJfqn9jAAAAAAAAALSF/j3Bcyr7pkjGmAa3BmgcgtEAAAAAAACANuMKRkuZnorHuhas5/xBWWtZ7B7CFVCWDblnYVzHjb/PYe9ZM2UjBk5EDVADAABoF+sHn9Qfc2sDy46ZfqLmpBZEPletw3c7hQ0JRjMyzr65NPl7F7V/Xale1g9+NGOrj6fc451s2f8GH9varw0AAAAAAABoGUPRHtBAMBoAAAAAAACAEf2OaYt9rf28VqBqBKMBAAAAAAAAbcYVjJY0qYrHuhas+/JVsEPKlsIWu7vDB7qB695NNvjLdVy7BKNFfd3ZUnPbCQAAUGt3DNzsLDut79xY53L39bo8GM2diyZjTGgQ12TvXdTA40r1XP3fjNfaM5B6K4w7XP3/HtMrzyTq1i4AAAAAAACgo+Qjfn5ZIhgNAAAAAAAAwLD+4Oe1EoyGjkcwGgAAAAAAANBmCs5gtGTFY8PCzXJ+NjRsi2C02oZWuO71xGC04Pue8yM+SbpOor7uvO3uUA8AANBZNuVf0OO7fxtYduiUo7Rf+qBY52vVENzmcyejGRklTFIp0xNYPtl7FzX4t1I9V3BaJtHa46mM42exaAsq2oIz8K3bx4kAAAAAAABALEMRv+f3/fq2AwAAAAAAAEDbeHl38H6C0dDpCEYDAAAAAAAA2kzREYzmCgYYyxW8IA0HCLhCBJImqZSXitbADuVa8O8KPqjEFSzWOyEYrTXDMqJeP1ciGA0AAHSOXw3cKusI7Tqt79zY53P19aKGdHUq1z0eZiTVI7g42nGV6uX84EczZlo8QGz8OGSsnJ91/kyGjTEBAAAAAAAAjJOP+PmlX6pvOwAAAAAAAAC0jQHH8p2+qaaxDQEajGA0AAAAAAAAoM0UHMFoSVM5uCw8GC2rnB/8dOKwRfLdotYBZa5AhfGBCa0bjBY9OMLasGALAACA9rCjOKAHdq4MLFvUu78Om3J07HO6w3cJRnMZmcbTqsFo2VJwPz3jtfajGcOC2/J+1vm6CUYDAAAAAAAAYhjKR6tHMBoAAAAAAACAV/TvCZ5T2dfa0xKBqhGMBgAAAAAAALSZoiMYLeVVG4w26AzbcgU2dBPXPah18ML4ELpaX7dWco7Ah/FKKjp/ZgEAANrJ3QM/U9EWA8tO63ubjIn/5D1X/zxPMFpI6fB9rn3/PFr/tlI9Z4BYorXHVGFjvmwpq6xrrNjirwsAAAAAAABoKflon19a369zQwAAAAAAAAC0i/49wfsJRkOnIxgNAAAAAAAAaDNFPzhkKmkqB6N5JqEe0xtYlvOzzkX+mZBAtW6RqXHwgivsYnw4RssGo8W4frPbCgAAUK2cn9Wq7b8ILOtLztNfTD9xUucdH4o79noI5r0SQOe+d9ECziYeF+2eV6qX9YNnILX6mMp1P6Xhexp1/AIAAAAAAAAgxFAuWj2/VN92AAAAAAAAAGgbBKOhWxGMBgAAAAAAALSZgh0K3B8lGE0KD9pyLfJ3HdNNer104P5caXLBC1lHYMPEYDRH4MMkr1sr8YLRmttWAACAaq3efoez/7as72wlTHJS53X29bq8/2StDSkdDkar5b0r2aJznDXx/JWC0Vz9/NaegZTyUko6fo7zISHaBKMBAAAAAAAAMeQjfs9eIhgNAAAAAAAAwDCC0dCtCEYDAAAAAAAA2kzRFgP3Rw9GcwdtuRb597LYPTRQbjLyEUPo3IEPk7turbjaH6TZbQUAAKhGyRZ118BPA8umeNN0wszTJn3uVu3rNZuV7ywzFYPR4t+7WKG/IQHFBb+goi0ElmXaIGzaNe7L+lllGSsCAAAAAAAA1RvKRavnE4wGAAAAAAAAQCr5VtsdUxznTDWNbQzQYASjAQAAAAAAAG2maIcC96eqDUbzs8r5wYv822ERf71lEq5gNHcwgou1Vjk/eMLz+Pcn7bxuc8MyYoVHdHmwBwAAaG8P7bxXA8VtgWUnz3qzs38dRa3Dd7uJ896V6hyMFlI35zseyyj3eKKVuO5p3s86g5EZKwIAAAAAAAAx5AlGAwAAAAAAABDd9kHJ2uCyvqmNbQvQaASjAQAAAAAAAG2mYAuB+5OmJ9LxYUFbrpCvasIeOoXrHgzZvHwbb1LykM3Lyo90HXeQXfxAtlqKc32CPQAAQLuy1uqO/psDy5ImpaWzz6rq/K6+Xt7PyrpmsnQBK/drNxp+wmHYvYurVn3bbEhZxmv9GUiZkLEHY0UAAAAAAACgBvIRP78kGA0AAAAAAACApH7381oJRkPHIxgNAAAAAAAAaDNFZzBaKtLxYUFbuVLwJNy0Fxym1k3CFvzHDf4Kqz/+XtcykK2W4rzmZoe4AQAATNYTg4/oT0PPBZYdP+MUzUjOqur8rn62lVXe5qo6dzsLDUYz4cFo2Un0PXN+9HsdFryW890zkNohQKzXOVbMOvv/rmMAAAAAAAAABCjko9UrEYwGAAAAAAAAQHpxu7tsDsFo6HAEowEAAAAAAABtxhWMlqo6GM292L0dFvHXW1g4XPxgNHdYQ6+Xrtt1aynOtcPCIwAAAFrZnf03B+43Mjq175yqzx/Wz+7qPpQ7F01GrwSjJYL7yZO5b3GCfPM25wwozpbc52mHMZVr7JHzB539/wwh2gAAAAAAAEB0pWJt6wEAAAAAAADoaOu2BE+onDNVmpY2DW4N0FgEowEAAAAAAABtxhWMlvSiBqOFLXYPXsjfDov46y08oCx6kIIUHtYwPlgg7N43MxgtTuBEtptDPQAAQNvamFunpwYfDyw7ctpxWtCzT9XXaNW+XrPZsGS0kWC0kMDnuHIhgWZB8n4ucH82ZDzlmUTsdjVaeIh28GvrZawIAAAAAAAARBc5GC344QwAAAAAAAAAusv6rcH7D5rX2HYAzUAwGgAAAAAAANBGfOuraIMnyiZN1GC0sMXuwSEC6YQ7FKxb1DK0IiworNdLj7tuWCBb88IyXKEPQeKEqAEAALSKO/pvcZad0fe2mlyDYLRgYcFoZjQYzRX4PIlgtNj9+eC+cNbfE7g/rE/fSlw/j1l/jzMMbnywMwAAAAAAAIAQxeAH4U0QNUANAAAAAAAAQEf7oyMYbfF809iGAE1AMBoAAAAAAADQRkqOUDRJStUgGM21wL9dFvLXU8r0yHN8pBo3SMEVFNZr0vJMomxfeFhG9HCyWirZkgp2KHL9ZrUTAABgsrYNbdLDu+4LLDsoc5gOyLymJtcZH4o7FsFo4dzjmkFZW/n48mPi9ueDQ8Jc58l4U2Odv1lc476dxe3O9yRsvAIAAAAAAABgnFIpYj2C0QAAAAAAAABI67YEz907cF6DGwI0AcFoAAAAAAAAQBsJC6NKRg5GC17snvMHnYFdLHaXjDGh9y6ObCm4fm/Afa5lIFutuH5OXFyBewAAAK3qVwM/lZUfWHZ639tqdh3PJNRrgsPRco4+Y3dwB5t5Zrhv7Bqj+PJjhfhK8fu3rv5/trQncH+mTYKmXfd0e/Fl5zFBYxgAAAAAAAAADlEDzwhGAwAAAAAAALqetVaPPB9cdhDBaOgCBKMBAGpi48aN+vznP6+TTjpJCxYsUE9Pj4wxo/9dc801zW4iAAAAAHSEonVPfk2ZnkjncC1231XcId8R/kAw2jDXfXAFnbnECaALD2RrTjBa3OvGDZoAAABopt3Fnbpvx52BZQt6FunPp76+ptdzBUs1q6/XCtyxaHuFjVHi3ru4Qb6u+q796US7BKMFt3N7sd95TLuEvgEAAADtjvl5AAB0CILRAAAAAAAAAET0nXvcsykXzzcNbAnQHMlmNwAAut3++++v5557bnR75cqVWrp0afMaNAnf/e539dGPflT5fL7ZTQEAAACAjle0BWdZ0kT7uM+12H2Pvyv2Md2mVgFlrvqucIe0l9GgvzvgPPECHGol9ustdW+oBwAAaD/3bP+5CnYosOz0vnPlmdo+fyztZbSzNDBhf7P6ei3BuifzGA1P5gkbo+T8Qc3QrMiXi3uvXcG/rvO0S3iYazwSNg51BfsBAAAArYL5eQAAoJXYovuztjIEowEAAAAAAABd7/u/cc+lPGheAxsCNEltZ2wDALrOz3/+c33wgx+MPOnq7rvvLntS5cUXX1zfBgIAAABAh3EFNEhS0qQincO12L3Wx3Qi131wBSO4uILFXKECruvmSs0KRot33bhBagAAAM0y5Od1z/afB5bNTMzWsdP/subXdPcxczW/Vrvw5YeUjgSjuccocfufce+16/xZf0/g/nYPRgvT66Xr0BIAAAAAI5ifBwBAh4kaeEYwGgAAAAAAAND1BkKW7iyY0bh2AM2SbHYDAADt7aKLLpK1e5Nm3/3ud+v973+/9t13X6VSexfkz507txnNAwAAAICOU7TupwenTE+kcxCMNnnpRHCgQbZGQWEZx/nTjiCFZgWOxb1u3CA1AACAZvnNjl9pd2lnYNkps9+qlBctjDiOWvUxu4V55X9docJS/P5nrfrzWUdwsas/32pcP4vO+l5GnuF5fAAAAEA9MT8PAIAOQzAaAAAAAAAAgAhyBaunNweX7TtbMsYEFwIdhGA0AMCkPfXUU3rsscdGt88880z96Ec/amKLAAAAAKDzFXx3MFoyYkjDZBblE4w2zHUf4gYvuOr3muDzuwIK2icYrTntBAAAiMO3Jf1q4NbAsrSX0ZJZZ9Tluq4+Zr6L+1BW1llmXolGS5iEekyvhmx+Qp24/c+499rVn3cHIE+Ndf5mSTvGIy5h4XQAAAAAqsf8PAAAOlDRPeejDMFoAAAAAAAAQFf7+i/c8ygvfw8PNEV34CcdADBpDz30UNn2eeed16SWAAAAAED3KFr3JNmUiRqMFnOxu0nLM4lYx3SqjCNUrlbBC+mEIxjNSzuuGy+QrVbiB0d0b6gHAABoH4/uvl/bCsGP1ztx5hmakphWl+u6wnG7uw8VEow25imH7uDi2gSduesHnz/r7wnc3y5B067xiLP+JEK3AQAAAETH/DwAADpQ1MCzUqm+7QAAAAAAAADQ0q5Y5Z5HuWBGAxsCNFGy2Q0AALSvzZvLFwctWrSoSS0BAAAAgO7hCkYzMvIULbwsnYi3eL1dFvE3Qq2CF7KO4AXX+V2BA80Ky4gfNJGVtbYsxAIAAKCVWGt1R/8tgWWeElo2+611u7YrjKpZIbitwLrn80gaG4w2RTtL2yfUmEx/NVb9kisYLfg9y3hTY52/WeKO/RgrAgAAAPXF/DwAADpQ5GC0iPUAAAAAAAAAdJS1L1mtesZq8053nT6eaYouQTAaAGDSdu/eXbadSqWa1BIAAAAA6B4FRzBa0qQih071mF4ZGVmFpg2M6mWx+yjXvYgbWpH3c4H7XQForReMFvx6jTxZ+RP2+yqpYIfUY3rr3TQAAIBJeSb7ez2Xeyaw7NgZJ2t2am7drl2r8N1OEtSnHGHGBKP1eunAOrlSvP65616nTI8Kdihyfdd1M47+fKtxjTvc9RkrAgAAAPXE/DwAADpQqRSxHsFoAAAAAAAAQDex1uozN1n96y8rr/Xqa49ntQJVIxgNALqEtVYPP/yw1q5dqy1btiifz2vevHnaZ599tGTJEk2bNi32OX3fvSgFAAAAAFAfxZBgtKg846nXS0cOWkgn2mMRfyO4Ag3ihla46ruCBdxhGfECH2rF1f4ZiZnaURoILMv7WfV4BKMBAIDWdEf/zc6y0/rOqeu1Wy0EtxVEi3B237u8jds/D+5Xz0rO0dbCS5Hql2xJeRscgJxpkzFV3KCzuEFqAAAAQCdjfh4AAIikGDznYwKC0QAAAAAAAICucu86RQpFk6SZPNMUXYJgNADocNu2bdNXv/pV/fCHP9TWrVsD6/T09GjZsmW6+OKLddxxxznPtWHDBh1wwAHO8lNOOSVw//e+9z29973vDSz78pe/rC9/+cvOc65cuVJLly51lgMAAABAtynaocD9qRjBaNLwAvaoQQuZmIvjO5k7tCJeQJmrfvxgtOaEZeRKwdedmZrjDEbL+llN16x6NgsAAGBSXsxv0B/2PBxYdsTUv9A+vfvX9fquvl6+i4PRwqLRjMzov12BY1lHfzVIwS+oaIMXGc5K9kUORgt7vzJeezyeMWGSSpkeFRzjzvHiBqkBAAAAnYj5eQAAIJaogWcEowEAAAAAAABd5YY1UR8pK3meqVwJ6ABesxsAAKifW265RQceeKAuueQS56QrSRoaGtKKFSt0/PHH64Mf/KCKRb5IBQAAAIBW5Vqwn4wZjNYbYwG7KwysGzkDymIEL0juQDN3MFptAtlqxdX+Wck+5zHdHewBAABa2Z39tzrLTu87t+7Xd/UBs03q67UCGxaMZvZOc+g1rgDh6PcurJ86KznHcf6Jx2T9Pc7zZNpoTBUn7IxgNAAAAHQ75ucBAIDYCEYDAAAAAAAAMM6a56wuuytaMNqb/7zOjQFaSLLZDQAA1MfVV1+tD3zgA/J9v2z/QQcdpMMPP1xTpkzRxo0b9eCDD6pUKo2WX3nlldq4caOWL1+uZJI/EwAAAADQagr+UOD+uMFomRgL2OOEqHU6ZzCan5W1VsZUfuqKtdYZLOa612HXbQZX0IQrOELq7mAPAADQugYK2/TbnasCy/4sfbAOztR/Bomrr0ewbLCxPe50ovp7F9annpWKEYxWcvd32ylsOu1ltKu0I3JdAAAAoFsxPw8AAExKsRCtHsFoAAAAAAAAQFf4r7t9feR/ooWiSdLHT/MqVwI6BN+oA63GL0qDLzS7FZ1vyiLJ69xfgY8++qj+8R//sWzS1dFHH63LL79cJ5xwQlndrVu36gtf+IKuuOKK0X0rVqzQF7/4RX31q18tq7to0SI9++yzo9uXXnqp/uM//mN0+7rrrtPxxx8/oT1z587V0qVLJUn333+/zj///NGyCy+8UB//+Medr2XhwoUVXi0AAAAAdJeiDZ4km/J6Yp0nzsL8TBst4q83130rqaiiLShlKr8PBTskKz+wzHWvWy8YLfi6U7xpSpkeFezEAD+CPQAAQCu6a2C5fJUCy07vOzdS8G21XH3MnJ+LHL7baXwb3F8etvd+uPrJcUJ5XaG/kjv4N6hvG3bNTKJ9xlRxxortFPgGAAAwivl5jdPBc/SYnwcAACYtauAZwWgAAAAAAABAx9sxaPWxH0cLRdt/jnT133ta+prum1OK7tWZMw6Adjb4gvTTA5rdis539rPStP2b3Yq6ef/736+hob0LkJcsWaJf/vKXmjJl4uKEefPm6Tvf+Y4WL16sT37yk6P7v/GNb+j888/Xa1/72tF9yWRS+++//+j2rFmzys61cOHCsvKxpk2bJknasGFD2f5Zs2Y5jwEAAAAATFS0wZNfkyYV6zy9jgCBIK6wgW6UTrjvRc4fjBRQFxaY4HpfXIEDRVtQwS8o5cV7/6vlCjlLexmlvYwKpYnBaGGBEwAAAM0wWNqte7f/MrBsbmqBjp42cbF5Pbj621a+hmxevSbdkHa0C1MWjBbcT877ucjnC+unzkz2Be4P6tNn/T2BdVOmRwnTPlMz4oz/GCsCAIC2xPy8xungOXrMzwMAAJNGMBoAAAAAAACAV6x8SiqFPUdW0u8v9nT4qwlDQ3fymt0AAEBtrVy5Ug8//PDo9owZM3T99dcHTroa65//+Z/1lre8ZXTb931dcskldWsnAAAAAGByCnZi4JQkJWMutM/EWuwePqbsJmH3IusICxvPFSo2fH5XMJr7/Qo7X73kQoPRgu9RLkY4BQAAQCPcu/125W1wH+XU2efIM4mGtCMstNjV7+p0Vu4nII6d3uPqJ8cJ5XXd46RJalpiemBZwQ6pZEtl+7Kl4GtmvKmR29IKCNEGAAAAwjE/DwAAVCVyMFqpch0AAAAAAAAAbSk7ZPXvt/v66/8KT0VbNFt6zcIGNQpoQQSjAUCHufbaa8u2P/KRj+jVr351pGO//vWvl21fd911yufzNWsbAAAAAKB6RVsI3J8yPbHOEyfsjMXue9UioCwspMEdjOZ+v5oRluG6Zq+XqUk4BQAAQL0V/ILuGlgeWDYtMUNvnHlqw9oS1sfs3j5UWDDa3mkO7r5n9D6yO/R3Smg/fHz/3/VeZRLtFTSdiTVWbK/XBgAAANQC8/MAAEBVihGD0aLWAwAAAAAAANBWhopWp37L1ydvdM+THPH/nmuU8EzFekCnIhgNADrMvffeW7b9N3/zN5GPPeKII3TMMceMbudyOa1Zs6ZmbQMAAAAAVK/gCEZLmlSs8/TGCDsjGG2vsHuRjRhaERbS4Hpf0onWCssIC30gGA0AALSD3+66RztLA4FlS2edpR6vt2FtqUX4bqexIcFoGjPHpxZ9T3cwmjv0N+g413ig3cLDGCsCAAAA4ZifBwAAqlKKGHgWtR4AAAAAAACAtnLLo1b3/zFa3b99I7FQ6G78PwAAOsjAwIDWr18/uj1r1iwddthhsc5xwgknlG3/9re/rUnbAAAAAAC1UXQEo6ViBqNlYizOb7eF/PWUMEmlTE9gWdTwBVfwQo/pVcIkAsvCAxkaGzjm25KGbD6wrNfLOIMUwgLhAAAAGsm3vu7ovyWwLGV6dPKsNze0PeHhu93Zh7KhuWh7k9FcY5Wcn5MNO0lZXVegWSZ0LDT+OGd4cJuNp+KEnaUT7fXaAAAAgGoxPw8AAFSNYDQAAAAAAACgq/3qyWj1PvNmU7kS0OEIRgOADrJ169ay7YMPPljGxOvwHHrooWXbW7ZsqbpdAAAAAIDacQWjJWMGo7HYffJcwQZRg79c9cLek6RJOd/jRgeOhV0v42Xc96fUnaEeAACg9fx+z0PaPPRCYNkJM0/TtOSMhrbHMwn1mN7Asny3BqPJd5ZFCUaz8p1hvuO5++dTYoXWZUudEYyWiTH+izOuBAAAADoB8/MAAEDVCEYDAHSRP261eu/3fHn/UBr9711X+npoQ7QHHAEAAABAJ1q3JdqY6OyjCEYDks1uAIBxpiySzn622a3ofFMWNbsFdTEwMFC2PXPmzNjnGH9Mf39/VW0CAAAAANRWwa9NMFpvnGA0FruXSXtTtLO0fcL+6oPRwgMI0t4U7S7tmPR1ayXser1exvmz1eh2AgAAuNzRf3PgfiNPp84+p8GtGZb2pmioNDHIyxW2hWFhY5Wcn1Wvl654Dlc/tdfLKGV65MmTHxDUNj60LuvvCW5jmwVNM1YEAAAdj/l5jdOBc/SYnwcAAKpWDJ7zMUEpYj0AAFrUn7ZbvfHrvrbuKt///z9k9bPHrH79KU+v249F/gAAAAC6z7oIz036h5ONjjug/m0BWh3BaECr8ZLStP2b3Qq0KWvL02HjPo0ySC3OAQAAAAConaJ1BKN58YLRMjEW57PYvZwrXCEXMbTCVa9SaEPaSzuC0RoblpH3c86ytDfF+fPS6HYCAAAE+WN2rdZnnwwsO2b6CZrbs6DBLRqW9jLaWRqYsH98+Fa3sHI/EdFo73dX4cFog5qp2RWv5eqnZrwpMsYo7U3RoL+74nGugLWMN7ViG1pJpkJg81iVwp0BAABaEvPzUAXm5wEAgKqVirWtBwBAi7p6tZ0QijZicEj6/+6yuvrvGRMDAAAA6C65gtUL293lbzlS+vhpnk55Dd8jAhLBaADQUfr6+sq2d+yYuFi6kvHHzJ5decEIAAAAAKBxCnYocH/KxAtG640RdsZi93Ku++EKQhgvb4PrVbrP1V63VsICztJeJiQYrTtDPQAAQGu5o/8WZ9npfec2sCXl6EONFxKMZrzRf4cHo0W7d656I8HFaS/jCEYrPy7r7wk8T7sFTUcdKxp56jG9dW4NAADtwRiTkLRY0uGSXi1ppqS8pAFJ6yU9ZK0N7ixM/popSSdK2k/SqyTtlvQnSY9YazfU8loA9mJ+HgAAqFrkYLSSrLUsfmwi7j8AVGfF793f90nSD++3uvrv9277/nB9Y1j8j3L8TQYAAEAn2bRDso7h0hNf9nToq+j7AmMRjAYAHWTevHll208//XTsczz11FNl2/Pnz6+qTQAAAACA2iraQuD+pOmJdZ5MjMX5GYLRymQSroAyd2DYWNmSKxgt/D1pnWC04OuNBCOknfenW0M9AABAq9g89KIe2/1AYNlrprxW+6UXN7hFe7nCqLq1DxW+TGKvkfCyINUGo430v52hdaXy/n+2FDweyHhTI7WjVUQNckt7aRYgAAC6mjFmP0l/Lek0SSdJmhFSvWSMuUPSZdba26q87jxJX5b0Tkl9jjr3SfqWtfYn1VwLwETMzwMAAFUrBs/5CFQqSUmWfTXas9usPvIjX6vXSwfPl774Fk9nH81noQAQ15MvhZcXfalYsvoizKhjAAAgAElEQVT6CqtrVlv9cdvw/hlp6dTDpG+/x9OCGfz+7Wbrt1j97+t83ffK3+SLz/b0liP5mQAAAOEefd7q0zf6euBZ6dCF0r/+L08nHUwfAq2jP+SRavPDZh0AXcqrXAUA0C5mz56tgw46aHR7+/btevLJJ2Od47777ivbPvbYY2vSthEskAAAAACA6hRt8NODkybeZFhXyNZ4Rp5SMUPXOp0zGCFiMFreGbxQKRituuvWiut6I8EIrna6XjcAAECj/Kr/VllH5NbpfX/d4NaUc/f1urMPZa3vLDPa+12TZxLqNcHhaOODy1xc/dSRgOiooXWufrIrWLlVRQ3GjjqmBACgExlj/kfSc5IukXSWwkPRJCkh6U2SfmaMWW6MWTDJ675Z0u8l/aMcoWivOEHSjcaYHxpj2iulFWhxzM8DAABVK5Vi1A2eH4L62ZO3OvHrvlb8QdqVkx7eKL3tv3zd/VTUx3kAAKThwLOBCF/VfehHVl+8dW8omiTtzEk3PyKd8m++fJ/fv91qd87qxG/4+uWYv8nnXu7r18/wMwEAANz+tN3qjEt83fHkcL/ywQ3Sqf/u6/EX6EOgdbiC0YyRZkZ7pinQVQhGA4AOs2TJkrLtH/3oR5GPffLJJ7VmzZrR7XQ6rb/4i7+oWdskqbe3t2w7n8/X9PwAAAAA0OmKdihwf9KkYp3Htbh/vLSXYRHNOFGDEVxc9SoFC7RKWIbreiP3xfU6sg0OcAMAABhrR3FA9+9cGVi2T+/+OmzK0Q1uUTlXH6rRIbitImwq2thgNKn6fnLWEaA20r91BYWNP3/WD56xFDVorFXEGSsCANDFDnHsf1HS3ZKul/QTSY9IGp/4+hZJq4wxC+Nc0BizVNItkuaP2W0lrZF0g6Q7JG0bd9h7JF1njGGeKFBDzM8DAABViRN2RjBaw930sNWmneX7rJWuuIcF1AAQx3MvR6t39b3u369rN0m/WlujBqHt3Piw1ZZd5ft8K32Hv8kAACDET39ntW13+b6iL12xij4EWkf/YPDP46yMlPBYuwWMx4QXAOgwF1xwQdn2ZZddpk2bNkU69qKLLirbfte73jVholS1Zs2aVbb90ksv1fT8AAAAANDpirYQuD9lemKdJ+ri/HZbxN8IUYMRXFzhFr1eOvS4VgnLcL3OkfviCkjI+1lZy5eKAACgOe4euM3Zlz5t9rlNDwMO60N1p+j9RndwcbR+sqveyHsSJRjZt35IP3lqpHa0iqiBZ5WCnQEA6CKPSPqopMXW2kXW2lOste+y1p5nrT1G0n6Srhx3zCGSbjARO6HGmEWSbpI09kPg1ZKOsNa+3lr7DmvtGZIWSbpQ0tiO71sl/cukXhmAQMzPAwAAVSEYraX9tyOg5/qHJu7fusvqT9srf5adL1g9tclq7UtWuUJ5/a27rIaKVtsHrZ7dZvV8/3DdzTutNmyzemm7le8zzwJAfWzeOfx7pi7n3lW5ThRrnuN3YD0US1bPbB7+27Qn35r3+KpfB7frugfL92eHrNZtsSrx9xIAAMgdvPvtu4f7DGtfGv5vhyOYCmiEl3cH7+9rr2mGQMMkm90AAEBtLVu2TEcffbQeffRRSdKOHTt0/vnn6+c//7kyGfdChksuuUS33nrr6LYxRv/0T/9U8/YdeOCB6unp0dDQkCRp5cqVKhQKSqVSNb8WAAAAAHSigiPMIWnifdSXMj3y5MmXH1ov6qL4buK6J9GDFxyBCYnwYAHndUuNDctwtX8kMMLVTl++CnZIPaa2i7wAAAAqyflZrdr+i8Cy2cm5ev2MJQ1u0UTpRHAfKtvgENxWYUOC0cy457+lE1PKoz9ekfdzka7lqjfSr3W9N2P7/0M272xzuwWIRR0DVgp2BgCgw1lJt0m62Fr7UGhFa1+U9EFjzO8kXT6maImkd0r6cYTrfVnS7DHb90k6zVpb1pGx1uYl/acxZqOkm8cUfcIYc4W19rkI1wJQAfPzAABAVWz4HI0yBKM13K+fcZetfcnq0FcZrdti9c4rfD3y/PD+g+dLP/q/PL1+//Ls65Jv9c83WF2xyir3ymfYvUnp704w+shSo7+92tdjL0Rr1w/eb/Se47zKFQEggif+ZHX+d309/uLw9qELpf/5gKej963dg6QG9tTmPOu21uY8GGat1TdWWH3tF1a7XvlkMelJbz/G6L//zmhqb3MfJjbW6vXusmLJquRL//gjqx89YFUoSbOmSJ870+j/PoO/lwAAdLNHn3eXHfL5vZ/JGCOdfpj0w/d7mju9dfpA6A79jvHSHILRgEAEowFAi9m0aZM2bNgwqWP3339/SdJVV12lN77xjaOTm+6++26ddNJJuvzyy3XccceVHbNt2zZ96Utf0re//e2y/Z/61Kd05JFHTqodYXp6enTiiSdq5cqVkqSNGzfq7LPP1oc+9CEdfPDBmjKlfHHIwoULlU6zsAIAAAAARhQdwWgpryfWeYwx6vUyyvrhs5B6CUabwBVskHUEho1XKVjMfV1XIENjg9HyjuuNBkeEBD/k/Kx6PILRAABAY923/Q5nv3fZ7LOViBkyXA+uvl7UcK9OE/ZMTjNuLlrGce+ihMpZa5310q8EF0fph2dL7nFVpQDkVhM1GC3TZoFvAADU2P+y1m6Ic4C19tvGmGWS3j5m99+qQjCaMeZgSX83ZteQpL8fH4o27lq3GGOuHXNcr6QvSXpfnDYDnYr5eczPAwCgqUqlGHUJRmukFwbCPpmWDv+Sr9y3PZ1xia8NL+/d/8wW6bRv+Xr+m56mp/d+gP3NX1r9x6/Kz5kvSleusrpyVfi1xvvbq6wOmmd1/IEs1gZQnaGi1Wnf8rVp5959azcN/x7b+HVPU2oUjNW/J97vOZd1m2tzHgz7nwetPntz+T0t+tL1D1lleqSr/749/s48PyD956+srrlv72vZPih98karfft8veP1hKMBANCt9uuT/ritcj1rpdufkN79375u/6dE/RsGjNHvmNbYRzAaEKj5M7wBAGXOP//8SR9r7fAHesccc4wuu+wyfehDH5LvDycYr1mzRscff7wWL16sI444Qul0Ws8//7wefPBBFYvlX5qefvrp+spXvjL5F1HBJz7xidGJV5K0YsUKrVixIrDuypUrtXTp0rq1BQAAAADaTcEPDkZLmlTsc2W8KRWD0VjsPpE7tCJaQJmrXqV7nXYEKuQiBD7UkjM4YjQYzR2kkPMHNUOz6tIuAACAICVb1F0DywPLMt4UnTjr9Aa3KJgrXLbRfb1WYa3vLDMqn5DvChiO0j8v2oJ8BS9ETJvw4N+yYLSQ9yksOLgVeSahXpNW3p21Iqn9XhcAALUUNxRtjMtVHox2SoRj3i1p7Gz8m6y1z0Q47hsqD1R7hzHmw2GBakC3YH5eOebnAQDQYH6MYLRi8PwQ1MdND1cO37l4uS0LRRuxMzd8/N+dsPfz6++trm2YzzX3EYwGoHq//IPKQtFG9O+Rbv2d1flvqM3vmYEafcW5bmttzoNh14T8bfrxb60uf7dVpqf5f2sKxfC/oU9vlr7/m+A61z1g9Y7X16NVAACgHUQNRhtx55PS8/1W+/Y1vw+E7vHy7uD9fVP5OQSCEH0NAB3qAx/4gK6//npNmzatbP+6det066236vrrr9d99903YdLV+973Pt12221KpeIvqI/qLW95i/7lX/5FiQQpygAAAAAQV9EGT3xNTSIYzRUgMFY6UblOt6k2tMIVmlDp/XAFjuUiBrLViitgIlowWmPbCgAAsGbXavUXg2fMnzzrzaF9l0Zqlb5e6wib7F4+Aaia/nlYnZGxUJTzhwWjtWPYdJSxYpQ6AABggkfGbWeMMZWeIvC2cdvfi3Iha+2Tkh4Ys2uqpDOiHAsgGubnAQCASQl5KMQEJXcw2p681d1PWS3/ndW6LXY0wBWTFyV85+u/cN/n372w99+Deat1W2rQqDGuXMV7DKB6j7/o/l1y1b22YiBVVP3hz2qN7E/bh//moTYef9FdlitI61skiG5jf3j5zY9YZ/jefX+sfXsAAED7mDOtcp3x/vCn2rcDCLNhW/AYZ970BjcEaBMEowFABzvvvPO0fv16XXjhhZo7d66zXiqV0hlnnKHVq1frqquuquukqxGf+9zn9Nhjj+kzn/mMTj75ZC1cuFCZDAsoAAAAAKASVzBachLBaFFCIFwhAN0sLLTCrzCJ2VpbMVjMfV1XIENjwzJc1xtpX1hAQtTwOAAAgFqw1urO/psDy5ImqaWz39LgFrkRjFYueixadfcuG1JnpH/rOv/Yfn2uFLy6I6GkUqanYjtaTZSxYoYQbQAAJqMYsM/ZWTDGLJR01LjjV8e43t3jtt8c41gAETA/DwAAxFYqRa+bzwfuvvkRq/mf8LXs332dc7mvQz7v683/4WtnluCYavTvru74S++0emFg+D24/9kaNAgA6uBff+n+W3HXWunAz/p69Pnq/564Qqsmo1XCutrdzqzVll3hdd5xhS/fb35/olJYaVhY6O5cjRsDAADaSjHGxy4j1m1pfv8H3eUZR5j+4vmNbQfQLpLNbgAAdLsNGzbU9fzz58/XpZdeqm9961tas2aN1q5dq61btyqfz2vu3LlatGiRlixZounT48fIXnzxxbr44osn3bbDDz9cX/va1yZ9PAAAAAB0o0INg9EyEULPoiyI7zZhYXF5P6dMwl1esEPyFRyeVjkYzRX4MChrrYwZHxFRH66AiZFAtIRJqMf0ashOnKTdrcEeAACgOZ4cfFQv5DcElh034xTNTM5ubINCuMJlc362oX29VmFDotHMuOe/VRMg7AotHj5vpux/xxsbquYKWMskprTlexdlHNhrGCsCADAJi8dtFyVtC6n/5+O2H7PWBieyBrtv3PYRMY4FOgbz85ifBwBAS6nwsLUyhYnfuW/ZafWuK30Vxi30vf0J6Us/tbrkne33eWSr6N9T/ULoD/3A188+ltDZl8V4n2MY2GM1eyrvMYDJ2bTDakeFr89e3D4cjrX2//HkeZP/fbO9hsFoz2yWjlxUu/N1q3WO8IWx1m6Sfvo76dzX1b89YaoJJ/GtuvL7dQAAMGxoEsFoBPGikXbnrF7aEVy2eD59WCAIwWgA0CU8z9Oxxx6rY489ttlNAQAAAABMUsmWZB2hWqlJBKO5whfGCgsB61ZhwWd5PxtaHhbOMNlgNF++CnZIPaY39PhayZWCZ66NDdpLexkNlQhGAwAAzXVH/82B+42MTus7t8GtCefq69kG9/VaR0gw2rhJ7GkvHVgv51decZENqVMpGG1sqFrOD84nadeg6XTImCZOHQAAMMF547YfsjY0FeHwcdvrYl5vfYXzAagh5ucBAIBI/BgrdAOC0X7ysJ0QijbiugetLnnnJNsF9ceJoXZY8Yfh8LrBoerPFeSZLdIbDqjPuQF0vhvXRAubWrdFeui56n7fbNtdfdjkaHu2WkkEBFRr+D5Wdt2DVue+rrn3O0qIm0u+KGWHpCnd9vU6AACQJA0V4x+zPmI/CaiFDS+7yw6e37h2AO2EYDQAAAAAAACgTRSse+ZkchLBaOlElGC09lzIX09hgXJZf1CzNMdZHh6MFh4sEFae87Pq8RoUjOZ4Db1jAinS3hTtLG2feKwjVA0AAKDWNubW66nBxwLLXjvtWC3o2afBLQoX1tfL+oMN6+u1ijjTzVz3Lkoob95RJ2V6lDDJ0PMX7JBKtqiESToD1jLe1IptaEVRxoEZxooAAMRijJkm6f3jdgcn+e61eNz2xpiXfW7c9hxjzGxr7UDM8wAAAACoFT8sG3mcoYnBaL8ZH388xpZdUv8eq76phMdMxss1CEbzrfTf99ZvQfUzW6zecEC093fLTqtfrbV6erPUk5RSCWlWRlr6GqPF84fPkS9YrXpGevxFK99Ki+cZnfIaaeYUfoaATvTES3HqDv++efIlq1VPW+0a8yfpNQuMlr5Gmp4e/l0xVLRavU569Hmr0iu/An/x+9q1+5kqQrK6zfj36/BXGf3lIVLJly69M9rfpxvWWC34sa/9+vbuGxyS1r4kLZwpvXrW3v0HzDFadqg0u8Z9j2rDSfoHCUYDAKBbDcXIox9RTSgrENeOkCmNY/vaAPYiGA0AAAAAAABoE0VbcJYlTU/s82UqBHFJlcO6ulFYSECl8IWcIzCh0nkrX3dQM9SYb0Jc4RFjf1bGhqSNFSWcAgAAoBbu7L/FWXZ63183sCXRhPX1hvtfsxvXmBZgbfDiQBPwNHjXvYvS93T1z8ees1L/f2piurKOAOB2HU9FCUYLC4wGAACBviZp4Zjt7ZL+u8Ix4z/wizUt31q72xiTkzT2w7qZkghGAwAAAJrAWivZGEEfQ7myzd89b/XDB8KPX7dFesMBk2kd+msQjCZJn7+lfsFoX/mZ1XuOq1zvnqeszv22H7jY1jNWl7/b6O3HGL31Ml8PPDu21Gq/PukXF3o67FWEowGdZt2W6L+fnt4sfWOFr4tuCjrG6uD5w78r5kyV3vZtX3c/Xbt2jnf1vVbf/VsrY/i9FObrv/D12ZvHv19WPUmpWBoO74zqsruiVrZ61Uzp5x/zdNS+tXt/qg0neXqztKi7vl4HAACvGCrGP+aP26SSb5Xw6G+i/nZPfA6CJCnhSb2kPwGB+L8GAAAAAAAA0CaK1v1NTcpLxT5flIXsURbEd5tek5aRkdXECUBhwWfD5e5whkrvR6VgtEZxvYby8IjgAAiC0QAAQCNsG9qsh3etDiw7KHOYDsoc2uAWVdYqfb3WFxSMNvm+Z87PBe6PHow2OByM5gevmMsk2jUYjRBtAABqyRjzNkn/e9zuz1lr+yscOm3c9mQ+XMuqPBht+iTOUcYYM1/SvJiHHVTtdQEAAIC2VyrFq18oXyn5sR8HP1BirGe2WL3hABbyxlXyrbaHjLimj3s2XK4gFWK+nZI0e4pUfOVt3BX88XSopzdLu3JW09Pu99j3rT7wg+BQNGk4GOdjP7Z64FmNC0UbtrFf+ucbfN32sUT8BgJoac/ECJv6+eNWj70Qfq6LbrJ67SLVNRRtxG/+KJ3Ap0tOT2+2AaFowyYTDhLHSzukj17na9WnavN3o+Rb/XFbdee46CZfD3yWv2MAAHSjsL5PKhE8lh8qSi8OSPvNqV+7gBF7HMFo03pFGDTgQDAaAAAAAAAA0CaK/pCzLGnif9QXbbE7wWjjGWOU9jLKBgRUVA5GCy5PmR4lTPhknPBAhsYEjvm2pLydfHgEwWgAAKAR7hr4qXwFLxA7bfa5DW5NNGEhud3YhwoKIZaCYtHcfc+8n5W14U+Pd/XPx46VwsZN2VJWSrnfo4w31XlsK4syDmSsCABANMaYoyR9f9zu2yX9V4TDxwejTWLZvLKSZoecczI+LOlLNTgPAAAA0F1s5WCzMoW9c0Q277T69TOVD3m2yiCRbrVtt2SDP5bWQ5/zdMyfTfyc+R3fKenGh6NfY9mh0p2fiBbS8pmbfH1zRXCD7nhC+utj3Mc+/qK0rkL4UaEkXXOf4wVLWvEHaXfOalpIABuA9pIrWG2sFNE/Rlgo2ohbf2e1dtPk2zTeoQvlPN9tj1mdcBC/k1xuetj9O70R7l0nbdlpNX9G9e/Rph3Vh7k98VLVzQAAAG1qyBFi/p/vMrrgjUazLgz+bGbdVoLR0Bi788F996m9DW4I0EYIRgMAAAAAAADaRMEWnGVJ0xP7fNEWu1cOT+tGvc5gtPDQirwzMKHyffZMQr0mHRhM1qiwjLzvXnuZTlQOj6gUHAcAAFCt3aWdum/HnYFlC3r20WunHdvgFkWTMAn1mF4N2YmPBCQYbS8jb8I+17jGyipvc0qbsNA5VzBa5dBfaW//PuvvCSyP0s9vRYwVAQCoDWPMfpJuU3kY2XOS/sZa15L7UI06BgAAAEA9+OWrc6+c9X5tTO2rPd5U7fGmareZqt3eNL2quEnT/Z3a/ZvXSi/4SnjSrogfE/cHf1SJMX67wepnj1k9/JzVSzukN/250bzp7vr7zA7ef9IhRjfGCKI5aF70sJi/PNg4g9FWPmX1hgOkG9dYPfnS3kGftdKK31u9uD3yZZysldZvlY7at/pzAWgN67e6AyAna6g4HMZYK5843egffhDcyJd21O46neinv2v+R4CHfdHX8o96VQfYvVyDvkx2SMoXrHpThOkBANBtXAGrPUlpRsZo/nRpy66J5Rdc7evhz3s1CXoFJOnOJ6zueNJqYFA6bKH09mOM9ptjtGfi9FBJ0jSC0QAngtEAAAAAAACANlEMCUZLmVTs87HYffIy3hRt18sT9lcKrcg5gsV6I7wXI/XypYnnyJYaEzgW9vqihEe4guEAAABqZdXALwLDxSTptNnnyjMTg7VaRdr7P+zdd3gcxcEG8Hf2Tro7FduSLbnJVZKNjQGbGGyDHQwGU0MnkFBCSyGBQBKSEJJQEkIgdEJIIQQICUn4ANObMbbpBoMpxk2Se5UsyVa705Wd749zke5m9qquvr/n4cE3szc72tvbm72bfdcFb4DBaFaEYu6Z1TmLx3Rbnvfotm3P8bldFMAGOwIInzm3N1hNNx7P1vOpaPrtivIchoiIKF8JISoBzAcwvEfxdgDHSSmbomymI+RxPB/Aoc8JbZOIiIiIiFLFNHs9/FvZ5fjUeYh++fUA1scWdNLKYDRL/3jHxHcelzB7bNZPNuq3cakTqNSEpl0wTeC+NyTW7oxu3bWDo+/n3AP1dX9aKPGnhX0fgHPX6xL/vIwXhBPlirod6e6BtckjgItm6IPRWjrTH/yVqV5dLvHB2nT3AmjtAmbebuLecwV+OCf+3+STEfJqSmB9MzB+SOJtERERUXbxBtTlhXtSdWoq1cFoW3cBQ641seYWAzWVPBemxPxynonfv9L7HOb3r0i8do2BDk0wWnFhCjpGlKUyd9Y3ERERERERERER9WIVjGaPKxgt8sXu0YSn5SPdttsbjKCjq492O6c7cCzqYDSbup/uCNuHiIiIKBFesxuLdr2srOtnK8Ph/Y5KcY9iox9j5l8wmpSmpiZ84pnVWDrSONkTUNe7erwWQgjtOva+NrpxvsuWrcFokc9Pog13JiIiykdCiHIAbwAY16N4J4BjpZR1MTSVqcFoDwKYFON/pyVhvURERERE2c3sfXVusZn83GIGx+i5vRI/fap3KFokNRXB74hVyooF3v9F9Jfl1VREf2G1zRC45Mj0Xoj9ryUSZiwbi4gyWl2j+v1coQl/TNTwAcBXRlkvc/ho4Ku1wPUnCSz+qYFCu8CvTlYf+5IRlpWLpJT46VO631Wj8+JVyb3E/Nr/k9jdFf/nR7Je6/rG5LRDRERE2cUbft9LAEChLfj/6gjn5re/yvNgSsyGZonbFPvRzg7gpudNdGqC0UqcfdwxoixmT3cHiIiIiIiIiIiIKDq+pAejRb6OThdwle90284diBSMpg5eiDoYzVYEKHaDVIVlWK2nZzCCPsDNk/Q+EREREe31QdtCdAR2K+tml52MAiOzb6vnMNSzWzwRxpi5SEI9yUyogtEswsfiHZ+Hhn45bS50muG3C937fLepnqHviiKMOhNFCtE2YEOByOz3ExERUboIIfoDeB3AQT2KWwEcJ6X8MsbmQge3FTH2pQThwWi7YuxDGCllI4CYLi3UBQkQEREREeWVsGC05H/328zgGK0P1gKtMW7y2sHW5zIVpQJ3nC3w06ciXzhdUxnbug8aHtvyfWH1DmDC0HT3goiSYc0OdflXRgKfbgK2tyVvXa4CYOPtBoQQML4T0C73wfW2sLKBJeplGYymtrEF+HJr/M/v5wROOkjguAnA/JXJ6ZPfBN5cDZwxJb7nNycp5LW+SUJ10y0iIiLKbd26YDR7cFxQHeHc/MmlEg9dlOROUV55dbmE1AxpX/0SGKv5xb+YU/GItBiMRkRERERERERElCX8mmA0AzYYIvY790UVjBZlYFe+iTf4y6OZ2BwavBDret19MGFapVsTHCEg4BD7gzx0QQq6v5+IiIgoUaYMYEHLs8o6h3DiqwNOSHGPYqcdY8rUhOBmklimuxcKh7Yu0vhTVx/6WjiE+rXZH4yma6fYcv2ZKtJ5oMsoYrgJERGRghCiFMCrAL7So7gNwAlSyk/jaLIu5PGoGJ8funyLlLI1jn4QEREREVEymGavhyVmR9JXweAYvWBASmyqo4inPv7AyMFoI8piDxibO1Egtm/Lk6+OwWgxkVLivx9JPP8pUOIELpohMKs29u/SPT6J+xdIvN8gUTNY4AezBUYPyszv5KWUePwDiZc+Bxrbg/troQ04bIzANXMEBpVmZr+z3aYWiQcWSnyyQcK/56OlslTg5IOBC6cLCCHg9krc/6bEO3USzgLg6U/UbdUMFujyyqQGox1/YPwh+eWae/cw+DNcQ6PE1/9qRl7QwoUz+uY9etafTRw1Lvhvhx34yigBRwEw7xOJzzbvX276WGBUucDODolCO9DlBRavSU4fEgmMIyLqqaFR4qF3JP7wanCsU1MJPPANA3MP5DiHKBN5dcFoezJ5j58ocNPz+nPtdg/Q2S1R7OB7nKK3fqfEnxZJLNso8eYq/XK+ALBym3r/K9FPgSTKewxGIyIiIiIiIiIiyhK6YLQCURBXey5NeNX+dgthj7PtXBdv8JdHEywW6bXYv15dIFtqwjJ0gQ8Ow9VrQpuun7q/n4iIiChRn3UsQZNvu7Ju5oC5KLJpbi+eQXRjTHcgH8dQ6glABsIDoQ1hwGm4lGPNSONP7fjcVmT5eP/zuyClhEfzGumel+kiBaM5DKdlPRERUT4SQhQDeBnA9B7FHQBOlFJ+GGezK0Me18T4/LEhj1fE2Q8iIiIiIkoGM9DrYbGZ/JQXBqPp1e2I/Tm1gyMvM2m4wGUzBR5+R/29ts0AbjtLwGbEdlH1xGEC3zxc4IkP0xeOFgyT48Xg0bpBxuAAACAASURBVLrheYnfvbT/9XrsPYn/fdfAGVOi34YBU+KEe028tS8qXeLx9yXe/bmB6srMey1+9rTEXa+H76PzV0o8uVTi/esMDCzJvH5ns43NEkfcbmLrrtAaif/7GPhiC3DbmcDce0y82xC5vXGVgNsr8FZd8o41vz4l9hu87hXcX8L70tIZDOLjjXuCVm2TmPUHM6HAuBFlwI+Pi7w9Dx8NfLh+/+OBxcHPtsZ26+f1DDh7fYV6//pgLfDB2vj3vTkHACMHCjzybngbf39b4i/nSxgxfv4SEfW0ZofEUXeY2NEjQLS+ETjhPhP/uFjg4iPi/8wjor7hDajLC/ek6hw+Bpg4FFixTd9GfSNwyIjk941yU0OjxJG3mxHHx3st26QuZxgfkR6D0YiIiIiIiIiIiLKEz/Qqy+1GfOFljogXu1vX5zOnTb1tdMFhe+kCE6Ld1vEGsiWLLoAtNDhBH4yWmn4SERFRfpFS4vWWeco6AzYcXfa1FPcoPukOwc0kUhOMpuNIcjBa6PhcN173mG74pBcBqG83qhu/Z7pI/c7Wv4uIiKivCCFcAF4EMLNHcReAk6WU7yXQ9PKQxwcLIYqklNF+yXZkhPaIiIiIiCiVTLPXw+Koh/bRY3CMXkNT7MErNRXRbce/XSgwd6LAwtUSu3t87TyiHDhzisDhY+J7PR6/LHnBaD87QaDLCzR39C43BPDvJep11DUmZdV5obUzPCDMbwI3v2DijCm2qNt5YyV6hKIFNbYDf1woce+5mfW+bmyTuH+Bfv+sbwQee19GFbxE0XtwsVSEou13/wKJA4chqlA0AKgdLOD2JS8U7duzBKaMjP81Ly9Wl/sCQEc3UMp79wAA7l0gEwpFA4Al1xsY0j/ya/XUFQbeqZN4ux6orgDOnyZQ4gBKrzIjPjeZShzAxUcKNHcAzgLgiGrgwukC97+p338XrgbmTEhhJ4ko5/x5kewVitbTTc9LXDhdxhyATER9R0oJr3oK175gNCEE3rvOwICr9WMZBqNRLP64UEYdigYATZplix3J6Q9RLmIwGhERERERERERUZbwS5+yvEAUxtVepIvZXQxG09IHlFkHL0QbLKZfry6QLTVhGbrgt9B+6YMjPJyETURERElX5/4SGzx1yrqp/WahvKAixT2KT7pDcDOJlOoJ7LpxpNMowm60hJVHCpXTbVtXyGthFfxrFY4c2k62iHR+Eu35CxERUT4QQjgBPA9gdo9iD4BTpZRvJdK2lHKbEOJzAAfvKbIjGL72epRNzA55/Eoi/SEiIiIiogSZgV4Pi80OzYLx85vBCywr+yW96axXtyP259QOjm45IQTOmQqcMzW5cyGEEJhVC7yt/gkkaneeI/Dj4wxtfanTxF8Wh38v39CYvLCkXLdwNeBRTOv6fDPQ0ilRXhzdvvHkUvU2f+gtiXvPTaSHyfdOfTCsysqi1RI/Pi41/ckXC1dZvy99AeB3L0X/3q2tBLp9AojxpkU6cycmdhwcqAlGA4AtrcABQxNqPmc89HZir9dphyCqUDQgGEh23uEGzju8d/nPTxC4/dXUfU5cfKTA/eeFf5bVVgK6/XfRGok5EzhPkYji93ad/ji3sQVoaALGRXnOQER9z29xflLYI6+6n0ugshTaMKu6RgmAYwiKzqLVyRkTlzAEmkiLwWhERERERERERERZwqcJRrOL+L7mKzAKYBd2+KX61jiRgtPymVUwghVdcFr0wWjq1yRS4EOyRBvspguAkDDhld1wCP5yQ0RERMnzRsuz2rpjy05PYU8S4zDUY6RI4bu5SGovvlBPOtOFOluFlgH6bRsa9Ksb33pMt+U5QNYGo9ms+x2pnoiIKF8IIQoBPAPg2B7F3QBOl1IuSNJq5mF/MBoAXIIogtGEEAcAmNajqDOa5xERERERUR8yzV4Pi/vophgNTQxGC2WaEg1NsT9vcL/0Xwh9+mRhGcgQjVMneGE+eDPw4XxgwCCIM6+A+OppkN5uyH/8BjUflgH2H4U9r64xodXmjTa3xNl/MbX19Y3BG8Lc9oqJTzYGAwz3GjYAOG2ywC9OFDAE8Mi76tfa7QOa2iWunyfx1hqJju79deMHA5fNEjh/Wnhg0N/fNvHP9yU2tgBfGQXccIqBQ0ao92uvX+I3L0q89LncFxCwbff++opSwN5jFT3rdF78PPIy1NvOdolfzJN4u06i3RMscxUAR9YITB0NfLQ+chvRHu8KbMDIcqCyFCh1Yt/64lVUCBw3MbE2RpQDQgCqeyjVN+VvMJqUEn97S+JfH0isaVRvn56OqAbea9DXn3hQ9J9vxZp79p4xJbXBaCceqO7znAP0z2ng5xgRJag+wnFkLYPRMsbmVonrn5F4r0HCrb7cgvKA1RjJUdD78WmThTZstj6O7w8o/+w9d/t8c3LaG1WenHaIchGD0YiIiIiIiIiIiLKEXxOMViA0s0+i4DBc8AfUt7uJNqwrH8UbUKYLTYg2WCDeQLZk0Qe7FVk+Dm1DF/pBREREFKut3RuxvHOpsm5i8aGoco5ObYcS4NKMCfMxGE1HN0U/NMhsL6vxuZQy6uBiXfse0w13oFO7DpfN4rb2GaxQOCAgtAF1PFckIiIChBB2AE8COLFHsQ/A2VLK15K4qn8D+BWAvfcxP1MIUSulrIvwvJ+HPH5SSpng5a1ERERERJQQM9DrYYnZkVBzJQ70Ckfaq65RYkZ1+gO9Msm23Yj54vi7zsmMbXj5LIEXP5dYuFpdf0Q1cOsZBmbfqQ7m+u1pAmPvOxf44NV9ZfLjhcBvnoB89V/Aey+juuQkYER4MNrGFqDbJ+EoyIxtkYlMU+LYu/WhaADw1McSf1qoDmjYthv4eEMwuCzSRdCDf6Jez7bdwKI1Em6victn7U8uu+t1Ez99av/3/BtbgPkrTHz0SwPjh4S/phf83cRTn+jX36SeXhbRh+skDh/DfSgaXr/ErD+YWL0jvG7tTonHP0ju+qorALtNoMQGPPANgcsek72C+1TOmALMWxZebjOAP35DoJ8rsdfaWSAwoiy4v4aqb5TQ/1qY2/7wmsQvnok+hOz5Kw2c+1cTC1aF1504CbhgWvTbscCuXvaw0cAP5wjcv6Dvw9GqK4C5B6rrSpwCVWXA5tbwuuA+Q0QUv8p+QJvFLytrd+bvZ1Mm2d0lMeP3JrbsSndPKJMV2no//tXJ+mC0Bo4hKAKrc7d4ja3g5wmRDoPRiIiIiIiIiIiIsoQuGM0uCpTl0XAaRejUBKPpLv4nfRCAO2IwWnTBC8leb7Lo+h+6r1gFn3nMLvRHWVL7RURERPnrjZZntXXHlZ2ewp4kzip8K9/oArkEDGW5LpjXatv5pBcS6qs7QsfdVgHFunUIGHCI7AwENoQBh+FM+PyFiIgoVwkhbAgGlp3Wo9gP4Fwp5YvJXJeUsk4I8RiAS/cUFQJ4VAgxRxd0JoQ4DcDFPYq8AG5OZr+IiIiIiCgOIcFoxQncAG1WLdDhAZZtCq+rb4y72ZxVF8c2uWB6ZlyQWuoUeOVqAwtWAh9vlPDv2Y1sBjBlpMCxE4JBQo13GXjqE4knlkg0tgNHHyDw7ZkCU8yVkLe9GtauvP17QGcbAKDWW69ct5TA2p3AhKF99udlvUVrgKUbrJe58/XIF9X/XXNBfizueE3i8lnBfwdMibvnh7fZ0Q38ZbHEPef23r/XNknLULRE/PZFEy9cZYu8IOH5z5DUC+sjqa3c/+8LZxiYNlZi/gqJq/6j3x+f/K6BhauAjzZIdO+ZyjioBDh2gsABQ5Nz3Kyt1AWjJaX5rOMPSNyjeD/rnDEFKC8WePmHBhasApZuCH52FNiAaWMEjhqnDzuLhRAC954rcO5UiT8vktjRJvGV0QKFtmAg4qtfJryKfRZda8Bm6Pt886nBYL9QDU3J6wMR5SdfwLo+Xz+bMs1/PpIMRaOICkNSdUaUC/zuDIFfzgsfQ8TzHQLllxf64NytuiK57RHlEgajERERERERERERZQlfnwSj6S9od2nCBcgqeMF64nLiwWjq9XanORjNFdJ/q30nVX0lIiKi3LfL14yP2t5S1o10VGNc0UEp7lFidGPC/Bw/6YLR1BPe9cFl+m3nthi7h467rV4bt9mp7ZMQmXHhXDycRpHF+QvPFYmIKO/9A8DXQ8quB7BMCDE6xra26wLOergRwBnAvrsNHAHgDSHE5VLKVXsXEkI4AHwHwF0hz79LShnhMm0iIiIiIupzZu8bNZSYHXE3ddlMgZc+B5ZtCv8ulRfnh6tvjC10qrw4GPSTKQrtAiceBJx4kP4750GlAt87SuB7R/Uul/98Qf2EPaFoADDGtx6GDMAU4eFV9Y0MRrPyfkPigWbJUtcINHdIDCwRaGgCtu1WL7dw9f4+SynR2Q0sWNV3fwePSdF7f21q96fxQ3ofU8YNFhg3WKCx3cRvXwzvy5lTAJshcOxE4NiJffcbWHWlUO6TsR7Lc8W6nUCj+r63ShP2BNQV2AVOmAScMCnya3X5LAPzV4bfUKqyNPL6ZlQLzKjuvY7mDomKH6tvUBWrUicwbID1MtUVAqrfl1u7gJZOifLi7P3NlojSq1s9bX+ftU35+dmULp3dEnLPJrfbggHRALBkbRo7RVlDdY5/6Ej1GGLrruD+VuzgGILUkn3uVmgHRpYntUminMJgNCIiIiIiIiIioizhT3EwGi921wsNAtvLL33wS5/yNZFSJhwsoA98iP9O0rHQrccR0i+H4dS24c7LYA8iIiLqC2+2voAA/Mq648rPyLpQKt2Y0CrAK1dppw5pXtJ4xslWdaHt6V8bt/b1yfag6dAxfk/RBjsTERHlsIsUZX/Y81+sjgawyGoBKeVmIcSZAF4DULin+EgAK4QQHwNYC6A/gEMBhN5L+kUAv46jX0RERERElGxmoNfDYhn5u98fzhG4f0Hvb0xdBcCphwis2q7+JvW/H0k88e34u5mL6mIMZjr3MJF1vzGoyIblkA/dEHE5h/RipG8T1heODqura5TQfjlPeO7TzArDuPF5ifU7Tby8XL/M55uBgClx/TyJf74vsaNNv2wyrN0J+AMSdhv3o0gefz+1+9M3Dle/JucdJpTBaF87JDWvYW2lujxfQ/Zi/bvPnRr763TSQcHxhTtkeuq3jojvNR9YInDsBOCNlXE9vZevT438mVyj2WcAoKEpGHhKRBSPbvWUpH3y9bMplaSUuP9NiXvfkNjQvL9cCGByFXDveQYeS/EYirLPYaOBitLw8URN6K+qPcxbJnHBdJ7DkNoTS5J73DlzikChnfsbkY6R7g4QERERERERERFRdHymV1lekFAwmv5ifaeNF7vrWIUE6MLPfNILEwFlnVV7PekDH9wwZXLusmilWxvs1rtfhrDBIdThaJ5A/gV7EBERUfK5A514Z/dryrqBBYMxuXRGinuUON1Yr9t0Q8r8msQnNWNbobn4ymqcrKMb26ras3pt3JrxbbYHTevCoAEGoxEREaWDlHIRgDMANPUoFgCmAvg6gOMRHor2HwDnSSnVX0oSEREREVFqmb2/5y02OywXH4RduOU0gZMm7S9zFQD/utzAgCJheQHvZ5vy6zvlSBoao98eR1YDvzk1+y9GlW0tkFceE/XyNd56ZTnDHvR2dUks3ZDuXvT24CJpGYq215hfmLjjtb4PRQMAXwDY2NL368l2G5oldlp/LCTVH84WmDJSfaybMFTgvvMEjB7V354lcGGKgiFqKtXrWd8MeP359/lW3xT933z31wUOqor9dSp2CMz7voGiwv1lx00Abjgl/tf8LxcYGDc47qcDAKaPBW49I3IfhvYPjpFU6mMYAxARhYoUjLZ2J2CaPM70pYffkfjR/3qHogGAlMCyTcBRd/T93HnKbiPLgScuV0fqjBoI2DVpOxf9Q6K5g+9vCrepRWJ7Es+lK0qBO8/J/u+hiPqSPd0dICIiIiIiIiIiouj4pfoXVruRSDAaL3aPh8si5MATcKPE1i+s3Cp4wSp0oCercAWv7IZT9O1r5tYGo4X3y2G40B3whJVbhVMQERERRevtXa9pxxXHlp0Gm7CluEeJ042/TZjwSS8KhSPFPUof/bQyXTCaepxsNfbUjW2D7UUXjOYxu+A2O5V1Llt2B6NZhmhneegbERFRtpJSviyEmATgZgDnAijTLPoBgDullE+nrHNERERERBSZ2TuzuFjz3eJe1eZGlDgH4vkrDazaDmxqBaaNAQYUBb8nDQbHqL9N/dMiib9dyIsq96pvUpf/+hSBM6YIrNgqIUQwDOig4YDNyIFtt+BJoGN31IvX+NbiDUU5A2X0/vtR9m6bza3xP/dfl4W/P/q5BA4eDoz+hTqYoq4RGGsR5kjAo+/Ftz9tut3AX96S+N1L+uf//kyBEXu+RSoqFJg2Bhg6wPo4d9UxBs75isQnG4GJQ4HRg1J3XKypVJebMhiOlmjYVraxCqh86CKBdg8waqDAEdXA4H7xv05zDxTYfqeB99cCVWXAAUMAIeJvb2yFwOc3GvhkI7B2T7ibwy7g8QdDGb9aKzCoBPh4A9Dtl6gqExg/BFi2EWjplJgwVODgqug+k4UQqK4Alm8Nr2PAJxElIlIwmscHbN0dPG5S3/jL4vjH3N+aIXDcxCR2hrLO6EECh40CCuzq8YTdJjBmUPB8ReU/H0pceUwOfD9ASfXY+/rj0s9OELj5awKfbgLcPuDXz5p4t8G6vc23G9p9lIiCGIxGRERERERERESUJfzSpyy3i74KRuPF7jpW28ZjdmnK9cELjiiD0azCFTyBrj4Ps9OFu6nW6zRcaAuEz6TUbR8iIiKiaPlMHxbuelFZV2wrxYz+c1Lco+SwGst5TDcKjfwJRtNdzGdog9H0wWU6urFtoXDACAnW07Xvl350BNS3gHQZxdp1ZwOrcxSGaBMRUb6TUqZtZrKUshHAFUKIqwEcCWAUgCEAOgFsAbBMSrkuXf0jIiIiIiILsndg0CjfJsvFJ/lWA5gCwxCYOAyYOKx3/YSh+ueu2pa9gU19oaldXT52EDB5hMDkEblxAaqUEti2DvD7IF96LKbn1njrleUMlFHz+CQeeTf/3mdzJwLfnGZo64f2B7Yp8vjqdkgcf2BuvM+SodsnsWo7EDCBkeXAoFKBZRvj258GlgBH1Qr8TvPbWrED+PGxIq4L7Yf0FzjpoLi6tc9tZwpc90x43y6dqe9PdQUgBCAVf1J9Y/4FozVoAiovmylw2Uz9+zEeJc7kBsgU2gWmjwWmj+35evd+7UcP6l12wqTwZaJRU6kORlurCUclIookYEoE1JmvvTQ0xhaMFjAltu8G7LbEAi1zkZQS65sB0wyG6voDwOeb42/vt6cLVJVxG5O1ScP1wWgfb0htX+K1s11ie1sw2NZuC+7zHp/E6j3nHDWVwTBrSg6rc7cLpgk4CgSmjQ0+PmyMwLsN+uWnWgT3EdF+DEYjIiIiIiIiIiLKEn7pVZYnFoymD9rixe56ViEB8QSjuaIMobNar9vswgAMjKqdeHkC6r9NF4ym0m16ktonIiIiyj9L29/Cbn+Lsu6oASdlbYCYdfiuG/0wIIW9SS+puXhDNwleH4ymH4O7tWPb8NfB6rXZ5W9Wlkc7xs9ULgajERERZTQppRfAwnT3g4iIiIiIYhAI9Ho43L8V07s+wAdF05WLX9D+PwDnaZurKNVfOPlOffCiciF4cSUAdHSry3PpwmC5bDHkD+fG/fxq71pl+caWYIiToyB3tlUiTFPi189J3DVfwutPd29S74Lp1vtBbaUmGI0BewCCx+VbX5b43csSnh73Rz1uAvD5ltjbcxUAzgKB2eMlqsqAzeH3r8Q3Do8vFC1ZTpss8KtnJfwhwTLnfEXfJ2eBQNUAYJPi76lvlIgnNCub6d4/NZWp7UemG1shoLr5Vr0mWI6IKJJu9b3MwyyukzhqvP6zSUqJNTuABask3lwpsXA10LpnusqZU4DHLjVQ7MivzzaVzzZJnPNXc18w84gy4HdniLAxRCwYikbRuHC6gXnL1DvaY+9LzB5v4ltHJDeMNlmaOyS+8ZCJN1YGH5c6gTvPEdjYAtz5mkT3nnNWQwTPCx66SMDJc/uE1e3Q1x0YclODi2YI3PuGfjx64Qy+HkTRyMyjMBEREREREREREYXxS/WMuoKEgtGsLnbP7gv5+1KBUQC7UN93Qhe+YBXKYBV41pPV69Vt0X6y6P4GVf+dNvX+49YExxERERFFw5Qm3mh5VllXIApx1ICTUtyj5LEa6+nCd3OXekKQbiqQ7txFF+wL6LepOvRXf27U6tsZU5+yhdU5CoPRiIiIiIiIiIiI4mAGwoqe2vwNTOta0qus2OzAn7ddiVm734zY5L8v119A+eh7DAIBgkEEumC0kuy8z0oYuWsn5NXHJ9RGrbdeWW5KYJ36a/C89Mh7Er9/JfFQtB8cndkXPw8fANxyusDgfsHHDjtwwykC50+z7nfNYHU9g4mCnlwaDNbzhAStzF8J7GiLvT3fno8Vu03glasN1PYIyhICOGMKcPc56d3Xxg8ReOp7BgaVBB+XOoH7zxM4/sAI+5Im9CvfQvb8Aak9BtdUZPZxJNV0+0xDU2r7QUS5wxt++qZ00/Ph45zNrRKPvWfiW/8wMfLnJibcYOLKJySeWbY/FA0AnlkGXP0/jpO6fRJz790figYEA1Iv+kf82+axS/g5SdE5bTJQVaavv+RRiQ/XZeb79NJH94eiAUC7B/ju4xK/e2l/KBoQPK//9xKJXz6bmX9HNjFNqR1f3nqGCLtBweQRAo9fJlCouOzoR8cJfH82j1VE0VBfuUdEREREREREREQZxye9ynJ7QsFo+ov1ebG7NadRhI5A+Kw0fTCaOnihQBTCJmxRrdMhnBAQkIqgCKvgtWQwpYlu6VHWuRT7kW7/SUWAGxEREeWuLzs/xjbvJmXdjP5zUGrvn+IeJY9VEFVfj/UyjSk1E7GEejKQduwpPTClCUOE3zOu21SPbdXBaPrXptXfrCx3aYKCs4X1uWJ2/21ERERERERERERpYZphRUMCO/DuhqOxzT4EW+zDUCi9mNC9CgUIXsEq/X4Iu/7Sr+ljBXQ3mnjkXYlLjkxKz7NalxfQfeVc6kxtX/rMwqf1f2QIcekNwIwTehe6OzDm6lNgyABMxfyVukbggKHJ6Gj2e/z9yNv5m4cLPPGh9XJ3nSPwp4XqZb4yCnj8UgNjK4C364Dj7gk/dgDAvecKXJPEII1iB7DwJwb6u4IBQ0IIXHdCMJRpeBngLIh8wXatJpioPs/CrHT+GcX+E+rVqw2ccJ96H6go3f/vA4cJrPqtgQ3NwM4OoLoCKCvOjIvsT50ssP1gA+t2AqMGBoPcIqmpFFi4Onx7rW3KrzCHTa2AX/3ya4PA8lV1hXpMtL0N6PBIlDgz4/1ARNmjO4Yg3A/WSmxuBRaskli4SmLNjuifO+8Tib9dIGEY+Xuceu1LoKk9uW3OrM3f7UmxEULgz+cb+NoDmkEXguP4w8dk1j61s13ipS9ie84/35O482wZFt5F0du6G3D71HVzJqi36/nTDJw7VWLVdqDAFvyeavxgoMjB14EoWgxGIyIiIiIioqznNbux1r1Ke2F0shSIQox1HYChhSP4RWAf8ZlerPOsRpt/N8YXTUKpfUC6u0Q5wmd6sda9Clu9G9PdlV5swo4xznEY7hitvFA/lF+qv0UvEIVx98HqAn9e7G7Nabg0wWjqADRdmEUsAXRCCDgMl3IdH7e/s++zUEBgmGMkxjgPQIFhHZy3w7sFDe6V2mCIvfxS/yu/KsRD93et99RhYeuL+x73t5djXNEklNj6Wa6/M9CONV3LsUsTPOE0XKhxTURFofVsXK/ZjQb3Smz3brZcLtUKhSM4znCMiLuNNv8urOlajvbArqifYxcF+45DyR7feEw3Gtwr4TW7Mb7oIBTZSpLa/t6/1ye7Ue2aiMoIrz0Rxc7qM8IuCjDWNR7DCkfx/IhSan7LPGW5gIE5ZaemuDfJZRM2FIhCZSDy0ra3saV7veXzDRgY5hiFMa5xCYUn96WuQAfWdC1Hq19za/M9NnjqleUCmmA0ixCyBa3Pwy7Cp0as6VLPDlO1ZRVa1xHYrW4ny8+nVOHHe2X730ZERERERERERJQWZkBbNdS/HUP928Mr3B1AqX7+1Mhy/eo2t8bSudzV0a2vK3Gkrh99ST7z5+gXPvECiCGjej/fNOEoMDDStwnrC0eHPaW+UQKa7+fzzVt1kZeZNNy6fvIIoNAuMGMs8P7a8PpbTjdwwNDg9p42RsJZAHhCpowV2ICvTxX49XMS7dbTfaJ2+UyBqaN7v86GIVAdQ/hSbaU6mGjdTsAfkFEFYuWyL7bE/pwZ1cDwAcAWxVSgWSGBH0IIjB4EjB4UZwf7UKz70qiB6vJkh6ZkOqu/V7eN8pVVUFxDE3BI/FPyiChPdWuCb1SOuE0fqBRJa1cwhM0V/6UAWe/LbckNPi2wWZ8rE4U6ZETwXp26vPEHF0nMrAm+zwvtAoeNBkaUp/fcZvUOwIzxrdPcCexoA4Zk731n067OIviypkJfZ7eJiN8VEJEeg9GIiIiIiIgoq7X4mnD/phvR6NuasnUeXXYKzqq4NKoQI4pem38XHth8EzbvudDbLuz4zrDrMKlkalr7Rdlvl78Ff9x0E7ZlWChaT4eVfhUXDf0hbIqL9XvyaYLREgk9sA5Giz6wKx/pwgDcmgC0ZASj7V1eFYz27u75YWVVjjG4qupGZdCklBIvN/8PLzX/N6b16/oUShcesd6zBus9a8Ke/73hv8S4oknK59R3rcCDW27Rhs71dGbFxTi2/HRlXTrGDbGaW34mTht0YcwhQ190fISHtv5BG6AYyRH9j8U3B18BQ3H353g0erfi/k03osXfBCAYrHFV1U0Y7RqXlPaXdyzFQ1v/0Cs45vRBF2HuDjrRNAAAIABJREFUwDOT0j4RAa80P4kXdj4Rcbnp/Y7BBUN+kLTjB5GVde7VqHevUNZNKZ0eMSA1GzgNF3yB8GC0d3a/FnUb1a4JuGL4L5MeSpqo9e41eGDzb9BldiS9basx9bymRxNuq8AogF3YLcOCQ1kFi2UDh+HU1vFckYiIiIiIiIiIKA4yjovlIwSj2QyBiUOBFdvC6za2AF6/RKE9v4OIOixCo3IlGA3rV0a33PTjw0LRAEAYBuTwsaj2NiiD0eoaE+xfjmjpjHzVud0Axg9Rh4Pt9d2vBt+T3z1K4P21vZerrgCOnbD/cYlT4PxpAg+/03u58w4TGNJf4OIjBP74pn5dE4cC1xwr8J3HrftuN4DLZiZ+rKjVBBP5TWB9s3VwUa7r6pYxB1YO6QeUOgW+e5TADc+Fv4bfmpG7x/eBxeryls7U9iPdWjVT5WwG0J8/1/Uyoix4LPMrhlsMRiOieHRHPz0kYbowpnyxtim57Y0dFDxXJopWVZnAyQcBL36uX+abf9/7Rg3+/0fHCdxxloCRpn1t3rL4DhwXP2LilasN3gw5TvVN6u0+sBgoK+Y2JeorvIKbiIiIiIiIstpTjQ+nPNxkYeuLWNn1aUrXmQ+e2/n4vlA0APBLPx7eeid8ZnwBL0R7Pdv0WEaHogHAR+1v4cO2xRGX82veDwVGAsFoNv3F+tl+IX9f04UB6MK79MFosW3nWF6Xzd3r8PzOfyvrNnjqkxKKBqj3o1j66THdeGTrXTAVE8GllHh02z1RhaIBwDNNj2J792Zl3dON/8joUDQAeL3lGdS5l8f0HJ/pwyPb7o47FA0A3tv9Bj7t+CDu54f6746/7gtFAwC32YVHtt0NmYQZHH4Z/Ht7hqIBwLM7/4ktPcYSRBS/zZ51UYWiAcAHbW9iafs7fdwjoqD5LfO0dceWnZHCnvSdWMeGKg3ulZjf8mwSepM8wTHdvQmHohmaKQ7JDOrStRXzuN2muWIjS1j9vboQZCIiIiIiIiIiIrIQCMT+HHfk71Sf+Lb6e1NTAhuaY19lruno1teV6u8PkTVkvcWV23sVlQLHnQdxs3r+CACgqga1vgZlVd32OPbdHNQQRWDDmEFAaYTAve/sCUa7aIaB+88TGD0QcNiBuROBhdcaYSEOf/qmwBWzBcqLgbIi4PJZAn+9MLjMnWcL/HCOwKCQe+U4C4CTJgFv/NjAZTMF7jlXYNRAdX8OGg68/EMDk4YnfhF3dYW+rm5Hws1ntWj2n1C1g4P/v/5EgV+fIjCkX/DxAUOAxy8TOPGg3L3wvlwTKtAS3fSxnKELZCwrAsMsQthtAmMGqevqG/M8cYiI4pLKYDQzzw9T63YmdwPsHUMRxeKJy42w8yor98yXeCGK0/G+IKXE3fPje9+8vgJ4uy7JHcojuvNaHneI+pY93R0gIiIiIiIiipcpTazoXJaWdS/vWIoDiw9Ny7pz1ZcdH4eVdUsP1npWYXzRQWnoEeWK5Yp9KxMt71iKGf3nWC6jCz2yiwSC0Xixe9x0204fjKYuj3U7xxrIsLxjqbq8U10eD1V4RKzhFLsDrdjcvQ4jndW9yrd6N/QK2IrG8s6lGOKo6lVmShNfdn4SUzvpsrzjY4yL4bOvwb1CG7wX63oPLT0y4Xa6TQ/WdH0RVt7k246dvu2oKByaUPtr3avg1ryflnd8jOGO0Qm1T0SIOShxdefnOLzfUX3UG6KgRu9WfNaxRFlX65qE0a7aFPeobyQr4OvTjvdxWsUFSWkrGZp825MSUGsIXTBa8kKddW05DRc6Am0xtJPd51MuTYi2XRQkFM5NRERERERERESUt8w4wqU62yMuUlupr2to4sWZ7R59XUmEAKtsIN940nqBc6+GuOL3EDab9XJVNaj+Uh2M1rDZA4DfC0cTrFNbCbgK9fXfPUr0CjO68hgDVx4D+AMSdps65KjQLvCnbwr88bzg+o0ewWkFdoF7zxW45+uy177uKgjW7XX1HIGr5wDtHome97MrsAGuwuSFKxU5BKrKgM2t4XV1jRInIn+DnOIJRqupDG4vwxC4+VSBm74m0eUFih25vx3LNfcf2tUFBEwZFiCYq1o61eW67ZPvqiuAusbw8nUMiiWiOKQyGC3Pc9Gwfmdy29s7hiKKRYlT4P3rDNT+Kvwm7zr//VDitMmp399WbEvs+f/5SOKr4/g+iUdDk/qIXVPB7UnUlxiMRkRERERERFnLK7vhlRa3dOxD7YFdaVlvrjJlAG2abdoZw0XHRKF8pg9dZuS752YC3XugJ18fBKNVOUajQBTCJ729yocWjtBeCE9BLk1ggjugDmzSleva0RntqsU6z+qol28L7IaUMuwukW3+5HyWDS0cqQx9GOMcH3Nb7Yo+xdNP1XO6TU/axg2xiuZ4kMjy2nb8ipmpcegI7IYJ9Q/DHYF2VCCxYDSrfYJjNKLk2OnbHtPyXaZmNi5REr3R8hykZirg3PIzUtybvjPaNQ6butcm3E6zbwdMaWqDxFItWeOMkc4aZbnDcGJo4Uhs825MeB1jnOM05eOx06e57WMIAYHRmnayxShnDQRE2Psu2/8uIiIiIiIiIiKitJEWF9cKgV5pRXt1qH//lJ4uYOkCYO0KOEeOw/D+p2DL7vDvg4MXbObfxZmrt0u8uUpicD8Bv6n+bcFuAIW5cFXdh69bVosTLogcigZAHDgNNS88pqxb31mEbp+EoyD/9qWe6hVhO6GmjRVwWkzj0m1BXShaT4ZFEJQQAv2iuF9LqTP5r6H0eYFPFgFrPgUCftTaL8ZmhCcyqsKK8klzZ+yRJ6HBl0IIFOdAoGM0rIK/WjuBQaWp60s6MRgtSDYsB5YtgqxfDjRuAgYMAiqrIJy9N0TVzuMBTA57/s72fI8cIiIr3b5gwGx7dzBUee9/yzYlfuyYOBQ4ZoLAnAME+jmBOXerzwnN6HOYslqHR2L+SmBHm8RXawUmDguOTdcmORht+tjktkf5Y/QgYEg/YHuUl7B9viW5Y4w2t8T8FcDqHRKThgkcOyEYPh1qVYLBaGu2c2wUrzrN1MGaPL8pAVFfy4WvcImIclpXVxc++eQT1NXVYefOnfB4PHC5XBg8eDDGjRuHKVOmoLDQ4pYyZGn27NlYvHjxvsdS9YNyEixatAhHH330vsc33ngjbrrppj5ZFxERUT7xaAJmUqErwAv/k8ljurV1PtOrrSOKxJNFIR3uKI4rfk0wWkECwWgOw4mjBpyEN1qf7VV+XA6FS/QVpyY4zm1qgtE0+6PLFttMpZn9j8eS3YuiDv2TMNEtPXCK3jMgdf2JlW5fqSk6EGOc42MKcVMF68TTT9VzkvX3pkI0x4NEltdJVpCk1TgpNIQxrvYtXkuO0YiSo9kX66x0TpSgvtXm34UP2t5U1g0rHImJxYemuEd9Z1b/E7C07S3tmDJafulHe2AX+tvLk9SzxCRjLFYgCjF7wMna+rnlZ+Cx7fcltI7BhVU4uORwZd3sspPxWceSqMJ2Z/Sfg372AQn1Jd3628sxrd/Rvd57BgwcW35aGntFRERERJR8nJ/Xtzg/j4iIqIdAQF1uLwCKSoG2lvC6tvCbTsjm7ZA/PRWo+2xf2djat7DFPjVs2YamuHubtR5+x8T3/iURMAGr37BKnAi7wVy2ke++1Gs/CDP1GIiag6Nr7MiTUeO9QVt96t2dePVnxVm/zRIR6f1UVgRccqRAm34qZM79qiq7OiCvPxv4eOG+spohg7Cw7LKwZesbc+2vj01rHD/91Vbm7/ttoMV0upYuBqOV59H9buV/74H803XqupDH5RUGMCg8GE23HYkoO3n9cl94WUdImFl7t+z1uKMb6PAA7Z7w8LO9z/VpTtPiMWogcMwBAsccABwzXmDogP2f5Z9aBK1pspxzytZdEsfdY2LlnkAnmyHxp28KzB4f+3inrEg/tqqpBE6fnL9jKEqMzRD40XECP386ujflym3A7i6J/kWJ73Prd0ocf6/ZI1BaYsoI4OWrDQzu17v9YAh+/KIJ/aZwpim13wvUVKS2L0T5hsFoREQZKBAI4Mknn8QjjzyChQsXwu/3a5d1Op04/vjjcfnll+OUU05JYS+JiIiI0s8qTGtwYRVsCL8LZqw6Am1oC4TfeTPRC5SpN+sAFXUQFFE0rMJzknWciFWX2Yld/mZleSS6QCF7AsFoAHBGxbdQUTgUn3UsgUM4cHi/2TikdFpCbeYDl6GegaUL5NOFQRRp2tEZ6hiBH4+8FYtaX8R6Tx1MGfxV3i/9aPRtVa870Amn4QorUymx9UM/W+QQh8GFwzGt/9Ha4AibsOGqETfh9eZnsKbrC3h6fHY2+rbCL8O/71D1SfcZYYMdTsOFTrM9vB3Ftrb6rBlSWAUjDceD9sButAd2h5XHGhyiO34UiEJUFAwJK+80O7DbHz6pPlmhYp2B8NdkL13AYyysguCyKQCPKJPpgtEEDEiE36JS5twUfso0i3e9pP0MObb8jJy6CKfKORo/GnErFu96CRs8dTCl9W1hJSS2eTcp61p8TRkUjKb+HsWADUMKh1s+VwgDIxxjMXPAXIx1HaBdblr/o+GyFWPJ7kXY4d0cU/8KDQeqXRMwt/wsbXDxGNd4XDPiFry16xVs6l4LqXhtSu0DMKl4Ko4uy43f7C4Y8gMMd4zGl50fo8TWD0f0PxYHFB+S7m4RERERESWM8/OIiIgoLXTf9xoG0K9MHYzWHl4mn7grLAyrumMF3h6gCEbLsyCi1k6Jq/6zNxTNWqmj7/vTl6TfD3n79/QLlA+BuO2ZqNsT9gKM/erhEJtNSBE+f2J+gwtL1gHTx8bT29xgFex11qHALacbqCoTWBfIo/fdS4/0CkUDgBpvvXLRuh2p6FDmao1jOkvt4OT3I1uUWwWj5dHUIF3oS3lx7vw+bkU2bob88/VRLz8woBhLAWjOo32GKBP5Az3CykKDzDyyd7hZSJBZePAZ4NV/lZsy35oh8E69hJTA1NHBILQ5BwiMrdCHL1sdufNh9HjzC3JfKBoABEzg6v9KHDQ8tr9++ABgyfUGrviXiRc+319eXQHMqhW4/SyBQnt+fE5S37h2rkCpE/jXB/tDsHa06Ze/+UWJu7+e+D530wuyRyha0LJNwB2vSdx5TmgwWmLr2tQKuL0SrkK+V2KxdTfg1lwGUTuY25KoLzEYjYgow7z55pu44oorsGbNmqiW93g8eO655/Dcc89h6tSp+Otf/4pDDz20j3sZu9GjR2PDhg0AgFGjRmH9+vXp7RARERHlBI9FONnPR90RFgATj8WtL+N/jX8LK7cK5KDYWYWY6IKgiKJh9V5N1nEiVp+2f4C/bb0trDya44oqSAoA7KIwoT4JITBrwPGYNeD4hNrJNy5DfetFd0D9+aQLndIFL1gZ5hiJbw75fq+yNv8uXNdwsbpPZifKMKh3fzTH3qPLvoYTB54Tc59UnIYLp1acH1Z++4afYoOnLqxc1SddiMZQxwhMKJ6M+S3zwp+jeA2sPmuuH31PwgGD8VjQ8hyebnokrDzWgDLd8aPWdSCuHHFjWPlHbYvxyLZ7wtdrdsS0Xh2roMekBKNZtJ+scDeifOYzfcrwRACoLByKHd4tKe4R5TuP6cbi1leUdQPsAzG138wU96jvVTlH4/whP4hqWSklflR3HryyO6yu2deEMa7xye5eXHTjlYrCIfjVmPuTtp6DSw7XBvcmw2hXLUa7avus/UxjCBvmlJ+KOeWnprsrRERERERJw/l5RERElDaBgLrcsAGl5QAawuvaWsPL3n4urGisd62y6UQvls02r6+Q8ET5k3Sps2/70udWLQVa1Tc7AgBx5/MQjtjmRTknHYqR6zZhQ+EoZf28ZRLTx+bvxb71ms395/MFvnvU/jA5l8X0k1zbevLtF8LKar2KYxmADS2AaUoYRq5thejoAq6s1FQkvx/ZotgBFNgAn+Kj0yqYItc0tqnDYgbEPt0wO737EmBGkXa6hzYYLTlT4ojyRsCUIeFlPQPKZFi4WUdImFlofXcGBJklUz8n8Mglsd+I2WoIFMOhLmu9ujz8M63bDyzdEFs7NZXAsAECz11pS1LPiHoTQuB7Rwl876j9ZU3tEoN/on6jvrUm8WhDKSXmLVO38+wyiTtDLutoaEp8net2AhOHJdxMXtF9JwDk97kbUSowGI2IKIPcfPPNuPnmmyFl70GpEAITJkxAVVUVBg4ciKamJmzcuDFsctbSpUsxY8YMPPDAA/j2t7+dyq4TERERpYXHdCvLBQQcIjkzl4o0YTVWgR8Uu74OUKH8pdu3BIykHSdipTuudEsPAtIPm9B/Zad7P9gtnkN9RxuMptnvdOVFRnJmKun6A8QWFJas/liJZdvpQjRcRjFcmr4q29H8vYXCkZZQNEAfimcV/BXL8rr2i4wSZXlXoANSSu0d66LVFdDPJvOZiQeeWoWfxbrtiChcq78JUnMfyoEFgxmMRin3/u4F2vDOY8q+lrbP8UwhhEB5QQW2ezeH1bX4LGbjpJju3MxqDEtERERERJRsnJ9HREREaSU1V7sbNqB/ufopbS0QAOSS1yGXvA40bga2hV85Xu1TB6Ot2JZfQUQ3PR/9xcFH1mT5Ntlcr68bUAGMnhB7m1OOQs3T9dpgtDtek7j9rNibzXZd3RIPLpZobFfX11T23pecFj9dJX75et+S7buA15+AXL0MCOxJMSkfDHHESRBTvtp72W3rgWWLw9oY5t+qbDtgArvdQFm+BDqF2BVjMNq0MUCRI8uPUyHk9g3AG09CvvQI0NEGFDqAsZMAXzdQVQNRfRBw/PkQRSUQQqCqLBjYECoYBJFb20Zn2SZ1edWA1PYjXeSm6ELt99IGo3E6GeW4gCnR0TO8rFcwmQwJNgvW9woyC6l389INS9PHxvc8wyJLzcz0QWKCpJTYpMj8jsfwAfkxBqDMMkg97R4A8MlG9Jp77w9I/HuJxHsNgNsbPP85/kCBkw5S77td3RJ3zg8ej1XW7gQ8Pglnwf7nf7Q+un4fNwF4c3XwXCxUfSOD0WJV16iZV10MlBXz2ETUl3jFJBFRhrjmmmtw33339SorLS3FL37xC5x//vkYOXJk2HPq6+vx6KOP4s4770R3dzcAwOv14jvf+Q46OztxzTXXpKTvREREROniNtUzBRyGK+FAj710gSseszMpwSEUpAu9AZIToEL5S7dvFRnFaXv/6o4rQDC8qsTeT1vvl+r3Q0Geh0Gkiz7USv35pA340rQTqwKjEHZRoAzQUwVR9HV/rOgCAlV90od+FWmDNFTBWfqAtfSFccQS7GZFFxSma7/Ipv6F1oSJbumBU8R21+jw/lgEoyUh8NRq+zAYjShxzRZBSgPtlcry0IuJiZIlIANY0PKcss5lFOHI/nNT3KPMNLCgUhmM1uzPnGA0q7BbIiIiIiKiVOD8PCIiIko7UxeMZgCl6mA0tLVCPnIL5D9+a9n0WO86bd38lcDxB0bbyez1foPE6h3RL3/VMdk970/e/j1tnbj4eoiCwpjbFGMPRJVzdSLdyjkdHolj7zbx4Xr9MjUhP6G6snQal2xthLzqOGDDqvC6/94DXH03xNk/CD6u+wzyB0cr2xkYaNauo7kzf4PRWrui/029wAb86mSL9JQsJOu/gLzmBGB3SNJZ457fOD9eGAwOfOEfwP2vQ5T0R02FOhitPnN+Au1TO9okdrSp68ZWZPdnWDSklMD/PRDTc8o1xx+PLxg6kmthg5S9TFOi09szvKxnOJlUhJthT/CZ7BVutvffXbzUImUcduC6E+P7jLY6AuX6zLtk7qP5Opak9BJC4PuzBR5cpH63Xv0/ifvPE/AHJE59wMSrX/au/+ObEj8/QeD3Z/Y+frR7JI6LcL4JADN+b+KTXxsQQmBDsz5EraeRzg48dFE/HHOXibWKMXUw5Itjo1jozkNqB6e2H0T5iMFoREQZ4LHHHgubdDVz5kz85z//QVVVlfZ5NTU1uOWWW3DRRRfhrLPOwvLly/fV/eQnP8HkyZMxe/bsvup2Tli0aFG6u0BEREQJ6DbdynKnkViYR08uTXCIX/rhk14UCkfS1pXPrEJMkhGgQvnLKlApXXSBUEAwvKoE6mA0KSX80q+ssxuxT2akxOkCtdyBLmV4piqcLNhO8n6ldRlFaA/sDu+TYt2p6I+Obh2qPulCv4qMYn3AWix/bwqC4HSKtAGsbpgyAEPYompHd6zTbR9dMBoQDDVLdCyl29aAPuAxFlaBqrr9hYiipwtG62cbgELNmEPm/PQsSpdP2t9Fi79JWTdrwAlpHddnknJNaGGLT73t0kF/bsYZi0RERERE1Pc4Py99OD+PiIioh0BAXW7YgH5l6roNqyDn/ydi0zXeBm3d9/9touHW6H57zmY3Pq8JnlO4/iSBScOz9wJgubsZ8Gvm1NkLIM76ftxt26bOBj7V15umhGFk77aL1b+XSMuL1AvtQFVZeFlWeu7vylC0veRDNwInfQuiqATy0d8BbvVvPwMDLdo2mjvCg+TyRatmOsuNXxMYUAQsWCmxqwsYP0Tg4iMEjqzJrfeZfOzW8FA0lbpPgVcfB86+EtWVAvNXhs9FqG/Mj/kJN7+g/zvHDkphR9Ll83djfkp5oFVb19IFFHHKP8VJSonO7p7hZT3DyaQi3Cwk5CykvqM73X8RRWIzgFInUOrY838ncMgIgUuPFDh8THyf0VZDaF2Gdq5oSeK03nJOM6I0+cWJ+mC0B96UOGNyMPQyNBRtrztek/j+bIkR5fsPBv/50Pp8c6/PNgPv1gMza4HrntaPEad1LYFLujHDvQSXe5/CiJJ3UVNZqAxGq8+caYVZQ3ceUpMHocVE6ZatX7UREeWMNWvW4Morr+xVdsQRR+CVV15BSYn+ItWexo0bhwULFmD27NlYuXIlAMA0TVxwwQX49NNPMWhQPnzjSURERPnIbXYpy3VBNfGwasttdqLQ4K+kyWAVYpKMABXKX7p9KxXBTzpW67YKCfRbhATaRZbeajTL6V7LAMLDM00ZgEfzuaULx4q3T8pgtJD3gs/0avepZPZHR7ftPIHwbWQVoqFrRzVG0IVppfV4YBHm4jHdlgFmPcUacmf1GncFOlBeUBHVeq3a0ElG4KlV8JrH7IIpTRgit+6cS5RKzb4dyvKBBYPBO8RRKkkpMb9lnrLOLuyYXXZKinuUuXSf3ZkVjNb33+EQERERERGpcH4eERERZQypudpdGEC/cnXdyo+iarrM3IWyQAtabeHttHRCeXO3XOL1S7ypz3MKc8rBWb4tPlmsr/v6DxNq+uRJwD8sgtGaOoDB6ns+5qRXl1sHMI0ZCNhCUi6s3muHjUpKt/qEXPK69QJd7cCXH0B+5RjAYtlSsx126YNfMZ+tOY/vdbejXV1eUQp8f7aBq+ektj+pJKUEFj0T/fILn4E4+0rUakL06tX3ess5X2zWH3/G5MHXEPKD16JeVvxvFbBrJwZ9/3TtMtt2hwdZUu6SUsLt3RtcFvqf3B9u1qO+w7M/yCy0vqMbkPmRyZi1DLE/wGxvoFnJvmAzEfy3sl70Lt/zn8NuPaaLh1Vzub57JTMYbSCD0ShNhvYHXAWAWzMN/vp5Jg4dpX+jmxKYv0Li0pn7l3nty+jf/a8sl5hZK1BnERL8xsYT4ZKe/QUrPkJ15UxgRfhzGvIkbDiZ6tRTq1EzOLX9IMpHDEYjIkqza6+9Fh0d+y8WHTBgAJ5++umoJ13tVVlZiaeeegpTpkyB1xsMjtiyZQt++9vfht3tkoiIiChXeEy3stxhuJK2DuvgkE70t2smpVFMrMKgkhGgQvlLt28V2dL3q5jTKIKAgFT8jKkLbgKsg9EKGIyWFlahVm6zq1d4pu4zK9hO8vbHIlsxoNhVQt8LVsFSyexPrOtQ9UsbjGYUw6UJDvNLH3ymFwVGYY92NMF0aTweWIWydQU6ow5G04a+af42q3a7TH2oWbSs2vCZiQeeWo0bJCS6TXdK9mOiXNXsU88iHliQp7fuprRZ1fUZNnevU9Yd3m82BvB8fB99MFpjxlzslokhtURERERElB84P4+IiIgyhhlQl9tsEJVVCV8MP1ATjLbbDTR3AINKE1xBBlvfHLzIOFo1id0rrM/JBf8HufBpYOtaoO6zYOHkr0JcfRdEzcHABn0KnJh+QkLrPnqS9Y1iWzvzKxitPsI9aE7ShOydPhl4NiRgrtAOnDM1/b/ZaG1piLiIvPdHEHe/BHTr50EJAOWBFjTaw68Ob+6QyMebcXn9Epta1HUjyvJge7TGmGT2+bswb/02qif9GMC4sOr1zUC3T8JRkFvbzu2VuPN1ifcbJNw+4F2Lt2RZcW797UpRHJMAACPHAUNHA5VVGBhohtN0w6O4jqChUeKw0Xmw3XLYu/USD78j0dQucfyBAt+fLfDC58B/P5RoaOoRdrYnyCyWsSGlnhCh4WU9/xP7ysPrhTL8zFWY/CCzZDMsupfr+2syg9HKOc2I0sQwBE6cBDyzTF2/ZB2wZJ31m/nyf0r87a0AbAZwyAiBeZq2VH7/isQbKwP4ZKN+mV6haACwdS1qKmYql82XsOFkebdeYvlWdV2mf8dElAsYjEZElEarVq3Ciy++2Kvstttuw5AhQ+Jqb+LEibj22mtx66237it7+OGHcdNNN6GsLLdua1BfX4/PP/8cW7ZsQXt7O4QQKCoqwuDBgzFmzBgcdNBBKCrSX6CeLN3d3Vi8eDHWrVuHlpYWVFZWoqqqCrNmzeqT9W/btg1LlixBY2MjmpubUVJSgsrKShx22GEYO3Zs0tdHRESU6bo1ITPOJAajWYVqWIVyUGy6LMKgfDLxABXKX7rwp3RefG8IA07DpQxpsgqrsgpGszMYLS2s9iN3oBP97fvPxa0+M6xCOGPlNNTnoqH7m1UIXzL7E+s6VNvJKkTDpfl7geD7qX+vYLTMOx4hVep3AAAgAElEQVQka5yhDYHU/G02YYdDONEd+gMorD+To9UV0AejWR3LomW1/wLB157BaETx0wWjlRdUwpTqC3ZUga9EiZrfMk9bN6fstBT2JPPpggu7pQedZjtKbOm/Qkk7FuNnNhERERER9SHOz4sf5+dxfh4REfUB01SXGzZgeOKfMw9uuwpzR72irKtrzO1gtLURwqt66ucEBsaWkZtS8om7IP98fXjFp29BXnIY8NB7kA/frG9g8qyE1t9/gAu/bboBv65Qr6NVfU+6nGSaEg0W+1ZNJXDNHHXCxU2nGnin3sTOHtMnbj9LoNSZmYEdsrMtuvCqjWsgz66NuNhAXTBank653diiDzypzoOL6OW/7oj9Sa/8EzWLPwZGfaSs/tvbElcdk5nvp3gETInj7zXxTn3kZX95cu783ZY2RxGMVuiE+P5twTAkewGMybMwtm0dVjgmhi1qdTynzPfqconT/mTCt2fa0ktfSPzwv5yrlGoloQFmex6XOEV43b56dV1RFgSZJZtlMJrmVDFXJPMcojwfwkEpY93wNQPPLEvsDfvh+uD/318b++fYR+v1dbfv+EVYmdyyFjXTBKCY37uxJTfDhvvCGysk5t6rf91rB3MbEvU1BqMREaXRfffdByn3DygHDRqESy65JKE2r7nmGtxxxx3w+YIXmXZ2duKhhx7Cz372s7BlL774Yjz22GP7Hq9btw6jR4+Oaj2LFi3C0Ucfve/xjTfeiJtuusmy/b02bNhg+cXFt771LTz66KNh5d3d3bj//vvx0EMPoa6uzrJ/NpsNkydPxumnn44f//jH2klQs2fPxuLFi/c97vl6WNm9ezduuOEGPProo2hrawurLy0txbnnnoubb74Zw4YNi6pNHZ/Ph4cffhgPPvggvvjiC+1ytbW1uPbaa3HppZfCbudHPBER5QdVqBAAy5CUWBUKBwzYYCI8AEC3fopdl2kRoGImHqBC+UsbqJTmi+9dRrHyGGIV9uNjMFrGsQ616v36WoVNOW3J+9wq0vQpdN+yCt1KxftDtw7Ve0D3eVtkK7YMcQsLp7MIWEsXq3VbBSX2JKXU7l9Wr6XLVoxuvyIYzeIzOVpWwWjJCDyNtG3cgU6Ah0WiuOmC0QYVVKLRu03zLE42pOTa5FmLVV2fKesOLjkcQx0jUtyjzFauCUYDgBZfU4YEo2nGdGkcixERERERUe7j/Dw1zs/rjfPziIgoZUz1DWhgGMCwMbG3d8zZwJtP7Xt4dNdi7aJ1jRIzqnP3Qs2Gpuh/qxo1MHNDGGS3B/Lfd1ovc/OF+sqzf5Dw3yYMA9d1/pnBaAC27AI8mulalxwp8IezBAaWqLf3wVUCS39p4JllEk3twImTBGbWZuZ+BwDYsjapzZUHWpTl+RqMZhXINGZQ6vqRNv/3x7ieNsZdBwETEkZY3S/nSVx1TKIdyxyL1yCqUDQAuOzIDD6WJImUEthiEYxWVglx5hXAUadDjNkfgiYu/RXG/kETjLbVC8DZB72lVPj9K/tD0Sh6xY4e4WW9wskESkLDzRz760LDzUqcQHEhYFgle1FEVsP0XJ9519IZ219oNwC/JoPIHj4sIEqZg6sENtxmYNR1mZdmeMHu/2fvzOOjKPL+/6memUzukxAh4UrCLcopcnqAgoiKJ4L7eK27rLrq7uO6ruu5uu4jK+oPb2VXdF3XY5FLWA9QkUMRYQHlEJJwGK4k5M7kmpmu3x9DQiZT1dMz03Pm+369eJHpqq6q7umjpvtb73rXc+HRAyiUhBWqHDhUCQz0bx6hLsVTn2h/34VdQHZNEOGG3soSBEGEkU8++cTt84033oi4uLiAyszOzsZll12GpUuXutUjCryKJkpLSzFt2jTs3btXV36n04lt27Zh27ZtuP7661FYWGhYW3bu3IkZM2bg2LFj0jz19fX429/+hqVLl2LlypV+17Vt2zZcd911OHDA+4umoqIizJs3D6+88gpWrVqF3Nxcv+slCIIgiGih2dkkXG5VEgyrgzGGRFMSGpyewdZaAiPCN7RlUIELVIiui0z+FO7B94mmZFQ5PCOetGQ/Dg0xmoXEaGHByuLBoIDD82VH52NPU0Rm4PEoK8tD1CZpjwIT4pjVsPbIkLVT1C7ZvktQknyT08nKCaMo0cRMsLJ4tHBPQZnefkYrbxEKXAHta12ikowaVHos15Ka6UVLrqYledSDXW3VvB666qc+GkH4S6vagjpntTAtU1OMRhDGsrZquTRtasasELYkOkg1pcPMzHBwh0dalb0CveMLwtAqdyJVWk0QBEEQBEEQRGxD8Xn6ofg8is8jCIIgQoAqGUipmIBuuUBcPNDq+e5YBPv9K2CX3Qp+/2vg07JcywAMb96JHfFne+QvEs+LEzMcq9Gfd0iPCBY6HNwN1ImFUu0ckYtiWO+BhjSDJSSju6MM5eYcj7TqRg7X0Rb7HK+Vpy24hiEjSXs/9M5i+M3UKNlXWgIiP+jm9IxHAYCj4lfRMc+xGrEMpEcakBAXJceIn/B6Hy7QnbDyVpzhKMNxcw+PtBYH4FQ5TDEi6dlYrE8YE28BemUGuTGRQE0F0FgvTGIvrwMbNk68Xm4B8luXCJMOHG8BidGiE7uDY4O2vz9mSIzrLDBrE5e5RGYeafFAivW0yKxjepIVMXONjBW0vg41xs1oR33sDvx8EsNrX4l3ygDPnygEEVJ6ZTLseETBiCdU6JwHJuikOmvR3Sl48HO0BPndXGJGUVuLy0mM5g2nqt0P6ZYMr88GCIIIHBKjEQRBhIkjR47g0KFDbssuvvhiQ8q++OKL3QKvNm/eDLvdDoslOgfKt7a2Yvr06R5BV5mZmRg2bBhycnJgsVhQX1+P48ePY8+ePbDZgjMAds+ePZgyZQoqK91f1OTk5GDEiBFIT09HWVkZNm/ejKamJlRVVWHmzJl4+umnfa5r1apVmD17Nhob3Qdy9+jRA2effTYyMzNhs9mwZ88etxk6d+zYgbFjx2Lz5s3Iy8vzb0MJgiAIIkpoVsXTD8Yr4tmo/SVBSRSK0Ui6YRxawqBABSpE16ZRNvg+zGI0qbzKT0mgmcRoYYExhnglQXgN63yPkh2LVhYPEzMZ1ia9x5bsWEs0JYVkZmSZsMvB7bCrrbAoroFpTu5EsyoWoSYoiYhjVigwCcVgnnI6cb8h3KLEBFMSWhwCMZrOfobWdUPrWpdoShYulx2rvqBVRqDCU9n36JaH5LUE4TfVjpPStCxLd+k9IkLiO4gYodJejm31G4Vp/eIHoiBhcIhbFPkoTEGGuRsq7Cc80qrskTHaTXYPTzD4GQ5BEARBEARBEEQbFJ+nH4rPo/g8giAIIkSo4gmvwBiYyQQ+8TLgi397L8dkBiZc6lo1MdntPU3/1iKhGK24zI/2RhHV3l8jt3PlyOC1wx/4wT3grz0E7N0KVAX4RU2caUyjEpOQ4awRi9G60Ov4eomnkDEgzbi5eyMCvm+7oeX1aT0sXF5c3jXfLFdJzpvslNC2IyysXxHQ6oNb9grFaHanS7TXOyug4iOGkzrnsZw1nHUN0VFpsTwtT2NSsG49UaCWCpPWH0nGV/s4zhvYBfZfjHFI7NqMCOItHeVlHeVkLpGZu9ysLZ0J5GZAcjyJzCIdzjnw7rPga98Hjov7OpqYcoGe30nKDrBxEc6XP/q2gcPzgHPzgc2d5rIYdAbQtxudJ0T4OSuP4cKBwOc/Gl/22H7AkWrfhIJX1a8Q68v3/RdWC0PvTOCw4H5aXNF1xOf+cqTa9dtDxlUjaf8RRCggMRpBRBhO7kSNxsAjwhjSzd0MHXTsD5s2bfJYNnr0aEPKHjVqlNvnpqYm7NixA2PGjDGkfL0sWLAAjz32GABg4sSJOHr0KAAgNzcXGzeKBzUBQHKy+8DcxYsXY8+ePe2f+/bti5deegnTp0+Hoige63POsW3bNqxatQp///vfDdgSF3a7HTfccINb0FWPHj2wcOFCXH311W5taWhowDPPPIMnn3wSNTU1Ps8IumfPHlx//fVuQVfTp0/Hn/70J5xzzjke+bdv34577rkHGzZsAAAcPXoUc+bMwbp162AyhfdYJwiCIIhgIhWlmIyNOvFHYET4hpZAxRGgQIXo2sjEQgmm8IqQEiX1a4mQHNwhTWuTSBGhJ0FJFH5vna9roToWE0xisURnEYVM7hkqaaDWdjeqNqSdOqZlEtS2MhhjSDAlwub0nCHS4zuQ3GviJfssVCQoSaiB59tGvf0MLVGr1n6WXYcaVZ2RdhJUrmpfy9TAhKd6hHF6pXIEQXhy0i4fbJFp7g4mC4KI9egsIqR8Ub0SKlRh2kWZV4ZE4hqNZFqyhWK0Skf4xWh2tVUqRw23tJogCIIgCILoelB8XugId4wexedRfJ4WFJ9HEARBhAWZGO3UvYTNexx8/3+BIyXyMhQF7J5nwTJPC6vY/a+Cz/8VAKCwVbxuUYzLiPTKuuacw3Dl8Mh5z8DLSsFvPw+weU7a6g8sO9eQcpCQjPRW8SjsKh8kdNFOQ4t4eVIcoMSQuIRzDrzju2jYg/7DgaIdrj/t4mtRcfhfW4UFmRgtM8bnD+LHD4E/9cuAynjl+F0YWLhbmFZSETtitFod11bGgD/Pip1rjxb8kbnihMQUID1buh5TFOSniscWAMAFz6j45g8KxuZ3jf0YK9z5L3H8iD9YzR3lZZ3FZKyT3KztH3MTm3VMN5voWOpK8EWPAm/P93t9ZpbHx6gx/HOtppFjfZH3fB3JTGJ4/nqGy15UUXbqp1JaAvDGzZ7PqgkiXAw4g+FzH6V/enj5BgVldcC1r6mwSX6TdmRIyx48WvGENJ2vX4HC7JliMVoX/X3mC799X94P6ZMFPHwp9QUIIhSQGI0gIowax0k8fGBeuJsR8zyR/xqyLJ6z14SSI0eOuH3OyclBVpYxT2TPPPNMYX2hDrzq1q0bunXrBgAwm0/fcsxmM/r27au7nBUrTs8QYjabsWbNGhQWFkrzM8YwevRojB49Gg8//DBU1ZgHYC+88AJ27NjR/rlHjx7YuHEj8vPzPfImJyfj0UcfxZlnnonrrrsO1dXVuutRVRWzZ892m1Xzsccew6OPPipdZ8SIEfjiiy8we/bs9tlIN27ciHfeeQc33nij7roJgiAIItqQyVLiFWOjBWRSEZJuGIfWvrQHKFAhujYysVBimAffywb/a0kC7apcEmhm9JgvXCSaklDlqPBY3llEFqpjUXpsqfokYaGSBmptd5PThjRzxqm/5VFfbWUkKklCMVrne4vsXhPu64FcUKavn6ElUNPatkQlWbi80RmYGK1ZbQSH/EWvTIqiF63rZHse6qMRhN9U2sWRDmnmTFgUC2Szw2md9wThCw3OOmyqWSNM627pibOSPQcmEy4yLd2Fy6vsnn3VUNO5b9wRmdiXIAiCIAiCIIIFxeeFjnDH6FF8Xl/d5VB8HsXnEQRBECFCds9krsHdrGc+8Pdvgf+uAw7v88yXkg6MOA+sV3/35eNntP/Zv7VYWEVRuUt+FKuTj1Q3it9V3TiOYdpQoKwOOKcfw7n9IktoxVe/aZwU7S4DxFZtJCQjs1ncv6puUAF0DSFBQ4v4uEq2hrghweaHbwIvo89AYODIdjFaoeRadKIOqG/mSImPnPMwFFRLXpVlxvj8QXz1W9oZJlwKmC1A1hlAzUngiyUeWQrsB5FssqPBafFIO3CS4wLZ5G5RRpXNe8xFxbMKMpNiY3u14C1NQOVxcWJugde+TEGOAojdngCAl9dxEqNFEZxzrN3r2zpLfqVI5WcWM333hH/wlmZg2asBlaFoxNfFshhtxQ7fNy4zCRjdl+GHRxV8tR9ocXBcPIShWwqdw0TkUCB3tQIA/vlzhn7dGHYd46iyAXVNwP99rH0+XDkCGNHbdZz/+LiCz3/kOF4ryNhkA958EoNbf8QFtq+QxOWxefzt+Sg47zKhxK0kxiX6gcI5x/Id8vRdjylIstJ1iSBCAY2YJAiCCBNVVVVunzMyMgwrOz4+HlarFS0tp3XAneuLJg4fPtz+99lnn60ZdNUZk8lkyIyMqqrihRdecFv2+uuvC4OuOnL11VfjjjvuwIsvvqi7rqVLl2LXrl3tn6+77jrNoKs2zGYz3nrrLWzcuBHl5a4BjAsWLKDAK4IgCCKmaVbFszpZlQRD65FJRbRkLYRvaIrRAhSoEF0bmRwnVPInGTIRkta54OBiSSADg4ke84WNeMk9ornTdxmqYzFBIgftLM8KtyRMa7s7ijO0zom2MmQyuI7bzDmXCrXCfT2Qtl+n3Et2bJmZBRYlTrpeokkiRgtQKuZNXGaXXMv0ome/aMniCILQpkoiRssyi4VLBGE0G2o+QSsXT3U4NXMWFNY1Btr4g+w8jQwxmkafLsySWoIgCIIgCIIgYheKz9MPxedRfB5BEAQRIlSneLly+l7KElOAiZe5/ukl4/TzYZmMqL4ZKK8HclL1FxtNyKRDA3KAOecE590C5xyorwYSkgHFBOZjn4hzDnzzsXEN6jPQuLJSM5BVUSlMKj1mA5BmXF0RiMPJwbnrvBGRHB/a9gQT7nSCf/0feYZh44EfvvZeUO+BYHkF7bqP/NaD0qxldS5BTSzDOUdlA8ABxFuAasmrsvRYl1zt2SJPO/8qKE+867ZILT8K7PIU9Q22nsB3jb08lpeE/zWoYVR5CXUq7I4uIUUDIJbDttGzn9fV++alwFrVjBZFfKH59iAJQKKJYxqSOxG3TGC4amQXOVeI0HKkGGgQ2Yn0w7TEaC0tAGKzg7S91Pd1sk6FN3dLYbh6FCCbzJUgwsnAHAZIzusHL2WYO9b1LGJcwenj961vnJr3tvEd8uZmMNw4TjKR8Xffglc9p6+hVeUolIT/FsdQfzoYlNfL087Og89SNG6rA1QnWIpx7ysJoqtAkeMEQRBhonMgVHp6uqHldy6vslL8YiraaAsoCjXr16/HoUOH2j+PGTMGM2fO1LXuI488AovFc3YSGc8//3z734wxPPXUU7rXTU5Oxrx5p2e1/eGHH9zaTRAEQRCxRotEjJZgsBhNJkzRKywhtHFyp1RyB8hlUAThDbtql4r1QiV/kuGPCEl2LpiZJWZn9I0G5CIy96hb2XdrtAhC7z1LKgkL0bkRx6xQJI+nO7ZVS9IVf2rf69lmO2+FCnGQecReD3TKvfyV3MnSG50NuuqV0ahqr+8IUHjqTbwGUB+NIALhpL1MuDzLkgNAHmLENQK3CEIvrWoL1lWvFqalmtIxNvX80DYoysi0iKehjAgxmsb9WyZrJQiCIAiCIAiCCBSKz/MPis/ThuLzCIIgiIBQVfHyACWjjDGgu0sY07+1RJrv/62N3fc5MjFahjikI2D4ikXgl/Zw/bswBfz8RKjzbwdvFU/+4rYu5+Bv/xX8it7Aj9uMaVBGd2DkBcaUBYBNvBz97IeEaSXlkuM4Bmi2c9z2DxVZv1WR+VsVd7wjPmdSrCFuWBDgDjvU//db8Jk9gXeeluZjf1wEWL3H47JpNwB5pwXL2c6T0ryVgYWlRDSccyz4TEXufSq636si514VaXereH+r+FjKDNI1KmL4bq00iU2d7bkwr0CYt8D5k3D5km2xc1/zJkabe07XiQ/lbz4pTWPT5npd39qrL66sXyFNP3jSJcAkooMfjvqWv0AcNkEQgVO0M+AiFC7vR6tq7F6XZIJYLfK7Gd8OgjCaqYOBboKwN7MC3CwRml0/Rt6nUxhw7Sidfb493+nLBwDlpShIF8fuHzwJ2B2xe/0JlCJxODUA4PLh+vvnfNuXUH92Fvj0bPAZZ0C9bgD42vcNaCFBdB1IjEYQBBGjxNKg+EGDBrX/XVpaigULFoS8DRs3bnT7PGfOHN3rZmdn4+KLL9aV12azYfPmze2fx4wZg379vM9o0ZELLnB/qblhwwaf1icIgiCIaKJJFUc0xUskNf4ik95oyVoI/TRLvsc2ZGIrgvBGs8Y5KhMphQpZ/VrCH7tUjGY2pE2EfySYJGK0Ttc2mQwi0eBjUSbZsvNWN7meVKYVonODMabrPJDtNyuLh4m5gsP13Kf1CNbChWyfy/o5Hvlkkjsv36VMQhKwGM3L+rJrmV70SM/0yNMIghBTZRcPfM2ytE0ZFzvPnYnI49u6dah3imdXPT/jUliUuBC3KLqQidFsar2mjDwUyPo1DAqsLDZnvCUIgiAIgiAIIvah+Dxjofg8giAIokugiifzAgt8aBd7/F8AgG7Ok0hz1gjzzP+EY/tPsTngVSaUCYYYja9bBr7g10B9tXvCqjfAF/7WewHLXwN//WGg2iAhbVoW2J/fB7MY+B5lxo0olEj2imsTwHlsHkd3vMPxxkaO+mbApuG4S46BVxv8lT8CH74MNIivFwCAzDPA8gpd15cEL/FEky53E6OlqPUwS+JDvAmgopk3NnH8fgnHiTp9+TPDG8IYVPi2L+WJvQe4jplOsFyxGC3f9qNweXE5cKI2Nq5HVRphYleNAH53cew8g9CCb/sS2LBSnmHiZd4LySvAs2W/R7zkHbndCZRWC5OICGTG874JWQu7e89DEP7An7w14DIUyI/nWO1fA0CVzbdt654CpCZ0jfseEd1YLQwf3q64PXewmoHXb2Qo6C4+hh+ZyTB9qOfyODPw1q0MvbP0Hfv8b4/51NZCiE2jThU4XCVMIgAUV8ivXw/O0Pld/bQf/N6ZwOF9pxcePwz+pxu1fzMRBOEGjZokCIIIE5mZmW6fa2vFg338pabG/QVF5/qiiblz52Lp0qXtn++77z4sX74ct9xyC2bMmIEePXoEvQ1bt251+zx27Fif1h87dixWr17tNd/mzZtht59+AZSfn+/zjJJqp9nESkrkM38RBEEQRDTj5A6pMMuqeJ+hzhdkkhmZiITwDW/7MVCBCtF10ZIKyc7rUJEou65oCH8cknPBwkgQEU6k94hO36VMzGX0sahVXpOzESnmtFN/h6Y9WiQqSbA56z2Wd9x3snOio/RLJgBrdp6+Bmjda0Ilg5Mh2+d65V7+HltSMVqA4tdG1YsYTQ1MeKqn/6VHnkYQhJhKr2I0MRyxG5xFhAaVO/F5lXjWZiuLx+T0S0LcouhD6zytspejp7VPCFvjjrRPpyTGlEiAIAiCIAiCIIjIguLz9EPxeYd8qovi8wiCIAi/USUD4RVT4GUPGA4oCpiqon9rCbYmjBJme2MTxwu9Y+u5rKpy1EhChDKSjN9W/tHf5Ymf/gv8rgVg8XIjG1/xN691sJ8/CgweBQweA9ScBPZuBSxxgNninjEtCxg0GsxqrKmLMYbCfqmA4PW+zWnBiVqgR7qhVYad+maOd7foe+eZbA1yY4IMd9iB/7zlNR+b4xL9sfEzgJVHwC/KEGc0mcAUBTw3//S6ADKdVSg353hkr2rkiNUJuRat9+29eUyL0T58WZrG/vwBmCKQguZJxGhVOwDJq9Bl2zluPz+6jyfOuVQY+NJchl+dx7rMO1X+0RvyxPEz9O2H3AJ0d1bgeFEfZAwUx8AUlwP9uvnZSCJk1DX5HotUkN01zhUitHAvQmP25Ae6ylEOHgM2idM6P2+MJXyV4vYnwSERRUzqz3D0aQXfHQKaWoExfbWfQ6QmMKy+W0FxObD7GMABpFiBsflASrxO0dahvT63M//7fwO4T5hWVEZiURlFZeLlo/oAcWad39fHbwNOhzjtozfARl0gTCMIwh0SoxEEQYSJzoFQ1dXGTTfQ3NyM5uZmt2VZWVmGlR9qrrrqKlx11VVuwVebNm3Cpk2uJwGFhYUYP348JkyYgEmTJmHw4MGGt6GszL0H279/f5/WHzBggK58paWlbp/fe+89vPfeez7V1ZmqKlI2EwRBELFJs2QmJ8A1sNZIZMKVQMUhhAtv+zFQgQrRddGSCoVbjOaPcFEmRjMzi3A5ERr0fpdNTnEUrtFSLq3ymlQbUuASo0llWiGUhOnZd7JzoqNcUCYa7LiNWveasF8PTOJ+i165l5595Et6o7MBnHO/A+oandpiNNm1THf5OvaLXqkcQRDutKjNqHeKBwi3CZdYjAaoE+FnZ8MWlNuPCdMmpF8kFXoSp0k3Z4FBARfMMFtprwirGE12bw5l35MgCIIgCIIgiK4Hxefph+LzKD6PIAiCCBGSgZAwBS5GY5Y48JzewPFDGNaySypG21kae5PdHKsFVMlmZRv8eoE7ncCWNfIMLU3A4X3AwBHu69nqgIN7gNZmoOQH7UqsCcCc34JZT00Om5oJ9NbX1zGSvj0SgMPitPL62BOjfX8EaJGcop1JtkbnO1OuqsBP+1yivQYd4uj8oe1/svhE8EtvAVYv9sz3s/tP5+meB5QfAQBkOquFYrRK7bCSqEVVOXYe8W2djMToPJZ0cUJyAQGAnv3Ey3PFYrShth3Son484UujIpP6ZsAp8eGM6hP9UjTusAM/7Qdy80/f2zrnOXkMOPET8LmGXCj/TH0Vdu8FmMxIcTbgDMcJnDCf4ZGluJzjoiHRvV9jlbI6DlsLkJEIvPWNb/1Wi4mESkSQOLBbnjb7HrDJV+gqRkn9XkOMFlu/01SVY1+ZS4q2TyIWkjE0l67PRHQRb2GY5MPrDMYY+ucA/T1/KmnCHQ7g4G7wVYLfZF5I+OCvyD3rf3G0zvP5U0lF7IqrfaG0iqOsDhiWC1gtrv1RLPFi9u/uub8450BpkUtu35Glr8gr3b/d3+YSRJeDxGgEEWGkm7vhifzXwt2MmCfdHH6tf25urtvnEydOoLKy0pAAqd27PX9sd64vmmCM4f3338ejjz6KZ5991iOorLi4GMXFxfjHP/4BwBWI9bOf/Qx33XWXYTNxdg6MS01N9Wn9tLQ0XfkqKyt9KlcP9fX1hpdJEARBEJGAlhgtXhG/OPUXmTikmaQbhqAlggIAOycxGuEfMqkQgwKrYuxMqb4iEwC08GY4uQMm5vnYzmzxXYIAACAASURBVE5itIhELrVq7PRZIoMwWMqlJQft2CZZe7zJtIxEj3hUj8BNj2BNds82wQwLi/Pa1mAibb9eMZqfkjuZYEaFE628BVbm33XSm5QsUDGat34DoH/fEQThTpW9QprWLkaTxj/EVnAWEVo451hTtUyYpkDBhRmXh7hF0YmJmZFuzkS146RHWpVde/baYNO5b9yG0WJ7giAIgiAIgtADxeeFjnDH6FF8nn4oPi8wKD6PIAiC0I1MjGY2KO4jrwA4fgg31ryNxek3CbPIBnVGMyUa25SfbVw9fPMn4A9e5z3fbecC/9gO1m8IuNMJ/uJ9roGwqsR605mps6XimFDSrXd3qRit0hZ7A6c3Fut/35lkDWJDggT/cRv4g7OB8lLvmQGXWGjkBW6L2Iz/Ae8sRlMUsGlzT3/OK2wXo2U4xXLq//6ku9lRxdEa/XK9NjJjdA4hzjlw7KA40WwBs0pikvLEYrTRzdukdVXHQIhQlcY2RPsxwr9YAv7UPKCpwdXfue0xYO697bI3XlcF/vAc4L/rvJbFpt+gq05mNoP36AMcKUFBa4lYjCYPjyHCRF0Tx9xFKv6zy/8yrh7JkJoQW/0TIjLgmz+VprEZ4t9dIhST/PjkMSRG23qI46pXVBzxc56Sm8bReUwQneEbPwJ/8ufeBdeX3Qp89Ibn8iYbCuwHcBSeBreu3i86Uctx9Ssqvjng+hxvAZ67jmHeeQqKysXX5oJOIlZ+YDf4H68Bjh7wrfLSIvAdG8CGT/Kj5QTRtSAxGkFEGCZmQpbFR80rEZWMHz/eY9nWrVsxbdq0gMveunWr2+eEhAQMHz484HLDidlsxpNPPom7774b//znP7FixQps2bIFLS0tHnmLi4vx2GOP4bnnnsNrr72G2bNnh6HF/tHaarz0g/PYeTBCEARBEB1plgyqBYB4gwfW6hG3EP7jbT86uB2c86if9YwIPXIRVSIUpoS4Ne5oyaeanI1INnsO9pDJhEiMFl5kModwidGsSgIYGLhAUNNRKCWTS3mTaRmJ7DxwE5pJJRodxGiSNjfpFKyF+/6SKOtn6BSwyvJ5O7YSFfnU2I3OBr8Fko2q9tS+gQpP9UjPSIxGEP5RaRdPz8jAkGHp1v5JBD2BJAKhpGkPDjXvF6aNSpmETIuBo5ZinExLtlCMVhluMZqf/RWCIAiCIAiCCAYUn9d1oPg836D4PP+h+DyCIAhCNzIxmsmgoV15hcB3n2NS09e4vvZ9vJfmeY8+UQc0NHMkx8dOHFZJhfhenJEIpCcas5288gT4A9cADn0TgfH7ZwHv/QiseB1Y8pL+ii68BuyeZ/1spbGY8/KR6qxFnclTQFu1fTswaFQYWhU8Hliqv0+XEt75OH2Gt7aA/+5yoNbzHZKQgmFgj78DZna/NrGzJgAPLAJ/8fdAfTWQmQP2+1fAenUYXJ9X0C44ynJWCYv/xzcci2+OvXjQIj9ex0W79EpKbSVgqxMmsb8ul67GUjLAUzOBOvdjhwGY1eMnLD/e22OdKlv0/x6LVTEaLy0Cf7SDzMxhB3/1QbD8ocC4S1x5FvxalxQNNz8I1meQ/sp79AOOlKCw9QA2JU7wSC4ui/7jJtb47Qc8ICnarOHAqz+LrfsKERlwzoH3npOms/yhusvS6vuoMSJGa7FzzHhexUntMGIAwPVjGD7dzVF9Kkw8M8klIxpXQOcyQXSEl5W6JO3eZOsJyWC3/wV83TLX77VOFJ74GuvTPMVoJRL5V1fh5sWnpWgA0GwHbn+HY1gel/7G699BjMadTvDfzwLK/DOA87umAp9WgiXKx3UQBAGEdwQoQRBEF6Z3797o3dv9oexnn31mSNlr1qxx+zx27FjExcUZUnYbTqfT0PL0kpOTg3vvvRfr169HbW0tvv76ayxYsABXXHEFkpPdO361tbWYM2cOli+XPzjXS0ZGhtvnujrxQ3oZtbVeTMyn6NbNfabUv/zlL+CcB/TvzTff9KmtBEEQBBEtNDubpGnxirEzJsoG6tp5K+yqvmAnQk6jU/vNBweHEz5OpUcQ0JAFhVD8JEOrDTKBk0NyvTErJEYLJ/GSe0Sz013oFarjUWGK9D7YURbVWdzW3h6D5aJa6BKa6ZBoyO7THbdRJuPQkhSGCln7m9VGqNz7jNEyCZhMuHY6XUOM5kVupoW3+7pdInnUix7pmV6pHEEQ7sjESenmLBKxEkHls6pl0rSLMmeFsCXRT6a5u3B5lSO8UztKJcGm0PU9CYIgCIIgCILoelB8nn9QfB7F5xEEQRDBg8ukWgaJ0VhuQfvfT1Q8Js1XEt5HxoZzsFK8vMDIeVe++LduKRoA4Phh4PtN4J/+S/cq7NNKKH96Bywh/HEMAIDcfGQ6PQdTA0DV1u9C3JjgckAi15ORbA1SQ4LFd2v0SdHSs8GWH4by5law3gOFWdiMG8FWHQNbegBs+WGwCZe6p+cVtv+dKRGjAcCe4/qaHk0U+yEUyIjVV2XHD8nT8s/UXrfDvawjw1mJcHmVfI7tqEEmRmMMSDM2HD6k8DXviZefujfyxgZgw0pdZbHrf+Nb5T37AQAKW4uFycUx1heKduwOjve/038NvWoEcGKBgtL5Cn54TEHNQgVL7zAhNYFkSkQQ2L9DnjbtBnmaAEWRKz14jIjRPt0NXVI0APjNVIaKZxXse8L1r/wZBf8zjrQnBOHB5x94l6IBwMybwVIywG56QJhc2FIkXF4c3vlWw0pZHcdne8Rpz36mwuY5bxAAoH/3Dn2O7zf5LUVrZ9OqwNYniC6AQdOKEARBEP4wffp0vP766+2f3377bTz11FOwWPwfZFZRUYGVK90fDE6fPl2Y19xpBheHQ79sorpa/JIrlFitVowbNw7jxo3Dvffei9bWVixbtgyPPPII9u/fD8BlZb/77rtx+eWXaz488EZOjvtMsUVFRcjO1v+2tK09vtajdz2CIAiC6Io0S4QuJpgNH7QvE5a42mGDRUk3tL6uhh7BiV21w2wiGQPhG1JZUASIkLTaIGu3QyITspCoJKzI5FNNqg2cu2Y3VbkqvW8F43hMUJKE4rM2WZRdbYWdt0rXDRUyCZu7wM27REP6HXSQY8mEgxEhSpTscw6OFrXZqzBEum1evkstcVogYjFvUjWZ5FF3+Tra1qw2QeUqFEZBEgThCzIxWpbltGiJQRxEyHlsBGcRoed4Syl22bYK0wYnDkdefL8Qtyi66Xi+dqTKHplitEj4bUYQBEEQBEEQRGxD8XmBQfF5BEEQBGEwTklfwCAxGvJOy2R62Y/AwlthZ57y1uJy4OxexlQZCcgG3udliJf7Az8oGSmrtc7LfwD2it+BeDDpcrBE+eRmYaH3AGQ69+AQ+nokVVaLY06ilQM+vkYZ0jM47WiDt7YAP24FSsVCHyGWOGDwaLBe/T3L2/ypvjImXgaWdYbXbExRgOxccWIHMdrQFvl5s+sox9CesSWw8UcokBmrr8rqJb9nFQXIzBGntZHTC9jrKV/MbBWfqDKpWDRR1SiOt0hPAEyK9nnCG2qB79YCh/a69q351H0/LRPIHwoc+hGo9vEix5hr3cKzwcy+91E458DhH4HFfxZn+PwD8DFTwYt36pOO5hWAJaX61AY2YAQ4gMJWsVBv3wnAqXKv+7cr4VQ5dpYCPxzlSLIyjC8AeqaHZv8crgIafehajOjN0D3V1bZcA/t7BCFE43cAGzDcp6IYk59TaoyI0XYf178d3VMARWHo76VrQBCxCq+vBr7/GqjpILE2W4DBo4BeA9qvGfzgXl3lsf6nrklX/gr48GUPWbGsX7S/vOv2i37UEHYv3S5P65N1+m++7YuA28G/+QTsout9X8/e6nruVNpJejd8otvkCQQRC5AYjSAIIozcc889WLRoUfugsYqKCixevBi//OUv/S5z4cKFsNtPPxhMSkrCL37xC2He1FT3B4M1NTW669m9e7dP7dL64W4UcXFxmD17NqZNm4YzzzwTR48eBQCUlpZi27ZtGDNmjN9ljx49GitWrGj/vHnzZowfP173+t9++62ufOPGjQNjrP2YWLNmTftAeoIgCIIg3GlWm4TL400Jht87NcUhqg0pIDFaIOgRozl4K4BYnR6PCBYyeU4kiJCsSgIYGDg8XwA2SdotE1kZLYMkfEMm91KhooU3I54loEVtEn7XQHCOxwRTEuDwDGhqu96KpGltaN3zjEYm7up47sra2nHdeMl30MKb4eQOmJhZKqaTfX+hRGufN6k2r2I02TXD27FlZhbEMStaued0Ro1OnVO2CfAmLpNdy/Sip9/AoeqSyhEE4Y5MjJYpES25ExvBWUToWVu1XJp2UeaVIWxJbJBpEQ8YD7cYLZJ/mxEEQRAEQRAEEdtQfJ6xUHweQRAEQQSITP5hNijuo4OQyAwn+rUewn7rAI9sReUckEyGE41US14hZyYbs42cc+CjN3xfUa8UDQCb5X//NFiw+ERksjphWlVtC3iTDSwhNp7zy6REIs5IBS4dFrzzh5eVgv/+CuCAb78H2te/5k6wXz8NZjK5Pv/zaWD5617WcsHyDBg43UHMdl3dEtyf83/CbHMWccwYxpESHzvXopIK39+Zp8QHoSGRQKMk7igxxftvr7RM4eKs1jLh8pgQo8nuY14usXz7evC7LzK+QW0Mnwz85QOwFP3mKe6wg//1DuDjf2jne0r/fY/Nmqc7bzsXXgM8fQcK7AeEySoHtv8EjO7re9GxSF0TxzWvqljb7l3hUBjwwhyG288P/sSkH+3Uf/1MjANuHBc79w4i8uFHxSIhAMBFc3wqS9GQDqkxMinpg8v0bUecGeglvuUTRJeAf7cW/KHrgcZ6cYYrbgN+sxAwmYBP3vZeYEZ34DxXrCWLs4KfMxVY8Te3LAWt4n4R58DWQ8DYfF+2IDbw5zccAGSd6qfzZa8Bb4l/8/rEmnfBC84Eu+F3ulfh5UfA77sCOLDLI4098hZAYjQixgj+rxKCIAhCypAhQ3DJJZe4Lbv//vtRViZ+YOuNPXv24Omnn3ZbdssttyAzU/wrsXt39wFte/bon8noP//5j09ts1qt7X+3tHgOuDWS9PR0XHXVVW7LDh48GFCZEydOdPv87rvv6l63oqICn332ma682dnZGDFiRPvno0eP4uOPP9ZdF0EQBEF0JaRitCAITmTiFgBocsrlMoQ+vAlUAMDOdcwKRhCdkMlztM7pUKEwRXq9apS02yE5DyyC2X2J0KF132k+dY+QfadAcI5HWZltkjEtsVQozw+ZCKNj+2TSr44ysUQd92mpjCMCrgdacjY990jZ96m1X9rzmMQzTjeq/ovRbE7JS9pT2Lm9fcCZP8iOCY98OgRqBEG4U2kXP5fuZjk9LSOTDJKJjdAsItTUOKqwpe4rYVovaz4GJp4V4hZFPzIxWp2zGnY1MDlpIMglteHvixEEQRAEQRAEEdtQfF5woPg8giAIgvATp0O83GQ2pvwe/YAOwhmZDKQ4vHNpGE61TfymKtOoMMIdGwwqqBOMAQXDwB5/F+ycIIptAiBz2FDh8mpTJvgbj4e4NcFDr1jposHAV/cpSE8Mohjtpfv9lqIBAJa8BGx29W/5vu3grz2kf90OckW/yS0AFNdw1V6Oo+hhPy7N+vznsfWWuciPn5kxK2iWCR4SU7yvmyL+fZ3RdEK4vMoGqGp0H0v+iNG4wwH++E3BaVAbO9aDv/1X39ZZ+75XKZovsDv+D7jubt/XS04DLHFSAQgA3PA3NZCmxRRPf8Y7SNFcqBy4818cB08G//y699/66phQ4LoP98qM0WsnEZnIxGh9BoJliGN0ZCgaRg8e5fcyADhSrX8b8rsBJg1RHEHEMry1BfxPN8n7zIBLarZhhffnEdYEYPSFYC9/CZZ4ekwA6+lpOdPqF81Z1DX7RSV+PB9LsgJWCwM/dhD8Wd/7qTL4qw+CF+3Un//lB4RSNIKIVUiMRhAEEWaeeeYZJCaefutWU1ODq666Cg0Nvg1AraiowDXXXIPW1tMDW3r06IFHHnlEus7IkSPdPn/00Ue66vr000+xZcsWn9qXnp7e/vfJkyfdZs0MBmaz+wvijoFf/jB58mT07du3/fPWrVuxatUqXes+/vjjPm3vr3/9a7fPv/vd73w+HgiCIAiiKyAbVBuvJBhel1WJB5P8hCbpRuDo2Yd2Hr4B3ET0IhUqRcjg+0SZFErSbgcXB8iamUEBsoRfyOReQAcRmYbIKRjHo0y01dYOLdmW1vYYjWzbO+4vmVSuo0RD+zuwuf3v0YYQbq+MeC2xm5d7JOdcLn3TsW2y70CPkE2GlggQADhUqHAGrfz2fAFsA0F0VSod5cLlWZbuwuUEEShfVn8EJ8R93Isyr4zdgQBBROt8rXKEb6RbJEtqCYIgCIIgCIKIfSg+LzhQfB5BEARB+IFDcr8yWwwpnsVZgZze7Z/7txYL85WUR/+g+45USeY11RLK+AL/4t/SNPb0CrDbHvOtQGsC2Bf1YF80QHlzK9gFV3lfJ0xkdhNLjMpN2cCWtSFuTfDQI0YbkAN8+lsT+ucEUYpmbwU2rAy8nC8+dP2/bqlvK+YWBFw3s8QBPfq2f766fpk07wdbY+tadLDSt/y56d7zRC1Nkt9XCeIJHDvC0sRitMzGI8LlKgeqo3x+a3/EaNi9GTh5LCjtcePLD33Kzr9YYljV7PevgM35X//jBoaMRZpah2xJLMzBkwhocs9Y4t8a1+Ml24K7j07Uei+/ewpgf1XBhvtNGNWH4kiIEHP8kHj5xMt9LoqZ5EoPVY1+KdGy7fqvF4UUjkh0ZXasB2pPes3GP/+39vOIBSvBPquC8tzHYJ0l14LfdsnchjMcYtnw4aqu2S/6qcr3dbLa+uje+sk3PQD2ZYP7v0ff1lyF6+x7c4cdWL9cV16CiBVIjEYQBBFmBg0ahBdeeMFt2ddff41LLrkER46IH9x2pqioCFOmTMHevaf1/Iqi4O2330Z2ttw8Pm7cOLegr2XLlmHr1q1e67rpJt9nlRg8eHD73w6HA19++aWu9RobG/HCCy+gvl7DftyJhoYGLF3q/hKnY/3+oCiKR0DUvHnzvM50uXTpUrz88ss+1XXjjTdi0KBB7Z/37t2LK6+8EtXV1T6VU1FR4bEfCIIgCCKWaFabhMuDIUZTmCItl8RogaNHXGJXgxu4T8QmUqFSBIiQALkEQNZumSDQzIwJkCX8Q0ts1naP0BI5JZiMmqK4Y5kS4VibqE3SHgUKrCze8PbIkLWz4/6SSeU6yt/0fAfycsJ/PbAoFlhYnDDNWz+jlbdIJWN6pHuJJnHAYaPq/wCwRqf3de3cv/u6XbXrlqVSH40gfKNZbYLNKX4Gm9lBtMQgCzDsekERRGA0ORuxoeZTYVqWpTtGpIwPcYtigwxzN2lalT18YjSZ3D4YfWGCIAiCIAiCIIjOUHyeNhSfR/F5BEEQRAhxiicLgcnACfGGjWv/s6D1gDBLsdgPErXIhDIZRj2C/mm/PG3gKLd9rovhk8AscWDmyJ8IsWe2OIZkVcqlQLm+vnQ0UKkjvGDK4NPvSfm+7eDvPgu+5j3w+hrjGnK0RC5Q9IXP/gV13iTgn3/1bb3c/MDrBtwEjeOaNkuz/XAUUNXYeM/cbOewtfi2zgUDQy/34U4n+OZPoL7xBNRFj4J/uRS8KQjxNY2S2KFEsWzRjRSxGK1nvVj2CQB7j+tpVOQiF6PJjxH+zcdBak0nThwGX/IieFmpq97iH6AuuBPqL8aD/+sZ8JOunc+//xrqQ9cDRrVLUYBzLgqsjNQMAEC2UywecahAhf5HITGL3cFRohFK8KPYn2IY+3SUP7k/YFJIiEaEiVqx+ZRl9/S5KK3DOBa6RL5cL87Np3Oa6MLs/lZfvq+WActfl6cPHgOmSFRBkt923SXCWM6Bsjp9zYol6pp8v/i2yYv5ljWa+djwSWBmi9s/nDkW0JL+vj0f6qsPgf/zafDd7pMn8T3fuZb/6xngX88Cdn3jKQgiViAxGkEQRARw66234s4773RbtnHjRgwZMgRPPfUUSktLhesVFxfjoYcewrBhw/DDDz+4pc2fPx9TpkzRrDclJQWzZ89u/+x0OnHppZfis88+88jb2tqKRYsW4dxzz0VZWRkyMjL0bh4A4IILLnD7fMstt+Dll1/Gtm3bcODAARw6dKj938mTpx86tra24u6770ZeXh5uvfVWfPTRR5pBWFu2bMGUKVNw+PDh9mXnnnsuBgwY4FN7Rdx99904++yz2z8fO3YMEyZMwJIlSzys7DabDY8//jiuv/56qKrq0/4ymUxYsmQJUlNT25etXbsWZ511Fl555RXN7a+qqsL777+POXPmoFevXnj++ed92EKCIAiCiC5kg2rjleAMqk2UyVt0SL0IbfSISxw6JSgE0RGZCEmPLCgUyIRMsnY7JCIhmVCJCA0WFgcFJmFa23cp+06tLB4mZnygq+wYbxe1ySRhpiT/Z1j0A1k77bwVdtUOznm7zK0zHaVqViVBKupp21Z5OZEh45DtC2/9DNmxBeiTvknFaDrkZiJUrkr7aB2xq/7d15t9kJ2RGI0gfKPSXiZN62bxPkUjJzEa4SMbaz+T3jMuzLgcJibuXxHaxClWpJrE08uHU4wmlVZHyG8zgiAIgiAIgiBiH4rPo/i8jlB8HkEQBBE2HBIxmtm4CfHYNadFowWtJcI8R2uAxpbYebdTLXlFrSWU8YkjchkPy8gGhk8GhpyjryyTGWz2Pca0KwQUarwmfNkyG7zeN7FspFLtJbwg2Qrceb7reOLvPQd+27ngLz8A/vhN4PMmgpf9FHAbuL0V/Fadx5Ee9mzxnqcTLMGY9zbs1ofb/76i/iPNvHMWxca1SOsY+uMMz2tRvAX41fmhFYJwhx38kTng910BLP4z8I+nXJ/vmgpeIxZH+V1Xo+Q3VaI4TsmNNLEYrUfNj0iyileZ/LQa1fe1apu47ZqCzyb/J730Fb7wXvCbR0P9863gt4wGVvwN+HEb+Ct/BL+yL9T/nQF+5wUueYdRXDwXLKdXYGWkuJ4TPFzxF2mW97dG73FjFIcqAacqT1+8iQdVYllcoV12nBm4ZyppEIgwUifp76aK71daSAVGALjWiRgllJTru1Z0TwFuGU9iNKJrwo+WgL/xhCFlMa3rUM9+wsWPVjwpXSXWJPp6qG/2fZ2sJIBv/Rz47zp5pkGjgJEXeCxmZ/QBLpqjXcE7T4O/9hD4ryaBL/4zAIAvftL17OG1h1x98EWP+N5wgohyIn96CYIgiC7Ciy++iIyMDDz55JPg3PUjsL6+Hg888AD++Mc/YsiQIejVqxcyMjJQWVmJw4cPY9++fR7lWCwWLFy4ELfffruuep944gksW7YMNTWumWrKy8sxbdo0FBYW4qyzzoLVakVZWRm+/fZb2Gyup/VnnHEG5s+f79PMlNdeey0efPDB9lk2jx075hFs1sZNN92EN998021ZXV0dFi9ejMWLF4MxhsLCQuTn5yM9PR1msxmVlZXYtWuXxyyeiYmJeP11DSuyD1gsFrzzzjs477zzUFnpsr0fP34c1157LXJycjBq1CikpaWhrKwM33zzDZqamgAAaWlpmD9/Pn75y1/qrmvo0KH48MMPcc0116C2thYAcOTIEdxxxx246667MGzYMPTu3RupqalobGxETU0N9u/fr3sWU4IgCIKIBZrVJuHyeCUhKPVJBUYk3QgYLalLG3aJEIogtJCdnwkS0WGokQkXZe22q+LzwMyMC5AlfIcxhgRTImxOz4CuNhlXqI9FmeyrXdQmaU+opYFa29+s2mBRrOAQv+zv2FaFKYhXEoTys3YZXITLOBJMSah1egZQeOtnyLarrUxv+Ctkk9GsNuqSI9n9FJ5qba9HXpLXEoRPVNrFUQ0KFKSbu4W4NUSs4+B2fFktHgSRpKRgfNrUELcotsi0ZKPOWeOxvEoy42OwUblTKsGLFGk1QRAEQRAEQRBdA4rPOw3F51F8HkEQBBEmnCEQow0ZAz7nf4F3n0WhRIwGAAdOAmfmGlZt2HCqHDVSMVrg5fPmRqBcfP9nTy11/a8owHMfg7/xOLDtS8BWK8isAPlngl1zJ9goz8GxkUr/HAZIYgDuPuM5zC35AZnDfRP6RiJVEikRAFw/huH+6QxDejLwk8fBX33IPUNpEfjb88F+91JgjfhqOWDXiKXo0cdz2fHDnssiAHb2xPajJp63YH/xEAwo3CPM++9tHA8e4TgrL7rlGJUaISp3ns8wug/Dog0q9pcBI3sz3D2FYXxBiLd5w0fA+hWey/f9F/zDl8F+buDgeqkYLcX7uhLBA2tpwoBsFduPiKUy737H8fOJ0XkcVflzH6s84V9lomsJALS0AFUaZTbUAJ++I0777nP99Z/RB8L5T9uuZ2ndwK67C7jhPv1lykh13Z+uqV8KmX7invc47row8KqiGT0SlC/3AVMGh77+q0YAv5mqYEJhdJ7bRPTDOQcaJGK0FPGkhVooivxYDqJ/MGRonc99swCrGRibz/DoZQw90um8Jrom/E25sNUX2P8t0U5PTAHP6A5Uu5+YlzfIxdXFFRwT+3etc7Ohxfd1MpMA/txv5BnMFrCFn0plmOyBReC7NwNHD3iti7/xBHDWBNfzJr306APEaxmWCSI6ITEaQRBEBPHEE0/gvPPOwx133IGioqL25Zxz7N69G7t379Zcf+TIkXjttdcwevRo3XXm5ubiww8/xKxZs9xmOiwuLkZxsefsRv369cPq1atRVlamuw4ASEhIwLJlyzBr1iwcPXrUp3U7wzlHUVGR2z4SkZubi6VLl2LYsGEB1deRoUOHYu3atZgxYwaOHz/evrysrAz/+c9/PPKnp6dj5cqVcDqdPtc1depUbN26FXPmzMHWrVvblzudTuzYsQM7duzwWoavM4cSBEEQRDQhkp8AZw13OQAAIABJREFUYRCjOSVvpAnd6JGc+CtQIbo2ES9C8lFI5JAIAi0KidHCTYLiTYwmvlcE61j0JvOUCSlDfW5o1deo2mDRkGJ2ln4lKEkSMdqp7yBCtlmGvJ+hfY/UStcjGkk0iWdibVT9m1W00alvPdn1zBt6ZKrteUleSxA+IROjpZuzYGKm9s+Mda3AByI4bK3bgBpHpTBtcsYlsCrxIW5RbJFpycahZs/3J7LzPNjIxPaAXOhLEARBEARBEAQRLCg+Tx8Un0fxeQRBEESQcEjek5pM4uV+wi6eC/7us+hj/wkm7oCTeQ4dKy6PDTGaTIoGABlGPILWGqjae0D7nywxGezXfzWgwsiif3ft9A+32PGL4aFpSzCpkoQXPDyT4U+XdxjM/O2nYsHhhlVAgGI0vmmVPPHsSVBeXOu5TtlP4Nf0D6jedvqfbUw5bYy6wCUKBJBvP4RsRzkqzOIDasWO6BejyY4hwDVwftYIhlkjjL3W+wrfKJcgYMNKwFAxmiR+KEEcp+RGiliMBgD905ux/Yj44v7RTo6fT9TTuMhDdvxoitGOyOWnUm55CMqtD0uT1asLpDLQQGGfVYElhDZOj6VkgMPlYRvevBM74sXXufpmjpT46L4GBUJxhXcb0/IdHFMGB2cf/VQlXj7nHIZ3bhMLRQgiZDQ1ALJnjim+PxNUJJIcAOCqeBLpaIFzLj2fl96uYNaIrnudJYg2OOeAVp/cF3rp+B2Ym+8hRmMARjX9F9sSRnpk1yNLjTX8EaNloRb4ab80nc1fBqYhhGZmM/DAIvBfT9FVH18gngBJyMjzoSz8VH9+gogiSIxGEAQRYUydOhV79uzBBx98gDfeeANfffUVHA7J7FAArFYrLr74Ytx222247LLL/BqYduGFF2LLli34wx/+gJUrV7bPiNmR7Oxs3HzzzXjooYeQmprqc+AVAIwePRp79uzBu+++i08++QS7du1CeXk5bDabNDApLS0NX331FVavXo3PP/8cO3fu1NwfADBw4EDcdNNNuOeee5CYaPygmuHDh2Pv3r14+OGH8eabb7oFrLWRnJyMa665Bo8//jh69eqFdevW+VVXYWEhtmzZgtWrV2PhwoXYsGEDWlq0e9uDBw/G1KlTcd1112HChAl+1UsQBEEQ0UCLZGBtvBKcQbWJJm3JDOE/eiQn/gpUiK6N7NiSnc+hxtfrikwQaGYkRgs33qRWcilXcO5Z3qR7UmlgiM8NLSlZk7MRTkX++7/zuommJFQ5KgTlnPoOJNscKdcD2b731s+QfZdmZoFFifNab6IiEaPpFJx5tkffev4KT/XIVNvwRaJGEIRcmJRl6RycLn7+LHqmTBAiOOdYU7VcmGZhcTg/fUaIWxR7ZEoGlVTZPftKoUCrPxMpklqCIAiCIAiCILoWFJ/nDsXnUXweQRAEEUJEQiUAMBsc95GbDwCwwIG+9sMoiSvwyFJU3qYKiW6qNcRomkIZvRzxFNkCcMnsevQ1oILIJjWBITEOaJS84n+vqBt+EdomBYVKnVIivvLv4oxVJ8Ab6zUHP4vgqgp89i/wF+4D6iQmCQBs1PnihO69gLxC+XHqA2zuvQGX4caZ49rFaABwoW0d3k+7Tpi1JDyvsAxFJrZKsgJWS4Rca49qiLRKfgDn3LiJ0po8f8MBABJ1iNG6y62dF2aU4gMMFKat3AnYWjiSrBGyv33AVzEaLy0CSn7wuR424jztDCMvAD552+dyvTJ0bMilaADcpEWDWn6UitFKKoDhvULVqMhDjwSlpDx4MUFVNnHZPdL0rc9bW4DVi8F3fQu00GT3hMG0NMvT/BCjMUV+j1KjPPSurglwSNxuuTSvBNHF4ZtWg3/zMXBoL9BQG3iB3fOAPB1itMKzgF2bPRYXtJYIxWi7jkb5hcgP6jUu8zImH/5Anmi2AEPO8V7IwJFAUipgq/Oe1wchMht5vu68BBFtkBitC8EYSwEwEUAegG4A6gEcA7CLcy5XU/pejwXABAC9AfQA0HCqnu2c80NG1UMQsYzZbMbcuXMxd+5c2Gw2bNu2DcXFxaioqEBrayusVitycnIwYMAAjBw5ElarNeA6Bw0ahOXLl+PkyZP46quvcOTIETQ2NiInJwf9+vXDpEmTYDafvm2cf/75fg12S01Nxbx58zBv3jxd+RljmDx5MiZPngwAaGpqwu7du1FSUoITJ07AZrOBMYbU1FT07t0bZ511Fvr06aO7Pf4GRKWlpeH555/H008/jXXr1uHgwYOorq5GdnY28vLyMGnSJCQlnX5w6+/+Alz7YObMmZg5cyaam5vx7bff4vDhw6isrITNZkNSUhIyMjJQWFiIwYMHIysry696CIIgCCLaaJaI0cIlmSH8w8mdaOHenybaVf8EKkTXxcHtaOXiQQuRMvheKtOSiAMcXBwgS2K08ONNahVqEZm8Pa7AD6k0MMTnhlWJB4MCDs+34U2qTVOK2fl+Hy+7T6s22FW7VMQVrH6Dr8j2vTcRmFT4pvO7lB0rvgjI3NbT2S+yq/4JT32Rnfm7DQTRVZGL0XLcPsvCszi6XlAE4R+7bdtwvPUnYdq5aRcixZwe4hbFHp5CQxdhE6M55cHHkfLbjCAIgiAIgiCIrgfF552G4vMoPo8gCIIIIU7Je1KTsUO7WEISeLeewMljKGwtEYrR9EgwogGZTAYwRozG/0+i/erRF8xooV2EYlbkaV/W9g5dQ4KI7DjK6nwMcYntAQCOHgD6i6U7MvifbwXWvOs942U/Fy5mjAG3PQb+xE2ARITsQXI6kJENlBadXjZoFDB5lr71dcKuvh38rb+0f76v8lm5GC2Iwp1QIRP7ZEZGWJILbwPqv1sLnHORMXU1ysRo3uWBLCkVPKM7UO15o5qTsBm/kojRAOD8BSrW/U6JKjka51zjGuS5HXzfdvDbzvW9onOnAcMnaWZhc34L/vVqTVGjz8RZwW592LjyfCE1s/3Pxyv+hPfSZguzPbFKxYe3m0LVqohDzzW4OIihBr6KATvCHXbwe2cCO9Yb2yiC0IMfYjQoChhXwZlnB1uNcjNalZawOpL6QwQRYvjiJ8HfeNy4AhkD+/mjYCbvfRf2P/eDL3/dY3mB/YAw/8qdQLOdIz5SxM4hoEF7jhwPzkn4CTM3/kGazm5+ECzZu92VxScCN/8R/CV5WT7Tsx9w2a3GlUcQEQaJ0boAjLEJAB4GMAWS75wxthPAqwBe435GBjDGsgH8CcBsAJmSPF8DeJZz/qE/dRBEVyQpKckt8CjYdOvWDVdffXVI6vKHhIQEjB49GqNHjw53UwC4ZgSdNm1ayOqLj4/Heed5maWDIAiCILoIsoG1ViUhKPUlmMRP5GVCEkIfegUndg05DkGIiIbB91IhkeS8kEmiSIwWfmRyrXCJyGTtaVYboXJVeu8KlqhNhsIUJCiJaFQbPNKaVBscTHzMW1gcLEqc27JEmQzOaUOzxr061NssQypK9HKflKXr3a5ERTwTa5PT8zvRg80pCWzshEMiqvNG2zmlKy/JawnCJ6qkYjSxYIkg/GVN1TLhcgaGKRlXhLg1sUmmJVu4vMZRCSd3wsRCG9StJSuVPWshCIIgCIIgCIIIJRSf5w7F51F8HkEQBBFEHOIJ8WAKQtxHbkG7GO1TQXJJRXQPvG9DJtMwKUBKfGBl8/pqwFYnTswrDKzwKIJ5GRO9f8dBDBjeLzSNCQJaUqLMzlIiu0asw5ESn8RofN92XVI09qd3wLr1kKdPuRbIOgP8rqm66mVPvAvkDwVWLQYv2QU2YDhw9R1gcYHLoN3qyegO3mcQcPhHAMDwlu9xd+ULeD7rLo+8wRTuhAqZDMQIQaMR8IZaoPakdp6F/wv2zg/GVNgojjtiOsRoAFzXWIEYLalsH9b8VsFFz4klhdsOA+9/x3HrxOiROTS1Ai2S7oHo+OFvP6VZHltSBGxZC771C6C+GkhMARsxGbjiFy6Zota6+UOB1zaAr1oMvLNA7yZol/nSl2CDRhlSls+knJ6ULd9+CMnOejSYPI/BZdsBp8phUqLnuDESPdfgQycBu4PDYjZ+H8nuwRl6Qgm+/g9J0YjwkeLPxI8MClQ44SlG83fCh0gh2MJqgohGeG2l175bG2xJEfg1/bUzXf5zsAuvBRt1gb4yu+eBZ+YAVWVuy/u3FkvXWfpfjrlju0afiHMuFaOlJwLn9D39OTEOGJ9Ti18+PxqJvElaJrvpAd31s+t/C/TqD75+JVBx1CWqDgD26nqwDIr3JmIXEqPFMIwxC4AXAOiZ9u1sAK8AmMMY+xnnvNTHui4B8CYAb1fM8QDGM8beATCPc06j0wiCIAiCIAiC8ItmiRgjPlhiNJmwhMRoAaE1QLoj/gpUiK6L1rkpEyiFGpkUS9Z22XlgITFa2JGK0U4J+mTXumBJuWT3LA6OFrVZ3p4wSAMTTElCMVqj0waLRIwm2t/y+3SjtowjwkWJ3voZgX6XiSaxGK1RbQDn3GtAnN72dMbBJRF9XvCl36W3LQRBuDhpLxMu9xSjdY2gByI4HGraj6Km3cK04cnj0D1OPqiD0I9MjKZCRY3jJLIsOSFtj0xWamXxMDEKVyAIgiAIgiAIgiAIgiAIogvhlEwMaQrCs9K8AmDnBhS0lgiTi8Vz5kQd1Y1igUBGInx+3+3B95vkaSRGa2ftutKoFqPZWgC7U5zWUeLAOQeOH5IXdPKoT/XyDSv1ZRw61msWNnwS8KsnwV990Ht5eQVgmTnAjX8I/pvfM89tF6MBwCW2T4VitLI6oKGZIzk+et9FH6sRL48YEcjRA97z1FYZV1+jZGLFRHGckge5BcAPX3suP1KM4b20V/1sD3DrRH3VRALHa+VpncVQnHPgu8/lKySnA917gV12K9hlt/rVHpZXCParJ6GWHwHWvOdXGe1lPfbP8EnRACA10+3jpKZN+Dh5ujDr/jJgcBcMV3A4OQ5qOxNd+VTgcBVQGATXRnUAYkm+ZY2xjSEIvSSng5n9iN1XFDCIf7+oztgUozEGpAVneBdBRD47N2rLtdvofzaQnQfEJwLN4hsj+81zYFff4XsbzpoArFvqtkj2nAgA1uwB5nr/CRoTNNsBp9i3jNV3KRhX4P77lK/+CFww5qWdWb/0uQ1swkywCTNd5a9fAf7gdT6XAQC49i6SohExD0UaxyiMMTOAjwB0nibNDuBbAEcAJMElROvdIX0ygDWMsQmc80qddZ0PYDmAuA6LOYD/AjgAIB3ACADdOqTfACCVMTaLcy65bRAEQRAEQRAEQchpUZuFyxNMeqYI8h2ZwKhRMsCX0IdewYmdSwIDCUKC1rkZMSIkmchJ0na7RCRkJjFa2In3IrmTXeuCdSxq3QubVJv0GAuHNDBRSYLoIWSTaoOTiY95kURMKqfT2F7XepFxPZCKEp2SyJ/2dMl3GaAYzcEdsPNWxDHfZgRudGq88OuA3U/hqS/9LpLXEoR+Gp0N0nOms0CJScLjuSRoiyA6sqZquTTtosxZIWxJbJNplge5VNorQi9Gk4ntg/T8hiAIgiAIgiAIgiAIgiAIwhv8y6Xgb/759IKak0CVYBKZoWOB0VPA/ud+MGt84BU7JfYlfwbVe4HlFoADKLCLZTg/VQHNdo54S/SKiAD5AHyZTIMf2A3+/kKgaAfQMx9s+g1gEy8TZ9YQCbEJl/rY0ujF2xGy80h0vyes1AgtcDuOPnwZsNXJMzv0xzfympPAW3/xnrHwLKB7nr5CJ1wKeBOj5Z8J5PTWzmMgbPwM8NVvtn8uaJWfUxuLgelnhqBRQaKkXHwe9MkK/jWWf/sp+EeLgdL9rgXJ6cCoC8B6DwD//N/AsQPAAfHkVW7UngQvLQLr1d/3NhTtBP/geaD4e0B1AqVF4oyJKbrKY70KxREIG1chs3Qbzs0fgc2Sw+mDrRwPXcpxZm503N+KNESlvTM7LaipkEvnAGD8jMCloKdg42eAByhGw5gphrTFb1LS3T5e3LBGKkYrqeiaYrTSarkctDPF5caL0VSVS8VoGYnMJQNcsQh8/Qqg8rhnJj3XNoIIBudM9W89xqBwVdjB5jy6+9RVNrmwWlGi455MEEbCm2zgj8zRl3n8DDBFAR93CfDlh+I848R9GK/kFngsGtO0TZq9WPK7JlrhnOPldRwrd3DUNAHn5jM8dClDdgpDQ4t8vWTB8Am+6g3NugJ+TjTyfMCaALQ0+bwqGz8jsLoJIgogMVrsMh+eUrTnATzGOa/uuJAxdjGAVwDkn1o0EMBSxtj53EtvmjGWB2Ap3KVomwD8gnO+t0M+K4B5ABYAaHtrcxmAPwP4ow/bRRAEQRAEQRAEAc65dGCtVQnOlCIiCQtA0o1A0ZLVdMSu+idQIbousnOTQYFVMSBY1QBk15UW3gwnd8DE3B/dOSQiIRKjhR+ZiKz51L0q1CIyLSlWk2pDY4hFbVrIzoNGpw0ORSJGE7RTqxzZ9kbD9cBbP0Mq3dN5bGkdK43OBsQpPorRtGZC6oC/wlNf+l16+xgEQQBV9gppWpZFb1RjbAVEEMZT3nocOxq+Eab1TxiKvgkDQtyi2CXBlIhEJVl4X9Y634OF7P6tV+RKEARBEARBEARBEARBEARhOPXV+kQKu78Fdn8L/v0mYOGngctGJOIkZgrC0K68QgBAYWuJNMtLX3Lce3F0D1L3RYzGD+4Bv+P803Krop3gXy0DHnwDbPoNnvmPyvcdRl7ge2OjFG+H/aK6iXjJ7oTZYgpNgwxGdgwBQOapcCD+wfPgL9ynXZBDHOPSGd7YAH77ZO8ZE5LA7pyv+7rD+g4Gn30P8P5CeXl3/dUwaZIuxrsPDO9tL4WZ2+EQxLrNeF5F+TMKuqVE5zWpWPIKzmiJUGf4F0vAH/sZ0Hn45/eb/HqDz+eeCXxcDpacpn+d/TvAf30h0KQjTkenGE0kcGiv79cXYv793+C8A4OkeSbOV/H1HxQM6Rn5x9P1r6vC5bnpQKLVvf38H0/JC4qLB7vpAeMaNnkWMPZi/H/27jvOjeL8H/hnVtJVt7tz99nYvjPG9GIIzaETOtiUHzgkAUIgJkCAQPgmQAiBFGoghJJAgNA7JmAwmGLAuFKMbTC2z/3cfcXldEXSPr8/dLZ10jyjXZ3q6Xm/XveytTu7O5JGuyvtzGcx6/2EFldX3wPVIzrZLc2itn9x49O4tv+92qLhEJDsby/Jdsck53uKVLxGW1tid187lJcC9OhNwPP690yIjOk9EOrimxNbVllQzBHatnO7753bwGohujKybdA1J/Hh+JGG7w01bgIAQF18C2j+DGDz2o5lfnIj1MDhmoXjU5VVMXudAgQwpnUGPis8LKY8970mV133MuGBD3e9AnNWEN6ZT/jqFgtzVvDLdYsaXkIzJwMLZvILHDUWOPiETtVVdesJTPgL6IHr+BMknWPPDYeqCdHFSTBaF6SUGgXgmqjJvyGi+3Tlieh9pdQRCAea7Tgy/hDA/wMQL9r9NgBlEY+nAzieiFqittEK4B9KqVUA3oiYdZ1S6l9EtDLOdoQQQgghhBBipwC1wYb+R8IiSx9O01lcWIyEbnQOF1YTLZhggIrIX1x4YrFVAktZaa6NnjG8KuRHN2+PDtOCtv5z4LMKtNNF+nDvpb/9GJHuILIiY9tqYo9dGQlGY47bzXYTQqTvNKp7vbn3oMVu2hlQp9t2tuwPuNch3nHS38n30hTO57e3oxcqHK1nV30cBqMlGHjq5rzL6TmGEALYHNignW7Bg17ejh1FVR52BBXJ8WHDmyCmc9/x5WPTXJuur9zXB/5WXTCa4ZbjKcIdv1P1+40QQgghhBBCCCGEEEIk3defAPNnAPse3rn1hJjgJG8KbohXGQ6VGda2AhaFYKvY0Ko/vkX4zYnJ33Q6Nei7A6BM8xM0vfrPXaFokdNfuE8bjIY1y/QrP/0SKCs7+hqkg5Org5Nf/xKn/b9DUl6XVDAFo5WVAhQMgJ67J/6KmODDGB+9AtQaQvfaqSdmQ7UHHDplXXkX6NCTQM/cCSz/LrzP6T0Q6uQLgSNOgxo8wtX6Okt5vaBjzw0/ZwBehDA0sBI1Bfrn9d8ZuRnWaNuEZZkKRnvmTneD5p2Y8gIw9pfO6/DKP52FogFASTdn5Sr5YDS0teKIaX/G05c8i58+oX/uW1uABz8mPPLj7G5P21oIW1v087Rt59WH2HWpV5dAlSWvwamCQuBvbwCf/Q/03Wygrb2izU3A7ClA3Tpg6CjgwKMAKKB+QzgsYo8DoS68EWqvLDgmlPYMp3u2f0a6UROO8H+Oz0uOiClak/7L6Fnhyc9dBKOlICjFeAxW24DXHk5sxf13Aw4/JbFlheAoBTV8r/A5VUX/hNdhQR+ImeO5aHwwmnQNEvlozgfAd7PNZc69Emr3A4AxZ0CVhscMqWGjgMdnhM+/ViwEuvWEOugYqAOOSrwuTODwTevvwEm7TYqZvmFr+By1e1F2n0c7Ubed8MgnsTvXpZuAF+cQnp3J73i7R91Xnp4zBLUO3wvqT88n5XcidfYVwJ6HALPeBzVoTlBXLwmf31ZWA0UlUPscBhx+al79RiXylwSjdU03Aojcg33AhaLtQETrlVKXAJgaMfkvSqlXiEibNqCUGgHgZxGT2gBcFB2KFrWdiUqp/0YsVwjgVgCXmOonhBBCCCGEEJFa7WZ2XrFVnJJtFjPBIa3UghCF4NF0HhPxOQ04CVBiASoif7HBT57sucLG7VeAcKBPN0QFozEhUV7NXTRFenGhDjsCubj2aAql6gyf5YNPFWj3nc22H81MYFSq6mPCB4/6EbL0bb5I8znmPk/+UBMfHpaB58vh6tIcagIRsXfs7ex7WWLxHQ6dhpx1XCa1gaduws4kvFYI57igpHJfb1gOv+fkeN8skWLbgo2YueUj7bwBBUOwV+mBaa5R11fu64Pa1uUx0+uD6b+tYzadewohhBBCCCGEEEIIIUTC5k/vfDAaF5zkSUG/s0HDAQAFCKB/cAPW+gbGFGkLAsEQwevJ3QGvaxr00ytKNc9p6hv6wssWgFr8UEVRfRHW6MOr3IZV5bobT1b47avmq4HTFvhx2v9LU4WSbHWD/rmVlQAeS4FW1YQDf+KgUMBRiBzNmx63jPr94wm3MzX6WKjRxya0bErsNrLDwxFtNWww2rQluRnWWNsAtDK5l1V9Urd/Jf82oGZe8tc7bzqUi2A0zJvmvGwvh8FdldUdAq1itzkdJ16vYOqpMG1J9vdimLuan1fVt2PbIU2w507D9kxqKNoOyusFjhkHdcy4pK87HZRlgcr7h0Pc2u3VupAJRsv+9pJsrQF3z3lpCl4jLuAWAMrWfAO08uNFTNS9b0ENGRm/oBDppiw2GI1yPBmtnvk8l0vXIJGHaL75O5+69n6ocRP08yr6A2ddlrzbFzOBw9UBPqx76SZg/8HJqkDmzF4e/t1LZ9oSoM4wTKJHxLBUCoWABTPYsuqC3yQ1mEyNGg2MGi23sBYiisT/dTEqPELu1KjJDm5NARDRJwDmREwaBuBowyLjAURegXmdiJY42NSdUY/PU0oVOamjEEIIIYQQQgBAsyEYjQun6awSJrgF4Af5ivicBpwEEgxQEfmLa1tcCFMmuN2vcAGBXiX3Psg0NtTKboJNNppt/RXfVLZHbt1bg41sW8rE54MLxGi2m/gQDU09i5njv2k93DKZwO0PbNho5e9D0el9nc8qgE8VuFq3id92FqaWaOCpm7CzZtsPm/SdSIQQHdUF9cFoFb7YjrNcUCNJNJowmNr4DrvvP6H8LFhKLlknW7lX3/G9jglCTKVc+G4mhBBCCCGEEEIIIYQQ8dDcTzu/khAzItOb/BviqZLuQHk/AMDerd9qywRCwKr6pG86ZWybcMckG6NuCaH7VSEcfXcIr3ypv0Y1tHfHx2TbwFbDk23ueK2bgkFg3Up92TwLRjvnwPjDce/aMAahHA1zqGEunQzb0YaWL3S2Ii74MNrU1+OXOfwUZ+vKAeqosR0ej9s6kS375jeprk1q1BjuS1TdJzXbpGAAdNN5qVn5By+5qgc2rHJWuLw/MGI/R0VVaQ/g4OP5AnXr0Mfnx5gRfJFv1wIbt2b3fumxT/n6nXdQ1L63toZf0f5jklSjLujwkzs8rGrTh4C8/x3gb83u9pJsH37vrvySFHQ1qGe6AioF9Hjd0ZD4WMP3BgbvnnilhEglpaCY0M8cPZXeqYH5PJfrAquj0LoVsH93NuxT+sM+rifsCUeBPnZwzixEGtG3s2BffSLsEytgH9s9/HdcT9iXjwF9Ev6OQ8Eg7EdvAv77V35FHg8w5ow01RpAxQCgsDhm8uBALXwqpF3k27U5vkNq9/Vq/nk8M5Pw3Tp2Ngq8EfuujavN3/ejzjeFEKkhvcy7nj0BRP6E3wZgqovlJ0c9PsdQdmzU4yedbICIFgKYFTGpFEAO3tNBCCGEEEIIkSktTMAMABRZsT/aJYNpwK6bkA7RkdPXLtEAFZG/uLaVTYPvC61iKOZeHrr6B5mAQC7USKQPF7DVYjejxfaDmDt8pTQYzaOvUz0TfgPwIWWpxL0GzXYT/NznWFNPbj0tdjOaQvqwrmzaHyR6nsHu61y8l1wom5953UycLpNo4KmbMFqCjVabD5UTQuzCBSWVa4LRWNydmkXea7Vb8GnDu9p5vbwVGN1DOmmnQoVPP8qiPmAYmZEiLaH0hwQLIYQQQgghhBBCCCFE0s18D+Tf1rl1cAMpPSm6Id6gKgDAo+t+xRa57JncudnUzW8S/vAmYdEGoKkV+HQJX7Y6+jLXaw+ZVx4VjIaNq/ggu4HD49a1KxnaW+Gf4xWY+yftdP0ruXm9kAtGG9E3/ITpDxc4W5GDYDRauzy2rUVRN/0HqmeFs23mAFW1d4fH47e+aCz/1crca0c1G/V17tMd6FkSPwwkEXTnBOCLj1KybgCg5d85K7hqUcrpAAAgAElEQVR+JRDSByp0UNId6rZnoSznQ5nVr+81F1izFA+NN69v95vtrA1tnLmM8Owsvm7Hj+r4mP74E7asuuz2ZFWry1G/uK3D4xFMMBoAjH04d86JOmvFZsJpD7p7vss3A8FQcj9P9U369fXyBWDNih7m7kCvPlA3Psre9FGIjLMsWEx/crJzex/EfZ7L4nQNIv920ISjgWlvA9sagLYWYMFM0K3jQZ9PSn5FhUgArfwedPWJwNefhL/PBdrCf20twHezQbecD5rxLujeq4DnzMGe6pr7ofoMSlPNET7/HhT7G4YHNoa36IN3f/Kf7Dx/duvmiYk9jxcv63geQfddzZZV1/0Dqkd5QtsRQrgjwWhdT2XU4yVE1Opi+flRj0/VFVJK9QcQGdMfBPC5i+1MjXoscZhCCCGEEEIIx0zBaIUpCkYzhcU0G+ojzJwGnATtxAJURP7i2lYmgp84lrJQxARq+aPqH6IQbOZiqFcl/87Bwh0u1IFAaAzWsculsj1ydaozhGFkIpyCC/Dyh5rY46suiI57LcPvwWbtvGzaH5iCzEznGey+zsV7WeLppp2eUDCa7WyZYIKBp9H7xnjcBKkJkc+4YLTevn6aqdJ5ULgzfcsHaLL1A8WOKTtdzmVThAs2bAhugk3p7UzJHb/dBLkKIYQQQgghhBBCCCFEUu19KNSv7wPGnOFuuS8/7tx2uaAtb4p+K6+sBgAMCdaigrlu/tH3AOXADXDagoRHP3Fezx2hVjvQS/8wL+CP+i27lg9O0Q0q7uquONrC0j9bOKnfWrbM49MI/tbsb0vRlmzQ17m6H0B1652vyEkw2ltP8DMPOQHq1Rqoky50vs1ccf61O/9bSG2YvvyHbNF7p+ReG+LC9ar19zHqNGrcDEx5odPrUXdN5LfxyoPOVrKG31eqq++B+vV9ULe/CPXyIqj93d0wSw0ZCfXOBr5A7VLsPUhhxV/54dFbW4APF7rabNqYjmnnHAhY1q7jGAXagFp9cAUqq6G69Ux29boMVdYXOPbcnY+rDMFoUxYCS5mgw67mic/dP89ACFjdkNx6NDDdIsuZ89Yd1K/vi/3788tQz8+H2vPg5FZSiGRSig1Gy9IcT8fqma665fG6Bk19HahbFzudCPT2k52ulxDJQG89EQ5BYwsQ6Om/Ae89a17RxTdDnXVZcivnRHtofrSqtmXsImsbc3un9M3qxOt//KiI83AiYOZ7bFk19vKEtyOEcCdFtxURGRQdK9nocvno8oOVUj2JaEvU9L2jHs8jIjejzKZHPd7LxbJCCCGEEEKIPNdiN2unF6hCeJQnJdssMgSuNYckdCNRfoevXSDBABWRv7i2lYngJ5MST6k2uCd6vxIkvvOcT8IkMq7Yow+4A+IFkfHLdRa37nom/AbITDgFF+DVbDchRPpO4brPsemzzQX+ZNP+wNQWuPMMIuL3dS7eSzYYLYFQMadhaoEEA0/dnnP5Q00o96Wop6kQXQQRsfvJcm9ssBIXi0bI7Y4QIjVCFMJHDf/TziuySnBkzxPTXKP8UcEc/4IUxLZQI3p603enQu74ncpzYSGEEEIIIYQQQgghhDBRw/cChu8FHHceaNpbgNNgsGXfug9Ta0dEwIbV+pkpCkZTlVU7r+AMC6xEnbe3tty6LcDAXimpQtIs3QQ0urh3aXXEZS4iArbyN7UDAPijbvKyhhkgXN4fqjh7+hqk09DeCrcf24jJLwzUzm9qBRZtAA4YkuaKdQIRYYkp1GrJXOcrcxCMhsVfs7PU9f+E6jfY+fZySOS+CABGti1myy5mguqy2bJN+jpX9XF20zFq2AgUd4MqcnjtrOYbPmjTqYHDgD1G8/NnTA6HcREBWzYDBUWA1wdV2qNjOW5f2Xsg1LlXda6OAFT3XqDBI4DVS2JntoeyDalQ6N8DWL9Vv45pNYQT98q+G8DNWcG39ZEDouq7lg+tyMewTtcq+u/87/DAchTYrWizCrVFv1oFVOnvQdZlhGzCHZMS29eu3wIM059OJoQLUipr5fu4qstuhzrnV8mrhBDppCwo6I/hdo4mo9k2Ye0WYJP+nplxg9Ho+y/4mUvnJ14xIZJpoaGd7rBgZtwi6tCTklCZBAwdBXwW24dzj7bv8Q5O1i4yd3X2/05kYjrXNlEKKC+NOBevNwQ1j9gvoW0IIRLDR6KLXBU9Ulz/LZ2nK7+ng2lM7DwrOl5dtw0hhBBCCCGE0OKC0YpSOKjWUh42HC2R4BARpguE0gkYQqGE0OHaVkkGgp9MuGCm6P2KKRjNK8FoGWcK2DIFkRWlMJiLC8aqZ4LaLFgoVEUpqw+He+2aQ02uPscJBaMZAu3SzacK4FX6+5hw5xlt1AobIe08LnBOh90POQw528GmEJptZz3REwk8DVIAbdTqahmn5xlC5DO/vR0tzGe3wqcLRsu+DsMie329bTp7HB7T60dZdSzuanTBhjtw70mqcOcHmQjlFUIIIYQQQgghhBBCiEiqrA9wyAmOy9OcDxPaDn3wEmjsMKCtRV/Ao79W3GmDqnb+99ytr7LFlvL3e8saN0+0HZftWQz0jrw/2MZaoDnOtePmjtfHaU30kKd2lVX66XnigAMGYvdWPtTq61W5FeiwcRuwnemGMKKfAmqZdqATdBBUZQg3UgOGOt9WrhnU8XPT02YSrAB8ubI9zDCH1DD70HjhSjTnA9jnjQSdMRh0cl/Yvz0LtK3BvMyqRaBrT0mwphFOuCB8DORsXgs6tjvouB6gccNBpw0EndQH9pXHgSJCPmnGu/rlByVxX8msix69CdT+uRv/A74fwx2TCD9+3EZTa/a0K9smLFzHz7/g4Kjns8gQqnjShUmqVdeleuy6aVgxtWDstjfZslMXZ087STYiwh//Z6P3teZzqkG9gALm1JQLMkvE2kbCzRP1r7cpGA3HnZu8SgiRbkrBIv1nMMdOf0BEuGOSjd7X2Rhyo41FTHZQebyuYW/8i5/X4iIZW4gUobXLgXmfd35FlVXAKEMwcQqpE87XTh+/5SV2mZnLcmynFGXSvMTqf0B0VnnNN2xZdfS4hLYhhEiMBKN1PdG3MRngcnld+ZGaadVRj1e53M7KqMcVSqkyl+sQQgghhBBC5KmWkP5Hbi64LFnY8BYJ3UiY82A09wEqIr9xbcsUnpQJTgOJTOGAEoyWecWGYM76oL73m08VwGel7r3j6tQQ1N8FudhTCqXSH3bDBWK0UguamGAu3efGFKyyJVjveD2ZopRyfZ7RHOKPoW6eW4mnm3a633YXjOY0FA0whz2y62fO/4zLyDmaEHGZApJ6+/qlsSaiqyEiTKl/QzvPAy+OKTs9zTXKL6We7ihQ+vtncUG5qcKG3WbRuZgQQgghhBBCCCGEECJ/qRsfBXY/wFnhbz4LD4p1gebPAN32U6DOkIDiTVHfgYgQr2vqH2SLLd2U3QNeP1xIeIPPhIlR3Rcd+j/QHx2ExkQHp61hAqySGfaTg6xeFXi14TJ2/qVPZ3dbiraECXAAgBF9Aaqtcb6ykLkfBAWDwLrooXRh6ld3Ot9OLhocPQQReLn2Arb4Qx/nTjsiItQwl9yrDcFotGYp6IYzgXUrwhOCAWDGu6Cb9aEFAEBtraCrTky4rjsdczbUT34LAFA3PeFu2W+mgX5zKogIFGgDZr6nL5fMEElN+9mBnvozAOCPp5v7vL0wm/DLZ7OnXf3lXb4uVx6rsOfAjs+Hbr+IX9lx5yWnUl1Zj45Dlh/Y8Bu26CNTCbadPW0lmR6eSvjT24Qt+nvT79SrhA8yqm9KzmtDRDjtQT6grSzUqJ2uLrsdauCwpNRBiIxQFhT0n6Nc2/f8+1PCH94kNMbp1lteyh+j455rN7vrwyxEslEoBPrF4Z1fUf/doP78SkbGaQCAGrandvr+rfPYZe6YlFv7pEitAcKbfJ6Z0fO/6Bi9RNefwRcef31iGxFCJESC0bqe76MeD1JKVbpY/jDNtJ6aab2iHru6tTgRbQcQfbsb3XaEEEIIIYQQIkaLrb8ql7FgNEMwiTCLDn/iBGwJRhPu+JnPJRfClCklTH2iwwOCNt95LpXhWsIZn1UAr9LfJo8Lnkh1EAR3zCLoO5RkKpjCFCpnI8QsE1tXj/KiUBVpyxPTkSDbwjjcnmf4DaFfbvZ1JRYTjOby/MbpMR1ILPDUTfDaDm6fgxD5iAtG88CLHl7d/Wz0nTO4fa3IX4v887C6VT9o6JAeR6GXt1w7TySHUgrlPv1d3tMZjEZEbLip6TxQCCGEEEIIIYQQQggh0kX1GQT1+Ayo5+ZBPTMX6qNtQEl3tjy9+4yr9dPbT8Yv5NH3N+i0iBAvD2wc1PyVthgX6pMtnvjc3XWoEX0jQtGIgAUz4y8UPeh+zVJtMTVouKu6dEV79rdxwvYp7PwNW3PnuuGSjfq69iwGencD4CoYLWiev3E1X2b0sc63k4v6VAIFHW/oc4R/Blv8P9Nypw2t3wL4mS4w1X0MQSCTn9O3h6+mgurW6xeaORmoZ+Y5oK66G+qN5bD+9DxUYXtf6wN+6H5FKxeF96szJ/PbGpi8faUyBVK+/SSICN2KFP453hw08cqXhK3N2dG2np7B1+P2M6JC0bj2AAAHHZOxgI2c0qNj34TeoTpcUf8oW3y6/hQg5z3hcN9aUgCUM10P691339P6ehUwdzU/v9xu0M+44LrkVECITFEKFtOHO9eC0Zx+R+P2JwBAk581L9ziB9l8iKIQKff1J8BW/c3ZHRs8AurFhVDD90pOnRI1boJ28kWNT7OLfLc2t/ZLO0yan9hyxb5wQPoOtE0f1AoA2OMgKG+KfssTQmjJJ66LIaL1SqlFAEZGTP4JgL/GW1YpVQpgnGaW7qpO9Gi5OFnhWs0AIkcr8lePHFJK9QWg7+XPy+9btgghhBBCCJGD2GA0T2oH1fIBRkm60peHTKEukYJkvqOiENGig8V2yNUgJFOIkFdJMFo2KLZKsS20JWY6FzyR6pA+t+vn2mKqccdWE+65FXtK0RqMvheD+/VkSomnFNAc7rhjpSmY1c2+jnsP3ASdAc6P6QAQMIQ9crj9OgD09JZjSzD24rNpGSFEWF1Afxv0cl8fWCr2/kqGrttJq5PoGqbUv8HOO778rDTWJH9V+PpifVttzPS6YPpGuAWoDSHoB/lk27mYEEIIIYQQQgghhBAifymlgCG7huDQqNHAlx/rCz/1Z+Dnf3C0XtqwGnjnv/ELpigYTXXrCerVB2gM91sYHliGL4sPjCm3LH3300jIN6vdXYeqihjIirp1zhaKCEYj2wbWLteXMwX05IvKauz9zbeY0u0E7ewFa4B+PdJcpwRs8RMbwFXdN7xfICYgTysYpx/EWv0NhQAAA4c5304OUpYFGjAMWPn9zml9Q/z1qg1b01GrzmkLEuauBibN5/dP1X3ZWcD3X/Dz1q0AKvrHTl8aZ4T/2MuBN/6ln2dZwAkXQJVFDbnsMygcGuUy8IFeegBoMFxzrNrb1fqMqvfl59WtA7bUAb16Y99BCqZ+C21B4IXZhJ8fCXg9mQsTIyLUMplPANCzJKpuy7/jCw/bMzmV6up6xQ413qd1AVv8m1rCkSO6VuBcyCYsWOus7P6DFRau03+W6pPQFa+5jfDIJ+Zzu+o2TTDpiP0kgETkPsuCxRyriHKn751tE+ascFa2jyk1It65DQC0+IES/c2fI5FtAysWOv/+J/JH/92AyurEwmRr5nV68+rE8VAeT6fX0+l6VO+r3fvsbTgnmr+GsOfA3Dsnmleb2P50x+8AO0V8f40xePeEtiGESJx8E+iangVwe8Tj3yqlniaiNXGWux1AT810J8Fozkcc7tIMoMywzkRcAeDWJKxHCCGEEEIIkcVamCCyIqs4pdvlQmP8hmASYWYKdYlkCoUSQodrW5kKf+KwgURRYT6mcECfKkhqnURiuGC0uoC+E1iq26LbEMDiFIeLsttN4HXgnluxVYJG1KV026nkNChxBy6IzKt88FnO9wslHv3Psn7bZTCaiyC1YALHde51UFAo8/bWB6PJOZoQcXHHqQqfqZd2rNzpmiXSobZlORb652rn7V06GgMKB6e5Rvmp3Kv/HNczn/tUMAWnZtu5mBBCCCGEEEIIIYQQQuxkdW7QKvm3gW69EJg52dkCqRwkW1m1KxitTR/29eIcwvO/SF0VOsO2CUtdBreNiPx5/Ls5zhZqjvg9u24d0Kq/cSsGDXdXma5oUBUu/uRp/L3iGu3s178mHDcqewdPExFue4tw+yQClz8xoq8CNTcBtUkMRlvDBKOV9YUqMSVGdBGDqzsMLFcARjd/iS+KD4opun4r0Ogn9IoOiMoSkxcQLnjMxhZmNwEAPYuBctOlsHUr+XkBfZ8aeukBfpmCIqiLbwYt+xb4Zlrs/CNPjw1FQ3to3Sk/A178u6GyGp/wN8kCAPzgRHfrM9nncKC0B9CkT8yj+66G+tPzOLwKGNkPWKS/NxwAYMJzhD++RZh4hYUfDM9M+3pqOqGF2V2cqMk5I8O5hDr14iTVqovTHLvP3foaJgz4p7b4VS8QfnoYoXtRdu6DErG6HgiEnJUdf4jC3z9ITTDa87NsXPgfcw+jIrsZ47ZOjJmuTr2ocxsXIisoKOYE1LZzp/edKeAzkscCdivXzyMiYNrb8VfS0hQ3GI1Wfg/6v3Huzt1FfqneF7j7f1C9BzhehPzbQA/d2LnterzAiRd0bh3JcszZwF0TYiZfsOVlXN/vLu0iFzxGGHsAocCbW+dEbn9D2mFgr6gJtZqg1nZq7OWJbUQIkbDYW72LruCfACJHYfYC8K5SahC3gFLqOgD6X6UB28E2Eznrzp0zdSGEEEIIIURWyVgwGhMa02wY6Ct4QQqgjVodlQ0YQqGEiBaiIFpJn+FezASRZYrTICRTMJpX+ZJaJ5GYIuYYsTWkvwLMheIli9u2nqlgiiKrBAruLphxr7Xb55B1+wOX5xncdLeheCUWE4zmMlSsyUUwWiLHdS5YpcgqQSkT7ibnaELE5zoYLZE754m8M6U+tpPqDieWj01jTfJbuS92cAMA1AcS7P2TAFNIabadiwkhhBBCCCGEEEIIIcROlnmoFdnmITb0r1uch6IBwFaHI8sTMahq53+r2phgJgDTlmTn8J7aBqA16G6Z6r67rmfRTec5Wob823Y94AKsgHDQXJ5TldXYs+17dv4jUymrgx3e+gb409t8KBoAVPcF6MHr3a04TjAace0qX8L2BsV+dv679hK2+HUvZ2cbqm8ijHvEHIoGhNuQYq6tk20D61bwCwdjg9GofgMbDAYA6v7JUGV9oW5/ETj4+F2Bm14fcNRZUL9/nF/2sj8BZ/4CKExS/+sxZ0B5k9efUVkW1FNf8AU+fg009zNYlsJ711g4Is5uesNW4IyHbLQF09/GNmwl/Py//Hb/87OO5x9EBBgC8VT1PkmrW5fWd3D4sxChl70F+7XMYxe55c3s3AclqsbBvdPKSoCnL1E4aqRCeal+/9XQia54NRspbigaALyz6gwMCdbGzhgXG+YiRM6xLFhMXIPp3DTbLHF4P8ahFYCPC1Sa9Z6zlTSb+yUTEegP4yUUTZjVzAPd9lNXi9Bjt5oL/PiGcHgvZ8BQqHvegho4zNV2U0V16wl1f+zvVP1CG1EWir0x+Q4PfJhDO6d2NRv1dTYGVwPwRv0USKZgtH0Oc1stIUQnSTBaF0REjQCifx3cB8BCpdRdSqljlFIjlVL7K6UuUkp9BuBeYOcIxOhvjo2azUSfTSby61f0Ms5HzgkhhBBCCCHyWout71VQZOkDRZKFDTCS0I2ENIf0AXc6QdLfBU8IHVPbchsYlGpcGED0fsUUIuRV3qTWSSSm2OUxKNVBZK7rk6FgCktZroJNLVgoVEXaeW6fQ9btD1yeZ3BBI65fB6a833b3c62b8oEEjuvc8y3xlLKvHRemJoTYxW0wGhdmSbnUO0ukVF1gI77c9pl23tCi3VFVrLnNtUgJUzBauj6zpt9Lsu1cTAghhBBCCCGEEEIIIXZScYZa1a1jZxERMOVFd9vzFbor74KKDEYL8IPFn56Zndd6ahK410d1+8/j1BonuShS5ID7Nczr1L0MqnuZ+wp1Ne3hcD9tfIYtMmt5uirj3vOz47f1EX0BzHrf3YrjBKNhLfOiDMyPYDRVWR0zbXjbcnhIn3z44cLs3Ce98TWhxcG9AKv7GG44tmkN0Ka/6SsAIKDpU/Pxa2xxdcPDOwfmq7I+sO6bBPXOBqiXvod6dyOsO16CMoQ2KF8BrOv/CfXuRqBvJV8vh9ShJ3V6HTHr7L8bMGI/dj5NeQEAMKRC4bMbPTh2D/P6Nm0DPliYzBo688oXfLsuLQQG9oqauMJQyZMuTE6l8oDyeABNKMl5W19hl3luJnWpfjBLN/HPpeF+C6vutLD57xYuPDR8DlzGXMqvb0r8NXnBwfH395v/hh82fx4zXf32ETZsUoicohQU9J8FO4f2OUuY0KFo1cx9WQGA3uW/S3TQHGe80dIFwLJvna1L5Ld500DbdHEpseL9rqOuvAvWL++AmrQe6uVF4fPuyL+JK2G9vAhq9LHJqn1SqIOOAXr2jpn+ky3Ps8s4OX5nGy4Q9m/jFFoe5n/v229w1LnGaiYY7dhzEqyZEKIzJBitiyKi1wH8GugQH9wdwA0APgLwPYCvATwJ4MiIMv8A8GHU6nIpGO1hAHu7/DszCdsVQgghhBBCpFGmgtHY4BAmqEOYuQmUC9gOepMI0c4UhJOp8CcOFwYQ/RyCTDCaBQ8s5Ul6vYR7boMdUt0W3QavZTKYwk1diz2lbCcX9+F0qT1vcIsN92LOM7h9nfv3vpt2epACaLNbHa/HH3L+8y63TzOu3/B82ZBJOUcTwoiIUM8Go/Vzu7bOV0h0CR83vAWbubvpCeVjpbNqGnEBh63UgiZ7W1rq0GzrOyha8MCnCtJSByGEEEIIIYQQQgghhHDNE6cfxppl/LxVi4BtDe62t/8Yd+XdqNwVjLZPCz9gfPH67LzWU+Nw0P0Ou1UAfbq3PzC9T9EiQoqIWy7itcxrw8I3wRnd8hVb5Lt12dmeAGeBWwcNJmBjrbsVh/QBXzutZdrVoPwIRsMeB8VM8iEILxOMtnk7YNvZ146+43MxO6gyBIFg9WLzwpqQPVr5PV9e89qqku5QA4dBFTnvG6V8BcDR4xyXZ40a3fl16Gie504rF3V4eOwe8a9Jv/dt+tuXqf2M3g2x19JX8O+7GnlgkmqVJwbFHsMPauaPY3VN4f1QV8E9l4OHAj1LFCrLFJRSoFAI9O1slK+coy1f34mueAsd7D9Hc++JtHfRVSgLFtOnqimQO3EfS5jQoWijhxqOx6uXOFtJc5ydcc03ztYjhG0DDQ4bb8NGYEsdP7/9vFR5PFADhobPuyP/KvonocIp0is2GO3A5q/Z4vNrCXaLIdQ5yzQ0EeqY85XqvgoFXoUDBuvnjzsgap+1apG+oCb0WwiRerlzpiRcI6J/ADgZALPn7WA7gF8BuAbAoKh56zXlt0Q91t9ynKGU6obYYDRnUasGRLSRiL518weAv+2NEEIIIYQQIiu1MANri6yilG6XCxppcRHwJXZxEygXIM1d8IRgmEL3Mhn+pMPtV6LDfLgQIZ/yJb1OIjFFHnchW6lui8Uu6+M2TCuZuOBRbVlDPd2GzWVdUCIX7sWc93ChX27bVolHH4wGmIMmY8q6CEYLJBCMxj3fYquUfc5uQliFyEdNoW1oJX2nBS5QiZN9XdJFJvhD2/F54xTtvL6+gdiv2yFprlF+Kzd8jusDm9JSB/Z8xRB2K4QQQgghhBBCCCGEEBmn4gy1WqMfgkKLvgJduJ+7bR1+ClTvAe6WcSNiwGa5zQe21aTnZ2PXuEH3hw4HTtk7dvpVx6pdvz/X1jjfUGvETcOY9xcD8yTAKg5VEk6eu2DLS2yZP72VnVcPX/2SHyS9w/GjgFH1s9yvXBNmtQMRsUF9Kl/aFRNq8/PGp7TTmwPAuuiRi1ng71Octe1q5jIdtfhB155iXjig6Stbyw99VLvv76hOTqjTLwEKOtEPe78joUa4PA46pM78BT/zm2mgiM/gzw5T6B7naTz4EeHfn+rDaVJlqSHs88pjYs896PVH+JWdeEEyqpQ/NOGmx/qnordhOPPYh+3w/rsLqNd3P0RFRJc7am4C/e5s0C/HoOyTZ1ytxwknYbcnb58cO3GPg5K6nxMio5SCRfpjz5WfDMequtzY59RsiF/PkgLgkiP0/YKoxQ8scRho1sKfvNOWOtCff+5sPUIAcNLLlWwbdMOZfIG+lcC+RySxTumlLrg2Ztq4bRPZ8iFSmP/Ln4LqdFEz2Wep4betHd/Rrjw2dt90RBVwwJBdj6nFD9TM065HSTCaEBkhwWhdHBG9D2AvAGcD+A+AhQDqAQQArAEwDcD1AEYQ0cMU/ra+R9RqvtCsOjqOdzeXVYsuX09ELm+LI4QQQgghhMhXzXazdnqR5S4Exi0uNMZNwJfYxU1YCRcKJYQON/heQaHQis5pzywumKmNWju0e+4z4LUkGC1buA0WS3UQmev6ZDAkrMhFXU3HereBYKk+b3DLaVDizunMcdTte2kMRnMRdubquG67Dzzl1l/iKZVzNCEStDmwgZ3HBaMpSJCR4H3a+C4btndc+ZmwlCfNNcpvPTy94FVe7by6gMM7YHYSF7JanGXnYUIIIYQQQgghhBBCCNGBZR5qRZqAGiIC3flLd9s54+dQtz3nbhm3ooJA3lw9TltsbSPQ1Jp9A/G5EJnd+ym8fLmFXx2jUFkG7DMIuP//KVx7fMS1LDfBaIHIYDR9gJUuVCVfqb+9hjK7EaObdcPNgNUNQENTdrWn7S2E8/5lDkG6dIzC6xMs0G0/4Qtd+Fv9dEMwGho3A/5t+nmD8iMYTSkFdcktMdNv2/QndhkuGLlJDh0AACAASURBVDFT5q523qar+zDX1d/6T/yFdcFoXGDjxTc7rpMTaugoqAfeA/b/IVDEXM/zeGP/yvsDp/wM6s43klqfDnUbeSAw/jd8gfdf2PnfQWUK035r4YRR5nX+6nnC2sb07au4ENLRuwFnH9SxzVBbKzD3U/0Cg4ZD9ShPcu26NjUo9hhugTC/7kfsMtOXAp8sTmWt0qeB6UJXXhrR7v73ODDj3fD0UL22fH2CXfGIKO4+ffmSEfAhGDNd3a8JSxMiVykFZQhmumlidp0/c0yf59JC4JiRwCc3WBjWmwlGe+4e5xtrNgSjxVuP7pxF/vLgz9A/0Ung6ZwPgMVfs7PVk3Ny+2agp/wsZlIJNWP28sPZRX4ZvAb0yO9TWauk4YJYi3zAwJ7h/198hIV//0Rhv0pgQE/gosMVJl1tdXhf6dm7+Y1IMJoQGeHNdAVE6hFRCMDr7X9GSqnBACojJq0hojWaogujHrvdi0f/cvudy+WFEEIIIYQQeaw1Q8FoJUzQiJsgELGLm9ctQG0gotz+EVmkDTf4vsgqgRXvrr5pZgpyag750d0b/gU+wIQIeZUEo2ULt+EOqQ4icxuM5jZULJm446vbsm6ec5FVDE+WhbO4Pc/gQr+S+d67CUZzUzaQQOCp6fnKOZoQiakP6nsp+VQBenjKtPP4YLTc6JglUidgt2FqwyTtvO6envhBj6PTWyEBS1ko8/bGpkDsHRvrA4bbIyZRS0h/y+hUhwQLIYQQQgghhBBCCCFEp8TrW6ILqFm7DFjyDb/M7gfA+s/MztUrAap7GahHObA1HHAxqvV7tuzSTcC+lezsjOAG3Vf1AUoKFR68QOHBC/RliAsS0mkPRiMiNoBIF6qStwaPAACctP19fFE8Wltk0nzChYdmT1+/KdGj4KI03G+hZ4kKhxzWrdMXKu8H1b2X/sqoKRhtLRO2B+RNMBoAYPf9YyaV2Y2oCNahzlsRM69mI+HokdnThl790vk18ao++un0cdyhnUCwYz9BCgaADau0RdWI/RzXySm196FQD05J+nqTQZ16Eej5e7Xz6NOJUKf8dOfjfSoV3rvWg7sm2/i/1/XvXcgGJs4lXHF06ttZW5Cwsk4/7+ZTNecdXCgaAPzgxORUKp8w4aZ9Ns7H/vvamLtGf+736pfZtR9KVD0TVloWcdmepu7aP5XZDdryDX7AtgmW5e41qW8CtuiHfuw0OKgZwn7AUVClPVxtS4hsppSCl2IDAHd47SvCUxcTPC4/Y+lERFjBHM9evEzhvNEOxmnMet/5Bv2GfslTX+PnnX8trF/9zfl2RJdB9RtAZw5hZsY/n6ephqDf3Q/I+XBapRSoel+gZl6H6Qe0zEUPTwu2hopilllaMBx47zng5ifSVc2ELWf2T1V90OH85dIxFi4dY1jRFx/y8yQYTYiMyK6RoCIbHBf1eCpTbkHU432VUm5Gfx4RZ31CCCGEEEIIwWqx9QNri6zilG6XG7jbYjfDJvPdBEUsLuCEEzRcCBIiUjPTttyEL6VLiacbOy8y0Idr/z4JRssaroPRUhwGUWgVQbn4+TfVQW3Gbbt4LUxl3TyHVIepJqKIeW7NdlO487Vmuo7bfV2BVciGLLoJFvPbboLR9GGPJqbny7WLZiaMRQgRVhfQjyQp9/VxHUhMEoyW92ZtnYqtoUbtvKPLTkWBVZjmGgkg/HnW4YIRk40Lrc7kuacQQgghhBBCCCGEEELE5Ylzk61aTXDWoq/Ny+x7eOL16ayIgbtDAqvhZW5kNXd1dl3vsW3CUuY+HyP6OljBsu+cb6ytJfzv1npg+xZ9mXwKsIpnYDhg5kj/52yRj/gMvox4fhbfv9PnAXqWtF8f3bwWCIX0Bcv7AV6mr5YpGG0NE4xWXAqUOWnMXQQTLlgV0IcRZlsbenues31kVR+gf09m5nez468gENWnZv1Kvk3m26D8gYb98Hp9eNwR1ea+D1O+Tc+xb0UdYDObqtbtBlYvYdel9sngOUWuMoSbHtGPOe4DWLIhu86NElXPdAEsj7xsH9HmykP6YDSi+AFnOlzQ7Q4XNj6nn5HJ82chUmR061fsvJYAsLo+jZVx4auVhL+8Y+O+KYQW5rS3ssxhf8OFc5xvuD3AOhq1tgDrVrKLKdl/5C9Tv1cnh/XP3uTndZV2pTkvUgBKqUVbfLO3D5pVEYj7TpJF6pihDIN66afTwi9A//0r7Aeug/3oTaDP324Ppl7Nb6RX785XVAjhmgSjiWg/j3r8uK4QEa0DEBkH6gVwpIvtHB31+F0XywohhBBCCCHymE02Wmz9VbWUB6MxA3cJxIa1CZ6bsBUACCYQoiLyEzv4PsVBVIkw1SkyPDDIdErlwoxE+rkNd0h1UJ+lLFfHxZIMfj5cBaMZXjc368nk8+VwdQpSUBsklsx9XYmlD2n0h5yHnbkJPOX2aSbceUORVcK2Cz8TKieECNsc2KCdXuHNo873IilssvFB/UTtvAJViB/2OjnNNRI7lPv0n+f6ADOSLMm447fbUGEhhBBCCCGEEEIIIYRIKxVnqNWapR2uQ1LDJtCtP+bLd+sFNfbyJFXOPXXpH3f+34sQhrct15a76EnC5m3Zc3117Rawg+6r+5oH3ZN/G7BghvONtbUPuNeF3u1gCFXJN8rrBfb/IY71T2XLPDWd8MWK7GlPr/EZFLAim5OhDahf3MYHo4UMN33lgtEGDnd9w6qcNmCYNqhgRFuNtviLcwizlmVHG3pnPmFerbOyvztZad9XWvatuZ3sEIzqI7TGsF8aOMxZpboI5fUCexykn7l2ubaP0OFVwNG78+t88xvg85rUt7N/f6rfhlLAcM29ruj+a/mVjTkzSbXKI/13Y4NvJ9Q/zC5Wk57L6ikXLxiNtjUAW+p2TQ/xyUzfrnW//ZqN/GesxG7C1Q0Pxc7o1Qfq9Oih7kLkvgmNjxnn16TnPoeu/PtTG4f8xcbNEwk3vMp/nsscdAWyH73Z3caZYDRjeFVRCXDYKe62I7oQ0/cr8zkfffxah+NhzJrH/jLBOmWZSv1vG7fY/2EXebP76UCLu/F/mcCd81R003w/e/Uh0OVHgh7/I/DqQ8Bz94D+72zQ/40LB6brnHB+fn2HFyKLSDCa2EkpdSQ6hpstIqKphkXeiHp8scPt7AHgBxGTmgC872RZIYQQQgghhGgj5sdthIMxUskUNNIswWiuuQlbAYBAAiEqIj81M+E82RiMVmgVQTE/0UWGCOhCkQAJRssmbttXOtqjm/A1t8FuyeSqnobXLVeeL8dUJ12oCLuvS+C5ca8dF76m0xTa5rhswHYfdso93xKrlA2VI9hoZe5gJYQA6gP6nlQVvn7sMorpOJId3dFFpszbPhsbA/rOIIf3PAGlnu5prpHYgQs6rGM+/8mWzPMVIYQQQgghhBBCCCGESBsrzlAr/zagcVdSBr3+iLG4emQq1JCRyahZYo49p8PDqgAT0gTgUSa4JROW6O/xAwCojnefnzfNgQMxAu3XsLkAouJSoJy/hpaP1DV/hwXCNXUPsGVuesNOY414yzaZ27Un8iNfqw/pAgB1+CmGYDS+byOtZT5zg4Yb69XVqMIioE9lzPSqNn6f9H+vZ74NERGueclcjz0HAGfuB7w2wcIlR+qPIXTvVc422BbVR5oL6+szCKowtTeTzkbq6nv1M5q3Aw2x10CVUph0tQWfPhMLAHDja6ltZ0SE+6bo90ODy4AiX8d+GNRgSOM66qzwZ0m4orw+YMBQ7bw93v0z/jpW3xdmZR3QFsyec6NEscFoO4ZdRAV4loca2HX94U33nxdT0NPUlSfgwJa5MdPVvz6F6jfY9baEyHaHt87BtOVHsfNr4py3ptv2FsL1rxBsB9WKF4xGm9cCz93trgLR50U71nXHJewi6tWacJiqyE+m0CrDjbYpFALdNYFf7ZV3QQ0xpO3mEMWEvl+0VhNU2u6SAf8On29nuYYm/XscvX+ibQ2gR36vbxOz+MgbdcktnameEKITJBhNAACUUiUAHo2afFOcxZ4DEIp4PE4pNcLB5m6MevwykYxOE0IIIYQQQjjTEuIDyIo9qQ1G40I3AH6wr+C5CVsB+GAoIaLpAoSA1O8jEmEpC8VMqGPk8wgywYA+VZCSegn3uPeR4ybEK1FuwtcyGRzoZtumY3GuPF+O6bn5NecZ3L7OtB5+292Y7Tq/iOnmuJ5I2Cm3/mJPqTFcxW0QqxD5hAtGqvAZRpKwHUeyq1OWSB8iwpT66HsphVmwcFz56WmukYhU7tPcXhxAfSA9t7Zmv5tl4bmYEEIIIYQQQgghhBBC7GQZ0lN2iAyqmf4OX+7Ui6GGjup0lTpDKQVU7bPzcXUbE7ID4O1vsueaDxcK0Lsb0KvEMNgZAM350N3GAu0D7tcwAU0Dh4dfR7FLe6jXAS3fsEU++B5obst8m3pnvrkOE47e9d4SF4w26uDwvx4mGC0Y5DdgaFd5pzJ2EL5pn/TJYmBrc2bb0OIN5lCfaTdaWHCbB2/8yoOxBxj2E5tqnW0w2LFPDXGBjUygQZdnChSc8a52cnGBwvOX8sOopy8F6pkQhWRY08jPq9Jdzv2CP4apkQd1vkL5yvCZOb3/au10m4AVdamqUHoQEeqZoRflpe37rKgAxh72VviYPvtLErgH26p6/fSxWydqQ9Fw1mVQ+XiMFPlBKRzaMgeH+6drZyfyGUulTxYD2/XZZDHiBaOZwoZYgdh9EQUDADEhjQOGQvWscL8d0XUkGIyGpfOB7Vv4+YedlHidso3mOxkAFGxZj+GF+nDUkPIguD37++Pz5zxRE76cCrS5jLbxeID+uyVSLSFEEkgwWhellHIcZ6uU6gZgEoC9Iia/RkSvmZYjoiUA/hsxqQDAU0opNnZeKXUmgIsiJrUBuM1pXYUQQgghhBCi2eaD0Qqt1N79zBSq5DbkS7gPk+OCoYSIlsywoHTgAn0ig5C4ECGv85+ARIq5Dd5LRxiEm7C2Eo8+GCsd3ITEmQKw3DzfbAzjMD23lqjzHyLShqXFWw+He//9trOLmDaFYupoLI8QQhSKXzACd95QbJWaw2vlHE0ILSJig9HKTcFohvWJ/LS0eSGWtyzSzjuo+5Go8PVLc41EJC4YzW9vR4vdnPLtNzPh9tn63UwIIYQQQgghhBBCCCEAAMrBUKv2oCOybWDx1/yqDjk+WbXqnIiBr8c38YErs1cA17xk48uVmb/2s2SDfnq1k0tZa5kgKk77gFg+gEjCOaKpohKgbyWO9n/KliECvlyZxkoxFqw1zz/nwIjB80uYoLfK6vC/Xi4YzdC3kQlGU/nYrjRBN6Y2BABfr0pVZZwxhaJ1KwQOHBJ/HRQMABudBaNRdAAIF6yXr8FoZX2BvpXaWfS3y2E/fhtI81r/cHfzau+bkrrj3uc1/LoPGaYJ76jlwwKRLecVOUjtewQ7b5h/MZujYtoH5AJ/G9DGZHfuDAlZvbjDdAUgwNy0edN2IGS7+7xwwYODgvoDtDpY2rnowtq/a45ggmEf/yzz38MiTZzrrD7FPqDQFye8eqW+f5lRUBPSuG4FYPPBaCLPJRqM1mA44PcbAlSOSLxO2aZiADur0qdP9A0pL1Zv1IempsOGrYTb3rJx5j9DOOWBjn8/ftzGk5/bsG1CPTNkICYYbfUS95XoNwSK+z1ACJFyEozWdV2ulPpIKXWRUkrb410p1U0p9TMA3wM4OmLWCgBXONzOrQAi4z8PB/CBUmqPqG0VKqWuAvBK1PL3ElEW/MwthBBCCCGEyBWmgbtFKQ5G8ygvClShdp7bkC/hPqgkYGfuh1SRW5IZFpQOXChA5GeECwb0MZ0PRPoVuQx3cBPilSinbV7BQiF/r4OUK3IVaMaXdfMZdxPGli4FqhAW9Hcejw5gbaNW2NAHiyUSNMK9Htz+NKZcAuFjbgJPQxRCK+nvzFTiKTV+/uQcTQi9baEtCDB3d+1tCEZTMHdgEvnng4aJ7Lzjy89KY02EToXh81zPhCMmE/e9P1u/mwkhhBBCCCGEEEIIIQQAwIo/1GpHgBZdfzpfSCngSMP8dNoR6gTgpO3vw2u4XvuPDwlH3mnj/W8zOyh/6Sb99kf0jTPgPhgA1rscptTWGv5XAojcGVSFQcG1uLruQbbID++22UCUdAjZhH9/ym//3IMUDhkW/j+1NgNzPtCWU4MTC0aj5iagfr1+mYHD2Hp1Vaoy9rM0MLgO19X9nV3mmHttbPFnrg3VMPsiAPjb2QpFcUJAAAAbVgEhhzcQjA4AYQIbda9lPlBKAceeyxf4719Al48BrVvRYXKf7go3ncq/V395h/DXd5mQlU5Y10i44DG+DV13Qmyd6Ik/seXVyAOTUq+8dNZl7Kyi9UswuEw/76oXkt8u0okLCAF2hYTQE7fHzLtv/fXaZdqCwJoG7SzXdSgLMSs6/BR3GxAil7SHNlUxwWjbWoCnZ2TPfuc/05ydg5XF6QZERMAL9/EFivU3d6Yd39Mi1dawq1FX3WOuiOj6jMFohs/WNn0gGACoy2+HcvA7Uc7oUc7Ouq8v3xf0runMyVKKrWskHP43G7e9RXhrHjD5245/L8wm/Py/hEufdh6MRv++xX1F8jHYXIgs0oX2wiKKAnAMgCcBbFBKLVVKvaOUek4p9YZSagaAOgBPARgUsdxyACcQkaOe8ERUC2AcgMhf3Y4A8J1Sao5S6iWl1GQAqwH8A0DkL8BvA0jgyCGEEEIIIYTIZ61MMJqCSkuoCzd4123Il3AetrJDwEWAishv7OD7BMKC0oHbr0R+RgK2vv17LbnrSLZwE0blUwXwWakPtXPa5kus0nCnsQxx89qZnlOy1pMpSikUe/TBb9HhXqawr0SeW4ml71TgD213tLzbYzoANpBJx3SeVWyVwmf52KDIRELbhMgHdYZAJFOQksSiiUjrWldj3vbZ2nl7lOyHwUXSGSTTenkroJguAab9QLI0237t9HSEBAshhBBCCCGEEEIIIUTCLP0NrTpYsxS07Fs2RAkA1CuLoQr0N+FMNxUR7OWBje+X7mMs3xoE/vhWZgfk1zA/Y1fxl7LC1q3gA4jOv1Y/PdB+/VoCiNxpf13u3XijsdhT0zMXavXet/y8kf2A53+hdvWZ+ehVvnBlYsFoWLucX2c+DqxmQgbv3HiTcbFnZmauDS3dxM+74miHQ3NN7SBaYFd/GgqF+GXzsf20Uyf/xFxg81rQaw/HTL79TPP79Zd3CNtaktvW/mUIZty9XziwLRKtWsyv7NyrklWtvKR6lAPV+2rn0ZqlqGbOL5ZvBprbMhsW2xl1cYLRaPFc7byfbXmWXa7GsF/UYUNKQvWxE48aC8Uda4XoCtrDlaqZYDQAuHkiIWRnfr+zss55HcridQNaMJOfd8zZwP5j9PMCLoPRqs3fc0U+MAWjGdr0Nj71U51wfifqk4W69WJn7R/gv0D/+7v+4ZDDNHtsGmH55vjlnppOWLdFP6+8dFe7oGWGHwlMJDBfiIySYLT8oAAMB3AygPEAzgJwKIDokWL/A/ADIuLPCjWIaCqAsQAiv9IqAKMBnAfgRwD6RC32AoDzicjh7Q6EEEIIIYQQIowbVFtkFacl1IULXeHqJXhuw+TcBKiI/MYFBrkJTUonLsQo8jMSZIIBvcqbkjoJ97hAK23ZNLVFp9txU/dU4MIB3Zb1WQXwKmedYtxsM524/VR0uJcp7CuR51biYYLRbKfBaM7KRQoygY86piC4kvbny56jJRDaJkQ+qAts0E4vUIXo5ulpWFL/nYuQ+c5YIv0+bHiTnXdC+dg01kRwPMqLXl79XR7rAy57KyeAOw5nY0itEEIIIYQQQgghhBBC7GQ56INWuxT48iN+fmkPoO/g5NWps6KCvXYLrEJJnL5bM5cBTa2ZuQZk28QGo1VHj06KxoSbAYAauod+RlsLKBgEGpiNDhwWZ6P5SbWHhSkAP9r+Plvu4+8zdy3xQ8O2/zzWgifi805fTeVXtDMYjemrFWL6QHDt0eMB+g3ht9dVMSGDCsCPCr5hF/sog21o6Ub9ti8d46K/8pplzssGI/rJbqrtEJTWQR4PzFfD9wJG7G8u9OXH2sljD+AXaWoF5qxIvF46prZ7yFBNGzLsh9Tg6iTUKM+NPEg/fXUNqvrwn+m5q1NUnzTgQsmA9iAj5ny2p70VvYP6PgVLN7nbJ/PBaJoQmmF7ulq3ELknvK8Z0cbHONQ28CHR6fTpYuef9fJ43YC+4L87q8NPBbhAcU0wGtUy59cHHh2nEiIvmMYUJhKMNurgztUnCymvF+jG9BFu2IjD/DPYZdczwWOp9NHCzn8X7LCPMv2WZ6DyOJhaiGwgwWhd1zQArwDgI0rDggDeBXACEZ1JRAn1gCeidwDsDeDRONucCeAcIhpPRDIiTQgH/H4/pk2bhieffBJ33303br/9dtxzzz145plnMGvWLLS1JS8cYtWqVbj55psxZswY9OvXDwUFBVBK7fx76qmn2GVnz56NCRMmYL/99kN5eTk8Hk+HZVesWLGz7NFHH91hnhBCCCGEGy1MAFmhVZyW7bMBRhK64Zrb14wLhhIiGhcYlGtBSJGfET4YLTr3XmSKR3nhc/h+pKstOg08y3QwhZvQwnhliy2nzzmzYXAcp+cZxqCwBN5PNpDN4bHaaYBaJDeBp6Yw1R2vGfe5MoXICZHP6gL63lMVvr4J/mYrwWj5ZkuwHrO3TtXOqywchj1K9ktvhQSr3KcfIcbtB5IlREG0Uot2XrZ+NxNCCCGEEELkJ+mfJ4QQQogYysFQq4VzQN9M4+cfeXp2HYejAnQUgNO3TYq72Effp6g+cazbAjQzXcVG9IvzutYyIQN9K4HuZfp5gVagxXBtubv+JiR578jTdv73jG1vs8WWZDDYoWYDfx3z+FFRE7i2A+wKYfIyN+wLMg12LROI1W8IFLeurmz43uys05vfY+e9yWempdy7C/TTq+KFNLajxs2ge69yvsHIIDQu+AMA8nxgvjrzUnOBmnmg5tj9+un7mY8h5/3LRksgef0fphl2K7q6kClE77CTk1Cj/MaGy82cjNP34d/3Cx6z0ZrEdpFOXChZjyLA61EgQ6BsVZu+PboJbCIi1DP3ni/TBKOpiHMLIbokK/xdc9/W+egb1N/YFABe/iLz+5w6F11vh5Sbj6+mfQ1+cCLgZfrf636b587ZmQBekWcs0+85/OeKuGC07r06V59sxf020rgJY/z8b12T5qd/37Rsc+fXsVvETzq0eG5iK8njYGohsgFzmwKR64hoLoDzVPhKyu4A9gRQCaAHwkfuRgCLAcwiom1J2uZGABOUUr8GcASA3QD0B9AEYA2Ar4loeTK2JURXFwqF8PLLL+PJJ5/Exx9/jGAwyJYtKirCj370I1x66aU47bTEf/x57LHHcNVVV6G1NTZF2yQYDOKKK67AY489lvC2hRBCCCHcaLGbtdPTFXAioRvJ4/Y1C9jJG3QgujYuMCjT4U8cJ/sVLhjNp/Kwg1wWK7ZKEQjF31clElyVCKfbKclwMIWbYIx4YW/FVim2heLfjijTz5nDvRbRwWDcMdSrfPBZ7gMTSzzdtNOdBp75Q/pyCgrEXEgOuAg85QLaFBSK2s8BJbxWCHe4QKRyX1/jcgpZNIBHZNTHDZMQJP21ixPKz8quwV55rtzbF0uxMGZ6PXN352RpZoLtgewNqRVCCCGEEELkD+mfJ4QQQggj40DaCJ9MZGepi36fpMokSe+BQGEx0Lqr792tm+/AjJJDsco3hF3szIdsrL3bQv+e6f3d/6aJ/GDb6jhhRMQFCVVWAz5uwH0r0Gy4Pl6cnX0MMk0NGbmzR8CFW57Hrwb8Q1tu2SYgGCJ4Pem/frSYyZsYWgH0KI6qD9d2Dj0Jyts+BNPDDMVkgtHYkKM8DbVSlgU67jzgw5dj5l1Y+zCu3O232uWIgEXrCSP7p7cNza817Yvi14Vam0ETjnK30UBEW+KC9cr6QpX2cLferua0S8LH4TkfsEXokoOB57/tcO36/IMVXp5DmPytfpn6JuCsh2xMvsbT6SpOXcS3n9JC4Mz9NTMMwTGq/26drlPeMwRa/OjNSwE8rp23qh44+xEbb1/d+XaRbvVN+nZYvuPUxhDAWBVYhln4Qcz0ZZuch6L424A25me38lB9zDQ18kDH6xYiJ7Ufkzyw8e91V+Cswa9pi936P8KZ+xP2rcxc/ysuWFFnWO84Bbjjm8cLVdYH5CvUzw9q+uQz61KVTPilyDOGzwwZjl/bGvXTuQCxXNejHFi3InZ642bcWHcv7up9g3axy54hHD+KMLR3evZNLQHCGuatcarIBwzoGf4/hULA5GcTW5EEowmRUQ5/rRe5isIWEdEbRPQgEf2ZiP5CRA8T0QfJCkWL2mYbEX1MRE8R0d/at/u6hKIJ4cxHH32EPffcE+PHj8eUKVOMna4AoKWlBW+++SZOP/10HHzwwfjqq69cb/Odd97B5Zdf7rrTFQDcdNNN0ulKCCGEEGnFBaMVpSsYjdmOhG64E7ADCJC7oDM3ASoif4UohFZq0c7L1iAkLrwqcr/CtX+vBKNlFacBX+kKgnB6bMx0aKCbY3i8ujr9nGf6OXP4/UHHYJHooLR4y8fdLheMxgSeOS3XzcN3wgy6OA/gnm+hVQyr/W7t3HvPLStEvqsL6EcAVMQJRuNwIYiia2oO+fFZ47vaeeXePjiw+xFprpEw4T7X9YEUB6MZfifJ1u9mQgghhBBCiPwg/fOEEEIIEZfVydCLH1+fdYOylWXFBDHt3laD2cuPwJNrLzUu++T09F4HIiI8PUO/zYpSoKw0zgDc2hr99EHDAW7AfaAV8BuGV5Xor6kLQF36RwBAKfkxc/mR2jJBOxwqk27BEGHZZv28u87pOKSStm8BGvXXTtT51+x64GH6ahGFB1lH44LRBuZnMBoAqHOv1E7vi0A0PwAAIABJREFU5t+Iz37ZwC535+T0X5O+YxK/zSonl9Y/mcjvkzgRASBs0GOeButFUh4P1D1vQf32Eb5Q7VJg/vQOk4p8Cv+70kIvQ3e1978Dvl7V+fZ26/9sdt7Xt1go8GqOZ8w+Q13yh07XRwCo5AMtPB88j9P30Pc9BoB3FgDzDGGJ2YoLNtoZjMYdpwBUtenn1ejvxehq+wBQbkft88dNcL5iIXKV2nUOetr2dzEksIot+s+PM7vPcROMNjxOeDUXwqiuvT/8nwJDgHUECgaA9Sv1ZSW0SAA7wwe1TMFoW+r007v36lx9slUPJvCtYSN62luxd8sCdtHHPkvfvmnZJvPb5sTw3oBltbeLLz5MfEUDh3WuIkKITpFgNCGEyCK33XYbjj/+eCxevLjDdKUU9txzT5x44om44IILcPzxx2P33XePWf6LL77AYYcd5roj1O9+9ztQxNnh+PHj8eGHH2Lx4sVYvnz5zr9zzjmnw3IbNmzA/fffv/NxQUEB/vCHP2DmzJlYunRph2UrKytd1UkIIYQQgtNi+7XTC62itGyfC73xS+iGKy0JvF5uAlRE/jIF4GRrEBK3X4l8Llz7l2C07OI08MxpgFpnOQ4Jy3AwhUd5UGQVxy2noOKGqDkPg0tPOJ1bTvYHAB80kuh7yQWqBagNATt+MKnf1gej9fTyd8oKkHmwYYf1M883st7cPl7O0YTQqwvoeylW+PoltL7c6/opOuPzLe+jmfluflz5mfAob5prJEzKffreh/XMfiBZuDYCZO93MyGEEEIIIUTXJ/3zhBBCCOGI1bmhVmqvHySpIknWf7eYSb1DdfjJludx6gj+uurMpem9EmQagF/JX4LeZQ0z6H5QFVDA9DEkArY18usskt+1WREBBKNav2eLLUntZQmtlXVAQJNVBgAjokOtmHYDoGOQjtfQVyuk6QdRt15bVA0Yyq+nqzMER+4VXMLO+359+q9KL95gCEaLFwACgBbMcL/RQEQ/wc3r9GUGyKB8oD3087SLgR7lfKH5se+B16Nw/YnmkM3pSTj21fI5fxhaETuNiIC1TEiVIdBLuDBwuPE8bw+r1rj4G1/nXu8Yrh1WlALU1gps4EOZ2GC0TejwO5eJMRgt1LFyareRjtYpRE6LCm06ZftktuiMNH8Pi9bAd/uJMaIvf1w1BRDv/C5hCrDuUKmNgC6MOHJdIr8lEIxGRMD3X+qX6dk7CZXKQj00J6MAEAyPGdi3dT67aDr3TVMXd35b1RHf/WnBzMRW0nsgVFF2jj0RIl9Ir3QhhMgS11xzDR544IEO07p3747f/e53+PGPf4whQ4bELFNTU4OnnnoK99xzz867Sba1teGyyy5DU1MTrrnmmphloi1atAjz5s3b+fiUU07Bc88956jOEydORFvbrh/d77jjDtxwww2OlhVCCCGESFRLqFk7PV0BJ1xwSCJBX/nMFFLiUwUIaEKgAhQ/mEUILiwIcB4SlW5OwnyCTPv3KeYOSSIjHAejpSkIwul2uGNbOhVZJWix9cf4HQqtYljK3AE9V8LgOFwbij5ucsfRRNtWiYe/u7Xf3o6elrl3ORdc1t3TCwoKpIlMCtrOA0+50MvI95ENlTMcF4TIVzbZqA/qOxtV+My3tVamjiMiLwQpgI8a3tLOK7G64bCex6W5RiIeLhhta6gRAbsNPis13ylMx2AnobhCCCGEEEIIkWzSP08IIYQQjsW5Lh3XISckpx5Jpo45GzT9He28c/svxaQl+2rnvTUPeHG2jfMP6eTr4lCNIUDrR3ubr1VRMACsW6mfOXgEUMAMuAeArfX8PAlG40WE9ZSSHwMC67DONyCm2MkP2Nhwr4U+3dN3vXHBWn5edfRl0VomGK2gEOgTEUJsCkYLBmLb2DYmkabMfF22S+tRDnTrBWyPDSPsuepLAIdoF5vJ5EWlChHhG0NGUvciB235w1fcbzgY0Z9ma52+TJmDVLY8oZQCHXM28KY+wJwevQkY/5uYvg7nHKRw80Q+aOGqFwhXHE0J95FoCxJWMm9f96JwOFuMuvVAC5NCM3B4QvUQHamSbqBDTwKY86Gz6SPcDT688blZhFtPT1XtUmPpJn07H+rZBDprfzYkBkqhKqA/Nja1Ahu3Af16xN++KRitVyjqOPDDM+OvUIhcF/Vd85ytr+HRssu0Rb9dC6xtJAzslZn+enNXOw8kOtR0mPrwZX5epctgtK2G1FE5PxJAQsFo+G4OsFn/5VGNPCAJlcpCcYK6z9n6/9k77/g4irv/f2bvTrrTqctykWRjS7JxwUCwTTEYDDY9ENoTCCEklOQHcRqBhzwQQhzTTBJInAAPIYUaAw8x3RQXsAEXjLGNbVzlLldZvZyku9v5/aHiK/Od25PuTifp+369/LJ2Z3Z37m52dnb3O+95A3OzvqNMW7INqG6UyHHHv236cGP3xWjF+QHlXLWwazth8SLD9DiJeSrNMAzDaHn++efDgq7OOussbNq0Cffcc48y6AoASktL8eCDD2L9+vU44YQTgtLuvPNOLFmyJOKxV69eHbQcOutkPLZdsmQJpJSd/xiGYRiGYaKBkqY4EyRGIwVGLN2ICt33lWlXy1dUsjSGCYWS5wCJk1FFCyVyChQJ+KRiRlEAdsHzHiQTLpu1a1GiJH1W5V/JcG5YkbNZydObZHAqqPKHikUo0UhXP1eaoRGj+Rsibt9kqvOk2dJhF+qg4Giu6x5THfQX+H1Rn113XWCY/kqdv4aUrkYUo4EKZuDnvP2F1XWfocanjuA+J+diFl4lIbrzmpIkxgJK5Oo00mAIW9yOyzAMwzAMwzAMo4Lj8xiGYRiGiQqjG88wx50GkZqkz8qnX0cmXZeyHG6NM+z6f0jMX5+YfgUl8ACA+y+NMPD20B7Ar46xQWEJPeAeoMVoKU4IO8fnkIQMEC5tLSOznv8nM6H90yufMpXrC7MBd2pIXSonyl1QDGEEDL/UidH8inewVL3K1E9Q15cRQgQJ9QKRc+7E0zfQ5/lb6xJXf575hD7WS7dElgDIw3v1wsVCwiDiDRSjqeUfIisv4vH7E+KW+/UZnn8kbNWoQQJ/vlb/Oz6+sOv1bXclYBKb/+c2Ykj3AY39j6ovTNSInz9Gpk14XS/ALzvSJr3rTVDC2ZKlT9DyTiGASdNR2krXSZ3INhBKjJblr4Ed/uDDDiiwtlOG6c2ESJvOafoU5zfQop6Rvzbhpy4ocaTZK7H5oLW8354oYDPU11R5cDfkH3+i3tCRckxATAmsW0PFaJq+VUb/7V8zgej6d+pzSd42RZ3dMIBvnNP9IiUhgrgf6+DShvdQ0krIwwFMfzz+9/YtXomPtqrTzj3e+n5K2p2Jsqke2LSqa4XhvjjD9DgsRmMYhulhtm3bhp/8JPjmbvLkyXj//fdRVFREbBXMqFGjsHjxYowZM6ZznWmauOGGG3D06FHttocPHw5atnrM7m7LMAzDMAzTVZoJMYbTlpiAMlJgxNKNqKC+LwED6Tb1FFI+Uy1vYJhAKOmegEiYQDFaKBFSq2zplJZ4TbVAiBIOMT2DVSlXokRklsuTIFFbd8tgKY/Fz+xMVjEa8RlDxSLUdbSrv2WaTSNGs9DHoeRpaYZOjGb9uk6K4AI+L8trGcY6lV46OjGSGI2CB9j2D6SUWFT1hjLNLhw4J/vSBJeIsUKOfQCZVuWNnxiNen7jStL7MoZhGIZhGIZh+i4cn8cwDMMwTNQYXR9qJf7rpzEsSGwRdjtwylRlmv3Adiy9S/+5n16qlkzFmh3Eo+txBUBaqMwqlP30wF0UFtMD7gGghujXuej36QwgMrKBrGPvIkZ66d9gfTnwGe1NiylH6uj3lyMVr0RlOVHuotLgZZ0YzRccByFbPECLeiJgZObS++kPFNID8c/P3kWmPbYgMe0QAPzlI7oOXTA2shgN771IJolfPU3LKgPrUZ16wioWfwQjcgZCzJhNpss3/gZphtedn00zcPtU+rd8aknX4yB00qgpI4mE/YSEyp0JsAwvZoiCYuCS76vTAJyQR7Tb7by3IQ6FihNen8Ruohkp9RCmEQAYNAwYMRYD/EeR4a9TZtGJbAOpalLny/WHSNmmXmVpfwzT6wm51xQAXt5/I5nd4wUWbY5zmRQs+Np63msm0NdS+T7dH0JBMYStTUouKIG1N2T8BCV0dKVDOFJ0xWT6C0LTT1f0B+VOTWUfPREiPSsGhUpCNPdjAGCDiXf2XUmmr90HrNsX60IFs2wH0NiiTrvuVAv3Y+2U5Lfn/Xhel8siInxfDMPEHxajMQzD9DB33XUXGhqODR7Nzs7GvHnzkJ4e3Qu0gQMH4j//+Q9SUo7dwO3fvx8PPPCAdrvAYwOAw2F9UH13tmUYhmEYhukqpBjNSIwYjRKpePzqcjFqKElJmuGGQ6hfSrRK4qkmwwRAyYKchguGSM5HYTqRU0fb4iMEQg6DX+IlE8kmIrMqnUhLAkmYle/OUh4L361DpMBhJOczDOq3CBWDUdfRrkr3HCIFdqGe4ZqSngXlIdreNBt9XfdJtfAxmv0Hfl6W1zKMdaq8h5XrU4UTbiMjwaVhehObGtfgQOteZdrpmech056d4BIxVkgxUpFpU/82OlFid4l1f4VhGIZhGIZhGKarcHwewzAMwzBR0534kuFjIufpSYqIwZzlZRg1CHDY6E2/3BOfIoVCidFUMqsw9hHWrfxCCGca4KTjKGSV+h0a0vi5dkTyCzr/HNuySZt1zd7ETLj0VTmdNqZAMYi6nKg7oeeMTR1bASBMjIa6KjpvPxejiRFjybShh1aTaftr4lEaNUfULiAAQJ6F20m5bQ2dePIUWt4RKACpI+Qf/bz+KCk9kU6rOgQcPaBM0knudh0Fqhq71maVHVFvNzQHcDrUx5SU3LOwBEIn+WCiRow8iUz78RDNuQvgywRdx2LBzqOAn/BJlrRqZLKDhkEMHwMBoNSrFvbp5H+BVBGhe2FitAyON2H6C+HtebZZiwInLWX890qJOk9i256NB6wf77QRmsStmjY18N6Z6hf5QuKMqf41942YDnR9JtXkv7o6OuHc7pcnWQkVgCsY0bobLmL8JgB8uSe+7dIHG9X7z3IBF58QjRit7X+5bW3XC1NY3PVtGYaJCck5GpRhGKafsGXLFrz77rtB62bPno3Bgwd3aX9jx47FXXfdFbTun//8J6qriYfhaJu5sqt0Z9tYsGnTJrz66qt46qmn8NBDD+Gxxx7DCy+8gC+++AItLV2XZvh8PixfvhwvvfQS/vSnP2H27Nn45z//icWLF6O5uTmGn4BhGIZhmK7QbKof+jstyl+6i066IVUPShkllKTEZUuDQ6gD+ikxFMME0hsH31PtCnDsXPES9d9OnC9Mz+CyJZeIzGp5EiVq06E7DzqwInqz8t0mc3tA/Rah103qOmrle1QhhCC/F0tiNCJPmi2dlNBR7ZqKUDFcB4FlpsrP8lqGCecoIULKcwyMGEwrFMFZTP9hQdUbyvUCAtNzv5Xg0jDRkOvIV66v8hKjy2KA7r6fYRiGYRiGYRgmUXB8Xvfg+DyGYRim32LT2MF0lIwHisfFtiwxRlCDX1ctRLpT4Mpv0O+CDtUBjS3xj4/bQchkivMjv6eSi19TJxS2y610A+YP71Ovd0Un1O2PiGnf7vz723XzYNfEA9zxqoTXF/96tJ2oRwBw4+mKukQIiURhiBjNronVChOj0fcJ/V7ecP61ZJLxwI0Y7PYp03YdBT7fGf/6U90oUUnIfCYcB2uSqs/eJZNEUSkt2TP9AADp9wMNhAkuq5/XHxUnnwO46LgpeXUJZHV4rMRFES7b6zWSRR1lxGvYUp3kc79aQMUihjhw3jVk0jU7/6rd9KH5Ek0J6A91Bykl/rTQxJj76edKxa276B24M4BzrmzPp66XOy2GGlBitBx/iNyov18Xmf6DodZ63HDcbnKTlz6XyP2Ficv+6kdNU2Lan2qLYbdTRwFDcwnhZ+UhYPl75Lbigu8cW6DEaK0hz6BJMVqOrphMf0LbTw8/fyTV/wIgvnlTDAqUpOQN1orjAcABH75dN49Mf3d9fNujD79W73/6GCDf4mMaQwDH5QHS0wi8/nTXC0NNMsAwTMLQTFPAMAzDxJs5c+YEyTMGDBiAm27qXmf5F7/4Bf7whz/A6217qdLY2Ii///3vuPvuuwEAu3fvxogRtIb73HPVFuNnn30WALTlox7u79q1C8OHD+9cnjp1KpYuXdq5HI1AZN++ffj973+P1157DYcPE7MyAXC5XDj33HPx/e9/H1dffTVsFl5Qb968GQ8++CDeffdd1NWpp3dxuVy4/PLLMWvWLIwaNcpyuRmGYRiGiR09LUajpBsmTLTIZjiFKyHl6O3oBCcOQ/1iwytblesZJpBYy4ISgU7S1CF6o8SAlEiQ6RmsXosSJSKzCwccIiVi+5koUZsOK7IyK99brPL0FNRv4ZWt8JreTslYEyUa6cZvmWZLR72/Nmx9k9kNMZqRDrsgruum9eu6lbZdJ5WTUvLMqQwTQBUpRhtkYWsikEkRNML0LXZ7tmO7Z6My7aT00zAwpSDBJWKiIdeRj93N28PWV/ksTuPcBUgxWhL0PRmGYRiGYRiG6T9wfF4bHJ/HMAzDMFEi1IPVI2720KvJ/14yVPIUgFw2H09efwk+3yWxp1KdZ0cFcGJRnMoWcAwVWpkMANnUAGxcoU5sF8KJVBdkihNoVchYj7AYrct855fA3+4DABT4DuI/5dfhiqH0AOqH3pOYeXl8z5UyzSuQ04qDjy0b6wCFMAlAZ93pJCoxGiFuAICM/i1vEAXF2jfM8/ZcjTMHvKVMO2O2ifq/GnCnxq8OUVIrAJh7a+RrhFy9mEwTtz/c9gd1D+Vvl8LVVwPUvVwGC4RCEXY78NQSyJsmkXnkb2+A+MuCoHWpDoGV9xg4/RG1QOrSv5hofDJ6YSol+SwZqKm3lJijgMVosUbkDoLMGahs+3O/fBsfPtGKC58kJD0Afv6qxN9vTN4+35vrgDtfo1vZAu8BuKXGeuR0Q2RkQwIoaVWLQ8s0AtJAKDFarj9YHir6+XWR6UcQ94v3j96I328dQ25mSmD+BuCmZ028MaOLIu8osCJGm3gc8OItdL9I3vtf9MalJwJTLj+27EhV5/MGi9EkJR7mNoTpRHN9VvWtCUE2AIgC+j1Pb0cIAVlYAuzYoM33+OH/xvPZ31Omvf0V4PVJOOyx7xPtr5bYsF+dduE4gVSHgMsBeCLM0T4sF0ixC5iP/rx7BeL+OMP0OF17Ws8wDMPEhA8++CBo+cYbb0RKCv3gzAr5+fm47LLLtMfpjUgp8eCDD6K0tBRPPPGENugKADweD9577z1ce+212LePeEnZjt/vxx133IETTjgBc+fOJYOuOvb76quvYty4cZgzZ06XPgvDMAzDMN2j2VQ/ZXcazoQcXydXomRfTDiU0CXN5oadED15zQhPLRkGvXPwfarhhCAe03V8HkqMRp0vTM9gtZ4lUkRm5VjOJDg/rMgLrXwWK79BMojgKHS/RXNA+0YKRrshfUsz1MHcVvo3lDwtzZZOChypdk25f41QVfV3IB3yWoZhjlFJitEijCbRwGK0vs+i6jfItPNzr0pgSZiukGtXn99VXovTOHcBqg+RzNJqhmEYhmEYhmH6HhyfZx2Oz2MYhmGYAIwuDLVyZ0JopGNJQ6jkKQD51t+Rly6w/UH681PSsljR0CxxiOgqlORHGGz7iVqiBACiKOC3ySSEQoeJPo0zMRO29maEzQYcf0rn8jcb3sfMillk/ueWx//dIiVs+cFkRT0qpwfDoyjkvNaK0XzBy7WEYdCVDuHo3n1Jn+A7vySTTjr6CYTmHfTbX8W3DlH1x+UASvIjby/f+gedOOG8tv9tdnV6hxitjqg/AJDFYjQVovREYAwtRsPapZAHd4etPnWEwNgh6k08XsDTGn19o+SMpbr6c0AtRhOh7RATE8TVPybTph99F898j+53vLxKotmbvHEyzy1Ti/46oGRnnXRIYc/6Jkq8u5RZdALJQKob1d9TrhkiN6L6ZwzT1yAk3C6bD09cH1ku9M564Gh9/NufGuLc/X/nCOx91MDOhw2s+rUNhTnEJKt7twGbVpH7F/f8PVgqnmJNjEb2r7kNYTrQPc9RitEIMe13/zs25UlmLPQxs8w6/KbiITJ9waZYFugYn5XR7dyF49rajhwLIYgl+YBsbgI+eq3rhcnMhcjI7vr2DMPEBOIJCsMwDBNvysvLsXv37qB1F1xwQUz2fcEFF+D111/vXF65ciW8Xi8cjt45YN7n8+G6667DvHnhswYNHjwY48ePx4ABA9DS0oLDhw/jq6++QkODekBuKB6PB1dccQUWLAie9cPhcODkk09GUVERUlNTcejQIaxatQpNTU2dZfrFL36B6upqzJw5s9ufkWEYhmEY6zSbHuV6p5GYACSdcMVjNiIHAxJSjt4OKXQx3HAIddCPT7bGs0hMH4GU5yTx4HtDGHAZaUqxUIcYzctitF6BVclDIkV9TpsbtX5ihqx2kkFOYeU7sXIeuyz0B6zk6Sl0v0WT2YgMtL1YoySQ3ZG+UcempGcd+KWf7J+1idHU13VvFNd18vMGlDmSvNZpuCwfj2H6OpVe9aBWK2K05J3vloknFa0HsbZ+pTKt1DUWI1yjElwiJlqo85sSJcYCDyG2T2ZpNcMwDMMwDMMwfQuOz7MOx+cxDMMwTDDCsNE6ntxBQFX4uxZx3R1xLVPM0MnbDu8FANhtAiX5agnam2slvnUSYBjxeWu08yidFklGJHdupBNLTzz2d2YOcPRAeJ6K/eptXepJxpgQSk8Ctq7pXJzgWUNm3VsF1DZJZKXF7+3jdsLzO3KQYuV+QhCTkgoMHBq8TidG84fEdx3arc6XY8Gs1Q8QpSeSba1TtmCM6yg2edTf1Yb9wHfiVzRSalWSb7H9o+oUAAwd2fZ/JDHaob30PrK5DpEMGwVs/oJOX/cpMGR42OrifGDTQfUmWw8DJw9Vp6nw+SV2Edez0oGEQKa+hpa9FBZbPzhjncC+QQhyxwZMuOgagGilmlqBXUeBMYRQr6fZqOjmBHJSywZ9Bld7fGVGLilRq2psk57luPVtYh0xn2mmvzZ4BV8bmf6CIM4Z08TJQwWodqczm2y7Lg3IiH3RAqki5lPOSQOKCBlaELs0tqQU57H+UAdOIpaosT54+aBa1shtCNMJdY4BhBhNfZ3rF2Jai3L/k5vXk2mf75K49MTY39cfrFWvLx0IDM1tO97ADOBAjX4/JQMFsHcb0NqNCdYHFnV9W4ZhYgaL0RgmyfD5Jcr1Y1WZGFCU0/bCridZtmxZ2LqJEyfGZN8TJkwIWvZ4PFi3bh0mTZqEoqIi7Np17Abwz3/+c9DMii+//DJOP/30sH0OGNAm+Jg6dWrnuuuuuw6ff/5553LgfgMpKupex+/OO+8MC7q65JJLMHPmTEyaFD6bh2maWLlyJV555RU899xz2n3PmDEjKOgqKysLM2fOxC233IKMjOAnBB6PB0899RTuu+8+NDe3dYRnzZqF0047DRdffHEXPx3DMAzDMNHglz5SopE4MRp9HErIxIRDC07SYUA9SwclhmKYQOIhC0oELptbKR/qaFd8RP13sBgtqbB6LXLZEifmslL3k0FOYUmMZuH7tSJ5S2ZRolbA2t4eSCnjIoFMM9TB3E1+/eA2Snbatk83KXCM5rpOte2B5xzLaxnGGqb0o8qrjsDNc6hGAYTCarT+yOLqtyGhnlH4/NwrE1wapivkOtQBgDW+KvilDzYR+7ABsr+SBH1PhmEYhmEYpn/D8XmJo6dj9Dg+zzocn8cwDMMwIRjq2CUAwGU3Ay/MDh5Q60gBLvpu/MsVA0SqEzI9G2hQjB49sAtSSgghUDpQLUZ7caXEJ9slPrvbQKGVAfFRojomANgNYFhuhI0P7KTTJpx37O+MSDsKgcVolhCX3QQ5/9nO5fMbF0NIE1Koz6ftR4CJw+NTFr8pScleab6i3paXqTMPGQER2h5QMisA8AXHQUhqvxYHoPd5zv4WkJVHyqBuTv0Id3muVabNfl/i4Ti+pqTEaEqxXghSSqCcEKM5UiDS2tsUqi511KMDhPgjdzCEM3knhexpxFW3Q374bzqDQm4KAD89z8C769XvxE95wMTa3xg4aai1697eKsCn3hVKqfnqdNewAhajxYXTNPL8Fx/FyT/8HcYXtokYVSzYJDFmSPLF0LT6JPYQjj0AMKQfP6h5Qb+TDkFRZg5KWxeT2XZUABMjvP5vaFGvTw+NByws1e+IYfoKlGC1qQ5nFANjh9Cizg52VEicWRrf9qdaPRcicix2QeRHr9GJ538HwhXSeGTmqPPWV0Oa5rE++X719VJw/5ppRwih0QsGp8j6GqCuSp21H4hpRWFJBBVjGxc3fECmPThfYtQgEzecrnmO1gUoOeOQrGN/l+QD6/bp91MiDkHeclr3CuPO7N72DMPEBBajMUySUV4NFN9LPP1iYsbOhw0M7+GxkOXl5UHLgwYNQl5eXkz2fcIJJyiPN2nSJNjtdgwfPrxzfXZ2dlC+wYMHB6WHkp5+7MWe0+kMStNt11UWLFiAv/zlL0HrZs+ejV/96lfkNoZhYPLkyZg8eTJmzZoVVs4OXnvtNTz77LGXb8cddxyWLFlCfg6Xy4U777wTZ5xxBqZNm4bm5mZIKfGzn/0MW7duhaF7Cc4wDMMwTExoNj1kmtNwJaQMDiMFduFQSoooaQcTThPxXbkMN/zSr0yjpHgME0g8ZEGJIM1wQxWL4DEbIaUkxWiUcIjpGayIu9ryJa4+RiqTgIFUQ33fnEisnKPW5Gm9QwRHkWo4IWAo5TMd185W2QIT6mtldySQaTZCjBahf6OSOgbu02GkKNO8prXrul/6yT5g4OdleS3DWKOR2A7JAAAgAElEQVTWVw0/fMq0PAcVgXsMQcyoJy2FSDC9kXpfLVbUqgNdB6cUYZx7gjKNSS4oMZqEiRpfpUUxYnQ0m+ooyURKghmGYRiGYRhGBcfnJY6ejtHj+DxrcHwewzAMwyggRE4AIEZPAB5+DfKJu9sGZQ8fA3HXExCDj0tgAbuHmD0P8ifTwhOam9qEMXmDUZwvEDpouIM9lcCMuSbenGGLednKjqiPOXyABekuJSK65PsQ9oDhc9Sge4q05I0xSCbEuNMgr/gR8OYzAAA7/Ni64wSMKt2kzL/tsMTE4fEROuytArzqsAql2EpSdWeoQtJi18Rq+UPew1L7LWJxA4A2udcTiyG/d7Iy/ee1T+MuqMVoALCzQra3VbGHaotKrByv+gjgUcfSiD++c2yBEqO11yNJidH6gaShO4ixk7TRC/LIPuV0cOeP1f+23/6biS0PGGTMRCCUWA9oEzgoIUQvSEkF8gsjHpOJHmF3QJ5/HbDwFXWGg7uw8I4RGHyX+jniHa9K/FzRneppdlcCpuYkeL382zi5Zb12H6JdCisy81DgOwCn6UGzYpxG2ZHI1/JGUowW0E4KARSM0O6HYfoOROzdcw/DuOYnWHCHgR88a2LpNro/u5OQSceS7ojRpN8PfPQfMl3c8efwlZmEvFpKoLEWyMiBbGkGDu9V5ytiuSJjARlygdSJafuDbM/ifWkKvLigYSEWpJ+vTL/xXxJnFEuUDIzdvRklRssLeDxTOpB+btVB8YePatPFA69A/uY6fWFCRY4Mw/QI/IaYYRimh6iqCjYJ5+RE+YJNg9PpRGpqqvZ4vYVZs2YFLd92223aoKtQsrOzlYFXUsqgfdvtdrz99tuWgsc6Aro6KCsrw5tvvmm5TAzDMAzDdB1qUC2QODEaQEtHPJry9RV2ebbi5UNP46nyB5X/Xjg4B+vqV0bcj4cQlKTZ3HAY6uAhn6kWQzFMIOTg+yQWIQG0FKrJ3wifVMtLAMBOCIeYnsFKPbMLOxwicb9bJOGYy0iDoQnqThRWhF5pVuRpFvJY2U9PYQiDFHx1tG/UNRToXltHfS9Nflp8Fik9zUiHgxA4UsLHUHT9v8Df22GkkOcWy2sZ5hiVXvXsx4A1MRpJaNAI02dYWvMeKak+P/fKpOhHMJHJtdPnd6U3PhGTOiE6wzAMwzAMwzBMIuD4PGtwfB7DMAzDKNDJOA0bxFmXwXhlM8SiGhgvroM46azElS0WHDeaTmsXs5RS4pZ23lkP1Hli/35oB/HImhTJtCOlJAc1i1OmBq+gBt1TuNSTjDHhiO/eFbRc7N2N8c0blHm3a8RB3SVqKVF5mTqzajC8TSNG84XEQRBiNMHihk7E8DEQ//2UOm1/GZ6/iR5c/8oX8XtHXUa0RaVWXqlTQjwAGDHu2N+kGK3dgnJwtzqd5UGRGTiUTtP8PheMpTfbfgT4co+1w5dVqOvmkCzAnUrUaapcQ0ZAsCQ8bohJ0+nExf/BwEyB6WPoLPuqki9WZu1eukwNmI5vNrwfeSeu9vjFzBwYkChpVfexqLYy6JikGC0gniC/CCK15yf3ZZiEYCPk0rVt06sXZAssuMOGmjkGpoxUZ423GE1KiUoi5DYnzYL4aMNyOu2KH6nP9wzNs/u69ufuh/fQMYosHmYCoUS2ofWH6n+lpAIDCmJbpmQkCvnb+Y2LtOlvrottn4iUM7qP/bZW7s2KDyyjEyeeB+RamEyWnwkxTFLAd8UMwzA9RGggVOjMkN0ldH+VlZUx3X8iWL9+PZYtO9bxzMjIwKOP6g29Vvn444+xcePGzuXvfve7OPHEEy1vP2PGjKCArrfffjsm5WIYhmEYRo/H7yHTnIREJB5Q0hWdqKQvsK5+Jf649x58WvsBNjauVv5bWfcxnjkwG/OPEjNotaMbIE1JTajB+AwTSBNxHib74HuqfB6zET5N3XcIIkCK6RFctsjXIpfhtjRzZKyIVPetiMQSgZVyWDmPU4UTRoTH3onsM3QFnSgRoK+hum2tkGaoX9xFFKMR5TFgwGm4un1d1/WvQoV6VB2hrg0M0x+p9KpHAbiMNKTZIr/Ap65gyRfqycSCVrMFS2veU6Zl2XMxMePsBJeI6SouWxp5ra+KkxhNJ0RnGIZhGIZhGIZJBByfFxmOz2MYhmEYAq0Y7ViaSE3cRJ4xJSsPSMtQpx3YBQA4dYQ+rkFKYBs9H0+X2UnIZIrzI8RZVB0GPMR74dBB8rpB9yp4EKx1FDKi0lb1YPPfvSPjJpTZfkS938GZQIZTUZf2RyEwo2QWQJAYTbY0A0f2qfNFMQC9XzCUEMXVVmLSwHpys2Vl8ak/tU0SFcRhSwdaiPmiRHvuTCB7wLFlUozWPolqLXGPmV8YuQz9HHHVbXTi7i1k0qQI175bXzDxzlcS9c36ukfJGXXyBknIPVFYrD0W003GTiKT5J62unLyULpefPh18kXLfPi1en1JPuAs32xtJx19n5Ent23rJcRoFiSnlBjNLQP6bSw0YvoTjlQySTYdi9V1pQicXqxuf176XMLnj1/7U1EPNBLn7uAsCzvYQ19rxegJ6oSsPHp/ddVt/9donr8PGmahYEy/waoYbT/R/yoo7h9i2ijuKyZ5VmvT1+7tbmGCqWxQt3G5AWGHp0XouwPAqNbtdOKYSYBDPcYhCH4mxDBJQT9olRmGYfoniRxkHS8WL14ctHz99dcjMzMzJvteuHBh0PK1114b1fZpaWk49dRTO5c//fTTmJSLYRiGYRg9LWaSiNEo6YZGVNLb8Us//u/I3yFhWsr/fuVr2sHV1ABpl+GGXahnVfRKr3I9wwTiIc7DZB98Hyr36cDjb4RPU/fthHCI6RmsXIsSLemLJGuj6l6isfK9WJF+CSEi7itZPjOFi6hHHe1bNKKwaKCESJH6N41+dTSoy9YmAezudT0aERwpr+3DfTSGiRZKjJbnsDK1NUCr0Zi+yIraxWQ7f272N+Ew1G08k5zkOvKV66uIdqE7SCnhMdVTNya7pJZhGIZhGIZhGMYqHJ+nh+PzGIZhmF6N0InRNFKkXoIQAigYoUyTL/0eADC5BBgZ4fXR8ytiPxh/BxFuVqp+xH0MakAzABQES2VEZm5UZRKu5I4xSCaEYQDfOCdo3UjNQOTjf2PizbWxr0f//Zp6nyMHha+TjXVtYj0VClGLEAKwE+/IAsRoOLArfOB9B5QIrL+iEcUdv/1dMu39jcAXuxPXDgGR20UAkC88ok4oLAm+j+yiGE1kRdeG9UsuuoFOO7IPslr9I99ypkCGU5kEAFhfDnzrSROTHjKx6yhd93YQcsYSQvIppQTmP6feGYsU44o4bjSd+OG/IU0Tt51DP//50YsScz+3FlefCKSUpKxtWkkLUF9tbUfO9r5PuziuhJCcvrBCwjT17XBDs3q9OzCejwWATD9CXPn/6MQvFgUtFg8g8qHtetTYEh85Wrf7QuXqNgMAcO7V6vVpGbSAuK59ApT6KnV6ihPCybFITACkGC34mi0JQXZ/uS4JwwDGnho5I4AzPSsw0fMlmT53lcTKnbFrk6qIsP9AMdoJhfp3dAWOergk0RFxpUN88wcWxWj8TIhhkgEWozEMw/QQubnBD6Nra2tjuv+amhrt8XoDy5cvD1qeOnVqzPb92WefBS3n5uZi9+7dUf0LDALbvXs3TDN5HmYyDMMwTF+lmRhUaxf2hA7I1gmM+iqbGtegxmd9lnMTfnxet4RMbzIblOvTbG44CNGTT7ZaPj7Tf6HkN4mWUUULJfNpMhu18iBKOMT0DDZhQ6rQREch8ZK+SHXfimwsEVgRelk9jyPJ4JLlM1OQAtb2fgYlCrMLBxxG12WJ9HHV1+xI6W6jbYbx7l7XKakKEC5WIftoLEZjmE4oMVquRTGaIMVoyTcLLtM9/NKPRdVvKdOchgtTsi9McImY7kKJ0Sp9sRejtchmUqye7JJahmEYhmEYhmH6DhyfFxmOz2MYhmEYAkMnRusjw7Cogb57tkB6GiGEwKp79Z/1yY9lm8wlRrT6JPYQ4WmUTKYTakCzOxPIDjEKZOZEVzAnP9eOBnH3U0HLIwmZCgA0e4FbXzDR7I1dPTpcJ+EhQq2U9Ugn1aOERFbEaPvL1HkMAxiiFhP2WwYUAKkuZZJ86Gb8+Vr6/J/x79jfI2wnpFapdqAwW7+tbGqg61RRiBAvkhiNEhhl5ukLwUDkDYZ44BUyXT5xt3L98AECn94d+Tq/7TDwmzfpdquMknxSYRlffUYkAKKfiDl6EvHTP9CJaz5Gcb5Aeiqd5baXJOqbkyNmZsN+4CDx+OvCAeXWd+Rqi8kTQgDX/UJ7Lf94K70bv0lfk9MDxhEIFgAy/YnLf0gmyd99L2hZdw/0/kbg2WXxaXvKiL5QhhPIz7CwA+re7JSpEGnqHQghgAzi+XpHn6iO6hv1vufyTLyhxGghdZvqt/ej65L45V+s5QPw4d5LtXluf8mM2TMiUowWMkTkl+fT7eQruU+SaeLJjyAKigGbhbFYLvXE8wzDJBbiCQrDMAwTb0IDoaqrLVr3LdDc3Izm5mCTbV5e73v4ffDgwaDlcePGxWzf+/btC1o+/fTTu7U/0zRRU1PTKwPcGIZhGKY34TE9yvWphjooIl44CeFKX5ZuLK9dFDlTCCtrP8JFudeEzZbuNVvhI0RPLsMNByF60smhGAZokzc0E+1EsouQdMJF6nwB2sSQTHLhsrnR4iNml0HiJX0uI4IkLEnEFJFkZoB1iUZEGVyE76SnoeR5Hf0Mqr/RXclImk394q5VtsAnvaSIkRK1dXwOSl7rNa1d1ynxrNNwwSaCZ4gjJZN9WF7LMNFCCZAGOBTTo0eBZDFan2Nd/QpUeg8r087KujDp+9dMOLl2daR9lVcz1WsX0Ynjue4wDMMwDMMwDJMoOD4vMhyfxzAMwzAEho1OE31EjKYTM61eDEy5HFlpAplOoI4OgcCmg8C4gtgUaU8lYBKvnEoizPEjqQHNBcVhsWtRD5znQbDRMXh4m/CpXe40snW7NntVI/DJNuCCGHVF311Pv7ccqXolWk4IzBwpwMCh6jRKjNYhtAKAQ3vVeQYNhXB0fdK7vogwDMjCYmDn18r0E/JbAKi/s9V7gL2VEsPyIsgTo6CMmFOoJB8wjAjHWb2YTisKESzYiGtNRz2qq1KnRyt37K+crpnoa8tqMunEIoG7LxL4/Qf6GIg31kqYpgyrE6YpsTNKMZr85E36QCxGiz/FJ5BJcumbEBOn4epTBJ5foa4TDS3Awk3AVafEq4DW+XyXuox2AzjPvt76jgL6PuL4U1Dy9r/IrPPWSEwbo24bmzTzproDJ0sdOtJ62RimlyNsNshho4C928ITva2Qfj9Eex+hWD3/YSevr5H4yXmxL+NuUlaN8HsrFYQYTXzjHP12mTlAjeIi2tEn4r4RYxWqnoaJ0Yi62p/6X1F81iyzDr8dvxW/23C8Mv2rcmDX0chtlxWqiTnVc0LCDieXCDy+UN3/GVWxUr2T6++EGHlS29+OyGI0wc+EGCYp4JGTDJNkFOUAOx/uIy/LkpiiJLjXKSwsDFo+dOgQKisrYxIg9fXX4S8EQo/XG6isDL6LzsmJ3Q8Xuu9YUF9fz4FXDMMwDBNnWgjhkTPBghNKPNJXpRt1vhpsaKADASgqvAex07MFJWljgtZTAhWgTaLiMNRBLF5T84aUYQA0m8QTcHRfGBRvKDmAx9SL0RyCA+WSDZeRhhrQ95yJFkFQkq3O9CQ5N2zCjhSRilbZQuaxIk9ryxdBjEYIwJIFSuzWIRihRCPdrVtpBv29NPkbkWlXT3vb5G9Qru/Yn51op3RtWyCUCE71PZGSyT4sr2WYaKn0qqO4cx0RRpN0EruAciZ5kVJiYdUbyjQb7Dg355sJLhETC/Ic6qijuIjRNNfeZBHzMgzDMAzDMP0Xjs9LHD0do8fxeZHh+DyGYRiGIdAN9tZJ03oR4uSzIF/5kzoxYHDwj84W+OMCWg7z9FKJv34nNu+PdmgeVxcPiLAxMaBZOcg3I8o+T1pyxxgkG8JuD5pU6RvNXyHDX4d6Wya5zfYjEheMi0092qae9wcAcPZIxTHKibpTMKJTShGGjRg87QuIg2iqV+fJ6d6EVX2WolJSjDbBsRuGGEWKE1fvAYbF0FNNtUWU1CoIleSkHXHimcErbMSwXr8PssUDtKjjpZHZ+6TcPYFwptHTu+3dBnP2bYAQEIOGAmddBlE6vjP57JGRxWgeL7CnChgRcn3aXwO0+NTblOYT7dw+QtAIAGMmacvBxIDRE+i0dnnmlJHA8yvobJ9ul7jqlJ6Pp9lOXANPGQZkHt5ibcpDuwM4PsDyVliCic1ryOzry+m9NmjkuulmQMxhYQmdkWH6IvmFdJ/h8F6goE1ifVweMDQH2EfM97GCcEN3l6PqkGBLz/ulaQKUtDpUEhsKJbCua/sCZD3xRWTw82ImBIN6B3jsmiWbm4CjB9TZ+tF1SaRnRTUlcq6s0aa/sEJi5uXd6xNJKVFP9CGyXMH7nno8kGoP73+PHgzkfbxAuQ8R+PtS0vNA0jjWkWGSARajMUySYbcJDI/00obpE0yePDls3erVq3HhhZpZKSyyenWwtMLlcuHkk0/u9n57GktGcYu0tsZeqiFDjdEMwzAMw8QcSnrkMlwJLYdOYNQX+bxuCUz4lWlnZE1DmuHGx9XvwoQZlr6y7qMwMRoldAHaBkjbhfrholWBCtN/iVS3khmqfE1mI7yauk+dL0zPEamuJVpE5oxwvESL2nS4bG60+tRitBSRCpuw9jg72X6DaKFkdp72fhAlGO1uO6eT6DX5G2gxmkmI0doFdA6indK1bcHHtv55I0nlGKa/45d+VBMCpDy7NTEa9YSWn4z2LbZ5NmJvi3oQyKTMKchx8Ius3gglQKz2VcCUJgwROzGEThzvSrDcnmEYhmEYhmFC4fi8/gPH50UPx+cxDMMwjAXIAba9jNMuIpPkk/8Dcd0dAIDbpwo8vlCSQqInP5bIzzBx/ze7/72UHVEfpDAbcKVE6KdQg+9VA5qpAfcUruSOMUhGxM2/hfz7/QAAt2zCnVV/xsz8+8n8P31ZYsa5sTk2VY8AYLKiOkhKqldUSh+EGjwdIEaTHuJdCdcnJeLWmZCfvKVMy6zYhnsuOR4PzVf/ttc8beLQHw0MzIzN/QxVh0oGRt6//Nt9dOKk6cHLdlqMhroqej+ZPWwh703ccDfw0u/VafOfBdAe6/DCI8DMlyDO/hYA4MJxwGkjgM936Xc/+jcm6v9qIMV+rG788zO6DSpRz2NFyz0BiCwW4cUbkZ4F6UwDmhVjFNp/m2sntYlitxxS72POYonbzpE4fnDPydGklKTMdtQgAfmvB6zt6JoZEO4AmWlRCbLMOrjMJngU7/qX7wDqmyUynOGfvVHzaChIjNYugWKY/oL44SzIL6co0+Sbz0D8+BEAgM0Q+PWlAre9pD63W3zAloMSo4fEtu2pJrqxuW4Lx6k8SMtdI8mmCIG1rKtqi1mk+kfcN2LCIOpq4PuFA5qOnkqw3pf51q3AW/+wlDXbp7lPATDrXYlBmSZun9r1Z0StPsAXPjQRAJCeGryc6xb42TSBP3x47LcVAvj1hH0QHxMHCJQ0UrLqQFwZkfMwDBN3+sgTeYZhmN7HsGHDMGzYsKB1CxaoDbTRsnDhwqDl0047DSkpKTHZdyIZMCA4CrGqSt9p7uq+nU4nTNOElLJb/4YPHx6z8jEMwzAMo8ZDiNFSEy1Go6QbRPl6M1JKLK9dpEzLdwzBDYN+gqsH3oxxbvWMWV/Wf4ZWM1hyoxPIuWxuOIS67+qVsQ+eZ/oWlCwI0At/kgFShORvhM+k5UEOg8VoyYbLphc9JFpEFkkClkySMF1ZovneIn2mZJLBqaD7GW1tHCX56u5v2SEyU0HJzwCNuKz9e6au6z6L13Wq36BqN6nfVnd9YJj+RI2vUikzBoA8R3dnJudBqX2JhVVvkGnTc69IYEmYWJLnUEfa+6QPdX79bI7RQj0fsQsHHEbve1/FMAzDMAzDMEzvhOPzIsPxeQzDMAzTBQxbT5cgJgi7HbjoBjJdHj0AABgxQGDbg/qhZw+8K3Gwpvvvinao5/ehRTKBEFIZUaQSo0U5cN5Fv0tnCK78UdDifUdn44X9N2k3OVwXm/eN2w+r199zsVCLgMvL1BvoxA0WxGjwEHEWLEZTIkaMpRMP7MSsy/Uijv9dGrv31duPqNePjDDXmNy7lU781q0QoWJNahC+3wfU6sRoUcod+zHi2z+zltHbCvnE3ZBmWzyFzRBY/EsD939T4NzjNZv5gbfWBa+b9a66LuZnAFlp4fVY+nzAwd3KbcQDr1gpPRMDxMwX1QmH90G2tsCdKvDZr/T9odnv92zczJq9dFqJg+hkdXDSFODMSyHu/l+IH88OShIZOUBmLubu/z65+fPL1Z+9QT1HLgAgvSOeb0ABBF8bmX6GGHcqnfjy40GTQ/zobAN//C+6H/SzVwh7UDeoalSf0zlW5kEsp2WfUN2bBUL1cTqEaHXV0W3H9F+oCWACxWiUmNZmAwYfF/syJTHihrst5/V6miPm+Z/XJRpbut4v0vYfUsPXzb5K4O83Clx+EnD9qQLv/czAdz6g+y1B9/pWxGhp/EyIYZIBFqMxDMP0IBddFDzT0osvvgivlx7wboWKigq8/fbb2uP0FoYMGRK0vGnTppjte9CgYwP9mpubsXev5gkgwzAMwzBJQ7Opnj3EqZiBKJ5Q4hFKVNKb2dW8FYdby5VpZ2RN6wwWOj3rPGWeZtODdQ0rg9ZRchIDBlKFEw6hDhzyyu71lZm+j+4cdCZYoBgtlAipVbagWRIzJwGwwcLDeCahUL+l1fRYk2yiNh2678YVxbU+4mdOcL8hWqjydQjIKFFYd3/LVOGEAXUQf5NfJ0ZTp6UZbS8C7ULdTlm9rlPiNVX/rz/10RimK1R6iQhu0MKkUJSDBQBIFqP1Gcqbd2NT4xpl2gnuiShI7V+BP32JXDs9WqNK0z50BVJsmkRSXoZhGIZhGIZh+gccn6eH4/MYhmEYhkBq3nuEim16MaJ4HJ246thEmsX5AjPOpQfj+01gwabuvyvaWaHeR8lAvRBJ1lcfGywfSmFx+LpoB847+dl2tIiMHCA9O2jd9XWvYtaRmeQ2izbH5n3jXqIqjCsgNiDkDaKolD6InYjXChSjNROT7LJoj2bSdOVqWb4DQgj8YDLdFry3ITb1p8UrcbhOnVaSr2+LsPojMkmUjA9fSYrR/EBdJX0cln9YJ3uA9XPu4G4gQG6Xliow83IDi++04XTFpaSD9zceq3v1zXQ9LMomEo7sC247gjbStENMbKG+a9MEDu4CAOS6BeZcp2mHNvZs3IzuOlpcuZpME3c9AeOJRTBmvw5x2c3quKDCEpS2EiJRAJ9sI8RoGneKuyOmQNVXY5j+wIln0mmVh4IWf3qugI24Dd11NIZlaqeK6MbmWrktomRTmblt9wg6KIF1pxiN6OhH2i/T/7AiRjuiHiOHQcMgKBF2X2XgUMBhbeKf4307I+apbwaW0d2GiEQrRhNC4JazDLw5w4aXbjVw4ThB/74pqUB+4bFlK781C1wZJinoO0/kGYZheiE///nPgx4YVVRU4Nlnn+3WPufMmRMUvOV2u/HDH/6wW/vsKc48M/gGf8mSJTHb9+TJk4OWYzUbKMMwDMMw8aWFEKMlWnBCCVco4VdvZnntIuV6AQOnZ57buTw+fSLctgxl3pW1wQEflJwkzZYOIQTshvqhqk96g2bAYZhQqHPQaaTBEMk9Y69OCFXvq1GutwsHKSdheo5Iss6EX7OSTNSmQyf2iqacurwGbEgRirdiSQT1PXQIRihRWHd/SyEE0mzqYEBdH8djEmK09n1R13Wv2WqpXKRYRfE9RfruGKa/U+lVT4+eZqRHIVfkvkdfZ1H1m2Ta9NwrElgSJta4bRlkP6jKG2GG6Cih7vsTLbZnGIZhGIZhGIbh+Dw9HJ/HMAzDMF3ASO74k6g47UIySX7wUtDyReP074huek6SUgyrlBGPqksize+zXzMwt7AkfJ0rnRYSqXAm92SMSYti8PAFjepYRADYfLD7h/T6JOoICcuQrPA6LJvqgapDitwAihR1pwNq8LQ/QG7kISag40HVNJQcZ9MXAIALNS7HL3YDD8030eztXjtUTYhAAGBIln5bWaMxk5x6fvg6XTtUTTSIaRn9T9TQDYQQ6u+egpC5XKi5Bj63XOIfn5qQUuIoPe8kxhcp2qBDeyDv/S96IxZGJY4hI2iJylfLOv+8YCxdFyrqgdqmnotxr6in06Y1f0InElLKIIpKcHzrNjK5kgjNo8QmDtmKFLRfM/MGRz4+w/RFxkyk0zatClp02Om2Z0cF0NgS27anijinrYjR5O7N6gTVfVkIIoOQvx5tv1Gor1Zvx9JYJhQrYrQ6dX1C7iD1+j6MMAzLz0gmtn6FHAvhfxfNMfH5zq61TVoxmjPy9rLFQ4vR7Cltn7cDK5+b5YsMkxSwGI1hGKYHGTt2LC6++OKgdb/61a9w+LB6gFokNm3ahD/84Q9B62666Sbk5vbOm7vp04Mfrs2dOxf19ZondVFw4YXBL3L/8Y9/xGS/DMMwDMPEF4+pjjpwGokNPqLEIx5/Y58SdzWbHnxZ95kybZz7FGQ78jqX7cKBSRlnK/NubVofNMiakqt0fK8OQQdu+GT3ZnBn+jakPCeJxE8UKsFPB3WEGE13rjA9ByXP7ED3W8eDSKKbRJdHh+5cjaacus+cZnMnvVBQ188AohOFRQv1GzT56ci9RiLN3S5Go9oqq9d06vOqvifqu+uL8lqG6QqV3iPK9XmOgZb3Qbagfec2qF9T5a3A6rpPlWnDnSMx0qUZbcAkPUII8nyn2oeuEs/+CsMwDMMwDMMwTDRwfHkdzi0AACAASURBVJ4ejs9jGIZhmC5g9J1hWKJY89x/7VLIZfM7Fy86AbgowmuCaY+beH1N114amabEzliL0VJSgQEFYauFEEA0g+dTWYzWFcQv/hS2bkLzGjL/w+/Jbsde6qRWeap54nRSvaJSOo0aPO33HfvbQ8QpOPldCYWghBnb10HWV+OKkwXpOACA37wlccGfTPjNrtcjSu4DWJCB1FWRScrPphWjEe/usnrnvWdPIn5wL5A1wFJeOesHyvW3naOPNfvRixIz5kpSJAMA/3NR8D7kgZ2Q/28KsGODeoO8IRAsUkwYIiUVGDRMmSb/8GPIdinP8YMFvnkivZ8nl/Rc8Iyu/g0+tI5MEwUjIu+8sAQGJCZ5vojq2I2E2CQ9cCJWlo0w/RTx3f8m0+Svvw1ZWxm07n+/S1+LTphpwuxG/yeUrorRpJTAq3PUiTrpcAeZRHuwfR2k30/3tajtmH4Mdb4cO09kPVGf+ul1Sdz5V0v5HA1H8ejV1sZhnPNHEws3Rd82NRCycwBIV88JG8yB3WRS2Oe0IkZj+SLDJAV954k8wzBML+Wxxx5DWtqxQdM1NTW46qqr0NCgmSpCQUVFBa655hq0trZ2rhsyZAjuv//+mJU10YwbNw7nnHNO53JdXR3uueeemOz74osvRknJsRvqVatW4V//+ldM9s0wDMMwTPxoNj3K9amJFqPZVFEygB8+eGWrMq03srZ+OVqk+qniGVnTwtadnnWeMq+ExOd1SzqXO8QuoXSIbBwihSxTX/p+mdgTqW4lM5TMBwDq/OoZaewsRktKdL+llfRYkyqcEJrHwIkujw7duRpNOXWCtWT6vBSUMKRFNsMvfREFo907trqPoxOjUWlpRocYTX1dt3pNbyLadtX3RH13fU1eyzBdpSoGYjQKyWa0PsHH1e/AhF+ZNj33yqSXizKRyXWoR48FysxjAXX97g19MYZhGIZhGIZh+h4cn0fD8XkMwzAM0wVEHxuGdeP/kEny+Yc7/7YZAm/NMFCQTe/KbwKz3jW7VIwDtUCLT51WOjDC+4n9O9TrC4ohKJFdNIPnWYzWNSZfErZKALiz8nFykxUaT5kVdFIYpcihvEyd2ZECDBxK78xGxGz5AiaIo8RoLnVcBgOgsJhOm/8cUh0CZQ/p2+DPyoAPv+56EaKuQ4HUqWP8cNEN6vWaQfiyhnh3l8GD8qNFlJ4I8fdlED96ADj/O8D519GZm+ohG2rDVg/KFHjlR/pr0TOfSHy1j46bGDUoeFm+/jRQpZG2WxHIMLFF1wa988/OP9/4Md0O3fdmz8XOVDeqj/3jqYIUgYqf/kG5Pixfu9zxR9X/VKZTbWdDi7pMbjPAZMqyEaafInLygSHD6QzvPR+0+J1T6evQnkpgybbYlMs0adFnrjvCfdlXn9FplAA3EF178MVCuq/F7QgTChXjGBhHXl+jztNPxWg492pr+eqqcOsUA5/ebeCn5+nbhFYf8OD86J8RNRBiVSEAl5XhU/uJ+3wg/HPaLewwK8/CQRmGiTd97Ik8wzBM72P06NH461+DLbPLly/HxRdfjPLyckv72L59O6ZNm4bNmzd3rjMMAy+++CLy8yNNkZTchAaOPfnkk3jssccsb19bW4vm5nCZh91ux6xZs4LW3X777Xj99dejLuOiRYuwc2c338IxDMMwDGOJZr96Sj+XkaZcHy90whUPISvpjSyvXaRcn27Lwvj0iWHrh6YWoyDlOOU2K2s/6hSSUN9Rx/eqF6N5yTSGiacsKN6kGrS8qs6nfvGiO1eYniPSNYmSa8YLIUSvEYXpvrtoyunU7iexfYauoPusHrMprhJISoxGXbv90kdKVDskZZTE0eo1nTq26nuivjsTJllOhulPHI2JGE0dzMBitN5Pk78Bn9UsUKblOwbj5PTTElwiJh7k2tXne5WPmHW+izSbxPMbW/L3xRiGYRiGYRiG6XtwfJ4ejs9jGIZhGBWa9x6GLXHFSABi6Eg6cfNqyAC5k8Mu8OAV+oGv68uBKkLMoaNM85i6JEJ3S5YTYjSdVCYauRCL0bqEsDuUkpnjW7aT2yzZ2r13jpU6qZXqFQVVdwpGQNg05zo1eNoXYPdrVhdGuJInTifpKKLbI/nVMgDA8DzAnarfzWuru16PKBFIWgrgdESQgdRXqddTsg7dIHxKmBWN1JHpRAwZDvG9u2Hc/xyM+58HrvgRnXnLauXqScP1v78pgXe+Ute9XDdgGCHbr1mq3Z8lgQwTW4pKySS59pPOv22GwEgizEYIoNnbM/EzVepX9Mh1+oAj+9SJms8cnK+tPuYSkzxTx6bEJunmsckKBLdrTH/m+FPIpMB2BwDcqQKFGkl1d/vRHTS2tl3TVGRHui0KKXMgwkp7k0PHMMovPwYaWGTFWIQSo5kBkq56QrSXoTnR+jAi1QUMKIicsV1QeGapwJzrDDx0pb6PvKwMaPVF1z5R/Qd3iqJPrYISoA8ZDuEIGX8V6RmfYQDp/bNOMEyywWI0hmGYJODmm2/GjBkzgtZ99tlnGDt2LGbPno19+9QPoMrKynDfffdh/Pjx2LBhQ1Dao48+imnTpsWtzInivPPOw5133hm07q677sLll1+OL7/8UrmNaZpYsWIFfv7zn2Po0KE4dOiQMt/111+Pm2++uXO5tbUVV199Nb773e+S+wYAv9+PtWvX4ne/+x3Gjh2L888/H3v37u3Cp2MYhmEYJlqaTY9yvdNIbPCRTjzSRMhKehuHW/djh2ezMu20zHOUkhMhBM7IOk+5TYX3IHZ6tgCgv6MOmYnDoAM+fLKVTGMYShaUFgNZULwxhEEKm+r96hd5lGyI6Vkiyal0krJ44dQIKJLp/NAJwaKRfuk+UyzkYfFGV36PvzGiYLRbxyb2QV27df2eNKNNsuYw1BJHq9d0UgSnKGuk745h+jtVpBhtkHK9CkGI0Zjezyc1H5ASyWm5V8AQfWugV38l16EePVblJWad7yK9WVrNMAzDMAzDMEzfhOPzaDg+j2EYhmGixOhjw7BOv0ifvj9YHHXJCQKOCK8MbnrWhJ8aTU+wo4KWyWSnRXg/dYAQqBaES7k6iUbCkeK0npcJ5qzLwlZd0vABmf2+NyV2EnXBCpTUKtUOOL31MB//GcwbToT5reNgfus4yGd+o94gkpCIFKMFTBDnaVDnYTEazfDRdNpn70D6fBBC4IqT9W3C8ytk5yS+0UKJHXOt/Gx1armCoMRoNju9r2ri3V1mnoWCMJEQUy4n0+SvrgySgnYw1MJl41PCwRBaf2RTPbB9nXZf4my6jEx80NWLUMHG+EJ1NimBXUdjWKgooK6Bub7KtoKp0ElkA2m/Lub41QLIxhagRSGEayTFaAGFjUZWyzB9DG27s+J9yJbgOK5vafpAD86XuPp//Vhf3j1BWoNm/uGMCLdFcj8hHQaA0y+MfPDxk+m0LWvoNKqvxfRfKDFaIPUs2gujYETkPCEy6Ej3ZqYEdldGV4yGFnU7FqkN6kBuXKlOUPR7hGHon/Nl5LTlYRimx9E8QWEYhmESyRNPPIGcnBw89NBDnQ/h6+vrcc899+Dee+/F2LFjMXToUOTk5KCyshJ79uzB1q1bw/bjcDgwZ84c3H777Yn+CHHj0Ucfxd69e/Haa691rnvnnXfwzjvvoKCgAOPHj0deXh5aWlpw6NAhrF+/HvX19Zb2/fTTT6O6uhpvvPFG57q5c+di7ty5yM/Px0knnYS8vDwYhoG6ujocOHAAmzdvVs5yyTAMwzBM/Gk21VMK6YQv8YCSFwEgZSW9jeW1i8i0yVnnk2mTMs/BGxXPw4QZlray7iOUpI1Bk6kO+umQmdiFWqACAF7TS6YxTG8ffO+yuZXnR52PEqPxo71kRHeNAHpGzJVmuEG9U0qm80MntYpG+qX7TD0hposWXfmbzEZaMBqDupVmSyeOq752U+sD9+UgJI4+6YMpTRhC/8KQFMEpPq/uu/OYjcjBAO2xGKYv45c+VPvUV4M8Bz3bonV6ZsZbJjZ4zVYsqZ6vTEu3ZeH0zHMTXCImXujEaFJKCCuBYRaIRmzKMAzDMAzDMAyTKDg+j4bj8xiGYRgmFM2z0j42IFJkDwB+8SfIP9+hTJcP3wrxr1WdywMzBR7/tsBPX6bfDb2zHrj93xLPfM/6M+cdhAOoVP1YO5hy9QB8oZN9WB08n+KM2bPz/oj4zi8h1ywBtn/VuW6w/zDs0gsfEUtwxmwTG35rYGBm9N87JbXKcwO44yJgCy3nDaKLYjTp8x5rPTzqWFc4+V0JhRAC8vJbgLf/qUyXD98Kcf9z+N3lAv/+XP9++tdvSjx8ZVfqkHq9NTGaWhhEihhtGstktXrSs6ikjgzNRI3kvLUF8u4rgL8sCGr/7bbI9YmsPwHhhFJKyFtO0+/oguuB0yKIS5nYM2k6MKAAOHogPK1iP2RzE4Sz7cecc52B19eGx8kDwIx/m/jorsRPPEfVv5xPX1InGAYweLi1nWcPANyZyPWpBZAAUN0EDM4KXtdAiNHSAuMBuV1j+jNTrwIe+AGZLO+9BuKxdzuX771E4KkldB/ojbXAos0mvvi1gVGDunYP06iZ7zg9NcLGlBjNnQmRFVnuKlKdkMeNBvZsCU/csprekNsRJgyi/geKQom+u8jIjkN5egkFI4D1y/R5PI2QrS0QKW0NwpghAvddKvDgfLpt+ulcEx/eYb1vRAkaI7ZBAGRrC7D0TXUidZ9vdwCtRKfFQtvFMExi6FtP5BmGYXo5DzzwABYsWICRI0cGrZdS4uuvv8YHH3yAl19+GQsWLFAGXZ1yyilYvnx5nwq6AgCbzYZXX30VM2fOhMMR/BLpwIED+PDDDzF37lzMmzcPy5Ytsxx0BbQFqs2bNw+PPvoonM5gZXBFRQUWLVqEV199FS+//DLmz5+PtWvXhgVdORwOuN38gophGIZhEkGz6VGudxquhJYjRaTCgPrBHDX4tzfhlz58XvuxMm2E83gMSR1Kbptpz8ZY9ynKtC/rl6HVbIk4QJoSqACAV2retjD9nt4++J4SNtX5CTGaQUsEmZ4jkhitJ8RcTqJMAgZSjeSZ2Vh3rkYj/dIJ1npCTBctun5Nra8KJvzKtFjUrTSDEKP5CTGapt9zTIxGt1U+qReemtIk+3+q+qI7/3RlZZj+QLX3KKRCXgzERozGWrTezaq6pajzqwNYp2ZfghTDQlQJ0yugzvcW2YxGv/V3K5HwEGL73tAXYxiGYRiGYRimb8PxeWo4Po9hGIZhQtG8+ehjYjQAEFf/mE7c/hWkNzhea8a5BjbM1H8Pzy+XqKi3/gZpB+EAKhmoH9AvPY1A5UF1YkExvWGGxcHzqYmNS+xriLzBEE+GxyH++dBd5DYV9cDzK7r29rGSkhLZGq1L0QCIoaX6DHZiMktfQAyEh5hozqWOy2DaEJffSicufBmyYj+K8wWuVoeodvLUxxJNLdHXI7IOWZm7mRSjEYPpbZpJUSkxGg/MjwnCMICLbqAzrPskqjYjEkFivQ0rSKEnAIhZcyHu+xcE1c4wcUMYBsRfF9IZAn63whyBQZnqbEu2AX4zsVE0UkpajFZGCE4GDe2UmkRCCAEUliDPT7RzULeflBgtPUiMZlFWyzB9EJGSCvHPz+kMqxZC7t7cuViQLfDna/X3R/XNwDOfdL0Nos5bAEiPFG5OCat/PNvy8cUNd6sTmgnpMMDtCBMO9dwmUIxWrx6fY/lZQR9EFIywljHkvmfWtwx88Wv6GdHCzYAZRd+onuo/WOm2LHuXTBKUGE13X0bdyzEMk3D4DplhGCbJmD59OjZt2oT/+7//w7/+9S8sXboUPp+PzJ+amooLLrgAt956Ky677LI+OyOREAK//e1vceONN+KRRx7BvHnzUFVFP1BLT0/H9OnT8YMf/ADDhg2LuO+7774bN954I+bMmYOXX34Ze/bs0W6TkZGBKVOm4NJLL8W1116LvDzu4DIMwzBMvJFSasRoVqIOYocQAmk2Nxr8dWFp1OBfADjcuh+f1XyIvc07lVICp5GGkWknYGr2pXAYtBwscD+DUgpxeta5KHaN7tJnWVO/DOvqV6LGV9m5rtVsIUVMZ2RpZkrrzHMeNjaGz8rSbDbhj3t/haPew8rtOgZId0eg0sEOzxZ8XvsxDrXus5S/g0x7Nsa7J+HUzKnavnWr2YKlNe9je9NGNGt+81AMYcOw1BJMyb4Q+SlDyHx+6cPSmvextXE9PGY0IheBotThOCNrGoY6NcF9UdJserCk+l2UeTaj1Uze2dn3t+xWrtdJkpIJShJACQp0EkGm54gke9C1cfGCOgdcRhoMkTxB27rvLpJwLjhvbPbTUxjCBqeRpry+vH7kOXK7WEggqbqyt3kHHt97b9h6SjZmwECqaIuCsGvaKp/0IgX0m8pmswmSGHSgKqvDSIFDpChFqq8cfrpT1hYtNmHHcOconJNzCbLtHETB9E4qvUTgNIDcKMRogppNT4OUEp/XLcHGxi9Q5yMCSoijDUkdijMyp2G4a2Tk7FHwdeMafFn3KXlvMjClABMzpmC0+6SYHjcZMaWJRdXqWfJSRCrOzrk4wSVi4onufH+i/Hcxk+AdaFG/Y+kJSTDDMAzDMAzDMEwoHJ+nhuPzGIZhGMYihnoyzV7PpOnAF4vUaQd2AscFx6aNKxD4rwkCr32pfp/r9QNr9wIXjLN2+B0V6v0U50fY8MAuOq2IGPQKQGTmWpv4h8Vo3Ua43JCX3gTMf7Zz3fGt4RLiQFbu7JrMoVw9DxAG+CvVCRRDR+nTHcT7lNaAuLoWIqbQyXVKS1Fpm8jAVE/6hS1fAvmFuPlMA/PWEHkA1DUDmw8BE46L7vDlxC3QgAjhJtLTSIvRsog4E60YrUK5WvRjUUOsEceN1l8HNq0CxkwMWnXH+QJ/Whh9+5SXHvAcYZNGgJOeDUy9qs8+d+gVDB7edm76Fc+JysuA0vGdi8cPAg6HDyNoy1oNHJfAxxhHG4AW4tFWHnUNHEhPkq4kvwC5278mk8urgXEFwesaSTFagDyUhUZMf2foSMBmA/zqCZOx6Qtg+JjOxYnDBSJNYbqsrBtiNM0wEbcm/F021AI16v6L7r4sjMIox78IweJhJhyqL9UuRpM+L1Ctjhvt19elSPfBHVTsBwYEj4WbcJzAmSXAMsL/e6AWKLJ4K0O1QxHljADk15q+9nHHq9fr7ssysiMflGGYhMBiNIZhmCTEbrfj+uuvx/XXX4/GxkZ8+eWXKCsrQ0VFBVpbW5GamopBgwZh1KhROOWUU5Ca2vWBKjNnzsTMmTO7tO2SJUsSuh0AjBgxAs888wyefvpprFmzBlu2bMHRo0fR0NAAt9uNgQMHYvTo0TjxxBPDZq+MxODBg/HII4/gkUcewa5du7BmzRpUVFSguroahmEgIyMDBQUFGD16NEaOHAmbrY++2GYYhmGYJMUrW2FC/cDfaSQ+WMRlqMVoTYTE6mDLPjy+715ScNTBxsbV2Ny4Fj8puh+GCO9vhO5nu2cjVtYtxm2Fv8ZY9zei+gwfVL6Gt4/+23L+FJGKCRlnRcx3gnsS3EYGGs3wz1pOiKuAYwOkdQIVlegklK8bvsTT+x+BH/QABh1r6pfjYOs+XJF/ozLdL3342/5HsLlpXZf2v61pA1bVLcEvhz2MgSkFYelSSvz9wO+xvmFVl/Zf5vkaK2oX42dDf4cRLuLhbRR4zVb8dd9M7GrWB6QlM7GQBSWCaMupO1eYniPS79gTgUuUDCySxC3R6EQZ0ZRV1y/oLe1BmuFWitGOeA+Q28Ti96TEYS2yGWWeTVHsJ6OzrutkgJGu6zo5qJP4LV2GG15/+H4PtO7VHisSW5vWY3X9p7hr2CPIYjka0wup9KnFaOm2zKjup+jrGB1Q9UbF86R4KxJlnq+xsvYjzCj6DUaljY+8gQVW1C7Gi4f+GuG4m7Ci9iPcNOQOTMycEpPjJisbGr7A4db9yrTJWdORbiOmOWZ6JZm2bNiFHT4Zfr+8t4WemTxWJFpszzAMwzAMwzAMQ8HxeTQcn8cwDMMwETCSZ/KxWCKmXwtJiNHkK3MgfvW/YeuvnUSL0QBg1rsmLhgX+XoupcQOYgx9aSQx2n7i2bbNBgzSyFszLY7IZYlVTBDTvw0ZIEab0rQMQ7wHcdChnlj0jbVAdaNEjju6GJsdR9T1cUTtBus7cbmBkyO8H6TkC81tMQ5SSqCVsMFQUjUGACDcmZBnXAwsm69MlxtXQky5HOeNBvLcQKVmztk5iyReuCW6OlRGSBpH5EfYz/6ddFrBCPV63QB8T4N6fRYLo2PGuVcBf7uPTJarFkJc/eOgdddO7JoYbcSAgP2u+IDOOO0alqL1MMJuhxwyvE2CFoL8zXXALb8Fvn8PhBC4eoLAJ9vV9WHj/sSK0crouRJR3LpbuV6cdVlUxxDTr0Xqsvko9O7HfkehogwSF44Lrr+kGE0GNN4sfGT6OcLlhjzzm8AnbynT5dqlEJccG9Ny2ghgWC6wl57PAp/vAi79ix//uNHAkOzoriuNREiv3QBSdEYSXV+oMI5itBQnXzsZBRFiXA/toUXMVN+9PzD54rb7YY/mJgtoew4TIhAGgCu+IbBsh7pvdMYjJjbNMpDhjHy+NlD9Byu30tQzIgCYcJ56ve6+LC3DwkEZhkkELEZjGIZJctxuN84++2ycffbZPV2UpMIwDEycOBETJ4Z3oGPBiBEjMGJEP76JYRiGYZgkpNn0kGk9IkazuQFv+HqPX/0QcGnNexGlaB1safoKOz1bUZo2NixtSc38sP34pA8fVs6LSozWarbgw8p5lvMDwCkZk+GyRR7E7DAcmJg5BUtr3otq/x1CFyEE7MIBnwz/gr1mZDHaB1X/6bIUrYPFVW/jwtyrlZKZnZ6tXZaidVDnr8GnNR/i6oE3haWVt+zqshStgxbZjEVVb+GHhXd3az8AsLlpXa+WogFAWpLJnyh0UigVLEZLTigJWU9CCbOirXPxRif2iqashrDBaaQpxWLJJoOjcNncgI+I/CaIxe+ZZsRm5rTAsjgMjfDUVHSmAmgi+lWhxwjEZXOjzk9MA91NKr2H/z979x0eR3WvD/w9s7vSFnW5W66SKwYXwDRjeu+QS8cJkIQQkpAAISGFhNSbC5cEAiGBkHDzIwkhkIQWeu8ldDC4AcY2YGzZliWtpN2d8/tDWlnaPd8zs6vVqvj9PA8P0pyZM8fSaObMzpn34Pktj+Hg2uP7pX6i/rQxYZ7hriY0qiD1a20e0NCaasYjm+7qU90J3YEHG/9VkGA0rTXu2XCLv3Xh4t6Ntw77YDQptE7Bwf7VRxe5NdTfHOWgOjgCnyY+HpD9D5V7MyIiIiIi2r5wfJ4Zx+cREREJnGEa3HnwqcDPv2Auu/sP0Icvgdpxj16Lj5kHnH+AwlUPm58TPbMSuPt1jSN3sr/4urEZ2CIMDaz3DCMSXnodMwkqaBlXU+FzMqwSBqMVxM779fo2iBT+uvZ07Dv5YXGTY6518cTFuf29LReCYerXP++7DnX5nfZjB5CD0dIvkCctYyFKwr7bsr1S3/gVtBCMhr/8L/SXforSkMLfznFw4JVCoAGAm5/XOG8/jd2m+g/LWG5+rI4Gr8fqYkhjEBglhDTaXsCXMECoYNT4euCbv4G+/MvmFZ75N3R7G1Tptr/ZXScDPz9e4ZJ/5BaOlj5+dFsr8PJjcps+f1lO9VI/qWswBqMBgL7xMqhQCXDaRfjSYoXzbzEfC0dd48K9vnh9xuVCMGhZIIFRKeHi+JnzctvJ/v8FXLYE9R0rjcFopmtwc7u5XTGXwWhEPanzr4QWgtFw383Q3/odVLCz3xBwFG75ooOjr3GxQchRBYB73wQOuNLFmz904Dj++0LNbeblsVKPicGF8yZKSoGR2ecMUfUof8FM3fWzb00G0rGaHuO67j1527GTC96coUJFy4Ef3gz9g9OAtux3MLqtMd/7fG1/hW/eZr72r90MnHqDi7u+6t0/koPRfJzLPhTORTvvB1UiJKsFLPf/0r0/ERXd8JyqhIiIiIiIiIYdU7hJWngAQmikMI5W1/yEYWV8aU71S+tLgVnL42+KYQQma9s/QLsWnlwI9qw80Pe6e1QKsylYlAcqu78OCYFPCUNYWk+udrEq3vcQrxSSeL9tubHsvQLUDwAr428bl68Qlheq/lytaC1MPQOpLFAx0E3wpTxYldP6hQowosIqdSJwYH5oMzk8rcit6dTz/NrTYPvbkNoJ5N5WqS7bPgaTXNtZqsIIOSV932+O5yFJRY96gkpuV0LbA0+twbgB8wD0/v4dF+o6TVRsGxPmgY4jChSMJnm/bTlcpPpcT6H6tk2pTWjMIXjyo44PreeioW5l61Lx3nPn8r0womR0kVtExVAbGrjf61DpixERERERERERERGJ1PB8DUsFg8Au8ngvfeeNWcsCjsIvT3Kwz3S53uufkEOL0lZaHt3Uj7Rvq6UwovH19g39hnCUMhitEJRSneF7PSyKP4uHPzhY3OapFcDb6/yPh0y5Gqs2mMsaOoTjJGvFnaDmLvJeLyJMBNPaNeFtQniTG+gMhyArNXoicPTZ8gpvPgcA2H+mQtPVDmxZH79/yv8xtKlFY6OQwdHgFdIohYGMndwdZJIln2A0v6GO5Is6+mzg5K/LKzzVexI4pRS+daiDdZc72H2q//00jOo6fh43T1oGAOrLP4eqGuG/Uuo/ExqsxfqOGwAAoaDCnpbuxqaW3AL0+kLqSzWUbIDx7DVrF+8Q0AzKcYCaMWhIrDK3wRDOJgWbdAejhaO9wgeJtldqVB1w2kXyCi880Ovb3acqvP9zBzd+1t4/eedj4PFlubWlpUMIWvTqwkr3ZeOmdp4/fFJKAeNyuMiG2Lcmg3yD0WrHQoWL/27iYKL2PBzqXx9AXXGXeO+q3zOP5Q0FFXazzIVzzxvAwquqIQAAIABJREFUBxu9+0ctUv/B489dp1LAOnM/RR39eXlD6X4NACLb9/FANJgMz0/kiYiIiIiIaNixBmM4xR+AFBGC0eIpc4Bba8oyJYupHtc8wmJLslHcJpcX9ptTTTm1Z1zJJNRHZvtef0JpPSblEABUqsKoj8zq/j4khKh4B6i0QsN7QJ0f0u8gVYBgBwBoTZnrjwvLc65faH+upJ/DUBFSJZgWnTPQzfBldmx+TuvPjO3UTy2hvnCUgzllOxvLdizbtcit6TQ7tsC4fAdh+UCJBsowOZw9YnpUaBxGhMbkVJfp78mBg5mxuXm3r5hyPR/sUFaY3+XkcANiTnmf6+l5zElhpwCQ9Ag8la77DhwEhXpz/dnlaqhfF2n7JQWj1QRzC0ZT5iGTolzvgyRtbhwpnexzPR2u5SUEgasL0/8fjB7c9E+x7MCaY4vYEiqmuWW7Dch+ywIVmBD2eBGNiIiIiIiIiIiIaLDL4aXuIWfKDnLZ8lfFokPnyM+P7n4d2Nxqf/F15afm8mgJMCZjvg2dTEKvegv63Zeh168B1ppfesV4j5fp/YYLMRitYNTU7ONrfttrCFnGAz6x3H+ozJpNQIfwOLG+QzhOMjX4HFMSFSazjHeNJ+iwPJNkeIMvato8ubDH+agsrPCtQ+Vz0Cur/R9DtpDGaR7zDuk1QhhIneXZWD7BaJUMRis0NW+xWKaFa9+YSoVvHuK/PzC5tqu+Za/IK9Xv6Ls+6l/K1h8CgI/eh966GQAwY4x8/nn7owI2ysNGYWjOxNRac0GdPfxNVFGNeiFsdIVhWJIUbFKWnoSeYY9E3ZStH7ri9axF0VKFJXsolHtkC77yYW4hjWKgodCF1W2t0Mtfg14m3C/a+kKSXLZh6DCZeAWjbTKPpcWYif3TniFGxSqgdjsY+MxXzCv851Fo1/zO3pzx9vHFr37ovf/mNiGgUTjfpc9DWP0ukBA+X7CF5wcCcllEuPcnoqIbxp/IExERERER0XDS5poDx4CBCUaLBoRgNCEsI25pv4kUmmXdxvUfOtCSQzBaLFCO08ec1zkDi09KKZw6+lxUBKo813UQwGljvoISZ9uDCSnsxCtApZBhJdLvQOv+DV4rVKBZUieQcO1Bcn4M5QAYBw5OHX3ugJwj8tEQmY19qg73te78sj2wa4U8KIcG1vEjP4eaYO9pi+sjs7Bv1RED0p4JpVNxSM0JvZbNjM7FXlXyzLsD5eTR56AsUNH9fdiJ4LQcr0EAcFjtiRhfOrn7ewWFkzLqHswWVR2CGVF/A95qQ6Nx7IglBdlvQAVxxtivitdhPxoiO/Q6l0lhp4D3dV0qt9W5T9XhaIh4DFDrg0IFmBIVmxSMVhvKLRgNQjCahnkwQq73QTb53CNlSnicd0zcAgUvDzYft6/BG80vGstmRHfCRAZYDVu7V+6P2dH+DRLNFFQhnDHmqwgoy0AiIiIiIiIiIiIioqHAGb6fc6pDTpMLV74hvvh6yq725/k1X3dx0u9ctLabnyetEMKI6kei11gBfd/N0EeMgf7sAujP7wF9Qj3w0iPGbZXtpVcAqKi2l6eVeiQNkH8HnpS1qMLdimO33ilu8uU/a5x1k4uOpHeggymQJa0+4S8YTU3wFxSjpJej413jNzva5I1D8ngH6mG/E8Qi/cBfe31/+u7yOejl1cAba/wFgixfb14vHALGVRqLtlkrBaNZjql8gtHKGSJUcAsPkstuu1YsOmwOUGseRp5lRBmgt24Cbr1aXmnBfv4qo/637/He66zrvK6cvUg+/3ztr8UbayIFkFXEhYtj3sFoNWgQgtFWbQBSbu/zqBiwlB6XXu6zP0a0PVh0pFik77zRuDzgKJy2m/1e7KancwtGEwMNM/LHdCoF9+oLoQ8dCX3WQuBxYXJOr/syk3EeIdc9MRiNjKS/i86/B93UaC6urO2f5gxRau4ic8GWDcCDtxiLluxhPycd9xsXb661n5ek/oPxPHTNxdCHjYI+ayH0Est4SFt4fkB+Z0KFfXb4iajf5fEJChEREREREVHxtblx4/ISVQpnAF6sjThCMJrhZX1Xp8Rgt7JAJZpTW7LrMYRRpXTK2qbWVLPvYIOW1Fbj8opAFRZXHdb9fXVoBObEdkZ50DvgLNOE8FR8b/LVeLPlJTQmzCPYyoKVmBWdi5ElY3stDznmAUBeQV/xlBy8cEjNCcYglSe33I8tyewPt3MNBKsJjsSelQdmLV+f+AgvND1mrF9rnRX2IwWujC+djPlle2Qtb0414bHN9xi3aXVbUCn8LP2SAigaIrMxM+pzlswBUBaowMzYXIwqGTfQTfHNUQ5OHPUFLKzYFyvibyPhZn+qH1BBTI3MxNTITIYKDGKjSsbhO5N/iXdaX8f6jrWYGG7AtMgO4rmtvymlcMzIMzC/fA+sjL+DsSUT0BCd3afwq/4yMVyP70++Gu+0voakTmJWbD6qgrkP6qsIVuGiif+NZa1vYFNiA6ZHd8SY0rp+aHH/CDsRnFd3KVa0vo3325bBFUI5x5ZOwIzoTogGCjcj0U5lC/GDKddgactraEpu8r2dUg4mhRswLTIHIWfbsWU7zhKWmZ8B+bofdOQ6I4Eovlr3QyyPv4kP2lbkHWi6pv09vNr8XNbyQgWYEhVTwk0Y+7sAMCLkMbW1T2IwmtCXrArWYlFldkBn3G3Fw5vuMG7T6jajHF4jzu2SHucdo9zGhw0ZD2+6Q/y9HVRzXJFbQ8VU6oRxbt13say181rpenzW0FeVwRrMjM3NI4iRiIiIiIiIiIiIaIBoy8MBxyleO4pMzZgPfcKXgdt/Y17hT/8NfO47WYsn1ipcdbLC+bfIP7e//0djZDlwzanZL8musgSjpel3/gP907Ot7e/F9tIrAFT4HIdQOjQmYxwK1OgJ0KURoL33ONDrPvoq/l7xGXG7m57RGFcF/ORY+wvWK4RQq1HJT1DhmsdKZhk72d96EeHl6HQwWkJ4kxtgeINPqrIWevxUYK0h1O6t56Fbm6GinWNlZo1VOP8AhaseNh8Du/zURfOvHYSCXseQeXn9SMBxPCZ0FILRrCGNeQWjMUSo0FSoBHrRUcBTd2UXtsehP/kQavSErKJwSOH+rzvY5af2cUllpUBJUMG94ivySgedDBXka96DhSqvAn7xT+hvWcZNrFkJzFiAPevlc8MrHwL3valx6JzcJoTNR7MQPlvW8rFxuWeArKSiGvUd5rDRRAr4sBGYPKJnu8zVlKXH3/ntjxFtB1Q4Cj13EfDaU9mFn6yG3vQpVPXIrKIrPqOwsbnzfsvkzXXA5laNqqi/c5HfQCLcdg3w92s868vnfKPGT/U/XC/EvjUZSJOxp8Pem4Sx8bwu9TZ/n85g70T2mFv9kzM7+7AZn5HtPU3hd2conPP/5L/iQ69y8f7PHQQD5t+T7/PQP38L/O0q6z8BAFA1EqrMMu7Ydl8m3fsTUdHxjpmIiIiIiIiGBCkYLexEi9ySTpGA+QMuU1iG1HYAGF86Ee+2vpG13BQg4BXUJYWdmTSnmozLR5eMx+EjsmdnzFdZsAK7V+6f83YhIUQloRPW7WxhJUeOOAUBlf1RyLL4m8agCCkQzIV5IENtaJTxZ7cy/o4xGC2pk0joDpSo3p/QSv+G+sgsY/2bk41iMFo81YLKYN8Gw8SFUL/ZsQU4tFYelEb5UUphSmQ6pkSmD3RTqI+igTIsKN9zoJvRy8RwAyaG85ztr4jKg1XYtWKfPtdT6oSxY9muBWjRwAiqEGbG5mJmrPghlLWh0VhUlR1YlA+lFIIqhKThGu51XZfKTUGnvcqdEGbH5mN2zDL7k4dXtz5nDEaTQp6IBrNNyQ1iAFZNjkFFuQ7XlPq2o0vGGfu28ZQlGK0Af38J137eMdFC/38o25LchOebHjWW1ZVOxqzovCK3iIotoIKYFZuHWTH+romIiIiIiIiIiIhy4gzvSezUWd+HFoLR9MO3QhmC0QDg3H0ULrhVI2V5rHLzcxpXnawRyAgYWvWp+TlW/aht6+n7bvZoeYbxHmMjYpWdL0vbQvAABqMV2vHnAn+9steiKncLLtrwv7hixIXiZn96VuMnx9qrXiEF7AkBLkYjx/tbLyJMXhfvep7ZYZmsqSTsvz3bOXXEmdDXf99c+OSdwCGndn/77cPkYLRECnhoKXDYjvb9SSGN0zweqev2NmD9GnNhXQGD0coqGZ7VT9Q+x0GbgtEA4KG/AaddZCxaMEnh+jMUvmgJfqiJAbp1K/CEeRwEAKhFR+XUXup/as/D7aE8PcIQT9xF4daXzGv/6dliBaOZl8cSm80FdXmOIS2vQX3iMbF4xfrewWgtYjBaV5BoBcMeiXpSB5wIbQpGA4BHb+vsS2eIlir87RyFmXe6+PHd5nPR7S9rnL2ob8FosYxAIt/3Z7a+kMQr5Lonhg6TiRSMlr7/bzJPMswQ4t5UJNYZ2PjSI+YVXnsKmL84a/EX9nbw4vsufv+k+Zy0bnPn/dmhc8zV+g1G0/f/WWp6b17nIWswWuEmrieivhm+U5UQERERERHRsNKWMoczhZ2BGXwUdczBaKbwMtsL/FIQgSlAwCuIozX9oNAHKUQtFij3XUd/CgqBJwltGTQE+WdUqsLGUDQAiOTwu7Qzf4AuHSuA+ffcmjL/HqV22uv3f0xIpJ+pbb9EREQ9BaXAU9d+XTeFqQFygGohRYUQ3HbdhpRO9fv+iQppY+ITsaw252C03AZsSn1JqW8bdiJwhMeXhejbet1PmPiegXIIeWzT3UjqpLHswJrjoKTBQURERERERERERERE27th/hm6qqiRC1e/KxYFAwpz6+x1N7UBazZlL/9UmAt0Ys+mrHrLXnmmcZOtxcpxgGofz8n4YnRBqenmCVsWtL1q3W7NJmBLq/2p3cr15vKGjpXG5VnCUWDGAn/rRoUxlq1dzzMTwpvcABBieINvwvECAPq9t3t9P6ocGFclV/Xou95PfT/dal5nYm2PkMZkAvqtF6AfvR163SporYGmjXKloyfJZU6Or/XGKnNbn/ybIU+8qJ+917rp5Fp7v6AmBmD1MiBpmcStYSdrHTRAdj1QLNJrtl1b5k2Qq/jHK7rzPNHPmtvMy8ukcfD5BBUBQM0olLvNGJ00j0NakRF2KwWbRHXXOyFl7GcR9TLdcj1a/rp10/1myNej3z2u0Z7wdy4SAw1Le/aHksAKe3u6jc/jfDMuh2A09q3JROpnp6/JzebgUOvnIdsptfuhcuH7b4tFCyfb6318mXxO8hOMprUG3vmPfSdp0zwmqA9a3kmI8J05osGCwWhEREREREQ0JLS5cePygQpGiwhhGaYX/20BW7VBIRjNEI7lFdTVIgRqmdc1jygrC1T4rqM/SYEnUkBKmvQzkn5fgCXkTghx0DBPbeoIAx9t+87leJECWkKqBAGYQ9+8wvT8MIW3AfZ/FxERUU/5XtelACMpQLWQpNAmIJ/wVKKBtTGx3ri8IlCFEqcwg4O0EB+Wa/9cKSWWSQHCuUh4nHdMpH/bUNXmxvHEZvPg7ergCOxcvleRW0RERERERERERERENIQM82A0AMDCg8zLXRf6jhvEzb60j/fP5oTrXLhu72cvjeb5UlHb9chIJ5PAK4971t1tVB1UqY8xhT5e0lf5BoeQ2d5HAzWjsxYf3Xw3xiQ/tm76qJzLBwBYYX4kivrEKn9tO+Q0KL8vPUvrxZs7X9C2BaOVMLzBt10OkMv+fHmvb5VSOGexfA664gGNXz9iHveZ5nku+vgD6DN3hf7S3tCXngp90izoy78MNAoHHwBUyuEKSikgYB73aRQt878u5URNmS0XvvYU3KsugE6ZJ1Gs9jht1EY19AVHyCvM3wdq4nQfraRiU8d+US6890/dgWdL9pDPPR1J4L9+6yLe0b/jTsQAEdMEhOXVUJW1ee1HdYUV1Quho1c+uO3fmUxptAlDdLrbVcFgNKJeZu8ql939B+hPPhSLF0+TN33pA2D691y8udb7XCQFo8V6BhL9/oee9QDoDBsaZUmPlIya4L+PxL41GUnX5q6/gaZGczGvS9mO+JxYpG/9tVh24i4K1VG52l/cp3HjU+b7MzHwNdzjmzUr5MozqCPPsq9gO98wGI1o0GAwGhEREREREQ0Jcdc86iAcsHxa1o+ksIxWtzlrdidbeEZNyByMZtqm1SPkKpeggOZUk3F5LCDMZlhkISHwRApISRNDvCzhJmLwglCXPHmX+QN0KXhN2ocYHiHUYw2P6GNwi9ZaDFez/buIiIh6yve6LgWnSUFrhSQFkgKFCR4lKiYpGE26F7ESX/bJLRjN1peMOuYB3YUIRkt6nHdMhlsw2tObHxTvrw+oPhoBlcPgeyIiIiIiIiIiIiIiGnbUN68Vy/QVX4Fu/MRYdvYihStPVJhkydp4eTVw31s96tMajcLj15pY13Opf9/k0eIMPgLPfK/nty7yRZVGoK59JGt5WLfj8fcPwOKWJ8Rtj79ODrVyXY2Vn5rLpnVkvzCtLv0/4KizgLIqoGokcMKXoc6/0vsfkBYRAqpSSaCjHegQ3uQGgBDDG/xSgQBwxJliuV69rNf33z3cHs54/i0ab62Tn/3K56Ku/V15PvD+0t6Fd/0B+p+/lXda7hGukFMw2uAY2ztcqS/9VC687VrgyTuNRTUew2irW9YAWzfJ+/3Z3/00jwaAWnwMMMsSUvTGswCAcVUKvz5FPv/84xXg2scGKhjNcGLrS+jrhAYAwDQhGG3FemBLa+e/VQpX6tkuVSGHRxJtj5RSwGnfFMv1VReIZY6j8JX95XPRh5uAz/3RHhILAC3t5vNVOhhNr12ZFVArGjcFKpj7ODQVDAJjJ/lbmX1rMpHGuKZfBGsS+mZeffftkCqrBGbtYi5cswK6dauxqCKi8OTF9hijL/4/jfc2ZJ9zxH5N6bbfq778PGvd3Y79ItT0efZ1bBMghPnOHNFgwWA0IiIiIiIiGhLa3bhxedjxMbtjP5Be5E/qZFbIhxRoVqrCKBOCyOJuS04BawDQkjJ/qJjLuoMlGC3omANPEq4wfVQXMcTLEm4i/S6lujTMD4WUEIwWUiUIwPxQJ24Id5COl0L+G/xK6A6kkDSWSWFsREREmYJCkFlCCD7rLnfNAUYhxxy0Vki2UFUpUIhosNqYML+cUptHMJrU55VIfVvb31g0IASj9TH0F/A+7xjJychDTkon8cgm84DtqFOGPasOKnKLiIiIiIiIiIiIiIgGoVilXKa2g9ewRtYBIcsz2cf/ZVyslMLXD3Tw3s8DmFsnb37LC9uevWxtA1LC+/ndYUQP5xgaM26qr9VUV7iHVZ2PdSgnqq4B6gd/ylpen3gPj6w+FNPCjeK2UlDDR1uAuPAYsL5jVfbCWbvAufg6qLvXQd35IZyv/xLKdsxnkoLRACDe3BmOZhIIQjnbwTmkgNT8xXLho7f3+tZxFH55kv159q0vyc9+NwrzdNXEAN3SBDx/v3mFe24yL4+Wex9XuQSjRThes19JgQ9d9MO3GpdXe8ztXfPpUrlw0VGdYRM0aKkvXiaW9TwmTlnoce55caCC0Qwntr70bboCY+uFYDQAuOv1rmA0y7yF3e2qYAANUSY1Zze58Jl7oOPy+Lm9G+znopdXA8s+sZ+P5ECiri8e/Yd1+176EjLt854OJQxGIwNLMJrWGtgq3HPyumSk9j5GLnxOuEcCMHucwv/+l3xe0hr4e8b9WSKp0W5+fQ2xnrdWK9+Q29SDOvYc75USljRX3oMRDRr8NI2IiIiIiIiGhDYhgCLseDxV7ie2UKjMADMp0CwSiCEivPSfS8Bad7npAaZACkYrC1T4rqM/hZR5QEhSW56UwvKztgQvSL9LqS7pcZAUEqGU8r0PV7visZ7Pv6Gv4RG27W3tISIi6kkKMksKwWdpUoCRFLRWSLbw3b4GjxIV28bEeuPy2tDogu1Dyg6z3QtJpNDfVkOocK6kwEUbLd4BDD0vNT2FTckNxrK9qw4dsOBxIiIiIiIiIiIiIqJBZd/jzGE1E6dvFwEmKhAAZsoBMXr1u5517D9Lfvn15uc1bn3JxeZWjUbLo9d0MBpefsxzfz2pOp8v4O9gCR0AgKqRwLgpOe2bfJq9q1g0q+MdseyqhzXaEtnP7laYH4cCMASjVY8CxkwG0HmsK+mleZuoZdxcvFl+sboknPu+tnc7LBSL9AfZx8oeU+2/zx/frXHNIy6WftT7OHJdjU3CHHm1MQWsWQG4QoqjpKLGe51cwjxsgXzUd9Pm2kNBn7rLuLgiLGdvAMCYphVimZotH980SEybJ5f94zroriDMmpjCNMvchC+vRtZk6YUkB6Nld7T6dNyNGAcA2C3+grjKu5/Y2wQAsfQ4+XIf50mi7c3MneWyVApYawj97bJwiv2aBAD/esV+LmoR/nZjXV0WvXqZfQc9KK/7Ldu2c3b3tyL712Qi/R1oDbRu7fxbMuF1ycxyTwaPc8LuHvdn3/6HxoNvayRTnecm6Z4MAKq6Xh3VHe1Akxyo3q2syl8gbKv53crOOob/Z4BEQwWD0YiIiIiIiGhIiLtx4/KBenE7KgSaAdkBZlJ4RsSJiS/9A/4D1tJafAYFaK3RLASjxQLlvurobyEh8EQKSEmTwuOsoWJS8IIYjGYe4KIsM8LK4Q6999HuxsXgBdsxFxECAr2OGS+24JeoJcyCiIiop3yv61IgqhSgWkiOCogBvH0NHiUqtkYxGM0yKjNHUh82nkfor9TvzSUIWpLMI3BxuASjaa3xYOM/jWVBFcK+1UcUuUVERERERERERERERIOTipYDR3w2e/kJXx6A1gwMdfLX5cLbrvUM9zhnsf3l15Ov19j1py5efF9epzYG6FuvttZjNH6qv/Xm7wPMWCAWqxO/BhXs/0m7tkdqnPw7+s7Ki8Wy7/1L48ArXWxq6X38LV9vPh5rkxtQ7W7uve+TzocKGoIPc2ELqIq3AAlhsqZcQrAIAKBsL7I/eAt0RqjBrpOBxdPsdX7tFo2dLnPx+ye3jQNtagNc4bRWEwP0PTf5a3BP5dXe6+QS5sFgtH6lyquBI8+UV0gmoO/5v6zFjqNQaRnGPm3Tf+TCw87IoYU0EFRlrbVcf+Mw6K2d15mLDpH7Pq4G3lhb0KZtq9vVcpCRaZzNwafkvS/lOMDCg7Bf6+PiOj+9p/Nk2twm11OWbleFj/Mk0XZGjRgHHHSyWK7/fZNYNqlW4cSdvUOIbnhSDnsVgxZLuwIe7/2Ttf5uFTXA4Uv8rWtyePb9uFGI/WsyEZPR7IFavC6ZzVssFukbL7NuuvtUYC+P7PpDfuXi+OtcxDt8hue/8IC9wrTPnAdV6uN+q8USjOYn7JqIioLBaERERERERDQktAkv1EuBFf0tl0AzKTwjGoghYgmXygpYE34G29b3FxTQrtuQQtJYNliC0YJC4ElCCEhJk4LAbCFeUpkUCiYN7LM9RhL34fNYAfILj7AFm/lhC1aztYeIiKinfK/rUnCaFLRWaFJ/r6/Bo0TF1OG2Y0tqk7Esn2A0ZRs0YiD1R639c0cIRutj3xaQzzu2wMXhEoy2tPVVrOv4wFi2W8W+qAxyYA8RERERERERERERUZq64NdQX7gMmLkzsGBfqEtugDr+3IFuVtGoxccAc3aXV3j7Bev200crXH2y/aX8lZ8CX/2rNEElUNH2KfSvv+nZ1izjPd66Te/DcaCuuh847hxg0gygZkznf3P2gLrgauD0PPZNvqkLzKF3u7S9bN3umZXAtY/1fn634lPzuvWJVdkLT73QV/usrMFozUCHkCjB4Ia8qAuukgszXopXSuGerzmo9hhWnHI7A9LSIXu2F/Croxr45+/8NnebSh8v0ecSlhdlMFp/U+f/Elh0lFiu//uL0C1NWcvjluFPDfFl5n395G9QI8bm3EYqPvXTW+XC158G7rgBAPCFvR384gS573PO/5ODiPqi1XL8lWWOcZuxAKqPAR/q67+EA43zGq8T13npfY0WS7ti6XYxbITISH3nRrnw79dYQ6r/dJbCd4+w34ede7POChpOE4MWSwG8+qS1XtSMAcZMAvY7Aeq6x6FGjrevb6FGT4C6NDuQNEuo/ydZpiFICX8DWgNN5rG0AHhdEijHAY6QA4T1R+/L2yqFe893EPBINLr7deCWFzUaLa9MpoPR9I8swYnl1cAOu0Gd/79QZ33fvtO01uz+fbeyKn91EFG/YzAaERERERERDQntbty4POxYptrqRyFVggDMMwdmvvwvhWdEnFhOAWteIVetppmdDJqT8gd3ZYEKX3X0t5BjDjxJCgEpaVJYgi3ESyrr0O3G/cnBCPJDJGkfme21hdvZjhWpzO8xIZGOuQCC1vAIIiKinqQgM6/ruhRgJAWtFZoUYNvX4FGiYtqU3CCWFTYYLVtSJ9ChzaOlbAHXUmia3yBoGylwscSxDTgfHsFoDzb+w7hcQeHAmmOL3BoiIiIiIiIiIiIiosFNBQJQS74N54Zn4Fx1P9ThSwa6SUWnTvq6WKafvNNz+xMWeD9XWr/VvLw6CjjP3+e5vdH4qb5XVbEKOBdcDefm1+Hc8UHnf9c9BnXcOVDSy9RUGJNniUWHNdt/93e82vv53QfCI9H6jt7BaOqcnxTm91oaARzhlcx4M9DRZi5jcEN+LMeKfiL7XBQrVbjrq96vzLYlgAfe7jyWPrG8C1/dZJ58ylO5j4mpSsL+67MF8lFBqEAA6pLr7Su9+HDWolmWfLOGjpXmgoUH5dAyGlATp1uL9RN3dH990cEKEWG+z/fk4Tt90iyEGAE9AsjSFuzb9x2OmQQEAljQ9oq4yl9f1GgWLoUlbjtC6cndyxk2QmSigkFg90PkFdYK1xYAoaDCj49x8MXFcp/X1cD9b5nHw0nnlLJS+z2g+p9/dd5L/X0ZnB/9Bcrj3OnLnod7r5NLyCxtP6R7PtcFtjZU/IhmAAAgAElEQVTK28Qq+69NQ5yaPlcufPpu67ZlYYW7fdyf/esVLQZWlwSBaAmgUymg3fxuKcZOgvPvj+H89gmoz3zF/72/FGyOrlA4IhoUzG9wExEREREREVn8ft3/4JOOdUXd5ycda43LI5YX6vuTUgqRQAzNqS1ZZa1ZgWbmaQsiTgwhVYKgCiKpk1nlmaEbmfVmakkJI8Uy13Pl9WKBcl919DcpdCvhWqaQgiWETghXAOyhafFUK8qDmR9wmx8E2UIixGCVzGPF8juOBORjXapfCorzSzrmIoEYB/8REZFvIUe4rgvBZ2lJ1xxgJAWoFprUR4i7limpiAaZjYn1YllNcGTB9mPqIUv3QYBH6K9wTxLvY+gvACSF806JJXDRNsvmULG6bQXebX3DWLZT2W4YXZL/DJ1ERERERERERERERDRM7bSnXPbnK6BPvxiqTH5xeEwlMGM08O4nue+6JgboD5fnvuH0+VCxwTExKHmYsQAIR4G27GeK+7Y8jnvLDhU3/c8HwLsfa8wY0zl+bWOL+XneuGTGGNe6hvzb24NSCjpSBrQY0rRam4GE8GI1gxvyM2OBXLbS/Ax0Xh1QGQG2CO/Mpy3rOj+t/NR8DMVKgaoNeZyLAGBUnfc6OQSjKQajFYWqqIGu31E8tvSffg4sPqZXSMK+MxRe/TD7GNqpfCOq3c3ZldSOhYrIYyZokBk7pTMsRRo7svTF7i+VUoiVAnHDkLf1W4GX3tfYZXJhx16b9pUW073HgKu6+j7vT4VKoEdPxOJPnxTXue9Njd2nmP+dZT3H/lTU9Lk9RMOV2nFP6OfuNxeuXenZr91vBnD9E3L5n57VOHlh9nI5GE2J10YAwA67WduTDxWrgK4eBWySxz/mFDJL2w/xPScNNG0yF5VVQQUC/dakIW/+PmKRvu47wNFfgLLc7+42BQiHOsOpJc+uAk7Y2dzfqol23Yev/7Az4M5kBMfAEg1njCkkIiIiIiKinK3vWIe17e8X9b+kNn8CVupEivyv30Z6mT8z0EwKu4p2hUtJoRvZAWv2kKvWlL+gAClATcGxhoQVU1CZA08SwnGQJgWV2IMXLMFoht+dziMYTdp/ZnCZFGRWqsIIKDnfvr+CW6RjzvbzJCIiyiRe14Xgs+5yIcBIClAtNKmP0NfgUaJi2pAwv2lSGagWQwvzk91HtvVFbcHFfvvO+ZDOO7bzitT/H0oebPyXWHZQzbFFbAkREREREREREREREQ0Vqma0tVyftx/0lo3y9krhB0cpOHnkf9RE0fnCfy4CQagzv5v7zmhAqGgZ1BnfNpZ9dsvNmNqxyrr9rEtdPL2i8zleo/AYsTbV2HtBAQJhukkhVfEWoEMKRmNwQz5UtByoHmUuXPoitCGgLlqq8J3DvU8+P7iz8xhaLuRtNIwEcP33/Da1FzXex/GWyzERZTBasaizvi8XLn8N+qdn95pg7dx9FEZnZHIGHODSpeeZ6yjkuYj6nSoNA6MmWNfRbz7X/fUvTpDPPQt/5uKRdwo7BiVumZc07GZcj/ycl/wYX48piQ/g6JSxeOlHwNsfmf+dZemwtkBQvpYSEXD058UifeOPPTc/dp69H3TfW9nLXFejVTinRNEGvPyYWJ/qr6BDr2DjEIOHyUQ4/rUGmhrNZeVV/decYUBNmS0XdrRDX3gktHQfDKAqqnDhwfbz0oZm4LU15rLari6D/sd1chu//HNr/UQ0tDEYjajAlCFJVkuJ8EREQ4RrSFE2ne+IiIgGQngAg9Gkl/kzA82kF/jDTrSznj4GrKV16HbPgBEAaE4ZZioEEAuUwVGD46MCKZggKQSkpElBXpFAVNzGFgZn+t2JwWiW/pF0rGT+TqXfsS04AvAf0perzGPZb3uIiIh6yve6LgWiBi1hoYWU7qtl8uqTEQ0mjQnzCO7akP1FFokUBmzqI9v+VuzBxeaBj62uvyBoGylwscSRB0kN9WC0DR0f4+WtzxjL6iOzMDUys8gtIiIiIiIi6juO0SOi4Ybj84iIaLBS379JLlz1FnD3H63bn7zQwYPfcHDmXrld12piANasMBfuegDUH18Ejj8XmLcYmLs3cNRZUFfdD7XoqJz2QwNLLfmWcfmI1EY8/f6+OLv6Bev2l97R2YeSgtFqUpt6LyhUIAwARITnna1bgYQwFoLBDXlT3/qtXHjPTcbF3zzEwW1fcnDqQvv55401GiulYLQRLrD8NZ+tzOAn/Kokh2OCAUJFoxYfA0ybK6/wwF+Ad1/u/nbaaIWnLnbwzUMU9p8JnL1I4aEzN+DYrXeatx83tcAtpn433v4707/6RvfXp+9mP+d871/Z9/990WZ5bSCi470XFCqUr6ue91bMEFf55yvmz2pj6bFEFTX83IPIQlWNACZONxcufRE6aX9nqDTk/ff1xpref6dSKBoAlL16n1imfvQXz33lzaP/rti/JhNHeCdOa2DrZnNZf4X7DSPqnJ/Iha8+ATwp9H27/OhohZvPVphuGbr8ywfN/YeaWNdz4Ft+Jbdvzu7W/RPR0DY43nYmGkYcQ4cpkfAOJiAiGsySyWTWMtP5joiIaCCUBwduZoaIz7AMKRAg2hUuFRUD1nq/+C8FrNm2MWlJbTUujwXKPbctlpAKGZdLASkA4GoXcbfVWGYLPyt1wlDCRySm3530Yo0UEmHbf2bwmBRkZguOAPyH9OVKDGoTjn0iIiKTfK7rgBycFhSC1gpNDB5lMBoNIRvFYDRhRm0vOQxKlPq2CgqlloBrKRitzY0jJcw261dSOO9IAY7A0A9Ge3jTndAwD6w9qOa4IreGiIiIiIioMDhGj4iGG47PIyKiQauuwVqsn3/As4r9Zirc+FkHi+xV9VJtCUZTB58G1bATnG/8Cs6vH4RzzUNwLr4Oau4i/zugweMz5xkXj0xtwG/XnoPysLzpY8uAtoS2BKM1bvumdiyUFGaWDymkKt4MnWg3lzG4IX+WUCL9n0fFsuMXKNz8eQfXnSY/577vLY3VjeZnwvXOR/7bmMnj/AkAKLEc4JkKefySJ3X4Z+0rZFz/6kcp/OIEBw9dEMANSxws3mAJkClUOBUVj0cwGho/6f4yFFSoHymv+twqYEtr4cahxC0fiYZ127ZvSkqBkXUF2afqCioan1yHndpeN67z+hrzttuC0aoL0haiYW32bnLZyjc8N//eEfZxfve91ftc1GIJRosufUou9NPnyZOa4FF3LiGztP2QxrhqDd3UaC4r53XJkxTW2EU/d7+1XCmFU3dz8OJ3c3/uURMFsElIswaAvoSizd/HvLx2bP51ElHB8YkpUYEppVBS0vsFmuZm72ACIqLBLPM8VlJSwpkZiIhoUIg55ZgcnjZg+xcDzVK9r51yuFSs1/+z6/EXsGbbt4kUjFYWqPDctliCjjmYIOHKT1za3TbxhX9bMJqjHN8hd4AcjGALRpPCHTLDIqQgMyn4rLt+Kbgl1SIGufkRT+UeNEdERJRJCjKTAorSEq4UYGQOWis0MXjUR1gt0WCxMfGJcXlNvsFoOZD6tmEnAkfJjyhtocBS2JpfCSFwMeQMz0FSzckmPLPlIWPZ6JI6zIntUuQWERERERERFQbH6BHRcMPxeURENGhNnwfUjJHLX3kc2hDwaXLYjv6vbTWBOBAXngsxUGZYUbsfKpd98C4O38E8HhAAtAYOv8pFU5u5vDq1ads3Iwr8UrMQjKbjLUCHEIxWUpxJ4IaliTPksuftL+ADwKFz5PPPivUQw/XGrHvJs26jYAgYNcF7vVyC0UrlyceoH+x2sLVYewTS6LUr5cI9DsunRTSAlNfv7NO10M1bur/16vOs2lCIVnVqE4bfKe2ipOcYmbFToAoVwN6jL7ZH/PmcNi1LTwBfXlOYthANY2r3Q+TCde95bn/MPPu56Fu3a/ztxW197WahTw0AZa8/LBdOnePZlrxZ7hUAAKN99LdoOyQd+xrYuslcVMHrkqf5i+33L+tW+aqmPJz7c4/qmALWWPrXs3bNuc40dfTZ5uXn/izvOomo8BiMRtQPysvLe33f1NTUpxfRiYgGktYaTU1NvZZlnueIiIgGQokqxVnjLkRABQasDVI4VGaYlhQulQ5Wk0I3surxEYwmhZ711JxqMi6PBQbPNV4KPLEFqNh+PlKIXVouwSd5BaP5PVY8QvTE+oXgtRSSYviDH1J7vH6eREREPYUc83U94RWMJgYYFWewsN/rN9FgtjFhniVtRGh0XvXZhiRkPgeRQszy7dsCQKvbt5fcpcDFEiHAEQBcLb9sMdg9sfle8Vx6YPUx1oA6IiIiIiKiwY5j9IhouOD4PCIiGsxUMAT1lV9Y19HfP9lXXV/cO4dgtOVPyIV1Db7roSFg1wOB0RPF4u8+eypqLY8XH1sml9WmGru/Vhddk0/rZBGhUfFmoENIlQgNz8maikE5DnCQcK5JpaA/eMe6/aRaWzCaxkZhGEjNf+7028Texk2BCvgY25xLMFoJj59iUhOmASedL6/w6O3QScu4J0swmpo2tw8towGxx+Ge4Tx6yfzuzyYvPEhhcq287qV3FG4cSlw4DMO6rfcYn0IGy/boizV0rMhp07L0uLuK6sK1h2i4WnyMWKR/9FnPzXeepHDmXvZ7sFNu0Ljigc5zUovllZOyVvPkrFh0lL8+T57U9Hn2FXhvSCbShCNaA02N5jJelzyp8mqoL1wmr2ALLsvwixNyC0eriQH6ivPEcrXk2znV18vexwALD+q9bOf9gH2Ozb9OIiq44EA3gGg4Ki8vx8aNG7u/TyQSWLt2LcaPH88Z3IhoSNFaY+3atUgken9SWlFRMUAtIiKiweLAmuPEcK1iqAhUY0Z0DsqDVQPWBkB+Yb9nmJarXcRdczBaOhDAT+hGSqfQ5sY92+QnKEAKTxtcwWjmQRy2kC9TiFmaZ/iCE8NGw3JT8IkYjGa535OD15qhte7eVvo3eAa7Wf59ralmlDj5DYrJN8yCiIiop5AQOJRw7eGdUiBqUAhQLTQxvNbS5yAaTDrcdmxNbTGW1YZG5Vmr/2cc+YbsRh1LMFqqj8FoUuCicP8xlHW47Xhs8z3GsopANRZW7FvcBhERERERERUYx+gR0XDA8XlERDQUqINOBpwA9A9PN6/w1F3QH7wDNWmmtZ7aMoV/nOvg+Ou8w0Bq3nzAXFBWBVRakkZoyFGOA9z4HPSR44zls1feiVf/9w1M+P2OOdddk9q0bT8zd867jUZRYaxlvBlwhHCIXEKwKIs6+RvQD95iLNN/+DHUZX+2bv/LkxS+8bfssZ+vfAhsNg/xRU1KCE7Y5zioeXtDX3WBuXy8zwCiXI4JBusVnfOV/4H7wbvAc/eZV3j6HjkwQQqG6EtoAw0YFQwCP78deOAv0D//gnmlT9cCrz8NzF2ESbUKL3zHwagLzX2ee94AXFfDcfr+GWabJRitF7/nJT/GTukMndEaDR2rcto0lh5LVM4AGiIvKlQCvesBwIsPZxcmE9AtTVAx+2eIv1+i8N6n2hom/It7Nb66n0Zzu7xOTBgHqE6/2Lr/gliwL/DyY+ayQp7baPiwBqNtMpdV1PRfe4YRdfLXoZu3AP/3s+zCxo+hW5uhovL437TP7anwrdv9T3ZVE04C771tLqxrgKoa4buuTKo0DPzsNuDpu6GXvgTVsBOw3wlQDKYmGlQYjEbUD8LhMEKhUK+BClu3bsXKlStRUVGBsrIyBINBOI4zgK0kIjJzXRfJZBLNzc1oamrKGnQVCoVQWspOPRHR9m5hxT4D3YRBQQqH6hmE1u62QcP8YDPiRDv/L4ZmbXuA0CaEq2WSQs96kkLtYs5gCkYzB54khIAUQA5eAIBIIGrdn5/fQVp6Rq9s8gNqKfzOhYt23YawigCQ/w1eQWRS+wGg1W1BFfIbENgqtccjzIKIiKgnKchMCj5LkwOMzEFrhZbuq2Wy9TmIBpONifViWU2ewWjK0ufV0L3K8+3bhp0IHDhwDfdRUv/UL+m8U+LI5xUpGHmwe3bLw+K93/7VRyHkFCdkkoiIiIiIqL9wjB4RDVUcn0dEREPSPscCgSCQSprLX3sK8AhGA4AFE/3trmegVS9jJjIIeRhSlbXQlbXAFtPUpsC4lY/g0B12xH1v5VZvd6jV7IV9bKFBTBhr2fgJUCm8lM1gq76pswRfrLakfXSZPkoBhme/UigaYAlGmzzLflxNmObZHgBALv1+BusNCHXCudBCMJp+7SkoQzCa1hpYaw5GU3UNBW0fFY8KBoHDl0D/4cfAJ6vNK732FDB3EQBgRLnCgbOAh5aaV127GZhQgAyWeId5TEvE7R2Mpmzn0BypklLo2rHAhnWo7xBCAAVl6XE/FQxGI/Jl0kxzMBoAvPtyZ2iYhVIKFx7s4LFlcjj1xhbg7Y+A5jZzeQAplGohNa2A5xaJOmwJtCkYbcQ4XwFMtB2yBaNtNffvVVlVPzZoeFGHL4E2BaMBwLpVQMNOnnWMKAOqovZ7sZ6q4x/JhdPm+qvEQpWGgf0/A7X/Z/pcFxH1DwajEfUDpRTGjRuH1atX93phPpFIYOPGjb1mqiQiGkrS5zc+UCYiIuokhV3Fe4Rp2cO6Orf3E7AWNwR0mZiCvDJJ4WllgcEz63RICCZICgEpgPyzLlGlYiBLmvw7MNVpfojsQH6xxhb+EE+1IOx0BqNJv7+oRxCZdCym68+X9DO17Y+IiCiTFGQmBZ+lJbV5UL0UoFpo0vW7zY3D1S4cxZdqaXDbmPjEuFxBoSaU/wxpst79ZKlv6xWyq5RCJBAz3rf4CYK2kQMX5QHnUtD1YObqFB7edIexrFSFsajq4CK3iIiIiIiIqPA4Ro+IhiOOzyMiosFKBUPQex0BPGF+/qDffgnq6M971jOxVmGXScBLH9jXq5aC0eYv9twHDVGLjwHu+oOxSP/mEhx30Sm47y3/kz+F3TiiOt75zfjCBzaoMZPMowg/XAFEhNC0Egaj9YWKlstTWq14HbqpEapCThnaexoQLQFa7UNVeqlxzecite9xwJQdgFETgPUfZpfvc5y/HeQSdsZgtIEx3zKRuBB+hs0bgBbzJGb9cT6iIlt8DPD3XxuL9CuPQy35dvf3h81ReGip+cx1+o0uHrnQQcDp2/1/m5BZG9YZCUeFPvYmTgc2rMPUxHtQ2oX2OY4u5jYDAFR5AVLhiLYDavGx0LddayzTt10L5RGMBgD7z/QOILrxKY0DZpnPR7FUsziVqqqs9dx/n+1xaGc/uiMjnM0QTkrUSTpiNdAkfNZguY+gDKMmAMEQkMyepFjfdzPUV/7HswqlFI6br/DHp/1NWlzTnH3P1V2X33svIhrS+NYOUT+JRqOYOJGz0RDR8KGUwsSJExGNRge6KURERIOG9EJ/a48wKVtQWTpcyk/AWqslYK33vr2DAqQwgVhAGJAzAKQgs6ROwtXmYIJ8gxcAf7+DNC0PrxHZ2tAzfEwKIrMFqwGdQXLSz8zvsWNsWx9+pkRERGlBZZ6jJaGzH4r2LhcCjIQA1UKTgkk1NNpcn9NUEQ2gjYn1xuWVwRrP4GCJ7YlHZi85374tAEQd82yOralmz21tpPNOieW8onPv/g+4V5ufwwYhGG9R1SGIBjhbJhERERERDQ8co0dEwwnH5xER0WCnzv2ZXHjPH6FTKV/1XHuag5Eew9RqUo3mNpx1qa990NCjzvyetfy06/fA0bPbrev0VNMzXK+uH4KIpICZdauAdmE8Qag4Yx2GM/Xt34ll+ox50K486VVZWOH8A3L7/KDGFNJ44ElQDTtBBQJQ3/4tEMl49nri14Ad9/C3g9KI/8YwWG9AqNIIMHNnc6EUjCYtB/rnfERFpc64WC586RHo+LaxMufuK59znlwOnPeXvg9IiQthjxE33ntBgY89dfFvAABh3Y4JyTW+t4vprmtkRXVB20M0bM3bWy578k7olx72rCJSonDDGQ5KzcN4AQC/eUzj0XfN56QyYQygOv9Kz30XgqqshbrgaiAQ2LZw2jyoM75VlP3TECQ9M3RdoMn8WQOvS/6pYBAYO9lc+LeroJe/5quey45W2GGcv31W/+0nciFDEom2CwxGI+pH6YFXoVB+LxgREQ0WoVCIg66IiIgMbGFa6ZnppTAAAAing9GEl9J7BlpJAVWZWnwEBTSnzDORDaZgtJCSBwElhTAD6Wct/Z568hNylyYFoynLxyy2NvQMdJN+z36CC8TjsQ/BaFKomp8wCyIiojQpyCwpBJ91l7vma36+gU65sl3v+nJ9JSoWKRitNuR/JvVs/geKx1PmAf++gtF83CPlI+mazzslSh5EriEPnh+MtNZ4sPFfxjIHAexXfWSRW0RERERERNS/OEaPiIYDjs8jIqKhQNU1ACd/XV7h5Ud91bPrZIW3fmh/na3GNYQRTZoBVVbpax809KiR46G+8COxPNz0EW4b+Vv85jR/zyt7huspKcSsL+oazMsTHcDaVeayEIOt+mwvy7POxk+Alx+zbv7twxTGVPjfXbUhGE199w/bvt71QKi/vAn1/ZugvvErqBufh/PVy30HuKuSsP/GMBhtwKhTLzIXrHvPHAq6RghGi5QB1X0Zr0GDgaoeBfWV/5FXePT27i/DIYWFk+VVb3pGY1NL38LR2oR5ScO6R5hoIAiMmtin/WRS4+uBWOcJtb7DEgaYocztes+hoqag7SEarpRSwMGniuX69t/4queEnRXe/bH9HuyaR6RgNOH9pCKGEakjPgf15zegvn091BV3Ql33GFTtmKLtn4YYqS/e3gZ0tJnLeF3KjeUeW99xva8q6qoVnrvEwV+/4H3vZPyMCAD2PBwqyOfDRNsDBqMR9bNoNIr6+npMmTIFtbW1KCnhDB9ENDSUlJSgtrYWU6ZMQX19PQddERERGUhhWikkkegK+pBCM0KqBCEnZK2nZ8Ca3wCAVo9gtA63vbttmcoCOYz46GchS+CJ1H4pVMxX8IIl5C5T+neSyTaWJeSUiGFvPY+RvgSR2Y6jfCTcDjGELuKwb0hERP5J1/WEEHzWXS5c820BqoUkXVsBOfCJaDCRg9FG99Mee/eTxeBiy99W9zpC/9frfsdLQujfSgGOQ9Hy+Jv4oG25sWzXisWoCY0scouIiIiIiIj6H8foEdFQxPF5REQ0FKnZC+XCpf/xXc+IcoWJlveOawxhRGIQFQ0fM+Zbi52lL2DJ7gpBH29D9gxGQ10/BKNNsByP771lXp5LCBaZVdYClSPk8qUvWTcvDyv87Hif4XrJjQhkTqJVVw8VDPZapEaMhTr4FKjjz4WaPs9X3d1yCTtjsN7Akc4hiQ7gw2VZi/VaISSqrt53aB4Ncpa/db30xV7f7zBe/p13JIHX1/StKXExGC2+7Zuxk7POXQUxZQcAwKz2d31vUuFu7fqiuvDtIRqm1KSZcuHb9r5PTxNrFS46OPfrUEwLY2Vrx+ZcV1+o8fVQR3wWardDoEojRd03DTFCf0s3b5a3Kavqp8YMU5Mt56UcPhuKlSqctKuDPT1u2UckN5gLJs7wvS8iGtr64W6GiDIppRAOhxEOhzFq1ChoreG6rvgyPRHRQFJKwXEcfuBORETkgy2sqtVtQYlTKoZS9XzRX3rpP4UkOnQ7SlVYDBXI2q9HUEBLaqtYFguU+9pHMdiCCaQwA+lnZAs18VrHVKeGEIzmkT8fcWJIpLIDXlq7jhFXp9Dmmh8cScdIZv0mfkP1MsWFtgD+wiyIiIjSgkKQmRR8BgApnYKbOcC0iy1AtZC8+npEg93GpBSMlv8MxAryZ4aZ/eTWvgQXB8qMy1ulGSh9yidwUer/D1YPNv5TLDuw5pgitoSIiIiIiKi4OEaPiIYKjs8jIqIhbfdDxSJ9w6XAqRf6Dt6wddWrUtkvLKtDTvdVLw1hO+8H1IwGGj8xlz/+T0QW/gHHzPscbn/ZXlWvcL3xhQ9GU9FyaKmtrnmsQ04hWGSklII+6CTgtmuN5fr67wOnfAMqKI8rWbK7wu8e13j+Pfu+pibez15Y6IDGXMLyGKw3cMZPFYv0GfOgdz0A6rt/gKod07nwkb8L9fRDSCMNjB33ksv+dT30woOg9j4aAHDyrgp/fFru9Dz3nsY+M/L/fEAMRnPbtn3THwGh6XrffBYnNv0dv6n5kq9NJne83/lFuSUhl4h6O/C/gBsuNZc1fgzduhUq6u89oFMWKlzxQG7PTGKm8Xqj6qAcH2nFRANBCcdmq/wuHSJ8PyoX6sCToG/5lblw2SvQ69dAjarzXd9OdQrPrDSfm0IqhfHJdeZ2HHyK730Q0dDGYDSiAaCUQiAQGOhmEBERERFRH9nCoeKpFlQFa8TQjHCPbW3BAPFUC0qdsBiwlqnFIyigOdUklpUNomC0oCXwJOmawwykn3XE8Z5ZO7dQMSkYzWMfgRiaDLOZpsMdbEFkfsLdxPAIj7A8iS2Mz0+YBRERUZoUZJYUwk4Be2iaFLRWaAEVQKkKo123ZZX57ZsRDaTGROGD0aTZ9ICul1d6FMvBxd7986gj9W379rcnnXdKHPklhKEUjLa2/X281WJ+C2SH2AKML51c3AYRERERERENII7RIyIiIiIqPBWJQU/dAVj1lrFc33Ap1Lk/6/N+gkhlL9zn2D7XS4ObCoaAn/wN+sv7iuvoy7+Mqy+twwcbD8RLH8h11bhd4/TKKoHK2sI2NG18vRziZqBCDEYrBHX2D6CFYDQA0Nd9B+qrl4vljqNwx3kODr3Kxasfyvtp6FiRvbDQwVYMRhsSrEGIAPDiw9AXHgn88UWgqRFYvcy8HoPRhg0VDELv/19iCJ7+7onA9U9DzdwZB84CLjta4Qd3mseeXPIPjW/JubOe2oThd5Ge49366dhT4+uhAewVfxb//cl3cMmon0BLYTRdpia6UikrqvulTUTDkRo3FfrM7wF//ImxXF91IdQl1/uqa/5Ehc/tqXDTM/7Hww03m6sAACAASURBVMUM77ioH/3V9/ZERSeNcY1bxp5GzONVyUzNWAC97/HAY/8wlusv7An8833fAYoNliHNU0saERAmWlfT5vqqn4iGPsaxEhEREREREeXJFg6VDqOSQjOiPba1hV6lg7mk0K/s/VpmsQDQYimPDqJgtJAl8CQhhBlIP2t/oWLmdUx1umIwmv1jlqhwvKT3YQtYkbb1Vb/PYyeTLXTCz8+UiIgoTbquJ3QHtDANeNKVQ9NCjhygWmjSNS/f6ytRsbS5cTEUuTY0Ou96c5mjVgr+9ROyK/XP8w39TUsIIcu2+w/pPDUYPdR4h1h2UM1xRWwJERERERERERERERENV+qos+XCe26Cds0vrGYamctQtYUH+X6hloY2teMeUL9+yLrO6Id+i+cucXDuvvLTy+pUY+cX4+uhLJM/9UldQ27rh4ozCdxwp8oqob7xK3mFf/8fdDJprWNUhcJ/vufg9N3kY6O+Y1X2vusGMhiNwXoDyitYauUbwNKXgIdvFVcp+PFDA0oddJJcqDX0PTd1rqcUvn+kg4Nny6u/tS7/cSlxYe7RcI9gtH479rrqVQAuavwVPlk2AXu3PCmurrSLSYnVnd+UMxiNKBdqySVyoRDSKPnlibn1jcvcjPF6jgNMn5dTHURFJd3/tVretWMwWs7U166QCxs/AV5/2ndd00bJ56WpWGsuOPhU3/UT0dDHT4WJiIiIiIiI8lTilCKozMEc6SAzKTSjZ8iGLfTKT2hWTy0eQQHNQjBaxIkhoAK+9lEMIeHnCnSGqJhIP2s/oWJSOEOHbkcyK4hNeADt8YzIK1jFFn7nJ4hM+jf4PXakdmVy4KBUcfZBIiLyL+jIg3uT2jwYVbreA/YAo0KTrq9+Q2uJBkpjYr1YVhu0TK/WJ9v6ya5OoU0IRvMV+hswDzSJZw60ypEUsmw/rwyNYLRNiQ14sekJY9nEcAOmReYUuUVERERERERERERERDQsTd1BLtuyEfhUeGk1w8WHmgdbHdT8YPbC8VN91UnDRP2OQCAoly97FY6jcPKu8oC9hnSo1chxBW7cNqo+x+dvDLYqnPod5bLmLcB/HvacAEsphf/aRT6Gdmp/I3vh1AI/c/UbjOY49r8J6n+2a1/aK49DL3/dUgef2Q8rXsfEit7nkP1myuebV1bnPy5la5t5eaznmB2vYL98ZdRb427CuZuuF1cfl/wIYd3e+U1ZVf+0iWiYUsEgUC2M+etog+5o911XZVRhQg7ZhOWZ4/XGTIJi4C8NZlIwWlwYe+o4vFfLR+1Ye9DpCku/OMOc8XLZjnHDfRkAjJviu34iGvoYjEZERERERETUB9JL/fHuYDTvMICQU+IZsOY3fCPutsDV8qybLakm4/KyQIWv+oslaAkmkMIMWoUAMCnQxO868VTv36E0YEZ5JKNJx0p3iJ4lwCziRK11A3J4Wr7BLeLPMxDrv1k0iYhoWLIFniaFADTpeg9A7Df1h6gUbJpn8ChRsWwUgtEUHFSHavOu19bn1T0CxNrcuLien9DfqGMORpP6qH6kdAouUsayEkce2KKHSDDaI5vuEv99B9ccxz48EREREREREREREREVxty9gYoaufyNZ3xVc/gchcpI9vJTmm7NWqbGMRhte6LKq4B9jpVX2LAO+pl/Y696YJohHyLituLorXd31nX05/uplQAOPCm39f2GYJG3HfcERsihd/qio6FP3wl69bvWag7ZARhjGDpbm9yAI5rvzS6Yu3euLbXzG8AQKuXz3gGmDlviuY7+7XeBu/8grzBrlwK2iAaaGjcVmLdYXuHNZ3uNNz91ofw3vOQPGs+vym9sSmOLebua1MZt3/RXMFpddr1TE++Jq4d1V4pbWRVUYPBM5k40ZCw+xrzcdYFVb+ZU1ef28t+vqE419l5Q15DTvoiKTzi+W4VgtEgZ+9p5UI4DHHq6WK6vugC6zfw+ZaYpIxT2mW7YhwLOeO9K8/4ZjEa0XWEwGhEREREREVEfSC/1p8MypNCMzCAuz4A1nwEAGhptQhgbALSkthqXxwLlvuovlqCSZ7dLuuYAlbgQACYFmvhdJ7NeKRjBKxhNCl9L/26lALOwE4WjvB8Ai8dQnuER4s/TR9AcERFRT6E8Ak+lwDSv+gpNvH5b+ltEg8GGxCfG5dXBWgQsfW1v/gaA2ALM/IT+Sv3z1swZKHOQtAQulljOK0MhGK011YyntzxgLBsRGo15ZbsXuUVERERERERERERERDRcqUAA6ndPiuX6Mu/wGAAoCys8cqGDGaM7v68Ia/x4w2U4Y8ufs1cez2C07Y26+Dpg8iyxXH/rOKiWzbj3fAc7127pXj6l4z3ct/pIjE51TSS1+6H918baMcCoOv8bhHyGYJEn5ThQ1z5sX2n1MuhLPiNOhAsAJUGFhy5wMKdHxtqs9qV4YPURCOv23isffXbhg3z8huUxVG/AqR0WQn3/JqAyz4noTv46AzeGIfUjQ5+lp0dv7/5yQo1CueVP+fCrXcQ7ch+f0igMz6lJber8wnGAsZNzrtcPVV6d9TdR37FKXF+nxxxVVPdLe4iGO/XVy8Uy/d0Tc6rre4crnLuvv+tSdWpz7wWGUESiQUXqc8WFsadhvh+VL/Wln1rL9Y2X+a7rb190sP/Mbb++0RXA7fPuw6wOIeyawWhE2xUGoxERERERERH1gRSWkQ65ksKuIoFoxvceAWtCPSZS+BkANA+RYDSllBh6khCCUuIpc0CJ9Dvyu05mqEO+wWhSuEN3+F0fg8jEYyiHY6fXdkKYRdhHkAUREVFPIRUSy6TruhSYBgAhp5jBaObrXr7Bo0TF0phYb1xeGzJMmZ4Dv8N0bX1Qqd/aU9QpMy5vc+NI6ZTPVvQmnW8AoMSRX0KwDZQfLJ7a/ADa3Lix7IDqY3wFLRMREREREREREREREfml6hqAOfLELHrzBl/1zJ+osPTHAXx0hYNPL3ofl3z6C/PzqPF8+X57o2IVUH980b7SY//E1JEKL+zzb3y0bCLeXz4Ny1fugL3iz3WW14zp9yAideSZ/lcuYTBaIalxU4G5e9tXWr0MePdl6yqzxym8/sMA1l3u4MO5V+KNVTtjbvsb2fvb7ZC+NNeMwWhDijr4FKg71wAH5BY+AwBq5/36oUU00FT1KKhb3hbL9b1/6vX9OYvla9KmVuDeN3Nvg2cw2uiJUKF+HGuX0UerdjcLKwK7xV/o/KKcwWhE+VClEWDMJHPh+jXQKf9j6kJBhWtPdfD/zvbuK3efT9Lt4L0ZDXbSPWCrEIwWYTBavlRJqT0c7f6/+B5/O6pC4aELAthwpYOVP3Ow7nIHR7/2C3kDBqMRbVcYjEZERERERETUB1JoVXegmRCakRnE5RmwlkP4RktK+MAWcmhaWaDCd/3FEhRCVExBKVprSwid9wfVpU4YSviYJDPUQQ5Gs3/MIv6OvY4VH+231p9vMJoU1OazPURERGlBS5BZUghAS7hygFFQBfvcJr+k63C+11eiYtnYT8FoNj37ydZgNB/Bv9GAORgNyD+YMOlaAheVJRhN6P8PFgk3gUc23WUsKwtUYI/KA4rcIiIiIiIiIiIiIiIi2i5MmiWXrX43p6pGVygEP1olr8AXXrdLKhgCps0Ty/Xffw3d2gw0NWJkagPqkmt7r1BZ088tRG6hff0ZTLO9mrnAe52XHvFV1ZhKhbFrX5BXmDbXZ6NyUOo3GI3HzmChHAdqvxNy35AhMsPX6Ily2XP39woq2lnIM0p75+Pcx6c0mucUR02qsfOLun4+9gzH9oHNDxlXPbnp1s4v3PwmRCQiACPGymUb1splgj3rvYPRqt3ewWiYPj/n/RAVlRiMZn6XjsFofTTDck7YtB5oasypuuqYwpQRqjPk/NN18oq1lvMhEQ07DEYjIiIiIiIi6gMpLCMdBCAFAmRuJ7343x2wlkP4RqtrC0ZrMi6PBcp9118sIWUezJHU2UEp7boNGq5xfSm8ridHOYg4UWNZVjCaNGOFx3MhKVCsO/xO+L35CY6w1R9PtfieZcPUrnzbQ0RElBYSwk6BzkAfEykwTUEhgCIGo0khuAxGo0FODkYb3cea5U5vzwAxKdi5VIURUAHPvdjCeG33OzYJw31EmnTv0WlwB6P9f/buPE6Sur7/+Ptb3T1Hz7E7M8suyy7I5cEGEBGQQwE5lUMFb7zQmBhj1BhjPBOPBHMfaqJREzXRmOQXFcRbUBHxVjyIGg88OVxgZ6+Znt3t7vr+/pjt3Z6e76e6qs85Xs/Hgwc79a2u+k7PTHVNT/Wrv77789rV8M6cNeesvUQDEe88DwAAAAAAAAAAOs894QXmmH/BefJl+28zwdvc8F/hgamNckPh67qw8rnHP98e/Nn35a86Xv7Wm8Lj4z0Io20+Nv26Bf5u12nu0mc3Dc75t79G/qPvTrfBO2+397XxyAwzS2kgbRgt5XrojTMvSY5hNcrlpEObFLGwbLl8IfHr619xxXzEU9JjT3LatNbe1jUfy3Z9SjX22tEsjNbtKF8gvPb87e9ctOzofT/VxTM3zH8ws6O7cwJWMPeUl5hj/o+fmvk1I0etczpxc/I6E43XpT344Zn2AfRe1jCa/Sa+SOHkR0qja8xh//pntPR6Nr93TrrnV+HBLafJRWSSgNWEn3gAAAAAANpgxTJKB4Jm4b84Nsa6rHhX7UX/mcJoVTsUMBOHn8wdXYphtCgcUSkHQilJn7MVr0u73uKoQ/hJ2ajJ0yxmWGX/9q14RFIUYsF6xvZjxdrr96TaRmhejdLenwAA1CQFh0LBU8kOGOVdYf5doHokKTwKLGV2GG19W9tN+/OXNhBtKUb2xSZJ5/5JQr9H1CTFw+IlHEaLfawbpq8LjhXcgM5Ze0mPZwQAAAAAAAAAAFYLd+wJyStYobMAH8fSp/4jPBgIbmD1cJdeLa0/3F5h293SFz8WHhub6MqcFsjy/UncquPcUcfJ/f0npC2nJa7n/+YF8vfembxOHEt3hMNo7uX/3PIcEw2kjOUR1VtSXGFA7p8+K518brobbDhCrknAD8ube9377MGvfEr64FslSUMFp1tebl9rPleW7tud/hoVK4omSZP7Q0auy2E0t35xUemxMx/Rv935HJ2w5zaNV3fq8t0f1U2/uFB5VedX2E0YDWiVO+dx9uAPviF96/OZt/mR30t+DcxkfRjtSS/q6fW7QEusYFa1El4+zOuj2uGiSO5937VX+PpnpNu+lH3Dd/3c3uer/yX79gAsa4TRAAAAAABogxnLiGflvTdjV41BgKRoVtVXtSeeSz2n2arxThYJYyO58dTb75W8EVEpx4tDKXuMAJ1kB8PSrtcYdWg1jGBFIObikmIf2/GIlPNPiky0Eo+w5pP2/gQAoCbv8uaYFSqylidF1rrBPEfLEK0Fem2uOnsgsNxoss0wWpY5hKQ9tx2MhuWMP2OWWvz5s0KMUrNjy9INo/3v7De0dd8dwbEz11yg0fzS+z0PAAAAAAAAAACsIOc90Rzyn/tg+u38+Dv22GFHZ5gQViL3e3/Z2g3HJzs7kQA3Ppk+wEYYrSvcgx+u6O1fkJ72MnulalX6fPgNpw647y5pn/EGtMee2PoEk6T9niCMtuS4DYcretOnpMkNzVfucpgKS8AR908crj8nut+U05ueYkeFrv9O+mtUtieE0Sbi/SGjbgdmN4XP056267/0rZ89TNt+tFHX3vEkHVa5++DgqRd0d07ASnf8GeaQ/+wHMm9uQ5PLyybqwmjuNx6WeftAz2WN9w3x+qh2ualDpWPseH4rxybd+ZPw8iiSNh6VfXsAljXCaAAAAAAAtMF6YX8pntU+v1dx7d2NGjTGpayoVSmeTYx+hW9jR7Bmq7uCy0dyY5n20QsFVwgurwRCKVaATpKG2gyLLd52+I/OVrihxgqKecXaG+8xPwcrvpd2+1Jr8RYz6kcYDQCQUeRyyikcRysboaJQCFWyzw+6xYzgVrOdnwG9tK18jzm2rpDiotwESZeMeH/wPHnO+B0m7blt5CLz/LaV6K8kleNwcFGSCpF9bFm6WTTphulrg8udIp0/8ZgezwYAAAAAAAAAAKw27gT7Rfn6yifTb+hXP7L3cfzpGWaEFWnLadlf3C5J6zZ2fi4hST8HNc5JR23p/lxWMXfimYnj/pufS97AnbfbY0b4p21pw2gDhNGWrBOSv++kJo+VWBHc2IR0vwfZK9zx4wXX1Jx5jP2YdovRAAnZbbQcJWlN7fUCh2xKv8FWPOiUxGNZ6DN1Fz6le/MBVoOk348+/E75PdmubR3IJ59nT9aF0bp2TgR0VMbfHQeHuzON1SbpnPeDb5X/6feybe8O4/ezDUfIFXr7JusA+o8wGgAAAAAAbbBiWnPVGc0lxrqKCz62XvQ/V51N3E7IrBEKqPiy9sRzwbHRJRlGCz9ZGQqoWOGvghtIjBzUs4Jfjdv2VhityfPn1vdKbR/W55A2RJYUgMv6PVSbU3A+KWMWAADUsx6PQ8HTpOX5qLd/zGw8Z6spxbMLLlgDlhIrjBYppzX5dt8VPTGNduBf7Z7bSnZEreUwmhFidHLKKW+Gjr2PW9pft/107v90+9wPgmMPGTtD6wYO7fGMAAAAAAAAAADAqnPxVYnD/v1/m247d/7UHrvgSRkmhJXIbThcuij5ey14u83HdmE2gf08+cXNV7ry+XLF0e5PZjU77SLp2BPt8Vs+Iv/dL9njvzJqRGum5qNH3ZA2wpALvxkh+s896UVSUphhzTrp0qt7Nh/0j3vaH9qDc7PS9NYDH558hL3qe77k9Z1fpbsmbWavPTZae5P18XavE0rmhkekNI+D9U67sDuTAVYJ99jnJo77F14gv3Nbx/a3Jt558IPDCKNhGcga1Say1RHuyucnjvvnnCr/ifem3p63wtWbj8kyLQArBGE0AAAAAADaUIzCF6uU4lmVjBiAtPhF/mZgrcl2gvuu7g4ut4JpkjSyBMNoeRcOqJQDoZSSEf7KFF5IiNPVsyIoVkjh4PbtC5tKCQE8a16NClHBjMll/R6S7JhalvsUAICavBU8jcOhIiuMVjDOD7rFehz2irXXJ7ztJtBH2yrhMNpEYZ1yLtfWtl3Kd9PrxPn5cM76XavVMJoRXHQFOZf2M1s6bpi+zhy7cPKKHs4EAAAAAAAAAACsVm5sQu6vP2yO+7e9Sn57+G9XC9azwmjHnSpXXHrXtaH33CveIfdbb8h2o029ecG0O/lcubfcmLzOi1JGAtEyl883/Tr4f/wje8x84X0XA3uFwZTrEWtYqtyJZ8r9wyelc6+cjzQcdtT8f/d7oPSop8u9/Wa59Zv7PU30gHv0M+Re+hZ7hbpzHeecXnqRfZXKq69N9wZ+M8ala4PxHhVUmf+gy2E0SXK/9fr0Kx9zglzaKCSAILf5WLkX/IW9wv99U7r27R3bX1R7s9Q1U3Jjazu2XaBrCKP1hTtqi9xz/theoVqVf9MfyM+lfG2b9ftZj37PB7C0EEYDAAAAAKANjYGzmrmE0JW0OAhgBQJKcfJ2rNuEzFZ3mbcZyY1n2kcvFKL0AZU543O2gnNZ1m28P72sMFqz7RfNsaQAXpbPIW3cLY25uBTeR4b5AABQk3fhd6+1QkVlHw6mWRHQbkl6HC4lRGeBftpW3hpcvq6wvqv7rT9Pts/P7XPiRta5rRVda6bS5LhihY5jpbvgtJe27rtT3535anDsgcUTdL+hLl6cDwAAAAAAAAAAUO/EhyePf/XTzbdxlxFGO+GM7PPBiuTyeblnvly65Fnpb3R47/5m5k56hHTUlvDgwy+Ti3gJZy+40TVy1/w/e4UffF1+26/DY7/+RXj5YUe3PzGDy+WkfIo3CEyzDvrGnXiWoj/9T0X/+X1F//1/8/+977uKXv2vcoQbVpfH/pZkBV0bznW2bLQ388nvSXvL4WvV683sDS8frb3hYC5nz6eDnHPSlc9Pt/Ihh3V3MsBqcealicP+lo90fp9dPCcCOipzGC1lrBjNnXtl8vjsLunbN6fb1h3hMBrn18DqxLNqAAAAAAC0wQqaxYq1o7ItOJZ3+UVRj6TAWinOFt2Yre4OLp8xlkvSSLT03lmz4MIXc1QCARUrvGDFFLKs2xgVs8NoyU+z5F1BAy78pHmpOmPGy6zvseC6KeNuzVR8Wft8+C/mWeYDAECNFTSzQkVWMC1vnB90S9K5hHX+AfTbtvI9weWTXQ6j1bMiu1nOJYu50eDyrL8f1VjHldrvHVmvh+mnz0x/2Py95ILJK3o8GwAAAAAAAAAAsJq54qi05TRz3L/tVfKVSvJG7gyH0dwmXnyPhdxDH5luxeKYtPaQ7k6mgbvoqvDy857Y03mseieelTz+vfAbUGnXdHh5tyM+A0PN1yGMBiwLzjnJOHfx//yaBedDj3ygfZFK7KUfGA3HejN7w9eNjNauaRubnJ9TD6R+fB4c7u5EgNVi0zHShiPs8R/eKu+bBxYz2UyMCCvUAGG0jjn8AdIhm5LXuTMcPKvny/ukrb8MD3IsAlYlwmgAAAAAALTBCppJdpBgOBpZ9IfG5MCaccGFoVQNhwJmq7uCywfdkArR0rtwwgqolAMBlZIVFUv4+qRdtzF6YgUI2tnHTHWX9vo9wbGk77FF60bheIQVXbPMVcMhC4kwGgCgNVbw1AoVWcG0QhQ+P+iWoaQwWsLjJdBP08bvIVP59sNoTukumLTOPztxbmv9vtNMOQ4fV/IHjivhz62d8/9u2FXZoa/s+lxw7LCB+2lL8SE9nhEAAAAAAAAAAFjt3HNeYw9Ob5V/1RPk4zg47PfOSffdFb4tYTQ0Oudx0nGnNF9v87E9i8EccOnVi1+kfdyp0tmP6+08Vjm3dp30jJeb4/7VT5LfFigO7doe3t74ZKemFpYqjNbba2UAtOEw49xl293yr37igVDRkeucrj7Tfpw6+U9jlYzwWc1M+P2vNVp7w8E1XT5+1TvzknRhmQHCaEAnuFxO7rmvTV7pti91dqfW8Q1YarL+HlggjNYpLp+X+83XJn4NvBHGX+Dun0vGc0jafGxLcwOwvBFGAwAAAACgDUmRqG0VO4zWqJXAmmXWDKPtDi4fzY9n2n6v5DMEVBrjZTXFDBEv62tZaty28e45kWv+NIs1n2nje2X+NuEgRIgVXlv0OTRh3Z9StpgFAAA1eSNoZoWKynE4mGYF1rqlEBXMWGvS4yXQL9573WeF0QoburvvuoCYdf6ZJbI7kjPCaC3+7FWMEGPtuGJF37w3LrDok5u2f8z8XC6cfFzvX+ABAAAAAAAAAABWPfewi6VTL7BX+PInpO98ITx218/s2/HiezRwg8Nyb/q03HNfl7xiH14s7SYOkXvbzfMvBD/viXK/++dyb/603GCK8BU6KvrtNySvcP2/Ll62y3gD47GJ9ieUJFUYbem98TEAQ1LU9Usfl75984EP//VZydd3fODW1sJoI37/dTVjvQujuXxB7r9/2HzFQcJoQKe4Rz1d7rX/bo77t7yss/trDAADS1XG6ycdYbSOcpc+S+7vP2GvcMftzTdyp7GOc9LGo1qbGIBljTAaAAAAAABtGI6K5ti0ESQIxauSAl5Zw2ilePeBd5SqN2OE0UaisUzb7xUrQlLxiwMqc9X2wwtW8Ktx27GsMELzJ9Ct+SR9ja3YWYj1fWTdP5ZSwvpZ7lMAAGqsoJkV9ykHHu8lKW+cH3STGU/N+PgK9MJcPKs9cSk4NlVY34E9JLyTW10YzTr/zBLZLVphNCME3Yx1XKn93mGG0VraW3fsief0+R0fD45N5NfplPFH9HhGAAAAAAAAAAAA89wFT04c91+7MTxgveA1l5MOvV+bs8JK5IZH5J71SmnDEfZKfQo3uLXr5K5+laLXv0/uqX8gN2RfX4ouO/9J5pD/euB4ZIXR1kx1aEKGgRQhBsJowLLhNiU//tSfDznndPb97XVv/H7yvmb2hJePxvuvqxnvctixgVu3URpdk7wSsVCgs85/kh0c3H5v6s2cYvzadc7s5w9+cBgxIiwTWd9YdqD316WvdO6hj5R73p+FB+/6afMNbP1VePkhmwmPA6sUYTQAAAAAANpQiAbMgJcVuwrF1IYSw2hbg8tHc+PB5RVfCb7of7a6K7j+SG6JhtGi8MUc5XhxQKUUG2G0DOEFK3qyz+81oy310jx9bs0nKYyWFM1Lu33r/rHMGes7OQ1GPJEMAMjOOl+yQkXWY68VWOsm6/HVerwE+inpvLITYbTEa0b2F8S895oz4mxDCWHpRsWo02G08HElv/+4YoXRllIa7Us7bjCPPedNXK6cy/d4RgAAAAAAAAAAAPuddqGUS/hbxfv+Krz8TuNFsesPlyvwAmUkOOsSc8ideWkPJ4KlyJ2V8D1w25fkKwf/fuwrZakUfuPhroeFhsN/F1+AMBqwfJx+sRQlvGz/+19b8OGlJ9oX4rzvq1633WFfszKzN7x8tHZdyaEJAdFuaRaTtAJOAFrinJMGjNd2bP2l/O4dqbbzO+eEj0UvmX7zwQ8mOvGmrEAPuIz5nEKKUDGy23R0ePkvfxQOVdfbtT28fGpDe3MCsGwRRgMAAAAAoE1WUGu6HH6XlWIgrlGICpkDa1MF+0m92eriizRCyyQ7sNZv+QwBFSu8kCkqlrDuXPXg9r3i4DouxdMsVtzB+hrPh8jS/xHY+hyyhlus9YeioqKsfygAAEAHw0ONrFCRFUyzzpe6yTqfIIyGpeg+I6qcU15r8pNtb9+Ohx201+8xz5mznJ+Hfm+Sskd/ayrWcSWaP644o/rml0gYreor+uz2jwTHhqOizlp7UY9nBAAAAAAAAAAAcJBbt1Huua9LXMf/198vXnaXEUazXkQL7Oeueqm0+djFA5c9R9pyau8nhKXlnCsS3/nLv/IJBz/YbbzwXpLG2v87e6Jiijc2JowGLBtu/Wa5q19jr3Dr9MQnewAAIABJREFUTfJ7Dl6T/tyHJ1+H8+A3xPreXeHrVuww2vwbDrpNxyRPtgvcy/85eQXCaEDHJf3c+adukY/D1/HVe8qpThcct3DZ43d9SBfP3HBwwXiXz4mATkl8998AwmjdkXAe4v/gUvkvftQe3z0dHhjrcrQawJLFK1kBAAAAAGjTsPGC/X0+/BdHK16VNbqxLjGMNrNo2YwRRhvJpbiwog8GjPBJJRBQmauG7yPraxNihRekhV8DK4uQ5vlzax87K+EnbrOGyKztW/ePpT4El2b7AAA0YwXNrABaOQ4H0/JR7y/2tM4nrMdLoJ+mjeDuZOGQrgduawGxUuB3kZpM5+dGVHhPXFLsq9kmJ/u4UjgQbjTCaH5phNG+ufuLmq6E49tnr320hjIElQEAAAAAAAAAALrBPf1l81Eqg3//38lXGv5mcydhNLTGbThC7u1fkHvFO6QnvlB6xsvl/uZ6uT96q/mmSFg93MCg3L9/y17hK5+U//kP5v+9c5u93niXX3xfDP9dfIFC799EEEDr3LNfLV1unw/ppg8d+OfEiNNHfi/5ep63fDZ83cqsGUbbf814H8JoevAjEocdYTSg8x6W8GaaO7dJ3/xs000UB52u/71IH7joe/rje6/Rtb96gt5/5zNVUOXgSqNrOzBZoAey/i44QBitK5o8p+P/42/twV1GuJpAI7BqEUYDAAAAAKBNVtDMYoXRskQCJGkqIYxWihdH0GaNMNpobjzTfnsl78Lhk3IojGbE44ajYur9WV8XSSrVhcW8D79rjkvxNIu1D2/k1rKGyKztl2I7ThFe37o/CaMBAFpTMIJmFSNUZAXTrMBaN2WN1wL9tM0Io00V1ndoD0kXjcyf0yb9bGT53amYsy8At85Xk1jHlfz+44qzwmhmGrl3vPe6cfra4Fje5XXuxKU9nhEAAAAAAAAAAECYe/TT7cHt90i/+snCZffdHd7OxqM6OCusVG58Uu7SZyl60d8o+u03yD3sYqJoOGjTMVI+4Q34bvvy/P+tF95L3X/xfTHFGxvnev8mggDa4y692hzzt31pwccnHZ68rXfcHL5uZedcePlI7Zrxw3ofmXVRJB15nL3C2nW9mwywSrihorR+sznuv/slc6zeUMHpiqmf6LX3XaPLZz6unOpeMzO6Ri6Xa3eqQI9k/H2wQBitG9zIuDRpv+ZR3//q4nB+za7p8PJuR6sBLFmE0QAAAAAAaFPmeJWxftbo1FhuXENR+J2T6kNeNVYYbSSX4sKKPihE4fBJOV4YNPDeBz9fKVtsbjAaMuNm9XGHdrIIWeN3Wb8nrO9F6/6xzFn3J2E0AECLrKBZJRA8TVpeMMKp3TRkhFazPr4CvXBfeWtweafCaFY8TDp4nmydS0rSUKYwWrpwcVrNjitLOYz2g9K3dcfenwfHHjb+SK3J8054AAAAAAAAAABgidjyMGlNQvTi599f+PFuI0i09pDOzQnAquQKA9JZl5nj/q+er/jFF0vf/Fx4hYGh+dhINxXtNww7ICnuBmBpetAp9tj1/6r4EYMH/tv4lmc33VwcL752Zbtx6cxEdcf8P/oVITv3Snvs1At6Nw9gNTnnCnvsPdfI/+jb6bZj/W42tjb7nIB+yRrKLvT+DbtXjXMTjk3VqvTVT4XHzGMR18kCqxVhNAAAAAAA2pQ5XmWs30pgrRiFL4oIRdBmqruC6y7ZMJoRPin7hWG0fX6vYlWD61r3dUjkIg0b4ZOFYbQ4uE6U4mmWLPORpGIuxUUvC7YfXn9PXFLsw/MOqf98F86HMBoAoDX5lI/rzZZb2+km6/HPerwE+mm6fE9weafCaGnMxaXg8oIbUCFK/zNsndtKUqk6k3le1nGlFm60o2/9D6PdMH2tOXb+xGN7OBMAAAAAAAAAAIBkLp+Xe917zXH/J1ctXLBzW3jFNbzgFUD73Av+InmFW2+Sf9cbwmPjPTgOFZtfv+uINQDLjsvlpIdfnm7lG/5Tf1Z9W+Iqb785EEYLX56jyer+mEifQkbuSS+SHnJOw0In90dvk1u/uS9zAlY698xXJI773ztP/te/aL4hYkRYCbKG0QYGuzMPyF39aumoLea4f8Xj5bffu3jAeJ7IjU90amoAlhnCaAAAAAAAtGm4haBZcHnGaNZwNGKGs0rxwlBA7KtmvGM0N55pv72Sd+GLORqDBnNVO0qS+T41vjalhH10Yvvm+h2av5fX3ngu9XaszzfrfAAAqCmYj+vlTMut7XST9fhXIoyGJcZ7r219DKP5/QGxTp1LDkbDcsafMht/30mjHIePK/n9sTZnXBDj+xxG++We2/XD0neDYyeOnqZDB7loFAAAAAAAAAAALC3ulPOkBzzEHPfbfj3//71z0l7jmqZeBIkArHhu45HSVS9t7ca9eOF9ijCa8r1/E0EA7XOXPiv1ulf+PDmM9g83Lr52Zdq4dG0i3i4Nj8r16djhxtbK/d3H5N56k9wfvFnuNe+W+8BP5C5/Tl/mA6wGbu06uZe+xV5hblb+4//edDveCqMRI8JykjWMlidC3C1uYr3cv3wleaVPv3/xsl3WsYjniYDVijAaAAAAAABtKrYQNAsuzxjNKkYjGjHCaLPVhaGAUnXWfEH/SC7FhRV9UHDhP8hWGkIpSVGSVu7TkPqonPfh+9G55k+zZP1e6dT3lpQt3mJF9IZzxUzzAQCgphBZj+v7wsvj8PK8sZ1uss4nkuKsQD/MVndrr98THJsqbOjIPpySLhqZP0+2zyWzndtGLjLPh0vVFsJoxvHmYHDRCKMZ5/+9cuP0debYhZNX9nAmAAAAAAAAAAAAGZz0CHvs5uvkZ3ZK995przPGC14BdIZ70ENbu2EPjkNuOMXf0XP5rs8DQBcc8cDUqx657xcaiirm+I/vke7a4VXaO38NSxx7bS+F152obpfG+hsxcvmC3AlnyF3xPLmLr5Jbz5v+AV13/wcnj//g6823sWs6vLzPxxQgk6xhtIHB7swDkiQ3MCidcp457n9468KP9+6Rtm8Nr7xmqpNTA7CMEEYDAAAAAKBNSTGqEOvF/ZkjWLkRFaNw1KxU3b3g45nqLnM7SzaMFoXfeaPcEEpJipK0cp+GlOr2YQXm0jx9XswYg+hU2E3KFm8xYxYZ708AAGryznpcL4eX+/DygrGdbrLDqcbVZUCfbKvcY45NFdZ3ZB8uxUUj1rlk1nNzyT5/biWM1hhYrqkFma3PrJ9ZtPv2bdWtu78YHDt66EE6ZvhBPZ4RAAAAAAAAAABAOu6ip5pj/u9eLP/o9fJP/Q17A+O8+B5Ah5z+KGlkPPvt1vQg0FhMcf1uoffXygBonzviAanXHVBZT1j3o8R1Nv9RrNEXxnr826q6c4cUGxe0TFR3SGNrs0wVwEpw3KnSpqPt8a98Sv4D/5i8jd07wsv53QzLSsYwWoEwWre5C+3nh3TDf8nf+N8HP777Z5L1ZsZJxzgAKxphNAAAAAAA2tSp2FUxN5ptv9GIRozblOKFoYDZhlBavdFcCxd89EB+f6CgUWMopWSEF/KuYMbVLFb4qz7uYIfRmj/N0qmInrn9XNEcs+6nECui1krMAgAA6WB4qFHZ78u03NpON1nnbnPVWXnrj69AH2wrh8NoeVfQWK77FzzWfhrmquFo4HBkn6tahlP+vpOGfVyZ/53BOp/3ijPvq1M+u/16xcb+L5y8osezAQAAAAAAAAAASM898OT2NjDGi+8BdIYbHpH7iw9Ja6ay3XBsiYTR8r2/VgZAZ7jnvi71un+34TodmuKS/mu/JT3mH+1rWSaq2zmPAlYhF0Vy1/xP4jr+TS+Vv+lae4Vd0+HloxxTsIxEGfM5hNG67+KnScP2a9H8658pf9uX5z+48/bwSlEkHXpk5+cGYFkgjAYAAAAAQJuyxq6sIEDm7eRGzJjabLUhjBaHw2gFN6CBaGk+kVsLFDSKVVXVVw98PGcEv1qJeFm3qQ+F2WG05u8sYoVVOrV+zuU16IaCY6Vq+niEFVHLOh8AAGqsx/VKQ/C02fK8sZ1uss7dqqqYoSWgH7aVtwaXTxXWK3I9+JPg/lCgdX7eyrmkdX5eMkK+SRoDyzW1ILN9Nt+fAOJMdZe+tPPG4NiGgU06YfTUHs8IAAAAAAAAAAAgo8uf09rthkfkBpbmNW0Alid30iPkrvul3Mv/Of2NxnsQASmmeEPlfO+vlQHQIQ85J/Wqk3N36Vd/le76nu/ckbCd6nZprPtvoAhg6XHHHC/3r19NXMd/7N324O7t4e324pwI6BTX/HVdCwxwrt1tLpeTe+MHEtfxH//3+X/c+dPwChsO53kiYBUjjAYAAAAAQJs6FbsqZtzOUFRUMQpfFNEYwZqp7gquN5JL8W5zfVJw9rvc1cdS5owoQivhBes29aEwM4yW4gn0rPG7VuJu1udgBSqC61r3aQvzAQBAOhgeamSFxawwWtL5QbckPf5ZMVGgH7aV7wkun8qv79g+kmLAtfNkK1rWyrmkFYIuxemjvzWVOHy8KUTzF7Y4Ix7XnyyadPP2T2if3xscu2Dicb2J3QEAAAAAAAAAALTB3f/Brd1w7SGdnQgASHL5vHTBk6WB8JvPLlp/fLLLM5I0sqb5OvneXysDoEOOOV4qpAyu7N6hXOR08hHt7XJNvFNau669jQBYvo54QPK5zlc+Jb93Ljy2e0d4+RhhNCwnGcNoRIh746gtydG6j75LvrxPfjp8HbQOPbIr0wKwPHDFPAAAAAAAbbLiZCGRIg268B8asoQChqJh5VzODJvNVncnflwzuoTDaHlnP8FcH1Gxgl8thReM29SHwryPjVs3fwI953Lm1z+klbhbms8hSdVXtdfvCW+7hfkAACAlhdHCAbRybITRot7/ATrp8S/t4yvQC1YYbbLQuTBamnNe6/y8lXPJtCHoNKzjTbPgon3+3z374r26acfHg2PjubU6bTz9OwoDAAAAAAAAAAD0zXlPlIaK2W+3+ZjOzwUAJLmh4nwcLY3xHkRA1kw1X4cwGrBsuZFx6dzHp1v589dKkp59VsagS5211e3KKZbbxLkUsFq5oaJ04VMS1/EXrJX/zP8sHtg1Hb5BL2KxQKckxbdCONfuCTd1qHTGoxPX8Y85XLrpg+HBNL83AVixCKMBAAAAANCmLC/wH86NyBlPtGYJedXWLeaMUEBDjGCmuiu43khuPPU+e60Q2U8wV+piKSUjSDIcZb+ozgqRWXGHelHKdxbJEjuzImetbL/xe8KS9Lm2EpsDAECyg2aVQAAt9lVVVQmubwXWuinp8S/NOQLQK9vKW4PL1xU29GT/Xl6SNBeXguNDLZyfp/19J436uHK9WpDZGefzPvOe2veVXZ/TTHVncOzcicv6EokEAAAAAAAAAADIyq2ZknvTp6X7PSjbDYl5AOgi9wdvkk46u/mK4z148f1Yivhagb8PA8uZe9k/zQcZBwaT4yvey8/u0u+e6/Tay1uLo01Ud8z/Y/OxLd0ewMrgXvIP0vFnJK7jX/8M+V//4uDHlbJU2h1eeWxtJ6cHdFfWMFou3515YBH3x+9JDpzN7JDu/Gl4rBfRagBLFmE0AAAAAADalCUWlRS6yhRY27+dESMUsCcuqeoPBkVmq+E/UozkxlLvs9cKzr6Yoz5qYAVJsgTIDtzG+PqUqjMH/u0VG7dO9wR6lthZJz+HtOGWOSM0l7RtAACaKRhBs1CoqOLDUbT57fT+Ys+CG1Dehf/wnfS4CfSS917byvcExyYL6zu2nzRnvNbPRSvRX+s29efnaVX84hCjdPD4ZIfRrPP/7oh9VZ+Zvi44NuiGdPbaR/V0PgAAAAAAAAAAAO1wW05V9L7vyH3kzvS3IeYBoIvc4LDcmz7VPJrQixffj082X4dYA7CsueERRa/9d7lP3Cv3yXvnQ2mWL35Mzjm99vJIH31h9pf/T1a3z/+DyCywqrnBYbm33JC8kvfSZ/7n4Me7d9jrpjlfAZYKwmhLlhtdI/eeb7R24zGOQ8BqRhgNAAAAAIA2DeeKqdcdiux1MwXW9gezilE4jCZJpbogwfIMo9nvilWuixpYwa+WwgtGiKxUtw9v3NalfAK9aMTsQloJkVmfQ9pwS1JALUu8DwCAelbQrOzL8t43LFscSzu4nYR3zewS55yGrDhTyvAo0G0z1Z3mz85UR8No9jmv33+mbP1ctBL9tc6dWwmjlePw/VOI5o9Pac/nu+07M1/VveVfB8fOWntRpt8nAAAAAAAAAAAAlgq3dp101UvTrfygh3Z3MgBWPRdF0sia5JV6EAFxA4PScJO/ped7f60MgM5zA4Nyg8PSMSea6/h3/In8T78nSTrzGGkwY6tlbS2MtmFzq9MEsEK4fKHp71X+PdfI/+S78jf+P+nz19orjvUgFgt0DGG0JW1qo7TusMw3c72IVgNYsgijAQAAAADQprwraMANplo3KSyVJbBWC2YlvSi+FB+MBcxUdwXXGc2Np95nr+WNgIokVeqiDyUj+NVKeMEKkZX9PpXj+Rib93FwnaRIRJp9hLQSPbC2nzbcMlctmWND0XDm+QAAIM2fL4V4xYpVXbCsPoDaqBYw6jUruJo2PAp0233le8yxdR0MozXjvTd/LloLFxthtBaihNax5eDxKXw+7800cud573XDdPgis0g5nTdxec/mAgAAACA959zRzrknO+f+2jl3k3Nul3PO1/338za27dv878iOfaIAAAAA0CZ32bObr3T/k6QTz+r+ZADgyt9JHu9VBGR8Knm80J9rZQB0yZZT7bGtv5R/1smK3/xSrRnyeuYZ2eIuk/F2ybnm4UcAq4J7/AuSV9hTkn/2qfKvf4b8377QXo8wGpaTrG+QS4S4p5xzck9ocmwK6UG0GsDSRRgNAAAAAIAOSBvhSopiZQms1fY3khsz15mt7g7+u17S7futENlPMNciZZI0F4dDXlkCZGlus2d/fKHdLELa75VIkQbdUObtW/E9KyC3aD0jMjEUFRW5XOb5AAAgJQfNGmNFlXifsaYdWOs26/G7lTgT0A3bjDBawQ1oNNfJix2TLhrxKvt9qqoSHG0lXGzF1PbEJcW+GhwLqfrqoghjTe24EllhNN+7MNpP5r6vn+/5cXDslPGHa7JwSM/mAgAAACCZc+5c59ynnHPbJN0u6b8k/aGkcyQt3T++AAAAAEAfucPvL/eOL0qHbFo4UBiQJg+VLn6a3Js+KZf1hcwA0AL3tJclr9CrF9+PN4mNEGsAVhTnnPTY30pe6X/+Ubr1Jv3TVU6veHT686KJ6g5pbEIuIh0AQHKPeprcK9/Z3kbyBWk4+3V/QN9kfT4hl+/OPGC76qVyL/jLbLchjAasahypAQAAAADogGI0op2abrpesxjAcG5E+yp7U+1PkgbcoPIur4pfHB8oVWcO/NsKo43mxpvuq19yysvJyQdSZGV/MJgyZwS/rIhCEisqJs2HT8a0Vl5xcDxK2Z9PO6/h3EhLF/lZcbe5lOEWa71W7k8AAGoKCUGzcrxPQ9HwwY8bQmkLt9Ofd8EdjorB5WkfX4FumzbCaFOF9R194UjSprxP/ploJVxczI2aY6V4NvXvM5VUxxUjjNZ2Gjm9G6avNccumLiiZ/MAAAAAkMpJki7q9yQAAAAAYLlxx50i96Gf9nsaACBXHE3+a/BQ+FqRjmv2Iv8cYTRgpXEPPLnp1Sj+pg8pf8p5euMVTq96tNf4i8LXr9ebqG6XxtZ2ZpIAVgR3yTOl9ZvkX3JJaxsYmyBcjeWFMNqS55yTnvL70pop+Tc+N92NxprEpAGsaGSfAQAAAADogLQv8m8WlypG9gv/F+xvf8DLOWfeZnZ/GM17b4bRRnJjqfbXD8455Y2ISn0wpWTEF5pF6IK3Sfj61AJs7WYR0s6r1RCZGUYzAnJp12vl/gQAoCafEDSrD56GPq6XFFjrJiueOlct9XgmQNh95a3B5VOFDR3eU/JFI6WEc85WzieTfj9K2lej5DDa/HHFmZ9bb8Jod+39pf539hvBsS3Fh2jz0JE9mQcAAACAtu2VdHuXtv1VSUdl/O+OLs0FAAAAAABg+TvHeIOqk87uXQSkWRhtmGs3gRXnhDOar/Phdx745+hQuuPRRHV782MKgNXngSdLA0Ot3XacGBGWGZchn+OcXC7XvbkgWZrzoZp1G7s3DwBLHmE0AAAAAAA6IO2L/JsF1KzoxqL16rZTzIVjAaV4Pow2F88qVvhdokaipRtGk6SCEVGp7A+meO/NkFcrYbHBaEjOeLqkFmDzPnxfupRPoKedV9rY3qLtm98P6cIRZmiuxfkAACAlB80qvrLg43JCwCgpsNZNZng05eMr0G3T5XuCy6cK63s4C5/4M9HK+XnS70el/SHoNJKOK4Vo/rhiXdQe9yiMduP0debYhZPGxfgAAAAA+q0s6duS/kXS8yQ9VNKYpJRvbZ3ZHu/9zzP+V2m+WQAAAAAAgNXJPfnFi0MhuZzcU36/d5MgjAasOu7I4zLf5iUXNo+jTcQ7pNG1LcwIwErmxiakK5/f2o3HCKNhmckSN87luzcPNOU2Hytd8OTmK+Zy0sYjuz4fAEsXYTQAAAAAADogdeyqSfgsbXyqfjsjuXDcbLa6W5I0s///IaO58VT76xcrolILG5T9PlUVfk1P2lhdvchFGo6KwTErwFbjlO4J9NQRvRbmL9nfi3vikmJfbXp76/O07hcAANKwYqfSweDpgY/jfcaaUt7154/QZhityfkB0CvbKr0JoyWd83rZ0eKc8onHActQVDT3WQtBp5F8XKn9zmF8br77YbQd5W36+q6bg2NHDB6jBxRP6PocAAAAAGT2b5LGvfcP8d7/lvf+Hd77W71PKDMDAAAAAABgSXEnnCH3lhuli58mHXuidP6T5P7mo3JnXdq7STQNo4XfLBfA8uZe8BdN1/F79xz49ysf1fw69cnq9ubHFACrkvvdP5d76Vuy35AwGpYbwmjLinv1u+R+55rklSYPlcvbb9AOYOXjaA0AAAAAQAcUc+kuPGgWPksdRqtbrxiF912qzocCZhPCaFZUbanIRwNSoOVV3h82mIvtGEna+3LR7XIjwchCbV9ecfB2acNo1tdr8Xqtz9+yJ55r+r1aMu7TVkNtAABIUj6y/yBZbni9cNmHA0Z5V5DL8gfrDrIeB63HTaCXYh9rW9kKo23o2Ty8pLm4FBwbzhVb+vmdDxeHz89LGcKEjceZerVgW2Scz3t1P4z22e0fMYPPF0xe0bdjHwAAAACb9357v+cAAAAAAACA9rktp8ptObV/+x+fTP6rdHFpX+cLoEX3e1Dzde7+mXTkcZKkqVFpzbC0c85efW11uzSWYrsAVh3nnPS435b/9S+l//jr9DckjIZlJ8O1lsS2+s7l89LT/lB6xGPkn2a8gfCRnNsAq13U7wkAAAAAALASpI1wFZvEpZqNH1ivbn8jRuiqFg+Yre4KjkfKaSgaTrW/fim48BPNlf1hg6QYQtr7ctHtjK9lbV9WGCFtGC1tYKzVEFlSUC1NPGLOWKfVUBsAANLB8FBILXh64GMjYGSdF/SC9TiYFGkFemV3dceB8+NGU4X1Hd1Xs3NeM7LbxrmkdV4fiqVZrOCiVH9s6U8Yba46q1t2fio4NlXYoIeMndHV/QMAAAAAAAAAAAAA+mh80h7L5aWCfc0NgGXshDOlweTr+P0zTlL8j38k/7PvyzmnNU0u+5+sbidiBCCRO+2CbDcY55iCZSbLm9Dm8t2bB7LZfKy08X7BIXfahT2eDIClhjAaAAAAAAAdkDp21SQIkDYYUL+/ohFGm63OhwJmqruD46O58fl3flnCrIhKLWyQFCNpNb5gfS1r+zLDaCnvy7SBsU7PX0oXj5iLS5m3CwBAMzmXU2T8SaIx6FQxAkZJcbVuM88PquHHTaCXtpXvMcem8p0NoyXzZmS3nXPJYmSEoKtZwmjhcJwk5fcfW6yz+W6H0b6w41PaE4ffzvf8icco53Jd3T8AAAAAAAAAAAAAoI/WJITRhkeW/HW+AFrjRtfIXf3q5iv+95vkf+ds+e99TW9+SnISYKK6XY6IEYAkJ50tnXlJ6tVdUsAVWIoIoy1LLorknneNlGu4XvaoLdIlz+rPpAAsGRytAQAAAADogE7FrtIGA+r31ywUMGuE0UZyY6n21U95Vwgur4UNrPBCTvmW4ynW16hUC6N5I4xmphTSbb+RFbxrZigqmmPW/bVgHSM2l/Z7HAAAS8ENaK/fs2h5uSGEZgWMrPOCXrAev5MirUCvbCtvDS4fdEMdP+dPOuf18l05l7TOi7OE0SpxOLgoSXk3/+dS58IXj3YzjFaOy/rcjo8Gx0ZyYzpjzfld2zcAAAAAAAAAAAAAYAkYSwiORLyRFrCSuae/TDr2BPmXPTZ5xdJu+ff+hS574wcTV5usbpfGCKMBsLkokq75H+mT75X/zi3SHbdL//tl+wZja3s3OaATsoTR8v27Lh2LufOfKG04XP6mD0n33S33oJOlS58tx3EIWPUIowEAAAAA0AFpg2bDOTtaJWUIrNXtz4od1IJoM9VdwfHRZRBGK0ThuFllf0ClZIQXhnOtv0ue9TWoRcWsMELaMFqxhfhdFjmX01A0rD3x3KIx6/6qZ8XT0n6PAwBgyUcF7a2GwmgLQ2hlI2BknRf0wrARHi37fSrH+/o6N2Bb+Z7g8qnC+s6/c3ST7c1VS8HlaePAIdb5c5YwYWOAsabgBg7cR+ZnZoSRO+Ebu2/Wzsp0cOyctZdoMBrq2r4BAAAALEtHOOfeLek0SYdJGpG0XdJ9kr4l6WZJH/Deh3/RAAAAAAAAwNKzJiGMNhu+/hfAyuFOf5T8Fc+Trn178oq33iTnpAdskH4UeA/F4bikET9LGA1AUy6fly57ttxlz5Ykxa96ovSF68MrJwVcgSUpwzWzOVI7S407/nS540/v9zQALDGcPEZOAAAgAElEQVThtz4HAAAAAACZpI1YNVsvbXxqqC7OUcyNBtepRbBqgbRGVlBtKSm48DtwlOP5gIoV8Wo1KibZX4NaeMEKo6V9An0oGm5rHqlua8XdUsQjzNicEYQBACCtggvHwxpDaBVfMW7fv3fmSgqbzsXhEBTQK1YYbbKwvsczsc83mwWikxSj8O8tpepM6m00Bhhr8guOK+Hz+W5l0WIf68bp64JjBTegc9Ze0qU9AwAAAFjGjpJ0taQtktZKKkhav//jp0l6u6RfOuf+3jkX/uMRAAAAAAAAlpYNR9hj1fA1NABWFnfWZc1XmpuVbr9NV54cvr7l4pkb5q98IYwGIKuNR9pjY2t7Ng2gI7K8mXAu1715AAA6howlAAAAAAAdkCZi5eQ02CSKlSboNRQNK+cOPgFrBc5K1d3y3i/zMJoRUPHzARUz4tVGVMz6GpSqyWE0lzKMFrmchqKi9jSJqFhxszSKuVFtr9y3aLkVkquJfdWcVzvzAQBAkvIu/CeJSkOwqPY4v/j24fOCXkh6HJyLZzUuLv5A/1hhtHWFDR3fV9IZr/c+IbLb3rltSClOH0arGMeV+t83rPN5rzj1frL43uw3dfe+XwXHzlhzvsbya7qyXwAAAAAr3oik35d0iXPuSu/99zq9A+fcekmHZLzZMZ2eBwAAAAAAwErghopde8MuAMvEqRdIF10lffr9iav5Z5+qF39wWp/8dl7fvvvgtXibynfqz+597fwH45PdnCmAFchNHWqfi3BMwXKToYumHKkdAFgOOFoDAAAAANABaV7oPxQVFbkocZ1iiqDXUFRceBtj37Fi7YnnNFPdFRwfzY033Ve/WWG0WkBlzgwvFIPL07Ciagf25Y0wWoZ3FilGI03DaGkieRbr+9EKVdTsiefs+bQRmwMAQGoePK1pDKUdvH2h43NKKym6WmoSHgW6zQqjTRXWd2Fv9jmvlzdDvO2cSzYLF6dRto4r0cHjih1G644bpq8LLneKdP7EY7q0VwAAAADLVEXSLZJulPRdSXdI2i1pVNIRkh4h6ZmS6n8RfICkG51zp3vvf9Hh+fyupNd2eJsAAAAAAAAAsCq5KJJe8y7p0U+XbvuK/LveYK67/usf0M1PP12fePGf6NtDD9YD9/5IF8/eoEOq+99Qe4w3+ASQ0diEPTYcflNTYMmKkl+zt0C+f9elAwDSI4wGAAAAAEAHpIlYpYkBpAmsNe6rmBsz1y3FuzVb3R0cG0m43VKRj8JPNO+L5wMqvQwv1PbljTSCFVII7iM3ounKvYnrJAVY0mw/xLq/apLiEmm+NwEASJI3wmaNwaLGUFqNFVbrhUE3pEiRYsWLxqxQK9ALsY81XQ6fV052IYzW7JzXDhe3c24bvriqFM+k3kY5Dh9X8nXHFWdErL1f/HPfrp/N/VA/mftecOwhY6frkIGNHd8nAAAAgGXrNZLe6b0PV7Glb0u63jn3x5qPlb1cB6vWh0r6kHPuFO+Nd30BAAAAAABA/110lfTp9y9efvlzej8XAH3hnJNOOV865Xz5L39C+sHXg+v5b39BI5uO1uN3X6fH7w68KV9S4AgAQh5ydni5c9L6zb2dC9C29K/rUo7UDgAsBxmSlwAAAAAAwJImYpUmBpBqOw3rjBihAEmarc5oNg6H0UZz40331W9WAKWyP5hS6kJ4wfoa1PbViTBaqgBewte11e03i0ckhV3aCbUBACA1f1yvKcfl4HpWMLUXnHPmY2Gz8CjQTTsr06qqEhxbV9jQ49nYPw/DUbHlbZphtGr6MFrFh48rhbpgY4bLYdp2w/S15tgFE1f0cCYAAAAAljrv/TUJUbT69fZ4718p6YUNQydLempXJgcAAAAAAICOcI/5zfDy0x/V45kAWArceY+3Bz/5XvkXXhAeKwxIQ61fowNgdXKbj5UeePLigRPPkhtb2/sJAe1whNEAYKUhjAYAAAAAQAfkXE6DbihxnTQxgFTxtIZ1hqOiGeXaVdmu2equ4NhIbqzpvvqtPlRQr7w/bGCHF1qPeBWN25b9PpXjspFFyxhGSxEZs+aRavtWGK1JuCUxjNbGfAAAkKSCETZrDKE1htIO3N4Iq/WKdS6X9PgJdNu2sv3a+KnC+o7vL+mM18vb4eI2IrvWefFcXFLsq6m2UU51XAl/dlYYuVX37LtL35n5anDs/sPH68jh+3d0fwAAAABWF+/9P0m6vmHx73Z4N2+VdHzG/x7b4TkAAAAAAACsHCeeJT3rlQuXPeEF0iMe05/5AOivxz2vtduNTchlCcIAwH7uFW+X1m8+uGDDEXKvfEf/JgS0KsvjYL5/b9gNAEiPjCUAAAAAAB0ynBvR3sqexPFmaoG1vd7eTrFhO5HLaTgaUSmeWbTuW+/8M3M7yyGMljcCKLWwwVxcCo433kdZJH2d9sSz8oqDY1n+kNwsepZTvq34i/X5Nwu3WOG0QTeknMu1PB8AAKTmj+sHPy4H17OCqb3SangU6CYrjDYUFbsUtrXPeSu+bAbI2on+FnOj5thcXEr1e411XMnXHVes0LF1/t+qG6c/bMbWLpq8oqP7AgAAALBq/bmk+lfNnu6cW+u939GJjXvv75Fkl7oDeDEeAAAAAACAzTkn99zXyV/yTOknt0nHniB32NH9nhaAPnFDRelvrpf/w4xxxLGJ7kwIwIrnjj1Reu93pP/7huS9dOJZcoX+vpkx0JIsf5PMkdoBgOWAozUAAAAAAB1SjEa0Q9sSx9NoGlgLbKeYC4fRkozmxjOt3w9WAKWyP2xghb7aiUAk3bYUz8poGCgpErFoH03CbcO5kbZeJGR9DnNNwi3m/dlGaA4AgJpmj+s1VljJCqv1SqvhUaCbtpW3BpevK6zv+YvOrWix1N75ZDGyw2iz1Zl0YbQ4fFwpRAePK3YYrXN2VXboK7s+Gxw7bOAIbRk5uYN7AwAAALCKfU3Sdkm1V8HlJG2R9KW+zQgAAAAAAABNucOOlgiiAZCko34j+20IowFogyuOSief2+9pAG0ijAYAK03U7wkAAAAAALBSpIldpdEsoBaKchRTxAAapQkI9Ft9qKBeLWxghb7aCi/k7PDCXHVWseLgmBVSCGkWbksb0TNvb3z+pSbhFvP+bHM+AABIUsEImzWG0Ro/PnD7KBxW6xUzPJoQgwK6bVvlnuDyycL6ruwv6Zy3VLVDze2cT1rnts32Wc88rtQFG+2QXOfSaJ/f8TFzLhdMXtHzmB0AAACAlcl7H0v6ZcPiQ/oxFwAAAAAAAABAdm795uyBonHCaACAVS7LNZiE0QBgWSCMBgAAAABAhzR7sX/aGEDTwFpgO+sKG1Jtu6YYjS6L2FXehQMo5f0xASv01c7nNuiG5IynTOb3Fw4jZAmjJcXXpPbCblJCuMUIn9VY92dSjAIAgLTyRtis7Pct/DjeF1zPCqv1ivX43OzxFeim6XI4jDbVpTBa0ilvt8JoQ1HRPNcuxenCaI3HmZr644q1D+87E0bbE8/p89s/ERxbm5/SKeMP78h+AAAAAGC/uYaPh/syCwAAAAAAAABAS9wfv1s67tT0NxgjjAYAWOUIowHAikMYDQAAAACADmkWj0odRmshsPbQsbNSbbvm5LEzFbml/7SAFUCp+H0qx/tU2R9Ia1RsI7zgnDNvP1edle9EGK3p17iYelvB7Rvfi3v9HlV91bzdXBdCcwAA1FiP6+V44eN52Xh8t4KpvWI9HlphUaAX7jPDaNnCyWklnfNaPwtOkQajoZb3GbnI/vlLGSZMd1wxwmjG+X9WX975GTPkdt7E5X0/xgEAAABYcdY1fHxfX2YBAAAAAAAAAGiJW3eYonfcIveBH8u9+YbmNxgnjAYAWOWyhNHyhNEAYDlY+q+ABgAAAABgmWgWj2oWTku7Xmj8pNEz9Nh1zzCDIzVOTg8ePV1PWP+bqebSbwUjDlD25cQIyXDK+9q+fThMNhfPynsjjJbhCfTm3yujqbeVdftzCfGIuWop8/YAAEjLflzft+DjSsPHB2+ffJ7TbUnhVKAfqr6q7eXw69qn8ut7PBv7Z2E4KrYdZbZ+R7JCY43SHFes6FsnwmhVX9Vnpj8cHBuKijprzUVt7wMAAAAAapxz6yQd3bD4rn7MBQAAAAAAAADQHrfhCLmHnC1tPiZ5vbWH9GhGAAAsUQPD6dfNEUYDgOWAozUAAAAAAB3SLGiWNi5VjJKjWKHtOOd08dTjdd7EY3T3vl+o6uPgbdcPbNRIbizVPJaCQhQOoJT9vsQIiRUuScv6WpWqs2YYwQopBLffLH7X5vyTvhdL8axGNR4cmzNic2mjfgAAJMkbYbOKLy/4uNzw8cHbh8NqvWI9fluPn0C37axMK1Y1ODZV6E4YLemc1/pZaDdaLNV+R9q6aHmpmi6MVo7Dx5VCdPC4YoWOOxFGu3X3FzVduTc4dvbaR5lhZgAAAABo0VO08E1zt0r6QZ/mAgAAAAAAAADohE3HSHfcnjwOAMAq5sYn0l/xmevvdekAgHQIowEAAAAA0CFNg2YpgwBNo1kJ44WooCOGjk21n+XACqBU4nJihKTd+IJ1H8/FdhhNGcJozcJn7c4/KcKXdL+VjNhc2qgfAABJCsbjetnvW/hxvC+4nnX7XjHDqYTR0Cf3lReHwmq6FUZLYkXKhqP2o1/FXPh3rdRhNB8+rtQHG+2z+fbCaN573TB9rbH/vM6duKyt7QMAAABAPefcBkmvaVj8Ee99+9VnAAAAAAAAAED/NAufbV45ryEAAKAl45Pp182R2gGA5SBqvgoAAAAAAEijadAsZVyqaTRrFUWqCnWhgnplv8+MkETKacANtrXfpPCJFUaLMoTRmn2vtPs1HoqKcsZ85oz4mWRH04Zz7ccsAAAoRNbjennBx5WGj5vdvlescOqeaqnHMwHmTZfvCS4vRqNth3Yt1jmmZEcCO/H7S1K4OA3zuFIXXHTGn03jNtsBPyx9V3fs/Vlw7NTxc7Q2n+FCHAAAAACrhnPugc65yzPe5lBJH5W0oW7xPkl/3sm5AQAAAAAAAAB6zx3eJHy26ejeTAQAgKWKMBoArDgcrQEAAAAA6JBmL/hPGwRoGs3qUuRgKaoPFdSLFWumsis4VsyNyLn0kbIQ6z6ej4oZYYQM+2wWv0sb0bNELtJQNKy5eHGoxQpWSAlhtFUU4wMAdE/eeFyvxPsWfFz2+4LrWbfvFevxcK/fo6qvKOf4kwt6a5sRRpsqrO/xTOZZAV4rapZFMRoNLi9VZ1LdvjHAWGOFmBdqL4z26ekPmWMXTDyurW0DAAAA6C/n3GaFr8E8tOHjvHPuSGMzM977+wLLN0q63jl3m6T3SbrWe/9jYx5jkp4l6TVaGEWTpD/z3v/U2DcAAAAAAAAAYLk47lR77IgHyI2u6d1cAABYirKE0Yq8TgoAlgNepQMAAAAAQIc0i1kN54qpttOpwNpKkE8IFeyu7ggu78T9Y30t5+JZxT4cRnBKH0YbjIbl5OSNyEIn4nfF3GgwjGYFKySp1MWYBQAAVoCoMVjUXsCoe4Yj+1xurlrSaH68h7MBpG3lrcHl3Q2j2ee8pTgcKevI+XnOCKMZ+2xUjo3gYnQwuGidz7eTRfvVnp/q/0rfCY6dMHKqNg4e3sbWAQAAACwBt0i6X4r1Nkn6mTH2b5KuTrjtCZL+UtJfOud2SvpfSfdJ2i1pVNLhkh6s8LWg7/De/2mK+QEAAAAAAAAAlrotp0nHny7971cWDbknv7gPEwIAYInJEkYbn+rePAAAHUMYDQAAAACADmkWsxpKiGnUSwqsDboh5Vwu07yWs0JdqKDRrooRRutAxMuKN8yHw9oPo0Uu0nA0YoYcrPBDFubnEIfjZ7GPtScQUkvaFgAAWeRd+HG97BcGiypmGM0+L+iFpHOMUjyrURFGQ29tK98TXN7NMJpzCWE0I7KbNhCdpBgZYbSE6G89+7hyMLjoXBRcxytOtY+QG6evM8cunLyi5e0CAAAAWLXWSDorxXqzkl7ivX9nl+cDAAAAAAAAAOgR55z0tx+Vf+srpK/dKO3eLt3vQXKX/6bcpc/q9/QAAOi/8YnUq7oM6wIA+ocwGgAAAAAAHZIUNBuKhlMHzZKiG52Ifi0n9aGCRruq24PLh1MG6JJY9/NcPCvfgTBabR9mGK0DITI77hbe5954j/m5EUYDAHSCFTarDxZ5782AUT6yzwt6Ienxec4IjwLdZIXRJrsYRkti/Rx04lyyaJyfW+fTjRoDjDX1xyXrbN778DlyM9vK9+ibu28Jjh019EAdM3xcS9sFAAAAsGr8QNIbJZ0j6WRJwylu8yNJ75H0Tu/9fd2bGgAAAAAAAACgH1xxTO4P/6nf0wAAYGkam+zOugCAviGMBgAAAABAhyQGzTLEAJKiG50IZi0neSOgIkm7KjuCyztxH1nbmKt2LoxWjEa0zRjrZjzCClYkBV2sbQEAkEXBCJuV44PBIiuKJtlhtV4ZjIbl5ILnAnNVwmjoraqvaHslfDa5rrChx7OZZ8XHOnJ+nhsNLreiv43KVnCxLsTsFAXXsc7/m/ns9usVKw6OXTh5xfy7+AIAAABY1rz3R3Zx21slvVqSnHORpPtLOkbSJklrJQ1JmpO0XdLdkr7uvb+3W/MBAAAAAAAAAAAAgKXMDQ7Jr5mSdlqv1qozPtH9CQEA2kYYDQAAAACADhmKiuZYltBVYmBtlQWqCi4cUJGkXZXtweWduI+sbZQS4mFZwwbd/jpb33NWuKWUEHTpRKgNAAAreFofLLLCSlLyeUEvRC7SUFQMxkSTAqNAN2wvb5M3oltThfVd22/WGLDUmXPbYhQOo83FJcW+qsjlEm9fMY4t6YKL2cNos9Xd+uKOG4Jj6wuH6cTRUzNvEwAAAMDq5b2PJf1w/38AAAAAAAAAAAAAgJBNx6QLo62Z6v5cAABtI4wGAAAAAECH5FxOQ9Gw9sRzi8aGc3Y0rVGnAmsrQSGyAyg7q0YYrQP3UdHYRlKsRRkjEUnztPafRdEIUOyq7tCuyo5Fy7eVt5rbyvL9CwCAxQqbxaqq6qvKudyCSFojK6zWS8NGGG26fF/w8RXoljv2/swcm1xqYbQunttK0r3lXx/Yx3A0okK0+FhRjsPHlvrfN6zPbW+8J/PP9+d3fFz7/N7g2AWTj20acgMAAAAAAAAAAAAAAAAAAEBGm46Rvv+15uuNre3+XAAAbSOMBgAAAABABw1HI+EwWoYYQFJgLSkIsBIVEgIos9XdweWduI+GW9hG1kiEFT/Lu0JiEC4t63vuh6Xv6hW3X516OwU3sCRCNACA5S/pcb3iy8q5nCoJEVIrrNZLxdyIpiv3Llr+wXvfpQ/e+64+zAhYaDQ3rqFouN/TWKCVc+tGxWjUHHv9z15w4N8FN6DjRk7SMw99kYq5+dvEvqqqKsHb1p/nOhc+n79l56d1y85PtzLtRcZya/Sw8Ud2ZFsAAAAAAAAAAAAAAAAAAAA4yB1+rHyaFdes6/ZUAAAdEPV7AgAAAAAArCS1F98vXp4tBmC98D9LYG0liJSTy/j0RSfuo1a2kTWMZgUirGBaVtb3YubtrLLvOQBA9+QTwmbl/UG0clw21ylE/Q91rrZzMSw/k4X1/Z7CIp04n0x7blv2+/Tdma/pn+9844FlFR+OokkLg4tZz+dbce7EZR2JIAMAAAAAAAAAAAAAAAAAAKDBaRc1X+fYE+XWTHV/LgCAthFGAwAAAACgg6xYRtaIhhnNyhhYW+6ccyq4bBGUTgRLWomKZQ0pWIGI4Q4FzToVbrG+FwEAyCopbFbZH0SrBdKCt08Iq/UKj4tY6qby3Q2jtRIP68R56VBUzLTvn8x9X/ft2yqp2XGl/rjU3TDaoBvS2Wsf1dV9AAAAAAAAAAAAAAAAAAAArFpbTpUufEriKu53runRZAAA7cr3ewLoHefcsKSTJB0naULSkKRdku6RdKukn3jvfQf2U5B0lqQjJG2UNCPpLknf8t7/vN3tAwAAAMBSdsjAofrJ3PcWLy8cmm07hUN1596fL1q+LuN2VoJ1hQ26a98vU69/yED799GgG9JYbo12V3emvs1UIVuE4pCBjeHlHfoaW9vPajV+zwEAumPQDZlje/0eSVLFl8118hljqd3QqcdpoFs2Dh7e1e3nXUHjuQntqm5PtX7BDWg8v7bt/UYu0rrCobq3fHfq29xTvkvrBjaonHBcKUQHg4tZz+ezOmvthRrJjXV1HwAAAAAAAAAAAAAAAAAAAKuVc056zbulsy6T/9bnpS9+TLrvrvnB858k94yXyx1zfH8nCQBILer3BNB9zrkznHP/LWmHpP/P3n2HR37V9+J/n5G0u9JWr73r3gsG22DjRjU2mGJCL+b+CDUECJAfJJcQSiB0AgnhXgiQBLihtwAGYxIw1TYxNhAb27Exwb33trvaova9f2h9V9bOjEZazai9Xs8zz+p7zuec89mir0bSzlu/SPJ/knw4yfuSfCzJ15L8PskNpZR3l1JWT/GcNaWUTya5NcnPknw+yQeTfDzJaUmuKaWcW0p57o7+ngAAAGarY5Y/drux7tKTI5c/cnL7rDhhu7HFZUmOWHbslHubqx6+/NEt1+7cs2v2W3LIDp9ZSskxK7b/u2xk/yUPyqqenSd1xuFLj86SWt9248dO4tzmPR0yLeEOx9b5twgAU9HbtbTh3Mbh/iTJYDXQsGY2BKMdvfwxKSkz3QbUVUstx604sa1nlFJy1CQ+tzly2SOyqLZ4Ws6e7PPS++8rQyOt3VeOXPaItr1/99b68oSdntmWvQEAAAAAAAAAAAAYVWq1lCc8P7W/+Hhq374mtZ9vGX2864tC0QDmGMFo81gppbuU8vEk5yY5NcmiCZbsmeSvk/y2lPKUSZ51SpJLk7wmSbNgtUcl+WYp5UullMavggMAAJijHrz0yLxw19dmadfyJMnq7jV53Z7vyOqeNZPa5+HLH5Xnrnl5emujnzqt6dktr9/73VnWtWLae57tnrLz83PiqqdlUWkeqLDP4gPzhr3ek1qZni93PHvNS/OIFY9vGsJSUsshfUfkT/Z826T37+1amj/b+z1Z27PH6HWtL8/a5SU5dsXjptzzWLVSyxv2ek/2WXzglNZv60cwGgDTY1FZnFqDb0tsGrk/GG2w7nx36Z62j/E7Yr/eQ/Ly3d+YFV2rZroVeICVXTvlT/Z8W9Yu2r3tZz137ctz/IqTmj5PrqUrRy17VF6422un7dyn7nxqHrfqqekpE327a9RE95UkD9jroL6H5CW7vSErunbasUbHWd29Jq/a863ZqWeXad0XAAAAAAAAAAAAAADmq1JV1Uz3QBuUUkqSf03yvDrTv0tyeZJNSdYkOSbJ+Fd5DCR5ZlVVP2jhrBOTnJkHBq9VSS5McnWSVUmOSjL+FR9nJHlWVVUjE53RTqWUwzIa6pYkufTSS3PYYYfNYEcAAMB8MFKNZP3wfVnRtSqjn6JNdZ/hbBhenxXdwjeGqsHcOXBbqmz/tYxlXSuyvHtlW84dGNmSuwZvrzu3snun9HUt2+Ez1g3dm2Vdy1MrXTu8Vz3rh+7LhuF1LdfXSi1renZrWz8ALFxvuvLF6R9ev934H+3+FzlmxWNy0frz86mbP7jd/JJaXz5y8Fc60WJLqqrKXYO3NQ1cgk5ZVFuU1d1rd+jzjqlo9jx5p55dsqTW25ZzB0cGc9fgts8LPnPz3+WWgeu3q3vWLi/Jk3Z+Tq7ffFU+eN0b6+719wd9Ob1dD/w5PtP5/r2otjiru9d0/O8GAC677LIcfvgDfsLt4VVVXTZT/QCA/6MHAAAAAAAAAMwH/n9e53TPdAO0zR9n+1C0c5K8rqqqS8cOllK6k7w4yf9Kcv+ryBcl+Xwp5ZCqqu5rdEgpZa8kp+WBoWjnJnllVVWXj6lbnOTVST6cpGfr8NOTvC/J2yb3WwMAAJj9aqWWld3jM6insk+XULStuktPdlu8V8fPXVRbnN0X793WM9r9d7y8e2XbguMAYDL6akvrBqNtGulPMhqEWk936ak7PlNKKdll0W4z3QbMqE48T66np/bAzwtWdK+qG4y2cet9pVnAWXdZtN2Y928AAAAAAAAAAAAAAJhZtZlugLYZHzZ2TpKTx4eiJUlVVUNVVX02yclJtoyZWpvkTyY4591Jxr7S/xdbz7l8bFFVVVuqqvpYklPHrf+fpZR9JzgDAAAAAIB5oLe2tO74puH7A4wG6s73zLJgNGD26Gt0X7k/cHGk/n0lSbqLnyEFAAAAAAAAAAAAAACzjWC0eaiUckSS/cYNv76qqsFm66qq+s8knx43/PQm5xyc5KVjhgaSvKyqqs1NzvhOks+PGVqc5J3N+gIAAAAAYH7o7aofYLRx5P5gtPpfxu4pi9rWEzC3NbqvTBy4uCillLb1BQAAAAAAAAAAAAAATI1gtPnpgHHXN1RVdXGLa08fd31wk9oXJukac31aVVVXtHDGh8Zdn1pKWdJKcwAAAAAAzF19teYBRkMj9QOMuktP23oC5rbeWl/d8U0TBC66rwAAAAAAAAAAAAAAwOwkGG1+Gv/KshsnsfaGcdc7Nal99rjrz7ZyQFVVlyf55ZihpUme1MpaAAAAAADmrt6uBsFoWwOMhqqhuvM9tUVt6wmY23obBC5uvD9wsaofuNhT3FcAAAAAAAAAAAAAAGA2Eow2P9067nrJJNaOr727XlEpZbckDxszNJTk3Emcc9a461MmsRYAAAAAgDmoYYDR1mC0wYYBRj1t6wmY2yYKXBysBuvO99TcVwAAAAAAAAAAAAAAYDYSjDY//TrJljHXDy6l9La49ug6e9Vz+LjrS6qq6m/xjCT5xbjrwyaxFgAAAACAOaivUYDRcPMAo27BaEADfQ0CF//ffWWkfuBid1nUtp4AAAAAAAAAAAAAAICpE4w2D1VVtT7JF8YMLUnyionWlVK6kohUJLMAACAASURBVPzpuOHPNyh/yLjrK1tucNRVE+wHAAAAAMA809sgwGjjyGiA0VBVP8CoR4AR0EBvg8DFbfeV+oGLPQIXAQAAAAAAAAAAAABgVhKMNn+9Jcm1Y67/tpRycqPiUkpPkk8lOWrM8E+TfKvBkoPGXV8/yf6uG3e9cyllp0nuAQAAAADAHNIoGG3T8GiA0eBIgwCjmgAjoL6+BveVwWoggyODGRS4CAAAAAAAAAAAAAAAc0r3TDdAe1RVdXcp5aQkp2U07Kw3yZmllG8m+WaS3yXZlGSXJI9M8uokDxqzxa+SPK+qqqrBEavGXd8+yf42lFI2J1kyZnhlknsmsw8AAAAAAHNHX1eDYLSRrcFoDQKMugUYAQ30NrivJMnmkf4MVvUDF7uLwEUAAAAAAAAAAAAAAJiNBKPNY1VVXVtKOT7Jy5K8KsnRSU7d+mjkriQfSfJ3VdXglSKjlo273jSFFjflgcFoy6ewxwOUUtYmWTPJZQfu6LkAAAAAAEyst1Y/wGiwGsjgyECGGnxZukeAEdBAo/tKkmwa2ZjBkfqBiz01gYsAAAAAAAAAAAAAADAbCUab/7q2PrYkqZKUJrU3JPnrJF+bIBQt2T4YbfMUetuUZKcme07Fa5O8cxr2AQAAAABgmvV1TRBgVDUIMCoCjID6+roaf3tp43C/wEUAAAAAAAAAAAAAAJhjajPdAO1TSnl0ksuT/GOSR2fiv++9k3w2yfWllD+e5HHV5Duc0hoAAAAAAOao3lqzYLT+DDYIMOoWYAQ0sLgsSWnwLbDR+4rARQAAAAAAAAAAAAAAmEsEo81TpZQnJPlxkv3GDN+U5C1JjkqyKsmiJLsleUqSzycZ2lq3JsmnSymfKqWUBkdsGHfdO4U2x68ZvycAAAAAAPNIb1fjYLSNw/0ZHGkQYFQTYATUV0pJb62v7pzARQAAAAAAAAAAAAAAmHu6Z7oBpl8pZU2SryZZMmb4jCQvqqpq3bjy25KcmeTMUso/Jflekp23zr0yyVVJPlTnmNkajPbJJN+Y5JoDk5w+DWcDAAAAANDE4rIktdQykpHt5jaN9GeoQYBRjwAjoInerqXZOLL9t5k2DvdnqGoQuFgELgIAAAAAAAAAAAAAwGwkGG1++p9J1oy5/l2SU6uq2txsUVVV55dSXpDkx2OG31lK+WxVVbePK79v3PWaTEIpZVm2D0a7dzJ71LO1z/G9TtTLjh4LAAAAAEALSinp7Vqa/uH1281tGu7PoAAjYAr6aktzV53xTSP9GRxpELhYE7gIAAAAAAAAAAAAAACzUW2mG6Atnj/u+kMThaLdr6qqnyT5+Zih3iT/o07pFeOu9229vbr1d1dVdc8k9wAAAAAAYI7pqy2tO75ppD+DVf0Ao+4iwAhorLer/n1lY5PARfcVAAAAAAAAAAAAAACYnbpnugGmVyllaZIDxw3/ZJLb/DjJY8dcH1+n5vJx1wdN8owDxl3/dpLrAQAAAACYg3obBKNtHO7PkAAjYAoa3Vc2jfRnSOAiAAAAwKi7L0yu/2bSf+32c9VQMjKYLN032f2UZI8nd7w9AAAAAAAAALifYLT5Z1WdsVsnucf4+l3q1Fw67vqhpZS+qqo2tnjGoyfYDwAAAACAeai3q3GA0eBI/QCjntqidrYEzHF9jYLRhvsz2CAYrae4rwAAAAALyA3fTs59wWj42UT++6PJQ9+XHP5X7e8LAAAAAAAAAOqozXQDTLt764zVfzVIY8vGXW8YX1BV1S1JLhkz1J3kMZM448Rx19+fxFoAAAAAAOaoRgFGG0f6M1gN1J3rKT3tbAmY4xoHLm7M4Ij7CgAAALDAVVVy0ZtbC0W736XvSbbc1b6eAAAAAAAAAKAJwWjzTFVV/UnWjRs+apLbHD3u+tYGdd8ed/3yVjYvpRya5PgxQ/1JfthaawAAAAAAzGVLuvrqjm8a7s9QVf+Fed1lUTtbAua4RoGLm0aa3Fdq7isAAADAAtF/TbL+ismtGRlIbvlRe/oBAAAAAAAAgAkIRpufzhp3/apWF5ZSdkvyjHHDP29Q/uUkw2Oun1NKObiFY9487vpfq6ra3GKLAAAAAADMYY0CjDY2CTDqKT3tbAmY43q7GtxXhvszWA3UnXNfAQAAABaMW86c2rqb/216+wAAAAAAAACAFglGm5++Pu76BaWUF020qJSyOMkXkywbM7whSd3/EVFV1RVJPj9maFGSz5VSljQ545lJXjZmaCDJuyfqDQAAAACA+aG3QTDahqH7UqWqO9dTFrWzJWCO66311R3fNNKfwYaBi+4rAAAAwAKw/qrk16+d2tprvzS9vQAAAAAAAABAiwSjzU9fS3LxmOuS5AullI+WUnavt6CUclKS85OcPG7qQ1VV3dPkrHcmGTv/qCQ/LqUcOm7/xaWU/z/JN8at//uqqq5rsj8AAAAAAPNIb1f9YLR1w/c2XNNT62lXO8A80ChwcdNwf4aqgbpz3cV9BQAAAFgArvjkjq1fd8X09AEAAAAAAAAAk9A90w0w/aqqGimlPC/JuUnWbh0uSV6f5E9LKZckuTrJpiSrkxyVZLc6W/17kg9NcNaNpZTnJDkzyaKtw49O8ttSygVbz1mZ5OFJ1oxb/r0k75jc7w4AAAAAgLmsr0GA0bqhxsFo3WVRwzmARoGLW6rNKVX9nxPVU3NfAQAAABaA28/ZsfV3/DxZcfD09AIAAAAAAAAALRKMNk9VVXVlKeVxSb6Y5JgxU7UkR259NFye5NNJ/qyqqsEWzjqrlPLsJJ/LtvCzsvXcYxos+2qSV1ZVNTzR/gAAAAAAzB+NAoxG0vjLxT2lp13tAPNAo8DFJKkyUnfcfQUAAACYd4YHkkventx4erLpliRVMrShcf0hf5r8/uPN9/zlK0YfSdK9PBlav21u9dHJ8f+S7PTQHW4dAAAAAAAAAMaq/yPSmReqqvpdkkcmeWmS8zIaeNbMpiRfTvKoqqpeXVXVpkmc9e9JDk/yT0nuaVJ6fpLnVVX1wqqq+lvdHwAAAACA+aFZgFEjPWVRGzoB5otGgYvNuK8AAAAA8875L0su/7tk/e9HA8yahaKtfEjy8I8kB/5x6/uPDUVLkrsvSH74iGT9VVNqFwAAAAAAAAAa6Z7pBmivqqqGknwhyRdKKSuTHJNk/ySrkixOsj6jQWaXJvmvrfVTPev2JK8ppbwhyaOT7JtktyT9SW5K8puqqq7Zgd8OAAAAAABz3FQCjLprPW3oBJgvphK42F3cVwAAAIB5ZOPNyfVfb73+8T9Jaj3JcZ9KDnpV8rMnJwPNfi5yA8Obkgv/PHncdye/FgAAAAAAAAAaEIy2gFRVdV+Sn3TgnIEkP2v3OQAAAAAAzD29Uwgw6imL2tAJMF8srvWmpKRK1fIa9xUAAABg3hgZTm7+t6Qaaa2+Z1WyZNfRt0tJdj42OeYTyS9eOLXzbzojuebLyX7/X1JqU9sDAAAAAAAAAMbw3WcAAAAAAKBj+rqWTXpNd+lpQyfAfFErtSyp9U1qTU/NfQUAAACY40aGkgvfmHxrl+RXr2p93X4vHA1EG2vPpyXdk/+hFv/PeS9Kvrk6ufgdrQe0AQAAAAAAAEADgtEAAAAAAICOWVyWpEzi2xO1dKWrdLWxI2A+6Oua3At3u8uiNnUCAAAA0CH/9e7kdx9JBu9tfc2uT0ge9v7tx3uWJ489LelZMfV+Bu9LLntfcvnfT30PAAAAAAAAAIhgNAAAAAAAoINKKemrtR5g1FN62tgNMF/01vomVe/eAgAAAMxpVZVc9emJ6/r2Sk44ffTxtN8nj/9RsmhV/drdn5Q857bkqA/vWG+t9AUAAAAAAAAATXTPdAMAAAAAAMDC0tvVl/6R9S3V9tQWtbkbYD7onUTgYpL0FPcWAAAAYIpGhpP7LksG70tSTfPmJSm1pHtZUlucbLm9ftmmW5PNt0283WF/lez1jNaP71qSHPjHycVvTUYGW1831vorki13JYt3ntp6AAAAAAAAABY8wWgAAAAAAEBHTSbAqLv0tLETYL7o7ZpcMJp7CwAAADAlt52V/OSkme6iNV19yT6nTn7dopXJ3s9Nrvva1M/+1i7J0R9NHvT6qe8BAAAAAAAAwIJVm+kGAAAAAACAhaVvEgFGPcKLgBb0TTJwsZTSxm4AAACAeWlwXfLTJ8x0F61ZdkDy+B8ni1dPbf1xn0r2enZSuraNrXhwsvKwJC1+XeWCNyS3nzO18wEAAAAAAABY0LpnugEAAAAAAGBh6Z1UgNGiNnYCzBe9AhcBAACAdrvhO0k1MtNdNNe9LHna75K+PXdsn57lyQmnJYMbko03JkvWbgtZG7g3qfUk3UuTr/cmw5sb73PNF5O1J+xYLwAAAAAAAAAsOILRAAAAAACAjhJgBEy3yQQu9ghcBAAAYCEaHkhuPysptWT1scmilTPd0ey28abkjv9IBtdvG/vVK2eun1bt94c7Hoo2Vs+yZOWhDxxbtGrb23v8QXLDtxqvv+ozyc7Hj77dvTTp3SPZdHMy1J+Ukqw8LFl99GjQGgAAAAAAAABsJRgNAAAAAADoqL7JBBjVBBgBE5vMfaVb4CIAAAALzYZrkh8/Ltl4w+h1757JCd9Odj52Zvuara78VPLr1ybV8Ex3MjmlOznoVZ098+DXJjeclqRqXDNRoNwuj0pOOD1Zssu0tgYAAAAAAADA3FWb6QYAAAAAAICFpVeAETDNersELgIAAEBD579sWyhakmy6KfnVq5KqSZjVQtV/ffLr18ytULTSlex8XHLSD5LVD+/s2bs9Pnnst3Zsjzt/kVz2vunpBwAAAAAAAIB5oXumGwAAAAAAABaWSQUYFQFGwMQmE7jYI3ARAACAhWSoP7nj3O3H77koufs/k52P7XxPs9kNpyXVyOTXHfa25KHvndqZ1UjytQm+XvHgNyVHfrDxfJnBn5W997OTZ16bnL7f1Pe4/l+To//3dHUEAAAAAAAAwBw3g98FBwAAAAAAFqI+AUbANOubROBit8BFAAAAFpKBe5NquP7cjd/pbC+z2b2XJpd/OLnwz6e2fp/nj4aTTeVR6052Pan5/mse03yPmda39+hjqjbdkgzcN339AAAAAAAAADCnzYLvhAMAAAAAAAtJrwAjYJr1ClwEAACA+hqFoiXJZR9IRoY618tsdfXnk+8fmfzmTVNbv/tTkp2O3LEeHvympHTVn1v10GSPp+7Y/u1WaslD3rxje/zw+GSkyb9XAAAAAAAAABYMwWgAAAAAAEBHTSrAqCbACJjY5ILRBC4CAACwgIwMNp+/5czO9DFbDW1MLnh98wC5+y07cPQx1kPenJzwnR3vY49TkhO//8AAtBUPTg55fXLyOUmte8fPaLdDXpc88kvJ7k+u/2c1kXX/ndz6w/b0BgAAAAAAAMCcMge+Sw4AAAAAAMwnAoyA6dbX1fp9pVvgIgAAAAvJ8Mbm8zd9N9nzDzrTy2x0+9nJ4LqJ6x53RrLn09rby+5PHH3MZfv/4ejjfnf8IvnRo1tff+N3R0PiAAAAAAAAAFjQBKMBAAAAAAAdNakAoyLACJjYklpvy7UCFwEAAFhQ+q9rPr/+qs70MVsM3Jtc+enkik8m/de2tqa2ONnlUW1ta97a6ahk0U7JwD2t1a+/or39AAAAAAAAADAn1Ga6AQAAAAAAYGHprbUejCbACGhFrXRlSa2vpdoegYsAAAAsJBuunWD+6o60MSsM3JP86DHJRX/ZeihakjzkLcni1W1ra17r7k2OeFfr9RuubFsrAAAAAAAAAMwd3TPdAAAAAAAAsLAsri1JSS1VRias7akJMAJa01dbms0jGyes6xa4CAAAwEIyUQDYxuuTkcFkIXwd7uovJPdd1nr9AS9L9nx6svdz2tbSgvCg1yfLD05uOC3ZeFPSt1ey5fbkxtO3r+2/PhneknQt7nyfAAAAAAAAAMwagtEAAAAAAICOqpVaemt92TiyYcJaAUZAq3q7liZDd0xYJ3ARAACABaX/mubz1fBoGNXyAzvTz0y65czWa4/82+Qhb2pfLwvNHqeMPu533+/qB6OlSjZck6w8tGOtAQAAAAAAADD71Ga6AQAAAAAAYOHp7VraUl1PEWAEtKa31up9ReAiAAAAC8CNZyTfe0hyw2kT1264qv39zKQ7zkt+8aLklu+3vmbPp7WvH5Jl+yelwX9jX39FZ3sBAAAAAAAAYNYRjAYAAAAAAHRcnwAjYJr1tRi42C1wEQAAgIVgcF2y7vLWas9/eXt7mUl3nJv89PHJtV9ufc2hb0xWPrh9PZF0LU769qk/t+HKzvYCAAAAAAAAwKzTPdMNAAAAAAAAC0+vACNgmi2p9bVUJ3ARAAAAxtl0czK0KenunelOpt9/fywZ3txa7eHvSHY9afRB+y0/KOm/dvvx9YLRAAAAAAAAABa62kw3AAAAAAAALDy9tdaC0XpqgtGA1vS1el8RuAgAAADbW/fbme6gPe76ZWt1+zw/eeh7hKJ10rKD6o8LRgMAAAAAAABY8ASjAQAAAAAAHddqgFG3ACOgRb1dLd5Xaova3AkAAADMQfMtjOru3yQ/Pinpv661+r2f195+2N7yBsFot/4w+f5RyTVf7Gw/AACzRVUll/998r2HJF9bkpz5iOSmf5vprgAAAAAAOkowGgAAAAAA0HGtBhj1FAFGQGtaDVzsEbgIAAAA29tw1Ux3MH023pj89OTk9rNaqz/g5cnez2lrS9TRKBgtSe65KDnvJcl1X+9cPwAAs8Xlf5f85i+SdZcnI1uSu36ZnPOM5LazZ7ozAAAAAICO6Z7pBgAAAAAAgIVHgBEw3QQuAgAAwBg7H5sc84kHji3ddzRk4fY6gQrrr+xMX51w6XuTgbub1xz4imTn45Kdj09WPTQppTO9sc2yJsFo9/v9PyT7vqD9vQAAzBZVNfocaLvxkeSKTya7Pq7zPQEAAAAAzADBaAAAAAAAQMe1GmDULcAIaFFvi4GL3QIXAQAAWAhWHDL6GO/WH9cPRttwVft76oT+65OrPztx3RHvTvr2bH8/NLb8wIlr7r5gNASk1NrfD0yXkcFk4w3bjy/ZNRnekqRKUpKelUmtq9PdATDbbb4t2Xhj/bnbftrZXgAAAAAAZpBgNAAAAAAAoONaDTDqqQkwAlrT1/J9ReAiAABMt1JKSfKmJEvGDH+hqqprd3Df/ZO8eMzQxqqqPrwje8KCt/yg+uPr50kw2m8/NBpKNJFFq9vfC811LUlqPc3/voY3J/3XJcv271xfMFUjQ8mFb0yu+kwyvLG1NYf/dXLEu5JS2toaAHPIZR9oPLflztHg2NVHd64fAAAAAIAZIhgNAAAAAADouL6uFgOMigAjoDW9Ld9XBC4CAEAbvDDJB5NUW69P29FQtCSpquqaUsoRSZ5z/1gp5eqqqk7b0b1hwVp2YP3xTTclQxuT7r7O9jOdNt40GkjUiu7e9vZCa0789+SnT2xe84sXJU86tzP9wI649H3J7z82yTXvSZbsmhzy2vb0BMDccssPk9//Q/OaHxyTnLoh6W7t+2IAAAAAAHNVbaYbAAAAAAAAFp7eWmv/UbtbgBHQor4W7ysCFwEAYHqVUmpJ3nP/ZZIrkrx0Go94WZKrtu5dkrx/GveGhWf5QY3nrvli5/poh9/+bTIyMNNdMBk7Hz9xzZ2/SKpq4jqYaVf/y9TWXfV/prcPAOam4YHkP/+0tdobvt3eXgAAAAAAZoHumW4AAAAAAABYeFoNRhNgBLSqt0vgIgAAzJCTk+yf5P7UmrdWVbVxujavqqq/lPKWJN/cOnRIKeXxVVX9dLrOgAVl6b5J99JkqH/7uUvenuz7gmTRqs73tSOqKrnz/OT3H2utfu3j2tsPretZniw7INlwdfO6a76YrDg0WX1UUvO1HWaB4YHknguTgXtHrwfuSTbeMLW97rkwuenfkq4lyepjkuGNSf8NyU5HJl0Nvkey5e7krl8n1dBoIGRtcVJqyaKdktUP934CMNdUVXLB65P1V7RWf+8l7e0HAAAAAGAWEIwGAAAAAAB0XF+LAUY9NcFoQGuW1PpaqhO4CAAA0+5FY96+oKqqb0/3AVVVnVZKuSDJ0VuH/jCJYDSYilpPss/zk6s/t/3cljuT/3pPcvRHOt7WlA3cm/zH85Nbf9z6mv1f0r5+mLwD/zi5+G3Na85/6eivi3dJTvhOsubR7e8LGrnlh8l/nJoM3jd9e579tO3HelYlj/1GstvJ28aqkeTitye//ZvGey1anZzw7WTtCdPXHwDts/mO5IePSjZc2fqaVgPUAAAAAADmsNpMNwAAAAAAACw8vbUWg9FKT5s7AeaLrtKVxWXJhHU9NfcVAACYZk8Z8/b/aeM59+9dkjy1jefA/HfEu5OuBp9D//4fknX/3dl+dsRFb5k4FG3VEUnKaKjWw/4mOeDlHWmNFj34L0cfPSsmrt1yZ3L2M5Lhze3vC+oZuC8551nTG4rWyOC9ydnPTAbXbRu74bTmoWhJMnD36PvJ0Mb29gfA9Ljg9ZMLRUuS9ZOsBwAAAACYgwSjAQAAAAAAHbe4tiRlgm9TlNRSS1eHOgLmg96uiUMXu8uiDnQCAAALQyll3yS7jBn6XhuPG7v32lLK3m08C+a3pfskD35T/blqKLnwjZ3tZ6qqkeS6rzavefj/Tp56SfL8dclzbksOe0tSSmf6ozW1ruSoDyXPvTtZfvDE9QN3J7ec2f6+oJ6bvpsMb+rcecMbkxvP2HZ97VdaWzd4X3Lz99vTEwDTZ2jTaOjlZG24cvS5MAAAAADAPNY90w0AAAAAAAALT63UsqTWm00j/Q1rekpPihcpApPQV1uae3NX05qe0tOhbgAAYEF42NZfqyRXVVV1U7sOqqrqxlLKlUkO2jp0ZJIb2nUezHsPeXNy1b8km+q82978b8nNZyZ7PLnzfbVq8+3JNV9KBtc1rlmyNjnolaNv9yzrTF9MXa0r2fXxyforJq797YeStScmi1a2vS3mgM13JreflVTDo9elNvrvY8ma0estdye3n51snIanDRf/1Y7vMVnnvSgZ2Po1zxu/3fq6G7+T7PPc9vQEwPS48xfJyEDj+X1ekFz/9e3HhzcnG29KlsoLBwAAAADmL8FoAAAAAADAjOjrWjpBMNqiDnYDzAe9XUsnrHFvAQCAabVmzNs3d+C8m7MtGG1tB86D+at7aXLkB5PzXlx//sI/T3a7OKnNwoDxW3+cnPOcZGh987ojP5R093WmJ6bHQa9Orv5s84CQJLnzvOTfDktO+n6y6ojO9MbsdNvZyTnPTAbve+B4z8rkhO8kXb3J2U9LttzZ+d5Kd/K47yXn/WGypfkPc5jQBW+Y/Jprv5QsPyg54p07djYA7XHzD5KzTmk8v/ro5JiP1Q9GS5IbTksOncLHBwAAAACAOaI20w0AAAAAAAALU2+teYBR92x80SUwq010X0mS7uLeAgAA02inMW/f2oHzxp6xqgPnwfy23wuTnY+vP7fu8uSKf+xsP60YGUrOf/nEoWjHfybZ/6Wd6Ynps/qo5PE/StaemHQva1676abk16/rSFvMUtVIcv7Ltg9FS0bHzn9Z8stXdC4UrbZ49NG9NFl7QnLSmckeT06edH6yx9OarGvj1yv/613JPRe3b38ApmZkcPTjVDNP+GmyZG2yeJf68xf+2bS3BQAAAAAwm3TPdAMAAAAAAMDCNFGAUY/wImCS+romCFwsPSmldKgbAABYEBaNebsTP6h17BmLO3AezG+llhz90eSHj6g//1/vSvb7w2Txzh1tq6m7fpVsvLF5zc6PSA58RWf6YfqtPSE5+Wejb//+k8l/Ngk/u+Pnyabbkt5dO9Mbs8vdFyb91zae77+uY63k+M80vu8sPyg58YzGawc3JN/cKamG2tPb9d9MdnpYe/YGYGruODfZfFvj+d1PSXpWjL69/ODGIZ+eBwEAAAAA85hgNAAAAAAAYEZMFGDUUxY1nQcYT+AiAAB03MYxb6/pwHljz9jYsApo3S7HJ/u9KLn2S9vPDdyTXPLO5NiPd76v8fpvSG78TnLxWyeuXfvY9vdDZ7Tyd3ndV5ND/6z9vdA+g+uTG05L7vp1cs+FSe/uyZLdJ153xSfa31urdnn01Nf2LEuO/UTyq1dPXz9jrbu8PfsCMDUbb0wueH3zmrHPgXY6MrnzvPp19/wm6X1K4336r0tu/G4y1J/s+QfJqiMm3y8AAAAAwAwRjAYAAAAAAMyIiQKMugUYAZMkcBEAADru1jFv79uB88aecVsHzoOF4cgPjoYSDdfJG7zyn5KDX5OsOqzzfd3v7guSnz052XLXxLWLd04O/pP290RnrDoi2euZyY2nN6658M+T7r7koFd1ri+mz+Y7k589MbnnopnuZOr2fl6y8tAd2+OAP0pu+E5yy/enp6exbvhWMjyQdPnaKMCMu+ei5KdPSrbc0bimd4/Rjwv3e/Cbkiv+sX7tWackz70rWbx6+7m7fj161uC9o9eXvD151JeTfV8w9f4BAAAAADqoNtMNAAAAAAAAC9NEAUaC0YDJWiJwEQAAOu2qrb+WJPuWUg5q10GllAOT7FfnbGBH9e2ZPOQt9eeq4dHgqarqbE9jXfxXrYWiHfSq5InnJcsOaH9PdM5jvpE87P3Nay78i2SovzP9ML2u+MeZCUVbdcSOP9aemDzsb5JHf3XH+6l1J4/9ZnLEuyfuc+Xh268/4OVJafLSkJu+u+M9ArDjLn5781C0JHnyL5PeXbddL9s/6VnVuP7Kf64//pu/2BaKlow+r//1a5OR4db7BQAAAACYQd0z3QAAAAAAALAw9U4QYNRTW9ShToD5os99BQAAOu3iJANJ7k8hfkaSj7TprGeNeXswyQykqMA89uC/SK76TLLx+u3nbv1RctMZyV7P6Hxfw1tGz5/IYW9PHvbe9vdD59V6ksPeLnWOnAAAIABJREFUltx7WXLdV+rXDK1Pbv95ssdTOtsbO+7m73X+zINenRz3T50/dyLdfckRfz36mIoD/ij58WPrz930vWSf5029NwB23MhgcsuZzWsOf2fSt9f243s8Jbnua/XX3PS95LC3PnBsaFNy+znb1w7cndz2k2T3J7XWMwAAAADADGryY4EAAAAAAADap7drggCj0tN0HmC8ie4r3e4rAAAwraqqGkhydpKy9fGXpZTmT8ynYOueb0pSbX2cs/VsYLp09yZH/W3j+XOemWy5q3P9JMn130h+9JikGpm4VrjD/DfR3/FZpyS//bvRIBBmp4F7k0vfl5z19OSnTxp93PWrzvex+5M7f2YnrD668dw1n+9cHwDUd89FSTXUvKbR851mH7vu/MX2Y8NNng/d99vmPQAAAAAAzBKC0QAAAAAAgBnRV5sowGhRhzoB5ouJ7isCFwEAoC2+uvXXKsmaJE2Slabsg0nWZjR8LUm+0oYzgH1OTdY8pvH8t3ZJhvo708sl70r+49Tk7v+cuHavZzXvm/lhn1OTnY9vXnPRXyY/fUIyMtiZnmjd4LrRoMNL3pHc/L3k1h+NPjpt7YnJnk/r/Lmd0N2brDy88fxlH+xcLwA80MB9yZnHNa/Z+znJLo+sP7fPqc3X3nPx1PoCAAAAAJjFume6AQAAAAAAYGHqFWAETLPeLoGLAAAwA76S5P1JdstocNmflFJuqqrqA9OxeSnlLUlel9HgtZLktghGg/YoJTn6o8kPjsnou1wd1309OfCP2tvHwD3J5R+auO6AlyVrTkj2f8lo78xv3b3JE36W/Gtf87o7z0tuOmM0XITZ49qvJPddNvl1i1Ynu57UvGZw3fYha7s9MelZse26qy9Z86jkgJcntXn8vYeHfyT52ZPqz13y9uSQ1yU9yzvbEwDJtV9qPv+Izyb7vbjxc9ruvuSplyT//tD68xe9OTnpB9uuq6Gp9QkAAAAAMIsIRgMAAAAAAGbERAFGPQKMgEkSuAgAAJ1XVdVAKeWtST6XbeFl7y2lPDTJa6qqumcq+5ZSViX5ZJIXjNm3SvK2qqoGpqN3oI7VDx8NDrr6X+rP3/az9gej3XFeMry5ec1uJ48GSLCwdPcmR34wuegtzetu/algtNnm1p9Mbd0pFyVL957eXuaz5Qc3nquGk7v/c+KgOQCmX7OPg7ueNBr4O5EVh2bbp8Xj9F//wOsRwWgAAAAAwNxXm+kGAAAAAACAhalvggCj7poAI2ByJrqv9NQELgIAQDtUVfWFJKdn26u0S5LnJ7milPK3pZQmKR0PVEo5qJTyt0muyGgoWrn/mCRnVFX1uensHajjYe9vPHftl5KL/yoZ3jK9Z/Zfl5z30uR7hyZn/8HE9Xs9a3rPZ+7Y8xkT11zxieQrJTnjQcndF7a/Jx5o7Pvz6fuNPm745uT32enhQtEma+m+yaqHNp4/51nJ0MbO9QOw0N3yw+Sspyc3frtxTavPa2s9qRuKliTrLk+u+9dt11WzYLQGewAAAAAAzDLdM90AAAAAAACwMPV2TRBgVAQYAZPT29XXdL67CFwEAIA2enGSnyY5JtvC0VYneWOSN5ZSbknyqySXJ7l36yNJViZZleTBSY5LssfW8bGBaCXJBUle1PbfBZD07pbsc2py/b/Wn7/sA8k9lyQnnjE9522+MznzEcnmW1ur3/Xxyf4vnZ6zmXtWPjg54I+Sq/9l4tr1v09+cHTy1EuSVUe0vzcm//7cSM+q5OiPTk9PC0kpydEfS35yYv35wXXJz56SnHz2aC0A7XPzD5Kzn5ZUw83rDnh563s+8ovJeS+uP3fuC5KRgWT/FyUjg63vCQAAAAAwSwlGAwAAAAAAZkRfbaJgNAFGwOR0le4sLkuypdpcd17gIgAAtE9VVRtKKU9I8rkkz85ooFmyLeBsjyTP3PpoZGxCx9j1pyd5aVVVG6atYaC5g1/TOBgtSW7+XnLvZcmqw3b8rGu+0HqI0gnfTXZ/ctLlc/wF7fjPtBaMdr/ffzw57p/b1w/bTOb9OUnWnpjs8sikGkr6r0+WrElWPTTZ45Skb6+2tTmv7fq40T/X28+qP3/Hz5M7z0/WPLKTXQEsPJd/eOJQtJN/nvQsb33PvZ7RfP6/PzYajFYNtb4nAAAAAMAsJRgNAAAAAACYEYtrvSkpqf7f65wfSIARMBW9XUuzZahRMJrARQAAaKeqqtYneW4p5c+TvDdJX7LdJ/5lu4Vbl4+rLUk2JXlnVVUfnu5egQmseNDENXeeNz3BaHee21rdUR9O9nr6jp/H3FdKsvro5O4LWqu/8lOC0Trlzl9Mrv4x30iW7NKeXhay3Z/YOBgtGb1/C0YDaI9q66e1E35MLJN/Lt2zIundPdl0S/35ey4c/XVEMBoAAAAAMPfVZroBAAAAAABgYaqVWpbU+hrOdwswAqagt+l9ReAiAAB0QlVV/yvJvknen+TejIac3f+oGjzG1ty7de2+QtFghvTunqx5bPOaX70yuegtycjw1M4YuC859w+TG05robgk+zxvaucwP+1z6uTqN97Ynj7Y5vpvJDd8q/X6XZ8gFK1d9n5+8/nfvDG55K+TaqQz/QAsBAP3Jb94UfKtnZOv1pLhTc3rd39ysminyZ+zzwsaz1Vbn5dXg01q6v/QMgAAAACA2UYwGgAAAAAAMGP6upY2nOupCTACJq+31uy+InARAAA6paqqu6qqekeS3ZKckOQdSX6Q5NIkNyfZsvVxy9axM5P8dZLHJdm9qqp3VFV150z0Dmx13KeSpfs1r/nth5KL3jy1/c95ZnLdVyauK13Jcf+cLN13aucwPx3yp8mez2i9/rsHJSND7etnobvlh8l/TCKsbtmBybH/2L5+FroVBydH/0Pzmkvfm1zyzs70A7AQnPOM5NovJwP3TFy7/JDkmI9P7ZzD39F8vqo85wEAAAAA5oXumW4AAAAAAABYuJoGGBUBRsDk9TYLXCwCFwEAoNOqqhpM8h9bH8BcsvLQ5A9+m5x1SnL72Y3rrvp08rD3J12LW9/73sua75kkB/1JstvJyZpHJb27t743C0N3X3LCt5P7LkvuvTTpvy65+K2N60e2JLecmez5B53rcSG54p+azx/06mSXR4y+veyAZOfjkq4l7e9rIXvQnyYbrkz++6ONa678p+SIdyW1ro61BTAvrft9cvs5rdWefE6y87FT/zi4eHXyhJ8lPzmp/nw1kowMTm1vAAAAAIBZRDAaAAAAAAAwY5oFo3ULMAKmoK/pfUXgIgAAAExKd29yyOuah5gNrktu/E6y8rBk2YGja+43PJBsuTPp22M0pGHjjcnIQHLNF5qfW7qSIz+QLNppen4fzE+llqw6YvQxMpxc9oFkaH3j+uu+nuxxSjK8Odlwdf2anpWj/6ZTjV737Z0sWjntrc8bg+uS/uuTG7/duKZ0JUf+jffnmbDrE5oHo225M+m/Jll+UOd6ApiPrvtaa3VrHpusfeyOn1dr9n30kaQa2vEzAAAAAABmmGA0AAAAAABgxvR1NQ4w6hFgBExBb9P7isBFAAAAmLQ9njZxzbn/Y/TXWk9ywMuTo/8hufTdye/+VzK8afJn7vl0IUpMTq0r2e+FyZX/3Ljm2i+OPiaj1EbfBx71xaRnxY71OJ8Mrk/Oe0ly03dHQw+b2fNp3p9nyu5PShavSbbc0bjmjIOTo/4+OfTPk1I61xvAfLL5ttbq9n/x9JxXao3nfvy45EFvaLK4mp4eAAAAAADarMlXQgEAAAAAANqrt9YkwKjpT7oGqK/pfUXgIgAAAExed2/ypPNaqx0ZTK78VHL63sllH5haKNraxyXHfXry6+CoDye7PWl696xGRsO/fvXq6d13rvv1a5IbvzNxKNriNclxn+lMT2yva3Fy0veTvr2b1/3mjaP/zgFon+7lyYGvmKbNmrwc8M7ztoUW11MNTVMPAAAAAADtJRgNAAAAAACYMb1dfQ3nugUYAVPQ1yVwEQAAAKbdLo+YXP3m26d2zv4vSU4+K1myy9TWs7D1LEsef2by0PdO/943fCsZXDf9+85FQ/3J9d9orfaZ13l/nmmrjx79e1i8c/O6qz/XkXYAFqwTvp2UaXoZ347sMzI4PT0AAAAAALRZ90w3AAAAAAAALFy9tcYBRoLRgKlwXwEAAIA22f8lyTVfaO8Zezy1vfuzMOz2xOSSd0zvniODyUVvS9Y8KhkZSEp30t3gB3/UFiWrj016d53eHmbawH3JXb9Mbv/56J/BRJYfknT3tr8vJlZKss//SK74ROOaG09Pqmq0FoDJmfDjYklWHt7ydvcN3Z3rN1+VoWpou7me0pMDqi1p/OPHJjCy/Z4AAAAAALORYDQAAAAAAGDG9DUJMOopizrYCTBf9HW5rwAAAEBbHPjK9gajLVmb7PmM9u3PwrHzccmqhyX3Xjy9+17xiebBUuMd/s7kiHfOj6Cpq7+Q/OqPRwPiWnXQq9rXD5N34CuSK/8xqUYaFFTJ2c9IHvP1xqF/ANQ3cHfz+b2f01Jg6kg1ktPv/GJ+dPe3m9aVJM9ee2BOvv2qSTS5VTWJj+UAAAAAADOoNtMNAAAAAAAAC1dv0wCjng52AswXS2qNX7TnvgIAAAA7YO1jksd8Y/r3LV3JLo9KTv550t07/fuz8JSSnHRmsvspM9vHpe9ObvvJzPYwHTZcm5z/stZD0ZasTY54V3Lo/2xjU0za6qOSE85oXnPz95LL/64z/QDMJ/+XvfuOk7uq9z/+OrM7m2TT66YHAqGEFjqEIh0RRRQVudeuV8Verlgv9nrVawWx+1NRwQIoKCJdOtISWgokIWUT0nu2nd8f3113Q+Y7OzM7M7ubvJ6PxzzmO+dzvud8Astk2f1+37Ojm2C0439R0DJztzzYbSgaQAT+OOVgFgweVdC6Oykm5FSSJEmSJEmSepHBaJIkSZIkSZIkqdcMyuQJRsvUVbETSbuL+jzvK7W+r0iSJEmS1DNTXwX/EeHC7fDqDfDK56GuhECGDideBa/eCGfdBcP2K1+f0qAGOPUGOOfR/PMGNsC4F1Wuj0VXVm7tallyNUkESzfGHA8XrIZXNMIhn04C6tS3THoJvGZL/jmLf1edXiRpd7Lj+fRa/VSoTf/dVVf3b7y9qG3njBhf1HwA2lqKP0eSJEmSJEmSekFtbzdQjBDCLe2HEbgoxriqxHUagN90rBVjPL0c/UmSJEmSJEmSpOLU1+QJMArZKnYiaXcxKM/7Stb3FUmSJEmSyqNmQPLIAhPPhUW/LH6NzACY8GKorS97e9K/DT8QBoyBHatz1yeeA5POg1XFBZEU7JmfwdAcoX+DxsP4M6B+cmX2LadC/9lMfAkMGF3ZXtRztfUw4hBYPyd3ffMCaGuFTE11+5Kk/iq2weZn0uuHfKbgpVbsWFLU1huzA4qaD0BsLv4cSZIkSZIkSeoF/SoYDTiFzo+bGtiDdQa2rwUFfXyVJEmSJEmSJEmqhEGZ9ACjulBXxU4k7S7q87yvZH1fkSRJkiSp/PZ7Nyz5HbQ1FXfejIshO7QyPUkdMlnY730w59IctTqY8S4YOQuGzoBN8yvTw6Mfzz1eUw8nXg2TXlKZfcvh+Xtg+fXdz8uOgOlvrnw/Ko8DPgT3pvz7amuGbUth8LTq9iRJ/dW25dC6Lb0+7TUFLdMaW1nVtKKorZtDCSGWbS3FnyNJkiRJkiRJvSDT2w2UIPR2A5IkSZIkSZIkqTzG101hYKZ+l/FRtWMZUjO8FzqS1N8NqRnOmGzDLuMDwkDG103phY4kSZIkSdrNjTkWTrsJJpwNA8ZC3cjkkckTUH7oF+CIb1SvR+3ZDv4UHPF/MOqo5GtzwNjk6/W0f8Doo5PwtDPvgr3fAEOmw/gz4ejLYPL5le2rdSvc/7YkiKovihEeuDj/nEETkn9OZ90D9ZOq05d6bvqb4Kjvp9c3P1O1ViSp31s/N732krlQm/6BPl2tbm6kldyhZTXU5hxvyZRwW2Dso993SJIkSZIkSdIL5P7JqCRJkiRJkiRJUhVkM1lOH3ke16/57U7jZ416JSH4WSmSihdC4KxRr+TKlZfvNH7aqJeRzWR7qStJkiRJknZz405OHlJfFAIc8IHkkWbgWDj+FzuPzbgYHv8SPPrJ/OtfsBpatsK1U4vvbdsKWH0fjDux+HMrbcuzsP7R9PqpN8KEs6rXj8prv3fBnEthx5pda5ufgYZTq9+TJPU3McLjX8hdGzAaRhxU8FIrdjyXczwQOGnE2dy2/vpdas2hpuD1/60td/iaJEmSJEmSJPU1e2owWtc/tz/RlSRJkiRJkiSpF71k9IWMzI7hkU33kgkZjhn2Io4YekJvtyWpHztxxNkMrhnKAxvvoCk2cfiQ45k9/IzebkuSJEmSJEn9zeTz8wejDZ8JdaOgbiQMmZ4EShXrqW/A2BOSALe+ZOO8PMUAo4+uWiuqkCH75A5Ge/xLsPebIFNC4I4k7UmWXAXP35W7Nvq4opZqbFqae5nsOOprhuSsNWcyRe0BQFtz8edIkiRJkiRJUi/YU4PRxnQ53tJrXUiSJEmSJEmSJEIIzB5+hqFFksrq8KGzOXzo7N5uQ5IkSZIkSf3Z8Jkw9TVJ8MkLhQwcfGl7oFlIju99U/F7LL0GHnwPHP39nnZbXpsWpNdmfiwJg1P/NmQ6rLl/1/HNz8Bdr4ETr06+ziVJu2rZBg9fkl7f791FLbeyaVnO8fF1U6gN2dwtlBJgGVuKP0eSJEmSJEmSesGeGox2cvtzBJb3ZiOSJEmSJEmSJEmSJEmSJEmSpD5q9pUw5nhovAka/wEDG2DcKbD362HCmZ3zpr8RBo6DRb/OHSq25r70PeZflgSoDJ9Z9vZLtml+eu2wL1avD1XOkOnptef+CCtvhfGnV68fSepPnvsjbF2SuzbhbJjw4qKWa2xamnN8fN1ksqEuZ62llPDKtubiz5EkSZIkSZKkXtCfg9FiMZNDCFlgAnAW8MkupTnlbEqSJEmSJEmSJEmSJEmSJEmStJvI1MABH0ge3Zl4TvLI5bFLYe7n089d/te+FYy2OUe4G8A+b4UQqtuLKiNfMBrA8hsMRpOkNCtvyT0eauDwbxT1d2WMkZVpwWgDJtOSEmbWnCkhGC22FH+OJEmSJEmSJPWCEn4CWlkhhNa0R9dpwKJ8c3Ocux14FrgCGNZlreuq+MeTJEmSJEmSJEmSJEmSJEndCCEcGUJ4VQjhZSGEfXu7H0mSemxCSmBah4f/G/5xCjz0YdiyuCot5bXixtzjQ2dUtw9VzvgzSW7NSPHUN6vWiiT1O6vuyD2+1+tgxEFFLbW+ZQ3b27blrDXUTSabqctZaw41Re0DQErImiRJkiRJkiT1NX0uGI3kN2tpj0LndfeI7Ws8Bfy+cn8USZIkSZIkSZIkSZIkSZL2XCGEgSGE6V0eee/cDiGcF0JYBNwP/A64Bng6hPDPEMLMKrQsSVJljDkOpr02/5xVtydhVDceB5sXVaWtnDY8BbE1d22IeaW7jcFT4cCP5J/z1Leq04sk9SfbGmHzgty10UcXvVxj09LU2oS6ydSGbM5aS6aE2wJjS/HnSJIkSZIkSVIv6IvBaNAZXFYpAXgQeGmM0Y+6kCRJkiRJkiRJkiRJkiSpMj4MzG9/3Aq0pU0MIbwG+CMwhV0/EHU2cF8I4chKNyxJUkWEALN/DaOP7X7u9kaYf3nle0rz2P+k14bOqF4fqrzDvwp7vyG9/vgXoHVH9fqRpP5g3nfTayX8PZkWjDasZgT1NUPIhrqc9eb8ueO5tXkbnSRJkiRJkqT+oba3G8jhDtKD0V7U/hxJPg1ye4FrRmAHsB54Erg1xnhnT5qUJEmSJEmSJEmSJEmSJEndOp8k2CwCP4kx5rw+MIQwEriC5ANfY/sjtJc7zhkM/DGEsH+MsdDrByVJ6jtCBg7+FNz+su7nrrqt4u2k2vR0em3oPtXrQ9Wx//vh2f+Xu7ZjDWx4HEYdUd2eJKkvW31vem3ofkUvlxaM1lA3GYBsyOasN2cyRe9F09riz5EkSZIkSZKkXtDngtFijKek1UIIbXRe4HRhjHFJVZqSJEmSJEmSJEmSJEmSJElFCSEMAmbRed3fX/JMfy8wnM5AtGXAH4EW4JXAtPZ5k4H3AV+rQMuSJFVew6mQHQbNG/PPW3M/3PlqOPoyGDi2Or0BxDZYPye9Xju4er2oOkbOgvopsPW53PXNCw1Gk6QOLVth5S3p9cHT0mspGnfkDkYbPyAJRqvN1OVuJVOzU6J4QdbPgRghFHWWJEmSJEmSJFVdCR8N0ev8yaskSZIkSZIkSZIkSZIkSX3fIUANyXV/W2KMD+WZ+zo6Q9GeBg6OMb4/xvjh9nUeaJ8XgDdVrGNJkiqtdjAc/QPIZLuf+9zv4aYTobWp8n11eOZn6bVjf1q9PlQ9IQPH/ji9vmlh9XqRpL7u1rPTawd9oqTAsZVNKcFode3BaCH9e4aWkOPWwEkvy79hvr/rJUmSJEmSJKmP6G/BaJ9tf3wOWN/LvUiSJEmSJEmSJEmSJEmSpHR7tz9H4Im0SSGEA4B9u8y9NMa4oaMeY9wMvLfLKfuHEKaUuVdJkqpnr4vg3CeTgLR935l/7qZ5sPwv1ekL4PEvpdemnF+9PlRdE86CEYfmrm02GE2SAFj3GDz/z/T63m8oesmtrZvZ2Jr7FrmOYLRsnmC05kyOWwNP+hOceHX6po98rKgeJUmSJEmSJKk31PZ2A8WIMX62t3uQJEmSJEmSJEmSJEmSJEkFaehyvCLPvJPanwOwCfjTCyfEGO8PISwFJrcPHQo8V44mJUnqFUP3SR4xwuIroXlj+tz5P4DJr0jm1AyAUANtzdDWBLVDoGULSbboCwXIDoMQuu8ntkHzBtj8TO56pg7qRhbyJ1N/Ne5FsP6xXcc3Pg1N6yEzAGoHlXfPtmYItYV9jUpSb1tzb3otUweD906vp2hsWppa6wxGq0ud0xxqgJYX9FIDU18FA8fB9lW7nrRjNWx/HgaOLbpfSZIkSZIkSaqWfhWMJkmSJEmSJEmSJEmSJEmS+o36Lseb8sw7of05AjfHGFtS5s2lMxhtag97kySpbwgBpl4IC3+UPqfxJvhNprT16yfD/h+EAz6YO3yqdQf86/2w+HfQvD59nRGHlLa/+o8h++Qef/5O+P3IJJBv1NFw7I9gxME922vbCrj3LbDyVhgwGvZ/Hxx4iQFpkvq2lben16ZcADXpAWZp0oLRBmYGMaJ2NADZkE09vyWT5/uDcS+CJVfnKER48utw+FeLaVWSJEmSJEmSqqrE345KkiRJkiRJkiRJkiRJkiTl1TXZIv1Obpjd5fjOPPPWdDkeVlJHkiT1RYd9qXJrb10KD38Ynvlp7voDF8OCK/KHogEc/8vy96a+ZWhKMFqH2Apr7oWbToSmbr5e8q4T4ZYzYMXfoG0HbFsOj3wM5l9e+pqSVGltrbD4yvT6Ed8oadnGHbmD0RrqJhPawyJrM+mBa82hJn3xY65Irz35NdixtqAeJUmSJEmSJKk3GIwmSZIkSZIkSZIkSZIkSZIqYVOX44ZcE0II44F9uwzdnWe92q6n9qAvSZL6loFjYPpbKrvH/B/sOta8ERblCXnpUFMPww4of0/qW4Z0E4zWoXkDLLmq9H2e/ydseGLX8QV5AnwkqbetvDm9dtAnYNCEkpZtbEoLRpv07+NsSM8Zb87kuTWwbiTMeHd6ffFvuu1PkiRJkiRJknpLbfdT+q4QwqnAacDhwDhgOPk/VTKXGGMs8Dd4kiRJkiRJkiRJkiRJkiSpQMvanwNwSMqcl3Q53gE8lGe9EV2Ot/SgL0mS+p5pF8IzP63c+msfhOfvgVDTObbmPmjb0f25Iw6BYCbpbm/IdKgZBK3bup+79uHS91ny+9zj6x+D1iaoqSt9bUmqlHV53vdGHFryso1Nz+UcH183+d/H2ZD+vtiSqUmtATDpXJj//dy1dY90258kSZIkSZIk9ZZ+GYwWQjgb+A47f0pkqb9pjT3vSJIkSZIkSZIkSZIkSZIkvcBjXY5HhRDOjjHe+II5b25/jsD9McbmPOtN73LcWI4GJUnqMxpOg/rJsHVp5fa4aXZp501/U1nbUB9VMwCmvRae+Vn3cxf8AI65vLR9NjyeXtuyCIbtV9q6klQpLVvgkY+l1ye9rKRlm9uaWNO8KmetazBabUi//a85ZPJvMv7M9NrCH8OxP8p/viRJkiRJkiT1km5++tn3hBA+AtxAEorWNQwtlvCQJEmSJEmSJEmSJEmSJEkVEGNcCMwnuV4vAJeFEPbuqIcQPgyc0OWUa9PWCiEMYecPU11Y3m4lSeplmVo49UaoHdLbnXTKDICZH4V9397bnahajvwOTHkldBe0A7DhiRI3aUsvbVpQ4pqSVEEPX5JeG3M81NaXtOzKpuXElNvbJgyY8u/jTKihhtzhaM2ZmvybZGphxsXp9XWPdNunJEmSJEmSJPWG9I+M6INCCGcDX21/2RFu1hGOthVYD+T7tEhJkiRJkiRJkiRJkiRJklQ9Pya57i8CewNPhRAeBcYBU+i8DnA78Ks865xC5/WCLcDjFepXkqTeM3wmvGYTbF0KW5fD348tfo1zHoa/Ht6zPoZMh5P+BMP2g5qBPVtL/Ut2CJz0B2jaAFuehaV/hjmX5p777C9h1peL32Pr0vTaZoPRJPUxba2wKM//qk59TclLNzblfj+soZYx2YadxrKZLK1tLbvMbSkkyHLSeTD/8ty1Z34BR87qfg1JkiRJkiRJqrICfvrZp3yl/bnjQqilwHuAvWKMQ2KMk2OMexf76LU/jSRJkiRJkiRJkiRJkiRJu7dvA0+1H0cgCxwJTKUz6CwC34wxPp9nnVd0mftojHFHBXqVJKlvqJ8Mo4+G+inFnTf55TByFkx4cc/2n/5mGHmooWh7srr+2Xo0AAAgAElEQVThydfS9Delz3niK7D+cYhtnWNtzfD8PbDydmjN8e1aWwtsyhN+tvDH0LKt5LYlqey2PgfNG9PrI0sPI21sei7n+Ni68dSE2p3GakNdzrnNmQJuDRx5WHrt6W8lYZiSJEmSJEmS1Mf0m2C0EMI+wGEkFzUB3AccHGO8LMa4pPc6kyRJkiRJkiRJkiRJkiRJucQYm4CzScLROoLQAp3XAgbgj8Cn09YIIQwBLuhyzs0VaVaSpL4kBJjxruLO2fedyfOMi0vft2YQ7P3G0s/X7mVwN+F8NxwMd5wPLVtgyxK4/mC4aTbcfApcNz0JTutq7b/o/JYuh/Vz4M8zYN1jPe1cknqurRVue0l6vX4qjDup5OUbm5bmHB9fN3mXsWzI5pzbEmq632jQhPz1a6bA8hu7X0eSJEmSJEmSqqjfBKMBx7c/d1wQ9YYY46Ze7EeSJEmSJEmSJEmSJEmSJHUjxvgcMAu4GPgr8ATwJEkg2qtijK+OMbblWeJNwDCS6wcDcH1FG5Ykqa+Y+VE49PNQv2tAyr+FGhh2IMy+Eia+OBmbfB4c9wsYtn/he4UaGH0MnH5b92FY2rMc+5P89WV/hqe/A/e/HTbN6xzfthzuvmjnuf98Tff7bVsG97wBYp4ANUmqhmXXwsYn0+tn3w+h9FvzVjYtyzk+vm7Xv4ezoS7n3OZMgfvP/k16rWVT8n7dsq2wtSRJkiRJkiSpCmp7u4EijGt/jsDDMcb5vdmMJEmSJEmSJEmSJEmSJEkqTIyxGbii/VGsnwC/7LLWhnL1JUlSnxYCHPwpOOiT0LYDagbCv7NEQ1KPbblDWaa/IXm0bu9yTr69aqEmd+iK9nAjZ3U/Z+GPYfMzu46vnwObn4UheydBZ1uXFLbn+keTkLViwv0kqdwW/za9NvYkGNRQ8tJtsTU9GG3AroGotSGbc25zpqawDUcemr/etA4ab0rCVSVJkiRJkiSpD+hPwWihy/GCXutCkiRJkiRJkiRJkiRJkiRVTYxxG7Ctt/uQJKnXhJCEosGuIWi5QtG66jhPKtWwAyE7HJrzZNPmCkXr8MhHYfjBUDOouH3XPZI7GK1lG6y4EbY8mwQTjT6quHUlqRDNm2DJ1en1Mcf3aPk1zatoic05a+Prdg1Gy2Zyh5e2dPd9QIch+8KA0bBjTfqcjU8BBqNJkiRJkiRJ6hsK/Olnn9D1YzAK/DgLSZIkSZIkSZIkSZIkSZIkSZIklaR2EOz33tLPX3I1zPk0PHJJcefd9dpdA3y2r4Z/vAjufAU89CG48Wh47DOl9yZJuWxdCjcem3/Ovm/v0RaNTUtTaw11k3YZy4ZszrnNmQJvsaupg/0/mH/OIx8tbC1JkiRJkiRJqoL+FIz2eJfjKb3WhSRJkiRJkiRJkiRJkiRJkiRJ0p7i0M/Bkd+B4TOru+/T39359bzvwNoHdh6b+1nYOK96PUna/T3+Zdj4ZHr92J/C0H16tEVaMNqo2rEMyAzcZbw2LRgtFHFr4EGfgKMvzz9n87OFrydJkiRJkiRJFdRvgtFijHOAuUAAjgwhjOzlliRJkiRJkiRJkiRJkiRJUolCCJNDCCeHEM4PIbw+hPCG3u5JkiRJOYQA+78Xzn0cBoyu3r5L//SC19ekzLu28r1I2nOkvdd0mHJ+j7dIC0YbXzc553g21OUcb8nUFL5pCDDjnUnQZRrfTyVJkiRJkiT1Ef0mGK3dN9qfa4AP92YjkiRJkiRJkiRJkiRJkiSpOCGEaSGEb4UQngEWA7cCfwB+Dvws5ZyTQgiXtj/eW71uJUmStItxp1Zvr/WPwWOfhvWPw4Ifw/o5uec9/oXq9SRp99a8EbYtT6+POAzqRvZ4m8YdKcFoA3IHo9WGbM7x5kwJtwY25Hkf3zS/+PUkSZIkSZIkqQL6VTBajPEXJBdABeCSEMI5vdySJEmSJEmSJEmSJEmSJEnqRgghE0L4IjAfeC+wF8m1gF0faVYDnwE+DXwrhLBPRZuVJElSupkfLe96p9+Svz73c3DDwXD/f6XPad4Iba3l7UvSnidG+OsR+ecc8pkybBNpbEoJRqvLHYyWzaQEo4Wa4hsYcXB6bdOC4teTJEmSJEmSpAroV8Fo7d4IXAfUAteGED4XQhjRyz1JkiRJkiRJkiRJkiRJkqQcQghZ4G/Ax0iu/XuhmO/8GOOTwK10hqf9R1kblCRJUuFGHwUvmVPG9Y6Bly/p+TqNf+/5GpL2bM/fBZsXptfPuB2mnN/jbTa2rmdb25actYa0YLRQl3O8JVPirYGzvpp7fP2j0Lq9tDUlSZIkSZIkqYxyXWDUZ4UQLm0/fBSYDYwBPgl8KIRwD/AEsA5oK2bdGOPnytmnJEmSJEmSJEmSJEmSJEn6t58AZ5AEoEWSgLM7ScLOmoAvFLDGH4BT24/PAj5f/jYlSZJUkBEHw7D9YePTPVsnk4Waeqivh+wwaN5Y+lrL/wYTz+lZP5L2bCtuTK8NOwDGnVyWbRqblqbWxqcEo9WGbM7x5lBTWhPD9s89vn0lPP0dmHlJaetKkiRJkiRJUpn0q2A04DPs/MmQHRdI1QOntT9KYTCaJEmSJEmSJEmSJEmSJEllFkI4HXgdndf7LQD+I8b4YHt9GoUFo10PfK99jaNDCANjjNsr07UkSZK6NfHcngej1Y2EEJLj7IieBaPN+07yGDmL5FtGIFMHo4+GAy+BwVN61quk3d/T306vTTw376mLts3njvU3sGzH4m632dK6Kef44JqhDK0dnrOWDXU5x5szmW73y2nsSRBqIbbsWnvko9CyBQ75NIQS15ckSZIkSZKkHupvwWi5xO6npAo9PF+SJEmSJEmSJEmSJEmSJKX7dPtzABYDs2OMq4tdJMa4OISwHhgBZIEDgEfK1qUkSZKKc8AHYdlfYNO80teoG9l5fMwP4bYX97yvdS/4FnHNffDcH+HsB6B+Ys/Xl7R7euYX0JI7sAxI3vNSLNz2FN957lKaY1OPWhhfNzm1ls1kc46XHIw2YBTs81ZYcEXu+tzPwY7n4ejLSltfkiRJkiRJknqoP35sQyjjQ5IkSZIkSZIkSZIkSZIkVUAIYRQwm+QDTCPw/lJC0bp4osvxfj3pTZIkST1UPxnOuicJNJv+FqgZVMIiXW5pGX9G2VrbxbblsPAnlVtfUv8WI8z9fHp91tegflJq+aa1f+xxKBrkD0arDXU5x1tCTekbHvo5yA5Lry/4IWxbUfr6kiRJkiRJktQDtb3dQJFO7e0GJEmSJEmSJEmSJEmSJElSQU6kM+1iVYzxuh6u1zVUbVwP15IkSVJPDRgF+/5X8jjmCrhqMLQVEQ40bP/O40wNDJ0Bm+aXv0+A5++szLqS+r9ty2HzwvT66GNSSzFG5m+dW5Y2xtdNSa1lQzbneHMmk3O8IAPHwUGfgkcuyV2PrbD6HpjyytL3kCRJkiRJkqQS9atgtBjj7b3dgyRJkiRJkiRJkiRJkiRJKsiE9ucIPFiG9TZ1OR5ShvUkSZJULplamPxyWHL1zuMDxsKQfWDNvbueM+mlO7+un1q5YLTGm+Cq9m8ha4fAuBfBEf8H9RMrs5+k/mPj0+m1TBbGzk4tb2rdwLa2rT1uIZBh1tDjUuvZUJdzvCXU9Gzj/d8HC65ID4a78wKoGwWjj4XDvwojDunZfpIkSZIkSZJUoB58LIQkSZIkSZIkSZIkSZIkSVKqUV2O15VhvUFdjpvLsJ4kSZLKadZXYOiMztc19XDcT+GYK2DQpJ3nTnkV7PW6nccy2cr217IleWxfCUuugptmQ+v2yu4pqe+7/aXptZOuyfve1Ni0tMfbBwIXjH0To7PjUufUhtw9NGd6eGtgzQA45fr8c5rWwoq/wk0nwpYlPdtPkiRJkiRJkgpU29sNSJIkSZIkSZIkSZIkSZKk3dLGLsdDy7BeQ5fjtWVYT5IkSeU0ZDq8+CFYdQc0rYOGU6F+YlI7dy6svA22Pgejj4VRR0KmZufzB4xJX3vmR2Hzs9C8CcadBOPPgBuP6Vm/WxbDc9fAXq/t2TqS+q/mjdC6LXetfgpMekne01c2Lcs5PjBTz7mjL+x2+4GZevatn0lD3aS887KZupzjLaEm53hRhu0P098Mz/ws/7zmjcmcQz7d8z0lSZIkSZIkqRsGo0mSJEmSJEmSJEmSJEmSpEp4vsvxjJ4sFEKoAQ7vMrSiJ+tJkiSpQrJDcgcJ1Y2AKefnP3faa2HRr3Ydr58Cs76y6/iR34Z/vb+0Pjssvx6mXQghQMtWaFrfWcvUwoCxSU3S7mn93PTauBd1e/rKpqU5xyfWTeX0US8vtatdZEM253hzJlOeDUYf030wGsCa+8uznwoTI7RuTf5+qhsBmSy0bIGa+uTvptbtEGqTv68kSZIkSZKk3Yw/9ZIk9Q3P3w3zvpd82tLUVycXNoQy/ZJOkiRJkiRJkiRJkiRJvWFO+3MA9g8hTI4x5r5rvHvnAPXtxxG4t6fNSZIkqY8ZfwYMGA071uw8Pu2i3POnvhoe+hDE1tL3XPQrWPxbiC1JuExs2bk+aBIc9gWY/qbS95DUdz1/Z3pt79d3e/rKpmU5xxsGTCq1o5xqQ13O8bIFo025AP71Pmhrzj9v+Q0w7zLY713l2VfpFvwQ7n9H7lqmDtqakufMAJj+Rjjim0lwmiRJkiRJkrSb6PeJMyGEbAjh5BDCJ0MIPw0hXBNCuDmEcHNv9yZJKtCyv8BNJ8Di38DSa+Du/4RHP9HbXUmSJEmSJEmSJEmSJKkHYoxPAh13iQfgw6WsE0LIAB0Xk0Tg0Rjj+p53KEmSpD6lZgCcdE0SjtZh4kvh4P/JPX/QBDjhd1AzqHNs37fD+c/BqKMK37cjDO2FoWgA25bBvW+G5TcWvp6k/iFGeORj6fXxZ3a7RGNKMNr4usmldpVTNuQOvGoJNcRybDBwLJx4NdTUdz/3wXfDkj+UY1elWXpteigaJKFoHc8tm2De9+CRj1enN0mSJEmSJKlKanu7gVKFEAYDHwTeA4x9YRly/1w3hHAR8MX2l2uBo2OMZfkZsCSpBLENHnzvruNP/m9yYcKQ6dXvSZIkSZIkSZIkSZIkSeXya+ASkuv63hNCuCHGeFORa3wJOK7L6x+VqzlJkiT1MeNOhPOXw7qHYWADDJ4GIaTPn3oBTDwnmT9kehKWBnD2/bDxKdi8MHm9+Hew6Fel97XwxzDx7NLPl9T3rHskvTbtovzvPUBT2w7WNq/KWWuom9STznaRDXU5x2MItIZAbTlujZv8crhgNax9AFbdCY99Kn3uwh8n77+qjAUl/Nhj4U9g1lchU1P+fiRJkiRJkqRe0C+D0UIIhwJXATNILpaClCC0HP4M/AAYCkwDzgT+Xu4eJUkFev4u2LJo1/HYBot+Awd/suotSZIkSZIkSZIkSZIkqWy+BryT5Jq9GuDaEMIHYow/7O7EEMIY4OvA60muEQxAI/DTyrUrSZKkXldTB2OOLXx+bT2MPWHnsRBg+IHJA5LQtJ4Eo617uPRz1f+1NcO6R6Flc/I6ZCBGct7KlBkAIw+F2sFVbVElWPHX9NqIQ7s9fVXTCmLK7WxlD0bLZFNrzaGG2thSno1qB8G4k2HUUfD4F6B1e+55jcXmne/BdqyBDY8n98gUavn1xe/TvB6e/QUM2QdCDQzbDwaOK34dSXu2pvWwfi4MOwAGjoEtz3Xe91c/BbY+B0NnwKDxha23dWnyd8mQfboNHJUkSZIk6YX6XTBaCGEmcDswjOQip46LnQoKSIsxbg4hXA28pX3oAgxGk6Tes+LG9NqiXxuMJkmSJEmSJEmSJEmS1I/FGNeGEN4H/Jzk+r6BwOUhhI8AvweWd50fQjgG2B84CzgPGELn9YGtwJtjjE3V6V6SJEm7jeEzYfSxsOa+0s7fvDD5QOgXBrBp97f0Orj7ddCyqfBzMnVw5LdgxsWV60ula94Id10Ey29In7P367pdZlXzspzjNdQyJttQanc51Ya61FpLJgNFZG4VtmE9TL0wCdrKJbbCbefCiVcnc7WrtmZ44GJY+JPq7XnfW3d+PfXVcNwvksA7ScqnrRUe+iDM+x7d3KKdmPxyOP5XkB2Su960Hu54Bay6LXk9/GA45XoYPLVcHUuSJEmS9gCZ3m6gGCGEgcBfgOFdhucAbwWmAwfSeQFUPtd2OT69bA1Kkoq3fk56beOTyadMSJIkSZIkSZIkSZIkqd+KMf4/4Avs/GGo+wCXAN/qMjUA95CEqP0HMLRjifbnj8cY/SBUSZIklebka2DcKaWff9OJ0Lq9bO2oH9i6HO58ZXGhaABtTfDAu2DNg5XpSz3z8Efyh6INHAf1k7tdpnHH0pzjY+vGUxNqS+0up2zIptaaQ01Z9/q3o78Po45Mry+/AeZ8pjJ77w6e+lZ1Q9FyWXI1PP7F3u1BUv+w8Icw77sUFIoGsPRaePQT6fX739kZigawYS7c+aqedChJkiRJ2gP1q2A04H3AXnT+3/V3gCNijD+LMS4CCv0N0610Xly1dwhhXJn7lCQVakM3wWeLf1OdPiRJkiRJkiRJkiRJklQxMcZLgTfTeZ1fx3WAHWFpHY9A5wekdrxuAt4YY/x61RqWJEnS7mfQeDjjVjjvmdLXWHFj+fpR37f4txBbSz9//uXl60Xl0dYKi67MP2ffdxS01MqmZTnHG+q6D1UrVm2+YLRMhW4PrB0MZ96df86iX1Vm791BX/ln01f6kNS3PVvCe8WiX0PMEaTWugOWXbfr+NoHYMvi4veRJEmSJO2x+lsw2nvpvBjqmhjjB2KMbcUuEmPcDCzqMnRgGXqTJBWrZQts7ubCgqU5fhAqSZIkSZIkSZIkSZKkfifG+AuS6/UuIwlI6whAC+wciNYx1gb8P+DAGOMvq9iqJEmSdmdD9obBe5d27r8+AAt+CMv/Cs2bytuXdtW8CZZdD6vugNam6uy5bSUs+X3y7/nhD/dsrWd+CjvWlKcvlce2pdCyOf+cUUcVtFRj09Kc4w11k4rtqlvZUJdaa87UlH2/f6upg5Gz0uvbVkDTusrt31+1tcL6x3q7i8SWxfD0d2Hdo1D8bZiSdnet22HlbbC6myDMXJrWwtwvJN8zLfwJrP1X8j6zbRm0bst9TuMtPWpXkiRJkrRnqe3tBgoVQpgJdPxkOAIf6eGSC4GO32RNB27v4XqSVB7Nm+CJr8Lzd8HQfeHA/4Zh+/d2V5VRyKc8bHwq+SV2Tfov8iRJkiRJkiRJkiRJktQ/xBiXAO8JIVwCnNj+mAKMBuqA1cBK4G7g5hjj+t7qVZIkSbux/d5TWujVlkVw/zuS40ET4JQb8ocGqXRrHoBbzoLm9v8lGLofnH4L1Jc/dOrflvwe7n4dtO0o35p/GAOn/A0mnl2+NVW6TfO7nzPxnG6nxBhZ1bQ8Z218BYLRajPZ1FpLyJR9v53s9x64723p9TsvgNNuhhDS5+xpHrmktzvY2b/elzxPey0c93OoGdCr7UjqI7YsgdvOgQ1PlL7GnEt3fj3pZTDzY+nzY0vpe0mSJEmS9jj9JhgN6PhNUQTmxhif6eF6XS+WGt7DtSSpPNqa4ebTYO2DyetVt8HCH8NJf4LJ50Glf2FVbVuWdD8ntsDmBTB8ZuX7kSRJkiRJkiRJkiRJUlXEGLcCf29/SJIkSdV1wAeT54U/hI1PJ8fZ4dBwGhz9fbhmCsTW/GtsWwH3vhXO+Vdle90TxQh3vqozFA1g0zx44GJ40XWV2bN5I9zzxvKGonW453Vw/jI/LLwv2LQgf33vN0CeELIO61vWsCNuz1lrqJtcSmd5ZUP6105zpqbs++1kn7dCWxM88K7c9ZW3wqrboeGUyvbRX2xaAE99s7e7yG3xb6HhdNg3T9CdpD3Hw//ds1C0XJb9GWJbngmxvPtJkiRJknZr/SkYbWyX4wI+nqNbXX9TUV+G9SSp51bc2BmK1tWdr4CB4+GE30LDi6rfV6Vsfa6weeseNRhNkiRJkiRJkiRJkiRJkiRJUnmEAAd+KHnkcuS34cH3dL/Ouodg8zMwZHp5+9vTrXsItub4EO5lf4bWpsoEjC27AVq3lnbuec/CvW+EVXfkru9YnQRHTTiz9P5UHt0Fo407uaBlVjYtS6011E0spqOC1IQaMmRoY9ewmeaQ6XxRqfeiGRfD/Mth/Zzc9SVXG4zW4bk/pNcGNsArG8u/Z4zwm0z38wCW/M5gNEnJ91NLr6nM2suvT681b6zMnpIkSZKk3VJ/CkYb2OW4HB+/MrzL8aYyrCdJPbfsz+m17Y1w8ykw9dUw9mTY581QO7hqrVXElhy/rM5l6Z9gr4sq24skSZIkSZIkSZIkSZIkSZIkAYw9ofC51+0Lww+EvV4H098EgyZ01jY8CfO+B6tugxGHJtd/r74Xhh8MB3wQxhxb7s53D6v+mV5r2Qw1o8q315YlyXX8hQTh5VI/GQZPhUnnpQejAdzxcpjxruR44FiY8GIYeVhpe6p0G5/MXx8zu6BlGpuW5hwfVjOC+pohxXZVkGyoY0fcvst4S6am88UR/1eRvQEYc0J6MNr8y+Dwr0PtoMrt3x+0NcMTX0uvF/j1VbQQYMLZsOLG7uc2/gMe+zSMOwkaTk/OlbTnaNkCy/4CS65K3rOq7YmvwfS3QNNaWHY9bH0uGd+8AGqHwIRzYPLLIDus+r1JkiRJkvqc/hSMtrrL8ZgyrNf1IzDWlGE9Seq5Z37e/ZwlVyeP+d+Hs+/r3z/o25b7l4G7WHFj8gk2/sJFkiRJkiRJkiRJkiRJkiRJUqWNnJUEV634WwGTI2x4Ah79RPI45+Hk/MVXwV0Xdk7b8ESX48dhye/gsC/BQR8ve/v9XsjkKcby7bPqn3D7S6F5Q+lrzPxY0u++74CnvwVbU66Rb90GT32j8/Wjn4CjfwD7/lfpe6s4rdth+Q3p9cnnJyGHBVjZtCzneEPdpFI6K0htJsuO1l2D0Zoz7f+9jDgMxp9esf3Z7z2w4Afp9ZtPg1P/CnUjKtdDX9ayDe58RRL2k+aAD1Vu/wP/u7BgNIC5n0ue9/kvOOYK79WR9hQ71sCtZ8Paf/ViD8/DH0an1xf9GoYfBKfdtHPYsCRJkiRpj5TvNwV9TWP7cwAO78lCIYTRQNefVC/oyXqSVDbZ4YXP3fhU/k+S6Q+aCvwFcvNG2Lqksr1IkiRJkiRJkiRJkiSpKkII2RDCySGET4YQfhpCuCaEcHMI4ebe7k2SJEn6t5OvgYM+BaOPhaEzCj/vkU9AaxM8+O7u5z76CdiaO2Bpz5YnpCe2lm+bhz5YWCja0Bkw7mQ44ptwxLdg3Ckw4RyYfSXs1/7vOTsEzn6g8L1jW/v+m0pqXSVYfFV6bdiBcGKe+gukB6NNLrargmVDXc7xlqEzYP8PwOk3Q+3giu3PiIPg0M+n19fcCwt+VLn9+7olV+UPJpv2Whh3YuX2H38GnH4rDNmn8HMW/ghW31u5niT1LfMuKywUbcorYa//hNHHpM8ZOgNqh5avt642PA5PfbMya0uSJEmS+pXa3m6gCHcDbSRhbqNDCKfFGG8pca230Plbki3Ag2XoT5J6rmZAcfOf+Aoc+rluPhGrD2vdVvjc9XNh8LTK9SJJkiRJkiRJkiRJkqSKCiEMBj4IvAcY+8IyEFPOuwj4YvvLtcDRMcaccyVJkqSyqRkAh30+eQDc80Z49v91f17jjfD8HbBjdWH7LP8r7Pu20vvcHYU8wWhtLeXZY9sKWFvA7URHfa8z/KzDAe/PPXfQeDjkszDn04X10LIFVt4Kk88rbL56Ztl16bXZv4RMtuClGpuW5hwfXzep2K4Klg25+2s++BMw4qyK7buTyefDY/+TXl92Hcz8SHV66WvyfX0B7PX6yvfQcAqctyA5bm2CqwYlIYz5LPszjD2+4q1J6gO6e58CGHsCnPSHwtaLEa4emnw/U25Lr4PD/7f860qSJEmS+pV+E4wWY1wXQngAOLZ96PMhhFuLvbgphDAJ+BidF1DdFGN3P+GTpCpoa4XtK4s7J7bCIx+Dw79WmZ4qrXVr4XM3zIVJ51auF0mSJEmSJEmSJEmSJFVMCOFQ4CpgBp0fbFro9X9/Bn4ADAWmAWcCfy93j5IkSVJe488oLBgttsEtZxa+7v3/lQRVhBoYeUQSkjZoQvH9Lb0Olv0F6kbCXv8BIw8rfo0+I08wWmwubcllf0n+GWWHwV4XwbzLCjuv4fTi9hl/RuHBaAB3vBymXghjjk2+BlbfCy2bYcBoGH82TLswf1CcCrf67vTa8EMKXmZ72zbWt6zJWWuoYDBabajLOd4cmyq25y6GHQCDJsK25bnrz/8T5v8A9nkbZPrNbYs9FyM898f0es3A6oeP1dTBuBcl4Yv5PPFl2PgkbJoHgyYnoaBN65L3o2EHwtQLkvc1qVp2rE2+33r+LmjbUd61l/05eR66H0x4MUx77e4bDLj0z8mfd3tj8jrGwgJhG4r47z2E5PukQgLXirVpHlzZ/v1P7WBoOC1PHxkYMQv2eSsMnlL+XiRJkiRJvaa//YTx28CV7cfHkVzo9I5CTw4hNADXASPbhyLwzXI2KEkl27II2kr4Je2T/wv7vh2G7lv2liqupYhgtOV/g5kfrVwvkiRJkiRJkiRJkiRJqogQwkzgdmAYScJBbH8uKCAtxrg5hHA18Jb2oQswGE2SJEnVNuUCePq7sPaB8q/dEdSx9BpY+CM4804YPK3w8+d8HuZc2vl63vfglOuh4ZSytlk1+YLA2lqKX+/xL8Ojn+h8/dQ3Cjtv+pth+AHF7TXmeJh8fvLvslBLfpc8XuiZn8Pqu+Co7xbXg3a1dRlsW5G7NvbEJESqQKuaUkLBgIa6ycV2VrBsyOYcbyk1LLAUmVo49PNw31vT5zxwcRJCeMr1e06o3yPd3Osy8xNJaGW1HfxpWH0ftHZz707H+9WGJ3YeX1BVi9cAACAASURBVHU7LPgBHPU92O/dlelR6qppHdxyOqx7pLL7bJqXPOZfBif8Bqa+qrL7VdvjX4JHP1n8eYP3Tu5RLMZBn4RVt0HzxuL3K1TLls7vldMsvRYWXAFn3AHDZlSuF0mSJElSVWV6u4FixBh/C3T8VCMAbwsh3BlCOCnfeSGEwSGEd7afO4vkIqoI/D3GeFcle5akgr3wFwjF+POM5JPF+pvWbYXPXXVb8qkfkiRJkiRJkiRJkiRJ6jdCCAOBvwDDuwzPAd4KTAcOpDMgLZ9ruxyfXrYGJUmSpELV1sMZt8LhX09C0ipl63NJAFuhmjfC41/Yeax1K8z9XHn7qqp8wWhFhkA1bYC5X+h+Xld7vQ6O+zkc+5PizoMkCOrE38MxV8C0i2DiucmjVPO+D5sXlX6+EnM/n147/H+LWmpl09Kc49lQx6jsmKLWKkY2kzu8rbmtqWJ75rTPW7r/b2PFX2HlrdXpp7dtWwFP5vkamvlxOOR/qtdPVw0vgrPugQM/0rN1HrsUWreXpycpn4cvqXwoWlexJQkQi3k/s6F/KeX7ntHHJqGXZ98L9ROLO3fMMXDWvTDzYzDxpZ3f90w8F8afUdxaPbW9EZ76ZnX3lCRJkiRVVG1vN1CCVwH3AqPbX58A3BZCaAQWdJ0YQrgc2A84HhjAzp80uQx4fZV6lqTubXyyZ+c3/gMmnFWeXqqlpZtPnXmhJ78Os75UmV4kSZIkSZIkSZIkSZJUCe8D9iK5dg/gO8CHYkw+BTCEMK3AdW6l8/q/vUMI42KMq8rca58XQsiSXDc5FZgAbAaWAw/HGBf1YmuSJEl7htrBcOCHk+MbZsH6RyuzT+M/Cp+79FrIFYy08tbkw7dDpnx9VU2eYLTYUtxSq25PguIKNe0imP3L4vZ4oUwN7Pv25NHhqf+Dhz5UwmIRVt4CQ97Ss572dOseTq8NnVHUUo1Ny3KOj6ubSCbUFLVWMWpDNud4cywyLLAc9n4jPHBx7veeDo3/gPGnVa+n3tJdANyB/12dPtKMPBRGfg0mvwJuml3aGk1rYc0DMO6k8vYmdbXuUVhYQiBpT22al4TSDp5a/b0rYfXd0Lqt8Pm1Q5IAxVDI51akGH4gzPpyen3Bj+D+t6fXy6mY76ElSZIkSX1evwtGizE+E0J4KfAnkot6Oi50mgCM7zI1AG/vckyXuUuBl8YYV1elaUnKZfMiWPRr2L4yCTTb8ETP1rv7P+EVyyGT+5ddfVIxv2AGWHwlHPbFnv2wVZIkSZIkSZIkSZIkSdX0XjpD0a6JMX6glEVijJtDCIuAvduHDgR6PRgthDAdOBo4qv35CGBolymLY4x7lWGfscBngQuBUSlz7ga+GWP8Q0/3kyRJUgEmvbRywWjrH4Xbzk2C2Fq2wOaFsPHpzvqw/ZPnrmO5NG+AupGV6bGS8l0v3tYMMcK878LSa2Db8vxrdffP6IUmnVfc/EJNfGmJwWjAfW+FJ78Gww5MwtYmnlPe3vYEa+5Prw0YXdRSK5uW5hxvqJtY1DrFyoa6nOMtMU84WaVkamDiubD0T+lznvgybFmchEmOOqJ6vVXLtkaY+zmYf3n6nLEnwICc/wtffaOPgoHjYXtjaef/42QYfQw0nAoH/0/y95PUU9tXw9zPwvN35Q+wrLRrp3V+bwUweC/Y63Ww9+t6raWiLbse5n0fVvy1uPMmvbTy9+lNOg9q3l9cYFupNi+AthbI9Ltb5yVJkiRJOfTL/7uLMd4fQjgC+CnQ8dP8+ILnnU4hCUQLwE3AG2OMJf4UT5LKYN0jcMsZsGNN8nred9PnHvDh5JMTnvoWbJibPm/H6mTN025JfsnUH7QUGYy2ZTGsuQ/GHFeZfiRJkiRJkiRJkiRJklQ2IYSZwKT2lxH4SA+XXEhnMNp04PYerleSEMIpwMdJwtAqfodzCOEc4OfAuG6mzgZmhxB+Dbwjxril0r1JkiTt0fZ/Hyz+DWx+pjLrL78hvVZo2NeOtf0zGI08AR2xBf71AZj3nfJvO/FcmPKK8q8LMGwGzPx4EhZVio1PJ4+l18KJV8HUV5W3v93ZsuvTa4d9sejlVjblDuNrqJtc9FrFyIZszvHm2FzRfVMd+vnk/o584YSLr4Rl18IZd8Kow6vXW6U1bYC/H5fc45LPrP+tTj+FyGThqO/C3f8JbSWG6a25P3msugPO/CeETHl71J6lZSvcNBs2ze/tThJdv7fa+DSsuBG2r4IDSww1rabFv4O7LiL3rdV51E+BQz5TiY52NqgBZn0N/vU+iu6xFAt/AjPeUfl9JEmSJEkV1y+D0QBijCuBc0MIRwLvB04HJqRM3wDcDHw3xtgrF0JJ0k7mfLYzFK07w2fCPm+Bfd4K8y6DB9+dPnfVHbDolzD9TWVps+LSPulhv/emh8Ut+b3BaJIkSZIkSZIkSZIkSf3DrPbnCMyNMfY0MWJ9l+PhPVyrJ2YBZ1Vjo/YQtmuAui7DEXgIeAYYARwOjOlS/09gWAjh/BhjWzX6lCRJ2iMNHAfnPAJLroanvw2ZATD2xJ3ntDXBqluhbhTM/CjUDoGn/g82zYMxs6GtObn+u1Ka1gL7VG79iskTjLatERb8oPxb7vM2OPpyyFTwVqtZX4KJL4aVtyahHVufK2GRCE98xWC0Yjz2qfTa3m8saqm22MqqlGC08XWTco6XS22oyzneHEsMueqpEQfBix+Cu16T3MuSpmVLcn/IcT+tXm+VtujX3YeiTXstjD2+Ov0UauqrknuUlt8A6x6FRb8qbZ3V98Cq26Hh1P/P3n2Gx1Hdbx//HvXiIhfJlnsvuGFMs2kGbHpvCSShJUAgCSGElCeBEJL8CQmBhJCeECCd3nuzwVSDDTZuYBvj3qtkWVpJ53kxEpLlndnZ3dnZXen+XNde0sxpPxftrmZn7gm2PulYVj7gLxRt8IVQ0COJhSws+U1iQxf9EkZ+wwkWzGQLfo6vwLGR33K+GuM8F/Q9DYrKU1pay9pfd64HXPdcyzWVeSXO++GKI2DJb2H1I7D1vRjzNP0ZGqph6V+i95l/o4LRRERERERE2omsDUZrZq19D7gQwBgzBOgP9MA5CWgzsAFYoJN7RCRjNDbAumf99+8yuuX7EVdBwx6Y+233/p/8IzuC0Rojzt26ohlwrnMgc/Mb+7Ztn5faukREREREREREREREREREREQkKK2vrPNxpWNMta2+LwlgvqDVAqsJKHnCGNMPeJi9Q9FeBy6z1i5q1a8QuAL4FdB8peapwM+AHwRRi4iIiIi4yO/cdBPsS/2P6TW15XtrYe1TTQFmKVCbonlTzXgEo215ywmcC9r4n6U2FK1ZxZHOo98Z8Mz+sftHs/U9qK+BvOJga2uvatZF329yoLhPXFNtjWx2DSLrVdAv3sriku8SzFPfGEnpup6Ke8HEX8FzB3v32/R6OPWEZdOs2H16T0t9HYnoup/zsBbWPAmR7bHHRLPpdQWjSXL8/BxVHAWH3uP9vsDXWq/D1tnxj9uzAaqWQ5eRya2fSpEq2P5B7H4Tb4XR16W+Hi89DnQe0Yz9ofN46xJYfk/0Pn1OgUm3t2yvfDD6e+jITuc5Ltn/NyIiIiIiIpJ2WR+M1lrT3SSTvaOkJMkYkw8cBgwAKoEqYC0w11q7Io2liWSG6k+ccDM/Csuh+6S99w29FObdAA27o4/ZMMP54K64MqkyU67epX5w7vjQ99TowWip+tBfRERERERERERERERERERERIJW1Or7Wtde/nVt9f2uAOZLRgRYALwLzG76Oh/n3LlXAlrjJqBbq+03gGnW2r1OPrLW1gK/NcasBB5p1XStMebP1tpPA6pHRERERIJmjHNT6aV/Ts38M0501rCNLfu6TYQjHoROQ1KzZhCsdW/bsci9LVG9pzkBT2EqGw+dh8OuBDOk7y9xgr0ASofA4C/B2Otb9okjstMJtommuE/coSkb6la7tlUUxBeyFq98UxB1v1tQW2i6T4LSQVC9wr3Pro/gvhIoPxwm3QFdR4dVXWp8+l/v9pwC6HtaOLUkyhgYcA4s+1ti4+fd4DzaKujmBK9NuAUqDk+uRmmf6qvhvWti/98zOXDAbcGEWw04J7FgNICXp8EpS5xr3TKR3/cR/c9KbR1B6X+uezDagHP33u4yKvq1hw01MOdaOOB2haOJiIhIsJb+BT76HexYCHgcuzJ5zu/K43+SuaHZIiJZQke72yFjzD3GGBvQY0Uc65YbY/4ArMc5sete4Bbgdzh3rfzEGPO6MebsVPy5RbLGjJP99x19HeS2+fCqoAz2/7nHIOvc8SDTNdS4t+WWQGH36G3ZetcyERERERERERERERERERERkY5nc6vvewYwX+vkhi0BzJeoe4Eu1tqJ1trLrLV/sdbOsdZGglrAGDMcuKjVrjrg4rahaK1Zax9tqq1ZIXBjUDWJiIiISIqMu2nfm2kHxu4digawbS48dzBEqlK0ZgBsg3vbzoCD0UoHw6TfBjunH8bAofdCYY/E57CNzqNqKcy/MXpIUUc35zr3tsPui3u6DXVrou4vy+tBUU5x3PPFI8/kRd0fCe5X0cSYHJh8rxOI5aWhBta/AM9PgT2bvftmsu0LvNtNHhz8VygqD6eeZIz/qROWGaS6bbDpdSdMasfCYOeW9uG1c/2Fok3+Z3Dvj4ZfBX1OSmzs7tXw6pn7vp/KFG+cH7vPpN9mdiBua31OgBHf2Hf/wPNh4Of33nfo3e7zLPkNLPplsLWJiIhIx7bs7/DOFbB9vnPcqvmYTLRHYx1sfhNeORE2v5PuykVEslr0I6IiLTySi1oYY04E7gEqYnSdAkwxxvwbuMJaW51ceSJZZvGvnTvd+NHjEBh1bfS2kVc7B3dfcLl7ytI/QfkU6Dpu32C1dKhZBzsWQMMe6DwSugyHht3u/fNKoMAlGK1OwWgiIiIiIiIiIiIiIiIiIiIiWWJ901cDJHWlrTGmBzC61a6lycyXDGvtthCWuQDIbbX9sLX2Yx/jfsHegWrnGWOu8gpUExEREZE0K+4F09+ALW/Di0eGs2btFlh5Pwy9NJz14mXr3dt2Lo6+v+JIJzTDfVKoWgG5hVDcx9lVOhjKD4P8TolWmpzyyXDqUtj4GtQ0BW4V9YbOw53z7+u2wuwr/c/38R9h3I8hJz8l5WalZX91b+txSNzTrXcJRutd0C/uueKVZ6JfG1Jv61K+dkwVR8Jpy2DNU/Dml7z7RrbDin/BqGvCqS1oH93p3jb8KhjzAyjpG149ySjuDce9CVvecULMCsogvwxqVjvPl7Ye1j4D2z+If+7GWlj6F5j0m8DLliy2aymse8a7z5CLYf9fQFGsy1TjkN8JjnzcCYetWgb5XZ1r3RprW/p4vd6ufx5W/BsGx3h+C1tjBHYu8e7T42AYGSVoLFOZHJh0Bwz/Kqx62Pkz9j8LysY7obKtdRkBeZ2g3iXsd8mdMPq7+44TERERSYTX74JubD0s/TP0PDj4ekREOggFo0ksD8XqYIyZCjwKtD7CboE5wHKgDOekttZ3/PwC0MUYc4a1mRqXLxIwa2Hx7f765hY5d8zJ8XiaLj/M+cBkwc37tu1YCM8eCHmlMOU/0O+0xGpOVmPEOTC87K699/c4GCbe6j4ut9j9bkGRHdDYADm50dtFREREREREREREREREREREJFO8ATQCOUAPY8wx1tqXE5zrUpyANYBq4N0A6stkZ7bZvtvPIGvtImPM20DzFf6lwHHA4wHWJiIiIiJByy2AiiNg8EXwyb3hrLnoVqg4CkwulA5wgigyhW2If0zliU6IRrYpKIN+p+67v2yM83XtM7DG59v5um1QtRy6jAyuvmwW2eXeVtI/oWsSNtStjrq/V0Hqg7DyTfTAu0hjJOVr+1LQDQZ/Ed7/fkvQn5sts8OpKRV2fOjeNu7GYMOcwpBb6Lz+VBwRvb3PSYmHdi65Q8Fosre1z8buM+7Hqfk5ysmFHgc6j2h2LPQOu3jzQug5BToPDb62RG2dG7vPfv8v9XUEzRjoup/ziKXbBNj0evS2mjWwZ4MTAikiIiKSiMYG2L0SGvbAtvcTm2PlfTD+p1BcqcBWEZEEZNCnFrEZY8YaY15uerxkjIn7CIcxplfT2OZ5RqSi1jS7DhicwOPcNvNY4O9eCxlj+gEPs3co2uvAGGvtgdba86y1xwH9gG8CrY+2nwr8LIE/n0h2qlkHu6N/CLaP3tP9fRjZbX/v9vpqeO0sZ+10+Oj3+4aigXM3mRePch+XVwoF3d3b68K46a6IiIiIiIiIiIiIiIiIiIiIJMNauw1ofbXzT42J/4xvY0xf4Ps457RZ4IX2fENOY0xvYEKrXfU45+X5NaPN9onJ1iQiIiIiIRn0hfDW2rkYnhgGjw+GB3vAotudm4FngkSC0ToPC76OTDD4i/H1f3IULPldamrJNts9Aqz6Rgmj82FDXfTAr1CC0XIKou6P2LqUrx2XQRfE7vPpf+CjP6S+lqBZ6x7AA9kXiuZHzylQOijx8U+Ogi3tPdteYtr2Pjw1Ft77hne/8iOgdGA4NbXl5z3YE8PgscGw4ZXU1+OlagU8PwWeP8S7X0F36HNCKCWlTax/twX/F04dIiIi0r5YC/N/Ag91h8eHwFM+Alvd1FfDo33hsYH+goJFRGQvWRWMBlwBTAWOAuqstRvjncBauwEnnKt5nssCrC8jWGs3W2tXxPsAprWZ6hVr7fIYy90EdGu1/QYwzVq7qE1Ntdba3wLntRl/rTEmTUerREIW2em/b/lh/vp1HRu7j22AlQ/5Xzso1sKS38Y/LqcAckug0CMY7c04P9wVERERERERERERERERERERkXS5o9X3hwJ/imewMaYX8DjOeWrNoWq3B1Naxmp7UtA8a211HOPfaLM9Jsl6RERERCQsvafB/r8Ek+vdb8B5MOXfzg2pgxDZDnO/DSsfCGa+ZDXWxz+mvQaj9T8HxlwPJo5LwN77Bqx+LHU1ZYtXPcLPDrgt7ul2N1Sxs2F71LbeBf3ini9eeSY/6v56G0n52nEZ92Pof3bsfu9+DVY/kfJyArX8bve2yf8Mr44w5eTCUY8nHla1cwm8dDTU7Qi2Lske9dXw0jGwY4F3v7IJMOVf4dQUTc9D4CAfgY3VK+CV42H36pSXFJVthBknwOY3vfsVVcDUpyC3KJy60mXoZTDi6+7tH/0Otsx2bxcRERGJZtlfYf6N8WVDxLJ7Fcw8WeFoIiJxyrZgtNNbfX9vEvM0jzXAmUnM024YY4qBz7fZfVeMMcOBi1rtqgMuttbucRtjrX2Uvf/tCoEb46tWJEvF8+a3p89gNL93XVn0C/9rB2XLbKj+JP5xBd3BGOerm3XPOXe3EBEREREREREREREREREREZGMZq39H/B+06YBvmKMec0Yc4TXOGNMqTHmq01j9wds0+N5a+3rqaw5A7S97fjSOMcvizGfiIiIiGQqY2C/78A522Haq3DMizDtNTivCs7aCMe+Ameuh8Pvg0EXwNlb4IT34JytcOL7cOzLcMxLzrhjXoQeh8a3/vK/p+bPFS/bEP+YTkODryMTGAMTfgpnb4VjZ7T828ayLEP+LdOlMQK1W6K3dd0voaCYDXVrXdt6FfSNe7545ZuCqPszLhgtrwSOeBDOXAtjb/DumynPOX4t/Yt7W4XnYY7sVjYOTlsOJ83z/xzUWn1V5gRvSvhWPQp127z7VJ4AJ86F0gHh1ORm+JVwXjV0P8i7X2MEVvw7nJra2vSGEzjopaA7nLEWesb5PjAb5eTBgXdC6WD3Pl6hliIiIiLRxHNMpfl3pMPvj93XNsKs82D7h4nXJiLSweSluwC/jDFDgObbZzQCTyYx3RNAA5ALDDbGDLDWrkyyxGx3DtC11fY24OEYYy7A+Tts9rC19mMfa/2CvQPVzjPGXOUVqCbSLtTHEYzWfZK/fn4/jNuzwf/aQfn0f4mNK2wKRMvr5Pz5GlyeGjbOhE6DEltDRERERERERERERERERERERMJ0DvAW0KNp+zBghjFmPW1Cv4wxfwRGAJNxbrxpcALRDLAG+FJINafTsDbb8Z7f+Gmb7R7GmG7W2hhXoYqIiIhIxsjvtG/ITl4pFE3de19uIXQ/wPm+oFuUebrAcwf7X3fdc7D2mb33FfSA7hMhJ9//PMmy9fGPye8cfB2ZpKAr9DqqZXvkNbDkN+791zwO9budkKqOqLrtr0WtlCQWvLOhbnXU/YWmiLK8HlHbgpRvov8MRjItGK1ZcSWM+AYsuNk97HD1o1BfA3nF4daWqN2r3NuK+7m3tQcmxwlIa9bnZFj7lP/xC2+BsvHhv55I+m16LXaf/mc7QaCZIK8Ejn4WnhjmHei2YQbs973QyvrM9nmx+wz+EuTkxu7XnvQ6GpZ/Er1t2/vR94uIiEh2amyAxlonf6D5a0MtNDZ9bd5f0h+6jPL/PnP3GtixACK7YMvb/sZUngC9j23ZLukHu6MfO/hM/S6YeQpMutMJeXVT1Mv5s5SNd44TNuxx3teUDobiXv7qExFpB7ImGA0Y2/TVAkustVWJTmStrTLGLKHlLojjiP/Eofbmy222/+0jqOzMNtu+otOttYuMMW8DhzTtKgWOAx73M14ka9Xt8Nev3xn+P9QxBnIKnTfoXhojYG14B4ltI6z0kWwcTfMH8sZA7+mw5ono/SI+/z5FREREREREREREREREREREJK2stcuNMacAjwCVtASdVQK9W3U1wOWtvqdV39XAKdbazaEUnV5lbbY3xjO46RzJPUDruy52xblhqoiIiIh0JN0PdC6g9BOi0WzGSfvuKyyHIx+F8inB1ebFLUTJTd9TU1NHJhtyCXz0W+fcfTcPlsGUf8OAc8OrKxNYC29d6t4+4usJTfvq9mei7q8o6IMJ4VqN/JyCqPsjti7layesqNy5RmbVQ+59HuwGh/0P+p8RXl2JqN0CNWujt3Ud2/FCiIZ+Jb5gtKpl8PwhUFQBRz4GPQ9NXW2SGax1AjyX/tm7X36XzHudKuwOE2+Ft7/i3mfds/DBD2H8z8INddu11Lvd5DjvETqaoV+G5X+P3rb5Tdi+AMrGhFuTiIhIe9McSNY6jKxhz76BZG0Dy9z2N+5xDzXzCj2LJ0y/y0g4+jkoHejex1qY8y1Yckf8fydDv7Lv9vwfxx5X/Sm8epr/dSpPhE2vQn21sz3scjjw997BaiIi7UQ2PdO1frVZFsB8y2gJRkvsVh/thDFmKHBkm913xRjTG5jQalc98Hocy86gJRgN4EQUjCbtXWRn7D5FvZ0DovHILY4djAawbW7L3cBSbdMbULMmsbEF3Vu+H/8zj2C0XYnNLyIiIiIiIiIiIiIiIiIiIiKhs9a+Y4w5APg7zvli4ISetf661xCcQDQDvABcZK1dn/JCM0OnNts1CcxRw97BaJ0TL6eFMaYCKI9z2NAg1hYRERGRBBgDU5+BmafCtjmJz1O7yblg84w1kFsYXH1uGuO4yBXg4L+mpo5M1m28Ey400yMUrjECr58PPadASd/waku39S/Aptfc2/ueHPeUexprWLHn46htvQv6xT1fIvJMftT99Y2RUNZP2KF3w46FsHNR9PbGWph1LpyxGop7hVtbPN65wr3t8AfCqyNT9D8DDvoDzL4qvnF7NsKrZ8AZqyAn+v9paSc2vwFzrvXuUzYeJt8LBV3DqSkeQ7/sBE+89033Pgtuhu6ToP9Z4dVV5RGMVjoQJt0J3Sa492mvyqc4QSTL/ha9fcYJcPrKcEPsREREguIaSNY2QCyeQDKPsUEEkmWKnUtg1nlw/NvufT75R/yhaEUVMOYGGHD23vvHXA/1VbD0L/5yJfxa1yaofelfoGwCjIjz9zERkSyUTcForU/K2RHAfK1fSboEMF82u5SWu2sCzLHWvh9jzNg22/OstdVxrPlGm23FrUv75/UGduyPnDfB/c+J/4OcvGKIbI/db/VjIQajzUp8bOsP5bqNhy6jo38AVl+V+BoiIiIiIiIiIiIiIiIiIiIiEjpr7QbgZGPMJOCbwLFApUv3HcBLwJ3W2pkhlZgp2gaj7Ulgjhqgm8eciboKuDGguUREREQkDCV94MT3nHCPp8dD1fLE5qnd4gRO9T0l2PqisQ3x9S+qSE0dma7vKXBeFdzv8XbfNsDK+2HUt8KrK91W/Me9rfyIhKacXzXbta1XQTihc/mmIOr+iK0LZf2E5Xd2LkJ/wOPyPVsPqx6EEV8Lr654bXw1+n6TB52HhVtLphh+JQz7KtTvcl5jGuudUMI3vuA9bs8GWP8y9Dk+nDolPbyei8EJ8Br59XBqSdTIq53wtpeOdu+z4j/hBqPtcglGG/lNmPSb8OrIRGN+6B6Mtns1bHsfuk8MtyYREcluvgPJ2gSIxRNItk97OwkkyyRb3oGa9VDce982a2HRrf7nOn0lmFworoweuJqTCxNvhQm3QM1a55jMa2cnd7MCN5/+R8FoItIhZFMwWus7HgYRZNY6aC3OT0zaD2NMLnBRm913+Ri6X5ttj6j5qJbFmE+k/Ym4ZDr2nALjb0p83txif/2qP018jXjtWBh9f+Xxzt1+HunjPrbtLxZdRkYPRovsSrw+EREREREREREREREREREREUkba+17wIUAxpghQH+gB1AAbAY2AAustY1pKzKz2JDGiIiIiEh7llcKo74N7yYRPDT7SudG2L2mQkG3mN0TFk8wWu9p0S9G7SjySqHrfu7n8APMuRbIgYKuUHEkdBoSWnlpsf5F97buByY2Zd0q17ZBxSMSmjNe+SY/6v5GGmmwDeSa3FDqSEh+Z+gyCnYudu/zyb9g+FWZ9/NsLWx9F2o3RW/PLYKcbLpEM2DGQH4X5wFgjgQMMQ9LzLkGSu6HsnGprlBSbfdqWPmA8zrUaWjLdW4f/8F7XOX01NcWhLLxkFMAjS4hlKsect4b5UR/jg6UDq4q4AAAIABJREFUbYx+jR041yd2dCX9oaiXE74Yzcd/hAPvhNzCcOsSEZHUsha2fwCb324JEdsnyCyOULPW7Y2RdP/pJCg16/bNL2iohYW3wI4F/uaoPAFK+/vrm5Pb0nf6q/DCEbBtrv96/dj0Oiy+Y9/9jbVNNTS958krdt4rlo0Ndn0RkZBk01G3za2+HxjAfANafb8lgPmy1QlA61uT1AAx4vgBaHsri5Vxrts2oamHMaabtXZbnPOIZI/Izuj785PMevQbjOZ24DNokSpY8c/obWXjnQOMXrq2+VAjr3P0fvUKRhMRERERERERERERERERERHJZMaYzsDgVruWWWurW/ex1i4HlodaWOararPt8wQhzzFt5xQRERGRjmjQ+TD/RqjdHLtvNLtXw2tnQVEFHPUU9EgsZComW++/74irU1NDNhlxNcz+qnefOdc4X00OHPg7GH5l6utKh1WPQM0a9/ZhlyU07aa69a5to0omJDRnvPJMgWtbxNaRaxL51TFEI6+G2Ve5t295C965DA76U+YEjTU2wLtfh6V/cu8z4hvh1ZMNSvrBgHOcoCwvOxfD0+OdwM6Jt2ZeIJ74s/IBmHVe/OMqT4AuI4OvJxUKu8PgC2HZ39z7vDwdjnzMCSBNpQ9+6N7Wue3lvh1QTq7znDzv+ujty/4K296HqU9BUXm4tYmISGrYRuf9+sd/THclkuka9uy9vWejE1a26yOfE5jEf/fLK4WjnoDnDvE+XpGI5mM9foz+Duz/C/3uJSJZJyfdBcShOXjLAOOMMT0Snahp7PhWuwJ+Bckql7bZfshau93HuLI22xvjWdRaWwW0eQdB0kd+jDEVxpgx8TyAocmuK+JLyoLRivz12/IO1Nckt1Ys9dXwzET39q77OR+kehlw9t7b+W7BaDpXU0RERERERERERERERERERCTDnQ/MbXq8AxSmt5yskcnBaH8Axsb5OD2gtUVEREQkWQXd4Li3oO+pUNS7ZX9usXNeevMjlj0bYwdxJcM2+Ot3+APQ79TU1ZEthl8BB//ZX1/bCO9+A3avTW1N6VC/2wnuc7P/L6Hr6ISm3lgX/e/r8K7HkxPrGomA5Ofku7bVN0ZCqSEpw690Qs+8LLsL1j4VTj1+rHvOOxQNYKxLAE9HNvmfMPIaKB0cu+/i22DTrNTXJMGLVMGbF8U/rnQQHPFQ4OWk1EF/hN7HubdvnAlLfpvaGnavgYW3uLd30iWyAIz5gXf71tmw4OZwahERkdRb97xC0cSfxtq9tz/8mf9QtJ6TnfevfU9KfP2SvnDCbBhwHhSW730MrvmRk+KP0RfdCpvfTO0aIiIpkCG3T/DlLaAWKMAJR/sa8JME57qKllC4euD1pKvLQsaYcqDtJ0B3+Rzeqc12ImlLNUDrT8xc0o/ichVwYwDziAQvsiP6/vwkMwGN+4db+5h1jnNXg1RZ+QBULXVvL2vKpKw8EdY9s2/7wM9D6cC99+W1fbppEtmVWI0iIiIiIiIiIiIiIiIiIiIiEpaeOOf7Acy21m5NZzFZpO2JRuXxDDbGdGLfYDQ/N0yNyVq7kThvpGp053ERERGRzNJ5KBz1uHefxXfAnGu8+2x9D6pWQKdBQVXWorE+dp9eR8OAc4JfO1sNu9wJRXl5Wuy+tgHWPOYEVbUnG172bh/0hYSmtdayMbIuatvg4hEJzZmIfFPg2haxdaHVkZThV0BhD5h1rnuflQ9CvwzJ1171oHd7UW/IKwmnlmySWwiTfu08Ft0Oc7/t3X/VQ1BxRDi1SXDWvwgNCVxSevRz2fdzk5MHh98HD3Zz77PqQRh3Q+pqWP2Ye1thORQkeX1ie2GME8y45DfufVY96Dw/iYhI9ov1fl3CZ/Kc3weag75ah37tta8Qcor27btPu58+rfY/3AtslGNKDW2C0Vb5DOrtdgAc90byfy8AxZXOe0ovT42DHR8Gs140Kx+E8impm19EJAWyJhjNWltrjHkNaD5Cf50x5hFr7fx45jHGjAW+A9imXa9ba6sDLDWbXAi0TlRaBsz0ObZtUtGeBNavAVofDXJJPxJpJyI7o+/P75LcvI1x/PitfRrm3wSjv5Oag8jrX3RvK+kP3fZ3vh9+Jax7lpanYqCoAqb8e99x+S6ZifVB3cRWRERERERERERERERERERERFKkOeDLAqvTWUiW+bjN9sCovdy17b/VWrstiXpEREREpKPxG1Az6zyY+AsnpCxItiF2n24HBLtme9B9EuQW+wuqWfBzGHo55OSmvq5Us42w+nGYdbZ7n05DnYuQE1DVsIM9jbujtpXnJzZnIvJMvmtbxEZCqyNpPSeDyXH+3aJZ8S8o6ec8r/Se7oTchK1mHax6BJbf7d2v/PBw6slmfl5PltwBZeOg/9lQUJb6miQ5jQ2w+lGYlUA4aXEldBoSfE1hKChz/p9ud7mcefs853nN5AS/9o5F8O7X3Nv1XLS38sO9g9F2r3b+HcvGhVeTiIikxpZ3011B5ogWSLZPkFg8gWQe4WZec6T7GENuUfT8geYshl1LYcV/oWatv/mGXhpcbX70np7aYLQlv4aBn4eeB6duDRGRgGVNMFqTX+EEo1mcEK1njDHnWGvf8jPYGHMw8CBQinMXSts0Z0d1SZvtv1trbdSesSUyLtG1RLJTqoLR4r27xvwfOx/6Hf0sFMV1M9kYddTCiijBZs0GX9RycLffqXD4/bD411CzBiqOggN+Hf3gb55LMNrmN5OvWURERERERERERERERERERERSaV2r7wvSVkX2WdRme1ic49teYbowiVpEREREpCPqfgD0Ocm5MbeXrbPhpWNgzA9hws+CW9/Wx+4z8pvBrddeFJTByKth4S9i9929ygkSO/xByMm2y8tasY3w+vmw8n7vfmOvTzhga2PdOte2ioI+Cc2ZiHzj/mt1va0LrY6klfSFIV+GZX9177PwFucx8hqY9OvwagPYsRBenuaEo3nJLYbR3w6npmzW/UCoPAHWPevd7+2vwKJfwTEvQUl4P1cSp8YGJxBt9aOJjd/vB9n9mjPmh/D6593bN82CiiODXXPNkzDrXO8+o68Lds1s1/dUKJsA2z9w7/P0eDh2BvQ6KrSyREQkYLVbvZ/rw+IrkMwjZMxP2Nhec2RoIFmmyC2MHozWUAsbXoGZp0Vvj6Z0MAz6QrD1xTLiKljxD6jdkro1nj8UDvo9DL8ydWuIiAQoq44iWGufN8bMAKbihGr1AV41xvwT+DMwu22wlzHGAAcCVwBfAvKbxlrgNWttjE9p2idjzKHAmFa7GoB74pii7St+cQJltB3j812Epz8AD8Q5ZijwWABri3hzDUbrmty89XEGowFsmwOvHA8nzklu7c9qqIaHe3v32e97e28POMd5xJLfyb1t11LoHO95nyIiIiIiIiIiIiIiIiIiIiISkta3tB6ctiqyT9tbgY83xpRYa3f7HH9YjPlERERERGI74hFYdCusfxE2zvDuu+BmGPoV6DQomLVtg3d7UW8o7R/MWu3NhJ9Dp6Gw6mGoWQvb57n3Xf2YE1bU95Tw6gvahpdjh6KV9IchFye8xMbI2qj7i3KK6Zyb5PUgccjPcQ9Gi9hIaHUE4uA/Qd1WWPWQd78lv4Fhl0HX/cKpC2D+T2KHopX0c54jexwYTk3ZzBg48jFY9EuYd4N3352LYckdMNFHuKOkx7pn/YeilY1v+b7TEBh0AQyIEfCV6QZ+zgnkfOOC6O1vXgynLw9uPdsI730LGva49+l/NpRPCW7N9iC3AKa/6jyfL77Nvd/c78AJ74RXl4iIBGvhLd7tFVO9Q8ZyiuIMJHMJN1MgWWbJKYy+v7HWee33E4rWZTT0ng5jf+gE0Iep8zCY/iYs/hUs/UvL/rLxex/f6ToWTE7Lttexn31YmPtdGPRFyO+cdMkiIqmWVcFoTT4PzAEqccLN8oCLmx7VxpglwLamtu7ACKA5Vcc07TfAKuC8EOvONF9us/2MtTb6kfroMjIYzVq7EdgYzxiT4B1fROIW2RF9f36X5OZt9Di46WXbXFh0u3OnrGi/eO1eDVtmQ+0mKCyHvFIwuc4b5dqtTp+cfOi2v5MO7PXLwJT/egecefEKjlv/ooLRRERERNKlvsa542txX+g8NN3ViIiIiIiIiIiIiIhIBrLWfmSMmQeMxwn36mutXZPuujKdtXZdq783cM6TPBx43ucUU9tsPxNQaSIiIiLSkeQWOBeBjv0hvHUpLL/bo7N1wlKGfzWYtWMFo/U+Nph12iNjnCCpYZc52ysfhFkeQTRrnszuYLQ1T8XuM+rapJbYVLc+6v7y/MpQr0nKN/mubZHGutDqCITJgQPvjB2MBs6/cVjBaNbC2idj95v+OpQOSH097UVuAYy9HvqdDk+P9+679kkFo2WyNT5+PgBGXwcTb01tLeky6Hx49+tOuGNbe9ZDQ53zfz4IOz+CqqXefQZ+Ppi12pv8LnDAr5wQWLe/w62zYc9GKKoItzYREQnGptfd285YAyV9wqtFMkduUfT91Z/C1vf8zXHyAufYSrp0GQ4H/9l5+LXoNph7nf/+9VWw8VXoe3L89YmIhCzrgtGstRuNMScAjwODcILOwAk76wRMarPvs6G0hKItBU5vCtHqcIwxpcDn2uy+K85p2iY8lcdZQyf2DUbbHmcNItklsjP6/mSD0eprEh8799vw6X+du6+0/iVv/k9h/o+Sq6u1ZMLLenrctaJuW+LzioiIiEji1r8Ir57ZEo7b9zQ4/D73A8giIiIiIiIiIiIiItKR3Qn8FefcvZ+w7009JbpHaAlGA7gEH8FoxphRwCGtdlX7GSciIiIi4qn3cTGC0YDZV0J9NQz9MhSUJbdeY713e+Xxyc3fkVQcBTkF4BactfTP0OsYGHheuHUFYc9mWPKb2P0qj0tqmY2RtVH3VxSEe6F9DrkYDPazy+Za1NtIqLUEoqg3lI2D7fO9+73/Xeg6OvUBfnXb4YMfOM9jXrqMgpL+qa2lveoy2rkZb41HZv6OhTDjVCifDCOuhvxO4dUnsS39k79+/c9JbR3pVjYeNs7Yd39DDXz8Bxh1TTDrLLjZuz2nACqmBrNWe1V5PHzsES733CEw4WYnYC6dASgiIhKfrXNg8xvu7cWV4dUimSWnMPr+eTf4Gz/g3Ox8T1B5HMyNc8zMU6D3NCjp57x/V0iaiGSonHQXkAhr7Yc4AWj/oyXszLZ6fNaVvQPRGoF/AAdZaxeFWXOGORfo3Gp7A+Azrv8zH7fZHhjn+Lb9t1prlXAk7Ze17sFoBV2Tm7txT3Ljt74Lzx3Usr3+pWBD0QA6DU58rFcqd0OSf3YRERERiV99Ncw8vSUUDWDN4/Dh/6WvJhERERERERERERERyVjW2ruAp3DO4bvYGPPdNJeULf4NNLTaPssYM9zHuO+12b7fWquTbEREREQkOf3PhPLDY/ebex28ciJEqmL39WIb3Nt6Tm7/gStBKiqHMT/w7vP65+ADnxcJZ4o9m+H5ybH7Df0KdN0vqaU21a2Lur88P9yL7Y0x5Jn8qG0R6xJ8l8mMgQk/d4J9Ypl5Kiz2EYKXqLod8PwU+PiP3v1y8p2as/FC+UyQkwf73wImxiWta5+ED34ILx4J9TXh1Cax+f0ZHHAe9Dg4tbWk2wG3ubfN+ZZzbV6y5v0IVvzTu8+YH0BRz+TXas9GfcsJZHRTvQLeuMAJxhQRkeyw4RV4dpJ7+8hr9H69I8t1CUbzK9bxk0xVNg6GXBr/uPUvwvJ7nJC0JXcGXpaISBCyMhgNwFq7zVp7AbAf8Gug+fYQps0D4APgV8BIa+3F1todYdebYdrecfMf1toYt9PZR9tguWFxjh/SZnthnONFskt9FUS5Kw8AeV2Sm7vrOPe2aTOh1EduYc1aWPQr2L0W3vtmcvW01W1/KOyR3Bxud/Rq0AccIiIiIqFb+ww07N53/5rHw69FRERERERERERERESyxfnAIzjn9P3cGPOcMeboNNeU0ay1HwP3ttpVANxjjClyG2OMOR24uNWuOuCmlBQoIiIiIh1LbiEc8wIcFCM0CGDLW7DgZ8mt53WJyzEvQV5xcvN3NONuhOFXevdZdCvUbg2nniAsvxuqlrq353WCKf+Fg/+S1DLWWjbWrY3aVlEQbjAaQL6JHiIWsZGQKwlI35PhuLdgv+/H7vvhT1IXkrXiX7Cz7aVybYz+Lkx/A/qfkZoaOorBX4Rps2DIxbH7bpsLKx9IeUniQ8MemBcjQDOvMxx6Lxz23/YfRtL9AOg61r39w58mN3/tVlj4S+8+Rz3pvL6Lt85D4fh3YvdbfDvs2ZT6ekREJHkfxjjeMOqacOqQzJTj+jGqt2GXw2nLnEyEbHXI32DKf5yA+KGXwWH3wfRZ/sd/eBM01KauPhGRBOWlu4BkWWs/Ar4NYIzpBPQCmhN4NgMbrLXVaSov4xhjRgBtb9NzVwJTfdhme7wxpsRaG+Xq+KgOizGfSPsS2enelp9kMNqY78Os8/bdP/xrUHEknL4CXpwKG2d6zzP3O84jaEc8lPwcuS4fXDfoZrYiIiIioVvicse37fPCrUNERERERERERERERLKCMebvTd/uBHYBnYFpwDRjzC6cG59ubGrzy1pr294gNFTGmH5EPwezd5vtPGPMIJdpqqy1mz2WuRE4E+jWtD0FeNEY8xVr7eJWtRQClwO3tRl/m7X2U4/5RURERET8yy2C4V91gk/e/KJ33yV3OOezl/ZPbC3bEH3/iG8oFC1RI6+Bjz2C7RprYfObTlBVNtjwknf7sS9Dj4OSXmZnw3ZqbfTrFsoL+iQ9f7zyTX7U/ZHGupArCVD3ic6j4kiYcZJ7v7ptsP0D6Hlo8DVseNm7vcfBMPEXwa/bUZVPdv4dVz0Kke3efTe8DEMuDKcucbftfaivcm8/ZTF0GRlePZlg2GXw3jejt216DRrqIDd6mGVMm990Xpdd174ie16vM0FJHxjwOVh5n3ufxjrY/Ab0Oz28ukREJH6NEe9r5XMKoSTB4xDSPuQWxte//9lwxIOpqSVsxsCg851HaxN/BXOviz2+dgtsnw89DkxNfSIiCcqaYDRjTG/g4Fa7Zllr97oVibW2CqgCloVZW5a5tM32LGvtkngnsdauM8bMA8Y37crDCVx73ucUU9tsPxNvDSJZJeJx3maywWiVx0OnoVDV6qkvtxiGtjr3c/R3YgejpcKkO6DTkOTnyXVJaFYwmoiIiEh4ts+Hdc/BptfTXYmIiIiIiIiIiIiIiGSXiwHbatsCpun7Lux7o89YTNMcaQ1GA2YBA3306wt84tJ2L87fT1TW2tXGmLOA54DmKykPAxYaY94DlgNdgQOA8jbDnwRu8FGfiIiIiEh8Ko+HnHzngmQ3DXvgmf0hr5Oznd/ZCT2a8H9Q0M193GfjXcJATNZcBpV5Og+HLqNh5yL3PjNPgWFfdf6dCruHV1s8Irtg3g3OuWxuSvpBtwMCWW5T3TrXtor8ykDWiEdeTgFEyQ2stx4/j9mi4ijI7wqRHe59np8MJQOc63B2fNiyv6gCJv8LKqfHt+bqx53AwHXPevfrd0Z880psxkC/0+CTf3j3++ReJ5Sr8jgYd5PCMcOyZzPMu94J6Kr+1PvnsstI6DwivNoyRb8z3YPRbCPcVwilg6BsHIz6FvQ62t+86190Xo8919ZzUtz6ne4djAbw6hnOa0zpABhwrhPIa4z3GBERCdfG19yD1MF5f2lywqtHMk9OnMFoHSEUte+p/oLRAN66CE78AHJ0/E1EMkc2vbKfBTzS9Pg34BF5LtEYY3KBtrdIuCuJKR9ps32JzzpGAYe02lWN/0A1kezUsNu9La80ubnzu8C0mTD4Qicgrc8pcMxLzh1zmvU9GabG+KAmaAf8GkZeHcxcuS4fXDTUBDO/iIiIiHhbdjc8MxHmfse7X2N9OPWIiIiIiIiIiIiIiEi2s60e4sFaOwM4E9jUarcBDgTOA45n31C0/wKft9br6hARERERkQQV9YSJt9OSd+yibivsXuk8dixwwodeONw7UK3Zumei78/JjbtcaWIMHPg7yOvs3W/pn/z/O4XNNsJLx8KSO7z7HfTHwP6vbIpED0YrzimhU26XQNaIR77Jj7q/XQSj5ZU4/0djBSDuXrl3KBrAno3wynGw1iMwr62VDzkhOLFC0XpOhuFf9T+v+DfuRuc6qFi2fwCLbnXCoqwOJaVcQy28cBgs/TNsn+cdigZw4O87ZnhUaX+Y8HPvPtUrYM0T8PJxsOGV2HOuex5eOcG7z6AvQe84QyAF+p/lL/hk90rYNMsJvfvgB6mvS0RE/KvdAi8f695eWA7jfxpePZKZcov89+1zihOG2t51GQFjf+Sv746F8Ha6700mIrK3bApGK8P51MQAs6211WmuJxudBLS+Hcku4IEk5vs3e99n5CxjzHAf477XZvt+a+2eJOoQyXz1XsFoJcnPX9IXJt8Lpy2FqU9A+eR9+/Q5Hi6wMOzy5NeL5YDfwKhrgpvP7ReRBj11iIiIiKRcZBfMucb7rirN6qtSX4+IiIiIiIiIiIiIiGQjE+Cjw7HWPg2MBf4EbPPo+hZwjrX2Ap1jKSIiIiIpNfLrcOJcmHgbFHTzP27HQljzlHef3Wvd22IFJom33sfAyR/G7rdzkRPkkmk2zICts737HPkY9D0lsCU31kX//1he0AeThiCgfFMQdX/E1oVcSYoM/iKcND/x8Ytv89930a3EzGsf8wM49uX4nufEv05D4ITZMOU/0OOQ2P03vAxb30t9XR3d6sdg10f++nabCL09AkrauzHf99fP1sOi22P3W3y79/nanYY61w8qKDZ+uYVw+EMwNUYYZmsf/d4JChQRkczwyb+8209ZBF1GhlOLZK7cwth9Rl8HU5+GIx+JL0gtm42/CY57G/b/hfN7rpcV/4Lda8KpS0TEh2z6RGBr01cLRL/dhsTSNp7zf8mc/GSt/dgYcy9wadOuAuAeY8yxbkFnxpjTgYtb7aoDbkq0BpGs0eASjGbyICf6HXtSZvjXYOlfUjf/2Bth1DeDnTNHwWgiIiIiaVH9KSy+AyI7/fWvr4KCstTWJCIiIiIiIiIiIiIi2WZwugtIBWvtoJDX2whcaYz5JnAYMBDoDVQDa4C51tpPwqxJRERERDq4bhOcx8hvwJP7QdVSf+M2zoB+p4HJAWuhbbiUV/BVYc+Ey5UmpQPggNthzrXe/TbMgD4nAwZyo4dxhW7jq97tJhd6Tw92ybrol7BV5FcGuo5feSb69ScRGwm5khTqOgrGXA8Lfhb/2PUvNF1nEiO0rrEOtrwdYzIDo7/TcS6UT5eCbjDofKg4Ah7tH7v/5jegx4Gpr6sjW363/74dORStWe9psP7F2P02ztw7ZMvkNYWgNQc0Wue118vwq/Z93yT+5eRCn+Nh0h3wno9rH+t3wa6PoWxs6msTERHn+EBjhM9eG00u5LSKQtn8uvvYXsdCYY+UlidZIidGMFpxH5h4azi1ZJqeBzsPcN6HLvxF9H62ETa+BoM+H15tIiIesikYrfWR5NK0VZGljDG9gJPb7P5bAFPfCJwJNN/6YgrwojHmK9baxa3WLwQuB9reeuM2a+2nAdQhktnqXYLR8krCrQOg23g48lF49YzYfTsNhaFfhg880n97TnE+WCjoBhN+DsMuD67WZnnF0fc31AS/loiIiIg4Hygs+D+Yf6NzQNOvyK7U1SQiIiIiIiIiIiIiIllJ54cFy1pbB7yS7jpERERERD6Tkw8TfwmvneWv/5I7YMlvcS52NlA6EIZdAft9zwn72PWx+9jK44KoWPqfDXO+TUsYSxQf3ek8ADoNg5FXw4ivpyeQZd0L8P73YNtc7359T3O/9iBBmyJro+4vL0hPMFp+TvSQunpbF3IlKTbwvMSC0QDuC+j/QOXxulFsmEr6tVyf5OW9b8Lu1TDh5r2DMiR59bth9pWw7ln/YwZ8LnX1ZIsB5/kLRqvfBfclE7RoYMA5SYyXz/Q/G+Z8y9858k+Pg8n/gMFfSn1dIiIdkbXO8YE51+zblpMPPQ6F8T+BhbfAuufc5xmo9yTSJFawtd6/OgZ8zj0YDeCN853jMEO/AmOvVziviKRVTroLiMNcWo64j0hnIVnqIvYOwvvQWvtOspNaa1cDZwGtj6AfBiw0xsw2xtxnjHkWWAX8Fmh9a5IngRuSrUEkKzS4BKPlpiEYDaDf6XCBhaOfj97e/yw4ayOcthT6nuo+T5fRMH0WfK4GztkKw69IzZvbHJdfRBr3BL+WiASv+lOY+x2YeTosvNU9LFJERDLH5jdg3g3xhaIB1Felph4REREREREREREREREREREREclc/c90brLtm235Wr0CPvh/sPg2Z9eupe7DysYlWKDspXQAHPJXMLn++lcthfeuhmV3pbauaLbOgRknxg5F6zoGJv0m0KWttWyqWx+1rSI/TcFoJj/q/khjJORKUqxsHEy8DUjTxdedR8CBv0vP2h3ZIX9zwjJjWXSrc32CBOvNL8En//Dff8LN0H1S6urJFoMvgkEhhGYd8lfn9VuSV9IXDrkLjM9wxTcvhNWPpbYmEZGOaulfooeiATRGYNNr8NLR3qFoAIMvDL42yU45hd7tY68Pp45M130i7O8RjAaweyXM/xEsuDmcmkREXGRNMJq1diXwFs4RzZHGGIWjxeeSNtuBfRphrZ0BnAlsarXbAAcC5wHHA+Vthv0X+Ly1tiGoOkQymlsIUF6agtGaVU6HkxdC5QnOdnElHP4AHP4gFDX92HrWaJ0gtFgJyslym79BwWgiGW/XMnjuEFj0K1jzOLz/XZh5inNgSkREMteK/yQ2TsFoIiIiIiIiIiICzuejkZ3O3X1FRERERERERKRjGPN9OHM9HH4/HHoP9J4e3/iP/+h8dQtGG/61pMqTNoZ+Gc5YAwPO9T/+PHKwAAAgAElEQVTm4z+krh43S/8KsS49GvQlOGFO4IExOxu2UWujX7NQUdAn0LX8yjMFUfdHbF3IlYRg9LVwxirnGpdD7wlv3WmvwUnzoPPQ8NYUR9fRcPIiOPYV6DLau++yu3RNUZB2r4VVD/vvf/pKGPP/nGvKOrrcAph8r/N/d/K/4JC/B7/Gmeud120JzpCL4cw1cMTDzmtMTvTg0c98lIb3QCIiHUEQv2NOnwW5McKwpOPw+r9w8J+hsHt4tWS6/b4L/c6I3e/jP+r8LxFJq6wJRmtyq8v34sEYcxgwqtWuOuBfQa5hrX0aGAv8Cdjm0fUt4Bxr7QXW2uogaxDJaA0uwWi5xeHWEU3X0XD0M3CBhTPXwoBz9j4wnRsjGC0Mbn9PDTXhrC8iifv4D7Bnw977NrwCG2empx4REfFnwyuJjYvsCrYOERERERERERHJPgt/CY/0hQe6whMjYNOb6a5IRERERERERETCUtzLCdoachFM/GV8Y6uWQ8062DQrenvnYcnXJ3sr7gVjrvfff9tc2DoHts9veVQtT90FsvXV8Mm9sfsNu8wJpgnYxrp1rm3lBZWBr+dHvoke3FJv2+lNq0v6Ote4DLkIRl6T+vUqT4SKwxWskE55xdBrauzXkPpdsPpxhaMFZd0z/vv2nAyl/VNXSzYyBrqOgsFfgKGXQLeJwc3d4xDn9VqCV1QB/c90XmMaY7yOrn8e6naEU5eIdAw1653fp3Z+BFUroPpTaIwRCN3eNNTC9nnJzWFyoMuo2P2k4yjxCEwvGx9eHdmi8vjYfWrWQO2m1NciIuIiq4LRrLWPAn8HDHCKMeb3xpi8NJeV8ay1r1trTatHobV2cwrW2WitvRLoDRwDXAL8P+Bq4GxgiLV2srX2oaDXFsl49W7BaF6hYxnCK7zNNoZUQ1H0/foAQyTzLb49+v4V/w63DhER8a+hFnYuSmxsfVWwtYiIxKt6FSy5Exb8HLZ9kO5qREREREREOp5VD8P734PIdme7ainMOEmB+iIiIiIiIiIiHVHZBCgbF9+YR/pAY230NgWjpUbZOOffyq9nJ8HT41sejw+FR/snfjPOaBpq4a1L4IGy2DdTLx0M5YcFt3YrG+vWRt1fnFNKaU7nlKwZS76JHgAXsXUhV5IGg78YwhoXpn4N8af3cU5okZfXP+c8T8z5dscLEglKQx28fRm8/RX/YwZ/KXX1tBdBPpfo7ztzPFgGM0+HyM50VyIi2azqE3jmAHik0vl96smR8PhgeGwQ/C8Plv413RWG56PfJT9Hn5OhsEfy80j70fcUyIkSKN55uBM4K3sbcC7k+AgG//Cnqa9FRMRFVgWjNbkCuAMnHO2rwPvGmEuMMXrXkiGstXXW2lestfdYa2+x1t5prX3YWvtJumsTSZsGl2C0vCwIRsuEGhWMJtL+rHky3RWIiEg0tVucD1cSpQtcRSSdNr8Dz+wP710NH/wAnj0Qlv8j3VWJiIiIiIh0LPN/su++yHZY8Z/waxERERERERERkfQyBo58NP5wNDedFIyWEsbAkQ9DWRLnjdWsgVdOgJoNwdQ073pYfg/Yeu9+nUfA1KfApObyuE2RdVH3VxT0wRiTkjVjyYt2gTcQaYyEXEkadJ8Eh94NuSm4xiUnH8beCAM/F/zckpjcApj6LJQO8u7XWOvczH3JHaGU1e58eBMs+5u/viYXRn4Lhl6e2pragxFfdx4mN/E5mv++h301uLokeWseh3f0byIiCbKN8PI02DbXvc87l8OGmeHVlC5Vy2HudcnPc8hdyc8h7UvnoXDEw1DQvWVfl1Fw1BPO8Q/ZW2EP57hKYbl3v49+B1s9nrtERFIoL90FxMMY83KrzV1AZ2A/4G9N7auBjU1tfllr7bGBFSkiEo3bXYpS8YFM0Fw+OAPA2nBqyC2Ovr9mLexYCF33C6cOEYlP9Sr3toJu4dUhIiL+LbkTdn2U+Pj6quBqERHxY+0zMO9G2Dp73zZbD3O+5dzFJs/l90oREREREREJztpnYfsH0du2vAPDrwi3HhERyRjGmAsDnM7inB+4A1gPLLY2rBNYREREREQkbp2GwIkfQPUKePNC2DQrwYkMdBocZGXSWqchcNIHULUCaprCwF6YEt8cjXXw6X9h1DXJ1WKtE4oWy7RXofzwlF7YvLFubdT9FfmVKVszlnxTEHV/xNaFXEmaDLkYBn0Btn8IDXtazglqqHWCJhKRkwddx0BeFlzf09F0nwinLYfHBsDu1d59P7kXRl8bTl3tiZ/nW4Dj3nJ+TvI7pbScdiMnDw68Eybc7Fz31vz89O5VsO396GOmvQqm6XJvk6O/70y26iGIVOnfR0Tit+19JxAslk/ugV5HpbyctPrkn8nP0eNQKIoR5iQdU99T4OxNsGMB5JVC6WCFonnpfSyctR52LIKnx7r3++Re53c0EZGQZVUwGjAV58SmZhYwTQ+A/k0Pvyc6mTj6iogkrn539P1Z/8FJSE+hXn9PT42BM9dDca9wahERfxob4AmPO/MpGE1EJHPU18Cm15wP0T+8Kcm5FIwmIiHa+CrMPMX7pMa6rc5J1ZXTw6tLRERERESkI6rfDW9/2b193bPh1SIiIpnoHlJ3kkm1MWY2cC9wn7W2NkXriIiIiIhIokxTqNnwKxMPRsvJh9zCYOuSfXUa5DwA+p4Ka56Ib/z8m6CkPzTWQt02yCmA4sqmC9Z7+ptj2/tQu9m7T1FFykPRADZF1kfdX16QzmC06De+r7eRkCtJo5x8XYzdkRgD/c+FJb/27rd9HuzZ7P+5pqOpXgm7PoZuE6H6Uyesq2at84hl7A3Q85DU19ge5Xfe++/ugNvhpWP27ddtf6g4Iry6JDmNdc7Pk16LRCRe1Sv89Vt+D/Q5BToPh7KxzrU+7c32D5OfY9hlyc8h7ZfJgbJx6a4ie5gcKBsDQy6B5XdH77PkDqg40gnw7TxCYXMiEppsC0aLRsFmIpL51j4dfX9ulgejJXpHnXh13c+7fdnfYOwPw6lFRPxZ/7xzsN+NgtFERDLD9vnw8nTYs8H/mKJezokR0S5mjewKrjYRkViW3Onv99J1zykYTUREREREJNU+/a/3xTORnc7vcO3xhF0REYlHKs6O7oRzw9WpwM+NMZdYa59PwToiIiIiIpKsfmdCYTnUbop/7MDzg69HvA27PP5gtMh2mHVO9LaJv4JR17pfOGsb4f3vw6JbY68z9PKUX4BrrWVT3bqobRUFfVK6tpd8UxB1f8R6nLctku2GXgIf/RZsg3e/h8th/1/Cft8Jp65s0BiB2VfCsrsSn2PwRcHV09FVHOWESOz6aO/9w65ITz2SuJknw+mrICc33ZWISDZpjCPMuPn3qu4HwVFPQHGv1NSUDtbCqgeTmyO/Cww4N5h6RKTF0Mvcg9EAXjvb+Vp5PBx+v/OzKCKSYtl4xqkJ8CEiknqN9e5J3nlZHowWltKBUDbBvX3e9eHVIiL+LLnDuz2sYEUREfH2xhfiC0XrNBRO/MC5g1k09VXB1CUi4offD0TrtqW2DhEREREREYFP/+fdXl8F1Z+GU4uIiGSq1ufr2VYPL9ZH3+b9BqgEnjHGfC2JOkVEREREJFXyimH6a1B+WPxjJ/0m+HrEW99T4NC7oXRQMPPNvQ62zHZvX/1Y7FC0wh4w+rsw7sfB1ORhR/1W6mxt1Lby/MqUr+8mz+RH3R+xcYQsiGSbsnFw1FPQZXTsvu9/F1YmGbTRniy/J7lQtGkzofPQwMrp8EwOHPsy9J4OOQVQXOmE+SkYLfvUrEs+1EdEOp54gtGabZ0Nc64NvpZ0Wv+Cd/v+t8CgL0Fep+jtxZUw/Q3365pEJHHlk2HIpbH7rXsOPvy/1NcjIgLkpbuAeFhrszHITUQ6uk2z3NtyszwYrauPDxWCUjYWtn8Q3noikrjVjzm/2HpRcI6ISPpVrYDt8/33n/BzGHaZc3KZ2wcMen4XkbBEdvrvu+FlqK+GvNJ92+q2tVyYX9AdSgcEU5+IiIiIiEhHsmej87tXLNvnQ6fBqa9HREQy0SVNXzsDPwJ64ASZNQJvAbOBlcBOoADoDowDjgB6N421wH3As0AxUAbs19RnIHsHpP3aGLPIWuvjBUpERERERELVZSRMnwXL/v7/2bvv6Diqu43j36tqybZcZbl3sHHDdIxppvceWmgJCakvCQkpJCSkUtITEkJIAQKh946BgKk2BmwD7r1b7pKtutLO+8dIUZuZnS0zuys9n3P2aHfunTs/GbE7O+W5MOdqf+sU9IWC3sHWJc5GX2U/6neD1diyfPPL9qSc8Vr7IPQ/1KUtxuQL3UfCWSvtUJkQbI1scm0bUJDGYLQc52C0hmh9yJWIhGzwyTB4EUT2wOP9wetvft53YMiZkFsYXn2Zau2D8a9TMg5O/RhyC1Jfj0DxEDhuJjTWQ04+GBN7HQleYT+o2xHfOmsfhBEXBVOPiHROie6zr38covfYnxudwer73dtOfNcOZgKINkCkoqUtrzuQo30UkaDt9x1Y9a/Y/dY+CAfcFnw9ItLlZVUwmohIVlr7sHtbv4PDqyMZo66E1fd2XD7h++HVUFjq3V651D74LiLp98lPY/dpqAq+DhER8bb5Jf99z98BhX1bXue5zKwS2ZNcTSIiflUs8d+3ag080gNGXAqH3AEFvaC+At69DDY917Zvz33hqMftcG4RERERERHxZ/3jYEW9+3QfBY214dQjIiIZx7Kse40x+wDPYIeiAfwd+IVlWevd1jPG5ABnA78BRgGfARZblvWzdv1OA/4IjMEOSMsDfgsckOJfRUREREREUmXwaWBy24ZtuennEqQl4WkfTDfwRDB5YDXEN87SP0D1eiidDrlF9iT0jbXQZyqse8R73cGnhRaKBrC1frPj8u45Peme63L9XAjyjXMIQMSKhFyJSJrk97TfDzY85d6nag08ORjKjrPDjkZ/zv4s6awBVLs+hu3vQPEI+3fc/Sns/BCIQvnr8Y9XdrwCR8Kgf+PMMuUXMPcrHZd77e9seBoW3mJfdzrweAX5ikhs0QT32aN19ntUz32hzwEw4Jjs/RxprIM197m3t76GPyfP3pcTkXD1HOMvNLZ6PSy4sSm0ECjoY38HK9k3+BpFpEtRMJqISJCiEVhxp3v74NPDqyUZ+3zZPtHYWNOyrN+h0H9aeDV0G+Dd/uJUuKjGu4+IBK9uB+yaF7tfw97gaxERkY4ql9oXg9RssS8y8+PoZ9qGogHk93Duq/d3EQlL9br411n7ANRth+Nehrlf7RiKBrBnGbwwGS6shs0vwo73oddEGHZeywkbERERERERactroqiT3rO/V+Wn70ZBERFJP2NMMfAUMA6IAJdblhXjjnewLCsKPGmMmQm8CBwJ3GSMWWdZ1j2t+r1gjHkLeAOY2rR4ijHmRMuyXknpLyMiIiIiIqlRNBBGfhZW/9u7n8mBcd8Ipybxr1spjL4SVv4z/nXXP24/2i/zklsE+ziElQRoW8Q5GK20YFCodbSXb/IdlzcoGE26knHXwsZnvcM163fC+sfs5yv+Bvt8DQ6+vfOFo33yc/jkx6kbLw3vtyIZYei58OnPoWZTy7L8XnD00/Dase7rLfiB/bP7SJjxEpSMC7JKEcl2iQajQdvvXmUz4OinIL8k+ZrCVLcTZp3h3p5brGtLRDJBTj7s+w1/3zMW/rLta5MLh/wVxn4xmNpEpEsKb6oMEZGuaOub7m3DLoCCXuHVkoz+h8Nxr8LwC6HvQTD+W3DcK3bidlhi3YDeWAt7VoZTi4i4q1jor5+Cc0REwrfpZXjxQJj/fX+haH0OgGNfhKFndmzLUzCaiKRZ3bbE1tsy075hf/2j3v0eKYa3zodFt8F7V8BrJ0B9RWLbFBERERER6cyqN7mfE534Q/s8oy5cFRER+BmwH2ABt/kJRWvNsqwq4DxgJ2CAPxtjStv12QNcADQ0bQfgpCTrFhERERGRIB32D/sYUm6Rc3vZcXYYxeBTwq1L/DnkTpj0Y+g1CQr6BndTfkEfOP4N6D0pmPFdbK13DkYbkOZgtDxT4Lg8omA06UrKZtjXtw48wf86y//ifY9XNqpcmtpQtMGnp+X9ViQjFJXBCW/CiIuhx2g7KO2EWVB2DEx/KPb6VWvsa/RFRLykap+9/HVYfmdqxgrT0j/C9vfc2495OrxaRMTbpBvhwD9A34PjO95jNcIHX4e6HcHVJiJdToiJNiIiXUzlcvivx0H2IQ4BE5ms9Aj7kS6WFbvPlpnQUzOTiKRNZC/M8vneFlFwjohIqCwL5n0bGqv99R97DRz6N/f2PJebWSN74q9NRCQRtdsTX/edi+NfZ8dse5bqcf+X+HZFREREREQ6k9pt8MlPYPkd7n1GXBRaOSIikrmMMXnAFU0v64DbEhnHsqztxpi/ATcARcClwB/b9VltjHm0qc0Cpidat4iIiIiIhCAnH/b/hf2Q7JOTB1N+aj+aPWBSv53TF9thJSHbVr/JcfmA/MEhV9JWvsl3XN5g1YdciUiaDTrRftRsgWf38Tex7/on7JCjzmLDU6kba+ptMOG7qRtPJBv1HAPTH+y4fPDp/tbf+Cw01kOuc4ipiAhRl2C0vgfDKXPt568cBdvejj3W+iey77N7w5Pe7T33DacOEYnNGBj/DfsB8Mw+sHeFv3Wj9bDpBRh1eXD1iUiXkpPuAkREOqX6Cnj1SO8+wy8Ip5bOwteMIwGcSBUJS9VaWPcobJ8DVjTd1STmvSsgUumvb2O1+8E8ERFJvaq1ULHQf/8JN3i35/dwXu7nwhIRkVSo2xb+Npf/NfxtioiIiIiIZCLLgtlXeYeilewHvfyc3xMRkS7gSKA/dlDZ+5ZlVSUx1sxWz89x6fNy008DDE1iWyIiIiIiIhKvMVendryScdBtQGrH9CFqRdkW2eLYVlowMORq2srPcQ5biei6bOmqigbCfj5DQZb9CWZ/Dj641g4Tsaxga0tWQxWs+DvMuQZeORoezIPnJ9q/w+zPwfzvp25bQ89O3VginU1+D+h7UOx+ViPsWRp8PSKSvaIuYcat9/EH+Axx3TGnZZ9gwY2wY27y9QUhGoFV98ATg2D3J+79eoyGYp3WE8lYZcfG1/+9K2DOF2HZX+zvNSIiSchLdwHJMsZMBc4CjgLGAH2BnoBlWVaH388Y0xsoaXpZZ1lWeVi1ikgXsv4JqN3q3l48DPKKw6unMyg9Cgr6QP0u9z553cOrRySVVtwFc78GVoP9uux4OObp7PqbXv7X2Kn97dXtsE9EiohI8CrjPMnaY6R3e55LMFpkT3zbERFJVDqC0SoXh79NERERERGRTLT1TXtmTy8jLrJnDxUREYHhrZ5vSnKsza2ej3Dp0/pAXp8ktyciIiIiIiLxGPdNWPnPFA1mYNKP03KccXfDDiKWc2hBaf7gkKtpK8/kOy5vpIGo1UiOyQ25IpEMsN/1UP6qff4illX32D+X3Q6jPweH/yvQ0hJWXwH/PQF2ftB2ecUi+5FKIy6xgyhFxN2kH8Fb59vhZ15emAIXVkNeUTh1iUh2cQszzmm1jz/2Glj1L6jZ7Ny3teb9GoBFt8Lhd8Ooy5MqMaUa6+GN06D8tdh9J/0YTE7wNYlIYsZ9E9Y9BpHd/tdZ+Q/75/K/wknvQn6Jd38RERdZu4dgjJlsjHkV+BC4CTgOGIkdemaaHk5mAKubHsuNMUomEpHUW/uQd3v/w8OpozPJLYCpt3r3aawLpxaRVKre2DYUDeyDPYt/k76a4tVQBXO/Gv966QizEBHpqqrX+u+7/y9j93E7GNlQCVbU/7ZERBJVq31JERERERGRtFn+l9h9hl8UfB0iIpItBrV6nuzsYM3X+hnAbRau1jPuFSa5PREREREREYlH70lw+iIYdEriY/Q7HEZeDjNegpGXpq62OGyrdw8hGFAwyLUtDPmmwLWtofX16CJdSV4RHPMc7H9zfOutuht2fhhMTclafW/HULSUMJDXdIiu32Fw0B9h2n0BbEekkxl6Nhz3Goy+yt5X8bLukVBKEpEs5CcYrftwOGk2jLsOSo+C4mH+xrYaYd533LeRDhuf8ReKNu3fMPrK4OsRkcT1nggnvQf7fh1Kp9v7Q7H2iZpVLISlfwq2PhHp1PLSXUAijDFXAX8BumFf5GS1arZwD0UDeBpYhz1jZHfgfEBHb0QktbbM9G4v6BtOHZ3N2Gvg/S+5t7//RRj7hfDqEUmFdY+2DUVrtvE5mHxT+PVYUaheDzndoKjMu2/1RjuJf92jiW1LYRYiIuHZs9J/36Hnxe7jtj9rRSFSCQW9/W9PRCQR9TvSs91dH0OfKenZtoiIiIiISCaINsY+L9B7f+g1Ppx6REQkG1S2ej4hybEmtnq+16VPt1bPa5LcnoiIiIiIiMSr134w48W2y54cCjUbY697/OtQdmwgZcVjW8Q5GK1HbgnFuT1CrqatfJPv2hax6ilQRrh0Vfk9YeIN0GcqvHGa//U2vQh9DwqurkRtejF2n3icOs/+txGRxJUdYz8AXjseyv/r3G/TCwr4ERFnlktoWft9/O7D4aDfNa0ThUd6QKOPU1615bBzHvQ/NLk6U2X9E7H75PWAkZcFX4uIJK/XeDj49rbLVt4Ncz4fe911j8GkG4OpS0Q6vawLRjPGnA/8k7aBaAY77Gwn4HmExrKsqDHmYeC7TYvOQsFoIpJq+SV2IISbgj7h1dLV7FkJPcekuwoR/z66znl5ILP7xLD7E3jvStg1z3498rNw6F2QV9y2X91OePsCKH89ue3VKRhNRCQ0e30Go429xt9Nq4UeQb/1OxWMJiLBi+xJz3aX/A6m3ZOebYuIiIiIiGSCpb+P3WfERcHXISIi2WRD008DjDbGHGZZ1pwEx7q86afVatz2Brbqo5PSIiIiIiIimWDYebDsdu8+hf2g/+Hh1BPDprr1jstL8weFXElH+TkFrm0Rt6AFka6k9CjILYbGan/9P/4R1O2AcddCj1HB1mZZsOIu2Pxix0nmC/pC6TRoqIbts6H8tdRtt3gY9JqcuvFEBAad4h6Mtu4R2Hsb9BgZakkikgWiLvvrOe7hx5gc+z1nw5P+tjHzMBjzBfvR/7D4a0zWrgWw4m/2farb3o7df/CpYEzwdYlIMAadaL9PWVHvfrsXwMwjAAO5RdB/Gux3PRT0CqXMTqVuByz+DeyYA411Hdsn3gBDzgi/LpEAZVUwmjFmEHBv08vmULQ7gN9alrXaGDMSWOVjqKexg9EMcEyKyxQR8f4iCmCy6u03s4y7zvuGi9X3wpSfhVePSDKq1nq3W1bwB3b2rIB1j8LuT2HtA23b1vwHigbBAb9uu3zO55MPRQOo3Zr8GCIi4s2yYNPzsP7x2H37HACH3Olv3AKPYLS6ndBjtL9xREQS1bA3dp8LdsKz+0Ld9tRtd/W9CkYTEREREZGupbEWVt0L1evsYz7zvhN7HQWjiYhIW7OACPa1iga4wxhzlGVZPu9OtRljLgJOouW6wVdcuh7Y6vma+EoVERERERGRQIz/Fqy62/t6j6m3QW638GpyYVkWb+x+zrGttCD9wWh5xv1elYZofYiViGSo/B5wwK/gg6/7X2fpH+x7KU56L9jrX+d+FVZ4XKe7yfm9Jykmz74fJCc39WOLdGVjrob533Vvn3l403tKwIGLIpJd3PbXPcKPAZj8Y9j2lv9r4lf+A1bfB8c+DwOPj6/GZGyfA/89Hhqq/PUvLIVJPwq2JhEJVvFQmHADLPxl7L7b32t5Xv4abHgKTp4DecXB1dfZ1O+GmdNgz3L3PrpvXzqhnHQXEKcfA8XYF0hFgQsty/q6ZVmrm9ot1zXbmot9sRVAP2OMvl2KSOo01Nhpq166jwinls5o2Hne7Ts/CqcOyX6W392GAG14xrt9zhcSH7v59/P6Pbe9Cy8dBAt+0DEUrdmyP0Nkb8uMBJE9sOkF/3Uc8lfof4RzW50m5xYRCdxH34ZZZ/rre+I7/gM580uwv5o7qN/lbwwRkWT4CUYr6AMDT0z9tiN7Uj+miIiIiIhIJmqosc8jzP0yLLzZ33mLsuMUmi8iIm1YllUJPId9YsECpgIvG2OG+R3DGPMF7AlVrVbj3O/S/eRWzxckUrOIiIiIiIikWI+RcNZKmPwzyCm0J+YsPRK6j7RD00581w4YyQDLaj51bRuQn/5gtHzjHpoQsSKubSJdyr5fgxPegoEnAAb6HR57ndqtsPTPwdVUtR5W3pXaMUddYT/KZgDGfk8ddQWMuNT+OfFGOHm2JrQRCUJhXzjW496q2nJY/tfw6hGR7BB12V/PcQ8/BqDPVDjlA5j6Kxh1pf05H3NbdbDwlvhrTMbiX8cRitbP/p16Tw62JhEJ3v6/gGNfhHHX+Xt/albxKax7NLi6OqM1//EORRPppPLSXYBfxphc4BJaws9usyzr8UTGsiyrwRizBGjeWxoPrPZYRUTEv8rFsfv0nhJ8HZ1V6XTvdreDAyLNKhbD3K/Ajveh5772l64hZ6Snlqo13u2r/mWn3vcY6X/M+t3277f2oZZlpUfCIXd0PFC04AcQqfQer7EWHu1pPy8aAiM/6+//s+KhcPZaMDmw+WXnPrUKRhMRCYwVhfeuhDVu9wS1M+wCyCvyP77JsQOH6nd2bHNaJiKSSlbU/0nTkvGp3/7ml2D4Z1I/roiIiIiISKZZdAtULPLfv/tIOPgvgZUjIiJZ7XrgVKCw6fV0YJEx5n7gUeCDpgC1/zHG7AvMAL4AHEjLjC0W8E/Lsj5pv5GmsLVjabnG8K3U/hoiIiIiIiKSsG4DYPKP7EcGW17tEYxWMCTESpzlG/fQhIhVH2IlIhluwJFw3Cstr7f8F/57vPc6W2cFV8+2t+zr3lKlbAZMuzd144lI/Poc6N0e5HuKiGSnRIPRALqPgAnfaXldNAgW3ea9zra3INoIObn+a92C23wAACAASURBVEzG1jf89z3meeg+PLBSRCRkg0+xHwD5vWHZn/ytt3UWjL4yuLo6m/I30l2BSFpkTTAacDhQ0vS8HvhVkuNtoCUYzffskyIiMe12PxEG2MFE/Q4Jp5bOyBjoexDs/NC53WoItx7JLvW74JUjWwJbdi+AN8+2ZwMqPSL8eiJ7YveZeRiMvhqGnWe/f2x/F2o2w4BjoLjdyfU9K+HZsR3H2PY2vDAFRlwMg04Gcux/g3gPstdshMU+d8Em3miH5gAUljr3qVMwmoiIo8he2DEH6rbD4NMhv0f8Y3x8k/9QNICxX4x/GwV9FYwmIunRUO2/78hL7ZO+jT7WGXEJrH0wdr+3L4SL6/2dhBYREREREckWlgW7P4Zd86HvgdBrIqy62//6Rz5in4PIL4ndV0REuhzLslYbYz4P3AfkYAeXdQeuaXpgjKkE9gAFQK+mn9A2EM0Ac4BvuWzq+03jA9QCr7j0ExEREREREXG0pX6Da9uE7lNDrMRZnilwbYtYmmRexFXpkfZ9DV73MOz6CB7vz/8OR0Xr205EX9i/5bnJgd5TYPy3YPCpbcdpqIHlf4HV90FeD9jnK/Y5mFQaem5qxxOR+BWVQf8j7Pu8nOx4H+Z+DabeCvk9w61NRDJTMsFo7Q09L3YwWrQeHsqz70ua9CPof1j823HTWAsLfgibXoDKJfGtWzwU+h6culpEJLOMusx/MNqqu2HbOzDoJHufKa97sLVlotX3wYq77PsxB58OU34OteUw/3uw9qGWfvm9IbI7fXWKpFE2BaM1p3xYwNz2M0QmoPX6ujJXRFKnYqF729Bz4bC/2+FekrjGWve28v+GV4dkn3WPdgxrsaKw8h/pCUZr2Bu7T+1WWHSL/WgtJx+m3Q8jLrRfL/8bzP2y91hrH2r7RSgoB/ymbcBONwWjiYj4tnc1zDqzZZ8yvxcc9QQMPM7/GNFG+7PNj5LxsP8t9gHEeBX2BaePsrod8Y8lIhKPhir/fXuOhWNfgLlfgcrF7v1GXWHPoDn6KvjoOqhY5D3uxudh2Dn+6xAREREREclk0Ub48P9g+V9blpUeBdXuNwC2MehkGP6ZYGoTEZFOw7Ksh4wxUeAu7Ov1rKam5otoejU9Oqzaqt/LwMWWZbkdJLwPeKTp+V6PfiIiIiIiIiKOyus3Oi7vndeP4twEJjlNsTzjfitgQ7Q+xEpEskxuARz6N3j3Uu97kryuga3b3vb1llfte5iOfbHtdbjzvwvL/tzy2i00KVEDT4LRn0vtmCKSmIP/BC95hPssv8OemOrEt3U/qYiAW5Bxjnv4sat+h/jvu+l5KH8NTpoDfabEvy0nb11gj5uIQ++CnNzU1CEimaffITDhe7HDG5vtWWY/dn8Cx7/etfaZVv4T5nyh5XXFItg1z76vtGZz274KRZMuLJuC0VonaqxPwXjRVs+z6d9BRDJd1Wrn5SM/C0fcH24tnZXXSQiAJ4fC5JtgzBe61g6wxLbkD87LV90Nh/8r3FoAInsSXzcagXcugrJj7RNssULRwjJjJgw6se2ywgHOfWu3Bl+PiEi2mX9D26DdSAXMvhJOXwz5Pi+qqtsGtVv89T3DIyQolnyXjPF4AotERBLhJ2C4tbJj4PSFsO1tWHUPrHuk7RjdBsLEH9jPB51k9y2fBa8d6z7mwpsVjCYiIiIiItmtbid8fGPbMLTWtr3lf6z+01NTk4iIdHqWZT1ijHkX+A1wHi3X7VkO3U2rn6uBX1qW5Xli37Ks2amqVURERERERLqeqBVla/0mx7ZzSq8IuRpnxhjyTQERq2MImtMyEWll2Ln29bhrH4QFP0jNmFYUlv6xJRht72o7CClVymbA2C9BQV87LKBkPAw4GnLyU7cNEUlc34Pg5LnwskdA0fZ3YftsKJ0WXl0ikpmiLsFoJoHPdWOgoA/U7/LXv7HW3kc59M74t9VexZL4QtHGfRP2roT+R9j32XcflnwNIpLZpt4Kw86Hbe/Y9xlueiF2YPTWWbDzQ+jnETrb2Sz+TcdlW16Nf5zBp0P/pn3NvgcmV5NIBsqmQLDWFz+lIga2b6vnikcUkdSpWue8vPuIcOvozKJ13u01G+H9a+xZ7Kf8NJyaJDtUJhH+EoR4Ax2cPFGW/Bip0nuyfeKtvW6lHZeBHdwjIiItrChsfLbj8uoNdojPmM/7Gyes4MmcQufljTH21UREkpXIfrQxMOAo+3HQH2HD07B7ART2t0+wFg9p27/sGCgZB5VLncfbOdd+v8t1eS8UERERERHJZA018OoxUPFpasYrHpqacUREpEuwLGsDcLExZhBwAXAEsD/QH+gN1AG7gLXAbOBVYKZlWU7haSIiIiIiIiIps6thm2u42MCCIY7L0yHP5LsEo7kELYhIix4jYcL3YfGv/QeJxLL55ZaxVt1tXw+cKtPua7m2rf0E9iKSGfocALlF0Fjj3mf7e9kVjBZpuk7X78TuIuJP1CXIONHAUxNnTMjml9z3f/J729fbg70vE6nwHscvkwsH/d5/fxHpPPodYj8ARl4Cz4yJvc7ml+xgL5MTbG3pYllN768W1FdA5ZLUjDvtXijsl5qxRDJQNgWjtU7OGJyC8Sa1er4jBeOJiMDeNbBjjnNb8fBQS+nUGmv99Vvye9jvOzoIJ/401EBeUcjb3BPu9oI2/WHIcdi9LHQLRttp//+c2y3YukREskXDXmisdm77+Ef+g9HqQgpGcwsDcjtZIyKSKskGDOf3gFGfBT7r3a94mHswGtghAifPTq4WERERERGRdNj0QupC0QBKj0jdWCIi0mVYlrUZuL3pISIiIiIiIpJ2W+o3urYNyKBgtHxTQA1VHZY3uIS6iUg7xsCIS2D5HakZz2qEx/qmZqzWBhzdccJPEck8Obkw/DOw+t/ufeZ9G2o2wdRbne+7yhSbXoKPvgWVi+3XJePhgN/CkNPSW5dIZxF1CTJOOBjNxNe/aq37Pku3MhhztX2/59qHILI7sZraG3BMasYRkezWYzT0PRh2fuDd7+MfweLfwshL4cDfQ25BOPUFzbJg0a2w7Hao2Zz68RWKJp1cNkUlrmv6aYADjDEJ7uWBMWZfoPVRoY+TKUxE5H/eucS9rXhYeHV0dhNu8NevYU/snWTpOmIF6lWvD6eO1pINdAjCkY/AyMviX2/fr0Ov/Zzbiga5rGTZB81FRMQW8QjMrNkE9T5PLNT6DEab8nN//dzkuBxcVDCaiAQtEtJ+dKzvEDvmwPqnwqlFREREREQkUTs/ggU/hPk3wPY59kWsb1+QuvGHnQ8l41I3noiIiIiIiIiIiEialNdtcFzeO68f3XJCnoDbQ75LcELEcglaEJGOpvzcDh5Lp4K+cOyLkNejY1vPfeCwf4Zfk4gk5oDfQL/DvPss+S18fGM49SRi1wKYdUZLKBpA5RJ480z7nLOIJC/VwWjEGYzmpbYcFt4MK+5MXSgawPhvpW4sEclu0+6D7iNj94vstkOsP/xG4CWFZtmfYcEPgglFG3VF6scUyTDZFIz2HlADWEAR4JE+FNO1rZ6XW5a1NJnCREQAqFwOO2a7t3cfHl4tnd3Qs/33nf354OqQ7FFfAS/HOMC8Z0U4tbTmFYCTDmeusGcp2efL8a/r9f9lyTgo6OPctvXN+LclItJZxQrM3OAzfMdvMNrQc/31c+MajFaX3LgiIrE0dpzxNhAl42P3mfslO1RARERERETiZ1n2Q4Kz4WmYebh98eqiW+3nj6dwhsj9b4HpD6ZuPBEREREREREREZE0Kq/f5Li8rGBIyJV4yzPOwQkNbkELItJRYV84/nU47VN7cvn2jzDs920YfAqcuxmOe7Vl2yfNgdMXQs+x4dQhIsnrVgonvRs7mGLlPyDaGE5N8Vr5L7AcarOisFJBjSIp4RZk7HZvTmeQX5LuCkQkU/QaD2cug5Pegz4HxO6/+t/QUBN8XWFY8bfgxu6h743S+eWluwC/LMuqM8a8BpzRtOiXxphnLMuKK3bWGDMd+BJ2wBrAEyksU0S6quqN8Ny+3n26DQinlq6g5xg45A6Y+9XYfatWQ/1uKOgdfF2SudY9Crs/9u4z63R7do6D/gT9Dw2nrlgBOGEpGgLHPGv/vwXQ/wiY8H37Jik/9rseyo53b8/Jh0GnwFqHm6Nqy+OvV0Sks4oVmLn2YRh9VYwx9sJH18Xe1tTboPdE36U5yil0Xh6tT25cEZFYwjq5MfKz9kUoXmq3wtI/wZSfhFKSiIiIiEinsOMDeP+LULkUek2E/X8Jg05Kd1Wd0/zvuc84nIzuI+DIx6DfwakfW0RERERERERERCRNttRvcFyeacFo+S7BaBG3oAURcWZy7Gtpna6nLZsB5a8Hu/1ek+yf+T1goMf9GCKSHUwOjLjEDvFwU7cDajZC9+Hh1eWmepN9T1eviZBbANvfde+7/jE4+M9gTHj1+RGNQMUiaKxNdyUi/tTvcl6e47x/3ymYrIkyEZEw5ORD/8Nh8k/hzbO8+zZWw5r/QO/JLct6jLYDaTNBtAH2rIAeoyC33T2WVhQql9j3ijbWQsXC4OrozJ8hIk2ybW/il9jBaBYwBJhpjDnDsqytflY2xswAHgNyAAM0AL8JqFYR6SqsKPzXxwHovJ7B19KV7PMVGHIWvH8NbHrBu+/cr8KhdypdvCvbMtNfvx1z7P+fT18Y/EFmywo+GG3fr0NuEfQ50P5yU/46FA+G3GJ7Fo+8YigeBqVHQUGvlvWMgam32OE7z413H//Qu2DA0VAyLnYt3cqcl0cq4vqVREQ6tVifC5tfgsrlULJPx7ZoA2x8Dt461339HmNhys+g/2H2gcBkuc1Ko2A0EQlaNKQLGEqPgpLx9gkJL2vuh8k3Zd4FHyIiIiIimahqHbxyJETr7Nc7P4A3z4XTFmjW+1SrWmuHz6XawBPgqMd13k1ERFLCGJMPHAqMAfoCPQFjWdbP0lqYiIiIiIiIdEnl9Rsdl2daMFqecb52L2Lp2j2RlBl1VcdgtLzuMP7b8GkKDl0VlsKgk5MfR0Qyy8DjoWiIHX7m5ukRcO4WKHK5zypoNeXw9vmw7R37dW6Rfc9ZpNJ9ndqt8MwoOOoJ6HtgOHXGsvo++57RoO/NEwmDS/BxUgafDpueT/248VJgj4g4GXSyfc95bbl3v/e/6LDuqTD9wbb3xIdt3WMw52p7/ymnEKbeCuO+Yd9TtOW/8O4l9v5TGHKyLTJKJH5Z9VduWdYcY8xDwMXY4WgHA0uMMb8HHgE6HME1xuQCxwJfBD6DHYhG0/p/tCxrTfCVi4gvjXX2QZ9ugyCvKN3V+Ff+X383FeR2C76WrqZ4CBzxgH1A0Ctcae2DsPEZOHW+bqrpqtY/4b9vw167//hvBlcPQGONHawYhMJ+cObKjl/shp8f3zgl42DM1bDyn+0aDJyzDoqH+h8r3+VLpoLRRERaRPbE7vPcvnDqPOgztWVZ7XZ4ZTrsWea97tgvwMhLkquxNbdgtMa61G1DRMRJWDO75eTC8W/AB1+DDU+D1eDcb+9K2Pkh9Ds4nLpERERERLLZmv+0hKI1a6yGT34GR3jMnC3xq9sezLgTvqdQNBERSZox5kjgeuAkoNChS4e7S40xpwAXNr3caVnW9cFVKCIiIiIiIl1NTWMVlY27HNsGFsRxzXQI8l2CExqsSMiViHRioy6HqtWw6Fb7erXi4TD9Ieh3qH3z+/I7Ep9IuOe+cOSjkOt0WExEslpOPhw3E966ACoXu/d77zI47pXw6mqz7StaQtHAvr+tsSb2elVr4fVT4Jz16X//2jXf/j1EOosgwsP2vxm6ldohglZj6sf3S4E9IuIkt8DeF3r7M/FP/Ln5Rfjg63DEfcHUFkvlcnj7Quy4IuxrIT+6DnpNgL4Hw6zTw7vnCcDofVY6v2z8K78aGAccgP1u0Rv4SdOjzdEkY8xiYBTQvEdomtYxwLvA98MoWEQcRBtg/vfsWeGr19k/a7fYbSe+DaXT01tfPDbP9NfPmNh9JH4FveDA38Ocz3v3a6iC+d+Hox7z7heNwKLbYMMz9kG90iNh8k/SNwuDpEZuN/tvwC+vg8+p0lDt3nbqAigZD4/3S2zmitM+TV3a9YQb7Pe56vUtyyb+ML5QNHC/ScprRhERka6mwUcwGsCca+DkOS37lx99M3YoGsCwOAMyY3E7oZnohR4iIn6FGcBYVGZ/j7QsO1TgyUHOJ4fXPaxgNBERERERP3Z/7Lx8zX1w2D/si54kNaIBXNha2A8GHJP6cUVEpMswxnQH7sKeGBVaJjltzXJZfSFwOZDTNNZ9lmUtSHmRIiIiIiIi0iWV1290bSsrGBJiJbHlG+dj6RFL1+6JpIwxMPkm+36K2i1QPKzlut2Dfg9Tb4HKZbgfygK6j4SaTW2vqy3oA92HB1m5iKRbrwlwxiJ4cjDUbHbus+VVu61oULi11WyGLT7vhXVStw02vwxDz0pdTYlYnaYgFJGgBBGMltcdDr8bDrrdngTcyYtTY4/TbQDM8HjfyO8Fz4xyb3cJdRYRofdkOGMJVK2HmYe57zc5WfcoHHoX5BUFV5+bNffj+D1w1b2wd3V8oWinzrd/mjzIKbAnmG2taAg0VsG878K6R5zHCOIzRCTDZF0wmmVZNcaYk4GHgONoedcw2LNHNgefGewAtf+t2qptJnChZaUz4lakizO5sOLvzuEPVeuyJxitsR4W/zrdVciYz0HvSfDyod79Njxt30DvNSvBu5e13Tms+NQ+2Hjqh+7BTpnOikLFQsjrCT1Gprua9CgeBpVL/PePJBBGFq+ox5eb3CL75q/hF8Cqe+Ifu1sKg/x6joGT58L6x6FmI5TNgIEnxD+OW1BbpCK5+kREOpOPb/LXb+dcWPUvGHiiPSvCmv/4W6/n2MRrc5LjcqOygtFEJGhe+9JBMcaeNWvgCfZFHe2Vzwq/JhERERGRbLT2Ife2ysXQZ//wauns/Ibwx2O/7+hiKhERSZgxpgR4C5hEywSnrTVf2+fIsqz1xpgXgDOb+l4MKBhNREREREREUmKLSzBagSmkd16/kKvxludynDYSjYRciUgXkFvgHGSW2w36TIm9fqomvBeR7DPkTFhxl3v7ir9D3wPte9jyiqDf4fZkvkGo2QzbZ8PG55If682zYdq/of806DGmJTQyDFYUKhbBkt+Ft02RMJTsl/oxc5oiRPJ7uF+LM+JSWPuA9zijrkruWp6crIsyEZGwdR8Goz8HC2/2v060Dj75CfSaCLXl9mSfg09NTeisZdnXMe6aD05xRJ/+zHm9tQ/Apjj2tYZd4PP9tb+dOeDG6H1WOr+s/Cu3LGu7MeZE4PqmR2lzU7ufzZqD0nYDvwZ+pVA0kTQzxj4wXLGwY1v1+vDrSUT1Jngqs2b+6dL6HQIzXobXT3bvYzXAnmV2irCTZX9xTszduwI2PAOjLktNrWGqWAKzToe9q+zXZTPgqCegoHd66wpbvAEtDSEEo3mlPud2s38e/Geor4CNT9sHb/0oHpr6g8pFZbDvV5Mbwy1YsF7BaCIiAEQj9j6HX3O+EFwtfrkFozXWhVuHiHQ96XyfGXquczBaxUJ7n93khF+TiIiIiEi2+OSn3u01WxSMlkqpPtcx9BwY/+3UjikiIl3NY8BkWq7tqwceAV4HosA9PsZ4EjsYDeBE4IbUligiIiIiIiJdVblLMFpZwRByMux6kHzjfO1eg6VJTUVERDLGmC/Cyn86B2oAfOIwqfohf4V9vpzaOpb/FT74P/c6EvHeFfbPsV+Gg28PJ/iooQreuQQ2Phv8tkTC1GMslB6R4Moe95D6CcrZ50uw9kE6xnI0ySmAMZ9PqLKWMTT5noj4MPpzsPi3duCZX4t/1XHZgX+A8d9IvI6GGns/Z/1jia0fqfTfN559Pq99LQVQSheQWUdm42DZfg2MAK4GHgI20jJzZOswtOeBa4FRlmXdolA0kQxR7DBjBkDVunDrSERDlULRMtHAE+wDAV52f+q8vH43fPB19/V2vJ94XeliWfDWuS2haADlr8NH16WvpnSJ9+afjc+kZhaM9vausm/8ev9LsPrf7v2ag9HyusPRT8D52+HcLXCMj5oGn5GaWlMt32Wmo8hu+29VRKSra/15HYRxAXz+5xY6L483kFREJF5eIcPNxl4TzLb7HOC8vLEaqtYGs00RERERkc5gw9P2LI1e6raGUkqXEdmTurFGXApHP6kLqUREJGHGmAuAE2i5s+I9YB/Lsq60LOseYJbPoV5qHhLY3xjTI6WFioiIiIiISJdVXr/BcXlZQebdN5JvnMMFIlYk5EpERETEVb+D/d0H1trcr8CelamrYc8KmPu11IaitbbiTlj/eDBjt7f0TwpFk84lr7t9H+gJs4IJD/Mz5oCj4ajHoffktstNDvQ9CI57FUrGJVeHn4A2EZGeY+H416DvwWByEx/no29CxeLE11/xt8RD0fzqNRGOfAQGHu9/HZfjQDHbRDqJrN+bsCyrFri76YExxgB9gAJgh2XpqK5Ixuo+zHl5dYYHo9VXwBNl6a5CnJgcOP0TeLjIvc+2t2DkJR2Xr33Qe+z6XcnVlg67F0Dlko7L1z0Kh/69a9280lAV/zqzzoQpP4dJN6amht2fwGszoG5H7L7NwWjNCvrYP/0cSBp9VdylhSK/xL2teh10HxFeLSIimSjocGCn/Z9k5TjPOqlgNBEJnJ9gtNGfC2bbvSa4t5W/AT1GBbNdEREREZFs5+cC5fe/DKMuD76WrqIhRcFoQ8+GI+5PzVgiItKV/aDV80+BEy3Lqo53EMuythhjtgIDsCeF3Q+Ym5oSRUREREREpCsrr9/ouDwTg9HyjPO1exFL1+6JiIhklMGnwIiLYe1D/tdZ9yhM/H5qtr/2IVrmKwnI2odgxEXBbqN5O7GcPNcOGxHJBjn5wd7f6zeQbNi59qOxDqxo07q5kOtyv1C8ggh9E5HOqXQ6nDIXGuvbhrq+cQpsfdP/OOsegck3JVbD2ocTWy+W6Q/BkLPsHIzcwvjX9/q86EpZEdJlZfxfuTFmf+AkYALQv2nxdmAx8IplWfNa97csywJ2hlqkiCSmeLjz8qq14dYRr9eOg2hduqsQN7ndYPDpsOl55/b1T8JBt0NOu8TgWAfH6rPwo2XTS87LG6qgdgsUDw23nnSxookFowF8/CMYeAL0Pzz5Ohbd5i8UDToGozXrMdp7vUk/hv6HxVdXWPJ7ubctvR0O/E14tYiIZKLq9cGO3++Q1I/pGoymfWURCVis95n9b07NPryT/B7Qcx/Ys7xj27qHYUxAgWwiIiIiItluh4+8ksZqqFwOJfsEX09XsOaB5MfILYZp94MxyY8lIiJdljFmEDC11aL/SyQUrZUl2MFoAPugYDQRERERERFJUqPVyLbIZse2soLMu+Y+3yVcoMGKhFyJiIiIxNTv8PiC0RbcAL0nw6CTkg8U2jUvdp9kbXrBYbsfQ/nrUDTIDofLL0l8/OpN9jZ2f+zdr7Af9J6SujAnkWwXb1BOIkE9fvgNaBMRadb+s3zAjPiC0T75CUQbml5EoWo9FA+BgcdD2XF2OFlrVeth80t2vsmO2clU7szkwoCjIa8oiTE89gn1PitdQMb+lRtjDgR+Dxzp0e0WY8w7wLcsy/ognMpEJGW6uwSjVSyCyB7I7xluPX58cC3s+ijdVUgs477hHoxWuwW2vwsDjmpZVr0Btr7lPWZdFgajNex1b9v5YdcJRmtI5npqYOY0uKgu+QOja/7jr5/Jcf8iYnKg32GwY07HtqFnw5SfJl5f0Ar7ubdteErBaCIiVeuCG3vSj4IZN8flxEdjbTDbExFp5vY+k9cTzlhsn7QI0pCzYMlvOy7f8irUboNupcFuX0REREQkG8W6SLnZ2odgckDHMrqSrW/DtreTH2f0VXZAtIiISHKmNf20gPWWZcVx1bKj1hdweJyIFhEREREREfFnR2QrDVaDY1tZweCQq4kt3zhf1x6J1odciYiIiMQ06jJYfBvUOIewOpp1Bgw8AY5+CvK6J77tXfMTX9evaD3Ubodu/e3XS/8MH16LfUoAKBkHM2a630vsZdt79r9FvY/7Osd9U6Fo0vV4TXLnFaITpmQDHkVExlwNy273tz/QbOEvOi5bdCuMuBim3dcSHln+Brx5NkQqU1Kqo1FX2mGxyfAKu9T7rHQBObG7hM8YczbwFnYommn1+F+XVo8jgTeNMeeEXaeIJKnPVOflVgNsnRVuLX7M+5694ySZb9CJ9o6pmy2vtn29eSb/O9jmZsdssKJJlxaqyB73tjfP6fjv0Fl5BcT59aLL+1UQcgq9D0oNPct5+fhvB1NPqnQb4N62dyWs9vh/VkSkK6heH9zYQ84MZtwclxOH1esh2hjMNkVEwD0YbeQlwYeigX0yxInVCOsfD377IiIiIiLZqHS6v35r7g+2jq5ijc9j7rkeM1FOuAEO+lNq6hERka5uYKvnC1IwXuuLAJTgKSIiIiIiIkkrr9/g2lZWEMK1KHHKcwk5iFiRkCsRERGRmAr7wUmzYdDJ8a235VVYdW/i262vgL2rEl9/v+thwDH++i74gf2zdhvM+xZt7tOsXAoLb06shg+/ETsEpdckOOQOmPjDxLYh0ll5heiEyWRIHSKSvboPg5Pes+/j6TEGiocmPtbah2DTC/Zzy4IPvuYvFM3k2tttfngpGmT36XsITPkFHHpX4vU28wo/0/usdAEZF4xmjBkPPAgUYQefWbR8C2odkGa1enQDHjDG7BdutSKSlF6ToFuZc9vqDLvp4aPrYfGvYvcbdp7z8sk/S209Etuoy2Dwac5t7WdY2LPc35gbnk6uprCt/Id3++zPuwcKdCapCEarXAy7krg+u7HOf9/cbt7tY78MfQ5su2zUFVB6ZPx1hW3wGe5t718DkRT8txIRyVa1W5yXJ/v+PuZq6Htwqo8CRwAAIABJREFUcmO48ZpRaeMzwWxTRLqmHXNh1lnw3ASY80WocbkYNacwnHr6HmSfUHEy9yvh1CAiIiIikm3cAtbb27MMKhYHW0tXULEwdp9TF8AJbzq39RgNU2+GnNzU1iUiIl1Vr1bPUzHVcuswtC5w0YOIiIiIiIgErbx+o+PyvnmlFIR1PUoc8o3zMfcGqz7kSkRERMSX7sPh2Bchr3t86214KvFt7v448XUBhl8IJ7wBl1oxu7Jjjv1z80sQdQhqTeSezJrNsHOud5/CfnD6J7DPV8AY774iXY3JkOs9vMJ8RET8KtkXpj8IZ62Ac9bD4UmExzbvX+1dCRWLYvfPLYaLI/Z2mx/7Xuvc1+TBuZvsPqe8D5N+mJrr77zCzzIlCFMkQBkXjAbciR101hx6ZoAG4D3gEeDRpucR2oakdQP+FnaxIpIEY2DgCc5t6x6GnR+GW4+bpbfDkt/G7jfoFBh/PS1vTU1MnntgmgSraJDz8sjutq+r1/sbb80DydUTpo3PQ2O1d5/q9bDppXDqSaeGqtSM88HXoHZrYuvW7/LfN1YwWmFfOPEtmPZvmHgjHPMcHH5PdhzAHXq2e1tjLWx6PrxaREQyjdtnTO8p8Y/V7zCYeisc8zwc+vfgPiO8Lvja/HIw2xSRrmfXfHjlKNj4rB1YvPIfsO0d576x9qVTxRgYcZF7+7zvhFOHiIiIiEg2sRr99133aHB1dBVu35ua9TkQ+kyxg59LxndsH3FJMHWJiEhX1fqEeS/XXv4NbvV8ZwrGExERERERkS7OLRitrGBIyJX4k2+cwwUilkMQiYiIiGQGY6DsuPjW2fIKzJwOC26E3Z/Et+6u+fH1by+ecNjdH8PbF8J7Vzi3126BBww8tx+881lY/FuoXAaLf2e/fvM8u/0BA2+eY//OL0yOvd0BM/zXKNLVmAyJEPEK8xERSdSgkxNfd9XdsPRPsO1tf/0L+3e8N3P4Z5z7jv5c4nV58QqZ1PusdAEZsldjM8ZMAo6mJRAN4LfAQMuypluWdbFlWRdZljUdGAj8ut0Q040xCdw1LiJpM/h097a1j4RXh5uqtfChS2pre0fcD6XTYNp9UFhqLysaBEc9Dr0nBlejuMvr4bx83aNtU3zX/MffeOsfS76msCz+lb9+G58Nto5M0BAjIM6vbe/AE2Ww5A/xr1u/O3afZjk+whzyimHU5bD/z2HI6dkRigZQEOMa90RmABER6SzcgtH67A89Rsc31thrYML3YMhpwX5G5DjPOgnACuWWi0iKLPkDROv89Q0rGA1gxMXubavuhmgcoQ8iIiIiIl1BPMFoycx6LbbcIu/2o5v+jY2BGS9B30Ps1zmFMPZLMPkngZYnIiJdzrZWz5O6gMYYUwhMbbVoQzLjiYiIiIiIiABsqXf+ellWMDTkSvzJc7l2LxKtD7kSERERicuEGyCve3zrbH8XFv4SXj4Mtrzqf71kg9HivSbXzwRolUtg7QMw73p4bhzM+7b9esOTLX02PG3/znU7vMfKL7HvmRDp0rLgntKc3HRXICKdUVEZjP924ut/+A2Y7TPELM/hOrzS6TD4tLbLCvvD+OsSr8mLV/iZV2iaSCeRUcFowPlNPw12ONq1lmV9x7KsXe07Wpa127Ks7wFfa9Uf4LxQKhWR1Bh2HuT3dm7b+WG4tTh547TYfQCOfhoK+9nPR30WztsC52yAczbC0LOCq0+8uQWjAbxzKVhW/H9nqQrZClK0EXa8769v+WvB1pIJGmvc2077OP7xProOHsiBdy+DVffaf0deGqrgk5v8jx9mmEPY8kpidMiCg3EiIkGwLKhzCUbrVgaTfhzfePk9k6/JD69gNBGRVFl9r/++8cxOl6xek6DHGOe2uh1QtSa8WkREREREskG0wX/fXfMgsie4WroCr+M2n6mA7sNaXncfAae8D+dtgwt2waF3Qo5mkhQRkZT6qOmnAUYaY8YnMdb5QPMHXQMwO5nCRERERERERADK6zc5Lh9YMCTkSvzJN843vTZYkZArERERkbiUToMT34Vx34DiOANYG2tgwQ/99/cKRis7DsZ+2Xv93BCvyY3XuOvsf8d+B6e7EhEREUmXA34N0+5ruSc/r6e9j1N2XGq34zRBqTH2xKQH/RGGXQD7fQdOmg299kvttltvz7VN1/lJ55dpwWhN0xBjAbMty/pLrBUsy7oTeIeWJI1DA6pNRIKQWwhDz3Zus+K4QSIIFYvsh5dh58PJ73cMPzM5UDzEe0dDgucVjLZ7AVR8CsvuiG/MPcuTqykMe1dBY62/vlVroWJJsPWkW6NLmF1uEfSeDAOOTmBQC9b8B2ZfBe9f496toQZeOwHWPeJ/6M4cjFbQK90ViIhkpoa97p/dhQNg9JVw7Esw4mJ/43ntA6WSZhQQkaDFG4QQ5r60MTD2S+7tq+8DKxpePZ1NQ7UdnNFYp39HERERkc7Caoyv/1PD4wtT68yiDfY+coPHRDCtWVGIVDq3TX/YnjnbSbf+zjNcioiIJMmyrNXAilaLbkhkHGNMIdB815cFzLUsqyrJ8kRERERERKSL29tYyd7GCse2sowNRnOeHEPBaCIiIlmgzxQ46A9wznq41LIfF9XQcou8hx3vQ/3u2P2iEfu+SSeH3wPHvwaH/hX6THUfo/Vkxf0Oi73NsIy4BA76HfSemO5KREREJJ2MgVGX2ftRl1pwYaW9j3P8a1A6PXXbcQpGA/u+ynHXwlGPwgG/gp5jUrfNeGgCVOkCMi0YrXUE4r1xrPfvVs+TmVFSRNKhxyjn5TvmhltHe+se926fMROOegz6HeLdT9InVijI5ldg1b/iG7N+V+L1hMXtwKWbpX8Mpo5M0ehyo1Dzl5FD/wElrXYfeu4b3/gr/wGVS53bNjwNO+KcoLozB6O53WzVbO+qcOoQEck0tVvd27oNsH8OPhmmP9hy8vOYZ93XCSsYLRv2i0QkezXWwZsuQepuwt6XHn+de9unP4VHS2DJ78Gywqsp2zVUwdsXw2O94aF8eLgbPJgLr5/i/XkpIiIiIpkv3gmRIrvtY+xdmRWF+d+3940f6Q6PFMMDBj7+iXeAcMNe7KwYB91HBFGpiIiIH3c3/TTAZcaYK+NZ2RiTA/ydttcXxpx0VURERERERCSW8vpNrm1lhUNDrMS/POM8qWnEqg+5EhEREUmJ3G4w8AR/fR/rY583bn48MQg2vdi2T8ViiLrsF7QJQ/OIGMhtFYy279f91RaGIWekuwIRERHJdINTuL+Q6ff85zgfIxLpTDItGK13q+cfxbFec1/TbgwRyQYm13l5YzXU7Qy3ltZW/9u9re9BMOjE8GqRxOTHCAWZ9+34x4xUJlZLmKrXx9d/xZ3B1JEpGmIEo5XsA6d8BKd8CCfMgjMWQ984Aw9fmAJL/wTvXg7vfxnePBdePBDevST+ejP9S1Iy8nt5t++YDdE4b44TEekM6na4txX2d2nwmBHKhJT033Mf7/aGqnDqkM6voRo2PAsf3wQLboQVf4fqjemuSoK26DYofz2+dWLtb6ZaTh4MPs29vaEKPvoWvHwIrHnQnoFPvL13Fax7uOO/1eaX4Q2Hk1ON9bD6P7D0z7D7k1BKbGPXfFjyB1j7cHYcLxARERFJJ6sx/nU2v5z6OrLJotvsR3uf/hQW/8Z9vTX/cW8L+3uTiIhIiz8CW7HTOw3wT2PMzcaY4lgrGmMmADOBzzatbwErgIeCK1dERERERES6iq31ztchdcspoldun5Cr8SffNRhN16aIiIhkrf1/mdh6tVvgjdPs61SbzTrTuW9OPpS0mn/EeEQM5LS6v23Y+TAwA+6lHXgCDDsv3VWIiIhIpht7DfQ5IEWDZUIkUwbcRyqSRpn2V976KlyPO8M72NXqec8U1SIiYXELRgNY+xDs+9Xwamm2+j7Yu8K9few14dUiicuLEYzmJbfYDudrLxtudG50CQLrqtz+PZqD0QDyiqDvgS2vh38Gds71v41oPXz4jcTqa8/lRHWnkF8Su8/Lh9hBdcbji5qISGfj9dnttj/jlebvtX+dSiXjvdtfORJmzIRupeHUI51T/W54/RTYMaft8oI+cPQzMODI9NQlwbKisOz2+NcrOzblpcTe5vGw6QXvPjs/hHcvhU9/Die9CwWa18FRZA9sfNq9fedc2L0Qek+0X9duh5nTWh2/MXDAr2G/BELQE7HkD3bwHZb9umQczHgFug8LZ/siIiIi2cZtUoz8EvdzLyv/Dof8FXJCOtaRaVbf69H2b5jwXee2T3/uvl6BgtFERCQ9LMuqNsZcCTyHfeVwDvA94GvGmBeAda37G2MuAvYFTgKmYV/p23wSuRa4xLIsK6TyRUREREREpBPbUr/BcfmAgiGYDL2eOS+nwHF5gxXBsqyMrVtEREQ89DsEzlwOz8aYvNzNwl/CyEvs8+/V65z79JoIua32I7yC0XILW57nFcExz8KGp2HXPCgaZE+Otmc5OB2qr99hT45ctz2x38XJEQ/A8Au876MQERERASjsCye8CesftycZ3b3Avj8tWh//WJl+jEXBaNIFZNpfeetvUfFMGd26byZELopIPBrr3NsqPg2vjmbVG+C9K7z7jLw8nFokOYkGo426wg5eqFzasS0rgtFqE1invu2Bzc7EKeAOIM9j4umx17R82QlbXvfwtxkWP/9P7poPuz+BPlOCr0dEJFO4BaPl5Lvf+Nv/cLs92m6Gx9wi6D0ptfW5MQZGXwWr7nFu3zUflvwOpt4STj3SOS39Y8dQNID6XfDhtXDKh5l/kDmb7JoPn/4CKpfYM8Id+Lv0hDztXR3/xRD73wLFQ4Opx8s+X7G/O+z6KHbfysXwWB8o7AdFQ2HERTDhe94XlnQle5Z3/Fxrr+JTO4hu8a8c/kYsmHe9/Rh6Lky9DUoSvEAolpotMP+7/C8UDexjCAt/CYfeGcw2RURERLKd5XL6f/z18MmP3df78Fo45C/B1JTJoo3O56maVSy0LzBv/53YsqBms/t6+QpGExGR9LEs62VjzFeBO2i5xq8ncGG7rgZ4oN3r5gMxDcDVlmX5OCAnIiIiIiIiElt5/UbH5QMLhoRciX/5HhNxN1gR8k0nvS9ARESks+s5FnqMbTVhbBwqFtrXV+/62L1P7/3bLfC4frX9ta25hTDiQvvh11sX2IEkyTr8Hjv0TUTa0X0UIiKu8nvA6CvtR7NZZ8HGZ9NXUxAUGitdgO66E5H0K+jj3rbb40BMECwLnopx0/cZy+yUe8l8LjMhxTT+25BX4tzWWYPRUjkDQ6ZxC5vJ9fj/uKAXnPIBTPs3FJYGU5cbr8C2bGcM9PQRTLDh6eBrERHJJIl8VuWXwOAzOi4fek64nyXDzvduX/9EOHVI57XlNfe2XfPcZzST+NVshteOty9AqFgI6x+Dlw60L5II24Yn/fWbcAPsfzOc/D5M/H6wNbnJK4LjZkKfA/yvU7fDDmFe8AOYdWZwtWUbP7PvvHOxHUgW6zvshidh5mFQU56a2jqM/7RziNuKvwW3TRGRMEUbYevbsPTPsPVNe1IFEZFkWQ3Oy4sGwbEvuq+3/A6oWBxMTZmsfkfsPg17Oy6rcb6B73+8jjeJiIiEwLKsvwMnA1tpG3hG0/Pmh2m33ADbgZMty3ownGpFRERERESkK9hSt8FxeVlBGibo88kr+Cxi6dyeiIhIVht+QeLr7lnpfT/uiIvbvg56cuphSfwuzXIKYPDpyY8jIiIiMvVWMHlxrpThIZQ58f4+ItlHwWgikn4DjnRva6gOrw6Aco+b7gF6jIaeY8KpRZLn56ZqJ32mQH5P57ZOG4y2NfV1ZIqGBMJmwP4yMOpyOK/cnm0jLP2PCG9b6bD/LbH7fPJjqFobfC0iIpkikWA0gGn3wtBz7WT/nAIY/hk47B+pr89LXg/v9j3LwqlDOq9YoVy7Pw2njq7gk59C/c62y+q2w+r7w6uhsQ7euRTmfce7X7/D4cK9MPVm/p+9+46Tor7/OP6a3WvcHRz96BwdpEgTsCGCotiNBdQYjTFqNFFjfkl+xlRTTaIx0V+a0TRjb9gbYEeqovQicCDSOeDuuLY7vz/Gy7WZ2dnd2Xb3fj4e94Cb73e+3w/H3d7M7Hzfw8hbocsxyanPSW4XmDGv5Q0jXux40XrqjF3IVltTV+HveDUH4JP7/R2z3rrfObc93QNW/cIK3xcRyUSHN8Jj+fD6ibDsG/D6SfBoHhz4MNWViUimM0P2240gdJ/qvu/6//O/nnRX5eF9G7tzZrfz5C6TE39ju4iIiAemac4HBgPfAbZh3Unc/INGf98H3A4MMk1zQdILFhERERERkVYrZNaxt9b+AWjFOb2TXI13WUa2Y1utqXtQREREMtqI/4l9bdmiq2HZjc7tPU9r+rmR4IiBfhdAyWWx728E4Zg/QV5X/2oSERGRtqvoKDj+4cQfA/nO5Z6/qIPeRDKPvstFJPU6jXNuq9yWvDoAPvyee/uYn2XgwU4b5va95eSoW60/szvYt7fWYLTlt8DUuc6BcJks1rCZeoYBY34KCy8DM+xfXacvhXnTm35PFY2MLUwhk/T9gvWkjh0vuPdbcgNMez45NYmIpFqsv6uy28PUpz4PkglAlsffbX7KKojcJ1ynpw9I7MLV7u0HV0FvPQUsbuE62PgX+7Z9i4BvJKeO9f8HWx9279P3Qjjx8eTUE42cTtYbJAOugDdmRbfvp8/BCyPhzNVt+/Wy9rD/Y664DUZGuNYTi5qDkedd+XMYdDUMu1Eh+yKSWd6dY/PACRNeanSttftUyO9vXcfqfUZSyxORDBaus98eyIKsfBh8rfN5yd73EldXuvIajFbQr+m28k+c+x/9i/hqEhER8ZFpmhXAb4HfGoYxFDgB6At0AXKAvcAu4D1guWkqhV5ERERERET8t6dmJ2HsH+zRI42D0bKNHMe2OjPGh8uLiIhIesjtAjPmW++TV5RCMM+6n8eLshXObSWX2TxIK8HrZAPZcOy/YeiNcHAldBhhraM7tLqhT4cR0HEM7F8KNWXWPQRVuyGnI3Q/CQoHJLZGERERaVv6XQjdtsPOeVC9x9qWVwzvOYW5pvmDSAPO4fkirUU6rrSrv4lpimEYJR736dH4E8MwTiSKVxjTNN/y2ldEEsAIwLSX4Y3TW7ZV77VCnoJ5ia9j15uwf4lze5fJUHJJ4usQ/7Qrhi6TYN9i7/uUXGr96RiMdtC6qJjX3fq+rN5nLYCvPQw5RfHX7IdwDMFouxZYIV2nvGktQGpNQpX226P5d5bMgXY9YetDUHcEtvw7vprO3WotVjpvG6y7Bw58CJ3HW4vmczvHN3a6Mww48Ql4NEJ4z44XoHwLFJYkoyoRkdRyCjX1egzsJZwsUbzMXb3POi4TiUWLUI5myj5OTh2t3aE1zm1bH4bjHkxOHaWPubfn94MTHk1OLbHqdbp1XvX6SdHtd3gDLJgJx/3HOvdoi+rKEzPuxz+F0T/wd0yn88zmfdb/AT75O5y2CIpG+FuDiEgiVO2G/csi99v9+dtqW/4NE+6BYV9PbF0i0jqY9gvLMILWn5P+7ByMdmgNhEMQCCamtnTkNRitsboKOLTWvm92B+gxPf66REREEsA0zfXA+lTXISIiIiIiIm3PzprtttsNAnTLTt/7N7JdFr3WhmuTWImIiIgkRDAXik9u+LxiK3z43fjG7DC85bZhN8Get1tubz80vrkaMwzoOsn6qNfrtJb98s/xb06RtmLUbbDk+pbbO45Jfi0iIpmkXU8Y8MWGz8N1zsFoLYJl04yRjpFRIv5K1+9yA3g4jn3fiKK/Sfp+HUTaDrfgm8pPof2gxNfw8Y/d20d9P/E1iP+OfxhemWyF7EUy4R7oOMr6u1Mw2pYHrQ87XabAhN83vVCXCk7hKpHsXwrbn2kIh2stQkfstwcjBHM1V3yS9QFAGLb8J7Z6htxghaKB9X026rbYxslkwTzrSSORvobbnoIRtySnJhGRVPLrd1UqeAlGq9qlYDSJXajavX3Lg9DlGBj6dSt0W2Jz5DPntrwk/fyGqmHfIvc+E+/NjP/n7lPh/B3w9oXWE/u82rUAnu4FBf1h8gNtL7Sg7nBixv34hzD4Gv9+F5mm8+9uO3WH4aPvw4lP+jO/iEgiVe2Jfp+PboOBV0J2oe/liEgrY9bZb298Y87xj8K7s1v2CVXB4fVtK2y2amfkPtuehuJpcGQXLLwcdr7m3LfXWb6VJiIiIiIiIiIiItJa7K7ZYbu9S3Y3sgM5Sa7Gu2zDubZaM8KDKEVERCTz9J8dfzBa/zktt/U6HbIKWz7YtsQhGERE0kufL8Cym1s+jH7QV1JTj4hIpgqkedyQWzhbutcu4oN0XUloYgWcRfNhNvqIdl8RSbX8Ps5tVbuSU8P+Zc5thYOg1xnJqUP8VTgQzveweOTMNTDs6w2fZxdFP9e+9+GdC6GmLPp9/eQUjJbVPvK+nz7nby3poHqf/fZ4wmaG3gguT9pyFMyHo+K8EN1a9L0gcp/9SxJfh4hIOqjL5GA0D8cXK25NfB3SeoUjBKMBLLvJClSV2LmFoFTvs4KgEu3D/43cp9PRia/DL+16wqnvwKwP4Zg/w3EPQW43b/tWbIX5M6BiW9PtVXth3T2w5i6rT2tTWx65T6w+nevfWLUHIdqnK3/6AtQmKPhNRMRPzW+Q8qL2ELwwEj74Dmy63/pcRCI78CGsvgM2PwjV+6Pbt/aQtd8H34UPvg0rvg/bn03OcXs8zJD9diPY8PfeLuFdXs4ZWpNdCyL3Wf8HOLwRnu7hHooGDQ9sEREREREREREREZH/2lmz3XZ7cY7L+pY0kGU438deZ0Z5T4OIiIikv4L+1n2o8Wg/uOW2rAKY9iJkd2zY1n8OjNT9/yIZoV0xTH3GCjisN+irMOSG1NUkIiLJZSgYTVq/dP4uj+fOba/7KhRNJF0E88EIgBlu2VZXkfj5645AncsC1dOXWPVJZgoEod9FUPq4fXvfC6FoeNNt+b1jm6tym7UAcMS3YtvfD07BaEOugzW/cd936yMw5R8QzPW9rJSo3ucc9paVH/u4XSfB9Nfh49th17ymbUYQRvwP9DkfPv4RHFhhpTF3GgdjfwUFfWOftzXpMSNyn7KVia9DRCQdhDI4GC2nU+Q+O19PfB3SeoU8BKMBrL8X+l2Y2Fpas2qXYLRwjdWe1z1x89cdgXV3u/fpNA7yM+xY2jCsMLf6QLd2vWDeNO/7z+0Hl4Ss6xF7F8OCUxvCZlZ8D054FPqc63vZKeN2XSZen70Cg6/xZ6yq3dHvE66GPe9Br9P8qUFEJFFiCUYDqCxtuO648udw6tuxX18VaQvW3QvLvtHweeEgmP4aFA6IvG/lpzD/VDi0pmVbn/PhxCfdnw6YSk7BaI2fWJiVD52PsX9oxqfPWq8xo25LTH3pxDRh9xve+j43xFu/gv4xlyMiIiIiIiIiIiLSWu2q+dR2e4+c9H6vyy0YrdaM8T0/ERERSW8ll0Cfc2DvIqgrh3fnOK9DaG7Et53bup8IF+yG/R9Afh/I7+VPvSKSHL1mwQX74MBy6x6kPI8P8vaTkQVmXfLnFRFJhmBeqisA3DJO0vR+UREfpVswWinxBaKJSKYyDAgW2C+CTUYwmtsi8BlveAt8kPQ25ufWhb/K0qbb8/vAxHta9s/vF/tcH/wP9DilYfF7sjkFowXzoO8FsO1J9/13vAh9z/evnt1vwYrbrJCrQBC6TIZxv4Gio5z3CVXBh7c2DUfIKrAukhSNhDE/sb7GkTw/zLktr9j7v8FO96kwI0LQy8kvxzdHa5bdwfq/PLjKuc/hdRCuhYDzm/ciIq1CJgejeVls3fjpM36q2ArLvwX7FkHRKBj1feh2fGLmyhShauu469NnIbsIBn3FCsfNZGGPwWj7FlkLx9M1ACDdVe91b685mNhgtJ2vRu4z+ieZ///bfar1c7npfu/7vHsplG+C/Uubbg9Xw+JrrfOirAJ/60yV2vLEje1n6HIswWhgBQYpGE1E0l2swWiNVWyGZ/rAJeHM/90tkgjV+2H5TU23lW+CVb+Ayfe571u+BZ51CU/b/jRsfRRK5sRdZkKEHW6ANIJNP+93kX0wGsBH37faOwz1t7Z0E65tCEX2S+Egf8cTERGJgWEYAWAUcDTQD+gGtMO6X/AIsBvr/sEVwCrTNHUfoYiIiIiIiCSMaZqOwWjFaR6MFjACZBlZ1NmED9SatSmoSERERJIiqwB6TLf+PvBK2PAnb/t1HO3eHsiGrpPiKk1EUiiYA12npG7+SX+FRVe13F5yefJrERGJVZfJ1tq05oZ9M/m1NNd/NnzwrZbb83q0nvVEIi7SKhjNNM2SVNcgIimUlcJgNLdFrZEu/Ehm6DAEZn0An70Mu9+2gkY6jbUOBoO5LfsXxBGMBvDSWJj8NyuQomo3ZOVDj5nJeWqCWzBadlHk/Usfjz8YLVwL+5bC9mdgza+btu140fo4cw0UDbff/91LrUVcjdW/Fux9D+afChPugaE32C+wDNfB8m9C9T7nGr0Eq0liDb4Wlt3o3B6uhcMb3EP0RERaA6dgtKwMCEYDGHgVfPKAc3tdAoJuasrg1ePgyA7r88rtVhjrzPdSF06bDhZebh3L1du/1Pp9OuwbqaspHuEQmCFvfUNVVghH4cDE1tRauYWFQ2J+jusdXAsf3+7eZ/A10OfsxNWQLIZhnSeWXAalT8KG/4u8T+mjzm1Vu2DRNTD+TmjXw786UyWR32eH11u/K/L7xD9WpJ8XJ7vmwdbHoP/F8dcgIpIofgSj1XvlGDj6l9YNV9nt/RtXJNPteBHMcMvtm/5mBaOFQ3DwYziy03poT/lm67yorhyWeAi+XnoD5HW19u00Dgy3JwUmmdP5ndHsloX+F8OH33EeZ+Xt0H+O9R6PH8d36cjvRWtGlsLkRUQkpQzDmApjNpKcAAAgAElEQVRcC8wCPNy0AMABwzBeAO4zTfOdhBUnIiIiIiIibVZ56CCVYft7FYpz0v/6c5aRYx+M5ud7fiIiIpK+BlzpLRgtuwj6xLlOUETETa9ZkNW+ZT6A7pkWkUzSf07LYLT8Pulx311+b+h6nJWv0Fi/i/UQa2kT0uhOaBFp85wSSUNJCEY78IH9diMLcjomfn5JjtzOUHIpTPoTTLgLBn7JPhQNID/OYDSARVfDOxdZC5He/zI80xs++jEk+qHGYYdgtIDHYLStD8Oe9yL3c1K5A149Fl47rmUoWmMvjIBdC1puL/+kZSianWXfgFentAxPrCiFF46C9fc675vXAzpPjDyHJJaXoJODqxJfh4hIqjkFowUzJBit91nu7eEaCPl8s9X2ZxpC0eqFKmHzv/2dJ5NU7YbSJ1pu3/DH5Nfil3B1dP2fHQRVMQYWtXWRvm6JCCwP18Lia63zggPL3ftOzODvYzvFJ8PEe/wZa+tDMLcENt3vz3ipZBeWDzDoKzDaITzv2H/B+Tuhx6ktAzWae6YvbPNwrhmJW7h+JGvvjH9+EZFEclsk0SvCcX9z+5fBgpnw3FDYszC+ukRak89edm6r3gfzT4GXxsEbs6zr3+9dAgu/6C0UDaBmv/VgkZcnWn/Gc+ziN5vFWQAYwaafF/SH7lOdx9nyH3jzbOv47sP/Tfx7LqkQdvhaxWrAF60H+IiIiCSZYRhHGYaxAFgAzAE6AobHj87AF4E3DcN43TCMocn/F4iIiIiIiEhrtrPmU8e2Hjm9k1hJbLKNbNvtdX4/fENERETSU9dJcNzDkNfduU+HETBjAWQXJq8uEWl72vWA6a9Ch2HW53nd4Zg/Rl5rJCKSTobdBCO/B9kdrM87T7COowIR1qkky9S5n6+bCVprTgdeBeN/m+qqRJIiTX4KRURwDkartX8Kj68WX2O/Pa8bGMqQbJNyiuxTyuO18ifQ/UToMcPfcRsLOQSjBfOcg+Cae+NMOGs1tOvprb9pWkEknz4H22wCOZzMmw4XHW56gfWzV7zvv28xLDgNTm30gOhFX4HDG9z3m/RnpSCnA6eFcI2VrYJ+FyW+FhGRVHL83Z0pwWjnQLcTYc/bzn1CFRDM8W/OZTfbb197Z9u9qFf6BGCzGPzQWghVez8OTCfRBqMBvH6SdRwr0Snf5N7++onWRf1Jf4XO42Ofp+agFZ686hfe9zlrPQSCkftlGsOwnhyz5934xwpXw5KvQfeToP3g+MdLlbpK++3BAhjyNfjkfqjY2rC9+zQoucy6bjP9VSvAzwjC4x2s4D07b38BjvoujPqB83UoO4c2wMY/W+ea8fyf7Vucua/JItI2OAWjZbWHac9ZQT2lj8F7X8T22NNO1U7rAQqzq/T6JwKQ7fIwnmU3w+43/Jtr13xY+XOY+Hv/xoyVaTo/KKN5MBrAuN/CK5Mij7v6Dus4uNes+OpLN07Hs7E6+pf+jiciIuKBYRgXAw8A7bCCzsD+RMJL23RgmWEYV5qm+aSvhYqIiIiIiEibtbtmh+32doECCoMeHkaeYtmG/f14tabPDzEVERGR9FUyB/rPhsrSlg8yz+4A7YpTU5eItD1dp8BZa6FqL+R20dpdEck8hgFH/xxG/8TKlsjplOqKmsrraq2bqT0EgVzdky1titJ+RCR9OC1IratI7LxOQRQAuS6J+dL65XVLzLjr74l9X9O0fiZqDkL1fvvFMW7BaHUegwZry2DZTd7r+vB/4f0rogtFq/d4ewg3WhC15Pro9t/zLmyfa/299jDsWuDev8tk6HNudHNIYnh5jT20NvF1iIgkU6gajuxqtu2Ifd9MCUYLBGH6azD06859/A47rj3o73itQc1+5zavx4DpJhRDMNqhNbD1Mf9rac3CdXBoXeR++5fByxNgz3uxzVNXaQXXRROKNukv0GFIbPNlgkFX+zdWuBY2PeDfeKngFIYYzLPexDnjIxj9Y+vJNsf8GU5+uWmYfVaB1bf9UPd5Vt8B80+Fyu3WOTY0nGebdgGT6+G142HtXVYYuNvrrReH18e3v4hIIjkFo9WHHAeyoORSOOUtGHwd9DrD+9gvjIq/PpHWwO1mmS0P+j/f+j9YN8KYJtQccH9PLJHMsHOb3RMVuxwDM97wNnb9+wOtiZeHing1+QHrybwiIiJJZBjGRcBDQD5WuJn5+YdBQ9jZHmA98D6wGNgA7G3Up/F+AAXAw4ZhnJ+cf4WIiIiIiIi0dodD9vegdc0uxsiARfxZRrbt9lrT54dviIiISHozDCjob91v2/hDoWgikgp5XRWKJiKZLZCVfqFojWV3UCiatDkKRhOR9JFVaL89lOBgtL3vO7cVliR2bklvAfunKMVt+1x4cSwc2hDdfuVbYN40eKwQnugIT3aBp3vD5maLpdyC0WoPeZ+v9HE48lnkfjUHYN3vvI9r55Es2PESVGyLbf+3zrP+bVW7wQy5953+amxziP96nwVG0L1Pzb7k1CIikmimCR/eCk90hqd7wPPD4cAKq80xGC0vefXFK5gLI29zbt/+TPJqaavcfqe+PLFlIF8mcArmiGTZTfbhRmKvfLNzIJWdRVfH9vXd/gyUrfDe3whC77OjnyeT9L8Uhn7Dv/FW/9I6P8tUjueyn79pk90BRv8IptwPQ651fjOnaGTkufYuhGf6wuMd4NnB1rn1Ex3huSEtrxOt/z+o3uP93xFJ2Ur/xhIR8VvzJ8fWa36dtPsJMOlPMO0FmO1wPtNc+UYrbFKkrcspSv6cjxfBwwHrmsTcEth4X/JrcLtu73Q+W3xS5NBbgI1/aX2vL3YPxYnVwCv8G0tERMQDwzCGAX/Hui+xcSDaIeBu4Eygq2maPUzTHGGa5nGmaU4xTXO4aZrFQDfgbOAPwGGaBqRlAf80DKMVP01BREREREREkqUiZH9ffftgCq7lxyDbYa1DnYLRREREREREREREpJVQMJqIpI+sAvvtdQkORpt3snPbUf+b2Lml7SpbAQtOhbDDYqBwHWx9FFb+HN77EnzwbXh2AOx+q2m/6j3w/pfhwIcN29yC0fpeEF2de95zbzdNWPULfxbpvHEGvHlW7Pu/Mwdq7Z/c9V8zF1qL6SU95HaGAV9y71O9Pzm1iIgk2oY/wupfQajS+vzQOph/qvV7+8gO+32cjo/TlVPQMcCyG6Hy0+TV0hYZWc5tFVvgnYuSVopvQi5hXYUDnduqdsKB5f7X01pVeQhDbuzQmui/vmUr4b3Lotun74XQrmd0+2SaYA5M/AOcWwqnLbb+jNebGRwm5/QzH4jyaTZFR3nvW1cO5ZsaziXLN1nnprXlDX3W/yG6+SOp3O7veCIifnIKpnV7gEQwD2Z5DD99fhh88B3rgQxmOPr6RFqFFD8RtWoXLL4W9ryb3HnNOuc2t/PZifd4G/+di6z3VVoLt69XNPpfAoZuCRERkaS7F8inIRDNBH4C9DVN8xbTNF8yTdMx3d80zX2mab5gmubNQF/gp5+PUa8Q8HiQICIiIiIiIuKsPHTYdntBMDPuNc82sm231/n58A0RERERERERERGRFNJdsCKSPlIRjFbjeK+lpeuUxM0tUrEV9rzTcnu4Fl47Ad6dAx99H7b8G9b81nkcsw5W/erzv5sNgSvNBfKgeJr7QsbmKre5ty//pntt0Sr7KPZ9d71uhX44mT5PP9PpaNJ9MOanzu2RXqdFRDLF5n+33Fa9xwoEOLTOfp/CwYmtyW9Z+e7tm/+VnDraKiPo3r7nbSj/JDm1+CXsEow2/TX3fXe87G8trZlTAIqbnfO99934V3hxdHTj53SGCb+Pbp9MVtAXuhxj/XnuFve+gWwIurze7nkPjuzytbykcfqZD+ZFN063E+Oro+YAbH04vjHcOJ2zi4ikg1iC0QA6jYGZi6DXGZHnWPMbeOdiePMchaNJ2xTL8Xe9YF7T0Nj8fjEO9PkDT5LJdHhIDLifz/ac6W38so9g5+vR1ZTO/Fq0NvDL/owjIiLikWEYxwMzaAhFOwycZprmT0zTLHfd2YZpmodN0/wRcDpQQUNA2qmGYRznU9kiIiIiIiLSRpWHDtluL8xqn+RKYpNl2L+HV2vG8V6EiIiIiIiIiIiISBpRMJqIpI9UBKOVrXRuK/li4uYVqTdvmhUUALDp7/DSeHgkB/Ytim6c0ketxdsVm50XVuV0guwOMPlvYHg8BFh7pxW2tv6P8OIYeLo3LL7O+rksWwXrkhhWUHIZtOvp3B6utQ+dASs4oMf0xNQl8QkEYdT34YTH7Ntr9ie3HhERv5kmrLvX+Xf7wi85Lw7uGGWQUKoZAedjeoANf/RnHtOM3KdN8vB12fpI4svwk1swWk4XuLDMub3sY//raa1iWXD/4Xesc5fN/7E+rymDhVfAUz3hIaPpx+Jrox9/wOXQrjj6/VqDgv5w3nboNK5hm5EFkx+AS02YUwOzK6CHU0CEaQVsZyKnn/nG4R9edJ8Kud3iq2Xlz+DFsdb3cCzcfoeHjsQ2pohIMsQajAbQdRJMe8H6feXFjhfg4aB1LfTxTlZQWvkWz6WKZKxYA68KSmD2EZhTZf2cXWrCuZsht0ts4+14MbkPpTDrnNsCWe779v2CtznemAUVER72kincvl5eDbwKepwS/zgiIiLRuf7zPw2si9bXmqY5L95BTdN8Hbi20bgAX4t3XBEREREREWnbKpyC0YIdklxJbLIM++vrtaZPD98QERERERERERERSTEFo4lI+gimIBjt4GrntmE3Jm5eyQx9zk3OPIuvhddPgkVXwYEPYh/nic7w7CDn9qKjrD8HXA5nrYMhN0Qes3I7vHEGLL3BCpc4sgM2/gXevgA+e8l7bQOvhBlvwJS/e9+nsY5j4LgH4dyt0P8S5347X7ffnlMU27ySPDmd7bfXHoSwQ2CQiEgmWPs7WPaN6PcLZEOHof7Xk0qV2/0Zp+6wP+O0NqGqyH0qdyS+Dj+FXILRgrnWMd6Ib9u3b3u8IUTv0AYrwGvHS1B7CKr2wva5sPXRzPuaJIJTAEokBz6AhV+E0sdh/kzY/C+o2hl/PVntYfi34h8nk+X3hlPfhpOeg2P+DOdugUFfbtpn5K3O+2/6W2YGyzi9jgWjDEYLZMGoH8ZXS2UplK2Ibd+sQjjlLWjv8Hu8rjL2ukREEi2eYLTGzo/iGCtcC7Vl8Olz1kMk9DoprV2sx99Drmu5zQjA4DjyQN48F3bO93Y+GS+3a7xG0H3fQdd4n+fZEvdzyUwRS4DesQ/CSc/DhN9bx6OT/wZGjEG/IiIiMTAMIxc4Gyu4zASeNE3Tt6d1mKb5MPAkVjiaAZxjGEaUJysiIiIiIiIiDcodgtEKMiQYLdvhtLjOjPG9CBEREREREREREZE0o2A0EUkfWU7BaOWJm/PAcue2Lsckbl7JDAOuSN5cu99K7Pj5fZuGg7UfDEc5hEg099nLNttegV1veJ9/wj1QfJIVkNbnPO/71et9jvVnIBuOf8ha8GXH6fUiW8FoaS+nk3PbtieTV4eIiJ8Ob4IPYgz36TzR+r2XcSIsuPVjcXKk4OT6MKy2JnQkch8/QquSKezy/VIfztFpvH27GYZ3Z8PSm+D5oVaA1xtnwONF8FQ3eOs8eHcOPNMb1t7tf+2ZJJYF9429dznsX+JPLQAnzYWCvv6Nl6myCqD3WTDkWisorbniaZDfx3n/Nb9OWGkJ4/Q7IpgX/VhDr4+vllh1ngAzF0JOR+vvdtbfk9yaRESi4VcwWrue0PO06Oev2Aqf/CP6/UQySbTH37ldYdQPnEOhR/8o9lr2vA3zZ8DLExIfrGvWObcZWe779joNpvzT4zxhePVY73WlK7evl5MBl0HvM60HP3U/UaFoIiKSClOAQhreKLgrAXPc2ejvhUAr+MUvIiIiIiIiqVIesn9AZ2GmBKM53F9YG++9QCIiIiIiIiIiIiJpQsFoIpI+HIPRIgQfxCocgu3P2LcNujoxc0pmKRoBA7+c6ir80Wlsy215xbEtMK+34wVv/fqcC9mFDZ8Puzn6udoPbvr56Nuj21/BaOkvp7Nz27uz4w/sEBFJhXcujn3ffrP9qyOZOk90b6/aFf8ckQLAdr8R/xyZyFMwmg9f/2RyCkkKZDcE5XYc7bx/6eOw/g+R51n+TTiwIvr6Wot4j7PcAuyikdsN5tRC8cn+jNcWnPiUc1vpExCOIUwhlZy+lwK50Y9lBODkV+OrJ1pHfRdOXwodR1mfZ+U7993vEtQvIpJKfgWjAYz9NWS1j36/pTfAS+PgIcP6ePcS2OdjCKtIqjn9nNkpGglf2A1jbnd+WEggC058Or6aDq6GZwfEN0YkZsi5zQhG3n/gl+Bij+8XHvgADm3w1jddRXueNjzGYH4RERF/1YeUmcAa0zTf93uCz8dcbTOniIiIiIiISFTqzFqqwpW2bYXBGN7jSoEsw/49vFozivciRERERERERERERNKYgtFEJH1kFdpvT1Qw2qG1ULXbvq14RmLmlMwz+W9w7IPQ++xUVxKfAV9quS2YBz1nJX7u4bc0/bzbCVBQ4n3/QC70OafptoJ+0dWQnRlP7mrTcjq5t+9+Ozl1iIj4pWoPHIgj9GTAF/2rJZn6nOfeXr45/jnq7G9I+69502HXgvjnyTSRvi7gfP6TrhyDORqFJBWNgHY945+r9In4x8hU6RJAO/xmK9RBvOs80TnsunpP5r0WOoUhBmMIRgPofhLkdom9nmgFmwX+B12C0bbPTWwtIiKx8jMYrdMYOGMFHHUr9P1CdPse+LDh71sfgVePhR0vRV+DSDqK5vh7+C1gGJH79TzNn4eDrLjNua2uAiq2gmnGNrZbMJrX84CsfOtBLF6UPuatX7qKNuQ42tdZERGRxBjZ6O/vJnCedxzmFBEREREREfGsInTYsa0wmBn3nWcb2bbb68w0uRdIREREREREREREJE4KRhOR9JFVYL89UcFoO1+1325kQe+zEjOnZB4jAAMug5OehfF3pbqa2Dktipl8H3RN4EOUx90J3ac23RYIwtSnIb9v5P2zi+Ck51qGZnnZt/k4kt4ihdcd3pCcOkRE4mWa8NEP4anusY8x6kfJDXLx09Cvw6CvOrfPmwYffi/2hdTgLQBszZ2xj5+pQkci9wk7hA6lK6fAgECjm/qMAPSbHf9cq34GK34Q3/dmpkqHmyFLLocR3051FZnHMGDmQuf20keTV4sfwlX22wMxBqMFc+CkF2OvJ1pZ7ZrN386+H8DK2xNbi4hIrPwMRgMoHABjfwEnPglnb4COY2IbxwzBx3rtlFbC6efMzoArvPXLagfTXoDcrg3b+l8CY35qnTN5teoXVvhZY+FaWHIDPF4Ec0vguaFwYIX3MeuZLkFfRtD7OJP+Bl2mRO738Y+9j5mO3M7Txt9tvZcJ1uvzxHuh23HJqUtERMTdoEZ/X5TAeRqPPcixl4iIiIiIiIiL8tAhx7aCjAlGs38Pr9aM4r0IERERERERERERkTTm8fHLIiJJ4BSMFkpQMNryW+y3tx8C2YWJmVMyW7/ZsOa3cGRHqiuJzoz5zoufcrvAzPfg8EbYOQ+WXOfPnIEcOG8b5DmEwnQaC+dshoMfQ05nyO9j1VCxpaFPdhF0GmctZm+uoH909eR0jK6/JJ9hwMCr4JMH7Ntry5Jbj4hIrLb8B1b+NPb9i2fAmB/7Vk7SBYIw+a+w+Z/Oi71X/9IKSBjsEqDmJuQhGG3PO7GNncm8BKNVbIVPX4Res6zfvenOaeG80exy1lHfhXV3xz/fqp9BbmcY/s34x8ok0QQz+OGUt63j/9yuULHZCsiN9vheGnQaC/0ugtLHW7Ztewom/tH+nMovB9dA6RNwZLv1s9lpLPSfHTn4uDkz7ByGGMyLvb6uk+D0pfDyxNjH8Kp5EFpWfuLnFBHxm5dg2li1HwynL4dDaxqury44zfv++96HZbdYD7HoPCH+ekRSxWsw8ZmrrHNsr7odD+d/BmUfQbte0K6HtX3YjbB/OSy7yWqLZG4JzKlp+Llfcyds+GNDe/lGeGkszK6O7jgzHHJua36O5yavK5y2EA5tAMLw/HD7fmYdlK2EjqO8j51Owi7nw8NvgsFXQ9kq6DjS+f1VERGR5Ctu9Petjr3i13jsHgmcR0RERERERFqx8tBhx7bCYPskVhK7LMP+PbzadHhIooiIiIiIiIiIiIgPonhEtIhIgjnduF+XgGC0Rdc4txUd5f980jrk94JT3oJBV0PBgNTUMHVudP3bD4FuJ3roNxiGXAvHPxpbXY0N/TpcuN85FK1eIGgtmi/oZwW3dRgKPWc2fHSd7LywqqAE8qK4x7n9EO99JXUGu7w2V+1JXh0iIvFYe2fkPn3OhROegD7nN2zLKoSR34NpzyeutmTqMMK93S7AxysvAWC1ByHUxp58WechMA7gzTNh4eWJrcUvTgvBmwdztOsB01/zZ87lt0D5Zn/GyhROASiJ0v0EKCyxAsk7jlYomh/6X2q/veYA7F+WuHk/fRFeGgcf/xA2/tUKzFh8Dbx6XPTH724BfYHc+OrsNC6688dYNQ9wC7oEowUSGFYnIhIPp9djv163AkErpKj++t/4KMNt1/0OXpkMn/zTn3pEUsHtXLXTeOg/xwoRjOW9qkAWdB7fEIoGVmBt8TQ4/hHvAWTr7gHTtD423W/f57kor7k7BV8DGFEEwNXrMAQ6DIPJDvUBvDgaQtUN/5ZM4hhU+fn/YVaBFQKsUDQREUkvXRr9PZFPvaof2wA6J3AeERERERERacUqQodst7cL5BOM5oEeKZTt8B5ebbIfkigiIiIiIiIiIiKSIApGE5H04XTzfqjK/Uny0ao5CJvuc27vPNG/uaT1aT8IJt8H534CU/5hBXrV6zQeLtgLvc5MzNwDr4x+7Ml/a1go40Xf8yP3cTN1Lky8J/GLcQwD+l3kvX/H0YmrRfzTdbJzW9Xu5NUhIhKrJTfAgQ/d+wz6Ckx9BvpdAFOfgktN6+Piw3D0z1uGqmSqSAGpO+MIsfIaAFa9N/Y5MpGXwLh6W/4Dn76QuFr84vT0UrubD4unQ25Xf+Z9dmDmLZqPRzKD0XrMTN5cbUmv062ATTvxvN66CYdg6Q0Qrm7ZdnAVPNUd1v/R+3ghm3HqBeMMRjMCcNyDEGwX3ziRNB/fbb5E1yIiEqtEB6M1N/R66Hl6dPuYIXj/SqjcnpCSRBLO6TxnyNdg1jI4/mHoPM7/eYtGwNg7vIWQffAteDhgfZRvtO9TWWqF43plurzPF0swWr2ux7m3P5pn/TseK4QFp8Nhh39PunEKkjOy7beLiIikh8YXcRIZjHaw0d9byZsqIiIiIiIikmzldfbBaIXBDkmuJHbZDteM65zeixARERERERERERHJMApGE5H04RakFKrwb55d893bB17h31zSug28As7eAJMfgJNfhZnvQm4XGHyNff+jfwHTXoQep3obf/zv4LiHYcLvYeZCa55AFAuEzlwN3ad67w8QyIbsouj2qXfeNuhzTmz7xqL/HO99i0Ylrg7x17Cb7bdXJzEYLVwHexdB6eNwZFfy5hWRzLbuXtjgIQCm99mJryUdRApGi0fIazDansTVkI7CVdH1/+SBxNThp7DDQnC74F8jAEOu92/uNb/xb6x0l8xgNKdzJYlPMA86jrFv+/hH/obN11t7J1Rsce+z9AbY+Dfn9rKVsO0ZKFtlheI7CcQZjAbQYwacsxmm/DNxgfgtws7CUfQVEUkTIYdgtGCCgtEC2TDtBZj+Ooy7Ewr6e9/3mb6wa0Fyj2VE/JDsAMLGRtwCZ66CY/8F4++Of7zF11o/h144BX1BdA93aa5ouLd+oUr47BV4bgisvdu6/pvOgdhOr23xfK1EREQSr/FFnEQeqDc+sFBqqIiIiIiIiMSkPGQfjFaQUcFo9u8t1JoO70WIiIiIiIiIiIiIZBgFo4lI+nALRqvzMRjt8Hrntna9oV1P/+aS1q9wIAz6MvQ81VqMDlY42JR/QPsh1uK+4ulWgNrIW6HXLBh6g7exh98MJXNg2I3QdQoYhrf9ukyCWR9A0YiY/knkdo1+n/N3Qn6f2OaLVdcp1tc4kqJRya9NYucUpFOVpICy2sMwbzq8OgXeuRie6Q1bH0vO3CKS2byETOV1h56nJb6WdNDB48LkWNR5DEarSmKoZjpwCrFwsu0p6/deOnNaOG84LAQf9UMY+T1/5t54nz/jZIJEhYnMWGCdCwVyoHAQTLoP+l2QmLkEikY6t+143r95zDC8fRF8+F1v/Tf8yWYME5b/D7w4Gt4+H14cBQu/6DxG/bl2vNoVw8AvwWmLYdQPoF0vyGoP/S6Csb+y36frsVA8w9v4zcPO3MLesvK9jSkikmypCGwyAlaA5YhbrOMHI4q3LudNh9dOhOp9iatPxG+OgVdJyvToMAwGXA7Db4JjH4x/vHnTYckNkcN4S59wbjOieCCMnfO2Rdd/+Tcbrv86BXKnmtP5cLK+T0RERERERERERERaufKQ/X1ThRkUjJZl2F8zrjX1YCERERERERERERFpHfRIYRFJH1mFzm1+BqNVlDq3DbvJv3mkbRt4hfURroNAs1+3XoJC+pzv3Db+Llh+i33bWeuhg4ewMDe5XaB8k/f+PU6xFpgnmxGAiffCgggBM2Pv8B4qJ6mX18N++4EPoaYMcjomdv6VP4M9bzd8bobgvUut7/PczomdW0Qy28FV7u1GACb+0b9wl3TX9djIfXa8DL1Oj37skMdgtOo90Y+dyWK5oe2NWXDK2+l7rOS0QL358fV/twfh6J/DmJ9Z3ydGNoQ/DybKKrR+DtfdC8u+EXnu8o0wbwYc+8/WH7LrFIASj2E3QfE068PunEj812msc9uSr0Gfc/2ZZ+N9sM0l1KK5A8uh5iDkFFmfmya8fyVs/lfTfjtfdx4jmBt1ma4MA8bcDqN/YgW9Be6uLKkAACAASURBVIJQdwS2PgoHPmjo1+1EK6AnELTCNufPhLIVzuPm9236uVswWvMQNRGRdBGutt+eyGC0xgoHwLCbYe1d3vfZtwg+/jFMvCdhZYn4KhUBhE4GXGY9kOKDb8U3zoY/Wg+F6XUmbLoftj1pHcP1+QIcWg3bnnZ/aJFT+LVX+X2s4NuVP41uv21PwKbpMORr8c2fCE4BevF+rUREREREREREREQEgIrQIdvthcH2Sa4kdtkO7y3UmQm4F0hEREREREREREQkBaJ47LqISIJlFTi3+RWMZprWAg0nA77kzzwi9ewCADoMgy6T3Pcb+GXntj7nghFsuX3ivfGHogHkdImuv9sC/ETrORN6ugSqzPoQep+RvHokfkUjnNtePNp5QZhf1vy65TYzBKWPJ3ZeEcl8bq9PA6+CWSug3wXJqyfVIh3rALxxRmyvr6Ej3vpV741+7EwWy+/IPe86B+6mA9MhGM3haacN7YZ1fhnMgewO1ofx+SUwt/PO5nbNh+eHQ80B7/uks3AtlG+BqmY/G34+JXbI9XDi0zD+dw3bFIqWHP0udm478hmURhFm5mbDn6Lf5/nhDa9RH/2wZShaJAGfg9HqGYYVegaQ1Q5mvg8T7oHht8DkB2DGvIb2vO5wypsw5Ab7sdoPgaKjmm5zC1VsK0GpIpJ5nEIdk/m6Nf5OmPosDL7GeoBDQf/I+2y637n2ugrrGKjWfnGLSNI5Bl5FOM9JlGHfaHkcE4stD8OyG2HxV+Gzl2H7XHj/Clh9h3soGvgT9jXmdsjtGv1+S66HPe/BviVQuT3+OhoLVcO+pVD5afT7Op0PB1L0fSIiIiIiIiIiIiLSypQ7BKMVBDskuZLYZTu8t1Cb6HutRURERERERERERJJEKxNFJH0kIxht+Ted24pGQbtif+YRieS4h+Cdi+HA8qbbjQCM+Sn0Pst538KBcMLjsPAKqDtsLYQZ+QMrhMAP0S4e6jTen3ljNfI2a6FVc73Phk5HJ78eiY/bIrzKUtjzDhSfnLx66m15EIZcm/x5RSQzhEOAad826gfW4ty2JtvLkzNNWP0b6HdRdGPXVXrr5zVArbWI9Ya2dXfDyFut0J9047gQPI7LWdmF0fWvq4CVP4fxv419znSw601YdDWUb7RClgdfBxN+b4U+OX3v9DrDCnba+Ff79mA76+cspxOMvwsGXpmw8sWDvK5WoNfau+zbV/0c+l0Y3xwVpVC2Ivr9qnbCjpegeJpzfW6SFcYTzIFhX3duzymCY+6FrpNh8XUQ+vz3UfuhMO0FK2itsT7nwqKv2I9lhvypWUTEb+Fq++2JCql00uds62PSX6zPX58Gu9907h86Aku/AZPva7p987+t9wSq90FWoXXddfjNCStbxJNwjf32YE5y66gXyLYeujJvenzjbH0oxvlz/fu3z1oB7862riFH47XjG/7e+RiY/irkdIyvltV3wMc/abg2UTwDjn/I+7m3Y4Cebu8QEZG0V/9myRTDMEoSNEePBI0rIiIiIiIibYhTMFphBgWjZRn219drTYf3IkREREREREREREQyjO6cFZH0Eci1bui3W/xeezD+8Y/sgnW/d24fdlP8c4h41X4QnLYYqnaBWQt5PeHQGmg/2D0ksF7f863wtINrrLG87ONVbhfvfQM5VmBCKnU73grK2rWgYVsgB0Z8O3U1SeyyO1jfg9X77Nv3LU1NMJoRSP6cIunoyGew9RGo3A7dT7JCKJuHgLRFpksgVc/Tk1dHuhl8HWz8s3uf/Uvgs9fgs1es1//+c6BwgPs+XoPRDnzkrV9rEc+TPrfPhcFf9a8WvyRiIXgwhuPmtXfCztdhzE+g9zmZ9bpnhq3z4OW3NNoWgg3/ZwUgTPid89c5kGOFkQRyYP29TduO+SP0mw3Ve6FdD+sYTlJv7B2w8S/24fJlH0GoGoI2wTZmGEqfsIK783parwdZ+S377V8We2173rECaUIeX8MbC7aLfd5EGHA59L0Qyj62AjPaD7F/XXA7tw45BA+JiKSa0+tTsoPRmjv5VXjhKCjf5Nxn09+sYOqCftbnZSutgMr6Y526ciskbfk34ehfwMCr9KAUSQ3H85zs5NbRWPHJ1vF96aP27Se/Yp2HvXWe9bAWPw38sn9j5feCU96Cii1WqC/Aoqug/BPvY+xfAk90gkFfta5R9IghMG7J161zrsZ2zYOniq3Xn2E32R9vN+YYFJ7C7xMRERHvDODhBM9hfj6PiIiIiIiISEwqQvbXuzMpGC3b4b2FOrf7GUVEREREREREREQyiBIeRCR9GIbzotGqPfGPH+lp9b3Pjn8OkWgEgtZCnYL+EMyBTkdHF3AWyIZOY/wNRQPI7eq9b8llkFPk7/zRMgw46QUYeRt0Pc5awDXjDeh+Ymrrktj1dAnbK0tVyI3uqxfh8CZ4ZZIVrrP2LnjrXFimYFkAdrzk3NaWF6wOuspbvwUzreCpFd+DlydYIZhuvIbqbH0Ids731rc1iOeGtr0L/avDT2GnheBxBKPFGmpWtsIKAVichgFyTswwLDi9aShaY+vutn7ewg5Pia1//ZrwBzjmT1A8wwqGO/5RGPI1yO0MHYYqFC2dBLKgxyn2bWYYDq9vui0csn7O3rkY3p0Nq++A5TfDc0Oh5gCYJoSqPv+ogQMrYq+t/BM4uCr6/bpMie9nPlGy2kHXSdbPgNvryqS/2m8PVSWmLhGReDm9PgXzkltHi/lz4PQlkR9usrHR6+7au5wDqFZ8D14c3fbClCU9OB5/5yS3jubG/9b+vYZ+F0PPmVZA2EVl/s87+Bp/xzMMK3C9+CTr46x1MPbX0O2E6MbZdB/MnwGrfx3dfqt+2TIUrbEV34One0PtIfdxEhEULiIikjz1oWWJ/BARERERERGJS3nI/jptQbB9kiuJXbZh/95CnVmLaZpJrkZERERERERERETEfwpGE5H0ktvNfnu1D8Fo610WIvQ5D9oVxz+HSGvgFFDYXMcxMO43ia3Fq6x2cPTPYOa7cMIj0O3YVFck8eg/27ktr3vy6hCRptb8Giq3N922/h44tC419aQLM+welNSWg9G6HAMlX4xun5oD8PGP3Ps4LSK3s+LW6ObPZE6Lpr2o2uVfHX4yHYLR4lkIboZi3xdg0/2w+634xkiWT5+Dna+591n0FefvnfpgBsOAIdfBjNfhpLnQ/2J/6xR/TX7Aua3s82CyIzvhrS/AI1nwSDZse7JpvyOfwhOd4eEAPNru849cWPkT57GH3uhe17YnYVmEPnaOfzj6fdJJMN9+e1jBaCKSpsLV9tuDucmtw05OJ5hwt/WABCerfg51lVbw55YID0qp3gMrb7f+vul+mDsAHu9oheGWf+Jf3SLNOR5/p/j6QX4fmPpM0yDEDsNh7C8bPjcCcNx//Jtz7K+g8zj/xrMTyIKjvg2nvg0Tfh/9/h9+1zo2Prg2ct/qfZGvaQDUlsHjRbDuD1YYsR3HoPA2fJ1JREQyjZngDxEREREREZGY1YSrqTHt3xcrDGbOAwKzHB66YmISwuE6s4iIiIiIiIiIiEgG0SOFRSS95HWDgzbb4w1GqyiF8k3O7Sc8Ed/4Iq1JbtfIfUb/GEZ+HwLBhJcjbVCvWc5tdZXWn+WfwOYHobIU+nwBesyIf5Gu29PRDOUJi7DjJfvtWx6GMT9OailpZdcCa+GrE6ONL1gdfxdseTC6fT57FUI1ELS/cSuqYLR9i6Fqd9sI1owrGG23f3X4KRHBaPn9nNuyi6DW7oS0mc3/gu5TY68hGcwwrPhe5H5lH0FWoX2bFtxnptzO0H4oHF7fsm3Vz6BmPyy9wd85R/yPFZpdNByWXO/fuAOvgsIS/8ZLhcbBIo0d+cw6n8nvA91OsAI7RETSQcgpGM3h9SwVep7m3v5ERzh9uXPIW2PbnoTXToA97zZs2z7Xuu502lLncxKReDid0zosXkqqHqfAedut8/KcztD9BMgqaNqn1xnxzTHgS9BhGPS9EDoMjW+saA38Mqy+A47siG6/mgPwxulw5mrIcgi+Bdj9ZnTn5stuAiMIQ22Oz02HceI5HxYREUm8UhRaJiIiIiIiIhmgPHTIsS2TgtGyXe5NrA3XkhXUvT8iIiIiIiIiIiKS2XTnrIikF6dApuq98Y279i7ntrG/VriTSGO5Xdzb84ph1A8UFCWJYwSgx6mw87WWbXXlsOHPsORrDds23Q8FJXDaoviCb8yQW1GxjyvSGphhqNxm37bxz207GG37M+7tbT1YKNgu+n3MOji8ATqOtG+PNgDs4Kq2EYzmFCLmRboGo4Ud/k3x/Fx1HA35fVu+phWNhJnvwwsjreBVN5vuh8l/i72GRAtVw8LL4eBqb/33vme/va0HO2aybsfbB6MdXOV/KBpAt8+DAod8Dfa+b4UH+mHQ1f6Mk0puQUILL7f+7HocnPwyZLdPTk0iIm7CVfbbA3GG0fspEIRZK+Clo+3bw7Xw4mjv4zUORatX9jGUPgoDLo+tRhE3Tue06XL9ILcLlFzi3J7T0Qp23fNO9GMfdSuM/UXstcUruz1MnwdLr7d+9qMJXq/YCp/83T7E7L99IpxL2ln6dStsrnBA0+2JOB8WERFJMNM0S1Jdg4iIiIiIiIgXFaHDjm2ZFIyW5XJvT51ZA7g87ENEREREREREREQkAyjRRETSS243++1Ve2Ifc/9yWPd75/Zes2IfW6Q1Khzo3j7+dwpFk8RrP8R+++ENTUPR6lVsgZU/i2/OcLVzm77npa1zC6mtdX56YptwcI17e1tfsBpLMBpYQQROog1GK1sVWw2ZJtqvS2PVu8E0/avFL05hb0YcOf+G8fnxbKMxArlWYHZ2IZy1GoIebgqsijO8OxFC1fDRD+HRPCh9PP7x2vrrVybre2Fy5+txSsPfR97mz5iDr4Nux/ozViq5BaPV2/serPpl4msREfEi5HBtJJ2C0QA6jbFC9RNp62NNPz+0Ht7/CrwyBZbemL7hwpL+ag/ab8/KoMVJY26Pfp+CEhjl07FiPIqGw4z5cHElXLgfCgd533fro+7tTg8ViGTxtS23OQbo6bl3IiIiIiIiIiIiIvEqD9nf82hgkB8sSHI1sct2CUarNeO4l0xEREREREREREQkTejOWRFJL07BaEc+jW28/cvg5YnufYpGxja2SGtV0B+6TIZ9i1q2TboPSi5Jfk3S9mQV2m+3+76st/0ZmPiH2OcM17g0GrGPK9IaVG53bgsdscLRsjPnSYm+OqRgNFeBYGz77XwVSubYt0UbAHZwZWw1ZJp4gtFCVVBXDtnt/avHD4laCN7vAihcDNvnWmP1ORc6jrbasgpg8LWw7nfuYxxcBXknxVeHn0wT3jgDds33b8y2/vqVyZIZKNbvYshqFILZYWj0Y4z4jvUaVLndukbT7TjodaZ/NaaSl2A0sH7v8YuEliIi4olTaLzX17NkGv5N2Pla4sbf8bx1jGUYUP4JvHZ8Q2j4vkXW3KctarvnwhKbULVzMFpu9+TWEo/ik+HsjfDcYOc+2R0AA4ygFZ479Pr0ei0JBCGnE5y5Cj55AJZcH3mfPW/Dzteh4xio/LTh/zJUBbld4cCK2GrZ/aZ1/tv4HMwxKFznaSIiIiIiIiIiIiLxcgpGyw8WEjBivN8tBbKNHMe2WtPtnmgRERERERERERGRzKBgNBFJLwX97bcfWgtmGIyA97F2vQnzprn3OeMja2GTiDR14lPw1nmwf4n1eXYHOOZPUHJpauuStiMrhieuVW6DUA0End/odxVSMJqII7dgNLDChQZcnpxa0knNATiyw72PodPumGx7yjr2COa2bIv2aZZtIRjNNJ0XTXtVtTv9gtEcF4L78HPVeZz1YWfM7dbPdumjzvsfWA7FaRSMtnehv6FooGC0TJbTCfKKoWpX4ufqP7vltgl/gGU3etu/YACMu8PfmtKJ1/CP/csSW4eIiFehKvvtdsflqdZrlhWsX1eeuDnW/AaO+g5s+ntDKFq9Q2th+3Mw4LLEzS+tT/Ue57a8DApGA2g/CGZXwZKvwSf/AEwoGgVT/g5dIjywKJ0Ec2HI16DfbFj8Vet6hJv5p/pfQ7gGDm+EohGNtiUoKFxEREREREREREREHIPRCoOZ9UCcLJd7e2rjecimiIiIiIiIiIiISJrQnbMikl6KjrLfXlcBFaVQWALhEJRvhLKPrKev15RB4QBr4UJWvtW/tjxyKFqf86DjaD+rF2k98nvB6YutIJzqfVA0UgtuJLliCUYDK8SksCS2fcPVzm3RBHOKtEbV+9zbtz7WNoPRKkoj91GwEBQOto7fo1F7ED57Bfqc07ItHOXTLMtWWsFhrTkQ2WsoWn4f56DDt8+HITfAwCvTJ/gi7PDvSvRxaXYhnPAIVN0Lc/vaB4Qsv8U6n+xxSmJr8Wrn6/6PGYgxbFbSQ9HIxAejdT8J+pzfcnuvM7wHo/X9gr81pZtgFOc12+dC77N17iEiqWOazsfagTQ5PmzuvO3wRMfEjf/hd6H3ObDqZ/bta+9UMFprUx86Ha6BULX1Z/1H88/D1daDFhp//t++DtuqdjrPnWnBaGCdO055AMb+CkJHoF0fCARTXVVscjvDiU/Ckc/gzXMbHhrjpy6TYd8i+7b3r4TprzcEltdV2PdL19djERERERERERERkQxSETpsuz3TgtGyDed7e+rMKO+xExEREREREREREUlDSjgRkfTiFIwGsPgaqDkAB1faL0zf+Bc4fbm1iH37M5HnGnxN7HWKtBX5fawPkWSLNRitclscwWhuNwG04jAdES/cggMBdr5iHafldEpOPemianfkPgpGg56nwYYog9EAdr3hEIwW5dMsaw9aC5vze0VfQ6bw+jWZ9SE82dW+rexjWHIdbH0ITn4NgmkQiuUU+GYk6XJWXlcY8V1Y+RP79vmnwvi7YfhNyanHiWnCxz+K3G/MT2HkbfDSOChbEbm/odevjNZ/NuyaH/v+xTOsMIauU6D4ZNj8T9i/DCq2Qo9TodsJMOJb9qGThQOh80TYv9R9DiMIg66KvcZMEM25yVvnwcAvW+EiIiKp4HZdJJiXvDqikVMEU/4O73/ZW//60GYjy3u4cOmjzm0HPvA2Rr1wXdt++IRpWucuruFijcLE7MLFPAWWRRli1rx/KhjBzL6mkomhbk7a9YRT34Kne1nXuvw09Ouw0CEYbd9ieHYQnLnaes11CjnO6+ZvTSIiIiIiIiIiIiJtUHnokO32gmD7JFcSnyyXe3tqzSjvsRMRERERERERERFJQ2347nsRSUvZ7SG/H1SWtmzb+Zr7voc3wOo74OifRl7kPewm6DUr9jpFRCSxsgpj269yW+xzui18LI8h0EekNbELpW0sXAvb58LAK5NSTtrwEoymYCE4+mewb1HkgJzmqj6z3x5tMBpA1U4FowHkdoGC/lawkZPdb8H2p61QpVQLO4RVJDNwsP9s52A0gOU3W+F7o35gHxCVDLsWRO7TrqcVimYYMPNdeLI7hCrd98nv7U99khoDvgQ750HpYy3b8nrA1Lnw6mTn/We83vRzu6BKJ4YBk/4Kb54FR3Y49AnCuN+6B+S3BtEGCX3ydxhwuRVGJyKSbG7nfcHc5NURrY6jvfU7+pcw8n8bPt/0d1jkIaDz4x/HVFYTh9bDoqth70LI72sdOw7yGObmVYvQsUjhYrEEjvkQYib2cruBEUh1FVIvmAcz34fnh/k7biAH+s+BrY/Yt1fvgaciBJ/ltqIQOhEREREREREREZEUcQpGKwx2SHIl8QkaQQIECRNq0VZr6n0ZERERERERERERyXwKRhOR9FN0lH0wmhdb/g1jbod9S5z79DwdJtwd2/giIpIcWQWx7RdPMFqo2rnt8Aaoq4i9rnRlhmHfUjjwAXSeYH2kKtRF0lvY5eej3tq720YwWl0lbH8W6g7But9H7p/MAKd0ldPRWlD8SJSXIGoO2G+PKRjNQ4hdJvPyNSkosf7M7e4ejAaw46X0CEYzHYLRjCRezioaAb3OgB0vOvf5+EfW13fgl5JWVhOfvRy5z4hvN/yOzyqwQq6cFuPX6zkz/tokdYJ5cPzDcNT/wv5lDT9P7XpB96nWa3PP0+CzV1ruWzw9/vk7j4Oz1sDud6xwyk5jrRDBQ+ut78Fux0HhwPjnyQROX2cnn/xTwWgikhpu532BKIMekyk3QohQfZ8h1zXdVnIJfHQbHHEIZPZLxbam4UoVm61AtnV3W+9VxBIu5rRNMle7HqmuQJrrMBTyuvt7PSGQDb3Pjnwu5ibPw2ueiIiIiIiIiIiIiLiqaCXBaADZRjbVZstgtDozhnvsRERERERERERERNKMgtFEJP0UjfS2sNtOxVb49DnY/aZzn3G/jm1sERFJnlgDyCriCEaLtIB0+3NQMif28dNNOASLr4ZP/tGwbfA1cMyfwAikrCxJU27BgfXKVsDWx6D/xYmvJ1XKVsGCmXBkh/d9jGDi6skkgSDkFUPVLu/7VO+33x7LTVutPRjNy9dk1A+tP/O6R+67+Z9w7D/iKskXToFvgSRfzjrmT/DiaKi1vykSgPevgB6nQH6v5NVV7+Bq9/YJ98DQG5pu6z/HfTF+j1OhoH/8tUlqGQEroKzzOPv2wdfYB3aVXOrP/NkdoPcZTbe1xcCvfrOjC0ZLl9dgEWl73M77grnJqyNakYLROo6G4x+1QkEbC+bBzIWw5Hr3EFxXEcLl9y2FV46xbyv7yPoQAeihUOK0dNZaeKKzf+MFcqzzxpxOzmHwkeR6OKcXEREREREREREREVflocO22wsyMRgtkEN1qKrF9lo9VEdERERERERERERaAQWjiUj66eSwYNert851bgvmWwuhREQkvWUVxrZfZTzBaBGCn1bc2rqC0bY/0zQUDWDjX6HXWdDn7JSUJGnM5sYZW+/Ohn4Xts5wvcOb4MVR0e9nRFgo35YE86Lrv3+JFc7QPITBKSzLTTSBbJko0tekeDr0n239PS9CcES9x4tg+Ldg5K0QyI6tri0PW79bdr/RsK3jaOh+Mhz9Uys0yY1ZZ7/dSPLlrIJ+cNzD8OaZ7v2e6Q2XmsmpqTGnYLTcLnDBXvu2nqdDdhHUHrRvn/QXf2qT9NbrLOh1RtMwmO4nWUFe4p+SS2HRVdHts/7/2bvP8LjuOm/j95lRsyT33uM4sR2nOE53qtNJIz2B0GGBZemwLGF3gST0Tlg6+wCBZcMSCJAQ0nvvxenNiXuvkmWVmfO8ODGWpTmj6Wr357rmss6//iRLU6RzvvMj2PNffB4xEKy8GZ7/Lmx5AeiFxwgpH9meUyb6cDBa1ZDs/ac8Ef8atWE6LLwOnroEnr40/717Cox75MPZ+yWAYbNh9sd7uwplUjMSjroa7rkg/vVpPhLVUD0UDvwB3P+OwtbIJexckiRJkiRJkpRVUyrzmyM2JodWuJLiVQWZz+tqL+TNRyVJkiRJkiSpjzEYTVLfM/UceGwstK4t/doLrij9mpKk0qtqKGxeUcFoPbw7WvNrha/dF73wvcztL//MYDR111NwYGdPfBbmfyu/9VPbofl1CJIwdI/85lZCy2q4tg/W1d8UEqbw6CfgkJ/s2lbIu1m2rsl/Tn+SLcRi/2/CrI/sDIxI5fjz3L4FFn0RVt4IJ92beUwYwuZnIExD24Zo7ZoR0c/ys9+ApX/sPmfTouj24g9g4d+BN0IqaobDiHm7Bluk+0gwGsDkU+HYm+D2k7KPe/5ymFPBUIN0e/xzlEN/GT8vWQt7fQae+s/ufeeuh9pRJSlPfVyyBo7+Kyz9E2x8PPoZnHJWzwEzyk+yNgrqT23Lfc4jH4GWlTDvy+WrS+URpqPHxm0rosfQuNddUn+Tb8hxpY05HNbd1729cffcgrsLDaLM9hqnZSWsf6iwddVPBNHjfKIm+l5I1ES3ZJfjRE2ncZ2Pa2HUQdHfxHz+3XdNPRtOeRz+HvOmS/t8Hp7+Um5rJWqif2e8HYbPhRsOzL8eg9EkSZIkSZIkqShhGNIcG4zWw5s89kHVQU3G9o6wgHPsJEmSJEmSJKmPMRhNUt9TNQSO+Rvc9zZoejlqqx0dXaA7Yr/oNnI/uOdCaHolv7XHHF76eiVJpdcbwWipQXYSwNqYkJsV11W2DvUPqe25j33u27D/N3K7+Bxg/cNw70U7n/dNPgOO+D1U1edfZ7k8/+3ermBgSBYQjPbyT2H2R6MLhnfIFgIWp2V1/nP6kzAmQAxgt7ftGnKU68/mDuvug5uPguNu2fX/sHkJ3H0ubHgkv/U6u+PUXY9rR8OC38Gkk6PjuM8r0Uu/zpp4IhxzHdx5WvyYpy+LgugSycrU1LoeCDP3NeyWfe7cz8K2ZfDq/4t+rkbOh8P/x1CGwSZRBdMvjG4qn+F7w4aH85vzwg+in9Pq/veO1IPWlhfgzjNg60u9XYlUeoU8l6+kuRfDXW/u3j7+2BwXKDAYLVtoc9Nrha2pNwQ7w8N2CRTLNXSs0/GO8cma7iFmOc2PW7NCz/nV+0bsAxdsg4feD69fGQWhBskobHrfS2DOp+HBf8ocDt5Zonrnx6MOgPM25TZvh5qRMGyvgj8NSZIkSZIkSRK0htvpiDknqX8Go1VnbG8PCzjHTpIkSZIkSZL6GIPRJPVNYw6BM16Atk3RBdp14yDocnFSw/T8gtH2+CDUTyptnZKk8qhqLGxe67o3LkzLM/QFIN1a2J6qvDANr/4aVt8Br/8vhCmYeg7se2l0oaJKL9+fj3UPwNgcAmnTHXDjIbu2Lb8W/tAAFzT3jXC0MIQlV/V2FQNDoq6wea9dCfO+tPO4kGC07SsL27u/yPY1SXQ5+W3KWfDa7/Jbf+098Px3osCJ138Pa+6Cl3+Wf509aV0P970VTn8R6sZkCUbLfEJfRUw+FY6/DW49LnN/2wb4fRWM2Bc2LYraZn0EZrwTRh9c/P5b+BFGAgAAIABJREFUXooCA1Mt0WNf3fj4sXVjs6+VqIJDfgL7fzU6rh7R/XW3pNIYe3j+wWgdW2HRpdC+aWcI4rK/Rn2zPgb7XQo1I0peqgoUhvC3Ob1dhVQeyfro1pdNPh0mvxmWX7OzrXpYdH+Z0/zTYNEX89831RI9F8/0/HTDo/mvVzFxoWM5BIwlMwSOFRM6FhdiZuiY+pqqIVGQ9ME/joIPh+6x8/dWNcPhqKugdQPc/y5Y8bfMayRqdj3eMa9tI9xwyM43DYgz9+LoZ02SJEmSJEmSVLCmji2xfQ39MBitquvvnt/QYTCaJEmSJEmSpAHAYDRJfVeQgNpR8f1143Jfq2G36GIFSVL/UNVQ+NxUS2Hz022F7znQdDQX939QiHRHFNDSk1Qb3P8OWPKHXduXXh3dTrgbxh1ZnhoHs1SewWiv/1/mYLSOFkjWRWF2iSq4bm78Gn/fD057JrpIupJSrVE4b6IKakbB6tuh+fXK1jBQFfp/ufL6XYPRCjlpa8vzhe3dX+QTjDbxpChsIN/Awxd/GIU7LL06//ry0bYxCm6b8/HosSGToJd/nTX+WJh0evzF7rAzFA2ir91LP4Ejr4KpZxe+79r74JZjdgbGvfSTKIAtTu2Y3NatGVl4TZJyM+0CeOHy/Oc9/53M7S/+AF78Lzh7JQzJEpCoyrn3Lb1dgVQ+E0/K7fV6bwoCOOJKeOWXsPJGqJ8Me30Ghs7Mbf7I+VA/FbYtzX/vts1RqG9n25bDox/tee6oA2HIpBxDx/INGDN0TCqL6mEwcr/MfbWjYNT8LMFoMSHfNSPh9Gfhue/Ak5/LPOaI38P0C/OvV5IkSZIkSZK0i6ZUfDBaY3JoBSspjeog8++e79p0A882PwZAMqhmRt0sjh5xCkOrhleyPEmSJEmSJEkqSh+/kkGSsqjNIxjt+NujoDVJUv+QrC98bnuTwWjF+kMjjD0SDvt17hcRF+qVX8GT/w7bV+1sGzYHDrw8uvh6h1W3wEMfgqaXs6/39GVw3E3lqXUwS23Pb/zSq+DA70cXpwM0vQYPvBvW3LlzTLIu+7pNr8Btx8OJ9+S398v/DQ+9f9e2XALztq+Dh/8Zll+TPWRKlbfhUbh+Piz4TRQCVcj/z7ZlcPPR0RqNu5W8xF6XTzBa9bDoguq78wzoallZ/lC0HR77BOz5QdjyXOb+3g5GAzjyD/CHPJ6vhCl49GMw+YzCgkXCMLqPCruExXUOYOusekT8RfeSKm/MAtj3Ulh0CRCWaNEQnvkqHFRA4JpKq21T9+BmaaAYtlf/ecORqnqY/ZHolq8gET2/u2lB/nNTzUCXYLQXftDzvGOuhcmn57+fpD4uiO9K1GTpq4a9L4bRB8N9F8H2NVH7yPmw8HrDcCVJkiRJkiSpRJpjgtESJBiSqPAbCpdAdZD5d8/r21ezvn31P46fbX6MR7bezaenfo3GqmGVKk+SJEmSJEmSitIHriSVpALV5RiMNvqwgRl+IEkDWSIJySGQasl/bkcTkOVCsY1PwIbHoG48TDplZ3BmLnulU1Ftg8Hae+DWY+HNr5Q+WKV1A6y4Dp77Dmx6snv/lufh9pPh6L9C8+uw9l5Y8n+5rb3q5ig8JshyEaLyl27N3F47GlrXd29vWQmrb4MJx0O6A249DpoX7zoml7C1tffCdXvDuGMhWQvVw6FhGkw8GYZM3DmufQu88kt47JOZ17nlKNjzw92fPza/Bg27wZjD4IXLYcXfe66ps8N+DcPnwo2H5DdvsKrLct889ZzsoVsbn4CbDoezlhQeZLn2brjlmDfu1wbIr0OaX4cVN2T/3s30rqBTz4LzNsCau+GuM8tXXzFuOwm2r87c1xf+/6qGwJFXwT3n5z5n2zJ48Ucw5+P577fxifgQtExqx/Q8RlLlBAHs+wWY8Xa4poTBw0uvMhitL1hzV+5jp50PE08pXy1SKQ2bA6MPGjxhq2MOg/O3wh+HQ5jOfV57U/e25dfGj0/UwLnroHpo/jVK6t8yvT7vasLxcMbL0e/EkkNg3FG+8ZMkSZIkSZIklVBTTDBaY3IYQT8877Qql989v2F123Ie3noXx470zXskSZIkSZIk9Q994EpSSSpQ/eTcxs18X3nrkCSVR1VDEcFoMZ79FjzxWSCMjkcdCCfcHYWbtG/tee10GySG5F9Tf7VtKay4Hqa8uXRrbnoGbj8JWlb0PLbQsJ4dgVwqnVRMMNrU8+Dln2Xuu+0EOOyKKMCsayhaPjY/G906qxkJx1wLY4+AjU/C9fv3vM5LPyq8hkwOuwJ2f2dp1xzoxh8LS//UvX34PlHA1BMXw3Pfip/f0RSFp6XbM/c3zoy+17KFGGxbAqtvh4kn5ld7X7T8b3DPhZDaln1cXIhYzcjo/n3GO2Hxb0pfX7HW3h3f11cuCp90Wv5Bro99Igotm/G2/PZ6/ff5ja8bm994SZXRuDvs/h549VelWa9lJbSsgiETSrOeCtP0Sm7jhu8NR/6hvLVIKk51I+zzBVh0Se5zuv4eKt0BW56LH7/flwxFkwa0LBfNJWtyW6J6KEx6U2nKkSRJkiRJkiTtoimV+VzhhuSwCldSGvXJxrzGv7TtaYPRJEmSJEmSJPUbfeRKUkkqQP3UnsdMOBFmvrf8tUiSSq+qobB51+8Pd5wB6x7c2RaG8NQX4Yl/4x+haAAbHt15sesrv+h57XRbYTX1ZxseKX6NjhZ47ttw/QHw931yC0Urxn1vL+/6g1F6e+b2uvFQPyV+3gPvioLwSq1tIzzyEdj8fG6haKU2cn/Y7a2V37e/m/EuGHf0rm1VDXDg96Kgq/nfhPpp2dfY9AyEqcx9h/43vKUdqkdkXyNbSEF/0boB7jyj51C0INFziFhdmcN09vhnuCiEUx4v3Zotq0u3VjGqhsCUs/Of98hHoG1Tz+NW3QK3Hgf/G8Bz38xvj6Gz8q9LUmXs84XSBjxeMyN6nn33+dFzI1VW6wZ47FM9jxsxD05+uPz1SCpedZ4XvXQNRtv6UvbxI/bNb31JA0dQ3dsVSJIkSZIkSdKg15TakrG9Mdk/39hmTv1+eY2PC4aTJEmSJEmSpL6oqrcLkKSC9RSMduRVMPWc0l5sKkmqnERt4XNX/C26Hf0XmHJmFMr19GWZxz73TRi6B2x5oed10+2F19Rfrc/z4v0wDRsfh0QNDJsLiSQ8+vHcgudKZfsqaF0PtaMrt+dAl2rN3J6sg+F7w7Zlla0HYOMTcN1eld83WQcLfgMJL2bNW3UjLLwBVvwd1j8AQybB5DOi++Adhs6EbUvi11h9a3xfojp67j/j7fDiD+PHLb8Wpp4H9ZPy/xx6S7oj+p5vehWCAO65ILd5uVx0PaTMwWgNb7xuG7k/jDkc1t1X/Jqdv2d629x/gyV/gLAj9zntm+Dxf4M5n4Rhc2DzM9CxDaqHwpbnIbU9eizLJWgnzm4XFT5XUnk17gZnr4bFv4bHP1P8eqnt0fPvjY/D0j/COWugbmzx66pn6Xa45ZjsY+Z8GkbsF4Xq+vxR6h+qh+c3vmsw2uans48fvk9+60saOBI1vV2BJEmSJEmSJA16zbHBaHm+eU4fceDQo3iy6UGebHqw58HEf/6SJEmSJEmS1BcZjCap/8oWjDbz/TDtvMrVIkkqvUQJnqredRZMOAnW3pV93EMfyG29dFvxNfU3K2+Ara9EYUU9aXoVbn8TbH0pOh6xH0w5q7KhaDvccRqcdH8UIKTipbZnbk/UwvjjYeWNla2nNx13C4zYt7er6L+qhsC0c6NbJo0zYfXt8fPrxsX37bjAeP63oH0LLP5N5nGrboG/ToN9Pg/7fKHv309segbuPAOaF+c/N5cAltosX9NSGNcpMOaIK+GBd0f/x4lqmPHu6Ov/8s/zW3PUQaWssDgj50VhiQ99EDryeEfVV35RvsfHIZNh4knlWVtSadSNgb3+NQrWevLfS7v21ePgLR1RQLHKa+VN2QOQRh8KB3y7cvVIKo3qPC96ae8SjPbM1+LHDp0F9VPyr0lS/5HtdwyGpEqSJEmSJElSr2uKCQZr6KfBaNWJav5p0r/x0ranWbz9BTrC6A2gV7Qu5cmmB7qNj/v8JUmSJEmSJKkvMhhNUv9VNQSGTISWld37DEWTpP5vR8BNsVbdVJp1YOAEo6Xb8xv/+Kfh6L/0PO7et+0MRQPY9FR06w3rH4SlV8eHLyk/6dbM7clamP5WePmnUTBeUQLY91JY9IUi1ymTCSfCcSW8P1Fmjbtn79/yQnzfjguMk3Ww4AoggMVXZB4bpmDRJTD2KJhwXCGVVkYYwv1vLywUDbIHye1Q3VjY2rmYeDKMOXznccM0OP426GiBsD0KnWhanF8w2uQ3w6gDS19rMXZ7K0w9F1LN0fH2tdA4A1pWwF93q2wt9VPhtCwhPZL6lslv7jkY7aT7YfsauOvM3Ndd+keYfmFxtalniy7N3j/jHZWpQ1JpVQ/Pb/yO54AArRtg4+PxY/e7rO8HM0sqn1L9vluSJEmSJEmSVLCmVOY3Pmzsp8FoAMkgyZyGecxpmPePtmeaH8sYjNac2koYhgT+zUqSJEmSJElSP5Do7QIkqSjTLujeVj0Mxh1T+VokSaVVNbS3K+huoASjpVryG7/sGmhZnX3MtmWwvvtJFL3qhct7u4KBIxUXjFYHtaPgpAdhWhHhGyPnw5tfhn0/D8fdUvg6mSSHROFXO275GHtUFFhy8I/h2Bvixw2ZWFyN2qmnYLRtS7s1pcIEzal6CKp37WjYref9Xvnv3GvrDZufho1PFD5/4ik9j6kdW/j6mSTrYNLpMP/bcPQ1mYMfqoZEr9sgChA7c0luax/wPTji95BIlq7eUknWQM3I6DZsVhTU1zAdTn6ofHvu/w2Y/QkYfyyMPx72+jc45fGdX1tJfd/wuTBiXua+2R+HM1+HMYfBlDdHAbK58nlw+S3/G2x4OPuY+qmVqUVSaeUbjNbetPPjpX+KHzduoaGV0mBQMzK+L1Ed3ydJkiRJkiRJqojm1JaM7Y3JPnjOchHigt7SpGlJN2fskyRJkiRJkqS+xmA0Sf3bvpdEFxTtUNUIR/8FkrW9VZEkqVT6YqjHQAlG69iW54QQ/jwB2jbGD1mRJTSqHOrGwR4fyD5m7d3w6CchDCtT00CW3p65PfHGc666MXDk7+HQX+a/9ryvwSmP7QzEmnA8jDq4sDp3mHI2vDUNF4Vw4TY48a6dt7emYfYne17j7JXR+GP+Cnt+CIIsL58P+H7m9lkfK6z+waxxZs5DO9JJPvLi5Yy6Zx2j7lnH6b+cyvqmTj/vdeN6XuT1K2HLiwUUWgFhGu4+r/D5QRXs/7Wex406IP/whzhzPwcXNMPCa2GvT0dhYblomBoFLA6Z1L2vbjyccHf08zznE1GoWn8y+mCY9ZHSr5uoju6bDvweHH8bHH8LzP8G1I4u/V6SyicIYMGvoX7azrZhs+GspXDg96GhU/ue/5z7uuvuh+v2hfU9BHepMOl2eOiDPY8zGE3qn/L9fdRrv9v58aan4sft8x+F1SOpf5n+ViBDQPjwuZCoqng5kiRJkiRJkqRdNcUEozXEBIn1V9mC3ppSWytYiSRJkiRJkiQVzmA0Sf1bzQg4/lY49Sk49iY4ZxWMP7a3q5IklUK2C1EX/HbXYMxKSbdXfs9yaM98YkeP4i7+3/gUPPT+wuspxJ4f6TkYDeCF78Nr/1v+ega6uFDArmG0M98DC6/Pfd39vw57X9y9PVsIWU+mvwWOvjoKGskkCODA78Kpi2L6E1Gw05AJue858WRomLFrW3II7P7O3NdQZEdAXg4ufvVr/HjFh9maGkZ7WMPfn2/g7B+ndw4YMjG3hW5/E6T6UPBlGMLa++Dv+8HWIkLbzt8M1Tm8k2myLrf7056cuQT2/2rhP79jDoHTX4DjboHDfxfdjr0JzngJxh1ZfH29af+v5/W9nZP9vpTb/6+kvm/k/nD6c3DiPXDifXDqM1A/pfu4unFQOyb3dTc/DTceAs98FZqXlq5ewapboWVFz+MMRpP6p5o8Q4M3Pgav/x88cTG8+MP4ceOPK64uSf1D3ViYdn739j0+VPlaJEmSJEmSJEm7SIdpmmNCwRqrBlYwWragt+aYcDhJkiRJkiRJ6msMRpPU/wUJGLEvTDwRqhp6uxpJUqlkC0abdEp0q7S4cKj+5oXvFzZv6Z+gZeWubU9/Ga6fV1w9DTNg7BEw51M9jx2xHxzwXdjnP2HUgXD8HVFIRDZPXxoFDalwcaFRQXX3tklvguNuhbFZgoyG7x0FHM79bMy6BbxUrR0DB3wPFvwmt/Ej9omCnKaeB3UTou/DPT8E52+Bqvr89q4ZDifcGYWyNUyHiafAsTdG36PKT83InIalw4D/XfPWbu33vAzLNr7x855r8EDzYlj+11wrLK8whPvfCTcfAZufKW6tfL6P9/86zPsqjJgX/Xzu9yXY78u5z9/zX6ChBOEv1Y0w4XjY7aLoNvHEgRH+VdUAh/6ydOtNfwvM+XTp1pPU+6rqo+fDYxdAIhk/bspZ+a/95H/A3/eB1XcWXp92tfrWHAYFUDu67KVIKoNsv4+Kc+9b4NlvxPfve0lxAeCS+pcFv4W9PgPDZsPoQ+GQn8Hsj/R2VZIkSZIkSZI06G1PbyNNOmNfY5Ygsf6oNqijKtP5nUCTwWiSJEmSJEmS+omq3i5AkiRJyijbhaiJ2ijAaNlfYN39latpIASjtW2EV39d2NwwDX+eBMdcB5NPhY1PwVOfL7yWiSdHa+0IfwhDeP678ePPXgFDJu7aNv4YOGc1PHVJFICWydaXYOMTMGp+4bUOdmFH5vZE5hNnmHBcdCtYkOOwquji0pnvLWybhqlw1FWFzc201hFXlmatwSwIYOxRsPburMM2dYxgVdvEjH1/XxTygaODKLAuV6//Hqadn0+lpZdOwQ3zYdOi4tea/pb8xgcJ2Ptz0W2Hto2w5CrY9GT2ucNmx4ccaqfxx0RhiRseLW6d2R+HAwsMOJXU/+3zn7D6Dmh6Ob957Vvg1oVw4XZI1pajssFlWQ6BqqMOjJ7XSOp/kvVRePb2VaVbc9zRpVtLUt+XrIH534xukiRJkiRJkqQ+I1sgWGNyALx5YydBENCYHMamjvXd+gxGkyRJkiRJktRfGIwmSZKkvmn4PvF9ydookOm4W+HqsdDRXJmaBkIw2sanINVS3Bp3ngYHXg5b8wxkANjr36L/u1EHwpQzozCeHYIAgiSEqcxza0bGrzv9wvhgNIhCjwxGK1y6PXN7XDBasTp/X3R19ipYcV308zjmcBi5X3lqUO+Z+d4eg9G2dMSHZ+6SQTL7E/BCDiFSS6+Gxb+F8cdD/aQcCy2xh/85/1C0fS+DZ77c/fFp5vuLr6dmJJx0Hyy7Bl74HlQNhTmfhEmnwIbHYPWtUD8VJp0KNSOK328w2PcSuPOM+P5Jp0dhR1VDYcxhUNUIw/eKHhfbNkaPnYZqSINbw3R408Ow/FrY9DQQwsu/gPZNuc2/8WA49amyllg2HS2w6Y3aRx/Se6Fjza9Hwcs9mfm+8tciqTyCAHa7KHtwe76y/Y5LkiRJkiRJkiRJFZEtEKwhmeXNnPupxuTQmGC0rb1QjSRJkiRJkiTlz2A0SZIk9U1Tz4lCYrqGeI0+ZGcYU9UQOOTncN/bKlPTQAhGKzYUbYdHP57f+NGHwYIrYNis7OMS1ZCKCUZL1sXPG75XFBiz4dHM/Sv+BvO/kVut2lUYQtiRua9cwWhkCbqoGxsFZ2ngmvEuaFkFT34udsimjvggrsbaTgc1o3Lf9/53Rv/u/R+w35cqG7jSuh5e+e/85w2fA8feCA+8F5oXQ+0Y2P+bMOG40tRVVQ+7vSW6dTb6oOim/Ew+PQoW7foYOvU8OPTn2QNAJWmHmhEw4x07j+d9JbpfeeknPc/dtCgK9mqYXr76ymHD43DvhTsDyUYdCEdf0zthpk9+vucx874Ge3yg/LVIKp/9v17aYLS6saVbS5IkSZIkSZIkSQWJC0arCqqpDbKcn9pPxYW9NWcJiJMkSZIkSZKkviTR2wVIkiRJGVU3wt7/vmtbohr2+eKubVPOhFFdwlkady9PTen28qxbSXEBV+XQMANOfwHO2wAn399zKBpAUETQ1kE/iu/b/GwU8KX8ZfueKeb/K5sgy0vVbH0aGIIA9r4Y9okPHtnYER8g1VjbKdCskKCpZ74Cq2/Nf14xNj5R4MQEjF8IZ74K566Dc9bAzPeUsjKV2uyPwYXbo9uZS+CCZjjqKkPRJBUuUQ0H/xgubIWp5/Y8/q6zIEyXv65SCdPw4Pt2hqJBFIb8yL9Uvo4Xfgiv/Tb7uPM2Rs9jfM4q9W+Japj85tKsNeGE0qwjSZIkSZIkSZKkojSntmZsb0wOI6jkm2hWSGNMMFpcQJwkSZIkSZIk9TVenSNJkqS+a5//hKP+BLu/B2Z9BE64CyafuuuYqgY47hbY/5sw9bwoSOfkh8tTT7qtPOtWUrqCwWinPxeFoeUT9jL6kML3G3MoHPbr+P7FVxS+9mCWLRAwUVWePYfuUZ511b8kh8R2beoYntsahX6PLu4h9KTUmpcUNq/z/Wvt6ChUTn1fsja6NUyFqvrerkbSQJGsgSOvggX/A7Vj4sdtfAIe/Xjl6irW+kdg4+Pd25f9FZperVwd914Ej340+5j9vw41IypTj6TyK1Vw7e7vK806kiRJkiRJkiRJKkpcIFhjcmiFK6kMg9EkSZIkSZIk9XcGo0mSJKlvm3oOHPZLOOi/YMxhmcfUDIe5n4GjroL9LoPaUTD3s6WvZSAEo4UVCkY74c4o9CVfe306c/tu78ht/rij4/se/lD+9aiHYLTq8uy554czt086NXO7BqZE/H3Ixo74kIKOdKeDMFXY3ot/U9i8Qq25I/85VQ0wZkHJS5Ek9WNBADPeBueuhWRd/LgXfwhLrqpcXcVYd19839K/lH//VCvcdiIs+b+exzbuXv56JFVOzaji15j1MZh2XvHrSJIkSZIkSZIkqWhxgWANMQFi/V1DTOBbc2prhSuRJEmSJEmSpMIYjCZJkqSBaca7S7/mQAhGS+cQjDbxlOL2GH0ojD2qsLkTToDhc3dtS9TAnh/MbX7t2Pi+1HbYvrawugazbMFoQZmC0UbuD2OP7LJXAvY03G5QyRLosqljRGxfR+cstNGHFL7/4v8pfG4+0h2FBbHN/ABUDSl9PZKkgeG0Z7L333MBpPrB65t198f3bX66vHs3LYarJ8CqW3IbXz28vPVIqqzaIoPRJp0GB10OiarS1CNJkiRJkiRJkqSixAWjNQ7QYLS4zyvu6yBJkiRJkiRJfY3BaJIkSRqYhs8p/ZoDIRgt7CEYbcR+sPBvsP/XoaaAi4AnnADH3QRBUFh9iWo44S6Y+T4YOgsmnQrH3gBjj8htflVD9v7NzxZW12AWZglGS5QpGC0IYOH1MOsjMGwvmHAiHPUXmHx6efZT35Ssje3a2DEyti+VDncejDoQhkwqbP/73wHbVhQ2Nx8rb8jeP+pA2Otfo/vl0YdGx/O+Bgd8u/y1SZL6r8bdo8eMbFZeX5lairHuvvi+7WvKt+/q2+HaPaB9U+5zqgfmyfLSoFUT/5ojJ3t9ujR1SJIkSZIkSZIkqSSaU1szthuMJkmSJEmSJEl9k29TLkmSJOUqNcCD0apHwEH/BUEC5n4WZn0U/tBD0FhXR/8VquqLq7F2NBz634XN7SmQ7daF0b/jj4W9/z0KclN26SzfM+UKRgOoboy+HzV4JeKD0ban62L7OtKdDoIEHPILuOdcSG2P2urGwfS3wguX91zDXybDOaujOeXy+h/i+w76Icz68M7juZ8tXx2SpIFn+kWw4dH4/rvOgrNXwpAJlaupJ02vwiMfhy3PQVUjbFsWP7ZcwWhhCI9+HMJ0z2M7Sxb5OkhS3zJsduFzZ/4TjDumdLVIkiRJkiRJkiSpaE0dmQPBGpJDK1xJZcQFo21LNZEOUySCZIUrkiRJkiRJkqT8GIwmSZKkgWvIJGhZUbr1Us2lW6u3ZAu5Om0R1E/ZeVxIwFmxoWilMHwubH42+5jVt8Pae2Dh34EAkkNg1EGQrKlIif1K2B7fV85gNCkZH36WCuNPyurommEy+VQ47TlYeWN0HzXhJBgyHvb4Z3j1V/DcN7PXccOBcMYr5bt/WP9gfN+088uzpyRpcJj5Pnj6MmjfHD/mzxPhmL/B+IVQlWcocqk1vQrXzMx9fGuZgtGaX4NNi/KfVzO85KVI6kXjjoH6abBtya7te3wQRh8CYQoe+kD3eVPOgkN+3nNwuyRJkiRJkiRJkiqqKZU5GC0uQKy/iwt8CwnZlmqmsWpgft6SJEmSJEmSBo5EbxcgSZIklc2+l5R2vScuhk1Pl3bNSgtjgtGGzd41FG2HyW8ubz3lMOm03Mal2+G2E+G2E+DmI+CGA6DptbKW1i+lswSjBQajqYwStbFdqZqxsX0dqQyNjbvBnh+EGe+IQtEAhs+B+d+AC1uy17FtGay5o8dyCxKG3YMWdpjzaagbV559JUmDQ81wOO6WnsfdeTr8bS/Y8Hj5a4qz9t78QtEAtq+JHktLrZDXfI17RAFKkgaORDWccAeMPQKCBNSOhXlfg4N/AjPfC3u8H858DcYeFfVXj4B9Pg9H/clQNEmSJEmSJEmSpD6oObU1Y/tADUbL9nnFhcRJkiRJkiRJUl9iMJokSZIGrmkXwMj5pV3z3gtLu16lpWOC0YKqzO17fw6qMr9rXDdTziqsplKb9eHC5m1+Bh77RGlrGQiyBaMlDEZTGSWzBKMlGmP7OtL57lMHx92afczGJ/JctActK+H+d8GVCUhtzzxm2gWl3VOSNDiNPgiO+L+ex21bGgUFh/k+kJZAqhXue0cB81rggffApkXF17DxCXjoQ3DXOXD/2/OfP+/LBiFJA1G/5G7VAAAgAElEQVTjDDjxHjh/C5yzGva+eNef9YbpcOJdUf9562G/y6KQNEmSJEmSJEmSJPUpqTDFtnRTxr6BGozWkIw/99dgNEmSJEmSJEn9gWfnS5IkaeCqGQ7H3wbzvwNTz4Fhs2HKmbDvpXDYrzPPGTEv+5qbn4U195S81IoJ44LRkpnbxxwGJz8Acz8Hu78nClU44yUgw0X/084vWZlFaZgOJ9xd2Nxlf4V1D+4MKkp3wPa1EIalq6+/yRqMFhOoJ5VCsi62K5VoiO3rSBWw14TjYOq58f3tmd8ttCDb18K1e8Li32Qf1zC1dHtKkga3yadB9fDcxt755vLWksnKG6F5cWFzF18BNx0B6x8pfP9Vt8JNC+Dln8KyP0N7nieAj5gH0/t5gLak7KoasocfVjUYiCZJkiRJkiRJktSHbUs1EZL5PNBsAWL9WU2iltog8zl4BqNJkiRJkiRJ6g+8il2SJEkDW80I2OtTwKd2bQ9D2PoiPPPV6DhRCwdeDnt+EG47GVbdFL/mLUdB4x5wxJUw+qCylV4WscFoWV4aDJ8L+39117bDfgUPfQDSbdHxnE/B9LeUpsZSGHtE4XNvOiz6t2G3KBSsZTnUjonC9CafVorq+pdswWhBdeXq0OCTqI3tSsWcsAWQKjTHcMFvYemfMve9fiXM+1KBC3ex6IvQ0Zx9TKIa6saXZj9Jkqoa4Kir4bbjex674rooELS6gid+L/tLcfM7tsLz34Uj/rew+c99e2cwciEmnVr4XEmSJEmSJEmSJElS2WULAmtMDqtgJZXVkBxKa0f3v4c3p0r4RqGSJEmSJEmSVCa+fbkkSZIGpyCAeV+Bs1fBCXfDuWujUDSAZHzgzj80vQy3nQBtm8tbZ6mFqcztiTwzk3d/F5y7Dk68B85ZAwd8B4I+9PIiCGDqucWt0fxaFIoG0LoO7jwDNj1TdGn9TpglGC1hMJrKKJktGG1IbF9HzN1cj6qGxAc8Nr0CTa8VuHAnqTZ46Sc9j6ub0LfuUyVJ/d+E42C3t+c2dsMjpd9/+1p46afw1Bdh9Z279m1+tvj1X7+ysHlhCKtvL27vurHFzZckSZIkSZIkSZIklVVzlmC0hmQF3ziswuJC37IFxUmSJEmSJElSX+FVtpIkSRrchoyHcUdCdacTG2rH5Da3fTOsuqk8dZVLuiNze5BnMBpEX7OxR/TdIIBcgx9yFsKSq0q8Zj+QNhhNvSQRH1KZDuJD0zrSRexZleUktxe+X8TCb7j5iNzGjTum+L0kSeqqblxu40odBrz1ZbjhIHj4Q/D0ZXDrQlh06c7+7WtKs8/Gp/Kf07EV0q09j5v3FahqzNw38ZT895UkSZIkSZIkSZIkVUxTamvG9tqgjppE/Llo/Z3BaJIkSZIkSZL6M4PRJEmSpK7yCfp6+svlq6McwphgtEQBwWh93ZQzYeis0q65ucQhEf1B3PdMkIhuUrkEydiuVBAfmtaRKmLP6mzBaJfDvRfBnyfBldVw7azoMSDMMYlt3QOw4ZHcxk5/a27jJEnKR3XmE5672fx0afd95iuwbcmubYsugRsPi0LYWksUjPbwh/Kfk1MoWwCzPgaH/KJ7MPC+l8HwOfnvK0mSJEmSJEmSJEmqmLggsIZklvPFBoCGmGC0ZoPRJEmSJEmSJPUDAzD9QJIkSSpS7bjcx6a2l6+OckjHhVwNwJcGQQALr4Nr9yzdmsv+Urq1+ot0e+b2oDpzu1QqVQ2xXamq4bF9HTnmlGXeszF7/+tX7vx460vw1Odh4+Nw1J+yz0t3wE0Lcqth7BEw8eTcxkqSlI/q+MfPXTS9CusfgbX3QstyGHskTDo1e5hy81JYdx90NEXHVUNh3NFQNx6WX5t5zvoH4e/75Pc5ZLPuPkinIPFGuGpHM6y5K3qtM/7YzPXnEoxWPRyqG2G3t8Dog2H1rdHrwHELYeR+patfkiRJkiRJkiRJklQWccFojTHBYQNFY1Xm4Lem1NYKVyJJkiRJkiRJ+RuA6QeSJElSkeryCEZL1JSvjnIIB1EwGkD1iNKuF3bAhkdh1IGlXbcviwtGSxiMpjKrnwRDZ8HWF3dtHzKRdM3Y2GmpYoLRqgt4B9ClV8ODH4CDfxT/c5FrqOK4Y2DBb3cGukiSVErVOZ7Qverm6LbDc9+CIAlnvgb1U7qPf+mn8OjHMjxvDGDfS6F1faEV52/dfTDuKFh7H9xzHrSsjNqHzYaFN0DjbruOzyUYraZToNzQmdFNkiRJkiRJkiRJktRvNA/WYLSYzy8uKE6SJEmSJEmS+pJEbxcgSZIk9TlVjbmPHSjBaIkBGoxWMxJi3vGuYHefC2FY2jX7MoPR1Jvmf3PX4MYgAfO+ljX8rKOYYLSgwO/rV34Bv6+BRV+CVGv3/rX3ZZ9/URjdTrgDGqYWVoMkST1JZ3iMylWYioJAu9ryUkwoGkAIi75Q+J6FuOVouPetcPMRO0PRALa8ANfM6D6+NYdgtFwD5SRJkiRJkiRJkiRJfVJTamvG9oYBHowW9/nFBcVJkiRJkiRJUl9iMJokSZLUVe2Y3Mf2t2C0dEwwWjBAg9ESSZhyZua+428rbM3m12Hri4XX1N+kWjK3D9TvGfUtU86Ek+6DOZ+Gvf4Vjr8Tdn8XqSzZhB2pIvaL+37P1aIvwG0ndg9PXH5N/JwDf1DcnpIk5WrIpOLmr7x+1wC0jm3wzFfig3RLbeIpuY17/ffxfQ99aNfjbct7Xq96eG77SpIkSZIkSZIkSZL6pKaYILDGUr/xbh/TGBOMFvf1kCRJkiRJkqS+xGA0SZIkqavRB0GuJzsk+1kwWhgTjJYYwCFXB/0Qxi3ceTx0Fpz2DIw/tvA119xVdFn9wiu/gvvfkbkvUV3ZWjR4jT4YDvg2zP8WjDsSgFQ6fnhHlr4eFRuMBrD2blh9a5d1t8WPL+a+SJKkfIw5AoIi/yTQ0RT9+9JP4K/TYPEVxdeVqyETYPShxa3x8k+joOMdNj/b8xyf90qSJEmSJEmSJElSv9YcF4wWExw2UDQmM58L3ZLeRirufGJJkiRJkiRJ6iMMRpMkSZK6StbB7I/mNjbRz4LR0jEnMgQDOBitZjiccDuc8TKc/jyc9iwMnxv17f7uAtccUbLy+qx1D8GD743vNyBCvahswWgTTihicie3nQh3nwu/r4E/joaWlZnHJethxD6l2VOSpJ7UjYHd31PcGh3bYM098PCHoXV9aerKVaIW5l4MBMWt89fdYNUt0cebn+55fLvvlC1JkiRJkiRJkiRJ/VlTTDBawwAPRmuICUYDaEptrWAlkiRJkiRJkpQ/g9EkSZKkTPb7Mkw8uedxQT8Lh4p7h7eBHIy2w9CZMGw2JJI726ZdWNhayYbS1NSXvfqr7P397XtfA0rWYLRUEQuPWQA1o4pYoJOlV0O6Hdo2xI85/dnS7CVJUq4O/hns/3UYfVhhrwE6tsGzXwPCkpfWo0QNTD0LFv4dJp9R3Fq3nQiPfRq2vtTz2LbNxe0lSZIkSZIkSZIkSepVcSFgjQM8GC3b59ccExYnSZIkSZIkSX3FIEg/UCZBEMwB5gFTgCHAdmAN8DLwZBiGzUWsXQ0cAUwDJgJNwArg8TAMXyuuckmSpAoJAtjni7DyxuzjwvbK1LPD5mfhyf+ENXdC/VSY/y2YeGLu8+OC0RKD9KXBhBNhj3+Gl3+a37x0W3nq6Ut6+pokDEZT78kWjJatr0eJKjj8d3D32ZDaXsRCOagZCfXTyruHJEldJZIw97PRbc09cMtR+c3/26zy1JWLZE3076Q3RbdrZ8PWFwtf7/nv5jau3WA0SZIkSZIkSZIkSeqvOsJ2tqe3ZexrTA6tcDWV1ZDl82syGE2SJEmSJElSHzdI0w8GpyAIRgAfB95LFFoWJxUEwRPAH8Mw/Hoe648FLgUuBEbFjLkP+G4Yhn/KuXBJkqTeUjeu5zGplvLXsUN7E9x5BjS9Gh23bYDbT4YT74Gxh+e2RjomGC0YpC8NEkk4+Mewxz/BY/8Ka+7IbV66taxlldzGJ6FpMQzfC4bN7nl8mEOylMFo6kWpML6vo5hgNIiCVt78Kqy6BWpGwcj5sP6B6Gdo2zIYdQCk2+GF78OmRYXvM3yfKIRTkqTeUtXQ2xXkJ1Gz63H91OKC0XI1453l30OSJEmSJEmSJEmSVBbNqa2xfY3JYRWspPKqgmrqEvUZg+GasnxdJEmSJEmSJKkvGKTpB4NPEATnAz8BRucwPAkcCEwBcgpGC4LgFODXQE/pIYcDhwdB8Dvgg2EYNueyviRJUq/IKRhte/nr2OHln+4MRfuHEF78Ue7BaGFMMFpiEL80CAIYdSAc/jv4yxQgS+LSDum2spdVEmEI974VlvzfGw0BzPsq7H1x/JxUK9xwUM9rG4ymXpTKEn6WrS9nQybCjHfsPK4/p/uY3d8Niy6Fpy8rbI9JpxQ2T5KkUunvwWjD5sDqW8u/77Tzy7+HJEmSJEmSJEmSJCkvYRiypn1F1uAzgHXtq2P7GgZ4MBpAY3JoTDDalm5tqbCDFa1LaA+7nyObDKqYVDON6q5/u5ekCujpPn9E1WhGVY+tcFX9W1u6lfXtaxhXM4lkkCx4nVSYYk3bCkZXj6MmUVvCCiVJkiRJMhhtUAiC4IvAJRm6lgAvAmuBOmAisC+Q1xVxQRAsBP4CdP7tdgg8BrwKjADmA2M69b8NGBYEwVlhGJbisnVJkqTSq2qE6mHQ3v2P//+QaqlcPU/+R+b2DY/kvkY6Jhgt8KUB9ZNg7mfh2RyygVOt5a+nFF75RadQNIAQnvwcTD4DRuzdffza++HmHEP26qeUpESpENnCzzpSFSoiSMB+l0LNCHjsU/nP3+MDpa9JkqR89HYwWtVQGDoTNj6R2/iuJ87NeAe89KPS19XZ9Itg9MHl3UOSJEmSJEmSJEmSlJcl21/h58u/zoaOtUWt05gcWqKK+q7G5LCM4XDNXYLRHtlyN79b9SNaw/g3jK4KqjlrzDs4duQZBEFQ8lolKZNl21/j5yu+ljXoEmC3ull8YPLFjKgaVaHK+qcwDLlxw5+4bt3vSdHBkEQ975zwceYNPTTvtZ5qeogrVl5OS7qZJFWcNuZCTh51no8RkiRJkqSSSfR2ASqvIAg+TfdQtCuB/cIwnB6G4YlhGF4UhuE5YRguAIYBRwLfA9bnsP4U4Gp2DUW7F9g7DMODwjC8IAzDk4ApwMeB9k7jzgC+XOCnJkmSVH5BAOMWZh/TUaFgtHQHpLu/AxsAW1+EdI5JQKHBaFnN+yoccy1MPSf7uHQ/CUZ7/vuZ21+4fNfvmebX4alLcg9FA5h8ZlGlScXIGoxW6ejtOZ+E426F2Z+MwlMmntLznIXXQ+3o8tcmSVI2vRmMtu9l8KaH4U2PwVFXw6yPwv7fzP442vVdp0cfAuOPLX1tiRrY88Nw+JWw4DdRGKokSZIkSZIkSZIkqU9oT7fzo2WXFR2KNiRRT3IQnDvbkByWsb2pUzDaytal/HLld7KGogF0hO38ce0veX7bkyWtUZLipMIUP17+pR5D0QBe2/4iV6z8XgWq6t+eanqIa9b9Dymi60pa0tv4+YpvsL59TV7rbGhfy8+Wf52WdDMAKTq4Zt3veLLpwZLXLEmSJEkavAb+b3AHsSAI5gFf79TUDlwUhuEf4+aEYZgmCja7Nwhy+g3/pcDITsf3ASeE4a6/DQ/DsBX4QRAES4A/d+r6VBAEPwvD8PUc9pIkSaq8cUfB8mvi+1MVCEYLQ3jum9nHtCyHhmk5rBUToJbwpQEQheFNPh0mnQp/ngTbY/6ImuoHwWiLfwtbnsvc98ovYOUNcNgv4YnPwYZHcl83UQ1zPg27v7skZUqFyBqMlgorV8gOE46Lbjusvh0eeB80L951XKIG5n8HJr2psvVJkpRJbwWjzfoo7Pv5ncdTz45uEAX2xukajBYEcNiv4PaTYcsLpatv/rdh9kdLt54kSZIkSZIkSZIkqWSe2/Y4W1Obi16nMSYwbKCJ+zybOrb+4+MHt9yR15oPbrmdvRr2L6YsScrJC9ueYlPH+jzGL2JD+1pGVY8tY1X924Nbbu/WFpLm4S138qbR5+e8zsNb7iKk+wndD265nf2HHlZUjZIkSZIk7WD6wQD1RqjZL9n1//iD2ULRugrDsKOHPfYE3tWpqQ14d9dQtC5r/iUIgis6zasFvgi8N9e6JEmSKqq2hz+KbV8F6RQkkuWrYe298OR/ZB/T9EpuwWjpmKd4g+Bd7/ISJGDuZ+GxT2XuT7dVtp58pVrh/ndmH7NtKdx2Yn7rjj0Cjr2x90I0pDdkyz7LFppWMeOPhdOfj8JdqhuhfQu0bYIR+/jzI0nqOxLVvbPvnv8S35eszdJX072tYXr0mLv1FXjpJ/D8d4qvr35q8WtIkiRJkiRJkiRJkspieetrJVlnYm0O59wOAI3JoRnbm1Nb/vFxvl/TFa1Z3vRMkkpoeQH3NytblxiMlkXc13RF65I813ktZh0fIyRJkiRJpZPo7QJUNucDB3Q6vjUMw1+VeI+LgM4JIFeHYfhSDvO+0eX4giAI6kpXliRJUgnlEmBz2wnQ3hQFpJXDq/+v5zFbX8ltrbjs24TBaN3M+WR839NfqlwdhVh1a3nWPfgnhjqpT8gWftbRF4LRIApvGbYnDJkIw2bDmEP9+ZEk9T3TLuzeVjsGqvN8Z+wZ74JDc3jdMvEUGD4nvj+Z5dfEiSyhaUNnwt7/XprA5waD0SRJkiRJkiRJkiSpr1rVurwk6xw+/ISSrNPXNSQz//2/qVMw2uq2ZXmtubptBemwr5yoJ2kgW9OW/33+6gLmDBbt6XbWt6/O2Jfv1y1u/Lr2NbSn2/OuTZIkSZKkTAxGG7g+2OX4q2XY4+wuxzkFr4Vh+BzwYKemBuCkUhUlSZJUUrmE2Ky5A64aGt3ufDNsK/Ef0179dc9j1t7d85imV2HVzZn7ShEgMBCNPz5ze2obtG2ubC35aMoxKC8f+14CI/Yt/bpSAfpFMJokSf3BAd+NAjx3qGqABf8D7Vvi53RVPw0W/Bomndrz2PHHZO+vGR3fl6jJPrd2FBz2awg6/dljzOEw93O7tmWTrIehs3IbK0mSJEmSJEmSJEmquHxDvLqaVDONd0/8JPs1HlKiivq2xh6C0drTbaxvX5vXmu1hGxs71hVdmyT1ZFUB9/mr21aUoZKBYV37KtJkPtF6TdsKwjDMaZ0wDFkT83UOSbOufVXBNUqSJEmS1JnpBwNQEAR7AJ2vMHsNuL3Ee0wA5nVq6gDuzWOJO4BDOx2fAlxTfGWSJEkllksw2g6pFlh+bXS7oCm/uXHSHbmNW/wbOPT/QSLmKX5qO9x8ZPx8g9EyS9bG9y37K+z+zvj+MITNT8P6R2DkfjByfu6BDMXavqY068z9LAzfJ6p9xN6lWVMqgazBaKnK1SFJUr9XPwlOeQLW3gNtG2Hs0TBkfGFrDZmQw5gp2fuHz43vS23ref0Zb4Pxx8Lq26F+chSMlqyB3d8Nm5+BMA3pVlh9G6y7HzY/22X+O6F6aM/7SJIkSZIkSZIkSZIqLgxDVrdlfvPit43/MIcMW5h1fhBAVVBdhsr6rrhgtObUVgDWtq8kjAnJ+cy0b/CtJZ/N2Le6bTmjq8eVpkhJihF3n3/BuPezsm0pd2+6oVtfIWFqg0Xc1xOgNdzOpo71jKwe0+M6mzs20Bpuz7rPxNqpBdUoSZIkSVJnph8MTMd2Ob41zDWuPXf7dDl+KgzD5jzm39fl2JQFSZLUNxUabvaHRjhnNdQV+Uf/psW5j11zJ0w4PnPf0j9Dy8r4uYlkfnUJNjwaH4wWhvD4Z+D57+xs2+0dcNgv48PrSqk1v3fv62b6W+HgH0PNiNLUI5VY1mC0LH2SJCmDZB1MOKE0ax35B7jngvj++p6C0bL8mjjVmlsN9ZOigLTOhs2KbjvsdhF0tMAzX4FXfgHJeph2Acz7cm57SJIkSZIkSZIkSZIqblPH+tgglkm106hODK7Qs1w0JjO/OVhruJ32dBurYkJyEiSZVjeT4VWj2NyxoVv/6rblzG2YX9JaJamzpo4tNKW2ZOybVDuNkMyXy67JEv412PUUGre6bXlOwWjZAtZy6ZckSZIkKVeJ3i5AZXFIl+P7AYLICUEQ/CoIgmeDINgcBEFzEASvB0FwSxAEFwdBsFuOe8ztcvxynjW+0sN6kiRJfUOywGA0gEWXFr//9tW5j33+e/F9K67PPrdlVe77DCYd2+L7qurj+9bcsWsoGsBrv4UlfyhJWd2k2mDRZXDjArh2Nrz8s8LX2vdSOOJ/DUVTn5bKEv2dLTRNkiTlaM9/KWzemAXZ+4fumb2/fgrUji5s7XxVDYmC0M5ZDWcuhvnfAE+SlyRJkiRJkiRJkqQ+K1vQyviayRWspP9oSA6L7WtObWV1TEjO2JqJJIMqJsR8XXsK15GkYmW/z58Se7+/ObWRllSWawAGsZ5C43INNDMYTZIkSZJUKQajDUwHdTl+7o3As1uAm4F3A3sBw4B6YBpwPPA14MUgCH4UBEGWlAcA9uhyvCTPGl/vcjw6CIKRea4hSZJUftnCr3qy/NrC5jUthqbXoo/bN+c+b8V18OoV0LIS1twNbW/M7dgWhXJl07h7QaUOeB3N8X3JLN8br/wyc/urvy6qnFj3XgiLvgjrH4CtLxa+TpCA3d9VurqkMskWftbWUbk6JEkasKaek/vYsUfs/Lh+Ckw4KfO4cQuhflL2tYIAdn9f9/bG3WHkvNxrkiRJkiRJkiRJkiQNOHFhXMOSI6hPNla4mv6hMUswWlNqC6taM4fX7AhEGxcTPNRTuI4kFSvuPn9Iop5hyRFZAzHXtK8oV1n92uq27F+Xnvr/Ma7dYDRJkiRJUmVU9XYBKouJXY7rgYeBMTnMrQb+BVgQBMFpYRiujBk3osvxmnwKDMOwKQiC7UBdp+bhwMZ81pEkSSq7qobC57asgDAdhU3lNH4V3Hk6bHg0Oh59KOz2tvz2fODdOz8OEjD7kzByfs/zchkzGKWyBKNlC8177X8yt6+6ubh6Mnn2m7DsL6VZ66iroWF6adaSyihbMNq2tsrVIUnSgDXheDjoh/Dkv0P7luxjZ3141+MFV8A958Hae3e2jVkAR1yZ2977fjEKe94R7jx8bzjqz7m/rpIkSZIkSZIkSZIkDUhxQSvZwnEGu/pkIwEBIWG3vqbUFlbHBA+Nr5kCwIQ3/u1qlaE3ksos/j5/CkEQMLJqDNVBDe1h9xOHV7ctZ3rdHuUusV8JwzA2bG6HXEMvewpQW5NjwJokSZIkST0xGG1g6hpa9it2hqI1Az8FrgeWAQ3APOC9wJGd5swH/hQEwTFhGLZn2KPrW6m0FFBnC7sGow0tYI1dBEEwDhib57SZxe4rSZIGsGKC0cIUtG2E2tG5jb/vbTtD0QDWPxjdCt4/Dc9/B5JDso8btxDGHl74PgNZR5ZgtKZXK1dHnPYt8MRni1+nbjyctQwSvkRU/5AtGO1p/5YuSVJpzPowzPwnaH49el1z02Hdx4xbGIWedTZkApx4D2xbAduWQf0UqJ+U+75V9XD4b+DgH0LremicUdSnIUmSJEmSJEmSJEkaGOICXcbHhHcJkkGS+kQjzemt3fqiYLTMITgT3gibiwud29yxge3pFuoSPZyjLEkFirvP33H/lAgSjK+ZxLLW17qNiQt9HMyaUptpSWe5NgL+P3v3HSbJVd/7/3Oq0+Sd3Z2ZnrC7ykI5gIRAIAzYGOk6EJzANjYY44BzIjj8CNe+Nk6P8c/GXCcMBmNjDAZsIRDJgBICIUArIVZC0oaZ7pndyalTnfvHaKXZmTrdVTOd+/16nn12+5xT53ynt7u6e7rqU8oWwgajlR+34i9pubiovvhA6PoAAAAAAAjCWe9txhiTkpTa0nz6N/z3S7rRWntsS/89kt5ljPkNSX+6qf2Zkl4v6fcDltoajLa+g3LXJO0tM+dOvFbSm6owDwAAwAZv61uriNanwwWj5U5J2c/sbi2XUpkM28t+T7roNyQvUZu1W125YLQj75DOf42096ot7e+sbU2bHftwtPE9B6WuUalrWFqbkhL9Uvr50iWvJxQNLaVcMJok3T9pdcm4qU8xAAC0s1hKGrhw498vvFu666ek+W9s3L7sTRvvI40XvG3PeLRAtK0SAxt/AAAAAAAAAAAAAACQO4hl1BHehQ29sf7AYLTjuUeVs8Gng50Om3MFo0kb/x9ndZ1fnSIBYAvXPn9zGOZIcsIRjBYu4KuTZELcJ7OFGeX9nJJlzqEp+HnNFqYrzpXNnyAYDQAAAACwa5z53n5ijvYFBYeiPcFa+2fGmAlJv7ap+deMMX9hrV2usK6NWOdOtwEAAKgvs8tgnfVpac/FlcedvHN36+zE8LOkK95a/3VbSXG1fP833io950NP3i7lpXvfUH4ba3f/uDrtkXeHH2vi0vc9JMWS1VkbaKBShU+Tf/wJq396FcFoAABU1f5rpP/19UZXAQAAAAAAAAAAAADoQOv+muaLpwL70qkDge3Y0Bcb0HRhclv7w2v3O7dJJzcuhLY3PqSESapg89vGZHLHCUYDUBMFv6CThWxg3+bARld4Yza/fZ/X6cKExVlZzRSmNJE62zlmujApG+K04Ez+uM7rCXEeDQAAAAAAZXiNLgDVZa1dleQHdP15uVC0TX5PGyFqp+2TdFPAuK1Bad3hKiy7TaXwNQAAgNaz8li4cTboLVyNnfvq+q/Zas55Rfn+zK1n3p67VyosBI897QsvkXLBB+dEkp+Tsp8NP77nIKFoaBulCrvM99xBDjcAAAAAAAAAAAAAAAAAtItygS6jjmAcbOiLDwS2P7Z+JLB9ILZXPbE+SZJnvCdC0raaLlQO2QGAnZgpTMkGniIbLhhtOj8pvxHnZzSxMMFoG+PKh8qFDZ0Lux4AAMqodT0AACAASURBVAAAAOUQjNaeVgLa3hNmQ2vtiqQPbWl+bsDQZg1Ge4ekyyL+eVEV1gUAAO3s3FcGtz/lV6SeQ1L/he5t7/xJaf5wiEUa8MVb78H6r9lqzvnJ8v3FLW9h83OV5zz+EenmK6Xs53ZcliTpob+PNn7vFbtbD2gilYLRAAAAAAAAAAAAAAAAAADtI5M7HtieMEntjQ/XuZrW0hvrD2wv2mJg+9agoRFH8FAmR+gNgNrI5oP3+Z48DSdHn7jtCsYs2LzmiidrUlurCh+MVn5c2HmmC+EC1AAAAAAAKCfe6AJQE/OSNv/WOmutfTTC9ndKetWm2xcHjFnYcjvStwjGmD5tD0abjzJHEGvttKTpiLXsdlkAANDuLv0dKfNpafXYk21X/qF06Rukp/3Fxu1PXCed+lLw9nf8uHTgxdKJ/5ZSQ9L5r5EOvuTMMbZUm9rL6Tu3/mu2mqHroo0vbH2b7LB2Qvr086Xh66XEXmltUko/V7r8LVKir/L21kr3vi5abRe8Ntp4oIkRjAYAAAAAAAAAAAAAAAAAncMVxJJOTsgzXp2raS19sYFI47cGo40mDwSOCxuOAwBRufYvQ4lRxU3iiduu4MbTc+xPjFS9tlZV72A0XiMAAAAAANVAMFp7+pakg5tuT0Xcfmsc+/6AMUe23D4r4hpbx89aa+cizgEAAFAf/edLL7xbOvERafW4NPoCaeSGM8ck9ri3n7t3489pUx+XznuNdOFrpT2XS15MKq7WpnaXvnOl3nPqu2YrMp501sulx97vHuMXJe/xj1aFxQiTW2nmtidvzt0jnbxDesEXN9YNsj4tLT0s3fXqCOtIGnqmlP7OaNsATSxMMNq/3OXrR6/jgDcAAAAAAAAAAAAAAAAAaHXZ/PHAdldoF54UNRhtdEvQUDo5HjhuujAp35bkmdiOawOAIBlHqNZo6sx9fpfXrT3xfVoozm4bm82f0CW9V9ekvlZT8As6WciGGlsp0Gw6ZODZTD6jki0qZjiFHQAAAACwc5wh3J4Ob7mdi7j91vFdAWMe2HL7/IhrnLvl9v0RtwcAAKiv7rR0/s9IV7x1eyiaVD4YLcjDfyd9/GrpYxdI84el4kp16gxr4kWSMfVds1XFusv3l9af/HdhYXdrnbxj489Wfkm662ekD6WlW6+XFre+Hd/khv+QzvvpJ2+nnyc98583AviANlGylcf87/8KMQgAAAAAAAAAAAAAAAAA0PRcITnpLSFe2C5qMFp6S/BQ2hE+V7QFzRZO7rguAHBxhXMF7fNdrwOVAr46yclCRlYhrkqtjfvN2uBjsK21oe9XX6XQYWwAAAAAALgQjNaevr7l9mDE7beOPxUw5r4tt68wxvREWONZFeYDAABoLYloBw08YeUR6ebLpLt/Ltp2z3iXdPAHdramJO29aufbdhovWb7f35QrXFjc/XoP/8P2tiPv2AjTq2TftdLBl0rX/Z30w6vSSzLSd35G6j9v93UBTcQP8d38g1mpUCQcDQAAAAAAAAAAAAAAAABaWcmWNFOYDOxzhXbhSb2x/kjjR7eEDI0kx51js/njO6oJAFw2wreC9y2jAfv8dIJgtEqi3Bfr/qoWS/OBfUulBa35qzVZFwAAAACAIASjtaePS9p89ve5xpiuCNtftuX2tt8kWWundGYAW1zSsyOs8dwttz8eYVsAAIDmk9hT3/W6J6SJ79v59oNb3/LByV8v31/a1F9Y2P16p+7a3nbsg+G2vWBTwF68W+pO774eoAmVQuadZaqQVQgAAAAAAAAAAAAAAAAAaJxThWkVbTGwb2uIF7bri4W/+HPCJLU3PnxGW5fXrcH4/sDxhN4AqLaF0pzW/bXAvnTAPj+dIhitkkzEEEvXfRf1Ps3mg0NNAQAAAAAIi2C0NmStnZR0x6amhKTvjDDFjVtuf8Ex7sNbbr8qzOTGmIskXbepaUXSJ8OVBgAA0KQS4Q8aqIquEensH5e6x6JvG++XBi6ufk3tqljhqkZ+7sl/F6qQwrRwv5T59Jlt058Pt+25r9z9+kCTs9bKhgxGOz5X21oAAAAAAAAAAAAAAAAAALWVdQS6GBmNJMfrXE3riRKMlk6OyzPbTzcMCiOSpAzBQwCqLJtzh3gFBqM59k/zxVPOgLVOMx1xX+0aHzUYLeq6AAAAAABsRTBa+3rXltu/HmYjY8wNkp6+qcmXdLNj+PsklTbdfqkx5oIQy7x+y+0PWGvXw9QHAADQtJJ76rtealjyYtL174u+7QU/L8W7q19Tu6oUjFba9Fa2sFB+7NmvkF58rPKan7tJmv+GNHmL9M23Vx4vSS8+IQUcjAK0m5IffizBaAAAAAAAAAAAAAAAAADQ2lzhW/sSw0p6qTpX03qiBaMdCGwfdbRHDckBgEoyjjDM/tge9cb6t7WnE8HBaJI0nZ+sWl2tLBvxfnDt26Pu83mNAAAAAADsFmfNt693SXpg0+3nG2PKhqMZY0a0PVDtA9bah4PGW2uPSHr3pqakpH8yxnSVWeNFkl65qSkv6S3l6gIAAGgJsZ76rpcaenzd3ujbXvWH1a2l3ZUqBaPlnvx3ft497uLfkp7xD1LPAam7whUK/YJ08xUbAWn3/GrlGm+6V+rhqofoDNGC0WztCgEAAAAAAAAAAAAAAAAA1FzWEZLjCvHCmbq8HnkhTyFMJ4MDhkaSwceoEnoDoNpc+xXX/mlfYkhxk4g0Vyex1jrD5tz3W3CQmuv+jCke2O4KNgUAAAAAICyC0dqUtbYk6VckbT5l/M+MMW83xuzdOt4Y812SbpN03qbmOUm/XWGpNz0+7rTrJX3KGHPRlvlTxphfkvTvW7b/M2vtYxXWAAAAaH6FhfquF0tu/B2PGMiWGpIMHwMiKVYKRluXvv0e6VPfIWU/Ezzm6j+Rrv5jyXv8y0MvWb36rvpjae+V1ZsPaHKRgtHKZBUCAAAAAAAAAAAAAAAAAJqfK4hl1BGSgzN5xlNvrD/U2FFH2JyrfbE0p7XSyo5rA4CtXCFermA0z8Q0kiC80WW5tKA1P3g/fVFP8DkIrvvN1X5Bz6XOtVdLyyGqBAAAAAAgGIkIbcxae6s2wtE2+2VJWWPM540x7zfG/Kcx5lFJt0o6f9O4vKSXW2sfqbDGcUkvfXz8ac+SdL8x5m5jzL8ZY26RdEzSX0raHCP/X5J+bwc/GgAAQPMZeEpj1o33Rht/4MW1qaOdDV1Xvv/Bt0t3/qQ0/Xn3mIGLz7w98b27r+u0se+u3lxACyjZ8GNPzFUeAwAAAAAAAAAAAAAAAABoXu6QnOCwLmzXFxsINc4VPORqlwgeAlBd7jBM9z7ftY9i/yRlytwHV/RdG9h+qpBV0RbOaCvagk4Vso55nu5cg/8DAAAAAMBuEIzW5qy1fyXptZJWNzUnJN0g6WWSXiTprC2bZSU9z1r7iZBrfE7SSyTNbGo2kq6R9MOSXihpeMtm75f0MmttKdQPAgAA0OxGvkMy8fqs5aWe/HdqKNq2Z/9YdWvpBOe9unz/0X+rPMfgZWfePvendl7PZnsukQavqM5cQIso+eHHHp+LkKIGAAAAAAAAAAAAAAAAAGgqy8VFrZSWAvvKhXXhTL27DEYbjO9X0qQC+wi9AVAt6/6a5oonA/vK7fMJRnNz3Qc9Xp/O674ksM+Xr5l85oy2mXxGvoIP4r6w5zKlTFek9QEAAAAACINgtA5grf0bSVdIeq+k4G8DNmQkvVnSU6y1t0dc42ZJl0l6p6S5MkPvlPSD1toftdauRFkDAACgqSUHpYt/oz5rXf0nT/470R9+u9HvkoZvqH497W7PZdLBH9z59vF+qefQmW17r5IOvGR3dUnSte+UjNn9PEALiRaMVrs6AAAAAAAAAAAAAAAAAAC1lckfd/aNJg/UsZLW1herfLzxvviwkl5w+JlnPI0kxwP7MoTeAKiS6fyks6/cPj/t2D9N5yfl2wgHHrchVzBZOjmhocSojOMU863bueYx8jScGHe+RhCMBgAAAADYjXijC0B9WGsflvQKY0y3pGdJOiBpVFJe0oykr1lrv77LNaYl/bwx5lceX+Osx9dYkXRC0lettY/sZg0AAICmduUfSnsul+56teTnarNGrEs662Xhx1/8W9LSkY1AtAtfK3mx2tTVzoyRnvUv0r9+cGfbp5+7PbzMGOnZH5CO/I30lV/e2bzd49IIQXfoPFGC0U7MS9ZaGQIEAQAAAAAAAABACzLGvFnSm3Yxxbutta+sTjUAAAAAUH+uQJVur1f9sT11rqZ19cUGKo5JJyfK9o8mD+h4bvtpYdOE3gCoEtc+P24S2pcYdm7n2n/lbU7zxVNlt2135YLREl5CQ4kRzRQy2/q3htS5Quv2J4aV8BJKJyd0LPft0OsDAAAAABAGwWgdxlq7JulTNV4jL+mztVwDAACgKRkjnfNjUt+50q3XV3/+WLf0jHdJXRG+mLv6j6tfRyfyElLPQWn1WPRtD7zIMWdcesovSee/Rvrgfqm0Gm3ep/9d9FqANuDb8GNLvrRekLqTtasHAAAAAAAAAAAAAAAAAFAbmfzxwPbR5AEumBlBb6hgtANl+0eS44HtGUJvAFSJK0RrJDEuz7gvEF8u2HE6P0kwWoDT99lIciIwGG3rdu55Dpwx3/Z5ggPVAAAAAAAIw2t0AQAAAEDb6RrZ3faxHuk5H5Ve9Kj0o1b63gel598qvfiYdNaPbB8/9sLgeQ68ZHd14EyFhZ1t139B+f5YlzQcMUhv9AXS+E07qwdocVGC0SRprVCbOgAAAAAAAAAAAAAAAAAAtVUp0AXh9IUIRhutcJ+OOoLTZgqT8m1pR3UBwGbOMMxU+f1Td6xXA7G9kebsBAW/oJOFbGDf6ddRd6BZ2GC08vPMFKZ4jQAAAAAA7Fi80QUAAAAAbSdMMNr5Pyc99M7gvu//ttSdfvL2wIUbf1wu+Hlp6hPb2w/9YOU6EF6sRyosRt+u52DlMc/7hPR+91WsntB7lnTwB6RL3ihxpUN0KBsxGG01L+3rrU0tAAAAAAAAAAAAdfZySXdGGL9cq0IAAAAAoB6yrpAcR0gXgvXG+iuOSafK36eu0JuiLepUYVrDybEd1QYAp7nDtyrv89PJcS2uzYWesxOcLGRk5Qf2VQxGK5woezvsPEVb0GxhRkPJ0VA1AwAAAACwmdfoAgAAAIC2E++Tuit8uX/tX0tX/dGZbXuvll584sxQtDDG/5d06IfObJv4/o0ALVTP0HU72647xFUJjSdd+jvlxyT2SC96VHrqn0ldQzurBWgD/g6C0QAAAAAAAAAAANpExlr7aIQ/JxtdMAAAAADsVMHP62RhOrDPFcCCYH0hgtFGK9ynI8lxZ1+mg4OHAFSHb0uazk8G9oXZ5zsDvjp4/+T62T15Gn48qCzt2LevlJa0XNy4qPxyaVErpaXAcae3L/ca0cn/BwAAAACA3SEYDQAAAKg2Y6SzX1FhjCdd8nrpe+6Xrv5T6fr3Sy/4otTj/kLIyUtIz/pX6bkfl678Pxt/3/BBKZbaWf0Iduhl0bfpHpNiyXBjz6owf2o4+vpAG4oajLZGMBoAAAAAAAAAAAAAAAAAtJyZwpSs/MC+0dSBOlfT2vpiA2X7u7weDcT2lh2T8rq0Nx58Yd9pQm8A7NJs4aQKNvig30rBjZI7GM0VttYJMvnjge1DiVHFTUJS+dC504Fm2TL34entU16XBuP7y84DAAAAAEBU8UYXAAAAALSlK/9Amv+aNPWJ7X2bA7D2XLzxZ7eMJ43fuPEHtXH2y6T1jHTPr4XfZvS7w48dvEyKdUulteD+5J7wcwFtLGow2irBaAAAAAAAAAAAAAAAAADQcjKOIBVPMQ0l0nWuprVVCkYbTU7IGFNxnnRyQnPFk9vaXeE7ABBWtsx+ZGQXwWizxRnl/HWlvK4d19aqXKGVI8nxJ/49ENurLq9b6/72cxiyhRM6Txc7/2+6vO4zQjXTyQnNF09tG+d6PQcAAAAAoBKv0QUAAAAAbcmLS8+7RTr7x89sTwxKF/9mY2rC7l30q+HHJvdKF/16tPmf+W53X/8F0eYC2pQlGA0AAAAAgJb1kXutXvkuXz/zz74+882IH/IBAAAAAAAAAB3FFcQynBxTzMTrXE1r660QjJZOHgg1jyt4KJufjFwTAGzmCs8ajO9Xl9ddcXvX/kmSpjt0H+W6TzffV8YYZ/Bc9vHts86AtTNDNd2vEQSjAQAAAAB2ht8CAwAAALX0zHdL6edLmU9JPQekc18p7bm40VWhlsZukgYvlS78Ran3rGjbHvqhjcfJasDBPAdfWp36gBbnE4wGAAAAAEBL+otP+fr1Dzz5wf4fv2j1z682evnTuZ4bAAAAAAAAAGC7TC44SGW0TPgNgnV53YoprpKKgf3lAoU2G3UEqLlC7AAgLNd+xLXf2Wp/YkRxE1fRbt/PZfOTOth17q7qazXWWmcg2db7NJ2Y0NH1h7aNqxSMlk6c+drhei2ZJhgNAAAAALBDHGEMAAAA1JLxpPNeJT3rfdLVbyMUrR1c8gZ33/c+KD3vZunqP4keinbaC74oDV55ZtvFvyUd/MGdzQe0majBaGuFiBsAAAAAAICqKxSt/vd/nfkZ3bfSWz/G53YAAAAAAAAAQDBXSE46ZEgOnmSMUV+s39kfNnjIFXqzVFrQaml5R7UBgCRlXOFbIYMbPRPTcGIssK8Tg7mWSwta81cC+9LJ8TNuj6aC7+NsfvKMvyvN4/q/WijNaa20WrZeAAAAAACCxBtdAAAAAAC0lHNfKR15h1RYPLP9B05JqX27n7/3LOnGL0vz35DWTkj7rpW607ufF2gTvh9t/Gq+NnU0q3zR6iP3Sg/NWH3HhUbPPHfjoDYAAAAAABrpCw9JcwHHuj+YlU7MWU3s5bMrAABASD9rjPldSRdL2i+pIOmUpMckfVHSLdbaLzSwPgAAAACoCmutso4gm9GQITk4U29sQAulucC+sMFD5ca988Qfqsvr3lFtLgmT1Pk9l+iZe76z6nPX2vH1R3XX4medj+PB+H5d3f9MXdx7VZ0rAxrvq0t36L7lL2uptPBE29H1hwLHhg1ulDb2UVP5Y9vaXc/DdnFk9bC+svRFzRZmnmhzhaJJ2wNGXfv2mfyk3nH89zXjDEabKHt7s3ee+AOlqrwfj5mYDnWdpxsGb1RfbKCqcwMAzrRWWtHn52/RY+tHVLTFbf1JL6lzui7ScwZvVMJLNqBCAADQrghGAwAAAIAoBp4ifefnpMO/vxFetu8a6ao/qk4o2mleXNp3taSrqzcn0CZsxPGdFIy2sGr10r/x9dkHT7dYveYGo//7Ck4uBwAAAAA01ok59yf65VwdCwEAAGh9L9tyOyWpT9JZkp4j6beNMV+W9EZr7adqUYAxZkTScMTNzqtFLQAAAADa13zxlHJ2PbBva6ALwumLD0gBx9N58jScHA01x2B8v1KmK/D/5qG1w7stMdBXl2/XVxa/qF86+GalvK6arFFt31q9T399/K0q2PIHMH5x4RN62cjP6jl7b6pTZUDjfezkv+jjpz4QenzY4MZyYzP546HnaDVfWvwfvXvq7bIKd+XpHq9vW4jYSCL4fvPl676VLzvn2vp6vDc+pIRJBu77jtToNeJry3fpzoXP6DcPvU398T01WQMAOt1aaUV/evSNmsofLTvunqXb9dWl2/Vrh35fMUOECQAAqA6v0QUAAAAAQMvZd7V0w39I3/ct6Vn/IvUeanRFQMfwIyajdVIw2nvvsptC0Tb83ResbrkvapwcAAAAAADVVe6TaX77hWQBAACwO9dI+qQx5g+MMbW4esprJd0X8c9HalAHAAAAgDaWzZ9w9qWT43WspH30xfoD24cSo4qbRKg5jDEaacD9/+31b+oby3fXfd2d+u+T/1oxFO20/zr1fhX8Qo0rAprDUnFBt85+KNI2oxHCMF3BaNP5SVnbfsfS+rakj868N3QomrRxH239leFIckxG0X6NaGQ0khw7o80zXkNeI2YKGX1x4ZN1XxcAOsWdi5+tGIp22rfXv6mvLd9V44oAAEAnIRgNAAAAAAC0DD/8d/eSpLUOCkb75OHggzZ+64MR7zQAAAAAAKqs3HkGy7n61QEAANDCTkj6O0mvkfRsSZdIukjSsyT9kqRPbBlvJP22pP9TxxoBAAAAoGrmiicD2/tje9QT66tzNe1hILY3sN0VJOQSJaSomh5ee6Ah60ZV8PN6aO3+0OOXS4s6kXukhhUBzePI2mEVbfirJqVMl/bE94Ue79qf5ey6FoqzoedpFTOFjGaLM5G2CQoXTXop7UsMR5pnb3xISS8VMH+015Rq+ebKvQ1ZFwA6wTdXvlbT8QAAAOUQjAYAAAAAAFqGH/GCbSsdFIx2833B7YcnpVLUOw4AAAAAgCoqlsnsJhgNAACgrC9JeqGkg9ban7HW/r219jZr7QPW2gettbdba//KWnujpGslHdmy/RuMMS+qe9UAAAAAsEtr/mpge19sT50raR8X914V2H5V/zMizXN539OrUU5kRVtoyLpRzRSmZBXtYqbZ/IkaVQM0l0zuWKTxV/RdJ2NM6PHlQrna8Xm2k5/pir7rAtsv7422b3fNc0WDXiOm8scbsi4AdIKorzft+JoLAAAah2A0AAAAAADQMqLGey2s1aSMplQqcyzVzFL96gAAAAAAYKuVMuFnBKMBAAC4WWtvttZ+0lpb8SsSa+2XJT1D0re2dP2RMSZWxbLeIemyiH8IZwMAAAAQSc4PPvCry+uucyXt45Lep+qa/hvOaLuo50o9rf/Zkea5qv86Xd57bTVLC8W30cLGGiWzgyCIbH6yBpUAzWcyfzT02H3xYX3P0I9Emr8n1qd+R4Bmpg2Ds6IGz1zV9wxd3he8//7ufS9ROnkg1Dzp5AG9YN+LA/uu7rtel/Y+LVJd1bBcWtBScaHu6wJAuyvagk4WMpG2IRgNAABUU7zRBQAAAAAAAITlRzy2aWYxapRa69rbI80FXyhVC2vSKBdLBQAAAAA0SLnws5WclRT+Su8AAABws9bOGmNeLunLevJN1kWSnifpU1VaY1rSdJRtjOH9HgAAAIBo1h3BaCmvq86VtI+YiemVY7+qZ+x5vh5bP6Kx5CFd3netYhGztOMmoZ+deIPuW/mKHl07ooLNV7XO+1e+qqmA8KSSSlVdp1ZcQRB9sT0aiO0JDIbKtmFgExBkKncssP387kt0VtcFkiQjo7HUQV3ee6364gOR10gnJ7S0tj0gqx0DCF37m+HEmK7oe/oTtxMmqXO6L9SlvU+TZ7zAbQYT+/W6Q2/T15fv1onco7IBl7I2MppIna0r+q5Vd6w3cJ6El9DPTfy27lv+sh5dP6KiLezgJ3Mr2aI+N//fgX1T+WPqj3OwNABU08l8Vr6CT+K5tPdpOrzylW3ti6V5rZaW1RPrq3V5AACgAxCMBgAAAAAAWoYfMedseqk2dTSjVJnf8iyu168OAAAAAAC2WirzubRcaBoAAACis9beY4z5pKQXbmq+UVUKRgMAAACAenAFo3V53XWupL14JqZLeq/WJb1X73qeK/qefkbwTrWsZ1YDg9F82yrBaMEhZ+d2P0UHUudo8lRQMFpwuBHQTkq2qGlHONlzBm/SNQM3VGWddHJCD63dv619ug2fZ659x6W9T9MPjLwq8nzdsV5dt+e5u6xqI4jzyv7rdGX/dbueaytrre5e/LxW/O0HiGdyx3Rhz2VVXxMAOlnG8d7WyNMPjfy0Dj+yPRhN2ggkPaf7wlqWBgAAOkRwvDcAAAAAAEATihqMll2sTR3NKF7mwp0Lq/WrAwAAAACArcqFnxGMBgAAUBO3bLl9RUOqAAAAAIAdyhGM1rE8BR8I58uvcyU7k3EEFaWTE0onJwL7pgtTLRP8BuzUdH5KJRUD+8ZSB6u2zojjeZYtdE4w2qjjPmgHxhiNpg4E9k3lj9W5GgBof65Q0/2JYQ0nRpUyXYH9rrBgAACAqAhGAwAAAAAALcNGDEab3n5BsLaVDz5eRJK0EHycIAAAAAAAdbFSLhhtvX51AAAAdJBHt9webkQRAAAAALBT645gtBTBaG3PM8GnO7ZCcJi1VtlccAjEaPKARpPBYT5FW9BsYaaWpQENN5U/GtjuydNIonpBXq5QsNnCjPJ++1yxaaW0pOVS8NWjXSGM7WIsGRykRzAaAFRfxhFwlk4ekDFGI8lxx3btF0gKAAAag2A0AAAAAADQMvyIwWgLa1KuEHGjFpUrG4zWGfcBAAAAAKA5La27P5eu5OtYCAAAQOfYmiBAcgAAAACAluIKRusiGK3tOYPR5Ne5kugWirPK2eArwqSTE87gCEnKEh6BNjeZCw5GG06OK+ElqraOKxTMymo6P1W1dRqt3D6j7YPRUocC2zM5gtEAoNpcrzenX2tcwb+8twUAANVCMBoAAAAAAGgZUYPRJGlmufp1NKP1grtvIfg4QQAAAAAA6mKlzMXXl9vnwuwAAADNZGjL7ZMNqQIAAAAAdsgdjNZT50pQb55ige2+bf5gtEz+uLMvnZxQyuvSYHy/Y1vCI9DephyhVWOOQJWd2p9IK6Z4YN90oX2eZ67AmZTp0p74vjpXU19jyYOB7YuleS2XFutcDQC0L2ut8/Vm9PFgNFcYZ7bM+2IAAIAoCEYDAAAAAAAtYyfBaHMr1a+j2VhrlSu6+wlGAwAAAAA0UrnP88VS/eoAAADoINdtuT3ZkCoAAAAAYIdyzmC07jpXgnrzTPDpjr5t/i8UXMER/bE96o31S5JGHSFQrm2BdjGVPxrYPpY6VNV1YiamoeRoYF87Pc+y+eBf940kx2WMqXM19TWaCg5Gk6SMI4APABDdcmlRq/5yYF/68fe0rmC0mXxGpRZ4/w4AAJofwWgAAAAAAKBl+Du46ONsBwSj5cuEokkEowEAAAAAGssSjAYAAFA3xpgumyZUuwAAIABJREFUSS/d0vy5BpQCAAAAADu27ghGSxGM1vY8xQLbS2r+LxRcoUvpTWForvCIbP54TWoCmkHRFjSdnwrsG0tWNxhNktLJ8cD29gpGC95nuMIX28me2F51e72BfVPsSwGgasq9Pz39njbteN0pqahThWxN6gIAAJ2FYDQAAAAAANAyypxHrd5UcPvcak1KaSrrhfL9i+v1qQMAAAAAgCDlPs8XdxCCDgAAgLJeL2nzWdYlSf/doFoAAAAAYEdyjmC0LoLR2l7MBAej+bb5v1DIOIOKnvyY7g5Gm6xJTUAzmM5PyXeEG46nDlZ9PVc4WDs9z9xBjMH7mHZijNFYMvhxM5U7VudqAKB9uV43u71e9cf2SJJGkmMyMoHjXO+NAQAAoiAYDQAAAAAAtAzfcSa1MdK+nuC+2ZVyp1+3h1yxfP9avj51AAAAAAAQxJb5aF4MPgcCAACg4xljXmGMSUfc5jWS3rSl+Z+stY9VrzIAAAAAqC1rrXJ+8JUgCUZrf57jdEdXqFIzcQcVHdj07+DQosXSnNZKKzWpC2i0qdzRwHZPMY0kx6u+njuA8LhsuS8uW0TJljSTzwT2jXRAMJokjTkC9abywY81AEB0rmCzdHJCxmyEoSW9lPYlhgPHud4bAwAAREEwGgAAAAAAaBm+46KPRtK+3uC+2dWaldM01gvl+9fyrX8gBwAAAACgdZX7VFoo8ZkVAADA4dWSHjHGvNsY8z3GGMc3IZIx5hpjzIck/a02vjY57YSk361xnQAAAABQVTm7Luv4zXKKYLS25xlHMJp1HDzYJNb9Nc0VTwb2jW4KKnIFNkmER6B9TeWPBbaPJMcUN4mqr+cKB1v317RYmqv6evV2qjCtkoKvqJyuQdBcMxpLBgejZXLBjzUAQHSu96ajW15nN4cAh9keAAAginijCwAAAAAAAAjLd5wr7Rlpb09w31wHXERxPfj4hiesVQhOAwAAAACglspdeL3Y3OcxAQAANFq3pJ94/I9vjDki6VFJC5JKkvZLulJSOmDbWUk3Wmsz9SkVAAAAAKoj5685+7oIRmt7nmKB7b6a+wuF6fyks29zGNpgfL+SJqW8zW0bl82f0NndF9akPqCRpnJHA9vHkodqsl65cLBs/oT2xPfVZN16KRc0Uy58sZ2MpoKD0RZKc1otLasn1lfnigCg/bheb7YGkI4mJ3T/yj2htwcAAIgi+BIKAAAAAAAATch1HrXnSft6g/tmV2tWTtPIVQg+IxgNAAAAANBI5YLRbn+4fnUAAAC0OE/SUyS9UNIPS3q5pO9WcCjapyVdaa29r37lAQAAAEB1rJcJRkt5XXWsBI3gmeDTHX1bqnMl0WTzxwPb4yahfYnhJ257xtOII7QpQ3gE2tRk/lhg+5gj3Gq3+mID6o31B/Zly4QYtgrX/mZffFhJL1XnahpjLOl+7Ezlgh9vAIDwCn5BpwrZwL7R5IEzbm8NSjuNYDQAAFANBKMBAAAAAICW4Tsu+ugZabDXBPbNrdSwoCaxXizfv5avTx0AAAAAAER1cll6eLpMchoAAEDnerukf5H0WMjxK5I+LOm7rLXfZa0NPkMSAAAAAJpcrkwwWpfXXcdK0AieiQW2l5o8GM0VajaSGN/2M6Ud4RHThEegDRX8gmYcYWTjqUM1W3draMtprlCxVuIKmnGFLrajwfh+dXk9gX1TjiA+AEB4JwsZ+Qo+eWfre9lRx3vb5dKilouLVa8NAAB0lnijCwAAAAAAAAjLd5wnbSQNOo55W1xr/5Or1wu76wcAAAAAoJYqfTL/wFes3nhTcOA5AABAp7LWflgbQWcyxgxKulTSQUlpST3auDDuvKQ5SQ9I+rq1TX6WOAAAAACEsFYmGC1FMFrbiyk4GM06ghmahStsaTS1PSjCFYzmCjsCWtl04YQzWGU0ebBm644kx/Xw2gPb2tvheZZ1BM259i3tyBijseRBPbL+4La+DMFoALBrrtdLT56GEqNntKUdYaSn5+mLD1S1NgAA0FkIRgMAAAAAAC3DFYzmedKA45i3Bfdxcm2jUOE0pzWC0QAAAAAADWQrJKP9zoet3nhTfWoBAABoRdbaeUm3NboOAAAAAKiHnCMYLWGSipng0Cy0D2O8wPZSk2eBu4OKtgdFuMKLpgtT8m1JHo9ztJGpXHBooKeYRpJjNVs3nWjfAMJpx8/QScFokjSaOhAYjDaZO9qAagCgvWQcob/7E2klvMQZbQOxQXV5PVr3V7eNzxZO6DxdXJMaAQBAZwj+TSEAAAAAAEATcp1I7RlpjyMYbXG9dvU0i1KFi2ESjAYAAAAAaKQKuWgAAAAAAAAAADxh3RGM1u311LkSNEJMwaFgvpo3GM23JU07gtFGA4KKRgPC0iSpaAuaLcxUtTag0abywSFV6eS44iYR2FcNrpCwU4UZFfzWPah2tbSsxdJ8YJ9r39KuxpOHAttdYT4AgPCihHAaYwLf80pSxhGQCgAAEBbBaAAAAAAAoGX4OwhGWwg+Tq6tVAxGy9enDgAAAAAAgriCzgEAAAAAAAAA2MoVjJbyHAeIoa14Jvh0R99WOEiugWYLJ1WwwQfppQOCikaS4865CPRBu5nKBQejjaUO1nTd0VRwSJiVr5nCVE3XrqWsI4RRKr9vaUejjsfQfPGU1korda4GANpLJkIwmiSNONqzjnkAAADCije6AAAAAAAAgLBcwWjGSHu6jaTtAwhGk9Za9+J2kqSFVav33Gn11aMb/9fXnCX91LOMUgnT6NIAAAAAACEQjAYAAAAAAAAACCvnCEbrIhitI3hyBKOpeYPRsmXCzIKCilJelwbj+zVfPBUw16Quq2p1QGNN5Y8Fto8lD9V03aFEWp5i8lXa1pfNH9d4qrbr14orYCZpUhqM769zNY01lnSH603lj+nc7ovqWA0AtA9rrfP1ZjQg9HejnWA0AABQGwSjAQAAAACAluEKRvOMNNAV3Le0Lvm+lee1b4hWpWC09cLGF1TGtN59MLNk9dw/9fXApgv0ves26d23W33+dZ6S8db7mQAAAACg05CLBgAAAAAAAAAIa90RjJYiGK0jeCYW2O7b7eFGzSLjCHzYGx9yBvqNJg84gtEIj0D7KPgFzeSnAvvGahxMFjNxDSXSmi5Mbutr5eeZq/aR5Lg8Exws2a72xoeUMl3K2fVtfVM5gtEAYKeWSgta81cC+9IBob8b7cGBaScLGRVtQXGTqFp9AACgs3TWJ10AAAAAANDSbJlgtD1ljntb2v6dd1txBcZttl6ofR218I7P2TNC0U770qPS336eU+sBAAAAoBW4Ps8DAAAAAAAAALBVzhGM5gqYQnuJuYLRVOHqoQ2UzR8PbE8nJ5zbuPpccwGtKJs/4XzujiUP1nx99/Nse1haq5h2BKOV29+0K2OMxlLBj6NM/lidqwGA9lEuQNQVgOZ6HfLlayafqUpdAACgMxGMBgAAAAAAWobvOJO6UjDaQvCxcm2jFOKYr7UWDUa75T732fP/fCdn1gMAAABAK+DTGwAAAAAAAAAgrHWC0TqacZzuWLKlOlcSXmYHQUXtGNgEbDWVPxrYHlNcI8mxmq/vfp65A1+anav2TgxGk6Sx5KHA9qkcwWgAsFOuoN4er099sYHAvuHEmPN9fCu/7gIAgMYjGA0AAAAAALQM33EmdccHozkC4zZbb8FgNGutDpc5zuvuR6WHpzm9HgAAAACaXYiPrQAAAAAAAAAASHIHo6W8rjpXgkaImVhgu9/EwWjTjrCH0eQB5zauEKPF0pzWSitVqQtoNFc4VTo5rpiJ13z9csFotgW/wPRtSdOFqcC+Tg1GG00dDGyfyhOMBgA7VS6E0xgT2JfwEhpKpCPNBwAAEAbBaAAAAACAUP7nQauX/HVJN7ytpDd+yNfyeut9IYzW5wpGM0Ya7HFvl1msTT3NouRXHrOWr30d1XZ0VlrOlR/z719hXwQAAAAAza4FzysAAAAAAAAAADRIzhGM1uWVuXIm2obnON3RV4iD5BpgtbSsxdJ8YF+5oKJyfYRHoF1M5Y8Gto+lDtVlfdfzbM1f0VJpoS41VNNsYUZFG3yV5E4NRhtzBFDOFU9qrbRa52oAoD1kygSjleMOJD2+65oAAEDnIhgNAAAAAFDR579l9cK3+/rI16TbHpbedovV9/2V35JXy0Jrcz3kPCMl40bpgeD+Y7Pt/VgNFYwWfCxEU3t4pvKYz3+rvf9vAQAAAKAdhPnkVijy+Q4AAAAAAAAAIK07gtFSBKN1BM/EAtt925zBaOVCzEYdgT2SNBjfr6RJRZ4TaCVTuWOB7WPJg3VZv90CCMvVPJIcr2MlzaNcyF6GIB4A2JFpx+tNufe2UrlgtMld1wQAADoXwWgAAAAAgIr+8tO+8sUz2/7nW9LN32hMPehcfplgNEk6uDe4/+hsbeppFmGC0XLFymOazWq+8pjDfE8GAAAAAE0vTLb+SojPgAAAAAAAAACA9pdzBKN1EYzWETzH6Y6+SnWuJBxX8E7KdGlPfJ9zO894ziCjTAsGNgFbFfy8ZgqZwL6xVH2C0fpiA+rx+gL72ikYbTC+v2NfI/fGh5QyXYF9mXxwMB8AwK3gF3SyMB3YVymE0xWclskflw1z4BAAAEAAgtEAAAAAABV91fG94K9/oDmvwIf25QxGe/w3HAcdxxEdm6tNPc3Cdb9s1orBaIUQx7Idm5MWVvmiDAAAAACaWZhPbSu5mpcBAAAAAAAAAGgBawSjdTTPxALbrax823zHrLqCitKpAzLGlN3WFR4x3YKBTcBW2fwJWQU/Z8eSh+pSgzFG6eREYF9rBqMFX0nY9TN2As94SqeC96VTOYLRACCqmcKU8/Xb9d71tLQjOG3NX9FyaWHXtQEAgM5EMBoAAAAAoKJHTga3Hwm+EAhQM77juKbThw8d3Bd8INHx2fYOziqFON4rV6h9HdVWKIX7f/tm8EUFAQAAAABNIsyFX1fyta8DAAAAAAAAAND8co5gtBTBaB3BK3O6oyukoZEy+eOB7aMhgopGHOERmRYMbAK2msofDWyPm7iGk2N1q6OdgtFc+5tODkaTpPHkwcB212MQAOCWdbzWePI0lEyX3TZdJjiN97cAAGCnCEYDAAAAAOxKMWRwEVANrkeb93geWnoguH8++Fi5thEmGC1fqn0d1VYIWfPR2drWAQAAAACovcU2/+wOAAAAAAAAAAhn3RGM1uX11LkSNELMxJx9Jdt8B8G5wpXKBUM8OSY4zGimMCW/CX9WIIrJ3LHA9pHERNnnebW1UzDatHN/09nBaKOuYDTHYxAA4OZ6fRxKjCpuEmW37YsNqNfrd8wbHLgGAABQCcFoAAAAAIBdyS42ugJ0Et+RjOY9/huOPY6Lgrb7ydVh8glzhdrXUW1hg9GOzRHQCAAAAADNzIb42Da/Wvs6AAAAAAAAAADNrWSLKtrgA526PMfBYWgrXpnAJF8hriBaRyVb1Ew+E9gXJqho1BGeVrQFzRZmdlUb0GhT+aOB7eOpQ3Wtw/VcPFXIOl9vmtFaaVULpbnAvk4PRhtLBQejzRZnnGGrAIBgmV2EcBpjNJIcD+xrxUBSAADQHAhGAwAAAACUVSiWP3P1ePB3rEBN+I7jmjyz8fdAV3D/4npt6mkWpRDHe+WKta+j2vIhaz46W9s6AAAAAAC7EybOeoFj0gEAAAAAAACg45ULMCEYrTN4ZU539G3IK23WyclCVr6CaxoNER7hCo6QpEz++I7rAprBVO5YYLsrxKpWXEEuvnxnsGEzmi5MOvvSZfYlnWAs6Q7by+TYlwJAFNO7CEaT3MG/rsA1AACASghGAwAAAACUtZov339ivj51AJLkO86kfjwXTf1dJrC/3YPRXPfLZrkKIYfNqBDyOLbjs633swEAAABAJ7EhPrbNr/HZDgAAAAAAAAA6XblgtBTBaB3BM+WC0UJcQbSOXIE7Rp6GE2MVt095XdobHwrsy+bdIUhAs8v7OZ0sBIeOlQuxqoWhxKgzcDHbQiEtrloTJqm98eE6V9Nc9iWGlTDJwL5MPjigDwCwnbXWGWAWNhjNNS5L6C8AANiheKMLAAAAAAA0t7VC+f7JeasnY6mA2nKdIu09fszCQFdw/0pOKvlWMa89H6ulEMd75Yu1r6PawgajHZurbR0AAAAAgN0JE3k2v1rzMgAAAAAAAAAATS5XJhiti2C0juAp5uw7nntEvcX+Hc07GN+v/vienZYlSVorrZ4R9nRk7XDguKHEiBJecEjPVunkhOaKJ7e1P7L+oI6tf3tnhUrq9nq0P5GWMe15zCQao2SLyuZPqGTLH9w5U8jIOr4hHEsdrEVpTgkvof2JtGYKU9v6Hlo7rP2JkbrWs1MPrz4Q2D6SHC8bKNkJPONpNHlAx3Lb95lH1g5rInX2jufujfVrX6I1g+fCPl8364n1tcxzAqiXki1poTirpJdSX2ygrmv7tqRsflJFW+GkrhDC7M8WS/Na94MP3hlNHgi1jisY7VRhRo+tP+QMK90pI0/p5IQSXqKq8wJAo3116Q5l8sc1mpxQOjmh4cRY6N8zAO2GYDQAAAAAQFmr+fL98+7jkICq8x0BYKfzzgbKHPu2tC4N9lS/pmYQJhgt187BaLO1rQMAAAAAsDs2RDLaAr9jAgAAAAAAAICOt04wWscrF/Dzl8fftKu5L+i+VK8e/y0NxAcjbZf3c3pf5h368tIXZFX5YL10yOCIjbET+ubq17a137N0m+5Zui1SnVvtjQ/pp8Z/U+d1X7SreQBrrT479zF99OT7lLe5Hc8TN3ENJUarWFk46eREYDDaZ+Y+ps/Mfazu9VRTOjne6BKawljqUGAw2h0Ln9YdC5/e1dzp5AG9Zvx1Gk8d2tU89WKt1a2zH9bHT31AObseefuRxLh+evx1OtB1dvWLA1pA0Rb02PrDOrJ6nx5au1/fXntA6/6aPHl6+sBz9WOjr1XM1D6e446FT+s/pt+lVX+5anOOJg/oNeOvd4aUZvPHndu6As+2rZEKfh9s5ettj/1mqDmiSpikru6/Xt839KOEOwJoG19Z+oLuWbr9idtGnvYnhnX9nhfoxv0/2MDKgPrr7ChwAAAAAEBFFYPRgi8IAtSE7ziR+olgtC73tottfIJ1pwejZZekfDHEWfYAAAAAgIYIE4xG+D4AAAAAAAAAwBWMZuQpYZJ1rgaNEFOsZnMfWTusd039eeTtPnryvbp76X9ChaJJ4YMjoo6Naq54Un917M1aK3GgL3bnvpWv6IMz/7irUDRpI2AqZmr3HHev277hYbXch7SSsWRwyE81ZPPH9VfH36KSDXlQc4N9dfl2/efJ9+woFE2SpguTevvx31PBL1S5MqA5Ffy8vrV6n24++W96+7H/T79x5Mf0Z0ffoI+efK/uX7nnic8nvnzdufgZfSD79zWv6aHVw/rnzP9f1VA0ScpU2J9l85OB7b2xfvXFB0KtMZRIy6vh+/kgBZvXlxY/p7c88gv6z5n3aK20Utf1AaAWMrkTZ9y28nWykFXBVjjRF2hDtY+kBQAAAAC0tErBaAuctIo6cgWjmdPBaGUuCnrvMenQ/urX1AzaNRgtH7Jma6UT89I5Q7WtBwAAAACwM2GirBc4JwcAAAAAAAAAOl7OEYzW5XXJnD5IDG3Nq3Fo0oOrX9dsYUb7EsOhxvvW1x0Ln4m0xmjyQOixtQ41ytl1fXX5dl2/57tqug7a250RnwMutQyvKqedw8NGEu37s0UxlqrtY2u+eErfXP2aLu19ak3XqYa7F7+w6zlWSkv65urXdHnfNVWoCGguOX9dj6w9qCNrh3Vk9bAeXf+WijZ8EOAXFm7RtQPP0fk9l9SsxnuX76rZ3HPFk3pw9eu6pPfqbX3Z/PHAbaK8t42ZuIaTo8rmT1QeXGVFW9AnZz+k2xc+pZv2/7CeM3ijYoYoFQCtx7e+ZgpTgX3t/NkGcOHVHAAAAABQ1lqlYLTVMKe2AtVhHQ8373QwWpd72z+6xdf3X1X/K83VQynE07AVg9EKES6udvQUwWgAAAAA0Kxcn+c3W1jjd0wAAAAAAAAA0OnWHcFoKa/MFTPRVgbig+ryup2PhWo4kXssdDDaXPGk1vyVSPMf7Do39NgDqbPlyZOvEFdH3aETuUdrNjc6Q7UeQ2d1XVCVeaI61HVeQ9ath3b+2aI4mDpXRkY21CW7dubE+qMtEYw2kw8O0Yg8jyOMA2g16/6aHl57QEdWD+vI6n16bP0h+YpwkkKA92f/Rm88+88VN4kqVXmm2cJ0TeY97UTuscBgtKncscDxI8nxSPMfSp3XkGC005ZLi/r36b/X/8zdrBcP/4Su7LuOkG0ALWWuOKOCDT6hl2A0dCKC0QAAAAAAZa1WCkar3bEnwDZ+hWC0rjLfLbXzY9UPcUxUvs2D0U7MW0l8YQUAAAAAzSjM4efzqzUvAwAAAAAAAADQ5FxhWF0Eo3WMuEnoaf3P1m0Lt9ZsjWz+uC7XNaHGZvLHI819dtcFOpgKH4zWHx/UVf3P1D1Lt0VaJ4psrnHBFGh9JVvUyUJ21/OkTJeuG3ju7gvagYOp83RW1wV6bP1IQ9avlfO7L9VY6mCjy2gKexNDurzvWn19+Us1W6ORIT9RrPhL1ZmnVJ15gHpbLS3robX7N4LQ1g7r2Pq3ZascQDuVP6ZbZ/9TN+3/oarOe1otA3OljffCQabywcFo48lDkeZ/9uALdffS5yPXVW3ThUn97eQf6bzui/XS4VfpnO4LG10SAISSKfO+k2A0dCKC0QAAAAAAZVUKRptv47ApNJ9KwWjlruRS6bHcykohzjDPtXkw2sxy7eoAAAAAAOyODfG5tZ0DzQEAAAAAAAAA4RCMBkl6Wfpn5ZmY7lm6rSbBLFHCbbK5cMFoCZPUxb1X6cfTv1j2OMYgPzH6y0qalO5dvlPrfvWvJJMttEaYD5rTTD4jXxEO5tzCyNPBrnP1o+mfV198oIqVRajBGL124nf1vuxf64GVe1WwrX1AcdKkdGnvU/Vjo7/Q6FKayivHfk3/mv2/+vryXc73E7sRNSizEay1WiktVmWu5SrNA9TacnFRR9YO68jqYT20dp9O5B6TDXX5vt35+KkP6Gn9z9JIcrzqc/u21sFo298brpVWNF88FTh+NGII5wU9l+qnx1+nj868V9OFyR3VWE0Prz2gPzn6Oj2t/9l60dArNJRMN7okACjL9TuLPfF9/H4MHYlgNAAAAABAWWuF8l8KcNIq6skVjLb5OKI3f7/Rmz+6feDsSo2KagKlEN99tX0wGhcmAwAAAICmFSYYjfB9AAAAAAAAAEDOGYzWU+dK0EgxE9fL0z+nHxn5mV0FhX1k5r36wsIt29qjhNtkHCckX9B9qX524o1P3E55XYqZnZ2qmfRS+omxX9aP21/YVZjPAyv36h+m/nRb+2xhRnk/p6SX2vHc6Fyuk/KNjP7wvHcpXuFxHzeJpnjs9cf36OcmflslW1TOX290Obuym/1NO+vyuvXKsV9VyZac7yfCuHPxs/rg9D9sa8/mT8haGzn8sp5ydl1FG3zA+C8deLPO6jp/W/u/T/+D7lr87Lb2agWsAdW2UJx7PARtIwxtKn+0JuukTJfO675YObuuh9ce2NZftAW9P/s3+uUDb636fsG3wSdRPHfwe/W9Qy8LPc8dC5/Rf8z847b2oNf2cu+Px5LRgtEk6an91+up/ddr3V9z/jzVcM/Sbfqvk+/XYmm+4tivLH1RX1u+U98x+D26af8PqSfWV7O6AGA3srngz2CjyYk6VwI0Bz79AgAAAADKWq1wUaz56l+cDnBynUjtbfou6YbzjRRwlZ+ldalQtErEm/cL6Z0KFYxWqH0d1ZaP8B3YNMFoAAAAANC0wlyLl98xAQAAAAAAAABcoVApr7vOlaAZeMbbVWDBROqswHZX0FMQV0jEeOqsqocpeCa2qzkPdp0b2G5lNZ2f1IGuc3Y8NzqX6/myLzGigfhgnavZvZiJE4TS5mK73JceSAXvK1f9ZS2XFtUf37PjuWutXJjZ/kQ68H7ZE98XOH65xIHZaA6zhRk9tHa/jqzepyOrhzVdmKzJOt1ej87rvkQX9FyqC7ov1cGu8xQzMS0V5/WWR35Rq/7ytm0eXP2GvrT4OV2353lVrcVX8MkhKS8Vaf/meu+3XFrUcmlRfbGBJ9qm8seC1zRd2hsfCr3mVl01/hz37MEX6pqB5+jW2Q/rU7P/qYItfwJc0Rb16bmP6I6FT+um/T+s5wzepISXqGmNABBVthD8GWyEYDR0KILRAAAAAABlVQpcWtj5BZWAyPwQwWj7et3bz69Jw/3VrakZhAlGK9TuQjs1U4xQ88ximNPsAQAAAACN8P/Yu/M4R+oC///vqtzp+0y6p+eCaY7pAeELKKCCoCwKioAiC4uI51fddVdd15/ren69VndlxQtW3eVQEUFALkGRGx0YUI6ZnhnoYRimj+mk73Tuoz6/P4aZ6Zl8PpVKd5KuJO/n4+HjIakcn0lXKpWkPq9Shc4XiiQBwxDQ9doLmhMRERERERERERGRNaowWrkn1FNtCnj6pJdHcxFEsxE0OpulyxcKKcJoQbf8vpdThysAB5zIIZu3bDw9yjAaLYpqUn6Ak/KpRplt30PpEVuH0cxiZo0O+QH0DYrLYwyj0TIQQmAqE8ZQYm8EbSgxiKlMqCyP1aA3YZ1/Pfp9A+j3b8AKz2romiPvek3OVlzQ9T78MvQj6f3cOnEtBhpOsLRfaVVOyCdRyMZnJmjyXh1Kj6HRtyCMltotvV6PZyU0zd7H8Xh1H97ReSne2HI27pq6EU/MPQhR4BSOcSOKWyf+F4/M3oPzuy7H8Y2n2v7fSUT1I5SSfw/Bz2BUrxhGIyIiIiIiIlOqENU+qSyQzAh4XfwSmMpvqWG06Vj9htFS+cc62V4xMbcwf38nIiIiIiKyLStxy7uEAAAgAElEQVQpayGA+STQ4i/7cIiIiIiIiIiIiIjIplIMo1EJmccgRgsGLGK5eczn5qTL7Dgh2aE50O3uwZ70cN6ycFoetyIqJJwek14ecPdWeCREldHkaIFPb0DCiOUtC6XHsM4/sAyjsiaai0gv16HDq8t/iFcF01T3RVRKQgiEM2N7I2jxQQwltmA2O1WWx2pytKDfP4B+3wb0+wcQdK+ErumWbntqy1vwZORh7EgM5i2L5iK4beI6XN7zjyUbq4B8cogDxYXRmh1t8Op+JI143rJQegSH+47a/997lDHglUU95nJqdXXgvcFP4IzWd+D2ieuwLf5swdtMZkL42dh/YK33SFzYdQUO9x9dgZESEaklcnHM5Waky+wYaCeqBIbRiIiIiIiIyJSV4NJcAvC6yj+WepBI750q7HMzNCejCqNpRYTRalGhgCEApDJWpqHbC8NoRERERERE9WU2wTAaERERERERERERUT1LKsJoHobRaBHMYhDj6ZGC4YNxk5hY0GPPSETAvUIaRhtXxC6ICgkpXgcBl/3igESloGkagu4+vJx8IW+Z3bel0aw8ZtbgaFIGoBod8khoLBeBEAKaxjkNVDpCCOxJD2MovgVDiUHsiG9FRBF/WapWZwf6fQN7Y2j+Deh29S56fdY0DZcEPopv7voUcsg/W/0TkQdxcssZOMJ/zFKHDQDICfkkCs1iyO3A9TUE3CvwSnIob9l4auSQ/87ffwSAHs+qoh7TDvq8a/CJlV/B1tgzuC18HcbSrxS8zcvJF/Dd4X/F8Y2n4J1dl6Pb3VOBkRIR5Qtn5GFqgHFqql8MoxEREREREZEpK8Gl2TgQMD9xHhUQSQh88HoDdz63N/J1/nEafnq5hiYvf0xcSCjWR33B0+R3Ay6HPKo1k398U02wEjBM5f8GZ3vprPWYG8NoRERERERE9qX6PH+oOfl8NyIiIiIiIiIiIiKqEylFGM2reys8EqoF++I2u5Iv5i1TxZ4Ovo48gOPVfWhxtC15fOUQcMtjVVb+vUSHiuXmEc3JQ0uqdY2oFgTcvdIwmt23pTFDfjC1Kn5mtiwrskiJJLwa47S0eIYwMJrahaHEIIbig3gpsVX5vrJUHa7uV0NoG7DOtx6drmBJw349npU4u+Nd+N3Ur6XLbxy/Gv+25ntw6e4lP5YB+eQQBxxF35cqjLYwvJM0EpjOTkhv3+PuK/ox7WJ9w/E4as2xeCLyEO6a+CXmLET4noluxHPRTTit9W04p+M9aHRyohwRVdah4cp9XJobbc6uCo+GyB4YRiMiIiIiIiJTVsNotDQfut7ArX898N83Py3g0IFffohhtIVU6+PCMJqmaehoAMYlv5m9MiUA1N5zmrPwOo2nyz+OUpPF7VTmk0AyI+B11d7fl4iIiIiIqNpZDaPxOyYiIiIiIiIiIiKi+pZUhNE8OqMctDhB9wppGG1cET076DqKCckBd19JQxulFFDEK0LpURjCgK7pFR4RVTOzCBTDaFTL1NvSwu8dyymmCE41OJqUtzFbFstF4OU+GBUhJ3IYTu7EUGIQO+KD2JHYioQRK8tjdbt60e8fwDrfevT7N6DdVf5YzNnt78LTkccOiortE86M4ffTt+LtnZcs+XEMIZ9EsZj9uKDi/Xrhfu54alh5+x7PyqIf0050zYFTW96CE5regAem78D907cjJZKmtzGQw8Ozd+PJyIN4a8dFeFPruSUJ3hERWRHOyD+Ddbt7+Xme6hbDaERERERERGQqJz/ZyEHm5McikUXhiMBtz+RffsvTAj+4RKC9wZ4H0CwHZRjtkO/21nXLw2hb8n+DqglWXqczVTi5vJgwGgBMzAMr28szFiIiIiIiIlo8i100fsdEREREREREREREVOdUYTRGOWixlhK3UcXTgor7tANV/CItUpjNTlUkGkK1QxVG82hetDh5sCbVLlX4bzITRsbIwKW7Kjwia6LZeenlDY5m5W0aTZZFc/PocAWWPC6qXVmRwSvJl7AjPoihxCB2JrYp9+eXqse9Eut8A3tjaP4BtC7D+5BLd+OS4Mdw1fAXpcv/MH0rTmx6I4Kepe0rGpBPDtFRfBBHvT0bR1Zk4NRc2JOWh9E8mhdtztrYd/ToXpzTeTFe3/o3uGfyV/jT3B8hFM/zPgkjjtsnrscjM7/DO7suwwlNb2SUiIjKbjwl/wwWcPdWeCRE9sEwGhEREREREZlShagWmk0IAIx3LdamXfLnOWsAz+wG3nx0xYdkW4bit4dD176BFRoe35H/pA6OWp2KXV0YRtsrzDBa3Xlou8DX7zEwMQ8cv0rDdy/S0NnE9yMiIiIiIrsRFj+Oz8b5HRMRERERERERERFRPUsxjEYlZh63ScOlu5W3VUWhVPdpB2ZjC6VHGUajooTS8rMRd7t7oWn8TY9qlyqAKWBgIrMHvZ5VFR6RNTFDclZxAI2OJuVtvLofOnRpiCmak98f1a+Mkcau5BCG4lswlBjEy4kXkBapkj+OBg29ntXo3xdC861Hk7O15I+zGEf6j8HJzWfiiciDecuyIosbQ1fjkyu/tqSAliEUYTTNUfR9qSLBBgxMpkMIevqwJyUPowU8fTUXAmtxtuHS4Mfxpra347cTN2BL7OmCt5nOTuDaPf+FB2buwoVdV+AI/4YKjJSI6pX6ewj7BtqJyo1hNCIiIiIiIjJlJYw2V56TutSNF0PqJ3n7uMCbj+bBA/uonin9kKfoGMWxPdvHSzoc21AF4xaajpV/HKVWdBiNv7/XlWeHBc7+noHsq+v/ljGB258RmP6eDqeD200iIiIiIjuxmimf5XdMRERERERERERERHVLCIGkkZQu8zCMRotUOG6zWro8Y6QxmQkVdZ924HM0oNnRhkhuJm9ZKD2KoxuOW4ZRUbWqxjggUSl0ugPKWFgoPWLbMFo0Ny+9vMHRrLyNrulocDRhPjeXf39ZHphd79JGCjsT2zGUGMRQfBC7ki8iKzIlfxwNOlZ61qLfP4B+/wYc7jsaDSZBv+V2YdcV2Bx7CjHJa25HYhBPRB7EqS1vWfT9G5BPotBRfKSsy9UDDTqEZHs2nh7ZG0ZLy8NoPe6VRT9etej1rMLH+76A7bHncNvEdRhJvVzwNruTO/C94S/g2MbX4vzOyxH02PczARFVJ0PkMJHZI13Gz2BUzxhGIyIiIiIiIlNWgkuz8fKPo5ZtlX9nBQDYIj/ZWt1Shfr0Q37j6e/WIJt2HZ4HUhkBj6u2oklWAobzSSCTFXA5q+ffns4Wd/3QvABQPf8+Wpp/ve1AFG2faAo49/sGfv+p4s+IRURERERE5SMsltEY3yciIiIiIiIiIiKqXxmRlk7YBwAvw2i0SF3uIHQ4pIGJ8fSoMow2kdmjXB/tHEYD9k6YjiTkYTSiYoQZRqM65dRc6HQFEc7kH8g/buNtqSpk1lggMKUKo8UMeWiNalfSSOClxDYMxQcxFN+C3cmXkEORB/RboMOB1d51e0NovgEc5jsKPkdDyR+nXBqdzXhX1wdww/hV0uW3ha/DMQ0nosnZuqj7N4R8H1TXij8+3qW70OnqxkRmPG/Zvn3D8ToMo+1zVMNr8Dn/d/FU5BHcMfkLzGanCt7m+egmbIk+jTe0no1zOy5e9N+ZiOhQ05lJZERauizIz2BUxxhGIyIiIiIiIlM5CxNXI/KTNJJFk/PqJ3lw1OLM4TqhCvXph7SwVrap72NkBji8u3RjsoOchYAhAMwmgC77njwpT0Z+siOlqWh5xkH2Mx0T+P2gfNn924ChkEB/gJE8IiIiIiK7sBpGY3yfiIiIiIiIiIiIqH4lDPWXxAyj0WI5NCe63EFpFCyUHlHeblyxTIcDXe5gycZXDgH3CgwltuRdrvo3EckYIoeJjPzMzwGbxwGJSiHo6ZOG0ewcmYzlVGG0ZtPbqZar7o9qRzwXxY7EVgzFB7EjsRXDyZdgKMKwS+HUnFjjPQL9/gGsezWE5tG9JX+cSnpd85vwZORBvBDfnLcsbkRx68S1uKLnU4u6b1nQFwAciwijAXvft+VhtBEkjQSmMmHp7Xo8tR9GAwBd0/G6ljNwfNOpeHDmLvxh+lYkDfMzOxow8OjsvdgUeRh/034hzmw7D27dU6ERE1GtCmXU+5ndDKNRHWMYjYiIiIiIiEypQlQLRRlGWxKz+NOWMUAIAU1j4AcADMVE6kOfnZXt6vvYPV2/YbSZeG2H0aZj5RkH2c9fXzFffuMmgS+/g9tNIiIiIiK7sJp9nzU/rpCIiIiIiIiIiIiIaljKZPK5V/dXcCRUawLuFdKQzXhKPel4PCWPiHW5e+DQ7D0lM6iYMG3nmA/Zz1QmjKzISpcF3L0VHg1R5XW75Ou5XbelQgjEjHnpsoYCYTTV8mhWfn9UvaLZCIYSg6+G0AYxmtoFYfmIDutcmhuH+Y7EOt8A+v0DWOM9ouaiUZqm4ZLAx/D1Xf+ErMjkLd8UeQSvaz4DRzccV/R954R8EoUGvej7Ava+b2+RzLMIpcdMt2k97voIo+3j1j14a8e78fqWt+B3Uzfjsdn7CoYCk0YCd07+Eo/O3ofzOi/Da5tPh64t7u9ERBRSfA/R4mznCQOortn7WzgiIiIiIiJadqoQ1ULzqfKPo5aZxZ9m48DYLLCirXLjsTPV+qgf8ttBg0dDe4M8lLV7WiA/pVbdclZeqKi+cFixYbSpKvv30eIViiU8vav0P9ITEREREdHiCYu76JE49+WJiIiIiIiIiIiI6lXSNIzGCaC0eEF3H57HprzLQ2n5pOO9y+SRCFV0zE4Cnj7p5bPZKSSNBF9PZIlZKKWbYTSqA0HFtjSUHrHlSc9TIqmMGTY6zM+qrVoezUWWPC5aXnPZGeyID+6Poe1J7y7L43g0Lw7zHYV+/wD6fRuw2rcOTs1Vlseyk253L97WcRHumrxRuvym0DX4tzVXFR2FE0Ie43IsMrgVcMu3Z+PpEexJydcJl+ZGu6t7UY9X7Zqcrbg48BG8qe1c3D5xPZ6P5n+OONRsdgo3jF+FB2fuxIVdV+CohtdUYKREVGtC6THp5dXwPQRROTGMRkRERERERKZy5ie4AABEk+UfRy0rFH96aYJhtH1UE6l1yW/Lq9rlIbAXQ6Udkx3kLM4bnysQk7Ib1WtD0+TrwgzDaHUjlTVf6QflvwcQEREREdEysZo7KxRBJiIiIiIiIiIiIqLaZRZG8zDkREsQVMQgQulRZdxmXBFNU4Ul7CTgUk+aDqdHscq7roKjoWqlCqO1OTvh0b0VHg1R5am290kjgUhuBi3O9gqPyFw0q46YNTiaTW+rWh4z5pc0Jqq8mczkqxG0LRiKDyKcKc8B1V7dj3W+9a+G0Aaw0nsYHFp9JivOar8AT0Uele47TmTGce/ULXhn12VF3WcO8klcGhyLGqMqqJMwYngxvkVxmz7oiwyx1YqAewU+uuLzGIoP4raJ6/BKcqjgbUZSL+P7I1/GQMMJuKDrfej1rKrASImoVoQy8s9g3QyjUZ2rz71MIiIiIiIissywMHM1mrQ6vZVkCoXRdk8LAPY6q9RyUa2PsjDakQENzw7n32DLaO2tr1YChgCQzJR3HKWWVrw2gs3Anrn8y6ditfe3JblUgXVZtk0gIiIiIqLlowqdH2omXt5xEBEREREREREREZF9pRRhNJfmhkNbXASACFDHbVIiiZnsJNpdXQddbghDGYVSRdbspN3VCZfmRkak85aNM4xGFqleAwFOyqc6EXD3KpeNp0dtF0Yzi5g1OppMb6tabhZbo+UnhMBUJoyhxN4I2lBiEFOZ8pxBvkFvwjr/evT7BtDv34AVntXQuX8OAHBqLlwa+DiuHP68dPn907fjpOY3otez2vJ9CiGfHOJYZKjM7L17c/Qp6eU9npWLeqxa1O8fwL+s+jb+Mv847pj4OaazEwVvMxj7C7bGnsGpLW/G2zsvsd17BhHZUyglD7RXw/cQROXEMBoRERERERGZshJGm0+Vfxy1rFAYbXimMuOoBqr1UXLCRmxYAfz66fzLN8uP1ahqVl6nAJDMVFdkT/XaUIXRpmPlHQ/ZRyprvnxkFjAMAZ2FNCIiIiqBTFbg334rcMezAi4HcPkpGv7lbE165ngikrMaRhuXfNYjIiIiIiIiIiIiovqQVITRPLqvwiOhWmMWtwmlR/PCaLPZKaSF/MDYYBVEoXTNgW53L0ZTu/KWqWJXRIdiGI3qXaOjGY2OZkRz+XGwUGoER/qPWYZRqcnGCQA6dPj0BtPbNjqapZfHFPdJy0MIgXBmbG8ELT6IHYlBzGQny/JYTY4W9PsH0O/bgHX+9ehxr4K+yChXPVjnX4/Xt5yFP83dn7fMQA43jl+NT6/6puXnMAf5JAodi4vRNTpa4NcbETeiectUUcWgm2G0hXRNx0nNp+G4xpPx8OzvcN/UzUgY5md/FDDwp7n78XTkMZzVfgHe3P5OeHRvhUZMRNUmkYtjLiefQMrPYFTvGEYjIiIiIiIiUzn5yUYOEk2Wfxy1LFsgjLZ7ujLjqAaqAJisfXTMCg1A/g12TQHzSYEmb+1EDKy8TgEgmSnvOEpNGUZrATCcf/lU/m91VKMKhdHSWWBkBljVUZnxUOkJIfD4jr0BjWP7gFZ/7WyziYio+nzk5wLXbzzw2eJztwnMJYBvXMD3JyKrLHbRsGcOyOYEnA6+voiIiIiIiIiIiIjqTUoRRvNy8jgtkd/RiGZHGyKSScbj6REc3XBc3mUqAXdfycdXDgH3CkUYTf1vI1oolB6TXt5tEhokqjUB9wpEE/lxsHEbRiajWXnErMHRVPDEfw2KMFo0Nw8hBE8cuEyEENiTHsZQfAuGEoPYEd8q3ZcphVZnB/p9A1jnH0C/bwAB9wr+3Yt0Qdf78Hx0E+Zz+WcE3Jncjj/N3Y83tp5t6b4MoQijLTJOp2kaAu4VeDn5guXb9HpWLeqxap1Ld+Os9vNxSsuZuHfqZjw6cx9yMJ/YkBJJ3D31Kzw2ex/e3nkpTmk5E7q2uMgdEdUus4g5w2hU7xhGIyIiIiIiIlOqENVC8/IT45FFqvjTPsNTVqcP1z6hDKPl//B2rMnxR1tGgVMOL9GgbKDewmiBZnn0btr8pDtUQwqF0QBgcIxhtGo1MS/w1u8ZeObVAGJvK3Djh3ScdgQPsiAiosqbigrcuCl/3/Nb9wq892SBo3r4/kRkherz/KEMsTeOtrK9vOMhIiIiIiIiIiIiIvtJKsNovgqPhGpRwL0CkUR+TEQ2+VgVRmtxtsPn8Jd8bOWgmjg9nrJfzIfsJ5GLK+M7nJRP9STo7sNLiW15l4dtGEaL5eRhtEZF9Ozg6zRJL88hi5RIwqtxX6wSDGFgNLULOxJbMRTfgh2JrYgq/q5L1e7sQr9/A/pfDaF1uoIMoS2R39GId3d/ENfuuVK6/LcT1+PYxpPQ4ix8QIwB+eSQpcS0ig2jBd0rF/1Y9aDR0YyLuj+E01vPxR0TP8cz0T8XvM1cbga/DP0ID83chQu734/1DcdXYKREVC1UYTSX5kabs7PCoyGyF4bRiIiIiIiIyJSVMFo0Wf5x1LJCYbTx8vyeVZVU66Mu+R1udQfQ5AXmJevn5lGBUw6vnR/vLIfRLMSk7EQdRpNfHksBqYyAx1U7f1uSsxRG2yPwtmO4LlSjT/xK7I+iAcDYLPDB6w1s/5oOh2yDT0REVEa/HxTK/dJzvm9g57d49kaiUhueYRiNiIiIiIiIiIiIqB6pwmgehtGoBILuPgwltuRdHpJE0MZT8jBasIqCUKqxTmT2wBC5JYU1qPapJuUDDKNRfVFGJhUBzeUUM+allzdYCKOZXSeajcDr5r5YOeREDsPJndiRGMRQfBA7EluRMGJleawuV8/+CNo6/wA6XN1leZx6d2LTG/HE3IPYFn82b1nCiOM34f/FB3s/U/B+DCE/WM2Bxe+/Bd19lq/r0tzo5DpiSbe7Bx9e8Vm8lNiO28LXWorPjaV344cjX8VR/tfgwq4r0OddW4GREpHdhTPyz2Dd7l7oml7h0RDZC8NoREREREREZMpKcGk+Vf5x1LJCYbSw/HfKuqQKo8lOUKRpGjb0Aht35i/bPl7acS03y2G0THnHUWppRfwq2KK+zXQM6Gktz3jIPlIW1uUXQ+UfB5Xe2KzALX/J39i/NAE8PgScfuQyDIqIiOra7mn1sl1TQDgi0N3McCdRIRa6+/uNzAgAfF0BwExs7zPX1sDng4iIiIiIiIiIiGpfShFG8zKMRiUQ8KjiNvmTj2WxNAAIuleWdEzlFFDELzIijenMJDrdgQqPiKqJKozm0txoc3ZWeDREy0cVRpvOTiBtpODWPRUekVo0qwqjNRW8baPJdaK5CDrB94xSyIoMdidfwlB8EEOJQexMbFOGgZcq6O5Dv28D+v17Q2itTp6drhI0TcMlgY/ia7v+ERmRzlv+l/nHcXL0DAw0nqC8DyEEDMgnh2hLCOMUEzYNuFcwolukw31H4TOr/h3PRDfitxPXYzJTeCLD9vhz+NYrn8bJzWfiHZ2XotXVUYGREpFdjafkn8EYpiZiGI2IiIiIiIgKUIWoFoqlAMMQ0HVO0lwMK2E0IQQ0Wf2rzqjWR9Wqt65bw8ad+TeaqLHYXM7iDPNqCqMZhlD+vYMmJy+bYhitLqQU0byFZmPFpBfILm75i4BQ/OmeHRE4/Ui+FxIRUWXF8o9RO8jzI8Bb1ldmLETVTLWPJzMyU75xVItURuAD1wvc8rRA1gBOOQy46SM6VrZzf5iIiIiIiIiIiIhqlyoM4WEYjUogqAiFzWWnkcjF4XP491+mikJV04TkbnevclkoPcIwGpkKZ+SvgW53L/QlRFmIqo0qMgkA4fQY+rxrKzgac9FcRHq5WfRsH5/eAB26NMYUU9wvFZYx0tiVHMJQfAuGEoN4OfEC0iJVlsda4VmDft/eCFq/bz2anDyYfrl0uoM4t+Nv8dvJG6TLfxW6Bl/0/wAe3StdLhRRNABwoDJhtJ4qigHbiaZp+D9Np+LYxpPw6My9uHfqFsQM84lLAgIbIw/g6fnH8Jb2d+Ks9gsZBieqU7XwPQRRuTCMRkRERERERKashNGAvZPFm+TfzVMBWfVvFwCAdBaY2z2Klqd+CxGZgXbK26AdfWJlBmczqonUqjBap+K33In52gomGQXWoX2qKYxmFgwMNGsA5H/D6Vh5xkP2YiWMNleek6hRmd38lHr7vH28ggMhIiJ61WTUfHmh0DUR7VVMGG14unzjqBafvkXgV5sOPGkbdwIXXWPgic/zjLxERERERERERERUu1JGUno5J4ZTKZhNJg6lR7HG1w8AiOeiiORmpddTxdXsyKv70OrswGx2Km9ZKD2KAZywDKOiaqGelK8O7hHVog5XN5yaE1mRf9DqeHrUVmE0VXyn0WFyNupXaZqGBkcT5nNzecuiuRo7G3kZpY0Udia2YygxiKH4IHYlX0RWlP7gfQ06VnrWot8/gHW+Aazzr0eDhQAeVc6b28/DpsgjGEu/krdsOjuBeyZvwoXdV0hvKwsU7qNpiz9mpMsdhA4HDBQ+2C3oYRhtKZyaC2e2n4eTW87EfVO/wcOzd0vfRxbKiDTunboFj8/+Aed2XoLXt5wFxxL+3kRUXQyRQzgzJl0WZBiNiGE0IiIiIiIiMpezGFyaTzKMtlhWJtKH/vE9aJ7+CwBAXPt14DM/hPbOD5d5ZPajDKMpTn7T1Si/fKLGfqPNWZxgXithtAbP3v/FJCfNYhitPqQthNEi8mNlycaiSYEnXlYv//OO2opaEhFRdRidMX//mYoJAIpSMxHtV8yeXKHXXa0TQuC2v+Y/B5t2Ac8NC7xmJbc5REREREREREREVJsSRlx6OcNoVAptzk64NQ/SIv+gs1B6ZH8YbTw9oryPagqjAXvHKwujjSuiV0T7hNLySflmgUGiWuTQHOhy9WBPejhvWcjk/WI5RLMR6eVWg1mNjmZpGC2Wk98vAUkjgZcS2zAUH8SO+CBeSe5ADhYOcC6SDgdWe9dhnX89+n0DONx3NHyOhpI/DpWOQ3Pi0uDH8N3d/wohOWLmwZk7cVLzaVjpPSxvmSHUE7gcUEyasTimTldAGd5ZqMfNMFop+B2NuLD7CpzW+jbcOfkLPD3/WMHbzOfmcFPoGjw8czcu6HofNjScCE3jcUJEtW46M6mMqfIzGBHDaERERERERFSAYXEualQSKCJrrITRwgkX+hf8t/jR/wec/XfQvP6yjcuOVOujrviuv0vxW+4z+b9PVzWrAcNk6X9rLZu0yevC5QA6GuRhNIYp6oOVMNpcovzjoNJ6ZVodwASAzaPAoy8KnHbE8r/G//sRA1c/IhCOAGcPaLjqbzU0+5Z/XEREVHrzBWKrtRZdJioXs/28Qw3PlG8c1SCTA0KKY8uvfkTgmsu430lERERERERERES1KWXID/bw6vV1jByVh67pCLhXYDi1M2/ZwhiaKozm1X1ocbaXbXzlEHCvwPb4c3mX2y3mQ/ZiCANhRRit28VJ+VR/Au4VijCavSKTqoBZo6PZ0u0bFNeL5nhgzD7xXBQ7EluxI74VQ4lBDCdfggGLB/EXwak5sdrbj37fBvT7B7DWdyRDwVXoMN9ReEPr2Xhs9r68ZQYM/Cp0NT6z6t+ha46DluWEehLFodctVtDTZy2M5mEYrZQ63QF8oPefcWbiHbht4jrsSGwteJvx9AiuHv0GjvAfgwu7rsAq7+EVGCkRLZdQRr1f2c0wGhHDaERERERERGTOsPhbTaHJ4qRmJYwWcgYOviARA7Y8AZx4ZnkGZVNW18d9uho1QHKWHQB4KSxweHdtTCa2GkZLyU8gYUtmrwu3A2hvAHZP5y+bipZvTGQfKQthtAjfl6rO7vwT1OZ5038ayFyjw6EqYlbA/z5u4GO/PPDecv1GgZcmBB797NIOOCAiInsqFGSd4P4nkSVFdHAyMRcAACAASURBVNHw0kTZhlEVzCJyL4wX80wSERERERERERERVZekIozmYQiCSkQdRjswCXk8JY+GBdx90LTqOt4woJhAbbeYD9nLTHYSGZGWLlOtU0S1LODuk15up22pEEIZMFMFzw7V6JCfjTyqCK7Vg2g2gh2JrRhKbMFQfBCjqV0QRR39YI1Lc2Ot70j0+wbQ7x/AGu8RcOuekj8OVd75ne/F8/NPYi6Xf4bAXckhPDp7H97Udu5BlwuT2J4OfUnjsfI+7tSc6HQFl/Q4JLfGdwQ+tfIbeC76JH47cYOlSN2L8c3491f+Ga9tPh3ndV6GdldXBUZKRJUWUnwP0ersYByVCAyjERERERERUQGGxd9uogzQLFrWQtRq2Cn5UXXrpvoLoynWR13xG0+X/DdaAMBX7xK44YPVdaCSitXXabJGwmguB9DZKF/GMEV9SGULr/Rz8mNlycaGZ6xtzP64DTh7oMyDMfE/j+eP8/EdwNYxgfW9tfG+QkREB6QLhKwneGJcIkvMYl+HmowC4YhAd3N97luZfcZ/Ybxy4yAiIiIiIiIiIiKqtJQijMZJoFQqQWXcZmTB/5eHbqoxCKX690Zys4jnovA7FAfhUV0ziz1V4+uAaKmCJpFJQxjQtaWFikohJZLIQX7mv0aLYbQGRRgtpgiu1aK57Ax2xAcxlBjEUHwQe9K7y/I4Hs2Lw3xHod8/gH7fBqzyroNLd5XlsWh5+RwNuCjwYfxs7DvS5XdO/gLHNZ6MVlfH/styQn2wmq4t7QTOVt7HA+4+OJb4OKSmaRqOazoZxzSeiMdn/4B7pm6yFKDcFHkEf53/M85sOw9nt18In6OhAqMlokoJpeWhxIC7t8IjIbInhtGIiIiIiIjIlGEh2gUA86nyjqOWmQWg9tntWpl/obv+zgSkmhzsUMyVXtMhvxwA7tkskM0JOFU3riLWw2ilP0tVuRQKo3U1aYDkrFtTDKMtSs4QuPWvAj/fKNDi0/C+UzWctd6+r42UhchfLIWaeY3Xi+H8E6JJPbFT4OyB5fu7bsw/cTAA4EcPC/zoUq5vRES1ptB+x2y8evaxiZZTMWE0ABgcA7qtHZ9dc8w+40/yMy8RERERERERERHVsKQyjOat8EioVqliEBPpceREFg7NifEFkbSFVGEcOzOLX4TSY1jrO6KCo6FqoQqjNTva4HP4KzwaouWn2pamRQqz2Sm0u7oqPKJ80aw6qqMKnh1KFVCzEuypVjOZyVcjaFswFB9EOCOPkiyVV/djnW89+v0DWOcbwCrvYXBozDvUi+MbT8GGhhOxJfZ03rKkkcDN4Z/iIys+t/8yA+oJXDqWFmIMKKK5C/W4JfOWqOQcmhOnt52D1zafjt9P34aHZu5CRqRNb5MVGfxh+lb8ee5+nNNxMd7Yeja3JUQ1QvU9hJXtNlE94LsdERERERERmbIaXJpPCgDFx0BiKYFQBFjbuffsF/UmZwhLk4NHXPlfZonZqUU849VNtT7qit94elo1NHuBSDJ/2Uwc2D4ObKi+45XyWA0YJi3EpOyiUBitQ3Gyyol5hikW41v3Cnzpjn3PncCvnhK4/v0aLjt5+c9kJ5OSn9guz3wSaOMJkarGK5PWrre1PMeeLFlojtsfIqJalC4Qso7I5+cQ0SGK3VN6MSRwxlH19q3HXmbfxWUtfv4nIiIiIiIiIiIiqkaqMJpH91V4JFSrVJOKc8hiMhNCu7Mbk5mQ9DrBKoxEtDo74NG8SIn8AyhD6RGG0UgqnJYfnBVw91Z4JET2YBaZHE+P2COMZhIva1xiGC1WI2E0IQSmMmEMJfZG0IYSg5hSvOcvVYPehHX+9VjnG0C/fwB9njXQNUdZHovsT9M0XBz4CF58eTPSIpW3/NnoE3g+ugnHNr4WAGAI9cFqS12PrLyXBxnhqSifowHnd70Xp7W+FXdO/hKbIg8XvE00F8HN4Z/i4Zl7cH7X5XhN4+vqci4eUS0JK+LUZvuhRPWEYTQiIiIiIiIylbM44TKa/x19gfsV+OdbBH78kEDWAFZ3AL/5qI4TVtfXF7Jm8aeFhiVhNMxOlHYwVSCnmB2sm6w2T39BxxFfkK/Ie+ZqI4yWszjDvJrCaGmT8JXLAXQpw2jlGU8tG50R+NrdB69EQgDfuU/g714nbPlDmdUw2lyCYbRqMjhmbWO2xeL1ykGY1EytrpdERFRdzPZLAXmEmYjyWYnCL1TPr61inysiIiIiIiIiIiKiWpATOWREWrrMyzAalUi3uwcaNAjJKV1C6VHkRA4C8mMNq3FCsqZp6Hb3Yji1M29ZSDHxmki1blTja4CoFHyOBrQ42jCXm8lbFkqPYn3D8cswqoOp4mU6dPh0awfRNijCaNFcdR6YLYRAODOGofggdiQGMRQfxEzW4tl7i9TkaNkfQev3D6DHvQq6Zs8TU9Py6HB14+2dl+C2ieuky28K/TeO8B8Dr+6DAfUEI8cS16tGRzMaHc2mMcUez6olPQYtTrurC1f0fBJntr0Dt01chxfjmwveJpwZw0/G/h2H+47Gu7rejzWMHhNVpUQuLt3PBPgZjGgfhtGIiIiIiIjIlKJDlWe+yAmrP3hQ4PsPHLjzV6aAs/7LwOh3dPjc9ovwlIvVMFrIEci/cCZc2sFUAdX66DD5jWddt4b2BmA6lr8sPC8AVP/6ZlgMGCarKNpj9tpwO4EuxQnMJqLlGU8t++ljQvp8bxkDZuJAuw3DYlYDVBNRYE1necdCpZEzBLaNW7vuzom9B60sR7Qva7JtYhiNiKg2Fdq+13O8iagYxba+iv2eqZZY/S6OiIiIiIiIiIiIqJakjIRyGcNoVCpu3YN2VzemMqG8ZeOpEWSF/MdBHQ50u3vKPbyyCLr7pGG0cYbRSGE8PSK9nJPyqZ4FPH2Yi8vDaHagipc1OpotH2fZ4JAfmB3NRZbteM1iCCGwJz2MHfFBDL0aQosoIiNL1eJsR79vAP3+Dej3DSDgXmH754eW3xlt78BTkUel+2Wz2SncPXkj3t39QRhCPTFEw9KDewH3CkQTJmE098olPwYt3irv4finvv+HLbG/4PaJ65T7ZQu9lNiG7+z+LE5seiPO67wMnW7J3DMisi2z/Ul+BiPai2E0IiIiIiIiMmUIa7Mxo6ni7vdXm/LvdzYO/GEr8M7jiruvamYWWFkoIvuxsR7DaIrfefQCvyUGmhVhNPVvOlXF6qTphPykqrZkFkZzOYDORg2yqfUT1XlismV17xb1CjQxX91htOFp4KQ1ZR0KlcjOCSCZsXbdVHbvutktP0FhWaUZRiMiqjvpQmE09RwdIlrA4tdL+xX7PVMtYRiNiIiIiIiIiIiI6lHSJIzmYRiNSijoXiENo4XSo8hB/uNglzsIh1ad0zBVE6lDFiILVH9SRhKz2Snpsm5Oyqc6FnCtwIvYnHe5XbalsZz8gHhV7Eym0SE/INNADkkjAZ/Dv6ixlYshDIylXnk1grYFOxJbEVU8D0vV7uzaG0HzD6DfN4BOV5AhNCqaQ3Pg0uDH8Z1XPguB/EkxD83cg9c2n2762cehOZY8jqC7Dy8ltsnvH050uYNLfgxaGk3TcEzjiVjfcDz+PPdH3D15I+ZzcwVv9/T8Y3g2uhGnt56Lt3VcBL+jsQKjJaKlUoXRXJobbc7OCo+GyJ6q8xs5IiIiIiIiqpic+oQjB5lPFne/T+2SX/6TRw2887ilf2FfLcziTwtF9GYIAAf9hBa2x1mmKimnmBxcMIzWBGzbk3/5lrGlj8kOrL5O4zUURgsogkjRFBBJCDT7+INzKUzMA0fa8PfNQoGSfYZn8racZFODRW6Ph2eWKYxmsu6lLIbdiIiouhQKX0aK/CxMVK9UYbRmr/x1VOz3TLVEFYXfJ2cIOAp9EUJERERERERERERUZVKG+othL8NoVEJBdx8GY3/Nu3xL7Gm4E17pbVRxsWqgGns4vQc/Hf32ou/XoTmx2rsOp7a8BT6HDc+8SfvNZaexce4BjKR2QQjzH6LMtsXV/DogWqqAR77+70oMLWlbWqxWVweObzwF6/wDB10ezcnPKt2giJ3JNJpE1GK5yEFhNEMYeHr+MbwQfx7JXNzyY5RKSqTwcuIFJAzJWdNLoMvVsz+Cts4/gA5Xd1keh+rPau86nN56Dh6evTtvmYCBn459B12uHuXtdehLHoNZ6DTg7q3aGHAtcmgOvLH1bJzUfBrun74df5z+LTLCfEJQVmTxwMwd2Dj3AM7peA9Oa3sbnJqrQiOuLoYw8FTkUbyY2Lws72Wl5NTcWOPrx+tbzoJb9yz3cKhIqjBawN0LXVv6dp+oFnDvhIiIiIiIiEwZiomrh5pTn7AxTyKtvtPp8vw+ZVtWw2g5zYmY1oBGseAJmh6HyKShudzlGZwNqSYHF5oP3N2sAchf7679k8BP3yugV/mEYquv01gNhdH62tTLR2eBZh4PWRJh+bESy65QoGSf3dPlHQeVzpYxixuyVw1PAyesLtNgTJite1bXSyIiqi7pAp/Z5pOAYVT/ZwqiclPt7TUpwmixVFmHY2uF9ozj6b3PGxEREREREREREVEtSRrqAxA9DKNRCQXcfdLL53NzQG5OuizoXlnOIZWV6t9rIIdnohuXdN9Pzz+GP8/9EZ9e9U00mAR1aPlMpkO4cvjzmM1OLel+HHAyDER1LajYlqZEcsnb0mI9PPM7XBb8e5zS8ub9l8UUYTSz2Fn+ddURtWgugk4cOMvyz8d/gCcjD1m+b7sLuvvQ79uAdf716PcNoNXVsdxDohp2Xtff4dnoRul781QmjKlMWHlbXXMs+fGDJmG0oKd693lrmVf34R2dl+KNLWfjrqkb8cTcgxAFji6KG1H8ZuJ/8fDsPTi/63Ic33gqNI3HNy50w/hV2BR5ZLmHUTJPzT+CpyKP4pMrv8Y4WpVRhdHMQpZE9YaJQCIiIiIiIjJlNbg0EbEeNNkjP3YEAOCos0+qVsNoABA59AdHIYAJ+RdgtUq1PhZab7pMftd9YPvix2MXlsNoVTSxPK0IDDl0QNM09LaobzsyU54x1aqESTAvPF9crKpSrAaoRhhGqxrb9hR3/eGZ5Vk3VdsmgGE0IqJaJIQw3fbvE62i/Wwiu1EFvuaT9vwsUgmFPuNHJSE5IiIiIiIiIiIiomqXUoTRNGjwaDxbBJWOWQyilLexi253DzSUL4KwJz2MP889ULb7p6V5YOaOJUfRAKDLHYSjBDEWomoVcPcu9xD2EzBwx8QvkBWZ/ZdFcxHpdYuJVnp1P3TIX+cL7384ubPqo2i97tU4vfUcfKj3s/j24dfhS2t/iEuCH8VJzacxikZl59V9eE/3hxd1W9VrtBgBk/3aniqOAdeDVlcH3hv8BP519ZU42n+cpdtMZkL42dh/4D93fw4vJWpg4lSJDCd31lQUbZ9dyRfx1/k/LfcwqEiqMJrZ9pqo3jiXewBERERERERkbznD2vXC8hMNSTGMdkAxYbQ5vRm9OKQcEx4BeteWdlA2ppocrBc4bufwLvWys79nYOZ7Olr81XsGlFoMo6leG+5Xf8/zuDR0N8m3PSMzAijjwVy1JpFRL5soYtteSSmTMS8UKiLaSctrKlrc32oqWqaBFJA2ed9mGI2IqPZY/bwWSQLNvvKOhajaCcXuXrNiLls9BweNAt/F1fNzQ0RERERERERERLUrYcSll3t0HzSNxwFR6QTcfRW5jV24dQ/aXV2YyoTL9hjbYs/grPbzy3b/tHjbYs+W5H44KZ/qXZuzCy7NjYwwORNxBUVyMxhLvYJV3nUA1GG0xkNPym5C0zQ0OpoQyc3mLYvlDhxMXKrtSqVo0NHnWYN+/wb0+wawzr++qGAcUTkc13QyXtP4OjwXfdLybXTocGquJT92hysAp+ZEVuQf9NzjYRitGvR51+ITK7+CrbFncFv4OoylXyl4m5eTL+C7uz+H4xtPwTu7Lke3u6cCI7WvrbFnlnsIZbM19gxObjlzuYdBRZjOyj+r8zMY0QF1Nt2ciIiIiIiIimU1uFSqMFrCHr8XVkzWYngO2BtGy7NnV6mGUhVUob5CYbQLjze/wluvMpCzurLbkNWAYdYA0tnq+HeqIhSuBSc66muTX2c0/zd5MmEWRitm215JVgNUE8sUz6LiJS3G7vaZk58ouuzSJuseAxVERLXHbLu/UGSZ3peIqonqk2iTIow2nyzbUGyv0NcT3O8kIiIiIiIiIiKiWpQy5D+4eHWenYZKq8nZgjXeIyxfv8XZjlXew8o4ovI7puGkst5/KD1a1vunxcmKDCYz4yW5r2May7sOEdmdrunY0HDicg/jIHtSw/v/f6wEYTQAaFBcP7ogjGb3bb4OHWu8R+Cs9gvw8RVfwH+u+zn+dc2VeHf3B/Captcxika28Z7uD8OjKQ6akVjrOxIufelhNIfmwPqG/5N3uUtz40j/sUu+f6qc9Q3H4/NrrsRlwX9Ai0MxseYQz0Q34msvfwK3hH+mjGrWA7u/ly1FLf/balFWZJBUfB/W6myv8GiI7IthNCIiIiIiIjJlWAwuhYr4TnTPnHqG59gcIER1hJtKQRV/kplztORdJl7ZXsLR2J9qcrBe4BuOVR0a3neKOo725MvATU9V73pXTNMtViUTqFX/JseCv3VQ8Xu9XWNedhU3CVJO2vS5tBpGm2QYrWoUG0aLLFMow2zdm5gH7ny2et9LiIgoX9ri57VYnQW+iRZD9VVPs2I+Wz3HvxhGIyIiIiIiIiIionqkmgjqYRiNyuDCrvfBq/sLXs8BJ97d9QE4NGcFRlU+b2k/H12unrLd/0x2Eimjjs96Y1MT6XEYKOLszQpH+I/BiU1vLMGIiKrbuZ1/azk8Uwl70gvDaPKDfVWhM5VGRTRsYTxnPD1S1H2Wm1Nz4nDf0Xhr+0X4h74v4z/7f4nPrv4OLuh6HzY0ngifo2G5h0gk1ebqxAd6PwOnVjh25tP9eFfX+0v22O/ovBTNjtb9/61Bw/ldlzMcWIV0zYFTW96Crxx2Nd7ecYml2F4OWTw0cze+vPOjuH/6dmSM+jv4sZbjYeH0WF3Nyax2qn04oPjALVEtq+5v5YiIiIiIiKjscha/D4umgHhKwO9Rx6f2GZ9TLxubBTaPAsf2WRygTaUyAv/zJ4GndwGtfuDC4zW8oT//uSkmjDavS35o2LVt8YOsQspYVuHVDv92robrN6pX6F8/JfB3r1vkwJZZUWG0NNBWBb/xKiN4C/7W3c0agPwr2jXmZVcJk9+ywvP2+1HEMITlbedUdO/1dd3CRoKWVdJi7G6fSGJ51s10gXFe/r8GNn9Fx8p2rnNERLUgZTHcGWekiKgg1fFWTV7557r5Op47U+jYtGgdPzdERERERERERERUu1RhNC/DaFQG6/wD+PzqK/FcdBMmM+PS67Q423FM44lY4VlT2cGVQburC59d/R08O/8ERlO7ICS/zViRNlLYGHlAuiycHsNK72FLGSaVmCr4oEHHaa1vLXh7p+bEam8/jms62VK0hajW9XpW4XNrvovn5p88KEpWbi/Gt2BPenfe5XtSe8cghEBUGUYrLnKkun7s1TCaEEK5bTnK/xoE3CuKerylaHa24TDfUVjrPQJu3VOxxyUqpWMaT8TnV/8XNseewnRmQnqdgHsFjmk8ER2uQMked4VnDT635ko8N/8EYrl5HN1wHNb6jizZ/VPleXQvzum8GK9v/RvcM/kr/GnujxAFArkJI47bJ67HIzO/wzu73osTmt4AXdMrNOLlFU6PSS+v9HvZUsRy83h6/rG8y1MiibncDFqd7cswKirWwvjsoRirJDqAYTQiIiIiIiIyZRRxsrDwPLDGwu9Ke0zCaABw4yaBY/uqNyiSzgqc9A0DWxZ8V3rVAwJX/52Gj5x28BfFxYTRZheclWW/V7YvcpTVSRnLsvD9+2GdgM8FJBRxg7ufr96AUq6I12msSqINhmIm+MK/dZfie147xrzsyjAEUiahp7ANI3PpIrabhgCmY0AnfxOwvaRi29ziA+Ykxz5H5MdDl12h9S+SBH78sMC3Lqy+9xIiIspndb8jVn8nTSQqmupTWpPiRKWROo5/FYqfx7nNISIiIiIiIiIiohqUUobRFF8kEy1RpzuIN7eft9zDqJgGRxNe33rWku7DEDk8Nf8osiL/QJ/x9AjDaDajihd1ugK4OPCRCo+GqDa0ONtxWtvbKvqY903dgjsnf5l3+b5YWtJIIAf5gcCNjuaiHkt1/dir4bVoLoK4EZVe520d70G/f6CoxyMiIOjpQ9DTV/HHbXW24/S2cyr+uFReLc42XBr8ON7U9nbcPnE9BmN/KXib6ewErt1zJR6YuRMXdl2BI/wbKjDS5RPNRhAz5JNk3tpxUdX8+1VhNGDv5wCG0apDTBG3BRhGI1qoPrKdREREREREtGiFJmMuNG9x0uqD283v9Dv3CVz2MwPTseqLG92w0YD34wdH0QBACOBffiMwFz/435QtIvAz5uzJvzA8CqEISNUiVQDMSstM1zW8dq35dXZOFj8mOyjmdVotYTQrf+tuxfe8EzaMedmVKka1jx2fy1SBMR9qQn4MBtmMal1Uvc6XK5SRNgkJ7vPt++rnfZmIqNZZ2e4DjBQRWaH66qKjQX55LAXMJ+tzv6rQZ/xYuj6fFyIiIiIiIiIiIqptSUUYzaP7KjwSIlLRNQe6XZLjWKGOcNHyCaVHpJcH3CsqPBIiWooe9yrp5VOZMNJGyjSo0VhkUKNBEUaL5iIA1NsVAAhy20JEZBu9nlX4+74v4h/7voo+T4FJVK/andyB7w1/AdeMfrOm9+3N/m3VtJ/c4GhSBk1r+e9Xa6KK/Tiv7odTc1V4NET2xTAaERERERERmVLFiWSiBYJLQgjc87zA7unC93XjJoHOTxkYClXPZM+7nhO44lr1eOeTwG+fPXh5pogw2ohLciaYdBKIWHhCa4RqcrCVMBoA/MMZ5l+FvPuaIlZ4GzFK+Dq1Cyt/6y7F7/VhG8a87CpRIDI2GQWMYsp7FZCyGCjZ5/Ed9ho/HWzbHoGfbzSU+waqMNqc/HjosrMayKnXiAcRUa2xut8RZ6SIqCDVq2SVyckph+vn646DFAyjVcnneiIiIiIiIiIiIqJipBRhNC/DaES2EnBLjmMFJ9/b0bjib1JNwQciAno88jCagMB4emR/tEymocgwmiqwsi/aEUqPSZf79AY0OlqKeiwiIiq/oxpeg8+t/i4uD/4TWp0dlm7zfHQTvvbyJ3BT6L8xn50t8wgrL5SR7yN7dT+aHa0VHs3SdLt6pZeHFe/XZD+q/bhi9+GIah3DaERERERERGSqmB6OWXApmRG45KcC7/hhceGpI79o4CePVkes6uqHC4/z7ucXH0YbdioORpionwNKVAEwh8VvON51gobr3q+uqD0/AmRz1Rc1KOZ1Wi0TqFV/64VhtO4m+d9yYh7I2SzmZVfxtPlyQwDTscqMxap0EdtNALh/kOuCXX3zdwYGvmzgfSZR0W75cTaIJMs0qAKsBnLqNeJBRFRrrAYxq2Ufm2g5CcUu34o2DZriY7qVsH4tUj1X+8QKfI4jIiIiIiIiIiIiqkZJRRjNwzAaka0EPfLjWEPpkQqPhMwIIZSxuqAibkdE9tTp6oZLc0uX7UntRkwR1NChw6c3FPVYqgjHvscYV2zrg+4+aKof/omIaFnpmo6TW87AV9b+GOd1XmYpPm7AwKOz9+LLL38M9039Bmmjdg6QVO0jB9wrqu69TBU8ZrS6eqj241SxWqJ6xTAaERERERERmSqmLXT29wz89DEDQjKD8+anBW5+enFxmo/+QuDaP9k7jiaEwKZdha/3/CG/BxYTRhtxKQ5GCNfPASWq9VEv4vvny0/R8eaj1Mt3hIsbU7mkMgJfusPAKd/K4fwf5XD/VvXrJ1fEy6NaJlBb+Vv3KE4uZgjgpYnSj6kWJTKFrxOeL/84ipGyMOaFRmrvREU14ZndAl+6o/B+QXezfAM/Jz8euuzSFuOZwzNlHggREVWE1SBmodgsEam5HUBQcRzP8Ex9Ro4LfRfHbQ4RERERERERERHVIlUYzcqkbSKqnG6XavL9GAxh7+N868l8bg4JQ35GVFVAgYjsSdccytftnvQIoiZBjWIDL42KMFo0N28aXAy4e4t6HCIiqjy37sFbO96Nr669Gqe3ngPdQmYmaSRw5+Qv8JWXP44n5h6qif39WnovU+0fhBlGqxqxnHyylmqfjKheMYxGREREREREpooJLgHA//25wDd+lz+D85ZFRtH2+eD1Ar/bXPkJsUIIbBkV2DMrpMG3fcbngGn5MQQH2TEBJNIH7qeYMNqwsw/SEUzUz5eWqvWxmDAaAHzgDeobbLbJ0/me/zbw9XsEnnwZuPO5veHBu5+Xr4PFBAyjqeqYWK76NzkWfJt1RED9tx8cK/2YalHCwoR624XRLAZK9oksU0CLzP3kMWFp29Wt+E0nlgLm4pXfnqUtrn/D09WxrSUiInNWt/vVEh8mWi5m36doGrCyTb5stE5js4X2k2O1cxJWIiIiIiIiIiIiov1SRlJ6OcNoRPYS9MhP8JsRacxkJys8GlIZT6tPuMwwGlH16XGvlF6+J7VbGdRocCjOUGaiUXEbAzkkjbhJTEZx8nciIrKdJmcrLg58BF9c+wMc2/haS7eZzU7hhvGr8O1XPoPtsefKPMLyCqXlE42qcR+5WxFzm8yEkRWZCo+GFkMVuG1gGI3oIAyjERERERERkaligkv7XHm/OCj+BQD3bF76WD59s2E6mbbUNo8IHPf/DBz7VQMrPmvgwh8bygiL1QiTEMC2PQf+O1tEeC7qaMKc3pJ/n3UURlOtj8WG0f72JPUNLv7J8p/FZNsegbuez7/8vB8amJWsg8W8TqslEmXlb+1zazi8S369zaOMElmRsPB7x0SVh9HmqmSdrydCCFz/Z2uvIQYzYAAAIABJREFU0aOD6mVP7SrNeIphOYxWpxEPIqJaY3U/O84wGpEps69yNAABxfHY0/GyDMf2GEYjIiIiIiIiIiKiepQ05Ad4eBhGI7IVs2CAKphDlaf6WzToTcrwERHZV49HHkYbTw8jqgyjFR/UMLvNbHYak5mQdFk1xmSIiOpdwL0CH13xeXxq5TewyrvO0m2GUzvx/ZEv40cjX8NYaneZR1h6OZHDZHpcuqzbJY+M2Znq/VfAwITi30n2otqP42c2ooMxjEZERERERESmFhNGm40Dmxf8pm4lZnbL/y38EfXFEHDVA5WJHaWzApf9j3HQv+OO54DP/1b++DsnrY9rZEEsJZMr7t8z4pJ8cRmun4NJVOujo8hvODRNw0UnqONoP354eeNovx9Urxf/dFP+slwRw43IT65qO8ow2iF/6wHF7w8vT5R2PLUqZSGMFp63V2Su2DBatazz9WQuASQtnoToyKCGzkb5sk27Kr9uWl3/huTH/xARUZWx+nmYkSIic2YvJU0D2hrkn89nYuUZj90V+hqNMUYiIiIiIiIiIiKqRSlFGM3LMBqRrXh1H1qc7dJlDKPZh+pvEXCvgKYVeSZiIlp2Qbc8jDaZCWEmOyld1riIMJpZhGNX8kUIyA9YZxiNiKh69fsH8NlV38H7ez6NdmeXpdsMxv6Cb+z6JG4c/zHmstVzNvGpTBg5yCcDVON7WacrCE2RC+Jns+oQUwZuGUYjWohhNCIiIiIiIjJVTHBpoc2jB2ZxPjtsft113cAFxwMXn1j4x/ZP3yxw21/LH0K5b8vBcbd9btokpKG33dPW73smfuD2mVxx4xp29uVfGC7wBNcQ1fqoL+I4jQ0m31v/w40COyeWLwb15E71sp8/IZA9JKhXTMBwTn4Moe0YFv/Wazrlf/zhGXvFvOzKyrozIf+ufdlYibktNJ8EcoupfFLZDBfxnulzAa9bK1+26eXK/13TFt+3t4xynSOiyslk5Z9RaOmsPq2MFBGZM3staRrQ5pcvm4nV57at0McXbnOIiIiIiIiIiIioFiWMuPRyr674EpmIlk1QEQ0YT49UeCSkElL8LQKe6gs+EBHQ61klvVxA4KXEVukys8iZilf3Q4dDuuylxDbp5Tp0dLmDRT8WERHZh67pOKn5NHx57Y9wQdcV8Fn4HC5g4PG5P+ArOz+G303+GinD/mezN4uFdbt7KziS0nDpLnS6uqXLwumxCo+GFiOai0gvX8x+HFEtYxiNiIiIiIiITC22JbMwKva5W83ratdeoUPXNfzXxRpeI+l+Herd1xi4YaOBezcLrP9SDu6P5rDhyzn8YbB0E2a/do98zDNxeVhqpIiTXMwuuH2xYbQRl+QJCtVPGE21PuqL+IbjmBXmNbVv37d8E7B9bvPlMwuOAyw2glE1YTTV3/qQP9vKNvn1igkv1TMr2/iw3cJo8pP0mIra/3e2ujJcxHum1wW8dq18e/3ky8VvA5cqbXH9eyG0N1RERFRO8ZTA+6810PZJA+2fNPDxXxpIZrjtKSWrn4fjqfKOg6jamYbRALQ1yJfNyOfA1bxC255Yitt6IiIiIiIiIiIiqi1CCKQM+UFNXt1X4dEQUSHdijBa2CQ0QJU1rvhbBFwMoxFVo05XAE7NJV02mQlJL29wNBX9OJqmKUMcqjBapyuoHBsREVUXl+7GWe3n46uHXYMz2t6ujGUulBJJ3D31K3xl58fw57k/whBFTpKrINXnlXZnF9y6p8KjKQ1V0C2U4WezahBThNEWsx9HVMsYRiMiIiIiIiJTiw2jDYUO3DBkEtWZuFLH69ftDZ4EWzQ8/QUd/3K2ebAKAK64VuDcHxjYPg5kDWDrHuCtVxn45K8NXPWAgWd2L22S6M4J9TJZJGh42vrjzcQO/P9skd/5DsvCaCM7IEK7i7ujJRJjOyHu/BnEY3dCZBdRKVok1froKLzK5Dm2QITvjmeXb6JxOGL+2FPRA/+/2NdopMbCaKva5X/84ZnKB5OqkZX1Z+H6ZgeLCaNVSxCwXhTznul1Aa9ThNFCEWC2wrEMq2G0TA4YCpd3LEREH7xe4PqNAvH03ve6ax4R+OSvuf9TSlb3taOMFBEtmqYBbYqTjE7H5JfXOsP8/AKIMcZIRERERERERERENSYj0jAg/3LUwzAake0E3fKDL1UxLqqsjJHGdEZ+4FLQY+Hs1URkO7rmQFARpVRRBc4KUYU4QqrgYpHjIiIi+2t0NOOi7g/hS2t/iOMbT7V0m7ncDH4x/kN8c9ensTX2TJlHuDiq9zJVXKwaqN6Hw+mxCo+EipUVGSQVJwloZBiN6CAMoxEREREREZGpXIHJmCrD0wf+v9lE1o7Gg2MnDl3Dt9+l46aPLKJ0BeD7Dwh86tcCJ3zdwNfvWeTgAZhNaw9Lgvy7p/MvU5ld8L1Vpsgw2ohT8ePhQ7cVd0dLIH7zQ4hLN0D8x99DfP4iiI+/CWLGpCRXQspY1iK+4VjbCRy3Ur08PA9s37M8gYNC69PUgtdUsa/RuUR1RBushtFWtsuvl8zYL+hlR1ZiH3ZbZxYTRoskSz8OWrzhGevX9bqAo3vUy0eKuK9SKCZGuWXMXq8dIqotsZTAbc/kb2du2Cgwn+T2p1SsdnZnKhzqJKo2Zi8lTQPaG+TL6vW1VWjTE0tXZBhEREREREREREREFZNSTAQFAK/ureBIiMgK1eT7uew0Erk6/YHHRsKZMQjFL04MGBFVrx73qqKu37DIMFqxIQ5uV4iIale3uwcfXvFZ/POqf8da75GWbjOWfgU/HPkqfjD8FYwkd5V3gEWqxchnt2Lsqn8r2UcsN69cttjALVGtYhiNiIiIiIiITKkCIBt6905eVVkYdlJNZP3i29V38J4TdUz919I+tn7pDgH9Izmc+PUcvnGPgWzO2qx2IQSiJhGd8CHfPSXSAi9PWh/X7ILno9gw2p9azpBeLh66tbg7WiTx7GMQV/0zkFsw8G1PQdzyg4o8vioCdmgsywpN0/Af7zZfx9Z/2cBPHjUgrBYRSiCbE3hRfrK+/RYGv4qJ9ADAnPo4QluxGsFb2aa+j2LiS/XKsBDWm7XZsWqqbXmLyQmCq2W9rxfFxMw8TiDYrN7O2zqMxt8TiaiMXgzJP0skM8BD2ys/nlpldbtvFgMnIvPIoAagzS/f2ZuOoaKfx+2i0LYnzjAaERERERERERER1ZikaRjN5IAQIloWZuGA8P/P3n2Hx1EcbAB/Z+9O3VaxrWbZBtPcgNCrqYbQQseU0D8CoQQcSIAAARNqaAFCDxCSEAjNGNMCxpQYDBhjDO69SJYlWb2f7m7n++Ms6yTN7O1e00l6f8/jx7rd2d2529253b2dd33lCawJqehCEAy4MNxTkODaEFGsFKZaPA1cwWnAWdd0zoI4ClNLIloOERH1Hzulj8PvRt+Py4pvtH08ubx1Ee7b+Fv8a8tfUe+riXMN7ansUJ+r9OdgNF3dmwONlsFb1PeaA43acZkRHscRDVQMRiMiIiIiIiJLutCc66YIzLvJwNHj1OMb24GGVgmfX6LFqy5z1G7WaVa5mQKf/y76U9eFm4A/viORc52J/8w38eb3Ep8sk6huUvc0rW8F/BZhQVU9pltR4Swopa6lq7DTYLS1ogR1Rk7vEcvmQ1ZsdDYzG6RpQq5fDjnvA8jP3oL8zRR1wU/+E/Nlq2jDsiIIRgOAo8cLrL3Xehv79csS932YuI7Ya6qADr91mZqQbchOsFWo/hIQpXtfPdd1wVDA41KXDQ1oJDU7bVd9km0zujpnpgIpbvW4HzYNvjCFZFZaa399pLoBj1ugMFs9vqw+sevWyff92q3xqwcRke74BwCWbuH3XqzY/SR1YeBEFGS1LwkB5GWqx/lNoDHJzkcSIdx5vu46GxEREREREREREVF/ZRWMlspgNKKkk+seDo9IUY6r8JYluDbUky4YbURKEVxCc4MdESW9ohRnwWiZDgPOIp2uwNN/w2SIiMg+IQT2HnIw/rjDEzhzxKXIMLLCTiMh8XXjHNyx/kq8W/2K5bl/vLUFWtEYUD+RvV8Ho3mKteOqNEFwlByaLYLrGIxG1B2D0YiIiIiIiMiSVRDVAWMFXrhIf2q5qdY6UCcnI/zyD9tV4O8XR5h61UNrB3De8xJTnzVx7KMmin5v4sGPevc2DRemVNkjlH+hw8Cd0E7zToPRAOCxvGvUI758z/nMLMi6Kshrj4G88GeQN50Geft5+sJbNkK2xv9pErrOwa4ornDsOFxoA/463TZTYlFpYgImlti49lzT0vV3wGG1+kunct376hmMZhgCIxVZgYCz8KXByk7IU7KF6QUsQvPGFarHzVzEbSGZlKp/U+wl3RPcxwFgVK5mXgkOQHQSjFbfyu2OiOLHqj1aznsZYsZuCHFtCyAl230iHavdQwAotLivuqw+5tVJeuGOOVs6ElMPIiIiIiIiIiIiokTxWnSOTmMwGlHSMYSBghR1B3xdKBclToVXvQ4K+3HgAxEBRanOgtGyIgzUcBrEUZDKtoWIaDDxGB4clXcy/jT2GRydewrcNoJ3fbIDH9a8junrrsTc+o8QkBF0pIuS1XlKfw5Gy3bnIVWkKcfx3Cy5tWiC0dKMDLiFJ8G1IUpuDEYjIiIiIiIiS1YBNABQnNM7qKhTaV33ELCecm0EowHARQcbePuq2J/CBkzgprck8qYF4L4iAOPyAHa5NYC97rLu/b5ua/fXMxY66wAfGqzm1ywq02zWTv/q8AuhWqJc/aOjeujI+mqYL/wJ8uRRwI9f2p9w/bKYLN+KVVBfNKafHH77mvyAmZCwg3Vbwy+jJmTzsBvW0Km6uX+ENujel2pdj8pTl7UbvjSY6dr4UPUW7Xhf0LUDLgM45WfqxuCHTf1ju4+Xz1dK/PplE9NeM/Hl6r79HKSUKLO5bw4J+Y2uRBOMZndeseKkze0vQZRE1D9ZheaUNwze77xYsxuI6QsEg7iJSM0yGE0AI3OC/6skOgg3GYRrelq8CakGERERERERERERUcK0a4LR3MLNzqBESaogpUQ5nJ3v+15lR5lyeH8OfCAiYLin0NFxUZbL4gllMZou0zUk4uUQEVH/luHKwhn5l+D2HZ7EvkMm25qmMVCPVyufxj0brsPi5gUJ7d+hO0/xiBTkuIclrB6xJoRAPkOr+6XmQKNyuNOQWqLBgMFoREREREREZMkqgAYA3C6B4hx1mU21El+t0V+ozM20X49Tfibw5q/jcxpb39r1PtdutS4LAEvLu96TlBL/W60uN9oirKnzAq5P86CL/doWaJe/VpRgs1txg8L6pdpprPj8wbpIvw9y/TLIi/cFXrrH+YzWLolo+U6EC+qL1CE7C5yxt3WZFi/w3YbI5t/hl+jw27tobyfMq6al62+7YQ2dvP7+EdbjJARvVK56A0h0YFJ/ZGf78fqBdl/yBKxYtQNHj1NvC3WtwJaGOFYqib00z8RRD5t47n8Sj8+ROOIhE//+1mGiYgxVNgLtPntls1K7/h6p2c831yV223TS5jb0g7aWiPovq3DTGn3GMjnk5FumtiV8GaLBKty+5HELFGrulS5N8PFeMggXxtvaMbiDn4mIiIiIiIiIiGjgaTfblcNTjfQE14SI7NKFbOlCuSgxpJTaAAQGoxH1by7hsr0fG3AhzbD5BPseshyEcRRqQjKJiGjwGJ5SgEuLb8CNox/AzukTbE1T0VGGpzffjcfKbsem9rVxrmFQlU93jFwMQ/TvyB39uRmD0ZJZiyYYjaGzRL3171aaiIiIiIiI4s5OOJEuAGxTLXDHLPUMXEb3wBM7Tt9b4K0rDcfTxdryLYC57YNpbAsGZqlcfaQ6xKXd1xVWoAtGS5E+vF16prYOZW7FEx3WL4P020ybAbC1SeLCF0ykXx1A5hVtmHbe39B60UFAzRbb8wglIwxmc8JJWJZT/7zUwIm7W5c58D4Tt79jImAzGafFK3HBCyZyrgv+O/95E83t1tOW1oafd21zVxmnwWgAUNnkfJpE065rxdWsUZo26NX50tbnOZjZ3X6SKeDJKrBzovphNwCAJYPwdx3TlLhlRvcPzJTAbTOl7XYs1pY5+IrJDPm+H5WrLmMnTDKWnHxsjer7tomIYsKqPaphQFfMhAsnClXXGr96EPV3VhleYtv5vPZ4rzb29Ul2do452zriXw8iIiIiIiIiIiKiRPGa6htT0hiMRpS0dJ3vq3xbYErNjbEUdw3+Wnil+qYlBhgR9X9FKaNslctyDYEQkd1c7ySMg4GLRETUaYf0XfHbUffg8uKbke+x6NQRYlXrYty/8Qa8tOVR1Pq2xrV+upCw/AHwXZafov68qzrKE1wTcqIloO7Y5ySklmiwYDAaERERERERWQpoOoJ3D0ZT/3BWWqvv/JrmQUQ/uJ22l8Daew28c7WBf1wi8OVNBpr+amDujcHXt58Ug4SsMNp8wPrq4N9WAVOH7qyvy6ZtHXt1wWge6cNJzR9op69yF/Qe2N4KfP+pvkIhpJQ47AETL38rYUqBNpmCv+ZcgdtGTLc1vdK6vgtGc8UgGS09RWDWNQZmXGl9ueTu9yUuetFeMs4V/5L497cS7b5gIN4r8yWueNl62vnrw883NOxCt49aqVQ/WCKpOAnB0wWjAcCYm0089bmJz1dKSEWDtGSzxJOfmXh1vgmff/CFqJlWCQUhkikYzep7aViWQKHmnowNNYNv/a7dClQo9veNNcDCTYmvDwAsLY9sPZRYBKOp9u14cRKMlkz7DRENPFbHgNXNiavHQOfkG6Y/HGMT9RWrfanzFE93XsdgNLUWBqMRERERERERERHRANKuCUZLFQxGI0pWupAtv/TFPdSA9Co6yrTjGGBE1P8VpdoLRst0EG7We1r7YRxsV4iIKJQQAj8bciD+uOPjmJr/K9thm/MbP8f09Vdh5tZ/oS0QnycDV2pCwgbCdxlDq/un5oD6puNojuOIBioGoxEREREREZElO0FUus6rm2ol6jWhINHEWI0YIvCLPQUuOMjAwTsJZKYKHLJz8PX0kw3Mu9nAkbsBET7oyJZlW4L/V1l0ft99JOBxqceFC0Zzww8BYJSvVDm+Ml39w6ac96G+QiGue01iZWXv4S/kXIJ2kWprHr2sXAjpi2/PXDtBfdEQQuDUvQSuOcp6hq/Ml7jpLetEstoWidcX9N6BXl8gUdOs3rHmrpbKEKOeakLCLpyE9HTqD6EN+ran97BRudbr65pXJI562MS5f+sejvbgRyb2/JOJ37wq8cvnJfa400Rty+AKzzJtBuvVt8a3Hk6EC80bqQnQqo3Pb2RJrcbiPf+wqW+29aUOHjzkD9k+SzT7eYs3sdunkza3sT2xoW1ENLhYtUftPgzKwNd4sBsiCwCltfzMiXSsdqXOaze6473SusG3b9lpelq88a8HERERERERERERUaJ4NcFo6a6MBNeEiOzKTynWjrMK56L4quzYrBw+xJWNDFdWgmtDRLFWlDLaVrksB+Fmvae1H8YxEMJkiIgo9lzCjSNyT8SdOz6NY/POgFt4wk7jlz58XPsW7lh/Jb6o+wAB6Y9ZfUxpomoQBqMFQ6urE1wbsqs50KQcHs1xHNFAxWA0IiIiIiIishQugAYARmlCaFZU6Dtq/vXc+KWWHThWYM4NLgSedWHzAwZKNPWLxtLy4AdTpb4OhcxUICtNaD+blZXB6f2aUCKP9AEACvxVyvGVYw9VT7h2iXp46LIrJJ74VL1im11DsDJlV/WEE/aH+KQBr1+7EEeN/i9G7rIeR4z5GB9k/jw4vqURmD877PKjod0eY3yF466Tw2+fD34ksdMtASwqVVfq+43q9Rswge82qOd50Yv2UqpCw44iC0ZL/o7lusAuVQieLpyxp9cXSLw6P/jeP18pcdNbsluH85WVwG632UwKGyDsbj/JFIymC0jsDM3L09wTOxiD0Tosfg9c30e/cTkJjfGHhIeOGaYvt6Iiigo5ZDdMEAgGWjQzsIKI4kT3fdhp5qLE1GOgc9Lul9bFrx5E/Z1lMNq2/3XndaW1Ma9O0rNzntYa31x6IiIiIiIiIiIiooRqM9U3pqQa6QmuCRHZlWqkIdc9XDmuUhM6QPGnC0YrSClJcE2IKB6KUtUPVu8pM4pAjUwHwWiFbFuIiMhCuisTp464ANN3fAr7Dz3C1jTNgUa8VvUc7lp/LRY1fROTh5TX+avhk+qbrfI9+sDn/sIqtLrKx3OzZNWiCUZzcixGNFgwGI2IiIiIiIgs6TrchwZRjc5Th0ht1YSGAcBBO8UvGC1UUY7Aij8ZeOZ8gUsPFThnP4Frjxa47USBaVMEdi1QT3fe/gL3nCZQnKMev6oy+H9Vk/oia8G23xPHF6mnX74l+L8voB7fGYyWrwlGq8rRhJetWGB54TdgSoy/3bp3/7LU8b2Gidv/AfHkp3hlUQrOmz0O/8s8DJXuAnyZcShOHv02po78N+alHwD/J29azjtadoL6YiE7w94M11cDe99l4r9LZK/PfWWFfj10BuOFqmiQ2FBjr361Ldi+PKtQjALN9dCKRnvL6UtO1rUugFDl+bkSbR0SRz2s/uBqWoB/zBs84Wh2g9Ea1A/m7RPhto28TPX+W5tE4W6JYhXKtUrRDiXC5nr7ZUPDJUfmAEPS1OWWlCfuvQQcLqoxifYdIhpYwgV2nf2ciR81Ab5kn5NPcNMgDG8isstqXxLbDt9115ZK6xCTG9z6EzvnaS1RBqNVNEh8tkKiqX1wfbZERERERERERESUnLym+sf1NENzowARJYWClJHK4ZUdZQmuCXWq0Hz2hZp1RUT9y3BPIdzCHbZcVhSBGmlGOlwIvwwX3Bjm0XTEICIiCpHnGYGLi6bh5jEPYdeM3W1NU+Urx3Pl9+MvpbdiQ9uqqJavCw8G9Oc0/UmakY5st/qppFbvnfpWc0DdsS+a4ziigYrBaERERERERGRJ1xnTFdJfdfQw5/PNj/xBRI5lpApcfpiB5y808MqvDDx6toE/nWLgkakGVtzlwl/OFsjJCJYdVwh8eoOBly8z8IfjDZy1j7pj7ua64AdTqQmYyt92HWpckXr6ZdtCXPxhgtEKAupgtFJDk7jmbQM+flU9DsA7f/9cO67T0tQJ3V6L2XUQx5wD4fbgL7PVG8SMoafhsB0+w4jSR7BiU/xSYLTbYxyucOw0wn7ZEx43cfITJppDOhQvsXiwxsKNvYctcXC92esHWrd1grbqMF2crR6u226TiZNgtLxM+/P9fBXw3Fzrjt93zOoddDdQ2Q1Gq29Lns9DFwbY2Q7karaHupbkeQ+J0mIRjOakzYmlzXX2y4Z+RwohMFHzMKOlCXyQUbggop6SKVSQiAYWO0GNt7w9eMJe48XusRIAlNYOvmMNIrusTq86g9F0gdftPqC6OfZ1Sma2gtEsjvUt521KTHvNRPHvTRz9iIlh00y8NIjCwYmIiIiIiIiIiCg5tWuC0VKN9ATXhIic0IUIVLDzfZ/RBR8MhMAHIgJcwoWClJKw5TKjCNQQQiDTFb6jx4iUQriEK+LlEBHR4DM6bWdcV/InXDnyNhTa+D4DgDVty/DAphvxYvnDqO6ojGi5VR3qzgZDXblId2VENM9kow+t5rlZsmrRBKPZOQ4jGmwYjEZERERERESWdAE0RsgZ5Wj1gwW0PC4gO4nuWbruaAMVDxloeNzA4ukGjtitK3mpRNMxt6w++P8adW4ZCrZdh9pN8yCk8m3T+7TBaH4AQLFPfQF2zuZctAr1hyjvvgTS7+s9fNMq/GdOjXqBIe4ffuP2v8Xf5kGkBS/01rZILNxkPW2jMRSXPtMct1Ap7faozp+LylVHOJvp+4uBodea+Hxl8L2X1+s/g1k/SnT4u49fUu7sM6vZ1jHcqsN0kSYYraox+UMbnASjCSFwzVH219ctM6zf/6ZahN3WBwq7YR/JFO4UbtvQBeXVtsSnPsms2atfwWu2Am0diW0L2jokahysB3+PNn9CsXo/31CduPfhJCAHANZXx6ceRER2ghpnLwsew1PknJzWVDXFrx5E/Z3VrtR5hGd1bWlVZPe09Vt22p5Ig9FemS/x+JyuBfhN4NKXJFZs4fcFERERERERERER9R1dMFoag9GIkpouzKCKne/7hNdsR51ffbMSg9GIBo6ilFFhy2RFGahhZ3o7AW1EREQ9CSGwe9a+uHWHx3BuwZUY4tJ0euphQdNc/GnD1ZhR9RJaA86esqkPD9Y8tb0fKvAwGK0/8Uuf9lpYtMdxRAMRg9GIiIiIiIjIUs9Qkk6ekAf85GYAman25zliSPBiZjJJcQsMSRNw9UhdGrlqtrJ8WW2ww+iSzeqOo7sVBeczvG61cnxdQ7AHq18TjOZGMBjt0LavlONbfQLf7nKOemIA+P7TXoPMt5/DZ2mT9dOEuOfQNyD++QPEuH0ABMNshv/WRvoCgG+q8/Dt+t7DA6bExhoJnz/yzrZOwrKiNXVfAXcEV06OetjEy9+YqLMI/2lo6x28tdjh9ebOcCGrUIyiHPUHU6l+sERS0a5rzTq56nD7G0Fb79zAXv7z3eDoFG4nVAUA6lvjWw8ndNuGa9u2wWC0Ls0WYQlSJj5g4qcyZ+UnFHV/vcMwdbnS2sjqEwmnwWhLHYZeEhHZFbDRvPhN4J1FbIei4aTdtzr+JxrsrIK+Oi8PFWYDQ9PUZc5+zuaJywBhp+1psRlybJoSm2ok1ldLtHolXv5GPd07P/L7goiIiIiIiIiIiPqOl8FoRP2SLmyrMVDvOKyAolfVoX4QM6APsSOi/qcoNXwwWqZraFTLsDM9AxeJiCgaLuHC5Jyf486xz+D4YVPhESlhp/FLPz6pm4k71l2JT2tnwS9tdAyCVTDawPkuy9eEvFmdI1DfaQnon8ScFeVxHNFAxGA0IiIiIiIisqQN7go5oxRCYFSu/Xnm95PweultR/HmMR5cAAAgAElEQVScJ5XjmrwCNZsqsKJCPe2kbdcUsz//p3J8G1LR/vpT8GkSDTzbLtAe2fIFcgPqxJd3R1+mr/yaxd1eyg//hbXvvI8a93D9NCHurj8R9fnjAQCrKiUyr3HWCfng+7vKm6bE3e+byLnOxI5/MJE7zcS1/zEjCkjThTjFIxhtZK7A3y8RSHE7n/bCFyW+Wmtdpmeo3t+/cvZ51Gy7b8gqFKNI8/CUfhGM5nBdjysSOGPv2C3/4Y8lapoHfsdwu2EfDer7T/tEIMy2wWC0LlbBaEDi24JZDsMWbji2++Vr3bFGaV2kNXLOeTBafOpBRGQ33PTtHwb+8Uw8OWn3a5MoSJYo2VgGo3X+LwQmae41K68HyusHT3tmp+0JF14tpcTjc0wM+62JHf5gYqdbTGRfZ+LjZeryf5gxeD5fIiIiIiIiIiIiSj7tmmC0VMFgNKJkZhUkUMkO+AlX0aF+aqVbeJDnGZHg2hBRvBSmhA9Gy3JF11nDTiBH4QAKkyEior6TZqTjF8PPw507Po2Dhh4NgfCdw1rMJry59UXctf43WNg0D9Lq5jTow8EGUjBagSYYrc5fDa/ZnuDaUDjNAX1Hnswoj+OIBiIGoxEREREREZGWaUptZ0x3jzPK0Xn259tfgtGwehFKGpZrR3905e/g9avHTRopIE0TuSs+005f99R96OhQJ8+5twWjuRHAnu0/Kcs8vnkv+OHCpxmH4/HcqzBjyCkIbDvVl+uWbi8nv/8MSx96CON2XqKtS0++AHD0Iyauf93EuD86C0Xr9PS71ZBvP4u//OUr3P6ORMu2gJ7WDuCJTyXuel9i4UaJB/5r4u73TcxdHb4Trm57dMXpCscvDzCw5UEDH00z8LPwvyM7siTk2rqd995TTUtwGqtQjOIc9fCKRoS9+N/XdOvaKgTvgTNjuyFMeSSybb8/sR2MlkRBH+HagWGZ6o2kohFo9yX3dh9rS9QPN9quqimxn8fizerlDU1DrxDK8UXAkbt1HzYqT71uq5uBxrbEvBenwWgbagbXNkdEiWMVjhvquw3O5rt8i8Qjs03c9JaJ298x8f5PEqbTxm8AcXLI3OIFOiIIfyYa7ETIId6EYv0J3xvfD579y074Zbjg5/d+Aqa9JruFXOtCpomIiIiIiIiIiIj6mq6TbprBYDSiZJbjHoZUkaYcV6kJ6aL4qexQ3yyW7ymCIVwJrg0RxUtx6uiwZewEm1mxE8hRkFIS1TKIiIhC5XiG4YKi3+APYx7BuIw9bU2z1VeB58sfwEObbsa6thXKMh2mF7X+rcpx+QMqGE3/XnTBcNR3mgNN2nEMRiPqzR2+CBEREREREQ1WfosOk+4ev5EHw0rsdVLNHxL+CQ5JYd1SjPKVIc1sQ7viJqvXhp6lnMwQwLhCAFvWI7etQjv7OlcOfPM/BbKO6TXOsy0YDQAmeZfh88wjlPPYY9IqrAoUbX+9X9t3+GLDFKQs3vbUi+YGvHL7i7hgp4XaeugsKgUWlUbe8fjqd3Ox88YZ+P2Yy5Tj735f4p4PZEjYgMRvjxF4+Cx1uJWU+qA+q7CsaOVmChwzAThiVwPT35W478PYdMZeGhIQ9MKXkQSjBf+3yqkoylbvl+0+oKkdGJrE9w7qOmxbresxeUC6B2jz6cs48WMZUFortWFMA4HtYLQEhU7ZEW7b2CVfP93KCmDPGIccJqvXF5h4dX6Ypx/pf0+Ji9Ja9fDf/Vzg4J0EHvzIxJoqYPIuAvefLpDq6b7vleTq533X+xIPnhn/fdVOSEWo6ub41IOIyG57VNkIVDdJDLdxDvaf+SYu+ruEr1t2s8QpewKvX2HA4x64x0Q6TjPh6lqBgujuLSUakKx2pdBgtNN+JvD8XHXp2Uslrjs6tvVKVnbannDBaA9+xBQ0IiIiIiIiIiIi6j/azTbl8FQGoxElNSEE8lOKUepd12tchSaki+JHF4zG8CKigWW4pxBu4YZfap7ujugDNewEqxWkFEe1DCIiIpWStB1x7ag7sazlB8yo+jvKOzaFnWZ9+0o8tOlm7JV1ME4ZcQHyU7r62FmFglmFifU3wzz5cMGNAHofH1R2lGNU2tg+qBXptGiC0dKMDLiFJ8G1IUp+DEYjIiIiIiIiLX9AP87dI7tqdJ79+Y7oJx3F5fqlcMHE+I6V+CHtZ73GvzvkJOV0O48A0jwC8uv/IjdQr51/nSsHPs0FK0/Ixci923/QziM0FA0AvkvfDw8MvwG3bbkf8rA0lHuKcMHOa7XTx9vPx3xgOV726Oz7l9kSFx8ksXtJ79CFnmVDxTMYrZPHLXDPaQL3nAb8/k0TD38cXVDUkpDr6+u26uc1oQhYtqX38JptYTu6kCgAKM7Rj6tsTO5gtEhC8AxDYK/RwLwYbvJv/yBx7dEDNwTEbthHvfr+0z6hq7Nr2/fSzvlAihvoUNzzsaRcYs9RA3d9diqvlzjnufArN+HBaHXq4aPzgKPGCRw1zvrJpGPygMxUoMXbe9yzX0jcfpLEkLT4rl/dd5HHhR5BQkFbE/wZE9HgEXBwKJp/g4mh6od0b9faoQ/GfudHYOYi4Kx97S9zoLA6B1Gpa2EwGpGK1b4UevT284n6cmvVD+4ckOw0PbWt+nEVDRJfOTwvTsR1FSIiIiIiIiIiIiIdryYYLY3BaERJrzClRBmMpgvpovip7ChTDh9IgQ9EBLiEC/mekSjv2KgtYyfYzEpWmGC1oa4cZLiyoloGERGRlQmZe2HcDnvg64ZP8V71K2gIaDoihPiheR5+ap6Pw3KPw/HDpiLLNVR7XuKCG8M8+bGudp8xhAsjUgpRoTgnqOK5WdJpDjQqh4c7BiMarIzwRYiIiIiIiGiw0nWMB4IBIKGcBKPl95frNOuXAQAmeJc5mmxC22LI1mbIx65HpmyBS/NEpnojB36hzix3h0xzRuPbjpb/Qs4lMCHgFSkYbSMULd0TXcBXrL23WF0fqwAnV4KvcDx4poGvbjJw72kCY4ZFNo/KRmBrU/BN6cKCAGjnX9MS/N/qcynKtl5+MtMGo4VZ15dNjm1v7liGrCUj06KdD1Vv0ek+0XRhgJ0d+d0ugXGF6jKrK+NTp2RTcqO9FVuVwHag1StR26IeNyrX3n6b6hGYuq+6bLMX+GJVpLWzT9c26UJwaluAgN0EQiIiB+x+h3dqbLf+Z3XuBwAzFw3OtsxpE24VVEQ0mFntSiLk8M4wBF79lfp4r7QOkE7TCvspO218XYv+s/hmnfNgx9DrKgFT4rsNEl+tkfD5B8dnTkRERERERERERH3HlCa8sl05jsFoRMlPF7qlC+mi+DClicqOcuU4BqMRDTzFqaO14wy4kGZkRDX/zDDBavlsV4iIKAEM4cIhOcdg+tincdKwc5EqwjwhGEAAfnxW9x7uWPdrzK6dic1edZDoiJRCuIT1Q937G/25mfo8gfpOiyYYLdwxGNFgxWA0IiIiIiIi0rLqHO/uFYxmP4yovwWj7de2wNFkJaXzgJnPAgAEgFzNkynqXTnwwaMc55G+7X9nylaMzlaHq6mUekZhYdpeuHP4rWHL5mQAM6+O7GJuRgrw/B5zMXfDERFNr7OxRj1cF4YEhA/LioeDdhK4+XgD6+9z4Y0rIqvAgg2AaUps1gSjvXKZwLBM9b5V2xz83yqsYUgqkJWqHtdvg9HCNDUXHSRw3+kCudH9pr/d6wskzAEcamT3rTWoH8zbJ+xsGztoAgW3Nse+PsnmznftJ+WU1SVu27YKgBzlIFz17lP0jcDS8vi/H932pzu2MSVQpwmEIyKKRiDB4UCvzpfwBwbuMZGO08NAtvlEak6aLN31pdYOoG6QhA/aaXt0ocMAsHiz8/bave2yxuY6id2nmzjgXhOTHzCx060mVlYMvvafiIiIiIiIiIiIEsdrqkPRACCVwWhESU/X+X5rRwUCMpDg2gxedf5q+GSHclxhakmCa0NE8VaYot+vs1xDIER0D5nOcll39ihkMBoRESVQqpGGE4afjeljn8Kh2cdC2IjIaTNb8fbWl/Df2jeU4wdieLA2GM23OcE1oXBaAk3K4eGOwYgGK3dfV4CIiIiIiIiSl9/ingR3j+uITkJNCoZG92NbIsi6rUBtJQDg5Kb3MK3wEdvTDvXXQT79p+2vhwVqUe0e0atcpTsfbZqbt1Klt9vro3b246Xv7Z/GH7jjl2HLjMoFFt1uIMdhgNTJewJP/dJAUTaAwCGoeWO1sxmEUVqr7nBr1TE4XFhWvJ2xj8DH0wwc+6j9QCIAeOsHib1GC20I4a4FAt+uV7/x6ubgcMvPxQAKhgLNW3uPq2iUCEb3JSd9+JV1nYUQuOk4gd8fK1HeADz3P4m73w/fifuWEwTu/UBd7sa3JB46K3k/q2jYDfuoT6IAAl1Ioivke2n4EAGg95urVv9+0O81tUs8+JHE7GUS3663P90Xq4D6VomcjPhv36W1+nElufbnU5QjcOwE4ONlvcctTcBvdrp9psDi4TzVzcDwJP6NasEGiSc/k/D6gTP3EThtLzi6MerL1RL//EaixQucsDtw3v4i6huriCg809lhZ0y8Ol/igoMG1/7tNH+uoS25j7GJ+orVvtRzj7G6vlRaC+RlxqRKSc200fhYBaMtjeAhn50PQLjsnyZWVHQNL6sDzn7OxKLbB9YTUomIiIiIiIiIiMg5KSVqfFXwhzzwMxaaAg3acemuGD0ZkYjipkATzhOAH6taFyPXPTzmy8zxDENalMGJrYFmNPrrlePyPCOQYmieSJskTBlAta8K5rbwufXtK7VlB2LoA9FgV5Q6Wjsu02VxM6NN4eaha/uJiIjiKdudh/MKr8IRuSfh7a3/wNKW7yOe10A8Rta9p6qOzajwloWdfqg7BxmurFhXixSaA43K4bE4jiMaiBiMRkRERERERFq6sCagq8NkJyehJuOLIqtPQm3oSlwZ7S/DKF8pSj2jbE2a3eNmrWJ/OVam7tarXJl7JBqMbOU8cnrMY0R2bDugnrOfwBPnCeRmBrsgb37AwMgb9Sv8uIlAdrrA0eOBSw8RMDqTyNwe5D35DvB47Oq2SROek8zBaAAwZYLAglsNvPiVxFOf20tQmLFQ4iKLcImSXCBfc12zalvAky4kCgBcIhjWs1YRjFapvo6aNHRhH3bXtWEIlOQCP5+IsMFoY4YF9wldMNojsyV+NVlit8Ik2NBizG4wWpMXME3Zte/3IX1oXtffIzS/x3QGCg4kXp/EwfebEYUf+ALAvLXBMKt4K61Tf/YjhgBpHmfb1Z6jBD5e1nt+S8vjv351bVO+JowPAMobgHFJcuzT4g3W0RDB47yv1gAnPN71pv7zncQtJwj8dkowdCRcwNl7P0mc/pS5/Zjx1fnBII57T+v7toJooAv0wVdaMBgt8cvtS3aPlTo1tcenHkT9ndWu1PNwoyg7GHqsOtfdUAPsae/STL9mJ5TRKhhtyWbnXxJuA2hul/hoae9xP5UB67ZKjB3BYzwiIiIiIiIiIqLBakHjl3i96m9otggxi4fUKIOPiCj+8lOKICAgFb8I/bVselyWacDA7ln74cLC6xwHKDb5G/D3LY9gZetPyjoDgFu4sVfWITi/8Gp4jJRYVDmmvqj7ALOqX0abGf5pp9nuvKhD5Igo+RSl6H84z3JF/xTXrLDBaMVRL4OIiChSxamjcXXJH7Gi5UfM2PoSyrwOniy/zUAMRsv3qL+f2802/GnDNWGnFzCwc/p4/F/x7zHUnRPr6lGI5kCTcngsjuOIBiKjrytAREREREREycsf0I9z9zijTPMIFNgIps9MBcbkRVevhFjXvSfoOO8K25MONbtfoCrxbVaWK3cXo0Hzw2G22SMYLcdje/nhPLLPUrzyKwN5mV0dWotyBN69xkBOj3tEJu8CVDxk4IPrXHj1cgOXTTZ6BSOJifvjcP/8mNVvYw0QUCQQWIUSuJLkCsfeYwSeOM+A7xkDlxwSvsNwfSvw6CfqlJ3MVGB4FpCvua7ZGWxmGRhnQLtfJn0wmi78yuG6PmgskB3mvp6PpxnYrQAYkqYv84cZFgl0/ZjdsA8pgcYkCfrQhQGGtgPDNcFoW9W/H/Rrz82VEYWidYokNCESpXXq4aMcBKt2mqS5p2Z5hfr7I5Z0s89IBYZlqsct39L3gXxSStwxy8SQ3wT/ZV5jIvtas1soWqd7P5AYcb2Jfe42MW+tdd3ved/sFaT7l9kSdS19/56JBjqrcNw8TXsUrZWV8ZlvMrMTThSqyRufehD1d1b7Us9gNJchtNeNkuG4KhHsHNLqgtG8PhlRe+0ygM31+vFfrxscnz0RERERERERERH1tql9LV7c8lDCQ9EAMMyHqB9IMVKR5xmR0GWaMPFj87f4d+WTjqd9YctDWNH6ozYUDQD80o/vmr7Am1UvRlPNuFjcvACvVT1nKxQNAAoHYOADEQEjUorggls5LlyomR1Zbut5FKaURL0MIiKiaI3L3BM3j3kYFxZehxz3MEfT6kLE+rNow94kTKxuW4qnN98ToxqRTosmGC0zBsdxRAOR+syHKEJCCA+AQwCMBlAEoBlAOYAfpJQb+rBqREREREQUAZ+DYDQAGJ0XPmxpQhF6BWslI/nTV91ej/euwOysY2xNm93jJrBi/xZluU2eUWgwssPPIzUdxbkCsLgRw67ncT8u+dUflONO3ENg4/0Gvt8INLQBY4cDE4qDnZKtCCEw7UiJL+ZGXT0AQLMXmLsaOGK37sOtwh+SbZNyGQIvXCRw6xGNWPLrCzHKV4YjxsxGk+Ii5ds/qOcxcdu+EgxG673uq5qCQTeWwWgCKBiq3naqGpO7U7PufbkcrmvDELhsssDDH6tn+MhUgV0KgjM9Zz+Bv81Vl5u5CLjrPRPpKcAv9xcoykmyjS5CpoO8t4Y29ApP7Ava0LyQVTJCEyi4tTn29YmFn8okPl0hMWOhxME7C4wdDnj9wNqtwNA04MjdBI4c13ub+7FU4rr/2NuX9ywBfizrPXyZ+isq5kpr1cMjCUabWKxu19p9wLqtwC4Fzudply54zRDAxGLgf6t7j1sSRXBdrFzxssTzmvZNZ1EpMPVZE4vvMJCb2Xv78wckvlU8YMvrB95aKHHZ5IHRThIlK9334eg8YMn04DF9fVtk8z7tKfUBwoYaoNUrkZE6ePZvp3mbzUkSJEuUbKx2JVWLMqEYWFfde/jyBB27RuunMokPFkvkZAC/2ENgZK6zdtNO29PmA9o6JNJTus97ZaX19ROd6mbgznf1C3Zy7khEREREREREREQDy9cNc/ps2Skitc+WTUT2FaSUoMZXlfDlLmr6Bq2BZmS4NE/R7KG6oxKrWhfbnv+CprmYWvAruIQr0irG3NcNnzgqX8DwIqIBySVcKEgpRnnHpl7jMl2aG2gdSBUWT5oGEh6ISUREpGMIAwdmH4m9hxyMT+vexce1b6HdDH/zbLQhYskoyz0UmcYQtJjq0C27NravRo2vCsM8+TGqGfXUHFB3vo1FwC3RQMRgtAFICDEdwB1RzOIfUsqLHS5zBIA7AZwNQPkMbyHEPACPSCnfiqJuRERERESUQH6LTo8exe/8o/OA7zZYz/PQXZK/E70sXwd8+ma3YYe2zcPj+I2t6Yf0uIhY4t+sLLc8dRykUCTMAcg2Qy5ypWXi2AnRB6NdUP8yLnnhaghDvUwAGJImegWS2XHKBQfj7Q+vwBmZf4UZg5tA/rtU4ojdum8r4QLAktGOgVLs0PwhAODUpln4V875tqedODL4pgo01zV9gWBQVbjAON30ldFd6447qQu/0m++WpccLPDYJ7JXm5adDkyb0jXDZ87XB6MBwB2zguP+OFPiw+uMXttof+Qk7KO+FRjj7EE6caENzQvZNkZkqdvM6mbANGVSBXT+Y56Jy/4pt+/LX67pXe+735e4+XiBe0/repP//NrExX+3twK/+L2BWT9K/FjWu/ySzYkJSdxcp15OSZ7zdTG+CBBC3U4s2xLfYDSrYL6JIwX+t7p3gWXlfRtEefMM03EoWqfyeuDFryRuOLb3emqyCP/5fhNwWURLJCK7dMeALgPIShM4PIJj+k4r7zKw2x97L0BKYMFG4LBdI593f+M0GK3JG596EPV3uvM7IHhc19P4IoH3flIcV21J7oBvAHj5m+Bxemf7cccsiQ+vNbD3GPvHvXbbnrpWID2l+7Bojj3/851FMFryf/REREREREREREQUJ2VexROzEiDfUwxDc28dESWXUak7YlnLwoQv10QAW7yl2CljvK3yTtuzNrMFzYFGZLsjePJjnDh9D6NSx8apJkTU10an7awMRotFIKIQAiNTd8Bm74Ze43ZI2wVGEgVGEhERAUCKkYrjhp2JQ7Kn4P2a1/Bl/Ucwob7RNtc9HFnugRlAVZK2I1a2/hT1fBiMFl8tmmC0WATcEg1EvEJMURNCHA9gCYAroQlF2+ZgAG8KIV4WQmQmpHJERERERIOAnPMGzEv2gzk5Nfjv6KEwbz4dcv3yqOdtFYzmVvyeVZIbvpPnGXsnTxiNiqwshTy7900SP2+ejQyzxdY8ss2Gbq9H+3r/6AgADa4c7TxyAvVdL9IzMXyIwLETbC1e63c/NyCG6JcZrZP/9iA6fAdjasMbUc9rsSK8xwwTAJaUKrvW/VmNznLCdy37DNI0kW9xXXPaaxKHP6j/YFyGPhitokE9PFlYhQ85NaFY4O5TRbcO9xOLgQ33db80JoTA4unhL5d5/cD//cOEP9D/e4ZbBev11BD+wTkJoatz6Lah2+4DJlCVRKGAXp/E796QttbD/R9KGJcHtv+zG4p2z2kCk3cRmFSsHr98CxBIQMrB1mb18OIIvpbSUwTGaK5CbmmI73uxDEbTfMZLNgPSKg0kClJK/GW2id2nB5B1TQD73xPAB4vl9nEX/93EA/+NbtnT31VP32gRjNaYJO0F0UBmJyg0UmNHABkp6nEzF/X/4x8nnDbfVqGRRIOZZTCaYtiEInXZ5VuCQcfJqsMvcc0rslsbvbUJuHWmgxMv2G97ahWXqXTH3dFK4o+diIiIiIiIiIiI4qyyo7xPlrv/0MP7ZLlE5NxB2UfDQN+E5FR0lNkuW9mhfsixFV2H9b7gMztQ49tqu3y6kYG9hxwSxxoRUV+anHNcr2EpIhV7DTkoJvM/cOhRyuGHZB8bk/kTERHFwxB3Ds4puAK37fA49sjaX1nm0JyfJ7hWiXNojL6npXR2vxvZ55c+tJvqzhZZDEYjUmIwGkVFCHEEgJkAQiM/JYDvAbwBYDaA6h6T/RLAq0Lw0S1ERERERNGSX70POf18YE1Imn+HF/jqfcjrT4BsqtdPbIM/oB/nVhzRj7aKSt5G17k1GcjWJsgzd1aOy5StOKnpA1vzye5xI8RE7zLHdck2Q+aRlgEAeO83kZ9GTWpfgkn77RTx9HaIzKEQz3+DW84dHvW8vlzTe5hVJ9xYBEDERVXXTTdTWj5FbqDW9qTDvn4N8m93WAaj/fNr657JQggUDFUniVU2xi+oJxZ0QXgiwhC8G48z8OPtBp7+pcBrlxv44Y8GsjN6z2xiscDhu4af3/pq4LOVkdUlmTjp3F4dpw72TumDYLrW5yiL76NN9nfDuPtqLVBjL3PTsYfPElhwq4E/HB9sICcWq3eeNl9we463Gs32MyzCxyfowu/iHXynDUYzgEmaz7iuNX5hlA9+JHHDGxJLy4HWDmDBRuCkv5qYu1riz/+VYb8n7GjxqsPzrMLPGlqT9/uFaKCwExQaKZchMEXzQO0ZC/tm//YHJL5aIzFnuURTe+Lq4DQIqMUbn3oQ9XdWu5LqHG+C5riqtSO5jud7+t8qdXjsR0sBn99+g2K37VEFo9W32l6MI05CtYmIiIiIiIiIiGjgaA40ojmQ2KcvZrqG4Ni8M3DcsLMSulwiilx+SjGuKbkd+R7NUwXjyEnYWSTBaM1JFIy21bcFEuF/tBEQGJU6Fr8ddS/SXRkJqBkR9YUd03fFr4pvQp57BACgOGUMrim5A3meETGZ/1G5v8CJw85BlisbAJDlysZpIy7CwdlTYjJ/IiKieCpMLcGvR96CaaPuxm4Ze8AFNzKMLBybdwZ+nnd6X1cvbvYZeijOzr8c2a7cqOYTgEWHUopKS0Df4SXLpekkQzTIufu6ApQQ5wL4xkF5W91chRAlAGYASAkZ/BWAX0kpl4eUSwVwBYCHAHi2Df4FgLsB3OKgXkREREREFEJKCfnMrfoC1eWQb/wV4tI/RrwMv8Xv527Fw91G5wlYdXfNSgWy0yOuTlzJ0tWQ502yLHNW9o94HeFvuBpqdr8RYrSvFFmBJjQ7SO7PNkNuKEsPpsa4XQJzrjdw9CPOe6Ne4J0J7HaT4+mcEm439jh1CmaMkTj96ch7zTa1A29+L3HmPl2doa064cYiACIeZGXp9r9T4MNxzR/j1exzbE2ba9YDb7+N9Itvxc75Hqypcrbszs+kUHNdtM0HNHuBIWnO5pso2vChKNb1pJECk0aGn8HkXQS+WBW+J/or30ocMyFJNz6bnIR9lNVJAH3/fu0EwQzPAtI8QLuvd7nSWmD/HeNTN6fWbY1PsMsjUwWmTemeGDneIph0aTmwc75+fCyoQhsAYFhmZNuULjRya7yD0Sy2v4kW93YuKQeKcmJbFyklHpuj3oYOfzC2yRVVjb3rrwr96FQXp0AOIuqiDwqNzfxP2F1g1o+9F7KpFnhpnomLD05cMvGWeokpfzGxfEvw9YghwKyrDRwwNv7HJU6/qRMZ2kbUn1hlcquC0cYV6ssv2wLsEH0ee1x8u17/RquagJE27zeLJhitwSK8NhpOgyKJiIiIiIiIiIhoYKjsKNeOu2XMoxjizo75Moe4smGIZH1KJhHpjMvcE9PHPoXWQDN8UnHTVpTerHoB3zd92Wt4RUeZorSaLhhtcs5x+K7xC7SbvX9oaQzq7jUAACAASURBVLbotJ5ouvobcOGusc/CEMEbu1NEKgPRiAaJvYYchL2GHIQO04sUIzWm8xZC4MTh5+CEYWejOdCILNdQiEifbk1ERNRHds2YhF0zJqHD9MIjUgbFd9nhuSfgsJzj0RxogBnmLtg/rrscfsX5m5R8ima8WIVvZzrod0o0mPBK8eBQIaXc4OBftc353gkg9PbteQCmhIaiAYCU0iulfBzA1B7TXy+EGBP52yIiIiIiGuTWLwM2LLcu88lrkFa9T8PwWwT8uxVnlDuG6Zg6Kg9JeRFRShk2FA0Ajr92KrJs/GaYY3Z/SqYBiQkdYdZVD6myo+tFWub2P48cJ3DLCerP8GejgLpHDew6pHve9R7tP+E3U0dCpCYuAevUvQTM51wInP4qtq4sRvOKXFxa/5KjeUx91oTX17X9WnXCNZL1CkdV95tu9mhfbHvS3EAt0NIIOSUbp1S96njRnSFRuvAgAKixFY3eN+IRjGbXniX2FvKPr2W3bbQ/ctK5vbQufvVwwk4QjBACozShA5tqk2edVcbhgaJ7lAC/Prz3NpyZKjBW8z29ZHN8PxOfX2pDtIZlRTbPEUPV+2ncg9Es2qZhWULb5m6sic1nHDAlHptj4uxnTRz7FxNbEvRg7s31vYc1WQSjfbcB+N0bJo57NIAb3zRR3ZQ8+x3RQGEnKDQau1uEyV76ksRB9wUw84fE7NtX/bsrFA0ItvW/fN6M6lzXLl0gpo5V20g0mFntrarWZkiawOg8dfllW5L3uCI9RT/OybG//WC03gXr+zAY7YPFEhe8YOLwBwP4/ZsmSpPo3IuIiIiIiIiIiIgiU6kJHEoz0jEydQyy3bkx/8dQNKL+LcOVFZe2oSRV/SRMXVhYT1JKbYjaqNSxyHKpn0Br1Wk90So073VESiFyPcO3f1YMRSMafGIdihZKCIEh7uyk7ANCRERkV4qROqi+y4Lf3zlhz7NccCmnD8CiQylFxSp8m8FoRGq8WkwREULsAuCikEEdAC6WUmq7fEgpZwL4R8igVAB3xKeGREREREQDi/S2QVaXd+v4LT97K/yEpauBVT9EvFyfxXUsj+La1+4jgbzM3sM76UJq+pr87fHhC514CTIm7YX91fdWbJdmtiHL7J02dXTLZ7brU+Cv7DHT7jcp3H2qgbeuNHDu/l0XZe87XeDrmw1kZwj8cN9QPDS5FFfkfY0H89/BvKsbkXbGZbaXH1M7jEeuWY806cX/1f3d8eQfLe362zIYLVmvT29e1+3lRO8y25PmBbpSqM5a/6TjRXeGRGWn68vogoqSgTbsIwFXs07Y3botCzXhjsQ8CaW5XaKmOfadyp0Eo5XVxnzxEbEbBDNKE6SwoSa29YlGmSJsKhq/miww7yYDaR51ozixWD3dsi3q4bFS26ofZ3df60kXQFbREN/whXChjWOGqceX2QgW3NoksaxcwufXv4dTnjDx29ck3vheYs6K8POMFVX9G9v19fSbwCOzJT5eBjz0scSB95loaGUwBlEs2QkKjYbuO6PTt+uB05828eRn8T0W8geCbUlP66qB+evjumgAzo6VAKDZG596EPV3VjmGuvvNJhSphy8rj74+8aJ6iECnCgd9ZuzmPlYrws51x1zn7CeQ5rFfh56srhECwEvzTJz0VxP//lZi7mrg4Y8lJj9goqyOx4BERERERERERET9mS5wqCClZFB1KCaivleQMlI5vNpXCZ/pCzt9U6ABbWaLclxhykhkaoLRWpIoGE3fJqs/GyIiIiIiIiu6cHpTJqaf1GDUoglGSzMy4BZR3OBHNIAxGI0idR7QLQJ0hpRytY3p/tzj9VQhRFrsqkVERERENLBIbzvMx38HOSUH8rQdIX99GOSaxcGRc2fZm8dlB3VN45Df4jqWqsO9xy1wxt76G57GFSXfzVDy6w+B78OHlonrHwMATCy2fg/5ga1QlTi78Q3bdTqw7dvuA9J7p8actpfAvy8zYD7ngvmcCzcdZyB1WxBOeorA9RfsgKfvPxQ33H06Mg443PayY26H8dt7OR/Q/h0eqrzR0eRvLezqQKsLQwJiFwARK1JKyJcfBJZ83W343u2LbM8jNyQYbZ/2hdipY62jOnSG9Ay1CEZraHM0y4QyNT3BExGCl54iMONKexvV+mrg5W/id9G/okHi8AcDGHqtiaLfmTj/eROt3th1LDcdVH1TbXJ0aNeFBPRsB3Ycrt5YVmxJjvcBAKU1savLKXsCz15gICNVv5NMHKket6g0vp9JrfqeQgDAsAiD0UZkqYf/bzXwweL4vZ9wwWgjc9TjN1uE4FU0SBzzSAAFN5iYNN1E7jQTT33efef0+iQOuDeAD5ZEUGkbDtgRePFi/baj2v8bHXyHrKsGXvo6efY9ooHAblBopIamC+xZEr7cXe9JdFgEOkarsR1o09zD/l4c2/tOTpfQlMTBw0TJStdsjddcf/mpLHmPKazCESsb7dfbbiij6hizXhNKPGYYMOtqwzI83Uq7RX8iKSXu/aB3pTfVAv/6JnnXFxEREREREREREYXHEB4iShaFKeofsCVMbPWFfypkRUeZdlxBSgmyXOqnNDYzGI2IiIiIiAYoo1tcTBcJBqPFi+4cU3dOSkQMRqPIndbj9d/tTCSlXA4gtId/JoBjY1UpIiIiIqKBRj57K/DGX7sGLJsPecm+kJ/NADYstz+fS/aF9Drvoe0PqIe7DGif+Hju/vqe+KfsmVzBaHLzWsgbTw1bTjw+GyIlFQAwKcz9A/n+rcrhk7zLMKkg/FPpAODXdc91H5AWYWpMEhBpGcDIsdtfT6t9AhWrRuHTDcfgzbJz8O36Q7Bl1Wjt9N9v7OpAa9UxOBFhWY58/jbks7f1GlwYqMSBrd/YmkVeSDCaAHB31R2OqmBsu+qT4hZI0zw0IrmD0dTDE7WuD9tVwPuUgUnF4cte+KJESwzDykKd+YyJudui6P0m8Mp8iZtmxDAYzcGsKpLkHi9dEEzPr6XxRepyy8LfB5cQ7T5pK+RqpxHhy4wrBN60Eean256XbwFWVcYvsKCmWT8uL8KvuAL1Q1oBACf91cSG6vi8H23btO3jH5mrbqQ213WfsLFN4olPTdwxy8Qed5qYs6JrXGsHcM0rEsblAdz+jomGVol7PpD4bkMM3gCAL35v4MubDLQ8YeCnO4L/5t1s4OKDDRw0Vj3N7GWKYDSHh5Zvfc9QDKJY0rVHsQwMvum48AdeVU3AUQ+buG2miS9Xx34/b7EIGapr6Ij58npyEiILWIciEQ1munBjoPdxfKcJmuP5hZuAsrrkPK6wOsd2cj5l9zxN9Tno6pCdDkyZIFD1sIELDnR+Ym0VjFbTDKypUo9778fkXFdERERERERERERkT4VXHSRUyBAeIkqw4SkFMDRdYSstQs+6yqhDxTKNIchyDUWmS30zUrO/yX4l40hKyWA0IiIiIiKKKSHU51gByWC0eGnRBKPpzkmJiMFoFAEhRCGAPUMG+QF85WAWn/d4fXy0dSIiIiIiGojk0m+BN55Qj7v9XCDgdza/cyc4roNfcx3LbXE2OXkXdRjNuELgsF0dVyFu5OofIc+x8ZkMKwJ2P2j7y8N2se48OiKgDkYT/1mGY/dICbu4zzZMwTEtn3YfmJYRvp7JbMeJ3V4OD9TgsLavcGrTLOzT/gNGBKpxf+UtyklXVQJeX7ATbX8KRpPv6/PDj235JOz0KaYXGbK127CzmmbgrdKzcXTzHIzp2Igx2dZBe6GfSXa6ukxDW/J2UNaFUCRyXXvcAt/fZuCuU8IvtPj3sb/wv6lGYt7a3sOf+UJia1Ns1p2TYLS61vBlEiFcMFWnCUWagKr65AhSOOwB623mwLHAI1MFlkw3sOpuA788QOCAHYHcjGBY2g7DgkFnvzlK4OubDbhs7ByH7qwv8/qCOAajtaiHp3uA9JTIdupdCqynG3uLCX8g9u8pXNtUkqseX9qVdYn11RI/+5OJa/8jcdd7EtUWwXF3vy+RO83E3e/H7r1M3kXg4J0E0lMEJo0M/usMvD1Es43MXh4McwvV5DAY7cs1EVWXiDR0QaGxPFY6Z38Dz5wffobz1gL3fiBx2IMmHvhvbI+JrILG6j/9CLJOk8QTI05b37b4Z7UR9UtW+5IuGG2yxfWXN5M0cNUqOLbSSTCazaa0rK73sHpNMFrOtktLHrfAMc4vEaLN4hJEk0VbXaqoIxEREREREREREfUPfulDta9COY4hPESUaG7hwXBPoXJchSYwLJRVqJgQAlmaTui6TuuJ1hioQ7upvoGvIKUkwbUhIiIiIqKBwKWJG5IIJLgmg0dLQB2+neUakuCaEPUfDEajSEzq8fonKaWme6PSvB6vJypLERERERENcvKha2I7w62bITetdDSJNhjNpZ/GZQi8eJGBYZldw4ZlAi9ebC+0Jd7kyh9gXnUk5KX7hy+clgHx+ych3J7tg3YrFNjD4h6C/D0mdg8yKxgN8doKiJE7Yfcw94Od0jQLk9t6njIBSEkLX9dkNrbnaWRvxzd/pBzuN4PhaED/CUaTUgLffqwdv7s//H44PFAD1Vs6pfldfFT6C6xdOx5rxz+Ia4/Wv3FXyFUffTBa2Kr0GW34VYLXtcctcOuJBsznXEh168s1tQMnPBaAzx+7Dvpr1DmLCJjAWwvDL2fhRonDHwwg/aoACm8I4Kp/m2jxdp/OSTBafSsQcDJBnOiCYFw9tg2rNveR2Yl9H03tElf8y4RxeWD7vwUb1WVzMwDvUwbm3ezCtCkGUj0CO+cL/Ov/DMy72UD1US9h5bo9sGbZWCxKvRKPHlOF7Ax7O8boYQIHjlWPe/27+H0mtS3qeQ/LinyeExQhrD29+1Pk89fR7QKdbe7oPPX4NVVd+88DH0lsqIl93ey48gjrbeW0vdTjO/zAh0u6v/kWiwAMneb2vm9DiAaKcO1RrFx+mIGXLhHwWJwDhrp9lkRVY+z2dctgNK8L8qV7Y7YsFaeHPq0MRiNSkhE0C7sWCO0x/ds/JOcxRaPFOfaHi+3X2W7J0trew+o1gdY5IdcF8jKdn1i3WwSjWR0XRrLuiYiIiIiIiIiIKDlUd1TChPomDYbwEFFfKExVtz2VHWVhp9WV6Qx61HVCbzbVndYTzSr8rSClOIE1ISIiIiKigUII9U3HARnbhyRTl2ZN+HamJqybiBiMNlhcIYT4RAixWQjRLoRoEkJsEEJ8IYS4Rwgx2eH8ej5Deo3D6deGmR8RERER0aAnm+qBNXFI85j3gaPifk3AvzvM2eQBYwXW3GPgn5cK/PPS4N8Hju375CpZuQnyysOAxYrwsR7E1X+GePkniENO7DXu7P307yV/l9EQry6D+MPfIKa/DPHvxRDFOwIAJo20/gxObPpQPcJlkcbUD4ix4fOwd+1YDY9Upwgs3hzsRasLQwJiHwARlZnPWY6euM+YsLMY5SsNv5zXH0e+RaiQL2T/HarJ1uuXwWh9uK63PmK98P8uBUbdZOLbdTIYkBclq07136xo146rbpJ49gsT+95jYu5qwOsHqpqAZ76QOPXJ7juS07CPZNhm7G4bI3MFJmnu+XpsjsRXaxLTQz9gSoz9g4m/zbW3vJP3FPC4e39fyPZWyDsvhHzwKqBsDVBbAXzwD8grD4M0u9ar9Pshl3wD+dlbkKWrIefOgvzfO5CfzYB852+YmvaNcrlLyoFl5fH5TGo0j1TIy1QPtyMzVWDscOsy7/4Y+/cTLrRxXKH6u97rB9ZXB/9+20awYTy4DODig62PRQ7YESjOUY/7dn33120W4Rg6nyx3Pg0RqemOjeMRInvhQQaW3mnvIKzDD7zvIPwnHKuwnVpXLjDndUi/P2bL68l0eG+H158cQbLU/0i/D/KH/0F+9R5koyLtqp+z2iusmq0z91GPXWTjlLkvNLbp3+nqKtgOjrTbjFQ2AR0h4dxSSn0wWkiYciTH4ZEGo7FJJCIiIiIiIiIi6r8qNCFCAgZGeGw8zYyIKMY6Q8x6sgoNC1emKxhN3Qm9RdNpPdEqNfXPcg3V1p2IiIiIiMiKS6ifmiw1QfkUveaAOnxbF9ZNRAxGGyzOAXA0gGIAqQCyAIwBcBiAWwD8TwjxnRBiis357dzj9SaH9dnY4/UwIUSuw3kQEREREQ1s65fFZbbyyZsdlfdrrmN51Ne9usnOEDj/QAPnH2ggO6PvQ9EAQM54BvCpw7dCiesfhzhnGkTBKOX4c/cT2nC4KeMFxPAiiBMuhDj6LIjUrkSqPUYCRdnq6TI9AZzaNEs90t2/g9EwYb+wRTzwY5x3pXLc4m33c1h1po1HAESk5PPT9SMPPQm73HQHhoXphDzab6OXd0sj9lj+in50SMfk7HR1mWQIudIJFz7UF7LSgmGPVqqagIPuN3Hqk2a3DuqRaGrXT7/06xWQC+b0Gv7ZCon8G0xc+W/1tHNWAI9+0tW4Ow37qNUEXCWSqdk4XIpVc87+6vUlJXDpSyZavfHtpd/QKjHielMbDKZyrqLOct1SyOOGA3Ne7z3Blo2Qt50dLNdUD3nDiZBXHg55+3mQ502CvOUsyFunQt5+LuRD1+CMd86H0DzB57UFcQpGa1YPD9cWhnPSntb740vzJPyB2L6ncG3TbgWA0FRrWTlQ2yJR1QcPkt1xODDjSgP77WD9mRmGwLET1GUe/aT7m48kGO3DJUzGIIoVXXsUr8DgnfMFHplq70Ds//4hUWkz/CecZouwnS3uIqChBlg2PybLUtG9i8xU/TRt4U85ibqRNRWQF+8Lee0xkDefATl1N8hFc/u6WjFllRutO3YCgMm7qEc2tQO+KM+34iHcOfZDH9sMRrN5niYlUF7f9bqtQ38tL/S6QMyD0SzaPauQeyIiIiIiIiIiIkpuuhCe4Z4CeAxPgmtDRAQUppQoh1d6yywfZNphelHrq1LPMzU4z0xNuFizP1mC0dRhlbqwOCIiIiIionAMTdxQQAYSXJPBo1kTvq07JyUiBqNRl30BfCyEuEcIq9vPAQA5PV6rrwxqSCmbAbT3GKyJBiAiIiIiGqQ2RBiMlj8KmHyyZRG5cqHt2fk0YSK6ULCkt9RGh/mTLoU47QrLIjsMF7j1xN6nTiftARy5m346j1vg/tOFMtjpz0dVI8+sU04nXP07GE0UjgHG7xu23ESverv/838lmtulZcfgZAlGk0vnA4216pE5IyDufROu9DScvrd1hUt86ptYejp61pW2yjEYLXbOP9BAbkb4cu/+BKRdZeLGN000tll3fl9UKnHpSyb2uyeAs54JYM7yYPkmiyCQZe5d4P/tSZDLF2wfZpoSF74Yvtf59a9LtPuCy7AKHFSpa3VWPh50OVeG4rvpqiMECjW/D6yuAm6dGd8whV88YaLe4Wd2zISuv6XfD/nui5AX7Q0ELH5cmjsLcvNayNceBRZ+bjn/kf5yHNI2Tznurvek5U2CPUkp8dFSidOeDODMpwN45VtTOb0uUC/aYLTrpwiUhHncwsxF0S2jJ12wQ2fblJEqsMMwdZnlFRLLt8S2Pp2O3A3wP2PAfM6FwLPB/xseN+B/xoD3KQNr73XhF2GC5DpNKNaP+2Jl1/ptjyD4Z+3W5AswIeqvwrVH8XDKz+zPvOh3JozLAzjp8QA2VEe+7zdbBMVu9hTDhADW/hTx/MPRHStlpuinaWUwGjkkH7se2Liia0BLI+Qd50NaHf/1M5bBaBbTWQV4JcO5SU/h6vTG9/aOt52cp5WFXEqqtzjHzwk5j9WdI1mxDEazOHdlm0hERERERERERNR/MYSHiJKNrv3xynY0+DX3bQKo6tgCqXksVuc8szSd0L2yHT6z73/wqOwoVw5nm0xERET/z959x0dR538cf31n0xNKAiQBBAuidAtYaPZ21rOe3tl7OT3b/WznefaznOU8G+odp6fn2bGDDWxYALHQpLcACSQhvezO9/fHgiTZ73d2ZrMp6Of5ePAgmW+Zb7bMzszO9z1CCJEoR4WMy13kbphtpTpSaVxuOyYVQkgw2s/dauAJ4DxgHDAEGASMBS4FJreor4DrgTvi9JvT4vdEplG3bNMlgT5iKKXylVJDg/wDBiRj3UIIIYQQQiSTnvFhYg2790Td+jzsvp+97zee8t1d2DIHN8V83qvz+/YT7/JBI1H/94ivrm46yuHNSx0u3Fdx5hjFU2coXr7QISXkHRZw2miHj//P4cqDFSeNUvz+AMWHVzlcNLplfnQToa3/DpvqgBPj1hlWP8datvttLrUek3BNgUjtTbsu+sLx9gr7HcvmLPKT9/B+nWx74H5w/MWoi+5ATSmFUQcY66XrBnaq/9FY1qdJrHnXTPP6yi1hRZ2BLQgv1Ame61V3+x/EvVM03f/g8vlizfTFmmXrNZEms9xnLNOMu8tl4ueamcvh5Vlw8P0u//rM5XvzjXcBqHWy+Dxzb/T5Y6OBfMCXS2F1ub9xfbgpdyFoMJot4Ko9WV8bhpd59yzF46fZn6+/f6j5ZGHbBDVNmaP5dFGwNsXXrYFF36Eb6tHl69G3nYW+218Aon72Xvj3nb7qnlTxsrXs2Ef8f4n13FeaXz3oMulbeOUbOPUpzc1vmILRzI9xbnbr0nv691B8d5PD0bvY6zz/VXK/lPMT2ji40Fxn/hpYWJzc19sZoxWPnaqYfLmDs2kQmz9rumQoHEeRmhLscR5caK8/4ZMt469tDP63rDJnwAohEmDbHrXlvtL2PRW79w/W5u0fYIfrXYrKAwRvui56+Xz0snmsnjLFWi+sUikO5aOXJhgs7oNtvyM73d7G67hFiJa01vCRYd+sdC18M7Xdx9NWvLYAXrfs8gql7ozBaBuqvMuXb4A1G+P3E2Qva2XZltpeoczdmwSmd81U7NYvwEqAmgb7qKrr7WVV9dEQbyGEEEIIIYQQQgghxNZHQniEEJ2N1/ZnrSXMEaC40XwhXogUeqYWAN6T0G0T19uTPaxym3YeiRBCCCGEEOLnwrHEDbn653NT186mOlJhXJ4dSkrcjhA/SykdPQDRJr4CDgXe0/ZbTn8O/EMpNQp4DhjYpOxapdQXWutJlrYtg9E8Zu9b1QK5Hn0m6mLgpiT1JYQQQgghRIfQNZXw+duJNe6/EyoUgqv/gf7tMHOdqa+hL38QlRL/kDBsmQSe0gmCiYLSX7/vXcFxULe/8FOYiB+HD1ccPjx4qMuYAYoxA5q308Vp9gahrTWJrokDToCHr/GsMrbmc2vZomJ4aaZ9Im0Xj2CCdjP1Fc9idfFff/p5n52gb3d7iNXow3fH2W7klgUHnWwNTPzH2j9wyLbvxCwf0eQaoHzLNTuryjrv5GQ/4UMdJTNN8eX1Dnvd4T9wadxdzet+cZ3Dntsr/jZFU2O4oeQ5/47/3Lza9deMr/0c/ew9qDteZME6/8/nD6s1hw9XCQSjaaLZ+h0nYnttWD6bjtpFcfpoxdPTYxtqDWdPdJn9Z4fs9OT+Xbe86f/1UZAT4ZnKK8k7/YlAIQjNvPFP31WPq3iNywvuxTXc4ef1b6G4QpPf1fvxWFOuOe2p2NHe957mioM03bK2tLcFRPRIwhnB7lmK5851yLnU/HjPXdP6dTRl3TY1ef0N6q14+4fYinPXaAb3Tt7rLPzYljC0ZNpze3vZ699qauo1WemK2gRuhruqLBoAE2R/SwhhFrF8zLT1vtJJoxSzVgT/tNrm/1xf2y393efoW86AdSt4MPcS/lh4j2f9lanbULik7YLRbH9ptsfhm2nfTgirSNhapL+cghp1YDsOpu1Yv7HGOxgtL9te1tmC0bTWrI8TjAawdmPzIHMTWyijSdPg2XKP25l1bxEyd8peim9W+t+eb/TouzrOdq+mAXIyfK9KCCGEEEIIIYQQQgjRCWitrSFDhRLCI4ToINmhLnQJdaMyEnsnmnUNqxmUbb674tp68/asZ1ohIRW9ljrHYxJ6VaSC7qk9EhhxcjS49ZQ2lhjLCtL6tPNohBBCCCGEED8XyhaMRnJvTi+iwrqROtd8IZ7XMakQv3Rb4VR2EY/W+m2t9RSPULSmdWcAewM/tij6q1KGmZGWboKOMcE2QgghhBBC/DJ89hbUe8w29KDGHx39v99ASLPMONy4HmZ95Ks/azDaVpbTpdetQF95hHel4y9B5XfgRVupHsleoa0/11zlbwO7jPOsM672c3arm20tf/1b86FkXnojoQnXo1/6B3q9+U6l7UF/8IK98LBTUZlbZnSHHMWdx5lnfx8wCEZt22Lhob+1dr1/zTSOyPyu2bKQA1cevOW0T/88c9uVqypw77oI/czd6FWL7OPvAJ05GA1gj+0Uq+5O/NTa3ne6/OZxl//NSPwUycyM3aI/fPI6ruvy+DT/fc3Z9FYJGoxW3gnCB2whASGP18b9Jylr+MDiEnj4o+ScqtJa8/pszTUvu3y+OH79I4bD18fPYunXeRww/4mkjMGPwsg69qn5xFr+8qz4j8f4u81PRFU9zFjefFmp5XXTwyPoIoisdMUIy0f4wmKob0zeqUjb66/ptmlwb3OdJSXEDcsYVAi1D8fftqy5t21C0QB6dVHWv6G6Ht76PvpzbWPwvmsaOl+IiRBbK9tneKiNv/n7/f7Kum8Zz8kTXGxfXX27UnPjU6u58NYfuDlyGgf2f4er4oSiASxO2wG+/aRZvx/M05z0WIS0CyPc8KrLkpLEPwdsj7NXwI8Eo4lAwh4fqLXV7TeONub1LvTao8lKg1TLOajSTvbwVNbZz6M1VVwZv06Q47SVTYLRNlr2s1JDkJHafNlF+yq2CzB/x+vxrq73bluZyG3WhBBCCCGEEEIIIYQQHaoyspFa13xisCCtr3G5EEK0hwJLOKMtzBGioWkmhU22Z1lxgtE6UnHDGrTlGzcJqxRCCCGEEEIkKmSJk9FagtHaQnXEfvFgTqhrO45EiK2LBKMJtNalwCk0vyZ9ELC/8qRE5AAAIABJREFUpUnL6XuZCay2ZRsf988WQgghhBDil8EzXMlLtx4w5vCfflVv2L/k1x++5D2GTZPKwxFzeUoCR5M+spvbhF6xAH3CQM866rJ7Ub+/u51GZBHySJvL+nmk/qsDT/QuB54outBa/uM68/L8isXw3/vQD16FPn8ceuXCVowyOO266Po6+HiStY4aNDJm2al7O7x8kcNhQ2GnAthre7juV4o3L3VQqvnUcJWSinrsY3PfwH9/PIabDo+w705w1AiYfLnDQUO29NEv1zzVfHVdFpE3J6In3Ig+dzT6++k+/uL20dmD0QD6dFcsvsPhtL0TG9SLM1u3XZyTPuSnkzkX3buML5cGaFsUbWkLebKpijPhvT1EbK8Nj8+m3GzF46faK7zQioC6ps59WvPrR1zumezd36794D/nKF7LvZ/dbhtHGgkkTLXSeeX/tJa9N9d7/GXVmuWl9vIfipq332A585eXpGA0gOfONT+/Edf++ZEIP9um7XqYtwkbqmGlx+N2yf6KT69xSE9VlD9of70uvM2hoGvbbgy/udG+/imbXh+1CQb/rCqLX0cIEV/ER1BjW8hKV3xxncNJo4Kv6KVZcNnzmnCLD/PXvtHsfmuE278s5Incc7i11w1My97XV5/z0gZFf/j6fQBuedPl4PtdXpoVDSi68x3Njje4fLZIJ3RMamuSnWZvI8FoIpBGjxfMzykYzePtpzw2J0op6z5jWU3nug/XBp9P193vxj8ICxKMtrpsS+XyWnPD7lnEnGfITldMv87h/H0Uu2wD+3ifOvMORouz3esMx5FCCCGEEEIIIYQQQohgvAKGJBhNCNGRCi3bIFv4Gdi3aU1D1kIqRJaTY6xX5TF5vT2ss4w/RAo9UgvaeTRCCCGEEEKInwulLHMwtGVCqWgVr9DtbAlGE8JKgtEEAFrrWcCUFosPs1TvzMFojwDDAv47JknrFkIIIYQQotV0ZRl82XLX3B910R2ojKwtv2d1gYN+Y6788SS0YfKt/uBF3DN2Rx/aA/eaYwmXmdM7Uj0yvGL6XF+Ee+1x6MN6Rft+5xn/jZNAP3q9d4XTr0WdeCnKK1GnPXTJhZ59Ypc7Dow/uv3H0xb2O847AA7Ytf47MnVtoG57hUu2/FKyGv3svYmMLjC9YS3udSegD+uFPqibd+XBexgXH7ub4u0/hJh/a4jp14W4/ViHjFTzrHA1dC/YzRwQkVW1jhvX3sxHV4eY9PsQBwxq3ke/PPOwIiqFtSmF0V+qK9AT/uz9d7Qja/hQJzubtX1Pxb/Pdlh2Z/sPrDyUy5qU3nybPpwnFm0bqO2KTZv3IBPuASrrgtVvC7Ywt1CcfJYjRijOHGOutLC4lYMCHv7I5V+fxX9Al97pMOvGEKdsX4T6582tX3GCTqqwh6R+v8o7rOH71fZAns3lTdlCFHpkJy+9Z2C+PQxoZRKDuPwEo9m2uQCzV5o7+P0BiodOccjb9Jh0zVS8f6VD7pZdO/rnwbxbHAbkt31CZFqK4tzx5vU89emmYLQE8/wkGE2I5LBtj0LtsEtS2E3x/PkO7oQQ7oQQlQ85cQN1Nnv4I03aRS673RJh2gLNizM0xz3qokls2zY/fWcA9F0XUVyh+cvr5gdm/N0ueZe7nPqky8YAYUq2xzktxR4YLsFoIpCwxwumvqb9xtHGPIPR4rRtuj/U1IfzEx5Om1jv89vuqT9CbYP3dihIjmPT4N1yy0umu+Xb/IKuisdOdfjmzyGm/tH7fE2Zx8uxOk7wWWc4jhRCCCGEEEIIIYQQQgRTbAkYyna6kCMTNYUQHahpmFlTtmA0rTXFDUXGspYha7btW7XH5PX2YPvbeqUVElIBLugWQgghhBBCiCZCmI8nXOLf/FME5xW6nR0yB3ULISQYTTT3bovfR1jqbWzxe68gK1FK5RAbjFYepA8brXWx1npOkH/A4mSsWwghhBBCiKT4cgqEE0iZ2GU8HH5GzGK1//Hm+pVlMOODZov09HfQfzkVlsyB2mr4/G0aXplgbG6bAN6SDjeiLz0YPnsLaiphyRz0HeeiP3rFXwcJ0OXr0R+9jP7sLfT0d+DTNz3rq+MvbrOxBKGUgl+dFlsw5ghUbqDDrk5L5ebD0efGrXde6ZOB+s2PlDRf8NbEQO2D0nO/Rj//APrX28Knb0BtnNnPOwyFwaOSsm517xv2wmfvRa9baSzq7xHSsyqlycU9sz9G13Ts3Q03s4Uu2YKPOlr/HoqKv7f/qbYf0ofwdo4t295ufVV0Mn7QYLSqOBPe21plnea9eeYyP6F5Z401v4Aq66C6PuCD0URJpebS/8Zvv10P2LaHQofD6NvPAUNIaVtTN06M/g+8vNIcoLpkvaLG4/H4ocj7b333B4276cVV26CtAVo9kvjdTWqKotCSUbm6PPHntiU/wWjbdLe3X7DOvLyX4bE4YJBi0e0Oz52rePECh/m3Ouxc2H4bwZH97WX3THatARePnar4/Fr7G3JlafKeDyF+yTrTvlJ2uuKDqxzeu8IhO91fm29Xwf5/c/nNhNZdPLE0dfvoD+UlTP7Bu6+NtfDcV5pjH/G/Tq/tflaauUyC0UQgXvuDtZZ02a2Q16e/irPd6pFtXv6vzzSPTg0WdtiWNgS4DdiXS73LgxynNQ2d3WjJme+WyG3OWqhpgLpG88DiBaPZxiWEEEIIIYQQQgghhOi81lpCeArS+kavcxNCiA7SMsxss7Lweurc2C8lysMbqNfmi1xahqxlh7oY61V10mC0AstjIYQQQgghhBB+OMp8zb+rI+08kl+GakswWoaTRYpKbefRCLH1kGA00dSyFr/bZt4vbPH7tgHX07J+qda6zFhTCCGEEEKIX5oDT0I9+QWcciUUeKRRtKAeeNd8wdFeh0KW+Yt6/UXzbGT9evMwKg3ckH65sW2K3xuMfT8dVi2KXffk//jsIBj92Vvokwej//xb9LXHof/v15711SV3ofIK2mQsiVDn/gVOvxbyt4FuPeCIM1E3Pd3Rw0oqdcldcOKl0b/PIs8NdoiYHy6JXykJtNa4t56FvmAc+uFrfLdTD05J2gWBKi0djjjTWq5P2BEdiT0BnZsFqZb3bUlKz+YLllpSp9qZn/ChziYnQ7HyLofDh7XfOuekD2Fu+uCE2q4qAx0wQ8AWhNQeFqzV7HqLPcjEz2ujtyU4C2BNy1sBBPC/r/09kPvspNDr16DPHAmzpia2sp13Rz0yNRq6GEQohHpyOuqQU6DvDgAMrZ9jrKpRzFtr7+rrOEEOReXw6aaP/w0eeR55lpCLRNkCyf79eTsEozU5056VrqwBHja9zLtr5GYrTt7T4fiRiozU9t0ADuljX981L2uWbTCXZabC3jso9t7BXL4qKbfIEELYtkehDvrmL+QoDhysKLnP4ZrD2m979dO+bEMd8xf7+zCf+iPMX+Pvs8G2r+QVjFbb0DlCmsRWIuwRjPbVe+03jjbmddwR73B5+Db2Cpc8p9nhepcP5nX8+25Dtf8x3P+ed0BjkGC0dZVQvymwrNwSQNY9y39/XlZbTtdUxwmELKnq+OdHCCGEEEIIIYQQQggRzLqGVcblBekSwiOE6Fgtw8yaKm4oillmCxWL9tWn2e85oa7Gep03GM3+WAghhBBCCCFEPI4lbsildTc9Fma2Y8scS0i3ECJKgtFEUy0vlbbdO7rlDOkdA66n5ZS4uQHbCyGEEEII8bOllELtvBvOxXeiXlgQDT7Jzfduc99bqJQUc1l6Bow90tzwlcdwL94f99zRuA9eCZ++2az488y9aXDSjU1TfB5N6om3mws+e8tfBwHoqo3ouy6Eap8XIBx2Kupkc/BbR1GOg3PezaiXFqFeX4Vz7eOojCTNXu0kVHomzmX3ot5YjXq/HHbfL6ZObiRYYkrfcOxFH6ZwsNbQ4Ub0abvClOeCNRx3FKp7z/j1AlAHneRZrh+IfV0rpci3nCctCTXPRddP3pTw2JLJtZxH78zBaAB9cxVvXhbCnRAi/JhD9T8cTh/ddoOekz6UOelDrOUnjrSve2VZsAn3AFXF63EvOQB3fHr03wNXoEvXBeskQVe+4LJ0vb3cTxBMofnaNaB1wWizzdcDxzg+8j762O1g+fzgKznqbNSHlThPTkcNH4167BP/bX91Os7UGtTOuwOgnvoS+u/E9o3LyHRrjE2+v+Sc6HN8TH/cyw5Bv/wI2nVpDGsmfRv/hfPCjGidUo9gtKDhYfH0zTUv/3wxhCPJCWPwu23a1p7/adSnW+fbuA3tk9g2NzMt2sgWVGcL1BBCBBPppPtKGamKO49zeOiU9hlIcagXm7fwG0v8f5h/uMDf54JtX0kpyLQEo9XECQgSoplG7xeMrjPvq21tvN5x8bYWx+zqXaOsBs6a6FJd37HhW+ur/Nd94zvv/dMgx2law8Li6M/llpdLd9u3/i3EC7a8/lXzwGrqvfst7ti5QkIIIYQQQgghhBBCiASstYXwpEowmhCiY+Wl9iRVmb+sNYU6rrUEPXYNdScrlNNsmS0YrTpSGXCUyaO19ghG62NcLoQQQgghhBB+OMoSjKYlGK0tVFuC0bItx6JCiCgJRhNNtZypbZtq+kOL30copYLM1B8bpz8hhBBCCCEE0ZAsNXw06sWFsO0gc6VdxqP2OMi7nx2H2wu//xwWzIKXHo4pmpJ9sLVZmjmHLVZFqc+KSTDtVSgr9le393ao659s2/G0glIK5fy8D9mVUqj0TNg+NtCpe8BgtP2rp8UurPF3IYquLEevWIBeNg9dvArdUI9e8SN6ffM7B+qrjkwoyEgdfnrgNnHttp93+WsT0AtmxSy2BaOtS2kRvjjjQ/Sz9yY2tiSyTQTv6LCPIBxHkZmm+NeZikmXOAzpHV2+U4G9ze/2Ulx/uGKXbWDvfo2cUPEy/RtXWOvPytiVH9MGGsuOGeHy/PnKGj61dL22hqrYVM78Cr77bMuClx9BX3E4uiHOTPhW2lijeSfOGSQ/r42cDEWOOfOTNRsTD1JYVRq/7c71Czjk38cm1L+67X+oPz6CSt1yUZ/KzEY98G78xiPGoq6b0Ly/7K6oJ6YT2u/XDK5fYGw2J31w9IfSdfDNNPQDV6DvPJ/5a+2BC009MlVT36hZ4bErkJf0YDT7i2D6kuSsw++2aXBv/xurFAfGBr31RDvIy1YM9M7nNcpMjf5vez5WlXVsaMlmFbWaxcWahnDnGI8QQdm2R6FOsrN06l6Krhltv556J4MqJ3qx+uoi/xejL9/gr5722O5nWYLRqiUYTQQRDnuXz/ywfcbRgVSczdaBllNiTa0qgze/69jP9A0BgtEAvvDYPw0aYD2nKNpgo2U/vVuWv8+Gk0Z515v0rcY1DK4qTihdccfNFRJCCCGEEEIIIYQQQiSgwa2ntNF8HV5h+jbtPBohhGjOUSHyLYFgplBHe6hYbNBjdsh8kWWVZfJ6e9gYLqVe1xnLCtNkmyyEEEIIIYRInEPIuNxFgtHagu3YMsdyLCqEiPp5z7IWQe3V4vciUyWt9RrguyaLUoBxAdazX4vf3wnQVgghhBBCiF8clZ6B+ssz0DWvecHeh6LumRS/g4L+Ca23NJRnLdtjO5+T7V37iTD3+hPR9bVBh2Wk62rQf73Ad311+wuoeDNvRbtQubGJK67ljhM2e9Z9HbuwxvtCFO266Kf/ij68AP27EejTdkUfPwB9YFf074ajj90e97az0TVVuGfvCbOmBhoTKamo82+FcUcFa+eDCoVQj3/qWUefOxr96RvNluVbbiBRHOoV237i7Ul7fybKGj60FZ7NUkpx1C6KH24O4U4IMf/WEP85R9Elo2kd+MOBiolnKW77tcM3fw7x2alLeH71aSxZNIh/Fp1n7Pu7jBHUOZnGsqsHL0IpxYDYpxiAOUXBJ9xXOYYkqyU/wKQJscuT6P158euEfL42enczL1+z0f94WlpZ5l2e6dbwz6LzSSVO8EVLOwxFPTMbte+vjZ9bauT+qCsfhC651i7UDU+Z22bloG5+lqFqqbHdnPShsQvffYblD9/ne/iZl7gc/Q/zvkDXDEgJJfezeOwAe9m+97g0JiEAy28w2pAAN2QdMwB65HTO/ZKpfwy+0c3cFBRke6+VdIJgjLvfdel3jcvAP7n0vMLllVkSjia2PrZw006Si0a3LMUbl7Z+x+2simeomp/L/EXDrHVKQtH7/iwv9f/H1zX6q2fb7iuFNWy1ynxNuhBm4ThJesuCB3R3RraQQYB479yUkGLy5fG3J09+0sHBaNXB6q8ut4/X6/Eymbsm+v/GWnPDbuZDxhi79Vc8c479GWkIw4zlscur4+RkSzCaEEIIIYQQQgghhBBbl5LGNWjM5xtNQUJCCNHebNuidQ2rYpatNSyL9hEbKpYTMl9k2ZHBaLbxg2yThRBCCCGEEK3jWObvuTrSziP5ZaiOmC+ky7YciwoholI6egCic1BKZQDHtVg81aPJq8CIJr+fBUzxsZ5BNA9gq/bTTgghhBBCiF86teMIeLMIipZAfR30KER16+GvcX5idwSrdyyzvIGzx/qccK497hDwyevoh69BXfn3gCNrsYoF36DP3dt/g4NPRg3cpVXrFEmUG5vYNKLue9/Nby++0TyJuqoCCjwaTn8b/cRN3p1PfhY9+VnfY1GX3QuDRkFKajTMKN3nzOMEqCF7oI85FyY9aa2jrzsBXliA6r0dAPldFBguWixJMaRm1dXA0rkwaGSSRhycn/AhXVYM7z2PXr0Ytct42O841KbkNF1dAW9NRK9ciBq6Nxx4Iio1rR1G7s9v93I4fnfN3DVQH4ZBhdA9q8WrefGW98Lomi8CryPvh8lw4GCG9lV8tSz2AZ2zWpOXHSw9pcox34lEv/gP1ImXBh6jXyc+Hv+OM36DYHp3g4WGGxsXlQcc1CYfzdfMW2MvT3PreW716exlCnFs6cCTUNc8Bit+hOwu0HdA3CBPdeyFcOjvYPJz6Psua1548MmoPtvb2zoOQ7bNgHWxZXPTBxvbFP2wEHrH/Uvi6tUGN7U5ehfzdm6zf3ykueLg1iUGWQNyPnoRvWQJ7H88qv9ODOvjPZamdujVSVKMDAq6RgMbz/yX/3SOzNTo/7bnuKQqCQMLIBzR/Hu65qWZmslzYsur6uGEx1wW3e4Efi5cV/PabPh4oaZvd7hwX0WXjM77fIqfF9v2yG9QaHsYP1Ax/1aHQTf6v3Pc3euuZfThI3EO+g07F0JuysmwZBgFWQVwu7lNcagXWW4t34YG+V7PylJ/2zWvfVJrMFqcgCAhmmn0DkbTy+bFDQ7bGgQN+mrp4CGK8QPhk4X2Op8ugopaTdfMjnnENgTcx1nvUT9ogPXcomiDcku+efcs/339bi+HjbUuv3/OPIi5azR7bt/8MY633SuplBBaIYQQQgghhBBCCCG2JusaVhuXh0ihZ6rXBVlCCNE+Cg2hZgBr62O3X7ZtWqEhVCw7ZL7YpSOD0Wzj7xLqRlYop51HI4QQQgghhPg5UViC0fB/3a/wr8oSjJZjORYVQkR1oukRooNdAzQ9oxcB3vKo/+ymOpsdp5Qa6HM9Tb2gta7zN0QhhBBCCCF+2ZRSqL4DUDsM9R+KBgkHozWQaly+53YwqLfPSaZunBNhk58LNqgW9OTnAoWiqQtvR13/VKvWKZKse2wo1/D6H3w3v2rDA+aC6o3WNrqhHv3q477X4ctJl6FOvBQ1fDRq8Kg2DUXbTF31j7h19Ek7o8NhwB5QU5RiTjjSD1+b8NiSwRpCgUbX16LXrURfuA/6oT/CK4+hb/od+s7z0Fqjy0rQF4yLlr02AX372eg///anx6KzSE9V7FrYwF6FVXSjCl1TueXf6sXom0//qe6OjYvpFTakeXnIm/4/tNYMzS41ls9bG3zCfaVjuZhqzTJ0hXk9rXX1i/6+VPEbBNO7m/kzLJFgtAfedznwPvv4tmtYxsyle3NU1dvxO0vLQF10ByozG7XzbqhtdowbiraZyuqCOvYC1IOT4aDfwMj9o33d8M+4bYeOH25cviK1PxWGILxVKcm50+iIxHZPPGWmKY7f3V7+0Ica3cpUDuu26asp6Cf/gj5vDHrWVMbuCCk+X5P981o1pDZ3+miHSZf4/yohc1MGZU/L5qKkklY/D365rubg+13Oe9ocitbU/2YEH9Np/9Sc8JjL3z/QXPOyZrdbXNZVbOknEnQjK0QAtkMtv0Gh7WWnAsXc039gbM1nzZb3aSxieN33P/37dcUk3tZXctXloxl7wcmMHqDIy1ao9AzU4FF07b8NaZbbPZWk9GJ61t5oy53rTFaW+atn21w5StElw1xWKd96iSDiBKOxbF77jKONeX0i+tzl5aDB3hXrwzBpdsd99m6oCrbuEvM1TkACwWibgprLa8zl3QOeorh4P/v2dEVp7D5OvGC04o6bKySEEEIIIYQQQgghhEjA2vpVxuU90woJKcsXNkII0Y4KDKFmAMWNRbh6y3THOreW8vAGcx/psRcv5YS6GutWRyrb7VqXlmzBaLbHQAghhBBCCCH8CqmQcbmrJRitLdhCt7Mtx6JCiCgJRvuZUUqdppQKdAsWpdR5wE0tFk/UWi+3tdFaLwT+3WRRGjBRKWWZBgJKqWOAM5ssagBuDjJWIYQQQgghRAJ69oHM7MDNGlSacfku/QLMtI93IqwmsYsF9FsTcY/dHn3bWf4a9OqLeupL1O+uRqXIxVmdSm5+zCIHzVUb7ovbdEzN56Q0y+zeQl9yAHpx84A1vWAW7vlj0Qd3hy+nJDZekwNPQl1yV/L680kphXrOR4jct58AsE2uuXhB+s7mgtkfoxvizG5uQ7awD/XQVeiDuqNP2BGKljYvfPc/8ONseG0CLF/QvOzTN2D2tLYZbAL0nK9wz9kbfXB39KE9Y/+dPKRZfQWMrv0y0DpyV38LH7zAgOkTjOUlGyPW0B5b0EeVLRgNYLH/UEO/GsKa+97z9znhNwimnyWEav7aYJ9HxRWa61/1bvP5sn0Z3LDAsw4ASqGu/DuqoF+gMcR0s/t+ODc9jfPAu6jfXoUKmb+oamr4yG2tZXPTBsUsK0rt06oxbjZ6QNsk9xw8xN7vsg3w9PRWBqNZtk2hzRdV1lSiJ95BXrZi35389dnZg9EAjtpFUfaAw5gB3vUy3Fp2+F0P3PHp9Lx6H2OdxghsrG2DQW6yslTzm8ddnPMjpFzoMu1Hf+1mLQ/22nj7e81/v2reZsn6aADfd6s0Y/4aIfNilyF/jvDqNxKQJpLPFprjNyi0rWmt0c/fjzs+nZ2u25Npyw8mPC/rp38rFu3IN0v3+unfy2fXc9gTD6L2P87Yn1KKXrbAxVAv1ocChIfjP6TH9jgrBTnp5s+c6o7bhRZbo3CcYLTl89HxQue3Al6nfvwGow3tE7/iCwkEnSbL+qpg9Us86gd9yheuix47WYPRsoL1B3DMLublf3ldk3mxy263RPhgXvTxjrfdq5TtohBCCCGEEEIIIYQQWxVbCE+hhPAIIToJWyhYWDdS2ljy0+/Flu0ZQEFqbB+2YLRG3UCD7pgvPNY2mMMqJRhNCCGEEEII0VqOJW7ItczVE61THTHfTdV2LCqEiJLZ4D8/5wCPK6VeBF4Apmqtq00VlVKjgOuBY1sUrQb+5GNdN21qu3lq9RjgfaXUuVrr+U3Wkw6cD/ytRfu/eYWvCSGEEEIIIZJDhULoPQ+Gaa8FalfvpBuXp6cG6MTPTM5wI6SaQ9hM9NRX0X+9wF/lgbuizv4T7LoPKqeb73WIdpQXG4wGcETlO/ytx5WeTX9f+qhnuT5zJLxZhOrWA11Wgj53dMLDNDr9WtTYI2HwKJTfmdxJpvoNhD/ch37Q47H67jMYuf+mSeSxk8TXphSyPtSDnhHDnRF//AaG7Z28AXtwXc30JTBjuUZr+KHIXM8WhreZfvcZeMX82tAzp6JGHdjaobaKXrMM3vsf+ok/B247pmY6r3c5ylfdbpFyUoigbz6dvMy9YbtrYurUuyGqasKYThF2y4TKuth+Kz2D0b6H3cxBSIn6zxf+gw38BsEMseR6zVsTfR06PhPWXpqlqWu0l+9R+zX5kRJ7hU3U2X+GX52KKrQHlLWl/nmQkw5Vhmv35mQMZe+6r5stK0rpnZT1jmmjYLST91Bc/Ky2BtmcNVFzwkhNtiXMJp6IpV+HJvs830xD19UwsCCDD+bHfw33z+uYz5CgumUppl7t8MlCWLBOc/MbmnUtgoV+U/ESOZtOR+dHiq19lVTGD+ioqdd8sgiKyjUHDFJs2yP+4xRxNSdPcJm+JG7VGLNXBqv/78/Nz+3T0zUPfah/2obOXwvHP+oy7Y8O4wduHc+1iIZ6RdxoKFbExf6zjh7yRLRHnYT60XHbzi0yvwY7aLc01osPoR++1ldVdceLqPFHx62X3wVWl8cuL0npSZqOEy7VQnFl9HmOtx9vC3NyFORYgmQr6yQMUQTQGOe1W1sNxSuhg/YVk8XrXeF3szXMx9yOKXOhrFqTm93+G8Ogwa8bPILRbI/Xdj2iYb8thV34cZ19DN0ygz8e2+SZzyFsXt+3q+CIh1y+ut4xHks0JYGRQgghhBBCCCGEEEJsXWzBaAVp27TzSIQQwiw/zX5jx7UNq+iZVrjpZ/P2LFWlkZfaM2Z5Top9MnpVpIJ0x/IlcRsqbjBfSFko22QhhBBCCCFEKzkqZFzu6q3/Zq6dUXXEfFfnnFCXdh6JEFsXCUb7ecoETt/0z1VKLQSWARuBCNAD2AUoMLQtBQ7TWq+NtxKt9Sql1HHAZGBzisFYYK5SaiawBOgG7A70atH8TeDGYH+WEEIIIYQQIlHqV6ehAwajNShzWFma+ZyXmZ8TYY31voPR9Ia16BtP9r169dQXHRZYJXwq3A5yukNV84SDHHPG90+eKjqfkypfjt//5GfRJ16KPjrJF4GMPxrnvJsxewduAAAgAElEQVST22eijr8YKkrhX7cZi3V9LQoYZr8WiDnpg9m35tPYguXz2yUYrSGsOfVJl5dmxa/brzFOcs3UV+2hjP+9Dy64NfgAk0R/9DL6trOhwZA45sPIOh8P0CY9IqU//ZwXKbPWKy3agOkUUY45G5NaJxONObxAz/0KxSW+xxjPbW+5/HmS/2ARn3lmDOltnuBf0wDLS2H72GvejP73tffYzij/T9w+1N/fQyU5TC4opRRD+8CXS2PL5qQNjllWHDIHWga1e/+kdBOja6Zi3i0OO99o3wd55gvNhfsmtn9g27w0C0YDKCumX56/P7J394SG0iFSQor9B8H+gxTnjHW586wHeSrlWDLcOo6oeps7i7ec8u0VXm/tp6QKBprOTm+ydqPmVw+6fLvpprchR/P02YpT9vROQHznBxIKRYNo0IhfVXWaF2eatwGrLJvcfe9xqXnYISPV32tPxwvGarNArs11dMJtE1l/bFsf60/W42FoawvD2hr4DQptS3rFj+iH/uiv8pjDfYWiAfSyfO9fEupJN9d8sYBNfTgaCtolznXrtqBNpez7S/ECgoRoJuyRtLvZsnlbfzCax3bV72mbgfkwvC98b56/AkBjBF79RnP2uPY/FxS27Cf27gZrNsYuL66wPyi2bc/OhdF9DdO6Zq/U1FpeTvECaU365cav0xCGZ7/UEowmhBBCCCGEEEIIIcTPiNbaGoxWmObjDhZCCNEOMpxMclN6Uma4NmVdw2qGMWrTz6uM7fPT+hgDALI9JqNXRyrpkZqc66b8qnfrKA2bb8yZL9tkIYQQQgghRCs5mC86dom080h+/sK6kTrXfOdTr2NRIYQEo/0SOMDOm/7F8wFwptbafNbPQGs9VSl1LDCRLeFnChi16Z/Jf4HztNbyiSiEEEIIIUR7GXNE4Cb1tmC0IEeStvSQphob4lbRa5ejn7oV3n3G33oLt0U9/omEom0FVCiEHn80vPN0s+U7NCwlpMNEVOwLrujUz8m/IX7gEIBe+B3qIx8BagGpS+9Jep+JUkqhzr4R1xKMRiR6+F3YLToZurwmtsqK1NjwnggOf/8qj3cWRNv/fn+HX+9mfk+9P1fzt/dcqurgsGGKKw5SZKVH606eo3l0qsucouhk+IEF0b6OGLGlr/99rX2FogEMr/vBu0KpR9Z7r/a5GEg3NsCkCegHr9qy0BAAGNSw+rm+6+Y1CUbLjdjXu77SvJ22BX1EVAqNpJKGYcb9e8+j/+9RVEYCs+5beHGGDhSKBv6DYAb3tpfNKfIXjLaqTPPJQnv5uC4rOWfev+wVDjwJddPTneZzakgfxZdLYx/vObudCZOvabZsXUrrL/AbMwDf4VCJGFigmHiW4sx/mV9DL83UXLiv//5qGzSPf6x5cYZmrSV3x2kZBlu+nn65/oLReuX4H0tnoBd9h775dELL5vEn4E9ca6yXravJcGupczJjykoqvddxy5v6p1A0iIZVnTVRc+QITZcM+2snXmChl3Lz94xGb36X2HqyLnEp7OovzEuIRPkNCm0resUC9O9G+Ks8YDjq9hd9992riznctCSlFymNYd/9bFZckXgwmqPsbSsTy8AVv1R+gtHWrmj7cbQxz2A0n30opbjreIcTH3c9g7bOfVpz9rhAw0sK2+d33+7mYLQfi+192U6npadEj6nnrYkt+2qZvb942zqTQYXmbW5L90yOX6c6/qk/IYQQQgghhBBCCCFEJ1Ee3kC9Nn/ZUSAhPEKITqQgra8xGG1tkzA0W9CjbXuW5WSjcNAtb5AIVEWC3awrGYobiqxlElYphBBCCCGEaC1TYDSA23JuhGi16oh9AkVOqGs7jkSIrU8nuG+8SLIHgeeA5T7rVwOvAgdprQ8KEoq2mdb6bWAY8BhQ5lH1C+AErfVvtdbVQdcjhBBCCCGESJxSCvWm/QtykwZLMFp6kGA0r5mvm8UJRtNlxejzx/kPRTvkt6h/fY3KK/BXX3Q4NWJMzLLu7kYOrXovZvkxu0BBxHwHPKNpr6Bff7I1w4uh3ixC9d4uqX0mxZjDzcs3nZBWSrFdD3OVd7IP5bUuRzM1azylTi4AlxY+wB/XHMGH8+HD+XDcoy5nT3SZNFszeY5mZammrFpzw6suhzzgMnkOfLYYbpykOWti9L3/5neaIx9yef1bWFwCS9bD5Dlw1D9cXvtmy/bhpZn+AmZyIpX0D6/0ruQVyNij0Nd6Wks/el3zUDRodSgaQK/IevJT4qQJbZIX2XKKJte1n67ZEMk2LrcFowHUGkKONtMXtD6BoLhC85sJwb9IaRkEo8ON6CVz0PNmoL+fjp7xAbqilC4Ziv4Z5sdxblH0tbihSvPZIs20BZoNVbGvzxdm2F+zVx+ieK//I6RiDmhRtzzXqULRAIb1MS+fU94F9a8ZP/2ugeKUXsa6J230H2xz+UFtf1r6hN3tj+/UBdHXmV9/+J/myhc005fY6zgtL4gsK6ZfbvznWCnosRUFo+mVC9Fn7QHL5sWtq4hut0xKKr0f/8emxZY3hGHKHHub2gbdumA0Q3Cojdc2IJ61FVBcCRuqo+usqIPqeqhrjP6NEoomWivVfI1C0unqCvTiH9AbN2xZtmGt/1C07K6op75Epfg/wOxluSFaSagX1U7wjWmxj90q2yGto+z7S1UegU1CxPATFl8c+OvbTsfrkzPIbvFhwxTf3+Rwx7Hejf42pf0/UG2f4cP6msdaVA5l1eZHxiuUcYgl6Hn2CvujnJlqLbI6dGjwNjbV9aD9nCMUQgghhBBCCCGEEEJ0OFuIEEgwmhCicylM28a4vOl2bG29eZtma+uoENkh83fP1R0QjGbbJqeoFHqktv7mlkIIIYQQQohfNscSN+QSaeeR/Px5hW1nSzCaEJ6CTGcXWwGt9atEg85QSnUHhgL9gAIgi2gYXjnRALN5wHda61Z/Mmmti4GLlFJ/AMYC2wKFRIPXVgPfaK2XtnY9QgghhBBCiMSpbj3goffRd18EKxdCahocfga88ww0xN7l0RaMlhbkSNIroGizxjizxt+cCGXF8fvJzEb94T7UEWf6GZnoTLY3z7adWHQuJw+bzIeNwwA4aDBMON2BqQECptIy4JtpyRgl7DgC9Zdnou+lzsixpGC4Ww77++XCbEOu2AvdTuSFbif+9PslpY/yz+5nxNSb+Llm4ufxJzO/OFNz2SLN/e+51snh17/qcsyuDkop5q6J2yUAu9XNplVRUg1tn1KhVy+GF//RNp0fcALDcrL4cGH8qj0iW0JK0nUDWW41NU5sCFql5QR6Toa97xoni26u5aT8kjnooqWoPtvHH6SB1prCqxMLMWgajKbnfIm+7SxYtTh2HSPGMqTsalbkHBpTNue71dwf6stVLzZ/nd91vOLqQ9RPYWa28KVhfeDuExzc20vNgzz4FNT+x/v8i9rP0D4KU1zF2gpY0nUY24/cH2Z+RJmTS6Nl/+CK0r+zY9dqHsw4k2rLWy0tBW44XHHcbkkcvEVWuuKpMxTn/Dv273I1vPKN5sJ9429Rvl2pefKT+Nu92GC0EkbuHn+cPXMg1DLVrxPTj98YqH6v8HpWpvaLWV5SZW/j2pJAiH6+HD/S/Hi98wOEW5GBUuYzGK0hrHnXI6BNiI62V2IfwYHoN/6JfuS6aPBrSiqccxPseTD6nL38dXDACaj/exQVCpbiZg1GS+lFQXidsey0vRUvzNDUG/JKWxOMphR0sewvVcYeXgthF44fjMa6OOHQWwGvTKygecHb9VRc+yvFQYM1e95h/vB/6EPNVYcE67e1bMe+I8zzagCYUwTjBsYutz1cjoKBBeZ99x/Nm0EgsWC09FTFuB3h00XB27bk6mg4mtdxphBCCCGEEEIIIYQQonOwhfB0DXUnyxIWJIQQHcEW1rh203bM1RGKG803lC5Is9xFkuiEdNOE9aqIvxuaJpNtm9wrtQ+Oaqe7pgkhhBBCCCF+thxlCUbTcqfvZPM6prQFdAshoiQY7WdMa10OfNbO62wAPmrPdQohhBBCCCH8U7uOh6e/gfISyMhG5XRDX/UQ+ozdYencZnUbVLqxj/QgR5J+ToQ1ek8C1t99GrcLddm9cOyFqJQEZnqKjrf9YOPiPLeMKfPHU/zKRtJSIC87OltaV5b573vjhvh1AJRC/ec76NkHMrNh7XKorojO3nYj0L0n5Pf7KRSpU7IFS0SaBKPlmSdQt/Rw3kWtHs74u73f//PXwverYWC+Zsl6f30eXfVm6wZVFeC1kyD93/sTazjuSNSZNxgKFGRmQbeeqG49GPK8y4cL4z+HeZGymN9NwWg22Wn210qNyvRu/PEkOPly3+tq6tkv4/9tNqFN38nouhr0zafDmmXmit99xuD8I3jXEIz2zKI+PLModgzXvKzZewfF+IGwpETztaXr3+yxaRtRaQlG69Ld82/oKMM8bup8zMMu3x9wInrmR6xLsd9ptCC8jlvmX8zV75xJo3bIy4Z1FbChCgb0gtIayM2C7PT2246eOUZx5zuaRYZ81Zdmai7cN34fT37q7zXptHy/lJeQk6H485GKW96099FrK/oOS1dXwLRXA7XpFSkxLi+usD8mpdX2/rLMuXxANHDTy+3HKs4YrXhvruasibHrL6+JhjPG+6xfWQp1jZ5VhOgww/vCUSPadjur534dDdveLNyIfvxP8PiffLVXD7yLGrl/QuvOtwWjhXpSbdnPycmItltp2A0sqdQQJ3bXK5wox3zITFXbZ/GKn5M450QAKF7V9uNoY157VIlutUZuC327w2pDdvqK0uh7vFeX9tv3tGW79s9TdM3QVBhCE5es14wbGDtGW8iao6B/nrnMK+wx02MfysuRIxSfGo6PEnHDa5oHT+7E51SEEEIIIYQQQgghhBAArG0wn5O2BRAJIURHKUwz352mKrKRqkgFdZEawtp8gUeBpS1ATqgLpvvRmMLS2potGM0r2E0IIYQQQggh/HIwz0NzW940XrRateWYMsPJIkXJfFghvEgwmhBCCCGEEEL8wqiU1Gj40+bflYInpqMP6tasXoPlpEpakJuMNQlksgrHSZZYMse7fPAo1ImX+h+T6HRUVhf7JOmGegrWfoPaefefFulVi5I/iEN+i+q/05bfe2+X/HW0Ncfy5nS3vA9tE6g7ygszNCeOVGgf86yz3SpO2fhC61ZY0bbBaHrZPJj0RLBG2+6MOvUaOPS3voL3hvm8pikv0jyYKzdSxqpU+wVdLWVn2MtqnCzPtvqHLxION/j7B4lPui+rAR2JwPv/s4eibTK0fl7g/id8rBk/UPH+PPsYtwSjGdIZALp2sjfhJr27QfesaDBUS3PXQMXo4+nS7UbWNdqD0fI3BWB1ffACnBueBKBP9+g/gCxLeExbUkpx0ijFHW/HPmdTF0TDufK7er9aX5/tMxitRRis3rAGBfzlaIcvlkSYMtfczhby0xnpM0cFbtMrbA5GK/l6JvxmT2PZizPtj3mG5Tu/l2dqfjRdlbrJO39wOHRo9Lke3BtM8Syujm5H8uJkSJZUeZcL4Zejov9CTvRf3J8VOJv+b1knOx322UnxhwMU3bLaLnRGN9SjLxiXWOM+26PueAk1YFjC6++VYw5uLQn1pNIxJ01mp0F+V3MwmleI0Gaux7UdXTLM46k0hB8JYRX2EYy2+Ht0uHGrDoP3OuZLNH9cKcVv9lDc956587++q/nbie0XxGULMws5sH1P+NYwl3ClJU/Z3peiv8/A86YyE3zp9Evi4ct/v9I8eHLy+hNCCCGEEEIIIYQQQrQNewiPBKMJITqXgnT7tXDrGoqojdgv8Mj3CBbLCXU1Lu9cwWj+rwMUQgghhBBCCBtHOcblrvYxH1QEUhUxX7ScE9qKJpQI0UEkGE0IIYQQQgghBCo9A33gSfDBltChBpVmrJseZDKl9nGHgFrzxQdaa3jub1BsvgvlZurSewMMSHRW6p5J6D8eYyzT91+Oeuzj6M9awydvJHflO+2GuvD25PbZESwnpJu+D5M5qTkZ7nhbs3xD/HqZbg2Pr7mEwohH6o0f1RXocBiVktxTYrq+Dv34DfDiP/w3SklFXX4/6pjzAq1rWF9/k+BbBqP1ipjDiWxyPEKsalWmd+PqjYHWtdmSEs2M5Qk1BWDRlE/Qtx7iq+7g+vmB+588J/q4f2++3oxd+8GO+ZuCFyrMCQeqS/fA620PSin23A5reNcbi7vyu+smUHzvq8bybpFyMnR99Jd3n0GfcgVqh6FtM9iAThxpDkZzNZz3tMuk3wdJfLVTLe+KtGzLa+y/5zkUXu3SaPh+cES/9gvraA29fD6sDf4G7RlZb1xeUlSKXjLH+Dq57PngwWhXvWjf55xyucNBQ7Y8zr27Wasyfy2MGWAvByhu/+tc24xjCNgKGsiVeFsVU9/x2U9yxhK7/mQElPlt6yh8BaJ2NvqqIxNqp+5/GzXqwFavv5flu/96J4N1KQXGspzaEvK79DSW+QpGs2ySHMe+v1QfhsawJjVl63uORQdo9BGMVlkG30yDPQ5q+/G0Ec9gtFb0e8ex9mC0+9/T3HC4Ji+7fd6LEdv2QkWPxY3BaJbsbq+QtX65wcdm24eKp19u8BA2m/USLiuEEEIIIYQQQgghxFZhbYP5Wj0J4RFCdDbdQrlkOJnUubUxZesaVlEbMdwhEshN6UmGY7/+zRaMVt3OwWiudiWsUgghhBBCCNGmrMFoLedGiFazHVNmW45BhRBbSDCaEEIIIYQQQogop3kwSL0yz/JOM+SH6OoKmPoqZGTBbvug8jZNSvea+bq57b2/R/3r6+jPGzfAV+9BQz16/gx4bYJ343FHwrC9465DbAVGeUzwXvjtlp9L10F5sIAno+2HoH5zOfTdAYbuhUo1BwFuVUKWcJ8mM6r7dU/OhOZkevZL+5gmFF1Ed7ec0bVf0ju8NjkrLFkFvbdLSld6xY8w80P0fX/wVV9dcBt07wmZOTBsL1RB/8DrHNrbX70eLYLR+jVa0rwssj3eEjUeF4YBULQ00Lo2e2FG616fB859xHfdIQ3zAve/vgoawpo5q83jHLVdk8CFynJzJ107WTphE5cd6DBlrvkLrBdmaE79/ZEUl+0Dr8eWF4SLm/2uz9gdJm9AZeW0xVCNtNbR9+OHL0E4jDrkFBi5PyO2gYH5sLA4ts0b38GfJ7n0z4P9d1ZkpsF7czXrKqLP5/47Q4nPAAen5Zd/S7ekzOVmKy49IDa0Iz0FzhzT+UNz9OxP0H+7NKG2vSzBaBtCPdFT/ou68LZmy+sbtTUIBKAhHLusuEKzwpxFSH4X2G/n5su2yYUuGVBZF1t/TpFmzADv56S4Mti26qL9FEP7RLerzYPIVIcEcm1uq7bSYC7RcfTcr2H2x8EbHn1OUkLRIPqetlmaup1xedbkp+i139VA7L5yiY9gNNs73lHRbYlNVT3kyrewwg8/wWgA82Zu3cFoHmWt+ThKS1GM3gGmLzGX732ny4+3JScINx6vMLNtLAFjq0rNj4xXX/0DHlKkOJASSuxB7mzh6kIIIYQQQgghhBBCiLZV59ZSHjbf4bBQQniEEJ2MUoqCtG1YXrcwpmxt/SrqXHMwWrxQMduk9KqIjy+Yk6g8vIGGzTeqbEG2yUIIIYQQQohkcLAEo2kJRku2KkswWk7I4+JoIQQgwWhCCCGEEEIIITZrEarUoMypOGktjiT1vBnoKw+Hqo3RBXkFcNv/UMNHgxuJv95F36HDjbBsPvqqI6HUZ/jR8Rejzr5RAh1+JlRKCjp/Gyg23HW0oQ4992vUkD3go5eSs74LbkWNPTIpfXUajmWyd5P3Yf+ujUBq+4ynlU6oeJmzN/476f3qs/aA11eh0szhj777efc/6LsuhHCjr/rqn1+hBu7SqnUCdMtS9MuFlWXe9XIjzSts02i+o69NaggyUqHO8OfVqCzvxmuWoetqUBlx6rXw9vf2uISR28LyDTB+IGyshQ/nx9YZU/uF73V1cavYp/pjPs7eJ9AYv1wK36w0lw3rE/1flxVDuSGFC6BL90Dra0+HD1dskwurDK+t9+ZGQ+HWNeZgCnTIj8T+vfrQHvDKElSvtr8QT7su+voT4LO3tix752nY7zjUX/7DiaMUd7xtfn3d9tbm5S3LNYcNNb8HTJyWX/6tL0JXlqG65AJw57GK7HT4zxeatRthr+3hL0c77Nqv8+7HaK3Rd5wL7/4n4T7yIuaNVVmoO3zxLrQIRjO9/pqqNlzvOafIXv/w4SomCESpaFDZF4YAFa++NisOcJ3r9Gsd9tqh8z7HQgShn7s3eKNdxqOueDBpY+jl8d1/peXi9JyNq+hVOh8YGlNW4iPo0LVc26HwEYyWHbd78Qunw43oJ27yV3fZPLbmTxSv3PzWntY5chfF9CXmFSwqhsXFmgH5bf/oeYWZ2QLGbMd1Xn11y1LsVAA/rvM3rsxW5MD36ZZ4WyGEEEIIIYQQQgghROv8UDWDGZWftOs669xaa1lB2jbtOBIhhPCnIK2vMRhtVuVnRDBfvxwvGM02Kb0qbJ7EHsTGcClfVXxMUf1ydMubMAZYX7y/QQghhBBCCCH8cJR5HtrKusVMXHN/O4/GnxSVyvYZOzOq63jSHY8LeTvQ+oa1zKj8hLUNq9k8T2Vp7QJjXVs4txBiCwlGE0IIIYQQQggR1SJUqd4SjJaesmUyqY5E0LefvSUUDaB0HfqhP6ImfGqfRd5S0RL0Q1f7D0U76TKcS+/xV1dsNdSf/om+7BBjmb5gHHxch37wquSsbO9fJaefzsRHMFrv7DAhrYiozn9KaEj9vLbpuLoCPnsT9j8+oea6ohR998Uw7VXfbdS/Z6F2iA3jSNTwvvGD0XpESpv93i8cLBhNvf0vskInU0fsFwW1TqZ3Y61h2TwYNNL3+sIRzawV5rK/Hqf4v8O23IlmcbHm4PtdljW5SfHtxTfSO+zzM2STO4tvZOz20wK1Of9pl42W64CH941+PuqrjoKIJRg0v1+g9bW35893GHdX7Gd3fRiG3uSSZwl4KQibg+D0cTvApBWovIJkDjPa98YN6Ak3wuxPYMWP5kpTX4Fpr3LiyOOtwWhe3p3jv65julhx6VwYMRaA1BTFzUcrbj468DA6zhfvJhaKtu+xUFcNX04hr8W2aLPSUC4snodubEClbtnnjLdtq6yLfR5/KLI/t3870RyCsnOB4gtDgMrajYbKLZT4DEY7e5ySUDTxs6Ary9EPXgnTXgvW8Mizca55NKlj6ZIRDepuCPtvk+NW0Wvl15iC0fwEHdq2MI4DOR45u5V1voYnfuk+ecN/3WVtdHzUCbT20/LCfRQ3vGrfH7j6RZdXL7EcLydAf/Mx+tl7oufChuyJOu9mVGa2PcxM2QPGNlSbl3sFowGcMNIe/NtSZiuy0VNTkrsvE3E1IUf2j4QQQgghhBBCCCGE8GNtwyq+qgh2TUNbSVGp5KX27OhhCCFEjEJLQFhpuMSjjXfQY45lUnp1pHXBaMUNa3hg5Z8oD2+IX9lD11AumSG5S5cQQgghhBCi9Rwc4/KNkbJOc17K5PON7zN94wf8vt9NZMSb39TOVtQt4u8r/0KNW+Wrvi2cWwixReefBSuEEEIIIYQQon20CFVqsASjpTU9kvxmGiw3JNbP+xq9bgX2aeQtVFXArKn+6gLquAt91xVbD7Xbvp6vGH3jKd4djD0CPnsr/npeX4kKJW9SdKfhmE9INw0oTKGRvuESVqT2D9z9/62/h+IRR9I9SzG1vB977JRBWnoK/fPguN0UPXLg4PtdZi5P9A9o7tCq95LTkYG+7SxIS4fC7WD7ISjbYwfoxgb4cTaUl0DVxmjbIM64PqmhaACHDFW8/YP39rUgvK7Z79s0BgtGc9YuJzN3A6TGXjxWq3x8cfDVe4GC0eatgZoGc9kBg5pPnB+Qr/j6qjpeen8tRRsdDnn5dEbXfuV7Xex/POqQU9h70fc88vKlXNz7Id9NF6wzL++aAaMHgH7/f7BwtrlSr76wwzD/4+wAo7aFFAfChiCGxSXRfyb5HhcT6jNGwkuLUOnB78aj62th7tewbgWkZ0Lapj5SUtFXH+Wvj+f+xognjqdrBlS0YUhNvGC0zkY31MPqxdHPiB2GolTz95mur0M/fmNCfatfnQZ7HgyfvUX3mRvBsKu4MdSdSMSlfsliZjuDGFgABV0VK0u9t21V9bHL5hSZ6+65HeRmm4M38i03ViqpjL/vagtG2zEfTt5D0RiB8QMVv+rcb3ch4tLhMCz+Dn3u6MBt1c3PJhxC69mvUuR3gVVxQhSbynZryF/+BRSeGVNW7OO6ddc1bxcU0aA2G9P2SoiW9Cev+6+8bC66oR6V5pHI1wnV1Gu+XgafGwJJkyU3WzHlcodDHjCniU36Fh78wOWsMYquma0L5dLzZqCvOGxLEPKcL9Fzv4JHp2HZXBByIDdLYTpHVl5jbhMvGG2E93ydZjLNp/c6RG0D5HTOm3QKIYQQQgghhBBCCCE85Kf2wVE/w2uthBBbvYI4IWfmNuYwtc2yLcFoVZFKtNYx19j49V7pK60ORQMoSOvT6j6EEEIIIYQQAtiqz/csqZvPrMrPGNPtoI4eSjNvrn/edyga2I9BhRBbSDCaEEIIIYQQQoioUPNgIFswWnqTI0n9xj/t/a1ZDlUbfa1af/62r3oA6q8vo/oO8F1fbGX2PRamvWousy3fRI09Eu0VjJbTHXXHi6jc/FYMsBOzBqNFtvwcDjO+5lOe7fZbazcKF93krh871y/g30XnMKpuFnxw05aKn4C6/x3UqAN+WvTuHxz6XeNS12juOyfdX0jEgIbF7Fn3dfyKiWqoR1+7KaxjwHC46xVUQWxYnJ7zFfr6E6DUkoYVz++uRp31p1YM1OzEkYorXtBoj2yBXpH1zX7vFzQYDZcs1zxLv8bJittef/oG6vRrfdiUhNIAACAASURBVK9v5grzH5MaguEtrkXTH08i97azOK+22nf/QPQ9MvZI1DWPobK7wrijOG/WoTxd+gVfZO0drK8Wfr2bIiNV4b7wd2sddfzFnT6UMS1FsXOhPWjKJj9SbC8sL4F3noZfnx+oT/3xJPQNJwUbiMmCWej7LmPmDQ8wMLGcL18cHZteoZfMoXXRG21DL52L/supsGROdMGIsXDrf1F5BdHyH2ejz9nLX2f7HgtzvoT1RdAlF3X2n1Bjj4iW7ff/7N13eBtVugbw9xs1y73EJY6dnpBeSAiEFEgIEFoKJIHQy3KpCT0ssMCyF7gsnSV0WOrSwtJZem8LJNRU0km105zYjps05/6huGqONJLl/v6eJ0+kc86c+WxLo5E08850dOqpgJutkz0eSTsXV93TCxX7AjznTBRkhrngUbFFuN2STdbbj5Hd9b993Xq22/gOslATnjZ1mOBvU/VBm0RtidqyLrANXvlL5Asfejxk4oyY11RtYG6kwWglcFT5LPt2aQKJ6tIFHRkCxIcIG1q9TWFUj9b4KkCtyocv2B9bVQms+hUYcEDT1RNjLy80ceaTSvv+sFqU547UM2mAoH/nQOCylcteUrjhDYUnzjAwY0T0K1Tz59WGolVb8h3MHz8HMM5yGYcBpGreQu2tBCp9Cm5n/Zp8mo1P9Ud3XdOtg9asxDXyiJB5kwW3vxebYLuyKgajERERERERERERtUXhQoSIiFpKThMEoyVqTkr3w4dyswxeR/hj56wsKf0xquUa4jaZiIiIiIhixSNt+2CuFaW/tqpgNFP5sXzvzxEtk+RIaaJqiNoPnqVDREREREREAUZtWIsJgU9clsPc+4YpXxXww0fa6dSTN9tf99O32homd70NGXOs/XmpzZEzrol+4YkzgO79rfsmnwZ5axNk+Pjo52/tDE3gUt1gNH8VLt1xP5L9waGFTkPhtQsN7LrgZ/y8ZiR+XjMSa1f2weI1wwOhaBbUZUfBPPdgqBU/AQAyEgU3DFpuObbg9zwUdToLjwz9JuyPckfBNSHDhOScGyFvbgCS08POFdbq36DuvDioWfl8UNefFHUomvx7NYzzb2mSIKzOqYJD+uj7E9wK8ZkZ9dryMyL7GNCAiXhVZtm31/CGn2D9iojWt3qbdfugXMDjqn00qF3boG46DYgkFK1bP8g7WyD/KYBx64JAKNo+xp9uxMNbL7Z8TkRixuYnoJZ8ByxbaD3AMIApf2rUOprL4C6RB0Vkdw79ZYy6aw7U3mLb86mt62MTilbt9UfRY0Y8/rfvotjN2YABi/CvdcuabH3RUNu3wHz4L1CnD68NRQOAX7+GmtoV5rxpMG85x34oGgC55lHIq2sgr62FvLkRMqP+9jQtxLGgc3PuQYVZu428/5NAYEkoDcM1lVJYoglAGRTiONDMROv2bTYepoWaMVlhQt2I2hJ1x4XRhaJ5EyB/ujH8uEaYOiyy16kEVYo0v3WSWoUPKKsMvd3R9RoGYBiCRI91/ymPxyZEiKiepd+3dAW2/bFDYfZj4UPRAEBikYwG4N25od/zFJcDsx4x8cqi6J6flZv/wEMbBuL03Cfw105/wSZnbk2f/2f9+1xD9MFoALDb4m2X3zpXFs6aYDQ7FQd4Q4Q42nHe+NiFPJZVxmwqIiIiIiIiIiIiakaDE0e2dAlERJay3V2Q4cq2PT7P0x2pzoyQYxId+gNASv17bK+rrnKzDEW+HVEt29AgbpOJiIiIiChGescPaOkSGmWvaeOq6M1oR1UhfMr6Ys46/eKHNlE1RO0Hg9GIiIiIiIgooE6oUqXoz5p0OwFVVho4Ub7Y+gRzAMCPn8WwOEBufgky6vCYzkmtj/QZGgg4i2bZhGTIA58AZ1wLZHQONB54BOQvT0KufQzidMaw0lbI0HzM468TjOarwvCKX/DF+sNw0c6HMHbvVzh47zc4q+hpfHRGAaYOEyQPPwCDhuVhUMVS5Ps2hQwoAwAsXwT1p4OgPn8d5oPXYN7z++OFjafi+D2v4dDSz3DZjnux9fd8ZPh3Ah+9hHNenIS3/5iqnW7BxtmYUvK2fn0OB3D06ZC0rNgFb/z3/UDgllJQfj+UUsDPnwPbNkU1nVz3BCQr8qtRRuLEA/R/mdJKgfzze+CUK4FDjwdOuxopT3yM5Agu5iJQ8Jp7reeXhNo7Ls3rxd5iqFL7B4Jt0ryc9Mps0PDpK0BlheVYHZk1B5KcXi8QraZvyMEYNG4wvlo3AeftegzH73kNtxf8GYUr7F9ZM82/E5Peuwzq/BDBiwcfA0lKjajuljJ7VBTBaGddBHgTQo5RM/oE9h8AKNMMhA/6fFBm/dQHZZpQM/tGXIMd17wxDgkob5K5LYPRfvwssD1pBdT65VBnjgD+dYd+0LfvAu89Z3/S7K6B114RSKdcy9fZ9NAPi4jtafDnK9gDFFlvqjAwV/9Y7pRo3be9BGH/ZoWaTVsmg9GonVB/rAB++Nje4NmXA0edDgwdB0w9F/LEd5Bu/Zq0vkP6RvY6lWiWIl0TjAYAO0sDz/tKn/Vz39SEE1VX0TCwsa69Fa3jNYBaJ1X3fZrdZdpQMNprPys0925Q1wzB8Pzw42Y9YuLlhSaqfAqmaa9IpRSm/aMKc3LuxfMps3Fz5rUY3f0LrHN1BQD4fvxSu6zDAFJDZEtHEozm2Pe2Pzu5NiQtHK/1dQ9s69FJcPes2ISjldkIyiMiIiIiIiIiIqLWpbd3IPZPGtPSZRARWTLEwAmZZ8Ep4Y8NdYsH0zLPCHvRnkRH8DFm1UqiDEYrrIzuOMSGBiWMxKCEETGZi4iIiIiIqHtcXxyUPLGly4hauWlx8F0L2hrhe79JadPQyW0/7Juoo2rnZwQTERERERGRbY7at4ihgtFc914E9dtT9cOWmtqQMZBDpjXf+qhFyfVPQX3ySnTLJqcHwrJiFZjVltQJN6zHrPNc9QeuPDGoYinuK7ii3jDpubL29vm3QH33QUSrV385seb2zOJXMbP4Ve3YyaUfYteKLByf9xI+TZgAAEj37cATW87HcSXvhFyPXPVQbejYlHOBuy+JqE4dde+lwOL/AoUbgbzewMZV0U106jzI5FNjUlMoJ+wvuOBf1ifxOw1AUjIg599Sr71ruh+LN9ubv5NvBxLMUsu+UiO+9k5ON2DDSstxKNwE9NAfKFbXxl3WP0uXtNoD0dQvX0Hdc6mt+eo57pyQ3TLvIQz4KB0PbK3/WOpXsRzLPeHDXaYXvwk3Qp/hL9c/Gb7OVuKYwcClkwT3fmQ/ySIn3QV5axPUqUOBreutBxXvAl55ACqvN9QNs+v33fYqZMwxgdvvPhtl5fYsXTkI04Z9hZ9Kc2I6r2iSP9T4OOCCW4HZl4c9sLIpqefvBnbH5sqzNQYeGHZIUlwgwEMX7hGprbsDwSTVv8s/durH7hfiO0JdiJnPDISTpMZb95umwnbNhaWyklru70sUK6q4COqUIbbHy7FnQbo2TZilTu/MwL6Oz+Z2JdEsgdfUh2J+vFzh8S8VvloVCHO8dbrg3HFSs53RvRoaNp7y20qAbh57dVIHtGNL5Mss+S72dTSRddvtjYv17tErFxjodW34DcRJjypUP8P/foLgyiMk5L7aJ8uB93Z2r9e22ZWL+9Ln4J6Cq+DfvRPQ7D84DCAlRDCaVchruGA0hyHo3glYVaift5pX/xGfbX2zBfoton3lDEYjIiIiIiIiIiKyLdfTDaNTDmux9TvFhR5xfTEiaRxcRiOvwEBE1ISGJR2Eea478WvJd9jhs/7yJNOVg6GJB6GzJ/xVduKMeBhwwETwMdLRBqPpTo53ihMHJB8Sdnm3eNDT2w/7J42BIZrjRImIiIiIiCJkiIFTcy7G0MQD8XvZb60uaKza1oqNWFu+Iqi9zK+5wnoL0YVie414DEsaXXM/3khEv4ShGBA/vLlKI2rTGIxGREREREREAXVClSpEf/a2e9m3zRuKBgSF+1D7Jk4X1OijgG/ftb/Q4Sc1XUFthS4YTdU5o9oX4ixkR+1BjNJ7CNT4qcAXb8SouGBJZgk++OMYLIwbgd1GMkaW/4hUc3fIZeTNDZC0rNr7Dgfw/GKokwc1vqC6YXwRhqLJdf8EPHHAfsMhuT0bX4sNnZIEo7oD368L7jtuqPUy+emwHYw2oGIpEpUuGC2x9k5WXuD3ZRUKtW0j0KO/rfVt3GXdnpcW+F9t3wJ12VG25qpLnlwYNoxKvAnA1Q9D/f38eu0X7noEc3PuCbuOmXvCBDl27QuJ16QwtUKGIbh7lmDORIWhN5koqQi/THYyIB4v8PKKQBCYhnr0euv2Px8P/OmvwOzLoZ64KbrCAVuhhl18m/H1wv2wsM+JWOvqjp15w3HZhsgfWw3pni8AoB66NrDtOuq0Rq/HLmWagdfRlb9A/fIlsPCT2K7A4YDMuCjsMBFBWjy0YWKRqvABt/5H4aIJQGq8YIMmGC3OpQ8/A0L3/bFTH4xWVKYPY8pqO09zameUUsCvXwOrfg1sB0cdHnUQY92g27DcHqBLr6jW0xgup6BPNrDMZqZUgrkXKSH2Mc98snYfZmcpcP5zCllJgmn7jjUwNTlAdn7Feyvt1UgdVIRB1ACAzWuh9ha3iX1Lu6/9iTEOD+zRSfDgKYILNSHSVq7+t8KjXyicNKr+EzvVC0zsF9jfmPag9Q7AW4nHBILRNq8DelvP7zACYbEi1m+brILRdPsb1cFoADAo12YwWgzOV3TH6PyaMgajERERERERERER2TYgYTgGJPDkSCIiO/LiuiMvrntM5hIRJDqSsMdfFNRX4i+Oas4CzcnxWa4uOC1nTlRzEhERERERxYIhBoYmHYihSeEvmt5Svi760DIYrdxsXcFoWys3WrZ3j+vL935EjWCEH0JEREREREQdgqP2LMdKcWuHeUwbCSkxJHe8ARk8OvxAaldkUGR/cxk3tYkqaUMcmjOV6wYZhgo1dNTPz5e/PAnMvDgGhekJgAPKF2HS3k9Dh6IdfUZQKFrNHPl9II9/23RFhiHn3AiZfApkwgnNFopWbd5k64/2pgy1TurIS7MfkjKgcjmSNAdyFdcNRouLB9KyrSdZv9zWupRS2BAmGA1vPwlURZYuIhfdBuk92N7gQ6YFAl7quHDXI2EX61a5HhNKPw89aMhYezW0Mj06CZ44w97Hx9nJgf9FBHLezVGtTz3+V6jDkoFt1gcChjT1XMj7OyDPL4bMuSPscDeqcPDK53DK0psx54MTULw8HZfvuBc9vNFd1TXRX4zB5YtDjlHvPB3V3NFQPh/UvKlQfz4+EDQX61C0YeMhd75le/8sNzW2q7/+DYWuV5v4YZ3Chl3WoSd5aQgZDJWfBrg0L5vLtuiDVLaGeKliMBq1BKUU1E2nQ118GNS9l0FdeRzUjadAhQrD1c21fQvw42f2Fzj4mEBIbQsY3cv+Pk2iWQKPqkS8qQ+wbGj+p7WJRKYmnMiwUUJp8751pjZGhQoCN0Lsg62zt4/d0gr32AsmG6cJE2uM88YLHjtdkJNsf5nV24Bb3lH1/l31isKIm01tKBoArHN3R4W4Yfr1P6/DCIQPp3it+4ssLrLp16zSWeehMbCLvW1hXAyC0bz6jwkjUsbASCIiIiIiIiIiIiIiagMSHNZfNJX6ozu2qEBzcnyOp0tU8xEREREREXUkXof1Vc/LWlkwmi4UO9vN935EjcFgNCIiIiIiIgowak9qrwgRjOZWzXcWo7y0HHLQ5GZbH7UiE0+IbPzYY5umjrZENB/zmHXC0EKFZDjrny0t3gQYc+8KhI4lpsSgwOgZ1zxqGYpWTfbbH3L1w81Y0T79RgAnX9H8691n+nDglAPrnwx/5EBg5gjrE+Tz0+3Nm+IvQrJZjCSzxLK/2KiT/uN0Abk9LMepr962tb7NRfrgkPy4Eph3XBgId4qEyw1MOdf2cElKg1wdHIS2dmUf9Khca7lMvFmKB7fOgRMhAgcByCFtN7hxkI3vX1K8QIKnzmNu5sVAVn7TFVWXNwFyz7swrpwPiU8MBLPNmguZe2dk06hy3F54LVb+mIM3p68JOfaGlLeQ5qndlooy8diWC+CCL/RK1i2LqKZoqYpyqKn5wHcfxH7yw2dDviiHcf+HkJGH2V4sPy38mEiVVACzHzVx+cvWISTh1ulY9TP6YINl37It+uVWFFi3iwBZEYSvEMXMxy8H/tX16b+hHv9r5HNtDr39qycrD3LODZGvI0Z0+zoNiTLhVYHEoTSLq3nrfLI8EDoHALqoo+pgtNMO0tfy1SqF6Q/4MfQmP2Y/amKTJsyROqjVv2m75NZXAgHEVtYubaKCGqe0QuHSl0z0u96P7n/240Mbuz5ZScCdM2N/uIKI4JyxBjbf6cADJ9sPUozW7+4+8Is+KLJ6e5GqC0bbG7xt0AWjOeoGo3W2V1+8u/G/g+H5sQlYK4s8t5OIiIiIiIiIiIiIiKjZJTqsr45XEnUw2mbLdp4cT0REREREFF6cYX08ZblZVnO8b2uwlcFoRE3C2dIFEBERERERUStRJxgt1b8bNxXehEpxoyKnN6oOnYXKRV+iYt0qJJvFzVPP4bMhmrAdav8kr7c2hCBo7CurIC59mF+HYWhOxK4bjOYPEdzjsP6YSPbbH3hxGfDhi1A/fQ588UYjimxCk08F/n5+069n2Hhgv+GQfiOACTMgDv0J8E1NRPDM2cC54wT/XaPQK1MwbTjgMDTBaDbDiaYVvwUASNAEo5UYCbV3HE5g5ERg8bfBA5cthFIKIqFPxF8aIoRov/tnAcs+DVtzkMNnQ+ITI1pEjpgNDDgA6tWHgFceAJRCvm8TFq4djVeTpmGZZz8oBH6WLr7NOK74HfSqsg5Nq9F/JHDA4ZHX30r0zgTcTqAyxKZjRLf698XjBV5aBjUhst+/HXLjM4DhgPr9Z0h6FjD2OOt9haNOB164B9hm/cVSKEffOgizjt+Kl5cFp1wNK/8F1y47GRc6UvFS8kzsFS+mF7+B3lU2woR2b4eqKId44iKuKRTlqwqErlWUAf0PgDpvLLBnZ0zXAQDyt+eBQ48P+3y2kpcu0EcLRW/Ndn1ffrq+TvXHCqhLjkD/1AexNDk4xG/lH3sBWD9+l2y2/jl6Zih4ln4NlZEDdOkV1e+JKBrq9cesO/51J9SkkyC9B9ufrFKTUgoAh82CzL4cWPgxkJIBjDkWkpYZWbExdJDNt4kJZimqn43p/p3Y5LJ/YMH8TxXmTBSYms1X9dP85AMFz/7XelDd8MbfNil8ukJh1S0GEuO4jejoVFkpsNl6P1Iuug0y5hio7v2B5YuCl123FK3tEaSUwoyHTby/JPzYFC9w2eGC3BRgylBBVnLT/jQXHGoAMHHR80138NNST39k+wq1/dVhZqnxAHYE9+8uC27za8qtG4zWLcPePlZiDHY/4z2C6cMFL3wfvL6DewHfrLY3T1nzXWuBiIiIiIiIiIiIiIgoaokO66vjlfojP37aVCYKtcFoeRHPR0RERERE1NF4NcFoCiYqVQU8EttzNKJR6i9GiX+3ZV8O3/sRNQqD0YiIiIiIiAgAIA5HzemU6eYuXLfj74E7XcbCOPEkmBteBr59vPnqufTuZlsXtU5y51tQVx4Xflx2cKhJh6QL6DLN2tu+Kv3yTpe2S1IygBkXQWZcFJjy1KHA+uXRVNlkxOmCOuAw4IePm24dj/8Xst/wJps/GiKC8X2B8X3DBwrk2wwnenDrHABAkiYYrdioc0VMhxNywCSop24JHlhWApQUAUmhE9mWbrGuqbO3HGk/RhiK5nQBE06AXHpPZMvtI3m9IXPvAubeBfXT51Bzj0CKuQdn7X4muvlufKZFw/May+UU5KcBq7fpx4zqEfzYE6cLmPcQ1O0XxK4Ytwc48AhIUhpk4oyQQyUxBbj5Jag7LwZW/hzxqp54rTuSsu/CE2ln1bT1rFyD5zedBif86OTfgYt2PRzxvNixGcjtGflyGmrTaqgbTwVW/BizOa3Ihf8HmXBC1MvbDWWMpcEhso/Ue/8CSvega8Iflv3b1m0B0Meyb6n1caoYuPEDqIunB+4cPhu46gGIN8F6MFGMqJLdwC9f6vvPGgl8ttf+65BPn1Yjl98HSU4HWsl+UEp84PVpw67Q4xJVac3tbF8BfoP9oLjb3lWYMxHQXUiuOof2yIH2Q50Ki4EnvwkErlEHt26Zvm/clMD/mmC0kMu2kG/XwFYoGgA8e46BY4c073PggkMNxLtNnPVU04SjLfYMxPi9X2n7Hft+3FSvdX+RRTCazx/cVncuAMhPt1dfUoyO+XrsNIHPD7zxi4JSwDGDgafPNpAUJ/jnVyZuekthwy6gZyd9gG1ZlQJaXbQfERERERERERERERFRfQmaYLQS/56I59rl24YqZf19fLbb/sW9iIiIiIiIOqo4TTAaAJSZe+ExWj4YraByk7Yv28NgNKLGMMIPISIiIiIiog7B0Jww7993NuY2TRJEUxh1eODEe+rYho4NP2b81Kavo63QPYfrBqPtDXHFQof9/Hx57BsgM8RBOaOPgnxRDvlwF+SWl/XjTrkS8vp6yAs2z6IPV9eZ1wEezdnmjZ37+cWtLhQtUr0zw48ZXP4bPPsOxErUBKOVGnXCfhxOIKerfsKCDWHXubnIur3vnsgCreSaxyDvbYdxw9MxCSSS4YcAh0yLbuFOuZAPdkK69Gp0HS0tKyl0/4EWwWgAgKNOA/bbP3aFnHQZJEzIXl0y4ADI499C3t8B9BkW0aq8qhyPbL0IxcvTUfB7HnYv74QVqwehb+WqSKuuL8b7Uuq0YbELRcvtYd0++ijgpMsaNXXXFtilmz48RODGL4HgkiyfdeLftj2mZTsArN1uHajSv+TX2jsfvgC8/kj4Iokaa6ONbdIbj9qfr7LCuj0huVW+NxuYG35MglkbjJbv0x9wYGV7CVDlUzA1OUpSZzOTF0EA5NeNfCmhdqJwo3W72wN0DrwmS/f+1mPWtr5gtFcW2Q8cy0xswkJCOONgA29e3DSHRizxDIAf+hBKx77VpuiC0fYGt/k1uyOOOj9C55T693WSPOHH2BHvEbx0noFd9xrYcY+BVy90ICkusDE8e6yB1bcaKL7fwKpbHejZyXqOshBZ7URERERERERERERERK1FojYYLcTxlxpbQ50cz2A0IiIiIiKisLwhgtHK/RYH4LUAXTCaR+KQ4miBK80TtSMMRiMiIiIiIqIAbTCaL/D/1j+ar5Zdhc23Lmq1JC4eMMJ8dJFmI+mpgxDd78oMhBsqXxXUlcdpFhaIQ38id9BwbwLkuV+B2ZfXNu63P3DIdMjVD0NuexUiAomLh4yfCkw/L3gSjxcy5RxIRg4kr7ftdYesa8gYyEOfAydcCBxwGDBrbkzmxZnXQfL7xGauFtQ1Q5AQ5qT4gRVLa24naYLRio06SVkOF5DRGdA9fmwEo+3SfA+RVaYJjLDiTQQmnADxxPZKL/LXfwF5ocPN5KoHIbe9Chx1OnDQkcAZ10Ke+Skm4WytQfhgNOt2cbog8z+GnHtTIFxr/0Nr/0UiNRNy47OQP/01suUQ2C5KfCLk5MvDD7bgVeXI8O9EgtqLEDFbtY45C3Lh/+n7G7EvpSrKoSrKoLZvgdq8FuaD1wBV1leTjYY8uRAy905g3JTA32jcFMgld0FufQUitn56rX45jVs+Ugd0B3pmhlhnSSCNMctvHYxW6Nc/6Dfssm7vXrW+3n31wQshayQKRSkF5fdDVVUGnvdlpVCle6CKd0Ht3gG1qxBq+xZg9eLwc331tv0V67Yprhgl6sTYwC7hty2JnbNrbudVRbBfAaDKD6wshDYYzaiz+gS3/XlfXmg/QIrasSLr1yBk5NS+r+sxwHpMwR9Qm9c0TV1R+na1/cd1lvU5JM3i2CGCH64zMLpn/fZD+wIT+wX+Degc+bxLPf3hD3HYRXV4WWq89XZrt1UwmuZX6qzztsthiK1gxsQYXwzT6xYkxgX/LE6HIMEj+8ZYL1vOYDQiIiIiIiIiIiIiImoDEh3Wx46U+vdEPJfu5PgUZzrijKa5CCwREREREVF7EucIEYxmto5gtK2V1scpZ3vyGn0+BlFH52zpAoiIiIiIiKiVCBGqpPx+YOPK5qtlb+RXVaP2SS65G+qeS/UDUrOar5jWThtuGAhGw6JP9cs6Iv+ISOITAwFAoUKAqsdecg9UaTHwwfOBhoRkyKX3QnJ7hl4wCtJnKOTSe2rum288BlSURT/hlHMgZ/0lBpW1Dl9cZWDEzaa2f0DFsprbiZpgtBKjTuCX0wFxOKA6dQEKLEKfCm0Eo5Van/Wf7tckEDXk9kBufrFJgsjE6QSe/SUQKmj1HHK6gEOmQVIyIGOOifn6W4NOSQLA+m+UkQDkpOi/pJG4eOD0P2tDxVRxEdT1J+m3T937w3j258gKtnLYLGDJd8ArDzR+rhDksBmQAyZBvf88sPq3oH71/nOQI0+OaE5VvAvq3strt59NoecgSHwiMHMOZOacmE/fvzMgAqhmygI68YBwXxwG+jN91qE024x0+HduhyO9U732Kp/Clt3WMwYFLq36FUqpNvslplIqsP+gzEDAqtVtvz9wv+5t06zzf/Vtf/jbNfOb9tcVtN7adSvb6zVD/4wxq9HU/J40t2P5ZPnhI/tjtcFoEaR+NaOBueHHZGQmQi65C2r+1ciPMBgNAH7eoLR/jrrBaPER/or2VijEe9rm9oFiZJcmGK3u+9s+Q/XLf/YacPIVsa2pEbZF8BFOZmLT1WHHiG6Cr/8cOhT834sUzv5nJYqr7L1PXu3qiRJD/4NVB6OlaI7NKioL3tD4NW/ZHA02HT0ygPU7QteX1AL5lnEu6/ay2OX6EhERERERERERERERNZkEh/XVfkqiCUarsA5Gy3F3iXguIiIiIiKijsgtHggEyuK8lrJWEoymC8Xmez+igfUG1wAAIABJREFUxmMwGhEREREREQXogpFMP7BlLVBZYdktVz0I9B8JdO8PNbUrUGwzyCYEmfKnRs9B7cSxZwMhgtEkI6cZi2nldMFoyoRavxzqqin6ZZ2as5ZjRBwOyPVPQp1+NbB7B9CtHyQlo0nXWWP25cBTt0S+XL8RkL8+C+nSK/Y1taDhXQXHDwde/cm6f6CNYLRio84VMatfO7LyLIPR1IL5wJRzIQ59+MDOnWUAgq9+meov0i6DscdCpp4LeLxAv5FNEopWTZwuyL3vwbx+NvDZq/U7T7u6+R7LLSTL+gKoAICMRgZbSFIqcPd/gPeeg/q/c+t3pmZC/vl941ZQvR6RQNDmzIuBpT8ApXuAynKgx0Coh64Fftc8ISLVd3jg/279LIPR8MPHUCW7IYkptqdU913R6FA0ueddwB0H9BsBdeMpwFdv1e+fFfswtLoSPIIeGcCa7U26mhrnjw8TNlQS2LZk+q0L8okLRSt+R8bo+sFom3fr86ryfcGBS+rJm4EeA4E/VkCVFEUfzBUUvKXChJJZ3TbtBXJV326uFDtqXaqs3+819X5itAbl6oM7q3VNF8iMi4EJM9Dtk3XAh5Gt461fAFOzirq5h1sjPPb97d8UZo1kMFpHpnYVWnekZdbclMwuUP1GAMsXBS//0cuQVhSMVqzZfDTkdQEJLRDSZYcyTeDrt6FW/Ijpe0tw6OJn8YN3BPYYgZNeulX9gQSzFEN6/Ri8rBhY6umvnbs6SDE1+C0PAGC3RY63z2891tHgmgb9cwWf/R56W5gU1/zbG68uGK2qeesgIiIiIiIiIiIiIiKKRqLTOhit1F8MU5kwRHMhagsFVdYnx2fx5HgiIiIiIiJbDDEQZ3gtQ9DKW3kwWrY7r5krIWp/GIxGREREREREAbrQGr8fWL9Cv9zhJ9UE0qjJpwAL5je+llFHNH4OahfE7QEe/Rrqf8ZYDzjoyOYtqDUzNAfbLPkO6syRrSLkRLr1a/51jj4KyioY7ZgzgXee0i933s3tLhSt2v+MN/DqT2ZQe5IqwcSDsyF9b4eaP08bjFZhxKEKTrjgqw1GS8+2XtmGlVCXTgbufAviiQvqVt+9j50rsgHP4KC+dP9Oyyll3kPAMWdCdI/5JiI3PA0MHg31n2cC9489E5h2XrPW0BKyrI/zAwCkxyCPTgwDOPp0oHP3QJBU0TZgwIGQc66HuNyNX0HddeX2BHJ71m+c/zHU0dmAr5EpDRmda0LypHs/fVTPe88CMy62NaXavBZ4/1+NKkv+vRqSVefLtJv+BfXYDcC37wEpGZDjzoFMPqVR67BjUJfmCUb74FID8R59+IeqqgQKAyFmWT5NKA2ArSvXI2P0wfXa/rDeJAEA8quCg9Hw5M1hIpuIWhlfpXW7u3WmGA3JA5LigOJy/Zi8tMD/kpGDcdOygQ+D939CeetXhQGdrfuMOpuaLbsjmhbvLQZmjYxsGWpnirZZt6dl1b9/4JGWwWhY+TPUt+9CRh8V+9qisMci2MtKZlIgsLa1UaYJde0M4Ot3atrSABxR+nG9cX4YiDPLUG4EJ5z9FjdIO391mFlqvHV/kcVxWX7NTkTDYDTdNqquxBbYjDMYjYiIiIiIiIiIiIiI2rJEh/UBUyZMlJt7Ee+wfzXJggqLY0oA5PDkeCIiIiIiItvijHhNMJrNAxibkF/5sK1yq2VfNkOxiRqtec8eJCIiIiIiotbL0ASjmX5gZ4F1X2aXmlA0AJCz/gL0HNi4Ok6+AuilP6GUOh7pPxJy8e3B7efeBOncvfkLaq1ChUSFC/wpb/krZMi5f7PumH154ybuPxI44cL6bUPGQObcAfQeYr1MaiYwbHzj1tuKHTFQcM7Y+oEETgO476wkpFz/QE3IWaqpT/nY7uwUuOHYd8Z7WqZ+hT9/Abz7TL0mVVYK8+65UFdOwU4j1XKxdP+uoDZ5bxvkuLObPRQNAMTlhsyaC+OphTCeWgiZcTHEqTnjvx3JTtL3pWnCHaIhw8fD+McHMJ75CcafH4ZkNs8XQOJNgHy4CxgxIbjTmwi5+x1g4szwE+03vPZ232HaYerTV23VpYqLoE5sRJhkXm/Ia2vrh6IhEDhqXPR3GM/9AuOBT5olFA0ABuRGH4KyfNUgHFnyQdhx1x0jmDQgzHpeuKfmZra/EKKsQ5JWrC4ObttqnVCS4i9CirknbH1ELcW88VSoBfdDLfkOqrJCP1DX54xtSGWsuJ2CqUNDP+dz6+xixLkE8yZHti3aWwksXG/d15hsp182MDaxw9ulCUZLrb9PLSE+G1F3XATVCsKvK6oUKnz2xmaF2K9sSWr+VfVC0XQcMNGncpVl3yanft81qmA0TY6js8HboMFdwm+MkoLzqZucV/PSUabJ4CQiIiIiIiIiIiIiImpNEh36L7ZK/PaPESnz78Vui2PgAJ4cT0REREREFIk4w/oAvDJ/aTNXEmxb5VaY8Fv25fC9H1GjOVu6ACIiIiIiImolQgWjFW237kvLqndXktKAR78BvnwDat3yQBhH0Xaox26wXFz+/EggbOT7D4FNq4GhY4EBoyCNOcuc2iU58RJg/0OBRZ8Apgnsfyik34iWLqt10T2H24pDpwNP3QxU1TlT2uGATJzRqGlFBLjkbmDiDGDxf4G83sDooyAuN/DYN1ATgq/eKKdfDXG274/NHj1NMHuU4NvVCgke4PABgoHVwUUSONs+21eoXb7AkYXOvq2AY9/vqcHrQUPqrjko3+8g/OIcgErlwMF3Toax7HsAwC6bwWhyyd2QBOurcVLTyU8XANahG0Y7ebkWpwu46x3gm3egVv4C+KognToDBx8NyekGeOKhPlkQeo4p59TeOfBI/cCl30P5qkKG6imloK45IdIfI+CIkyEHTALGT4XE2786bVMbmBvdcglmCXpXrcHrG2bgxZRZOCv38aAx+2UDT55l4KCeoR+QSimofz9Qcz9OVaBX1RqscvcOGrtkTQmmK1Vvn3TpFut5+1WssPnTELWQTxbUbsNcbqjeQ4EBB0AGjAIGjgJyewYe67ogXben+WqN0NVHCZ77Th8M1T2j/nbh/6YL3vxZYXmDi7J1rtqCCnFjpzPD9rrrvgaeOFLw0kL7AVVLtwA+v4LT0U5eSClyhRssmyW1U/2GHgP0c2zbBKxbDvToH8PCIldcbn9sZisLRlO7dwAfvgAsmG97mWxfAX7D4KD2Lc4c7TLVT/VUr/V+9c4IgtEcDYLRDuwBpHiB3SEuetkiwWgu65+1LExmOxERERERERERERERUWuQ4NAfo1bi34Ms2DsQpqByk7aPwWhERERERET2eTXBaOVmiIPnmonuvZ/AQKarczNXQ9T+tO8zPImIiIiIiMg+hz4YTRVts+5reNIuAPHEAZNORPUp3mrreuCfNwH+Bsn3Q8dBjjkzcPuQaVGVTB2L9BkK9Bna0mW0XrrncBshXfsCt78OdddcYOMqoEtPyIW3xSQAT0SAIWMC/+q2O13Av36DunsusOhTIC4eOPES4ISLGr3O1k5EMLEfMLGfRSCHETjbvpN/OwzlhynBj60CZxZQAWBfgJykZWqiswKWuPvjpNsMLPMIABP9Kh7G664Z6Fq1ASWaK2ymmg2ulskwxBaRn6bvK6lovjqamjgcwLgpkHFTgvuGHAzc+AzUP64EdjUIDEzLgpx9PWTMsbXjnS7gb89D3XBy8Ip8VYFtXHd9iIl6+Drgl68i/xnu+Q9k5GERL9ccBuXqA/ZCeX/9MQAAF3w4bffz6F25Cud2fhjLPf2Q49uKm7t9ibNvPMneZGuWADsL6jUNqFhmHYxWmQus/g3oPaSmbdmq3QCCD3ztX8lgNGpDqiqBZT8Ay36A+veDgbaUTlD9RwKlmqtaO93NV1+EBuYK/n2BgRMeCk4QSvAAB/eq3yYi+OxKA5e+pPDiDwoO5cM5RU/h9oJrMDfnbjyTeprtdSfU+bVM7A+8tNB+3RU+YPFmYFi+/WWo/VBlpcDmtdaduT3q38/vC2R0BnZo0jkLN7R4MNqeCILRundqPWGA6ss3oW4+G9hbHNFymX7rCwdsdWZrl6kOM8vQZNaWVgB7KxTiPbW/H5/NYDSPSzB1mOCZb/X7WS0SjKZ56SivtG4nIiIiIiIiIiIiIiJqTTwSB6e44FPBV30p8Wu+W7egOzneJW6kOYOPvyYiIiIiIiJrcQ7rYLQy0+LKpM1M996vkysLLqP1HodN1FYwGI2IiIiIiIgCDE2okt8PFFmf+InUzLDTSk43qOMvABbMr210uSGX3xdFkUSkpXsOtyEy8jDIC0ug9hZD4q3DsmK+zq59gXveDWzrRALhSB2dBM62d8BEpn87CixO8q9uE0fg48U/XN1wZ/Zd2OLMwaTST3DG7mfhUbVnvc/JuQfLPLWhDcs9/dCv92IMLF+iLaOTb0ftHcMAeg5s1I9F0clN1feVtqNgtHBk0omQSSdCVVYALncg4Gz3DiAjJxC+2NCYYwOBlQ2DYQFg7VJtMJrasxN4/q7I62vFoWgAsF9O5MvEmWUYUf5TvbbRZd9j8Zr9scdIQpJZDMmYDMBmMNrKX4Ka+lcsx5tJxwW1b3LlBsbXCUZb/8ceWAWj7VfBYLSoGEZg36Xm/3C3Q4x3OAKvXfVuG9btjn3LWt42bNcjoWqzrMeqBqm9XW9+Oz+nUX+uz16FeuDP0f0tdm8H/vuevt/Vur+Qnz5c8OU8A+Nur58i9OfJgmRv8PY5K1nw/LmCp89SwI9fw3HFXADA4IrFEa03sU7Q0EzHlzgPYyNafv//NXF4/8Cfst4/ARyGBLcHjQn8c4bptxxTr1+Cx0jwnKHnsBhj0W8IrF8zO5r1ywGlCbFqsL8rDgdw/i1Qt5xtPb5wY4yLi1xxBMFog3Kbrg47VMluqBfuBp65LfKFDz0exv++gKxnSgGL/NpQwWjGvod9Voi3uNtKgG6e2vt+TTCa8f6zUD3GQXJ71rTNGBE6GC0jQb/ephLnsm4vr4o8KJeIiIiIiIiIiIiIiKi5iQgSHckoqnv82j6lfvsX3tGdHJ/tzoUhhmUfERERERERBYszvJbt5a0gGG1rpfWxnFnuLs1cCVH7xGA0IiIiIiIiCtCFKplm4GR5K6n2rlgmc+4EBh4E9fMXgDsOMuMiSOfu0dVJRNba0YEyzRWKVrM+EcDJj8lqGLWPpWxfgXUwmiMrcMPhwrItCqPfm4g96UcAAF5Nno4PEiZhwabZEABrXd3wRcJ4y1UtibMOO3MoH3pXra5tGD+t2R8XFOB06ANMhnfteOEm4t6XWOFyA506hxyn8noD64NDs9SPn0EmnBDcrhTUMfo5tev6x4eQ4dbPsdYiziXYLxtYUWB/mZP2LIALPsu+ZHPfQaYRBMKotcFBjLm+LZZjtzkyodb8B1AKa7cDqVsXY4OvK2DxUtut6g/bNQAADpnWBoK57NyWCNdVf70MR4otNf0CINpgtHBaeTAaAIzpLVhyk4GHPg8E7hwxQHDskNCPMZdTgFEToe59D+rSyRhYsTSidSbVCTBK/uJ53Lf1VVySc3dEc3y4TNfTnMFBzRtSFCo4zSGA09G4foexb4xFwJxhOSbcHHZD6cReaJ0BGL9ug+EZDI+qQO/K1XBiX4iqxwt07hH0O5PJp2iD0dTtF0CO04SmNYJSCjtKgPQEwDBCP5f2RBKM1qXltv2qohzqf8YAG1baX+jAI4CEZMj+hwLHBn7PWZleWD1vCkMEozn27T+EDEYrBrpl1N7XBaM5Fn0MdfolwD+/D4R8Azi8P5DiBXaXBY8f3AVIiW/+37suGK2sqnnrICIiIiIiIiIiIiIiilaiI8kyGK3Ev8f2HLpgNJ4cT0REREREFBmvEW/ZXtYKgtF07/1y+N6PKCZ4xicREREREREF6ILR/D6gyDoYTVJsBqOJAIfNhBw2M9rqiCgch+Y5bMehx8euDmr76oTVZPkKLYcUOKuD0Ry4432FPZX1P2Z8PXkq3is6AkeVfoBfPUMiLqFv5Up4VGXgTr8RkEvuingOip3jhwOv/hTcfupBDDYKqc8wy2A0fPEG1OX/CA6GWvhxZPNn5UOue7zVh6JVG9NHsKIgOEhk1kjBvCMFUx8wsalo39i9X+O2wuvCT2ozGE35qoDng7cjmb5t1tM6M/HmCi/Ov9JEYTEADLAMRQOALvmpkAs+gpozKWwdcs6NkDOvtVUzUUTcnvBjotUGgtEAoH9nwT9Oivx1SUZMAO58EyPnnRHRcklxddb1zlMY6xkc8bo7Ir+pD3yKvdYaMHc40PNwAECqfxeu3f53XL7zH0B2PkT3nm78VOCLN6zXXLABkp0fYb3WlFJ4/CuFy19WKK0A+ncG7j3RwOED9M+tIpvHFCV6gGGxKTMqkYaiyVOLIL0GBbWHCjfTMZZ8C4w4GKnxgcA8n8VzoLC4/n3d88SpfEBFGdTD10FuXQAA8LgE04cLnvom+HF40qiW2V/3MhiNiIiIiIiIiIiIiIjauARHsmV7ZMFo1se15LjzoqqJiIiIiIioo4rTBKOVmxZXFG1GSils1bz3y+Z7P6KY0JzKQ0RERERERB2O7gRc0w/s2Grdl2ovGI2ImoEu3NAGmfY/MSyE2rw6YU3ZfutgtG3OzMANhxMv/mAdBHFc19cxoOfPuKjzfRGXMLBiKZDXC/LMT5BHvoJ0yo14DoqdORMNOBt8kjyyG3Bwr5app62QcVOsO3YWWAZ6qQ9eCD1hfh/IR7shLy6FPPxl4P/9D218oc1k7kRBXIOQjF6ZwPzZgv27CdbcauDbSZ9i8eph+Gz94ejkD77qbpCSIqi9JeHHvfWEZXOm3zoYrciRhuPL/xIUUmIl/+q/QYaNC/xt5n8MuTzENm/YuPATEkVBRICktKaZPCGlaeZtReTAI5Hx7iocVfKe7WUS92XRKTOQXtSvcgUcytcU5VE7VuRIw7zs2/BK0nQgPkTiVojgM/WPK2JWz4dLgfOeDYSiAcCyLcCR95rYsFMf/PbpCnuhcBdNkPqBgs1AlZVCvfYwzCn5wJrFtpeTc/9mGYoGAFlJkf8MxoLAvoGIIMv6/BkUFtf/PVqFpwGAA/7AjS/fhCreVdP+1+MECQ0yMrtnAHMmtFAwmiZTs6yyeesgIiIiIiIiIiIiIiKKVmIjg9FM5Udh1RbLvmw3j4UjIiIiIiKKhFcXjOa3eXXXJlLi340ys9SyL8fdpZmrIWqfGIxGREREREREAQ6ndXtlBbDD+st5ZPEDGqJWI8pgNLnt35ARE2JcDLVpRu1Hhhn+nZZDdhmB8JVFe3NQXqWf6ndPX2x15kRcwgl7XoMcdw6kxwCIwY8wW9oh+wnev9TAsUOAgbmBYIsPLzPgMFomaKHNOGCSvm/dsnp3VUU58N5zIaeTf3wA8cRBuvSCDBwFcWkSJ1qpIXmCL64ycNwQoH9n4Kwxgq+uNtBpX8CIyykY1Xkv+lX+jogeWTaCTtRzd1q2Z/msg9HsEmWiS9eMwG1PHGToWMj084ExxwQPTukEDDywUesjCumwmdoueW0t5MmFkKseBI45E+gxoF4QaigydGyMCmzdJD4Rrx+7yvb4pLh9Nwr+AAB4VCUOKvuuCSqjjuCl5JmAN1HbL2OO1S/8xRswH78pJnU8+bV1yFm3P5vwm8F9pqnwyiJ9MNqBPYCxvYH7Zwtund7MoWjbN0OdPAjq7kuAXdZhz0GS0yFX3A+cNk87pEtq5LU4vn6z5naWJv+usMH5M35tMFqdji/fqrnZNUPw9dUGpg0D9u8KnDFa8OmVBhKbOYyumtdl3V4W4r0jERERERERERERERFRa6ILRiv127jKHoCdVdvgU9ZfjmS786Kui4iIiIiIqCOKM7yW7WVmywajba3cpO3jez+i2NCc9U5EREREREQdji5UqaRIv0xWftPUQkSRiyY8atKJoU+yp45Jah9Laf5dlkN2OgLBaDN/mdwkJUwrfhOIZ2BfazKhn2BCv+gCGDsqSUqF6pQLbN8c3Ll2KdTg0VDz5wFv/TP8XHe9DenU9q8WO7K74I2LQzyO3HH6Pg31+euQQQdZ9/l8UE/cBBRusOzP8jcuGC0nvhIuZ3Dyh5x3C9TKX2vX63JD5j3Y5sLsqG2RU+dB/fd9YOv6+u2X3BXYfnTKBXoPhkw5BwCgSvcAyxcBS76HWvY9sPQHYGdB/UkPmgwcdXpz/QgtznnYdFz46sN4MP38sGNrgtGKa98vP7zlYgzu9VMTVUft2Tp3dyBeH4yG4YeEnuDpW6EGHQg5qP6++derFK551cRXdTL/8tKAw/oJfCbwyXKFHfsuVNglFVi7Xb8K1/kmemcBE/YT3DFDkOwV/HctsNH67QKePFNwxsEtE3CsNq6Cmj0womXk/Fsgp1wZdlx+euT1GDChlIKIIFPzZy5scP6MNhhN+Wtuq08WQI6u3UYPyRO8emHr2F/3anZ5yiqbtw4iIiIiIiIiIiIiIqJoJTisr3hT4ttj2d5QQYiT47Pcbf8YICIiIiIioubkdSRYtpe3cDBaQeVGy/Z4I1EbuE1EkWEwGhEREREREQVEE6qUxeR6olZDF26o4/ZAzrimaWqhts0IH4y2y5GGHY50bCy3/nKhMdau7AMXfIBF2BBRm9Ojv2Uwmlq3DDihd+gA2mp5vYCRhzVBca1QFMFoWPyttks9+b/Ac7dr+9P9O2EIYKrIVwsA+Z2sv2KRHv2BJ78Hfvg48Dc+YBIkt0d0KyGySbLzgad/BH74COqNRyHDDgHGHgvpaR0OJAnJwIgJwIgJEABKqUCo2tIfgN3bgS69gFGHQ0Sa9wdpQZLdFbM6LcWDmkCiuhI9+26U1x5Q0b9yBe7dejkuzbm73tg+FSvx3bqxeDfxSKx094YfDphjpsCnBH7Lf0bNbcsxqO33mwI/IlzexhgTLRNo1VHtFS/g1QejiWEAz/wMdfow7Rh11VTgoyKIJ3BVxFWFCoffY6K8wUXoN+4Cnv42+IUvVChatVWFgXlXFih8cqUDLy+0fgF1O4Gpw5pm26F8VcCiT4GkNKDXoJqft6a/rDTyULSLb4eceImtsZ0SgTgXgn6v2rmVCQGA0j1AYgqykgVA8O9tm+1gNF/tnYWfQO3eAUnJsFdMM/Jq3sqV+6zbiYiIKHoi0gPAMAC5ABIBbAGwHsA3Simbey1ERERERERERNSQNhjNby8YbasmGC3VmYE4w2vZR0RERERERNZ076NaOhhN994v292lQx2DTdSUGIxGREREREREAY4IQ5XikyCJKU1TCxFFLpJgtG79IOffDOnev8nKoTZMaoMw0jXBaDsdafgoYSL8KnahGQMqlmL+lkuQ79NfLZOozenePxCO1dA7T9meQu59LxCI0hFEE4y2dimUUkFfHKrSPcCL94Zc1HHIVAxyA79aX6gprC6aYDQAkOR04LCZ0U1MFCWJTwQOmQY5ZFrky4oAnbsH/nVgY44YjJ5vrsEad8+Q45KqN1cV9Q+ouGjXw6gQD+7JuAS7jWSMLvsvntp8LpLNYpy455XagW/cEuPKY0sBMGHADwd84oRfHPDDEfw/jLD9ftk3R4N+s+a+Ydnvt91fO8aMYZ1166tus65D32+Kvfdoe414IF4fjAYEQjdVn6HAyl/0f7eTBkBeWwsAOPXx4FC0WPnsd+CHdQqvLLIORjtyAJAaH/sDetTKX6Cung5s2/d+oecg4PbXINlda8dM7apZ2oLbA7liPuTo020vIiLISwuExNnhgD9wY1chkJiCTOvzZ1BYXP936dMFo1XPBwB+H/DFG8BxZ9srphnpgtHKKpu3DiIiovZMRGYAuBzAaM2QnSLyEoAblFI2YnCJiIiIiIiIiKiuREeyZXupv9iyvaGCECfHExERERERUWTijHjL9nKzDKYyYUjLnG+he++X485r5kqI2i8GoxEREREREVFAJKFKAJCR0zR1EFF0bIYbykV/B2bN7TghOxS5Oo+NNE0w2i5HGn72DIl6FQ9smYsTil9DwqRpKP7oTcSpciSb9g4aI2pLpPsAWEeG2Fz+7nfqhX20e54ogtFK9wCFG4Hs/PrtX70NVJaHXFTOvA7Tlgp+3RjdXykvjVdxImpvjOPOxj2PzcTxeS/DL/qvUePd+26U1w9GEwBX7LwPl+ycDwf8aKtbCQEQiAYz4VZVaNSLWQdWN2DOLw68knw8zsp9PGhcmcQB8ZrErDpkzh1Qc4/QD9i+GSs+X4SpHw3D7wWNKNyGA2/VJHcBmDmyCULR1i+HOntU/cY1i6HuuRS49RXgg+ehbjnH9nxy6wLIuClR1dItPYJgNLUvyKxoO5DfB1m6YLQ99e/7dcFoyl/vvvpkAaQVBqPFuQRWG46yJgrrIyIi6khEJBHAYwBOCjM0HcAFAI4XkTOUUu83eXFERERERERERO2ILhhtr1kCU/lhhLlIUkGl9VX6eHI8ERERERFR5LyaYDQFhUpVgTjxNnNFAbr3fgzFJoodngFLREREREREAZEGo9k4aZeImpHdq1vsfyhD0Sg0qQ0ySNcEo/nEhe+8oyz7wplS/Bb+p+hxZN72T8Sf/xdk+bdZh6KlZEQ1P1Gr0r1/9MumZgLDD41ZKW2C2xPdcmuX1NxUe3ZCFRdBfbIg9DKnzoP0Hoz9u0Yf3pKfHvWiRNRKicuNY++/Gd+sOyTkOMPYt+2oKLPsd7bhUDSKneqAOTeq4FXlSPUXWY7ba8QD3sTw8w0/BPLQ55Z9CsA33gPR/19NH4oWiscJTBka20e/WvET1KlDrTt/+Ajq9gsiC0X7v1eiDkUDgH6d7f98DgSCzNTrjwKAPhitztshpRRMTRhh9Xw1fvwMatc22/U0F6/bur2ssnnrICIiam9ExAHgJQSHom0D8AGABQB+RP2E0mwAb4jI2GYpkoiIiIiIiIiondAFoyko7PWXhl2+oHKzZXuWO7cKlCbWAAAgAElEQVRRdREREREREXVEcZpgNAAo9+/V9jWlKrMSO6qsr7LKYDSi2OFZsERERERERBTg0py1qBOX0DR1EFF07ISdORxAt35NXwu1bXVC9tJM62A0APgy3vpcumuOEhza13qZY4vfwbPbzofxzhbIQZOBjM5A5+7BAz1e4IBJkVRN1Dr1GhTY9kZj4gkQpzO29bR27rjolluzBMpXBfOOC6GmdYM6Ohv45j/68cedDTnnBgCNCzc7sAdjj4jaI+k9GCMOyMeU4rcs+w/1/1B7RxOMRmQl3rQ++GavkQB49Aft1CWDDoJcdm+9ti+8Y5DXZy3Gd/+00TU21uSBQLI3Nq+Pyu+H+Y8roP50kH5QZQXwzlO255RbF0DGHteougZFcK6KQ+0LMvvgeQBAZpL176awOBCIBgBrt+vncypf/QbTBL5+235BzcTrsm73mYDPr0l9IyIiIjtuA3B0nftVAOYAyFNKHamUmqWUGgFgEIBv64zzAHhdRDo3X6lERERERERERG1bgkN/8egS/56Qy5b5S7FHc0HSHHdeo+oiIiIiIiLqiOIc+mMsyzTHZja1wqrNULA+Hi7Hw/d+RLHCYDQiIiIiIiIKcEYYjOa1d9IuETUTO8E7XXpBPFGGzlDHUSdkL8O/UztMifVHiwf1FHxypQPLT/0Zr285CW9sOB7/+eM4rFvZB6/v/h8kvr8JkhxIIhIRyImXBE8y9VxIHF9nqO2ThGRg2Pjolj3j2hhX0wZEGYym1i4FnrsDePMJoKoy5Fi55WUY8x6COAOJHflpUa0SADC2d/TLElHrJv/7Ii7e+SBcqv42xVB+zNl8J9SaJYGG8hAHUww8sAkrpLYoXukfL2W7Q588UZccfwGQFHgB+yx+HCZ2/xAFzuxG1xcLM0fWBn8ppaC+fhvmw9dBvfM0VMnuQHtFOdTbT8Kc3gPmCb2g3n0Walch1GuPBMZ+/2EgJOzfDwAL5semsKx8yAc7IeOmNHqqQV3sB78ZMGtuq7JSZCdbj6vyA5uKANNUOPUJ03oQAAf8QW3qgxds19NcvCE+Yiyrar46iIiI2hMR6Qmg4QepM5VS85Wq/8ZFKbUUwGGoH46WAeDGpq2SiIiIiIiIiKj9SHRovthB+GC0gspN2r5sd5eoayIiIiIiIuqovIb+/KLyFgpGK6jcbNluwIFOrtZxTCdRe+Bs6QKIiIiIiIiolXB7Ihsfl9A0dRBRdAwbwWhDxzZ9HdT21Qk8S/fvRJxZhnLDa3vxQfuO3eo7fgT6pF4GteB+YPNaYPgMyNnXQxqE+MkJFwIJKVAfPA9UlgfCCmbNjcmPQtQayIQToBZ9Gtky970PSe+AX4ZFGYyGRZ9CffGGvbGjj6p3NyMRiHMqlPvsh5wAwN/2+xEiB0S0DBG1HeJw4LBH7sN/zpuCB9IuwG9xgzCgYhnO3fUEji59H/j5MKDnQH0wWr8RkAc+Bd57FurFe4F1ywLtWfmAg9et6qjiK/VpUeUJmYjkUxZ5dQ1eOv5PODnv2UbX5YAfu+934Y1fFF7+QWHxZmC/bOA/iyObJzMJmDI08HqqlIL6+/nAO08F7gPAK/OBWxdA3XAysHxRzXLq1j/Vm0f9605g5sXAx6804qeq48zrIKdcGbPg5VHdgc4pwJbd4cc6VJ0gs22b0Cerj3bsks3Amm3Af9eEms8iNO2nz6G+fgcy5pjwBTWTeDeQ4AG8LiDOFfjf6w7879fnvhEREVFoNwJw1bn/lFJK+2GIUqpMRM4E8BuA6h3Rc0TkdqVUiD0OIiIiIiIiIiICALfhgVs8qFQVQX3hgtG2aoLR3OJBqjMjJvURERERERF1JG7xQGBAIfgAtLIWC0bbaNme6e4MhzDKiShW+GwiIiIiIiKiABeD0YjaNCN8wIKMm9IMhVCbV+exJAC6Vm3A756+thaNdwPd0mvvy5CDIUMODrucTD4FMvmUSCslahvGTwXunguYNlMgUjKAoeOatqbWKlww2tjjgK/eCm7fpr/Sbj1JaRBX/VAaEcGQPMH36+xNUe2Q3v7wg4ioTZPu/TEhvwQTVswO6lP3XAoMGg1VUWa9sCc+EAZ7zJmQY85s0jqp7UgoUMD11vsDewcegkhOgSgTL+Z2ewiw8XL09h9TMbn0Q7yYPBOndnk6qH9Y2S/wbk7A7FEDMHtUbfuqQoVJd5v4Y6e9mh49zUBi3L6g0WULa0LRaif8FeriSUDhhvCTLZhvb6XhTD8Pxjk3xGaufVxOwXXHCC5+XoUd66j7B9q+GalJqcg1BJvN9KCxR90Xfl/RofmDq4euAQ4+GiKRBb02lYG5guL7bYS3ExERkS0i4gUwo0Hz38Mtp5T6XUReBzBrX5MTwMkAbo5thURERERERERE7VOiIxk7fduC2kv9xSGXK9AEo2W5c2EIL6RFREREREQUKRFBnOFFmVka1FfeQsFoWyus3/tlu3ObuRKi9o2fpBAREREREVGAyxV+TF3e+Kapg4iiY9g46bgTP1wlGxocfJVfZSO4YJ+BuYBhtI6T8YlaC0nLAgaPsb/AUacHwnQ6ogahZQ3JFffbCgLVSu1k2XzKQZFtt4aU/4oxg5Ojr4OI2o4E/XP9/9m78zg587pO4J9fVd9HJgmZZDKTORjmDoxz4XA43AgoDKcjwq4ggopcHii4glyKuoKK4LGisCgil4DHgqICLgvIrhwLyLVyDMcMMzBXkk53ju5n/8gwSbqfqq6qrj7S/X6/Xnml6/f7Pd/fdyaVTlX183ye6lkPSq79Qv3kyOgyNcSJbKzNP3P7d+3uqtbffbrKd2YnFl33rJt/Pw+d+sckyWP3vDOXznyydk0+uDB49JztJZ9/WSM/cNfF+/nqrzfyyEuO/ntaveuP6xd2EorWR+UJP78sdZ9+35KBDl6SNI+9O+WN30j1kh/N7j0f63nfZtUiCe/aLyTfurbnugDAmveQJMf+UO4jVVV9vsNjXz/v8WP60xIAAADA+jfenKwd3ze7p+1xNxz8Ru34KUO7ltwTAADARjXaqL+WdXp2dYLRvPeDlSEYDQAAgCMGh7tbPzK+PH0AvekkGK1NsAPcYV7o0BmH6z+sr7P7VKFoUKe84m86W/j4n0n5qV9b3mbWsFJKcul96+fe8PGUbTuTi67sfYMt22uHn3n/1t+7mtXhXLn/o2lUsxmZm84P7n133vO1q1N2+IElbAjtgir3703e97b6uRFB4izULhht+lDnr6OnDlR5/B9XHa39rRuef8fXgzmcN3/jiXn0nndlaO5ATjv0zfzh9c/ME/f8ZarX/krt8SODJX/7rPanFNz6qkbOuNO8/t/zZx31t5zKq/4h5ZQzl6d2Kbn3OYuvOzbIrPr7NyYfe3/ucugrPe87kMOtJ2+7qee6AMCa99B5jz/QxbEfTI57EXFpKWXHkjsCAAAA2AAmmvXnWy4ejHZd7fj2ITe2BQAA6NVIi2C0mbnpFe4kqaoqNxz8Zu3cjqHTVrgbWN8EowEAAHDEYJsrdGuUUcFosKYIRqNvjg812HWom2C0fvcC60MZGUt55d+1X/PSN6XxjN9MaRfCswGUp70kmfc6szzjN1PO3n3kwV129158y8n1e5aSr1z8O9lx+Ibjxkfn9uefrn1oPnTt/bPnC9tyyxd25K+/8bjsGJlJ8W8qbAydvMauMywYjYXaBqMdXPz42/ZXee7b5jL5rLmO9vvsly7OQGaPG7vLoa/kbd98Qqa+sCXX/se5edqtr7vj1X/1gXfW1iml5FuvaGTXluPHBxrJe57TyKbRtROOXH75T9P44IE0Pngg5bL7LeteF3UQCt089v//x96fpLv3VwvqVbOtJ/fe0nNdAGDNu+u8xx/p9MCqqqaSfHre8BI+XAEAAADYOFoFo021CUabq2bz7UP1wWinDLkJHwAAQK9Gm62C0favcCfJbYdvzoFqpnbOez/or4HVbgAAAIA1YnC4u/UjLvSGNaXRQf69EBc6Me+5tOPwjR0furuDcADYqMr3PjhVuwVnXrBSraxp5W73TF774VT//LZkel/Kld+fcsUDj87feXf7/4/tbN7WcuqMC07PJ97+vXnt5qfkC8Pn5cxDX8sTb/vLXHDwi0mSkerA0cXb/bASNoxmjz9KHR7pbx+sC8MDSSlJVfMP2f5FgtEOHa5yn9+ay6frbzC4wGuv+6mcd/A/Ws7XvWqvXvj45BV/m2w/PTnz/JRj3hds31TyyV9p5I//Z5V/vy7ZtSV5wveW3G3XGnv9f99Hr9hWF+1cfE2jWhhid/pSgtHSLhjt1gVD1W03Jd+5Ptm/N9l5Zsq2pSdZVzffkMzNpWzr4H8AANAvF8573PqFXr0vJbn0mMcXJXnfkjoCAAAA2ADGWwSj7Zvd2/KYmw7dmMPV4dq5HUOn9aUvAACAjWikUX8t6/QqBKN962Dr8wC994P+EowGAADAEV0Ho40vTx9AbxrN9vMjYykDgyvTCye2ecFo22c7D0a79Ix+NwPrzEnbktu+Uz83OLSyvaxh5cwLUp7ywvrJ8y/rve7ue7SePO/SbJ/9dn75pt9cvFC7OsD60mswmiBxapRSMjpYH4K2WDDan/1r1XEo2tDcgTxq799032CS6rmPOPLF1lOSl7wx5ZKr7pjbOl7y/IetsSC0Y5TnviZldOU+q7poZ0kWiWutCzLbdbj3YLS5tAlE33vLHV9Wc3OpXvMLydtec9yS6ooHpPzKG1K2bO9672rvLale8Pjk4x848vjie6f82ltT2gTPAgBLV0rZmmTrvOGvdVlm/vpze+8IAAAAYOOYaE7Wjt92+ObcdKj+nLovTX+uZb3tQ0u/iQ0AAMBGNdoiGG1mBYLRpmb3ZmZu+o7HX5n5Yu26yeZJGWtOLHs/sJEIRgMAAOCIbsM4VvBiU6ADiwWjjZ+0Mn1w4ivHX2x/8uFvd3TYve6S7Ni0doMSYE1oF7Az1GVI7UZ14d2PhLXc/K3uj73q6tZzp5+bnHlBcu3nFy1THvvT3e8NnJh6DUYbGu1vH6wbY0P1IWhTB6okrV9Lv+Bd7QO4jvVTt742W+Zu7aG7Y9z8rVTPelCqxzw95eE/lnLu9yx6SDWzP3n3G1Ld1MO/0f3w4Mev6Ha7O7hupVktDEY781C3OSZHnTzbImA3SfbddvTrv/7jBaFoSZJ/e1+qZzwg5U2f6Xrv6uVPvSMULUnyqQ+leumTUn77f3RdCwDoyuZ5j/dXVTXVZY35V+n6YQEAAABAByaam2rHv37gy3nhl3+iq1pbB07OcGOkH20BAABsSCON+nNzlzMY7eszX84brn9Vrjt4bUfrdwztWrZeYKNqc0thAAAANpSBwe7WjwhGgzWlscjHPOP1dy+EBeY9l3bM1t/dcr4HXyQUDRbVbBNiOSgYrROl2Uwe/uTuj3vzZ1MmWl/3W0pJecRTFi/0mJ9KOeduXe8PnKB6DkbzPZ16Ey2eGvsOtD7mzz4ylxv2LF77fuclv/uA6/LKCz+anHl+/aJzLk55782LF/uud/xhqqfdK9W/vKvtsmr/3lRPvjzV7/xM8me/0Xn9bgy1uVBk4qSUsZV9z7t9U8m529uvaaY+GO3UQ9d1vd/FM5/KttmbWs5Xf/nbR36fm0v1F69sXejr/y/V22tC09qopqeSj7534cTH359q7xJD+ACAxcy/lfR07ar25h+z5BdOpZTtpZTd3fxKcpel7gsAAACwkiYG6oPRerF9qIO77gAAANDSSGOsdnx6dnmC0aZnp/K7X39Bx6FoSXLK0GnL0gtsZILRAAAASHIkDCKDQ50fMFKfsg+skkabsJ0kGW8dBgPHKcd/ZLj98Lc7OuziXYLRYFHtAnYEo3WsPPEXklPv3PkBZ16QcloH194+5unJPR/Wev7+j015zu90vi9w4usxGK34nk4Lky2yvfbO1I9XVZWfe2vVtuZdT02+/puNvO+5zTz78aen+bI3pfHGT6W89sPJ1h1HF95pZ8rz/zhldDzlRX/eedOzh1P9zs+kOnSw5ZLqdS9Lvvnlzmt2qzmQ7Dyz9fz21bnL4mMua/8eaOfh6xeMlSSP2/uOtse9/NElp24++njL7M3579c9tX0zt92UamZ/8pl/TW74Wtul1at+PnOPvzDVezp8Hnzp00ndn//sbPLv/9pZDQCgV/OD0Vq8cmxrfjDa/Jq9+Okkn+ny11/3YV8AAACAFTPe7F8w2ilDq/PzLAAAgPVitFkfjDYz18v9xRb3qX3/J9Nz3YWu7RCMBn3X423OAQAAWJcGh+svdKwzLBgN1pTmIsFoE/07SYd1rnF8MNpJc7dlaO5ADjbaB3zczef3sLhGm3uVdBNQu8GVsYnkTf+e6n71P9xcsP6xT+9s3eBQ8pvvTP7v/zoSALLt1GTztuQ71yfbd6Xc7Z5LaRs4EfUYjOZ7Oq20Ckbbd6B+/PrbkpunWtf7u2c18oALkpHBhQFd5YLLk7/8bPLRfzgSfnzl96eMjh+Ze9A1qT7wjuRf3tlZ4zddn+o1v5Bc/H3JRXdP2XnWHVPVgenkLa/qrE6vtp2ajIy3nl+lYLSfvE/J7/5TlQOH6+cfNPW+2vEf2vP2/N7WZ7as+4sPKfmJ+5R88Lm/nIPXfikP2fePmajaPBG+6/9+MNWH/kcnrSff/HKqlz81ueHryennJrvOSTn/0vq1VZtwviIgGwBWWPvU3P4dAwAAALDhbR/c2bdapw2f1bdaAAAAG9FIo1UwWnfhZZ268dA3uz5m13AXN38HOiIYDQAAgKMGh5Ps7WztkGA0WFMGBtvPjwlGo1NlwaNLZz6Zj45d2fKI7ZPJ2duWuS1YDxptQiwH24cPcrzSbCbvviHVD+yoXzA8mtzplJTHPD151E92XreU5JKrjvwC6DUYbcj3dOpNtHhq7J2pH//GLa1rPesBJT9wt/ahVGVsIrn/Y+vnXvj6VNt3Je/9y+S277StkyR5xx+lescfHQn+e/YrUx71E6lu/U6qRywtIbn8+ItS/elL2i9aLPhs052W1EOvztpW8uKrS37pHQuzRgZzOD984N21x91j+n/nggOfz+eHL1gw99mXNNJolGwdTx5R/a9k70c77qd67tXJ6ETn/wHJcf/vqwc8LuXFbzzyeui4RbJUAGAV7Zv3uJcfzs0/Zn5NAAAAAGpsGdyW88fuli/s//SS6ow0xnLZ5L371BUAAMDGNNKo/3H59DIFo+073OE1trc7eXBnzh2767L0AhtZY7UbAAAAYA0ZHOp87bBgNFhTFvv7O3HSyvTBia+xMFzhcXvf0faQx15e0qg5Dpin2ToYrbSZo16Z3JzyW3+dHBveMTSc8rI3p7z35jTe8vmUH37OwnAPgE71+r1Z2CUtTI7Uj+89UD/+zVtb1/q1Ry3t37cyPJrGs1+R8rffSHnl33V+4KGDqV75rMxdNbzkULQkyZkXpDzzv7Zfc/q57QMHxyeX3kePfv7BJddcsfDP4kWPGsxZ/+MTKa/+pwVhZSXJH17/zAzPHZ+I99qhV+WCncfUmj3cfUPTS8g5ed/bk7/5k4Xj1Vybg7zOAoBltlaD0f4gyV27/PXIPuwLAAAAsKKeeuovZvf45Wmkt58d7xw6Iz97+q9mtDnW584AAAA2ltHGeO34zHIFo83u6WhdScmdR87Ps09/cRpFhBP0W4+3OQcAAGBd6iYYrd0FqcDKG1jk7+/4ppXpgxNfzQfx1+z5q/zi9l9P1eJD+h+5u4vhoSNNH8n3W7nHQ5M3fSbVe/48ZXA4uc8jU87evdptAetFr9+3u3lvzYYyOVKSVAvGp2YWrk2Sb96ycG2SnLIpmRjpz2vwUkqqKx6YnHVh8tXP9aVmV3acnnL/xyTnXZrq2Q+uXVIe/PhUb/291jXGVy8IfKBZ8hdPTR5zWfI/v5gMDSQ/cNeSB110+5/PJVclr/to8k9vTfWta1POuiDVvtty1Rt+PZ/90vfkdZufnENlINfs+atcsmMmyc8dLX740Ir/91Rve01y9VOPD5Y92OIJmvQW3gYAdOO2eY/HSinjVVVNdVFj+7zHbeJ3O1NV1Y1JbuzmGMH1AAAAwIlovDmZZ+x6YQ7MzWTv4fkf1bQ30hjNxIDzNgEAAPphpFF/H7GZuenMVXN9DyVrFYx2n80Py4O2POqOx2PN8Yw1J2rXAkvnKiwAAACO6ubi7eFebkoPLJvF/v4KRqNTjYU/DDjt8HW5//4P5H3jD1gwd9adknvdZSUag3VAMNqyKLvOSXnaS1a7DWA96jkYTZA49cZbPDX2ztQHoH2jRWTFuTv61NDtSqORvPRNqV7yo8mXPt3f4ovZvutID5feJ3nHl1O9+D8nn/rQkbmhkZSn/1rKFQ9I9a4/blmirPL73Waj5JorSq65on6+7DonefJ/yR1RIO97e6okZx7+el7ynZcdXfi1pJqbO/LnkbQOHbv8/snH3t+n7ue59vNHfp114dGxA9Ot1x88sDx9AABJkqqqbiql3JJkyzHDZyTpJtH2zHmP/9+SGwMAAADYYIYbIxkeGlntNgAAADaskcZYy7kDc9MZbY73db+p2b214ycPnpJtQ30+iRNoqb+RhwAAAJzYurl4WzAarC2LBKOt9oXinEBqgtGS5OU3/koGq4MLxv/r4xppNErNEcACjeZqdwBAN3oORusidJwNZbLFtRL7WmRLXXdL/fhpm/v/+rvc+aKUP/1oyruuTXnth/tev9bwaLL16AlC5eTTUl7zzylv/4+UP/lIyntuTHncM49MjrQ+qemECwLfcXrrub/6/aNfHz5Uu6RcdXXL92198YVPHP/4wEzrtTWhaVVVpfrwuzP36l9I9fpfTXXLjX1uEAA2nPkhaOd0efzZi9QDAAAAAAAAgDVttNn6HMLpuf19329qdk/t+Hhzsu97Aa0JRgMAAOCoIcFocMIaWCR8YeKklemDE1+p/8jwipmP50NfvV9++La35pIDn8qjL03e85xGHne5UDTo2FZ3BgI4ofQajNbNe2s2lFbBaHtb5E5989aqdvzUzX1qaJ7SbKbc6ZSUCy5Pzr2kP0W/56rk7g+sn7vq6pR5AV+llJQdp6ecf1nKsX+Xtu1svceJFoy2fVfLqeptrzn6YPZw/aKhkZS3fL7PTR3Tw5c/c/zAwTbBaDVz1e8/L9XzHp289fdSve5lqa4+PdUXP5lq32197hQANox5/zjnnp0eWEoZT3LxIvUAAAAAAAAAYE0babQORpuZW3iDz6Woqir7ZvfWzo03T7DzFeEE1+PZ/AAAAKxLiwUrHWuoxdW8wOoYXOTv75gPXulQo/W9FC6b+WT+4ronJ1t3pPH0r61cT7BOlP/0C6k+8p6FE/d46Mo3A8DiBnr8UWo3763ZUCZaZObtO1A//v4v1I+ftkzBaMcqL/2LVD+ye2lFTr1zynNemew6J9UvPTb52PuPzt35opSnv7zzfrbvSn1MXE68YLStpySbT05u/fbCueu/mur6r6bsPCuZna0/fmAw2XFGMjKWzPT/TpeZH4x2oPVJY9UNX0v18qcl//zWI38Om7Ym1y4Mbat+/Mqk0Uj5l/6egAYAG8TfJ/mJYx7fr4tjr8rx54h+oqqqG/rRFAAAAAAAAACslNG2wWj9PY9uZm46s6m/semEYDRYUYLRAAAAOGqxYKXvGhhMaTaXtxegO81FPuaZ8MErnSqLLxmbWP42YD3afY/krAuTr37uuOHyA09apYYAaKc0B1oHMbUz1CL9ig1vskXG/K01WVGfva71s++0LX1qqI2y65zk51+d6pXP6vygrTtS3vL55GPvOxKov/vKlLHJI3O//e7kMx858jro9HOTi65MGe4idH/rKa3nRsc7r7MGlGYz1b1+IHn3G+oXfOnTyc6zksOH6uebAymlpNpxenJti/S8pbj+q8c9rL755dZr3/DrR78+OJPccmPrtXNzS2oLADawf0gynWT09sf3LKVcUFXVwjTShZ487/E7+9kYAAAAAAAAAKyEwTKURpqZy8Ibjk73ORhtanZPy7mJ5mRf9wLaa6x2AwAAAKwhnQajDY8uvgZYUaUsEmY1ftLKNMKJr9HBR4ajPsiHXpRmM+X33pvc/7HJSXdKzr0k5Zdfl3L/x6x2awDUWSx8uJVBwWjU2zZR/77t23uTqjo+CO3V728djLZrSwdhxv3wyKel/Pyrk9POTrZsPxLW1c5D/1PKyFjKvR+ecvcHHQ1FS1IajZSL751y9VNTLr1vd6FoSbKpTRrcYu+H16DyvD9qPXnLt4/8Plt/x8kMDB75/R4PXXyjU87srrEk2XPLHV9W7/+r5M2/032NOifgnxMArAVVVe1P8vZ5w89b7LhSynlJHn3M0OEkb+pjawAAAAAAAACwIkopGW2M1c7NzPY3GG1f22C0TX3dC2ivx7P5AQAAWJc6vXhbMBqceEYnVrsDThSlg2C0Mc8n6FXZsj3lpW9KVVWLh1oCsLoEo9Fn21vkCx+aTW6bTjYfc87On3+kdTDaOSf3ubEWSinJo34i5VE/sWBu7qVPSv7xzUcHzjgv5Un/ZfmaOf+yI4Fghw8dP95oJHe52/Ltu0xKo5HqvEuTL35i4eR3rjvy+/z/1u+6/XtTuebZqd7yqvb7POLHU73ld5M9N3fe3C03Zu45D0mu+0ryrWs7P24xXvsCwFK8OMnjk9yekJonl1LeWVXV39QtLqWMJHl9kmPviPSnVVV9aVm7BAAAAAAAAIBlMtIczdTc3gXjM3PTfd1nanbhHknSSDMjLcLZgOXRwVWOAAAAbBhDnQajjSxvH0D/jfrglQ41OvjIUNAeLJlQNIATQLPZ23GDg4uvYUNqFYyWJDcecx7N566vsv9gmzqbVv91RHnhf095+duSH3tBynNfk/L6f0tZxgDlMr4puffDF05c8cCUTVuXbd9ltXlb7XD1upel+rf3JfturT/u9u9NZcLK1l8AACAASURBVPuulNf/W/s9xieT+z+m+94+/oH+hqIBAEtSVdWXk8xPRH17KeWZpZRjw89SSrkwyT8nudcxwzclecnydgkAAAAAAAAAy2e0RSjZ9NxUX/fZN7undnyiOek6EFhhPd7mHAAAgHVpYGjxNUkyNLq8fQD9NywYjQ6VDoLRxtokOgAArBfNHn+UOthh6DgbzsntgtH2JOftOPL1L759ruW6d/702rj3WSkluerqlKuuXrk9n/dHqQ7sT/71H44MXHa/lBf92Yrt33cn1QejJUn1sw9rfdzAMeGLd77oyPeq2cP1a0cnUp71ilR7bkn+57uS2dkemwUA1oDnJ9md5LsvFAaTvDrJC0spH0+yN8nZSS5LcuyZ2AeTPLqqqutXsFcAAAAAAAAA6KuRFsFoM3PTfd1n3+ze2vHx5qa+7gMsTjAaAAAAR3V68fbQyPL2AfTfsEBDOtQQjAYAkKT3YLQhwWjUGx8uGR9Opg4snLvx9vNopg9W+cAX648vJbnvecvX31pXJjen/NbfpNp7a3L4YMqW7avd0tIcnOntuEbzji9Ls5lq26nJDV+rXzs2mTI8mvLSN6Xac3PygXek+q1n9LZvj8qffnRF9wOA9aqqqtlSyjVJ/iTJDx8ztT3JQ1scdmOSJ1VV9cHl7g8AAAAAAAAAllPrYLT9fd1n3+ye2vGJpmupYKWtjdtJAwAAsDYMDXW2TsASnHj8vaVTpSy+ZusJHkAAANCJXoPROg0dZ0Pa3uK8mBv3VkmSf/j3+uC0JLnglGTzWAev19e5Mrn5xA9FS1LOu7S3A48JRkuSbN/Veu3o+NH9Nm1NTjmztz17VN6/L+W8S+74BQAsTVVV+6qqenySH0ryr22W3pzkD5Pctaqqv1+R5gAAAAAAAABgGY22CEabnu1vMNpUy2C0TX3dB1hcj2fzAwAAsC4NdBiMNuQibzjRlGZz8UWQJGXxeymshxACAIBF9RyM1uF7azakbRPJV76zcPzmqSO///Unq5bHvuPp7nu2rpzfY1BYY97zYNvO1mvH5iXxXXB50mwms7O97d2praekvPytKQODy7sPAGxQVVW9PcnbSyl3TnJZklOTjCf5VpJrk3yoqqqDq9giAAAAAAAAAPTVSItgtJm5fgej7a0dH2+2uDMusGwEowEAAHBUp4FnvV4cDsDaN/8i+zpbdyx/HwAAq63nYDRh4rS2dbx+/LvBaP/nq/XBaE/43pLzTynL1BWr4vIH9nbc/DDrHWe0XjsvGK1s2prq/o9L/uktve3drq2f/vVkbi45e3dyt3ulTJzU9z0AgONVVfWVJF9Z7T4AAAAAAAAAYLmNNEdrx6f7HIy2b3ZP7fh4c1Nf9wEW50p2AAAAjhoY6nDd4PL2AcDqmX+RfZ0t25e/DwCA1dZrMJr3zLSxZawkWRh+dsv+5NDhKl+8of64h1+8vH2x8srAQPK6/53qKd/b3YHzwqzLaWfXPKNuN7LwRLDyS69NtWV78i/vSm78euf7jk4k0/sWjt/7B1P+y5+kbNraeS0AAAAAAAAAAADowkhjrHZ8pu/BaHtrxycEo8GK6+AqRwAAADaKMjTc2cLBDgPUADjxNDr4yHCrYDQAYAPoJRht+66UUvrfC+vG5vrzcnLLVJX/+HZyeK5+fvepnlfrUTn3e1Ke+uIuD5r3nu3eP5jUfd8ZGkm2nbrw8KHhNJ79ijT+6j9SXvTnne35kCem8d6b0vjggYW/fuMdQtEAAAAAAAAAAABYVqMtgtGm56b7us/U7J7a8YnmZF/3ARYnGA0AAICjOg08Gxhc3j4AWD3zL7Kvs3XH8vcBALDaeglGe8AP9b8P1pWt4/Xjt+xPPnd9/VyjJOd5Cb5ulSf9UvK4Z3R+wLww63Lyack9H7Zw3fc9ImV4tH2t+zwyOe3sxXt8+I913h8AAAAAAAAAAAD02UiLYLSZuf1926Oqquyb3Vs7N9Hc1Ld9gM4IRgMAAOCoToPRmoLRANatxiIfGQ6PJhObV6YXAIDV1Gx2fUj5yZctQyOsJ1vqz8vJzVPJZ6+vaufO2Z4MD5Zl7IrVVp71ipRn/EaHixe+Zyu/9Nrkyu9PSjnyveuqq1Oe90eLlxoaTnn525NzLm695vn/LeWSqzrrDQAAAAAAAAAAAJbBSKP+RqEzs/0LRpuZ25+5zNbOjQtGgxXXw23OAQAAWLcGhztbNyAYDWDdKosELmzflbLYGgCA9aDZ3Y9Sy0v/MsX7ZRaxdbx+/Jb9yeeur5+7aOfy9cPaUBqN5PE/m+rW7yR/8Yr2i2tCG8vmbSmv+NtU+/cls4dSJrd0vvfZu1Ne/39Sfef6ZP/eZOKkpKqSudnkTjuP9AYAAAAAAAAAAACraLRZfwLmgWomc9VsGqX7GyLPt292T8u5iebkkusD3RGMBgAAwFEDQx2u83YSYN0qi1z0vuP0lekDAGC1dROMNrkluedDl68X1o0tYyVJtWD8xr3Jv3xx4XiSXLhTMPFGUe50Ss2zY/6i1u/ZythE73tv25lECh8AAAAAAAAAAABrz2hjtOXczNx0xpq9nz/3Xftm97acG29uWnJ9oDtu7QsAAMBRQ8OdrRsYXN4+AFg9jUU+MtwuGA0A2CA6DUYb35TyK/89ZWRsefthXThtS/34wcPJdbfWz128a/n6YY3Zsn3xNYu9ZwMAAAAAAAAAAIB1ZqTR+jzdmbnpvuyxb3ZP7XgzAxlpE8wGLI8ubnMOAADAujfYaTDa0PL2AfRm95XJv3904fg5F698L5ywSimp2i04+bSVagUAYHUNtzmB4eJ7p/zsq5JbbkguuCJlcvPK9cUJ7cJTuls/NJA8ZHdZnmZYezafvPiaIhgNAAAAAAAAAACAjWW0TTDa9NxUkg7Ov1vEVItgtInmZEpxLiesNGfMAgAAcNTgYGfrBjpcB6yocs2z68d/9JdWuBNOeI3WHxuWiU0r2AgAwCo668LWc+ddknLO3VLu/iChaHRlYqTkzts6X//Q3cnmMSfTbBidBKO1eb8GAAAAAAAAAAAA69FIm2C0mdnpvuyxr0Uw2njTtVSwGpwxCwAAwFGDw52tE4wGa9N9Hpnc91HHj9330cn3PXx1+uHEVdp8bDgyvnJ9AACsojK5Obn8/vVzZ5y/wt2wntz11M7X/tAVQtE2lFPPSoYW+Xyu3fs1AAAAAAAAAAAAWIcGymCaGaidm5nb35c9pmb31o6PNyf7Uh/oTv3feAAAADYmwWhwQisDg8mL35h87P3JFz6RnH9JcvkDUwZ8BESXGo1ktsWcYDQAYAMp/+kXUn3s/ccPjk4k93rY6jTEurD7tJK//VTV0dp7ni0YbSMpY5Op7vvo5B/f3HpRw3MCAAAAAAAAAACAjaWUktHmWPbN7lkwN92nYLS62kky0dzUl/pAd9xKGAAAgKMmN3e0rAhGgzWrDAymXPn9KT/6vJQrHyIUjd6UNhfajwpGAwA2jnLFA1Oe+5pk4qQjA2ecl/Lyt6XsOGN1G+OEtvvUztaNDiZn3ml5e2HtKc/9/UUWOM0DAAAAAAAAAACAjWekMVo7PtO3YLS9teOC0WB1uDIWAACAozZv62ydYDSAda5NMNrI2Mq1AQCwBpRHPi15xI8n+25NJrektAuRhQ5cfFpJUi267vxTkmbD822jKWMT7Z8dDcFoAAAAAAAAAAAAbDwjjfprmqbnpvtSf2p2T+34xMBkX+oD3XHGLAAAAEedJBgNgCSzh1vPjY6vXB8AAGtEaTRSNm0VikZf3PW05OJdi6+7aKfnGzUEowEAAAAAAAAAALABjbYIRpuZm+pL/X0tgtHGm5v6Uh/ojjNmAQAAuEMZHEomTlp8oWA0gPWtXTDaiGA0AABYilJK/vwpi/+o/sKdK9AMJ57iNA8AAAAAAAAAAAA2npEWwWjTs9N9qT81u7d2fLwx2Zf6QHecMQsAAMDxNm9bfI1gNICNa6T+hwgAAEDn7rar5PvOab/mwp1lZZrhxNJornYHAAAAAAAAAAAAsOJaBaPNzO1fcu25aq5lMNrEwKYl1we6JxgNAACA453UQTBaUzAawIY1Or7aHQAAwLpwzvb2wWf3PHuFGuHE0nCaBwAAAAAAAAAAABvPaHP5gtFm5vZnLnO1cxNNwWiwGpwxCwAAwPEmNy++ZkAwGsCGNSIYDQAA+uHsk1vPXXnnZOfm9sFpbFDFaR4AAAAAAAAAAABsPCON+mC06T4Eo+2b3dNybqI5ueT6QPecMQsAAMDxBoc7WDO0/H0AsDaNCkYDAIB+eOju1sFn11whFI0WGk7zAAAAAAAAAAAAYOMZaYzWjs/MTS+5drtgtPHmpiXXB7rnjFkAAACONzSy+JqBweXvA4A1qfg3AAAA+uLyM5OLdi4cHxpIHne5YDRaKE7zAAAAAAAAAAAAYOMZbYzVjs/M7V9y7anZvbXjA2Uww6WDa26BvnPGLAAAAMcbHF58TXNg+fsAAAAAWMdKKfmDJzbSmJeB9oIfLDl9q2A0Wmg4zQMAAAAAAAAAAICNZ6RFMNr07NKD0fbN7qkdH29OphTndMJqcCU7AAAAxxvuIBhtYHD5+wAAAABY5+5zXsmnX9zIH3ygysyh5LGXlTz0rk6goQ3BaAAAAAAAAAAAAGxAo836YLSZuX4Eo+2tHZ9oblpybaA3gtEAAAA43qBgNAAAAICVcuHOklf/iDA0OlQEowEAAAAAAAAAALDxjDRGa8cPVgcyW82mWZo9156a3VM7PtGc7LkmsDTOmAUAAOB4QyOLrxkcWv4+AAAAAIDjNZzmAQAAAAAAAAAAwMYz2hhvOTczt39Jtfe1CEYbb25aUl2gd86YBQAA4HiDw4uvaQ4ufx8ArD3D9XdWAQAAYIUUp3kAAAAAAAAAAACw8Yw0Wl/XtNRgtKnZvbXjE4LRYNU4YxYAAIDjlKGRxRcNCEYD2JBO2rbaHQAAAGxsDad5AAAAAAAAAAAAsPGMNMZazk3PTi+p9r7ZPbXj483JJdUFeueMWQAAAI43NLT4GsFoABvT3R+42h0AAABsbMVpHgAAAAAAAAAAAGw87YLRZuamllR73+ze2vGJ5qYl1QV654xZAAAAjjc0sviagYHl7wOA1fODP1Y7XJ743BVuBAAAgOM0mqvdAQAAAAAAAAAAAKy4wcZgBspg7dz03PSSak/N7qkdn2hOLqku0DvBaAAAABxvcHjxNQP1Hx4BsD6UJ/xcsnXH8YOPeErK6eeuTkMAAAAc0XCaBwAAAAAAAAAAABvTSGOsdnxmbn/PNeeq2UzN7qudG29u6rkusDQDq90AAAAAa8zQyOJrBoaWvw8AVk0547zkv30wee+bU934tZRL7pM88JrVbgsAAIBSVrsDAAAAAAAAAAAAWBWjjbHsm71twfjM3HTPNffPTaXKXO3chGA0WDWC0QAAADje0PDiawYGl78PAFZVOeXM5EefF5fcAwAArB1FMBoAAAAAAAAAAAAb1EhjtHZ8enaq55pTs3tbzo03J3uuCyxNY7UbAAAAYI0RjAYAAAAAAAAAAAAAAAAAwBoy0hirHZ+Zm+655r42wWgTzU091wWWRjAaAAAAxxsUjAYAAAAAAAAAAAAAAAAAwNox2mwVjLa/55pTs3tqxwfLUIZKB9fbAstCMBoAAADHGxpZfI1gNAAAAAAAAAAAAAAAAAAAVshIoz4YbXoJwWj7WgSjjTcnU0rpuS6wNILRAAAAON5I/QdDxxkYWv4+AAAAAAAAAAAAAAAAAAAgyWiLYLSZpQSjHa4PRptobuq5JrB0gtEAAAA43hnnJc2B1vOlpDSbK9cPAAAAAAAAAAAAAAAAAAAb2sgyBKNNze2tHReMBqtLMBoAAADHKWOTye4rWy8YGFy5ZgAAAAAAAAAAAAAAAAAA2PBGWwSjTc/2Hoy2b3ZP7fh4c7LnmsDSCUYDAABgoZ1ntZ4TjAYAAAAAAAAAAAAAAAAAwAoaaYzWjs/MTfdcc2p2b+34RHNTzzWBpROMBgAAwEJDw63nmoLRAAAAAAAAAAAAAAAAAABYOaPNsdrxmbn9Pdfcd3hP7fh4c7LnmsDSCUYDAABgocE2wWgDgtEAAAAAAAAAAAAAAAAAAFg5I436YLTppQSjzdYHo000N/VcE1g6wWgAAAAsNNQmGG1waOX6AAAAAAAAAAAAAAAAAABgw2sVjHaoOpjD1aGeak7N7a0dF4wGq0swGgAAAAsNjbSeGxhYuT4AAAAAAAAAAAAAAAAAANjwRhqjLedm5qa7rjdXzWb/7L7aufHmZNf1gP4RjAYAAMACZXC49WRzcOUaAQAAAAAAAAAAAAAAAABgwxttjLecm5ntPhht/+xUqlS1cxPNTV3XA/pHMBoAAAALDQ61nhsQjAYAAAAAAAAAAAAAAAAAwMoZaY62nJuem+q63r7ZPS3nxpuTXdcD+kcwGgAAAAsNj7SeE4wGAAAAAAAAAAAAAAAAAMAKGm2MtZybmZvuul67YLSJ5qau6wH9IxgNAACAhQaH28wNrVwfAAAAAAAAAAAAAAAAAABseM0ykMFSf43rzNz+ruu1CkYbKsMZarS5zhZYdoLRAAAAWKhdMFpzcOX6AAAAAAAAAAAAAAAAAACAJKONsdrx6R6C0aZm99aOjzcnu64F9JdgNAAAABYaahOMNiAYDQAAAAAAAAAAAAAAAACAlTXSIhhtZrZ/wWgTzU1d1wL6SzAaAAAACw2NtJ4bGFi5PgAAAAAAAAAAAAAAAAAAIMlIs0Uw2tx017X2ze6pHR9vTnZdC+gvwWgAAAAsNDjUem5gcOX6AAAAAAAAAAAAAAAAAACAJKON0drx6bmprmu1CkabaG7quhbQX4LRAAAAWGhwuPXcQJvQNAAAAAAAAAAAAAAAAAAAWAYjjbHa8Zm56a5rCUaDtUswGgAAAAsNjbSeG5tcuT4AAAAAAAAAAAAAAAAAACDJaItgtOm5/V3XmprdWzsuGA1Wn2A0AAAAFhoabj03LhgNAAAAAAAAAAAAAAAAAICVNdIiGG2mj8Fo403X0cJqE4wGAADAQoNtgtHGfKADAAAAAAAAAAAAAAAAAMDKahWMNj3bfTDavtk9tePjzU1d1wL6SzAaAAAACw0OtZwqgtEAAAAAAAAAAAAAAAAAAFhho836YLSZue6C0War2eyf21c7N9F0HS2sNsFoAAAALDQ03HpOMBoAAAAAAAAAAAAAAAAAACtspNEqGG26qzr7Z/e2nJtobuqqFtB/A6vdAAAAAGtQaZOjfadTVq4PAAAAAAAAAAAAAAAAAABIMtIYrR3fP7cvew7f2nGdGw9e13JOMBqsPsFoAAAALHTyacmW7cktNx4/PjSc3P1Bq9MTAAAAAAAAAAAAAAAAAAAb1mhjrHZ8anZvnv+lJ/dlj/HmZF/qAL1rrHYDAAAArD2l0Uiu/vGFEw/+kZSJk1a+IQAAAAAAAAAAAAAAAAAANrSRFsFo/TJcRjLYGFrWPYDFDax2AwAAAKxN5cdflAyPpfqHNyZzc8l9Hpny1JesdlsAAAAAAAAAAAAAAAAAAGxAyx2MNt6cXNb6QGcEowEAAFCrlJL8519M+c+/uNqtAAAAAMCGUZ7/31L9xk8unHjwj6x8MwAAAAAAAAAAALCGbB3clkaamcvsstTfPnTqstQFutNY7QYAAAAAAAAAALjdlQ9JRicWDJf7P2YVmgEAAAAAAAAAAIC1Y6w5kd3jly1b/btvus+y1QY6JxgNAAAAAAAAAGCNKNt2przib5PTzj4ycNKdUn7md1Kuunp1GwMAAAAAAAAAAIA14Mk7fyZ3Hb8ijT5GJ400RvOIbU/IPTY9oG81gd4NrHYDAAAAAAAAAAAcVS6+V8qbP5fq5huSzSenNNz3DgAAAAAAAAAAAJJktDmen971gkzP7s+th29acr1GaWTb4ClplmYfugP6QTAaAAAAAAAAAMAaVLbuWO0WAAAAAAAAAAAAYE0abY5ltDm22m0Ay0AwGn1VShlMcu8kZyTZmWRfkuuSfKKqqq+uYmsAAAAAAAAAAAAAAAAAAAAAAACsYYLRNrBSypuT/PC84Wurqjqrh1onJ3nJ7fW2tljz4SS/XVXVX3VbHwAAAAAAAAAAAAAAAAAAAAAAgPWtsdoNsDpKKVdnYShar7UeluQzSZ6eFqFot7tXkreXUt5YShnvx94AAAAAAAAAAAAAAAAAAAAAAACsDwOr3QArr5SyOckf9qnW/ZK8K8nQMcNVko8n+XKSzUkuTbLtmPknJtlUSnlUVVVz/egDAAAAAAAAAAAAAAAAAAAAAACAE1tjtRtgVbwyyam3f7231yKllF1J3pHjQ9E+lGR3VVVXVFV1TVVV359kV5LnJDl0zLpHJPnVXvcGAAAAAAAAAAAAAAAAAAAAAABgfRGMtsGUUh6U5Cm3Pzyc5FeWUO4lSbYc8/jDSR5UVdXnjl1UVdWBqqp+L8k1847/uVLKmUvYHwAAAAAAAAAAAAAAAAAAAAAAgHVCMNoGUkoZT/LaY4Z+O8kne6x1bpInHTN0MMmTq6qaaXVMVVXvSvKGY4aGk7yol/0BAAAAAAAAAAAAAAAAAAAAAABYXwSjbSy/nuSs27/+cpIXL6HWE5I0j3n8jqqq/l8Hx/3mvMfXlFJGltAHAAAAAAAAAAAAAAAAAAAAAAAA64BgtA2ilHKvJM84Zugnq6qaXkLJR897/PpODqqq6nNJPnrM0HiS719CHwAAAAAAAAAAAAAAAAAAAAAAAKwDgtE2gFLKcJLX5eif9xuqqvqnJdQ7Jcn3HDN0OMmHuijxgXmPH9ZrLwAAAAAAAAAAAAAAAAAAAAAAAKwPgtE2hhcnOf/2r7+d5OeXWO+u8x5/qqqqqS6O//C8x7uX2A8AAAAAAAAAAAAAAAAAAAAAAAAnOMFo61wp5bIkzz1m6GeqqrppiWUvmvf4P7o8/kuL1AMAAAAAAAAAAAAAAAAAAAAAAGCDEYy2jpVSBpK8LsnA7UN/X1XVm/pQ+px5j7/W5fHXznt8p1LKliX0AwAAAAAAAAAAAAAAAAAAAAAAwAlOMNr69vwk33P711NJnt6nupvnPb6xm4OrqtqXZGbe8ElL6ggAAAAAAAAAAAAAAAAAAAAAAIAT2sBqN8DyKKVclOQFxwy9sKqqr/ap/MS8x9M91JhOMnLM48ne2zmqlLI9ycldHnaXfuwNAAAAAAAAAAAAAAAAAAAAAABA7wSjrUOllEaSP00yfPvQx5L8Xh+3mB+MNtNDjekkW9rU7NVPJ3lRn2oBAAAAAAAAAAAAAAAAAAAAAACwQhqr3QDL4jlJ7nH714eTPLWqqtll3K9aoWMAAAAAAAAAAAAAAAAAAAAAAABYpwSjrTOllLOT/OoxQ79dVdUn+7zNvnmPR3uoMf+Y+TUBAAAAAAAAAAAAAAAAAAAAAADYQAZWuwH6p5RSkrw2ydjtQ19O8uJl2GotB6P9QZK3dXnMXZL8dZ/2BwAAAAAAAAAAAAAAAAAAAAAAoAeC0daXpyV5wDGPf7Kqqull2Oe2eY9P7ubgUspEFgaj3bqkjm5XVdWNSW7ssp9+bA0AAAAAAAAAAAAA/P/27jxaurSg7/3vaZqGZupGhmbmZVQGBwheFTC2BlTkCjJcMWhCKw5xSjDxxqWYFTC5eHMdouvGKFeRJohcCWGSOSgNAkHFNAKCSCOgDI0NNGA3NE3Dkz/qvO+ps6tOndpVu2rvqv35rLUX7HprD2ef53zr9PPutV8AAAAAAAAAWIMHo+2Xp079/5cnuayUcuqEbW7TWD97zjYfrrVeO7X+nsaf33nJ8zvu/Z+otV7Zch8AAAAAAAAAAAAAAAAAAAAAAADsEQ9G2y/nTv3/b0vyvhX2cfs5290vyVun1t/V+PO7tzzGXRvr72y5PQAAAAAAAAAAAAAAAAAAAAAAAHvmrL5PgJ30jsb6V5RSbtRi+wedsD8AAAAAAAAAAAAAAAAAAAAAAABGxoPRaK3W+pEkb5t66ewkD26xiwsb669Y95wAAAAAAAAAAAAAAAAAAAAAAADYbR6MtkdqrefXWkubJck3NnbzgTnve+ucw72wsf69y5xjKeXLknzN1EtXJ3n10l8kAAAAAAAAAAAAAAAAAAAAAAAAe8mD0VjVc5J8YWr90aWUeyyx3U811p9Xa72mu9MCAAAAAAAAAAAAAAAAAAAAAABgF3kwGiuptb4nybOmXjonycWllBset00p5ZFJLpp66dokT93ICQIAAAAAAAAAAAAAAAAAAAAAALBTPBiNdfzbJFdOrT8wyWtKKV82/aZSyg1KKT+e5L82tv+lWusHNnyOAAAAAAAAAAAAAAAAAAAAAAAA7ICz+z4Bdlet9YOllEcneVWScw5eflCSd5ZS/izJXyc5L8n9k9yqsflLk/ybbZ0rAAAAAAAAAAAAAAAAAAAAAAAAw+bBaKyl1npJKeVRSS7O4cPPSpIHHCzzPDfJD9Rav7D5MwQAAAAAAAAAAAAAAAAAAAAAAGAXnNX3CbD7aq0vT3LfJL+R5MoFb31zksfWWh9fa716KycHAAAAAAAAAAAAAAAAAAAAAADATji77xOgX7XWS5KUDvbzd0l+uJTyL5I8KMmdk9wmydVJPpTk0lrr+9Y9DgAAAAAAAAAAAAAAAAAAAAAAAPvJg9HoVK312iSv7fs8AAAAAAAAAAAAAAAAAAAAAAAA2C1n9X0CAAAAAAAAAAAAAAAAAAAAAAAAAB6MBgAAAAAAAAAAAAAAAAAAAAAAAPTOg9EAAAAAAAAAAAAAAAAAAAAAAACA3nkwGgAAAAAAAAAAAAAAAAAAAAAAANA7D0YDAAAAAAAAAAAAAAAAAAAAAAAAeufBaAAAAAAAAAAAAAAAAAAAAAAAAEDvPBgNAAAAAAAAAAAAAAAAAAAAAAAA6N3ZfZ8ADMA50yuXXXZZX+cBAAAAAAAAALCWOfc9mwCVcQAAIABJREFUnDPvfQCwRe7RAwAAAAAAAAB2nvvztqfUWvs+B+hVKeURSV7c93kAAAAAAAAAAGzAI2utL+n7JAAYL/foAQAAAAAAAAB7yv15G3JW3ycAAAAAAAAAAAAAAAAAAAAAAAAA4MFoAAAAAAAAAAAAAAAAAAAAAAAAQO9KrbXvc4BelVLOS/INUy/9bZJr19jl3ZK8eGr9kUneu8b+ANrSIWAItAjomw4BfdMhoG86BAyBFgF9G2uHzklyx6n119VaP9XXyQCAe/SAPaRDQN90COibDgF90yFgCLQI6JsOAX0ba4fcn7clZ/d9AtC3g7i8pKv9lVKaL7231voXXe0f4CQ6BAyBFgF90yGgbzoE9E2HgCHQIqBvI+/QpX2fAACc5h49YN/oENA3HQL6pkNA33QIGAItAvqmQ0DfRt4h9+dtwVl9nwAAAAAAAAAAAAAAAAAAAAAAAACAB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9M6D0QAAAAAAAAAAAAAAAAAAAAAAAIDeeTAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgd2f3fQKwh65I8tTGOsA26RAwBFoE9E2HgL7pENA3HQKGQIuAvukQAOwnn/FA33QI6JsOAX3TIaBvOgQMgRYBfdMhoG86xEaVWmvf5wAAAAAAAAAAAAAAAAAAAAAAAACM3Fl9nwAAAAAAAAAAAAAAAAAAAAAAAACAB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9M6D0QAAAAAAAAAAAAAAAAAAAAAAAIDeeTAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgdx6MBgAAAAAAAAAAAAAAAAAAAAAAAPTu7L5PgFmllOsluXuSeye5XZLzknwuyZVJ3pvkLbXWqzs+5vWTPCjJnZLcNslVST6c5NJa6/u7PNa2lFLuk+SrktwqyQ2SXJ7kg0neWGu9ps9z26ZSys2T3CfJPZJ8SZIbJvlkkiuS/Fmt9b09nt6MUspdMvm+3S7JTZJ8JMkHkryp1vr5Ps9tTHSoGzo0oUOsSou6oUUTWnTscYyPBXSoG8bZxK51iGHQoW7o0IQOHVVKuWMm1+IOSW6Z5Nwk1yb5VJK/yeSaXNHfGQ6DDnVDhyZ0iFVpUTe0aEKLWIUOdUOHJnRoPuMD6IPP+G5o+MSufca7N2YYdKgbOjShQ6xCh7qhQxM6dOxxjI8FdKgbxtnErnWIYdChbujQhA4d5f685WlRN7RoQotYhQ51Q4cmdIhV6FA3dGhCh+bb6fFRa7UMYMkkmE9K8tJM/uO+LliuS/KKJA/v4Li3SvKfk3x8wfHemOQxax7nrkkel+QXklyS5NONY7y/o+t40yRPTvKhBV/Pp5M8O8ndevx+b+x6JLl+km9J8p+SvOOEsVQPrtXPJblNzz8Dj03ypgXn+fGDsXrLFfZ90jU4aTnV57XZ4vdAh7q5jjqkQ9P7PNVBg6aXi/q8Rlv6PmhRN9dRi7Ro58dHj98DHermOu7EONOh3sbHjZM8OMlPJHlOkr9K8sXGsS7q6zr0veiQDunQxq7HPZI8LclrM/lLjZOuR03yP5P8aJIb9HVNevo+6FA311GHdGje/pdpz6LlVF/XpofvhRZ1cx21SIum93uqgw5NLxf1dY229H3QoW6uow7p0M6PD4vFsl+Lz/hxNdxn/Nzzdo9ez4sO6ZAOuUev70WHdEiH3J/X96JDOjTmDm1xfLg/b/H10aFurqMO6VBz3+7Pa3e9tKib66hFWjRv/8v0Z9Fyqq9rs+Xvgw51cx11SIem93uqgwZNLxf1dY229H3QoW6uow7p0M6PjxO/jr5PwFKT5HfX+ED7/SQXrHjchyX5aItj/U6SG7fY/4VJXnXCh0JnP5hJviaTp3Au+/VcneSHt/h93vj1OLgGn1hxLF2Z5Ht6GP83SfLcFud5eZJvaXmMVX++Ti+ntn1devg+6JAO6dAGOpTu/0P2cdu+Plv+XmiRFmnRBlq0S+Oj70WHdGiMHdrm+Mhk4vjtmUxIn3Ssi7Z1DYa06JAO6dDmxkeS71/j5+vdSb5mW9ekz0WHdEiHNjs+1vj5Or2c2tZ16XPRIi3Soo1dj1MddGh62dv56uiQDunQ6MeHxWLZz8Vn/Dga7jP+2HN2j94AFh3SIR1yj17fS3RIh3TI/Xk9LzqkQ2Ps0DbHR9yft8w10iEd0qENjY+4P6/NtdIiLdKiDY6PNX6+Ti+ntnVd+lp0SId0aGPX41QHDZpezFXr0DI/gzqkQzs5PtosZ4chuOcxr38oyXsyievZmTz17yuTnDX1nv89yetLKd9Qa7182QOWUi5M8qIk50y9XDN5yvpfJzk/yf2S3HLqz787yc1KKd9Ra/3iEof5qiTfvOw5raOU8pBMngZ6g8YffSDJ2zL5IbxDJj+81z/4sxsl+c+llLNqrb+2hdPcxvW4VZKbz3n92kwmty/P5Impt0jygIP/Pe38JM8updy61vrLGz7PJEkp5XpJfi/JtzX+6Ioklx6c690yGYvl4M8uSPLiUspDaq1v2MZ5joQOrUmHztChzflMJk+03mdatCYtOkOL5h9nF8ZH33RoTTsyznToqK2NjySPT3Lelo61q3RoTTp0hg6drGYyyX9ZJn+x8JlM/sXcuyS5Tw7HRzL52fyDUsrDa62v2/aJbpkOrUmHztAh1qFFa9KiM7Roc/Z9vlqH1qRDZ+jQHDsyPoD95DN+TTvScJ/xDTt2b8y+06E16dAZOrQ55jx0aCEdOkOH5h9nF8ZH33RoTTsyznToKPfnDYsOrUmHztChk7k/73hatCYtOkOLWJUOrUmHztChzTFXrUML6dAZOjTHjoyP5fX9ZDZLTZK35PApev8zyY8ludsx7719kqdn9ul7f5SkLHm8O2T2qYdvSHKvxvtukOSfZ/JDP/3epy15nCfNOc+a5JpMJjQ6eWJhJk9PbT4V8bIkD53z3psn+X8b7/3CvPdu4Pu88euRyQf56X38fZJnJPlHSc6d896S5FGZxKt5Thu/Hgfn8AuN4157MP7Pabzv3kne1Hjvx5LcdsnjTG/35oMx02Y5exvXo88lOqRDOrSRDmXyH14nNea45Q2N4128jWvS5xIt0iIt2tjvRLsyPvpedEiHxtihbY2Pg2N98phjfXDOn1206a99iIsO6ZAObXR8PDHJX2byu9fDk9x8wXvPT/IvM/kLkOnjfyjJeZu+Jn0uOqRDOrTx34em92Wu+vjrpEVapEWbuR7mq5e/VjqkQzo08vFhsVj2c/EZP46G+4yfe77u0RvIEh3SIR3aSIdizqPN90KHdEiHNvT70K6Mj74XHdKhMXZoW+Pj4Fjuzzv5GumQDunQ5saH+/OWv1ZapEVatNnfiab3Za56/jXSIR3Soc1cD3PVy18rHdIhHRr5+Gj1NfV9ApaaJH+aydP2HtBimx+ZM+C/a8ltn9HY7o1Jbrjg/d8x5wfrzksc50kH0b80yW8m+cEk98/kiYEXdviD+dzGvt6T5NYnbPOvG9v8RZLrbfj7vPHrcRDujyb5V0luvOQ2t0jyzsbx35UlfxFY43rcNbO/FDxywfvPzexfNP7Gksea3uaSTX5du7rokA7p0GY7tMK53T7JdY1jff0mr8cQFi3SIi3aXIt2ZXz0veiQDo20Q1sZHwfH+mQm/9LCy5I89eA6XXDwZ5c0jnXRJr/uoS46pEM6tNHxcf0VtvmqJFc1zuGnNnk9+l50SId0aOO/D03v65JNfl27vGiRFmnRZlu0wrmNbr5ah3RIh4wPi8Wyn4vP+HE03Gf8zHHdozegRYd0SIc226EVzs2cx3Lb6NDhcXTo8Bg6tKPjo+9Fh3RopB1yf96AFh3SIR1yf94QFi3SIi1yj17fiw7pkA65P6/vRYd0SIeMj1ZfU98nYKlJcmrF7Z7fGFwvW2KbezQ+GD+X5B5LbHdx41i/vcQ2Nz/uA6HDUN01kycOTu/rwUtu+4eN7b5vw9/nbVyPWy0b7MZ2XznnOn71hq/HsxrHe+YS29zzYMye3ubzSe66xHbTx7lkk1/Xri46pEM6tNkOrXBuT26c219t8loMZdEiLdKizbRol8ZH34sO6dBIO7Tx6zG1v2P/Bd248er0dTi14nY6pEPN/ehQd+f3c41zePO2z2HLX++pFbfTIR1q7keH5u9vel+XbPLr2uVFi7RIizZzPdY4t9HNV+uQDumQ8WGxWPZz8Rk/job7jJ85pnv0BrTokA7p0GY7tMK5mfNYfjsd0qHmfnRoR8dH34sO6dBIO+T+vAEtOqRDOrSZ67Hm+Y3q/ryDr/nUittpkRY196NF8/c3va9LNvl17eqiQzqkQ5u5Hmucm7nq5bfTIR1q7keHdnR8tFnOCr2rtb5/xU1/rbH+jUts8/gk15taf0Gt9T1LbPcfGuvfWUq54aINaq1X1lqvWWLf63h4cmQcv7nW+oYlt/3Fxvr3dnNK823jetRar6i1Xr3Cdn+epHndlhlPKymlnJvksY2Xm2NsRq31r5K8aOqlszMZ06xJh9aiQ0ePoUNrKqWUzI6FZ3R5jKHSorVo0dFjaNFROzM++qZDa9mZcaZDM8fcxvg4fayPbOM4u0yH1qJDR4+hQ915eWP97r2cxZbo0Fp06OgxdIiVadFatOjoMbRoTWOdr9ahtejQ0WPo0FE7Mz6A/eQzfi0703Cf8YeGfG/MWOnQWnTo6DF0aE3mPFrTIR1qHkOHjtqZ8dE3HVrLzowzHZo5pvvzBkSH1qJDR4+hQ90Z1f15iRatSYuOHkOLWIkOrUWHjh5Dh9Zkrro1HdKh5jF06KidGR9teDDabru0sX5uKeX8E7Z5VGP9mcscqNb6riR/PPXSjZN88zLbbtg/bKy/qsW2f5Dk2qn1B5ZSbrv+Ke2s5ni63QaP9S1JbjS1/j9qrX+55LbNMfvobk6JFemQDnVJhya+Icndptavy+RfrON4WqRFXdrHFhkfm6dDxlmXttkh9ocO6VCXdOioTzTWb9rLWQyfDulQl3SIVWmRFnVJiybMV7ejQzrUpX3skPEB7Cqf8RrepX38+2g2T4d0qEs6NGHOox0d0qEu7WOHjI/N0yHjrEv7OPfK5umQDnVJh45yf97ytEiLuqRFrEKHdKhLOjRhrrodHdKhLu1jh/ZyfHgw2m67bs5r5xz35lLKbZJ8ZWP7N7Y43iWN9Ye12HZT7tBYf8eyG9ZaP5fksqmXzsowvqa+NMfTsWOpA9/aWL+kxbZ/lKPner9SygVrnxGr0iEd6pIOTTyxsf6yWuvlHe5/H2mRFnVpH1tkfGyeDhlnXdpmh9gfOqRDXdKho+7cWP9wL2cxfDqkQ13SIValRVrUJS2aMF/djg7pUJf2sUPGB7CrfMZreJf28e+j2Twd0qEu6dCEOY92dEiHurSPHTI+Nk+HjLMu7ePcK5unQzrUJR06yv15y9MiLeqSFrEKHdKhLunQhLnqdnRIh7q0jx3ay/HhwWi77e6N9euSfGzB++/bWH9brfXqFsd7U2P9Pi223ZQvaax/suX2zfd/+Rrnsuua4+kjGzxWcyz+j2U3PBizb2+8PISxOFY6pENdGn2HSinnJXlM4+VndLHvPadFWtSlfWyR8bF5OmScdWmbHWJ/6JAOdUmHjvqnjfXX9nIWw6dDOtQlHWJVWqRFXRp9i8xXr0SHdKhL+9gh4wPYVT7jNbxL+/j30WyeDulQl0bfIXMeK9EhHerSPnbI+Ng8HTLOurSPc69sng7pUJd06Cj35y1Pi7SoS1rEKnRIh7o0+g6Zq16JDulQl/axQ3s5PjwYbbc9trH+llrrFxe8/96N9cvmvut47z1hf324trF+g5bbN98/hK9p60opN0vy0MbLf7LBQ96rsb7NsXinUsozSyl/UUq5spRybSnlowfrv1NK+cFSSjP4HE+HdKgTI+vQIv84yblT6x9J8oqO9r3PtEiLOrHHLTI+Nk+HjLNO9NAh9ocO6VAndOioUsqPJvmeqZeuS/IrPZ3O0OmQDnViZB0yV909LdKiToysRYuYr25Ph3SoE3vcIeMD2FU+4zW8E3v899HzmPfolg7pUCdG1qFFzHm0p0M61Ik97pDxsXk6ZJx1Yo/nXtk8HdKhTujQUe7Pa02LtKgTI2uRuepu6ZAOdWJkHVrEXHV7OqRDndjjDu3l+PBgtB1VSrlJkic2Xn7hCZs1n1j4Ny0P+4HG+i1KKTdvuY+ufbyxftuW2zff/6VrnMsu+6EkN5pa/1Q29HT9g/9IbP6HYtux2Hz/PVpse5ckF2US4fOTXD/JrQ/WvzvJ05P8TSnlPx78nHEMHTpDh7oxpg4t0vyZelat9bqO9r2XtOgMLerGvrbI+NggHTrDOOvG1jrE/tChM3SoG6PuUCnlxqWULy2lPKGU8rok/6nxlp+utb6tj3MbMh06Q4e6MaYOmavukBadoUXdGFOLFjFf3YIOnaFD3djXDhkfwM7xGX+GhndjX/8+eh7zHh3RoTN0qBtj6tAi5jxa0KEzdKgb+9oh42ODdOgM46wb+zr3ygbp0Bk61I1Rd8j9eavTojO0qBtjapG56o7o0Bk61I0xdWgRc9Ut6NAZOtSNfe3QXo4PD0bbXT+f5DZT659M8lsnbHN+Y/3v2hyw1npVkmsaL5/XZh8b8K7G+tcuu2Ep5U5Jbtd4ue+vZ+tKKaeS/JvGy79aa20+DbIrzXH4mVrr1S330Ry7XX/fbpzkSUn+rJRyn473vU90aEKH1qRDE6WUL0/ygMbLz1h3vyOgRRNatKY9b5HxsVk6NGGcramHDrE/dGhCh9Y0tg6VUs4vpdTpJclVSf4yycVJ/uHU269K8oO11l/s4VR3gQ5N6NCaxtahJZmrXp4WTWjRmrRownz1SnRoQofWtOcdMj6AXeQzfkLD17Tnfx+9KvMey9GhCR1akw5NmPNYiQ5N6NCa9rxDxsdm6dCEcbamPZ97ZbN0aEKH1jS2Drk/r3NaNKFFaxpbi5Zkrno5OjShQ2vSoQlz1SvRoQkdWtOed2gvx4cHo+2gUsqjkvxY4+Un11o/ccKmzacVf3aFwze3uekK++jS6xrrjyml3GjuO2f90zmv9f31bFUp5Zwkv5ejX/f7k/w/GzxsX+PwuiSXJPnZJI9Icv9M/tWm+yV5ZJJfzOwvM/dM8ppSyp1XOMe9pkNH6NAaRtahkzSfVP26WutlHex3b2nREVq0hhG0yPjYEB06wjhbQ08dYg/o0BE6tAYdOtZHkzw5yV1qrb/Z98kMkQ4doUNrGFmHzFV3TIuO0KI1jKxFJzFf3YIOHaFDaxhBh4wPYKf4jD9Cw9cwgr+Pnmbeo0M6dIQOrWFkHTqJOY8WdOgIHVrDCDpkfGyIDh1hnK1hBHOvbIgOHaFDa9ChY7k/bwladIQWrWFkLTJX3SEdOkKH1jCyDp3EXHULOnSEDq1hBB3ay/HhwWg7ppTylUn+S+PlVyf59SU2b4a7+XTKZTTD3dzntr0sk6d5nnZ+kqectFEp5Y5JfnLOH12vlHJuN6e2E34ryf82tf6FJE9Y4V9DaqOPcfizSW5fa/3GWuv/VWv9/VrrpbXWy2qtb621vqTW+n8muXOS/ztJndr2NkleUEopK5znXtKhGTq0nrF0aKGDX6S/p/Gyp3svoEUztGg9+94i42MDdGiGcbaePjrEjtOhGTq0Hh2a74Ik/yzJD5dSbtb3yQyNDs3QofWMpUPmqjumRTO0aD1jadFC5qvb0aEZOrSefe+Q8QHsDJ/xMzR8Pfv+99GnmffokA7N0KH1jKVDC5nzaEeHZujQeva9Q8bHBujQDONsPfs+98oG6NAMHVqPDs3n/rwTaNEMLVrPWFpkrrpDOjRDh9Yzlg4tZK66HR2aoUPr2fcO7eX48GC0HVJKuVMmA3E6lh9I8j211jp/q4W2tc3G1Fr/PsmvNl7+yVLKvzhum1LKHZK8Msl5x+22o9MbtFLKv0vyTxov/3St9fVbPpWNj8OD/3htPr173vuuqbX+dJIfb/zR/ZP84zbH3Fc6NEuHVjemDi3hkUluMbX+qSTP7/gYe0OLZmnR6sbQIuOjezo0yzhb3YA6xA7RoVk6tLoRd+jTSe4ytdwtkzmgRyf5j0muOHjfHZP8XJK3l1K+uofzHCQdmqVDqxtTh8xVd0uLZmnR6sbUoiWYr16SDs3SodWNoUPGB7ArfMbP0vDVDegz3j16O0SHZunQ6sbUoSWY81iSDs3SodWNoUPGR/d0aJZxtroBdYgdokOzdGh1I+6Q+/PWpEWztGh1Y2qRueru6NAsHVrdmDq0BHPVS9KhWTq0ujF0aF/Hx9l9nwDLKaXcOsl/T3L7qZcvT/LQWusV87eacVVjfZUn8zW3ae6zD09L8rAcPpmxJPmVUspjM3k66lszeRLn7Q7e98M5/PD7YJI7TO3rmlrrzJM+Symnlj2ZWuv7W519D0opT8rkqdfTfrnW+gtLbn9q2WPNuR6DH4e11l8rpXxzkkdMvfwjSX63y+PsGh1aSIda0qEZT2ys/26ttfkUaaJFJ9CilkbWoo2Pj7HQoYV0qKWeO8SO0qGFdKilMXeo1vrFJO+f80eXJnlhKeVnk/yHJD928PqdkrymlPKgWus7tnOWw6RDC+lQS2Pu0DLMVR9PixbSopa0aIb56iXo0EI61NLIOmSuGhg0n/EL+YxvaWR/H92aeY/5dGghHWpJh2aY81iCDi2kQy2NrEPmPDqiQwvpUEsjm3ulIzq0kA61NOYOuT9vPVq0kBa1NOYWLcNc9Xw6tJAOtaRDM8xVL0GHFtKhlkbWob2bq/ZgtB1QSvmSJK9Jcs+plz+W5CG11ve02NVehrvWem0p5dFJXp7kK6b+6MEHy3E+nskvDq+aeu2Tx7z3fS1OqbR479aVUn4gyS83Xv71Wuu/arGbda7HrozDn8/R/5D92lLK+bXW48bIXtOhxXSoHR06qpRyxyQPbbz8jFX3t8+0aDEtamdsLdrS+Nh7OrSYDrUzgA6xg3RoMR1qR4cWq7V+JsmPl1I+n+QnDl6+WZL/Ukr5Byv+C0M7T4cW06F2dGhp5qobtGgxLWpHi44yX70cHVpMh9oZW4fMVQND5jN+MZ/x7QzgM35XxqF5jyk6tJgOtaNDR5nzWI4OLaZD7YytQ+Y8uqFDi+lQOwPoEDtIhxbToXZ0aDH35x1PixbTona0aGnmqqfo0GI61I4OHWWuejk6tJgOtTO2Du3jXPVZfZ8Ai5VSzkvy6iRfPvXylZk8yfIvWu7uU431W7U8l5tkNtyDGMi11g8leWCSpyf5/BKbvDbJA5Jc3Xj98o5PbVBKKf8kyW/kaEyfmeRHt3gazXF4o1LKjVvu49aN9U2Mwz/J5GfttOslufcGjjN4OrQcHVqODs11UY7+TvbntdY/W2N/e0mLlqNFyxlri4yP9ejQcoyz5QykQ+wYHVqODi1Hh1p5cpIPT63fL8lDejqXXunQcnRoOTrUirnqKVq0HC1ajhbNdVHMVy+kQ8vRoeWMtUPGBzBEPuOXo+HLGchn/NDujTmOeY8DOrQcHVqODs11Ucx5LKRDy9Gh5Yy1Q8bHenRoOcbZcgbSIXaMDi1Hh5ajQ624P2+KFi1Hi5ajRa2Yqz6gQ8vRoeXo0FwXxVz1Qjq0HB1azlg7tG/jw4PRBqyUctMkr0zyD6Ze/nSSb621vnWFXTaffnnnlts33/+JWuuVc9/Zg1rr1bXWf5bkSzOZEHltkg8m+WySv0/yriTPyuQpqv+o1vr+JPdq7OYtWzvhLSulfFcmkZ7+uX9Oku/f5hP0a60fz9H/QEySO7XcTXMstnmy61JqrV9M8jeNl1v9srMPdKgdHVpMh2aVUkqS72287OneDVrUjhYtNvYWGR+r0aF2jLPFhtIhdosOtaNDi+lQO7XWzyZ5UePlb+3jXPqkQ+3o0GI61I656kNa1I4WLaZFs8xXn0yH2tGhxcbeIeMDGBKf8e1o+GJD+Ywf0r0xi5j3mNChdnRoMR2aZc7jZDrUjg4tNvYOGR+r0aF2jLPFhtIhdosOtaNDi+lQO+7PO6RF7WjRYlrUjrnqCR1qR4cW06FZ5qpPpkPt6NBiY+/QPo2Ps/s+AeY7+NdoXp7ka6devirJw2qtf7Libt/VWL97y+3v2lh/54rnsVG11vcledrBcpKva6z/8TH7LPNe3xWllMckeXYmT6k+7b8mecLBf7C10sH1eFcmT5g87e6ZHZ+LNMdim23b+GxjvflE172mQ6vToVk6dKxvSnKXqfXPZfJLNQe0aHVaNEuLDm1ifOwrHVqdDs0aYIfYATq0Oh2apUMre3djve3PzE7TodXp0CwdWtmo56oTLVqHFs3SomOZr15Ah1anQ7N06JC5aqBvPuNX5zN+1gA/44dyb8xJRj3voUOr06FZOnQscx4L6NDqdGiWDh0y57E8HVqdDs0aYIfYATq0Oh2apUMrG/X9eYkWrUOLZmnRysxV69BKdGiWDh3LXPUCOrQ6HZqlQ4f2Ya76rJPfwraVUs5N8tIkD556+TNJHl6Dc7dAAAAPuklEQVRrfdMau35HY/0rSik3arH9g07Y3045eKrqNzVefl0f57JJpZRHJHlujj4I8UVJHl9r/UI/ZzUzdpqBPNbBLzVfccL+unLLxvrHNnScwdGh7dAhHUryfY31F9RaP7HivvaOFm2HFmnRCccZxfg4jg5tx1jG2UA7xMDp0HbokA4t4fON9Rv0chY90KHt0CEdWsJo56oTLdoWLdKimK8+lg5thw7p0CJjGR/AdvmM346xNHygn/GD//voA6Od99Ch7dAhHYo5j2Pp0HbokA6dcJxRjI/j6NB2jGWcDbRDDJwObYcO6dASRnt/XqJF26JFWrQEc9U6tFE6pEMxV30sHdoOHdKhRYY8PjwYbWBKKTdM8pIkF069fE2SR9RaX7/OvmutH0nytqmXzs7RD4eTXNhYf8U65zMA35Tk1NT662qt7+npXDailPJtmTy58vpTL78syeNqrdf1c1ZJklc21i9sse3X5+iH0KW11o+ufUYNpZRbZvYprh/u+jhDpENbpUP96b1DpZTzkzy68fIz2u5nX2nRVmlRf3pv0RL2fnwcR4e2au/H2YA7xIDp0FbpECe5Q2N9E793DY4ObZUOcawxz1UnWrRlWjRi5quPp0NbpUMssvfjA9gun/FbtfcNH/Bn/OD/PnrM8x46tFU61J/eO2TO43g6tFU61J/eO7SEvR8fx9Ghrdr7cTbgDjFgOrRVOsRJRnl/XqJFW6ZFHMtctQ5tiQ6NmLnq4+nQVukQiwx2fHgw2oCUUs5J8oIkD5l6+XNJvqPW+gcdHeaFjfXvXfLcvizJ10y9dHWSV3d0Tn35qcb603s5iw0ppTw0yX9Lcs7Uy69O8pha67X9nNUZr0ry2an1rzsYY8u4qLHeHNNd+a4cbeRHk7xrQ8caDB3aOh3qzxA69N1Jbji1/v4kf7jivvaKFm2dFvVnCC06yV6Pj+Po0Nbt9TgbeIcYKB3aOh3iJN/cWB/E5P4m6dDW6RCLjHKuOtGiHmjRuJmvnkOHtk6HWGSvxwewXT7jt26vGz7wz/hd+PvoUc576NDW6VB/htAhcx5z6NDW6VB/htChk+z1+DiODm3dXo+zgXeIgdKhrdMhTjK6+/MSLeqBFrGIuepDOrQ5OjRu5qrn0KGt0yEWGez48GC0gSilnJ3keUkeNvXy55M8ttb6qg4P9ZwkX5haf3Qp5R5LbNccxM+rtV7T3WltVynlCUkeOvXSWzN58uNeKKV8Q5IX5+gvSH+YyS8Bn+vnrA7VWj+T5PmNl5tjbEYp5Z5JHjX10nVJfrfDUzt9nAuS/Gzj5d+vtdaujzUkOrRdOtSvgXTo+xrrv73vnVmGFm2XFvVrIC1adJy9Hh/H0aHt2vdxNvQOMUw6tF06xElKKQ9P8oDGyy/u41y2RYe2S4dYZKxz1YkWbZsWEfPVM3Rou3SIRfZ9fADb5TN+u/a94UP/jN+Bv48e5byHDm2XDvVrIB0y59GgQ9ulQ/0aSIcWHWevx8dxdGi79n2cDb1DDJMObZcOcZIx3p+XaNG2aRGLmKvWoW3QIWKueoYObZcOscjQx4cHow1AKeV6mQT1kVMvX5fkcbXWl3Z5rFrre5I8a+qlc5JcXEq54TGbpJTyyBz9F2+uTfLULs9rXQcffMu+99FJfnPqpeuSfF+t9brOT6wHpZSvS/LSJOdOvfz6JN9ea/3s/K168ZRMfjk57aJSyiOOe/PBGH1mjj6h8xm11vcu2OZLSynf3uakSim3yeT6XTD18rVJfr7NfnaNDq1Phw7p0MlKKV+V5P5TL30xycVt97NvtGh9WnRIi+Zua3ycQIfWZ5wd2qEOMSA6tD4dOqRDh0opDyilPOrkd85s99VJnt14+fW11rd3c2bDo0Pr06FDOnTIXHU7WrQ+LTqkRSczXz1Lh9anQ4d0aJbxAfTFZ/z6NPzQDn3GPyXu0RsMHVqfDh3SoZOZ85ilQ+vToUM6NHdb4+MEOrQ+4+zQDnWIAdGh9enQIR065P68drRofVp0SIsOmateng6tT4cO6dDJzFXP0qH16dAhHZq1b+Nj6S+GjfrtJN/ZeO1nklxaSjnVcl+XL/GkyX+byb9gc/OD9QcmeU0p5ftrrX95+k2llBsk+cEkv9TY/pdqrR9Y5mRKKXfI/HF2m8b62Qu+1qtqrR874VBvL6W8LMl/S/LHtdYvzjmX+yb56SSPb/zRz9RaLz1h/53Y9PUopdwvySuS3GTq5Xcn+dEkty6ltDnda2qtl7fZoI1a61+XUn41yU9Ovfz8Usq/TPL/1VqvPf1iKeVeSX4rk7F62sdz8i8Qt03yklLK25P8TpIXHvzyMqOUctMkT8jkyd4XNP7439da/3qJL2uX6ZAO6dBE1x06zhMb66+qtf7tivvaJ1qkRVo0sakW7cT46JkO6dDoOpRsb3yUUm6S5JbH/HFzQvmWC471wSFNrnVMh3RIh47qanzcIckLSinvyOQv0F6U5N21zv9Xlkop907yQ0l+pHFe1xy8ts90SId06Kiuxoe56na0SIu06Kiux0eT+epZOqRDOnTUKMcHsJd8xo+k4T7jD7lHb3B0SId0aMI9ev3RIR3SoQn35/VHh3RodB1K3J83MDqkQzp0lPvz+qFFWqRFR7lHb/t0SId06Cj3522fDumQDh01yvGxtFqrpeclSe1wuXDJY16Y5HONbb+Y5E+T/F6SVyb5uzn7//0k12vxtb2/g6/p4iWO87Gp9/99kjdl8kP6nCSvXnAe/27L3+uNXo9M/kWjrsbSJVu4HtdL8vI5x/5oJh9Az0vyloOxOf3nn0vy9UuO8+a+P5nkDZlMsD07yQsPjvH5Y67D0/tuxJbGpg7pkA5toEPHHPMGmdwoMb2/x/TZgKEsHY4dLdKip3Q4li7ZwvXYSot2ZXz0uXQ4bnRo4ONs09cju9ehbY2Pizq6Jqf67sUGvxc6pEM6tJnr8R1z3v/pg/HxkkxugHhektckufyY/X8myUP67sQWvhc6pEM6tJnrceGc95urPv56aZEWadEGx0fjmOar518XHdIhHTI+LBbLHi4dNtln/MAbvunrkd37jHeP3kCWDseNDunQUzocS5ds4Xq4R28gS4fjRod06CkdjqVLtnA93J83kKXDcaNDAx9nm74e2b0ObWt8XNTRNTnVdy82+L3QIR3Soc1cD/fntft+aJEWadFmrseFc95vrnr+tdIhHdKhDY6PxjHNVc+/LjqkQzpkfCy9zHuSHCNQa72klPKoJBcnudXByyXJAw6WeZ6b5AdqrV/Y/Bmu5SZJvu6E91yZ5Edqrf//Fs6HY9Rav1BK+c5M/mWlx0390a2TfOsxm/1dkifUWv9oxcOel+RBS7zv6iQ/UWv9zRWPwwl0SIeGoKcOPSrJl0ytX5HJRD890CItGoKeWmR8DIQOGWfQNx3SoRG7aU4eH6e9OckP1VrftsHzGS0d0qERM1c9IFqkRSNmvnogdEiHRsz4APaaz3gNHwL36I2bDunQELhHb9x0SIeGwP1546ZDxhn0TYd0aMTcnzcgWqRFI2aueiB0SIdGzFz1QOiQDo3Yzo+Ps/o+AfpTa315kvsm+Y1MBupx3pzksbXWx9dar97KybX3K0kuzeSpnIv8bZKfS3K3of5Qjk2t9apa63cl+T8yGWvH+USSX09y31rrK5fc/buSPC3JG5N8dslt/irJz2TyL5z4j9gN0yEdGoINd2ieJzbWn11r/fwa+2NNWqRFQ7ClFhkfA6VDxhn0TYd0aAT+MJN/Ffe5ST645DafSfL8JN+e5IFuutosHdKhETBXvQO0SItGynz1gOiQDo2I8QGMis94DR8C9+iNmw7p0BC4R2/cdEiHhsD9eeOmQ8YZ9E2HdGgE3J+3A7RIi0bAXPXA6ZAOjZS56gHRIR0akb0aH6XW2vc5MACllHMyeerxnZPcJpOnG38oyaW11vf1eW5tlFJuluR+Se6SyZM6b5jJf8B8KMmf11rf2ePpsYRSyl2S3D/J7ZLcOMnlST6Q5I211mvX2O9ZSe6R5G5Jbp/k/ByOjyuTfCTJn9Zar1jrC2BlOsRQbKpD7AYtYig22SLjY9h0COibDjEGpZQLktwrk3F+iyQ3SvL5JJ9O8vEk70jy7h34l332kg6x78xV7wYtAvqmQ4yB8QGMkc94hsI9euOlQwyFe/TGS4cYCvfnjZcOAX3TIcbA/XnDp0XsO3PVw6dDQN90iDHYl/HhwWgAAAAAAAAAAAAAAAAAAAAAAABA787q+wQAAAAAAAAAAAAAAAAAAAAAAAAAPBgNAAAAAAAAAAAAAAAAAAAAAAAA6J0HowEAAAAAAAAAAAAAAAAAAAAAAAC982A0AAAAAAAAAAAAAAAAAAAAAAAAoHcejAYAAAAAAAAAAAAAAAAAAAAAAAD0zoPRAAAAAAAAAAAAAAAAAAAAAAAAgN55MBoAAAAAAAAAAAAAAAAAAAAAAADQOw9GAwAAAAAAAAAAAAAAAAAAAAAAAHrnwWgAAAAAAAAAAAAAAAAAAAAAAABA7zwYDQAAAAAAAAAAAAAAAAAAAAAAAOidB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9M6D0QAAAAAAAAAAAAAAAAAAAAAAAIDeeTAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgdx6MBgAAAAAAAAAAAAAAAAAAAAAAAPTOg9EAAAAAAAAAAAAAAAAAAAAAAACA3nkwGgAAAAAAAAAAAAAAAAAAAAAAANA7D0YDAAAAAAAAAAAAAAAAAAAAAAAAeufBaAAAAAAAAAAAAAAAAAAAAAAAAEDvPBgNAAAAAAAAAAAAAAAAAAAAAAAA6J0HowEAAAAAAAAAAAAAAAAAAAAAAAC982A0AAAAAAAAAAAAAAAAAAAAAAAAoHcejAYAAAAAAAAAAAAAAAAAAAAAAAD0zoPRAAAAAAAAAAAAAAAAAAAAAAAAgN55MBoAAAAAAAAAAAAAAAAAAAAAAADQOw9GAwAAAAAAAAAAAAAAAAAAAAAAAHrnwWgAAAAAAAAAAAAAAAAAAAAAAABA7zwYDQAAAAAAAAAAAAAAAAAAAAAAAOidB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9O5/AXpnFOxFOo7tAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "from uuid import UUID\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor\n", + "\n", + "\n", + "location_names = {\n", + " UUID('53998a51-60de-48ae-b71a-5c37cd1455f2'): \"Loft\",\n", + " UUID('1bc63cda-e223-48bc-93c2-c1f651779d69'): \"Living Room\",\n", + " UUID('ea0683de-6772-4678-bfe7-6014f54ffc8e'): \"Office\",\n", + " UUID('5aaa901a-7564-41fb-8eba-50cdd6fe9f80'): \"Outside\",\n", + "}\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 10), dpi=300)\n", + " configs = get_known_configs().values()\n", + " for i, config in enumerate(configs, start=1):\n", + " plot = figure.add_subplot(2, 2, i)\n", + " coros.append(plot_sensor(config, plot, location_names))\n", + " await asyncio.gather(*coros)\n", + "\n", + "display(figure)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9f576f5bb8e34cb8ab1d3c09f770d027", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(DatePicker(value=None, description='Start date'), DatePicker(value=None, description='En…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "from uuid import UUID\n", + "import functools\n", + "from concurrent.futures import ThreadPoolExecutor\n", + "\n", + "import ipywidgets as widgets\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor\n", + "\n", + "\n", + "def wrap_coroutine(f):\n", + " @functools.wraps(f)\n", + " def run_in_thread(*args, **kwargs):\n", + " loop = asyncio.new_event_loop()\n", + " wrapped = f(*args, **kwargs)\n", + " with ThreadPoolExecutor(max_workers=1) as pool:\n", + " task = pool.submit(loop.run_until_complete, wrapped)\n", + " return task.result()\n", + " return run_in_thread\n", + "\n", + "@wrap_coroutine\n", + "async def plot(*args, **kwargs):\n", + " location_names = {\n", + " UUID('53998a51-60de-48ae-b71a-5c37cd1455f2'): \"Loft\",\n", + " UUID('1bc63cda-e223-48bc-93c2-c1f651779d69'): \"Living Room\",\n", + " UUID('ea0683de-6772-4678-bfe7-6014f54ffc8e'): \"Office\",\n", + " UUID('5aaa901a-7564-41fb-8eba-50cdd6fe9f80'): \"Outside\",\n", + " }\n", + "\n", + " with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 10), dpi=300)\n", + " configs = get_known_configs().values()\n", + " for i, config in enumerate(configs, start=1):\n", + " plot = figure.add_subplot(2, 2, i)\n", + " coros.append(plot_sensor(config, plot, location_names, *args, **kwargs))\n", + " await asyncio.gather(*coros)\n", + " return figure\n", + "\n", + "\n", + "start = widgets.DatePicker(\n", + " description='Start date',\n", + ")\n", + "end = widgets.DatePicker(\n", + " description='End date',\n", + ")\n", + "out = widgets.interactive(plot, collected_after=start, collected_before=end)\n", + "display(out)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "60091fa7d9ea415985ec53937e422b4a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(DatePicker(value=None, description='Start date'), DatePicker(value=None, description='En…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from uuid import UUID\n", + "import ipywidgets as widgets\n", + "from apd.aggregation.analysis import interactable_plot_multiple_charts, configs\n", + "\n", + "location_names = {\n", + " UUID('53998a51-60de-48ae-b71a-5c37cd1455f2'): \"Loft\",\n", + " UUID('1bc63cda-e223-48bc-93c2-c1f651779d69'): \"Living Room\",\n", + " UUID('ea0683de-6772-4678-bfe7-6014f54ffc8e'): \"Office\",\n", + " UUID('5aaa901a-7564-41fb-8eba-50cdd6fe9f80'): \"Outside\",\n", + "}\n", + "\n", + "start = widgets.DatePicker(\n", + " description='Start date',\n", + ")\n", + "end = widgets.DatePicker(\n", + " description='End date',\n", + ")\n", + "\n", + "plot = interactable_plot_multiple_charts(location_names=location_names)\n", + "out = widgets.interactive(plot, collected_after=start, collected_before=end)\n", + "display(out)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "08a4d937037b45bda2298879df7f80b6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(DatePicker(value=None, description='Start date'), DatePicker(value=None, description='En…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import datetime\n", + "import uuid\n", + "import ipywidgets as widgets\n", + "from apd.aggregation.analysis import Config, configs, interactable_plot_multiple_charts, draw_map, get_map_cleaner_for\n", + "from apd.aggregation.database import DataPoint\n", + "from apd.aggregation.utils import merc_x, merc_y\n", + "\n", + "start = widgets.DatePicker(description='Start date')\n", + "end = widgets.DatePicker(description='End date')\n", + "\n", + "def get_literal_data():\n", + " # Get manually entered temperature data, as our particular deployment\n", + " # does not contain data of this shape\n", + " raw_data = {(53.8667, -1.3333): -1, (53.35, -2.2833): 1, (52.45, -1.7333): 3, (51.5, -0.1333): 6, (51.55, -2.5667): 5, (54.9667, -1.6167): -1, (55.9667, -3.2167): -1, (54.7667, -1.5833): 0, (53.7667, -0.3): 1, (53.7667, -3.0167): 0, (51.4833, -3.1833): 4, (53.2667, -3.5167): 2, (52.0833, -2.8): 2, (52.0167, -0.6): 2, (52.6667, 1.2667): 5, (50.4333, -4.9833): 9, (50.35, -4.1167): 10, (50.5167, -2.45): 9, (50.8333, -1.1667): 9, (56.45, -5.4333): 4, (57.5333, -4.05): -2, (54.5167, -3.6167): 3, (53.0833, 0.2667): 4, (51.35, 1.3333): 7, (50.8833, 0.3167): 8, (58.45, -3.1): 3, (50.1, -5.6667): 9, (58.2167, -6.3333): 4, (55.6833, -6.25): 7}\n", + " now = datetime.datetime.now()\n", + " async def points():\n", + " for (coord, temp) in raw_data.items():\n", + " deployment_id = uuid.uuid4()\n", + " yield DataPoint(sensor_name=\"Location\", deployment_id=deployment_id, collected_at=now, data=coord)\n", + " yield DataPoint(sensor_name=\"Temperature\", deployment_id=deployment_id, collected_at=now, data=temp)\n", + " async def deployments(*args, **kwargs):\n", + " yield None, points()\n", + " return deployments\n", + "\n", + "def draw_map_with_gb(plot, x, y, colour):\n", + " # Draw the map and add an explicit coastline\n", + " gb_boundary = [(-2.6653539699999556, 51.617254950000074), (-2.6937556629999335, 51.59617747600004), (-2.71312415299991, 51.58661530200004), (-2.760487433999913, 51.579779364000046), (-2.7980850899999155, 51.56350332200009), (-2.816395636999914, 51.555568752000056), (-2.8587133449999556, 51.546128648000035), (-2.943348761999914, 51.54254791900007), (-2.9562882149999155, 51.54572174700007), (-2.9641007149999155, 51.552801825000074), (-2.969471808999913, 51.559881903000075), (-2.9746801419999542, 51.56297435100004), (-2.984038865999935, 51.55853913000004), (-3.0102432929999168, 51.53803131700005), (-3.0156957669999542, 51.53164297100005), (-3.0737198559999115, 51.50836823100008), (-3.0764867829999503, 51.50775788000004), (-3.088937954999949, 51.505072333000044), (-3.105620897999927, 51.49721914300005), (-3.1317032539999445, 51.48041413000004), (-3.1350805329999503, 51.47630442900004), (-3.1409399079999503, 51.46478913000004), (-3.1453751289999445, 51.45994700700004), (-3.1524145169999542, 51.45718008000006), (-3.1666560539999296, 51.45600006700005), (-3.1723933579999084, 51.45327383000006), (-3.1727188789999445, 51.453111070000034), (-3.160064256999931, 51.43183014500005), (-3.167144334999932, 51.41046784100007), (-3.1848038399999155, 51.39760976800005), (-3.204009568999936, 51.401597398000035), (-3.218861456999946, 51.402777411000045), (-3.289418097999942, 51.38422272300005), (-3.539173956999946, 51.398504950000074), (-3.557443813999953, 51.40509674700007), (-3.5753067699999406, 51.420436916000085), (-3.6047257149999155, 51.44570547100005), (-3.6631973949999406, 51.476223049000055), (-3.6769913399999155, 51.47703685100004), (-3.695423956999946, 51.47150299700007), (-3.717925584999932, 51.478583075000074), (-3.7376195949999556, 51.49087148600006), (-3.748036261999914, 51.50092194200005), (-3.7494197259999282, 51.50535716400009), (-3.747670050999943, 51.507025458000044), (-3.7445369129999335, 51.50763580900008), (-3.741851365999935, 51.50836823100008), (-3.7493383449999556, 51.52806224200003), (-3.7519018219999225, 51.53306712400007), (-3.758941209999932, 51.54677969000005), (-3.770130988999938, 51.56329987200007), (-3.782215949999909, 51.57664622600004), (-3.7902725899999155, 51.58197663000004), (-3.8077286449999406, 51.589178778000075), (-3.8169652989999463, 51.59650299700007), (-3.8326716789999296, 51.61554596600007), (-3.8416235019999476, 51.621527411000045), (-3.8548884759999282, 51.62384674700007), (-3.8867895169999542, 51.62140534100007), (-3.9623917309999115, 51.61562734600005), (-3.9766332669999542, 51.61188385600008), (-3.989979620999918, 51.60651276200008), (-3.998768683999913, 51.60028717700004), (-3.999908006999931, 51.59088776200008), (-3.9922582669999542, 51.58112213700008), (-3.9818009109999366, 51.571600653000075), (-3.974598761999914, 51.56297435100004), (-4.016184048999946, 51.56297435100004), (-4.016102667999917, 51.56037018400008), (-4.0208227199999556, 51.555853583000044), (-4.026519334999932, 51.554022528000075), (-4.029204881999931, 51.55927155200004), (-4.031971808999913, 51.56313711100006), (-4.0385636059999115, 51.56622955900008), (-4.046457485999952, 51.568426825000074), (-4.0531306629999335, 51.569240627000056), (-4.056304490999935, 51.56704336100006), (-4.065581834999932, 51.55756256700005), (-4.070220506999931, 51.555568752000056), (-4.0768123039999296, 51.55695221600007), (-4.087269660999937, 51.56191640800006), (-4.112131313999953, 51.565619208000044), (-4.121652798999946, 51.56598541900007), (-4.132191535999937, 51.56297435100004), (-4.142730272999927, 51.55695221600007), (-4.156809048999946, 51.54629140800006), (-4.1664119129999335, 51.54254791900007), (-4.176503058999913, 51.544256903000075), (-4.18773352799991, 51.54877350500004), (-4.1967667309999115, 51.54938385600008), (-4.200550910999937, 51.538763739000046), (-4.213368292999917, 51.539129950000074), (-4.272450324999909, 51.554754950000074), (-4.2899063789999445, 51.555568752000056), (-4.293324347999942, 51.55914948100008), (-4.29515540299991, 51.56195709800005), (-4.297352667999917, 51.569240627000056), (-4.278309699999909, 51.578192450000074), (-4.280832485999952, 51.58881256700005), (-4.2897029289999296, 51.601548570000034), (-4.2899063789999445, 51.61701080900008), (-4.255767381999931, 51.62384674700007), (-4.252023891999954, 51.62710195500006), (-4.241281704999949, 51.63934967700004), (-4.234730597999942, 51.644964911000045), (-4.228505011999914, 51.63743724200003), (-4.234730597999942, 51.63743724200003), (-4.234730597999942, 51.631293036000045), (-4.2278539699999556, 51.628119208000044), (-4.22101803299995, 51.62384674700007), (-4.1900935539999296, 51.63027578300006), (-4.139027472999942, 51.63231028900009), (-4.0912979809999115, 51.639878648000035), (-4.070220506999931, 51.66229889500005), (-4.0698136059999115, 51.66893138200004), (-4.070383266999954, 51.67430247600004), (-4.07054602799991, 51.67597077000005), (-4.0754288399999155, 51.677801825000074), (-4.087269660999937, 51.668850002000056), (-4.095448370999918, 51.66510651200008), (-4.106841600999928, 51.66425202000005), (-4.146351691999939, 51.66705963700008), (-4.200550910999937, 51.68585846600007), (-4.214955206999946, 51.679673570000034), (-4.293690558999913, 51.67226797100005), (-4.3152970039999445, 51.67747630400004), (-4.342355923999946, 51.69086334800005), (-4.3664444649999155, 51.70848216400009), (-4.379261847999942, 51.72687409100007), (-4.338042772999927, 51.72333405200004), (-4.319976365999935, 51.72483958500004), (-4.310454881999931, 51.733710028000075), (-4.328724738999938, 51.73297760600008), (-4.3471573559999115, 51.73578522300005), (-4.3625382149999155, 51.74286530200004), (-4.371815558999913, 51.754787502000056), (-4.368763800999943, 51.75698476800005), (-4.362904425999943, 51.76386139500005), (-4.358021613999938, 51.773138739000046), (-4.358225063999953, 51.782131252000056), (-4.365101691999939, 51.789048570000034), (-4.3714900379999335, 51.78595612200007), (-4.379261847999942, 51.77529531500005), (-4.384917772999927, 51.77187734600005), (-4.3929744129999335, 51.763739325000074), (-4.399159308999913, 51.76162344000005), (-4.409331834999932, 51.76316966400009), (-4.417876756999931, 51.76788971600007), (-4.426503058999913, 51.77529531500005), (-4.445790167999917, 51.77326080900008), (-4.449330206999946, 51.76630280200004), (-4.441395636999914, 51.75678131700005), (-4.426503058999913, 51.747300523000035), (-4.460764126999948, 51.73578522300005), (-4.4988907539999445, 51.73484935100004), (-4.574208136999914, 51.74115631700005), (-4.603423631999931, 51.73924388200004), (-4.639230923999946, 51.73318105700008), (-4.6453751289999445, 51.732123114000046), (-4.678212042999917, 51.71743398600006), (-4.680287238999938, 51.692694403000075), (-4.689442511999914, 51.69159577000005), (-4.69163977799991, 51.689886786000045), (-4.69163977799991, 51.685980536000045), (-4.693959113999938, 51.67841217700004), (-4.712310350999928, 51.650091864000046), (-4.721424933999913, 51.652044989000046), (-4.734934048999946, 51.65924713700008), (-4.741851365999935, 51.65607330900008), (-4.759185350999928, 51.644964911000045), (-4.8482966789999296, 51.64630768400008), (-4.86351477799991, 51.64411041900007), (-4.878977016999954, 51.63743724200003), (-4.887806769999941, 51.62995026200008), (-4.8957413399999155, 51.621079820000034), (-4.904774542999917, 51.61383698100008), (-4.923695441999939, 51.608628648000035), (-4.931996222999942, 51.59902578300006), (-4.941029425999943, 51.59650299700007), (-4.946034308999913, 51.59760163000004), (-4.956450975999928, 51.602769273000035), (-5.021595831999946, 51.61603424700007), (-5.0457657539999445, 51.62689850500004), (-5.0366104809999115, 51.63743724200003), (-5.0511775379999335, 51.65692780200004), (-5.100493943999936, 51.66469961100006), (-5.119740363999938, 51.67841217700004), (-5.113433397999927, 51.68528880400004), (-5.0366104809999115, 51.67841217700004), (-5.038726365999935, 51.68183014500005), (-5.04133053299995, 51.68939850500004), (-5.043446417999917, 51.692694403000075), (-5.028675910999937, 51.69293854400007), (-5.002552863999938, 51.68740469000005), (-4.988189256999931, 51.68585846600007), (-4.974598761999914, 51.687933661000045), (-4.941029425999943, 51.70014069200005), (-4.892648891999954, 51.706366278000075), (-4.868275519999941, 51.716782945000034), (-4.8580623039999296, 51.71832916900007), (-4.844838019999941, 51.71381256700005), (-4.844838019999941, 51.720038153000075), (-4.873402472999942, 51.73773834800005), (-4.879017706999946, 51.76203034100007), (-4.8625382149999155, 51.78237539300005), (-4.824330206999946, 51.788275458000044), (-4.824330206999946, 51.79572174700007), (-4.836008266999954, 51.790716864000046), (-4.864979620999918, 51.783270575000074), (-4.921294725999928, 51.78001536700003), (-4.933583136999914, 51.77529531500005), (-4.9172257149999155, 51.77533600500004), (-4.905181443999936, 51.771185614000046), (-4.900542772999927, 51.76211172100005), (-4.906239386999914, 51.747300523000035), (-4.8920792309999115, 51.73940664300005), (-4.895659959999932, 51.728176174000055), (-4.9105525379999335, 51.71820709800005), (-4.988189256999931, 51.70685455900008), (-5.009917772999927, 51.706366278000075), (-5.149240688999953, 51.718085028000075), (-5.166900193999936, 51.71381256700005), (-5.156971808999913, 51.69757721600007), (-5.1686091789999296, 51.68891022300005), (-5.1828507149999155, 51.68927643400008), (-5.180653449999909, 51.70014069200005), (-5.180653449999909, 51.706366278000075), (-5.230132615999935, 51.73004791900007), (-5.2495011059999115, 51.733710028000075), (-5.228138800999943, 51.73395416900007), (-5.213937954999949, 51.73574453300006), (-5.202870245999918, 51.74079010600008), (-5.191151495999918, 51.75104401200008), (-5.176828579999949, 51.75967031500005), (-5.1432185539999296, 51.76386139500005), (-5.125965949999909, 51.76850006700005), (-5.110259568999936, 51.778509833000044), (-5.107085740999935, 51.78807200700004), (-5.112294074999909, 51.81317780200004), (-5.113392706999946, 51.82880280200004), (-5.11750240799995, 51.84369538000004), (-5.125884568999936, 51.85602448100008), (-5.139637824999909, 51.86399974200003), (-5.146473761999914, 51.85716380400004), (-5.16437740799995, 51.86676666900007), (-5.2037654289999296, 51.87018463700008), (-5.221587693999936, 51.87767161700003), (-5.2358292309999115, 51.87103913000004), (-5.2914119129999335, 51.86399974200003), (-5.3109431629999335, 51.86399974200003), (-5.304269985999952, 51.867621161000045), (-5.297352667999917, 51.87018463700008), (-5.297352667999917, 51.87767161700003), (-5.300689256999931, 51.882025458000044), (-5.302561001999948, 51.88523997600004), (-5.300160285999937, 51.888332424000055), (-5.2905167309999115, 51.89199453300006), (-5.2905167309999115, 51.898138739000046), (-5.2983292309999115, 51.91095612200007), (-5.288929816999939, 51.91693756700005), (-5.252837693999936, 51.91864655200004), (-5.234201626999948, 51.923041083000044), (-5.204172329999949, 51.942287502000056), (-5.191151495999918, 51.946600653000075), (-5.16038977799991, 51.94944896000004), (-5.1195369129999335, 51.95892975500004), (-5.088042772999927, 51.97601959800005), (-5.085031704999949, 52.00185781500005), (-5.070790167999917, 52.00185781500005), (-5.070790167999917, 52.00804271000004), (-5.082753058999913, 52.01447174700007), (-5.081206834999932, 52.021185614000046), (-5.070220506999931, 52.02635325700004), (-5.053700324999909, 52.028509833000044), (-5.0266007149999155, 52.027411200000074), (-5.015044725999928, 52.02533600500004), (-4.961740688999953, 52.007513739000046), (-4.942534959999932, 52.007473049000055), (-4.913685675999943, 52.014837958000044), (-4.920521613999938, 52.028509833000044), (-4.9016007149999155, 52.02643463700008), (-4.863189256999931, 52.01699453300006), (-4.841420050999943, 52.014837958000044), (-4.83226477799991, 52.01898834800005), (-4.833851691999939, 52.02875397300005), (-4.8382869129999335, 52.04010651200008), (-4.838002081999946, 52.04901764500005), (-4.83039303299995, 52.05292389500005), (-4.796986456999946, 52.05646393400008), (-4.77757727799991, 52.064886786000045), (-4.7631729809999115, 52.075873114000046), (-4.7386775379999335, 52.100816148000035), (-4.720285610999952, 52.113348700000074), (-4.7065323559999115, 52.11347077000005), (-4.673451300999943, 52.09739817900004), (-4.675689256999931, 52.126939195000034), (-4.637521938999953, 52.13849518400008), (-4.513824022999927, 52.13568756700005), (-4.50226803299995, 52.138373114000046), (-4.495757615999935, 52.14350006700005), (-4.490956183999913, 52.150376695000034), (-4.484283006999931, 52.156317450000074), (-4.454701300999943, 52.16205475500004), (-4.4348038399999155, 52.170355536000045), (-4.415394660999937, 52.18154531500005), (-4.385568813999953, 52.20343659100007), (-4.371245897999927, 52.20929596600007), (-4.3547257149999155, 52.212103583000044), (-4.334339972999942, 52.21283600500004), (-4.315825975999928, 52.21629466400003), (-4.197132941999939, 52.279282945000034), (-4.1390681629999335, 52.33022695500006), (-4.10960852799991, 52.365301825000074), (-4.096262173999946, 52.387884833000044), (-4.0873917309999115, 52.430121161000045), (-4.0789688789999445, 52.45302969000005), (-4.067941860999952, 52.47361888200004), (-4.056548631999931, 52.48786041900007), (-4.0618383449999556, 52.49705638200004), (-4.064035610999952, 52.50918203300006), (-4.062570766999954, 52.52098216400003), (-4.056548631999931, 52.52944570500006), (-4.048491990999935, 52.530462958000044), (-4.0266007149999155, 52.52338288000004), (-4.016184048999946, 52.52195872600004), (-3.998768683999913, 52.52594635600008), (-3.9473363919999542, 52.549261786000045), (-3.9473363919999542, 52.556708075000074), (-3.9744766919999392, 52.55654531500005), (-4.025868292999917, 52.545355536000045), (-4.0531306629999335, 52.54242584800005), (-4.068470831999946, 52.550116278000075), (-4.1141251289999445, 52.58860911700003), (-4.125477667999917, 52.60390859600005), (-4.122222459999932, 52.62872955900008), (-4.105946417999917, 52.653509833000044), (-4.0848282539999445, 52.67267487200007), (-4.067128058999913, 52.68024323100008), (-4.063547329999949, 52.68309153900003), (-4.05882727799991, 52.696600653000075), (-4.056548631999931, 52.70066966400003), (-4.052723761999914, 52.70221588700008), (-4.041981574999909, 52.70465729400007), (-4.001088019999941, 52.72410716400003), (-3.988270636999914, 52.73427969000005), (-4.014719204999949, 52.73232656500005), (-4.031971808999913, 52.723944403000075), (-4.048817511999914, 52.721584377000056), (-4.125152147999927, 52.77830638200004), (-4.144357876999948, 52.802801825000074), (-4.149037238999938, 52.81207916900007), (-4.146229620999918, 52.82021719000005), (-4.128895636999914, 52.82363515800006), (-4.117339647999927, 52.83075592700004), (-4.1197810539999296, 52.84625885600008), (-4.127756313999953, 52.86172109600005), (-4.132191535999937, 52.86831289300005), (-4.131988084999932, 52.882473049000055), (-4.129872199999909, 52.88922760600008), (-4.123605923999946, 52.89325592700004), (-4.064035610999952, 52.919175523000035), (-4.071400519999941, 52.921087958000044), (-4.074574347999942, 52.92279694200005), (-4.0776261059999115, 52.926662502000056), (-4.0891007149999155, 52.918850002000056), (-4.100493943999936, 52.914129950000074), (-4.1105850899999155, 52.915676174000055), (-4.118560350999928, 52.926662502000056), (-4.144398566999939, 52.91478099200003), (-4.171620245999918, 52.91347890800006), (-4.228505011999914, 52.919175523000035), (-4.300689256999931, 52.905585028000075), (-4.317290818999936, 52.89935944200005), (-4.337310350999928, 52.89203522300005), (-4.406605597999942, 52.89252350500004), (-4.4272354809999115, 52.885972398000035), (-4.446197068999936, 52.87592194200005), (-4.4816788399999155, 52.850897528000075), (-4.477935350999928, 52.84833405200004), (-4.475493943999936, 52.84414297100005), (-4.491363084999932, 52.83820221600007), (-4.500965949999909, 52.82680898600006), (-4.501332160999937, 52.81391022300005), (-4.4891251289999445, 52.803168036000045), (-4.501942511999914, 52.794989325000074), (-4.509185350999928, 52.791449286000045), (-4.5164688789999445, 52.789496161000045), (-4.5285538399999155, 52.79047272300005), (-4.5424698559999115, 52.80068594000005), (-4.5639542309999115, 52.80524323100008), (-4.583078579999949, 52.81464264500005), (-4.594634568999936, 52.81679922100005), (-4.606516079999949, 52.81509023600006), (-4.61351477799991, 52.81110260600008), (-4.619211391999954, 52.80654531500005), (-4.626332160999937, 52.803168036000045), (-4.648589647999927, 52.79962799700007), (-4.704497850999928, 52.803168036000045), (-4.719309048999946, 52.79751211100006), (-4.733225063999953, 52.78750234600005), (-4.747425910999937, 52.78343333500004), (-4.762847459999932, 52.789496161000045), (-4.752512173999946, 52.79877350500004), (-4.7514542309999115, 52.80320872600004), (-4.755441860999952, 52.80931224200003), (-4.7492569649999155, 52.81427643400008), (-4.734934048999946, 52.83047109600005), (-4.596058722999942, 52.92841217700004), (-4.580962693999936, 52.93349844000005), (-4.562082485999952, 52.93451569200005), (-4.543527798999946, 52.937933661000045), (-4.523996548999946, 52.944240627000056), (-4.443430141999954, 52.98216380400004), (-4.423695441999939, 53.00263092700004), (-4.358225063999953, 53.02846914300005), (-4.349964972999942, 53.04148997600004), (-4.345692511999914, 53.059475002000056), (-4.343861456999946, 53.10106028900003), (-4.340891079999949, 53.11273834800005), (-4.334339972999942, 53.11676666900007), (-4.3276261059999115, 53.11469147300005), (-4.324696417999917, 53.10789622600004), (-4.320668097999942, 53.10150788000004), (-4.312245245999918, 53.109442450000074), (-4.304758266999954, 53.12099844000005), (-4.303618943999936, 53.12531159100007), (-4.263539191999939, 53.15452708500004), (-4.2523494129999335, 53.159409898000035), (-4.234527147999927, 53.16400788000004), (-4.221302863999938, 53.175034898000035), (-4.200550910999937, 53.20099518400008), (-4.17796790299991, 53.21759674700007), (-4.151519334999932, 53.22809479400007), (-4.122222459999932, 53.23346588700008), (-4.0906876289999445, 53.23517487200007), (-4.08234615799995, 53.23354726800005), (-4.074330206999946, 53.23065827000005), (-4.066883917999917, 53.22907135600008), (-4.054107225999928, 53.234361070000034), (-4.032297329999949, 53.24070872600004), (-4.008900519999941, 53.24445221600007), (-3.974598761999914, 53.261786200000074), (-3.8653051419999542, 53.289129950000074), (-3.8312882149999155, 53.289129950000074), (-3.841420050999943, 53.30744049700007), (-3.870757615999935, 53.32562897300005), (-3.8784073559999115, 53.337591864000046), (-3.859974738999938, 53.33633047100005), (-3.840565558999913, 53.33283112200007), (-3.822987433999913, 53.32656484600005), (-3.8101293609999516, 53.31708405200004), (-3.7905167309999115, 53.323431708000044), (-3.7688695949999556, 53.31915924700007), (-3.748199022999927, 53.307806708000044), (-3.7319229809999115, 53.29287344000005), (-3.7162979809999115, 53.28693268400008), (-3.6022029289999296, 53.28888580900008), (-3.5623266269999476, 53.29441966400003), (-3.372059699999909, 53.350897528000075), (-3.33031165299991, 53.35179271000004), (-3.2923884759999282, 53.34052155200004), (-3.2713110019999476, 53.33055247600004), (-3.262074347999942, 53.32050202000005), (-3.250803188999953, 53.312567450000074), (-3.122222459999932, 53.26227448100008), (-3.107533331999946, 53.25189850500004), (-3.0951228509999282, 53.23932526200008), (-3.0877579419999392, 53.23468659100007), (-3.0845434239999463, 53.23859284100007), (-3.0845434239999463, 53.25857168200008), (-3.0845434239999463, 53.275458075000074), (-3.09593665299991, 53.28713613500008), (-3.1111954419999392, 53.302801825000074), (-3.1354060539999296, 53.33380768400008), (-3.171538865999935, 53.36225006700005), (-3.185210740999935, 53.37726471600007), (-3.186350063999953, 53.39276764500005), (-3.175526495999918, 53.40273672100005), (-3.157297329999949, 53.40875885600008), (-3.1146541009999282, 53.41266510600008), (-3.0942276679999168, 53.41738515800006), (-3.058257615999935, 53.434759833000044), (-3.0355525379999335, 53.43374258000006), (-3.0121964179999168, 53.41669342700004), (-2.9529516269999476, 53.323919989000046), (-2.9351293609999516, 53.309475002000056), (-2.9105525379999335, 53.29633209800005), (-2.8814998039999296, 53.288397528000075), (-2.850575324999909, 53.289129950000074), (-2.849598761999914, 53.29120514500005), (-2.848378058999913, 53.29555898600006), (-2.8449600899999155, 53.300116278000075), (-2.837554490999935, 53.302801825000074), (-2.8286026679999168, 53.302435614000046), (-2.813384568999936, 53.297756252000056), (-2.8061417309999115, 53.296576239000046), (-2.789784308999913, 53.29743073100008), (-2.775502081999946, 53.29987213700008), (-2.7481176419999542, 53.30963776200008), (-2.753651495999918, 53.32245514500005), (-2.750884568999936, 53.33161041900007), (-2.743153449999909, 53.33852773600006), (-2.734486456999946, 53.34442780200004), (-2.7261449859999516, 53.34198639500005), (-2.7174373039999296, 53.34271881700005), (-2.708607550999943, 53.346136786000045), (-2.6997777989999463, 53.35179271000004), (-2.7141007149999155, 53.35236237200007), (-2.764393683999913, 53.34516022300005), (-2.775380011999914, 53.341009833000044), (-2.782378709999932, 53.32636139500005), (-2.799794074999909, 53.32103099200003), (-2.810332811999956, 53.32172272300005), (-2.843658006999931, 53.323919989000046), (-2.886463995999918, 53.33356354400007), (-2.924956834999932, 53.35000234600005), (-2.956939256999931, 53.37055084800005), (-2.980824347999942, 53.39276764500005), (-3.096587693999936, 53.54433828300006), (-3.101918097999942, 53.55805084800005), (-3.0994766919999392, 53.57200755400004), (-3.087635870999918, 53.58771393400008), (-3.021839972999942, 53.65281810100004), (-2.968658006999931, 53.69403717700004), (-2.9603572259999282, 53.69757721600007), (-2.9517309239999463, 53.70807526200008), (-2.9114477199999556, 53.725043036000045), (-2.899037238999938, 53.73541901200008), (-2.9848526679999168, 53.73607005400004), (-3.021473761999914, 53.745794989000046), (-3.049183722999942, 53.769517320000034), (-3.056385870999918, 53.80304596600007), (-3.044911261999914, 53.87848541900007), (-3.056630011999914, 53.90615469000005), (-3.040679490999935, 53.923529364000046), (-3.017567511999914, 53.93195221600007), (-2.925689256999931, 53.95270416900007), (-2.909250454999949, 53.95384349200003), (-2.896107550999943, 53.94773997600004), (-2.8885391919999392, 53.94603099200003), (-2.885365363999938, 53.950506903000075), (-2.881988084999932, 53.95652903900003), (-2.874175584999932, 53.96165599200003), (-2.865142381999931, 53.96548086100006), (-2.8579809239999463, 53.96759674700007), (-2.869252081999946, 53.97882721600007), (-2.8344620429999168, 53.99982330900008), (-2.830067511999914, 54.01601797100005), (-2.8475235669999392, 54.00836823100008), (-2.864857550999943, 54.00429922100005), (-2.895497199999909, 54.00234609600005), (-2.900298631999931, 54.00495026200008), (-2.9160863919999542, 54.026556708000044), (-2.91820227799991, 54.03432851800005), (-2.911284959999932, 54.03998444200005), (-2.9007869129999335, 54.044907945000034), (-2.8920792309999115, 54.050116278000075), (-2.872670050999943, 54.071600653000075), (-2.8588761059999115, 54.08100006700005), (-2.826771613999938, 54.08881256700005), (-2.815174933999913, 54.09878164300005), (-2.795969204999949, 54.12518952000005), (-2.8128149079999503, 54.139878648000035), (-2.8364151679999168, 54.16758860900006), (-2.8509415359999366, 54.18463776200008), (-2.854237433999913, 54.19407786700003), (-2.8328751289999445, 54.19904205900008), (-2.810292120999918, 54.21190013200004), (-2.7952367829999503, 54.22947825700004), (-2.795969204999949, 54.24872467700004), (-2.8028051419999542, 54.24872467700004), (-2.806630011999914, 54.233710028000075), (-2.8208715489999463, 54.22174713700008), (-2.850575324999909, 54.20774974200003), (-2.886382615999935, 54.19627513200004), (-2.904652472999942, 54.18764883000006), (-2.9126684239999463, 54.176988023000035), (-2.9203995429999168, 54.16205475500004), (-2.939198370999918, 54.15509674700007), (-2.9842016269999476, 54.15314362200007), (-2.997710740999935, 54.15957265800006), (-3.011341925999943, 54.17413971600007), (-3.017323370999918, 54.19009023600006), (-3.008168097999942, 54.20034414300005), (-3.015370245999918, 54.21190013200004), (-3.024484829999949, 54.221584377000056), (-3.035755988999938, 54.22597890800006), (-3.049183722999942, 54.22207265800006), (-3.044667120999918, 54.208319403000075), (-3.047840949999909, 54.19432200700004), (-3.053537563999953, 54.181301174000055), (-3.056630011999914, 54.17023346600007), (-3.0610245429999168, 54.16193268400008), (-3.090728318999936, 54.13947174700007), (-3.10765540299991, 54.11855703300006), (-3.117909308999913, 54.10883209800005), (-3.145253058999913, 54.100043036000045), (-3.147450324999909, 54.08869049700007), (-3.1443985669999392, 54.07514069200005), (-3.1453751289999445, 54.063788153000075), (-3.1805313789999445, 54.09284088700008), (-3.1897680329999503, 54.09788646000004), (-3.2057185539999296, 54.098537502000056), (-3.219553188999953, 54.100775458000044), (-3.2311091789999296, 54.105129299000055), (-3.240956183999913, 54.11212799700007), (-3.2381078769999476, 54.12759023600006), (-3.232533331999946, 54.14468008000006), (-3.233143683999913, 54.15916575700004), (-3.248402472999942, 54.16681549700007), (-3.248402472999942, 54.17365143400008), (-3.215199347999942, 54.17983633000006), (-3.206776495999918, 54.20892975500004), (-3.2090551419999542, 54.24274323100008), (-3.207386847999942, 54.263006903000075), (-3.2231339179999168, 54.25763580900008), (-3.231353318999936, 54.24721914300005), (-3.240956183999913, 54.22207265800006), (-3.232167120999918, 54.20254140800006), (-3.247141079999949, 54.19794342700004), (-3.270130988999938, 54.19912344000005), (-3.2860001289999445, 54.19721100500004), (-3.306792772999927, 54.19188060100004), (-3.3285212879999335, 54.204738674000055), (-3.3644913399999155, 54.24249909100007), (-3.394195115999935, 54.26439036700003), (-3.407378709999932, 54.27773672100005), (-3.412912563999953, 54.29376862200007), (-3.41038977799991, 54.30145905200004), (-3.405995245999918, 54.30963776200008), (-3.4041235019999476, 54.31854889500005), (-3.4114477199999556, 54.33274974200003), (-3.4134415359999366, 54.342962958000044), (-3.4163305329999503, 54.344916083000044), (-3.440174933999913, 54.35175202000005), (-3.474273240999935, 54.39350006700005), (-3.497710740999935, 54.40582916900007), (-3.5918676419999542, 54.48309967700004), (-3.608143683999913, 54.488267320000034), (-3.613189256999931, 54.49164459800005), (-3.6236873039999296, 54.50608958500004), (-3.6341853509999282, 54.512884833000044), (-3.6268204419999392, 54.520412502000056), (-3.616200324999909, 54.52757396000004), (-3.61156165299991, 54.52993398600006), (-3.5903214179999168, 54.56464264500005), (-3.5638321609999366, 54.64276764500005), (-3.5301407539999445, 54.68805573100008), (-3.5160212879999335, 54.712876695000034), (-3.5091853509999282, 54.72166575700004), (-3.500721808999913, 54.72597890800006), (-3.478871222999942, 54.730902411000045), (-3.4681290359999366, 54.73529694200005), (-3.455433722999942, 54.745021877000056), (-3.439564581999946, 54.76146067900004), (-3.4309789699999556, 54.780462958000044), (-3.440174933999913, 54.79743073100008), (-3.4075414699999556, 54.85602448100008), (-3.3879288399999155, 54.88336823100008), (-3.3644913399999155, 54.89980703300006), (-3.3449600899999155, 54.90253327000005), (-3.3333634109999366, 54.89728424700007), (-3.3227432929999168, 54.889878648000035), (-3.3064672519999476, 54.88617584800005), (-3.295725063999953, 54.88690827000005), (-3.254628058999913, 54.89980703300006), (-3.267323370999918, 54.905503648000035), (-3.317290818999936, 54.92031484600005), (-3.2914932929999168, 54.93667226800005), (-3.276519334999932, 54.943426825000074), (-3.213612433999913, 54.954413153000075), (-3.2010391919999392, 54.95221588700008), (-3.1936742829999503, 54.94863515800006), (-3.1879776679999168, 54.94448476800005), (-3.1801651679999168, 54.94082265800006), (-3.14281165299991, 54.93353913000004), (-3.122792120999918, 54.93268463700008), (-3.0395401679999168, 54.94717031500005), (-3.021839972999942, 54.954413153000075), (-3.090728318999936, 54.954413153000075), (-3.090728318999936, 54.96124909100007), (-3.0715225899999155, 54.96312083500004), (-3.0562231109999516, 54.968817450000074), (-3.040923631999931, 54.97247955900008), (-3.021839972999942, 54.968085028000075), (-3.021839972999942, 54.97553131700005), (-3.0462947259999282, 54.982123114000046), (-3.0502913779999403, 54.981510325000045), (-3.1354060539999296, 54.968085028000075), (-3.453846808999913, 54.981756903000075), (-3.470692511999914, 54.984442450000074), (-3.486236131999931, 54.989488023000035), (-3.501047329999949, 54.99249909100007), (-3.515288865999935, 54.98920319200005), (-3.5123591789999296, 54.98712799700007), (-3.511463995999918, 54.98688385600008), (-3.510894334999932, 54.985988674000055), (-3.5091853509999282, 54.981756903000075), (-3.5260310539999296, 54.97711823100008), (-3.5418595039999445, 54.98065827000005), (-3.57054602799991, 54.995428778000075), (-3.583607550999943, 54.968085028000075), (-3.5756729809999115, 54.95734284100007), (-3.5706274079999503, 54.937567450000074), (-3.5687556629999335, 54.916001695000034), (-3.57054602799991, 54.89980703300006), (-3.581695115999935, 54.88361237200007), (-3.598378058999913, 54.87799713700008), (-3.691761847999942, 54.88320547100005), (-3.7176407539999445, 54.880845445000034), (-3.739247199999909, 54.859808661000045), (-3.8101293609999516, 54.86627838700008), (-3.8078507149999155, 54.86107005400004), (-3.806792772999927, 54.86090729400007), (-3.803334113999938, 54.85887278900003), (-3.8123673169999392, 54.855169989000046), (-3.8198136059999115, 54.855902411000045), (-3.826079881999931, 54.85993073100008), (-3.8312882149999155, 54.86627838700008), (-3.819976365999935, 54.878566799000055), (-3.815052863999938, 54.87714264500005), (-3.8101293609999516, 54.87250397300005), (-3.8116348949999406, 54.88003164300005), (-3.813221808999913, 54.88312409100007), (-3.8169652989999463, 54.88617584800005), (-3.828846808999913, 54.874986070000034), (-3.8443090489999463, 54.86627838700008), (-3.839751756999931, 54.855902411000045), (-3.8374731109999516, 54.851996161000045), (-3.844105597999942, 54.85097890800006), (-3.8578995429999168, 54.84454987200007), (-3.823841925999943, 54.82469310100004), (-3.833607550999943, 54.82005442900004), (-3.885731574999909, 54.80646393400008), (-3.9641820949999556, 54.771918036000045), (-4.011708136999914, 54.76821523600006), (-4.042876756999931, 54.76947663000004), (-4.042876756999931, 54.77692291900007), (-4.046783006999931, 54.77802155200004), (-4.050200975999928, 54.778550523000035), (-4.053334113999938, 54.77997467700004), (-4.055775519999941, 54.782538153000075), (-4.05296790299991, 54.78546784100007), (-4.050160285999937, 54.78900788000004), (-4.049712693999936, 54.78998444200005), (-4.051747199999909, 54.800034898000035), (-4.0477188789999445, 54.81305573100008), (-4.049956834999932, 54.82322825700004), (-4.063588019999941, 54.82684967700004), (-4.064035610999952, 54.83152903900003), (-4.078602667999917, 54.82412344000005), (-4.09007727799991, 54.809759833000044), (-4.093495245999918, 54.792669989000046), (-4.083851691999939, 54.77692291900007), (-4.122954881999931, 54.77301666900007), (-4.173939581999946, 54.792303778000075), (-4.209136522999927, 54.826239325000074), (-4.200550910999937, 54.86627838700008), (-4.215402798999946, 54.861029364000046), (-4.2397354809999115, 54.843003648000035), (-4.255767381999931, 54.838324286000045), (-4.2707413399999155, 54.83942291900007), (-4.345285610999952, 54.86017487200007), (-4.3569229809999115, 54.86554596600007), (-4.3656306629999335, 54.87250397300005), (-4.375152147999927, 54.88690827000005), (-4.379872199999909, 54.89789459800005), (-4.386789516999954, 54.90477122600004), (-4.402902798999946, 54.90729401200008), (-4.409006313999953, 54.90302155200004), (-4.416818813999953, 54.89280833500004), (-4.423573370999918, 54.88035716400003), (-4.426503058999913, 54.86945221600007), (-4.4172257149999155, 54.84593333500004), (-4.4094132149999155, 54.831244208000044), (-4.402902798999946, 54.82469310100004), (-4.386708136999914, 54.82416413000004), (-4.372425910999937, 54.82184479400007), (-4.35960852799991, 54.81663646000004), (-4.347645636999914, 54.80731842700004), (-4.344471808999913, 54.79450104400007), (-4.353179490999935, 54.78310781500005), (-4.358143683999913, 54.77098216400003), (-4.343861456999946, 54.75641510600008), (-4.356516079999949, 54.741888739000046), (-4.353260870999918, 54.72089264500005), (-4.348133917999917, 54.70197174700007), (-4.3547257149999155, 54.693793036000045), (-4.360340949999909, 54.69159577000005), (-4.365305141999954, 54.68695709800005), (-4.371896938999953, 54.68227773600006), (-4.382394985999952, 54.68008047100005), (-4.405262824999909, 54.682074286000045), (-4.426503058999913, 54.687567450000074), (-4.4518123039999296, 54.69879791900007), (-4.46117102799991, 54.701239325000074), (-4.4967341789999296, 54.70062897300005), (-4.505604620999918, 54.70465729400007), (-4.563628709999932, 54.75641510600008), (-4.596669074999909, 54.77529531500005), (-4.714466925999943, 54.81785716400003), (-4.759592251999948, 54.82534414300005), (-4.781076626999948, 54.83307526200008), (-4.799631313999953, 54.86127350500004), (-4.821034308999913, 54.86664459800005), (-4.859120245999918, 54.86627838700008), (-4.88304602799991, 54.86009349200003), (-4.905873175999943, 54.84979889500005), (-4.925770636999914, 54.83738841400003), (-4.941029425999943, 54.82469310100004), (-4.9496150379999335, 54.81582265800006), (-4.953684048999946, 54.81000397300005), (-4.954823370999918, 54.804754950000074), (-4.954701300999943, 54.79743073100008), (-4.952870245999918, 54.78896719000005), (-4.9479060539999296, 54.777329820000034), (-4.940256313999953, 54.76703522300005), (-4.930165167999917, 54.76264069200005), (-4.923247850999928, 54.75185781500005), (-4.911936001999948, 54.728216864000046), (-4.8959854809999115, 54.70453522300005), (-4.867258266999954, 54.69013092700004), (-4.866932745999918, 54.68146393400008), (-4.872141079999949, 54.663316148000035), (-4.872425910999937, 54.65403880400004), (-4.872059699999909, 54.64923737200007), (-4.859120245999918, 54.63296133000006), (-4.880604620999918, 54.63621653900003), (-4.923491990999935, 54.649725653000075), (-4.944081183999913, 54.652777411000045), (-4.953684048999946, 54.65973541900007), (-4.959868943999936, 54.67552317900004), (-4.958973761999914, 54.69196198100008), (-4.947255011999914, 54.701239325000074), (-4.954823370999918, 54.707464911000045), (-4.958892381999931, 54.714056708000044), (-4.959055141999954, 54.72093333500004), (-4.954701300999943, 54.728501695000034), (-4.973378058999913, 54.729722398000035), (-4.981556769999941, 54.731634833000044), (-4.988189256999931, 54.73529694200005), (-4.992665167999917, 54.74433014500005), (-4.997059699999909, 54.75836823100008), (-5.003285285999937, 54.77130768400008), (-5.0130102199999556, 54.77692291900007), (-5.033192511999914, 54.782416083000044), (-5.1282445949999556, 54.848944403000075), (-5.157134568999936, 54.87909577000005), (-5.175526495999918, 54.91461823100008), (-5.180653449999909, 54.954413153000075), (-5.177601691999939, 54.99054596600007), (-5.170806443999936, 55.008693752000056), (-5.156727667999917, 55.01654694200005), (-5.1356095039999445, 55.01585521000004), (-5.124582485999952, 55.016791083000044), (-5.119740363999938, 55.01992422100005), (-5.115142381999931, 55.03156159100007), (-5.105213995999918, 55.02619049700007), (-5.095529751999948, 55.01508209800005), (-5.091867641999954, 55.00971100500004), (-5.076893683999913, 54.99555084800005), (-5.069488084999932, 54.986029364000046), (-5.064564581999946, 54.97553131700005), (-5.0637914699999556, 54.96458567900004), (-5.065256313999953, 54.940334377000056), (-5.06086178299995, 54.93113841400003), (-5.0475154289999296, 54.92031484600005), (-5.030995245999918, 54.911322333000044), (-5.013091600999928, 54.90961334800005), (-4.9955948559999115, 54.92031484600005), (-4.992298956999946, 54.924261786000045), (-4.988189256999931, 54.927720445000034), (-4.988189256999931, 54.93455638200004), (-5.0240779289999296, 54.97638580900008), (-5.029774542999917, 54.98550039300005), (-5.032500779999907, 54.99371979400007), (-5.033029751999948, 54.99526601800005), (-5.047027147999927, 55.01508209800005), (-5.0502823559999115, 55.02680084800005), (-5.0496720039999445, 55.04897695500006), (-5.047596808999913, 55.05573151200008), (-5.043446417999917, 55.06427643400008), (-5.0257869129999335, 55.08869049700007), (-5.018950975999928, 55.10224030200004), (-5.016184048999946, 55.12262604400007), (-5.007801886999914, 55.14118073100008), (-4.988270636999914, 55.15265534100007), (-4.947255011999914, 55.16791413000004), (-4.882394985999952, 55.21857330900008), (-4.877552863999938, 55.22089264500005), (-4.867258266999954, 55.22247955900008), (-4.865305141999954, 55.22565338700008), (-4.865589972999942, 55.236314195000034), (-4.864816860999952, 55.24135976800005), (-4.841949022999927, 55.275091864000046), (-4.838002081999946, 55.28400299700007), (-4.8372289699999556, 55.293850002000056), (-4.839751756999931, 55.31557851800005), (-4.838002081999946, 55.32501862200007), (-4.832508917999917, 55.33112213700008), (-4.7992244129999335, 55.354722398000035), (-4.781076626999948, 55.36351146000004), (-4.773101365999935, 55.36937083500004), (-4.767160610999952, 55.37905508000006), (-4.758778449999909, 55.40228913000004), (-4.7492569649999155, 55.413763739000046), (-4.71703040299991, 55.43048737200007), (-4.650502081999946, 55.448472398000035), (-4.626332160999937, 55.468410549000055), (-4.617787238999938, 55.49559153900003), (-4.626779751999948, 55.51972077000005), (-4.6507869129999335, 55.53705475500004), (-4.687163865999935, 55.544134833000044), (-4.66624915299991, 55.562201239000046), (-4.666493292999917, 55.56329987200007), (-4.6711319649999155, 55.584418036000045), (-4.692738410999937, 55.60521067900004), (-4.7219945949999556, 55.619208075000074), (-4.776519334999932, 55.632879950000074), (-4.808745897999927, 55.63361237200007), (-4.818104620999918, 55.63719310100004), (-4.810617641999954, 55.646551825000074), (-4.810617641999954, 55.653998114000046), (-4.868560350999928, 55.67560455900008), (-4.900990363999938, 55.69232819200005), (-4.920521613999938, 55.70856354400007), (-4.876332160999937, 55.735256252000056), (-4.861073370999918, 55.756740627000056), (-4.865305141999954, 55.79047272300005), (-4.8717341789999296, 55.802435614000046), (-4.8777970039999445, 55.81102122600004), (-4.882720506999931, 55.82135651200008), (-4.888661261999914, 55.864528713000084), (-4.888824022999927, 55.865301825000074), (-4.892648891999954, 55.89288971600007), (-4.886463995999918, 55.91966380400004), (-4.872141079999949, 55.937201239000046), (-4.849354620999918, 55.94822825700004), (-4.818104620999918, 55.95563385600008), (-4.799387173999946, 55.957912502000056), (-4.7857966789999296, 55.95697663000004), (-4.722320115999935, 55.94009023600006), (-4.705433722999942, 55.93846263200004), (-4.693959113999938, 55.94135163000004), (-4.6725154289999296, 55.93378327000005), (-4.505970831999946, 55.91909414300005), (-4.4816788399999155, 55.92829010600008), (-4.590606248999961, 55.941514390000066), (-4.630034959999932, 55.94627513200004), (-4.673451300999943, 55.96185944200005), (-4.724517381999931, 55.99835846600007), (-4.765044725999928, 56.007066148000035), (-4.78343665299991, 56.017645575000074), (-4.7992244129999335, 56.030951239000046), (-4.810617641999954, 56.04376862200007), (-4.8237198559999115, 56.07367584800005), (-4.824330206999946, 56.07851797100005), (-4.8391820949999556, 56.08063385600008), (-4.844309048999946, 56.07298411700003), (-4.843739386999914, 56.06297435100004), (-4.837554490999935, 56.05060455900008), (-4.790150519999941, 56.010199286000045), (-4.778920050999943, 55.99209219000005), (-4.785308397999927, 55.984035549000055), (-4.803618943999936, 55.982082424000055), (-4.828033006999931, 55.98232656500005), (-4.851551886999914, 55.98802317900004), (-4.862294074999909, 56.00214264500005), (-4.865386522999927, 56.02020905200004), (-4.866851365999935, 56.05833567900004), (-4.865386522999927, 56.06671784100007), (-4.826324022999927, 56.124212958000044), (-4.755441860999952, 56.188381252000056), (-4.750884568999936, 56.20270416900007), (-4.755523240999935, 56.20652903900003), (-4.7662654289999296, 56.20209381700005), (-4.7799373039999296, 56.191473700000074), (-4.837269660999937, 56.12441640800006), (-4.851673956999946, 56.112616278000075), (-4.873117641999954, 56.11200592700004), (-4.880604620999918, 56.11985911700003), (-4.878977016999954, 56.15053945500006), (-4.883168097999942, 56.16400788000004), (-4.893544074999909, 56.174261786000045), (-4.9070938789999445, 56.177069403000075), (-4.920521613999938, 56.16791413000004), (-4.909087693999936, 56.14996979400007), (-4.895253058999913, 56.11473216400003), (-4.8862198559999115, 56.08038971600007), (-4.889149542999917, 56.06484609600005), (-4.901926235999952, 56.06191640800006), (-4.904367641999954, 56.054348049000055), (-4.900054490999935, 56.03412506700005), (-4.900054490999935, 56.01459381700005), (-4.898019985999952, 56.001166083000044), (-4.892648891999954, 55.98973216400003), (-4.906402147999927, 55.98574453300006), (-4.921457485999952, 55.98867422100005), (-4.937489386999914, 55.993841864000046), (-4.954701300999943, 55.99656810100004), (-4.954701300999943, 55.98973216400003), (-4.942005988999938, 55.986314195000034), (-4.928863084999932, 55.98114655200004), (-4.918446417999917, 55.97333405200004), (-4.913685675999943, 55.96185944200005), (-4.917388475999928, 55.94745514500005), (-4.9272354809999115, 55.93768952000005), (-4.9387100899999155, 55.92963288000004), (-4.947255011999914, 55.92084381700005), (-4.952137824999909, 55.90912506700005), (-4.954986131999931, 55.89935944200005), (-4.95921790299991, 55.89012278900003), (-4.96898352799991, 55.87986888200004), (-4.983143683999913, 55.87103913000004), (-4.994740363999938, 55.86981842700004), (-5.026356574999909, 55.87372467700004), (-5.0424698559999115, 55.884751695000034), (-5.056752081999946, 55.91030508000006), (-5.0668025379999335, 55.938788153000075), (-5.070790167999917, 55.958685614000046), (-5.1108292309999115, 55.98895905200004), (-5.116037563999953, 56.00169505400004), (-5.123605923999946, 56.00991445500006), (-5.139637824999909, 56.00275299700007), (-5.123768683999913, 55.986314195000034), (-5.085682745999918, 55.93187083500004), (-5.078236456999946, 55.91095612200007), (-5.086537238999938, 55.901271877000056), (-5.105620897999927, 55.90497467700004), (-5.171538865999935, 55.935532945000034), (-5.180653449999909, 55.948431708000044), (-5.180653449999909, 55.96930573100008), (-5.190825975999928, 55.96173737200007), (-5.1996150379999335, 55.948553778000075), (-5.2057185539999296, 55.93451569200005), (-5.207915818999936, 55.92462799700007), (-5.212635870999918, 55.91714101800005), (-5.242054816999939, 55.89288971600007), (-5.218129035999937, 55.86469147300005), (-5.208159959999932, 55.849269924000055), (-5.201079881999931, 55.83148834800005), (-5.2193904289999296, 55.83144765800006), (-5.2631729809999115, 55.845770575000074), (-5.296701626999948, 55.85268789300005), (-5.307118292999917, 55.86041901200008), (-5.313384568999936, 55.88544342700004), (-5.319325324999909, 55.889105536000045), (-5.327219204999949, 55.89154694200005), (-5.3348282539999445, 55.89667389500005), (-5.3382869129999335, 55.90375397300005), (-5.3391007149999155, 55.91303131700005), (-5.3382869129999335, 55.93138255400004), (-5.336089647999927, 55.93919505400004), (-5.326161261999914, 55.95026276200008), (-5.323963995999918, 55.958685614000046), (-5.325754360999952, 55.967230536000045), (-5.3382869129999335, 55.99656810100004), (-5.313628709999932, 56.01235586100006), (-5.204497850999928, 56.11945221600007), (-5.146473761999914, 56.13312409100007), (-5.104603644999941, 56.15151601800005), (-5.0949600899999155, 56.15737539300005), (-5.0594376289999445, 56.203111070000034), (-5.043446417999917, 56.21629466400003), (-5.013295050999943, 56.22760651200008), (-4.974964972999942, 56.23700592700004), (-4.9400935539999296, 56.25141022300005), (-4.920521613999938, 56.277777411000045), (-4.938099738999938, 56.27098216400003), (-4.975087042999917, 56.24799225500004), (-4.991932745999918, 56.24298737200007), (-5.0327042309999115, 56.24115631700005), (-5.049549933999913, 56.23704661700003), (-5.064564581999946, 56.22931549700007), (-5.0754288399999155, 56.21698639500005), (-5.099436001999948, 56.18195221600007), (-5.1088761059999115, 56.174709377000056), (-5.228138800999943, 56.12921784100007), (-5.3109431629999335, 56.05805084800005), (-5.319935675999943, 56.05491771000004), (-5.338042772999927, 56.05410390800006), (-5.345692511999914, 56.051214911000045), (-5.345285610999952, 56.046128648000035), (-5.350209113999938, 56.03192780200004), (-5.356353318999936, 56.01976146000004), (-5.359364386999914, 56.020738023000035), (-5.3686417309999115, 56.009426174000055), (-5.390288865999935, 56.00568268400008), (-5.415028449999909, 56.00690338700008), (-5.43382727799991, 56.010199286000045), (-5.434559699999909, 56.014960028000075), (-5.434722459999932, 56.02362702000005), (-5.437123175999943, 56.03001536700003), (-5.444406704999949, 56.02757396000004), (-5.4479060539999296, 56.02228424700007), (-5.448231574999909, 56.016058661000045), (-5.447621222999942, 56.009426174000055), (-5.454986131999931, 55.95563385600008), (-5.45140540299991, 55.95343659100007), (-5.436431443999936, 55.94896067900004), (-5.430775519999941, 55.94818756700005), (-5.420806443999936, 55.92829010600008), (-5.416737433999913, 55.91681549700007), (-5.416005011999914, 55.907416083000044), (-5.4125056629999335, 55.899603583000044), (-5.400380011999914, 55.89288971600007), (-5.400380011999914, 55.886704820000034), (-5.407215949999909, 55.886704820000034), (-5.407215949999909, 55.87986888200004), (-5.402943488999938, 55.87872955900008), (-5.39289303299995, 55.87372467700004), (-5.3976944649999155, 55.87156810100004), (-5.402495897999927, 55.868353583000044), (-5.407215949999909, 55.86627838700008), (-5.35179602799991, 55.83242422100005), (-5.326771613999938, 55.808579820000034), (-5.317779100999928, 55.78302643400008), (-5.324574347999942, 55.769232489000046), (-5.3385310539999296, 55.76264069200005), (-5.372425910999937, 55.75641510600008), (-5.3875626289999445, 55.75031159100007), (-5.433461066999939, 55.72101471600007), (-5.4445694649999155, 55.71161530200004), (-5.4539688789999445, 55.70058828300006), (-5.46117102799991, 55.68813711100006), (-5.463612433999913, 55.67983633000006), (-5.466175910999937, 55.662176825000074), (-5.468617316999939, 55.653998114000046), (-5.490101691999939, 55.644598700000074), (-5.488270636999914, 55.640326239000046), (-5.484283006999931, 55.63572825700004), (-5.482289191999939, 55.632879950000074), (-5.4838761059999115, 55.61005280200004), (-5.474761522999927, 55.603949286000045), (-5.462635870999918, 55.60203685100004), (-5.454986131999931, 55.59194570500006), (-5.461089647999927, 55.57880280200004), (-5.476918097999942, 55.57489655200004), (-5.488758917999917, 55.56907786700003), (-5.482289191999939, 55.55027903900003), (-5.503529425999943, 55.52651601800005), (-5.509632941999939, 55.516791083000044), (-5.5106095039999445, 55.51146067900004), (-5.509632941999939, 55.49258047100005), (-5.5109757149999155, 55.484442450000074), (-5.514271613999938, 55.48387278900003), (-5.5187882149999155, 55.48517487200007), (-5.523264126999948, 55.48265208500004), (-5.545521613999938, 55.44916413000004), (-5.561512824999909, 55.435532945000034), (-5.5846248039999296, 55.427435614000046), (-5.5846248039999296, 55.421210028000075), (-5.572132941999939, 55.422308661000045), (-5.562082485999952, 55.41986725500004), (-5.553089972999942, 55.41453685100004), (-5.543690558999913, 55.40692780200004), (-5.527455206999946, 55.38434479400007), (-5.5266820949999556, 55.38027578300006), (-5.5149633449999556, 55.37368398600006), (-5.525054490999935, 55.358628648000035), (-5.557972785999937, 55.33185455900008), (-5.574370897999927, 55.32200755400004), (-5.594105597999942, 55.31313711100006), (-5.616281704999949, 55.30658600500004), (-5.6399633449999556, 55.303900458000044), (-5.649525519999941, 55.30516185100004), (-5.669097459999932, 55.31085846600007), (-5.6808975899999155, 55.31134674700007), (-5.691395636999914, 55.308579820000034), (-5.714019334999932, 55.29913971600007), (-5.725575324999909, 55.29706452000005), (-5.7545466789999296, 55.29734935100004), (-5.772287563999953, 55.30125560100004), (-5.782866990999935, 55.31354401200008), (-5.794667120999918, 55.35639069200005), (-5.796701626999948, 55.37909577000005), (-5.7914119129999335, 55.39862702000005), (-5.763417120999918, 55.41205475500004), (-5.725412563999953, 55.437567450000074), (-5.715646938999953, 55.44790273600006), (-5.7152400379999335, 55.46889883000006), (-5.720122850999928, 55.491522528000075), (-5.7219132149999155, 55.51386139500005), (-5.707753058999913, 55.54336172100005), (-5.712066209999932, 55.55072663000004), (-5.718861456999946, 55.55731842700004), (-5.721831834999932, 55.56460195500006), (-5.718129035999937, 55.57575104400007), (-5.694488084999932, 55.605536200000074), (-5.6733292309999115, 55.640611070000034), (-5.6694229809999115, 55.66071198100008), (-5.6808975899999155, 55.67446523600006), (-5.626535610999952, 55.70062897300005), (-5.61945553299995, 55.71198151200008), (-5.613189256999931, 55.725775458000044), (-5.5982966789999296, 55.74298737200007), (-5.581206834999932, 55.75763580900008), (-5.5678604809999115, 55.76386139500005), (-5.539173956999946, 55.77094147300005), (-5.504628058999913, 55.78937409100007), (-5.4735001289999445, 55.815659898000035), (-5.454986131999931, 55.845770575000074), (-5.551747199999909, 55.783636786000045), (-5.587473110999952, 55.76715729400007), (-5.599436001999948, 55.76422760600008), (-5.6126195949999556, 55.76386139500005), (-5.60578365799995, 55.77684153900003), (-5.6332087879999335, 55.78278229400007), (-5.64671790299991, 55.78750234600005), (-5.66038977799991, 55.79734935100004), (-5.667958136999914, 55.81102122600004), (-5.669016079999949, 55.83783600500004), (-5.67406165299991, 55.845770575000074), (-5.631988084999932, 55.88178131700005), (-5.625599738999938, 55.889837958000044), (-5.61937415299991, 55.90314362200007), (-5.6043595039999445, 55.91364166900007), (-5.586293097999942, 55.92332591400003), (-5.571034308999913, 55.93451569200005), (-5.593495245999918, 55.92796458500004), (-5.6275935539999296, 55.90534088700008), (-5.6537979809999115, 55.89760976800005), (-5.671701626999948, 55.88690827000005), (-5.6808975899999155, 55.886704820000034), (-5.687977667999917, 55.89337799700007), (-5.694162563999953, 55.90497467700004), (-5.696400519999941, 55.91596100500004), (-5.586822068999936, 56.01203034100007), (-5.57843990799995, 56.02448151200008), (-5.5826716789999296, 56.028957424000055), (-5.576649542999917, 56.032538153000075), (-5.571034308999913, 56.037543036000045), (-5.583892381999931, 56.040716864000046), (-5.596424933999913, 56.036810614000046), (-5.609852667999917, 56.03001536700003), (-5.625599738999938, 56.02448151200008), (-5.6317032539999445, 56.005926825000074), (-5.674875454999949, 55.977728583000044), (-5.67406165299991, 55.95563385600008), (-5.690785285999937, 55.93764883000006), (-5.694488084999932, 55.93451569200005), (-5.704497850999928, 55.936753648000035), (-5.707508917999917, 55.942572333000044), (-5.705881313999953, 55.949652411000045), (-5.701975063999953, 55.95563385600008), (-5.696441209999932, 55.98216380400004), (-5.659901495999918, 56.02326080900008), (-5.5846248039999296, 56.08466217700004), (-5.5815323559999115, 56.08828359600005), (-5.580067511999914, 56.09292226800005), (-5.5774633449999556, 56.096991278000075), (-5.571034308999913, 56.09902578300006), (-5.564605272999927, 56.098089911000045), (-5.556548631999931, 56.09589264500005), (-5.550689256999931, 56.09349192900004), (-5.550526495999918, 56.09218984600005), (-5.547840949999909, 56.09003327000005), (-5.5394587879999335, 56.08685944200005), (-5.531605597999942, 56.08633047100005), (-5.530100063999953, 56.09218984600005), (-5.534738735999952, 56.098537502000056), (-5.5414119129999335, 56.10248444200005), (-5.5475154289999296, 56.10488515800006), (-5.550526495999918, 56.10643138200004), (-5.55695553299995, 56.12221914300005), (-5.558705206999946, 56.13080475500004), (-5.554676886999914, 56.13739655200004), (-5.522531704999949, 56.16575755400004), (-5.515736456999946, 56.174709377000056), (-5.509632941999939, 56.188381252000056), (-5.5399063789999445, 56.18341705900008), (-5.562489386999914, 56.16791413000004), (-5.5826716789999296, 56.15058014500005), (-5.60578365799995, 56.139960028000075), (-5.599354620999918, 56.160589911000045), (-5.586415167999917, 56.18113841400003), (-5.569406704999949, 56.20026276200008), (-5.550526495999918, 56.21629466400003), (-5.5594376289999445, 56.22955963700008), (-5.547230597999942, 56.24017975500004), (-5.52562415299991, 56.247259833000044), (-5.50617428299995, 56.24982330900008), (-5.494740363999938, 56.253119208000044), (-5.4928279289999296, 56.26040273600006), (-5.4992569649999155, 56.267645575000074), (-5.512684699999909, 56.27094147300005), (-5.554269985999952, 56.26349518400008), (-5.5631404289999296, 56.26032135600008), (-5.572621222999942, 56.25385163000004), (-5.58234615799995, 56.24876536700003), (-5.592152472999942, 56.24982330900008), (-5.5980525379999335, 56.25861237200007), (-5.595570441999939, 56.26992422100005), (-5.5846248039999296, 56.29075755400004), (-5.57258053299995, 56.32807038000004), (-5.56273352799991, 56.341050523000035), (-5.543690558999913, 56.352850653000075), (-5.525217251999948, 56.34662506700005), (-5.498199022999927, 56.34833405200004), (-5.4481095039999445, 56.35968659100007), (-5.4481095039999445, 56.36591217700004), (-5.4721573559999115, 56.364935614000046), (-5.515370245999918, 56.35683828300006), (-5.5375056629999335, 56.35968659100007), (-5.517323370999918, 56.39276764500005), (-5.509632941999939, 56.40062083500004), (-5.498931443999936, 56.404730536000045), (-5.486073370999918, 56.40810781500005), (-5.4780167309999115, 56.41290924700007), (-5.482289191999939, 56.421128648000035), (-5.457020636999914, 56.44086334800005), (-5.423573370999918, 56.45001862200007), (-5.322865363999938, 56.45498281500005), (-5.242054816999939, 56.44220612200007), (-5.208729620999918, 56.44684479400007), (-5.18187415299991, 56.45966217700004), (-5.118519660999937, 56.50775788000004), (-5.085682745999918, 56.54877350500004), (-5.064564581999946, 56.56513092700004), (-5.086537238999938, 56.55849844000005), (-5.099598761999914, 56.54364655200004), (-5.1105850899999155, 56.52586497600004), (-5.125965949999909, 56.51048411700003), (-5.166900193999936, 56.49005768400008), (-5.190174933999913, 56.46865469000005), (-5.201079881999931, 56.462103583000044), (-5.243763800999943, 56.45921458500004), (-5.350168423999946, 56.47296784100007), (-5.378081834999932, 56.458970445000034), (-5.394276495999918, 56.46548086100006), (-5.4105525379999335, 56.50364817900004), (-5.42414303299995, 56.500067450000074), (-5.4359431629999335, 56.49115631700005), (-5.454986131999931, 56.46954987200007), (-5.468617316999939, 56.47573476800005), (-5.433338995999918, 56.52362702000005), (-5.427642381999931, 56.53782786700003), (-5.4037979809999115, 56.524603583000044), (-5.379261847999942, 56.519191799000055), (-5.3566788399999155, 56.51968008000006), (-5.3382869129999335, 56.52415599200003), (-5.2905167309999115, 56.54466380400004), (-5.265044725999928, 56.551214911000045), (-5.252552863999938, 56.556341864000046), (-5.242054816999939, 56.56513092700004), (-5.27562415299991, 56.553615627000056), (-5.286773240999935, 56.552069403000075), (-5.306792772999927, 56.552801825000074), (-5.3109431629999335, 56.552069403000075), (-5.327707485999952, 56.54466380400004), (-5.338693813999953, 56.542303778000075), (-5.360340949999909, 56.53221263200004), (-5.372425910999937, 56.53034088700008), (-5.384348110999952, 56.53343333500004), (-5.400502081999946, 56.54364655200004), (-5.413929816999939, 56.54466380400004), (-5.410878058999913, 56.552069403000075), (-5.407297329999949, 56.55532461100006), (-5.402699347999942, 56.55744049700007), (-5.396636522999927, 56.561712958000044), (-5.392689581999946, 56.566473700000074), (-5.3893123039999296, 56.57489655200004), (-5.386626756999931, 56.57880280200004), (-5.360707160999937, 56.60626862200007), (-5.351918097999942, 56.612941799000055), (-5.31086178299995, 56.63361237200007), (-5.304514126999948, 56.64016347900008), (-5.298451300999943, 56.64642975500004), (-5.317779100999928, 56.65387604400007), (-5.317779100999928, 56.661322333000044), (-5.309071417999917, 56.66425202000005), (-5.286773240999935, 56.674994208000044), (-5.261463995999918, 56.67332591400003), (-5.248199022999927, 56.67405833500004), (-5.218902147999927, 56.688666083000044), (-5.196441209999932, 56.688666083000044), (-5.153309699999909, 56.68121979400007), (-5.132639126999948, 56.68451569200005), (-5.093373175999943, 56.69904205900008), (-5.012806769999941, 56.70929596600007), (-4.9955948559999115, 56.71596914300005), (-5.1605525379999335, 56.69586823100008), (-5.238270636999914, 56.71662018400008), (-5.23851477799991, 56.72256094000005), (-5.228423631999931, 56.73647695500006), (-5.222075975999928, 56.741522528000075), (-5.154652472999942, 56.78229401200008), (-5.136382615999935, 56.79877350500004), (-5.119740363999938, 56.818426825000074), (-5.179066535999937, 56.78925202000005), (-5.187489386999914, 56.78115469000005), (-5.191761847999942, 56.774644273000035), (-5.202259894999941, 56.76911041900007), (-5.214670376999948, 56.76520416900007), (-5.224964972999942, 56.763739325000074), (-5.233469204999949, 56.76068756700005), (-5.237049933999913, 56.75336334800005), (-5.2389216789999296, 56.74445221600007), (-5.242054816999939, 56.73647695500006), (-5.255238410999937, 56.721584377000056), (-5.268462693999936, 56.71308014500005), (-5.283355272999927, 56.70937734600005), (-5.30101477799991, 56.70856354400007), (-5.3098038399999155, 56.70648834800005), (-5.319162563999953, 56.69749583500004), (-5.34015865799995, 56.693060614000046), (-5.348378058999913, 56.687201239000046), (-5.359364386999914, 56.674994208000044), (-5.388050910999937, 56.65521881700005), (-5.403879360999952, 56.64923737200007), (-5.4242244129999335, 56.64704010600008), (-5.434396938999953, 56.64288971600007), (-5.4487198559999115, 56.62457916900007), (-5.458119269999941, 56.620347398000035), (-5.470773891999954, 56.618394273000035), (-5.482574022999927, 56.613267320000034), (-5.493316209999932, 56.60639069200005), (-5.53343665299991, 56.57290273600006), (-5.599598761999914, 56.52903880400004), (-5.667388475999928, 56.498480536000045), (-5.67406165299991, 56.49689362200007), (-5.683013475999928, 56.50063711100006), (-5.694691535999937, 56.51386139500005), (-5.70539303299995, 56.51666901200008), (-5.721791144999941, 56.51850006700005), (-5.740834113999938, 56.52326080900008), (-5.7582087879999335, 56.52997467700004), (-5.770253058999913, 56.53782786700003), (-5.7551977199999556, 56.554022528000075), (-5.751047329999949, 56.56199778900003), (-5.749134894999941, 56.571966864000046), (-5.756662563999953, 56.571966864000046), (-5.793853318999936, 56.54328034100007), (-5.8543595039999445, 56.550482489000046), (-6.0034073559999115, 56.61871979400007), (-6.009836391999954, 56.62653229400007), (-6.008168097999942, 56.642279364000046), (-5.998036261999914, 56.64988841400003), (-5.983509894999941, 56.65281810100004), (-5.933583136999914, 56.654730536000045), (-5.899037238999938, 56.650824286000045), (-5.866851365999935, 56.64154694200005), (-5.8391820949999556, 56.62653229400007), (-5.831695115999935, 56.633978583000044), (-5.855620897999927, 56.64472077000005), (-5.865589972999942, 56.65143463700008), (-5.865834113999938, 56.661322333000044), (-5.75999915299991, 56.70075104400007), (-5.735503709999932, 56.702337958000044), (-5.672596808999913, 56.68414948100008), (-5.647368943999936, 56.68121979400007), (-5.5941462879999335, 56.68333567900004), (-5.564808722999942, 56.68764883000006), (-5.543690558999913, 56.69546133000006), (-5.636545376999948, 56.688666083000044), (-5.658558722999942, 56.690741278000075), (-5.708851691999939, 56.70856354400007), (-5.749989386999914, 56.714544989000046), (-5.859038865999935, 56.68121979400007), (-5.89679928299995, 56.675116278000075), (-5.907378709999932, 56.674994208000044), (-5.9203181629999335, 56.67796458500004), (-5.942738410999937, 56.686753648000035), (-5.955555792999917, 56.688666083000044), (-6.0248917309999115, 56.68569570500006), (-6.098622199999909, 56.696966864000046), (-6.123850063999953, 56.69562409100007), (-6.143544074999909, 56.684881903000075), (-6.161732550999943, 56.67820872600004), (-6.186594204999949, 56.68109772300005), (-6.2096248039999296, 56.68846263200004), (-6.222767706999946, 56.69546133000006), (-6.228179490999935, 56.70107656500005), (-6.232533331999946, 56.70652903900003), (-6.235340949999909, 56.71238841400003), (-6.236398891999954, 56.71906159100007), (-6.234486456999946, 56.728583075000074), (-6.229562954999949, 56.72907135600008), (-6.222767706999946, 56.72719961100006), (-6.215321417999917, 56.72964101800005), (-6.193470831999946, 56.74852122600004), (-6.1805313789999445, 56.75462474200003), (-6.026966925999943, 56.763739325000074), (-6.0148819649999155, 56.76703522300005), (-5.979888475999928, 56.78156159100007), (-5.965199347999942, 56.784857489000046), (-5.948231574999909, 56.782538153000075), (-5.937977667999917, 56.77692291900007), (-5.928537563999953, 56.769964911000045), (-5.913644985999952, 56.763739325000074), (-5.860910610999952, 56.75079987200007), (-5.8522029289999296, 56.746975002000056), (-5.853342251999948, 56.757879950000074), (-5.858143683999913, 56.768459377000056), (-5.8683975899999155, 56.77586497600004), (-5.886341925999943, 56.777411200000074), (-5.886341925999943, 56.784857489000046), (-5.874012824999909, 56.78571198100008), (-5.861805792999917, 56.78510163000004), (-5.850087042999917, 56.782456773000035), (-5.8391820949999556, 56.777411200000074), (-5.8246150379999335, 56.78758372600004), (-5.8020727199999556, 56.79181549700007), (-5.7766007149999155, 56.787990627000056), (-5.756662563999953, 56.784857489000046), (-5.831695115999935, 56.80536530200004), (-5.8508194649999155, 56.818019924000055), (-5.851185675999943, 56.82892487200007), (-5.837473110999952, 56.83661530200004), (-5.7338761059999115, 56.84479401200008), (-5.692738410999937, 56.85492584800005), (-5.66038977799991, 56.87299225500004), (-5.673573370999918, 56.87653229400007), (-5.692005988999938, 56.87531159100007), (-5.7084854809999115, 56.87055084800005), (-5.724354620999918, 56.85382721600007), (-5.744496222999942, 56.85415273600006), (-5.783924933999913, 56.85993073100008), (-5.775380011999914, 56.86994049700007), (-5.735503709999932, 56.89411041900007), (-5.7805883449999556, 56.89874909100007), (-5.874867316999939, 56.887152411000045), (-5.9211319649999155, 56.89411041900007), (-5.8875626289999445, 56.89911530200004), (-5.8522029289999296, 56.90033600500004), (-5.8522029289999296, 56.90770091400003), (-5.859852667999917, 56.91054922100005), (-5.8801163399999155, 56.92202383000006), (-5.8625382149999155, 56.93374258000006), (-5.851429816999939, 56.95425039300005), (-5.842518683999913, 56.977443752000056), (-5.831695115999935, 56.99713776200008), (-5.814116990999935, 57.00950755400004), (-5.786040818999936, 57.02057526200008), (-5.755238410999937, 57.026556708000044), (-5.729318813999953, 57.02383047100005), (-5.719878709999932, 57.017564195000034), (-5.699940558999913, 56.998114325000074), (-5.688303188999953, 56.98969147300005), (-5.67406165299991, 56.983587958000044), (-5.658558722999942, 56.97947825700004), (-5.625599738999938, 56.976629950000074), (-5.571278449999909, 56.98383209800005), (-5.523264126999948, 56.99713776200008), (-5.523264126999948, 57.003973700000074), (-5.540435350999928, 57.001166083000044), (-5.556507941999939, 56.996079820000034), (-5.571278449999909, 56.99331289300005), (-5.5846248039999296, 56.99713776200008), (-5.607085740999935, 56.98851146000004), (-5.628814256999931, 56.991888739000046), (-5.6498917309999115, 56.999660549000055), (-5.6703181629999335, 57.003973700000074), (-5.685536261999914, 57.00958893400008), (-5.681711391999954, 57.02240631700005), (-5.680043097999942, 57.03620026200008), (-5.701975063999953, 57.044907945000034), (-5.710926886999914, 57.044175523000035), (-5.731353318999936, 57.03900788000004), (-5.742339647999927, 57.03807200700004), (-5.752552863999938, 57.04059479400007), (-5.769602016999954, 57.04975006700005), (-5.780181443999936, 57.05174388200004), (-5.791127081999946, 57.05927155200004), (-5.776193813999953, 57.075832424000055), (-5.734486456999946, 57.10541413000004), (-5.722645636999914, 57.116441148000035), (-5.715646938999953, 57.12006256700005), (-5.703277147999927, 57.120754299000055), (-5.673695441999939, 57.11904531500005), (-5.663482225999928, 57.12372467700004), (-5.645863410999937, 57.12946198100008), (-5.620838995999918, 57.12409088700008), (-5.57843990799995, 57.10639069200005), (-5.558257615999935, 57.10040924700007), (-5.4598282539999445, 57.09979889500005), (-5.454986131999931, 57.10297272300005), (-5.447417772999927, 57.11017487200007), (-5.430775519999941, 57.11074453300006), (-5.41429602799991, 57.10822174700007), (-5.407215949999909, 57.10639069200005), (-5.400380011999914, 57.10639069200005), (-5.400380011999914, 57.11383698100008), (-5.420033331999946, 57.12067291900007), (-5.503895636999914, 57.11269765800006), (-5.527414516999954, 57.107489325000074), (-5.540638800999943, 57.10639069200005), (-5.5477188789999445, 57.11009349200003), (-5.573312954999949, 57.12787506700005), (-5.5846248039999296, 57.133693752000056), (-5.668446417999917, 57.147650458000044), (-5.6808975899999155, 57.157904364000046), (-5.673817511999914, 57.174994208000044), (-5.638824022999927, 57.202378648000035), (-5.625599738999938, 57.21625397300005), (-5.644154425999943, 57.23322174700007), (-5.620106574999909, 57.25214264500005), (-5.578236456999946, 57.26675039300005), (-5.543690558999913, 57.27090078300006), (-5.511586066999939, 57.25763580900008), (-5.480091925999943, 57.23700592700004), (-5.446278449999909, 57.22304922100005), (-5.407215949999909, 57.22992584800005), (-5.407215949999909, 57.23672109600005), (-5.448841925999943, 57.24209219000005), (-5.458119269999941, 57.24664948100008), (-5.47288977799991, 57.26121653900003), (-5.482899542999917, 57.268011786000045), (-5.49250240799995, 57.27090078300006), (-5.501942511999914, 57.27765534100007), (-5.4889216789999296, 57.29242584800005), (-5.464833136999914, 57.306626695000034), (-5.4406632149999155, 57.311835028000075), (-5.4406632149999155, 57.31928131700005), (-5.464995897999927, 57.32493724200003), (-5.4817602199999556, 57.31671784100007), (-5.494292772999927, 57.30442942900004), (-5.50617428299995, 57.298163153000075), (-5.523426886999914, 57.29515208500004), (-5.558461066999939, 57.28143952000005), (-5.57843990799995, 57.27765534100007), (-5.599436001999948, 57.27924225500004), (-5.637440558999913, 57.28900788000004), (-5.656971808999913, 57.29132721600007), (-5.7000626289999445, 57.28359609600005), (-5.720570441999939, 57.284491278000075), (-5.729318813999953, 57.298163153000075), (-5.7252498039999296, 57.30158112200007), (-5.701975063999953, 57.33234284100007), (-5.6937556629999335, 57.337103583000044), (-5.671986456999946, 57.34442780200004), (-5.663482225999928, 57.349676825000074), (-5.654367641999954, 57.353949286000045), (-5.647206183999913, 57.34992096600007), (-5.6414688789999445, 57.34320709800005), (-5.636545376999948, 57.33978913000004), (-5.613189256999931, 57.34198639500005), (-5.5012914699999556, 57.37099844000005), (-5.456654425999943, 57.39354075700004), (-5.4481095039999445, 57.42169830900008), (-5.46507727799991, 57.423895575000074), (-5.492054816999939, 57.40875885600008), (-5.5375056629999335, 57.373928127000056), (-5.563465949999909, 57.36310455900008), (-5.586659308999913, 57.36505768400008), (-5.610910610999952, 57.37140534100007), (-5.6399633449999556, 57.373928127000056), (-5.615589972999942, 57.382473049000055), (-5.607085740999935, 57.389105536000045), (-5.609201626999948, 57.397772528000075), (-5.617746548999946, 57.41010163000004), (-5.619618292999917, 57.41669342700004), (-5.624012824999909, 57.41640859600005), (-5.6399633449999556, 57.40802643400008), (-5.707183397999927, 57.35976797100005), (-5.732411261999914, 57.352769273000035), (-5.784575975999928, 57.34857819200005), (-5.807769334999932, 57.35492584800005), (-5.8248591789999296, 57.39435455900008), (-5.822255011999914, 57.39350006700005), (-5.817372199999909, 57.39520905200004), (-5.812855597999942, 57.398098049000055), (-5.8111873039999296, 57.40119049700007), (-5.813872850999928, 57.40452708500004), (-5.8231095039999445, 57.41233958500004), (-5.8248591789999296, 57.41547272300005), (-5.825266079999949, 57.428900458000044), (-5.821888800999943, 57.435532945000034), (-5.8111873039999296, 57.44220612200007), (-5.8215225899999155, 57.44546133000006), (-5.852528449999909, 57.450384833000044), (-5.859038865999935, 57.45270416900007), (-5.861195441999939, 57.46344635600008), (-5.870513475999928, 57.48078034100007), (-5.872670050999943, 57.49371979400007), (-5.869699673999946, 57.500881252000056), (-5.856068488999938, 57.51780833500004), (-5.8522029289999296, 57.52411530200004), (-5.8510636059999115, 57.538397528000075), (-5.851470506999931, 57.55109284100007), (-5.847075975999928, 57.55890534100007), (-5.831695115999935, 57.55882396000004), (-5.833851691999939, 57.563381252000056), (-5.837025519999941, 57.57477448100008), (-5.8391820949999556, 57.579291083000044), (-5.821400519999941, 57.583197333000044), (-5.803618943999936, 57.581366278000075), (-5.7863663399999155, 57.57518138200004), (-5.732574022999927, 57.54523346600007), (-5.715646938999953, 57.538397528000075), (-5.707020636999914, 57.542303778000075), (-5.68976803299995, 57.52789948100008), (-5.6808975899999155, 57.52411530200004), (-5.650868292999917, 57.51264069200005), (-5.6399633449999556, 57.511053778000075), (-5.645334438999953, 57.51666901200008), (-5.648304816999939, 57.52187734600005), (-5.650542772999927, 57.52680084800005), (-5.6535538399999155, 57.53156159100007), (-5.5815323559999115, 57.538397528000075), (-5.5402725899999155, 57.534491278000075), (-5.5168350899999155, 57.534857489000046), (-5.512684699999909, 57.54148997600004), (-5.543120897999927, 57.55536530200004), (-5.588368292999917, 57.56102122600004), (-5.632720506999931, 57.55768463700008), (-5.66038977799991, 57.544582424000055), (-5.694488084999932, 57.56631094000005), (-5.689198370999918, 57.56940338700008), (-5.6808975899999155, 57.579291083000044), (-5.714222785999937, 57.58270905200004), (-5.7316788399999155, 57.59829336100006), (-5.744252081999946, 57.61798737200007), (-5.762806769999941, 57.633978583000044), (-5.778146938999953, 57.63743724200003), (-5.7936091789999296, 57.63857656500005), (-5.8058975899999155, 57.642645575000074), (-5.8111873039999296, 57.65509674700007), (-5.805409308999913, 57.667181708000044), (-5.785023566999939, 57.67951080900008), (-5.790760870999918, 57.68854401200008), (-5.790760870999918, 57.69599030200004), (-5.753570115999935, 57.707464911000045), (-5.734486456999946, 57.70795319200005), (-5.704986131999931, 57.69013092700004), (-5.692494269999941, 57.691066799000055), (-5.68195553299995, 57.69871653900003), (-5.67406165299991, 57.70966217700004), (-5.685170050999943, 57.71141185100004), (-5.692290818999936, 57.716498114000046), (-5.698841925999943, 57.723089911000045), (-5.708851691999939, 57.72955963700008), (-5.720529751999948, 57.73338450700004), (-5.803822394999941, 57.743841864000046), (-5.80695553299995, 57.75462474200003), (-5.8020727199999556, 57.780585028000075), (-5.803822394999941, 57.792222398000035), (-5.801258917999917, 57.800441799000055), (-5.809925910999937, 57.82062409100007), (-5.8111873039999296, 57.833197333000044), (-5.807362433999913, 57.84393952000005), (-5.799956834999932, 57.85370514500005), (-5.789540167999917, 57.86200592700004), (-5.776519334999932, 57.86790599200003), (-5.751128709999932, 57.87335846600007), (-5.724761522999927, 57.87352122600004), (-5.698638475999928, 57.86908600500004), (-5.67406165299991, 57.86050039300005), (-5.677886522999927, 57.846909898000035), (-5.674794074999909, 57.82709381700005), (-5.667958136999914, 57.80695221600007), (-5.66038977799991, 57.792222398000035), (-5.650542772999927, 57.78180573100008), (-5.6373591789999296, 57.77423737200007), (-5.622141079999949, 57.77020905200004), (-5.60578365799995, 57.77049388200004), (-5.613270636999914, 57.77521393400008), (-5.617909308999913, 57.78021881700005), (-5.625599738999938, 57.792222398000035), (-5.613026495999918, 57.792629299000055), (-5.603260870999918, 57.791083075000074), (-5.5846248039999296, 57.784816799000055), (-5.591175910999937, 57.80442942900004), (-5.587025519999941, 57.81858958500004), (-5.5852758449999556, 57.83144765800006), (-5.598988410999937, 57.846869208000044), (-5.6375626289999445, 57.86635976800005), (-5.650380011999914, 57.87775299700007), (-5.6399633449999556, 57.88784414300005), (-5.6476944649999155, 57.88898346600007), (-5.6507869129999335, 57.89081452000005), (-5.6535538399999155, 57.89468008000006), (-5.643950975999928, 57.90420156500005), (-5.620757615999935, 57.92088450700004), (-5.6126195949999556, 57.92877838700008), (-5.598215298999946, 57.91901276200008), (-5.587310350999928, 57.91510651200008), (-5.550526495999918, 57.91510651200008), (-5.556263800999943, 57.88776276200008), (-5.527902798999946, 57.86758047100005), (-5.487049933999913, 57.85586172100005), (-5.454986131999931, 57.85370514500005), (-5.46117102799991, 57.86050039300005), (-5.449045376999948, 57.869126695000034), (-5.437123175999943, 57.897650458000044), (-5.427642381999931, 57.908270575000074), (-5.4149063789999445, 57.90814850500004), (-5.369496222999942, 57.89752838700008), (-5.355620897999927, 57.89126211100006), (-5.327504035999937, 57.87327708500004), (-5.293853318999936, 57.86204661700003), (-5.221587693999936, 57.846869208000044), (-5.236317511999914, 57.86078522300005), (-5.2475479809999115, 57.86701080900008), (-5.276763475999928, 57.87417226800005), (-5.320668097999942, 57.898504950000074), (-5.384917772999927, 57.914129950000074), (-5.39289303299995, 57.91819896000004), (-5.394398566999939, 57.923895575000074), (-5.396839972999942, 57.926214911000045), (-5.3973282539999445, 57.928900458000044), (-5.39289303299995, 57.935614325000074), (-5.386545376999948, 57.936428127000056), (-5.378977016999954, 57.93183014500005), (-5.3717341789999296, 57.93105703300006), (-5.366200324999909, 57.943060614000046), (-5.3471573559999115, 57.936712958000044), (-5.319162563999953, 57.91474030200004), (-5.297352667999917, 57.908270575000074), (-5.2860001289999445, 57.90875885600008), (-5.266957160999937, 57.91400788000004), (-5.2562556629999335, 57.91510651200008), (-5.2436417309999115, 57.91290924700007), (-5.22101803299995, 57.90403880400004), (-5.211293097999942, 57.90208567900004), (-5.198801235999952, 57.897772528000075), (-5.162261522999927, 57.87848541900007), (-5.1199845039999445, 57.86798737200007), (-5.0911352199999556, 57.84031810100004), (-5.070790167999917, 57.833197333000044), (-5.07648678299995, 57.83852773600006), (-5.083404100999928, 57.84756094000005), (-5.0893448559999115, 57.85724518400008), (-5.091867641999954, 57.86420319200005), (-5.0971573559999115, 57.87091705900008), (-5.197255011999914, 57.91787344000005), (-5.221587693999936, 57.92133209800005), (-5.221587693999936, 57.92877838700008), (-5.201893683999913, 57.92865631700005), (-5.193959113999938, 57.935980536000045), (-5.19554602799991, 57.94765859600005), (-5.204497850999928, 57.960150458000044), (-5.216704881999931, 57.96588776200008), (-5.2488907539999445, 57.96938711100006), (-5.2631729809999115, 57.976548570000034), (-5.292632615999935, 57.98061758000006), (-5.333892381999931, 58.00853099200003), (-5.359364386999914, 58.011379299000055), (-5.357167120999918, 58.01406484600005), (-5.3566788399999155, 58.014878648000035), (-5.351918097999942, 58.01752350500004), (-5.366932745999918, 58.02887604400007), (-5.386586066999939, 58.032538153000075), (-5.427642381999931, 58.03119538000004), (-5.424305792999917, 58.03554922100005), (-5.422352667999917, 58.03896719000005), (-5.419585740999935, 58.04205963700008), (-5.413929816999939, 58.04547760600008), (-5.413929816999939, 58.05231354400007), (-5.447010870999918, 58.08437734600005), (-5.428089972999942, 58.09796784100007), (-5.390044725999928, 58.09218984600005), (-5.366200324999909, 58.06598541900007), (-5.344309048999946, 58.075506903000075), (-5.322865363999938, 58.07172272300005), (-5.300770636999914, 58.07013580900008), (-5.276763475999928, 58.08641185100004), (-5.283070441999939, 58.08641185100004), (-5.278065558999913, 58.09625885600008), (-5.2787979809999115, 58.10537344000005), (-5.283558722999942, 58.11347077000005), (-5.2905167309999115, 58.12055084800005), (-5.276763475999928, 58.12055084800005), (-5.276763475999928, 58.127386786000045), (-5.297352667999917, 58.134833075000074), (-5.284087693999936, 58.14008209800005), (-5.255523240999935, 58.143784898000035), (-5.242054816999939, 58.14789459800005), (-5.242054816999939, 58.15534088700008), (-5.275054490999935, 58.15452708500004), (-5.290842251999948, 58.156317450000074), (-5.304798956999946, 58.162095445000034), (-5.297352667999917, 58.168402411000045), (-5.304798956999946, 58.17332591400003), (-5.313059048999946, 58.17731354400007), (-5.321888800999943, 58.18024323100008), (-5.331450975999928, 58.18203359600005), (-5.3293350899999155, 58.186712958000044), (-5.326161261999914, 58.198431708000044), (-5.323963995999918, 58.203111070000034), (-5.336822068999936, 58.203192450000074), (-5.346791144999941, 58.20685455900008), (-5.39289303299995, 58.24469635600008), (-5.3920792309999115, 58.261379299000055), (-5.375884568999936, 58.26422760600008), (-5.352894660999937, 58.25893789300005), (-5.31078040299991, 58.243394273000035), (-5.293853318999936, 58.24091217700004), (-5.276966925999943, 58.243394273000035), (-5.237294074999909, 58.25763580900008), (-5.2160538399999155, 58.261419989000046), (-5.194325324999909, 58.25999583500004), (-5.173207160999937, 58.25092194200005), (-5.165638800999943, 58.258246161000045), (-5.152251756999931, 58.264837958000044), (-5.138335740999935, 58.269598700000074), (-5.129383917999917, 58.27138906500005), (-5.11156165299991, 58.26825592700004), (-5.0812882149999155, 58.25409577000005), (-5.0676977199999556, 58.25092194200005), (-5.017730272999927, 58.253241278000075), (-5.002430792999917, 58.25092194200005), (-4.933583136999914, 58.22304922100005), (-4.943430141999954, 58.233587958000044), (-4.954823370999918, 58.23981354400007), (-4.982004360999952, 58.25092194200005), (-4.968861456999946, 58.25678131700005), (-4.940337693999936, 58.259466864000046), (-4.926747199999909, 58.26459381700005), (-4.990223761999914, 58.27142975500004), (-5.009917772999927, 58.27138906500005), (-5.018055792999917, 58.26862213700008), (-5.029367641999954, 58.25971100500004), (-5.040028449999909, 58.25775788000004), (-5.0501195949999556, 58.25991445500006), (-5.0707087879999335, 58.269232489000046), (-5.081654425999943, 58.27138906500005), (-5.096424933999913, 58.27676015800006), (-5.125965949999909, 58.30019765800006), (-5.1362198559999115, 58.305568752000056), (-5.137440558999913, 58.30927155200004), (-5.156361456999946, 58.32461172100005), (-5.160145636999914, 58.326605536000045), (-5.167795376999948, 58.33926015800006), (-5.171009894999941, 58.34666575700004), (-5.173207160999937, 58.353949286000045), (-5.153309699999909, 58.353949286000045), (-5.1634008449999556, 58.364569403000075), (-5.162912563999953, 58.37449778900003), (-5.155913865999935, 58.384466864000046), (-5.146473761999914, 58.394964911000045), (-5.145497199999909, 58.400051174000055), (-5.14671790299991, 58.40664297100005), (-5.146839972999942, 58.41242096600007), (-5.143055792999917, 58.41478099200003), (-5.135487433999913, 58.413763739000046), (-5.122222459999932, 58.40957265800006), (-5.116037563999953, 58.40859609600005), (-5.057972785999937, 58.38727448100008), (-5.016184048999946, 58.38812897300005), (-5.043934699999909, 58.400091864000046), (-5.0533748039999296, 58.40664297100005), (-5.0502823559999115, 58.41478099200003), (-5.0570369129999335, 58.42218659100007), (-5.066151495999918, 58.41714101800005), (-5.076161261999914, 58.414496161000045), (-5.086822068999936, 58.41388580900008), (-5.0980525379999335, 58.41478099200003), (-5.0980525379999335, 58.42218659100007), (-5.08812415299991, 58.421942450000074), (-5.085031704999949, 58.42218659100007), (-5.085031704999949, 58.429022528000075), (-5.091786261999914, 58.429754950000074), (-5.09601803299995, 58.43146393400008), (-5.105539516999954, 58.43650950700004), (-5.0501195949999556, 58.45380280200004), (-5.025542772999927, 58.447699286000045), (-4.9955948559999115, 58.43650950700004), (-5.105539516999954, 58.48737213700008), (-5.105620897999927, 58.505560614000046), (-5.103667772999927, 58.51422760600008), (-5.095855272999927, 58.518866278000075), (-5.042795376999948, 58.53546784100007), (-5.0279841789999296, 58.54409414300005), (-5.016184048999946, 58.55939362200007), (-5.0229386059999115, 58.55939362200007), (-5.015207485999952, 58.580064195000034), (-5.011586066999939, 58.60057200700004), (-5.004953579999949, 58.61774323100008), (-4.988189256999931, 58.62832265800006), (-4.859486456999946, 58.61322663000004), (-4.835926886999914, 58.60504791900007), (-4.818104620999918, 58.59292226800005), (-4.817941860999952, 58.587591864000046), (-4.81281490799995, 58.571966864000046), (-4.806752081999946, 58.55841705900008), (-4.803822394999941, 58.55939362200007), (-4.804595506999931, 58.54832591400003), (-4.807240363999938, 58.53961823100008), (-4.811634894999941, 58.53204987200007), (-4.818104620999918, 58.524644273000035), (-4.799794074999909, 58.532456773000035), (-4.791818813999953, 58.54165273600006), (-4.7899063789999445, 58.55174388200004), (-4.790150519999941, 58.562486070000034), (-4.785755988999938, 58.577053127000056), (-4.777088995999918, 58.583319403000075), (-4.771595831999946, 58.59039948100008), (-4.776519334999932, 58.60716380400004), (-4.758859829999949, 58.59910716400003), (-4.7280167309999115, 58.577460028000075), (-4.7113337879999335, 58.57306549700007), (-4.683257615999935, 58.56150950700004), (-4.670399542999917, 58.55939362200007), (-4.660023566999939, 58.555853583000044), (-4.659291144999941, 58.54755280200004), (-4.663238084999932, 58.538397528000075), (-4.6673070949999556, 58.53204987200007), (-4.6790258449999556, 58.52391185100004), (-4.714466925999943, 58.50560130400004), (-4.732411261999914, 58.480454820000034), (-4.751535610999952, 58.46161530200004), (-4.7609757149999155, 58.44798411700003), (-4.74242102799991, 58.44953034100007), (-4.682972785999937, 58.48456452000005), (-4.673451300999943, 58.48737213700008), (-4.6668595039999445, 58.50291575700004), (-4.650502081999946, 58.50995514500005), (-4.630441860999952, 58.514960028000075), (-4.612131313999953, 58.524644273000035), (-4.6010636059999115, 58.54193756700005), (-4.595122850999928, 58.56000397300005), (-4.584950324999909, 58.57416413000004), (-4.560536261999914, 58.57990143400008), (-4.517486131999931, 58.575506903000075), (-4.475493943999936, 58.565619208000044), (-4.426503058999913, 58.54637278900003), (-4.426503058999913, 58.53888580900008), (-4.427886522999927, 58.53530508000006), (-4.428700324999909, 58.53473541900007), (-4.426503058999913, 58.524644273000035), (-4.449940558999913, 58.510199286000045), (-4.464751756999931, 58.49201080900008), (-4.477650519999941, 58.47134023600006), (-4.4953507149999155, 58.44953034100007), (-4.478098110999952, 58.453558661000045), (-4.46117102799991, 58.46246979400007), (-4.43390865799995, 58.483628648000035), (-4.432728644999941, 58.487616278000075), (-4.4339900379999335, 58.49237702000005), (-4.4342341789999296, 58.49628327000005), (-4.430165167999917, 58.49799225500004), (-4.425933397999927, 58.49909088700008), (-4.385365363999938, 58.52240631700005), (-4.382394985999952, 58.524644273000035), (-4.343861456999946, 58.53888580900008), (-4.317005988999938, 58.54572174700007), (-4.306996222999942, 58.54637278900003), (-4.287180141999954, 58.54291413000004), (-4.2573136059999115, 58.52798086100006), (-4.234730597999942, 58.524644273000035), (-4.248931443999936, 58.53204987200007), (-4.238189256999931, 58.536444403000075), (-4.232248501999948, 58.54242584800005), (-4.227691209999932, 58.548163153000075), (-4.22101803299995, 58.551947333000044), (-4.209706183999913, 58.55292389500005), (-4.190785285999937, 58.54783763200004), (-4.1769913399999155, 58.54637278900003), (-4.16820227799991, 58.54938385600008), (-4.1605525379999335, 58.562567450000074), (-4.149322068999936, 58.565619208000044), (-4.111195441999939, 58.565619208000044), (-4.0902400379999335, 58.56207916900007), (-4.081450975999928, 58.561835028000075), (-4.070220506999931, 58.565619208000044), (-4.061512824999909, 58.57282135600008), (-4.048817511999914, 58.58958567900004), (-4.039784308999913, 58.59292226800005), (-4.030629035999937, 58.59406159100007), (-4.029042120999918, 58.59516022300005), (-4.027821417999917, 58.59271881700005), (-4.0092667309999115, 58.57330963700008), (-4.003773566999939, 58.57062409100007), (-3.981434699999909, 58.57306549700007), (-3.8957413399999155, 58.565619208000044), (-3.8101293609999516, 58.57306549700007), (-3.7669571609999366, 58.58372630400004), (-3.6983536449999406, 58.61115143400008), (-3.659901495999918, 58.62083567900004), (-3.597564256999931, 58.62714264500005), (-3.565500454999949, 58.626613674000055), (-3.542591925999943, 58.62083567900004), (-3.552479620999918, 58.61546458500004), (-3.556263800999943, 58.61399974200003), (-3.532053188999953, 58.60211823100008), (-3.504017706999946, 58.60333893400008), (-3.447010870999918, 58.61399974200003), (-3.3914688789999445, 58.60065338700008), (-3.364084438999953, 58.600816148000035), (-3.3508194649999155, 58.62083567900004), (-3.3677465489999463, 58.624701239000046), (-3.3860570949999556, 58.631740627000056), (-3.402251756999931, 58.64203522300005), (-3.412912563999953, 58.655585028000075), (-3.3900447259999282, 58.67177969000005), (-3.3748673169999392, 58.677069403000075), (-3.3582657539999445, 58.675482489000046), (-3.3543595039999445, 58.67015208500004), (-3.35179602799991, 58.66083405200004), (-3.34788977799991, 58.652044989000046), (-3.340565558999913, 58.648138739000046), (-3.3098852199999556, 58.648138739000046), (-3.244252081999946, 58.65900299700007), (-3.204090949999909, 58.66111888200004), (-3.1519262359999516, 58.64126211100006), (-3.118763800999943, 58.64109935100004), (-3.052886522999927, 58.648138739000046), (-3.0191137359999516, 58.640326239000046), (-3.025380011999914, 58.62213776200008), (-3.0444229809999115, 58.601629950000074), (-3.049183722999942, 58.58673737200007), (-3.060454881999931, 58.57843659100007), (-3.0754288399999155, 58.56037018400008), (-3.0845434239999463, 58.551947333000044), (-3.1107478509999282, 58.53864166900007), (-3.1180313789999445, 58.53204987200007), (-3.129261847999942, 58.51264069200005), (-3.1293025379999335, 58.49640534100007), (-3.1187231109999516, 58.484442450000074), (-3.0975235669999392, 58.47748444200005), (-3.0850723949999406, 58.47825755400004), (-3.073963995999918, 58.481675523000035), (-3.064442511999914, 58.48297760600008), (-3.056630011999914, 58.47748444200005), (-3.053334113999938, 58.46576569200005), (-3.0577286449999406, 58.45685455900008), (-3.066761847999942, 58.451157945000034), (-3.077056443999936, 58.44953034100007), (-3.0863337879999335, 58.41421133000006), (-3.129790818999936, 58.36928945500006), (-3.182769334999932, 58.32843659100007), (-3.2205297519999476, 58.305568752000056), (-3.2622777989999463, 58.292629299000055), (-3.34984290299991, 58.27610911700003), (-3.38499915299991, 58.26459381700005), (-3.438099738999938, 58.236029364000046), (-3.447010870999918, 58.22675202000005), (-3.454741990999935, 58.210150458000044), (-3.473459438999953, 58.193426825000074), (-3.515288865999935, 58.168402411000045), (-3.7350154289999296, 58.07217031500005), (-3.809193488999938, 58.05190664300005), (-3.8275040359999366, 58.04205963700008), (-3.8362524079999503, 58.03143952000005), (-3.8460994129999335, 58.01117584800005), (-3.851714647999927, 58.003892320000034), (-3.8605850899999155, 57.998928127000056), (-3.8856095039999445, 57.991400458000044), (-3.9173070949999556, 57.98745351800005), (-3.981434699999909, 57.96356842700004), (-3.990956183999913, 57.96039459800005), (-3.997670050999943, 57.954413153000075), (-4.001372850999928, 57.94611237200007), (-4.001942511999914, 57.935614325000074), (-4.018299933999913, 57.940619208000044), (-4.023060675999943, 57.943060614000046), (-4.016184048999946, 57.949286200000074), (-4.0301407539999445, 57.953192450000074), (-4.055775519999941, 57.95498281500005), (-4.0843806629999335, 57.964178778000075), (-4.0891007149999155, 57.960150458000044), (-4.0863337879999335, 57.95189036700003), (-4.0776261059999115, 57.943060614000046), (-4.062652147999927, 57.93695709800005), (-4.03148352799991, 57.93618398600006), (-4.016184048999946, 57.93219635600008), (-4.009429490999935, 57.92767975500004), (-3.988270636999914, 57.908270575000074), (-4.008941209999932, 57.88959381700005), (-4.013824022999927, 57.879339911000045), (-4.009348110999952, 57.86790599200003), (-4.025135870999918, 57.868068752000056), (-4.054839647999927, 57.874335028000075), (-4.070220506999931, 57.87417226800005), (-4.0793350899999155, 57.87026601800005), (-4.0969132149999155, 57.85736725500004), (-4.1049698559999115, 57.85370514500005), (-4.132923956999946, 57.85415273600006), (-4.190419074999909, 57.87006256700005), (-4.218169725999928, 57.87417226800005), (-4.298898891999954, 57.86277903900003), (-4.3209529289999296, 57.87103913000004), (-4.353179490999935, 57.89520905200004), (-4.3723038399999155, 57.90448639500005), (-4.392404751999948, 57.908270575000074), (-4.339588995999918, 57.86570872600004), (-4.307728644999941, 57.85146719000005), (-4.269398566999939, 57.846869208000044), (-4.229074673999946, 57.85724518400008), (-4.2082413399999155, 57.85919830900008), (-4.190581834999932, 57.85028717700004), (-4.173451300999943, 57.83901601800005), (-4.1497289699999556, 57.82982005400004), (-4.1334529289999296, 57.830145575000074), (-4.1390681629999335, 57.846869208000044), (-4.0750626289999445, 57.82318756700005), (-4.0399063789999445, 57.81818268400008), (-3.9835098949999406, 57.84235260600008), (-3.9514867829999503, 57.838324286000045), (-3.933705206999946, 57.82566966400003), (-3.9473363919999542, 57.81268952000005), (-3.914784308999913, 57.80768463700008), (-3.877674933999913, 57.81671784100007), (-3.8418676419999542, 57.83490631700005), (-3.813547329999949, 57.857123114000046), (-3.798451300999943, 57.866522528000075), (-3.786040818999936, 57.86542389500005), (-3.779449022999927, 57.85565827000005), (-3.782215949999909, 57.83942291900007), (-3.790028449999909, 57.83071523600006), (-3.92601477799991, 57.734808661000045), (-3.948841925999943, 57.72492096600007), (-3.975209113999938, 57.70327383000006), (-3.988270636999914, 57.69599030200004), (-4.00804602799991, 57.693793036000045), (-4.02367102799991, 57.69782135600008), (-4.0286352199999556, 57.70770905200004), (-4.016184048999946, 57.72333405200004), (-4.042958136999914, 57.73729075700004), (-4.077951626999948, 57.73029205900008), (-4.155344204999949, 57.692572333000044), (-4.168568488999938, 57.689439195000034), (-4.1939998039999296, 57.68854401200008), (-4.2592667309999115, 57.67869700700004), (-4.277821417999917, 57.68060944200005), (-4.294789191999939, 57.68016185100004), (-4.302154100999928, 57.66860586100006), (-4.30882727799991, 57.65485260600008), (-4.324045376999948, 57.64826080900008), (-4.33820553299995, 57.64508698100008), (-4.4031876289999445, 57.60952383000006), (-4.412180141999954, 57.60297272300005), (-4.4203181629999335, 57.592962958000044), (-4.428456183999913, 57.57754140800006), (-4.423451300999943, 57.57680898600006), (-4.409901495999918, 57.582464911000045), (-4.379872199999909, 57.58934153900003), (-4.365101691999939, 57.59723541900007), (-4.3510636059999115, 57.60736725500004), (-4.340809699999909, 57.617173570000034), (-4.328724738999938, 57.626288153000075), (-4.283111131999931, 57.64142487200007), (-4.2445369129999335, 57.66303131700005), (-4.201893683999913, 57.674994208000044), (-4.1937556629999335, 57.67552317900004), (-4.182240363999938, 57.67279694200005), (-4.169016079999949, 57.663763739000046), (-4.118723110999952, 57.65770091400003), (-4.096791144999941, 57.65810781500005), (-4.0807185539999296, 57.66498444200005), (-4.068104620999918, 57.672308661000045), (-4.0246475899999155, 57.687201239000046), (-4.009348110999952, 57.68854401200008), (-4.004505988999938, 57.67597077000005), (-4.025257941999939, 57.65521881700005), (-4.0541886059999115, 57.63572825700004), (-4.083404100999928, 57.62335846600007), (-4.118560350999928, 57.592962958000044), (-4.11546790299991, 57.58783600500004), (-4.112294074999909, 57.58413320500006), (-4.1088761059999115, 57.58144765800006), (-4.1049698559999115, 57.579291083000044), (-4.151356574999909, 57.57684967700004), (-4.170643683999913, 57.570746161000045), (-4.187489386999914, 57.55882396000004), (-4.178089972999942, 57.54954661700003), (-4.184925910999937, 57.548163153000075), (-4.207997199999909, 57.552069403000075), (-4.262603318999936, 57.552069403000075), (-4.262603318999936, 57.544582424000055), (-4.233957485999952, 57.54511139500005), (-4.220285610999952, 57.543402411000045), (-4.207997199999909, 57.538397528000075), (-4.226307745999918, 57.51544830900008), (-4.237456834999932, 57.50531647300005), (-4.248931443999936, 57.49746328300006), (-4.212798631999931, 57.492173570000034), (-4.1948136059999115, 57.49160390800006), (-4.173898891999954, 57.49746328300006), (-4.157622850999928, 57.50849030200004), (-4.150054490999935, 57.51504140800006), (-4.149322068999936, 57.51788971600007), (-4.126779751999948, 57.518866278000075), (-4.116200324999909, 57.52179596600007), (-4.097523566999939, 57.53668854400007), (-4.082997199999909, 57.54441966400003), (-4.067290818999936, 57.54995351800005), (-4.0531306629999335, 57.552069403000075), (-4.034982876999948, 57.55687083500004), (-4.046457485999952, 57.56785716400003), (-4.083851691999939, 57.58612702000005), (-4.056019660999937, 57.585150458000044), (-3.9643448559999115, 57.592962958000044), (-3.8682755199999406, 57.587876695000034), (-3.8374731109999516, 57.592962958000044), (-3.6848038399999155, 57.65444570500006), (-3.625152147999927, 57.66193268400008), (-3.632557745999918, 57.65094635600008), (-3.637684699999909, 57.64622630400004), (-3.6456192699999406, 57.64142487200007), (-3.632476365999935, 57.635646877000056), (-3.6196182929999168, 57.63621653900003), (-3.606068488999938, 57.63947174700007), (-3.590972459999932, 57.64142487200007), (-3.61156165299991, 57.66811758000006), (-3.5747777989999463, 57.66111888200004), (-3.55492102799991, 57.659857489000046), (-3.535755988999938, 57.66193268400008), (-3.521473761999914, 57.66779205900008), (-3.5054418609999516, 57.67865631700005), (-3.4959610669999392, 57.69135163000004), (-3.501698370999918, 57.702826239000046), (-3.491851365999935, 57.71312083500004), (-3.4828181629999335, 57.71401601800005), (-3.4730525379999335, 57.711004950000074), (-3.460682745999918, 57.70966217700004), (-3.447865363999938, 57.71246979400007), (-3.4212540359999366, 57.72138092700004), (-3.409169074999909, 57.72333405200004), (-3.2847387359999516, 57.72044505400004), (-3.2100723949999406, 57.69399648600006), (-3.0786840489999463, 57.66941966400003), (-3.034901495999918, 57.66860586100006), (-2.994496222999942, 57.67552317900004), (-2.932687954999949, 57.69961172100005), (-2.9160863919999542, 57.702826239000046), (-2.75804602799991, 57.702826239000046), (-2.7512100899999155, 57.70062897300005), (-2.741118943999936, 57.69086334800005), (-2.731068488999938, 57.68854401200008), (-2.719878709999932, 57.690619208000044), (-2.711537238999938, 57.69399648600006), (-2.7035212879999335, 57.69472890800006), (-2.6929418609999516, 57.68854401200008), (-2.658924933999913, 57.69745514500005), (-2.573394334999932, 57.68146393400008), (-2.541981574999909, 57.68235911700003), (-2.526112433999913, 57.66860586100006), (-2.5181371739999463, 57.67011139500005), (-2.5110570949999556, 57.677801825000074), (-2.497954881999931, 57.68235911700003), (-2.4800512359999516, 57.68121979400007), (-2.4328507149999155, 57.66811758000006), (-2.425526495999918, 57.67572663000004), (-2.4177953769999476, 57.674261786000045), (-2.4087621739999463, 57.669623114000046), (-2.398060675999943, 57.66811758000006), (-2.3865860669999392, 57.671576239000046), (-2.369496222999942, 57.680568752000056), (-2.360503709999932, 57.68235911700003), (-2.3410538399999155, 57.675848700000074), (-2.3289688789999445, 57.67405833500004), (-2.3235977859999366, 57.678941148000035), (-2.32054602799991, 57.68455638200004), (-2.313384568999936, 57.68992747600004), (-2.3040665359999366, 57.69399648600006), (-2.295643683999913, 57.69599030200004), (-2.274322068999936, 57.69383372600004), (-2.230132615999935, 57.67914459800005), (-2.209950324999909, 57.67552317900004), (-2.1840714179999168, 57.67845286700003), (-2.1243383449999556, 57.702826239000046), (-2.108143683999913, 57.70498281500005), (-1.9976700509999432, 57.702826239000046), (-1.9969376289999445, 57.69904205900008), (-1.990834113999938, 57.69037506700005), (-1.982167120999918, 57.68109772300005), (-1.9735001289999445, 57.67552317900004), (-1.961293097999942, 57.674709377000056), (-1.9447322259999282, 57.68256256700005), (-1.9324845039999445, 57.68235911700003), (-1.9256892569999309, 57.678168036000045), (-1.914214647999927, 57.66474030200004), (-1.8294571609999366, 57.61347077000005), (-1.820464647999927, 57.59634023600006), (-1.817005988999938, 57.578192450000074), (-1.8113907539999445, 57.56049225500004), (-1.7960098949999406, 57.544582424000055), (-1.7960098949999406, 57.538397528000075), (-1.8000382149999155, 57.52586497600004), (-1.7895401679999168, 57.514837958000044), (-1.7611384759999282, 57.49746328300006), (-1.7753800119999141, 57.496527411000045), (-1.7821345689999362, 57.48899974200003), (-1.7812393869999141, 57.48041413000004), (-1.7717179029999102, 57.476263739000046), (-1.7593481109999516, 57.47357819200005), (-1.7659399079999503, 57.46743398600006), (-1.7891739569999459, 57.45644765800006), (-1.8301488919999542, 57.42617422100005), (-1.8474828769999476, 57.40814850500004), (-1.849964972999942, 57.39435455900008), (-1.9544978509999282, 57.341131903000075), (-1.9802953769999476, 57.31928131700005), (-2.044667120999918, 57.22650788000004), (-2.068511522999927, 57.17462799700007), (-2.074126756999931, 57.15420156500005), (-2.0714005199999406, 57.13556549700007), (-2.052357550999943, 57.12742747600004), (-2.0493057929999168, 57.118841864000046), (-2.065256313999953, 57.10053131700005), (-2.0658259759999282, 57.09983958500004), (-2.156158006999931, 57.020697333000044), (-2.1869197259999282, 56.98468659100007), (-2.200103318999936, 56.94871653900003), (-2.1971329419999392, 56.94025299700007), (-2.1912328769999476, 56.93414948100008), (-2.186268683999913, 56.92674388200004), (-2.1863907539999445, 56.91453685100004), (-2.191314256999931, 56.90892161700003), (-2.209706183999913, 56.895819403000075), (-2.213693813999953, 56.890692450000074), (-2.219878709999932, 56.87262604400007), (-2.23460852799991, 56.861395575000074), (-2.2689509759999282, 56.84634023600006), (-2.295806443999936, 56.82526276200008), (-2.3198136059999115, 56.80158112200007), (-2.336089647999927, 56.79083893400008), (-2.3918350899999155, 56.771185614000046), (-2.4086807929999168, 56.762925523000035), (-2.4264216789999296, 56.751288153000075), (-2.4359431629999335, 56.74038320500006), (-2.4407445949999556, 56.73484935100004), (-2.4516495429999168, 56.69098541900007), (-2.4637345039999445, 56.67877838700008), (-2.4774063789999445, 56.66868724200003), (-2.487456834999932, 56.65387604400007), (-2.4875382149999155, 56.64606354400007), (-2.481271938999953, 56.63239166900007), (-2.480620897999927, 56.62653229400007), (-2.4861954419999392, 56.619574286000045), (-2.504058397999927, 56.60883209800005), (-2.514556443999936, 56.591498114000046), (-2.530018683999913, 56.58075592700004), (-2.623768683999913, 56.543402411000045), (-2.6409399079999503, 56.522365627000056), (-2.6613663399999155, 56.51422760600008), (-2.6997777989999463, 56.50364817900004), (-2.708729620999918, 56.49599844000005), (-2.7276505199999406, 56.46954987200007), (-2.737294074999909, 56.46702708500004), (-2.74437415299991, 56.46954987200007), (-2.752308722999942, 56.47361888200004), (-2.764800584999932, 56.47573476800005), (-2.819325324999909, 56.47129954600007), (-3.055653449999909, 56.45213450700004), (-3.0606176419999542, 56.45172760600008), (-3.099273240999935, 56.44188060100004), (-3.1339005199999406, 56.426947333000044), (-3.238189256999931, 56.36774323100008), (-3.280181443999936, 56.35789622600004), (-3.3234757149999155, 56.36591217700004), (-3.311512824999909, 56.35651276200008), (-3.294016079999949, 56.352769273000035), (-3.2515356109999516, 56.352850653000075), (-3.230620897999927, 56.35602448100008), (-3.188384568999936, 56.37018463700008), (-3.149566209999932, 56.37555573100008), (-2.950266079999949, 56.43187083500004), (-2.9399307929999168, 56.43854401200008), (-2.930653449999909, 56.44806549700007), (-2.909087693999936, 56.45571523600006), (-2.88499915299991, 56.45799388200004), (-2.867909308999913, 56.45184967700004), (-2.8500870429999168, 56.44204336100006), (-2.8147680329999503, 56.44041575700004), (-2.8028051419999542, 56.42796458500004), (-2.800892706999946, 56.40892161700003), (-2.808257615999935, 56.391058661000045), (-2.8216039699999556, 56.376166083000044), (-2.837554490999935, 56.36591217700004), (-2.8129776679999168, 56.36591217700004), (-2.809193488999938, 56.36286041900007), (-2.8047582669999542, 56.34910716400003), (-2.8028051419999542, 56.345404364000046), (-2.7914932929999168, 56.34247467700004), (-2.7826228509999282, 56.34162018400008), (-2.7752579419999392, 56.33942291900007), (-2.768625454999949, 56.33234284100007), (-2.6771541009999282, 56.32843659100007), (-2.655262824999909, 56.32217031500005), (-2.621205206999946, 56.30442942900004), (-2.613189256999931, 56.30190664300005), (-2.5768123039999296, 56.28392161700003), (-2.5768123039999296, 56.277777411000045), (-2.6301163399999155, 56.24852122600004), (-2.648345506999931, 56.22870514500005), (-2.672027147999927, 56.22239817900004), (-2.7202042309999115, 56.21629466400003), (-2.7835994129999335, 56.19196198100008), (-2.8061417309999115, 56.188381252000056), (-2.8307185539999296, 56.190741278000075), (-2.8920792309999115, 56.20888906500005), (-2.940052863999938, 56.209418036000045), (-2.9643448559999115, 56.20563385600008), (-2.9746801419999542, 56.19830963700008), (-2.982411261999914, 56.189113674000055), (-3.0355525379999335, 56.16791413000004), (-3.0910538399999155, 56.13226959800005), (-3.107533331999946, 56.12689850500004), (-3.127552863999938, 56.12287018400008), (-3.138295050999943, 56.112209377000056), (-3.152251756999931, 56.07851797100005), (-3.1635636059999115, 56.06386953300006), (-3.1783748039999296, 56.05809153900003), (-3.2484431629999335, 56.055975653000075), (-3.268381313999953, 56.05093008000006), (-3.3030492829999503, 56.037543036000045), (-3.342681443999936, 56.02716705900008), (-3.381825324999909, 56.02338288000004), (-3.420969204999949, 56.02488841400003), (-3.5825902989999463, 56.05174388200004), (-3.671498175999943, 56.050848700000074), (-3.710031704999949, 56.05809153900003), (-3.7454320949999556, 56.07221100500004), (-3.7464900379999335, 56.072780666000085), (-3.782215949999909, 56.09218984600005), (-3.8031306629999335, 56.107123114000046), (-3.817005988999938, 56.11225006700005), (-3.8374731109999516, 56.112616278000075), (-3.8374731109999516, 56.10643138200004), (-3.777699347999942, 56.08283112200007), (-3.769154425999943, 56.07514069200005), (-3.7608536449999406, 56.07245514500005), (-3.7264298169999392, 56.03803131700005), (-3.721424933999913, 56.03070709800005), (-3.712635870999918, 56.028998114000046), (-3.693470831999946, 56.03115469000005), (-3.6866348949999406, 56.03070709800005), (-3.6795548169999392, 56.025458075000074), (-3.674794074999909, 56.01870351800005), (-3.6682836579999503, 56.01276276200008), (-3.656239386999914, 56.010199286000045), (-3.599720831999946, 56.017238674000055), (-3.5773819649999155, 56.01703522300005), (-3.405425584999932, 55.98973216400003), (-3.3582657539999445, 55.98973216400003), (-3.340891079999949, 55.99445221600007), (-3.331044074999909, 55.99408600500004), (-3.320423956999946, 55.986029364000046), (-3.303456183999913, 55.97760651200008), (-3.121815558999913, 55.96930573100008), (-3.1147354809999115, 55.966131903000075), (-3.096831834999932, 55.95197174700007), (-3.090728318999936, 55.94818756700005), (-3.078236456999946, 55.94684479400007), (-3.0156957669999542, 55.950506903000075), (-2.9399307929999168, 55.96930573100008), (-2.9166560539999296, 55.98061758000006), (-2.900054490999935, 55.996161200000074), (-2.8828832669999542, 56.00849030200004), (-2.8579809239999463, 56.010199286000045), (-2.863636847999942, 56.02228424700007), (-2.8663223949999406, 56.02676015800006), (-2.8709610669999392, 56.03070709800005), (-2.8527725899999155, 56.03978099200003), (-2.823150193999936, 56.059759833000044), (-2.8028051419999542, 56.06484609600005), (-2.635121222999942, 56.05805084800005), (-2.615956183999913, 56.053168036000045), (-2.587554490999935, 56.030951239000046), (-2.569406704999949, 56.02448151200008), (-2.57835852799991, 56.00800202000005), (-2.583648240999935, 56.00275299700007), (-2.5695694649999155, 55.99994538000004), (-2.5440567699999406, 56.00267161700003), (-2.528960740999935, 55.99656810100004), (-2.5248103509999282, 56.00055573100008), (-2.514556443999936, 56.00576406500005), (-2.507923956999946, 56.010199286000045), (-2.4932755199999406, 56.00153229400007), (-2.4525040359999366, 55.985256252000056), (-2.4143774079999503, 55.97833893400008), (-2.3509415359999366, 55.94818756700005), (-2.307769334999932, 55.93500397300005), (-2.146839972999942, 55.917303778000075), (-2.1380102199999556, 55.91461823100008), (-2.132557745999918, 55.90643952000005), (-2.13109290299991, 55.89720286700003), (-2.1287735669999392, 55.88979726800005), (-2.1209610669999392, 55.886704820000034), (-2.0994766919999392, 55.88178131700005), (-2.080189581999946, 55.86937083500004), (-2.0228572259999282, 55.80548737200007), (-2.009673631999931, 55.79083893400008), (-1.8778376939999362, 55.69489166900007), (-1.8631892569999309, 55.67161692900004), (-1.8530981109999516, 55.65932851800005), (-1.8315323559999115, 55.65070221600007), (-1.8260798819999309, 55.64362213700008), (-1.8216853509999282, 55.636419989000046), (-1.8164770169999542, 55.632879950000074), (-1.8071182929999168, 55.63450755400004), (-1.8007706369999141, 55.63922760600008), (-1.7962947259999282, 55.644232489000046), (-1.7925919259999432, 55.646551825000074), (-1.781402147999927, 55.64565664300005), (-1.768625454999949, 55.641913153000075), (-1.7564998039999296, 55.63361237200007), (-1.7476700509999432, 55.619208075000074), (-1.7679744129999335, 55.619208075000074), (-1.7679744129999335, 55.612982489000046), (-1.7559708319999459, 55.60887278900003), (-1.720855272999927, 55.614569403000075), (-1.6991267569999309, 55.612982489000046), (-1.6308487619999141, 55.58510976800005), (-1.6308487619999141, 55.57827383000006), (-1.6363419259999432, 55.57168203300006), (-1.6346736319999309, 55.56439850500004), (-1.6276749339999128, 55.55711497600004), (-1.6171768869999141, 55.55027903900003), (-1.6308487619999141, 55.544134833000044), (-1.6308487619999141, 55.53729889500005), (-1.6222224599999322, 55.534084377000056), (-1.6029353509999282, 55.52362702000005), (-1.6029353509999282, 55.516791083000044), (-1.6113175119999141, 55.50804271000004), (-1.6063533189999362, 55.503241278000075), (-1.5963435539999296, 55.49990469000005), (-1.5893448559999115, 55.49567291900007), (-1.5849503249999088, 55.483710028000075), (-1.5813695949999556, 55.41665273600006), (-1.5831192699999406, 55.40692780200004), (-1.5882869129999335, 55.39057038000004), (-1.5891007149999155, 55.385199286000045), (-1.5893448559999115, 55.37653229400007), (-1.5833227199999556, 55.354722398000035), (-1.5585831369999141, 55.32892487200007), (-1.5558162099999322, 55.31134674700007), (-1.5570369129999335, 55.306626695000034), (-1.5589900379999335, 55.302069403000075), (-1.5619197259999282, 55.29779694200005), (-1.5657445949999556, 55.29364655200004), (-1.570057745999918, 55.28620026200008), (-1.5682266919999392, 55.27960846600007), (-1.5642797519999476, 55.27326080900008), (-1.5620824859999516, 55.26666901200008), (-1.5564672519999476, 55.25503164300005), (-1.5439346999999088, 55.24388255400004), (-1.5209854809999115, 55.229396877000056), (-1.5291641919999392, 55.21625397300005), (-1.5240779289999296, 55.21010976800005), (-1.514271613999938, 55.204779364000046), (-1.507964647999927, 55.194647528000075), (-1.510812954999949, 55.184759833000044), (-1.5175675119999141, 55.176214911000045), (-1.5221248039999296, 55.16746653900003), (-1.517933722999942, 55.157131252000056), (-1.5007218089999128, 55.141791083000044), (-1.4959610669999392, 55.13458893400008), (-1.492543097999942, 55.112982489000046), (-1.4837540359999366, 55.09170156500005), (-1.4800919259999432, 55.08539459800005), (-1.4762263659999348, 55.083644924000055), (-1.4632869129999335, 55.08030833500004), (-1.459584113999938, 55.07859935100004), (-1.458078579999949, 55.07575104400007), (-1.4547013009999432, 55.067572333000044), (-1.438303188999953, 55.042303778000075), (-1.4291886059999115, 55.033270575000074), (-1.4240616529999102, 55.02435944200005), (-1.4195043609999516, 55.011704820000034), (-1.412912563999953, 55.00031159100007), (-1.4015193349999322, 54.995428778000075), (-1.398182745999918, 54.992621161000045), (-1.3702286449999406, 54.97553131700005), (-1.3626602859999366, 54.96478913000004), (-1.3617244129999335, 54.958685614000046), (-1.3635147779999102, 54.95425039300005), (-1.3640030589999128, 54.94818756700005), (-1.3628637359999516, 54.92593008000006), (-1.3603409499999088, 54.91705963700008), (-1.3531388009999432, 54.91351959800005), (-1.355824347999942, 54.904282945000034), (-1.2967830069999309, 54.77993398600006), (-1.2754613919999542, 54.74843984600005), (-1.2404679029999102, 54.72166575700004), (-1.2250870429999168, 54.71503327000005), (-1.172230597999942, 54.701239325000074), (-1.172230597999942, 54.693793036000045), (-1.1926163399999155, 54.693793036000045), (-1.192453579999949, 54.68927643400008), (-1.1907852859999366, 54.68618398600006), (-1.1851700509999432, 54.68008047100005), (-1.1827286449999406, 54.67206452000005), (-1.1788223949999406, 54.66474030200004), (-1.172922329999949, 54.65835195500006), (-1.1647029289999296, 54.652777411000045), (-1.172922329999949, 54.644191799000055), (-1.1824845039999445, 54.63922760600008), (-1.2062882149999155, 54.63296133000006), (-1.203724738999938, 54.62571849200003), (-1.1988419259999432, 54.62156810100004), (-1.1918025379999335, 54.61977773600006), (-1.1821182929999168, 54.61928945500006), (-1.1793513659999348, 54.62091705900008), (-1.1784561839999128, 54.624212958000044), (-1.1769913399999155, 54.62677643400008), (-1.172230597999942, 54.62612539300005), (-1.1695857409999348, 54.62360260600008), (-1.1654353509999282, 54.61871979400007), (-1.1629532539999445, 54.61395905200004), (-1.1647029289999296, 54.61180247600004), (-1.1526586579999503, 54.61318594000005), (-1.1467179029999102, 54.618475653000075), (-1.1380509109999366, 54.646551825000074), (-1.1205948559999115, 54.63300202000005), (-1.1036270819999459, 54.624660549000055), (-1.0842179029999102, 54.620428778000075), (-1.042062954999949, 54.61709219000005), (-0.9934789699999556, 54.59813060100004), (-0.7879125639999529, 54.56077708500004), (-0.5629776679999168, 54.47736237200007), (-0.5346573559999115, 54.461004950000074), (-0.5228572259999282, 54.44708893400008), (-0.5217992829999503, 54.43805573100008), (-0.5235896479999269, 54.43024323100008), (-0.5204158189999362, 54.42007070500006), (-0.5099991529999102, 54.41156647300005), (-0.47679602799991017, 54.39720286700003), (-0.46275794199993925, 54.38898346600007), (-0.4477432929999168, 54.37319570500006), (-0.43057206899993616, 54.349310614000046), (-0.4184464179999168, 54.32404205900008), (-0.41803951699995423, 54.303941148000035), (-0.4145401679999168, 54.297308661000045), (-0.4090063139999529, 54.29075755400004), (-0.4011938139999529, 54.28563060100004), (-0.39073645699994586, 54.28351471600007), (-0.3948868479999419, 54.273138739000046), (-0.39757239499994057, 54.269191799000055), (-0.3892716139999379, 54.26406484600005), (-0.3704727859999366, 54.247707424000055), (-0.3627823559999115, 54.24249909100007), (-0.3220108709999181, 54.23607005400004), (-0.31191972599992823, 54.231634833000044), (-0.30011959499995555, 54.224676825000074), (-0.2770889959999181, 54.21775950700004), (-0.26960201699995423, 54.20766836100006), (-0.26256262899994454, 54.18109772300005), (-0.2603653639999379, 54.176988023000035), (-0.2338761059999115, 54.16046784100007), (-0.11143958199994586, 54.13157786700003), (-0.07551021999995555, 54.11212799700007), (-0.16392981699993925, 54.08340078300006), (-0.1946915359999366, 54.06232330900008), (-0.2194718089999128, 54.022772528000075), (-0.1974177729999269, 53.99481842700004), (-0.1686905589999128, 53.929348049000055), (-0.1511124339999128, 53.899318752000056), (-0.045155402999910166, 53.801214911000045), (0.13347415500004445, 53.642645575000074), (0.1492619150000678, 53.60960521000004), (0.13689212300005238, 53.57713450700004), (0.13119550900006516, 53.573431708000044), (0.1096297540000819, 53.56289297100005), (0.1313582690000885, 53.59369538000004), (0.1359969410000872, 53.610663153000075), (0.12020918100006384, 53.61810944200005), (0.09945722700007309, 53.622300523000035), (0.056162957000083225, 53.64126211100006), (0.034515821000070446, 53.64606354400007), (0.014821811000047092, 53.64325592700004), (-0.023915167999916775, 53.62885163000004), (-0.04503333199994586, 53.62555573100008), (-0.06940670499994894, 53.626939195000034), (-0.09227454299991678, 53.63104889500005), (-0.11261959499995555, 53.63751862200007), (-0.1300349599999322, 53.64606354400007), (-0.2253311839999128, 53.719916083000044), (-0.2603653639999379, 53.73541901200008), (-0.2956436839999128, 53.738796291000085), (-0.3051651679999168, 53.73969147300005), (-0.4311417309999115, 53.71430084800005), (-0.4496964179999168, 53.71430084800005), (-0.5104874339999128, 53.71430084800005), (-0.5444229809999115, 53.70945872600004), (-0.5515030589999128, 53.71116771000004), (-0.5762426419999542, 53.72565338700008), (-0.5791723299999489, 53.72797272300005), (-0.6370336579999503, 53.73200104400007), (-0.6583552729999269, 53.72797272300005), (-0.7264705069999309, 53.70062897300005), (-0.7173559239999463, 53.69867584800005), (-0.7085668609999516, 53.695746161000045), (-0.7001846999999088, 53.691839911000045), (-0.6924535799999489, 53.68699778900003), (-0.6774796209999181, 53.702826239000046), (-0.6498103509999282, 53.710598049000055), (-0.6195369129999335, 53.71185944200005), (-0.5961807929999168, 53.70807526200008), (-0.5554906889999529, 53.69049713700008), (-0.5447485019999476, 53.683579820000034), (-0.5299373039999296, 53.67767975500004), (-0.5140274729999419, 53.681301174000055), (-0.48631751199991413, 53.69448476800005), (-0.3072403639999379, 53.71426015800006), (-0.27936764199995423, 53.707098700000074), (-0.2603653639999379, 53.68699778900003), (-0.1886287099999322, 53.620428778000075), (-0.1440323559999115, 53.606634833000044), (-0.11318925699993088, 53.58462148600006), (-0.09593665299991017, 53.57713450700004), (-0.06094316299993352, 53.57396067900004), (-0.0466202459999181, 53.570379950000074), (9.199300006912381e-05, 53.53534577000005), (0.0959578790000819, 53.488348700000074), (0.11508222700007309, 53.48322174700007), (0.1340438160000872, 53.48061758000006), (0.15186608200008322, 53.475816148000035), (0.1678166020000731, 53.464504299000055), (0.17090905000009116, 53.457017320000034), (0.1731063160000872, 53.44676341400003), (0.17579186300008587, 53.43768952000005), (0.1814884770000731, 53.43374258000006), (0.1906030610000471, 53.43187083500004), (0.21949303500008455, 53.41950104400007), (0.21192467500009116, 53.41266510600008), (0.2293400400000678, 53.40477122600004), (0.24488366000008455, 53.39093659100007), (0.2561141290000819, 53.375067450000074), (0.26042728000004445, 53.36147695500006), (0.34213300900006516, 53.22630442900004), (0.35621178500008455, 53.18854401200008), (0.3566186860000471, 53.145738023000035), (0.3357853520000731, 53.093451239000046), (0.32984459700008983, 53.08649323100008), (0.31869550900006516, 53.083685614000046), (0.29883873800008587, 53.08120351800005), (0.2824813160000872, 53.07485586100006), (0.19304446700004974, 53.02008698100008), (0.17448978000004445, 53.01544830900008), (0.16081790500004445, 53.008978583000044), (0.08212324300006912, 52.938666083000044), (0.061167839000063395, 52.924994208000044), (0.03760826900008851, 52.919175523000035), (0.022146030000044448, 52.91258372600004), (0.008555535000084546, 52.89862702000005), (0.010264519000088512, 52.88646067900004), (0.04066002700005811, 52.88507721600007), (0.09253991000008455, 52.89252350500004), (0.10564212300005238, 52.88934967700004), (0.13347415500004445, 52.87518952000005), (0.14714603000004445, 52.87201569200005), (0.17090905000009116, 52.86212799700007), (0.22242272200008983, 52.813666083000044), (0.24675540500004445, 52.79572174700007), (0.2644962900000678, 52.80369700700004), (0.2856551440000885, 52.805568752000056), (0.32553144600007045, 52.803168036000045), (0.34180748800008587, 52.79743073100008), (0.36988366000008455, 52.77301666900007), (0.38453209700008983, 52.76837799700007), (0.38453209700008983, 52.77521393400008), (0.37924238400006516, 52.79083893400008), (0.39942467500009116, 52.80951569200005), (0.42554772200008983, 52.827378648000035), (0.4386499360000471, 52.840725002000056), (0.44402103000004445, 52.86505768400008), (0.45671634200004974, 52.89199453300006), (0.47234134200004974, 52.916449286000045), (0.48568769600007045, 52.93349844000005), (0.5202742850000845, 52.95526764500005), (0.5695906910000872, 52.96930573100008), (0.6233830090000652, 52.97565338700008), (0.6718856130000859, 52.97443268400008), (0.6643986340000652, 52.98187897300005), (0.6847436860000471, 52.986395575000074), (0.7067977220000898, 52.98322174700007), (0.7291772800000444, 52.97748444200005), (0.7504988940000885, 52.97443268400008), (0.8357039720000898, 52.97443268400008), (0.8754988940000885, 52.96816640800006), (0.9210718110000471, 52.95465729400007), (0.9684350920000497, 52.94749583500004), (1.013926629000082, 52.960150458000044), (1.0034285820000832, 52.96474844000005), (0.9915470710000704, 52.96747467700004), (0.9790145190000885, 52.968410549000055), (0.9660750660000872, 52.96759674700007), (0.9660750660000872, 52.97443268400008), (1.2746688160000872, 52.92918528900003), (1.3960067070000832, 52.89142487200007), (1.6442163420000497, 52.775824286000045), (1.6733504570000832, 52.75568268400008), (1.6970320970000898, 52.73102448100008), (1.7158309250000912, 52.68374258000006), (1.7341414720000898, 52.65460846600007), (1.747243686000047, 52.62518952000005), (1.7407332690000885, 52.60390859600005), (1.7468367850000845, 52.58852773600006), (1.7487085300000444, 52.568793036000045), (1.7475692070000832, 52.53278229400007), (1.7711694670000497, 52.48590729400007), (1.7671004570000832, 52.47695547100005), (1.7544051440000885, 52.46735260600008), (1.7292586600000845, 52.41559479400007), (1.7301538420000497, 52.405910549000055), (1.7278751960000704, 52.39630768400008), (1.6836043630000859, 52.32453034100007), (1.6518660820000832, 52.289129950000074), (1.6411238940000885, 52.28180573100008), (1.6305444670000497, 52.27045319200005), (1.6282658210000704, 52.24481842700004), (1.6308699880000859, 52.19977448100008), (1.6254988940000885, 52.18036530200004), (1.6074324880000859, 52.14594147300005), (1.6035262380000859, 52.127834377000056), (1.5892033210000704, 52.100816148000035), (1.5875757170000497, 52.08698151200008), (1.582286004000082, 52.08148834800005), (1.5036727220000898, 52.060980536000045), (1.4868270190000885, 52.04901764500005), (1.4720158210000704, 52.05621979400007), (1.4668074880000859, 52.04800039300005), (1.4638778000000912, 52.035142320000034), (1.4558211600000845, 52.028509833000044), (1.4489852220000898, 52.02496979400007), (1.4248153000000912, 52.00185781500005), (1.3548283210000704, 51.95404694200005), (1.3435164720000898, 51.94285716400009), (1.332286004000082, 51.94009023600006), (1.2644149100000845, 51.99437083500004), (1.2348738940000885, 52.00031159100007), (1.1852319670000497, 52.025091864000046), (1.1578882170000497, 52.028509833000044), (1.1578882170000497, 52.02167389500005), (1.1935327480000524, 52.00079987200007), (1.2143660820000832, 51.991441148000035), (1.2602645190000885, 51.984808661000045), (1.2707625660000872, 51.98151276200008), (1.2751570970000898, 51.976996161000045), (1.2744246750000912, 51.96088288000004), (1.2710067070000832, 51.95644765800006), (1.2507430350000845, 51.95962148600006), (1.2389429050000444, 51.958644924000055), (1.2176212900000678, 51.954331773000035), (1.2057397800000444, 51.95343659100007), (1.193207227000073, 51.955511786000045), (1.1652938160000872, 51.96702708500004), (1.1430770190000885, 51.966050523000035), (1.0944930350000845, 51.955959377000056), (1.0691024100000845, 51.95343659100007), (1.0954695970000898, 51.945746161000045), (1.2620548840000652, 51.939154364000046), (1.2819930350000845, 51.946600653000075), (1.278493686000047, 51.92792389500005), (1.1995548840000652, 51.87767161700003), (1.2122501960000704, 51.87164948100008), (1.2278751960000704, 51.86737702000005), (1.2644149100000845, 51.86399974200003), (1.2747501960000704, 51.870306708000044), (1.2822371750000912, 51.880560614000046), (1.2866317070000832, 51.88165924700007), (1.288259311000047, 51.860581773000035), (1.2763778000000912, 51.84479401200008), (1.2192488940000885, 51.811835028000075), (1.167816602000073, 51.790228583000044), (1.1354272800000444, 51.78172435100004), (1.0654403000000912, 51.77529531500005), (1.0466414720000898, 51.777044989000046), (1.0372827480000524, 51.78217194200005), (1.021332227000073, 51.80255768400008), (0.9887801440000885, 51.83026764500005), (0.9798283210000704, 51.84357330900008), (0.9770613940000885, 51.82461172100005), (0.9620874360000471, 51.813788153000075), (0.9251408210000704, 51.80255768400008), (0.8942977220000898, 51.78461334800005), (0.8869735040000819, 51.782131252000056), (0.8864038420000497, 51.776678778000075), (0.8834741550000444, 51.76471588700008), (0.8789168630000859, 51.75275299700007), (0.8737085300000444, 51.747300523000035), (0.8619897800000444, 51.74555084800005), (0.8459578790000819, 51.736761786000045), (0.8357039720000898, 51.733710028000075), (0.8234969410000872, 51.73383209800005), (0.8014429050000444, 51.73969147300005), (0.7917586600000845, 51.74115631700005), (0.7671004570000832, 51.739447333000044), (0.7208764980000524, 51.728176174000055), (0.6985783210000704, 51.720038153000075), (0.7142033210000704, 51.715277411000045), (0.7324324880000859, 51.713771877000056), (0.7492781910000872, 51.70848216400009), (0.7607528000000912, 51.692694403000075), (0.7890731130000859, 51.710150458000044), (0.8530379570000832, 51.71889883000006), (0.8835555350000845, 51.72687409100007), (0.9123641290000819, 51.741522528000075), (0.9300236340000652, 51.74359772300005), (0.9455672540000819, 51.733710028000075), (0.9474389980000524, 51.72524648600006), (0.9445906910000872, 51.71548086100006), (0.9404403000000912, 51.70799388200004), (0.9381616550000444, 51.706366278000075), (0.9401961600000845, 51.698431708000044), (0.9440210300000444, 51.69057851800005), (0.9518335300000444, 51.67841217700004), (0.9417423840000652, 51.673041083000044), (0.9379988940000885, 51.664496161000045), (0.9381616550000444, 51.64126211100006), (0.9347436860000471, 51.63589101800005), (0.9267684250000912, 51.630926825000074), (0.9114689460000704, 51.62384674700007), (0.9384871750000912, 51.624986070000034), (0.9480900400000678, 51.621527411000045), (0.9518335300000444, 51.61701080900008), (0.9244897800000444, 51.588324286000045), (0.8733016290000819, 51.559475002000056), (0.8282983730000524, 51.541856187000064), (0.8162541020000731, 51.537176825000074), (0.7712508470000898, 51.52826569200005), (0.6920679050000444, 51.536322333000044), (0.6643986340000652, 51.53506094000005), (0.6637475920000497, 51.53554922100005), (0.6505639980000524, 51.53579336100006), (0.6466577480000524, 51.53534577000005), (0.6440535820000832, 51.53506094000005), (0.6427514980000524, 51.53351471600007), (0.6233830090000652, 51.52204010600008), (0.6086531910000872, 51.51898834800005), (0.5952254570000832, 51.51862213700008), (0.5822860040000819, 51.51654694200005), (0.5688582690000885, 51.50836823100008), (0.5527449880000859, 51.51797109600005), (0.5472111340000652, 51.51772695500006), (0.5254012380000859, 51.516913153000075), (0.45606530000009116, 51.505560614000046), (0.45085696700004974, 51.49827708500004), (0.44800866000008455, 51.48822663000004), (0.4416610040000819, 51.47703685100004), (0.42847741000008455, 51.46710846600007), (0.41407311300008587, 51.46190013200004), (0.39918053500008455, 51.45840078300006), (0.38453209700008983, 51.453111070000034), (0.4484155610000471, 51.45994700700004), (0.45679772200008983, 51.46312083500004), (0.4614363940000885, 51.47016022300005), (0.46485436300008587, 51.47724030200004), (0.4695744150000678, 51.48041413000004), (0.5348413420000497, 51.49168528900009), (0.6948348320000832, 51.47703685100004), (0.7094832690000885, 51.47052643400008), (0.7219344410000872, 51.456284898000035), (0.7231551440000885, 51.44672272300005), (0.7131453790000819, 51.44122955900008), (0.6923934250000912, 51.439520575000074), (0.6565047540000819, 51.444525458000044), (0.6409611340000652, 51.44415924700007), (0.6093856130000859, 51.425116278000075), (0.5727645190000885, 51.419582424000055), (0.5545353520000731, 51.412176825000074), (0.5622664720000898, 51.40656159100007), (0.5691024100000845, 51.399603583000044), (0.5765080090000652, 51.39362213700008), (0.5859481130000859, 51.391058661000045), (0.6718856130000859, 51.391058661000045), (0.7129012380000859, 51.38422272300005), (0.7049259770000731, 51.39598216400009), (0.7003686860000471, 51.409816799000055), (0.7053328790000819, 51.41950104400007), (0.7264103520000731, 51.41901276200008), (0.7283634770000731, 51.406236070000034), (0.7392684250000912, 51.387925523000035), (0.7534285820000832, 51.371527411000045), (0.7644149100000845, 51.36440664300005), (0.9772241550000444, 51.34918854400007), (1.1009220710000704, 51.37323639500005), (1.4238387380000859, 51.39207591400009), (1.4482528000000912, 51.382879950000074), (1.4391382170000497, 51.35008372600004), (1.4355574880000859, 51.343736070000034), (1.430837436000047, 51.33779531500005), (1.4251408210000704, 51.33295319200005), (1.4186304050000444, 51.32965729400007), (1.3829858730000524, 51.329779364000046), (1.3776147800000444, 51.326239325000074), (1.3806258470000898, 51.304754950000074), (1.387868686000047, 51.28790924700007), (1.4043074880000859, 51.261379299000055), (1.4130965500000912, 51.22174713700008), (1.4047957690000885, 51.18353913000004), (1.3844507170000497, 51.151678778000075), (1.3571883470000898, 51.13100820500006), (1.2903751960000704, 51.116522528000075), (1.2629500660000872, 51.10325755400004), (1.2516382170000497, 51.10252513200004), (1.2299910820000832, 51.10370514500005), (1.2181095710000704, 51.10097890800006), (1.2082625660000872, 51.09467194200005), (1.1997176440000885, 51.087591864000046), (1.1920679050000444, 51.08258698100008), (1.1722111340000652, 51.077378648000035), (1.1067000660000872, 51.07636139500005), (1.0871688160000872, 51.07298411700003), (1.0669051440000885, 51.06439850500004), (1.027598504000082, 51.04165273600006), (0.9764103520000731, 50.99445221600007), (0.9664819670000497, 50.98273346600007), (0.9690861340000652, 50.95685455900008), (0.9798283210000704, 50.91815827000005), (0.9451603520000731, 50.909369208000044), (0.8698022800000444, 50.925116278000075), (0.8022567070000832, 50.93919505400004), (0.7624617850000845, 50.930894273000035), (0.6643986340000652, 50.870306708000044), (0.6241968110000471, 50.858710028000075), (0.4074813160000872, 50.829331773000035), (0.3702905610000471, 50.818793036000045), (0.36524498800008587, 50.81899648600006), (0.35425866000008455, 50.80963776200008), (0.34441165500004445, 50.79905833500004), (0.3422957690000885, 50.79515208500004), (0.3081160820000832, 50.780951239000046), (0.2710067070000832, 50.747381903000075), (0.23389733200008322, 50.74701569200005), (0.2141219410000872, 50.748928127000056), (0.16830488400006516, 50.759833075000074), (0.1573999360000471, 50.761053778000075), (0.12208092500009116, 50.76080963700008), (0.11304772200008983, 50.76414622600004), (0.09555097700007309, 50.775051174000055), (0.07703698000005943, 50.778998114000046), (0.034515821000070446, 50.780951239000046), (0.01754804800009424, 50.784857489000046), (-0.17316646999995555, 50.829006252000056), (-0.20612545499994894, 50.83104075700004), (-0.20889238199993088, 50.83010488500008), (-0.2331436839999128, 50.821926174000055), (-0.2696833979999269, 50.831284898000035), (-0.39757239499994057, 50.802069403000075), (-0.5689591139999379, 50.802069403000075), (-0.7327367829999503, 50.767279364000046), (-0.7415665359999366, 50.769232489000046), (-0.7498673169999392, 50.773871161000045), (-0.7582087879999335, 50.77708567900004), (-0.7675675119999141, 50.774725653000075), (-0.7731013659999348, 50.76601797100005), (-0.7662654289999296, 50.74713776200008), (-0.7709854809999115, 50.73688385600008), (-0.7899470689999362, 50.73004791900007), (-0.8128149079999503, 50.73476797100005), (-0.9041235019999476, 50.77187734600005), (-0.9114884109999366, 50.77781810100004), (-0.9058731759999432, 50.78803131700005), (-0.8924861319999309, 50.794623114000046), (-0.8636368479999419, 50.802069403000075), (-0.8636368479999419, 50.808254299000055), (-0.8736059239999463, 50.812933661000045), (-0.8931371739999463, 50.82534414300005), (-0.9046931629999335, 50.829331773000035), (-0.9095352859999366, 50.82599518400008), (-0.9217016269999476, 50.821600653000075), (-0.9289444649999155, 50.82282135600008), (-0.9190160799999489, 50.83616771000004), (-0.9297989569999459, 50.83999258000006), (-0.9391983709999181, 50.84324778900009), (-0.9707738919999542, 50.846991278000075), (-0.9948624339999128, 50.84707265800006), (-1.0018611319999309, 50.84711334800005), (-1.0207413399999155, 50.84365469000005), (-1.033558722999942, 50.82591380400004), (-1.0426326159999348, 50.80190664300005), (-1.0562231109999516, 50.78302643400008), (-1.0827530589999128, 50.780951239000046), (-1.1030167309999115, 50.79547760600008), (-1.0936173169999392, 50.812933661000045), (-1.0753067699999406, 50.83002350500004), (-1.069162563999953, 50.84365469000005), (-1.0873103509999282, 50.84979889500005), (-1.0881241529999102, 50.84975820500006), (-1.1498103509999282, 50.84666575700004), (-1.1647029289999296, 50.84365469000005), (-1.129709438999953, 50.825100002000056), (-1.1237686839999128, 50.818793036000045), (-1.1212052069999459, 50.79938385600008), (-1.1249080069999309, 50.788723049000055), (-1.1380509109999366, 50.780951239000046), (-1.1511124339999128, 50.78139883000006), (-1.1693416009999282, 50.78587474200003), (-1.1856176419999542, 50.79242584800005), (-1.1926163399999155, 50.79865143400008), (-1.1992895169999542, 50.807928778000075), (-1.231516079999949, 50.81891510600008), (-1.2551977199999556, 50.83193594000005), (-1.288156704999949, 50.839178778000075), (-1.3014216789999296, 50.84365469000005), (-1.3185929029999102, 50.85691966400009), (-1.338937954999949, 50.872707424000055), (-1.4492895169999542, 50.91205475500004), (-1.4664200509999432, 50.91815827000005), (-1.4664200509999432, 50.91193268400008), (-1.4564509759999282, 50.90875885600008), (-1.4379776679999168, 50.90131256700005), (-1.4256078769999476, 50.900091864000046), (-1.4011124339999128, 50.88117096600007), (-1.323068813999953, 50.82575104400007), (-1.3142797519999476, 50.812160549000055), (-1.3172908189999362, 50.80023834800005), (-1.3398331369999141, 50.79515208500004), (-1.4039607409999348, 50.79157135600008), (-1.4186905589999128, 50.788397528000075), (-1.4113663399999155, 50.78489817900004), (-1.4049373039999296, 50.780951239000046), (-1.4049373039999296, 50.774725653000075), (-1.4505102199999556, 50.76935455900008), (-1.4762263659999348, 50.76341380400004), (-1.4875382149999155, 50.75771719000005), (-1.491932745999918, 50.75726959800005), (-1.5247289699999556, 50.761053778000075), (-1.5571996739999463, 50.72329336100006), (-1.559396938999953, 50.71922435100004), (-1.5611873039999296, 50.71898021000004), (-1.5807185539999296, 50.722642320000034), (-1.6021215489999463, 50.731756903000075), (-1.6706436839999128, 50.74005768400008), (-1.672922329999949, 50.74005768400008), (-1.6930232409999348, 50.739935614000046), (-1.7150772779999102, 50.73578522300005), (-1.7535294259999432, 50.72284577000005), (-1.7717179029999102, 50.72011953300006), (-1.7974340489999463, 50.723171291000085), (-1.8350723949999406, 50.72768789300005), (-1.8574112619999141, 50.72695547100005), (-1.8773494129999335, 50.72284577000005), (-1.8963516919999392, 50.71629466400009), (-1.8968806629999335, 50.716050523000035), (-1.9138891269999476, 50.70742422100005), (-1.9291072259999282, 50.69586823100008), (-1.9400121739999463, 50.69082265800006), (-1.9443253249999088, 50.69765859600005), (-1.946115688999953, 50.707912502000056), (-1.9492895169999542, 50.713324286000045), (-1.9877009759999282, 50.72011953300006), (-2.01390540299991, 50.71893952000005), (-2.0219620429999168, 50.72011953300006), (-2.0254613919999542, 50.723863023000035), (-2.026193813999953, 50.72508372600004), (-2.0338435539999296, 50.73712799700007), (-2.038970506999931, 50.739935614000046), (-2.0480850899999155, 50.734808661000045), (-2.0826716789999296, 50.69896067900004), (-2.0695694649999155, 50.700100002000056), (-2.0577286449999406, 50.702826239000046), (-2.046620245999918, 50.70726146000004), (-2.0356339179999168, 50.713324286000045), (-2.0141495429999168, 50.688788153000075), (-2.0025121739999463, 50.681301174000055), (-1.984120245999918, 50.67853424700007), (-1.9674373039999296, 50.67865631700005), (-1.9527888659999348, 50.67658112200007), (-1.9458715489999463, 50.668850002000056), (-1.9529516269999476, 50.65184153900009), (-1.9382218089999128, 50.645819403000075), (-1.9324845039999445, 50.64443594000005), (-1.9672745429999168, 50.61709219000005), (-1.965199347999942, 50.60219961100006), (-1.9837133449999556, 50.59662506700005), (-2.065174933999913, 50.59552643400008), (-2.082183397999927, 50.59784577000005), (-2.1573380199999406, 50.62051015800006), (-2.3426407539999445, 50.63377513200004), (-2.377064581999946, 50.64752838700008), (-2.398345506999931, 50.64557526200008), (-2.435902472999942, 50.63751862200007), (-2.447621222999942, 50.62787506700005), (-2.4600723949999406, 50.60651276200008), (-2.465646938999953, 50.585150458000044), (-2.4564509759999282, 50.575506903000075), (-2.4312231109999516, 50.57025788000004), (-2.428700324999909, 50.55756256700005), (-2.4392797519999476, 50.54181549700007), (-2.45335852799991, 50.52765534100007), (-2.4595434239999463, 50.52765534100007), (-2.4603572259999282, 50.56549713700008), (-2.4835098949999406, 50.59039948100008), (-2.6929418609999516, 50.69281647300005), (-2.8648168609999516, 50.73379140800006), (-2.887318488999938, 50.734361070000034), (-2.94554602799991, 50.725816148000035), (-2.9627579419999392, 50.72329336100006), (-2.998199022999927, 50.708238023000035), (-3.021839972999942, 50.70648834800005), (-3.059722459999932, 50.713324286000045), (-3.071359829999949, 50.711004950000074), (-3.0941462879999335, 50.69896067900004), (-3.099232550999943, 50.69708893400008), (-3.115834113999938, 50.68797435100004), (-3.1254776679999168, 50.68528880400004), (-3.135894334999932, 50.68593984600005), (-3.1551407539999445, 50.69135163000004), (-3.1664932929999168, 50.69281647300005), (-3.1856176419999542, 50.690741278000075), (-3.2191462879999335, 50.68081289300005), (-3.2598363919999542, 50.67454661700003), (-3.271392381999931, 50.664496161000045), (-3.280425584999932, 50.65119049700007), (-3.2955623039999296, 50.63751862200007), (-3.368153449999909, 50.61709219000005), (-3.390736456999946, 50.61782461100006), (-3.4075414699999556, 50.62128327000005), (-3.420969204999949, 50.62946198100008), (-3.433338995999918, 50.64443594000005), (-3.446359829999949, 50.66828034100007), (-3.4504288399999155, 50.672308661000045), (-3.453277147999927, 50.67328522300005), (-3.455433722999942, 50.675441799000055), (-3.458607550999943, 50.67755768400008), (-3.4644262359999516, 50.67853424700007), (-3.467762824999909, 50.67641836100006), (-3.468902147999927, 50.67169830900008), (-3.467844204999949, 50.66697825700004), (-3.45531165299991, 50.657904364000046), (-3.4420466789999296, 50.62352122600004), (-3.433338995999918, 50.610256252000056), (-3.451161261999914, 50.59943268400008), (-3.4672745429999168, 50.585598049000055), (-3.4817602199999556, 50.56854889500005), (-3.494862433999913, 50.548163153000075), (-3.505970831999946, 50.520819403000075), (-3.505034959999932, 50.501206773000035), (-3.487456834999932, 50.459418036000045), (-3.509755011999914, 50.45848216400009), (-3.532134568999936, 50.454779364000046), (-3.549427863999938, 50.446519273000035), (-3.556263800999943, 50.43211497600004), (-3.5493057929999168, 50.41559479400007), (-3.531971808999913, 50.410223700000074), (-3.487456834999932, 50.41156647300005), (-3.487456834999932, 50.40477122600004), (-3.4974666009999282, 50.38735586100006), (-3.49828040299991, 50.383693752000056), (-3.5073136059999115, 50.382798570000034), (-3.5149633449999556, 50.37995026200008), (-3.520130988999938, 50.37482330900008), (-3.5269262359999516, 50.34979889500005), (-3.5388891269999476, 50.34442780200004), (-3.5545141269999476, 50.347642320000034), (-3.57054602799991, 50.35639069200005), (-3.577788865999935, 50.334051825000074), (-3.5991104809999115, 50.325832424000055), (-3.6215714179999168, 50.321926174000055), (-3.631988084999932, 50.31232330900008), (-3.6373591789999296, 50.29539622600004), (-3.6475723949999406, 50.27456289300005), (-3.653309699999909, 50.25104401200008), (-3.6456192699999406, 50.22601959800005), (-3.6606339179999168, 50.22101471600007), (-3.700917120999918, 50.21352773600006), (-3.7180069649999155, 50.21238841400009), (-3.740386522999927, 50.21588776200008), (-3.758615688999953, 50.22174713700008), (-3.774240688999953, 50.22296784100007), (-3.788970506999931, 50.21238841400009), (-3.826324022999927, 50.23419830900008), (-3.8841853509999282, 50.280462958000044), (-3.949940558999913, 50.31899648600006), (-3.9610082669999542, 50.322251695000034), (-3.9702042309999115, 50.320746161000045), (-3.995757615999935, 50.311428127000056), (-4.005604620999918, 50.30923086100006), (-4.011341925999943, 50.30695221600007), (-4.024769660999937, 50.29718659100007), (-4.032948370999918, 50.294907945000034), (-4.044056769999941, 50.29645416900007), (-4.054351365999935, 50.30036041900007), (-4.070220506999931, 50.30923086100006), (-4.067941860999952, 50.31281159100007), (-4.064035610999952, 50.322251695000034), (-4.086008266999954, 50.326239325000074), (-4.1082657539999445, 50.33661530200004), (-4.118723110999952, 50.35187409100007), (-4.1049698559999115, 50.37067291900007), (-4.141753709999932, 50.36904531500005), (-4.1527400379999335, 50.37067291900007), (-4.1655167309999115, 50.37636953300006), (-4.171457485999952, 50.382798570000034), (-4.175770636999914, 50.39085521000004), (-4.18382727799991, 50.40106842700004), (-4.191477016999954, 50.417629299000055), (-4.18390865799995, 50.431708075000074), (-4.1703181629999335, 50.44513580900008), (-4.159535285999937, 50.459418036000045), (-4.179432745999918, 50.45307038000004), (-4.189564581999946, 50.45368073100008), (-4.200550910999937, 50.459418036000045), (-4.203684048999946, 50.45140208500004), (-4.204741990999935, 50.44867584800005), (-4.2123917309999115, 50.441473700000074), (-4.222523566999939, 50.43797435100004), (-4.234730597999942, 50.43829987200007), (-4.234730597999942, 50.43211497600004), (-4.2202042309999115, 50.425848700000074), (-4.2161352199999556, 50.415716864000046), (-4.219715949999909, 50.40509674700007), (-4.228505011999914, 50.397365627000056), (-4.2414444649999155, 50.39468008000006), (-4.2899063789999445, 50.397365627000056), (-4.273019985999952, 50.38190338700008), (-4.216175910999937, 50.38776276200008), (-4.1937556629999335, 50.37689850500004), (-4.228505011999914, 50.37067291900007), (-4.228505011999914, 50.36383698100008), (-4.220122850999928, 50.365301825000074), (-4.200550910999937, 50.36383698100008), (-4.207997199999909, 50.35639069200005), (-4.180043097999942, 50.35639069200005), (-4.180043097999942, 50.35016510600008), (-4.191314256999931, 50.34756094000005), (-4.197987433999913, 50.342230536000045), (-4.199126756999931, 50.33539459800005), (-4.1937556629999335, 50.32843659100007), (-4.1937556629999335, 50.322251695000034), (-4.214995897999927, 50.323146877000056), (-4.225697394999941, 50.33539459800005), (-4.235096808999913, 50.34955475500004), (-4.2523494129999335, 50.35639069200005), (-4.337717251999948, 50.37067291900007), (-4.383697068999936, 50.36749909100007), (-4.456206834999932, 50.33820221600007), (-4.4953507149999155, 50.32843659100007), (-4.659820115999935, 50.322251695000034), (-4.659575975999928, 50.32062409100007), (-4.662709113999938, 50.31777578300006), (-4.667795376999948, 50.315334377000056), (-4.673451300999943, 50.31541575700004), (-4.687163865999935, 50.34271881700005), (-4.694325324999909, 50.343451239000046), (-4.700184699999909, 50.34088776200008), (-4.705555792999917, 50.337551174000055), (-4.7113337879999335, 50.33588288000004), (-4.731556769999941, 50.33466217700004), (-4.752105272999927, 50.33030833500004), (-4.763295050999943, 50.32208893400008), (-4.755441860999952, 50.30923086100006), (-4.755441860999952, 50.30174388200004), (-4.7623591789999296, 50.298041083000044), (-4.771636522999927, 50.29157135600008), (-4.779855923999946, 50.28432851800005), (-4.783355272999927, 50.27789948100008), (-4.7818904289999296, 50.27179596600007), (-4.776519334999932, 50.26508209800005), (-4.776519334999932, 50.26080963700008), (-4.788441535999937, 50.24209219000005), (-4.790150519999941, 50.23655833500004), (-4.800160285999937, 50.22955963700008), (-4.849720831999946, 50.23456452000005), (-4.868723110999952, 50.22943756700005), (-4.887318488999938, 50.21499258000006), (-4.904774542999917, 50.20844147300005), (-4.947255011999914, 50.19936758000006), (-4.960682745999918, 50.19049713700008), (-5.002430792999917, 50.14411041900007), (-5.014556443999936, 50.15656159100007), (-5.0203751289999445, 50.19196198100008), (-5.033192511999914, 50.19936758000006), (-5.05296790299991, 50.19578685100004), (-5.053618943999936, 50.18691640800006), (-5.051869269999941, 50.17552317900004), (-5.064564581999946, 50.16461823100008), (-5.064564581999946, 50.15839264500005), (-5.058501756999931, 50.155462958000044), (-5.043446417999917, 50.14411041900007), (-5.051869269999941, 50.144598700000074), (-5.058461066999939, 50.14272695500006), (-5.070790167999917, 50.13727448100008), (-5.08031165299991, 50.13271719000005), (-5.081613735999952, 50.12539297100005), (-5.080962693999936, 50.117173570000034), (-5.085031704999949, 50.10993073100008), (-5.093902147999927, 50.105536200000074), (-5.125965949999909, 50.09634023600006), (-5.114654100999928, 50.09662506700005), (-5.106068488999938, 50.09511953300006), (-5.091867641999954, 50.089504299000055), (-5.086903449999909, 50.089056708000044), (-5.075347459999932, 50.09048086100006), (-5.070790167999917, 50.089504299000055), (-5.068470831999946, 50.085150458000044), (-5.064930792999917, 50.07184479400007), (-5.06086178299995, 50.06903717700004), (-5.056507941999939, 50.060614325000074), (-5.069488084999932, 50.042181708000044), (-5.0980525379999335, 50.01439036700003), (-5.107289191999939, 50.013006903000075), (-5.127430792999917, 50.01544830900008), (-5.139637824999909, 50.01439036700003), (-5.146473761999914, 50.01056549700007), (-5.176136847999942, 49.987941799000055), (-5.18773352799991, 49.964504299000055), (-5.191151495999918, 49.95913320500006), (-5.200103318999936, 49.961371161000045), (-5.210357225999928, 49.96674225500004), (-5.240386522999927, 49.988348700000074), (-5.245228644999941, 49.99310944200005), (-5.2495011059999115, 50.000067450000074), (-5.253041144999941, 50.01264069200005), (-5.25226803299995, 50.020697333000044), (-5.252674933999913, 50.027777411000045), (-5.259755011999914, 50.03766510600008), (-5.2884008449999556, 50.067694403000075), (-5.304351365999935, 50.08026764500005), (-5.323963995999918, 50.089504299000055), (-5.384185350999928, 50.10797760600008), (-5.424712693999936, 50.11273834800005), (-5.458119269999941, 50.125881252000056), (-5.47484290299991, 50.13043854400007), (-5.495676235999952, 50.12962474200003), (-5.521839972999942, 50.12372467700004), (-5.540923631999931, 50.11347077000005), (-5.540638800999943, 50.09975820500006), (-5.5346573559999115, 50.08234284100007), (-5.5455623039999296, 50.06891510600008), (-5.563465949999909, 50.05963776200008), (-5.57843990799995, 50.054754950000074), (-5.61945553299995, 50.046210028000075), (-5.667388475999928, 50.04287344000005), (-5.705148891999954, 50.05231354400007), (-5.715646938999953, 50.08270905200004), (-5.705962693999936, 50.08348216400009), (-5.698801235999952, 50.08539459800005), (-5.694488084999932, 50.089504299000055), (-5.694406704999949, 50.095770575000074), (-5.697092251999948, 50.10053131700005), (-5.700306769999941, 50.103216864000046), (-5.701975063999953, 50.103176174000055), (-5.707386847999942, 50.12201569200005), (-5.70921790299991, 50.13263580900008), (-5.70539303299995, 50.13727448100008), (-5.7035212879999335, 50.140611070000034), (-5.684641079999949, 50.16152578300006), (-5.676747199999909, 50.16502513200004), (-5.647368943999936, 50.17206452000005), (-5.583607550999943, 50.19586823100008), (-5.549427863999938, 50.20351797100005), (-5.5109757149999155, 50.21946849200003), (-5.4891251289999445, 50.21979401200008), (-5.458119269999941, 50.20075104400007), (-5.437977667999917, 50.19432200700004), (-5.417388475999928, 50.202460028000075), (-5.402943488999938, 50.21735260600008), (-5.395863410999937, 50.22724030200004), (-5.39289303299995, 50.23655833500004), (-5.3875626289999445, 50.240301825000074), (-5.351918097999942, 50.240301825000074), (-5.3148494129999335, 50.253607489000046), (-5.200306769999941, 50.33075592700004), (-5.1635636059999115, 50.34723541900007), (-5.1498917309999115, 50.35016510600008), (-5.146473761999914, 50.35529205900008), (-5.145659959999932, 50.366888739000046), (-5.147043423999946, 50.37938060100004), (-5.153675910999937, 50.39948151200008), (-5.142404751999948, 50.40448639500005), (-5.12726803299995, 50.40521881700005), (-5.119740363999938, 50.40477122600004), (-5.0502823559999115, 50.42869700700004), (-5.0481664699999556, 50.43439362200007), (-5.038726365999935, 50.44790273600006), (-5.029774542999917, 50.486761786000045), (-5.0286352199999556, 50.507025458000044), (-5.025257941999939, 50.52423737200007), (-5.015614386999914, 50.53803131700005), (-4.9955948559999115, 50.548163153000075), (-4.975168423999946, 50.548163153000075), (-4.967844204999949, 50.55158112200007), (-4.954823370999918, 50.56122467700004), (-4.947255011999914, 50.56244538000004), (-4.941477016999954, 50.55695221600007), (-4.937123175999943, 50.54531484600005), (-4.9344376289999445, 50.53164297100005), (-4.933583136999914, 50.52024974200003), (-4.926869269999941, 50.52289459800005), (-4.924305792999917, 50.52448151200008), (-4.920521613999938, 50.52765534100007), (-4.902414516999954, 50.52057526200008), (-4.860951300999943, 50.519191799000055), (-4.844838019999941, 50.51406484600005), (-4.855824347999942, 50.527411200000074), (-4.87328040299991, 50.534084377000056), (-4.906239386999914, 50.54197825700004), (-4.921864386999914, 50.55487702000005), (-4.92023678299995, 50.564154364000046), (-4.915191209999932, 50.57249583500004), (-4.920521613999938, 50.58295319200005), (-4.920521613999938, 50.589178778000075), (-4.895659959999932, 50.585923570000034), (-4.821197068999936, 50.589178778000075), (-4.7924698559999115, 50.59520091400009), (-4.7766007149999155, 50.60984935100004), (-4.765044725999928, 50.62799713700008), (-4.7492569649999155, 50.64443594000005), (-4.755441860999952, 50.659369208000044), (-4.751942511999914, 50.67007070500006), (-4.741932745999918, 50.67487213700008), (-4.728138800999943, 50.672308661000045), (-4.657297329999949, 50.71112702000005), (-4.645578579999949, 50.723537502000056), (-4.637806769999941, 50.74115631700005), (-4.619007941999939, 50.754787502000056), (-4.577259894999941, 50.774725653000075), (-4.5501195949999556, 50.80955638200004), (-4.55492102799991, 50.897772528000075), (-4.543771938999953, 50.93919505400004), (-4.536854620999918, 50.94757721600007), (-4.5226944649999155, 50.972723700000074), (-4.5266820949999556, 50.98037344000005), (-4.530425584999932, 50.99469635600008), (-4.531320766999954, 51.008693752000056), (-4.526437954999949, 51.014960028000075), (-4.437326626999948, 51.014960028000075), (-4.4264216789999296, 51.01268138200004), (-4.4057511059999115, 51.00287506700005), (-4.3957413399999155, 51.00067780200004), (-4.337717251999948, 50.99664948100008), (-4.317290818999936, 51.00067780200004), (-4.302316860999952, 51.007513739000046), (-4.234730597999942, 51.05532461100006), (-4.2291560539999296, 51.06110260600008), (-4.224680141999954, 51.06708405200004), (-4.218495245999918, 51.07245514500005), (-4.207997199999909, 51.07636139500005), (-4.214263475999928, 51.086004950000074), (-4.226307745999918, 51.11322663000004), (-4.228505011999914, 51.120428778000075), (-4.2319229809999115, 51.12669505400004), (-4.249012824999909, 51.14288971600007), (-4.255767381999931, 51.15151601800005), (-4.222320115999935, 51.149725653000075), (-4.214833136999914, 51.15151601800005), (-4.208363410999937, 51.16229889500005), (-4.2098282539999445, 51.17283763200004), (-4.217274542999917, 51.18138255400004), (-4.228505011999914, 51.18622467700004), (-4.228505011999914, 51.19245026200008), (-4.152333136999914, 51.21161530200004), (-3.969471808999913, 51.22239817900004), (-3.931996222999942, 51.231350002000056), (-3.9131973949999406, 51.23338450700004), (-3.840891079999949, 51.23338450700004), (-3.818959113999938, 51.23607005400004), (-3.787098761999914, 51.24677155200004), (-3.769154425999943, 51.247707424000055), (-3.6397598949999406, 51.22638580900008), (-3.559315558999913, 51.22809479400007), (-3.434193488999938, 51.20978424700007), (-3.4043676419999542, 51.19204336100006), (-3.38499915299991, 51.18622467700004), (-3.2707413399999155, 51.18939850500004), (-3.198882615999935, 51.203558661000045), (-3.1627498039999296, 51.206732489000046), (-3.096750454999949, 51.20453522300005), (-3.057525193999936, 51.20815664300005), (-3.029286261999914, 51.220404364000046), (-3.021839972999942, 51.21356842700004), (-3.0355525379999335, 51.199286200000074), (-3.021839972999942, 51.19245026200008), (-3.004790818999936, 51.21312083500004), (-3.0013321609999366, 51.220404364000046), (-2.9995824859999516, 51.23322174700007), (-3.0015356109999516, 51.23969147300005), (-3.0049942699999406, 51.24506256700005), (-3.008168097999942, 51.25454336100006), (-3.0076391269999476, 51.29197825700004), (-3.0106095039999445, 51.310980536000045), (-3.021839972999942, 51.32282135600008), (-3.0024307929999168, 51.31907786700003), (-2.992176886999914, 51.321926174000055), (-2.992095506999931, 51.32204824400009), (-2.988392706999946, 51.33112213700008), (-2.9877823559999115, 51.34666575700004), (-2.9798884759999282, 51.35586172100005), (-2.965972459999932, 51.364935614000046), (-2.959584113999938, 51.374253648000035), (-2.9746801419999542, 51.38422272300005), (-2.9529516269999476, 51.398504950000074), (-2.9210098949999406, 51.39443594000005), (-2.8841853509999282, 51.41697825700004), (-2.816395636999914, 51.47361888200004), (-2.798573370999918, 51.48261139500005), (-2.780873175999943, 51.48908112200007), (-2.7612198559999115, 51.49286530200004), (-2.7376195949999556, 51.49408600500004), (-2.716420050999943, 51.49957916900007), (-2.6961563789999445, 51.51264069200005), (-2.6078181629999335, 51.60736725500004), (-2.599598761999914, 51.611395575000074), (-2.5892227859999366, 51.61424388200004), (-2.580433722999942, 51.61863841400009), (-2.5768123039999296, 51.62750885600008), (-2.57445227799991, 51.63572825700004), (-2.568959113999938, 51.644964911000045), (-2.562245245999918, 51.65338776200008), (-2.556385870999918, 51.65924713700008), (-2.499175584999932, 51.69676341400009), (-2.464995897999927, 51.725897528000075), (-2.4477432929999168, 51.73187897300005), (-2.404896613999938, 51.74115631700005), (-2.3885391919999392, 51.750433661000045), (-2.380767381999931, 51.76190827000005), (-2.3833715489999463, 51.77326080900008), (-2.398060675999943, 51.782131252000056), (-2.4024145169999542, 51.76357656500005), (-2.4203995429999168, 51.753119208000044), (-2.4434301419999542, 51.74843984600005), (-2.4632869129999335, 51.747300523000035), (-2.482085740999935, 51.74286530200004), (-2.495838995999918, 51.73200104400007), (-2.507964647999927, 51.71857330900008), (-2.5221248039999296, 51.706366278000075), (-2.581695115999935, 51.681708075000074), (-2.5911352199999556, 51.67536041900007), (-2.600209113999938, 51.66559479400007), (-2.6653539699999556, 51.617254950000074)]\n", + " draw_map(plot, x, y, colour)\n", + " plot.plot(\n", + " [merc_x(coord[0]) for coord in gb_boundary],\n", + " [merc_y(coord[1]) for coord in gb_boundary],\n", + " \"k-\",\n", + " )\n", + "\n", + "country = Config(\n", + " get_data=get_literal_data(),\n", + " clean=get_map_cleaner_for(\"Temperature\"),\n", + " title=\"Country wide temperature\",\n", + " ylabel=\"\",\n", + " draw=draw_map_with_gb,\n", + ")\n", + "\n", + "out = widgets.interactive(interactable_plot_multiple_charts(configs=configs + (country, )), collected_after=start, collected_before=end)\n", + "display(out)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "apd.aggregation", + "language": "python", + "name": "apd.aggregation" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Ch10/apd.aggregation-chapter10/LICENCE b/Ch10/apd.aggregation-chapter10/LICENCE new file mode 100644 index 0000000..86685d4 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10/LICENCE @@ -0,0 +1,31 @@ +Copyright (c) 2019, Matthew Wilkes + + +All rights reserved. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + +* Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + +* Redistributions in binary form must reproduce the above copyright notice, this + list of conditions and the following disclaimer in the documentation and/or + other materials provided with the distribution. + +* Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived from this + software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND +ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. +IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, +INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, +BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY +OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE +OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED +OF THE POSSIBILITY OF SUCH DAMAGE. + + diff --git a/Ch10/apd.aggregation-chapter10/Mapping.ipynb b/Ch10/apd.aggregation-chapter10/Mapping.ipynb new file mode 100644 index 0000000..916e704 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10/Mapping.ipynb @@ -0,0 +1,254 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "datapoints = {\n", + " (53.8667, -1.3333): -1,\n", + " (53.35, -2.2833): 1,\n", + " (52.45, -1.7333): 3,\n", + " (51.5, -0.1333): 6,\n", + " (51.55, -2.5667): 5,\n", + " (54.9667, -1.6167): -1,\n", + " (55.9667, -3.2167): -1,\n", + " (54.7667, -1.5833): 0,\n", + " (53.7667, -0.3): 1,\n", + " (53.7667, -3.0167): 0,\n", + " (51.4833, -3.1833): 4,\n", + " (53.2667, -3.5167): 2,\n", + " (52.0833, -2.8): 2,\n", + " (52.0167, -0.6): 2,\n", + " (52.6667, 1.2667): 5,\n", + " (50.4333, -4.9833): 9,\n", + " (50.35, -4.1167): 10,\n", + " (50.5167, -2.45): 9,\n", + " (50.8333, -1.1667): 9,\n", + " (56.45, -5.4333): 4,\n", + " (57.5333, -4.05): -2,\n", + " (54.5167, -3.6167): 3,\n", + " (53.0833, 0.2667): 4,\n", + " (51.35, 1.3333): 7,\n", + " (50.8833, 0.3167): 8,\n", + " (58.45, -3.1): 3,\n", + " (50.1, -5.6667): 9,\n", + " (58.2167, -6.3333): 4,\n", + " (55.6833, -6.25): 7,\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAARS0lEQVR4nO3df4hc13nG8eexYodFuJWDVkq0tiqH2oIksiV3LEJFfshuJNukjiIItPQP0RRUmyTQgJVYFTRtjbGwUtxSSqlKTEOJGlKq3YS6tqTGENM/nGQVyZVCrcQ1SuJdN5JSRFOy9Q/57R9zx9pdzXpmdufee87M9wNmd+7OaF9rtM+ee+4573VECACQn6vqLgAAsDgEOABkigAHgEwR4ACQKQIcADL1tiq/2cqVK2PdunVVfksAyN7x48cvRMTo/OOVBvi6des0OTlZ5bcEgOzZ/lG740yhAECmCHAAyBQBDgCZIsABIFMEOABkqtJVKMBiTJyY0oEjZzR9cUZrVoxoz/b12rFprO6ygNoR4EjaxIkp7T18SjOvXZIkTV2c0d7DpySJEMfQYwoFSTtw5Myb4d0y89olHThypqaKgHQQ4Eja9MWZno4Dw4QAR9LWrBjp6TgwTAhwJG3P9vUauXrZnGMjVy/Tnu3ra6oISEfyFzFZgTDcWu81/waAKyUd4KxAgNR8r3m/gSslPYXCCgQAWFjSAc4KBABYWNIBzgoEAFhYVwFu+6ztU7ZP2p4sjm20/WzrmO3N/S6OFQgAsLBeLmJujYgLsx4/KulPIuJJ2/cUjz/cz+JYgQAAC1vKKpSQ9EvF578saXrp5VyJFQgA0F63AR6SjtoOSX8TEQcl/YGkI7a/qOZUzK+3e6Ht3ZJ2S9LatWuXXjEAQFL3FzG3RMRtku6W9CnbH5R0v6TPRsQNkj4r6UvtXhgRByOiERGN0dErbqoMAFikrgI8IqaLj+ckjUvaLGmXpMPFU/6xOAYAqEjHALe93Pa1rc8lbZN0Ws057w8VT7tD0g/LKhIAcKVu5sBXSxq33Xr+oYh4yvb/SvoL22+T9H8q5rkBANXoGOAR8aKkW9sc/zdJv1ZGUQCAzpLeiQkAWBgBDgCZSrqdLKpF73UgLwQ4JNF7HcgRUyiQRO91IEcEOCTRex3IEQEOSfReB3JEgEMSvdeBHHERE5LovQ7kiADHm+i9DuSFKRQAyBQBDgCZIsABIFMEOABkigAHgEwR4ACQKQIcADJFgANApghwAMgUAQ4AmSLAASBTBDgAZIoAB4BMEeAAkCkCHAAyRYADQKYIcADIFAEOAJnilmo9mjgxxX0jASSBAO/BxIkp7T18SjOvXZIkTV2c0d7DpySJEAdQOaZQenDgyJk3w7tl5rVLOnDkTE0VARhmBHgPpi/O9HQcAMpEgPdgzYqRno4DQJkI8B7s2b5eI1cvm3Ns5Opl2rN9fU0VARhmXMTsQetCJatQAKSAAO/Rjk1jBDaAJDCFAgCZIsABIFNdBbjts7ZP2T5pe3LW8c/YPmP7+7YfLa9MAMB8vcyBb42IC60HtrdK+pikWyLiFdur+l4dhg6tCoDuLeUi5v2S9kfEK5IUEef6UxKGFa0KgN50Owceko7aPm57d3HsZkkfsP1t29+yfXu7F9rebXvS9uT58+f7UTMGFK0KgN50OwLfEhHTxTTJMdvPF6+9TtL7Jd0u6Wu23x0RMfuFEXFQ0kFJajQaIWABtCoAetPVCDwipouP5ySNS9os6SVJh6PpO5LekLSyrEIx+GhVAPSmY4DbXm772tbnkrZJOi1pQtIdxfGbJV0j6cJCfw7QCa0KgN50M4WyWtK47dbzD0XEU7avkfS47dOSXpW0a/70CdALWhUAvXGVmdtoNGJycrLzExfAEjMAw8j28YhozD+eTS8UlpgBwFzZbKVniRkAzJVNgLPEDADmyibAWWIGAHNlE+AsMQOAubK5iMkSMwCYK5sAl7gbDgDMls0UCgBgLgIcADJFgANApghwAMgUAQ4AmSLAASBTBDgAZIoAB4BMEeAAkKmsdmICg4wblqBXBDiQAG5YgsVgCgVIADcswWIQ4EACuGEJFoMABxKw0I1JrrI1cWKq4mqQCwIcSEC7G5ZI0qUI7T18ihBHWwQ4kIAdm8b0yM4NWmZf8TXmwrEQAhxIxI5NY3ojou3XmAtHOwQ4kBBu3o1eEOBAQrh5N3rBRh70FbsJl4abd6MXBDj6ht2E/cHNu9EtplDQN+wmBKpFgKNv2E0IVIsAR9+wggKoFgGOvmEFBVAtLmKib1hBAVSLAEdfsYICqA5TKACQKQIcADJFgANApghwAMhUVwFu+6ztU7ZP2p6c97UHbIftleWUCABop5dVKFsj4sLsA7ZvkPQRST/ua1UAgI6WOoXymKTPSWrfhR4AUJpuAzwkHbV93PZuSbJ9r6SpiHiutOoAAAvqdgplS0RM214l6Zjt5yXtk7St0wuLwN8tSWvXrl10oQDmovc6uhqBR8R08fGcpHFJH5J0o6TnbJ+VdL2k79l+Z5vXHoyIRkQ0RkdH+1Y4MMxavdenLs4odLn3OnevHy4dR+C2l0u6KiJ+Xny+TdKfRsSqWc85K6kx/yIn0G+MOpveqvd6Sn8fvF/l6mYKZbWkcdut5x+KiKdKrQpogzv+XJZD73Xer/J1nEKJiBcj4tbiv/dGxMNtnrOO0TfKxh1/Lsuh9zrvV/nYiYls5DDqrEoOvdd5v8pHgCMbOYw6q7Jj05ge2blBYytGZEljK0b0yM4NSU1N8H6Vj37gyMae7evnzKlK6Y06q5R673Xer/IR4MgGd/zJC+9X+RxR3S74RqMRk5OTnZ8IAHiT7eMR0Zh/nDlwAMgUAQ4AmWIOHOiA3YRIFQEOvAV2EyJlBDhKlfvoNZeeIxhOBDhKMwijV3YTImVcxERpBqEXBrsJkTICHKUZhNFrDj1HMLyYQkFp1qwY0VSbsM5p9MpuwjTlfm2lXwhwlGZQemGk3nNk2AzCtZV+YQoFpcmhYx7yMwjXVvqFEThKxegV/TYI11b6hRE4gKywMugyAhxAVlgZdBlTKACywsqgywhwANnh2koTUygAkCkCHAAyxRQKAPRZVTtFCXAA6KMqd4oyhQIAfVTlTlECHAD6qMqdogQ4APRRlTtFCXCgJhMnprRl/9O68cEntGX/05o4MVV3SeiDKneKchETqAEtUQdXlTtFCXCgBtwsebBVtVOUKRSgBrRERT8Q4EANaImKfiDAgRrQEhX9wBw4UANaoqIfCHCgJrRExVIxhQIAmWIEjoFSVRc4IAUEOAYGm2MwbLoKcNtnJf1c0iVJr0dEw/YBSb8p6VVJ/ynpdyPiYlmFAp2wOaZ8nOGkpZc58K0RsTEiGsXjY5LeFxG3SPqBpL19rw7oAZtjytU6w5m6OKPQ5TMcerjUZ9EXMSPiaES8Xjx8VtL1/SkJWBw2x5Sryj7X6E63AR6Sjto+bnt3m69/UtKT7V5oe7ftSduT58+fX2ydQEdsjikXZzjp6TbAt0TEbZLulvQp2x9sfcH2PkmvS/pKuxdGxMGIaEREY3R0dMkFAwvZsWlMj+zcoLEVI7KksRUjemTnBuZo+4QznPR0dREzIqaLj+dsj0vaLOkZ27skfVTSnRER5ZUJdIfNMeXZs339nFU+Emc4des4Are93Pa1rc8lbZN02vZdkj4v6d6I+EW5ZQKoG2c46elmBL5a0rjt1vMPRcRTtl+Q9HZJx4qvPRsR95VWKYDacYaTlo4BHhEvSrq1zfFfLaUiAEBX6IUCAJkiwAEgU/RCwVBiSzgGAQGO5JQdrjS9qh+/QPuDKRQkpYp+G2wJrxc9VfqHAEdSqghXtoTXi1+g/cMUCpJSRbiuWTGiqTZ/HlvCqzFsv0DLnC5iBI6kVNFvg6ZX9RqmniplTxcR4EhKFeHKlvB6DdMv0LKni5hCQVJaIVr2CgW2hNenqvc4BWVPFxHgSA7hOviG5T0u+3oLUygAUJKyp4sYgQNAScqeLiLAAaBEZU4XMYUCAJkiwAEgUwQ4AGSKOXAA2Rr2roYEOIAs0RaYAAcGzrCMSt9qm/og/v+2Q4ADA2SYRqXD1tWwHS5iAgNkmHptD1NXw4UQ4MAAGaZR6TB1NVwIAQ4MkGEaldIWmDlwYKDs2b5+zhy4NNij0mHpargQAhwYIMPUaxsEOCBpsJbeDfuodJgQ4Bh6w7T0DoOFAK/JII34cseGEOSKAK8BI760DNPSOwwWlhHWIKXNFhMnprRl/9O68cEntGX/05o4MVV5DXUbpqV3GCwEeA1SGfG1zgSmLs4odPlMYNhCnA0hyBUBXoNURnwpnQnUiQ0hyBVz4DVIZbNFKmcCKWDpHXLECLwGqYz4UjkTALA4jMBrksKIL5UzAQCLQ4DPMmxrs9l2DeSNAC8M69rsFM4EACxOV3Pgts/aPmX7pO3J4tg7bB+z/cPi43XlllouVmQAyE0vFzG3RsTGiGgUjx+U9M2IuEnSN4vH2WJFBoDcLGUVysckfbn4/MuSdiy9nPqwIgNAbroN8JB01PZx27uLY6sj4mVJKj6uavdC27ttT9qePH/+/NIrLgm78QDkptuLmFsiYtr2KknHbD/f7TeIiIOSDkpSo9GIRdRYCVZkAMhNVwEeEdPFx3O2xyVtlvRT2++KiJdtv0vSuRLrrAQrMgDkpOMUiu3ltq9tfS5pm6TTkr4haVfxtF2Svl5WkQCAK3UzAl8tadx26/mHIuIp29+V9DXbvyfpx5I+UV6ZAID5OgZ4RLwo6dY2x38m6c4yigIAdEYzKwDIFAEOAJlyRHUr+2yfl/Sjyr6htFLShQq/X6+ob2lSri/l2iTqW4o6avuViBidf7DSAK+a7clZW/+TQ31Lk3J9KdcmUd9SpFQbUygAkCkCHAAyNegBfrDuAjqgvqVJub6Ua5OobymSqW2g58ABYJAN+ggcAAYWAQ4AmRqKALf9GdtnbH/f9qN11zOb7T+2PVXcru6k7Xvqrqkd2w/YDtsr666lxfZDtv+9+Hs7antN3TXNZvuA7eeLGsdtr6i7ptlsf6L4mXjDdhLL4mzfVfysvmA7qbt82X7c9jnbp+uupWXgA9z2VjXvHnRLRLxX0hdrLqmdx4rb1W2MiH+pu5j5bN8g6SNqNi1LyYGIuCUiNkr6Z0l/VHdB8xyT9L6IuEXSDyTtrbme+U5L2inpmboLkSTbyyT9laS7Jb1H0m/bfk+9Vc3xd5LuqruI2QY+wCXdL2l/RLwiNXua11xPjh6T9Dk178yUjIj4n1kPlyu9+o5GxOvFw2clXV9nPfNFxH9EREp37d4s6YWIeDEiXpX0VTUHX0mIiGck/Xfddcw2DAF+s6QP2P627W/Zvr3ugtr4dHGa/bjt6+ouZjbb90qaiojn6q6lHdsP2/6JpN9ReiPw2T4p6cm6i0jcmKSfzHr8UnEMC+j2lmpJs/2vkt7Z5kv71Px/vE7S+yXdrmYP83dHhesnO9T315IeUnP0+JCkP1Pzh70yHer7QzVv4lGLt6otIr4eEfsk7bO9V9KnJX0hpfqK5+yT9Lqkr1RZW/G9O9aXELc5ltRZVWoGIsAj4jcW+prt+yUdLgL7O7bfULMZTWV3WH6r+maz/bdqzuVWaqH6bG+QdKOk54obelwv6Xu2N0fEf9VZWxuHJD2higO8U322d0n6qKQ7qxw0tPTw95eClyTdMOvx9ZKma6olC8MwhTIh6Q5Jsn2zpGuUUJez4n6iLR9X88JSEiLiVESsioh1EbFOzR+w26oK705s3zTr4b2Sur7ZdhVs3yXp85LujYhf1F1PBr4r6SbbN9q+RtJvqXnrRixg4HdiFv8QHpe0UdKrkh6IiKfrreoy23+vZm0h6ayk34+Il2stagG2z0pqREQSvwBt/5Ok9ZLeULNN8X0RMVVvVZfZfkHS2yX9rDj0bETcV2NJc9j+uKS/lDQq6aKkkxGxveaa7pH055KWSXo8Ih6us57ZbP+DpA+reQb/U0lfiIgv1VrToAc4AAyqYZhCAYCBRIADQKYIcADIFAEOAJkiwAEgUwQ4AGSKAAeATP0/KVaoHKMq6aEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "fig, ax = plt.subplots()\n", + "lats = [ll[0] for ll in datapoints.keys()]\n", + "lons = [ll[1] for ll in datapoints.keys()]\n", + "ax.plot(lons, lats, \"o\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJcAAAD4CAYAAADhPXT2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAL9UlEQVR4nO3db6ieZR0H8O/XqXEQa8bOTKfrWOmCUqc9jmikLbOplC4hqFejgpVokNBK8Y0FoTgjehWdSPBFEQZzRWHTNIpeWJ41bTOc2pi2cyTPgoHSUme/Xjz3Wc8Oz3PO/dz3/buvP/f3A2PnPOc8ey7Gl+v/dV80M4h4OCV0ASRfCpe4UbjEjcIlbhQucXNqmx+2atUqm5qaavMjxdmePXuOmNnksJ+1Gq6pqSnMzMy0+ZHijOSLo36mZlHcKFziRuESNwqXuFG4xE2ro8XU7do7ix27D2Du6DGcu3IC2zevw5bL1oQuVrQUrpJ27Z3FHTv34dibbwEAZo8ewx079wGAAjaCmsWSduw+cCJYC469+RZ27D4QqETxU7hKmjt6bKzXReEq7dyVE2O9LgpXads3r8PEaStOem3itBXYvnldoBLFL1iHPrWR10LZUipzaEHClerIa8tla6IuX2yCNIsaeXVDkHBp5NUNQcKlkVc3lAoXyUMk95F8iuRM8dp6kk8svEZyQ9kP1cirG8bp0G8ysyMD398L4Ftm9jDJ64vvP1bmH9LIqxvqjBYNwNuLr98BYG6cN2vklb+y4TIAj5A0AD80s2kAXwOwm+R96DevHxn2RpLbAGwDgLVr19YvsSSjbId+o5ldDuA6ALeQvBLAzQBuM7PzAdwG4MfD3mhm02bWM7Pe5OTQQyKSqVLhMrO54u9XADwEYAOArQB2Fr/y8+I1kROWDRfJM0ieufA1gE8C2I9+H+uq4tc+DuB5r0JKmsr0uc4G8BDJhd//qZn9huRrAL5P8lQA/0HRrxJZsGy4zOwggEuHvP5HAB/yKJTkQVtuxI3CJW46e0Ajtf1kKepkuFLdT5aaTjaL2k/Wjk6GS/vJ2tHJcGk/WTs6GS7tJ2tHJzv02k/Wjk6GC9B+sjZ0slmUdihc4kbhEjcKl7hRuMSNwiVuFC5xo3CJG4VL3Chc4kbhEjcKl7hRuMSNwiVuFC5xo3CJG4VL3Chc4iapbc46JZ2WZMKlU9LpSaZZ1Cnp9CQTLp2STk8y4dIp6fQkEy6dkk5PMh16nZJOTzLhAnRKOjXJNIuSHoVL3FS+Eq94/askD5B8huS9fsWUFFW+Eo/kJgA3ArjEzF4nubrx0kVES0/jq9OhvxnAPWb2OnDiXqAsaempmrJ9roUr8fYUV9wBwEUAPkryTyR/T/KKYW8kua24SXZmfn6+iTK3TktP1ZStuTaa2VzR9D1K8tnivWcB+DCAKwA8SPI9ZmaDbyzuZpwGgF6vZ0iQlp6qqXMl3mEAO63vzwD+C2CVV0FD0tJTNXWuxNuF/lV4IHkRgNMBHBn176RMS0/V1LkS73QA95PcD+ANAFsXN4m50NJTNWwzD71ez2ZmTkyTaXifAZJ7zKw37GfB1hY1vM9fsOUfDe/zFyxcGt7nL1i4NLzPX7BwaXifv2Adeg3v8xd0J6p2luZNmwXFjcIlbhQucaNwiRuFS9woXOJG4RI3Cpe4UbjETVLPishRzhsmFa6Act8wqWYxoNw3TCpcAeW+YVLhCij3DZMKV0Cb3j851uupUbgC+t2zw5+dMer11ChcAanPJW7U5xI3uR9S0STqIm3OmOd+SEXhGhBixjznQypqFgfkPmPeNoVrQO6jt7YpXANyH721TeEakPvorW3q0A/IffTWNoVrkZxHb21TsyhuFC5xo3CJG4VL3NS6Eq/42ddJGsksb8+Q6ipfiQcAJM8HcA2AlxotlWShbrP4PQDfQP9WM5GTVL4Sj+QNAGbN7Gm30knS6lyJdyf6l0wtqQjjNgBYu3Zt5YJ2RU4nsKteiXcVgAsAPE3yEIDzAPyF5LuGvHfazHpm1puczONUi5eF/WSzR4/B8P/9ZLv2zoYuWiXL1lzFNXinmNmrA1fifdvMVg/8ziEAvcUd/hx51ixL7Sdb7jNirPEqX4nnWqpIee9UrbqfLNZnTizbLJrZQTO7tPjzATP7zpDfmepCreW9U7XqfrJYd9Bqhn4M3jtVq+4ni3UHrcI1Bu+dqlsuW4O7b7oYa1ZOgADWrJzA3TddvGzTFusOWu3nGsP2zetO6tsAze9UrbKfrI1yVaFwjSHWnaqxlivoHdeSvqXuuFafS9woXOJGfS5HMc6at0nhchLrrHmbFK4R6tY6ddYJc6FwDdFErRPrrHmb1KEfoom1ulhnzdukcA3RRK2j506oWRzq3JUTmB0SpHFqndhmzUOMXBWuIZpaq4vluROhRq5qFoeoujshVqH2e6nmGiGWWqcJoUauqrk6INTIVeHqgFAjVzWLHRBq5KpwdUSIPqSaRXGjcIkbNYuypDoz+wqXjFR3Zl/NooxUd2Zf4ZKR6s7sK1wyUt2ZfYUrkF17Z7Hxnsdxwe2/xsZ7Ho/yGVx1Z/bVoQ8glcMbdWf2Fa4AUjq8UWdmX81iAF05vKFwBdCVwxsKVwBdObyhPlcAsR3e8KJwBZLTNupR1CyKG9VcNXT9KTbLUbgqSmUiNKRS4SpuyHgVwFsAjptZj+QOAJ8G8AaAvwP4gpkd9SpobEJPhKZQa47T59pkZusHnn/5KIAPmtklAJ4DcEfjpYtYyInQVO4IqtyhN7NHzOx48e0T6F8u1RkhJ0JjvTFjscr3LS7yRQAPD3sjyW0kZ0jOzM/PVy1ndEJOhKayfFQ2XBvN7HIA1wG4heSVCz8geSeA4wB+MuyNuV6JF/J5EqksH5Xq0A/et0jyIQAbAPyB5FYAnwJwtbX5QPtIhJoIjfXGjMWWrblInkHyzIWv0b9vcT/JawF8E8ANZvZv32LKoFSewlP5vkWSLwB4G/rXEgPAE2b2FbeSyklSWD5aNlxmdhDApUNef59LiSQbWlsUNwqXuNHaYoNSWJJpk8JV0nLBiWkhO5aQq1ksocxaXixLMjGtOypcJZQJTixLMrGEHFCzWEqZ4DRxMUITPEJetZlVzVVCmbW8WE70NL3uWKeZVbhKKBOcWJZkmg55nWZWzWIJZY+CxbAk0/SxtTrNrMJVUgzBKavJstbpS6pZlCXVaWZVc8mS6jSzCpcsq2ozq2ZR3Chc4kbhEjfqc3VI27slFK6OCLElSOGKVNO1TIhnWyhcEfKoZUJsCVKHPkIee7JCnNJWuCLkUcuE2BKkcEXIo5YJsSVIfa4IeT0Lou2dHQpXhHJ5lLjC1bCmphBS2j82isLVoJjOLsYgi3DFcgg09EN4Y5N8uGKqLWI5uxiL5Kciqkw4et3SmsrjJNuSfLjGrS08j7vHcnYxFsmHa9zawvO4eyxnF2ORfJ9r3AlH735RDlMITUm+5hq3tlC/qD3J11zAeLVFKo/ZzkH04Wp6DiuXpZUURB0urzks9YvaUarPRfIQyX0knyI5U7z2TpKPkny++PuspgsX04PMZHx1rsS7HcBjZnYhgMeK7xulGe+01Rkt3gjggeLrBwBsqV+ck2lkl7Y6V+KdbWYvA0Dx9+phb6xzJZ5mvNNWtkO/0czmSK5G/66fZ8t+gJlNA5gGgF6vN9bNZhrZpa3OlXj/JHmOmb1M8hwAr3gUUCO7dFW+Eg/ALwFsLX5tK4BfeBVS0lTnSrwnATxI8ksAXgLwWb9iSorqXIn3LwBXexRK8pD8wrXES+ESN2zz3nOS8wBedPyIVQCOOP77KfL+P3m3mU0O+0Gr4fJGcmZgeUoQ9v9EzaK4UbjETW7hmg5dgAgF+z/Jqs8lccmt5pKIKFziJrtwkbyL5GyxJfspkteHLlMoJK8leYDkCyQb3ym87Ofn1ucieReA18zsvtBlCYnkCgDPAbgGwGEATwL4vJn9ra0yZFdzyQkbALxgZgfN7A0AP0N/a3prcg3XrST/SvJ+j1NJiVgD4B8D3x8uXmtNkuEi+VuS+4f8uRHADwC8F8B6AC8D+G7QwobDIa+12geK+lDsKGb2iTK/R/JHAH7lXJxYHQZw/sD35wGYa7MASdZcSyn28y/4DPpbsrvoSQAXkryA5OkAPof+1vTWJFlzLeNekuvRbwIOAfhy2OKEYWbHSd4KYDeAFQDuN7Nn2ixDdlMREo/smkWJh8IlbhQucaNwiRuFS9woXOJG4RI3/wOfdKaAPZfJtAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "fig, ax = plt.subplots()\n", + "lats = [ll[0] for ll in datapoints.keys()]\n", + "lons = [ll[1] for ll in datapoints.keys()]\n", + "# Don't draw lines\n", + "ax.plot(lons, lats, \"o\")\n", + "# This is a map of the UK. Here, 1 degree latitude is \n", + "# 1.7x as far as 1 degree longitude\n", + "ax.set_aspect(1.7)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Set up mercator transform from https://wiki.openstreetmap.org/wiki/Mercator#Python\n", + "# Thanks to Paulo Silva and the OSM contributors\n", + "import math\n", + "\n", + "def merc_x(lon):\n", + " r_major=6378137.000\n", + " return r_major*math.radians(lon)\n", + "\n", + "def merc_y(lat):\n", + " if lat>89.5:lat=89.5\n", + " if lat<-89.5:lat=-89.5\n", + " r_major=6378137.000\n", + " r_minor=6356752.3142\n", + " temp=r_minor/r_major\n", + " eccent=math.sqrt(1-temp**2)\n", + " phi=math.radians(lat)\n", + " sinphi=math.sin(phi)\n", + " con=eccent*sinphi\n", + " com=eccent/2\n", + " con=((1.0-con)/(1.0+con))**com\n", + " ts=math.tan((math.pi/2-phi)/2)/con\n", + " y=0-r_major*math.log(ts)\n", + " return y\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJkAAAEDCAYAAAAm1qYrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAARk0lEQVR4nO2de7BdVX3HP98mgqE8biTgwA1pghNCHTU8LoJaLQ9LgE4bcGhLtUVSbEpB+pgxo4zT6gwzVSd1xjIUMsBYSlVQMI1IlWgLiFMJmAgkPLx4IWO4CZbwCLYh05Lw6x973XBycu6957HW2Wvv8/vM3Mk5a6997u+efGft9fh915KZ4Tgp+ZWyA3Dqj4vMSY6LzEmOi8xJjovMSY6LzElOqSKT9GVJz0t6rM36vy/pCUmPS/pa6vicOKjMeTJJHwD+B7jFzN4xTd2FwDeAM83sZUlHmtnz/YjT6Y1SWzIzux94qbFM0tsk3S1pg6QfSjo+XPpT4B/N7OVwrwusIuTYJ7sBuNLMTgY+AVwXyo8DjpP0n5LWSTqntAidjphZdgCNSDoYeC9wu6SJ4gPDvzOBhcDpwFzgh5LeYWY7+h2n0xlZiYyiZd1hZie0uDYOrDOz14DNkkYpRPfjfgbodE5Wj0sz+yWFgH4PQAWLw+U1wBmhfA7F4/OZUgJ1OqLsKYxbgQeARZLGJV0KfAS4VNKjwOPA0lB9LfCipCeAe4EVZvZiGXE7nVHqFIYzGGT1uHTqSWkd/zlz5tj8+fPL+vVOAjZs2PCCmR3RXF6ayObPn8/69evL+vVOAiT9vFW5Py6d5LjInOS4yJzkuMic5LjInOTktnZZGdY8vJWVa0fZtmMXRw/NYsWSRZx/4nDZYWWJi6wL1jy8latWb2LXa3sA2LpjF1et3gTgQmuBPy67YOXa0b0Cm2DXa3tYuXa0pIjypi2RSfrrkFf/mKRbJb256bokXSNpTNJGSSelCTcPtu3Y1VH5oDOtyCQNA38BjIQ8/BnARU3VzqXI7VoILAeujxxnVhw9NKuj8kGn3cflTGCWpJnAQcC2putLKcwgZmbrgCFJR0WMMytWLFnErDfN2Kds1ptmsGLJopIiyptpO/5mtlXS3wNbgF3A98zse03VhoFnG96Ph7LnGitJWk7R0jFv3ry95VUbqU3EVqWYy2RakUmaTdFSLQB2UOTf/5GZfaWxWotb90tUM7MbKIwijIyMGFR3pHb+icNZx5cT7TwuPwhsNrPtIb9+NYXZo5Fx4JiG93PZ/5HaEh+p1Z92RLYFOE3SQSosRGcBTzbVuRO4OIwyTwNeMbPnmj+oFT5Sqz/TiszMHgTuAH4CbAr33CDpMkmXhWrfoTB1jAE3Ape3G4CP1OpPWzP+ZvYZ4DNNxasarhtwRTcBrFiyaJ8+GfhIrW6UvqzkI7X6U7rIwEdqdcfXLp3kuMic5LjInOS4yJzkuMic5LjInOS4yJzkuMic5LjInOS4yJzkZLGsVDZVy8ytGgMvsqpm5laJgX9cemZuegZeZJ6Zm552fJeLJD3S8PNLSX/VVOcwSd+W9GgwAS9LF3JcPDM3Pe2kX4+a2QnhAIeTgVeBf22qdgXwhJktpjgx5IuSDogdbArcQ5meTjv+ZwFPm1nz3qAGHBKMJgdTHMq1O0J8yfHM3PR0KrKLgFtblF9L4VjaBhwC/IGZvd5caTJzb9l4Zm5a2u74h8ff7wK3t7i8BHgEOBo4AbhW0qHNlczsBjMbMbORI47Ybydup6Z0Mro8F/iJmf1Xi2vLgNVhL4wxYDNwfIt6zgDSicj+kNaPSigMwGcBSHorsAg/XMsJtNUnk3QQ8FvAnzWUXQZgZquAq4GbJW2i2Bfjk2b2QvxwnSrSrrn3VeDwprJGc+824Oy4oTl1YeBn/J30uMic5LjInOS4yJzkuMic5LjInOS4yJzkuMic5LjInOS4yJzkuMic5LjInOS4yJzkuMic5FTWQe5bC1SHSorMtxaoFlHMvaHe6eH645J+kCbcAt9aoFq0c97lKIUDCUkzgK00mXslDQHXAeeY2RZJRyaIdS++tUC16LTjP5m598MUbqUtAGb2fIzgJsO3FqgWnYpsMnPvccBsSfdJ2iDp4lY3S1ouab2k9du3b+801r341gLVou2Of4O596pJPudkipZuFvCApHVm9lRjpVYn93aDby1QLToZXU5l7h0HXjCzncBOSfcDi4GnWtSNgm8tUB1imXu/Bbxf0szg0TyV/U/3dQaUKOZeM3tS0t3ARuB14CYzeyxBvE4FiWLuDe9XAivjhebUBV+7dJJTyWWlMvE1085xkXWAr5l2hz8uO8DXTLvDRdYBvmbaHS6yDvA10+5wkXWAr5l2h3f8O8DXTLsjK5FVYXrA10w7JxuR+fRAfcmmT+bTA/UlG5H59EB9yUZkPj1QX7IRmU8P1JdsOv4+PVBfshEZ+PRAXYlm7g11T5G0R9KF8UN1qkoUc2/DtS8AayPH6FScWOZegCuBbwJJjb1O9Yhi7pU0DFwArNrvjn3rRTH3OtUi1sm9X6I4fnBPi2t78ZN7B5NY5t4R4LbinHvmAOdJ2m1mayLE6FScTkQ2qbnXzBZMvJZ0M3CXC8yZoK3HZYO5d3VD2WUTBl/HmYpo5t6G8kt6D8upE9msXTr1JatlpUGnCpnB3eAiy4Q6Zwb74zIT6pwZ7CLLhDpnBrvIMqHOmcEuskw44/jWy2yTlVcJF1km3PvT1gkDk5VXCRdZJnifzEmO98mc5NTZreWTsVPQzxn4Oru1XGSTUMYMfF3dWv64nIQ6z8D3GxfZJNR5tNdvovguJX1E0sbw8yNJi9OF3B/qPNrrN9OKzMxGzewEMzuB4iS4V9nfd7kZ+E0zexdwNeEkuCpT59Fev+m049/Sd2lmP2p4uw6Y22tgZVPn0V6/6VRkkx2q2silwHe7Cycv6jra6zexDlWdqHMGhch+Y5Lry4HlAPPmzesoUKe6dDK6nMp3iaR3ATcBS83sxVZ13Nw7mEQ5VFXSPAq73B83HwntOFEOVQX+lsIyd11wke82s5Ho0TqVJIrv0sw+BnwsbmhOXfAZfyc5LjInOS4yJzme6pMpdXKTu8gypG5uchdZD6RqbabKZWvn83NrBV1kXZKyteklly3HVtA7/l2SMnO2l1y2HDN6XWRdkjJztpdcthwzel1kXZIyc/b8E4f53IfeyfDQLAQMD83icx96Z1uPuxwzer1P1iUrlizap+8DcTNnu81lSx1XN7jIuiTXzNkc45KZlfKLR0ZGbP369aX8bicNkja0yr7xPpmTHBeZkxzvk/WB3Gbg+00sc68kXSNpLBh8T0oXcrWYmIHfumMXxhsz8Gse3lp2aH0j1qGq5wILw8+pwPXh38rTayvU6zpkHYhi7gWWArdYMVRdJ2lI0lFm9lyUKEsixjpgjjPw/SbKoarAMPBsw/vxULYPVTtUNcY6YI4z8P0m1qGqalG23wRc1XyXMVoh31Mj3qGq48AxDe/nAtt6CSwHjh6axdYWguqkFcpxBr7fo90oh6oCdwIfl3QbRYf/lar3xyDeOmBOe2qUkW8W61DV7wDPAGPAjcDlkeMshV6yIXKljHyzWOZeA66IG1oe5NQKxaCM0a4vKw0YZYx2XWQDRhmjXV+7HDDKGO26yAaQfvcz/XHpJMdbMqctepnAdZE509LrBK4/Lp1p6XUC10XmTEuvE7guMmdaep3AdZFlwJqHt/K+z9/Dgk/9G+/7/D3ZpWb3OoHrHf+SyXEXnmZ6ncB1kZVMVTwAvUzg+uOyZAbBA+AiK5lB8AC4yEpmEDwA7WbGDkm6Q9JPJT0p6T1N1w+T9G1Jj0p6XNKyNOHWjzpm3zbTbsf/H4C7zezC4Fo6qOn6FcATZvY7ko4ARiV91cz+L2awdaVu2bfNTCsySYcCHwAuAQjCaRaPAYeoOL3rYOAlYHfUSDNn0Pe7mIp2HpfHAtuBf5L0sKSbJP1qU51rgV+nsMFtAv7SzF5v/qCqmXvbxfe7mJp2RDYTOAm43sxOBHYCn2qqswR4BDiaYt+Ma0MLuA9VM/e2S9k7Tue+YtCOyMaBcTN7MLy/g0J0jSwDVlvBGLAZOD5emHlT5lxXFVrRaUVmZr8AnpU0MaY+C3iiqdqWUI6ktwKLKHyYA0GZc11lt6Lt0O482ZXAVyVtpHgc/l2Tufdq4L2SNgH/AXzSzF6IH26elDnXVYUVg3bNvY8AzRvONpp7twFnR4yrUpS530WM/TpS4wvkkShrrivHffubcZFVnBx3DWrGRVYDcl8x8AVyJzkuMic5/rhMgK9j7ouLLDI55eznInYXWRdM9Z+XS85+TmL3PlmHTLdWmMsMfE7LTS6yDpnuPy+XnP1cxA4uso6Z7j8vl5z9FGLvNqXIRdYh0/3n5ZKzH1vsvaQUece/Q9pZK8xhBj72clMvAxoXWYdUYa1wgphi76WP5yLrghxaqn7TS0qR98mctuiljxfF3BvqnB5O9n1c0g/aDd6pBr0MaKKYeyUNAdcB55jZFklHdvg3OBWg225CLHPvhyncSltCnec7jsSpLbHMvccBsyXdJ2mDpItbfVBdzb3O1MQy984ETgZ+m8Lo+zeSjmv+oLqae6tGv83A7fTJWpl7m0U2DrxgZjuBnZLuBxYDT0WLdICJmbKT5aGqbZp7vwW8X9LMcADrqcCTUSMdUGI7xMvIzohi7jWzJ4G7gY3AQ8BNZvZYioAHjdiiKCM7I4q5N9RZCayMFJcTiC2KMszAPuOfObFTdspIRXKRZU5sUZSRiuQL5JmTIuuj3wv8LrKExJp6qHrWh4ssETm5hcqmdiLLxWuYizUuB2olspxaj5zcQmVTq9FlNxOXqdbxcrHG5UCtRNZp65FyU99crHE5UCuRddp6pFzHy8UalwO16pN1urVl6n5T1aceYlGrlqzT1sP7Tf2hUi1ZO9MTnbQeVdjUtw5URmQppieqZNStMpURWarJTe83pacyfTKf3Kwu0cy9od4pkvZIujBumN5JrzLttmQT5t7jKQwi++XvS5oBfAFYGy+8N/DJzeoSy9wLhQ/gm8ApEePbi3fSq0s7Hf9Gc+9iYAPFybw7JypIGgYuAM5kCpFJWg4sB5g3b17HwXonvZrEMvd+ieL4wT3NNzfi5t7BJJa5dwS4rTjnnjnAeZJ2m9maaJE6lWVakZnZLyQ9K2mRmY3SwtxrZgsmXku6GbjLBeZM0O5k7IS59wCKY5+XNRh7V015pzPwRDP3NtS9pMeYnJohMyvnF0vbgZ+X8suLfuPAnJHeQOq/+9fMbL8RXWkiKxNJ682suWWuPWX93ZVZu3Sqi4vMSc6giuyGsgMoiVL+7oHskzn9ZVBbMqePuMic5FRWZJI+K2lrOAXlEUnnNVy7StKYpFFJSxrKT5a0KVy7RmGxVdKBkr4eyh+UNL/hno9K+ln4+WhD+YJQ92fh3gP685d3jqRzwncxJql53Tk9ZlbJH+CzwCdalL8deBQ4EFgAPA3MCNceAt4DCPgucG4ovxxYFV5fBHw9vH4LxTLaW4DZ4fXscO0bwEXh9Srgz8v+Tib5nmaE7+BY4IDw3by9nzFUtiWbgqXAbWb2v2a2GRgD3i3pKOBQM3vAim//FuD8hnv+Oby+AzgrtHJLgO+b2Utm9jLwfeCccO3MUJdw78Rn5ca7gTEze8aKhNPbKP7evlF1kX1c0kZJX5Y0O5QNA8821BkPZcPhdXP5PveY2W7gFeDwKT7rcGBHqNv8Wbkx2d/QN7IWmaR/l/RYi5+lwPXA2yi2fH8O+OLEbS0+yqYo7+aeqT4rN0qPNWvfpZl9sJ16km4E7gpvx4FjGi7PBbaF8rktyhvvGZc0EzgMeCmUn950z30Ui8xDkmaG1qzxs3Jjsu+jb2Tdkk1F6GNNcAEwcTjFncBFYcS4AFgIPGRmzwH/Lem00Ke6mOIklYl7JkaOFwL3hH7bWuBsSbPD4/hsYG24dm+oS7h34rNy48fAwjAaPoBiYHNnXyMoe/TTw6jpX4BNFKeg3Akc1XDt0xQjqlHCCDKUj1CI8WngWt5Y8XgzcDvFIOEh4NiGe/4klI8ByxrKjw11x8K9B5b9nUzxXZ1Hcc7V08Cn+/37fVnJSU5lH5dOdXCROclxkTnJcZE5yXGROclxkTnJcZE5yfl/ynbAcPHJPm4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "\n", + "x = tuple(map(merc_x, lons))\n", + "y = tuple(map(merc_y, lats))\n", + "ax.plot(x, y, 'o')\n", + "ax.set_aspect(1.0)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJkAAAEDCAYAAAAm1qYrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAdbElEQVR4nO2de3Qc9XXHP1e7MtixAwa7kZEs/MAvqsY2CGzcJCWhhUDbUMqjhBAeDXWTBkh72iRNe8jpKee0p6Q5BUIDx3XTNqENwYYk9AVpSlLSYgM2tmPFxrGNgywhGRMeMciAtLr9Y2bNaDS7OzP7m53f7M7nnD1azfPu7Hfv/T3vT1SVnJwkaUvbgJzmJxdZTuLkIstJnFxkOYmTiywncXKR5SROqiITka+IyAsi0hfy+CtEZJeI/EhE/iVp+3LMIGm2k4nI+4DXgK+qak+NYxcB9wMfUNWXReTnVPWFRtiZUx+pejJVfQx4ybtNRBaKyMMislVEfiAiS91dvwP8raq+7J6bCywj2FgmWwfcpKpnAn8EfNndvhhYLCL/JyKbReSDqVmYE4li2gZ4EZHpwBpgg4iUNx/n/i0Ci4BzgS7gByLSo6qvNNrOnGhYJTIcz/qKqq4I2DcAbFbVUeCAiOzBEd1TjTQwJzpWhUtV/RmOgC4HEIfl7u5vAe93t8/CCZ/PpmJoTiTSbsL4OrAJWCIiAyLyMeAjwMdEZAfwI+Bi9/BHgJ+KyC7ge8CnVfWnadidE41UmzByWgOrwmVOc5JawX/WrFk6b968tG4fmZ0vHDr2fva0d/Cu6dORKse3Ilu3bn1RVWf7t4cSmYj8AXADoMBO4HpVfcOzX4A7gIuAEeA6VX262jXnzZvHli1bwn+CBrDgzi9W3NfpeX9OWyfr115Ke7GNYlshecMygog8F7S9pshEpBO4GThdVY+KyP3AlcA/eg67EKc5YRGwCrjb/Wsd1YQUxLSBySWKHQxxw7oHWHFGJ5sHDvLAFVeZMq8pCRsui8BUERkFpgHP+/ZfjNP/qMBmETlRROao6pBBW0MRVUR+gkQVxI7+IXb0DzHSNV7X/VqBmiJT1UER+WugHzgKfEdVv+M7rBM46Pl/wN02QWQishZYC9Dd3R3b6HqF5CWsqKqx4M4v8uzNf2jAmuYkTLicieOp5gOv4HT5XK2q93oPCzh1UtuIqq7D6Zukt7e3atuJSSGVMSGooGvm3qw6YcLlLwMHVPUwgIg8iNO/6BXZADDX838Xk0PqJI6OjnL1NzewbTiZqJqEqCqRe7PKhPkW+oHVIjLNrUWeB+z2HfMQcI3bDbQaeDVMeay90Mbqrrm1DgvNtIG2Ca8cOwhTJntCRDYCTwNjwDZgnYh83N1/D/AfOM0X+3CaMK6veV1gtDTO5oGDtQ4NxCYR5SGzOql1K3UtXaqr/vzzoUNlWqKaPvi2eF7rrGxDWWStHDJFZKuq9vq3p9bif3jk9aoCs0FUUci9WWXsiTkeGiWw6YPjk171kkStOOvYNmgxUUyIKCc6VnoyEyThpWpR9sC5N5uIlZ5spGs8cshshIimD45XLfznBGOlyMKQh77skP8sDZOHzMlY68nihMx6mXHg6LH3R+ZPbei9m5nUPJm0px/uZhw4OuHl3xeX3JtNxFpPZpp6ROMlL/xHJ7NPq9YXXc1LNZLcm6UssuIpI1X3Z7mbxqYO/LRp2ieRF9ztIdMiS7psVG+YzSsADqmLrFbItJG8ITgaqYusFkmWy4r7B+mZOYWrfrWHZT2dtU+og1b2Zk3dhHFk/tSqIW9p73z+cuPv095e4MNj43zm5nvZ3Tdo1IZ8nFkGPFkt6imXvXvNYtrbCxSKBYrFNpavPDX0uXFCZqt6s5rfkIgsEZHtntfPROT3fcecICL/KiI73MzUNcf4e0mrKWPbcy8zOlpizH3t2DZ5ln01T5iXzcIRZiLJHmAFgIgUgEHgm77DPgnsUtVfF5HZwB4R+WdVfcu0wSbZ3TfI5y67nXevWcwPH/8xu1+Obm6YHoBWD5lRY815wH5V9f/kFZjhTpmbjpPResyAfXVTq73smS0HuP/OR3hmy4GG2NOKITOqyK4Evh6w/S5gGc6E3p3Ap1R10k9XRNaKyBYR2VL62euRja1EPeWysYX11yrDhM1W7gEI/clFZArwIWBDwO4LgO3AKTih9S4Reaf/IFVdp6q9qtpbeOc7JuzLehdTlPJZq3mzKD+vC4GnVfVQwL7rgQfVYR9wAFgacFwq1AqZZW9W3B/cfBG25T+vCAQTRWQfJjhUgpPK4DwAEXkXsIQGZ6a2ZfhNNaG1asgM9alFZBrwK8CDnm0fL6cqAG4F1ojITuC/gc+q6otRjcliF1MQYTxaK4XMUC3+qjoCnOzbdo/n/fPA+WZNm0ySQ7LHFnZWDJdxqNS00YrNGS3jv20c+tMq3qypRFZvuayaN4sz7CevCDhYJ7IkmzJs8WbekN8K3sw6kaWNicZZL7k3a0GR2eLNWgkrRVZPU4Yt7WW1aKWQmY1vxEdaTQBxx/y3esjMpMjqxZaQ2SrerClFZmPIbGVvZt+34ZL0qAxbvJmXZvVm1oqsXmz0ZkG0Qqd583/CKsTxZvVM+G3VkNnUIsuiN2vGkGn1t5D10bJBtKI3s1pkjSCvACRPaiLrmTmnIffJYshsNqz/ZI0ImVG9Wb3Zflpt5GyqIlvWETQnxTxJeLM0szdmDSNpCtzjznX3/0hE/icJY1d2zOETvWezsmNiqM1aXyYEe7NmDZk1P5Wq7lHVFaq6AjgTZz3LCWkKRORE4MvAh1T154HLTRu6smMO915yOX+w+he595LLJwmtXuJWAJL0aM0SMk2lKbgKZ95lP4CqvhD2gmFCZvGUEVZ3zaW9UKDY1hZrxd8kKwAmhdaM3sxUmoLFwEwR+b6IbBWRa4JO9qYpOHz4cKQbbx44yGipxNh4KXDF3zQqAF6SmgPQDN4sdBI8T5qCz1W4zpk4nm4qsElENqvqj70Hqeo6YB1Ab29vpCWDtw0PcfU3N7C6ay6bBw6GXvHXy2udbS3ZGJo2ptIUDAAPq+rr7qTex4DlJgz0sm14iLu3PBlLYGGxwZv5Q2bWvZmpNAXfBt4rIkV3tvkqYHfYC4ctl9UiTMi0PWN2M2IkTYGq7gYeBn4IPAmsV9U+8+ZmAxNCa6YKQKhPoqojqnqyqr7q2XaPL1XBF1T1dFXtUdXbkzC2UZjoz4witGavAFjzc2mmkFkmD50O1ojMNkyNzqgnt1mzVABykTWAVvdoucgahCmhZdGbWSUy28plQSFzWU8nV350TaxlcmoJrVk7zZt62RvTLOvp5LY7r6a9WGB0rBRrmZwZB45aORo3SbL/M2kgy1eeSnuxQKHYFnmZnHrIegWgpUUWNWTu2PYco2MlxsZKjI2NBy6TE4ZWW0pHVCP1Uxujt7dXO29fHbhv9/C7ap4/9vy0mseEKc+E+VK9oljW08nylaeyY9tzda8oVylsBok/qJz57M1/WNf9TSMiW1W11789L5OFwLuk4e6+QWPLFVYqnwUlNc5yQuOmDpc2tf4nQVbKZqk+4Uu7zmfJjPmTtptqyjBJUjXCKO1nWW3OSNXqj5z6q9zac1Og0EyRVW/WTBWAVJ9uQQoUpEDPCYtind8s3qweshAyUxXZ2HiJkpboe3XvpH0m52Ta7s0qhcxm6QFI1eJ/6f93bun7EnuOxF/QNPdm9nuzVEX2wMB3qgrMVm+WhNCaeaRG9nxvAGmsLtcojxY2ZNrszawXWaPyZZSJUjazMXTaiLFcGO6xZ4lISUQuM29qdUwNAYqKSaE1awXASC4MABEpAH8FPGLaSJu9mU3YGjJN5cIAuAl4AAidB8M0zezNsoyRXBgi0glcAtwz6YyJx03IhfHt99wV8faNI6o3S7p8luUKQOgn6cmFsSFg9+04646Xql1DVdepaq+q9s6ePTu0kWGG/pRJy5tBXhGohKlcGL3AfSLyE+Ay4Msi8hsG7EuVOGWzJCcGZ9WbGcmFoarzVXWeqs4DNgK/p6rfMmBfLNL0ZpB7ND9GcmEkSZRQmQRxa5r1Cq2ZKgDGcmF4tl+nqhtNGRi3+SJtbwbJeLQshsxsNgg1mHrazfLQ2eQis8Gbgfmkx2EHNNrizZpaZCaptxcgaY9mczeTvZYZwqQ3a1R3kzcVQr0VABu8WT4lLiL1JDf2Tq2rRFAqhCdff2nScVmaNtf0niwsUb6cJCsCaaVCSJJMiKyeURhhZprHISmhBaVCyHrIzMOlh5Gu8UgF6HpDJ0yuQe7uG+QzN98bKhVCVkJmJjyZzZiodXpflciyN2tqTxYnVEb1ZqY59VcWcNufXE6xWGBstHYOtCx4s9Q9mc1jysJismnjjNPnUiwWKBbaKLabLfin5c1SF5mNxPECpoT29K6DTqG/5BT8Nw0PH9uX1U7zzITLZR2HIo3ISKpWWQ2/0OJUCvr2DfGZm5yC/6bhYfr2DUGN9jXbQ2buySqQ5mrAu/sGue9rjzsCc6lUG41KGiEzF1kFVnbM4Yb3n8Xy7ngrBMfxYn4BmV46Jy2aUmT1hsryUtQ3XrCG9WsvjS20KIQRVNRO9kq15EZ7s6YUWb1MXIq6wFkLuyKdH9WrVBOYf1+Y/k/byEUWwMSlqEs8tX8g9LmNCFuVPFqUmeaN9GY1a5cisgT4hmfTAuDz3uUGReQjwGfdf18DPqGqO0wa2kjKS1G/d0Y3T+0fYEd/uJWCTZTDKh2T5RG2NUWmqnuAFXAsFcEgk9MUHAB+SVVfFpELcdYZX2XY1sjNGPWwbXiIPVvCd8wnJbBmwEiaAlV9XFVfdv/dDEQqxHxg1jMRzbCLRgjM5JKGZRoVMo2kKfDxMeA/g3b40xTYTJL9l63iwcqYSlNQPub9OCL7bND+amkKTHqzRibFM1mTNHWubd4sSrdStTQFiMi7gfXAhar6UxPG2Y7NDaA2YSRNgYh048wu/6iq/tiEYWliak0mPybCZBKhNmlvZipNweeBk3ESrWwXkS3GLXVpdEK8ILJQk4wSMpMuXhhJU6CqN6jqzHJGxqCVwqrxqaXfjWZ1imRBYLaRt/j7MF2rTEJg9VQAKrF4461xzalJ04osjbTrfmz0YEE/oqTH3lklsrQbZW2e6u8nCQEn5c2y81Qzhi1eLGwFIElvlossAUwLzJsbI8n7JEUmRZZEM4apUJmEwG6782qu+51zue3OqycJLQxpVwAyKTJbScKz1MqNEfeejQyZucjqpOe0OVzzobM5+x0nJXL9oNwYUek5Ldp8BdPezLopcR+Y9QyPvrjUyLWKp4yE+nXGDZU9p83hrvJs74tX15ztHYdauTFqDWb02jhaKnHDugeODcJs1LS53JPVgX+299LzTguV1yIq5SlyUQXmtzHMfIXyj9KkN7POk2WJ8mxvUMbGxnl618EJ+/0iMFVmiyJgr42jpfFI8xVMkVmRmRyKHTfJSt++IW78iw2ccfpcnt51cMJk3CCCxBFVeFE9ZNnGntXB8xWCQubY89OM9phkVmS20LdvqKa4qhHF28UNwZuPHmLz96I3+yzeeCs/vuyWWPf0kpfJLKNSeS6uwGxYuzN9CxLGho7yOIRNjleNsAKr1mZmogJgjci8Y8rS7ihvBmzwYGXssSQDZGVMfxyBJenNcpG5NKJRstw70HNaMglcXutss8qDlTGVpkCAO4CLgBHgOlV92rCtk2jkjHKY6CGierUJvQNjJW78iw111Uqr2WYbNS1T1T3lsfvAmTgi8qcpuBBY5L7WAnebNjQtlncH9/uVvUbYL3dC70CxjTNOn2vMRlMCSypkRm0nC0xTAFwMfFVVFdgsIieKyBxVNfdTTYHl3XNYv/ZS2guT+/28lL/kat6tVu9AXOIKzF88SHJUsKk0BZ2A96kNuNsmECVNgQ0zys9a2OXkKQvZ71eNcsv7uo2PGwmV9ZS/gsqfI13jNXs+4nqz0J7Mk6bgc0G7A7bppA2q63Ay/tDb2ztpv208tX+A0VIJIFSeslorlNTbO+C9T1xqVXCC9tfbzWQqTcEA4C1kdAHPx7bKEnb0D3HDugc4a2FXpDxlSZKkwMIQp6spisgqpikAHgJuFJH7cPKSvdqo8ljSHeU7+oeaXlwrO+awumsumwcOsm04+LPW481CicyTpuB3Pds+Ds5McuA/cJov9uHUPq+PZU0TEGZRr6j5/pMW2L2XXH6scnP1NzdUFFpcTKUpUFX9pKouVNVfUNXEcmFknSDBVCvEJx0eJyZhbmN1V+2mlagVAHtb8AzTyI7yuMLwi60R5a+JSZjH2TxQuWkl7kQTq0XWbB3lYUVTb/NElAJ+OQnz32x+PFKojOLN8kGLDaIR3T5xa4/bhodCiytOBcBqT5YGpjrKG92XmMZaUGG9mVUii5unzPSMctNfWJKCixoe41A8ZeTYKw5WicwmbFnGrxqNstFb4I8jtFxkCZLk+C5bfgRhQqb1Ikuzo9yWL9KPrXZVwnqR5bxNI8pflajWRnbFo18BYMaMGe8I2p+LrAa2eA1b7PCz4qRO/ul9HwVg0aJFi4OOaRqR2ZB6PSlsEViQN1s1ex7tbYXyv0FDvppHZEmS1pecZngMyxOHf8LoeKn8b+AYwVxklmK7uMpsf2mQax/7GgB79+4NXI2m5bqVwuYs8xM3KUsUlnfP4ayFXfzgSH/dw20q2VqPeCvVzre/5KS0OnLkyOuB58W+YwMxmRjPVo5NWikW+N3Sqqqd1Wmkgm/U8OuWJ0lvtuKMTtqLzrguFN47ozvSysFJUu8wqbxMZgEjXeO+cV21J63EJeqPxMQ4vKbyZI2eUW6CchmpPK6rPNZ+T3/6XszUQM+wY/xPxFkwtQenmvrbqrrJs/8E4F6g273mX6vqPxix0DJMhkx/Idw7rmtaykHG5EjisJ/kDuBhVV0KLAd2+/Z/EtilqsuBc4EvuvM0I9PoZQnrGcJSD3HmP5qi1o/E9POoKTIReSfwPuDvAVT1LVV9xXeYAjPcxCvTgZeAMZOGmu4or0dc9QrA5jawJH5wYTzZAuAw8A8isk1E1ouIvyP0LmAZzoTencCnVHXSk4ySpqDRNMqbRRFYUmJstMjDiKwInAHcraorgdeBP/YdcwGwHTgFWAHc5XrACajqOlXtVdXe2bNn12e5hVTKAFTGBg9WzYakfmhhRDYADKjqE+7/G3FE5+V64EF3/uU+4ACQSutpPR3lUR6y/8sqN6beeP4a1q+9dILQ6umDNCnMNAQG4fKTDQMH3WR44KSP2uU7rN/djoi8C1gCPGvQTuuplAGo0d6rkjdNS2AQvp3sJuCf3Rrjs8D1vjQFtwL/KCI7cYZ7fFZVX0zC4KSJ27cZlAHIlMDCNptUyqeWtMCWdRzi4v+9sfI9wlxEVbcDvb7N93j2Pw+cH8fALOP98v0ZgDaNm13IKwxeb1r+v5od9QosbNEkU91KjZpRHvfh7+gfYv33nkpEYGG8YtmbjpXGGS2V+MGR/orHNkpg0GTdSjaQZg3S602rDReqR2BxKla5yOqkHDIbIa4w99g0PsimveZDZD219kyFy7CYGO9fT3OGrcQR2LKOQ3U/z6YUmY1kcY0nU5Nz8nBZhbjNGf5rmLyeCTtqYXrmV+ZElqWh2DZ4rzTFVaalwmWc8kXsZLwVzmuE8OKMMkly3qqVnuxTS7/LHc/8srHr+R9g0iNoi6eMsOKkTlbNnscTh39ybDaPd78tNGJStJUiM0FZSKZqmmHKUmXxlKfut7cVGB0vce1jX5sktDTwCv/NKYmvr3aMphUZJPcrDcp77/VO5an7xbY2QFk1e17qIisLf0qhjbHx93BL38vsOXKgIfduapFVI2rILHuzoLz3O9v2Tzj27an7yuj4OE8c/olZ42PwawtmMaXQRkEKqEDPCYtykdmKN+89KGuWdbBzz0SRlafuVyqTNQK/F+97dS9j4yVUoKQl+l7d2zBbMikyU80YcbzZU2/sZXR8NbW81PaXBhsurmrFgz1HDnBL35foOWERfa/uNe7FlsyYT2dnZ0fQvkyKLE3q8VKmy4hRKzZ7jhxIJEQumTGfW3tu4tGOr09afhJykcVqzojipZJsIrAlJ1vPCYsovp2jbBItL7IksUUESXPNvA8BzhpbQftbqsW/EqbFYGLkQlb49nvuOvb+0KFDgWuc5iIzTKuICyYKDGBwcHA46DgjuTDcY84FbgfagRdV9ZciWx0B0x3lJrqa0hRYpaHpSQwm8IurFmHLZOVcGJe5M5Ym9LG4Ivwy8EFV7ReRn4tkhaWkIRq/WKqJJMychyjXq3X+oy8ujSwwCCEyTy6M68DJhQG85TvsKpzJvf3uMS9EtsQC0vJE1cRievJMNdHVulccgUE4T+bNhbEc2IqT68KbH3Qx0C4i3wdmAHeo6lf9FxKRtcBagO7u7lgGh6X8wGwee2bDep5hbKg301IYkZVzYdykqk+IyB04uTBu8R1zJs4s8qnAJhHZrKoTsiGr6jpgHUBvb29gdbde/A/NtkGONggrCiZSeYURWVAuDH/ClQGcwv7rwOsi8hhOHrPAlNthiDOmzOYv0GbbADqOX0bXtBUMjGxn+I3dRvPE1RSZqg6LyEERWaKqewjOhfFtnEw+RWAKsAr4G2NWhqBWuSYtb2ZaXH4xmLrmb3Z/gYK0U9JR2tuON3LdMkZyYajqbhF5GPghMA6sV9U+o5YGUBaPjV4iCZv8Yniw/9NGhNY1bQUFaadNCrRJ5e6huBjJheEe8wXgC4bsCk3YLzOMN7NRrF68YgCla9qKukTWqNSpLdl3abuYKjEwsp2SjgJKSccYGNke6fxG5+Mt01Iiy6q4ygy/sZsH+z8dqkyWlqCCaCmRNQPDb+yeJC6bBBVELrKMYbuggshFZjFZFFQQucgSJkq7VrOIyk/Liuyi6f72ZPMcP+VMOmfdBjJlUrtWswoqiKYRWSWP0QgxVWLqcecg0o64jZy/Ne9LqdmSJk0hso7jl3F5922ItKN6FYMvXsEbb21NxZZFXYEjkFuaphDZeTPnuB6jCChTjzsnlMiOn3ImU487h6NvboolylxQ4ci8yC6avoujb05F3ZZw1TGOvrmp5nlOeel+1/uN1vR+uaDik1mRectab7y1lcEXr4jkld4uL032frmgzCIVpsolTm9vr27ZsqXmcUFjykwU5suerK1tat3XynEQka2q6h9IkT1PVo/Acg+VDpkRWVRx5YKyB+tF1nvSh+nmW7zhnx/lIxeVvVgvsjWzr53U9pULKlukVvAXkcPAc5X2d3Z2dnR0dHSCk8jj0KFDz1eaBh+SWUAml0dMiCSex6mqOmlJ5tRE1mhEZEtQzadVaeTzyBOu5CROLrKcxGklka1L2wDLaNjzaJkyWU56tJIny0mJXGQ5iZMpkYnIn4nIoIhsd18XefZ9TkT2icgeEbnAs/1MEdnp7rtTRMTdfpyIfMPd/oSIzPOcc62I7HVf13q2z3eP3eueO6Uxn9wsIvJB9zntExF/8hzzqGpmXsCfAX8UsP10YAdwHDAf2A8U3H1PAucAAvwncKG7/feAe9z3VwLfcN+fhJPv4yRgpvt+prvvfuBK9/09wCfSfiYxnmHBfT4LcJLj7ABOT/KemfJkVbgYuE9V31TVA8A+4GwRmQO8U1U3qfOEvwr8huecf3LfbwTOc73cBcB/qepLqvoy8F/AB919H3CPxT23fK0scTawT1WfVSdr5n04zyIxsiiyG0XkhyLyFRGZ6W7rBA56jhlwt3W67/3bJ5yjqmPAq8DJVa51MvCKe6z/Wlmi0udLDOtEJiLfFZG+gNfFwN3AQmAFMAR8sXxawKW0yvY451S7VpZo+OewbhSGqoZKrygifwf8m/vvADDXs7sLeN7d3hWw3XvOgJu87wTgJXf7ub5zvo/TmXyiiBRdb+a9Vpao9KwSwzpPVg23jFXmEqCcaO8h4Eq3xjgfWAQ8qapDwBERWe2Wqa7ByQpZPqdcc7wMeNQttz0CnC8iM91wfD7wiLvve+6xuOeWr5UlngIWuTXlKTiVnocSvWPatZ2INaOvATtxMjo+BMzx7PtTnFrTHtwapLu9F0eM+4G7eLuX43hgA04l4Ulggeec33a37wOu92xf4B67zz33uLSfSczneBFOPt/9wJ8mfb+8WykncTIVLnOySS6ynMTJRZaTOLnIchInF1lO4uQiy0mcXGQ5ifP/zauNAradx70AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "\n", + "x = tuple(map(merc_x, lons))\n", + "y = tuple(map(merc_y, lats))\n", + "\n", + "ax.tricontourf(x, y, tuple(datapoints.values()))\n", + "ax.plot(x, y, 'wo', ms=3)\n", + "ax.set_aspect(1.0)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJwAAAEDCAYAAADA/21vAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOydd3iUVdrGf2dakknvvQEBQm8CAgqKoljAtjbs3V3b2ll33V391rK6a3cVC/aCioiC2EUEgdBBCCGk997LtPP98SaTSTKZzCSTkITc1zVXZk57zyR3ntOe5z5CSskwhtFfUB3rDgzj+MIw4YbRrxgm3DD6FcOEG0a/Yphww+hXDBNuGP2KAUs4IcSbQogSIcQBJ8tfLIQ4KIT4XQjxQV/3bxg9gxio+3BCiJOBOuAdKeWEbsomAauAU6WUlUKIMCllSX/0cxiuYcBaOCnlL0CFbZoQYqQQYoMQYqcQYpMQYmxL1o3AS1LKypa6w2QboBiwhOsCK4DbpZTTgXuBl1vSRwOjhRCbhRBbhRBnHrMeDsMhNMe6A85CCOEDzAE+EUK0Jnu0/NQAScACIAbYJISYIKWs6u9+DsMxBg3hUKxxlZRyip28PGCrlNIIZAohDqMQMKU/OziM7jFohlQpZQ0Kmf4AIBRMbsleA5zSkh6CMsRmHJOODsMhBizhhBAfAr8BY4QQeUKI64FlwPVCiL3A78DSluLfAOVCiIPAT8B9UsryY9HvYTjGgN0WGcbQxIC1cMMYmhiQi4aQkBCZkJBwrLsxjB5i586dZVLKUHt5A5JwCQkJ7Nix41h3Yxg9hBAiu6u84SF1GP2KYcINo18xTLhh9CuGCTeMfsUw4YbRrxgm3DD6FcOEG0a/YphwTsJgMPDaa6+Rn59PU1MTw0eCPcOA3PjtLQwGA7t27WLixIl4e3v3uJ3GxkYyMjIICAhgxYoVPPLIIwCoVCrGjRtHXFwc06ZN49FHH3VX14c+pJQD7jV9+nTZG9x9990SkGq1WqpUKnnbbbdJg8EgLRaLNJvNduukpKTI/fv3SymltFgs8rXXXpN+fn4S6PS6++67ZVJSkgSkVquVJpOpV/0dagB2yC7+tsecXPZevSXc9OnTJSBvvvlmK0kWL14sExISpJ+fn7z//vtldXW1TEtLk88++6xcsmSJtdzJJ58sR48eLQF56qmnyrvvvltGRkbKmTNnSi8vL/nBBx9IKaUsLCyUnp6e8uqrr+5VX4cijivCvf322xKQy5Ytk7m5uZ2s04QJE+xarZCQEHniiSfKOXPmyHPPPVeuWLHCoeW65557pEqlkmlpaT3u61DFcUU4Pz8/GRoaKouKimR1dbVcsGCBlVTBwcHyySeftH6Oj4+XycnJMjc31+XnxMbGSkCmpqb2uK9DFccV4VrJtGTJEimllBs3brSm5eXlSbVaLQG5YcOGHj9DSilvuukmCcgHH3ywV+0MRTginFOrVCHEn4EbWv5w+4FrpZRNNvkCeA44C2gArpFS7mrJO7MlTw28LqV8wrnljOv4/vvvre/Xrl0LQEhICAsXLuTxxx8nOjqa5cuX4+XlxRlnnNFteyOe/4/d9FtnzOT0RYtYsWIF8+bNc0/njxN062IuhIgGfgXGSSkbhRCrgPVSyrdsypwF3I5CuFnAc1LKWUIINZAGnI4SWZUCXCalPOjomTNmzJA98YebOXMmKSlKoNZ1113HG2+80W2drkhlD/o8ZdtyUkw42ateJuPoUX4/fJggPz+X+zqUIYTYKaWcYS/P2X04DeAlhDACeqCgQ/5SFEkGCWwVQgQIISKBBCBdSpnR0pGPWso6JFxP0Uq2DRs2MG3aNGu6K6SyRSvBOuKHT9+nZPNmLrnzAW7c8BWfXXx5j9o/HtEt4aSU+UKIp4EcoBH4Vkr5bYdi0UCuzee8ljR76bPsPUcIcRNwE0BcXJyz/cdsNmMwGBj/2sv4L1pI9bc/sOy1V9BFR6OLiULl4dF9I3RNLlvU5xyhYs8Wag7vxW/sFPZrw2gsKnS6r8NwgnBCiEAUq5QIVKFEvl8hpXzPtpidqtJBeudEKVegSDkwY8aMTmW6slIl73xA/c5d6GKiMeTlA1D+2RqlUzotCU89breeMwSzRcWeLRR+9ylqL2+CTziFsDmLUKaukhHP/4eMO+5xqb3jFc4MqacBmVLKUgAhxGoUyQVbwuUBsTafY1CGXV0X6Q4hgUajkSs+/4Td3VgQoVaIY8jLRz9pIkIlqN+zT2nHYLSWc5VgtjDWVFL4/Wp8EscSe961qDTadu02xFh63PbxBmcIlwPMFkLoUYbUhUDHGf1a4LaWOdosoFpKWSiEKAWShBCJQD5wKdDthEcAWrWK2TGx3RIu8JyzqNuudCfo3LPQhoWiz1PRVFIAAjx7QTQAc1MjeeveR6gEkQsvaEc2WwxbOefQ7V9DSrkN+BTYhbIlogJWCCFuEULc0lJsPYq0QjrwGvDHlrom4DaUyPhDwCop5e/dPhMwmi1szcvtrigafz+EWg1A1ftrrJbMMywKz9Cobus7QnNlKRnvP0djQTbRZy1DFxjSq/aGMUAj72PGjpWzHnm4S+vWSqrGolxyPnsdU0MtAKFzzyBsTvf7a86gLusweWveQahUJJ10FX5hI6mL7vr/s3VYHbZy7tkW6VeUNtR3Ipu9OVhzebGVbAAB40/o8TN98hXCSIuFrB2rKUnfipd/BGPmX4eHT1CP2x1GewxIwtlDQ4ylE+n00YnW98EnnILO33litBLMFlJKio9soSR9K+Gj5xE7ZTFqjUe7Ol1ZueHFg3MYNISzB11AMImX3U7euvcoT/kJc0MdkYv+gErT+WvZI1gr6isLKMvYQXVRGo3VRXj6hRE/7VyESu1yn4YXD44xKAlXdSCFhoIsQmaeSs6aNzE31ivpv6fgkziGaD97moVtMJsMGJtq8fQJBqC6IJWiw78AEDV+IVHjT+0R2YbRPQZVTEO1vozynb+Q//WHVO79jcwPX7SSrRV5X71Hc11FFy0oKD78K3vXPk7m9k8pz95DYEybSHpwwlSkxYKxqd5BC/bROuT39CjteMCgsXDm+gYKnnoWS0ODNc1UV2237J61jzHr8qe7bCsofjK5e9dTkr6VkvSt7fKaakpJ+/kNMFqYctHf3NP5YVgxaCycoaAAS0MDGh9/a5p/8lSiF1/G6Fv/jn/kGMKSTgRA4+njsC1Pn2DGzL/ebt6RTW/TXF9Js6Ea38zGTvmO5oIwbOW6w6CxcCovLwB8RyRTuU+xSqFzz8QjUJEhi7niZnzyLSTMuABpMXfbXqwhgdgTH0VKSV1DETV1+ZjMTRzJ/gaAaeOu7aNvcnxjQBJOaO1YkRap/Mp9W1HpPPAdOR5dQOedfyEEQt3+a9mzVLbla+sLScvegNncDEBS/JkE+Y+wlmmqK6f06HaaastRa3Xop07BJ3GsNd9YV4PF2IxQa9D6BnT5LKPRyKFDhwgJCSEqqnenIIMVA5Jw9qCLirS+txiaiTnnCqfr1iZ6dSKd0dTIkexvKCjZ2S49PHgCcZFzlOdYTFTkHSBv79c0Vhej0wdgMRkoPbodfexI/EZPxlBRQsXuzdg6wai9vFEH+aP/3wrOmzqddevWERsbi9lsJjU1FYAJEybwySefMHbsWI4nDBrCNWfnWN/HLLnKbpm6aFW3cywAKS3sT/uYiuqjnfKSR54HQF5xCqkZa63p4UlzSDjhAixmE9mFm6jav52iH1YDgsDJJ6KPScRQUUJ97lFUHp7UZaZCvoUPU9MAKCsrw9PTk1deeYWvvvqKr776inPOOYeUlBQCAwNd+VUMagxYwmmiGjAV6Ns+BypDlcrHG31kfK/a3nv4QyvZkkecx6EMxX/O3zeOorJ9VFQfpaS8zccgYuzJxE09R3m+WkNizCnUzjwVY1U5Kp0HGm/fTs+oC2tGGo2Yq6vJffwpbG7P4eabb2bLli0sWLCAu+66i7fffrtX32cwYcASriOKX3kdAEtdPWmvPop3XBKBU+bgP2ZyNzXbQ0pJWeVhAEbGnmYlG0B1bQ7VtTkIVIyMO42EqJMQQkVtolendoQQDr1HfEo8aIjRovbWtyNbK+bMmcMll1zSLvDneMCg2RaR5vYrz/qcI+StfRtTQ51T9VtJI4RgytgrmTftHjLzN7Yrc88995Censn1Vz5LYvR8hHDPr6erLZIZM2ZQUFDAwYN9EuIxIDEoCCdNJowlpfgtOBnfObMB0MeMIPqsy1F7tRerceRC1IqQwCQ8PQIICRxtTXvzjTd5+umniY+PZfaJ47ttw5m5YndexieddBIADzzwQLdtDRUM6CHVOo9TqxEaDXXbdxD3r38QdN65CLUaj6PNGCpK8AgO71H7o+PPxM87mqlTZ3LZZcswGc2YzBb27u5S9d2tyMlRFkL+/v7dlBw6GJAOmJ4jo2Xck4ozcevCofClV2lKO0LUvXdR+ML/0IaGYMjLR6XzJPnOx9rVd2R9utqTmxCoY9Kc0ezOruTQgfxO+fbmcdC9RbV1WbL1IjEYDCQmJuLv78+uXbvw9PR02M5gwqBzwLQH76mTaUo7QsHTzwJYI7TUXnpH1ZxG6o5MUndkKh9GRjtdz5GPHNj3k2tsbOSiiy6ioKCAl156aUiRrTsM+DmcJko5rNePG4vaToS7Ru/TaUHhzDyuI0wukKwjnJnPQdviYfny5Xz99de8+uqrnHfeeT1+7mDEgCdcKzQBAUTdc0en9MbCHKfOTvsajkhnu3ioq6vj9ddf58orr+Smm27qj64NKAwawgGo/f0JPGdxp/SG/Eyn2+hqLga9s3LgnKVbvXo19fX13Hjjjb161mBFt4QTQowRQuyxedUIIe7qUOY+m/wDQgizECKoJS9LCLG/Ja9XN7YJIfCdNRMAr3HJaMPDAOzuxfVkWHUERw4AtuiOdLf+92liY2OZO3euO7o16OCMtshhYApAixpSPvB5hzJPAU+1lDkX+LOU0tbt9hQpZVmPO2lzzFW7bTsAXmOS8F9wPV45IFTuI5dpZDSao/m9ntN1JHzr4qE5K4e5ixfbPX04HuDqKnUhcFRK6Wij6jLgw553qWtYmpupXLcBgIrP11LxuXK4HrPkKvzHOI5jsIU975H+gqW5mc9Tth2TZw8EuGoaLsUBmVrkIM4EPrNJlsC3QoidLQpJXdW9SQixQwixw1xjP56g9IOPQUo8k0a1Szc3Ntgtfyxhb2g1FJcgm5vRhtq9u/a4gNMWTgihA5YAyx0UOxfY3GE4nSulLBBChAHfCSFSpZS/dKxoq57kOTK60260tFhoaBGpMdfWkvCfJ5BmM0KnwzvffoSVI3clR1aut4sHe5BSUvXealSeHgSefeZxG07oioVbDOySUhY7KNPJAkopC1p+lqDM/Wa62kmAxsy2YchYVEzWPQ+S968nAfotANnVYdiW7PXZR6jPSSfw7MVojmPFTFcI53BuJoTwB+YDX9ikeQshfFvfA4uAAz3paO3GPWiCAglZdok1zWvsmEEz+a7PTgOVirDYE491V44pnBWV1qPo9N5sk3YLgJTylZak81HUMW0nYOHA5y2k0AAfSCk3uNrJup2HadirOExKg5GE/z4JQji1Ou3psOpumJsawCKtenZwfEbpO0U4KWUDENwh7ZUOn98C3uqQlgG45iFpBw0706zvyz9ZTfknq4l77BHU3u45R+1L+ORbqApsoPboQfTRCS0+dsevBsmgOGkIvf5sPJNirJ9VXp6oPNtr9zbEWDDV11L8yzqnnTLB8cmDOyClJO/LdzE3NRA690yg/VHX8Ra/OmC9Rcy1DRjyS2k6WkDNDzsx5JZY8+Iee6TTcGppbubwy38HwG/0JDT6tmBoZ4NrnIFvZqPTJLWYjWTvWkt9zhEiF/0Bn/gkt/RhMGNAEs5c10jmTU8hTZ0P5QPOPN3u3C3noX8AoPH2Q+sfhNnQhFp3bN1+cvd8TcmR34gYczKBk2a3y7N1Wzqe5nIDk3CVtQrZ1Gq8Z4xBFxlM/c7DGHJLqNrwHVUbvkNotYQuuxT9xPGUffo50qgISJvqazj8oqIJMv6+/1rbPBaLh4rcfQTGTiR++hLqBslquq8xIAmn8vHCXFmLSqehfttB7J07SKMRQ2Eh9fsOUL9rd6f8mCVX931HHaChsgBDQxURY08GunfUPF4wIAmnCfQl9vGbUPvqyb7jeUzlbSpJSZ88QtMhIyqdjtL3P6Zhf9u2XszfluNd4dVu/uYs3G3lKvOVSKyAqK4j64/HYXXA/stpg/1R6bQEXThf2XPz0OJ70iRK31yPxt+fmi1b25HNc9RIzLW11HpVULF7M/ZiNdxlYbojZm1pFsVpm9EHROLp0xa76q6Fy2DGgLRwntq2Cz38T5+ByteL4uc/o3aTcpaqDval8svv0cXGYMjNA6Ap/Sg1v2y2Dq+BU+a4/Fx3WLma4nQO/bgCD30AI0+8zCXXqePByg1IwnWE7+zxeMSGU/zKGppScyh/7zs8EuLx9/OlpIVwan9/mo5mAOAZHtPlkZe7tkhat0ektGBoqKKptoyyjJ2UZe1Epw9g/Bl3ovX07rad402MekCGCQaMDZNh/3e73bzm7CIa9qYz94zL2XjbXVRVVXUqE//04/gUd32pW0/CCDuiojqD9JzvqKnLa5fu4RPM+EV3OCRbx6G9I+EGu5VzFCY4YOdwyRH2nVI84iMIXDKPKdHedskW89ADqLT2rydqhaO5nDObuqUVh9h1cGUnsgGMO/1PTlk2W/TmHrDBhkExpNrDS3c+BEBsbCyp6elcuebTdpeJ2LvXobeoqslmT+p7mMzWy7BJiD6ZhKiT2PL7ixgaqtF5Hb+uR85gUP5rWRqbKdunHOgLX1+nbh10BV1ZOaFSW8kWEz6Tk6bfx6i401GrPfAUylZMyqqHyNj2icPQxe7mkEP5fHVAW7jkiGIOFXXWDWk6ogxlmuAgxDXL2FNc1KlMzebfqMutIWxe57BC6Nniwd8nhtNOfLRTuhCC6eOvI79kBxWUUHp0G0IIEmde5HTbx8viYVBaOEO+EgBmKq+gMTWtXZ6xtIzMO++lfNVnlP72HYDdPbnu4OwBvZQSk6kJlUpDVNh0AqWy72YxGR3WO16t3IC2cF3BZ/Y4St9cB4B+wrh2eYXPv2R9H7T0HEp/+46y7T8x+ua/ovZs7z/X2y0Ss9nAgfTPKK04iE7ri5QWjKZ6fL2jSJz1B5fbOx6s3KAkXNW636zvzfX1aPz8sDQ3U/ruB5hrlNsFA89ZTMUXX7VVcvPhudHUyO5D71BTl0dEyGSaDNUIBIkxpxDoF0+duve/2qG4ETzgCWdvHqcJadFTU6nQ+PkhpSTnb48gmxXZ+9CrloHNMOo/fgZqD+eGSGNjLUc2v0dA1Fiixp1id19OSgs7DrxOQ1MZk8ZcRljQuE5lnPGbOx4P9Ac84exB5aVs6qq9PVFH1lP6+i9WskX/5X504WHtVM9DZixwvnEBtSVHqS05Sk3REaJ9JuDtGYKfTzRCqKirL6KwdA/1jSWMTjjbSrbi8gOUVhzCQ+eHl0cgEaGT8c103aN4qA+rA/akYf7rF1s/21o4Y2kVWX9U/Nz8z5hJ7S97sTQqZAtZdglqPz+8RifR8PshSl5fCYBXRCyJy+7s8lyz4zyusaaUfV892blfvvFU1eYAkvCwaJYuXk5GWiV5RdtJzfwSjdoLi8WIRZoQQsXMibfg6x3ZLemG2slDr04anBSzWSCEqLYp87BN3plCiMNCiHQhxIO9/TKF//nI+r7hQIaVbCpvPU1p6RT/7zXKV6+xkg2Uq8rz13/g9GrVyy+UMQtu6JReVZsNSJYtu4Lly+/nT3fPJzJWQ2rmlwCcOOU2Tpn1MEH+I5HSwrZ9L5Oa8SX6dPuX0HWFoXzy4JKFsxGzmWWrLyKEWADcK6U8x075NJQQwzwgBbhMSulQtrujhYM2K3fkD1Yu43fqNGp+3AWA5+gkmtKOWPM0oSGYSjvr53gEhxN15qXoo9rueuhqpSotFqTFjPZICeVVR6ipy8ciSqmoLMZobNv2UKm0TB5zOcEBigRFs6GOorK9VNZkUlaZhrdXCBGhk9GOGolvaCKqDgsKe/O4wWzl3Cm56oyYjS1mAukt4YIIIT4ClgJu0Yn3HB1rJZwt2QAr2fSTJqLy0FGXolxx1FxeTOW+re0I19X2iFCpECoV5uRoYjOV682TJ0TzxLOXc/jwIVaufIud2wpQmxPx0LVdDuKh8yE+ai7xUXMprzrCkexvOJrzPeR8j3/kWMYsuK6dJP/xtHhwlXCOxGxOFELsBQpQrN3vQDSQa1MmD5hlr3KL0M1NAF7hXXvs+p40mdpNe9FFh+I5ovMFaT6zTqBuW4r1s37ieHxnziB+wTJMjfUYayrxCI5w9B0d4tCBfB686wMmT42Hpsno1SHg4PLo4IAkggOSMBobSMveQGHhbooPbyZi7EkOn9Nx8TBUtkic/reyEbP5xE72LiBeSjkZeAFovd7F3uaX3TFcSrlCSjlDSjlDF9B5kt3qPeIxQrnkLfiyheTc/79O5fxOnkfUfX8m9Brl8jdzba01T+PljVd4DCpN7xbnhw7k89G7W+yqnXcFrVbPuJHnE+g3gsL932M2NbfLP168gd0iZiOlrJFS1rW8Xw9ohRAhKBYt1qZoDIoF7DE84pW5XOHTyuLBZ+5EhEaN18QRRN7xR3RRkXjEROM9ZTLqgAAMecrjuttq6G5Ic0fAtBCCkXELMRjryd3zda/bG4xwi5iNECJCtLjYCiFmtrRbjrJISBJCJLZYyEuBtfbasIWn2oMLYxYxxjexU55+4kjre6/keJpSc5BS4nfyZDxHjrBufVhq65BGA9JkcuEr9j0CfOOIjZhNcdqvlGfvcVi242p1KJyvOkU4GzGb1TZpt7QK2gAXAQda5nDPA5dKBSbgNuAb4BCwqmVu5xDRXmEsiz+bRyfc3o50yRHFNGcVofLxwmt8Ip5JMZiqaon9vxvxWzDVKrEPULdjJ5b6BusthDAwrBxAUvwZ+PvGkbFtFcamtiH/eBhWnSKclLJBShkspay2SXulVdBGSvmilHK8lHKylHK2lHKLTbn1UsrRUsqRUsp/OfM8gUAt1KiFmgn+7eUR6rb+jqWukZCrz6QuJRWPxEg8R3UWEPSZPRNddBQ1GzdR+PIKLE1NncocK6hUGsaNWIrFZGDX6n9SfGRLl3uEQ83KDci1uERispgxSzMHqttvdzQdzUcT7IdHfDjGkipUHu3dyVutnFqvJ+JPN6MND6PpcBoFz76IxWgcMFbOWx/GyNiFAGSlrCbtl5WYTc1D3soNSMLlN5bwQc46/nbgBQ7Xtt3BYGo00rA3Hd95kxTvD7MZU3lNl+2ovb2J+cv9BF14HsbCIhp/P+SW/rmLdIkxCxiz4HoCYyZQlX+Q8qzOCgL2MJit3IAkXJO5mc/yvm1HNgBpsoAEdaAPhrxSAHznd1Yvt53LAWiDFWm7qh9+Ano/lwP3kS4gKtnqO1eaYf8ai6F01DWovolQK9t6Yfoaan5QTg58507stp5+fDL6iRMwlVd0W9YVuIN0vpmNaD28CYqbRGONsuM0lIfVAUm4UT5xdtOrUhWNOGNdM1XrfkPl5YE2Ishu2VYrZzEaKX59JQ37D+A1tu1CXndYOXCfpdPpAxwG3gyVxcOAJJw9mA1mUv66AX20H1HzR6L20CiSXt04H9Tv3E3D/t8JOON0Qi692GHZnqK3pPPNbERaLCi+DgqGqpUbNISTJjPG2mbizkrGNzGIwPHhijeH0cFNgh5FVKxdhzYykoDFi1Dp2q9o3WXl3AGVWoPFbMDYbP9SFHsYjFZu0BBOo9eh9fMg9bVtfHXqK5Ttyif4klM7bYvYonbr71jq6wm98rI+l9fvrZXzC09CWszUlXXtiDMUFg+D6htM/PPJhM9NIOH8CUTc9QcCz3PscWHILUHl5YEuonNsayvcaeV6Qzp9sQEAi8lgTXNmWB1sVm5QxTTEnDaamNOUib+9AGlbGMurqdtyAP2UJITagf+Qm9FTya8A3zg0Ht4UHPyR4HjnL6obbBhUFs5ZmKrrKXpmFdJiIfiyhd2Wd/dcrieWTq3WERg9nqba8nbpHa3cYB9WB3fvu0DpyvU0pecTfstSdJHBnTaC+wM9IZ2+SYfF1Iyxsbb7wjYYTMPqkCOctFhoOpSNzwnJyhGYk+iLFaurpAsNVPSAK3L3OSw3mK3c4O25HZgqa8l7+E1MFTV4Tx/dLu9YWDlwjXR+PjF4e4V28h4ZSouHQbVo6A4Fj79Hc6Yi2yXNrm+c2tOUK9/1K+UpP+EVlYBXWDTeBm80Ht5odHqqCg7h6RdGaOJ0h+06s5BInhDN5KnxyA8y+OnXd6guTCUgKtnl7zDQMaQIZyxri/+sWvcb/gvbE0ET1YCpwLUL4Yp//gJpNmOsqaQm1b43R0jCtG73+RyRLnlCNP9+/gq0GjXnXjiZ0eO+I3vXlw4JZy9CfzAE2gypIVWoVVYZCENuCRaDfcms6p83UbbqM7tOjw0xFppKCzE3N9JUVoRHUDieYdGMu+dpPMNjOpX38g93elO5q+F18tR4tBo1ao2KoKAAZk2Zh6G+0uVhdTBg0Fo4eyI3HvHhGPJK8T9zJtrQAEpeWUtzViEhV52B95Qkq3Wr+Fy5Q9jS1IypooLAcxYr8RBC0JSZReFbL7Zr12/MFKpTd9NUrAgh+owYR8y5V+BbpOoU1NwT7N2djdFkVhxPTRaMzV5YzEYaa4rR+3cd0jgYdUiGlIULOHcupvIazFX1NOzLoHbLfoxFFRQ8/j7lH/1gtXiaoEAA6nfuojkzi8r1G8hZ/jCGwiJK32uLEwqafhLRZ11O5OkXUn1wJ1q/QJJufIi4869DrfOkIU7nch9rE72sr1YcOpDPy89+w+4dWbz87DcYG8IAqMpv7zA6FBYPg9bC2YP35FEEXTifis82AuAzezzBl55K+Uc/UvHZRmo2HiD8xusIOm8JJW++jdfY0TTn5NJ8VHH0zH/iaQA0IcEknn8LuoC2O4nrc9PxHzutXRr0TtSwlXQTRkXyxz+fgVatZq57u7oAACAASURBVOKUOLIyStmTGkFV/kGixp3So7YHKgashfti3ovdF7KDoItPwWviCEAJuNGGBRJ5zyVE3HYL0mCg+LWV6KKVYGqPhHii7r7TqqKpjQgn8OzFxDz0QDtile/ahDSZ8AiNtPvM3nqVTBsXi6ZlDqfRqJg8NZ7QoLHUlmVRmec4yM3entxAtnLuUk9aJoTY1/LaIoSYbJOXJYTY31LXvg+1GyFUKsJuPNf6uWr9VgC8kkYRsuxSTGVl5D36BABqHx+0oSGE33gdic89Tczy+whYtBChapsbmeprKf75S/TRiQQ5uE6pN6TbdTAXk8mMyWzGZLawd3c2cZFzQErSflnZLn51sC8euv0tSSkPSymnSCmnANOBBuDzDsUygflSyknAo8CKDvmntLRhV1HH3dCGByJa3Jbqd7dFfenHjiHi9lvxnjIJj4R49OM7K1d2ROW+rUiziagzLkal6f7CkdaXKziQXsj9t7/H2ys2cttjn7C9vgKtxovxoy4EIH3zezTVlXfTSnsMVCvnFvUk2zhUYCuKpEOfoytZfaFSEXnvpZSs+BKPhIh2e29eo0biNWpkpzr20BBjoS7rMF6RcXgEO/ZO6Q18Mxs5RD6HDuRb53W1iV6Yi9pclfaufZzg+KkExU3G3zSaxvi2264H02rVnepJrbgesBXOkMC3QggJvCql7Gj9gPbqSXFx9mMaXIH3lCQSX74bAFMP1UwmBQWzobyQuBnzXKrnyrDXcTPYVhvYb9Y8koUaU0wAtcVHKc3YQXn2blRqLYHT5hI290xUWtdXyscS7lJPai1zCgrhHrBJniulnIYihvMnIcTJ9uraqieFhoY6260+w9SISE6va6K5sZEX/nY/k+PsLxj6EkKlxm/2PIJiJhA/fSnTLvwHY0+9maDYSZSn/Ez6yqeoy1LuqRgsiwe3qCcBCCEmAa8DS6WU1gmHlLKg5WcJytxvZs+76zpcPcpqxeyYWEJb4ll3bN/OCSOdmyX0xrp1l65SqfGPSGLknMtIXngrQqUi+5NXKN36vdPPPNZwl3pSHIrQzZVSyjSbdG8hhG/re2ARcMBeGwMNW/NyOWfpUi699FIefvhvrF23vts67iCbs/ALH8nIa+7FZ0Qypb99i8VosFtuoFk5d6knPQwEAy932P4IB35tUVXaDqyTUm5wW++dQE/dknYXFXLlmk+ZcvF1+IZHs3HFfzHWdS0r0Z9ka4VKoyVo6jykyUzul+8MCj85d6kn3SClDGzdPmnd/pBSZrQoKk1uUVdySj2pFaeGpLpS3O3YXVTIu78dIHTx5VhMBgq+XWW3XF+QzZlyPvkWfEckE3bSYuqOHqSp1P6NigPJyg38f4lu0NVFvu5Aq8XwCA7Hd9QE6rPTkFJiMRmRFoVkx8KydYT/2KkA1KYfGPBWbmD3bgDBJ3400mSics8WDj3zAGUpP2GsrbJuyJZn7yFrx5puWnENzlo5rb8id1GW8jP1eRlu7YO7MeAJd6yH1VYETJqFLjCUwu8/A6AuM5XcD19l79rHKUnfSvrm9yhO+7XL+n1l3UDRDo6/+FaEWk32x/+jOb/zxuNAGVYHPOGOFToOTSq1hsjT2y7c1WsCaKxWhvPM7Z8CoNP7222rN2Rztq5PfBIjr7obKS1UvL2K+r37rcM+HLuYjo4YJpwL8IlPInKRouVWlqnIhWk9ffGPHINa64W9WwL60rJZ+9Uyj9T6BhB15iUYqsooefNtyj9Z3a7c6E8732bd3zguCOfO/27vuFHW9/6RY5l2wd8Jjp+C2diIPqD9aYS7yOZKO/6jJ6PRK7fiqLzanDx7ugHubgxowt051rkddHevVB2t9DwCQ5l63t8IiBpL3JSzsFjMZKYo87pIG2fJ/rBstmi1cjVp+zBUlhJ73rUELTm7U7ljbeUGNOEGKnR6f8YsuAF9YBRCCKRZuQuipji9z57pLIFFyy07Kp1Hn/WlNxgUhBsoK9WOqCo4xP71/7V+Dh1xAuAe65Y8IZpLr5xD8oTOVwI4gu/I8Qi1hrqjhzpZ6oEwrA4KwvUnXNk4zUr5HGNTLdETFzF+0e14eAe6jWz/fv4KrrlxAf9+/gor6bpr2yffgkqrQx87kpoj+7CY7IdJHsthdZhwvYBQa/ANTSRm4iJ8QuLdNm+zjVNtjXFwBSEzFmCsqaT0t+865R1rK3fcEM5dK9V2R1mmJsaNTmTCqEi3LhJa41RNJjMmkxLj0ApHz5kwKpIbTjmBufMXEDBhJmXbfkTstO99eqys3JAKE+wtXBlOJ4yKpDgsmIaqfOYmGGCED9kZdW7px6ED+dx/x3tMnhrP3t3Z1msybWNZpZQ0VBag1ujw9AtlbHww50zzoaLoCP+55FwMDXWseSSV/K8/JHLyndbFxLGGS1eQ9xdmzJghd+xQPJyeSz0NgB/LxnZbrztVzO6GE2cI12rhrloyE3X1IW65+WYAFi29gmrvNuVKd2+L2JLNYjaxY9VfkNK+40B4eDh3vfQ2L7+/itzP3yR07hn4XHx6uzKtFj/tor+5tZ/g+Ary42ZIdTd2Hcxl1qzZAERERBA+dn67fNsI+46R9q6iY12zobFLsgEUFxfz8v89jHfsSNSeXpRu/gZDgX3Xpf7GoLFw0L2V608LJ6Uk+9fXqasq4twb/kVmcc9uK+zOEnZFVFNzAwgwNtbSVFtGQHQyE5OiyTy4jh8//aBTeZW3nvjHHmmXpolqGLZwxxKuhNpV5u6nOPcwYeMW9ZhsYF9rxDa9K2g89Gh0erz8wwmMGY8QKrY2FlMYPRHvuLYrP0NmnQqApd7+oqm/Fw/DhOshGmuUa5j8I0Z3U9J59Gb4bQ2+Vuk8iL/4ZkJOPB2hVlN9SNG0C52zyG397A2OK8K58xA/OGEqCEHxkd/c1mZP0THSXwgV4fMWE3v+dZibGlF7eqHx6ew61TrF6E8rN6QI15fu5h0hhAApKTz4I2aT/Yip/oAjWQnfxGRGXPVntP7BFH77CXLL0X7smX24S8xGCCGeF0KktwjaTLPJO1MIcbgl78G++BL9jeIjW9jzxWPWz60OmF1hwqhIrloykwmj3BdM7ayGiUdgKHEX3ABA1sf/Q5pMbutDT+AuMZvFQFLL6ybgfwBCuR7vpZb8ccBlQojuFWS6QH8c4tfnHKFky7cYqtvuVpUWC9WHdpP5wQsc2PIaJUV7AUg66WoAyrN2UZK+lW0f3Meu1f/E0NCmNTxhVCQv/uUP3HTRXF78yx/cQjpXxXK0Pn7ELLkKAPOvae3y+ntYdYuYDbAUeEcqeyxbhRABQohIIAFIl1JmAAghPmope9DZB9459vt2WyN9CSklOWtXYmlsonTzBoJnnoIQAkP2YWqK8vENjaChvBhzkzIXLC7Zi3/yVIWMLVbO2FSLStOm99Gq/aZRqwDJtHGxHEjv+Z5YT2TBGmIs+JonoPLwpPbIfgIX9Ph/vtdwtfddidlEA7k2n/Na0rpKHzCQUmIoLqE2ZScF//4vlkZli0Oo1ZRv/4mKHRtJjAjlw48+ojAnizPveQRdkCKJWnN4D0FT5rVTVkpeeCsaXdsqs532m8nCroO59AQ9kQFriLFYt3qa4lXoJ42n5uiBTsNqf1o5py2cjZjNcnvZdtKkg3R77btVPakrdJTOL1/1GbVbFNFCta8vIcsuISRkMiqtBxZDMzedMY/bz5iLRq3CZLZw2txZZNTfTd6696k9sh+Nty8jr70fLBZ8izp/3QPphdz22CdMGxfLroO5PbJuPbVqHeE9ZTJ1KTtpPHwE/fhjcweEK0OqIzGbPCDW5nMMUADoukjvhBYZrxWgnDS40K8eozZlJ7VbtuJz4iy8J07AM2kUKp0WdcuJg9rDkx0Z+RjNyiXARrOZlKN5qLQ6Ypdeg6m+Bm3rdoNaDdjfOD6QXtjjYdRdZAPwGjsaodXSmNY14UZ/+mifnD60whXCdSlmA6wFbmuZo80CqqWUhUKIUiBJCJEI5KMMyZf3psPdoSuRwo4o/3wtNT//gkdCPMEXnodKa1/dcm9OITes+IwTRsaQcjSPvTkKcYQQbWRrQXcC063kcTZa351kA5gSEUm+SkWYXk/He7RNBfp+CSV0inA2YjY326TdAorGCLAeOAtIR1nFXtuSZxJC3AZ8A6iBN6WUjlWS+wk1P/8CQPiN13ZJtlbszSm0Es0d6I547iYaKOKKfLoGY3Mz/7zyaj5TWdhd1P8H+u4Ss5FSyj9JKUdKKSdKKXfYlFsvpRzdkueSmI09uGNrpDUy3W/+Sah9fHrdni26Iou9dHsLgb4gm7mhkf3/fY41n3/OPffcwwUXnM/smNhO5fpj8TAwvPL6Ec2ZhRQ+9yYqb298T5xlt4y9S976Er1RQO+ObNJiofSd92hKS+etd95h2bLLMZotbDqSRs2vW6j44it0UZF4xMeh9vFGHQL1u9LYM+pcJk6ciNrNt2kfN4SzNBspe/cban7ajcrLi8g7/ojQaqnffwBjUQlIif/ppzp9b5Yr6O09DvbgjGeLlJKq736g8dBhgi86n7Ueakq2bmFT2mE2PPAXjCWlADRnZWMoLEIaDNDirjZ16lQCAgKYN28eF110EcuWLUPjBq/h44Jw0myh6LlPqU85hPfMZFQeWkreeg9DXr71FwzgPWMq2qCgXj/PdvFwrMgGULdjF1XrvwHAIy6W3UWF7C4qpPqnjRhLSgm/6fp2q1VTVRX1u/ag8jWgDvBhSXMwP/74I9dccw2PPfYYK1euZM6cru+qcAZD6vC+FbaH+FJKSt74ivqUQ4ReexYqTx21m/Yh1Gr8F55C2LVXAqCfPLEd2Ww3TQcSXOmT2scbtb8/Ki9PCp59kaYs5YCo4WAq2sjIdmTTRDXgOU6H/6kLCFw6D7/5U/h5USxHjhxhzZo1mEwm5s+fz7PPPmv3FkZnMeQtXOPvmdR8p6xhKlZvxFxdj1dyPBG33K7kH1YuDtH2gXK6u62bq/8A+uSxxD3yN8z19eT/+xkKn3nBmue/aKHdOh23RoQQLF26lPnz53Pttdfy5z//mV9//ZU333wTPz8/l7/DoLRwrqxULY2K65A2OgRdVAjCU4f/4tnWfG1YKAhBY9oRGg+ntZO4Atf/yK1wJ9l6a23V3t6EXbUMj5GJ1rSARa6dTwcEBLB69Wqeeuop1qxZwznnnIPF4nqfBnxMA2D38N6V+AZLswGVR/sLNGyPt6p/3mS9QzXmoQcUEtrgWMqYuntYN1VWYSwpxWtMUqc8exu/U4KiWXXqde3S3njjDW644QY2bNjAGWec0anOcR/T0JFsnWBR9t31kyZ0Ihu4/4/uLPriuZrAALtks4cpQdG8ffKVndIvvvhihBBs3brV5ecfF4Szh9b/ZmmxUPXdj3iOTiLs2quOca8UDJQFy6zQBLSqzvtwvr6+jB8/nm3btrnc5qAgnLM6cT2HxFxVRc0vm2nKyOzjZznGsSRaxzDKbaVZGC0dT10VTJ8+nT179tjNc4RBQbiewNn4BqFSEXDG6RhLSqn4/Auqvv3Bbrn+IMJAsGq22FORz9W/vGs3z9/fn7o616Uthvy2iDPQxbT4hKpUhFx8Yb8+e3JcJCeMjGFTbU6PDtO7WtD0hLz2Fg17KvLtlg0NDaW2tpbCwkIiI513mx+0hDs1JNUpvRFnYMhTfqmx//grGv+u95bcfcY6OS6S12++EK1azc3mWVzx+SftSNefq2NXXZNycnLQ6/Uu78UN2SHVFRgKClH5eDskW19gyrRotGo1GpUKrUrNSb5x6PNU1ld/oTuydfQesVgsrFu3jrPOOgtvb2+XnnXcE87c0Ej9nn14jXYugt5d86yGGAtb83Ixms2YLGaMFsWb2F1wlrA9cbrctWsXBQUFLFmyxOW6g3ZIdQfUkfWU/PsLpMGA/8IF/fbcVtLuLirkis8/YXZMLFvzcjmc03+B3NBzJYKnnnoKT09PzjrrLNef2aMnDhI4cje3NDZT8tpX1O/YS8CZi/CeGQg09LkkaUcL2erBAUCMe+dt+jxVlxa5p2QrKSlh1apVLF++nOCWC4xdwZAmXFeo35VG0bOfYGlsJvjShQReMNel+j1dPPT3toe7yQZQVVUFwPjx43tUf1ATztmVqpSS+h2HMRSU0rgvg4Z9R/FIiCDkmsXoxye2K9sxjNBZtG5v2Aba2MJZsrlrJdwXZAMoLFS+W0BAQI/qD2rCOQOL0UTGNY8jDS0S8kLgv3gWIZefjsqzmzNWB7AlxuS4SF6/SdneMJrN3LDis3akG2gbur3BunXrUKvVzJs3r0f1hyThjLXNaLx1NBTWUPCvdUiDEeGpI+7JW9AE+6PycByl5SpOGBmjbG+oVdbPe3MKe0w0Z61cV1bVXdbN1sumurqa2bNnk5qayoIFC/D3t39zYndwNkwwAHgdmIASOX+dlPI3m/z7gGU2bSYDoVLKCiFEFlALmAFTV24r7sKuR78j79v2gi2BS+cRcoXzgnyuDqspR/M6BUv3tVXryqq6i2yNh7LJe/gNhFZDwgt38cQTT5CamsqVV17Jk08+2eN+O2vhngM2SCkvapF8aPfXkFI+BTwFIIQ4F/izlLLCpsgpUsqyHvfSCUgpKd6STeEvyo3IAclhVB8pI/CC+QRdOL+b2j1DqyXqGCz9m8X+cVBP2u4K9qxqV891lWzG0ipKXl0LgDSayLzlaZ4Arr76at566y2X2urUl+4KCCH8gJOBawCklAbAkQKfowj9PkF1ehl7//0TVYdK0PjomPnEWUTMbVsMHCpyfRLuqpVrDZbur/laR6u6qTbHbrmeLBKCivaTlV/aLm3hwoW8+uqrrne0A5z5S4wASoGVQojdQojXhRB2zzNaIvTPBD6zSZbAt0KInS2CNXYhhLhJCLFDCLGjtLS0q2J2kfX5fqoOKZq7QeMjCJvVd2I4juBusjlqr9WqPrNtM1es+cTuwX9PyDYmuICIkxJZ+PGV+I5o22dbt24dHh69v6HQGcJpgGnA/6SUU4F6oCsly3OBzR2G07lSymkoYjh/EkKcbK+ilHKFlHKGlHJGqJ2Alq584k4NScU7tm2JXrIth9KUNkksU5P9C86cgTN/sFZnyb6ybLbtd3z9Zsnnfzu2u4VsyRHFjA7MZ/Mda1h/+go8g/WETm9TVnMH2cA5wuUBeVLKVvfOT1EIaA+d9OOklAUtP0tQlDNn9qyrXWPUpVNZsulPzHxCuZC2NrOCgp/SWXvSS6w/fQXG4jb+m6rryfvnStKXPUpzVpG7u9IOhoJCCp5/CUNh3z6nI1whW3JEsdV3cOcj31F5QOnrdxe9Q8an+/AM8WbB25e6r2/dFZBSFgkhcoUQY6SUh1FUMDspWAoh/IH5wBU2ad6ASkpZ2/J+EfBIx7ruwO8vbeboR4oHanNlI1lr2zRzVHpPCv+7isbfMzHX1FvTi15cTfzTf3TYbk83gmu3p1D2/scANGXvRhe52OU2egJnydZKsubKBjbfvoa67EprXtSpozDVG/AfE8qoy6ai9XHfZb/OrlJvB95vWaFmANd2UE8COB/4VkpZb1MvHPi8RT5BA3wgpdzglp53gErX5nvfSjwABFSs/oW63w7gPWMsKi8PDLnFNGcVYcguIv//3kYXF4Ha25PApfMQmt5radRs2Ur5x4oEq35qEoFL5mEu6XWz3cJVsgHU5VS1IxtA2Ox44ha7x9ewI5winJRyD9Bx/+yVDmXeAt7qkJYBTO5595xH8o2zkWZJ+vu72qWrdRqqvtqCytuLyHsvRahVjA0v4si7O0l9bRsNe4/SsFeRk/cYFY2pogZMFvxOnYpoEXJxxcpVfPU11d8pbuqBF5xMyGWnudyGK3B1+OyI4MlRzH/zYqrTyxFCsPtf36PS9p3X2pA6aRh3y4nEnjmGjdevwmJQtgwiTkpE6+uB5cSTEGpVyy9dED4ngdTX2kcdFfzfO9b3xpJKQpa1v4HPHsz1DQidFqSk+vufrGQLiYtmwR+vYm9lm+Bnfwj+2UN38R3+SaH4J4Wy5S4lNtfc1HfS+kOCcLaH+L4JQZy26kryvk3DO9qfyJNHAEpgtO0vvrnS/qVqwZctxFBQTuWaTfjNn4IuRlkx21qoqRGRzI6J5dvffuPHRx9TjoA8PbE0tBHq5w3fMSJpFFf/8m6XcQF9hSlB0cwKTWBbaRbNul12yzSW1lFztJyyXflIiwVTnYHyPfn4jggi+jTn4lZ7giFBuI7wDPZm1GVT26V1/C8PnRHDpHvnk/7+bsye3niNS0AbFoj/GSdgqqyjduMeil74jOiHr0Ht7WmtNzUikvfO/wPvv/MOm//2DyyNTXiNT0QaTRgKJJa6Rh76618Zn5yMyWJmVmhCvxKuNXhZp1ZhsszjbwcqOVzbPvTxwIu/kvHx3nZpKp2auLOTGXfrHDSe7j1rtsWQJJwzEEKQsHQCCUsndHLS1Ib4o5+aRMPuI+Tc+xLRf70aXXQImqgGZkfF8stPP3HjDTcwZ+4cFv7zTt7L3Enug6+ClCRdcBr3PvhAi9u4hW2lWf3yfVr/oc6JmYxOrUIt1EgBE/yT2hGu8JeMTmQDmPnE2YSd0FkV0904bglnC3uewVH3X07dtoOUvrGO/Effwmt8Imp/H1Z67SPva0Vz7elnnuHer98h++mVyGYjMY9eDyOiuGnbKuuQ1pfWzd7c7ED1EUwWM1KAWZo5UH2kXb53tD8BY8OIXpjE7y9ttqZnf3HASjgpJfW5VTQU1dJc0YBvnSf3fH4P8+bN4/zzz+9VnweFmE0rHN1I09uQwa5c0Rt+z6T8w+8xVdRirqpDGk14R4Uxae4som9eymeLb0EaTUQ9uAzv6WPsttHTS+fs9cmZtsb4JjLBP4kD1Uc6DaetMDUa2XTTJ9RmtW2J6CP98ArzobGklobC2k51AgMDqaio6JTeEY7EbIYtXAu6in/Qj09E/383Asp/vmwyIDx1lAlB5rpvkUYT/mfOsku23t5u2NP6h2szuyRaKzReWk55V7nBoD6/muwvD9JYUktjcR2+I4JJumI6PglBLB2/CP3vJm77021MmTKlR/1p99xetzCEYDGaaD6aj6mqDkNuCZ4jo9HFhKLy8kDtq0cIgfDqvOvuO29iu8/9eY2mO+Ad7c+4W060m1fqW8fCkRMAuPXWW3v9rCFDuJ5E4pubTRx5dyfFW7JoKq+nuaoJLPanGNrIYPxPm442MhhDTjFNGYXUbz8EgDS1Cb4MNrI5whfzXgSgaYxy/1hqau+vLBgyhOsJDr26lYxP9qLSqYk9YwweQXpqw0ejCfJFGx5Ec0YBxtIqzHUN1O9Mo+zdb611tdEh1vceccpQ3N9kc6fcRUe0kg0gKysLgCA3CG4PKsK5+yrLpnLl2PfkFX/Ab2Sb71frXE4/aaQ1LXDJPJozFDcgbVgAal9lE1gaTQitpt/I1lFu1p78bE9IaEveVrKlpqbywgsv8O677+Lt7d3rFSoMMsK5G6EzYin4MZ2mioZ2hOuSPJGtB/u1La/eoa8uHO7YbkcCdvXcVqKtXbuWu+++m6NHlTPmSy65hHvvvZeoqKhe9+24IFzrL/ir36M59OpWVGoVAePCOPLeLjxDvfEb0fuhoif9GUjPa3Vw3b59O+effz6TJk3iL3/5C7feeisxMTFu68uQJ5ztLzs0LYXvv1MiunI3pKL19WDO8+fhGeyaAlBv+zHQcOfY72lubkan03HfffcRGRnJzz//3ONQQEcYUoSznYfY+wNX5DeBSrD4q+tpLK3DK8zHrc6FXfXJFfz6YR71lUZOvyUBlcq91zBFeCYTo59CXsMeipoOcefY75FS8tBDD/Hkk08SFxdHZmYmCxcu7BOywRAjXCu6+iPnp9YSnuiF1tcDre/AIlorPn3kMABfv5DBI7/MIy54PBRH0OCVTUnTEfzDPXp0H1iEZzIXxD2FWmgxSyOGRjObNm3izTff5K233mLp0qU0NzeTk5PDpEmTetR3ZzDkCOfoDy0QqNR9L4nXm+HziR3zeXDGRgAePvlX4NfOZVLm4+mjwWKWFKTVYWwyYzFLjmyr5OAv5Qhg9IlBTF4URnSyD0IIYvRTUAst69d9zd///nf27t2L2WxGrVbzwAMP8Pjjj/fJxXYdMeQI1xWa6kyUZjWg06s77V8NlPlVSWYD37+e1W251/64Fw8vNdn7a6ivbItKEwLCR3gjkXz/WhbfvZpFbGwsc+bMIeGyEF7O/R933HEHo0ePZvny5cyaNYtZs2ZhL0qur3BcEE5Kycq79lOS1cA1zyjHNL0lmZSS9JQqSjLqOfBjGSqNYPKiMCYuDMXLt+tf69qn0/nxjWxOuS6OploTCEjfVoneX0tFQRO1ZUqM+UlXxHDNfYv5/V0fnnvmeR78ywOU+23jlft+4GiKIpk1/Zxwkk8OwSdIy/mxTzJu3DjrirKsrIwvvviCb775hrVr1/Lxx0pAz7x58/jqq6/6bI7WHQaVtwg49hixB2OzmZV37ufgxnKW3DuKU6+Pd7k/1SXNbHwnl0W3JlCe28j65zLI3F1FQ7Xiih0a74XJIKksbEKjU7H49hGcen1cpyHKZLBw7+Sf2qV5+mqIHuuDxSwpTKvjgofGcMLSCGvdjhP9zN1VZK+K5YorruDCC51TXK+vr2fr1q3k5uZy/vnn9znZjmtvkd9/KuPgxnJmLInglOt6FpGfuauKH9/I5sc3svH01SAEjJkTRNwEP0ZMDyBukh9CQPa+Gn58I5sv/5NO5p4qAiM82fFlEZFJ3kSM8iEw0pOz7xrJumeVDdUL/zqak5Y5dnosajrEJQlttwAyFkVMwwV4e3uzcKH92wP7G+5ST1oAfAG0+sSsllI+0pJ3JooYjhp4XUr5hNt67wDb1xTy89s5VBU24Req4+J/jO3xpDg0oS3aKiDcg6v/O4HIJJ9O5RIm+3PtH3pWHgAAB5VJREFUcxP55d1cPn+8zfHR0qRj77cl7eZbAJNOD+vURt/funNs4Rb1pBZsklKeY5sghFADLwGno0Twpwgh1kopOwVSuxPfvJzJ1y9kWD/f+cEMdF7dx5ue5dPWrfV146zvf3hdsWx3fTiD8BF6h8QVQjD/qjhGJiTx9M3rAUjbl8PqnPs4kreHlC+KqKs0kjjVn4dP3tSTrzeo0RfqSbaYCaS3xKcihPgIWIqdyH13YvtnbVHH/uEeJE5tP2exJVZjozKH9fISXZZ5fGcpJ8/Tcd3kbKf74H3+Laz9Tzq33HILaqFRhsUEoGfCkUMGzlg4W/WkycBO4M4OEfYAJwoh9gIFwL1Syt+BaCDXpkweMMveQ1qUlW4CiIvrufqRJT+C8oI6/vnPf3DZZRdRWn0HoT72+Z2TZeK0k0rx8RXsOhhht8zmTc0UF1nIPOp8rGZSjBKLevjww65/gSEOd6kn7QLipZSTgReANS3p9sYeu8vi7tSTnMHWTwu4+7T38fHx4YILLmTUqNGMTuo8WTY0S77b0MRpJymyYHW1EkzX4amb3qlsWqoy78rKtE+4pJiCTq9hdA1nLJw99aR2hJNS1ti8Xy+EeFkIEdJS13YZFoNiAXuMrnzijM1mNn2gGNP9+3cSH5+IlCbKKjbxyku1HEkzsfRCL3JzzLz1Wj15ue2vZbzxmk28+OIzmNXL0fvuB8BikWz/TZk9XHSJfphMboBb1JOEEBFAsZRSCiFmoljOcqAKSBJCJAL5KHJel7v7S5iNFtbf+xsFqc3c9xdf1Pp7KK85kcbm33j15V957j/KNYvrv1RcpceO0/DsywH8fsDIay8rM4ONG39h4sTpREb58cpKHcnjtKz9+G5++O5+AJ5+8oj9hw/DJTi18SuEmIKyLWJVTwIuAUU9SQhxG3ArYAIagbullFta6p4FPIuyLfKmlPJf3T3P0cYvKJu/UkrKchopyWhgxxsH2b3TyCOP+3HpFW2uRjtTDFx2QTkBgYKnngvA319FaJiKqGi1daVZXDCWCaM/5JZb7kQIwcaNGzGbzbz99tvcc889aLVadu/e3S/njEMFjjZ+ldC3AfaaPn26dITb35km4yf7SZT5oATkI0/4y7TcSPnb7jC5+BxPGRunliqVknftjd4yLTfS+nKEffv2tWv37LPPdlh+GJ0B7JBd/G0H3UnD8uXLeeGJXYSE6Bg1WkNdrYU33wti1GhFD+PD9xr4+itl6LzoEi/++9RhoqOjUamc8xKZOHEiBw4cYNWqVcTFxbnFj38YNuiKicfy5cjC6XQ6GRISIq+66goJSJUKOWOmTn7wWbCsqamxWqZp06ZJs9nc23/WYfQAOLBwg+q+VCklBoOBsrIyPvjgI8aOHctf//owxYXhXH9FA/v27bOW/fbbb522asPoR3TFxGP5cmThHnjgARkcHCznz58vd+/eLaWUMjc3V2q1WqnX6yUgExISZHNzc2/+SYfRC+DAwh1zctl7dbdosIezzz5bAnLmzJkyJSXF5frDcB8cEW7IjDkrV67krrvu4uOPP2bGjD69zmsYvcCgW6V2hdDQUJ555plj3Y1hdIMhY+GGMTgwTLhh/H875/NSVRDF8c8XJVtVaptoURptXAVF1C4K1NxY0MJVUruifyDc+A+0iSApCKpNVqsIQoxqF1mL/LExn7QxXBRWtAqC0+KeV7fHUyx17n15PjAw78ycYWbel7kz3DsnKSG4ICkhuCApIbggKSG4ICkhuCApIbggKaW8eS/pI7D6K1J/z07g0wa2XyaKGOseM6t7MaWUgttoJL2x5b5I/c8o21jjkRokJQQXJGWzCu5G0R1ISKnGuin3cEFxbNYVLiiIEFyQlIYVnKRhSR8kvfXUlyu7LKkiaVZST85+UNK0l12V326W1CJp1O2vJO3N+QxKmvM0mLN3eN05992SZuSrR1Kvz0FFUm08mGJY7tvzsidgmCxKU629C5gEWoAOYB5o8rIJ4ChZkJ0nwEm3XwRGPD8AjHq+jSzSQBvQ6vlWL7sPDHh+BLhQ9JzUzEOTj72TLGLCJNBVdL8adoVbgX7gnpl9N7P3QAU4LGkXsM3MXlr2j9wBTuV8bnv+IXDCV78eYNzMlszsMzAO9HrZca+L+1bbKgu/YvNZFtOvGpuvUBpdcJckTUm6JanVbfVi0u32tFDH/oePmf0AvgLtK7TVDnzxurVtlYXl+l4opRacpKeSZuqkfuA6sA84ACwCV6pudZqyFez/4rPquHcFUso+lvrWlpmtKka+pJvAY/+5XEy6Bc/X2vM+C5Kage3AktuP1fi8IHsZvkNSs69ya457twGse2y+9aDUK9xK+J6symlgxvOPgAE/eXYA+4EJM1sEvkk64nuws2SR16s+1RPoGeCZ7/PGgG5Jrf7I7gbGvOy518V9q22Vhdd4bD4/QQ+QjbNYij61rOEUdheYBqbIJnJXrmyI7IQ2i59E3X6ITJjzwDV+v2nZCjwgO2BMAJ05n/NurwDncvZOr1tx35ai56TOHPUB73y8Q0X3x8zi1VaQloZ9pAaNSQguSEoILkhKCC5ISgguSEoILkhKCC5Iyk/jxQq/5JK0ZgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "gb_boundary = [(-2.6653539699999556, 51.617254950000074), (-2.6937556629999335, 51.59617747600004), (-2.71312415299991, 51.58661530200004), (-2.760487433999913, 51.579779364000046), (-2.7980850899999155, 51.56350332200009), (-2.816395636999914, 51.555568752000056), (-2.8587133449999556, 51.546128648000035), (-2.943348761999914, 51.54254791900007), (-2.9562882149999155, 51.54572174700007), (-2.9641007149999155, 51.552801825000074), (-2.969471808999913, 51.559881903000075), (-2.9746801419999542, 51.56297435100004), (-2.984038865999935, 51.55853913000004), (-3.0102432929999168, 51.53803131700005), (-3.0156957669999542, 51.53164297100005), (-3.0737198559999115, 51.50836823100008), (-3.0764867829999503, 51.50775788000004), (-3.088937954999949, 51.505072333000044), (-3.105620897999927, 51.49721914300005), (-3.1317032539999445, 51.48041413000004), (-3.1350805329999503, 51.47630442900004), (-3.1409399079999503, 51.46478913000004), (-3.1453751289999445, 51.45994700700004), (-3.1524145169999542, 51.45718008000006), (-3.1666560539999296, 51.45600006700005), (-3.1723933579999084, 51.45327383000006), (-3.1727188789999445, 51.453111070000034), (-3.160064256999931, 51.43183014500005), (-3.167144334999932, 51.41046784100007), (-3.1848038399999155, 51.39760976800005), (-3.204009568999936, 51.401597398000035), (-3.218861456999946, 51.402777411000045), (-3.289418097999942, 51.38422272300005), (-3.539173956999946, 51.398504950000074), (-3.557443813999953, 51.40509674700007), (-3.5753067699999406, 51.420436916000085), (-3.6047257149999155, 51.44570547100005), (-3.6631973949999406, 51.476223049000055), (-3.6769913399999155, 51.47703685100004), (-3.695423956999946, 51.47150299700007), (-3.717925584999932, 51.478583075000074), (-3.7376195949999556, 51.49087148600006), (-3.748036261999914, 51.50092194200005), (-3.7494197259999282, 51.50535716400009), (-3.747670050999943, 51.507025458000044), (-3.7445369129999335, 51.50763580900008), (-3.741851365999935, 51.50836823100008), (-3.7493383449999556, 51.52806224200003), (-3.7519018219999225, 51.53306712400007), (-3.758941209999932, 51.54677969000005), (-3.770130988999938, 51.56329987200007), (-3.782215949999909, 51.57664622600004), (-3.7902725899999155, 51.58197663000004), (-3.8077286449999406, 51.589178778000075), (-3.8169652989999463, 51.59650299700007), (-3.8326716789999296, 51.61554596600007), (-3.8416235019999476, 51.621527411000045), (-3.8548884759999282, 51.62384674700007), (-3.8867895169999542, 51.62140534100007), (-3.9623917309999115, 51.61562734600005), (-3.9766332669999542, 51.61188385600008), (-3.989979620999918, 51.60651276200008), (-3.998768683999913, 51.60028717700004), (-3.999908006999931, 51.59088776200008), (-3.9922582669999542, 51.58112213700008), (-3.9818009109999366, 51.571600653000075), (-3.974598761999914, 51.56297435100004), (-4.016184048999946, 51.56297435100004), (-4.016102667999917, 51.56037018400008), (-4.0208227199999556, 51.555853583000044), (-4.026519334999932, 51.554022528000075), (-4.029204881999931, 51.55927155200004), (-4.031971808999913, 51.56313711100006), (-4.0385636059999115, 51.56622955900008), (-4.046457485999952, 51.568426825000074), (-4.0531306629999335, 51.569240627000056), (-4.056304490999935, 51.56704336100006), (-4.065581834999932, 51.55756256700005), (-4.070220506999931, 51.555568752000056), (-4.0768123039999296, 51.55695221600007), (-4.087269660999937, 51.56191640800006), (-4.112131313999953, 51.565619208000044), (-4.121652798999946, 51.56598541900007), (-4.132191535999937, 51.56297435100004), (-4.142730272999927, 51.55695221600007), (-4.156809048999946, 51.54629140800006), (-4.1664119129999335, 51.54254791900007), (-4.176503058999913, 51.544256903000075), (-4.18773352799991, 51.54877350500004), (-4.1967667309999115, 51.54938385600008), (-4.200550910999937, 51.538763739000046), (-4.213368292999917, 51.539129950000074), (-4.272450324999909, 51.554754950000074), (-4.2899063789999445, 51.555568752000056), (-4.293324347999942, 51.55914948100008), (-4.29515540299991, 51.56195709800005), (-4.297352667999917, 51.569240627000056), (-4.278309699999909, 51.578192450000074), (-4.280832485999952, 51.58881256700005), (-4.2897029289999296, 51.601548570000034), (-4.2899063789999445, 51.61701080900008), (-4.255767381999931, 51.62384674700007), (-4.252023891999954, 51.62710195500006), (-4.241281704999949, 51.63934967700004), (-4.234730597999942, 51.644964911000045), (-4.228505011999914, 51.63743724200003), (-4.234730597999942, 51.63743724200003), (-4.234730597999942, 51.631293036000045), (-4.2278539699999556, 51.628119208000044), (-4.22101803299995, 51.62384674700007), (-4.1900935539999296, 51.63027578300006), (-4.139027472999942, 51.63231028900009), (-4.0912979809999115, 51.639878648000035), (-4.070220506999931, 51.66229889500005), (-4.0698136059999115, 51.66893138200004), (-4.070383266999954, 51.67430247600004), (-4.07054602799991, 51.67597077000005), (-4.0754288399999155, 51.677801825000074), (-4.087269660999937, 51.668850002000056), (-4.095448370999918, 51.66510651200008), (-4.106841600999928, 51.66425202000005), (-4.146351691999939, 51.66705963700008), (-4.200550910999937, 51.68585846600007), (-4.214955206999946, 51.679673570000034), (-4.293690558999913, 51.67226797100005), (-4.3152970039999445, 51.67747630400004), (-4.342355923999946, 51.69086334800005), (-4.3664444649999155, 51.70848216400009), (-4.379261847999942, 51.72687409100007), (-4.338042772999927, 51.72333405200004), (-4.319976365999935, 51.72483958500004), (-4.310454881999931, 51.733710028000075), (-4.328724738999938, 51.73297760600008), (-4.3471573559999115, 51.73578522300005), (-4.3625382149999155, 51.74286530200004), (-4.371815558999913, 51.754787502000056), (-4.368763800999943, 51.75698476800005), (-4.362904425999943, 51.76386139500005), (-4.358021613999938, 51.773138739000046), (-4.358225063999953, 51.782131252000056), (-4.365101691999939, 51.789048570000034), (-4.3714900379999335, 51.78595612200007), (-4.379261847999942, 51.77529531500005), (-4.384917772999927, 51.77187734600005), (-4.3929744129999335, 51.763739325000074), (-4.399159308999913, 51.76162344000005), (-4.409331834999932, 51.76316966400009), (-4.417876756999931, 51.76788971600007), (-4.426503058999913, 51.77529531500005), (-4.445790167999917, 51.77326080900008), (-4.449330206999946, 51.76630280200004), (-4.441395636999914, 51.75678131700005), (-4.426503058999913, 51.747300523000035), (-4.460764126999948, 51.73578522300005), (-4.4988907539999445, 51.73484935100004), (-4.574208136999914, 51.74115631700005), (-4.603423631999931, 51.73924388200004), (-4.639230923999946, 51.73318105700008), (-4.6453751289999445, 51.732123114000046), (-4.678212042999917, 51.71743398600006), (-4.680287238999938, 51.692694403000075), (-4.689442511999914, 51.69159577000005), (-4.69163977799991, 51.689886786000045), (-4.69163977799991, 51.685980536000045), (-4.693959113999938, 51.67841217700004), (-4.712310350999928, 51.650091864000046), (-4.721424933999913, 51.652044989000046), (-4.734934048999946, 51.65924713700008), (-4.741851365999935, 51.65607330900008), (-4.759185350999928, 51.644964911000045), (-4.8482966789999296, 51.64630768400008), (-4.86351477799991, 51.64411041900007), (-4.878977016999954, 51.63743724200003), (-4.887806769999941, 51.62995026200008), (-4.8957413399999155, 51.621079820000034), (-4.904774542999917, 51.61383698100008), (-4.923695441999939, 51.608628648000035), (-4.931996222999942, 51.59902578300006), (-4.941029425999943, 51.59650299700007), (-4.946034308999913, 51.59760163000004), (-4.956450975999928, 51.602769273000035), (-5.021595831999946, 51.61603424700007), (-5.0457657539999445, 51.62689850500004), (-5.0366104809999115, 51.63743724200003), (-5.0511775379999335, 51.65692780200004), (-5.100493943999936, 51.66469961100006), (-5.119740363999938, 51.67841217700004), (-5.113433397999927, 51.68528880400004), (-5.0366104809999115, 51.67841217700004), (-5.038726365999935, 51.68183014500005), (-5.04133053299995, 51.68939850500004), (-5.043446417999917, 51.692694403000075), (-5.028675910999937, 51.69293854400007), (-5.002552863999938, 51.68740469000005), (-4.988189256999931, 51.68585846600007), (-4.974598761999914, 51.687933661000045), (-4.941029425999943, 51.70014069200005), (-4.892648891999954, 51.706366278000075), (-4.868275519999941, 51.716782945000034), (-4.8580623039999296, 51.71832916900007), (-4.844838019999941, 51.71381256700005), (-4.844838019999941, 51.720038153000075), (-4.873402472999942, 51.73773834800005), (-4.879017706999946, 51.76203034100007), (-4.8625382149999155, 51.78237539300005), (-4.824330206999946, 51.788275458000044), (-4.824330206999946, 51.79572174700007), (-4.836008266999954, 51.790716864000046), (-4.864979620999918, 51.783270575000074), (-4.921294725999928, 51.78001536700003), (-4.933583136999914, 51.77529531500005), (-4.9172257149999155, 51.77533600500004), (-4.905181443999936, 51.771185614000046), (-4.900542772999927, 51.76211172100005), (-4.906239386999914, 51.747300523000035), (-4.8920792309999115, 51.73940664300005), (-4.895659959999932, 51.728176174000055), (-4.9105525379999335, 51.71820709800005), (-4.988189256999931, 51.70685455900008), (-5.009917772999927, 51.706366278000075), (-5.149240688999953, 51.718085028000075), (-5.166900193999936, 51.71381256700005), (-5.156971808999913, 51.69757721600007), (-5.1686091789999296, 51.68891022300005), (-5.1828507149999155, 51.68927643400008), (-5.180653449999909, 51.70014069200005), (-5.180653449999909, 51.706366278000075), (-5.230132615999935, 51.73004791900007), (-5.2495011059999115, 51.733710028000075), (-5.228138800999943, 51.73395416900007), (-5.213937954999949, 51.73574453300006), (-5.202870245999918, 51.74079010600008), (-5.191151495999918, 51.75104401200008), (-5.176828579999949, 51.75967031500005), (-5.1432185539999296, 51.76386139500005), (-5.125965949999909, 51.76850006700005), (-5.110259568999936, 51.778509833000044), (-5.107085740999935, 51.78807200700004), (-5.112294074999909, 51.81317780200004), (-5.113392706999946, 51.82880280200004), (-5.11750240799995, 51.84369538000004), (-5.125884568999936, 51.85602448100008), (-5.139637824999909, 51.86399974200003), (-5.146473761999914, 51.85716380400004), (-5.16437740799995, 51.86676666900007), (-5.2037654289999296, 51.87018463700008), (-5.221587693999936, 51.87767161700003), (-5.2358292309999115, 51.87103913000004), (-5.2914119129999335, 51.86399974200003), (-5.3109431629999335, 51.86399974200003), (-5.304269985999952, 51.867621161000045), (-5.297352667999917, 51.87018463700008), (-5.297352667999917, 51.87767161700003), (-5.300689256999931, 51.882025458000044), (-5.302561001999948, 51.88523997600004), (-5.300160285999937, 51.888332424000055), (-5.2905167309999115, 51.89199453300006), (-5.2905167309999115, 51.898138739000046), (-5.2983292309999115, 51.91095612200007), (-5.288929816999939, 51.91693756700005), (-5.252837693999936, 51.91864655200004), (-5.234201626999948, 51.923041083000044), (-5.204172329999949, 51.942287502000056), (-5.191151495999918, 51.946600653000075), (-5.16038977799991, 51.94944896000004), (-5.1195369129999335, 51.95892975500004), (-5.088042772999927, 51.97601959800005), (-5.085031704999949, 52.00185781500005), (-5.070790167999917, 52.00185781500005), (-5.070790167999917, 52.00804271000004), (-5.082753058999913, 52.01447174700007), (-5.081206834999932, 52.021185614000046), (-5.070220506999931, 52.02635325700004), (-5.053700324999909, 52.028509833000044), (-5.0266007149999155, 52.027411200000074), (-5.015044725999928, 52.02533600500004), (-4.961740688999953, 52.007513739000046), (-4.942534959999932, 52.007473049000055), (-4.913685675999943, 52.014837958000044), (-4.920521613999938, 52.028509833000044), (-4.9016007149999155, 52.02643463700008), (-4.863189256999931, 52.01699453300006), (-4.841420050999943, 52.014837958000044), (-4.83226477799991, 52.01898834800005), (-4.833851691999939, 52.02875397300005), (-4.8382869129999335, 52.04010651200008), (-4.838002081999946, 52.04901764500005), (-4.83039303299995, 52.05292389500005), (-4.796986456999946, 52.05646393400008), (-4.77757727799991, 52.064886786000045), (-4.7631729809999115, 52.075873114000046), (-4.7386775379999335, 52.100816148000035), (-4.720285610999952, 52.113348700000074), (-4.7065323559999115, 52.11347077000005), (-4.673451300999943, 52.09739817900004), (-4.675689256999931, 52.126939195000034), (-4.637521938999953, 52.13849518400008), (-4.513824022999927, 52.13568756700005), (-4.50226803299995, 52.138373114000046), (-4.495757615999935, 52.14350006700005), (-4.490956183999913, 52.150376695000034), (-4.484283006999931, 52.156317450000074), (-4.454701300999943, 52.16205475500004), (-4.4348038399999155, 52.170355536000045), (-4.415394660999937, 52.18154531500005), (-4.385568813999953, 52.20343659100007), (-4.371245897999927, 52.20929596600007), (-4.3547257149999155, 52.212103583000044), (-4.334339972999942, 52.21283600500004), (-4.315825975999928, 52.21629466400003), (-4.197132941999939, 52.279282945000034), (-4.1390681629999335, 52.33022695500006), (-4.10960852799991, 52.365301825000074), (-4.096262173999946, 52.387884833000044), (-4.0873917309999115, 52.430121161000045), (-4.0789688789999445, 52.45302969000005), (-4.067941860999952, 52.47361888200004), (-4.056548631999931, 52.48786041900007), (-4.0618383449999556, 52.49705638200004), (-4.064035610999952, 52.50918203300006), (-4.062570766999954, 52.52098216400003), (-4.056548631999931, 52.52944570500006), (-4.048491990999935, 52.530462958000044), (-4.0266007149999155, 52.52338288000004), (-4.016184048999946, 52.52195872600004), (-3.998768683999913, 52.52594635600008), (-3.9473363919999542, 52.549261786000045), (-3.9473363919999542, 52.556708075000074), (-3.9744766919999392, 52.55654531500005), (-4.025868292999917, 52.545355536000045), (-4.0531306629999335, 52.54242584800005), (-4.068470831999946, 52.550116278000075), (-4.1141251289999445, 52.58860911700003), (-4.125477667999917, 52.60390859600005), (-4.122222459999932, 52.62872955900008), (-4.105946417999917, 52.653509833000044), (-4.0848282539999445, 52.67267487200007), (-4.067128058999913, 52.68024323100008), (-4.063547329999949, 52.68309153900003), (-4.05882727799991, 52.696600653000075), (-4.056548631999931, 52.70066966400003), (-4.052723761999914, 52.70221588700008), (-4.041981574999909, 52.70465729400007), (-4.001088019999941, 52.72410716400003), (-3.988270636999914, 52.73427969000005), (-4.014719204999949, 52.73232656500005), (-4.031971808999913, 52.723944403000075), (-4.048817511999914, 52.721584377000056), (-4.125152147999927, 52.77830638200004), (-4.144357876999948, 52.802801825000074), (-4.149037238999938, 52.81207916900007), (-4.146229620999918, 52.82021719000005), (-4.128895636999914, 52.82363515800006), (-4.117339647999927, 52.83075592700004), (-4.1197810539999296, 52.84625885600008), (-4.127756313999953, 52.86172109600005), (-4.132191535999937, 52.86831289300005), (-4.131988084999932, 52.882473049000055), (-4.129872199999909, 52.88922760600008), (-4.123605923999946, 52.89325592700004), (-4.064035610999952, 52.919175523000035), (-4.071400519999941, 52.921087958000044), (-4.074574347999942, 52.92279694200005), (-4.0776261059999115, 52.926662502000056), (-4.0891007149999155, 52.918850002000056), (-4.100493943999936, 52.914129950000074), (-4.1105850899999155, 52.915676174000055), (-4.118560350999928, 52.926662502000056), (-4.144398566999939, 52.91478099200003), (-4.171620245999918, 52.91347890800006), (-4.228505011999914, 52.919175523000035), (-4.300689256999931, 52.905585028000075), (-4.317290818999936, 52.89935944200005), (-4.337310350999928, 52.89203522300005), (-4.406605597999942, 52.89252350500004), (-4.4272354809999115, 52.885972398000035), (-4.446197068999936, 52.87592194200005), (-4.4816788399999155, 52.850897528000075), (-4.477935350999928, 52.84833405200004), (-4.475493943999936, 52.84414297100005), (-4.491363084999932, 52.83820221600007), (-4.500965949999909, 52.82680898600006), (-4.501332160999937, 52.81391022300005), (-4.4891251289999445, 52.803168036000045), (-4.501942511999914, 52.794989325000074), (-4.509185350999928, 52.791449286000045), (-4.5164688789999445, 52.789496161000045), (-4.5285538399999155, 52.79047272300005), (-4.5424698559999115, 52.80068594000005), (-4.5639542309999115, 52.80524323100008), (-4.583078579999949, 52.81464264500005), (-4.594634568999936, 52.81679922100005), (-4.606516079999949, 52.81509023600006), (-4.61351477799991, 52.81110260600008), (-4.619211391999954, 52.80654531500005), (-4.626332160999937, 52.803168036000045), (-4.648589647999927, 52.79962799700007), (-4.704497850999928, 52.803168036000045), (-4.719309048999946, 52.79751211100006), (-4.733225063999953, 52.78750234600005), (-4.747425910999937, 52.78343333500004), (-4.762847459999932, 52.789496161000045), (-4.752512173999946, 52.79877350500004), (-4.7514542309999115, 52.80320872600004), (-4.755441860999952, 52.80931224200003), (-4.7492569649999155, 52.81427643400008), (-4.734934048999946, 52.83047109600005), (-4.596058722999942, 52.92841217700004), (-4.580962693999936, 52.93349844000005), (-4.562082485999952, 52.93451569200005), (-4.543527798999946, 52.937933661000045), (-4.523996548999946, 52.944240627000056), (-4.443430141999954, 52.98216380400004), (-4.423695441999939, 53.00263092700004), (-4.358225063999953, 53.02846914300005), (-4.349964972999942, 53.04148997600004), (-4.345692511999914, 53.059475002000056), (-4.343861456999946, 53.10106028900003), (-4.340891079999949, 53.11273834800005), (-4.334339972999942, 53.11676666900007), (-4.3276261059999115, 53.11469147300005), (-4.324696417999917, 53.10789622600004), (-4.320668097999942, 53.10150788000004), (-4.312245245999918, 53.109442450000074), (-4.304758266999954, 53.12099844000005), (-4.303618943999936, 53.12531159100007), (-4.263539191999939, 53.15452708500004), (-4.2523494129999335, 53.159409898000035), (-4.234527147999927, 53.16400788000004), (-4.221302863999938, 53.175034898000035), (-4.200550910999937, 53.20099518400008), (-4.17796790299991, 53.21759674700007), (-4.151519334999932, 53.22809479400007), (-4.122222459999932, 53.23346588700008), (-4.0906876289999445, 53.23517487200007), (-4.08234615799995, 53.23354726800005), (-4.074330206999946, 53.23065827000005), (-4.066883917999917, 53.22907135600008), (-4.054107225999928, 53.234361070000034), (-4.032297329999949, 53.24070872600004), (-4.008900519999941, 53.24445221600007), (-3.974598761999914, 53.261786200000074), (-3.8653051419999542, 53.289129950000074), (-3.8312882149999155, 53.289129950000074), (-3.841420050999943, 53.30744049700007), (-3.870757615999935, 53.32562897300005), (-3.8784073559999115, 53.337591864000046), (-3.859974738999938, 53.33633047100005), (-3.840565558999913, 53.33283112200007), (-3.822987433999913, 53.32656484600005), (-3.8101293609999516, 53.31708405200004), (-3.7905167309999115, 53.323431708000044), (-3.7688695949999556, 53.31915924700007), (-3.748199022999927, 53.307806708000044), (-3.7319229809999115, 53.29287344000005), (-3.7162979809999115, 53.28693268400008), (-3.6022029289999296, 53.28888580900008), (-3.5623266269999476, 53.29441966400003), (-3.372059699999909, 53.350897528000075), (-3.33031165299991, 53.35179271000004), (-3.2923884759999282, 53.34052155200004), (-3.2713110019999476, 53.33055247600004), (-3.262074347999942, 53.32050202000005), (-3.250803188999953, 53.312567450000074), (-3.122222459999932, 53.26227448100008), (-3.107533331999946, 53.25189850500004), (-3.0951228509999282, 53.23932526200008), (-3.0877579419999392, 53.23468659100007), (-3.0845434239999463, 53.23859284100007), (-3.0845434239999463, 53.25857168200008), (-3.0845434239999463, 53.275458075000074), (-3.09593665299991, 53.28713613500008), (-3.1111954419999392, 53.302801825000074), (-3.1354060539999296, 53.33380768400008), (-3.171538865999935, 53.36225006700005), (-3.185210740999935, 53.37726471600007), (-3.186350063999953, 53.39276764500005), (-3.175526495999918, 53.40273672100005), (-3.157297329999949, 53.40875885600008), (-3.1146541009999282, 53.41266510600008), (-3.0942276679999168, 53.41738515800006), (-3.058257615999935, 53.434759833000044), (-3.0355525379999335, 53.43374258000006), (-3.0121964179999168, 53.41669342700004), (-2.9529516269999476, 53.323919989000046), (-2.9351293609999516, 53.309475002000056), (-2.9105525379999335, 53.29633209800005), (-2.8814998039999296, 53.288397528000075), (-2.850575324999909, 53.289129950000074), (-2.849598761999914, 53.29120514500005), (-2.848378058999913, 53.29555898600006), (-2.8449600899999155, 53.300116278000075), (-2.837554490999935, 53.302801825000074), (-2.8286026679999168, 53.302435614000046), (-2.813384568999936, 53.297756252000056), (-2.8061417309999115, 53.296576239000046), (-2.789784308999913, 53.29743073100008), (-2.775502081999946, 53.29987213700008), (-2.7481176419999542, 53.30963776200008), (-2.753651495999918, 53.32245514500005), (-2.750884568999936, 53.33161041900007), (-2.743153449999909, 53.33852773600006), (-2.734486456999946, 53.34442780200004), (-2.7261449859999516, 53.34198639500005), (-2.7174373039999296, 53.34271881700005), (-2.708607550999943, 53.346136786000045), (-2.6997777989999463, 53.35179271000004), (-2.7141007149999155, 53.35236237200007), (-2.764393683999913, 53.34516022300005), (-2.775380011999914, 53.341009833000044), (-2.782378709999932, 53.32636139500005), (-2.799794074999909, 53.32103099200003), (-2.810332811999956, 53.32172272300005), (-2.843658006999931, 53.323919989000046), (-2.886463995999918, 53.33356354400007), (-2.924956834999932, 53.35000234600005), (-2.956939256999931, 53.37055084800005), (-2.980824347999942, 53.39276764500005), (-3.096587693999936, 53.54433828300006), (-3.101918097999942, 53.55805084800005), (-3.0994766919999392, 53.57200755400004), (-3.087635870999918, 53.58771393400008), (-3.021839972999942, 53.65281810100004), (-2.968658006999931, 53.69403717700004), (-2.9603572259999282, 53.69757721600007), (-2.9517309239999463, 53.70807526200008), (-2.9114477199999556, 53.725043036000045), (-2.899037238999938, 53.73541901200008), (-2.9848526679999168, 53.73607005400004), (-3.021473761999914, 53.745794989000046), (-3.049183722999942, 53.769517320000034), (-3.056385870999918, 53.80304596600007), (-3.044911261999914, 53.87848541900007), (-3.056630011999914, 53.90615469000005), (-3.040679490999935, 53.923529364000046), (-3.017567511999914, 53.93195221600007), (-2.925689256999931, 53.95270416900007), (-2.909250454999949, 53.95384349200003), (-2.896107550999943, 53.94773997600004), (-2.8885391919999392, 53.94603099200003), (-2.885365363999938, 53.950506903000075), (-2.881988084999932, 53.95652903900003), (-2.874175584999932, 53.96165599200003), (-2.865142381999931, 53.96548086100006), (-2.8579809239999463, 53.96759674700007), (-2.869252081999946, 53.97882721600007), (-2.8344620429999168, 53.99982330900008), (-2.830067511999914, 54.01601797100005), (-2.8475235669999392, 54.00836823100008), (-2.864857550999943, 54.00429922100005), (-2.895497199999909, 54.00234609600005), (-2.900298631999931, 54.00495026200008), (-2.9160863919999542, 54.026556708000044), (-2.91820227799991, 54.03432851800005), (-2.911284959999932, 54.03998444200005), (-2.9007869129999335, 54.044907945000034), (-2.8920792309999115, 54.050116278000075), (-2.872670050999943, 54.071600653000075), (-2.8588761059999115, 54.08100006700005), (-2.826771613999938, 54.08881256700005), (-2.815174933999913, 54.09878164300005), (-2.795969204999949, 54.12518952000005), (-2.8128149079999503, 54.139878648000035), (-2.8364151679999168, 54.16758860900006), (-2.8509415359999366, 54.18463776200008), (-2.854237433999913, 54.19407786700003), (-2.8328751289999445, 54.19904205900008), (-2.810292120999918, 54.21190013200004), (-2.7952367829999503, 54.22947825700004), (-2.795969204999949, 54.24872467700004), (-2.8028051419999542, 54.24872467700004), (-2.806630011999914, 54.233710028000075), (-2.8208715489999463, 54.22174713700008), (-2.850575324999909, 54.20774974200003), (-2.886382615999935, 54.19627513200004), (-2.904652472999942, 54.18764883000006), (-2.9126684239999463, 54.176988023000035), (-2.9203995429999168, 54.16205475500004), (-2.939198370999918, 54.15509674700007), (-2.9842016269999476, 54.15314362200007), (-2.997710740999935, 54.15957265800006), (-3.011341925999943, 54.17413971600007), (-3.017323370999918, 54.19009023600006), (-3.008168097999942, 54.20034414300005), (-3.015370245999918, 54.21190013200004), (-3.024484829999949, 54.221584377000056), (-3.035755988999938, 54.22597890800006), (-3.049183722999942, 54.22207265800006), (-3.044667120999918, 54.208319403000075), (-3.047840949999909, 54.19432200700004), (-3.053537563999953, 54.181301174000055), (-3.056630011999914, 54.17023346600007), (-3.0610245429999168, 54.16193268400008), (-3.090728318999936, 54.13947174700007), (-3.10765540299991, 54.11855703300006), (-3.117909308999913, 54.10883209800005), (-3.145253058999913, 54.100043036000045), (-3.147450324999909, 54.08869049700007), (-3.1443985669999392, 54.07514069200005), (-3.1453751289999445, 54.063788153000075), (-3.1805313789999445, 54.09284088700008), (-3.1897680329999503, 54.09788646000004), (-3.2057185539999296, 54.098537502000056), (-3.219553188999953, 54.100775458000044), (-3.2311091789999296, 54.105129299000055), (-3.240956183999913, 54.11212799700007), (-3.2381078769999476, 54.12759023600006), (-3.232533331999946, 54.14468008000006), (-3.233143683999913, 54.15916575700004), (-3.248402472999942, 54.16681549700007), (-3.248402472999942, 54.17365143400008), (-3.215199347999942, 54.17983633000006), (-3.206776495999918, 54.20892975500004), (-3.2090551419999542, 54.24274323100008), (-3.207386847999942, 54.263006903000075), (-3.2231339179999168, 54.25763580900008), (-3.231353318999936, 54.24721914300005), (-3.240956183999913, 54.22207265800006), (-3.232167120999918, 54.20254140800006), (-3.247141079999949, 54.19794342700004), (-3.270130988999938, 54.19912344000005), (-3.2860001289999445, 54.19721100500004), (-3.306792772999927, 54.19188060100004), (-3.3285212879999335, 54.204738674000055), (-3.3644913399999155, 54.24249909100007), (-3.394195115999935, 54.26439036700003), (-3.407378709999932, 54.27773672100005), (-3.412912563999953, 54.29376862200007), (-3.41038977799991, 54.30145905200004), (-3.405995245999918, 54.30963776200008), (-3.4041235019999476, 54.31854889500005), (-3.4114477199999556, 54.33274974200003), (-3.4134415359999366, 54.342962958000044), (-3.4163305329999503, 54.344916083000044), (-3.440174933999913, 54.35175202000005), (-3.474273240999935, 54.39350006700005), (-3.497710740999935, 54.40582916900007), (-3.5918676419999542, 54.48309967700004), (-3.608143683999913, 54.488267320000034), (-3.613189256999931, 54.49164459800005), (-3.6236873039999296, 54.50608958500004), (-3.6341853509999282, 54.512884833000044), (-3.6268204419999392, 54.520412502000056), (-3.616200324999909, 54.52757396000004), (-3.61156165299991, 54.52993398600006), (-3.5903214179999168, 54.56464264500005), (-3.5638321609999366, 54.64276764500005), (-3.5301407539999445, 54.68805573100008), (-3.5160212879999335, 54.712876695000034), (-3.5091853509999282, 54.72166575700004), (-3.500721808999913, 54.72597890800006), (-3.478871222999942, 54.730902411000045), (-3.4681290359999366, 54.73529694200005), (-3.455433722999942, 54.745021877000056), (-3.439564581999946, 54.76146067900004), (-3.4309789699999556, 54.780462958000044), (-3.440174933999913, 54.79743073100008), (-3.4075414699999556, 54.85602448100008), (-3.3879288399999155, 54.88336823100008), (-3.3644913399999155, 54.89980703300006), (-3.3449600899999155, 54.90253327000005), (-3.3333634109999366, 54.89728424700007), (-3.3227432929999168, 54.889878648000035), (-3.3064672519999476, 54.88617584800005), (-3.295725063999953, 54.88690827000005), (-3.254628058999913, 54.89980703300006), (-3.267323370999918, 54.905503648000035), (-3.317290818999936, 54.92031484600005), (-3.2914932929999168, 54.93667226800005), (-3.276519334999932, 54.943426825000074), (-3.213612433999913, 54.954413153000075), (-3.2010391919999392, 54.95221588700008), (-3.1936742829999503, 54.94863515800006), (-3.1879776679999168, 54.94448476800005), (-3.1801651679999168, 54.94082265800006), (-3.14281165299991, 54.93353913000004), (-3.122792120999918, 54.93268463700008), (-3.0395401679999168, 54.94717031500005), (-3.021839972999942, 54.954413153000075), (-3.090728318999936, 54.954413153000075), (-3.090728318999936, 54.96124909100007), (-3.0715225899999155, 54.96312083500004), (-3.0562231109999516, 54.968817450000074), (-3.040923631999931, 54.97247955900008), (-3.021839972999942, 54.968085028000075), (-3.021839972999942, 54.97553131700005), (-3.0462947259999282, 54.982123114000046), (-3.0502913779999403, 54.981510325000045), (-3.1354060539999296, 54.968085028000075), (-3.453846808999913, 54.981756903000075), (-3.470692511999914, 54.984442450000074), (-3.486236131999931, 54.989488023000035), (-3.501047329999949, 54.99249909100007), (-3.515288865999935, 54.98920319200005), (-3.5123591789999296, 54.98712799700007), (-3.511463995999918, 54.98688385600008), (-3.510894334999932, 54.985988674000055), (-3.5091853509999282, 54.981756903000075), (-3.5260310539999296, 54.97711823100008), (-3.5418595039999445, 54.98065827000005), (-3.57054602799991, 54.995428778000075), (-3.583607550999943, 54.968085028000075), (-3.5756729809999115, 54.95734284100007), (-3.5706274079999503, 54.937567450000074), (-3.5687556629999335, 54.916001695000034), (-3.57054602799991, 54.89980703300006), (-3.581695115999935, 54.88361237200007), (-3.598378058999913, 54.87799713700008), (-3.691761847999942, 54.88320547100005), (-3.7176407539999445, 54.880845445000034), (-3.739247199999909, 54.859808661000045), (-3.8101293609999516, 54.86627838700008), (-3.8078507149999155, 54.86107005400004), (-3.806792772999927, 54.86090729400007), (-3.803334113999938, 54.85887278900003), (-3.8123673169999392, 54.855169989000046), (-3.8198136059999115, 54.855902411000045), (-3.826079881999931, 54.85993073100008), (-3.8312882149999155, 54.86627838700008), (-3.819976365999935, 54.878566799000055), (-3.815052863999938, 54.87714264500005), (-3.8101293609999516, 54.87250397300005), (-3.8116348949999406, 54.88003164300005), (-3.813221808999913, 54.88312409100007), (-3.8169652989999463, 54.88617584800005), (-3.828846808999913, 54.874986070000034), (-3.8443090489999463, 54.86627838700008), (-3.839751756999931, 54.855902411000045), (-3.8374731109999516, 54.851996161000045), (-3.844105597999942, 54.85097890800006), (-3.8578995429999168, 54.84454987200007), (-3.823841925999943, 54.82469310100004), (-3.833607550999943, 54.82005442900004), (-3.885731574999909, 54.80646393400008), (-3.9641820949999556, 54.771918036000045), (-4.011708136999914, 54.76821523600006), (-4.042876756999931, 54.76947663000004), (-4.042876756999931, 54.77692291900007), (-4.046783006999931, 54.77802155200004), (-4.050200975999928, 54.778550523000035), (-4.053334113999938, 54.77997467700004), (-4.055775519999941, 54.782538153000075), (-4.05296790299991, 54.78546784100007), (-4.050160285999937, 54.78900788000004), (-4.049712693999936, 54.78998444200005), (-4.051747199999909, 54.800034898000035), (-4.0477188789999445, 54.81305573100008), (-4.049956834999932, 54.82322825700004), (-4.063588019999941, 54.82684967700004), (-4.064035610999952, 54.83152903900003), (-4.078602667999917, 54.82412344000005), (-4.09007727799991, 54.809759833000044), (-4.093495245999918, 54.792669989000046), (-4.083851691999939, 54.77692291900007), (-4.122954881999931, 54.77301666900007), (-4.173939581999946, 54.792303778000075), (-4.209136522999927, 54.826239325000074), (-4.200550910999937, 54.86627838700008), (-4.215402798999946, 54.861029364000046), (-4.2397354809999115, 54.843003648000035), (-4.255767381999931, 54.838324286000045), (-4.2707413399999155, 54.83942291900007), (-4.345285610999952, 54.86017487200007), (-4.3569229809999115, 54.86554596600007), (-4.3656306629999335, 54.87250397300005), (-4.375152147999927, 54.88690827000005), (-4.379872199999909, 54.89789459800005), (-4.386789516999954, 54.90477122600004), (-4.402902798999946, 54.90729401200008), (-4.409006313999953, 54.90302155200004), (-4.416818813999953, 54.89280833500004), (-4.423573370999918, 54.88035716400003), (-4.426503058999913, 54.86945221600007), (-4.4172257149999155, 54.84593333500004), (-4.4094132149999155, 54.831244208000044), (-4.402902798999946, 54.82469310100004), (-4.386708136999914, 54.82416413000004), (-4.372425910999937, 54.82184479400007), (-4.35960852799991, 54.81663646000004), (-4.347645636999914, 54.80731842700004), (-4.344471808999913, 54.79450104400007), (-4.353179490999935, 54.78310781500005), (-4.358143683999913, 54.77098216400003), (-4.343861456999946, 54.75641510600008), (-4.356516079999949, 54.741888739000046), (-4.353260870999918, 54.72089264500005), (-4.348133917999917, 54.70197174700007), (-4.3547257149999155, 54.693793036000045), (-4.360340949999909, 54.69159577000005), (-4.365305141999954, 54.68695709800005), (-4.371896938999953, 54.68227773600006), (-4.382394985999952, 54.68008047100005), (-4.405262824999909, 54.682074286000045), (-4.426503058999913, 54.687567450000074), (-4.4518123039999296, 54.69879791900007), (-4.46117102799991, 54.701239325000074), (-4.4967341789999296, 54.70062897300005), (-4.505604620999918, 54.70465729400007), (-4.563628709999932, 54.75641510600008), (-4.596669074999909, 54.77529531500005), (-4.714466925999943, 54.81785716400003), (-4.759592251999948, 54.82534414300005), (-4.781076626999948, 54.83307526200008), (-4.799631313999953, 54.86127350500004), (-4.821034308999913, 54.86664459800005), (-4.859120245999918, 54.86627838700008), (-4.88304602799991, 54.86009349200003), (-4.905873175999943, 54.84979889500005), (-4.925770636999914, 54.83738841400003), (-4.941029425999943, 54.82469310100004), (-4.9496150379999335, 54.81582265800006), (-4.953684048999946, 54.81000397300005), (-4.954823370999918, 54.804754950000074), (-4.954701300999943, 54.79743073100008), (-4.952870245999918, 54.78896719000005), (-4.9479060539999296, 54.777329820000034), (-4.940256313999953, 54.76703522300005), (-4.930165167999917, 54.76264069200005), (-4.923247850999928, 54.75185781500005), (-4.911936001999948, 54.728216864000046), (-4.8959854809999115, 54.70453522300005), (-4.867258266999954, 54.69013092700004), (-4.866932745999918, 54.68146393400008), (-4.872141079999949, 54.663316148000035), (-4.872425910999937, 54.65403880400004), (-4.872059699999909, 54.64923737200007), (-4.859120245999918, 54.63296133000006), (-4.880604620999918, 54.63621653900003), (-4.923491990999935, 54.649725653000075), (-4.944081183999913, 54.652777411000045), (-4.953684048999946, 54.65973541900007), (-4.959868943999936, 54.67552317900004), (-4.958973761999914, 54.69196198100008), (-4.947255011999914, 54.701239325000074), (-4.954823370999918, 54.707464911000045), (-4.958892381999931, 54.714056708000044), (-4.959055141999954, 54.72093333500004), (-4.954701300999943, 54.728501695000034), (-4.973378058999913, 54.729722398000035), (-4.981556769999941, 54.731634833000044), (-4.988189256999931, 54.73529694200005), (-4.992665167999917, 54.74433014500005), (-4.997059699999909, 54.75836823100008), (-5.003285285999937, 54.77130768400008), (-5.0130102199999556, 54.77692291900007), (-5.033192511999914, 54.782416083000044), (-5.1282445949999556, 54.848944403000075), (-5.157134568999936, 54.87909577000005), (-5.175526495999918, 54.91461823100008), (-5.180653449999909, 54.954413153000075), (-5.177601691999939, 54.99054596600007), (-5.170806443999936, 55.008693752000056), (-5.156727667999917, 55.01654694200005), (-5.1356095039999445, 55.01585521000004), (-5.124582485999952, 55.016791083000044), (-5.119740363999938, 55.01992422100005), (-5.115142381999931, 55.03156159100007), (-5.105213995999918, 55.02619049700007), (-5.095529751999948, 55.01508209800005), (-5.091867641999954, 55.00971100500004), (-5.076893683999913, 54.99555084800005), (-5.069488084999932, 54.986029364000046), (-5.064564581999946, 54.97553131700005), (-5.0637914699999556, 54.96458567900004), (-5.065256313999953, 54.940334377000056), (-5.06086178299995, 54.93113841400003), (-5.0475154289999296, 54.92031484600005), (-5.030995245999918, 54.911322333000044), (-5.013091600999928, 54.90961334800005), (-4.9955948559999115, 54.92031484600005), (-4.992298956999946, 54.924261786000045), (-4.988189256999931, 54.927720445000034), (-4.988189256999931, 54.93455638200004), (-5.0240779289999296, 54.97638580900008), (-5.029774542999917, 54.98550039300005), (-5.032500779999907, 54.99371979400007), (-5.033029751999948, 54.99526601800005), (-5.047027147999927, 55.01508209800005), (-5.0502823559999115, 55.02680084800005), (-5.0496720039999445, 55.04897695500006), (-5.047596808999913, 55.05573151200008), (-5.043446417999917, 55.06427643400008), (-5.0257869129999335, 55.08869049700007), (-5.018950975999928, 55.10224030200004), (-5.016184048999946, 55.12262604400007), (-5.007801886999914, 55.14118073100008), (-4.988270636999914, 55.15265534100007), (-4.947255011999914, 55.16791413000004), (-4.882394985999952, 55.21857330900008), (-4.877552863999938, 55.22089264500005), (-4.867258266999954, 55.22247955900008), (-4.865305141999954, 55.22565338700008), (-4.865589972999942, 55.236314195000034), (-4.864816860999952, 55.24135976800005), (-4.841949022999927, 55.275091864000046), (-4.838002081999946, 55.28400299700007), (-4.8372289699999556, 55.293850002000056), (-4.839751756999931, 55.31557851800005), (-4.838002081999946, 55.32501862200007), (-4.832508917999917, 55.33112213700008), (-4.7992244129999335, 55.354722398000035), (-4.781076626999948, 55.36351146000004), (-4.773101365999935, 55.36937083500004), (-4.767160610999952, 55.37905508000006), (-4.758778449999909, 55.40228913000004), (-4.7492569649999155, 55.413763739000046), (-4.71703040299991, 55.43048737200007), (-4.650502081999946, 55.448472398000035), (-4.626332160999937, 55.468410549000055), (-4.617787238999938, 55.49559153900003), (-4.626779751999948, 55.51972077000005), (-4.6507869129999335, 55.53705475500004), (-4.687163865999935, 55.544134833000044), (-4.66624915299991, 55.562201239000046), (-4.666493292999917, 55.56329987200007), (-4.6711319649999155, 55.584418036000045), (-4.692738410999937, 55.60521067900004), (-4.7219945949999556, 55.619208075000074), (-4.776519334999932, 55.632879950000074), (-4.808745897999927, 55.63361237200007), (-4.818104620999918, 55.63719310100004), (-4.810617641999954, 55.646551825000074), (-4.810617641999954, 55.653998114000046), (-4.868560350999928, 55.67560455900008), (-4.900990363999938, 55.69232819200005), (-4.920521613999938, 55.70856354400007), (-4.876332160999937, 55.735256252000056), (-4.861073370999918, 55.756740627000056), (-4.865305141999954, 55.79047272300005), (-4.8717341789999296, 55.802435614000046), (-4.8777970039999445, 55.81102122600004), (-4.882720506999931, 55.82135651200008), (-4.888661261999914, 55.864528713000084), (-4.888824022999927, 55.865301825000074), (-4.892648891999954, 55.89288971600007), (-4.886463995999918, 55.91966380400004), (-4.872141079999949, 55.937201239000046), (-4.849354620999918, 55.94822825700004), (-4.818104620999918, 55.95563385600008), (-4.799387173999946, 55.957912502000056), (-4.7857966789999296, 55.95697663000004), (-4.722320115999935, 55.94009023600006), (-4.705433722999942, 55.93846263200004), (-4.693959113999938, 55.94135163000004), (-4.6725154289999296, 55.93378327000005), (-4.505970831999946, 55.91909414300005), (-4.4816788399999155, 55.92829010600008), (-4.590606248999961, 55.941514390000066), (-4.630034959999932, 55.94627513200004), (-4.673451300999943, 55.96185944200005), (-4.724517381999931, 55.99835846600007), (-4.765044725999928, 56.007066148000035), (-4.78343665299991, 56.017645575000074), (-4.7992244129999335, 56.030951239000046), (-4.810617641999954, 56.04376862200007), (-4.8237198559999115, 56.07367584800005), (-4.824330206999946, 56.07851797100005), (-4.8391820949999556, 56.08063385600008), (-4.844309048999946, 56.07298411700003), (-4.843739386999914, 56.06297435100004), (-4.837554490999935, 56.05060455900008), (-4.790150519999941, 56.010199286000045), (-4.778920050999943, 55.99209219000005), (-4.785308397999927, 55.984035549000055), (-4.803618943999936, 55.982082424000055), (-4.828033006999931, 55.98232656500005), (-4.851551886999914, 55.98802317900004), (-4.862294074999909, 56.00214264500005), (-4.865386522999927, 56.02020905200004), (-4.866851365999935, 56.05833567900004), (-4.865386522999927, 56.06671784100007), (-4.826324022999927, 56.124212958000044), (-4.755441860999952, 56.188381252000056), (-4.750884568999936, 56.20270416900007), (-4.755523240999935, 56.20652903900003), (-4.7662654289999296, 56.20209381700005), (-4.7799373039999296, 56.191473700000074), (-4.837269660999937, 56.12441640800006), (-4.851673956999946, 56.112616278000075), (-4.873117641999954, 56.11200592700004), (-4.880604620999918, 56.11985911700003), (-4.878977016999954, 56.15053945500006), (-4.883168097999942, 56.16400788000004), (-4.893544074999909, 56.174261786000045), (-4.9070938789999445, 56.177069403000075), (-4.920521613999938, 56.16791413000004), (-4.909087693999936, 56.14996979400007), (-4.895253058999913, 56.11473216400003), (-4.8862198559999115, 56.08038971600007), (-4.889149542999917, 56.06484609600005), (-4.901926235999952, 56.06191640800006), (-4.904367641999954, 56.054348049000055), (-4.900054490999935, 56.03412506700005), (-4.900054490999935, 56.01459381700005), (-4.898019985999952, 56.001166083000044), (-4.892648891999954, 55.98973216400003), (-4.906402147999927, 55.98574453300006), (-4.921457485999952, 55.98867422100005), (-4.937489386999914, 55.993841864000046), (-4.954701300999943, 55.99656810100004), (-4.954701300999943, 55.98973216400003), (-4.942005988999938, 55.986314195000034), (-4.928863084999932, 55.98114655200004), (-4.918446417999917, 55.97333405200004), (-4.913685675999943, 55.96185944200005), (-4.917388475999928, 55.94745514500005), (-4.9272354809999115, 55.93768952000005), (-4.9387100899999155, 55.92963288000004), (-4.947255011999914, 55.92084381700005), (-4.952137824999909, 55.90912506700005), (-4.954986131999931, 55.89935944200005), (-4.95921790299991, 55.89012278900003), (-4.96898352799991, 55.87986888200004), (-4.983143683999913, 55.87103913000004), (-4.994740363999938, 55.86981842700004), (-5.026356574999909, 55.87372467700004), (-5.0424698559999115, 55.884751695000034), (-5.056752081999946, 55.91030508000006), (-5.0668025379999335, 55.938788153000075), (-5.070790167999917, 55.958685614000046), (-5.1108292309999115, 55.98895905200004), (-5.116037563999953, 56.00169505400004), (-5.123605923999946, 56.00991445500006), (-5.139637824999909, 56.00275299700007), (-5.123768683999913, 55.986314195000034), (-5.085682745999918, 55.93187083500004), (-5.078236456999946, 55.91095612200007), (-5.086537238999938, 55.901271877000056), (-5.105620897999927, 55.90497467700004), (-5.171538865999935, 55.935532945000034), (-5.180653449999909, 55.948431708000044), (-5.180653449999909, 55.96930573100008), (-5.190825975999928, 55.96173737200007), (-5.1996150379999335, 55.948553778000075), (-5.2057185539999296, 55.93451569200005), (-5.207915818999936, 55.92462799700007), (-5.212635870999918, 55.91714101800005), (-5.242054816999939, 55.89288971600007), (-5.218129035999937, 55.86469147300005), (-5.208159959999932, 55.849269924000055), (-5.201079881999931, 55.83148834800005), (-5.2193904289999296, 55.83144765800006), (-5.2631729809999115, 55.845770575000074), (-5.296701626999948, 55.85268789300005), (-5.307118292999917, 55.86041901200008), (-5.313384568999936, 55.88544342700004), (-5.319325324999909, 55.889105536000045), (-5.327219204999949, 55.89154694200005), (-5.3348282539999445, 55.89667389500005), (-5.3382869129999335, 55.90375397300005), (-5.3391007149999155, 55.91303131700005), (-5.3382869129999335, 55.93138255400004), (-5.336089647999927, 55.93919505400004), (-5.326161261999914, 55.95026276200008), (-5.323963995999918, 55.958685614000046), (-5.325754360999952, 55.967230536000045), (-5.3382869129999335, 55.99656810100004), (-5.313628709999932, 56.01235586100006), (-5.204497850999928, 56.11945221600007), (-5.146473761999914, 56.13312409100007), (-5.104603644999941, 56.15151601800005), (-5.0949600899999155, 56.15737539300005), (-5.0594376289999445, 56.203111070000034), (-5.043446417999917, 56.21629466400003), (-5.013295050999943, 56.22760651200008), (-4.974964972999942, 56.23700592700004), (-4.9400935539999296, 56.25141022300005), (-4.920521613999938, 56.277777411000045), (-4.938099738999938, 56.27098216400003), (-4.975087042999917, 56.24799225500004), (-4.991932745999918, 56.24298737200007), (-5.0327042309999115, 56.24115631700005), (-5.049549933999913, 56.23704661700003), (-5.064564581999946, 56.22931549700007), (-5.0754288399999155, 56.21698639500005), (-5.099436001999948, 56.18195221600007), (-5.1088761059999115, 56.174709377000056), (-5.228138800999943, 56.12921784100007), (-5.3109431629999335, 56.05805084800005), (-5.319935675999943, 56.05491771000004), (-5.338042772999927, 56.05410390800006), (-5.345692511999914, 56.051214911000045), (-5.345285610999952, 56.046128648000035), (-5.350209113999938, 56.03192780200004), (-5.356353318999936, 56.01976146000004), (-5.359364386999914, 56.020738023000035), (-5.3686417309999115, 56.009426174000055), (-5.390288865999935, 56.00568268400008), (-5.415028449999909, 56.00690338700008), (-5.43382727799991, 56.010199286000045), (-5.434559699999909, 56.014960028000075), (-5.434722459999932, 56.02362702000005), (-5.437123175999943, 56.03001536700003), (-5.444406704999949, 56.02757396000004), (-5.4479060539999296, 56.02228424700007), (-5.448231574999909, 56.016058661000045), (-5.447621222999942, 56.009426174000055), (-5.454986131999931, 55.95563385600008), (-5.45140540299991, 55.95343659100007), (-5.436431443999936, 55.94896067900004), (-5.430775519999941, 55.94818756700005), (-5.420806443999936, 55.92829010600008), (-5.416737433999913, 55.91681549700007), (-5.416005011999914, 55.907416083000044), (-5.4125056629999335, 55.899603583000044), (-5.400380011999914, 55.89288971600007), (-5.400380011999914, 55.886704820000034), (-5.407215949999909, 55.886704820000034), (-5.407215949999909, 55.87986888200004), (-5.402943488999938, 55.87872955900008), (-5.39289303299995, 55.87372467700004), (-5.3976944649999155, 55.87156810100004), (-5.402495897999927, 55.868353583000044), (-5.407215949999909, 55.86627838700008), (-5.35179602799991, 55.83242422100005), (-5.326771613999938, 55.808579820000034), (-5.317779100999928, 55.78302643400008), (-5.324574347999942, 55.769232489000046), (-5.3385310539999296, 55.76264069200005), (-5.372425910999937, 55.75641510600008), (-5.3875626289999445, 55.75031159100007), (-5.433461066999939, 55.72101471600007), (-5.4445694649999155, 55.71161530200004), (-5.4539688789999445, 55.70058828300006), (-5.46117102799991, 55.68813711100006), (-5.463612433999913, 55.67983633000006), (-5.466175910999937, 55.662176825000074), (-5.468617316999939, 55.653998114000046), (-5.490101691999939, 55.644598700000074), (-5.488270636999914, 55.640326239000046), (-5.484283006999931, 55.63572825700004), (-5.482289191999939, 55.632879950000074), (-5.4838761059999115, 55.61005280200004), (-5.474761522999927, 55.603949286000045), (-5.462635870999918, 55.60203685100004), (-5.454986131999931, 55.59194570500006), (-5.461089647999927, 55.57880280200004), (-5.476918097999942, 55.57489655200004), (-5.488758917999917, 55.56907786700003), (-5.482289191999939, 55.55027903900003), (-5.503529425999943, 55.52651601800005), (-5.509632941999939, 55.516791083000044), (-5.5106095039999445, 55.51146067900004), (-5.509632941999939, 55.49258047100005), (-5.5109757149999155, 55.484442450000074), (-5.514271613999938, 55.48387278900003), (-5.5187882149999155, 55.48517487200007), (-5.523264126999948, 55.48265208500004), (-5.545521613999938, 55.44916413000004), (-5.561512824999909, 55.435532945000034), (-5.5846248039999296, 55.427435614000046), (-5.5846248039999296, 55.421210028000075), (-5.572132941999939, 55.422308661000045), (-5.562082485999952, 55.41986725500004), (-5.553089972999942, 55.41453685100004), (-5.543690558999913, 55.40692780200004), (-5.527455206999946, 55.38434479400007), (-5.5266820949999556, 55.38027578300006), (-5.5149633449999556, 55.37368398600006), (-5.525054490999935, 55.358628648000035), (-5.557972785999937, 55.33185455900008), (-5.574370897999927, 55.32200755400004), (-5.594105597999942, 55.31313711100006), (-5.616281704999949, 55.30658600500004), (-5.6399633449999556, 55.303900458000044), (-5.649525519999941, 55.30516185100004), (-5.669097459999932, 55.31085846600007), (-5.6808975899999155, 55.31134674700007), (-5.691395636999914, 55.308579820000034), (-5.714019334999932, 55.29913971600007), (-5.725575324999909, 55.29706452000005), (-5.7545466789999296, 55.29734935100004), (-5.772287563999953, 55.30125560100004), (-5.782866990999935, 55.31354401200008), (-5.794667120999918, 55.35639069200005), (-5.796701626999948, 55.37909577000005), (-5.7914119129999335, 55.39862702000005), (-5.763417120999918, 55.41205475500004), (-5.725412563999953, 55.437567450000074), (-5.715646938999953, 55.44790273600006), (-5.7152400379999335, 55.46889883000006), (-5.720122850999928, 55.491522528000075), (-5.7219132149999155, 55.51386139500005), (-5.707753058999913, 55.54336172100005), (-5.712066209999932, 55.55072663000004), (-5.718861456999946, 55.55731842700004), (-5.721831834999932, 55.56460195500006), (-5.718129035999937, 55.57575104400007), (-5.694488084999932, 55.605536200000074), (-5.6733292309999115, 55.640611070000034), (-5.6694229809999115, 55.66071198100008), (-5.6808975899999155, 55.67446523600006), (-5.626535610999952, 55.70062897300005), (-5.61945553299995, 55.71198151200008), (-5.613189256999931, 55.725775458000044), (-5.5982966789999296, 55.74298737200007), (-5.581206834999932, 55.75763580900008), (-5.5678604809999115, 55.76386139500005), (-5.539173956999946, 55.77094147300005), (-5.504628058999913, 55.78937409100007), (-5.4735001289999445, 55.815659898000035), (-5.454986131999931, 55.845770575000074), (-5.551747199999909, 55.783636786000045), (-5.587473110999952, 55.76715729400007), (-5.599436001999948, 55.76422760600008), (-5.6126195949999556, 55.76386139500005), (-5.60578365799995, 55.77684153900003), (-5.6332087879999335, 55.78278229400007), (-5.64671790299991, 55.78750234600005), (-5.66038977799991, 55.79734935100004), (-5.667958136999914, 55.81102122600004), (-5.669016079999949, 55.83783600500004), (-5.67406165299991, 55.845770575000074), (-5.631988084999932, 55.88178131700005), (-5.625599738999938, 55.889837958000044), (-5.61937415299991, 55.90314362200007), (-5.6043595039999445, 55.91364166900007), (-5.586293097999942, 55.92332591400003), (-5.571034308999913, 55.93451569200005), (-5.593495245999918, 55.92796458500004), (-5.6275935539999296, 55.90534088700008), (-5.6537979809999115, 55.89760976800005), (-5.671701626999948, 55.88690827000005), (-5.6808975899999155, 55.886704820000034), (-5.687977667999917, 55.89337799700007), (-5.694162563999953, 55.90497467700004), (-5.696400519999941, 55.91596100500004), (-5.586822068999936, 56.01203034100007), (-5.57843990799995, 56.02448151200008), (-5.5826716789999296, 56.028957424000055), (-5.576649542999917, 56.032538153000075), (-5.571034308999913, 56.037543036000045), (-5.583892381999931, 56.040716864000046), (-5.596424933999913, 56.036810614000046), (-5.609852667999917, 56.03001536700003), (-5.625599738999938, 56.02448151200008), (-5.6317032539999445, 56.005926825000074), (-5.674875454999949, 55.977728583000044), (-5.67406165299991, 55.95563385600008), (-5.690785285999937, 55.93764883000006), (-5.694488084999932, 55.93451569200005), (-5.704497850999928, 55.936753648000035), (-5.707508917999917, 55.942572333000044), (-5.705881313999953, 55.949652411000045), (-5.701975063999953, 55.95563385600008), (-5.696441209999932, 55.98216380400004), (-5.659901495999918, 56.02326080900008), (-5.5846248039999296, 56.08466217700004), (-5.5815323559999115, 56.08828359600005), (-5.580067511999914, 56.09292226800005), (-5.5774633449999556, 56.096991278000075), (-5.571034308999913, 56.09902578300006), (-5.564605272999927, 56.098089911000045), (-5.556548631999931, 56.09589264500005), (-5.550689256999931, 56.09349192900004), (-5.550526495999918, 56.09218984600005), (-5.547840949999909, 56.09003327000005), (-5.5394587879999335, 56.08685944200005), (-5.531605597999942, 56.08633047100005), (-5.530100063999953, 56.09218984600005), (-5.534738735999952, 56.098537502000056), (-5.5414119129999335, 56.10248444200005), (-5.5475154289999296, 56.10488515800006), (-5.550526495999918, 56.10643138200004), (-5.55695553299995, 56.12221914300005), (-5.558705206999946, 56.13080475500004), (-5.554676886999914, 56.13739655200004), (-5.522531704999949, 56.16575755400004), (-5.515736456999946, 56.174709377000056), (-5.509632941999939, 56.188381252000056), (-5.5399063789999445, 56.18341705900008), (-5.562489386999914, 56.16791413000004), (-5.5826716789999296, 56.15058014500005), (-5.60578365799995, 56.139960028000075), (-5.599354620999918, 56.160589911000045), (-5.586415167999917, 56.18113841400003), (-5.569406704999949, 56.20026276200008), (-5.550526495999918, 56.21629466400003), (-5.5594376289999445, 56.22955963700008), (-5.547230597999942, 56.24017975500004), (-5.52562415299991, 56.247259833000044), (-5.50617428299995, 56.24982330900008), (-5.494740363999938, 56.253119208000044), (-5.4928279289999296, 56.26040273600006), (-5.4992569649999155, 56.267645575000074), (-5.512684699999909, 56.27094147300005), (-5.554269985999952, 56.26349518400008), (-5.5631404289999296, 56.26032135600008), (-5.572621222999942, 56.25385163000004), (-5.58234615799995, 56.24876536700003), (-5.592152472999942, 56.24982330900008), (-5.5980525379999335, 56.25861237200007), (-5.595570441999939, 56.26992422100005), (-5.5846248039999296, 56.29075755400004), (-5.57258053299995, 56.32807038000004), (-5.56273352799991, 56.341050523000035), (-5.543690558999913, 56.352850653000075), (-5.525217251999948, 56.34662506700005), (-5.498199022999927, 56.34833405200004), (-5.4481095039999445, 56.35968659100007), (-5.4481095039999445, 56.36591217700004), (-5.4721573559999115, 56.364935614000046), (-5.515370245999918, 56.35683828300006), (-5.5375056629999335, 56.35968659100007), (-5.517323370999918, 56.39276764500005), (-5.509632941999939, 56.40062083500004), (-5.498931443999936, 56.404730536000045), (-5.486073370999918, 56.40810781500005), (-5.4780167309999115, 56.41290924700007), (-5.482289191999939, 56.421128648000035), (-5.457020636999914, 56.44086334800005), (-5.423573370999918, 56.45001862200007), (-5.322865363999938, 56.45498281500005), (-5.242054816999939, 56.44220612200007), (-5.208729620999918, 56.44684479400007), (-5.18187415299991, 56.45966217700004), (-5.118519660999937, 56.50775788000004), (-5.085682745999918, 56.54877350500004), (-5.064564581999946, 56.56513092700004), (-5.086537238999938, 56.55849844000005), (-5.099598761999914, 56.54364655200004), (-5.1105850899999155, 56.52586497600004), (-5.125965949999909, 56.51048411700003), (-5.166900193999936, 56.49005768400008), (-5.190174933999913, 56.46865469000005), (-5.201079881999931, 56.462103583000044), (-5.243763800999943, 56.45921458500004), (-5.350168423999946, 56.47296784100007), (-5.378081834999932, 56.458970445000034), (-5.394276495999918, 56.46548086100006), (-5.4105525379999335, 56.50364817900004), (-5.42414303299995, 56.500067450000074), (-5.4359431629999335, 56.49115631700005), (-5.454986131999931, 56.46954987200007), (-5.468617316999939, 56.47573476800005), (-5.433338995999918, 56.52362702000005), (-5.427642381999931, 56.53782786700003), (-5.4037979809999115, 56.524603583000044), (-5.379261847999942, 56.519191799000055), (-5.3566788399999155, 56.51968008000006), (-5.3382869129999335, 56.52415599200003), (-5.2905167309999115, 56.54466380400004), (-5.265044725999928, 56.551214911000045), (-5.252552863999938, 56.556341864000046), (-5.242054816999939, 56.56513092700004), (-5.27562415299991, 56.553615627000056), (-5.286773240999935, 56.552069403000075), (-5.306792772999927, 56.552801825000074), (-5.3109431629999335, 56.552069403000075), (-5.327707485999952, 56.54466380400004), (-5.338693813999953, 56.542303778000075), (-5.360340949999909, 56.53221263200004), (-5.372425910999937, 56.53034088700008), (-5.384348110999952, 56.53343333500004), (-5.400502081999946, 56.54364655200004), (-5.413929816999939, 56.54466380400004), (-5.410878058999913, 56.552069403000075), (-5.407297329999949, 56.55532461100006), (-5.402699347999942, 56.55744049700007), (-5.396636522999927, 56.561712958000044), (-5.392689581999946, 56.566473700000074), (-5.3893123039999296, 56.57489655200004), (-5.386626756999931, 56.57880280200004), (-5.360707160999937, 56.60626862200007), (-5.351918097999942, 56.612941799000055), (-5.31086178299995, 56.63361237200007), (-5.304514126999948, 56.64016347900008), (-5.298451300999943, 56.64642975500004), (-5.317779100999928, 56.65387604400007), (-5.317779100999928, 56.661322333000044), (-5.309071417999917, 56.66425202000005), (-5.286773240999935, 56.674994208000044), (-5.261463995999918, 56.67332591400003), (-5.248199022999927, 56.67405833500004), (-5.218902147999927, 56.688666083000044), (-5.196441209999932, 56.688666083000044), (-5.153309699999909, 56.68121979400007), (-5.132639126999948, 56.68451569200005), (-5.093373175999943, 56.69904205900008), (-5.012806769999941, 56.70929596600007), (-4.9955948559999115, 56.71596914300005), (-5.1605525379999335, 56.69586823100008), (-5.238270636999914, 56.71662018400008), (-5.23851477799991, 56.72256094000005), (-5.228423631999931, 56.73647695500006), (-5.222075975999928, 56.741522528000075), (-5.154652472999942, 56.78229401200008), (-5.136382615999935, 56.79877350500004), (-5.119740363999938, 56.818426825000074), (-5.179066535999937, 56.78925202000005), (-5.187489386999914, 56.78115469000005), (-5.191761847999942, 56.774644273000035), (-5.202259894999941, 56.76911041900007), (-5.214670376999948, 56.76520416900007), (-5.224964972999942, 56.763739325000074), (-5.233469204999949, 56.76068756700005), (-5.237049933999913, 56.75336334800005), (-5.2389216789999296, 56.74445221600007), (-5.242054816999939, 56.73647695500006), (-5.255238410999937, 56.721584377000056), (-5.268462693999936, 56.71308014500005), (-5.283355272999927, 56.70937734600005), (-5.30101477799991, 56.70856354400007), (-5.3098038399999155, 56.70648834800005), (-5.319162563999953, 56.69749583500004), (-5.34015865799995, 56.693060614000046), (-5.348378058999913, 56.687201239000046), (-5.359364386999914, 56.674994208000044), (-5.388050910999937, 56.65521881700005), (-5.403879360999952, 56.64923737200007), (-5.4242244129999335, 56.64704010600008), (-5.434396938999953, 56.64288971600007), (-5.4487198559999115, 56.62457916900007), (-5.458119269999941, 56.620347398000035), (-5.470773891999954, 56.618394273000035), (-5.482574022999927, 56.613267320000034), (-5.493316209999932, 56.60639069200005), (-5.53343665299991, 56.57290273600006), (-5.599598761999914, 56.52903880400004), (-5.667388475999928, 56.498480536000045), (-5.67406165299991, 56.49689362200007), (-5.683013475999928, 56.50063711100006), (-5.694691535999937, 56.51386139500005), (-5.70539303299995, 56.51666901200008), (-5.721791144999941, 56.51850006700005), (-5.740834113999938, 56.52326080900008), (-5.7582087879999335, 56.52997467700004), (-5.770253058999913, 56.53782786700003), (-5.7551977199999556, 56.554022528000075), (-5.751047329999949, 56.56199778900003), (-5.749134894999941, 56.571966864000046), (-5.756662563999953, 56.571966864000046), (-5.793853318999936, 56.54328034100007), (-5.8543595039999445, 56.550482489000046), (-6.0034073559999115, 56.61871979400007), (-6.009836391999954, 56.62653229400007), (-6.008168097999942, 56.642279364000046), (-5.998036261999914, 56.64988841400003), (-5.983509894999941, 56.65281810100004), (-5.933583136999914, 56.654730536000045), (-5.899037238999938, 56.650824286000045), (-5.866851365999935, 56.64154694200005), (-5.8391820949999556, 56.62653229400007), (-5.831695115999935, 56.633978583000044), (-5.855620897999927, 56.64472077000005), (-5.865589972999942, 56.65143463700008), (-5.865834113999938, 56.661322333000044), (-5.75999915299991, 56.70075104400007), (-5.735503709999932, 56.702337958000044), (-5.672596808999913, 56.68414948100008), (-5.647368943999936, 56.68121979400007), (-5.5941462879999335, 56.68333567900004), (-5.564808722999942, 56.68764883000006), (-5.543690558999913, 56.69546133000006), (-5.636545376999948, 56.688666083000044), (-5.658558722999942, 56.690741278000075), (-5.708851691999939, 56.70856354400007), (-5.749989386999914, 56.714544989000046), (-5.859038865999935, 56.68121979400007), (-5.89679928299995, 56.675116278000075), (-5.907378709999932, 56.674994208000044), (-5.9203181629999335, 56.67796458500004), (-5.942738410999937, 56.686753648000035), (-5.955555792999917, 56.688666083000044), (-6.0248917309999115, 56.68569570500006), (-6.098622199999909, 56.696966864000046), (-6.123850063999953, 56.69562409100007), (-6.143544074999909, 56.684881903000075), (-6.161732550999943, 56.67820872600004), (-6.186594204999949, 56.68109772300005), (-6.2096248039999296, 56.68846263200004), (-6.222767706999946, 56.69546133000006), (-6.228179490999935, 56.70107656500005), (-6.232533331999946, 56.70652903900003), (-6.235340949999909, 56.71238841400003), (-6.236398891999954, 56.71906159100007), (-6.234486456999946, 56.728583075000074), (-6.229562954999949, 56.72907135600008), (-6.222767706999946, 56.72719961100006), (-6.215321417999917, 56.72964101800005), (-6.193470831999946, 56.74852122600004), (-6.1805313789999445, 56.75462474200003), (-6.026966925999943, 56.763739325000074), (-6.0148819649999155, 56.76703522300005), (-5.979888475999928, 56.78156159100007), (-5.965199347999942, 56.784857489000046), (-5.948231574999909, 56.782538153000075), (-5.937977667999917, 56.77692291900007), (-5.928537563999953, 56.769964911000045), (-5.913644985999952, 56.763739325000074), (-5.860910610999952, 56.75079987200007), (-5.8522029289999296, 56.746975002000056), (-5.853342251999948, 56.757879950000074), (-5.858143683999913, 56.768459377000056), (-5.8683975899999155, 56.77586497600004), (-5.886341925999943, 56.777411200000074), (-5.886341925999943, 56.784857489000046), (-5.874012824999909, 56.78571198100008), (-5.861805792999917, 56.78510163000004), (-5.850087042999917, 56.782456773000035), (-5.8391820949999556, 56.777411200000074), (-5.8246150379999335, 56.78758372600004), (-5.8020727199999556, 56.79181549700007), (-5.7766007149999155, 56.787990627000056), (-5.756662563999953, 56.784857489000046), (-5.831695115999935, 56.80536530200004), (-5.8508194649999155, 56.818019924000055), (-5.851185675999943, 56.82892487200007), (-5.837473110999952, 56.83661530200004), (-5.7338761059999115, 56.84479401200008), (-5.692738410999937, 56.85492584800005), (-5.66038977799991, 56.87299225500004), (-5.673573370999918, 56.87653229400007), (-5.692005988999938, 56.87531159100007), (-5.7084854809999115, 56.87055084800005), (-5.724354620999918, 56.85382721600007), (-5.744496222999942, 56.85415273600006), (-5.783924933999913, 56.85993073100008), (-5.775380011999914, 56.86994049700007), (-5.735503709999932, 56.89411041900007), (-5.7805883449999556, 56.89874909100007), (-5.874867316999939, 56.887152411000045), (-5.9211319649999155, 56.89411041900007), (-5.8875626289999445, 56.89911530200004), (-5.8522029289999296, 56.90033600500004), (-5.8522029289999296, 56.90770091400003), (-5.859852667999917, 56.91054922100005), (-5.8801163399999155, 56.92202383000006), (-5.8625382149999155, 56.93374258000006), (-5.851429816999939, 56.95425039300005), (-5.842518683999913, 56.977443752000056), (-5.831695115999935, 56.99713776200008), (-5.814116990999935, 57.00950755400004), (-5.786040818999936, 57.02057526200008), (-5.755238410999937, 57.026556708000044), (-5.729318813999953, 57.02383047100005), (-5.719878709999932, 57.017564195000034), (-5.699940558999913, 56.998114325000074), (-5.688303188999953, 56.98969147300005), (-5.67406165299991, 56.983587958000044), (-5.658558722999942, 56.97947825700004), (-5.625599738999938, 56.976629950000074), (-5.571278449999909, 56.98383209800005), (-5.523264126999948, 56.99713776200008), (-5.523264126999948, 57.003973700000074), (-5.540435350999928, 57.001166083000044), (-5.556507941999939, 56.996079820000034), (-5.571278449999909, 56.99331289300005), (-5.5846248039999296, 56.99713776200008), (-5.607085740999935, 56.98851146000004), (-5.628814256999931, 56.991888739000046), (-5.6498917309999115, 56.999660549000055), (-5.6703181629999335, 57.003973700000074), (-5.685536261999914, 57.00958893400008), (-5.681711391999954, 57.02240631700005), (-5.680043097999942, 57.03620026200008), (-5.701975063999953, 57.044907945000034), (-5.710926886999914, 57.044175523000035), (-5.731353318999936, 57.03900788000004), (-5.742339647999927, 57.03807200700004), (-5.752552863999938, 57.04059479400007), (-5.769602016999954, 57.04975006700005), (-5.780181443999936, 57.05174388200004), (-5.791127081999946, 57.05927155200004), (-5.776193813999953, 57.075832424000055), (-5.734486456999946, 57.10541413000004), (-5.722645636999914, 57.116441148000035), (-5.715646938999953, 57.12006256700005), (-5.703277147999927, 57.120754299000055), (-5.673695441999939, 57.11904531500005), (-5.663482225999928, 57.12372467700004), (-5.645863410999937, 57.12946198100008), (-5.620838995999918, 57.12409088700008), (-5.57843990799995, 57.10639069200005), (-5.558257615999935, 57.10040924700007), (-5.4598282539999445, 57.09979889500005), (-5.454986131999931, 57.10297272300005), (-5.447417772999927, 57.11017487200007), (-5.430775519999941, 57.11074453300006), (-5.41429602799991, 57.10822174700007), (-5.407215949999909, 57.10639069200005), (-5.400380011999914, 57.10639069200005), (-5.400380011999914, 57.11383698100008), (-5.420033331999946, 57.12067291900007), (-5.503895636999914, 57.11269765800006), (-5.527414516999954, 57.107489325000074), (-5.540638800999943, 57.10639069200005), (-5.5477188789999445, 57.11009349200003), (-5.573312954999949, 57.12787506700005), (-5.5846248039999296, 57.133693752000056), (-5.668446417999917, 57.147650458000044), (-5.6808975899999155, 57.157904364000046), (-5.673817511999914, 57.174994208000044), (-5.638824022999927, 57.202378648000035), (-5.625599738999938, 57.21625397300005), (-5.644154425999943, 57.23322174700007), (-5.620106574999909, 57.25214264500005), (-5.578236456999946, 57.26675039300005), (-5.543690558999913, 57.27090078300006), (-5.511586066999939, 57.25763580900008), (-5.480091925999943, 57.23700592700004), (-5.446278449999909, 57.22304922100005), (-5.407215949999909, 57.22992584800005), (-5.407215949999909, 57.23672109600005), (-5.448841925999943, 57.24209219000005), (-5.458119269999941, 57.24664948100008), (-5.47288977799991, 57.26121653900003), (-5.482899542999917, 57.268011786000045), (-5.49250240799995, 57.27090078300006), (-5.501942511999914, 57.27765534100007), (-5.4889216789999296, 57.29242584800005), (-5.464833136999914, 57.306626695000034), (-5.4406632149999155, 57.311835028000075), (-5.4406632149999155, 57.31928131700005), (-5.464995897999927, 57.32493724200003), (-5.4817602199999556, 57.31671784100007), (-5.494292772999927, 57.30442942900004), (-5.50617428299995, 57.298163153000075), (-5.523426886999914, 57.29515208500004), (-5.558461066999939, 57.28143952000005), (-5.57843990799995, 57.27765534100007), (-5.599436001999948, 57.27924225500004), (-5.637440558999913, 57.28900788000004), (-5.656971808999913, 57.29132721600007), (-5.7000626289999445, 57.28359609600005), (-5.720570441999939, 57.284491278000075), (-5.729318813999953, 57.298163153000075), (-5.7252498039999296, 57.30158112200007), (-5.701975063999953, 57.33234284100007), (-5.6937556629999335, 57.337103583000044), (-5.671986456999946, 57.34442780200004), (-5.663482225999928, 57.349676825000074), (-5.654367641999954, 57.353949286000045), (-5.647206183999913, 57.34992096600007), (-5.6414688789999445, 57.34320709800005), (-5.636545376999948, 57.33978913000004), (-5.613189256999931, 57.34198639500005), (-5.5012914699999556, 57.37099844000005), (-5.456654425999943, 57.39354075700004), (-5.4481095039999445, 57.42169830900008), (-5.46507727799991, 57.423895575000074), (-5.492054816999939, 57.40875885600008), (-5.5375056629999335, 57.373928127000056), (-5.563465949999909, 57.36310455900008), (-5.586659308999913, 57.36505768400008), (-5.610910610999952, 57.37140534100007), (-5.6399633449999556, 57.373928127000056), (-5.615589972999942, 57.382473049000055), (-5.607085740999935, 57.389105536000045), (-5.609201626999948, 57.397772528000075), (-5.617746548999946, 57.41010163000004), (-5.619618292999917, 57.41669342700004), (-5.624012824999909, 57.41640859600005), (-5.6399633449999556, 57.40802643400008), (-5.707183397999927, 57.35976797100005), (-5.732411261999914, 57.352769273000035), (-5.784575975999928, 57.34857819200005), (-5.807769334999932, 57.35492584800005), (-5.8248591789999296, 57.39435455900008), (-5.822255011999914, 57.39350006700005), (-5.817372199999909, 57.39520905200004), (-5.812855597999942, 57.398098049000055), (-5.8111873039999296, 57.40119049700007), (-5.813872850999928, 57.40452708500004), (-5.8231095039999445, 57.41233958500004), (-5.8248591789999296, 57.41547272300005), (-5.825266079999949, 57.428900458000044), (-5.821888800999943, 57.435532945000034), (-5.8111873039999296, 57.44220612200007), (-5.8215225899999155, 57.44546133000006), (-5.852528449999909, 57.450384833000044), (-5.859038865999935, 57.45270416900007), (-5.861195441999939, 57.46344635600008), (-5.870513475999928, 57.48078034100007), (-5.872670050999943, 57.49371979400007), (-5.869699673999946, 57.500881252000056), (-5.856068488999938, 57.51780833500004), (-5.8522029289999296, 57.52411530200004), (-5.8510636059999115, 57.538397528000075), (-5.851470506999931, 57.55109284100007), (-5.847075975999928, 57.55890534100007), (-5.831695115999935, 57.55882396000004), (-5.833851691999939, 57.563381252000056), (-5.837025519999941, 57.57477448100008), (-5.8391820949999556, 57.579291083000044), (-5.821400519999941, 57.583197333000044), (-5.803618943999936, 57.581366278000075), (-5.7863663399999155, 57.57518138200004), (-5.732574022999927, 57.54523346600007), (-5.715646938999953, 57.538397528000075), (-5.707020636999914, 57.542303778000075), (-5.68976803299995, 57.52789948100008), (-5.6808975899999155, 57.52411530200004), (-5.650868292999917, 57.51264069200005), (-5.6399633449999556, 57.511053778000075), (-5.645334438999953, 57.51666901200008), (-5.648304816999939, 57.52187734600005), (-5.650542772999927, 57.52680084800005), (-5.6535538399999155, 57.53156159100007), (-5.5815323559999115, 57.538397528000075), (-5.5402725899999155, 57.534491278000075), (-5.5168350899999155, 57.534857489000046), (-5.512684699999909, 57.54148997600004), (-5.543120897999927, 57.55536530200004), (-5.588368292999917, 57.56102122600004), (-5.632720506999931, 57.55768463700008), (-5.66038977799991, 57.544582424000055), (-5.694488084999932, 57.56631094000005), (-5.689198370999918, 57.56940338700008), (-5.6808975899999155, 57.579291083000044), (-5.714222785999937, 57.58270905200004), (-5.7316788399999155, 57.59829336100006), (-5.744252081999946, 57.61798737200007), (-5.762806769999941, 57.633978583000044), (-5.778146938999953, 57.63743724200003), (-5.7936091789999296, 57.63857656500005), (-5.8058975899999155, 57.642645575000074), (-5.8111873039999296, 57.65509674700007), (-5.805409308999913, 57.667181708000044), (-5.785023566999939, 57.67951080900008), (-5.790760870999918, 57.68854401200008), (-5.790760870999918, 57.69599030200004), (-5.753570115999935, 57.707464911000045), (-5.734486456999946, 57.70795319200005), (-5.704986131999931, 57.69013092700004), (-5.692494269999941, 57.691066799000055), (-5.68195553299995, 57.69871653900003), (-5.67406165299991, 57.70966217700004), (-5.685170050999943, 57.71141185100004), (-5.692290818999936, 57.716498114000046), (-5.698841925999943, 57.723089911000045), (-5.708851691999939, 57.72955963700008), (-5.720529751999948, 57.73338450700004), (-5.803822394999941, 57.743841864000046), (-5.80695553299995, 57.75462474200003), (-5.8020727199999556, 57.780585028000075), (-5.803822394999941, 57.792222398000035), (-5.801258917999917, 57.800441799000055), (-5.809925910999937, 57.82062409100007), (-5.8111873039999296, 57.833197333000044), (-5.807362433999913, 57.84393952000005), (-5.799956834999932, 57.85370514500005), (-5.789540167999917, 57.86200592700004), (-5.776519334999932, 57.86790599200003), (-5.751128709999932, 57.87335846600007), (-5.724761522999927, 57.87352122600004), (-5.698638475999928, 57.86908600500004), (-5.67406165299991, 57.86050039300005), (-5.677886522999927, 57.846909898000035), (-5.674794074999909, 57.82709381700005), (-5.667958136999914, 57.80695221600007), (-5.66038977799991, 57.792222398000035), (-5.650542772999927, 57.78180573100008), (-5.6373591789999296, 57.77423737200007), (-5.622141079999949, 57.77020905200004), (-5.60578365799995, 57.77049388200004), (-5.613270636999914, 57.77521393400008), (-5.617909308999913, 57.78021881700005), (-5.625599738999938, 57.792222398000035), (-5.613026495999918, 57.792629299000055), (-5.603260870999918, 57.791083075000074), (-5.5846248039999296, 57.784816799000055), (-5.591175910999937, 57.80442942900004), (-5.587025519999941, 57.81858958500004), (-5.5852758449999556, 57.83144765800006), (-5.598988410999937, 57.846869208000044), (-5.6375626289999445, 57.86635976800005), (-5.650380011999914, 57.87775299700007), (-5.6399633449999556, 57.88784414300005), (-5.6476944649999155, 57.88898346600007), (-5.6507869129999335, 57.89081452000005), (-5.6535538399999155, 57.89468008000006), (-5.643950975999928, 57.90420156500005), (-5.620757615999935, 57.92088450700004), (-5.6126195949999556, 57.92877838700008), (-5.598215298999946, 57.91901276200008), (-5.587310350999928, 57.91510651200008), (-5.550526495999918, 57.91510651200008), (-5.556263800999943, 57.88776276200008), (-5.527902798999946, 57.86758047100005), (-5.487049933999913, 57.85586172100005), (-5.454986131999931, 57.85370514500005), (-5.46117102799991, 57.86050039300005), (-5.449045376999948, 57.869126695000034), (-5.437123175999943, 57.897650458000044), (-5.427642381999931, 57.908270575000074), (-5.4149063789999445, 57.90814850500004), (-5.369496222999942, 57.89752838700008), (-5.355620897999927, 57.89126211100006), (-5.327504035999937, 57.87327708500004), (-5.293853318999936, 57.86204661700003), (-5.221587693999936, 57.846869208000044), (-5.236317511999914, 57.86078522300005), (-5.2475479809999115, 57.86701080900008), (-5.276763475999928, 57.87417226800005), (-5.320668097999942, 57.898504950000074), (-5.384917772999927, 57.914129950000074), (-5.39289303299995, 57.91819896000004), (-5.394398566999939, 57.923895575000074), (-5.396839972999942, 57.926214911000045), (-5.3973282539999445, 57.928900458000044), (-5.39289303299995, 57.935614325000074), (-5.386545376999948, 57.936428127000056), (-5.378977016999954, 57.93183014500005), (-5.3717341789999296, 57.93105703300006), (-5.366200324999909, 57.943060614000046), (-5.3471573559999115, 57.936712958000044), (-5.319162563999953, 57.91474030200004), (-5.297352667999917, 57.908270575000074), (-5.2860001289999445, 57.90875885600008), (-5.266957160999937, 57.91400788000004), (-5.2562556629999335, 57.91510651200008), (-5.2436417309999115, 57.91290924700007), (-5.22101803299995, 57.90403880400004), (-5.211293097999942, 57.90208567900004), (-5.198801235999952, 57.897772528000075), (-5.162261522999927, 57.87848541900007), (-5.1199845039999445, 57.86798737200007), (-5.0911352199999556, 57.84031810100004), (-5.070790167999917, 57.833197333000044), (-5.07648678299995, 57.83852773600006), (-5.083404100999928, 57.84756094000005), (-5.0893448559999115, 57.85724518400008), (-5.091867641999954, 57.86420319200005), (-5.0971573559999115, 57.87091705900008), (-5.197255011999914, 57.91787344000005), (-5.221587693999936, 57.92133209800005), (-5.221587693999936, 57.92877838700008), (-5.201893683999913, 57.92865631700005), (-5.193959113999938, 57.935980536000045), (-5.19554602799991, 57.94765859600005), (-5.204497850999928, 57.960150458000044), (-5.216704881999931, 57.96588776200008), (-5.2488907539999445, 57.96938711100006), (-5.2631729809999115, 57.976548570000034), (-5.292632615999935, 57.98061758000006), (-5.333892381999931, 58.00853099200003), (-5.359364386999914, 58.011379299000055), (-5.357167120999918, 58.01406484600005), (-5.3566788399999155, 58.014878648000035), (-5.351918097999942, 58.01752350500004), (-5.366932745999918, 58.02887604400007), (-5.386586066999939, 58.032538153000075), (-5.427642381999931, 58.03119538000004), (-5.424305792999917, 58.03554922100005), (-5.422352667999917, 58.03896719000005), (-5.419585740999935, 58.04205963700008), (-5.413929816999939, 58.04547760600008), (-5.413929816999939, 58.05231354400007), (-5.447010870999918, 58.08437734600005), (-5.428089972999942, 58.09796784100007), (-5.390044725999928, 58.09218984600005), (-5.366200324999909, 58.06598541900007), (-5.344309048999946, 58.075506903000075), (-5.322865363999938, 58.07172272300005), (-5.300770636999914, 58.07013580900008), (-5.276763475999928, 58.08641185100004), (-5.283070441999939, 58.08641185100004), (-5.278065558999913, 58.09625885600008), (-5.2787979809999115, 58.10537344000005), (-5.283558722999942, 58.11347077000005), (-5.2905167309999115, 58.12055084800005), (-5.276763475999928, 58.12055084800005), (-5.276763475999928, 58.127386786000045), (-5.297352667999917, 58.134833075000074), (-5.284087693999936, 58.14008209800005), (-5.255523240999935, 58.143784898000035), (-5.242054816999939, 58.14789459800005), (-5.242054816999939, 58.15534088700008), (-5.275054490999935, 58.15452708500004), (-5.290842251999948, 58.156317450000074), (-5.304798956999946, 58.162095445000034), (-5.297352667999917, 58.168402411000045), (-5.304798956999946, 58.17332591400003), (-5.313059048999946, 58.17731354400007), (-5.321888800999943, 58.18024323100008), (-5.331450975999928, 58.18203359600005), (-5.3293350899999155, 58.186712958000044), (-5.326161261999914, 58.198431708000044), (-5.323963995999918, 58.203111070000034), (-5.336822068999936, 58.203192450000074), (-5.346791144999941, 58.20685455900008), (-5.39289303299995, 58.24469635600008), (-5.3920792309999115, 58.261379299000055), (-5.375884568999936, 58.26422760600008), (-5.352894660999937, 58.25893789300005), (-5.31078040299991, 58.243394273000035), (-5.293853318999936, 58.24091217700004), (-5.276966925999943, 58.243394273000035), (-5.237294074999909, 58.25763580900008), (-5.2160538399999155, 58.261419989000046), (-5.194325324999909, 58.25999583500004), (-5.173207160999937, 58.25092194200005), (-5.165638800999943, 58.258246161000045), (-5.152251756999931, 58.264837958000044), (-5.138335740999935, 58.269598700000074), (-5.129383917999917, 58.27138906500005), (-5.11156165299991, 58.26825592700004), (-5.0812882149999155, 58.25409577000005), (-5.0676977199999556, 58.25092194200005), (-5.017730272999927, 58.253241278000075), (-5.002430792999917, 58.25092194200005), (-4.933583136999914, 58.22304922100005), (-4.943430141999954, 58.233587958000044), (-4.954823370999918, 58.23981354400007), (-4.982004360999952, 58.25092194200005), (-4.968861456999946, 58.25678131700005), (-4.940337693999936, 58.259466864000046), (-4.926747199999909, 58.26459381700005), (-4.990223761999914, 58.27142975500004), (-5.009917772999927, 58.27138906500005), (-5.018055792999917, 58.26862213700008), (-5.029367641999954, 58.25971100500004), (-5.040028449999909, 58.25775788000004), (-5.0501195949999556, 58.25991445500006), (-5.0707087879999335, 58.269232489000046), (-5.081654425999943, 58.27138906500005), (-5.096424933999913, 58.27676015800006), (-5.125965949999909, 58.30019765800006), (-5.1362198559999115, 58.305568752000056), (-5.137440558999913, 58.30927155200004), (-5.156361456999946, 58.32461172100005), (-5.160145636999914, 58.326605536000045), (-5.167795376999948, 58.33926015800006), (-5.171009894999941, 58.34666575700004), (-5.173207160999937, 58.353949286000045), (-5.153309699999909, 58.353949286000045), (-5.1634008449999556, 58.364569403000075), (-5.162912563999953, 58.37449778900003), (-5.155913865999935, 58.384466864000046), (-5.146473761999914, 58.394964911000045), (-5.145497199999909, 58.400051174000055), (-5.14671790299991, 58.40664297100005), (-5.146839972999942, 58.41242096600007), (-5.143055792999917, 58.41478099200003), (-5.135487433999913, 58.413763739000046), (-5.122222459999932, 58.40957265800006), (-5.116037563999953, 58.40859609600005), (-5.057972785999937, 58.38727448100008), (-5.016184048999946, 58.38812897300005), (-5.043934699999909, 58.400091864000046), (-5.0533748039999296, 58.40664297100005), (-5.0502823559999115, 58.41478099200003), (-5.0570369129999335, 58.42218659100007), (-5.066151495999918, 58.41714101800005), (-5.076161261999914, 58.414496161000045), (-5.086822068999936, 58.41388580900008), (-5.0980525379999335, 58.41478099200003), (-5.0980525379999335, 58.42218659100007), (-5.08812415299991, 58.421942450000074), (-5.085031704999949, 58.42218659100007), (-5.085031704999949, 58.429022528000075), (-5.091786261999914, 58.429754950000074), (-5.09601803299995, 58.43146393400008), (-5.105539516999954, 58.43650950700004), (-5.0501195949999556, 58.45380280200004), (-5.025542772999927, 58.447699286000045), (-4.9955948559999115, 58.43650950700004), (-5.105539516999954, 58.48737213700008), (-5.105620897999927, 58.505560614000046), (-5.103667772999927, 58.51422760600008), (-5.095855272999927, 58.518866278000075), (-5.042795376999948, 58.53546784100007), (-5.0279841789999296, 58.54409414300005), (-5.016184048999946, 58.55939362200007), (-5.0229386059999115, 58.55939362200007), (-5.015207485999952, 58.580064195000034), (-5.011586066999939, 58.60057200700004), (-5.004953579999949, 58.61774323100008), (-4.988189256999931, 58.62832265800006), (-4.859486456999946, 58.61322663000004), (-4.835926886999914, 58.60504791900007), (-4.818104620999918, 58.59292226800005), (-4.817941860999952, 58.587591864000046), (-4.81281490799995, 58.571966864000046), (-4.806752081999946, 58.55841705900008), (-4.803822394999941, 58.55939362200007), (-4.804595506999931, 58.54832591400003), (-4.807240363999938, 58.53961823100008), (-4.811634894999941, 58.53204987200007), (-4.818104620999918, 58.524644273000035), (-4.799794074999909, 58.532456773000035), (-4.791818813999953, 58.54165273600006), (-4.7899063789999445, 58.55174388200004), (-4.790150519999941, 58.562486070000034), (-4.785755988999938, 58.577053127000056), (-4.777088995999918, 58.583319403000075), (-4.771595831999946, 58.59039948100008), (-4.776519334999932, 58.60716380400004), (-4.758859829999949, 58.59910716400003), (-4.7280167309999115, 58.577460028000075), (-4.7113337879999335, 58.57306549700007), (-4.683257615999935, 58.56150950700004), (-4.670399542999917, 58.55939362200007), (-4.660023566999939, 58.555853583000044), (-4.659291144999941, 58.54755280200004), (-4.663238084999932, 58.538397528000075), (-4.6673070949999556, 58.53204987200007), (-4.6790258449999556, 58.52391185100004), (-4.714466925999943, 58.50560130400004), (-4.732411261999914, 58.480454820000034), (-4.751535610999952, 58.46161530200004), (-4.7609757149999155, 58.44798411700003), (-4.74242102799991, 58.44953034100007), (-4.682972785999937, 58.48456452000005), (-4.673451300999943, 58.48737213700008), (-4.6668595039999445, 58.50291575700004), (-4.650502081999946, 58.50995514500005), (-4.630441860999952, 58.514960028000075), (-4.612131313999953, 58.524644273000035), (-4.6010636059999115, 58.54193756700005), (-4.595122850999928, 58.56000397300005), (-4.584950324999909, 58.57416413000004), (-4.560536261999914, 58.57990143400008), (-4.517486131999931, 58.575506903000075), (-4.475493943999936, 58.565619208000044), (-4.426503058999913, 58.54637278900003), (-4.426503058999913, 58.53888580900008), (-4.427886522999927, 58.53530508000006), (-4.428700324999909, 58.53473541900007), (-4.426503058999913, 58.524644273000035), (-4.449940558999913, 58.510199286000045), (-4.464751756999931, 58.49201080900008), (-4.477650519999941, 58.47134023600006), (-4.4953507149999155, 58.44953034100007), (-4.478098110999952, 58.453558661000045), (-4.46117102799991, 58.46246979400007), (-4.43390865799995, 58.483628648000035), (-4.432728644999941, 58.487616278000075), (-4.4339900379999335, 58.49237702000005), (-4.4342341789999296, 58.49628327000005), (-4.430165167999917, 58.49799225500004), (-4.425933397999927, 58.49909088700008), (-4.385365363999938, 58.52240631700005), (-4.382394985999952, 58.524644273000035), (-4.343861456999946, 58.53888580900008), (-4.317005988999938, 58.54572174700007), (-4.306996222999942, 58.54637278900003), (-4.287180141999954, 58.54291413000004), (-4.2573136059999115, 58.52798086100006), (-4.234730597999942, 58.524644273000035), (-4.248931443999936, 58.53204987200007), (-4.238189256999931, 58.536444403000075), (-4.232248501999948, 58.54242584800005), (-4.227691209999932, 58.548163153000075), (-4.22101803299995, 58.551947333000044), (-4.209706183999913, 58.55292389500005), (-4.190785285999937, 58.54783763200004), (-4.1769913399999155, 58.54637278900003), (-4.16820227799991, 58.54938385600008), (-4.1605525379999335, 58.562567450000074), (-4.149322068999936, 58.565619208000044), (-4.111195441999939, 58.565619208000044), (-4.0902400379999335, 58.56207916900007), (-4.081450975999928, 58.561835028000075), (-4.070220506999931, 58.565619208000044), (-4.061512824999909, 58.57282135600008), (-4.048817511999914, 58.58958567900004), (-4.039784308999913, 58.59292226800005), (-4.030629035999937, 58.59406159100007), (-4.029042120999918, 58.59516022300005), (-4.027821417999917, 58.59271881700005), (-4.0092667309999115, 58.57330963700008), (-4.003773566999939, 58.57062409100007), (-3.981434699999909, 58.57306549700007), (-3.8957413399999155, 58.565619208000044), (-3.8101293609999516, 58.57306549700007), (-3.7669571609999366, 58.58372630400004), (-3.6983536449999406, 58.61115143400008), (-3.659901495999918, 58.62083567900004), (-3.597564256999931, 58.62714264500005), (-3.565500454999949, 58.626613674000055), (-3.542591925999943, 58.62083567900004), (-3.552479620999918, 58.61546458500004), (-3.556263800999943, 58.61399974200003), (-3.532053188999953, 58.60211823100008), (-3.504017706999946, 58.60333893400008), (-3.447010870999918, 58.61399974200003), (-3.3914688789999445, 58.60065338700008), (-3.364084438999953, 58.600816148000035), (-3.3508194649999155, 58.62083567900004), (-3.3677465489999463, 58.624701239000046), (-3.3860570949999556, 58.631740627000056), (-3.402251756999931, 58.64203522300005), (-3.412912563999953, 58.655585028000075), (-3.3900447259999282, 58.67177969000005), (-3.3748673169999392, 58.677069403000075), (-3.3582657539999445, 58.675482489000046), (-3.3543595039999445, 58.67015208500004), (-3.35179602799991, 58.66083405200004), (-3.34788977799991, 58.652044989000046), (-3.340565558999913, 58.648138739000046), (-3.3098852199999556, 58.648138739000046), (-3.244252081999946, 58.65900299700007), (-3.204090949999909, 58.66111888200004), (-3.1519262359999516, 58.64126211100006), (-3.118763800999943, 58.64109935100004), (-3.052886522999927, 58.648138739000046), (-3.0191137359999516, 58.640326239000046), (-3.025380011999914, 58.62213776200008), (-3.0444229809999115, 58.601629950000074), (-3.049183722999942, 58.58673737200007), (-3.060454881999931, 58.57843659100007), (-3.0754288399999155, 58.56037018400008), (-3.0845434239999463, 58.551947333000044), (-3.1107478509999282, 58.53864166900007), (-3.1180313789999445, 58.53204987200007), (-3.129261847999942, 58.51264069200005), (-3.1293025379999335, 58.49640534100007), (-3.1187231109999516, 58.484442450000074), (-3.0975235669999392, 58.47748444200005), (-3.0850723949999406, 58.47825755400004), (-3.073963995999918, 58.481675523000035), (-3.064442511999914, 58.48297760600008), (-3.056630011999914, 58.47748444200005), (-3.053334113999938, 58.46576569200005), (-3.0577286449999406, 58.45685455900008), (-3.066761847999942, 58.451157945000034), (-3.077056443999936, 58.44953034100007), (-3.0863337879999335, 58.41421133000006), (-3.129790818999936, 58.36928945500006), (-3.182769334999932, 58.32843659100007), (-3.2205297519999476, 58.305568752000056), (-3.2622777989999463, 58.292629299000055), (-3.34984290299991, 58.27610911700003), (-3.38499915299991, 58.26459381700005), (-3.438099738999938, 58.236029364000046), (-3.447010870999918, 58.22675202000005), (-3.454741990999935, 58.210150458000044), (-3.473459438999953, 58.193426825000074), (-3.515288865999935, 58.168402411000045), (-3.7350154289999296, 58.07217031500005), (-3.809193488999938, 58.05190664300005), (-3.8275040359999366, 58.04205963700008), (-3.8362524079999503, 58.03143952000005), (-3.8460994129999335, 58.01117584800005), (-3.851714647999927, 58.003892320000034), (-3.8605850899999155, 57.998928127000056), (-3.8856095039999445, 57.991400458000044), (-3.9173070949999556, 57.98745351800005), (-3.981434699999909, 57.96356842700004), (-3.990956183999913, 57.96039459800005), (-3.997670050999943, 57.954413153000075), (-4.001372850999928, 57.94611237200007), (-4.001942511999914, 57.935614325000074), (-4.018299933999913, 57.940619208000044), (-4.023060675999943, 57.943060614000046), (-4.016184048999946, 57.949286200000074), (-4.0301407539999445, 57.953192450000074), (-4.055775519999941, 57.95498281500005), (-4.0843806629999335, 57.964178778000075), (-4.0891007149999155, 57.960150458000044), (-4.0863337879999335, 57.95189036700003), (-4.0776261059999115, 57.943060614000046), (-4.062652147999927, 57.93695709800005), (-4.03148352799991, 57.93618398600006), (-4.016184048999946, 57.93219635600008), (-4.009429490999935, 57.92767975500004), (-3.988270636999914, 57.908270575000074), (-4.008941209999932, 57.88959381700005), (-4.013824022999927, 57.879339911000045), (-4.009348110999952, 57.86790599200003), (-4.025135870999918, 57.868068752000056), (-4.054839647999927, 57.874335028000075), (-4.070220506999931, 57.87417226800005), (-4.0793350899999155, 57.87026601800005), (-4.0969132149999155, 57.85736725500004), (-4.1049698559999115, 57.85370514500005), (-4.132923956999946, 57.85415273600006), (-4.190419074999909, 57.87006256700005), (-4.218169725999928, 57.87417226800005), (-4.298898891999954, 57.86277903900003), (-4.3209529289999296, 57.87103913000004), (-4.353179490999935, 57.89520905200004), (-4.3723038399999155, 57.90448639500005), (-4.392404751999948, 57.908270575000074), (-4.339588995999918, 57.86570872600004), (-4.307728644999941, 57.85146719000005), (-4.269398566999939, 57.846869208000044), (-4.229074673999946, 57.85724518400008), (-4.2082413399999155, 57.85919830900008), (-4.190581834999932, 57.85028717700004), (-4.173451300999943, 57.83901601800005), (-4.1497289699999556, 57.82982005400004), (-4.1334529289999296, 57.830145575000074), (-4.1390681629999335, 57.846869208000044), (-4.0750626289999445, 57.82318756700005), (-4.0399063789999445, 57.81818268400008), (-3.9835098949999406, 57.84235260600008), (-3.9514867829999503, 57.838324286000045), (-3.933705206999946, 57.82566966400003), (-3.9473363919999542, 57.81268952000005), (-3.914784308999913, 57.80768463700008), (-3.877674933999913, 57.81671784100007), (-3.8418676419999542, 57.83490631700005), (-3.813547329999949, 57.857123114000046), (-3.798451300999943, 57.866522528000075), (-3.786040818999936, 57.86542389500005), (-3.779449022999927, 57.85565827000005), (-3.782215949999909, 57.83942291900007), (-3.790028449999909, 57.83071523600006), (-3.92601477799991, 57.734808661000045), (-3.948841925999943, 57.72492096600007), (-3.975209113999938, 57.70327383000006), (-3.988270636999914, 57.69599030200004), (-4.00804602799991, 57.693793036000045), (-4.02367102799991, 57.69782135600008), (-4.0286352199999556, 57.70770905200004), (-4.016184048999946, 57.72333405200004), (-4.042958136999914, 57.73729075700004), (-4.077951626999948, 57.73029205900008), (-4.155344204999949, 57.692572333000044), (-4.168568488999938, 57.689439195000034), (-4.1939998039999296, 57.68854401200008), (-4.2592667309999115, 57.67869700700004), (-4.277821417999917, 57.68060944200005), (-4.294789191999939, 57.68016185100004), (-4.302154100999928, 57.66860586100006), (-4.30882727799991, 57.65485260600008), (-4.324045376999948, 57.64826080900008), (-4.33820553299995, 57.64508698100008), (-4.4031876289999445, 57.60952383000006), (-4.412180141999954, 57.60297272300005), (-4.4203181629999335, 57.592962958000044), (-4.428456183999913, 57.57754140800006), (-4.423451300999943, 57.57680898600006), (-4.409901495999918, 57.582464911000045), (-4.379872199999909, 57.58934153900003), (-4.365101691999939, 57.59723541900007), (-4.3510636059999115, 57.60736725500004), (-4.340809699999909, 57.617173570000034), (-4.328724738999938, 57.626288153000075), (-4.283111131999931, 57.64142487200007), (-4.2445369129999335, 57.66303131700005), (-4.201893683999913, 57.674994208000044), (-4.1937556629999335, 57.67552317900004), (-4.182240363999938, 57.67279694200005), (-4.169016079999949, 57.663763739000046), (-4.118723110999952, 57.65770091400003), (-4.096791144999941, 57.65810781500005), (-4.0807185539999296, 57.66498444200005), (-4.068104620999918, 57.672308661000045), (-4.0246475899999155, 57.687201239000046), (-4.009348110999952, 57.68854401200008), (-4.004505988999938, 57.67597077000005), (-4.025257941999939, 57.65521881700005), (-4.0541886059999115, 57.63572825700004), (-4.083404100999928, 57.62335846600007), (-4.118560350999928, 57.592962958000044), (-4.11546790299991, 57.58783600500004), (-4.112294074999909, 57.58413320500006), (-4.1088761059999115, 57.58144765800006), (-4.1049698559999115, 57.579291083000044), (-4.151356574999909, 57.57684967700004), (-4.170643683999913, 57.570746161000045), (-4.187489386999914, 57.55882396000004), (-4.178089972999942, 57.54954661700003), (-4.184925910999937, 57.548163153000075), (-4.207997199999909, 57.552069403000075), (-4.262603318999936, 57.552069403000075), (-4.262603318999936, 57.544582424000055), (-4.233957485999952, 57.54511139500005), (-4.220285610999952, 57.543402411000045), (-4.207997199999909, 57.538397528000075), (-4.226307745999918, 57.51544830900008), (-4.237456834999932, 57.50531647300005), (-4.248931443999936, 57.49746328300006), (-4.212798631999931, 57.492173570000034), (-4.1948136059999115, 57.49160390800006), (-4.173898891999954, 57.49746328300006), (-4.157622850999928, 57.50849030200004), (-4.150054490999935, 57.51504140800006), (-4.149322068999936, 57.51788971600007), (-4.126779751999948, 57.518866278000075), (-4.116200324999909, 57.52179596600007), (-4.097523566999939, 57.53668854400007), (-4.082997199999909, 57.54441966400003), (-4.067290818999936, 57.54995351800005), (-4.0531306629999335, 57.552069403000075), (-4.034982876999948, 57.55687083500004), (-4.046457485999952, 57.56785716400003), (-4.083851691999939, 57.58612702000005), (-4.056019660999937, 57.585150458000044), (-3.9643448559999115, 57.592962958000044), (-3.8682755199999406, 57.587876695000034), (-3.8374731109999516, 57.592962958000044), (-3.6848038399999155, 57.65444570500006), (-3.625152147999927, 57.66193268400008), (-3.632557745999918, 57.65094635600008), (-3.637684699999909, 57.64622630400004), (-3.6456192699999406, 57.64142487200007), (-3.632476365999935, 57.635646877000056), (-3.6196182929999168, 57.63621653900003), (-3.606068488999938, 57.63947174700007), (-3.590972459999932, 57.64142487200007), (-3.61156165299991, 57.66811758000006), (-3.5747777989999463, 57.66111888200004), (-3.55492102799991, 57.659857489000046), (-3.535755988999938, 57.66193268400008), (-3.521473761999914, 57.66779205900008), (-3.5054418609999516, 57.67865631700005), (-3.4959610669999392, 57.69135163000004), (-3.501698370999918, 57.702826239000046), (-3.491851365999935, 57.71312083500004), (-3.4828181629999335, 57.71401601800005), (-3.4730525379999335, 57.711004950000074), (-3.460682745999918, 57.70966217700004), (-3.447865363999938, 57.71246979400007), (-3.4212540359999366, 57.72138092700004), (-3.409169074999909, 57.72333405200004), (-3.2847387359999516, 57.72044505400004), (-3.2100723949999406, 57.69399648600006), (-3.0786840489999463, 57.66941966400003), (-3.034901495999918, 57.66860586100006), (-2.994496222999942, 57.67552317900004), (-2.932687954999949, 57.69961172100005), (-2.9160863919999542, 57.702826239000046), (-2.75804602799991, 57.702826239000046), (-2.7512100899999155, 57.70062897300005), (-2.741118943999936, 57.69086334800005), (-2.731068488999938, 57.68854401200008), (-2.719878709999932, 57.690619208000044), (-2.711537238999938, 57.69399648600006), (-2.7035212879999335, 57.69472890800006), (-2.6929418609999516, 57.68854401200008), (-2.658924933999913, 57.69745514500005), (-2.573394334999932, 57.68146393400008), (-2.541981574999909, 57.68235911700003), (-2.526112433999913, 57.66860586100006), (-2.5181371739999463, 57.67011139500005), (-2.5110570949999556, 57.677801825000074), (-2.497954881999931, 57.68235911700003), (-2.4800512359999516, 57.68121979400007), (-2.4328507149999155, 57.66811758000006), (-2.425526495999918, 57.67572663000004), (-2.4177953769999476, 57.674261786000045), (-2.4087621739999463, 57.669623114000046), (-2.398060675999943, 57.66811758000006), (-2.3865860669999392, 57.671576239000046), (-2.369496222999942, 57.680568752000056), (-2.360503709999932, 57.68235911700003), (-2.3410538399999155, 57.675848700000074), (-2.3289688789999445, 57.67405833500004), (-2.3235977859999366, 57.678941148000035), (-2.32054602799991, 57.68455638200004), (-2.313384568999936, 57.68992747600004), (-2.3040665359999366, 57.69399648600006), (-2.295643683999913, 57.69599030200004), (-2.274322068999936, 57.69383372600004), (-2.230132615999935, 57.67914459800005), (-2.209950324999909, 57.67552317900004), (-2.1840714179999168, 57.67845286700003), (-2.1243383449999556, 57.702826239000046), (-2.108143683999913, 57.70498281500005), (-1.9976700509999432, 57.702826239000046), (-1.9969376289999445, 57.69904205900008), (-1.990834113999938, 57.69037506700005), (-1.982167120999918, 57.68109772300005), (-1.9735001289999445, 57.67552317900004), (-1.961293097999942, 57.674709377000056), (-1.9447322259999282, 57.68256256700005), (-1.9324845039999445, 57.68235911700003), (-1.9256892569999309, 57.678168036000045), (-1.914214647999927, 57.66474030200004), (-1.8294571609999366, 57.61347077000005), (-1.820464647999927, 57.59634023600006), (-1.817005988999938, 57.578192450000074), (-1.8113907539999445, 57.56049225500004), (-1.7960098949999406, 57.544582424000055), (-1.7960098949999406, 57.538397528000075), (-1.8000382149999155, 57.52586497600004), (-1.7895401679999168, 57.514837958000044), (-1.7611384759999282, 57.49746328300006), (-1.7753800119999141, 57.496527411000045), (-1.7821345689999362, 57.48899974200003), (-1.7812393869999141, 57.48041413000004), (-1.7717179029999102, 57.476263739000046), (-1.7593481109999516, 57.47357819200005), (-1.7659399079999503, 57.46743398600006), (-1.7891739569999459, 57.45644765800006), (-1.8301488919999542, 57.42617422100005), (-1.8474828769999476, 57.40814850500004), (-1.849964972999942, 57.39435455900008), (-1.9544978509999282, 57.341131903000075), (-1.9802953769999476, 57.31928131700005), (-2.044667120999918, 57.22650788000004), (-2.068511522999927, 57.17462799700007), (-2.074126756999931, 57.15420156500005), (-2.0714005199999406, 57.13556549700007), (-2.052357550999943, 57.12742747600004), (-2.0493057929999168, 57.118841864000046), (-2.065256313999953, 57.10053131700005), (-2.0658259759999282, 57.09983958500004), (-2.156158006999931, 57.020697333000044), (-2.1869197259999282, 56.98468659100007), (-2.200103318999936, 56.94871653900003), (-2.1971329419999392, 56.94025299700007), (-2.1912328769999476, 56.93414948100008), (-2.186268683999913, 56.92674388200004), (-2.1863907539999445, 56.91453685100004), (-2.191314256999931, 56.90892161700003), (-2.209706183999913, 56.895819403000075), (-2.213693813999953, 56.890692450000074), (-2.219878709999932, 56.87262604400007), (-2.23460852799991, 56.861395575000074), (-2.2689509759999282, 56.84634023600006), (-2.295806443999936, 56.82526276200008), (-2.3198136059999115, 56.80158112200007), (-2.336089647999927, 56.79083893400008), (-2.3918350899999155, 56.771185614000046), (-2.4086807929999168, 56.762925523000035), (-2.4264216789999296, 56.751288153000075), (-2.4359431629999335, 56.74038320500006), (-2.4407445949999556, 56.73484935100004), (-2.4516495429999168, 56.69098541900007), (-2.4637345039999445, 56.67877838700008), (-2.4774063789999445, 56.66868724200003), (-2.487456834999932, 56.65387604400007), (-2.4875382149999155, 56.64606354400007), (-2.481271938999953, 56.63239166900007), (-2.480620897999927, 56.62653229400007), (-2.4861954419999392, 56.619574286000045), (-2.504058397999927, 56.60883209800005), (-2.514556443999936, 56.591498114000046), (-2.530018683999913, 56.58075592700004), (-2.623768683999913, 56.543402411000045), (-2.6409399079999503, 56.522365627000056), (-2.6613663399999155, 56.51422760600008), (-2.6997777989999463, 56.50364817900004), (-2.708729620999918, 56.49599844000005), (-2.7276505199999406, 56.46954987200007), (-2.737294074999909, 56.46702708500004), (-2.74437415299991, 56.46954987200007), (-2.752308722999942, 56.47361888200004), (-2.764800584999932, 56.47573476800005), (-2.819325324999909, 56.47129954600007), (-3.055653449999909, 56.45213450700004), (-3.0606176419999542, 56.45172760600008), (-3.099273240999935, 56.44188060100004), (-3.1339005199999406, 56.426947333000044), (-3.238189256999931, 56.36774323100008), (-3.280181443999936, 56.35789622600004), (-3.3234757149999155, 56.36591217700004), (-3.311512824999909, 56.35651276200008), (-3.294016079999949, 56.352769273000035), (-3.2515356109999516, 56.352850653000075), (-3.230620897999927, 56.35602448100008), (-3.188384568999936, 56.37018463700008), (-3.149566209999932, 56.37555573100008), (-2.950266079999949, 56.43187083500004), (-2.9399307929999168, 56.43854401200008), (-2.930653449999909, 56.44806549700007), (-2.909087693999936, 56.45571523600006), (-2.88499915299991, 56.45799388200004), (-2.867909308999913, 56.45184967700004), (-2.8500870429999168, 56.44204336100006), (-2.8147680329999503, 56.44041575700004), (-2.8028051419999542, 56.42796458500004), (-2.800892706999946, 56.40892161700003), (-2.808257615999935, 56.391058661000045), (-2.8216039699999556, 56.376166083000044), (-2.837554490999935, 56.36591217700004), (-2.8129776679999168, 56.36591217700004), (-2.809193488999938, 56.36286041900007), (-2.8047582669999542, 56.34910716400003), (-2.8028051419999542, 56.345404364000046), (-2.7914932929999168, 56.34247467700004), (-2.7826228509999282, 56.34162018400008), (-2.7752579419999392, 56.33942291900007), (-2.768625454999949, 56.33234284100007), (-2.6771541009999282, 56.32843659100007), (-2.655262824999909, 56.32217031500005), (-2.621205206999946, 56.30442942900004), (-2.613189256999931, 56.30190664300005), (-2.5768123039999296, 56.28392161700003), (-2.5768123039999296, 56.277777411000045), (-2.6301163399999155, 56.24852122600004), (-2.648345506999931, 56.22870514500005), (-2.672027147999927, 56.22239817900004), (-2.7202042309999115, 56.21629466400003), (-2.7835994129999335, 56.19196198100008), (-2.8061417309999115, 56.188381252000056), (-2.8307185539999296, 56.190741278000075), (-2.8920792309999115, 56.20888906500005), (-2.940052863999938, 56.209418036000045), (-2.9643448559999115, 56.20563385600008), (-2.9746801419999542, 56.19830963700008), (-2.982411261999914, 56.189113674000055), (-3.0355525379999335, 56.16791413000004), (-3.0910538399999155, 56.13226959800005), (-3.107533331999946, 56.12689850500004), (-3.127552863999938, 56.12287018400008), (-3.138295050999943, 56.112209377000056), (-3.152251756999931, 56.07851797100005), (-3.1635636059999115, 56.06386953300006), (-3.1783748039999296, 56.05809153900003), (-3.2484431629999335, 56.055975653000075), (-3.268381313999953, 56.05093008000006), (-3.3030492829999503, 56.037543036000045), (-3.342681443999936, 56.02716705900008), (-3.381825324999909, 56.02338288000004), (-3.420969204999949, 56.02488841400003), (-3.5825902989999463, 56.05174388200004), (-3.671498175999943, 56.050848700000074), (-3.710031704999949, 56.05809153900003), (-3.7454320949999556, 56.07221100500004), (-3.7464900379999335, 56.072780666000085), (-3.782215949999909, 56.09218984600005), (-3.8031306629999335, 56.107123114000046), (-3.817005988999938, 56.11225006700005), (-3.8374731109999516, 56.112616278000075), (-3.8374731109999516, 56.10643138200004), (-3.777699347999942, 56.08283112200007), (-3.769154425999943, 56.07514069200005), (-3.7608536449999406, 56.07245514500005), (-3.7264298169999392, 56.03803131700005), (-3.721424933999913, 56.03070709800005), (-3.712635870999918, 56.028998114000046), (-3.693470831999946, 56.03115469000005), (-3.6866348949999406, 56.03070709800005), (-3.6795548169999392, 56.025458075000074), (-3.674794074999909, 56.01870351800005), (-3.6682836579999503, 56.01276276200008), (-3.656239386999914, 56.010199286000045), (-3.599720831999946, 56.017238674000055), (-3.5773819649999155, 56.01703522300005), (-3.405425584999932, 55.98973216400003), (-3.3582657539999445, 55.98973216400003), (-3.340891079999949, 55.99445221600007), (-3.331044074999909, 55.99408600500004), (-3.320423956999946, 55.986029364000046), (-3.303456183999913, 55.97760651200008), (-3.121815558999913, 55.96930573100008), (-3.1147354809999115, 55.966131903000075), (-3.096831834999932, 55.95197174700007), (-3.090728318999936, 55.94818756700005), (-3.078236456999946, 55.94684479400007), (-3.0156957669999542, 55.950506903000075), (-2.9399307929999168, 55.96930573100008), (-2.9166560539999296, 55.98061758000006), (-2.900054490999935, 55.996161200000074), (-2.8828832669999542, 56.00849030200004), (-2.8579809239999463, 56.010199286000045), (-2.863636847999942, 56.02228424700007), (-2.8663223949999406, 56.02676015800006), (-2.8709610669999392, 56.03070709800005), (-2.8527725899999155, 56.03978099200003), (-2.823150193999936, 56.059759833000044), (-2.8028051419999542, 56.06484609600005), (-2.635121222999942, 56.05805084800005), (-2.615956183999913, 56.053168036000045), (-2.587554490999935, 56.030951239000046), (-2.569406704999949, 56.02448151200008), (-2.57835852799991, 56.00800202000005), (-2.583648240999935, 56.00275299700007), (-2.5695694649999155, 55.99994538000004), (-2.5440567699999406, 56.00267161700003), (-2.528960740999935, 55.99656810100004), (-2.5248103509999282, 56.00055573100008), (-2.514556443999936, 56.00576406500005), (-2.507923956999946, 56.010199286000045), (-2.4932755199999406, 56.00153229400007), (-2.4525040359999366, 55.985256252000056), (-2.4143774079999503, 55.97833893400008), (-2.3509415359999366, 55.94818756700005), (-2.307769334999932, 55.93500397300005), (-2.146839972999942, 55.917303778000075), (-2.1380102199999556, 55.91461823100008), (-2.132557745999918, 55.90643952000005), (-2.13109290299991, 55.89720286700003), (-2.1287735669999392, 55.88979726800005), (-2.1209610669999392, 55.886704820000034), (-2.0994766919999392, 55.88178131700005), (-2.080189581999946, 55.86937083500004), (-2.0228572259999282, 55.80548737200007), (-2.009673631999931, 55.79083893400008), (-1.8778376939999362, 55.69489166900007), (-1.8631892569999309, 55.67161692900004), (-1.8530981109999516, 55.65932851800005), (-1.8315323559999115, 55.65070221600007), (-1.8260798819999309, 55.64362213700008), (-1.8216853509999282, 55.636419989000046), (-1.8164770169999542, 55.632879950000074), (-1.8071182929999168, 55.63450755400004), (-1.8007706369999141, 55.63922760600008), (-1.7962947259999282, 55.644232489000046), (-1.7925919259999432, 55.646551825000074), (-1.781402147999927, 55.64565664300005), (-1.768625454999949, 55.641913153000075), (-1.7564998039999296, 55.63361237200007), (-1.7476700509999432, 55.619208075000074), (-1.7679744129999335, 55.619208075000074), (-1.7679744129999335, 55.612982489000046), (-1.7559708319999459, 55.60887278900003), (-1.720855272999927, 55.614569403000075), (-1.6991267569999309, 55.612982489000046), (-1.6308487619999141, 55.58510976800005), (-1.6308487619999141, 55.57827383000006), (-1.6363419259999432, 55.57168203300006), (-1.6346736319999309, 55.56439850500004), (-1.6276749339999128, 55.55711497600004), (-1.6171768869999141, 55.55027903900003), (-1.6308487619999141, 55.544134833000044), (-1.6308487619999141, 55.53729889500005), (-1.6222224599999322, 55.534084377000056), (-1.6029353509999282, 55.52362702000005), (-1.6029353509999282, 55.516791083000044), (-1.6113175119999141, 55.50804271000004), (-1.6063533189999362, 55.503241278000075), (-1.5963435539999296, 55.49990469000005), (-1.5893448559999115, 55.49567291900007), (-1.5849503249999088, 55.483710028000075), (-1.5813695949999556, 55.41665273600006), (-1.5831192699999406, 55.40692780200004), (-1.5882869129999335, 55.39057038000004), (-1.5891007149999155, 55.385199286000045), (-1.5893448559999115, 55.37653229400007), (-1.5833227199999556, 55.354722398000035), (-1.5585831369999141, 55.32892487200007), (-1.5558162099999322, 55.31134674700007), (-1.5570369129999335, 55.306626695000034), (-1.5589900379999335, 55.302069403000075), (-1.5619197259999282, 55.29779694200005), (-1.5657445949999556, 55.29364655200004), (-1.570057745999918, 55.28620026200008), (-1.5682266919999392, 55.27960846600007), (-1.5642797519999476, 55.27326080900008), (-1.5620824859999516, 55.26666901200008), (-1.5564672519999476, 55.25503164300005), (-1.5439346999999088, 55.24388255400004), (-1.5209854809999115, 55.229396877000056), (-1.5291641919999392, 55.21625397300005), (-1.5240779289999296, 55.21010976800005), (-1.514271613999938, 55.204779364000046), (-1.507964647999927, 55.194647528000075), (-1.510812954999949, 55.184759833000044), (-1.5175675119999141, 55.176214911000045), (-1.5221248039999296, 55.16746653900003), (-1.517933722999942, 55.157131252000056), (-1.5007218089999128, 55.141791083000044), (-1.4959610669999392, 55.13458893400008), (-1.492543097999942, 55.112982489000046), (-1.4837540359999366, 55.09170156500005), (-1.4800919259999432, 55.08539459800005), (-1.4762263659999348, 55.083644924000055), (-1.4632869129999335, 55.08030833500004), (-1.459584113999938, 55.07859935100004), (-1.458078579999949, 55.07575104400007), (-1.4547013009999432, 55.067572333000044), (-1.438303188999953, 55.042303778000075), (-1.4291886059999115, 55.033270575000074), (-1.4240616529999102, 55.02435944200005), (-1.4195043609999516, 55.011704820000034), (-1.412912563999953, 55.00031159100007), (-1.4015193349999322, 54.995428778000075), (-1.398182745999918, 54.992621161000045), (-1.3702286449999406, 54.97553131700005), (-1.3626602859999366, 54.96478913000004), (-1.3617244129999335, 54.958685614000046), (-1.3635147779999102, 54.95425039300005), (-1.3640030589999128, 54.94818756700005), (-1.3628637359999516, 54.92593008000006), (-1.3603409499999088, 54.91705963700008), (-1.3531388009999432, 54.91351959800005), (-1.355824347999942, 54.904282945000034), (-1.2967830069999309, 54.77993398600006), (-1.2754613919999542, 54.74843984600005), (-1.2404679029999102, 54.72166575700004), (-1.2250870429999168, 54.71503327000005), (-1.172230597999942, 54.701239325000074), (-1.172230597999942, 54.693793036000045), (-1.1926163399999155, 54.693793036000045), (-1.192453579999949, 54.68927643400008), (-1.1907852859999366, 54.68618398600006), (-1.1851700509999432, 54.68008047100005), (-1.1827286449999406, 54.67206452000005), (-1.1788223949999406, 54.66474030200004), (-1.172922329999949, 54.65835195500006), (-1.1647029289999296, 54.652777411000045), (-1.172922329999949, 54.644191799000055), (-1.1824845039999445, 54.63922760600008), (-1.2062882149999155, 54.63296133000006), (-1.203724738999938, 54.62571849200003), (-1.1988419259999432, 54.62156810100004), (-1.1918025379999335, 54.61977773600006), (-1.1821182929999168, 54.61928945500006), (-1.1793513659999348, 54.62091705900008), (-1.1784561839999128, 54.624212958000044), (-1.1769913399999155, 54.62677643400008), (-1.172230597999942, 54.62612539300005), (-1.1695857409999348, 54.62360260600008), (-1.1654353509999282, 54.61871979400007), (-1.1629532539999445, 54.61395905200004), (-1.1647029289999296, 54.61180247600004), (-1.1526586579999503, 54.61318594000005), (-1.1467179029999102, 54.618475653000075), (-1.1380509109999366, 54.646551825000074), (-1.1205948559999115, 54.63300202000005), (-1.1036270819999459, 54.624660549000055), (-1.0842179029999102, 54.620428778000075), (-1.042062954999949, 54.61709219000005), (-0.9934789699999556, 54.59813060100004), (-0.7879125639999529, 54.56077708500004), (-0.5629776679999168, 54.47736237200007), (-0.5346573559999115, 54.461004950000074), (-0.5228572259999282, 54.44708893400008), (-0.5217992829999503, 54.43805573100008), (-0.5235896479999269, 54.43024323100008), (-0.5204158189999362, 54.42007070500006), (-0.5099991529999102, 54.41156647300005), (-0.47679602799991017, 54.39720286700003), (-0.46275794199993925, 54.38898346600007), (-0.4477432929999168, 54.37319570500006), (-0.43057206899993616, 54.349310614000046), (-0.4184464179999168, 54.32404205900008), (-0.41803951699995423, 54.303941148000035), (-0.4145401679999168, 54.297308661000045), (-0.4090063139999529, 54.29075755400004), (-0.4011938139999529, 54.28563060100004), (-0.39073645699994586, 54.28351471600007), (-0.3948868479999419, 54.273138739000046), (-0.39757239499994057, 54.269191799000055), (-0.3892716139999379, 54.26406484600005), (-0.3704727859999366, 54.247707424000055), (-0.3627823559999115, 54.24249909100007), (-0.3220108709999181, 54.23607005400004), (-0.31191972599992823, 54.231634833000044), (-0.30011959499995555, 54.224676825000074), (-0.2770889959999181, 54.21775950700004), (-0.26960201699995423, 54.20766836100006), (-0.26256262899994454, 54.18109772300005), (-0.2603653639999379, 54.176988023000035), (-0.2338761059999115, 54.16046784100007), (-0.11143958199994586, 54.13157786700003), (-0.07551021999995555, 54.11212799700007), (-0.16392981699993925, 54.08340078300006), (-0.1946915359999366, 54.06232330900008), (-0.2194718089999128, 54.022772528000075), (-0.1974177729999269, 53.99481842700004), (-0.1686905589999128, 53.929348049000055), (-0.1511124339999128, 53.899318752000056), (-0.045155402999910166, 53.801214911000045), (0.13347415500004445, 53.642645575000074), (0.1492619150000678, 53.60960521000004), (0.13689212300005238, 53.57713450700004), (0.13119550900006516, 53.573431708000044), (0.1096297540000819, 53.56289297100005), (0.1313582690000885, 53.59369538000004), (0.1359969410000872, 53.610663153000075), (0.12020918100006384, 53.61810944200005), (0.09945722700007309, 53.622300523000035), (0.056162957000083225, 53.64126211100006), (0.034515821000070446, 53.64606354400007), (0.014821811000047092, 53.64325592700004), (-0.023915167999916775, 53.62885163000004), (-0.04503333199994586, 53.62555573100008), (-0.06940670499994894, 53.626939195000034), (-0.09227454299991678, 53.63104889500005), (-0.11261959499995555, 53.63751862200007), (-0.1300349599999322, 53.64606354400007), (-0.2253311839999128, 53.719916083000044), (-0.2603653639999379, 53.73541901200008), (-0.2956436839999128, 53.738796291000085), (-0.3051651679999168, 53.73969147300005), (-0.4311417309999115, 53.71430084800005), (-0.4496964179999168, 53.71430084800005), (-0.5104874339999128, 53.71430084800005), (-0.5444229809999115, 53.70945872600004), (-0.5515030589999128, 53.71116771000004), (-0.5762426419999542, 53.72565338700008), (-0.5791723299999489, 53.72797272300005), (-0.6370336579999503, 53.73200104400007), (-0.6583552729999269, 53.72797272300005), (-0.7264705069999309, 53.70062897300005), (-0.7173559239999463, 53.69867584800005), (-0.7085668609999516, 53.695746161000045), (-0.7001846999999088, 53.691839911000045), (-0.6924535799999489, 53.68699778900003), (-0.6774796209999181, 53.702826239000046), (-0.6498103509999282, 53.710598049000055), (-0.6195369129999335, 53.71185944200005), (-0.5961807929999168, 53.70807526200008), (-0.5554906889999529, 53.69049713700008), (-0.5447485019999476, 53.683579820000034), (-0.5299373039999296, 53.67767975500004), (-0.5140274729999419, 53.681301174000055), (-0.48631751199991413, 53.69448476800005), (-0.3072403639999379, 53.71426015800006), (-0.27936764199995423, 53.707098700000074), (-0.2603653639999379, 53.68699778900003), (-0.1886287099999322, 53.620428778000075), (-0.1440323559999115, 53.606634833000044), (-0.11318925699993088, 53.58462148600006), (-0.09593665299991017, 53.57713450700004), (-0.06094316299993352, 53.57396067900004), (-0.0466202459999181, 53.570379950000074), (9.199300006912381e-05, 53.53534577000005), (0.0959578790000819, 53.488348700000074), (0.11508222700007309, 53.48322174700007), (0.1340438160000872, 53.48061758000006), (0.15186608200008322, 53.475816148000035), (0.1678166020000731, 53.464504299000055), (0.17090905000009116, 53.457017320000034), (0.1731063160000872, 53.44676341400003), (0.17579186300008587, 53.43768952000005), (0.1814884770000731, 53.43374258000006), (0.1906030610000471, 53.43187083500004), (0.21949303500008455, 53.41950104400007), (0.21192467500009116, 53.41266510600008), (0.2293400400000678, 53.40477122600004), (0.24488366000008455, 53.39093659100007), (0.2561141290000819, 53.375067450000074), (0.26042728000004445, 53.36147695500006), (0.34213300900006516, 53.22630442900004), (0.35621178500008455, 53.18854401200008), (0.3566186860000471, 53.145738023000035), (0.3357853520000731, 53.093451239000046), (0.32984459700008983, 53.08649323100008), (0.31869550900006516, 53.083685614000046), (0.29883873800008587, 53.08120351800005), (0.2824813160000872, 53.07485586100006), (0.19304446700004974, 53.02008698100008), (0.17448978000004445, 53.01544830900008), (0.16081790500004445, 53.008978583000044), (0.08212324300006912, 52.938666083000044), (0.061167839000063395, 52.924994208000044), (0.03760826900008851, 52.919175523000035), (0.022146030000044448, 52.91258372600004), (0.008555535000084546, 52.89862702000005), (0.010264519000088512, 52.88646067900004), (0.04066002700005811, 52.88507721600007), (0.09253991000008455, 52.89252350500004), (0.10564212300005238, 52.88934967700004), (0.13347415500004445, 52.87518952000005), (0.14714603000004445, 52.87201569200005), (0.17090905000009116, 52.86212799700007), (0.22242272200008983, 52.813666083000044), (0.24675540500004445, 52.79572174700007), (0.2644962900000678, 52.80369700700004), (0.2856551440000885, 52.805568752000056), (0.32553144600007045, 52.803168036000045), (0.34180748800008587, 52.79743073100008), (0.36988366000008455, 52.77301666900007), (0.38453209700008983, 52.76837799700007), (0.38453209700008983, 52.77521393400008), (0.37924238400006516, 52.79083893400008), (0.39942467500009116, 52.80951569200005), (0.42554772200008983, 52.827378648000035), (0.4386499360000471, 52.840725002000056), (0.44402103000004445, 52.86505768400008), (0.45671634200004974, 52.89199453300006), (0.47234134200004974, 52.916449286000045), (0.48568769600007045, 52.93349844000005), (0.5202742850000845, 52.95526764500005), (0.5695906910000872, 52.96930573100008), (0.6233830090000652, 52.97565338700008), (0.6718856130000859, 52.97443268400008), (0.6643986340000652, 52.98187897300005), (0.6847436860000471, 52.986395575000074), (0.7067977220000898, 52.98322174700007), (0.7291772800000444, 52.97748444200005), (0.7504988940000885, 52.97443268400008), (0.8357039720000898, 52.97443268400008), (0.8754988940000885, 52.96816640800006), (0.9210718110000471, 52.95465729400007), (0.9684350920000497, 52.94749583500004), (1.013926629000082, 52.960150458000044), (1.0034285820000832, 52.96474844000005), (0.9915470710000704, 52.96747467700004), (0.9790145190000885, 52.968410549000055), (0.9660750660000872, 52.96759674700007), (0.9660750660000872, 52.97443268400008), (1.2746688160000872, 52.92918528900003), (1.3960067070000832, 52.89142487200007), (1.6442163420000497, 52.775824286000045), (1.6733504570000832, 52.75568268400008), (1.6970320970000898, 52.73102448100008), (1.7158309250000912, 52.68374258000006), (1.7341414720000898, 52.65460846600007), (1.747243686000047, 52.62518952000005), (1.7407332690000885, 52.60390859600005), (1.7468367850000845, 52.58852773600006), (1.7487085300000444, 52.568793036000045), (1.7475692070000832, 52.53278229400007), (1.7711694670000497, 52.48590729400007), (1.7671004570000832, 52.47695547100005), (1.7544051440000885, 52.46735260600008), (1.7292586600000845, 52.41559479400007), (1.7301538420000497, 52.405910549000055), (1.7278751960000704, 52.39630768400008), (1.6836043630000859, 52.32453034100007), (1.6518660820000832, 52.289129950000074), (1.6411238940000885, 52.28180573100008), (1.6305444670000497, 52.27045319200005), (1.6282658210000704, 52.24481842700004), (1.6308699880000859, 52.19977448100008), (1.6254988940000885, 52.18036530200004), (1.6074324880000859, 52.14594147300005), (1.6035262380000859, 52.127834377000056), (1.5892033210000704, 52.100816148000035), (1.5875757170000497, 52.08698151200008), (1.582286004000082, 52.08148834800005), (1.5036727220000898, 52.060980536000045), (1.4868270190000885, 52.04901764500005), (1.4720158210000704, 52.05621979400007), (1.4668074880000859, 52.04800039300005), (1.4638778000000912, 52.035142320000034), (1.4558211600000845, 52.028509833000044), (1.4489852220000898, 52.02496979400007), (1.4248153000000912, 52.00185781500005), (1.3548283210000704, 51.95404694200005), (1.3435164720000898, 51.94285716400009), (1.332286004000082, 51.94009023600006), (1.2644149100000845, 51.99437083500004), (1.2348738940000885, 52.00031159100007), (1.1852319670000497, 52.025091864000046), (1.1578882170000497, 52.028509833000044), (1.1578882170000497, 52.02167389500005), (1.1935327480000524, 52.00079987200007), (1.2143660820000832, 51.991441148000035), (1.2602645190000885, 51.984808661000045), (1.2707625660000872, 51.98151276200008), (1.2751570970000898, 51.976996161000045), (1.2744246750000912, 51.96088288000004), (1.2710067070000832, 51.95644765800006), (1.2507430350000845, 51.95962148600006), (1.2389429050000444, 51.958644924000055), (1.2176212900000678, 51.954331773000035), (1.2057397800000444, 51.95343659100007), (1.193207227000073, 51.955511786000045), (1.1652938160000872, 51.96702708500004), (1.1430770190000885, 51.966050523000035), (1.0944930350000845, 51.955959377000056), (1.0691024100000845, 51.95343659100007), (1.0954695970000898, 51.945746161000045), (1.2620548840000652, 51.939154364000046), (1.2819930350000845, 51.946600653000075), (1.278493686000047, 51.92792389500005), (1.1995548840000652, 51.87767161700003), (1.2122501960000704, 51.87164948100008), (1.2278751960000704, 51.86737702000005), (1.2644149100000845, 51.86399974200003), (1.2747501960000704, 51.870306708000044), (1.2822371750000912, 51.880560614000046), (1.2866317070000832, 51.88165924700007), (1.288259311000047, 51.860581773000035), (1.2763778000000912, 51.84479401200008), (1.2192488940000885, 51.811835028000075), (1.167816602000073, 51.790228583000044), (1.1354272800000444, 51.78172435100004), (1.0654403000000912, 51.77529531500005), (1.0466414720000898, 51.777044989000046), (1.0372827480000524, 51.78217194200005), (1.021332227000073, 51.80255768400008), (0.9887801440000885, 51.83026764500005), (0.9798283210000704, 51.84357330900008), (0.9770613940000885, 51.82461172100005), (0.9620874360000471, 51.813788153000075), (0.9251408210000704, 51.80255768400008), (0.8942977220000898, 51.78461334800005), (0.8869735040000819, 51.782131252000056), (0.8864038420000497, 51.776678778000075), (0.8834741550000444, 51.76471588700008), (0.8789168630000859, 51.75275299700007), (0.8737085300000444, 51.747300523000035), (0.8619897800000444, 51.74555084800005), (0.8459578790000819, 51.736761786000045), (0.8357039720000898, 51.733710028000075), (0.8234969410000872, 51.73383209800005), (0.8014429050000444, 51.73969147300005), (0.7917586600000845, 51.74115631700005), (0.7671004570000832, 51.739447333000044), (0.7208764980000524, 51.728176174000055), (0.6985783210000704, 51.720038153000075), (0.7142033210000704, 51.715277411000045), (0.7324324880000859, 51.713771877000056), (0.7492781910000872, 51.70848216400009), (0.7607528000000912, 51.692694403000075), (0.7890731130000859, 51.710150458000044), (0.8530379570000832, 51.71889883000006), (0.8835555350000845, 51.72687409100007), (0.9123641290000819, 51.741522528000075), (0.9300236340000652, 51.74359772300005), (0.9455672540000819, 51.733710028000075), (0.9474389980000524, 51.72524648600006), (0.9445906910000872, 51.71548086100006), (0.9404403000000912, 51.70799388200004), (0.9381616550000444, 51.706366278000075), (0.9401961600000845, 51.698431708000044), (0.9440210300000444, 51.69057851800005), (0.9518335300000444, 51.67841217700004), (0.9417423840000652, 51.673041083000044), (0.9379988940000885, 51.664496161000045), (0.9381616550000444, 51.64126211100006), (0.9347436860000471, 51.63589101800005), (0.9267684250000912, 51.630926825000074), (0.9114689460000704, 51.62384674700007), (0.9384871750000912, 51.624986070000034), (0.9480900400000678, 51.621527411000045), (0.9518335300000444, 51.61701080900008), (0.9244897800000444, 51.588324286000045), (0.8733016290000819, 51.559475002000056), (0.8282983730000524, 51.541856187000064), (0.8162541020000731, 51.537176825000074), (0.7712508470000898, 51.52826569200005), (0.6920679050000444, 51.536322333000044), (0.6643986340000652, 51.53506094000005), (0.6637475920000497, 51.53554922100005), (0.6505639980000524, 51.53579336100006), (0.6466577480000524, 51.53534577000005), (0.6440535820000832, 51.53506094000005), (0.6427514980000524, 51.53351471600007), (0.6233830090000652, 51.52204010600008), (0.6086531910000872, 51.51898834800005), (0.5952254570000832, 51.51862213700008), (0.5822860040000819, 51.51654694200005), (0.5688582690000885, 51.50836823100008), (0.5527449880000859, 51.51797109600005), (0.5472111340000652, 51.51772695500006), (0.5254012380000859, 51.516913153000075), (0.45606530000009116, 51.505560614000046), (0.45085696700004974, 51.49827708500004), (0.44800866000008455, 51.48822663000004), (0.4416610040000819, 51.47703685100004), (0.42847741000008455, 51.46710846600007), (0.41407311300008587, 51.46190013200004), (0.39918053500008455, 51.45840078300006), (0.38453209700008983, 51.453111070000034), (0.4484155610000471, 51.45994700700004), (0.45679772200008983, 51.46312083500004), (0.4614363940000885, 51.47016022300005), (0.46485436300008587, 51.47724030200004), (0.4695744150000678, 51.48041413000004), (0.5348413420000497, 51.49168528900009), (0.6948348320000832, 51.47703685100004), (0.7094832690000885, 51.47052643400008), (0.7219344410000872, 51.456284898000035), (0.7231551440000885, 51.44672272300005), (0.7131453790000819, 51.44122955900008), (0.6923934250000912, 51.439520575000074), (0.6565047540000819, 51.444525458000044), (0.6409611340000652, 51.44415924700007), (0.6093856130000859, 51.425116278000075), (0.5727645190000885, 51.419582424000055), (0.5545353520000731, 51.412176825000074), (0.5622664720000898, 51.40656159100007), (0.5691024100000845, 51.399603583000044), (0.5765080090000652, 51.39362213700008), (0.5859481130000859, 51.391058661000045), (0.6718856130000859, 51.391058661000045), (0.7129012380000859, 51.38422272300005), (0.7049259770000731, 51.39598216400009), (0.7003686860000471, 51.409816799000055), (0.7053328790000819, 51.41950104400007), (0.7264103520000731, 51.41901276200008), (0.7283634770000731, 51.406236070000034), (0.7392684250000912, 51.387925523000035), (0.7534285820000832, 51.371527411000045), (0.7644149100000845, 51.36440664300005), (0.9772241550000444, 51.34918854400007), (1.1009220710000704, 51.37323639500005), (1.4238387380000859, 51.39207591400009), (1.4482528000000912, 51.382879950000074), (1.4391382170000497, 51.35008372600004), (1.4355574880000859, 51.343736070000034), (1.430837436000047, 51.33779531500005), (1.4251408210000704, 51.33295319200005), (1.4186304050000444, 51.32965729400007), (1.3829858730000524, 51.329779364000046), (1.3776147800000444, 51.326239325000074), (1.3806258470000898, 51.304754950000074), (1.387868686000047, 51.28790924700007), (1.4043074880000859, 51.261379299000055), (1.4130965500000912, 51.22174713700008), (1.4047957690000885, 51.18353913000004), (1.3844507170000497, 51.151678778000075), (1.3571883470000898, 51.13100820500006), (1.2903751960000704, 51.116522528000075), (1.2629500660000872, 51.10325755400004), (1.2516382170000497, 51.10252513200004), (1.2299910820000832, 51.10370514500005), (1.2181095710000704, 51.10097890800006), (1.2082625660000872, 51.09467194200005), (1.1997176440000885, 51.087591864000046), (1.1920679050000444, 51.08258698100008), (1.1722111340000652, 51.077378648000035), (1.1067000660000872, 51.07636139500005), (1.0871688160000872, 51.07298411700003), (1.0669051440000885, 51.06439850500004), (1.027598504000082, 51.04165273600006), (0.9764103520000731, 50.99445221600007), (0.9664819670000497, 50.98273346600007), (0.9690861340000652, 50.95685455900008), (0.9798283210000704, 50.91815827000005), (0.9451603520000731, 50.909369208000044), (0.8698022800000444, 50.925116278000075), (0.8022567070000832, 50.93919505400004), (0.7624617850000845, 50.930894273000035), (0.6643986340000652, 50.870306708000044), (0.6241968110000471, 50.858710028000075), (0.4074813160000872, 50.829331773000035), (0.3702905610000471, 50.818793036000045), (0.36524498800008587, 50.81899648600006), (0.35425866000008455, 50.80963776200008), (0.34441165500004445, 50.79905833500004), (0.3422957690000885, 50.79515208500004), (0.3081160820000832, 50.780951239000046), (0.2710067070000832, 50.747381903000075), (0.23389733200008322, 50.74701569200005), (0.2141219410000872, 50.748928127000056), (0.16830488400006516, 50.759833075000074), (0.1573999360000471, 50.761053778000075), (0.12208092500009116, 50.76080963700008), (0.11304772200008983, 50.76414622600004), (0.09555097700007309, 50.775051174000055), (0.07703698000005943, 50.778998114000046), (0.034515821000070446, 50.780951239000046), (0.01754804800009424, 50.784857489000046), (-0.17316646999995555, 50.829006252000056), (-0.20612545499994894, 50.83104075700004), (-0.20889238199993088, 50.83010488500008), (-0.2331436839999128, 50.821926174000055), (-0.2696833979999269, 50.831284898000035), (-0.39757239499994057, 50.802069403000075), (-0.5689591139999379, 50.802069403000075), (-0.7327367829999503, 50.767279364000046), (-0.7415665359999366, 50.769232489000046), (-0.7498673169999392, 50.773871161000045), (-0.7582087879999335, 50.77708567900004), (-0.7675675119999141, 50.774725653000075), (-0.7731013659999348, 50.76601797100005), (-0.7662654289999296, 50.74713776200008), (-0.7709854809999115, 50.73688385600008), (-0.7899470689999362, 50.73004791900007), (-0.8128149079999503, 50.73476797100005), (-0.9041235019999476, 50.77187734600005), (-0.9114884109999366, 50.77781810100004), (-0.9058731759999432, 50.78803131700005), (-0.8924861319999309, 50.794623114000046), (-0.8636368479999419, 50.802069403000075), (-0.8636368479999419, 50.808254299000055), (-0.8736059239999463, 50.812933661000045), (-0.8931371739999463, 50.82534414300005), (-0.9046931629999335, 50.829331773000035), (-0.9095352859999366, 50.82599518400008), (-0.9217016269999476, 50.821600653000075), (-0.9289444649999155, 50.82282135600008), (-0.9190160799999489, 50.83616771000004), (-0.9297989569999459, 50.83999258000006), (-0.9391983709999181, 50.84324778900009), (-0.9707738919999542, 50.846991278000075), (-0.9948624339999128, 50.84707265800006), (-1.0018611319999309, 50.84711334800005), (-1.0207413399999155, 50.84365469000005), (-1.033558722999942, 50.82591380400004), (-1.0426326159999348, 50.80190664300005), (-1.0562231109999516, 50.78302643400008), (-1.0827530589999128, 50.780951239000046), (-1.1030167309999115, 50.79547760600008), (-1.0936173169999392, 50.812933661000045), (-1.0753067699999406, 50.83002350500004), (-1.069162563999953, 50.84365469000005), (-1.0873103509999282, 50.84979889500005), (-1.0881241529999102, 50.84975820500006), (-1.1498103509999282, 50.84666575700004), (-1.1647029289999296, 50.84365469000005), (-1.129709438999953, 50.825100002000056), (-1.1237686839999128, 50.818793036000045), (-1.1212052069999459, 50.79938385600008), (-1.1249080069999309, 50.788723049000055), (-1.1380509109999366, 50.780951239000046), (-1.1511124339999128, 50.78139883000006), (-1.1693416009999282, 50.78587474200003), (-1.1856176419999542, 50.79242584800005), (-1.1926163399999155, 50.79865143400008), (-1.1992895169999542, 50.807928778000075), (-1.231516079999949, 50.81891510600008), (-1.2551977199999556, 50.83193594000005), (-1.288156704999949, 50.839178778000075), (-1.3014216789999296, 50.84365469000005), (-1.3185929029999102, 50.85691966400009), (-1.338937954999949, 50.872707424000055), (-1.4492895169999542, 50.91205475500004), (-1.4664200509999432, 50.91815827000005), (-1.4664200509999432, 50.91193268400008), (-1.4564509759999282, 50.90875885600008), (-1.4379776679999168, 50.90131256700005), (-1.4256078769999476, 50.900091864000046), (-1.4011124339999128, 50.88117096600007), (-1.323068813999953, 50.82575104400007), (-1.3142797519999476, 50.812160549000055), (-1.3172908189999362, 50.80023834800005), (-1.3398331369999141, 50.79515208500004), (-1.4039607409999348, 50.79157135600008), (-1.4186905589999128, 50.788397528000075), (-1.4113663399999155, 50.78489817900004), (-1.4049373039999296, 50.780951239000046), (-1.4049373039999296, 50.774725653000075), (-1.4505102199999556, 50.76935455900008), (-1.4762263659999348, 50.76341380400004), (-1.4875382149999155, 50.75771719000005), (-1.491932745999918, 50.75726959800005), (-1.5247289699999556, 50.761053778000075), (-1.5571996739999463, 50.72329336100006), (-1.559396938999953, 50.71922435100004), (-1.5611873039999296, 50.71898021000004), (-1.5807185539999296, 50.722642320000034), (-1.6021215489999463, 50.731756903000075), (-1.6706436839999128, 50.74005768400008), (-1.672922329999949, 50.74005768400008), (-1.6930232409999348, 50.739935614000046), (-1.7150772779999102, 50.73578522300005), (-1.7535294259999432, 50.72284577000005), (-1.7717179029999102, 50.72011953300006), (-1.7974340489999463, 50.723171291000085), (-1.8350723949999406, 50.72768789300005), (-1.8574112619999141, 50.72695547100005), (-1.8773494129999335, 50.72284577000005), (-1.8963516919999392, 50.71629466400009), (-1.8968806629999335, 50.716050523000035), (-1.9138891269999476, 50.70742422100005), (-1.9291072259999282, 50.69586823100008), (-1.9400121739999463, 50.69082265800006), (-1.9443253249999088, 50.69765859600005), (-1.946115688999953, 50.707912502000056), (-1.9492895169999542, 50.713324286000045), (-1.9877009759999282, 50.72011953300006), (-2.01390540299991, 50.71893952000005), (-2.0219620429999168, 50.72011953300006), (-2.0254613919999542, 50.723863023000035), (-2.026193813999953, 50.72508372600004), (-2.0338435539999296, 50.73712799700007), (-2.038970506999931, 50.739935614000046), (-2.0480850899999155, 50.734808661000045), (-2.0826716789999296, 50.69896067900004), (-2.0695694649999155, 50.700100002000056), (-2.0577286449999406, 50.702826239000046), (-2.046620245999918, 50.70726146000004), (-2.0356339179999168, 50.713324286000045), (-2.0141495429999168, 50.688788153000075), (-2.0025121739999463, 50.681301174000055), (-1.984120245999918, 50.67853424700007), (-1.9674373039999296, 50.67865631700005), (-1.9527888659999348, 50.67658112200007), (-1.9458715489999463, 50.668850002000056), (-1.9529516269999476, 50.65184153900009), (-1.9382218089999128, 50.645819403000075), (-1.9324845039999445, 50.64443594000005), (-1.9672745429999168, 50.61709219000005), (-1.965199347999942, 50.60219961100006), (-1.9837133449999556, 50.59662506700005), (-2.065174933999913, 50.59552643400008), (-2.082183397999927, 50.59784577000005), (-2.1573380199999406, 50.62051015800006), (-2.3426407539999445, 50.63377513200004), (-2.377064581999946, 50.64752838700008), (-2.398345506999931, 50.64557526200008), (-2.435902472999942, 50.63751862200007), (-2.447621222999942, 50.62787506700005), (-2.4600723949999406, 50.60651276200008), (-2.465646938999953, 50.585150458000044), (-2.4564509759999282, 50.575506903000075), (-2.4312231109999516, 50.57025788000004), (-2.428700324999909, 50.55756256700005), (-2.4392797519999476, 50.54181549700007), (-2.45335852799991, 50.52765534100007), (-2.4595434239999463, 50.52765534100007), (-2.4603572259999282, 50.56549713700008), (-2.4835098949999406, 50.59039948100008), (-2.6929418609999516, 50.69281647300005), (-2.8648168609999516, 50.73379140800006), (-2.887318488999938, 50.734361070000034), (-2.94554602799991, 50.725816148000035), (-2.9627579419999392, 50.72329336100006), (-2.998199022999927, 50.708238023000035), (-3.021839972999942, 50.70648834800005), (-3.059722459999932, 50.713324286000045), (-3.071359829999949, 50.711004950000074), (-3.0941462879999335, 50.69896067900004), (-3.099232550999943, 50.69708893400008), (-3.115834113999938, 50.68797435100004), (-3.1254776679999168, 50.68528880400004), (-3.135894334999932, 50.68593984600005), (-3.1551407539999445, 50.69135163000004), (-3.1664932929999168, 50.69281647300005), (-3.1856176419999542, 50.690741278000075), (-3.2191462879999335, 50.68081289300005), (-3.2598363919999542, 50.67454661700003), (-3.271392381999931, 50.664496161000045), (-3.280425584999932, 50.65119049700007), (-3.2955623039999296, 50.63751862200007), (-3.368153449999909, 50.61709219000005), (-3.390736456999946, 50.61782461100006), (-3.4075414699999556, 50.62128327000005), (-3.420969204999949, 50.62946198100008), (-3.433338995999918, 50.64443594000005), (-3.446359829999949, 50.66828034100007), (-3.4504288399999155, 50.672308661000045), (-3.453277147999927, 50.67328522300005), (-3.455433722999942, 50.675441799000055), (-3.458607550999943, 50.67755768400008), (-3.4644262359999516, 50.67853424700007), (-3.467762824999909, 50.67641836100006), (-3.468902147999927, 50.67169830900008), (-3.467844204999949, 50.66697825700004), (-3.45531165299991, 50.657904364000046), (-3.4420466789999296, 50.62352122600004), (-3.433338995999918, 50.610256252000056), (-3.451161261999914, 50.59943268400008), (-3.4672745429999168, 50.585598049000055), (-3.4817602199999556, 50.56854889500005), (-3.494862433999913, 50.548163153000075), (-3.505970831999946, 50.520819403000075), (-3.505034959999932, 50.501206773000035), (-3.487456834999932, 50.459418036000045), (-3.509755011999914, 50.45848216400009), (-3.532134568999936, 50.454779364000046), (-3.549427863999938, 50.446519273000035), (-3.556263800999943, 50.43211497600004), (-3.5493057929999168, 50.41559479400007), (-3.531971808999913, 50.410223700000074), (-3.487456834999932, 50.41156647300005), (-3.487456834999932, 50.40477122600004), (-3.4974666009999282, 50.38735586100006), (-3.49828040299991, 50.383693752000056), (-3.5073136059999115, 50.382798570000034), (-3.5149633449999556, 50.37995026200008), (-3.520130988999938, 50.37482330900008), (-3.5269262359999516, 50.34979889500005), (-3.5388891269999476, 50.34442780200004), (-3.5545141269999476, 50.347642320000034), (-3.57054602799991, 50.35639069200005), (-3.577788865999935, 50.334051825000074), (-3.5991104809999115, 50.325832424000055), (-3.6215714179999168, 50.321926174000055), (-3.631988084999932, 50.31232330900008), (-3.6373591789999296, 50.29539622600004), (-3.6475723949999406, 50.27456289300005), (-3.653309699999909, 50.25104401200008), (-3.6456192699999406, 50.22601959800005), (-3.6606339179999168, 50.22101471600007), (-3.700917120999918, 50.21352773600006), (-3.7180069649999155, 50.21238841400009), (-3.740386522999927, 50.21588776200008), (-3.758615688999953, 50.22174713700008), (-3.774240688999953, 50.22296784100007), (-3.788970506999931, 50.21238841400009), (-3.826324022999927, 50.23419830900008), (-3.8841853509999282, 50.280462958000044), (-3.949940558999913, 50.31899648600006), (-3.9610082669999542, 50.322251695000034), (-3.9702042309999115, 50.320746161000045), (-3.995757615999935, 50.311428127000056), (-4.005604620999918, 50.30923086100006), (-4.011341925999943, 50.30695221600007), (-4.024769660999937, 50.29718659100007), (-4.032948370999918, 50.294907945000034), (-4.044056769999941, 50.29645416900007), (-4.054351365999935, 50.30036041900007), (-4.070220506999931, 50.30923086100006), (-4.067941860999952, 50.31281159100007), (-4.064035610999952, 50.322251695000034), (-4.086008266999954, 50.326239325000074), (-4.1082657539999445, 50.33661530200004), (-4.118723110999952, 50.35187409100007), (-4.1049698559999115, 50.37067291900007), (-4.141753709999932, 50.36904531500005), (-4.1527400379999335, 50.37067291900007), (-4.1655167309999115, 50.37636953300006), (-4.171457485999952, 50.382798570000034), (-4.175770636999914, 50.39085521000004), (-4.18382727799991, 50.40106842700004), (-4.191477016999954, 50.417629299000055), (-4.18390865799995, 50.431708075000074), (-4.1703181629999335, 50.44513580900008), (-4.159535285999937, 50.459418036000045), (-4.179432745999918, 50.45307038000004), (-4.189564581999946, 50.45368073100008), (-4.200550910999937, 50.459418036000045), (-4.203684048999946, 50.45140208500004), (-4.204741990999935, 50.44867584800005), (-4.2123917309999115, 50.441473700000074), (-4.222523566999939, 50.43797435100004), (-4.234730597999942, 50.43829987200007), (-4.234730597999942, 50.43211497600004), (-4.2202042309999115, 50.425848700000074), (-4.2161352199999556, 50.415716864000046), (-4.219715949999909, 50.40509674700007), (-4.228505011999914, 50.397365627000056), (-4.2414444649999155, 50.39468008000006), (-4.2899063789999445, 50.397365627000056), (-4.273019985999952, 50.38190338700008), (-4.216175910999937, 50.38776276200008), (-4.1937556629999335, 50.37689850500004), (-4.228505011999914, 50.37067291900007), (-4.228505011999914, 50.36383698100008), (-4.220122850999928, 50.365301825000074), (-4.200550910999937, 50.36383698100008), (-4.207997199999909, 50.35639069200005), (-4.180043097999942, 50.35639069200005), (-4.180043097999942, 50.35016510600008), (-4.191314256999931, 50.34756094000005), (-4.197987433999913, 50.342230536000045), (-4.199126756999931, 50.33539459800005), (-4.1937556629999335, 50.32843659100007), (-4.1937556629999335, 50.322251695000034), (-4.214995897999927, 50.323146877000056), (-4.225697394999941, 50.33539459800005), (-4.235096808999913, 50.34955475500004), (-4.2523494129999335, 50.35639069200005), (-4.337717251999948, 50.37067291900007), (-4.383697068999936, 50.36749909100007), (-4.456206834999932, 50.33820221600007), (-4.4953507149999155, 50.32843659100007), (-4.659820115999935, 50.322251695000034), (-4.659575975999928, 50.32062409100007), (-4.662709113999938, 50.31777578300006), (-4.667795376999948, 50.315334377000056), (-4.673451300999943, 50.31541575700004), (-4.687163865999935, 50.34271881700005), (-4.694325324999909, 50.343451239000046), (-4.700184699999909, 50.34088776200008), (-4.705555792999917, 50.337551174000055), (-4.7113337879999335, 50.33588288000004), (-4.731556769999941, 50.33466217700004), (-4.752105272999927, 50.33030833500004), (-4.763295050999943, 50.32208893400008), (-4.755441860999952, 50.30923086100006), (-4.755441860999952, 50.30174388200004), (-4.7623591789999296, 50.298041083000044), (-4.771636522999927, 50.29157135600008), (-4.779855923999946, 50.28432851800005), (-4.783355272999927, 50.27789948100008), (-4.7818904289999296, 50.27179596600007), (-4.776519334999932, 50.26508209800005), (-4.776519334999932, 50.26080963700008), (-4.788441535999937, 50.24209219000005), (-4.790150519999941, 50.23655833500004), (-4.800160285999937, 50.22955963700008), (-4.849720831999946, 50.23456452000005), (-4.868723110999952, 50.22943756700005), (-4.887318488999938, 50.21499258000006), (-4.904774542999917, 50.20844147300005), (-4.947255011999914, 50.19936758000006), (-4.960682745999918, 50.19049713700008), (-5.002430792999917, 50.14411041900007), (-5.014556443999936, 50.15656159100007), (-5.0203751289999445, 50.19196198100008), (-5.033192511999914, 50.19936758000006), (-5.05296790299991, 50.19578685100004), (-5.053618943999936, 50.18691640800006), (-5.051869269999941, 50.17552317900004), (-5.064564581999946, 50.16461823100008), (-5.064564581999946, 50.15839264500005), (-5.058501756999931, 50.155462958000044), (-5.043446417999917, 50.14411041900007), (-5.051869269999941, 50.144598700000074), (-5.058461066999939, 50.14272695500006), (-5.070790167999917, 50.13727448100008), (-5.08031165299991, 50.13271719000005), (-5.081613735999952, 50.12539297100005), (-5.080962693999936, 50.117173570000034), (-5.085031704999949, 50.10993073100008), (-5.093902147999927, 50.105536200000074), (-5.125965949999909, 50.09634023600006), (-5.114654100999928, 50.09662506700005), (-5.106068488999938, 50.09511953300006), (-5.091867641999954, 50.089504299000055), (-5.086903449999909, 50.089056708000044), (-5.075347459999932, 50.09048086100006), (-5.070790167999917, 50.089504299000055), (-5.068470831999946, 50.085150458000044), (-5.064930792999917, 50.07184479400007), (-5.06086178299995, 50.06903717700004), (-5.056507941999939, 50.060614325000074), (-5.069488084999932, 50.042181708000044), (-5.0980525379999335, 50.01439036700003), (-5.107289191999939, 50.013006903000075), (-5.127430792999917, 50.01544830900008), (-5.139637824999909, 50.01439036700003), (-5.146473761999914, 50.01056549700007), (-5.176136847999942, 49.987941799000055), (-5.18773352799991, 49.964504299000055), (-5.191151495999918, 49.95913320500006), (-5.200103318999936, 49.961371161000045), (-5.210357225999928, 49.96674225500004), (-5.240386522999927, 49.988348700000074), (-5.245228644999941, 49.99310944200005), (-5.2495011059999115, 50.000067450000074), (-5.253041144999941, 50.01264069200005), (-5.25226803299995, 50.020697333000044), (-5.252674933999913, 50.027777411000045), (-5.259755011999914, 50.03766510600008), (-5.2884008449999556, 50.067694403000075), (-5.304351365999935, 50.08026764500005), (-5.323963995999918, 50.089504299000055), (-5.384185350999928, 50.10797760600008), (-5.424712693999936, 50.11273834800005), (-5.458119269999941, 50.125881252000056), (-5.47484290299991, 50.13043854400007), (-5.495676235999952, 50.12962474200003), (-5.521839972999942, 50.12372467700004), (-5.540923631999931, 50.11347077000005), (-5.540638800999943, 50.09975820500006), (-5.5346573559999115, 50.08234284100007), (-5.5455623039999296, 50.06891510600008), (-5.563465949999909, 50.05963776200008), (-5.57843990799995, 50.054754950000074), (-5.61945553299995, 50.046210028000075), (-5.667388475999928, 50.04287344000005), (-5.705148891999954, 50.05231354400007), (-5.715646938999953, 50.08270905200004), (-5.705962693999936, 50.08348216400009), (-5.698801235999952, 50.08539459800005), (-5.694488084999932, 50.089504299000055), (-5.694406704999949, 50.095770575000074), (-5.697092251999948, 50.10053131700005), (-5.700306769999941, 50.103216864000046), (-5.701975063999953, 50.103176174000055), (-5.707386847999942, 50.12201569200005), (-5.70921790299991, 50.13263580900008), (-5.70539303299995, 50.13727448100008), (-5.7035212879999335, 50.140611070000034), (-5.684641079999949, 50.16152578300006), (-5.676747199999909, 50.16502513200004), (-5.647368943999936, 50.17206452000005), (-5.583607550999943, 50.19586823100008), (-5.549427863999938, 50.20351797100005), (-5.5109757149999155, 50.21946849200003), (-5.4891251289999445, 50.21979401200008), (-5.458119269999941, 50.20075104400007), (-5.437977667999917, 50.19432200700004), (-5.417388475999928, 50.202460028000075), (-5.402943488999938, 50.21735260600008), (-5.395863410999937, 50.22724030200004), (-5.39289303299995, 50.23655833500004), (-5.3875626289999445, 50.240301825000074), (-5.351918097999942, 50.240301825000074), (-5.3148494129999335, 50.253607489000046), (-5.200306769999941, 50.33075592700004), (-5.1635636059999115, 50.34723541900007), (-5.1498917309999115, 50.35016510600008), (-5.146473761999914, 50.35529205900008), (-5.145659959999932, 50.366888739000046), (-5.147043423999946, 50.37938060100004), (-5.153675910999937, 50.39948151200008), (-5.142404751999948, 50.40448639500005), (-5.12726803299995, 50.40521881700005), (-5.119740363999938, 50.40477122600004), (-5.0502823559999115, 50.42869700700004), (-5.0481664699999556, 50.43439362200007), (-5.038726365999935, 50.44790273600006), (-5.029774542999917, 50.486761786000045), (-5.0286352199999556, 50.507025458000044), (-5.025257941999939, 50.52423737200007), (-5.015614386999914, 50.53803131700005), (-4.9955948559999115, 50.548163153000075), (-4.975168423999946, 50.548163153000075), (-4.967844204999949, 50.55158112200007), (-4.954823370999918, 50.56122467700004), (-4.947255011999914, 50.56244538000004), (-4.941477016999954, 50.55695221600007), (-4.937123175999943, 50.54531484600005), (-4.9344376289999445, 50.53164297100005), (-4.933583136999914, 50.52024974200003), (-4.926869269999941, 50.52289459800005), (-4.924305792999917, 50.52448151200008), (-4.920521613999938, 50.52765534100007), (-4.902414516999954, 50.52057526200008), (-4.860951300999943, 50.519191799000055), (-4.844838019999941, 50.51406484600005), (-4.855824347999942, 50.527411200000074), (-4.87328040299991, 50.534084377000056), (-4.906239386999914, 50.54197825700004), (-4.921864386999914, 50.55487702000005), (-4.92023678299995, 50.564154364000046), (-4.915191209999932, 50.57249583500004), (-4.920521613999938, 50.58295319200005), (-4.920521613999938, 50.589178778000075), (-4.895659959999932, 50.585923570000034), (-4.821197068999936, 50.589178778000075), (-4.7924698559999115, 50.59520091400009), (-4.7766007149999155, 50.60984935100004), (-4.765044725999928, 50.62799713700008), (-4.7492569649999155, 50.64443594000005), (-4.755441860999952, 50.659369208000044), (-4.751942511999914, 50.67007070500006), (-4.741932745999918, 50.67487213700008), (-4.728138800999943, 50.672308661000045), (-4.657297329999949, 50.71112702000005), (-4.645578579999949, 50.723537502000056), (-4.637806769999941, 50.74115631700005), (-4.619007941999939, 50.754787502000056), (-4.577259894999941, 50.774725653000075), (-4.5501195949999556, 50.80955638200004), (-4.55492102799991, 50.897772528000075), (-4.543771938999953, 50.93919505400004), (-4.536854620999918, 50.94757721600007), (-4.5226944649999155, 50.972723700000074), (-4.5266820949999556, 50.98037344000005), (-4.530425584999932, 50.99469635600008), (-4.531320766999954, 51.008693752000056), (-4.526437954999949, 51.014960028000075), (-4.437326626999948, 51.014960028000075), (-4.4264216789999296, 51.01268138200004), (-4.4057511059999115, 51.00287506700005), (-4.3957413399999155, 51.00067780200004), (-4.337717251999948, 50.99664948100008), (-4.317290818999936, 51.00067780200004), (-4.302316860999952, 51.007513739000046), (-4.234730597999942, 51.05532461100006), (-4.2291560539999296, 51.06110260600008), (-4.224680141999954, 51.06708405200004), (-4.218495245999918, 51.07245514500005), (-4.207997199999909, 51.07636139500005), (-4.214263475999928, 51.086004950000074), (-4.226307745999918, 51.11322663000004), (-4.228505011999914, 51.120428778000075), (-4.2319229809999115, 51.12669505400004), (-4.249012824999909, 51.14288971600007), (-4.255767381999931, 51.15151601800005), (-4.222320115999935, 51.149725653000075), (-4.214833136999914, 51.15151601800005), (-4.208363410999937, 51.16229889500005), (-4.2098282539999445, 51.17283763200004), (-4.217274542999917, 51.18138255400004), (-4.228505011999914, 51.18622467700004), (-4.228505011999914, 51.19245026200008), (-4.152333136999914, 51.21161530200004), (-3.969471808999913, 51.22239817900004), (-3.931996222999942, 51.231350002000056), (-3.9131973949999406, 51.23338450700004), (-3.840891079999949, 51.23338450700004), (-3.818959113999938, 51.23607005400004), (-3.787098761999914, 51.24677155200004), (-3.769154425999943, 51.247707424000055), (-3.6397598949999406, 51.22638580900008), (-3.559315558999913, 51.22809479400007), (-3.434193488999938, 51.20978424700007), (-3.4043676419999542, 51.19204336100006), (-3.38499915299991, 51.18622467700004), (-3.2707413399999155, 51.18939850500004), (-3.198882615999935, 51.203558661000045), (-3.1627498039999296, 51.206732489000046), (-3.096750454999949, 51.20453522300005), (-3.057525193999936, 51.20815664300005), (-3.029286261999914, 51.220404364000046), (-3.021839972999942, 51.21356842700004), (-3.0355525379999335, 51.199286200000074), (-3.021839972999942, 51.19245026200008), (-3.004790818999936, 51.21312083500004), (-3.0013321609999366, 51.220404364000046), (-2.9995824859999516, 51.23322174700007), (-3.0015356109999516, 51.23969147300005), (-3.0049942699999406, 51.24506256700005), (-3.008168097999942, 51.25454336100006), (-3.0076391269999476, 51.29197825700004), (-3.0106095039999445, 51.310980536000045), (-3.021839972999942, 51.32282135600008), (-3.0024307929999168, 51.31907786700003), (-2.992176886999914, 51.321926174000055), (-2.992095506999931, 51.32204824400009), (-2.988392706999946, 51.33112213700008), (-2.9877823559999115, 51.34666575700004), (-2.9798884759999282, 51.35586172100005), (-2.965972459999932, 51.364935614000046), (-2.959584113999938, 51.374253648000035), (-2.9746801419999542, 51.38422272300005), (-2.9529516269999476, 51.398504950000074), (-2.9210098949999406, 51.39443594000005), (-2.8841853509999282, 51.41697825700004), (-2.816395636999914, 51.47361888200004), (-2.798573370999918, 51.48261139500005), (-2.780873175999943, 51.48908112200007), (-2.7612198559999115, 51.49286530200004), (-2.7376195949999556, 51.49408600500004), (-2.716420050999943, 51.49957916900007), (-2.6961563789999445, 51.51264069200005), (-2.6078181629999335, 51.60736725500004), (-2.599598761999914, 51.611395575000074), (-2.5892227859999366, 51.61424388200004), (-2.580433722999942, 51.61863841400009), (-2.5768123039999296, 51.62750885600008), (-2.57445227799991, 51.63572825700004), (-2.568959113999938, 51.644964911000045), (-2.562245245999918, 51.65338776200008), (-2.556385870999918, 51.65924713700008), (-2.499175584999932, 51.69676341400009), (-2.464995897999927, 51.725897528000075), (-2.4477432929999168, 51.73187897300005), (-2.404896613999938, 51.74115631700005), (-2.3885391919999392, 51.750433661000045), (-2.380767381999931, 51.76190827000005), (-2.3833715489999463, 51.77326080900008), (-2.398060675999943, 51.782131252000056), (-2.4024145169999542, 51.76357656500005), (-2.4203995429999168, 51.753119208000044), (-2.4434301419999542, 51.74843984600005), (-2.4632869129999335, 51.747300523000035), (-2.482085740999935, 51.74286530200004), (-2.495838995999918, 51.73200104400007), (-2.507964647999927, 51.71857330900008), (-2.5221248039999296, 51.706366278000075), (-2.581695115999935, 51.681708075000074), (-2.5911352199999556, 51.67536041900007), (-2.600209113999938, 51.66559479400007), (-2.6653539699999556, 51.617254950000074)]\n", + "fig, ax = plt.subplots()\n", + "\n", + "x = tuple(map(merc_x, lons))\n", + "y = tuple(map(merc_y, lats))\n", + "\n", + "ax.tricontourf(x, y, tuple(datapoints.values()))\n", + "ax.plot(x, y, 'wo', ms=3)\n", + "ax.plot(\n", + " [merc_x(coord[0]) for coord in gb_boundary],\n", + " [merc_y(coord[1]) for coord in gb_boundary],\n", + " 'k-'\n", + ")\n", + "ax.set_aspect(1.0)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "apd.aggregation", + "language": "python", + "name": "apd.aggregation" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Ch10/apd.aggregation-chapter10/Pipfile b/Ch10/apd.aggregation-chapter10/Pipfile new file mode 100644 index 0000000..32814fd --- /dev/null +++ b/Ch10/apd.aggregation-chapter10/Pipfile @@ -0,0 +1,26 @@ +[[source]] +name = "pypi" +url = "https://pypi.org/simple" +verify_ssl = true + +[dev-packages] +pytest = "*" +pytest-cov = "*" +pytest-asyncio = "*" +mypy = "*" +flake8 = "*" +black = "*" +pre-commit = "*" +wheel = "*" +twine = "*" +sqlalchemy-stubs = "*" +yappi = "*" + +[packages] +apd-aggregation = {editable = true,extras = ["jupyter"],path = "."} +apd-sensors = {editable = true,extras = ["webapp"],path = "./../code"} + +[requires] + +[pipenv] +allow_prereleases = true diff --git a/Ch10/apd.aggregation-chapter10/Pipfile.lock b/Ch10/apd.aggregation-chapter10/Pipfile.lock new file mode 100644 index 0000000..e3c4287 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10/Pipfile.lock @@ -0,0 +1,987 @@ +{ + "_meta": { + "hash": { + "sha256": "1c3bf4b1b80582f2eba10739c2798bff13bb3d7662a9e5def7a2be63683711e8" + }, + "pipfile-spec": 6, + "requires": {}, + "sources": [ + { + "name": "pypi", + "url": "https://pypi.org/simple", + "verify_ssl": true + } + ] + }, + "default": { + "aiohttp": { + "hashes": [ + "sha256:173267050501e1537293df06723bc5e719990889e2820ba3932969983892e960", + "sha256:438f1f1555c02c50894604d94944cff188fe138b46467b7fa99fdceb51ab5842", + "sha256:90bed250d1435aef33a1f8c439c5056d5d25a44fe6caf33fcafafed805bad4dc", + "sha256:93c3b14747413f38f094a60e98f55e73831f0c9a23ae7faa3dc97d8963e13021", + "sha256:a6e70a38d883185b1921d8122759661c39ade54949770394412a9e713fec6fa7", + "sha256:b5036133c1ba77ed5a70208d2a021a90b76fdf8bf523ae33dae46d4f4380d86f", + "sha256:c138451a82cdbf65cddf952941d5c7a1a2cac8ce3bc618dee8d889e5251ec7a5", + "sha256:c94770383e49f9cc5912b926364ad022a6c8a5dbf5498933ca3a5713c6daf738", + "sha256:ea26536ae06df6dac021303a0df72c79e55512070e6a304ba93ad468a3a754dc" + ], + "version": "==4.0.0a1" + }, + "alembic": { + "hashes": [ + "sha256:035ab00497217628bf5d0be82d664d8713ab13d37b630084da8e1f98facf4dbf" + ], + "version": "==1.4.2" + }, + "apd-aggregation": { + "editable": true, + "extras": [ + "jupyter" + ], + "path": "." + }, + "apd-sensors": { + "editable": true, + "extras": [ + "webapp" + ], + "path": "./../code" + }, + "async-timeout": { + "hashes": [ + "sha256:0c3c816a028d47f659d6ff5c745cb2acf1f966da1fe5c19c77a70282b25f4c5f", + "sha256:4291ca197d287d274d0b6cb5d6f8f8f82d434ed288f962539ff18cc9012f9ea3" + ], + "version": "==3.0.1" + }, + "attrs": { + "hashes": [ + "sha256:08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c", + "sha256:f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72" + ], + "version": "==19.3.0" + }, + "backcall": { + "hashes": [ + "sha256:38ecd85be2c1e78f77fd91700c76e14667dc21e2713b63876c0eb901196e01e4", + "sha256:bbbf4b1e5cd2bdb08f915895b51081c041bac22394fdfcfdfbe9f14b77c08bf2" + ], + "version": "==0.1.0" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:8a18b4ea89d8820c5d0c7da8a64b2c324b4dabb695804dbfea19b9be9d88c0cc", + "sha256:e345d143d80bf5ee7534056164e5e112ea5e22716bbb1ce727941f4c8b471b9a" + ], + "version": "==7.1.1" + }, + "colorama": { + "hashes": [ + "sha256:7d73d2a99753107a36ac6b455ee49046802e59d9d076ef8e47b61499fa29afff", + "sha256:e96da0d330793e2cb9485e9ddfd918d456036c7149416295932478192f4436a1" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.3" + }, + "decorator": { + "hashes": [ + "sha256:41fa54c2a0cc4ba648be4fd43cff00aedf5b9465c9bf18d64325bc225f08f760", + "sha256:e3a62f0520172440ca0dcc823749319382e377f37f140a0b99ef45fecb84bfe7" + ], + "version": "==4.4.2" + }, + "flask": { + "hashes": [ + "sha256:4efa1ae2d7c9865af48986de8aeb8504bf32c7f3d6fdc9353d34b21f4b127060", + "sha256:8a4fdd8936eba2512e9c85df320a37e694c93945b33ef33c89946a340a238557" + ], + "version": "==1.1.2" + }, + "idna": { + "hashes": [ + "sha256:7588d1c14ae4c77d74036e8c22ff447b26d0fde8f007354fd48a7814db15b7cb", + "sha256:a068a21ceac8a4d63dbfd964670474107f541babbd2250d61922f029858365fa" + ], + "version": "==2.9" + }, + "ipykernel": { + "hashes": [ + "sha256:003c9c1ab6ff87d11f531fee2b9ca59affab19676fc6b2c21da329aef6e73499", + "sha256:2937373c356fa5b634edb175c5ea0e4b25de8008f7c194f2d49cfbd1f9c970a8" + ], + "version": "==5.2.1" + }, + "ipython": { + "hashes": [ + "sha256:ca478e52ae1f88da0102360e57e528b92f3ae4316aabac80a2cd7f7ab2efb48a", + "sha256:eb8d075de37f678424527b5ef6ea23f7b80240ca031c2dd6de5879d687a65333" + ], + "version": "==7.13.0" + }, + "ipython-genutils": { + "hashes": [ + "sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8", + "sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8" + ], + "version": "==0.2.0" + }, + "ipywidgets": { + "hashes": [ + "sha256:87b30e4dfd68a7c4e3c6462eedb95ac7d1a776cc182f87168d960151151de31c", + "sha256:9cb5590e583b8ea309a2d8e88fb02e44d054df2a77891f7d3356b0b883b99d3d" + ], + "version": "==8.0.0a0" + }, + "itsdangerous": { + "hashes": [ + "sha256:321b033d07f2a4136d3ec762eac9f16a10ccd60f53c0c91af90217ace7ba1f19", + "sha256:b12271b2047cb23eeb98c8b5622e2e5c5e9abd9784a153e9d8ef9cb4dd09d749" + ], + "version": "==1.1.0" + }, + "jedi": { + "hashes": [ + "sha256:cd60c93b71944d628ccac47df9a60fec53150de53d42dc10a7fc4b5ba6aae798", + "sha256:df40c97641cb943661d2db4c33c2e1ff75d491189423249e989bcea4464f3030" + ], + "version": "==0.17.0" + }, + "jinja2": { + "hashes": [ + "sha256:c10142f819c2d22bdcd17548c46fa9b77cf4fda45097854c689666bf425e7484", + "sha256:c922560ac46888d47384de1dbdc3daaa2ea993af4b26a436dec31fa2c19ec668" + ], + "version": "==3.0.0a1" + }, + "jsonschema": { + "hashes": [ + "sha256:4e5b3cf8216f577bee9ce139cbe72eca3ea4f292ec60928ff24758ce626cd163", + "sha256:c8a85b28d377cc7737e46e2d9f2b4f44ee3c0e1deac6bf46ddefc7187d30797a" + ], + "version": "==3.2.0" + }, + "jupyter-client": { + "hashes": [ + "sha256:3a32fa4d0b16d1c626b30c3002a62dfd86d6863ed39eaba3f537fade197bb756", + "sha256:cde8e83aab3ec1c614f221ae54713a9a46d3bf28292609d2db1b439bef5a8c8e" + ], + "version": "==6.1.3" + }, + "jupyter-core": { + "hashes": [ + "sha256:394fd5dd787e7c8861741880bdf8a00ce39f95de5d18e579c74b882522219e7e", + "sha256:a4ee613c060fe5697d913416fc9d553599c05e4492d58fac1192c9a6844abb21" + ], + "version": "==4.6.3" + }, + "mako": { + "hashes": [ + "sha256:3139c5d64aa5d175dbafb95027057128b5fbd05a40c53999f3905ceb53366d9d", + "sha256:8e8b53c71c7e59f3de716b6832c4e401d903af574f6962edbbbf6ecc2a5fe6c9" + ], + "version": "==1.1.2" + }, + "markupsafe": { + "hashes": [ + "sha256:06358015a4dee8ee23ae426bf885616ab3963622defd829eb45b44e3dee3515f", + "sha256:0b0c4fc852c5f02c6277ef3b33d23fcbe89b1b227460423e3335374da046b6db", + "sha256:267677fc42afed5094fc5ea1c4236bbe4b6a00fe4b08e93451e65ae9048139c7", + "sha256:303cb70893e2c345588fb5d5b86e0ca369f9bb56942f03064c5e3e75fa7a238a", + "sha256:3c9b624a0d9ed5a5093ac4edc4e823e6b125441e60ef35d36e6f4a6fdacd5054", + "sha256:42033e14cae1f6c86fc0c3e90d04d08ce73ac8e46ba420a0d22d545c2abd4977", + "sha256:4e4a99b6af7bdc0856b50020c095848ec050356a001e1f751510aef6ab14d0e0", + "sha256:4eb07faad54bb07427d848f31030a65a49ebb0cec0b30674f91cf1ddd456bfe4", + "sha256:63a7161cd8c2bc563feeda45df62f42c860dd0675e2b8da2667f25bb3c95eaba", + "sha256:68e0fd039b68d2945b4beb947d4023ca7f8e95b708031c345762efba214ea761", + "sha256:8092a63397025c2f655acd42784b2a1528339b90b987beb9253f22e8cdbb36c3", + "sha256:841218860683c0f2223e24756843d84cc49cccdae6765e04962607754a52d3e0", + "sha256:94076b2314bd2f6cfae508ad65b4d493e3a58a50112b7a2cbb6287bdbc404ae8", + "sha256:9d22aff1c5322e402adfb3ce40839a5056c353e711c033798cf4f02eb9f5124d", + "sha256:b0e4584f62b3e5f5c1a7bcefd2b52f236505e6ef032cc508caa4f4c8dc8d3af1", + "sha256:b1163ffc1384d242964426a8164da12dbcdbc0de18ea36e2c34b898ed38c3b45", + "sha256:beac28ed60c8e838301226a7a85841d0af2068eba2dcb1a58c2d32d6c05e440e", + "sha256:c29f096ce79c03054a1101d6e5fe6bf04b0bb489165d5e0e9653fb4fe8048ee1", + "sha256:c58779966d53e5f14ba393d64e2402a7926601d1ac8adeb4e83893def79d0428", + "sha256:cfe14b37908eaf7d5506302987228bff69e1b8e7071ccd4e70fd0283b1b47f0b", + "sha256:e834249c45aa9837d0753351cdca61a4b8b383cc9ad0ff2325c97ff7b69e72a6", + "sha256:eed1b234c4499811ee85bcefa22ef5e466e75d132502226ed29740d593316c1f" + ], + "version": "==2.0.0a1" + }, + "multidict": { + "hashes": [ + "sha256:317f96bc0950d249e96d8d29ab556d01dd38888fbe68324f46fd834b430169f1", + "sha256:42f56542166040b4474c0c608ed051732033cd821126493cf25b6c276df7dd35", + "sha256:4b7df040fb5fe826d689204f9b544af469593fb3ff3a069a6ad3409f742f5928", + "sha256:544fae9261232a97102e27a926019100a9db75bec7b37feedd74b3aa82f29969", + "sha256:620b37c3fea181dab09267cd5a84b0f23fa043beb8bc50d8474dd9694de1fa6e", + "sha256:6e6fef114741c4d7ca46da8449038ec8b1e880bbe68674c01ceeb1ac8a648e78", + "sha256:7774e9f6c9af3f12f296131453f7b81dabb7ebdb948483362f5afcaac8a826f1", + "sha256:85cb26c38c96f76b7ff38b86c9d560dea10cf3459bb5f4caf72fc1bb932c7136", + "sha256:a326f4240123a2ac66bb163eeba99578e9d63a8654a59f4688a79198f9aa10f8", + "sha256:ae402f43604e3b2bc41e8ea8b8526c7fa7139ed76b0d64fc48e28125925275b2", + "sha256:aee283c49601fa4c13adc64c09c978838a7e812f85377ae130a24d7198c0331e", + "sha256:b51249fdd2923739cd3efc95a3d6c363b67bbf779208e9f37fd5e68540d1a4d4", + "sha256:bb519becc46275c594410c6c28a8a0adc66fe24fef154a9addea54c1adb006f5", + "sha256:c2c37185fb0af79d5c117b8d2764f4321eeb12ba8c141a95d0aa8c2c1d0a11dd", + "sha256:dc561313279f9d05a3d0ffa89cd15ae477528ea37aa9795c4654588a3287a9ab", + "sha256:e439c9a10a95cb32abd708bb8be83b2134fa93790a4fb0535ca36db3dda94d20", + "sha256:fc3b4adc2ee8474cb3cd2a155305d5f8eda0a9c91320f83e55748e1fcb68f8e3" + ], + "version": "==4.7.5" + }, + "nbformat": { + "hashes": [ + "sha256:049af048ed76b95c3c44043620c17e56bc001329e07f83fec4f177f0e3d7b757", + "sha256:276343c78a9660ab2a63c28cc33da5f7c58c092b3f3a40b6017ae2ce6689320d" + ], + "version": "==5.0.6" + }, + "parso": { + "hashes": [ + "sha256:158c140fc04112dc45bca311633ae5033c2c2a7b732fa33d0955bad8152a8dd0", + "sha256:908e9fae2144a076d72ae4e25539143d40b8e3eafbaeae03c1bfe226f4cdf12c" + ], + "version": "==0.7.0" + }, + "pickleshare": { + "hashes": [ + "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca", + "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56" + ], + "version": "==0.7.5" + }, + "pint": { + "hashes": [ + "sha256:308f1070500e102f83b6adfca6db53debfce2ffc5d3cbe3f6c367da359b5cf4d", + "sha256:5690c85948dfb283382aa73357c3d5a333e8c7d818be7d8643db18e07597dd99" + ], + "version": "==0.11" + }, + "prompt-toolkit": { + "hashes": [ + "sha256:563d1a4140b63ff9dd587bda9557cffb2fe73650205ab6f4383092fb882e7dc8", + "sha256:df7e9e63aea609b1da3a65641ceaf5bc7d05e0a04de5bd45d05dbeffbabf9e04" + ], + "version": "==3.0.5" + }, + "psutil": { + "hashes": [ + "sha256:1413f4158eb50e110777c4f15d7c759521703bd6beb58926f1d562da40180058", + "sha256:298af2f14b635c3c7118fd9183843f4e73e681bb6f01e12284d4d70d48a60953", + "sha256:60b86f327c198561f101a92be1995f9ae0399736b6eced8f24af41ec64fb88d4", + "sha256:685ec16ca14d079455892f25bd124df26ff9137664af445563c1bd36629b5e0e", + "sha256:73f35ab66c6c7a9ce82ba44b1e9b1050be2a80cd4dcc3352cc108656b115c74f", + "sha256:75e22717d4dbc7ca529ec5063000b2b294fc9a367f9c9ede1f65846c7955fd38", + "sha256:a02f4ac50d4a23253b68233b07e7cdb567bd025b982d5cf0ee78296990c22d9e", + "sha256:d008ddc00c6906ec80040d26dc2d3e3962109e40ad07fd8a12d0284ce5e0e4f8", + "sha256:d84029b190c8a66a946e28b4d3934d2ca1528ec94764b180f7d6ea57b0e75e26", + "sha256:e2d0c5b07c6fe5a87fa27b7855017edb0d52ee73b71e6ee368fae268605cc3f5", + "sha256:f344ca230dd8e8d5eee16827596f1c22ec0876127c28e800d7ae20ed44c4b310" + ], + "version": "==5.7.0" + }, + "psycopg2": { + "hashes": [ + "sha256:132efc7ee46a763e68a815f4d26223d9c679953cd190f1f218187cb60decf535", + "sha256:2327bf42c1744a434ed8ed0bbaa9168cac7ee5a22a9001f6fc85c33b8a4a14b7", + "sha256:27c633f2d5db0fc27b51f1b08f410715b59fa3802987aec91aeb8f562724e95c", + "sha256:2c0afb40cfb4d53487ee2ebe128649028c9a78d2476d14a67781e45dc287f080", + "sha256:2df2bf1b87305bd95eb3ac666ee1f00a9c83d10927b8144e8e39644218f4cf81", + "sha256:440a3ea2c955e89321a138eb7582aa1d22fe286c7d65e26a2c5411af0a88ae72", + "sha256:6a471d4d2a6f14c97a882e8d3124869bc623f3df6177eefe02994ea41fd45b52", + "sha256:6b306dae53ec7f4f67a10942cf8ac85de930ea90e9903e2df4001f69b7833f7e", + "sha256:a0984ff49e176062fcdc8a5a2a670c9bb1704a2f69548bce8f8a7bad41c661bf", + "sha256:ac5b23d0199c012ad91ed1bbb971b7666da651c6371529b1be8cbe2a7bf3c3a9", + "sha256:acf56d564e443e3dea152efe972b1434058244298a94348fc518d6dd6a9fb0bb", + "sha256:d3b29d717d39d3580efd760a9a46a7418408acebbb784717c90d708c9ed5f055", + "sha256:f7d46240f7a1ae1dd95aab38bd74f7428d46531f69219954266d669da60c0818" + ], + "version": "==2.8.5" + }, + "pygments": { + "hashes": [ + "sha256:647344a061c249a3b74e230c739f434d7ea4d8b1d5f3721bc0f3558049b38f44", + "sha256:ff7a40b4860b727ab48fad6360eb351cc1b33cbf9b15a0f689ca5353e9463324" + ], + "version": "==2.6.1" + }, + "pyrsistent": { + "hashes": [ + "sha256:28669905fe725965daa16184933676547c5bb40a5153055a8dee2a4bd7933ad3" + ], + "version": "==0.16.0" + }, + "python-dateutil": { + "hashes": [ + "sha256:73ebfe9dbf22e832286dafa60473e4cd239f8592f699aa5adaf10050e6e1823c", + "sha256:75bb3f31ea686f1197762692a9ee6a7550b59fc6ca3a1f4b5d7e32fb98e2da2a" + ], + "version": "==2.8.1" + }, + "python-editor": { + "hashes": [ + "sha256:1bf6e860a8ad52a14c3ee1252d5dc25b2030618ed80c022598f00176adc8367d", + "sha256:51fda6bcc5ddbbb7063b2af7509e43bd84bfc32a4ff71349ec7847713882327b", + "sha256:5f98b069316ea1c2ed3f67e7f5df6c0d8f10b689964a4a811ff64f0106819ec8" + ], + "version": "==1.0.4" + }, + "pywin32": { + "hashes": [ + "sha256:300a2db938e98c3e7e2093e4491439e62287d0d493fe07cce110db070b54c0be", + "sha256:31f88a89139cb2adc40f8f0e65ee56a8c585f629974f9e07622ba80199057511", + "sha256:371fcc39416d736401f0274dd64c2302728c9e034808e37381b5e1b22be4a6b0", + "sha256:47a3c7551376a865dd8d095a98deba954a98f326c6fe3c72d8726ca6e6b15507", + "sha256:4cdad3e84191194ea6d0dd1b1b9bdda574ff563177d2adf2b4efec2a244fa116", + "sha256:7c1ae32c489dc012930787f06244426f8356e129184a02c25aef163917ce158e", + "sha256:7f18199fbf29ca99dff10e1f09451582ae9e372a892ff03a28528a24d55875bc", + "sha256:9b31e009564fb95db160f154e2aa195ed66bcc4c058ed72850d047141b36f3a2", + "sha256:a929a4af626e530383a579431b70e512e736e9588106715215bf685a3ea508d4", + "sha256:c054c52ba46e7eb6b7d7dfae4dbd987a1bb48ee86debe3f245a2884ece46e295", + "sha256:f27cec5e7f588c3d1051651830ecc00294f90728d19c3bf6916e6dba93ea357c", + "sha256:f4c5be1a293bae0076d93c88f37ee8da68136744588bc5e2be2f299a34ceb7aa" + ], + "markers": "sys_platform == 'win32'", + "version": "==227" + }, + "pyzmq": { + "hashes": [ + "sha256:0bbc1728fe4314b4ca46249c33873a390559edac7c217ec7001b5e0c34a8fb7f", + "sha256:1e076ad5bd3638a18c376544d32e0af986ca10d43d4ce5a5d889a8649f0d0a3d", + "sha256:242d949eb6b10197cda1d1cec377deab1d5324983d77e0d0bf9dc5eb6d71a6b4", + "sha256:26f4ae420977d2a8792d7c2d7bda43128b037b5eeb21c81951a94054ad8b8843", + "sha256:32234c21c5e0a767c754181c8112092b3ddd2e2a36c3f76fc231ced817aeee47", + "sha256:3f12ce1e9cc9c31497bd82b207e8e86ccda9eebd8c9f95053aae46d15ccd2196", + "sha256:4557d5e036e6d85715b4b9fdb482081398da1d43dc580d03db642b91605b409f", + "sha256:4f562dab21c03c7aa061f63b147a595dbe1006bf4f03213272fc9f7d5baec791", + "sha256:5e071b834051e9ecb224915398f474bfad802c2fff883f118ff5363ca4ae3edf", + "sha256:5e1f65e576ab07aed83f444e201d86deb01cd27dcf3f37c727bc8729246a60a8", + "sha256:5f10a31f288bf055be76c57710807a8f0efdb2b82be6c2a2b8f9a61f33a40cea", + "sha256:6aaaf90b420dc40d9a0e1996b82c6a0ff91d9680bebe2135e67c9e6d197c0a53", + "sha256:75238d3c16cab96947705d5709187a49ebb844f54354cdf0814d195dd4c045de", + "sha256:7f7e7b24b1d392bb5947ba91c981e7d1a43293113642e0d8870706c8e70cdc71", + "sha256:84b91153102c4bcf5d0f57d1a66a0f03c31e9e6525a5f656f52fc615a675c748", + "sha256:944f6bb5c63140d76494467444fd92bebd8674236837480a3c75b01fe17df1ab", + "sha256:a1f957c20c9f51d43903881399b078cddcf710d34a2950e88bce4e494dcaa4d1", + "sha256:a49fd42a29c1cc1aa9f461c5f2f5e0303adba7c945138b35ee7f4ab675b9f754", + "sha256:a99ae601b4f6917985e9bb071549e30b6f93c72f5060853e197bdc4b7d357e5f", + "sha256:ad48865a29efa8a0cecf266432ea7bc34e319954e55cf104be0319c177e6c8f5", + "sha256:b08e425cf93b4e018ab21dc8fdbc25d7d0502a23cc4fea2380010cf8cf11e462", + "sha256:bb10361293d96aa92be6261fa4d15476bca56203b3a11c62c61bd14df0ef89ba", + "sha256:bd1a769d65257a7a12e2613070ca8155ee348aa9183f2aadf1c8b8552a5510f5", + "sha256:cb3b7156ef6b1a119e68fbe3a54e0a0c40ecacc6b7838d57dd708c90b62a06dc", + "sha256:e8e4efb52ec2df8d046395ca4c84ae0056cf507b2f713ec803c65a8102d010de", + "sha256:f37c29da2a5b0c5e31e6f8aab885625ea76c807082f70b2d334d3fd573c3100a", + "sha256:f4d558bc5668d2345773a9ff8c39e2462dafcb1f6772a2e582fbced389ce527f", + "sha256:f5b6d015587a1d6f582ba03b226a9ddb1dfb09878b3be04ef48b01b7d4eb6b2a" + ], + "version": "==19.0.0" + }, + "six": { + "hashes": [ + "sha256:236bdbdce46e6e6a3d61a337c0f8b763ca1e8717c03b369e87a7ec7ce1319c0a", + "sha256:8f3cd2e254d8f793e7f3d6d9df77b92252b52637291d0f0da013c76ea2724b6c" + ], + "version": "==1.14.0" + }, + "sqlalchemy": { + "hashes": [ + "sha256:083e383a1dca8384d0ea6378bd182d83c600ed4ff4ec8247d3b2442cf70db1ad", + "sha256:0a690a6486658d03cc6a73536d46e796b6570ac1f8a7ec133f9e28c448b69828", + "sha256:114b6ace30001f056e944cebd46daef38fdb41ebb98f5e5940241a03ed6cad43", + "sha256:128f6179325f7597a46403dde0bf148478f868df44841348dfc8d158e00db1f9", + "sha256:13d48cd8b925b6893a4e59b2dfb3e59a5204fd8c98289aad353af78bd214db49", + "sha256:211a1ce7e825f7142121144bac76f53ac28b12172716a710f4bf3eab477e730b", + "sha256:2dc57ee80b76813759cccd1a7affedf9c4dbe5b065a91fb6092c9d8151d66078", + "sha256:3e625e283eecc15aee5b1ef77203bfb542563fa4a9aa622c7643c7b55438ff49", + "sha256:43078c7ec0457387c79b8d52fff90a7ad352ca4c7aa841c366238c3e2cf52fdf", + "sha256:5b1bf3c2c2dca738235ce08079783ef04f1a7fc5b21cf24adaae77f2da4e73c3", + "sha256:6056b671aeda3fc451382e52ab8a753c0d5f66ef2a5ccc8fa5ba7abd20988b4d", + "sha256:68d78cf4a9dfade2e6cf57c4be19f7b82ed66e67dacf93b32bb390c9bed12749", + "sha256:7025c639ce7e170db845e94006cf5f404e243e6fc00d6c86fa19e8ad8d411880", + "sha256:7224e126c00b8178dfd227bc337ba5e754b197a3867d33b9f30dc0208f773d70", + "sha256:7d98e0785c4cd7ae30b4a451416db71f5724a1839025544b4edbd92e00b91f0f", + "sha256:8d8c21e9d4efef01351bf28513648ceb988031be4159745a7ad1b3e28c8ff68a", + "sha256:bbb545da054e6297242a1bb1ba88e7a8ffb679f518258d66798ec712b82e4e07", + "sha256:d00b393f05dbd4ecd65c989b7f5a81110eae4baea7a6a4cdd94c20a908d1456e", + "sha256:e18752cecaef61031252ca72031d4d6247b3212ebb84748fc5d1a0d2029c23ea" + ], + "version": "==1.3.16" + }, + "tornado": { + "hashes": [ + "sha256:0fe2d45ba43b00a41cd73f8be321a44936dc1aba233dee979f17a042b83eb6dc", + "sha256:22aed82c2ea340c3771e3babc5ef220272f6fd06b5108a53b4976d0d722bcd52", + "sha256:2c027eb2a393d964b22b5c154d1a23a5f8727db6fda837118a776b29e2b8ebc6", + "sha256:5217e601700f24e966ddab689f90b7ea4bd91ff3357c3600fa1045e26d68e55d", + "sha256:5618f72e947533832cbc3dec54e1dffc1747a5cb17d1fd91577ed14fa0dc081b", + "sha256:5f6a07e62e799be5d2330e68d808c8ac41d4a259b9cea61da4101b83cb5dc673", + "sha256:c58d56003daf1b616336781b26d184023ea4af13ae143d9dda65e31e534940b9", + "sha256:c952975c8ba74f546ae6de2e226ab3cc3cc11ae47baf607459a6728585bb542a", + "sha256:c98232a3ac391f5faea6821b53db8db461157baa788f5d6222a193e9456e1740" + ], + "version": "==6.0.4" + }, + "traitlets": { + "hashes": [ + "sha256:70b4c6a1d9019d7b4f6846832288f86998aa3b9207c6821f3578a6a6a467fe44", + "sha256:d023ee369ddd2763310e4c3eae1ff649689440d4ae59d7485eb4cfbbe3e359f7" + ], + "version": "==4.3.3" + }, + "typing-extensions": { + "hashes": [ + "sha256:6e95524d8a547a91e08f404ae485bbb71962de46967e1b71a0cb89af24e761c5", + "sha256:79ee589a3caca649a9bfd2a8de4709837400dfa00b6cc81962a1e6a1815969ae", + "sha256:f8d2bd89d25bc39dabe7d23df520442fa1d8969b82544370e03d88b5a591c392" + ], + "version": "==3.7.4.2" + }, + "wcwidth": { + "hashes": [ + "sha256:cafe2186b3c009a04067022ce1dcd79cb38d8d65ee4f4791b8888d6599d1bbe1", + "sha256:ee73862862a156bf77ff92b09034fc4825dd3af9cf81bc5b360668d425f3c5f1" + ], + "version": "==0.1.9" + }, + "werkzeug": { + "hashes": [ + "sha256:2de2a5db0baeae7b2d2664949077c2ac63fbd16d98da0ff71837f7d1dea3fd43", + "sha256:6c80b1e5ad3665290ea39320b91e1be1e0d5f60652b964a3070216de83d2e47c" + ], + "version": "==1.0.1" + }, + "widgetsnbextension": { + "hashes": [ + "sha256:cb6181b4037da02deeabab39d5cb1113a7390aee7468b1f8237c2abbd6df6107", + "sha256:fee3b6ec261393db5b4ec7c4fc96bf85c146cc6e5f38069c27d54fb7892bbb15" + ], + "version": "==4.0.0a0" + }, + "yarl": { + "hashes": [ + "sha256:0c2ab325d33f1b824734b3ef51d4d54a54e0e7a23d13b86974507602334c2cce", + "sha256:0ca2f395591bbd85ddd50a82eb1fde9c1066fafe888c5c7cc1d810cf03fd3cc6", + "sha256:2098a4b4b9d75ee352807a95cdf5f10180db903bc5b7270715c6bbe2551f64ce", + "sha256:25e66e5e2007c7a39541ca13b559cd8ebc2ad8fe00ea94a2aad28a9b1e44e5ae", + "sha256:26d7c90cb04dee1665282a5d1a998defc1a9e012fdca0f33396f81508f49696d", + "sha256:308b98b0c8cd1dfef1a0311dc5e38ae8f9b58349226aa0533f15a16717ad702f", + "sha256:3ce3d4f7c6b69c4e4f0704b32eca8123b9c58ae91af740481aa57d7857b5e41b", + "sha256:58cd9c469eced558cd81aa3f484b2924e8897049e06889e8ff2510435b7ef74b", + "sha256:5b10eb0e7f044cf0b035112446b26a3a2946bca9d7d7edb5e54a2ad2f6652abb", + "sha256:6faa19d3824c21bcbfdfce5171e193c8b4ddafdf0ac3f129ccf0cdfcb083e462", + "sha256:944494be42fa630134bf907714d40207e646fd5a94423c90d5b514f7b0713fea", + "sha256:a161de7e50224e8e3de6e184707476b5a989037dcb24292b391a3d66ff158e70", + "sha256:a4844ebb2be14768f7994f2017f70aca39d658a96c786211be5ddbe1c68794c1", + "sha256:c2b509ac3d4b988ae8769901c66345425e361d518aecbe4acbfc2567e416626a", + "sha256:c9959d49a77b0e07559e579f38b2f3711c2b8716b8410b320bf9713013215a1b", + "sha256:d8cdee92bc930d8b09d8bd2043cedd544d9c8bd7436a77678dd602467a993080", + "sha256:e15199cdb423316e15f108f51249e44eb156ae5dba232cb73be555324a1d49c2" + ], + "version": "==1.4.2" + } + }, + "develop": { + "appdirs": { + "hashes": [ + "sha256:9e5896d1372858f8dd3344faf4e5014d21849c756c8d5701f78f8a103b372d92", + "sha256:d8b24664561d0d34ddfaec54636d502d7cea6e29c3eaf68f3df6180863e2166e" + ], + "version": "==1.4.3" + }, + "atomicwrites": { + "hashes": [ + "sha256:03472c30eb2c5d1ba9227e4c2ca66ab8287fbfbbda3888aa93dc2e28fc6811b4", + "sha256:75a9445bac02d8d058d5e1fe689654ba5a6556a1dfd8ce6ec55a0ed79866cfa6" + ], + "markers": "sys_platform == 'win32'", + "version": "==1.3.0" + }, + "attrs": { + "hashes": [ + "sha256:08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c", + "sha256:f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72" + ], + "version": "==19.3.0" + }, + "black": { + "hashes": [ + "sha256:1b30e59be925fafc1ee4565e5e08abef6b03fe455102883820fe5ee2e4734e0b", + "sha256:c2edb73a08e9e0e6f65a0e6af18b059b8b1cdd5bef997d7a0b181df93dc81539" + ], + "index": "pypi", + "version": "==19.10b0" + }, + "bleach": { + "hashes": [ + "sha256:cc8da25076a1fe56c3ac63671e2194458e0c4d9c7becfd52ca251650d517903c", + "sha256:e78e426105ac07026ba098f04de8abe9b6e3e98b5befbf89b51a5ef0a4292b03" + ], + "version": "==3.1.4" + }, + "certifi": { + "hashes": [ + "sha256:1d987a998c75633c40847cc966fcf5904906c920a7f17ef374f5aa4282abd304", + "sha256:51fcb31174be6e6664c5f69e3e1691a2d72a1a12e90f872cbdb1567eb47b6519" + ], + "version": "==2020.4.5.1" + }, + "cfgv": { + "hashes": [ + "sha256:1ccf53320421aeeb915275a196e23b3b8ae87dea8ac6698b1638001d4a486d53", + "sha256:c8e8f552ffcc6194f4e18dd4f68d9aef0c0d58ae7e7be8c82bee3c5e9edfa513" + ], + "version": "==3.1.0" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:8a18b4ea89d8820c5d0c7da8a64b2c324b4dabb695804dbfea19b9be9d88c0cc", + "sha256:e345d143d80bf5ee7534056164e5e112ea5e22716bbb1ce727941f4c8b471b9a" + ], + "version": "==7.1.1" + }, + "colorama": { + "hashes": [ + "sha256:7d73d2a99753107a36ac6b455ee49046802e59d9d076ef8e47b61499fa29afff", + "sha256:e96da0d330793e2cb9485e9ddfd918d456036c7149416295932478192f4436a1" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.3" + }, + "coverage": { + "hashes": [ + "sha256:00f1d23f4336efc3b311ed0d807feb45098fc86dee1ca13b3d6768cdab187c8a", + "sha256:01333e1bd22c59713ba8a79f088b3955946e293114479bbfc2e37d522be03355", + "sha256:0cb4be7e784dcdc050fc58ef05b71aa8e89b7e6636b99967fadbdba694cf2b65", + "sha256:0e61d9803d5851849c24f78227939c701ced6704f337cad0a91e0972c51c1ee7", + "sha256:1601e480b9b99697a570cea7ef749e88123c04b92d84cedaa01e117436b4a0a9", + "sha256:2742c7515b9eb368718cd091bad1a1b44135cc72468c731302b3d641895b83d1", + "sha256:2d27a3f742c98e5c6b461ee6ef7287400a1956c11421eb574d843d9ec1f772f0", + "sha256:402e1744733df483b93abbf209283898e9f0d67470707e3c7516d84f48524f55", + "sha256:5c542d1e62eece33c306d66fe0a5c4f7f7b3c08fecc46ead86d7916684b36d6c", + "sha256:5f2294dbf7875b991c381e3d5af2bcc3494d836affa52b809c91697449d0eda6", + "sha256:6402bd2fdedabbdb63a316308142597534ea8e1895f4e7d8bf7476c5e8751fef", + "sha256:66460ab1599d3cf894bb6baee8c684788819b71a5dc1e8fa2ecc152e5d752019", + "sha256:782caea581a6e9ff75eccda79287daefd1d2631cc09d642b6ee2d6da21fc0a4e", + "sha256:79a3cfd6346ce6c13145731d39db47b7a7b859c0272f02cdb89a3bdcbae233a0", + "sha256:7a5bdad4edec57b5fb8dae7d3ee58622d626fd3a0be0dfceda162a7035885ecf", + "sha256:8fa0cbc7ecad630e5b0f4f35b0f6ad419246b02bc750de7ac66db92667996d24", + "sha256:a027ef0492ede1e03a8054e3c37b8def89a1e3c471482e9f046906ba4f2aafd2", + "sha256:a3f3654d5734a3ece152636aad89f58afc9213c6520062db3978239db122f03c", + "sha256:a82b92b04a23d3c8a581fc049228bafde988abacba397d57ce95fe95e0338ab4", + "sha256:acf3763ed01af8410fc36afea23707d4ea58ba7e86a8ee915dfb9ceff9ef69d0", + "sha256:adeb4c5b608574a3d647011af36f7586811a2c1197c861aedb548dd2453b41cd", + "sha256:b83835506dfc185a319031cf853fa4bb1b3974b1f913f5bb1a0f3d98bdcded04", + "sha256:bb28a7245de68bf29f6fb199545d072d1036a1917dca17a1e75bbb919e14ee8e", + "sha256:bf9cb9a9fd8891e7efd2d44deb24b86d647394b9705b744ff6f8261e6f29a730", + "sha256:c317eaf5ff46a34305b202e73404f55f7389ef834b8dbf4da09b9b9b37f76dd2", + "sha256:dbe8c6ae7534b5b024296464f387d57c13caa942f6d8e6e0346f27e509f0f768", + "sha256:de807ae933cfb7f0c7d9d981a053772452217df2bf38e7e6267c9cbf9545a796", + "sha256:dead2ddede4c7ba6cb3a721870f5141c97dc7d85a079edb4bd8d88c3ad5b20c7", + "sha256:dec5202bfe6f672d4511086e125db035a52b00f1648d6407cc8e526912c0353a", + "sha256:e1ea316102ea1e1770724db01998d1603ed921c54a86a2efcb03428d5417e489", + "sha256:f90bfc4ad18450c80b024036eaf91e4a246ae287701aaa88eaebebf150868052" + ], + "version": "==5.1" + }, + "distlib": { + "hashes": [ + "sha256:2e166e231a26b36d6dfe35a48c4464346620f8645ed0ace01ee31822b288de21" + ], + "version": "==0.3.0" + }, + "docutils": { + "hashes": [ + "sha256:0c5b78adfbf7762415433f5515cd5c9e762339e23369dbe8000d84a4bf4ab3af", + "sha256:c2de3a60e9e7d07be26b7f2b00ca0309c207e06c100f9cc2a94931fc75a478fc" + ], + "version": "==0.16" + }, + "entrypoints": { + "hashes": [ + "sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19", + "sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451" + ], + "version": "==0.3" + }, + "filelock": { + "hashes": [ + "sha256:18d82244ee114f543149c66a6e0c14e9c4f8a1044b5cdaadd0f82159d6a6ff59", + "sha256:929b7d63ec5b7d6b71b0fa5ac14e030b3f70b75747cef1b10da9b879fef15836" + ], + "version": "==3.0.12" + }, + "flake8": { + "hashes": [ + "sha256:45681a117ecc81e870cbf1262835ae4af5e7a8b08e40b944a8a6e6b895914cfb", + "sha256:49356e766643ad15072a789a20915d3c91dc89fd313ccd71802303fd67e4deca" + ], + "index": "pypi", + "version": "==3.7.9" + }, + "identify": { + "hashes": [ + "sha256:2bb8760d97d8df4408f4e805883dad26a2d076f04be92a10a3e43f09c6060742", + "sha256:faffea0fd8ec86bb146ac538ac350ed0c73908326426d387eded0bcc9d077522" + ], + "version": "==1.4.14" + }, + "idna": { + "hashes": [ + "sha256:7588d1c14ae4c77d74036e8c22ff447b26d0fde8f007354fd48a7814db15b7cb", + "sha256:a068a21ceac8a4d63dbfd964670474107f541babbd2250d61922f029858365fa" + ], + "version": "==2.9" + }, + "keyring": { + "hashes": [ + "sha256:197fd5903901030ef7b82fe247f43cfed2c157a28e7747d1cfcf4bc5e699dd03", + "sha256:8179b1cdcdcbc221456b5b74e6b7cfa06f8dd9f239eb81892166d9223d82c5ba" + ], + "version": "==21.2.0" + }, + "mccabe": { + "hashes": [ + "sha256:ab8a6258860da4b6677da4bd2fe5dc2c659cff31b3ee4f7f5d64e79735b80d42", + "sha256:dd8d182285a0fe56bace7f45b5e7d1a6ebcbf524e8f3bd87eb0f125271b8831f" + ], + "version": "==0.6.1" + }, + "more-itertools": { + "hashes": [ + "sha256:5dd8bcf33e5f9513ffa06d5ad33d78f31e1931ac9a18f33d37e77a180d393a7c", + "sha256:b1ddb932186d8a6ac451e1d95844b382f55e12686d51ca0c68b6f61f2ab7a507" + ], + "version": "==8.2.0" + }, + "mypy": { + "hashes": [ + "sha256:15b948e1302682e3682f11f50208b726a246ab4e6c1b39f9264a8796bb416aa2", + "sha256:219a3116ecd015f8dca7b5d2c366c973509dfb9a8fc97ef044a36e3da66144a1", + "sha256:3b1fc683fb204c6b4403a1ef23f0b1fac8e4477091585e0c8c54cbdf7d7bb164", + "sha256:3beff56b453b6ef94ecb2996bea101a08f1f8a9771d3cbf4988a61e4d9973761", + "sha256:7687f6455ec3ed7649d1ae574136835a4272b65b3ddcf01ab8704ac65616c5ce", + "sha256:7ec45a70d40ede1ec7ad7f95b3c94c9cf4c186a32f6bacb1795b60abd2f9ef27", + "sha256:86c857510a9b7c3104cf4cde1568f4921762c8f9842e987bc03ed4f160925754", + "sha256:8a627507ef9b307b46a1fea9513d5c98680ba09591253082b4c48697ba05a4ae", + "sha256:8dfb69fbf9f3aeed18afffb15e319ca7f8da9642336348ddd6cab2713ddcf8f9", + "sha256:a34b577cdf6313bf24755f7a0e3f3c326d5c1f4fe7422d1d06498eb25ad0c600", + "sha256:a8ffcd53cb5dfc131850851cc09f1c44689c2812d0beb954d8138d4f5fc17f65", + "sha256:b90928f2d9eb2f33162405f32dde9f6dcead63a0971ca8a1b50eb4ca3e35ceb8", + "sha256:c56ffe22faa2e51054c5f7a3bc70a370939c2ed4de308c690e7949230c995913", + "sha256:f91c7ae919bbc3f96cd5e5b2e786b2b108343d1d7972ea130f7de27fdd547cf3" + ], + "index": "pypi", + "version": "==0.770" + }, + "mypy-extensions": { + "hashes": [ + "sha256:090fedd75945a69ae91ce1303b5824f428daf5a028d2f6ab8a299250a846f15d", + "sha256:2d82818f5bb3e369420cb3c4060a7970edba416647068eb4c5343488a6c604a8" + ], + "version": "==0.4.3" + }, + "nodeenv": { + "hashes": [ + "sha256:5b2438f2e42af54ca968dd1b374d14a1194848955187b0e5e4be1f73813a5212" + ], + "version": "==1.3.5" + }, + "packaging": { + "hashes": [ + "sha256:3c292b474fda1671ec57d46d739d072bfd495a4f51ad01a055121d81e952b7a3", + "sha256:82f77b9bee21c1bafbf35a84905d604d5d1223801d639cf3ed140bd651c08752" + ], + "version": "==20.3" + }, + "pathspec": { + "hashes": [ + "sha256:7d91249d21749788d07a2d0f94147accd8f845507400749ea19c1ec9054a12b0", + "sha256:da45173eb3a6f2a5a487efba21f050af2b41948be6ab52b6a1e3ff22bb8b7061" + ], + "version": "==0.8.0" + }, + "pkginfo": { + "hashes": [ + "sha256:7424f2c8511c186cd5424bbf31045b77435b37a8d604990b79d4e70d741148bb", + "sha256:a6d9e40ca61ad3ebd0b72fbadd4fba16e4c0e4df0428c041e01e06eb6ee71f32" + ], + "version": "==1.5.0.1" + }, + "pluggy": { + "hashes": [ + "sha256:15b2acde666561e1298d71b523007ed7364de07029219b604cf808bfa1c765b0", + "sha256:966c145cd83c96502c3c3868f50408687b38434af77734af1e9ca461a4081d2d" + ], + "version": "==0.13.1" + }, + "pre-commit": { + "hashes": [ + "sha256:487c675916e6f99d355ec5595ad77b325689d423ef4839db1ed2f02f639c9522", + "sha256:c0aa11bce04a7b46c5544723aedf4e81a4d5f64ad1205a30a9ea12d5e81969e1" + ], + "index": "pypi", + "version": "==2.2.0" + }, + "py": { + "hashes": [ + "sha256:5e27081401262157467ad6e7f851b7aa402c5852dbcb3dae06768434de5752aa", + "sha256:c20fdd83a5dbc0af9efd622bee9a5564e278f6380fffcacc43ba6f43db2813b0" + ], + "version": "==1.8.1" + }, + "pycodestyle": { + "hashes": [ + "sha256:95a2219d12372f05704562a14ec30bc76b05a5b297b21a5dfe3f6fac3491ae56", + "sha256:e40a936c9a450ad81df37f549d676d127b1b66000a6c500caa2b085bc0ca976c" + ], + "version": "==2.5.0" + }, + "pyflakes": { + "hashes": [ + "sha256:17dbeb2e3f4d772725c777fabc446d5634d1038f234e77343108ce445ea69ce0", + "sha256:d976835886f8c5b31d47970ed689944a0262b5f3afa00a5a7b4dc81e5449f8a2" + ], + "version": "==2.1.1" + }, + "pygments": { + "hashes": [ + "sha256:647344a061c249a3b74e230c739f434d7ea4d8b1d5f3721bc0f3558049b38f44", + "sha256:ff7a40b4860b727ab48fad6360eb351cc1b33cbf9b15a0f689ca5353e9463324" + ], + "version": "==2.6.1" + }, + "pyparsing": { + "hashes": [ + "sha256:67199f0c41a9c702154efb0e7a8cc08accf830eb003b4d9fa42c4059002e2492", + "sha256:700d17888d441604b0bd51535908dcb297561b040819cccde647a92439db5a2a" + ], + "version": "==3.0.0a1" + }, + "pytest": { + "hashes": [ + "sha256:0e5b30f5cb04e887b91b1ee519fa3d89049595f428c1db76e73bd7f17b09b172", + "sha256:84dde37075b8805f3d1f392cc47e38a0e59518fb46a431cfdaf7cf1ce805f970" + ], + "index": "pypi", + "version": "==5.4.1" + }, + "pytest-asyncio": { + "hashes": [ + "sha256:6096d101a1ae350d971df05e25f4a8b4d3cd13ffb1b32e42d902ac49670d2bfa", + "sha256:c54866f3cf5dd2063992ba2c34784edae11d3ed19e006d220a3cf0bfc4191fcb" + ], + "index": "pypi", + "version": "==0.11.0" + }, + "pytest-cov": { + "hashes": [ + "sha256:cc6742d8bac45070217169f5f72ceee1e0e55b0221f54bcf24845972d3a47f2b", + "sha256:cdbdef4f870408ebdbfeb44e63e07eb18bb4619fae852f6e760645fa36172626" + ], + "index": "pypi", + "version": "==2.8.1" + }, + "pywin32-ctypes": { + "hashes": [ + "sha256:24ffc3b341d457d48e8922352130cf2644024a4ff09762a2261fd34c36ee5942", + "sha256:9dc2d991b3479cc2df15930958b674a48a227d5361d413827a4cfd0b5876fc98" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.2.0" + }, + "pyyaml": { + "hashes": [ + "sha256:06a0d7ba600ce0b2d2fe2e78453a470b5a6e000a985dd4a4e54e436cc36b0e97", + "sha256:240097ff019d7c70a4922b6869d8a86407758333f02203e0fc6ff79c5dcede76", + "sha256:4f4b913ca1a7319b33cfb1369e91e50354d6f07a135f3b901aca02aa95940bd2", + "sha256:69f00dca373f240f842b2931fb2c7e14ddbacd1397d57157a9b005a6a9942648", + "sha256:73f099454b799e05e5ab51423c7bcf361c58d3206fa7b0d555426b1f4d9a3eaf", + "sha256:74809a57b329d6cc0fdccee6318f44b9b8649961fa73144a98735b0aaf029f1f", + "sha256:7739fc0fa8205b3ee8808aea45e968bc90082c10aef6ea95e855e10abf4a37b2", + "sha256:95f71d2af0ff4227885f7a6605c37fd53d3a106fcab511b8860ecca9fcf400ee", + "sha256:b8eac752c5e14d3eca0e6dd9199cd627518cb5ec06add0de9d32baeee6fe645d", + "sha256:cc8955cfbfc7a115fa81d85284ee61147059a753344bc51098f3ccd69b0d7e0c", + "sha256:d13155f591e6fcc1ec3b30685d50bf0711574e2c0dfffd7644babf8b5102ca1a" + ], + "version": "==5.3.1" + }, + "readme-renderer": { + "hashes": [ + "sha256:1b6d8dd1673a0b293766b4106af766b6eff3654605f9c4f239e65de6076bc222", + "sha256:e67d64242f0174a63c3b727801a2fff4c1f38ebe5d71d95ff7ece081945a6cd4" + ], + "version": "==25.0" + }, + "regex": { + "hashes": [ + "sha256:08119f707f0ebf2da60d2f24c2f39ca616277bb67ef6c92b72cbf90cbe3a556b", + "sha256:0ce9537396d8f556bcfc317c65b6a0705320701e5ce511f05fc04421ba05b8a8", + "sha256:1cbe0fa0b7f673400eb29e9ef41d4f53638f65f9a2143854de6b1ce2899185c3", + "sha256:2294f8b70e058a2553cd009df003a20802ef75b3c629506be20687df0908177e", + "sha256:23069d9c07e115537f37270d1d5faea3e0bdded8279081c4d4d607a2ad393683", + "sha256:24f4f4062eb16c5bbfff6a22312e8eab92c2c99c51a02e39b4eae54ce8255cd1", + "sha256:295badf61a51add2d428a46b8580309c520d8b26e769868b922750cf3ce67142", + "sha256:2a3bf8b48f8e37c3a40bb3f854bf0121c194e69a650b209628d951190b862de3", + "sha256:4385f12aa289d79419fede43f979e372f527892ac44a541b5446617e4406c468", + "sha256:5635cd1ed0a12b4c42cce18a8d2fb53ff13ff537f09de5fd791e97de27b6400e", + "sha256:5bfed051dbff32fd8945eccca70f5e22b55e4148d2a8a45141a3b053d6455ae3", + "sha256:7e1037073b1b7053ee74c3c6c0ada80f3501ec29d5f46e42669378eae6d4405a", + "sha256:90742c6ff121a9c5b261b9b215cb476eea97df98ea82037ec8ac95d1be7a034f", + "sha256:a58dd45cb865be0ce1d5ecc4cfc85cd8c6867bea66733623e54bd95131f473b6", + "sha256:c087bff162158536387c53647411db09b6ee3f9603c334c90943e97b1052a156", + "sha256:c162a21e0da33eb3d31a3ac17a51db5e634fc347f650d271f0305d96601dc15b", + "sha256:c9423a150d3a4fc0f3f2aae897a59919acd293f4cb397429b120a5fcd96ea3db", + "sha256:ccccdd84912875e34c5ad2d06e1989d890d43af6c2242c6fcfa51556997af6cd", + "sha256:e91ba11da11cf770f389e47c3f5c30473e6d85e06d7fd9dcba0017d2867aab4a", + "sha256:ea4adf02d23b437684cd388d557bf76e3afa72f7fed5bbc013482cc00c816948", + "sha256:fb95debbd1a824b2c4376932f2216cc186912e389bdb0e27147778cf6acb3f89" + ], + "version": "==2020.4.4" + }, + "requests": { + "hashes": [ + "sha256:43999036bfa82904b6af1d99e4882b560e5e2c68e5c4b0aa03b655f3d7d73fee", + "sha256:b3f43d496c6daba4493e7c431722aeb7dbc6288f52a6e04e7b6023b0247817e6" + ], + "version": "==2.23.0" + }, + "requests-toolbelt": { + "hashes": [ + "sha256:380606e1d10dc85c3bd47bf5a6095f815ec007be7a8b69c878507068df059e6f", + "sha256:968089d4584ad4ad7c171454f0a5c6dac23971e9472521ea3b6d49d610aa6fc0" + ], + "version": "==0.9.1" + }, + "six": { + "hashes": [ + "sha256:236bdbdce46e6e6a3d61a337c0f8b763ca1e8717c03b369e87a7ec7ce1319c0a", + "sha256:8f3cd2e254d8f793e7f3d6d9df77b92252b52637291d0f0da013c76ea2724b6c" + ], + "version": "==1.14.0" + }, + "sqlalchemy-stubs": { + "hashes": [ + "sha256:a3318c810697164e8c818aa2d90bac570c1a0e752ced3ec25455b309c0bee8fd", + "sha256:ca1250605a39648cc433f5c70cb1a6f9fe0b60bdda4c51e1f9a2ab3651daadc8" + ], + "index": "pypi", + "version": "==0.3" + }, + "toml": { + "hashes": [ + "sha256:229f81c57791a41d65e399fc06bf0848bab550a9dfd5ed66df18ce5f05e73d5c", + "sha256:235682dd292d5899d361a811df37e04a8828a5b1da3115886b73cf81ebc9100e" + ], + "version": "==0.10.0" + }, + "tqdm": { + "hashes": [ + "sha256:00339634a22c10a7a22476ee946bbde2dbe48d042ded784e4d88e0236eca5d81", + "sha256:ea9e3fd6bd9a37e8783d75bfc4c1faf3c6813da6bd1c3e776488b41ec683af94" + ], + "version": "==4.45.0" + }, + "twine": { + "hashes": [ + "sha256:c1af8ca391e43b0a06bbc155f7f67db0bf0d19d284bfc88d1675da497a946124", + "sha256:d561a5e511f70275e5a485a6275ff61851c16ffcb3a95a602189161112d9f160" + ], + "index": "pypi", + "version": "==3.1.1" + }, + "typed-ast": { + "hashes": [ + "sha256:0666aa36131496aed8f7be0410ff974562ab7eeac11ef351def9ea6fa28f6355", + "sha256:0c2c07682d61a629b68433afb159376e24e5b2fd4641d35424e462169c0a7919", + "sha256:249862707802d40f7f29f6e1aad8d84b5aa9e44552d2cc17384b209f091276aa", + "sha256:24995c843eb0ad11a4527b026b4dde3da70e1f2d8806c99b7b4a7cf491612652", + "sha256:269151951236b0f9a6f04015a9004084a5ab0d5f19b57de779f908621e7d8b75", + "sha256:4083861b0aa07990b619bd7ddc365eb7fa4b817e99cf5f8d9cf21a42780f6e01", + "sha256:498b0f36cc7054c1fead3d7fc59d2150f4d5c6c56ba7fb150c013fbc683a8d2d", + "sha256:4e3e5da80ccbebfff202a67bf900d081906c358ccc3d5e3c8aea42fdfdfd51c1", + "sha256:6daac9731f172c2a22ade6ed0c00197ee7cc1221aa84cfdf9c31defeb059a907", + "sha256:715ff2f2df46121071622063fc7543d9b1fd19ebfc4f5c8895af64a77a8c852c", + "sha256:73d785a950fc82dd2a25897d525d003f6378d1cb23ab305578394694202a58c3", + "sha256:8c8aaad94455178e3187ab22c8b01a3837f8ee50e09cf31f1ba129eb293ec30b", + "sha256:8ce678dbaf790dbdb3eba24056d5364fb45944f33553dd5869b7580cdbb83614", + "sha256:aaee9905aee35ba5905cfb3c62f3e83b3bec7b39413f0a7f19be4e547ea01ebb", + "sha256:bcd3b13b56ea479b3650b82cabd6b5343a625b0ced5429e4ccad28a8973f301b", + "sha256:c9e348e02e4d2b4a8b2eedb48210430658df6951fa484e59de33ff773fbd4b41", + "sha256:d205b1b46085271b4e15f670058ce182bd1199e56b317bf2ec004b6a44f911f6", + "sha256:d43943ef777f9a1c42bf4e552ba23ac77a6351de620aa9acf64ad54933ad4d34", + "sha256:d5d33e9e7af3b34a40dc05f498939f0ebf187f07c385fd58d591c533ad8562fe", + "sha256:fc0fea399acb12edbf8a628ba8d2312f583bdbdb3335635db062fa98cf71fca4", + "sha256:fe460b922ec15dd205595c9b5b99e2f056fd98ae8f9f56b888e7a17dc2b757e7" + ], + "version": "==1.4.1" + }, + "typing-extensions": { + "hashes": [ + "sha256:6e95524d8a547a91e08f404ae485bbb71962de46967e1b71a0cb89af24e761c5", + "sha256:79ee589a3caca649a9bfd2a8de4709837400dfa00b6cc81962a1e6a1815969ae", + "sha256:f8d2bd89d25bc39dabe7d23df520442fa1d8969b82544370e03d88b5a591c392" + ], + "version": "==3.7.4.2" + }, + "urllib3": { + "hashes": [ + "sha256:3018294ebefce6572a474f0604c2021e33b3fd8006ecd11d62107a5d2a963527", + "sha256:88206b0eb87e6d677d424843ac5209e3fb9d0190d0ee169599165ec25e9d9115" + ], + "version": "==1.25.9" + }, + "virtualenv": { + "hashes": [ + "sha256:5021396e8f03d0d002a770da90e31e61159684db2859d0ba4850fbea752aa675", + "sha256:ac53ade75ca189bc97b6c1d9ec0f1a50efe33cbf178ae09452dcd9fd309013c1" + ], + "version": "==20.0.18" + }, + "wcwidth": { + "hashes": [ + "sha256:cafe2186b3c009a04067022ce1dcd79cb38d8d65ee4f4791b8888d6599d1bbe1", + "sha256:ee73862862a156bf77ff92b09034fc4825dd3af9cf81bc5b360668d425f3c5f1" + ], + "version": "==0.1.9" + }, + "webencodings": { + "hashes": [ + "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", + "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923" + ], + "version": "==0.5.1" + }, + "wheel": { + "hashes": [ + "sha256:8788e9155fe14f54164c1b9eb0a319d98ef02c160725587ad60f14ddc57b6f96", + "sha256:df277cb51e61359aba502208d680f90c0493adec6f0e848af94948778aed386e" + ], + "index": "pypi", + "version": "==0.34.2" + }, + "yappi": { + "hashes": [ + "sha256:5650e28b53f624cccc4fd0f8697e7a0a823424197fc8da9ce6770e3d0bc1e392" + ], + "index": "pypi", + "version": "==1.2.4" + } + } +} diff --git a/Ch10/apd.aggregation-chapter10/README.md b/Ch10/apd.aggregation-chapter10/README.md new file mode 100644 index 0000000..85669dd --- /dev/null +++ b/Ch10/apd.aggregation-chapter10/README.md @@ -0,0 +1,4 @@ +# APD Sensor aggregator + +A programme that queries apd.sensor endpoints and aggregates their results. + diff --git a/Ch10/apd.aggregation-chapter10/Yappi Profiling.ipynb b/Ch10/apd.aggregation-chapter10/Yappi Profiling.ipynb new file mode 100644 index 0000000..153122f --- /dev/null +++ b/Ch10/apd.aggregation-chapter10/Yappi Profiling.ipynb @@ -0,0 +1,3140 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAEwsAAAmZCAYAAABbjid3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdd5RkVdWw8WcPM+TMkNMgIAiISBSUJAgoiqAEBcQhmMWE8XsNmHPEHMiCooKBFzGg6IsEQVCRoIiAgkgacmZmf3+cGqm+fau7UndVM89vrV5w973nnF1xrened5/ITCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNn2mDTkCSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJElSPZuFSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSUPKZmGSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEnSkLJZmCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkjSkbBYmSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDSmbhUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJElDymZhkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0pCyWZgkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZI0pGwWJkmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA0pm4VJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJQ8pmYZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSdKQslmYJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSNKRsFiZJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNKZuFSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSUPKZmGSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEnSkLJZmCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkjSkbBYmSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDSmbhUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJElDymZhkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0pCyWZgkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZI0pGwWJkmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA0pm4VJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJQ8pmYZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSdKQslmYJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSNKRsFiZJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNKZuFSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSUPKZmGSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEnSkLJZmCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkjSkbBYmSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDSmbhUmSJEmSJPUgIrLyc/Sgc5I0dfmdIkmSJEmSJEmSJEmSJEkLlog4ulo7NpHjBiUiZtXUyM1eUNaXJEmSJKlX0wedgCRJkiRJemKLiOnARsBTgGUbPwsB9wP3ATcC1wPXZ+bDA0pTkiRJkiRJkiRJkiRJkiRJkiRJkiRJGko2C5MkSZIkSX0XEYsA+wCHAc8CFmtj2KMR8RfgYuA3wM8z8/aJy1KSJEmSJEmSJEmSJEmSJI0nImYB13Uw5GHgHuBu4FrgMuBC4KeZ+Ui/85svIp4NnFNz6meZuUef1tgJ+PUYl+ycmef2YZ1DgBPGuGSdzLy+13UkSZIkSZI0dUwbdAKSJEmSJOmJJSL2Av4OnAo8h/YahQHMAJ4OvBL4NnBLRHxhQpKUpD6JiOsjIpt+jh90TpIkSZIkSZIkSZIkSdKALQKsCKwH7A68E/ghcFNEfDwilpygdQ9vEX9ORKw1QWtWHTZk80iSJEmSJOkJwmZhkiRJkiSpL6L4MvAjYI0+TDkNmKziHEmSJEmSJEmSJEmSJEmSNLFmAm8H/hIR2/Zz4ohYFnhRi9PTgNn9XG8ML46IpXuZICKeBOzQp3wkSZIkSZL0BDF90AlIkiRJkqQnjK8Cr2xx7p/Ar4ArgNuA+4ElgeWA9YEtgKdRdhOUJEmSJEmSJEmSJEmSJEnD7X7g7y3OLQ4sD6zQ4vzawNkRsWNm/rFP+RwELDrG+UMj4oOZmX1ar5XFgQOAb/Qwx2FA9CcdSZIkSZIkPVHYLEySJEmSJPUsIvamvlHYpZRdAH81XoFNRCwO7AHs0/hZot95StKwy0yL/CRJkiRJkiRJkiRJkjQVXJKZO411QUSsAbwAOApYt3J6aeD7EfGUzHy0D/kcXjlORjbcmgXsAvyyD2tV3UnZPHW+w+iyWVhETANeXgnPoTRf0xNUZh4NHD3gNCRJkiRJ0pCbNugEJEmSJEnS1BYRAXy25tTpwHaZeU47O/Fl5gOZeXpmvgxYHXgzcE1/s5UkSZIkSZIkSZIkSZIkSZMhM2/MzK8AT6PUFFatC7yq13UiYjPg6ZXwZ4FHKrHDel2rhe8Ac5uOnxERT+lyrt2BNZqO7wJ+2m1ikiRJkiRJeuKwWZgkSZIkSerVdpQd95rdBMzOzIe7mTAz787Mz2Xm23pNTpIkSZIkSZIkSZIkSZIkDU5m3g8cBFxVc/plfVjiiOqSwOeBMyvxF0XEcn1Yr+rfwM8rsW4bk1XHnQI81OVckiRJkiRJegKxWZgkSZIkSerVc2tix2fmvZOeiSRJkiRJkiRJkiRJkiRJGjqZ+RDw0ZpTW0bE8t3OGxGLAgdWwudm5j+BEyrxRShNyybCsZXjl0XE9E4miIgVgL3GmVeSJEmSJEkLqI5+2SRJkiRJklRj7ZrYHyY9ixYiYiVgS2Clxs9c4FbgFuDCzLxngOmN0Mh1Q2BdYFlgCeBeYA5wE/D7zLxvknJZFtiqKZdpjTx+mpk3TFIOawGbA6sBywH3AdcBF2fmzZOUw2LA1sCqlPfPksAdwG3AnzLz2knIYRngGcD6wDKU5+E24NLMvHoC190EWI/yuFcAHmisez3lNXh0otZurL8QsBmwEbAysChwP/DnzDynzfFPonymVgeWBhYC7mz8XA1cnpnzJuQBDImICOCplPfPisDywN2U78HrKO+jCX8OBvU+liRJkiRJkiRJkiRJ0lA5uyY2DdgAuKDLOV9EqS9rdmLjv2dRalRWbDp3OPDFLtcay4+B24GZjeOVgec14u06GFi46fjPmfmHUgI0HBbEuqyIWJ3yeGdRap8WA+6h1FT+k1JP99DAEuyTiFiYUjO4IbAK5bWF8jjnUF7Xv05SLtMptb8bUz5T84CbKTVvF2bm3MnIo13DUGsqSZIkSVow2CxMkiRJkiT1aqWa2P2TnkWTxh/dXw8cQGk21apS5rGIuAA4HjhhsosHImIpyi6AuwE7AWuNM2RuRFwGfA04MTMf6WLN44GXN4VuyMxZTeefC7wF2JlSwFN1KOX5mhCNxkYvB15LaVZWJyPid8DHM/PMprHXM7J53QmZObuLHKZRdo88GNiB0qSq1bXXAacBn8rM2ztc53jGfi02A95NeY/MaDHHDcCnga/2o3lXRGwKvAnYndKkrZX7IuKXlNfgwg7X2An4dSW8c2ae2zi/FvB2ym6f1SI+gN8Atc3CImJ9SvHfs4FnUhrujeXuiPgF5fW7qM38Z1EKjlp5eUS8fIzzAGRm7fdSRGQl9P7MPLqd3CrzPJnyPD6PUoDUyh0R8TPKc3BZF+scz5C9jyVJkiRJkiRJkiRJkjScMvO2iLiHx5sQzTez7vo2HV45fgD4fmO9xyLiFOCNTec3i4ind1MrM5bMfCQivl1Z6zA6axZ2WOX42J4T64PJqMtqrHM5sElT6DZg9V5qiiLipcAplfDrMvPLY4yZCewD7ArsSGn8NpZHIuJCShO6H3TTKC0ijgbe1xxrVWPWT436rr0pNaPbAIuMc/1twJmU1/bKCchnZeCdwGzKRrd1bo2I04APZOZt/c6hXZNVaypJkiRJUrNpg05AkiRJkiRNeXW7oa1dE5sUEXEAcA3wCWALWjcKg9JIfXvgW8CfImKHic+wiIhPALcCJwOHMH6jMCjNu7YEvgFcGxHb9zGfJSPi+5SdFHelvlHYhGo0YfotcBytG4VBeU2fBfwkIr4bEYv3MYc9gMspO0vuxhjFGw3rAO8A/hERbxzn2nZzmBYRHwQuAV5MiwZLDWsDXwAuioi6xn3trrlqo1Dtj5SGcGM1CoOy693ewAUR8cOIWL7btSt5HA5cBbyO+kZhrcatEBGXAn8DPkZ57cYrSIOyy+O+wIUR8aOIaFVcNGVExOIR8WXgCkoh5FiNwgBWoDRm+0NEnBQRbT/v4+Qx6e9jSZIkSZIkSZIkSZIkTQn31cSqzcPaEhHrUJocNTs9M5vXOKFmaLXBWL98q3K8Z7v1MBGxJbBpU+gRSn3hwAygLuu4yvGKwJ7t5tvC7Mrxw8CprS5uNJe7Gfg6sD/jNwoDWJjSLOo04C8RsXFXmU6iiNgwIv4KXEZpUrYD4zQKa1iRUmP4l4j4RkS0M6bdnJ4HXEnZ8HSs98xKlA2Fr4qIl/Rr/U4MQ62pJEmSJGnBZLMwSZIkSZLUq//UxPaf9CyAiHgP8B1g9S6Gbwz8IiIO7G9WLW3N+MUBY1kDOCciXtZrIhGxBHAOpaHPQETEupRGYc/qcOj+wE8jYuE+5PBW4H+BjboYvhTwuYj4ZkRM7yGHaZTikXfTWcO2pwO/jYglu1jzacDvKQ2jutmJ8IWUoq4ndzG2OY+3Ad8Eumn+thTlOejFXsDvI2KNHucZmMaOlr8CXkNphtjRcMoOh+dFRDvNC8fKY9Lfx5IkSZIkSZIkSZIkSZoy6poA3dPlXIcxuubpxOaDzLyM0tSn2UER0Uv9Xq3MvBz4Q1NoOtBujd9hleMfZ+YdfUmse5Ndl3Uy8Ggldmi3CzfW3LUS/mFm3jnGsO3ovPaq2VMo9XTVdYfNKkAvNX8BHEGp9+qq2d+IySJeAPwI6GTj0hWAUyLilb2u34lhqDWVJEmSJC24/MekJEmSJEnq1flA9Q/tu0bEkZl5zGQl0WgU9oGaU48BvwZ+CdxE+X3ImsDzgGcwslBoYeDkiHgsM0+b2IxHSEox0uXAVcBtlOKnuZTCgCcBW1F2QJzRNG4G8I2IuCIzL+1h/a9TmpfN92/gLODPwK2UXRvXphTt9F1ELENpcLRmzel/AD+k7Ex4J2VXuqdSGlSt0rhmB+AzPebwMcqubVVzgF9QCrhuBR6gFKttDOwBbFC5/nDgLuCtXabyYeCgpuN/UYpKLgduB5akFBO9mLLTXLMNKLs3vr7dxRq7Uf66MW+zecD/UT7f11Ee02KUJnU7ArswsgnU+sBZEbFFZt7d7vpNdgPe2XT8cCOvcykNCR9rrL1NTa517gMupnyergHuBu6lfMaXoxTp7Ex5LputD3w3InbMzMdazP0I8Kem440Y+bm8E/hnGzn2VUQsRnnONqk5fTtwBo9/plfg8ffRapVrN6I0DNssM+d0mc6kvo8lSZIkSZIkSZIkSZI0NTQ2lazbTPAfXcw1DZhdCd9E2Tiz6kTgk03HywIvAk7pdN02HAts0XR8GPDpsQY0Gpe9tGaeYTORdVlk5q0RcRalPnC+50XESpl5axf5HgJMq8Q6eV7nApcCVwBXA3dQajuDUle5PqUO9ZmVdZYEvhMRT8/Mf3WR9yDcyeOv7bWUx3kfpW5wJqVmcjeguhHl1pRNQnvZZHgd4Bgev985KbWLZwE3No7XBJ5Lea6b634D+GpE3JGZP+ghh7YMUa2pJEmSJGkBZbMwSZIkSZLUq7OABykFAc2+EBHPAT6RmedNZAIR8UzgfTWnzgMOz8y/1Zz7UERsSyn82LB5OuDrEXFRZt7Q/2z/ax7wc0oR0s8z87bxBkTETOC9lCY684sdFgFOoDTQ6sYawIGN/38QeBfw5cys7s4H8O6J2E0R+CyjC0jupRRBfCMzszogIt4AvA04mvI7rtdSmjh1LCL2YXTxxp2U5lUnZuZDLcYFsDfwVWClplNHRcRvM/PHHaayalMe9wJHAcdm5tyatf8fpTneOyunXh0RH83Mm8ZbLCKWA77H6OZbxwFHZ2arhlcfaRTtfQnYvSm+LuXz9OLx1q7xdh5/T/8AeHOrIqkx3oN3UXaW/D5wfov3cHWu7YDPA1s2hbcD3gR8qm5MZv4b2KxpjuspzfTm+3Fmzh5v7QnwWUY3CpsLfBz4YN37OCLeDLwF+CDlu2S+NSkFXC/qIo9JfR9LkiRJkiRJkiRJkiRpSqmrLbqT0qCoU7tT6t+anZyZ82quPZmygV3zBomHMzHNwk6hNAebX+e0UURsk5kXjTHmRZTGQvPdRKkvHAaTUpfV5FhGNgubDhxMdxuKzq4c30jZeHYsjwCnUx7zr9rZPDMi1gY+ysiGbysAXwGe326yA/Af4HjKRpSXtPjs/FejZvK5wOcojdLm2y8i9s3M73eZx9t5/PNyNTC7xeflIxGxdSPn5oZ0AXwlIn6Tmbd3mcO4hqjWVJIkSZK0AKt2RZckSZIkSepIo8nVF1ucfgHwfxFxY0QcGxGviIinRUTfGpg3/oj+LUYW8UBpYrZLi0ZhAGTmBZRdxi6vnFqG1o+pX/bJzN0z89vtNAoDyMzbM/MNwKGVU5tExG5d5jH/ebsf2CMzPz9WMU+rYoZuRcQzGP147mvk8vW6RmGNPB7JzA9TGp3NpRR7LFJ37Tjrr0RpjtXsGmDTxvotH28WZ1AKmm6snP5o473ZiYUpj2MOsH1mfqOuwVJj7Ucz813ANyqnFmL089nKl4BZTcdzgYMz87AxGoXNX/9aStFP9bl7UURs0+b6zea/D48B9htrN8UWr8m/gdUy88jM/E07BWmNuc4HtgfOrpx6Qz+/pyZao2HiqyrhecChmfk/rd7HmTk3Mz9JKTasPmf7REQ3jd8m+30sSZIkSZIkSZIkSZKkKSAiVqVsIFl16nhNilo4vCZ2Yt2FmfkfRjff2jki1uli3TFl5l2U5kvNxquFqT6WE1rV3EyyQdRlnQXcUonNbmfdZo2aqvUr4RPaeK9tlZkvzswz2mkUBpCZN2TmgZTNT5s9LyI2rBkyDH4PrJmZ78rM37fzGWzUTJ4FbANcVjn9lh5ymd8o7ArgWWM11svM31PeW1dUTq1I2VhzQgxZrakkSZIkaQFmszBJkiRJktQP7wUuGOP86pRil68DfwTujYiLIuILEbFvRKzcw9p7AhtUYv8E9s/MR8YbnJlzKLvQPVidNyKq8/ZNu0UkLcaeQNmlr9kRvWXEOzPztz3O0Y3X1cTe1igWGldmfo+yA2G33khpDjffA5RGZdWCjLFy+Bfwkkp4I2CvLnM6NDP/1Oa17wSqRSa7jzeo8d4+oBL+n8z8dpvr0mjk9ipG7+r5znbnqPg98OZWDeLGyeWRzKx+htsd+xDwcsprP9+aQLcN+AbhzTWxz2XmSe0MbhRwvafm1FE95DTh72NJkiRJkiRJkiRJkiRNDRGxLqVx1IqVUw8AH+1ivpmUzUybXZKZV44x7ITqNEzchnbHVo5fEhGL1V0YEbOAnSvhalOigRhEXVZmPgacXAk/NSK26DCFutd23Oe1l9pO4APAxU3HARzWw3wTJjMfaDzX3Yy9EzikEt42IjbqIaVHgBdl5h1trH8HZYPMao3wQY3vhokwjLWmkiRJkqQFkM3CJEmSJElSzxpFHc8DftLmkEWBrYEjge8BN0fEuRFxWEQsOvbQUV5fE3trZt7f7gSZeR2jdxQL6htZDYvqDojP6mGua4Ev9TC+KxGxLLBfJXwVpalcJ94H3NXF+ksCr62EP52Z/+h0rsz8HXBOJbxPp/MAv8nMH3ew7hzKTorNNouI8X7v9zZG/m7wOuBT7a7btP6jwEcq4ed28TmG0iRuILthZuatjN7FspfP1KSJiNWBvSvhWylNHDvxGcpOh822jYjNu0hrst7HkiRJkiRJkiRJkiRJGkIRsWhErB4Re0bE14E/A5vWXPqKTprtNDkEWLgSq9bUVf0IqDaCmj1BNSrnADc0HS8DvLjFtYdS6hXn+21m/n0Ccpp0PdRlVZutAcxud92IWBzYvxL+bWZe2+4c3WhslFnd4HFK1KF1KjP/AlxaCffyWI/JzL91sP7fgGMq4UXo4H3SriGtNZUkSZIkLaC82UqSJEmSJPVFZt4FvJBShNNpoUoAOwLfAv4aEQe1NShi4ca4Zv8BzuhwfYCvAdVd0p7TxTyTpdrUZ9WIWKvLuY5rFKlMtmdSijOquczrZJLMvA/4bhfr7wosW4l9q4t55vvfynH1vdmOb3Qx5veV4yWB1VtdHBFB2VWv2fE9NOqqNnlaBNimwzmuyczfdrl+v1Q/U88YSBadezawUCV2YicNE+G/jd/q3n/dfA9O+PtYkiRJkiRJkoZd48b4XSLi8Ih4R0S8MSL2i4inDTo3SZIkSeqTHSMi636AB4EbgTOBVwCLV8Y+AByUmad0ufZhleNHgVPHGtDYFPW0SnhNYLcucxhrrQSOr4SrOdNoVPbySriuUdZU1nFdVmZeyeh6ogMjolpv2MqLgaUqsePaHNur6uPdPCJmTNLak62fNXfd1JzVbUz73B5yaGUYa00lSZIkSQuo6YNOQJIkSZIkPXHM3xUtIk4F9gAOBPYElu5gmrWAkyNiV+DVmfnwGNduDixaif0wM6tNv8aVmf+JiPOAnZrCG0TECpl5R6fzdapRxPIs4GnAJsCKlOdtSUY3AoLRuyJCee7+2cXyv+5iTD/UFYZUG0+160zgVR2OqRZY3JSZN9Re2Z7rKsezImLZRiO9dv2mi3XrdjtcBvhXi+s3BZarxM7vYl0AMnNORNzdWHO+p9PZYzm32/VbiYjVge0oj/fJlPyWBhZj5E6c861SOe62+d5ke2ZN7PtdznUa8Ik25h/PZLyPJUmSJEmSJD2BRMSTgK2ALRv/3ZyRN/XekJmzBpBaxyJiE+C9wAsY/Xes+ddcQ7lJ+dOZ+cgkpidJkiRJg3YvZWPID2RmV3UhEfEMYONK+KzMvL2N4SdQmpc1Oww4u5tcxnEc5d+H82uVdoqIdTKzuc5sV2DtpuN76b72Z1JMYl3WccDWTcfLA3sB32tj7KGV4/vaHDdKRCwJ7EB5vBsBK1Ae7xLAtJohS1aOFwFWpjTPG2oRsS6lrnNTYF3K41ya8hjqXtvqa9ltzd3VmfnXTgdl5t8i4gpGfh9sFRHTOt20dhzDWGsqSZIkSVpA2SxMkiRJkiT1XaNZ15nAmRGxELAZpRHWlpSbOzagvgFWs9mUYor9x7hm85rYJZ3m2+RiRjYLC0rTo1/2MOeYImI94J3AvoxsttSN6s5l7Ujgjz2u262nVo4fBK7ucq7LuhhTbYK0XET08lxUi3wAZgLtFnA8lJndFATdXRMb671U1/zpmIgYqzHfeKo7f87scPylPaw9QkTsC7yWUqBTV4zVrm4+T4NQ/R58DPhTNxNl5g0RcSuw0hjzj2ey3seSJEmSJEmSpriI2Al4F+XvR8sPNpveRUQA7wGOpv4G2mbrAx8BXhoRB2bmXyY4PUmSJEkaFpcAx3TbKKzh8JrYie0MzMzfRcTfgfWawi+MiJltNhtrW6MW51fALo1QUOoi39d02WGVYd/NzPv7mUe/DKAu61TgM5QmZPPNZpymXxGxNiPrQAFO6/R5jYgtgLdRGpQtNs7l41mWIW0WFhHTKJ+pV1AauPei25q7P/Sw5qWMbBa2FKWJXbe1qHWGrdZUkiRJkrQAs1mYJEmSJEmaUJk5l/KH/P/+MT8iFge2AXYG9gM2bDF8v4g4MjOPaXG+riHRVT2ke2Wba/RFRLwX+H+UXdf6oZvGOvdl5gN9Wr9TK1SO/9V4v3QsM2+KiEeBGR0MW6NyvDjwtG7WH8MKwN/bvHZOl2s8WhMb63moPm5o/RnsVvW1Hc+tvS4YEasBJwHP7nWuhqnSqKr6HXVdZj7Uw3xXMbJZWKffgZP1PpYkSZIkSZI09W0G7DboJProG4y+YX0e5Ub464GFgY0oN6zO91TgnIjYNjP/MRlJSpIkSVIf3U99bdQMYDlg1ZpzOwMXR8TszDy10wUjYgnggEp4DmVz03adCHyg6Xhh4GDgc53m04ZjebxZGMDsiHh/Zs6LiOWAvWuuHyqDqsvKzLsj4gzgwKbw7hGxambePMbQ2Yxu4n1cu8lFxAzgs8Br6K0pWrOhrEWLiKcA36ZsqtsP3T7Ov/awZl1TsJVaxLs1bLWmkiRJkqQFWL9+WSFJkiRJktS2zHwgM3+dme/NzKcAewBXtLj83Y3mYnWWq4n1srPWnTWxCdnJPiK+BLyf/jUKg+4a69zTx/U7VX397u5xvk7HT8hrW9HJjoJ1zZImQqeNvLrR6U6KPb0PI2J14Fz6V5AGU2ejhernqNfdBavfg4uM8R1cZ7Lex5IkSZIkSZKeuB4Grh10Ep2IiCMZ3SjsO8BamblNZh6Qmftk5gbA1sBlTdetBPw0IhadpHQlSZIkqV8uyczNan42zszVKHVKsxndtGdh4KSIeEEXa+4PLFWJfSczH+lgjhOBrMSq/6brl9MZWc+zFo83DzuIkfWDV2fmBROUR1eGoC6r2uRrIeBlrS6OiAAOqYSvyczz2lms0Sjse8Dr6O+9t0O3aWJEbAL8hv41CoPuH2cvtaN1Y5ftYb46w1ZrKkmSJElagNksTJIkSZIkDVxm/gzYCvhpzemVgL1aDK0W/UDZrbBbdWPr1uhJRBwMvLbm1BzgW8BhwPbALEojoMUyM5p/gHX6lM5jfZqnG9VGaZ0UbNV5uN0LG82P+tmobSqpa7I3aL2+D48H1q+J/xH4KLAPsDmwCrA0sHDNZ+r9PeYwKNXvqF6+A1uN7/v3oCRJkiRJkiQ1PEr5Xe43gVcBW1B+J3nEIJPqRESsAHykEj4mM1+ambxgrjgAACAASURBVDdVr8/Mi4EdgN83hZ8MvGnispQkSZKkyZeZczLzBGAzSkPlZgsBJ0fErA6nrWvqdWKHed1AaZLUbJOI2LrDXNpZ6yHg1Er40MZ/D6vEj+33+n1wPIOtyzoHuKESO7TuwoYdgSdVYtWGY2N5B/DCmvhNwJeBg4FtgTUpDakWrXm8O3ew3kA0mqKdBqxYc/p3wNHA84GnUWp4lwKm1zzWE/qU0tDW/S7gtaaSJEmSpCHUSRd2SZIkSZKkCZOZD0bESyg7xc+snN6F0cVCAPfWxJboIY26sXVrdK1RZPGJmlMfAz6QmQ+2OdUTYRex6o5uvRZoLN3BtQ8B8xjZTP+HmblPjzlMBXXvseUy866a+NCLiD2BXSvhW4FDGo0I2zVVP1P3MnInxF6+A1uN7+v3oCRJkiRJkiQ1nAB8tXHj9AgRMYB0unYksGTT8VXAUWMNyMz7IuIg4EpgRiP8roj4WmbeOTFpSpIkSdJgZObDEfEyYGVGNlJamrK55i7tzBMRGwDPrDl1YZ/+HXkYIxs798txwGuajveJiJ2BpzfFHgNOmoC1uzYMdVmZmRFxAvDepvCGEfGMzLywZki1kdhc2mwmFxErAe+qhB8D3gZ8MTPb3RBzKtShvRJ4SiV2LfCSzLykg3n69ViHue53Qa41lSRJkiQNoWnjXyJJkiRJkjQ5MvMeyk50VRu0GFJ3s8SyNbF21Y2d08N8dXYEVq3EjsnMd3XQKAxg+T7mNCjV12+FbieKiIUZeSPOmDJzHlBtjrVOt+tPMbfXxGZNdhJ99NLK8VzgBR0WpMHU/UxVP0e9fAfWjX84Mx/ocU5JkiRJkiRJGiUz76xrFDYFvaBy/PnMfHS8QZn5d+CHTaGlgRf1MzFJkiRJGhaNRkuHAPdUTj07Ig5oc5rD+5vVKC+NiMX7PWlmXgxc3hRaFDi5ctlZmfmffq/do2GpyzoeyEpsdvWiiFgSeHEl/PPMvKnNdfYCqq//OzLzcx00CoOpUYdWfW3vBXbtsFEY9O+xLtPnsX3bOHUBrzWVJEmSJA0hm4VJkiRJkqRhU7cz38wW195WE6vudtaJjWpidY2VevGcyvE84MNdzPOkPuQyaP+qHK8eEct1OddTgU63h7ylcvzkiFiky/WnkurjBth00rPon+pn6uzM7GaHz6n6map+D67T4/u4+j3Y7+9ASZIkSZIkSRq4iFgyInaPiEMj4u0RcVREvCwitoyItmtrI2IpYLNKuJObps+uHO/bwVhJkiRJmlIy80bgvTWnPhIRM8YaGxHTKc3GJtLSTNy/y46rHK9WOT52gtbtxVDUZWXmdcC5lfBLImLRSmx/YIlKrPq8j6X6eO8EvtjB+PmGug6t0VRt20r4xMy8vovp+vVYn9zD2LrNiG/tYb46C2qtqSRJkiRpCNksTJIkSZIkDZu7a2KtdmW7tCa2ZQ9rb1U5zhZr9GLNyvHfMrOuedN4qsUaU1Fd4dAzupyrm3HV9RcDdupy/amk7nl/7qRn0QcRsTCwUiX8f13MsxCwdV+SmnzV76jpjL4xrS0RsRajn88/dDOXJEmSJEmSJA2jRoOwXwFzKI26jgU+DnwKOBG4GLglIj7W5gYnqzGyFvf+Dm+uvbxyvIs3m0qSJEl6gvsK8I9K7EnA4eOMez6wciX2H+BPPf5UjZdHt04CHmlx7lbgfydo3a4MYV1WtenXMsA+ldjsyvEc4McdrFGt7bwoM1u9ZmMZ9trO6u8yoLvXdiX61yxsiz6OvRf4Ww/z1VlQa00lSZIkSUPIZmGSJEmSJGnYVAt6YPSuXPNdCjxUie3dKDDpSESsDGxfCf81M+d0Otc4ZlaOO56/sYvi3v1JZ6AuqIkd2OVcB3Ux5hc1sYO7XH8qOR+4vxLbs82bnoZN9fMEXXymgOcBS3aZQ7WZYcffPz06vybW7Q6n+7U5vyRJkiRJkiRNKRExMyJ+QWkQtjMwY4zLZwLvAK6JiB3GmXr5yvFdHaZWvX4GsGGHc0iSJEnSlNFovvSBmlP/M07z5LomXodm5ma9/DC6CdAOEbFet4+vlcy8HTizxemTMrPVhqqDMgx1Wc1+ANxTiR06/38iYl1G139+OzMf7mCNftR2zqT83mGY9eu1PaDXRJo8JSI26HRQRDwZ2LgSvjgz5/Unrf9aUGtNJUmSJElDyGZhkiRJkiRp2Dy7JnZt3YWZ+Sjw60p4FbprpPVKYHol9vMu5hlPtUlTXeHFeA4EVu1DLgOVmX8Crq6E942IdTqZJyKeRXe78f2M0c3mXtpN0clU0ii4O7sSXgo4agDp9Kr6eYLuPlNv6SGHeyvH/Shu68Q5wNxK7GURsUQnk0TEdOAVNacm4ntQkiRJkiRJkiZN4ybvi4BdK6fuBc4Fvgt8H7gEaL6ZdAXgFxGx+xjTP1I5HuvG9jp112/U4RySJEmSNNWcDPytEluD+toVImJV4LmV8C3UN/DpJpeqw/owb51jO4wP0jDUZf1XZj5A+fd7s10iYs3G/8+uGXZch8v0o7bzdcCiXYybTD2/to0Nb4/sTzr/dUQXY+q+M37aayI1FshaU0mSJEnScLJZmCRJkiRJ6klEvKDT5k5jzLUusH/NqVY76gF8qSb2qYhYvIN11wbeWQlni7l7dXPl+MkRMavdwRGxMvCpfiY0YF+tHC8KfDUiFmpncEQsWTNHWxq7NX69El4IOCUiFutmzinkwzWxtzcar00ZmXk38EAlvFsnc0TEEcBOPaRxZ+X4ST3M1bHM/DdwRiW8MvC+Dqd6E1AtXvpdZl7WbW6SJEmSJEmSNGiNvxedwcjf3f4V2BdYLjN3zsyXZOZ+mbkV5eb0bzRduzBwckSs3mKJOyrHy0VEJzcF120O442mkiRJkp7QMnMu8MGaU+9q8W+q2ZS6rmanNubp1XeAxyqxl7dbv9ahsyj/Dmz+WTkzr5yAtXoyJHVZVdXmX9OAQyJiGnBI5dyfuqh7qtZ2btfJho0RsTHwrg7XHITq44QOX1tKbdr6fcil2ZGNhu9taVxbbVj2MHB8P5OCBb7WVJIkSZI0ZGwWJkmSJEmSerUn8LeIOC4iNux2kohYjXKzRrXJ123AL8cYehZwdSU2i/JH+OltrLsc8KOadX+SmdXdC/vh/2piH29nYEQsT2mc1s2OdcPqWODGSmw34ISIWGSsgRGxLOX52LiH9T/K6J3yNgfOaLw3OhYRa0fEMRGxSQ95TahGIdQPKuEZlMe9QzdzRsQiEfHKiHhzzwl25rzK8U4R8bx2BkbEHsAXelz/8srxJk07Vk6Wz9bEjoqIl7QzOCJ2p76B3Kd7ykqSJEmSJEmSBu+TQPPv638KPD0zf1B3U3lm3pyZrwSOagrPpP4mdih/47iv6XghYMsO8tu2JrZMB+MlSZIkaao6hdF1f6sBr6659tCa2Mn9SCIzbwN+VpPHc/sxf2WtzMz/VH5u7fc6fTTouqwRMvMCRr9nZgO7AGtV4sd2sUS1tnNJ2tywsbFh7I+BMWseh0HjPVetjT0oIp7WzviIOJSJaYq2CHB6O3WbjWtOZ/TzfUqjsddEWCBrTSVJkiRJw8dmYZIkSZIkqR+mU4ouroqICyPi9RFRtxP6KBGxeES8GrgMeGrNJW/LzIdajc/MBA4Hqjd0vBD4+Vg7jUXENpSClmqRw12M3nGsX84G7q3E9o+Ib461C11E7AZcyOM3mNwzQflNqsy8F3hlzamDgL9ExMsiYsRNMRGxSkS8nlL4s2MjfB1wSxfr/wd4OZCVU7sDf4iIg9tsOrdERBwQEacDfwdeD9TtcjlMXkV53prNBM6JiE9GxCrtTBIR20TEp4Hrga8B6/Y1y/GdVhP7bkTs22pARCwaEe+lNAqcv7Nft5+p8yvH04DvRUQnN4P1JDPPB75Sk8dJEXF0RCxcNy4iFoqItwA/BKrXnJGZZ/Q/W0mSJEmSJEmaHI2Nao5oCl0P7JuZD443NjM/Q9mwZr6D6n5vnpmPAb+rhF/WZn4BHFxzaql2xkuSJEnSVJaZ84D315x6Z0T8d+PPiNgRWL9yzdWZ+Yc+plPXeOzwPs4/VQ26LqvOcZXj9YDPV2KPAN/uYu4fAPMqsbdFxAfHqiGMiJcCFwBPaoSmQm1n9bWdAZwdETu1GhARy0bE54Fv8fh9yf16rPNrhJ8KnBcRW4+Rx1aUxm7VeuPbgHf0KZ9RFvBaU0mSJEnSEBn3H5+SJEmSJEkd2qbxc0xEXA9cBFwJ3A7cQflD+dLA2sCmlF3dWjXJOi0zTxhvwcw8PyLeD3ygcmpn4MqIOAf4FXATZUf3NYHnAdsBUZ0OeFVm/nO8dbuRmXdGxGeB91ZOHQ7sHRHfAy4F7gSWpRSQPJ+RhQ1zgTcyuvBlSsrMn0bEh4H/qZxaDzgRmBsRt1CauM0EVmTk6/YIcAiji7aqDeRarf+DRoHSByun1gFOAj4VEecCl1AKSu6nvIeXbeS4JeW9PPS7AjbLzDsiYi9Kw7zmhmzTgbcCb4iIC4DfAjdS3pOLUB73qsDTKY99xcnMu8aJlJ0Km5uULUlp2HUp8BNKUc2jwErAFpTP1ApN11/ZuK6bYqEfAXOA5Zti2wAXR8S9wL95vJjpvzJzsy7WGstRwPZA8y6D0ym7W74mIs4A/kz5Ll4O2Ah4EbBGzVz/YuQNdJIkSZIkSZI0Fb2akRslvD8zH+hg/Kcpf0+iMc8ewPE1151MuTF0vkMj4iuZ+cdx5j+S0Te8g83CJEmSJC04TgPeDWzcFFsZeC3wqcZxXdOuk/qcx48oTY+WbortGRErZeatfV5rKhl0XVadk4CPUOpA53tK5ZqfZOYdnU6cmX+LiJMptYjN3g3MjojvU+qv7qPUim0A7MXI5+cBymOtbvw4bD5LaVK1bFNsFeDXEfFb4GeUpuvzGvHtgOdSXv/5zqHU5Fafr258AnhLY/6NgAsj4jzgp5RaNih1v3tQauTq6n5fk5m39SGXlhbUWlNJkiRJ0nCxWZgkSZIkSZpIsxo/3TiBDnbny8wPNnZgr+42OINSILBHG9M8ChyamXU74vXTh4AdGz/NVqDcuDKWpBRDndv/tAYnM98dEUkprKlaCFit8VP1MHBQZp5Xsytb27vWZeaHIuLfwJcYvUvbysABjZ8nlMz8S2OnvdMZ2WQKyo1Pde/ToZKZj0bEfpSmZ4tXTm/e+BnLTcCewOwu138oIt5M+c6qWopSFDbhMvPBiHg2cCZQ3VlxJeBVbU51FbBHZs7pZ36SJEmSJEmSNADPafr/ucD3Oxx/HvAYj9fabk99s7DvAEfz+M3BM4CfRMQemXlF3cQRcQCP3/heNa/DPCVJkiRpSsrMeY1NQqv1em+PiK9Q6sZeXB0GfLvPeTwYEaczsn5oBqUJUqt/uz3hDbouq0VON0fE2Y15Wzm2hyXeQKm92rASXwN40zhjHwX2ozQMG2qZOSciDgJ+zMjGawA7NH7G8hfKY/1sn1K6DjiIUse4EKUZ2PaNn/Ek8OrM/EGfchl7sQW01lSSJEmSNDymDToBSZIkSZI05Z1EKb65q0/z/QN4YWbOzsy5nQzMzA8ALwX+3cW6VwLPycy+FhLVycxHgRdSmvp04i5g/8z8ev+zGrzMfA+wG3BNm0P+CDyrqchjucr5uztc/1hgW+BXnYyr8RDlxqB/9jjPpMjMa4BtgM9QdrLrxSXAWT0n1aHMvAzYHbi5w6EXAs/IzOt7XP9E4Ajg3l7m6VVjZ8Sdga9SbmDraDhwCvDMzJwS711JkiRJkiRJaiUiFgW2aAr9C5gZEbPa/aFsYtL89691qZGZj1FuaH2kKbwGcGlEfDkido+IDSPiqRFxQEScSfk7wozGtTdWpuzX39wkSZIkaSr4PvDnSmxF4EjgQEY3qTovM2+YgDxOrom1vdnpE9Wg67JaGKsZ2M3Az7qdODPvBnal5N+JfwO7Zuak1851q5HrfnSwKWvDmcD2mXlnn/P5MbA3nf1eZA5ls9lJraldUGtNJUmSJEnDwWZhkiRJkiSpJ5n5u8w8GFgJ2AX4AOUP4Pd1MM0tlIZjewIbNP7o320+3wHWA94OXEppgNPKY5Rd744ANs3M33S7bqcaRSV7UW4eqRY7Vd0KfJLy3HS66/2Ukpm/ADYGng8cB1wO3A7MpTT/+hPwdUoB0uaZeQlARCzF6MKwOV2s/8fM3AV4BnAio2/QaeVmSsHYy4FVMvOlmXlrp+sPSmY+kJlHAbOAoylNv9pp1vcQ5fP+/4CNM3OrQRU8ZeZ5wNOATzB+wdAllNfqmZnZ7ms83vrfAlYHDqU0UbyM8tl9sB/zd5DHA5n5GmATSmHcf8YZMgc4FdgiMw/qdxGXJEmSJEmSJA3IKjzejAvK77+v6+JnZtMcy7daLDMvAg6m/N58voWB1wBnA1dR/h70Hcrfw+b7IXB8ZTqbhUmSJElaYGRmUuqVqt4KvKomXtfUqx9+DdxUiW0YEdtN0HpTxqDrsmr8hFJTWOfETjeprcrMm4AdgNdTNr8dyw3Ae4ANM/O3vaw7CJl5BrAp8DXGrnObB5xL2Qj4BZk5Ib+7yMwzgY2ALzF2E7PbgC9SnvdTJyKX8SyotaaSJEmSpMGL8vs0SZIkSZKk/oqIoDTOWR9YC1gaWIrSvOse4F7KH70vz8zxmtn0ksfKwFaUZmYrUhog3UZpoHNho2nXwEXEWpSdxlamPFcPUXabuwL4c/pLnDFFxHOAn1fCu2Rmrzu3ERHrUQpQVmj8LExphnc35Uahq5+IxRoRsQyPf3ZWAJahFATdS3lv/hX4R6/FVRMhIhYCtqQ0npsJTKfkfR1wyUR+5wybxnfxppTv4pWAZSnfwbfx+PMxb3AZSpIkSZIkSdJoEbET5Ubt+W7IzFkdjN+CcoNyP12fmeuMs+6WwJcpv18fy6PAR4APN64/ouncmzLz870kKkmSJEnSRFgQ67Ii4snA1pT60yWA+ymNof6cmX8dZG79FBGLANsAG1DqBadRmsNdC1ycmR1v3tpjPjMov1/ZuJHPPErN8XXABUNat7hA1ppKkiRJkiaXzcIkSZIkSZI05UXE54A3NoXmActl5li7y0mSJEmSJEmSpCHUh2Zh2wLn9zmttnNobHKyF7A9sBplI4c5wA3A/wInZeZ1jWvPA57ZNPxZmfm7PuYtSZIkSZIkSZIkSZKeAKYPOgFJkiRJkiSpFxGxPHB4JfwnG4VJkiRJkiRJkrTAur1y/PPM3H2yFs/MXwC/GO+6iJgBbNEUegy4dKLykiRJkiRJkiRJkiRJU9e0QScgSZIkSZIkdSsiAjgBWLJy6usDSEeSJEmSJEmSJA2HWyrHTx5IFuN7JrBo0/FFmfngoJKRJEmSJEmSJEmSJEnDy2ZhkiRJkiRJGriIOCQidu1wzNLA6cDzK6fuAk7uV26SJEmSJEmSJGlqycx7gCuaQrMiYv1B5TOGwyvH3xxIFpIkSZIkSZIkSZIkaejZLEySJEmSJEnDYDvgFxHx14j4WETsHBHLVy+KiBkRsVVEfAi4Dti7Zq7XZ+Z9E52wJEmSJEmSJEkaaj+rHL9iIFm0EBHrAvs2he4CvjugdCRJkiRJkiRJkiRJ0pCLzBx0DpIkSZIkSVrARcRXgVfVnLqdcnPMw8CywExgkTGm+lZmHtH/DCVJkiRJkiRJ0mSJiJ2AXzeFbsjMWR3OsR5wFTC9EXoI2DIzr+hHjr2IiIWAs4Fdm8JvzcxPDyglSZIkSZIkSZIkSZI05KYNOgFJkiRJkiRpDDOB9YCNgdUZu1HYh4BXTEZSkiRJkiRJkiRpuGXm34HjmkKLAmdFxEadzBMR/5+9e4/zqq7zB/46A8NNQJCbF0xESRMvZWqIeMPc7LJlZZZZZrVl6u5qrt1+ZdjWau5WWqubm5tJWayleasWTYW8kPdKE68p4pWLiIJchsv5/TEwzgwzw3dgmO/APJ+Px3nwfX/O5/I+MwzyePD2fXoXRXHieub0bOt+s7m1SX6Wpo3C7k5yQXvyAgAAAAAAAAC6F83CAAAAAOgK7kgyawPX3pTk0LIszyrLsuy4lAAAAAAAgE2pKIqRRVGMan4l2bbZ1J4tzVtzDW3jiDOSPNAofkOSe4ui+LeiKHZsI6++RVG8vSiKHyR5Jk2bjrXkqKIo7i2K4pTW9l3TdOz9a/I5rtGtl5OcUJblqvWcAQAAAAAAAAB0Y4X/fxIAAACArqIoir2THJzkgCS7pP5/2hmUpG+Slan/H2ZeSvJokluT3FSW5czqZAsAAAAAAGyMoihmJdlpI7eZXJbliW2csWOSG5Ps3sLtJ5M8kmRhkp5Jtk4yKsmuSXo0nliWZdHGGe9Jcn2joWeTzEyyIEltkhFJ3pJkq2ZLX0ry7rIs72ptbwAAAAAAAACApL6wAQAAAAC6hLIsH0jyQJKLqp0LAAAAAACw+SvL8pmiKPZPcnGS45vdHr3mWp+F7Tx25JqrLXckOaEsyyfbuTcAAAAAAAAA0A3VVDsBAAAAAAAAAAAAANhUyrJcXJblx5Lsk+TyJC9XsOz5JD9P8qEk265n7kNJJid5cX2pJLl1zZ4HaxQGAAAAAAAAAFSqKMuy2jkAAAAAAAAAAAAAQKcoiqImyd5J9kiyTZJBSZYleTXJrCQPl2X5zAbuPSrJXkl2TLJ16l/s+2qSvyW5qyzLlzYuewAAAAAAAACgO9IsDAAAAAAAAAAAAAAAAAAAAAAAALqommonAAAAAAAAAAAAAAAAAAAAAAAAALRMszAAAAAAAAAAAAAAAAAAAAAAAADoojQLAwAAAAAAAAAAAAAAAAAAAAAAgC5KszAAAAAAAAAAAAAAAAAAAAAAAADoojQLAwAAAAAAAAAAAAAAAAAAAAAAgC5KszAAAAAAAAAAAAAAAAAAAAAAAADoojQLAwAAAAAAAAAAAAAAAAAAAAAAgC5KszAAAAAAAAAAAAAAAAAAAAAAAADoojQLAwAAAAAAAAAAAAAAAAAAAAAAgC6qZ7UTgGorimLrJIc2GnomSV2V0gEAAAAAAAAA2Bi9kuzYKP5DWZavVCsZAFCjBwAAAAAAAABsIapan6dZGNQXIV1b7SQAAAAAAAAAADaB9yW5rtpJANCtqdEDAAAAAAAAALZEnVqfV9NZBwEAAAAAAAAAAAAAAAAAAAAAAADto1kYAAAAAAAAAAAAAAAAAAAAAAAAdFE9q50AdAHPNA6uueaa7LrrrtXKBQAAAAAAAABggz3xxBM5+uijGw8909pcAOgkavQAAAAAAAAAgM1etevzNAuDpK5xsOuuu2bs2LHVygUAAAAAAAAAoCPVrX8KAGxSavQAAAAAAAAAgC1Rp9bn1XTmYQAAAAAAAAAAAAAAAAAAAAAAAEDlNAsDAAAAAAAAAAAAAAAAAAAAAACALkqzMAAAAAAAAAAAAAAAAAAAAAAAAOiiNAsDAAAAAAAAAAAAAAAAAAAAAACALkqzMAAAAAAAAAAAAAAAAAAAAAAAAOiiNAsDAAAAAAAAAAAAAAAAAAAAAACALkqzMAAAAAAAAAAAAAAAAAAAAAAAAOiiNAsDAAAAAAAAAAAAAAAAAAAAAACALkqzMAAAAAAAAAAAAAAAAAAAAAAAAOiiNAsDAAAAAAAAAAAAAAAAAAAAAACALkqzMAAAAAAAAAAAAAAAAAAAAAAAAOiiNAsDAAAAAAAAAAAAAAAAAAAAAACALkqzMAAAAAAAAAAAAAAAAAAAAAAAAOiiNAsDAAAAAAAAAAAAAAAAAAAAAACALqpntRMAAAAAAAAAALqOsiyzevXqlGVZ7VRgi1EURWpqalIURbVTAQAAAAAAAACADqfuDKiW7lSfp1kYAAAAAAAAAHRjZVlm2bJlWbRoURYtWpS6urpqpwRbrF69emXAgAEZMGBA+vTp0y2KkwAAAAAAAAAA2PKoOwO6mu5Qn6dZGAAAAAAAAAB0U0uWLMnzzz+fFStWVDsV6Bbq6ury0ksv5aWXXkptbW2233779OvXr9ppAQAAAAAAAABAxdSdAV1Rd6jPq6l2AgAAAAAAAABA51uyZElmz56tYAuqZMWKFZk9e3aWLFlS7VQAAAAAAAAAAKAi6s6AzcGWWp+nWRgAAAAAAAAAdDNrC7bKsqx2KtCtlWW5RRYkAQAAAAAAAACw5VF3BmxOtsT6vJ7VTgAAAAAAAAAA6DxlWeb5559fp2CrtrY2AwcOTP/+/VNbW5uiKKqUIWx5yrLMihUrsnjx4rz66qtN3qy69mdyl1128XMHAAAAAAAAAECXpO4M6Kq6U32eZmEAAAAAAAAA0I0sW7asSSFEkgwYMCA77LDDFlEIAV1VbW1t+vXrl2HDhuW5557LokWLGu6tWLEiy5cvT58+faqYIQAAAAAAAAAAtEzdGdCVdZf6vJpqJwAAAAAAAAAAdJ7GBRBJfYGEgi3oPEVRZIcddkhtbW2T8VdffbVKGQEAAAAAAAAAQNvUnQGbgy29Pk+zMAAAAAAAAADoRpoXbQ0cOFDBFnSyoigycODAJmPNfzYBAAAAAAAAAKCrUHcGbC625Po8zcIAAAAAAAAAoJsoyzJ1dXVNxvr371+lbKB7a/6zV1dXl7Isq5QNAAAAAAAAAAC0TN0ZsLnZUuvzNAsDAAAAAAAAgG5i9erV64zV1tZWIROgZ8+e64y19DMKAAAAAAAAAADVpO4M2NxsqfV5moUBAAAAAAAAQDfR0lvRiqKoQiZATc26ZTtbwpsLAQAAAAAAAADYsqg7AzY3W2p9nmZhAAAAAAAAAAAAAAAAAAAAAAAA0EVpFgYAAAAAAAAAAAAAAAAAAAAAAABdlGZhAAAAAAAAAAAAAAAAAAAAAAAA0EVpFgYAAAAAAAAAAAAAAAAAAAAAAABdlGZhAAAAAAAAAAAAAAAAAAAAAAAA0EX1rHYCNFUUxe5J9kkyMknfJMuSzE3yRJK/lGX52kbsXZvkPQtRGwAAIABJREFUoCRvSLJdksVJnk/yp7IsZ21c5uuctXOSNyfZPkn/JC8keTrJjLIsV3TkWQAAAAAAAAAAAAAAAAAAAAAAAFsqzcK6gKIoBiU5LcmnUt/IqzWriqL4c5Iry7L8djv2H5bkG0k+nGSbVubMSPK9siyvqjjxlvc5JskZSQ5sZcqCoiiuSPL1siznb8xZAAAAAAAAAAAAAAAAAAAAAAAAW7qaaifQ3RVF8aEkTyQ5O203CkuSHknemuT0duz/ziR/TXJyWmkUtsb4JFcWRXF5URRbVbp/o3P6F0UxJcmv0nqjsKzJ4eQkfy2K4h3tPQcAAAAAAAAAAAAAAAAAAAAAAKA70SysioqimJTkl0mGNLs1O8lNSaYkuTrJnUle24D9D0tyTZLhjYbLJPelvqnX75PMb7bs+CRTiqKo+PdGURQ9klyR5CPNbs1LcuOas+5fc/ZaI5JcWxTFhErPAQAAAAAAAABor9mzZ+drX/taDj744IwYMSK9evVKURQN12WXXVbtFAEAAAAAAAAAALYIo0aNalKfNX369GqnBFuMntVOoLsqiuJfkpzdbHhKknPLsnywhfk1SQ5M8sEk76hg/5FJfp2kV6PhO5J8pizLhxvN653kpCTfSVK7Zvjvk3wryf+r8HG+neRdjeIVSc5I8qOyLOsanbVHkv9Z8xxJ0jvJNUVR7FWW5QsVngUAAAAAAAAAdIJRo0bl6aefboinTZuWww47rHoJbYBLLrkk//RP/5Tly5dXOxUAAAAAAAAAAACADVZT7QS6o6Io9kl9g621ViT5UFmWH22pUViSlGW5uizLO8qyPCPJPhUc840kgxvFM5K8vXGjsDX7Li/L8gdJjm22/oyiKHaq4FlGJzmt2fCHyrK8sHGjsDVnzUxyRJI/NhoekmTS+s4BAAAAAAAAAGiP3/3udznppJMqbhQ2ffr0Jm+0PPvsszdtggAAAAAAAAAAAAAV6lntBLqboih6Jrk0Tb/2J5VleWWle5RluXI9Z4xJ8olGQ3VJTizLclkbe15TFMXkRut6p76J16fWk86kJLWN4svKsry2jXOWFkVxYpIHk/RaM/zpoij+vSzLJ9dzFgAAAAAAAABARb7yla+kLMuG+KMf/Wg+/elPZ8cdd0xt7eulDkOHDq1GegAAAAAAAAAAAAAV0yys830oyb6N4pvLsvxJB5/x0SQ9GsW/Lsvy8QrWnZemTcaOLYrilNaajBVF0TfJMS3s0aayLB8riuKaJMeuGeq5JudvVZAjAAAAAAAAAECbHn300TzwwAMN8bve9a78/Oc/r2JGAAAAAAAAAAAAABuuptoJdEMnNYvP2QRnvL9ZXFEzsrIsH05yV6OhrZL8XRtL3pGkX6P4j2VZPlJRhuvm9IEK1wFdQVkm8+9KHv1BMvfWZPXKamcEAAAAAAAA0ODee+9tEh9zTPN3oQEAdBOrVyR/+0ly/5nJnOnVzgYAAAAAAAAA2EA9q51Ad1IUxa5JDm00NCvJtA4+Y9sk+zQaWpnkjnZsMT3J2xrF70xyXStzj2phbaVuS31ua38PvqUoihFlWc5pxx5ANZSrk3v/MXn8h6+P7fjB5KApSU1t9fICAAAAAAAAWGPOnKblByNHjqxSJgAAVfTa08m1o16PH/lu/a9HP5P08/cjAAAAAAAAANicaBbWuQ5vFt9clmXZwWfs2Sx+oCzL19qxfkazeGw7zvpjpYeUZflaURQPJnlLs7M0C4Ou7sWbmjYKS5Jnrkpm/SIZ/Ynq5AQAAAAAAADQyOLFi5vEtbVefAQAdEONG4U1ds2OyUc7unwVAAAAAAAAoPOUZZn7778/jzzySObOnZvly5dn2LBh2WGHHTJhwoT079+/2ilusGeeeSb33HNPnn322SxdujRDhw7NXnvtlf322y81NTUbtffcuXNz22235fnnn8/SpUuz/fbbZ/To0Rk3btxG792SmTNn5sEHH8y8efPy6quvZptttsl2222XCRMmZMiQIR1+3pZOs7DOdUCz+I9JUhRFkeSIJMcneVuSHVL/vZmf5PEkNyX537IsZ1Vwxh7N4ifamePf1rNfY2/qgLMaNwvbI8kt7dwD6Gwz/73l8QfP1iwMAAAAAAAAaLdNUbS1evXqTZApAMBmZPmCtu8vfjLpP7pzcgEAAAAAAADoIPPnz88555yTyy+/PPPmzWtxTq9evTJx4sScffbZedvb3lbRvieeeGImT57cED/11FMZNWpURWunT5+eww8/vCGeNGlSzj777Fbn17caqnfooYdm+vTpSZIZM2Zk0qRJueWWW1qsgRsxYkS++tWv5tRTT213Y68//elP+cIXvpBp06a1uPfIkSNz0kkn5ctf/nJ69uyZs88+O9/4xjca7k+bNi2HHXZYRWe99NJL+Y//+I9cfvnlee6551qcU1NTk/Hjx2fSpEl5+9vf3q5n6c46vp0bbdmvWfxwURSjUt8M7PdJTkx9A66BSfoleUPqm4idm+SxoiguKoqi33rO2LVZPLudOT7dLB5SFMXg5pOKotgmyTYbeVbz+WPauR6ohjk3tzz+2qxOTQMAAAAAAADYvM2fPz9nnHFGRowYkf322y8f+9jHcsYZZ+QrX/lK/uEf/iHvfOc7M2TIkLzzne/MXXfd1eZes2bNSlEUDVfjIqUkOfzww5vcX3tddtllDZ8bF2slyTe+8Y0W16y91hZoAQB0SS9Mbfv+s9cnZdk5uQAAAAAAAAB0gGuuuSajR4/O+eef32qjsCSpq6vL1KlTM27cuJx00klZuXJlJ2a5Yc4555wccsghuemmm1p9WeacOXPyz//8zznmmGNSV1dX8d7f+973sv/+++fmm29ude9nn302Z511Vg499NDMmTNng54hSX76059m9OjROe+881ptFJbUvxD09ttvz5FHHpmPf/zj7Xqe7qxntRPoZrZrFvdLck+SoRWsrU1ySpIDi6J4d1mWL7Qyb1CzeG57EizLcnFRFMuS9Gk0vHWSl9dzzpKyLF9rz1kt5LZ1O9cDAAAAAAAAAJuha665JieccEIWLVrU5ry1RVtTp07NZz/72Vx00UXp2VO5CwDAej33m7bv3396Mv+PyX7/mfQekpSrkxp/zwIAAAAAAAC6pksvvTSf+cxn1ml2tcsuu2SPPfZIv379Mnv27Nx9991ZtWpVw/0f/ehHmT17dq6//vouW3v2ne98J1/96lcb4t122y277bZbttpqq7zwwgu58847s2zZsob7V199dc4666ycd9556937u9/9bs4888x1xvfYY4+MGTMmvXv3zuzZs3PPPfdk1apVmTFjRo499tgccsgh7X6Or3/96/nmN7/ZZKwoiuy2224ZM2ZMBgwYkJdffjn33ntvk2Zvl19+eV544YVMnTq1y36Pugpfnc7VvMHWT/J6o7DXklyc5P+SPJtkqyT7JPlUkgmN1rwlyVVFURxaluWKFs7o3yxeugF5Lk3TZmEDNuE5jbV0TrsURTE8ybB2LttlY88FAAAAAAAAACqzJRdtAQB0CatXJs//3/rnzb6i/mpsx2OSXf4hGXFosmJR0rN/svT5pN+OSY9e655TtyDpM7zjcgcAAAAAAABo5s9//nNOPvnkJjVnb37zm3PRRRdl/PjxTebOmzcvZ511Vv77v/+7YWzq1Kn5+te/nnPOOafTcq7Ugw8+mNtuuy1JcvTRR+fcc8/N7rvv3mTOyy+/nDPOOCOXXXZZw9h3v/vdnHzyyRk1alSre99333358pe/3GTssMMOy4UXXpixY8c2GZ83b16+/vWv5+KLL86tt96amTNntus5Jk+e3KRRWE1NTU499dSceeaZecMb3tBkblmWufbaa3Paaadl9uzZSZKbb745Z511Vs4999x2ndvdqJzsJEVR9E7Su9nwyDW/zkxyVFmWzzS7f3+SnxRF8S9JvtNo/MAkX0ryrRaOat7Ea1kLc9ZnaZLBbezZkee0teeGOCXJpA7YBwAAAAAAAIDmVq9Mljxb7Sy2fP1GJjVbZknHpiraGjlyZJ566qmG+IILLsj3v//9hnjKlCkZN27cOvkMHTo0hx12WJLkzjvvzHHHHddw77TTTsvpp5/e6rNsu+2263laAIBqKZJDrkme/03y8HfWP72xZ66sv9pr6IHJyPcng9+cDH5L0mfo+tcAAAAAAADQLZQrVybz1J1tcsNGpthCX8L46U9/OnV1dQ3xhAkTcsMNN6Rfv37rzB02bFguvvji7LrrrvnCF77QMH7eeefluOOOy1577dUpOVdqwYIFSZIvfvGLOe+881qcM3jw4PzkJz/Jyy+/nGuvvTZJsmrVqvz4xz9u0qCruVNPPTUrV65siD/wgQ/kiiuuaPFlncOGDcsPf/jDjB49Ol/84hczf/78ip/h6aefzsknn9wQ9+7dO9dcc02OOuqoFucXRZGjjz4648ePz0EHHZQnnngiSfIf//Ef+exnP5udd9654rO7my3zJ7xr6tHK+CtpuVFYg7Isv1sUxQ5JPt9o+PNFUVxQluXi9ZxbtjPPrr4GAAAAAAAAgGpZ8mxynSKMTe69TyX9R1U7i01iUxVt9ezZs8kbEgcNGtRkr2233bbVNyj271//brNZs2Y1GR80aFCbb10EAOiyanokIw6tvx79QbK6bv1rNtb8P9Zfrfm7u5KhB2z6PAAAAAAAAOh65j2b8tjdqp3FFq/45aPJdqOqnUaHmzZtWu6///6GeODAgbniiitarDlr7Mwzz8wf/vCH/OY3v0mSrF69Oueff34uvfTSTZrvhpgwYULOPffc9c77t3/7t4ZmYUlyyy23tNos7J577sldd93VEG+33Xa59NJLW2wU1tgXvvCF3HTTTbnxxhsrzL6+ydfSpUsb4vPPP7/VRmGNDR8+PL/4xS9ywAH1/5a8atWqnH/++fnBD35Q8dndTU21E+guyrJckmR1C7e+11ajsEbOSn1jsbW2SfLOFuY1bx7Wt7IM21zTUkOyzjoHAAAAAAAAANgCbEzR1nve856GeG3RFgAAFdj7X6udQb0b35b8okhWLl3/XAAAAAAAAIA1Jk+e3CQ+9dRTs/3221e09tvf/naTeMqUKVm+fHmH5dZRvvrVr6amZv1toMaOHdvkBZh//vOfW507ZcqUJvE//uM/Zuutt64on7POOquieUny2muvNWnANnr06Jx00kkVr99///1z8MEHN8TXXXddxWu7I83COtdrLYz9tJKFZVm+luTXzYYPa2Fqd28W9l9J9mzn9b4OOBcAAAAAAAAAaEN3KNoCAOhy9vhStTNo6pdtN4oFAAAAAAAAaOz2229vEn/sYx+reO3YsWOz7777NsTLli3Lfffd12G5dYS+fftm4sSJFc9/05ve1PB5yZIlWby45XY9M2bMaBIfe+yxFZ8xYcKEimv7br/99ixd+vpLo4455piKGp81dvjhhzd8fvrppzN79ux2re9OelY7gW5mYZIBjeI5ZVnOasf6O5N8slH8phbmvNIsHtaO/VMURf+s28RrYQXn9CuKYqs1Tc0qNbyCc9qlLMu5Sea2Z01RFBt7LAAAAAAAAACwHh1RtHX//fcneb1oa/z48R2aIwDAFumYl5MrB1c7i9e9+ngycEy1swAAAAAAAAC6uJdffjl/+9vfGuJBgwY1aZZVifHjxzfUnSXJPffc06XqznbZZZf06tWr4vmDBzf9t99XXnkl/fv3X2feX/7yl4bPgwYNyq677tquvPbbb79cd911653XvC5w++23z6xZs9p1VvPnf/LJJ/OGN7yhXXt0F5qFda7HkuzYKH6hneufbxYPaWHO483indp5RvP5C8qyfLn5pLIsXyqK4uUkjf8EeUOShzfirOa5AwAAAAAAAABbgO5QtAUA0GX1GpQctyqZ0qPamdT7zRtf/7zzCck+5yZ9RiRFkaRY8ysAAAAAAADQ3c2bN69JPGbMmBTt/PfE3XffvUk8d+7cjc6rIzVv/rU+tbW1TeIVK1asM+e1117LsmXLGuINabxV6ZpnnnmmSXz66afn9NNPb/d5jS1YsGCj1m/JNAvrXA8lOaJRvLyd65vP79PCnObNutrX1i8Z3Sye2cbch5M0rrrdtYXz23NWe9YCAAAAAAAAAJuJ7lC0BQDQpRU1yQ5/nzx3fbUzaeqpn9ZfzQ3aOxlzSjL0wGTgG5MeLZXMAgAAAAAAAFuyl19+uUm89dZbt3uP5mu6WiOqmpqaDt9z4cKFTeIBAwa0e4+BAwdWNO+ll15q997rs2jRog7fc0uhWVjneqBZPKid65vPb+mn5a/N4r2LouhXluWSCs84aD37Nb/XuFnYgUkqqiIpimKrJHu34ywAAAAAAAAAqq3fyOS9T1U7iy1fv5HVzqDDdYeiLQCALm+PL3W9ZmGtWfhAcs/n2p5T0ys54EdJ0TNZtbS+sdigsZ2THwAAAAAAAJUbNjLFLx+tdhZbvmFbXt1ZWZZN4va+oLIlHbFHV9e7d+8mcV1dXbv3qHTNhuy9Ps2/77xOs7DO9X9JyiRr/9QYXRRFn7Isl1W4fs9m8bPNJ5Rl+UJRFA/k9UZcPZNMSHJjhWcc1iz+vzbmTk3y2TbWtuXgNP3996eyLOe0Yz0AAAAAAAAAna2mZ9J/VLWzYDOkaAsAoAsYMi4Z8rbkpbuqnUnHWF2X3Hli6/ePmJ6MOLSzsgEAAAAAAKAVRc+eyXajqp0Gm6FtttmmSfzKK6+0e4/mawYPHrxRObVk1apVHb7nxmj+jM1f9lmJSl/mOXTo0CbxjBkzcuCBB7b7PCpTU+0EupOyLJ9P8sdGQ7VJjmjHFkc1i29rZd7VzeJPVrJ5URS7J3lbo6HX0naTsRuSLG0UH7hmj0qc2CxunjMAAAAAAAAAsIXYXIq2AAC2aDU9kok3JrudlgzaJ9nxA8lOH6l2VpvOzYclvyjWvWZfWe3MAAAAAAAAgAoMGzasSfzYY4+1e49HH320STx8+PAW5/Xs2bNJvHLlyorP2JBmXJtSjx49ssMOOzTETz75ZJYsWdKuPR588MGK5o0YMaJJvCHfIyqnWVjn+0mz+IxKFhVFcXCSAxoNrU7yu1am/zxJ45aDHyiKYkwFx3ypWfzLsiyXtTa5LMslSZpXTDTfYx1FUbwxyfsbDa1M8osK8gMAAAAAAAAANkOdWbQFAEAbagcmb70gedefk4OvSg6akhy3Ktn1c0nR4/V5/XZMxk9J3rOev7ft+73kwMuTnltt2rw70u0fWreB2C1HJi/dW3+/LJMVryarWi2hBQAAAAAAADrB4MGDs8suuzTECxcuzMMPP9yuPWbMmNEk3n///VucN3DgwCbxwoULKz7joYcealdOnWHcuHENn1evXp0//OEPFa9dsGBB/vKXv1Q0d/z48U3iG2+8seJzaD/NwjrfT5I0/lNnYlEUbTYMK4pieNZtMvbLsiz/1tL8siwfTzK50VCvJJcVRdGnjTPel+TERkN1Sb7RVl5rnJ1kRaP4xKIo3tvGOX1S/yy9Gg3/uLVnAQAAAAAAAAA2f51ZtLWhiqLo0P0AADYbRU1ywA+TD76UvOvB+uZhR89ORn2k/l5rxl2W7P75ZOfjk/e/kBxyXTJiYn2jsZreSb+RnfYIG+3Fm5Ib9q9vHDalJvnV1skVfddtKvaLIpkzPVld+VvEAQAAAAAAgA03YcKEJvHPf/7zitc+/PDDue+++xriPn365K1vfWuLc5u/vHLmzJkVn/O73/2u4rmd5e1vf3uT+JJLLql47eTJk1NXV1fR3COOOCI9erz+Yqrrrrsuc+fOrfgs2kezsE5WluWqJKclWd1o+LtFUXy/KIrBzecXRfH2JHck2aXR8MtJ/t96jpq0Zt5a45PcVBTF7s32710UxT8l+VWz9d8ty/Lp9ZyRsiyfTPL9ZsNXFkXxj0VRNG4IlqIo3pTk5jW5rPVSKmtKBgAAAAAAAABsxjqraGtD9e7du0m8fPnyDt0fAKDL67V1MmjPpg3C+oxoff6QA17/XDsgGfn3yRE31zca+8iy5Ohnkh0/uOnyrZabD0/+t7blRmIz/z2pq/wN4wAAAAAAAEDbTjjhhCbxhRdemBdffLGitV/5yleaxB/5yEfWqRNba999920SX3/99RWdccMNN+Tuu++uaG5nOv744zNgwICG+Oqrr84NN9yw3nXPPfdc/vVf/7XicwYPHpzjjz++IV68eHHOPPPM9iVLxTQLq4KyLH+f+oZhjf1zkjlFUdxaFMWUoiiuKYpiVpLfJ9m10by6JMeVZfnUes54NskH1sxf66AkM4uiuKcoiiuKopia5JkkP0hS22jeb5Kc1Y5H+nKS/2sU1yb5zyTPFEXxf0VR/LIoinuTPJSmjcLqkry/LMsX2nEWAAAAAAAAALAZ6qyirQ01aNCgJvELLyhnAABIbf9k27evOz5wt2TrN61//c6f6PicurI/fym5cnDLjcSuHpnccmTy7LXJkueTsqx2tgAAAAAAANDlTZw4MW9+85sb4ldeeSXHHXdcli5d2ua6888/P9dee21DXBRFPv/5z7c6/8ADD0y/fv0a4quvvjr33ntvm2c8/vjj+cQnuua/iQ4YMCCnnda0vdGxxx6badOmtbpm1qxZOfLII7NwYftekHT22Wc3qef72c9+li996UtZtWpVu/aZOXNmbr311nat6W40C6uSsiwvTHJKkiWNhmuTHJzkI0nel2SnZsvmJDm8LMv1t+mrP2N6kvcnmddouEiyX5Jjk7wjybBmy6Yk+UhZlhX/tK2Ze2ySK5rdGp7kqCQfSvLWNWevNTfJ+8qyvK3ScwAAAAAAAACAzVdnFW1tqNGjR6dXr14N8bRp07JixYoOPwcAYLNzwI+SrUa9HvcemoyfUtnakX+fHPjTTZLWZmfpc8mLNyW3Hp1cs0Mypaa+idivt01mfDx5/IfJsvnVzhIAAAAAAAA61IsvvphZs2Zt0LXWj3/84ya1XdOnT8/BBx+cu+66a53z5s+fn1NPPTVnnHFGk/EvfvGL2XvvvVvNc8CAAfnwhz/cEK9atSrvfve7c+ONN64zt66uLpdccknGjRuXOXPmZPDgwe35knSas846K3vttVdD/Oqrr+aII47IsccemyuvvDIPPPBAHnnkkdx44405/fTTM3bs2Dz88MPp06dP3ve+91V8zs4775wf/ehHTcb+/d//PRMmTMj111+flStXtrp21qxZueiiizJx4sSMHTs2t9xyS/sftBvpWe0EurOyLH9YFMWNSc5OfXOwAa1MfTHJxUkuKMvylXae8buiKPZM8o0kH07S2p8udyb5TlmWV7Vn/0bnLE7ykaIorkzyL0nGtTJ1Qeqbik0qy3JeK3MAAAAAAAAAgC5mbdHWhhg1alSS+qKtAw88MHV1dUleL9q66KKL8ra3va3Jmvnz52fSpEn5r//6rybj6yva2lC9evXKQQcd1PDmxNmzZ+e9731vPve5z2XMmDFN3hqZJNtuu2369OnT4XkAAHQ5/XdO3vNwMm9Gsnp5MmxCUttayWsLdv54ss1+yS1vT5Y+v+79okdy4OXJgnuSR77XcXlvLpbNSWZdXn/dc8q694e8Ldl6bLLdO5IBY5IVC5NBeycpktqtk5oenZ4yAAAAAAAAVOq4447b4LVlWSZJ9t1331x44YX53Oc+l9WrVydJ7rvvvowbNy677rprxo4dmz59+uSZZ57J3XffvU5zqiOPPDLf/OY313veN7/5zVx99dVZuHBhkmTu3Ll5xzvekV133TV77713evfunTlz5uSuu+7Ka6+9lqS+juy8887LJz7xiQ1+zk2lV69e+e1vf5uJEyfmiSeeSFL/Nf3Vr36VX/3qVy2uKYoiF110UWbPnr3OSz7bcsIJJ+TFF1/MV77ylYbv0Z133pn3vve96devX97ylrdkxIgR6du3bxYtWpT58+dn5syZDV9rKqNZWJWVZfm3JB8viqJvkoOSjEyybZK6JPOS/KUsywc28oy5SU4uiuK0NWfstOaM15I8l+RPZVk+tTFnNDrryiRXFkWxc5J9k2yfZKvUNzx7OskdZVnWdcRZAAAAAAAAAEDn2ZyKtjbUGWec0dAsLEmmTp2aqVOntjh32rRpOeywwzZZLgAAXUqPPsm2Ezd8/dZvSt77ZPLSXUlZJjW1yaqlSd2CZNghSd8RyU4frm+K9dz1ycK/Jouf6Lj8N2cv3VV/PXlp63OGH5r06Jvs8PfJtkckA3erHy/LZD1F+xWrW5jMvyvpt0P996mj9gUAAAAAAIAKfOYzn8ngwYPzyU9+MosXL24Yf+KJJxoaYbXkU5/6VC6++OLU1tau94wddtghV111VY4++ugsWrRovWfsvPPO+e1vf5s5c+a082k6z4477pjbbrstp5xySq6++uo25w4ZMiSTJ0/Ou9/97nzpS19qcm/AgPW/UGrti0A/+clP5sUXX2wYX7JkSe64446K8h08eHBF87orzcK6iLIslya5aROfUZdk2nondsxZTyXpkAZkAAAAAAAAAMCWozOKtjbUe97znnzrW9/KpEmTsmrVqk12DgBAt9SjdzL8kNbvF0Wyy6fqrySZMz159AfJoseSZXOT7d+V9OyXDNor2XrP5N5Tk4UPdkrqXd7cP9T/+kLLjW5zwCXJTscmq1fWfw1ffSxZ8mwydFzSe5u2965bmFy9Q7JqSdPxYxcnPbfa+NwBAAAAAACgQsccc0wOOeSQnHPOOfn5z3+e+fPntzivtrY2hx9+eCZNmpTx48e364yJEyfm7rvvzpe//OVcd911DS/KbGzYsGE58cQT87WvfS0DBw7s0s3CkmTbbbfNr3/969x+++2ZMmVKpk+fnueffz7Lli3L9ttvn9GjR+dDH/pQPvzhD2frrbdOkixcuLDJHmvH1+eoo47KU089lUsvvTSXXHJJ/vKXv7T4NVyrtrY2+++/f/6JHjndAAAgAElEQVTu7/4uH/3oRzNmzJgNf9BuQLMwAAAAAAAAAAA6VWcUbW2or371q3n/+9+fn/3sZ5kxY0Yee+yxvPLKK1m6dGmnnA8AwBojDqu/WvPOvySLn0x69EmKnsk9Jydzbk5WvNrxuQx4Y33Tss3V3Z+pv1pz4E+TnT9e/7ksk5RJUZOsWJxc2cqbu3/zpuTo2R2eKgAAAAAAAJu3WbNmbdL9hw8fngsuuCDf+973ct999+WRRx7JvHnzsnz58gwdOjQjR47MhAkTMmDAgA0+Y/fdd88111yT+fPn5w9/+EOeffbZLFmyJCNGjMjOO++cgw8+OD17vt626bDDDmuzIVZz7Znb3GWXXZbLLrtsg9ZOmDAhEyZMqGjuzJkzGz4XRZHhw4dXfE6fPn1yyimn5JRTTsmCBQty55135oUXXsiCBQuyYsWK9O/fP8OHD88b3/jG7L777unXr1+7n6W7KjbmNw9sCYqiGJvkr2vjv/71rxk7dmwVM4Iu7hdF6/c+6r8pAAAAAAAAXdnKlSvz+OOPNxkbM2ZMk6IV6GyrV6/eZEVbXdmm+nl86KGHsueeezYe2rMsy4c2alMA2Ahq9OhUZZk88aPkns+te2/bv0vm3JSUq9u/74Qrk7/9T/LC1I3PcUty3Kr6pmIAAAAAAMAWTd0ZdC+vvfZahg8fniVLliRJdttttzzyyCNVzqp9ttT6PH/qAgAAAAAAAABQNTU1Ndl///2z//77VzsVAAA2d0WRjDkpKVclT/x3smxOst1RyX7/mdQOSOZMS2ZflaxenvQekjzyvWT1irb33OPLyY4fSOpebrtZ2G6nJ289v/7z6pXJH96TvHBDxz1bV7T0xaTf9tXOAgAAAAAAAOhAkydPbmgUliQHHnhgFbOhMc3CAAAAAAAAAAAAAIAtxxtPqb+aG3F4/bXWm7+dzJmePP7D5NVHk3JFssP7km32rW8mtvWeSZ9h9XN3+XSy+Mlk5rnr7tujb7LzCa/HNT2TPSdt+c3CVi+rdgYAAAAAAABAB3r22Wdz1llnNRk74YQTWplNZ9MsDAAAAAAAAAAAAADonkYcVn+tT1Ekbz4n2fOsZN7t9Q3GXrqzvqHYnl9LtnlL0/lDDkgGjEkWPd50fK+zkwfP7pjcq63ulWpnAAAAAAAAALThqquuyn333ZfPf/7zGTZsWJtz//SnP+WDH/xgFixY0DC2zz775PDDD29jFZ1JszAAAAAAAAAAAAAAgEr07Jtsd2T91ZaaHskRtyR3fjKZe2vSe2iy22nJm76QzPr5uk3ENkdzpq3bJA0AAAAAAADoMhYtWpRzzz033/nOd3LUUUfliCOOyD777JPhw4enZ8+eWbBgQR588MH85je/yfXXX5+yLBvW9urVK5MnT65i9jSnWRgAAAAAAAAAAAAAQEfrNzKZ+Ptk1fKkpldSFPXjB1ySTD8qWbWsPu7RN+nRJ6l7+fW12+yXDB2XPHZh5+ddqaenJG86o9pZAAAAAAAAAOuxYsWKXH/99bn++usrmt+3b9/89Kc/zT777LOJM6M9NAsDAAAAAAAAAAAAANhUevRuGo84NHnPY8kzV9U3Edv+XfWNxZ69Jpl/ZzJoz2THDyRLX0yeujxZsbA6ea/P0PHVzgAAAAAAAABow6BBg9KjR4+sWrWq4jUHHXRQLrjgguy3336bMDM2hGZhAAAAAAAAAAAAAACdaasdk91Pbzr2hmPqr7VqByZvn548dE4y+5edml5Ftt59/XPK1UndwqRuQbLVzklNj6b3lr6Y9N02KWo2XZ4AAAAAAADQTR199NGZM2dOpk6dmjvuuCMPPvhgnn766SxYsCDLli1L3759s80222SnnXbKwQcfnHe961056KCDqp02rdAsDAAAAAAAAAAAAACgKxq8TzLhiiRX1Mer6pIeveo/z701eeGGpM92yeC9k+d+mzz6/WT18s7J7Z5T6q+1dvj75OBfJ4seT24/Nnnlr+3bb5d/SIZNSHptk2y9RzJgl47NFwAAAAAAALqhIUOG5Pjjj8/xxx9f7VTYSJqFAQAAAAAAAAAAAABsDtY2CkuS4YfUX43jt5xX/7ksk1ceqr+GjkuWvpjcOG7T5vbc9cn/1m74+r/9T/3V2H4XJqM/mSybm/TdLunRe+NyBAAAAAAAANhMaRYGAAAAAAAAAAAAALAlKYpk0J71V5JstVPy0bL+8/KXknl3JDW9kxWvJPNuS17+U/1YV3PvP9ZfbXnjPyf7fb9z8gEAAAAAAACoEs3CAAAAAAAAAAAAAAC6i95DkpHvfT3e6dim95c8lzx3XbJsbrLdO5K7Pp28MrNzc2yPx35Qf6018ffJiIlJUVO9nAAAAAAAAAA6mGZhAAAAAAAAAAAAAADU67dDMubk1+Nhh3TtZmHN3XJk6/d6D0kOuTYZdlDn5QMAAAAAAADQATQLAwAAAAAAAAAAAACgZXt8MXni4mpn0TGWv5T8fkLL9/rtmLz520nRI1n0ePLKQ8keX04G79O5OQIAAAAAAAC0QLMwAAAAAAAAAAAAAABa1n/npHZgsuLVameyaS15JplxfNOxp//39c87fiDpsVUy/OBku3ckfUYkPXp3bo4AAAAAAABAt6VZGAAAAAAAAAAAAAAA/5+9O4+zs6zvh/+5Z8+QyR4SIEAgIRA2WWURbEBFpZS60J+ASou4L5VWXKi2ICLV1uen+KB1eRRtpWjdwFJErQ1UREA2EQ0JWwhhCdmTIclklvP8cZPMnCSTdTIny/v9en1fZ67ruu/r+t6RoM6Z85n+7fWaZM5/1LqL2nrqR+Xr7H/b9LUjjkym/VfSOiHp6Uqe/kmy8tlkz5cnww5J6hq3b68AAAAAAADALkdYGAAAAAAAAAAAAAAA/Zv4FmFhW2LJg8kN+27+9Xu9OnnZ9Ul9a1LfvP36AgAAAAAAAHZawsIAAAAAAAAAYDdRFMV6c5VKpQadAD09PevNbejvKAAA7BD2OiNpHJZ0Ltv6PYYdkkx+d3L/3yaV9f/38G7t2Z8lPxi1/vzolyaHX1b++fesTuqHJP5/AwAAAAAAAOyWhIUBAAAAAAAAwG6irq5uvbnOzs40NjbWoBvYvXV1da03t6G/owAAsEOob05e/pPktj9LupZv/n0TXpd0r0pGHZNM+etkyLhkr1cnz/0iaRia/O5jyarnt1/fO7uFdye3/Wn/62fNSoYdNHj9AAAAAAAAADUjLAwAAAAAAAAAdhNFUaSpqSmrV69eO9fe3p7W1tYadgW7p/b29qpxU1NTiqKoUTcAALAZxv1J8obnkgV3JkP2SoYdnCx5MFn6cLLgN8msL1ZfP+q45NQfJev+79zhh5SVJBPPS+b8IFl0TzLy6GS/v0ge+XJy/4cH55l2djdN2fD88MOTgz+QjDwmGXlUUudjAwAAAAAAALCz864fAAAAAAAAAOxG2trasnDhwrXjZcuWZezYsUKKYBBVKpUsW7asaq6tra1G3QAAwBZoaE3Gn947HnlUWfu/KWkelTz61WT10mT8K5MTv7l+UNi66luSA95S1hpTL0kaRySPfSPpXJysfC5pHpu0P7rl/Y49NZn/qy2/b2e39KHk7ndt+rqDL06O+kxS37z9ewIAAAAAAAC2ibAwAAAAAAAAANiNrBsW1tnZmaeffjr77LOPwDAYBJVKJU8//XQ6Ozur5ocNG1ajjgAAYAAURXLEZcnh/5BUupK6xm3bb/Lby+qrp7Pct9KTLP5dUtQnIw5Pnv1Z8r+vT3o6qq8/+p+T8a9KfnbC+muUZn6hrP7sf14y6phkyIQyDG7J75OxpyRjThi8HgEAAAAAAIAkwsIAAAAAAAAAYLfS0tKSxsbGqqCi5cuX57HHHsuwYcMydOjQNDQ0pK6uroZdwq6lp6cnXV1daW9vz7Jly9YLCmtsbExzc3ONugMAgAFUFEmxjUFh/VkTQFbUJaOO7p3f+7XJ6+Ymz99Wnl/XUoZZNY8u16fdlDzwd8mSB5NRx5YBYg99cgsOfjEI7feXD9ST7DyevL6sTalvTca/Mpn0tmTcaUmjMGQAAAAAAAAYaMLCAAAAAAAAAGA3UhRF9t5778yZMyeVSmXtfGdnZxYuXJiFCxfWsDvY/az5O1kURa1bAQCAnVfLmGS/N254bfwrk9e8Mqn0lEFjSdLYljz4D0n3iqRxRLLH/uXX3SuTFXN77y3qkhOuTfb50+ShK8o9WF/3iuTpn5S1xoTXJ13tZUDbonuTjgXJnn+SHPWPSX1L7XoFAAAAAACAnZSwMAAAAAAAAADYzbS2tma//fZbLzAMGFxFUWS//fZLa2trrVsBAIBd35qgsCSZ+qFkygeSF2YnbZOr13q6koW/Ldf2PDVpnVDOv/RryV1vH8yOd25zf1y+PveL3rnF9yczv9A7nvKBpG1KsvdrktZ9k/rmwe0RAAAAAAAAdiLCwgAAAAAAAABgN7QmMOyZZ55JZ2dnrduB3U5jY2P23ntvQWEAAFAr9U3JsCnrz9c1JGNPKquvSRclY09JHvpUMvu6welxVzfr/y1f793INQdemEy9JBl+6KC0BAAAAAAAADsqYWEAAAAAAAAAsJtqbW3NpEmT0tHRkWXLlmX58uVZvXp1rduCXVZTU1Pa2toybNiwNDc3pyiKWrcEAABsiWEHJyd/p6w1Vj6XLLqv/LpjQTL2ZcmQvZMFvy7XRh+fPPCxZO4NG97zuGuS5rHJHecllZ5N93DsF3uv3x08fm1ZfZ35UDLisNr0AwAAAAAAADUiLAwAAAAAAAAAdmNFUaSlpSUtLS3Zc889U6lU0tPTk0qlUuvWYJdRFEXq6uqEgwEAwK5oyPhknzPXnx//yt6vX/7jpLM9ee6/k2duSrpXJ/u+Idn3db3XNLYl93wgaX+s/7P2fWMy+V1JepKmUcnqRQP2GDuVmw9PXn13GcQGAAAAAAAAuwlhYQAAAAAAAADAWkVRpL6+vtZtAAAAwK6lcWgZDtY3IKyvvV+bnP1osvLZ5JmfJk/9KOlantS3Jq37JFM+kIw4IinqyutP/+/kV69PXnhy8J5hR/KzlybnCzoHAAAAAABg9yEsDAAAAAAAAAAAAAAAdgRD9komva2sjRl1dHL2E0n7Y0nLuKSoT373iWTm57dPX+csSppGJj8al6x6fvucsSWK+qSnK6nzkQgAAAAAAAB2D3W1bgAAAAAAAAAAAAAAANhCRZG0TU4a25KG1uTY/5ucsyQ56jNlsNeII5IjLk8OvywZc1Iy7hXJidcm+5+3ZedMfGu5X5Ics53CyLZUpTvpXlnrLgAAAAAAgF3UnDlz8olPfCKnnnpqxo0bl6amphRFsba+9a1v1bpFdkN+jQ4AAAAAAAAAAAAAAOwKmoYnh360rL6OvLz364lvTcacmDzxnWTRb5P6luTAC5N9z0me/PfksW/0Xjvm5OS4L/aO9/mzZNRxyaJ7Nnz+UZ9N/vDppHPZgD1Sv3o6t/8ZAAAAAADAFpk4cWKefPLJtePp06dn2rRptWtoK3z961/PBz7wgXR0dNS6FahSV+sGAAAAAAAAAAAAAACAQVJXnxz818lr7k7OryRvWpkc/+Vk/OnJCf9fcm5XcsZdyVkzk1fdnjSN6L23sS05/b+Tl/zj+vvu9xfJwRcnk94+OM8hLAwAAAAAABhgN998c971rndtdlDYrbfemqIo1tbll1++fRtkt9ZQ6wYAAAAAAAAAAAAAAIAdRF19Mual/a83DU8O+1hZncuSBXcmQyclQw9MiiJ5yaeT9ieSuT/etj6GHZyc+uPkvw7d8Hr3iuSZnyY9XcmeLy/7AgAAAAAA2AaXXnppKpXK2vH555+fiy66KPvuu28aGxvXzo8ZM6YW7bGbExYGAAAAAAAAAAAAAABsucZhyV5nVM/VtyQv/1Gy8rlkxVNloNjK55LRL03uvyR5+iebt/dB7y/36s9PDtz0HsMPS15+Y9I2qf9rulf19g0AAAAAAOy2Zs6cmQcffHDt+Mwzz8x1111Xw46gmrAwAAAAAAAAAAAAAABgYA0ZX1Zff3JjGRzWsTAZfmiy4DfJHW9JXnii95oxJyUHvi2Z/PZkxdxt62HpH5L/nLx5145/VXLaz5Ki2LYzAQAAAACAndI999xTNT7nnHNq1AlsmLAwAAAAAAAAAAAAAABgcPQNERt7cnL2Y8kLs5OWcUlDa/W1dc2D19dzv0iur6ue+/M5yR77Dl4PAAAAAABAzcybN69qPGHChBp1AhsmLAwAAAAAAAAAAAAAAKiNokiGHrDhteYxg9vLum7cr/frqZckR302Ker6vx4AAAAAANhptbe3V40bGxtr1AlsmLAwAAAAAAAAAAAAAABgx1MUyb5vSJ76Ua07SWZ8rqy9Xp2MPiEZc2L52jyq1p0BAAAAAMBup1Kp5L777svDDz+c559/Ph0dHRk7dmz22WefnHLKKRk6dOgW79nT07MdOoWBIywMAAAAAAAAAAAAAADYMZ3yg+T6ulp30evZn5W1RtuUMjhsTXjYiCOSusba9QcAAAAAALuwBQsW5Kqrrsp3vvOdzJ8/f4PXNDU15fTTT8/ll1+eE044od+9Zs+enQMOOKDf9dNOO22D89dee20uvPDCDa598pOfzCc/+cl+95w+fXqmTZvW7zpsjLAwAAAAAAAAAAAAAABgx1QUte5g45bPKuuJfy3H9UOSUcdVB4i17lPbHgEAAAAAYBdwww035IILLsjy5cs3et3q1atzyy235JZbbsk73/nOfOlLX0pDg5gldn7+KQYAAAAAAAAAAAAAAHZcR/8/yf0fqnUXm6d7ZTL/V2Wt0TohGX1ib4DYyGOShiG16xEAAAAAAHYy3/zmN/OOd7wjPT09VfOTJk3KoYcemtbW1syZMyd33313uru7165/7Wtfy5w5c/Kf//mfAsPY6fknGAAAAAAAAAAAAAAA2HHt+4bk95cnXcu3/N7D/z6Z+ObkpkMGvK3NtmJusuIHyVM/KMdFQzLyJdUBYkMnJUVRux4BAAAAALaXnq7y+6RsX60TkrpdM0rogQceyHve856qoLCjjjoqX/rSl3LyySdXXTt//vz8/d//fb761a+unbvlllvyD//wD7nqqquqrp0wYUKeeOKJteMvfOELufrqq9eOr7/++px44onr9TNmzJhMmzYtSXLnnXfmvPPOW7v2wQ9+MBdffHG/zzJ+/PhNPC30b9f8Gw4AAAAAAAAAAAAAAOwahk5MTv95cu/fJAvv3Pz7msckB1yQtE1ORh6TLL5vu7W4RSpdyaJ7y3rkS+Vc8+je8LDRJySjX5o0Da9tnwAAAAAAA2HF3OQnB9S6i13f2U+U30/fBV100UVZvXr12vEpp5ySn/3sZ2ltbV3v2rFjx+YrX/lKJk+enA9/+MNr5z/72c/mvPPOyxFHHLF2rqGhIRMnTlw7HjFiRNVe48ePr1rva+jQoUmS2bNnV82PGDGi33tgWwkLAwAAAAAAAAAAAAAAdmxjTkxe/ZukpzvpWp7M/3Wyx8SkZVxyx5uTeb9MKt3ltSOOTEYdk0z9cBkUliSH/E3ym7cOTC9D9kpWPjswe63RsTB55r/KSpIUyfCp1QFiww9L6uoH9lwAAAAAANiBTZ8+Pffd1/vLQIYNG5bvfe97GwwK6+uSSy7JbbfdlptuuilJ0tPTk89//vP55je/uV37he1JWBgAAAAAAAAAAAAAALBzqKtPmkYk+/xp79zpP0s6lyd1zUl904bv2+//JHNvSJ764badP+4Vyem/SFbMTRbemSy4q3xddG/SvWrb9q5SSZb+sazHX/zgUsPQZPTx1QFiQ8YN4JkAAAAAALBj+fa3v101ft/73pe99957s+79zGc+szYsLEmuv/76/Mu//Euam5sHtEcYLMLCAAAAAAAAAAAAAACAnVtj28bX65uSl303mX97sviBZMSRybCDk9Z9kse/ldzzgaSrvQziWnhn//sc/vdJUSR77FvWfn9RznevTpY8mCy4szdErP3RAXu8JGV/86aXtcYeE5MJr08OuzRpGZsseyR57hfJ0APKYLP+wtMAAAAAAGAncPvtt1eN3/KWt2z2vYcddliOOeaY3HfffUmSVatW5d57783JJ588oD3CYBEWBgAAAAAAAAAAAAAA7PrqGpJx08rq68C/KmuNjkXJ/56dzP919XXDD0vG9vMBovqmZPRxZeX95dyq+cnCu3sDxBbenXQuG5BHWeuF2cnMz5c1ZJ9k5dPV63XNSU9H7/gln04OvbQMPAMAAAAAgB3Y4sWL89hjj60djxgxIlOnTt2iPU4++eS1YWFJ8tvf/lZYGDstYWEAAAAAAAAAAAAAAABrNI9KXnV7MvfG5OH/m7Q/nuw5LTnm80ld4+bv0zI22edPy0qSSk+y7OEyPGxNgNiSh5JUBqbvdYPCkuqgsCT53cfLWmPopORl1yejjks6lyaNw5KibmD6AQAAAACAbTB//vyq8UEHHZRiC38ZxiGHHFI1fv7557e5L6gVYWEAAAAAAAAAAAAAAADrmvDnZQ2Uoi4ZfmhZk95WznUuTxbdUx0gtmoQP6jU/ljys5dueG3I3smJ3yr7qqtP9j0nGTZl8HoDAAAAAHYNrROSs5+odRe7vtYJte5gwC1evLhqPHz48C3eY917Fi1atE09QS0JCwMAAAAAAAAAAAAAAKiFxrZk3GllJUmlkrwwu0942F3J4vuSns7B723lM8n0M3rHv/t4+Tr5ncnYlydjT0r2OCApisHvDQAAAADYedQ1JEMn1roLdkKVSqVqXAzA96MHYg+oFWFhAAAAAAAAAAAAAAAAO4KiSIYeUNbE88q57lXJ4gd6A8TmfK+2PT76tbKSpGXPZMxJvTXquKShtbb9AQAAAACwSxg1alTVeOnSpVu8x7r3jBw5cpt6gloSFgYAAAAAAAAAAAAAALCjqm9JxpxYVpJ0fzv5Xktte1pj1fPJ3BvLSpKiIRn5kmT0iWV42NiTkj0OKEPQAAAAAABgC4wdO7ZqPGvWrC3eY+bMmVXjPffcc5t6gloSFgYAAAAAAAAAAAAAALCzqG9O3rgw+eHoWneyvkpXsujesh75UjnXMu7FsLOTyhp1XNLQumX7rpqf/GgzP8B11GeTSncy7JBk/CuS7tXJiifLPlonbNm5AAAAAADUzMiRIzNp0qQ89thjSZIlS5ZkxowZmTp16mbvcccdd1SNjz/++AHtsfDLMhhEwsIAAAAAAAAAAAAAAAB2Js2jkvMrveNljyQ3TaldPxuzal4y98aykqRoSEa+pDc8bMxJyR4Tk/4+UFXp2fygsCR54KP9rw07OHnZd5O2KcmCO5NfvynpWJAceGFy2MfLPrpfSCqVZPH95fVD9tr8swEAAAAAGFCnnHLK2rCwJLnuuuty5ZVXbta9M2bMyL333rt23NLSkmOPPXZA+2tubq4ad3R0DOj+0JewMAAAAAAAAAAAAAAAgJ3ZsIOS8Wckz/1809c2jkg6l2z/nvpT6UoW3VvWrGvKuZZx1eFho45LGoaUa8/+YuDOXjYz+enR688/fm1Zm7LXq5OjP5eMOHzgegIAAAAAoF8XXHBBvv3tb68dX3PNNXn/+9+f8ePHb/LeSy+9tGp87rnnrhfuta1GjBhRNX722WcHdH/oS1gYAAAAAAAAAAAAAADAzu7lNyT3vG/joVcHvS85/precWd70tOR/HivpKdz886pb026VyapbFO7VVbNS+beUFaSFA3JyKPK4LDnbx24c7bVsz8r66xZZUAbAAAAAADb1emnn56jjjoqDzzwQJJk6dKlOe+883LzzTdnyJAh/d73+c9/PjfeeOPacVEU+Zu/+ZsB7+/AAw9MU1NTVq9enSSZPn16Ojs709jYOOBngbAwAAAAAAAAAAAAAACAnV3DkOTEbyYHXJD86o3J6kW9a+Nflez7hmTyO6vvaRyaZGhywjeT37x102ccflly5OXJ6qXJwruSBb95se5KOpcM3LNUupJF95S1I7ppSnLqj5J9X1/rTgAAAAAAdmjPPfdcZs+evVX3Tpw4MUnyjW98IyeddNLaQK5bb701p556ar70pS/lhBNOqLpnwYIFueyyy/LlL3+5av4jH/lIjjzyyK3qY2Oampryspe9LNOnT0+SzJkzJ2effXbe/e5356CDDkpra2vV9ePHj09LS8uA98HuQVgYAAAAAAAAAAAAAADArmLctOQN85Ilv0/22D9pHrXpe/Y6IykaypCu/tS3JPv/n/LrpuHlPXudUY4rPcmymX3Cw36TLP1jksq2Ps2O61dvSF769WTy22vdCQAAAADADuu8887b6nsrlfJ7zMccc0yuueaavPvd705PT0+S5N57782JJ56YyZMn57DDDktLS0ueeuqp3H333enqqv5e96te9ap86lOf2vqH2IS//du/XRsWliS33HJLbrnllg1eO3369EybNm279cKuTVgYAAAAAAAAAAAAAADArqSuIRl19OZf37JncuoPkl+fm3SvKuda90uaRiZL/5CMfEly9OeS4Ydu+P6iLhk+taxJbyvnVi9NFt7VJ0DszqRz6bY9147m7nckky5KiqLWnQAAAAAA7NLe8Y53ZOTIkbnwwgvT3t6+dv7RRx/No48+2u99b3vb2/KVr3wljY2N2623s846K1deeWUuu+yydHd3b7dzQFgYAAAAAAAAAAAAAADA7m7CnydvXFgGfA2dlOyxXznf053U1W/5fk3Dk73OKCtJKj3Jsof7hIf9Jln6x4Hrv1aW/C4ZeVStuwAAAAAA2OWdc845efnLX56rrroq1113XRYsWLDB6xobG3Paaaflsssuy8knnzwovX384x/P61//+vzbv/1b7rjjjsyaNStLly7NypUrB+V8dg9FpVKpdQ9QU0VRHJbkoTXjhx56KIcddlgNO4IdUOey5IG/S+b9snyDvr6oUUkAACAASURBVD/n++8UAAAAAAAAgFr6wx/+kMMPP7zv1OGVSuUPteoHAPyMHgCwUauXJAvv7hMgdmfSubTWXW2Zk/41OeCtte4CAAAAALabrq6uPPLII1VzBx10UBoaGmrUESQ9PT2599578/DDD2f+/Pnp6OjImDFjMmHChJxyyilpa2urdYvU0Pb691atfz7Pv3UB2LhKTzL9tcmCO2rdCQAAAAAAAAAAAACwK2kakex1RllJ+bPLyx7uEx72m2TpH7ftjOOuSaa8r/z634tt22tDls4Y+D0BAAAAANiourq6HH/88Tn++ONr3QoMGmFhAGzc4gcEhQEAAAAAAAAAAAAA219Rlww/tKxJF5Vzq5ckC+5KFt6ZtD+RLJuZ7H1mMv6VydiTkvbZyW/fkzx7y/r7HfXZ5KD39o4P/Wjyx88OcNM9A7wfAAAAAADA+oSFAbBxD11Z6w4AAAAAAAAAAAAAgN1V04hk71eXtSFDJyan/TSZ/e/Jk99LKj3Jvq9PDrwwKYrqa/c/P5l5ddK9auD6W3R/+Qua2w5KGvYYuH0BAAAAAAD6EBYGwMZ1zK91BwAAAAAAAAAAAAAAGzfx/LI2ZuSRybSfJg9+Iln8YDLq2OSAt5ZhX/NvTxbfv+XnPvfz5Kc/r5477ppkyvu2fC8AAAAAAIB+CAsDAAAAAAAAAAAAAABg9zBuWvKq25NKJSmK9de7VyW/+0TyzM1Jy9jk+f/d8jPueX9Z/Wk7qOyhaVRS6UrqmjfcCwAAAAAAwIuEhQEAAAAAAAAAAAAAALB76S+cq74lOeZzZSXJynnJ9DOSJQ8O3NnLH0l+NK7/9SF7J6+5L2keldQ1Dty5m9LTmSy4KynqkuGHJUV90jh08M4HAAAAAAD6JSwMgE2o1LoBAAAAAAAAAAAAAIDaGDIuee0DyU0HlyFfg2HlM8mPx294bcLrkpf8Y9K5LBk2JWkaMTBnLvl9cvOR/a+PPTWZekky7OAkdcns7ySL70+6VyYHvi3Z/9z+A9gAAAAAAIBtJiwMAAAAAAAAAAAAAAAA+lMUyRGXJ3e8udadJHNvKGtzTHxzMu4VyZ4vL0PFmkdv+LpKJbn1Tze+1/xflbUhz/13csf5veOhByYHvScZe0pS1Cfzb0+WP5a0HZQ8/Z/JvF+W4WN7vybZ+6xkxBGCxgAAAAAAYBOEhQGwCd50BQAAAAAAAAAAAAB2c/u9KXniO8mzP611J5tv9nVlrWvvs5I99k+KuqRjYTL0gGTFUwN3bvvjyf0f3vg1a8LHfvfxDa+3HZSMOjZ5/n/L4LFDP5bU+RgUAAAAAAC7L98lBwAAAAAAAAAAAAAAgI2pq0+m/VfyzM3JspnJE99OljxY6662zjM31bqDTVv+SFlJ8uDfl9W6bzLutGTYIb01dFJS31TbXgEAAAAAYBAICwMAAAAAAAAAAAAAAIBNKYpknz8ta+rfJt8fmXQuqXVXu48VTyVP/Gv1XNGQtE2qDhAbdkgy7OCkaWRt+gQAAAAAgO1AWBgAm1CpdQMAAAAAAAAAAAAAADueKe9N/nBVrbvYvVW6kmUzy8qN1Wst4zYQInZIssd+SVFXk3YBAAAAAGBrCQsDAAAAAAAAAAAAAACALXXghcLCdmSr5pX1/G3V8/VDkrYpveFhw6eWr20HJQ2ttekVAAAAAAA2QVgYAJtQ1LoBAAAAAAAAAAAAAIAdT9vk5JgvJPddXD0/+Z3JS/4x+elRyYqnatMb/etemSz5XVlVimSP/XtDxPpWy55J4WfrAQAAAACoHWFhAAAAAAAAAAAAAAAAsDUO+WCyz1nJ/F8lbVOS0S9N6l78uM4r/ieZ/tqk/dHa9shmqiQvzC7r2VuqlxpHlKFhw9cJERt6YFLXWItmAQAAAADYzQgLA2ATKrVuAAAAAAAAAAAAAABgx9U2qaz15icnZz+SvPBkMu+2ZPF9SeeyMlRs3LRkjwOSBz6SPP+/ZUBVwx7JmJOSoZOTp36YdMwf7Cep1jQyWb1449cM2SvpWZ10LOz/mjPuSsa8tHru34ut72vo5OSFx5NKz9bvsaU6lyQL7yyrr7rGsp9h64SIDTs4aRo+eP0BAAAAALDLExYGAAAAAAAAAAAAAAAA28se+ycHXpDkgvXXTvr2hu85/BPJ3BuSe97fOzfq2KRlXPLMzdulzSoH/00y+R3Jr9+ULPn9hq8pGpJj/9/k+VuTWdds+JrWfZPRx68/P+Wvk1lf3PK+Xv9MGVDW3ZEsfzRZ9nCfmlG+dr2w5fturZ7OF8+dsf7akL02ECJ2SNI6ISnqBq9HAAAAAAB2CcLCAAAAAAAAAAAAAAAAYEfSuk8y5X1ldXckncuTljFJpZI8+/Pk2VuSJ7+bNI9KRrwkmfc/yap56+9T1CXNY5JVz2/+2XVNyaEfTYaMS858sLx30f3J4vuThqFJV3tS6U72OSsZ+ZJk79cm7bOTZ26q3qdhjzIMrSjWP+OwS5N5v0yW/mHz+9r/3DKAK0nqm5MRh5XVV6WSrHy6DA1b+nB1mNjKpzf/rIGw8tmy5k2vnq9vTYYdnAybWoaHDX8xRKztoKS+ZXB7BAAAAABgpyEsDIBN2MAbswAAAAAAAAAAAAAADI765rKSMnhr71eXdezne6/p6UrmfD+Z/+skPUldc9LYlkz482TkMcnyWcmi+8rwqgc+mlS6+j/v6H8ug8LWaNmz98wNaWhNpv1nsuKZpP3R8ozuVcn4V5ahZxsyZHxyxh3JM7ckv37Tpv8Mjrg8OezvNn1dUSStE8oa/8rqtc7lybKZ1QFiyx4u/2x6Oje990DpXlEGry2+f52FIhl6QBkctm41j9lw6BoAAAAAALsNYWEAAAAAAAAAAAAAO5GiKBqSHJPksCRjkzQlaU/ydJJZSf5QqWws/QEAgF1OXUMy8byyNmTYwWUlycijkse/WQaLVbqTlnFlWFbLnskBb00mvmXremjdu6zN1Tgs2f//lNWxKHlhdhmWtWJuMuzQlKFnjVvXywbPa0tGH1dWXz1d5dlLZ6wTJDYjWb144M7fpErS/nhZz9xcvdQ0qjc4bPjU3q/3mFj+Zw8AAAAAwC7Pd4MB2IRKrRsAAAAAAAAAAIDtriiKA5Mcn+S4F1+PSdLW55InK5XKxBq0tlZRFAcl+XCSNyUZtpFLVxZFcXuSf6lUKj8elOYAANh5jD+9rB1J86iykqRp5IuT9YNzdl1D0ja5rPxZ73ylknQsWCdA7MVqfyKD+rP2qxclC+4oq6r3pqTtoN7wsLV1cBmOBgAAAADALkNYGAAAAAAAAAAAALBbKopiWpJLUwaEjaptN/0riqIhyT+k7HVzfvZzSJJXJVmURFgYAABsjaJIWsaWteep1WtdK5P2R8vgsKUPJ8tmvBgkNjPpXjF4PfasTpb+oax1DdmnOkBs+CHJsKnJkL3LZwMAAAAAYKciLAwAAAAAAAAAAADYXR2V5IxaN7ExRVEMSfKDJGeus1RJ8ockc5IsSTI0yYFJDomfDwUAgO2rYUgy4oiy+qr0JCvmvhgctk6tfHZwe1z5dFnzflk93zC0OkRsTbVNTuqbB7dHAAAAAAA2mx8GAWAT/MYgAAAAAAAAAAB2Ox1J5iaZVMsmiqIoknw31UFhq5L8U5KvVSqVpzdwT2uSVyU5N8nqwegTAAB4UVGX7LFfWXutk0u8emmybOY6IWIzkuWPJpWuweuxqz1ZdE9Z6/V+YBkcNnydILHm0YPXHwAAAAAAGyQsDIBNqNS6AQAAAAAAAAAA2J46k/whyT1Jfvvi6++TvCzJ9Br2lSTvTXJ2n/GzSV5RqVRm9HdDpVJZkeTGJDcWReHnRAEAYEfRNDwZ89Ky+urpTNofrw4RW/pikFjn0sHrr9KTtD9a1jM3Va81j3kxOGxqb4DY8EOS1v2TuvrB6xEAAAAAYDfmh0AAAAAAAAAAAACA3dW3k3ylUqmsWnehKIoatFN1/n5JPtNnalWSV24sKGxdlUqla8AbAwAABlZdYzLs4LLy573zlUqy6vnqELE19cLswe2xY0Ey//ay+qprToZN6Q0QW1sHJw17DG6PAAAAAAC7OGFhAAAAAAAAAAAAwG6pUqksrnUPG/HxJEP7jD9dqVT+WKtmAACAQVYUyZBxZY37k+q1rhXJ8keSpTOqQ8SWz0y618tC3n56OpIlvy9rXa37VgeIDZ9avraML58NAAAAAIAtIiwMgE3wJhwAAAAAAAAAAAymoijakpzfZ+qFJFfXqB0AAGBH09CajHxJWX1VepIX5lQHiK2pVfMGt8cVT5X13C+q5xuHVYeIramhk5L6psHtEQAAAABgJyIsDAAAAAAAAAAAAGDH8qYkQ/uMf1ipVJbXqhkAAGAnUdQlQyeWtfdrqtdWL06WzewND1s6o3xtfyypdA9ej53LkoV3l9VXUV8Ghq0bIjb8kKRp5OD1BwAAAACwgxIWBsAmVGrdAAAAAAAAAAAA7G5OW2f8i5p0AQAA7DqaRiZjTiyrr+7VZWDYmhCxvtW5bPD6q3Qny2eV9fRPqtdaxq0fIjbskGSP/cqANAAAAAB2KitWrMh9992XRx55JAsWLMiqVasyZMiQjBs3LlOmTMnRRx+dpqamATlrzpw5+drXvpbbbrsts2bNyuLFi9PZ2bl2/dprr81f/dVfbfDeu+++O9dee23uuOOOPPXUU1m6dGl6enrWrj/xxBOZOHFikmTatGm57bbb1q5VKrI6GHjCwgAAAAAAAAAAAAB2LC9dZ/ybJCmKYkiS1yc5N8lhSfZO0pFkQZL7U4aKXV+pVJYPXqsAAMBOrb4pGT61rL4qlWTVc73BYUv7hIitmDO4Pa6aV9bzt1XP17ckbQdXB4gNPyRpm5I0tA5ujwAAAABsVHd3d/7jP/4j1157baZPn56urq5+r21pacmrX/3qvP3tb89ZZ5211Wd+/etfzwc+8IF0dHRs0X1dXV1573vfm69//etbfTZsD8LCAAAAAAAAAAAAAHYQRVGMSDK5z9TqJI8XRfEnSa5NcsA6t7QkGZ5kUpJzklxVFMUVlUrli4PRLwAAsIsqimTIXmWNO616rbM9WT6rNzxsbc1Kerbsg5fbpHtVsuR3Za1rj/2TYVOrg8SGHZK07Fk+GwAAAACD5n/+53/ynve8J7Nmzdqs61etWpUbb7wxN954Y4477rh89atfzTHHHLNFZ958881517velUqlssX9fvzjHxcUxg5JWBgAm+BNMAAAAAAAAAAAGETj1xk/k+QNSf4jSd1m3D86ydVFURyf5MJKpdL/r2MGAADYGo1Dk1HHlNVXT3ey4slk6bohYg8nHfMHt8cXnizr2Vuq5xtHlKFhw9cJERt6YFLXOLg9AgAAAOwGPvnJT+aTn/zkeqFdRVFk6tSpmTBhQkaPHp358+dnzpw56wWK3XPPPTnppJNyzTXX5B3veMdmn3vppZdWnXn++efnoosuyr777pvGxt7vA40ZM6bqvnnz5uULX/jC2nFTU1M+9rGP5cwzz8zYsWNTV9f7tv2ECRM2ux8YCMLCANiELU9JBQAAAAAAAAAAttqIdcZDk3wnvUFhTyb5UpLbkyxMMirJKUnel2Rin/vekmRekksGqrGiKPZMMnYLb5s0UOcDAAA7uLr6MnRr6IHJPmdWr3UsrA4PWxMo9sLjSaVn8HrsXJIsvLOsvoqGpG1ynwCxqS++Hpw0DR+8/gAAAAB2IRdffHGuvvrqqrm2trZceumlefOb35z99ttvvXseffTRfOtb38rnPve5dHR0JElWr16dd77znXnhhRdy8cUXb/LcmTNn5sEHH1w7PvPMM3PddddtVs833HBDVq9evXZ85ZVX5sMf/vBm3Qvbm7AwAAAAAAAAAAAAgB3HumFhfX+N8feT/GWlUlm5zjV3FkVxTZJ/TfIXfeY/VBTFjZVK5VcD1Nt7k1w2QHsBAAC7k+bRydiXldVXd0ey/NHqILE11dU+eP1VunrPXdeQvfqEiPWp1glJUbf+9QAAAADk29/+9npBYaecckquv/76TJgwod/7Jk+enCuvvDIXXHBB3vjGN+ahhx5au/ahD30oRx11VKZNm7bRs++5556q8TnnnLPZfW/tvbfeeutmnwFbS1gYAAAAAAAAAAAAwI6jv0+a/zbJ+ZVKpWtDi5VKZVVRFOcnmZjk+D5Ln0jy6gHtEAAAYKDUNycjDiurr0olWflMb4DX0hm9X698enB7XPlsWfOmV8/XtybDDl4/RKztoKRhyOD2CAAAALADmTVrVt7//vdXzZ188sn56U9/mqFDh27WHlOmTMkvf/nLTJs2LTNmzEiS9PT05C1veUseeOCBjBkzpt97582bVzXeWDjZQN4L25uwMAAAAAAAAAAAAIAdR3s/85f0FxS2RqVS6SqK4m+T/KrP9BlFUexZqVSeH7AOAQAAtreiSFr3KWv8K6rXOpcny2b2hoetqeWPJD2rB6/H7hXJ4vvLqlIkQw9YP0Rs2CFJ85jy2QAAAAB2YZdcckna23vf+h4xYkR++MMfbnZQ2Bp77rlnfvCDH+Too4/O6tXl932efvrpfOpTn8rVV1/d7319z06SxsbGzT5zW+6F7U1YGACb4E0oAAAAAAAAAAAYRBsKC3uyUqn87+bcXKlUbi+K4vEkB/aZ/pMk3x+A3r68FftMSnLjAJwNAABQamxLRh9XVl89XckLs9cPEVs6I1m9aBAbrCTtj5f1zM3VS02jNhwiNvSApM5H/QAAAICd38MPP5ybbrqpau4zn/lMxo8fv1X7HXroobnkkkty1VVXrZ37xje+kcsvvzwjR47c4D09PT1bdda23jsQ/vjHP+b3v/99Fi5cmMWLF6elpSVjx47N1KlTc+SRR6a5uXmr9u3q6srdd9+dxx9/PPPnz09HR0fGjh2biRMn5mUve1laWloG+EnYHnwHEYBNqNS6AQAAAAAAAAAA2J0s2cDcnVu4x12pDgubuvXt9KpUKs8neX5L7ikKv6wQAAAYJHUNSdvksvY5q3pt1fz1Q8SWPZy0P5FB/dzE6kXJgjvK6quuMWk7KBk2dZ0gsYPLcDQAAACAncTVV1+dSqX3+y1jxozJhRdeuE17Xnzxxfnnf/7ndHZ2JkleeOGFfP3rX89HPvKRJMns2bNzwAEH9Hv/aaedtsH5a6+9Nkk22l9/73k/8cQTmThx4trxtGnTctttt60d9/0z2JSnnnoq//RP/5Tvf//7mTdvXr/XDRkyJKeddlr+8i//Mm984xtTX1+/yb1nzJiRK6+8MjfddFOWLVvW775nn312rrjiikyZMmWz+2bwCQsDAAAAAAAAAAAA2HE8maQjSd9fB/zsFu7xzDrj0dvUEQAAwM6uZWxZe55aPd+9Kln+SBkctnSdILHuFYPXX09nsvSPZa1ryD7VAWLDX3wdsk8ioBkAAADYwdxyyy1V4wsuuCBNTU3btOfYsWPzZ3/2Z/nRj35Udc6asLCdVaVSyac//el86lOfyurVqzd5/cqVK3PzzTfn5ptvXi+sbF3d3d255JJL8sUvfjE9PT2b3Pd73/tefvjDH+Zzn/tcPvjBD27pozBIhIUBAAAAAAAAAAAA7CAqlUp3URQzkxzZZ7pjC7dZ9/qWbesKAABgF1Xfkow4oqy+Kj3JiqdfDA6bUR0itnJL85y30cqny5r3y+r5hqHJsIOrg8SGTU3aJif1zRveCwAAAGqgq7uSuYtr3cWub8LIpKG+tsHic+fOzezZs6vmzjjjjAHZ+4wzzqgKC7vzzjvT2dmZxsbGAdl/sHV1deXcc8/ND3/4w/XWxo8fnyOOOCJjxoxJR0dH5s2bl9/97ndpb2/frL1XrlyZ173udfn5z39eNd/Y2JijjjoqEyZMSHNzc5577rncfffdWbFixdqeLr744ixevDiXX375Nj8jA09YGAAAAAAAAAAAAMCO5cFUh4WN2ML7171+4ba1AwAAsJsp6pI99i1rr1dVr61emiybWR0gtuzhZPkjSaVr8Hrsak8W3VvWer0fWIaHDT+kOkysefTg9QcAAAAvmrs4OfDvemrdxi7v8avqMnFMbXv49a9/vd7ccccdNyB7H3vssVXjlStX5oEHHsjxxx+fCRMm5Iknnli79oUvfCFXX3312vH111+fE088cb09x4wp/8CmTZu2du7cc8/NXXfdtXbcd9++JkyYsFXPscaHPvSh9YLCzjzzzFx++eU5/vjj17u+p6cnd955Z7773e/mW9/61kb3ft/73lcVFDZ8+PBcfvnlueiii9LW1lZ17cqVK/PlL385n/jEJ7Jq1aokyRVXXJETTjghr33ta7fy6dhehIUBAAAAAAAAAAAA7FhuTvKWPuPDtvD+w9cZz922dgAAAFiraXgy5qVl9dXTmbQ/0SdAbEay9MWvO5cMXn+VnqT90bKeual6rXlMdXjYmtpjYlJXP3g9AgAAALukuXOr35oeN25cRo8emPDyww9f923w8rzjjz8+DQ0NmThx4tr5ESOqf7/W+PHjq9bXNXTo0LVft7S0VK1t7L6t9fOf/zxf/OIXq+Y+85nP5KMf/Wi/99TV1eXkk0/OySefnCuuuGK9Ptf4/ve/n2uvvXbteP/998+tt97a73MMGTIkH/rQh3LSSSflFa94RVatWpVKpZK//uu/zsyZM1NXV7flD8h2IywMAAAAAAAAAAAAYMdyU5KOJM0vjo8vimJUpVJZtKkbi6IYmWSdT6znVwPcHwAAAOuqa0yGTSkrZ/fOVyrJquf7hIj1qReeTFIZvB47FiTzby+rqvfmpO2gZPjU6hCxtilJ49AN7wUAAACwjkWLqt/SHjly5IDt3dLSkubm5nR0dPR73s7iiiuuqBq/+93v3mhQ2LrWDUNbo1KpVO3d0NCQn/zkJ5sVeLYmhOwjH/lIkuTRRx/NDTfckDe84Q2b3Rfbn7AwAAAAAAAAAAAAgB1IpVJZXhTFD5K8+cWp5iTvT3JF/3et9f4kfX+F8JNJHhrYDuH/Z+/Oo/Q66zvBf28tqpKqSqXVsmVb3m3JZgvtDvsS4gScNGEC6ZCGE5qQrUn+4EySSRqGxk13pwNZZoYJ9GShIRmm4QRCEyAhwUBiNpMQMInBlmR5lW1ZtqylqlSlUm3P/HEl1XtLJVmySm9p+XzO+Z2q+zz33uf75nBkVHF9AQAATlhVJUvX1bPuZc29qbFkZNs8RWJbk+kD7cs4czAZ+l49cy27tFkgdniWXlR/NgAAAIBD5pZ3HavU6ulasWJFHn/88SPXu3fvXtD3t8Odd96Zr3/960euBwYG8t73vndB3v13f/d3+d73Zn++88Y3vjHPetazTvj5X/7lX8673vWujI+PJ0k+85nPKAs7wygLAwAAAAAAAAAAADiNqqoqc5Z+oJRy21M89h+S/OskSw5dv6Oqqi+UUr5xnHNekOSdc5Z/q5Qy93wAAADOBF3LkpXPrqdVmUlGt89TIrYlGX98/nedLmMP17PzC831roHZ4rDBTbPf91+VdC6Z/10AAAAAp6A6B4rLv/SlLzWu3/CGN2T58uUL8u4vfKH585vXv/71J/X8smXL8v3f//35yle+kiT56le/uiC5WDjKwgAAAAAAAAAAAIDzVlVVl2T+f5/ywjnXXVVVXX6M1+wvpTy5kLlKKQ9UVfXbmS3/6klya1VVv57kg6WUycP3VlXVleRnk/xuZsvFkuSbST68kLkAAABog6oj6b+8nvWvau5N7E2Gtx5dIjZyb1Km25dxaiTZ84/1tKo668Kww+VhRwrFNiZLVrYvHwAAANB2q1atalwPDQ0t6Pv37dt33PPOBrfffnvj+uUvf/mCvftrX/ta43rVqlV58MEHT+odrcVlDz74YGZmZtLR0bEQ8VgAysIAAAAAAAAAAACA89nXklx2AvddnOSBY+z9aZI3L1SgFu9Kcl2Sf33ouj/Jf0vyX6uq+vske5KsSvL8JCvmPPtokteVUiZOQy4AAAAWy5KVyZrn19NqeiLZf39Lgdjm2e8nh9uXr0wnI/fU8+hnmnu9FxxdIrZ8U9K3oS5IAwAA4Jx0ycrk/v/q732n2yVnQEf33PKuvXv3Lti7x8fHMz4+3lhbvXr1gr2/XR577LHG9Q033LBg73744Ycb189//vOPceeJmZmZyb59+87KUrZzlbIwAAAAAAAAAAAAgDNQKaVUVfXTqUvBfrFla0WSVx3n0W8m+fFSyo7TmQ8AAIAzSOeSZHBjPa1KScZ3zhaHDW2Z/X5se3szjj9RzxNfaa539iYD1zVLxAY3JgPXJl3L2psRAACABdfVWeXyNYudgna4+OKLG9c7d+7M7t27F6TU66677nrK884Gu3fvblyvXLlwLW9z370QRkZGlIWdQZSFAQAAAAAAAAAAAJyhSikHk/y7qqo+keQ3krwiSecxbv9ekt9N8v+VUqbbFBEAAIAzWVUlSy+qZ90PNPemRpPhe2bLw4a3JMOb67WZg+3LOD2e7Pvneubqu6xZInZ4etfVnw0AAAA4Y7zwhS88au1b3/pWXvnKV57yu7/1rW81rpcuXZrnPOc5p/zexVYt4M83JiYmFuxdh5VSFvydPH3KwgAAAAAAAAAAAIDzVinl8jacccr/dm8p5UtJvlRV1dokz09yUZI1SUaSPJ7k9lLKI6d6DgAAAOeRrr5k1ffV02pmOhl7KBnaMqdIbEtycFd7M44+VM9jn2+ud6+oS8MG55SI9V+ZdHS3NyMAAACQJNmwYUM2bNiQ7du3H1m79dZbF6Qs7Atf+ELj+nnPe16WLFlyyu9ttzVr1jSu9+zZk4svvnjB3r1jx44kSW9vb8bGxha0jIzFpywMAAAAAAAAAAAA4CxRStmV5LOLnQMAAIBzWEdnXbrVf2Vy8Y809w7uToa3Hl0itv++pMy0L+PkvmT339fTqupKBq5uFogdniWD7csHAAAA56lXtXYQhwAAIABJREFUvepV+aM/+qMj1x/5yEfynve8J93dT7/ce9euXfnMZz5z1Dlno4suuqhxfffdd+eZz3zmgrx73bp1R8rCxsfHs3379lx22WUL8m7ODMrCAAAAAAAAAAAAAAAAAICn1rM6WfvCelpNH0xG7j26RGx4SzK1v335ytTsuXP1XjhbHDa4afb7ZZckVUf7MgIAAMA57G1ve1v++I//OKWUJHXR14c//OH8wi/8wtN+5/ve975MTk4eue7r68vP//zPn3LWxfCiF70on/jEJ45c33bbbXn961+/IO9+4QtfmO985ztHrm+99daz9v9OzE9ZGAAAAAAAAAAAAAAAAADw9HX2JCtuqKdVKcmBHfOXiI090t6M4zvreeK25nrnsmT5dbPlYYdn4Jqka2l7MwIAAMBZ7vrrr8/NN9+cz33uc0fWfuM3fiOvec1rsm7dupN+3913353f+Z3faaz9zM/8TFatWnXKWRfDTTfd1Lj+6Ec/mt/+7d/OwMDAKb/7la98ZT7wgQ8cuf7gBz+oLOwcoywMAAAAAAAAAAAAAAAAAFh4VZUsu7ieC3+wuTc5kozckwxtSYY3z5aIjWxLZibal3F6LNn7nXoaqqTv8tnysMHDRWKbkp419WcDAAAAjvJ7v/d7ue222zI2NpYk2bdvX1772tfm85//fPr7+0/4Pbt27cpP/MRPZGJi9ucEF110Ud71rncteOZ2ueGGG/Kyl70sX/7yl5Mkw8PDefvb3573v//9p/zum2++OVdddVXuu+++JMk3v/nNfOhDH8pb3vKWU343ZwZlYQAAAAAAAAAAAAAAAABAe3UPJKv+RT2tZqaS0Qdny8MOz9DmZGJPGwOWZPSBeh776+bWklWzJWKt039F0uHXNgEAADi/bdy4Mb//+7+fn/3Znz2ydvvtt+fmm2/Oxz72sVxyySVP+Y5t27blda97XTZv3nxkraOjIx/5yEeydu3a05K7Xd71rnflB39wtlT9Ax/4QK644or86q/+6gk9PzQ0lJ6envT29jbWu7q68p/+03/KG9/4xiNrb33rW7NixYq89rWvPamMX/ziF3PllVfmyiuvPKnnOL06FjsAAAAAAAAAAAAAAAAAAECSumxr4Ork4n+VbPq15HkfTH7oa8lP7E5euyu56avJ9/9xsvFXk/U/mvRflVRt/lXJiT3Jk7cn938o+adfT77yY8lfXpt8fFnyVzckX31d8s//e/LAR5Ld/5hMDrc3HwAAACyyt7zlLfnlX/7lxtrXvva1XH/99XnPe96Thx9+eN7n7r333rzzne/MM5/5zHz3u99t7L33ve9tlGydrV7xilccVQz2a7/2a/mxH/uxfPvb3573mZmZmXzjG9/I2972tlx66aXZuXPnvPe94Q1vyFve8pYj1xMTE3nd616XN77xjcd8d5JMT0/nO9/5Tt797nfn+uuvzw/90A9l+/btT+PTcTqpqAcAAAAAAAAAAAAAAAAAzny9a5LeFycXvLi5Pj2ejGxLhrckQ1vqr4dneqx9+WYmk6G765lr6fpk+aZk+cZ6Bg99XXpxUlXtywgAAABt8v73vz8rV67Mb/7mb6aUkiQZGRnJ29/+9rzjHe/I9ddfn0svvTQrV67M7t2789BDD2Xr1q1Hvae7uzvve9/78ta3vrXdH+G0ee9735vt27fnE5/4xJG1z372s/nsZz+b9evX55nPfGZWr16dgwcPZufOnbnzzjszMjJyQu/+gz/4g+zduzef+tSnjqx99KMfzUc/+tGsXbs2z372s7N69ep0dHRkeHg4O3bsyObNmzM+Pr7gn5OFpSwMAAAAAAAAAAAAAAAAADh7dfYmK55ZT6syk4w92iwPOzwHdrQ344Ed9Tz+peZ6V99sgVjrDFyTdPa0NyMAAAAssP/8n/9zXvayl+WXfumXsm3btiPrpZTcddddueuuu477/HOf+9z84R/+YW688cbTHbWtOjs782d/9me54YYb8pu/+ZuZnJw8srdjx47s2PH0f27R3d2dT37yk/md3/md3HLLLY0SsF27duWLX/ziCb2jr6/vaWfg9FAWdp6oqqo7yYuSbEhyUZL9SXYk+U4p5cEFPuuKJM9Jsj5Jf5LHkjyU5PZSyuTxngUAAAAAAAAAAAAAAACABVF1JH2X1nPRDzX3JoeToXlKxEa2JWWqfRmnRpM9367nqOxX1MVhg5uaRWI9q9uXDwAAAE7RTTfdlLvvvjsf//jH86EPfShf/vKXMzV17L979/T05Id/+Ifzcz/3c3n1q1+dqqramLZ9qqrKLbfckje96U35rd/6rXzyk5/Mnj17jnl/f39/brrpprz5zW/Ohg0bnvLdv/7rv543velNed/73pePfexjeeihh477zMDAQF7ykpfkR3/0R/P6178+q1f7+cOZpiqlLHaG80ZVVf8xyS2n8Io/LaW8+STPXJvk3Ulen2TVMW67Pcn/UUr55ClkS1VVP5HkV5K84Bi37EnyZ0neVUp58lTOWkhVVd2Q5HuHr7/3ve/lhhtuWMREcIa59UXJk7ef2L1v8M8UAAAAAAAAgMV011135RnPeEbr0jNKKcf/n98EgNPIv6MHAADAWWdmMtn/wNElYkObk8l9i52u1rOmWR52ePouTzo6FzsdAABwjpmamsq2bdsaa9dcc026uroWKRFnu9HR0Xz729/Ovffem127dmViYiI9PT1Zt25drr322jz3uc9NT0/PYsdsu5mZmdxxxx3ZsmVLnnzyyezfvz99fX254IILsnHjxjzrWc9Kd3f3037/Aw88kDvuuCO7du3K3r1709HRkYGBgaxfvz4bN27MNddck87Oc+PnCqfrz63F/vfz/Kl7Dquq6uYkf5Lkgqe49YVJXlhV1f9I8oullNGTPKc/yR8n+amnuHVVkrcmeW1VVf+2lPL5kzkHAAAAAAAAAAAAAAAAAE6rju5k+bX15Mdm10tJDu5qlocd/n70oSSlfRkPPpns+lo9jew9ycA1zQKxwU3JwLVJd3/78gEAAMBx9PX15aUvfWle+tKXLnaUM0pHR0duvPHG3Hjjjafl/VdccUWuuOKK0/Ju2kNZ2DmqqqqXJ/mLJEtalkuSO5Lcn2RFku9LsqZl/41JlldV9b+UUmZO8JzOJH+W5EfmbO1K8p0kQ0muOnRWdWhvXZJPV1V1Uyllzk8jgTNOVT31PQAAAAAAAAAAAAAAAHAuq6qk94J6Lpjzy8xTY8nIttnysCOzNZk+0L6MMweToe/VM9eyS5slYodn6UV+fwgAAADgLKAsbHH9myR/fxL37z+Rm6qquiTJ/0yzKOzrSX6+lLK55b6eJL+Y5HeTdB9afnWS/5LkHSeY6T1pFoVNJvmVJH9USploOev6JB9M8oJDSz1J/qKqqmeWUh47wbMAAAAAAAAAAAAAAAAA4MzStSxZ+ex6WpWZZOzhZKi1QGxz/XX88fZmHHu4np1faK53DcwWhw22lIj1X510Lpn/XQAAAAC0nbKwxbWzlPLgaXjvu5OsbLm+PclNpZTx1ptKKQeT/N9VVW1P8qmWrV+pquoPSykPHe+QqqquTPK2Ocv/upTy6bn3llLurqrqB5N8KbOFYauT3JLk353AZwIAAAAAAAAAAAAAAACAs0fVkfRdVs/6Vzb3JvYmw1tbSsQOzci9SZluX8apkWTPP9bTyN6Z9F+ZLN80WyB2uFBsycr53wUAAADAaaMs7BxTVdU1Sf5ty9JEkjfPLQprVUr5i6qq/rTluZ7UJV5veYrjbknS3XL9J/MVhbWcc6Cqqjcn+W6Sw/+TAj9bVdVvl1Luf4qzgMVSymInAAAAAAAAAAAAAAAAgHPLkpXJmufX02p6Itl//9ElYsObk8nh9uUr08nItnoe/Uxzr/eCZoHY4em7rC5IAwAAAGDBKQs797whSWfL9f8spWw7gefem2bJ2E9WVfVLxyoZq6pqaZKfmOcdx1VKuaeqqr9I8pOHlroOZf4vJ5ARAAAAAAAAAAAAAAAAAM5dnUuSwY31tColGX+8Lg0b3pIMtRSJjW1vb8bxJ+p54ivN9c7eZODalgKxTfXnGLg26VrW3owAAAAA5xhlYeeeH59z/eETeaiUsrmqqn9I8rxDS31JfjjJZ47xyCuTtP507hullC0nmPHDmS0LS5LXRlkYnLmqarETAAAAAAAAAAAAAAAAwPmtqpKlF9az7geae1OjyfA9s+VhR2ZrMnOwfRmnx5N9d9YzV99lLSViLdO7zu8vAQAAAJwAZWHnkKqqLkzy7JalqSRfP4lX3JbZsrAkuTnHLgt71TzPnqivps52+D9/31dV1bpSyuMn8Q4AAAAAAAAAAAAAAAAAoKsvWfV99bSamU7Gts+Whw1tnv3+4K72Zhx9qJ7HPt9c7x48ukBscFPSf2XS0d3ejAAAAABnMGVh55ZnzLm+s5QyehLP3z7n+oaTOOsbJ3pIKWW0qqrvJmn9yeMNSZSFwZlo6sBiJwAAAAAAAAAAAAAAAABOVkdn0n9FPetvbu4d3J0Mb50tDzs8++9Lykz7Mk4OJbv/oZ5WVVcycPXRRWLLr0uWrGhfPgAAAIAzhLKwxfWLVVW9M8mmJKuTTCbZneShJF9L8jellK+exPuun3N970nmue8p3tdq0wKc1VoWdn2Svz3JdwDtsPeOxU4AAAAAAAAAAAAAAAAALKSe1cnaF9bTavpgXRh2uDxsqKVIbGqkffnK1Oy5c/VeeHSJ2ODGZNmlSdXRvowAAAAAbaQsbHH91JzrniT9SS5L8tIk76iq6ltJ3l5K+eIJvO/qOdfbTzLPQ3OuV1dVtbKUsrd1saqqVUlWneJZc++/5iSfBwAAAAAAAAAAAAAAAAAWUmdPMnh9Pa1KSQ7smC3wap2xR9qbcXxnPU/c1lzvXJYsv+7oIrGBa5Kupe3NCAAAALDAlIWd+W5McmtVVb+V5J2llHKce1fMuX7iZA4qpeyvqmo8SW/L8mCSvXNunXvOWCll9GTOmifb4Ek+DwAAAAAAAAAAAAAAAAC0Q1Ulyy6u58IfbO5NjiQj9yRDc0rERu5JZibal3F6LNn7nXoaqqTv8tnysMGWIrGetfVnAwAAADjDKQtbHI8m+VySbybZnGRPkpkkq5M8N8m/SvLKlvurJO9I0pHk7cd5b/+c6wNPI9uBNMvCBk7jOa3mO+ekVVV1QZK1J/nYVQtxNgAAAAAAAAAAAAAAAACcd7oHklX/op5WM9PJ6APNArHhLcnQ5mRiTxsDljrH6APJY3/d3FqycrY4bPnGZPmm+mv/FUmHX8EFAAAAzhx+UtFe30xdAvaFUko5xj23J3l/VVU3Jvlokmta9v59VVV/X0r59DGenVviNf40Mh5IsvI471zIc473zqfrl5LcskDvAgBgoY1uT/bdmaz6l8nSdYudBgAAAAAAAAAAAACA06WjMxm4up6L/1Vzb/zJo0vEhrfUhV5lpn0ZJ/YmT36jnkb27mTgmjlFYhuT5dcl3cvblw8AAADgEGVhbVRK+dxJ3Putqqqen+QbSa5t2XpPVVV/WUqZPpHXnGzGM/wZAADOVqUkd/yvydb3za4957eT6/+3xcsEAAAAAAAAAAAAAMDi6F2T9L44ueDFzfXp8WTk3maB2NDm+uv0WPvyzUwmQ3fXM9fS9fOUiG1Mll2SVFX7MgIAAADnFWVhZ7BSyp6qqv5Nkm8lOfwToo1JfiDJF+d5ZP+c66VP49i5z8x9ZzvPAQDgXPHwnzeLwpLkn349ueAlyZrnL04mAAAAAAAAAAAAAADOLJ29yYpn1NOqzCRjjzZLxA7PgR3tzXhgRz2P/21zvatv/hKxgavrzwUAAGepap5S3FLKIiQBODHz/Rk1359lZxtlYWe4UsodVVXdmuSVLcuvirKwY/lvST5xks9cleTTC3Q+AADz2fJ/zb++7f9RFgYAAAAAAAAAAAAAwPFVHUnfpfVc9EPNvcnhZHjr0SViI9uSmcn2ZZwaTfZ8u56jsl8xf5FY75r25QMAgKepo6PjqLXp6el0d3cvQhqApzY9PX3U2nx/lp1tlIWdHf4mzbKwZx3jvqE512tP5pCqqvpzdInXvhM4Z1lVVX2llNGTOO6CEzjnpJVSnkjyxMk8cy60/gEAnPGevH3+9Qf+3+QFf9reLAAAAAAAAAAAAAAAnDu6lyer/2U9rWamkv33H10iNrQ5mVyQX2k8MWUm2X9fPTv+qrnXs/pQcdimZolY3+VJR2f7MgIAwHFUVZXOzs5G+c6BAwfS29u7iKkAjm1sbKxx3dnZeU50DCkLOzs8OOf6WCVg2+ZcX3aS58y9f08pZe/cm0opu6uq2ptkZcvyhiSbT+GsudkBAAAAAAAAAAAAAAAAAJ6ejq5k+bX15Mdm10tJDu5qKQ9rKRIbfTBJaV/Gg7uTXV+vp5F9STJwbbNAbHBjMnBd0t3fvnwAAHBIX19fhoeHj1yPjIxk5cqVx3kCYPHs37+/cd3ff278XVpZ2NnhwJzrpce4b25Z19Unec6Vc67vPs69m5O8cM5ZJ1MWNvesk3kWAAAAAAAAAAAAAAAAAODkVVXSe0E9F7y0uTd1IBnZlgxvni0QG96SDG9Npuf+qudpNDORDH2vnrmWXdIsEVu+qf669KL6swEAwGkwMDDQKAsbGxvLxMRElixZsoipAI42MTGRsbGxxpqyMNppzZzrJ49x39yf+jyrqqplpZSxee8+2oue4n1z91rLwl6Q5LMnckhVVX1JnnUSZwEAAAAAAAAAAAAAAAAAnF5dS5OVz6qnVZlJxh5OhrbMKRHbkozvbG/GsUfq2fnF5nrXwGyB2GBLmVj/1UmnAgcAAE5NX19f47qUkocffjiXXXZZurrU1wBnhqmpqTz88MMppTTW5/4Zdrbyp+3Z4XlzrnfMd1Mp5bGqqu7MbBFXV5IXJ7n1BM95+Zzrvz7OvX+T5BeO8+zxvCTN/+x9p5Ty+Ek8DwAAAAAAAAAAAAAAAADQHlVH0ndZPetf2dyb2JcMb20pENtcfx25NynT7cs4NZLs+cd6Gtk7k/4rZ8vDWqdnVfvyAQBwVuvs7MzAwEBGRkaOrE1MTOS+++7L8uXLs3z58nR3d6ejo2MRUwLno5mZmUxOTmZ4eDjDw8OZmZlp7A8MDKSzs3OR0i0sZWFnuKqqepO8ds7ybcd55FOZLQtLkp/JCZSFVVW1Mc1SstGneO7zSQ4kWXro+gVVVW0spWx5qrOSvHnO9adO4BkAAAAAAAAAAAAAAAAAgDPLkhXJmufV02p6Itl/f0uJWEuZ2ORw+/KV6WRkWz2Pfra517M2Gdx0dInYsg1Jx7nxi9QAACyciy66KBMTEzl48OCRtZmZmezbty/79u1bxGQA8+vp6clFF1202DEWjLKwM99vJLm45Xo6yV8d5/7/keSdSQ7/FOa1VVVdU0rZdgLntPp4KWX8WDeXUsaqqvrzJD895x0/c7xDqqq6NsmPtyxNJfnoU2QDAAAAAAAAAAAAAAAAADh7dC5JBjfW06qUZPzxeUrEtiSjD7U348FdyRO7kie+0lzv7E0Grj26RGz5tUlXX3szAgBwxujs7Myll16aBx98MFNTU4sdB+C4uru7c+mll6az89wpw1YW1iZVVf10kltLKY+fxDM/n+SWOct/Uko55k97Sinbqqr60yRvObS0JMmfVFX1g8cq/6qq6jVJ3tyyNJHk3ScQ8T8m+akk3Yeu31xV1adKKZ85xjm9ST58KNNh/72Uct8JnAUA55epsWR0e/3/RKk6FjsNAAAAAAAAAAAAAAAAC6GqkqUX1rPu5c29qdFk+J55isS2JjMH25dxejzZd2c9cy3bUBeHDW5qFon1rqs/GwAA57Tu7u5s2LAhjz/+eEZHRxc7DsC8+vr6sm7dunR3dz/1zWcRZWHt87NJ/rCqqk8k+XiS20op8/5Tr6qqG5O8I8mPz9l6NMk7T+CsWw49u/LQ9QuTfLGqqp8rpWxpOacnyS8k+b05z//e8QrJDiul3F9V1fuS/FrL8p9XVfUrSf6olDLRctamJB88lOWw3TmxUjIAOH+Ukvzz25Mt/2cyM5H0XpC86OPJupctdjIAAAAAAAAAAAAAAABOp66+ZNX31dNqZjoZ2z5PidiWZPyJ9mYc217Pzlub692DzfKwwzNwVdJxbv1yNgDA+a6npycbNmzI5ORkhoaGMjQ0lMnJyZRSFjsacJ6qqird3d0ZHBzM4ODgOVcSdpiysPZamuRNh2amqqptSR5MMpRkOsnqJM9Osm6eZ/ckeVUpZedTHVJKeaSqqtcm+XySJYeWX5Tk7qqqvp3k/iSDSZ6bZO2cx/8yyX84ic/075PckOTmQ9fdSX4/yX+oquqOJCNJrjx0Vmsl/ESSHy+lPHYSZwHAue++/57c/d7Z6/Enktt+JHnNg0nv3H9sAwAAAAAAAAAAAAAAcM7r6Ez6r6hn/c3NvYN7kuGth8rDNs+WiO2/PynT7cs4OZTs/od6WlVddWFYo0RsU7L8umTJivblAwBgwXV3d2fNmjVZs2ZNSikppWRmZmaxYwHnmY6OjlRVlaqqnvrms5yysMXTkeS6Q/NUvpTkzaWUR0705aWU26qq+vEkf5LZQrAqyY2HZj4fS/LzpZz4T39KKdNVVf1kkg8meX3L1gVJXnWMx55I8m9LKV890XMA4Lxx3wePXpseSx75dHL1z7U/DwAAAAAAAAAAAAAAAGeunlXJ2hfU02r6YLL/vtnysKEts99PjbQvX5k6VGa2Ncmnm3u9F84pEduYDG5Mll2aVB3tywgAwCk7XNTT0eG/xwGcLsrC2ud9SR5N8qIkl53A/aNJbk3ygVLKl57OgaWUz1VV9Ywk705d5LXyGLf+fZLfLaV88mmesz/JT1VV9edJfjXJ849x654kf5bkllLKrqdzFgCc8+b+r6cc9t1blIUBAAAAAAAAAAAAAABwYjp7ksHr62lVSnLgsdnisOEtyfDm+uvYI+3NOL6znidua653Lk2WX3d0kdjAtUnX0vZmBAAAgDOEsrA2KaV8KsmnkqSqqhVJbkhyaZJ1SZYl6UiyL8neJJuT3FlKmV6Ac59I8taqqt6W2aKyC1OXkT2a5DullAdO9ZxDZ/15kj+vquqKJM9Nsj5JX5KdSR5K8vVSysRCnAUAAAAAAAAAAAAAAAAAwEmqqmTZ+noufEVzb3IkGbknGdrSLBMbuSeZaeOvh04fSPb+Uz0NVdJ3+Wx52GBLkVjP2vqzAQAAwDlKWdgiKKXsS/L1Np85keTv2nTWA0kWpIAMAAAAAAAAAAAAAAAAAIA26B5IVv2LelrNTCejDzYLxIa3JMObk4O72xiwJKMP1PPYXze3lqycLQ5rnf4rkw6/Tg0AAMDZz99uAQAAAAAAAAAAAAAAAACA+XV0JgNX1XPxjzb3xp+cp0RsS13oVWbal3Fib/LkN+ppZO9O+q+ui8MGN7UUiV2XdC9vXz4AAAA4RcrCAAAAAAAAAAAAAAAAAACAk9e7Jul9cXLBi5vr0+PJyL3zF4lNjbYv38xkMry5nkc+1dxbur6lPKxlll2SVFX7MgIAAMAJUBYGAAAAAAAAAAAAAAAAAAAsnM7eZMUz6mlVSnLg0bo0bGhzs0TswI72Zjywo57H/7a53tWXDFw3Wx42uDFZvikZuLr+XAAAALAIlIUBAAAAAAAAAAAAAAAAAACnX1Ulyy6p58KbmnuTw8nw1maB2PCWZGRbMjPZvoxTo8neO+ppZO9I+q6YLRFrnd417csHAADAeUlZGAAAAAAAAAAAAAAAAAAAsLi6lyer/2U9rWamkv0PHF0iNrw5mdjbvnxlJtl/Xz07/qq517N6/hKxviuSjs72ZQQAAOCcpSwMAAAAAAAAAAAAAAAAAAA4M3V0JcuvqSevnl0vJTm4a7Y8bKilSGz0wSSlfRkP7k52fb2eRvYlycC1zQKxwY3JwHVJd3/78gEAAHDWUxYGAHBWqBY7AAAAAAAAAAAAAAAAAJw5qirpvaCeC17a3Js6kIxsmy0Pa53pA+3LODORDH2vnrmWXdIsETs8S9fXnw0AAABaKAsDAAAAAAAAAAAAAAAAAADOHV1Lk5XPqqdVmUnGHk6G5ikRG9/Z3oxjj9Sz84vN9a7+Q8Vhm5LBlhKx/quTziXtzQgAAMAZQ1kYAAAAAAAAAAAAAAAAAABw7qs6kr7L6ln/yubexL5keOvRJWIj9yZlqn0Zp/Yne75VTyN7Z9J/5Wx5WOv0rGpfPgAAABaFsjAAAAAAAAAAAAAAAAAAAOD8tmRFsuZ59bSamUz23z9bHja0efb7yaH25SvTyci2eh79bHOvZ+3RBWKDm5JlG5KOzvZlBAAA4LRRFgYAAAAAAAAAAAAAAAAAADCfju5k+XX15DWz66Uk44/PFoe1zuhD7c14cFeya1ey66vN9c7eZODao4vEll+bdPW1NyMAAACnRFkYAAAAAAAAAAAAAAAAAADAyaiqZOmF9ax7eXNvajQZ2ZYMzSkRG9maTI+3L+P0eLLvznrmWrZhtjxssKVIrPfC+rMBAABwRlEWBgBwNjjw6GInAAAAAAAAAAAAAAAAAE5EV1+y8jn1tCozyehDzQKxwzP+RHszjm2vZ+etzfXuwdnisNYZuCrp6G5vRgAAAI5QFgYAAAAAAAAAAAAAAAAAAHC6VR1J/xX1rL+5uXdwTzK89egSsf33JWW6fRknh5Ld/1BPI3tXXRg2X5HYkhXtywcAAHCeUhYGAAAAAAAAAAAAAAAAAACwmHpWJWtfUE+r6Ym6MGx4c10eNtRSJDY10r58ZepQmdnWJJ9u7vWuaykP21R/HdyYLLu0LkgDAADglCkLAwAAAAAAAAAAAAAAAAAAOBN1LkkGN9XTqpTkwGOzxWGtM/ZwezOOP17PE19urncuTZZf11IkdmgGrk26lrY3IwAAwFlOWRgAAACjH0ltAAAgAElEQVQAAAAAAAAAAAAAAMDZpKqSZevrufAVzb3J/cnIPXVx2NDm2RKxkXuSmYn2ZZw+kOz9p3oaqqTvsmaB2OCm+mvP2vqzAQAA0KAsDAAAAAAAAAAAAAAAAAAA4FzR3Z+sem49rWamk9EHZ8vDWufgk20MWOocow8mj/1Nc2vJymaJ2OHpvzLp8KvxAADA+cvfiAAAAAAAAAAAAAAAAAAAAM51HZ3JwFX1XPyjzb3xJ5ORrbPlYUNbkuHNyegDSZlpX8aJvcmT36inkb076b96niKx65Ilg+3LBwAAsEiUhQEAAAAAAAAAAAAAAAAAAJzPetfUs/ZFzfXp8WTk3tkSsdaZGm1fvpnJurxsePPRe0vXz1MitjFZdklSVe3LCAAAcBopCwMAAAAAAAAAAAAAAAAAAOBonb3JimfU06qU5MCjdWnY0JwSsQOPtjfjgR31PP63zfWuvmTgutnysMFDXweuqT8XAADAWURZGAAAAAAAAAAAAAAAAAAAACeuqpJll9Rz4U3NvcnhZPieZHhzs0RsZFsyM9m+jFOjyd476mmokv4rZkvElm+a/b53TfvyAQAAnARlYQAAAAAAAAAAAAAAAAAAACyM7uXJ6hvraTUzlex/oFkgNrylLhWb2NvGgCXZf389Oz7X3OpZ3VIi1jJ9lycdfjUfAABYPP5GAgAAAAAAAAAAAAAAAAAAwOnV0ZUsv6aevHp2vZTk4JPNArGhzfXX0QeTlPZlPLg72fX1ehrZlyQD18xfJNbd3758AADAeUtZGAAAAAAAAAAAAAAAAAAAAIujqpLetfVc8JLm3tSBZGRbs0hseEsyvDWZHmtfxpmJZOiueuZadsn8JWJL19efDQAAYAEoCwMAAAAAAAAAAAAAAAAAAODM07U0WfmselqVmWTskXlKxLYkBx5rb8axR+rZ+cXmelf//CViA1cnnT3tzQgAAJz1lIUBAAAAAAAAAAAAAAAAAABw9qg6kr4N9Vz0w829iX3J8NajS8RG7k3KVPsyTu1P9nyrnqOyX5kMbjq6SKxnVfvyAQAAZxVlYQAAAAAAAAAAAAAAAAAAAJwblqxI1jyvnlYzk8n++5sFYkNbkuHNyeRQ+/KVmWT/vfU8+tnmXs/aowvEBjcmyy5LOjrblxEAADjjKAsDAAAAAAAAAAAAAAAAAADg3NbRnSy/rp68Zna9lGT8ibo0rLVIbHhLMvpQezMe3JXs2pXs+mpzvaMnWX7toQKxTS1lYtcmXX3tzQgAACwKZWEAAAAAAAAAAAAAAAAAAACcn6oqWbqunnUvb+5NjSUj9yRDc0rERrYm0+PtyzhzMNn33XrmWrZhtjxscOPs970X1p8NAAA4JygLAwAAAAAAAAAAAAAAAAAAgLm6liUrn1NPqzKTjG5vKRDbPPv9+BPtzTi2vZ6dtzbXu5fPFoe1Tv9VSeeS9mYEAABOmbIwAAAAAAAAAAAAAAAAAAAAOFFVR9J/eT3rX9XcO7gnGd7aUiR2aPbfl5Tp9mWcHE52f7OeVlVXMnDV/EViS1a0Lx8AAHBSlIUBAAAAAAAAAAAAAAAAAADAQuhZlax9QT2tpifqwrC5JWJDm5OpkfblK1OHysy2Jvl0c6933fwlYn0b6oI0AABg0SgLAwAAAAAAAAAAAAAAAAAAgNOpc0kyuKmeVqUkBx47ukRseEsy9nB7M44/Xs8TX26udy5NBq6ts7eWiA1ck3Qta29GAAA4TykLAwAAAAAAAAAAAAAAAAAAgMVQVcmy9fVc+Irm3uT+ZOSeeYrE7klmDrYv4/SBZN8/19NQJX2XNQvEDk/vBfVnAwAAFoSyMAAAAAAAAAAAAAAAAAAAADjTdPcnq55bT6uZ6WTsoWRoSzK8uVkkdvDJNgYsyeiD9Tz2N82t7hV1adjg4QKxTfXX/iuSju42ZgQAgHODsjAAAAAAAAAAAAAAAAAAAAA4W3R0Jv1X1nPxjzT3xp9MRrbOlocNHfo6en9SZtqXcXJfsvvv62lk7076rz5UINY61yVLBtuXDwAAzjLKwgAAAAAAAAAAAAAAAAAAAOBc0LumnrUvaq5PH0xG7p0tERvekgxvrr9OjbYv38zkoXM3H7239KJ5SsQ2JssuSaqO9mUEAIAzkLIwAAAAAAAAAAAAAAAAAAAAOJd19iQrbqinVSnJgUfr0rChLc0ysQOPtjfjgcfqefzvmutdfcnAdbPlYYOHvg5ck3T2tjcjAAAsEmVhAAAAAAAAAAAAAAAAAAAAcD6qqmTZJfVceFNzb3IkGd7aLBAb3pKM3JPMTLYv49RosveOehqqpP+K2RKx1ulZU382AAA4RygLAwAAAAAAAAAAAAAAAAAAAJq6B5LVN9bTamYqGX0wGdo8p0hsczKxt40BS7L//np2fK65tWRVXRo2uKlZItZ3edKhZgEAgLOP/xYLAAAAAAAAAAAAAAAAAAAAnJiOrmTg6nry6tn1UpKDT84pEDs0+x9IUtqXcWJP8uTt9TSyL0kGrmkWiC3fmCy/ri5HAwCAM5SyMAAAAAAAAAAAAAAAAAAAAODUVFXSu7aeC17S3Js6kOy/ty4OG9qSDG8+VCS2NZkea1/GmYlk6K565lp6cbNAbHBjsnxTsnR9/dkAAGARKQsDAAAAAAAAAAAAAAAAAAAATp+upcmKZ9bTqswkY48cKg6bMwcea2/GA4/W8/iXmutd/c0SscMzcHXS2dPejAAAnLeUhQEAAAAAAAAAAAAAAAAAAADtV3UkfRvqueiHm3sTQ8nw1jklYpuTkXuTMtW+jFP7kz3fqueo7FfWxWGDc4rEela3Lx8AAOcFZWEAAAAAAAAAAAAAAAAAAADAmWXJYLLm++tpNTOZ7L+/WSI2dKhIbHKoffnKTLL/3np2/GVzr2dtszzscKHYssuSjs72ZQQA4JyhLAwAAAAAAAAAAAAAAAAAAAA4O3R0J8uvqyevmV0vJRl/olkidnhGH2xvxoO7kl27kl1fba539CTLrz26SGz5dUlXX3szAgBwVlEWBgAAAAAAAAAAAAAAAAAAAJzdqipZuq6edS9r7k2NJSP3JENzSsRGtibT4+3LOHMw2ffdeuZadmmyfFNdHjbYUiTWe2H92QAAOK8pCwMAAAAAAAAAAAAAAAAAAADOXV3LkpXPqadVmUlGtzcLxA7P+OPtzTj2cD07b22udy+fLQ5rnf6rks4l7c0IAMCiURYGAAAAAAAAAAAAAAAAAAAAnH+qjqT/8nrWv6q5N7E3Gd5aF4cNbZ4tEdt/X1Km25dxcjjZ/c16WlWddWFYa4HY4KZk+XXJkpXtywcAQFsoCwMAAAAAAAAAAAAAAAAAAABotWRlsub59bSanqgLww6Xh7XO5HD78pXpZOSeeh79THOvd12zROzw9G2oC9IAADjrKAsDAAAAAAAAAAAAAAAAAAAAOBGdS5LBTfW0KiUZ3zlbHDbUUiI2tr29Gccfr+eJLzfXO5cmA9c2C8QGN9ZrXcvamxEAgJOiLAwAAAAAAAAAAAAAAAAAAADgVFRVsvSietb9QHNvcn8ycs9sediRuSeZOdi+jNMHkn3/XM9cfZclyzc1i8SWb0x6L6g/GwAAi0pZGAAAAAAAAAAAAAAAAAAAAMDp0t2frHpuPa1mppOxh5KhuSViW5KDu9qbcfSheh77m+Z694q6NGxwTolY/5VJR3d7MwIAnMeUhQEAAAAAAAAAAPz/7N17lOZ5XR/497eq+t5VNZeenivMfbp7QBCUcI2LghG8EDWGuCbnQOK6BE1Wj3E37m4UyHGzm2w0u+we4yUq7K4aL1EwKqKgrCDKIoKCdPf0MDM9MNMzPZeequpLdXdVffePXzX1PNU1/VT1VP+e56l6vc75nHp+3+/v9/u+q2GKGWjeDQAAAAAAANC2kdGmdGv3HcnN39i9d/ap7vKwC4Vipx5I6kJ7Gc8/kzz1Z810KmPJ+F2L5WEHOorE9iVbJ9vLBwCwSSgLAwAAAAAAAAAAAAAAAAAAABgk265Nrnt1M53mzyYz93cXiV2YuZPt5atzS+fmfd17O27sKA/rmJ23JGWkvYwAABuIsjAAAAAAAAAAAAAAAAAAAACAYTC6LbnqBc10qjU582hT3jV1sLtE7Mwj7WY8c6yZx/+oe310ZzKxb6k8bPJA83X87mR0e7sZAQCGjLIwAAAAAAAAAAAAAAAAAAAAgGFWSrLz5mZueF333vmZZPpwd4HY9KFk5kiycK69jPOnkxOfbqZLSXbfvlQi1jnb9jTfGwDAJqcsDAAAAAAAAAAAAAAAAAAAAGCj2jKeXPvVzXRamEtOPdRdIDZ1MJk+mJw70WLAmpx8oJlHf7d7a+s1K5eI7b49GVGZAQBsHv7OBwAAAAAAAAAAAAAAAAAAAGCzGRlLxu9q5uZvXlqvNTn7ZHeJ2IU5+WCS2l7Gc08nT368ma7sW5Pxu1coEtvXlKMBAGwwysIAAAAAAAAAAAAAAAAAAAAAaJSSbL+umb1/s3tvfjaZOdIUh00tKxKbP91exoVzydRfN7Pcjpu7C8QmF7/uuLn53gAAhpCyMAAAAAAAAAAAAAAAAAAAAAB6G92eXPUVzXSqC8npRxaLww52l4idOdZuxjOPNPP4h7vXx3YnE/sWS8QOLJWJjd+VjG5rNyMAwBopCwMAAAAAAAAAAAAAAAAAAADg8pWRZNfzmrnx67v3zk0l04e7C8SmDyUzR5I6117GuZPJ059q5qLsdzTFYZP7l0rEJvYn265tLx8AwCUoCwMAAAAAAAAAAAAAAAAAAADgytg6mez5G810WjifnHywo0DsYDK1+Pn8M+3lqwvJyfubefS3u/e27ekuD5vYn0weSHbemoyMtpcRANj0lIUBAAAAAAAAAAAAAAAAAAAA0K6RLcnEPc3kTUvrtSazxztKxDrm1NEktb2MZ59MnvhYM13Zty1mX1YkNn5PsmV3e/kAgE1DWRgAAAAAAAAAAAAAAAAAAAAAg6GUZMf1zVz/X3TvzZ1OZo6sUCR2OJk/017GhbPJM59tZrmdz7u4RGxif7LjxuZ7AwC4DMrCAAAAAAAAAAAAAAAAAAAAABh8YzuTq1/cTKe6kJx6eIUSsUPJ7OPtZjz9xWYe+4Pu9S0TK5eI7b4zGd3abkYAYOgoCwMAAAAAAAAAAAAAAAAAAABgeJWRZPdtzdz0hu69cyeS6cMXl4jN3J/U+fYynp9Onvr/mulURpvCsOUlYpP7k61Xt5cPABhoysIAAAAAAAAAAAAAAAAAAAAA2Ji2Xp3seUUznebPJScfWCwPO9hdJHZ+ur18dT6Zua+ZR36re2/73sXysAPdRWK7nt8UpAEAm4ayMAAAAAAAAAAAAAAAAAAAAAA2l9GtyeT+ZvKtS+u1JrOPLRWHTXWUiJ1+uN2Ms8ebOf7H3euj25Pxfd0FYpP7k/F7krGd7WYEAFqhLAwAAAAAAAAAAAAAAAAAAAAAkqSUZMeNzVz/td17c6eS6fuWysOmDyXTB5u1hbPtZZyfTZ75y2aW23Vrd4nYxIHm6/a9zfcGAAwlZWEAAAAAAAAAAAAAAAAAAAAA0MvYruSalzTTaWE+OX00mTq0rEjsUHL2iXYznjrazLEPdq9vuaopDZvc310mtvuOZGRLuxkBgDVTFgYAAAAAAAAAAAAAAAAAAAAAl2tktCnd2n1HcvM3du+dfSqZPnxxidjJLyR1ob2M559JnvqzZjqVsWT8ru4CsQuzdbK9fADAJSkLAwAAAAAAAAAAAAAAAAAAAIArYdu1yXWvaqbT/Nlk5v6LS8SmDyVzJ9vLV+eWzl1u+w3J5IGLS8R23pKUkfYyAgDKwgAAAAAAAAAAAAAAAAAAAACgVaPbkqte0EynWpMzj65cInb6S+1mnH2smcf/qHt9dGcyse/iErHxu5OxHe1mBIBNQlkYAECSLMwnI6P9TgEAAAAAAAAAAAAAAAAAwGZWSrLz5mZueF333vmZZOa+ZOpgd4nYzJFk4Vx7GedPJyc+3UyXkuy6bak8bPLA0udte5rvDQC4LMrCAIDN7Yu/kXz2nc1/EXLtK5KX/WRy1Qv7nQoAAAAAAAAAAAAAAAAAALptGU+u+apmOi3MJace6i4Qmz7UlIqde7rFgDU59WAzxz7QvbX1mqXisM7ZfXsyov4EAHrxn5YAwOb1+P+bfOzNSZ1vrp/4aPLhr0u+6a+T7df1NxsAAAAAAAAAAAAAAAAAAKzGyFgyflczN39z997sk8tKxA42X08+mKS2l/Hc08mTH2+m08iWZPzulYvEtoy3lw8ABpyyMABg8zr6y0tFYRecfSI59vvJ7X+/P5kAAAAAAAAAAAAAAAAAAGC9bN+TbH9Nsvc13evzs8nMkaY4bOpQd6HY/On28i2cT6Y+38xyO27uLg+bXPy64+aklPYyAsAAUBYGAGxe9//0yuuf+IfKwgAAAAAAAAAAAAAAAAAA2LhGtydXfUUznepCcvqR7vKwC3Pm0XYznnmkmcc/3L0+tjuZ2NddJDaxPxm/Oxnd1m5GAGiJsjAAhtP8bHL/zyRHfyW5623Jbd+VjPiPNdbJwvl+JwAAAAAAAAAAAAAAAAAAgPaVkWTX85q58eu7985PJ1MrlIjNHEnqXHsZ504mT3+qmYuy394Uh00e6C4S23Zte/kA4ArQqgLA8Dn7dPKfOv5h7MmPJ3/2luTNp5OxHf3LBQAAAAAAAAAAAAAAAAAAsFFtmUj2/I1mOi2cT04+eHGJ2NTB5Pwz7eWrC8nJLzTz6O90723b010edmF23ZaMjLaXEQAuk7IwAIbPx//ByuuffUfykn/TbhYAAAAAAAAAAAAAAAAAAIDNbGRLMnFPM3nT0nqtydknusvDLnw+dTRJbS/j2SeTJz7WTFf2bcn43d0FYpMHkvF7ki2728sHAD0oCwNg+Bz7wMrrB/9XZWEAAAAAAAAAAAAAAAAAAACDoJRk+95m9n5N997c6WTmyFJ52JfncDJ/pr2MC2eTqc81s9zO53WXiF2YHTc23xsAtEhZGAAAAAAAAAAAAAAAAAAAAADQnrGdydUvbqZTXUhOfzGZ6iwQO9h8nX283Yynv9jMY3/QvT42vlQcNtlRIrb7rmR0a7sZAdg0lIUBAAAAAAAAAAAAAAAAAAAAAP1XRpJdtzZz0zd07507kUwf7igRW5yZ+5M6317GuZnk6U8205V9NNl951J5WGeh2Nar28sHwIakLAwAAAAAAAAAAAAAAAAAAAAAGGxbr072vKKZTvPnkpMPXFwiNn0wOT/dXr46n8zc18wjv9W9t33vxSViE/ubUrQy0l5GAIaWsjAAAAAAAAAAAAAAAAAAAAAAYDiNbk0m9zfTqdZk9rGl8rCpjiKx0w+3m3H2eDPH/7h7fXR7Mr6vu0Bscn8yfk8ytrPdjAAMNGVhAAyXcyf6nQAAAAAAAAAAAAAAAAAAAIBBV0qy48Zmrv/a7r25U8n0fUvlYV+ew8nC2fYyzs8mz/xlM8vturW7ROzCbL+++d4A2FSUhQEwXJY3JQMAAAAAAAAAAAAAAAAAAMBajO1KrnlJM50W5pPTDy+Vh00dXPp89ol2M5462syxD3avb5nsLg+bPNB83X1HMrKl3YwAtEZZGAAAAAAAAAAAAAAAAAAAAADAyGiy+/Zmbnpj997Zp5Lpw0vlYRfm5BeSutBexvNTyVOfaKZTGUvG7+ouEpvYn0zsS7Ze1V4+AK4IZWEAAAAAAAAAAAAAAAAAAAAAAJey7drkulc102n+bFMYdqE8bKqjSGxupr18dW7p3OW233Bxidjk/mTn85Iy0l5GAC6bsjAAhky59PbcqWRsVztRAAAAAAAAAAAAAAAAAAAA2NxGtyWT9zbTqdbkzKNLBV6dc/pL7WacfayZ4x/pXh/dmUzsu7hIbPzuZGxHuxkBuCRlYQAMmR5lYeeeURYGAAAAAAAAAAAAAAAAAABAf5WS7Ly5mRte1713fiaZuS+ZWlYiNnNfsnCuvYzzp5MTn26mS0l23bZUHjbZUSS27brmewOgVcrCANhg/EMFAAAAAAAAAAAAAAAAAAAAA2zLeHLNVzXTaWE+OfVgd4HY9KFk6mBy7ukWA9Ymx6kHk2Mf6N7aevVicdiBpQKxif3J7tuTEVU2AFeKn7AA9FCS1H6HWNKrYbiMtJMDAAAAAAAAAAAAAAAAAAAA1tPIaDJ+VzM3f3P33uyTF5eITR9qCr3qQnsZz51InvzTZrqyb0nG7+4uEJvYn0zsS7ZMtJcPYINSFgbApZWRpM73O0WHHmVhPfcBAAAAAAAAAAAAAAAAAABgyGzfk2x/TbL3Nd3r87PJzP1L5WFTB5c+z59uL9/C+WTq880st+OmjvKwA8nk4ucdNydFRwDAaigLA+DSBq4srAf/IAAAAAAAAAAAAAAAAAAAAMBmMbo9ueqFzXSqC8npR5aKwzrnzKPtZjzzaDOP/2H3+tiujhKxjhm/q/m+APgyZWEA9DBs5VvDlhcAAAAAAAAAAAAAAAAAAADWWRlJdj2vmRu/vnvv/HQyffjiErGZI8nC+fYyzp1Knv5UMxdlv/3iErHJA8m2a9vLBzBAlIUB0MOglW/Vfgdgo6j+vQQAAAAAAAAAAAAAAAAAAGxCWyaSa1/WTKeF88nJBy8uEZs6mJx/pr18dSE5+YVmHv2d7r1tey4uEZvYn+y6LRkZbS8jQMuUhQFwaWWk3wnWSAEUq3T0P/Y7AQAAAAAAAAAAAAAAAAAAwOAY2ZJM3NNM3rS0Xmty9omO8rCOIrFTD6XV/5//2SeTJz7WTFf2rcn4Pd0FYpP7k/F9yZbd7eUDuEKUhQFwaYNWFjay9dL7VVkYq3To3/U7AQAAAAAAAAAAAAAAAAAAwOArJdm+t5m9X9O9N3cmmTmSTB9cKhCbPpRMH07mz7SXceFcMvW5ZpbbectigdiB7jKxHTc23xvAEFAWBkAPA/Y3tjNHetygLIxVevqT/U4AAAAAAAAAAAAAAAAAAAAw3MZ2JFe/qJlOdSE5/cVk6tCyErFDyexj7WY8/aVmHvtQ9/rY+FJx2GRHidjuu5LRre1mBOhBWRgAl1ZG+p2g2+zxHjcoCwMAAAAAAAAAAAAAAAAAAIC+KiPJrlubuekbuvfOPZNMH14sDzu4VCI2c39S59vLODeTPP3JZrqyjya771gqD5vYn0wcSCb2JduuaS8fQAdlYQD0UPodoNvWqy+9X5WFAQAAAAAAAAAAAAAAAAAAwMDaelWy5+XNdJo/l5x8YKk87MtzMDk/3V6+Op/MHGnmkf/cvbd977ISscXZ+fxkZLS9jMCmoywMgOFSF3rd0EoMAAAAAAAAAAAAAAAAAAAAYB2Nbk0m9zfTqdZk9vGLS8SmDianH2434+zxZo7/cff66PZk/J4VisTuScZ2tZsR2JCUhQHQQ+l3gGWUhQEAAAAAAAAAsP5KKXckeVmSr178+tIk4x23HK213taHaM+qlLIzyWeT3LFs67211re2nwgAAAAAAADgCigl2XFDM9e/tntv7lQyfd/FRWLTh5OFs+1lnJ9NnvmrZpbbdesKJWL7k+3XN98bwCooCwNguNQeZWFVWRgAAAAAAAAAAKtTSnltkv8+TUHYNf1Nc1n+p1xcFAYAAAAAAACweYztSq55STOdFuaT0w+vUCJ2KJk93m7GU0ebOfbB7vUtkyuXiI3fmYxsaTcjMPCUhQEwXHqVhUVZGAAAAAAAAAAAq/aVSf5Wv0NcjlLKK5L8N/3OAQAAAAAAADCQRkaT3bc3c9Mbu/fOPp1MH06mD3aXiJ38wio6DdbR+ankqU8006mMNYVhEweWFYntS7Ze1V4+YKAoCwNgyCgLAwAAAAAAAADgijub5EtJ7ux3kJWUUrYm+bkkI4tLM0nG+5cIAAAAAAAAYIhsuya57pXNdJo/2xSGXSgPm+ooEpubaS9fnVssMzt88d72G5YViO1PJvcnO5+XlJGL7wc2DGVhAAyXXi28VVkYAAAAAAAAAABrcj7JXyf58ySfXPz62SSvTvJHfcx1KT+a5N7Fz0eT/FqSH+pfHAAAAAAAAIANYHRbMnlvM51qTc4cWyoOmz6UTB9svp7+UrsZZx9r5vhHutdHdyQT+5YViR1Ixu9Oxna0mxG4IpSFAXBppfQ7QbdeZWHptQ8AAAAAAAAAAF/23iQ/VWudXb5RBu33zSwqpbw4yT/vWHp7kpf3KQ4AAAAAAADAxldKsvOmZm74uu698zPJzH3J1KHuMrGZ+5KFc+1lnD+TnPhMM11Ksuu2pQKxyY4ysW3XDV6nBPCslIUBMFx6lYXV2k4OAAAAAAAAAACGXq31RL8zrEUpZSzJz2fp93/+cq31A6UUZWEAAAAAAAAA/bBlPLnmq5rptDCfnHqou0Bs+lAyfTA5+1SLAWty6sFmjn2ge2vr1UvFYZ2z+45kRC0RDBp/VQIwZHqUhUVZGAAAAAAAAAAAG9Z/m+Sli5+fTvIDfcwCAAAAAAAAwLMZGU3G72zm5m/q3pt9coUSsUNNoVft1amwjs6dSJ7802a6sm9Jxu9eoUhsX7Jlor18QBdlYQD0UPodoFuvv7GtysIAAAAAAAAAANh4Sin7kryjY+mf1VqP9ysPAAAAAAAAAJdp+55k+2uSva/pXp+fTWbuX7lIbO5Ue/kWzidTn29muR03rVAitj/ZeUtSBqyfAjYYZWEADJeeLbjKwgAAAAAAAAAA2FhKKSNJfi7JtsWlP6y1vqd/iQAAAAAAAABYd6Pbk6te2EynWpMzjzSlYVMHu0vEzjzabsYzjzbz+B92r4/tSsb3NcVhkweWSsTG72q+L+A5UxYGwKUNXHOrsjAAAAAAAAAAADadf5Lk1YufzyR5Wx+zAAAAAAAAANCmUpKdtzRzw+u7985PJ9OHuwvEpg8lM0eShfPtZZw7lZz4i2a6so8ku25fKg/rnO172ifL/oMAACAASURBVMsHG4CyMACGS+1RFlaVhQEAAAAAAAAAsHGUUm5L8q86lt5Va72/P2kAAAAAAAAAGChbJpJrX9ZMp4W55OSDF5eITR9Mzp1oL19dSE5+oZlHf6d7b9u1K5SIHUh23ZaMjLaXEYaEsjAAhkud73VDKzEAAAAAAAAAAKAlP5tk1+Lnv0zy4/0KUkrZm+S6NT5255XIAgAAAAAAAMAljIwlE3c3k29ZWq81OfvEUnnYVEeR2KmH0mpnw9mnkif+pJmu7FuT8Xu6S8Qm9yfj+5Itu9vLBwNGWRgAw6Uu9LqhlRgAAAAAAAAAAHCllVK+O8nrFy8XknxPrXWuj5G+N8k7+ng+AAAAAAAAAM9FKcn2vc3s/ZruvbkzycyRpfKwzpk/017GhXPJ1OeaWW7nLd0lYhdmx03N9wYbmLIwAIZLr7KwqiwMAAAAAAAAAIDhV0q5Kcm/7Vh6d631k/3KAwAAAAAAAMAGN7YjufpFzXSqC8npLyZTK5SIzT7WbsbTX2rmsQ91r4/tXiwOO5BMdpSI7b4rGd3abka4QpSFAdDDoDWn9igLi7IwAAAAAAAAAAA2hJ9MctXi56NJ/kUfswAAAAAAAACwWZWRZNetzdz0Dd17555Jpg9fXCI2c39S59rLOHcyefrPm+nKPprsvmOpPKxztl3TXj5YB8rCABguVVkYAAAAAAAAAAAbWynlO5P87Y6lt9daT/UrT4efTPJra3zmziTvvwJZAAAAAAAAAOi3rVcle17eTKeF88nJB5risKmD3UVi56fay1fnk5kjzTzyn7v3tl3XXR42eaD5uvP5ychoexlhlZSFbRKllC1JXp3k+UluTHIyyaNJPl1rfWidz7o9yVcmuSnJ7iTH0vyphh+vtZ5fz7OANpR+B+jWqyysKgsDAAAAAAAAAGB4lVL2JHl3x9Iv11o/0K88nWqtx5McX8szpQzY7z8CAAAAAAAA4Mob2ZJM7Gvmlo4/K6vWZPbx7vKwC3PqaLsZzz6RPPFE8sRHu9dHtyfj93QXiU3sTybuScZ2tZsROigLG0CllP+Y5O8tWz5aa73tMt51XZJ3Lb7vmme55+NJfqLW+p/W+v5l7/mOJD+Y5JXPcsvTpZRfSfKjtdYnn8tZwGbWoyys5z4AAAAAAAAAAAy0dye5bvHz00l+oI9ZAAAAAAAAAGD9lJLsuKGZ61/bvTd3Kpk5kkx1logdTGbuS+Zn28s4P5s881fNLLfz+UvlYZMXSsQOJNuvb743uIKUhQ2YUsqbcnFR2OW+641J3pNkb49bX5XkVaWUX0zytlrrqTWeszvJzyb5zh63XpPk7Um+vZTyllrrB9dyDkCSpPYoA6u1nRwAAAAAAAAAALDOSin7kvyXHUv/W5KdpZTbejx61bLr3cueWai1Pvxc8wEAAAAAAADAFTO2K7n6K5vptDCfnH64o0CsY2aPt5vx9MPNPPb73etbJpdKxDpn/M5kZEu7GdmwlIUNkFLKVUn+/Tq967VJ3pdka8dyTfIXSR5I8xuDXpJkT8f+308yUUr51lp7tfF8+ZzRJL+S5BuXbT2R5NNJppLcuXjWhfrD65O8v5Ty+lrrx9bwbQH0LgvLqn58AQAAAAAAAADAINqx7PpfLs5a/Z3FuWAqFxeKAQAAAAAAAMDgGxlNdt/ezE1v7N47+3QyffjiErGTX0jqfHsZz08lT32imU5lrCkMW6lIbKv/GZ+1URY2WH48yU2Ln2eSjF/OS0optyT5jXQXhf1Jku+ptR7suG9bkrcl+bdJLlQQfkuSH0vyP6zyuP8l3UVh55P8YJKfqbWe6zjr3iT/IckrF5e2JXlfKeUraq3HVnkWQHqWga2u6xAAAAAAAAAAAAAAAAAAAACAYbbtmuS6VzbTaf5ccvL+pfKwqY4isbmZ9vLVucUys8NJ3t+9t/2GiwvEJvcnO5+XlJH2MjI0lIUNiFLK65P8o8XLuSQ/muTfXebr3pXk6o7rjyd5fa11tvOmWuvZJO8upTyc5Dc7tn6wlPLTtdajPTLfkeT7ly3/3Vrr+5ffW2v9fCnldUk+nKXCsGuTvCPJP17F9wT0Syn9TtCtVxmYsjAAAAAAAAAAAAAAAAAAAACAzWt0azJ5bzOdak3OHFsqDuuc019sN+PsY80c/0j3+uiOZGLfxUVi4/ckYzvazchAURY2AEopu5L8bMfSTyT5zGW+6+4kb+lYOpfkrcuLwjrVWt9XSnlvx3Pb0pR4/aNne2bRO5Js6bh+z0pFYR3nnCmlvDXJZ5NsXVz+7lLKv6m1PtDjLICGsjAAAAAAAAAAADaoWutnkqz5T/crpbwzze/pu+C9tda3rlMsAAAAAAAAANgYSkl23tTMDV/XvXf+ZDJzX1McNnVwqURs5r5k4Vx7GefPJCc+00yXkuy6tSkOu+alyW3/IJk80F4u+k5Z2GD4n5Pctvj5gSTvTPLyy3zXdyUZ7bj+jVrrkVU896/TXTL25lLK9z5byVgpZUeS71jhHZdUa72vlPK+JG9eXBpbzPxjq8gI9MWaf+/hldWzDExZGAAAAAAAAAAAAAAAAAAAAABrsGV3U8J1zUu71xfmk1MPLZWHdc7ZJ1sMWJscpx5Kjv1e8tf/KrnlW5N7fzjZc7lVRQwTZWF9Vkp5VZLv61h6W631TCmXXc7zbcuuf2E1D9VaD5ZSPpGlkrJdSf5Wkt96lke+IcnOjus/rbUeWmXGX8hSWViSfHuUhQGr1qMMrGeZGAAAAAAAAAAAtKuUUpctfW2t9SP9yAIAAAAAAAAArMHIaDJ+ZzM3f1P33uyTyczhpfKwqUPJ9MHk1IPt9F986X3NfP3Hk+teeeXPo6+UhfVRKWVbkp9PMrK49N5a64eew/tuSPLijqW5JH+yhld8JEtlYUnyxjx7WdgbVnh2tT6aJtuFf/+9pJRyfa318TW8A9isev3NkLIwAAAAAAAAAADWoJRyS1b+/ZQ3LLseK6Xc9iyvOVlrbfOPCwYAAAAAAAAA+m37nmaue3X3+vxsMnP/UolY58ydWt8MV7042fOK9X0nA0lZWH+9M8m+xc9PJPlnz/F9L1x2/Ve11rX8dPj4susXrOGsP13tIbXWU6WUzyZ5ybKzlIXBQCr9DtCtzve4QVkYAAAAAAAAAABr8rEkt67ivpuTPPgse+9N8tb1CgQAAAAAAAAADLHR7clVL2ymU63JmUea0rCpZSViZx65vLPu/eGkDFg3CFeEsrA+KaW8NMkPdSz9QK31qef42nuXXd+/xue/0ON9nQ6sw1mdZWH3JvnDNb4D2IymPnfp/aosDAAAAAAAAAAAAAAAAAAAAIABU0qy85Zmbnh999756WT6cHeB2PShZOZIsnB+5fftviN5/ndc+dwMBGVhfVBKGUvy81n69f+9WusvrcOr71p2/fAanz+67PraUsrVtdYTnYullGuSXPMcz1p+/91rfB7YrKYPX3pfWRgAAAAAAAAAAAAAAAAAAAAAw2TLRHLty5rptDCXnHywKQ575i+Th381eeazzd6B/y4ZUSG1WfhXuj9+OMmLFz+fSvL2dXrvVcuuj6/l4VrryVLKbJLtHcuTSU4su3X5OadrrafWctYK2SbX+PyKSil7k1y3xsfuXI+zgQGhLAwAAAAAAAAAgDWotd7WwhnlCr//nUneeSXPAAAAAAAAAAD6YGQsmbi7mVu+JXnB/5gc+2By/88kd7yl3+lokbKwlpVS7k3yLzqWfqTW+tA6vX73suszl/GOM+kuCxu/gud0Wumcy/G9Sd6xTu8ChpKyMAAAAAAAAAAAAAAAAAAAAAA2oFKSm97QDJvKSL8DbCallJEkP5dk2+LSp5K8ex2PWF7iNXsZ71he4rX8nW2eAwyCckX/UNP1V5WFAQAAAAAAAAAAAAAAAAAAAAAbh7Kwdn1/klcsfp5L8l/VWuev4Hl1gz0Dm8fCXDK3vFOPJMmOGy+9rywMAAAAAAAAAAAAAAAAAAAAANhAxvodYLMopdyR5Mc6ln6i1vqZdT7m5LLrHZfxjuXPLH9nm+dcjp9M8mtrfObOJO9fp/PhuVmYS/78nyYP/WKycC656Q3JK96bbJ3sY6jSx7NXMNrrR46yMAAAAAAAAAAAAAAAAAAAAABg41AW1oJSSknys0l2Li49kOSdV+CoTV8WVms9nuT4Wp5p/uWBAfHpH0ru/6ml6y+9P/no30le96H+ZRo0tUcZWK99AAAAAAAAAAAAAAAAAAAAAIAhMtLvAJvE9yT5uo7rt9Vaz1yBc6aWXV+3lodLKbtzcYnXM6s4Z2cpZddazkqydxXnwOZSa3L0Vy5ef/zDyewT7ef5sgEr1FMWBgAAAAAAAAAAAAAAAAAAAABsImP9DrBJvKvj8+8mub+UcluPZ25Ydj22wjOP1lrPdVwfWbZ/6yrzPdv9T9daTyy/qdb6VCnlRJKrO5afn+TgczhreXbYfM4+mcw+tvLew7+a3PN97eYZWLXHvrIwAAAAAAAAAAAAAAAAAAAAAGDjUBbWjh0dn78xyYOX8Y6bV3juJUk+03G9vKzrrjWeccey689f4t6DSV617Ky1lIUtP2stzwKbWe1RBrYw304OAAAAAAAAAAAAAAAAAAAAAIAWjPQ7AOvqc8uuX1RK2bmG51/d432X2nvlag8ppexK8qI1nAWbRO13gCHRoyys5z4AAAAAAAAAAAAAAAAAAAAAwPBQFraB1FqPJfmrjqWxJK9Zwyteu+z6A5e49/d6PHspfzNNtgs+XWt9fA3PwyZU+h1gcNQeZWC99gEAAAAAAAAAAAAAAAAAAAAAhoiysBbUWq+qtZa1TJKvXfaaoyvc95kVjvvNZdf/cDUZSyn7k7y8Y+lUkt+/xCMfTHKm4/qVi+9Yjbcuu16eGTanWvudYGVl0IrKevw6KQsDAAAAAAAAAAAAAAAAAAAAADYQZWEbzy8mme+4/vZSyt2reO6fL7v+1Vrr7LPdXGs9neTXe7zjIqWUe5J8W8fSXJJfWkU+2NwGrrCrj3qWgSkLAwAAAAAAAAAAAAAAAAAAAAA2DmVhG0yt9UiS93YsbU3ynlLK9md7ppTyt5O8tWPpXJJ3reK4dyY533H91lLKmy5xzvYkv7CY6YKfq7V+YRVnwSZQ+x1gOPQqC+tZJgYDbGG+9z0AAAAAAAAAAAAAAAAAAAAAbCrKwjamdyQ50XH9qiQfKqXs77yplLKtlPJPk/zasud/vNZ6tNchtdYHkvzvy5Z/vZTyT0opnYVgKaUcSPLhxSwXPJXVlZIBKZv07BUoC2Oj+sIvJL+xt98pAAAAAAAAAAAAAAAAAAAAABgwY/0OwPqrtX6plPLtST6Y5EJp16uTfL6U8qkkDySZTPLSJNcte/y3k/zIGo774SQvSPLGxestSf6PJD9SSvmLJDNJ7lg8q7Nx6FySb6u1HlvDWQBJepWBKQtjCB3/4+QT352k9jsJAAAAAAAAAAAAAAAAAAAAAANGWdgGVWv9SCnl25K8J0uFYCXJVy/OSn45yffUWufXcM58KeXNSf5Dkr/XsbU3yRue5bHjSd5Sa/3oas8B+qn0vqVNtUeZUlUWxhB66JeiKGyNjv1B8uD/lZx7Jrn5m5O7/uukDNjPKwAAAAAAAAAAAAAAAAAAAIB1MNLvAFw5tdbfTfLCJD+V5MQlbv2zJN9Ra/2uWuupyzjnZK31O5P83cV3PZunk/z7JC+stf7eWs+BjU9R0Or0KANTFsYwuv+n+51guHzxN5OPvDF56P9JHv3t5JP/OPmLH+x3KgAAAAAAAAAAAAAAAAAAAIArYqzfAVhZrfUjSco6vOd4kreXUr4/yauT3JrkhiSnkjyS5NO11gef6zmLZ/16kl8vpdye5KVJbkqyK8ljSY4m+ZNa67n1OAs2n+f842Dj6FUGpiwMNr7P/+ukznev3fd/Ji96V7Jloj+ZAAAAAAAAAAAAAAAAAAAAAK4QZWGbxGJJ1x+1dNaDSdalgAw2lVr7nWA49CwDUxYGG95Tn7h4rc4lD/7fyT3f134eAAAAAAAAAAAAAAAAAAAAgCtopN8BAFiFUvqdYID0KFXrWSYGbFhnHu13AgAAAAAAAAAAAAAAAAAAAIB1pywMYGD0KMHql0ErKutVBqYsDDa2eomflf76BwAAAAAAAAAAAAAAAAAAADYgZWEAQ2HACrv6qlcZkLIg2LTqfL8TAAAAAAAAAAAAAAAAAAAAAKw7ZWEA9DBgRWW1RxlYr31g41IWBgAAAAAAAAAAAAAAAAAAAGxAysIAGB61ruIeZWGwsV3i54C//gEAAAAAAAAAAAAAAAAAAIANSFkYwMBYRRHWpreaXyNlQbBp1fl+JwAAAAAAAAAAAAAAAAAAAABYd8rCAIZC2aRnL1NXUQS2mnuA4VUvURo4c197OQAAAAAAAAAAAAAAAAAAAABaoiwMYFBcqgCHhrIw4FKOfbDfCQAAAAAAAAAAAAAAAAAAAADWnbIwgGFQSr8TDIjVlIXNX/kYAAAAAAAAAAAAAAAAAAAAAAAtURYGMDBqvwMMvrqKX6O6ikIxYIj5WQkAAAAAAAAAAAAAAAAAAABsLsrCAIZC6ePRfTz7IqspAlMWBgAAAAAAAAAAAAAAAAAAAABsHMrCABgedRVFYKu5Bxhi9dm3dt/VXgwAAAAAAAAAAAAAAAAAAACAligLA2B4KAsDLmXnTf1OAAAAAAAAAAAAAAAAAAAAALDulIUBDIza7wDPovQ7QIfVFIEpC4NNqw7qz1EAAAAAAAAAAAAAAAAAAACAy6csDGAoDFJhVx+tpgioKguDDU0hGAAAAAAAAAAAAAAAAAAAALDJKAsDGBQKcHpbTRGYsjDYvIpiRQAAAAAAAAAAAAAAAAAAAGDjURYGMAz6WoAzSCVmysKAS/xMUroIAAAAAAAAAAAAAAAAAAAAbEDKwgAGhpKbnlZVBKYsDAAAAAAAAAAAAAAAAAAAAADYOJSFAQyF0u8Ag2E1ZWGrKhQDAAAAAAAAAAAAAAAAAAAAABgOysIAGCJ1FbcoC4ONbRU/BwAAAAAAAAAAAAAAAAAAAAA2EGVhAAyPVRWBKQsDAAAAAAAAAAAAAAAAAAAAADYOZWEAA6P2O8AQWEUR2KoKxQAAAAAAAAAAAAAAAAAAAAAAhoOyMIChUPodYDCspghMWRhsbFWxIgAAAAAAAAAAAAAAAAAAALC5KAsDGBQKcFZhNb9GysIAAAAAAAAAAAAAAAAAAAAAgI1DWRjAMCil3wkGQ11FEdhq7gGGmGJFAAAAAAAAAAAAAAAAAAAAYHNRFgYwMAa0AKcOUC5lYQAAAAAAAAAAAAAAAAAAAADAJqMsDGAolH4HGAzKwoBLGqByQwAAAAAAAAAAAAAAAAAAAIB1oiwMgCGymiIwZWGwsSkEAwAAAAAAAAAAAAAAAAAAADYXZWEADI+6ipKgOn/lcwAAAAAAAAAAAAAAAAAAAAAAtERZGMCgWE0R1qa30PuWuop7gOHlZyUAAAAAAAAAAAAAAAAAAACwySgL4/9n786jZb3LOtF/n5MTkpAEAoEACZBAQAkgo4hMymCDaBuGRsb2ggyXi63Sja2t12aU5dWG9iIoglcFlBaQeWgmm0FGRSE0JIQxkDRNIIYEQkLGk+f+UXU8lWIP7z577xr2/nzWqlXv+3t/w7Orzq6z16rf+r7AUqh5F7AYhgSBCQtjJ/v+N5Krr5x3FQAAAAAAAAAAAAAAAAAAAADMkLAwgIXR8y5g8Q0KAhMWxg72lhOSNxybfPa5SfvMAAAAAAAAAAAAAAAAAAAAANgNhIUBLIOqeVewIAaEIw0KFIMldtX3ks8+JznrFfOuZE6EpAEAAAAAAAAAAAAAAAAAAAC7i7AwgIUhAGddQ4LAhIWxW3z1r+ZdAWydS7857woAAAAAAAAAAAAAAAAAAABgYQkLA1gKNce1FyjETFgYHHDeB+ddwZws0GcSW+fir867AgAAAAAAAAAAAAAAAAAAAFhYwsIAWCJDgsCEhQEAAAAAAAAAAAAAAAAAAAAAO4ewMACWRw8IAhvSB9ihet4FAAAAAAAAAAAAAAAAAAAAAGw5YWEAi6KF3KxvwGskLAx2Np+VAAAAAAAAAAAAAAAAAAAAwC4jLAxgKdS8C1gMg4LAhIUBAAAAAAAAAAAAAAAAAAAAADuHsDCAhdHzLmAJDHiNBgWKAcvLZ+XO5H0FAAAAAAAAAAAAAAAAAACA1QgLA1gGVfOuYDEMCQITFgYAAAAAAAAAAAAAAAAAAAAA7CDCwgAWRs+7gCUw5DUSFsZWENAHAAAAAAAAAAAAAAAAAAAAwGIQFgawFAQXJUl6QBDYkD6wLuF9i8t7AwAAAAAAAAAAAAAAAAAAAOwuwsIAWMciBfMMqEVYGAAAAAAAAAAAAAAAAAAAAACwgwgLA2B5DAkCExYGO1svUoAhAAAAAAAAAAAAAAAAAAAAwPYTFgawKATgrG/QayQsDAAAAAAAAAAAAAAAAAAAAADYOYSFASyDqnlXsCAGBIG1sDDYtYQuAgAAAAAAAAAAAAAAAAAAADuQsDCAhSHkZl1DgoCEhbElBPQtLp+VAAAAAAAAAAAAAAAAAAAAwO4iLAxgKQguGhkSFrZv+8sAAAAAAAAAAAAAAAAAAAAAAJgRYWEAC2NAENZu11cP6DSkD6zH7+PCau8NAAAAAAAAAAAAAAAAAAAAsLsICwNYCjXvAhbEgJCgQYFiACwWIXAAAAAAAAAAAAAAAAAAAACwGmFhACyPIUFgwsIAAAAAAAAAAAAAAAAAAAAAgB1EWBgAS6QHdBEWxlaoeRfAqgZ8DgAAAAAAAAAAAAAAAAAAAADsIMLCABZFL2gAziLVNSgITFgYAAAAAAAAAAAAAAAAAAAAALBzCAsDWAZV865gQQwILhsUKAYsrwUKMAQAAAAAAAAAAAAAAAAAAACYAWFhAAtDAM66hgSBCQsDAAAAAAAAAAAAAAAAAAAAAHYQYWEAy+CC0+ZdwYIYEqgmLIytILxvOXnfAAAAAAAAAAAAAAAAAAAAgJ1HWBjAwlgj5OYLL5pdGYusBwSBDekDLK8WCAYAAAAAAAAAAAAAAAAAAADsLsLCABZF71v92lUXz66OhTYgJEhYGFui5l0AAAAAAAAAAAAAAAAAAAAAACQRFgawOK6+at4VLL5BQWDCwmBnGxAaCAAAAAAAAAAAAAAAAAAAALCDCAsDWBS9b94VLIEBIUGDAsUAAAAAAAAAAAAAAAAAAAAAAJaDsDCARdFXzbuCxdfCwgB2pCGf7wAAAAAAAAAAAAAAAAAAALBLCQsDWBRXXznvClaxSAEuA4LAhIXBDrdIn0kAAAAAAAAAAAAAAAAAAAAA209YGMCiuPqqeVew+HpISJCwMAAAAAAAAAAAAAAAAAAAAABg5xAWBrAoWljY+gYEgbWwMNjRBoUGAgAAAAAAAAAAAAAAAAAAAOwcwsIAFoWwsPUNCQkSFgYAAAAAAAAAAAAAAAAAAAAA7CDCwgAWxdXCwtY3JAhMWBjsWkMCBVlQ3jsAAAAAAAAAAAAAAAAAAABYjbAwAJbHkCCg3rf9dQBzJFQKAAAAAAAAAAAAAAAAAAAA2F2EhQEsiqp5V7AErl6/Sw/oA8CC8X8gAAAAAAAAAAAAAAAAAAAArEZYGADLo3tAH2FhbAHhfYtr36XzrgAAAAAAAAAAAAAAAAAAAABgpoSFAbA8BgWB9bBQMViLf0OL65zXz7sCAAAAAAAAAAAAAAAAAAAAgJkSFgbAOhYpNGloLYtUM7ClvvPZeVcAAAAAAAAAAAAAAAAAAAAAMFPCwgAWRQu4WldfvbX9gOVT/nzdmfwfCAAAAAAAAAAAAAAAAAAAAKuRtgDAEhkYJiMsDHawWuOawCkAAAAAAAAAAAAAAAAAAABg5xEWBsASGRoEJCwMdqxa489XQYEAAAAAAAAAAAAAAAAAAADADiQsDIDlMTQISGAQm1U17wpY1Vrvjd99AAAAAAAAAAAAAAAAAAAAYOcRFgbAEumB3QQGsUk98N8as7dWkJvffQAAAAAAAAAAAAAAAAAAAGAHEhYGwPIYHAQkMAh2LmFhO5OAPgAAAAAAAAAAAAAAAAAAAFiNsDCAhSEoZX0DXyOBQbCDrREWJigQAAAAAAAAAAAAAAAAAAAA2IGEhQGwPIaGgAkLg52r1vjztffNrg622FohcAAAAAAAAAAAAAAAAAAAALC7CQsDYG3d865gwsBahIWxWSW4aHGt8d743QcAAAAAAAAAAAAAAAAAAAB2oL3zLmA7VNWtk5ya5BZJLk9yZpI3dveFcy0MgM0ZHAQkMAh2rLWC3ISFAQAAAAAAAAAAAAAAAAAAADvQwoeFVdVJSe4/0fTq7r5ilb6V5AVJnp5kz9TlP6iqX+3uV25DmQDMQvfAfgKDYOcSFgYAAAAAAAAAAAAAAAAAAADsLgsfFpbk3yf5lfHxJ7v7L9bo+7tJnjFxvj9VppIcleTPq6q6+xVbXyYA229gEJDAIDZraDAds1fTebCT/O4vL79zAAAAAAAAAAAAAAAAAAAAsJq10hYWxc9mFPaVJKuGfFXVDyX59YySBiZDwvaP7fHxS6rqhO0pFWAzBKWsa3CAk8Ag2Llq9UuCAgEAAAAAAACWRlXdoKqOnncdAAAAAAAAAACwDBY6LKyqbpDk5Immd67R/Rm55s/zjiT/JslDkrwpo2SJTnJEkt/Y2koBmI2BYWECg2AHExYGAAAAAAAAsKyq6sSq+suq+k6SbyX5TlV9vaqeX1VHzLs+AAAAAAAAAABYVAsdFpbkdhPH/9zdZ6/UqaoOySgYbH+KzHu7+9TufnN3v727H5Hk1RmlS1SSR1bVGkkTACwmYWHMiD8TFlet9eer330AAAAAAACAWaqqx1fVOePHGVV12Bp975DkH5M8Lsl1cmA/3/FJfivJP45vMAoAn/UGzgAAIABJREFUAAAAAAAAAExZ9LCwE8fPneTMNfr9aJJjM9o4lCTPX6HPb+dAysxxSU7ZigIBmKEeGha2b3vrAObn0Ousfu2Qa8+uDgAAAAAAAACS5DFJbprkhCQf7O7LV+pUVXuTvC7JDTLa59dTj0py2yRvnEHNAAAAAAAAAACwdBY9LOzYieNvr9HvPhPH53b3R6c7dPf/yjUDx26/ydoAmLmhYWFXb28ZwPwc+2OrXzvmR2ZXB1traBgkAAAAAAAAsDCqak+Se080vXmN7v9Hkh/OgXCwJDk9yaen2u5dVY/a4lIBAAAAAAAAAGDpLXpY2BETx5es0e+e4+dO8t41+n1x4vhGB1sUwO6ySAEuQ2sRFgY7Vi36n68AAAAAAAAAu8Ztk1x7fHxlkr9bo++Txs+V5LtJ7tHdd+zuuya5S5Jv5cDGkKdtQ60AAAAAAAAAALDUFj1t4aqJ4yNW7XUgLCxJPrJGv4snjo86qIoAtksvUijXghr6GrWwMNixfFbuTFXzrgAAAAAAAADYuJPHz53kS9195UqdqurGSX583K+TPL+7P7H/end/JsmvZhQkVknuXVXX287CAQAAAAAAAABg2Sx6WNhFE8c3XalDVZ2S5LiJpo+vMd9k4Ni+TdQFwFwICwPWIkgMAAAAAAAAYIZOmDj+6hr9fiIHgsCuSvIXK/R5c5Lvjo8ryZ22okAAAAAAAAAAANgpFj0s7KzxcyW5Y1UdvkKfh0wcX9jdZ64x3/Unjr+32eIAmLWhQUDCwgAAAAAAAAAAttlRE8cXrdoruff4uZN8vLu/M92hu/clOW2i6VabLw8AAAAAAAAAAHaORQ8L+3RGG4Q6yeFJnjh5sar2Jnny+LSTfHid+W4zcfz1LaoRgFnpgWFhLSwMdq41PgeGfkYAAAAAAAAAsBUOHdjvHhPHH1yj3zcnjq+z4WoAAAAAAAAAAGAHW+iwsO4+L8nHxqeV5Per6heq6tpVdVKS1ya55cSQN6w2V1XdOMlNJpq+tLXVArD9hIUB7EiC3gAAAAAAAGAZXTxxfL2VOlTVkUnuNNH00TXm2zdxfNgm6gIAAAAAAAAAgB1nocPCxl6UUVBYJzkyySuTfC/JV5I8LAeSY87NGmFhSX564vjiJF/Y6kIB2G5Dw2SEhcHOtdbngMApAAAAAAAAgBk6f+L4lFX6/FSSQ8bHneQf1pjvmInj72+iLgAAAAAAAAAA2HEWPiysu9+Y5E05EBhWE49MtP9ad1++xlQP3z9lkk90tzQJYMH4WFrX0I/uFhYGAAAAAAAAALDNTh8/V5ITq+r2K/R59Pi5k5ze3RetMd8JE8ff3oL6AAAAAAAAAABgx1j4sLCxxyb58xwICNuvklye5D909+tWG1xVN0vy4BxI4nnPdhQJwDYbGgImLAx2KaGLAAAAAAAAADN0ekahXvu/rP2Dqjp0/8WquneSR0xcf9dqE1XV3iS3nWj66taWCgAAAAAAAAAAy23vvAsYoruvSPKUqnphklOTnDi+9Pkkb+rub6wzxYNz4C6GSfL2ra8SYKdapPCdgbUIC4OdqxfpMwkAAAAAAABg9+rufVX1miS/nNGmjgck+UxVvT3JcRkFhe3J6KagneSv1pjubkmuNXF+xrYUDQAAAAAAAAAAS2opwsL26+4vJHnBQYz70yR/uvUVATBbQ0OChIXBjvW9L6x+TZDYEvPeAQAAAAAAwJJ6fpJfSHKd8fkPJ/mh8fH+kLBO8sbu/twa8zx0/NxJvtzdF25DrQAAAAAAAAAAsLT2zLsAABhsaBBQCwuDHevs1867AgAAAAAAAADGuvu8JP8myWU5EA72L5fHbV9J8rTV5qiqPUkeOTH2g9tRKwAAAAAAAAAALDNhYQAsEWFhsOtd+Ok1Lg78jGAB1bwLAAAAAAAAAA5Sd78/yR2TvC7J9zP6ArCSfDvJHyX58e7+9hpTnJrkxBz44vCd21ctAAAAAAAAAAAsp73zLmA9VXXW+LCT3Ke7v3GQ85yQ5MP75+ruk7eiPoAt00Ju1jf0NRIWBgAAAAAAAAAwK9395SSPSZKqusG47fyBw7+a5GET5+/Z2uoAAAAAAAAAAGD5LXxYWJKTxs+dzdW7d2ouAJbN0EC1FhbGZtX6XVg8QhcBAAAAAAAA5m4DIWH7+//PJP9zm8oBAAAAAAAAAIAdYc+8CwCA4YSFMStCpwAAAAAAAAAAAAAAAAAAAABYDMLCAFgiwsKAtQh5W17eOwAAAAAAAAAAAAAAAAAAAFjN3nkXMEOHThxfObcqADh4PTRMRlgYAAAAAAAAAMAiqKpjkhydpLr7nHnXAwAAAAAAAAAAy2g3hYXdaOL4e3OrAoBNGBgW1vu2twxgQQ0NFAQAAAAAAABgu1TVQ5OcmuQ+SU5Ksmd8qbPCnsWqOinJzcenl3T3J7e9SAAAAAAAAAAAWDK7KSzsQePnTvL1eRYCsFR6kcJ3hoaFXb29ZbAL1LwLAAAAAAAAAIClUlUPSvLiJLfa3zRw6MlJ/jajjSFXVNXx3X3hNpQIAAAAAAAAAABLayHCwqrq5uv3SpKcULWh8I7DktwkyQOT/NpE+6c3MgnAbCxSKNeCGhpcJiwMdqeFCjcEAAAAAAAA2D2q6llJnpVRQFjlmhthOmsEh3X3+6rqzCSnJLlWkkcledn2VQsAAAAAAAAAAMtnIcLCknwt66fkVJKPbGKNyc1Gb9rEPADMzdAgIGFhAMtF0BsAAAAAAAAsq6r61STPGZ/u//Lv8iSfSHJRkn89YJrXTczxsxEWBgAAAAAAAAAA17Bn3gVMqRUe610f8kgObEL6eJJ3bNtPAMA2Ghgm08LC2CzBRcvJ+wYAAAAAAAAwS1V16yQvzOgL284oJOw3khzb3fdN8isDp3rb/imT3KeqpvcOAgAAAAAAAADArrZoYWHbZf/GoTcm+bnuliQBsIyGfnwLCwNYMvb5AwAAAAAAwJJ6XpK9GX3pd1mSB3T3C7v70g3O85nx+CQ5Osmtt65EAAAAAAAAAABYfnvnXcDYq9a49vjxcyd5U5KLB865/y6F30lyZpK/6+6zD7pCABaAsDBgLfJgAQAAAAAAAGalqg5LcmoOfFn7n7v74wczV3dfXVVnJrnzuOk2Sb64+SoBAAAAAAAAAGBnWIiwsO7+xdWuVdXjc2Az0a919zmzqQqAxTM0CEhYGJtV8y4AAAAAAAAAABbdvZIcMT6+JMlLNznfN3IgLOz4Tc4FAAAAAAAAAAA7yp55FzCQxA5gFxgahLWL9cDXqIWFwa7kdx8AAAAAAABglk4aP3eST3T35Zuc76KJ46M3ORcAAAAAAAAAAOwoe+ddwAC/OHF8/tyqAGABCAsD1vDNv513BRw0gZkAAAAAAACwhG44cfzNLZhvzyrHAAAAAAAAAACw6y18WFh3v2reNQDsbgsU4NJDaxEWBrvWvsuTQw6bdxUAAAAAAAAAu8HlE8db8UXtsRPHF27BfAAAAAAAAAAAsGMsfFhYVT1r4vRF3X3RQc5z3SRP33/e3c/bbG0AzNrAELAWFrai7qRq3lXA9jr33clNHzLvKgAAAAAAAAB2g3+eOL7pFsx3x1XmBgAAAAAAAACAXW/hw8KSPCdJj49fmeSgwsKSHDM1l7AwgGXTvX6fRFjYtC+8OPnyy5PLz0+O/5nkri9ODj163lXB9rjyYP9UBAAAAAAAAGCDzho/V5I7VdWR3X3JwUxUVXdJcsOJpk9ttjgAAAAAAAAAANhJ9sy7gIFqQecCYKYGhoVFWNi/+OJLk08+Pfnu55LLzkvOemXyoYfMuyrYRv7UAwAAAAAAAJiRT2R0889OcmiSJ25irmdMHJ/d3WdvpjAAAAAAAAAAANhpliUsDGDn66FBWLvZwNeohYX9i7P+4gfbvvWB5OKvzbwUgFX5PxAAAAAAAACWTnfvS/LfM7qrUyV5blXdbKPzVNXDkjw2o40hneQ1W1knAAAAAAAAAADsBHvnXcAM1cTx3FNkquqIJLdJcmKS45McndHdFS9K8u0kpyc5o7uv2qL1Dk1yryQ3T3KTJBcn+UaS07r7a1uxxsRat0hyp4x+rqOSnJvk7CQf6+4rt3ItYJcZGiYjLOyACz65cvun/kPyE2+ebS0wE7V+FwAAAAAAAAC2yu8keVRGX9Yek+SDVXVqd58xZHBVPSHJn2QUElZJLk3yh9tTKgAAAAAAAAAALK/dFBZ23Ynj78+jgKr6xST3T3L3JCcn2bPOkIur6m+SvKS7P32Qa94wyXMz2pB1/VX6fCzJH3T3Gw9mjYl5HpHkGUnusUqXC6rqdUme1d3nb2YtYLcSFrZlvv6WeVcAcEAJeQMAAAAAAIBl1N2fr6qXJHl6Rhs7bpHkU1X16iR/k+SC6TFVdbMkD0zy5CQ/lgN3heokz+7u82ZROwAAAAAAAAAALJPdFBZ2p/FzJ5lXUNXvJDlhA/2PSvLEJI8fb6j69e6+aujgqnpwklcmOW6drvdMcs+q+m9Jntrdl2ygxlTVUUn+vySPXqfr9ZM8LcnDq+rx3f2ejawDMDgsLMLCAAAAAAAAAABm5NeS3DbJv8poc8ehSZ4wfmTcVklSVZckOXxibE1cf3N3v3AmFQMAAAAAAAAAwJLZFWFhVXXrJL850fS5edUy5ftJvpLknCQXJdmTUaDWjyS58US/Q5L8+yQnVdUjunvfehNX1X2TvCXJtSaaO8mnkpyV5Jgkd05yg4nrj0tynap6aHcPStqpqkOSvC7Jz0xd+uckpyX5bpKTx2vtvwPkjZK8tap+qrs/MmQdgCRJDwwLG/YRBuxEVev3AQAAAAAAAGDLdPfVVfWQJC/NKCBs/waP/V/g9kTbEZNDJ/r9RZL/a3srBQAAAAAAAACA5bUQYWFV9f6BXV9bVZdtYOrDktwkyYlT7e/bwBxb6ZIkb0vyriQfS3L6aqFcVfXjSZ6f5AETzQ9N8owkL1hrkaq6aZI35ZpBYR9N8pTuPnOi32FJnprkhRndzTFJfm687v898Gf6vVwzKOzKcY1/2t1XTKx12yR/luQe46bDkrylqn6ku88duBYwFwMDumZCWBiwHmFhAAAAAAAAALPW3ZcleWJVvSvJM5PcfrWu4+caP76S5Fnd/Zrtr3K5VdURSU5JcpskN0xyVJKLk1yQ5PQkn+3uq+ZXIQAAAAAAAAAA22khwsKS3DfrJ8BUkrsfxNyTdydMku8kefVBzLMVbt/dVw7p2N1/X1UPTPKqJP924tJvV9WLu/vyNYY/N8n1Js4/luSnxhuyJte4PMmLq+qcJG+euPSMqnp5d5+9Vo1VdcskT59q/vnufusKP8/nquoBGQW17Q8MOzbJs+OOkDC2SKFci2poWNi+7S0DgK3V/g8EAAAAAACAnaC7X5/k9VV1vyT/Ksm9k9wso71i10pyfpJvZbSn7T1J3tW9OBs9xnvi7pbkR8fPd0ly9ESXs7v7pBnWc5eMbjJ6/yQ/lgM3BV3JJVX1uiR/2N2fmUV9AAAAAAAAAADMzqKEhW2nzoG7EH4vyWO7+/y5FDIwKGyi/9VV9e+SPCzJkePm6ya5X5J3rzSmqm6d5PETTVckecJ0UNjUOm+pqldNjDssoxCvJ65T4rNzzc1Hr1wpKGxinUur6glJPpvRxq8keVJV/ZfuPmudtQA2ECZz9baWASyyWr8LAAAAAAAAANuquz+Q5APzrmOIqrpvkt/KKCDs+vOtZqSqDk9yRpJbbmDYkRnt+Xt8Vb0wyTM3umcRAAAAAAAAAIDFtWfeBUyoVR5D+qz2uCLJeUk+mFGw1W26+z3b/HNsqe6+KMlHpppvtcaQxyY5ZOL8Td39pQFL/f7U+SPHG45WVFVHJHnEOnP8gO7+YpK3TDTtzahmgAEGhoW1sDAAAAAAAAAAAAa5U5IHZkGCwsb2ZuWgsE7y+STvTfLXSd6WZPpGnYck+U9JXltVu+GGsgAAAAAAAAAAu8JChIV1957VHvu7jB8nrdV3hccR3X2T7r5/d/9Od587xx9zMy6YOj96jb4Pmzp/xZAFuvvMJP8w0XRkRhugVvOgJNeeOP94d39+yFor1PTwgeOAXU9YGAAAAAAAAAAAM3F5kq/Mu4gk+5K8K8mjkxzX3ad094O6+3Hd/ZDuPjnJjyb50NS4hyd5zmxLBQAAAAAAAABguyxEWNgANe8C5uzEqfNvrNSpqm6c5I4TTVcl+egG1vng1PmD1+j70+uMXcuHM6ptvztX1Y02MB7YrVpYGLOy2//0WGLlvQMAAAAAAACYlap6//jxvqo6bhPz3Ghyrq2scaArk3w6yZ8leWqSu2Z0U88nz6GW/S5P8scZ3WT1Z7r7dd19/kodu/uTSe6f5DVTl369qqb3HwIAAAAAAAAAsIT2zruAAT6UZH86zGXzLGQequqHktx9oqmT/N0q3W8/df6Z7r5kA8t9bOr8dmv0nV7r40MX6e5LquqzSe48tda3hs4B7FYDw8IiLIzNGvpvjcUjLAwAAAAAAABghu6bA1+yH76JeQ4fz5XM/kv7VyV5WXf/wP7Emt8Nqy5Lcqvu/vrQAd29r6qelOTeSW42br5WkkcmecHWlwgAAAAAAAAAwCztmXcB6+nu+3b3/caP8+ZdzyxV1U2SvD7JIRPNb+jur60y5LZT51/e4JJfWWe+SafMcC3YJYQTrasHvkYtLAwAAAAAAAAAYEaW+q5O3X3hSkFh89TdV20kKGxi3KVJXjHVfL+tqQoAAAAAAAAAgHnaO+8COKCq9ia5XkZBXP86yVOTXGeiy1lJfnmNKW41dX7OBks4e+r82Kq6XndfOFXn9ZNcf5NrTfe/9QbHA7uSsDBgHfO7qzMAAAAAAAAALILTps6Pn0sVAAAAAAAAAABsKWFhc1RVL0ry9IHdP5DkF7r7vDX6HDN1vlbfH9DdF1fVZUkOn2i+bpILp7pOr/P97r5kI2utUNt1NzgemJUeGNA1E0NrERYGAAAAAAAAALBEJvcyXjW3KnaG6dfvWnOpAgAAAAAAAACALSUsbPG9Lckfd/d7B/Q9aur80oNY79JcMyzs6G1cZ9JK62xYVR2X5IYbHHbyVqwNzMDQ4LIWFsZm1bwLAAAAAAAAAIDd5AYTxxu9cSXXdKup83PnUgUAAAAAAAAAAFtqacPCqurYJKckuV6S6ybZs5Hx3f2X21HXNnhwkkOq6rLu/tA6fadDvC47iPUuzeg1XW3OrVxnrTkP1i8lefYWzQUsHGFhwHoEvQEAAAAAAAAsoZ8YP3eSb8yzkB3gEVPnn5hLFQAAAAAAAAAAbKmlCgurqhtkFAb1uPzg3e82ahHCwp6X5EUT50ckOTbJnZI8LMn9kxya5GeT/GxV/XGSp3f3voHzD0zVWZoxwK439KNDWBjsXsLClpM/DQEAAAAAAGAH2NAXf1V1aJKbJHlgkt+euPTZrSxqN6mquyW511Tzm+dRCwAAAAAAAAAAW2tpwsKq6uFJ/iLJ0Tn4FIgej12INILuviDJBStc+kiSP6qqeyd5dZITx+3/LqNAsSetMuXFU+dHHERZ02Om55zlOrC79EJ8NC22oa9RCwtjs/w+AgAAAAAAAECSVNWQm1tWkq9VHfQNniYHvu1gJ9nNxuFrL59q/nB3f2Ie9QAAAAAAAAAAsLWWIiysqh6X5C+zckjYZJrH9PXpawe9E2keuvsjVXW/JP+Y5Nhx8xOr6m3d/dYVhggLS16a5PUbHHNykpVeT2DhDAwBExYGAAAAAAAAALBVhu6728z+vP03Av18kjdsYp7d7AVJ7jxxfmWSX93qRarquCQ33OCwk7e6DgAAAAAAAACA3Wbhw8Kq6hZJ/jSjjUD7NwR9Jsmbk1ya5PfGXTvJLya5TpLjk9wzyb2S7BlfOy/J85N8b4blb1p3f7WqnpfkDyeafyMrh1t9d+p8Qxtyquqo/GCI13cGrHPtqjqyuy/ZwHLHDVhnw7r7vIze68E2cTdLYNa61++TCAuD3cz/6wAAAAAAAADbYf/eve1SSf4pyaO6+8ptXGdHqqonJnn6VPNzuvvT27DcLyV59jbMCwAAAAAAAADAGhY+LCzJf8wowGp/Qsxzkzyvu7uqTsyBsLB096smB1bVrZL8lyQPzSg466lJHtjd586i8C302lwzLOzHq+qY7p4O2PrS1PmJG1xnuv8F3X3hdKfu/nZVXZjkehPNN09y5ibWmq4dYAUDw8IiLIzNEjgFAAAAAAAAAGMfyuqbNn5y/NxJPpHksoFzdpLLM7rJ5JlJPtDdH95MkbtVVf10kpdNNb8jyf8zh3IAAAAAAAAAANgmCx0WVlV7kvzbHNho9Prufu7Q8d395SQPr6rnJnlmktsmeXtV3WOZ7j7Y3edNhXPtSXKLJKdNdZ0O67rVBpe65dT559boe2aSe06ttZGwsOm1NjIW2LUGhoW1sDDYvQS9AQAAAAAAAGyl7r7vateq6uoc2NDxqO4+ZyZFkSSpqnsleWOSQyeaP5LRezH0rnwAAAAAAAAAACyBhQ4LS3KHJEePjzvJ8w5mku5+dlX9SJKHJrlzkl9N8l+3pMLZmQ43O2yFPqdPnd+hqq7d3d8fuMa91plv+tpkWNg9krx9yCJVdWRG7+3QtYC5WqB9g0P3MAoLAwAAAAAAAACYlcpCbTDZHarqrkn+e5JrTzR/IsnPbmDP4MF4aZLXb3DMyUneug21AAAAAAAAAADsGoseFnb78XMnOae7P7dW56qqNe6G91sZhYUlyZOyRGFhVXV4khtMNX9rul93n1tVn8mBIK69Se6d5L0Dl7rv1Pm71uj77iT/5xpj13KfXPPf3mnd/QM/D+w+9kyub+hrJCwMAAAAAAAAAGAGnjtx/J25VbHLVNUdMtoXeN2J5tOSPKi7L9rOtbv7vCTnbWRMVW1TNQAAAAAAAAAAu8eih4Vdf+L4jBWuT6fGHJ7k0pUm6u4vVNWZSU5J8sNVdbvuXmnORfSAJHsmzr+f5H+v0vfNORAWliS/mAFhYVV1myR3n2i6ZJ1x78notT5ifH6PqrpNd39+vbWSPGHq/M0DxgBkcFhYCwuD3csGYwAAAAAAAIBZ6e7nrt+LrVRVt03yP3LN/ZWnJ3lgdwtsAwAAAAAAAADYofas32Wujp44vnCF65es0X8lX5w4PuWgKpqxqtqT5JlTze/u7itWGfLfkuybOH94Vd16wFL/aer8b7r7stU6d/f3k7xhnTl+QFX9UJKHTTRdleSvB9QHkPTQsLB96/cBAAAAAAAAAGBTxvvbmJGq+uEk70tyw4nmzyf5qe4+fz5VAQAAAAAAAAAwC4u+UWcyDOzQFa5/b+r8hHXmu3ji+MYHVdFBqqpfqaqbbHDMoUn+PMndpy798WpjuvtLSV410XStJK+sqsPXWOchSZ4w0XRFkiF3fHxOkisnzp9QVaeusc7hSV4xrmm/P+/urwxYCyDJ0LCwq7e3DGBxVc27AgAAAAAAAIDd5JyqenZVrbd3j02qqlsleX+uuffxS0nu393fmk9VAAAAAAAAAADMyqKHhU3e6e460xe7+4qpPrdfZ77JsK6jNlHXwXhSkq9U1aur6ueq6ujVOlbVEVX1mCSn5ZohXknyV939/nXWenaSCyfO75nkf1TVbabWOayqfiXJ66fG/9fuPnudNdLdZyX5w6nmN1TVL1fVZCBYquqUjO5oeM+J5m9nWCgZwJiwMICdaeDnOwAAAAAAALBojk/yrCRfrao3VdUD513QTlRVt8goKOz4ieazMgoKO3c+VQEAAAAAAAAAMEt7513AOr44cXzrVfqckeQnx8cPSPJXK3WqqiOT/NhE04Ur9dtmRyR53PjRVfXlJF9L8p0kVyQ5OsmJSW6b5NAVxr8jyVPWW6S7v15VD0/yniT7Q7vuleRzVfXJjDYJXTfJXZLccIU1nrmBn+k3k9wuyYPH54cmeUmSZ1bVp5J8L8ktx2vVxLgrkjzMRiVgQ3pomIywMAAAAAAAAACAGdqb5CFJHlJVX03y8iSv6O7z1x7Geqrq5hkFhd1sovnsjILCvj6fqgAAAAAAAAAAmLVFDwv7XJJ9SQ5JcouqunZ3f3+qz4czCgurJD9fVc/u7rNXmOs3kxw1cX7GdhS8AZVRANpqIWiTLk3y/CQv6O4rh0ze3R+sqocleWUOBIJVkh8dP1bymiRP6e59Q9YYr7Ovqh6Z5M+SPGri0nFJfnqVYecleXx3f3joOrA7rBOE9fW3J994Z3LYDZITH50cc7vZlLVQBoaFtbAw2L1q/S4AAAAAAAAAbJUrMrqh5f5NHZXRzSV/L8nzquqNSV7W3R+ZU31LraqOT/K+JCdNNP/vjILCVtonCQAAAAAAAADADrVn3gWspbsvTvKp8WklecAK3V63v3uSI5K8t6p+Yv/FqrpuVT0/yW/nwIakC5L8w7YUvbqnZBT49fEklw8c8/kkz0zyQ939u0ODwvbr7ncmuX2SlyW5cI2uf5/kEd392O6+ZCNrjNe5uLsfneTnx3Ot5oIkf5Lk9t397o2uA7veh05Nvvyy5IznJ+/98eSfPz7vin7QvivmXcGIsDDYxYSFLaUrL553BQAAAAAAAMDBOT7JbyT5cg58Ydvj48OSPCbJ31XVZ6vql6rq6PmUOX9V1VOP+67T/7iMgsJuNdF8bpL7dfdZ21gqAAAAAAAAAAALaO+8CxjgPUnuNj4+NcnbJy929xlV9dYkD8lok9Gtk3ygqi5JclGS45IcMu5e4z5/tNHgrc3q7n9M8o9JnllVhyY5JaM7KJ6Q5Kgkhya5eFzz15Kc1t1rBXwNXfe8JE+rqqcnuVeSE5PcOMklGd1h8LTu/upm1xmv9YYkb6iqWyS5S0YbwY5M8s0kZyf5aHcvSJIQLLmrLk5O/53kfu+cdyXX9L0vJcfcbvvm716/T5JEWBjAUvnii5ObPXTeVQAAAAAAAAAb1N0XJHlhkhdU55f/AAAgAElEQVRW1QOSPC2jfX57c+DmnpXkdklekuT3q+qvk7y8uz+1wpRzUVU3zcr7KW88db63qk5aZZqLu/v8LarnmCR/m+Q2E82XJHlSkivXqGFF3f21ragLAAAAAAAAAID5WYawsNcl+c8ZbRh6TFX9x+7+7lSfpye5e5Ib5cBdCY8aP/bb3/5PSX53u4teyzio7DPjx6zWvCLJB2a01leTbEkAGbCGc981o4WGBnTNwsBaWlgY7FpV6/dh8XxrJn+mAgAAAAAAANuou9+X5H1VdaMkT0ny5CQ33385o/17R47bn1xV/5TkT5K8trsvm0PJkz6S0Y0413NCVt8b96okT9iieu6U5A5TbUcmOdg7C/oyHQAAAAAAAABgye2ZdwHr6e4zktw1yd2S/GSSfSv0OSfJA5Kcnmtuaulc8+6E70rywHFYF8APuuR/JX//xOQdt00+8ujkwk/PuyKuQVgYAAAAAAAAAMAi6+5vdffzk9wiyakZBVzt3/QxuZ/vbkn+PMk3qur/rarbzLxYAAAAAAAA+P/Zu/NoSfO6vuOfb3cP0w0DDIszAyIQBwiBsKOIAs4YZBGNgQCuOUE5xrhEj+YPj0aDmgWXRLMARlyiqEQBESOKgjoDxEFwDqMITAQGwYVpBpjNgXtn6fvLH7c6XV1zl1ruU/U8t16vc+r0rarnqef7PPfWr/ucrvO+AAADcWzVA0yjtXbVFNtcXVWPT/K8JF+Z5KFJzk9yQ5I/S/JrrbU/7HRQYNhuvT75g0uSWz68ff/mq5OTb06e8Y7kHn9/paMxK7EwWFs3vje5/3OS8kuRAQAAAAAAAFaptdaSvDHJG6vqc5J8c5JvSHK/05tkOxp2fpLvSPIdVfW2JK9I8huttTuWPzUAAAAAAAAAAPTTymNhVfXGJJeNbleNPiA0l9baqSSvHd0AZvOx3zkTCjvtthuSj7w6efQPdX/8+Ze//ug6zjPtNWpiYbC2/ux7kw+9MvmSNyd3f8iqpwEAAAAAAAAgSWvtr5N8f1W9JMlzsx0O+5KxTU5/6ORpo9t1VfVzSX6mtfbRJcz34CUcY+oP1rTWLs+ZawIAAAAAAAAAADmy6gGSfFmSH0vyJ0k+VVVvqKrvqKpHrXguYN2888U7P/7eH17uHEPWefBMLIwl6Tp8R7c+/ZfJW//xqqcAAAAAAAAAYEJr7VRr7XWttS9N8rAk/znJp7L9oZCW7UBWJbkwyfcm+VBVvb6qnrKqmQEAAAAAAAAAoA/6EAs7rZKcn+Qrkvxkkj+tqk9U1Wur6lur6uGrHQ849LZuW/UE7EssDJjSzVcnN75v1VMAAAAAAAAAsLt7JLlnkuNjj7WxW5IcTfKVSd5aVW+qqouXOyIAAAAAAAAAAPRDn2Jh4x/wOf3bAe+T5HlJ/nuS91XVtVX16qr6pqp6yIrmBGA3VaueYEQsjAW1KcN09Nu1b1r1BAAAAAAAAACMqaoTVfWNVfXOJFcmeXGSu45vkuSOJBujr8c/U/jMJH9WVc9Z4sgAAAAAAAAAANALfYiFfU+SNyX5u5yJhCU7x8MuTPJVSf5Hkr+oqr+qql+sqhdV1YOWOzYASzdtwKmJhQGxFgAAAAAAAAD0RFU9oqr+W5KPJfmZJE/Mmc8Knv584LVJfjDJg5LcP8m3J3lfzkTDWrbDYq+pqouXOT8AAAAAAAAAAKzaymNhrbUfb619eZJ7J3lSzsTDbsn+8bAHJPn6JD+X5MNV9eGq+tmq+rqquv8STwOApRALA2Yx5ZoBAAAAAAAAwIGrqruMPsv39iR/nuTbktwzZz4TmNHXlyd5YZIHtdZ+uLV2srV2c2vtFa21Ryd5TpKrx/Y7nuS7lnUeAAAAAAAAAADQB8dWPcBprbWtJH8yuv14VR3J9m8PvCTJpUm+KMl547uMfX36Q0APTvINo1uq6kNJLkvyh0kub61d190ZACyqp1Gb1qe5pp1FLAxIz9YvAAAAAAAAgPVQVQ9N8s1J/nm2f4losv0Zv9O/MLSy/ctEfynJy1trV+/1eq21N1XVZUn+T5LHj/b/0m6mBwAAAAAAAACAfupNLGzSKB72rtHtx6rqaLbjYZdmOyD2RUnuNr7L2Nen42EPTfKQJN+UJFV1dbbjYZe11l7f5fwArFATC2NBVftvwwBYCwAAAAAAAACWYfT5vucm+ZfZ/oxfcuZzfG3s/vuS/FSSV7XWbpn29Vtrm1X10iSvHT30OQsPDQAAAAAAAAAAA9LbWNik1tqpJO8c3X6kqo4l+bxsh8MuTfKFSe46vsvY16c/dPSI0e1bMqBzB2Cktf23ScTCgG3TrhkAAAAAAAAAzKWqHpTkXyT5xiQXnH4425/fa6OvTyV5Q5KXt9beusDh3j/29bkLvA4AAAAAAAAAAAzOYINZrbU7krxjdHvpKB72+dkOh12S5MnZOR5WORMPA2BQpg3/iIUByfRrBgAAAAAAAABzuiZnfyZv/HN61yZ5ZZJXttauPYBjfWbiGAAAAAAAAAAAsDYGGwubNIqHXTG6/YeqOifJk5K8IMk3xW8SBFiCrluMU37Wc+tUt2MMRfPZ2Lm5doeD7yMAAAAAAABA145k+wMdLWeiYW9L8vIkvzH6XN9BqwiGAQAAAAAAAACwZg5NLOy0qrpXki9OcmmSS5I8Mt3XawDola1VD8DQtTuST/1Jcv6jkqPHVz0Nc7MWAAAAAAAAACxBJbklyS8leUVr7X1dHKS19tFsx8kAAAAAAAAAAGDtDD4WVlXnJ3lazsTBHpWd42Djj/mtgkAPzbE0tZbUGvUQ25TXqAkEcQB+7/O3Q2FPfHly8TeuehrmMe2aAQAAAAAAAMC8rk7yiiSvaq393aqHAQAAAAAAAACAw2pwsbCqukfOjoM9JmeHwCrbxZ3JONh7krx1dHvbMmYF4KBNGf65/srkxj9Pzn9Ut+Nw+J3aTN754uRej0nu/YRVT8PMxMIAAAAAAAAAutRae+SqZwAAAAAAAAAAgHXQ+1hYVd09yVNzJg722CRHxjfJznGwq3ImDvb21toNy5gXYLkml7/Dbobwz5sel3zhryQP+qruxuk9oaQD8+FfEAsbJO8BAAAAAAAAAAAAAAAAAAAAYPh6Fwurqrvl7DjY45IcHd9kh922krw7Z8fBbu52UoAeaG0JrbCBxnbaqeRd/zL5nOcnR47uvz3s5QMvS57431c9BbNqA12/AAAAAAAAAAAAAAAAAAAAAMasPBZWVXdN8pSciYM9IfvHwW5PcmXOxMH+qLV2S7eTArBys4Z/br8xOfnm5P7P7mYeYPnu/cTk+iun3FgsDAAAAAAAAKAPquo+SV6Q5ElJLkyykeRvkvx+kt9rrd22wvEAAAAAAAAAAKD3Vh4LS3Jj9o+D3ZbkXTk7DraxhNkAem4JIZyZAl07LeEHaY7zvelqsTA4TI6emH7bttXdHAAAAAAAAABrqqrum+TRST4rya1JPpzkva3d+T9pq6qSfG+S70uy03/4fnuSj1bVt7bWfre7qQEAAAAAAAAAYNj6EAs7lu36y3hhZjPJH+dMHOyPW2ubK5gNYHlminL9/50OfIyzbN2R3H5jt8eYyRznW0cOfgxgIJYQVAQAAAAAAABYE1X12CQ/nuSSJJMfyLiuqv5Lkv/UWjs12r6S/GKSr8vZnw88/Z+5px97cJLfqqoXtdZ+pZvpAQAAAAAAAABg2PoQCxvXkvx+kh9N8rbW2h0rngdgvX3452fcoY9hntp/k8NqrgAd9N0sP9feAwAAAAAAAAAHoaq+OsmrkhzNzh/GuDDJf0zytKr6itbaVpLvTPL12f7P2/FA2On9x/9T92iSn6+qq1pr7+/gFAAAAAAAAAAAYNAmf7vfKp3+4M/Tk7wlyU1V9ftV9f1V9dSqOmeFswH0U9cxqPe9tNvXn9U851t9+qsOWCrBPAAAAAAAAICFVdXnJfmlbP9y0srZ8a+M3a8kz0ryr6vq7kl+MGdHwq5N8sYkr07yu0luyNnhsXOS/NeuzgMAAAAAAAAAAIbs2KoHSHJ1kofnzr9t8ESSS0e3JNmsqj9O8tYklyf549babcsaEqCfOg7hfPojM+6w0y+OPUhiYcAstlY9AAAAAAAAAMBh8FNJjubs8NcNST40+vriJPfKmWDYdyW5Kck9Ro99KsmLW2u/Nf6iVXUkyYuT/Jckx0f7fklVXdxau6bjcwIAAAAAAAAAgEFZeUGltfbIJBcmeWG2P1R09djTNXY7keSSJC9JclmSG6vqsqr6waq6pKrOXergACxfmyeO1nXAbKBE1BisGdaBudYMAAAAAAAAAE6rqicleXzOhMA+meR5Se7bWntSa+3zk9w3yXOTXDfa7sIk3z16iduTPH0yFJYkrbWt1trPJPma0Wuf/k/eF3R3RgAAAAAAAAAAMEzHVj1AkrTWPpnkdaNbquqCbIfBTt8ePtp0vPhyPMnTRrcfSHJbVb0ryeVJ3prkitbaZufDA6yUEM6+RLFgjVkjAQAAAAAAABb0T0d/VrbDX89orf3Z+AattZbkN6vqL5P8SbY/l/iwbP+n7S+31t6z1wFaa/+7qi5Lculonyce7CkAAAAAAAAAAMDw9bKg0lq7rrX2mtbat7bWHpHkftn+7YE/neQDY5vW2O3cJE9J8v1J3pLkxqp6e1X9u6r6R1V1YrlnAbCGqvbfZiFzhH/WOhYmlMSaa1urngAAAAAAAABg6B4/+rMlec1kKGzcKAr2qzn7l4L++pTHGd/ukTNNCAAAAAAAAAAAa+DYqgeYRmvt40l+bXRLVV2U5JJs/ybBS5I8dLTp+IeM7pLkC0e370tye1VdmeStSS5vrb1lGbMDTG+OsFPrWQyq83nmef2uA2bAUs20zvRsjQQAAAAAAAAYnoeNff3GKbb/nST/bOz+e6Y8zukIWSW5z5T7AAAAAAAAAADA2hhELGxSa+1ktn8D4a8mSVXdL2fCYZcmuXi06WQ87Mmj2/dkoOcOcLY1C+HMFSMTC9tR30Jz0AU/5wAAAAAAAACLuufY138xxfaT23xqyuN8cuzre0y5DwAAAAAAAAAArI1DEcxqrV2b5NWjW6rq/tmOhp0OiH1uzhR1VGMA1kkdWfUEwMpsrXoATmu+FwAAAAAAADBQ5419fdMU2988fqe1tjnlcca3O2fKfQAAAAAAAAAAYG0ciljYpNbax6rq/UkuSHJhkvsnOXe1UwF0oe2/yTJV1z3Gnp1v77leHEYz/Fw374HeeNc3r3oCAAAAAAAAYD7jHwY5NcX202wDAAAAAAAAAADM6NDEwqrqMUkuSXJpkqcmOX+lAwEsw9qFcOY533W7RsAZ3v+98JmPJdf87KqnAAAAAAAAAAAAAAAAAAAAgMEabCysqh6VM3GwpyW51/jTY1+3XR4H4KB1HS+b5/Xb1sHPAQyEWFgvfOBlq54AAAAAAAAAAAAAAAAAAAAABm0wsbCqemTOjoPdZ/zpsa9bzpQhauy5v0ly2dgNoGfmidr0LIRz89XJPR++6ikm9OwaAYuZJRooFtgPt1yz6gkAAAAAAAAAAAAAAAAAAABg0HobC6uqf5AzcbAvTnLf8afHvt4tDnZtksszioO11lQKgEOoZyGs9/9o8jnP7fAAc5zvLGGhteK6sA78nPeCaBsAAAAAAAAAAAAAAAAAAAAspDexsKr6+zk7DnbB+NNjX+8WB/tEzo6D/UWH4wKwk42PdXyAecI/axwLEkpj3V3/7lVPQJJELAwAAAAAAAAG7vQHEL6gqh68z7YXjd+pqqfm7M//TbUfAAAAAAAAAABwtpXHwqrqV7IdCRv/sM80cbDrk7w1Z+Jg7+t2UoAe6lsMqnUchJnrfHt2jYAFzfCevv7K7sZgen37uwoAAAAAAACYRyX5X3Psc/kM27dMFxYDAAAAAAAAAIC1s/JYWJKvydkf8tktDnZjkrflTBzsPcscEqCf+hZg6XqeOV7/Lvc5+DEAmEHHIUkAAAAAAABgGWYJeY1/wGOW+FffPggDAAAAAAAAAAC90YdY2GmnP0x0+sNBf5fk7RnFwZJc1VrzYSCAPmunVj3BnR2/YNUTAKy3JhYGAAAAAAAAh8Q8n9/zmT8AAAAAAAAAADgAfYmFVZJPJ/mjnImDXdmasgCwRubqIfbt85Rdz9O38+0714vDyM/14Oj9AgAAAAAAwJD9VfxHLQAAAAAAAAAArFwfYmE/kO042Ltaa3esehiAQelbgKXreQ5FUA1g3ViHAQAAAAAAYKhaaw9e9QwAAAAAAAAAAEAPYmGttf+w6hkAOChbHb++4AzA4LSu/24AAAAAAAAAAAAAAAAAAACAw+3IqgcAYBE9i2cJwgBdaz1b95iCvxsAAAAAAAAAAAAAAAAAAABgEWJhAEPWt2hO57Gwnp0v0G/3fsKqJyDp399VAAAAAAAAAAAAAAAAAAAAMDBiYQAcoI6DMPMEZ9Y6UrPO5w6Jf+r2RdchSQAAAAAAAAAAAAAAAAAAADjcFBQAemOesFPPYlCt6yBMz84XWIFZ1gFrRi90/ncDAAAAAAAAAAAAAAAAAAAAHG5iYQCD1rMQjiAM0Cs9WyPXlu8DAAAAAAAAAAAAAAAAAAAALEIsDIAD1HUQZp7XF6kBWCkhSQAAAAAAAAAAAAAAAAAAAFiIWBjAkLWehbC6DsL07Xz7zvXiUJrh59p7oB/EwgAAAAAAAAAAAAAAAAAAAGAhYmEAg9a3EE7X8/TtfIF+s2b0g1gYAAAAAAAAAAAAAAAAAAAALEIsDICD0/oYhBELAlipZh0GAAAAAAAAAAAAAAAAAACARYiFAfTGPDGVngVY2qmOX79n5wssn3UAAAAAAAAAAAAAAAAAAAAAWDNiYQAMiEgQMAtrBgAAAAAAAAAAAAAAAAAAADB8YmEADMgc4Z+2zrGgdT53yJq//3ukatUTAAAAAAAAAAAAAAAAAAAAwKCJhQEMWd9COIIwQOd6tu4BAAAAAAAAAAAAAAAAAAAAdEwsDIDh6FscDeg5awYAAAAAAAAAAAAAAAAAAAAwfGJhAIO2biGcec533a4RcEategAAAAAAAAAAAAAAAAAAAACAhYmFAfRFE7Xan2s0G9eLw2iGn+tjd+tuDAAAAAAAAAAAAAAAAAAAAIAlEQsDAOBwOnLOqicAAAAAAAAAAAAAAAAAAAAAWJhYGMCgtVUPsFxtjvOdZx/gkPD+BwAAAAAAAAAAAAAAAAAAAIZPLAyAARH+AWYgFtgTteoBAAAAAAAAAAAAAAAAAAAAYNDEwgCGrHchnK6DMH07X2DpZlr3rBkAAAAAAAAAAAAAAAAAAADA8ImFAXCAhHl6pXcxOViytrXqCQAAAAAAAAAAAAAAAAAAAAAWJhYG0BvCTvuaK37lusL68v4HAAAAAAAAAAAAAAAAAAAAhk8sDGDQ1i2Es27nC9zZDOtA2+puDAAAAAAAAAAAAAAAAAAAAIAlEQsD4ABVx68vFgbM4PabVj0BAAAAAAAAAAAAAAAAAAAAwMLEwgAGTTxrf+t8jdb53CHJxslVTwAAAAAAAAAAAAAAAAAAAACwMLEwAA5Qx3GqJn4FzLAO3H5jcmqzu1GYUq16AAAAAAAAAAAAAAAAAAAAABg0sTAABkQsDJjR5sdXPQEAAAAAAAAAAAAAAAAAAADAQsTCAPqizRHCmmefTlXHr38YrhGwVBsnVz0BAAAAAAAAAAAAAAAAAAAAwELEwgAAGI5ZA4CbYmEAAAAAAAAAAAAAAAAAAADAsImFAQzajNGcoZs1ErT2XC/IhlgYAAAAAAAAAAAAAAAAAAAAMGxiYQAMyDzxK8EsOFxmfE9vioUBAAAAAAAAAAAAAAAAAAAAwyYWBsDOmsgWcAhsiIWtXNWqJwAAAAAAAAAAAAAAAAAAAIBBEwsDGLQug15iYUAfzbg2bYqFAQAAAAAAAAAAAAAAAAAAAMMmFgbQGz2Lc7V55unwHOaaJ+nddV2mua8ZHCIbYmEAAAAAAAAAAAAAAAAAAADAsImFAQxZpzGorQ5fex7CV0BmX/c2xcIAAAAAAAAAAAAAAAAAAACAYRMLA2BnnYbI5tC3eYBh2LjW+gEAAAAAAAAAAAAAAAAAAAAMmlgYALsQ1wEOga1bk9tvWvUUAAAAAAAAAAAAAAAAAAAAAHMTCwMYtA6DXm2ru9eey5zn2kTP4HCZ4z29cfLgxwAAAAAAAAAAAAAAAAAAAABYErEwAHYxR5Cn0zCX6NfsXDNIkmyKha1WrXoAAAAAAAAAAAAAAAAAAAAAGDSxMIDeEOfaU6fnCgzHHGvBhlgYAAAAAAAAAAAAAAAAAAAAMFxiYQDsrG2teoIDIjIGa29TLAwAAAAAAAAAAAAAAAAAAAAYLrEwAHbRt8hW3+YBVqLNsRaIhQEAAAAAAAAAAAAAAAAAAAADJhYGMGgdBrTmCfJ0qm/zDIFrBkmSDbEwAAAAAAAAAAAAAAAAAAAAYLjEwgDYxdYc+/QxXiaYBYfLHO/pzSXGwrZOJTf/RXLDn55Zt1pL/u5Dyc0f7GGIEQAAAAAAAAAAAAAAAAAAAOi7Y6seAIBF9DHO1TMf/OnkAV+56imAVdpYUizsM3+TXPbs5Kb3bt+/12OTJ74sufI7khvePXrsccklb0pOXLicmQAAAAAAAAAAAAAAAAAAAIDBO7LqAQAY6V2c65DMc+2bko/86sGOcljcdtOqJ4DZzbNWbi4pFnbF158JhSXJDX+avOUpZ0JhSXLDVckVX7uceXqjVj0AAAAAAAAAAAAAAAAAAAAADJpYGAA7a1urnmDCAvGyj/zSwY1xmPz161Y9ASzHrZ9Itk51e4zbbkg+8fbptv34Hya3Xt/tPL3St/gkAAAAAAAAAAAAAAAAAAAADItYGMCQtS4DLD2Luyxyrh/7nYObY0j2u2bX/Pxy5oBVa1vbwbAubX5itsjiDVd1NwsAAAAAAAAAAAAAAAAAAABwqIiFAbCzTkNkAPOac23aPHmwY0yaJRSWJLVO/wyvVQ8AAAAAAAAAAAAAAAAAAAAAg7ZOlQKAQ6jLoNeM4ZvOiZcduBLwYY1sXNvxAWZdM73/AAAAAAAAAAAAAAAAAAAAgOmIhQGws9a3OFff5gFWY861YOPkwY4xqYmFAQAAAAAAAAAAAAAAAAAAAN0QCwPojb7FsHo2z17xsme8Y3lzDMp+30OxItbIZsexsFnXzPL+AwAAAAAAAAAAAAAAAAAAAKYjFgYwaB0GvdpWd6990I6cm5xz/qqnGCCxIgZor3DgXjY6joXNvGau0ftPGA0AAAAAAAAAAAAAAAAAAAAWIhYGwC46DJHNZZ95xGiAvWyKha3MvIE3AAAAAAAAAAAAAAAAAAAAIIlYGMCwdRlgmTl807U9zlUoDNbInOte17GwzLhmWrcAAAAAAAAAAAAAAAAAAACAKYmFAbCLDkNk89gzjCa6A+xjo+NY2MyBxTVat4TRAAAAAAAAAAAAAAAAAAAAYCFiYQDsomexsD0J0exoz8BaBHwYqDnXpk2xMAAAAAAAAAAAAAAAAAAAAGCYxMIABq3DoNfM4Zuu7Xeuwjuzc81YI7ffnNzxme5ef9Y1U6wPAAAAAAAAAAAAAAAAAAAAmJJYGEBvdBj+mkcb0DyiO8A0Nj/e4YvPGlhcp3Vrnc4VAAAAAAAAAAAAAAAAAAAADp5YGAC76FksbM95pgjR9C1+1gsCPgzQIu/ljZMHN8ekNmMsrNbpn+HWXwAAAAAAAAAAAAAAAAAAAFjEOlUKAA4hAZZtlZTwFbCPzQ5jYTOvx9YsAAAAAAAAAAAAAAAAAAAAYDpiYQAMxKJhtHUMq63jOXP4LfBz3WUsrG3Ntr3AIQAAAAAAAAAAAAAAAAAAADAlsTCAIWtrFIPa61ynie6s07WallgR62ajR7GwrNP7b53OFQAAAAAAAAAAAAAAAAAAAA6eWBgAu+hbXGuveSpiNLAuFlibNq49uDHuRCwMAAAAAAAAAAAAAAAAAAAA6IZYGEBftL7FuYZkmuiO63tnYkWsmc2T3b12mzEWVt5/AAAAAAAAAAAAAAAAAAAAwHTEwgAGbZ0CWOt0rgfFNeMQWiSsuNGjWNhaxfrW6VwBAAAAAAAAAAAAAAAAAADg4ImFAbCzRYI8XdhrnqrsH6Pp2fkAy7fZYSxsZusU0LL+AgAAAAAAAAAAAAAAAAAAwCLEwgAGbZ0CLHud6zpFdw6S68aa2TzZnxBief8BAAAAAAAAAAAAAAAAAAAA0xELA+AQmCK605dAUJ+IFTFIC7yXt25Pbrvh4EZZyDq9/9bpXAEAAAAAAAAAAAAAAAAAAODgiYUBMBD7BIKEr1hHIniz2zy56gkAAAAAAAAAAAAAAAAAAAAAZiIWBpD0JLgzxwydzt2HazJmr3OdKhTWs/NZhn1/PgTWGKIF38sbYmEAAAAAAAAAAAAAAAAAAADAsIiFATAQewWCxMKAKW32JRZmTQIAAAAAAAAAAAAAAAAAAACmIxYGMGhiM0mSmiYWBhwKbcF1b6MvsTAAAAAAAAAAAAAAAAAAAACA6YiFASQR3RqC/b5H+wTDFg0MHUoia6yhza5iYTOuMdYkAAAAAAAAAAAAAAAAAAAAYEpiYQDsomchmz3DOqJXO+vZ95AOrOP3eMFz3ugqFgYAAAAAAAAAAAAAAAAAAADQDbEwgEHrYSjo5g909MKLxsJ6eK1WrUTWOMSOnLvz45t9iYWt0ZpkrQEAAAAAAAAAAAAAAAAAAICFiIUBJEnrQ7SlDzMcgA//wvKPWZXpgmHA8E25Vp64386P9yYWBgAAAAAAAAAAAAAAAAAAADAdsTCAIetF5GzC+1/a0Qsveq49vFZAd3aLhW1cu9w5dmVNAgAAAAAAAAAAAAAAAAAAAKYjFgbAzvoWIttznlraGIeL68Yhtlss7NZPJlu3L3eWtWetAQAAAAAAAAAAAAAAACDdzXUAACAASURBVAAAgEWIhQEkSXoWxmIH+8TCap8YTd/iZ0ux3zkL+AzeOv5cT3vOx3eJhSXJ5nUHM8si1up7t07nCgAAAAAAAAAAAAAAAAAAAAfv2KoHWFdVdTTJQ5I8Isn9k9wzya1JbkhyTZIrW2ufPuBjnpPki5I8MMn9ktyS5GNJrmqtfeSAj/X3kjw22+d2XpJrk3w0yRWttdsP8liw3gRYkuwfCkviWsGaObFXLOxkctfPXt4sAAAAAAAAAAAAAAAAAAAAAAsQC1uiqnpgkucleXqSpya5xx6bn6qqtyR5WWvttxc87mcl+aEkX5Xk3rtsc0WSn2it/fqCx3p+ku9O8uRdNrm+qn4tyb9trX1ykWMBa6aJfR24qSJr0DdTrgXn3jepo0k7defnNk4e7EgAAAAAAAAAAAAAAAAAAAAAHTqy6gHWRVW9OslHk/xkkudk71BYkhxN8qwkb6yq36qqC+c87rOTvDfJt2SXUNjIFyZ5XVX9clXdbY7jnFdV/yvJa7N7KCyjGb4lyXur6pmzHge604MQ1TwxrE4DWj24JmfZa54a3ebdHzh06mhyfJd/Pm12EAubeT1epzVJmBAAAAAAAAAAAAAAAAAAAAAWcWzVA6yRh+3y+N8m+WCSj2f7+/G5SR6Ts0NuX57kbVX1xa21qesWVXVJkjckucvYwy3Ju5N8OMn5SR6X5L5jz39dkntU1T9prW1NeZyjSX4tyZdNPPWJJFcluSnJxaNjna5FXJjkN6vq6a21/zPtOQHrbL9YGHfSaUwOVmXKn+s6mhy/KNn42J2f2+ggFgYAAAAAAAAAAAAAAAAAAADQkSP7b0IHrkryr5I8pLX2gNbapa21r26tPb+19vgkD0zyyol9HpbktVU1VRGnqh6Q5PU5OxT2R0ke2Vp7Ymvtha21ZyR5QJLvTHL72HZfkeTfz3A+P5KzQ2G3j87vAa21Z46O9YQk/zDJO8a2OzfJG6rqfjMcCw4xYae5TbM0rmU4a79zFlkbvnX8uZ5SHUlOXLTzc5t9iIX53gEAAAAAAAAAAAAAAAAAAADTEQtbnpbkt5N8Xmvt8a21l7XWrtlxw9b+trX2zUm+beKppyT5qimP90NJ7jV2/4okT2+tXT1xrFtba/8tyQsn9v/uqnrQfgepqs/Ndmxs3AtG53fbxLHen+Qf5exg2H2SvGS/40DnBhuSGurcc9j3eyR8dSdta9UTwMGbdr2uo8nxXWJhG32IhQEAAAAAAAAAAAAAAAAAAABMRyxseV7QWvvy1tqV0+7QWntFkl+fePif7bdfVT00yT8fe+i2JC9qrW3ucaw3JPnFsYfOzXQRr5ckOWfs/i+01n5zj+NsJHnRaKbTXjyKjsGa61v4a0jzTBMK69v5LMN+sTCBNQ6xOpqc2CUWttmDWNhgI5UAAAAAAAAAAAAAAAAAAADAsomFLUlr7SNz7vryifuXTrHP1yY5Onb/9a21D06x349O3H9hVR3fbeOqOpHk+fu8xp201j6Q5A1jDx3L9szAzNYpNiMWNrO2TyysxMIYoinfy3UkOX6/nZ/b6EEsDAAAAAAAAAAAAAAAAAAAAGBKYmH9d9XE/RNVdf4++zx34v7/nOZArbWrk7xz7KG7JXnGHrs8M8ldx+6/o7X2f6c51g4zPW/K/aAjPQhJtR7MMFRVwlc72S8WBodZHU1OXLTzc5t9iIVZ8wEAAAAAAAAAAAAAAAAAAIDpiIX13x07PHaX3TauqouSPGZi/z+a4XiXT9x/9h7bPmuffffy9px9bo+rqgtn2B9YN4vG1NYxxiYWxjqro8nxXWJhd9yS3H7LcudZa2KOAAAAAAAAAAAAAAAAAAAAsAixsP57yMT9O5J8co/t/+HE/fe01j49w/GumLj/yBmO9Y5pDzKa6c9nOBasgTliVl0GsHoX19prHiGaHbVTq56AzvXtfboE065NdSQ5sUssLEk2Tx7MPPPq3RoLAAAAAAAAAAAAAAAAAAAA9JVYWP89f+L+la21rT22f8TE/Q/NeLxr9nm9cf9giceCjvUh2tKHGfps0VjYOl7fvf66SETWONTqaHJ8j1jYxkHHwtZxjQEAAAAAAAAAAAAAAAAAAACWQSysx6rqvCQvnnj4N/bZ7SET9/9qxsN+dOL+farqXjvMdu8k917wWJPbP3TG/eHg3HbTqieYkzhNkqQqwlc72LMtmdF1g6GZct2ro8k55yXH7rbz85sHHQsDAAAAAAAAAAAAAAAAAAAA6IZYWL+9NMlFY/dvTPKz++xz/sT962Y5YGvtliSbEw/fc4rjfKa19ulZjpU7z7bTcWA5/u9PrHqCpAl/7WnR67OO13e/WBgcaqN/5h6/aOenN1YdC1vDNQkAAAAAAAAAAAAAAAAAAACYy7FVD8DOquq5Sb594uF/01q7fp9dz5u4vzHH4TeSHB+7f/cOjzNup+PMpKouSPJZM+528aLH5RC4+sdWPUEP9S1ks9c8tbQphmW/WJjrxhBNuTYdObr954mLkluuufPzm6uOhQEAAAAAAAAAAAAAAAAAAABMRyysh6rqMUleNfHwm5P81BS7T0a8NucYYSPJvfZ4zYM8zl6vOY9vTfKSA3gdWIF54lx9C3p1aY9zrcr+4at1ulYjbb9YGIPX1vDnelo1ioUdv2jn51ceC1uj710JEwIAAAAAAAAAAAAAAAAAAMAijqx6AM5WVQ9M8ts5O5z10SRf39pcRZDDtg+wrvZcAqcJ0azhknPLNaueAA7etP8cOnpi+8/dYmEbq46FAQAAAAAAAAAAAAAAAAAAAExHLKxHquqCJG9J8tljD59M8qWttU9M+TK3TNw/Mccok/tMvuYyjwPrY54e4FwNQdbGR391nw2miazBQJ1zz+0/T+wSC9tccSzM+g0AAAAAAAAAAAAAAAAAAABM6diqB2BbVd07ye8nedjYw59M8vTW2gdneKl1j4W9IslrZ9zn4iS/eQDHhkOmbyGbveappPYJX61jmOevX7/38/tdM+ilKd/Lx87b/vP4LrGwjRXHwgAAAAAAAAAAAAAAAAAAAACmJBbWA1V1zyRvTvKosYdvSPKlrbX3zfhyN03c/6wZZzkvd4543TjFce5aVXdrrX16hsNdMMVxZtJauy7JdbPsU2I59MYaxqxmssf18T4GJtWR7T9P7BIL2/x40rbObLd01nwAAAAAAAAAAAAAAAAAAABgOquqIzBSVXdP8rtJnjD28M1JntVa+9M5XvKDE/cfNOP+k9tf31q7YXKj1tqnsh00G/fABY81OTuwrzWKzbS9znWaWNgaXSvWiJ/r3Y3WhRP32/npdkdy6/UHeDzfCwAAAAAAAAAAAAAAAAAAAKAbYmErVFV3S/I7Sb5g7OFbkjy7tfauOV/26on7D5lx/8+duP/+JR5r8vVgzfQsNLNnnKtvKtMFw4Dhm3JtqtE/c49ftPs2mycXH2duQ1pjAQAAAAAAAAAAAAAAAAAAgFUSC1uRqjqR5I1JnjL28GeSPKe1dsUCL/3eifuPrqq7zrD/F+3zens99+RpDzIKpT16hmMBO1qn2Myi57pO12paAmscZqOf7+MX7L7JSmNh68RaAwAAAAAAAAAAAAAAAAAAAIsQC1uBqjqe5H8nuWTs4c0k/7i19rZFXru1dm2S94w9dCxnB8n2c8nE/Tftse3v7rPvXp6a7dlOu6q19vEZ9ofDp4lZ7Wmv61NCNPNx3RigadfKGv0z98g5ybn33XmbjRXGwqz5AAAAAAAAAAAAAAAAAAAAwJTEwpasqu6S5PVJnj728K1J/klr7Q8O6DC/MXH/G6ac7eFJnjT20KeTvHmPXX4vycbY/SePXmMaL5q4PzkzwIS9wjqVfcNXwjywZsbWhOMX7bzJxrXLGQUAAAAAAAAAAAAAAAAAAABgAWJhS1RVx5K8Jsmzxx6+PcnzW2u/d4CH+pUkp8buP6+qHjrFft8zcf81rbXN3TZurX0myev2eY07qaqHJXnu2EN3JHn1FPPBITdHzKrTANaQ4lr7hMKSDOt8lqSmuW702zr+XE95zjX2z9z/x969B9121oUd/z0nJ8negRASSXICVK6xVRiVi1WD7dDWqnTGIgwC9VKZqdZRp+OUdjq1U4vM+AetlQ7VWm+tYNVKvcF4Kdh21EGitQLekTuoJIcjJAEC7z45532f/nHek7zZZ6+911p7XZ691+czk3mz195rrd+67JUzk3e+Z14RC1uc3X4cAAAAAAAAAAAAAAAAAAAAgJ6JhQ0kpXRVXIp4Pf/E4osR8ZKc8y91ua+c83si4nUnFl0TEa9NKc3WzPf8iHjZiUUPRMQra+zuu+JS8Oyyl6WU/v6a/cwi4seOZ7rsv+Sc31djX8CkTTGKBLR2MoY3q4iFHYwZC/NMAwAAAAAAAKCdlNIzU0ovSSm9/Pifl6SUnjH2XAAAAAAAAAAA9Of02ANMyH+NiBcvLftXEfGOlNITG27rbM55seEzr4iIF0TEjcev74iI/51S+sac859e/lBK6dqI+McR8b1L639vzvlDmwbJOb8/pfSaiPjnJxb/bErp5RHxwznnB07s67Mj4kePZ7nsY1EvSgYT0CYcM6HYTF5zrCejQNUb6GwUYEx1v8snngvziljYYsxYGAAAAAAAAAClSSk9OSK+ICKeffzzmRFx/YmPfCjn/MQRRouU0tUR8c8i4hsj4ikVn3lvXPodvVfnnC+s+gwAAAAAAAAAALtJLGw4/3DFsn93/E9Tfysifn3dB3LOf5FSemFEvDkirjle/JyI+JOU0tsi4v0RcUNc+mWmm5dW/6WI+M4G8/zLiHhaRDzv+PXVEfF9EfGdKaW3R8QnI+LJx/s6WfR5ICJekHO+u8G+gMlaFwhKNYNhPJxzxh5Lpx7699kAsbB1QcPVK3S3bwAAAAAAAABaSyk9NyK+Iy4Fwm4ad5rVUkq3R8RPx6XfwVvnqRHxqoj46pTSS3PO7+19OAAAAAAAAAAABiEWtsdyzr+eUnpBRLw2HgqCpbj0S03Prljtv0fEN+WcDxvs5zCl9OK49DcSvuTEW7dExFdUrHYuIr4h5/yWuvuBvdc4NNO30uZZp0b0qrjzC/TrxHOhKhZ20GEsjDWECQEAAAAAAICifX5EfNnYQ1RJKZ2JiP8VEU9Yeuu9EfHHcel/yj4tIp5y4r1nRcSvppS+KOd8bpBBAQAAAAAAAADo1amxB6BfOedfiYinR8QPRsS9az762xHxopzz1+ScP9ViP/fnnF8aEV99vK0q90TEf46Ip+ec39R0P8CyHgNYFxs/Cnom9tU9AZ+dN8UIXt1jTif+mDuviIU9cE/E4fntZ2pjitcOAAAAAAAAYLecj4j3jTlASulURLwhHh4KuzsivjznfHvO+atyzs/POT81Ip4XESf/1qwnRcQvpJT8gggAAAAAAAAAwB44PfYAU5FzHu0Xbo7/ZsBvSSl9e0Q8Jy794tCZiPhURHw4It6Rc/5AR/v62Yj42ZTSkyLimRHx2Ih4RFz6JaQPRcRbc84PdLEv2D+FhWM+8mtjT/Bw68I6KcXm8FVh5xfo2YlnwqwiFhYRsTgX8Yi/0v84AAAAAAAAAJTsQkT8cUT8bkT8v+OffxiXft9uzF+i+dqI+MITr++JiDtyzh9c/mDO+U0ppTsi4m0RcePx4jsi4iUR8dM9zwkAAAAAAAAAQM/EwibkONI1yC8uHcfHOgmQASP5w+8ae4Il62JfdXqME4uF3fXmsSeAntT8LqdTD/37fF0s7OxIsbCJPZMAAAAAAAAAyvW6iPjBnPNi+Y2URvs7QiOldFVEvHJp8ctXhcIuyzl/IKX08oj4sROLvzul9D9yzkc9jAkAAAAAAAAAwEBObf4IAMNoEY7JYjOXjPeLmcV69/dv/syIv9AK/Ttxf19zU8Spq1d/7ODsMOMAAAAAAAAAUKSc872rQmEF+JKIeNKJ1x+OiJ+osd5/O/7sZU+JiDs6nAsAAAAAAAAAgBGIhQGwIzaF0TaEr6YWVrvrl2p8SCyMXVTzu5xO/DE3pYjZmdWfW4wVC5vYMwkAAAAAAACApl6w9PrHc86Hm1Y6/sxyVOyFnU0FAAAAAAAAAMAoxMIAStEqZjWh2My685NEr5iqCT0DGlt6LlTFwg7GioUBAAAAAAAAwFpfsfT61xusu/zZ5201CQAAAAAAAAAAoxMLAyiG6M96685PnViY83slkTV2UO2w4tL9Pa+IhS3Ewnon6AgAAAAAAADQSErp2oh46tLi326wiTuXXt+eUrpmu6kAAAAAAAAAABiTWBgAuy8lMZqTaseUYI+lpT/mzvqOhTX83k3pezqlYwUAAAAAAADoxl+NiKtOvD6Xc/5E3ZWPP/vRE4uuiojP6mg2AAAAAAAAAABGIBYGUIw2MZUpBVimdKxbOjo/9gTQo5rPguWA4LwiFnZw93bjAAAAAAAAAED3nrr0+s9abGN5ndtbzgIAAAAAAAAAQAHEwgDYDVksrLZ8WO9zyzEl2GezqljY2WHneNCEnmmeNQAAAAAAAABNPXrp9bkW21he54aWswAAAAAAAAAAUIDTYw8AwLE2MaxJBbSqjjUt/Wy6PjAJ84pY2OLspWepoBUAAAAAAAAA5Xjk0uuDFttYXuf6lrM8TErploi4ueFqT+li3wAAAAAAAAAAUyYWBsBuE/i5Uu2InHO3+6YYwWt5zLOKWNjhQcTFT0Zc/aj2I7UyxWsHAAAAAAAAQE3LsbBFi20sx8KWt9nWt0bEKzraFgAAAAAAAAAANZ0aewAALhOOWc/56Z5YGBMyr4iFRUQcnB1ujknyrAEAAAAAAADYUptfnPHLNgAAAAAAAAAAe0QsDGCnTeh3+nLVsR5HaNKGGE3l+sBOaftdnt1a/d5ihFiYZxIAAAAAAAAA1e5fej1vsY3ldZa3CQAAAAAAAADADjk99gAAXCYcs96GWBgnuJfgCqcfEXH6+oiLn7zyvYMRYmGT4pkEAAAAAAAA0FDJsbAfiIifabjOUyLijR3tHwAAAAAAAABgksTCAHZZFmCJJBbWmnPHTqrx3Dv9yNXL52ciPrkiFrYYIxbm+Q0AAAAAAABApY8vvb65xTZuWXp9X8tZHibnfC4izjVZJ/kdFQAAAAAAAACArZ0aewAAjgl/ref8wJV8LypU/JLx7Mzq5QddxMJci2p+6RsAAAAAAACgofcsvX5Ci20sr7O8TQAAAAAAAAAAdohYGAA7oirEk5Z+Nl1/H9U9VgEf9lSq+CPu/LbVyxddxMIAAAAAAAAAoDPviojDE69vSSldX3fllNKjIuIxJxYdhlgYAAAAAAAAAMBOEwsDqOMjvzHATtrErASwBK+AK1U8F2ZnVi8/GCEWlqf0/AYAAAAAAACgiZzz+Yh439LiL26wiTuWXr/neJsAAAAAAAAAAOwosTCAOt75PWNPQJUkFtaac8euqRvYqrq35xWxsMUIsbBJ8awBAAAAAAAAaOFNS6+f22Dd5c/+z60mAQAAAAAAAABgdGJhAHXc9cv976NuBOfhK3U+RrE2np8NMZpW53dHTelYYaWK58GspFjYlL6nUzpWAAAAAAAAgM78wtLrr08pXbVppePPfN2GbQEAAAAAAAAAsGPEwgDYEVWxmQ2RMNhrIkwrpYrnwrwqFnYu4uiwv3kAAAAAAAAAoLm3RMQHTrx+fFwZAVvl6yLicSdevy8i3trhXAAAAAAAAAAAjEAsDKCufNT3Dnre/q4TC+vc4tzYE0BDdZ+TFc+FWUUsLB9GnP9oq4nam9Iz33MaAAAAAAAAIKWUl/557rrP55wPI+IVS4tfnVJ64pp9PDEi/sPS4n+dc++/+AQAAAAAAAAAQM9Ojz0AwM44PB9xej72FA+XpxSbqZDSw38StSNEd/1Kv2PAaCqeB/OKWFhExOJsxPzWfsYBAAAAAAAAoGgppcfH6t+nXP4fzafXxLruzzl3/TdV/WREfFtEfOHx65si4s6U0styzr968oMppS+PiNdGxI0nFt8ZEa/veCYAAAAAAAAAAEYgFgZQ19EiIvqMhQl/rbV1GM35hZ1X9zlQFQ+89ua4FBJbsZ2DsxE3fl7byZo/o8QeAQAAAAAAAErymxHxhBqfe1xEfKDivddFxMu6GigiIud8lFJ6QUT8dkR85vHi2yLizSml90TEH8el/xH+tIh46tLqH4yIF+bsf1ADAAAAAAAAAOwDsTCAuo4Ox55ghSn9Ll/VsVZEgYAJq3gunDodMbs5YnHuyvcWZ/sdCQAAAAAAAABayDnfnVL6uxHx0xHxjBNv3X78zypvj4iX5Jw/0vd8AAAAAAAAAAAM49TYAwDsjNxzLMxf4rnBpliYaNhD3EvTMbVrXfN405o/4s7OrF4+eCxsQtcueT4DAAAAAAAAbCPn/O6I+MKI+I6IeP+aj77v+DNflHN+7xCzAQAAAAAAAAAwjNNjDwCwO47GHoBVakdoJhTmqevWvz32BNCTNc+F2ZmI+IMrlx8MHQubEDFMAAAAAAAAoHA55ycOsI+t/qalnPOFiHhVRLwqpfSsiPisiHjs8dt3RcS7c85v225KAAAAAAAAAABKJRYGUFfuOxbWJqYyoQCL2Ez3rnn02BNAQ3WfA2t+v3p+ZvXyhVgYAAAAAAAAALvhOAomDAYAAAAAAAAAMCGnxh4AYGfkw7EnmLiqSFBa+kntsFrvATwYSVrzPJhVxMIOho6FTSiAuO56AAAAAAAAAAAAAAAAAAAAABuJhQHU1XtYqUU4pm4Uai9sioXRmFgYu6b2M2/Nc2F+2+rli6FjYQAAAAAAAAAAAAAAAAAAAAD1iIUB1NZzWGlS4a8OpZqxMOd3Bedk57mvK6x5LszOrF5+MHAszLUDAAAAAAAAAAAAAAAAAAAAahILA6gr9xwLYz1hnQZqniv3NPtqXURwXhELu3BfxOGin3kAAAAAAAAAAAAAAAAAAAAAtiAWBlBXPux7BwOts6uqjvU4CrQuDsRqYmHsnLrPvDXPg1lFLCwiYvGRRtM8XNPn8ZSe3wAAAAAAAAAAAAAAAAAAAMA2xMIA6hJWGllFWKd2JEyY50ruafbVmufCfE0s7OBs96MAAAAAAAAAAAAAAAAAAAAAbEksDKCu3mNhbWJWAlhro0BTlWveF3U/B8Woec+uiwhefUPEqWtXv7cYMhbm+3eFowtjTwAAAAAAAAAAAAAAAAAAAABFEgsDqK3vWBhrbQxbiYY1557efYJTq615HqQUMT+z+r2Du/sZZ/JqPp/f/2P9jgEAAAAAAAAAAAAAAAAAAAA7SiwMYGOE6vLnDsuYY7Kqzo9IWGtZLIwdU/c5mTb8EXdWFQs722yebXjmX+mPvnvsCQAAAAAAAAAAAAAAAAAAAKBIYmEAlRGq5Y8VGFaaUmym6lhT3VjYhM7VLt/T0IUbnr7+/XlFLGwxYCyMK336z8eeAAAAAAAAAAAAAAAAAAAAAIokFgZQN7jVe1hpSjGrLqWln9TnnmPX1Lxnn/6d69+fiYUNqnbUEQAAAAAAAAAAAAAAAAAAAFhFLAygbnwmH/Y8RpsY2ZRiT1M61oH0HsCDETz++RE3ft76z1TFwg6GjIVN6JlWN8oJAAAAAAAAAAAAAAAAAAAArHR67AEAxldKxES4ab2q65Rqrl7KdR5C3WN1z7FH5o+N+Ox/EXH7t0SkDT3ceUUsbDFkLAwAAAAAAAAAAAAAAAAAAACgHrEwgNoRqZ5jU1m4aa2q65TSw39Sn3tuD0wpghex9nj/xi9EPOav19vMrCIWdnD20rOm1fOk6bWY2rUDAAAAAAAAAAAAAAAAAAAA2jo19gAA4ysk2JIP26zU+Ri7RySstYufHnsC6E6TwNf8ttXLj85HXPh4N/PwEDFHAAAAAAAAAAAAAAAAAAAA2IpYGEDd4FbuOcyVj/rd/s4TRqut7r36wD39zgFd6+o5PD9T/d7B2W72sUnf/00BAAAAAAAAAAAAAAAAAAAA9oZYGEApwZY2sbBSZh9E1bGmpZ9N15+ww8XYE0CHNj0DTpjdWv3eYqBYGAAAAAAAAAAAAAAAAAAAAEBNYmEAtSNSPcem8mG/2991VWG01CAQxBIBNXZNR/fsVbOIqx+9+r2DoWJhvn8AAAAAAAAAAAAAAAAAAABAPWJhAMUEW47GHmBHiYVdqZR7mt5VRfSmqGk4cH5m9fLFULEwAAAAAAAAAAAAAAAAAAAAgHrEwgBqx3Z6jvLkwzYrdT5GuTYd66ZQ0JTOVV3OCbumw3t2NnYszPcPAAAAAAAAAAAAAAAAAAAAqEcsDKCUYEs+GnuCwlVdp02RMCrVDuXBLmj4LJhXxMIOhoqFTYnnNAAAAAAAAAAAAAAAAAAAAGxDLAygbiys77BSq1jYhGJPVec/idBcqe59MaH7h/3Q5XN4VhULu7vd9sT3AAAAAAAAAAAAAAAAAAAAgJ6IhQGUEnjJh2NPsKPEwlor5d6HTjR8FswrYmGLs9uPUofvHwAAAAAAAAAAAAAAAAAAAFCTWBhA1A229Bx2yUf9bn/nbTj/aUMoSJhnBedk97mGrc1GjoUBAAAAAAAAAAAAAAAAAAAA1CQWBlBMbKdFLGxSAayqY90QCZui2vfFlO6fJZP67uyTDq9bZSzsLyOOLna3n0ruQQAAAAAAAAAAAAAAAAAAAKAesTCAUsJK+bDf7e+6quuUxMJam3Qwa8rHvqeaPgvmFbGwyBHn/3LrcQAAAAAAAAAAAAAAAAAAAAC6IhYGUEo0aNLhpm2kpZ9VpnR+ax7rxU/2O0bJfN92VIfXbVYVC4uIg7Pd7aeKexAAAAAAAAAAAAAAAAAAAACoSSwMoG6wpciwS4kz9WVKx7qle3+v/mcvHvQ3R9HcT/tnUzBwybWPiUgVfxReDBALm5SG1wYAAAAAAAAAAAAAAAAAAAB4GLEwgNrRoL7jQuJF61WdHxGaK9z5aN2G+QAAIABJREFUdfU/+5Ff62+Oou3J963IiGGPujzeU1dFzG5d/d7BELGwiV07AAAAAAAAAAAAAAAAAAAAoDWxMIBdDrace8vYEwynKhKULsfCRMMiIuL+90dcuK/+5z/2O/3NUrKpRbYmocUzYHZm9fLFELEwAAAAAAAAAAAAAAAAAAAAgHrEwgDe+e9rfrDAuNAHfnzsCQpQNxBU4PXrw8ffOfYEO2Ii98Pe6fi6VcXCDtrEwprO5h4EAAAAAAAAAAAAAAAAAAAA6hELA6btL34x4p3fM/YUx1qEYy5+svsxiiWsU0/deNrUuZ/2Tmpx788rYmGLNrEwAAAAAAAAAAAAAAAAAAAAgH6IhQHT9oHX1f9sFhcaV8X5vxwIahMKwnljt3T9HJ6JhQEAAAAAAAAAAAAAAAAAAADlEwsDpu3Pf27sCairMhJUM3Yl9sZJe3M/7MtxdKFF+G5eEQs7GCAWtjf3IAAAAAAAAAAAAAAAAAAAANA3sTCA2noOuwjHtNQiEAQiW0REzCpiYYsBYmFTkjynAQAAAAAAAAAAAAAAAAAAYBtiYQDsiE1xJzGaiBDlqU0sbDd1fN3mFbGwC5+IuPjpbvd1BfcgAAAAAAAAAAAAAAAAAAAAUI9YGEBtfYddhGPWyhXnRxyLNqruJ3ZYi2fBrCIWFhGxONt+FAAAAAAAAAAAAAAAAAAAAIAOiYUBsCOq4k51A0HiUJzkfthNHV+3+ZpY2EHfsTD3IAAAAAAAAAAAAAAAAAAAAFCPWBhAXVnYpUx1Y2FT4XzUsy/f5305jg6kFvf+6esjrpqvfm/RdywMAAAAAAAAAAAAAAAAAAAAoB6xMIBiiP6st+n8iGRd4jzUIv63m7q+bilFzM6sfu+gaSys4WzuQQAAAAAAAAAAAAAAAAAAAKAmsTCA2oRdRlUV1kniWNuZ6vnzfd4/Le/leUUsbNE0FgYAAAAAAAAAAAAAAAAAAADQD7EwAHZEVdypbiBoInEo8bSaJnI/7J0ertv8ttXLD/qOhU3pHvRcAgAAAAAAAAAAAAAAAAAAgG2IhQHUlXsOu/S9/b11HKEpKZJ1//sj7npzxIVPjD1JDe479kXLZ8DszOrli75jYQAAAAAAAAAAAAAAAAAAAAD1nB57AACoZweiVkcXIu78+og/e/2l16eujrjjpyI+80XjzrXOVCN1Uz3undfDdauKhR2IhQEAAAAAAAAAAAAAAAAAAABlODX2AAC7Q1xoVFVxp5S2W79L73rNQ6GwiEvxsLe+NOLTH+5/361N9b7ek+MWPXtI3WfBsnlFLGzRdyzMtQMAAAAAAAAAAAAAAAAAAADqEQsDKEaLcMxNz+p+jGJVnZ+09HNE7/zeK5flw4gP/uSAQzQ9DxMNFolscdlsTSzMfQIAAAAAAAAAAAAAAAAAAAAUQCwMoLYCozHXPX7sCQpQQCTsssXZ1cvf/X3DzkENBX6f2ayPeNe8IhZ2dCHigXu7399lQmQAAAAAAAAAAAAAAAAAAABATWJhALtsUrGZXT7WgoJmyyZ1D5001ePeZy2/Z7OKWFhEdQBwlcl+l+oo+BkIAAAAAAAAAAAAAAAAAAAAO0AsDKCu3kMwbbbf40y3Pa+/bbdRdf5TevjP6g10Ok6xNp6HZRM5L8uEnXZUD9dtdkv1ewcNYmGNuQcBAAAAAAAAAAAAAAAAAACAesTCAHZZn8GjW76kv223UnWsTeNYYyh5xqkGi/bluPflOLrQ8nt21bUR19y0+r2Du9uPwwnuUwAAAAAAAAAAAAAAAAAAANiGWBhAbT3HTlqFv/qcaVf+E1FyiGsH3PO2sScYiXjRburpus3PrF6+ONvP/iLCPQgAAAAAAAAAAAAAAAAAAADUtSslGABWmlJsZtOxboiGtYqxdSQNGTRruK+739zPGKUb836gH9t8z2ZjxMKmRNQRAAAAAAAAAAAAAAAAAAAAtiEWBlBbgXGhXoNHhR1v1bEOGuJqq+BYGOySvp55VbGwgx5jYYJ1AAAAAAAAAAAAAAAAAAAAQE1iYQDFaBOOmVJspupYxbFoY0rfnanY4lkwr4iFLXqMhQEAAAAAAAAAAAAAAAAAAADUJBYGUFcWFxrXplhYydGwgme74WljTzCSffk+78txjGxWEQs7EAvrRCr4GQgAAAAAAAAAAAAAAAAAAAA7QCwMoLYSozwlzlSqEc/VkKGcpvv6jC/oZ47Sif/tqJ6u2/y21csXfcbC3IMAAAAAAAAAAAAAAAAAAABAPWJhAKVoEy+aUvCo6liHDHHto3w09gQjmdB3Zyq2eRbMz6xefv6jEUcXam7EPQUAAAAAAAAAAAAAAAAAAAD0QywMoLYSQzB9zlTa8VbNswuxsIJnFAtjp/R03WYVsbCIiMW5fvbpHgQAAAAAAAAAAAAAAAAAAABqEgsD2GkTis3kimNN6eE/qzfQ6TjNDBkLa7ivqcbCqu4ndtgW37O1sbCz7bcLAAAAAAAAAAAAAAAAAAAA0AGxMGC6msaCeo8Ltdi+4BHbyodjTzCSPfnuTO0Z0NfxXntTRDq9+r2DnmJhU7t2AAAAAAAAAAAAAAAAAAAAQGtiYcB03feHY0/QgSnFZqqONQ06xf45GnuAkezLd2dfjqMLWzwL0qmI2a2r31v0FAsDAAAAAAAAAAAAAAAAAAAAqEksDJiuxUcartB3lKfN9qcUCtoUCys4GpYKni0fjj0BNNDjM29+ZvXyg75iYVN6fhf8DAQAAAAAAAAAAAAAAAAAAIAdIBYGTFfag0dg7jE20+e226iaJ9WMhY16PEOGchruKx/1M0bpSru/W9uX4+jAtlG+WVUs7O7ttku4TwEAAAAAAAAAAAAAAAAAAGA7e1DKAWiraVimxNhJiTMN7fg6bhsK2hsN74mpxsL25buzN9Gzuno83nlFLGxxtqcdTu3aAQAAAAAAAAAAAAAAAAAAAG2JhQHTVVpcqlX0Z0qxmU3HWtj1PKm0e+2kfDj2BOPYm8jWvhxHF7b8ns2GjoVNScHPQAAAAAAAAAAAAAAAAAAAANgBYmHAhDV8BO5NXGhXVZ3/tPSz6fpDKDiUk4/GnmAkvs8sqYqFHdSMhflvBAAAAAAAAAAAAAAAAAAAANATsTBgulLBAae6phSnqTrWy9dxH67nKMTCdtu+HEdNfT7z5hWxsEXNWFhTU3p+AwAAAAAAAAAAAAAAAAAAAFsRCwOore+wS5vt9znTroRs0tLPEg05W8Prlg/7GaN0+xJq2pfj6MSW37NZRSzs4qciLty/3bYBAAAAAAAAAAAAAAAAAAAAtiAWBkzYPjwCpxQK2nSsJcfCCpaPxp5gJPvy3dmX46irx+Od31b93uJsDzuc0rXzfAYAAAAAAAAAAAAAAAAAAIBt7EMpB6Cd1DBect8f9DPHNvKUYjNVx3p8HTdezxHPVdN7bRtN7wmxMPbFtt+z2a3V7x30EQubEt83AAAAAAAAAAAAAAAAAAAA2IZYGDBhDcMy7/2hfsZ4UJuYyoQCLFURrAcDQQMGuRobcramsbDDfsYo3d6E9vblOGrq87pd/ciI049c/d6ih1jY3tyDAAAAAAAAAAAAAAAAAAAAQN/EwoAJaxhwWpzrZ4xtiM3EQ9ex5FhYyY7GHoBteAac0MEzYHZm9fKDHmJhk+L5DAAAAAAAAAAAAAAAAAAAANsQCwOmK+1DvKTHUFBxEaJN82x4f9TjGfJea3icR4f9jFG80u7vtvblOOrq+XjnFbGwRR+xsKldOwAAAAAAAAAAAAAAAAAAAKAtsTBgwgqLhbWKWU0pNlN1rGnD+xPT+D466mWM8rlf9k8Hz/TZNrEw9xQAAAAAAAAAAAAAAAAAAADQD7EwYMIKi4W10SowtqOqjjUdX8dccPQqFXyvlXze+rQv3519OY7aej7eeUUs7KBOLKypCV27kp+BAAAAAAAAAAAAAAAAAAAAsAPEwoDpSqU9AtuEYwqNzQwaMLocoSn0XAyu4XnIh/2MUbx9uV/25Tg60EWQalYRC1v0EQubkMlF7QAAAAAAAAAAAAAAAAAAAKBbpZVyAIbTRViGAW2IzWyM0YwZqxnwXmsa5clH/cxRvILiRZ/+8BYrF3Qc+2BeEQs7uHvYOQAAAAAAAAAAAAAAAAAAAABOEAsD2Gl9hoK22XYfc1VtM214vwRDhukanof7fr+fMUrXNKrWp3t/b+wJdkff121WEQtbfKT7sF5J9yAAAAAAAAAAAAAAAAAAAABQNLEwYMJKewS2CMdMKTZTdaxpF2JhhbvwibEnGEFJ98sWMbkpPQM26iDKN6+IheXDiPMf2377U5WGDCYCAAAAAAAAAAAAAAAAAADA/imtlAMwnKbxkutv72eOrRQaCho0YHR8HfPRhs+NeK4GDeW0OM6z/6f7MYpX0HcnbfPHsYKOYxA9H++sIhYWEbE42/HOpnbtAAAAAAAAAAAAAAAAAAAAgLbEwoDpahq0etxX9jPHVkqNzfQx16ZtlnouIh4Mmg2hTajtrl/ufo7SDRq022TImNw+6+A8zm6p3s5B17EwAAAAAAAAAAAAAAAAAAAAgHrEwoAJaxgLOnVtP2Nc1iZeVFTwqGeVx5o2vM9GD9w39gTTlrb549jU7vuej/fU1RHXPmb1e4uuY2FTu3YAAAAAAAAAAAAAAAAAAABAW2JhALWVGHbpc6Zttt3HXBXbTKnHfXYlbf5IZ0o+DyUp6DylLe4PkbyHbHMeT5qfWb38YFMszLUAAAAAAAAAAAAAAAAAAAAA+iEWBkxY07BLiSGYEmcaWs1YWN9RpXXb7ypiVIt7opaiIlvb/HGspOMYwBDXbVYRC1tsioU1VNQ9CAAAAAAAAAAAAAAAAAAAAJRMLAyYrqahlt7DLi22X2psppe5Ro6BbTT2/o+1Og9DxsxKUcj1ihg4JrfPOjqPVbGwg45jYZPiHgcAAAAAAAAAAAAAAAAAAIBtiIUB1FZQXOhBJc7Uk6oI1uXQUj4abpZVRo+VbWGSsaqSrtc2fxwr6TiGMMDxzitiYYuuY2FTu3YAAAAAAAAAAAAAAAAAAABAW2JhwIQ1DbX0HXZps/1SYzN9zFW1zbTh/U3rd2VdrGzIGFep90RhSoq7bRNrK+k49sVsqFgYAAAAAAAAAAAAAAAAAAAAQD1iYcB0NY3slBjl6XOmEo93pbqxsJ6tPV9iYeUp6Txtc3+UdBxj6+h7Nq+IhR2IhQEAAAAAAAAAAAAAAAAAAADjEAsDqE2Up74+ztWGbY4eNxt7/9sYMmZWipKuV0mzlG6AczWriIU9cE/E4fkOd+S6AwAAAAAAAAAAAAAAAAAAAPWIhQET1jDU0neMqtX2JxSbqTo/6XLoauRzkY+q30sDxrha3UcTjIWNHpfryr4cRwe6+p7NK2JhERGLc93sAwAAAAAAAAAAAAAAAAAAAKABsTBgwppGdkqM8pQ4U/QUYqraZt1YWN/nat32h4xxFXpPFKeg87TN92Vvomc1DXG8szWxsIO7u9vP1K4dAAAAAAAAAAAAAAAAAAAA0JpYGDBdjUMtBYZdxGbiwRBXPhp3jBLvj7rSkDEzurXD913nOrqPr7kx4tTVq99bnK1ez/N4Dc8YAAAAAAAAAAAAAAAAAAAA2IZYGEBdvYdgWmz/4K7ux3jQNsfbx7natM2RQz1rY2VDhnIEi+op6TyVNEvpBjhXKUXMzqx+b10srDHXHQAAAAAAAAAAAAAAAAAAAKhHLAyYsKahlgLDLhfvHyBiVoiq40xp/fub1u9MIdeh1XEOGTMrxN58b/blODqQOryPq2JhB13GwgAAAAAAAAAAAAAAAAAAAADqEQsDJmwPYmEREff9wdgTrNDHuaraZtrw/kDWxae6jBhtJBZWT0nf5y1m2ZvoWV0DHe+8Iha26DIWNrVrBwAAAAAAAAAAAAAAAAAAALQlFgZQV+9Rnpbb/9NXdzvGzjkOXY0eTTta896AMa73/kjzdQaNmZViX0JN+3IcXejwPp7ftnr5QZexMAAAAAAAAAAAAAAAAAAAAIB6To89AMNIKV0dEc+JiM+MiNsi4v6IuCsi3pFz/mDH+3pSRHx+RDw2Ih4ZEXdHxIci4s6c84Uu9wVbaRz/KjTKk9dFqkbSS1htwzavvz3ik+/pYb81HV0cb98nnf3V5uvMbu1+jtL1Hv9roKRZuGR2ZvXyRYexMNcdAAAAAAAAAAAAAAAAAAAAqEksbCQppSdHxBdExLOPfz4zIq4/8ZEP5Zyf2MF+bo6IV0bESyLiporP3BkRr845/9yW+3pRRLw8Ir644iP3pJReHxH/Juf80W32Bd3Yk1hYb3MVdrxVYZ2ULv284ekbYmE9H8+536h+76jwTuKpa8eeYASF3d9tTS04NdTxzitiYQcdxsIAAAAAAAAAAAAAAAAAAAAAahILG1BK6bkR8R1xKRC2MtzV8f6eFxGvjYhbNnz0joi4I6X0kxHxzTnnTzXczyMj4kci4qUbPnpTRHxLRLwwpfQNOec3N9kPjK7vSE3b7RcZC+pjpqptph721cK9v1/93mGjx+oIjsYeYAQlfW+2maWk4xhbh8+CWUUsbHH20jM3FfLcAQAAAAAAAAAAAAAAAAAAACZBLGxYnx8RXzbEjo7DZG+IiGtOLM4R8faIeH9EPDoinhERjznx/tdGxKNSSl+Vc65VjkkpXRURr4+Iv7f01l9GxDsi4uMR8ZTjfV0ua9waEW9MKX1pzvk3GxwWdKxpZKfUKE+pcw2lkGjPVbPq9y5+erg52qj3yN8vRUb22tiX46hroOOtioUdHkRc/GTE1Y9a8ea+/DcFAAAAAAAAAAAAAAAAAAAAKM2psQcgIiLOR8T7utpYSunxEfHz8fBQ2Fsj4mk552fnnF+cc/6yiHh8RHx7RFw48bmvjIjvbrC7V8XDQ2EXIuKfRMTjc85ffryvZ0XE0yPit0587tqIeENK6bYG+4JuNY4F9R12abv9EoMzfcy07TZ7Pk+nr1uz64v97ntrJd5DU+L8dyJ1GA6cV8TCIiIOzna3HwAAAAAAAAAAAAAAAAAAAIAaxMKGdyEifi8ifjQivjkinhUR10fEN3a4j1dGxI0nXt8ZEV+ac37nyQ/lnM/nnP9jRLx4af2Xp5SesGknKaUnx6XY2ElfnXP+/pzzA0v7+pOI+Dvx8GDYZ0TEKzbtB4rROC42kL7m+tjv9LPdtqqO88FA0MjX54anV793898cbo428tHYE4yg0O9zU0elh+i6NtB1m91a/d6iq1jYntyDAAAAAAAAAAAAAAAAAAAAQO/Ewob1uoh4VM75GTnnb8o5/3DO+e055wtd7SCldHtEfMOJRQ9ExMtyzouqdXLObzie7bJro17E6xURcfWJ16/NOb9xzX4OIuJlxzNd9o+Oo2Mwgn0JtfRwHIeLiLvf3H79XgJmVdtMFcsHdup09XunrxtujjamGAsrKf63zSz3vK27OXZeh8+C09dFXP2o1e8ddBULAwAAAAAAAAAAAAAAAAAAAKhHLGxAOed710W7OvI1EXHVidc/n3N+T431/u3S6xenlGZVH04pzSPiRRu2cYWc87sj4g0nFp2OSzPDCJoGevqOC7Xdfg9z3fWm7rfZm0JiYWuDTwWFqVaZYiys9GtS171vH3uCYQ0ZeZudWb180VEsrKRgXe+mdKwAAAAAAAAAAAAAAAAAAADQPbGw/fOCpdc/VmelnPM7I+L/nlj0iIj4sjWrfHlEXHfi9W/lnP+01oRXzvTCmutBtxqHWgqNnfQRnHnvD225gT7O1aZtboiG9R7mKfT+qGWXZ2+rpGPeYpZHfXZ3Y+y8jsOB84pY2MHd3e4HAAAAAAAAAAAAAAAAAAAAYAOxsD2SUjoTEZ93YtHFiHhrg038+tLr56357FdsWHedt8Sl2S57Rkrp1gbrwzh6j021VepcHas6/6njQFBra65DsffOsXw09gTDK/2a1HXd48aeYGADXrdZRSxscbajHezJPQgAAAAAAAAAAAAAAAAAAAD0Tixsvzx96fUf5Jw/1WD9O5deP63Bvn6r7k6OZ/rDBvuCnjQNtfQcdmkdL+pjrm23OeRMacP7A1l7/UqPAk0wFlbSNdkmXLYv0bMudB0OrIqFHXQVCwMAAAAAAAAAAAAAAAAAAACoRyxsv3zO0uv3Nlz/fRu2d9JnD7gv6ElhsbC2ph4L6joQ1NoOX4dJ3kNTPGYamVfEwhYdxcIm+b0DAAAAAAAAAAAAAAAAAAAA2hAL2y9PXXr9Zw3X/9DS689IKd24/KGU0k0RcdOW+1r+/O0N14fhFRt2KXCuPs7V1tvs+Tzlo/H2vbV1s++por7P28xS0nEMYMjrNr9t9fKDqljYxK4FAAAAAAAAAAAAAAAAAAAAMBixsP3y6KXX55qsnHO+PyIWS4tvqLGfT+ecP9VkX3HlbKv2A/1qHJ3pOwTTdvtTCdRUHWcadIpqa65DUWGqFdaGzvbUhY83X6fI61jiTGPp+FkwO7N6+flzEUeH3e6Lhzi3AAAAAAAAAAAAAAAAAAAAcIXTYw9Apx659PqgxTYOImJ24vX1Pe7npFX7aSyldEtE3Nxwtad0sW92UcPITpGhoOhnrq232ce5KjwWtvacFXrvPKj0+XrwrteMPcEJEzz/bT1wz3D7mlfEwvJRxPmPRsxv3XIHrvtKP3064h8cRiRNYwAAAAAAAAAAAAAAAAAAALhMLGy/LEe8Fi22cRARN67ZZpf7WbfNtr41Il7R0bZgSc9hl9aBrokHZ9JxLOyGz4n4izdUf6732NsOX4d8NPYEw7vnd1uslKOYON1lpUYM+/LBn1rzZsfXZlYRC4uIWJztIBZGpXe9JuKv/dOxpwAAAAAAAAAAAAAAAAAAAIBinBp7AHrVpiBS8jrQrcPlZt0GH/yJfubYVomxoD5m2rTN27+1+302sma+Eq/RSVOMhZWk9PujJB/+xeH2de3NEanij8oHZzvYgete6e0vH3sCAAAAAAAAAAAAAAAAAAAAKIpY2H65f+n1vMU2ltdZ3uaQ+4F+nf/o2BN0ZCrBmarjTJd+XPe4iNu/bbBprrA2+FT6NSp9vkIUGfUqcaYepdTuvTZOXXUpGLbKootYGAAAAAAAAAAAAAAAAAAAAEA9p8cegE6JhUX8QET8TMN1nhIRb+xo/+ySw/NjT7CkbfSnxFhQHzNtiIVFRDz7+yLe85962HcdOxwLy0djT7Aj+rqO22y38Hura2ngzu3sTMTiI1cu7yIWVmR8DgAAAAAAAAAAAAAAAAAAACiRWNh++fjS65ubrJxSemRcGfG6r8Z+rkspPSLn/KkGu7ulxn4ayzmfi4hzTdZJKW3+EHtqT0ItvQRndujcnPwOpxRx6pqIowdWfLDvY9qhc7ZMLIydsS4W1sN/z+dnIu77/SuXH3QQCwMAAAAAAAAAAAAAAAAAAACoaV1xgd3znqXXT2i4/vLn78k537v8oZzzxyJieflnbrmv5dmB2kqMVPUwU+0o2kgBwHXz9RJ061Lp85Wir/O0xXaLv7c6NnTgc3Zm9fJFF7GwiV07AAAAAAAAAAAAAAAAAAAAoDWxsP3yzqXXT224/pOXXv/JgPta3h70r7jITtt5SjuOvlQd50hxsCusuw6FX6N8NPYEUNO6P7r28CyYV8TCDlbEwor7bwoAAAAAAAAAAAAAAAAAAACwL8TC9ssfLb3+3JTSdQ3Wf86G7a1774vr7iSl9IiI+NwG+4Ke7EnYpcRATS8zbRsL6/s8FXgdahMLq6Wv79pW293l+66FNHAccFYRC1vc3cHGJ3btAAAA+P/s3XmcW1d9///3kWbRjD2O7Ti2Yzv7bjshJJCNAGEPhS8Uyg79krIV+m2hv/JtS6Bl+9JC+4PyZSlbCVspEAiEQCgJJBAITsKSOHHikMRZsOPE+zr7jKTz/UOzSBpd6epenXuPRq/n4yHP3HPvPfdzF8ka6egtAAAAAAAAAAAAAAAAAAAAAAAAIDLCwuYRa+0OSZvKmrokXdxEF5dUTf+4zrLXNVi3nqeqVNu0jdbaXU2sD6DcyFYHnbZRiE11eFDSYULT6gY+eX48fQyc85KPx8nHmlxK+KlrUFjY6M5k62h7nXadAgAAAAAAAAAAAAAAAAAAAAAAAAAAAADQWoSFzT9XV03/WZiVjDGnSzq/rGlY0k/qrHK9pNGy6Qun+gjjsqrp6pqBhHgWXhI1sOnw/a2toyUcHFvvA63q1Od97cW0C+hwvl8fHjH1nro6OI59AWFhk4ek/GjteQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC1GWNj881+SCmXTLzXGnBJivb+vmv62tXYsaGFr7Yikqxr0MYcx5lRJLylrykv6Roj6AHS8oCAgk2gVweoEFW27Utp7W3KlNMsWGi8DeRnq5X0QXYstPSd4nsm2fnt9RwfPG9sVr+9OO3cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAywsLmGWvtFklfLWvqkfQVY0wuaB1jzIslXVbWNCHpAyE2935Jk2XTlxljXlRnOzlJX56qadoV1tqHQmwLaD2CWhxycWxjhoW5Pt+N+v/Zc6T9G93WALecXUM8FoW24pnB8zJdrd9ebmXwvLGdrd8eAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABADYSFJcwYs8YYc3z1TVJ1GkVXreWmbssabOZ9kg6UTV8k6QZjzOlVtfQaY/5K0neq1v+YtXZro32x1j4s6RNVzVcZY/7SGFMeCCZjzBmSbpyqZdo+hQslAxzxLaDHt3rahKkOCwsZHtZyDc5ffkh6+EvJlNIsgvPaWKedu4D7d6andntc3YukbEDe6mjcsLBOO3cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCqrrQL6EC/knRciOVWS3okYN5XJV0WtKK1drsx5qWSrpc0nZ7xFEn3GmNul/SwpCM/q+KTAAAgAElEQVQknSPpqKrVr5X0jyHqm/YuSeskPX9qulvSpyT9ozHmDkmDkk6c2lZ5wseEpJdYa3c0sS1gnvMoOCZueJSL8CnfA63C1PfAp6Unfcp9LU3z/Nh6w9FxinVtd9q5C9jfRae52ZwxUm6lNPyHufPG4oaFAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhENY2Dxlrb3JGPMSSV/RbCCYkfSkqVst35T0ZmttoYntFIwxr5D0RUmvLJu1XNKlAavtlvR6a+3NYbcDuOFZyI7vYVipCzo+JqA97Pqt0sbnj2sP7cIWA2Zk3G0zKCxstDosrNn7Efc7AAAAAAAAAAAAAAAAzD/5gtXeIWn3oLRnULrkNCmbCTvODwAAAAAAAAAAAAAQhLCwecxa+9/GmPWSPqBSkNeSgEVvk/RRa+13I25nSNKrjDFXSXqnpAsCFt0v6UpJ77PW7omyLWB+m0/BMS72JWxYWEqDigJDjNrBfLr2XHJ1nGL023FBbwH7axze7/tW1m4fqw4LAwAAAAAAAAAAAAAAADrTll1Wf/yZonYflvYNV87b9bGMjhpIpy4AAAAAAAAAAAAAmE8IC0uYtfb4hLe3W9LbjDHvkPQUScdJWilpWNJjkjZaax9p0bauknSVMeYESedIWiVpgaSdkrZK2mCtnWjFtoCW8C5kx7d62oTLkKCmtPP5a+faE+TdY0YHCgzly7jbZs5RWBjXEwAAAAAAAAAAAAAAAOaJ/h7p9ztqz9s9KMLCAAAAAAAAAAAAAKAFCAvrEFMhXT9PaFuPSGpJABngVoSglslBqdvRqBWvgmPi1uJgX7w6PrX4Xl8d3h/b+S7O8e+0cxewvy5DA/sCwsJGY4aFAQAAAAAAAAAAAAAAAPNEvTCwXYeldauSqwUAAAAAAAAAAAAA5qtM2gUAQFvZdZPDzjst9KdZQccnbEiQ4+MbNnBrbLfbOiLh2gvHw+PUaUFvgfvrMCwsFxAWNhY3LKzDzh0AAAAAAAAAAAAAAADmrZ4uo8X9tec9+9+Ksp02zgkAAAAAAAAAAAAAHCAsDEAHizD45I6/bn0ZM+bRYBgXA3vChgQZh6FBdYXc5xue7raMSObRtRdWpiftCmYxEK4JxdrNxuFT2r6AsLDRnZy7sDhOAAAAAAAAAAAAAAAA897ygeB5X7uV8SMAAAAAAAAAAAAAEBdhYQDQDFtw2HfEwTC55a2to92kFg5WLeT5O3yf2zKi6MQgn4FTI6zk43HysSaHwoYGtlIuICysOC5NHnK3XQAAAAAAAAAAAAAAAKCNPLAreN7VGztsnBMAAAAAAAAAAAAAOEBYGIDO5V1AUtR6fAnLKufi2Mbs0/X59u56akY7154gZ+eY4x9eCmFhfQFhYZI0uiNGxx103r0JdQQAAAAAAAAAAAAAAIAr739R8BiRHXwnHwAAAAAAAAAAAADERlgYgA7mW1CLT2Fhvh0bKXxIUFqhNJ4cs+5FaVfQJjw5X7HNl/0IyRZrtxuHT2lzK4Lnje10t935pK3DFAEAAAAAAAAAAAAAABDGuy4NHrs3nk+wEAAAAAAAAAAAAACYpwgLA4CmOAyiihqmYtIKx6rHQTBM0PHxZv99CcOJ8l+7L7X7ztVxitFvx4UwpfA4kM1J3YtrzxstDwtr8lx03LkDAAAAAAAAAAAAAADAfNbTZfTRl9cexzM+mXAxAAAAAAAAAAAAADAPERYGoINFCWpxGe4StW9fwrLS4sn+exP8E6EOb2pPUifu8zwQeK06fhzoO7p2+9jO2u0AAAAAAAAAAAAAAABABzqir3b7eD7ZOgAAAAAAAAAAAABgPiIsDAC8MY/Ci5yET8Xt0/Xxbefz1861J8nRcYp1f+m0c1es3WwcP6XtW1m7fTROWFgnnbtO2lcAAAAAAAAAAAAAAIDO1dtVu52wMAAAAAAAAAAAAACIj7AwAJ3LSaBVDD7V41MtM4JqMg2mk+LLMYtShy+1JyjKNd5W94t5KvAcOL7f5wLCwsbihIUBAAAAAAAAAAAAAAAA80tvV+1xPBOEhQEAAAAAAAAAAABAbISFAehgvoXs+FZPHA72JSgkyKQVDlbFyyCpkNq59nmB4x9eMaA9pbCw0ThhYZx3AAAAAAAAAAAAAAAAzC89XbXbxwkLAwAAAAAAAAAAAIDYCAsDAF9EDmzyJCwrNWH333UwjyfBP5GuI09qT9Q8OU6dFvQWGBro+CltX0BY2FicsLBO0mHXKQAAAAAAAAAAAAAAQIfqJSwMAAAAAAAAAAAAAJwhLAxAB/MtvMS3euJwsS8h+zRphae18/lr59rngU4L/Iol6Fg5vt/nHISFcd4BAAAAAAAAAAAAAAAwzwSFhU0WpGKR8TIAAAAAAAAAAAAAEAdhYQDQDKfhLgyEqS+lkKCwvAn+iVCHN7Unab4cJx9rcsgWa7e7DgnsCwoL2yMV+drThry87wAAAAAAAAAAAAAAAKDVeruD500WkqsDAAAAAAAAAAAAAOYjwsIAdK5I4SUOA0+ihqk4CcmJuZ8ugmGC+nQdEhSaL2E4nl3XvvLq/h+n3047d0H76/gpbS4gLExWGt/jdtsAAAAAAAAAAAAAAABAm+jJBs8b5zv5AAAAAAAAAAAAACAWwsIAoCkug3k6LfSnVUKGhbkIMEuyf6fauXZ0lpRCA/uCwsIkje4s/Wz6MYD7HQAAAAAAAAAAAAAAAOaXTJ1hPG09xA4AAAAAAAAAAAAAPNCVdgEAkJ4II09cjlaxxYgrOg7JicTFcQrbZ1rHI+r5azFGVIUU5Ti5OrYx+h15rHVltIPAx0nH9/ueIyWTlWxh7ryxnW63PS/wuAQAAAAAAAAAAACg/RhjTpB0tqRVkhZK2iFpq6RbrLWTKda1VNKTJJ0gabFKb5ofkrRd0m+ttbyRDSA19b7zjxEkAAAAAAAAAAAAABAPYWEAOlekUCWHw1UKI+76nheCjr0nYWntHNLVzrV3ukevks79eNpVJCjgWjUZt5vNZKXccml0x9x5oxHHWHO/AwAAAAAAAAAAAAAvGWNeJulvJF0YsMh+Y8yVkt5rrd2bUE1G0isl/S9JFzdYdqOkz0n6krU2n0B5ADAjU2c4X5HhMgAAAAAAAAAAAAAQi+NkBQCYbxyNVikWoq/bvah1dcyIuZ8uQnCC+qz3VYSVHbSslHT6DytCHYWx1pfhuyjXqKtwpzj9jmxvXR3tIPBYJRAamFtZu32sRoAYAAAAAAAAAAAAAKDtGGMWGmO+Kek7Cg4Kk6Slkt4m6R5jzPMSqGulpBslfVMNgsKmPFHS5yXdZow52WVtAFCt3nA+vlsPAAAAAAAAAAAAAOLpSrsAAEhPlLCgYuvLkKR9v4m+bqa7dXW0perRRQmEBtXky0imCHUcuKMUGJbNtb6cecXVOfbl2mkDgY/BKYaFje6M2GEnnfdO2lcAAAAAAAAAAAAA7cgYk5V0paQ/qpq1R9JGSYcknaRSENf0m9QrJF1jjHm2tfZXjuo6StLPJZ1eNWtyqq6tkoqS1kg6V1L54I9zJf3cGHOxtXari/oAoFq9UTyEhQEAAAAAAAAAAABAPJm0CwCAtuIqLKw45qbfyEIE7/QdXWemi1E9no8UaveRTNu+m3YFCfPpfPlUi+8CjpVJ4Clt0GPeWNSwMAAAAAAAAAAAAACARz6iyqCwSUl/JWmNtfZ51tpXWGvPlbRe0q1ly/VK+r4xpt5Amjj+r+YGhX1uqq7zp+p6lbX2YklHT+1H+QCnNZI+76g2AJjD1Bl6yCgpAAAAAAAAAAAAAIiHsDAAHSzK0BNXw1ViPBw7CakK0eczfupgu/UE1RQi2CwRngxlino93PXu1tYxLzk6x+0eNJekoMDGeqMMW6VvZe320ahhYZx3AAAAAAAAAAAAAPCBMeZESe+oan65tfbT1tqJ8kZr7b2SnqXKwLAjJb3PQV3HS3pNVfOHrbVvs9burl7eWnvQWnu55u7L84wx57e6PgCopW5YGMNlAAAAAAAAAAAAACAWwsIAdK5II08cjVYxcR6OUxpB07OkzkwHNQWdr9AhQa6PU5uPZBrZlnYFCfPpfPlUi+9SDA3MBYSFjUUNC+sgjPQEAAAAAAAAAAAA4Lf3Seoum/6KtfaaoIWttaOSLpNUHiT2xqnQsVb6H1XTuyR9IMR6/y5pU4O+AMCJTJ1hPEWGkAAAAAAAAAAAAABALISFAUAzXAWe+BYWFmY/Q4d0uVZVR1p1eROG40sd85A357iTBYUGJvCUti8gLGx0OiysyeuD6wkAAAAAAAAAAAAAUmeM6ZP0sqrmf2m0nrX2AUnfL2vqkvSaFpYmSdXhYz+x1o43WslaayX9sKr5lJZVBQB11Bu9x3AZAAAAAAAAAAAAAIiHsDAAHSzKyBNXo1ViPBz7OILGSU0e7mcFX+rzpQ7PRbpGXR1bzllothgwI4GQwFxAWFh+UMoPu99+W+MaBwAAAAAAAAAAAOCt50nqL5u+1Vp7X8h1v1w1/dLWlDRjQdX09ibWfbRqeknMWgAglHrf9ckIEgAAAAAAAAAAAACIh7AwAGiGq2CueiNkGkprCE0C4TwVgvYzZB3OQ9UYytRePDpfPgb+eSvgWJkEntIGhYVJ0tgu99sHAAAAAAAAAAAAALhwadX0TU2se7OkfNn0E40xK2JXNGtn1XSuiXWrl90fsxYACKVuWBjDpAAAAAAAAAAAAAAgFsLCAHSwKCNPii2voiTOw7GPI2gc1BQ0UmjO6KKkQ8ym+DKSyZc65iVXx5ZzFlrg9Z3A/b6vTljYaPX47DA47wAAAAAAAAAAAADggfVV07eGXdFaOyzp7qrmdbErmnVz1fQ5Tax7btX0b2PWAgChZOoM47mf7+MDAAAAAAAAAAAAgFgICwPQuaKEKrkKYjIxHo5TC4dKOpQrxZCgUAj+aS8+nS+favFdUGBjAo8DXQulbH/teWNRwsI6SRtc42O7pb23SYWJtCsBAAAAAAAAAAAAkKwzqqYfbHL9h6qm18aopdqNku4vm36qMeasRisZY1ZL+pOypklJ32xhXQAQqN4onlf/R1EHhq0Gx6wsX4oJAAAAAAAAAAAAAE0jLAwAmuJhWJiXISw+1uSaL/vsSx3zkKsBagx8Cy/oWMV6DA3JGKlvZe15o1HCwjjvXigWpNveKH1vhfSTC6XvHik9fn3aVQEAAAAAAAAAAABIgDFmqaSlVc3bmuymevlToldUyVpblPQGSeNTTRlJVxljjg9axxizQtL3JZV/G9aHrLWPt6ouAKinWGdIzJ5B6cj/r6gj3l7U2vcW9Y1fB31xIAAAAAAAAAAAAACgFsLCAHSwKEEthIXNMPW+A9CBwJCgsHU4Pk7eBD75UofnIp0vV8eWcxZe0ADBhB6PcgFhYWNRwsLghQc+KT38pdnp/JD0yxdLY3vTqwkAAAAAAAAAAABAUhZXTY9Ya4eb7GN31fQRMeqZw1p7i6QXStoz1XSKpE3GmI8bY55njDndGHOaMeZZxph/lrRZ0pPKuvi8pP/TypoAoJ5Do+GWu3+X9KdfsvrJZsZOtZNivTS4Jvsp1OjLlo3rKxSt9g1ZWVu6HRypve1C0VasV95XrXYAAAAAAAAAAACgnXWlXQAAtBUfBw4UCw46jbmfTo5TUJ9VIUFJh5jN8PDaQGtZF/c1iWunCbFDA2PqCwgLG90pLTi+ub58/P/EFZ/39cEvzG0rjkuPflc65c+TrwcAAAAAAAAAAABAkhZWTYeMuKm7zkDEWgJZa28wxpwh6a8lvVbSCVO//3Wd1e6T9F5r7XdaXY8xZrmko5pc7aRW1wHAT8cfGX5Za6VLPxH05YElX/yfRi95otHopNSTlY5cKI3npV2HS8FkB4al3YPSCctKy69aLO08JGUz0pbd0gUnSmuWpDWmcH7Yus/qvddYXbvJ6sBI2tW48+rzjMYnrb63sbL9lOXSW55mdP8u6UebrC67yOj4ZVJ3tvxmZn7vyVbPC771dJV+ZjOSSW3sKwAAAAAAAAAAANoJYWEAOliU8BJHgSdxglTsZOvqaErSAxNChoWlxZcwHF/q8F6E41QYb30ZcR2xNu0KEhZ03jLJbD4XEBY2tjOZ7aP1Dt9Xu/33HyUsDAAAAAAAAAAAAJj/qsPCxiL0UR0WVt1nq0yP9QwzeOEWSe+XdIOjWv5C0vsc9Q2gzS0bMDrnWOmOba3p701fs3rT1+KNiXvTU40++1qjbMaTsYZtZN+Q1dP//6K27U+7Eve++Zva19mW3dLfXjU778M/rrVc/HGbYYPFqm9ZI930gDQyMdvXqSukB3ZV9n/RSdKqI6Sr7qhsX9wvHYwQAnfOsdL61UbrVknrVxmduUZavZjQMwAAAAAAAAAAANcICwPQuaKEKtn632IXXYyBAsWJxss0Le7AhQQDq0IPLHBdEyFd856T+5riBbz1LG1dHe0g6DE4qQFGQWFhozvU/GMAjxl+4/wAAAAAAAAAAAAAHcijbx6cZYx5s6SPS1oQcpWLJP1E0j3GmLdaazc4Kw4AavjaGzJa/35XYy2b98WbrU46Svpfl0iHRqWurPSbR6ShcatzjzPaPyz9/XeLunmL9NrzjR47YHVgRNozJI1PSksWSEcukJ58gtF5x0snLDPa/LjV9gPS4Jj0snONFvRK126y+vptVo8flC45TbrkNKOf3mu1cpHRMUulE4+S7nxUOmaJ9OrzjFYtTidUaXzSqmhL4VPZjNH4pNXwhLQoJxWKUjYjjU2WhmR98me2I4LCfDBZKN1aoTooTJJueaj2slGCwqRSIOAd26afBpV+HtEnrV8lrVtttH5VKUxs/apSiCAAAAAAAAAAAABag7AwAGiKq/F9ccLCJltXRlMSfvM+dKBSWoMKfAmW8aWOKjtvkB79npTpkXqWSKM7JZOVjn25tOLpKRQU4Ti5CguLdc48Pd/OBO1vQvf7vqNrt4/tTGb7basNr1Nn4aAAAAAAAAAAAAAAPDJUNd0XoY/qdar7jMUY8x5JH6pq/p2kz0i6WdLjkoqSVkq6QNJbJD1jarn1kn5hjHmjtfarrawLACTJTo3pM1Vf9Ld2ldHgpzK66CNF3f1YGpXNdfn3rC7/Xq0xLJVt//XrucvsG5YelPTrR2zNdT5x49x1rt1UCg+rtbwk/e1VtcfTLFsorVsl9XWXAp8e3ltzMUnSS58o3b5N2rqvNP28daVj/+uHbWAwFODSoVFpw0PShocqr/0ViypDxM5cbbR2lTSQI0QMAAAAAAAAAACgWYSFAehgHn0ZaOggrBqcBRjF4eI4pRwS1Mj2a9KuwF8P/of0m7fUnrfl36WLvikd/6pka4rCx7CwOI8d7Shof00mme33razdPrYrQrhUh527dmPzaVcAAAAAAAAAAAAAwD2vw8KMMc+U9H+qmt8v6YPWznkD/Q9Tt28ZY94i6XMqDarJSrrCGPOgtXZDi0r7jKTvNLnOSZIYXAO0KTs+Kl33ddnd26XvfU4aOjgzz3z9Lum40+ess6DX6K73ZTWZt7rxPum6zVafrBGqhUp7h6RfPBBu2e9trJy+frN0/WaOMfyz63DpduN9lSFixx8prV8trVtltH61tH6V0ekrpd5uT8YFAwAAAAAAAAAAeIiwMABohrNgnjhhYZOtK6MZJuk34z0PCzuwsfEyncgWpbveXX+ZW16dfFhYlPuyq7CwTgv8iiUokCuhx4FcQFhYcVKaOJBMDUjGyKNpVwAAAAAAAAAAAADAvUNV0/3GmAXW2uEm+lheNX2w5lLR/JMq3xD/qrX2A41WstZ+wRhzjKR/mGrKSvqEpCe1oihr7W5Ju5tZxyQ+zghAaxnZj/5l7Vm3/HfNsLBp3V1Gl66XnrdOOq3wkP7qpuNVVEJfDAjAa3/YV7pdu2k2RCybkU5ZLq1fJa1fY7R+KkjspKOkbIbnEwAAAAAAAAAAAISFAehgEQJ6bKH1ZUjxwoLSCgurJ8nwo7CDCV3WNLbXXd/N8DF0as8GaTzE8TmwSVpylvt64rBBQVWxO05p3TYUdI2bhAYQ9gWEhUnS6M7m+vLx/upKJ+0rAAAAAAAAAAAAgLZhrd1njDkgaUlZ87GSft9EN8dVTW+JXZgkY8xqSRdUNTcMCivzEUnvlNQ3NX2uMeYsa+2mVtQHoLOY3lzgKCX7mctlr/68zD99W+aUJ8he/w3ZD/1ZzWX/XNL5vWfpqkUv1UeW/d1Me3+PdPYx0i0Ptb52uLVGuzWpLu3S0qbWy6qggrIz0xdrk4rW6szhu3TRwGM63L9cWrZKO7NHqW/sgD7y6AUayg5U9NFvxnXhkt3aPdqjx4Z7VLBGq7sO6YxDt+u0ZZO60TxZvx4/sSX7OS1jrE5ZbpQvSpOFWjeryQKBVnEUitJ9O0u3q+6wmh4jmeu2OmOFtG6V1cpF0vC41Xkndem81RM6ZqnRiO3WQ3ukvh6jPYPSeF46YZm0bhXnAwAAAAAAAAAAzC+EhQHoXF6Fl8QJIUprPxJ+Az30+Urhjf3CSPLbbBdju8It9+DnpCd/xm0tFaLcbxzd1+I8Fnn1OJaEgMfKpMLCequ/ELrMWJNhYQAAAAAAAAAAAAAAH/xe0kVl0yerubCw6hSSZtat5+yq6YettY+EXdlaO2yMuU3SM8qaz5dEWBiA1tvxB9k3nCd75kXS3bfUXfTs8U06e88mfWjP+2cbc/3SXbNj8ArK6EcL/0hfP+LV2tB/kd574F+16JnPV1dxQrcOPFWHM4u0b8jqzNXSCUdM6PgVXVKmS2OT0jd/Y/WN33TamKpkZW1e27ecqKMKyX3J6ruaXeEx6YMhFy3KyMiGH3l679RPY2qO37OS8urSpOmuvJW1TZieOW3Tt/xU+8wyNdaf7adbkyqt85mlbw27BzOOyu9WVkXt7Ar+Es2szatgZj9y8rqD/6WnjfxK9/eeos2963RP7zpt717T9LabNTZptHG7tHH77Jn67M1WUvfUlK36OeuikVv07r3/omcO36QeteALmi99nczL/0rm1OqnawAAAAAAAAAAAO4RFgYAPogV+OPjwBYXNQX1ybd+zfLxWgh5frZ8tnPDwhCeDQpWTCgsLNsj9R4pje+bO4+wsDq47wAAAAAAAAAAAADw1j2qDAu7UNIPw6xojFkg6awa/bXC4qrpKG9KV6+zLGItABBOg6CwQGOVX9aZVVEvGrpWLxq6drbx25+VJL28QVfjAy/SN9Z8K1odDnXbCU2anrTLaIl/3XV5okFhrmWijm0KGPdrJHUrr26bl+xo9MKa9MldfyNJ+soRf6o3rfr8nPnPG/qJfvToHzvZ9sHMEdrce4Y2967T5t61uqd3re7pXad9XX489bil/yK98NhrAucfmd+r1x36hn654Gn6fc9pGsv0zcx79tANGs4s0DGT2/XDgRfouMltum/r6dJHJalQd7snL5ce3F173jueZXTno1a/eCDcPgzkpOeulYpWunrjbPvbLjG6/PlGh0el4Qnp8Kj02EGrOx+VfvuI1eolRodHrRb3G73yyUZnrpZ+t9Xq6jukK39n9eInSEsWGC1bKD37DKM/7LM6OCKtWSKN56Xv3m5192PSkgXS196Q0VlrSmOCrbWaLJSWGRyTlvRLGVPK0Bsck/7xGqvP/aJ0H+nKSPmi9JSTpPt3SXuHpGOXStv2V+7fkn7pWWcYvfv5Rictnzv2OF+wslbq7mLcOAAAAAAAAACgsxEWBqCD+RReEqOWWEFjMfo0Sb/Z6nNYmA81wDkX97VSxymt24aCwsJMQmFhkpRbWTssbLTZcdkddu4AAAAAAAAAAAAAwE/XSXpL2fQlTaz7VFWOwdxord3ViqIkHayaXhChj4VV00MRawEA6ZxLpDtuSruKhgoNvnTwbfs/r+cO36Dt3au1Ir9L3XZSB7OLlbUFPWf4Rh1V2Ktb+s7Xzq6VWlgc0tNHbtawWaCRTL9uz52jXV3L1WMn1GdHdenQTzSS6deEurWoOKh+O6IeO1ExmnDc9KjXTkiSijL6Wf8l+vTSv9C1Ay8IrHHt+L166sgGjZte3d27Xrf3nRNq31fmd2pn18rA+aeN36+37/933dd7mv7ziNfoYHaJjszv1QuHfqwXDP23rIzypkv7s0v1i/6nasT069d9T9a+rmU6dfwBXTp0vV46+H1dPHprqHqQjlcd/rbevvLfNJKpfOrwnr0fdrbNxcVDesrobXrK6G0zbVbS7uzymeCwzbl1uqd3rTb3rtVwpvopSrr2dS3TJ458e815Nyx8tiRp+qq/r/f00P0GBYVJ0idubG784OCY9N075rZ/9iarz95Ury878/Nbv5273DV3zS7z0Z8E9/PoAensDwZ92Wt9+anVNjw021YeFCaV9m9wTPryBqsvb2h8bJYPlG5dWSmbKQWSdWWmfs+W/V72sytrZn7PzLTVXj9rAvrJVvc5vawJ109A3+V1zO1bMomP2QcAAAAAAAAA+IywMADwwnwLC0qwptBvgDqsyZc3YZ2FWcXgy7GpFulY+RgW1mk8CQs7tHlu+1iUL3EGAAAAAAAAAAAAAKTsekmjkvqmpi80xpxurb0vxLqXVU1f3cK6Hq+aPs0Y02+tHWmij+p0Gd7YBhCZefcXZV92ctplNHTqxJbAeQ9vOVXH5rc37OOi0V9XTPfaCS0tHtCaocfmLHtE8XDdvqaDwiQpI6tnj/xczx75ecMa4phUl37fe7qWFA7omPzcmiXp47v+tm4fbzvwBRelIQE5O66HHjxDly//kH7Vf5FOmXhQ79z38TnXtWtG0orCbq0Y2a1njdw0016U0bbuY0oBYtNBYr1rdV/PaZrI9CZaI9rX7sHSrTkux+q6HQdsTNhAtPqhY7XDz0xFWzZE380Fq5k5ddSqLXzoW2UbQWoAAAAAAAAAOhFhYQA6WIQ35ly9oeRjyFNDCb+5FvYYdYV4/e0AACAASURBVPSbfj5eR/PofLi6n8bq18dz7pAN+ma6BMPC+gK+fXPiQJMdddK566R9BQAAAAAAAAAAANBOrLUjxpirJP1pWfPfS/qzeusZY06V9JKyprykb7SwtE2SDkhaMjWdm6rx82FWNsa8UNLqquZftaw6AB3HrDhG+ti1su98Ydql1LV+fLPOGtukTbmzKtpPnHhYx4QICpsPupXXWeP3pF0GUnRUYa++uOOtaZdRU0ZWx09u0/GT2/TCoR/PtE+qSw/2nFQRILa5d60e7DlJRZNNsWIgfdZKk4XSzUHvLjpNrP+MCRtaFiVYzcwJNKvXd6Pws7k1muB+6tQWJliNIDUAAAAAAABgfiMsDEDnihLQ4yzUKygAJyRr/QrJcnKcgvr0Yb99qMFXvh6bKNeoq/t/jH7bMmgwhqCwMJNgWFguICwMAAAAAAAAAAAAANCu3i/pVZK6p6YvM8Zcba39Qa2FjTE5SV+W1FPWfIW19qF6GzHGVL/J/wxr7U21lrXWFqZCzN5c1vwRY8wGa23dBBhjzLGSPlfVvMFau6PeegDQiDnvOdIvx6SbfyD7nlc0t/L6C6R7bnNTWBkj6eO7/rf+ZM2VOpgt5S3miqP6wo63eTuSbV7IZqWCkxQbdIhu5XXGxP06Y+J+vWzw6pn2UZPT73tPnwoRW6vNvet0V+9Z2tF9dIrVAvBF0UoT+amJyVb33t5BanPCzQJDy6IEq5k54WTN9N04WM2ED1FrMlgtYwhSAwAAAAAAQPsjLAwAfBA78MeqtaFMYepJ+k2SmGFhHRGq1An7mCYPw8I6jQ9hYX0tCgvriMckAAAAAAAAAAAAAPCftfZhY8wnJP3vsuarjDF/I+kL1tqJ6UZjzBmSvijporJl90n6gIPSPijpdZL6pqYXS7rFGPNuSV+y1o6UL2yM6ZH0akkflbSsqq/LHdQHoAMZY6SnvVj695/JXvFB6Y6b6i9/zTaZpStmpu01/yH70b+cXaB/oDSOZnSoNP30P5aWrZK++5nINT595Fe68+HzdP3C52jM5PTiwR9qTf6xyP2hyilny1xxm2StTGZ23Ja1VrrtOmnXo9LYsLR0pdS/UFpzsnT0CVJ3j7R9i/TYw9KS5dIJ60orjo9I+3ZJx5wsZbtkjCn1NTkhZTIyXd0BhUxt8+BeqbdPpn/hTFt5CIjdv0t6YKP0yL2y2x+UOfkJ0pkXlbabyUrHnV76st6enEw2W9n/4f3S3bdKgwekxVP/tWayUiYjyZR+GlMav2ZM1e9TPxsuoxr9BfRTvkz574W89OiDpeN+1Bppcly6+xbZ266TbrteOvZU6YlPl0aGpN/eIPXkpEteIrP+QmnFMaVl7/yltPGX0vDh2QOw/gJp305pxx+knl7pRW+SWXmcdPbTpurR3HFwFdM2oL1qOuh3Sf2yOlfSueXzittUvOfbuvUHt+kruZfpW12XavXk43pd/od64znD+umdo/pQ9o16qOckAUCnKhRLt4nGi0bQ/kFqzYSONResZmZ+z9QNRIsarGbq99NU6Fvl+pkMIWoAAAAAAADtgrAwAB3Mp6CWmLVYm3x2V10JHts53+zi1YGAt9+8E+EadRXuFKtfnx7HkuBBWFiuRWFhnYRgNAAAAAAAAAAAAAD+e5ekdZKePzXdLelTkv7RGHOHpEFJJ0o6R5WDUyYkvcRau6PVBVlrtxtjXivpO5Km00sGpur6V2PM7ZIeV+nN9JWSniRpYY2u3mOtvbnV9QHobOasp8h84npJki0Wpftul73hSmnLXVI2K/OMPykFC1WNHzMvfrPMi99cWm90WMr1z1lGkvTXHy8tMzEu09MrOzYi/fIa2Xt/UwqdmpyQbvyOdHDP7DpPuLgUivTDL2nN6cfqTecfJzs6JI29SCpMStsfkk5cJ7P6JGnRUinXL/XkZL/zKenXPyn1ceI6mZe8VcotkIYPSd290jNeKm3bIvvNj5XGKfUPSHu2S7+9sRTANDkhyUojgzLPfLnsF99fuS9HHi0duVJauqIUinbXr+Id/N4+aXw0Xh9RXfRHMn/32dI5qz63xkgXPj9gxSnHnla6levNlc5HdV89vQ3LMcZIS46a21Y+vXSFdMGl0gWXNj261CxaKj3lBU2ulZIlyyunTz1b5k/+Ity6a58s88p3tL4mh7JnXaSLXyNdrFKKq7RI0umSpNdP3STpunus/uiTAeMOHTph4hGdPXaXrl70xzXnrx2/V9u7Vutw9oiEKwMATAepudHeQWqtCB0LDj8zsyFndQPRGgerza3DNO6nRlvYfSRIDQAAAAAA+IawMADwQtwX7VMIYkk6BMrrsBlPavPyGM2nN0Z8PL4dxga9M5tgWFhfq8LCuJ4AAAAAAAAAAAAAwBfW2oIx5hUq5U28smzWckmXBqy2W9LrXQZxWWuvNsa8WNIVklaUzepTKR+jnmFJ77LWftpVfQAgSSaTKYUNrX1yc+v1LWi8zFRglMn1S899tcxzXz07cypQbI6/++zs+mHqOP+5jRdad57Mh64M0ZtkXn95qOVawebz0v6d0uS4tGy1TG9u7jKFgnTf76RMthSG1ttXCngbPixlu6R9O6RfXy/lJ6UT1pVC1JYdLW17QDq0XxrcL62/UDrlCTJd3YntG9AKl643Kn4hO6d9dMJqcExavqj2o8T4pJ0KEjEaPzwo+4KjVTQZ5ex4cwU8JhVllGnheMFRk9Nvc+fqRwPP10BxSEfnd+r4iT/omPx2HVE4rKMKe7Q7u1wHsot18sRDuju3Xv95xGv1pcWv12sOXalTJx7Q+aO/UY+d1FBmgQrKaqA4pHt7z9CWnpN13OQ2veHgV9SlgiTpq0e8Tl854k+1tHhAp4/fr3PGNmpx4aCsjH7T92RNmm4NFAf1dys+MlPjx3e+U2878AVlVah4HLaSRk2f+u2o8sqqSwWNmx7d23OGPrH0L/X9gRdpKDsQuO9Zm9c/7v1nLXvuC5U/9VzlpwJ/Zn4WNLdtqr28rTDTZkvzy9vs3H6q189XLTvTVlUHALSb6cey8byL3l2OnXc7Lt+YsIFotUPHGoWfZafCzkrBZOGC2cIHq5lw/YQOfav8SZAaAAAAAADpICwMQOfyKVgpdi0e7YskN/UE9enBi8uBAUZJ8+06kLw4P7VEus+5Or5x+vXxnDsUdF8zCYaF5VoVFpaQ4a3Sls9LhzZLyy6QTnu71NV4oGVHaPTYbW3ywZgAAAAAAAAAAAAAUmOtHZL0KmPMVZLeKemCgEX3S7pS0vustXsSqOtHxpi1kv5c0hslndRglV2S/lPSp621W13XBwBIj+nqkpavqb9MNiutO7+yLZORBhaXJvpPkY45Ze6Kqxv9dwO0r74eo76e4Pm93bPjxnoGFsoeuawUrBdBK4PCJKnPjulpoxv0tNENgcusLOzSysIuSdI5Y3fqnLE79fFdf1u33/PGflez/fWHvq7XH/p6zXnPHvn5zO9/s/+TjUqXkdRvRyVpJoys107oieN36Ss73izteHPDPiRJhVFlntVcQGUailNhZHFDx4ID0WzNvhuFn9XqO1+QihV12Ia1xQlWA4B2Yq2Uty4fv9o7SC0oiKw1wWpmpi0bGIgWNVjNhOunTt/19tHwOQQAAAAAgEOEhQHoYBFe9HT2Yl3MF2BTCT5L+oXLuGFhDo/Rls82XqYcATTtydn9LEa/PoUeJsKDsLC+o1vUUQLnbvhR6adPlUYeLU0/9gPp8R9Jz7xBys79FlF3PL1O7/2X+vMf+Zp04uuTqQUAAAAAAAAAAACAN6y1V0m6yhhzgqRzJK2StEDSTklbJW2w1k5E6DfyYBFr7X5JH5b0YWPMGknnSjpa0mKVBs8ckrRH0kZr7YNRtwMAAIBKxhjZ57xS+tb/TbsUTJsYS7uCUDIZox6nw1vbcyy6tVZFWycQLUToWP3QMhu677DBaoWK9W2oQLS6oW8B+1ggSA1Am7FWmiyUbo624Kpjx31LGRM2EC1KsJqpWD8Tsu/wwWomuI5IoW+zbQSpAQAAAEBrEBYGAM1wFcxj476z0+K64u5nkgFGc14kTPhFw6GHpXs/0uRKVm7q9DCQx9cXcYtNj9mVs+PbcYFfMQQ+ViYYFtazRMp0S8XJ5LYZ1UNXzAaFTduzQdp5o7T6BenU5JOt36o//7bLCAsDAAAAAAAAAAAAOpi19hFJj6RdRzVr7XZJ29OuAwAAoFOYt/6zbH5S+sEVbRNUNa8VSVRqZ8YYZacCVHqcfKLN07HrIUwHqQWFljUVrFYzEM2G6rtR+Fn5vMpt2qZC35oJVisy3B5AmylaqTgdpNbyj564flB0H6QWN3QsKLysK2sq5levX6vvRnVUBquZ8P00uY8ZQ5AaAAAAgPAICwPQwXx6xyBuLWnsS8IvQPkaqLT9B82vY207vw/ZJA931Fpp8nCUFVteSvx+Pb1fuBIUFmYSDAszGSm3Qhppg3HX93ygdvvGdyYcFubpdXpwU9oVAAAAAAAAAAAAAAAAAAA8Z7JZmXf8m+zbPyaNjcj0LZizjLVWKhSkTEYyRsYY2ccflh68Wxo8KC1aImW7pLOeIvUtlPKTMr052fFRSWb2y3lHBqVNG6RtD0jnXCLdc6vsT78ljQ5JW+8vLbNslXTymdKBPVKuX1qwSOaCS6XBg7K3/lg67YnS0CHp+v8qLT+wRLr0ddLvfyuNj0n9C6U1J8s851VSfkLasVVad77Um5OGDksDi0t1ZLJSV7d0+89k798oHdonHdxb2sfD+2We+xqpu0fq6ZV94C7puv+Uslnp4v8hc+ZFsvt3SVvukk59olTIS9sflGSlX107e+CWrZKWHS3dd3vZATf1x43H/pJuwE/lQWq9brbgpNckWGvnhpPFCFabG1pmawaiRQ1WK87px0YLfQsRrEaQGoB2U7TSRF6acNJ7ewepVQeL1Q5Eqx9+FhysZuaGqNUMRIsarGbq99NE6Ft13wSpAQAAAHMRFgYAPogbhOVdkJaLeoL6DPtij6NjtPVbEVYqSsq2uhIPrwPJyzcV88OKdD04O76EhYXnQViYJOVWxg8LS/P+evj+9LYNAAAAAAAAAAAAAAAAAEAbMsZINYLCZuZ1VX48x6w6UVp1Yu3OsqVxxKa3r7K9p1d62otnp9c+WeYVbw9f4//8+9mJf/hS6PXqOmFtw9HARpLe88W5bTEUP/h66ac1xmmTjAN0HGNMKUgkS5BatekgtTChY6GC1eYEotm6oWW1+q5XR6EQvu8owWrl7V5+vAYA6pgOxnSjvYPUwgWiRQ1WMzNtmRp9xwtWM437aSr0rbItk2nf5zAAAACIh7AwAJ3Lq1d+49aSwjckJZ7IHnCMqutIuq7iePPreBk61UEmD0Vc0dHx9eqxyHOB3waXQlhYu7M2hcdxAAAAAAAAAAAAAAAAAACAEIK+SDZwLCkAdJ7yIDV1O9mCi04TUSzaOcFitULH6oaf1Q1bs4GhZVGC1YoVbcF9hwp9qxOslue/UQBtaPoxdTzvoneXn+tz/5nBVoSOBYefmZm2euuHDVarXMc0308T+0iQGgAAmO8ICwPQwSL8se0sWCXmH/7FCUm1v6kqFYmGH6X8h3txovl1bKH1dfjKxzCiycMRV/Qw1KvTgsaCBngEDQhxpa8VYWEpn7u7PyCd9f5ktuXjdVoYS7sCAAAAAAAAAAAAAAAAAAAQJGgMcpGUEwBAY5mMUSbjKENNUuqfZYqhWBVGFjZ0rCL8rG4gmm0YWtZMsFrlNsP3HWUfAaDd5J0+frVvkJoxYQPRgkPH6oefmdl5DfpuPljNNAx4ay70rXKe8fHzvgAAoGmEhQFAM1Y+x02/cb/haPs10omXtaSUkjB/bCf8R6GPYTOSVIgQFnbgTumoC1tfS9rhQzV5+OJBlIA3yeE16ON585QvYWG5VoSFpey+f5PWv0fKuHv702uPX5d2BQAAAAAAAAAAAAAAAAAAIEjQ2NC44+4BAOhwmYxRj9OPYHj4OaIQrLUq2uDQsqaC1WoGotm6fUcKVquow4aqLWqwGgC0E2ulyULp5mgLrjp23LeUMa0JHasdfmYq2jKBgWiNw89qB6uZ4H6a6LvWPmYzBKkBANoLYWEAOliEP5q6FrS+DEmx/4DbvzGFsDCX6zfTZ8g/wFwFPdkIrxg8fIWjsLAYjKunBD7+gRz1WvAxLKzTgsY8CQvra0VYWMrnLj8o7bxBWvX8dOtIy+ShtCsAAAAAAAAAAAAAAAAAAABBMkFhYZ02dhYAACTBGKPsVIBKj5OPWPn4+apwpoPUAkPLQoaOBYeW2ab6DhOsVlmHjRb6FmIfCVID0G6KVio6C1Jz/fe6+yC1uKFjweFlpmL9bHU/sYPVTHAdIUPfgvYxYwhSAwAfERYGAM1w9U1EbfmmZcJP7oOO0Zw/MhKuy6c/cuJcRz2LW1dHOZ+Oz7TIx8lV4BxhYaEFPgYnHBaWa0VYmAcmDia0oQ67TgEAAAAAAAAAAAAAAAAAQDxBXyRbJJEBAAAgSeVBao624Kpj56y1c8PJIoSOBQei2cBAtOq+G4WfFWrUUSjaOX23KlityEeJALSZopUm8lMTk63uvb2D1CrCzRqEjjUKP5vbj5kbolYzEC1qsJqp209zoW+V6xOkBiBNhIUB6FyRAnpcPWGO22+L64odXubiOAX12YZPpNMMh1v3D9LmD81tdxWE5+X5iXj8nZ03Xv0MLeg6DRoQ4kpfC8LC2jIkEgAAAAAAAAAAAAAAAAAAIAGZgDHIzsY8AwAAAM0xxpQCRLJSr5stOOk1CdNBanUD0eqEn80JL5vTZmsGokUNVivM6cfGDn0LClbjI2UA2s104OSEk97bP0gtbuhYcLCamWnL1A1Eqx+sVrsO07ifWvWG3MdM0Ot6AFqGsDAAHSzCEzxvw4JSeIXAm7TbsHV0wqsoIfZx6TkBq3bSG+dRrwVH11Ccx5WOe3XQk7CwXAvCwgAAAAAAAAAAAAAAAAAAAFBbJmBsaLGTxjwDAAAA7ak8SM3RFlx17FyxWApSCxs6VjP8rG4gmm0YWtZMsFqxyb6jBKtNTwNAu5kOUhvPu+jd5efH3X82PVwg2tzQsUbhZ6WfZqYtG9B39GA103w/TQSrEaSGViEsDACa4iosKOZfsi0PDIrZn5MAo7B9tsOTpBRD5wJDlVy9muJhmJV3AVtx6vFtXxwLfKxMOixsRQs66aRz10n7CgAAAAAAAAAAAAAAAAAAYgsa89xRX5AMAAAAYL7JZIwyGalbmvqn1drh87W1TQepxQkdqx+IZmsGojUbrDbdXqjox9atLW6wGgC0m+nHOTfaN0jNmNpBZK0KVnvTUzN67rr2fS6A8AgLA9DBIvxn7SxkKG6/aQSxJPxEIejYG56wNCfhN87D3mdWvdDN9muKeH/x9v7fQYKu08AQPEe6F0pdC6X8ULLbbTmuPQAAAAAAAAAAAAAAAAAA4KFMwNjQIp+SBgAAAID5qCJIzYn2/SxycTrorCL8LFzoWGD4WUWbbdh3M8FqxYo6bPOhb03sIwC0E2ulvHUXpPasM6za+f87hEdYGAA0xVGwStwQopYHPfkYXhbUZ9pPWNLefpkw11Hi37IVst9sztH2a4h8f/MxWMnHmlzyJCxMkvqOlga3JL/dduQsaA8AAAAAAAAAAAAAAAAAAMxLiY95BgAAAADAT5mMUU9G6nGWDOLR56SbYK1V0bYmdKx2IJoNDlsLGX5WHaxWqGizoUPfmt1HgtSAzpRN4eP2SAdhYQA6V5TwEmdvLvoYztVI0n/8xQ0L8ymsJsVaAt84L7jZnpchQZ6FhXl5jDwV9BicRlhYbmW8sDDOOwAAAAAAAAAAAAAAAAAAQG0mYIx4kU+7AgAAAAAAyRijrCmF47gJUmvPEDVpNkitZsBYnfCzmuFlNdryRRsYiBYlWK0wpx8bLfQtRLBakY/2Yh7ryqZdAZJCWBiADhbl2ZyrZ4CehYXFDrFJ8Jly9RvBQW8Md4QQx90EPctLOwgvyb+uIm7LWbhTjH47LXAqMLAxhbCwvpXJb7PleLwEAAAAAAAAAAAAAAAAAAAeCvyCZMLCAAAAAAAA6ikPUut1swUnvSbBWjsnWKxW6FjoYLU569vA0LIowWrFOf3YhoFoYYPVqusgSK39daXwcXukg7AwAGiKo2c53gX+hAmdSviJvHfHKIY0Q6cSf+Pcw7CwyMffw7Aw3wOPhh6R7vmQtPcWafFZ0rr3SEvOit5f0HUadF27lIsbFub5uWspD/d1Pv2fAgAAAAAAAABpsUUpPyxNDkqTh0u3/OHZ6Uy3dOR50sDJaVcKAAAAAACAdpMJGBu64UfJ1gEAAAAAAIB5wxijrqzUlXW2BVcdO1ecCiKLGzoW3GZrrh82WK26jkL5Ok303Wyw2mQh7TMTXpawsI5BWBiADhYhKMRVuEjcoCbfQk+c1BPUZ8gnzc6OUbs9aU84LMzLb+/yLCzMt/tvq4ztln72bGno4dL04fuknT+VnnubtOjUiJ16FBbWFzcsDOmap/c7AAAAAAAAAGjEWqk4XhnwNXlYyldNT8/PV01XLDuoUK+3PuGfpLWXJ/9lRAAAAAAAAGhfo0OBs+zPvyctGJAWLJL6F0n9C0u/9y2UyTr7pCcAAAAAAAAwb2UyRpmM1C1N/dNq7Tt2bDpIrZnQseYC0Wxg3830c8ry9j3GaA5hYQDQFFfhInH7bXVdYfqr92QhzbCwdngSk2LoVGCoki2t3/IPaYTc10QDsyJuy1mNcfr1OPBo03tng8KmTRyQtn5LOvO90foMDJ9LISwsFzcszONz1wm8DDIEAAAAAAAAgDqKhdqBXvkaAV9B4V/TyxYnk639rvdIK54lLTs/2e0CAAAAAACgfT14d+As+95XB8/rWyD1DZTCxPqnA8Wmfy/9NOUBYwumfi9v6x8oBY9lUhifCgAAAAAAAMArFUFqTrRDPgZ8QlgYgM4VJfjHWbiIb2FhHgo6X+34DeSJBmNVCQwLk0rXUYuPZ+h9TfCYRD7+HoaFpXkt1TP4oPTQFbXnHdgYvd+gx+C617UjscPCOomP16mPNQEAAAAAAACYd6yVCiO1w7waBXpVL18YSXtv4tlxPWFhAAAAAAAACG/wQLT1RodLt/07AxcJPbq5KmRsNnRsNoDM1Aobq2gbkPoWyLTjmHcAAAAAAAAAgHcICwPQwaIEhTgKF4kb+NPqwKBQ/dV7wzLJEBbeOJ0V5rjXCVWyBQehSz4G8vgWFjYPbXqvZPMBM+OEoxVqt6cRFtYXMyzM16A3F3zcV2fhnwAAAAAAAADmhcLEVJhXyICvoPn5QV6PnDaxP+0KAAAAAAAA0E76B9KuQBoZLN32Bi8SaoRkJiPbNxUkNv1zJoBsNmTMVISRLawIJZtp7+0jeAwAAAAAAAAAOhhhYQDQFFeBJ3H7TSGIJfE3GdvwGCUtTCBPvVAlJx9W8fG4R6zJVeBRrH49PL4H7pK2fjN4fpz9HX0sYEYKYWG5mGFhXkjq+vHwOj20Oe0KAAAAAAAAALRasSDlhxoHejUMABuUiuNp7838Q2gaAAAAAAAAOlWxKA0fLt3qCDXaMpuV7asKFJsJIJtq618kExQ2Vh5S1tNL8BgAAAAAAAAAtBnCwgB0sAjhJc7CguIOjm91XTH7c3KcgvqsfoOSNyzrMtngeS4+pBG6zwTDhCJfn76GBXrmrvckv816IXiu5I5S6fHGt+vJRx7u68NfaryMyZYeLxgIAwAAAAAAALhjrVQYnQ3pygcEfNUK9JoJ/ppedyjtvUFdHr5WDAAAAAAAALSbQkEaOli61REueKxLtjxQrCKAbGAmWMwsmAoX659tKw8m04JFMt09Ldk9AAAAAAAAAEB9hIUBQFM8DQvqXdaaMmaEqSfh8JSggKd2DHHJ9jrqOMR5qxuq5OIb3UNe266C+GpvLOH1HPab6HELYc8G6fEfNVgoYs2TdT7kNfpYtD7jyHSXHnvH9yS/7XbjIogwrvxw42VsQSpOOHzMBgAAAAAAANpYcTJaoFetZW0h7b2BJGVzUvciqWtR6Wf3wNTPqVtX1fT0/Orlb7tMevR7c/v38bViAAAAAAAAtKf+AWlsWCrymlMshbx0eH/pVkeYkb+2u2cqUGwqbKxGAJmZbqsRNla+nunqbs3+AQAAAAAAAMA8RFgYgM4VKWTHw7AgSRo4pTVltIyL4xTUZ9iwMEfnLkpY2VEXt76OsOqFhbn4kIZvYVaSIl8LrvYlVr8eHV9rpTsvd9h/nQ+LLT7L3Xbr6VtJWFgoHl2nzbJ5SYSFAQAAAAAAYJ6wRSk/VBnala8K8Kob/lU2XRhLe28gSSZbP9ArKOBrzryB0pdktKqmmtr4tWIAAAAAAAB4JXP9XllrpbERaWRQGj5c+jnz+5A0Uvpphw9XtQ1Kw4OVy48OeTrmuY1MTkiH9pZuAcIeYduTmwoUG5gKIJv+fepn34DMgkWzbdUhZWXrmWzQ65UAAAAAAAAA0J4ICwOAZrj6xuu4by6m8U3cUUKynKiqI+m6ohz7wA9JxBXmOko4LCz827oOth20qajb8jQs0Bc7rpP23Nx4ucjHv871mVsRsc+Ycisl3R1xZcfnPdRxrvN40ErtPIAmjf9fAQAAAAAAgHLWSsXx4ECvfIiAr+n5+cG09wbTuhZGCPSamtdVNp3NefSe3bSAeni9FQAAAAAAAC1kjJH6FpRuR64MXi5EX7ZYlMaGK8PGagSQ2eHD0mhZ2FjFMlM/R4dat5OdamKsdDsY/IW+oUeo5/qnAsWmw8YWzQSOTYeNmQVTYWP9c8PGZgLJ+hYSPAYAAAAAAADAC4SFAehgdd4iMlnJFppbx1UtoVZv8eD62MEuLo5TQJ9pfwCieyDCSikG5/w/9u48zJX0oO/975XUi6TuPsucM3Nmxp7xzHiZzTM2xjE2PYR4lgAAIABJREFU+2IDDiFsF3ggYQ1c58YJD6uNjcGOsTEQdq6Bm7AEEogDuSwBYt/EBmMDIcF4Vo/tGY/twZ7xzJk5S3dL6kXSe/8oqVUq1VsqlWpT6/t5Hj2nJVWV3pJK6tMl1VcmKg6UwUEacbfNXGNCxykWVpIIk+1Ld78m+9twidyuM7Tu/nBJ4eI893J7/SzJdpoEB68BAAAAAAAgqX43EO2KCnpNiX/ZbtFrA0mqrE0GvWqBuNe0+NfKllRtSpVjfFCZa589+1sBAAAAAABQUqZSGcWkzlzjni7Gsmyv54XHWtujgFh7MkBmhz+3dtwBsr12eiu5rPba3unC485JYofH6k0vItbcnAyQDWJjR+Gx5lZgms3RZetNb5sDAAAAAAAAgASIhQFYYo63dU6/QHraV0j3vC5kloyCJ/N+OD71D9eXMOySa0xqBvVrpYt3zTZPZttRjOVGRZX6YYG8ecVd1zwPEEl4/5d1GyyDR353hudB0vs/ahsp6A3z+tXJ5818e4rznMopFrbQzx0OXgMAAAAAAFgq1krdVnTQqxsn/rUt9TpFrw0k732RWYJeNUfgq7YpVVeLXpsF4dpnv8j7igEAAAAAAIB4TLXqRaGaW9HTxViW7Xalzu5kbKw1DJB5P9tgkCwsUnawl84KLrNOyzs99Zhzklh7QY2RrW+MRcZGgbHRz2YYGasHYmP+SNl6Q6boL18HAAAAAAAAkCtiYQAQdOI2ud9+y+pD7PMut2Qxk0zCMK5lxnxzq1SxmgK3IxP1TfUZbEdx7/c8H5/Et1Vg5C2LedPSPwyPK6YtKhYWFcHLUv1cMbcbR5yIZG4fDijZ76hZpB7jBAAAAAAAQCZ6++HBrmlBr8MdX/xrW+rusk+oLGrN8KBXLSTwFRUAqzZy3BcKSe77m+cWAAAAAAAAMBNTq0mbJ71T1HQxlmW7h4O4mC8g1tkZhcUGITI7MU1IpOzwIJ0VXFbWDmJuO9GTxVlWpSLb2AwEx4YBslFkzBzFyQaXDedp+sJjq+uExwAAAAAAAIAFQCwMQHEuvF86eGry8sb10tazsr/9qMiO80PsJY2Fpf7h+rjjMTNMOy/H7Uw8Vnm/QZXk9ooMPEVElTI5SCPuuuZ5n5QsFjbXcksQC3v4N6SdB2eYIemYSxgLW58nFpbxYxfn+ZxXbK4MUbukOHgNAAAAAAAgO/3eIN41JegVFQDrDs73OTCpFCorg2jXDEGvsfODn2sbUoWPMiwu1z579rcCAAAAAAAARTG1FWnrtHeKmi7GsuzB/ih21fbFxobhsfa27DA21t71AmNhkbLWttTrprOCy6rfl3Yve6cIsT7JW63KNoJBsc1RZGxwMs2Qy4ORstU1wmMAAAAAAABARviELYDi3P2D0mPvmLz81ldJz3tL/uM5YuT+EHtGwZN5Qyqli5nkGYYp+k2kBOtaZHQuKqqUxXYUd5l5bsNJ7/+sHrdFDil1O9K9b8jntiK3kYJiYfV5YmFZi/OcKjj2uAhK9/sVAAAAAACgYNZKvfb0wFdY0Cs4bbdV9NpAkmTGg161aYGviOuqa0WvDMog9y9lAgAAAAAAAJAns7omra5JJ8+4p4mxHGutdLDvxcTaO6PYWGtb6gzCYq1BeKzti435A2X+AFmvl95KLqNeT9q56J0ixNrTW1uRDQbEjgJkW0c/m2BsbCJAtimzsprK6gEAAAAAAADHBbEwAEss4m0K54fYs4qGzPvh+JTHFffD+sbk98F+5+3EjYVlFXpKct8XeDBEVCwsk290j7uued4nSW+rwMhbJvOm4MFfkjqfdFxpFDq+xLG2iO0zcrvO0Po8sbCMH7s4r025HZi1yAeAEQsDAAAAAADHRO/AHfTqhgW+IqYlsF4O1Xq8oNe0+FetUdw+VhxPru2J1w4AAAAAAAAAPsYYaW3dO5260j1djGVZa6X9znhErL09HhRr78gehcZ2JiNl/ggZX34wn+6hdPkp7xQhzr1sV9ekui82NhYUG0bHfLExZ6RsU6a2ks76AQAAAAAAAAUiFgZgebnewDFG7reUyhgLUgYfrp93PbO4n+IuM248LC1J1jWrcFmM5UYd8JPJQRrHKBaW2Zu+cyy3yDeiD7elD7w5/LrKqvS0r5Ae+c8p3mAJY2H1eWJhGYv1fC469rgALN8yBwAAAAAACmT7Und3MtgVJ+gVnL6/X/TaQJJMbTLoVQsJfE3Ev4IBsE2pwlv9KCvXPvsF3lcMAAAAAAAAoNSMMdJ6wzudvso9XYxlWWulTmsQDxuPjY0iY7uyw8v8kbGjSJnvcsznYN87XX7SOUnsIxbW6qOAWH1zFBbzBciMKzbmj5Q1NmWq1XTWDwAAAAAAAJgRnyAGgFA5x8LmjTQV9k3cOYa5IuNuBUpy3xcanYqKhWUQxYm7rnluw4nv/wIjb2X0wE9L+45ve3rmK6TqmmPGpLG2EsbCVk56YbT+wezzZv64lygWtsgHgBX2+xUAAAAAACwsa6Xenjvo5Qp8hV3f3S16bTB0FO6KEfSqOQJfK1tSZa349zWArLm2cfa3AgAAAAAAAFgAxphBLGpD0tXu6WIsy/b70l4rNDbmv8wOw2T+yFgwQNZppbaOS2u/450uPuGcJHZ4bL0xCIoNYmNjkTHvMtMIhMaOImW+y+sbMpWCPgsPAAAAAACAhUQsDMASc+3GNxEfYi9rLKhkH67P5H6KeLwKlWRdCwznREWVMjlII+4y87xPShYLm2u5BW1Le+elD/5U+HW1pnT7a6UHHNcnFbl9FvQGqTHS+jmp/Ugxtx+l254+TV6hukU+AGyRxw4AAAAAAGbTPxyFu2YJek2c35Fst+i1gSRV18ODXmGBr8j410ZxX1gALCTX84X9rQAAAAAAAACWi6lUvChUYzN6uhjLsr2e1NkdD4gdBchGsTEbjIwdhcl8P+930lnBZbbX9k4X3JPEDo/VN0axsUFALBggMw1fZCwYIGtsepGyetOL3QEAAAAAAOBYIxYGoHw+8OPSHW+UKisFDcDI/XZLGWNByiBmEnc8ZXgjIe4YyvTYFTgWU42YPYODNOLGiPKKFnk3lnC2AiNvZXP/j0nd3fDrnvPd0vqVETMnvf8jts8iD9SrlzAWdvkD0p8+N8aEeW3Ti/zc4eA1AAAAAABKzfalbms86NWNE/jy/dwdnO9xUEQpmGp00KsWiHs5A1+bUnW16LUBlpNrnz3vswAAAAAAAABAYqZalTZOeKeo6WIsy3a7UmdnFBtrDcJjw9MgNmaDkbGJSNm2dLCfzgous86ud4oQaw+7MbKNYFBsGCAbhcXMMDTmj40FI2VrdcJjAAAAAAAAJUUsDEA5/a//U/qMX8v4RiJ2lzvDM2UKTvlnTzlmMveH9bO4nxzLDL4BkfcbEknu+yIPhoiMKmURxYn9fTgZ3LbDwcWEM5bx+V/AttT6e+nBt4Zft3pauuX7vJ9Tfy6WNBa2fi7hjBk+du/92pivTcTCpsoioggAAAAAwLKzVurvxw96Rca/drTQ+x6Ok1rTF++KGfQKm75az38/P4CUuZ7D7G8FAAAAAAAAgDIwtZq0eco7RU0XY1n28MAXGRsGx7ZHP7e2pc4wPOafJhApa21L3cN0VnBZWevdj63t6MniLKtSkW1sjQfFjgJkvvBYMEzW2BqPlDU2pdV1wmMAAAAAAAApIhYGoJw++pvSHT8qNa7J7jZcwSZj5HxbI6toyLzxqKJiJsbk2Jop6wFfScaV0brEuo8iokqZbEcx1zXPbfhT70w4Y5GPWwbzJnXfG7yDOcPc+mppNfrbqhKPOXIbKTAWVk8aC8vI9oPS5fvjTZvX865sr9+zjIdYGAAAAAAAI/3uKNDlD3p1tycDX6HxL9/5Ph/0L4XK6vSgV80R+PJPX9uQKtWi1wZAWbi+4IP9rQAAAAAAAABw7JiVVenEFd4paroYy7IH++Gxsfaud1l7R7Y1eVlogKzXTWcFl1W/L+1e8k4RYn0qu1qT9YfGxgJko7CYCblsNK33s1ldS2X1AAAAAAAAFhmxMADlZHvSw78m3f5DBQ3A9VZEVsGTeT8cn/aH6+dcz86j6QxjjGtMMb9hJKtYTaLlZrUdxViu6wANKZuDNGLfPznGhD7675PN9+G3Sjd/d7pjkZTrus9r+0PSw78efl39GunZr8zutqO2z6jtOmvrCWNhWR0UdeF9swwimzEUdjtxzTCenQelrWdnNxQAAAAAALJmrdRrjwe74ga9gtP32kWvDSRJZnrgy3n9MO41+LnKh+kBZCHv91kBAAAAAAAAAMeBWV2TVtekk2fc08RYjrVWOtgbj421tgdxsd2joJg9CowFQmNjAbJtL5yF5Hpdaeeid4oQ510Eu7I6Co4dBcg2vJjYIDZmmltSPTw2dhQpa27J1FbSWT8AAAAAAICcEQsDUF6X78/4BiLiU8bxFkKpglP++Yt688FxP/3Pb5Vu/JaUbytuLMwVDSpR6O1wN/1hSJo7FpZ6dG6WZS7AASK7D0kHF6XVUykveJ51z/l+u+d17teb239YqtV9F6R8MNDBBfd1RcbC6gljYVk9dq7fX2EuvC+D1+oQhf2Octh/Kv607/4y6Ss/JdWvym48AAAAAACE6R0Mwl0xA1/+67uBn8v2t/myqjbCg1614Pkp8a9qY7Z9QACQN9c+e34fAQAAAAAAAAByYIyR1ure6dSV7uliLMtaK+13vJBYa1vqjGJjo6DYjqz/sk4wUjaaLrNjkpbF4YF0+Snv5BD76+5X18YiY15QbGMsQGaa/ssCkbLhfPVNmRqH6AIAAAAAgPywJwJAeRUawMr7G69LFguL+wZE/8B93eGOdxBT1oIHRTlDbxltT0nerPnkH0m3fn8xY4mKKtleemM5WmbM+yfP53utKXVbyeb95J9IN/yTdMcz1xt+Ob5ZeOHvpEd+N/y6jWdKN31btre/94T7OlPgf2nXr042X2bb/AwHin74F6VP/4WMxuFXsje1P/622aZ/9I+lm749m7EAAAAAAI6Xfk/q7k4PenVjxL+i9r0iP6YmrZ6YLegVnHZlS6ptSBXelgWwJJzvRZVsXzEAAAAAAAAAAFMYY6T1hne6wv0l07HCY/2+tNeW2oHYmD8o1tqRbe8MptkNiZTtjs5jPgf70sF56dJ55ySxw2Nr9bHI2NjPg9iYaWx6gbF6IDbmj5TVN2Sq1XTWDwAAAAAAHFt8Kh1AiWX9gfGo5S9YLExpR2dSWM/230snbp1/OUPOoFIwFpb3AQgJ7vt6wrjQVHHGEhULyyJeFDcWluMBIs98hfTBn0o276V70h2LpIU5OObu17ivu+NfS5WVwIVpv45GzLeylXCZKai73/SNltHj7gomurQflRrXZDOWIyXbxh/6pdmm/5t/RiwMAAAAAI4za6VexxHtmhL0OtwZhL+G1ycM1CNlxot1uYJetZDAlysAVlmbfX8LACy9nL/YBwAAAAAAAACABWAqlUFAaiN6uhjLsv2+LyA2CI91JgNk9ujn3ckA2fCyvXY6K7jM9jve6cLjzklih8fqzfGAWGNzdGp6cbGj8FhjMxAp81223vS2OQAAAAAAcOwQCwOwvFxxImPcwamsgkZxlrt2Vtp6jnT+vSHzl/DD9amPKe5973rsMrqPkmwT60njQlPEWcfIA9sy2L5j3z85xoTWzrivu+YfSo/+SX5jmVdekbXH3y099o7w607eKV3/ddmPwbV9V9eLPWAz6fM5s9ftGe+Li+/PPhY263ZqMv4TJc84IQAAAAAgO/3DZEGvsOltr+i1gSRV64PIV0jgKyroFZy+1oz4UgkAQOac77OW8P1MAAAAAAAAAAAWkKlUvCBUM/pLt2OFx7pdLzzW3hmdWtuj8NggMmaHYTJ/gKy1PR4p2++ks4LLrNPyTk+5J4l9lM5YZMwfFxudN67Y2PCyxqZUb8rwJVsAAAAAAJQGsTAABSrxjkLnTsysPsQ+ZVftqedLL/4t6a5XOWYv44fr046xuJYXeKxyPwAhwXpmFi6Ls9yI510mAZ2Y65rrNuxYzyteJH32f5Hetp7jWKRcQ2lJWCvd/YPu6+98U/jzLu03g1zbyMqJdG9nVutXJZuvLLGwXMy4jdca2QzjSMmfcwAAAABwnNm+1N2NF/hyXT/8ubdX9NpAkkw1EO8KCXqFBb4mrtuUKitFrw0AIA3OYCP7ZgEAAAAAAAAAKBtTq0mbJ71T1HQxlmW7h76g2HhszAuQDcJj7e3ANIFIWWdHOthPZwWX2fB+fdI9Sax3byqVUXhsIkA2ioyZRiA21twaBMc2RpGytTrhMQAAAAAA5kQsDMASi4pPOXY8ZhJTkjsac/qF0hf8d2l1EMPJLYSVwnqmfV+5lhfcSew8AKHIQFdQkeGyqJ3qGWzfsbeDPA8QiXjuV9ekjRul3YdzHM48657D/fbJP5ae/Ovw685+pnTNy2dbXuL1dTxvnM/5nNTqXrDs8PKMM2b0OjDzG2c5vNE262Oe1e/a0Q1kvHwAAAAAOGas9cJcrqBXNyTw5Zx2p+i1wVBtI0HQK+R8dT39aDwAYMG53mct45cfAQAAAAAAAACAtJjairR12jtFTRdjWfbwYBQQa+960bGWLzzW3pEdC5MFA2SDaXcvS71uOiu4rPp9737cjT5mItan9KtV2XowKBaIjDW2ZIbXNbekum86f6RsdY3wGAAAAABgKRELA4AJEbGwzAIjrhBWZRQKG54PlfKH61MJteQVMAs+VnkF1Y4WnGCWAsNlUTvCMwn0lDAWNi08l3moKKjEsTDbl+55rfv6O38sYptK+U0X5/ZdcCxMkurnZo+FZfaaVIL7Y0LJDgDL/TkOAAAAAAXpdwPRrkDAa5b4l+WDs6VQWZsMetVC4l5T418bxQfYAQDHl/N3DPtmAQAAAAAAAABAPGZlVTpxhXdyTRNjOdZa6WB/PCA2iI2NYmQ7skeRsfHLJwJkvV56K7mMej1p95J3ihDrXaXaiuwwIDYRIBv9bAYBsqPYmD9QNoiUmZXVVFYPAAAAAIA8EAsDUF6Zxzwilu+K32Q2prKGsOaQW4wlcB85H7sCA11pzJPacqPeDikwFpZrvGfa822RYmEZ+9jvSJfuDb/u6i+VrvzsBAtNuL6u7bsMB7aun5O2PzTbPFm9Dsz6zTh5fJNO6eJcZRsPAAAAAPhYK3Vb0UGvbkjgK2z6XqfotYHk7buYJehVcwW+NqUqH04FACyCnN+rAwAAAAAAAAAAcDDGSGvr3unUWfd0MZblhcf2RiGx1jBA5guKtbZlO4MgmT8ydhQp2/XOt7ZL+Dn7BdM9lLYveKcIce5lu7I6FhhTc0uqb4wFyIwvLiZnpGxTpraSzvoBAAAAAOBALAzA8nLtVDVG7t28Ge2IjRyL//wCxcJSv69i3keuoJqyuo8SrKfN6ptEShgLi71t5rgNT3u+5f18mucNnizfHOodSPf+sPv6O980ZQFpR6hKHgubWVbbWQ7xr5nNup1m/KYnb6oCAAAAyEJvPzrw5Qp6TZzfEZHjkqg1w4NeYYEv5/WbUrWRT6wbAICyWKj3MwEAAAAAAAAAAOLxwmN173T6Kvd0MZZlrZX22qPwWHsUG1NrR+p4ATI7vMwfGRv+PAyQdXb5jPy8Dg+ky096J4e497BdXR8FxBq+sJjvMjO8rLE5GSnzzWeq1XTWDwAAAABwrBALA4AwuX+I3RUvqkSfP5L2uFLYSZz2fRV3x7Xzscs59BYpo+0ozliiDkzM5D6Kucxc35hw3ZaZcn1WSvqmzMO/Ku0+HH7ddV8nnX5+wgUnXF/na0oJYmH1BLGwzLb5WQ8+zuNg5bJt42UbDwAAAIDC9Hu+UJcv2NWdFvgKmbZ/UPTaQJIqK9LKieigVy14PmTa2qZU4QOXAAAk49pvz75ZAAAAAAAAAAAAaRAeqze9k652TxdjWbbfl/Za47GxYICsvSvb2h6PjI1Ns+Nd12mlto5L62DPO118wjlJ7PDYemMQFBvGxgaRsfooNmaGlzc23ZGy+oZMpQTH3gAAAAAAUkEsDMASiwoGuXanZhWcckVwguPIK2KWxnqmfV9NCzwNz+YVVJtjuZlF5+IsN+qtggy279hBpDIdIFKmsUyT0Vi7bem+N4ZfZ6rSHY7rxqZLOULlet44n/M5Wk8QC8vqNWnm+z2H7X3mMFrWY1qk5zgAAACACdZKvfZktCtO0Cs4bZcPOJaDGQ961cICXxHxL//11bWiVwYAALj2U2f2/hgAAAAAAAAAAMDyMpXKKBZ15hr3dDGWZXs9qbPrC4gNImL+n4/CY4NpOoN/gwGyvXZ6K7ms9tre6cLjzkliH7VV3xgFxBwBMjOMjYUFyIaXrTcJjwEAAABAwYiFAcCEAmJh84aw0v5w/cxhl4yWMb7A8IsnDjjIK6g2XG6C9cxsLCWMhcVdZq4HiEx5vqW+7U4zz+1lNNYP/4LUeSz8uhu/Tdp6VvJlJ75/SxwLqyeIhWW2zaccaUtFyQ4Ay/05DgAAAECS1DtwB726IYGviWkH13e3CU2URbURL+gVFv/yT19rph8dBwAABcr7i30AAAAAAAAAAACQBlOtShsnvFPUdDGWZbvdQXjMFxtrebExLzrmRcZsa3sUHHNFyg720lnBZdbZ9U5POY4VUswjlIzxwmNjQbFhgGwUFjsKjzVcAbJNab0hw2eGAAAAAGBmxMIALLGIXVjOb7zOKDDiWm5wHM4oThk/XJ/XmAoKqo0WnGCWAscStRM1i+079rrmGO+Z+nzLOSRUtnDRwSXpAz8efl1lTXruD8dcUMo77F3bUhliYeuLHAvL4Y2VWbfxzJ8TJXvOAQAAAGVm+1J3dzLYFSfoFZy+v1/02kCSTG0y6FULCXxNDYBtShXeYgIAACGc79WxbxYAAAAAAAAAAGBZmFpN2jzpnaKmi7Es2z0cj421tgfBseHPXlTMTkwTEik7PEhnBZeVtaP7NWqyOMuqVGQDkbHxoNggPOaPkzWH0/siZc0taXWd8BgAAACApcGRHABKLOMPjEcGg1w7h7Iak2u5wXHkHcKaQ9of+Hcur+BYWKLlFjmWqB2fWWzfcZeZ5wEi07alqLFkseN4jnXP4sCaB35SOrgYft2zXyk1njbnDSQcs3P7LkEsrF6iWFgp39wo2wFgZRsPAAAAkDJrpd6eL+YVM/AVdl13t+i1wdBYtGtK0MsV+FrZ8kLgpfzbEQAAHB+u/2uU8P1MAAAAAAAAlBfvaQEAgAFTW5G2TnunqOliLMse7A9iV4GoWGvn6HI7/Lm1I3UiAmS9bjoruKz6fWn3sneKEOsIkGpVtrE1iow5AmQmeNkwNtbclOqDaVbXUlk9AAAAAMgKsTAACOMKTuUdCwuOI7cQVhrrmfZ9FXd5eR+AkGA9Cw2XlTQWlmvwbkosLO9vtp/r9lIea+dT0gd/Nvy62qZ066tnWFjKH9JwbSPO1+scrV+dYKastvlZ7488Pkwz63ZaUCwUAAAAKFr/0B3tigp6hZ23vaLXBpJUXR/Eu2IEvvzXT8S/muX4+xcAACAO5/uZ7JsFAAAAAADADNifBAAAMmBW16TVNenkGfc0MZZjrZUO9gfRsUFYzB8TGwTFbHt3PEzW2pY6u+MBss6O1OPzXnPp9aSdi94pQpz/Ydraynh0bCxAtumFxRqbMsHYWGNzIlJmVlbTWT8AAAAA8CEWBmCJRQWDHLv12p/IaCiuaExgHIsUC8sr/hT81qjc7qM5llvkWKK+ZSuLccV+oz7HN/RdYzq6byLGcvm+1IeT67pPc/+bpF47/Lpbvk9ad78ZEl/C9X38neGXX74/+VDSsnbGe+2Z5TmU1etAGb9Jr3Qf2CnbeAAAALDQbF/qtsaDXt2QuFdU/Gs4fW+v6LWBJJlqdNCrFhL3ck1bWSl6bQAAAPLn2k+d6xfHAAAAAAAAAAAAANkxxkhr697p1JXu6WIsy1or7XdCY2NHQbH2jqz/smCkrDOarnzHcCyY7qF0+SnvFCFWeGx1bSIgdnRqenEx4wuQhUbKmltSfVOmRg4AAAAAgIe/DgAUqIRBE0mRsbDMRIXL/GcdISyV8cP1Ke5YjNxJGfc+ymhHZ/8wyUypD8MTZx0jtu0L75Ou+ry0BjMQ837f/pD06H+Trv6SHGJH055vEWN+9E/THkz07U1zEP2NFzPZ/aj00K+EX7d2Vrr5u2dbXtqP4yf+IN3lpalSldaulPY+NcNMWb35MuP9fhD95kU6Zn3NK+EbU9aWM8QGAACAZKyV+vvxg17dkMDX0fS7KuX/YZdRbSNZ0Gtla3z6ap3//wMAAMxlkd7PBAAAAAAAAAAAAIpljJHWG97pinPu6WIsy1ordVqD4Ni2FxObiIztyvrDZBORMt/PmM/BvnRwXrp03jlJ3E8f2rX6WGRM/sjY4GRcsbFGYLpqNZ31AwAAAFAIYmEAyitRhGkWEbtSLt/rvm7nIWnzmekOZfvD4ZdPHJjo+HB9Kb+JO68DZWPeR7sPZ3Pzuw/NPs/f/7/pj0OSDi5MnybqYNcPvEW65XvTG48027b55y+XnvXPpRe+Nd0xTJgSC1vWb9C49/Xu193bXuMdMJ2G43r/1s/NFgvL6nV71gPa/+obpau/WFq7IpvxSCV8zBOM5+++R3rBz6Q/FAAAAMym3x3EvGIEvqKu7+7ksN8JsVTWpge9XIEv//W1DS/kDAAAgOK5vtindPuKAQAAAAAAAAAAgOPFGDOIRW1Iuto9XYxl2X5f6uyGxsbU2j66zLa3JyNjLd9lnR0vYIb57He808UnnJPEDo/Vm1LdFxsbi4wNgmKNQGzsKFLmu6y+IVNxfZkUAAAAgKwQCwNQXpWMX6JcH0g3RupEBF/2zqcfC3vs7Y4rArvenB+uTzk6k8aH9VMdU8R4gmEc1330sf8oveQ/pDckSdqPEedysXYsv57tAAAgAElEQVT2qM8097xuvvn3n0xnHGNm3JYe/CXppu+QTj8/g7EMRD33vQmyu+0w8z7f9p+aP/R06X7po78Vfl3j6dKzXpFgoSlv32W37v72llCZRR4T3O9/9qXSl/yv9IdypGQHgCV5zn3oZ4mFAQAAJGWt1G1FB726wfOOaXvtotcGkrfvZZagV80R+FrZlKprRa8NAAAAUufaT13GLz8CAAAAAABAaaX9OWsAAADMxFQqXhSquSWdvdY9XYxl2V7PC4/5o2MtX3is44XFrD80NhYg802730lvJZdVp+WdLriPoY0fHhvEw4bhscZkgMy4YmNH82xJ9aYXuwMAAAAwFbEwAOV1uJvt8vccOzOq69HzZbHT4dxLpU/8/uTlF94XuG1XaT3tD9dP2Z3zzO/0/q1tegfwJlnGTMOZYVnG8att5WQ6Y/G7fF/yeS/dK526I72xSNLFu6KvP5VhgMslSZTn8XdlGwtzbpuD53Ym0bQocz5Xnni39PSvmm8Z9/yQexzPff3018WZlCwclZb6jLGwrA6KqtZnn+fC/05/HGNmfMzTCFZGOftZ0iNvy/Y2AAAAjoPevhfp6obEvaKCXsH4V3cnw1guZlJthAe9aiGBr4kAmO/naoMP5gMAAMAtry8/AgAAAAAAAAAAALAQTLUqbZzwTlHTxViW7XYHcTFfQOwoLrZ9FBmzwcjY2DSDYNnBfjoruMw6u94p4nC8WEcJVSqj8Njw36Ow2OhnMxYk2xyFx/yRsrU64TEAAAAca8TCAJTX4Xa2y+86YmT1a6WOu4oeb7fTjFw7HyYuz+vD9VN2wdz47d6/znhZ2qLGE7iPXPelPUxtNEe6c3wTgTOylqHnvSX/20wShtr9SPrDGDMlFhbl7GelOhLPnGGkecNKT/6N9Ik/CL9u62bphm+ab/lpOXGrdPkDk5evbOU/ljDrM8bClumgqKzjX7PaenbRIwAAAMhOv+ft75gW9IoTAOsfFL02kKTKyuxBr7BpaxtShbcDAAAAkAPn+4cl21cMAAAAAAAAAAAAYOGYWk3aPOWdoqaLsSx7eOCLiA3jYsOfB2Gxzq5sa3t0mStA1s3g2MVl0u9792Mr+pjiWO86V6uy9c3x4NhRgGwQGWtseuGxsNiYP1K2ukZ4DAAAAKXD0UEAyqubcSzMFS8xFXdwypsgg7E4ojHXf2PgpkvyTdxn/oH3r6m6p0k1DjNDLOymfyY9+qcZj2co4n6/8vO8g3I/+V8zuN0Ezr1MuvJz87/dRQwiXfEi6am/Cb9u7Uz6tzf3tjnn/He/xn3dHW+c42By12tlwvGuXxUeC3v2K5MtL231q2ebfhGfG4k5HvOTd0qX7o4/fVrKFi8DAACwVup1pge+XNf7z3dbRa8NJEnGF+4KxL1WNn0xr2nxry2pulb0ygAAAAAzcn2xzzLtFwcAAAAAAMDc+KwfAAAAMmZWVqUTV3inqOliLMse7A/iYoHYmC8oZo8iY7tedMz/89F121Kvl84KLqteT9q95J0ixAuP1WQngmKDqFjdFx5rDq/fOrrsKDzW8OY3q3weFAAAAOkgFgagvA4zjoU5/5yfsvsmixK468PxwRiX85u4C/pwvXM8eY4h8HhUVh0TZvCGcdRBDV/w/0l/9U/Tv82kPvcPCzrAuIRv1DtDgUVV/guMhX3qf0iPvyv8utMvkJ7+1cmXnTbn4xYRLczTuZeFX26qkg3bSZ/V63YZn3OOdT3zYkcsLGslvI8AAMBi6h8mC3qFTRv6f0bkrlp3B76igl5j5zelWrMc+0wAAACAIjj/L8y+WQAAAAAAAAAAAADHk1ldk1bPSqfOuqeJsRxrrXSwNwqNDcNjY0GxHdmjGNnueJTsaJ7BZX2+1Gkuva60fcE7RYjzbrhdWfUFx0ICZI1NGf/lgdjYUaSssSlTW0ln/QAAALCQiIUBKK/DnYxvICIYFPlNRHnGwoIfpnd8uD7tb+KO+01MeR34OtPj4Xp8coyF1Takykq5Dgyurhd0w2U88CNhKDD2NLOa8z5K+s1p1kp3vcZ9/Z1vni+g5po38Te9zfO45eDEzdIzXyE99MujyxpPl274p9L9b56cPqtvvCvlN+nNGujLeB1cr90n75Au3ZPtbQMAgOLZvtTdjRH4ihH/6u0VvTaQvEDvyonxoFdtWuAr7LpN7295AAAAAHNyvT/Ah9ABAAAAAAAAAAAAIIoxRlqre6fTV7mni7Esa6201x4ExLalziAsNoyMDQJkdixMFoyU+U6lPGZpgRweSJef8k4Oce9hu7o+FhlTY2v0c3NTqg/DYxuDwJj/Z9989U2ZGqkJAACARcP/4ACU1+G2twNhnlhNFOfOiSICTzFjYa74VOofro8bC6vOv4xYZoiFpR4oijLlcStTLKwopdwJWLLo1Nz3UcL5P/H70oX/HX7dlZ8nnXtp4hFlo2SPW5gXvlU690XS+fdIzeul679e+uSfhE+7TAdFler3reSOl0X9TgMAAIWy1gtzBYNdw6BXN2bg63DHuwzlMAx0xQl6RcW/quvZ7TsCAAAAMLvc3s8EAAAAAAAAAAAAALgYY6R60ztdcc49XYxl2X5/EB7zxcaGkbHhqbXjhcc6vtjYWKRscFlnN72VXFYHe97p0nnnJLHDY2v1UUSssTn4eWMsMGbGLnNEyuobMlWOzQIAAMgDsTAAJWalbkta2chu+WGMiT7INIsDUF0fji8sFhZXXqGXWWJIrscng2iV836vBP5dZiU88MMVLlrUg8uTxMb6PenuH3Jf/7wfS+H+SPm5uAiPmzHSdV/tnfyXhcrqubFAgb5c445jNxB+8bRYWJYBUwAAjqt+1x34igx6hUxvu0WvDSQvzBUMetW2wgNfE/Ev3/W1DQLbAAAAwHHl/L9+GfdfAwAAAAAAoLT4vB4AAABQGqZSGcSiNqQz17ini7Es2++PAmLtYVhsMkBmh7Gx9u4gUuYLkA0v22unt5LLar/jnS487pwkdnis3hyLjIUFyMwwNua/3h8ga25J601vmwMAAEAoYmEAChQjlHK4nV0szBkjmbZLIoM/Mm0v3m05P1xfUJAprwN7o8IxE28ElyAWNrxfOPA5h+hPEkmf+1mZ9z5KMP/HfkvafiD8umu/XDrzGfMNKRNle9ziKlvksQgle+ycr91T/jSy/elBMQAAjgM7CHdHBb2iAmD+63qdotcGkve36SxBL2fga1Oqrha9NgAAAABKz/VFEcu0XxwAAAAAAAAAAAAAEMZUKl4QqrkVPV2MZdlu1wuPBWNjw7DYIDJm28Eg2fBf388He+ms4DLrtLzTU+5JYh0JaYxsfWMsMhYWIDsKj9UDsTF/pGy9IUOMGgAAHDPEwgAUp38wfZpuK8MBRMVLIv74y+IPw2nRqSN5RWdixociY1h5RaICj4fr8ckkWkUsbLoSxsIShwKlbNYn51hYb1+650ccVxrpzjfNOZ7hotJ+LpYsOBWX63Ugs4Oiyvici/s7Li+O+6gyLQTWl0QsDABQYr39ZEGvifM7KuX/KZZRrTl70Cvs+mqdb1wGAAAAkB/nvl/+1gQAAAAAAAAAAAAApMfUatLmSe8UNV2MZdnu4SAwNoiNtbalji88NoiM2fZ2YJpApKyzIx3sp7OCy8ra0WMRNVmcZVUqssN42FFMbBggG0XGjD80NgyPBSNla3XCYwAAoBSIhQEoTpxYWKYfGncse+ofa1n8MRczpJJXdCZ2zCevP2yjxhMcg2tMGWxL0wI4xMKU6H7PJOw2dgPhF8fZUZNF4Gne9Z11/od+RWo/En7dM75ROnn7fOPJims9y76Dzfk6kFEsLPPnTxKuMRV0wJjztXtKCCyzwBsAYKn1e5OhrsNtqRuIe0XFv7qD8/3DotcGklRZkVZORAe9aiGBr4kY2EaMmCkAAAAAlFHeX6IBAAAAAAAAAAAAAMB8TG1F2jrtnaKmi7Ese7A/il21x2Nj3r/bskc/70oTATLfz71uOiu4rPp9afeyd4oQ62i2alW2EQyK+SNkg/BY03dZfRAbC0bKVtcIjwEAgMSIhQEoTi9GLCzLD407gyoFxMKc6xkzFpZ6dGaBYmHBP4idfyDnGAsbPm7TwjPLYKHCRbF21aU5kJSWOcP8h7vSfT8afp2pSXe8Yc6xjC3QcXnS9Z3ncSsSB0W5Q28FBRWd45nyp9EyPWYAgGjWSr32eLArbtArOH2vXfTaQJJkxoNetZDAV1T86ygAtilV14peGQAAAAAoluu9OvaxAgAAAAAAAAAAAACWgFldk1bXpJNn3NPEWI61VjoKj217AbFheKwzjI3tyLaCUTL/+Z3R/L1eeiu5jHo9aeeid4oQ6+jJ2orsUXQsGCAbhMWaWzLDwFhzdFkwUmZWVlNZPQAAsDiIhQEoTj9GLCyTMM+0ZRcQnnF9OH4ipFKy6ExU6CXNSNRMy3IdgJBFLMyxc+QoEhaxLZUyopWBJNtm1kV0Zygoxu1m8lzLMRb2oZ+V9s+HX/fM75Q2bpxzLAUoe0Hf+TqZ1WtAGV9bZn3OZb0OCWNhqYc5AQC56x24g17dkMCXKwDW3eEA57KoNuIFvVzxr+H0tWb5/18JAAAAAAsj7/3iAAAAAAAAOJaW5bPWAAAAAOBgjJHW1r3TqbPu6WIsy1or7Xd8QbFdLyA2DIoNw2NhkTF/jGw4P3+zzad7KG1f8E4R4tzLdnVNqvtiY80tqT4Iiw0uM41AbCw0UrYpU1tJZ/0AAECmiIUBKE5/P8ZEGf7B6Ax0GUX+eZzJAcQxY2Gu6EzqB6rHvd/zOpg6ajzBMeQYn5kWeYuKqS2NMu70mSMUmEUUYt4dY3Hn339KeuAnw6+r1qXbf2i+cUxI+bm4qDsQc3vdLjPXY1fQa6Tztbsafvm0+QAA2er3pO5ueODLGfRyxL9i/Q2KzJlaIOblCHxNu762KVXYtQkAAAAApeN6L5V9rAAAAAAAAAAAAAAAFMIYI603vNPpq9zTxViWtVbaaw8CY4PwWMsXHut4/9r2KEI2GSnzzYP5HOx7p8tPOieJe2SmXV0fRcbqg/DYUWRsQ2psybhiY75p1NiUqU45Vg8AACTGEXUAitOLcaB2pnGYpMGgDAJZccMlzvhUyh+uj/th/chwWk5hn+AYMom5uUyLvBELK2csbB5lPJAl5n38gR/3IhlhnvNdUv3q9IaUiTkib0XKPRZWwuec63e5877Jeh0cy58WG+FANgCIz1qp1xlFurrT4l6B6/3Td3eLXhtIkoxU23AHvWoxA18rW1JlLee/2wAAAAAA+crp/UwAAAAAAAAcb3y2AAAAAABKyRgj1ZveSe5jEmOFx/p9aa81Hhsbi4v5wmPByFgwQNZppbaOS+tgzztdfMI5Sezw2HpjEA4bxsb8kTHvMtMYhMaGsbGjSJnvsvqGTIVjtQEA8CMWBqA4/YM4E2U4gIjwTN5vLjpjYZXo89PmT3s8EyLup1RjL1HLCo5hypjSfGyd99PgcQrG3pZRku3g0r3pj2PMHNGpTGJB8z5XYszf/qT04V8Iv27lpHTrD8w5hhCu51ri14YFjYU5x5fR77fMQ1tJxPwdlxtXvGzaazYHsgFYAv3DQLQrZtArbHrbK3ptIEnVdV/Ma4agVzD+VWsW+LsbAAAAALBQCvuiCAAAAAAAAAAAAAAAsEhMpTKKRUVNF2NZtteTOru+6FgwQOaFxWxrezwyFhYg2++ks4LLbK/tnS64J4kdHqsPg2MbRwGxsQBZfVNmGBsLBsiOYmVbUr3pxe4AAFhwxMIAFKe/P32aLD807lr21P/oZzCmadEp5/lp8ycUd3mR91WK91PkdlDgH2bTIm9RB9Pbw/THU0oJts3z701/GH6Jn/uSPvXf0x2LNP/rXJz573uj1NsLv+7WH5BWT803hjzM87gVKa/IY5k5t1HXY5fxAWPO1+4psbBleswALBbbl7qt8aBX1xH4cgXAhtO7/r+AfJlqdNBr7PyU6yorRa8NAAAAAGDp5PwlGgAAAAAAAAAAAAAAYOmZalXaOOGdoqaLsSzb7UqdnfHYWDAoNgyPdQbTjAXIfPMdcJzG3Dq73ilCrCMSjZFtBINig6hYffMoNmaGkbGGL0AWjJStNwiPAQAKQywMQHF6MWJhmQZDIuIlJ58XMVsWY5oSnXKdHyosYJJTLGymZUWMyfYkk+avvjliYZ/4I+mqz09xLCmx/ehxz7y8Mn5L/JRw0bSgQr8rVdLcjua9j6bMv/OQ9JFfDb9u/SrpOf9qztt3STsENWtwqiRcAap+VsHABXrOpflaM5OE49l5SFq7Iv3hAFhO1nrx5LhBr7Hzwet2Vc7X/yVU2xhFumpbMYNeIdNX18sfRAUAAAAAwMX5fib7LwAAAAAAAAAAAAAAQPmZWk3aPOWdoqaLsSzbPRwFxoYBsfYgLOYLkNlWIDLWDkTKWttSN6tjEpeEtYPHYTt6sjjLqlRkG1uj4NhYgGwQG2tuyQQv888zDI+trhMeAwDMhFgYgOL0D2JMVFAs7OlfJb3vX8443zxDmTMWluc3cZ/6tNHPUWGVVD/wH7Gs4B9AUdvV438mXf3SdIYkTX/czn6m9MGfds2c3jjStPtRafOmFBdYwvV0Pm6DqNP1Xy+df697/t2Hpa1npzmgbOe/54cl2w2/7vbXSbXmnLeflwWNhdU2wi/vttKP883j4JK0ejL95Ub+LijosXMGNqeM54M/LX3W21IfDoAF0+/6wl2zBL1CzmcWjsRMKmuTQa9azMCX/3y1KVUckVAAAAAAAJaKa19rUV9+BAAAAAAAAAAAAAAAUAxTW5G2TnunqOliLMse7E/GxlqDn9vbg+jYji86FhEg6zmOOUU8/b60e8k7RYh19HC1JhsMih0FyPzhsY3BNKPLjsJjdW9+s7qWyuoBAMqNWBiA4vT3p0/jDHqkwBUwMUaqrkfNmMFYXOsZjMi4vok7xw/XP+sVvjNRf37mFYkKjKHXcU966Z58YmHDx+maL3PPW1lNbxxDpirZ3uTls8SgYkX8ZpDnthnblFDQuSnbiCu8ldS8Yb2o+S/eLX38d8Kva94g3fQd8912pJRDUFGv2WW2csJxhfVCMquu65NKuD31YvxOTiQq9lhUUCVheO7yfamPBEBOrPUijcFglz/o1Y0R+DrckXrtotcGkhfbnCXoVQsJfNU2vfNV3ggBAAAAACBVri/JKOV7RgAAAAAAAAAAAAAAAIvBrK5Jq2vSyTPuaWIsx1orHeyNwmHD8FggKGbbO+Oxsda21BlGynZG4bI+nwmZS68r7Vz0ThHiHDlqayujiFgwQDYIi5nmllQPxMaGYbKjnzdlVjI4Dh4AkApiYciEMeYGSc+TdI2kDUmPSfq4pL+y1h4WOTYsmiyDUxGxkKj4zLxhn1COP4SCH6Yvw4frN27wnckpFhZ5nwfHkGPAzHW/Dx+nasQfQlk8Zmc/U3riLyYvnykIlfb2XcI/8qc9blvPlm57rXT/m2abP/mAspv/7te6r7vjDdHbaGaSrm/CwFPRnLEwSYeX04+FJf4dldFzNer54vqdljVneK4ifeG7pHd+gWO+Er6eAcddb98LdHUdgS9X0Oso/jU4393hOVwWtWZ40Css5hUV/6o2yh8MBQAAAABgWTn3/eb1RUMAAAAAAAAAAAAAAABwMcZIa3XvdOpK93QxlmWtlfY747Gx4c+tUXzMDi9v7UidQKSs44uVZXIM/xLpHkqXn/JODnHvYbu6NoiMDcNi/p+9AJkZxsb8gTJ/pKy5JdU3ZWpkbQAgTbyqIlXGmK+R9D2SXuyY5IIx5m2Sftha+2R+I8PCyvQ/9VHhmRyDU9L0eJHr/JEc4wf+xyQq9JLqYxexrGAkIM/Qm+2FX26qo5+v/UfSJ/9ryLxZPGaOdV/ZGj9/4lbp8gfCp017XEmXZ/sZhoQiQkFDN39PjrGweTnW5/xfSo/+Sfh1J26Trv+G7IYkZRDwWNBYWFQM7PByfuOYJqvtOjIWVnVfZ22GERjXmIzUuM49W+me+0BJ9XtSd3d60MsVAPNP2z8oem0gSZWVQbhrhqBXLSTwVduQKuyGAgAAAADg+HPs22UfKwAAAAAAAAAAAAAAwLFijJHWG97pinPu6WIsy/b70l5bagdiY8OwWNuLjdn2zmCa3ZBImS9Ahvkc7EsH56VL552TxA6PrdXHImMaRsZ8cbGj8Fg9EBvzR8rqGzLViONSAWBJcJQmUmGM2ZD0byV9/ZRJT0v655K+yhjzzdbad2Q+OCy4DGNhrnCUKXEsTI54UmEfrs/pfpop8pXnYxfjccs18BY3phQVeVuCWJhzTHEeNyn9x27O7TLs+WGtdNcPuue5801SpaA/iJNG+yJfs0tsJSIWdpBFLCzp/ZvV75GoWFhWQcAporalyIAZB7LhGLNW6nWmB75c1/nPd1tFrw0kSWY86hUMeoUFvlzXV9eKXhkAAAAAALBIXPt++eZXAAAAAAAAAAAAAAAAOJhKZRCT2oieLsaybL/vBcOGEbHWjtSZDJDZsTBZIEA2nKfDsVJz2+94pwuPOyeJHR6rNwdBsWFUzB8d8/41ja1RjGwsUjaIjjW3pPWmt80BwAIiFoa5GWOqkt4m6eWBq85Ler+ky5JukvR8jf7/dZWkPzTGfJG19r15jRULKNMwR0RYKSo+k8kH2WPEi6SID9fnGTDxrX9kpCfN+ylqWcExRE2b8mMXJzqVZ+Atbkwp1xDWHLGwrMSJ80XdR6kH1ebdLkPmf+zt0vn3hE9+xYuka798ztssQtwYXslU16TKmtTfn7zuMItYWFIZPeeini9RYS5ZZffYuralSs6vj0AKegeBcFfMoNfEtNsE8cqiWo8X9KpNCXzVGsVFGQEAAAAAwHLL9Yt0AAAAAAAAcGz9g5dKH3xf0aMAAAAAAAALyFQqoyjU2Wvd08VYlu12R+Gx9nhszPt3EB4bRsaOphlM54+U7XfSW8ll1Wl5pwufck4SOzwWiIyNomOjCJlxxcaOLtuU6k2ZyOYCAKSLWBjS8BaNh8IOJX2PpP/HWnswvNAYc6ukfyfpxYOL1iT9gTHmudbax/IaLBZNlt8wHRVWyvk/ZHHiRWHnj+T44fqxsFHeUbUwgTFE3W7aY5onOpVJkCNmTCnXEFbS5RURC/PfTzneR3O/zgXmt33p7te4J7/zzVNCf2lx3UbS9V3QWJjkRVv2z09enkUsLOnrXFaRoMjlFhSxiXoNyPP1EcvL9qXu7mSwK07QKzh9WIgQ+TO1yaBXLSTwNREAC7muwm4aAAAAAACw6Bz77dnHCgAAAAAAgBmYf/wdsr/5lskrvuZf5D8YAAAAAACwtEytJm2e9E5R08VYlu0eeuGx1vYoINb2h8e8sJgdXt7aCY+UtbelA44rm9vwfn3SPUmsI3YrFdn6xlhkbBQgG0XGzFiMLDD98PK1OuExAFNxFCrmYoy5UdJ3BS7+P6y1fxic1lr7AWPMF0p6p0bBsCsk/YikV2Q6UCyuLINTzmVPi4VlMKZ5Y2G5frg+Ziws1fspYlkT/+GNut20H7s5YmGZxLDixpQWIBaW6TbtWnacx03li4UFX8se+V3p4l3h0577IuncF8x3e0VxvWYvwh+9Kyfyi4Ul3Z4ye85FLNdU3ddZm2EHzrUtVZRvKBALxVqpt+cOenUdga+w6bu7Ra8Nho7CXTGCXlHxr+r6Yvw+AgAAAAAAyIPzPZa8vmgIAAAAAAAAx4G58mnSK94k+8uvHV34jFtkvunVxQ0KAAAAAABgDqa2Im2e8k5R08VYlj08mAyIDWJjw/CYPYqM+cJkYZGy7mE6K7is+v1BAG47crJYn56qVmXrgaDYMEQ2vKyxJROMjQ1/9kfKVtcIjwHHFLEwzOtHJK34zv9GWChsyFrbMcZ8i6R7Ja0OLv52Y8xPWGsfzm6YWFxZxsJc0Q8TfbB/FgEz51iCH6Z3xcJ6aY5mSuzAt/5xp5tX5H0+QywstxBWxfFzhmOR4seU8gxhlTEWFifOF3UfpR16m/s1xTd//1C653XuSe9885y3NQvX60Par6EL8Ifqylb45YclCgZl9ZyLWm7k8yxDkb//c3zuIx/9w0HMKyTw5Qx6OeJftlv02kDywlzBoFctEPCKjH8Nrq9tFPc6BAAAAAAAcKw59tvzhQwAAAAAAACYkfnG75Ne8PnS+/5MuvoZ0oteJtN0fCYTAAAAAABgiZiVVenEFd7JNU3MZdmD/UFgzBcQG4bGBkEyG7x8LFK2O5q/l3LzYNn0etLuJe8UIV54rCbb3PICYhMBslFYzDQHcTF/bMwXJlNzy9veAJQGsTAkZoypS/qawMU/Pm0+a+2HjTF/IOlrBxfVJH2DpB9Nd4Q4FjL90LgrrFRR9H9/swiYxYgXhZ0fyvPD9WNho6joVJr30wyxsMjbTfmxmyc6lclj5lq/GWJhqcdwki6vqOf+UI5BtXm3S/82//BvSDsPhk/39K+SrnjhfLdVqJjbdxlVHH8EZxIeSro9FRELq0bNmPpQpi97SiyMA9nyY/tStzUe9OoGAl9x41+9TtFrA8l7vkcFvWpxA1+bUpUdiwAAAAAAAKVWhvczAQAAAAAAcGyYm18g3fyCoocBAAAAAABwbJnVNWn1rHTqrHuaGMux1koHe6OoWGsYHNse/dzalu3sjmJjE5GyYYBsR+rzeaO59LrS9gXvFCHO0bx2ZXUQFBvExhqBqFhzS2Z42fDysEhZY1OmtpLO+gFLjFgY5vHFkhq+839trf1gzHl/XaNYmCR9lYiFIVRBsZC8Y2FxolNh56fNnwnf+pu87qdZlpXlNhO8qTixMFcMJ4PHzBVKm3iccozhJF1eltu0c9kxIm+R8yc17zY7GE+3I937hvBJTEW6I+dfs67Xh8QhwRyf22mrOP7L3c8iFpZQVs+5yFhYVLgwQ87XyoryDSTe0mUAACAASURBVAUeQ7398GBXWNArGP8am35HC/2cP05qzdmDXmHTV+tT/t8IAAAAAACA48O1n5V9fgAAAAAAAAAAAAAAAMBxZYyR1ure6fRV7uliLMtaK+21R+Gx9ig2NgqK7cq2ticjY63A9J3dOY5thiTp8EC6/KR3coh7D9vV9VFArDEIjzU3ff8OwmPDy4KRsubm0Xym6uo4AMcbsTDM40sC5/98hnnfI6mr0Tb4fGPMVdbax9MYGI6TDP/jFTusFHO+ucYSI14Uen6ooFhYXlG1qPs8+HhFxVxSf+xcsTDffyxzDbxFBfD8Z4mFhfJvS5ERo5IFg4br8+Bbpc4nw6e54ZukE7fkN6YsJH3NLgPj+C+3zSAWlvR1LrPnXFQsrKg/wl1jMov13E9LvxeIeu34Yl5RQS/f9cNp+4dFrw0kqbI6PehVcwW+/D9vSBV2lgEAAAAAAGBGzi8TOab7WAEAAAAAAAAAAAAAAACkyhgj1ZveSVe7p4uxLNvvS3ut8diYP0LW8oXHOoPY2ESkbPBvZze1dVxaB3ve6eITzklih8fWG4Og2DA2tuXFxOqj2Jjxh8lckbL6BuExLBRiYZjH7YHzfx13Rmttyxhzr6Tn+y6+TRKxMIzLtNIaEVaKjM9kEQvrOYZSiT5/NH+OH673PyaR0am8CrvBxyrqdlMekzM6VQn/Oc68c0kjFubYFpNKurxMt+k4cb6I14DU76M5t0vb9yI9H/ix8Osrq9JzXz/fbSTiug+Trm/M7buMKjnGwhLfvxk956KeL5FhroJioXm+Ps7DWqnXngx8xQl6BafttYteG0iSzPTA17TraoOfq2tFrwwAAAAAAACWmXM/K9/OCQAAAAAAAAAAAAAAACBfplIZxaTOXOOeLsaybK/nBcP8AbH2ZIDMDn9u7YwCZO1AhGyPYzvnttf2ThfcmZrY4bH6xnhAzB8gGwTGjsJjza3ANJujy9ab3jaXA2utdPEJmdNX5XJ7KA9iYZjHLYHzD804/0c0Hgu7VdK75hoRjqEsg0FR4ZmcY2Gu9SwsFhZ3/fO6n6KWVWQszBWOqTh+jjPvHKICOOMXRCwk7W0p6fIyfO7HirwNXwdC7tPUn2/zbpd96YGfkvafCr/6ma+QmtfPeRtlEHf7LiHj+C93P4tYWEJZhbAiny/5/LE7yfWcq0yJhaXw3O8dDGJe0wJfU+Jf3Z18Q6FwqzYmY15hQa+o+NfKlrecRXg9AwAAAAAAAKYqwZcfAQAAAAAAAAAAAAAAAEDKTLUqbZzwTlHTxViW7XYH4TFfbKw1+Lk9io3ZYZDsKDgWEik72EtnBZdZZ9c7PfWYc5JYRQBjvPCYLzI2CpCNYmPmKEzmCpBtSesNGcdxp9Za2Z//XunPf1/6uXfIXPfsZOuNhUQsDIkYY05LOh24+JEZFxOc/lnJR4Rj68Fflh7902yW3dsPv9xMiYV9+BelT/xBumM53HGMJfhheseH6w8vS+///hTHczniSt9/Y6KiFh/9D9KFv01pPI77J2wMrmCWJH30N6XubjpjkqQn3uMYUyX8Z78Lf5vuYyZJbdfLcOA+inrcHvyldJ9zl+5LNt+9r5dqzfTG4Xfp3vDLw+J8YQGlB39Zeuzt6Y1n9yPzzf/If5EuO+7nWlO6/bXzLT8xx3bWeTTZtr/3xGy3UyamGn754+9K/3VgJ+H29MBPS/UMytGRr9+O+0WS3v8qqRJx/Twu3uUYj1FkwOzgYvTjZftSt+UOfB3uSH3H/z2QL1OTVk/MFvSqhQXBNqQKf1IDAAAAAAAAY5zvQ2XxhUwAAAAAAAAAAAAAAAAAsHhMrSZtnvROUdPFWJbtHg5CYr6AWMcXFmt58TE7MU1IpOzwIJ0VXFbWDmJuEcdXK+an6SoV2UYwKLbhxcTePeqd2H/1Munn3yFz3XPmGzsWBkc2I6ngb5y2tbY14zKC1Y/ofCaW0yP/uYAbNdExpY//p/yGEoyWuMJTvY70wL/JfjhSIMYVcT89+sfeKXcR/zXafTif+ylOLGz7g94pFzPElB753eyGMYsHf6mAG40ZC/v738tnOHE99T/d1z3nu6X1K/MbSxz7T6b8PFyAWJgrJnThb9OLKs7rY7+V/226Xh8l6UM/k984jkz5/S/l97sWIYwX63IFvWohga+JANjg58ra9McaAAAAAAAAQEIR+36tZd8cAAAAAAAAAAAAAAAAAKTI1FakrdPeKWq6GMuyB/uj2JUvNHYUHmtvyw5jY62dQZQsJFLW2pZ63XRWcFn1+9LuZe8U5anHZP/ly6Sfe7vMM27JZWgoFrEwJLURON9JsIzgPJsJx3LEGHOlpLMzznbTvLeL48aoNPGZYEglKqxSiDLcT4Ex2DJ8K3nF8XNBOOginon7qQSP3TxWT0u3fF9xt5/XdrcI27fhv9yhTLXoEYwr3e/YY6JaH0S+QgJfUUGvYPyr1uQxAgAAAAAAABZB1H572y/fvmEAAAAAAAAAAAAAAAAAgCTJrK5Jq2vSyTPuaWIsx1orHexL7UBsrLUtdYaxsUF4rO2LjY1FynwBsl4vvZU8ji58Sva7vlj62XfI3EAw7LijXICkgrGwvQTLCMbCgstM4v+S9CMpLAfLrLrqxShMVbIF/6ehshZ9vgjrV45+Pv3p0vn3FDcWSaqsjp+vX13MOPyqa+E/FyV4H518nvTEXxQzljILPr+qa1J/v5ixpOHWV0urJ4q7/eB2t+i3M4/qetEjKKeVuTux6aqsEnYbMtXxmFcw6FULxL6c8a9NqbJS9NoAAAAAAAAAyFVU9L8viVgYAAAAAAAAAAAAAAAAABxnxhhpbd07nbrSPV2MZVlrpf2OLyIWEhRr78j6LwtGyvzzWpveipbJ9gXpUx+TiIUdexwNj7QkeTU8pq+giO15PyHd9QNFj2KcqUqnX+jFws68WDr/3iIHI5150fhFZz7Du7zIp8+Zzxj9fMM3Sh/6meLG0niad/K78rOLGYvfmZeM//yhnytuLMMx+N38XdKHf76YsZTZ2c8cP3/mJdJjby9mLPOqXyM9+5XFjuHMi3O6nZdMn6ZoZz9T+th/LHoU5dJ8hnTuZVKtKXVbRY/Gc+Yl5Qg8zqO2kSDoFXK+ui6ZOLtYAAAAAAAAACDARMTCjuuHrAAAAAAAAAAAAAAAAAAAmTDGSOsN73T6Kvd0MZZlrZU6rUFAbDw25oXFvMusP0o2ESnzXV4WtRWZN/6OzIu/tOiRIAfEwpDUbuB8PcEygvMEl4nj7sZvlh7+NWn7g0WPZOS210qrJ7yfn/t66d1fJvX2ihnLra+S1q4Yv2z9rHTL90sP/EQxY3rhL49/wP/U86Wt50jbHypgMEa6882TMRNTkZ71L6QH/+8CxiRp62Zv2x669h9KZz+ruPDcdV8rnf608cs2bpRO3CZdvr+YMZXRuS/yTn63v046/57yhIziqq5LL/ltqZbkV3OKTt4hXf8N0sd/O7vbuPHbpM1nZbf8tFz/9dKDvyJduruY269teNvEXa+Sth8oZgx+puK9fldXpTveKP3d9xQ9IunKz5GuGfwB/KJfk/7m2/K77craZNCrFjPw5b++thF9EB4AAAAAAAAA5CLqI1f93EYBAAAAAAAAAAAAAAAAAICfMUZqbHgnXe2eLsaybL8v7bW8kFhrEB4LCZDZ9vZkZOwoQDaYpzNHz2B1TeZHfkvms/5R8mVgoRALQ1JljYW9VdLvzjjPTZL+MIXbxqzWr5S+6N3Sw//eC6hU61K1Ie0+VMBYznlRp6d95eiyc18ovfQvpY//p3yjSutXSte8XHr614Rf/7y3SKdfID3236S9J7Idy/n3SofbkqlKn/NH0rUvH7/eVKSX3yfd/RrpgZ/0LmtcJ528PdtxNW+Qrvtq6arPD7/+hb8onbhF+ttXeudXTkpnX5LtmCqr0pkXSzd+i/cYDtWa0uf9qfTwb0hP/IXUa2c7jqGVE942fMM3h8djXn6PdNerR4/b5rOyjS71D6RP/Y/R+eu+Vrp4l7Tz4fHpGk/zIlN5qTWls58j3fRtUnVt/LqzL5Fe+lfSx39HunSvpBy+7X734fGA4vN/yosGPvHnUv1a6fCy9OFf9K5bv1I6/enj85+4Xbr+6yYDcUUwRnrxb3oRtsffKR1cTG/Zq6elcy+Vbvgnk8HAMlo9JX3hu6SHf106/5dSfz+nGzbe8+kZ3+C9Lp95kfc79yP/Tmp9TDrzEqnWyGksAxs3SU//aumqz/XO3/zd0uZzpE/+odT+RL5jkbz/d1z5udJN3zq6L276VmntjPQXXz6a7pqXh88fVGuGB71qrsDXphdNAwAAAAAAAIDjYvWUdO5l3vtTpiLJjP6N9REqAAAAAAAAAAAAAAAAAADKzVQqUmPTO5291j1djGXZXk/q7AaiY4PAWGtb6gzDY77I2F5LOnedzFd8p8x1z0lvxVB6xtocwhc4dowxV0h6MnDxhrU2dq7QGPNvJH2v76Kft9Z+Vxrjm4Ux5jZJ9w3P33fffbrtttvyHgYAAAAAAAAAAAAAAMDc7r//ft1++9gXPN1urc3xG7IAABjHZ/QAAAAAAAAAAAAAAMBxUPTn8yp53RCOF2vtU5IuBi6+bsbFXB84/2DyEQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABw/xMIwjwcC55854/w3TlkeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUiMWhnncFzj/4rgzGmOaku6YsjwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIClRiwM83h74PznzTDvZ0uq+c6/31r7+NwjAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOEaIhWEe75DU8Z1/sTHm5pjzfkvg/O+nMiIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBjhFgYErPWtiX9XuDiV02bzxjzbElf6buoK+m3UxwaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAsUAsDPN6vaRD3/lvMcZ8uWtiY8y6pF+XtOq7+FettR/JZngAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACLi1gY5mKtfVjSzwUu/j1jzCuNMf4gmIwxt0h6p6SX+C5+StIbsh0lAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAYqoVPQAcC6+WdJukLx2cX5H0C5JeZ4z5O0k7km6U9GmSjG++A0lfaa19LMexAsD/z969R0+XlfWB/+6maRoaBASaq9BcjYASiJmIkrFjAEEnIEqUkGToGDUTk0xwNJlBzZpoMiYzGiauxAuJCo4XRkVBEATGxEaEeAEbRSAKSKMYGrkLLU1z2fNH1dtv1fndqn5VdersXZ/PWnuxTr116uxn1342dZ7zW7sBAAAAAAAAAAAAAAAAAAAAAJphszA2Vmv9VCnlq5P8UJKvWfinK5M84YTT/iTJM2qtr951/wAAAAAAAAAAAAAAAAAAAAAAAFp1yb47QB9qrR+ttT4tyV9P8munvPUDSX4gycNrrS8fpXMAAAAAAAAAAAAAAAAAAAAAAACNunTfHaAvtdYXJHlBKeX+SR6V5F5JrkhyQ5J3JnlNrfXmPXYRAAAAAAAAAAAAAAAAAAAAAACgGTYLYydqre9I8o599wMAAAAAAAAAAAAAAAAAAAAAAKBll+y7AwAAAAAAAAAAAAAAAAAAAAAAAMDxbBYGAAAAAAAAAAAAAAAAAAAAAAAAE2WzMAAAAAAAAAAAAAAAAAAAAAAAAJgom4UBAAAAAAAAAAAAAAAAAAAAAADARNksDAAAAAAAAAAAAAAAAAAAAAAAACbKZmEAAAAAAAAAAAAAAAAAAAAAAAAwUTYLAwAAAAAAAAAAAAAAAAAAAAAAgImyWRgAAAAAAAAAAAAAAAAAAAAAAABMlM3CAAAAAAAAAAAAAAAAAAAAAAAAYKJsFgYAAAAAAAAAAAAAAAAAAAAAAAATZbMwAAAAAAAAAAAAAAAAAAAAAAAAmCibhQEAAAAAAAAAAAAAAAAAAAAAAMBE2SwMAAAAAAAAAAAAAAAAAAAAAAAAJspmYQAAAAAAAAAAAAAAAAAAAAAAADBRNgsDAAAAAAAAAAAAAAAAAAAAAACAibJZGAAAAAAAAAAAAAAAAAAAAAAAAEyUzcIAAAAAAAAAAAAAAAAAAAAAAABgomwWBgAAAAAAAAAAAAAAAAAAAAAAABNlszAAAAAAAAAAAAAAAAAAAAAAAACYKJuFAQAAAAAAAAAAAAAAAAAAAAAAwETZLAwAAAAAAAAAAAAAAAAAAAAAAAAmymZhAAAAAAAAAAAAAAAAAAAAAAAAMFE2CwMAAAAAAAAAAAAAAAAAAAAAAICJslkYAAAAAAAAAAAAAAAAAAAAAAAATJTNwgAAAAAAAAAAAAAAAAAAAAAAAGCibBYGAAAAAAAAAAAAAAAAAAAAAAAAE2WzMAAAAAAAAAAAAAAAAAAAAAAAAJioS/fdAZiAyxYP3va2t+2rHwAAAAAAAAAAGznm7x4uO+59ADAif6MHAAAAAAAAADRv33+fV2qtY14PJqeU8qQkP7/vfgAAAAAAAAAA7MCTa60v3ncnADhc/kYPAAAAAAAAAOjUqH+fd8lYFwIAAAAAAAAAAAAAAAAAAAAAAADWY7MwAAAAAAAAAAAAAAAAAAAAAAAAmKhSa913H2CvSil3TPLFCy/9UZKb99Qd2KUHJvn5heMnJ3n7nvoCjEv+w+GS/wDtsXbD4ZL/cNisAXC45D+wC5cl+ayF41fVWj+8r84AgL/R40C4v4PDZg2AwyX/Adpi3YbDZg2AwyX/4bBZA4Bt2+vf51061oVgquYJ9+J99wN2rZQyfOnttdY37aMvwLjkPxwu+Q/QHms3HC75D4fNGgCHS/4DO3TdvjsAABf4Gz0Ogfs7OGzWADhc8h+gLdZtOGzWADhc8h8OmzUA2JG9/X3eJfu6MAAAAAAAAAAAAAAAAAAAAAAAAHA6m4UBAAAAAAAAAAAAAAAAAAAAAADARNksDAAAAAAAAAAAAAAAAAAAAAAAACbKZmEAAAAAAAAAAAAAAAAAAAAAAAAwUTYLAwAAAAAAAAAAAAAAAAAAAAAAgImyWRgAAAAAAAAAAAAAAAAAAAAAAABMlM3CAAAAAAAAAAAAAAAAAAAAAAAAYKJsFgYAAAAAAAAAAAAAAAAAAAAAAAATZbMwAAAAAAAAAAAAAAAAAAAAAAAAmCibhQEAAAAAAAAAAAAAAAAAAAAAAMBE2SwMAAAAAAAAAAAAAAAAAAAAAAAAJurSfXcAgNG8N8l3DI6BwyD/4XDJf4D2WLvhcMl/OGzWADhc8h8AAKAP7u/gsFkD4HDJf4C2WLfhsFkD4HDJfzhs1gCgK6XWuu8+AAAAAAAAAAAAAAAAAAAAAAAAAMe4ZN8dAAAAAAAAAAAAAAAAAAAAAAAAAI5nszAAAAAAAAAAAAAAAAAAAAAAAACYKJuFAQAAAAAAAAAAAAAAAAAAAAAAwETZLAwAAAAAAAAAAAAAAAAAAAAAAAAmymZhAAAAAAAAAAAAAAAAAAAAAAAAMFE2CwMAAAAAAAAAAAAAAAAAAAAAAICJslkYAAAAAAAAAAAAAAAAAAAAAAAATJTNwgAAAAAAAAAAAAAAAAAAAAAAAGCibBYGAAAAAAAAAAAAAAAAAAAAAAAAE2WzMAAAAAAAAAAAAAAAAAAAAAAAAJgom4UBAAAAAAAAAAAAAAAAAAAAAADARNksDAAAAAAAAAAAAAAAAAAAAAAAACbq0n13AGhHKeVWSR6U5KFJ7pXkjkk+nuSDSd6e5HW11hu3fM1bJ/miJPdNcs8kH03y35JcV2u9fpvXGksp5WFJ/nySuyW5TZIbkrwryWtqrTfts29jKqXcOcnDkjw4yWcmuTzJh5K8N8nra61v32P3jiil3D+z7+1eSW6f5N1J3pnktbXWT2zxOvdL8hcym+93TPKJzMblrZmNy0e2da01+yX/t0D+z7SW/4dO/m+H/J9pIf/HnPMtjAdt6nHt7jGmbRnrXqUVhz4ePeZKjzFty6HP96FDr93M+9ZdvvQY07ZYA1jUY670GNO2yH/1GwAA+uVeaDs8n59p7X5GjdcasC3WgJnW1oBDJ/+3Q/7PtJD/ary0rsd1u8eYtsWzuWXGo8986TGmbTHnlx16/abHXOkxpm2R/wz1mC89xrQt1gD1G5i8WqumadqJLbMfW89M8gtJPpykntI+meQXk3z5Fq57tyTfn+T9p1zvNUm+asPrPCDJ1yT57iTXJvnTwTWu39I43iHJtyX541Pi+dMkP5bkgXv8vnc2HkluneRLk/z7JL97xlyq87H6ziT32HMOPDXJa0/p5/vnc/WuG1zjdkn+aZLfP2NMPpXkpUkeP1Ls8n874yj/G8z/Xc+PFcbgrHbVjuOX/9sZR/nfSP6PNedbGQ+tzdbj2t1jTFv+zse4V7kiyWOSfFOSn8jsnuXTg+tcs+/5f+jj0WOu9BiT+d78eEyydjPvW3f50mNMDc75JtaAqN90lys9xrTl7/yg83+s+RH1G03TNE3TNG3k1vu9UDyfH208Wr2fiRqvNWA742gNaHAN2PX8WGEMzmpX7Th++b+dcZT/jeT/WHO+lfHQ2ms9rts9xrTl7/ygn80ZjyN96y5feozJnG9+PCZZv+kxV3qMqcH53kT+58BrN/M+dpcvPca05e/8oNeAseZH1G80beO29w5omjbdluQnN/iR/ZIkdz/ndZ+Y5D1rXOvHk1yxxudfneQVZ/yg3MrNyvx6fymzXW1XjefGJH9/xO955+MxH4MPnHMufTDJ39rD/L99kuev0c8bknzpOa7z6CR/cI5x+ckkt9th/PJf/h9c/o85PzbIrwvtqh2Og/yX/weV/2PN+VbGQ2uzjTWPj7nuztbuHmPa4ve983uVzB5evDGz4v1Zn3/Nnuf/QY9Hj7nSY0zme7vjMb/OJGs3veZLjzG1NOdbWAOiftNtrvQY0xa/74PP/7HmR9RvNE3TNE3TtJFbr/dC8Xx+9PFo8X4marzWAGvAQa4BY86PDfLrQrtqh+Mg/+X/QeX/WHO+lfHQ2mtjzeFjruvZnGdzNQfw9zlTH48e86XHmMz5dsdjfp1J1m96zJUeY2ppvreQ/1G76Tpfeoxpi9/3wa8BY82PqN9o2lbapQE42UNOeP2Pk7w1sx9ml2a2O/Ajklyy8J7/IcmvlFK+uNZ6w6oXLKVcneRFSS5beLkm+a3MbvjvlOSRSe668O9/M8lnlFK+otb66RUu8+eTPH7VPm2ilPLYzHZPvc3gn96Z5Hcye+h4n8x+2Nx6/m+3S/L9pZRLaq3fN0I3xxiPuyW58zGv35zZD9sbMtth9i5JPn/+vxfcKcmPlVKurLU+e8f9TJKUUm6V5KeSfNngn96b5Lp5Xx+Y2Vws83+7e5KfL6U8ttb6qyte59FJXpnZTcSijyT5zcxy7DZJHpTk4VnOsb+R5MpSypfVWm9eMbR1yP8Nyf9btJT/o82PiZP/G5L/t2gl/8ea862MB23qce3uMaaNjXWvkuTpSe64eY93y3gk6TNXeoxpY+b7MrWbW/SYLz3GtDFrwBL1m5kec6XHmDYm/2+hfgMAQK96vRfyfH6Z5/MDary3sAZsyBpwi5bWADXeGfm/Ifl/i1byX42X1vW4bvcY08Y8m1tmPG7RY770GNPGzPll6jdJ+syVHmPamPxfonZzUY/50mNMG7MG3EL9Blqy7d3HNE3rpyV5XS7utPlbSf5hkgee8N57J3lOju7Q+eokZcXr3SdHdwL91SSfM3jfbZL8z5n9n/7ie79rxes885h+1iQ3JXnb4LXrNxi/q3J09+S3JXncMe+9c5J/N3jvp4577w6+552PR2Y/8i58xkeS/HCSv5rktse8tyR5SmYPa4d92vl4zPvw3YPr3jyf/5cN3vfQJK8dvPd9Se65wjUuP2Z8/2w+ty8/5v0PTPLiY8bkWTsaA/kv/w8u/8eaH/NrLX7Wr83nzDrt0h2Og/yX/weV/2PN+VbGQ2uz9bh29xjTlr7rnd+rzM//0DHjWZO865h/u2aPc//gx6PHXOkxJvO9zfHIxGs3veZLjzG1Mufn509+DYj6Tbe50mNMW/qu5f+I8yPqN5qmaZqmadrIrdd7oXg+P/p4tHY/EzXeC9e0BlgDDm4NGGt+zK+1+FlqvPJf/vsbvcmMh9Ze63Hd7jGmLX3Xns0Zj4PIlx5jMufbHI9MvH7TY670GFMr831+/uTzP2o3XedLjzFt6bu2Bow4P6J+o2lbaXvvgKZp022Z7bz9C0k+f41zvvGY/7N92orn/vDgvNfkmJv6hfd/xeD9NyW53wrXeeb8h9p1Sf5jkm9I8qjM/qtBVw8+8/oNxu/5g896a5Irzzjnnw7OeVOSW+34e975eMx/uL0nyTcnuWLFc+6S5M2D67/lrB+JWxiPB+ToDcWTT3n/bXP0x/0PrnCdawbnfDrJl55xTknyM4PzPpzBDceWxkH+y/9DzP9R5sf8Woufde0u4zpH3+S//D+o/B9rzrcyHlqbrce1u8eYtvA9j3KvMj/3Q5n91zhemuQ75mvY3ef/du3gM6/Z07w3HrXPXOkxJvO9zfHIxGs38+t1ly89xtTKnJ+f28IaoH5T+8yVHmPawvcs/0eeH1G/0TRN0zRN00Zuvd4LxfP50cejpfuZqPEuXs8aYA04xDVAjbfKf/l/ePk/1pxvZTy09lqP63aPMW3he/ZszngcTL70GJM53+Z4ZOL1mx5zpceYWpnv83NbyH+1m4v96y5feoxpC9+zNWDk+RH1G03bStt7BzRNm25LctU5z3vB4P9sX7rCOQ9O8smFcz6e5MErnPe8wbV+ZIVz7nzSj8ls78HbAzL7rw4tftZjVjz3Pw/O+9odf89jjMfdVv3BNjjvblCzNwAAIABJREFUEceM41/c8Xj86OB6z13hnIfM5+yFcz6R5AFnnPOzg+u8cMX+3SNHbzweu4NxuOqc58l/+T/8nJbyf+fjsfB5i5917S7jOkffrjrnefJf/g8/p4n8H2vOtzIeWputx7W7x5i28D2Pcq8yP+/E/7JJJvAQwngsXf+qc5432VzpMaYtfM/m+x7GIxOv3cyvddU5z5tsvvQY0xa+Z2vAcj/Ub2qfudJjTFv4nuX/yPMj6jeapmmapmnayK3Xe6Ex7t/j+fzwc5q5nxnrfjdqvMNzrAEXz7UGXDzP3+jtqcl/+X9o+T/WnG9lPLT2Wo/rdo8xbeF79mzOeJzUh6vOed5k86XHmLbwPZvzexiPTLx+02Ou9BjTFr5n+b/cD7Wbi/276pznTTZfeoxpC9+zNWDk+RH1G03bSrskACeotV5/zlO/b3D8V1Y45+lJbrVw/HO11reucN7/OTj+6lLK5aedUGv9YK31phU+exNfniytsb9Wa/3VFc/9nsHx39lOl443xnjUWt9ba73xHOf9dpLhuK0yn86llHLbJE8dvDycY0fUWn8/yYsWXro0szl9mgcMjl9yZgdn17ohyW8MXn7wKueuQ/5vRP4vX6OJ/J9fc4z5MXnyfyPyf/kaTeT/WHO+lfGgTT2u3T3GtImR71VSa333Wh0cmfG4qMdc6TGmTZjvy9Rujlzr+nOeOtl86TGmTVgDjlK/mekxV3qMaRPyf5n6DQAAver1Xsjz+WWez1+kxnvkWtef81RrgDVgeI0m1oD5NdV4I/83JP+Xr9FE/qvx0roe1+0eY9qEZ3PLjMeyHvOlx5g2Yc4vU79Zus715zx1srnSY0ybkP9Hqd1c1GO+9BjTJqwBy9RvoC02CwN24brB8W1LKXc645ynDI6fu8qFaq1vSfLrCy9dkeTxq5y7Y//94PgVa5z7nzLb2fyCLyyl3HPzLjVrOJ/utcNrfWmS2y0c/5da639d8dzhnP3KM95/xeD4XSteJ0n+aHB85zXO3TX5L/+3acz8Z3PyX/5vUwv5f545v61rTXE8aFOPa3ePMSXj3qu0wHhsrsdc6TGmxHwfUrvZjh7zpceYEmsA29djrvQYUyL/t0X9BgCAXvV6L7QOz+e3x9/nHaXGO2cNOAhqGm2R//J/m1rIfzVeWtfjut1jTIlnc0PGYzt6zJceY0rM+SH1m831mCs9xpTIf3ajx3zpMabEGrAt6jewBzYLA3bhk8e8dtlJby6l3CPJIwbnv2aN6107OH7iGufuyn0Gx7+76om11o8nedvCS5dkGjHty3A+nTiXtuAJg+Nr1zj31Vnu6yNLKXc/5f03DI7X2dl4+N4PrHHursl/+b9NY+Y/m5P/8n+bWsj/teb8lq81xfGgTT2u3T3GlIx7r9IC47G5HnOlx5gS831I7WY7esyXHmNKrAFsX4+50mNMifzfFvUbAAB61eu90Do8n98ef593lBrvsmsHx1PIF2vA9qhptEX+y/9taiH/1XhpXY/rdo8xJZ7NDRmP7egxX3qMKTHnh9RvNtdjrvQYUyL/2Y0e86XHmBJrwLao38Ae2CwM2IUHDY4/meR9p7z/4YPj36m13rjG9V47OH7YGufuymcOjj+05vnD93/uBn1p3XA+vXuH1xrOxf+y6onzOfvGwcunzcVXD44fteq1jnnvb65x7q7Jf/m/TWPmP5uT//J/m1rI/3Xn/DavNcXxoE09rt09xpSMe6/SAuOxuR5zpceYEvN9SO1mO3rMlx5jSqwBbF+PudJjTIn83xb1GwAAetXrvdA6PJ/fHn+fd5Qa7zJrQN/UNNoi/+X/NrWQ/2q8tK7HdbvHmBLP5oaMx3b0mC89xpSY80PqN5vrMVd6jCmR/+xGj/nSY0yJNWBb1G9gD2wWBuzCUwfHr6u1fvqU9z90cPy2Y991sref8Xn7cPPg+DZrnj98/xRiGl0p5TOSPG7w8m/s8JKfMzje5Vz8oSzPk68tpdz2rAuUUp6S5L4LL72p1vr61bu4c/Jf/m/FHvJ/n+5bSnluKeVNpZQPllJuLqW8Z37846WUbyilDP/AZYrkv/zfiobyf905fy4NjQdt6nHt7jGmZNx7lRYYj831mCs9xpSY70NqN9vRY770GFNiDZgS9ZuZKc7BHmNK5P+2qN8AANCrXu+F1uH5/Bb4+7yj1HiPZQ3o1IHVNNR4Z+S//E/SVP6r8dK6HtftHmNKPJsbMh7b0WO+9BhTYs4Pqd9srsdc6TGmRP5PSS+1m6TPfOkxpsQasC3qN7AHNgsDtqqUcvskf3fw8gvPOG24i+cfrnnZdw6O71JKufOan7Ft7x8c33PN84fv/+wN+tKyv5fkdgvHH07yy7u40PxGcXizuO5cHL7/wSe9sdb6jiTPWnjps5I8v5RyuxNOSSnlL2ZWBLvg00n+0Zp93Bn5fwv5vx2j5f8E3D/JNZkVA+6U5NZJrpwf/80kz0nyh6WU/3ueZ5Mj/28h/7dj8vl/zjl/XpMfD9rU49rdY0zJ+PcqU2c8NtdjrvQYU2K+D6ndbEeP+dJjTIk1YILUb2YmlSs9xpTI/21RvwEAoFe93gudg+fz2+Hv85b7qMZ7PGtAvw6ppqHGOyP/5f8Fk89/NV5a1+O63WNMiWdzQ8ZjO3rMlx5jSsz5IfWbzfWYKz3GlMj/CWq+dpP0mS89xpRYA7ZF/Qb2x2ZhwLb9qyT3WDj+UJZvvo9zp8Hxn6xzwVrrR5PcNHj5jut8xg68ZXD8BaueWEq5b5J7DV7edzyjK6VcleSfDV7+3lrr8L8ItS3DefhntdYb1/yM4dw99XurtT47yT9J8on5S09O8uZSyv9WSnlMKeXBpZSHlVK+opTy3CSvycWbj08k+dpa65R+yMr/Gfm/oT3kfwuuSPLMJK8vpTxs3505hvyfkf8baij/zzPn19bQeNCmHtfuHmNK9nCvMnHGY3M95kqPMSXm+5DazXb0mC89xpRYA1qkfjMg/89N/m+H+g0AAL3q9V5oXZ7Pb8jf56nxrsoa0Cc1jWOp8Q7I/z41lP9qvLSux3W7x5gSz+aGjMd29JgvPcaUmPND6jeb6zFXeowpkf8tmnrtJukzX3qMKbEGbIv6DeyJzcKArSmlPCXJPxy8/G211g+ccepwF9+PnePyw3PucI7P2KZXDY6/6rQdzQf+x2Ne23c8oyqlXJbkp7Ic9/VJ/q8dXnYv87DW+j1JHpHkR5J8MMn9Mvtx/Ookv5/kdzPbRfeazHbDTpJfSvIFtdYfPUcfd0L+L5H/G9hT/u/LJ5Ncm+TbkzwpyaMy2z38kZkVt78nRwsGD0nyS6WU+43XzdPJ/yXyfwOt5P8Gc37d6zQxHrSpx7W7x5gWtNDHMRmPDfSYKz3GtKCFPo5J7WZDPeZLjzEtaKGPh0D9Ztlk5mGPMS1ooY+Tpn4DAECvOr8XWpfn8xvw93lqvOe4vDWgIwdW01DjXSb/j9p3PKNqJf/VeGldj+t2jzEtaKGPYzIeG+oxX3qMaUELfRyT+s0GesyVHmNa0EIfD0EXtZukz3zpMaYFLfRx0tRvYL9sFgZsRSnlEUn+n8HLr0zyAyucPvxBNdztdRXDH1TDzxzbSzPb/fSCOyX552edVEr5rCTfcsw/3aqUctvtdK0JP5Tkv1s4/lSSZ5xjV9517HMeXprk07m4A/5pfjTJN9Vaf2udju2S/D9C/m9mH/m/D9+e5N611r9Sa/0/aq0vqbVeV2t9W631DbXWF9da/0lmBe5/naQunHuPJD9XSin76Pgi+X+E/N/M5PN/wzm/rsmPB23qce3uMaYzPm+KfRyT8TinHnOlx5jO+Lwp9nFMajcb6DFfeozpjM+bYh97p34z0XnYY0xnfN4U+zhZ6jcAAPTqAO6F1uX5/Gb8fd7J1HiPZw3oy6HUNNR45f8t5P8tJp//ary0rsd1u8eYzvi8KfZxTMZjAz3mS48xnfF5U+zjmNRvzqnHXOkxpjM+b4p97F0XtZukz3zpMaYzPm+KfZws9RvYP5uFARsrpdw3swdviz9i3pnkb9Va6/FnnWqsc3am1vqRJN87ePlbSin/+KRzSin3SfLyJHc86WO31L1JK6X8iyR/e/Dys2qtvzJyV3Y+D0sptyml/Lskv53k65JcucJpz0jyxlLKi+dzZq/k/1Hy//wmlP87Ny9gDXe1P+59N9Van5XkHw3+6VFJ/sZOOrci+X+U/D+/FvJ/B3P+tGtNfjxoU49rd48x7eh6Pf//ifFYQY+50mNMO7pez/Nd7WZFPeZLjzHt6Ho9rwE7p35zrL3Pwx5j2tH1DjL/1W8AAOjVgd4Lncrz+fOb0P2MGu+KrAFHWQPOb0JrwM6p8R5L/p/wsVvq3qS1kP9qvLSux3W7x5h2dL2e/7/EeKyox3zpMaYdXa/nOa9+s4Iec6XHmHZ0vZ7zf+d6qN0kfeZLjzHt6HoHuQao38A0XLrvDgBtK6VcmeT/S3LvhZdvSPK4Wut7V/yYjw6Oz/Nf5xmeM/zMffiuJE/Mxd1KS5J/W0p5apIfTvKGzHaNvdf8fX8/F38YvSvJYqHiplrrkV1pSylXrdqZWuv1a/V+D0opz8xsN+hFz661fveK51+16rWOGY9R52Ep5dIkL0ryhMVuJXlhZrvbvy7J+5LcJsl9k3xJZjezD56/968leXQp5XG11jeco68bk/+nkv9r2nP+T16t9ftKKY9P8qSFl78xyU/uoz/y/1Tyf00t5P+W5vyq19poPOAkPa7dLcXU0r3KGIzHuFrKlVW1FJP5vqyl8eihdpO0lS+raimmlub8GHq7nx1SvzmR/D+D/F+mfgMAAMtauhfaA8/n1+Tv89R456wB1oBFk/obnX1S4z2R/D9DC/O9hfxX46V1Pa7bLcXU0r3KGIzH+FrKl1W1FJM5v6yl8eihftNSrqyqpZhamu9j6O1edmhqtZukrXxZVUsxWQOWqd/AYbFZGHBupZTPTPJLSR6y8PL7kjy21vrWNT6qux9USVJrvbmU8pVJXpbk8xb+6THzdpL3J/m7SV6x8NqHTnjvO9boUlnjvaMrpXx9kmcPXv6BWus3r/Exm4zH2PPwn2W5kPWxJE+ttb5s8L6bk7wpyZtKKf8hyfcn+dr5v901yS+UUh5Ra33/Ofp7bvL/dPJ/PRPI/1b8qywXs76glHKnWutJc2Qn5P/p5P96Wsj/Lc75Va61jfGAI3pcuxuMqaV7lTEYj5E0mCtnajAm831ZS+PRdO0maTJfztRgTC3N+TF0cz97CvWbo+T/2eT/MvUbAACYa/BeaFSez69nAs/n1XjXZA04nTVgPRNYA1qhxnuU/D/bpOd7C/mvxkvrely3G4yppXuVMRiPETWYL2dqMCZzfllL49F0/abBXDlTgzG1NN/H0M297CkmUbtJmsyXMzUYkzVgmfoNHJBL9t0BoE2llDsmeWWSz114+YOZ7fz5pjU/7sOD47ut2Zfb5+gPqtF/2B+n1vrHSb4wyXOSfGKFU345yecnuXHw+g1b7tqklFL+dpIfzPKPy+cm+QcjdmM4D29XSrlizc+4cnB87Dyc/yAe/iD9xmMKWUtqrR9P8vVJXrXw8r2TfOua/dyI/F+N/F/NRPK/Fb+RWa5dcKskDx2zA/J/NfJ/NS3k/5bn/FnXmvx40KYe1+4eYzrDaPcqjTAeK+oxV3qM6Qzm+zK1mzX0mC89xnQGa0Cb1G+W+yL/z0f+r0H9BgCAXh3gvdC5eD6/moncz6jxrsEasBprwGomsga0Qo13uS/yv3Et5L8aL63rcd3uMaYzeDa3zHisocd86TGmM5jzy9RvVtRjrvQY0xnkf5v2XrtJ+syXHmM6gzVgDeo3MD02CwPWVkq5Q5KXJ/kLCy//aZIn1FrfcI6PHO4Wer81zx++/wO11g8e+849qLXeWGv9n5J8dpJvy+xh47sy2+n8I0nekuRHkzwuyV+ttV6f5HMGH/O60To8slLK0zL7kbb4/0k/keTraq11rH7Md44fzpv7rvkxw7l40k64X5Zk8abhHZnNgTPVWj+d5DsHLz+jlDLKTt7yfz3y/3RTyf9WzPP/Dwcvr1Uo2YT8X4/8P10L+b+DOX/atSY/HrSpx7W7x5jOMvK9yuQZj9X0mCs9xnQW832Z2s3qesyXHmM6izWgTeo3R8j/c5D/q1O/AQCgV4d4L7QJz+dPN5X7GTXe1VkD1mMNON1U1oBWqPEeIf8b1kL+q/HSuh7X7R5jOotnc8uMx+p6zJceYzqLOb9M/WY1PeZKjzGdRf63ad+1m6TPfOkxprNYA1anfgPTdOm+OwC0Zb4r6suSfMHCyx9N8sRa62+c82PfMjh+0JrnP2Bw/OZz9mOnaq3vSPJd83aWRw+Of/2EzxztD1B2oZTyVUl+LLPdmy/4mSTPmN+0rWUL4/GWzP4rUxc8KEfn52mGc/Gkcx8xOP7lNX+k/kqSm5NcNj++S2Z93emNhPw/P/l/1ATzvxUfGxwPd0jfCfl/fvL/qBbyf0dz/qRrbXU84IIe1+6WY2roXmUUxmO3Ws6Vk7Qck/m+rKHxaLJ2k7SdLydpOaaG5vwoWr+fXYP6zUXy//zk/xnUbwAA6FXL90L75vn8URN8Pq/GewZrwPlZA46a4BrQCjXei+R/o1rIfzVeWtfjut1yTA3dq4zCeOxey/lykpZjMueXNTQeTdZvWs6Vk7QcU0PzfRSt38uuYS+1m6TtfDlJyzFZA5ap38BhueTstwDMlFJum+QXkjxm4eU/S/LltdbXbvDRvzs4/rxSyu3WOP+Lzvi8psx3MP+Swcuv2kdfdqmU8qQkz8/yxpUvSvL0Wuun9tOrI3Nn+ED4RPMfvJ93xuddcKfB8Q2rXidJaq2fTPL+wct3Xecz1iX/xyH/95r/rRjm+vt2fUH5Pw75P5383+GcP+5akx8P2tTj2t1jTGsa616lFcbjBD3mSo8xrcl8X6Z2c4oe86XHmNZkDWiT+s1F8v/85P8p1G8AAOiVe6FxeD7v7/POosZ7hDWgQRNdA1qhxnuR/G9QC/mvxkvrely3e4xpTZ7NLTMep+gxX3qMaU3m/DL1mxP0mCs9xrQm+d+m0Ws3SZ/50mNMa7IGnEL9BqbNZmHASkoplyd5cZKrF16+KcmTaq2/ssln11rfneR3Fl66NMs/HM5y9eD4FzfpzwR8SZKrFo5fVWvd+X+RbkyllC/LbDfXWy+8/NIkXzMv1OzLywfHV69x7l/O8o/Q62qt7znhvR8aHF+xxnUuuP3g+KPn+IyVyP9RyX9OVEq5a47uNv7fdnxN+T8e+T8Bu5zzx1xr8uNBm3pcu3uM6RzGuldphfE4Ro+50mNM52C+L1O7OUGP+dJjTOdgDWiM+s0RVw+O5f/q5P8J1G8AAOiVe6FReT6/P2q8J7AGjMoawInUeI+4enAs/yeuhfxX46V1Pa7bPcZ0Dp7NLTMeJ+gxX3qM6RzM+WXqN8foMVd6jOkc5H9j9lG7mV+3u3zpMaZzsAacQP0Gps9mYcCZSimXJfm5JI9dePnjSb6i1vqftnSZFw6O/86KfftzSf7Swks3Jnnllvq0L//r4Pg5e+nFjpRSHpfkZ5NctvDyK5N8Va315v306havSPKxheNHz+fYKq4ZHA/n9KLhzecjV7xGkqSU8uAkdxi8vNbu+WtcS/6PS/5zmqdl+ff7e5K8ZVcXk/+jk/97NtKcv3CtyY8Hbepx7e4xpnMa616lFcZjoMdc6TGmczLfl6ndHH+97vKlx5jOyRrQHvWbi32T/5uR/8dQvwEAoFfuhUbn+fz+qPEefz1rwLisAZxGjfdi3+R/Y1rIfzVeWtfjut1jTOfk2dwy43GMHvOlx5jOyZxfpn5z9Frd5UqPMZ2T/G/PqLWbpM986TGmc7IGHEP9BtpgszDgVKWUS5P8dJInLrz8iSRPrbW+YouX+okkn1o4/sr5DftZhg/tfrrWetP2ujWuUsozkjxu4aU3ZLYbahdKKV+c5OeTXL7w8n/O7Afix/fTq4tqrX+W5AWDl4dz7IhSykOSPGXhpU8m+clTTrl2cPxFpZSHrtLHub83OP69Wut71zh/JfJ/XPKf05RS7p7k2wcvv6TWWnd0Pfk/Ivm/fyPO+SbGgzb1uHb3GNN5jXiv0gTjsazHXOkxpvMy35ep3RzVY770GNN5WQPaon5zhPzfgPw/Sv0GAIBeuRcal+fz+6XGe5Q1YFzWAE6jxnuE/G9IC/mvxkvrely3e4zpvDybW2Y8juoxX3qM6bzM+WXqN8t6zJUeYzov+d+WsWs382t2ly89xnRe1oCj1G+gIbVWTdO0Y1uSWyX5qSR1oX0iyVN2dL0fHlzrNUkuP+X9Tx68/+NJ7rdhH64efOb1G37epWu89yuT3DwY60fueQ5sbTySPDrJRwaf96okt9tnjMf08wGD76EmedIp7798PlcX3/+DZ1yjJPm9wTmvT3KHFfr3hGP69y93MA7yX/4fXP6PMR5JPjvJX1vznHsk+c1j5vwDdhSr/Jf/B5X/Y875FsZDa7P1uHb3GNMW+rjze5UV+3Ht4DOv2WXcxuPM63eXKz3GtIU+mu8jj0caqN3Mr9VdvvQYUwtzfsV+TGINOKOPVw/6eP05P0f95uj15L/832v+jzk/on6jaZqmaZqmjdgO8V5oW/fvC5/n+fzFz2rifmaM+92o8Z50PWuANWDSbVvjETXe464n/+X/XtuYc76F8dDaaz2u2z3GtIU+ejZnPE7qQ3f50mNMW+ijOT/yeKSB+k2PudJjTC3M9xX7MYn8P6OPVw/6eP05P2fytZv5NbvLlx5j2kIfrQF7mB9Rv9G0jdulATjZjyT56sFr35rkulLKVWt+1g317J1b//fMdlK98/z4C5P8Uinl62qt//XCm0opt0nyDUn+zeD8f1NrfecqnSml3Cc5dg28x+D40lNi/Wit9X1nXOqNpZSXJvnZJL9ea/30MX15eJJnJXn64J++tdZ63RmfvxW7Ho9SyiOT/GKS2y+8/HtJ/kGSK0sp63T3plrrDeucsI5a6x+UUr43ybcsvPyCUsr/kuQ/1FpvvvBiKeVzkvxQZnP1gvcn+Y4zrlFLKc/KbF5c8Kgkr59f56W11rp4TinlLkn+cWZzZfG7en+S71k1vjXIf/l/cPmfjDI/7pnkxaWUNyb58SQvrLW+9YS+3CHJMzLb8f7ug3/+l7XWPzjhGpuS//L/0PJ/lDnf0HjQph7X7h5j2sgY9yoL598+yV1P+OfLB8d3PeU7eVet9ZOrXHNdxuMWPeZKjzFtxHxfpnazpMd86TGmjVgDjlK/SdJnrvQY00bk/xL1GwAAetXtvZDn80f64Pn8nBrvEmuANeDg1oBEjXdO/sv/Q8t/NV5a1+O63WNMG/FsbpnxWNJjvvQY00bM+WXqN7foMVd6jGkj8v8otZtb9JgvPca0EWvAEvUbaEmdwI5lmqZNs2V5N85N29UrXvPqzHZ6XTz305nt+PtTSV6e5E+O+fyXJLnVGrFdv4WYnrfCdd638P6PJHltZgWMn0jyylP68S9G/q53Oh5J/vkW59K1I4zHrZK87JhrvyezH6A/neR187m5+O8fT/KX17jOs0+I8X1JXjGfJz8zn/+fOOZ9NyX5Evkv/+V/U+Nx9THv/1CSX03yoiQ/luSFma0xx+V9TfKcHY+B/Jf/B5X/Y835VsZDa7ONNY8H17w6O1y7e4xpS9/1WPcq12xp7K8yHrsdjx5zpceYzPemx2OytZte86XHmBqb89dsaex3vQZcv4U+Pu+MOTF8v/qN/Jf/e8z/seZH1G80TdM0TdO0kVvP90LxfH7U8WjtfiZqvNYAa8ChrwG7Ho+rj3m/Gq/8l/97zP+x5nwr46G118aaw4NrXh3P5taKaUvftWdzxuMg8qXHmMz5psdjsvWbHnOlx5gam+/XbGnsd53/12+hj887Y04M3z+p2k2v+dJjTNaA9uZ81G80bSvtuF09Afam1nptKeUpSZ6X5G7zl0uSz5+34zw/ydfXWj+1+x5u5PZJHn3Gez6Y5Btrrf/vCP3hBLXWT5VSvjqzHX6/ZuGfrkzyhBNO+5Mkz6i1vnqNS33z/LzvSHLZwut3SfL4M859Z5Jraq3XrnG9SZP/8v+A3THJF63wvhuTfFOt9T/uuD+jk//yH2hPj2t3CzGNeK/SBOOxHy3kyrpaiMl8X6Z2sz8t5Mu6WojJGjAJ6jcN5Mq6WohJ/gMAANvWwr3QBjyfb4Qa7/5YA6wBB0yNV/7Lf6ApPa7bLcTk2dwy47E/LeTLulqIyZxfpn6zHy3kyrpaiEn+T8LB126SNvJlXS3EZA0AWnTJvjsAMFRrfVmShyf5wcwezJ3k15I8tdb69FrrjaN0bn3/Nsl1me0We5o/SvKdSR7oIeQ01Fo/Wmt9WpK/ntlcO8kHkvxAkofXWl++5jVqrfVfJ/ncJP8+p8/3C96cWRHs4T0Vsi6Q//L/ALwlyXcleU2Sj614zu8n+dbMdvzuspCVyH/5D7Sos7U7SRsxjXGv0hLjsR8t5Mq6WojJfF+mdrM/LeTLulqIyRowKvWbE7SQK+tqISb5DwAAbFsL90Jr8Hy+UWq8+2MNsAYcADXeE8h/+Q+0pbN1O0kbMXk2t8x47E8L+bKuFmIy55ep3+xHC7myrhZikv+jUrs5RQv5sq4WYrIGAK0ptdZ99wHgRKWUyzLbDfh+Se6R2a6/f5zkulrrO/bZt3WUUj4jySOT3D+znW8vz+wm5o+T/Hat9c177B4rKKXcP8mjktwryRVJbshs9/nX1Fpv3tI1SpI/l+QRSe6a5DOSfDLJhzKbK6+rtb5nG9dqgfynd6WUS5I8OMkDk9w7yZ1ycX58MMm7k/xmrfW9e+vknsh/gPb0snYvaiWmMe5VWmI8xtdKrqyjlZjM92VqN/vRSr6so5WYrAHjUL85WSvjoXbWAAAgAElEQVS5so5WYpL/AADANrVyL3QWz+fbp8a7H9YAeqfGezL5D9CWXtbtRa3E5NncMuOxH63kyzpaicmcX6Z+M75WcmUdrcQk/8ehdnO6VvJlHa3EZA0Aps5mYQAAAAAAAAAAAAAAAAAAAAAAADBRl+y7AwAAAAAAAAAAAAAAAAAAAAAAAMDxbBYGAAAAAAAAAAAAAAAAAAAAAAAAE2WzMAAAAAAAAAAAAAAAAAAAAAAAAJgom4UBAAAAAAAAAAAAAAAAAAAAAADARNksDAAAAAAAAAAAAAAAAAAAAAAAACbKZmEAAAAAAAAAAAAAAAAAAAAAAAAwUTYLAwAAAAAAAAAAAAAAAAAAAAAAgImyWRgAAAAAAAAAAAAAAAAAAAAAAABMlM3CAAAAAAAAAAAAAAAAAAAAAAAAYKJsFgYAAAAAAAAAAAAAAAAAAAAAAAATZbMwAAAAAAAAAAAAAAAAAAAAAAAAmCibhQEAAAAAAAAAAAAAAAAAAAAAAMBE2SwMAAAAAAAAAAAAAAAAAAAAAAAAJspmYQAAAAAAAAAAAAAAAAAAAAAAADBRNgsDAAAAAAAAAAAAAAAAAAAAAACAibJZGAAAAAAAAAAAAAAAAAAAAAAAAEyUzcIAAAAAAAAAAAAAAAAAAAAAAABgomwWBgAAAAAAAAAAAAAAAAAAAAAAABNlszAAAAAAAAAAAAAAAAAAAAAAAACYKJuFAQAAAAAAAAAAAAAAAAAAAAAAwETZLAwAAAAAAAAAAAAAAAAAAAAAAAAmymZhAAAAAAAAAAAAAAAAAAAAAAAAMFE2CwMAAAAAAAAAAAAAAAAAAAAAAICJslkYAAAAAAAAAAAAAAAAAAAAAAAATJTNwgAAAAAAAAAAAAAAAAAAAAAAAGCibBYGAAAAAAAAAAAAAAAAAAAAAAAAE2WzMAAAAAAAAAAAAAAAAAAAAAAAAJgom4UBAAAAAAAAAAAAAAAAAAAAAADARNksDAAAAAAAAAAAAAAAAAAAAAAAACbKZmEAAAAAAAAAAAAAAAAAAAAAAAAwUTYLAwAAAAAAAAAAAAAAAAAAAAAAgImyWRgAAAAAAAAAAAAAAAAAAAAAAABMlM3CAAAAAAAAAAAAAAAAAAAAAAAAYKJsFgYAAAAAAAAAAAAAAAAAAAAAAAATZbMwAAAAAAAAAAAAAAAAAAAAAAAAmCibhQEAAAAAAAAAAAAAAAAAAAAAAMBE2SwMAAAAAAAAAAAAAAAAAAAAAAAAJspmYQAAAAAAAAAAAAAAAAAAAAAAADBRNgsDAAAAAAAAAAAAAAAAAAAAAACAibJZGAAAAAAAAAAAAAAAAAAAAAAAAEyUzcIAAAAAAAAAAAAAAAAAAAAAAABgomwWBgAAAAAAAAAAAAAAAAAAAAAAABNlszAAAAAAAAAAAAAAAAAAAAAAAACYKJuFAQAAAAAAAAAAAAAAAAAAAAAAwETZLAwAAAAAAAAAAAAAAAAAAAAAAAAmymZhAAAAAAAAAAAAAAAAAAAAAAAAMFE2CwMAAAAAAAAAAAAAAAAAAAAAAICJslkYAAAAAAAAAAAAAAAAAAAAAAAATJTNwgAAAAAAAOD/Z+/Ow2S7qrrxf1cYwhBImAeBhEFAUEBmBEwi+DIpo4LMgQiC4MiMiAFRX15BfV9EUJQZFBAZZPKnYJhnZVCUmQgBZCYJQ0LI+v1x6krf09VDVVd3V/f9fJ6nn9yzz9l7r6pzdt0nXeuuDQAAAAAAAAAAAAAAsKQUCwMAAAAAAAAAAAAAAAAAAAAAAIAlpVgYAAAAAAAAAAAAAAAAAAAAAAAALCnFwgAAAAAAAAAAAAAAAAAAAAAAAGBJKRYGAAAAAAAAAAAAAAAAAAAAAAAAS0qxMAAAAAAAAAAAAAAAAAAAAAAAAFhSioUBAAAAAAAAAAAAAAAAAAAAAADAklIsDAAAAAAAAAAAAAAAAAAAAAAAAJaUYmEAAAAAAAAAAAAAAAAAAAAAAACwpBQLAwAAAAAAAAAAAAAAAAAAAAAAgCWlWBgAAAAAAAAAAAAAAAAAAAAAAAAsKcXCAAAAAAAAAAAAAAAAAAAAAAAAYEkpFgYAAAAAAAAAAAAAAAAAAAAAAABLSrEwAAAAAAAAAAAAAAAAAAAAAAAAWFKKhQEAAAAAAAAAAAAAAAAAAAAAAMCSUiwMAAAAAAAAAAAAAAAAAAAAAAAAlpRiYQAAAAAAAAAAAAAAAAAAAAAAALCkFAsDAAAAAAAAAAAAAAAAAAAAAACAJaVYGAAAAAAAAAAAAAAAAAAAAAAAACwpxcIAAAAAAAAAAAAAAAAAAAAAAABgSSkWBgAAAAAAAAAAAAAAAAAAAAAAAEtKsTAAAAAAAAAAAAAAAAAAAAAAAABYUoqFAQAAAAAAAAAAAAAAAAAAAAAAwJJSLAwAAAAAAAAAAAAAAAAAAAAAAACWlGJhAAAAAAAAAAAAAAAAAAAAAAAAsKQUCwMAAAAAAAAAAAAAAAAAAAAAAIAlpVgYAAAAAAAAAAAAAAAAAAAAAAAALCnFwgAAAAAAAAAAAAAAAAAAAAAAAGBJKRYGAAAAAAAAAAAAAAAAAAAAAAAAS0qxMAAAAAAAAAAAAAAAAAAAAAAAAFhSioUBAAAAAAAAAAAAAAAAAAAAAADAklIsDAAAAAAAAAAAAAAAAAAAAAAAAJaUYmEAAAAAAAAAAAAAAAAAAAAAAACwpBQLAwAAABipqmOqqkc/J+x2XDupqk4evf6Tdzum/cj7vLdV1Unjz4q9ML/nDgAAAAAAAADg0LZX814AAAAA4FCmWBgAAAAAAAAAAAAAAAAAAAAAAAAsqXPvdgAAAADAcqqqY5J8eoYuZyY5Lck3k3wyyb8meVeS13f3WYuODwAAAAAAAAAAAFaqqsqQ93b06NT3kxzd3afufFQAAAAAAFt32G4HAAAAAOwbhye5RJKrJLlVkkcneWWSU6vqyVV1xG4Gt99V1XOrqlf8fGa3YwL2l6r6zOhz5rm7HRMAAAAAAAAAwMgts7pQWJKcK8kJOxsKLEZVHTfK2+mqOm4X45GvCAtkTQEAALBZioUBAAAA2+3iSR6Z5N+q6ia7HQwAAAAAAAAAAAD71onrnLt/VdWORQIAAAAAsEDn3u0AAAAAgD3lW0k+sca5CyS5aJKLrXH+6CRvqKpju/sD2xEcAAAAAAAAAAAAh6aqumiSO65zyZWSHJfkn3ckIAAAAACABVIsDAAAAJjF+7r7uPUuqKrLJfnZJA9LcuXR6Qsn+duq+pHu/t72hMgibHSfgaS7T0py0i6HMTPrGwAAAAAAAADYp+6V5PBRWyepFccnRrGwXbdX824AAAAAYDcdttsBAAAAAPtLd3+uu5+R5NpJ/m7KJVdO8ks7GxUAAAAAAAAAAAD73P1Hxx/P6hy2O1fVkTsUDwAAAADAwigWBgAAAGyL7v5Wknsm+Y8pp++9w+EAAAAAAAAAAACwT1XV9TNscLnS85M8b9R2/iT32JGgAAAAAAAWSLEwAAAAYNt093eT/MGUU9evqovudDwAAAAAAAAAAADsSyeOjjvJC5K8PsmXNrgWAAAAAGDpnXu3AwAAAAD2vTdMaTssydWSvHPeQavqsCQ/nuSYJJdIctEkpyX5cpJPJPnX7j5n3vEXqap+KMnVM8R6ZIbdKU9L8rUk/5XkvZPCamyDqjp/khsmuUySSyY5IslXMzwrH+zuT+5ieJtSVZdIcuMkV8oQ/zczJDG+u7tP2c3YtltVHZnhtf9whvXz3SSnJnnnLK+9qi6b5AYZ1uERGdbf55K8ubtPW3DYc6mqw5PcNMkVklw6yfeT/HeSDyf5QHf3LoYHAAAAAAAAALCUJvlBdx81v+VAbklVvTjJr684d72qunZ3f3Cb4zpPhrylayS52KT5v5P8yyxzV9WFM+S9XC3JUUm+leSLSd7e3Z9baNCr575YkhsluXKSC2fIW/p8ljTvqqoul+TaGXIKL5GhaNyXk3whybt2Ik+oqn44yfWS/FCSwzPkqn0+ydu6++vbPf9+VFU/muQqGfL/Lpbk2xnu62cy5F9+b5vnt5bnn3dZ1uS1k1wuQ+7gWUm+0N0v2GR/OcDboKrOm+T6GdbDxTN8Xp6WIS/23TOMc5UMa/PAM3Zmkq9kyA99V3d/Z8GhAwAA7CrFwgAAAIBt1d1frqrTMiQXrHTxecarqpsneUiSn85QIGwtX6uq1yX5g+7+yDxzzauqLp7kTklumeTYJJfaoMtZVfWuJH+a5OWbLXJWVZ9JcvQap4+uqs0UFjq+u0+eMvbJGWI/4M3dfdwacXw4yY+uaPpykh/aSgJOVd09yYtHzQ/p7j/bZP/Dktwzyb2S/GSS861z7aeTvDTJU7r7K/NFvD2q6rgkj01yiwxF9qZd85Ekv5/kxbMUk6qqE5I8Z9R8xe7+zBxxjud9QneftEGfk5L8zsq27q4V52+Q5HFJbps1fo9ZVW9O8ujuftc68/xskkcl+YkkNeWSs6rqFUke2d3/tV7Ms76GGcY5JslJGT43xp+VB3yxqp6Z5Kndfcasc4zmOzmbWN+TuD69zlD3rar7bjTfgfdkkux2aoaEqwNO7u7jNwx6HVX1f5P86qj5Otud0AsAAAAAAAAALI2fy1DAZaXnjf7866Pz90/ya/NMNsnp+edR8//kYU02tfutJPdOcqE1xvhYkietV6ymqq6VIX/m9hmKqEy75p1JHtHdb5/tVayvqo7ND/KWzrXGNf+S5BlJ/mrWTfAWlXczGeuSSX4jyc8mueY6l55dVe9O8vQkL5l1M9L1cqQm+Wr3TfKbOTiXbqXvT/J2HrdevtOK+U7K6D0a+eeqDd+y53X3CRtdtBnbma+4xnzXyrBub5XksutcekZV/VOSJ2/mfR3NcVz2+FreRB7etq7lNcZbhjV5wSS/kuQBGTZpnWbqPdvrOcAbPdezmBLjhp8pG+WmVtU1kzwyyV2SXHDKEM9Lsm6xsKq6YobP29tm7fubJN+tqrcm+ePufv16YwIAAOwVU/+BIQAAAMCCTStss1ZBnKmq6qqT4l9vSXK3rF8oLJPz90ry4ar6y6pas1jUIk12ofxCkr9IctdsnCSQJOfNUNDqpUn+bfJF+F4y/lL/Eklut8UxTxgdn5nkrzfTsapuneTDSZ6f5H9lnUJhE1fMUEzqU1U1VwLgolXV4VX1rAwJGz+d9X+Pd40kL0zyhkmCy55Wg99N8q4MyVHrbXhwbJJ3VNXDp4xzZFW9PMmrk9w00wuFJcP6u1uSj1TVLbcU/Bwmz9y/Z0gWXO9z8dIZCor9e1VdbwdCW7jJLpAvHDUfV1U/Mu+Yk52B7zNqfqdCYQAAAAAAAABwSDlxdPztJH974KC7P5DkQ6Nr7lVVU4v2bEVV3TnJR5L8ctYoLjRx1STPr6qXjuOY5M88Psm/JPn5rFFcaOImSd5aVY/dWuT/M/e5qupPk5ycIfdqanGhiesmeVaSt0wKt+yoqjpvVT0xyaeSPDrrFyVKhjykm2bYxPKDkwJOi4jjckneluTZWbtQWDK8l7dI8s6q+r1FzL0fVdVlqupFST6Q5H5Zv1BYMmxceMcM7+srq2qj3NLNxmEtzz7nsqzJG2W4d3+Q9QtJTet7KOYA75iqelyGtX2fTC8UtlH/C0+e648meWg2vr/ny5CD+7qqemtVXWHWOQEAAJaNYmEAAADATjhqSttpm+1cVbfIsEvUbeaY+7AMyWBvrqrNfGm/VT+R9YsbbeRHkrxrN4oWbcELk3xv1Ha/eQebJE+NX/8ru/vrm+j78CSvzVBAa1YXSvInk+JyW7mHWzIpbPf6JL84Y9f/lSGhYb2knr3gmRl2Udzs7y4ryR9W1QP/p6HqqCRvTHLnGea9YJJXV9UNZuizJZOkvz9JcoEZul0hw+fZniwYlmH3xLEHbWG8u2f13zHP2MJ4AAAAAAAAAMAeUlVXyVCkZaVXdvfpo7bnjY4vmqHA0CJjuVeGImVHztDt5zMUmTowRmUo2vOErF/c56Cpk/xeVT10hnlXDzLM/cIkD5mx680y5LPMVJRnKyYFof6/JL+dOQrOZCjq9faq+tktxnGlDJsi3mTGro+tqidtZe79qKquneQ9Se6RtTeHXM8dMuRfXnWLcVjLs8+5LGvyJzMUSJu3KNShmAO8IyZFvn43c76/VXV0krdneK7PM8cQN0vynqq68TzzAwAALItd+0ePAAAAwKGhqq6c6YVwPrXJ/j+b5OVZ/cXuWUnelKGI2GeTfDPDDnHHJPmpJDcfXX/DJK+sqp/s7nFhq+3y/Qw7wv17kv9M8tUMRdIqyYWT/HCSG2fYGW1lYaQjkvxNVf14d392nfE/kuQbkz9fIclFVpz73uT8Rs7YxDXr6u4vVdXrMiTaHHDbqrpkd39pjiHvk9WFop497cKVqup/J3nUlFNfS/KPSd6f5EsZdg49KsOudbdOcrXR9SdmeF8fPlPUi/PsJMevOP5ohuJh/5nhtRyZ5MeT3CWrd637ySS/keQp2x/m4lXVryV54IqmU5L8fZJ/y/Daj0pyowyJVRcedf+TqvqHDJ8Hf5NkZTGt9yd5Q5JPJzk9w/v2U0lun4OftfMneVZVXb+7z17Qy5qqqn4zybRdIM+cxPqWJJ/PkDh1xQzr68DOoxdM8sqs2AF3m5yV5IMrjq+Rgz+Lv57kv2YZsLv/vapOTnLciub7VNVjuvvbc8T44NHxV5O8bI5xAAAAAAAAAIC96f5ZXVRoXBgsSV6U5P/k4KI9JyZ5yYLiuH6S318RyzeSvC5DIakvZchL+ZEkd82Q47bSParqld39sgz5JCeuOHdKktdkyJ/5aob8mRtOxhnnzzy5ql7T3Z+Z8zU8LMkvrDg+Pcmrkrw3yX9P5r56hryly4/6Xj7Jm6rqOt39jWyjyUaCb5/EMvZvSd6cIWfvQByXzFDM67YZNpQ84IgkL6uqm3b3++cI5UIZ8rp+aHLcSd6R5J8y5NSckeQSGfID75TkfKP+j6mqv+/ud68x/hfzg9ydI5JceXT+k9k4/2+m3J4NbGu+YlVdP8k/Z3itK52T5K0Z3ttPT2I4f5LLJTk2yS1y8Lr+4Qybbl6vu7+5iZjGrOUZ1/ISrclLJ/m7HLzW3pOhiNkpGd6Hy2TIg/v5TYx3SOQA75AH5ODidWdkyOt9e4Zn8rAMa/r4DO/7QSaFwt6d1TmzyXCP354h1/brSc6b4T7/RIZNqg9fce2lkry2qq7b3ads7SUBAADsjuru3Y4BAAAAWEJVdUyGxIqV3tzdx804ziOTPHnU/PUkF+/uczboe8UMX7QftaL57CR/nOQPu/vL6/S9TpK/zMEFg5Lkj7r7YRvMe0xWv/b7dfdz1+s36fuxJB/OsCvbmzaTbDL5EvsPktx9dOq13f0zG/WfjPHcJPdd0XRKdx+zmb5rjHdyhkSaA9a991V1+wzJJCs9rLv/aI65P5YhieKAzyU5er3nparulCHJY6WvJ3l0kud393fX6FcZdgh9ZoYElJXu0N2vnjH8mUx5n7+bHySqfDHJr3T31IJQVXVEkqdnKK620jeSXLa7v7PB3Cckec6o+YrzJBhV1fiXjE/o7pM26HNSkt8ZNZ+ZITHj2xkSlp7V3dMSPy6VoYjgTUen/iJDwsdTJ8efSvLA7n7jGjFcP8lrs/re36O7/3q9+Nd6Dd294Y6WVXW1JB/I6gTA10/i/dwa/e6U5Bn5QcLLdzIkn806/8mZYX2v6PeZJEevaHped5+wUb8p49wlqwudndjdGxYFHI1zvSTvGzU/pbsfMWtMAAAAAAAAAMDeU1XnylAM6bIrmj+f5PLTco2q6rUZitMccE6SK81aMKSqjstQ1GilA3kvSfK0JI+fVminqg7PkNvykNGpj2bIA3pnhqIpG+XPXDpD/sxPjE79RXf/0iZew0lZnbuzMnfpOUl+c43XcFiGDQ2flNX5L8/t7vvNM/9m8l4mfV+RIedrpXdM4l2r8NaBgka/nSH2lXN9Jsm1uvv0DeYd50itfL/eneSXu/tf1uh7TIb7dd3RqX/o7luvN++k/3FZ/cwd390nb9R3O2xDvuJFMuSKjsd4TpKTunvNomeTDW2fnuRWo1N/19132WDe42Itb2ktT8ZZljX5/fygcNyHkjyou9+5Rt/zTcsr3Q85wIv8vJgnZ3CN3NSV9+aZSR7X3V9do/9B96aqzpvkbUluMLr0NUke2d3/sU4sl07yh0nuNTr13iQ3mbYmAQAAlt1hG18CAAAAMJ+qukySh0859dcbFQqbeFEOLhT27SS36u5HrlcoLEm6+wMZkif+cXTqV6pqvBPaIt2gu+/S3a/Y7K503X1Kd98jyUmjU7etqmk7rS2j12XY3WulE2YdpKpumoMLhSVDcsF6hcIumdWJBR/PkCzyF2sVCkuSHrwiw26A4wJNfzApJraTDiTcfCrJjdcqFJYk3X1Ghvf4H0anjsqw499edKBQ2C27+5lrJWJ0938n+ZkMOzWudK8kT5z8+d8zJHNMLRQ2Ged9mf5ebSrJaQuekdXJVS9N8jNrFQpLksmzemx+8LrPv9a1S+6VWb3eHjzHOOM+neTP54oIAAAAAAAAANiLbpODC4UlyQvXyTV63uj4sMyR47SGA8WFfq27f3VaYZ4k6e4zu/uhWZ3zc7Ukfz+J6YwkP7VB/swXM+TPjPPofqGq5s0pOZDP8r+7+/7rvIZzuvupSX4+w+afK51QVT855/wbqqoHZnVRoj9LcrP1ihIlSXd/Y7LR6ImjU8ck+eU5wjnwfr0myXFrFQqbzP2ZJD+d1Tl2P11VV5hj7v3m6Tm4UNj3k9xr8hyuWSgsSbr7kxk+C8Y5hHeuqhvNEYu1PNjUWl6yNXmgGNXbk9x8rUJhk7nXyis9VHOAt9uBe/Ow7n7wWoXCkqn35qSsLhT26O7+2fUKhU3G+mJ33zvJE0anbpDk5zYOGwAAYPkoFgYAAABsi8lubW9IconRqW9n2EFro/4/neQmo+b7d/ebNhtDd5+VIYnhKyuaz5PkNzc7xqw2mxywhidm2K3qgEpy/61FtDO6++wMO6mt9GNVdb0Zh5pWpGmcxDP2a0mOXHH87SS3Xq/o0lh3fzbJL4yar5Hk9psdY4G+l+Sum9mxtLs705/n8S6Je8mvr5ekc8Akgekpo+YLJLlghp0R79rd42Ji08Z5W4bPqpWOr6pxMa+FqKofS3L8qPkTSe6zmSKK3X1g58k9a5L4Ni7qdf2quv5mx6iqI7N6J8Z/7O5PbDU+AAAAAAAAAGDPGBeYSZLnr3P9q5KMi+bcr6oW9W/sXtzd/2+T1/72lLZLTv77axsV2UmS7v56kqeOmi+cYZPNeZ3c3Y/ZzIXd/ZokT5py6le3MP+aqurcSR47an5Ddz9kkke1Kd39nCR/OWr+jao6fNr1G/hMhqJWa25ouWLer2V1wZrDMhQRO2RV1dWS3G3U/Fvd/aLNjjG5/7+UZFw46NFzhmUtD9Zdy0u6Jr+Z5G7dfdocfQ/ZHOAd8vLu/qNZOlTVRZL8yqj5md395FnG6e6Tsnrz6Xk/HwAAAHaVYmEAAADAQlTV+arqh6rqdlX1F0k+lORaUy59wCaLOD1qdPzW7n7JrHFNvrj/v6PmO806zk6YJEe8YNR8s92IZU7PntJ2wmY7V9UFktx11PyWyc5/a/U5Iqt3kHtqd39qs/Me0N1vT/LGUfNuPCsv7u73b/bi7v5IkvGulLMWaVsWH8vqpJ/1vHyN9hdM3pfN+tvR8bmT/NgM/WfxoCltD+vuMzc7QHf/Q4bdJ/eyv0hy1qjtwTP0v2+G4nArPXNLEQEAAAAAAAAAe0ZVXTLJ7UbN/9Ld/75Wn0l+xjgH7egkt1hASN/P6qI5a+ru9yb5rymnPpqNN1dcaZz3kiTXnaH/2KyFvp6cZJwPeIequswWYljLL2S4Xwd0VheR2awnTvofcKms3tx0M54wY3Ghv8nwrKy0V3O9FuUROfjfuX46qzeR3FB3fy/J74+abzPHppHW8g9stJaXcU3+UXefOmcMW7IPcoC30zlJHj5Hv4ckOWLF8RlZnV++WU8cHV+nqo6ZcywAAIBdo1gYAAAAMItjq6qn/ST5ToZEgdckeUBWF3H5dpJ7dveLN5qkqi6a5KdGzbMUEBp77ej46Ko6euqVu+/jo+PrVtV5diWSGU2KM71n1HyPGXZ3u0uSC43aNkqWuWWSo0Ztf7XJ+aYZPyvHbmGseT1rjj7j9/2qiwhkFzxnxh0FP5VhJ8CxWZ+Bf53SdrUZx9is24yOv5DVz91m/PkCYtk13f2lJC8bNf9CVY3X81p+aXR8avZ+ATUAAAAAAAAAYPPum2ScV/W8TfR7/pS2E7ceTv6pu0+Zsc8HprTNmj/zySSnjZrnzXt5V3d/eJYO3f3drC6Oc+4MeV2L9nOj45O7+xPzDNTdn00yfq2z5op9K8mG+ZCjeb+e1TmC25WntPSqqpLcedT83O4eF1TbrNeNjg9PcqMZx7CWf2Cjtbxsa7IzfdPbnbRnc4C32Zu6+zNz9Bs/Yy/r7vE62ax3JPnGqG03coQBAAC2RLEwAAAAYLudnqHQ19U3Uyhs4uZJatT2ji3E8OkpbT++hfE2raqOqKrbVtWjq+r5VfXaqnprVf1LVX1g/JPkT0dDHJ5hh7S9Ylzc66JJbr/JvvcbHZ+R1cWExsZf1J86R6LOSuNn5ZgZihctwneyuvDXZnxydHyuqjpi6pXL7S1z9BnvyvjtJO+fcYzPTGlb+H2f7Gh7xVHzq+ZMbvuHDAmHe9n48+4CSe6zUaeqOjbJNUbNz+rusxcVGAAAAAAAAACw9O4/Oj47yV9v1Km735HVxVzuONngcivmyXuZluf01gWMM2/eyyvn7Pd3U9puPOdYU02KSt181LyVnMJkda7YrDmF7+rus+aYd5zrdeQcY+wX1+6QKh4AACAASURBVEpykVHb3Pe1u7+W1ZtPznpfreWDTV3LS7omP9Hdn9tiDAc5BHOAt8s/z9qhqi6S5MdGzVv5fDgnq9fYjuSSAwAALNK5dzsAAAAAYN97X5KnTXb92qybTml7eVVtepe1Tbj4Asdapaqul+QRGQplnX+Lwx2VZKEJDNvor5P8UQ5+zSdkg6JfVXV0kuNGzS/t7o2KIY2flYtMEi7mNa3A1sWzejex7XJKd39vjn7jBKdkSCI7Y4vx7LR5dhU8fXR8yhxFo8ZjJNuThHe9KW2zFjZLknT32VX1oSQ32VpIu6e731VV78/B78uDkvy/Dbo+eHR8doailAAAAAAAAADAIaCqbprk6qPm13f3lzc5xPOT/O6K48OT3DPJ07YQ1iLyXhY1zrx5L3PlsST5cJLvJTnPirZpeTJb8SMZNq5c6b5V9TNbGPMKo+NZcwrHRec2a5zrdSgXC5uWK/q0qjpzC2NeYHQ86321lje3lpdxTf7LFuY+yCGcA7xd5rk3N0ly2KjtMVX10C3EcZXR8bbmkgMAAGwHxcIAAACAWXwr0xMYzpNhd7fLTDl3fJL3VtUJ3b3hzo0Tl5vSdq1N9t2siy14vCRJVZ0nyR9nKGYz/pJ6XnsmGai7v1lVr0hyjxXNt6qqy3T3F9bpekKSGrU9ZxNTjp+VCyS59ib6zeJimS9xZx5fm7PftAJj55nStuy+Pkef8WufeYzu/t6w0eFBtuP9u+SUto9uYbz/zB4uFjbxpzl4rf9IVR3X3SdPu7iqLpnkTqPmV3f3qdsUHwAAAAAAAACwfE6c0va8Gfq/IMkTc3C+0onZWrGwReS9LGqcefNe5spj6e4zq+ozSX54RfO0PJmtmJZTeLk12uc1a07honK99mKe16JMu3/jQoBbNet9tZY3t5aXcU1+aasTHuo5wNtonnsz7Vm60lYDGdmWXHIAAIDttKj/WQUAAAAODe/r7utM+blmd182w5emJ2QoYLPSeZO8oKp+dpPz7MSXr1vd6WuVSZLAy5I8JIv9vcteSwYaF/k6V5J7r3VxDVWa7jNq/nh3v20Tc413ptsOC39W1jEtaeiQ0d2LeP3L/B4eNaVtvFPoLLbSd1n8TZKvjtoetM71J2b4O2WlZyw0IgAAAAAAAABgaVXVEUnuOmr+epLXbHaM7j4lycmj5mtX1fW2ENpCclYWlD8zr0XmsUzLk9mKZcwpXOY8pb1i397XQ2AtL+O9O20rk8kB3lbz3JtlfMYAAAB2nWJhAAAAwMJ099e6+3lJrpOhAMxK50rywqo6ZhNDXWTBoe2URyW5w5T2U5P8WZJ7JblJkstnSKA4X3fXyp8kx+9YtNvnjUlOGbXdb53rj83q3b7GBcdWqaoLJDl8ttBgV11oStu3tjDeVvouhe7+bpK/GjXfuaouNb62qg5L8sBR88czfOYAAAAAAAAAAIeGX0hywVHbS7r7zBnHed6UthPnC2nfWGQey7Q8ma3YqzmFrM993R47sZaX8d6dvcX+coC3zzz3ZhmfMQAAgF137t0OAAAAANh/uvvMqrp3kkvl4C++L5yhKMwtNhjiO6Pjb3T3Un/pW1WXTPKYUfPZSR6R5E+7e7NfdO/5Xaq6u6vqeUkev6L56lV14+5+15Qu40Ji30/y/E1M9d0k5+Tggviv7O47zRQw7JzTp7SNk1dnsZW+y+TPkjw8P1jL58mQfPv7o+tuk+SYUdufd3dva3QAAAAAAAAAwDKZVtDrQVX1oAWMffeqelh3j/PXDhUXTHLaFvquNC1PZium3ZM7dverFjwPO2vafb1Id39jxyPZX3ZiLe+rNSkHeClNe8au090f3PFIAAAAlshhG18CAAAAMLvJF+P3yeqEg5+qqrtt0P0ro+OjquqohQW3PW6f5AKjtkd195/MkCSQJBddYEy76blJxgV8ThhfVFVHJLnLqPn/6+5TN5qgu89JMk4KuuLmQ2QRquo8ux3DHjItie3ILYy3lb5Lo7tPSfKaUfMDq2r8++sHj46/m+GzBgAAAAAAAAA4BFTVNZLceBunOCrJnbdx/GW3yDyWRRd7GucUJnLF9oNp9/WYnQ5iH9qJtbzf1qQc4Ol2Mz90vz1jAAAAC6FYGAAAALBtuvtzSR4/5dTvb1Bg6L+ntF1rMVFtm58eHX89yZ/OMc6VFhDLruvuTyc5edT8C1V1vlHbXbN6J7rnzDDV+Fm5alUdPkP/Q9n3prTNk9hxsa0Gcgj50pS2q21hvKtvoe+yGX9eHp3kNgcOquqg44mXdvdXtzswAAAAAAAAAGBpnLhP5lhWV52nU1WdN6sLPE3Lk9mKvZhTyMbc1+2xE2t5v927/ZQDvKjc0GR3i5/tt2cMAABgIRQLAwAAALbbM5J8atR2payfVPWeKW3jIjHL5vKj43d391lzjHOTRQSzJMZFv45McqdR2wmj468lefUMc4yflfMnOW6G/oey06a0XXiOca6y1UAOIe+f0na9eQaqqnNnfyW+/FOSj47aHrzizw/M6t9nP2NbIwIAAAAAAAAAlsZkc8p7j5rPSvLBLf58bTTmcVW1DMVedsNceSwZcljGhWim5clsxYeSfHfUdusFz8HO24u5onvBTqzl/bYm91MO8EJyQ6vqcknGGwTvpHdPafP5AAAAHPIUCwMAAAC21eTL8idOOfVbVXX4Gt3+cUrb3SbFcZbVxUfH4ySyDVXVxZMcP+f8Z4+OzzXnOIv08qxOOrjfgT9U1ZWT3Hx0/kXdfeYMc0x7Vu41Q/9D2TemtM2T6HjsVgM5VHT3l5J8etR8+6qa5/e0t0pywa1HNZNt+5zp7k7yZ6Pm21TV0ZNk33GByQ9097sWNT8AAAAAAAAAsPRun+QSo7ZXdPd1tvKT5HGjMSsrcpwOMXecs9+dp7QtNK+ju7+b5G2j5stU1S0WOc8SG+ftJLubI7ioPKJ3JPnWqO12VXWROcdjsO1reR+uyf2UA7wvckO7+5Qknxg137Cqrrob8QAAACwLxcIAAACAnfDCJB8btV0uyQOmXdzdp2b1bmRXTHLCwiNbnHHCyjhxYDMekvl34Tp9dHzEnOMsTHd/O8lLRs23qKoDO7CdMKXbc2ac5h+yene6u1fV1WYc51D00SltN5xlgKo6V5L7LyacQ8brR8eXTXK7OcaZ+vm5zbb7c+a5Sc5YcXxYkgcmuVOSS42ufcaC5wYAAAAAAAAAltt4o7FkyEvbqpckOWvUdsKcm7/tdTepqmvO0mGyYei9R81nJ/mnhUX1A6+a0nbSNsyzjMZ5O8nu5gguJI9oshntG0bNF0rysHnG43/s1FreT2tyP+UAn5qD8/CSGXNDJx64hRgWZfyMHZbk8bsRCAAAwLI4FH9pCQAAAOyw7v5+kt+dcuoxVbXWF+O/N6XtKUu8I9QXRsc/UVUX3GznSWLGY7Yw/9dHx0ctye564+JfhyW5zySZ7j6jcx/s7n+dZfDu/kqSvxg1nyvJi6vq/DNFeojp7i8l+dyo+a6TAmCb9ZDMt+PcoeyZU9qeUlXn3ewAVXXLJHdYXEibNv6cWei97+7Tkrxg1Hxikl8ZtZ2W5MWLnBsAAAAAAAAAWF5V9UNJ/teo+ctZXWRoZt39taze/O1ySW611bH3qP874/WPzPB+rfSq7h7n0y3CXyX54qjtZlX1qG2Ya9mM83aS3c3bWmS+4rRc0UdW1c3mHI/BTqzl/bQm900OcHefk+QDo+bbVdWRmx2jqm6f5CfnmX/BnprVGwrfs6ruthvBAAAALAPFwgAAAICd8uIk/zlqu2ySB027uLtfkeR9o+Yjk7x+1h3PDqiqC1XVI6rqXvP038BbR8dHJPmdzXSsqmOSvDrJ4VuY/8NT2m67hfEWorvfmdX3/YQkt0hyhVH7s+ec5g+yele36yZ5xbzJElV1dFU9rap+dM6Y9opxouMVkvz6ZjpW1S2S/J+FR7TPdfeHk/zzqPmqSZ6zmR1pq+qHs7qg1k4Zf878aFVdfsFz/Ono+FJJxol/L+zu8c6HAAAAAAAAAMD+db8MGwiu9JLuPntB479wStuJCxp7r7lFVT1pMxdW1W2S/PaUU/9vsSENuvs7mV5Y6ver6qHzjltVt66qP5s/sh3x2STfHLXtZn7gwvIVJxuMvnzUfJ4M+X9zFSuqqsOr6oFV9Rvz9N8ntn0t77M1ud9ygMe5oedPstnn4VpZvVHwrpgUq3v6lFPPrqq7zDNmVZ2rqu5WVdOeXQAAgKWnWBgAAACwIyY7VT1hyqlHV9UF1uh29yRfG7VdKcm7q+q3NrPLVVUdVlXHV9Uzk/xXhuJGl54h9M16eZJzRm2PqKrfrapzrxPf3ZO8Mz/Y5e+0Oed/15T5n1pVd6iq88w55qKMkwauktW71p2V5EXzDN7dX0xy3yQ9OnWrJO+vqnutdw8OqKoLThIA/i7JJ5I8NMn55olpD/nLKW1Prqpfqqqa1qGqzjfZ+e/1GZJbxru2sbFfzur37R5JXj3ZCXeqqrpjkrfkB59h39me8Nb0jtHxYUleVlXXX9QE3f2RrC6mNvbMRc0HAAAAAAAAACy3SQ7L/aacmlbga15/n9WFmG5fVZdY4Bx7wYF8lt+qqmetlZ83ycn79SR/l6Go00rP7e63bGOMT0/yqlHbYUmeVlWvqKprb2aQqrpiVT2qqj6UIQ9qrqJUO6W7O0Oe4Uq3rKo/qKpL7kJIi85X/KUknx61XTzJG6vqD6tqUzmfVXWjqnpqks8k+fMkV54jlv1gJ9fyflmT+y0H+LlJvj9qe2hVPWGt1zMponVikrcluWiGnNyz5ph70R6X5D2jtgsk+duq+suq2tQ6r6ofraonJvlYkr9JsqlnEwAAYNls+I8kAQAAABbopRm+tL3mirZLZSic85Txxd39iaq6a5LXJTnvilMXzLDD1WOq6m1J3p7kC0m+keEL4KOSXD7JdSc/Ry38layO9WNV9cIk9xmdelySE6rqb5N8KMkZGb5Ev1qS2+fgZJRvJ3lUkmfMMf8XquoNOXgnsUsleWWSs6rqs0m+ldUFtX6xu98363wzekGS38/Bu3v+yOiav+/ur847QXe/vKoen+R3R6euOJn/KVV1cpL3JflyhvfiwhmejaskuX6Sa2VrO7vtOd39nqp6VZI7rGg+V4ZiTA+pqldkKJx2VpJLJLlehmdsZYLZr0fxppl0939W1W8leero1O2SfKKqXp9hp8IvZNjR70oZ7tGPrbj21CQvy/D+75RXZSjgeNEVbTdK8t6qOj3J5zOleFx3X2fGeZ6e5Pg1zr2tu6ftoggAAAAAAAAA7E/H5wdFWA74eHe/e1ETdPeZVfWyJL+4ovk8Se6V5I8XNc8e8PgMm3Emw3tx16p6ZZL3JvlShlyrqye5S5IrTOl/SpLf2M4Au7ur6l4ZitmMC73cMckdq+qDSU5O8vEkB3LSjspQfOpaGXKgxs/UXvDsJLcetT06w4atX8iQ13P26Pyru/vxiw5k0fmK3f3Vqrp9hvu6srDVuZM8PMmvVtU7M2y0+LkkX8+Q63dUkssk+fEMOYCHWoG/tezYWt4va3K/5QB39+er6mlZnV/4+CT3rKqXJ/mPScwXy5CbeLsc/Dw8OcOmz0fP+noWqbu/W1V3ylBQ7fKj0ydmuD/vS/LmDIUCv5YhD/aoDLmu18nw+bDmRq4AAAB7iWJhAAAAwI7p7nOq6gkZioat9MiqekZ3f2tKnzdW1c2T/G1Wf8l7wSS3mvwsg19NcsMMSRQrXS4bF/T5XpKfz/DF+7wekeTYDO/LSufN2jvkHbGF+TZlRRLD7da57NkLmOdJVfX5DIWGzjc6fakkd5v8cLAHJblBksuO2n8sBxenmuYPu/vPq0qxsBl19x9V1cWTPGZ06nxJ7jT5Wcu3MiRS/cw2hTfVJOnmN5I8b8rpC2VIgFqEVyb5bFZ/5idzJFIBAAAAAAAAAHvaiVPaXrgN87wwBxcLOzD3oVQs7CkZCqrcdXJ84QyFc8bFc6b5XJKf6u5vbFNs/6O7z5jkFD4nQ7GjsWtnddGi/eDlSd6Y5BZTzl1m8jP2gW2MZ6H5it39b1V1gyR/l+RHp4x57OSHje3oWt5Ha3K/5QD/VpJbZvV6unKSR24Qy0sm/e++wXU7YlL87IYZ4vrJ0elzZdj09EY7HhgAAMAuOGy3AwAAAAAOOQd211rpEkl+Za0O3f2eJNfNkEjwvS3M3Rl2J3vrFsZYe/Dub2b4Yv1dM3b9fJJbdvfrtjj/R5L8dJJPbGWcbbJeMbAvJPmHRUzS3c9OcpMkb9riUN9N8jdJ/mvLQS257v5ikptltufmrCQP7+6NEkZYR3c/NsMOjLMkCH0uyfHTdgPcCd39/AyJsadv4xzfT/LnU059OUPSIwAAAAAAAABwCKiqo5LcecqpF23DdG/J6lyha1bVIVN8pLs7yT2TzLpx4NuTHNvdn1p8VNN19+nd/XNJHpzk1C0O918ZchOXWnefk+Tnkrx4t2NJtidfsbs/nqHgzx9l2FBxK96XZEs5mXvVbqzl/bAm91sOcHd/O8lxSd4zS7cMxebuMfnMWRqTXNdbJHlckq9tcbj/yOqNrwEAAPYExcIAAACAHTVJQjhpyqmHV9WF1un3le6+f5KrZPgi+t8zfCm9kdOTvDZDQZ4rdvfx3f3umQPfpO4+NcOuVQ9NslHCxClJfjvJ1bv7LQua/50ZdjW7bZI/S/K2DIkIZyTZzS/u/z7JV9Y49/xJcaCF6O4PdPctktw4yfMzFFfajC9k2CH0vkku3d137+4vLSquZdbdn05yrSSPzfA+rOWsDDuz/Xh3P3UnYtvvuvtPklwzyfOSnLbOpV9K8qQk1+zu9+5EbGvp7r9K8kNJ7pfkBUn+NUN831ngNNOKoT27u89c4BwAAAAAAAAAwHK7Z5Lzjdre2d2fXPREk7y2aUXITlz0XMusu8/u7gdnKJjzpqyfc/avSR6Q5OY7WShspe5+ZpIrTeL4p2xu075zMsT+h0mOT3LMXsmF6u5vdPc9M+QInpTkNUk+meTr2dpGrPPGs/B8xe7+dnc/LMkxGV7j+5JsJr/wuxme2cdmyLG6wVaLN+1lu7WW9/qa3G85wN391SQ3zVDEbb2/O7+f5PVJbtrdj1i2QmEHTJ7r30tydJKHZXh/ztpE17OTvCPJE5PcsLuvMdk4FQAAYM+p4feYAAAAAHtPVV0iyfWSXCLJxZIckWE3udMzFIj6zySn9C7+AqSqrprkhpMYLziJ73NJPtTdH92tuA41VXWVJNfI8JxcLMl5MyRPfDPJp5P856FSGGwzqupaSa6d5OJJLpDhffpohmTLM3Yztv2sqg5PcrMkV0hy6QzJPf+d5ENJPrCsCTjboapenOTuK5o6yVV2K7EUAAAAAAAAAOBQVFUXz7Bp45Uz5OedlmEzwn/djqJtW1VV582QU3i5DLlPF8lQJOb0DJtdfizJx7p7kZvisc2q6sgkN0hyyQz5f0dm2Njw9AyFlD6a5FOL3LR0r6iqk5L8zsq27q4p1+3KWt7ra3K/5QBPXs/1MqylC2W4D59M8o7u/tpuxjavqrpAkusnuWyGz4ejkpyZ4bV9KcPnwye6ezNFxQAAAJaeYmEAAAAAACyNSSHIzyY5fEXzG7r7NrsUEgAAAAAAAAAAwNLZbLEwAAAAYH84bLcDAAAAAACAFR6QgwuFJcnTdyMQAAAAAAAAAAAAAAAAgGWgWBgAAAAAAEuhqi6Y5NdGzZ9I8rpdCAcAAAAAAAAAAAAAAABgKSgWBgAAAADAsnhikkuO2v6ku8/ZjWAAAAAAAAAAAAAAAAAAloFiYQAAAAAA7KqqumhVPSXJb45OnZLkWbsQEgAAAAAAAAAAAAAAAMDSOPduBwAAAAAAwKGlqv4yyfUnhxdPctkkNeXSR3T3WTsWGAAAAAAAAAAAAAAAAMASUiwMAAAAAICddpUk197gmud398t2IhgAAAAAAAAAAAAAAACAZXbYbgcAAAAAAAAjL0zyi7sdBAAAAAAAAAAAAAAAAMAyOPduBwAAAAAAwCHvO0lOTfLOJM/u7pN3NxwAAAAAAAAAAAAAAACA5VHdvdsxAAAAAAAAAAAAAAAAAAAAAAAAAFMcttsBAAAAAAAAAAAAAAAAAAAAAAAAANMpFgYAAAAAAAAAAAAAAAAAAAAAAABLSrEwAAAAAAAAAAAAAAAAAAAAAAAAWFKKhQEAAAAAAAAAAAAAAAAAAAAAAMCSUiwMAAAAAAAAAAAAAAAAAAAAAAAAlpRiYQAAAAAAAAAAAAAAAAAAAAAAALCkFAsDAAAAAAAAAAAAAAAAAAAAAACAJaVYGAAAAAAAAAAAAAAAAAAAAAAAACwpxcIAAAAAAAAAAAAAAAAAAAAAAABgSSkWBgAAAAAAAAAAAAAAAAAAAAAAAEtKsTAAAAAAAAAAAAAAAAAAAAAAAABYUoqFAQAAAAAAAAAAAAAAAAAAAAAAwJI6924HALutqo5McuyKps8mOWuXwgEAAAAAAAAA2IrzJrn8iuM3d/c3dysYAJCjBwAAAAAAAADsE7uan6dYGAxJSK/a7SAAAAAAAAAAALbBHZK8ereDAOCQJkcPAAAAAAAAANiPdjQ/77CdmggAAAAAAAAA+P/Zu/M4u+r68P/vc2cmCYEAARJkUUIAQVMBqXxlCciiaLVfpZQv1dKitl9LhbZYv4D6tQjqryp1a79fqNStxKXWrwsgasEqi0DKIovSAipLCGDINpOQfe7c+/n9QWaYmdzlnJububM8nzx4mHPO55zPmZuc65B88roAAAAAAAAAAAAAAMWIhQEAAAAAAAAAAAAAAAAAAAAAAMA41d3pG4Bx4KnhG9dee20cfPDBnboXAAAAAAAAAICWPfroo3H66acP3/VUvbEAMEas0QMAAAAAAAAAJrxOr88TC4OI/uEbBx98cCxYsKBT9wIAAAAAAAAA0E79zYcAwA5ljR4AAAAAAAAAMBmN6fq80lhOBgAAAAAAAAAAAAAAAAAAAAAAAOQnFgYAAAAAAAAAAAAAAAAAAAAAAADjlFgYAAAAAAAAAAAAAAAAAAAAAAAAjFNiYQAAAAAAAAAAAAAAAAAAAAAAADBOiYUBAAAAAAAAAAAAAAAAAAAAAADAOCUWBgAAAAAAAAAAAAAAAAAAAAAAAOOUWBgAAAAAAAAAAAAAAAAAAAAAAACMU2JhAAAAAAAAAAAAAAAAAAAAAAAAME6JhQEAAAAAAAAAAAAAAAAAAAAAAMA4JRYGAAAAAAAAAAAAAAAAAAAAAAAA45RYGAAAAAAAAAAAAAAAAAAAAAAAAIxTYmEAAAAAAAAAAAAAAAAAAAAAAAAwTomFAQAAAAAAAAAAAAAAAAAAAAAAwDglFgYAAAAAAAAAAAAAAAAAAAAAAADjVHenbwAAAAAAAAAA2iGlFNVqNVJKnb4VgBGyLItSqRRZlnX6VgAAAAAAAAAAAIAJSCwMAAAAAAAAgAmpUqnEhg0bYt26dbFhw4aoVCqdviWAhqZNmxazZs2KWbNmxYwZM8TDAAAAAAAAAAAAgFzEwgAAAAAAAACYUCqVSixbtizWrVvX6VsBKKS/vz9Wr14dq1evjp6enth3331j5syZnb4tAAAAAAAAAAAAYJwrdfoGAAAAAAAAACCvcrkcTz75pFAYMOGVy+VYunRpbNy4sdO3AgAAAAAAAAAAAIxzYmEAAAAAAAAATAhbtmyJJUuWxJYtWzp9KwBtkVISDAMAAAAAAAAAAACa6u70DQAAAAAAAABAHsuXL4+BgYER+7Isi5kzZ8asWbNip512iq6ursiyrEN3CFBbSinK5XKsX78+nnvuuSiXyyOO/eY3v4mDDjrI+xcAAAAAAAAAAABQk1gYAAAAAAAAAONeuVyODRs2jNg3bdq0ePGLXxzTpk3r0F0B5NfT0xMzZ86MOXPmxDPPPBPr1q0bOlYul2PLli0xY8aMDt4hAAAAAAAAAAAAMF6VOn0DAAAAAAAAANDM2rVrR2yXSqU44IADhMKACSfLsthvv/2ip6dnxP7nnnuuQ3cEAAAAAAAAAAAAjHdiYQAAAAAAAACMe6NjYbvuumt0d3d36G4Atk+WZbHrrruO2Ldu3boO3Q0AAAAAAAAAAAAw3omFAQAAAAAAADCupZSiv79/xL7RkR2AiWaXXXYZsd3f3x8ppQ7dDQAAAAAAAAAAADCeiYUBAAAAAAAAMK5Vq9Vt9vX09HTgTgDap7u7e5t9td7vAAAAAAAAAAAAAMTCAAAAAAAAABjXUkrb7CuV/HE3MLHVeh+r9X4HAAAAAAAAAAAAYPU0AAAAAAAAAAAAAAAAAAAAAAAAjFPdnb4BxkaWZT0RcXxEvCQi9omI9RHxm4i4P6W0pM1zHRgRR0bEvhGxS0Qsi4gnI2JxSqnczrkAAAAAAAAAAAAAAAAAAAAAAAAmM7GwDsmybH5EHB0Rr9r6v0dFxKxhQ55MKc1rwzxzIuLDEfEHEbFHnTGLI+IzKaXvbOdcZ0bEeyPi2DpDerMs+2ZEfCiltGp75gIAAAAAAAAAAAAAAAAAAAAAAJgKxMLGUJZlJ0XEB+L5QFjNcFeb5/udiLg6IuY2GXpcRByXZdnXI+LclNKGgvPsEhFfiIi3Nhm6R0S8OyLOyLLs7SmlG4vMAwAAAAAAAAAAAAAAAAAAAAAAMNWIhY2tIyPitLGYaGuY7NqImDZsd4qI+yLi8YjYPSJeGRF7DTt+dkTsmmXZ6Smlas55uiLimxHxxlGHVkbE/RGxNiIO2jpXtvXY3hFxXZZlr00p3V7gywIAAAAAAAAAAAAAAAAAAAAAAJhSSp2+ASIiYktEPNaui2VZtn9EfDdGhsLuiIgFKaVXpZTOSimdFhH7R8QFEVEeNu6/R8T/V2C6T8TIUFg5Iv4yIvZPKb1+61y/HRG/FRH/MWzc9Ii4NsuyfQrMBQAAd3Xq+gAAIABJREFUAAAAAAAAAAAAAAAAAAAAMKWIhY29ckQ8EBFfjIhzI+K3I2JWRPzPNs7x4YiYPWx7cUS8NqX08PBBKaUtKaX/ExFnjTr/vVmWHdBskizL5sfzsbHh/kdK6YqUUv+ouR6KiFNjZDBsz4i4tNk8AAAAAAAAAAAAAAAAAAAAAAAAU5VY2NhaFBG7ppRemVJ6V0rp8yml+1JK5XZNkGXZIRHx9mG7+iPiHSmlzfXOSSldu/XeBk2PfBGvSyOiZ9j21Sml6xrMsyki3rH1ngb96dboGAAAAAAAAAAAAAAAAAAAAAAAAKOIhY2hlFJfo2hXm/xhRHQN2/5uSunXOc67fNT2WVmWzag3OMuynSLizCbX2EZK6VcRce2wXd3x/D0DAAAAAAAAAAAAAAAAAAAAAAAwiljY5PN7o7b/Oc9JKaWHI+KuYbt2jojTGpzy+oiYOWz7P1JKj+S6w23v6Yyc5wEAAAAAAABAU/PmzYssy4b+veWWWzp9SwAAAAAAAAAAAADQMrGwSSTLshdFxBHDdg1ExB0FLnHLqO3faTD2DU3ObeS2eP7eBr0yy7K9C5wPAAAAAAAAAAAAAAAAAAAAAAAwJYiFTS6/NWr7FymlDQXOXzxqe0GBuf4j7yRb7+nBAnMBAAAAAAAAAAAAAAAAAAAAAABMSWJhk8vLR20/WvD8x5pcb7iXjeFcAAAAAAAAAAAAAAAAAAAAAAAAU1J3p2+Atjp41PbSguc/OWp7zyzLZqeU+obvzLJsj4jYYzvnGj3+kILnAzBBlKv9kSJFREQpK0V31rN1fzlSVLfr2l1Zd3RlXXXnnFaanus61VSNUqahSnu169fV4LPSk02LLMtGHEspRYo0Yp5KGohKquS6dlfWFV1Z99Z5XnhWt0cWpegp9Wy9l0pU0kDNcc2ez5RSlFN/3WvnUU2VGBg1//D3jeE/R8Pfk4rOAwAAAAAAAADAC1K1GlnJeiwAAAAAAACAdhILm1x2H7W9osjJKaX1WZZtjogZw3bvFhF9o4aOnmdjSmlDkblq3NtuBc8HYJy7c+3N8e+918Sy/hf6kKXoimpUohRd8XziaPtiYdOzGXHozofHH+59XuzavXvctfbm+NGwOef07BMn7v47ceoeb655/qMb/yuuWfmVeGrL4/Hi6fPjjDnviINmvmy77omprZqq8YPV/xp3rr0pNlc3xhG7vDrO2vvPYkZpp8LX+uXGB+O6lV+JJzc/FimqsVvX7HjVrifG7805JyKyuG7VV+Pu526NShqIw3f5b3HK7DfHt1d8KR7b9PA2ka16urOeGEjl6Mmm5T4nj126dov1lbUxLZse/WlLzTF79uwdC3c7LU7b44wREbRqqsQ1KxfFz567LdZWRn4bmkUpXjLjoHjLXn8Uh+18RN35N1TWxTeWfy4e2vBAbK5uHHGsJ5sWA6kcu3TtGpuqG2MglSOLUsTWd6Xn58nixTMOijfvdXa8fOdXtvgqAAAAAAAAAABMLemGr0X6+qcili2JdOQJkV14RWQvOqDTtwUAAAAAAAAwKYiFTS67jNre1MI1NsXIWNisHTjPcLXmKSzLsrkRMafgaQe1Y24AXvDAujvjK8/+wzb7q1EZ8b/ba0vaHL9Yf3es7F8W/32vs2PRqDlXlpfFd1Z+OXpK0+LE3d8w4tizW56OK57+yFDI6InNv4wrnv5wvH/ep2Pvafu15f6Yen6w+hvxb6u/NbR953M3x/rKujhv/78pdJ1ntiyJf3z6oyMCXmsrffGTvuuiGpXoiu74cd+1Q8cWr/1xLF7748L3O5DKERFtDYVFRKyvrI2IqBsKi4hYXV4e1636anRn3XHqHm8Z2v/tFV+OW9b8oOY5Karx5OZfx+ee+du46CV/F/vPmLftmJTiyqc/Eks2/7rmNQa/1nVb73HwuiPnSbF086Nx1TMfiwtf8ol4yQzfLgIAAAAAAAAANJJ+el2kv/3TF3bc9aNIf3VaxFcfiGx68Q/aAwAAAAAAAGAksbDJZXTEa3ML19gUEbMbXLOd8zS6ZqvOi4hL23QtAFp0z3O3jul8y/qfim+v+FLd43etvXmbWNj96/9jm5DRlrQ5fr7urjhtzzN2yH0yuVVTNe5Y8+/b7P/PDT+LdQNrY1b3brmvdf+6/6gb8Lp77a2RZVnL9zne3PXczUOxsEqqxN053j/KqT/uX39HzVjYivJv6obCihpI5bhv3R1iYQAAAABAXSmluO++++KRRx6JFStWxJYtW2LOnDmx3377xcKFC2OXXdr1R+Fj76mnnop77rknnn766di0aVPstdde8YpXvCJe9apXRalU2q5rr1ixIm677bb4zW9+E5s2bYp999035s+fH8ccc8x2X7uWhx56KB588MFYuXJlPPfcc7HHHnvEPvvsEwsXLow999yz7fMBAMBUlG78+rY7ly2J+MUdEUe/dqxvBwAAAAAAAGDSEQub3NIkOweACeLZ/mfGfM7egZV1jz3b//Q2+65fVWNxWkRcu+orYmG05LnKmniusqbmsRXlZYViYbV+zQ7aUF1X+N7Gs2VbXvha11fWxsbq+lznPbul9mtUb3+rGv1cAAAAAABT16pVq+JjH/tYfO1rX4uVK2v/GcW0adPilFNOicsuuyxe/epX57ruO97xjli0aNHQ9hNPPBHz5s3Lde4tt9wSJ5988tD2pZdeGpdddlnd8cM/mOI1r3lN3HLLLRERsXjx4rj00kvjpptuimq1us15e++9d3zwgx+M888/v3DY6/7774+LLroobr755prX3n///ePcc8+N97///dHd3R2XXXZZfPjDHx46fvPNN8dJJ52Ua67Vq1fHJz/5yfja174WzzxT+8+uSqVSHHfccXHppZfGa18rXgAAANvlp9fV3J2+/NHIxMIAAAAAAAAAtlv7P46VThpdVtiphWuMPqdWrWGs5gFggkqx7V/u6KTxdj9MTn3lVXWPpVQZwzuZWKrDns9KgdepOkbPdTV5/wAAAAAARrr22mtj/vz58dnPfrZuKCwior+/P2644YY45phj4txzz42BgYExvMvWfOxjH4sTTzwxfvzjH9eMeUVELF++PP7qr/4qzjzzzOjv78997c985jNx9NFHx09+8pO613766afjkksuide85jWxfPnylr6GiIivfOUrMX/+/Lj88svrhsIiIqrVatx+++3xute9Lv74j/+40NcDAADktGlDp+8AAAAAAAAAYFLo7vQN0FZiYRH/GBHfKnjOQRFR++PMAGhJitTpWxhB7Iex0DdQ/y+EjVXYaiJKUY2UUmRZVuhZLRIW2x5+7gAAAACA4b785S/Hu971rm1iVwcddFC8/OUvj5kzZ8bSpUvj7rvvjkrlhd/H/PznPx9Lly6N66+/Prq7x+dSjU996lPxwQ9+cGj70EMPjUMPPTR23nnnWLZsWdx5552xefPmoePXXHNNXHLJJXH55Zc3vfanP/3puPDCC7fZ//KXvzwOOeSQmD59eixdujTuueeeqFQqsXjx4jjrrLPixBNPLPx1fOhDH4qPfvSjI/ZlWRaHHnpoHHLIITFr1qzo6+uLn/3sZyNib1/72tdi2bJlccMNN4zbnyMAAJiQuns6fQcAAAAAAAAAk4LVjZPL2lHbc4qcnGXZLrFtxGtNjnlmZlm2c0qpyEd/zc0xT2EppRURsaLIOVmWtWNqAIZJqVgs7NW7nhyv2f13co394m8+Gb0Noky1VGNsokJMbb3lBrGwwsG69gT3Xjx9frxt7z8fse9fV3w+lm5+tOF5r519ehw167jc89z93K1xy5oftHSPEc8Hubqiq9CzWi/i1e5YYXWMomQAAAAA7FhpYCBi5dOdvo3Jb87+kU3iyNIDDzwQ7373u0eEwo488si48sor47jjRv6e6sqVK+OSSy6Jf/qnfxrad8MNN8SHPvSh+NjHPjZm95zXgw8+GLfddltERJx++unx8Y9/PA477LARY/r6+uK9731vXH311UP7Pv3pT8e73/3umDdvXt1r33vvvfH+979/xL6TTjoprrjiiliwYMGI/StXrowPfehDcdVVV8VPf/rTeOihhwp9HYsWLRoRCiuVSnH++efHhRdeGC95yUtGjE0pxXXXXRcXXHBBLF26NCIifvKTn8Qll1wSH//4xwvNCwAANCAWBgAAAAAAANAWk3eV7tT061HbBxQ8f/T43pRS3+hBKaXVWZb1RcTsYbtfEhEPb8dco+8dgAks1Yn41LNHz14xb6eX5ho7vTS6a9lc8VATFNc3sKrusXphqx1t565Z2zxbO5d2aXre3Gn75H4mIyIe2/RI4Xsbrpqq0ZV1FXpWxyri1amfOwAAAADabOXTkc46tNN3Mell/++XEfvM6/Rt7DB/+qd/Gv39/UPbCxcujBtvvDFmzpy5zdg5c+bEVVddFQcffHBcdNFFQ/svv/zyeNvb3haveMUrxuSe8+rt7Y2IiIsvvjguv/zymmNmz54d//zP/xx9fX1x3XXXRUREpVKJL33pSyMCXaOdf/75MTAwMLR9xhlnxDe/+c3orhGWmzNnTnzuc5+L+fPnx8UXXxyrVtX/vffRnnzyyXj3u989tD19+vS49tpr4w1veEPN8VmWxemnnx7HHXdcHH/88fHoo89/0MYnP/nJ+LM/+7M48MADc88NAAA0IBYGMKaeXJ3iqltTvPmILI6Z78PVAQAAAABgMil1+gZoq9GxroMLnj9/1Hajj+ht91xFQmMAjHPVSIXGZwW+JSllxb99qUY1Uip2T1BUb7lBLGyMwlajlbKuGvuaP0NFnsm812xkMDBYjfyvU2WsYmEd+rkDAAAAAMaXm2++Oe67776h7V133TW++c1v1gyFDXfhhRfG7/7u7w5tV6vV+OxnP7vD7nN7LFy4MD7+8Y83Hfe3f/u3I7ZvuummumPvueeeuOuuu4a299lnn/jyl79cMxQ23EUXXRSnnXZa03sZ7pOf/GRs2rRpaPuzn/1s3VDYcHPnzo1/+Zd/GdquVCrj9ucIAAAmJLEwgDGRUoqFl1fiwA9U4/IbUhx/eTW6zq3G5rL1swAAAAAAMFmIhU0u/zlq+/AsyxqvTB7p+CbXa3Ts2LyTZFm2c0QcXmAuACaYlKqFxnfVCBrVU2rx25fBGBHsKH3llXWPVQv++mtX267W85InBFY0/tUVzZ/h7qz+X/waDH8VCYAVCYttj2rB9zMAAAAAYHJatGjRiO3zzz8/9t1331znfuITnxix/Y1vfCO2bNnStntrlw9+8INRKjX//eEFCxbEvHnzhrYfeOCBumO/8Y1vjNj+i7/4i9htt91y3c8ll1ySa1xExIYNG+LLX/7y0Pb8+fPj3HPPzX3+0UcfHSeccMLQ9ve+973c5wIAAE30TOv0HQBMCd+9L2LxY9vuf/3fWwMHAAAAAACThVjYJJJSWhYRvxi2qzsiFha4xEmjtv+twdgbmpzbyAnx/L0Nuj+ltLzA+QBMMnniRYNKBcJiwxWNNUFRfQOr6h7rVHCqVvQrT5yvlCP+1Wye0bqz+p8SOxjzK/KcjtVrOlZRMgAAAABgfLv99ttHbP/RH/1R7nMXLFgQRx111ND25s2b4957723bvbXDTjvtFKecckru8S972cuGfrxx48ZYv359zXGLFy8esX3WWWflnmPhwoW5g2y33357bNq0aWj7zDPPzBU+G+7kk08e+vGTTz4ZS5cuLXQ+AABMZanSYH1Fd/01IwC0zx9+sfaautt+PcY3AgAAAAAA7DDdzYcwwVwTEYcP235nRPyo2UlZlh0WEa8etmtDk/NujIhNEbHT1u1jsyw7LKX0SI57fMeo7WtynAPABFI0zJUnXjSo1GLrtJqqEVlLp0JT/dUtsa6ytu7xTgWnumpEv/I8Q3niXyPHN3+Gn4+Fbap5rJKef32KBMDGKgDYqdAbAAAAADB+9PX1xWOPPTa0vfvuu4+IZeVx3HHHxX333Te0fc8998Rxxx3XtnvcXgcddFBMmzYt9/jZs2eP2F67dm3ssssu24z7+c9/PvTj3XffPQ4++OBC9/WqV70qvve97zUdNzrmtu+++8aSJUsKzTX663/88cfjJS95SaFrAADAlDXQX/9Yl1gYQD2VaorFj0X8/KkUR8/L4r8dGJFlrS12LftcTAAAAAAAmPTEwiafr0fE30QMlSHOyLLskJRSs8+Ded+o7f+XUtpcb3BKaWOWZd+OiD8edY13Npoky7KXRsTvDds1EBH/0uTeAJhgUqRC44sEwIpGjAaNVViIqWnNwOqGx4sHp4o9Q/XUinjlCXsVCfhFRJRqRMlGez4WVtvg81lN+Vcr1Rtb9P2n6TwdCr0BAAAAAOPHypUrR2wfcsghhf/S5mGHHTZie8WKFdt9X+00Ov7VTE/PyN/zLZfL24zZsGFDbN78wrKDVsJbec956qmnRmy/5z3vife85z2F5xuut7d3u84HAIAppdwgFtYtFgZQS/9Aij/6YjW+PdSXT/Huk7L4v2+NKJXa++m4/QMppnX7xF0AAAAAAJjoxMImmZTSr7MsWxQRf7J117SIuDrLslPrxb+yLHtLRLxj2K7+iPhwjukui4i3RsTgn+K/I8uya1JKNT/WN8uyGRHxz1vvadCXUkqP1RoPwMSVUsFYWIEwUZ4oUS1FIkRQVF95VcPjnYrV1Xpe8sT5sgIBv4h8Eb/urP5/eqStMbVKgTBXZYye6eKhNwAAAADGpTn7R/b/ftnpu5j85uzf6TvYIfr6+kZs77bbboWvMfqc8RaiKpVa+7CWRtasWTNie9asWYWvseuuu+Yat3p14w/1aMW6devafk0AAJi0Nm+sf0wsDKCmf70nDQuFPe9zt6Q445VZnPqy9s91zrFiYQAAAAAAMNGJhY2xLMv2j9qv+4tGbXdnWTavzmXWp5QaFSkujYjfi4jBj/49LiJ+nGXZ/0wpPTLsXqZHxJ9FxKdHnf/plNKTDa4fEREppcezLPuHiLhw2O5vZ1n23oj4fEpp6GPCsix7WUR8ceu9DFod+aJkAEwwqWAYKU+8aGhsjihRLYI/7Ei9AysbHu9UrK7W85InztdVIOAXkS/i15XVX/g5GAkr8jpVC4TFtkelQ6E3AAAAANor6+6O2Gdep2+DCWr0h6Rk2fb/xcp2XGO8mz59+ojt/v7+OiPry3tOK9dupuiH4wAAwJT25CP1j02bXv8YwBT2Dz+u/XsP/3hLNU59WWsfrFvPvz8Ucc6xbb0kAAAAAADQAWJhY+/2iDggx7j9IuKJOscWRcQ76p2YUno6y7IzIuLGiJi2dffxEfFQlmX3RsTjEbFbRBwVEXNGnf79iLgkx/0Nen9ELIiI39m63RMR/zciLsmy7L6IWBcR87fONXy1c39E/F5KaVmBuQCYIFIU+8sTeeJFg7pyRIlqqYxRWIipqa/cqOMaUe1QcKpmLCxHnC8rEPCLiOjKEfHryer/p0faGvMr8jqNVQAwCQ0CAAAAwJS3xx57jNheu3Zt4WuMPmf27Nl1RrauUhlffxYy+mvs6+srfI3e3t5c4/baa68R24sXL45jj/U3YAEAYMwMlOseyvY5cAxvBGD8uv3XKb7/YIqerojTj8zi/qdqj7vm/vbP3btBFB0AAAAAACYDsbBJKqV0S5ZlvxcRV8cLQbAsIl619d9avhER70op5V5BnFKqZFl2VkR8MSL+YNihuRHxhjqnrYiIt6eUbss7DwATS9FPWs8TLxqU5YgS1SL4w47UN9AkFlbw11/R4F49teJ6tQJirYwZLk9crDvrqXtsMOZXzf9taIMAYHsXNQkNAgAAAABz5oz8DK5f/epXha/xy1/+csT23Llza47r7h65jGNgYCD3HK3EuHakrq6u2G+//eKZZ56JiIjHH388Nm7cGDNnzsx9jQcffDDXuL333nvE9q9+9SuxMAAAGEv9m+sfy7L6xwCmiKturcZ5X39hbdvl/9b+eNfuMyPWbKx97N/+s+3TAQAAAAAAHdBabYMJIaX0w4j4rYi4KiIarQq+MyLOTCn9YUppQwvzrE8pvTUi/sfWa9XTGxGfi4jfSindUHQeACaOahQLIxUJExUJiw0n+MOO1Fte2fB4kQhWO5WyGrGwGgGx0WpFxhqOrzHPaI1iYYMxtSLvHWP1mgoNAgAAAACzZ8+Ogw46aGh7zZo18fDDDxe6xuLFi0dsH3300TXH7brrriO216xZk3uO//qv/yp0T2PhmGOOGfpxtVqNW2+9Nfe5vb298fOf/zzX2OOOO27E9o9+9KPc8wAAAG2wpUEsrOAHTwJMNlvKKS7+9sj3woEdsCytXigMAAAAAACYPMTCxlhKaV5KKdvOf99RYL4VKaV3R8SLIuKUiHhnRHwgIv4qIn4/IuanlI5NKX2nDV/bt1NKx0bE/Ig4c+scH9g65ykRsU9K6byUUuOaBgCTQLEFXkUCYLXiR3kI/rAj9Q6sani8aECvXWo9W3nifFmBgN/z19y+WFja+vpUCgTAxioWJjQIAAAAAERELFy4cMT217/+9dznPvzww3HvvfcObc+YMSN++7d/u+bYuXPnjth+6KGHcs/zwx/+MPfYsfLa1752xPYXvvCF3OcuWrQo+vv7c4099dRTo6vrhd+r/t73vhcrVqzIPRcAALCdylvqHxMLA6a4Ox6LWN/gbbJdsqzx8d4N3o8BAAAAAGCiEwubIlJK/Smlm1NKV6eUPpFS+r8ppe+mlJ7YAXM9kVL6ztY5PrF1zptTSvlW8QIw4aWisbACYaIiYbHhBH/YUVJKsabcJBZWMGzVriU5tSJeeZ63roLPWVc0j4V1Zd11jw1Gwoq8TvUCbO1eziQ0CAAAAABERJxzzjkjtq+44op49tlnc537gQ98YMT2W9/61pg+fXrNsUcdddSI7euvvz7XHDfeeGPcfffducaOpbPPPjtmzZo1tH3NNdfEjTfe2PS8Z555Jj7ykY/knmf27Nlx9tlnD22vX78+LrzwwmI3CwAAtK7aaH2FOA0wtT27dmzeB2fV/u2mIes3j8ltAAAAAAAAO5BYGADQdqngp0GWcoSGBnXViB/lURX8YQfZWF0fW1LjVTT1wlY7Wq24Xp7gXlbwOctyBMi6s566x9LW16fI6zRWz7TQIAAAAAAQEXHKKafEkUceObS9du3aeNvb3habNm1qeN5nP/vZuO6664a2syyLv/7rv647/thjj42ZM2cObV9zzTXxs5/9rOEcv/71r+Ptb397sy+hI2bNmhUXXHDBiH1nnXVW3HzzzXXPWbJkSbzuda+LNWvWFJrrsssuGxFh++pXvxrve9/7olIp9vu8Dz30UPz0pz8tdA4AANBgvVjBtWQAk82m8tjMM9BkSd1zYmEAAAAAADDhiYUBAG1XNIxUyhEaGpS1+O1L6lCsicmvt7yy6ZhOxepqxfVKOUJgXQWfszzjexrEwipbX59qyv8XtsYq4iU0CAAAAACTw7PPPhtLlixp6d9BX/rSl2LatGlD27fcckuccMIJcdddd20z36pVq+L888+P9773vSP2X3zxxXH44YfXvc9Zs2bFH/zBHwxtVyqVeNOb3hQ/+tGPthnb398fX/jCF+KYY46J5cuXx+zZs4u8JGPmkksuiVe84hVD288991yceuqpcdZZZ8W3v/3t+MUvfhGPPPJI/OhHP4r3vOc9sWDBgnj44YdjxowZ8Za3vCX3PAceeGB8/vOfH7Hv7/7u72LhwoVx/fXXx8DAQN1zlyxZEldeeWWccsopsWDBgrjpppuKf6EAADCVCYIB1HXTI2MzT7nJkrofP+y9GgAAAAAAJrruTt8AADD5pEafFFlDKZrHiwZ1FQiLDVcpECGCIvoGVjUdUy0ctmrPopxaIb5SjrBXkYDf8+ObP8PdWf3/9BgMDBYJDdYPi7V3QVORgBkAAAAAMH697W1va/nctPUvvR911FFxxRVXxJ//+Z9Htfr872fee++9ccwxx8TBBx8cCxYsiBkzZsRTTz0Vd9999zZxqte97nXx0Y9+tOl8H/3oR+Oaa66JNWvWRETEihUr4vWvf30cfPDBcfjhh8f06dNj+fLlcdddd8WGDRsiIuJFL3pRXH755fH2t7+95a9zR5k2bVr84Ac/iFNOOSUeffTRiHj+Nf3Wt74V3/rWt2qek2VZXHnllbF06dK47rrrRuxv5Jxzzolnn302PvCBDwz9HN15553x5je/OWbOnBmvfOUrY++9946ddtop1q1bF6tWrYqHHnpo6LUGAABaVG2w5kNIDJjiXrRb8XNSSk1/H2S0gSbL79ZsLH4fAAAAAADA+CIWBgC0XSq4wKtImChrMRaWCkSIoIi+co5YWOrMr79aIb48z1uWIyg2cp7m47uznrrH0tYgV5GoX/EAW2uKBMwAAAAAgMnvXe96V8yePTve+c53xvr164f2P/roo0MhrFr+5E/+JK666qro6an/e6WD9ttvv/jOd74Tp59+eqxbt67pHAceeGD84Ac/iOXLlxf8asbOi1/84rjtttvivPPOi2uuuabh2D333DMWLVoUb3rTm+J973vfiGOzZs1qOtfFF18chx9+eLzzne+MZ599dmj/xo0b44477sh1v7Nnz841DgAAGNRgvZhYGDDFlVtY6tY/EDG9+W8jDalUU9O32498P8UZR6U4fP9iETIAAAAAAGD8aK22AQDQQNEwVynbNmhUT1eN+FEelQ7Fmpj8egdWNh3TqeBUrWerVkBstK4Cz2S9eba9Zv1OcWXr61PkdRqrZ1poEAAAAAAY7cwzz4zHHnssLrjggthrr73qjuvp6YnTTjst7rjjjvjSl76UKxQ26JRTTom777473vKWt0SW1f4LnHPmzImLLrooHnjggXjZy15W+OsYay960Yviu9/97lA07OUvf3nsvvvuMWPGjJg/f3689rWvjX/6p3+Kxx57LN70pjfQQVaJAAAgAElEQVRFRMSaNWtGXGO33XbLNdcb3vCGeOKJJ+LKK6+MI488su5rOKinpyeOO+64uOyyy+JXv/pVXHDBBa19kQAAMFU1LNSIhQFT26b+Fs4pFxs/kDNIduRHqvHYCu/LAAAAAAAwUdX/G/sAAC1KBRd4lQr0S7OstdZpp2JNTH595VVNx1Q7FKurFdcr5XiGsoJN4bwBsixKNeNbaevrU035P0IxRTWqqZrr69keQoMAAAAAMDEtWbJkh15/7ty58fd///fxmc98Ju6999545JFHYuXKlbFly5bYa6+9Yv/994+FCxfGrFmzWp7jsMMOi2uvvTZWrVoVt956azz99NOxcePG2HvvvePAAw+ME044Ibq7X1j2cdJJJ0Vq+Bf0RyoydrSrr746rr766pbOXbhwYSxcuDDX2Iceemjox1mWxdy5c3PPM2PGjDjvvPPivPPOi97e3rjzzjtj2bJl0dvbG+VyOXbZZZeYO3duvPSlL43DDjssZs6cWfhrAQAAtmrw3xcppWic7wWY3DYXDH9FPB8Y273Ab1WU8y+9i6/fneJDv+udGQAAAAAAJiKxMACg7QrHwrLmoaFBteJHeRSJEEERfQM5YmEFY3VFn6F6asX18oa9isgzvhRdUYpSVGq8FpV4/vks+pw+Hx4b+TVuz19uqzdHSimyzOIoAAAAAGBbpVIpjj766Dj66KN32Bx77bVX/P7v//4Ou/54tWHDhrjvvvuGtl/60pe2HF/bY4894o1vfGO7bg0AABit0XqNNq/lAJhoNvUXfx/cVDAwtmUg/9jLvpfiQ79b7PoAAAAAAMD4sG09AABgO7QS6ikV+JakVCN+lEfRWBPk1Vte2XRMp2J1XTWerTzPUJFnMvc1s1LdcdX0/PNZKyTWSGWMXlfvHwAAAAAAY2/RokWxcePGoe1jjz22g3cDAAA0lKytAKinaPirlXNamQMAAAAAAJh4xMIAgLZKLUR1SllX/rGRf+xwnYo1MblVUiXWDPQ2Hdep2FStZyvPM1TkmXz+mnkCZF11xw2+bxR9Tsfqda1a0AoAAAAAMKaefvrpuOSSS0bsO+ecczp0NwAAQFONPmCyhQ+fBJhMNvYXP2dTwXOKjgcAAAAAACYmsTAAoK1SFF/clSc0NDQ2a+3bl07Fmpjc1g705grkdSpWV+vZyvMMFXkmn79mngBZqe7cla2vT9HntNbruiOWl1ZDbBAAAAAAYHt85zvfif/9v/93rFy5sunY+++/P0488cTo7X3hwzqOOOKIOPnkk3fkLQIAANujYRBMLAyY2loJeW0q79jxAAAAAADAxNTd6RsAACaXagufBNlVIABWiuZRolqqSSyM9usrr8o1rlOxuloRrzwhsKxglC/PNUtRqhsVGwyuFY2qjdVz7f0DAAAAAGD7rFu3Lj7+8Y/Hpz71qXjDG94Qp556ahxxxBExd+7c6O7ujt7e3njwwQfj+9//flx//fWRhv1507Rp02LRokUdvHsAAKC5BmvGWlhPBjCZbBkofk7RwFgrcwAAAAAAABOPWBgA0FaphShSliM0NKhUMGI0aHiEqFn4J6UUWZa1NA9TS+/AylzjOhWb6qoVC6sT7BpxXsEoX55rlrJS3ahYZevzWY1isbBKwfGtKnpfAAAAAADUVi6X4/rrr4/rr78+1/iddtopvvKVr8QRRxyxg+8MAADYLo2CYGJhwBRXbmH52aZysfH9BWJh8/Ysdm0AAAAAAGD8aK22AQBQR2r0KZF11Aoa1VMvNtRMdVjErFn4p5XgGVNTX3lVrnFFY1OpTYskaz0veZ6holG+PHGxUnTVjYoNxtQqBaNqwyOAL2j/AtNOxd4AAAAAACaL3XffPbq6in1QxfHHHx8//elP48wzz9xBdwUAALSNWBhAXf2txML6i713FomFVb0tAwAAAADAhNXd6RsAACaXVmJhWYEAWNGI0aDhUaFm4Z9KqtaNGsFwfQM5Y2Edik3Vel7yPENFf/3nu2apbqhsMNBXO/5VX9EIW6vGah4AAAAAgMnq9NNPj+XLl8cNN9wQd9xxRzz44IPx5JNPRm9vb2zevDl22mmn2GOPPeKAAw6IE044Id74xjfG8ccf3+nbBgAA8qo2WBsjFgZMceVWYmHlYuOLBMmKXhsAAAAAABg/xMIAgLZKLSzu6ioQJipFaxGvalRr/riW1OQ4DOotr8w1rlOxqVrPS71gV9ExI8bneIZLUaobFatsjYQ1eza3PW9sntVOxd4AAAAAACaTPffcM84+++w4++yzO30rAABA2wmCAdTTP1D8nMKxsAJzrN0UcesvU/zsyRSbyxFvOjyLQ+ZGLH7s+bDZCYdEzJqRFbsBAAAAAABgTIiFAQBt1Upoq0iYqF5sqJlqqtT8cS2VJsdhUN/AqlzjisamUpsWUNaKeOUKexV8znIFyLKuurG/wfeNZs/maLXGt+u1GzFPh2JvAAAAAAAAAAATQsMPmBQSA6a2cgvLzzYXjIVtKRAL6x+IOPnTL6xpvOS6ke/TO0+PuP4vSnHSoYJhAAAAAAAw3rRW2wAAqKOVUE9WIExUJCw2XHVYxKzaJGjWSvCMqamvnDMW1qFfU121YmF5wl4Fn7Na89S6Zr0I2WCgr1IwyjVWr2vR2BsAAAAAAAAAwJTSKBbWMCQGMPn1Fwh5DdrUX3SO9r3XbtgSccbnqlFu4zUBAAAAAID2EAsDANoqtbC4qyuah4YGlXJEiWoZHvtpFv4RBiKPLdXNsaG6LtfYamrhowHbIKvx7X69YFez87Z3fCkrRanOsz4Y/UoFn72xel07FXsDAAAAAAAAAJgQxMIA6iq3sMxtU7nY+P42L6VbszFi8WPtvSYAAAAAALD9xMIAgLZKLUR1shzxokGlFr99GR77aRb+qURnwk5MLH3lVbnHdio21VUjrlcv2PXC8VJkWVZonlJWiiwan1PKuuqGygYjYUWfveoYPasCggAAAAAAAAAALRILA6a4VkJehWNhA8XnaGb5Ou/fAAAAAAAw3oiFAQBtVY3iiwO6msSLhivViB/lUU2Vmj+uJQkDkUPvwMrcYzsVm6oV16sX7Mp7vP5czSNk9WJ/la0xtaKvU6Xm+PYvUKo0ec8AAAAAAAAAAJjSqo3WfIjNAFNXtZqi0sLyweVri43/xL+1/732hv9s+yUBAAAAAIDtJBYGALRVamFxV5E4Uasho2q8sNqiWZCoEsJANNdXXpV77PBff2OpVlyvWXCvWfSr/lzNImRddeceDPQ1C/mNVnR8q1KHfv4AAAAAAAAAACaEJAgGUEu5xSVu/3J3/vfVzeUUS1a3Nk8jVy9Okby/AwAAAADAuCIWBgC0VWoS4qqlWbxoxNgWQ0bDA2HNwk2tfA1MPX0DBWJhYxS1Gq1U49v9WvtGHG8xyNf0ulv/qWUw0Fc01DdWYb9Kh37+AAAAAAAAAAAmhgYxGaEZYAprNRZ2wJ75x97yy9bmyGNp7467NgAAAAAAUJxYGADQVqnRwq86mkWGRoxtMWRUHRYVahZuahYTg4iI3vLK3GOL/ppq5TmqpatGiK9ZnK/VIF/T62ZddZ/fwUBf0VBfrWd5RywvTd4TAAAAAAAAAADqaxQEEwsDprD+FmNhs2fmH/vL5Tvuffbx/MskAQAAAACAMSAWBgC0VUuxsAIBsFZDRtVhEaJm4aZKk5gYRET0DRSIhRWMYLVLrYBXszhfq0G+ZueVtv5Ty+AzWYliz95Yhf28JwAAAAAAAAAANCAWBlBTucWlZwMFzutpbVltLo+v8h4OAAAAAADjiVgYANBWqYXFXc3iRSPGthgyqg6LEFWbhH/SGAWImNj6yqtzj232a25HqfVsNY2FtfifCF1NQn6lrFT3+R2McRWNqo1VxGusomQAAAAAAAAAABNSwzVjQjPA1NU/0Np5AwWWrHXvwL8V9MSqHXdtAAAAAACgOLEwAKCtWgltZUViYS1++zI8QtQs/DNWASImrpRS9A6szD2+eGyqPYska8W5SlmzqFdrHzPY9LpRilKdoNjg+0bRqFqt95tWgoXNdCr2BgAAAAAAAAAwEaRGHxC3A9ZyAEwU5RaXnhU5r6e1JX+5LBELAwAAAACAcaW70zcAAEwuqWDkqBSlyLIs//ga8aM8qvHCyolqo8Vp0VrwjKllfWVtDKRy7vHFY2HtUSvO1ewZajXI1+y8UtZVd+7BQF/R12mswn6d+vkDAAAAAAAAAJgQBMEAauofaO28gQJL1hotwZ2/V8Tj2xH8enxV+97fH/pNiv9zU4p7nkgxc1rESYdl8b7XZ7HLjPxriAEAAAAAYKoTCwMA2qpwLCwr9pFmXTXiR3kMD4QND4fVUmkSE4O+gWKrZ6pjFLUaravG89U86tViLCxHhKxWvCzihUBf0fjXWL2unfr5AwAAAAAAAACYEBrFwoTEgCms3OLSsydX5x+7en39Y+efnMX/+lbr78NPbEdobLhHlqV4zSersXrDC/vueCzFzY+kuPl/laKnWzAMAAAAAADyaK0EAABQR7VgaKtZuGi0rMWQ0fAIUbN7rIZYGI31lovGwjrza6pWnKt51Ku1IF+z80pZqe7cg69Ps5DfNucVHN8q7wkAAAAAAAAAAI2IhQHU0t9kidsBe27/HN//Re332cNeFLH7zO279vLnIjZs2f738S/enkaEwgYtfizitke3+/IAAAAAADBliIUBAB1VyoqFibpaDBmlYbGfZoGhlMYmQMTE1TuwstD4olGrdi2RrBXnyhP1akVXk2e5FF1144CVra9P0ahapeb49i8w7VTsDQAAAAAAAABgQmgYBBMLA6au/oH6xzZcUYqPviWre7xvQ773z5fuXfsay9ZGvGyf+tfPa8nq7b5E3P1E/a/lrgbHAAAAAACAkcTCAIC2Gh7lyqNePKierMWQUXV4LKxJ+KdS8Gtg6ukrF4yFdSg2VSvG1ywGVvSZHJQ1Oa+UlerGAdPW16da8NkrGmFrVdH7AgAAAAAAAACYUhrFwhqGxAAmt03l+sdm9EQs2Ld+zGtjf745Buosb1u7KeLoeRF77pzvOvW84rJqnPvVaqzf3Nr7+eZyitsfrX8879cJAAAAAACIhQEAbVYtuLirXjyonq4oNn7Q8FhTs/BP6lDYiYmjb2BVzf1Z1F64UzSi1y5dNb7dbxYDaxYTqztXk2e5tPWfWipbo1/VVCz+VXR8q8ZqHgAAAAAAAACACanaYG2MWBgwhW2qE8Ka0RORZVnDkFej0Nhw/3xH7ffZtx6dRVcpi2+eu/1/begLt6U4/R9bWwc58/zG5/30V/5/AgAAAAAA8hILAwDaqmgUqVm4aJvxLYaMRsTCmoR/BsNFUE9vuXYsbLfuPWrurxSNTbVpkWStGF+zQF+pxSBf0+tmXXXHDAb6ir5OtcbviGVDzQKDAAAAAAAAAABTm9ALQC31gl879Wz932kNzq0TGhuuUq3//rvH1hDZKYdlcdaran8QahE3PRLx6Ipi7/fPrm0+/rZft3pHAAAAAAAw9YiFAQBtlQou/Coa/2oWJKqnOiwA1iz8MzwsBrX0lVfW3L9Xz94193cqNlUrxtcs0NdqkK/pdbf+U8vg61MtGOobq9fVewIAAAAAAAAAQAONPhivTR+aBzARbeqv/R44GAkbjIbVPLdOaGy436ypf6x72HLbc47d/lhYRMQvni42/l/vaf7/ASce0uLNAAAAAADAFCQWBgC0VeFYWMFvR4qOHzQ89tMs/JM6FHZiYhhI5XiuUnuFzZ71YmEdik3Vius1C+6VorUgX7PIWCnrqjtm8PUp+jqN1etaNGIGAAAAAAAAADClNAyCiYUBU1e94NdgJGwwGlbz3P7Wrx8R8Tu/9UIg7ORDI2bNaH695vMVe09ftrb5mLLleQAAAAAAkJtYGADQVqlgvKdZYGi0rMVvXyrDYj/VJjGwSrLygPrWlHvrRvH27Jlbc3+zX3OjFY3u1VMr/NUsuFf0mWw01+h5640ZjHEVjXLVHt/+Baadir0BAAAAACxdujT+5m/+Jk444YTYe++9Y9q0aZFl2dC/V199dadvEQAAoHEsrGFIDGByu2dJ7f2DsbCuUhY9dZbeNQqBDVqyqv6xVx0wbL5pWfzwr0qxx87Nr9nIxhwBs+G+dmfz/w/ot2QXAAAAAABy6+70DQAAk0vRyFGzwNBoXVmx8YOGR8yahX9SwbATU0vvwMq6x+rFwopG9NqlVvir2TNUavEZy3PdeiGyytbXp2iUa6zCflUBQQAAAACYcObNmxdPPvnk0PbNN98cJ510UuduqAVf+MIX4i//8i9jy5Ytnb4VAACAJsTCAGp54Kna74E7TRv2456Ico0lanliYTf8V/332MEg2aDjD87i2U+V4v6nIubsEvGWK6vx4DPN5xhxTwVjYcvWNh+zJcfXCQAAAAAAPK/239YHAGhR4VhYnXhQu8YPqsQLKymq0Tj8M1YBIiamvnLtj+LbqbRz7FSq/bF7lSa/5naUUo1v97Mm/wlQ65xW5xp9vN7zOxjoK/o6jVXEqyogCAAAAACMsR/+8Idx7rnn5g6F3XLLLZFl2dC/l1122Y69QQAAgOGqDdZWaIUBU9iCfbOa++9Z8sKPh4fDhtvU3/wNdHp3/WO1rtvdlcXR87KYt1cWf/jq2vfWyJaBYuMPqf35qyP0W7ILAAAAAAC5NfijAQCA4lLBT4IsRdf/z96dx8lRFXob/53unp4t24QkhFV2IewoFwRUQPG64MJVr+KC2wuu9+rF5b4uiKgv6n3d8IrbVVwRdwFRQPQNICACSQCFsAVC2JMhk2XWXuq8f/T0TC91TnXVdPdMZp6vHz7prlPVVd1T1cLk9NMx108WMrJ2ckJaYP3hn6hxzG0DhU2hyxd3LHXHsGKeU3Gje2FSSsmY+sk8UcG9xLEw47+WUyblfOzyNRc3/hUW8WrGa1e3HwKCAAAAAAAAANrsox/9aNXfubzhDW/QO97xDu2xxx7q6OiYWL5kyZLpODwAAAAAqOabMxZzPhkAzCbDY+HvgcvmT97u7ghdRSP56McfyrnHwuYPVjrtSKNzL7fKxQiAxVlXkjINTBGO+5gAAAAAAAAAAMxlxMIAAEBT2ZB4j09UuGiq65cVNRn7CeQP/0SNY27bnO8PXd6XWaK0I35XnIZzyhXvigr0RUW/3NtFRMhMWsYZCyu9PmHxL59imyJecY8LAAAAAAAAAKbi3nvv1Z133jlx/6UvfakuvvjiaTwiAAAAAIhCEAwAwvxqdfjylx46GfLqzoavM9pALOyb14a//776qOhtD9jZ6HfvS+k9Fwdat0nqyUrDnviYJOVjTtlrZP0cU3YBAAAAAAAAAGgYsTAAANBUQcyJX3HDRFGhI5fABqG3o9YFag0UwmNhizuWyjiCWdNxTqUcYa7oqFeyIJ9rf5Xjacf1Xo5xBTHjX+0K+/GeAAAAAAAAAKCdbrvttqr7r3nNa6bpSAAAAACgQdY3Z4yQGADUuuGByffG7o7wdUYaiIVlUlIxZHrb/C5TvzDEKSuM7v8/aT21zWqnXin7bv9cubhhr1yhOesAAAAAAAAAAICSZCUAAAAABxs3FhbzX0eShoysKmJh8k9msBHjmNsG8ptCl/dllijtiNlNxznlCvE1EvVq5v4mx1PO67c4HgmLG+VqV8SrXVEyAAAAAAAAAJCkp556qur+7rvvPk1HAgAAAAAN8sXCvCExAJibHtg4ebvLFQvLRT/OQbuEL7/z0XjvvTsvMMqkowNjccNe+Qam3hELAwAAAAAAAACgccTCAABAU9mY8Z50RGCoVsoRY4pSjhFJUmD9sw+KEeOY2zYX+kOXL+5YIuOIYVnZtoWtylzhMmOMjOc/A5IG+Vz7m3hcpZzXbzmmVnREuTImE7q8XRGvdv/sAAAAAAAAAMxtg4ODVfc7OhyfGAUAAACAmYJYGADUGR5r7P2v2xULy0dv6wqKveCg6PBXErmYU/YaiYWNEQsDAAAAAAAAAKBh4Z+6BwAASMgq3uQuX7QoTNKQUTlGJEmB/OGfqHHMXSPFIY0Gw6FjfZml3m1L52D7Wr2+ayVtUio4AlhJg3ypiPBfyqSdx1SOcbmiXBmTVcHWzwhqV8SL9wQAAAAAAAAALtZarV69Wvfcc482btyosbExLV26VLvttptOOOEEzZs3L/ZjBgG/kwQAAACwg/HN4SAWBmCO+uI1DcbCsuHLXSGwqnUcQbEDlze069gaiX9VyjUQAssVS79jM6Y1gTMAAAAAAAAAAGYTYmEAAKCp4sbC0jHjX0lDRsWKCWk2IjDUrgARdjwDhX7nWF/HEm0rDDjHAxso3ca5LClPmMwX6Usa5PPtrzzu2m+goqy1ChQ+k6jDdGg0ZHnRxpx5lFC79gMAAAAAAABgx9Hf36/zzz9fP/nJT7Rp06bQdbLZrE4++WR96lOf0jHHHON8rPXr12vvvfd2jp900kmhy7///e/rbW97W+jYeeedp/POO8/5mCtXrtSJJ57oHAcAAACAWLxBMGJhAOamK//eYCyswyjsvdIVAmtkne6OhnYdWyPxr0qNxMWslQpFqYNPNwEAAAAAAAAAEIlfpwMAgKaKGwvzRYvCJA0ZWU0GwKLCP4GIhSHc5nz4B76MUlqUWaztha3ObYsqqtH5N3GvozAp4w7r+cJeUdEv9/4iYmEmpbTjmAIbVF2jtTIm/JULi4s147Wrf0zeEwAAAAAAAABMuvTSS3XGGWdo+/bt3vVyuZyuuuoqXXXVVTrrrLN04YUXKpNhmgYAAACAWcgbCwOAual/0D32s7Mmv3m0Oxu+zmgjsbBc+PLubLJvNj3jOUY/+qv7PT3fgliYJI0W3LGw0bzV7++UVm8oHde8Lqk3K83rLN82FberxzsybfyGVwAAAAAAAAAA2oBZqAAAoKmsjRfVccWDXFKKt35ZZSAsKgYW9zlg7hgoPB26fGGmT2mT8Z7P7T6vvLEwk3Z+aatvu6T7k0rXritEFqioouf1ccbCIsJ/zRIVGAQAAAAAAAAwd1x00UU688wzFQTVv9Pcd999tWLFCvX09GjDhg265ZZbVCxO/m7xO9/5jjZs2KDf/e53BMMAAAAAzEKeWBghMQBzUBBYrQv/blJJ0ssPm4xYdTm+hdQVAqs0OBa+vLvRbzat8e7nG/1qldWwY9+Nxr8kyVqrQoPTJkdy0vyu+uWDo1avvDDQynu9e3KOZDO1YbHS7d5OaV6nUW9deKx6fPL25J9EyAAAAAAAAAAA04kZqAAAoKmsb+JXCOOIB7mkTLz1yyoDYVGBoaIIAyHc5nz47J2+zBJJ/vO53edV2hPW811HrqBXlKjtUiblDIoFNlDgeX06HLEwX2CsmWxEYBAAAAAAAAA7gKAgDT863Ucx+/XsLqVm7zSE22+/Xe9+97urQmFHHHGELrzwQh133HFV627atEnnnHOOvv3tb08su+qqq/TJT35S559/ftW6u+++ux566KGJ+1/96ld1wQUXTNy/5JJLdOyxx9Ydz5IlS3TiiSdKkm6++WadfvrpE2Pvf//79YEPfMD5XJYvXx7xbAEAAAAgBl8QjFgYgDnohgfcY99+s1F3djI25Qp7jeT975+5gnu8O+vd1OmYfYz+3wdTOvZz4XPmcsXG39PjhMVG8uHLf3SzjQiF+eUKpX8GhsNGo56Le7wjPRkOq4+JGfV0+sd7HeNZImQAAAAAAAAAgAizd5YuAACYFnFjYWlHPMglacioMhAWRIR/bJsCRNjxDBTCY2GLO5ZK8ke44p1XU58kaTzH4g+JxbsmJx7Ts11qfH+u6zdQoMDz+mRS4TOXwgJjtgUTTIsRgUEAAAAAAADsAIYflS7fe7qPYvZ7xUPSvL2m+yha5h3veIdyudzE/RNOOEFXX321enp66tZdunSpvvWtb2m//fbThz/84YnlX/jCF3T66afr0EMPnViWyWS01157TdxftGhR1WMtX768arzSvHnzJEnr16+vWr5o0SLnNgAAAADQdMTCAKDKO37ong+3R191EMoV9hrJhS8vW/uEe8wVIGvEP+1tdPYpRl++pv79e8wR9QoTKxbmeK4r75mZ/x+SL5YCZK2KkIXHxExIeKx6vHYZETIAAAAAAAAAmH2IhQEAgKbyBX/CxI1/GWNklJKNCH7VqjyuqG2LIQEiQJIG8v2hy/sySyT5g1lRkbpmS3uuLV9ILGmQL+UNkKW8+w1sEBr+Kusw4TOXgjZFvNr9swMAAAAAAAAw86xcuVKrV6+euL9gwQL9/Oc/Dw2FVfrQhz6k6667TldccYUkKQgCfeUrX9FFF13U0uMFAAAAgLYKfGGUmRl6AYBWWhf+vaSSpOfsU33fFfYaiQhzDXliYgcu928bpctxTKOFxh8jKnZWta7juW4fbfwxZoNWRshCA2NZaV5XKULmG3cFyoiQAQAAAAAAAED7EQsDAABNZWNO7kp54kouaZNSIWaUrDIQVozYNm7wDHPH5oIjFtZRioUZT2ir2KawVZnv2kp7w17xr8nSdu7nXt6fa7+Bit7wV8YVC2tTxKtdUTIAAAAAAAAAM9cPf/jDqvvvfe97teuuuza07ec///mJWJgkXXLJJfrmN7+pzs7Oph4jAAAAAEwfz5wxSywMACot7KkOLHVnw9eLim35xnun+GsnVyys0QCYtVav+07j8/vWPy0duWf98jxT95oiX5S2DJf+qZc8QpZJSfO6KsNi1ZGxnrplNZEyxzgRMgAAAAAAAABwIxYGAACaKnYszBNXcvEFmVwqQ01R4R/bpgARdiyBDbQl/3To2OLMUkmlkJ1Lu88rX/TLeI4zyTVZ2i56f66gWGADFT2vT4cJnw3VrgBbu6JkAAAAAAAAAGauG264oer+m970poa3Pfjgg3XUUUdp9erVkqTR0VGtWrVKxx13XFOPEQAAAACmDUEwAG5Gt0gAACAASURBVJjwxJZ474ndrjBX3r+da7y7QzJmarGlpMdUdvsj0sp7G9/ft64NdNqR9XMQC46pezv1lsJSg6PS4Jg0Vmh8X2ieQtDaCFlvthQPq7zd22nU2+kfr11Wvp3NTP3aAAAAAAAAAIDpRiwMAAA0lbXxojq+oJFL2qSVjzm/rDLUFBX+aVeACDuW7cUtKip8RsnijlIszBeyK8a4NpoxfdIX/fKOeUJi3v01ECBz7TdQ4I34dZjwmUftingFMd/XAAAAAAAAAMwuAwMDWrdu3cT9RYsW6aCDDor1GMcdd9xELEySbr31VmJhAAAAAGYPXyyMkBiAOeamddHrVEoa5hp1jHc6Hi+O7vDv99RIrrHtv/bneO/916wNX553TCv8j1OMPvbSyfmIhaLV0FgpHDaUK0XEyn+WltmK25PjQ2PS4KitWXdy3PUao7VaGSHr7RwPiHXW3i5FyHzj9ctKfxIhAwAAAAAAANBOxMIAAEBTxZ3a5YsWufiCTC6VAbCo8I9tU4AIO5bN+X7nWF9miSR//K7d51Xacyy+40wpfsCv0f25gmKBDbzXZcYVC2tT2I9YGAAAAAAAADC3bdq0qer+/vvvH/vDXwceeGDV/Y0bN075uAAAAABgxiAWtsMbyVk95/OB7ny0dH+/ZdLqT6Q0r4v4CRDXcM79vrfrovplrjDX0Jh/P/li+H6yyaYAVkkaMCu77r7mvPcXHFMEO2qeYyZttLBHWtjjeqRk72XlCNlQrhQSq4yQlZbZitvVEbKhMVu9zZgmgmZEyKZHIZC2jpT+qdecCFl9TKw6QuYaDwuUESEDAAAAAAAAEIZYGAAAaKq4QSRXPKjZ2wQVxxV1jMU2BYiwYxkobApd3mGy6k3PlySlPSG7dgenfCE+71iC60vyR/zK+zOOEFmgogK5r7tMKnzmUbuuVd+xAQAAAAAAYAfRs7v0ioem+yhmv57dp/sIWmJgYKDq/sKFC2M/Ru02mzdvntIxAQAAAMDM4gtsEAub6ay16n1f9dymBzZKC/49UP5bKaVThEqAOHKe6WY3fKR+nl13h1HYe2X/oH8/+QZDWkm4YmEbGvyV1vqnp34MknTbw+HLM8mmOcbWygjZcDkwVhERK/85OGYrbk8uHx4fq16XCNl0a1WELJ1yBcaqI2S+8bDtO4mQAQAAAAAAADs0YmEAAKCpbMzJXSlHPMgnnWCbylBTVGAoiBk8w9wwkO8PXb64Y+nEX5obT2grTtjKNuEbVVPGfZ2kPcfpC4n5pD37KwfIXPsNbOB9fTImfOZRWMQr7ntQI9odegMAAAAAAEALpDLSvL2m+yiwg6r9nW0zPkjFh7EAAAAAzCqBZ25FE+bBoLX+/ph77Nb10rH7tO1QgFkhVwhfvmSetNeS+t8JdWfdj9W/3WrJ/PDfIxVaGAvrcgTMJCkIrFLTHBFsxnOcTpm00YJuaUG3a41kr28xsCHhscoYmQ0NlA15AmVDY9IIEbJpUWxThKw3K83rqrxt1FO3rHzbaF5X2DZEyAAAAAAAAIB2IRYGAACaysaM6qQ80SIXX5DJpTIAZiNiYEGMqBPmjs2FTaHL+zJLJm77QnZR512z+aJfxjOW5Jos7c8TCxvfn2u/gYre16fDhM+GalfEKyxKBgAAAAAAAGDuWLx4cdX9rVu3xn6M2m36+vqmdEwAAGDmMMakJe0naYWkXSUtlDQmaUDSOkm3WWuHmrzPDknHS9pT0i6SBiU9LmmNtXZ9M/cFAA3xBcFaFAuz1hKkaJJLbnH/jL5/o9Wx+0zv68zPGrVm+jmRc0w322Vh+PJl892PtXqD9KKDw8fyLYyF+R7j0QFpz53c40m/LDXOz3VgONEuZr10qrURMldMbHA8QlY7PuQIlBEhm17+CJnkD5H5I2TlcFhvthQSq749GSGrH6+OkFWOEyEDAAAAAAAAqhELAwAATWUjv6moWpIwkS/I5FIZACtGxMCCNkedsGPYnO8PXd7XMRkL84Xsos67ZksZ93WS9oz5ol/+/bmfe3l/rv0GNvC+PhnTEbq82KaIV7uiZAAAAAAAAABmpqVLl1bdv++++2I/xr333lt1f9myZVM6JgAAML2MMXtK+hdJL5T0XEkLPKsXjTHXSPq6tfb3U9zvUknnSXqdpMWOdW6S9GVr7a+nsi8AiKc1QbAwT2yxet8lgVbeK+29k/TBFxm94ZhkX46Hkg2b3WP/8xerdz3f6sg92xvpsNbqi3+0uugGq4Fh6dTDjS54nVFvJ7GQueyBjVb/8fNAf7lfOmgX6RMvS+llh828cyJXCF+edXx65/Dd3Y/liym1MhZ2mOeYhnP+bQfHku0zV5A6K6YKBoH7/1tW7DLzfu6zWSsjZMM5aXB0PCBWeXs8QjYUMl4ZIQsbJ0I2PYqBtG209E+4ZBGylKkPj/V2ji/rlHo7Tel+6LiZvF0z3tVBhAwAAAAAAAA7JmJhAACgqWLHwhR/opYvyORSGQCLioFZwkAIMZDfFLp8cWbyQ2K+89nGitBNfQKlLwhmPMeZJOAn+Z97eX+udYLx/7l0OGJh4ddq8yefBm2KkgEAAAAAAACYmfr6+rTvvvtq3bp1kqQtW7Zo7dq1Ouiggxp+jJtuuqnq/tFHH93UY+RDTQAAtI8x5qeSTo+xSVrSiyW92BhzhaT/Za19KsF+XyLpB5KiqqPHSTrOGHOxpHdaa4fi7gsAYrOe+Rq+sZjyBauTvhTovvF30TXD0pu+Z9XbafXKI/jvoqTyBf/P6AVfDnT7OSntuVP7XuMvXWP1n7+ePK6LbrB6fMDqD+9vQgUJO6Qtw1YnfynQowOl+397SDrtG4H+/MGUnrv/zLr+nbEwx+mbSrmP/5HNVq4QkysWlmnCZTKv0z02FBELW3Z2sjm4I/nqWFjB8zC7LEq0C8ww6ZTR/C5pfpdrjalHyIZypZDYxO1RaShnq5eN3y5tY+u3GSNCNp0C29oIWW9nWIBsMjQWPm5q1p38kwgZAAAAAAAAWo1YGAAAaKogZmgr5QkauaQVf5vATs6KiIqBFYmFIcRAoT90eV/HkonbvkBX3GtjqnzxLl8QLEnAT/I/9/L+XKG/wBarrtFaHSYburzo2aaZ2v2zAwAAAAAAADDznHDCCROxMEm6+OKL9dnPfrahbdeuXatVq1ZN3O/q6tKznvWsph5fZ2f1JzjHxsaa+vgAAKDKAY7lj0m6X9JTKs3N3EfS4VLVX8KeKul6Y8zzrbVPNrpDY8yJki6VVPmXp1bSakkPSlok6UhJSyrG3yhpgTHmVZZvTQPQat4gWPNiYTc8oIlQWKXv3xjolUcQkUrKFRwq2zIs/WaN1Qde2L7wxff+Un/eXHWX9NiA1W59BDjmomvu1kQorKwQSD++2c68WJjjmur0fHpnz8XShs31y1fea/W+k8O3cV27HU14O+wOn7InSfrrOqtnPSP8Nd8ybDXmiKVFGclJi3om7/vem5rxHDF7tTpCNjQ2HhAbq7hdESGrHR8aq46Q1Y4PRwT40BqtjJDVh8cqlxn1OMeNM2BGhAwAAAAAAABlxMIAAEBT2ZiTu5KEiVzBIZ9Ak/Nei/LPbrJijiyq5YIxbS9uDR1bnFk6cdt4zueo867Z/EEwX9gr2Swa33bl/blCf4ECb/grk+oIXR606TVt134AAAAAAAAAzFxnnHGGfvjDH07c//rXv673ve99Wr58eeS2H/3oR6vuv/71r6+Le03VokWLqu4/8cQTTX18AADgtEbSRZKutNauqx00xuwm6ZOSzqpYfICkXxpjnmett65TfozdJf1G1aGwGyWdaa1dW7Fep6R3SvqipPJfsr5c0mclfSzOkwKA2HxvZ9FvdQ37wlXh87ouv0MKAqv1T0uLe6V1m6StI9KRe0h9vUQVag2OWuWK0uLx1yYqFiZJazY0b/+5gtWjA9JeO0mpVP3PpxhY3RsShZOkn95i9eF/5mc6F/3v34Rf/9/9i9V33tzmg4mQc8Sysp5P74SFwiRpn6Xu872VsTBf2KwrfDqfJOnKfyR/zx/JV98veN6bMsm+ExWYklZFyILxCFldgGzitg0NlJVCZOGBskEiZNMmsNL20dI/4aYeIZv4MyvN6yovM55xU7Pu5Hh3lggZAAAAAADAjoZYGAAAaLKYsbAEYaJ0gsBYUPEluVFfmOuLFmFu2lJ42jnW1zH5xcy+QFecL2puxhRJfxDMFxJLNovGt115f77QX9G6v04wYxyxsJDXtHnTS/37AQAAAAAAADC3nHzyyTriiCN0++23S5K2bt2q008/XX/4wx/U3d3t3O4rX/mKLrvsson7xhj9x3/8R9OPb5999lE2m1UuV/oE2MqVK5XP59XR4fn0JgAASMpK+r2kT1lrb/OuaO1jkt5pjLlD0oUVQydIep2knzWwv/Mk9VXcv0nSC621VR89ttaOSfqaMWaDpN9WDJ1tjPm2tfbhBvYFAMn45lY0MRb25Db3WOZd7mPYckFKC7qJIGwftTrje4F+/3epaKXj95V+flaqoVhYoQnTZ4LA6oO/tPruDaXoyZJ50mdeafTO51fPKRrxxE3+89dWb/gnq936+HnONZu2u8fuftxqxa4z55zIOa4pXyzMZWjMPdbKWJgvHLNlxL3doOd4oxzx6UD/+FRKe+4UHTJsxnMEZopUypQiTi2MkIXFxCojZJXjw+NjtWGyQSJk06pVETJjQsJj47dLf5YiZOHjRvM6K9clQgYAAAAAANAOxMIAAEBTBXFjYQnCRL7QkUugyVkDRflnNwUiDIRqA/l+51hfZknV/ZTSVedbWdR512y+EF/aGxJLNovGt115zLffgs2HLjcyypjw/2xp12vKewIAAAAAAACw43vyySe1fv36RNvutddekqTvfe97es5znjMR5Lr22mv13Oc+VxdeeKGOOeaYqm36+/t17rnn6hvf+EbV8o985CM67LDDEh2HTzab1fHHH6+VK1dKkjZs2KBXvOIVete73qX9999fPT09VesvX75cXV3OT58BAAC/11pr18fZwFr7DWPMyZJeXbH4zYqIhRlj9pf0lopFOUlvrQ2F1ezrUmPMDyu265R0rqS3xzlmAIjFFwRrYizszkeTbbfo/YGC71CWedv3A112x+T9Gx6QXvbfgRa5G9gTRvNT/zl+7kqrC/48+Tj9g9K7L7bac7HVSw6djElERUhefEGgO89NEaCYYzoz7hDVSV8K9PDnU+rqmBnnRM7xvZlZz9vQ6482+tmt9dfZt66z+sYbw7dpZSxMkg7aRVr7RP3yj/zK6kMvCt/m6UH/Y552pPTbNeFjg2PSi74aaO2nS9e3L1KYSfadqMCc0s4I2VBOGhwtL7P1y3LS0GhNoKx2fAqxQSRnKyNkoWHe5BGy3qyqY2KdUm9neZlRj3Pc1Kw7OU6EDAAAAAAAgFgYAABoMuv7lsgQScJEKU9wyCewgVImpSDiGC1hINTYXNgUunxeeoGyqc6qZaVzrH4WTtxrY6p8IT7jCe4lifGV9ueJhY0fi++x845YWEpp53MJe51bIeo9AwAAAAAAAMDMd/rppyfe1o5/sP2oo47S17/+db3rXe9SEJR+b7hq1Sode+yx2m+//XTwwQerq6tLjzzyiG655RYVCtWfDD3llFP0mc98JvmTiHD22WdPxMIk6aqrrtJVV10Vuu7KlSt14okntuxYAACYzeKGwipcqOpY2EkNbPMGqeovY39jrb2/ge2+oOrI2L8aY97ji4wBwJR4g2DNi4VNxdZhq4U9czcsMDhqdcXf65ff/oi0bH709iMRAa9G/OK28HPhl6uqY2Ej4dOIJtz1eClgtGLXqR8TdhxdHe6xTdullfdILzm0fcfj44yFZdzvQT2dziEnV0yrWbEwV4xMkgpFq0y6/vn8/TH3Nh98kdHnTjPKvts9H+++p0rvS0fu6d9/s54jgPhaHSErR8SGxoNkE7dHqyNk5fGhUWkoZ6vCY1XjRMimhbXjP78xtSxCNhETq7jd22kqbteOm9BtiJABAAAAAIAdDbEwAADQVDbm5C5f0Mi5TcKYUaCiUkpFxsCKbQoQYccxkO8PXd6XWVK3LK20CqqfsRa0OUKX9oT4fGNJY3y+67K8P+O53gs2fIZUyqScUcG2xcIICAIAAAAAAAAYd+aZZ6qvr09ve9vbNDg4OLH8gQce0AMPPODc7u1vf7u+9a1vqaPD88nWKTr11FP12c9+Vueee66KRf6uAwCAGWhNzf1uY8wia+0Wzzan1dz/fiM7stauNcb8TdIx44t6Jb1I0uUNHSkAxBY+Z2xraoFuzR2iA/qt9loy9Q/fr9hFuvuJZNvetG7mhISmw2Nb3AGjjdujt48KeDXCFRH68c1WF721Yl8NhMlueMBqxa4EHeaSZfNL57HLg/1WSQM1zeaKXPkCV09vD38f7ck2dz9xPLDRPfbEVmmPxfXL91/m3ub1R5vQwFit7/zF6ptvNBr1vO9k+SQUMOtURsh2XhC2RvII2Ui+Jjw2HhErLbP1y8ak4TFpcMyGb0OEbNpURcjC1/Bt7RwpR8hcMbFyhCx83B0o6yFCBgAAAAAAWoBfkQMAgKaKHQvzRIuc2ySMGQU2kEx0DMxawkCoNlBwxMI66mNhxqRC/y4xXoRu6t+o6rtOfNGupDE+X/ivvD9fpKxgw2f2pJRyPpdiSMQr7ntQI9oVJQMAAAAAAACwY3jNa16j5z3veTr//PN18cUXq78//HfIHR0dOumkk3TuuefquOOOa8uxffzjH9dpp52mH//4x7rpppt03333aevWrRoZGWnL/gEAgFdYosWZfzDGLJd0eM32N8bY37WajIVJ0ktELAxAq9j6+Rpf63uPPrzz51XcnpE+Fuilh0i/eGdKPZ3JPyy/z9LksbBi86eU7FB80Z1GNBLw8rEh50hZsWYKUDPCZJh9jt/faM0j7vNoJp03Bcd0s4xn6us/H2J02R31z28kX7p+wkIjrY6F+bgu6TFHlFCSjtqzscceGCr9OfzwQ5KeEbpOd+t6/ABmmVRqMvLUqgjZ0FhYTMxWhcXKfw6NR8hqw2OVf6L9KiNkT4Wv4dvaOWJMKRgWHiArhcZ6PIGy8G2IkAEAAAAAMNcRCwMAAE0VN7TlCww5t0kYMwrGw0I2JDBUqSjCQKi2Ob8pdPnizNK6Za5zOuq8azbfdeK77pJck5I/BFY+Fl+krGDDZxSmTFppx3NpV8QraPPPDgAAAAAAAMDUrV+/vqWPv2zZMn31q1/Vl7/8Za1atUr33HOPNm3apLGxMS1ZskS77767TjjhBM2fPz/2Y3/qU5/Spz71qcTHtmLFCn3uc59LvD0AAGiZ/WruFySFV0dLDqm5f6e1dijG/m6quX9wjG0BIJ6aasyN3cfq7OVfrFr2h39I51xu9aXXJv9QuyuMg2hPbZva9lMNMcX52TWyr0yyKU7YgUXFoaYatGumgmO6me+8PXQ3o7DYiLWl6ycb8skfdyysOfGQpfOlTdvDx7aNhi93Xb/PfsZk1OSNxxhd/Dd3WOUXt1ldcqbV8AUfk3ovDl2nx5ncBYD2qIyQhZtahMwdE7MhYbLyP+GBssExaSjnDj2idayd/Pm0KkLWm5XmddXenoyQ1Y8bxzalf99KpYiQAQAAAAAw0xELAwAATWW9f2FRL0n4K+WJEvmUw0LFiKBZEDN4htlvcyF8fnZfR0gszHF+Rp13zea7tvxhr2TXVyMBMt9+8zZ8llDapJVS+Hbtini1K0oGAAAAAAAAYMeTSqV09NFH6+ijj57uQwEAADPfa2ru32b938i2oub+AzH3ty7i8QCgeWrezn4372Whq/3uDqsvvTb5boiFJbfmkanVIYanGGKKCjn1b7daMt80tK4kpYmFzTlRgZOpBu2aKV8MP9gOz9Q8XwxtJBcvFtasmN4Ru0vXrA0fW7PB6pDd6mMirut3n6WT6zYU+nrobo3090u94cNdEfE4ANhRVUbIloWukSzkZK3VSM4VICtFyMICZcM5aXA0PFBGhGz6VEbIHGv4tvY+dm85INZZiohV3zbqrVtWvj0ZIasd78kSIQMAAAAAoJmIhQEAgKaKHQvzBIaauY00GQGzEYGhQMwqwyRrrbbkw2NhizNL6pa5zk8b47yKex2FcQW2JMk0EPaKvb8GAmS+gFnBFhzHk3Y+dmjEqwV/49yuKBkAAAAAAAAAAACA2ckYM0/SO2oW/zZis/1q7m+IuduHa+7vZIzps9YOxHwcAIhWM1/jR4veFLraAxuntpvCFKZ1feHKQJ+/UnrmcqO9l0iH7mZ00jOlBd1z40PrDcV5PKYaYrrnSf/4O38S6DOvTGnFrka58GlEVWgNzD1BVCxsikG7ZnK9V2U8sTBf/GokLy2MsR9flCyO952c0jVrw+fOpRxTAUcd7xWVMbQj9ojed3Dz1Rox3aFjnRlLcAQAYjLGqKdT6mlhhGwoJw2O1sbE7OSyivFyhKxqm/HbQ+OPR4RsepQjZBu3h402J0LW2zkeE5u4XR0hqx43dWGy8jgRMgAAAADAXEUsDAAANFXcyFHaExhy8UWJfMrBn8D7xbzR45hbhoNBjdnR0LG+jpBYmCOI1e7zyndtpT3RLl/Qy8cbCxsPkPkiZQUbPksoZVLO59KusF9olAwAAAAAAAAAAAAAGvc5Scsr7m+R9N2IbRbV3I+V2LHWDhpjRiV1VSxeKIlYGIDmq/kk/8bMzp5VrYxJ9oHu/BSmcNy4rvTnTevKx2q1e5/0p7NTOmDn2f8B8+EphpQe35J82x//NdBbvu+fV/jbNdJv1wT65KlGR+wR/fOYyrmAHVPUzNSpBu2ayXV++iJe3Z6gn+u5ufbji5LF8YID3WOu95SRXPhPqqvi+b3qCKNPX2H11Db34w/ZLn1i2adDx7o9YTUAQHtVRsgcayR63HKErBwOm4iITcTEbFVYrHy7FLqy1duMESGbCVoVIetxBshKEbKeumWTgbLK5ZXjRMgAAAAAADMdsTAAANBUNubfnvjiQS6pBNtIk7GwYkRgyIpYGCZtzm9yji3OLK1b5jo/gzafVym5Z/wYXyws4fWVbmA7X6TMGQsb/1+YYpsCbO3+2QEAAAAAAAAAAACYPYwxp0l6X83ij1trN0dsOq/m/kiC3Y+oOhY2P8FjVDHGLJNU/5flfvtOdb8AZrgYc8ZyBakzYeil2YGoRwek914c6Jqzm1TWmcFGphgLS2pgyOrtP2z8/Pj0FVYf/ufo9a6/X3r7CVM4MOxwgogpXKMzKBZWcBxrxjPFzhfAcl2/+WL4teWLksXR02m0uFfaPFQ/dsUdVmc+t365K2xW+fx2WWR03YdTOvW/Az3gyOF+ZN0JuqPrYMdjUXkBgNmuMkK2NPQ3GckjZKP58YDYeLyqOiZmJ5dVjFdGyMLGiZBNn+HceMS0xRGy6tiYqVteGSgLC5f1dkq9RMgAAAAAAE1CLAwAADRV3KhO2sSflZDyBId8AluaLWYjAkNFy9cOYtJAoT90eUppLcjUfpGz+/wM2hS2ijoOSUp7QmKpBNekJJkGtvPFAfNB+IymtEk7j8kqUGCDqudqI79DMj7eEwAAAAAAAAAAAAAkYYw5XNKPahb/UdI3G9i8NhY2muAQRiT1eR4zifdIOrcJjwNgNqn4ZHzBMy9FKoVkZkosTJL+fI80krPqzs7uD227Aj5xPLXNaucF8V6nlfdKxZjTpq64M3r+z+AoNYa5JuonPl1BvDCu9ypfxMsbC3Ncv0n2E9fufeGxMNfPw3WsPdnq+wfsbPSHf0/pgE+Ev0F859HwUJgk9RALAwAkZIxRd1bqzrYuQhYeG7OhgbHhMXegrHw74P/2pkUrI2QTAbGsNK+r8nYpNBY+biZv14wTIQMAAACAuYdYGAAAaKq4oR5fPMgllWAbaTLWFBX+sTGDZ5jdBvLhsbBFmcWhEauUY8JjUe0NTvmuE+MJiSW9vtINbOeLAxZsIfx4TNp7TKXrNdkxNyoqMAgAAAAAAAAAAAAAtYwxe0r6vaoDXQ9LepO1NslHPdu1DQAkYPWBnb+ogsnonuwB3jVz4VNEIo3lre54NNm2UbaPloIBs9lwE0JKA0PSzgvibdM/GP//ip7YGr3Ozgv5MPxcExXKGMnPjH/t2TxktfLe8LGMLxbmeQ9yhdAKbYiF3el4310yL/wadB1rWAxt7yXJjqk7w3w+AMDM0uoImTsmZkMDY0M1EbKw7YmQTY9yhGxTkyNk3R214bHxPztLEbKeujBZedxM3q4Z78lKaSJkAAAAADAjEQsDAABNFTeqk/JEi5q5jSQF47GmqBhYkTAQKmwubApdvrhjaehy1/nZ7uBUWMhsYswT10p6ffn218h+Czb8KwVTSnsjY0VbVNq09j9rigQEAQAAAAAAAAAAAMRgjFkm6RpJu1UsflLSKdba8L+ErjdYc787waHUblP7mADQHEGgb/adpWIDczhyCb5vbzRvtezs1s3faEZIa6YbCZ+aE0uSn93DT8ffZstw9DquIBFmr6jU6hV3tuc4fB7fYvXCL7vfq3wRr460lDLh4Y4tI+Hb5NsQCzt+X+nGdfXL/7ou/Afieq8Ji6GlU0bZTPyIJLEwAMBcURkhW9LkCNlYQRocHQ+I5Spul0NjufrxocpAWcg4EbLpM5Iv/dOqCNlkeGzydm+nUW/dsvH1ymMh472dRMgAAAAAYKqIhQEAgKayMb+U1hcBckkp2UyGYDzWFESEf6LGMbcM5PtDl/dlHLEwx/kZ57xK9iXS1ZJcW1Ly68sXAisznhCZMxZmUt4QWTuu13aH3gAAAAAAAAAAAADsuIwxiyX9SdIBFYv7Jb3QWnt/jIeaqbGwb0j6Zcxt9pV0WRP2DWCmslZpW2wsFhYzCiNJl91e+kB6qzy2RdprSesefyZoRlwryc/uy9e0phZALGzuaSQ8cCqoSgAAIABJREFUMTBk1dc7feGBC/5sdc+T7vGMZ4pdOQYyFPJe9+tVVqceVv+82hELO+oZRjeGhMHufSp8fde12d0RvvyjLzE673fx3ieKTOcDAGBKjDHq6pC6OloXIRvKleJhE7dHqyNklePDOWlwtDpCVjlOhGz6TETIQkenFiGbDItN3u6tCI2Fj5u6ZUTIAAAAAMxFxMIAAEBTxY2FmQYCQ7VSnuCQT6DSzIjA+r/ikDAQKg0UHLGwjvAZgq7zM+q8a7ZG4l2h2yW8vnxBr7K0J0TmjIWN/8+lHa9rUe392QEAAAAAAAAAAADYMRljFkr6o6RDKxYPSDrFWntXzIfbWnM//But3McyT/WxsC0xj6GOtXajpI0xj2WquwUw41mlG5xfkSQ4ddENrf1k+LpNVsfvN7vfq0ZyU38NxxL87PZeIm88KamRPLWAuaaRQMS3r7f63y+Zvmv50jX+g4yKeLkiWCPhU+vaEgvzhbmstXX/nuc61u5s+PL5XfGPafUTnfE3AgAALVcVIQtfI9HjhkXIhsYqY2S2Okw2Pj40VoqQ1W1TcZsI6fQoR8j6Q7/WIHmErKujPjBWGSHrCQmQVUbIXAEzImQAAAAAZhpiYQAAoKnixsLSDQSGaqU8wSGfYDwCFsj/G33CQKi0OR/+PSiLM45YmCNsFXXeNVsj8a7Q7RJeX41cy8YTIss7YmFpk/Y+dtCGuB8BQQAAAAAAAAAAAABRjDHzJV0l6VkVi7dJerG19vYED3l/zf1nxNy+dv3N1tqBBMcBANGsVbrBL3zLJZiadc3a+Nu0i7VWl9xidcWd0sIe6c3HGi1fIH3nL1b3PWl1wv5G7znRqKsj/MPFdz1uddGNVrdvsNpnqdEb/snopAOb80HkymO7NMn/E9VIEnprVS9yJNeax93R9G+3OuUrge54tHT/+281estxyb4scqazDUxNvfouq//9ktYfi8v9ETnVTMSPZtQR2so6ps+5YmGZJsbClsxzj+UKUmdHY8fkeg7PP8AoKvoAAADmtlZHyIbGXDExW7W88k/fOBGy6TOaL/3TqghZeEzMVIXFagNlvVlpXlf4OBEyAAAAAEkRCwMAAE1lG5mRUcE4wko+KU9wyCcYj4AVIyamEQZCWdEWtbWwOXSsryP8S5tdka6o867ZXNGyyO0SXl++a7kcEUx7QmRFGz6bMKW0N2DWjrgfAUEAAAAAAAAAAAAAPsaYXkl/kHRsxeJBSS+x1t6S8GFr0zj7xdx+n5r7dyc8DgCIZq3SDc6vSBKcarWphKfOuczq/D9Mzpn79nXV8+cuvd3q6n9Y/f7fU8qkqz8IvPphqxd8OdDWkdL9lfdaff9Gq5+eafSvz5568OkTl1p97srmRXjiht6KgdXaJ5q2+yozOSDXLgNDVss+WD3X8W0/sNo0GOhDL5p9wbCggVN5OiNyNz4QfYAdERGv5+0vXV+bi5X0k79Z/egd9ctdYa6o/cTx0kONPn1F+HMbGJaWL6xe5nqP70iHhxCO2nMqRwcAAJBcZYRsp9BAavIIWa5QGx6rjIlZZ6BsyDNOhGz6tDJCVhUTqwqLlSJk4eOTEbLa8d5O1f3uAQAAAMDsQywMAAA0lVW83z6nHWElH184yCcYj4BFxcAIA6Fsa2GzAsc53ZcJ/14aV6QrzrVhm/BNeUmuLSn59ZVuIDLmC5EVbPjXIqZMyhlgk6SgJsLWjNeufh/8rRoAAAAAAAAAAACAcMaYbklXSDqhYvGwpJdZa2+awkP/o+b+YcaYHmvtcIPbHx/xeADQPNbKNDhnI25wqhEvOURa1GO0Yhdpxa5Gr/5mvLkeI+HTViJtH7X64h+jn/c1a6UbH5Ce/8zq5Rf82U6EwsoCK33mCqt/fXayYyrbNtLYscURN/R284NN3T1q/PSW8J/vR35l9aEXtflg2qCR77FNei03w/+9Ovp9JxMxNe9Zexldf3/4Ew0Cq1Sq+kP/7YiFze9yj112u9U7nz+1YzLG6JWHS5fdkfAAAQAAZhhjjDo7pM4WRsgmYmI5aXC0vMzWB8rGx4c849tHiZBNl3KE7OmhsNHkEbLOTCkeNhETq7zdZdRTu2zithkPldWPEyEDAAAAZhZiYQAAoKnihnpcYSXvNg1EicKUo0+u+FNZVEwMc8dAvt85trjDEQtzhK3aHZwyCa4tKfn11UhkzHdMeRv+tY4pk/aGyII2xP3asQ8AAAAAAAAAAAAAOx5jTJekyyWdWLF4VNIrrLXXT+WxrbVPGGPulHTY+KKMSkGyPzb4ECfW3L9yKscDAF7Waku6r6FVx1oQ8/nv01PaZ2npQ6uPb4kfyBoOn7YS6derbcMBrc9fFej5z6yeX/O7O8OP9a7Hpa3DVgt7kn8Qd9XD7mhPUnFjYede3rr5UobPKOvfLnGf69tGrBZ0z64XKWjg0t5/WeuPw+XyBmJXmYipeV2eT/c8sEk6YOfqZe2IhS3udY/d82T9siTH1NtpFBU8qHTSblslLW54fQAAgNmg1RGyqvBYOTKWkwZHbX2YbPz2cMj4UK60zuCoVOCjWdNirFD6p1URsomYWFVYbDJCVj9eHSGrHSdCBgAAAMRHLAwAADRV3CBSkjBRI1GiMIEtjv/pP8aomBjmjoFCeCysK9Wt7lT4LBjXOd3u4FTaES2LkiTgJ7kjaSV2fJ2UjExoVLBgw2cTppTyRsaKbYqwBTZIHFIDAAAAAAAAAAAAMPsYY7KSfiPphRWLxyS9ylr75ybt5reajIVJ0tvUQCzMGHOgpGMqFg01sh0AJGYbj7zkEkyh2X+ZdP9G9/jeFd/5t+sioxW7SHc/0fjjjyQMmK3b1Pi6V98lpc4q6sg9StttG/WvP5STFvYkO67NQ1ZnXNT8OTW5olWcD6D/v3uafggTrC19qN1QDQs1mpcWdDf3Ma+/z+or1wRatUEqTsMUyy3D0esctOvMPh+6s/7x5x9g9Lkrw99Ph8bql7niC82Mhe28wP2ajoVM+UsSC4t7vB858hERCwMAAGiOyghZeCg2+b9j5wp2IhxWjogNjZVjYrYqLFY5PuQZJ0I2fdoVIauOiRn1ugJl42OugBkRMgAAAMxmxMIAAEBThUWAfJKEiZIGe8oRsKhoU9G2N+qEmWtzPnxGX19miXOimeucjhvSmyp/vKsF2zV4LRulZEOuwYINn3WZNmlv+CyouV7jvgc1KlAxcUgNAAAAAAAAAAAAwOxijMlI+oWkl1Qszkt6jbX26ibu6mJJn5AmvlXtX4wx+1tr74/Y7j9r7v/CWhuRpQGAKYgTCwv/PjmvqJBM7Tye75yR0ksvCCKDXGUjufjHJEl/ezD+PJU1jzS23nDCYxrLW530xUCPbUm2vfexY/zstgy3Zg5PpdF8dHxprhpNGMBzuWmd1T9/NYh1DkyHZj/vRj2xpbHzvbvD/2H15x3gHhsMiYUlCXMlsc8S6cGQ71391nVW33jj5H1rrTPckPV8cikd83hfuOxJSYfH2wgAAABtl80YLc60LkI2ER6ruD00ZuuWVUbIwsaHxqTtRMimTSsjZO6YWHWELGw8LGDWm5U6MkTIAAAAMP2IhQEAgKaKHQtLECZKGuwpx5qiok1W/IYXJQOFkBkukvo6ljq3cZ3T7Y7QpdTa6FctX9Crdr3awJfkjoUZpbzPJSr+1yyBDaby91EAAAAAAAAAAAAAZgljTFqliNcrKxYXJL3OWntFM/dlrb3fGPNDSW8fX5SV9ANjzAtc8S9jzCslvbViUU7Sec08LgCo19pY2EjMANBx+xqt/XRKf7zbas0j0tf+7D++kZG8pM7Yx/WntbE3adjtj0j7LYu/3cp7pb8/1vzjkeL97H7/99bHwkaIhTnFvWai/M/1dsaHwqTk4b+p+uktjcbC/OOdnk/3XH+f1XP3r57A1q5Y2IkHGj14Q/hz3DpstbDHeI8n6piGYiRtu4IRmTtukI7958Y3AgAAwKzSyghZeIBMGhxzB8qGI8Z9/56M1ilHyDbHjpD5x7OZ2rBYKSI2r6sUGeupW1Y9Xr5dO06EDAAAAHEQCwMAAE0VN7SVJEyUJDAmScH4sQURx9juqBNmLlcsbHFmiXMb1znd7ghdyiSLfiXfrrHr0vX6uGJhaZP2hsjadb1GvW8AAAAAAAAAAAAAmDMukvSvNcs+JmmNMWavmI/1pCv6VeFcSadJ6hu/f5ykPxlj/pe19p7ySsaYTklnSfpSzfZfstY+HPO4ACAe23gYaqxgFffDu75I0aG7hS/fZZHRW44zOiMI9OWv90iS3rLrd3XxwjfUrTu8eauk+GWuxb2uD51O3Wg+/uskSas3tC7SFScWtXpDyw5jwkhOUuiHw9HsWNhtD7c+/tYMzX7ejbrr8cbW23mBf9wY9zXfExLGa1csbNl899idj0nP3d9/PFHHdPkdjZ9fn+j/nMy8vugVAQAAgJiyGaNsRuprYYSsPiYWHiirjJC5xomQTY9cQdrcwghZVUyss3zbqLfLPz55u3qcCBkAAMDsRCwMAAA0VYx5X5KShb/SCWNG5ahQYP3Rn3ZHnTBzbc5vCl3e1+GJhTnOzzixKRvj21adx5EgxCclj/H59lf5bIxJhf5+Ox+Ez9RKKe09pnZdrwERQQAAAAAAAAAAAAAlZ4Qs+6/xf+I6SdK1vhWstY8aY/5F0tWSypmI4yXdbYxZJelBSQslHSVpac3mV0g6J8FxAUA8MSaNJYn5+D4Ae+phER96zE02GbuD8D7jSC7ZXJ2ghf2k0YTRo+Fcc4+j0kiMx27lcZRNVxhqpnjBgdKf7wkfi/Oz8hnNW/37z2zDMazp1qzn3ar9HuKIGzZitCbWd++TVv2D4etmUs39MPjLDzP6/JXhb3iVzz1pLCzOtfzabb+WCm9pfAMAAABgmrU6QjaUkwZHq2NiQzk7uaxyPCcNjfrHczFC4WieVkbIqsNi49GxTmleZylC5hufvD35JxEyAACA6UcsDAAANFXccE+SoJFJGEEqH1sgf/SnGBETw9wxkO8PXd6XqZ1fPcl1TkdF6potnTD6lU4cGWtsu7TCj6tgw2f8pE3a+z7Rruu13T8/AAAAAAAAAAAAACiz1l5rjDlN0g80GQQzkp49/k+YSySdaS3fjASgDWLMq7jj0fgP7wvQfOJlER9OfGL9xM1uOxK6ykjC6tSW4USbNSRpCOuPd7WuYBYnADbqWffnZ6V05o8CbRtvtx2/r/TF16b0nM/Hm58zXWGomWJRj3usWSG1t//A6me3trCK12Q/u9Xqp2e2f78/v62x18iY6A9TH757+Pvk//m91UdfUrq9ddjqxC+6rxdfmCuJ5+zrPu7Ht1qVAwdJY2GNygZj2jf/kOzqa2Xe8tGpPyAAAACwA2tVhCxfsKWA2FgpIlYdE7OTyyrHx6ojZGHjRMimR65Q+mcg9HdYySNkHenJcFh9TMyop9M/3usYzxIhAwAAaAixMAAA0FQ28hdF1VIJgkZJI0hFW1Rgg8hjtApkrW1oYgZmr7FgVEPB9tCxxR1LnNu5olntjk0lubYkyTQY/arbnyMC1ujju2JhRinvNR+0aV57EDOECAAAAAAAAAAAAADNZK39gzHmEEnnSXqdpD7HqjdL+qK19tdtOzgAsI3PGfvLffHDQwXH9JDL3ptSdzZijte1v5m42RU4YmFbtsU+pmLQ2oBS0hDWqg2NrdfVIa36REqPDpQ+4Hnyl6LnxsQJULnWffsJRq99ttGph6X01welZfOlg3ctRZRGv5HSdfdJ514eaPuo9MKDjP5pb+mN3w1/rZsVxJqNRpvw2mwbsfr1av95ftqR0quPav88y/N+Z3X/xrbvti12WRgeC6uM9V11l9VTnretZsfCJGnpfGlTyHTK6+6V3npc6bbvw/9ZzyeXlsyT+gejj+GdW75burH2tuiVAQAAACTSkTFalHEFqpsTIRsaq42J2cllleNj0vCYf5wI2fTIF0sBslZFyMJjYiYkPFY9XruMCBkAAJitiIUBAICmsjEmfklSSvHDRCbBNtJ4BKzB4I9VINNg/Aiz00C+3znWl/HEwhznTaD2fllzkmtrStv5ImMV7wtpx+O7YmFpk/Je88U2va7tipIBAAAAAAAAAAAAmNmstdP2qRJr7UZJ7zbGvF/S8ZKeIWm5pCFJj0laY619aLqOD8AcZq1eNHiN/jjvlMhVD90t/tto3jFto5Egjt0+MHG7xzpiYane2Me0MX5fLJbhhLGw5+wj3bQuer33nWR00C5GB+0iDY81NucvTpxrNB/+mL3Z0p/dWaOTD6wey2aMTlkhnbJi8gdbDKw7FpbwNZotfL26gWGr9f3SbotKH/ROYt0m97VX9uZjU3rVke3/V6Ob1gW6f2P4C1AoWmXS4ceUL1g99LSUMqVzcZdFzTn2nRfIG++SStdmI7aNhi9PGU18Ce7aJ/yP0YpYWFgoTJJ2q8jX+s4X3zH928lG514e/T60R/6R0o0VR0euCwAAAGBmaXWELDwmNhkZqx0fihgfI0I2LVoZIQsNjGWleV2lCJlv3BUoI0IGAACmC7EwAADQVI3GuMpSJv6shHSCbSSpaIsKbGPHV7RBomPD7LG5sMk5tsgXC3NEsxo990qm/s2jSc/fVp/3xvX6ON47UiatlEnJyMiGvC61Ea+wdZrBdXwAAAAAAAAAAAAA0G7W2pykldN9HAAwwVq9avvlDcXChnLx53a4AjSZiO/Es9ZKv/z6xP3uwBELK8b/cr2hFoeq4oS5yq640zYUCpOkfzlq8sOMPZ1Gpx0p/XZNxDHFeM45x4dqO2N+eiGdMupIh58DSV6j2STwTGd68/esJKvlC6QLXp/Sa58d78Or1lp97LfR86WO2jPWwzbNSc80+sa14e8lo3lpXsgUuC/+MdBHflW9zdF7Sb95d0q79U3tw72NXBvnvryx95kXHGR007qweXKl6yCbiT73WxELc7nh/sljTRoLe/VRjcXCXr7996UbTz/Z6OEBAAAAmOXaFSGrj5HZquVDVSEy69iGCNl0yRelLcOlf+olj5BlUtK8rsqwWHVkrKduWU2kzDFOhAwAAEQhFgYAAJoqbqgnpfgTrZJsI5ViTY0Gf+JGzzD7DOT7Q5cvSPepI9Xh3M51frY7NpVOeJ0kvb5a9fgppSf+LKr+t+Ltel1ro2QAAAAAAAAAAAAAAAAoszpzy/e0vmNPfW3x+zSa6nauGRWkqhUEVoFjSlpkEOfHX6i6221HQ1cbKcYv63zystZ8oV1Z3BDWfU9Z/cs3GptH8/23Gh27j6lZltLQWKBr1krW8dRixcIcU22yCT690N1BLCxMI2fgk9ukN30v0IpdUzp418Y/aPqjv1pdfVf0er2dDT9kUx2ws3vsnielZ+9Vvey3a2xdKEySbl0vveLrgVadM7W6VtS5ePYpRi86uLHX/xWHG33mivCf7g9usjrreUYX/83/029FLMwVFLz+fmn7qNX8LpM4FvbM5dH7P2pkjfbPj9cQ16+N3gAAAAAApsAfIZOShsgKRTsZFstJg6O1MbLw8eGcNDhaEyirGCdCNj0KQWsjZL3ZUjys8nZvp1Fvp3+8dln5djYjGUOIDACA2YBYGAAAaKq44Z6USRALM8lmMlgFDQd/ioSB5ryBQngsrK9jiXc71/nZ7thU0usknXC7Vj1++T0iZVIqhvwetF3XartjbwAAAAAAAAAAAAAAADsMa2Uknb/pXH2y/3zdl91fP174Bn1lpw9M+aELnikbmYhpKPZ/zq263x2MhK43Uow/pf5nt7Y2FjYcI8wlSZffYb2vVdmX/9XoLcfVz9lb0G101QfSenrQ6r0/tfrFbfXPbyTf+HPOOT6kmigWlpW2hXTeRnJWST+cOxu4Inq18kXpijttrFjYb1Y39uDd7u/cbKnurHvs8jusnr1X9XP99Sr381nziLRuo9W+y5J/0NsVyfrEy4w+eapRJt34Y/te01/cZnXW86TNQ/7HaEUsrDdr5Pog85/WlmJirkhg1DGlU0Yd6fAoYNmrt/+m6r4d2ibTu8BzxAAAAAAw82TSRgt7pIVtiJBVxchytuL25PjQWClCVr3u5PjoHA+1T5dWRsh6O8cDYp21t0sRMt94/bLSn0TIAABoP2JhAACECGygx8ce1oOj96po62etpE1G+3Q9U7t2PiNR7CqMtVaP5x7Wo6MPaa/uA7SsY9cZ8x/JG3OP6/7hu5SzY971jIweGL675ceTUrLXfHN+k1Zvv6mhdZ/KParHcxs0FoxqXnqB9u0+SP35p/T42MOyEb9U6Up164CeQ7RTx84aDUZ0//A/1J9/amJ8WXZX7de9Qp2pLklSPsjpwZF7NBQM6oCeQzQvvaBq+dbigA7oPkSLOnZK9LxnolwwpnUja/Vk7lGlTUZ7dx2g3Tr3atr11Ayb85tCly/ORMTCHOfnrduv14kjL9OeXfs5g1mBLerRsYe0fvT+eAcb4ziimITb+VReM3EfP6XSa5U2aYXNN6yNsBWC1vwm+uatKzU/szByvfnpRXr2ghNacgwAAAAAAAAAAAAAAAAzUjBZqeqyYzps7B96Oh0+12np/HgP7YvHxA3i9NjQT9hpJJh5U+pHY8bCbri/sbjTiw/2z0ncaZ7R7n3hjzUWY1qOMxaWIGLkiieNzPEPrAYxvvvw8S3xHvt3dza2Xtc0xcJ273OPbQ8Jy/30Fv/18fBmad9lyY7Fdx6+/PB4oTBJeoZnmui28d7hEXtINz/oXq8VsbBnLnePre8vhft879dR1/6By6W/P+bZf65mTuXTT0jEwgAAAABAUusjZEO58ZDYeJBsIkY2ZituT44PjUlDY7Zm3clxImTToxBIW0dK/9RrToSsPiZWHSFzjYcFyoiQAQDgNvP+ZhMAgGlWtEX96IkLdOv26yPX/acFz9cZy/9dKUf4p1GBDXTJU9/UjVuvmVh2yuLT9KolZ0zrf9Baa3XF05foyqd/MW3HEMYkDEpd8fQlDa/7Xxs+kmgflY5b+ELdOXirBotb68b6Mkv0/j0+o85Up776yCf1VO5RSVKHyeo9u5+jnbO76YJHztFTudLsB6OUzlj+bzpm4UlTPq7ptjm/SRc8co425Z+sWn7U/OP0tl0+6AxptdtAITwW1tex1Lud7/3g/274Tz2z51C9a7ePT8TiyvJBXt99/L/096Fb4x9szOPwb9faYFvcn296/HjK0bBagSZnvQ0WtunS/h8lPziPqzb/sqH19uzcl1gYAAAAAAAAAAAAAACYW2z9h8WeN3yDfrTozXXLR2JGsApNjIV1ByEVIUnDwfQUj1KmFOBZ+0T92EjYt+p5+F6nsmc/wx/8Kcs6PmGQa2AfUeu6HtunOxu+PO65NNvEO0NaI5WanvmtXR3u/V7wZ6v/fLHV8oWNH9tUziXftq7QnU9vp/u4b3s4ep9Sa2Jhr3mW0TmXhZ9128bfWqcSdzzjOUYf/pX7rH7h4J+rF4yGfrIZAAAAANBErYyQDY8HxGojY6VltuL25PLh8bHqdYmQTbdWRcjSKVdgrDpC5hsP276TCBkAYBYgFgYAQI1btl3bUCistO51OrDncB278OQp7XPN9puqQmGSdM3m3+qgniN0YO/hU3rsqXhw9N4ZFwqTpLQjGjTT3LT1T86xgUK/Ln7yQs3PLJwIhUlS3ub03cf+Swf0HDIRCpMkq0A/evJrWtF7pOZnFrX0uFvtFxv/py4UJkmrt9+kA3oO0/MWvXgajqreQP7p0OV9mSXe7VLyx7buHf67/rT5Ur1syeurll+/5cqmhcJKxzEzrxMT8frUKkfPXPGzwE7OMGpVKAwAAAAAAAAAAAAAAAA+9R/q2rXweOiaIzE/tOeLz2Rifidelw2Py4zYeEWfYjD1TNPBu0rnnGq06mFp7RP1jzfc5BBWT1a68v2phj4Il3VMO8oVGt+fa13XY/u4gkujMY5nNopzGs6EsFizvf5oo5/dGv7M3vWTQJe+t/GT7TdrrF52WLIPifre05LEwiTpv083+rdLwp/bowM28n0004Kpg89cbpQy4efd56+0OvflUt5zTUbFws4+xWg0L33m97bu/eOeBw7RPDtUvXCMWBgAAAAA7KgyaaMF3dKCbtcayf4bvRjYuvBYdVTMhgbKhjyBsqGx+L/PRHMU2xQh681K87oqbxv11C0r3zaa1xW2DREyAEB7EQsDAKDGPUN3xFp/7dAdU46F/WngstDl1225clpjYWuH1rR8HxkTfzZEysSc5TVDrRtZq0D1s9mGgu1aM/jXuuVWVv8YWqXnLHxBOw6vJQJb9F5j9w7dOSNiYdZabS5sCh1b3OGPhaVN9L9i3z20pi4Wtnb49sYPsAFpR1xLkhZldmrqvqIs6Zj8StJMA69PpfT4f7KkHZGxymso7vs3AAAAAAAAAAAAAAAAmsDWf/iqOwgPuRQDKV+w6sg09sEpXyzMF5+xY6MNH1PBdKhQtMqkGzum0QY/IBh8J61iYJVOGW0fterNSrli6TXo7Szt6+7Hg9BtR5ocC7vy/SntNK+x59fpmNKX8/wsGl03m+DTC67gUrNfox1NEH7qzBnuDxRLf7xbyhWsshmjoIGq2rqNyXNqvvOwO5vsMRf1uMeu+oeNjAkmifI14pQV0tV3ucdd79cpI6VS/vcfY4w+/jKjj73UatvL95fdvkWddkyd1vFkiYUBAAAAAGqkU62NkLliYoPjEbLa8SFXoCwnDY4SIZsu/giZ5A+R+SNk5XBYb7YUEqu+PRkhqx+vjpBVjhMhAwCEIRYGAECNoWAw1vrDwfYp7/Ph0ftDl98xePOUH3sqhovxXou4ds7upgWZRbG3SzmiQTuasFBYlLt28FhYzuaUs2PO8ZFgyDnWToPFrSrY8N+49WWWerd9Rtf+kY8/VKx/3xgOWZZUd6pHy7K7OsePW/hCXd7/E9maX1Dt333NATelAAAgAElEQVTwlPZ7xLxj/z97dx4fZXXof/x7npnJCoGEJSI7IgUVVAQV3FBUXNC6VdzqdttaW6ve6rX1tu61P62296JevdRata219irudVeoaIGCogJa2fedAMlkMttzfn9MZjLLOed5ZklmknzfffkiedYzk8yUhPN8HixRvG+dVHdW4uOhFQdifXCV62MOq4w9n5YmfhaVbbPeVM9r3EFVh2N5szmAOKBsMCQktoY2uh4fERERERERERERERERERERUbenioXJzFhXXCAM+FzOYo8YgkheUxCnsSFjUZXUx2UCYaCny8BONpEqT2sgp2dF7M+KtKlvld4ooJgPl+3Fgk49pKosokW60FAo4v4Yum2ziYXJSBh4688o/3x/oDrzhq7d/YJKFw2sBMVLVCsSdbfx1NHuj9kexg/Rr2sJxy74LPNIvPKZ8+Pp2yP3cZi+D3WhOyfjhwjoLj7dus/8HtSnGhhcl9t5nSzfrF4eP58uEmgKO6YTQqBnlQXsNc+nlH+4D1izDPB4AcsT+zP+sTd5mSd1vSdtW0/atqr1imXC6hrzmImIiIiIiMhZe0bImlvDYckRMX9imUz6uG15bB+ZsowRsuKL2sC+lth/arlFyCyRGR6rLm9dVh67KUW1dr1o+zhtfYWPETIios6MsTAiIqI0tswu4BTNcvvOJJpDzCobp9Sdm9N+umgQlb6I3Tl+29QQ2aldV+czx8IOrh6P/cuGYnNonXabsOJud4V8Lzm57hx4DK+Tnt5emNzrZHy0953EMgsWptZ9M6/zTqmdjmX+T1Ie36E9jkJ/X1u47Lje07Co8e8I2M2OxxtSfgC+UTUuNj7N40mO7tnQzw79Zr9vo2p3Dyxq/FC7zSl150JC4o9bH3YcGxEREREREREREXVuzc3N+OSTT7BixQrs3LkTLS0tqKysRH19PUaNGoXDDz8cZWVZXElNKaZMmYK5c+cmPpfZXJWchTlz5uDEE09MfH7HHXfgzjvvbJdzERERERGRgSoWZpvDXPqL61L95h39zxPGAE0wc26KaUzNIaBnhbsxNWcRCzORwQAq3ngawHfzPkfYYepRNtEiXdCrILEwl1P/ZDAAeXLsRqSVg55XbpNNtK2zC0cklm0BFq+TWLwO+GSdxKcbCn+eYFjiwlmGQl+Sfz+luLGkcw4T+P6f9O8PyzcDVz1lY+0u52Pl85o27ZtNpC/Z6P306z74Shov+r12ikhECgvtkqME7n8z8zlfuT0WmdO9D2UTCQQAbNHPvUz4dC7kp3Odt2snUgh1hCwlXGY5rE+Ok5kiZl7AY6nXe70Q6WEzx3G5OK9Xsa0hnpa8LS80JiIiIiIicsdjCfSsMP1OMv8ImT8UC4klR8j8IZm6LJgaIcvYJ8gIWTHZsn0jZNXlqgBZW2hMvV6kbdv2JyNkREQdg7EwIiKiNKbYTCG270x04bQKqwp13r4AgIDdbAwrxR3X6zQMqTgAS5rmo0yUYWLNCTis59E5jcsUQcrW2OqJ+ML/z5z27ePrj3IR+23MrvB2BA13w6QYVSSrFO0Oq7+nvcKLHp4a476VnircOPgevL17Nt5teEm5TURm/nbM9F5yZM0J8MCLTcG1iX09wot+ZQMQlVHsjexCyA6iztcfh/echEm9phrHCAAX138fA8oGY6l/MXp4ajC518kYXX2o434mo6oOwfWD7sK8vW9jT2QnvlF1KE6u+2bKL3gGVQzHjYN/gb/veQPrWlbAlpmPu9yqxIFVh+DUunNRbsVeY5biDqpA6vuULrj2zb7fxuCKEbhiwI0YXDECy/2foMrqgZAMAZAoExU4suYEHNrzKABApVWNf+77O7aFNmb9HPQtM8zUIiIiIiIiIiIioqKKRqP461//iieffBIffPABIhH9Vc4VFRWYNm0avvOd72D69OkdOEoiIiIiIqJOSDH/o1Lqw1wtLi8s29QgMfO9HGNhyzPnhJnGtHRtEPXj3NXCCnZh3GtPomrtZ8AAxTkKHQvLIlqkC3qFsrgXom7bMq/LC8X+9nTiQ93XLRBqnzB1sYUiEss2t4bB1sfCYJ9vBIJZxNpy9dTHEq9+7rzdK9dZOGNscS/6618j8OEtFo77lXrendtQGJBfLEz3WhUih0hWYl+BqaOB977KXPfBv2LHVpk+Drjr7Pb7uhw2WL9u9qcSlmZgxvfqNHLX1ixHVSRSAtFI7L9iD6XYA0gjk4Nl6TExb1rQTBU2yypS5jGuF7o4mnJcSdsax5U+Rs36tHMJq7iBRSIiIiIi6j7aO0LmD7YGxIJtH8f+lCnL4h/H/pMZ+8Q/LtSNGSg77RkhywyPJS8TqNKuF5pwGSNkRETpGAsjIiJKowrXAICAgFT8EKMLanUFuudiXI+JuHLAvwMAPm9aiP/d9EvHYwkhcEzvU3BM71PyHpeFwsTCvMKHawf9DO/sfhEv7njaeYc0397vRxhVNRYA8MjGu7Hc/0lBxtWVhRWRrFK0O7JDubzW2xeWcP4H+x7eGpzX/0ocUDkGszb/v4z1qudB915yYf/vYkrtmY7nzJYlPDip7mycVHd2QY97QNUYHFA1xrjN4IoRuHS/H2Z1XEsTCYwHwqSUsKF+DodVHAggFho8pe5cnFJ3rvFch/U8OueYIREREREREREREZWm999/H9deey2+/vprV9u3tLTg5Zdfxssvv4wJEyZg1qxZGD9+fDuPMnvDhg3DunXrAABDhw7F2rVrizsgIiIiIiLqnmTmvLpKw40X3Yaw/jjfnEApN8yEl6u+yGpMj762B1PHubtJXKFiYfKj11Fp9ynIOZxiYdXZxMI0z2s2sSrdtm6jQfIP9yc+rrQ1sbDdDQD6uh9UCQpFJJZuAhavl1i8rjUMtgkIFbg/pHiJKpnifHHHHABMH1caF+Ydsr9+ndtQGJBnLEzzWq3M8wLGXpX6dbqv509Os9r1osnqcgHdxaDvLAdOGq1el00sDIs/yH5gVFqi0dh/4eJf7V1KITUphHOEzLIc1ivCZ8qImRfwWNqImUhZ5iKO5ua8HsW2hnha8ra82JuIiIiIqHNorwiZ3Roh08XEmoJSGyjzawJlTYyQFY0tgcaW2H9q+UfI1DEykbG+ugzoURGLkLV9nLq+sowRMiLqnBgLIyIiSqML9niFD2GZ+RNitAvHwqKa8E5yrMuCuzsdiRx/2Fee30WsyQ1P6+PINT6Wy/PQ3YVlsNhDcKUhvFO5vNbXL6vj+Cz1LLtIFu8lukhWd+PRvMZsxKKGEuq4IcDnkIiIiIiIiIiIqLu76667cNddd0GmXUkphMCYMWMwaNAg9OnTBzt27MD69eszgmKLFi3CpEmT8Mgjj+C73/1uRw6diIiIiIioc1CUaypsQyzMZQjrL/80Zz769DDMSbMy54tU2c3azV9c635ekNvYmY5c/y9gzovAP99Fec9zlNtkG4syxcJG9gf69XQxLv8+yJvPgm/9UGDgk3mNqcUQUHJl5+a2fTSRt0CgwEWtdhYMSyzdDCxe1xoGWy/xRTuEwfLx1VbnbawSmirZq6ow81L9ecXC1O9Trr/XNcbsL4BPs0sdVWURBczFUcP16/Y0S4Qi6q9HVrGwfVlU3og6EymBaCT2X7GHUuwBpJHpwbLkSJlXETSzdOEyN5EyTRytdZlwE0dLjEt3XlPIrXVfyzDW1uWilP4Pl4iIiIioHVmWiEWc2jFCpo6NSWWgrNkQKGOErHjaK0ImRHpYrO3j2J+xCJl6vYhFyyoy1zNCRkTtjbEwIiKiNLYmOKOLhem27wp04TRPUnjHbYRHFDCm5XER9/KJMuXXK1k8OpZrfCz5efAwRuRK2DbP9JMl8k/QDZEdyuW13uzuROkV6r9uR2QEtrRTvvdsTZzPzfd7d6B7r4m/T0UlY2FERERERERERESU6cYbb8TMmTNTlvXs2RO33norLr30UgwZMiRjn5UrV+Kpp57Cgw8+iGAwdhOMUCiE733ve/D7/bjxxhs7ZOxERERERESdR+acn0oZ0G7tNha2Lp9mzNZ1GYsqbf2YsvHZxtznOMnPP4a8+Swg0AQA8El1NCSU5T1MTbGw284UjhcmycYGyDP2AwCU9RygHpPLvkk4IhHVTOWpzCFmVKH5ugVCpTHXTCUYjoXAFq+TWLwe+GRd7HPT16k9FfKZsrrgNW75XOSpiwfm8r2e7OpjBO59PbuvXL6BMif9euq/+C98AhypiYllEwuTG1dlOSoi6vSi0dh/4eJfcV9Kf7OQQhhjYpnxM12kzHIRMfMCXo82YiaMUbYcz+tRbOv0eFvPzwvuiYiIiMiN9o6Q+UNAU0trTCz549YIWfp6f0tqhCxjfTDnh0p5kMkRsn3KLUx7a9cI0RoQS46JlQPV5fFlAlXa9SJt27b1jJARURxjYURERGl08S+f8EE15UQX1OoKdPEiKyle5DZkZBXwBxDhIu6li7sliweEco0xJQeILAadXIk4fE1Kxe7wTuXyOl92sTCf0M/4icgwykR54nNbE7vKNWbX1WhjYa3v2br3KwDwFDBWSERERERERERERJ3H008/nREKO/bYY/Hss89i0KBB2v1GjhyJX/ziF7j88stx/vnnY+nSpYl1N910Ew477DBMmTKlvYbdJcyZM6fYQyAiIiIioo4kMy+KKZdBCGlDKua+LF4nMfkA5/lkew1tr6mjHXZ+5y8Zi3xwWSlzcNerecTCfndnIhQGAD7NfKpwNLtz6CJU08cB357kYu7MC48lPiyT6ufJbcCs0XBhWy4xo0rZolweaNgLQB0260gtyWGwdbEw2NLNHRcGK/MCYwcCFxwh8MFXEm8vb9/z5RXxaweH7A8s3ZzfMfKKhWneVqryjIUNqct+n3wDZW7cerrA/3tD/f70m3fUy8uymV77wqP6dYceB0RCgB0FIhEgGol9nPiz9ePEn0nr4x/bXfcG0UTUxUjZ9v5V7KEUewBpZEokTRUZc1qvC5+pImUe43qRfiynOJrTeTPG7QG8msBb+lgszpcnIiIi6gjJEbL6GtUWhYmQ+UOxkFji45bUCFl8vb8F8Iekep8gI2TFImXr1yKIdouQJWJiSR9Xl4ukj9PXC+U+jJARdU6MhREREaXRxb+8Qj1LJdqFY2FRF/EiXcAnncjxh1wVN3EvnyhDAH5Xx3H7GNJZSQEiT47H6G7CmolkpaYhoo6F1Xr7ZXUc3fsG0BoLQ1IsTBMqZIguRve6j78Hm8KNub7GiYiIiIiIiIiIqPP6+uuvcd1116Usmzx5Mt544w306NHD1TFGjRqF9957D1OmTMGXX34JALBtG5dddhmWLFmCvn2zu8EEERERERFRl6WIhQlAGQoDzBEwtxzjQAeMBVZ9kTEmnTIrCricp5NrBEpGIsCnc1OW+XRhriy7ELoxnTnW3bw9+cRdSWNSl5OCLsf09Tb9uupy/brEWNK+nyql+hsmIHMoj+WpJSzx+cbWMNj61jDYJiDSQf2hMi9w6CBg/FCB8UOAI4YIHDIQKPPGvs6L16q/ERQv0ZytLbFYWE1l/sfIJxam2zeXMF4yj5X9nNuaivzO6UYvw/O9TXnhoz6opjRoJLBxZebyg46E9ci7WRxITUppjollxMbsto9V+6XsY1qfvH8UsKOQ6cszxhJ1WJ/NeZ2OUfwYERGRa/H3tXDxb2JeSiE1KYQxJpZY5hgps1xEzLyAVxdla42oaeNomqBa/LzJcTRtqM1Snld3XEYPiIiIqDNozwhZINwWDosHrBIft8iUsFh8fXMQaArKjPBY8v7U8VIiZOotTHtr18QjZLqYWDxCpl6vD5RVMUJG1G4YCyMiIkpjawJZuuiPja4bC9PFd5LDWO5jYYW7U4mbc/osH5y+NPHj5Br6Sn0eeCcWN8KaiWSlJCLD2BdpUK6r9WV34ZdP6G/Vl/5cuHm9dWe611j8eYsaXvAMrhEREREREREREXU/N998M5qamhKf9+7dGy+88ILrUFhc//798fzzz+Pwww9HKBT7ve6mTZtwzz33YObMmQUdMxERERERUaelmXOn43U51WpAL2DLXvU6XRxLSgk8998ZoTAn5+y/CcBwV9uWuZiKcuPJigtgQpnRqzLNfCpbCkRt6ToYpHs+fDlMm9HFuUIRuBqTKQY3qt7FAEItqeOx1Qdskfq5WYWyfLPE/3tD4pkFHZ+CKE8Kgx0xFDhiqMDBAwCfV//8xy68KqVsRfvbqnmPyEZzKPbekcuFawFdLKz9vz0z1Fa3/4V3J47O/nts/e4sNtZ9DRq2Z3VO/eFFLELiLf6lVKV0maSUMhZGS4+JRfKNlLXF0bTBNUUcTWrDZhEgauvDZ5G0MSaPK6I6r+08LruDapBERPmSEoiEART/5u6l9rdRmR5Jy4iQpcXJnCJl2vXOcTSRETwzjSub8yad3+t1eLytY7F4DRQREVF3YFltkSe1wkXIUmNiMiNM5k98LJXhMr8xgkXtKTlCpr4XSO4RsqoyXYAsFhqrMgTK1PswQkYEMBZGRESUQRf/0sbCspzo1Jnonovk8I7HZYSnkH/xdhML8xoiTYnjtAbMrBxDZsnPA2NE7kQ0d8IsJXvCuyE1P6DWeftldSyfpb89YNhOfS50sSu3Qb6uTvcasxF7Dza9FzO4RkRERERERERE1L189dVXeO2111KW3Xfffdhvv/1yOt5BBx2Em2++Gb/85S8Ty5544gnceeedqK2tzWuspWblypX4/PPPsWnTJjQ2NkIIgaqqKtTX12P48OEYO3Ysqqqq2n0cwWAQc+fOxZo1a7B79270798fgwYNwnHHHdcu59+yZQsWLFiA7du3Y9euXejRowf69++PiRMnYsSIEQU/HxERERFRlyM1c20iu7Db2ydjebPL+w3mMuVM/uZ64KXfatcf3rIEn1YclrG80nI/ryniMGXwwP7ATacoBh90HwsDYgEwj8upbQWNhdkt2nUtYdOFZbGLxE6faZjH4yZ+lvY8VUr1eALR9p0TtGyzxPh7bO1zW0gVvqQw2JBYGOwghzAYxdw2XeCqp/JLUkgJBCOxr0O2nl+sPndlDsfqDI4Ykv0+3z8hi+/jDSuUi8V538/+xOSaEKItluIrQukufTzFHkASmYioKYJoecfRTOuT42exY8qMc6WH2gp03qjLx0tE1FnE39fCxb/xfSmF1KQQxphY4nPHSJnlImLmBbz6aJvwpAXPHMeVdF5tHE2xrcvjMjxBRETkrL0jZOoAWSw0pgqM+Q2BsqYg4A9p/xmD2pGUbZG49oqQVZcBPSrSP26LkGWuF5p9Yr/TtVzewIWo2BgLIyIiSqMLzvgs9T9+6gI/XUFUOseL3EZ4RI5BLhWPi2P5NHG3lOO0jj3XGFMuz0N3F7Kd/oGl+D9xN0R2atfV+vpmdSxTtC49nGbrXm8FfO10ZpZQPw/x9ynd82fal4iIiIiIiIiIiLqmmTNnQibN8Orbty+uuuqqvI5544034oEHHkA4HPvdrt/vx+OPP45bbrklY9srr7wSTz/9dOLzNWvWYNiwYa7OM2fOHJx44omJz++44w7ceeedxuPHrVu3zjh5/YorrsBTTz2VsTwYDOKhhx7C448/jhUr1Bdkxnk8Hhx22GE455xz8OMf/1gb7poyZQrmzp2b+Fy6nHG3d+9e3H777Xjqqaewb9++jPU9e/bEjBkzcNddd2H//fd3dUydcDiMJ554Ao8++ii++OIL7XYHHnggbr75Zlx99dXwejnNhoiIiIhISfN3/okti/FWj1MzlgdcdrkChqlGqus1pH+fMRQG6GNhIdv9/BJdPOrA/sBNpwqcd7hA357uYmE+RLTnCWURLypoLExmjjNueyMw3BALW7JBv65XpcsBpMfCbPV4Anb7/oz22BzZLqGwCh9w2GBg/BCBI4bGwmBj9mvfMFjxZ+W1n8kHCBTiETaHcouFfbZRvbyjY2FnHNIx57EsgW/UA/9SX92nNLK/u+3k5tX6lX3z+z0QUa6EZcUCI97iFwBL6VJVKSWQCKklxcQiqohZJItIWXpwLWIIl7VtL9OPlbK/rYmrJQfZ3J7Xzlyffly7696Inoi6GCmBSBiA+3B2uw2l2ANII9MjYhmBMVVkzG2kLH0fcxxNmOJo2pCbm/MmxeC0wbW0sVi8LoeIiNpfcoRM/Sul3H46llIiEEoPjyXHyKQiTBb7nWFTi9SEyxghK5bkCJlmC9PexmNXxwNi5bGIWOrHAtUZy+Ift0XI0tdXlTFCRoXHWYxERERpbE38yyvU/7dpCtR0djbU/1jlSQrvuI3wFPKvsW7iXj5DpCn9OLmGvlKeBzAW5kbEcCfMUrE7vEO5vNKqRoXldsZajClaF057LnShQoboYjya11j8PVv3fmXal4iIiIiIiIiIiLqmN998M+Xzyy+/HGVlzv9uYNKvXz+cddZZmD17dsp5VLGwzmTDhg2YNm0avvzyS1fbR6NRLF68GIsXL8ZFF12EkSNHFmwsn332Gc444wxs3rxZu01jYyN+97vfYfbs2XjllVdyPtfixYtx4YUXYvVqw0WorVasWIFrrrkGjz32GF577TUMHDgw5/MSEREREXVZmqthquxm5XJTBCxZi+Ga5e8dr5iR9vUSx2P6pPqg2UShdNv++kIL08cZZsopYmFlhvlUhRiTz5P9zL2+0V3adat3AMMN91t87Qv9hTZ79Q2yVOmxME28LGC3b7jl0Tn5X+VVGQ+DDW0Ngw0RGDMA8ObwdXHD0BAvmO8eV1oXNQ3tU5jjNIeAuurs9jHF0d1GEU2+c5zA7z509324y5//+dzq1zO7WJjr75hlC/Xraurcn5CI2p0Qoi2W4svvd+8FGU+xB5BEJiJqmphYRmws+ziaNrgWSd1WZoTYdPEzU8jNxXmTo2za9V33mhsi6oLikcsSUErtESmEQ6TM0xYg0673pm2jiZRZHsDr0UbMhCqO5va8ruJoquCa5riWZbyhFxERlQYhBKrKgap2jJD5Q0BTS9ufsWUy6eO29f5gLEKWum3S/kFGyIolHiHb3qhaW5gIWXV5a0ws8XFqhCx1vcgIk8XXM0LWvTEWRkRElEYX7NHFp7p0LEzz2JLDWG4jWQKFu4OA5eJYHk3cLfU4npQ/sx9H0vPgMprW3YU1k+1KSUNEHQur8/XL+limaF0k7bmIakKFbuJ43YHueYi/T5nei/kcEhERERERERERdR8bN27E2rVrU5adeuqpBTn2qaeemhILmz9/PsLhMHy+9r04ub2EQiGcdtppGaGwuro6jB07FvX19fD5fGhsbMSWLVuwfPly+P3tc+Xp8uXLMXXqVOzalXpBen19PQ4//HD07t0b27Ztw/z58xEIBLB7925Mnz4dDzzwQNbneu211zBjxgw0N6dGCwYMGIBDDz0UdXV18Pv9WL58OVasWJFYv2TJEhx11FGYP38+Bg0alNsDJSIiIiLqstQXQegiT80uY2GmWJYyyrVrq+MxdXGusO3+goqI5p52XqcpZC3ZxcJCEddDQkgbC3PeV0ZST7R/ZEvOY1q4ugBXMKU9T5V2i3KzBrsq/3MVUFVZUhhsCHDEUIHR+7VfGCxOvv0s5Cu/A1Yvg6x7DKg6O3ObAl5Y9m/HltbFR2XewozHH8x+H9N71Kj98h/Xz89wHwvb3YGxsFMOEpi30v031dEjXD4XAcODGHeM6/MRERWTsKxYYMRb/H83KKX/x5ZStsXJkuNpkTwiZclxNGWITR9Hk9o4WlL4TLU+kjZGp/PatvO4WAAgos5CSiASBlD868JK7Z1TJiJjmkiZcX0WkTJLc6ykiJmw0o6ljaMpgmvG86YF11KCaep9hMVrLYmo60uOkGm2yOm48QhZPByWHCGLLZMpYbHkCJk/KFP3CTJCVgraK0IW/3eJ604UuOhI/n9vd8JYGBERURob6pk8XqH+B5uoZvuuIKqLhSWFdzwuIzyFrOS7Cf94hAcWPLA1AabYNlbr8XL7C3Auz0N3F7ZdzvQrooaw+s6YtV7DLTE1TNG6cNpEP13sypNjzK6r0b1Oo62BR11sLbYvn0MiIiIiIiIiou4uKqPYE9lZ7GF0eb29fYv++/KPPvooY9mECRMKcuwjjjgi5fNAIIAlS5Zg4sSJBTm+Ww8++CDuvPNOAMCxxx6LTZs2AQAGDhyIefPmaffr0aNHyudPPvkkli9fnvh82LBh+J//+R+cdtppsBQTd6WUWLx4MV577TU88cQTBXgkMeFwGJdeemlKKGzAgAGYOXMmzj///JSxNDU14de//jXuvfde7NmzB7fccktW51q+fDkuuuiilFDYaaedhrvuugtHHnlkxvaffvopbrjhBnz44YcAgE2bNuHiiy/GnDlz4PHwd89ERERERAmaaxV0kacWF9eVSim1Ua5JI4Cjhqdtb9uQd33b8bheSz3YkJtBtdIFghzDXM2ZV4H4DDdfNIWICjYmAAg2O2/TKuDwNA3pI6D7hvjmoW5P0pTyaYUmOhcu8qUQxxzQGgYb2hYG81gdm+WQb/0Z8hdXJT4XPTXFq2AAQHXe5/vZmQITh+V9mJLkNmKYLGDY58pJ+X8vDOkjMKAXsGWv87ZXTO64770bTxa44xX3VxUOqXO3ndy4UrtOVJRWHJCIiLIjhGiLpZSAkgqp2XZaIE0XMUv60zFSpgiuZaxPC65FI5Cq4yqDa3me1ynKFt+fiKiziEZL5n2rlPovUgiHSJkqfqYJm8U/9moiZZYH8KYtT1ovHONohvO6iaMlj1ETckNSyK2Q19kSUdeUHCHr11O5RU7HlVKiJdwaEGuNV6XGxGTbsqT1zcHWQFnyPkkf+4OAXUr/J9SNNIeAj1cBH6+SEMLGjIkMhnUXjIURERGlsaV6hpFPEwvTBX66Al04LTleZLkMGYkC/pOKmwuNPPDAEpbx6xMfe64xplyeh+4uYpjcVip2R3Yol4DrUf4AACAASURBVNf6so+FWcKCV3gRkZm31AwnPRdSSu3rTeQYs+tqdK9T2fq86d67Y/vyOSQiIiIiIiIi6u72RHbittXXFHsYXd49I2ahj6++qGPYuHFjyuf19fXo06dPQY59yCGHKM/X0bGwvn37om/f2O+svd62aR9erxfDhg1zfZyXX345Zd933nkHI0eO1G4vhMCECRMwYcIE3HbbbbDtwtxQ5+GHH8aSJUsSnw8YMADz5s3DiBEjMrbt0aMH7rjjDhxyyCG48MIL0dDQ4Po8tm1jxowZ8Pv9iWV33nkn7rjjDu0+hx9+ON5//33MmDEDs2fPBgDMmzcPzzzzDC6//HLX5yYiIiIi6vI0Px9USXWEqrklCjjM54gYpuXdf77iorqvPzUeL65MM80rvMfdzxe2LSE1F704hrmWfJg5HsN8qlBHxcI+zwxv7xfZiq3e/TKWt4QlTBci7d9bf5peVS7nEKaNp9JWx8IAYNV2iQP6F/4CS6n7Irf6/gkCj15a/DlJ8qVZ7jbcth7AGOMmURdXc919tujUF7T++67/xn/1uVG5LpdY2Lrd+nU9K7I/nsr/fd/Csfc7/w6mUOdzo2eFQH0NsG2fu+29bqfXLnxHvXz0EerlREREXYCwrFi0xKu+XqlDx1LsASSRUrbFyRwjZrnF0TJDbPo4mtSeNxL74VUVRLOjsXOmj9F43qjzuBx+ViEiKhlSApFw7L9iD6XYA0gjMyJp6ZExy2F9NpEyxbGS1gtVHM3pvMrgmiYGpwquaUJtnfl3TkSdhRAClWVAZVn7RcjUMTGZGShLipCp9mGELHuPzZGY0bHTGKmIGAsjIiJKY0M9a8YryrLavivQhbaSY12Wy5CRVcBYj5tjWcIDDzyIQP8LJav1cVgu4mPq/a2kjxkLcyMsc5hR08EawupYWJ23X07H84oydSzMbnsudKEwgKGrON1rLNr6PhU1hQH5+iQiIiIiIiIiIuo2du9OvUqztra2YMeuqKhAeXk5gsGg9nydybp16xIfH3roocZQWDqPxwOPJ//fvdq2jYcffjhl2W9/+1tlKCzZ+eefjx/84Ad45JFHXJ9r9uzZWLp0aeLzCy+80BgKi/N6vXj66acxb948bN++HQDw4IMPMhZGRERERJRCfbVGhSby1NwYAGC+GF4XvwJSA1gyHIpddLjiM6dBAr4y+Fr2AYqLYEKV7n5+NI3LMYhTnXlinykWljnlSCmaT8AMAHZsylhUYbcoNw3kcX3neYe7vNCooirl0/0jW7SbfrEJOKB/7mPS2dlkXl9eKldhrPzc1WZyr/PvLza66OWV6kWbRwwFFq8zb1NpN+Pe7XdgZt2PYCvmk+USCzPFsvpXRSFbQhBp38/Z2r+Xu+0qC9QXkY17gB69HL/WbkNhgMv3IQD4xnhg1ReZy79a7P5kRERE1CUIIVrjIaVxHUAp/S1Y2nZmUEwZMcs1jqZbnxw/i20rVSG3lFCbbV7v9rzRCBC1HdZ33Wv7iKgLikZL5n2rlBo8UgiHSJkn7WPV+rSImi5+Znliv8zVRMxENnE0VXDNMY7mcYyntY1VceMMohLT3hEyfUxMKgNjfkOgLP5xV4yQfbqh2COgjlQq/0xFRERUMmypjvb4LPW/pJsCNZ2d7rElh3c8LiM8hfyB1E34xxJWLOZl+Au7J+9YWPLz0DFBp85+ExCnWFgpPLyGyE7l8jpf35yO5xM+qKbORZIm+unCfABDV3EW1M9DPNhoCjfq9iUiIiIiIiIiIqKuJz3e1bt374Iev3fv3ti2bVvi8127dhX0+MUSj2B1tL///e9Yu3Zt4vOJEydi+vTprva9/fbbMWvWLITD7q5Uf+ihhxIfCyFw3333uR5njx49cM011+Cee+4BAHzxxRdYu3Ythg0b5voYRERERERdmmZSU6VUB6f2BJznkjnFwqR/H+RpWd78b8JU+L5W/wwRlu7mt21vNI/LRG5albGszDCfyvQcJPt8o2FMbq4WCGZG3SqlOvQWcAgqmcZ84mgXY1GM54Dwau2mgbBEe1y67xSOKoXr86SUQEtzyjKRxww8t99vpWj6OIHF68yPfVrTOyhDGFV2M5o8mVes5RILM70e6i4aANnSDHnI0RC3/hZi4AHZnwDAsL7uvtkq1fdDdk2+8jvIP/0K2LIO6D8YuPhGiAuu024/oBewZa+7Y3vdTq9N+34mIiIiokzCsmLREm+BarH5jKXYA0gipWwLjzlGzJIiak5xNGVwTRdqawuaSe15I0AkqgmepR/XzXmjzo+3s1+IRkTdh5Sxm0JE8rhbQaGGUuwBpJHKiFhyuEwRNFOFzVxFylRxtLb1wimO5nRe5fq0GJwqCqfYjxG1ri85Qta3wBGyYARoamkNiIWSPg4CTUGZuqz14+QImWp9sSNkjS2xm8t4LL42ugPGwoiIiNLogjNeof5Fqi4u1hXongsLVtLHLmNhBfw1sMfFOT3wOEaW4o/Dg9xCX8nj6KgYkY3O/f0Wtov/yxqTQNSPgK2ecFLrzTUWpp6FkxxOizJ05UgX5IuH1kzBNbdRQyIiIiIiIiIiIiInXWmi2ejRo7F8+XIAwIYNG/Dggw/i5ptv7tAxzJs3L+Xziy++2PW+/fr1w6mnnorXX3/dcVu/34/58+cnPp84cSKGDx/ufqAATjzxxEQsDAA+/PBDxsKIiIiIiOI0F55WaebhLNpW5XhIx1hYtqGwkeMgfjoLZb+aB+zOXB223f28N+VB/fwtUyxMRqPA7P/NWG6KhYVcxJv2BSSOvT+3MSXGtmxhxrJKWx16W7jGfKyIYcw9K9w9x/LtZ1M+N+3lFC/LlT9oXl8S11qHHAaZxM14TV+7UvfT0wSWbpJ44RP1+iMCn+B/t8bCV9WyGU1QxcKyD8/FYnUa/n2xPz+bB/mjU4Bnl0OUV2R1/LiTRgPvf2XeptKX+++s5NyXIB/4YduC7RsgZ94E9KyDmHaJcp/bpwtc+4y7F4Kb9yEAwPv/p15+0rdcHoCIiIiIuishRGs4pDSuHSmlf1GWtp0aF9NGzHKPo6nXtwbXkraV6aGzjGBa1GG9y/Mm1jmsJyLqLOLvaXD/+8D2Ugq/Fo2TQhhjYinxM6dIWXy91xQpUxyr9WORaxxNFVxT7qcJvSWPN/Gn1aXmt7UHIQQqfECFr/0iZP5QLB6W+LglNUKWvL45BDS1pEbIktdnEyFrbAF6O/8THHUBjIURERGl0cW/fLpYmCHy09npnovk8I7bCI/IMcil4hQBi2/jFBWLH8fN8ZzGkesxsmUKInUGYcPktlLQENmpXVfry3KCYStdaDAiI4mPGbpypnuNRVvfp6KGkJ6lCY0RERERERERERFR11NXV5fy+d69ewt6/D179hjP15lccsklmD17duLz//iP/8BLL72Eq666CmeccQYGDBjQ7mNYtGhRyudHHXVUVvsfddRRrmJh8+fPRzjcdkOTESNGYO3atVmdy7ZTfw+9atWqrPYnIiIiIurSNCWiSqkOTgFAc1Ciqlx/wYUplOVt1M/xURFPfwIMPwhCCPjK1HNQwrbz/JI1OyXWGE7tNR3iy38qF/uk/uaLpmBa3FvLgIDh/o2uIj1ff5qxqEIGlJv+c635ihTdmKcd7GIccau+yFg0OvgVviofnbHc9NjzsWid+XF6S2FK17b1GYtEHpfrOX2/9e2R86HbXblP4P++78G6XRIrtwNHDo9dYPXPtcDwbfMx+u4picu7dBHD5hymNur2GRJO+9rs2AR8Ogc4+rTsTwJg7ECB978yf20r1dMUXZFv/1m9/K1ntLGwmkr3x3cVLWxu1K9UvEcREREREZE7wrJioRRvHj80FGosxR5AEillanisEJGytDiaMrimiaNJ7Xmjsbq3MniWflw3542a10fa6RctRETtQcrY+1YJvHeVUkQNAGRGmCz9Y8thvSJ8poufWZpjta4XVtqxjHE0p/MqgmvK5ZqxtHNELSVCpt4ip+PGI2T+YCwc9tVW4PSZ6uup9wYYC+suGAsjIiJKo4t/6YI/EhK2tLtkjCaqeS5yiWSJAv5Kz3IRHrPgcRxbPCZmOUTF3IzDKUxWKJ09ThcxTG4rBQ1h9Ww+AQu9vbld8OWzypTLk8NpujAfwNBVnO51H39NmIJrub7GiYiIiIiIiIiIqPNJj3c1NDQU7NgtLS1oaUm90L1Pnz4FO35HO++883DeeeelBMM++ugjfPTRRwCAkSNHYvLkyTjmmGNw3HHHYcyYMQUfw7Zt21I+P/DAA7Paf9SoUa6227BhQ8rnf/nLX/CXv/wlq3Ol2717d177ExERERF1KZpYWI29T7vLhgbgG/vpD2kKF/nWL3M7MuCUiyBGtJWqynzqOShuYmHPLDBf8mMM4mxYod4H+vlUoYh2VcLnm/IYU9yBh2aMb0HlkcpNDxtsngcY0UyDcjUOALJhO1BZDQT8Kct14bn2ioU5zXY8bmQJXOK8Z4frTd1crKb72sVdfWwJPGYHQ/sIDG39VU3PCmD6OEB+tCvl8RcyFtai+f6rsDO/X+WSeRA5xsKGq68sy3obrb+/rF7+z3e1u4zoK+D2MkiP4u1VhoKxMODWdUB1DbB5jf4AG1e6Og8REREREZFbQojWcIgHQHmxh1NaITXbdhFPa42jxQNkbuJoquBayvrM4JrUHVcRXMvrvIl1hscb7dzXdBJRNxN/T0Ow2CMpqZCatCxjTEwfP9NEyuLxM21QTXGs1j+FLo6mGVe55UG5x4M6jxeVoQoAJygf4171fWCoC2IsjIiIKI0u2qOLhQGxWI2bgFVnE5Xq2UbJ4R23j7uQxV038SSPsBzHFo+JeVwGz1L2hZXymDoq6BQ1BJE6g+RAVinaHVHHwnp5a+ERuf3V2ad574jYbTOFdGE+gKGrOF38Lx4J08XCBASDa0REREREREREhN7evrhnxKxiD6PL6+3N56rEwhg4cGDK51u3bsWuXbsKEvVatizzYvT083UmQgg899xzuOOOO/Cb3/wmI4S2cuVKrFy5En/4wx8AxOJhl112GX70ox9lRNlylR5zq6mpyWr/Xr16udpu165dWR3XjcbGxoIfk4iIiIio09LMuTvZ/752F7/DNSrGWJjt/gIXccpFqftqqlUhF7Ewp5iQKYglF76jXC4AeGUYEcUcIzexsKhD4MlVpCuaeaLB4Y1YWzYsc0xR86U9uq+b0zhkcyPkbRcDmuepwlZf4RJoh+loti1xxZPmxzm18D3t7AULe9XPp+vNj/mC8aV06bJ7cumClM8rpfp5c3pPSvfVFokf/ln9nJVLxcFC6uCdG2cfKnDjc+avjym+mA/7p+dB3PkniIqqlOUTh7k/Rvr8Yfl/D0M+dHMBRkdERERERESFJiwrFkrx6q+l7bCxFHsASaSUqeExY8QstzhaZrxMsaz1Y6k9bxSIRDPPpRyLm/OqomrJ52qnkj8RUXuw7dh/JfDelU9ErQY+YMxe5TrGwroPxsKIiIiSSClhQz17xifKtPvZ0s75tw+6OFkp0I3NkxTecRvaEgX89YwuGpS+jdPY4gGhXEJC6WNwM6ZC6PyxMPMPUVJzl9GOsjusvttibR4XuHk17x3J4TRpeB/IJWbXFemiafHQmi64xtgaEREREREREREBsd+z9fHVF3sY1AEmT56csWzRokWYNm1a3sdetGhRyueVlZU47LDD8j5uMXm9Xtx77724/vrr8ac//Qkvv/wyFi5ciGAw86LWlStX4s4778R//dd/YdasWZgxY0YRRpybUKjwV48X+980iIiIiIhKiubvx30i+nCvU3jLFAvzvvg/bkYFABCTTk/53FemnksSDjvP41uxzfxzgFczDU3u2w28+5x2vzIZUsbCNjZIOE1MDDoExVzFwhQXxpzb+BL+q8+NGcudAmYRzdPotcyPQ/76em0oDNAHngLtcE3PIx+Yv86f3mahurwELlfduCpjkcjxEqNwROI7f9Dv+4erBSYMK4HHnCUZCgJ/+lXKsiq7Wbmt03tSMtuWmPbf+veMMtU8yZdmAdc/6P4kSYb1FaitAhrUQ8fg2sLe0DfFR69DPnQTxC2PpSy2LIFD9geWbjbvfstpaaGwhe8wFEZERERERESdjhAC8Hhi/6G82MMprZCabbuIp8XjaNHM5S7iaOr1yctj20pjHC2aef5cz5sIqTmsJyJqB2UIo8IOoMWqzFjHWFj3wVgYERFREqkJhQGAV+j/bzOfgJOtCdyUAt3YkuM7Au5CW263c8PjIv5jweMY8IofJ5eYkJX2eNyMqRBK+fvFjXAWd/UshoaIOhZW5+uX8zF17x3J4TRd6Apg7CrOo4n6xaOGtuZ9OJcYIBEREREREREREXVeQ4YMwZAhQ7B+/frEsrfffrsgsbB33km9aPmoo45CWZn+ZjO5iBZpsmB9fT1uuukm3HTTTQgGg/jkk0/w8ccf48MPP8R7772HpqamxLZ79+7FxRdfjPLycpxzzjl5nbe2tjbl83379qFfP/e/k9+7V32XxHR9+6beFOSXv/wlbr31VtfnISIiIiIiB5pYWBnC8MqwMoTlzyMW5vt6kX5lspq6zDHpYmGKMaZbrZ5alKANcxkiWEAsFtaM6ozli9cDVzuMKeDwPLqKhUUzC2DK2BGc42S6r5tpHDISAT56zXjcSrtFuTwQtIECzk0EgNte1kezJg4DDh1cGpdjylWfu9/WoSH2j9Xm9ZccWRqPOWufz8tYVKUJz2UTC1u8HtjQoF/vk4qDhfMLmZ85VuBPC9RfyGG53wsVcrPDFx8A/v4K5H88mhEkO3h/gaWbzd9cNRVp5/v7y9kOkYiIiIiIiIhKmLAswLIAr/PvV9t9LMUeQBIpZWp4zClSZtsOEbPkEJvtsD4zfCa1540CEU3gLafzOjxexe+iiSh7vex9mliY801oqGtgLIyIiCiJbYqFWfqLPfIJOMVDNyqFDGzlQhdBS45wWcKCgGUMrQGFvWuZUwQMADzC4xhZih/H4+J4TmNwM6ZCMH2/dAZhzSSyUtEQ3qlcXuvNfTaNT6jfOyJJE4J0oSuAsas43Wss/r6te//O5fVNREREREREREREndtpp52G3/72t4nP//jHP+K+++6Dz5f7xMQdO3bglVdeyTiPitebOhUjEnE/0a2hwXClaQcpLy/HpEmTMGnSJNx0000IhUJ48cUXcfvtt+Prr78GEJvUeP311+Pss8+GZeX+e+z6+vqUz1esWJFVLCw+nmzP43Y/IiIiIiJySx+LqbKbsc/TK2O53+Geg8ZYWM8aYM8u52ENPyhz37A6FBQSPshoFMKjn2syql7g0w36x9q/JvantG1gxWfAqi8AKSGf/bVxmHs8tcrl+9UYdwPQfrGwcqn+AoUcfsTVNbA9Kz+F/bP7gX4DIUYcDHhaf0YfcTBQ1x/w7zMet0o2K5cHAhHkcklES1hi/mpgTzNw/CigrrptfmOjuksGIBZHKhm19RmLhOG1aPKvbeb9LKuEHrdLsmkv5IuzMpZX2ervpWxiYXO/Nj9fZapY2MARkJvXAMsWAHX1wCGTIMorMrfTMJ1xjXraozvbNjpvs3cnEAwAFVUpi/fLfGvPUJn+67htG9yPjYiIiIiIiIiokxJCAF4vYr+7LC/2cEoqHSRt20U8LQpEUoNn2cTREIk4hNpi28qM46afS3EO1T7GcSUdSzeu+Hoil3pF92KbN/PfCPY0RlHoG6xQaWIsjIiIKIkpxOQz3DlQF9Vyw7SvKPKPYLqAUXp8xyMsRBwiVoV8LJaLv6hawoLHIbIUj4k5RcVUPGn7uBlTIUTzCNOVgohqEkwJ2R3RxMJ8ecTCLPV7R9huC6eZQoWMXcXoXqfx9ylt3DCH1zcRERERERERERF1bjfccAMef/zx2F06EQt9Pfnkk/je976X8zFnzpyJcLjt97rV1dX47ne/q9y2pib1au49e/a4Ps+yZcuyGlchb9aiU1ZWhhkzZmDatGk45JBDsGnTJgDAhg0bsHjxYkycODHnY0+YMAEvv/xy4vP58+dj8uTJrvdfsGCBq+0mTZoEIUTie+Kdd96BlLJDnj8iIiIiom5B6jM21ZpYWHPIfHdzYyxs71ZXwxJnXpmxrGz4gcCXivMJXyyGU9VDezyvwzQUjyUg/fsgf3Iu8Nk8V2M02dnkvE3A4d6NrmJhisi1MnYEIOQwfU33dfOtXgJsif38l/Hd0sO5OFRpqyNvu5qyv/nmim0SU39jY2Nrr9trAX/+roULjnD+GfHbR5fQz5ER9zfulA7zNw0v4U5JLnwH8j+/FXtNp9HFwpzCe8mcvguUr59NqyFnjG77vM8AYOabEENHZ26rMGOiwDML1F+obx6Wx/dlUP18ZAj4M2Jhl08SmPme+ZunMv1eq599mMXgiIiIiIiIiIioqxGWBVgW4M39po8FG0uxB5BESmmIozlEylzG0fTrM+NoUnveCBC1NcGzXM6rOFbyesXNTgiosdU3YNm7cy+A3K+Hp86DsTAiIqIkpmCP1xAL00W13J1Tv69V5AsUdM9HehgrFuMx/4W7kDEtIQQsWMavlwWPYyQoHhOzHKJiyuOn7dNRQad8vtdKQVi6n6DU0WxpY09YfcfROm+/nI/rFemzXWLCSROCTNFAxq5idK+x+HOne21YjK0RERERERERERF1OwcddBBOP/10/O1vf0ss+8lPfoJvfvObqK/PvKOek+XLl+OBBx5IWXbVVVehrq5OuX3//v0z9p8wYYKrcyWP2Y3y8ra7jwaDwaz2zVbv3r1x3nnn4eGHH04sW7NmTV6xsGOPPTbl82effRY//vGPXe27Y8cOvP3226627devHw4//HB88sknAIBNmzbhjTfewBlnnJHdgImIiIiISM0UC5N+5XK/w48wxliYyzlI4vRvZ+5bVancNiTKgECTORZmmGZ2wfjYn/KJu7MOhZ3Z+De83jPz55OH35eYeZF530DIHOpxFQtTXGyjjYU5XJcT0Uzp80rDjk17zQcFUClblMtf+KJcudzkiifbQmFAbMwXP27jxG9Y6NPDPGfzxNEldPlYJPNrJDJTbK3M3ydvfNF1amEyGID8+QxlKAwAqqU6jtWcRSzM6XVV7uamqru2QN51BcTv3YXQD+yvX3f0CFeHUAuqX1sZAk1Abeo8ykMHOe9WlTR9UkoZi44RERERERERERFRCiEE4PUilgDK/vfehVZCvwmHzAiKmSJluuCaJo6mCq4ZjitNx00Lrrk6r+7xxLdTjaulGb2iqf+u0iPaiF72PpQHQmAsrHtgLIyIiCiJKcRkioVFDcGvfM4pChjYyoUuYJQe37GEx2kuScFZwoIt9bEwj/A4RoLi63MJfSmfgw7Q6WNhdhYzajpYY3QPoproXa0v9x+OfJr3jkjSpEXT17WjQnSlThccjAcXdeHFQoYKiYiIiIiIiIiIqPP49a9/jTlz5qC5OXYB6J49e3DeeefhrbfeQo8e+gu/0+3YsQMXXHABQqG2328PGDAAt99+u3af8ePHp3z+6quv4vLLL3c811tvvYWFCxe6HhsQC3jF7dy5E+FwGD5f+9150+tNnWaSHCvLxfHHH49hw4Zh7dq1AIBFixbhtddew/Tp0x33vfvuuxEOu79JyXXXXYerr7468fnNN9+M448/PqvvByIiIiIi0jDM46qy1WEev8M0IlMszOtwY0sAwAnnKBf7KtQ/M4VEGbBqPtBnP+0hLcM0lBH9Wy+dmf+m89jSlMvc488Bhx+LygocCws6PPXhqHoiodvAm47uObJEdhMXd/sl5q/OXB61gTeXSZw1LpfRFUm4cHPxsglllbzP5hmDVJWa96Rmh/BeMqdYmO71k2HFEshdWyEM7ztxmrcuAEBtVR6X7mmiahlaMp83yxLweczv1+XJv0pavSy7sREREREREREREVG3JywLsMqcN+wApRJRm3X2RMit16FXdB9q7H3wtl5fLWY8AWBkcQdHHYJXzhMRESUxxad0wZ/YfrkHnKLQn1MU8a+NUkptfMcDj/FzFSEK+9cOy+GcFjyOkaX4MZyOpZL+mHM5Ri5M3y+dQcRx0lfx7lC4O7xTu67O20+7zolPqH8IDSfHwgzBwY4K0ZU6S/MeEn/fjmrev3X7ERERERERERERUdc2evRoPPzwwynLPv74Y5x++unYuHGjq2OsWLECU6dOxZdffplYZlkW/vjHP6JfP/3vjSdNmoSqqqrE5y+++CIWLVrkeK4rrrjC1biSjRkzJvFxJBLBBx984Gq/5uZmPPzww2hsbHR9rqamJsyePVt7/lxYloXrrrsuZdk111yDNWvWGPebPXs2Hn300azOdfnll2P06NGJz7/88kuce+65aGhoyOo4O3bsyHgeiIiIiIi6Pamf86OLhTnFiXTxGa8lXc2qE6MnKJdX9FdHeaLCi0jQPLfJ8DBxweBNsQ8atrsYXar1vsHK5fvVOO8bMDyPh+wPlPvani0ZDkH+4w3IJ38B+cFsSP++2IpI5uMu18SOQo6xMPVyj3QReDNY5RuhXD64Z3YRsh2GH4M/3wjs1jem8I36rE7V/iLuC19Or5r9e+vXXzBeu6o07Ta/BqukOo6VTTCtzOuw3m0sDIgFw179PeRzMyHXLNduNqQu9l+66nLgpNGZy11zGwvTBNhMoTAAqKlI+t5q2OZyUERERERERERERESkM6yvwPDwOtTZDYlQGABg6/riDYo6FK+cJyIiShI1BHu8plhYHgGnqGESTFFjYYbHlB4vchPjsQr8WJwCSpawIBz+qhOPiTlFxXTHTz1Wx/y1Kp8wXSkIZzMJpoM1RHYol/tEGao9PXM+ru69I5L0XOhCVwBg8a/sAPRBvvj7tjZuyNgaERERERERERFRt3X11Vfjhz/8YcqyefPm4aCDDsJ9992HDRs2KPdbuXIlfv7zn2Ps2LH4e1hguAAAIABJREFU4osvUtbdf//9mDp1qvG8PXv2xIwZMxKfR6NRnHnmmXj77bcztg2FQnj88cdx9NFHY9u2baitrXX78AAAJ554YsrnV111FR599FEsXrwYq1evxtq1axP/7dzZdtOMUCiE66+/HoMGDcLVV1+NV1991RgOW7hwIaZOnYp169Yllh199NEYNWpUVuNVuf7663HooYcmPt+8eTOOOeYYPP/887Dt1N+f+/1+3H333bjoootg23ZWz5fH48Hzzz+Pmpq2q+3fffddjBs3Do899pjx8e/evRvPPfccLr74YgwePBgPPfRQFo+QiIiIiKgb0FW0DjkaVVIdC/MHzYfUBWh8lou5enX1wMkXKldVV+jn4gQC5qCVKYpz+E8Phvz4b0DTXufxpbl077PK5Vv3Oe8bMLSybjg5KRQWDED+9DzIW86B/P09kLdfDPmDKZC7twHRzMetix2tcGihRXRfN2QX9Up3ZtMbyuXr9qlv5Khjer5awkDI8DW+55wSm8cVznwwQvdadLiHp+lxXzulxB63kz3qeYBxuoCh03tSMt33eVw2sTD5H9+E/NW1kI/cAnnlEZBv/FG5nRAC/35K5jzca08QqPDlMT/XbSysRR0L+7FiTMnGDEj6pMnFmxoRERERERERERERmdWrb0Ijt6nnQ1LX43BPEyIiou5FGoI9PqGfVBLNI+Bkij+JDgpQqRjjRWnxHY9w/iuFU7grWx5NOCixXngcA17x4JdTeEy5b9r5dSGjQtMFkTqLko6FhXcql9f5+kGI3CfT+Cz1e0dYtk3WMr0PuInxdQe66Ff8udM9hx312iQiIiIiIiIiIqLS9Mgjj6C2thb33nsvZOsFs42Njbj11lvxn//5nzjooIMwePBg1NbWYteuXVi3bh3+9a9/ZRzH5/Nh5syZuPbaa12d95577sGLL76IPXv2AAC2b9+OadOmYeTIkRg3bhzKy8uxbds2LFiwAH5/7GLL/fbbD/fffz+uuOIK14/vW9/6Fn72s59h48aNAGKhrfRAWtwVV1yBp556KmXZvn378OSTT+LJJ5+EEAIjR47EiBEj0Lt3b3i9XuzatQtLly5NHD+uqqoKv/3tb12P08Tn8+GZZ57BCSecgF27dgEAtmzZgm9961uor6/HEUccgV69emHbtm34xz/+gUAgdhFrr169cP/99+N73/ue63MdfPDBeOGFF3DBBRdg797YBfwbN27ED37wA/zoRz/C2LFjMWTIENTU1KC5uRl79uzB119/nfH4iYiIiIgojS5QNOwgVC/RhHkcphFpY2HCUD0aMgo4ZBLEpTdD7DdUuUmloS21crcH43MY06V7/wwRCkLeeZlhb70DQyu16wIhicoy/dwlXfzq2JHAvx2bNO/orWeAhe+kbrR6GeQzDwKRzIOYYkdSSu18Kt1z5M1jjqV47kvU/9stOe+fLGD4vvvLPyW+d7z+uT7+wIIMoXDCWQSpnA4VUW8xZgBw4uji3fQ2F/L5/zGu18XCmrOY2mgKBwJAmcwxjmfbkA9eB5x4PkRFVcbqG6Za6F1p488LJIIR4NzxAteflOfXJ89Y2GVHC/zmHf13WFnS9GL59p+124n7X4T8ybnuxkJERERERERERETUndUPif3pKwP6D4p93n8wxKHHFndc1GEYCyMiIkoSNYSYvJZPu84U+nFiwxDlKnBgKxumKJUnbVxuxplPbEnFKaBkweMYCYqvz+V5Tg8X5RIcy0U+Ybpis6WNiDTffbOYdkfUdxSs9fbN67heoX7vCNtts4tM7z2MXcXoXmPx91/da6OjXptERERERERERERUuu655x6ccMIJ+MEPfoAVK1YklkspsWzZMixbtsy4//jx4zFr1ixMmDDB9TkHDhyIF154Aeeccw4aGxsTy1euXImVKzMvAh8+fDhef/11bNu2zfU5AKCyshIvvvgizjnnHGzatCmrfdNJKbFixYqU50hl4MCBmD17NsaOHZvX+ZIdfPDBePfdd3HGGWdgy5YtieXbtm3D3/72t4zte/fujVdeeQXRaPb/bnLyySdj0aJFuPjii7Fo0aLE8mg0iiVLlmDJkiWOx6itrc36vEREREREXZsmFFNRiWpbHZhpDprzReGoer3P0sy3q66B9cwXxmMCQKV+GiBmfj0STxv2jWjG1Cu6L/ZBQP1YzQPqgR52k3b1P1YDJ43W766LX105OXW+nvzwVfWG814FPJmXFJhiYf/aCoweoF4X0Xx5fDnEk8R/vwlxxIkAAK/hqodt+yTqa9zNT9TF1QBgVH9zBMpXatOQIplfI+GYBVMLaR73yWM6VygMAFDVw7xaquNYhYyFVWrO4UqoBVj0HnDsWcrVV0y2cMXk3A+vPJ8bmve3HuXm3VLec3Vhsl59ISafkeN3LxEREREREREREVH3Ir79E+CyW4C6egireC0KKh7GwoiIiJJIqQ93+TTBH8Ac1nJiij8VOrCVDVMALT2+kx7OUhEodCzMIQQmPI7bxMftZvxO58/lGLmwDd+jpS6S693yOsju8E7l8lpffrEw3XtH8vOhe70JCMcwXnehi/rFg4u68GJ63JCIiIiIiIiIiIi6p5NPPhnLly/HX//6V/z+97/H3LlzEYnob3BRXl6OU089Fd/5zndw1lln5fRvNieddBIWLlyIn/70p3jllVcgZeYlj/369cOVV16Jn//856ipqck6FgYAEyZMwPLly/Hss8/izTffxNKlS7F9+3b4/X5tTKtXr16YO3cuXn/9dbz33nv47LPPjM8HAHzjG9/AFVdcgRtuuAFVVVVZj9PJYYcdhi+//BK33XYbnnrqqZTIWlyPHj1wwQUX4O6778bgwYMxZ86cnM41cuRILFy4EK+//jpmzpyJDz/8EMFg0LjPmDFjcPLJJ+PCCy/EMccck9N5iYiIiIi6LMXPOwCAimptmMffYgOGm+jpYjw+oVlR7u7nlDLD7PkXNg81xsJ0Y/LmMS9K3PE0xt96mXb9nmbz/rrAUWVZ2oL5b6o33LwG2H94xuIjWj7RnrPBMCbtc4QcbjI5pi3aPUJu1m62pxmor3F3SFMQqqYSCBmG6fnv62EHtrs7UUdYuqBgh9J93Uyvl5LVuMe4uspWfwNnEwvTRfHijmn+2P3BVNZ+pY2FFZrUBbzSaWJhI/oCfaqBXZpWYu/yKOTf/gz50izgy0Xqjfaq524SERERERERERERUSbRZ79iD4GKrDP+8w3lSAjRE8CxAAYB6AugEcBmAEullF8X8Dw+AMcAGAJgAICm1vN8KqVcW6jzEBG1h6gh+uU1xMKieQScTFEuUcTIjem5sNImaTlFuYDCPxZdOCjOA8sx4BV/HLmMLf38TuMplHzCdMXmJhZWzDvDNUTUE07qvP3yOq5PpM+8iwkn3X1TF7pKf611Z7rXczygp3svdfP+RERERERERERERN2D1+vFJZdcgksuuQR+vx+LFy/GypUrsWPHDoRCIZSXl6O+vh6jRo3C+PHjUV5envc5R48ejZdeegk7d+7E3LlzsXHjRjQ3N6O+vh7Dhw/HcccdB6+3berGlClTlFExJzU1NbjmmmtwzTXXuNpeCIHjjz8exx9/PAAgEAhg2bJlWLVqFbZu3Qq/3w8hBGpqajBkyBCMGzcOQ4cOdT2eXCNevXr1wkMPPYQHHngAc+bMwZo1a9DQ0IB+/fph0KBBOO6441BdXZ3YPtfnC4g9B9OnT8f06dPR0tKCBQsWYN26ddi1axf8fj+qq6tRW1uLkSNHYsyYMejTp09O5yEiIiIi6hZs9dwXUVmNaltdkGluiQLQz8nTxsJ00anyCtMI2/Y3TCVptvXjAfSBoJxCWABw9GnAUdO0QTUACIQlYLhRZ0AzJavSl0X0WhGPHhper918k6HFFNF93XIIqomqnomP64X+pLrnQLmtIQgVCOm/7wCg7M0nAZT2DTN1nH5y1kXSTK+XUiTXfw3s1IflAGhfb1v3uT+P6fvk6Ob5OKNJE+dzK8ffdeRk4yp327Wo38stS+C+8wW++4fMMf/6AkDeeRkw90XzsSdOdTcGIiIiIiIiIiIiIiJiLKw7EEIcA+A2AFOh+ZoLIT4D8L8AZskcZ9IKIfoBuAvADAB1mm0+BvAbKeULuZyDiKi92YbolykWZgp+OZ7TGOXK/i71hWJ6LtKjPW6CRqLAj8UpAGQJj2PAyxJW4k8BC1ITbFLJeA46KEgUzeN7rdiS41ilqCG8Q7m81tc3r+Pq3jvCSRPgdF/X+Pco6V9j8bCh/jnsZDPWiIiIiIiIiIiIqENUV1enxLLaW9++fXH++ed3yLlyUVlZiQkTJmDChAnFHgoAoLy8HNOmTeuw81VUVOCEE07osPMREREREXU9mqnH5ZWospuVq5pbzNOVtbGwlkbtudzw5jEdRzsmmVssTPzy/yC8PsiyCgwPrcGasuEZ25jiVqb1ler7G6pFMgNYAkCFHUCLlfm8/n6ejQuOUM/J0T9H+UW2Ki39/l9slDhssLv5ibH4mlqzQyzM1wlCYSLH23XqHndZJ5t6Jf/6kOM2VZqAIQDYtoRlOX8v6cKBAPDGhrNRLdXveyXJKeQVF9A/pn871sKQOomrn7ITMcFnviNwUeUCSDfHP/hod2MgIiIiIiIiIiIiIiLGwroyIYQPwMMA3Nw6+FAAjwG4WAhxmZRyQ5bnOh3AUwD6O2w6GcBkIcQzAK6RUur/tY2IqAhMsSifIRYWNQS/nEQNUa5CB7ayYQqgpQeMPC6CRkIU9rF4HAJllvA4RoKSg18eYSFi+FpkHD/t/E7jKZR8wnTFFrZLd7JU2A6hMbpXua7O2y+vY/ss9cy7iN02U0/3dU2P0nVnuihh/LnThRc76rVJRERERERERERERERERERE1G3p7lNcUYUqe5dylT+YYyzMq5mHFnQX5/HlMZVENyZvrrEwX+u8olALKmVAuU3AMOUqEpXaaFGlfrpjpt1blYtVoTAAiBqm2RX6OYqr8OpPujuLLpMpvhYIAyHNMD0yUsTZnPlzSohpX2+dberVkg8dNymXQe26lTuAUfXOp9E9X1P8c9DTbnI+gJMCz7c1GjkOWPm542ayxW98DZxykMCGX6V+w8g/zXM1BNGjl6vtiIiIiIiIiIiIiIiIsbAuSwjhBfAqgPRb7YYBLACwEUA1YpGwIUnrjwfwjhDiGCml+l/nM881BcBLAJJLGBLAJwBWA+gN4HAAfZPWXwqgRghxjpRZlFmIiNpZ1BBi8ggvBASkYtpEPgEn077CRYSrvZgCaOnxHV3EJ1mhw2fpwbJ0ntb/GY+RtD72sfsJSekhMqcwWaHYhqBdqQtLh9tcFlFDRP/XnlpfX+06N3ShwUjSBDjd19XNa6u70EUJE7EwzV8pnd4riIiIiIiIiIiIiIiIiIiIiMhMvv405F9nAmu/BOykORrjjoF48FV9LKy8CtWa+wo3h3KMhTVp5vlsWWc8XmL/PKbjRHRjQg43UTzylJRPK+0W5WZOcSudytZZ3bJhB+QzD2Q7OiNTx0g3pkqZ9PhOOAf4+8v67xsA4mdPpH7uKcw8KtNzFgjrv+/KSnjuWzLtl8ahFhbSPe7OdrXJXufLHw4Ofqld16R+GabYskfi3tfVT2i+UbwEuwNvKut2fl0g+wiabG50t+ERJ2V9bCIiIiIiIiIiIiKi7opXzndd9yMzFPYQgHop5XFSyoullGdLKYe2brc6abtvAJgthPMtaYQQgwDMRmoo7CMAB0spJ0gpL5RSngpgEIAbgJR/DT8LwC+yfWBERO1JGkJMlvBowz35BJxMUa5iMkXMcglliQL/tcMpomQJy3FcyeuzjX2lh4t0IaNCMwXtSl1Jx8LCO7Trar35xcK8oky5PPn50L3eOipC1xkIzWs+2vr+q3svZXCNiIiIiIiIiIiIiIiIiIiIKE97dwKrl6WGwgDg848gT60DIpoCU0UVqu1m5Sp/0DxNWR9t0pzrhHONx4vz5jHNSxsw043JQPzkf9s+GTgCFTKg3O7DFfrKkykkVukDZNNeyB+dDDw3M+vxAcAle59VLn97uX6fVZppWJV22+MTF/07xDUOU8hPnpH6uceH8hyCaulWbtevC4QK+zUuJdLhZq/ax92Jpl5JKYE9+nmAcT1tfcDKFJMDgF1NEic8qJ8v7Eu+Ye3gA4HpVzuOR0V+Mien/XISUr/3ZAio38uNFrztvM23rgMOOCT7YxMRERERERERERERdVOd7V4v5IIQYgyAG9MW3ySl/I1qeynl20KIY/D/2bvzOCnqO3/8r0/fPczAzDAICCIioigRLzxQsxgTr9yJWf1pbnOfZmNi3Li/VWPcJJrdmDXZ7JosmsMcRk2MV/Ai660EFRXEA5BD7hkG5uqrPt8/unumj8/7U1V9TQ+8nnnkQVd9qurzmeqqcqDf/fpkQ75m5Va/FcB5AH7n0t2VADoKlh8H8HatddGnsVrrBIAfK6XWA7ijoOmflFL/rbX2Np0XEVGdZbQlLAwBBFQAGUPtTTUBTrZQrtFkC0ArDTAKegg0CrhnUPri1mcAQQRcAryCBQFmQZ+BQqUBRI0KJHKQgdYaHjI9m07KU8GUyxSGddKdNhcJtQbHIxKIVnXssAob16d0avi9dISgqyCzfYdJgXz5Z6gjPL+9PJ+IiIiIiIiIiIiIiIiIiIiIqA7iLWiRwsJSlYUXhSDUIE0+wNOQQlWUkohj0mlzQ95HvwX88nvZ18eeBnXVLVDjO0faZ81DfJ05sOfuF+TD2oKN4mEAj98DvPGyfWwW8xIviW19QxqtseL3UGu59qtFF1wH4zugLrwEmH8K9M3XAE/+daTtY5dBffxyqFDJ1xyCIRw/+AweGXdq2bHdAp4K3bbcEr6WApKmAlEIYWEf+Lz3juutpQ3q6LdC/SYEeMx+KpQULuGxFBaG1y03y0GHQ33uu9Arn0Hk5mugtANtqEdzC56741ltDZwrehaceCbUl64FFr0f+ol7gdt+6vIDFPj7w963rdaQxwtmqN//sV951t5+/tegvvBvY7IeloiIiIiIiIiIiIhotDAsbO90KVCULPGAFBSWp7XeopT6JIClBauvUUrdqrU5xUYpdQiAjxWsSgL4eGlQWEk/f1JK3VywXxTAvwKobNocIqIaswdkBRBUQaQMtSDVBH7Z+tSjFJwE2APQSgOMAh4CjZTLzHR+lQaWlQqqoGsAWOEx3ILF3Pp3G08taThQDQonq6W042MKxwbrSe0wru8IdVV97LCKGNdrOHCQQRAhMaiwkddVs5MC+fJBa1LgGs8hERERERERERERERERERERUZUsIVBWwTDGKXNZ8UDKXq+VEAKgjKFNABCNexpSNaE0SaGkThxTvs/3fw7q01fKG/RsQ3dworFp9n7ybrZgo3gE0C89ZR2Xm85Mj9i2YhOw8ODidVt65WMVnfXx2Z9VzTsR6to7vQ1m2wbEu8zXklvAU6GTDwZuF/KLBpNyIFyk9D0+80IEvvYj7x03ym+kkCn7PSz+3GPp2yYrnxGb1Df/C2reicDalQCAuB7EgBpXtp1b8NzNj9vP4+bQ1JGFoQGoQAA44QyoE86AnjEH+j9K54MXTD3Q23a1kPAYFta/2/+x2ycBu8wTuQKAOvcLDAojIiIiIiIiIiIiIvLJXyoGNT2V/bTknSWrr/Oyr9b6bwAKPyU7CMAiyy4XAEWpDbdrrV/10NX3S5b/USkV8zJGIqJ6s4V+BRBwDauphC2UyzbTXr1Zz0UFQVmqxr92uAWUBVTQdVzFYWH+AoWCJduXLteTFCzV7FK6icPC0kJYWLj6sLBQICy2pXJFZAy6ciedi/wzVHpmeQkzJCIiIiIiIiIiIiIiIiIiIiKLSsNclEJLMG1s2p0KWevjbn7C3BZ3zME2ymNYWDWkUKoWbQ/bUV1Tre1IJdHmmIN4kubTlx2PJdioJQJgaMDer4uz+paIbQMJwzpLedhbhl4Yfq3aK6jJGuxHi2P+edwCngplLKV3gyn5fIdR3Ik64QzvnTaScK9ql8lepZ879JNvwDl/LpyffAs67eNEN5DeugHO5edDX/sFeaPDjsv+Gc1+ZUG+luw1u4+9bh/LnkDr8Gt10OHFjX6eUanKz7W+55dwPr0Qzunj4bznADhXfhS6Rw7s8hwW1rfL/2D2yIGDOGQ+1OQZ/o9JRERERERERERERLSP4zfn9z6HAyj8BDUJYKmP/e8rWT7Xsu37S5YXe+lAa70KQOFUVeMANOknpkS0r3EgV4IoBCxhNZWHN9lCubRlPPVmC0ArDU0LCiFqhZRLsYlfAeUSFmYJd8srHLeXn6H0+LbleqomnG40pVxm0BxN3SlzMUxnaFLVxw4rS1iYk62Qk54Dfq/LvZkUyJd/TkrP4UYG+RERERERERERERERERERERFRAaXQEpJr4KSAoj89q/HGTnObGMwV9T5v8e/OXC22JYbkGicplEoKMAMAfODzruNRb/9HfHLXzca29d3yfrZwrngYwD3mY3o1Pb1JbHtpc3mo0rY98rHGO5ZGLy68BHHhvf/Z37xPyvrn5+3te4bM68OFtW9nfxR424c899lICsK5cDlFKaEkMbJnG7BpDfC7/4D+gSWMa5TogT7oL58O/O0O63YqFMq+iGQDu+La/EavsWRqefHR3l+PLBx5SnGjn7AwrwFeJfRfb4H+t08DL/8dSCaAnm3AA7+H/so75LC3pMe+dlseRpKMnHaovv2//o9HREREREREREREREQMC9sLTS9ZflVrbZi7SfRCyfI7TRsppaYAmF+wKg3gMR/9LC1ZPtvHvkREdSMF9gQQgFIKQeE/ndWEN9n21W4VGnVkC0ArDd+RQtQKqUpnlxS4BoGpIIIugWKFP4db+FhZ/xWcg1qxBcw1s5S2VKeNsp70DuP6jnD1YWEhFRHb8uckIz17fF6XezMpkC//rJKepW7PCiIiIiIiIiIiIiIiIiIiIiJycezbKttPKYwLy3VoUhDWzx+R9xGDuXwE8cyaJNeyPf6yXHYthoVJAWYA1FGnug8oNg6tTr/YnM6Y6wgHhXIspYAw5JAePyYKdVV3LC8f090vyPWOw+doyoEVjUO1tosBTxmPc7I6jns95m4hLCySr31beA7UZf8DFWzWmiTzte32kyeFksSikLQHfgc9KF+no2LZg8DmN+zbHP0PI69zzwnpOfLAqupqdscV3seRkgDD0mWbSsPC/vILc8O6VcALT5Rvn04BGY/1qLt7/I1l42tim/rebVAHz/N1PCIiIiIiIiIiIiIiymL6wN6ns2R5l8/9S7c/QCk1wbBd6aczK7TWfj79e7xk+Qgf+xIR1Y0Dc9VIPghKCoSqJrzJFsql9eiFhdl+ptIAIy+BRkooQqlUaWBZqYAKQrn8qlP4fvoNFAqWbF+6XE+ZKsLpRlPKac6wMK01elJCWFioq+rjh1VYbEvniqnEZw9/XR8mPX81HDjaEZ9Zbs8KIiIiIiIiIiIiIiIiIiIiIrJThx7tK4xrZMcA9g/1is1vClXO97woH1IKjELE+/imdcj1JG9sExLBAAwI5U9igBkAKbypSKwFYctEjJuE8ySGl4U11LqV7v16sFOon5reUf5zBS2lTi3OQPbFFpdgJ0kojJ5Au7GpNertEOt2um+zR7i8hkOzZsyp+cSptaQqnKA2JZQkRgrDwlJJYMOrFR2/bl63PCxMcvW6r0TnGJsPnVLde9sfGDeyMHFycWPARy1gcqiy+mHb+Xi9dE55+Asl29Ptb0xrLc+gGYd6Pw4RERERERERERERERVh+sDep/STYo8ff1q3P9zDOnnqF7PXPfRBRNRwUthMPrBHCqvJVBEW5liCn6QAoUawBVKVBmt5CcqqdViY9F7kBRF0DxQrGLffQKHS/t3GU0uOJWCumaW1XEiXpyssVqrGgNOHhFBE2BmuRVhYRGwbDguTnj0Muhpme85oOOIzy0uYIRERERERERERERERERERERHZqQu/UcFOCpOjQvoS5LArGzGYy0eY2ZSJ8uR/Q0Np4/qMo5E0NyGuLYE7c+a7Dygax5EJOeRnUMgRG0yZa63ig93QnzzevV9JMOS6yWvbyvuWxgkAwWprIcMRHDu03NjUl/B2COn9KyQFwoV1dmc1/xRvnY0hGUeLIWmh0po/p7kmOtWJAddt1AlnjCzMOdq67ZDLM8ktmO6YoWdH+h1fMge835C5pPzsFPVZ5pk3Hc9PWFgmAwzs8b59Qh6/OuAQ78chIiIiIiIiIiIiIqIi/Ob83qd0zqOpPvc3bW+aumV2yfJ6n/2UTgs1USnV4fMYREQ1J4Uw5QN7pLCaakK9pJAgYHSCk/KkcSmosvAdL4FGqsaBPQGXX2MCKuAeKFYwJr+hTOXnoHG/VtmumWaWssx+OZp6UjvEts7QpKqPHwrIxYWpXDGVFDjIsLARtnssozPy89tDmCERERERERERERERERERERERufjIN/3vo5Q1xMsUFqa1vWYuroVwoGjM+7iicbRneoxNyzaYa01sIUJxxxLqE291H08khnFOv9i8Wzi8FM4lBqp5VRBy9JXuG4ybPL2u/L26bbn5vTut/+GRhXecX9mYwlEsHHhCbE5n3Gstf/yQ+zY/edi8TThf+3bgYa7HaEbaMtnrVXfJ5yVSWvOXabLaxVt+6L7NmReOvB43HgDw8V2/NG66+DH7NeK4XEL7pbe7j8crn2FhOm1Pw9PP/q18pZ+wMADY3e19Ww9BbkRERERERERERERE5B/DwvY+L5csT1NKTfex/0mGdRMM69pLlrf56ANa6z4ApZ9gmfohImooB0JgT+4/mVJYTTXhTVJIEABoIfymEaQANFPwjpcwHmUpNqmEWzhXAEEx3K1wm5HX/n4tKj22W1+1lBGu02aXKp1lsEl0CwU6AQQxPlT6K49/YRUR21L/JOT3AAAgAElEQVROtphKevY08rpqdrbgNAeO+BwOMnCNiIiIiIiIiIiIiIiIiIiIqGoqFAbe9iF/O2UyQDSGyemtxuahVHnyzqrN9kOKwVyWULIysRYcknzN2LT8TfPEgFIwFwC0SAFmXscVjSOu5dCeJ9eYE4pMYWtADcLC2kZqptoye8TNlpdMNb2udMrrnMnpgjLz+LjKxhSOIK7l8KQN5uy3In/8e+WTt4bztW9+rrNRoMQyTfln//WTclsYJReZ02S1iy7hggCK37Pca1s4n9yVFu+5vOH7ePKM8sZgyF+HfoO8Xnjc3r7mper78BUWJhz7QNM89kRERERERERERERE5JXPTxyo2WmttyilVgMo/BTlIwD+zW1fpdQ4AB8wNLUZ1pVOc1XJp8qDAAqn8TL144tSaj8Ak3zudnC1/RLR3sMRwrnyITVSKFY14U22fbWlQKPepBAzU0hX0CW4C/AfxuXGLUQpqILugWIFIUJ+A4VKg4tsQUa1Vk043WhKl84y2CR6UjuM69tDnTV5X4MqiAACxgC+dK6ITH72MNs3z/YMcXRGfJZ6CTMkIiIiIiIiIiIiIiIiIiIiIg8eutXf9lveyAZhCeFVpgCuV12mLxZDtfyEOEXjeCa+wNh0eEc/TCXNA5bSJ2s4l8ewsKhOiM0xc36ZGGBmCx7zZP0rwy+lUDUAeH27xrEHjqRTHT8TeGpt+XaronNHFja+XtmYwhHsn5aT5LbuBg7qsh8iWEUp1pbQlOyLjv0qP8go0tqcIqa1xlpz+RwAIOqUXJevvwA95D9oq+YiMeCwY4EJXUCv5QeY0AWMGz+y3NYBAHg9Msu4+aGT5UMl0+7ZZC35Z8HW9eWNb1lo37mU3yCv7Zvs7YfMN/QhB/AZDfR531Yaf6S5A/eIiIiIiIiIiIiIiJodw8L2Tr8G8J2C5W8qpX6ptXb5BAjfATDBsN5LWJjPT4oAZMPCOizHrMQXAPxrDY5DRPsoRwybyVaJSIFS1YQ32fY1hQs1ijQu0znwEqikIE5ZVxG3PgMq6BoSVPiz+A0UKt2+kYFEo3ldVCPpNGlYWNpcLNQZ9ps/KgupMJKGgr5ULkCNQVfubIF+GZ0Rn1kMXCMiIiIiIiIiIiIiIiIiIiKqEaXc03IKaQ1E44hpc5nxYMqwLmk/fkaqp/ERFqZCYcxIrcX68Iyytt1CRfQuS25PXPj5EAgAQQ/l+tG4tbrOdJ4A4DdPmc+VdL49a50A9PUCAM7qXyJuVhoytXqrebujh54bWZhrDmlzFYpg//SbYrMtzC0vVcUcnWf23w8AUOFI5QdpAOVzgtoh4drKK7229Q+/7HdI9ROJAkk5ZA8AcPqHoAIj9WMqGIQGcNzg33Ff65llm0vXMCDfh4VsQX1q3Hh/747fIC+3cDFTu99AsqSPMUnj9xPsSEREREREREREREREZfjN+b3TDQB6C5bbAdyrlJom7aCU+icAFwvNXhJJ/H2yWPk+RER15WjzIy8fNiMFVEn7eetTrkDRfgqrakwOTjOEhXkINFKqxmFhLn0GELCGC+W3GX7tIfCsULAkgKh0uZ4yVYTTjaa09lAtMwq6U9uN6ztCLlNN+hBW5iKxVO6c+Ann21fZ7nkn9z8TnkMiIiIiIiIiIiIiIiIiIiKiGvEb8uJkgEhcDNNa8lJ5fZxbIM/m8NSajO2DA3cZ19+13jzB4KW3yTWCcUcI3InGvdXNxbJjP2bwWWPzfS+Wn6c12zWWrzcfrsUZcO/T5owLgH94PwCgK7NT3Oyy24vHtUvo9vjBZ4Zfq4PnVTamcNgaqPbgKvday2S6sq4B4D17/gLMO6nyA4wy6ey4haxVfS3Vk1tQ2Ds/AfXla8vXH/8OzE2+LO4m1e0OegikG34WnPVh8wYtpjncBT6DvPTypS7HMzyHkz7DwnyMST/we3NDjGFhRERERERERERERETVYFjYXkhrvQvAJ0tWvwXAKqXUD5RSpymlDlVKHaWU+rhS6hEAPwSGP0PdWLLvLkM3fSXLlXxqU7pP6TGJiBpOCpvJh0oFhP90ZoRgLS8ylkxG7SmvsT4yQgCaKXjHSxiPqvGvHW7hXEEVdA0AK2z3G/ZV+vPU+uezsQXMNbOU9lAtMwp60juM6zvC5sK/SoQCYeP6lJM9J1IAnN8Qu72Z7Vw4OiOfQw9hhkRERERERERERERERERERETkgd+wsHAUiMURE8K0NveWr3MLC5ua2iyMLeZraC1BfxMfPiRnCyGuhQCdiMfzlTuv4xxzKfXW3eXr7n5BDscaCLR469c2nnjr8OL8oRXiprsGsuPY0iuPp+j8RPy9T8NC2ckaOzLdxubl693DwlJVlN3F9SDQOqHyAzSI3zld3e43Keiv2anr/4rAt34GFTLU7bVOQNyRf65Xt5nXu50rAIjlz5f0rGxtdz9Ins+wMGwr/QqIh+P57cMtoK3QkBA05/e/I0REREREREREREREVIRhYXsprfXtAL4KFKXMtAH4BoCHALwM4FkAiwGcUrDNjwE8WHK4sRQW9lMA83z+/7016JeI9hKOEJAVyAVJSaFY1YQ32fbV4nxu9ecIAWimwB5vYWG15RoEhqAY7pYXLAgR8hsoVPozK6UaFkokvTfNLuX4K7BrlO7UduP6zlBXzfoIK3NYWFpnz4kUDOh2De9LbIF+DjLis5SBa0REREREREREREREREREREQ14jfk5eR3AtE4nmg5ydg8a1J5Vdmgy3yE5/TdZ27wGsyVsyndYVw/MWQOuImG5GPFpEAlr+dr4v4AgEfGnWpsnm2Y8/C5DfLhegOWUKs5R7sOR82aB+waSUyamDFPxgiMBJltMlWb58xIrR9ZiFUYFBSJAgB6gp3G5q5W9wrFZBVld4clXgE2vFL5AZpUwi2cLy2E8zW72UfKbauW4YjES2Lzph7zerewsCOGXkIgX/Mr3fvbLDduKb9BXlMO9H+8hM8wOD9jmn6wef2LT/nrk4iIiIiIiIiIiIiIijB9YC+mtf4xgLMBrPaweR+ALwK4GMC0krYthu1L5/IyfAwtU0q1ojwszPIxsTda621a65f8/B/A69X2S0R7D0cM7MmGzUihM9WEN9n21dDQenQCw6TgnaAhEMtLSJaq8a8dbn0GVNA1xKzw/fQbKFRpaFotZIRQu2aX1i6VfKMgozPoTZtnm+wI1zIsLGJcn8qdE+k9bdQ1NRbY7vmMdsRnqS1kjIiIiIiIiIiIiIiIiIiIiIh8iMR8ba5aJwDROE4YMIfDDCbLa+NsgTzHDS7DUYnnzY0+g8xO73/IuH5nuqVsndYafQnhOH0PyhNpRr2dLxXKJpGdPPCYsd10ToYqnLdRffJy+wZd+wMLz4Z66/uGV32u50Zx8/7cebGFvJ04+PTIwsy5XoZZLhcG154xJzm9stVeZ5lxNKopxexwdgEF52SseT1lLvW3Bah9ZNevERRqapudGm8OlQMAHP92HJxaKzYPCA8htyDDT+3635EFv8GKJn7Dwl560t6eNIWF+eyjv/QrJBab15nXH3uavz6JiIiIiIiIiIiIiKgIvzm/l9NaLwFwBIAPAvgFgFUAugGkAGwC8CiASwAcorX+qc4m0hxWcphlhkO/WrLsMhVNmdLtu7XWwjw8RESNIwVkBXJhM6agLKC68KaM0GeexuiEhUnjChiCd7wEbSnlPnOfH6ZxFAqqgOu4CkOE/IYymUPTGvOrlXSdNruUrrBCrY56091iSGBHyFcWqlVIhY3r07lzIgVdeQni21fY7mdHZ8TncK2DComIiIiIiIiIiIiIiIiIiIj2WT4CcNRDe7J/RuNYNPB/xm1MmTwDlkCee9a/1xLM5S+cZ78jDhHbSif47LXk6Vy+49/kRj9jmjwDp/oIC/vt0xXWFbbvB3XHOnPbKe+CuuGBbNDSjDnDq8/u+6t4uFty47CFvEUKJ5mMVBiilDuXn9h1s7H5mXX23ZPpyrotpOYuqP4gdSbdH8uSM43rbefl2m2XuXcYDDXu/15NsX+tQc2aBwAIC5OfPrvE9NUJ+zV+3dZv4ss9/zXSR6w8dBAA8I7zrWMrkhzyvi0AbFpjb0+UH08/tcRXF/qPN3jf+E1zIJs67BhffRIRERERERERERERUTEfn5rQWKW1zgC4Pfd/K6XUAQCmF6zapLXeZNh0VcnybJ/DmlWyvNLn/kREdSGFBuUDe6SwmmrCmxyXoLHRCgtzOxeFgi7BXUDtA3vcQpQCCHraZuS1v/GJoWkNeLsyQrBUs0tpYXrNUdST2iG2dYa7atZPWEWM6/MBatIzxG+I3d7Mdo86yPAcEhEREREREREREREREREREdVbJOptu/d+Giqcq5cJhRHXu42bmYLBBoWwsHfuuQedjjAvsVJA2FyfI4kF5UKvNduBg/cbWf7DMnnbFm1JEovEfAwojpa+AWOT6Tzt1wZs22M+1GHJ1XI/0ThU11SoR1xquQrGHtNyaNGLm3JhYcL7Ns7pKw6w8hnqNrJfdjwRy4SV6YxGKGiOy0rVouQuVuHYG0jLcXoYTGrEI8XtSct5iTkuYVWdUxD48xt+hlcV57sXAff92n1DKagrL3cNdmR6sC00uax504pXACwsWy9d40GdxsXdJSFaIfPkoq5jK5SwPFtK6G0bKzveUL/38QCAU4MCWZ/PaiIiIiIiIiIiIiIiKlbb1A7aG5xesrxU2O7FkuUjlVI+Pr3CyS7HIyIaFVLYTD4YSgqdcaoIb3LbVwuhXfXmJ3jHLZQLAJSlCKUSbgFlARX0tI3ptRfm0LTGhBJVE043mlKOZWq9nNJZOeutJ20OC4uqGOKBcTXrJxwwF/+kc7MTSgFwplC6fZXt/srojPgs9fJ8IiIiIiIiIiIiIiIiIiIiIiIvvNWAqa79RxYSg4g75tAbU/jOoFBiFLeFckXjUMpffdrBbzwotvWUZHb9+klLWJhjDvjKj8uzSFz8GU3nacoE+VAf2n2bZUweA8ymjcwLbTuz8VxZ1GDKfI5K33vV0uqt/1K5c2kLLjOFquUl05V1CwCtmVwq22HHVn6QBmkNyOdnt6HJFqIW0ZYTCgDdWzyOqsHWlc6JXiJ3LZmCwgCgfdD8c4nPJsPzTQ+aQ7jU3AX2sRXyERaG3p2ej6cTQ9BL74Dzk28Bj93tvQ8A6NzPfRsAOmO5sGxtRERERERERERERETkiukDVOqikuWfmzbSWm8GsKJgVQjAKT76WVSyfK+PfYmI6sYRgrnyQVIB4T+dmSrCm9z2bXR4Ul5Gm6tjTKFaXoK2Aj6LsdyPZ+8ziKBrSFBh+FDQZ6BQpaFptSAFSzW7lFvx0CjoTm03ru8MT/JdQGgTUuawsHyAmqOFZw+DrobZ7nkHjvgs9RsESERERERERERERERERERERERVOu0DI6+PeiviQsDTsxvK1w35COQZ5ieUK6frH04T23pLutplyQOzh5h5DOYCgGgcccd8np7fWL5uhWFd3jl991n78aS1vWjxoORa42YPrc7+uUfIqJLee99y47b9bFKYE2APxXLzlZ6fAABUh7egpNF0Xssysc0UOnftffJktmG4TA7qJ/iqkd52rr09kr0vh0PgSmwOTTGuH0wKgXiGZ4A66lRz3299LzD9YPv48vyEhXnZNp2C7t8N/c33Qv/L+cDv/sP78fNWyddXkaTlvp93ov9+iYiIiIiIiIiIiIhoGMPCaJhS6hQUB36t1lovtexyR8nyJzz2cxiAEwpW9QNY4mVfIqJ6E8Nmcv/JlEJnpKAfLxyX4CeNUQoLk4LTDL8+eAnaUjX+tcMtRCmgAq4hQYU/i99AIXNoWmN+tXKqCKcbTWntUjw0CnrSO4zrO8KTatpPSEWM6/MBatJ7agql21dJYY1A9vxJYY9B/pWHiIiIiIiIiIiIiIiIiIiIqLE6C8J2WlqtQV+lk2maAo0AoMUayuU/LCw8dQZCQj3T7c8Wj+nFNy3HESbl9D2uaMwaPOY42vi61A+2fgvjHXMIkp8xqUAACI/UPH249xbjdvmQsD89KwQpFb73h8z31LdRbtwdmR5xE+naAaoLCztx4KnmDcYqMS1oOT8ll3t3v8afnzdvG9ZJuE61efw7fI2tUZRbGFWsBQBwVr/56wu/bP+Icb0URmcMxIu3msc2YSLUfz4IfOhLwKHHAEecYNwOAJDwEbS35kVv2935c2D5UvftIlHvfZsM2J5BLdUdm4iIiIiIiIiIiIhoH8dvzhMAQCnVAuBnJau/7bLbb4CihJsPKKUO8dDdpSXLf9C6VtNGERFVR0thM7nAHikUyy3wy8YtaEwKwKk3P+FFXkKylHvpiC9uIUoBFbSGC+W3GXnt79ciY2hag4KdpFC7ZpcPxmomUlhYZ6irpv2EVdi4Ph+glhGeIbUO2RvLbPeXox3xmeU3CJCIiIiIiIiIiIiIiIiIiIiIqhQrCIOJxBGzlAm/uq14eSBpDp2KWQLHEIn5GV2WJTSrp794ucU8TyAAYJzTLzdG/ISFxa2haqu2jLx+eYu4GQ5IbXTtx8+Y8gKWOsY9QxptMXN9oC6sG3SqqIXMvcctlnMkhTkBQLKKkjvb9dtsWoLySSgNU/vNU3LoXMRTrV+jJ8L1WIPqVguau661cLzDEi8b14thYaZr0nKfqa6pCHzlhwj8/AkEfvZ/wDGLjNvphOWZV6p7m/s2APTtpV8XEVgCvXQy4b7/G+ZzCABoGedtDEREREREREREREREZMT0gb2UUirkY9tWAHcDOKJg9W1a69ts+2mtXwVwc8GqCICblFLiJ+5KqfcC+HjBqiSAK72OlYio3qQQpnxgjxQ6U014k9u+pTMnNooUgBYwBKZ5C+OpbViYWxBYEEHXcRWGv0lBcOK+ptA0n8eo1GgFyFUrJczEOZq6U9uN6zvCtQ4LM1cM5gPU/ITz7atswWkZZMRnKcPCiIiIiIiIiIiIiIiIiIiIiGrFWy2bChfUykRjWDC4TNx210DxshjIYwts8hOAVbBPWpgAMFJShf2uI+Xat3antzbjisZxwuDTYnNvQW7QLkuGkO0YAPwFq02YOPxyVnKtuNnuQSAuBKq9Gi2Yh/r1F7z3XUIFsrVDcS3/8AOWfKtUFWFhYZ0CVj1T+QEaKK7kGr3S8/Pwy1WGhfmcoLVhZh1hbw9HAQCvRmYbm03Pmjue1fjSLebzZXw2RX3cZ9Jzwk9YWNiSaFio25I0WGjaLLltyBKQmJeyXD9TD/I2BiIiIiIiIiIiIiIiMmrST2ioBj6rlHpIKfVxpdQk0wZKqVal1McAvAxgUUHTOgBf8NjPvwLoKVheCOABpdRhJX1FlVJfBnBryf4/1Fq/4bEvIqK600IIU1Dlw8LM/+mUgrW8cNtXGlO9+Qne8RK0FVA1DgtzKTQJqKBr0FLhz+I3UMi0faNCiaRgqWaXctwLiHSDZxvsSe0wru8IGX99qlgoYC4sTDnZ4iwpAM7tOt+XBFRADAxzdEZ8lvoNAiQiIiIiIiIiIiIiIiIiIiKiKrROKF6OxnFQap24+d0vFNcLDQolRnHHEpxTUVhYDMcOLjc2/fm54jE9s85c0xRymzwxEvUxnjhmpDeIzdv3jLyWzhEAHJDeaB1PPnTLk84pwy9PGXhM3GzrbuCuFeZzdHrfgyMLb32v974FtuvAFhaWTFfeZxAZ4IwLKj9AA4WVg4BQX7i9r3h5tyV/L+JhYlA1/2Q/Q2ucAw+zt+eCtc7f/Qdj87Oxo4qWv3OXgw/+l1zHGzNdkz6DAo3WrfR8CL3F49cxkglv2x38FrnNS4jZwB6xSdW4lpiIiIiIiIiIiIiIaF/D9IG9lwJwGoDFALYqpV5XSt2jlPqNUuoOpdQTAHYCuAnAtIL91gJ4h9Z6m5dOtNYbAXwAQOHHqycDWKmUekYp9Xul1H0ANgD4MYDCpIy7APxLZT8eEVF9ZLT5A/18QI0UOuMI+3nhFvzU6PCkPOlnChrCi7yEZEkhP5UKuAQABXL/s25T8LO4Hc9L/8EG/WolBbk1u5SX2QYbKOEMod8xF6V0hrtq2ldYmWfuS+eKqsRwPgZdFTE9f4Bs2Jr0zGLgGhEREREREREREREREREREVGteAh5WfjO4uVoHEE4CAu1Q9+5qyQsTMgoiusah4XFWnCyEIDVW9LVWvN8hPhK9w32PnwFBsWgAMSdAWPz758ZOU/iOXIG7O9QxOd56pw8/LLFcv5veVpjR5+57fDkyyML02f767/U/FMQRkoMw3pqrVxrmaqi5C6kM8DUmZUfoIGUku+VPzxTfH4eetm4GQAg46UWMjbOz9AaJxiyt4eytXyT0sKNXaBvSOO799hreI3nuxZhYc88aF5vcs8vvW/rRVuH3LbNEkiYo5+4z9xQ8EwhIiIiIiIiIiIiIqLK8Jvz+wYFYBaAswFcAOB9AE4EUJpacSeAE7TWr/k5uNZ6KYD3A9he0udxAP4RwJkAJpXs9lsA52s9RtNOiGivJQV3BXNhWFIoVjXhTVJAWZ7WoxQWBu/hRW6hXACgvBSK+RC0BJQFEIBSyjXErDD8TQohkvuvLDStFqT3pplprYeDsZpFT0ou9ukI1TosLGxcnw9Qc3v2UJYUOpjRGWR8PLOIiIiIiIiIiIiIiIiIiIiIqE4SJWFXsRYAQEqYbA8orpEbFOYjjOshuc9I1PPwRvaJI6PkUKF0ZmRME4VMpIGAS1hSJOZ9PAP9AIDBQIuxOVhQNiOeI8cSqAb4D1WbOBLs0yZMyggAb+6SD5EsfN8HhUQxryLZQDVHquO0lGImqyi5CyJTfl03sf5Aq3F9pORynztVPsaOUGnpv0HMfK3WjfJYg+oWFhbO1vI5lprRgUT2/v/7G0AybT9c3DE8m/zca9J9ceBh3o8x70Tv23phG//WDe77t7Wb1w/IzxEiIiIiIiIiIiIiIvKGYWF7r0cB3Aqgx2W7NIB7AbxDa/1erfV2l+2NtNb3AJgH4GcufT4J4Fyt9QVa6/5K+iIiqicNc7VIPqBGCp2pJrzJbV9pTPUmBaCZArG8BBopr4UaHtmCufJtQZeQoMJj+A36MoamNSoszCVgrhllkIbG6ATfSbrT8q897TUPCzMXO+YD1PyE8+3LpGeNozMMXCMiIiIiIiIiIiJfBgYG8Oijj2Lx4sW49tpr8Z3vfAfXXXcdfvWrX+Gpp55CMil887oC69evx+WXX45TTz0VkydPRiQSgVJq+P833XSTuO/TTz+Nz3/+85g/fz46OzsRDAaL9l23bt3wtosWLSpqIyIiIiIiGhVtnUWLKhQGgkEclFwr7pIoCOMZEP461uJYwprcwoFMDpqLg5Ovi82DBfMiSlVPLY69FFr5CTHzURM2mDKPyBqoBgBRH+FlANTCc4Zfx3RC3G4gKdeFFb3vfsPKSlURTpVyCXyyCek0VKsQftRsLP8eUDpv7RGWsDBP/IThNVLIPLHnsHC2lu+QxKviJv2551CffNkPi2tDSJ+fczPYfF+pULOPlBsdD/XS0iTJQ2MndI+IiIiIiIiIiIiIqFlV8MkojQVa6+cA/KPKVgDPAXA4gOkAxiP7mfUuAK8AeEprXZMpWrTW2wB8Xin1VQAnAzgQwBQA/QA2AXhWay1/0k9E1AQyQsFNIDeDWFCYSUwK1vJCCrgZbh+lgCUpvMgUvOMlJEvVOKM0YDlePiTMbVyFQUx+Q5mMoWkNCnbKVBFON1pSTsp9owbrSe0wrh8f7EA44FIw5FNImY+XyoWFuT17KMsW2OgIwYqNCvEjIiIiIiIiIiKi5pfJZPCHP/wBixcvxsMPP4x0Wv6mcCwWw5lnnolPfepTeNe73lVxnzfeeCO+/OUvI5Hw8O3SAul0Gl/4whdw4403Vtw3ERERERFR7bnXsqlF7ytfGYnjB9v+GR+a/lvjPgNJIJYrr9kgTFkcdwyBPHmBCupDYuNw2sDfxObBJNAWGxmfyVsHHrX34RZaVECdeBb0A7/HO/fcg7vbzilrv/uFkXO/vtt8DGNoUSG/YV3Hvb1o8dT+R/DIuFPLNrvzefkQp/c/PPxaHXmyv/5L5cY/LbUJm8LTypr/9U6NS88y75qsouQuiAww97jKD9Bg5+y5F/e0nV22/tdPafzyopHlUFDByz0tqjb8rV7cwgND2bCw/dObxU12DwKT2opDAyVlz6Zo3FeIu3rre6GfeaC8IekS/ldo+VLv23oxbZbYpJc9DPX28+z7J4VnUbXPACIiIiIiIiIiIiIiqnFqBzUdnbVaa32H1vo/tdbf1Vpfo7X+qdb6gVoFhZX0mdRaP6y1vklr/b1cv7czKIyIxgIthM24hU9JITVeuAU/6dEKC5PCiwy/PngJ2gqgtjPYm0LLhvtyCXcbOUag4LW/gjFzaFpjfrVyC5hrRmktVMyNop60OSysI9xV875CQvhYysmeF/HZw6CrItIzOKMd8b6wBQsSERERERERERHRvuOhhx7C4YcfjgsuuAD333+/NSgMAIaGhvDnP/8Z7373u7FgwQIsX77cd5/33HMPPvvZz/oOCgOAb3/72wwKIyIiIiKisSneVr4uGsfcxCpxl0dfzf7pOHKtXFxbgnMC/utDVCCAcUE5CSgfEuQ4GkPCZi3OgL2TcMT7gOLjAACHJlcbm3cVdHXnc+bzZA1UA3yHO6lgEGjrGF4+cfApX/sDQIsuGHisxff+RXLj78rsNDYnLX/VT1UTFqYzzRuMVUZhTvIVT1umM1XWpjb6nHgN4HILC8vdl7ZnygOrsudmMOl+jsqO4/e8tBiemQCQ8BEWVmvRGHDgYea2uxe77y+Nff+DKh8TEREREREREREREREBAFw+CSEiItq3ZISwGZULgZJCsTLa/oWSSvrM00JoV71J4zKF9biFcmXVNixMWQKA8mN0CzErPIbfQKFKQ9NqYSyGhaW0hyn2Gqw7td24vjNU+7CwsDIX/uicLboAACAASURBVKVz50W83xp0TY0VQeE+1ciIAYcMXCMiIiIiIiIiIqIrr7wSV155JbQu/oKnUgpz587F9OnTMXHiRGzfvh3r16/HK68Uf6l22bJlOOmkk3DDDTfg05/+tOd+L7vssqI+L7jgAlx00UU44IADEA6PTDLR1VX879Jbt27Fj370o+HlSCSCb33rWzjnnHMwadIkBAq+BD99+nTP4yEiIiIiImqI1gnl63Ztx6SgXPO0vlsDUNjQIx82aKvRC1RWHxK3VNIP5OZGlILCAA9hYSEfYWG5gKHu4ERj87T2kdfzpikse6M8xGhjeJq9j0jM+3jy9oy8KS3aJYzMoCjYq9pwqf7dAIDnY0f63jVReYknQjoNxFsrP0CDJVVUbktrRELZWs5qAtQAVHY91VswmA25s8ndlx0Z+YHTk7u1+zzkv8dL7wu/17m0fdLH/RYMApka1pVGW4Bd5slYMX22+/4JYezRJrxmiIiIiIiIiIiIiIjGGIaFERERFdAQwmZygT1S6Ew14U1u+2pUOXtbhRyYxxU0hBd5CTRSXmd188gWAJQfoynYTBqT27alzKFpjQklygjXaTNL6eRoD6FMT9pczNIRnlTzvsIqbFyfPy/Sc8Dvdbm3k85HRjvICM8snkMiIiIiIiIiIqJ928UXX4zrr7++aF1bWxsuu+wyXHjhhZgxY0bZPq+99hpuuukmXHfddUgkst8KTSaT+MxnPoP+/n5cfPHFrv2uXr0aK1asGF4+55xz8Jvf/MbTmP/0pz8hmRz5d/Wrr74a3/jGNzztS0RERERENOpmzDGunpjpFnfJBzkNWEqMjky8KDdWGhZmyfIazI1l0BIWFtdD9g7C/sPCpqU2GZv7C85NUgi+6gl22vsImWuYvDqj7wFcOelffO1T9L5XGxYmXFuFUmmNcKi8VnEwWXkdZhAZYPrBFe/faMcN/V1sG0wCkdw3SNLVliFG5FCyUdPa7r5N7r60hd/ln0nd/e6HizmlYWE+A7Gk7ft6Pe2uM5naBoUB2Xu1vQvoNdRYbjc/o4pIYWGRKp8BRERERERERERERESEgPsmRERE+46MENijVPY/mQHhP51OFeFNUihXnhRgVm9+wou8hPEo1DYszNZnvs1PeJffoC9jaFqDQomqCacbLSmnCcPCUkJYWKir5n2FlLnwL6Wz1YRyOB9/XS8k3WMOMuJ9YbpXiYiIiIiIiIiIaN9w8803lwWFnXLKKVi5ciUuu+wyY1AYAMyePRtXX301VqxYgXnz5hW1ff3rX8fSpUtd+162bFnR8rnnnut53JXuu3TpUmith/9PREREREQ0GpQpkGrB2wEAXentxn3+/f7s32EGLSVGrU6f3BisfVjYk2uzY7IFmLU4A/YOQv7Dwo4bWm5s3lXQ1S1Pm//O96me/7X34Se8LO+9nxp+efTQc/73LxTxGaJUQh13uus2UribLfTNTVBngGB1QWsNoxSOG5TDwnoLMpzufkE+zPiMh6CqYBPOW9/mISys4Bk1J/GKcZNfP5m9x7pdbnHAEBroNxDLEqKnvYSAScFc1YjGoT78TbE/13FJY6o2MJCIiIiIiIiIiIiIiJg+QEREVEgK/cqHzUhBNVLImBcZbQ8DG60vc0jjCqjyXx+8BG1JQWuVClgCgPJ9+enTdjzj9qbQtAb9auUWMNeM8qFYzUJrjZ60OSysM1z7sLCwMheLpXPnRb7fGHRVSAr+yuiM+Pw2PbOIiIiIiIiIiIho7/fKK6/gS1/6UtG6hQsX4t5778X06dM9HWPOnDl48MEHMXfu3OF1juPgwx/+MHbsMP8bc97WrVuLlr32We2+RERERERETal9EgDgLYkXjc2bc7lEtkCnuLYE4lRYHxKJhqCEup3f5QK5XtxkG9OQ3Aj4C+fKhejELD/nYNJeSzjecQl4MgW5ucm9dwAQRgoBH7WSBybfKF4RrS4szEvQ0Frhr+u2IDo3IWQqO3ejxHavLFnprR416FajGAxBqdpOIOvKS39tHR4Oo4bfz0OT5rCw13O5ht2WjMK8uFNyvv0GYtnCxXq2ym15Wzf468+LaBxoHS+3r3rGvn8yYVytGBZGRERERERERERERFQ1fnOeiIiogCMUsuTDZqRQLGm/avocbsfohIVJgVSmsB4pwKdQrQtDgpYCr/z75CdoyW+gkOnYXkLTaqGacLrRktJVVFvVQV9mtzimjtAk4/pqhAPmwr90bgzS/cawsGJKuE/TljA6v0GAREREREREREREtHe45JJL0Nc38o3O9vZ23HbbbWhtbfV1nP322w9//OMfEYmM/Dvvpk2b8J3vfMe6X2HfABAOe/9ScTX7EhERERERNaVcQMzuwARzcyj7pxTopLSDiK3+KFBZfYhauxJaqEeZkMu0sQWYdWXsQdK+wsIm7Q8AaHXkdKJ1O7N/Tms3t28NTbb3EfIxnjxnJExNAXB81DO16IHiFbZQJC86snVd//Pm58VNtu8xr7e9j26COgMExs7XLiant4ltewry7aaab0cAwA+3XmrvxM+13UhvrPa2XTgKANgcmmpsntGZ/bO7371+tyw0MBL1Noa8Dsvkpls3uu/vJVDMj3AEKhAAJs+Qt1m70n6MhBBYV21gIBERERERERERERERITTaAyAiImomDsyzBObDZqTQGSnox1uf9n21MKZ6k4PTys+Bl0AjVeOMUlsAUH48XkLM8vxsm92+/OdpVCiRI8xm2cxsYU6FdIPC8XrS28W2jrCl+KZCIWX+Ildap+FoR7zf/F6XezvTfQcAKUcuBm1UiB8RERERERERERE1j5dffhl33XVX0brvfe97mDJlSkXHO/zww3HJJZfgmmuuGV73i1/8AldccQU6OjqM+zhO5f+WX82+tbBy5Uq88MIL2LlzJ3p6ehCLxTBp0iTMnTsXRx55JKJRn196zUmn03j66aexZs0abN++HYlEApMmTcLMmTNx8sknIxbjF0aJiIiIiPZauYCYUwcewd/jx5Q1J9KA42gx0CmuB2GdqjJY+/qQnf3ZPweScj1TTCfsBwl5D39WbR3QAOYm5LCjfJjagFAqc+TQCzUbz/C4jlkE/avv+94PAOJOSYhStMqwsFx40bl7bsdn8F/GTaRraJsQIuZFMKRqPllq3SigRQtBTQCeL8ieSlv++eHMvvvt/VRwLTVEqyUBrVA0Dgz24eih57AsfmxZcz50rrvf/VBxp+R8B31+RWfKTLktKb+Xw6Rgrkrl79PZR1bep9Qe4b/9EBERERERERERERFVi2FhREREBeSArEDRn6UyVYQ3ZYQ+87RuTHhSqYwQYmYKxPIWFlbbYhnpvQBGApaUZZvy4/krGDNt36hQomrC6UaLLcxpNHSnzLN6hlQIbUGPBUM+hJU8k2Jap8TngO063xdJ96ktjM7vvU1ERERERERERERj3/XXX1/0+UpXVxc+8YlPVHXMiy++GNdeey1Sqey/R/b39+PGG2/EN7/5TQDAunXrcNBBB4n7n3baacb1ixcvBgDr+KQvJK9duxYzZ84cXl60aBH+9re/DS/7+Yxpw4YN+MEPfoBbb70VW7duFbeLx+M47bTT8LGPfQwf/OAHEfTwhfxVq1bh6quvxl133YXdu3eLx33Pe96Dq666CnPmzPE8biIiIiIiGiNiLQCAc3ffjh9N/Kpxk6EUMJgy/z2mLIynVKU1Nu//LP750e/hmq5vlTU9uSb7pxQ+1Zne6X78sFwzJIlbgp5efFPjmAOVOKbDknLQGIDKAp6mzSpa/MiuX+NX7R/2tGus9GepMixMBQLQAMY7cvLXw6s13j2//O/RP1xSeR1maAyWcM0fWoHnY+VhT798QuN/PqIRCSmkhTLEz3f/NyZnttk7CPm/tqvnoQb1jAu8HSp3LZ7d91fc2HFRWXP+HusecD9U2T3r8z7LX9dGXoLANq3x1Z+raPZ5rZSCbmkDBsrvN73iMahzvygfQwo5qzYwkIiIiIiIiIiIiIiIMAY/uiIiIqofB+bQr3xgT9AQlJXdr/LwJqnPPC2XAdSVIwSgBQ2FVUEPv1LUemY9WwBQvk16v0z8Bn2ZQ9Ma86uVW8BcM0rp5goL60mbw8I6Ql11eR9DSs7oTeuU/Ozhr+tFpPvedn3xHBIREREREREREe177rvvvqLlj370o4hEqvsS66RJk/Dud7/b2s9YpLXG1VdfjdmzZ+OGG26wBoUBwODgIO655x6cd9552LBhg3XbTCaDr33ta5g3bx5uueUWMSgsf9zf//73OOKII3D99ddX9LMQEREREVETGDfeuFrlAmLiekjcdTAFDAolILb9AADBCutDoi2YkOkVmxMpLY5panqL+/H9BipNmoaITkIJtXsPrsr+PW5ICAtzDVWrJOCpJNxngiP/3c46HqUqCk8r09oOAJie2mhsfvTV8nrLvqHqajCDlV5foyFXpzk1vVnc5NHXsn+mhdLVM/ofcO+nkuC5BlBew6iiMQCGQLsCfUMa3f3uhyp7PgXlWkFRqzDBacLl2QdAv/x3c8PEqVD//aj/seTODQDg4LeYt1m70n4MadwMCyMiIiIiIiIiIiIiqloFn0QQERHtvaSArHzYjBRU41QR3uS2r3YJE6sXaVymc2AL7spTXmZ188EWBJYfj5/QJ7+BQqZwMVOAWD1UE043WpotLKw7td24vj3UVZf+wkoudEvppK/7bV8m3fdpLVRAwn8QIBEREREREREREY1tGzduxLp164rWnXHGGTU59hlnnIHbb799ePnJJ59EKpVCONycX5B1k06ncf755+O2224ra5syZQre8pa3oKurC4lEAlu3bsXzzz+Pvr4+T8ceHBzE+973PixZsqRofTgcxlFHHYXp06cjGo1iy5YtePrppzEwMDA8posvvhg9PT244oorqv4ZiYiIiIiosdSXrzOu1zuzwUVxSzDPYCr7fxPXEKxAhfUhqQRiQs0gAGzbAwyIAWYuYwKASNTfeLZvggKghbq3thjEoDBPYwpV8NWB8ROLFteED/K8a1GIUjRemwlH+3YBADaGpxubD+gsX/emnAfnSTA09uqP5iRfxX0409i2docGoJASyhCDOu3eQbP+W0hh0JV1uxYAwPiMHH73Zq8cYFgoVvp8qiRILRIHYLhQEx6eM11Tzet3bpbbbN5cO/J65VPmbWbOtR9DGjfDwoiIiIiIiIiIiIiIqsawMCIiogKOEMyVD+yRQmcyVYSFue3r6OpmtatURgikMgVieQnJqnVYmC0IzC3czXw8fwU9pv4bFUokhdo1s5QlzGk09KTNYWGd4Ul16S8ckAuAUk5KvN8YdFVMuu9t11ejQvyIiIiIiIiIiKi5pTMaG3tGexR7v+kdQChY288D/HrsscfK1h133HE1Ofaxxx5btDw4OIjnnnsOCxYswPTp07F27ciXKX/0ox/h+uuvH17+7W9/ixNPPLHsmF1d2UksFi1aNLzu/PPPx1NPjXwZs/C4haZPN38x2quvf/3rZUFh55xzDq644gosWLCgbHvHcfDkk0/id7/7HW666Sbrsb/4xS8WBYVNmDABV1xxBS666CK0tbUVbTs4OIif/vSnuPzyyzE0lP0i+VVXXYUTTjgBZ599doU/HRERERERNVxrO7DQ/Du8OvIU6D//3Br61Z+Qg3lcQ7AqDAtTJ52Fd/zln8T2qgLMAP/BOIceA6xeLjb3JeTxZMc0JDcCQFie8FCiQiEUVjAuHHwC97R5+7ta0ftW45CgrvR27AiV13rtNGRcewl8sglFmjQYy+K83lvx484vGdvy5yMtlK6G4CEsLNik58TrdZbbbnZqjbjJYBJIeyjVLHs+BSv4io4UcuYlLMy2Tdf+/scy5cCR1zMPB15/oXyb5Uvtx+gXQti8hrkREREREREREREREZGIYWFEREQFHCG4azh8CuagGilkzFOfQkhQnq7i2NWQzoUpvMhLoJESzl2lbAFA+WCyoI+QIL+hTKZjNyqUqJpwutGSdqqsuKqxntRO4/rOcFdd+gspudAupZOWZw+DrgpJ5yOl5evLbxAgERERERERERHtnTb2ALP+eexNxDDWrLkmgJn1+WdWzzZu3Fi0PHnyZEycOLEmx543b56xvwULFiAUCmHmzJnD69vb24u2mzJlSlF7qdbW1uHXsVjxFydt+1VqyZIl+PGPf1y07nvf+x4uvfRScZ9AIICFCxdi4cKFuOqqq8rGmXfrrbdi8eLFw8sHHnggli5dKv4c8XgcX//613HSSSfh9NNPx9DQELTW+MpXvoLVq1cjEKjtZ0xERERERFQf6vq/QnXsZ26cOAUAENdymNU//cHBybPNAdQxy34AgEr/3jDlQHSlzXVEADCQtAWYuYwJ8B2Qpd73Gejvfw6f2HUzFrd/rKz9l09ofPd9cki3a6haqPqAp0OSr3netihQrVZhYae8G3j0L/hsz8/x3UmXlTX/36vlu9gC1rwIRv2HrI0alb0+Thh6RtxkMAVorcUgrJD2EBZWQfBc1ZSHgHrPYWHZf9Owhf7d/qxGxktYWGlIXyX3mTBuvXwp1Ls/ad9XCgt724egAgH4na5YvesTIwsLzzGHhe3uhk4loQzXgc5Y6lsjtQ0NJCIiIiIiIiIiIiLaF7GikoiIqIAU+hVQubAwIXRGCvox6U13496df8DPNl2Dn268GjtSW63ba98f1deGeC4Mvz7kz4+N8lKo4YOXcC8/IUF+Q5lMx/ZyHmrBLWCuGaW014qrxlzv3entxvUdofp8iy2s5AKgtE7B0fZnD2VJ933aka+vIM8hERERERERERHRPqW7u7touaOjo2bHjsViiEaj1v7Giquuuqpo+XOf+5w1KKxUe3u7MSxMa1107FAohDvvvNNT4Fk+hCzvtddew5/+9CfPYyIiIiIiotGl5hwlN+aCcFqcAXGTe1+UQ51ipWE8pQIVTiYXjaNFy2MaTMpjcg3myh3fl1gLAPt5GrDM2WgLPgIAhKoPeHLto3DbwkC1iDlw2rfcOfV0/nNs58yLMRUWVmDhwOPG9YMpWEOwPIWF1SB4ri48h4Vlt7MFET75uhyoVqjsWgyGvI3BMJ4y3fb6YgDAkHAv5I/Z2m5uF8cycq+q3DPJaMVj5vWbXpf3qfQ50D6psv2IiIiIiIiIiIiIiPZC/OY8ERFRATGwJxckJQXVZDyGN/WkduC69d/CX3bcghV9T+PF/mWu+4xWWFhGCEAzhWQFPQRtmULGquElCMxPn35DmUzH9hJgVgt+wumaRUpXWXFVQ2mdwu50j7GtI1yfopKwkgvG0jolPkO83Fv7Eum+t11ffoMAiYiIiIiIiIiIaGwrDe9qb/f5hUgXpcfbuXNnTY/fCCtWrMBjj418obOtrQ3f//73a3Lshx9+GC+++OLw8oUXXogjjzzS8/5f/OIXi0LI7rzzzpqMi4iIiIiIRpnHgKchMZirTmFhk6YjqhNQQt3gQFIOmrIFeg3zGxaWC9J5OTLH2Dx7Pzm8DPBwnmoQ8HRk4kX3jXJihcFifs+F5OVszeX2oHlSyBZDmdYuD2+VJKAzULUaeyO8umL4pRTsNpSS7zUAiOmEez81CJ6rC69hVLmgq6AwqS4AjIvaQ9XyDk6uKV5RyX22erl5/X4HuO/bt8u8vnV89s9D5vsby+yC7Q9+i7zdzi3m9bstwfr7z7T3/aEvGVerr/+nfT8iIiIiIiIiIiIion0Iw8KIiIgKSCFM+SApKXTGa3jTo71/xc7UNl9j0kIhUr1JP5MpEMtLcJeCqnpMRX16+DVGKe99+g1lMv3MjQolyozSNVGNZgoL25XqFkP4OkP1CQsLKbkAKKWTlmcPg64KSfd9SsvVa36DAImIiIiIiIiIiIhs/Hz20KwefPDBouULLrgA48ePr8mx77///qLl8847z9f+LS0tOP7444eXH3nkkZqMi4iIiIiIRlkkCgCuFWSDQomRFHo0rMKwMBUMQkEOMVu3U2NLr7nOyDWYC/AfkJXb/qz+Jcbm17bJ5whwP0+q0rCwk84efjk9vcnzbkXnqFaBW7mxnDbwN2PzQBLQuvg96+6vfMLWIDK1G3sjLHj78Esp9Gvlm9oldM7lfgNqEjznm5d/kvH6Xh1/xvDLuBD899wGb4dqKT1fwQqeR7OOMK9fv9p93z3miVNVW2f2z/d9xt9Y5p8y8vq4t8nb7dxsXp+wXD/t9vpMdeaHgVhL8cpps+zjICIiIiIiIiIiIiLax/Cb80RERAUcYZawfAiUFDrjeAxvemXA+6x6eVKoUb05EMKLDIFYnsLCavzlmVoHAPkNZTL136hgJ+m9aWYpx1Jd1GA96R1iW0fYPONktZRSYmBYyknKzx6GhRWR7vu0JYyuUSF+RERERERERERE1Bw6OzuLlnt7e2t6/F27dln7Gwsef/zxouVFixbV7NiPPvpo0XJnZyfWrVvn6/+FwWXr1q2D44y9SVSIiIiIiKiExwAfKcDINbwoUEUt2eQZYsjW136vca9Q8ucaYAYAkZi/seTO0wGpjeIm/bawMLfzVGHAk1pwetHyMYPPetqv6BzVKHBLzTgUANCRMQckAeUhT939lfcX0ukxFRamps0afi1dD3c+X13oHAAgHPE7tMbw+F6pQ+YPv75o103GbdbtrHAMldxnxywyr1/5tPu+u7vN68d3AADU286FuuLXwPxTgdYJ2f9bqIL3VkXjwISJxu30z680H0AKCwuFXeuI1aFHQ133l2wo4NQDgXf8f1A/vh/KZcxERERERERERERERPuS0GgPgIiIqJk4WgjIygXUBIXQmYzH8KbetPChvG1MoxQWlhEC0ExhPUEP+aOqxhmltQ4A8hvKZLoWgjUOMJNI12kzs4U5NVp3artxfTwwDrFA/Qq7wiqMtC6vaEwKMzgC3u6tfYn0DLaF0QUZuEZERERERERERLRPKQ3v6umRvzzs19DQEIaGhorWTZxo/sJkM9u8eXPR8hFHHFGzY2/YUPyN7BNPPLGq4zmOg127do3JUDYiIiIiIioQG+dps10D5lq5uB4yrh8WqKI+JBxGGGljU18CiIaAhKE5IEwOOCwShfIbYpYLF2txBsRNnlxjPkdhnUTQbUwVhoWV7teR8VYH2aILfo5gjWp4cmMZZzlHf31J4+gZI6FEPfKmroI64z/0bTQVvFchbb6uAWCPXLKGmKWebViwSb+G4jXYreB6fLTl5NqOoZJzY9lHO479WbJnl3l9W8fwS3X6h6BO/9DwsvP5RcCLT3gbW9f+QK+P5LSE8LxuafO0u5p/CtT8U7z3R0RERERERERERES0j2nST2mIiIhGhyMUy+SDqaRAKS/hTVpr9Kb9fyFFC6Fd9eYIAWimsB4vQVv2+cD8q3UAkN9QJtPPXOsAM4nXcLpmkjKEZJk0IhqvJ20OC+sMT6prvyFlLrZLOHIxo98Qu72ddD5SljA6nkMiIiIiIiIiIgKA6R3AmmsYzl9v0zvct6m3adOmFS1v2bIFO3furEmo10svveTa31iwc2fxFzw7Omr3xpUeuxb27NnDsDAiIiIiorFuwsjfyd695y78pe1dxs227TbvHncGrYdX1QRRbXwdew5tNfcbBrpagQ2Gsr+NIZe/DwYrCOY64BAAwIKhv4ubvCnkAsUsNUjDwhH/YwLKfpYTB5/Gg62nu+4WLxzTiscq67tULnDo8MQqcZO+kqyr/irmuQwiA0SilR+g0QrutTanT9ys13JLRbxMDFpp8Fy9eQ0LS48Eqa2Izqu4uw/uvr18ZSVhYSHLvZlK2H+uoX7z+hbzcw0A1Mcvg77kPeUNF15Svm7bRvNBYi3m9Qnh4vL63hARERERERERERERkRXDwoiIiApIoV8BFcj9KYSFwYHWGkrJkVhDzoA10EaiGxKfVE4+F5WFZCmfYVxuah3M5TdQyNR/o0KJnFEKkKtGJdd+vfSkzF9U6gh11bXfsDIX9FjDwhoUQDdWSOcjbZkFM1DjZw8REREREREREY1NoaDCzPr+EyA1iYULF5atW7ZsGc4888yqj71s2bKi5Xg8jqOOOqrq44422+dbfiWTtf88QOvR+ayMiIiIiIgMKvz9XCk1XAX3zzu+L4aFbe417x/T9rAwqCrqQ2YdgUt3XIf/f78rypoGU0BCKEs5p+8++3EDFYypdQIAYFJmh7jJll7ze1DXgKfDji1a/HjvL/HdSZe57hYvfN9OP6+yvkvNygY7RSBPXrnyzeJztHZ75X+vDOl0ZcFvo2X67OGXF/beghs7LjJutseSLRf0MplppcFz1fDy7xfRmLdjzT95+GVYp5CooPazxenHV7pvKG+o4HpRJ78T+jfXmhuTQ2LQlta6snCuoxcB804CXnxiZF3HflDv/Hj5tud+EVh8dfn63d3QA3ugcgF+wxIDwng8vjdERERERERERERERGTFb84TEREVcGAOYcqHzQQt/+mU9s3rTRumF6xiTPWWEcLCgoaiCNO6UrX8ogkwEuBWs+P5DGUKGvoPNijYSQpya2ZpLRdnNVp3ertxfUe4vt8UDClzEZAtLMzLvbUvMd13AJC2FDvyHBIREREREREREe1bZsyYgRkzZhStW7JkSU2Off/99xctn3DCCYhERuHLsVXq6ir+9/Du7u66HDsWi8FxshPuVPP/mTNn1mx8REREREQ0ig44BAAwLf2muMkaISMrbqmvAQAEqqgPOeIELBr4m9jcK+TwtDtCslleBfVtSikgkg3UmZg2n4zbnzXvG/FSn1Vp6FVJyM9BqTfQ4vS77hZ3Rk6emjGnsr4tY/nA7juMm/zpueLlu1+ovLsgMkBwDM3PXhAQNT29SdzszV1ygFrQS31ipcFz9WYLyCrarmX4ZQjyRJWShQOP48E3zsLJg0+WN4YquF7Gd8hteyy1x+kU4Ag1xpZzoSJRqB/eBfXJfwEWvB04XzcwwQAAIABJREFU94tQNzwIlXtOF2176NFy/w/8vnydFF4W8fjeEBERERERERERERGRFcPCiIiICjhaCAvLhc0ELKEzbgFOvZnKwsK0MKZ6k4PTys+BW3CXqsOvHLb3ohJ+A4VMP1OtA8wkGS8z9zWZpJMY7SEM60mZw8I6Q5Pq2m84YP7CWMIy82mjrqmxQrrvU5Zix3o8f4iIiIiIiIiIiKi5nXXWWUXLv/rVr5BKVTepxfbt23HnnXda+xkrpk6dWrS8cuXKmh178uTJw6+Hhoawfv36mh2biIiIiIiaQDUTRjrZmqc2Z4/vXeOW+hoAQLCKWrJMBi2OfPyEkCMUtkxuBwAIVFizkgv4yfisZ4u4jQeoPOCppa1s1YzUBn/HKAkcq1hBAFJamUOZxpd0dVAVc0gGtVNZ+NNoibcOv2xz+sTNVm2WDxHSHsKzKg2eqzevYWEtI+fp/bv/7Lub/9n8BSwY+ruxTVUSLjduvNy2/hW5LWkJUnQ5F6qlFeoTlyPw73cj8NV/lwP9WuSx6eWGoMWEMCav7w0REREREREREREREVnxm/NEREQFHCGEKZD7T6YpKCvPLcBpd7qyWdk15Bnc6kkKPzOFatnOCwAoVFEkJgjW+NcYv6FMylD4VusAM4lbMF0zSnuZubJBeoRZNzvDVVSFeRBW5gKphCVIze3e2tdI5yMlFDsqBBi4RkREREREREREtA/66le/WvTv+Nu3b8fixYurOub1119fFDg2btw4fPrTn67qmKPl5JNPLlpeunRpzY69cOHCouUlS5bU7NhERERERDTGbVoDwB5gJIlbwrwAVB7MBQA923BYcrXv3VzDuSqtWckF6uwKdvjbTXuYzLHSsLCu/YFps4pWvRw9zHW3Wam1Iwu1CgoqOE5CRc2blPyYLeY5Hj0JIV35eRsFqiAEa2JGrllNWUoQg14mM60kEKtaXsIKQx7f7Omzh19e3P2fvodiDVSrJEht4lS5LWPpK2F5NkZqFNA39zi5rb+3bJWWxsSwMCIiIiIiIiIiIiKimuA354mIiAo42jGuz4fNmIKyRva1F0j0pnsqGtNohYVJ4WemQKyAClgDwQLVzCgpHrO2IUq1CGUKNijYyYH5Om1mqSYJCxvM9GPQGTC2dYTqGxYWUuZCpISlmJFBV8Wk85F2zNdXkOePiIiIiIiIiIhon3T44Yfj7LPPLlp36aWXYuvWrRUdb+XKlbj22mv/H3t3Hh/XWd97/PucZUarZcmWt3iJ7cRxHDv7QkIWSJzQLCQsCSmhZUnZUmhpC5d7oZQEKAVK6S0tbSlQblkulLbABUoplFKgQIA2LAkhIXscssq2vEi2pJk55/4haaSRzjpzziz25/165ZWz/M45j+acGVvWT9+nZtvLXvYyDQ0N1T3GVtq5c2fN+qc+9SkdPHgwk3M/61nPqln/yEc+ksl5AQAAABwBzpr7XmTL5D2pDu32J6ILGugRMec/O1nQ1gKxYWH1BpgVpwN+rjn4xWzHI9Ud8GSMkfnNd9ds+909fxZ73HB5ZG6lkH1Y2K/t/1RgyciCb3HDgrEKEZM8zrL9SkeFhSX1iyfC+1LtJJOZNhLQl6eE92p+yPwpk7env4yiwsLS95EGTV5b9eQj4fuiwsKK2YSFma4eqXdJ8M7vfzX5mDIaDwAAAAAAAAAAR7s2/SkNAACtERbCNBskFRXcExY0NqvusLCY8+YlLPzMCvnrQ1TYlsnhrxzR10sfThYVBJdU1gFmYSpJmnHaTMlL0Iym/MPxRsu7Q/cNusO5Xts1wY1Ik154M2OzAug6Rdj7vhTS7JhFCCAAAAAAAACAzvS+971PPT091fV9+/bpec97nsbGxlKdZ2RkRNdee62mpub+HXL16tV661vfmtlYm+2kk07SRRddVF0/cOCA3vSmN2Vy7ssvv1ybN2+urv/whz/URz/60UzODQAAAKAN+A309qw7vrp45di/pDq0O2IyPkl1hfNU9Q3ISOr10n2/GBvOVW+A2UwY1skTd6QcT4LJHBt4ncyF19Ssb556MPYYd36gUjGjsDDHrQZVLavsCS3zvLlntRzSbnds6eH4y6nceWFhm7ZXF8OC+f71zvDDI4OwZllt2pdVx70yShZ+N19koFqdoXxasTZws/+VT4QfExUWllVAnyRzwxtC9/kLxzAVFhaW3XgAAAAAAAAAADiaERYGAMA8oQFZM407UcEzFUUHOB2oMyzMyzk8KfS6ISFlYaFaUUFq9YR3xcki3Gu+LEKFwoLUshb2nLazcpJmtCYYLQWHhRlZWuoM5Xpt1yoEbo8KC2tWAF2nsEM+Z0KDHnn9AAAAAAAAgKPW1q1b9Rd/8Rc12773ve/p8ssv1y9/+ctE57j33nt1ySWX6K677qpusyxLn/jEJzQ8nO8EFHlbGHb2l3/5l3rf+96X+Pj9+/drYmLxv287jqO3v/3tNdtuuukmfe5zn0s9xq9//et64IEHUh8HAAAAoE2V58K1hirpeum6/ZiwsEaCi5ZM9wyNW32pDivGhYVZdfaSje2XJPkpe+7cuPFI9YcYzVq9obq4zx6ILa8JVFsy2Ni1ZxhjJG+6V6grou/qvpG55VJIu12vfyj2erZf6bywsJlnSEp2nxaykvSs2m34ayi2M/181GG4Ej4JaRAnql/YqfN9dnBf8PZlq8KPmQx/D2QaztUf8Rzd+9Pa9bAxERYGAAAAAAAAAEAm2vCnNAAAtE5Y4MxsMFVUQFVcgNOBlA1Os/yQMeUtLPwsLHzHNuENDnmEhUWFk7XqfFkHmIXxYoLp2lEpSTNaE+wtBzf1DDiDkc9wFpyQ80/6hIUllfb1sDMIAQQAAAAAAADQuW688Ua95jWvqdn2ne98R9u2bdO73/1uPfLII4HH3XfffXrLW96iHTt26I477qjZ9573vEeXXHJJbmNulosvvlivf/3ra7a94Q1v0NVXX63bbrst8BjP83Trrbfqda97ndatW6cnnngisO6GG27QjTfeWF2fmprS85//fL3oRS8KPbckVSoV/fjHP9bb3vY2bdu2TZdeeql27dpVx1cHAAAAoB2ZYzZXl3eOfyPVsV0R/TWSGgsL23FuXYcVYsPC6hzTU9MB16dP/CTb8UiNh4U9/nB10Uvwawju/Akmt9f3OkfZNnV36L7xybnlckgLZo83HnsNWxUZu8PCwvbP9cg95axMdajtl5MVZty/mfCi0bsbCHVL+5lkR/UL1/s+OzwWvN2L6CGejAhSzDKc6+xLw/dNLHgfhY2pQFgYAAAAAAAAAABZyDcRAQCADlMJ+QG+mWlsiQwLiwlw2l+uMyzMTzBLWw7Cws/CwneiQnnqna0tipVxCFAWQV/NCnaq+K0JkGtE24SFlUYCtw86y3O/tmMKgdsnI2a4tMn2rZH2fZ91qCAAAAAAAACAzvOBD3xAg4ODeuc731n9mcvBgwf1pje9SW9+85u1bds2rVu3ToODg9qzZ48efvhh/eIXv1h0Htd19f73v1833XRTs7+E3LznPe/Rrl279I//+I/VbV/60pf0pS99SWvWrNGOHTu0bNkyTU5O6oknntDtt9+ugwcPJjr3Bz/4QY2Ojurzn/98ddunPvUpfepTn9Lw8LBOOeUULVu2TJZl6cCBA3rsscd01113aWIiJgAAAAAAQOc64+Lq4pkT4UHCQboi+mskSVb9PSKm2C1f0qkTP9VPuk5JfFx8WFidY/qVX5P+9ZM6tR3Dwq58qfTlv0tcPn9MptjV2LXnO+OZ0m3/oT4vJFxJ0liisLBDsZdy/HJDIVStYF70BvkffYck6Y2736s/Xv4/Eh/rJA0LaySgLy8N3KfTUr7fIl+net9n17xc+sJHFm+/9Svhx4ztC95ujOQG9yvWwxyzWWGdzP7t35M5c16wflhYWBdhYQAAAAAAAAAAZIGwMAAA5vEV3BVizQT2RAXVxAU41R0WFvoj9vz4vi8v7LUICd+JCuUxcTO61SHrEKAswseyDjALU0nakNNGSl57hIWNlncHbh9yh3O/tmuCm5EmvfDZ/ZoVQNcp0ob68foBAAAAAAAAkKR3vOMduuiii/Sbv/mbuvfee6vbfd/XnXfeqTvvvDPy+NNPP11/8zd/ozPPPDPvoTaVbdv6zGc+o5NOOknvfOc7VSqVqvsee+wxPfbYY3Wf23Vdffazn9V73/te3XzzzTUhYCMjI/r617+e6By9vb11jwEAAABAm5kXFGMkbZx6UA8WNiY6tNsP76+R1Hhw0fZztWn0gWzDwuqdYHPpdB+THdK/FzoeleKLGg0LW5puQkbXnxnTxdc1dt2F1m+RbvsPFf1JGd+TH9BL+K17fF1w/PQ9KIXMA9ubICzMlifZHdaDtHSuF25V+clUh9oxk+ZWNRDQlxun/nAsI2nL5D26p7gl2aWUfViYGV6bulvY//G3g3cUu7Of5HdgmbR/z+Lt//x/pBv/YG49LCysSFgYAAAAAAAAAABZICwMAIB5vJDAr9nAmajgmT/Z9b90THG91hQ3yPM97Sk9peHCKp27ZKckX4e98brG9LHH/0zfGN1UXR9yV2iZu0KHKmN6dPJhaaY9oNdeokFnmSSjRycfrIaMdVu9OqH3ZF249FfkGFdPTj2q7+77Nz08cV9oOFpUQFlYIFbUa2PUho0hC6QNIQo+R3O+zr3lEf3prjeraHXp+O7tumjwChWtDGdezEHJT9CMJmnXxH36011vljQdMreua7POG9ipNcX18n1f3z/wDf1s7DYdrOxTl9WjE3p26MKll8u1kjX6jJZGArcPOuka2erhmuAx7i6FN2Q1K4CuU1gpP0tsXj8AAAAAAAAAM3bu3Kmf//zn+od/+Ad99KMf1be+9S2Vy+G/2FksFnXZZZfp5S9/uZ797Gdn/wuWbcIYo5tvvlkvfvGL9a53vUuf/exntXfv3tD6vr4+7dy5Uy996Uu1fv362HO/8Y1v1Itf/GK9//3v16c//Wk9/PDDkcf09/frggsu0JVXXqnrr79ey5Ytq+vrAgAAANCGBlfUrD7hrEx8aLc3EV3QaFjYk7tUKgZPBBimGBcWVm+Y0tT017q8EjwpYuh4vMn4ogbDwkx3X7Wz8Fnj/6a36pbwWt+bC546GP59Zl1mQoeMFBgUJkm981q1pkK+/e/143s6bb8iOemejZbrngveXl1+ItWhTtKJTBt9z9Uj7t9m0t6ncy6TfvC16upD7obEh9p+RKhane8zf2x/8I7u8CB1s3R5cLfvRHwQXmpBQWGStHx17fpkyOc1YWEAAAAAAAAAAGSCsDAAAObxQmZFs2YaSqKCZ8Yq+/WLQ3foF4fumNs4Lv3H6D83NKZJf0L3Hf753Ib5ywndMf5fuufQHbp6+a/pzx55i8YqB+oeT1ioVtRr0wm/QBMVdpb4HE0KJir7peozcef4j3Tn+G167dpb5Frt2ZRU8Suh760g85/3ew/fqVv3/7t+Z9079IMD39Q3Rr9YU/uz8f/W3Yd+qlcf8/uJAt/2loOb6Abd/MPCHBN8f8oRQWpZhNgdSdK+T60mBfgBAAAAAAAA6AyO4+iGG27QDTfcoPHxcd1222267777NDIyoqmpKRWLRa1cuVJbtmzR6aefrmKxWPe1brnlFt1yyy11HfvNb36zqcdJ0saNG/WhD31IH/zgB/WjH/1Id999t3bv3q2xsTH19vZqxYoV2rp1q04++WS5brqfR6xatUrvete79K53vUsPPvigfvSjH2lkZESjo6OyLEv9/f1as2aNtm7dquOPP162zb+NAwAAAEcis2SoJtRmTflx3V/YnOjYbv9wdEG9wVyzDo/rvMqt+lL/VYkP6fZixlRn34rZdrb8z/11fBjZwvHEvUZSw2FhetqzpI/cIkk6feLHkaWuX1K1a3Ddlsauu1CC0KGJmcwr3/d1KOSlHEjQR2n75c4LCzv9GdXFnePfSHWonbTPrxVhYXFS3idzwdXy54WFTVnJ/x3IUUSoWp3vM3PsicHBX4cjQu284AmDc+EWpFLAm2nPgslSp4I/iwxhYQAAAAAAAAAAZIKwMAAA5vH84B+czwZhdXLwzO1jP9TB8v6GgsKk8LCeqNfGqLmvWz3hZEaNB5plEThWj3sP36l7D/9M23pPa8n140SFYSVx2BvXl/f8ve4Y++/A/XeO/0gPTdyrzd1bI8/j+Z72lYJntxtyhhsaYxKuVYgvWqCTP3PykDY8rVkBfgAAAAAAAAA6T29vry688EJdeOGFrR5KW7EsS2eeeabOPPPMXM6/ceNGbdy4MZdzAwAAAOgsb979Hv3Gmg8lqo0N5mo0uOiaV+iaf/y83rTynYkPyS3AbMup1cU37n6v/nj5/0g4non4IqfBXx3YvKO6aCRdc/CL+kL/1YGlhXlhZ+bpVzZ23QVMsacaqnTqxE/1k65TFtX85z2+3nS5NBmR6bTESxAWpkrnhYUNrphb9PZpSWW/DtgDiQ61/aRhYW3Y15Yy3FxX3Sj9yWurqy/Z9wl9bOmvJzrU8bMPC9Pa8PBEv1ySCXoOyyG9mcedXN8YIphXvkP+X/7PxTueeqR2fTLks7HYlfmYAAAAAAAAAAA4GrXhT2kAAGgN3/flKTgszMwE9rQqDCorD078ouFzdFs9Idt7I47JZ0awsLGc3Hd2dXmJvTSw5sz+C2rWHdN4hmrYeJrhwcON39u8lFLOchnk9rEfyg95f0rSQ4fviT3Hwco+VUJm9Bt0l9c9tqR6rL5U9a4pEHa1gJXy25e04WIAAAAAAAAAAAAAAADI0eoN1cWBBEFNs2KDsOzGekRMd6964gLJ5tf7nor+ZExRnW368wJ1jp+6P/FhsYFqUv0hRjOM49a81ucdujW0dszun1spZtw/OO81WlV+IrDkBw9O//9wROvaQGV/7KVsvyLZHRYW5rg1YV7XHvx88kOVNCysDfuyUt4nY9vSxm3V9SThcbOsiF7Gul+bqPfJU78M3OxXQkLL+gfrG0OUJUOhu/xd8/o3Jw4FFxXy6SMGAAAAAAAAAOBoQ1gYAAAzooKI7Jk/Mu2jPLhn0FmuYXd14L4TesJnItvSsyN0XyNO7jsncPsp87ZfvuwFgTXPHLyqZt02jrb1np7ous8aujZw+7Hdx6towmc/u2jpFYnOX49y1Ex1LVb2Qmavy5CXoElpb2l36L4hZzjL4QQ6sXfxDJZRTug5WVa9TYNHqLSBjZ0e8AgAAAAAAAAAAAAAAHBEefzh6uL60q7Eh3XFhYU1GFzk79+j4cpIqvGYuCKrzr6foVXVxQEvPsxqbkz5h4VJkipzfVrHlB9LdkxEyFBdCnM9ej8vnhhYcvbG6f9PRbSVLfEOxl7KUXk6fKuDGGMkb64fNixQLYjtJwwLazCgry4m5l1Xz33qnpsAtNsLCblaeBm/FP3+r/e9v2xV+L69TwZvDwsLczJ4ry80L+xxkV3zJrsthST0FcJ7awEAAAAAAAAAQHKkDwAAMKPih4eFmZnAmayDZ1YW1mZ6vjwVTFEvWf266UaSAM9a9nytL25etH11YZ2evfxFuYzpmuW/phXumpptz1n+Yq0ozG07b2CnTloQAnbp0HN1bNeWRed7wYqXa6mzrLruGFfbek6rqTm2a4suG3pu4Hgc4+olq39HVkCo3LkDl+jaFb+hC5b+SvwXVockYVmtMuVHTM/YRKPl4LAw1xTUO38my5ysLqzXlct+NVHtoLNc1634jZxH1HmslN++pK0HAAAAAAAAAAAAAABAjnqXVBdPm/hJ4sNcP2aywgYn5DPbzlIxRY9Tt5cgmKvOMZmunuryRYf+M/Fx3V5MoJqUecDT5WNfTVa4ZlOm19WZF1cX15Z+GVjy1IHp/1fC20LV543FXsr2Kx0XFrbQdQc+m7jWTtqH2I6TYLqF9McsGawuPnvsy4kOceImdq03LGz5mvB9EyFBZuWQz8YsggEX2nFe+L7ReWGLYWOq5/4AAAAAAAAAAIBFcvgpAAAAnclXeFeIPRM4k2XwzLXDN+qiwSt076E79dDEvfri7k9mdu60Tu47OzDoa9agu1wn9pyqpe6y0Jpeu1+/t/6PdO+hn2nX5P3yfV9ruzZqS88OdVndeQxbS91l+l/Hvk/3HLpDe0pP6fju7VrbdWxNjWsV9Opj3qz7D9+lRycf1qburVpf3BwYeraisEZvOfb9uvvQ7ZrwDmlrzykacof12OQu3XvoZxourNZx3dtUsIqhYzq1/2m6ZeNf6e5DP9GB8j65VkGbu0/UsV1bZBlLv7riVXrakot13+Gfq+RN6sGJe3Tn+G2Jvt6rlr1Q/3Xw23py6tFF+7ykM/q1QLkJYWG+78fWjJaCZ/8cdJaHhuBlyRijK5f/qk7uO1v3HvqZJkKaBlcV12lrz8nqsfsC9x/N7JSBjWnrAQAAAAAAAAAAAAAAkB9z/e/I/+jbp5dTHBcbFtZoCNbwMZKkcw79QD/oOSe2vNtPEMxVb2CQJPX0S4cOaknlQOJDuv0EAWZZBAidcr700+9Ikga8hOMrhPfb1WXpcHXxyrGv6Hs9i0OMfvzI9P+9iLayPm889lK2vM4MC9txnnTH96YXJ+9MfFhsENYMY7VhX1Y996l/qLq4ffLnyS4TGxZW32tjjFHY4+p/8o9l5oXkVVVCxpLDM2scN3x8f3yTzLNvnF4phfSLduL7CAAAAAAAAACANkRYGAAAMyoRYUvWzCxoxhhZsuRFBIsl1WsvkW0cbe09RVt7T9F3939Ne0pPNXzeepza9zQ9bSCgkSClglXUSX1n6KS+MzIYVTJdVrdO7js7ssY2jrb07NCWnh2x5+ux+3R6f23z0Jrieq0prk88puWFlTq/8KzAfcYYbezeoo3dWyRJDx2+N1FY2NaeU3TF8uv1yOSDgWFhFb/xZzIvpbhmvSbZWw4OCxtyhwO352Vd1yat68p4tsyjhJUy/MtSGzalAQAAAAAAAAAAAAAAHK26aiedXFV+Qk84q2IPsxUzkWIjwVySVOiSJK2oBPcXLZQomMs0MKahFdKhg3JVluOXVDbxITvdIRMX1sgiLKw75QSIxe7sJ3Iszj1HXV54cNvhKV+ViLa6Hj8+LMzxy42H0bVCb3/N6mBlr0btoZDiOXbSSUsbfc/lwa4jjGpg7jVJ9B6S5CgmLKyR56V/UDo4unj7T/4zuD4sLCyL93qQdcdLj9wbuMufnJApdkmVkH5Rh19dAgAAAAAAAAAgC234UxoAAFrDjwgAmx84kzasJoxtan/wbVLNlZitrL4mpGclbISafT7skCYyL64hroVKXshMcU02WtoduH3QXd7kkaBeacO/+GwDAAAAAAAAAAAAAABoH/6B2hAcP0HPXMGbjK9y6ggJmm/tZknSQGV/ovJEoUKNhCn98v7qYpKgMEkq+gl6tLIIELo7fmLMGpPJAphSmXe/eyKC20YOSp4ffpo+byz2UrYqjT9frXDXf9esJgkKkxIE882yWtCXFddrWU8Y1RO75g5P+LU7fkxYWCOvTVBQmCQNrgjePjUZvN0p1D+GKDPBioH2zYQtlkI+i/IaEwAAAAAAAAAARxnCwgAAmFGJmBHNmhfQZKcMqwljLwixMS38YzltAA+yk/S+m5lnMOxeeUln9GuBsh8yU1yT7S2HhIU5hIV1irCwvKzqAQAAAAAAAAAAAAAAkB9z6vk16y/Z9/HYY1wl6D0qdtc7JEmS6R+UJL3owKcT1XdHBFRVNRIWFhXIE6Loh4QGzZdFWNhJZzd+jgaZeaFRO8f/PbTucEmqhM8hq17vUOy1HL/cmWFh2+q7T7FBWLMaeb7z4qYPozJnXpz6mNhQsUbCws7aGbx992PB28PC+Lp66h9DBHPVS0P3+Z94t3zfl8ohn9md+D4CAAAAAAAAAKANteFPaQAAaA1P4V0h8wOarIzCZxaHhcXPkpgXAnVaJ+l9n62zTHAjSSXpjH4tUEoya2UTjJZGArcPucNNHgnqlTbYkCBEAAAAAAAAAAAAAACANtI/VLP6yn1/G3uIm2SiwkJjYWGSpLMu0bmHfpCotNtLEBbWSE/epS+sLr589KOJDkn0OmUQFmZ2nJfugOe+quFrBtp5vSRpoHIgtOSLP/Xl+eGn6PPGYi9jqyLZnRdyZE5+es361Qe/lOg4O6KPtkY7hoXVE0a1cl3N6pt2vyf+MnGBag28Nua614bu80cD+h+nQj6LiukDBxOZ99m0yBc+It3xvfD9dYS5AQAAAAAAAACAxdrwpzQAALSG54eHLc0PCAsLa0rLNrWNN6aFgV0E6rTO/FkOI+tmwsLskHvl+QmbdFqgHcLCSt6UDlb2B+4bcggL6xRpwxqz+rwGAAAAAAAAAAAAAACApGWrGju+WBvq1ZMgdCtRCFYxg7Cw/kF1+wlCwCR1+xPxRY2EKRWL1cWuJNeSVEjSo5VBWFjq17qQU2jRzDh6/EOhJd9/wFcloq0uyX20/Up9IVStVijWrHZ5yZ4jO6KPtobVir6smF7LekLdFjyfPV748zQrPiysgdemqyd83w//bfG2yZDPrCwCFINEjU+S/63/F76zA0P3AAAAAAAAAABoR4SFAQAww4uYEc2a90dmWFhTWgvPY8U1MuSIQJ3WMQn/OjYbkhQWlhQVdtdqJS//sDBfEVNAShot7wndN+guz3o4yEnaYEOLb3cAAAAAAAAAAAAAAAAyY176+8E7Lr422QnWHlezOlwZiT3EjQvm6e6V1h2f7PpR7vpv2RE9hPMV/cn4okYmD911T3VxZfnJRIe4inmdpGzCwraclq6+nCDsrR4P/EyS1BVxL4qOkRfRVpYkGMvxy50ZFrZkWc3q5tIDiQ6zkzxHkmS3Yc9pPfdpaGXN6vbJn8ceYivmuWkkLGzzjvB9e5+oWfVLU9L3vxpcm0WAYgATd96vfCJ8n1vIdjAAAAAAAAAAAByl+O15AABAJkwjAAAgAElEQVRm+H5EWNi8MK2sgrUWnse0MCzMJiysZZLe99m6sOevEteA0kKlJLN75my0FN5YOOgQFtYp0n7+EoQIAAAAAAAAAAAAAACQoeNPlXacV7vNcWWe/RuJDjfFrtr1BMcU/JiJCq9++aLz1uX8qxKXukn6oaz62/TNeVdUl6898LlEx7hxr5OUTVjYSeekKjcXXN34NYPOe96V1eWCFxwY9tAeX5WI/LfY0CdpOkCuE8PCTr+oZvXF+z6Z6LAkAWqSGgvDy0s9z/eKtTWrl43/W+whTlyAYQNhYWbJUOg+f/fjc8uHx+W/4dnh58kpLEySVIj4vD04Gr6vE99HAAAAAAAAAAC0oTb8KQ0AAK0RFbZkzfsj08roj0/b1DYmmBY2T2T1NSE9K+F9r4aFhdwrL2mTTguUkjSiNchXxBSQkvaWg8PC+uwlKljFPIaEHKQNNrTbsSkNAAAAAAAAAAAAAACgQxnblvmTL0rXvVbatF16+pUy7/m8zJkXJz/JltNqVq88+C+R5YHBXKs2SNvOlrnpj2Re857k145g1m2RJD390Hdja2MDzKSGAoO0/Jjq4jHlxxIdkijALIOwMGPb0WFBCw2taviagVZtqC7+9t4PBJZ8/wHJi2grs3xPF45/O/IytiqdGXLU3Vezelzp/kSHzQ9QMze+Nbywkec7L/U83wtCtYoJ3tvxYWEN9qyddlHw9n/487nlL3xI+tE3w8+RRYBimGteUd9xnfg+AgAAAAAAAACgDWUwPRAAAEcGzw+fQs6aF1CTNqwmjK3a85hE8yTmI2lgFbKX9L6bmZCwsOfPU8QUiC1WTtKIlrPR0u7A7YPO8iaPBI1IG2xoqQ2b0gAAAAAAAAAAAAAAADqY6emX+e331X+CBYExvd54ZLmr2t4j89aPyVz6q/VfP0xhesLB2CAgSa5fng7MmpoILzIN9APacz0vXX7ENeZJFmCWUZ/gkiFp93SI2erS43rcXb2o5NxDt04v5BVaNC/kyY7onatEtNXZqqg75vV1/HLN/egYXT01q0mfxurzv/3c6HvXitck7j1VT4CZu3ii0b7KQY3Z/aGHOBETE9c9jpoLhIRq9S2tLvr/N+YzeEEIWqZ6wl+bSISFAQAAAAAAAACQCcLCAABHlf/c91V9e99XAveVvPBmmfkBNVZWYWGmjcLCCNRpmcRhYTONLmH3quLHNKC0UNR7q1lGyyFhYS5hYZ0k7edvVp/XAAAAAAAAAAAAAAAAyMjPf1izet7hW/UPA9eFlrsLw7t2nJvHqKTjTpEkbSjtii0t+FNS75LosLBGgrlWbZg7jXwNl5/SiLMi8hA3bkJH26n2oDVsJihMkl544O/1p8t+d1HJjfs+Nr2QV2jRvCCrffbSwJKlPZLnh5/C8j3d1nVa5GVsv9KRIUfGLSjiSw9lzwZh/exW6dLrIy7QhhPUOul7xYxlLXqdev1DGlNEWFhcoGCjQWpPhnwG9S6ZW943En2OHMPCzBnPkP+xP0p/YAe+jwAAAAAAAAAAaEdt+FMaAADyc7C8T49OPhT431Olx0KPs+Y1NmQVrGWb2sxO08LmiYXBZWgek/CvY7OBdWHhR147h4UlmbWyYdGtTXtLwc0xQ85wHoNBTuyUn79p6wEAAAAAAAAAAAAAAJCzi55Ts3r9gX+KLK8JwbriJTLzgrQytekkSdJNox+KLXX9ktQbHiYkqbEwpeE1NatvG3lH7CGFBGFhmTlrZ3XxlaN/q9Wlx2t275i4Q889+IXpldzCwubOe9nY1wNL9h2SKl74KWxV9Ov7/2/kZWxVJPvoCTmyZ/sQL3lB9L2z2rAvK6Nn/C273xV9GcWEhTXYC2yuelnwjid3ya8k7BPNMSxMO86T3EL64+o5BgAAAAAAAAAALEJYGAAACcwPaLIzCvVaGNBlKaNZ++oQFkCF/CWdrdHMPB9hz5+ndg4Li2lEa4LR8u7A7YPu8iaPBI1I+1llteMMlgAAAAAAAKhL0L+lel7Eb3sCQAcI+hxL+rMjAAAAoGNt2FqzOlzZrb7KwdByd3aiwrXHyfzPD+Y3Lmc6EOr4qftiS11/SupZEl1kNdC3siDo53kH/1/sIYW4CR0zDAszO86tLh9XekDfevgSvXH3e3XFwa/olpG36+u7LtdSb/90QV6hRfOCh/q9A6FlP3kkfBJKS552TN4ZeRnbL1efjY5z4lmpD3Fm+xDXb4kJC2tBX1bc98v1PuOnnF+zesn4NyLLHT8mLKzR12bNpvB9d3wv2TkKXY2NIYJxXJm/+mb6Azv1fQQAAAAAAAAAQJvJcIogAACOTK4pyDVzP6S2lE2wlr3gj2HTwgxPi/zQljEJQ+JmfzEk7Pmr+O37S3GluEa0nPm+r9FSSFiYM9zk0aARacMaCUIEAAAAAAA4clgBv2RXKpVUKBQCqgGgM5TLi3/BOOjzDgAAADiSmGKPFsY3DXr7NGb3B9a7MxMVmhf8lkyOf182xsiX1OuNx9a6fik+uKiRSe4KtSFNfd5YsjFFsTPso+nqqVndVHpIfzRyc3BtXgFBvQPVxYGIsLBv3BUeFmbL06Affux0TaVzQ46mJlIfYvszYWGlqehn+FB4wF/L1BsWVq597wxUop+J2LCwgWX1jWNWb0QQ4Y+/LX/b2fHnyCukb9bgivTHOPw7LgAAAAAAAAAAWaDDEACAGMf3bJdt5poIsgqfsRecJ2loVB4WjgXNkzSobTZMLuz582abdNpQ2YtpRMtAeEuXdMgb06Qf3Pg05C7PZ0DIRdpQRTujcEcAAAAAAAC0njFmUTDYgQPRv7gHAO1ubKz2F/4LhUJ1AhkAAADgiHXqBYs2PeKuCy2vhmAVcg6/mb2eYoKAJBVUklZtiC5qINjMOLWhR13+ZPyY4iZ0tDLsozntosSluX2Ps3FbdfGUidtDyw5GvHR2saAeO/p+234Hh4Xdf0fN6rmHbo09ZDYIy3T3SWuPCy8s598TmFq9YWE9tUGFKytPRZY7UZ8RW06TGVpZ3zhmnXRO6C7/o2+XDo7GnyPvsLAVa9Mf06nvIwAAAAAAAAAA2gxhYQAARFjmrtALV76qZltWwVoLQ59a2fhvEajTMknv+2yYXFj4kaf2DQsrxTWi5Wy0tDt035Az3MSRoFFpP3+zCncEAAAAAABAexgYGKhZP3DggMrl+F/gBYB25Pv+otDD/v7+kGoAAADgCLL9aYs23bT3b0LLq+FdeYffSNWQnvMPfSeyzPVLNWFVgRoIC6tHNVQtTJb9iSecnqzOLcTX1MlYVjUcyononbv7iYhzFLvV7URNUzlz7k4NOfqVX6tZ/cORm2MPqQZhnXS2tKzB0KtmqzMQzzzv1anqnfkTu84PKOvqkXnte+oaQ814unsj9/uvvyr+JDl/XhpjpOtfl+6gTn0fAQAAAAAAAADQZuqcPgUAgM50Yu9p6rJ7EtWuKqzV5u4TVbS6arZbGWVtLgy9MS3M8CRQp3WS3vfZUDHLBNdX/HYOC2vtLIJ7yyOB2y3ZWuIsbfJo0Ii0wYZZfV4DAAAAAACgPQwMDGhkZO7f+zzP08MPP6x169apUMjvl08BIGu+7+vRRx9VqVT7M5QlS5a0aEQAAABA8xjLkl/okqYmqts2lR4IrX/A3Ti9UOwKrcnMCadLd/5Azxj/tr7Tc35oWcGfkukdVmTMVEifV2Lbnyb97PvV1TMO/0i3dYeHdBUUFxaWXR+NMUZ+V480cSi6cPu5mV0z0PWvkz71PknSs8a+pq/2Xbao5OE9wYfaflkq9sSGhdl+RbI7NORo+Zqa1eFy+KSbsxx/Jiysq0cqNOE9l0Zc4J1d56/GLFu9aNOxUw/pocKxgeXV1+i618pc8RLpu1+eDsY7/yqZ9SfUN4aFdl4vff0zwfvuvyP++K78wxXNM54n/zPvT1ZsOy2dUBkAAAAAAAAAgCMJYWEAgKPKxu4t2ti9paFzZBWsZS/4Y9iodT8ItzNsBEI6Se/7bOhR2PPnyctsTFkr+VNNuEp409ZoKbjJaakzRFBeh0l7vxaGMgIAAAAAAKCzua6r3t5ejY+PV7dNTU3pgQceUE9Pj/r6+tTT0yPbtvnlMwBtx/M8lctljY2N6cCBA4uCwlzXVbFYbNHoAAAAgCabFxQmScsrIYlOku4pzvT71RsElMbU5Mx4okOVXL8k9cSE/VoN9uTtr31Ner2x+DHlOZ6F4oLCJKmYc2BRaa4vbY+9LNWhljyp2KXu/U9IA+F1jsqS3aE9SIcO1Kwuq+yNPcTWzKSlvUuk7r7wwpPOaWRkuTD1fkZ0LZ6A2Ivoqa2+Rgf3yxx3snTcyfVdN8qSocaOz/u9J0kDKd5zLhM9AAAAAAAAAACQFcLCAABIyVZGYWELQmysFv7ikpXR14T0kv7C2myoWNjz5/mVzMaUtZLXjLCwcKMhMyIOucNNHgkalTbYkDA4AAAAAACAI8/KlSu1a9culcvl6jbf9zU+Pl4TIgYAncQYozVr1hB0CAAAgKPWzvFvxBdt3p77OMz64+VLunT83yPrCv7UdJhS5MkaDOd67MGa1Q2lXfFjih5QY+OpR86BRWbz9uoUk0856XrBbL8iFbvVfSg6QMs2fsd+r2aWDtdMwbmy8lTsMc5sH+K6LTK2Lf+cy6QffK22aNlqadvZ2Q00K/WGhRW7Fm06buo+7XLXB5ZPmJmg7/6IlLkGmbN3yv/cX9d/gkITwsLWHpe8thnhZQAAAAAAAAAAHCUyniIIAIAjX1bhM7apbUwwLfxjmUCd1rES3vfZ5yPsXlXaOCysHDdrZc72lkYCtw86y5s8EjQqbbBhVuGOAAAAAAAAaB/FYlHHHnusisViq4cCAJkwxmj9+vXq6elp9VAAAACA5rn42prV1eUn4o/piQnnysLpz5QknTB1b2SZ65el3v7oc1kN9gM+/zdrVo+buj9mTDE9Wo2OZ6ETTo+vyTsgaNs51cWX7vt4qkMteVKxWz1nXxBZZ3dmTti0rWcs2nTlwX+JPMTxpwP6jT3dd2V+98+klfNCs7p7ZW7+mEzWz1MiMTfDrrNXLCBY64+eemto+UFr+r1vTr2wvuslce4VjR3fhHAuY0yyzwFJcgr5DgYAAAAAAAAAgKMIYWEAAKRkNTrj3+x5FvwxbFoxc98MAnVaJ+l9n52dMCxczFP7hoWVYmetbJzv+6H7Rsu7A7cPuulmk0TrpQ02zOrzGgAAAAAAAO3FdV1t2LBB/f0xv5QLAG3OdV2CwgAAAHB0mh8+lFQTwm9U7Koubp/4WWhZwZ+Suvuiz9Vg34rpW1qzfvzUfZH1BX9KWrs54oQZ9yeuSnAP572euZh3/n7vYKpDbb8iFbvVPTQQWedY4X1pba9r8fea5x7+fuQhjspS39xrYo7ZLPOx22Te/VmZt35M5u/vkjntosyHmgmrzj7YgM+WDaVdoeVj1sx7P8fnu+EwtmZ8XkrSmRcnq9vzeL7jAAAAAAAAAADgKOK0egAAAHSaLIK1bDnV8KdZpoWhNgTqtE7S+z4bKmaHhCV5vpfZmLJWipu1MmejpeCwsCFneZNHgkal/fy1CEIEAAAAAAA4Ytm2rbVr16pSqWh8fFxjY2MaGxtTpdK+EysAgCQVCgX19/dryZIlKhaLi35mCAAAABwV9j6Z/hi3kP04FhpaWV2csMKDgHzHldxi9LkaDftRbUjViVN3R1bb8qRTL5J+eX9wQdY9goUEYUR5BxYtnZsscnX5iVSHWvKkQpd6uqJ/naKjw8KWrV60ySj663H8sjS2v/aY3iXS06/KdGi5cOr81ZiA4L+Byv6AwmmHrZnnOu4zoFFn7ZT+6+vpj1s6LGM3p2/OLF8d80QBAAAAAAAAAICsERYGAEBKVkhYUxpBgU+zYVCtkMXXhPokve9G081aYfeqovb9BbiyP9Wya1f8ivaV9wTuG3QJC+s0aYMNw8L1AAAAAAAAcOSwbVtLlizRkiVLJEm+78vzPPk+v6YGoL0YY2RZFuFgAAAAgCSz7vjUATPN+Lu0WTJUHdf5h76n+wrHBdZVnC6pqyfmZA2Gc516Yc3q9sk744/pjhhTw+FlCyQJAss5LMz09FXv12Vj6UKVbL8iFbtlFbs0UNmn/fbSwLpu09qJMhuy7vhFm54x/u3IQ+w27kOMZdf3qzHGcRZ9HhWU4L5v3FbX9ZIy518lv56wsGYGu517ufT+1zfvegAAAAAAAAAAgLAwAADSsnTkhYXZGXxNqE/S+27NNLuFPX+e375NOiWvdWFh+8t75ckL3DfoDAduR/tKG2xIECIAAAAAAMDRxxgj2+bfhQAAAAAAaGubt6er33BCPuMIcuqF0k++rdft/Qv93dIXB5ZU3C6p2BV9nkbDuY7ZVLOaqMusqzd8X9btiXFfvySTc1iYpOmAqEpZQ95oqsMseVKxW6bYrQ8/fpNesPbTgXVdppzFKFvCGLMoBGtDaVfkMbZfls66JL9BNSIuMLDOsDBJ0o7zpDu+l+6YvJ/va14pfeHD0gMJggJnnXqhzG/9cX5jWsAcs1n++c+WvvOlpl0TAAAAAAAAAICjXcZTBAEAcOSzG53xT8EBNlYG560XgTqtYxL+dWw2VCzs+fP84ECsdlDyWxcWNlreE7pvyF3exJEgC1bKb1/S1gMAAAAAAAAAAAAAAKAJCvFBUzUGV+YzjiDrjpMk9XljoSXGceKDghrtBww4/8kTt0dfMjIsLOM+miRBSWnvcz1WH1tdXFl+MvFhtrzpwLOubq0qPxFaZ9mtmwQ2Exu21qx2+4cjyx2/LPUP5jmi/DQSFja8JnlpeWR6oZBvWJixbZk/+LvkBzz9Spk//5pM75LcxhTEXPmSpl4PAAAAAAAAAICjHb89DwBASlkEa9la3JRgMp+6LzkCdVrHipvtbsZsqJil4OevokpmY8payS+17NqjpZHA7UXTpW4rojkObclO+fmbth4AAAAAAAAAAAAAAABNsGbjok0v3ffxwNK/evy3pkOdmsVxJUmryk+qywsOVjr/sS9KAzETFVoN9q30LV206RX7PhpYeuH4t6cXlkWEqiXsU0vKBNzDhfyDo5leM9DjD1UXn3SSh8pZvjcdeFbsVrc3EVHY4f1HD99ds9rvHYwsd1TJPQQrN42EhY08tmjT2Yd/GFh6476PSbY9HRqYt5XrktcOrpTJ+H2eyJpN8TXPe3X+4wAAAAAAAAAA4ChBMggAACmFhTWlERRg06rALktWaxoEICl5SNzsPQoLq/P89gwL831f5SaEhfnyA7fvDQkLG3KHee47kEn5OZlFuCMAAAAAAAAAAAAAAACyZdYet2jb8w58ftG2bu+QLh/71+lQpyYxF1w9fW1/Qlcf/OdF+0+cvEvbpu6ScQvRJ7Ia600y9uK+l6sOfjkwwOwFBz47vdAVMXmiybg/8bwrYkvMSedke80gJz+9rsNclebCwvzgUDhJ8q0mBELlaUGPnBXSZzfL9ivNDedLI67fr5Fgt1MvWLTpBQf+adG2Xm9MV4z9a9MC1Uz/YPLasy7JcSQRNm6b/i+CecbzmzQYAAAAAAAAAACOfISFAQCQUlDQVxbnaFVwEWE6rZU0/Gi2Luz589SeYWHNCAqLMlreHbh90B1u8kiQBctYqQLDsgh3BAAAAAAAAAAAAAAAQA4WhGFdMf5VfeDx12l5eXpywI1TD+rLu67RuvKjTQ0L0/GnVhc//PhNes6BL8iZ6YE659AP9JVdV8tcfN10wfAx4eexMmjTP/vSmtV15Uf1z488RxumHpYk9VcO6M27361X7fuwNLAsOkwpi/HMY4aPiT/n0MpMrxk4jue8srr8/AOfS3yc45dlij1SsXs6ICvMnscbGV7rXf0bizb97ydeH1ruqNzc91uW7PqD3cwpi0PnXrf3A3rD7vep1xuTJG2aekD/sutqrao8KRWaF6hmXvPuZIXrT8h3ICGMMTJ/8iVp+9OC97/pwzKnXdjkUQEAAAAAAAAAcOTq8KluAABoPiuDGfZss/iP4DQBOFmyCdNpqaQhcUbTdVbIc1LxvczGlKWSP9XS64eGhTnLmjwSZMU2lsoJn3c76xlRAQAAAAAAAAAAAAAAkI3VG6Vf3lez6dX7PqxX7vuInrJXTAfyzCo0Mbyoq6e62Osf0j89+kKNmV5NWkUtq+yd3uG40//vH5RGHg0+TxZ9K/2DizY949B/6v77T9SjzhqtLD8pZ3aSyYFl0dfMYzLTs3ZKP/ha+P5mhE4V50KberxDiQ9z/PL0sYWu6YCsEN2V8YaG13LFnkWbBrwDoeX7rAGp6Oc5ovw0EBYW9DoZSe8e+QO9Y+RtGnGGtaY8LziumYFqy1Ynqys2L8BsIbNircxff0v+/j3S6FPTn0dTk9KKtS2bSBkAAAAAAAAAgCMVYWEAAKRkZRCuFRTQNRsG1WxZhJ+hMUaWfEWHH1kzDROWCX7+fHnyfK/t7mezwsJ8BTco7S2NBG4fcofzHA5yNP0ZHN6gt7gWAAAAAAAAAAAAAAAAbWdBUNgsS35tUJjU3BCcgBCgPn9cffNDo2ZDiaICg6zG+7jMxm0hXVHSMeXHajfsuif6mnn0lbnF6P3NCFTq6q0u+il6MB2VpUKX5HnaUNql4fJTGnFW1NS4/pQuHf/3zIbaEo89sGjTqvIToeW77eXSk3fkOaL82A30im04IXSXq3JtUJgkPfVI/ddKa+O2ZHXNDDALYQaWTQeFAQAAAAAAAACA3LRXmgQAAB3ANo1nbQadw7Toj+Ww8Ck0T5KguNnnIyhoblZc4FgrlLxSS68/Wt4duH3QISysU6X5zOLzDQAAAAAAAAAAAAAAoE119yWvLTQvLMyYBIFTToKwsCzCuZ75/OS1/YNS1NiTfF0pmct/PbqgGeFF80Kerjv42cSHOX5ZcguSmZ7q86X7Pr6o5toDn9MS72Amw2wVc8YzF2078/CPwuvlBx7TFuKeYbv+3l4zuCK+qFU270hW1wZhYQAAAAAAAAAAIH+EhQEAkJKdQROPHRBgk6jJKAdR4VNoDivBvZ8NFIsKP6r4lczGlJWSP9Wya096ExqvBDdrDbrLmzwaZMVK8S1M0GctAAAAAAAAAAAAAAAA2sAlL0he2+wQnIuvjd4/G0rUFTEuq/E+Q7N+S/LiZz4vJiwsh18b2HFu9P5m3Ld519g2eVfiw1y/LDmF6mv2zpGb9fsj79LGqQe1pvSYXrP3r/W3j70q8+E23Yp1izbZCu8zNPKlZavyHFF+GggLkyQtW5289tIXNnatFIwxMu//anwhYWEAAAAAAAAAABwVGvyJCAAARx8rg3At2yz+I9hSa8LCosKn0BwmQfjRbFhYVFidJy+zMWWl7Jdadu3R0u7QfUMOYWGdKs1nVpL3FgAAAAAAAAAAAAAAAFqgUEhcatzktZkoxITuzIYSucX8x7J+i7Trnvi6Ynd0QFkG4WWB12xkfyZj6Kku9niHEx9mqyy5BalvQJJkydfbdr9Db9v9DvlSi7o5c9DVs2iTHTEpqZE6N3TKbrAXtm9A2vN4stpmv0bL18TXFLryHwcAAAAAAAAAAGg5fnseAICUsgjXCgoca1WojcVfB1rOJGgtMjMhYVFhdV5EE0+rlPypll17tBweFraUsLCOZaf4zLIJQwQAAAAAAAAAAAAAAGhPh8YTl/oH9uY4kMXM5pOiC2ZDeSrl8Jrxg9kM5tH7k9W5RSliIkqZ7OOvTE+/tO744J3HnigTEFSV+RgKc4FtKypPJT7O8WfCwnact/icmYysTRx/6qJNtqLCwvw2DguLuTNRz38SD9+dvLbY5GCuNZuk/sHw/SecLpNHICAAAAAAAAAAAGg7/EQAAICU7IiwpsTnCAiwMTk04yRBmE7rJQoLm6mJCqurtGVYWKkp1/HlL9q2tzQSWLvEXirXcvMeEnKSJrCRMEQAAAAAAAAAAAAAAID2ZJ7x3OS1Zzwzx5EEuPSF0ftnwpTMpb8aWmLOvjSbsVzzymR1jhsdCNZokFLYaa9/Xartuejpn75mikMcvyw5roxbiC68KPlz2o7M4PCibXZEn2F7h4XFaLQH97wrktc2+TUyjiNz3WvD97/gt5s4GgAAAAAAAAAA0Er89jwAAClZGTTNBIaFtWg+ujTBO8iHSfBMzYYeRYW7eREz/rVK2Ztq2bVHy7sDtw+6ixug0DlShYXx+QYAAAAAAAAAAAAAANCelq9OXts3kN84Aphlq6L3d/VML6xYF16U0ZiTBqUZx5WsiD60qH0NMNe8Qubmj0tPe5a0ZqP0tF+RueWTMle9LJfrBXruq6qLm6YeSHSIo7I0GxR24pnhheu3NDKy9rC0tl/OjugznA4L68p7RPlosLfXnHZh8uJWBKq99Pdl3vAB6fRnTL/X1myUzrtC5g8/I3NZTMAhAAAAAAAAAAA4YjitHgAAAJ0mi/AZ2yz+I9i0KMPTEmE6rZYkKM7MzHpnRTwnlYgZ/1plym9dWNje0kjg9iFneZNHgizZKT6z0tQCAAAAAAAAAAAAAACgibp7k9cWWhBeVChKU5PB+2bDlAaGwo9fmtGEhklfJ9uNDksy+U1manZeL7Pz+tzOH3v9Yrf8lMc4fkVyCrNnCC+0joD+I7u2X9WSF1pqfL8177csNPqMd/clv1QLwsKMMdI1r5C55hVNvzYAAAAAAAAAAGgfrUklAQCgg2URPhN0DpNjM04Uu8HZ1NC4qACwWbOBYlFhdZ4f3sTTKuWmhYUtbvcaLe8OrBx0CQvrZFaKz6wswh0BAAAAAAAAAAAAAACQg7XHJ69tQTBPaFCYJBVmxrP+BGnVhsX7l6+RtpyazThOPCtZnetGhyUdyX2C88KtHihsSnSI45cldyYs7JF7wgutI+B12/N4zWpsp2o1RK3NxPXYNtqDe/LTk9cWOzRQDQAAAAAAAAAAdLwj4KdXAAA0V1XeIS0AACAASURBVBbhM7ZxFm1LEhiVByuD8DM0JklQnJl5PqLC6jxVMhtTVkp+qWXXHi2FhIU5Gc3aiZZI85lFGCIAAAAAAAAAAAAAAEB7MmlCmFoRzPOiN4TvmwkvM8bIvPyW2pCimW1ZTR5q+gaSFTpudCBYiyYzbYp5YXI37P90okMcledCsZ776tA6cyT0H133W4lLLXnTz1InavReHXti8tpiT2PXAgAAAAAAAAAAqNMR8NMrAACaK4tQr6DAMRM/X1susgg/Q2OS3PvZ5rGo+1Xx2zAszJtqyXV939doOTgsbMhd3uTRIEtWiqYuwhABAAAAAAAAAAAAAADa2Lazk9UVuuNrMmZOuzB857xwKvOsG2Te/1Xpua+SrnmFzJ/+i8yVL8l2MMtWx9c4rhQVwHYkhF6FmXc/Tpm4PdEhjl+W3OmwMLP2uPDCNKF2bcqceGbyWvkdHBbWWA+uMUY66ZxkxcXmfyYBAAAAAAAAAABIktPqAQAA0GnsDMK1gs6R1UyCaWXx9aAxJkEA3WygWFRQkqf2Cwsr+6WmXMf3a9fHKgdU8oODygYdwsI6WZqAQ8IQAQAAAAAAAAAAAAAA2tjURLK6Yle+4wjStzRi30DNqjntIpnTLspvLJOH4mtsNzoQrEX9iU0x717ZCXvo5oeFLWo+m8efPNyiaWBb46zD/y05L2v1MOqTRbBbV0+yukILPpMAAAAAAAAAAACkBMkUAACgRhbhM3ZAXmeSwKg8WPx1oOWSBMXN3idb4c+f53uZjSkrYYFdeRstj4TuG3SHmzgSZC3qPbColrAwAAAAAAAAAAAAAACA9tXVm6zOLeY7jiAnnC71Llm8vdAlbX9ac8cytj++xi0c2YFgUU69oLp4+uEfJzrEUXkuhG7dceGFk4cbGVl7WL9l0abnHfj8om0Fb1IvOPBPkuM2Y1TpxT7fGTz/xe5kdbNBcwAAAAAAAAAAAE1GOggAAClZKYJqwgQF2JgWzT+XRfgZGpPk3s/WRN2vip9sVsRmalVY2N7S7sDtjnHUbw8E7kNnsKJmQF1Yy7c7AAAAAAAAAAAAAAAAbctc99pkhU7zg3mM48r83p9L1rz+E2Nkfud/y3T1NHcwl784vsZxa8d6FDGDc5NHnjR1V6JjHL8sFWaCoZavDi8st6b/LVNLF0+u+YcjN2tN6bGabX/+5O+p15pMNPlpW8pi3EnDwto1UA0AAAAAAAAAABzxnFYPAACATmOnCKoJP0f7hIXZGYSfoTFJAo3MzHMXFVbnqQ3DwrxSU67jy69ZHy0Hh4UNOstThU2h/aQJbCQMEQAAAAAAAAAAAAAAoI0NrYyvMUayW9MDYi57obRpu/SDr0qVinTOZTInnNb8cazdvKA7KoDjSlF9UX7sGTrb+i3SrnvU7R1OVO6oMhcMVYgIiCodAWFhAQFYW6bu0389eJ6+3He5nnKGden4v+uMiR9Lha4WDDAjWYTlJQ0Lc5sfYAgAAAAAAAAAACARFgYAQGppgmrSnKNVAUaE6bRekpn4ZsPkosLqPL8Nw8L81jRL7S2NBG5f6ixv8kiQtaCwxdBawhABAAAAAAAAAAAAAADa19IEvTxuIVF/VV7McTuk43a07PqJ2c50sNrRas8TkqQufyJRueOX54Kx+gZC68zWMxoeWsv19AduXll5Sjfu/1jtRsdtwoDqFPd8Z/H8e16yunZ+nQAAAAAAAAAAwBGtNakkAAB0sCzCtWyzOK9zNgyq2VoVUoY5Se79bI2J+OtbRQkbVZqo7Jdact3RcnBY2JA73OSRIGtpPoMJQwQAAAAAAAAAAAAAAGhjG7bG1ziF/MfR7k46J77GcaWjuRdw/IAkyZKfqNzxy5I7/WyZrh7p9GcEF559aRajaylTKCYv7ugQrMZ7cM1JZycr5HMJAAAAAAAAAAC0yFH8E0EAAOpjZxIWtvgcUSFQebJFmE6rJbn3s6FuxhhZIffM8yuZjisLJX+qSVeqbfIaLe0JrBpyE8xGirZmpfisJAwRAAAAAAAAAAAAAACgfRmTINzHJZRHG06Ir3ELknUU98rsvD5VuaOKzLzXy7zxr6SV6+cKjJH5nx+UWbUhqxG21qaTktV1clhYFs//069MVtfJrxMAAAAAAAAAAOhoTqsHAABAp0kTVBPGNov/CE7U+JQDK4PwMzTGJJjRbn6NbezAYLC2DAvzSi257t7ySOD2QYewsE6XJrCRMEQAAAAAAAAAAAAAAIA2t2m79MDPwvc7hIWp2B1f47hHd1hYktdoHtt4NevmmM3SJ38q3f5dad9u6bQLZYaPyXKErbVhq/TAnfF1nRyClUUPbiHhc0SIIQAAAAAAAAAAaBHCwgAASCmLcK2gAJskgVF5sAjTaTlj4pu05j8fYYF1FbVhWJg/FbjdMY7KfjmXa5b9kg6URwP3DbrDuVwTzZMmsJEwRAAAAAAAAAAAAAAAgDb38N3R+wnlkbr742tsV2pRD2JbuP27qcrdBWFhkmS6eqSzL81qRO2lFNzHt4jdzr9eEvd8Z/D89y9NVtfWrxMAAAAAAAAAADiSHcXTBwEAUJ+goK/U5zCLGwXSBOBkyU4QVIV8WQmaVOYHioUFIHn+4gamVgsLC3NNtk18/rzl/eW98mu2zBlyCAvrdGkCwAhDBAAAAAAAAAAAAAAAaHOVmAkHHbc542hjxnGk3iXRRY4rWUdxL+DwMdXFy8b+LbbcCQgLO5KZM56ZrLCT328ZPP8m6ddPiCEAAAAAAAAAAGiRo/gnggAA1CdNUE0YO+AcxrRmVr8svh40xiQJC5tXE/T8SJKnSmZjykrZLwVud00xt2vuLe0O3TfoLs/tumiONAFghCECAAAAAAAAAAAAAAC0uee9Ono/oTySJPOmD0cXuAXpaO6V2bituvjGPX8SW+5YwZNRHrHOuSxZXSeHhWXVg7v93PiaTn6dAAAAAAAAAABARzuKfyIIAEB9sgifsY2zaFuSwKg8pAneQT5MgmfKzPtrW9g9q/jtFxZW8qYCt7tWfs0ye0sjgdu7rV51Wd25XRfNkeYz2PDtDgAAAAAAAAAAAAAAQHsr9kTvdwgLkyQNrYze77gxYUlHeDhWca4vrNubiC0/6sLCign75to5BCs2DCyjHtxlq+Jr+FwCAAAAAAAAAAAtwm/PAwCQUhbhWlbAH8GtCrWxDWFhrZYkKM6a1+hihYQlee0YFuaXArc7JutmmbnmrdHy7sCKIXc442uiFayEn1mWbJmsZosEAAAAAAAAAAAAAABALsza46ILCsXmDKTdrdkYvd92JDuir8bzsh1PmzGX/3p1eVPpwdh652hrKxpckayuncPC4lgZ3dTJw/E1nfw6AQAAAAAAAACAjkZYGAAAKSUNqoliG2fRtiSBUXkIC55C8yS59/NrwgLePLVfQ1fZnwrc7pr8mmVGS8FhYYPO8tyuieZJGthIECIAAAAAAAAAAAAAAEAHOO+K6P3F7uaMo82ZZauiCxxXciMmcKyUsx1Qu9mwtbo4XAnuH5vPsdqv1y5PJurZmM/u4BCsjCaWNBdcHV+U9PUEAAAAAAAAAADIGOkgAACklEUATdA5TItCu5IG7yA/Se69mffXtrB7VvErmY0pK1OhYWH5NcvsLY8Ebh90CQs7EiT9DLb4VgcAAAAAAAAAAAAAAKDtmeWrowsIC5szENH/5BamA8PCHOFhYcYYmY/cmrjeORpbiy5/cXxN1DPU9jKasPfk8+JrOvp1AgAAAAAAAAAAnexo/DEXAAANySKAxjZOwHkzalRIKYvwMzQmyb0382qskHvmtWFYWNkrBW53rWzDwnz51eXRUvDMkEPOcKbXRGtYCYMVw94nAAAAAAAAAAAAAAAA6CCEhc1Zuix8n+NKTkRP1hEeFiZJGj4mcelRGRbWNxBfY7dxz5WJ6bO0MrqpST5z7MU9wAAAAAAAAAAAAM1wNP6YCwCAhmQRQGNr8TlMi8LCrICxoLlMgr+SmXmNLnZIfUXtFxZW8qcCt7sm27Cw+UbLI4HbB92ImTXRMZIGNhKECAAAAAAAAAAAAAAA0BnMjX8Qvm/T9iaOpM09/IvwfY4ruUd5WNjSuckkP/7oyyJLHcuP3H8kMpt3xBc5bv4DyUtcmFhScaFzjlvTzwkAAAAAAAAAANBMhIUBAJBSUNBX6nMEhNgY05o/lq0WXRdzkgTFzQ8UCwus83wvszFlwfd9lfxS4D7X5NNUdLhySIe9Q4H7hhzCwo4ESQMbCUIEAAAAAAAAAAAA0AzGmE3GmOuNMe81xnzTGHPAGOPP+++hBs7tN/jfsZl9oQCQp+e8KnzfJdc1bxztbtNJ4ftsNzro6SgICzPWXI/dlWNfiax1jsa2yadfGV9DWJhM3GsQFcoHAAAAAAAAAACQs6Pxx1wAADQkaVBNFNs4i7YlCYzKQ1BwGZorySxz1rznIzQsTJXMxpQFTxX5Cg4wc022DTO+Pz3T42h5d2jNoDscug+dI2kIGEGIAAAAAAAAAAAAAPJijHmGMearxpg9ku6X9PeS3iDpIkn9LR0cAHQgMzgs83/+q3Zjd6/Mh74rs35LawbVjjZsDd/nuJIT0ZP1/9m783DJrrpe3J+1q04P6e70nAlCEkKCkESmACIqiKgggoCACCh4nQAFnO69zvycxevwu15UFBTBCQWDAgp4AZFJFBGRUTJA5jkd0un0cIZ9/+gmOX26dlWd0zV11fs+z3ly9lprr/U9u6rr7Dy9+rMXJ2tv2dCcflaSZOvSHTnr0JWNw9ozuG2ybOvjYZuTHBbWa5/lAPeLle/9+ebO/fsGtg4AAAAAAMBqHZtUAgB0NYgAmk4BXeMKC+s3eIfhKX3kt5Zl77tWw2u2WE/Whq75er6xr10NZ1PRnvmbO7aXlGxr7xjKmoxWvwGHlVxkAAAAAAAAYHgenOQbxl0EwDQp9/vylPcfHHcZk+3e92vu6xXytNC8l2uq3Hrj3d+ed+jSXLnurI7D2rO6tejU+yQ3XtXc35rgsLBe+nhoa99O2jS4uQAAAAAAAAZIWBgArFJTUNPq5jj2V3AZ4FPNVqPqM3iH4eknKG75mKbAuqVJCwtbat68N1e6PMXyONy2cEvH9q3tHWkVt77ToN8QsH5DxQAAAAAAAAAG6GCSa5KcO4S5/yXJs1d5zjVDqAOAMSmPe0bqP3nFsR0PuDilOrynpm46eWlpaHVNlEMH7v72nzZ9TeOwmQ0LO7Cve3+v0LlJNsiwsAc8fHBzAQAAAAAADNCs/jUXAKzZIMK1OoXYVH0ERg1Dy+3A2FV9bFI5KiysIbBuKZO1oWu+bn4a5bDCwvbMdw4L297eNZT1GL1+P4MFIQIAAAAAAABDNp/kP5K8Jsn3J3lYki1JvmdI6x2o6/oLq/xaGFItAIzDuRclj/yGo9uqKuXZP9z73Hqy9paNwjPv+OvGvnZrPPs1x63ne+WEDgsb4F7YL7t4cHMBAAAAAAAMUHvcBQDAiaYpqGlVc3QIsSljCu0SqDN+/bz2ZdlGlk5hc0myWC8OrKZBmK8PNfatq4YTFnbbws0d27fPCQubFk3v/5UG8VkNAAAAAAAA0OB1SV5V1/WBlR2ljweGAcBalFKSX35T8ue/kfrf3pPsPDXlCc9LedQTe5+8NFl7y4bmlHsnN12TJHnAwc82DmvP6taihz62e397gv95Sa97rAHeg5VWK/XAZgMAAAAAABicCf7bHACYTK0BPH2sU9hNNcinmq2CsLDxK+m9SWX5mKbXbCmTtaFrfmm+sa9dBhsWVh/ZmrNnvnNY2I727oGux/j0GwI2iM9qAAAAAAAAgE7qut4z7hoAmE1l3frkBT+Z8oKfXN2JS0vDKWjSPPhrkn/48yRJ3WVfXqs1o+GeJ23u3n/DVaOpYxgGHdj6qCcm//z2Y9vvdd/BrgMAAAAAALAK/gU9AKxSGcCvz1aHvM5+AqOGodVn8A7DU/oINaqWh4U1vAeX6skKC1uoDzX2zZW5oax528ItHdu3z+0aynqMXr/Biv2GigEAAAAAAAAAwNRbmqy9ZcNSHveMu7/fWO9vHNduz2hY2H3u373/YPM1m3gDfrjk8vfSUR73zIGuAwAAAAAAsBrCwgBglcoAnj7WKseG2IwrLKzf4B2Gp5/XfnlIXaf3T5Is1pP19Mf5er6xb66sG/h6S/VSbp+/tWPf9rawsGnRFJZ3zLiGPycAAAAAAAAAADBzliZrb9nQPPzxd3/7iP0faRy2VA3nYZeTrlRVyo/+n+YBiwujK2bVeuyzHMDe3qN8zVOTCx91dNsZ56Q89fsGuw4AAAAAAMAqtMddAADMolY59ldwGVNoVxWBOuPWV1jYso0sTa/ZUibr6Y/z9aGO7VVaQwhyqrN38fYspvNmpR1zuwe8HuPSFJa31nEAAAAAAAAAADD1liZrb9mwlHXrU2/eltx5ezbUBxvHLVTrR1jVZClP/b7Uv/GSzp2LJ/D7ZMBhYeWkzclvvC1555+m/vRHUu57QfINz0nZedpA1wEAAAAAAFgNYWEAMAadQmz6CYwaBoE641f1ERRXcs+YptdsqZ6sjTrzS53DwubKcJ7KeNv8LY19O9rCwqZFv0FzVcYTwAgAAAAAAAAwJPcppbw2ySOSnJFkU5I9SW5J8rEk70vyprqubxtfiQBMrBkJC0uSbN2R3Hl7diw2/0o8de7OERZ0Alns/LDOE8IQHthbTtqcPO2FKU974cDnBgAAAAAAWAv/gh4AxqDVIa+zjOnXcr/BOwxPP0Fxy8c0hYstZrI2dM3X8x3b56p1Q1lvz0LnsLC5si6bWluGsiajV6XPsDCfbQAAAAAAAMB0OSfJC5I8MMm2JHNJTjly/Nwkv5/kqlLKb5VSNo+rSAAm1NLSuCsYnYd9bZLk7Pkrc+6hy4/p3rFwax62+YZRV3ViOJFD5cp4HtgLAAAAAAAwSsLCAGAMWh1CbKoxbVSo3A6MXT9hYcvfH01hSUv1ZG3oWqgPdWyfK4MPC6uT7Jm/uWPf9vauFBuBpkarzydAtvoMFQMAAAAAAACYIpuS/FCSj5ZSLhjGAqWUU0opF6zmK8m5w6gFgFU4kUOgVql8188c/m+S373+JTlpad/dfXP1obzm+helNXfsA19Jsrgw7gqa9doDaI8gAAAAAAAwA/wtFwCMQasc+yu4n8CoYegUXMZolT4C25aPaXrNlurJ2tA1X893bB9GWFiS3LbQOSxsx9zuoazHeDSF5R0zzmcbAAAAAAAAMB0WknwgybuS/GeSa5LsTbI5yX2SfHWS70xyyrJzzk/yrlLKV9R1feWA63lxkpcPeE4Ahq2ux13ByJRdp+dLP+3X3fXe/OcVD8s7N31DFko733jnP+R+81ck7R8ba40Ta5LDwnrp8yGUAAAAAAAAJzJhYQAwBlWHTQn9BEYNg0Cd8St9PNFueZhcU1jSYiYtLOxQx/Z2mRvKenvmb+nYvn1u11DWYzz6/czq9DkLAAAAAAAAcIL56SSvruv6pob+/0jyllLKz+RwgNf/TO7eYHBakktKKRfX9QwlxADMurPun1z5X8e2P3d2w7HOnr8q33/7a45ubA9nD9sJY+vO5Iu3HtNcnvbCMRQzIH3swwQAAAAAADjR+Rf0ADAGrQ55ncvDoEap1RA8xehUfdySLQ8UawpBWqonKyxsYWm+Y/tctW4I7/Y6ty00hIW1hYVNk1afYWE+2wAAAAAAAIATXV3Xv9QlKGz5uAN1Xf9Ekpes6Hpokm8fSnEATKTyzJW/Co60f+NzR1zJZCut2Q4LK8962bGNVZU89umjL6ZfvcLAhIUBAAAAAAAzQFgYAIxYleqo4Kcv6dQ2Ck3BU4xOP0FxZdltW1NY0lKWBlbTIByqD3ZsnyvD2Wi1Z/7mju075nYPZT3Go/T5vzBVn6FiAAAAAAAAANOiruvfSfKWFc0vHvAyv5vkwlV+fcuAawCgyZO+K1kRDFZ+5H+nnPPAMRU0Jk/4ju797dkOC8u3vSx59JPuOW61Un7mj1N2nT6+mo6XvbAAAAAAAMAMaI+7AACYNa3S+ddvvwE4g1ZFoM649RMUtzxQrOk1W6wXB1bTICzU8x3b20MIC5tfms/exS927NvRFhY2TZrC8lby2QYAAAAAAADMqF9J8pRlx19RStlW1/Xtg5i8ruubkty0mnPG9QA9gFlU2u3kp/4wef5PJF/4THLBI1N2nDruskZvZ4+fuT3b/4yirN+Q/MpfH36PXHt5ctFXpmzdOe6yjo/7DQAAAAAAYAbM9t9yAcAYNAXdVBnPRoV+g3cYnn6C4qplT72rGl6zpQkLC5uvD3VsX1etH/haexZuaezbPrdr4OsxPlWfwYotT4oEAAAAAAAAZtO/JtmTZPuR41aSByb50NgqAmCkSinJmecd/ppR5dQzU3cb0B78Ay9PNKWU5JwHHv6aBsLCAAAAAACAGeBf0APAiLUasjrLmIJtmoKnGJ3SR1Dc8jFNIUhLmbCwsKX5ju3tMviNVrfN39zYt70tLGya9PuZ5bMNAAAAAAAAmEV1XS8luWpF8+5x1AIAY/OV39S9X1jYCaf0CgPzcEkAAAAAAGAG+BsRABix7XM7O7b3Exg1DJXbgbHruYklR78/qnQOQVqslwZW0yAs1Ic6ts+VdcmA3+97Fm7p2L65dXLWVesHuhbj1Wp4/6/U9OcEAAAAAAAAYAbsX3G8cSxVAMCYlFPvk1z4Fc0DWp0f+soJrI99mAAAAAAAACc66SAAMGIP2tx5A8q4wsJaRaDOuPUT2FaWjakaXrOlenFgNQ3CfD3fsX2uDP6pjPuX9nVs397eNfC1GK+m9/9KPtsAAAAAAACAGbbyL8s7P4ELAKZY+Zpvae5sDX4PG2MmLAwAAAAAAJgBHokDACNSpZVHbX1cnrDzmR37SxlPhmcVgTrj1k9QXFm2kaXV8JotZdLCwg51bG+XdSOrYfucsLBp0+rzs7Ia02cqAAAAAAAAwDiVUnYlue+K5uvGUQsAjNX6jc1969aPrg4Go9Xjn77YLwYAAAAAAMwAYWEAMGQP2vwV+cYdT89p68/Mhqp580k/gVHDUBVhYeNW0nuTyvL3R1MI0mI9YWFhS53Dwuaq0T2VcUd798jWYjT6DTgUhAgAAAAAAADMqGcnR21EuDHJZ8ZUCwCMT7ewsG59TKZ2j32HZTx7cAEAAAAAAEZJWBgADNk5G87P2RvP7zmuGlNYWMvT1Mau9LFJpVq2j7cp4G0pSwOraRDm6/mO7XNl3chq2D63a2RrMRpNYXkrtQQhAgAAAAAAADOmlHJqkp9e0fzWuq7rcdQDAGPVNSxsw+jqYDDmeuw7FBYGAAAAAADMAOkgADAhyph+LVcRqDNupY+guOWBYq2G12ypXhxYTYOwUB/q2D7SsLD27pGtxWj0+5nlsw0AAAAAAAA4UZVS7l9KefIqzzktyduSnLqs+VCSXxlkbQBwwljXJRBsXZcgMSZTW1gYAAAAAABAe9wFAACHlTFtVKiKQJ1x6ycobvmYptdsccLCwubr+Y7tc2Wur4C0Qdgxt2sk6zA6/X5mVUUuMgAAAAAAADA8pZR7p/MezNNWHLdLKWc3THNnXde3dGg/PclbSimfSPKnSd5c1/WlDXVsSfL8JD+do4PCkuQX67q+omFtAJhu5z+4c3urlZx74Whr4fjNdQkLq6qx7cEFAAAAAAAYJWFhADAh+gmMGoZWhIWNW9XHJpXl4VpVw3tlKRMWFrZ0qGN7u+rxhL8B2t4WFjZtWn2GgDX9OQEAAAAAAAAYkA8kOauPcfdK8vmGvtcleUGXcy9K8ookryilfDHJJ5PckmRvks1JzkzyoHTeC/oHdV3/Qh/1AcBUKqedlfpRT0z++e1HdzzuWSkn7xhPUaxdu8u+w6Wl0dUBAAAAAAAwRsLCAGBCLA+DGqWqz+Adhqef1375U+9apXPA21I9WRte5uvOYWFzZW4ktVapsrW9fejrMFpVnwGHVcOfEwAAAAAAAIAT1NYkj+5j3L4kP1zX9auHXA8ATLzyC29I/fs/nXz4HUmrnXzVk1O++2fHXRZrMTe6h5QCAAAAAABMKmFhADAhqjKusDCBOuNW0juwrVo2puk1W8ziwGoahPl6vmP7XFmXg/WBoa+/rb3T+3sK9fuaNoXqAQAAAAAAAJwAPpPkl5M8JslDk2zs45zPJfnjJK+u6/qW4ZUGACeOsn5Dykt/PXnpr4+7FI6XsDAAAAAAAABhYQAwKfoJjBqGVgTqjFvpIyiu5J4xVcNrtlRPVljYQn2oY3u7zOVghh8Wtn1u19DXYPT6/cxq+nMCAAAAAAAAMAh1XZ89xLlvTPJTSVJKqZKcl+TcJPdKsi3JhiT7k+xJcn2Sj9R1ffOw6gEAGDthYQAAAAAAAMLCAGBSLA+DGqWqCNQZt36C4g7v/T2sVTqPX6qXBlbTIMwvzXdsX1etz77FvUNff0d799DXYPSqhvf/WscBAAAAAAAATLK6rpeS/NeRLwCA2SQsDAAAAAAAQFgYAEyKUsYUFtZHUBXD1U9Q3PIxVToHvC3U87lj4faB1XU86ixlMQsd+9plbiQ1bJ8TFjaN+g04bDX8OQEAAAAAAAAAAOAE0xYWBgAAAAAAICwMACZEGUNoV5VqbCFl3KPq4zU4KiysISzpYH0gP375CwZV1tDMldFs2tne3jmSdRitfgMO+w0VAwAAAAAAAAAAYMJt3DTuCgAAAAAAAMZu9KkkAEBHy8OgRkWYzmToJyhu+ZjWCf66zZW5kayzY273SNZhtPp9/5/of04AAAAAAAAAAAA44tyLmvta7dHVAQAAAAAAMEbCwgBgQlRl9L+WWxGmMwn6CYqryj1jqhP8Fm6uWjeSdba3hYVNo37C9ZIT/88JAAAAAAAAAAAAh5X2XMoP/lrnvtd+ZMTVAAAAAAAAjIdHqMyQUsrGJA9OrtH0bgAAIABJREFU8oAk25NsSHJHkpuS/HuSy+q6rgewzlySRye5T5LTk9yZ5LokH6vr+gvHOz/AJHjmKd+TN970mr7GXnzyV/c1bmt7R1ppZzELHfvbpZ2FunNfJ5taW7JvcW/XMTvmTul7Poann6C45YFiu+ZOHWY5Q9Uu7Wxt78jOHu+9k1vbc8finuNaZ9e6E/c60awqVXa0d+e2hZu7juv1HgMAAAAAAAAAAODEUb7tZcnZD0j9Y0++p+0vP5tyxjljrAoAAAAAAGB0eidTcMIrpTyqlPKXSW5P8qEkf5jk15P8YpLfTvKGJJ9LcnUp5edKKTvWuM7uUsrvJrkhyT8meV2SX03yyiSXJPl8KeWDpZRvPd6fCWDcLtr08MyVdT3Hnb3hvOyY293XnBuqjXngpod07KtS5XmnvSStVeR8Pnnnc3LK3Bldxzxsy6P7no/hqdLqOaYsu23bte60nLn+vsMsaWgu2HRxNlQbc+7GB+Tk1raOY7a3d+Xpp7zguNZ58OZHZUO18bjmYHI9tMdn17b2zpyz8f4jqgYAAAAAAAAAAIBRKI/8hlTvP3j3l6AwAAAAAABglggLm2KllHYp5ZVJPpjkWUl6pdrcK8nPJvl0KeUJq1zriUk+meRFSbqFjX1lkjeVUv60lLJpNWsATJJd607Ni+71U9nRPhwEtrm1Nc8+9YX5ipMfl3aZS0nJeRsvyIvu9VOrmvcFp/9wLtx08VHhUdvaO/PdZ/z3POLkx+R77/U/sq298+6+KlUeuOmh+dH7/GrOWHdWksOhY9+089vy1duekJec+f/l7A3nHbPOurI+j932zXnCzmeu5cdnwKrSR1hYKUcdv/jeP5P7bXxgSkrDGZOlSpWLNj08zz/9ZUmSuWpdXnbmL+Re688+atyZ6++bl535C3nEyY/JBZsetqZ1HrT5K/Kc0148iLKZUN+y+3l59Nav7xjaeOb6++aHzvyFtEr/4YoAAAAAAAAAAAAAAAAAAAAwyUpd1+OugSEohxNF/irJMzp0fzbJZ5LsT7I7ycVJtq8YcyjJt9R1/Y4+1npsknfm6DCyOsm/J7kiybYkD0mya8Wpb03y1Lqul3qtMUyllAtyOOgsSfLJT34yF1xwwRgrAk4kdV3njsXbs6W1NVU5nMF5aOlgFur5nNTavOZ59y/eldsXbs1cWZedc6ccFRRV13VuW7gph5YOZVt7Rza27sle3LvwxZzU2pzWivCpOxfuyN7FLyZJSkp2rTs17TK35voYrPfc9pa86eY/auwvqfI797+kY9++xb25Y+H2YZU2MNvndmVDtbFj3x0Lt2ff4t5sbm3Jlva2u9svu+tT+c2ruwfu/bfTf/SowLFu6zB95pcO5Zb5G+8+XvkeAgAAAACAWfSpT30qF1544fKmC+u6/tS46gEAe/QAAAAAAAAAgGkw7v157VEtxMh9T44NCntfkh+o6/qTyxtLKe0k35Hkt5JsPdK8LsnrSinn13X9xaZFSin3TnJJjg4K+2CS763r+jPLxq1P8v1Jfj3Jl9JpnpzkF5P85Op+NIDJUUrJ1vbReYvrqvVZl/XHNe/G1knZ2Dqpcc2dc6d27NvS3tqxfXP75Gxun3xcNTE81Ypwt5VKSmPfptaWbGptGXRJI3Vye1tO7hDw1Ou6JMnp68/M6evPHEZZnADmqnVefwAAAAAAAAAAAAAAAAAAAKZeNe4CGJqVAVzvS/L4lUFhSVLX9UJd169N8vgkB5d1nZLkhT3W+bkky1NyPnRknc8sH1TX9cG6rn87ybNWnP8jpZSzeqwBAFOtVyhWVZrDwqZZld5hYcXtLAAAAAAAAAAAAAAAAAAAADDlpCtMoVLKRUnOXtH80rqu57udV9f1vyV59YrmJ3dZ57wkz1/WdCjJC+q6PtBljb9J8rplTeuTvLxbXQAw7Vo9QrFmNRCr1SNELUlKZjNIDQAAAAAAAAAAAAAAAAAAAJgds5k8Mf3uu+L46rquP97nuX+74vi8LmOfkxyVbnJJXdeX9rHGK1YcP6uUsqGf4gBgGlWl+y3ZrAZi9bou/Y4BAAAAAAAAAAAAAAAAAAAAOJFJV5hOm1YcX7OKc69ecby9y9inrTh+bT8L1HX9mST/sqxpU5Jv6OdcAJhG1VHZm8ea2bCwHtclSYrbWQAAAAAAAAAAAAAAAAAAAGDKSVeYTjesON6winNXjr2t06BSymlJHrSsaSHJB1exzntXHD9xFecCwFRplR5hYWU2b9l6XZckqWY0SA0AAAAAAAAAAAAAAAAAAACYHbOZPDH9PpLk4LLjB5RSNvZ57sM6zNXJhSuO/7Ou6319rpEkH1pxfMEqzgWAqVL1Cgub0UCsKr3DwkqZzWsDAAAAAAAAAAAAAAAAAAAAzA5hYVOoruu9SV6/rGlDku/udV4ppZXkB1c0v65h+ANXHF/Wd4GHXd5jPgCYGVWPW7Je/dOqKr1/7jKj1wYAAAAAAAAAAAAAAAAAAACYHdIVptePJ/nCsuNfK6U8vmlwKWUuyR8keciy5vck+euGU+634viqVdZ35YrjnaWU7aucAwCmQqu0u/aXUkZUyWRplVbPMSWzeW0AAAAAAAAAAAAAAAAAAACA2dE9mYITVl3Xt5VSvjbJJTkcALYxyTtLKW9K8qYkn02yP8muJI9K8v1J7r9sin9N8oy6ruuGJbatOL5plfXdWUo5kGTDsuatSfasZh4AmAa9QrFmNRCrSh9hYUX2LQAAAAAAAAAAAAAAAAAAADDdhIVNsbquv1BKeWSSFyT5viQPS/KsI19Nbk3ym0n+V13X813GbV5xvH8NJe7P0WFhW9Ywx1FKKack2b3K08493nUB4HhU6R54VXr0T6teIWrJ7AapAQAAAAAAAAAAAAAAAAAAALNDWNj0ax35OpikTromalyd5GeTvKFHUFhybFjYgTXUtj/J9i5zrsWLk7x8APMAwMhUPUKxSpnNQKxe1yVJKmFhAAAAAAAAAAAAAAAAAAAAwJSrxl0Aw1NKeXSSzyT5vSSPTu/X+8wkr01yVSnle1a5XL36Ctd0DgBMnVZ6hIXNaCBW1cetanE7CwAAAAAAAAAAAAAAAAAAAEw56QpTqpTydUneleTsZc3XJvnxJA9Jsi3JuiSnJXlCktclWTgybneSV5dS/qCU0pROcueK441rKHPlOSvnBICZUJXuYWH9hGZNo1aP65IkzbcqAAAAAAAAAAAAAAAAAAAAANOhPe4CGLxSyu4kf5Fkw7LmtyZ5Xl3Xd6wYfmOSdyZ5ZynlVUnelmTnkb7vTXJ5kld0WGZSw8J+N8kbV3nOuUn+dgBrA8CatEr3MLBZDcQqfYSklczmtQEAAAAAAAAAAAAAAAAAAABmh7Cw6fQjSXYvO/5skmfVdX2g20l1XX+4lPJtSd61rPnlpZTX1nV904rhX1xxvDurUErZnGPDwm5fzRydHKlzZa29ajneZQHguFRp9ejvHZo1japSpaRKnaXGMf0EigEAAAAAAAAAAAAAAAAAAACcyKQrTKdnrjh+Ra+gsC+p6/rdSd6/rGljkmd3GHrpiuOz+i+v4/jb6rres8o5AGAqVKV7WNgsB2K1SvefXegnAAAAAAAAAAAAAAAAAAAAMO1mN3liSpVSNiU5d0Xzu1c5zbtWHD+yw5jPrDi+3yrXuO+K40+v8nwAmBqtXmFhMxyIVaX7tanczgIAAAAAAAAATLab3pf8+48mb1iX/HlJ3vukZP/1464KAAAAAAAAAE4o7XEXwMBt69B2wyrnWDl+V4cxn1xx/OWllJPqur6rzzUe3WM+AJgZvQKvSmY4LKy0krq5f5avDQAAAAAAAADAxLv095KPvPjotuv+PnnzGclTPp9sPnssZQEAAAAAAADAiaZ7MgUnots7tG1a5RybVxzfuXJAXdfXJ/nPZU3tJF+1ijUeu+L47as4FwCmSlVaXfvLDN+ytdLj2hRhYQAAAAAAAAAAE2nxUPKx/9nc/6lfGl0tAAAAAAAAAHCCm93kiSlV1/W+JHesaH7IKqd52IrjGxrGvXnF8Xf1M3kp5cuSPHJZ074k/9BfaQAwfXoGYmV2A7FagtQAAAAAAAAAAE5Mez6WLOxt7r/8NaOrBQAAAAAAAABOcNIVptN7Vxx/X78nllJOS/KUFc3vbxj+Z0kWlx0/vZRyXh/LrHxM3F/VdX2gzxIBYOpUPQKxqjK7YWG9rs0sB6kBAAAAAAAAAEy0bkFhAAAAAAAAAMCqCAubTn+54vjbSinP63VSKWV9kj9JsnlZ851J3tlpfF3XlyZ53bKmdUn+uJSyocsa35LkBcuaDiX5uV61AcA0q0r3W7Iyw7dsVY+fXVgYAAAAAAAAAMCE2nfVuCsAAAAAAAAAgKkxu8kT0+0NST6+7LgkeX0p5X+XUk7vdEIp5WuTfDjJ41d0vaKu6z1d1np5kuX9X5nkXaWUL1sx//pSykuSvHHF+b9R1/WVXeYHgKnXSqtr/ywHYrVK87UpKSlldq8NAAAAAAAAAMBE+/zreo+p6+HXAQAAAAAAAABToD3uAhi8uq6XSinPSPLBJKccaS5JXprkB0sp/5nkiiT7k+xI8pAkp3WY6u+TvKLHWteUUp6e5J1J1h1pfnSST5dSPnpkna1JHppk94rT35bkZ1b30wHA9Km6BGIlSSmzm+/a7drMcogaAAAAAAAAAMDEW39K7zEHbko2njr8WgAAAAAAAADgBCcsbErVdX1ZKeUxSf4kycXLuqokDz7y1Xh6klcn+aG6ruf7WOu9pZSnJfnj3BMIVo6se3HDaX+R5Hvrul7sNT8ATLsqPcLCZjgUq9u1KZndEDUAAAAAAAAAgIl39Zt6j3nzacnTb0w29BEsBgAAAAAAAAAzTMLCFKvr+rNJHpXk+Un+OYdDwLrZn+TPknxlXdffX9f1/lWs9fdJLkzyqiR7ugz9cJJn1HX9nLqu9/U7PwBMs1bpfks2y2Fh3a5NKbN7XQAAAAAAAAAAJtpnf6v/sZecmiwtDK8WAAAAAAAAAJgC7XEXwHDVdb2Q5PVJXl9K2Zrk4iTnJNmWZH2SvTkc7vXJJJ84Mn6ta92U5EWllJcleXSSs5KclmRfkmuTfKyu688fx48DAFOp9MhvrXqEiU2zKq3GvlkOUQMAAAAAAAAAmGiX/t7qxl/zt8l9vnU4tQAAAAAAAADAFBAWNkPquv5iknePYJ1DSf5x2OsAwLQopaRKK0tZ7Nw/w6FYVWkOC6t6hKwBAAAAAAAAADAGC3cley9d3Tkfeq6wMAAAAAAAAADoQsICAMAEaHUJxZrlsLCu16XM7nUBAAAAAAAAAJhYC/tWf87SwcHXAQAAAAAAAABTRFgYAMAEqLrclpUyu7dsXa/LDIeoAQAAAAAAAABMrI//1NrO23/9YOsAAAAAAAAAgCkyu8kTAAATpCqtxr5ZDsXqfl3cygIAAAAAAAAATJzPv35t51371sHWAQAAAAAAAABTpD3uAgAASFrCwjpqpct1KbN7XQAAAAAAAAAAxmr/9cn1/5BsOjtZvodj35XJ0sG1zbn30oGUBgAAAAAAAADTSFgYAMAEqLqEYlWpRljJZKm6hqjN7nUBAAAAAAAAABiLpfnkDeuGM/cd/zWceQEAAAAAAABgCkhYAACYAFVpvi0ry5++OmO6XZcqs3tdAAAAAAAAAADG4t2PW/u5j3lrcurXNfdf+9a1zw0AAAAAAAAAU05YGADABGiVVmNfmeFbtla6XRdhYQAAAAAAAAAAI3XzB9Z+7ub7JV/3ruTMZzSP2Xfl2ucHAAAAAAAAgCk2u8kTAAATpBKK1VHVLUStuJUFAAAAAAAAAOiqrpPbP5lcfUmy//rjn2ut2puSzWcf/n7nw5vHXft3Sb209nUAAAAAAAAAYEpJWAAAmADdQ7FmOCxMiBoAAAAAAAAAwNosHkre/63J3190+L9vvldy2avXNtfSYvKv37f2Ws5+XtLacPj7s57dPO7ffiB531OTxYNrXwsAAAAAAAAAppCwMACACdDqcltWZviWrVW6XRdhYQAAAAAAAAAAjS79neSaNy9rqA8Hft35+dXPddVfJpe/Zm11PODHkotfec/xpvt0H3/tW5P/+u21rQUAAAAAAAAAU2p2kycAACZIVVrNfTMcitXtupQuQWIAAAAAAAAAADPvitc2tP/x6ue67u1rq2H3VycP+V9J1T66ff3uHuu9bW3rAQAAAAAAAMCUkrAAADABuodizXBYWISoAQAAAAAAAACsye2f6Nz+mV9f/Vz7r11bDee9sHP7zod3P++m961tPQAAAAAAAACYUsLCAAAmQKtLKFaZ4Vu2VrcQtRm+LgAAAAAAAAAAa7Z41yrHH0hu/MfuY05+QOf2M57Uuf38l66uBgAAAAAAAACYcRIWAAAmQFWab8tKyggrmSxdr0uZ3esCAAAAAAAAADAyV72xe/8z9iRP+mRy5tPvadtwWvK0G5J1Wzufc8Y3Jid/Wfd5lxZXVycAAAAAAAAATLH2uAsAACCp0mrsKzOc79r9uggLAwAAAAAAAAAYuhve3dx38SuTddsOf//Vf726ec95fvLxn2ju/+Inku0PXt2cAAAAAAAAADClhIUBAEyAVukSilVmNxSr63WZ4RA1AAAAAAAAAICRufatzX27v3rt857xTd3Dwg7dvva5AYDVufZth78O3JBUG5LdX5Xc9zuTuZPHXRkAAAAAAHCEsDAAgAlQdQnFqjK7YWFVuoWFze51AQAAAAAAAAAYiav/Jjl0W3P/tovWPve2i5Kzvj258i869y/ctfa5AYD+fepXko//5NFtV/1l8oU/Sx73D8nclvHUBQAAAAAAHKUadwEAACRVl9uyMsO3bFVp/tmrIiwMAAAAAAAAAGCo3v+05r4LfzY5nv0bpSSP+pPm/sX9a58bAOjP/J3JJ17eue/WDydXXzLaegAAAAAAgEazmzwBADBBWqXV2FdmOBSr63VxKwsAAAAAAAAAMDxL89371+04/jWqVrLx9M59wsIAYPhu+2j33/k3f3B0tQAAAAAAAF1JWAAAmABVuoVizW5YmOsCAAAAAAAAALAG17y1e39d955j4a7u/ac9vv96umlt7NwuLAwAhm/xwPH1AwAAAAAAIyMsDABgArRKt1Cs2b1lq7pdlzK71wUAAAAAAAAAoKv527v3Lx3qPcfNH+jev/WB/dfTjbAwABijpe7d9eJoygAAAAAAAHqSsAAAMAG6h2KVEVYyWVpdbldLZve6AAAAAAAAAAB0tTTfvf/gLb3n+Oxvdu8f1J6W1kmd24WFAcDw1cLCAAAAAADgRCEsDABgArTSHBZWzfAtW9cQNWFhAAAAAAAAAACdlXb3/juv6D3H/uub+879ntXV0017Y+f2hbsGtwYA0JmwMAAAAAAAOGH02AkAAMAoVKU5EGyWQ7G6hYV1u2YAAAAAAAAAADOty56LJMnSwd5z3HlZc9/9X7q6erppNYSFHbx5cGswWy591eGv/dckpz4uedhvJxtPG3dVAKN317XJ39z72PaNpyenPzF52P+fpEdY2NKhoZQGAAAAAACsnoQFAIAJ0C0Uq5TZDQtrpct1meEQNQAAAAAAAACA47Kwv3v//N5kab5zX2kl2y4aXC1NYWGX/t7g1mB2XPr7yUdelNz+8eTgrclVb0ze9ZhkUdgNMGMW9ncOCkuS/dcnV/xR8k9PSerF7vNc+5bB1wYAAAAAAKyJsDAAgAnQPRRrdm/ZqtL8swsLAwAAAAAAAABosPPhycW/09y/dKD7+Ve9qbnv4leuraYmi12Cy+64dLBrMf0uf/WxbXs/l9z8vtHXAjBON76n95ib3pvc8V+9x/UKGQUAAAAAAEZidpMnAAAmSFW6hYXNbihW1S1ErUuQGAAAAAAAAADATDv5/OT8Fycn3btzf6/Qjxv/sblv31Vrr6uT69/Z3LfnY4NdaxgW9iV3XpHc9tHk4G3jrobbPtq5/co3jLYOgHH7tx/ob9w1f9N7zJ2XHV8tAAAAAADAQLTHXQAAAEnVJcN1lsPCWkLUAAAAAAAAACZeKaUk+e9JNixrfn1d1184znnPSfIdy5ruquv6149nTpg5rY2d2xd7hIXddWVzX72w9no6WbcjOdQQsrU0P9i1Bmn+juRD35Fc+5Zj+552fbLxtNHXNOuWFpv79l09ujoAJsG+Lr/Ll7v1X3uP+fsvTx72f5L7/+Dx1QQAAAAAABwXYWEAABOgWyhWVZqDxKZdJSwMAAAAAAAA4ETwnCS/mqQ+cnzJ8QaFJUld158vpVyU5OlfaiulXFHX9SXHOzfMjLWGhR24qblv0AFeux+dXPvWzn23fzzJcwe73qB88DnJdX/Xue/NpyfPqTv3MTwLdzT33fAPo6sDYNwW7hr8nB99SbLtwuTUxw5+bgAAAAAAoC+zmzwBADBBhGJ1VnW5Xe3WBwAAAAAAAMBolFKqJD//pcMklyZ5/gCXeEGSy4/MXZL80gDnhunXGBbWJUSkrpO7rm3urwb8rOL2pua+Wz8y2LUG5dCe5Pp3dB9z5xWjqYV7XNMQOgcwa258z3DmvfT3hjMvAAAAAADQFwkLAAAToJVuYWGze8vW6haiVmY3RA0AAAAAAABggjw+yTlJ6iNfP1HXdZcUotWp63pfkh9f1nR+KeVxg5ofpt667Z3b913VfM6hPcnC3ub++37X8dW00vkvbe7bcr/BrjUod34hqRe7j/n0ryX/+qLkitcn83eMpKyZt+/K5r71u0ZXB8C47b1sOPNe9VfDmRcAAAAAAOjL7CZPAABMkKo035bNcihW1S0szK0sAAAAAAAAwCR43rLvP1rX9ZsHvUBd15ck+eiypucOeg2YWpvP7dy+99Lmc7r1rd+VnPyA46tppZ2PaO67/DVJXQ92veNVLyX/8t29x132+8llr0o+/PzkjVuTT/z88Gubddf9XXNfaY+uDoBxWlpM/v2Hhzd/vTS8uQEAAAAAgK4kLAAATIAq3UKxZjcsrNXlunQLWAMAAAAAAABgZJ6w7Ps/HOI6X5q7JPmmIa4D02XLeZ3b936u+ZyPvKi574kfTwb94LuqlZzxzc393QKgxuGyP0j2fGz1533i5cl1bx98PRxW18mt/9Lcv7h/dLUAjNMX/nS481/26uHODwAAAAAANJKwAAAwAVqlSyjWDN+yCQQDAAAAAAAAmFyllLOS7FrW9LYhLrd87lNKKWcOcS2YHief37n9rmuShbs69x24oXP75nOTk84YTF0rnXz/5r5r/nY4a67V8dQzaT/LNOkWgJcICwNmR7ewsM33Tb59KXnqNcnXvGVt8/tdBgAAAAAAY9MedwEAACRVl7CwMuinsZ5AqjRfFwAAAAAAAADG7kFH/lsnubyu62uHtVBd19eUUi5Lcr8jTQ9OcvWw1oOpseW85r47L0+2XXRse73Uefz+6wdTUyfbvry5766hfbR0t7AvufyPkuv+7nB9G89ISpVc/461z3nrRwZXH0fr9T5ZOpQsLSaV/UjAlLv5A819d16RlJKcdK9k3faktSFZPLC6+a9/ezK/N5nbcnx1AgAAAAAAqyYsDABgAlSpGvtKZjcsrNUlRG2paWMqAAAAAAAAAKOye9n3141gvetyT1jYKSNYD058m85OSjupF47t23vpsWFhSwvJgRs7z3W/7x14eXe71zc3913/9uGt22TvZclblwWtXf/Owcy7598HMw/HOnRb7zGL+5Nq8/BrARiXxQPdw792f9U937dPSs75zuSyP1j9Om88OXnSZ5KtX7b6cwEAAAAAgDVrTqUAAGBkuoVilRm+Zau6XJc69QgrAQAAAAAAAKCD7cu+v2EE6y1fY9sI1oMTX9VONp/TuW/vpce2XfkXzXOd/oTB1NTJ+h3Jud/d3H9oz/DW7uSdjxze3LU9L0Px6Vf0HrNw5/DrABinmz/QvX/rhUcfX/w7yQN/ItlyflKtT1obDweKfWWX+4Ev+fuLeo8BAAAAAAAGqj3uAgAA6B6KVVJGWMlkqboEpQkLAwAAAAAAABi7dcu+H8WTsJavsX4E68F02HJe52CwTm3XvaN5nvZJg6upk61dQkdueHdyn2cMd/0vmd+bHLptePN/8dPJtguGN/+sOnBj7zG3/2ey8bTh1wIwLnd8bnXjq3by4F8+/NWp7wPPbD63XkgO3pqs37m6NQEAAAAAgDUbxeYcAAB6qNIlLKzM7i1bq0uIWl0vjbASAAAAAAAAADq4a9n3u0ew3vI17mocBRxty3md2zuFhe2/pnme7Q8eTD1Ndj6iue/gLcNdO0nuuiZ539OTN5483HVG8bPMormtvcf8x48n17w1WVoYfj0A47Bw5+Dm2vnw3mP2XTW49QAAAAAAgJ5mN3kCAGCCtLoEglUpI6xksnQLUatTj7ASAAAAAAAAADq4Ydn3Z41gveVr3DiC9WA6NIWF3fG5o48X9ic3va95nrkhh2h1Cwvb8/Hhrr3n48nfnJlc8+a1nX/Wc5JNfX4MLso6HLi6Tr74yd7j9nwsed9Tkg89V2AYMJ1u/cjg5tp0VnLWt3cfc+3bBrceAAAAAADQk7AwAIAJ0C0Uq8xyWFjpFha2NMJKAAAAAAAAAOjg8iP/LUnOKqXcb1gLlVLOTXJ2h7WBXrac37n9wA3J/N57jq9+U/McD37FYGvqpGol2x7Uue+yVw137fd9y+rGz52cbLsoOfVxyYN/LXnU65KnfD6591N7n3vT+9dWI832/Mfqxl/1V8n17xxOLQDj1O13+Vo86vXd+z/xs4cDGwEAAAAAgJFoj7sAAAC6h2KVMrv5rq0uP/uSDSYAAAAAAAAA4/bxJIeSzB05fkqS3xzSWssTeOaTrDIZBmbYlvOa+/Zelux4yOHvb3xP87i5LYOtqUlrw2jWWa6uk31Xru6cp1yRrN95bPvXvPme7//q5GRh77FjFvcZzLkWAAAgAElEQVSvbi166/bebfKJlyf3etLgawGYJlU7uc+zDocsNrnzimTLuaOrCQAAAAAAZpiwMACACdDqFhaWMsJKJkuV5utSR1gYAAAAAAAAwDjVdX2olPJPSb7+SNP/KKX8fl3X+wa5TillU5L/ntz9F8Xvq+v60CDXgKl20plJtS5Z6vDHZu+l94SFHbi5eY5THjOc2lYax0P1OgV6dbP1gs5BYf3OO45AtGl36PbVn3PbRwdfB8A4LS0OZ96znt09LGzf5/sLC7v5n5Mr/zy547/uaSutZMdDk/v+N4FjAAAAAADQhzH8jToAACtVXW7LZjosrEuIWp2lEVYCAAAAAAAAQIO/OPLfOsnuJL82hDV+Nckpyd1/gf7nQ1gDplfVSjY3BHBcfcnh/y4tJtf9XfMcJz9g8HV1cv4PNvftu3Lw6y0tJu/9ptWd86Bf6W/cprM7t9/8/tWtR283f2DcFQCM32rDL/t1xhO797/n65NDe7qPufbvknc/JvncK5Mb/u89X9e/I/nULyf/99FHh4gBAAAAAAAdCQsDAJgA3UKxyjiemDohWukSFlbXjX0AAAAAAAAAjMyfJ7n+yPclyQtLKT85qMlLKT+e5AdyOIwsSW6MsDBYvS3ndW6/6i8P//fWf2k+98KfScqIHnbXFLCVJB//qcGvd+uHk5s/2N/Y81+SfONHkns/ub/xOx/Rub3f9ejfTe8ddwUA43fdO4Yzb+v/sXfnYXKVdfr/70/1np3ubEAgIWEXlEUWQSSICCKLgCO4IO6jP7dxwXFGR8d1FGf8juio46AiKir7IqAghLBKCEsgYUnIQvZ97XSnt3p+f1R1urr7nFPnVJ2qU1X9fl1XXVX1rJ8qYldMPX2fZuldHcFjXr0huH/hN6V0j3//ng2ZIDEAAAAAAAAAABBo5CZPAAAAVJCgUKyUynTYsgKlAoLSnAgLAwAAAAAAAAAAAICkOee6Jf2LMkFhLnv/LTP7o5ntU+i6ZjbBzK6X9J2cdZ2kf83uCSCKuhbv9jEHZ+43PeI/t7E1/np89wr4sbHi9/HvF/S6JWnSqdJ7XOb2+qultteHX7vXJ1ilYUL4NRBO0J8bABgptj+Xf8ykUwtbu74l+Gdt0OdpX5e0ZV7+PfJ9JgMAAAAAAAAAAMLCAAAAKkHK/MPCRnIkVvD7ki5jJQAAAAAAAAAAAAAAP8656yTdrsGBYf8gaYmZXWVmh4Rdy8wONrOrJC2RdGl2LWXXvdM5d22ctQMjhl/AR/srmftdi/3nTj0r/nr8jDu8fHtJ0vLrgvtnfazwtRvGebf37Ch8TXjr3pZ0BQCQPNcT3J9qkg64pPD1p77Fv2/F76Te3d59254Nt37YcQAAAAAAAAAAjGCEhQEAAFSAwFAsN3JDserk/76kR3SMGgAAAAAAAAAAAABUnMslzdfgwLBWSV+Q9JKZrTazW8zsO2Z2pZl9NHv7opl928xuNrNVkl7OzmkbstbTkt6XwOsCakNQwEf7cmnpL/37xx8Zfz1+zIL7194T314rrpd2vODf39gqTb+08PWnX+bT4aR0nkAXhLfz5aQrAIDK0Nvp32cp6eRfSfUtha//uv8I7r9hjDT0vOvuldK9J4ff44kiQjoBAAAAAAAAABgB6pMuAAAAAFJdQIarG8GhWISoAQAAAAAAAAAAAEB1cM61m9mZkq6VdJG098vu/uSf/SRdmL35yU0Jyp1/u6QrnHPtsRUMjDT1o/z75v2jf9+0i/IHeJXT3POld/fGs9ZL/x3cf/F6KdVQ+PoNY/37Nj4kTT2z8LUxYNmvk64AACpDX0BY2LmLpPGHF7f+2FnSIZ+UlvyP/5itT0ltJww8f/UP0fZY+n/SSb8orD4AAAAAAAAAAEYA/1QKAAAAlE1QKFZaIzcUK0WIGgAAAAAAAAAAAABUDefcLufcJZK+IKlTmaAvl3NTts3rpiFjTdIeSV9yzl3knNtZrtcB1KTmKf596+8rbF4SXF9M6zhp21P+/Yd8origMCn4vdv6dHFrYwDvJQBk9Prk6s76SPFBYf3GHxHcv/LGwc+3BnzW+unaEn0OAAAAAAAAAAAjBGFhAAAAFSAl/7CwkRyKZQFXph3J7wsAAAAAAAAAAAAAVDLn3P+TNF3SdyRt1+BQMOdzyx2zPTt3unPuP8tdP1CT9jmmsHn7nRtvHWG87jul3yPdLbmAC/jF8brHBQSz+AW6ILqgsDsAGEn8QrYaW+PbY99zgvuHhoP1dkTf4+aJ0q6l0ecBAAAAAAAAADACEBYGAABQAeosICzMEYrlxQUd2AQAAAAAAAAAAAAAJMo5t8U592+Spkp6k6R/k/QXSQslrZXUlb2ty7b9VdLXJJ0uaV/n3L855zYnUTtQkywljT00+rz9z4u/lnyOuLL0e+xe6d835Uxpv7cXv4eZf0DLwm8Wvz6kNX9OugIAqBzdW73bm9ri22PsLGnGe/37Nzww+Pnauwrb586DpZ6dhc0FAAAAAAAAAKCG1SddAAAAAKSU+We4OhGK5cWJEDUAAAAAAAAAAAAAqHTOuR5Jj2RvAJI05Qxp1+Lw4w/9dCbwqtxSDcH9neullqnF7bHqJv++1/8kvtc98RRprU+gVV+3VNcYzz4j1Su/SLoCAKgcfmFhfsGVhZr1YWnF7/37d6+SRh9Q/D7r7pUOfGfx6wAAAAAAAAAAUEP8UykAAABQNnWq8+0jFMtbmvcFAAAAAAAAAAAAAAAgvK5N0caPiiHoo1AHXOzft+xXUpdPIEpYXVv8+1r2LW7tXHXN/n2dq+PbZ6Rac2fSFQBA5fD7bGxqi3ef1uOD+7cvGHhcP8Z7zPgj8+/z7JfD1wQAAAAAAAAAwAhBWBgAAEAFSFlAWJgjFMuLc+mkSwAAAAAAAAAAAAAAAKgerSdEGz/tgtLUEcbR3/DvW/AV6eY26a6jpD2bC1t/xe/8+xrHF7aml2nv8O/r7YxvHww35uCkKwCA8unrlnp3efc1tsa7V8O44P6550vpnsxndG+795gjrsy/T+ea6LUBAAAAAAAAAFDjCAsDAACoAEFhYWkRiuXFiRA1AAAAAAAAAAAAAACA0Ma/Jtr4cYeVpo4wJhyVf8yORdIj74y+9rZnpT0bvPv2PSf6ekGmne/ft/SaePfCEJy5AjCCdAWEZzbFHBYmSZfkCetc8FXpsXf794+ZKZ31SPAafXui1wUAAAAAAAAAQI0jLAwAAKAC1AX8tYxQLG+OA30AAAAAAAAAAAAAAADhpRrDj23Zr3R1hNU8Nf+YjXOlzvXR1l11i3/fqGnR1sqnrsW/b82d8e6FwdqXJV0BAJTPlnn+fY1t8e/X1CYd/HH//pd/JK3/m39/XYs06VTp1D/FXxsAAAAAAAAAADWMsDAAAIAKkLI63z7nCMXyQogaAAAAAAAAAAAAAABABJNODT923GGlqyO0kGdDlvxc6t4Wftn25f59Yw8Nv04YqQb/vvpR8e6FvXospcVj2vTMhH318piJ6jGOzAOocX2d/n3Nk0uz5z7H+Pelu4LnjpmVua+Iv28AAAAAAAAAAFA96pMuAAAAAFJKAWFhhGJ5co73BQAAAAAAAAAAAAAAILSGMeHHzri8dHWEddD7pRd/kH/cwm9IC78pHfN96cgrg8c6J634nX//ARdHqzGM5qnSnvXD27c/H/9e0EtjJ+l/Z52orrqBY/JNfb366NJ5OnLXpgQrA4AS2vSwf1+qRL82NP1S6cmPR5+3/wVSU2vm8YTXBo91aYnARwAAAAAAAAAA9uJfzQEAACpAnREWFlVa6aRLAAAAAAAAAAAAAAAAqC7v6gg3btYHS1tHGId+KsJgJz37JWnjQ8HDVlzv39d2kjR2VoQ9Qzrme/59fV3x7zeC7UnV62cHDw4Kk6Suunr9/OCT1FHHdbYB1KB0n7TkZ959Yw8p3b6NE6STfxN93qk5n8Vm0huu8x+7+rbo6wMAAAAAAAAAUMMICwMAAKgAqYArnzlCsTwRogYAAAAAAAAAAAAAABBRfYt04KVJVxFO3ajoc9b8OU//nf59U8+Kvl8Y9aP9+zY9Upo9R6iXx05UT8o7EKw3VafFYyaWuSIAKIOtT/r31Y8t7d4TT442fsblwz8XR8/wH7/i95FLAgAAAAAAAACgllVVWJiZPZC93W9mk4tYZ0ruWnHWCAAAUIiU6nz70o5QLC+O9wUAAAAAAAAAAAAAACC6fY4J7g8KtyqnpjapZf9oc179g5Tu8e/fs86/r/XYaHuFFfR+dwbUg2AeZ4d2NDQHTmlvaCpVNQCQnKDPklJ9tvULCvryMmq/4W0TjvIfv3NxtPUBAAAAAAAAAKhxVRUWJmm2pNOz98Hf5gZrzq7RfwMAAEhUyvz/WjaufkIZK6keU5umJV0CAAAAAAAAAAAAAABA9Zl+qdTY6t//xhvLV0sQM+nQT0ab07FaevBcqXe3d//Gh/znTj0r2l5hjT3Yv69vT2n2HAnS3cOaulP+F2yUpLSsVNUAQHL6Ov37Zn6otHvXNUr1Y8KP96qncR/J6r3H71gouXRhtQEAAAAAAAAAUIOqLSxMEt/SAgCA2nRQ82HD2kwpnTRudvmLqSBvmvA2z/Zz2y4tcyUAAAAAAAAAAAAAAAA1YMxB0lselPY7b3jfG66T9vM+q5GII78sHX+11HZi+Dnr/yYt/knEff5ZahgbbU4Uow/ybg8KeEEwj/euuy44LMxxCh1ALQr6LJl0Sun3P/7q8GNbpnq3vyUgzHPNXdHqAQAAAAAAAACghlVjWBgAAEBNekvrhbIhfz1744S3alRdhKuu1aA3jn+rWlKjBrUd3HKkZrYMD1cDAAAAAAAAAAAAAABACBOOlmbfKb3HDb4ddHnSlQ1mJh32aensJ6TzXg4/b929w9s61vqPHz0jcmmRNLV6t/ftKe2+taxn57Cm7lR94BTHNasB1CK/z5JxR5Rn/4YIZ1zrWrzbxx/uP2fbs9HqAQAAAAAAAACghgV/I1q7cl93b2JVAAAA5Dh27Cn6/6Z9VX/f8YB29+3S0WNO0OkTzk26rMRNaz5InzvgO5q7/W5t6F6rQ0YdqbNaL1a9NSRdGgAAAAAAAAAAAAAAAMpl7CHhx3ZtGd7W7dHWr9SBKn7hKH2dpd23lrUvHdbUnaoLnEJYGICa5PdZ4vfZE7e2k8ONaz1BSvmc+2zcx39e767oNQEAAAAAAAAAUKNGaljYxJzHuxOrAgAAYIjXjD5Orxl9XNJlVJxpzQfpvVM/mXQZAAAAAAAAAAAAAAAASIqZdNwPpac/n3/s9gXD23oDgrlajy+8rjDqmr3bNz5U2n1r2a4lw5q68oWFkRUGoBbt2eDd7vfZE7fRB0gzPyAtu9Z/jNVJr/lyYeu/+APpmO9n/h4AAAAAAAAAAMAIN1LDwt6UvXeS1iZZCAAAAAAAAAAAAAAAAAAAAIAQDv+c1Ngm/f2K/GO7tkhNbQPP+wLCwupaiq8tiN/6G+4v7b61zCMsrCdfWJgImgFQg165xru91J9tuU68Rmp9vbT2L1LXpsF944+QZlwuTX1z8BrTL5Ne/aN33/bnpH1eF0+tAAAAAAAAAABUsWoOC3NRBptZg6R9Jb1V0ldyup6PsygAAAAAAAAAAAAAAAAAAAAAJTLz/ZmbJK26VXr4Yu9xGx+SDrho4LlfWFiqQcoTMlU01xfQl5YsVdr9a1HH6mFN3Xn+O6bJCgNQi/Z5beYzbyjXU74aUnXSoZ/M3ArVMM6/b8McwsIAAAAAAAAAAFAFhoWZWcC34QPDJK0wK/gb29yJdxS6CAAAAAAAAAAAAAAAAAAAiJ+ZHS/pIEldkl50zr2ScEkAKtGk0/z7urYMft7X4T2ublR89fhpnurf17dHqi9DDbWmd/ewpq5U8NF4J9LCANQg8wlK3PpMeeso1uTTpVd+4d3Xs7O8tQAAAAAAAAAAUKEq8TJUFnALOy7fzWXXeEnSTaV7KQAAAAAAAAAAAAAAAAAAjFxm1mxmM3NuPmkGe8dfYGYrJM2T9CdJt0l62cweMbMjy1AygGrSPNG/b95HJecGnndt9h5X1xJvTV5mfci/r9cnxAzB1t49rKk7FfgRQ1gYgNq0YY53+6yPlLeOYk17h3/fyhvKVwcAAAAAAAAAABWsEsPCpIEwr1IxSfMlneec6ynxXgAAAAAAAAAAAAAAAAAAjFRfkLQke5sjKe030MzeJekWSQdo+EVCT5H0hJkdX+qCAVSZCa/179v2zMDj1bd7jylHWFjTZP++zY+Xfv9a5PqGNfXkCwsjKwxArdm11L+vZd/y1RGH+lHS1LO8+3YsKm8tAAAAAAAAAABUqPqkC/DwkPzDwk7P3jtlrhq4J+SaTlKXpO2SXpQ0xzn3cDFFAgAAAAAAAAAAAAAAAACAvN6hTNiXk/RL55zn+UAz20fS/ypzEVSXvfXHuvTPGS3pFjM7zDkX9vwggFrX1Obft+kxqfW4zOPR073HdG+Lv6ahmlr9+9oDgl7gr65Z6hv8UdCdLyxMpIUBqDFbnvDvC/rsqVSW8u9L90l5fs4DAAAAAAAAAFDrKi4szDk326/PzNIaOPRzqXNuZVmKAgAAAAAAAAAAAAAAAAAAkZhZi6RjNHDu788Bwz8tabwGQsLWSLpFUq+kiyX1p/xMk/QZSVeVoGQA1WjqWdKGOd59fbsHHqd7vcf0bI+/pqGCAs3SPaXfvxb1Dc+M7MoXFpabFdayX8wFAUAC+rr8+6aeVb464jL2MGndX737etulxvHlrQcAAAAAAAAAgAoTcNmNisUlnQAAAAAAAAAAAAAAAAAAqHxHS6pT5tzfbufc0wFj36eBoLCXJR3lnPusc+4L2XWezI4zSR8oWcUAqs+hn/Lve/bLA4/X3eM9Zto74q3HT12zd3tfZ3n2ryU+wW/decLC0rnH0DvXxlkRACTjxR/4940+sHx1xGXmFf59j723fHUAAAAAAAAAAFChqi0s7BvZ2zclleEyXgAAAAAAAAAAAAAAAAAAoEAHZe+dpBf8BpnZ4ZIOzhn7Nefcjv5+51y7pE/nTDnMzA6IuVYA1aphrDTpVP/+dF/mvmO1d3/LvvHX5GXSG73bCQuLbut8z+aePGFhjmtWA6glzkk7X0y6ing1jPPvW3uX1Lm+fLUAAAAAAAAAAFCBqioszDn3jZzbzqTrAQAAAAAAAAAAAAAAAAAAvqbkPF4XMO607L1Japd069ABzrl5knKTfl5bdHUAasemRwP6Hpb69khjD/XuL1fwSF2Ld3vfnoHHLj0QbgZ/OxcPa+qTqTdfWNjQrLC+7hiLAoAy66nBX6lpmiRZwK85bX2qfLUAAAAAAAAAAFCBqiosDAAAAAAAAAAAAAAAAAAAVI1ROY93BYw7NXvvJN3vnOv1Gbcw5/GBxRQGoMYEBYvcf4b0pxZp1/CAKUnSqGmlqWkov7CwZb+W0r3S/M9Kt0yRbp4o/f1DUm9neeqqRuk9w5q68wSFSZLTkLSw7q1xVQQA5de7O+kK4tc4Xpr0Jv/+uedlgjUBAAAAAAAAABihCAsDAAAAAAAAAAAAAAAAAAClkJvK0hAw7pScxw8HjNuS83hcQRUBqE0zLi987qRT84+JQ12zd3vPDunuo6XFV0tdm6We7ZkAsb9fUZ66qtG254Y1hQoLsyFhYZ3r4qoIAMrv+a8lXUFpvOE3wf1PfLg8dQAAAAAAAAAAUIEICwMAAAAAAAAAAAAAAAAAAKWwK+fxFK8BZjZV0sE5TY8FrFefO7WIugDUmoYi8gPrWuKro9B9dr40vG3VrVL3jtLVU802D/+oCBMWlh7asPGheOoBgCQs+3XSFZTG6AOlmR/07192bdlKAQAAAAAAAACg0tTnH1K5zOwMSW+WdKykyZLGK/jqg16cc25W3LUBAAAAAAAAAAAAAAAAADDCrcnem6Sjfcacm/O4S9LTAetNyHm8u4i6ANSagz8qLf5xYXNHz4i1lNj2cb3ShjnSAe8oSTlVbfxR0rZnBjWFCQtzQ3MmjetuA6hSLp251aoJrw3u3/yElGrM/hw3yUxSyvt+75jsvTzacu8HrZFn7N69AQAAAAAAAAAoj6oMCzOzsyVdrcFXEyz0X9hd8RUBAAAAAAAAAAAAAAAAAIAhnst53GpmZzvn/jpkzAez907SPOdcT8B6M3Mer4+jQAA1YvxRhc+d4JdlGLNp75AW/Eu0Oemu0tRS7bq3Dm9K5T8W74aeNu/rjKkgACizlTcmXUFpTb9Mevpz/v33nly+WkLJE1gWKXwsIADNb2zsAWghQtiSek2lqKHY9cKODXwNhQbVxfF+AgAAAAAAAKgmVRcWZmZXSvpe/1MNhH0VEvrFv2oCAAAAAAAAAAAAAAAAAFACzrmlZrZEmQuDmqSfmtlbnHPLJcnMviDp1Jwpt/utZWZjNPgCo0tLUDKAamUmnXSN9MRHos076ZflC0kYf7i079ukdfeUZ79atvauYU3ddXV5p7mhR8fX3Ckd+aW4qgKA8uhcLz16WdJVlFbL1KQriMhJzklKF/abTUCihgaPxR2+VuYAtEoOyQsbKBcqWC6m1xT2/RxUU6X8Gel/DgAAAAAAMLJUVViYmZ0t6fvZpy576/9XnQ5J2yUFXVUQAAAAAAAAAAAAAAAAAACUzzXKnPtzkg6S9JKZLZA0WdIBGjgHuEfS7wLWma2B84K9khaVqF4A1WrckQXMOTz+OoJMv5SwsGK5tGdzdypEWNjQMIGO1XFUBADltdo3XxcACkDYHapc1EC5UoavJRWSV5bXFHG9sGPLGZJXcaGDhN0BAAAAAApTVWFhkr6Xve8/HLRKmUNEf3bOrUysKgAAAAAAAAAAAAAAAAAA4OVHkj4o6TBlzv41SDpe2hv81X/h0B865zYFrHNRzvgFzrmu0pQLoGqNjxgWZilp7KGlqcVXxAQGR2LDML27PZtDhYUNbYj6ZwYAKsGi7yZdAQAAlaM/TNj1JVsHUJCI4WNRw9eqISSvEl9T2EC5YkPyShHUV7bQQcLuAAAAgCRVTViYmc2S9DoNfE/7hKS3Oud2JVcVAAAAAAAAAAAAAAAAAADw45zrNrOzJf1F0hHZZtPARUNN0s2Svu63hpmNkXSJBs4P3l+yggFUr8bx0tSzpPX3hRu/33lS88TS1jRU24nRxu9ZX5o6qllvh2dzmLCwtIb8Muvau+OoCADKq2Nl0hWUx0m/kp74UNJVAAAAlJAbCLojKxxVJ2KgXKQQtgoPlCv3aypFoFyxIXmJhw5GCOrzrB0AAKC6VU1YmKQ3ZO9NUlrS+wkKAwAAAAAAAAAAAAAAAACgsjnnVpnZMZI+JOkCSdOzXS9Jut45d0ueJT4gaVzO87tiLxJAbTj9Dum+06St8/3HNLZK0y6UXv+T8tXVr25UtPFPf046/J9KU0u1al/q2dydyn8s3nn9LmDPLqlhbJFFAUCZpHuSrqB8Zn1Q2vmC9OJ/Jl0JAAAAgGEIu0M18wswSzJQrogAtEoOyQu7d6hwvJheU1Hva8J/Rgi7AwBkVVNY2OTsvZP0jHNuSZLFAAAAAAAAAAAAAAAAAACAcJxzPZL+N3uL6peSfpuz1o646gJQY+qapXOelFw68wuLVpf5JZq+bsn1DoyxVDL11UcMC5Mk5/gloFwb53o2d6fq8k518ngfN8yRpl1QbFUAUB6bn0i6gvI69geZ297PcZf5jB9675yk/nufMYPuc8fnuw+zXs66Ycd61l5MDQHz/faO7f2M8r4WuV6+9zPp1wQAAACgCuT+XT/pWoACRA2UK2X4WlIheeV4TWED5QbVVGEhebG8r3H9GenvBxCHagoLy/1f/iuJVQEAAAAAAAAAAAAAAAAAAMrGOdcpqTPpOgBUEUtpUCBYXaOkxsTK2atpUvQ5q26R9jtHqh8dfz3VyKU9m0OFhXn9Isqe9cVWBADl07km6QqSUSmf40A+ecPIYghAK0Wg3NBawgaqRQ1fK0dIXkUGylXJawIAAABQHfr/jdz1JVsHUIiogXJhA8uqKSSvlK9p//Ok1uNL9B8PlaSawsJyv9XI/20uAAAAAAAAAAAAAAAAAAAAAFQKM6ntRGnLvPBzHnmntM9x0pvvlZraSldbtdi+wLO5K0xYmFdjz87i6gGAcunrlh69LOkqAAQZ9MueQJXZGyoWV/CZRwBa2EC5UMFyRYa6RQ1fKzQkrxID5Urxfib9mgAAAABUh9y/v5NbHb+W/QgLGyGqKSxsUc7jAxKrAgAAAAAAAAAAAAAAAAAAAAAKcdS/SXPPjzZn29PSC1dJx36/NDVVk5U3ejb3jJ2Zd6qTDW9c/jvpiC8WWxUAlN6qm5KuAABQy/aG3UlS/iBeoKJ4ht3FHYAWcb2wY0OF4yUUklcxgXIR3teqDMkjJQMAAABx8fgeDDWpasLCnHPPm9lCSUdJOt7M9nHObUu6LgAAAAAAAAAAAAAAAAAAEJ2ZTZM0U1KrpLGSzDl3XbJVAUCJ1Y8pbN6LhIUNuuL8EN2W/xcg0l5jmlqLqQgAymf938KPrWspXR0AAACVhrA7VLugILQkAtAKCparkEA5v9dQCYFyYd/PqgrJI+wOAICKYqmkK0CZVE1YWNZ/Sfq1Mv+P/QuSvppsOQAAAAAAAAAAAAAAAAAAICwzmy7pc5IukDTdY8iwsDAzO03SGdmn25xzPy5dhQBQYq3HJ11B9erb49vVVdcgqS9wuuevLzaML6okACibbc+GH3vCT0tXBwAAAIB4mUlG0B2qVOgQshBhbn4BaKUIlIslWK5CQvLCjiUkz2MdAKg1+S+sg9pQVWFhzrnfmNl5ki6R9CUze9Q5d0/SdQEAAAAAAAAAAAAAAAAAAH9mlpL0LUlXKnPBUK+Tqn4n8zdL+vf+fjO72zm3tARlAkDpNYxNuoLq1dfp29U9+gCpd0XgdGceHz0BawJAxdjxksNsAmcAACAASURBVLTtmXBj9zlGmvaO0tYDAAAAAICUCbuTSZZKuhIgumFhYiUIQAsbwhYqHK/IULdYQtiqJFAu0vtapa8J8OL1PRhqUlWFhWVdIalBmasK3m5m35P0Q+fc9mTLAgAAAAAAAAAAAAAAAAAAQ5lZg6S7JJ2pTEjY0FAwp4DL3DrnXjSzOZLOyI59jzLBYwCAkWTbs75dPan8x+I9EykJCwNQDV78fnD/vmdL9aOl1uOlgz8uNU4oT10AAAAAAADVirA7VLO9QWclDEALGyhXcLBcmHC8MofkFV1DCQLlorz+5qlF/9FCdaiqsDAz+1r24QJJp0iaKOkrkj5vZo9LekHSNkmRohCdc9+Ms04AAAAAAAAAAAAAAAAAALDXLyW9RXtPvcokPSxpjqRuSd8OscbNyoSFSdJbRVgYgGqWapDSPdHnda6TWvaNv55qsWORb1eX+vJOd165lF1bi6kIAMpjw1z/vuN+KB3+ufLVAgAAAAAAACBZe8PuJKku4WIAlFtVhYVJ+ncNvqhT/6GhUZLenL0VgrAwAAAAAAAAAAAAAAAAAABiZmZnSnqfBs77vSLpPc65+dn+6QoXFnaXpJ9k1zjBzJqdc3tKUzUAlNjR/y4t+Er0eUt+Jr12BB97TvcOa3p57EQ93nagVnQvzzvdmUdY2I6FmautWyqOCgGgNHYH/IybUuiv0QAAAAAAAAAAgGpTC99q9l9psBAe3/gCAAAAAAAAAAAAAAAAAICYfD17b5JelXRKf1BYFM65VyVtzz5tkHR4POUBQAIO+URh8xZ+S1r03XhrqSZb5g16+tz4qfrxIW/QvLYDQk1P+3Vsf764ugCglDrW+veNmiZNeG35agEAAAAAAAAAAImqxrAwi/EGAAAAAAAAAAAAAAAAAABKwMxaJZ2igYuCftY5t7mIJV/IeXxoMbUBQKIa9yl87gs/kNI98dVSTVb+adDT+6YcrLSFPw7vzOf4+NJriqkKAErr1T/49514jeT3sw0AAAAAAAAAANSc+qQLiOiMpAsAAAAAAAAAAAAAAAAAAAChvFEDFzXd6Jy7o8j1coPGJhe5FgAk65BPSkv+J/q8nu3SzsXShNfEX1OlG/8aacciSZkEyuVjooWuOb+O3vaiygKAktr8d/++5onlqwMAAAAAAAAAACSuqsLCnHNzk64BAAAAAAAAAAAAAAAAAACEsm/23kmaH8N6u3Iej4lhPQBIzqwPFhYWJklbnhiZYWHpnr0P+8yUtlTA4OGczLtj3X3FVAUA8du+SHruq9LW+VLHav9xE44pX00AAAAAAAAAACBx0b4hBQAAAAAAAAAAAAAAAAAACKc15/G2GNZryXnc4zsKAKpB6/HS0d8obO4TH5baV8RaTlXYtXjvw+5UXeTpznzCwjrXSNsWFFoVAMRr9yrp/jOk1bcFB4VNPEUq4GchAAAAAAAAAACoXoSFAQAAAAAAAAAAAAAAAACAUtiZ83hsDOtNyXm8NYb1ACBZR39NOu8l6fgfR5+78ob466lkLj3oaXeqPvoSQZ3Lfxt5PQAoidW3Sl2b8o/b/+2lrwUAAAAAAAAAAFQUwsIAAAAAAAAAAAAAAAAAAEAp5KYcHFLMQmZWJ+nYnKZ1xawHABVj3GHSYZ+Sznwg2rwtT5Smnkq1Z+Ogp92pOt+hJ4w93bM9bea//rZnCyorUM8uqWtL5t4FRpUBwICnPhtuXMt+pa0DAAAAAAAAAABUnOiXVAKAWtO+XFr8E2nHC1LbSdIRX5QaxiRdFQAAkKSendJDF0sb7s88n3G59IbfSEGHNwEAAAAAAAAAAABUiuez9ybpMDOb5pxbXeBab5M0KvvYSfp7scUBQEWZdJrUNFHq2hxu/KpbpLkXZs5RNE4obW2VoK9j0NOgsLCmVLNnu1PAeZOOVQWV5al9uXTHzOHtx18tHfbp+PYBMLLt+7akKwAAAAAAAAAAAGVW9WFhZtYg6Q2STpM0S1KrpLGS5Jw7M8HSAFSD9hXSfadKndkLja77i7T2LumsR6S6pkRLAwBgxOvtkG4cP7htxW+lLX+Xzl+cTE0AAAAAAAAAAAAAQnPOvWhmayTtr0xg2BckfS7qOmaWkvSv/ctKWuCc2x5boQBQCVL10ux7pAfPlbo2hZuz5g7p4YulMx8obW2VoGfX4KcFhYUF2BXTWRSX9g4Kk6SnPiM1T5GmvyuevQCMbC1Tkq4AAAAAAAAAAACUWSrpAgplZqPN7KuSVkmaI+mbkq6QdL6kMyTN9pn3bjNblr3NN7OAS0QBqHlLfzkQFNZv63xp7T3J1AMAAAas/5t3+64lUveO8tYCAAAAAAAAAAAAoFC/z96bpE+Z2VkFrPFdSSfnPP+/oqsCgErU9nrporXS2fOkC1dIl/VI+54TPGfDHKljTVnKS9Tmvw962h0QFtaY8r5YrMt3bHzXK5HLGmbz48H9K34f3A8AYRxwSdIVAAAAAAAAAACABFRlWJiZvVbSU5K+IWmyMoeIwrpTUpukGZKOlVTIwSMAtWLRt73bX/iP8tYBAACGW32rf9/KG8pXBwAAAAAAAAAAAIBiXCVppyQnqU7S7Wb2sTATzWyimV0r6crsfElaL+lXJagTACpDql5qO0EaPT3zePpl+ee0Ly19XUP1dkjr7pOW/lra8KDUsba0+6XqBz31CwtrsEbVybvPebbm2LWkgMJytK+Q/nZ68Jg1dxS3Ry1pXy4tu1Z64fsDF/5tXyZ1rE60LKAqjJmZdAUAAAAAAAAAACAB9fmHVBYzO1LSXEnjlAkJc9n7/sCwwO9xnXPtZnajpA9lmy6RdG9pqgVQtbbMS7oCAACwfaF/34YHpYM/WrZSAAAAAAAAAAAAABTGObfVzD4j6Vplzvc1S/qZmV0p6SZJg9JlzOxESYdJequkCySN0cD5wD5JH3TOdZenegCoAPudm39Mb2fp68i16D+kBf86vH3qW6XTbpIaxsa/554Ng576hYU1pppk5n0daufTvldvR0GlqXODNPc8aev8cOM3PyFNPKmwvWpB5zrpzsOk3l0Dbc9+efCYyadLb7pNapxQ3tqAanHgPyRdAQAAAAAAAAAASEAq6QKiMLNmSX+WND6n+XlJH5Y0U9IRGjgUFOT2nMdnxlYgAAAAgPi4tH/fq9dLc86Vdr1SvnoAAAAAAAAAAAAAFMQ5d52kb2vwBUJnSfqSpP/OGWqSHlcmWOw9kvrTZvovIvovzjkuDgpgZGmelH/Mhr+Vvo5+q+/wDgqTpPX3SvM/XZp9F3xl0FO/sLAma5b5HCdP5ztm/vKPCipNj707fFCYJN17spTuK2yvWvDIuwYHhXnZOFd64iPlqQeoRm0nJF0BAAAAAAAAAABIQFWFhUn6jKQZGjj4c7Wk45xzv3bOrZC0J+Q6czRw4OggM5scc50AAAAAitU8Jbh/3T3SfW+UureVpx4AAAAAAAAAAAAABXPOfU3SBzVwzq//HGB/gFj/zTRw0dD+592SrnDO/WfZCgaASjL5TcH9WyIEVRVr9a35++MOwkr3DGvyCwtrSDXJfI7I93/waPRB3vtsXxC9tq6tmWCrqLY8EX1OLdizUdr0SLixq26W+sL+egAwgow7POkKAAAAAAAAAABAQqotLOzTGvie9jbn3D8559JRF3HOtUtakdN0RAy1AQAAAIjTuMPyj9mzIXPFWgAAAAAAAAAAAAAVzzn3G2XO6/1UmdCw/lAw0+CQsP62tKTrJB3hnPttGUsFgMoy+fTg/uZJ8e7X0y6tuVva+JDU1z24r315nrk747/wW+e6YU1+YWGN1igb9HEywFm2fbfPa2jZv4Da1kjRj7NLL18dfU4t6FgTbfzulaWpA6hmuxYnXQEAAAAAAAAAAEhIfdIFhGVmR0rq/wbWSbqyyCWXSuq/LNRMSQVc0glARXBOeuV/pTV3Sg3jpYOukPY7O8S8Ag5nAACAMnL5h0jSU/8kzbyitKUAAAAAAAAAAAAAiIVzbqWkT5nZlyS9MXs7QFKbpEZJmyVtkPSYpPudc9uTqhUAKsb0y6QX/0vq6/DuX3mj1Nsh1Y8qfq8t86UHzpJ6sj9+xx4qnTlHGrWf1LVV2hjiyHXXJql5YvG17DX8DEmPX1hYqklm3tfTdv0hYvufnzlzOtTOF6OX1tsZfY4krb+3sHnVroPwL6BoB16adAUAAAAAAAAAACAh3t+EVqZjsvdO0kLn3LIi18s9QDS+yLUAJOnpz0tPfkJae7f06h+kB8/JHHzJJ91bXD8AAIiPc9LOJVJfV05byGDPnhh+N6BzvbT+AcJEAQAAAAAAAAAAgDJxznU45+51zn3NOfdB59wFzrlznHPvc859wTl3M0FhAJA1/kjpzXnCpV64qvh9nJMevnjwWYxdi6UnP555vOBfwq2z+CfF15Krb8+wpu6U9zWzG61Jqf5QsCFcf/P0y/z3ciEvbtdv44PRxvfr3ial+wqbW82e/GTSFQDV74BLkq4AAAAAAAAAAAAkpJrCwiblPF4Sw3o5KQSK4TJaABLRvUNa/OPh7Y+8K/9clycMrLe9sJoAAEA06++Xbt1P+vOh0k0TpIXfyR68jHj4shC9u6XrTbp1X+mBM6U/1Emv/F/p9wUAAAAAAAAAAAAAAIhi0qnS0d/w7193T/F7bHlS6lg1vH3NnVK6R1obco8dLxRfS66+zmFN3ak6z6GNqSaZX1hYf3tdi/9eUWvfvtC73VLS+a8Ez936VLS9akHnmqQrAKpfPb/+AgAAAAAAAADASFVNYWHNOY+7fEeFNz7n8a4Y1gOQhNW3Ss7nympr7g6emy8srIcfDQAAlFzHGumBt0h71mee9+2RnvuqtPIGKZ3nszoOt88Y3jbvY1LH6tLvDQAAAAAAAAAAAAAAEEXbCf59W+ZlLpg25xypc11h629+1L+vt8M7SMxLe56QrKh6I4SFWZPMvI/IpyXp+Kul1tf779W1MVptDWO8211aGjMzeG7UvaqdK+DCgc9+OfNnD8CAfY5LugIAAAAAAAAAAJCQagoL25zzeGIM6+V++7olhvUAJGF3wMGTuW/PHLbw4xcy1q+3vbCaAABAeEt+5t2+/DrplZ+HX2f3yuh7u7TUtdm77/H3R18PAAAAAAAAAAAAAACglKackX/Mur9Kt+4nbV8U795hg8KkzEXaVt0S3959EcLCUk0ymWefSzVKB75TGn2A/15Rg9bW3efdXtcimUkz3uc/d8Xvo+1V7Xa+FH3O6lulG0ZL3TvirweoVi1Tkq4AAAAAAAAAAAAkpJrCwtZn703SscUsZGZtko7IaYr58lUAysbn6m97bQq4yl26N3huz67o9QAAgGgWfce7fe3d0daZe370vf2CwiRpw5zo6wEAAAAAAAAAAAAIxcwazOxNZvYVM/uVmd1mZveb2f1J1wYAFa2uWTrpl+HG3n1UARt4h2xJkp77WrSl5v2jlM5zUdewtswb1uQXFtZgAWFhY2ZILftmntSP8d7rpf8XrbZ2n2Po/SFhp/zWf+6rf4zvPaoGz3yp8LmLvhtfHUA1O/DSpCsAAAAAAAAAAAAJqqawsMckpbOP28zszUWs9SENfJu9W9L8YgoDkKBUY3D/ypv8+1yesLBewsIAAJBLS1vmS8t/J7UvS7oaf9ufk/Zsijana2tpagEAAAAAAAAAAADgycxGm9lXJa2SNEfSNyVdIel8SWdImu0z791mtix7m29mAWk2AFDjRk1LZt+oF17r2pw5zxGH7m3Dm3zCwhpTTTKfC9G6VP3AE/Oer9728HXtCbhQXe764w7zHxfXe1QNNgdcADifF6+Krw6gmjWOT7oCAAAAAAAAAACQoKoJC3PObZP0ZE7Ttwo58GNm+0v6siSXvd3nnEsHzwJQsfJ94bn6Fv8+l+dqbFEOfAAAUIv6uqSHLpL+eoL0+OXSHbOkF/8r6ar8PfvP0cb3dZSmDgAAAAAAAAAAAADDmNlrJT0l6RuSJmvggp9h3CmpTdIMScdKOivu+gCgarSdFH5szy7p5R9Lj71feum/pe7the/bU8DcF6+S+roL37NfXfPwcvzCwqxRKZ+PGOdczgI7vPdKNYWvK+g9GXf4wONJp/mPe+AtnmFoidv4iDT/M9LcCwZuc86VrrfM7U+jpA1zw6/X21n863zio9Kq24pbA6h2k96UdAUAAAAAAAAAACBBVRMWlvWjnMcnS/p5lMlmNkXSHZL20cBBox/GUxqARPR2Bvd3rPbvS/cGz+3ZFb0eAABqyZKfS2vuGNz2zBel7YvCr7FlvvT4B6T7TpMWfEXq3R1riYMs+3W08X15/h4Rx2FVAAAAAAAAAAAAADKzIyXNlXSIMmf3+tNaTCFCw5xz7ZJuzGm6JO4aAaBq5LvIaq4bx0lPfUZa8Vvp6c9lg6l8QrJK4dU/Sg9fLKV7ilunfemwpm6/sLBUk8zniLxTzvWlZ33Ye6/tC6Sw16H2CxyTpAMuHnh8+Of9x3VvlW5qrazAsBXXS/efLi3+sbTmzoHbunsGxvR1SvfPll69If96fXukuW8vvq6l10gPXyQ99/Xi1wIq1a5XgvunXVieOgAAAAAAAAAAQEWqqrAw59wfJT2bfWqSPmJmD5tZwOWWJDMbbWYfz849RpmDRk7Svc65R0tZM4ASyxfyEcTlCQvzOFwCAMCI8vKPvNuXXhNu/pb50v1nSMt/I216RFr0XWnO2VK6L74ah9qzKfzYvj3B/UEHOgEAAAAAAAAAAACEYmbNkv4sKTfd5nlJH5Y0U9IRChEYJun2nMdnxlYgAFSjKWcUNm/rU9LKGwMGhPlxPMTsu4P7194lbXw4+rq5Vvx+WJNvWJg1ycz7daT3ZlVKmniK/35b5oera81d/n1NrQOPxx+Rf60Vfwi3Z6m5tLTgX8MHpj16af4x6/4qbZjj33/6ndLk08PtJ2XOIJUz9A4oJ78ze5J02GelhjHlqwUAAAAAAAAAAFScqgoLy3qnpC0auLLgqZIeNLM1kq7LHWhmPzOz+yVtkvQ/kqb0d0laK+nyslQMoHT6OvKP6Wn3bnd5gkpe/VP0egAAqCW7l3u3v/zf4eYv+ZnUO+RzeNOj0sbs4b90nuDOQtwyOXwYWb7Q0bV5DrMCAAAAAAAAAAAACOMzkmZo4Mzf1ZKOc8792jm3QlKeq/zsNSe7hkk6yMwmx1xnVTCzBjObbWbvN7N/NrNPmtlFZjYj6doAlNH+FxY+9+nPxVeHJDW2SaMPCh6z7i/F7dF6wrAm37CwVJPMJ/TM5QZgNU7w32/TQ+Hq6t7q31fXMvh5vvdo/ifD7Vlqu16Rdr8abU5XwPsg5Q+LG32QdMz3w+/neqXNj4cfD1SToP+9NE8tXx0AAAAAAAAAAKAiVV1YmHNumaTzJK1X5tBP/+GffSW9MWeoSfqYpNmSmoeMXS3p7c65zWUrHEBp7FqSf8zOl7zb8wWUjD8yej0AAIwUq+/IP2bZr7zbHzgrc7/5sfjqybX46nDj8oWFLfl58bUAAAAAAAAAAAAA+LQGgsJuc879kxuU1hKOc65d0oqcpiNiqK1oZjbTzC41sx+Y2YNmttPMXM5tRUz7TDKznypzdnKOpN9I+p6kn0i6RdJyM3vUzC6JYz8AFW7mBwqfO/TCb8VqPVaaembwmC1PxLun8oWFeR+Rd3s/jiRNPj1g8R3hiujr8u+zITVMfXO4NZO288Xoc9bfF9zfscq/r3mqNP4IqfU4qbE1/J5x/zkGKsX2Bf59U2aXrQwAAAAAAAAAAFCZqi4sTJKcc/MkHSfpHmnvpZ9czr3LeZ7bZ5Luk3Sic+65MpQKoJR2LpZe/WP+cbuXe7e7PGFhXVui1wQAwEjxUPYKtek+ybnh/em+/Gus/1u8NfV7+vNSmN8t6MtzgfLenfHUAwAAAAAAAAAAAIxQZnakpP01cM7vyiKXXJrzeGaRaxXMzGab2V/NbEu2pj9K+qKk0yWNLcF+b5O0UNInJAUlqZwi6SYz+52ZjY67DgAVpHF8cYFhfszyjxkq1SAd9W/BYzY+JO1eWVhNkrT1yWFNfmFhDdYkk/frGBQW1tTmv9+ib4er6xWfC9GN88izzPceSdLOl8PtW0oPvSP6nEcvkzb5XDSwt1NaeYP/3BN/nglWSzVIJ/w0/J6d66PVCFSDbQG/4tIwXmo7qXy1AAAAAAAAAACAilSVYWGS5Jzb4Jx7u6QTJP1Omavlmc9tpzJXzjvDOXe2c45vB4Fa8OJV4ca9/CPv9rxhYRuj1QMAwEjz8D9IN02Qbp8hLfru4NCweR8Lnnu9SQu/VbraNjyQf0xfZ3C/CxF4BgAAAAAAAAAAACDIMdl7J2mhc25Zkettz3k8vsi1inGMpLcqOLgrFmY2W9JtkibnNDtJT0m6UZkLqG4eMu29kv5gZlV7RhRACCf/WnrT7dLog5KrYfp7MvejD8w/dsX1sW2bltSTqvfsa0w1KeUTeuaGXnxuWkAwVue64CJ2Lvbvm3jy8LbR04PXk6Rl1+YfU0rtRXxML/EJ+tpwv/+cKWdI0y4ceD79UuncheH2W3NH+NqAavHKL/z7TrqmsEBHAAAAAAAAAABQU6r+IIhz7inn3Pudc/tLOljSGZLeKek9yhzGeZ2kNufcO51zcxMsFUDclv4y3Li+Pd7t6TwBIF1botUDAMBIs+omqbdd6lgpLfiK9JfjpI410sobpWW/Sra2J/KElUlSX1dwfyVcrRUAAAAAAAAAAACobpNyHi+JYb3cL/lGxbBe3LokLY1rMTObpsyFUhtzmh+V9Brn3Oudc+9yzr1V0jRJn5XUkzPufEnfjqsWABVq2gXShcuk9zhp/FHl379l6sDj1hOCx26ZV9geHmdAe63Od3ijNcl8jsg7ucENzZM9x0mStswPrivo9TRN8m5vO7HwNcthcxH7+9X+0g/954w7fHjbhNeE+7M89pBwdQHVJOhnQNDPKwAAAAAAAAAAMGJUfVhYLufcMufcXOfcLc65Pzrn/uace94NuwwUSsnMGsxstpm938z+2cw+aWYXmdmMpGvDCOUXFuZ6g+ele4L7AQDAYNuele6YJT3yrqQrkXYvzz/G5QkOlaQdLxZfCwAAAAAAAAAAADByNec8znM1n1DG5zzeFcN6xeiR9KykayT9o6TjJY2V9JEY9/iGpH1ynj8m6S3OuUFfZDrnupxzV0sa+mXt581seoz1AKhkU84IP3brM/Hsuf953o+9rL41/4XdvPR2DGvqTgWEhaUaZTLPvvTQsLB9z/Hft3trcF19w+vaaz+fdfc/P3jNDQ9I8z8tORc8rlSCXtNRXwueu3uFd/uGB/3nTDrNu/2kEBcT9jsbjJFpzZ+le0+R/tgo/aFOumGM9MDZ0rbnkq4smq6N/n1tJ5evDgAAAAAAAAAAULFqKiwMGWZ2rZm5mG4rIuw7ycx+Kmm9pDmSfiPpe5J+oszVDZeb2aNmdkkpXjfga4/PF6f5wsLy9QMAgOHScZzvL5MwYWHzPlr6OgAAAAAAAAAAAIDatTnn8cQY1puZ83hLDOsV6jeSxjnnjnXOfdQ59wvn3NPOudiuTmhmh0i6IqepW9IHnHO+6SjOuduytfVrkvT1uGoCUOFe85XwY/9ynLRnk0eHd8iWpyO+JE2enfP8i9LUs4LnPP7+8Ov36+sc1hQYFmZNMvM+Iu805PrT0y703/fvHwiua/si/77c9yXX4V+QJhwdvO7in0gLIvy3jNPzAR8ZR39dmnG5f3+6R0p7ncUJCD6b8mbv9oknSvue7T9Pkpb9KrgfI8eGB6WH3iFtfjzz59Clpd7d0vp7pftnS7tXJV1heLtf9W4/8B+kusby1gIAAAAAAAAAACoSYWHIZ/g37B7M7G2SFkr6hKTWgKGnSLrJzH5nZqNjqA8jVU97+LFdmzNf/A6VzhMGlo7t7B4AAEiCx5VlB/H6+8GwNUL9dRgAAAAAAAAAAACAt/XZe5N0bDELmVmbpCNyml4pZr1iOOe2BYV2xeQ9knLTcG5xzi0JMe/7Q56/y8ya4ysLQMVqCjq+62HJzwvb54gvSectlo79vmQ54WL1o6TZ92RCbfysulnq2hptv+0LhzUFhoWlmmQ+oWfODQmuspQ05mD/vTvX+/dt+Jt3e+sJg9+XXPUt0jnPSAflCU174T/CnWuJk3NSx2rvvn2Oy7xXp1wnHXOV/xob7o+2Z12Tf98Zf5He9kzw/HzngDEyLLvW/6KR3dukVbeUtZyC7XzZv2//88tXBwAAAAAAAAAAqGiEhSGfm/MNMLPZkm6TNDmn2Ul6StKNku7T4CtEStJ7Jf3/7N15nFxVnf//96nurl6TdBKSdMhOQsK+KvsOggiKKCIyoIgC44o6+B39OeMyo6Mzysyo48Io7gqoA4qIsu/7JmsCIQnZ973Xqu46vz+qOl1dfc+te2/t3a/n41GPrns/Z0tTqW4edfI+NxjX0V1APhscmyw8Wakv5yDR3a9L956epxubCAAAY5jnSZ81pneTf921SSzb+IXFWQsAAAAAAAAAAAAwNj0qaTDtZLIx5rQCxrpc2pP+0iXp6UIWVgPOz7n+aZBO1trFkp7IutUq6cxiLQpAFYs1SE3Tgrd/8Yvh55hzUTokbPy+jjXUSTPOc/e3A9KuJeHmHOgaccs3LMw0ucPC5BHA1TrLPffOl921iY4MzF2L3X2k9PfIL1BtUNeq/G2KacDnQL1U39Dz6T4/UrZ5/GiO+4TY1Y/zX9PEw6RFV7vrvT5hbhg7drzoX9+Zp14tPIIR92ieUb51AAAAAAAAAACAqlZTQU3GmIOMMfdmHvcYY6bm7zVijGmZvoPjjMZ//X+NpHkRHrmfPFtJP/GbyBgzU9LNkuJZtx+RdKC19k3W2guttWdKminpaknJrHZvl/TVCH8+QOpdH679PTn7DP/k2KiSLZVMn5QGAMBYlL3Jr1blQO51gwAAIABJREFUCwvz2gCaa+WNRVkKAAAAAAAAAAAAMBZZa7dLeirr1r8aY7wTXHwYY2ZI+pzSe9qspLustQE+8KtNxpgOSYdm3epXel9eUPfnXJ9d6JoA1IiZ7wzXfsQeyTxv0XXN+cfc+61SrNFd9wul8tLfPeKWb1hYLK6Y4yxjK489oX7fM7+19o8MMZMkGffa9pgWIDszyCF4xTTQ6651vGXoefsh7nZe+2wS29ztff477jHd50dYf8jXEkafVFLa/qx/mzW3lmcthervdNemnFC+dQAAAAAAAAAAgKpWU2Fhkq6SdIqkkyUlrLX5/vX/CNbajUoHVg2Oc0UR11cVrLVbrLVvhH1IOiNnqPustcvzTPcVSROzrh+VdEbmdMLsNfVZa78j6cKc/p8xxsyJ8MfEWJdK5m+TbWfWaUu7lwXvN3r3FAIA4C/sz9pSOfI70v7XSB1nSAd+QZr17uB9d7zgX+fnPAAAAAAAAAAAAFAO3856foykH4bpbIyZJulWpfepDabY/Gdxlla1Dsq5fsFa60il8fRozvWBBa4HQK044lpp77cFb7/0B+HGr2vJ36ZxsnTKn931V74Rbk6P/R+usLA61avO1Ms4Qs+s1wGyCz/unnv5z921NX/wvr8gwNb0+hbp1Dv826z+ff5ximnZj9y1ff9+6Lkx7tfYjhelvq1D1zuXuMc8/FvB1jX5Te5aZ4j9wBidnvts/jZ9m6WulaVfS6H8/ix1cXcNAAAAAAAAAACMKbUWFnZe1nOfT1/zGuxrJJ1fwDijhjGmWdJFObevz9NnX0kfyLqVkHSZtdZ5tJS19g8a/t+uUdKXwq0WULQT0wY3eezy2XyQq3d9+HkAABgNbH+lV5DejLnw49Lh35ROu0s69KvS0ddLk48J1n/Jtf71oL9P9G4O1g4AAAAAAAAAAADACNbaGyX9LXNpJH3YGPOQMeZEv37GmFZjzN9n+h4myWYed1prHynlmqvAATnXr4fsn5uekjsegNGqvjUd1PXOtdJJt0qn/NW//ZISZS92nC41tHvXNtwdbqxtz4y45QoLi8fSgTqusLCUPA6WMzGpZab33BvvCbbGbEEC1SRp2mn+9ZW/DT93Id64wV2rax5+PeNcd9t1fxl6vuZmd7umqcHWlTt3tvV5AtcwutmUtPLGYG1f/3Fp11IMfY49ahNyM2QBAAAAAAAAAMBYVl/pBQRljNlH0uAnsSlJtxUw3J8kDUiqkzTPGDPbWruqwCXWugskTci63i7J5xNaSdLFSn8PB91srV0aYK5/1/CQsQuNMR/1CxkDRogUFtYvmQYpsSN4n61PujeBAAAwmqUqGBY27XTpqOukcfNH1uITpLc8LC3/ifTklf7jNO7lX7ceG0C9bH9Omn5msLYAAAAAAAAAAAAAvFwg6XFJkzPXx0u63xizQTlBWMaYH0haKOlYpQ+jNEqHhBlJayVdWqY1V9KCnOuw+xtX5lxPNsZMtNZuL2BNAGpJy97pRz6dudmCeay9VXrz/wRrm3Ts1WycEm7OcQukjfcOH9oVFmYaJUnGeJ+nbWW95+he432/ZZZ7XfGJUsLjbbUn4CG1sTzb+B1/hpJJ+Wzjbpo2/Lr9UHfb7NfUbp/XV1vujzoHv7CwusZgY2B0sFbq2yp1r5b6u6TmDql3Y7C+L39VGr+fNPEwacIBkvEOFKwYv31s/bsjDdlvk1rZu0y9A10ji8ZoZuNcTaifFGlsAAAAAAAAAABQOTUTFiZp8EgUK+lVa21n1IGstZ3GmFc1dFrewQq/mWa0+VDO9a8DhHedn3P90yATWWsXG2OekHR05larpDMl3RqkPyApWljYQJ8Ua5D6NgXvU8mgFAAAKskmyz9n2wJp0dXSoo/7t4vVSZOOyD9eYpt/PejvE7tfJywMAAAAAAAAAAAAKIC1drkx5lxJt0iarqHwr+mSOrKaGklXZj1XVts1ks611m4py6Irqz3nOsSGpz17JHslNWXdnqD0IaIAxpqD/ll66V/d9ac/IR357XQ4Vb4Anb2OCT5vxxnShrtH3u/bHHwMSeod2T7hCguLZcLC5P3nsNYRFjbpTdK2p0fe3/GCe11eQWGSNOUEd59ck4+Rtj7uXdv2dDocqVyhRrtedddyQ7n2OtbdtmfD0POBHne7yUcFW5ffnz/M4cGofgO9UtdqqXuV1LUqHQq253nmq99rKp/HLkl/bZwsvfVZqXV2cdZdDAM+/2xj1gWhh3u561ldv+6b6k35f7+OHHeCPjD9atWbhtBzAAAAAAAAAACAyqilsLA5Wc9DHmPlaZmGwsKq6JOe8jPGzJd0Us7t6/P06ZCUfSxUv6RHQkx7v4bCwiTpbBEWhjAihYX1SA1t7g0axZoHAIDRoJyBmft/Vjr8P8L1mXCQVNciDXS72/idTir5n8iY7cUvSQs/GnxtAAAAAAAAAAAAAEaw1j5pjDlC0k+U3i8mpYPAsr8O66J0SJiRdJekD1hrN3i0G43acq6jJGP0aHhY2LjoyxlijJkqaUrIbvOLMTeAiA75F/+wsNf+R2o/VFrw4fxjte0TfN79rvEOC5Okbc9Ik44MNs6aW0bcWjx+qmfTBpMOtYop5lm3cuwVWfhx6fHLvGtdq0aGCrlCxySpZaa7lustD0s3+mznf+M30ry/Cz5eVP0++2+O+dnIe8ak//tte2Zk7fUfSkf9IP3cFew087z0YYFBzbpAWv17j7muk476YfBxUDk2JfVuGh781Z0JBBt83hsqGzW6vq3SIxdJZz5anvmC2PGSuzbv0lBD7e7fqevW/pv6bf79f8/sflgd8Zk6Z6+LQs0BAAAAAAAAAAAqp5bCwrI3quwswni7sp6PL8J4texyadgRWs9aa/+Wp89BOdcvWGu7QsyZ++nagSH6AtECTHYtkZqmSIkQbyEBPigFAGBUKufPQBNi89+gukZpxtulVTe526T6pGRnOizUu0GwufrGwsHkAAAAAAAAAAAAQOlZazdKOscYc6SkqyWdLmm6o/lOSfdI+q619oEyLbFa5H7I2RthjB5JE33GjOqjkr5UpLEAVIs1fwwWFtbUEXzM+maf+W4NHhbmYVdDo+f9eCwuSTLDtkUPsZ7ZlJLqfNa67i/SvlcNv9e10t2+rsldyxWrk479lfTYJd71tX8sT1jYxnvdtfhE7/ttC7zDwqR0MJSJucPCxi0Mtz7n3h9UjWTn8OCvEaFga6RUotKrHLLlMalnvdTs+jW0zNb92V3ze3/y8ErXc4GCwga90PkkYWEAAAAAAAAAANSQWgoLy/60sBjhXtnhYwNFGK8mGWPqJH0g5/b1AboekHP9esipl+UZD/BnI/y1TSXTX/t3+bcrdB4AAEaDwZ+b5RAlLEySjrleSvWmN6y6rLtdmnOhdy3Mz3lr06eiAgAAAAAAAAAAACiYtfYZSe+XJGPMPpJmSZosKS5pi6SNkl621gY8AWjUc6TbFL0PgNGq/WBpx4vuevfqzJM8eyPmvC/4nBN8zhHuXhVsDMfBshMT3iFUb/QulSQZxx4PKytr7cj6xEPda+hZN/Je7yZ3+9Y57pqXsHOXwqYH3bX2Q7zv+4UR9XenA75cYWEhw4/U7fg+NLSHGweFSe5Ov1Z2viR1rR4eBpbYXunVhffg+dIJv5NaZ1V6JdJAt7vWOjfUUDv7t4Vqv71/a6j2AAAAAAAAAACgsmopLGxL1vOQn6J6mp31fCx/wvFWSTOyrnsk/SZAvwU51wE/td8j90itycaYidbaGvykEBURKSysL/01sbO08wAAMBqEOF2wYHufHa1ffat00h+kxA7p945TTHvWuvuH+XcFvZuk5mnh1gcAAAAAAAAAAACMccaYcZLmZd1aZq3tym5jrV0uaXlZF1b9OnOuQ6aqePbJHRPAWHLgP0mPvNdd3/G8NJDIP06YvRONk9215T+TjvxuOlDKjyNsKhHzPphuVuM+kiSjmHNIKyuTG4o2bqF7DbsWj7zXu8Hdvink/hK/ULXNj5T+gLsl/y0t/qa73jbX+/68S6XV/+ddG+hJ/7fd+qR3PWxY2Kx3SRvuHHk/uYMDAMtl12vSPaf578WqNVufkP44Wzr2l9K8Syq7lpU3umt18VBDJWxfuPap3lDtAQAAAAAAAABAZbk/Ca0+g2FURtLBxhifT5D9ZfpmH3M0ij61Cu3ynOv/s9buCNAv9ygmnyOyRrLWdkrK/WRpQpgxvBhjphpjDgzzkDS/0HlRAVFCvPoz+93W3FLaeQAAGA1SyfLM0zRN2uvYwsaI+5wSuuUJdy3Mz/mBrvxtAAAAAAAAAAAAAOR6n6TnMo8nJTVWdjk1o5rDwr4v6aCQj/OKNDeAqOZcKB3zU/82y6/3rzdOCT/vgivdtcXfyt+/K/ds4rSkIyxsUUt6e/iIMLAsVnbkTWOkjjO8O6z63ch7z3/BOb5iIc/yNkY69Ovu+uaHw40XRn+P9Oyn3fX2g901v5CzDfekvw44QojChoWN29dd23R/uLEQzZNX1U5Q2P6flY6/KXj7xy6V+raVbj359PdI3Wu8a3MuCj1cIhUyLMz2KRXm0E0AAAAAAAAAAFBRIT+NrKjHJfVJiisdGPYxSf8ScayPaigorV/SIwWvrgYZY6ZIenvO7Tyf9O+Re5SX99Fd/nokNWVdj4swRq6PSvpSEcZBtYsS4rX+TmnWu0s/DwAAo0Gqv7jj7XWc1LtJ6nx9+P2T/ySZImQYTznBe3PkqpskOU5eDLPJaceLUts+kZYGAAAAAAAAAAAAjGF7SXsSW56y1lYwiaGm7My5DpXQY4xp08iwsCCHiOZlrd2kkIeLGuMO7QFQRvtclg5pesQRPrP+DqnjTHf/+tbwc8Ynumvr75AO+bJ//80Ped5OOMLC4rF0JqXx2YtilZLk0d9vramkFGsYuu5c7t0ubAjWoOYOd239HdLUE6ONm8/qm/3rcZ+zvf1eD1secYevSVJd3H/eEXO1uGvrbpemnRpuPITT3+X8u1gyjVOk1tlSy+zM11nS2tuChcO1zkkHJG56QFr6/WDzbbxHmv2egpYcmd/3tj73n2zkl7DeYWHt9ZO1o3+rZ63fJhU3ZPoCAAAAAAAAAFALaiYszFrbZ4x5SNLgJ4fXGGNusda+GGYcY8xBkj4r7TkW6hFrbVcRl1pL3i8p65NrLZP0QMC+uZ88OY5+8tUjKfuT9fCfZmHsihLitfE+affr+dtlSxEWBgAYo2yRw8IO+Jw04xxp+9/Sp4dO2F+adrpUH3GTZK62+e6TVK1Nn8I64n6IsLBH3ie9tzva2gAAAAAAAAAAAICxazD0ykpaU8mF1JilOddzQvbPbb/NWru9gPUAGC0mH+Wu9Wz079v1RoT5jnbX+rbk7z+Q8LyddISFNZh0CFVM7pBCa608y37hV/1dUrx96Np4z6+BKGcvq/DvU1Rv/Mq/vtcx7lqTT8CZTUkJ71AiSVLrPP95c7Uf4q4l+PFWcontxT18ua45Hf41LAwsKxSsZZb3nrLdrwcLC5vzvvTXee8PHhZWyr9nhczt93fQIZHyDgtrqxvvDAvrS/XuCVsEAAAAAAAAAADVrWbCwjK+pXRYmFU6WOovxpgLrLWPB+lsjDlK0u8ltSr9Ma/NjDlWfTDn+ifWWuvZMr8o/aLOBUT70LlzWXrDRhgp740mAACMeqlkccebfJRkYtKkI9KPYvP7Gb/1Ce+NU2F+nxjoSW9k9Dl5FgAAAAAAAAAAAMAI67Oexyu2itqzOOd6Qcj+++Rcv1LAWgCMJm0+IU1bH5fmXuyu+wWNuUw/y13rDHD46/KfeN52hYUNht0Yv7Aw1/bleZdJy3/mXdvymLT32ZnJd0n9u73bLbjKOa+v8fu5a69fJx31w2jj5rP+r/71fS5317wO7hvUuUzqXOGuh30t1be4a2v+IB3943DjIZz+MAcsGql5eib8a5ZHGNhsqXGy/+vHOXTAPo2T0l8nvzn42Ovvkvb9SPg1FcPmR921me8MPVzCusPC3H16JU0IPRcAAAAAAAAAACi/mgoLs9beaYy5X9IpSgdN7S3pQWPMLyVdJ+mp3LArY4yR9CZJV0m6VFJDpq+V9JC19vay/QGqiDHmGEkHZt0akPSzEEN05lx7HN+TV26f3DGj+L6k34XsM1/SH4swN8op1R+t39YnwrVfd5u0/2eizQUAQC2zEX/WurhOVC2WRZ+QVv/eu/bsP0hnPuJRSIWbI7lr+CmxAAAAAAAAAAAAAPJ5Keu5T0INcryUc32IMabFWhs0reP4POMBGMuO+G/p2U951zbe4+7nF2jlUt8iHfUj6ckrvOs9G6TmDu9aql/a8YJnKdHQ6nm/waRzKY3PYXAp136RtrnOPnr200NhYa5AMUmaeb675seYdDCXIxxN3WullhnRxnbJd770KbdL4/f1bzP/CmnZj0beX3+HNNDr7ucX/uWy78ekpd8beb9va/ixEE7XG+7afv8gTTx0KAyseYZUV6p82ACHPO517NBzE5Mu7JbuOUXa+qR/vzW3FLSygni9riUpPikdrBZS0nFQtl9YWF/KO2AMAAAAAAAAAABUn5oKC8u4SNKzkqYrHfhVL+myzKPLGPOqpO2Z2iRJCyW1ZfqazH0jabWkC8u47mrzoZzrv1hr14XoX5VhYdbaTZI2heljopxMhMqzA9H6PRXy1Ke6CBsSgCAG+qStT0lN06RxC6KdkgYApbT0B8Udr2SbwDKmnOCubXlUWnubNOPc4ffD/j6R2EFYGAAAAAAAAAAAABCCtfY1Y8wLkg5ROvBqhrV2baXXVe2steuzvm9Sep/kCZLuDDjEKTnXfynS0gCMBvGJ7trmR921tgXR5muZ5a5tvE+a+z7vmiMoTJKSjjCwPWFhcu/Hs66QrPpxzj7a9Wo6XMsYaeO97nYNPmPk4xcKtPE+ad4l0cf20r3Gvz7pTfnHiDV432/qSAecOfs15h97RB+fvUelCFPDkM7l7tqhX5PqIvz3jMInBHCPaacNv65vls7KHDR9y0ypx+d1mdxd2N/hKPxC+5qmRhoyYb2Dv9rqJrj7pHzC/QAAAAAAAAAAQFUJ8IlJdcmEQb1V0koNhX8p87xN0pGSTpd0Rub5uExNGgoKe13SWzNjjTnGmFZJ7825fX3IYXbmXE8JuYY2jQwL2xFyDRjLooaFhcXmAZTC5kelmzuku0+Ublso3fdWqT/owa8AUCar/694Y008TGpwn0xYFPk2gz3w9pH3rOOkWJe1t4ZrDwAAAAAAAAAAAECSvpv5aiT9SyUXUmNuybn+YJBOxpj9JB2ddatLwUPGAIwFU09y1/z2Zs46P9p8ex3jriVztyMHqyVi3udlx2MBwsLk2C/SOMm9FklKJTOTb3e3mXSE/xh+/P67+H2fokrm2bbdFGBreK9jK74x/nt5ohyuOvFQd60U3x9k8fnvVa6gMClYWNiiT7prs/OcM5/cHW49xTDgE9IVNSws5QoLcweh9TkCxgAAAAAAAAAAQPWpubAwSbLWvqR0ENiNGgoAs1mPPU2zHkZSStIvJL3ZWru4nGuuMu9ROkRt0EZJt4UcY2nO9ZyQ/XPbb7PW+nx6DuQoV1hYuebB2DGQkO4/Z/hGmw13Ss9/oXJrAoBiudhKh/7b8HumTjroi5VZT67ckxjDhoUl2FgIAAAAAAAAAAAAhGWtvV7Sn5Xew3eZMeb/VXhJteLXkrI3L73LGLNvgH7/mHP9W2utTxIFgDGnba67ltjmrk04MNp88Qnu2sob3LVdrzpLSUfYVNykg4uMzxZ5K+us6eCvuGtdK9N7TzY96F1vmibVNbn759PxFnft6Y9HH9fFL/Ts8G8FG2P2e7zv96yXdr/mXZv/oWBj59r7HHdtw93RxkQwG++r9AoyAvzTF7+ALb8gMUl6+qPhllMMAz3u2n7XRBoy6Qj+aow1q8HEPWuJFL8qAgAAAAAAAABQK2oyLEySrLXbrbUXSzpA0n9JejFTMjkPSXpe0rckLbLWXmatHev/yj/3U9ZfWGv7Q46RG7a2IGT/fXKuXwnZH2Nd2cLCQoaIAPlsuNP7RL7X/qf8awEAl1TYXw2zHPh56cSbpXkfkPb9iHT6fdFPli22dbcPPe98Q+pZF67/RjYWAgAAAAAAAAAAABG9T9ItSu/p+7ox5g5jzKkVXlNVs9YulfTzrFtxST8zxjiTaIwx50m6LOtWQpJP8g2AMWvBleHaN06WHAFdgUw+2vu+K3hLkl79juftlKR+ee9taYilg3BiPmu1uYfNZXOFX0nSsh/5BpjpgM+5a0HUNUqTjnTXu0Puc8lnzR/dtUWfCjZGc0f4eaedEb6PJDWMd9de/HK0MRHMqpu8708+qrzrMHn+6cvJf/Kvt82Vzv6bu77mj1Lf1tDLKsh2n/WMXxhpyEQq4Xk/HmtUPNboWetLeQeMAQAAAAAAAACA6lNf6QUUylr7mqR/kCRjTJukaZImZ8pbJG201nZVaHlVxxizUNIJObevjzDUSznXhxhjWqy13QH7H59nPMAfYWGoVW/82vt+6MxGACihKJt/9rl86Pms86snICzbA+dKJ/1RevC8aP39NqgCAAAAAAAAAAAA8GSM+Unm6S5JuyWNk3SGpDOMMbuVPgx0U6YWlLXW5h6aWVbGmJny3oOZm5xSb4yZ6xim01q7xWeaL0k6X9LEzPVxku42xnzYWrskay2Nkq6UdG1O/2uttSt9xgcwVsUnhexQ4PnUfnsx+7uk+taR9+vbPJsnY+7t7w0mHYRjfNZr5bOW+ER3becr0pZHovUNqsknfGvLI/5hZmEN+OwPitUFG6NpWvh5o36fYg3uWn/Q7euIpL41/fc0V7m/7/kCC4O8tsYvkkydex/6lsekGeeGX1tUu3LPb8/S0B5pyIT1/rsdN3E1miZ1efzKnbC9keYCAAAAAAAAAADlVzNhYcaYDknZx888bK3dlt3GWtspqVPSsnKurcZcnnP9sLXW55grb9ba9caYFyQdkrlVr3QI2Z0Bhzgl5/ovYdeAMc71IW0sLjlORIo2D2FhKDJeUwBqQWJn+D4LP1b8dZRC1KAwSWqbX7x1AAAAAAAAAAAAAGPHZZJs1rWVNJj2MF4jD7/Mx2TGqGhYmKSHJc0J0G6GpBWO2s+V/v54stauMca8S9IdkuKZ28dLesUY84yk5ZImSDpC0pSc7rdJ+ucA6wMwFnWcIb3yjeDt84X05NN+sLTtKe+aKywssW3kPUlJ4w4CazDpt0oj93pTw34k5Wj2Ceta92epy/V2rvT3tFAdZ6Tn8RJlP4+f9UXYuj1uYfg+U8P+2M8wRqprkgY8Qo1SfZK1hb9O4c0VCtaU+6tHqeUJLZz05vxD1DVJU06QNj3gXfcKRSulVNJda44Qxicp4TgotCHWqHis0bPWlyIsDAAAAAAAAACAWlHgMU9l9S5Jt2Qev5bkc5wRvBhj6iS9P+f29QUMeUvO9QcDrmM/SUdn3epS8JAxIM32e9/f53Lp2F+mP8gNY+6ljgLBTiiyVb+t9AoAwF9ip3Tn0fnbZVtwpTTpiNKsp5r4bc4CAAAAAAAAAAAAEIbNesCHtfZ+SedL2px120h6k6QLJZ2lkUFhN0i6yFrXiYwAxrxpp4bsUGAI06Kr3bV1t4+8l0pKnd5nRyf2+4RzqMEgHOMTGmXz/ejpeIu7tvMVd61lhv+4QSy4wl170qcW1ro7pM7l3rXJIfYNRQnn8gqGC+rI77prz302+rhwsz6/rvn9vS4Fn6BATT9bqou769mO/La7tuGucGsq1MtfLfqQCev9z2ziJq54rMm7jyNgDAAAAAAAAAAAVJ9aCgtrV/qTZiPpKWttmY9tGRXeJml61vVuSb8rYLxfS8reTPQuY8y+Afr9Y871b621HEeDcFz72GL10rxLpLc8FG68Ou8PP2UJC0MRJTsrvQIAyO+5z0rda4K3n3m+/0a80YR99AAAAAAAAAAAAEBUpoiPMcdae7ukgyT9UNJ2n6aPS7rAWnsxeywB+DIx6eAvl2++xr3ctSX/OfLeJvce0GTrLGctbtJhQcZni7zNty+043T/upepJ4fv46W+VRq/n7veva4487zydXet/eBwY00MccDgxMPDjZ2r/RB3bcm10kCisPEx0o4X3bXGqeVbhyT1+/xqM891aLSHiYdK8YnetWWFnMMekrVS31bvWsT3lJRNqd96H4gZjzWq0TR61hL8Uw4AAAAAAAAAAGpGfaUXEMK2zFcraX0lF1LDPpRzfWMhG4KstUuNMT+XdHnmVlzSz4wxp7vCv4wx50m6LOtWQtJXoq4BY5grrMPUhR/rqOukbc865iEsDEW05pZKrwAA/PVtlZb9yL/NzPOkRZ+Stj4lTTo8vTEp1lCe9VUcvxcAAAAAAAAAAAAAEcyr9AJKwVo7t8zzbZL0EWPM1ZKOlzRHUoekLklrJT1nrV1RzjUBqHF+oVS5ejcWNpcrmEeSkrtG3tv2jLN5It4u9XjXGmLpsLCYT7aklXWvRZKaOvzrXhqnhO/j0jpH2rXEu7b9Wall78Ln2PSAu+YX7OalucM/xjLbQIGBRM15/tvsfk1qP6iwOTDczpfcteZp5VuHJO1a7K41Ti7OHOMXFWecIPo2F33IpHUH5sVNo+Ix78O1E6m+oq8FAAAAAAAAAACURi2FhWUHhLVWbBU1yhgzTdI5Obd/XIShvyTpfEmDn+IfJ+luY8yHrbV7Pqk2xjRKulLStTn9r7XWrizCOjDWpAKEhZ2/Xrplev6x5l8hbf+Ya6LQSwOcXv/fSq8AAPwt/WH+Ngf/izTxEGnaKSVfTtXpWZ8OEjXu02cBAAAAAAAAAAAADMf+sOKy1iYk3VfpdQAYBfZ+W/nmqm9217pWSv1dUn3W9vDeDc7myYmHSD3eB3fGTaMkyRi/sLA8+0Knn+Vf9zLj3PB9XPZ+m7Tja2WdAAAgAElEQVT+Du/agCMlrZjC/ln2fpu07vZgbSe/Ofx6srXOlpr3lnrWeddtf2HjY8hAr3STz99bSWrbpzxrGeQXNjf1pHBjNU2VEh4pd7teDTdOIRI73LWpp0Qb0if0Kx5rVGOs0bPWR1gYAAAAAAAAAAA1o5b+lftz0p6jnBZWciE16gMaHg73krX2yUIHtdaukfQuSdnH0Bwv6RVjzFPGmJuMMX+VtFrSdyQ1ZLW7TdI/F7oGjFE2QFhYc0ewE56MkfPt0I7ysLANd0tPfFh69BJptffmGRTR5of96zbPiYUAUGov/FP+Nu0Hl34dUR385eKMM/Fwd23JfxVnDgAAAAAAAAAAAAAAgEpqGCcd/ZNgbaedXvh8R37HXXv4vcOvl/yns2ki5r3f08io3jRknru3yNt8+/SaO6QFf+/fJte8S8O197PvR9y1l75a+Pjda/zrU44PN96Cq4K33e8z4cb2csLv3LVVPjWEky8orBL8wsLqmsKNdcDn3bUN94QbK6pH/85dW3BlpCET1icszDQqbry/Twnr870FAAAAAAAAAABVpWbCwqy1qyQ9LslIWmSMITAsnA/mXF9frIGttfdLOl/S5qzbRtKbJF0o6SxJU3K63SDpImtdiU9AHkHCwiTpnMXBNheYMRgW9sZvpHvPlJZdL73xa+mhd0mLr630qkavno3524zm1xuA6rfmT8Ha+Zy8WnFz3qf0r6EFmnKCu/bcNdLuZYXPAQAAAAAAAAAAAAAAUGlzLgrWrnGvwuca57P1e92fpZ4N6eedy93tZp6npE14lupNg0xmX4vx2T+SUoBDPfe5LH+bQU3T3HtQo4g1SOP29a7teKHw8V/+RuFjZIvVS4s+Haxtw7jC52s/xF1bVrTt8WNbYnv+Ns0zSr+OXGEDwfzE2921Fb8o3jwuyU5p29Puen1rpGETKXdYWEOsUY0x7+9hn08/AAAAAAAAAABQXWomLCzjm47n8GGMOV7Sflm3EpJ+Vcw5rLW3SzpI0g8l+X1C+LikC6y1F1tru4q5BowxQcPCjJGOCBCAldtvj1Ec3vTSv0q5m15e+lcp1V+R5Yx6O54P0GgUv94AVDebkh58R/52M99Z+rUUYvxC6bgCf8096jopPtG/zas+J90CAAAAAAAAAAAAAADUiqDhO/XNhc/VOtu/vmtJ+uvOV9xtWmY7w8LipnHPc+MT3mWD7NNrmZW/TZS2QSV3ed83MckGCDvzs/R77lp8UrQx8/23laRYPB2sVijnfl9JvQEOdR1LOpdLa2+XUiHP9l57e/42PWujrakQ++SenZ7Rfmj4sVp8XrN+70HF0rXCXTMxqb4t0rBJ6w79ipu44rFGz1oi1RtpPgAAAAAAAAAAUH41FRZmrf2DpJ9IMpLONcZ8zxhTX+FlVT1r7SPWWpP1aLTWbinBPJustR+R1CHpNEkflPR5SZ+U9G5J+1hrj7XW/l+x58YYFDQsLCjXxhA7SsObutcObazJltwpbXqg/OsZC4J8cO96XY9lyd3SGzdIL35F2nB34RudAHh76iP525h6ad+Pln4thZp7sXRhxEza0++VFlyZ/2TG1wgLAwAAAAAAAAAAAAAAo4Ax0rTT8rerK0JY2Pj9pPH7u+v3nColdki9m91tZp2vRMo7LKwhFt/z3Mg4h7BB9qC17C01z8jfTpJmvTtYuzA6zvC+b1PSQAlDffb/bLR+M96e3lvkZ/pZ+ffkBBF1n/BYsuUJ6TdGunW+9MA50o310r1vCd5/oErPA59+lnfA4ewLwo818TB3rXtN+PHCevIqd23WBVIs2us8kfIJC4s1qtF4B0QmfELGAAAAAAAAAABAdampsLCMqyR9W+nAsL+X9DdjzAeNMZMruywMstYmrLX3WWt/Zq39hrX2u9bam621PkfgACHZfu/7RQ8LG6XhTa5T5yT/jTaIrr8zf5vR+nqLqm+rdPcp0qMXSy9+Ob1Z5ZmrCQwDSuH1/83f5uTbpOkhNo1VUn1L+MCwU++Upp2afh4kLHS0BooCAAAAAAAAAAAAAICx5c0/zN+mGGFhxkin/Nm/zaN/Jz1xubs+7VRnqE3cNO55HvMLC1PA/Wdvfcq/buqlBX8fPWDLz6JPuWsv/FP0cfPtvYv6Zxk3XzrxZv82x/482ti58u0T3vRwceapVX1bpTuPGXl/w93Ssp8GG2PbM/nbtM4Jt65iaJkhnfwnqWlq+trUSfOvkA74fPixjJH2/3/etd4N0dcYxBs3Slsec9eP/nHkoRPWO0wxpjrVmXo1xBo9632pEoYQAgAAAAAAAACAospzhE91Mcbcm3W5W9I4SQdI+nGmvkbSpkwtKGutPb1oiwRQHq5QpVjUtzVHWFgqGXG8KucXShXxNCrk8ZxjU0E2gmeGu+9safuzw++99l1p/uX+p7oBKL4D/0na+6xKryKc+pZg7c5fJzVPz7kZ4P246w2pbZ+wqwIAAAAAAAAAAADGHGPM+4s4nFV6f+BOSRskLbGWU8cAoCCNk/K3KUZYmCS1zZOaOtxhPOtu9+m7QJKUTHmH4TTE4nueG5/ztG2QfSFSej/JxVbqWiWtvllqP2To+2Bi0oQDpIZxwcYKy+/7vfIG6Yhro427a4l/vZD9ozPf7q7NukCKT4w+djbX4cCDVv9emnpCceaqRRvucdeeuFya/8H8Y2x+JH+bptz9VmXScYZ0/vr0a7llVmF/B9sPdtd6NkrN06KP7Wfxf7hrsYaC/kyJlCNMMRMS1mi8w8Jc/QAAAAAAAAAAQPWpqbAwSadIw45zspJM5iFJszKPoJt/TIi2AKqJK+wq34lhLq5+G+6KNl61S+xw16J+D+Fvx/P52/iFuI01256RtjlOZlz6A+mo68q7HmA0S+zM32a+z4mtta6hfeS9VID3423PERYGAAAAAAAAAAAABPMzlW6fXpcx5ilJP5d0k7WWpAMACCtIiFP3muLNN36ROyzMT32rJCnpeKtvMFlhYcZ4tpGkVNiMydbZ0n6fCtenUK1z3LUge31cdr8WvW8QU06UNj808v5+ny7eHD7/bSWlDwAcy4rx33ji4dLOl/3bHPb1wueJajCsr1Ats9y17lWlCwvb/py7Nm5hQUO73h/jmZCweKzJs95newuaFwAAAAAAAAAAlE+eo3VqgvV4ABjtejd7348adOV3CtPAKNxDuP6v7pqptRzJGjDgfZLhCISFDXnhy+7ail+VbRnAmJBvY9e4fdOnutaieJ6Tb2Nxqc5jA1SQ9+Ntz0RbEwAAAAAAAAAAADB2mRI82pQ+hPSnkpYbY84s258GAEYLE2A7+dSTijffvPdH65c57C5pvffjxWONe54buQOlrFLR5i+nhjapaap3baBbCht4Jkk7XpQefKe7fuS3w4+Zy+u/7bh9pclHFz52UJ0ryjdXNcq3BziVzD9GMkAg3ZQTg62nmk05zl3b/Ghp5sy3J33eBwoaPpFyvT+mwxQbs94nh/cjLAwAAAAAAAAAgFpRi2FhxdwoBKBWdTk+zI8aFuZ36t2WEn3gW0l+36e65vKtY6xY8q1g7WwNbEIql3W3+RTJBQWKKt/Jr6feUZ51lMLh3/Svx9u9TxuddX7+sV+p4OmYAAAAAAAAAAAAQO3J/mAu6MGgQQ4RHbxvJE2X9BdjzMcKWCcAjE0Hf8W/3jyjeHPNvzz/ng4vmRCdRMo7bKfBxPc8Nz5b5G2t7D877jfu2oa7wo1lrXT7If5tFn0y3JheFnxYOvxaqWVW+hC/jjOl0++TYhH39kax44XyzVWLlvxn/jZr/+Rff8eK8v43LZVYg7v27KdKs6f3lW/41/e/pqDhE9b7/TFu0iFh8ZjHwZqS+hzvqwAAAAAAAAAAoPrkOTqmulhrazHcDEA5hQ0La5mdv19yd/T1VKsNd1d6BWPL818I1s4OlHYdo8VAT/p0O7+NGgCC693krtU1S23zyreWYtv7HP96wwTv++2HSG3zpc5l/v0TO9KBYwAAAAAAAAAAAAD8fDDzdZykL0qarHS4V0rS45KekrRK0i5JcUmTJB0s6URJHZm+VtJNkv4qqVlSu6QDMm3maHho2H8ZYxZba+8t6Z8KAEaTpmn+9foiH0K6/zXS8/9feh9YUJmDUBM24VmOZ4eFeR0el1EzYWHxSe7ail9J088MPtaO5/3rbfODj5XP/p+R9vt0+r9tXTx/+1Lo7yn+a7Zm5Hl9r71NOuAfow2932ekI66N1rdaNYyXkru8a9v/Jk06orjzrfU7SFfeB1+G4AxTjKXDwhozoWG5UhpQv02q3rAvFwAAAAAAAACAakf4FoDa43dSU3+39/39P+t9/8hvp7/Wt7nHTHlvLKlpWx5112x/+daB4QgLC+73k6SXvpY+8RBAYfp8wsLOebl86yiF5mnStNPc9clHed83Rjrlz1LrXP/x+7ZGXhoAAAAAAAAAAAAwVlhrfy7pUUkfUzooTJJ+JGmetfZ4a+2nrLX/aa39sbX2+9bar1pr3ytppqR3S1qhdAjYeyTNsdb+0Fr7DWvt+6218ySdK2l5po1V+hDVUZZkAQAlNvsC//qEg4o/Z/th4dpngqeSjj2dDbGhYKqYzxZ567cHtZqMX+SubXkk3Fiv/Lt/vbnDvx6WMaUNCtvrOP96Ynvp5q52+V7fuxbnH6Npqvd9v0Mpa9VEn/ehfAdNRtG9xl0rQmhfwnqHhQ2GKcZjTe6+jqAxAAAAAAAAAABQXQgLA1B7Bnrctakned/f5zKpoX34vQkHSR1npJ/H6t1j7loSank1L0VYWMXUyiakatDfKb3wT+kHgMK4NnHNfKfUNq+8aymFY38pNU4eeb+uSdr3o+5+4xdJ71guTTrS3YYNUgAAAAAAAAAAAEBexpgWSX+QtEhSv6T3WWuvstau9utnrU1Za2+RdIikh5Xe7/glY8xlOe1ul3SEpOeybh9ijHlL8f4UADDKNU6Wmmd41ya9WWqcVPw5F34seNv2Q/c8dYfhNO55bmScQ1nVyAGV9S3uWudyacPdwcZ5+RvSyhv92yy6Ovi6qkG+187Ge8qzjqqU5/Xdt1Xa9Zp/G9d+sulnRltSNfPbP/bwhVLv5uLNNZCQeje464MHYBfAFfgVj6XfHxsJCwMAAAAAAAAAoOYRFgag9uxe6q41jPe+P+EA6Yz7pLmXShOPkBZ+XDr9XqmhLf98626Pts5aZQkLK6oN9wZvawdKt47R6uV/k9aOsb+jQLG5Nnc1TSvvOkqlZW/prCfTwaHjF0lt+0iz3yOdepc0Jc8po8ZIB3/FXR9ggxQAAAAAAAAAAAAQwL9I2l/p9Ip/t9b+Nkxna22XpHdJ2ibJSPofY8yUnDa7JV2gdBjZYErGKEy0AIASOm+F1H7I8HvTz5bOfLQ08+3zgeBt9/v0nqfJVMKzSUMsvue5Me6wsFSthIVJ0sl/dtfuDZCJ2bVSev7z+dvNeHvwNVWDuRdLR37HXX/s/eVbS7WxAV7fT3/CXeta6a6Nlv1k2ea817/+4peLN9fK37hrcy+VZpxT8BRJ6/3+OBimmB2qmKvP9hY8PwAAAAAAAAAAKL36Si8AAEJL7HDXWue4axMPk477Rfj5tjwWvk81y7cRgMCq4rr39OBt+d5H88wnpRlvq/QqgNq15RHv+01Ty7uOUmrbRzrmp9H6TjvVXRtggxQAAAAAAAAAAADgxxhTL2kwsaNP0r9HGcdau8UYc52kz0tqlnSxpG/ntFlhjPldpmYlHR913QAwJsUapLc9X+lVeKtv3fPUFYbTkBWCY3zO07Y2Vbx1ldr4hf71rtVS6yx3fXnAPbMxd4BQ1Zr/ofTeQZeuVVLr7PKtp2oEeH1vuk8aSEh18ZG19Xe5+9W1RF9WNRu3UNr9mndtg8/3I6z1d7pr8y8vyhSJlPfhlw2Zv+ONsabQfQEAAAAAAAAAQHVxfxIKANXK78PShnHRxhy/f7R+1aK/K/19WfdXqb87T9tO/3qqv3jrGuuSu8O1r6VNSNWkc5m0c3GlVwHUpsR2qXeTd61xFIWFFaLOvUFKia3lWwcAAAAAAAAAAABQm06QtJfS4V1PWmu7Chgre9PQOx1t7sh8NZJmFjAXAKAcDvpSsHZ7HbPnqSssLG6Ggo+MjHMoqzwHrlaT1nn+9c7l7lpiu/TiF4PNY9zfr6pV3yK1+ISB9Y3RfT35DhSWpFTSvZc4sc3db9Lh0dZU7fY61l3bvbR48/h+b48szhTWO/ArnglTjPsEA/alODgTAAAAAAAAAIBaUPNhYcaYw4wxXzTG3GWMWW6M2WGMGTDGeKbdGGPajTGzM49p5V4vgCJY9uPijznTtX+wBuxcLP1poXTfWdL9Z0u3zvcPTlr1O//xLGFhRZPcFa69HSjNOsaC7jWVXgFQm1bf4q41ERYmSTIx98bCJ64o71oAAAAAAAAAAACA2pP9Ydu6Asdan/V8jqNN9qaZiQXOBwAotf0+lb/N+P2klqH8x0TKOwynISsExz8srIYO9YzV+ddf+Gfv+72bpN9PCjbHcTeEW1M1OfSr7lpyZ/nWUVUChuE9/THv+3/7R3ef+tbwy6kFiz7pX9/yZHHmWX+Huxb1sOwcrvfHwZCwetOgmLzfV1xBYwAAAAAAAAAAoLrUbFiYMeZgY8zdkp6R9CVJp0maK2m80qcCuj7lPVXSisxjqTGmpfSrBVBUfZuLP2Z9c/HHLJfHPyj1ZO2l7N0gPXapu/0TH/Ifj7Cw4gkb/kVYWHS1eLIhUA2e/ri7RljYkAn7e9/v3SB1rijvWgAAAAAAAAAAAIDaMj3reaEJE4N7/YykDkeb7VnPGx1tAADVIt4unfJX/zZHDz9gNmET3kOZ+J7nxhhnYJi1AcOUqsWiq921zQ9JPetH3l96XbCxT7pVmntRtHVVg7mXuGtr/li+dVQTGzAMb+WNI/c9da1yt+84I/qaqt2kI6Qj/stdd4XyhTHg/b4lSTr064WPn5F0BH41ZL0/Nsa8f0XuS/UWbR0AAAAAAAAAAKB0ajIszBhzmaTHlQ7+yv0kN98nuH+UtCrTr1XSu4u9PgAom+510tYnRt7f9ozUs2H4PZuSdr2Wf8wUYWFFMxD2lK0aOrGw6hAWBkQy0OOuERY2pNHne7H2tvKtAwAAAAAAAAAAAKg9u7KeH1DgWAdmPe90tGnKeu7zgSgAoGq0H+hfbxqeD5lMOcJwYvFh186wsLxbzavM5KP865seHHlv+fXBxp759vDrqSZ+h4wmd5RvHVUlxOt7433Dr1/2Ca0yddGWUyumnOCubbw7eAiby/Zn3bWGcYWNnSWRcoQpZgWExY13WFiCsDAAAAAAAAAAAGpCfaUXEJYx5t2Srlc6FWTw0yyjdADYNkmH+fW31qaMMTdJ+n+ZW++Q9MvSrBYASmzXYp/aq1JzZpPMur9Kj10i9W3NP6YlLKxo/EJ4vNiB0qxjLNj+nNRxeqVXAYwufgFZY43fz9tVN0mLPlG+tQAAAAAAAAAAAAC1ZU3mq5G0jzHmaGutx8l4gVya+Wqzxs3VkdVmc8R5AADl1DLTvz5u/rDLpHWE4eQE4BjF5HWAZ6rWDvWc+U7/ejIrl7N7jfTa96SulfnHnXpSYeuqdqbm/plEkYQIC0vkBKqtvMHdtv3QaMupFRN9/nw2JfVulJqnRx8/++9prmmnhhqqN9Wj+7b/SSt6XlNHfKZOnni2NiXW66ldD2hF76uefbLfH+OxJslju/LtW2/SQzvu0NT43jpq/Mma0ThH9+/4s5b3LFEylZQk1Zk6zW1eqJPaz9bkBvYXAgAAAAAAAABQCTX1KZgxZrqkn2cuBz/J+r6ka621K4wxcyUtDzDUH5UOCzOSTi7yMgGgfBLb3bXBU/K610j3nx18TAKrimcg5ClbfO/TbISTG1/9trT/NcVfCzCWNU6q9AqqR8fp0ranvWsD3qfVAgAAAAAAAAAAAJAkPSApqfReRSPp+8aYE6213WEGMca8V9KZGto3eJej6RFZz98It1QAQMUc9b/Sk1eOvH/syPOgdw/s9ByiwcSHXRtjPHOTbJgwpWpQ3yLNe7+04hfe9Rf+WVpwhdS9TrrrRKnrjWDjvun7RVtiRU08PH3YaK5lP5aO/lH511NpYfZfPvcP0v6fST9P9UtJ779bkqQFHn8/R5NYg3TgF6SXv+Zdv/M46e1LpVjEf37z+v+6a+P3DzxMMpXQd1d/eU8o2EtdT+vu7X/I2y8eGwoLa4w1erbZnNygzckNWt67RI/vutc51tKel/XUrgd1zexvaFLDlMBrBwAAAAAAAAAAxRGr9AJC+qKkFqU3DaUkXWit/bi1dkWmHvTTraeU3oAkSZONMfOKu0wAKDLXh/c7XnD3MbF0vz/MCjdXKpm/DYLZ+WK49rbGTiwslSjfh27XgcEAnFb9n3/d1Nr/KpRQ8wx3je8TAAAAAAAAAAAA4GSt3SXpNqX3/FlJh0m6wxgTeEOLMebDSh8yarPG+ZWj+VlZz5+PsmYAQAUsuEI67Z7h9854SJp3ybBbKZ8DORtiOWFhMp7tbC3u0zv25+5a70ZpIJEOEwsSFNa2QDpvpdR+YNGWV1F7HeuuRTm4tOaFfH13vpH+uuUx/3bNHZFWU1P8DqztekPa8mj0sVc79uo1TpGM93uVl8Xdf9sTFBZGPCtMMW6aQvfPtaN/qx7beU/+hgAAAAAAAAAAoOhq5l+2G2PqJL1P6Y0+VtK/W2vzJBx4s9b2S1qSdWu/wlcIACWwa6l075nSb9ukvxwhrb55eL1hgrvvncdIN0R4m7f94fvA2zOfCtfeZyPTmML3ASg9a6UnPuSuH/zlsi2lJkw7xV3L2WgKAAAAAAAAAAAAYIRrJPVmXR8v6RVjzA+MMacZY8bndjDGLDTGXGWMeUrSdZLiGgoKu95aO+IEt0wA2SkaOnT0oeL+MQAAJdVxmnSxHXpMPWFEk83JDc7uDWb4Ho6YY5u8DXw2dZWZdqq7tvPl/GFPg972gtQ6uzhrqgamzl3rWV++dVSLsAFpg6+bfK+fWOEBU1WvYbxU5/Pn3BwxLCyxPVo/D7dv/W2kfi114/Y8b6sf8at3JMt7luRvBAAAAAAAAAAAiq6+0gsI4RhJg59MJCT9R4HjrZF0cOZ54FMKAVRYyidEaP4V5VtHOSR2SvecIvWsS19vf056+D3SqXelN8VI/pscokolij/mWJEakLY+LnWtTJ9W198Zrj8hWRk1eHIjUGt2viwld7rrsy8s31pqwYSD3LXkTim5W9ryuNS5LL1pLD5RamiX4oOPif4byQAAAAAAAAAAAIBRzFq7whhzuaRfKn3AqZXUKunKzEPGmF2SdisdCjYh81VKB4Qp08dIekLSZxxTfU5DB6j2SrqrqH8QAEDFJVJ9ztrejcMDsIwx8soFq9mwsI4zpY33edf+ekSwMSa9SapvLt6aqsFex0mvfde7NtBd3rVUhZCv776t6a+r8oRQxUqwX7namJg0/WxpzS3e9e414cZLDUgv/5v04hfdbSYdGWrIVb2vh1uDpHpTr31bDtxzvX/LYXqh88nQ4+RKWPf7MQAAAAAAAAAAKJ1aCgtbkPlqJT1lrd1V4HjZ/YtzPAqA0vPZ6KH5HyrfOsphw11DQWGDbEp645dZYWHeJ98VZICwsEj6u6T73yZtejD6GISFpVnCwoCSsinpgXf4t6lrLM9aaoUx0uHfkp67ZmRtx4vS7YdKXSv8x4g1DoWHNUzMep4JExt23T4ycCzWUJo/GwAAAAAAAAAAAFAG1tobjTEpSf+r9H69wSSLwTCwCZnHiK5Z7e6QdJG1tssxzS8lDSZddPq0AwDUKL+wsKbY8BAss+dHzHCpWt2ftuiT0vOfL2yM435VnLVUk47T3bVND0njFrjro1HY1/czn5DaD5S2PeNu87aXCltTLTn8m+6wsKXfk478bykW8J/gPPMJaekP/Nsc9vVw6wspppgu7fjEsPfH4yacoZe7ntVLXU8XNLbf+zEAAAAAAAAAACidWgoLm5L1fHURxsv+JKyWvg/A2Ob3weJoCzbxCiSRpOU/k475afq5LcEJdynCwiJ5+RuFBYVJhGQNIjQNKK3X/idYsBWGG7evu5bv+ymlf4fp3Zh+RFHfOjw8LG/gWNZ1/fixcbonAAAAAAAAAAAAqpq19rfGmEclfUvSuzS0b89rA4zJ+rpC0testT/JM/7jxVorAKA6Jaz3HtKY6lRnhm8HN/I+jNV6/tipAfUt6T09UQN6DvuGNH5RcddUDeqa3bWlP5Dmf7B8a6kKEV7fj73fXWs/OB0mNlaMmy9NO13aeI93fcuj0tST8o/T3yUt8/3VNa1lVrj1hfCOvS7RkeOO15T49GH3G2JxXTXjc1rWs0Rv9LymAQ3oz1tuVErh9u663o8BAAAAAAAAAEBp1VJIVvYnV8X4l+6Tsp7vKMJ4AMoh1e+umYbSzbv+Lmn6W0o3vpfezQEalSBcirCwaNb8ofAxCMlKIzQNKJ3eTdIzV+dvV9dU+rXUmvik/G1Kqb8r/ehZG61/w4SsILGsMLGGAIFj9W2S8T5tFwAAAAAAAAAAAAjDWrtG0kXGmOmSLpB0nKRDJe0lqV1Sn6TtklZKelzS3ZLutLYUJ+oBAGpNwhGUFfc4GM849jrUbFiYJLXOlnYvjdZ3/P7FXUu1qG9x14Lsd+nvSe+VGi17Y6L8ytS9xl3b8WL0tdSq8fu5w8K2PRssLGz9ncGC/erHhVtbCKdNfLvne6Mk1Zl6LWw5SAtbDpIkPbj9du0c2B5qfNf7MQAAAAAAAAAAKK1aCgvLTs3ZuwjjHZT1fGsRxgNQDtYnLCxWwre0F79U/rAw432q3TClCFUiLCyanS8VPgZhYRkRX9epASlWjDxRYBRbfG2wdpUOxqpGjZMrvYLCJHemH1oZvq+py4SNTfQPHItPzHqeFTg2mjZUAj/c87UAACAASURBVAAAAAAAAAAAoCisteslfTfzAAAgkIR1hIUZj7Awee/BtLV8mOXe50qv/lf4fnXN0rTTir+eauC313aHz77OLU9IT39c2v6s1NQhLbhSOuiLo2CPSw2/vqvFjHOlpd/zru1+PdgYb/wqWLu6eLB2ETSY4GO31U8IHxbmeD8GAAAAAAAAAAClVUthYasyX42kw40xDdbaZJSBjDELJc3IuvVCoYsDUCY969y1WENhY8+9xP3h7JbHChs7ikBhYSUIlyIsrHJqeRNSMaUivq53vypNOKC4awFGm8X/kb9Ny+xRsOmtBMZygJodkBLb0o8oYvHh4WFhA8dKuCkOAAAAAAAAAAAAAADUjkTKERYWG7m3ICbv/S9WtqhrKqtD/zV9sOmGu8L1O/lWqaGtNGuqBod+TXr+CyPvD3RL/V1Sfevw+12rpHvPkPo709c966QXvyzVtUgHfLbkyy0pW+TX95QTizteLZh+lru29HvSkd/2P9h261PS6puLv64Q4qZRJsQewLa68aHncL0fAwAAAAAAAACA0qqlsLDHJPVIapLULOl9kn4RcaxPZj3faK19tcC1ASiXlTe6a6bAt7R9PxL8JKdySO7K36YU4VKEhVVOKcLfalLE1/X6uwgLw+iR6pdiRf5VffG1wdqdfGtx5x0tGsdwWFihUgmpd1P6EUVdy/DwsCCBY4PXDRP8N+cBAAAAAAAAAAAAAICakbCOsDDTOOKecYaF1fChnvWt0ql3SDcEOIx20JmPSXsdU7o1VYPmGe7ahnukme8Yfm/NH4aCwrKt+EXth4UVOwxvLB46aYw0/a3S+r9617c8Jk09wd3fb697mcRjI98T/YyrmxB6jqRNKGVTigU5HBsAAAAAAAAAABRNzYSFWWv7jDH3SDo3c+trxphbrbU7woxjjDle0lUa+iSssse2AAhn8bfctULDwqYcV1j/SihFuBRhYaUXa5BSyZH3CQtLixqC1xcxhAaoJt1rpSeukDbeKzXvLe3/D9LCjxU+bn+X9LfPBWs78dDC5xuNYg1S4xSpb3Ow9mc9md6ImNwhJbZLiR3pR/Z1MnMv9zq5ozSBoLVqoFvq6U6f4hpFw/isILFMmFiDR/iYV+BY/bixuekRAAAAAAAAAAAAAIAqlHTsb/QKxjGOAJuULXKYUrkZI005Qdr8cIC2MWncwtKvqdLa5rlru18bec8V5rTzJfc4A4l03WvvZzXpWV/pFYwOvq+pV91hYclOad3tpVlTCF4Bin5a68ZFmqffJkPPBQAAAAAAAAAAClMzYWEZX1M6LMxKmiHpTmPMudbaQOkgxphTJf1eUkySkdQvySd5CEBNiZX4LS2xIx0aUQ75NhNselCaelJpgkQICyutqf8/e/cdJslR2P//U5M2717Od7rjlFBC2coCBSRAIgiQCBLYxkYm88P4azBgE43BYBvbyCQbY0ASAgMmCCEhFJGEUECghHQn6aIu3+2FTRPq90fvamZ3u3q6e3p2Znbfr+fpZ6e7q6prZmd7d6erP/VCafcDjrAwgmEkxQ9N27cm2X4AU61UkG4+pzxA7cDT0n3v9MKKnvem2tped51kC7X3cabrO1Ladmu4spkuqXOJpCXRj2NL3uylfgFjYQLH8nujH3M6y+/1loH10eualJTtGx8wFipwbHQ93UHYGAAAAAAAAAAAgIMxJivpZEmrJc2R1CPJWGs/3tCOAQCa1ogd9t2e9QmrMfK/Xm/V4mFhkrTi0nBhYQvPldrm1L8/jTbvVPe+kf7x6wObpR13u8uXilIqPX7b41+Qfvchb8JGzAzLXyM9+R/++379Z9KyV43/2SoVpfvfLT151dT0r4psKhepfE+6L9ZxRkrDvmGNAAAAAAAAAACgfloqLMxa+2tjzLWSXicvMOxESY8bY/5Z0nWSJiXcGGPSkl4o6c8lvVZ67sqvlfQFa+0z9e85gERUm80tla39GMsvkTZ833/f4JbmCQt75prRsLCQoUqzjvZmqzrwdIhjExZWV7vuc79X44ZkTTfVQtOWvNR/5rXh7fXpDzBVdv7afybLtV+rPSys/5Ha6sPTtSJCYf/ZaUMxKSnb6y2RjjmqVJTy/RVBYqNhYq71iYFjxYH4fZ9ubGn0ddkdr34qWxEyFjVwbJaUZjAdAAAAAAAAAACYfowxZ0h6v6QXS/K7IDIpLMwYc6GkS0dXd1lr31+/HgIAmtVIyT8szC+sxh0WNg0m9Tz0ndLARumxz7rLLDxXOv3aqetTI6WyUucy7zWZ6JFPSi/4RHn9jkuC29r6S2nx+eX1zT+THnhvMv1E61h0TvD+u6+QXvjT8vrj/9Q0QWGSlPMJUAzSne6NdRxXgCMAAAAAAAAAAKiflgoLG/UWSYdJOk5e4NcsSR8dXcYl3BhjHpO0StJYKosZrWMk3SXpA1PRYQAOd79Z2v1bqTQsFYek4ujXoz8qHf6eyeUdgzyeYxI4pR39MXdY2E+fL80+Tlp4jnT030nZntqP51ItLGnNl6ST/0MKO2hlpF866YvSHa+uHgZWJCysrgr7pbZ5/vsICxtV5X296Dz/sLChrfXpDjBVnvqG//btd9TetvEf/IiIDqwPX7aRr3kq7c1cGXdm2OKIFzY2Fh6WDxs4NhqqVS30dCYp5b0wy7iBlumOyWFirsCxSQFkfVKqFf/lBwAAAAAAAAAA05UxpkvSV+RNFirJN8XFNZvgI5Ku0OisPcaYb1prH0q8kwCApuYKpvELxjHGf6I36/xV00KMkY77jHTMx6XhHZKsNLxTKg56Y2m7V0ltcxvdy6k161j/sLBKAxu9CR2DPPqZ8WFhrjHFmP7mny5t/5X/vmdvlPJ7vckgJWnD/9a9O7bapNsV/AIUg3Rn+qJ2R5I7wBEAAAAAAAAAANRPy905bK0dNMZcIOlaSeeoPDjIyJtlcCwMzMgLFXuuasW+GyVdai2pLEBD7XtS2vO7ydsL+/zLFw4Et5dEWFjXQcH7dz/oLTvuks67vXoAw/BO6cAz0qwXRAtrCHt6CltuYL209CLpwgekTT+STEraea//IIZqYWKonWMQUtWQuJmi2vu6bYH/9qFtyfcFmEr5Pe59paIXABVbyOCqRedXLzOTzT1J2nZryMKOc30rSOek9HypfX70utZ64a+VAWORAsf2EJ5ZqTgoDQ5Kg8/Gq5/pKQeJ+QaOBaxne9x/swAAAAAAAAAAAERkjOmVdIeko1Se9LPS2Ng+X9baDcaY6yVdPFr2dZIICwOAGcYVTOMXjJNy/FqJErjT9NJtUudS73Hnssb2pdEKe937rPUC1vofq97O1pvHr0eZXHA6mk4/L1H1HuEOC7MFaXCLFxZWHKoeQpeAvA0/vjtrcpHa7k7Hm0DbFeAIAAAAAAAAAADqp+XCwiTJWrvDGHO+pPePLmN3sdsJX8eMhYftkfSPkj5LUBjQBFyzFhUdFw73/qFKewmc0rIhL3buuFvacY+04Az//aWidN87pDVfkWS9wIUzvyctOjdc+6HDwiKGS8060lsk6fcfJywsKVG/D8YR+MOvJk+11zM32397vr88qAdoSQHv3dKIlOqoT9uVTvt2DceYAXoOCV92pp6LjJEyHd7SsTh6fWulwv6K8LDd5WCxUIFj/ck/p1ZW2OctAxtiVDZStq8cIBY1cCzdOXN/DgAAAAAAAAAAgJ/vSTpa5bF9I5Kuk3SLpJKk/w7Rxg/khYVJ0vmSPphsFwEAzc4VTJMzk8ejGsdEb1ZM6jktrbhM2na7/7673iidfrW07bZwbVVO7LjlxmT6h9az6gpp7Vfd+39ymDeJ8y0XTEl3hktDocv6BSgG6U73Re2OJHeAIwAAAAAAAAAAqJ+WDAuTJOtN6/SPxph/k/R6eYN/zpC0RBp3dXe3pLsk/VzSN6213D0ONIt0u/9218XMoAuukmSm+JS2+Xp3WNgT/y6t+XJ5Pb9Huu0i6ZWbpLY51dsOGz41+Gy4cn4XfVOOWaMIC4tu35rwZYNm7yMszFM1LMwxKKGU92Zoy9QSqAQ00Prr3PtKI5JqeG8b/8GPk7TPr15mJttxV/iyYV9zjGeMF96a7ZG0PHr9UtGbKXZcwNjEwDHHen6PVDiQ+FNqXdZ7TfJ7pDgvi8mUw8OeCxKbEDgWFECWjjZoEQAAAAAAAAAANC9jzGsknadyUNjdki6z1m4c3X9QyKZuGGtS0guMMd3W2v2JdhYA0NRcwTQ5n/GQxjHBVSnq5KBoDfNOde9bd410yNukRz4Vrq21X5UO+Qup/9Fk+tYoJi3NPdmbINkl1Sap5I2/9G1jBk8Ut+BM6bRrpLte7y5zw/FT1h1XWKIfvwDFID3p3qjdkRStTwAAAAAAAAAAIBktGxY2xlo7JOnro4uMd2V3tqScpJ3WWseVKwAN5woAKDouHD7138HtTfUF6QNPu/c98+3J24pD0qafSM97U/W2w4RGDWyWnv5G9XKSdMQHJm9zhYXt/HW4NlFmC+HLLnmZtPlnjp0MQpIU/P4//C+lbMAMZvm9hIVhenINxgptBg/aSlK6M0JhXvOGSKVHg6dmx6tfyksj/V6AWD5q4NhuQlcr2YI0vMNb4ki3jw8PqwwcCwogy87ygkVT2WSfDwAAAAAAAAAAqMXfVDx+WNL51tqBqI1Ya7cYY7ZJWiBvQtHnS/pNMl0EALSCvCOYJuczoapxjN2wz2VXYlpJVxk3eOtLwrf12w94YWGbr3eXOfYz0qHvCt9mI5i0lM5JP1whDWzwL3PpfklWutYxpnimO+iy4LCwKeQKS/Tjd04M0pnukZGJfH6M0icAAAAAAAAAAJCMpg8LM8a8QNKLJR0had7o5h2SHpN0k7X2wcry1loradeUdhJAPKl2/+3Focnb7BQOzlhwtrTtturlula59+1yjEN85JPhwsLChEY98N4Q7Yxafsnkba6wMEQXJtxtTPsibwBGre1MZ0EzNx7+vuDXKd8vdSxMvk9Aow1tldrnVS/nEiZQM+34vYyylW+UnrwqXFmTqm9fUB+prPezFvfnrTg0GiK2uyJILELgGH8LlBWHpOIWaWhLvPqZ7orwsBCBY5Xr2V5+hgEAAAAAAAAASIgxZrGkYys2vStOUFiFx+WFhUnSISIsDABmlBHHJF5Z4xcW5n/dt8SkntNTz+rg/YUD4dvK90tD26TBgDEL88+cHhObppr+dpLGMkaac4K06/5G90TDJZ/x9Q45n3NikLRJqzPVrQOlfZHquQIcAQAAAAAAAABA/TTt1R1jzPGS/lnSGQHFPm2M+ZWk91lr75uangFIjCuUpOgzHvDA0/XtS6WD3xouLKzaLGS1CBMUsf674dtr9wlPKkYY+IBgfgF3LnNPkp75tv8+AkJGBQzGSrcHD04ZIS8U09T666RZH4tff2eIP5VXXhG//Zmi9/AIhUMEtGH6SbdLHYu8JSprvYGpYwFjEwPHqgaQ9UvMflxW2O8t2hijspGyfeUgsaiBY5mucCGNAAAAAAAAAADMDKeOfrWSNlhrb6+xvcqBAXNrbAsA0GJGHME0uZRfWJj/dVvLtfXpKZVNtr2fHiUNb3fvn3tyssdD8zrsPdLdYSaKrq8RG36scjbGhNLdmV4dGIkWFuYKcAQAAAAAAAAAAPXTlGFhxphXSLpaUrvG32U/dnW2ctsZkm43xrzBWvvDKeoigCTkZvlvH9k9eduar9S3L5XmnBSuXGF/9Lb3PxWuXJKhUXNOlDp8wsLaFwcc3xJwEEUxwsxYC8+RM8ijlE+kOy0v6P1vUlKmR0rlJL9BBkMBg3OAVratxvHyW26sXoYBbNW5gk598XsUERkjZbu9pXNZ9Pq2JOX3BgeM+a2PPY7zt+20Zb3XJb9HipOva9KjIWOzJwSOTVx3BI5FOtcAAAAAAAAAAND0KmdZeSiB9iovanQn0B4AoIWMlBxhYWZyWFjKMQbSWsLCpq2lF0ubfpxMW0FBYUtfLqXSyRxnSjCOqSarrqgtLCzT5U0gWCPX+c+P3zmxmu50r7ZqU6Q6rgBHAAAAAAAAAABQP00XFmaMOVzSNfKCwqTxAWF+wWEaLXu1MeYEa+1j9e8lgETkZvtv9wsLe/QzwW3NekHt/RmT6wtXbu1XpeOq9GuisCFgthStXZdMj3T8P/vv636eu97ARqlreTJ9mAnCzoy15KVSpkPav9Z//8YfSoe+I7l+taqhbe59JuWFqbQv8N6nEw0H1AVa2exj63+MpRfX/xitLt0RvqxJ1a8fgB+TKgdOxVEqSPn+cAFjfoFjxfCzl057tigN7/SWOFJtFaFi1QLHZk8IH5uV/GzJAAAAAAAAAADUpnIgzt4E2qsMCOMCBQDMMK5gmlxqcjCOkf/YDauExmei+fQcMjXH6VhUvUxTISCvYRIcwxElmMvvnFhNdzrk+PkKUQLMAAAAAAAAAABAMpouLEzSl+SFf1WGhOUl3Sdpw+j6MkknSMqNlrOjdb4s6awp7i+AuHJz/LcPbY3e1orX1taXSibkbF9+oWaSVG3WOWu9sKPAMiFDxYKc8AVp6UXuULBUwK+AtV+TjvlY7X2YKcJ+v573p8H7t/yi9r60usKgdMsF7v1jP59tjrCwZ2+SVr+lPn0D6q1tvntGyqRCJF0WnCV1LKzvMaaDar+/xxeuWzeAukhlpLa53hJHcUga6S+Hh43sqQgVCxE4ZgvJPp9WVhr2/ieK83+R5M1IWxkeFjZwLDdLyvS22OzHAAAAAAAAAIAWUDnAJnoCwWRLKh7vSqA9AEALcQXT5IxfWJj/2A1LcNL0teyV0uP/VP/jzD+j/sdAcznig9Kjn45e77h/kh76QCJdGC6Fz8n1OydW053uiVwnSoAZAAAAAAAAAABIRlOFhRljjpIX9mXl3V1vJX1e0t9ba3dPKDtL0gclvb9i8+nGmGOstb+boi4DqEXncv/tB56RiiNSOuet5/cHt3PYe6QjP5hcv8KGhbkMbAjen98r5aqMfaw1LOyg10uHvTu4TNDzXP8dwsKiCPv9ihQyM0NtualKgdHZHtsX+O9+9oZEuwNMrYCBiMPb6nfYhedIp3+nfu3PVMZ/dlpg2kq3Sx3t8YIHrZWKA+WAsYmBY5XrleFjlYFjDOYuKxzwlsFN8epn+yqCxCrCxLIhAscy3fzNCwAAAAAAAACYqHLGpCNracgY0ybp2IpNPrOMAQCms7wjmCaX8gkLc4zdsNUmhEXrmneqN2an3hMzLntFfdtH8znir6KHhfUdIR30OumhZMa4u8IS/fidE6vpTkfP9Y3SJwAAAAAAAAAAkIymCguT9OrRr2NBYe+21n7Rr6C1do+kvzbGPC3pKpXvDL5EEmFhQCvofp7/dlvyAgDGgga2/MLdxvJLpBP+Jdl+1RoWtm9N8P58f4iwsBoHKoQJKDEBvwJKNYaVzTRhw8IYZFTdQx8K3j/23h7e6b9/1tHJ9geYUgHniKEaw8LmnSrtuHvy9gVnSefeXFvbM83y10gbvheiIGE5QGjGSJkub+lcGr2+LUn5fe6AsWqBY4V9yT+nVpbv9xati17XpEfDxmYHB47lZlc8rggcS7cTNgYAAAAAAAAA088Do1+NpJXGmMOttY/HbOvVkkZnH1RB0j21dg4A0DqKtqiCLfjuy5ncpG3GMXajpDoHSaFxUhnp0gHpO+31O0bnCinbW7/20Zxys6VLtkvfnx+u/DGfkA6+Umqfl1gXRhxhiX6yJnpYWE86+vs6Sp8AAAAAAAAAAEAymi0s7KTRr1bSPa6gsErW2i8ZY94o6fTReifXsX8AkpTKBuysCExZf5272KnfSqw7z6k1LKywP3h/mGCpsOFTLmGeQyrgV0Ctx59peL2S0/9w8P6x97ZrsE3hQDL9KBzwvq8M6sFUCgoU3PrL+O2O7HGfpxa8KH67M9Wso8OFhYUJ7gSQDJPywnhzfVLXQdHrlwpeONZzQWIRA8eKg8k/p1Zli9LILm+JI5UbHx4WNXAsPfkGAAAAAAAAAABAY1lrnzbGrJF08OimD0p6c9R2jDFtksZmILOSfmOtTWiQAACgFYyU3KE0udTkYBxXWJgNmtAPrS/dJvUdIfU/Wp/22xfWp100vyjBX0d9OPHDD5eGQpfNpaKPn+jOVJkI20c+4LwMAAAAAAAAAADqo9nCwp5f8fgbEer9j7ywMEk6PLnuAGgK665x78t0JH+8sGFhXav8t1cLK9r7uNTtqDum5rCwEAElQc/TMfseHAgLmzpj7+3ll0hbb568f/eDtbU/uEX6weLx2158tzTvlNraBUKpMhDRWsn4D2L0tfUW6eZzgssEBUfCX6YrZMEI3ysAjZXKSG1zvSWO4vBo2NjucrBYZZhYtcCxUj7Z59PKSiPS0DZviSPdOT48LEzg2Nh6tk9K1RgcDQAAAAAAAABw+bqkT8m7iHa5MeaX1trQ4wONMSlJX9X48YVVJyIFAEwvI9YdSpM1k8PCUo5xlNaWEusTmlUdx+3MP716GUxfR31EevgTDTl0UGDiRDmfc2I13enok+sGnZcBAAAAAAAAAEB9NFs6wKyKxw9EqDdW1kxoA0BTC7oYXxGYkspO7Q30YcPCrKNPxcHgeo//i7TkJVXarnUwSpiwsIBfAQMbajz+DDPdwtUGt0rP/lwaWO8NbJl/VhMFJ4yeN7IBgxK23CwtOjd609ZODgqTpBtPlU66Slr1ZinTOb78zl9L238l9R7uHTPdHv24QFiDm6TOZeHKDmyqHhQmhf+dh7L8vnDlwgR3Apge0m1SeoHUviB6XWu9/x8mBow5A8cmrOf3JPC/wzRSHJAGB6TBzfHqZ3srgsRGw8SyPuFjfoFjmZ5ooZ4AAAAAAAAAMLN8QdJ7JM2Xd+H/P40xh0n6pLV2IKiiMeYISf8q6UUqDyhaI+na+nUXANCM8gFBObnU5GAc4xijaqtN6IfWt/ot0gPvq0/bz39/fdpFazj8fTHCwpI55wzbodBlsz7nxGpihYWVRiLXAQAAAAAAAAAAtWm2sLC+isc7I9TbXfG4J6G+AKi3oBup+x+VOkZDe7pWSfuemJo+SeGDU1wBZtVu1t95T/W2bTFcH1x23FW9TKrZfgW0sFKN369msvt30i/PlYZ3lLcd9Abp1P/2gvvqqdrr2LG0fN7oO9Jd7pfnSW+IMbhi7x/c+37zdmnt16UXXi+1z/OCPX77Aemxz5bLzD9TeuFPpSx/iiAmW+V9m98bvq113wlXrv+R8G3CE3aGRgJjAIRhjBdGmumUtCR6fWulwj7/gLEwgWNRfrfMBPm93jKwPnpdk5KyfeMDxkIFjo2upzv43QEAAAAAAABg2rLWDhhj3izpJ/JmwEtJ+mtJ7zDGXC9p3AezxpjLJB0q6cWSTpUXMDb2IeqQpNdbW+0CKwBguhmxAWFhhrAwVMjWce7xjhjX9huOa9GJyc2SzvqhdPsrp/zQQYGJE+VMLnL7scLCAs7LAAAAAAAAAACgPpotKSZV8ThK8kpl2ZSzFIDmUjjg3rf5Z9Kic73HrqCwJS9Nvk9S+Bu0XWFhqhIWFiYIrFrgWDV7H69eJt1R2zFQFuZ7ajLSovO8x4e+S3ri3xxt2caGBNz3zvFBYZK07mrpoMukZS+vvf0n/0N6+ptSYUBa/irpyA9LqdGAvonHneicm8qPZx0TXHbzz6UlF0Tr27prgvfv+o103zukM74j7XlofFCYJG2/Q3ryKumIv452XOA5VQYi7lsr9R0RrqkH/zJcuWe+LZ32rXBl4QkbnMi9CQCmgjFSttdbulZEr18qSvn+iiCx0TCxyvWgwLHiQPLPqVXZ0ujrsrt6WT+pbEXIWNTAsVlSOvqswAAAAAAAAAAwlay1PzfGvF3SVSqP8euRdOmEokbS1RPWxy6+FSS9xVr7QD37CgBoTiMBQTm5lE9YmPEfUm6rjfFE65tzQv3aZhIozD6+IYcdjhIW5nNOrKYn3Re5TtB5GQAAAAAAAAAA1EezhYUBmEnSne59Y0EcpYK7TO/hyfYnKldYWLWgrzBBYGHCp4I874+rl2mbV9sxUBbm+7X4QikX4kL67t9Kc46rvU9xFIe8wCs/679be1jYY5+THvyr8vqeh6TBZ6WTvzR6/MHg+n3PLz9OpaVMj1TY51/21gulV++U2uZE6GCIYJ/110kHPic9cZX//kc/S1hYWPufktb+l7TsFdKcExlEJanqe3DzT6VlFyd7yHoOjJuuekMGtpl0ffsBAElIpb2/lyL9zVShOOKFjfmFibkCyCrLlEaSfT6trJSXhrd7SxzpjslhYq7AsUkBZH1Sio8IAQAAAAAAANSftfarxpi1kr4taaHGXyStfFwZEGZH13dIusxae8tU9BUA0HxGrDuUJmtyk7YZ+Y9HKjEB3PQ36+j6tLvy8vq0i9bStdwb87jrvpAVkhkbOWKHQpfNmehhYdlUTm2mXcMRjkNYGAAAAAAAAAAAU487AQE0Tu+h7n19R3pf+x91l8nFvKE9KdYRZFY1LCxEsFStYWELz6teZiyQDbUL+n6lstLil0infau8bWSXu/zexxsbFuay897a2rZWeuLfJ29/6uvScZ+Tst1Sfq+7/unf8dl2tXRbQHDS09+UDn9P+D5mesKVW3+dtPZr/vuCvrfwWCv99PnS3j946498yvt62ZCUjj5AZVqpNhBxxz3JH/PgK5Nvc7pbcmH1Mtm+cAGRANDq0jkpPV9qnx+9rrXe35+V4WFRA8dq/b9pOikOSoODXhhvHJmecpCYb+BYwHq2R3LMyg4AAAAAAAAAE1lrf2mMOVjS2yS9U9IKR9GxVIUdkq6S9HlrrWNGMQDATOAKpcmanFI+16tcYWE2zKSSaG3GSOf/Srrp9Gj1Xni9dOtL3fuP+2xt/cL0cfKXpBtOnNJDDkcI5sql4o3F7M70ajgfPiwsHxDiCAAAAAAAAAAA6oOwoFmIogAAIABJREFUMACNE3QzcWnE+/rUf7vLLAm4ID8VSnn/7UmEhalKG0HmnCQte0X8+mOKQ1K6vfZ2ZgJXcFzHEuniJ6RM14QdAbOEpRr5qzlgEFRhf21ND22VDqybvL00Im2+XjroUumJf3XXX3zB5G3VzgEPvDdaWFi2O1y5x/5Rga/V4LNSx+Lwx51p1n6tHBRW6Tvt0utL3kCtGavKQMTuVckfct4pybc53aU7q5c58Yv17wcAtDpjpEyHt8T528la72/UiQFjoQPH+pN/Tq2ssM9bBjbEqGxGgzJnxwscS3fO8L8BAQAAAAAAgJnHWntA0uckfc4Yc6ikMyQtlzRXUk5eQNhWSXdJesDaajMvAQBmghE74rs9Z/xDcVLyH6NqaxmfidYx/7TodRZfKL1qi/TkF6Udd0v7n/bGfx71EWnJy7zr24AkzTlhyg85EiGYy3VerKY73aed+W2hy7tCHAEAAAAAAAAAQP00Y1jY2MCeU4wxK0PWWVS5Yow5U4FJLBMOaO3tYcsCSFjvYf6hMWMXD3fd666bCRHWUU+24N2gPumm5gTCwkIFijmc8/PwoUdBnr1JWnZx7e3MBK7vV6bLJyhMCvwVZRr4qzko6K7WsLCS/0AtSVJ+r/d17X+6y2R7Jm8zKannUGnfE7X1bUwm5M/N0Nbg/T8+VLqUyYyd7nuXe9+dr5HO/N+p60vTqTK+PUqoyaLzpC2/qF4uTPAVxgsKOx2z6o317wcAzHTGeH8jZnvk3T8WUakoFfaWg8TyFWFjYQLICgcSf0qty3qvSX6PFOdlMZlyeNhzQWITAseCAsjS8QY5AwAAAAAAAGgO1tonJCV04R8AMJ25QmmyqZzvduOYsIYMSjgZI3UslI75eKN7kqwj/p903zsnb+85dOr7Mp1kuqZ07MBIaShUOSOjjMnGOkZ3ujdS+SgBZgAAAAAAAAAAIBnNGBYmeSkq19RQ99YI5a2a93UApr+U46be4ujFw/1Puet2H5x8f8Z0LJUGN1Uvd01Kes0u7wblMUGBS2HFDQs76Uvj+1KLTf9HWFhYru+XM/gr4D1i0jV3J7agQVBjgV5xlfLufY5BWePLOMJ5Xny39L9z3fW2/0qaf3r19iX3+Siqwn4vSCI3K5n2ppugmeQ2fF86sE7qOmjq+tNMqg1EjPJzmA05aCfNbJeRhQkLAwA0v1R6NHgq5v9Ppbw00l8OD3MGjvmt7w4O051pbEEa3uEtcaTbx4eHVQaOBQWQZWdJuT4pFW+QNAAAAAAAAAAAAKaWK5QmZ/zHfRn5j/Gw1SaExfSx8grpmW+GK/u8P6lvXxpp+WukB943+Tr1oe9oTH+miyTGi0fgCkycKGtyzrDEanqihoUx9gEAAAAAAAAAgCnXrCFZVl7oV9Q6Y+Jd3QAw9VzhPGMXNOeeIm38gaNuHUOVDr5S+v3fhiv7vTnSGypOQWEu/g5skjqXuvfHuYDcsURa/upodboPlvav8d83sid6H2YqZ1iY4z1aKrjbyu+rvT+xVQkqsjZcsJefYtCMZjUE77TNkRacLW27zX//TWdIF94nzTmheltxQ/r87Pi1tOSC5NqbSbbdLq26otG9iK84JD17k9T/e+932NyTpGdvkHbdL/UcIi15mdSxKF7bI/0R+hFyEE6GsLDoqpwHV1w6Nd0AADRWKiu1z/OWOIpD5RCxOIFjSf7t2uqKQ1JxizS0JV79THdFeFiIwLHK9WwvQaIAAAAAAAAAAABTJO8Iysk5xqEaxxgPW22cHKaPU/4rXFjYwhdJJ3yh/v1plI6F0ln/J935Wm8yVEla/efSoe9sbL9a3tSeS4Zt0DjcMtc5MYyuiGFhRRVUtAWlnZMrAwAAAAAAAACApDXzp/K1XD0JW5dQMaDRUo7T0NiNz65ZkLLRLkZGtvpPwoeFSdLglorwlxBBX4WB4P2umZZSbdLh75Me/fT47SteKx372eg3qq9+i/TQB+P1EWVRw8JsQFjYrvulVW+svU+xVPn1ufu30pzj4jVdChikYExwgFo1R37IHRYmSTecKB3/z9Lh7w1uJ8lZ3oa3JdfWdGPSweEWd79JWvnG1gxdKAxIt10kbb3FXaZ9oXTOTdKso312VvkZdIU7+hnZFa5cmrCwyKqFJs4/c2r6AQBobel273/IOCGi1kqFA+WAsbEwsefWqwWQ9WuqBy03tcL+0QHxG2NUNlK2rxwkFjVwLNMVP5AZAAAAAAAAAABghhmxjrAw4wgLc1yHKVmulc0YqYy08nLpmW+5y7z8aal75ZR1qWGWXCi9eqe0+wGpe7XUPr/RPZoGpvZa74hrTP0ErnNiGD3pvsh1Rkoj6kg3821JAAAAAAAAAABML832qfx6cbciMLO4wpRKY2FhjtCs5/1JffozpnOZdPBbpTVfCVd+w/elQ9/uPQ4TODSyU9ozLP32g9LOX0vdq6Sd91avl+6Qjv17b0lCzyHufcXBZI4xE7iCruKEhXUs9m7+f+KL0tPfkAr7pGWvlI75hJTKRuvXvrVeGNyOe7xgoqM+Is07xV2+2nt3w/fih4UVAt5PJiMN1RCutejc6mUe/Ctp1RVS29yAQgmGhRG257boPOnZnweX2X6ntOCsqelPktb+V3BQmCQNbfXO/S/8ic/OEH8GD++s8j4eFfYcXsMsgnBY+rJG9wAAMN0ZI2W7vaVzWfT6tiTl904IGJsYODZhvTJwbGymaUiy3muT3yMdiFHdpEdDxmZPCBybuO4IHEu3J/6MAAAAAAAAgHoxxqQkHSXpBZJWSJovqUPehdJBSdvkjR98SNIj1pLkAgAYzxWUk3OMfzHyn6zQJjlODM2ve7V734IXzoygsDHpnHsM6YKz/SdtPfqjde1SSzv5y97kqBMd9IbJ5e7ymUT4oNdVPUS+lNeG4bXKl0aUt44x9RNkaxgT2J2JPpn35uF1Wt35/NjHBAAAAAAAAAAA0TRVWJi1dmWj+wBgijnDlKqEhWVn1ac/lU7+srTiMun2V1S/GXrTT6KFhf3hC9K6a8vrw9vD9altXrhyoQWMqywSdhTa2Pt1Itf7e9ax0sb/c7f1+Oe9cKsxj35GGtgsnfY/4fs0tEO6+UXSwAZvfWCDtO126cV3ecFh/gcPbjNfQyhAaci9z6SkQsCd9cteEdy28R/UNY4tSBt+IB38ZwFlHN/HOLbeIh1yZXLtzTQP/rV0wd2N7kV0D380XLnNP/VCBlMT/hQPM9Z9yy+kgy4LcZCQ4+YdM6iiBt2rGt0DAACCmVQ5cCqOUkHK91cPGPNbz++RigH/G8w0tuiFwQ7vjFc/1VYRKlYtcGz2hPCxWdEDqQEAAAAAAIAYjDFnSbpS0ksk9YWsttsY81NJX7XW3lm3zgEAWsqIjRYWlpL/uBjLvNYzy4pXS498yn+S15Wvn/r+NKuDLpscFtaxRJp3WmP60woWXyBle73JuioddOn49UXnS9k+7zp7pRWvDWz+zj0/13e3/WfokLAxOZOLVL5SZ6o7cp3Pb/iglrWt1NuX/a1mZebEPjYAAAAAAAAAAAinqcLCAMxAxnEaGrsoP+QI0ZqqG1oXnSO95EHpx4cEl3v2Z9KWm6VF50phZp2rDAqLYv+aePWcAga9FAgLC80VMjUxCGjM6rdID3/M3daTX5u8fd3V0on/JuVCjpvdfH05KGxMYb/0zNXSsZ92HLvKIKhawuoKg+59tiTtX+ve/4J/iH/cSg9/okpYWIIzRq7/jqSYP+fTXZhArJ33eOVaLcgqSsjDrgekeSdP2BjitVnz5XBhYUyy3RiLL2h0DwAAqL9URmqb6y1xFIekkf7RELHRQLHnQsVCBI75DeKfqUrD0tBWb4kj0zU+PCxs4FhulpTplVKOgGwAAAAAAABAkjHmCElflHTW2KYI1edIulzS5caYWyS93Vr7RMJdBAC0mJGSIyzM+IeFGccklJZxNTPLrKOlM78v3fdOaWC9ty07Szr8/5NW/3lj+9ZMDv4LaXCrNxlyfo805wTptKultP/PFyS1L5BedJN0z5ulvY9760f93eQJctvnS+f8wivX/6jUNl866iPS8kucTT81+Liu3vofsbrlClAMoy3VHqvexuFn9NVNn9FfHfSZ2McGAAAAAAAAAADhEBYGoLGM48bSsfClvY/570/Fn/UosrDH+uV50utLyQYOTTT3j5JtL2jQS5GwsNBcYWGu93fXcndbwzv9g7NsUdrwfWn1n4Tr071v9d/+6D+4w8KqBd098gnp6I+EO/5ExaCwsIJ060vc+3uqhPVJ0vPfLz32ueAyYwN9nP2o488uKoR8nbfcJC1+cX270kg3/pH0honn4BADEbfeIg3tkNqrhfcxqLEhaglVBABgpki3Sx3tUsfC6HWt9f5XHakID3suSCxk4Bh/J5UVDnjL4KZ49bN9FUFiFWFi2RCBY5nu1gsHBgAAAAAAQGjGmEsl/ZekDpVDwvw+nAuz7xxJ9xtj/tha+7+JdhQA0FJGSiO+27PGf4xnSo6wsLDjlzB9LLtYWnqRNLBRKo1IXSuZGGciY6RjPuqFWOX7pbY5je5Ra5h3snTRY97Y39wc9zXQuSdKL3tktNxsyRFmOOb3+++L3SXXOTGMrnR37LpPD/1B+wr96smEnBQZAAAAAAAAAADEQlgYgMaqFhbmksom35ckjrXjbu9Cbr0se3my7WUCLuqWCskeazqLGhYmSQvOkrbdPnl7achdp3AgfJ8csygGqjZjYikfvc0xQX2/p0oAWphBOUtfXj0sTJL2PyN1r/TfV+28g2SEDWV78P9N77AwyQuuyM0ur4edtXTTj6TVf1qlUIi2OpaGOx7CY+ZZAADqyxgp0+UtnTH+lrElKb9vfMDYxMCxyvXK8LGRPVJhX/LPqZXl+71F66LXNenRsLHZwYFjudkVjysCx9LthI0BAAAAAAA0KWPMayVdLT2X0DJ2Ea0yGGy7pN2jS0rSLEmzJc2vaKqyXpeka4wxl1lrf1C/3gMAmlnB+o9fyzjGeBr5X0uwTC4zMxkTPNErPKk0QWFxtM1NtFx/YVfsrixpO6imuh2pLg2Wxo/5zZqc2lMd2lfsD6zfX9hNWBgAAAAAAAAAAHVGWBiAxko5TkOlQnDgRpTQpFqlIsywdNPp9euHJK16U7LtLTrXvS/Ojdcz0f6npIc/7r8vKCzMON77xYCQr7rPZBdiEJS18W7ILg5ErxPFgjPDlRvY4A4LY8bIKRJysN2eh+rbjWbwh3+Xjv5IxYaQr80T/149LCxMaFXYnxsAAIDpwqSkXJ+3dMUYIF0qSPm9wQFjQYFjxcHkn1OrskVpZJe3xJHKjQ8Pixo4lo4/mzYAAAAAAADcjDGHSfq6vACwyrCv/tHtN0m6x1q721F/rqRTJJ0v6Y8l9Va0k5H0DWPMw9baJ+v1HAAAzaso/wlQ047h8MYxzq3EODEATS9eqGHGZHVy79mxj5oxWZ3Wd65u3v2jcdtP7j1bc7IL9OMd347dNgAAAAAAAAAASAZhYQAayxWmZIvBN9EuiH8hM7IoYWH11rks2fbSbe59QaFV8NiS9Mvz3ftdgWCSVPKf5VBP/VdAe3UOC7MhBkENbJC6VkRvuzgUvU5UL75HuvGU4DLb73AHJIV5/qgdr3PZ7/9WWnW51L1qdEPIAT67HwxRKERbiy8MdzwAAAB4UhlvFu24M2kXh6V8fzk87LkwsZCBY67/I2ei0og0tM1b4kh3lsPDKsPEggLHxtazfVMQ5g0AAAAAANCy/l1Sp7wLlkberF0fl/R5a+3+apWttTsl/VTST40xH5H0fkkfGm1Lkrol/ZskLnYCwAxUtEXf7WnHuDqjlO92G2YSPgBooGpnqXnZhdqV36552UXalt+stDJa1XGoXjbv9VrRvrqmY79q/h8rl2rXfXvvUMHmdXzP6Xrl/CuUUloppXTL7h9rb3FPzJ4DAAAAAAAAAIBaERYGoLGCwsL2/sFdL9tbn/74SWWn7lhBeg+vT7snfEG6/z2Tt5emINyp1e26X9r/lHt/psu9b/sd0Y+XVFhY/+NSn9/7KcRF+qFt8cLCpiIgau7JUts8aXiHu8yu+937HIPJkLAo74Vd90tzTqhfX5rB+uukI/66Dg2H+Hle8Zo6HHeGS/HvFQAACJBuk9ILpPYF0eta64WqV4aHRQ0cI7i3rDggDQ5Ig5vj1c/2VgSJ+QWOzS7vmxg4lumRjKl+DAAAAAAAgBZjjDld0rkqB4Xtk3SJtfbmOO1Za/dJ+jtjzB2Svi+pa7Td840xp1lr70qm5wCAVlG0Bd/taceknkb+n8dbwmwANDnXeeqU3nP0psXvruuxUyali+e9QRfPe8OkfRfMfbXOnHWB3r/mct+6nF8BAAAAAAAAAKg/7mYH0FiOQRqyheDAn+6VdemOL9MkYWHpjqlttzhcn+NNJ2u+Erw/053s8ZIKC3vq69Jxn/HZEeIifd41G1g1MW9Kf8Gnwpc1Rjrz+9Ltr5RGdvmXCfqeJHnjfKYnubamnQiDQW44UbpsyAtVmK5++4FyWFiSs5ZWez+f8o3gQEMEm3uytPPeydsP/8up7wsAAJgZjJEynd6iJdHrWysV9k0IGJsYOLZ7QvhYReBYfm/iT6ml5fd6y8D66HVNSsr2jQ8YCxU4Nrqe7iBsDAAAAAAANKu3j3418i4MXxk3KKyStfYXxpgrJX1b5QvOb5NEWBgAzDBFx2SQace4OuP4PN3GHcsGAFOG0C0AAAAAAAAAAOCPsDAAjeUKP7JF7yZWl2xvffrjJ5VQQFOtXMFqtUo5QnhKhIVVtfGHwfsTD+JJJdNMacR/e5igorVfl+aeImUjBqHFDUFa/WfRyi84U3rp76UfLvXf//T/SKd+w39fkmFhDChzi/o633W5dOZ369OXphPh58TaKgEBVdp63pvCHwuTrXzj5LCwvqOkWUc3pj8AAADVGON9lpLtlbpWRK9fKkqFve6AMWfg2Oh6cSD559SqbGn0ddkdr34qWxEyFiNwLJ1L9vkAAAAAAABIMsa0SbpY5QuV/2utvTap9q211xhjLpH06tFNLzfG5Ky1jgEQAIDpqCRHWJj8x3imHOPtbJIT+gFAHbhOU0aNn1QoqA+WkDMAAAAAAAAAAOqOsDAAjRUUFpbf778vN6d+/WlmqTqdstOOsLCBjfU53nQyvCN4f9u8qelHVM6wsBAhTuuu9pbz75LmnxrhoDEHALQviF6nc4l0zCel3304YsUEA74KB5Jra7qJGha24XvS4FapY2F9+pOk7oOl/Wui17MlyUQMA9z6S2nRuQFtMuimrg59l5TfJz15lTS8U1r4IumUr1cJcAMAAGhhqfRo8NTsePWLI1K+3z9M7LnHAYFjrv9jZ6JSXhre7i1xpDsmh4lVho+NW58YQNZXv8+nAAAAAABAqztF0tisY1bSP9XhGJ9XOSysW9Kpkm6rw3EAAE2qaAu+29OOiVhdgTaE2QBofs60sCZQwySnAAAAAAAAAACgZtzZA6CxXDcYlgpSYZ//vvb59euPyxnfk+58zdQft5IrWK1W6fb6tIvg8J++o6T+h6euL5WcN1lHuEh/xyulVz0bPuAoakCUJPUeHr3OmFTWva+U999v/WeeRNJiDAZZ8xXp6I8k35WkdSyMFxa2+Xppycui1fnDF4LDwoJe57l/FO1YmMwY6agPSUf+jXdOdQVvAgAAwJPOSen58T7TsVYqDo0PD4saOMb/e2XFQWlwUBp8Nl79TE85SCxU4FjFerYnelAyAAAAAABoFWOzjVlJj1lr70n6ANbae4wxj0o6ouKYhIUBwAxSdHzen3aMrTTy/0y6lOSkkgAwhVwhiFPah4AJNYkKAwAAAAAAAACg/ggLA9BYrgAsW5TyjrCwTE/9+uOy+MVTf8yJHLPf1Sy/371vYJPUubQ+x211w7uqlwkK5Fl+SfSwsL2PRyvvkkRY2NA2afdD0pzjQlaIMQTg4Cuj1xkz7zT3vuEdUsfiydvjBJoF2fOwNOuoZNucDuK8zr//Wy8Ya37A97UZxH0P3f4q6bKhaHWq3WBvA37mVl4e7VhwM4agMAAAgHozRsp0eIvf/3LVWCsV9k8OGAsKHKtcz/cn/5xaWWGftwxsiFHZSNm+coBY1MCxdKf3fgAAAAAAAM3oyIrHv6rjce5UOSzsyKCCAIDpp2gLvtvTjrGVrkAbGzSuBgCagHWMuW2GsLAgnF8BAAAAAAAAAKg/wsIANFZQWFjBERaWbUBYWCOOOVGqTqfsA0+79+1+kLAwl6Gt1cssPNu9b+nF0sMfj3bMNV+Wjv37aHX8uC7GRw062vdk+LCwqAMA+o6SDn1ntDqVeg5x7xvaNjVhYTvuJizMl+N1Puy90h/+xV3tV5dJr4xzM/oUijvQxRakHy6JWKlKWJgroC+VlQ59e8RjAQAAAC3MGO9znWyPpOXR65dGP6PyCxgLE0BWOJD4U2pd1ntN8nukOC+LyZTDw54LEpsQOBYUQEbQLwAAAAAA9bS64vGv63icX0t6q88xAQAzQFFF3+1p+Y9DdYXqWNf4JQBAVc0eWAYAAAAAAAAAwHRHWBiAxnLM6CZbkNb+p/++TIOCu1b/mbT2a/Vpe/lrpIMuk+58rbuM67Wq1YKAQKtsb32OOR088cXg/YsvkDJd7v2pXPRjjuyKXseXa7BTxKCjdddIB11a4zEdXvSz2gLy2uZKMvJ9TkPbRrtUkDb+QNr+K6ljidT/aPzj+WJAhC9XoFbnMmnhOdLWX/rvH9hYvz4lJuB9fsFvpJ+f5N4/9r4Ma+MPqhRwvM4nXiWZakFjAAAAAJ6TSpdDqOIo5aWR/nJ4WNTAsdJwss+nldmCNLzDW+JIt48PD6sMHAtaz86Scn1e+DIAAAAAAHBZWPF4XR2PU9n2ojoeBwDQhIq24Ls97RhbaRyT8dmo4+QAYIq5zlPNH9TF+RUAAAAAAAAAgHojLAxAYxn/Gd1ki9LQVv992QaFhZ38lfqFhZ32LSndJs0+Ttr9oH+ZoOCpWsw7pT7tTndrv+ret/Jy6dT/Ca5f7xtMUzmpNOK/79kb/Le7QpxcNv4wfNmobdc6oCGVkdrmScPbJ+8b2ioVR7xwvk0/qu04gRj04M8VqGWkpRe5w8IkKb+vcb8DwnC9z5//fmnOCc3RF9Psg4UAAACAaSaVldrneUscxaHR4LA9PoFju8v7XOu2mOzzaWXFIam4RRraEq9+prsiPCxq4Fgvwc0AAAAAgOlubsXjPXU8zljbRtKcOh4HANCEio7PvNOOcagpxzgZwsIANDv3earx4/+CAss4uwIAAAAAAAAAUH+EhQForKCwMJc9v6tPX6oxRjrvdukXZyXdsBcUJnk3D7rUKywsKLSqOFyfY04HriAuSTrtm9Xrp3LJ9cVPutPdx+Gdjkr1vEwfoe1Mt9SxuPZD5mb7h4UV9knP/jx8UNi8U6Udd8foAMMefFlHWJhJSQf/ufTA+9x1110jHfzW+vQrEY7vedsC73fImd+X7rgkucMNPhvws+IKZePmdAAAAKClpNuljkXeEpW1UuFAOWBsYuBY1QCyfvG/bYXCfm/RxhiVjZTtKweJRQ0cy3QR/gwAAAAAaHZtFY/rGRbWX/G4vY7HAQA0oahhYa5Am5Jr/BIANI1WvUbXqv0GAAAAAAAAAKB1EBYGoLFSjtNQfp+7TmGwPn0JY8GZ0oUPSDccn1ybR3yg/Lgw4C4XFOpVq3SnVPQ5dnGo4vGItPMe76bRBWcHB5tNd0kMFqp3WFi1C+77n5G6V06oEuN5HdggdS0P0Z0IbR98pRccVStXwN7O+yTzQPh20p3S8f8UHGLlh0FlDo73pklVD0W898rmDgtzBqGNDjxc/qpkj/eDJdLrClLKZ8Cjdb3O3FwOAAAAzBjGSNlub+lcFr2+LUn5vRVBYhEDxwr7k39OLct6r01+j3QgRnWTHg0Zmz0hcGziuiNwLM290wAAAACAuqsMC8vX8TiFisd1HEgDAGhGxXG/BsrSxn8cqnFMqmcJswHQ5JzD/xwhiFMpqA+cXwEAAAAAAAAAqD/CwgA0lmNGNxUCwsKqhcnU25zjpAvvl244IZn22heWH4/scpfrOzKZ4/lJt/uHhZWGva+DW6Sbz5H2PuatZ7qkF/7MC0+biXbc7d4X9vuU7Yl+XMegJn9VLrgPrJ8cFhbnIv3WW6Tnvan2/oxJd0jHfiZ6P/y4zhVbbpIGNoRvx6Skw94rPfNtadf9yfRtJnOGqI0OIDnu89KDfxlQ3zZx4JXrfV7R3wVnSdtuT+6Qj35aOurD8foCAAAAAEFMqhw4FUepIOX7y+Fh+YpwsaAAsrHAscoQ+5nOFqXhnd4SR6qtIlSsWuDY7AnhY7PqO4kBAAAAAAAAAIRUtEXf7Sn5j0M1jjFGhNkAaFlNMfwvKCwMAAAAAAAAAADUG2FhABrLGRbmE1w15uC31qcvUcw5Xjr7x9JtF9feVmWg0YrLpEc+6V9uxWtrP5ZLus1/e3E0LOz+95SDwiSpcEC64xLpVVuklON7OJ3tW+ved+IXw7WRiREW1j4/fFnXtGJjCgf8KkXqjiSpFPbG3ZBtv2pzcu8pV/jerKOjhYXtut8LpzrvDum2i6StvwxZkWEPvlxhYWZ0Js/VbwkOC9t6s7TovOT7lQjXdH4Vs5TOPi7ZsLDffUQ68kM+AWqEhQEAAABosFRGapvrLXEUh6SR/nJ42MiEMLHAALLdki0k+3xaWWlYGtrqLXFkusaHh4UNHMvNkjK9M/PzQwAAAAAAAACJKzo+9804JuE0Svlut87JDgGgWfiP/zNNMP4vcK7XamOXAQAAAAAAAABAzQgLA9BYjkEa/kFGo5olJGbhi8KV61gsDT4bUKBi4EnvYe5iuTnhjheHY8Y97fuD93X9dZP3De+Qtt0qLTq3bt1qXgGDhRaeHa4uWQfwAAAgAElEQVSJODdJlqLc5FplQNO226QlLxm/Lc4gqHuvDBfgF6bvp/6PdxNpUkzWf/vm66O1MxY6lumQzv6JtO5a6dd/GuL4/Jnlr0qgVq5POv070q8u8y/36D9KC8+tMuKkQZw/QxV97VoVvd0FL/TOty57fifNfoH3eP8zXgCka9BNM75uAAAAAOAn3S51tEsdC6PXtVYqDvgHjIUNHCMEvKxwwFsGN8Wrn+2rCBKrCBPLhggcy3TzvywAAAAAAAAASVLRMc4x7QwL8/9s0fL5L4Am5zpPNUVYWEAfOL8CAAAAAAAAAFB/pFgAaCzjCEwaWO+uk+2tT1+iynRJL75buvFU//0mLR3yDql9gfS7D7vbqQxRWvZyKZWVSvnxZWYdLWU6a++zy9A2/+1rviId/TF3va23zsywMFcIT8oRTtWMHv2MdOw/TNgY8yK9tcE3bW7+mfTYZ4Pb6DlEWnl5vOO7HPIX0m/elmybmQ5p9Z9IK14t3fFaacuN7rJt85M99nQRJlBr6UXu+ltulH58sHTWD71zY1Nx/QxVPLfOZdGbPfYfpBtPce+/963S6ddIt71c6n+kSmONHywEAAAAAHVnjPfZXaZL6lwavb4tSfl9FUFiEQPHCvuSf06tLN/vLVoXva5Jj4aNzQ4OHMvNrnhcsZ5uJ2wMAAAAAKbO2AXTU4wxK+t0jEV1ahcA0OSstSrJFRbmPw415fhs0FabiBMAGqy5I7eCrrs0d88BAAAAAAAAAJgOCAsD0FgpR1hYkGYJC5OkeadIry9Kux6QioPeuklL/Y9KXSu8vj76meA2FpxZfpztlQ5+m/TEv44vc/j7k+97GENbFXjhthVvtCsVpI0/kLbfJfUeLh10mXcDYSSO16Qjxs2nSRzXt2iMC+5x6kjS4Gb3jbcHNki3vjS4fucy6cX3JP9+Snck216lbK90zs+lgc3SDx3P3TGT5YznCgszqfLjauGI+5+Srj9Gel1eSjXRn7Nhntvck6K323uodPGT0o8P8d+/817pR6tDNtaC520AAAAAmGomJeX6vKXroOj1SwUpv9cLD6sMHAtarwwcKw4m/5xalS1KI7u8JY5UriJULGLgWHaWlM4l+3wAAAAAYPozkq6p8zGsuPAJADOOKyhMktKO4fBGKd/tpbjj5ABgyvifpwx/BgMAAAAAAAAAMOM1UboCgBnJxDgNVQuRmWomJc09cfy2WUdVrPgPOHlO31Hj10/4F6lntbTxR1K2R1r1Zmn5KxPpaizTaWBMqSjdfYW07trytievks75hdQ+P3w7hf2O9odr6181wzsiFI4TFhZzxsQ1X5WO+aj/vjsuqV7/gt9IbXPiHTvInOOTaadjsXtf5xKpbZ7/94awMAfXe3PCufKEf5Xuf3dwU3e9QTrjukR6lQzXc6sYoNO1Qpp/hrT9zvDN5mZ7S7pdKg7V1MOWDHkEAAAAgFaTynifdcT9vKM4LOX7y+FhE8PEAgPHdkulfLLPp5WVRqShbd4SR7qzHB5WGSYWFDg2tp7tizdZBgAAAAC0tqkI8ppGA1kAAGEVbMG5L238P4dzhepYfpUAaHLu81Tjx/8F9YCzKwAAAAAAAAAA9UdYGIDGcgzSmFZMlbCwicEtxkiHvdtbmkLMAKlmtONX44PCJGnP76S1X5OO/GD4dtZ/13/74LPR+nPwldKaL0erM7LHu+GwqjiX3GNepn/4Y+6wsF33Bddd8lKpY1G841bTvjCZdpZcFLzfFXoYMEBtRnOF0k08F4YJhlz/XW9Z8dra+5UEV7jixN8DJ/6bdNvF0sDG6m1ecG/58fLXSM98K37/JFUNsAQAAAAANF66TUovkNoXRK9rrVQcnBwwFiVwLG6g/HRUHJAGB6TBzfHqZ3srgsT8Asdml/dNDBzL9BD6DQAAAKBVkREAAEhcMTAszH/8ljssjM9AASA+97ULwhgBAAAAAAAAAKg/wsIANFbUsLCulXXpRl0FhYXNOnrq+hFk6culTT/y3zedbg588j/8tz/0N9HCwrbfmUx/0iHCkCZ66hvS4e+pXi7W962Gi/TFISndPn7bSH+IinW84THTk0w7C18YvN91HrPFZI4/7bjemxPOlQvPCdfcnZdKL7pRWnx+Tb1KRsggtNnHSi/9vfS92dWbnHtS+fHqt9QeFsZNxgAAAAAwvRnjBXBnOiUtiV7fWqmwrxwklq8IGwsTOJbfm/hTamn5vd4ysD56XZOSsn3jA8ZCBY6Nrqc7+BwAAAAAwFRaL0LCAAB1VAwYi5V2jN8yjrGb1jUhIAA0uWb42N8VxOjh/AoAAAAAAAAAQL0RFgagsRwzujktf3V9+lFPQYFoR/zN1PUjyJzj3WFhPz54avtST+uubXQPxtv7WPQ6O3+dfD/G1DIIaniH1Lls/LYwN4cGhenVKt3utV9r4N3Si4L3u37GN18vrbqitmNPR6732cT3Qvui8G2u/c/mCAtz/gz5DI7JzZJO+7Z01xvd7WW6xq9XC64LpQlGCwEAAAAAmpcxUrbXW7pWRK9fKkqFvT4BY471iYFjxYHkn1OrsqXR12l3vPqpbEXIWIzAsXQu2ecDAAAAYFqz1q5sdB8AANNbUUFhYf7jUF2BNpYwGwBNzhVqGBzUNTVMQGIZZ1cAAAAAAAAAAOqPsDAAjZUKCNLyUxysTz/qacHZ7n3VQoimSlBo28DGqetHvaVyUmmk0b0oe/aG6HVKwyELxrnkHhCq1bFUGtzk3j+ye3JY2MYfhDhmHQcuGCNleqR8f/w2jviAd3Ns4HEc57F110qnfIMbKydxvc8mvBcyHeGbXP8d6emLpFWXx+5VIlwzmLreIysuDQ4LO/+uydsufEC64fjofXuuL40fLAQAAAAAmMZS6dHgqdnx6hdHvM9yxsLD8lECx3Y312d/jVbKS8PbvSWOdMfkMLHK8LFx6xMDyPqkFJcgAQAAAAAAkJyiLTj3peU/Nicl/4ksbdA4OQBoAu5QwyYf/1fLpMUAAAAAAAAAACAURuoDaKygkCo/s4+tTz/qadYxUvdqaf/a8duXXixluxvTp4lcQTbVKybajbpLtbX+DYPFkGFhNsaApqCL9BfcI936UmnP7/33j/gEct3/nurHrHdwUaartrCwYz9dvUzQjY/bbpMWnx//+NOR671p/AfnhXb3FdLwTunwEO+7enGdX1KOwLhURjrk7dKTV03e9/Knpe6Vk7fPOS529zwtdt4GAAAAAMws6ZyUni+1z49e11qpODQ+PKwyTCxM4JgrCHwmKg5Kg4PS4LPx6md6ykFioQLHKtazPbV/VgQAAAAAAIBppRjw2V3KMf7ROMamlWJNxAkAjdcso/+MjG+gmTvkDAAAAAAAAAAAJIWwMACNlW6PVn7uSfXpRz0ZI73o59LtL5f6H/W2LTxXOvWbje1XpdhhYS0m3SYV9jW6F2V+IXLVFIdCFgxxwd2WJtx0F1CnfbH0koekaxw36U0M5BrcWv34kuSYvTExATNKVjX3j0IeI+B123ITYWGTOF4vvxtAOxZHuyH18c9Jh727/iF0LqW8/3ZXWJgkHfc5aXi7tP57kqzUd6R01v/5B4WNOeaT0u8+HLOTzTJcCAAAAACAhBkjZTq8pWNx9PrWSoX948PDJoaJjeyueDwxcKyGwPrpqLDPWwY2xKhspGxfOUAsauBYurNxnw8BAAAAAACgLooB48DSjklrjWOcjI0zEScATCF36FazfPZtFGqcMgAAAAAAAAAASBxhYQAaK9MVrXzH0vr0o956Vksve0Ta/4yU6ZTaFzS6R+OlZsivg0yXNLzDf19h0LuRcCod9h7p/ndHq1MaDlcuKMDqubbyXoDac3UCBkEZ4y1t871go4km3gy58Yfh+llvvUdIQ9vi1V3yknDl9q9x74t6jpsJnO8zn0Esh7wjWijWwEZp35NS76GxuhZZYVAa2uIFmg0+6w4jTGXdbWQ6pDOuG72xuD84JGzMoRFfl0p+oWwAAAAAAMD77Cvb4y1aHr1+qeh9NuAXMBYmgKxwIPGn1Lqs95rk90hxXhaTKYeHPRckNiFwLCiArPIzUwAAAAAAADSFoi0696Udk6Uax0SW7hAeAGgW/ucpVwjiVCMqDAAAAAAAAACAxpkh6TAAmla6M1r59vn16cdUCRMC0wiOwTIhKibajbrLzZUOrPPfN7xNyhw0tf1Zfkn0sLBiyLCwMHY/JM07uWJD0KX70e91ts8/LGzTT6WVbyiv73syXB923huuXFxLXiptuzVe3WWvqP34/Y/V3sZ04woL8wux6j0sevuFfV5Ynol5frLWu0m3MgTM9XhiSJ5LKle9TG62t4SR7QtXLm5fAAAAAABAdKl0OYQqjlLeCxLPhwwYm7gedpKBmcAWvEkjXBNHVJNuHx8eVhk4FrSenSXl+oKD4wEAAAAAABBLSQXnvrRjOLxxjB8iLAxAs2vVsxTnVwAAAAAAAAAA6o+wMACNlelqdA8g1RAW1mKCwuaGtkldUxwW1rk0ep2AGRInFKxe5JFPSWf/X7g6YwOnOhZJ+9dM3r/uaun0b5fX+x8J1UsNbgpXLq7D3iVtv0Pa9GN3mb6jpP6Hx2879h+kWS+o/fjrvyPp2trbmVYc7zO/sLA456YbTpQ6l0uHvE064gPl926pIA1tHR/2NbhFGpr4eEvyN9cmfYNo3CA0ibAwAAAAAACaVSortc/zljiKQ6PBYaPhYWNBYqECx3ZH+NxxBigOScUt3udIcWS6K8LDogaO9fp/TgYAAAAAADDDFQM+v0o7xhgZx2So1jXZIQAgJMIYAQAAAAAAAABoFMLCADQWYWHNwca8OBv2ZqmRfmnrLVLhgLToPKljYbzj1Srb6943tG3q+lGLsDftdSyRBjcHl9n0owltu94HFRf1u58nbb/Tv9j/z96dx8lV1Xkf/56qruolSWcP2QMhCWEzggEEFFAQQVGBccUNnRkZdRSXURmXB/FRZ1HRcXdGRceFeUZxXEaQxQ0EAWUHWQIhbAlZyNpJumu55/mj0unq6ntu3Xurbq2f9+tVL/res/2qursqdJ36Xq8gpfb90yJs8Nrc08L1iyvdJ530U+nKVRMDwUadeaf0zK3S2sukgYXSQW+UJh+UbF3dzLnZzm/zSMxQrD1PSHd9uHSbtqoUAja8WU273l7P5Oas66fewWUAAAAAAKA1pPtKQf/9c6OPtbb0t9v9QWIVgWO+AWTbxtryO9S0v7u0osJQ6aYnYww2UmbqWJBY1MCxnkm1Bc0DAAAAAAC0qKItONvSxn87fEr+oeyE2QBoeY79vKZF/v7rCmMEAAAAAAAAAADJIywMQHNFCQtb+tbk6uh2cd88Xv/L6n12PSxdd4q096nScc8k6ZQrpTknxVszKXtCfnBrkyMoq1HChoVNWVE9LGwCR4hT+c/HpIAQrad+IS06Z98Y/41WExxwarh+tTAp6bhvSdccN7HtyE9IqbQ0+/jSLQmF3QQjlnOFhfn9zIT9OQqy/a7a56hFqleasbr+8x7+Eem+T8WoJ1v/WgAAAAAAQHszRspMLt0GFkYfbz0pvys4YCwocKwwVP/71LZs6bHJb5d2xxhu0vtCxqZXBI5VHjsCx9J9db9HAAAAAAAA9VAM2DfnCgVzhdl4hIUBaHGuUMNWCekyRr7XECGMEQAAAAAAAACA5BEWBqC5+ueXgku8XPW+81+SfD1dK+abx2ECtv70jrGgMKkUnHTj66Szn4wfUhaXK6RIkh78vLT8girjrXTd8+tbU2QB92GckG+473pY+sXyKp3Kvk8r3inde4l/twf/bSwsrDgSbv3lbw/Xr1YzV0sH/630yH+MnZu2qk7rO3Y9jGpEWNiWW6QHPidtvT18oFyz5Hc4GhIKC2u21V+SevrrP+8hF8YMC8vUvxYAAAAAANDdTErKTi3d4vAKpb8ZjYaHRQ0cKw7X9/60M1uURp4p3eJI9ZaFilULHJteET42jb89AQAAAACAxBTlvycqrR4Zxz5E49h7ZIP2EQJAC3CHbrVGWJizDktYGAAAAAAAAAAASSMsDEBzZaaUQsCe/Gm4vkhGUoE8xWHp6Wsnnt+7XtpyszT7+GTWdQp4E3rng6XgLC8vDa70DzLbdntypYUV9o30sBuaqgaFafzPR99sd79Nvx/72gsRFjb/rPgfIIzKpKRjvy4tfIW0+UZp8BBp4dn1Wb9nslTY5W4fWif1zal9HZett0nXPDe5+RvF73cuO7PxdcSV7pf650l9c0v/nXywtPhVpaC6JPTNLr1+rr8yYp19ydQDAAAAAAAQV6pH6p1ZusVRHJZyO8bCw3IVYWKBAWTbJFuo7/1pZ96INLyxdIujZ9L48LCwgWPZaVLPoJRK1/f+AAAAAACAjlF0/A0nbdx/TzCOMBt3CA8AtLbWiQrj+RUAAAAAAAAAgGYhLAxA8z33O9KNr5M2XBXcb0ZCgStQYm8f53e627bd3viwsGoBWqPBWYMrpVOulCYfNL79L/+STF2RhH0jvZ5XP4zx81EMCgsz0rzTpRO+H7uiWExKWvDS0q2egoLCJGnd96VZx9Z3zVFeXvpVpzw3+oQWzjxW6p0ljWxpfDmjsjPGh4CN3sqP++ZKmUH/wLMknXi59IfXVn/9LDe4Mrl6AAAAAAAAmiHdJ/X3Sf0HRB9rrVTc4x8w5gwcqzjmw09jCrtLt71PxRufmVoWJFYWJpYJETjWM7nxf58DAAAAAAANU7RF3/PxwsLqubcOAOrPHbrV2n8D5a/lAAAAAAAAAAAkj7AwAM2XnSq94Erph1XewOyd0Zh6upHxCempBxv0tq/j+22tdP+/SndeVDpedoF0zFfrVGPIt6F3PiD9/izppfeNP5+ZVocaahXyPgQ+9lFVfK8Wv0Z6/P/5dx15RuqdKa2/0r996fnSUZ8t9ekUz/5X6c4Putsf+pK08j3S5KX1X7slAuzqxO9nIpWWDv+IdPt767uW6ZH6DggRAnaAlO6t79r1lBksvX7+7CBp97pwY1KZREsCAAAAAABoK8ZIPZNKt4EF0cdbTyoMuQPGqgWOVbsQQbfJ7yjd9Fj0sSa9L2xsenDgWHZ62ddlx+k+wsYAAAAAAGhhRVvwPZ827q3wKceeQ3cIDwC0Cv/nKVcIYqO56+D5FQAAAAAAAACApBEWBgBILiws6E3fyg/dWFv6YNTvXyFt+t3Y+Ye/IT3yLem1udo/qGMjXBFwx1+k7fdJgyuk4oiUmVz6AFe7iHJfq6l83Be8zB0WdsUs6YiLpeIe//a+AzorKEyS5r04OCxMkn5+sHTWA9LgIfVd++6P1Xe+ZslMk2Ye49+28j3SwELp8R+VPvD32OXR5l71TxNDwHpnJvi81wTZ6eHCwk5xhPgBAAAAAAAgHpMqBbpnBqVJS6KP9wpSfmfpb8/7g8S2Tzx2BY4V99b/PrUrW5RyW0u3OFLZslCxiIFjmWlSOlvf+wMAAAAAAMYpquh7PigszBVm80x+k4q2EDgWAJrpwT33+J5vlesduJ5ft+Q3hhq/o7BNf9h+tZ4aWacD+1bopOlnqi/VX88SAQAAAAAAAADoWLzLCQCQErvSVEBYWKHsQ0wPfkm67d0B0xSknfdLUw+rsZyIV6y68oja1kvC8KaQHet5da6KUCVXqNOoey8JmKq39nJazfRnhet3/TnSWX+p37pRf55bVc8k6eSfSamMu8/iV5ZuUunDd2u+Fm7upedLh19Uc4kd4dAPSPPOaHYVAAAAAAAAKJfqkXpnlG5xFEek/I6x8LDKMDFXANlo+JiXr+/9aWdervT399B/g6+QHhgLDysPEwsKHBs9zkyVUun63h8AAAAAADpM0RZ8z6fl/n9qV5iNJH1z/Wf1t/M/qFQnXXAQQEf45Zb/anYJsf1o0zd12KSjdEB2gbPPzsJ2ff7xj2hTfr0k6c6hm3Xn0M26cNEn1Jvqa1SpAAAAAAAAAAC0LcLCAABSUhtegsKM7ni/dOj7pPVXBweFjbr9H6QXXFlrQTWOT8DAImnPE+H757aVPgCWrhK6VdxTW11Bc/XNiT9Xtbo72c776zvfjnuD24/+fOlDZq2s7wBpzklSZnL4MdOPCt83Mz16TZ3m+T+Rpj9bmnxQsysBAAAAAABAvaV7pfSceH+ztVYq7p0YMBYlcMx69b9P7aq4R9q7R9q7Pt74zGBZkJhf4Nj0sbbKwLGeKZJJ6qIwAAAAAAC0hqIt+p5PG/dWeBOwL/KuoZv15MhaLe5bVnNtAFAvI96wrt56RUCP1v874PXbr9Kr5vyNs/2Wnb/bHxQ2at3wQ7pv9206esqJSZcHAAAAAAAAAEDbIywMQHs47tvNrqDDNenqeLnt0u/OCNd3w1W1r9eKH1ya/1Lp4a9HG7Ppemnei9ztue3S9ntqqytILQFUqQ4NC5uyXNq1prFrDm8Obl/5nsbU0WhRfoa8keTqaBeLzml2BQAAAAAAAGhFxkg9A6Wb5kcfb61U2DUWJBY1cCy/s+53qa3ld5Zuex6PPtakSn+3Lw8YCxU4tu843U/YGAAAAACg5RVtwfd82qSdY/pS/YFzPrL3AcLCALSUx4cfUcHmne3VntcapS89oJHCsG/bI3sfCBz7P5u/43v+F1suJywMAAAAAAAAAIAQCAsD0DpMWnJc/U0Hvr6xtXSbxD4EUiWc66GvJLSui23weiEc8RHp6eukoYfDj9m1Jjgs7KEv115XkFp+Xly/4+3u1N9IP13U2DV7Btxtx/574+potIANfhNkpiRXBwAAAAAAANDNjJEyg6XbpMXRx3tFqbBzLFxsf8BY5bEjcKy4p/73qV1Zb9/jti3e+FRmfHhY1MCxdLa+9wcAAAAAAB9F+e87Sxv3Vvhl/YfJKCXr2McYFMgDAM0w4u0NbF/ef0SDKgm2ov8I/WnX9b5tI55/iFg1G3NP1lISAAAAAAAAAABdg7AwAK3DpNxBQnzQIGGpZKa1VcLC7v5oMuu6VKunGQYWSi++RbpiZvgxXpVNSnd/rLaawljxbumhL0YfN+uE+tfSCgYWhuv30FekFe+sz5rb73W3LX1LfdZoRakI/3wdPCy5OgAAAAAAAADEl0rvC56aHm98MSfld0wME/MNHNs2MXzMy9X3/rQzLy+NbC7d4kj3TwwTy5SFjQUGkE2N9jdfAAAAAEDXKtqC7/m03BceHEhP1nkHvF0/2Oh/UVPXnADQLDnr/rvl6TPO1ZK+ZQ2sxu0Vs9/oDAvLeyMNrgYAAAAAAAAAgO7CzlsALSShwCpUZ5IKC3OEvzWNbXYB/npnSIOHSDsfDNd/+53utk3+b77X3dGXSht/I+0ICKzyM+u4ZOppF3/+e2n5OyRjap/rkW+62zr5w1UBVwOdYNE5ydUBAAAAAAAAoHnSWSk9W+qbHX2stVJxuCw8LEbgWMu9/9FExb3S3r3S3g3xxvdMGQsSCxU4VnacmZLce1wAAAAAgJbiDAurspfoxGkv0s+2fE9DxZ0+c/L/9wBaS1DQ1itmvVGmHntP62BGZrZed8DbdfnGr01oy1nCwgAAAAAAAAAASFIHJ0kAaDuHf1i65+KJ56etanwtXSehN4+tl8y8cbVaPeVMJnzftd+Rjvv2xMApryBdd3Jdy5Ikrfa5smIqLb30HumHEX52jv68lIpwP9tNZqqU31G9X26r1Duz9vWeuaX2OdqRcV8NdILMlOTqaCmtsQEIAAAAAAAAaAvGSD39pVv/vOjjrZUKQ+PDwyrDxHLbpbwrcCzE35G7SWFX6bbniRiDTelv86MBYlEDx9ID9bm4BwAAAAAgca5gr3SIvUQLepfowT33hJ4TAJolZ3O+5+dk5rdMUNioqT3Tfc/nAgLPAAAAAAAAAABA7QgLA9A6DnqDdM/HJdnx55e9rRnVdJekrrpe7800uR1SdmoNE9jqXZrFJ0TLs0Z7igOa3LN7Yv+d90tTDxt/bvONydS24h3utrkvkp6+Ntw8K99Tn3pa1bK/le7/bPV+W26WFrw0+Xo6VcHn98HPlBXJ1tFK+mY3uwIAAAAAAACgexhTulBBZoqkRdHHe8VSONaEgLEqx6OBY2H/RtoVbOlxyW+X4jwspmcsPGx/kJjPsSuALN1b93sEAAAAAPBXS1hY2rFdvqhCTTUBQL25grayqWyDK6kua/z/NpazI7LWtly4GQAAAAAAAAAAnYKwMACtY/JS6fjvSje/ZSxk6qA3ScsuaG5d3SBuWJhPwNU41os3r8vep2oLC6t3PZVWvCv+WDP2kmyt9InHPqavPPUObc3P0AlT/6jvHfomLel7fKz/hmsnhoVt/E389SXpkPdKD35+7HjSgdILqwSBZaeFm3vF38cuq20c+XFp253S09cF98vvrH0t28LBd0nbtSZkv4eSraOVHPlxacPVE88v+quGlwIAAAAAAACgilR6LIQqDi9furhKPkTAmN+x4wOHXckWpJEtpVsc6b7x4WFBgWPlx5lppfe7qr3PBgAAAADYzxXs5QoCK5dyBIq5AsgAoFly1v9vdxlHMFczZVPumvI25wwTAwAAAAAAAAAAtSEsDEBrOeiN0oKXSVtulgZXSpMPbHZF3SFuWNiMY4Lb672ZZsM1EwOyIkkwYCndXwq3iys19pL85afeqUvWXbz/+A87nqdT77xWDx53qNJmX+DZjnsnzrH+qvjrS9JzLpUOfV/p969/vjTzmOofVBlYHG7ubggL65kkveAaadsd0q+e4+53+3ulA19X21o7769tfDtLhfzn68CiZOtoJTNWS9OPlrbdPnbOpKWD/6Z5NQEAAAAAAABIRioj9c0q3eIoDu8LDtseI3BsW/3f+2lnxWGp+LQ0/HS88T2Ty8LDogaODcZ/fw8AAAAA2pAr2MsVBFaux/jvNypa/wAyAGiWnCPoP5vKNriS6oLCwPI2p6wICwMAAAAAAAAAIAmEhe2U5bsAACAASURBVAFoPdlp0vwzml1FlzExh1XZaFPvzTQPfF5a+Z74460Xf+yKd0vrr5R6+qUl50kHvl668yJpy43S4GHS4RdJM1fHnz89sP/L/7fpNROa1w4frD/vWq3jBm8tndh0/cQ5tv4p/voLX1H678BCafErw4+btCRcv8FDotfUjoyRZhwtzTnJ/3skScMbSx8gSvfFX2f3E/HHtrt0f7h+C16ebB2tJNUjnXqddMcHpKd/I00+SDrkQl5LAQAAAAAAAEyU7pP655ZuUVkrFXaXBYntCxArPw4MINuhRC/s0m4KQ6Wbnowx2EiZqWNBYlEDx3omld7TSMqWm6VNv5fmv1SaeniyawEAAADoCq5gr7QjCCxMH1cAGQA0S976h4VlAoK5miWbcteU80Y0KT1lwnmP510AAAAAAAAAAGpGWBgAQLHDwqp9oGP3upjzOux5vMYJHPUe+Qnpnv/jHnb6zdKs4yT92/jzJ/6gxnrKHH6RtPHXkqSbdp7g2+WfHrtIPz3y3NLBpMXjG4cerb7GjGPcgWKr/jlspeMtOke67d3BfU5zhGZ1sqMvlX4VEB736H9Ky97WuHo6yeJXSnf8Q/V+Ia4a2lGy06XjvtnsKtqS51n901VWV9xulU1LrzvO6N0vNDJ8eA0AAAAAAAAYzxgpM7l0G1gYfbz1pPyuiQFjQcfl4WOFofrfp7ZlS49Nfru0O8Zwk94XMja9InDMcVwZOFbtgiiPfl9a85XShXcGFknzX1IKDpv7wlJQGQAAAABE5Ar2SofYI+TqU1SdL4YKADXKeTnf80HBXM2SDQgwyzlCz3LW//4BAAAAAAAAAIDwCAsDAEh9B8QbZ73g9qG18eZNiqveaoEws46rfy2VZp9UtYstD3XLbRvfeOdF1ddYer50+k3SA58b63/UZ6WD3ij1zQlfa7mgDwPNe7F07L9PDDbrBjOeUwoDe/jf/dtvvaB6WFh+p/TMrdKU5dKkJePbinvd42YeG63WdlP5WLhsviHZOtAx3vcjqy/+eixM8tZ1Vjv3Sh87i7AwAAAAAAAAoK5MSspOLd3i8ApSfkf1gDFX4FhxuL73p53ZojTyTOkWR6q3LFSsMmBsWikobNSeJ6SHv1G6HfgG6YTv1ec+AAAAAOgqrmCvdIit8K4+rgAyAGgWV8hWUDBXswQFmOU8//uRd5wHAAAAAAAAAADhERYGACiFYfUdIA1vjDau2mYZLx+/pkRY/9Mm1dgy/KSzVbuMCwvbelsp/Gy09sf/O3hwZpq0/O2lYLTDPlS61ctfPSNdMXP8udOul+Y8v35rtKNjvuYOC6vm0R9It7xl7Hdo6VulY78hpfb90+2JK9xjT7ky3pqdZtsdza4AbWAkb/XNGya+Nnz991YffamVqRYmCQAAAAAAAKBxUj1S78zSLY7isJTbMRYelisPE6sWQLZNsv4fTO9K3kjpfcWo7y3OPzOZegAAAAB0PFewV9qkq4519fEICwPQYlxhWkHBXM2SCQgwy9mc43xwWJhnPaVaYU83AAAAAAAAAAAtjLAwAEApcOpZn5BuvSDaOOtV6xC7JF89U2ob76y3PcJgrK2o89H/lJaeH27wkReXgsKS0DtDOs9Khd2lK9BPWpzMOu3GpKT+edLeDX6NkrX+35OhddIf36hxvz9rvy3NPFZavu93dN333evG/ZBUpznqc82uAG3gNw9Ie3z2JW3YIT20UTpkbuNrAgAAAAAAAJCQdJ/U3yf1HxB9rLVScU9FwFjEwLF6v2/WbkxKmvfiZlcBAAAAoE25gr3ChYX5b5cvEgoNoMW4wrQypvoFiRutx/TIKCWriXuzXaFnOc8/RGx/ux1Rn+mvS30AAAAAAAAAAHQqwsIAACXL3iYNLJaeuEJ65JshB1UJC7N1/tBDYVeNEzjqaZOrUNnKULMHPh8+LCwzte71TNAzqXTDmNVfkW4416fBSvkdUnbaxKb1v5Tvz+pjPxwLC0N1S9/c7ArQBvyCwkaNsB8UAAAAAAAAwChjxt4HGVgQfbz1pMKQT8CY47gycKzm98hawMzncsETAAAAALG5gr1cQWDj+/gHihUICwPQYnKOkK1sqrfBlVRnjFHWZDVihye0uULPXOdH5b0R9aUICwMAAAAAAAAAIAhhYQCAMfPPKN1WfUr6SYirqjuu1lfWoS5ljVPMSemYV8iyrnAzIx33TemWv5nYdOQl8dZqhO13h++7+K+SqwNu01e52574iXTwWyeev+di//6bri/918vXXlc34ANHCCEVkBXpJfASBgAAAAAAAKBLmZSUGSzdJi2JPt4rSPmdwQFjzsCxbVJxb/3vU1QLXtbsCgAAAAC0saL89yq6gsDKpeTfxzUnADRLzvpf/TJrWi8sTCqFmI0UfcLCHKFnrvP726uEiQEAAAAAAAAAAMLCAAB+emeF6+cM39rfoeZSJtj4a2n+mTEHO+oxKWnBy6WBRdKeJ8bOZ6dLS14Xc636szLxBi59a+nDJ2i83jnutlv+2j8srJo1X4tfD4BxUgFPq5awMAAAAAAAAACtItUj9c4o3eIojkj5HWPhYZVhYvu/9gsc21b7hUz65kgr3lHbHAAAAAC6WtEWfM+nQ2yFTxv/Pq45AaBZ8o4wrWyqdcPC/HIXXaFfOW9isNj4dv+wNAAAAAAAAAAAMIawMADARCYVrl+1sLAoSSun3SA99kNp42+lnQ+4+w09Gn7OCfW46jVS32zptN9Ld39MeuZWafqzpcM/LA0uj79enfmGhVlPCnpzfNqR0rHfSK4oBOuZFH2MV2UT2m0XxqsFwARBYWEeYWEAAAAAAAAAOkW6V0rPKYV2RWWtVNw7MWAsTOCYJE0/WjrqM1zYBgAAAEBNitYnjUbuILDxfdKR5gSAZnGFbGVNa4aFZUzW93zOEXrmun9h2wEAAAAAAAAAAGFhAICaVAkLU4Sklf550jFfLX299rvSzef799u7IfycYesZDUebfJB0wvdrmD9Z1vqk2ux5IjiU7ehLS1ebR3OYgCQil/yO+tfRaeadKW24yt0++lwCVBEUFlas9hIHAAAAAAAAAN3AGKlnoHTT/GZXAwAAAKBLFa3/BRhdQWDj+/jvn3PNCQDNknNcPDib8g/lajZXiJkzLMxxPmw7AAAAAAAAAACQUs0uAADQxqpdWS8oxKpSz8DY1wML3f3u+6Tkxbyin3Ulv8QIdGoVa78rFYbc7VOPbFwtqN36q4Pb9zzZmDpa3YHnudvSfdKBb2hcLWhrQWFhXoSXMAAAAAAAAAAAAAAAACSn6Nir6AoCG9dH/oFiRcXchwgACclZ/7CsjCOUq9myKUdYmON+5Kx/GFq1cQAAAAAAAAAAYAxhYQAAf31zq/fZ+WCVDhGSVtL9Y1/POTm4723vCj/vOI56THu8HFq/ULP1v5QKu92DMpOTKwjhrP6yu23H/eOP/3RB8FzDm2uvpxMc9AbpqM9NfJ6asVp68Z+lzJTm1IW2kwp4+icsDAAAAAAAAAAAAAAAoDW4gr1cQWDj+jgCxTxbqKkmAKi3nOcfluUK5Wq2rCPEzHU/XOfDtgMAAAAAAAAAAMLCAAAuz/tRuH42KE0lZNKKSUs9ZeE+qSpX+1vzNWloXbi5x5XjuQqIPlcT+IaF9c4ODgsrD2FDcwwsdLf9/uVjX1tP2v1Y8FwjW4Lb2yT4ri4OfZ909pPSq/dIr/OkVw9JZ/xJmnZ4sytDG0kFPP0HvrwBAAAAAAAAAAAAAACgYYqOYC9XENj4Pv6BYkXrH0AGAM1QtAV5jmDErMk2uJpwMo4Qs7zN+Z7PWcLCAAAAAAAAAACoVRclSgAAIpnzPOnMO6r323Gvuy1s0sqS10qp6lf4G+fxkGFm4zjqaZOAJd+wMFuUfnOqe1Cb3LeOdkDA92fo4bGvt91Zfa7fnh7cPmlpuJo6RSot9fRLxkg9k5pdDdpQUFiYR1gYAAAAAAAAAAAAAABAS3AFe7mCwMb38Q8UIywMQCsJCsrKOkK5mi1r/Oty3ZdqYWD5KmFiAAAAAAAAAACAsDAAQJDpz5bOeii4z4arAxpDJK3MPlFa/eVIZUmS7vygtD0gqMy3HM/REJAW00Ks9alzZEvjC0E0mcnB7fldpf9uv6f2tYp7ap8D6CImKCzM9ZIBAAAAAAAAAAAAAACAhiragu95VxDY+D7+gWJF+c8JAM2QszlnW8YRytVs2VTW93zOEfpVLQysWpgYAAAAAAAAAAAgLAwAUM3gcmnVp93td3wgYLAjLGzOSdIZt0svWyOddoOUnRavtmueKxX2RhjgqCcoLaaFWL9Qs61/bnwhqK8df5GslZ7+de1zHfzXtc8BdJFUUFhYiLxLAAAAAAAAAAAAAAAAJM8V7OUKAhvXR46wMFusqSYAqKd8QFBWNtWqYWH+deUdwWfVwsBcIWMAAAAAAAAAAGAMYWEAgOq8KlfQs57jvCucKy3NOEqasswd1DX3RdXrKuyWNv+her/99Tjq5OUQzVTYLd35QWnd92qfa8l5tc8BdJGgsDCywgAAAAAAAAAAAAAAAFqDK9jLFQQ2ro/pccxZZV8kADRQUFBW1rRoWJijLlco2Ei1sDDPP2QMAAAAAAAAAACMIR0FAFBdtTdfR7Y6GlxRKwHpLKPmv7R6H0la++1w/aSA8LIQ9bQAG+ZxQ/vZdrt0/2drn2fVp6WpK2ufB+giQWFhRVe+JAAAAAAAAAAAAAAAABrKFezlCgIb38c/UMwVQAYAzeAK2JKkTCrbwErCy6aihYUFBaKFaQcAAAAAAAAAAISFAQDCiH2lphrCwsJetc8VAObLlfzSKi+HwY9L5LCwU66soRY0zB0fqH2OqUdIh/9j7fMAXSYd8PTvRXl5AQAAAAAAAAAAAAAAQGJcwV6uILDxffwDxVwBZADQDEFBWVnTomFhxhEW5rgv+YBANCk4MA0AAAAAAAAAAJS0SjoKAKCVxX3z1RXkZUKEXhWHw62RGWxMPY1w9KWBzdZGrHP+mTUUg7YyZVmzKwDaUtDTv+fKlwQAAAAAAAAAAAAAAEBDuYK9XEFg4/rIP1CsKP8AMgBoBldQVo/JKBUiGLEZMilHWJjjvgQFooVpBwAAAAAAAAAAhIUBAMLwclU6OEK4nOdDhF4tOrd6H0l64opw/SS562mRl8OD3iRNW9XsKtCOimyQAOJwZUhKkhfQBgAAAAAAAAAAAAAAgMZxBXu5gsDG9XEEihUtYWEAWkfe+u/Vzhr/QK5W4KrNFfrlChEblY97cWsAAAAAAAAAALpIi6SjAABaWt+84HbnppkawsIGV0qTl1Xvl9tavc/+cjxHOSHqaYTeGdKpv3E22zCP234tcp/QGGyQAGIJygMjKwwAAAAAAAAAAAAAAKA1uIK9XEFg5VLGP1DMypPn2lMIAA3mCtLKplo4LMxRW95xkWpXiFjYdgAAAAAAAAAAQFgYACCMg98S3O4KC7OOqJUw4VzGSKf8snq/KPY87mhooZfD3hnOpkhhYYd9qA7FoG6WvDbZ+QkLA2JxvUxJksdeUAAAAAAAAAAAAAAAgKbzrCcr/40criCwckGBYq4QMgBotJz1D9jKmhYOCzNZ3/Ou0C9XIFrYdgAAAAAAAAAA0FLpKACAljWwMLjdFlwNjvMhQ68GV0jP+WK4vtUMb3G3hQkvawGRwsIWnJVcIYhu+TuSnb84nOz8QIcKDAsLaAMAAAAAAAAAAAAAAEBjBAV6BQWB7e8jd6BYUa69jwDQWK6grEzKP5CrFWRT/kFmeZuTZyeGPLoC0UaNOELGAAAAAAAAAADAGMLCAAC189uMY61qDguTpANfH6eiiTZcFdDYHi+H1kZ43LIzkisE0c15frLzF9kgAdRb0f+CtAAAAAAAAAAAAAAAAGigoECvoCCw/X2Mu48XEEQGAI2UcwRlZY1/IFcrCKot7xMMlncEooVtBwAAAAAAAAAAUvXLKaEjGWNWSlolaaGkfknDkjZJeljSXdba3TXMnZF0oqTFkuZJGpK0XtId1tp1tVUOoCV5ZRtmnviJdO8npaFHpPxO//4mQuhVb51Cr+74oLstSj1NZCcfHL5zz6TkCkHrYYMEEIsr0lKSvKBGAAAAAAAAAAAAAAAANERQoFdQENhYH/d2+YJ1B5EBQCPlHPtAs6lsgysJL5tyh4XlvBH1pvr2H1trnYFo+8dUaQcAAAAAAAAAAISFdRVjzDRJF0p6q0pBXi5FY8ydkn5srf3nCPPPlnSJpNdI8k33McbcJOlSa+0VoQsH0PpGN+NsuFa64ZUKjl+RpIjhXAe+UVr3vTiVScObpc1/kIafDuiUijd3o/XPlV7+iPTzEKFhmcHk60HrmHtasysA2pINeLmysor8egUAAAAAAAAAAAAAAIC6KgYEegUFgY3qCegTNDcANFLe5nzPZ4w7kKvZMsYdZFYZ/JW3uX178txcgWkAAAAAAAAAAGAMYWFdwhjzKklfkzQzRPe0pOdIWigpVFiYMeZMSd+RNKdK1xMknWCM+YGkC6y1u8PMD6DFjYaFPfIfqh4UJkUOX1nymnhhYU9fJ11/jlQYqlJOe4TBWCtp8lLpFeuknx0Y3Dk7rQEVoWUs+7tmVwC0paCwMM9rXB0AAAAAAAAAAAAAAADw90x+k7MtKAhsVNqknW0P7/2LDksdpUnpKbFq6wZDxZ3alFuvlFKa37tE2VTtwUUFm9fm3NOak52///uzq7BDBZvX9MysmucH2lHOG/Y9X4/fuaQE1bZ27wPaUdi6/3jY21t1vmFvr9bufcDZPik9RQdkF0QrEgAAAAAAAACADkNYWBcwxlws6eM+TY9LekjSZkl9kuZJOlLSpIjznyLpp5LKLw1jJd0uaa2kaZKOklT+7u3rJQ0aY8621hLFALS70bCwx38Urn/UcK65L4rWX5K8vHTjedWDwiSpvz3eON6faTNpiXTg66V1P2hmOWgl045sdgVAWwqKt/TCZF8CAAAAAAAAAAAAAAAgETsK2/SNpz6tdcNrnH2CgsD29wnYLn/ZhktlZHTUlOP15rnvUSaVdfbtNjlvRJdtuFR3D90qu2+XTY/p0Qumv0xnz3qTTMyLtN6w/Wr9ZNNlGrHD6ksN6NzZb9ZdQ7fovt23S5KW9C3X3y34R03tmVG3+wK0uvUjj+sPO67xbcuaFg4LC6jtsg2XRp4vb3P67OMXOdtXTX6uLljgbgcAAAAAAAAAoBukml0AkmWMeb8mBoVdLulZ1tol1toXWWvPs9aea609XtKgpOdJ+rykZ0LMv1DSTzQ+KOxGSYdba1dba19trT1d0kJJF0rKl/V7maRPxrxrAFrJaFhYaBE3iaRjbMDZcK00sjlc31nHRZ+/CWx5cM3x33N3PO5bideCFnL4R6IH8AGQVPG8WqFInC0AAAAAAAAAAAAAAEDTfHP9vwYGhUnBQWD7+1QJFLOyun3XTfqfzd+NVF+n+/Gmb+uuoVv2B4VJUsEWdO3W/9GNjlCjatbsuU+Xb/yaRuywJGnY26Mfbvza/qAwSXpseI3+/al/qa14oI0UbVFfeuJiZ3srhxhmU60bZAYAAAAAAAAAQKciLKyDGWNWSfrnslN5Sa/aFw52j98Ya61nrb3RWvs+SatCLHOJpOllxzdJOs1ae3/FvCPW2i9KenXF+PcZY5aEWAdAK7OFaP3jBBtlpkbr/9TPwvdNZaLN3QqMkc5ZP/H80rdKS89veDlootz2ZlcAtK2ArDAVCAsDAAAAAAAAAAAAAABoih2FbXpk7/1V+1ULAiv1qR4oJkl3DP0xVL9uYK3VnUM3O9vv2BXvsboz5GP86PCD2l7YGmsNoN08uvcB7Shuc7ZnTesGcqVNj1Kq/jwMAAAAAAAAAADqh7CwDmWM6ZH0bWncJbMusNb+OOwc1gan/xhjlkt6c9mpnKTzrd13uSf/OX8qqfzSW72S3JfCAdAebFEq5iIMiBEWdvDf+J8fWOx//okrws277O+i19IktjLVpn+edJ6VznpQOuln0qt2Ss/9lmR4eW9J/fOSmbewK5l5gS6XLza7AgAAAAAAAAAAAAAAgO60Lb+lap/J6UFNSg9W7ZcKESgmSTsKW1W0bBiRpLzNaai4w9m+tVD9++Pnt9v+N3Tf+3ffEWsNoN08k98c2D6vd1GDKomn1esDAAAAAAAAAKDTkCbSuV4l6eiy419bay+r8xrnSeMuBfMTa+2aEOP+peL41caYvvqVBaDhinulzX+IMCBGWNjgCv/zex73P1905haOt/yC6LU0SWVW2H6DK6SFL5cyUxpZDqJa+f5k5s3OSGZeoAtMCGEsQ1gYAAAAAAAAAAAAAABAc+TsSNU+xw2eolSIC2umx113OVjeRrloaueq9vjnverfn1pZ945JoKMEPe9MTg/qyEmrG1hNdCdMPa3ZJQAAAAAAAAAA0FUIC+tclek3n05gjXMqjkOFkVlr75d0S9mpSZJOr1dRABISdHW9v/yL9OAXIswVIywsqoGF4fpNf3aydQCjVvy9lB6o/7wHvbH+cwJdgrAwAAAAAAAAAAAAAACA1hMURjW9Z5ZOn3Guzpn95lBzpYP2PlbINSAEqx1UexxyDQhVM3EuSgu0oaBwvvcs+qSm9ExrYDXRnTLtpTp39vmak5kfadxgerokaUp6ahJlAQAAAAAAAADQscJfKgltwxizTNLJZafWSfptndeYK2lV2amCpBsjTPE7SceVHZ8p6ee1VwYgMSYtWUdyyoarpVnHh59rZGv09Tdd72578IvSgpdJkw8aOxdmg89rhqPX0URBoTZoA+le6cTLpetfEW98/3xp7/rx56atIvAOqEHQ0yphYQAAAAAAAAAAAAAAAM3hCs/Jml59cul/yES4YGnKpGSUkpVXfV3CwiRJ+SphYEFhbgCicT3vHNi3QvN7Fze4muiMMTptxtk6bcbZynv50ON6TI+MMbLWqmALocakGnGxagAAAAAAAAAAWlyq2QUgES+oOP61tXWPmDmi4vhua+3uCONvqjg+vMZ6ADTblj+G77vpd9HnH1rrbrvtQunnS6U1Xx87Vy0srH9eKbypjZAV1gEibISY4JynpGO+Kg2ulDKD0qJXSi+8VjL8cw6IK+hfyIXq+0MBAAAAAAAAAAAAAACQAFd4zkB6cqSgsFHpMBcflTukrNtUC03L2RHVf2v6eJYdk+gSeVc4Yqq99jhLUiaVCX0bfS43xoQekzY9Tb6HAAAAAAAAAAA0H38t70zHVhz/UZJM6R2VUyW9XtJxkhao9DOwRdIaSddJ+i9r7boQaxxWcfxwxBofqTIfgJbT5I0XYTaW/Ont0vyXSJMWS9vvCe7bN7c+ddVZ0AaahPfWoBHmnBxv3LwzSv9d/vbSzVqJK6QBNQt6Ws0XG1YGAAAAAAAAAAAAAAAAyuRszvd81sQLz0krrYKqX+ixWkhWt6j2OFhZFWxeGZNNrIaCLSQ2N9BKXL9vSf5+AQAAAAAAAACA9kVYWGdaXXF8vzHmQEnfkvRCn/6L991OlfQJY8x/SPqAtXZPwBrLKo4fj1jjYxXHM40x06212yLOA6BrhEzKWnuZNOM51fvNfn5t5SSEQLAO1zcr3riFZ48/JigMqIug51zCwgAAAAAAAAAAAAAAAJrDFZ6TTcULz0mbnlBbEPOOkLJuk7PVQ9NydkQZJRdmlCe4DV0i59U3HBEAAAAAAAAAAHS2VLMLQCLmVRwPSPqT/IPCKmUkvUPSH4wxlfOUm1ZxvCl8eZK1dkjScMXpqVHmANBodQwnWnZB/eaq9Oh/Sn9+d/V+qz6VXA0JIUisQ7z8keD2gYVS78zS1+k+6dAPSsvelnxdQBciLAwAAAAAAAAAAAAAAKD1uMKqMjHDc9ImXdO63cYV1ha1T0018L1Al3D9rGdThIUBAAAAAAAAAICJeppdABJRGeR1maRZ+77eLenrkq6S9KSkSZJWSXqrpOeVjTlK0hXGmJOttXmfNSZXHO+NUedeSX1lx1NizDGOMWaOpNkRhx1c67oAIlrxrhiDIiRl7X40uP2wi6RM5dNYawi6l2SFdYjJS6VpR0rb75nY9sptUnZaKcFoaK3UP1/q6W98jQAICwMAAAAAAAAAAAAAAGiSnFd5PeKSuOE5aRNuy3zSAVjtIkxQV9QwLxvxaql8L9At8q6wsJjhiAAAAAAAAAAAoLMRFtZhjDG9kirfGVq4779/kXSGtfaJivbbJV1mjHm/pM+WnT9e0ockfdJnqcqUHf935YPtlTQ9YM443iHp4jrMA2CCOkZVTTs8xvIh1x9aG9w+63hp1aejr98gQXdz/fbG1YGEnXmXdNMbpMd+WDqed6Z0yv9KJlU6NkaaQpYlkLSgVxbCwgAAAAAAAAAAAAAAAJrDFUQVNzwnbdLh1iWgSlK4xyHqY1XwvXZ1wPwRw8iAdpXzcr7ns6lsgysBAAAAAAAAAADtgLCwzuN6N3uH/IPC9rPWfs4Ys0DSe8tOv9cY8wVr7VCVdeOkCNUxeQhA56vTU8ayt5WCmFpUUFjYpl2NqwMJM0Y68QelG4CmCXrOJSwMAAAAAAAAAAAAAACgOVxBVNlUzLCwkFvm8wRUSQoX1JWz/gFHtcxZLu8IUAI6jTMcMebzHQAAAAAAAAAA6GypZheA+rLW7pHk+TRdGhQUVuZjKgWLjZoh6UyffpXhYf3hKgwcUy2QDEAzLTy7PvMMrow3bvaJ9VkfAIB9gmIoCQsDAAAAAAAAAAAAAABojpwjKCprYoaFGde1mCvXJSxMCvc45CM+VlEf26jhYkC7cv1uZGI+3wEAAAAAAAAAgM5GWFhn2u1z7j/DDLTW7pb0k4rTp/h0bdWwsK9KOiLi7RV1WBfofCv/oT7z9EyKN+6gNzV3/QYJCq4BANSX5xexu0+BsDAAAAAAAAAAAAAAAICmcAVFZVMJh4URUCUp3OMQ9bGK3J/gdyRnaAAAIABJREFUNnQJ18963Oc7AAAAAAAAAADQ2XqaXQASsV3SlLLjjdbadRHG3yzpLWXHh/r02VFxPDvC/DLGTNbEsLDtUebwY63dJGlTxFpqXRboDjNXS8v+Tnr467XNY2K+9PTOrG1dSTIpac4ptc+TIEtaGAA0jBfwnJsnLAwAAAAAAAAAAAAAAKAp8nUOz0mF3LeY83Kx5u80YYK6oj5WUcO/cpbvBbpD3hWOaLINrgQAAAAAAAAAALSDVLMLQCIeqjjeEHH8+opjv4SeNRXHSyKuUdl/q7V2W8Q5ADSSSUnHfFVa9ana5nnmlpgD6/CSNfd0qS9StiEAoIMF5TPmCqQ3AgAAAAAAAAAAAAAANEPOGZ4TLywsrXRN63abMI+DK+DIPWey4WJAu3L9rGdiPt8BAAAAAAAAAIDORlhYZ7qv4jjqu6WV/ft8+txfcbws4hpLK47/EnE8gGYwRlrwsiatXYeXrBN+UPscCSOaBgAax/PcbblC4+oAAAAAAAAAAAAAAADAGFd4TjYVMyzM9NS0brfJh3gcoj5WYeYcNz/BbegSriC9uM93AAAAAAAAAACgsxEW1pnurjieFnF8Zf9nfPrcW3H8LGPMQIQ1TqwyH4BWFXLTTP3XrfEl65ALpd4Z9aklQbZKWtj2PcSJAUC9eAFPqbli4+oAAAAAAAAAAAAAAADAGFdQVNbEDQtL17RutwnzOER9rKL2jxouBrSrvOv5jrAwAAAAAAAAAADgg7CwznSVpPLog6XGmL4I44+oOH6ysoO1doPGh5L1SHpehDVOqTi+KsJYAM2UyjRr4dqGDx5SnzKaLFdodgUA0HzWWg3naw9P9AISGnm+BQAAAAAAAAAAAAAAaI6cIygqbnhOOuRFUgmoKsl5uRB9IoaFRe1PcBu6QNEWVbD+G9XihiMCAAAAAAAAAIDORlhYB7LWrpf0x7JTGUmnRpjijIrjGxz9/qfi+C1hJjfGrJR0XNmp3ZKuCVcagKYLuWnGafGrY65b40vWwnNrG98gAbk1kqSC15g6AKBVfe4aT4s+5GnwXZ5O/kxR67bEDw3zAoaOEBYGAAAAAAAAAAAAAADQFDnrH1aViRmek1Y65LoEVEnhHoeoj1Xk/gS3oQvkHc91UvxwRAAAAAAAAAAA0NkIC+tcl1Ucvy/MIGPM8yUdW3bKk3Slo/sPJBXLjs81xiwPscyHKo7/21o7HKY+AC0gVWNY2IKXxRtXa1hY/wG1jW+QapE3hNcA6GbfucnTB35stX57KTzxhjXSyZ/xlC/ECwwLCgvL8XwLAAAAAAAAAAAAAADQFHlHUFQ2lY01X9qEDAsjoEpSuMch6mMVtX9QiBLQKYJ+L7IxwxEBAAAAAAAAAEBnIyysc10m6f6y4xcaYwIDw4wxczQxZOy/rbWP+PW31q6R9N2yU1lJ3zHG9AWs8QpJ55edykm6JKguAC3GZGob3zurPnV0KFsl72Yk35g6AKAVXX7LxCfJJ7ZJv3kw3nye527LFd1tAAAAAAAAAAAAAAAASIa1VjnrCAuLGZ6TNuEukpojoEpSyLAwx/eoljkr+9tqGyqBNhf0e5Ex8cIRAQAAAAAAAABAZyMsrENZa4uSLpRUHoHwOWPMvxljplf2N8acJulGSQeXnd4m6cNVlrp4X79RJ0i6zhizsmL+XmPMuyT9qGL856y1j1VZA0AnsTHTV7xCfetoUyM8DAC62LX3+5//6E8DUr8CeAH7CXM83wIAAAAAAAAAAAAAADRc3uZk5b+pozflvJ5xoLRJh+oXNdCqU+VDBIHlvWjBavmIQWyePBXFBh50tqDQvWwqXjgiAAAAAAAAAADobOEuk4S2ZK291hhzoaQvlZ1+t6S3G2NulvSUpH5Jz5a0pGJ4TtLrrLWPVlnjSWPMuZKuljR6+ZoTJf3FGHObpLWSpko6WtLsiuH/K+ljke8YgOZK13ilqt6ZzVm3TVS7Dh5hYQAw0cad8cYRFgYAAAAAAAAAAAAAANBagsJzMiZeeE7ahNsyH7R2NwkTmhb1sYrz2Oa8EfWkM5HHAe0iKESPsDAAAAAAAAAAAOCHsLAOZ639sjGmKOmzkgb2nc5Ien7AsI2SzrXW3hRyjd8ZY86R9B2NBYIZSav33fxcLulvrbXFMGsAaCHZ6fHHZgalmcc2ft0FL48/tsFslbQwwsIAYKKiF29cYFgY/0oFAAAAAAAAAAAAAABouKCgqrjhOemQW+bzIUKyukGYYK8wgWK19C/Vkdu/+R3oREG/FxnTHRdZBgAAAAAAAAAA0aSaXQCSZ639mqRnSfq+pF0BXZ+W9HFJh4QNCitb40pJR0j6uqRtAV1vlvRKa+151trdUdYA0ELihm8961OSacJLz/yXNH7NhIzkm10BALSeRMLCCGcEAAAAAAAAAAAAAABouLzNOdtih4WZdKh+YUKyusFIiGCvoO+TnziPbZyAMaCduH4vekxP6OctAAAAAAAAAADQXcJdJgltz1r7iKQ3GmP6JZ0oaaGkuZJykjZLustae3eNa2yS9HZjzIX71liyb43dkp6SdIe19tFa1gDQIha+XHrq59HHHfL3ta1rUpKNkQgzaUlt6zaQDQiukaQRwmsAYIKg0K/AcQEvKXHnBAAAAAAAAAAAAIB6McZ8XNLFNUzxXWvt+fWpBgAaIyggKmuyseZMm3Bb5nPeiKy1MsbEWqcTFG1BnopV+0UN8sp70cLF4qwBtBvXz3jGxAtGBAAAAAAAAAAAnY+wsC5jrd0r6bqE18hJ+m2SawBoMi/fnHXjBIVJ0pzn17eOBFXLpinEfAgAoJMVYz43BgWCxZ0TAAAAAAAAAAAAAAAA8QWGhaXiBeikTTpUP0+eiiqoR5lY63SCsAFdORstyCtqf0nKxxgDtBPX71vc5zoAAAAAAAAAAND5Us0uAADQhmJc4a1p+udLPZOaXUVotkpaWKH6BfsAoOsEhX7FHRd3TgAAAAAAAAAAAAAAAMTnCpVKKaV0zOtkRxkXNiyrU4UN9Yr6OMV5XHO2jfaqAjG4AvGyhrAwAAAAAAAAAADgL947pgCALhcja/LA19e/jDBWf7k56yakaK0k0+wyAKClJBEWVvTizQkAAAAAAAAAAAAACXqdpJsj9B9KqhAASIorVCqb6pUx8fbOpU06/Po2p4FYq3SGsKFeYUPFos5b6xignbh+xjMm2+BKAAAAAAAAAABAuyAsDAAQ3aKzpdveFdD+SumJKyTtS2GZdKD0rP9b+7pzT5Oevi7amFR7XV2rWt5NodiQMgCgrcQNC7OEhQEAAAAAAAAAAABoL09ba9c1uwgASJIrhCpr4u8FjBQW1uUBVWFDwKI+TlHDxSQpH2MM0E5yNud7Pttme58BAAAAAAAAAEDjEBYGAIhuYKG7bcYx0vN/JG2/R9pwrdQ/V5p3htQ7o/Z1F78meliYSdW+bgMFBddIhNcAgB8v5nNj0FNu3AAyAAAAAAAAAAAAAAAAxOcKoaolPCdtwm+Z7/qwMM8/vKhS3ubkWU+pkHs04zyu3f69QOdzBeIRFgYAAAAAAAAAAFwICwMAxLPktdJj/zXx/LFfL/132pGlWz3NXB19TMiNK+2iSHgNAEwQ97kxKKCRcEYAAAAAAAAAAAAAAIDGy7nCc0z88Bxb7SqeZVzhPd3C9fj7Kdh86O9LlHn3jyEsDB3OGY5Yw/MdAAAAAAAAAADobOEu5QMAQKUjL5H6Dhh/btErpenPTm7NYozgr8FD6l9HgqrtSSoUG1MHgOZYt8Xqoz/19KqvF/WF6zwN50kIDMNLINjL46EHAAAAAAAAAAAAAABoOGd4Tip+eE5RhZrX7xZR7n+UALB8jAu/xgkYA9pJzvF7kU1lG1wJAAAAAAAAAABoFz3NLgAA0KYGV0in3ySt/Y6062FpzsnSwX8tmQRzKNMR3/yefLA0ZUUytSSkWjZNMYFAHACtYe1mq5M+42n99tLxFbdbXXOf1c/emVKmxzS3uBZXjBnsFRTQ6NnSVWWN4bEHAAAAAAAAAAAAAABoFFdAVMbUEBZmw1+ls9sDqvIR7n/OG5HSIfvGeFy7PbgNnc/1e5Gt4fkOAAAAAAAAAAB0NsLCAADxTV4qPesTjVtv6pFSdoaU2zqx7awHpd+9RBp6pHTcP186+edSm4W8BAXXSFKBsDCgY33jers/KGzUr+6TbnpEOvmQ5tTULqo9dzrHhZi3zV5GAAAAAAAAAAAAAAAA2porICqbqiUsrFDz+t0iyv3P21yofp71QvcdV0uMMUA7cf2+ZWp4vgMAAAAAAAAAAJ2NsDAAQPtIpaUV75Tu/b/jzx92kTS4ohQYtv1OyStIM54jpTrvZa4YISzMWqub10q/fsDqoFnSWUcaTR0g9QZoVZ+52j+66uO/8PTbQ0JegrNDbd9j9ct7YiaCBagWMlb0pFSq7ssCAAAAAAAAAAAAQFwXGGM+KulQSTMl5SU9I+kxSX+Q9Ctr7Q1NrA8AapazjrAwU0tYWDF036u3/li37Pxdac1Ur5b3H67jp54aGFbm2aJu3vlbPbj7Hu31dmtKeqoOn3y0jpp8gkybXaluzZ77QvcNGyy2Ob8hVi237bpB60cekySlTEpL+pbr+KmnalrPjFjzwd+GkSd0687f6amRx5QyKS3qXarnTn2BZmYOaHZpHafyueKx4TW+/bIm2+DKAAAAAAAAAABAu+i8FBUAQGc78hIpO0N67HJJRlr8Kmnl+0ptqXQpJKyNVYvCKUQIC/vE/1pd8ouxGQ+fb3X1e1KaP629Nh8B3e6WR5tdQXNt2G71ws95enBj49d+Zrc0d2rj1wUAAAAAAAAAAAAAh9dWHPdKmixpiaSTJH3YGPNnSf9orb0uiQKMMXMkzY447OAkagHQmfKOAKqgsK5qiiqE7vvkyDo9ObJu//Htu27UXUO36O0LPqpMKjOhv7VW39nwBf151/isxj/u/LVOn3Guzp79pth1N9p9u2/XH3f+OnT/MGFhz+Q36tPr3hurnmfym/RMftP+47uHbtVNO67Texd9UjMyUV+K4OfRvQ/pS09+XMPenv3n7h66VTdsv1rvXfxJHZBd0LziOozrucJPLc93AAAAAAAAAACgs6WaXQAAAJEYI618j/TiW6QX3ywd+v7SuQ5hq6SFFUOGhT2yaXxQmCTdt176wnXV4sgAoLV86kqbWFBYtWfETbuSWRcAAAAAAAAAAAAAErRa0jXGmE8Zk8immndIujfi7WcJ1AGgQ+WsIyzM1BAWZouxx0rSA3vu0kN77vZte2pknTP859qtP9VQcWdNazfSL7f8V6T+ru9Vueu3/0p5+//Zu/c4ucrC/uPfc2ZnZi9JNhdCQhIQQQXBe1ER8ALipRb9obX2Z2uprVVLEduiUH+lXKzlVi8UikKtoiCKWBVQqqhAQBFUkItUsIpCLiSQJdnsJrs7c2bmPL8/NruZ2T3PmefMfXY+79drX2TPfc7OORuyz35OUOshzbO98JR+PPaDhm2v131vx9crQmEzxkujun30v9twRAvXE/kNTqEwSUrXcb8DAAAAAAAAAAALG7EwAAC6iGss7MYHoxM4n/g+sTCg2yycHGJtPnN78+5b1QKNhfrGiQIAAAAAAAAAAABAozwh6T8lvVfSMZIOk3SopKMlnSrpe3OW9yT9o6TzW3iMANAQQRgdlkr7mZq3efDAoTWvO+O3U7+KnP7o1MPWdYxC/c6yXqcphAU9nvt1onWCsHos7NFJ+/mp1aOTv2z4NnvVbycfsc6Le28jud8mOJ+D/lATjwQAAAAAAAAAAHSzvnYfAAAA2KtauKboGAv75n1EwQCgmmr33KDYmuMAAAAAAAAAAAAAAIufSXqDpB8YY/0J512SLvM87whJX5H07LJ5H/E87yfGmBubfJwA0DChogfJ+XU8I/sFi16uPq9PRVP7YJCiKUROz4VTsevlw1zN+2ylvIl/HVECUz0Wlq9yfmpR7ZzDXdy55Dw3VpLzeejQC5t4JAAAAAAAAAAAoJsRCwMAoINUS3yVHGNhSwfqPhQA6HmFUruPAAAAAAAAAAAAAEAvM8Z8J8Gy93qed6SkuyU9p2zWhZ7n3WSMadRPQD8j6b8SrnOwJIJlAJyElttVykvVvM2s3693rjpZ1zx5mcyeUXr9/qBSXkoTpV01b1eSClWCWUFYPajVCWo5Tpd1XIJiifdrgoZvsxeVTFEl2QN6hS5573YL12vh91f8kfbNrGny0QAAAAAAAAAAgG5FLAwAgC5SdIyFeV5zjwMAFoJqgUZiYQAAAAAAAAAAAAC6iTFmh+d575R0r6SZ0SOHSjpW0i0N2sc2SduSrOMxkAVAAkbRg+R8z69ru68Yfq0O6D9YD088oMWpYR0+9BJl/KwenrhfG3K/UWlPpOyB3Xdre2H+bc5YRppUC2Y1I5bVDPkwZ52X9jIqRAS6XF5bEEaHvY4aPl5rswdqR2FEKa9PB/Y/W77na0Pu0dlzujXYpIcn7ovYpv1Y4W6hvHe7he1875NepRcuOlID/qAOGXyBDh58bouPDAAAAAAAAAAAdBNiYQAAdBBTpVxTakAszBjDIEwAUPV7bmB/cCYAAAAAAAAAAAAAdCRjzH2e531f0hvKJr9RDYqFAUCzlUz0IDlP9cXCJGlt9kCtzR5YMe3Fi1+hFy9+xeznTwabI2NhtsfS2WJYMwpV5neKuDDUsr59tK2wZd50l9dm2+7zho7QixYfOW/6Cxa9bPbPPx+/0xILI2LVCNViYEGYZ7xpA9nO9/7Zg/WH+/5Fi48GAAAAAAAAAAB0q/p/agoAABqmSrdGxZLbduKGZoTVdgIAkCQVHO+5AAAAAAAAAAAAANBhbp7z+QvachQAUAOj6FhYyku1ZP+eZfSdbdhd1eBSlfmdIi7ANZRaHL2Ow2uzbTfjZ6uum/H7I6fnTa7quqiuWnQtVKiSeNpioxTquBYAAAAAAAAAAABmEAsDAKCDmCohr5Jj6CvuQW6l6LFUANBzqt1SA2JhAAAAAAAAAAAAALrT43M+X9mOgwCAWoQmeoCb16HD3qsFl6rN7xRBGB3gSqlPA6khyzrxr61kigoVPQAn42WqHlPWElEqmoJCw8CeeuUd3pvd8v7tBra4XsYjFgYAAAAAAAAAANx15k9NAQBAJNfQV0wrTKFjcAxAZ4iL/6E+1QKNBddCIwAAAAAAAAAAAAB0lqk5nw+05SgAoAYlS1zKb9Gwd886+i56HIktAOQ6v1PkbSEjP2sNexVMELvNuNBUxhICq1gmJqIUVNk3qis4vDc5z40ThNHnMuNXD+cBAAAAAAAAAADMIBYGAEAHqR6uqX8frsExAJ2h2n0B08IaSoituOcCAAAAAAAAAAAAQBvsM+fzp9tyFABQA2OiB7ilvFRL9u9ZnuxnbLGwmCCWy/xOEYS5yOlZv98a9qr62mNiVOmYENiMjN9vnZe3HC/cubw3C13y/u0GtuvBJZwHAAAAAAAAAAAwg1gYAAAdpFrqxjX0ZRmvlGgbANBuW3a6B8C2TzR+/0Gx8dsEAAAAAAAAAAAAgBZ4+ZzPt7TlKACgBqGiB7h5XnuHvdseSleICWJJ8cGsTmKLb2W8rDKWsFe111YIA+s8l0BSNmYZIlb1y5vqwbVuef92A1uczSWcBwAAAAAAAAAAMINYGAAAXaRILAzoOe65rIXn4QTD1TfuSL79aue2UEq+TQAAAAAAAAAAAABoJ8/z+iW9bc7k29twKABQk9BED3DzWzTs3ZNt8F30SBNbAMh1fqcITHTYK+v3W8NeVV97TGjKFiCrXKbfOs8ldIV4QUzMLckycGO7XlzCeQAAAAAAAAAAADOIhQEA0EFsTx+cUXQM18S0woiFAV2m2n1hIQsTvPZa7m3Vzi2xMAAAAAAAAAAAAABd6B8krS37vCTpv9t0LACQWKjoARutioXZGFssLCaIJUmFKvM7RRBGx7cyflZpLxO9TpXXFhcTcwkkxS3TLRG2Tuby3qz2NYY72/l2CecBAAAAAAAAAADMIBYGAEAHqdbFcY6FxdTCksR3AKCdktyvagl7Vdt8QCwMAAAAAAAAAAAAQJt4nvdnnuetSrjOeyWdM2fyF40xGxp3ZADQXKGJfmKc76VadARxj+qcLwiDuuZ3irwtFuZlrdGuasGuuNCULUDmugyxsPrZvublOM+NYzuXLuE8AAAAAAAAAACAGcTCAADoIKZKuaaWGM5cpeixVAA6VC/3/ZLEwlxjikk04p4LAAAAAAAAAAAAADV6j6THPM+7yvO8P/A8b8i2oOd5R3ie901Jn1Vl5eYJSf/U5OMEgIYKZYuFtWbYuy0VZiyjeAITH1yKC2Z1EttxZvx+ZbzomFGhymuzxZHSXsbp6+l7vnXf+SrnHdW5hMCqfY3hLm+7xizvcQAAAAAAAAAAgCh97T4AAADgruhYzol7tmGpl8tDQBeqFhFcyBLFwmoIIbYi0AgAAAAAAAAAAAAAdRiQdNKej9DzvN9IelzSmKSSpBWSXihpVcS6OyS90RjzZGsOFQAaIzTRAzb8Fj0j27OMvouKhRljqgaXXIJMnSAIo+NbWT+rtB8dMwrCIH6bJnp+kjhSxs8qKM0/h91yXjuZS8iO89w4tnOZsVxfAAAAAAAAAAAAUYiFAQDQQaqFa4qO4Rrf9yTLkwxLNQR1ALRPkmDWQhMmuF81IxYWFJNvEwAAAAAAAAAAAACaxJd0yJ6Pam6V9G5jzObmHhIANF6o6EEgvpdq0RFYHtUZMc6kpKL1eGe4BJk6Qd4WMvL6rXGvaq/NFkdK+xnn47LtO2+Jm8GdSwiMWFhjlExRoaIHACeJ5wEAAAAAAAAAABALAwCgg1RrAhUcY2GW4UqSiIUB3aaXr9kkoTTXmGK5Rt1zAQAAAAAAAAAAAKAJLpH0hKSjJT3DYfkJSd+X9GljzK3NPDAAaCZjLLEw+S3Zvxc3+G6OhRRbsoW/sn5WGT86ZlQIg5q2mSSOlPX7E20b7lzOIee5MeLuA7brCwAAAAAAAAAAIAqxMAAAukjRMRoUN2ApSXwHANopUSysCVG1oNj4bQIAAAAAAAAAAACAC2PM9ZKulyTP85ZKOlzS/pJWSRqU5EvaKWlU0iOSfmGM4ZFIALpeSdG3Mt9rTSzM9qhOE/FYusDEx7IkqeCwTCcIwlzk9Izfr4yXiV6nSkiqYAkkZfzo7UVJW0JK3RJh62QLKXbX6eKulSTxPAAAAAAAAAAAAGJhAAB0EFMljFNwHNIZFwsrNSGoAwDNkCQWVkvYq9o9d2wq+TYBAAAAAAAAAAAAoNGMMTsl/bjdxwEArRCa6AFuvlIt2b9niYUpKhbmEFIqmoJCU5Lvteb4a5W3xIwyXlYZS7CrYAKFJrSG3GwxtXSCOFLWsmxgouNmcOdyDl2CeKgu7l5hu74AAAAAAAAAAACitOoRSwAAwEG1Lk7RMRbmEwsDsACE1WpeZfLFBGWxPaqtsW08+TYBAAAAAAAAAAAAAABQOyNLLMwSpGo0WyzM1BgLk7ojuBSE0eGojJ9VJibuVYh5bbbzkySOlPH7E20b7oKw+vuS89wYgSXGJyn2+gIAAAAAAAAAAJiLWBgAAB2kWhen6Bj6IhYGYCEIE9yv8sXG7/+pXY3fJgAAAAAAAAAAAAAAAOxKJvqJml4HDnsvxASAKpbrguCSLQqV9ftj415xMSnb+UkSR8pa9p3vgnPa6eICVjNc3+OIFxdmSxLPAwAAAAAAAAAA6Gv3AQAAAHeF6HFQ86RixkWVqgTJRnYZXXeP0YObpRcfIL3zpZ6WDcXUxwCgScIq96tytcTCqgUaRyeSbxMAAAAAAAAAAAAAAAC1M4p+upzvtSYW5il6rJzR/IEmcaGsiuW6ILiUN7nI6RmvPzbuFffabOcnSRzJtu/AcrxwF4TVz6Hrexzx4q6TPi/dwiMBAAAAAAAAAADdjlgYAAAdpFq4phg9DiqRMGYbT4wavfZToX791N5pl99udOtpvvZdQjAMQGsliYUFTYiFuQYaAQAAAAAAAAAAAAAA0BihiR7gllKqRUeQIBbmGAELwqCuI2oFWxQq62eV9jOJ15Ps5ycuPjZvWb8/8X7hxuUcdkPorhvYznXay7QshAgAAAAAAAAAABYGfrIAAEAHqdbFcQ3X+DHf4UsxO/n07aYiFCZJv9wife7OBMUeAGiQJLGwfC2xsCrzA2JhAAAAAAAAAAAAAAAALWOMUajoWJjXoqCOZ3umZsRAE9dgVacHl0ITqmCig2YZvz827lWIeW2285PxE8TCLPsmFlY/l/cl57kxbNdJkmsBAAAAAAAAAABAIhYGAEBXKTqGa1K2AUuSStFjqSRJ3/uf6HTO1+4lFgag9ZodC6smaMI2AQAAAAAAAAAAAAAAEM1YQmGS5Lds2Hv04DsTUQtzjYB1enAp7nVkvGxs0CjutQWWAFnayzgfm23feZNz3gaiBWH016dimQ4P3XULazgvJsQHAAAAAAAAAAAQhVgYAAAdxFQJ4xRjQl/l/Jjv8HGxsPs3RU//xWa3/QJAI4WO9zxJyheSb7/aPTdwDDQCAAAAAAAAAAAAAACgfmFcLMxLtfBIokTEwhwjYJ0eXIp7HVk/q5TXJ1/R598WBIvbblx8bP7++xNtG+4Ch+Aa57kxGnEtAAAAAAAAAAAASFJfuw8AAIBWGtlldOHNRnf+xujQ1Z7OeKOnw9dEPwmwHap0a1RwDNf4MS8pLhYGAJ0krHZTLJMvJt9+tc0HNWwTAAAAAAAAAAAAAAAAtQlNTCysRc/I9hQ9+C5qnIlrBKzTg0tBaI9GZbzpWFfGzyoXTkasa39ttvOT8dwDSbZlOz3A1umMMU7vy7gYHNzlG3AtAAAAAAAAAAAASMTCAAA9ZCJv9PqLQz24efrzex43+vYvjH78D76eu1/nBMPiFNsYCyuFRqm4DQNGdf0JAAAgAElEQVRAgzU9FlZl+4XS9MA4z+PeBwAAAAAAAAAAAAAA0GyhYmJhXqtiYe5cI2CdHgvLG3ssLOtPx4wyXlY5zY+FFWKiXYUwOjSV9jPOx5bxo2NK+ZjAGaorqRh7vc0odPh7t1vYzqPt/Q0AAAAAAAAAAGDTmp+aAgDQAW55RLOhsBk7J6XP3ZmgRtNkLuGaeiWJ75Sb4gFxQNuEtV64XS7Jyw5qiIW5aMR9FwAAAAAAAAAAAAAAANWFxj5Qw2/ZsPfoXJjR/IEsQUwoq1xcUKsTBJaolyRl/P49/40OfMWtazs/Gc89kJTds//5++3sc9rpnEN3Hf7e7Ra285j23MN5AAAAAAAAAAAAErEwAEAPuey26KegXfyDzonwVIuFFas/yK3qdmqOhRVqWw9A/UqO1/5C0+xYWLV7bq3bBQAAAAAAAAAAAAAAQHKh7INkfK81w949SyxMUbEw1+BSh4etgjBnnTcTM7IFvuJiUgXL68747rGwWvaL6hbKe7db2M5jkmsBAAAAAAAAAABAIhYGAOghP9/Y7iOorlq3xjkWFjOv1lhYjlgY0DalzmkatlSYIJKWryUW5rBMYH9gLQAAAAAAAAAAAAAAABooNDGxMKVacxCWVljUQ+lcg1WdHrbKm+hYWNrLzEbabFGjuJiU7XXbAmCRy/r9kdOLpqDQMLCnVkneu8bliYyI1YhrAQAAAAAAAAAAQCIWBgDoIYsWwM/UCw0Y25IkvlNuilgY0DbFHh3XliRumC82Z1BaUEOEDAAAAAAAAAAAAAAAAMmFiomFea0Z9u7ZamERj6UrhIHTNgPH5drFFvzKloW60paokS2CZIyxbtcWHotcNiamlI8JlSFePowOxEUpmM5+/3aDRlwLAAAAAAAAAAAAErEwAEAPSbfowYL1qPYANtdgUNx2SjX2dKYY7wG0TanGyF+3SxQLqyFo6PLQyzyxMAAAAAAAAAAAAAAAgJYIjX2AnN+iYe+2WJiJiIXZQlm1LtcutnBUeagr42cil7FFkEoqWuNvcQGwucqDZfP23eHntZMFCQJgnOf62c5hxrO/vwEAAAAAAAAAAKIQCwMA9Iy+LviuV61bExopdKjnxC0R1hgdmqohxAOgMWqN/HW7RLGwGqJeLpsPiIUBAAAAAAAAAAAAAAC0hLHEpSTJ9zpvAKAtlFXrcu1iCxmVh7psgS/bunGvOW0Jj0XJ+PawWGCJnKG6QoL3ZKe/f7uB7RzGvb8BAAAAAAAAAACidN5PTQEAaJK+VLuPoDGKNca+ZsTFd7J99nlT7g+SA9BgpTqv+25lmh0Lc9h+YH9gLQAAAAAAAAAAAAAAABqoZOyDZLwWDXv35EVONxGPpXONKBVMZw++s4eM9sbC0paokS06FcS8Zlt4LOmyeSJWNcsnCK11+vu3G9jOYcZzD+cBAAAAAAAAAABIUkwSBACAhaWvCxKZLuGaYknKVPkOHreduOiQFz3OSZI0VYjfJ4DmKfZosCoubjhXUEMsrJ3bBQAAAAAAAAAAAAAAQCUj++C2lNeqp4VGD6KbLO3WptzvtLRvuRb3LZUkBcYtuDRW3KFNud9pwB/SivS+8uIG6rVYaErakPtN5LzykJEt2jVWHNWm3O/mTd9Z3G7dZ8YSHouSLQuWzbU5/5iMQu2bWRO7XLmJ0i7tKIzMfr48vVJDqcXOx9OJcuGUSqaofn8w8jrJhVMaCbZWTNuQe9R5+5tyv5sNymX8rFamV8tv2fW4MNjibEmuBQAAAAAAAAAAAIlYGACghyyUWFjBIRoUt524+E7cPJf9AmiOUoJo1kKSJBaWryHq5XLPJRYGAAAAAAAAAAAAAADQGqGxx8J8tWYAoGeJhT0y+YAe2fCAJOmZ/Yfo+OX/R5vzjztt81eTD+qCDadJklak99V79vuwDhx4TkOOtx537vy+rh+5SlPhROT8TFmAyxY1Kj8vrmzhsSjpsmDZXFc/eYkkKaU+vXTJq/Snq/9GKS/61yOmShP6/JZP6JHJB2S0d9CQJ0+HDr5Qf7XmdA2khpyPqxOEJtQPdlyv7+34hnLhpJb17aM/W32qDh16oSSpEBb0pScv1X277lKo2geAXrn1kxWfL0kt05/td6oOH3pJXcffKzbkHtXm/GOR85JcCwAAAAAAAAAAABKxMABAD0nHPMgsDI18v/1P63Pp4hTt46GchMbI9vTDuHAOwRygfUp1XvfdqumxMIdlAkKJAAAAAAAAAAAAAAAALVEy9oEanteip4U6DCN8LPe/+s8t/1rT5rcXtunSzefovIM+19Y41f9OPqSvPPWZ2GWyZYGwRkaNbOGxKJ7nKeNlFZi8dZmSivrJ+G1a3Dest67888hlvrj13/Tw5P3zphsZPTL5gK568hL99dp/dD6udgtNSV968jL9dHz97LTR4tO64onzdd7Bn9NQarG+PvJ53bvrRw3f93hpVJ974l/1T8+8VCvS+zZ8+wvJVGlSl2w62zo/ybUAAAAAAAAAdAJjjMIwlIn7hXQAaAPP8+T7vjyv/c2QZiMWBgDoGX0xsbBCScq2aCxRvVxiYXH/ixUXHYqNhZXskTEAzVXs0WBVmCCSVlMszOHfo/KF5NsFAAAAAAAAAAAAAABAckb2wSK+WjPAz2vBGLlcOKVHJh/QSxYf3fR92dy/666qy2S8/r1/9jMN23efl060fMbvV1Cyx8Jm3LfrrshYWC6c0sMT80Nh5X65+z7lwin1+wOJjq0dSqaoq7ZeEhkCC0xePx1br2OXvVkP7vpp044hb3K6ZccN+uNV72vaPhaCX00+oFw4aZ1PLAwAAAAAAADdoFAoaGxsTGNjYyoUCoTCAHQsz/OUTqc1PDys4eFhpdPJfibVLbokiwIAQP36Yr7rBR0S4nH5/6Oxqfr2EcbsI273QQ0hHgCNUerRfzuJu1/NVUsszEWnfH8AAAAAAAAAAAAAAABY6MK4WJgX87TQBto3s6Yl+9le2NaS/dSz/1WZtZF/rse+6TXyvWS/wrA6s85puR2FbZG/pDZe3KmS4gcXlVTUeHFnouNqh6Ip6HNbPhEZCpuxOf/49OspjTb1WO4eu1W7S+NN3Ue3q3ad7ZtuzHUFAAAAAAAANEM+n9fGjRv16KOPamRkREEQEAoD0NGMMQqCQCMjI3r00Ue1ceNG5fPVH0jTbYiFAQB6Rl/MWKFCh8RgXP4X6XcjDtuJ2VBcfCduHrEwoH1K9nGQC1qiWFgh+fZdNv/rp/jHKwAAAAAAAAAAAAAAgFYIjX0gn9+iYe8vGHqZ+v2Bpu8nCNv7iwnV9p/xsnrx4qNmP3/u0Iu1JLW07v0eOXxs09YxMiqa+YOISsZt8KPrcu1SCAN99omL9ODun8Qu92Sw2enBtfUKTF4/HP1u83fUxeKus/2zB2lt9hktPBoAAAAAAADAXaFQ0MaNGzUxMdHuQwGAmk1MTGjjxo0qFGr4JfQORiwMANAz0l0QC2uUuHEecfGduAEiwQI7R0A3Kfbo9ZckFlbLPcplUNxpXzP6zkMEwwAAAAAAAAAAAAAAAJotNPYn6vlea4a975NZpVPXnasD+58jr4ah9qcfcJGePfA8pdQXu1xg2hsLK8Ts/4D+Z+nUdedq38x+s9P6/QH9/QHn6VkDh1d9bVGG+5brTSv+WG9Y/vbE6x41fLzevu97tCK9b9Vlo85rKSZCV8ty7RCEeV3xxPn6n4l7qy77VLBZbo9RjLa8b6Xzsrfv/I4KYVDzvha6wNjPzanrzpXneS08GgAAAAAAAMBNqVTSpk2bVCx29gMWAMBFsVjUpk2bVCp17s+Bkkr+kzoAALpUX8y4nU6JhbmEa/J1/r9VyTKeylTZecD/0wFtU+rRVlWSWFgt90bXJ2ie8O+hilf48n0GZwEAAAAAAAAAAAAAADRLqJhYmGKeFtpgzxw4RGc8418VhHkVTUEfe+xUjZVGq653xOJX6pkDh+jvD/gXFcJABRPoi1v/LTLwFITtjYXZ9v+Wfd6lN66IDnqtyqzVaQecN/vakhjwh+oKIx237M06btmbNVWa0EjhSV244UORywVhXkOpxRXTQrkNLHJdrtXyYU6XP3Gefj35kNPyU+GkxorV369RXr7kWJ20+oPKhZMyZcGx9aM36b+3f3Xe8rtLY/rp+Hods/QNNe1vobNdZy9Y9DIt6lvS4qMBAAAAAAAA3GzdulX5fOW/bfm+ryVLlmjJkiVKp9Py/dY84AMAXIVhqEKhoPHxcY2PjysM9/7cMZ/Pa+vWrVq3bl0bj7BxiIUBAHpGXCysU0JYLuEal2ON244tvlNt30GHBNWAhcrz7NehLfK30IUJXndQnI4eVhtUaJ7cIG3bLB16hKS08/YvvsXoQ68nFgYAAAAAAAAAAAAAANAsobEPUvO91v/iUcbPKqOssv6A5BALy/r9s39O+xmlldGAPxS5bGDaHAuz7H9RqnrAaOa1tcNAakhLzDLr/KjXVYp5X9WyXCtNlSb1mSc+pt9OPZJova3Bppr2l/Gz8jxPA6nK9+2xy07QLTtuUN7k5q1zy44bddTw69pyjXa6guU6y3jZFh8JAAAAAAAA4KZUKmnXrl0V0zKZjJ7xjGeor488DYDOlslkNDQ0pJUrV2rDhg0Kgr0Pv9m1a5dKpZJSqdY9oKhZ+IkMAKBnpGK+63VKiMehFaagVH2p2FiY5bVW22qnBNWAhSouaFjsvHFoLWGLG9rE3adMkFd45jtk/ug5MqccJ/PmtTIjTzhv+/SvJzwYAAAAAAAAAAAAAAAAJBIqenCb3+Yh7xnfLYyVjggA2dYthEHk9FYJLPvP+J0fMcp49q9HEEbFwtwGP7ou1yqTpd36983nJg6FSdKTweaa9mmLWA2mFumopcdHzttW2KKHdt9T0/4Wuqj3o9Qd1xkAAAAAAAB608TERMXnnudp//33JxQGoKv09fVp//33l+d5FdPn3uO6FbEwAEDPSPmedV6xQ2JhLvKF+ta3tcbiAmMSsTCg2WKDhj3YqTLGKHzsV4nWycfFwq6+UPrhjXsnTO6Suftm5233pxMdCgAAAAAAAAAAAAAAABKyxsK89j7hOyoCFiUqAGSLAuXDXF3HVK+CsUSMHF9rO8WFlqJjYW5PanRdrhV2l8Z1yaaz9Xju19ZlFqWWaGV6v8h5T+Y31bTfuHN73LI3W8N9t4zeUNP+Frqgi68zAAAAAAAA9KZdu3ZVfD44OKhMxu2BGgDQSTKZjAYHByum7d69u01H01jEwgAAPSMuxFNs0BiPXMFoKqi96lMt2CVJQZ3HGlrCaGG1WFjnjIMBFqSYnqFKXRQ0bBTzmY/I/PimROvExcL0navmTyu5VxBzdYYaAQAAAAAAAAAAAAAAEC80llhYm4e8xwWUKpbz5v/ClC0KZIsItUoQBpHTXV9rO6XUZ31PRJ3XkhxjYY7LNduu4k5dsulsbcr/zrrMktRS/d3+/6JDBp8fOX9rUFssLOv1W+etSK/SSxYfHTnvt1OP6HdTyR4M2Qui4nVSd1xnAAAAAAAA6E0TExMVny9evLhNRwIA9Vu0aFHF58TCAADoMnGxsEKdYzwm80Z/8p+hlv/d9Mcf/0eoiXzyaJjLGrExnJntxGzIFgWrFioL3Js6AGrQiqBhtzCjI9J1l8h4MQW1CLH3qZEn5u9HybZvXIqOAAAAAAAAAAAAAAAAqEloogfJ+F57h7xnfXtAqVxUAMgWBbJFhFqhZIoqKXqgTToieNZpPM9LdF5Lxm3wo+tyzTRW3KGLN/2Tnsg/bl1muG+5/v6A87Qme4BWZdZFLvNksLmm/af9+K//8ctPtM67ZccNNe1zIbNFAbvhOgMAAAAAAEDvMcaoVKr8d/qBgYE2HQ0A1G9wcLDi81KptCB+V5xYGACgZ8SGeKIfSOjsvV8y+uo9RrnCdMzrv35u9BdfqHOjFvVGu6yxsGr77bFYEdBqcdmqUnNuJ53re1+uXjCM4BJTLJc0Fra7vQ90BQAAAAAAAAAAAAAAWNBCRQ+S8do85D3jRYepXJazrVuwRIRaIQgD6zxbhKvT2M5rVJypZInQ1bpcs4wWntbFG/8pNvS1vG+lTtv/PK3KrJUkrc5Gx8Jy4WRNx1DtvX5A/8E6ZPD5kfMe3P1TbQu21LTfhcoWBeyW6wwAAAAAAAC9JQzn/xt9KpVqw5EAQGNE3cOi7nXdhlgYAKBn+DFNmHpiYZN5o+vvnx+1+dYvpN25ZLEblzaOSwwnbjO26FC1v9fUGykDULt6g4bdxjz28PR/E8a8mh0Lu+PXybYPAAAAAAAAAAAAAAAAd8YSC0t57f1lpLSfcVou4/dHrGuJWsUEu5otKqg1wzWM1m728xoVC3MbVOS6XDNsLzylT206U9sK9tjWPulV+vsDztPKzH6z01bviYY1SjbiPTzX8ctOjJxuZHTrjm819Hi6XWCir/Nuuc4AAAAAAADQW0zEL7l7XrLfwQSAThJ1D4u613WbvnYfAAAArZKKSWQW63gg3P2bpFxh/vSgKN3zuHTsoe7bcvm7Rb3RrtCyj2q7LrR4HMxPfmf0sZtCPbxVOupgT+e/1dMzVvA/lVi44q7BXouFqcbafNJYWFJfu8fohBdU3oeMMbpsvdFXf2b02xFpyYC0dEAaHpCWDkpLBjwtHayctnTA2/vnwenpS/olP65qCQAAAAAAAAAAAAAAsMCVTPRAPr/Nz8d2DftkIgJWtnXjgl3NVogIas3IOIbR2i3JeS3JbYCo63KNNhJs1SWbztaO4oh1mX3Ta/S3+/+zlqX3qZi+rG+l0l5GBUuUKqmo9/Bchw29RGsyB2hLsHHevJ+M36YT9vm/Wty3tCHH0+1s15rLeQYAAAAAAAAAAIhCLAwA0DPiGiz1hHgKMeNDSk0I/LjEcOKiY9ZYWJVaWNDCcTAPbjJ67SdDTe2JsG3YbnTXb43uP8vX0kFiOug99UYCu44/HQszSna95yPCjXGSbj+Tnj/twpuNzrx+7w102675e4na81yeJy3OVgbElg5ISwe96QBZRXCsLDZWFiHL9HF/BAAAAAAAAAAAAAAA3Ss00QPuPK/NsTDHsE/Gmx/asq0bxAS7mi2ICUu5htHazXZeC+H811YyboOvXJdrpKeCJ/Rvm87SWHGHdZn9Mvvrg/t/VMN9y+fN8z1fqzJrtTn/WEOOx+Xr73mejl9+oq5+8tJ58wom0B07v6sT9nlnQ46n29migOkuuc4AAAAAAAAAAEDnIRYGAOgZcS2sYh0hLFt8S5L8hGOUqvS6JEk5hxhOXPjLFjCrtu+g6HJ0jXHlj81sKGzGhu3Stx40OukVxHDQe6avvx5676dq+98UW0zRhNE3vqSxsGDOfckYo/+4ozH3RmOk8dz0x8aKsX9usTFJGkjvDYftDY6VxcbmRMjmBseGstOD+QAAAAAAAAAAAAAAANrBKHqMR0qpFh9JJdeAVlTAKiogJtkjQq0QFypLO4bR2i3JeS0ZtwGirss1ypb8Bl266RyNl3Zal1mbPVAfXPdRLe4bti6zOrOucbEwx6//EUteqRufviYycnbHzu/o9cvf5rythcx2rWX86PcvAAAAAAAAAABANcTCAAA9Iy6gVbQEtOrdri3MVcu2ZrjEwuLY4maWls6soIUPzfv326IP8t1fMDrpFa07DqBTBK0dh9Z+e2JhiWNetvtUMfrGaRKGscamKu9NOyfnhr3aa6ow/fHkePlU2zeW+dNTfnlMbG94bHjAi4yQzZ02PCClfGJjAAAAAAAAAAAAAACgNrZYk+clfGpng7lGj6KiYrZ1i6ag0JTke60PocWFymwRrk5jO69RcaaScRv86LpcI2zOPaZLN5+j3aVx6zL7Zw/Sqfufq0WpJbHbWp1Z17Djcg3j9XlpHbv0BN3w9NXz5k2UdunusVv16mVvathxdSNjjPVacz3PAAAAAAAAAAAAcxELAwD0jLgOV7GOEE9c4GsqaNy2ZuQdxqPEbcYWC6u260KvxYqAFou7/lsZ6+sIqdoGQVrvU5ZYWFLjucrPbffTblUKpR0T0x+Vol5o9Itf3B8VHPO0JCJCFhUc608TGwMAAAAAAAAAAAAAoFcZRT/x0lebY2GOYZ+M359o3cAE6vcGaj6uWhUiglqS1Of1tSVeVgvbeY2KM5XkNvjRdbl6bcg9qn/fdK4mw93WZQ7sf44+sO5sDaYWVd3e6mwDY2GOYTxJeuXSN+jmHf+lXDg1b95to9/SK5e+oWveT81QMPYBxEnOMwAAAAAAAAAAQDliYQCAnhEX4ilGjzFy227MvKmCkdTY8EnOoXkT91pLltdaLVRGLAxon6DXrr9UWpJkEt4/rfep/GTk5KTbH5s/rg1z7MpNf2weLZ9q+wYzf3q2rywoNrA3NjY8GB0hmzttcb/keQTHAAAAAAAAAAAAAADoRqGxxMLaHBxyDftEBazi1i2EefX7rY+FRQW1JCntGEXrBGnLeQ0iQmgl4xgLc1yuHr+b+pUu2/zPyoXR45kk6eCB5+qUdWc7vzdWZxoYC0vwHhhIDeno4dfr1tEb580bKTypB3f/VC9efFTDjq3b2K4zKdl5BgAAAAAAAAAAKEcsDADQM+JjYbVHveK2O2l/MFj0thyWyRVclrILLavbps/ouVgR0EGCYruPoMVKDlXECHNjYSafk7n8/0nf+Ezk8kljYTsm5qwfc99891GesmlpbFLaOWk0NiXtnJJ2Tk5Hx5J+f+gV+aL01Pj0x17usTHfm46GDe8JiJUHx5ZETFsaESHrSxEbAwAAAAAAAAAAAACgHUqKHqTmy2/xkVRyDftEhcHi1o2LCTVTVFBLco+idQLbeY06pyXjNvjKdbla/Wbyl/rM5o8pb3LWZQ4ZfL7+eu2Zyvr9zttdmV4jT76M6nhq7h5J3wPHLjtB60dvUhhx7f5gxw160aJX9OyD/2zXmdRd1xoAAAAAAAAAAOgsxMIAAJBUrCOEFdfYShwLc+iA5RwaOnGbCS3jQarte26EB0Dr9Nz1F0wPlEoa8yoPP5rJ3TJvWNHQw9q4QzLGOA1gO+11np631r5cUJwOiI2VBcR2Tko7p0zZn6XxqenY2Owye9YZm3L7ntFrQiONTk5/aHv5nKiTFX0Ch7LzA2JLBz1rhGzutIGMenaQIwAAAAAAAAAAAAAA9TAmenCb77U5FuYY9olaLh2zbhC252lzBRO9X9coWiewfU2iAk2hcRt85bpcLX418aCueOL82EDcYYMv1vvWfiRxSCrtp7VPepVGClvrPczE+16eXqkjlhyjn43fMW/e47lf67dTj+hZg4fVfVzdyHadSd11rQEAAAAAAAAAgM5CLAwA0DPioirFOh6oFrfdKYewV1JOsbCYYwot86o1Z3ouVoSOZozRJbcaXX230a6c9JYXebrgrZ4yfd0b6Im7BoPmPrSy80zurmm1mfuUGd0m85b9qy6fNEYmSU/vllYunlm/dpk+TysX793WXm7HFIbT7/2ZgNje4JiZDYrNTBubM21mee7r0Sby0x9bdpZPtX21509Pp8oiY2XBseGZsFh5hGzAKwuSTc9b3C/5fvfeywAAAAAAAAAAAAAAqFUoSyxMbY6FOYZ90l4m0bpx4ahmigpqSclDUe1kO6+FiHNaktvgK9flkvrlxH367BMXxsajnjd0hN675gyl/fnvIRerMmvrjoX58pWq4ddLjl92YmQsTJJuGb2hZ2NhtutM6q5rDQAAAAAAAACiHHjggdqwYcPs5+vXr9drXvOa9h0Q0EOIhQEAekZc1KVYRzDFFt+SpMmED/5zCc+4xMLilCxhtLjXIfVOVMYYo0e3SY9slY48SNp3CcGWTvSJ7xv9wzf2vmkv/oHRk2PSl/9qYX69gh65/mbd/KXp/3rJvp6FkmSKBZm/fpXT8rXEvu59XPr951dfLuGhJ+b7noYHpeFB6YDKPTutb4xRrlAWGZsqi41NVkbIxi0Rst3tGa/a8QolaWTX9EelqHfc/GmeJy3prwyOTcfE9nzNK4JjXmV8bM9/uzmcCAAAAAAAAAAAAADoXaGxxMK8VIuPpJJL2KfP61Mq4jgzMfGnuJhQM9kiZa5RtE5gO69BOH/QZsm4Db5yXS6JX+z+mT635V9VNPYQ2YsWHam/XPMh9XnpmvezOrNO/zNxb83rS1LG75dXw6Cndf3P1HMHX6RHJh+YN+8Xu3+mJ/ObtTq7rq5j60Zx13e6i641AAAAAAAAAADQWYiFAQB6hompwtQTworb7lTSWJhDuSbn8PC6uO3YomDV9h0056F5HaVYMnrv1UZX3T19MjxP+vSfePrrV7f3yZSoZIzR5bfPf8Ne+zOjy95ptGxo4UVyeuH6a4RCSdIt10lbHnNa3jiGtcptnzCaCXK53LM7led5GshIAxlpv6UVc5y3USwZjZUFxGzBsXFLhGxsqnqoshcZo9nzOmdO1NKR2xhIVwbEpoNj07GxqAjZ0jkRssGMahr8CQAAAAAAAAAAAABAPUJFD+Tz1d7xWy5hn4zXHzk95fUppT6VNH8AkC3a1WxRQS1JSseEzTqNLWwWdU5LMaGuWpZzdd+uu3Tllk9a39eSdMTiV+rP9/u7yNBcEo2IcdUTizt++YmRsTBJunX0Rv3p6lNq3na3sl3fnnz1efwaDwAAAAAAAAAAqA0/ZQAA9Iy4qEsx+oGEbtuNmTdVSLgtl1hYwm3OVWssrJ6gWrf4wl17Q2HS9Dn5my8bvfo5Rs/dj2hKp9iVkx7fHj3vwpuNLvrDhfe1Cnrg+pthcpN7/5ww5lUoSea89zT6kCqcdKXRSVeWtGxQuva99oGoC+9dOF9fytOKRdKKRXPnuL16Y4x25/eGw/bGxEzFNFtwbGyq/u+JC9VUQZoak7aOlU+1faOfPz3l7w2HDZf9d3jAi4yQLZ0TIVsyIKX8XrgKAAAAAAAAAAAAAACNFL1YBTAAACAASURBVJrogXy+195YWMZ3iIXFLJPxM5oKI2JhYZtiYZaIUT2xqFazne+oc1qyvK/mL9e4QVr3jN+hq7ZeolD2fR+55Fi9a/UH5NcZCpOk1ZkGxMLqiMUdOvhCrcs+U5vz8x/y+NPx9Tphnz/RcN+yeg6v6xRMdJQv42V4iB8AAAAAAAAAAKgZsTAAAFRnLCwmstWMwJZLGCWu+1WyvFZbRGxGL8TCvvjj6JPwtXuNznkzgzM6Rdx78Yo7jC76w9YdSyPF3UuCGh9aWSgabdslrVmq7hlgtHOk5lULu3YlWj5pjKzc6KT0xkvs3zy65XS3k+d5WtwvLe6X9q+c47yNXMFobKosLGYJjo1bImS7co1+VQtDKZS2T0x/VIq6UUXfvBb3z8TEVBYT8yriY3sDY/MjZNk0FxEAAAAAAAAAAAAA9BpbWMlXe2NhWZdYWExoK+NlNaXJedPbFguz7LeeWFSrpS3nOyqEVpLb4KtGxcLuHrtV1zx5mUzMSM6jh1+nd646uWEhvIbEwrz+mtf1PE/HLz9RX9x68bx5RVPUHaPf0VtW/mk9h9d17NdZ90T5AAAAAAAAAABA5yEWBgDoGXEtrGIdYzwaGfip0uuS5BgLi9mQLQpWbd+dEgsrhUYpvzkBkbt/Fz39o982OufNTdklahB3XS3U8E8tsbB/+e9QH/+e0a6cdOAK6dr3+nr5QV0Q39n5dM2rBvfdmWh5Q9Gr6/WnPfWnpVVL5s5x+9qWQrMnJLY3Ijb9X1MxbTo4Nj2tPDg2NlVfcHQh25Wb/tg0Wj7V9reN+dOzfXvDYXvDYp6GB6MjZEvnRMgWZbsokggAAAAAAAAAAAAAkCSFxhILa1BQqVZxIbDZZWJCWxk/K0WMvytEhK1aoWCCyOkur7NT2IJLUYGm0DEC5hoVi3Pnzu/pK09dHrvMq5e+SX+071819H09mFqkJamlGi/trHkb9Uasfm/x0bpx5EsaLc4f//XDnd/V61e8Tf3+QF376CZR4TqJWBgAAAAAAAAAAKgPsTAAQM+IC2jVE/qwxbckKZiYlLTIeVtxxzjDJRYWxxoLq7LvoENiYUFRGuieBxiiCfL1j8nqOkljfdf8JNTZN+69qB/fLr3u4lAbLvS1bKjD4zmj22b/aByDTzMKD9xddZmtfav17UV/oK19q3X3wJGJD89Vh59l7JHyPS0bkpYNzZ3j9hU0xmgyKAuIzUbEzHRkrCw4Nm6JkE3V+X19ocoXpafGpz/2co+N+V55ZExlMbH5wbHhAS8iTCb1pbiSAQAAAAAAAAAAAKCVQkUP5PPU5liYQ9wnHRPass2LClu1gm2/6S6KGNm+JlEBtpJxG3BWcoyK2awfvUn/te1zscu8dtlb9LaVf9GUB6CtyqzV+FT7YmEpr0/HLXuzvjHyhXnzJsPdunvsVh277IS69tFNbNdZN0X5AAAAAAAAAABA5yEWBgDoGXEtrGIdYzzithvcfYvMmw6V94xDa9/BHDmHcSsmpvxli4XFRc+k5LGiZiEWhnqDed0oSBhI++Z98y/o3Xnp278wOukVHR6/GR2pedWCl46d/5urRvTajxe0pbS05n0A5TzP01BWGspKa5dVzHHeRlA0s/Gwiv/uCY7NRMjGbBGynFtstNeERhqdnP6oFHWyok/gULY8MrYnJjboWSNkc4Nj/Wk1ZXAvAAAAAAAAAAAAACxUoSXWlPJSLT6Sufvvk6+UQtkH0cWFlmzzgoiwVSvY9ttNESPbsRZNUSVTqnjPuEbAXKNiUX6w4wZdP/LF2GXesPztess+f9q0sQSrM/vrN1O/rHn9Rnz9j176en1n+3WaCucN2NBto9/Sq5b+ftuv51ZZCFE+AAAAAAAAAGg3Y4zuu+8+/epXv9K2bduUz+e1cuVKrV27Vsccc4wWLVrU7kOs2aZNm3TPPfdo8+bNmpqa0j777KPnP//5OuKII+T79T1IZ9u2bfrRj36kLVu2aGpqSmvWrNFBBx2kI488su5tR3n44Yf10EMPaWRkROPj41q+fLn2228/HXPMMVqxYkXD99friIUBAHpGXEijGP1Awrq3GwQlmSs/Ju+jX3bblsMyQVEKQyPftw8YidtOyfJaq4VGOiYW1iHHcc/jRmdeH+rnG6Tfe4Z04dt8veQZBEFaobRAozix95Jishd9wwPR00/7mtFJr0i0qdYb3Tb7R5MguCTFx8K8f/yc/vm2RdrSojcQfSC4yvR5WrlYWrl47hy3N1EYGu3KVQbEds6ExSriY9L45PxpOyc753t8p5nIT388UfHQXds9ZP70dErzAmJLB6Qlg978CNlMbKxs2uJ+xf59DwAAAAAAAAAAAAAWmlDRg9s8Nf6XFpLK+FnlIgJIM7J+f+y6UYIwqPu4amGLGGX87nmKZ1ycrWACpbyB2c9LcouAuUbF5vru9v/St5+OHyN6wop36vdXvKOpDx1blV1b1/px59RVvz+gVy59o76/45vz5m0vbNP9u+7WEUuOqXs/3WAhRPkAAAAAAAAAoF2efvppnX/++brmmms0MjISuUwmk9Fxxx2nc889Vy9/+cudtvvud79bV1111eznjz32mA488ECndW+//XYde+yxs5+fc845Ovfcc63Ll/9M4NWvfrVuv/12SdJdd92lc845R7fddpvCcP7PxlatWqUzzzxTp5xySuKw1/3336/TTz9d69evj9z2unXr9P73v18f+chH1NfXp3PPPVcf/ehHZ+evX79er3nNa5z2tX37dn384x/XNddcoyeeeCJyGd/3ddRRR+mcc87R8ccfn+i1wI5YGACgZ7QlFuZlpNu+LrnGwhwbNvmiNFDjuJzQso9quy6Upuu7zRys4iKo/eF9sYzryZf06Daj118camxq+vNbHpGOvzjUvWf6OmglUY9mS/ClWjByDXrfT7ZnfKETk5uU/udumZuvqXkbOctAKu/SH8h78at07fsoImHh8X1Pw4PS8ODcOW7fj4wxyhX2RMbKgmNjUyZimjQWERybaM+DjjteoSSN7Jr+qBT1jWz+NM+TlvTPD44ND0x/zSsjZN7eP+8Jjg0PTMfoAAAAAAAAAAAAAKBbhCZ6IJ/vdUAszMsqJ3ssLC4AZJtniwk1W8Gy33QXRYzizncQ5tXvl8XCHCNgrlGxGcYY3bT9Wn13+9dilztxn5P0+hVvS7TtWqzOrKtr/UZFrF6z7ATduuNbkefzlh3X6/cWH932caitYI/ydc91BgAAAAAAAADtcMMNN+ikk07Srl3zfjGvQhAEuvnmm3XzzTfrfe97nz796U+rr6+zM0rnn3++zj77bJVK9p9dPPXUU/rgBz+o9evX66tf/aoyGbeoxKc+9SmdccYZsdvevHmzzjrrLH33u9/VN785/8Efrq6++mqdeuqpGh8fj10uDEPdeeedet3rXqd3vetd+vznP+/8emDX2e9yAAAaKK4vVKyjHxO33cBLJ9uWYwTpsaelw9bUtp2ICKzTvo2RSqHUl6p+fM2Ub1IsrNp2y0Np37jPzIbCZuyclK6/3+hDr1/4g1jarRdjYY2KfOUKjdlOo5lNv5H50B9IWzdUTneMHc14OrVP5HTvxa+q+dhq1QPj2bBAeJ6ngcx0hHS/pRVznLdRKBqN5yoDYlHBsbGYCJktZtrLjNlz3qakuXfHiKUjtzGQrgyILR2Qlg56WjIwP0K2NCJCNphRTwzQBQAAAAAAAAAAANAZjCyxMHVALMzPSDHjDNO+/RcbbHEgW0yo2RZCxCjuWOe+PudYmONy0vR4whuevlo/2HF97HJ/uPIv9drlb3Hebj3qjYVl/f6GHMfSvuV66ZJX6Sfjt82btzH/W/1m6n/0nMHnN2Rfnaxgogf9pT1+CQoAAAAAAAAAbK688kq9973vVTgniHDwwQfrsMMO0+DgoDZu3Kif/exnFVGsz372s9q4caO+/e1vd2ww7BOf+ITOPPPM2c8POeQQHXLIIRoaGtLWrVv1k5/8RLlcbnb+9ddfr7POOksXXXRR1W1/8pOf1Ic//OF50w877DA9+9nPVjab1caNG3XPPfeoVCrprrvu0jve8Q696lXJf//67LPP1sc+9rGKaZ7n6ZBDDtGzn/1sLV68WKOjo7r33ns1MjIyu8w111yjrVu36uabb+7Yr1G34OwBAHpGXGCoaAlouQhjNhzs+aF+eWiqETaPVomFxaxri3G4RDoKpdpjYcYYXX230Y0PGPX50p+9wtebX5j8nARNioXtysXPH5+Shgen//z/vhl9sk7/utGHXt/gA0MimQX6t9uJ9owLbBnzJ89ryHZ2+Ysbsp1GIK2DXpLu87RikbRi0dw5bleCMUa789PhsPLg2GxYrHyaJTjWrJhot5sqSFNj0tax8qm2v/TNn97nl8XEyoJjw4Pe7PTyCNnwnAjZkgEp5XNHBAAAAAAAAAAAAODGFmvyvTY/4VJSxosPKWU8e7zKNi8wbYqFWfYb9xo6Tdyxzn19JeM2qMB1OWOMvj7yea0fvSl2uT/e93169bI3OW2zEZb17aOs16+8qTIY0qKREavjl58YGQuTpB/suKEnYmHWKF8XXWcAAAAAAACAK1MsSiOb230YvWHlOnkLNLT0wAMP6OSTT64Ihb3oRS/Spz/9aR111FEVy46MjOiss87Sf/zHf8xOu/nmm3X22Wfr/PPPb9kxu3rooYf0ox/9SJJ04okn6oILLtChhx5asczo6KhOO+00ffGLX5yd9slPflInn3yyDjzwQOu2f/7zn+sjH/lIxbTXvOY1uuyyy3T44YdXTB8ZGdHZZ5+tK664Qj/84Q/18MMPJ3odV111VUUozPd9nXLKKfrwhz+sAw44oGJZY4xuvPFG/e3f/q02btwoSbr11lt11lln6YILLki0X1RamHcAAAAimJioV7EkbdlpNJCWlg0lCxrERchmYmEqFqR09YEUDr0uSdLTu41qTdGEljBa3OuYUShJAzXtVTr320Yfu2nvTr5+X6gvvNvTnx+V7KmPgfvD+xLZXWXc1VRBGm7OrpFQ3Fv12ENadhgNF/e6FnIsLPzEKdZ5JuF9ruCl503zTv904mMC0Fqe52lxv7S4X9p/ecUc523kCmY2HDbz351Te6fNTB+zRMiqRUN7VTGUtk9Mf1SK+q4V/Z1sSb8qw2KD0tIBT0vmRci8imVmImTZNLExAAAAAAAAAAAAoFcYRQ9u85VsjFkzZPz4wE/cfNu8giUm1GyFMIicXu01dpK4Y50baSrJbdChLVZXLjShrnvqs/rR2M3WZTx5+pNVf6Ojl77Oab+N4nmeVmXWamP+tzWt38iv/5rsATp86CX65cR98+b9cuLn2pLfqDXZAyLWXDisUT6/cVE2AAAAAAAAoGOMbJZ5Rxf/gm8X8b72v9J+B7b7MJriPe95j4Jg788wjjnmGH3ve9/T4ODgvGVXrlypK664Qs961rN0+umnz06/6KKL9M53vlPPf35nPbRix44dkqQzzjhDF110UeQyy5Yt0xe+8AWNjo7qxhtvlCSVSiV9/vOfrwh0zXXKKaeoWNz7QJS3ve1tuu6669QXEZVbuXKlLr/8ch100EE644wz9PTTTzu/hg0bNujkk0+e/TybzeqGG27QG9/4xsjlPc/TiSeeqKOOOkpHH320Hn30UUnSxz/+cb3vfe/TM5/5TOd9oxKxMABAz4gL8Vxyq9Eltxp5nvSWF0hf/itfg1m3MEFcZKswEwsr5N1iYY61sFyh9u2Elnkuuy7UGOqazBtd/IP5e7jgu0Z/flTECjHybg/vS6xaJGSqyjlHZ0gt0J5IrddepzPFonTj5xq2vSAiFqYT/rJh20/CW6DvRaBT9ac99aelVUvKp7pfiKXQaHxPOKw8ODY2ZSKnzY2Q7ZySSpYga68bz01/bBotn+oeG+tP7w2H7Y2JeRoeiI6QDc+JkC3KTv/DIgAAAAAAAAAAAIDOFxpLLMzr/FhY1uu3r+tFr2uLCTWbNWJkOc5OlPbs4zHnvr6ScRt0GFaJioWmpC8/9RndPXardRlPvk5afapePnys0z4bbVVmXe2xsAZ//Y9f/tbIWJgk3brjRv3Zfqc2dH+dZm60bkY3RfkAAAAAAAAAoFXWr1+v++7b+2/KS5Ys0XXXXRcZCiv34Q9/WHfccYduuukmSVIYhrr44ot15ZVXNvV4a3HMMcfoggsuqLrceeedNxsLk6TbbrvNGgu755579NOf/nT28/32209XXnllZCis3Omnn65bbrlF3//+9x2PfjryNTU1Nfv5xRdfbA2Fldt33331la98RS972cskTQfQLr74Yl166aXO+0YlYmEAgJ7hEuIyRrrxQekD1xpd+W7HWFjMvNlwTT4nDS522p6LoI5wkC0WFjoELoIaQ13//ZC0O2Lcw6+fknZMGC0fcg841HoM1UQdX7mp6Icpog3iruXiAg21dGsszOwaldZ/Q+axh+U996XSq98qL1s2MHLzb+LXTxh3KcyJhXn/fos8f3qwqHGtMQLoSSnf07IhadnQ3Dmu8VijyWBPQGxKZTExMxsTmwmLjVkiZIRJo+UK0x9PjZdPtd3T50/3vfKYWNmfBz0tiYiQLZ0TIRsekPoWao0UAAAAAAAAAAAA6DChLLEwpVp8JPNVCymlYwJAtjiQLSbUbEEYPRgu7Vd/IGqn8D1faS+jgpn/Wgrh3FiY2+CruKhYyZT0pScv1c/G77Afk3y9e7/TdMSSY5z21wyrs+ukXbWtm/Ia+6slzxl4ng7IHhwZL/vZ+B1688o/1dK+5Q3dZydZCFE+AAAAAAAAAGiVq666quLzU045RWvWrHFa98ILL5yNhUnStddeq8svv1zZbGf9e+yZZ54p36/+gJzDDz9cBx54oB5//HFJ0gMPPGBd9tprr634/AMf+ICGh4edjuess85yjoVNTExUBNgOOuggvf/973daV5Je+tKX6pWvfKV+9KMfSZK+9a1vEQurA7EwAEDPSJKJuf5+o/88ySjlVw8DxPVngpmn1xXcBvW4HmO1cFDcMZUsMSWXfdcaLPrtiH3rtuOxaVosLBc/n4BH54h7ryZ9P3WLboygmae3ypz2Jumxh6c/l6TvXi1d+E152YHphSZqHJlmEZQ9MdS76Hp5L3rl7Oetfm+QlQF6i+d5GspKQ1lp7bKKOc7bCIpmb2RsT1RsOjxmKiJkY7YI2VT1ffSi0Eijk9MflaL+RhH9t4xF2ajgmKfhmcjYnAjZ8JwIWX96+j0CAAAAAAAAAAAAIF5oiTr5XvVfnGi2TJWQVsazz7fFgYKI0FWzlUxRJUUPwuu2iFHGy0bGwuZGmuIiYJXLRb//SqaoL2z9lO7bdZd13ZT69J41H9aLFh/ptK9mWZ1Z29b9l/M8T8cvf6uu3PqJefNKKur20Zt04sqT2nBkrWGLAdrigQAAAAAAAADQy+68886Kz9/1rnc5r3v44YfrJS95ie677z5JUi6X089//nMdddRRDT3GegwMDOi4445zXv65z33ubCxscnJSu3fv1qJFi+Ytd9ddlT+7eMc73uG8j2OOOUZr1qzRli1bqi575513ampq7y8wvv3tb3cKn5U79thjZ2NhGzZs0MaNG3XAAQck2gamEQsDAPSMuIDWXGNT0vbd0r5Lqi8b/n/27jxOjrLA//j3qb577iQzOUgg4QiXnCZyQ0K4YQMIihhFQEHlJyusLoKLogvi6rrKroAskYVwihgCxCCHyn0IhACBAOHKTc65p++u5/dHT09f9VQ9fc3R/X2/XvPKdD1V1dVnZnqqPlXJWJjmNjoFs+xjStajOtddaizMLtKTKHKd0SrFwpzWG2EsbEyo1VhYqa+94SalBO64HvIvi4BP1xbO8NrfgeceAY47J3U5bB8Lk0Umt+LCM/S9OPyUnLFafW4QUe3wugXam4D2pvwRvffCpCnRF8FQcCwTHsuLkIWBnpDMzBPOzDtW/r8Zbv3R1NfG7uypqh+eC6d73blBsaHAWDoslhcha82LkDX5AUMjYkxEREREREREREREREQ01pmw3sHDwCiIhTmEtOwCQB5FaGxLbCMWbvwFPIYPuwf2wSHNc5TzVsKqgRV4tfdZ5fhYixh5DC+snjJPdC7Ba73PDV1eH/1Ya33rox9j4cZfFEzfkdiGdZEPlcu5hQcXTfkB9mucpXU91TTJO63kZavxV+mDmg7D+O0d2BHfWjD2XPdjOGn8F+A3AiWte3VoJd7qfwVd8e1FLRd0NWLvhgNxUOPhVT3xV1wqYmFjLMpHREREREREREREVG1dXV346KOPhi63trZi7733Lmodhx9++FAsDABeffXVURUL22233eD16v8NqK2tLedyT0+PZSzszTffHPq+tbUVu+++e1HbNWvWLDzyyCOO8+XH3KZMmTIUM9OVf/s//vhjxsJKxFgYERHVjWJiYQCQ0AzL2K13KBYW04uF6XrHOdCqpLpddtGztFIDEm6X/jqlwwPlFEorlVNIKDz8J3EkBbuniO7rdjSqidt1x88g/+9a21nky49DpGNhof6KXv2rgdmIww2PxdlPh/s+rOJ+ZEREllxGKjLVGgR2GZ89oveGJKVEOJYJiGWCYzInKNYTzkzPj5ANVPZH3poRSwBb+1Jfuaz+8y+cJkQqGpYOiA3FxAZjY7kRsqzYWFaEzOPmf0xEREREREREREREREQ0+plSEQsTNjugDROPQ0jLLgCkGouYIazofwkA8Erv03i97wV8e6er4TE8lvOX42+dj2Dxtv+znWesRYxU27s28gHW4oOS1pl+PHR5hBff3Okq7NNwUEnXV2nt3kkwYCjDe8PNJVw4tm0+Htj6+4KxsBnCC91PYt64+UWv9/nuJ3DvlptL3q4Xep7EnNbT8MWJ3yh5HU5ipvVOp07vJURERERERERERET1Ztu2bTmX99hjj6JP9rDXXnvlXN66tfAkFiMpP/7lxOPJ/VtRPB4vmGdgYACRSGTocinhLd1l1q9fn3P5sssuw2WXXVb09WXr7Owsa/l6xlgYERHVjSJbYYgU/sxU9HpjYvAHMc1YmG7Q7PF37Ge0W48qiqVz3bESY2Eem3218gM+TttR6jY4cQoJhTWfD1R9pTy/x7pElZ73lSSlhFxqv0MhAODxe4CrB+cLFVRTctdZwvkqT9n5YTz4jQRa8qaPhfuQiGgkCSEQ9AFBHzC5NWdEex3xhERvJDcg1h3KCosNXu4NF05LR8h0Arb1Rsr0/QiszR2xmttyHUFvdlAsKzYWtIiQ5QXHWgKp5at5RmUiIiIiIiIiIiIiIiIiADBhvYOHAWOYt6SQT/htx702ASC7sWzvhd7Ee6E3sF/j7KK2zUnMjOKR7Xc7zuc19M9oPxro3q/V4hN+fHvqv2FmcL8R3Y5sbuHBBM8kbI2XcUbaCjusZR6Wbf8DQmbhiSX/3vUI5rSdApfQP6wlKZN4ePtdZW/X091/xrxx8zHe01H2uqzEpPV+w2MtykdERERERERERKSlfSrEH98f6a2oD+1TR3oLKq6rqyvncktL/hHCzvKXGW0hKsOo/N+6uru7cy43NTUVvY7m5mat+Xbs2FH0up309dkfY05qjIUREVHd0A1xpenGoezWGxODO8/ENWNheleJ2dNLX48qiqVz3fESYzsum59f89fptB3RhEQx0QpdSYcyRTRR8aukKnCKvo1Vpb72hlVfF7BtY3HLOMTCSvFUw1zc0Gvimrzpwx38Y0+FiOqRxy0wvhEY35g/ovemaJoS/dGsyNhQcEwWTOuxiJB1h4EYf2azFIqlvjblfAas+vm3cLrbQE5ALB0cawkKywhZawBoCWYiZM1+wDD4nyMRERERERERERERERHZM6X1zj+GGPlYWMDVYD9uqMeDNmP5Pgi9U/FY2LrIh4jLmON8fiNY0eutNrv7vNr8RgD/b6cfY7fg3iO2DSqTfFNLioVN8e1Sha1J3VdHt56MxzofKBjrSmzH8r4X8LnmY7TX92l0PQaSldnv7MPQOxjfUp1YWNy0fs2NtSgfERERERERERGRDuF2A5Onj/Rm0Bgl82INogIH6FZiHaOdz5d7copYzPlvQfl0lyll3U7yH3fSx1gYERHVjWJ/XAhr/sxit96hWFgsorcuzY185E29+awkFNEhh1YWgNLjC26bfbWKjTtVK5qUdNiOVEys9n8xGAtsY3hjIapVgjERQduxRW++9p2GvpWfrLKdVZb4mvvTCgPXnJ47rVfvbRgA0CoG8JW5jdhvJ+Clj4A7Xiz+F06+WxARFc8wBJoDQHMAmDYue0T/XTUSl+gOZYJjqZhY7rTuMNA7GCHLzJP6t6+I/y/qScIEtvenvnJZ/R9p/f9ms98qOCbQYjGtNYiCCJnPw/9diYiIiIiIiIiIiIiIap0J651kBEY+FrZncD8sVYz5jQB28e+hXHbXwN5wwY0knHfAi5jhErewvHVO8+2KBlfxZ5wfSXsG98MH4beH/XoDRhDfmfoTzAjMHPbr1rFfw2y81f+K5dhU33T4jQZ8GH4nZ3qDqwl7BD9TtW06pu0U/LVrCRKy8DXw186HMLvpaO0Dt6IVfI1U4/WWlpDWZ7d08RAeIiIiIiIiIiIiohzjxuUcSIaenp6i15G/TFtbW1nbZCWZHF0Hseffxq6urqLX0dnZqTXfhAkTci6/+OKLOOyww4q+PqoM/qWBiIjqRrFx0Yj13+kLmDYRn6FYWDxa3JVrGIhKNPisd46wu63lRIdKjYW5bPbVyo9/OT1OpW6DE6f7ZUzEmuqE3XNEJ3o3WtlterUieRX14jK9+ZpaM98/9WBVNuUdixNj9haxX9dXdizC/3zpUgDAqfvJkmJhREQ0MvwegUktwKSW7Kn6kalEUqI3khUWUwTHesJAj0WErCfsHKGtV70Rq3infmzM78mEwzIxMTF0OeffweBYdoSswVcfZwUhrnALzQAAIABJREFUIiIiIiIiIiIiIiIay0xpvZOMS7iGeUsKTffPxBEtx+OFnidzpgsY+GLHRfAYHuWyAVcQZ3VcgD9uXeh4PTFZ+X0NY9L+zKk+4cdZHRdW/Hqr7ei2k/Fm/z+wPvrxsF1ns6sNl0y9Gjv7dxu26yzW7Oaj8UrvMwUhNZ/w4wsdF8EjPPjthp8ibA4AAAwYOKfj4qq+zlrcbTikeW7B6wcANkQ/wfuht7BXwwFa66rka8TptVGOJEbv+xkRERERERERERHRaNLe3p5zefXq1UWv4/3338+53NHRYTmf252bWUok9MMFpcS4qsnlcmGnnXbCxo0bAQAff/wxQqEQgsGg9jpWrlypNd/EiRNzLq9evZqxsBHEWBgREdWNYmNhYY1Y2FPvSXz/T+oVJ4QHJgRcMb2dE4rZxKfeB07bX7EemxWp4gU690+kxFCXewzEwpyiDow+jA21+jglTUBKOaoDF/KPv9WbMTyQ+X6f2cBLf1Gvs4i4S8GyefdXYZzEnnmUD3C5MPkH/4sLjliA218o7j+RUfxQERGRDbdLYFwDMK4hf0TvjV1KiYFoJhyWiYnJnGndoVTI0ipCpvN7SD2KxIHNcWBzb/ZU1f/PhdNdRjoklhcWC6aCY/kRsta8CFmzP/X8ICIiIiIiIiIiIiIiouoxYb3zj4DNDmjDxBAGzp34bRzYeCg+CK9C1Ayj2d2GzzR8FtP8uzouP6ftVEz374FVAyvQl+zBB6F3sCm2tmC+uFmFWJjNOs9uvxD7Nc5Gu3dyxa+32hpdzbhs2nVYOfAq1kY+gCkzz5+oGcHLvX8ved2zm45B0JX7h+MO7xQc0jwHQVdjyesdDl7Dh0unXYMVfS9hbeRDJGUC7d7J2K9h1tDj/MPpv8Fb/a8gZkaxb8NnMdU/verbNa/tdMtYGAA82blEPxameD674MaRrSdYjr3R/zJ6Ep0F06vxektLKuOHPISHiIiIiIiIiIiIKFtbWxt22203fPTRRwCA7u5uvPvuu9h777211/Hiiy/mXJ49e7blfM3NzTmXu7u7ta/jnXfe0Z53uBx66KFYvHgxAMA0TTzzzDM4+eSTtZbt7OzEm2++qTXv4Ycfjt/85jdDl5944gl87WtfK36DqSL4lwYiIqobRbbCEHI4YdivnzTx/Qec1xoXHv1YWBEbuaFLQjdakC1RRkwpWmK4wGNzIrREfizMYV0x6/0nyuYUmcrfTpUNXRJT2xgRqCa750iy2Bf6GJI0AfdoPqlg52a9+UL9me+j4epsC4BoAvBnnbC1t4irEulnWTIJef03cMtJz2HfL9yi9Z5PRET1TQiBRj/Q6AemtuWMaK8jGpfoSYfF8oJj2dN6VRGyIgOZ9SJpAp0Dqa9cVv+/W/+f3+jLCogFMmGxlqB1hKw1L0Lm9/D3BCIiIiIiIiIiIiIiIjvZsadshhj5WBiQ2o59Gz+LfRs/W9Ly0wMzMT0wEwDw4NY7LGNhMVmFWJhinR2eKTh23PyKX99wCriC+FzzMfhc8zE50/uTvWXFwk5v/wrGedrL3bwR4xYezG4+GrObj7YcH+/pwNy204Z1myb5pmK/htlYOfBqwdi7oTewIbJGK1qmej4HXQ04Z+LFlmNbYhstY2Ex6bCjcIlMaUIq4ocuMZp3AiQiIiIiIiIiIiIaGUceeeRQLAwA7rnnHlx33XVay7777rtYvnz50GW/34/Pftb6bzkdHR05l1etWoVZs2ZpXc+jjz6qNd9wOu6444ZiYQCwcOFC7VjYokWLEIvpfU4+b948uFwuJJOp4MIjjzyCrVu3FtyfNDwYCyMiorpRTIgLALb3q2Nc/RGpHY2JCS/8scofsR/0qsfstkwVvdK5f6IJ53msuGz21Yrnx8IctiNW4jY4cYqo6UbWnlwlccERjABUk91zxCn6NpbFk6M8FqYrnIqFyY0fAa8/bTurVLwHHxxegdcDB9ku2x/JjYVF4vr/CYi8d1HXY4tw+bevxYHTOnDcr/WeZHwXICKiUvk8Ah0eoKM5f0Tvf5ekKdEXyY6MpcNjMuv7dHAsNS0/OFZOYLiW9UdTXxu6sqeqfsYonO51Z0fG0t8LNBdMS0XIWvMiZI0+wDD4UwYREREREREREREREdUuE9Y7t7lQCzvN5PIaPsvpMbPysbC4Yp2qbagFPuEva/lavm9G0vHjzrCMhQHAX7sewvmTL3Nch+o1YveYDefrDQCSUn12WhcP4SEiIiIiIiIiIiIqcN5552HRokVDl2+88UZ85zvfwaRJkxyXveqqq3Iuf+lLX4LPZ/258MEHH5xzeenSpTjvvPMcr+Pxxx/HK6+84jjfcFuwYAGuuOIK9PX1AQCWLFmCxx9/HCeeeKLtchs3bsS///u/a19PW1sbFixYgDvvvBMA0N/fj+9///tDl2l48S8NRERUN4psheGy+yW+fqT12A1/019bTHiBaFhr3mKCZu9v1p83WzkH/qdiO8UfnC5sFsnfHqe7ID8uVilOkSndCFVf5btwVASz2Bf6KOL0+h/N0Q75ybv6M8cikAO9kF/ap+Trmxlb7RgL64sCE5oyl4t677B6MB67Gx3H/EsRKyEiIhoZLmMwMhXMH9H7OV5KiXCsMCDWE5ZDkbF0cKw3DHSHCiNkoeqcfHnMiyWArX2prwz92JghkAqLZQXEWgNAS1AMXc6OkOVPawkAHjdjY0RERERERERERERENHqZ0noHGSFszlY5RnmFIl4kK//HtphUxJUU21AL3MIDAQFZ9J6jKbV834yk3QL7YLp/JtZEVheMvdb7HOZPWIBxnnbbdcQVrxG7x0w1Fle8NsqlCh8CgEvUXvyQiIiIiIiIiIiIqFzHHnssDjzwQLzxxhsAgJ6eHpx77rl49NFHEQgElMv95je/wcMPPzx0WQiByy+/XDn/YYcdhmAwiFAoBCAV13rttdcwa9Ys5TIffPABvva1rxV7k4ZFU1MTvvvd7+K6664bmvbFL34RDz30EObOnWu5zJo1a3DKKaegu7u7qOv6yU9+gvvvvx/RaOqz9bvuuguTJ0/G9ddfD5dL/7PvVatWYfv27Tj66KOLun7KYCyMiIjqRjEhLgAYiKYOlBcWpas/La9SLEx7rcCzq9Vz291WVfRK57qjCY2ZrNZts/L8gI/T4xSrUizsmkfsr1g31KQbFaPSlfL8rgWJKj33K0H+pcjy82N3661XURoUkPhq9924q/UrymX788J95YYG5cqX0GQf0s5hF0kkIiIazYQQCPqAoA+Y0pozor2OeEIOxcN6sgNjIVkwrSdUGCHrCRf/+1s9MGUm3pbL6s6yvgOD3qzIWDo4FhTWEbJAJjyXDo4FvLD8HZmIiIiIiIiIiIiIiKgSJKx3/jFQg7EwQxELMysfL1KtU7UNtUAIAa/wISpLO/unR3grvEUEpB6X48edgYWbflkwZiKJp7uW4fMd59uuQ/V89tg8n4fz9QYASane2dYleAgPERERERERERER1Z7NmzdjzZo1JS07ffp0AMBtt92Gww47DLFY6qQRTz/9NI466ijcdNNNOOSQQ3KW2b59O6655hrcfPPNOdOvuOIK7L///srrampqwjnnnIPbb78dAJBMJnHqqafirrvuwgknnJAzbywWw6JFi3DllVeis7MTbW1t6OrqKuk2VtOPfvQjPPzww1i5ciUAoLe3F/PmzcPZZ5+NL37xi5g5cya8Xi/WrVuHRx99FAsXLkQoFILf78eJJ56YE1uzM2PGDNx666054bRf/vKXePbZZ/HDH/4QJ598Mtxu68/A16xZg2XLlmHx4sV46qmncM011zAWVgb+pYGIiOpGKQeb//Vd4Ph9CqdPbQXe2qC3jhg8QFRvh5NitnHPyYUHaK/vlLj+LxKPvaNeTjd6ZWVUxMJK3AY72/skOgfs59ENNSUZNRhRtRwLKzd2VVX3/bqo2eUN6iq3rhnxNbbjfXn7cRVz/wmbuAYRERE587gFJjQBE5ryR/QiU6Yp0R/NDYilvpepWFZWcKzXIkLWHa7O7w21IBRLfW3KOfmH6peYwukeVyYolg6ItQaB5nRYLCc4JnLnDQLNfsAwGBsjIiIiIiIiIiIiIiJrplTEwoT+2cjHCmW8SFYhFqZYZy3HwgDAZ/gRTRYfC/MKH0+gU0UHNB6Cds8kbItvLhh7vudxnDz+Cwi4GpTLK5/PQv18VsXfqvF6A4CkVO+s5qrB9zMiIiIiIiIiIiKic889t+Rl5WBc4OCDD8aNN96Ib33rWzDN1N+Mli9fjkMPPRS777479t13X/j9fqxfvx6vvPIKEoncg4eOP/54XHvttY7Xd+2112LJkiXo7k4dXLN161aceOKJ2H333bH//vvD5/Nhy5Yt+Mc//oGBgVSAYNKkSfjFL36RE8oaLbxeL5YtW4Zjjz0WH374IYDUffrAAw/ggQcesFxGCIGbbroJ69aty4mFOf195LzzzsPmzZtx1VVXDT1GL7/8MubPn49gMIiDDjoIEydORCAQQF9fH7Zv345Vq1YN3ddUGYyFERFR3Sil4XTab01Ef5f7h/nNPRIvf6K/jpjwQkZDmofF6xvI24dlW5/EnF+Z+GS7/XKq6JVOqCwS19u2YuhGuNKqcdD/46ucb7xuaMis4VjVaGH3aJk1HGsb1bGwYSYg4XPYUWtbX+7lYkKJlrEwIdBQRCyM+wsSERGVzjAEmgNAcyB/RP8/2Eh8MCyWFRwbio1lT1NEyPqrs0/4mBdPAtv7U1+5rH4QL5wmBNDkG4yJ5QTHUo95/rRMeCwTHPO6+YMWEREREREREREREVGtMmG9g4wBY5i3pPpUYaO4WYVYmGKddnGlWuA1fFA8pZyXo6oxhAvHts3H/VtvLRiLmGE83/MEjh93pnJ55fPZ5nFTjcXNmMPWliZp88RzCR7CQ0RERERERERERKRy0UUXoa2tDRdccAH6+zMHr3z44YdDISwrF154IW655RZ4PB7H69hpp52wePFinHHGGejryxyMrLqOGTNmYNmyZdiyZUuRt2b4TJs2Dc899xwuueQSLFmyxHbe8ePHY9GiRTj11FPxgx/8IGesqanJ8bquuOIK7L///rjggguweXPmxCChUAgvvPCC1va2tbVpzUfW+JcGIiKqGzoxrHzZcZ5wTOLLC008/GZx64gJLxANa80ri0iafdqTO++SFdIxFAYAyTJiVtESQ112tyo/gOR0D8SqEEy66Snn+103FlDLsarRwu61XM7ze6Q5vUfVXSysrQPycycAq62HnWJhf3lb4vQDMyGJYu6/uNWZJHfeE0GffpiCCQsiIqKR5fcITGoBJrVkT9X/HzqRlOiNZIXFQtbBsR5FhKw7xN8NrEgJ9EZSX+s6c0as5rZcR8CTCYdlYmKZ2JgqOJae1uBzPtMJERERERERERERERGNDFNa7/xjiBqMhSniRTGHfWJKEVMEkTxGEWfOG4NKjaHVekRtNDisZR6W7fgD+pO9BWNPdf0Zc9tOg1tYH9AVl4rns9U+X4NUj2k1Xm8AkJTqnW1dcCnHiIiIiIiIiIiIiAg4++yzcfTRR+P666/HPffcg+3brQMKHo8Hc+fOxTXXXIPDDz+8qOs49thj8corr+DKK6/EI488AmlxkHd7ezvOP/98XH311Whubh7VsTAAmDRpEh588EE8//zzuO+++/D0009j06ZNiEQimDJlCnbddVd84QtfwDnnnIOWltQBV93d3TnrSE93ctJJJ+GTTz7B//3f/2HhwoV48803Le/DNI/Hg9mzZ+OEE07Al7/8Zeyxxx6l31BiLIyIiOpHqcdpSykhhMBVS2TRoTCgyFhYERv57Ae5ly+7X2/hhCKmpLN0ybEwm5UnTInsg/ad7oNYidtgZ8YEgZc/tr/ivojeutgDGFljORbmpBqhvFHJH4S44zVgyq7AnRJYXfiqEpDwO5xFtT0vXl1MLOxt3z6FE92pX53OPAhYskJ/XURERDQ2uV0C4xqAcQ35I3qRKSklBqKZcFjP0L/SYpp1cCwSr/jNqgnheOprc85xA6rfxAqnu4zsmFh2eExYRsha8iJkLQHAZTA2RkRERERERERERERUDSYUsTDUYCxMFS8yo0P7LFaKKohU61Esr+EvaTmPIuRGleM1fDi69WQ8uuP+grHuxA681vs8Dm2Za7lsTLHfmN3zWRnnc9gHrVRJqd5ZzRCMhREREREREREREdHYt2bNmqquv6OjAzfccAN+/etfY/ny5Xjvvfewbds2RKNRTJgwAVOnTsWRRx6JpqYm55Up7LXXXnjooYewfft2PPPMM9iwYQNCoRAmTpyIGTNm4KijjoLbnckyzZkzxzaIla+YefPdcccduOOOO0pa9sgjj8SRRx6pNe+qVauGvhdCoKOjQ/t6/H4/LrnkElxyySXo7OzEyy+/jE8//RSdnZ2Ix+NobGxER0cHZs6cib322gvBYLDo20LWGAsjIqK6UerPUzv6gQlNwL3/KG0FqViYZmmqSKYpYQwepKx7ILkyFqZx80o9WN1u1fkBH6fNSFQhmLTnJOd5ejUfwlqOVZXKNCWSJuBxV2YHNrvniFnDtbZqhPIqQSYqW7EQX/8xxE67pdZt88bkczirYyjvBJKq9z4rM2MfFk5MpB6AS481sGSF88oquL8mERERjUFCCDT6gUY/MLUtZ0R7HdG4HAqHpcNiVsGxHkWETPd3mHqTNIHOgdRXLqufPa1/Hm3yZ4JjmZiYQLNFhKzVIkLm9/CHRSIiIiIiIiIiIiIiK6ZUxMJqMK6jClKZMJFEAm54KnZdcVVcqcajWL4Sb59XeCu8JWTlmNZT8GTnEsRlrGDsr50P4ZDmOZbRPGX8zlA/bso4n8M+aKVKSvXOfq4afD8jIiIiIiIiIiIiqhbDMDB79mzMnj27atcxYcIEnHXWWVVb/2g1MDCA119/fejyzJkzS46vjRs3DqecckqlNo0cMBZGRER1o9RYWMf3TIRuMrC9v7TlY8IDRMNa8xa7jWt2ALu2F7dMObGtaImxIrvbVRALc7gPYlWIhelE0PrCmQ2b3AJ82lP6uuqFlBJXPyRx2/MS/VHghH2A275moK2hvAPj7Z4jtRxrG62xMKx9v7Lr8zqf0VNICb+0r1/kx8Ly32vsfL5vSeHEZOrFPa5Bfz1ERERE5fB5BDo8QEdz/ojez9NJU6IvMhgZG4yKpcJjMjMtHRgLZcJk2cGxYoKr9aQvkvra0JU9VfWLSuF0nzs7Jpb+XqAlaB0ha8mLkDX5YXlgBBERERERERERERHRWGfCegcPA8Ywb0n12QWpYmYUblflYmHKuJIioFQrvMJ5PyTL5Wo8ojZaNLlbcGjzsXiu57GCsU2xtVgVWoF9Gw4uGLOKiwH2j5tHERJTratcSaneWc3FQ3iIiIiIiIiIiIiIaBRYtGgRQqHQ0OXDDjtsBLeGisG/NBARUd0osRUGADjtt6UfIR0TXiCWGwuT6z8AVjwLjOsADp4LEWwsaRtXfVp8LEwVU9IJlVUjFpYfL3OMhSXKeSSthTX29+jL2l/qwGmMhem4bpnEz/+SebweegPY1mfiuR9U78x4YzkW5vTMrkYoryLWrVaPNbUBfV3qcSsz9tWa7YjQi7bjobx9HIuJhc0deKZwYjL1BtikuQ8h0w1EREQ00lyGGIxN5Y/o/aQipUQ4VhgQ6w7LrO9T03tC1hGy/IArpUQTwNa+1FeGfmzMEKloWEtWQKx1MDjWbBEhy50n9b3bxZ9YiYiIiIiIiIiIiGj0MaX1zj+GqMFYmE3YKGZGEXQ1Vuy6oqb1SflqPYpV6u2r9YjaaDJv3Hw83/M4pMXfxP7a+ZBlLCxmFh+/U42p1lUuE+qdbV2ievtPEhERERERERERERHp2LBhA370ox/lTDvvvPNGaGuoWIyFERFR3dCJYan8/b3Sl40JLxDNxMLkY3dD/sfFQHKwXLPLXsANf4GYMKXobeyPSBSbpEmUEVOKViGElR/wcQwmlRgss6NzAHt2BMzuHmcsLOPefxQ+mi98BHy8TWLX9tIPTLd7nZiVb8mNGtV47leCfH+5ckx877eQP/mK/sqCTcABRzrOJiDRkdxmO8+HW3OfDMXEwtxWZ6nt7wUANHFfQCIiIqoTQggEfUDQB0xpzRnRXkc8MRgWywuO9YRlzrTUdIsIWbi83+VrlSmBrlDqCzuyR6zuLOs7sMFXGBBrDYqcCFl2cCx/WsCbeo4QEREREREREREREVWSCUUsDDUYC7MJG8VkZQNGMWm9g1ytR7FKjoXVeERtNOnwTsH+jYfgzf6XC8beD72FdZGPsLN/t5zpyliYzeOmGqtWLCwp1TuruQQP4SEiIiIiIiIiIiKiylq8eDGWL1+Oyy+/HO3t7bbzrlixAmeddRY6OzuHph1wwAGYO3dutTeTKoR/aSAioroxUscXx4UX6N+c2oZQH+TPvp47w9r3IH//U4gr/7fodf/lbeBLnytuGVUsTOf+KTWEZbfu/O1xOhA8VkTwR5fO7cqex24TI6M06DQS3t9iPf3W5yT+4/NlxMJsxpJlxPBGu9EaC8M9v1KPjZ9U1KrElbdCGJmdO+3eD/wOO0W+9HHu5YTme8e0+Hrrgb/cCfxwIZr8euthN4GIiIgI8LgFJjQBE5ryR/R+WDJNif5obkCsO5QVFssOjllM6woVF42tJwPR1Nem7uypqh/AC6d7XFmRsazgWEs6LJYdIQuIrCBZaqzJDxgGf2gmIiIiIiIiIiIiolymVMTCRA3GwmzCRpUOGMVLiCvVAp/Q3NEnT61H1Eab48edYRkLA4C/dj6EC6d8L2eaKqbnEV7ldage05iMQUpZ8ZPkJKV6Zz+XcFX0uoiIiIiIiIiIiIiI+vr68POf/xy/+tWvcNJJJ2HevHk44IAD0NHRAbfbjc7OTqxcuRJ//vOfsXTpUsisA7i9Xi8WLVo0gltPxWIsjIiI6oZThKpaulytQNfK1IUliiDYE/cCV/5v0UGzu16WWHRhccvoBnOshGKl3Yl2933+gdtO1xC2PslhWXRuVzRr3w272xMtMahWT3rD1Vt3cqSqgMOgGqG8ckm7F8MhJwC77FXU+sTcz+vNV0L+UTcS8fXu260HJkwBAPg8ejuGMRZGREREVD7DEGgOAM0BYOecEb0ftqSUiMSzImNDwTFZMK1HESHrr87JxMe8eBLY1pf6ymX1s3rhNCGAZn9uQCz1vUBLQYRMpMaDuREyr5s/dBMRERERERERERHVGhPWsTCB2ovr2AWpVDGkUqnjSrUdxSo1hlbrEbXRZtfAXtgtsDc+Cr9bMPZ63ws4Pf5VjPd0DE1TxfTsXlOqkJiEiYRMwCM8RW61vaRU76xm1OD7GRERERERERERERGNDvF4HEuXLsXSpUu15g8EArjzzjtxwAEHVHnLqJIYCyMioroxUrGwR5pOw9e2LYY0Tchb/s16pniqgFXKNsYTEp4iDpBNWu9PpXXdpYa67FatG/BJ2zFQ2jbY0bldkawImN3ticZruFZVIaEyg292z1VT8fweC5xegzH1yQZHzkCveswfhGhr1896feawgklOy57ffSfuaD3PcsxtAKYpYRip90fd95pd4uusBzyZHcaEGLn/U4iIiIhInxACAS8Q8AKTWnJGtNeRSEr0RgbDYoMBsW6L4Fjv4LTsedLjJn92LCDlYKQtDKzrzBmxmttyHQFPJhw29G8gKzaWFyFrzYuQBb2o+FniiYiIiIiIiIiIiKg8Ulrv/GMIY5i3pPrcwgMBAWnxObgqhlQqZVzJsA4o1Qq7eJSdWo+ojUbHtZ1hGQszYeKprqU4u+PrQ9NU8Tu7yJvdWFxG4UGFY2Gw3lnNgIt/nyIiIiIiIiIiIiKiimttbYXL5UIyqR9uOOKII3DDDTdg1qxZVdwyqgbGwoiIqG6M1LG5O8fXA9EwsPQ22/lkPIZS/mt+51PgwGn68ydMQEpZ0g4HpUae7KI6ibz9u5wCPF2h4q//6fclFr8u4TKAsw8WOHKP3NsejisWzBLRmAcAIqMx6DTKlBqdS7N7jiRr+CD8WFKimKjBsOjaqhwSX/xuwbSQCGBR61fxin8W9ou+jfN67sGE5I7U4LaN2lebvhcu7bxJGQtLmMBADGjypy7rxsKO3NMFvGIx8OmaoW99buf3hFH2SBERERFRidwugXENwLiG/BG9n/iklOiPZsJhmZiYLJjWYxEh6wnr/z5ab8JxINwDfNqTPVX1S2HhdJeRHRPLBMdaAiInQtaqmNYcAFwGf/InIiIiIiIiIiIiqiR1YKf2YmFCCHiFD1EZKRhTxZBKIaVUx5VqPIrlM/wlLWcXlqLq2K9xNjo8U7A1vqlg7IXuJ3HK+HMQdDUCAOKm9Q6IpcbCYjKGYJHb6yQprXckdQlXha+JiIiIiIiIiIiIiAg444wzsGXLFjz22GN44YUXsHLlSqxduxadnZ2IRCIIBAIYN24cdtllFxx11FE45ZRTcMQRR4z0ZlOJGAsjIqK64RShqpZOVxsAwPzVdxASQTRIRe0q1Acp24pe/wsfSszsKG4ZUwKuvONZde4enaiWFbv7Pj/g4/Q4DRS5H9RdL5k4/w45tN6bnpK480KBcz+X2YFMJ4KWfXC23TbyIG5n8SoWvaQsPYY32sVGY4iua5t6bI8DUv82tQF9XYgIH+ZPW4ynG+YMzbKo5av427qTUsGwSOF7o9P7wQHRlbh/w5dxztR7LccHoplYWNL6xLMFdj32KMhX7rIckwO9EA3N8Lr4WiciIiIiPUIINPlTP5dOzfmVX/93lmh8MCAWzoqNhQqDY72KCFlv4TFGhNTvCDsGUl+5rH4Rsf7lpMlvFRwTg9Gx3AhZa15wrCUA+D2197srERERERERERERUTmktN7BwxC1FwsDAI/hQzRpEQtTxJBKEZfqddV6FMtbaixMeCvnkyHBAAAgAElEQVS8JeTEEAaOG3c67t3yu4KxqIzg2e7HcNL4swGoY3oem/idx+YxjZmVi/OlJaV1+NAlePgOEREREREREREREVXH+PHjsWDBAixYsGCkN4WqjH9tICKiujFCrTD0G434XdvFuH78D7DZPRGzIstx26ZvYp/Ye7kzhvogYR0Lm9oGbOiyXv+l90lcfn9xty5pAq4S9p/a3Fv8Mk4S+bEwh/n7o/oxKCklrloic4JDSRP40UMSX5qdWYdOgCySFWpiLKw85UavnJ4jVjG8WjAqY2HdiliYPwgRaEh9f8bFwF2/wOMNJ+SEwgDgHf++uLvlXFzWeSNw2vnaVyuyngWfjbyunG9dJzCpJfV9fphQKdioHJJ3/RLiW9ch6HUOLtRgr46IiIiIRojPI9DhATqa80f0fuhMmhK9YVgExwojZD0hie4wCoJjCc34br3pi6S+1ud8ZqP6rbVwus+dHRPLio0FrSNk+dMafajJWDYRERERERERERHVLxOKWBhqMxamilLFFTGkUqjCSqnrr/FYWInRr1qPqI1WhzTPxdLt96Iv2VMw9nTXMsxrOx0u4VIG8OweN7ux6sTCrHf2cwlXxa+LiIiIiIiIiIiIiIjqC2NhRERUN+wCT9mO3gO4+lQDJ9xQmSNhH26aj4eb5g9dfjUwG/N2eQyrP/oMmsz+zIyhfoulU5wO+yz2oN1EEvDm/RSgc/9s6gZuf8HESfsKTG7VPxjVbtX5AR+n7UiaqWXyt9/K2xtT25zv4+3Au58C+0xJXR7QOBFjdgTMbhMZC0uRNg9kTDfapFy3/XgiWVoMb7Qr936rBvmPx60H2tqHvhVePySAqzqutZz1+xN/ics6b4TwBQvXr/G+1Ja0eJEP+mS7xOdmpN6rdGJhXz1UAAcerZ7hnv+EPPI0eGN7AigoNRARERERjUouQ6CtAWhryB/R+71eSolQLCsgFgZ6QkB3WGbCY4NjvYMRsuzgWE8YCGn83l2PoglgS2/qK0M/NmaITDzMKjiWP601L0LWEgDctVjbJiIiIiIiIiIiojErKa138DBqNLCjChhVMl5kt65aj2J5DX9py9V4RG208hheHNN6Cv68476Csd5kF17tewazmo5SLm8Xh7N7TCsZ50tLwvq9zMXDd4iIiIiIiIiIiIiIqEz8awMREdUN3VjYmh3AcfsI/PM8gf/5m+ZCRdrm7sBfG+bhzL6HMxMHem23ca9JwHubK3P9xcbFsn19kURbUGLZPxs4dFfdA4vVYwWxMI31xRJ6sbDOAfXY5t6sWJjGvh7RROoAaSHsbzNjYSnFPOaVFk8CPk91r6ManJ77MeuTDY6s1W9YT2/tyHzf1Jqa1TfTfl1e/Z3sRNa91WL2KufrCWe+jyed310Wnicg3O22j4X89jFYt3dIYxuJiIiIiGqDEAINPqDBB0xpzRnRXkcsIdGTFRDLRMZyg2NDsbH8CFlE/3OdemJKoCuU+spldWdZ34ENvtyAWGsAaAkKZYQsf5rfA8fPSoiIiIiIiIiIiIh0SVjv2GagBs8cCHXAKFbBeFFcqs/oUetRLF+psbAaj6iNZke3nYwnOh+0fA38tfMh7NcwS7msx+b57BbqHQpjNq+RUiWl9c5+rhoNHxIRERERERERERER0fBhLIyIiOqG7jGlXzk0dYDjz8+sXiwMAL4w9T7MHXgKl3TdmoqGhfuU2yhE5UJhgHUsrJiDbrtCwAW3m3j3Wr0dF+xWnb8tOtsR04xN+W2CUeGs/TvCGoEvKVMRKq/bfhsjozHoNMqUG71yjGpVOUY2Uip1u0xTwjAqdCB36wTr6V1bM98fNR+44XLndQUaCibpvC2Ji34KPG89dvPTEhcfnfo+YXP/uQ1g0YUCXrfe/fKV7ntwd+sCrXmJiIiIiAjwugXam4D2pvwRvZ/BTVOiL5KKh6WDYz3psFh2hCwM9FpM6w5VP1w9Vg1EU18bu7Onqn4bK5zucWVFxrKCY81BkRUZS4+nYmPZ05r8qNzvqERERERERERERDSmmdKEVHw+aYgajYUpolQxs3KxMLt11XoUq9QYWq3fL6NZo6sZh7XMwzPdjxaMbY5twIq+l5TL2j1uhjDgEV7LeF4lX29pSWn9hynGwoiIiIiIiIiIiIiIqFyMhRERUd3QjWE1DZ5MLuAViNxsYMHvTSx+vTrb9FTDXDzVMBf3b/gyzu7vhVScyE4IwOcGohUKUdlFc3S9vwXY1C0xpdX5gE67+z7/YF2tWJjm/eCziYVFsgJhIc0Tw0Xig7Ewm3miGuGxemB3H730cXWvu1YPAC83spYWTwIr10l43cB+OwFClHFQdvd26+kTpw19Kzqm6sUaW9u1r1YccCTEaT8FDp4D8ZlDsfdHSbz7aeF8rqybtvQt63W5DWDFjw3sO0X/fjgk8iruhn0srJy7lYiIiIiIchmGQEsQaAnmj+j94C2lRCSeFRkbCo7Jgmm9igjZQOWPE6kJ8SSwrS/1lcvqN8HCaUIAzf7C4FhLIPWY50bIRNZ45l/d8DMRERERERERERGNbhIWZ8AcZKA2AzuqmFVMDk8szFNiTGusKDX6Vev3y2g3r20+nu1+zPI94fHOxcrlnB5vr+FDPFm4s2i8gq+3tKS03tnPJXj4DhERERERERERERERlYd/bSAiorqh2QqDN2u/Iq9b4IFvufDntyTm36jeGalc50y9F7GuW4HJ1uMCqYMftxYceFkaq5iS7v2TbdlKiYuOKi8WVkq4rBIxqEhCAhCIJySSmg9tJA40B+xvT6RCQaexTjfOV411VyqqNdpU6nbt+kMTn/akvt9/KvD4ZQYmNpd4YPV7yy0ni3lfzJ3wueMBp/evtsJYmPKxnrY7xHlXDl20CoUBeoHFfz1RFITCxO2vQV4wS7nMuT3349JJN9iul7EwIiIiIqLRQwiBgBcIeIHJrTkj2utIJCV68gJiPemwWFZwrCcrQpYdHOsJA2YVf1ceq6TE0P26NnfEam7LdQQ8gzGxdEQsALQGBZoD+dNSEbL8MFnQW2ZIm4iIiIiIiIiIiCrClDaxMGEM45YMH48ibmQX+CqWKjwmYMBd4+Ein6E4e6uDUiNjVBkTvJNwUNOheL3vxYKxroTi5JYAvMJru16PYrySr7e0JKx3cnXVaPiQiIiIiIiIiIiIiIiGT23/hY+IiCiLbrzIY/G3+NP2F/iPzwtc+WD1jur82TszMW2SevxHpwlcel9lrj9mFQsrYdW6kS07+bEwnc3QjSbZbV8knvo3HNdbV/YytrGwItZXz6SUJR+I6/RcrURMbiQ43a5KhejSoTAAeGsD8PU7TPz5nyu8E1JjS85F8d1fA9c5LNNaGAvT9fUjBW57vvAOXJUVEZvUDGzuLVx2i0XETOy+n+17UavZgwU99+Keli8Xv7FERERERDQmuV0C4xuB8Y35I3q/20op0R/NhMMyMbHBsFhWcKzXIkLWHdILItejcBwI9+T+vqv+hKlwutvIhMPS/7YGgOZ0WCwvQtaSFyFrDgAug7ExIiIiIiIiIiKicpmwiYWhNmNhXqGIhSkCX6VQhZC8wlvzJ1JQ3b/VWo4q57i2My1jYXacIm/q11usqOvRkZSKWFiNB/qIiIiIiIiIiIiIiKj6+NcGIiKqG7oxLK/if8dGsw9AwRGhFfPTjXOwUDEmBHDmQRWMhVXo4NKtFpEdK3ZbnR920nmcrGJnVuxiYeHB/TuKioVp3G+MhaU4PY494dSBtdVQqef3aPPW+urECh99GxiISjT4itv5T67/QD3ozj0Lo9h5JqA4W+KQrFiYlKmD4lW3OH9LD94ZuE0x7yNvSMw/UCgPqp8xXnEdP/w95PXfUG7uHZu+YRsLq+1dKYmIiIiIqFhCCDT5gSY/MC13RHsdkbgcCo3l/BuWBdOsImR9kUrfqtqQMIEdA6mvXFa/lVr/ptrkT8fEsoNjAs3p74fiYpnYWHZwzOfhb5FERERERERERESmIq4DAIao0ViY4bWcHjcrFy9Shcecwkq1oNTbqHpcaPhMD+yBPQL74oPwO1rzCxhwORwao3o+xBVBvXIkpfXOai5R4ZN6EhERERERERERERFR3WEsjIiI6oZuZsej+Ft8w/svAjihUptj6aI7rbdSAJjSKjB9PLBmR/nXYxXN0Y2pZdvcozef3boTZu6gzmboxqDsYmHpSFm4iP2q0iEwp/hZ0pRwGTzI0862vtJjYU7PkfwAXa14TG+/p5Js6AL2nFTcMvLWH6sHw/3Fb0RTGwDgoRUS33vAxCfb9Rf1e9RjZ9xswrzVhZDitX7QzorX6glfBmxiYQLARV23YWHb1/U3lIiIiIiIqAx+j4DfA0xszh/R+wwiaUr0DobD0mGxVExMojsvQtZrMa07bP9ZSz3ri6S+1ndlT9WPjfk9mXBYJjg2GBuziJDlB8cafakgHRERERERERER0VhmQv0BpIHaDOyo4kWqwFcpYooQUl3EwoS/xOVq/74ZC44bdyY+2Ki305xXeB0/J1c9rpV8vaWp4ocuwcN3iIiIiIiIiIiIiIioPPxrAxERUR6v4n/Hho9eRbVjYU6e+r6BGVeVf1SmbmzLyS3PSNy8wHk+p7hWzrwatbCYZgzK7gDW9DrCcb11AZnImtM2RuNAsM73F3J6GH/zV4nxjRKHzBA4fm/A59E/oNXp/td9fow1MydWb90lHU/89IPqsZkHFb8NbjdWrJM451bTMfiWv73H7S1g96z71ROmZSQRAAKK0JhwuYDLfgN5w+XK9boVZ4C02kYiIiIiIqKR5jIE2hqAtob8Eb1fYKSUCMUy4bCecFZsLH+aIkJWzOcw9SQST31t6c2eqvo9t3C6IbJjYlnfWwbHREGYrCUAuF38RZaIiIiIiIiIiEaWKW1iYcIYxi0ZPsp4kSLwVQpVCKkegljuEsNM9RBSGwv2bTgYk7xTsTm2wXFencfMY3gtp1fy9ZaWhPV+ZbUaPiQiIiIiIiIiIiIiouHDWBgREdUNnQgVAHgUf4tv+PAfwM6V255ipKMzu4yvzEF7VjElzbunJHb3faKUWJhm7Gwg5ryOsM08Besb3CfEaRMjCcbCnB7HW55JzyBx/N7AkksMBH0Ven5XKIY32vRFqrfuYu95aTpEC3f7TEnbsWSFdAyFWZk2zv4WXPEn9RMyaL0PWMqZ3wJsYmEu1GiZjoiIiIiIyIIQAg0+oMEH7NSWM6K9jlhCZkXGssNjucGxHkWErDei/xlfPTEl0BVKfeWyurOs78BGn1VwbDA2ZhEhyw+O+T2p5wgREREREREREVGpTKj3RxGo0ViYInBUyXhR3LTeQc5TB0GsUj+zrIeQ2lhgCAPHjTsDd2++0XFenViYMs6nCOqVIymt9ytzCcbCiIiIiIiIiIiIiIioPIyFERFR3dA9jtDrst5BpNHsr9zGFCl7n5XV1xmYebVDqMdBpWJKHhcgpXTcqcbuIM78MJDO46S7/b98TH0/RdOxsLjeugDgo20Sc/YUjgelRotYJwFPvgvc/Q+Ji4/W2znL6TlSSmxqLKhqLKzY/eK22Z+tsdQd7a5bpvdObbX20w8AHn6z+OsM2MTChGFA7nkw8P7rluMuqX4z4uHRREREREREhbxugfYmoL0pf0TvtyjTlOiLpAJi2cGxnrDMnRYGekIyL0iW+r5WPzcoV3809bWxO3uq6vf0wuleNwoCYq0BoCUdFsuLkOVPa/IDhsHfpomIiIiIiIiI6pmpiOsAtRvYGY54kWpdDGKp6YSnaHjMbjoGj2y7B73JLtv5dJ7PqsdVFdQrR1KxX5lL8PAdIiIiIiIiIiIiIiIqD//aQEREdcMp8JTmUexX1NAcrNzGFCn7MLndO8o/aM4qtqV7/2SLJ1MBo+ZA6dtSEAvT2I6Y5kGdT72vHktHwsJF7Ofx0Ta9+SIVirGNZcU+nZa9JXHx0Zrrdlh5pWJ4o004rhfnK0XRr//3V6jHDp5TzqaUbNGFBlq/W3xIMWgTCwMANLcph1zgEeZERERERETDyTAEWoJASxDYZXz2iGaAXEpE4oUBse50WCwrONYzGBzLj5ANVO4YvZoSSwDb+lJfuaw+dCicJkQqGlYQHAsKNBdEyETWeCY45nEzNkZERERERERENJaZUO/3YcAYxi0ZPh5FvChmVjAWplgXg1hqDDqNHh7Dgzltp+KR7XfbzyecdgIbnjhfWlIRP6zV8CEREREREREREREREQ0f/iWLiIjqhm4Mx6v437HRPXoKRPdfbOCcW4uP4qTpxrZ0DESdY2F2d30yb1DnYapEDCodCQsVEQvrH9wnxOm5FImXtk21pNj41NK3Knfd+QG6WpE0U7dN9R6VTYjiHoNDfm7ig+sMjG/UPKi2T32mRnHDY/pXnPaly4ua3aqX1hwQ+MJnBR5YXtyTL+BxmGHGvsCrf7Mc8kr1i70KTTciIiIiIiIqkxACAS8Q8AKTW3NGtNcRT0j0RgqDYz1hmTOtxyZCZpYQ7a91UqbDbcDa3BGruS3XEfQWBsRag4OBOYvgWEswd1rQi6pE2omIiIiIiIiISI+U6v3hhKjNWNhwxItU6/JqxJWIRoOjW0/C4zv+hKiMKOfRid+p5qlknC9NGQvj4TtERERERERERERERFQm/rWBiIjqhu4xeF7FibsaIjuA5optTlHyj1H7pwPKW59VbKvUYxQ7Q/kHV1qs22bliRLCTjqxMOlQSkoHvaJFhMcG0rEwh/lUsbCPt0n87hmJD7dIHLGHwPwDBBa9KPHupxKH7Cpw6VyBoI8HJDpximCNxViY0/M1LRzTi4UZojDEZ6c7BFx6n8S9F2k+/7q2KYdKOahWnHlx0ctY+d1XBN5YL/HBVv1lgg77PYrTL4L84/9YjvlsdszkscVERERERES1yeMWGN8IjG/MH9H7RVBKif5oJoyViYnJofBYdnAsP0LWFapMSL8WhWKpr097sqeqPiApnO42smJiWcGxlqCwjJC1BpATHGvyAy6DHwgQERERERERERWjL9GDgWQfAGBHQr3DhwuKnfrGOFW8KGqGsTm6Yehys7sVQVfmQ8nu+A5EzDCa3C1ocDXZXocqhKQTVyIaDYKuRhzRejz+3rVUOY8qvJfNowjkbYyugSmTMETl3meSsP4g31XB6yAiIiIiIiIiIiIiovrEWBgREdUNzRYPGv2K6WF1HKfa8g8x83sEfrdA4Nv3lJb4iiWkxVpL8+QqiX2n2K/LbisTeSeE1HmcYknn7f/FY/YrCsdS/8aLKCqF0rEwh0WsYmGrt0js82MT5uCyD78pccWfMit66A2Jv6yUePwyAz7P2D+oUPf1VtK6HcaLiWSNNeE40KIxn8sAkuqTrVr6w6sS93xDasW+ZJdi58xDTrCcvL3P/kERU3Z1vM6c+RWbOK5B4KWrDEy4XP/GB5xOkjp5unLILhZGREREREREZEUIgSZ/Kiw1bVzOiPY6IvGssNhQcKxwWo8iQtYXqfjNqgkJE9jen/rKZfW5hvVnHc3+rNhYOjwWEGgpiJAJyzBZLXwuSERERERERESkY1vsU/x+039iffRjrfmFMKq8RSPDq4gXhc0Q/n3Nd4YuCwjsHtgHx7bNx4Pbbse2+Oah6TP8e+IbU/4VrZ7xBevpSXTi5d6/K66bsTAaO+a2/ROe7loGE9b7hXk04neqQN62+Gb864fn4fhxZ+Kk8WeXtZ1pSWl9xlOX4OE7RERERERERERERERUHv61gYiI6oZuP6jBYv8bKSWC4R0V3Z5yXXRUGbEwi/0QSo07PbpS4rLj7OexW3cib1u0YmHWJ13L8cMl9isaiKXG49b7ZNgu4yQ/FrapW2KvHznHi579AHh6NXDivvrbNFqV8nRKJCXcrvIPiCw2kjWWhC1CdFZKvRuTJuDWOXlhlyKe2NpuOfn+14av4DauQWDLfxmY+D29J4LP4Tci4fFCTt4F+HRt4bKKM68Cxb23EBERERERERXD7xHwe4CJzdlT9T8MSJoSveFUPGwoNhZSBceswmS1/flLOXojqa/1XdlT9WNjfk8mHJYJjgm0FExLRcjyg2MNPmiF4ImIiIiIiIiIRpIpk/jv9T9GZ0L/5J0GajQWphE4AgAJiQ/C7+CD8DsF0z+OvIcbN/wU/zb9vws+G7ppw7U21604qyrRKDTe04GDm47Aa33PWY7rxO/s5gmbA3hk+91odY/DoS3HlrydaUlpvZOrS+jsnEdERERERERERERERKTGWBhVlBDCA+AIADsDmAygH8AmACuklGtGcNOIiLRjWA1W+wNEw3DJJAJmCGEjWNZ23HrKZvz2wW1Y6d9Pexmr47vEQA++t2Mh/mv8vxS9DVGN2JaucQ3OB5/Z3ffJvDGdh8kqdgYAL30kcex/mVq3ry9ivy4rA4NdIKdtzI+FTb1C/+jJKxebOHHf+twhpD+aOrDRidNrOWlKFHOA7FgSjqnHXvxI4u/vSewyTj8qlk87Fta91Xp6m3Us7NL7KhsLc3p025sE4rcY8HzL/rXXFtQ7gFZ85QrI//x/BdMPiryhXCbgcVwtERERERER0YhwGQJtDUBbQ/6I3ucpUkoMRDPhsExwTBZM61FEyEr97KLWReLA5jiwuTd7qupzlcLpLiMdEstExFL/WgXHBFpz5gGa/ahIzJ+IiIiIiIiIyM4n4dVFhcIAwBA1GgvTCBzp2BRbhy2xjZjkmzo0bUtsIzZEP6n6dRMNl+PHnamOhRkWZwnO49GY5/W+FysUC7PeMdXFw3eIiIiIiIiIiIiIiKhM/GtDDRJC/ATANWWsYpGU8vwir7MdwE8BnANgnGKeFwH8Wkq5uIxtIyIqWVmxsPAAAKDR7C87Fnb+nAD27N+CY54tLxaGeBTjk50lbUPMIqale//k++NrEgvPk2jyl3YQWSJvnwid7YhaHEz427+b+O4f9G9EOhYWLyUW5nA12bGy19cWd8e+uaGo2UetUp5PfRHNWJjDeFK/zTZq6N5fIUUs7No/m7jmkfKDXNr33at/s5wsWq1jYZWms50uQ6DrBgP/9pDEzU9b3zcn7qv3viXmfwPw+CCv/0bO9KPCL2BKfBM2eabkTJ8zEwh4eWAtERERERER1SYhBBr9QKMf2KktZ0R7HbFEVkBsKCpWGBzrVUXIwhW/WTUhaQKdA6mvXFafjVh/XtLoywqIBTJhsZagdYSsNS9C5vfwMxEiIiIiIiIisrc9vrmo+RtdzQgYBeX7mjDBMwkCBiTK3+FpR3xLTixse3yL7fwd3sllX+dYcMr4c/DojvsLphswYFrc759rPmY4NotKMM2/K/YM7o/3Q28VjHV4d3JcvsM7xXGezrjiJJpFMqGIhYn6PJEsERERERERERERERFVDmNhVDYhxMkA7gDQ4TDr4QAOF0LcA+CbUsqCQxWIiCpBSgn5i28Dy24fmiZueAwSR2st32B18rCP3wYAtJi92Ob4dmfP1diMA0+fAzxb1moqHgsrxz3/kPjWMeqDwOwSRom8/W10ckfRvO1PJGVRoTAA6B8MfxUTCwsPRsqcwk6RuAQgsPRNidNvGoPlqgooJVuVDriVayzGwnSFLUJ563bIioTCACCpsRoZi6oH28p7f5w9HXh1jfN8a3fo3d6WoMCNXxb4z7MlzrnVxJ+z9hPbdQLw88/rH7wqTv4q5KZPgDt+lpkG4LZPL8bnp/5xKCQ5sRm4aUFtns2WiIiIiIiIqFK8boH2JqC9KX9E73f1pCnRF0EmODYYEesO50XIwkBPSGaNZ+bP/1ySUvqjqa8NXdlTVZ/FFE73urMjY5nAWEtQWEbIWvMiZI0+wDAYHCMiIiIiIiKqZTGpOFuewqymo2CI2twXo9HdjH0aDsI7A8vLXlcyL04UM9X7+ASMBuzb8Nmyr3MsOLjpCDzRuRgJmdnp0C08OG/Sd3Hn5v9GQubukDW7SW8/UxoZp0/4Kn69/qqcx9MjvDio8VDHZWcG9kOLexx6Eur9biuzFx6QlIyFERERERERERERERFRdTAWRmURQswB8BCA7LSOBPA6gI8BtAI4CMCErPEFAJqFEGdIKXkoBhFVnLzhspxQGADIy06CPLwLgM9xea/F/45y2SIAQHtiGz707l7W9gm3G01NbkBx5jDLZawmRiOlx8Isrlq1k4PLAJZfbeDMm018st16nuuWSXzL5oR6dnGtRN62OIW4gMJg0ssfOy+TLx2mKiYWlo6UOW1iJAE8uUri87/jf3PF6M/bP60vIvHcB8CkZuCAaYBr8CBBp+eITvBqrApb7Cu58PnK3WCt0NqqV9Rjbe0Fk3pC+tvn9+jNt2K99ioBAAGvwIPfNvDMauCVNRIzOwSO2zt1kGoxRENzwev/+IG/452PDsTfvvkYgrvuhhP2ERjfyANaiYiIiIiIiKrJZQxGpoLALuOzR/R+J5dSIhzLDYilImNyKDKWDo71Dk7Pj5AN2PTU61ksAWztS33lsvqMqHCaELmRsaGYWFAMXc6MZ54H2ct43PxshoiIiIiIiGg0s4tYZQsYDZjVfBTO6riwyls0sr4+5fu4e/Nv8Xb/csRk6R86JWXuGTjt7ufLpl2LJndLydc1lkzx7Yxv73Q1Htj6e2yObcBk7844q+MC7NNwEIKuBizeejs+ja3DeE8HTh3/JezbWB8RtbFqemAPXDj5+1i6/V5sjq3HJO80LJh0CSZ4Jzku6zE8+JdpP8Odm/8HH4XfVcxVqZN2Wp/R1yV4+A4RERERERERERHRaLJu3TrceuuteOaZZ7B69Wp0dXUhHs+EDG6//Xacf/75I7eBRBb414b6cC6Al4uYv19nJiHEVAAPIjcU9gKAi6SU72bN5wPwTQC/ApBOQPwTgOsA/LCI7SIiciQTCeDBW6zH+roBTHRchxAWBxI9eR8AoCO5rZzNwz/7lgGYDwAYuPQNNPz2QK3lrDYJ8ZnPwowAACAASURBVBjGJXaUtB0xi/0QVAEmAWD/qQL/eqLAJfdYz7Sp2/767HafSOTFiXRiYZG8WNjKjcXvoJEOU5USC3MSiQO3PS/1wks1SudxzNcbznz/9/ck5t9oIjQYxzp8N2DZpYZW3KmW7/f8UB4APPb2MMfCOreox/Y7POfioyslzioimpcfD1Rpcu4+FnC7BObtDczbu4yDRVsnWE7eObEBF7z9Ixhf+kPp6yYiIiIiIiKiYSOEQNAHBH3A5NacEe11xBOpgJhVcCx7Wq8iQtYTLu0ztFon5eB9FCoYsZrbch1Bb1ZkbCgwJtAStIiQWQTHAl7F3wmIiIiIiIiIqCJUQaydfbvh21OvHrrc5GqGIVzDtVkjxm8E8I0pVyAh4xhIZnbh/sXa76O7iP0DkzJ3x5u44n5u90zGNP+upW3sGLV3w4H48YwbETOj8BqZHY/2aTgI+8w4CBEzDL8RGMEtpGIc2HQoDmg8BAkZh8fwOi+Qpd07Gd/b+ed4YseDeGj7nQXjslKxMMXJhF118J5GRERERERERERE9WH69OlYu3bt0OWnnnoKc+bMGbkNKsHChQtx6aWXIhrlGYRpbGEsrD5sllKuqcJ6fwqgLevyiwCOk1JGsmeSUkYB/I8QYh2AJVlD/yKE+F8p5VoQEVXKp58oh2SoH/A6x8IKlss6Yqs9sb2kzQKAqYmN+M7Xdh667G9uwKzwcrwWcD4TneVhSbEIxic7S9qWWBGBrLSpbQKlnjXN7qC3gliYxvryg0kTGovftv5o6rEtJhaWjpQ5HcQXiQN/fK2+j/Qr5UDHe1+ROG4fgWhc4sybM6EwAHjxI+CqJRI3LxCO6x6LsTDdu6s/KpH/jmBU8LjFE28wcdw+At+ZKwZf8xa6tiqXF42ZM472RyTOvsXUiuxJKSGE0H7sfnjKCB2sOXGaeuyZJeoxIiIiIiIiIqo5HrfAhCZgQlP+iN7nFqYp0R8tDIh1h2QmPOYQHLM6KQQBoVjqK/ckF6pP4Aqnuw0UBMRag0BzOiyWFyFrDWTNGwSa/YBRyQ/tiIiIiIiIiGpMzLQ+4CLgakCLu81yrB64hSfn9vuKjFclZe6HRar7OTuWVW9Ut52hsLFHCAGPKC4Uls1n+C2nV2qvz/zXY5qLh+8QERERERH9f/buPEyOqtAC+LnV+8xkZpJMhiQECCRhCQJ5yBIgSAIiyuMhID5AAWUHQREQnoBAEAVFEURZREB4GlaVHQMICY/VmEREMGFNCIRAtslklt7rvj9quqeq+t7qqu6e/fy+r7901V3qTk3PpKf63lNEREREg8KTTz6JM844w5Ej4WXhwoWYM2dOcfuKK67A3Llz+2h0RN74aQNVRAgxDcA3bLsyAL7pDgqzk1I+LIS429YuBuAKACf32UCJaOTpbNcWSZ+LtEqseqv4tNHU9+/lh5MW4BtHbIOtdp3Ru7NuFK799Fs4cPIzlY0rm648LEwxD0H3Vlb0nLYDdwjSv8Qn7cBWY6xJGV7vkysJdkpmnNuxCt7RSGktGAuyoK4QelTubf8tC6ubMrJohcRe2468xWR3vSxx5zeBp/8NdCjeUdz6vMTNXy9//odiWJhfqvNSy1fK0lXA0lUSDy6WePEiAxOaS3uXr7+sbvyZfRybzy3vDdgrJ5cHIuHS8ECVSAg4fLcB+vnYddbAHJeIiIiIiIiIhh3DEGhMAI0J6zpqL//XPVJZW7BYMXDM2mcPHNusCSHr5I3QlHImsL7TejiprkyW7hMCGBUrDRxrSgg0lYSQiWLImD2ELBoeedeHiYiIiIiIaOTISk2IlRi5IVYq0YBBSHk475qZ4Xkm0hLa67C1iQvLS/VdbA0Rqkn/RERERERERERERFSdiy++2BEU9rWvfQ2nnHIKttpqK0QikeL+lpaWgRgekSeGhVGlvgbA/mnVn6WU7/ho91M4Q8b+WwjxLa+QMSIiv2TXZsjT99OXVxipI//w8+Lzpvxm3+3O3XAjrjNugfHg2wA+X1qhbhQ+l3wJJ2z6A37ffLxnX0I19EwaY2oYFlbu2HUx7/O3ZpPEhGaBnz1l4sdPSGxOAROagHtONTzb5VxzIvwE8LoDiNIBvh67jhSQVc/JUNrUbf1bbozvrK1sPAU3Pivxh1OH9mKwSqfMrNog8dA/qptwM5zDwjYnS/cZ3j9iFVmxHrhnkcQFX1C8Dp97UN1o9DjH5jPL/H8fsz1hYeW+dw0x4L7TDbSMGpifDxEK1ezukURERERERERE1YpHBMY3AeOb7Hv9XzfJ5a3ruPbAMStMTJbsa0+qgsmG97W4SkkJbE5Zj1WOS/j+wsYAIB4phInBFiZmBcypQsjc++pj1o08iIiIiIiIiAajjKkJsTIYYmUX9Hy4w4kyZkZZL2oECyEjGpY0186knwmsPuSlelJrSHD5DhEREREREREREdFAe+utt/D6668Xtw899FDMmzdvAEdEFAw/baBKHena/p2fRlLKZUKIvwHYu2dXPYAvAHi0hmMjohFKXnOad7mPRVIH7ajYuWxR8Wmj6T8s7Oub7wNGe1RINAAAfrfm9IrCwuSCPyKKLAyZhxnwbmMZRUCWnzkOd50k8M3fqSs+s0yiPgr8z596y9e0A4f80sTpn9Of+5xrMZmfqRbusLDOdGUTNDrTwcLCAGsBXY3mg2jds0jiD6f27TEG0oQm67Wh8tJ7EqEy4Vflzn9+GKc5bVbEq/bVkr8L/yhxwRcUBTvtASxbXLo/4xzca6v8fyMKvwfcvw8KzjtY4Jg9BHabBMQiXORIRERERERERFQL4ZDAmHpgTL27xN/1FyklutK9wWGbugvhYrJk32ZFCNmmZOm1XrKkssAnWeATx0cSuuttpftDRm9wmD1wrCkhbM97Q8iaXCFkTQkgZPA6HBEREREREfWNjNSEhQmGhdkFPR/ucCLdeY7wPBNB9NmsO4s7vK8gFHCuLxERERERERERERHV3uLFzjXSRx999ACNhKgyDAujwIQQ4wHsZtuVA/BSgC4WojcsDAC+BIaFEVGVZLILeP5h7zo+Ptw/bi9FnQ/eKj5tMLt8j2m7zApAjNGWC8OATNQDyS7s3/UCXqjf33ffAIAlCwAAMZlGUtQFappR37RMyX5GTpipDwt7/J8SEcU7i0wO+ONifWhQSViYj3yhZMZZafkn5duobE4GDwt74l+VHWuk8fo+3nCMgWNuU6dCnXufxNGf9QiXy8uygXJ5TeDUcNCeLN3X72v2ujvV+12phi+957/Lwu8B3fduyjhgr225OJGIiIiIiIiIaDARQqAhDjTEgUmOG2f4v46Tzkq0F4LFkrCFiTkDx9ptIWT2wDFVuD5Z19k2dlkPJ9XVVfUV14ZYIUzMFixWJ9CoCCFrVoSQxRn6T0RERERERBoZUxMWZjDEyi7o+XCHE/E8E+n19ZWrPDRhYWBYGBEREREREREREdFA+/TTTx3bkyZNGqCREFWGYWFUic+4tl+XUvpPzwFedm3vXOV4iIiAJc+VrSKF98f7R/4H8LW9nXWk6UyuqQ8QFtZobgbEWO9KiVFAsgv1stuzmnLko1uB1e8jKjNIovqwMD8hXcLjHP5xKaBbVPTJZn2fOdecCD/jaLOdLiklfvaUutGB6RfxF+MixCMvKcPiNnYFDwv79r0mWhqCtRmJvL6N22+hL1vfCaxu07dObdwIQB/CBwzNsDA/r3sA2KDI6TKM2o6lrJT695XY/8sVd1n4OdR978L9/TV6EKfOhbx9bmnB+G36eyhERERERERERENeLCLQGgFaG90l/pbr5U2JjpQzQMwKGZO25z3BYop9m7pLb2hBls609fiozb5XdyGzdH8sbA8TKzwXaCoEirlCyJpcIWQNMcDo9zslEBERERERUX/IyIxyf0RE+3kkg1tUBA0Lc04KzEhNWFjAfolGkvK3MvXHlOo7+oYEl+8QERERERERERERDbTOTudi7UgkMkAjIaoMP20YGc4QQvwAwE4AxgLIAtgA4AMALwKYL6V8IUB/013b7wYcz3tl+iMiCkw+/3D5OprFRftsB/z0Kwb2mQKE3AtP7r/BsTkx97Gv8YRkDgYkUCagDHX1wMbyIWTKbt54FQAQ1Uye8qIKCwt07BpyhwP5mWqxamPv84sf0rcYnV6L0OrXMHbaeqwPjyspX9shA4eFTR3nDCvrK1JKz3C2oUwIKzDs7U/V5c/82wSgTodKLfo/yAlHePY/GMLC5MfvA8uWANvPACZNrdn3ckNn6eu9318l3R3q/fW9Kzql3/SzHoXQQN3CzNAgCgvDuC3V+z/5oH/HQURERERERERECBmiJ2zKXeLvqpmUEsmMFSBmDxxrT0rnviTQ3q0OIesOfol+REjngLUd1qOX/7AxQ1ihYU22ALHmnsCxRlUImWtfUwKIhIfnNXYiIiIiIqKhLmNqQqwMhljZBT0feTgnwmV5nok86K4b1SYsLC/VE1NDIlST/omIiIiIiIiIiIhGCiklli5diuXLl2Pt2rVIp9MYN24cttxyS8yaNQsNDQ2B+zTNQbAQnagKDAsbGY51bccANADYBsDnAFwihFgM4GIp5V999DfVtb0q4HjcSQpjhRCjpZRtytpERH4s+FPZKrqwsDMOEJg1TV0m//cnju29kosxOr8RbaExnsc6ZvOD1hNRJuEmYk28aSgXFuYely2IJyqz3sdQyORLJzT4neJw0I7As8sDH1IrZzqDsfxkDK3cAHSmJBriAtfO1zf4MDIJANCaX6cJCwOyAYLTACAeqdV0EG/ZPBAdwu/Uyn0fdUFhAJDK6X9u0p9+Ajneu++BDAuTUkLeeilwz3W9O7/6beDbP6tJYFhK8Xrtz0w5mcsCHZq3bE1ji0+XrQnWbyG0b8V6dfmgCgsL6X8wpWlCGINpsERERERERERE5EUIgboYUBcDJjY7Snz3kc3J3kCxngAxVeBYexJo71aEkCX9XRcfaUxp3bijrRvWbbCKVCdLfQLrY/aQsd5gsUb3Pk3gWCKKYXtTDyIiIiIiooGUkZoQK8EQK7tIwPORl86JRTzPRHpCc/1P1iwsTD0x1QDDwoiIiIiIiIiIiIj8WL9+Pa6++mr84Q9/wLp165R1otEoDjzwQMydOxd77723tq+VK1di22231ZbPmTNHuf93v/sdTjrpJGXZlVdeiSuvvFLb54IFCzB79mxtOVE1hnAEBdXYHgCeFkJcA+AHUnpOSW92ba8NciApZacQIgUgbtvdBIBhYURUuVn/BTz7gGcVXViY5zKPznbHZhRZXL32cpw14dfaJuNya3Hhhl/0dF5mEUk4CgCoLxMWViLZWXyakMlgbQFkAgRkub+Cs2YbeHZ5bdOYTAmEeg7kd6rFsk+ALZu9a39n400AgHG5dVZUpsslD0mkAmatzX8T2HVSsDYFVx8pcMlD/r7CZGb4hoVVs7QqlVbfcc9OkYXXfxY94wwKA4AHfwV8djaw32FVd59WvF67M1V369+nHhmxo1uLT29aGOybsLELmPuY/vdKeDDlb0Wi+rL29Y7zQEREREREREREw18kLNAyCmgZ5S7xdyXUNCU6084AsWLYWLczhKy9W7rqWM+DXPMfSbrS1uPjTfa9umuXpfsjIZQEiDXXAU2FYDFH4JiwBZJZ/zbGAcNg2BgREREREZFb1tSEWBkMsbILej7y0jmvKsPzTBRYraYe5qGe5xgSQ3hSKBEREREREREREVE/efjhh3HiiSeio6PDs14mk8H8+fMxf/58nH766bjpppsQDvM6LA1/fJUPb6sBPAlgEYBlADYCMAGMBbA7gMMAHGKrLwBcAsAAcLFHvw2u7eApNVYbe1hYyfT5SgghWgGMC9hsSi2OTUQDbMLkslW0YWEB12mctulObJ95G4+d8gwMAXx+J4GVF5+NVxN7YVrmXRy3+X5Mzq7y13lP6ExdmbCwkm46ele2fCb1Jt6NTg30NagWDnnGRNr8166BDuVLLg+EAoYBvfmxxPw3vOsc0fEoAKA1r04MDhoUVuD3XLlNbRXwO52kOwM01VV2nMEu6M+cXSqdL3sG87XNsgtEPnybev8Dv4LwCAvz+5pKK352+3Wt2dP36ctG974F61LPNdTa48fe37TIYLqh4k576Mva1jEsjIiIiIiIiIiIAjEMgcYE0Jhwl/i/8JfK9gSLOQLHZDFkrBA41q4JIesMeD1vpMjmgfWd1sNJdUG3dJ8QVmBYaeCYQFMxZKx3X3PC+lzAHkIWDTNsjIiIiIiIhp+MZIiVH1HhcUM7hbx0TizKSPUdCKOC55lIaCcx1iYuzP3zWBASg2kiHBEREREREREREdHgc+edd+K0006DaTrXHU+ZMgXTp09HXV0dVq1ahUWLFiGf771xw2233YZVq1bhscceY2AYDXt8hQ9Pi2CFgD0jpTZ64mUAvxZC7AHgHgDTbGXfF0K8KqV8RNPWHRaWqmCMSQCjPfqs1LcAXFGjvohoKGlfX7ZKrcLCAOAA/BNz/rs33crcdAdO33SHovMyCVg9YWETc2s8q4Xd3Sx+rvj0qx1/wsONX/Y+jktGfdMyJff5ifTBwpScCRSmIPkNTXpjNfD0m/rKZ7bdhnjPxLLWnDosrBKj6yoLCzvjAIEtGv3X71bP1Royyp2im78u8K15wU9kKp0re/7NWt3erxIvPqbev3RhTbpXBdztNEHgbyv654uW836mL7SFZO2xDfC/r9TuuLtNGkQL4lomaovkafsAj62GqKtJDi4REREREREREZEv8YjA+CZgfJN9r/9rarm8xOYUSgLHisFiPfvaNSFkm7oH+LrsICVl73lbtdFRoqqt7CMR6Q0OK/6bsIWNuULIml0hZPUxr8WvREREREREAyNjasLCGGLlEDQ8zYRzUqDuPEeMYCFkRMOR0Fw70y+9CCYv1ZN0GRZGRERERERERETDlpkDuj8a6FGMDHWTAGN4RgW99tprOOussxxBYTNmzMBNN92Efffd11F33bp1uOyyy/Cb3/ymuG/+/Pm4/PLLcfXVVzvqTpo0CStWrChu33DDDfjlL39Z3L733nsxc+bMkvG0tLRg9uzZAIBXX30Vxx13XLHs3HPPxXe/+13t1zJ+/PgyXy1R5Ybnb4ARTkr5ZIC6i4UQMwG8AmB7W9FPhBCPS6n5pMrVTdAxVtiGiEivrXwYlNQshtDeHyyv/xUovv49P6MCjDJhYeEIAGBSbrVntajIAeidJCAf6H0DeljHk9gxvRzLYzv6GxOATCbv6A8I9ov5ssMErnq8dr/K87ZwX79zLf79scSUccAbH6vLf/LppcXnEc1dEr1MbQXeXVu6vzNd2X9i3zs4WFhYUhEKNZR4fR+FAE6cWVlY2J7vfRdX7+rdLm96Fg9pacUNB2s0P8nnAJLaIvuCs1CZX31B7Thh8CxmE5Eo5KjRQEdbaWEmDXlIC+Sx3wViCYhoHIjGgGjc9YgBsYRzX6y0nij3fwgREREREREREVENhEMCY+qBMfXuEn/X5aSU6Epb4WHFsLFuYFPSFixmCxxzh5BtSqpvlEDWZwXJdmBNu32v7qJw6f6QYQ8T6w0ca0oIZQhZsyuErDEBhIzBc32WiIiIiIiGB21YWMBwrOEuasQD1c9J58SijGQoG9FA0YeFcfkOERERERERERENU90fAY9uO9CjGBkOXwE0TB7oUfSJU045BZlMbybArFmz8NRTT6Gurq6k7rhx43Drrbdi6tSpuPDCC4v7f/rTn+K4447DLrvsUtwXDocxefLk4nZzc7Ojr/HjxzvK7RoaGgAAK1eudOxvbm7WtiHqa/y0gSCl3CiEOA7AYvTO+N4RwBwAf1U06XRtJyo4rLuNu08iomDaFKlOLlKzqEUIayFLyZ3V//mCvrOZX/Q3rkSDd/nYCQCAPZJLPKuF3/sHZNt2EKNbrR3vv1ksq5fdWPjBwfhxy/fxUmJfbJX7EN/Y9AdMyK3BPtuqv4bMirch2ydANI0t+yWoMtYur3FYWM4eFuazzb9WA6s36csbZFfx+dbZDwOPaUKTOiwsm1cHNnmZMg6Y0iogpUTYcH69Ot3B882GDAGgLiaw8hoDky8Onux1yUMMC7Pz83rqb0F/Roac0ePUYWEF990AoPp0XBmJloaMOQLG4p6BYyKWUISVufvoqePuKxwp/X+RiIiIiIiIiIhIQQiBhjjQEAcmjXaU+O4jnZXF4DB74Fh7Ujr2tWtCyDanav5lDQt5E9jQZT2cVFcv1Vc0R8WdgWPWv6IndMwZQqYKHItFeJ2RiIiIiIh6SSmR0dz4kSFWTkHPR94VFpZlKBuRlghw3SooKSXyUE+gC7lu8ktERERERERERERElgULFmDp0qXF7cbGRtx///3KoDC7733ve3j++efx+OOPAwBM08T111+PO++8s0/HSzSQGBZGAAAp5VIhxNMADrHt/iKGXljYzQAeDNhmCoBHanR8IhoovsLCNG65BPLyOyB3nw1x/o0QLVaAl3zwV/rOJk1xbu9/OPDCoyXVxGlXeo5J7Hso5NP3oF52e9aLdm8CHv4tcNKlPTtiQKZ3Mk9LfgOu//TCknbXf3IBzht/Xcn+TDoHPP474OvfK+6TAVJtan0X+ZztJmp+x+EVFHbR+p85tvdLvhJ4TGM8/nboDLDoaItG4I9nGgCsBVOtjcDHHmMvSA7xsDA/38atx/bNhJuhGBbm98evSzGHL6e+CWHNyW6Pt2vT93Js1jIs7Mu71a6vmln1dv8cJ5uxHl2bK2peVViZEJDFMDFFyFhhOxYHoomSsDLhqJNQh5XFXP8WHpEYRIgT44iIiIiIiIiIRpJYRKA1ArQ2ukv8XUfOmxIdqZ4AsWKoGLCpuzSErF2xb1P34Lwxw2DQkbIeHzrun6C7+ujcbwhg3ynADccY2H0bhoYRERERERGQkzlIqP8AizDEyiFoqFdeOicRZaQmLIyhbETQXXOSVd8eEjA1v+MAICS4fIeIiIiIiIiIiIhI5e6773Zsn3322Zg4caKvtj/5yU+KYWEAcO+99+KWW25BLMbPRGh44qcNZDcfzrCwXTX12l3b44IcRAjRgNKwMB+xKeVJKdcCKJ8Y5BxPLQ5NRAOtbV3ZKlLz4b74dJUVxPLCo5Cr3gLuWgIRjgDppLYvUTfKuX3I1yHdYWETtwV22dd7UPseCgAIS+9knYjMQt75Q4iTLoVcscwRFFYiXgekrPCxqMwqq2REFPKV+RA+wsJ0vyVv+brAWfOqnxgBOBfg1KLHMXnHihXUm12B+xhdL7Sj6fA4/Xb7TQEe+7aB5rres1gf9de2e6iHhXl8I+3/9T53gYEDr6vtCqyhGBbm12ZFUF02X5ufw7LWfaQtEid+37Fdy7CwvgqVq8rus4GlCwd6FH1LSuv/QY//Cz2bV3v4cMQZIOYOFIvGnPtc5UIVcObuI+YOL+sJNQtH+DcCEREREREREdEQEzIEmuuA5pIbgfi7ziOlRHemNzisN3BMOvcV9isCx4b6df2+YErgxXeBOdeZWP5DAxOaed2NiIiIiGiky2oCrAAgKnxOrBohgp4Pe1iYlBIZUxMWxlA2Iq1ahIXlPeYDhwRvoEhERERERERERESk8uKLLzq2jz/+eN9td955Z+y+++5YunQpACCVSmHJkiXYd98yOQ9EQxTDwshupWtbFwL2jmt7m4DHcdffKKVsU9YkIvJB5rLAVtOAt//hWW9duFW5X9g/3P/gLeDff4dsmQD8/VnfYxAHHAFc/FvI+28A1qwEdtsf4sKbIKLeE2tEoh7yy6ch/Og8z3pR2bvCRJ44Q1/x8FOsca9ZWdLOLi1iwD9f8DxmOWccYOC8B/JIqfPIAsnZbmrY5TOIy0tLfoNju7KwMH2Z3zF+dQ/hCAoDgHqfc62G86Ii+xnZb0rt+++v7KyB8ulmiS0ae89irr/C0bxCGfc40LGZrsHvhYLYIPyLRezzJcjhHhY20HJZ69HdUVHzqn4NCAHpDiazh4kVt9V1lEFlxYCzhKttaT0R4qRAIiIiIiIiIqL+JoRAfcy6hj+x2VHiu49srjRAbJMicGxz0hY2Zg8hS3rfiGMo60gB9yySuOALDAsjIiIiIhrp0qbiTnk9GGLlFPR85JFzPDehnlQUFTzPRH15hcIe3OcWEoNwMhwRERERERERERHRAGtra8N7771X3G5ubsZOO+0UqI999923GBYGAH//+98ZFkbDFj9tILukazuhqbfMtT014HG2c23/O2B7IiIHEY5A3PEqzNn1QF59Ry6vtRXCVSrv/CFgGPoGR5yu7ufQEyEOPRHSNCG82rvbTdkFEemdrFMnu62xrXD/Cnb1NX4yZNfm4rYuLCyjuOug7hwJj1kRG28wUHd29UlFuRXLgbHWm/Ybn62+vwm5NY7terM7cB+j66oeBuoUN3dc5zP3JpmV6NspKX3L74KmSLj2X2O+v8KzBsj5D0jMO7X3vGX1c4tqSxcWlmiAiDnfNqb1N0cMLB6pXV81wzCn4U1KIJ20HpU0r/bw4UhpyJg7nEwVVFYIG4slFCFkMVd7VZ04EIlCeP3HT0REREREREREWpGwQMsooGWUu8Tf9RbTlOhIQRE4VhpC1t4tiyFjhcCxTd39eL24Av9YNdAjICIiIiKiwSAj9XdpZIiVU9DzYQ8oypj68xwxFJPaiEYc9fUaWfXMH2dwn1sInHdGRERERERERERE5LZunXP98rRp0wKvc9xxxx0d22vXrq16XESDFcPCyK7Ftb1eU+8N1/auQog6KaXfJJb9yvRHRFQR8YM7Ia88UVm2IjLZf0ddm4HlS/TH2cU7RTZIUBgAIFGPsMfkAAAYk28DAMgTZ3j39bnDgXuuK27qw8L8p+94vZWORwTabzTQ9J3q0pmyF30F8n8fhZg0FQ+/VlVXAIDdU85O6mVX4D6aElZQmt/QK5Vxo0rPXs7n7zmaLQAAIABJREFUqepWfOuklHh3LdBcp+57qOjrHJqhGBYW5HV27yKJeaf2buf6a/HXJk1Y2OhxJbtS3vmHgXTobyg7cEI+/oz6zEzr33QKyBQeaevfdNL6l0gll7Ue3T7TJV2qDisrhom5gshi9uCxhDKsTDjCzRL6sLKSwLOe9gziIyIiIiIiIqIRzDAEmuqApjpga0eJv4vqUkqkss4AsULYWDF4rKdssyaErFO/lrxq76ytfrEtERERERENfV4hVlGDYWF2Qc9HXvbOQcxo5g0CDGUjAqBfZFbNhNEe9uA+t5Dg8h0iIiIiIiIiIhqm6iYBh68Y6FGMDHWTBnoENdfW1ubYbmpqCtyHu83GjRurGhPRYMZPG8hub9f2x6pKUso1QojXAezasysMYBaAp30eZ7Zr+y9+B0hE5EV8/hjI5x8GFv65pKwtNFrbbnp6mXPHxk+9D/QZ96/LKsXrYZSJ9vg01Fq+n6POgthmR8g5RwGP3QkAiGnDwqy7A8q2dRA9QT+VznEYFRdYfKmBo24xsarC9805EYa87tsQ19fmv4RxeWfeZVRmEJI55ANMtIiGgPpodQtjRsVL9/38qwIn3FH+ZGdc+XFvfixx+K9NrFhvhW199bMCd58kEIsMztAwr6/QPc/mmqMELv5z7RYJDcWwsGr4DaCrmjYsrPT3U9o7/zCQT9pr11fNGOUDjcRV90G0TNCWSymBbMYWJGYLFEungExPoFjaFjJmqyMLgWPuIDJHm6QtrMzVR66GiW40vBReIxWoOqgsFFaHicVKg8lUgWNCF3BWEkxmr9MTahaJBr7bABERERERERHRYCKEQCIKJKLAeMe8J//XPHJ5K0BMFThm37dZE0LWngRMzUWid3mjRiIiIiIiQrkQK8VkqxEsaKiXaQsoYigbkTfd1ZJazGK0B/e5hQRvpEdERERERERERMOUEQYaJg/0KGiIkq6Qg1qs8+NaQRrOGBZGAAAhRBzAUa7dCz2aPITesDAAOAk+wsKEEDvCGUrW5acdEZFfxlX3QmbSwN+eglzwZ+CZewEAJgxtm62zHzp3rP3I8xhi4nZVj9MhUVe2yhEdj5atI87+qfXv7KMge8LCImXCwvDsA8DRZ3v3m+yAecHxEPv9J3DQf0M0jS2ps/s2AiuuMbD8rBOws3l32bG65UQYWPxc4HYqJ276fck+AaDe7MLmkP8k4VgEaIhVFxYWU7zT+sruPsPCbDeXy+QkdpnbmwglJfDAYonGBLDbJIl/rwH23hY4dk+BaHhw/PESJHzunDnDKCwsHOmXECYpZfEP1az+RoS1PaYuLKy5pWSXO+yuGolo7fqqme0+U75OOOJZLIToCSyKAQiecl7tT7rM59VBZcWwsRSQTiqCynrCyjKaOu5wsmKomaufGtyFk4ahfA5IdlqPClQdVuYIIisEiiX0YWWF7ViiNKisGFIW6w0kU4WVFYLOwrw8Q0REREREREQDLxwSGNsAjG1wl/i7IimlxF/eAA77VemF+rZuYEOnxNiGwfE5BhERERERDYysJsRKwEA4wI0gR4JIwFCvPHon7HiGhQUMISManvouLswe3OfGsDAiIiIiIiIiIiKiUmPGjHFst7e3B+7D3Wb06NFVjYloMOOnqlTwPwC2tG3nATzhUX8egB8AKHxidZQQYpqU8h0fx7F7QEqZCjRSIqIyRDQG7H845OsvFfdJj0UMBvwnC4kzf1zV2JQSJSsuSozJbyxbR0R7JvHM+FxxX7RMWJj8YHnxzGinOJh5YNEzkIueAR76DfDLpyDGbFF6fCGww5sPYvT216MtNEbRkV6u5y1JMlP9RIuvdDzUO6Z5r0M+egewfCnqu7oDhYU1xgUa4hLYXPlYoop3WvGIwJwdgAVvebcthC3lTYn4t9Sv0dtf6D1ftywEHvi7xJ+/ZQyawDAd9+jqkhvwydu7Yvz2HyrrB2UOZAbRqNFA21plkcxmICK1Sb5qTwLNPTmDuf4KR3tlvnp/c2vJrnQNw8JKF6UNAjvvXb5OmbCwgSZCISBRbz0qaV/FsaWUVqieI3CsJ1AsrQgwK5a7gspKAsoKz90BZ64++iHQj4aowmukAlUHlYXCpSFjJcFj+sAxEUs496kCztx1bH3xTglEREREREREVAtCCPzHVvorJe+sHaTXfImIiIiIqN9kpDrEKiqi/NzSJWioV94WUJTVnGcAiAYMISMajkTVt2rUy8MjLIzLd4iIiIiIiIiIiIhKjBs3zrH99ttvB+7jrbecC/dbW0vXPhMNF/y0YZgRQpwA4Gkp5acB2pwG4ArX7ruklB/o2kgp3xFC3A3g5J5dUQB3CSEO0oV/CSG+DOCbtl0ZAFf6HScRUWCxuuJT0+ODfREk3uHos6sZkVq8fFDL9Mxyz3Lx4wd6n0djxa9IFxZmihDyMBDaWP6/C8f5WbkMeOxO4BsXO+rI9Wsgf3I6AKDB7AocFpbvuVvaP2qQFTUq31F8LrbeAeKcawEA9d9PAeUz14qaEsCK9dWNJaZ5p/WHUwxseZF3wlOmZ77ITQv8vz6ffAPY88cmll5mIGQM7OS5QKEpb/4NLfkNyC3r/Zk9aOu/4Pn6Ayo6dr6/wrNU4gl9WbITiKh/NoKGzKzt6A0Ly+rnFtXWmpXq/c0tJbvS2dolth35H4NvIqgIhcp/z+ob+2MoQ5IQAohErUcF56naV4TM54FsWh04lnaFjDnqJEvDytJpKEPP3GFl9nI5kImGNGjlc9b/E8nOippXHVYWjQHRRE+omDpQzAobKw0hE8XyuK0PReCZMvQsDhHmpSkiIiIiIiKi4WR8E1AfA7oU69LfXycxc7vBd82XiIiIiIj6T8bUhIUxwKpE1Ah2U0J7WJjuPANAWAzuG+AR9Q/19QlZ9QwMIC/1d9oMiZC2jIiIiIiIiIiIiGikGj16NKZMmYL33nsPALBp0yYsW7YMO+20k+8+Xn75Zcf2nnvuWdMx8qY3NJhwRebwcwqA3wghHgTwAICFUsouVUUhxB4ALgFwpKtoNYAf+DjWFT1tR/ds7wvgr0KIU6WUxVQbIUQMwOkArnO1v84rkIyIqGrZ3gkv0uMNmAH/yUIi5hEEVKl4XdkqE3NrvCvsvLdyd1RmtU0yIorE6N6kXV3AkjtMTd4+F8IWFiZNE/KUmcDGTwAAo8wOBJWDNQHigw3VT7QYn7cC0MRV9zn219dFAoWFjYoDs7cHnvXOafMU1czrmNAscPkeH+KHi7fStp33qsQ2Y0x89/5g5+Rfq4GL/yxx7dF9+0eHlBLpHNCdsRb8FP7tyljPP9yoH7f7x1F+/6iSOnGPu1uWM6BhYTGPn+dkF9AYLEhPZ+1mYPstrOe5fggLk1ICoRCQLz2YUIQ9pfXznQKZPgHYe9va9NWvEvX8w38QE6EQEKrz9f+vsn0Vx5ZSArmsIqjMFSimCR2TjnJXWFlJ2Jmij6w6RJTIeq1U9n9v1UFloVCZQLGYZ7kzrCxuCzVzh5XZtm11+PuaiIiIiIiIqLaEEDhyhoApgamt1mNaq8C0LYAx9fw7nIiIiIhopMto5gQxLKxUSIQRQhh5+JuIYw8o0p3niIjCEEZNxkc0HNXiFoD24D63kODyHSIiIiIiIiIiIiKVWbNmFcPCAGDevHn40Y9+5KvtsmXLsGTJkuJ2PB7HZz/72ZqOLxZzfpaVTle+Dp6oWvy0YXhKADix52EKId4BsBJAO4A8gLEAdgOwhaLtRgBflFJ+Uu4gUsqPhBBHAXgKQOH2VfsB+LcQYgmA9wE0AdgdwDhX88cBXBbsyyIiCsjsTQwyoZ/gYkifyUL/+c0qB6SRqK+6CzF2vHPHrMOAFx9HVOpDQTIiioS0pjZIKXHe/erzkDBT3gd//M5iUBgANJid/gZtk+uZAPHeusBNS0zLvGs9OeAIx/76gPPJQgZw8iyBZ5dXPv0j6vFO67L2nyG2tgmXtl6lLH9nLXDSXZUd++dPS1xzlEQ62xvepQr06kpL619bnUI96yEd7Qp1C8/NCk+NfSmQ1ATXxIZqWJhX+FBKmd9akbW2TL5aTFAqK9mpDAoDAIxpLdmV0ucU+rbNWOC5CwyEjKG3eEyczLe5pCaEACJR66EI2ivbvsrjS9N0hYmpAseSiqCynrCyYiBZsrSdPZysGGqWdvYr++U3Fg01+bwVqJms7P/JqsPKVKFixTAxj9CxWKI0qEzbhzusLA5EExBhXpYjIiIiIiKi4el/T+HCcyIiIiIiUsuYmrAwwbAwlagRRdL0GRaG3rk92vPMUDYiAF5zcKqf22IP7nMzhOYOtEREREREREREREQj3Iknnoi77767uP3rX/8a55xzDsaPH+/RynLxxRc7to899tiScK9qNTc3O7bXrFlT0/6JguCqxOHPALBDz6OcZwF8U0r5kd/OpZQLhRBHArgLvYFgAsAePQ+VewGcJqXHbXOIiGpAfPUcyPuuB+AdFiZ8frgvvnFx+UqViFthYae33Y7bRp9aUnz12h94t9+m9Fe82OMgyDJhYS3bf4zJ76/HitO9fx3Xm/rgBrluNeTPznbsqyYs7PJHqptosWV2tTWJY/peViCLTX1U2URrhy2ADZ0C1Uz+iHm80xKP3o7/AfBqYm88Nuqwio+hEzlzIBOzAnjzb8rd1YWFDWAYTcwjLKzCEBSVtR0S1ccGBfDRe/qy3WaV7Er7m6Po6c9nGWhtHHpBYQAA3oGVBilhGFaooVewoVf7Ko4tpQTyOWeYWDqlDSbrDRzrrSPT9lAzTVCZrg9NOCWR9dpJw8pXD6bqoLJQSB8oVgwVUwSR9ZSJaEIfVtYTaKYOKosDkZj1O4GIiIiIiIiIiIiIiIioH+lCrCIMsVKKGnEkzW5fde0BRRnN3CuGshFZ3PNLC2RNwsL0c3JDXL5DREREREREREREpHTggQdixowZeO211wAA7e3tOO644/Dkk08ikUho211//fV45JFHittCCJx33nk1H992222HaDSKTMZap7hgwQJks1lEIpGaH4uoHH7aMPz8EsBqAPsB2MZH/S4ATwO4SUr5bCUHlFI+KYT4DIArARwDYLSm6qsAfi6l/FMlxyEiCkq0ToLcdT/g9ZcgPeItDPgLVRITJtdoZC4JKyzsiI5HSsLCwjKLIzc/omrVO66LbindGbL+i/cKC5PCwIp8a9nh1cmkun1nO+RR25XsH1VJWFiN3pKcuulOAIA44IiSsvoA85ymTwAa4gIzt6tu4kdU82XJ1b3BS17fo+EqbLs5nnzsTmWduJmquP/8QOakxeL6Mo+wMBnwpfbsMokzD6isbUXe/oe+rKmlZFctwsLCQzm/hOErRCWEEEA4Yj3qRlXWRxXHl6YJZNPOoLGSwDFX6FgxbCwN6aivrqPsp1BuDpEQT+pf+bz1/qDCQNGqw8oiUVugmCKsLBrTlotY+TrK0LPC81BYO/maiIiIiIiIiIiIiIiIhi+GWAUT5LzYA4p0oWxRhrIR9dB8Xl2DuXh56CfPhURIW0ZEREREREREREQ0lH3yySdYuXJlRW0nT54MALjjjjuwzz77FAO5Fi5ciP333x833XQT9t57b0eb9evX44orrsDNN9/s2H/RRRdh1113rWgcXqLRKPbbbz8sWLAAALBq1SocfvjhOPPMMzFt2jTU1dU56o8fPx7xuMeac6IqMCxsmJFSPgTgIQAQQjQD2BnAVgC2AFAHwACwCUAbgGUAXpfS4/Y1/o+7FsBZQohz0RtUNh5WGNlqAP+QUq6o9jhEREGJH94DecQ2MIU+uEX4+XT/2O/WcFSu44cjkOEIvtD1LH71yXfxg3Fz0R5qRktuHW5fcyamZd/Ttz3/Rohd91MUWBMZYprJVUGEdP9N/PlW5e6GCsLC8iKEDaExgdu5bZFbaz0Jl6bw1scE/M7keOl/rNfLqCrfg8d0YWHXnFF8PtLCwsaNArbqiRWVC/4EPH2Psl6sivOS74/wLB2vkKhUZUEgKo+/3vu8X8LCkvqfazGquWRfTcLChvK8KIafEA06wjCsQKNYAqggq6yqoDIpgXxOEVDmChRThY711JeqdvZtrz4y1b8fpGEqm7EeaA/ctOq3H4YBWQwQS6iDyhyBY7Y6sTiEu04xsEwVVhZz1onErN8JRERERERERERERERE1O8YYhVMkPOSl70TdjKauVcMZSOy6OaByBqkheU1c24FDBgec5mJiIiIiIiIiIiIhrLjjjuu4rayZ6H07rvvjl//+tc488wzYZomAGDJkiWYOXMmpk6dip133hnxeBwffvghFi1ahFzOuZj54IMPxlVXXVX5F1HG+eefXwwLA4D58+dj/vz5yroLFizA7Nmz+2wsNLIxLGwYk1JuAvBSPx8zA2BB2YpERP1EjB0PXHUf5DU36+v46eeLJ9RuUCq5LADgrLbbcFrbHVgV2QqTsx/A8Jh4IOavg6hv1BRaX1VUZqse2s7pN5X75W8vV+4fVUFYWE6E8VT9wYHbubXk11tPItGSsrrSXSWebrkWn7/64uK2EAJbjwFWbaxsPFHdO61/vtBbpwbfo6Hk0kMFDENAfvw+5OVf09aLy1TFx8ibFTetnulx8GTtwsJ237pmXXkyTWl9v/54E56sPwTzGw7BmPxGHLP5QeyUeUvbriZhYYN9XtSBXwWee1BdtosixJGIRiwhhBVkGo4AdRUklaHKsDLTBLJpfVhZMbBMFVSWhvSqoww9c/Xr9X8jjVymCaS6rUcFqp2eLSPR0nCyYuCYKqwsBkStchHT1Cnpo7DPFXoWClu/F4iIiIiIiIiIiIiIiEagrDbEysfkrhEoSLhXHr0BRVmGshGVof7MtjZhYerJcyExlO+eSURERERERERERNQ/TjvtNIwePRonnXQSOjt7MwveffddvPvuu9p2J598Mm699VZEIpE+G9thhx2GH/3oR7jiiiuQz6tvHEHUHxgWRkREw9+4iTChTp0R0md4wZjWGg7IWxh5bJdd6V1ppz31QWEAChMZoprJVUEc3vlEoPoN+Y7Ax8gjjCXx/wjczq0p3249CZW+ka/3Mc9p0rK/ALjYsW/cqCrCwnzM7ajF92iwCRvW+a6LWv/WR4HtxgHH7mngq3tYr015/42efUQnbQ1Ulh0xsGFh0mOyUA3Dwl5533bImvVaavknwPSJwDXxM3BZ03eK+3855hz8ZdV/YeZeE5XtMrUICxvkc6PEEadB6sLCtp/Rv4MhIvIgDMMKKIolgAqyyqqNNJK5nCtMLKUPHbPXcYeVlYSdafpxB6IRqWQz1qNrc+CmVb/3MgxId6CYPUysJISsEFYW7wkr09Qp7LMHlsVK6wljsCeyEhERERERERERERHRcJZhiFUgUcN/iFpe9i5KyUj1eY4wlI0IACCqng2hZ/9ZtAthkE+IIyIiIiIiIiIiIhokjj76aHzuc5/D1VdfjXnz5mH9+vXKepFIBHPmzMEVV1yBfffdt1/Gdumll+LII4/E73//e7z88st4++230d7ejmQy2S/HJwIYFkZERCOBMGAK9YJoAz5ThZpaajgghc/MBN541Xd1cdnvylSoXVjYlzseDVR/lNlZvpJLToQgazD5osnsWewfKZ3UtMlH8FS0fU3JvtYKQjUAYPoEwDDKf00DERYWC9vCvKK9oV694V4CCdc+Z13hCAJz14mEfXwv/3yLZ3Fi+gxgcWVf38CGhXkcPFW7sDDHIfswLeyRf0psNQb4Yewsx/6OUCOuGncpnnj/AmW7moSFDfYcixmfA/7rZOCxOx27xe2vQoi+m0xGRDTUiHAYCDcAdQ2Vta/i2NI0rUAoR5hYUhEylrYFjSXVQWWOeklNWFna1kcSMAfyTQkNWqYJpLqtRwWqfesnwxFnoFhJ8FjMM3BMRONATBNUVmzj+rfwCEf4PomIiIiIiIiIiIiIaITThVhFBcPCVCIBzkte9k7YYSgbUaWqn4yXhyYsTHDpDhEREREREREREQ0fK1eu7NP+W1tbccMNN+AXv/gFlixZguXLl2PdunVIp9NoaWnBpEmTMGvWLIwaFTwIYO7cuZg7d27FY5s+fTquueaaitsTVYufOBAR0fAnhDaIyldYWDQGYfRxak2iPlB1sdW0MhWsrzcuU5WOCABw8fqfwlBMfpBt67RtmrYYHXi+RA5hrAuPCzq80mPn260n4UhJ2cHTgbte9m4flVnHtjRNtGx6F8DUwGM5ZZb6NSc//dB1TPXErGpccqjAgTsKZRBYXRQI+QgxG2ixiVuh0ok3AxsW5jHmpD4srJLAr86URENc1GB6kp4hgHl/k8ii9GfqqYYvANMPUbbLqOc7BVI/yOcmCiEgLroF8vgLIf98K8SkqcAXj4eI1w300IiIqIcwDCusKBavrH2Vx5e5nCtMTBU4Zg8Zs4eapVxhZemS8pK+0646RCq5rPXo2lxR86reewoBWQwUS6iDyhwhYwlHWJlwB5MVQ81ipUFlxb566kRiECHeqZuIiIiIiIiIiIiIaKAxxCqYIOfFlL0TdhjKRuRNaGYE1GIunv1n0S4k+HklERERERERERERUVCGYWDPPffEnnvuOdBDIRo0GBZGRETDnxAwoQ77Ej4SesQ5P6v1iEqtWVnb/nrCwsKaO5T5VW+qw43kGbO0bZr23AdYFOw4eRHC2lANwsLMngXv4WhJ2fQJAuWmcsRkGvKjdyEmTYXMZSHnNGBc64+Bsef5HsNu8Y9x0pe3xHcO0gTMffi2Y9MdUFYLVxwmEAkP3kAwmcuVrRMrzabyLd+X6VnlrHpbWyRTXVWHjti9/B7whZ1r2KGCIYB/faQ/oWLKLsr96fLfYk/xCDCmfvC+hu3ExO0gzrl2oIdBRESDkAiHgXADUNdQWfsqji2lLA0Yc4eOpZO28DJnHemoowgrKwk9cwWe5at8M0DDk5TWayadBDragjev9vDhSGk4WTFwrLCtLy8JK1P1EVPUiSWAcARCDI33t0RERERERERERERE1ejIteNP6+7Uln+Qele5P8IQK6Ug4V555NCea8OSjhfxcvtf1f0xlI3IU8ZM464112vLoyKOaXU7Y/dR+yIk1EtxPs2sVu7X1SciIiIiIiIiIiIiIgqCnzgQEdHwJwSkZqm9AbN8+/Fb13hApcSh34S87TJ/leN1fnqsajwFo8xOdcGaldo2TTvtFDgsLCfC2BxqDNZIdWyz3XpSV19SNtZHRkNUZiD/dDPEub+AvOtqAEAe/u/mdtfqU3D87DoYB92srSNv/UHJMWvp118b3EFhAIBNa73LjzwD8WrCwnz8WPeZdeqJPgCApDp8r1LrOyXk2tWQ6wBgQk37LjAEkEtnAJQG8AGADEWUv20yVeaD/OU7mrA9IiIi8kUIYYUWxeKVta/y+DKXA7JpW5iYInAsXQgZS5YEkcmSeqqgMo86RCq5rPXo7qioeVVhZUJAukPG7GFihW13WFkhqMxepySsLA5EE7a2pfVEiHcpJyIiIiIiIiIiIqL+kZEpLNr8fOB2DLFSC3JecjKHn6/6H2zI6udmBQkfIxrOdDf6MZEv+zvsxfan8FrHKzh54vcQEs7P4Val3sMTG+5TtnPXJSIiIiIiIiIiIiIiqgTDwoiIaAQQMIU6eEb4We6758E1Ho9Cc4vvquLbP+/DgTiNy60L3Ka5pRHwE8Jmk0MYKaEOMtgh/Ra+s/EmnD3hRs8+mvKbECsEb42bVFJer846cojKDPDHmyCPPhu42woL2z/5Mn6J75RvjJ7XU7JbWy67O4C3lpYes4ZO3m+QB4UBwJKFnsVi9zmIVZEVNVBhYTKT9q6Q1ITvVej/3kzh2GtnQzY8CsT6JiysMQH89lX9D4+580y4v1VSSmTzlR/znR8ZmNI6BF7HREREpCXCYSAcBhKlIb6+2ldxbCklkM24gsmS+rCyYrkiqCyjruMMKHOV56tMTaXhSUrrNZJOVta82sOHwj2hZK5AMXvAmKq8EDZWEmRmDyqzPUrqxIFIVLvYgoiIiIiIiIiIiIiogCFWakHPi1dQGMBQNqJa+UfnK3in+w3sWL+bY/+TG+7Xtglx6Q4REREREREREREREdUAP3EgIqLhTwiYJXE2FsNHqJUI98N/l4kG/3UPO6l8HdtC3MM6nsDjo/6zgkEB+yVfCdZgdCvGVpAHkBNhdBt1yrLvbvwVjmu/H99v/RE6Qo3aPlrtwWatirAwH/OcIjILAJDHTi/um9O1sHzDHmkRA1JtyjL50K2QN36vZH+tw8JiQ+DdnfxRmdfw7gcg/mbl/W/S57X1rXSZA6f05Wvagx/utldjuHnth0CAXx9BbTNGwCuaIDdmYskfFJkq8jGO31swKIyIiIiqIoToCTqKAWgK3r7K48tcDsimSwPHimFjrqAyV4CZVAWVOcLJXM8ddSoLoqIRIJ8DujusRwWqDisrhoklnEFkMUU4mauOUJZrwspKQs/iECHeoZ2IiIiIiIiIiIhoKEiE1HPHRrpan5e4Zo4e0UhTi4DCd5P/LgkLe7v7DW39mKG+oS4REREREREREREREVEQQyBOgoiIqEpCQLfk25Dlw8L6xR4H+qt34vchDHXwmYMtLOyCDdfjufrZ6DZ6U7xCModb15yDc8bfgLTHBIQtcx/7G1fhsN+5Dq36PC+tnAgjKRLKsoSZRIPswoUbfoHLW+dq+xiX7w0LEw2loQDRsPey/7DMwlAsgW4yN3u2s2sLNQOpj0r2y2WLIX9xrrJNLcPCYuGecIRBTHaow9SKjjkXonEMYuHKfzbf+rTiptXJZb3Lk53aokNu0H+9iQiQ1HT9YmIfvBXbwc/oKrJivXcsgBktnUCYyVd+vEM+U3lbIiIiosFAhMNAOAwkKkhRRnVhZVJKIJspDSHLpG0BY0lNWFnaCiqzh5qVhJWle0PJ3OWZVPn3wzRyFV4jnZsCN606qCwUdoWTxYBoQh1Upggsv1z7AAAgAElEQVQcKw0rcwedafqJJYBIdND/jU5EREREREREREQ0WGyf2GWghzAo1fq87FDH80wEAJMT2yOEMPKo/M6YGTPt2JZSImXqbyg6rW7nio9FRERERERERERERERUwLAwIiIa/oSACXXAlii37LR5XB8MSDGO5payC2DF+TdCHHmGzw57F6Pun3wZz31wCO5uOgHLYjtgz+RinNn2W2yT+xDT08tw85gzMK/payVdnL/h+gBfQeFgh2NsBe8ucgih21CHhdVJa/LEJRuu9QwLa82t05b54RXadXrb7bht9Kll+1gXagGSpZM95FkHeBy3dgvqY0Phnd1LT3oWi7N/CgCIRwSqXxbezzIp7/Jkl3J3R0ri/fX6Zl5nYfbkZ8uPqwqvvu9dnlNknGUqnz+F5gQX0hMRERFVSgjRE1gUA1AaoFy2fZXHl/k8kE2rA8fS7vCypDqszBFO5n7uCidz9JkC5BD7+4H6Rz5nBTd7hDd7qTqszBEgFnOGienCygpBZbGEIoTMVscWalbaT9wKLyQiIiIiIiIiIiIaAj4/+gi0RLcY6GEMStsmdsBejbOxaPPCqvua2XggtolPq35QRMNA3EjgqNZv4sG1t1fchwnn5LlsmRvHHjT6yxUfi4iIiIiIiIiIiIiIqICrRYiIaAQQkEK97NmAIunG3vLi2/piQGqGAZj68fgOCrNqO7b2SC3FHqmlJbX2Tv0de3/8dxzb/gCOmTQP3UY9AODArudw2fprAhwPwDcugYjFK3pzkRNhJIU6LCxu9gYwbZ1dhVWRrZX1WvM9YWGGOhgOAOadKvD129VLfUMyr23347WX+wsLC7cCb7zi2Ce7O63FyRpeIWVBxSM166rvrFnpWSx6flarDT6TUhb76jeZtHd5Sn3XwPVl1qyfM0fg508PTPDB3a94H7c9CTS6fnTb9DdHLGtIvIaJiIiISEmEQkCoDojXVda+imNLKYFc1hUmluwJJkuVBJP1liuCyjIpIF0IJkv2tE9795GrXQg0DTOF10wFqg4qC4XVIWP2gDGPwDFRbGfvQ9FPLF4SVIZorP//JiciIiIiIiIiIqJBISYS2KfpIF9164wG7FQ/AzvVzejjUQ1dhjBw4vjvYEbDTLyTfAMpM4lkvguvdb7qu4+xkVZ8ZdzJ2LVhLxhCP7eOaKSZM/owbBXbDm92LcXmfJu23ltdr2Oj4ma2pmvOaUbq5w9+Z9KVGB1pqXywREREREREREREREREPRgWRkREw58QMDXLjkW5pZd7H9IHA9KQNQwDCrgg80tdT+Ojd7bDy4mZ2DL3MXZO/xtGwGWp4vBTAtW3y4go0kZcWVYne5OHDu58FneMPklZb3zuE+uJR+DajuMFdMttuw39gvbR5ib8bcV+2Hvbl7R1AOCgrucAAHL9GoiWCdbORc94thnuYWGyuxNY/CzwyQfA7rMh7/yhvrLtdZuo8mvJm0A4VF0fgSW7ypSrU8Gy+pw6AMAJMwcuLKycJ/4lceYBzt8375XOi/JtW86HIiIiIqIKCCGASNR61DcGb1/l8WU+D2TT6sCxYiiZKnQsBaRTzrCytLufpD6srFBey+sJNHzkc9bfoZq/RcupOqysGCqWAGLuoDJb6FgxsCzmDCqLxmxBZAlN4Jkq9CwOEeZHX0RERERERERERAOlIdyIE8Z/e6CHMawYwsCMUTMxY9RMAMDazMeBwsK+tsW3sFM9A9mIVKbWTcfUuumedW7/+Fps7FCEhbluVpwx9WFhYyKtlQ2QiIiIiIiIiIiIiIjIhSsmiIho+BMCUrP015D6YCkAEKF+TBsawLAwAGg0O/DFLu9gK89Dtk4qPr/oiwLXzvf/9XQYo7RlCTNVfH7+xhu0YWFf7Hy67HFGqfPIAAB54f226LOpf3iWC2nikML5e/lJoCc8TV52rGe74RwWJtvWQl5wGPDOP33VFyddVnw+tqG6Y5sDsVZ+U5mULE2YWLmwsJ0nAluPAVZtrHBcfei1D0v35b1/rWrtsiWw3bhqYxqIiIiIiPqfCIWAUB0Q14dQe7av4thSSiCXLQkgKwkUU4aVWdvSHmjmDivLuEPPXOXZ2v1NS8NMJm090B64adVBZaFQmUAxRehYLO4RVlYINXO3i7naW3VEBdfliIiIiIiIiIiIiPwKiWBzGqMi1kcjIRoZDKh/5kzpnPiX9ZgLGjP4c0hERERERERERERERLXBsDAiIhr+hIAJQ1lkoMJUm8Gunxclimsfdmx/9yCB+W9IvP6Rv/ZdRr22LC57w8J2yLyDi9b/DNe2XOioc2bbbdgztdja2OtgbV/1UX/jqcQvP70AY/NWmpN85zUIAHLlsrLtojJbszEMurCwe67zHRQGADjqzOLTlirDwjZ1A62N1fURWHend3mqW7m7PalvcsvXBQxD4NbjDRx64+D7fbVti3PbNCXmPhp8nA0x4JfHqn9PExERERGRnhACiEStR31lfwRVFVZmmkA2bQsTUwWO9YSM2ev07JPFcDPbv6qwsmJgmWu7lsHrNHzk81Zgtya0u5yqw8p0oWLFwDJ9uTKoTNmHKqwsDhEeZBeHiIiIiIiIiIiIqOZCAaf/RxlSRFQVQ6jnteXhDAvLmGltHwztIyIiIiIiIiIiIiKiWmFYGBERDX9CYIfM27hw/c9hCgMSVniYhECd9Ejpmb5X/42xnDFbBKvf32Fh+3zJsT2+SeCFiww8+S+J435bfollt6jTlsWkcwLF1euuwKGd87Gw/gDkEcL+3S9iTvfzxcXN4qiztH3VVznf4q8fHILPb/NUyf4vdD6Db7X9pndHz/mXvzi3bJ8Rj7vJBRUfbO/s7rvBd1Vx5o8hmsYWt0fFqzv0wdebeO1yw1o431+y+sk+AICkOkzsv36lD9c6fqY1/i9Mr3hUWtNagXfWVtdHl+tLPv9BicUf+G9/+WECWzQCX/yMwLYt/ft7i4iIiIiIqicMwwoviiUqa1/FsaWUQD7nDBpzB4q5Q8eKgWXWtkyXr6Mtz9bu73kaZjJp64H2wE2rDioLhdQhY/ZtR+CYPYgs3hNWFteHlRUDy0qDyhCJWb8TiIiIiIiIiIiIqE+FRChQfYaFEVXH0NysWErnvD/PsDD+HBIRERERERERERERUY0MtkgJIiKi2hMCu6bfwK7r3gjWbsb+fTMenc/OAZYsUJftNitgZ/0YuqMZ26i4wDF7Ctz9ch7z3/TuosvQh4VF7WFaXz4NeOS3mJV8BbOSr6gbzPyitq+YxzufqMdEjYLZ3S/g0nXX4MfjLi7u26/7JTzx4ZedFXNZyHWrgX88X7bPaA3DwmIfvwWZmwYRjtSsz34zdRfHZl20uu7+tRpY8gGwx+Tq+gkkU+Y1lOqGNE3Hwtl3PpVo69Y3ifTM7TOM2v9MH7qLwM4TgfMekCWhX36t7eh93pWWuPFZ/8ua559r4As7MyCMiIiIiIgqI4QAwhHrUTeqsj6qOL40TSs02h5W5n6uCh3rKZeOuu46qtCztLPc1AdP0wiWzwPJLutRgarDyiJRW6CYJqxMUy5i5esoQ88K7ULh/g2NJyIiIiIiIiIiGiAhEWz6f0RUORGLaIQzNAF9eXdYmFRPwjMQCvxzS0REREREREREREREpMNPHYiIaPirdJFYtnYhTr7UN+rLwgEn7PTjwjjxlW95lm9Klu+j2zMsLNt7rP/+NuQjv9WP5fwbIUL6OydGPd75xGXKe5A9rlx/FeauvwpvR6dhauY9hKBYnJtJQ/7oZF/9RT//FeAdX1XLim9cBfzxKeDY82rTYX8Szrvv1WJx5+9elthjcj8uEs34eA2lk0Civri54C3vZbgR28v5iW8b+M9f1W4xeMgATt3fwCmzJKJnmchX0PUmW9DZ/73tXXeHLYC/XWJgYxcwuYWLd4mIiIiIaGgThmGFFcUSQAVZZdX+VSRzWUU4mStQTBtWloYslivqFLZ1fZQLy6aRK5uxHl2bAzetNqgMhgFpDxSLKQLG3KFjsd5/hapOLKFp5wo0i8Qc4fBERERERERERER9SRdcpBM1Yn00EqKRwYD6Z0665o5mNDes5c8gERERERERERERERHVEsPCiIhoBKg0LKyfFz5O3FZfFjQ4qR/DwrDfYZ7F9jAhnS6hDwuLFe62NmkKxNY7eC4cFEee4XkcrwCqmOaubsp+AOyQ8Uj42rQOWLrQV1+xo04Bflr1ckgAQFymIZ9/BGIQhIVJGfBr6oMFle9+Wpvz6puf3xndHY6wsM4yTeyv2S/tIvDs+QYO+kVtAsPCod5jtI4C1rQH7+OBxRL3nW49X/yB9/lubQQaEwKNieDHISIiIiIiIicRjgDhCFBXQVIZqgsrk6ZpBUJlkvqwssK2PZSsEFRWEl7mfrhDz1zbZu2CtGkYMU0g1W09KlDtVSQZiarDyQqBYiVBZIXtBERMF2jm7qNnnzsILRypSfA+ERERERERERENDaGA0/+jgkFFRNUwhHpuY17mHdsZzRxU/gwSEREREREREREREVEtMSyMiIiGv0oXSmWztR1HGeKI0yHvu0FTWPuwMPGrv0LM2B/yvushb/p+sP4Lxm8DEfWeyHD8TIEfPOy93K7b0IeFRWUGACBue9na8dk5wJIFJfXEFb8vM1hvRiSi3C/OvxHyibuAt5b67+xvT/uqJm79P8TCAtUvR7TEZBp44xVfdWU+by2wTXX1LqRMdVvbyS6rLNkFpLuBZBekvTzlbqfoI/DCzNovaExEa96lt2ymfJ32DcDY8cXNhoDzgObsKGDeFsK8/zwBJ2x5V7DGLiHbKTdqcPpvWuD9Ov6PrblolYiIiIiIaDgQhmGFFcXiQAVZZdX+dShzOWe4mDtQzBFWlrJCzXRhZYV2xVAzRT/pdG8fmX6+uQANHdmM9ejaHLhp1VcGDQNSFTJWDCZzhYs5wsriELo69n4KgWUxd6BZ3PqdQERERERERERE/SYkQoHqR0R/T6IiGl4MqH/mTLjCwkxNWJjBn0EiIiIiIiIiIiIiIqodhoUREdHwV2FYmNj9gBoPpIyJ22mLxK77BuzMx9fcs4hLHHse5IplwJN3BzwGgHFblq3y/+zdd5xU1f3/8fe5U7YvLG0lIE1EQFFQEEHBRsQaEQtijC2JRBPLT42mfCMYS/SrJl9LTGxfMMao+SqimMRoTDCWoIFILJgIikRQKUtfts/5/bGw7MzO3LnTd2dez8djH+w999xzPjPM3YWZc9/3oP7xw7Dq4oWFTTxRpqK7JMlc8hPZb02SmtuFufUdKB1+kqeSYwmVVEiBYHjgU+9+0pSz5Jw2S6FJab6724ix0ohxKvoifUMWh+olSaGbLooR+rWzLfxLjfXpmzgdMnBRYXlRlsOpvDynW2vCNm2SV4PO3PZbPVl5pp6vSP5172v3lKcSFlbbYPXvL6T122P3KSuSvn44YWEAAAAAgNQZv1/yl0ul5ckdn8LcNhRqfe+oQ6BYlKCyyPaG+oigsohwsqihZw3txqiTWlriF4nCEwrtCfFPQqphZdYfCA8UiwwrCxbtCiOLHjhm2h8Ta4yi3eOUhLf7AzLJ3iwEQMbY2m2yN10klXeTyiql8m4ypRWt20efLlNRlesSAQAAAKBLc4wjI0dWobh9g6aI90+AFDkm+trGkA0/BxttjLAwk+a1pwAAAAAAAAAAoKARFgYAyH/JLnY54pT01hGHMUb2kKOlpX/puPPwkxMdzEunPd9W9Uls/N169Y3b5ZjhUkWxtN0lR2mnKYm5L2gbZb4+u23b7DdGuvsl2Udvk/7zb2nkeJlLb5EpKUuo9Egh45e5b5HsI7dIH78vjRgn862b2i5aMbc9I3vdaSnN0ebUb8p862YZx1FpMNXL8fYo3r3Y5I+PpW3MrImxoCYVxVm+IZ9tjL7YJ8z2zWGbjUlc42vn3ixJ6tucWtJc+1deKlltOxulb/3affHhy1c5GtWfhYcAAAAAgK7NOE5raFFRcXLHpzi/bW7uGFTWIXAsMmRsTz/btr8+ejBZ2Bj1UkNEHyCa5qbWr50uSfIuUnp31BjZDqFiEUFlke1FMYLK2vaXhLcVRY61K7AsUCTj86VSPZC/ttZIry0Ma9p9rptDjpYICwMAAACAlPmMT83WQ1iYQ0gRkCpHMcLCFL74rzEUIyyM8xAAAAAAAAAAAKQRYWEAgPyXRFiY+cFDMqXlGSgmzrxX3SV7+VSp5vM9bZffIdNzrwQH8vKY91yGZU65UPax2zt26bO3NGR/afEL0ac55aK4s5QEje77qtEF/xtSi41eV60TPejLsS3yKST1HRg+76gJMv+9IO7ciQhZyQw/ROYnT0fvcOhx0nHnSC/+JqV5zILVYX+fZWkMtCq2XfiizQzcwXJHtp+OpvhhYfbFx2Umn9q23dic2BS2fqfs//5YklQS2pnYwREamvZ876Tw9Nc2SEtWx95/55lGhw4mKAwAAAAAgFQZv1/yl0tJvm+Zyv/OrbVSU2N4mFi00LGGiD93B5WF9alzCSurlxrrOgaetST4JgoKg7Wtr6eGuuQOT3V6fyBGOFnJnu2i2PujhpW1HVPSLqwssk+xFAjKZOA9VSAt3MIDSyuzVwcAAAAA5DGffGpWU9x+QUNIEZAqn4l+04AWGxEWZqOvHwxwHgIAAAAAAAAAgDQiLAwAUACSCAs74WsZqMPDvAP2k+Ytkf7+J6nmC2nsMTJDD0xiIA+PuXFPkpLpt4/siLHSB0vC+5zwNZnzvy97w9ekVyLCufrsLY05ylM5Xx3v6ODGd7X/owdE3b/ViX5xSNA2tn6ThYtH4l0YZvx+6YcPS6MmyN55WdLzRAa/laVxHUhRVw4LczrefW/aaGnBsuSH3FaX6uV+CfIQFhbZp6klRr9YXlvY9m1RjMVFXjW0u8Y2lbCwv3/ivv/MsVy0CAAAAABAV2eM2RVYlNybWam+O2Cbm1vfV3ELHGtoHzpWFzusrEOf9kFl7fq0HwOIprmp9cstGMlFSu9eGiMbLaisLWAsyvft+pgO+yLDyiJCzyL6GV/0CyQBSdKOrbH3lXfLXh0AAAAAkMd8xu/pzYWAQ0gRkCrHdFzbKElWobDtxlD09XxBzkMAAAAAAAAAAJBGhIUBAPKfl+Cs9t2v/FmGCvE4f/de0pfPzvxEDXXh8962QPamC6V/LJKKy6QTz5O56EcyjiPd+IT06G2yv71b2r5ZGjFO5vp5rQFaHg3v0aBZmx/U/VXf7LBvh68i6jG7w5CyceFRSyh+H+M40rSLpX5DZK86KfFJ9h3doakkEP+w/evfV7/mz/Ri+Zdd+xXHWGzSJURZUPPgeY4WLPPwFxPDtmxfx9nUGL9PcWnYZmOCYWH24Rv2DJViWFhdu5uLphIWdv5c97+j/lWEhQEAAAAAgNQYv1/y+6WSsuSOT2Fua23r+z5hgWOR4WIRYWXt2mzkcY0xQs8aouxvrG8NowIiWdv6+ol4n9/z4alO7/NHDxQriggmixE4ZtqCyUqiB5WFtZWEtwWCrQGG6LxqY4SFBYtlAsHs1gIAAAAAecpnvK2nCxr+HwakylH0863FRoSFxVjPFzSEhQEAAAAAAAAAgPQhLAwAkP8SuWhkyP7ZCerKNC+PuSE8SclU9Za583nZ+p1SoCgsoMsYI533Penca6X6nTKl5UmV5bfNCfUPWg/hS2kSSuDqKDNuisyrDbKrlsueN8b7cdf9skOb4yGladmqcfqv3jfEDwuzaUrHCha3XnhZVCqVlLaGxxWXtvsqk4pL2tpN2P52+z56V/bea73N6XQMC+tZbnTd8Ua3vZDcpWtvfCRd/GhIFcVSeZHa/mz93rT7fld7sVRRJAX8SV5o1uzh9d0YviCoMYFTwlorrfmobbsoxbCw+nanVyphYfUu16tO3jf5cQEAAAAAADoDY8yuoKMiSd0SPz7F+W1zs9TUED1wrKFeaqyLHlS2q59tqIsRVNauLWaf5IKoUABamqW6Ha1fSUg5rKx9eFhRtO/Dw8na9zFR95fEDisLCz0rzsrNTbq82u3R28sT/xkKAAAAAIjOZ7xdAhB0CCkCUuVEuRGqJFmFh4U1xbjZK+chAAAAAAAAAABIJ8LCAAD5z0tw1pfPlhlygHTqN2QqqjJfU2dQVBK12RSXxjzEOI6UZFCYJPkSDAsrD9VKx5yR9HyJ2LdPEgf1+pL3vn32ltnPe7DYbhdueURG3oKhwsLCuvWSTjxvV5hX+yCviNCvkrLW18LucLDi0ta/5zSwMV5j0UU/T38y3dHBA6z+uNyqqqhZd76c2IVYD70a67Kz2JejBf3RwsX2hIyVxQgZK90+QuWlk1QR2qH+TWtV3bK+4+Bvv9L27c4Gqy+2eX8s9qeXh22nGha23157vk/TX3kHj1yUoYEBAAAAAAAKhPH7Jb+/9f27ZI5PYW5rrdTcFBEmtjtgrD48VKxDWFmDbKNLn8iAs2hjNLuk1KOw7X6NJCHloDKfPyKELDJQrMg1cKxDWFlRx0Cz6OO0tplEbpCTK7Vbo7eXVmS3DgAAAADIYz7jbQ1V0BBSBKTKUfTzrcW2hG03xljPx3kIAAAAAAAAAADSibAwAEABiHPhxAET5Fz/SHZKyRYvF4uMPSbzdbRnjAJK7OKuslCtzPceSGsZlxxl9ItFHS8HumlaEqFGJd6D08zPfh9z33EjpReXd2wvDdXqznXXSpKCtjHuHMXtFpuYK+6U+fLZnuvLiG013vu6pFWdOdbozLFGUlB3vtwSs1+6NDZLm5qlTbXR9rpdSnaFNPCKtq2JO9/Q42vPU7/mz/Z0qd2m5harb//G6tHFVvUup8T/+3LEebwg/FwoTjEsbMa4PeM7Gbi+rEeZNLBnF7hwDQAAAAAAAFEZY6RAsPVL3RI/PsX5bUuL1BQjUKwhIrysbX+ssLIGqbEu4tiOAWdhY9hUY6WQl1qapbodrV9JSDmsrH14WFFEoFhRSeywst1BZZGhZEWR4WWxQs+KW8MLvdgR4y4Z5Yn/HAEAAAAAROfzeAlA0CGkCEiVEyOcLxQZFhaKvsYz6ATTXhMAAAAAAAAAAChchIUBAPKfSwiRpNYLHvKNh7AwU1SShULC+W1iQU+OQlJxaVpruOhwo1/9zaq2Xc7SAV+SjhqW+FjG72+9MKexPn7fAbEn+PbRjv70QUihdlcJDWj6jz5aObztgroiD8FQRaF2fQaPjNs/4wbs571vSZmnbqcU/UMLGw5OsqDseqN0ok7d+2n9fdWEPRdGFpXo+uesHnw1/iVhF0zYcx7brR2D18L+vhN0yoHS0D6ZDQt74ptJBPABAAAAAAAAuxifT/KVJv0ecSpveVlrpeam8DCxhvooQWVRQsca6sODytrCyqKEnkUbo6GudW4gmt2vkySkHFTm80nBkughY+0DxtZ+FH2AssoUKwAAAAAA7OYzHsPCTB6ujQSyzFH0dXAhhcK2G2Os8SS0DwAAAAAAAAAApBNhYQCA/BcvOMuXj78OM5D8kypj5LfNCR3yTvGBMh6CzxJxyECjF6909NOXQvrXF9LhQ41uPNWotCjJeUrK41+YEycI65SDjBZ829E9v1qhjeu368jaV3TjhhvC/haDNv7FYcV2Vx17DZT2GRW3f8b1H+qtX7denoPFpnT/RAvXdY2wMElaVnyQPgoM0dCmj1sbGur0f0tCineOHjpIGtW/XVjY//y/Dn28BMhFc+3xRjecEj5/JsLCJu2b/jEBAAAAAACAbDDGSIFg61cSAUepvt1mW1qkpsgQssjAsShBZbvabNv+iOPah5O17xMZVmZTjZVCXmppkep2tH4lg7AwAAAAAEgbn/F56kdIEZA6x8QIC4u4eW5jjJt/BgjtAwAAAAAAAAAAaZSP6SgAAEQowLCweAFb0y/JTh0R/EosLOz2dddJuiPtdUzYx+j/9vG2YCqu0nJp60bXLuYbc+IOc/KBRicOf1x685ao+70EQxXbeqmkTOYHD6U9ZC0Zxhhp9qOyN3wtdqdAUOZH/yvjRF9QE6mqMiCtS1OBWbI6MED9m9dqxD7v6NPA3tKG+MecMKpdUJi10p+e7NCnLRwuAa+tOlITTvmzTCAY1p7usLDD95GKArl/DQIAAAAAAABdkfH5JF+pVFya3PEpzG2tlVqaw8PEGmIEkzVECSFrrJdta6+LElYWGXoWsb+pMYXq0amVdct1BQAAAACQN3zG25pHQoqA1DmKvraxRaGw7VhhYYT2AQAAAAAAAACAdMrDdBQAACLEC03y5+GvwziP2Uy7OEuFtJ/UKGCbEjrka1t/o0yEhaVVSXn8Pl8+29tYLoFZnsLCjjtD5tz/ken1JW/zZYGZcpa03xjZ+74nbd8ic/GPpSEHSK8skJoapCNOkenV1/N41d29hYp9qekzHV/0jrbvNVw7WgKqbfZre3NAO5r92rH7+5ZAsg8rIS3Gpz7D1minU+b5mD4VrX/apkbp2Qei9gnaxC+aM5K0tUaKeM49ZrV59ocr0jwgAAAAAAAAgKwwxkj+QOtXWWVyY6Qwvw2FWt87bgsjixY41i50rH2oWWODbFiIWfQ+HcbZvb+hTrI2herhqqJ7risAACDvGGMGSxot6UuSyiV9Lmm1pDesTXCBBgCgS/HJ240yCSkCUucz0c83a8PDwppirPEMEtoHAAAAAAAAAADSKA/TUQAAiBAvLMyXh78O44WFDR6ZpULC+W2z575LPj5MvVpqMlhNmpRWxO1iqvp4GsoYR7EuQ6pq2Rz3+OIjpsr06uZprmwye+8r85OnwxtPOj+psQ4baKW/x94/oOk/+m7NT3XJ5l0BW+/H7huS0U5Tqh1OuXY4ZdruVGiHU7Zru7xDe61Tru272nf/Wdtu/wZ/9L/ntf5+CQWFSVKfCiNb84XstdOkD9+O2sdLgFxU2zZ1DAtL5eq9CPMvcVRenMYBAQAAAAAAABQM4xfCeVIAACAASURBVDhSUUnrV/y33zsen8Lc1lqppbldUFl9x+9jhY7t6mMbYvRpqIseVNZ+f1PiN4joSszBR+a6BAAA8oYx5gxJV0maEKPLJmPMk5Kut9ZuzF5lAIBsiRVeFCloghmuBMh/TozzrUUtYduNoRhhYYT2AQAAAAAAAACANMrDdBQAACIQFhZu4H7Zq6M9Y+SXt7Cwyzfdq9EN72S4oDQpSSwEyo1tif389PQQnFZcHEhbLZ1V+YTJ0lOx93+0crjni8EcWZXbWpW31Cpi3U5Suu23XrVOeYf25ypOTnisPpWS/fl1MYPCJKk4VJ/wuEZW2trxtZTOsLBpYwgKAwAAAAAAAND1GGMkf6D1y8ONQqKOkcL8NhSSmhqiBJQ1tAscixVU1iDbWNfuuMhgsl1tbWNECSsLhVKoPo5DjpbGfTlz4wMAUCCMMeWSHpR0dpyuPSRdImm6MeZ8a+0fM14cACCrfMbbmkdCioDUOXKitlsb/l5KY4ybfwYN5yEAAAAAAACAwrNz50794x//0IoVK7Rx40bV19erpKRE1dXVGjZsmMaMGaNgkJueJOuoo47SK6+80rZtrc3IPIsWLdLRRx/dtj179mzNmTMnI3PBuzxMRwEAIFIBhoW5PeaybtkrI4LfegsLO3frbzJcSRolecFQVMtejbmrOMZd59orKsn/sDBTUaXKlk3a5uv4Oq5uXpfShVip8tnoiWMLkwgL61VupZeecO1TZBsTHtfISts2dWhPZ1gYAAAAAAAAACBxxnGkopLWryQ+ekj1bV7b3CyFBY5FCyarcwkri9InEJTZf7x04vkyQS6MBQAgFcYYn6QnJZ0YsWuDpLclbZW0j6Qx2vNPg2pJzxpjplhrX8tWrQCAzPMZn6d+hBQBqXNinG8tEXcobQxFX89HaB8AAAAAAACAQtHS0qLf/va3mjt3rv7yl7+ouTl2rkBxcbGmTp2qb3zjGzr55MSvwwYKWT6mowAAEM4UYFiY22Muq8xeHWGMAh7Cwu5Yd60Orl/WujFuSoZrSoOKqvSN9c/YYWFFMe46196+fb0tAuvqLtt0n27u/f0O7Zdu+mUOqtnDaxieF31WvRG3j5fXRCQjK22t6dCerrCw+75K6hgAAAAAAAAAdEXG75f8FUnfJIV3hwEAyLhbFR4U1iTpKkkPWLvnTlPGmJGSHpI0YVdTkaQFxphR1trPs1UsACCzfMbbmkdCioDUOYq+LjPU7uaiLbZZLYq+fjBoghmpCwAAAAAAAAA6kz//+c+65JJL9OGHH3rqX19fr2effVbPPvusxo4dq/vvv18HH3xwhqtM3KBBg7R69WpJ0sCBA/XJJ5/ktiBAkpPrAgAAyDjCwsKVd8teHRH8MRZD7Hbz+h/pyk33tm74fDKnX5qFqlLUvZf7/sEj0zKNl2Co7qWF8U+7c3ssU8/mjWFtvZvXa+a2J3NUUStfxJ0CU9HtuvhBeWVjJyY8bsywsARfOv0qop/L5xzK5WAAAAAAAAAAAAAAkE7GmCGSrohoPtNae2/7oDBJstYul3SspL+1a+4paXZmqwQAZJMvRnhRJMLCgNQ5JvriupBCbd83hhqj9pE4DwEAAAAAAADkvxtuuEFTpkzpEBRmjNHIkSN13HHHaebMmZoyZYqGDRvW4fglS5ZowoQJevDBB7NVMtCl5WE6CgAAEeKGhXlbONOluD3mqt7Zq6M9Y1Qcqnft0rf5C2ngftKA/WRO/YbM+KlZKi55pnsvWbcOoya47fWsyMZeTFJohh05Ti//6njd2eNKvV08WofUv61ran6qIU2f7OlUUhY/yC3NfO0W/6TKcX9VSZIGnjhVvt9ILQlMa2Rl33ldkT8h1m9LrL7Fl27S9xdV69dvttbZo0x6b46jyhLCwgAAAAAAAAAAAAAgzWZLCrTbnmetfTZWZ2ttnTHmAknvSgruav66Mea/rbUfZ65MAEC2+Iy3SwAChpAiIFWOYoSF2T03F210uRks5yEAAAAAAACAfHbllVfqrrvuCmurqKjQ97//fX31q1/VgAEDOhyzcuVKzZs3T3fccYcaGlrfX21sbNTFF1+s2tpaXXnllVmpHeiqCAsDAOS/uGFh+fjr0OUxl1Zmr4wIJbbOdX+3Gx+WM6aLhQ0Fi113m5Mv8j5WVR9p8/qou6qb17keOq5pmaRDvM/VlZWW6YCG5Zr7+cXR91f2kPO7z7NbkyT/rC/kIeMrrplbn/DUr2j0YRrwgrRqY4ITLH6hQ9N/NiU2RKC4SL/6uqNffT3BuQEAAAAAAAAAAAAAnhljSiSdEdF8W7zjrLUfGmMWSDprV5Nf0jmSbkpvhQCAXHCMtxukBk0wficArhwTKyxsz10+m0Kxw8KCDmFhAAAAAAAAAPLTI4880iEo7IgjjtDjjz+u/v37xzxu6NChuummm3Teeefp9NNP13vvvde27+qrr9bo0aN11FFHZarsvLBo0aJcl4Aciv7JBQAAeaUAw8LcAtJy9XiNUXGo3rVLRVdcEzH2GPf9+x3sfawjTo65K6Bm10PPb4x50+A8FOecjrE4J9N8JaVpGefizQ956mcqe6jSPauu4zE2eppZXVOC4wS74skKAAAAAAAAAAAAAF3OVEntP4z+m7X2Xx6PnRuxPT09JQEAcs3nNSyMkCIgZT5FP99C2hMW1mhdwsIM5yEAAAAAAACA/PPhhx/qO9/5TljbxIkT9Yc//ME1KKy9YcOG6eWXX9aIESPa2kKhkM4991xt3LgxrfUC+YSwMABA/nPi/LorsLAw4/O2UCgTim2csLAEg486hf5DXXebeK+/9n2nX+q6/5JN90dtn7jzDc2y8z3P0+W5heFJ8c/5DPGVlqVlnAl1b8btY+b+XZJUnuA6ohaPCwXjzh/siicrAAAAAAAAAAAAAHQ5x0dsL0rg2FelsDuTjTHGVKdcEQAg53zytuYxQEgRkDInxpq7FtvS9n1jyCUsjNA+AAAAAAAAAHnommuu0Y4dO9q2u3fvrqefflrl5eUJjdOnTx899dRTCgaDbW1r167VjTfemLZagXyTh+koAABEiBcsVGBhYXJyFBZmjEpsnWuXrhgWZoyRTddg+xwgnXSh9LvIm/u2umrT/+h3FSfoP4EBbW3H7nhZz605XaZ3Aa3njXdOm9yEhfkTOLVKQ7W6c911uqTvvW1txob04OeXyK8WlyN36bePpMTPmTqTnpPM5ydzGAAAAAAAAAAAAACy4ICI7b95PdBaW2uMeVfSmHbN+0tal47CAAC54/N4w0BCioDUOYq+Vs4q1PZ9o40dFhYwwZj7AAAAAAAAAKAr+te//qXnn38+rO3WW2/VXnvtldR4I0eO1DXXXKNbbrmlre3hhx/WnDlzVFVVlVKtnc3KlSv1zjvvaO3atdq+fbuMMSotLVV1dbUGDx6sUaNGqbS0NON1NDQ06JVXXtGqVau0adMm9enTR/3799ekSZMyMv/nn3+uN998U+vXr1dNTY3Ky8vVp08fjRs3TkOGDEn7fPkuD9NRAACIFCdYyB/IThlZ5fKYcxSkJEnFLndPk7pmWFg6GWOka++T9fukZx/qsH9w02q9/slRerzyLH0YHKZD6/6ur257XEW2UVr/aQ4qzpF4YWFObl7jvgSmPXX7Qn1zy/9qv4Z/a2HFSTKyOnX7Qh1et9jT8aakTJJUUWykBOLqap3W42xjg0ywqO37RP9bEO+vAAAAAAAAAAAAAACQFiMitlcmePxHCg8LGynpzylVBADIOZ/xttaHsDAgdU6McD4rq5ANyTGOGmKsjQ2YoJwcrtkFAAAAAAAAgEy46667ZO2ea5t79eqlCy+8MKUxr7zySt1+++1qamqSJNXW1urBBx/Utdde26HvBRdcoEceeaRte9WqVRo0aJCneRYtWqSjjz66bXv27NmaM2eO6/i7rV69ujULIIbzzz9f8+bN69De0NCgu+++Ww8++KBWrFjhWp/P59Po0aM1bdo0XXXVVTGDu4466ii98sorbdvt/z7cbN26Vddff73mzZunbdu2ddhfUVGhGTNm6IYbbtCXvvQlT2PG0tTUpIcfflj33Xef3n333Zj99t13X11zzTW66KKL5PcTg+UFzxIAIP/FS7Xx5eGvQ7fHnKMgJcmoxNa59ij0sDBJMo4jnfIN2ShhYZLUt/kLXbXp7ixX1cnEWzyTo9e4P4FpL9/0c0nS5LrXNbnu9aTnLE/wnKlzWv9TaI+tlD1tlkz1ANm5N0lDahIah6wwAAAAAAAAAAAAAMgsY0wPST0imv+T4DCR/fdNviIAQGfhixFeFCloghmuBMh/jmIvDAypRY4cNdnoYWFBQ2AfAAAAAAAAgPzzwgsvhG2fd955CgZT+0yid+/eOuWUUzR//vyweaKFhXUln376qaZOnaoPPvjAU/+WlhYtXbpUS5cu1dlnn62hQ4emrZZ//vOfOvHEE/XZZ5/F7LN9+3Y99NBDmj9/vp577rmk51q6dKnOOussffzxx3H7rlixQrNmzdIvfvELPf/88+rXr1/S8xaKPExHAQAgQpywMFNoYWHxwtMyqNjWu+4nLGyX3kkk7R5xSvrr6KzivYZzdCc+XwLTHlL/j7TMWZ7gWqID6t/bs/HM/fKWE91RzjIHAQAAAAAAAAAAAKBwdI/Y3mmtrU1wjPUR291SqAcA0En4PF4CEHQIKgJS5biE84VsSI22QQ99dnvU/QGHwD4AAAAAAAAA+WXNmjX65JNPwtqOO+64tIx93HHHhYWFLV68WE1NTQoEAmkZP9saGxt1/PHHdwgK69Gjh0aNGqXq6moFAgFt375dn3/+uZYvX67a2kSXBHizfPlyHXvssaqpqQlrr66u1pgxY9S9e3etW7dOixcvVl1dnTZt2qSTTz5Zt98e/f1vN88//7xmzJihnTt3hrX37dtXBx10kHr06KHa2lotX75cK1asaNu/bNkyjR8/XosXL1b//v2Te6AFIg/TUQAAiBAvWMjxdpe9vOHL0eM1RiUh97Awn5O7ILPOxPSoTjjEyXxjTgYq6aTintO5eR15DQt79tPpcpKO6QqXSMDe0MaV2rfpo7TMy5kKAAAAAAAAAAAAABlXHrFdl8QYkcdUJFlLG2NMH0m9Ezxsn1TnBQDs4XMJL9rNkeM5VAxAbD6Xm5eGFNLjX/wi5v6gIbAPAAAAAAAAhaHFtmhL88Zcl1EQuvt7efqcIFNef/31Dm1jx45Ny9iHHHJI2HZdXZ2WLVumcePGpWV8r+644w7NmTNHknTEEUdo7dq1kqR+/frptddei3lceXn4R/xz587V8uXL27YHDRqkn//85zr++OPlOB3fe7bWaunSpXr++ef18MMPp+GRtGpqatJXv/rVsKCwvn376q677tLpp58eVsuOHTt055136uabb9aWLVt07bXXJjTX8uXLdfbZZ4cFhR1//PG64YYbdOihh3bo//bbb+uKK67Qq6++Kklau3atZs6cqUWLFsmXq0yMLoBPAAEABSBesJDHhJ+uxC1MKYfhaMXWPSwMSZp5lcw+B+S6iiyKc067LM7JJL/HaU/Y8ce0zdmjzHvfx9aen7Z54+W1AQAAAAAAAAAAAABSFhkWlsyii8iwsMgxk3GppNlpGAcAkCQvFwEFnSIZFvkAKTOKvTCwIVSvZTsWx9wfdAgLAwAAAAAAQGHY0rxRP/p4Vq7LKAg3DrlfPQPVOZt/zZo1YdvV1dXq2bNnWsY+4ICO18qvWbMm62FhvXr1Uq9evSRJfv+eWCa/369BgwZ5HufZZ58NO/all17S0KFDY/Y3xmjs2LEaO3asfvSjHykUCiVefBT33HOPli1b1rbdt29fvfbaaxoyZEiHvuXl5Zo9e7YOOOAAnXXWWdq8ebPneUKhkGbMmKHa2tq2tjlz5mj27NjLC8aMGaM///nPmjFjhubPny9Jeu211/TYY4/pvPPO8zx3ocnDdBQAACLEW/CSj2FhbmFKuXq8xqgklMxNbgvUvgfF3GWuuFP6ytelky6UmbdUzqU/yWJhnUAnPad9HqYd2rhSjmza5tz/S94W9I2r+7sOqX87bfM6rCMEAAAAAAAAAAAAgGxL5sPm9H1ADQDoNHoF+sbt09tDHwDxuYXzbW7aqCbbGHN/78BemSgJAAAAAAAAAHJm06ZNYdtVVVVpG7u4uFhFReE3YYicrytZvXp12/cHHXSQa1BYJJ/Pp0AgkHINoVBI99xzT1jbAw88EDUorL3TTz9dl156aUJzzZ8/X++9917b9llnneUaFLab3+/XI488oj59+rS13XHHHQnNXWjyMR0FAIBw8YKF8vHueW6PyeTu139ATTmbu6sx/zU3+o6+g2TO+I6c794n53u/lNmnY0py3ot7TnfesLCVQe//kfPiiKFS99L4/R7+LL2J7Pn4YxMAAAAAAAAAAAAAOpkdEdslSYwReUzkmACALmhk2WiVOuWufcZWTs5SNUB+My6X3DS7BIVJ0tjKSekuBwAAAAAAAAByKjK8q3v37mkdP3K8mpqatI6fK+vXr8/JvH/961/1ySeftG2PGzdOJ598sqdjr7/++oQCy+6+++62740xuvXWWz0fW15erlmz9lwL/+6774bVjXCEhQEA8l8nDRbKKLfH7OTo8Roj8oW8M0P2l77y9fDGfkNk7n05NwV1JvHO6Ry9xv0epp1+UEta5ywrMvrJacb1KfnW5gc0svFfaZ2XcxkAAAAAAAAAAAAAMq6zhoXdJ+mABL9OTcO8AIBdSn3lunLvG9WvaFCHfSVOmab2OF1TqvjRC6SDz/hi7mt0CQs7oedZGlMxMRMlAQAAAAAAAEDeMvGuIe9Chg8f3vb9p59+qjvuuCPrNbz22mth2zNnzvR8bO/evXXcccd56ltbW6vFixe3bY8bN06DBw/2PJckHX300WHbr776akLHFxJ/rgsAACDz4oWF5c8/Gtu4PaYch6NVtmzVNl+3Du3TRuegmE7OXPNzafxU2Xdel+k3RDrqdJmq3rkuqxOIc862pDeQyyufh1NrQG+/VNlD2rYpfmePZh3paFR/q4X/tPL9+ieasHOxPg4O0arAQE3e+bpO2fF82ubazcnDH5sAAAAAAAAAAAAA0MlsjdguNcaUWWtrExijT8T2lhRrkrV2vaSEbnucTwu6AaCz6F88WD8c9D/a0bxN9aE6Sa3LBqv8veS4hBsBSIyj2OdTUyh2WNgxVadkohwAAAAAAAAAyKkePXqEbW/dGvmxdmq2bAn/SDtyvq7knHPO0fz589u2v/vd72rBggW68MILdeKJJ6pv374Zr2HJkiVh2+PHj0/o+PHjx+t3v/td3H6LFy9WU1NT2/aQIUP0ySefJDRXKBQK2/7oo48SOr6QEBYGAMh/8RYcOrkNz8oMl8fs5HYh0KnbF+rR7ud2bB/NwtBIxhhp8qkyk7nLY5h453RLk/v+DPESFlbkl8y9L8ueNyatc0/cx2jiPkahRx+Saj+TElkangTWcQMAAAAAAAAAAABAZllra4wxmyVVtWseIOmDBIYZGLG9IuXCAACdSrm/UuWqzHUZQN5yXG7Q22Rjr1X0GS7VAQAAAAAAAJB/IsO7Nm/enLax6+vrVV9fH9bWs2fPtI2fbdOnT9f06dPDAsNef/11vf7665KkoUOHauLEiTr88MM1adIkjRgxIu01rFu3Lmx73333Tej4YcOGeer36aefhm0/8cQTeuKJJxKaK9KmTZtSOj6f8QkEACD/xQ0Dy8PUG7ckn5yFo7XW9O3Nv9QzFadqh6+ibc/wphU6bcx+OaoLXU4nTaryewwLU/+hmSsiEMzc2O100r8CAAAAAAAAAAAAAMg3H0ia2G57qBILCxsSZTwAAAB45JjYN+htsg0x9/mU2xv7AgAAAAAAANnU3d9LNw65P9dlFITu/l45nb9fv35h21988YVqamrSEur1/vvvx52vKzHG6Mknn9Ts2bP105/+tEMQ2sqVK7Vy5Ur96le/ktQaHnbuuefqsssu6xDKlqzIMLfKysRuQNOtWzdP/WpqahIa14vt27enfcx8QVgYACDvGWNk3TrkLDwrg9ySfFzucpYNY+v/ob+sPk739fiW/hUcpvF1b+l7TXNVWfJuTutCFxIvqcr1hM8cn5ewsIBkAsHMlRgsztTIYRzCwgAAAAAAAAAAAAAgG95TeFjYBEkLvRxojCmTdGCU8QAAAOCRT7EXBjbZptjHuYSMAQAAAAAAAPnGZ3zqGajOdRnIgokTJ3ZoW7JkiaZOnZry2EuWLAnbLikp0ejRo1MeN5f8fr9uvvlmXX755fr1r3+tZ599Vm+99ZYaGjrejGLlypWaM2eOfvazn+n+++/XjBkzclBxchobG9M+prU5CgzoAvIwHQUAgChcw7PyMPXG7THlKhytXUljGv6pBz+/RK+uPlZ3rP++ejldPNn17CujNpvvPZDlQgpEvH/ch0LZqSOCp7Cw3VG9Bx+VmSJW/ysz40Yw+fhzEwAAAAAAAAAAAAA6nxcito9K4NhJCr+h7NvW2nUpVwQAAFBAjMsNeptC0S9+MjJyCAsDAAAAAAAAkIcGDBigAQMGhLW9+OKLaRn7pZdeCtseP368gsFgWsberaWlJa3jeVVdXa2rr75af/3rX7V161a98cYbuuOOO3TqqaeqvLw8rO/WrVs1c+ZMLViwIOV5q6qqwra3bduW0PFbt2711K9Xr15h27fccoustSl9zZs3L6FaCwlhYQCAwuAWkOXyQX6X5RqO1gkfr69rL4owU2ZIweLwxh7V0oTjc1NQvosXFmZzExbmd+IHaO0OCzNfv961n/n2bckV0X+fpA4b0fBBcvMBAAAAAAAAAAAAADLpj5Lq2m1PMMYM93jsBRHbz6SlIgAAgALiU+z1rU22IfoxBIUBAAAAAAAAyGPHHx9+/fyjjz6qpqamlMbcsGGDnnvuOdd5dvP7/WHbzc3NnufZvHlz4sWlWVFRkSZMmKCrr75aCxYsUE1NjZ544gkNGzasrY+1VpdffrlCodSuma+urg7bXrFiRULHf/jhh0nN4/U4JKcTpoUAAJABjssH727BWl2Wy2NyC07LJLfnuauHhe13sMxtz0gHHSGVd5PGHydz1x9lelTHPxiJixcWluJ/fJLl83BqtYWFHXh462smmr33lWZckVwRR56W1GFzNtzoua+HTDQAAAAAAAAAAAAAQBpYa3dKeiqi+bp4xxljhklq/wFys6TfpLE0AACAgmBcbtDbZKNf/OaTP2o7AAAAAAAAAOSDK664QqZdbsCGDRs0d+7clMa86667wgLHysrK9M1vfjNq38rKyrDtLVu2eJ7n/fffT6guk4UcimAwqBkzZujNN99Uv3792to//fRTLV26NKWxx44dG7a9ePHihI5/8803PfWbMGFC2HP10ksvycbLA0DSCAsDABQGlw/rXfd1VW7/8HQLTsuVzlhTgszYY+Tc+7LM79fJuWOhzKARuS4pj8X5z4HtvGFhDe3Cqc3EE2VufVoKFu1pDBbLXHZ763+ITrow6hjm27fGnsAf8FhtuJN3/F4nbf+9p755ma8IAAAAAAAAAAAAAJ3XHEntkyguMMZ8JVZnY0yxpLmSgu2aH7bWfpSZ8gAAAPKXT7HXtzaFGqO2O6brr4kFAAAAAAAAgFhGjhypE044Iaztuuuu07p165Iab/ny5br99tvD2i688EL16NEjav8+ffp0ON6r3//e27XUuxUV7bkGvKGhIaFjE9W9e3dNnz49rG3VqlUpjXnEEUeEbT/++OOej92wYYNefPFFT3179+6tMWPGtG2vXbtWf/jDHzzPhcTkYToKAABROG5hYXmYfOMaFpajX/9uNfny5y5q2UgILnihOGFg8fZniN/DqXXo4PDXhzn8ZJmHFstcfKPMrJtav5/Q+h9kc9S0jgMEgtKkmGu+ZXzJhYUV2Ub9du05+u2amXH78goHAAAAAAAAAAAAgOyx1n4s6a6I5qeMMd8xxrQPBJMxZoSklyVNbNdcI+mGzFYJAACQn9yCv5ps9LAwn8mfNbEAAAAAAAAAEM2dd96p0tLStu0tW7Zo+vTp2rFjR0LjbNiwQWeccYYaG/e839q3b19df/31MY85+OCDw7YXLlzoaa4//vGPeuuttxKqr3v37m3fb9y4UU1NTS69U+f3h7+/3D6sLBmTJ0/WoEGD2raXLFmi559/3tOxP/7xjxN6vN/5znfCtq+55pqEXw/whrAwAEBhcFzu0pWr8KxMcgusMp3w8br9/QCRrI2zPzdhYV5+lPQo7dhmBo+U+dq1Mud+V2bwiD3thx0vc+XPpPJuuw6ulvnJUzL99ok5vt2yPtGy2xTZRk3f/mzcfvn4IxMAAAAAAAAAAAAAOrnvSWp/292ApHskfWqM+YMx5rfGmCWS3ld4UFijpNOstZ9nr1QAAID84bhcchM7LIw1sQAAAAAAAADy2/Dhw3XPPfeEtb3xxhs64YQTtGbNGk9jrFixQscee6w++OCDtjbHcfToo4+qd+/eMY+bMGFCWFDZM888oyVLlsSd6/zzz/dUV3sjRuy57ru5uVl/+ctfPB23c+dO3XPPPdq+fbvnuXbs2KH58+fHnD8ZjuN0CPGaNWuWVq1a5Xrc/Pnzdd999yU013nnnafhw4e3bX/wwQc67bTTtHnz5oTG2bBhQ4fnAeG41B8AUBhc021cgrXyUc6SflyeZx93UUMi4oSFhXITFubzcGr1Kk9sTHP6pTILP5P57b9lFqyWGT/V/YCXnkxsgiQU2E9MAAAAAAAAAAAAAMg5a22LpLMkRX4o3EfS8ZLOlHSIwj/SXS/pVGvtq1kpEgAAIA8ZY2RiXHbTFIoRFibCwgAAAAAAAADkv4suukjf/va3w9pee+01jRw5Urfeeqs+/fTTqMetXLlS//Vf/6VRo0bp3XffDdt322236dhjj3WdTJBsJAAAIABJREFUt6KiQjNmzGjbbmlp0UknnaQXX3yxQ9/GxkY9+OCDOuyww7Ru3TpVVVV5fXiSpKOPPjps+8ILL9R9992npUuX6uOPP9Ynn3zS9rVx48aweS+//HL1799fF110kRYuXOgaHPbWW2/p2GOP1erVq9vaDjvsMA0bNiyheqO5/PLLddBBB7Vtf/bZZzr88MP11FNPKRRxTX5tba1+/OMf6+yzz1YoFEro+fL5fHrqqadUWVnZ1vanP/1JBx54oH7xi1+4Pv5NmzbpySef1MyZM7X33nvr7rvvTuARFh6SOQAAhcFx+eA9Z+FZGeQWlmQ6YdSPP5DrCtCV2DhhYfW12akjgt/Dj5JupYmff8bvl/oO8tY5WJzw+JFGNizX8qKRsevphD9CAAAAAAAAAAAAACDfWWt3SDrbGPOUpKslHRaj6ya1horNttZuyFZ9AAAA+cqRoxZ1XJfbZGOEhRku0wEAAAAAAABQGO69915VVVXp5ptvlt11/ff27dv1/e9/Xz/4wQ80cuRI7b333qqqqlJNTY1Wr16tf//73x3GCQQCuuuuu3TJJZd4mvfGG2/UM888oy1btkiS1q9fr6lTp2ro0KE68MADVVRUpHXr1unNN99UbW3rded77bWXbrvtNp1//vmeH9+ZZ56pH/7wh1qzZo2k1qCtyIC03c4//3zNmzcvrG3btm2aO3eu5s6dK2OMhg4dqiFDhqh79+7y+/2qqanRe++91zb+bqWlpXrggQc81+kmEAjoscce05FHHqmamhpJ0ueff64zzzxT1dXVOuSQQ9StWzetW7dOf/vb31RXVydJ6tatm2677TZdfPHFnufaf//99fTTT+uMM87Q1q1bJUlr1qzRpZdeqssuu0yjRo3SgAEDVFlZqZ07d2rLli368MMPOzx+uONTCABAYTAuKT75mHxjXcLCchWO5vY8B4LZqwNdX7ywsKboC3AyLRDnZoDdSrJQxNRzpN/cmdIQ39j8v7pqrzti7nfy8EcmAAAAAAAAAAAAAHQV1tqnJD1ljBks6WBJX5JUJukLSaslvW5tjOQKAAAAJMwxjlqiLFuMHRYWZzEhAAAAAAAAAOSRG2+8UUceeaQuvfRSrVixoq3dWqv3339f77//vuvxBx98sO6//36NHTvW85z9+vXT008/rWnTpmn79u1t7StXrtTKlSs79B88eLB+97vfad26dZ7nkKSSkhI988wzmjZtmtauXZvQsZGstVqxYkXYcxRNv379NH/+fI0aNSql+drbf//99ac//UknnniiPv/887b2devW6fe//32H/t27d9dzzz2nlpaWhOeaMmWKlixZopkzZ2rJkiVt7S0tLVq2bJmWLVsWd4yqqqqE5y0kOUoLAQAgy3wuH7y7BYl1VW7/8HI64SIEXyDXFaArcQvDy6FgnBjeg/pnvgbz5Zkpj1EUZ814PuYrAgAAAAAAAAAAAEBXY61dZa192lp7j7X2VmvtPGvtXwgKAwAASK9Y4V+NoVhhYXEWEwIAAAAAAABAnpkyZYqWL1+uxx57TMcee6z8fvf3SYuKinTKKafo2Wef1ZIlSxIKCtvtmGOO0VtvvaVTTz1VJsbFz71799Z3v/tdLVu2TCNGjEh4DkkaO3asli9frl/+8peaNm2ahg4dqsrKSvlc8iu6deumV155Rddee60OOeSQuM+HJO2333665ZZb9OGHH+rQQw9NqlY3o0eP1gcffKDLLrtMFRUVUfuUl5frggsu0DvvvKNJkyYlPdfQoUP11ltvaeHChZoyZYqKioriHjNixAhddtllevXVVzV//vyk5y4EfAoBACgMboFg+Zh84xam5Baclkluz3OAsDAkwEa5RV8nUBTnX9YVxVkoYp8DUh7Cd/l/S/8Xe38e/sQEAAAAAAAAAAAAAAAAACAqo+hrkJttU9R2nzrhTX0BAAAAAAAAIMP8fr/OOeccnXPOOaqtrdXSpUu1cuVKbdiwQY2NjSoqKlJ1dbWGDRumgw8+2FOAVDzDhw/XggULtHHjRr3yyitas2aNdu7cqerqag0ePFiTJk0KC+o66qijZJO4Tr2yslKzZs3SrFmzPPU3xmjy5MmaPHmyJKmurk7vv/++PvroI33xxReqra2VMUaVlZUaMGCADjzwQA0cONBzPYsWLUr4MUitIWZ33323br/9di1atEirVq3S5s2b1bt3b/Xv31+TJk1SWVlZW/9kny+p9Tk4+eSTdfLJJ6u+vl5vvvmmVq9erZqaGtXW1qqsrExVVVUaOnSoRowYoZ49eyY1TyEiLAwAUBjcArIclyCxrirkEhbmFpyWK37CwpCAThoWFowbFpb5mC1jjFJ5dswLGxRYViK5jLKjIYUJAAAAAAAAAAAAAAAAAADoQnwm+hrkJht9MZ3PcJkOAAAAAAAAgMJWVlYWFpaVab169dLpp5+elbmSUVJSorFjx2rs2LG5LkWSVFRUpKlTp2ZtvuLiYh155JFZmy/fdcK0EAAAMsA1ICvzAT5ZF2qJvS9X4WjG5Xn2sTACCYgXFlZcmp06IgTj3AywLPWAa29mXJH0oaasUj7+hwAAAAAAAAAAAAAAAAAAgCTJiXHZTZNtitoeK1wMAAAAAAAAAAAgVUQBAAAKg+MSVJWr8KxMCoVi73MNTssRfyDXFaBLiRMWNnladsqIUBQn866iODt1mKPPcO/QZ+/ox/1hvSTJ3wl/RAAAAAAAAAAAAAAAAAAAkAtOjPCvplBj1HbCwgAAAAAAAAAAQKbEiTQAACBPOC4fvBuXILGuyrqEhbk9F5nk9jz7+CcJEuAWhifJHBMnLCtDgp0kLEzBItfdztMrJUl25w7prZek0ZNkuvdq2+8jLAwAAAAAAAAAAAAAAAAAAEmSo+iL6hptjLAwLtMBAAAAAAAAAAAZwqcQAIDCYFzSb9z2dVVuYUpOJ3y8uQowQ9dkrfv+8cdlp44I8cLCyt0zvNLHH/TUzZSWS0ed1qH9gH5GUpznGAAAAAAAAAAAAAAAAACAAuDEWGfcHCMszDGsiQUAAAAAAAAAAJnRCdNCAADIAJ/LB++dMTwrVdYlLCxn4Wgm9i4f+aVIgEtYmJn9qIw/kMVi9iiK8zKuKs1OHQqk9viH75WmOgAAAAAAAAAAAAAAAAAA6OIcRV+D3BiKHhbmM6yJBQAAAAAAAAAAmZGH6SgAAESRs4CsHKkeEHtfn37Zq8Mrh7uoIQHGJXhu9BHZqyNCMM7LuLrSpe50CgRTOtznZKlOAAAAAAAAAAAAAAAAAAA6OSfGGuSQWqK2+wxrYgEAAAAAAAAAQGYUWHIKAKBguYVROfn369AMGCbtvW/HHUMOkNlrYPYLktwDnnzcRQ0JqKiKva+xIXt1RAj63UO2+lRkqRAR9gUAAAAAAAAAAAAAAAAAQDo4Siz8yyfWxAIAAAAAAAAAgMzIv3QUAACicQsEcwux6sLMd++Tikv3NJSUy1x9d+4KcuPjnyRIwMQTo5/TpRVSn/7Zr2eX4oD7/h5l2alDPffK0kQAAAAAAAAAAAAAAAAAAOQ3n0kwLCzB/gAAAAAAAAAAAF5xyxIAQGEwbmFh+RlUZcZMln71trT4hdbHeNhUmb0G5rAgl1A2H/8kgXemey/Z8VOlv/0hfMfkaTL+OIldGVQWjLO/KDt1GH9ANjtTAQAAAAAAAAAAAAAAAACQ10yC64wJCwMAAAAAAAAAAJlCMgcAoDD4XD54dwux6uJM30HSad/KdRnxOSyMQGLM9Y/I3nyR9LcXWs/vI0+TuebenNYULwysNE6YGAAAAAAAAAAAAAAAAAAA6Fx8SmyNq89wmQ4AAAAAAAAAAMgMPoUAABQGt7t6OYnd8QtJcgtl8/FPEiTGlHeT+cnTsg11UigkU1KW65LUt5v7/rIuFBZ2wUSjeW/YXJcBAAAAAAAAAAAAAAAAAEBOOW5rkKPwExYGAAAAAAAAAAAyhHQUAEBh8Lnd1cslxArZQVgYkmSKSjpFUJgk9aty/1kS8HednzUnjopd6//M6DqPAwAAAAAAAAAAAAAAAACAVDgJXnbjyG3NMgAAAAAAAAAAQPIICwMAFAa3u3o5/DrMOYeFEUBnctqY2PsunkxYGAAAAAAAAAAAAAAAAACgMDgmsTWuPsMNdAEAAAAAAAAAQGaQjgIAKAxuYVSG4JvscHmefSyMADoTn2P0gxM7nrPXHm9UHOBnJgAAAAAAAAAAAAAAAACgMDgJXnbjSzBcDAAAAAAAAAAAwCuSOQAAhcFx+aDekJ2Za8bHwgigs7nxVKOqUunxt6z8jnTGWKOrv0xQGAAAAAAAAAAAAAAAAACgcDgJhn/5DJfpAAAAAAAAAACAzOBTCABAYTAuATdu+5A+bs+zj3+SAJ2NMUZXH2d09XG5rgQAAAAAAAAAAAAAAAAAgNzwJRoWJm6gCwAAAAAAAAAAMsPJdQEAAGSFa1gYvw5zjrAw5Ikxe0dv71mW3ToAAAAAAAAAAAAAAAAAAEDqTIKX3fgMa2IBAAAAAAAAAEBmkI4CAIBbkBjSx+159nEXNeSHy46N/jq/ZTo/ZwAAAAAAAAAAAAAAAAAA6Gp8Cd6U2GdYEwsAAAAAAAAAADKDsDAAQGFwC6py+HWYcw4LI5Afpo8xGjswvG303tJZhxAWBgAAAAAAAAAAAAAAAABAV+MosTWuPuPPUCUAAAAAAAAAAKDQ8SkEAAAixCcr3ALb/IHs1QFkUGWJ0Uv/z9HcN6yWrpYO7C/NmmxUWcLPGQAAAAAAAAAAAAAAAAAAuhrHJHZTYp/hBroAAAAAAAAAACAzCAsDABQGt6AqJ7EP8ZGkUCj2PsLCkEe6lRpdOYVwMAAAAAAAAAAAAAAAAAAAujpHiYV/+RLsDwAAAAAAAAAA4BXpKAAAuAWJIX1ammPv8xEWBgAAAAAAAAAAAAAAAAAAgM7FMYldduMz/gxVAgAAAAAAAAAACh1hYQCAAuESCJbgh/hIUnNT7H1+wsIAAAAAAAAAAAAAAAAAAADQuTjyJdTfZxLrDwAAAAAAAAAA4BXpKAAAGJcgMaRPc3PsfYSFAQAAAAAAAAAAAAAAAAAAoJNxErwpsc/4M1QJAAAAAAAAAAAodISFAQAKg1sgmMOvw6woq4i9r3e/7NUBAAAAAAAAAAAAAAAAAAAAeODIl1B/X4L9AQAAAAAAAAAAvCIdBQAAuQSJIW1Mn/7SwP067ujZVxo1IfsFAQAAAAAAAAAAAAAAAAAAAC58JrHLbnzGn6FKAAAAAAAAAABAoSMsDABQGIxLIJjDr8NsMbNuknztFkEYI/Otm2Tc/n4AAAAAAAAAAAAAAAAAAACAHDAJXnbjGF+GKgEAAAAAAAAAAIWOW5YAAEBQVdaYSV+R7lsk+8ozUkuzzKSvyBx0RK7LAgAAAAAAAAAAAAAAAAAAADrwJRj+5TNcpgMAAAAAAAAAADKDTyEAADCJ3fELqTEjx8mMHJfrMgAAAAAAAAAAAAAAAAAAAABXTqJhYUqsPwAAAAAAAADkm//P3r2HSVbV98L/ru65MTDIAMPNAUa5HAW8BqKir2JQCJxovJ3ogTyJlxDjJZG8GJXEEwHR4zVHjJqL0dHXiDFGRTQmQY34KsQQRINc5CIgIELGYbgMMswMs88f3TRdNTM9XV3VVbV3fT7Psx5m7dpr7bV2rd+i96rq1b/4xS9y2WWX5brrrsvPf/7zbNiwITvttFP23nvvHHrooXnSk56URYsW9eRaN998c/76r/863/rWt3Lttddm3bp12bRp09Trq1evzstf/vJtlr3kkkuyevXqXHzxxbnlllty9913Z8uWLVOv33jjjVm1alWS5Jhjjsm3vvWtqdeqqupJ+6FTNgsDgFIG3QIAAAAAAAAAAAAAYMiMpbM/Sjze4eZiAAAAAABN8OCDD+bv//7vs3r16nzzm9/M5s2bt3vukiVLcvzxx+d3fud38mu/9mtzvuZHP/rR/P7v/34eeOCBjspt3rw5r33ta/PRj350zteGQensUwsAaKLif4cAAAAAAAAAAAAAQKuxDjf/Gi8L5qklAAAAAADD6V//9V9z2GGH5aSTTsrXvva1GTcKS5INGzbkS1/6Up73vOflqKOOymWXXdbxNb/61a/m1a9+dccbhSXJn/zJn9gojNryKQQAo6GUGV7rXzMAAAAAAAAAAAAAgHoYS2d/lHi8w83FAAAAAADq7Mwzz8yZZ56ZqqpajpdS8tjHPjYrV67MHnvskTVr1uTmm2/Otdde23LepZdemqc97Wn50Ic+lFNOOWXW1z399NNbrnnSSSflVa96Vfbff/8sXLhw6viee+7ZUu6OO+7IBz7wgan8okWL8pa3vCUnnnhiVqxYkbGxh9eEV65cOev2QL/YLAyAETHDjmBjnX2IDwAAAAAAAAAAAAA031iHm3+N+zUdAAAAAGBEnHrqqTnnnHNaji1btiynn356Tj755BxwwAFblbn++uvziU98Iu973/vywAMPJEk2btyY3/3d3819992XU089dYfXveaaa3L55ZdP5U888cR8+tOfnlWbzzvvvGzcuHEqf/bZZ+eP/uiPZlUWhoHdUQAYDcuWz/DiDBuJAQAAAAAAAAAAAAAjabzDX7sZ73BzMQAAAACAOvrkJz+51UZhz3jGM3LVVVfl9NNP3+ZGYUly8MEH5+yzz87ll1+eI444ouW10047LRdeeOEOr33ppZe25F/ykpfMut1zLXvhhRemqqqpBINiszAARsMuu27/tTH/OwQAAAAAAAAAAAAAWpXS6WZhC+apJQAAAAAAw+Haa6/N61//+pZjRx99dP7pn/4pK1eunFUdhx56aL7xjW/ksY997NSxLVu25Dd/8zfz85//fMayd9xxR0t+ttfstiwMA7ujADAaStn+azYLAwAAAAAAAAAAAADajGe8s/NLZ+cDAAAAANTNG9/4xqxfv34qv9tuu+Xzn/98dtlll47q2WuvvfIP//APWbRo0dSxn/70p3n7298+Y7np106ShQsXzvqa3ZSFYeBPlgBAZthIDAAAAAAAAAAAAAAYSWOlsz9KPF78mg4AAAAA0Fw/+tGP8pWvfKXl2Lve9a7ss88+c6rvsMMOyxvf+Ma8853vnDr2sY99LGeccUaWL1++zTJbtmyZ07W6LdsLV111VX74wx9m7dq1WbduXZYsWZIVK1bksY99bB7/+Mdn8eLFc6p38+bNueSSS3LDDTdkzZo1eeCBB7JixYqsWrUqT3/607NkyZIe94RB8SkEAIx19iE+AAAAAAAAAAAAANB8Y2W8o/PH09n5AAAAAAB1cs4556Sqqqn8nnvumVe84hVd1Xnqqafmve99bzZt2pQkue+++/LRj340b3rTm5IkN910Ux71qEdtt/yzn/3sbR5fvXp1kszYvlLKNo/feOONWbVq1VT+mGOOybe+9a2p/PR7sCO33HJL3vOe9+Rzn/tc7rjjju2et9NOO+XZz352fvu3fzsvfvGLMz6+4/Xmq6++OmeffXa+8pWv5J577tluvc9//vNz1lln5dBDD511uxlOdkcBgO38AAcAAAAAAAAAAAAAjK6xDjf/Gu9wczEAAAAAgDr553/+55b8b/3Wb2XRokVd1blixYo873nPm/E6dVRVVc4+++wcfPDB+dCHPjTjRmFJcv/99+erX/1qXvrSl+aWW26Z8dwHH3wwf/iHf5gjjjgi55577nY3Cnuo3s9+9rM5/PDDc84558ypLwyPBYNuAAD0xwwbghV7ZwIAAAAAAAAAAAAArcY6+J5xScmYzcIAAAAAgIa69dZbc9NNN7UcO+6443pS93HHHZcvfOELU/nvfve72bRpUxYuXNiT+vtt8+bNednLXpbPf/7zW722zz775HGPe1z23HPPPPDAA7njjjvyn//5n1m/fv2s6r7//vvzghe8IBdccEHL8YULF+aJT3xiVq5cmcWLF+f222/PJZdckl/84hdTbTr11FOzbt26nHHGGV33kcGwWRgAlBk2EgMAAAAAAAAAAAAARtJYZr/517iNwgAAAAAYQZsfrHLrukG3YjSsXJ4sGB/c3ggXXXTRVseOPPLIntT9S7/0Sy35+++/Pz/4wQ9y1FFHZeXKlbnxxhunXvvABz6Qc845Zyr/mc98Jk996lO3qnPPPfdMkhxzzDFTx172spfl3//936fy0+udbuXKlXPqx0NOO+20rTYKO/HEE3PGGWfkqKOO2ur8LVu25Lvf/W7+7u/+Lp/4xCdmrPt1r3tdy0Zhj3jEI3LGGWfkVa96VZYtW9Zy7v3335+PfOQjeetb35oNGzYkSc4666w85SlPyQknnDDH3jFINgsDYDTMtCFYB3/xCwAAAAAAAAAAAAAYDWMdfM943K/oAAAAADCCbl2XPPqPtwy6GSPhhneOZdWeg7v+rbfe2pLfe++9s8cee/Sk7iOOOGKb1zvqqKOyYMGCrFq1aur4brvt1nLePvvs0/J6u1122WXq30uWLGl5baZyc3XBBRfkgx/8YMuxd73rXXnzm9+83TJjY2M5+uijc/TRR+ess87aqp0P+dznPpfVq1dP5Q888MBceOGF2+3HTjvtlNNOOy1Pe9rTcuyxx2bDhg2pqip/8Ad/kGuuuSZjY/baqBvvGADMtJEYAAAAAAAAAAAAADCSxjr4tZuxMj6PLQEAAAAAGKw777yzJb98+fKe1b1kyZIsXrx4xuvVxVlnndWS/73f+70ZNwprt9tuu21zs7CqqlrqXrBgQc4///xZbXj20CZkD7n++utz3nnnzbpNDA+bhQGA3U4BAAAAAAAAAAAAgDbjHWwANl4WzGNLAAAAAAAGq33zrt12262n9bfXt3bt2p7W3w+XX355Lrrooqn8smXL8u53v7sndX/zm9/MFVdcMZU/+eST8/jHP37W5V/3ute1bEJ2/vnn96Rd9JfdUQAgZdANAAAAAAAAAAAAAACGzFgHv3bTycZiAAAAAAC0KqX++z584xvfaMmfdNJJ2XXXXXtS99e+9rWW/Etf+tKOyi9dujS//Mu/PJX/9re/3ZN20V/+bAkAo2GmHwzH7J0JAAAAAAAAAAAAALQa62ADsPHYLAwAAAAAaK7dd9+9JX/33Xf3tP677rprxuvVwcUXX9ySP+aYY3pW93e+852W/O67756bbrqpozqmb1x20003ZcuWLRmz30at2CwMABqwwywAAAAAAAAAAAAA0FsdbRZW/IoOAAAAANBc7Zt3rVu3rmd1b9iwIRs2bGg5tscee/Ss/n752c9+1pI//PDDe1b3Lbfc0pJ/6lOf2lV9W7ZsyV133VXLTdlGmU8iABgNM20IVux0CgAAAAAAAAAAAAC0Gsvsv2c83sHGYgAAAADQFCuXJze80+/r98PK5YO9/iMf+ciW/O233561a9f2ZFOvK6+8cofXq4O1a9e25Jcv792b1l53L9x77702C6sZm4UBwEwbiQEAAAAAAAAAAAAAI2msgw3Axotf0QEAAABg9CwYL1m156BbQT8cffTRWx279NJLc/zxx3dd96WXXtqS32mnnfLEJz6x63oHrfRwL4uNGzf2rK6HVFXV8zqZX7ZmBGA0PPjg9l9bsLB/7QAAAAAAAAAAAAAAamGsg1+7Gc/sNxYDAAAAAKibAw44IAcccEDLsQsuuKAndX/ta19ryT/lKU/JokWLelJ3P+25Z+vOeXfeeee81L1kyZJs2bIlVVV1lVatWtWz9tEfNgsDYDQ8uHn7r9ksDAAAAAAAAAAAAABoM1462CysLJjHlgAAAAAADN6v/uqvtuQ/9alPZdOmTV3VuWbNmpx//vkzXqcu9t1335b8VVdd1bO6995776l/b9iwITfffHPP6qY+bBYGwGh48MHtvzbug3kAAAAAAAAAAAAAoNVYxmd97niZ/bkAAAAAAHX0hje8IaWUqfyaNWuyevXqruo855xzWjYc23nnnXPKKad0VeegPP3pT2/JX3jhhT2r++ijj27JX3DBBT2rm/qwWRgAo2HL9jcLm/7DKAAAAAAAAAAAAABAkoyV2f/ajc3CAAAAAICmO+yww3LCCSe0HHvzm9+cO+64Y071XXXVVXnve9/bcuwVr3hFdt999zm3cZCe85zntOTPPffc3HvvvT2p+/jjj2/J/83f/E1P6qVebBYGwGiYYbMwAAAAAAAAAAAAAIB2Y5n9BmDjWTCPLQEAAAAAGA7vf//7s3Tp0qn8XXfdlRe96EVZv359R/WsWbMmL3nJS7Jx48apY/vuu2/+9E//tGdt7bfDDz88z3rWs6by99xzT04//fSe1H3CCSfkoIMOmspfcskl+fjHP96TuqkPm4UBMBp2ecSgWwAAAAAAAAAAAAAA1MhYmf2v3YyV2W8sBgAAAABQV495zGPy53/+5y3HLr744pxwwgm59dZbZ1XHddddl2OPPTZXX3311LGxsbF86lOfyooVK3ra3n5r3+zswx/+cN7//vfPuvzdd9+dDRs2bHV8wYIFOeuss1qOveY1r8kXvvCFjtv49a9/PTfccEPH5Rg8m4UBMBLKC1+97Ree8Iz+NgQAAAAAAAAAAAAAqIWxzH4DsPGyYB5bAgAAAAAwPF75ylfmda97Xcux73znOznssMPyrne9K7fccss2y11//fV561vfmsc97nH54Q9/2PLau9/97hx77LHz1uZ++ZVf+ZWcdtppLcfe+MY35vnPf36+973vbbPMli1b8m//9m95wxvekP333z+33377Ns876aST8spXvnIqv3Hjxrz4xS/OySefvN26k+TBBx/M97///Zx55pk57LDD8tznPjc333zzHHrHoPkkAoDRsP+hyRP+n+Q/v91yuPzaK7dTAAAAAAAAAAAAAAAYZWNlbNbnjpfZbywGAAAAAFB3H/rQh7J8+fK84x3vSFVVSZJ77703p59+ev74j/84hx12WPbff/8sX77r4kpmAAAgAElEQVQ8a9euzU9+8pNcc801W9WzcOHCnHPOOXnNa17T7y7Mm3e/+925+eab87nPfW7q2Je//OV8+ctfzn777ZfHPe5x2WOPPfLAAw/k9ttvz+WXX5577713VnX/5V/+ZdatW5cvfvGLU8fOPffcnHvuuVmxYkWe8IQnZI899sjY2Fjuueee3Hbbbbn66quzYcOGnveT/rNZGAAjoZSSvOeLqf78TcklX0v22CflBb+b8qsnD7ppAAAAAAAAAAAAAMAQGutgA7Bxv6IDAAAAAIyYt7/97XnWs56V1772tbnuuuumjldVlSuvvDJXXnnljOWf/OQn56/+6q9y5JFHzndT+2p8fDyf/exnc/jhh+cd73hHNm3aNPXabbfdlttuu23OdS9cuDCf//zn8973vjdve9vbWjYBW7NmTb7+9a/Pqo6dd955zm1gcGb/J04AoObK0mUZe/NfZOzz12fsr7+TcuJvDbpJAPPjf7x+m4fLKWf2uSEAAAAAAAAAAABQX7uML8vismRW5+6xcK95bg0AAAAAwPB5znOek6uuuiqf/vSnc+yxx2bBgpn/sMLixYvzvOc9L1/60pdy6aWXNm6jsIeUUvK2t70t11xzTU455ZTsvvvuM56/yy675AUveEHOO++8HHDAATus+01velNuvPHGvOUtb8mBBx64w/YsW7YsJ554Yj784Q/nZz/7WY466qiO+sNwKFVVDboNMFCllMOTXPFQ/oorrsjhhx8+wBYBAHSnuvziVK//lWT6z/oLF6V87JKURz12cA0DAAAAAADm3ZVXXpkjjjhi+qEjqqqa+U90AsA88h09AKDuVt/2f/If935rxnPGMpY3HfieHLDk4D61CgAAAAB6Z/Pmzbnuuutajh1yyCE73PQJtuW+++7L9773vVx//fVZs2ZNNm7cmMWLF2fvvffOoYcemic/+clZvHjxoJvZd1u2bMlll12WH/3oR/n5z3+e9evXZ+edd85ee+2VxzzmMXn84x+fhQsXzrn+G2+8MZdddlnWrFmTdevWZWxsLMuWLct+++2XxzzmMTnkkEMyPj7ewx4Nt/ma1wb9/TyzMgAANEx5/NHJW1en+vBbkjtvT/baP+W0D9ooDAAAAAAAAAAAADp08j6vzeZqYy5f/x95MJu3ev0R48vzP/Y+xUZhAAAAAABJdt555zzzmc/MM5/5zEE3ZaiMjY3lyCOPzJFHHjkv9T/qUY/Kox71qHmpm+FhszAAAGigctz/TJ77suTOO5Ld904pZdBNAgAAAAAAAAAAgNpZNLY4pzzyzXlgy4bcuWlNy2sLy6LssXAv39EDAAAAAADmnc3CAACgoUopyR77DLoZAAAAAAAAAAAAUHuLx5Zk38X7D7oZAAAAAADAiLJZGD1VSlmY5OlJDkiyb5L1SW5L8v2qqm4aYNMAAAAAAAAAAAAAAAAAAAAAAABqx2ZhI6yU8ndJXtp2+CdVVa2aQ10rkpw5Wd/u2znn4iR/VlXV5zutHwAAAAAAAAAAAAAAAAAAAAAAYBSNDboBDEYp5fnZeqOwudZ1QpIrkrwm29kobNLRSf6hlPK3pZSde3FtAAAAAAAAAAAAAAAAAAAAAACAJlsw6AbQf6WU3ZL8RY/qOibJeUkWTTtcJbksyQ1JdkvypCR7Tnv95CS7llJeUFXVll60AwAAAAAAAAAAAAAAAAAAAAAAoInGBt0ABuL9Sfab/Pe9c62klLIyyRfSulHYRUkOr6rqyKqqfqOqquOSrEzyhiSbpp33vCRnz/XaAAAAAAAAAAAAAAAAAAAAAAAAo8BmYSOmlPKcJK+czG5O8qddVHdmkuXT8hcneU5VVVdPP6mqqgeqqvpgkt9oK///llIO7OL6AAAAAAAAAAAAAAAAAAAAAAAAjWazsBFSStk5yUenHfqzJD+YY12HJPntaYc2Jnl5VVUbtlemqqrzknxy2qHFSd42l+sDAAAAAAAAAAAAAAAAAAAAAACMApuFjZb/nWTV5L9vSHJGF3WdlGR8Wv4LVVVdN4ty727L/0YpZUkX7QAAAAAAAAAAAAAAAAAAAAAAAGgsm4WNiFLK0UleN+3Qq6uqur+LKl/Yll89m0JVVV2d5N+nHdo5yXFdtAMAAAAAAAAAAAAAAAAAAAAAAKCxbBY2Akopi5N8PA+/35+squrrXdS3T5InTDu0OclFHVRxYVv+hLm2BQAAAAAAAAAAAAAAAAAAAAAAoMlsFjYazkjy3yb/vSbJaV3Wd0Rb/vKqqu7roPzFbfnDu2wPAAAAAAAAAAAAAAAAAAAAAABAI9ksrOFKKU9O8sZph06tqmptl9Ue1pa/vsPyP95BfQAAAAAAAAAAAAAAAAAAAAAAAMRmYY1WSlmQ5ONJFkwe+ueqqs7tQdUHt+Vv7rD8T9rye5RSlnfRHgAAAAAAAAAAAAAAAAAAAAAAgEayWVizvSXJEyb/fV+S1/So3t3a8v/VSeGqqtYn2dB2+BFdtQgAAAAAAAAAAAAAAAAAAAAA6EgpZatjVVUNoCUAvbFly5atjm1rrqubBYNuAPOjlHJYkrdOO/S/qqq6qUfV79KWv38OddyfZMm0/LK5N+dhpZS9kqzosNhBvbg2AAAAAAAAAAAAAAAAAAAAANTJ2NjYVsc2bdqUhQsXDqA1AN3bvHnzVse2NdfVjc3CGqiUMpbkY0kWTx76XpIP9vAS7ZuFbZhDHfcnWT5DnXP12iRv61FdAAAAAAAAAAAAAAAAAAAAANBYpZQsWrQoGzdunDq2fv36LF26dICtApi79evXt+QXLVqUUsqAWtM79d/ujG15Q5KnTv57c5LfqarqwXm8XtWnMgAAAAAAAAAAAAAAAAAAAABADy1btqwlf88996SqbA0C1E9VVbnnnntajrXPcXVls7CGKaU8OsnZ0w79WVVVP+jxZda35XeaQx3tZdrrBAAAAAAAAAAAAAAAAAAAAADmWftGOps2bcpPf/pTG4YBtVJVVX76059m06ZNLcd33XXXAbWotxYMugH0TimlJPlokqWTh25IcsY8XGqYNwv7SJLPdVjmoCRf6tH1AQAAAAAAAAAAAAAAAAAAAKA2lixZkoULF7ZssHPvvffmxz/+cXbdddfssssuWbBgQcbGxgbYSoCtbdmyJZs3b8769etzzz33bLVR2MKFC7N48eIBta63bBbWLKck+ZVp+VdXVXX/PFzn7rb8ik4Kl1J2ydabhd3VVYsmVVX1X0n+q8P29OLSAAAAAAAAAAAAAAAAAAAAAFA7pZTst99+ufnmm1NV1dTxTZs2Ze3atVm7du0AWwcwNw/NbU3ZX8hmYc1y5rR/fzXJ9aWUVTsos09bfsE2ytxWVdXGafnr2l4/cJbt2975d1ZVta7DOgAAAAAAAAAAAAAAAAAAAACAHli6dGkOOOCArTYMA6ijUkoOOOCALF26dNBN6RmbhTXLTtP+fWKSG+dQxyO3Ue5JSX4wLX912+sHd3iNR7flr+qwPAAAAAAAAAAAAAAAAAAAAADQQw9tGHbbbbdl06ZNg24OwJwsXLgw++23X6M2CktsFsbcXNGWf3wpZWlVVb+YZfmn76A+AAAAAAAAAAAAAAAAAAAAAKDPli5dmoMOOigPPPBA7rnnntx7773ZuHHjoJsFMKNFixZl2bJl2XXXXbN48eKUUgbdpJ6zWRgdq6rqZ6WUy5M8fvLQgiTPSHLBLKs4pi3/Tz1qGgAAAAAAAAAAAAAAAAAAAADQhVJKlixZkiVLlmSvvfZKVVXZsmVLqqoadNMAWpRSMjY21sjNwdrZLKxBqqrardMypZRjknxz2qGfVFW1ahZFv5iHNwtLkldkFpuFlVIek+Qp0w7dN5tyAAAAAAAAAAAAAAAAAAAAAED/lVIyPj4+6GYAjLSxQTeA2vp0kgen5V9USjlkFuXe3Jb/+6qqNvSuWQAAAAAAAAAAAAAAAAAAAAAAAM1hszDmpKqq65J8ctqhRUk+UUpZsr0ypZRfT/LyaYc2JjlzXhoIAAAAAAAAAAAAAAAAAAAAAADQADYLoxtvS7JuWv7oJF8vpTxm+kmllMWllN9P8rm28u+vquon89xGAAAAAAAAAAAAAAAAAAAAAACA2low6AZQX1VV3VpKeVGSf0myaPLw05NcVUr5XpIbkjwiyZOTrGgr/pUk/6tfbQUAAAAAAAAAAAAAAAAAAAAAAKgjm4XRlaqqLiylvDDJJ/LwhmAlyZGTaVs+k+SUqqoenP8WAgAAAAAAAAAAAAAAAAAAAAAA1NfYoBtA/VVV9dUkRyT5yyTrZjj1u0leUlXVSVVV3deXxgEAAAAAAAAAAAAAAAAAAAAAANTYgkE3gMGqqurCJKUH9fxXkteUUt6Q5OlJDkyyT5L7kvw0yferqrqx2+sAAAAAAAAAAAAAAAAAAAAAAACMEpuF0VNVVW1M8s1BtwMAAAAAAAAAAAAAAAAAAAAAAKAJxgbdAAAAAAAAAAAAAAAAAAAAAAAAAGDbbBYGAAAAAAAAAAAAAAAAAAAAAAAAQ8pmYQAAAAAAAAAAAAAAAAAAAAAAADCkbBYGAAAAAAAAAAAAAAAAAAAAAAAAQ8pmYQAAAAAAAAAAAAAAAAAAAAAAADCkbBYGAAAAAAAAAAAAAAAAAAAAAAAAQ8pmYQAAAAAAAAAAAAAAAAAAAAAAADCkFgy6ATAEFk3PXH/99YNqBwAAAAAAAABAV7bxvYdF2zoPAPrId/QAAAAAAAAAgNob9PfzSlVV/bweDJ1SyvOTfGnQ7QAAAAAAAAAAmAe/XlXV+YNuBACjy3f0AAAAAAAAAICG6uv388b6dSEAAAAAAAAAAAAAAAAAAAAAAACgMzYLAwAAAAAAAAAAAAAAAAAAAAAAgCFVqqoadBtgoEopj0jyrGmHbkmycUDNgfl0UJIvTcv/epIfD6gtQH+Jfxht5gCAejFvw2gzB8DoEv8wusQ/MB8WJdl/Wv5bVVXdPajGAIDv6DEiPN/BaDMHwOgS/wD1Yt6G0WYOgNEl/mG0mQOAXhvo9/MW9OtCMKwmA+78QbcD5lsppf3Qj6uqunIQbQH6S/zDaDMHANSLeRtGmzkARpf4h9El/oF59P1BNwAAHuI7eowCz3cw2swBMLrEP0C9mLdhtJkDYHSJfxht5gBgngzs+3ljg7owAAAAAAAAAAAAAAAAAAAAAAAAMDObhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADKkFg24AAH2zJsmZbXlgNIh/GG3mAIB6MW/DaDMHwOgS/zC6xD8AAEAzeL6D0WYOgNEl/gHqxbwNo80cAKNL/MNoMwcAjVKqqhp0GwAAAAAAAAAAAAAAAAAAAAAAAIBtGBt0AwAAAAAAAAAAAAAAAAAAAAAAAIBts1kYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADKkFg24AUB+llPEkByc5LMl+SR6R5IEk65L8OMmlVVXd1+NrLkzy9CQHJNk3yfoktyX5flVVN/XyWv1SSjk8yROTrEiyOMntSW5NclFVVRsG2bZ+KqUsT3J4kkOS7J5kSZK7kqxJ8r2qqn48wOZtpZTyqEy8b/sl2SXJz5L8JMnFVVVt6uF1DkzyS5kY749IsikT9+W6TNyXe3t1rQ7bJf57QPxPqFv8Yw7oFXPAhDrMAf0c83W4H9RPE+ftJvapV/r1rFIX7kcz46WJfeoVY76V9ZvmxUoT+9Qr4p/pmhgrTexTr4h/azcAADSXZ6He8Nn8hLo9z4z6+u5k28wBPWAOmFC3OWDUif/eEP8T6hD/1nipuybO203sU6/4bK6V+9HMeGlin3rFmG816us3TYyVJvapV8Q/7ZoYL03sU6+YA6zfwNCrqkqSJGm7KRM/bJ2a5CtJ7k5SzZA2J/mnJP+9B9ddkeQjSdbOcL2Lkry4y+s8OslLk7w3yYVJ7mm7xk09uo/LkvxJkp/O0J97knwqyUEDfL/n7X4kWZjk+CQfSnLFDsZSNXmvzkqyz4Bj4CVJLp6hnWsnx+qeXVxjaZI3Jbl2B/fkwST/mOS4PvVd/PfmPor/Gsb/fI+PWdyDHaVVfbgH5oDe3EdzQE3mgH6N+brcD6l+qYnzdhP71OP3vB/PKjsneUaSP0zy6Uw8s2xpu87LBz3+3Y9mxksT+2TM1/5+WL9pva74b/Z4r0X8Z8TXb5oYK03sU4/f85GO/36Nj1i7kSRJkiRJkvqcmv4sFJ/N9+1+1PV5JiO8vjvZNnNAb+6jOaCGc8B8j49Z3IMdpVXz3H/x35v7KP5rEv/9GvN1uR9S/VIT5+0m9qnH7/lIfzbnfmzVtsbFSxP7ZMzX/n4M5fpNE2OliX2q4XivRfxnxNduJtvYuHhpYp96/J6P9BzQr/ER6zeS1HUaeAMkSRrelOTcLn7I/nKSved43ROS3NHBtf42yc4d1H9Mkn/ZwQ+UPXlYmbzeUzKxq+1s+3Nfktf08X2e9/sxeQ/unONYWpfkNwcw/ndJ8pkO2nl7kuPncJ2nJblhDvfl3CRL57H/4l/8j1z893N8dBFfD6VV83wvzAHmgJGaA/o15utyP6T6pX6N4W1cd97m7Sb2qYfv97w/q2Tiw4sfZmLxfkf1v3zA43/k70cT46WJfTLm63s/Jq9j/aZPsdLEPtVpvNch/mP9prGx0sQ+9fD9Hvn479f4iLUbSZIkSZIkqc+pqc9C8dl83+9HHZ9nMuLru5NtMweYA0ZuDujn+Ogivh5Kq+bxPoh/8T9S8d+vMV+X+yHVL/VrDG/juj6b89lclRH4bs6w348mxksT+2TM1/d+TF5nKNdvmhgrTexTncZ7HeI/1m4aHS9N7FMP3++RnwP6NT5i/UaSepIWBGD7Dt3O8Z8muS4TP5gtyMTuwE9IMjbtnF9L8v+XUp5VVdXts71gKeWYJOclWTTtcJXkskw88O+W5ElJ9pz2+slJdi2lvKCqqi2zuMwTkxw32zZ1o5TynEzsnrq47aWfJLk8Ex86rszEDzYLJ19bmuQjpZSxqqo+3Idm9uN+rEiyfBvHN2biB9vbM7HD7B5Jjpz870N2S/KpUspeVVX92Ty3M0lSShlP8tkkJ7a9tCbJ9yfbelAmxmKZfG3vJF8qpTynqqrvzPI6T0tyQSYeIqa7N8l/ZCLGFic5OMkRaY2x/5lkr1LKiVVVbZxl1zoh/rsk/qfUKf77Nj5qwBzQJXPAlLrMAf0a83W5H9RPE+ftJvapa/16VklyUpJHdN/i+eV+TGlivDSxT10z5ltZv0nSzFhpYp+6Jv5bWL+Z0MRYaWKfuib+p1i7AQCgqZr6LOSz+VY+m29jfXeKOaBL5oApdZoDrPFOEP9dEv9T6hL/1nipuybO203sU9d8NtfK/ZjSxHhpYp+6Zsy3sn6TpJmx0sQ+dU38t7B287AmxksT+9Q1c8AU6zdQJ73efUySpOakJJfm4Z02L0vy+iQHbefcRyb5q2y9Q+e3k5RZXm9ltt4J9DtJHtt23uIkf5CJ/+lPP/eds7zOqdtoZ5VkQ5Lr247d1MX9W5Wtd0++Pslzt3Hu8iR/3nbug9s6dx7e53m/H5n4Ie+hOu5N8rEkxybZaRvnliQvzMSHte1tmvf7MdmG97Zdd+Pk+F/Udt5hSS5uO/fnSfadxTWWbOP+/mJybC/ZxvkHJTl/G/fk9Hm6B+Jf/I9c/PdrfExea3pd350cM52kBfN8L8wB5oCRmgP6Nebrcj+k+qUmzttN7FOP3ut5f1aZLH/XNu5nleTWbbz28gGOffejofHSxD4Z8/W8H7F+0/dYaWKf6jLeJ8sPffzH+k1jY6WJferRey3++zg+Yu1GkiRJkiRJ6nNq6rNQfDbf9/tRt+eZWN996JrmAHPAyM0B/Rofk9eaXpc1XvEv/n0/b2juh1S/1MR5u4l96tF77bM592Mk4qWJfTLm63k/MuTrN02MlSb2qS7jfbL80Md/rN00Ol6a2KcevdfmgD6Oj1i/kaSepIE3QJKk4U2Z2Hn7K0mO7KDMa7fxP9uXzbLsx9rKXZRtPNRPO/8FbedvSHLgLK5z6uQPat9P8tEkv5vkyZn4q0HHtNV5Uxf37zNtdV2XZK8dlHlTW5krk4zP8/s87/dj8ge3O5KclmTnWZbZI8lVbde/ekc/JPbgfjw6Wz9Q/PoM5++UrX+4/8tZXOflbWW2JDl+B2VKks+1lbs7bQ8cPboP4l/8j2L892V8TF5rel0Xzme/5tg+c4A5YKTmgH6N+brcD6l+qYnzdhP71IP3uS/PKpNl78rEX+P4xyRnTs5fe0++dmFbnS8f0Lh3Px5uX+PipYl9MubreT9i/abvsdLEPtVlvE+WrUP8W7+pmhkrTexTD95n8d/n8RFrN5IkSZIkSVKfU1OfheKz+b7fjzo9z8T67vTrmQPMAaM4B1jjrcS/+B+9+O/XmK/L/ZDql5o4bzexTz14n302536MTLw0sU/GfD3vR4Z8/aaJsdLEPtVlvE+WrUP8W7t5uH2Ni5cm9qkH77M5oM/jI9ZvJKknaeANkCRpeFOSVXMs9w9t/7P9x1mUOSTJ5mllHkhyyCzKfaLtWh+fRZnl2/thMr374O3RmfirQ9PresYsy/5rW7lXzvP73I/7sWK2P7C1lXvCNu7jUfN8Pz7Zdr3Vsyhz6OSYfajMpiSP3kGZz7dd54uzbN8+2frB4znzcB9WzbGc+Bf/7fXUKf7n/X5Mq296XRfOZ7/m2L5VcyxnDjAHtNdTizmgX2O+LvdDql9q4rzdxD714H3uy7PKZLnt/mWTDMGHEO7HVm1YNcdyQxsvTexTD95nY34A9yPWb6aXEf9z7FMP3mfx39oO6zdVM2OliX3qwfss/vs8PmLtRpIkSZIkSepzauqzUD+e3+Oz+fZ6avM806/n3Qz5+u7ktVbNsZw5wBzQXk+d5gBrvJX4F/+jF//9GvN1uR9S/VIT5+0m9qkH77PP5tyP7bVh1RzLDW28NLFPPXifjfkB3I8M+fpNE2OliX3qwfss/lvbYe3m4fatmmO5oY2XJvapB++zOaDP4yPWbySpJ2ksANtRVdVNcyz64bb8s2dR5qQk49PyX6iq6rpZlHt3W/43SilLZipQVdW6qqo2zKLubvz3pGWO/W5VVd+ZZdn3teVf0ZsmbVs/7kdVVWuqqrpvDuX+M0n7fZvNeJqTUspOSV7Sdrh9jG2lqqprk5w37dCCTIzpmTy6Lf/lHTZw4lq3J7mk7fAhsynbCfHfFfHfeo1axP/kNfsxPmrBHNAVc0DrNWoxB/RrzNflflA/TZy3m9inbvT5WSVVVf2sowb2mfvRqonx0sQ+dcOYb2X9puU6N82x6NDGShP71A3xvzXrNxOaGCtN7FM3xH8razcAADRVU5+FfDbfymfzD7O+u9W1bppjUXOAOaD9GrWYAyavaY034r9L4r/1GrWIf2u81F0T5+0m9qkbPptr5X60amK8NLFP3TDmW1m/abnOTXMsOrSx0sQ+dUP8b83azcOaGC9N7FM3zAGtrN9AvdgsDJgP32/L71RK2W0HZV7Yll89mwtVVXV1kn+fdmjnJMfNpuw8e2Zb/l86KPuNTOxs/pCjSyn7dt+k2mofT/vN47WOT7J0Wv7fqqr60SzLto/ZF+3g/J3b8rfO8jpJcktbfnkHZeeb+Bf/vdTP+Kc3zAHmgF6qwxwwlzHfq2sN4/2gfpo4bzexT0l/n1XqwP3ojSbGSxP7lBjz7azfdK+JsdLEPiXin95rYqw0sU+J+O8VazcAADRVU5+FOuGz+d7x/bytDfP6bmIOSMwBvWRNo17Ev/jvpTrEvzVe6q6J83YT+5T4bK6d+9EbTYyXJvYpMebbWb/pXhNjpYl9SsQ/86OJ8dLEPiXmgF6xfgMDYLMwYD5s3saxRds7uZSyT5IntJW/qIPrXdiWP6GDsvNlZVv+itkWrKrqgSTXTzs0luHo06C0j6ftjqUe+NW2/IUdlP12Wtv6pFLK3jOcf3tbvpOdjdvPvbODsvNN/Iv/Xupn/NMb5gBzQC/VYQ7oaMz3+FrDeD+onybO203sU9LfZ5U6cD96o4nx0sQ+JcZ8O+s33WtirDSxT4n4p/eaGCtN7FMi/nvF2g0AAE3V1GehTvhsvnd8P29rw7y+m5gDEnNAL1nTqBfxL/57qQ7xb42XumvivN3EPiU+m2vnfvRGE+OliX1KjPl21m+618RYaWKfEvHP/GhivDSxT4k5oFes38AA2CwMmA8Ht+U3J/n5DOcf0Za/vKqq+zq43sVt+cM7KDtfdm/L39Vh+fbzH9dFW+qufTz9bB6v1T4W/222BSfH7A/bDs80Fr/dln/ybK+1jXP/o4Oy8038i/9e6mf80xvmAHNAL9VhDuh0zPfyWsN4P6ifJs7bTexT0t9nlTpwP3qjiQNOiPoAAB9ASURBVPHSxD4lxnw76zfda2KsNLFPifin95oYK03sUyL+e8XaDQAATdXUZ6FO+Gy+d3w/b2vDvL6bmAMSc0AvWdOoF/Ev/nupDvFvjZe6a+K83cQ+JT6ba+d+9EYT46WJfUqM+XbWb7rXxFhpYp8S8c/8aGK8NLFPiTmgV6zfwADYLAyYDy9py19aVdWWGc4/rC1//TbP2r4f76C+QdjYll/cYfn284ehT31XStk1yXPbDl8yj5d8bFt+Psfi36R1nLyylLLTji5QSnlhkgOmHbqyqqrvzb6J8078i/+eGED8D9IBpZTVpZQrSynrSikbSyl3TOb/tpTyu6WU9i+4DCtzgDmgJ2o0B3Q65uekRveD+mnivN3EPiX9fVapA/ejN5oYL03sU2LMt7N+070mxkoT+5SI/2HSlPWbJsZKE/uUiP9esXYDAEBTNfVZqBM+m+8B38/bWg3WdxNzQGIO6IkRW9OwxjtB/Iv/JLWKf2u81F0T5+0m9inx2Vw796M3mhgvTexTYsy3s37TvSbGShP7lIj/YdKUtZukmfHSxD4l5oBesX4DA2CzMKCnSim7JHlV2+Ev7qBY+y6eN3d42Z+05fcopSzvsI5eW9uW37fD8u3n/7cu2lJnr06ydFr+7iTfnI8LTT4otj8sdjoW288/ZHsnVlV1Y5LTpx3aP8lnSilLt1MkpZSjMrEI9pAtSX6/wzbOG/E/Rfz3Rt/ifwg8KsnLM7EYsFuShUn2msyfnOSvktxcSvk/k3E2lMwBU8wBvTH0c8Acx/xcDf39oH6aOG83sU9J/59Vhp370RtNjJcm9ikx5ttZv+leE2OliX1KxP8Qqv36TRNjpYl9SsR/r1i7AQCgqZr6LDQHPpvvDd/Pa23jUK/vJuaAacwBvTFKaxrWeCeIf/H/kKGPf2u81F0T5+0m9inx2Vw796M3mhgvTexTYsy3s37TvSbGShP7lIj/IVT7tZukmfHSxD4l5oBesX4Dg2OzMKDX/neSfabl70rrw/e27NaW/69OLlhV1fokG9oOP6KTOubB1W35p862YCnlgCT7tR0edH/6rpSyKsn/ajt8TlVV7X8Rqlfax+Evqqq6r8M62sfujO9bVVV/luSPkmyaPPTrSa4qpbyllPKMUsohpZTDSykvKKWsTnJRHn742JTklVVVDdMPsuJ/gvjv0gDivw52TnJqku+VUg4fdGO2wxwwwRzQpRrNAXMZ8x2r0f2gfpo4bzexT8kAnlWGnPvRG02Mlyb2KTHm21m/6V4TY6WJfUrEfx0N+/pNE2OliX1KxH+vWLsBAKCpmvos1CmfzXfJ9/Nqub6bmAMeYg7okjWNbbLG20b8N1ON4t8aL3XXxHm7iX1KfDbXzv3ojSbGSxP7lBjz7azfdK+JsdLEPiXiv46Gfe0maWa8NLFPiTmgV6zfwIDYLAzomVLKC5O8vu3wn1RVdecOirbv4nv/HC7fXmbZHOropW+15V88047mbX5rG8cG3Z++KqUsSvLZtPb7piTvmcfLDmQcVlX1viRPSPLxJOuSHJiJH46/neTaJFdkYhfdl2diN+wk+XqSp1ZV9ck5tHFeiP8W4r8LA4r/Qdmc5MIkb03y/CRPzsTu4U/KxOL2+7L1gsGhSb5eSjmwf83cMXNAC3NAF+oyB3Qx5ju9Ti3uB/XTxHm7iX2apg5t7Cf3o0tNjJcm9mmaOrSxn6zfdKGJsdLEPk1ThzaOgkas3zQxVprYp2nq0MahZu0GAICmavizUKd8Nt8F38+r3/puYg5oYw7owoitaVjjbSX+tzbo/vRVXeLfGi9118R5u4l9mqYObewn96NLTYyXJvZpmjq0sZ+s33ShibHSxD5NU4c2joJGrN0kzYyXJvZpmjq0cahZv4HBslkY0BOllCck+f/aDl+Q5C9mUbz9B6r23V5no/0HqvY6++0fM7H76UN2S3LGjgqVUvZP8sZtvDReStmpN02rhb9J8svT8g8m+e057MrbiUGOwwVJtuThHfBn8skkf1hV1WWdNGw+if+tiP/uDCL+B+GtSR5ZVdWzq6p6R1VVX66q6vtVVV1fVdUPqqo6v6qqP8rEAve7klTTyu6T5AullDKIhrczB2zFHNCdoZ8DuhzznRr6+0H9NHHebmKfdlDfMLaxn9yPLjQxXprYpx3UN4xt7CfrN3PUxFhpYp92UN8wtrHpGrF+08RYaWKfdlDfMLZxaFm7AQCgqUbgWahTPpvvju/nbd//be/ug6a96vqAf09IQwpBsMRIxYGI4tsgDNSZGtHpM9Q4YEcUpEqZOklb6AtOx7Y604G20/oytDOtjE5rBVtbOhZfUAtFiYHaGmhxquIESyGlzkhooQZJhJZEkvBy+sfeT7K79+69e+29e+11zv35zFx/7HXv7nV+5zm/X+7rdz3PyeT6u4kasIIacD4Xpaehxyv/HyL/HzL5/NfjpXU91u0eY9rwfVMc45jMxzn0mC89xrTh+6Y4xjHp3+yox1zpMaYN3zfFMfaui95N0me+9BjThu+b4hgnS/8Gjs9mYcC5lVKelNmDt/lfYj6Y5M/XWuvqT51prM8cTK31E0l+ZOn095ZSvnvdZ0opX5jk1iSPXfe1exrepJVSfiDJdy6dfkWt9R0jD+Xg67CU8shSyj9N8ttJXprkui0+dlOS95RS3nyyZo5K/p8m/3c3ofw/uJMG1vKu9qved3+t9RVJ/vrSj56V5M8dZHADqAGnqQG7a6EGHGDNn3Wtyc8H7emxbvcY04Gu1/N/S8zHlnrMlx5jOtD1el7z+jdb6DFXeozpQNfrOf8Prof+TY+50mNMB7rehcx/vRsAAHp1Qe+FzuTZ/O4mdD+jv7slNeA0NWB3E6oBB6fHu5L8X/O1exrepLWQ/3q8tK7Hut1jTAe6Xs//LTEfW+oxX3qM6UDX63nN699socdc6TGmA12v5/w/uB56N0mf+dJjTAe63oWsAfo3MA1XHnsAQNtKKdcl+Q9Jnjh3+q4kN9ZaP7rl19y79HqX/zvP8meWv/MYXpXkeXl4t9KS5IdLKS9K8hNJ3p3ZrrFfcPK+v5aHfzH6UJL5RsX9tdZTu9KWUq7fdjC11jsHjf4ISil/I7PdoOe9utb6j7f8/PXbXmvFfIy6DkspVyZ5U5Lnzg8ryRsz293+XUnuTvLIJE9K8pzMbmafevLeb05yQynlxlrru3cY67nJ/zPJ/4GOnP+TV2v90VLKNyZ5/tzplyf5qSMNSQ04mxowUAs1YE9rfttrnWs+YJUe63ZLMbV0rzIG8zG+lvJlWy3FZM0vamk+9G8eMql12FJMLa33MfR2L7tsav2blnJlWy3FJP8X6d0AAMDuWroXOgLP5gfy9/Pa6u8masAGasBALfz9nGPS411L/m/QwnpvIf/1eGldj3W7pZhaulcZg/kYX0v5sq2WYrLmF7U0Hz30b1rKlW21FFNL630Mvd3LLpta7yZpK1+21VJMasAi/Ru4WGwWBuyslPLHkvxKki+dO313km+otf7OgK/q7heqJKm1PlhKeWGSW5I8fe5HX3dyrHNPkr+U5K1z5z6+5r0fGDCkMuC9oyulvCzJq5dO/1it9XsGfM155mPsdfj3stjI+mSSF9Vab1l634NJ3pvkvaWUH0/yz5P8xZOfXZvkl0opz6i13rPDeHcm/88m/4eZQP634h9msZn1NaWUx9Va162Rg1EDzqYGDNNCDdjjmt/mWvuYD1jQY91uMKaW7lXGYD5G1GC+bNRgTNb8opbmQ/9mZjLrsMGYWlrvY+jmXvYMk+jfNJgrGzUYk/xfpHcDAAA7aPBeaFSezQ8zgWfz+rsDqQFnUwOGmUANaIUe72nyf7NJr/cW8l+Pl9b1WLcbjKmle5UxmI8RNZgvGzUYkzW/qKX5aLp/02CubNRgTC2t9zF0cy97hkn0bpIm82WjBmNSAxbp38AFcsWxBwC0qZTy2CRvS/JVc6c/ltnOn+8d+HX/d+n15w0cyzU5/QvV6L/Yr1Jr/XCSr03y2iSf2uIjv5rkq5Pct3T+rj0PbVJKKd+Z5DVZ/OXyXyf5rhGHsbwOH1VKefTA77hu6fXKdXjyC/HyL6QvX9HIWlBrfSDJy5K8fe70E5O8cuA4z0X+b0f+b2ci+d+K38gs1y57RJKvHHsQasB21IDttFAD9rzmN11r8vNBe3qs2z3GtMFo9yqNMB8D9JgvPca0gTW/SP9mSz3mSo8xbSD/23T0/k2PudJjTBvI/wH0bgAA6NUFvBfaiWfz25nI/Yz+7gBqwHbUgO1MpAa0Qo93cSzyv3Et5L8eL63rsW73GNMGns0tMh8D9JgvPca0gTW/SP9mSz3mSo8xbSD/23T03k3SZ770GNMGasAA+jcwPTYLAwYrpTwmya1J/sTc6f+X5Lm11nfv8JXLu4U+eeDnl9//B7XWj6185xHUWu+rtf7VJF+W5O9k9rDxQ5ntdP6JJHck+TdJbkzyp2utdyb5iqWveddoAx5ZKeXFmf2SNv/fpNcneWmttY41jpOd45fXzZMGfs3yWly3E+43JZm/afhAZmtgo1rrZ5N8/9Lpm0opo+zkLf+Hkf9nm0r+t+Ik///X0ulBjZLzUgOGUQPO1kINOMCaP+tak58P2tNj3e4xpk1GvleZPPOxvR7zpceYNrHmF+nfbKfHXOkxpk3kf5uO3b/pMVd6jGkT+b89vRsAAHp1Ee+FzsOz+bNN5X5Gf3d7asAwasDZplIDWqHHe4r8b1gL+a/HS+t6rNs9xrSJZ3OLzMf2esyXHmPaxJpfpH+znR5zpceYNpH/bTp27ybpM196jGkTNWB7+jcwTVceewBAW052Rb0lydfMnb43yfNqrb+x49fesfT6SwZ+/ilLr9+34zgOqtb6gSSvOjk2uWHp9a+v+c7R/gLKIZRSvi3JT2a2e/NlP5fkppObtkH2MB93ZPZ/mbrsS3J6fZ5leS2u++wzll7/6sBfUt+R5MEkV528fnxmYz3ojYT83538P22C+d+KTy69Xt4h/WDUgN2pAae1UAMOtObXXWuv8wFJn3W75ZgaulcZhfk4vJbzZZ2WY7LmFzU0H/o3D5P/p8n/HbR+LzvAUfo3LefKOi3HJP8X6d0AAMD2Wr4XOjbP5k+b4LN5/d0N1IDdqQGnTbAGtEKP92Hyv1Et5L8eL63rsW63HFND9yqjMB+H13K+rNNyTNb8oobmo8n+Tcu5sk7LMTW03kfR+r3sAP595SI1YHdqwAb6NzBdV2x+C8BMKeWPJvmlJF83d/oPk/yZWuuvneOr//vS66eXUh414PPP3vB9TTnZwfw5S6fffoyxHFIp5flJfjqLG1e+KclLaq2fOc6oTq2d5QfCa538wvv0Dd932eOWXt+17XWSpNb66ST3LJ2+dsh3DCX/xyH/j5r/rVjO9bvHuKgaMA41YDo14IBrftW1Jj8ftKfHut1jTAONda/SCvNxhh7zpceYBrLmF+nfrNFjrvQY00Dyv02j9296zJUeYxpI/p9B7wYAgF65FxqHZ/P+ft4mx+jvJmrAWNQAPY0t6PE+TP43qIX81+OldT3W7R5jGsizuUXm4ww95kuPMQ1kzS/Sv1mjx1zpMaaB5H+b/PvKRWrA7tSAM+jfwLTZLAzYSinl6iRvTnJp7vT9SZ5fa33Heb671vp7Sf7b3Kkrs/iLwyaXll7/8nnGMwHPSXL93Ou311oP/n+kG1Mp5Zsy2831j8ydfkuS7zhp1BzLrUuvLw347Ndn8ZfQ22utH1nz3o8vvX70gOtcds3S63t3+I6tyP9RyX/WKqVcm9O7jf+fEa6rBoxHDZiAQ675Fdea/HzQnh7rdo8x7WCse5VWmI81esyXHmPagTW/SP9mhR5zpceYdiD/G3OM/k2PudJjTDuQ/2vo3QAA0Cv3QqPybP549HfXUANGpQawlh7vKZeWXsv/iWsh//V4aV2PdbvHmHbg2dwi87FGj/nSY0w7sOYX6d+s0GOu9BjTDuR/Y/z7ypUuLb1WA7anBqyhfwPTZ7MwYKNSylVJ/l2Sb5g7/UCSb621/sc9XeaNS6//wpZj+/Ikf3Lu1H1J3ranMR3L3156/dqjjOJASik3JvmFJFfNnX5bkm+rtT54nFE95K1JPjn3+oaTNbaNm5deL6/pecs3n8/c8hpJklLKU5M8Zun0oN3zB1xL/o9L/nOWF2fx9/ePJLnjkBdUA0anBhzZSGv+8rUmPx+0p8e63WNMOxrrXqUV5mOFHvOlx5h2ZM0v0r85fa3ucqXHmHYk/9szav+mx1zpMaYdyf8V9G4AAOiVe6HReTZ/PPq7q6+nBoxLDeAserwPj03+N6aF/NfjpXU91u0eY9qRZ3OLzMcKPeZLjzHtyJpfpH9z+lrd5UqPMe1I/rfHv69cHJsacD5qwAr6N9AGm4UBZyqlXJnkDUmeN3f6U0leVGt96x4v9fokn5l7/cKTG/ZNlh/avaHWev/+hjWuUspNSW6cO/XuzHZD7UIp5U8l+fdJrp47/Z8y+wXxgeOM6mG11j9M8vNLp5fX2CmllC9N8oK5U59O8lNnfOS2pdfPLqV85TZjPPFXll6/v9b60QGf34r8H5f85yyllM9P8neXTv9irbUe8JpqwIjUgOMbcc03MR+0p8e63WNMuxrxXqUJ5uO0HvOlx5h2Zc0v0r9Z1GOu9BjTruR/W8bu3/SYKz3GtCv5f5reDQAAvXIvNC7P5o9Lf/c0NWBcagBn0eM9Rf43pIX81+OldT3W7R5j2pVnc4vMx2k95kuPMe3Kml+kf7Oox1zpMaZdyf+2+PeVK6kB56AGnKZ/Aw2ptTocDsfKI8kjkvxskjp3fCrJCw50vZ9YutY7k1x9xvu/Zen9DyR58jnHcGnpO+885/ddOeC9L0zy4NJcP/PIa2Bv85HkhiSfWPq+tyd51DFjXDHOpyz9OdQkzz/j/VefrNX5979mwzVKkvcvfea3kjxmi/E9d8X4fvAA8yD/5f+Fy/8x5iPJlyX55oGfeUKS31yx5p9ywHjVADXgQtWAMdd8C/PhaO/osW73GNMexnjwe5Utx3Hb0nfefMi4zcdWY+guX3qMaQ9jtOZHno/o36y6nvyX/0fP/w1jvLQ0xjt3/J7J9296zJUeY9rDGOX/EdZH9G4cDofD4XA4HCMeF/FeaF/373Pf59n8w9/VxP3MGPe7aaC/e3ItNUANuHA1YIz5iB7vquvJf/l/1GPMNd/CfDjaO3qs2z3GtIcxejZnPtaNobt86TGmPYzRmh95PtJA/6bHXOkxphbW+5bjmET+bxjjpaUx3rnj90y+d3Nyze7ypceY9jBGNeAI6yP6Nw7HuY8rA7Dev0ry7UvnXpnk9lLK9QO/6666eefWv5/ZTqqfe/L6a5P8SinlpbXW/3H5TaWURyb5y0l+aOnzP1Rr/eA2gymlfGGysgY+Yen1lWfEem+t9e4Nl3pPKeUtSX4hya/XWj+7YixPS/KKJC9Z+tEra623b/j+vTj0fJRSnpnkl5NcM3f6/Um+K8l1pZQhw72/1nrXkA8MUWv93VLKjyT53rnTP19K+VtJfrzW+uDlk6WUr0jyLzNbq5fdk+T7NlyjllJekdm6uOxZSX7r5DpvqbXW+c+UUh6f5LszWyvzf1b3JPkn28Y3gPyX/xcu/5NR1scfT/LmUsp7kvzbJG+stf7OmrE8JslNme14//lLP/7BWuvvrrnGPqgBasBFqwGjrPmG5oP29Fi3e4zpXMa4V5n7/DVJrl3z46uXXl97xp/Jh2qtn97mmkOZjwU95kuPMZ2LNb9I/+YhPeZKjzGdi/w/Tf8mSZ+50mNM5yL/F+jdAADQq27vhTybPzUGz+ZP6O8uUAPUgAtXAxI93hPyX/5ftPzX46V1PdbtHmM6F8/mFpmPBT3mS48xnYs1v0j/5iE95kqPMZ2L/D9N7+YhPeZLjzGdixqwQP8GWlInsGOZw+GY5pHF3TjPe1za8pqXMtvpdf6zn81sx9+fTXJrkt9f8f2/mOQRA2K7cw8xvW6L69w99/5PJPm1zBoYr0/ytjPG8QMj/1kfdD6S/IM9rqXbRpiPRyS5ZcW1P5LZL6BvSPKuk7U5//MHknz9gOu8ek2Mdyd568k6+bmT9f+pFe+7P8lz5L/8l/9NzcelFe//eJL/kuRNSX4yyRszqzGr8r4mee0I86AGqAEXqgaMteZbmQ9He8dYa3jpmpdywLrdY0x7+rMe617l5j3N/fXm4/Dz0WO+9BiTNd/0fOjfyH/5P738v3MPY3zdhjWx/P5J9W96zJUeY5L/7a356N04HA6Hw+FwOEY+er4Ximfzo85Ha/cz0d9VA9SAi14DDj0fl1a8X49X/sv/I+b/WGu+lflwtHeMtYaXrnkpns0NimlPf9aezZmPC5EvPcZkzTc9H5Pt3/SYKz3G1Nh6v3lPc3/o/L9zD2N83YY1sfz+SfVues2XHmNSA9pb89G/cTj2cqza1RPgaGqtt5VSXpDkdUk+7+R0SfLVJ8cqP53kZbXWzxx+hOdyTZIbNrznY0leXmv9mRHGwxq11s+UUr49sx1+v2PuR9clee6aj/1+kptqrf95wKW+5+Rz35fkqrnzj0/yjRs++8EkN9dabxtwvUmT//L/Antskmdv8b77kvzNWuu/OPB4jkINUAOAtvRYt1uIacR7lSaYj+NpIV+GaiEma36R/s1xtJArQ7UQk/yfhAvfv2khV4ZqISb5DwAA7FsL90Ln4Nl8I/R3j0cNUAMuMD1e+S//gab0WLdbiMmzuUXm43hayJehWojJml+kf3McLeTKUC3EJP8n4cL3bpI28mWoFmJSA4AWXXHsAQAsq7XekuRpSV6T2YO5df5rkhfVWl9Sa71vlMEN98NJbs9st9iz/O8k35/kiz2EnIZa67211hcn+bOZrbV1/iDJjyV5Wq311oHXqLXWf5Tkq5L8s5y93i97X2ZNsKf11Mi6TP7L/wvgjiSvSvLOJJ/c8jP/M8krM9vxu8tG1mVqgBoAtKWzup2kjZjGuFdpifk4nhbyZagWYrLmF+nfHEcLuTJUCzHJ/1Hp36zRQq4M1UJM8h8AANi3Fu6FBvBsvlH6u8ejBqgBF4Ae7xryX/4DbemsbidpIybP5haZj+NpIV+GaiEma36R/s1xtJArQ7UQk/wfld7NGVrIl6FaiEkNAFpTaq3HHgPAWqWUqzLbDfjJSZ6Q2a6/H05ye631A8cc2xCllM9J8swkX5TZzrdXZ3YT8+Ekv11rfd8Rh8cWSilflORZSb4gyaOT3JXZ7vPvrLU+uKdrlCRfnuQZSa5N8jlJPp3k45mtlXfVWj+yj2u1QP7Tu1LKFUmemuSLkzwxyePy8Pr4WJLfS/KbtdaPHm2QR6QGALSll7o9r5WYxrhXaYn5OI5W8mWIVmKy5hfp34yvlVwZopWY5P849G/WayVXhmglJvkPAADsUyv3Qpt4Nt8+/d3jUAPonR7vevIfoC291O15rcTk2dwi83EcreTLEK3EZM0v0r8ZXyu5MkQrMcn/cejdnK2VfBmilZjUAGDqbBYGAAAAAAAAAAAAAAAAAAAAAAAAE3XFsQcAAAAAAAAAAAAAAAAAAAAAAAAArGazMAAAAAAAAAAAAAAAAAAAAAAAAJgom4UBAAAAAAAAAAAAAAAAAAAAAADARNksDAAAAAAAAAAAAAAAAAAAAAAAACbKZmEAAAAAAAAAAAAAAAAAAAAAAAAwUTYLAwAAAAAAAAAAAAAAAAAAAAAAgImyWRgAAAAAAAAAAAAAAAAAAAAAAABMlM3CAAAAAAAAAAAAAAAAAAAAAAAAYKJsFgYAAAAAAAAAAAAAAAAAAAAAAAATZbMwAAAAAAAAAAAAAAAAAAAAAAAAmCibhQEAAAAAAAAAAAAAAAAAAAAAAMBE2SwMAAAAAAAAAAAAAAAAAAAAAAAAJspmYQAAAAAAAAAAAAAAAAAAAAAAADBRNgsDAAAAAAAAAAAAAAAAAAAAAACAibJZGAAAAAAAAAAAAAAAAAAAAAAAAEyUzcIAAAAAAAAAAAAAAAAAAAAAAABgomwWBgAAAAAAAAAAAAAAAAAAAAAAABNlszAAAAAAAAAAAAAAAAAAAAAAAACYKJuFAQAAAAAAAAAAAAAAAAAAAAAAwETZLAwAAAAAAAAAAAAAAAAAAAAAAAAmymZhAAAAAAAAAAAAAAAAAAAAAAAAMFE2CwMAAAAAAAAAAAAAAAAAAAAAAICJslkYAAAAAAAAAAAAAAAAAAAAAAAATJTNwgAAAAAAAAAAAAAAAAAAAAAAAGCibBYGAAAAAAAAAAAAAAAAAAAAAAAAE2WzMAAAAAAAAAAAAAAAAAAAAAAAAJgom4UBAAAAAAAAAAAAAAAAAAAAAADARNksDAAAAAAAAAAAAAAAAAAAAAAAACbKZmEAAAAAAAAAAAAAAAAAAAAAAAAwUTYLAwAAAAAAAAAAAAAAAAAAAAAAgImyWRgAAAAAAAAAAAAAAAAAAAAAAABMlM3CAAAAAAAAAAAAAAAAAAAAAAAAYKJsFgYAAAAAAAAAAAAAAAAAAAAAAAATZbMwAAAAAAAAAAAAAAAAAAAAAAAAmCibhQEAAAAAAAAAAAAAAAAAAAAAAMBE2SwMAAAAAAAAAAAAAAAAAAAAAAAAJspmYQAAAAAAAAAAAAAAAAAAAAAAADBR/x+Xhcjgi63IuAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from apd.aggregation.analysis import interactable_plot_multiple_charts, configs\n", + "from apd.aggregation.utils import jupyter_page_file, profile_with_yappi, yappi_package_matches\n", + "import yappi\n", + "\n", + "with profile_with_yappi():\n", + " plot = interactable_plot_multiple_charts()\n", + " plot()\n", + "\n", + "with jupyter_page_file() as output:\n", + " yappi.get_func_stats(filter_callback=lambda stat:\n", + " yappi_package_matches(stat, [\"apd.aggregation\"])\n", + " ).print_all(output)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r\n", + "Clock type: WALL\r\n", + "Ordered by: totaltime, desc\r\n", + "\r\n", + "name ncall tsub ttot tavg \r\n", + "..futures\\thread.py:52 _WorkItem.run 7 0.000092 3.204091 0.457727\r\n", + "..tion\\analysis.py:373 run_in_thread 1 0.000053 1.844382 1.844382\r\n", + "..38\\Lib\\threading.py:859 Thread.run 2/1 0.000025 1.839877 0.919939\r\n", + "..rrent\\futures\\thread.py:66 _worker 2/1 0.000022 1.839852 0.919926\r\n", + "..lectorEventLoop.run_until_complete 1 0.000027 1.839745 1.839745\r\n", + "..ndowsSelectorEventLoop.run_forever 1 0.000088 1.839611 1.839611\r\n", + "..WindowsSelectorEventLoop._run_once 17 0.000408 1.839497 0.108206\r\n", + "..alysis.py:327 plot_multiple_charts 1 1.643447 1.839309 1.839309\r\n", + "..py:635 ThreadPoolExecutor.__exit__ 1 0.000005 1.837286 1.837286\r\n", + "..py:230 ThreadPoolExecutor.shutdown 1 0.000009 1.837281 1.837281\r\n", + "..8\\Lib\\threading.py:979 Thread.join 1 0.000006 1.837272 1.837272\r\n", + "..:1017 Thread._wait_for_tstate_lock 1 0.000011 1.837263 1.837263\r\n", + "..gation\\analysis.py:291 plot_sensor 1 0.000000 1.407986 1.407986\r\n", + "..query.py:88 get_data_by_deployment 1 1.397146 1.397188 1.397188\r\n", + "..d\\aggregation\\query.py:41 get_data 1 1.283592 1.375576 1.375576\r\n", + "..lchemy\\orm\\query.py:3232 Query.all 6 0.004333 1.362649 0.227108\r\n", + "..ctors.py:319 SelectSelector.select 17 0.000177 1.362418 0.080142\r\n", + "..tors.py:313 SelectSelector._select 17 0.000069 1.362216 0.080130\r\n", + "..y\\orm\\query.py:3400 Query.__iter__ 6 0.000054 0.958316 0.159719\r\n", + "..:3425 Query._execute_and_instances 6 0.000073 0.956631 0.159439\r\n", + "..ine\\base.py:916 Connection.execute 9 0.000062 0.740051 0.082228\r\n", + "..:589 PGDialect_psycopg2.do_execute 11 0.000042 0.738361 0.067124\r\n", + "..y:1159 Connection._execute_context 9 0.000307 0.734166 0.081574\r\n", + "..:291 Select._execute_on_connection 6 0.000047 0.731436 0.121906\r\n", + ".. Connection._execute_clauseelement 6 0.000127 0.731389 0.121898\r\n", + "..b\\asyncio\\events.py:79 Handle._run 29 0.000071 0.476528 0.016432\r\n", + "..lchemy\\orm\\loading.py:35 instances 10836 0.002535 0.400000 0.000037\r\n", + "..esult.py:1257 ResultProxy.fetchall 6 0.000339 0.363463 0.060577\r\n", + "..py:1217 ResultProxy._fetchall_impl 6 0.000013 0.359396 0.059899\r\n", + "..query.py:3440 Query._get_bind_args 6 0.000028 0.225079 0.037513\r\n", + "..419 Query._connection_from_session 6 0.000021 0.224996 0.037499\r\n", + "..session.py:1057 Session.connection 6 0.000029 0.224975 0.037496\r\n", + "..:1136 Session._connection_for_bind 6 0.000016 0.224937 0.037489\r\n", + "..onTransaction._connection_for_bind 6 0.000041 0.224921 0.037487\r\n", + "..py:2248 Engine._contextual_connect 1 0.000009 0.224836 0.224836\r\n", + "...py:2282 Engine._wrap_pool_connect 1 0.000003 0.223656 0.223656\r\n", + "..pool\\base.py:354 QueuePool.connect 1 0.000005 0.223653 0.223653\r\n", + "..alchemy\\pool\\base.py:770 _checkout 1 0.000011 0.223648 0.223648\r\n", + "..lalchemy\\pool\\base.py:490 checkout 1 0.000034 0.223632 0.223632\r\n", + "..pool\\impl.py:112 QueuePool._do_get 1 0.000011 0.223585 0.223585\r\n", + "..y:305 QueuePool._create_connection 1 0.000003 0.223563 0.223563\r\n", + "...py:434 _ConnectionRecord.__init__ 1 0.000013 0.223560 0.223560\r\n", + "..py:644 _ConnectionRecord.__connect 1 0.000043 0.223547 0.223547\r\n", + "..egation\\analysis.py:313 4 0.000024 0.186344 0.046586\r\n", + "..184 clean_temperature_fluctuations 4 0.000000 0.186293 0.046573\r\n", + "..gregation\\query.py:116 subiterator 4 0.000000 0.186226 0.046557\r\n", + "..sycopg2\\_json.py:164 typecast_json 10822 0.016073 0.181846 0.000017\r\n", + "..n38\\Lib\\json\\__init__.py:299 loads 10822 0.032198 0.165773 0.000015\r\n", + "..regation\\query.py:24 with_database 2 0.000043 0.140628 0.070314\r\n", + ".._GeneratorContextManager.__enter__ 141 0.000202 0.140299 0.000995\r\n", + "..ngine\\__init__.py:85 create_engine 1 0.000022 0.138392 0.138392\r\n", + "..s.py:52 PlainEngineStrategy.create 1 0.000087 0.138370 0.138370\r\n", + "..lib._bootstrap>:986 _find_and_load 10/2 0.000144 0.134169 0.013417\r\n", + "..strap>:956 _find_and_load_unlocked 10/2 0.000091 0.134084 0.013408\r\n", + "..lib._bootstrap>:650 _load_unlocked 10/2 0.000096 0.131844 0.013184\r\n", + "..>:777 SourceFileLoader.exec_module 9/2 0.000063 0.131659 0.014629\r\n", + "..y\\engine\\strategies.py:106 connect 1 0.000007 0.125748 0.125748\r\n", + "...py:488 PGDialect_psycopg2.connect 1 0.000005 0.125741 0.125741\r\n", + "..es\\psycopg2\\__init__.py:82 connect 1 0.000015 0.125737 0.125737\r\n", + "..rap>:211 _call_with_frames_removed 14/2 0.000022 0.122924 0.008780\r\n", + "..\\decoder.py:332 JSONDecoder.decode 10822 0.046535 0.121966 0.000011\r\n", + "..es\\psycopg2\\extras.py:686 10830 0.021009 0.119481 0.000011\r\n", + "..s\\postgresql\\psycopg2.py:735 dbapi 1 0.000004 0.113976 0.113976\r\n", + "..es\\psycopg2\\__init__.py:1 1 0.000046 0.102701 0.102701\r\n", + "..on38\\Lib\\uuid.py:130 UUID.__init__ 10830 0.069266 0.098473 0.000009\r\n", + "..lection.exec_once_unless_exception 1 0.000007 0.097685 0.097685\r\n", + "..y:316 _ListenerCollection.__call__ 2 0.000017 0.097680 0.048840\r\n", + "..ListenerCollection._exec_once_impl 1 0.000016 0.097677 0.097677\r\n", + "..ion\\database.py:77 from_sql_result 10822 0.019580 0.089918 0.000008\r\n", + "..ngine\\strategies.py:183 on_connect 2 0.000008 0.075679 0.037840\r\n", + "..tgresql\\psycopg2.py:847 on_connect 2 0.000013 0.075669 0.037834\r\n", + "..tgresql\\psycopg2.py:815 on_connect 2 0.000012 0.075598 0.037799\r\n", + "...py:903 PGDialect_psycopg2.oneshot 1 0.000013 0.075586 0.075586\r\n", + "..02 PGDialect_psycopg2._hstore_oids 1 0.000026 0.075573 0.075573\r\n", + "..ycopg2\\extras.py:909 type.get_oids 1 0.000038 0.075520 0.075520\r\n", + "..gregation\\analysis.py:63 draw_date 4 0.000031 0.072437 0.018109\r\n", + "..\\matplotlib\\__init__.py:1535 inner 4 0.000037 0.072405 0.018101\r\n", + "..axes.py:1651 AxesSubplot.plot_date 4 0.000035 0.072294 0.018074\r\n", + "..xes\\_axes.py:1412 AxesSubplot.plot 4 0.000082 0.071675 0.017919\r\n", + ".._collections.py:121 result._asdict 10826 0.061631 0.063835 0.000006\r\n", + "..nal>:849 SourceFileLoader.get_code 9 0.000243 0.063569 0.007063\r\n", + "..._bootstrap>:1017 _handle_fromlist 20/18 0.000074 0.061614 0.003081\r\n", + "..nal>:969 SourceFileLoader.get_data 9 0.000317 0.060499 0.006722\r\n", + "..b._bootstrap>:549 module_from_spec 10/9 0.000052 0.059592 0.005959\r\n", + ".. ExtensionFileLoader.create_module 1 0.000007 0.059071 0.059071\r\n", + ".._base.py:1842 AxesSubplot.add_line 4 0.000108 0.055449 0.013862\r\n", + "..68 AxesSubplot._update_line_limits 4 0.000106 0.053296 0.013324\r\n", + "..tlib\\lines.py:1018 Line2D.get_path 10 0.000046 0.052416 0.005242\r\n", + "..lotlib\\lines.py:664 Line2D.recache 10 0.001214 0.052370 0.005237\r\n", + "...py:168 AxesSubplot.convert_xunits 48 0.000078 0.048491 0.001010\r\n", + "..b\\axis.py:1562 XAxis.convert_units 12 0.000042 0.048443 0.004037\r\n", + "..s\\matplotlib\\dates.py:1911 convert 6 0.000028 0.048202 0.008034\r\n", + "..s\\matplotlib\\dates.py:401 date2num 6 0.000082 0.048174 0.008029\r\n", + "..on_base.py:2063 vectorize.__call__ 4 0.000117 0.047604 0.011901\r\n", + "...py:2154 vectorize._vectorize_call 4 0.003677 0.047487 0.011872\r\n", + "..\\figure.py:1259 Figure.add_subplot 1 0.000035 0.043835 0.043835\r\n", + "..ubplots.py:18 AxesSubplot.__init__ 1 0.000041 0.043601 0.043601\r\n", + "..tplotlib\\dates.py:210 _to_ordinalf 8467 0.029289 0.041988 0.000005\r\n", + "..oder.py:343 JSONDecoder.raw_decode 10822 0.037424 0.037424 0.000003\r\n", + "..\\_base.py:378 AxesSubplot.__init__ 1 0.000143 0.036550 0.036550\r\n", + "..chemy\\orm\\loading.py:83 6 0.013648 0.033343 0.005557\r\n", + "..\\psycopg2\\extensions.py:1 1 0.000186 0.025350 0.025350\r\n", + "..\\axes\\_base.py:948 AxesSubplot.cla 1 0.000154 0.024886 0.024886\r\n", + "..lchemy\\util\\langhelpers.py:1506 go 1 0.000010 0.021983 0.021983\r\n", + "..ne\\strategies.py:194 first_connect 1 0.000039 0.021972 0.021972\r\n", + "..:715 PGDialect_psycopg2.initialize 1 0.000026 0.021725 0.021725\r\n", + "..2456 PGDialect_psycopg2.initialize 1 0.000048 0.021698 0.021698\r\n", + "..l\\psycopg2.py:747 _psycopg2_extras 2 0.000024 0.020241 0.010120\r\n", + "..:779 PGDialect_psycopg2.on_connect 1 0.000012 0.020232 0.020232\r\n", + "..:307 PGDialect_psycopg2.initialize 1 0.000057 0.019880 0.019880\r\n", + "..53 _process_plot_var_args.__call__ 8 0.000061 0.015955 0.001994\r\n", + ".. _process_plot_var_args._plot_args 4 0.000148 0.015865 0.003966\r\n", + "..\\axis.py:884 XAxis.set_tick_params 8 0.000121 0.015507 0.001938\r\n", + "..\\axis.py:687 _LazyTickList.__get__ 6/4 0.000042 0.013303 0.002217\r\n", + "..tplotlib\\axis.py:56 XTick.__init__ 6 0.000433 0.013213 0.002202\r\n", + "..n\\query.py:76 get_deployment_by_id 4 0.010913 0.013115 0.003279\r\n", + "..function__ internals>:2 atleast_1d 24 0.000048 0.012936 0.000539\r\n", + "..y\\core\\shape_base.py:24 atleast_1d 24 0.000157 0.012825 0.000534\r\n", + "..b\\cbook\\__init__.py:1320 _check_1d 8 0.000033 0.012712 0.001589\r\n", + "..mpy\\core\\_asarray.py:88 asanyarray 72 0.000061 0.012631 0.000175\r\n", + "..xes\\_base.py:2716 AxesSubplot.grid 2 0.000022 0.012290 0.006145\r\n", + "..matplotlib\\axis.py:1456 XAxis.grid 4 0.000042 0.012264 0.003066\r\n", + "..ages\\psycopg2\\extras.py:1 1 0.000066 0.010984 0.010984\r\n", + "..chemy\\orm\\loading.py:84 10830 0.010873 0.010873 0.000001\r\n", + "..otlib\\lines.py:269 Line2D.__init__ 30 0.001371 0.010610 0.000354\r\n", + "..on-68gteq6k\\lib\\re.py:287 _compile 85 0.000336 0.010565 0.000124\r\n", + "..q6k\\lib\\sre_compile.py:759 compile 12 0.000126 0.009982 0.000832\r\n", + "..es\\_axes.py:299 AxesSubplot.legend 1 0.000023 0.009283 0.009283\r\n", + "..tlib\\legend.py:306 Legend.__init__ 1 0.000569 0.009178 0.009178\r\n", + "..ct_psycopg2._check_unicode_returns 1 0.000050 0.009017 0.009017\r\n", + "..portlib._bootstrap>:890 _find_spec 10 0.000165 0.009003 0.000900\r\n", + "..thon38\\Lib\\uuid.py:231 UUID.__eq__ 10834 0.006940 0.008965 0.000001\r\n", + "..y\\util\\_collections.py:112 __new__ 10830 0.004995 0.008821 0.000001\r\n", + "..my\\engine\\default.py:415 1 0.000011 0.008803 0.008803\r\n", + "..ngine\\default.py:378 check_unicode 2 0.000053 0.008793 0.004396\r\n", + "..bootstrap_external>:1334 find_spec 10 0.000027 0.008728 0.000873\r\n", + "..bootstrap_external>:1302 _get_spec 10 0.000084 0.008701 0.000870\r\n", + "..ib\\axis.py:967 XAxis.set_clip_path 2 0.000036 0.008564 0.004282\r\n", + "..e.py:1134 Connection._execute_text 3 0.000057 0.008541 0.002847\r\n", + "..es\\matplotlib\\pyplot.py:427 figure 1 0.000053 0.008060 0.008060\r\n", + "..xternal>:1431 FileFinder.find_spec 17 0.000331 0.007932 0.000467\r\n", + "..ion-68gteq6k\\lib\\re.py:248 compile 10 0.000012 0.007849 0.000785\r\n", + "..d_bases.py:3325 new_figure_manager 1 0.000026 0.007841 0.007841\r\n", + "..tlib\\figure.py:275 Figure.__init__ 1 0.000636 0.007679 0.007679\r\n", + ".._psycopg2._get_server_version_info 1 0.000022 0.007530 0.007530\r\n", + "..end.py:727 Legend._init_legend_box 1 0.000729 0.007464 0.007464\r\n", + ".._bootstrap_external>:80 _path_stat 40 0.000085 0.007435 0.000186\r\n", + "..py:1293 Connection._cursor_execute 2 0.000014 0.007370 0.003685\r\n", + "..8gteq6k\\lib\\sre_parse.py:937 parse 12 0.000138 0.007321 0.000610\r\n", + "..ation\\analysis.py:191 datapoint_ok 10826 0.007280 0.007280 0.000001\r\n", + "..rrent\\futures\\thread.py:158 submit 7 0.000144 0.007162 0.001023\r\n", + "..6k\\lib\\sre_parse.py:435 _parse_sub 59/12 0.000420 0.007081 0.000120\r\n", + "..s.py:129 AxesSubplot.update_params 1 0.000018 0.006972 0.006972\r\n", + "..ec.py:586 SubplotSpec.get_position 1 0.000379 0.006954 0.006954\r\n", + "..gteq6k\\lib\\sre_parse.py:493 _parse 75/14 0.002524 0.006897 0.000092\r\n", + "..dPoolExecutor._adjust_thread_count 7 0.000109 0.006843 0.000978\r\n", + "..kages\\psycopg2\\_json.py:1 1 0.000022 0.006798 0.006798\r\n", + ":1 Select. 8 0.000037 0.006789 0.000849\r\n", + "..sql\\elements.py:405 Select.compile 8 0.000033 0.006752 0.000844\r\n", + "..l\\elements.py:470 Select._compiler 8 0.000041 0.006719 0.000840\r\n", + "..y:527 PGCompiler_psycopg2.__init__ 8 0.000111 0.006678 0.000835\r\n", + "..otlib\\axis.py:1944 XAxis._get_tick 3 0.000021 0.006665 0.002222\r\n", + "..otlib\\axis.py:2231 YAxis._get_tick 3 0.000021 0.006593 0.002198\r\n", + "..y:274 PGCompiler_psycopg2.__init__ 8 0.000058 0.006562 0.000820\r\n", + ":1 DataPoint.__init__ 10822 0.006522 0.006522 0.000001\r\n", + "..py:349 PGCompiler_psycopg2.process 8 0.000029 0.006504 0.000813\r\n", + "..rs.py:86 Select._compiler_dispatch 97/8 0.000331 0.006475 0.000067\r\n", + "..5 PGCompiler_psycopg2.visit_select 8 0.000210 0.006430 0.000804\r\n", + "..ib\\axis.py:334 XTick._apply_params 14 0.000333 0.006152 0.000439\r\n", + "..\\artist.py:731 XAxis.set_clip_path 26 0.000415 0.005825 0.000224\r\n", + "..\\Lib\\threading.py:834 Thread.start 2 0.000033 0.005717 0.002858\r\n", + "..ib\\threading.py:270 Condition.wait 4 0.000112 0.005571 0.001393\r\n", + "..egation\\analysis.py:212 8613 0.005513 0.005513 0.000001\r\n", + "..tplotlib\\artist.py:1095 Line2D.set 70 0.000373 0.005507 0.000079\r\n", + "..38\\Lib\\threading.py:540 Event.wait 2 0.000027 0.005495 0.002747\r\n", + "..otlib\\axis.py:825 XAxis._set_scale 16 0.000049 0.005371 0.000336\r\n", + "..ap_external>:90 _path_is_mode_type 13 0.000052 0.005363 0.000413\r\n", + "..ootstrap_external>:99 _path_isfile 12 0.000029 0.005197 0.000433\r\n", + "..et_default_locators_and_formatters 16 0.000126 0.005196 0.000325\r\n", + "..base.py:553 AxesSubplot._init_axis 1 0.000047 0.005155 0.005155\r\n", + "...py:89 HandlerLine2D.legend_artist 4 0.000047 0.004979 0.001245\r\n", + "..lib\\artist.py:974 Rectangle.update 140 0.001036 0.004733 0.000034\r\n", + "..y:229 HandlerLine2D.create_artists 4 0.000094 0.004674 0.001168\r\n", + "..s\\matplotlib\\axis.py:841 XAxis.cla 12 0.000087 0.004533 0.000378\r\n", + "..my\\sql\\compiler.py:2127 8 0.000069 0.004473 0.000559\r\n", + "..iler_psycopg2._label_select_column 29 0.000356 0.004404 0.000152\r\n", + "..hes.py:260 Rectangle.get_transform 18 0.000077 0.004024 0.000224\r\n", + "..plotlib\\axis.py:744 XAxis.__init__ 2 0.000070 0.003973 0.001986\r\n", + "<__array_function__ internals>:2 dot 67 0.000177 0.003854 0.000058\r\n", + "..\\transforms.py:1986 Affine2D.scale 13 0.000153 0.003812 0.000293\r\n", + "..ib\\axis.py:229 XTick.set_clip_path 6 0.000032 0.003711 0.000619\r\n", + "..:776 Rectangle.get_patch_transform 18 0.000038 0.003626 0.000201\r\n", + ".. Rectangle._update_patch_transform 18 0.000235 0.003587 0.000199\r\n", + "..se.py:2873 AxesSubplot.tick_params 2 0.000242 0.003572 0.001786\r\n", + "..tlib\\artist.py:217 Rectangle.stale 171.. 0.002093 0.003507 0.000002\r\n", + "..sSelectorEventLoop.run_in_executor 6 0.000084 0.003206 0.000534\r\n", + "..\\__init__.py:1640 normalize_kwargs 74 0.002561 0.003200 0.000043\r\n", + "..icker.py:2848 AutoLocator.__init__ 16 0.000044 0.003190 0.000199\r\n", + "..icker.py:2051 AutoLocator.__init__ 16 0.000061 0.003118 0.000195\r\n", + "..t.py:1240 ResultProxy.process_rows 9 0.000037 0.003098 0.000344\r\n", + "..y\\engine\\result.py:1253 9 0.003062 0.003062 0.000340\r\n", + "..ker.py:2126 AutoLocator.set_params 16 0.000144 0.003058 0.000191\r\n", + "..gine\\base.py:908 Connection.scalar 2 0.000026 0.002811 0.001405\r\n", + "..es\\numpy\\core\\_methods.py:32 _amin 2 0.000005 0.002705 0.001352\r\n", + "..10 PGCompiler_psycopg2.visit_label 29 0.000329 0.002675 0.000092\r\n", + "..ges\\numpy\\core\\_methods.py:47 _all 1 0.000018 0.002555 0.002555\r\n", + "..matplotlib\\text.py:170 Text.update 65 0.000382 0.002549 0.000039\r\n", + "..b\\patches.py:42 Rectangle.__init__ 7 0.000199 0.002508 0.000358\r\n", + "..teq6k\\lib\\sre_compile.py:598 _code 12 0.000055 0.002475 0.000206\r\n", + "..ation-68gteq6k\\lib\\re.py:186 match 70 0.000140 0.002414 0.000034\r\n", + "..ages\\psycopg2\\_range.py:1 1 0.000042 0.002367 0.002367\r\n", + "..tplotlib\\text.py:121 Text.__init__ 24 0.000320 0.002354 0.000098\r\n", + "..ent\\base.py:295 dispatcher.__get__ 10 0.000075 0.002312 0.000231\r\n", + "..yncio\\events.py:756 new_event_loop 1 0.000022 0.002309 0.002309\r\n", + "..ib\\axis.py:485 XTick._get_gridline 3 0.000044 0.002301 0.000767\r\n", + "..ctorEventLoopPolicy.new_event_loop 1 0.000014 0.002285 0.002285\r\n", + ".._WindowsSelectorEventLoop.__init__ 1 0.000031 0.002271 0.002271\r\n", + ".. _GeneratorContextManager.__exit__ 142.. 0.000276 0.002267 0.000016\r\n", + "..arkers.py:222 MarkerStyle.__init__ 38 0.000106 0.002225 0.000059\r\n", + "..alect_psycopg2.get_isolation_level 1 0.000009 0.002224 0.002224\r\n", + "..otlib\\axes\\_base.py:363 4 0.000021 0.002202 0.000550\r\n", + "..\\orm\\session.py:1554 Session.query 6 0.000028 0.002200 0.000367\r\n", + "..1 _process_plot_var_args._makeline 4 0.000055 0.002180 0.000545\r\n", + "..y:930 AxesSubplot._gen_axes_spines 1 0.000012 0.002176 0.002176\r\n", + "..my\\orm\\query.py:164 Query.__init__ 6 0.000024 0.002172 0.000362\r\n", + "..lotlib\\axes\\_base.py:945 5 0.000015 0.002164 0.000433\r\n", + "..lib\\ticker.py:2103 _validate_steps 16 0.001337 0.002151 0.000134\r\n", + "..plotlib\\spines.py:517 linear_spine 4 0.000037 0.002150 0.000537\r\n", + "..m\\query.py:193 Query._set_entities 6 0.000089 0.002148 0.000358\r\n", + "..init__.py:791 RcParams.__getitem__ 1343 0.001641 0.002147 0.000002\r\n", + "..sSelectorEventLoop._make_self_pipe 1 0.000029 0.002112 0.002112\r\n", + "..\\numpy\\core\\_asarray.py:16 asarray 176 0.000180 0.002109 0.000012\r\n", + "..psycopg2\\_range.py:290 RangeCaster 1 0.000006 0.002101 0.002101\r\n", + "..py:133 GridSpec.get_grid_positions 1 0.000057 0.002062 0.002062\r\n", + "..lchemy\\event\\base.py:87 5 0.000156 0.002010 0.000402\r\n", + "..hon38\\Lib\\socket.py:579 socketpair 1 0.000134 0.001971 0.001971\r\n", + "..kers.py:289 MarkerStyle.set_marker 42 0.000327 0.001957 0.000047\r\n", + "..lib\\sre_parse.py:254 Tokenizer.get 1519 0.001009 0.001919 0.000001\r\n", + "..lotlib\\spines.py:36 Spine.__init__ 4 0.000116 0.001912 0.000478\r\n", + ".._axes.py:147 AxesSubplot.set_title 4 0.000101 0.001903 0.000476\r\n", + "..ap_external>:578 _compile_bytecode 9 0.000053 0.001885 0.000209\r\n", + "..ray_function__ internals>:2 cumsum 3 0.000009 0.001882 0.000627\r\n", + "..alchemy\\engine\\url.py:221 make_url 1 0.000009 0.001880 0.001880\r\n", + "..ine\\url.py:234 _parse_rfc1738_args 1 0.000020 0.001870 0.001870\r\n", + "..py\\core\\fromnumeric.py:2358 cumsum 3 0.000009 0.001860 0.000620\r\n", + "..y\\core\\fromnumeric.py:55 _wrapfunc 3 0.000014 0.001851 0.000617\r\n", + "..my\\util\\deprecations.py:115 warned 21/20 0.000099 0.001850 0.000088\r\n", + "..ery.py:4539 _ColumnEntity.__init__ 32/7 0.000771 0.001838 0.000057\r\n", + "..mpy\\core\\fromnumeric.py:42 _wrapit 3 0.000024 0.001835 0.000612\r\n", + "..otlib\\artist.py:74 Figure.__init__ 88 0.001132 0.001813 0.000021\r\n", + "..pg2\\extras.py:1007 CompositeCaster 1 0.000009 0.001811 0.001811\r\n", + "..py:1960 Affine2D.rotate_deg_around 18 0.000105 0.001796 0.000100\r\n", + "<__array_function__ internals>:2 any 76 0.000151 0.001772 0.000023\r\n", + "..q6k\\lib\\sre_compile.py:71 _compile 111.. 0.000776 0.001769 0.000016\r\n", + "..nContext_psycopg2.get_result_proxy 9 0.000073 0.001769 0.000197\r\n", + "..ib\\axis.py:603 YTick._get_gridline 3 0.000039 0.001746 0.000582\r\n", + "..ttr.py:227 _EmptyListener.__init__ 77 0.000409 0.001742 0.000023\r\n", + "..b\\axis.py:459 XTick._get_tick1line 3 0.000093 0.001732 0.000577\r\n", + "...py:1247 BboxTransformFrom.__add__ 78 0.000260 0.001679 0.000022\r\n", + "..result.py:767 ResultProxy.__init__ 9 0.000119 0.001671 0.000186\r\n", + "..ction__ internals>:2 unravel_index 1 0.000005 0.001658 0.001658\r\n", + "..s\\matplotlib\\colors.py:157 to_rgba 51 0.000440 0.001653 0.000032\r\n", + "..nction__ internals>:2 column_stack 12 0.000039 0.001614 0.000135\r\n", + "..forms.py:817 Bbox.update_from_path 4 0.000067 0.001561 0.000390\r\n", + "..ery.py:3929 Query._compile_context 6 0.000129 0.001552 0.000259\r\n", + "...py:793 ResultProxy._init_metadata 9 0.000094 0.001552 0.000172\r\n", + "..t.py:49 Spine._stale_axes_callback 302 0.000583 0.001530 0.000005\r\n", + "..s.py:880 memoized_property.__get__ 99/89 0.000358 0.001519 0.000015\r\n", + "..lib\\shape_base.py:597 column_stack 12 0.000149 0.001496 0.000125\r\n", + "..e\\fromnumeric.py:73 _wrapreduction 85 0.000478 0.001495 0.000018\r\n", + "..4 PGCompiler_psycopg2.visit_column 37 0.000844 0.001478 0.000040\r\n", + "..numpy\\core\\fromnumeric.py:2189 any 76 0.000191 0.001477 0.000019\r\n", + "..ycopg2\\extras.py:805 HstoreAdapter 1 0.000007 0.001458 0.001458\r\n", + "..ult.py:269 ResultMetaData.__init__ 9 0.000173 0.001445 0.000161\r\n", + "..res\\_base.py:517 Future.set_result 7 0.000077 0.001440 0.000206\r\n", + "..ger.py:619 FontProperties.__init__ 23 0.000332 0.001434 0.000062\r\n", + "..unction__ internals>:2 concatenate 29 0.000060 0.001405 0.000048\r\n", + "..y:2462 composite_transform_factory 78 0.000261 0.001376 0.000018\r\n", + "..sql\\operators.py:358 Column.__eq__ 10/5 0.000033 0.001365 0.000136\r\n", + "..sql\\elements.py:740 Column.operate 5 0.000015 0.001345 0.000269\r\n", + "..ansform.contains_branch_seperately 4 0.000037 0.001339 0.000335\r\n", + "..b\\axis.py:574 YTick._get_tick1line 3 0.000036 0.001315 0.000438\r\n", + "..teGenericTransform.contains_branch 4 0.000029 0.001287 0.000322\r\n", + ":1 Comparator. 5 0.000021 0.001285 0.000257\r\n", + "..\\sqlalchemy\\event\\api.py:34 listen 3 0.000015 0.001278 0.000426\r\n", + "..\\type_api.py:64 Comparator.operate 5 0.000039 0.001264 0.000253\r\n", + ".. QueryEventsDispatch._for_instance 8 0.000024 0.001262 0.000158\r\n", + "..se.py:325 Future._invoke_callbacks 7 0.000055 0.001261 0.000180\r\n", + "..b\\axis.py:589 YTick._get_tick2line 3 0.000027 0.001250 0.000417\r\n", + "..116 QueryEventsDispatch._for_class 8 0.000031 0.001238 0.000155\r\n", + "..ine\\base.py:69 Connection.__init__ 2 0.000042 0.001217 0.000608\r\n", + ".._comparator.py:41 _boolean_compare 5 0.000056 0.001207 0.000241\r\n", + "..py:77 QueryEventsDispatch.__init__ 8 0.000082 0.001206 0.000151\r\n", + "..cio\\futures.py:364 _call_set_state 6 0.000042 0.001206 0.000201\r\n", + ".. _ClsLevelDispatch.update_subclass 77 0.000399 0.001202 0.000016\r\n", + "..sycopg2\\extensions.py:146 make_dsn 1 0.000017 0.001179 0.001179\r\n", + "..ib\\axis.py:1504 XAxis.update_units 14 0.000096 0.001168 0.000083\r\n", + "..cbook\\__init__.py:1933 _setattr_cm 280 0.000727 0.001165 0.000004\r\n", + "..ctorEventLoop.call_soon_threadsafe 6 0.000037 0.001160 0.000193\r\n", + "..t\\registry.py:193 _EventKey.listen 4/3 0.000077 0.001157 0.000289\r\n", + "..xesSubplot._set_title_offset_trans 5 0.000122 0.001149 0.000230\r\n", + "..er.py:72 HandlerLine2D.update_prop 8 0.000034 0.001139 0.000142\r\n", + "..__init__.py:2073 _check_isinstance 94 0.000869 0.001139 0.000012\r\n", + "..offsetbox.py:783 TextArea.__init__ 5 0.000093 0.001137 0.000227\r\n", + "..MetaData._merge_cursor_description 9 0.000098 0.001134 0.000126\r\n", + "..py:1240 Line2D.set_markerfacecolor 30 0.000106 0.001118 0.000037\r\n", + "..5 CompositeGenericTransform.__eq__ 12/8 0.000035 0.001090 0.000091\r\n", + "..es.py:341 Rectangle._set_facecolor 20 0.000067 0.001055 0.000053\r\n", + "..ms.py:1639 TransformWrapper.__eq__ 4 0.000010 0.001052 0.000263\r\n", + ".._psycopg2._get_default_schema_name 1 0.000004 0.001048 0.001048\r\n", + "..y:163 TransformedBbox.set_children 149 0.000873 0.001042 0.000007\r\n", + "..rms.py:2093 BlendedAffine2D.__eq__ 4 0.000027 0.001042 0.000260\r\n", + "..\\sre_parse.py:233 Tokenizer.__next 1696 0.001032 0.001032 0.000001\r\n", + "..wsSelectorEventLoop._write_to_self 6 0.000028 0.001026 0.000171\r\n", + "..t_comparator.py:359 _check_literal 5 0.000066 0.001021 0.000204\r\n", + "..s.py:1709 IdentityTransform.__eq__ 9/8 0.000612 0.001013 0.000113\r\n", + "..\\spines.py:226 Spine.register_axis 4 0.000008 0.001009 0.000252\r\n", + "..b\\axis.py:470 XTick._get_tick2line 3 0.000027 0.000999 0.000333\r\n", + ".._api.py:527 NullType._dialect_info 26 0.000128 0.000985 0.000038\r\n", + "..matplotlib\\spines.py:238 Spine.cla 4 0.000004 0.000982 0.000246\r\n", + "..9 PoolEventsDispatch._for_instance 2 0.000005 0.000975 0.000488\r\n", + "..:116 PoolEventsDispatch._for_class 2 0.000007 0.000971 0.000485\r\n", + "...py:77 PoolEventsDispatch.__init__ 2 0.000046 0.000963 0.000482\r\n", + "..lements.py:4145 Column._bind_param 5 0.000049 0.000942 0.000188\r\n", + "..pe_api.py:450 VARCHAR.dialect_impl 34 0.000097 0.000924 0.000027\r\n", + "..arkers.py:244 MarkerStyle._recache 80 0.000208 0.000923 0.000012\r\n", + "..nsforms.py:1972 Affine2D.translate 36 0.000172 0.000893 0.000025\r\n", + "..ents.py:942 BindParameter.__init__ 5 0.000112 0.000893 0.000179\r\n", + "..6k\\lib\\abc.py:96 __instancecheck__ 141 0.000157 0.000879 0.000006\r\n", + ".._function__ internals>:2 full_like 4 0.000014 0.000867 0.000217\r\n", + "..ist.py:358 Rectangle.set_transform 85 0.000295 0.000867 0.000010\r\n", + "..umpy\\core\\numeric.py:341 full_like 4 0.000030 0.000839 0.000210\r\n", + "..GIdentifierPreparer_psycopg2.quote 105 0.000165 0.000838 0.000008\r\n", + "..tplotlib\\artist.py:1006 140 0.000107 0.000834 0.000006\r\n", + "..piler_psycopg2._setup_select_stack 8 0.000088 0.000830 0.000104\r\n", + "..ib\\transforms.py:727 Bbox.__init__ 41 0.000282 0.000827 0.000020\r\n", + "..text_psycopg2.get_result_processor 30 0.000083 0.000823 0.000027\r\n", + "..otlib\\axis.py:544 YTick._get_text1 3 0.000044 0.000805 0.000268\r\n", + "..ry.py:4056 Query._simple_statement 6 0.000093 0.000802 0.000134\r\n", + "..sforms.py:1940 Affine2D.rotate_deg 18 0.000166 0.000798 0.000044\r\n", + "..\\patches.py:704 Rectangle.__init__ 2 0.000027 0.000793 0.000396\r\n", + "..threading.py:394 Semaphore.acquire 7 0.000100 0.000787 0.000112\r\n", + "..function__ internals>:2 empty_like 4 0.000014 0.000772 0.000193\r\n", + ":1 select 8 0.000064 0.000770 0.000096\r\n", + "..otlib\\axis.py:559 YTick._get_text2 3 0.000038 0.000762 0.000254\r\n", + "..CompositeGenericTransform.__init__ 69 0.000255 0.000761 0.000011\r\n", + "..ernal>:1479 FileFinder._fill_cache 1 0.000077 0.000740 0.000740\r\n", + ".. NullType._cached_result_processor 30 0.000178 0.000739 0.000025\r\n", + "...py:978 Rectangle._update_property 42 0.000194 0.000726 0.000017\r\n", + "..my\\engine\\result.py:463 6 0.000119 0.000720 0.000120\r\n", + "..lib\\transforms.py:782 from_extents 20 0.000102 0.000710 0.000036\r\n", + ":1 Select.__init__ 8 0.000126 0.000706 0.000088\r\n", + "...py:3065 Select._get_display_froms 8 0.000363 0.000704 0.000088\r\n", + "..hon38\\Lib\\contextlib.py:238 helper 141 0.000235 0.000704 0.000005\r\n", + "..arse.py:164 SubPattern.__getitem__ 707 0.000520 0.000702 0.000001\r\n", + "..tplotlib\\ticker.py:2118 _staircase 16 0.000089 0.000697 0.000044\r\n", + "..ok\\__init__.py:2108 _check_in_list 449 0.000565 0.000690 0.000002\r\n", + "..lines.py:1143 Line2D.set_linestyle 34 0.000284 0.000683 0.000020\r\n", + "..orm\\session.py:1002 Session.commit 1 0.000010 0.000682 0.000682\r\n", + "..ult.py:924 ResultProxy._soft_close 9 0.000043 0.000679 0.000075\r\n", + "..n.py:500 SessionTransaction.commit 1 0.000042 0.000673 0.000673\r\n", + "..xternal>:1265 _path_importer_cache 19 0.000032 0.000670 0.000035\r\n", + "..sSelectorEventLoop._read_from_self 6 0.000062 0.000662 0.000110\r\n", + "..otlib\\axis.py:427 XTick._get_text1 3 0.000032 0.000661 0.000220\r\n", + "..hreading.py:249 Condition.__exit__ 61 0.000614 0.000660 0.000011\r\n", + "..b\\sre_compile.py:536 _compile_info 12 0.000120 0.000648 0.000054\r\n", + "..1254 Line2D.set_markerfacecoloralt 30 0.000080 0.000645 0.000021\r\n", + "..93 vectorize._get_ufunc_and_otypes 4 0.000076 0.000640 0.000160\r\n", + "..sql\\type_api.py:546 NullType.adapt 13 0.000055 0.000638 0.000049\r\n", + "..Preparer_psycopg2._requires_quotes 22 0.000133 0.000636 0.000029\r\n", + "..otstrap_external>:1252 _path_hooks 1 0.000024 0.000636 0.000636\r\n", + "..1333 Connection._safe_close_cursor 9 0.000021 0.000635 0.000071\r\n", + "..transforms.py:1924 Affine2D.rotate 18 0.000301 0.000632 0.000035\r\n", + "..ms.py:986 TransformedBbox.__init__ 21 0.000147 0.000625 0.000030\r\n", + "..hes.py:348 Rectangle.set_facecolor 12 0.000023 0.000619 0.000052\r\n", + "..>:1010 SourceFileLoader.path_stats 9 0.000024 0.000617 0.000069\r\n", + "..egation-68gteq6k\\lib\\re.py:201 sub 5 0.000024 0.000614 0.000123\r\n", + "..ray_function__ internals>:2 hstack 16 0.000025 0.000608 0.000038\r\n", + "..ing>:1 PGDialect_psycopg2.__init__ 2 0.000012 0.000593 0.000296\r\n", + "..\\matplotlib\\transforms.py:763 unit 19 0.000080 0.000585 0.000031\r\n", + "..nghelpers.py:1167 constructor_copy 13 0.000121 0.000583 0.000045\r\n", + "..ase.py:3767 AxesSubplot.xaxis_date 4 0.000017 0.000583 0.000146\r\n", + "..sion.py:3236 sessionmaker.__call__ 1 0.000014 0.000579 0.000579\r\n", + "..qlalchemy\\orm\\base.py:222 generate 6 0.000049 0.000578 0.000096\r\n", + "..nd.py:558 Legend._set_artist_props 9 0.000085 0.000576 0.000064\r\n", + "..iler_psycopg2._compose_select_body 8 0.000089 0.000575 0.000072\r\n", + "..otlib\\axis.py:1812 XAxis.axis_date 4 0.000045 0.000566 0.000141\r\n", + ":1 Session.__init__ 1 0.000005 0.000563 0.000563\r\n", + "..velDispatch._assign_cls_collection 77 0.000249 0.000561 0.000007\r\n", + "..atplotlib\\lines.py:632 Line2D.axes 42 0.000206 0.000552 0.000013\r\n", + "..rm\\session.py:655 Session.__init__ 1 0.000024 0.000551 0.000551\r\n", + "..y\\orm\\session.py:893 Session.begin 3 0.000013 0.000548 0.000183\r\n", + "..b\\artist.py:336 Rectangle.pchanged 373 0.000436 0.000548 0.000001\r\n", + "..selectable.py:2760 Select.__init__ 8 0.000175 0.000540 0.000068\r\n", + "..ansforms.py:1701 Affine2D.__init__ 165 0.000352 0.000537 0.000003\r\n", + "..py:220 SessionTransaction.__init__ 3 0.000029 0.000535 0.000178\r\n", + "..tist.py:804 Rectangle.get_animated 1714 0.000533 0.000533 0.000000\r\n", + "..nsforms.py:126 Affine2D.invalidate 76 0.000275 0.000533 0.000007\r\n", + "..38\\Lib\\socket.py:285 socket.accept 1 0.000037 0.000532 0.000532\r\n", + ".._psycopg2._setup_crud_result_proxy 3 0.000016 0.000524 0.000175\r\n", + "..\\patches.py:436 Rectangle.set_fill 7 0.000032 0.000523 0.000075\r\n", + "..nits.py:197 Registry.get_converter 24/14 0.000201 0.000520 0.000022\r\n", + "..otlib\\axis.py:444 XTick._get_text2 3 0.000025 0.000517 0.000172\r\n", + ".._bootstrap>:477 _init_module_attrs 10 0.000100 0.000517 0.000052\r\n", + "..is.py:1670 XAxis.set_minor_locator 16 0.000092 0.000517 0.000032\r\n", + "..py:663 PGDialect_psycopg2.__init__ 1 0.000027 0.000515 0.000515\r\n", + "..k\\lib\\abc.py:100 __subclasscheck__ 85/14 0.000067 0.000514 0.000006\r\n", + "..:382 WeakKeyDictionary.__getitem__ 248 0.000508 0.000508 0.000002\r\n", + "..\\lines.py:730 Line2D.set_transform 38 0.000085 0.000508 0.000013\r\n", + "..ckages\\cycler.py:349 Cycler.by_key 10 0.000223 0.000505 0.000051\r\n", + "..\\asyncio\\futures.py:351 _set_state 6 0.000023 0.000503 0.000084\r\n", + "..umpy\\core\\shape_base.py:285 hstack 16 0.000116 0.000487 0.000030\r\n", + ".._base.py:3093 AxesSubplot.set_xlim 1 0.000060 0.000483 0.000483\r\n", + "..artist.py:695 Rectangle.set_figure 95 0.000217 0.000482 0.000005\r\n", + "..es.py:2396 FancyBboxPatch.__init__ 1 0.000023 0.000480 0.000480\r\n", + "..on__ internals>:2 broadcast_arrays 10 0.000034 0.000478 0.000048\r\n", + "..e_parse.py:174 SubPattern.getwidth 138.. 0.000375 0.000478 0.000003\r\n", + "..lalchemy\\event\\base.py:243 _listen 3 0.000010 0.000476 0.000159\r\n", + "..__.py:138 CallbackRegistry.connect 33 0.000252 0.000473 0.000014\r\n", + "..ler_psycopg2._truncated_identifier 34 0.000151 0.000470 0.000014\r\n", + "..is.py:1654 XAxis.set_major_locator 17 0.000121 0.000470 0.000028\r\n", + "..gine\\default.py:753 _init_compiled 6 0.000166 0.000470 0.000078\r\n", + ".. _GeneratorContextManager.__init__ 141 0.000401 0.000469 0.000003\r\n", + "..istry.py:246 _EventKey.base_listen 3 0.000082 0.000467 0.000156\r\n", + "..:903 AxesSubplot._set_artist_props 7 0.000135 0.000464 0.000066\r\n", + "..py:913 AxesSubplot._gen_axes_patch 1 0.000004 0.000464 0.000464\r\n", + "..\\futures.py:315 _copy_future_state 6 0.000106 0.000461 0.000077\r\n", + "..lib\\transforms.py:82 Bbox.__init__ 306 0.000454 0.000454 0.000001\r\n", + "..ore\\numerictypes.py:365 issubdtype 4 0.000025 0.000451 0.000113\r\n", + "..lotlib\\colors.py:123 _is_nth_color 51 0.000107 0.000451 0.000009\r\n", + "..ansforms.py:1831 Affine2D.__init__ 49 0.000156 0.000449 0.000009\r\n", + "..offsetbox.py:175 TextArea.__init__ 16 0.000049 0.000449 0.000028\r\n", + ":1 Query.order_by 1 0.000002 0.000428 0.000428\r\n", + "..r.py:63 HandlerLine2D._update_prop 8 0.000011 0.000425 0.000053\r\n", + "..re\\numerictypes.py:293 issubclass_ 8 0.000019 0.000425 0.000053\r\n", + "..53 _ListenerCollection.__getattr__ 45/24 0.000285 0.000424 0.000009\r\n", + "..e_compile.py:276 _optimize_charset 34 0.000263 0.000415 0.000012\r\n", + "..HandlerLine2D._default_update_prop 8 0.000010 0.000414 0.000052\r\n", + "..y\\orm\\query.py:1856 Query.order_by 1 0.000007 0.000413 0.000413\r\n", + ".. Line2D._split_drawstyle_linestyle 64 0.000256 0.000413 0.000006\r\n", + "..ide_tricks.py:206 broadcast_arrays 10 0.000179 0.000412 0.000041\r\n", + "..s.py:424 Spine.get_spine_transform 28/24 0.000181 0.000406 0.000014\r\n", + "..query.py:329 Query._adapt_col_list 1 0.000003 0.000405 0.000405\r\n", + "..b\\lines.py:1327 Line2D.update_from 8 0.000061 0.000403 0.000050\r\n", + "..lchemy\\orm\\query.py:330 1 0.000009 0.000402 0.000402\r\n", + "..ine\\default.py:981 _init_statement 3 0.000233 0.000401 0.000134\r\n", + "..sql\\elements.py:4087 Column._label 10 0.000026 0.000394 0.000039\r\n", + "..y:4564 _literal_as_label_reference 3 0.000009 0.000390 0.000130\r\n", + "..es.py:315 Rectangle._set_edgecolor 20 0.000076 0.000387 0.000019\r\n", + "..array_function__ internals>:2 diff 16 0.000028 0.000387 0.000024\r\n", + "..pg2\\extras.py:303 NamedTupleCursor 1 0.000019 0.000382 0.000382\r\n", + "..py:120 ThreadPoolExecutor.__init__ 2 0.000074 0.000374 0.000187\r\n", + "..xis.py:1525 XAxis._update_axisinfo 13 0.000026 0.000368 0.000028\r\n", + "..elements.py:4099 Column._gen_label 10 0.000123 0.000368 0.000037\r\n", + "..rtist.py:937 Rectangle.set_visible 69 0.000142 0.000366 0.000005\r\n", + "..hreading.py:222 Condition.__init__ 13 0.000311 0.000361 0.000028\r\n", + "<__array_function__ internals>:2 all 9 0.000071 0.000355 0.000039\r\n", + "..zipimport>:63 zipimporter.__init__ 1 0.000016 0.000350 0.000350\r\n", + "..\\langhelpers.py:301 get_cls_kwargs 35/16 0.000206 0.000348 0.000010\r\n", + "...py:399 _ListenerCollection.append 3 0.000007 0.000345 0.000115\r\n", + "..atplotlib\\path.py:96 Path.__init__ 14 0.000076 0.000344 0.000025\r\n", + "...py:1624 FigureCanvasBase.__init__ 2 0.000173 0.000339 0.000170\r\n", + "..ry.py:267 _EventKey.append_to_list 3 0.000231 0.000338 0.000113\r\n", + ".._bootstrap_external>:62 _path_join 82 0.000138 0.000338 0.000004\r\n", + "..ap_external>:294 cache_from_source 18 0.000119 0.000335 0.000019\r\n", + "...py:1626 XAxis.set_major_formatter 17 0.000066 0.000330 0.000019\r\n", + "..ase.py:1731 RootTransaction.commit 1 0.000019 0.000326 0.000326\r\n", + "..._bootstrap>:376 ModuleSpec.cached 19 0.000049 0.000324 0.000017\r\n", + "..mpy\\lib\\function_base.py:1147 diff 16 0.000281 0.000320 0.000020\r\n", + "..er.py:512 ScalarFormatter.__init__ 16 0.000165 0.000317 0.000020\r\n", + "..422 WeakKeyDictionary.__contains__ 387 0.000313 0.000313 0.000001\r\n", + "..l\\selectable.py:3036 Select._froms 8 0.000141 0.000313 0.000039\r\n", + "..9 PGCompiler_psycopg2.visit_binary 5 0.000029 0.000312 0.000062\r\n", + "..tlib\\axis.py:1951 XAxis._get_label 1 0.000030 0.000311 0.000311\r\n", + "..base.py:563 AxesSubplot.set_figure 1 0.000026 0.000308 0.000308\r\n", + "..fierPreparer_psycopg2.format_label 29 0.000027 0.000306 0.000011\r\n", + "..py:1765 RootTransaction._do_commit 1 0.000012 0.000304 0.000304\r\n", + "..5 Rectangle._stale_figure_callback 134 0.000139 0.000303 0.000002\r\n", + "..otlib\\lines.py:645 Line2D.set_data 30 0.000098 0.000302 0.000010\r\n", + "..asyncio\\futures.py:377 wrap_future 6 0.000060 0.000301 0.000050\r\n", + "..tlib\\axis.py:2238 YAxis._get_label 1 0.000024 0.000300 0.000300\r\n", + "..py:4442 _anonymous_label.apply_map 7 0.000252 0.000300 0.000043\r\n", + "..ons.py:971 lightweight_named_tuple 6 0.000162 0.000300 0.000050\r\n", + "..my\\engine\\result.py:496 3 0.000020 0.000296 0.000099\r\n", + "...py:543 NullType._gen_dialect_impl 13 0.000038 0.000295 0.000023\r\n", + "..chemy\\orm\\loading.py:59 6 0.000037 0.000293 0.000049\r\n", + "..ase.py:746 Connection._commit_impl 1 0.000022 0.000292 0.000292\r\n", + "...py:1640 XAxis.set_minor_formatter 16 0.000053 0.000286 0.000018\r\n", + ".._init__.py:1610 safe_first_element 24 0.000070 0.000285 0.000012\r\n", + "..tionContext_psycopg2.create_cursor 9 0.000085 0.000276 0.000031\r\n", + "..ootstrap_external>:424 _get_cached 10 0.000043 0.000275 0.000027\r\n", + "..py:2408 CompositeAffine2D.__init__ 9 0.000044 0.000273 0.000030\r\n", + ".._.py:1309 _to_unmasked_float_array 34 0.000116 0.000273 0.000008\r\n", + "..py:3730 Select._columns_plus_names 8 0.000046 0.000270 0.000034\r\n", + "..y:542 PGDialect_psycopg2.do_commit 1 0.000014 0.000268 0.000268\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..hreading.py:388 Semaphore.__init__ 2 0.000014 0.000267 0.000134\r\n", + ".._psycopg2._generate_generic_binary 5 0.000033 0.000264 0.000053\r\n", + "..s.py:1398 Line2D.set_dash_capstyle 30 0.000145 0.000262 0.000009\r\n", + "..\\cbook\\__init__.py:1938 140 0.000205 0.000262 0.000002\r\n", + "..nal>:1520 path_hook_for_FileFinder 1 0.000022 0.000261 0.000261\r\n", + "..hes.py:330 Rectangle.set_edgecolor 12 0.000025 0.000260 0.000022\r\n", + "..es.py:768 Rectangle._convert_units 18 0.000084 0.000258 0.000014\r\n", + "..y:4696 _ColumnEntity.row_processor 27 0.000176 0.000257 0.000010\r\n", + "..k\\lib\\encodings\\utf_8.py:15 decode 48 0.000188 0.000257 0.000005\r\n", + "..PGDialect_psycopg2.type_descriptor 13 0.000030 0.000257 0.000020\r\n", + "..:136 Affine2D._invalidate_internal 90/76 0.000214 0.000256 0.000003\r\n", + "..:395 WeakKeyDictionary.__setitem__ 97 0.000253 0.000256 0.000003\r\n", + "..chemy\\orm\\query.py:4625 27 0.000065 0.000250 0.000009\r\n", + "..tplotlib\\lines.py:59 _scale_dashes 83 0.000123 0.000249 0.000003\r\n", + "..24 AxesSubplot.get_yaxis_transform 29/15 0.000047 0.000249 0.000009\r\n", + "..numpy\\core\\fromnumeric.py:2277 all 9 0.000041 0.000249 0.000028\r\n", + "..atplotlib\\artist.py:192 Spine.axes 831 0.000248 0.000248 0.000000\r\n", + "..b\\sre_parse.py:96 State.closegroup 27 0.000035 0.000243 0.000009\r\n", + "..s.py:266 MarkerStyle.set_fillstyle 38 0.000124 0.000241 0.000006\r\n", + "..ger.py:810 FontProperties.set_size 27 0.000167 0.000241 0.000009\r\n", + "..s\\_base.py:31 _process_plot_format 4 0.000033 0.000239 0.000060\r\n", + "..chemy\\sql\\elements.py:4327 __new__ 17 0.000109 0.000239 0.000014\r\n", + "..py:2644 ScaledTranslation.__init__ 17 0.000081 0.000238 0.000014\r\n", + "..r.py:774 FontProperties.set_weight 27 0.000211 0.000237 0.000009\r\n", + "...py:180 AxesSubplot.convert_yunits 48 0.000064 0.000233 0.000005\r\n", + "..units.py:58 _is_natively_supported 12 0.000072 0.000232 0.000019\r\n", + "..my\\sql\\type_api.py:1475 adapt_type 13 0.000077 0.000227 0.000017\r\n", + "..s.py:2544 BboxTransformTo.__init__ 20 0.000076 0.000226 0.000011\r\n", + "..48 AxesSubplot.get_xaxis_transform 29/15 0.000037 0.000223 0.000008\r\n", + "..b\\sre_parse.py:249 Tokenizer.match 311 0.000150 0.000222 0.000001\r\n", + "..py:1137 Text.set_verticalalignment 33 0.000098 0.000222 0.000007\r\n", + "..il\\_collections.py:775 unique_list 41 0.000166 0.000221 0.000005\r\n", + "..x.py:690 DrawingArea.get_transform 4 0.000006 0.000220 0.000055\r\n", + "..>:147 _ModuleLockManager.__enter__ 10 0.000027 0.000219 0.000022\r\n", + "..tlib\\text.py:535 Text.set_clip_box 15 0.000057 0.000216 0.000014\r\n", + "..sre_parse.py:172 SubPattern.append 182 0.000164 0.000209 0.000001\r\n", + "...py:523 YTick._get_text1_transform 3 0.000015 0.000208 0.000069\r\n", + "..800 AxesSubplot._update_transScale 2 0.000024 0.000206 0.000103\r\n", + "..indowsSelectorEventLoop._call_soon 23 0.000097 0.000204 0.000009\r\n", + "..xis.py:1969 XAxis._get_offset_text 1 0.000012 0.000204 0.000204\r\n", + "..b\\threading.py:761 Thread.__init__ 2 0.000128 0.000203 0.000101\r\n", + "..manager.py:855 FontProperties.copy 3 0.000012 0.000199 0.000066\r\n", + "..ootstrap_external>:104 _path_isdir 1 0.000003 0.000198 0.000198\r\n", + "..re_parse.py:160 SubPattern.__len__ 261 0.000148 0.000197 0.000001\r\n", + "..on.py:579 SessionTransaction.close 2 0.000022 0.000197 0.000098\r\n", + "..ib\\artist.py:719 Text.set_clip_box 23 0.000038 0.000195 0.000008\r\n", + "..xis.py:2258 YAxis._get_offset_text 1 0.000013 0.000195 0.000195\r\n", + "..lines.py:1092 Line2D.set_linewidth 30 0.000090 0.000192 0.000006\r\n", + "..sSubplot.get_yaxis_text1_transform 3 0.000033 0.000192 0.000064\r\n", + "...py:2266 blended_transform_factory 8 0.000033 0.000190 0.000024\r\n", + "..s.py:749 MarkerStyle._set_tickdown 3 0.000018 0.000189 0.000063\r\n", + "..xis.py:325 XTick._set_artist_props 30 0.000038 0.000188 0.000006\r\n", + "..til.py:368 surface_column_elements 54 0.000119 0.000185 0.000003\r\n", + "..setbox.py:661 DrawingArea.__init__ 4 0.000023 0.000184 0.000046\r\n", + "..lors.py:193 _to_rgba_no_colorcycle 8 0.000103 0.000183 0.000023\r\n", + ":1 __new__ 91 0.000108 0.000181 0.000002\r\n", + "..\\offsetbox.py:356 HPacker.__init__ 7 0.000017 0.000180 0.000026\r\n", + "..WindowsSelectorEventLoop.call_soon 17 0.000051 0.000178 0.000010\r\n", + "..lines.py:1058 Line2D.set_drawstyle 34 0.000088 0.000178 0.000005\r\n", + "..yncio\\futures.py:335 _chain_future 6 0.000060 0.000177 0.000029\r\n", + "...py:1352 Line2D.set_dash_joinstyle 30 0.000088 0.000176 0.000006\r\n", + "..y:4713 _ColumnEntity.setup_context 27 0.000148 0.000173 0.000006\r\n", + "..b._bootstrap>:157 _get_module_lock 18 0.000077 0.000172 0.000010\r\n", + ".._bootstrap_external>:64 82 0.000128 0.000171 0.000002\r\n", + "..pool\\impl.py:35 QueuePool.__init__ 1 0.000011 0.000171 0.000171\r\n", + "..y:2175 XAxis.set_default_intervals 1 0.000018 0.000170 0.000170\r\n", + "..y:949 Text.set_horizontalalignment 28 0.000075 0.000170 0.000006\r\n", + "..ib\\sre_parse.py:286 Tokenizer.tell 171 0.000133 0.000169 0.000001\r\n", + "..text.py:240 Text.set_rotation_mode 24 0.000106 0.000169 0.000007\r\n", + "..539 PGDialect_psycopg2.do_rollback 2 0.000010 0.000169 0.000085\r\n", + "..:220 Spine._ensure_position_is_set 28/24 0.000023 0.000169 0.000006\r\n", + ":1 Query.filter 5 0.000016 0.000169 0.000034\r\n", + "..\\lib\\function_base.py:257 iterable 97 0.000125 0.000168 0.000002\r\n", + "..68gteq6k\\lib\\weakref.py:44 __new__ 33 0.000135 0.000168 0.000005\r\n", + "...py:407 XTick._get_text1_transform 3 0.000009 0.000166 0.000055\r\n", + "..xesSubplot._set_lim_and_transforms 1 0.000026 0.000165 0.000165\r\n", + "...py:1412 Line2D.set_solid_capstyle 30 0.000083 0.000165 0.000006\r\n", + "..uture.set_running_or_notify_cancel 7 0.000124 0.000165 0.000024\r\n", + "..y\\util\\_collections.py:822 to_list 14 0.000064 0.000164 0.000012\r\n", + "..xternal>:1426 FileFinder._get_spec 10 0.000056 0.000162 0.000016\r\n", + "..sql\\elements.py:4451 _as_truncated 10 0.000028 0.000162 0.000016\r\n", + "..\\axis.py:1605 YAxis.set_label_text 5 0.000022 0.000161 0.000032\r\n", + "..es.py:375 FancyBboxPatch.set_alpha 1 0.000006 0.000160 0.000160\r\n", + "...py:526 YTick._get_text2_transform 3 0.000012 0.000159 0.000053\r\n", + "..GCompiler_psycopg2.visit_bindparam 5 0.000043 0.000159 0.000032\r\n", + "..045 AxesSubplot._process_unit_info 6 0.000020 0.000159 0.000026\r\n", + "..reading.py:246 Condition.__enter__ 61 0.000111 0.000158 0.000003\r\n", + "..py:1367 Line2D.set_solid_joinstyle 30 0.000079 0.000158 0.000005\r\n", + "..er.py:1712 AutoLocator.nonsingular 2 0.000009 0.000157 0.000078\r\n", + "..sSubplot.get_xaxis_text1_transform 3 0.000040 0.000156 0.000052\r\n", + "..asyncio\\tasks.py:653 ensure_future 2 0.000023 0.000154 0.000077\r\n", + "..axes.py:256 AxesSubplot.set_ylabel 4 0.000017 0.000150 0.000037\r\n", + "..q6k\\lib\\sre_compile.py:423 _simple 45 0.000051 0.000150 0.000003\r\n", + "..atplotlib\\legend.py:813 1 0.000026 0.000149 0.000149\r\n", + "..otlib\\axis.py:1579 XAxis.set_units 12 0.000039 0.000148 0.000012\r\n", + "..lib\\transforms.py:2779 nonsingular 2 0.000031 0.000148 0.000074\r\n", + "..b\\spines.py:381 Spine.set_position 4 0.000023 0.000147 0.000037\r\n", + "..sSubplot.get_yaxis_text2_transform 3 0.000019 0.000146 0.000049\r\n", + "..s.py:729 MarkerStyle._set_tickleft 3 0.000015 0.000146 0.000049\r\n", + "..\\lib\\enum.py:828 RegexFlag.__and__ 12 0.000068 0.000143 0.000012\r\n", + "..ts.py:724 ColumnClause.__getattr__ 9 0.000082 0.000143 0.000016\r\n", + "..lalchemy\\orm\\query.py:4148 __new__ 32 0.000063 0.000141 0.000004\r\n", + "..\\offsetbox.py:489 HPacker.__init__ 5 0.000012 0.000141 0.000028\r\n", + ".._base.py:2048 _process_single_axis 12 0.000029 0.000139 0.000012\r\n", + "..lib\\lines.py:1282 Line2D.set_xdata 39 0.000084 0.000139 0.000004\r\n", + ".._base.py:3484 AxesSubplot.set_ylim 1 0.000020 0.000137 0.000137\r\n", + "..ib\\path.py:188 Path._update_values 14 0.000068 0.000137 0.000010\r\n", + "..e-packages\\cycler.py:371 20 0.000137 0.000137 0.000007\r\n", + ":1 QueuePool.__init__ 1 0.000002 0.000136 0.000136\r\n", + "..er.py:755 FontProperties.set_style 23 0.000065 0.000136 0.000006\r\n", + "..tures\\_base.py:316 Future.__init__ 7 0.000034 0.000135 0.000019\r\n", + "..orm._iter_break_from_left_to_right 8 0.000027 0.000134 0.000017\r\n", + "..34 new_figure_manager_given_figure 1 0.000007 0.000134 0.000134\r\n", + "..ches.py:458 Rectangle.set_capstyle 11 0.000066 0.000134 0.000012\r\n", + "...py:1423 Figure._add_axes_internal 1 0.000015 0.000134 0.000134\r\n", + "..s.py:2221 BlendedAffine2D.__init__ 6 0.000039 0.000133 0.000022\r\n", + "..book\\__init__.py:1296 is_math_text 30 0.000081 0.000133 0.000004\r\n", + "..tlib\\lines.py:31 _get_dash_pattern 41 0.000103 0.000132 0.000003\r\n", + "..chemy\\sql\\base.py:38 _from_objects 21 0.000045 0.000131 0.000006\r\n", + "...py:410 XTick._get_text2_transform 3 0.000011 0.000129 0.000043\r\n", + "..py:1225 Line2D.set_markeredgewidth 30 0.000057 0.000129 0.000004\r\n", + "..033 PGCompiler_psycopg2.visit_cast 2 0.000013 0.000128 0.000064\r\n", + "..pool\\base.py:63 QueuePool.__init__ 1 0.000050 0.000128 0.000128\r\n", + "..re_compile.py:249 _compile_charset 34 0.000098 0.000127 0.000004\r\n", + "..plotlib\\scale.py:718 scale_factory 16 0.000053 0.000126 0.000008\r\n", + "..ib\\sre_parse.py:84 State.opengroup 27 0.000072 0.000125 0.000005\r\n", + "..ffsetbox.py:187 VPacker.set_figure 16/1 0.000045 0.000124 0.000008\r\n", + "...py:792 FontProperties.set_stretch 23 0.000090 0.000124 0.000005\r\n", + "...py:735 MarkerStyle._set_tickright 3 0.000013 0.000124 0.000041\r\n", + "..chemy\\sql\\elements.py:4279 __new__ 17 0.000095 0.000123 0.000007\r\n", + "..\\Lib\\socket.py:219 socket.__init__ 3 0.000122 0.000122 0.000041\r\n", + "..hes.py:402 Rectangle.set_linestyle 7 0.000053 0.000122 0.000017\r\n", + "...py:3168 BinaryExpression.__init__ 5 0.000064 0.000121 0.000024\r\n", + "..otlib\\text.py:1227 Text.set_usetex 24 0.000053 0.000120 0.000005\r\n", + "..ngine\\base.py:863 Connection.close 1 0.000008 0.000119 0.000119\r\n", + "..selectable.py:2169 Select.__init__ 8 0.000024 0.000118 0.000015\r\n", + "..lib\\sre_parse.py:295 _class_escape 30 0.000080 0.000118 0.000004\r\n", + "..ib\\artist.py:1037 Spine.set_zorder 18 0.000045 0.000118 0.000007\r\n", + "..ib\\lines.py:1196 Line2D.set_marker 4 0.000008 0.000117 0.000029\r\n", + "..sSubplot.get_xaxis_text2_transform 3 0.000017 0.000117 0.000039\r\n", + "..ndowsSelectorEventLoop.create_task 2 0.000057 0.000117 0.000058\r\n", + "..ide_tricks.py:185 _broadcast_shape 10 0.000112 0.000116 0.000012\r\n", + "...py:765 FontProperties.set_variant 23 0.000054 0.000115 0.000005\r\n", + "..lib\\text.py:1042 Text.set_fontsize 4 0.000013 0.000115 0.000029\r\n", + "..r.py:742 FontProperties.set_family 23 0.000047 0.000115 0.000005\r\n", + "..uery.py:4762 QueryContext.__init__ 6 0.000109 0.000115 0.000019\r\n", + "..\\sql\\selectable.py:3746 6 0.000021 0.000115 0.000019\r\n", + "..\\matplotlib\\dates.py:1893 axisinfo 2 0.000024 0.000114 0.000057\r\n", + "..umpy\\core\\getlimits.py:365 __new__ 2 0.000023 0.000113 0.000057\r\n", + "..teq6k\\lib\\sre_parse.py:355 _escape 30 0.000088 0.000113 0.000004\r\n", + "..essionTransaction._remove_snapshot 1 0.000037 0.000113 0.000113\r\n", + "..forms.py:1669 TransformWrapper.set 2 0.000009 0.000112 0.000056\r\n", + "..my\\util\\langhelpers.py:963 oneshot 21 0.000055 0.000112 0.000005\r\n", + "..ase.py:1009 _ConnectionFairy.close 1 0.000008 0.000111 0.000111\r\n", + "..\\result.py:1362 ResultProxy.scalar 3 0.000010 0.000110 0.000037\r\n", + "..threading.py:441 Semaphore.release 7 0.000035 0.000110 0.000016\r\n", + "..yncio\\events.py:32 Handle.__init__ 24 0.000093 0.000110 0.000005\r\n", + "..Subplot._validate_converted_limits 4 0.000026 0.000109 0.000027\r\n", + "..hes.py:382 Rectangle.set_linewidth 12 0.000039 0.000107 0.000009\r\n", + "..ndowsSelectorEventLoop._add_reader 1 0.000026 0.000106 0.000106\r\n", + "..b\\cbook\\__init__.py:2090 type_name 94 0.000106 0.000106 0.000001\r\n", + "..alchemy\\event\\api.py:23 _event_key 3 0.000022 0.000106 0.000035\r\n", + "..bootstrap_external>:68 _path_split 18 0.000082 0.000105 0.000006\r\n", + "..plotlib\\text.py:933 Text.set_color 24 0.000056 0.000104 0.000004\r\n", + "..ers.py:743 MarkerStyle._set_tickup 3 0.000012 0.000104 0.000035\r\n", + "..e.py:853 _ConnectionFairy._checkin 1 0.000008 0.000103 0.000103\r\n", + "..gistry.py:67 _stored_in_collection 3 0.000028 0.000103 0.000034\r\n", + "..y:556 String.coerce_compared_value 5 0.000019 0.000103 0.000021\r\n", + "..py:2249 BlendedAffine2D.get_matrix 4 0.000017 0.000103 0.000026\r\n", + "..lib\\legend.py:938 Legend.set_title 1 0.000008 0.000102 0.000102\r\n", + "..ql\\elements.py:895 Cast.anon_label 2 0.000018 0.000102 0.000051\r\n", + "..lib\\lines.py:1294 Line2D.set_ydata 39 0.000054 0.000101 0.000003\r\n", + "..e\\result.py:1335 ResultProxy.first 3 0.000030 0.000100 0.000033\r\n", + "..tstrap_external>:493 _classify_pyc 9 0.000056 0.000099 0.000011\r\n", + "..otlib\\artist.py:197 Rectangle.axes 117 0.000099 0.000099 0.000001\r\n", + "..:2165 FigureCanvasBase.mpl_connect 7 0.000012 0.000099 0.000014\r\n", + ":1 cast 2 0.000004 0.000098 0.000049\r\n", + "..\\artist.py:1074 Line2D.update_from 8 0.000065 0.000097 0.000012\r\n", + "..lotlib\\dates.py:1921 default_units 8 0.000033 0.000096 0.000012\r\n", + "..\\orm\\session.py:1288 Session.close 1 0.000011 0.000096 0.000096\r\n", + "..y\\pool\\base.py:667 _finalize_fairy 1 0.000012 0.000096 0.000096\r\n", + "..tist.py:1017 AxesSubplot.set_label 5 0.000025 0.000095 0.000019\r\n", + "..sql\\elements.py:2489 Cast.__init__ 2 0.000010 0.000094 0.000047\r\n", + "..compile.py:461 _get_literal_prefix 19/12 0.000068 0.000094 0.000005\r\n", + "..logging\\__init__.py:2003 getLogger 4 0.000010 0.000094 0.000023\r\n", + "..ql\\selectable.py:3735 name_for_col 27 0.000047 0.000094 0.000003\r\n", + "..ines.py:1268 Line2D.set_markersize 30 0.000057 0.000093 0.000003\r\n", + "..317 VARCHAR._has_column_expression 12 0.000092 0.000092 0.000008\r\n", + "..ernal>:629 spec_from_file_location 10 0.000070 0.000091 0.000009\r\n", + "..Context_psycopg2.should_autocommit 9 0.000058 0.000091 0.000010\r\n", + "..ngs\\__init__.py:70 search_function 1 0.000030 0.000089 0.000089\r\n", + "..Compiler_psycopg2._bind_processors 6 0.000020 0.000089 0.000015\r\n", + "..syncio\\base_futures.py:13 isfuture 37 0.000051 0.000089 0.000002\r\n", + "..nes.py:1035 Line2D.set_antialiased 30 0.000046 0.000089 0.000003\r\n", + "..ements.py:1946 ClauseList.__init__ 1 0.000012 0.000088 0.000088\r\n", + "..\\threading.py:341 Condition.notify 15 0.000069 0.000088 0.000006\r\n", + "..-68gteq6k\\lib\\enum.py:278 __call__ 26 0.000057 0.000087 0.000003\r\n", + "..e_parse.py:111 SubPattern.__init__ 135 0.000087 0.000087 0.000001\r\n", + "..\\axis.py:618 YTick.update_position 3 0.000022 0.000086 0.000029\r\n", + "..lalchemy\\sql\\base.py:39 21 0.000053 0.000086 0.000004\r\n", + "..lib\\artist.py:923 Line2D.set_alpha 7 0.000019 0.000085 0.000012\r\n", + "..piler_psycopg2._truncate_bindparam 5 0.000012 0.000085 0.000017\r\n", + "..ession.py:1333 Session._close_impl 1 0.000012 0.000085 0.000085\r\n", + "..y:2463 FancyBboxPatch.set_boxstyle 2 0.000023 0.000085 0.000042\r\n", + "..my\\sql\\compiler.py:2252 6 0.000017 0.000084 0.000014\r\n", + "..__init__.py:1272 Manager.getLogger 4 0.000024 0.000084 0.000021\r\n", + "..38\\Lib\\asyncio\\tasks.py:717 gather 1 0.000016 0.000083 0.000083\r\n", + ":1 VARCHAR.__init__ 9 0.000026 0.000083 0.000009\r\n", + "..\\core\\getlimits.py:398 finfo._init 1 0.000044 0.000082 0.000082\r\n", + "..\\legend.py:1215 _parse_legend_args 1 0.000010 0.000082 0.000082\r\n", + "..bootstrap>:58 _ModuleLock.__init__ 10 0.000026 0.000082 0.000008\r\n", + "..tlib\\axis.py:864 XAxis.reset_ticks 16 0.000077 0.000082 0.000005\r\n", + "..t\\futures\\_base.py:381 Future.done 6 0.000031 0.000082 0.000014\r\n", + "..bootstrap>:194 _lock_unlock_module 8 0.000018 0.000081 0.000010\r\n", + "..\\result.py:777 ResultProxy._getter 27 0.000037 0.000081 0.000003\r\n", + "..123 ConnectionEventsDispatch._join 1 0.000078 0.000080 0.000080\r\n", + "..ections.py:361 OrderedSet.__init__ 8 0.000050 0.000080 0.000010\r\n", + "..ges\\numpy\\core\\_methods.py:44 _any 4 0.000009 0.000079 0.000020\r\n", + "..elements.py:4692 _literal_as_binds 2 0.000005 0.000079 0.000040\r\n", + "..sSelectorEventLoop._process_events 17 0.000043 0.000079 0.000005\r\n", + "..otlib\\figure.py:111 _AxesStack.add 1 0.000033 0.000079 0.000079\r\n", + "..session.py:1588 Session._autoflush 6 0.000022 0.000079 0.000013\r\n", + "..xt.py:1214 Text.set_fontproperties 1 0.000004 0.000079 0.000079\r\n", + "..copg2\\extensions.py:171 1 0.000005 0.000078 0.000078\r\n", + "..e-packages\\cycler.py:227 110 0.000078 0.000078 0.000001\r\n", + "..qlalchemy\\inspection.py:38 inspect 16 0.000051 0.000076 0.000005\r\n", + "..py:1210 Line2D.set_markeredgecolor 30 0.000040 0.000075 0.000003\r\n", + "..tlib\\transforms.py:773 from_bounds 1 0.000008 0.000075 0.000075\r\n", + "..b\\text.py:1059 Text.set_fontweight 4 0.000009 0.000074 0.000019\r\n", + "..__init__.py:1632 sanitize_sequence 8 0.000015 0.000074 0.000009\r\n", + "..alchemy\\log.py:174 instance_logger 3 0.000011 0.000073 0.000024\r\n", + "..init__.py:1677 Logger.isEnabledFor 5 0.000041 0.000073 0.000015\r\n", + "..8gteq6k\\lib\\sre_parse.py:432 _uniq 22 0.000044 0.000073 0.000003\r\n", + "..g2\\extensions.py:180 _param_escape 3 0.000005 0.000073 0.000024\r\n", + "..ase.py:971 _ConnectionFairy.cursor 6 0.000013 0.000073 0.000012\r\n", + ".._range.py:297 RangeCaster.__init__ 6 0.000022 0.000072 0.000012\r\n", + "..y:2444 PGDialect_psycopg2.__init__ 1 0.000008 0.000072 0.000072\r\n", + "..lib\\offsetbox.py:199 TextArea.axes 16 0.000042 0.000072 0.000004\r\n", + "..emy\\orm\\query.py:1790 Query.filter 5 0.000032 0.000072 0.000014\r\n", + "..b._bootstrap>:222 _verbose_message 90 0.000071 0.000071 0.000001\r\n", + "..py:366 GridSpec.get_subplot_params 1 0.000011 0.000071 0.000071\r\n", + "..artist.py:841 TextArea.set_clip_on 16 0.000026 0.000071 0.000004\r\n", + "..\\orm\\session.py:2462 Session.flush 9 0.000021 0.000071 0.000008\r\n", + "..s.py:1642 _fix_ipython_backend2gui 2 0.000025 0.000071 0.000035\r\n", + "..alchemy\\events.py:328 _accept_with 3 0.000026 0.000071 0.000024\r\n", + "..re_parse.py:267 Tokenizer.getuntil 7 0.000040 0.000070 0.000010\r\n", + "..figure.py:199 SubplotParams.update 2 0.000018 0.000070 0.000035\r\n", + "..b\\cbook\\__init__.py:2088 188 0.000070 0.000070 0.000000\r\n", + "..\\axis.py:501 XTick.update_position 3 0.000018 0.000069 0.000023\r\n", + "..hemy\\sql\\compiler.py:650 6 0.000010 0.000069 0.000011\r\n", + "..\\core\\fromnumeric.py:74 85 0.000069 0.000069 0.000001\r\n", + "..my\\sql\\elements.py:1955 1 0.000009 0.000069 0.000069\r\n", + "..ist.py:371 Rectangle.get_transform 31 0.000050 0.000068 0.000002\r\n", + "..ctions.py:933 LRUCache.__setitem__ 3 0.000026 0.000068 0.000023\r\n", + "..lib\\lines.py:1047 Line2D.set_color 30 0.000032 0.000068 0.000002\r\n", + "..bootstrap>:103 _ModuleLock.release 18 0.000061 0.000068 0.000004\r\n", + "..t_manager.py:1043 get_default_size 22 0.000028 0.000067 0.000003\r\n", + "..lib\\axis.py:922 _translate_tick_kw 8 0.000058 0.000067 0.000008\r\n", + "..otlib\\axis.py:666 Ticker.formatter 33 0.000048 0.000067 0.000002\r\n", + "..p>:151 _ModuleLockManager.__exit__ 10 0.000020 0.000066 0.000007\r\n", + "..re_parse.py:224 Tokenizer.__init__ 13 0.000043 0.000065 0.000005\r\n", + "..aggregation\\query.py:82 4 0.000013 0.000065 0.000016\r\n", + "..eading.py:364 Condition.notify_all 7 0.000022 0.000065 0.000009\r\n", + "..\\lib\\sre_compile.py:411 _mk_bitmap 5 0.000029 0.000065 0.000013\r\n", + "..ImmutableColumnCollection.__iter__ 5 0.000030 0.000064 0.000013\r\n", + "..gure.py:168 SubplotParams.__init__ 1 0.000009 0.000064 0.000064\r\n", + ".._WindowsSelectorEventLoop.__init__ 1 0.000024 0.000064 0.000064\r\n", + "..plotlib\\text.py:1151 Text.set_text 46 0.000052 0.000064 0.000001\r\n", + "..k\\lib\\sre_parse.py:81 State.groups 80 0.000048 0.000064 0.000001\r\n", + "..ghelpers.py:281 _inspect_func_args 18 0.000064 0.000064 0.000004\r\n", + "..tstrap_external>:51 _unpack_uint32 27 0.000044 0.000064 0.000002\r\n", + "..GCompiler_psycopg2.order_by_clause 1 0.000003 0.000063 0.000063\r\n", + "..yEventsDispatch._event_descriptors 46 0.000040 0.000063 0.000001\r\n", + "..__.py:185 CallbackRegistry.process 26 0.000047 0.000062 0.000002\r\n", + ".._bootstrap>:78 _ModuleLock.acquire 18 0.000056 0.000061 0.000003\r\n", + "..py:834 XAxis.limit_range_for_scale 2 0.000019 0.000061 0.000031\r\n", + "..pes.py:2997 _resolve_value_to_type 5 0.000017 0.000061 0.000012\r\n", + ".. SessionTransaction._take_snapshot 3 0.000027 0.000061 0.000020\r\n", + "..tableColumnCollection.__contains__ 10 0.000041 0.000060 0.000006\r\n", + "..ib\\axis.py:529 YTick.apply_tickdir 3 0.000024 0.000059 0.000020\r\n", + "..ures\\_base.py:443 Future.exception 6 0.000042 0.000059 0.000010\r\n", + "..schema.py:1640 Column.get_children 27 0.000049 0.000059 0.000002\r\n", + "..hemy\\sql\\compiler.py:652 11 0.000017 0.000059 0.000005\r\n", + "..emy\\util\\langhelpers.py:1188 _next 7 0.000036 0.000058 0.000008\r\n", + "..futures\\_base.py:412 Future.result 7 0.000034 0.000058 0.000008\r\n", + "..\\session.py:2508 Session._is_clean 10 0.000041 0.000057 0.000006\r\n", + ".. interactable_plot_multiple_charts 1 0.000009 0.000057 0.000057\r\n", + "..matplotlib\\patches.py:1818 __new__ 2 0.000037 0.000057 0.000028\r\n", + "...py:1623 TransformWrapper.__init__ 2 0.000009 0.000057 0.000028\r\n", + "..ging\\__init__.py:1412 Logger.debug 2 0.000008 0.000057 0.000028\r\n", + "..ager.py:936 _normalize_font_family 46 0.000041 0.000057 0.000001\r\n", + "..elements.py:4483 _select_iterables 8 0.000017 0.000057 0.000007\r\n", + "..Python38\\Lib\\threading.py:81 RLock 8 0.000056 0.000056 0.000007\r\n", + "..packages\\psycopg2\\tz.py:1 1 0.000016 0.000056 0.000056\r\n", + "..se.py:392 Future.add_done_callback 6 0.000030 0.000056 0.000009\r\n", + "..ericTransform._invalidate_internal 4/3 0.000013 0.000055 0.000014\r\n", + "..py:193 PGDialect_psycopg2.__init__ 1 0.000024 0.000055 0.000055\r\n", + "..til\\_collections.py:779 41 0.000042 0.000055 0.000001\r\n", + "..Compiler_psycopg2.visit_clauselist 1 0.000004 0.000054 0.000054\r\n", + "..eral_and_labels_as_label_reference 3 0.000012 0.000054 0.000018\r\n", + "..my\\engine\\result.py:372 6 0.000054 0.000054 0.000009\r\n", + "..ResultMetaData._merge_cols_by_none 6 0.000022 0.000054 0.000009\r\n", + "..plotlib\\axis.py:653 Ticker.locator 33 0.000047 0.000054 0.000002\r\n", + "..rm\\query.py:418 Query._bind_mapper 6 0.000024 0.000054 0.000009\r\n", + "..s.py:1247 AutoDateLocator.__init__ 2 0.000023 0.000054 0.000027\r\n", + "..plotlib\\transforms.py:177 39 0.000031 0.000053 0.000001\r\n", + "..\\offsetbox.py:410 VPacker.__init__ 2 0.000003 0.000053 0.000027\r\n", + "..se.py:593 _column_stack_dispatcher 12 0.000030 0.000053 0.000004\r\n", + "..EventLoop._asyncgen_firstiter_hook 10 0.000023 0.000053 0.000005\r\n", + "..ation-68gteq6k\\lib\\re.py:323 _subx 3 0.000008 0.000052 0.000017\r\n", + "..on\\database.py:107 from_sql_result 4 0.000025 0.000052 0.000013\r\n", + "..t_psycopg2._use_server_side_cursor 9 0.000044 0.000052 0.000006\r\n", + "..hes.py:475 Rectangle.set_joinstyle 7 0.000030 0.000052 0.000007\r\n", + "..e.py:516 _ConnectionRecord.checkin 1 0.000008 0.000052 0.000052\r\n", + "..elements.py:724 Column.__getattr__ 3 0.000026 0.000051 0.000017\r\n", + "..e._process_projection_requirements 1 0.000008 0.000050 0.000050\r\n", + "..y\\orm\\base.py:353 _is_mapped_class 7 0.000026 0.000050 0.000007\r\n", + "..lEventsDispatch._event_descriptors 36 0.000030 0.000050 0.000001\r\n", + "..\\lib\\_weakrefset.py:81 WeakSet.add 14 0.000040 0.000050 0.000004\r\n", + "..Compiler_psycopg2.visit_typeclause 2 0.000008 0.000049 0.000025\r\n", + "..ernal>:526 _validate_timestamp_pyc 9 0.000023 0.000049 0.000005\r\n", + ".._.py:118 CallbackRegistry.__init__ 19 0.000049 0.000049 0.000003\r\n", + "..tgresql\\psycopg2.py:800 on_connect 2 0.000007 0.000049 0.000024\r\n", + "..quoted_name._memoized_method_lower 21 0.000041 0.000048 0.000002\r\n", + "..py:436 prefix_anon_map.__missing__ 7 0.000034 0.000048 0.000007\r\n", + "..ion\\analysis.py:367 wrap_coroutine 1 0.000014 0.000047 0.000047\r\n", + "..eq6k\\lib\\_weakrefset.py:38 _remove 11 0.000037 0.000046 0.000004\r\n", + "..kages\\numpy\\ma\\core.py:666 getdata 8 0.000036 0.000046 0.000006\r\n", + "..ib\\threading.py:505 Event.__init__ 2 0.000008 0.000046 0.000023\r\n", + "..emy\\sql\\compiler.py:1000 4 0.000005 0.000046 0.000011\r\n", + "..y:208 _arrays_for_stack_dispatcher 28 0.000026 0.000045 0.000002\r\n", + "..b\\transforms.py:909 Bbox.intervalx 3 0.000024 0.000045 0.000015\r\n", + "...py:2680 AxesSubplot.set_axisbelow 1 0.000010 0.000045 0.000045\r\n", + "..\\elements.py:4610 _literal_as_text 16 0.000021 0.000045 0.000003\r\n", + "..tras.py:657 UUID_adapter.getquoted 4 0.000022 0.000044 0.000011\r\n", + "...py:311 RangeCaster._create_ranges 6 0.000040 0.000044 0.000007\r\n", + "..b\\function_base.py:2164 4 0.000006 0.000044 0.000011\r\n", + "..gteq6k\\lib\\re.py:313 _compile_repl 1 0.000010 0.000044 0.000044\r\n", + "...py:235 SubplotParams._update_this 12 0.000021 0.000043 0.000004\r\n", + "..sult.py:700 ResultMetaData._getter 27 0.000043 0.000043 0.000002\r\n", + "..lib\\functools.py:33 update_wrapper 2 0.000026 0.000043 0.000022\r\n", + ":176 cb 10 0.000031 0.000043 0.000004\r\n", + "..is.py:197 XTick._set_labelrotation 6 0.000026 0.000043 0.000007\r\n", + "..ib\\axis.py:413 XTick.apply_tickdir 3 0.000017 0.000042 0.000014\r\n", + "..base.py:375 QueuePool._return_conn 1 0.000003 0.000042 0.000042\r\n", + "..:486 String._cached_bind_processor 5 0.000027 0.000042 0.000008\r\n", + "..b\\scale.py:97 LinearScale.__init__ 16 0.000035 0.000042 0.000003\r\n", + "..ycopg2\\extras.py:664 register_uuid 2 0.000027 0.000041 0.000021\r\n", + "..CompositeGenericTransform. 16/8 0.000035 0.000041 0.000003\r\n", + "..external>:1394 FileFinder.__init__ 1 0.000023 0.000041 0.000041\r\n", + "..init__.py:882 Grouper.get_siblings 6 0.000022 0.000041 0.000007\r\n", + "..iler.py:399 PGTypeCompiler.process 2 0.000006 0.000041 0.000021\r\n", + "..emy\\sql\\compiler.py:1002 4 0.000006 0.000041 0.000010\r\n", + "..tors.py:180 SelectSelector.get_key 1 0.000010 0.000041 0.000041\r\n", + "..s\\_base.py:597 AxesSubplot.viewLim 2 0.000005 0.000041 0.000020\r\n", + "..mpiler_psycopg2._add_to_result_map 29 0.000032 0.000040 0.000001\r\n", + "..ation-68gteq6k\\lib\\copy.py:66 copy 1 0.000013 0.000040 0.000040\r\n", + "..ib\\stride_tricks.py:262 10 0.000024 0.000040 0.000004\r\n", + "..654 _WindowsSelectorEventLoop.time 17 0.000028 0.000040 0.000002\r\n", + "..process_plot_var_args._getdefaults 4 0.000018 0.000040 0.000010\r\n", + "..tplotlib\\legend.py:1253 1 0.000006 0.000040 0.000040\r\n", + "..my\\sql\\elements.py:4488 8 0.000029 0.000039 0.000005\r\n", + "..ttr.py:269 _EmptyListener.__bool__ 17 0.000039 0.000039 0.000002\r\n", + "..l.py:103 QueuePool._do_return_conn 1 0.000005 0.000039 0.000039\r\n", + "..y:3229 BinaryExpression.self_group 5 0.000009 0.000039 0.000008\r\n", + "..r.py:234 _EmptyListener.for_modify 2 0.000013 0.000038 0.000019\r\n", + "..til\\_collections.py:981 3 0.000020 0.000038 0.000013\r\n", + "..util\\langhelpers.py:1175 46 0.000038 0.000038 0.000001\r\n", + "..arse.py:168 SubPattern.__setitem__ 48 0.000030 0.000038 0.000001\r\n", + "..y\\engine\\default.py:796 6 0.000020 0.000037 0.000006\r\n", + "..p>:867 _ImportLockContext.__exit__ 30 0.000026 0.000037 0.000001\r\n", + "..mportlib._bootstrap>:800 find_spec 10 0.000013 0.000037 0.000004\r\n", + "..tplotlib\\figure.py:1959 Figure.sca 1 0.000008 0.000037 0.000037\r\n", + "..ib\\figure.py:1070 Figure._make_key 1 0.000006 0.000037 0.000037\r\n", + "..pe_base.py:219 _vhstack_dispatcher 16 0.000014 0.000037 0.000002\r\n", + "..cbook\\__init__.py:1868 Text.method 5 0.000009 0.000036 0.000007\r\n", + "..ray_function__ internals>:2 copyto 4 0.000014 0.000036 0.000009\r\n", + "..ib\\figure.py:778 Figure.set_canvas 2 0.000008 0.000036 0.000018\r\n", + "..ql\\elements.py:2428 literal_column 2 0.000010 0.000036 0.000018\r\n", + "..y:583 AxesSubplot._unstale_viewLim 2 0.000010 0.000036 0.000018\r\n", + "..owsSelectorEventLoop._add_callback 6 0.000025 0.000036 0.000006\r\n", + "..38\\Lib\\socket.py:512 socket.family 1 0.000006 0.000035 0.000035\r\n", + "..768 IdentityTransform.is_separable 8 0.000031 0.000035 0.000004\r\n", + "..tplotlib\\figure.py:1651 Figure.clf 1 0.000016 0.000035 0.000035\r\n", + "..es\\numpy\\core\\_methods.py:28 _amax 2 0.000003 0.000034 0.000017\r\n", + "..ib\\sre_parse.py:969 parse_template 1 0.000016 0.000034 0.000034\r\n", + "..owsSelectorEventLoop.create_future 6 0.000031 0.000034 0.000006\r\n", + "..:4707 _interpret_as_column_or_from 29 0.000022 0.000034 0.000001\r\n", + "..tions.py:946 LRUCache._manage_size 3 0.000029 0.000034 0.000011\r\n", + "..b\\legend.py:701 get_legend_handler 8 0.000028 0.000034 0.000004\r\n", + "..ngine\\base.py:1869 Engine.__init__ 1 0.000005 0.000034 0.000034\r\n", + "..legend.py:1169 _get_legend_handles 5 0.000016 0.000034 0.000007\r\n", + "..lib\\lines.py:743 Line2D._is_sorted 3 0.000015 0.000034 0.000011\r\n", + "..py:2538 FigureManagerBase.__init__ 1 0.000012 0.000034 0.000034\r\n", + "..alchemy\\util\\queue.py:92 Queue.put 1 0.000018 0.000034 0.000034\r\n", + "..ib\\socket.py:97 _intenum_converter 2 0.000010 0.000034 0.000017\r\n", + "..ures\\_base.py:371 Future.cancelled 6 0.000017 0.000034 0.000006\r\n", + "..b\\sre_compile.py:65 _combine_flags 39 0.000033 0.000033 0.000001\r\n", + "...py:900 AutoDateFormatter.__init__ 2 0.000016 0.000033 0.000017\r\n", + "..m\\state.py:328 type._detach_states 2 0.000020 0.000033 0.000017\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..ession.py:1339 Session.expunge_all 1 0.000012 0.000033 0.000033\r\n", + "..lections.py:316 OrderedDict.values 5 0.000018 0.000032 0.000006\r\n", + "..\\core\\getipython.py:17 get_ipython 2 0.000022 0.000032 0.000016\r\n", + "..m\\query.py:345 Query._adapt_clause 35 0.000032 0.000032 0.000001\r\n", + "..y:528 Text._update_clip_properties 15 0.000032 0.000032 0.000002\r\n", + "..94 QueryEventsDispatch.__getattr__ 8 0.000027 0.000032 0.000004\r\n", + "..._bootstrap>:389 ModuleSpec.parent 14 0.000022 0.000032 0.000002\r\n", + "..etaData._colnames_from_description 6 0.000030 0.000032 0.000005\r\n", + "..\\elements.py:688 Column.self_group 13 0.000031 0.000031 0.000002\r\n", + "..ompat.py:61 inspect_getfullargspec 2 0.000019 0.000031 0.000016\r\n", + "..compile.py:492 _get_charset_prefix 10 0.000024 0.000031 0.000003\r\n", + "..ticker.py:224 AutoLocator.set_axis 67 0.000031 0.000031 0.000000\r\n", + "..kref.py:436 WeakKeyDictionary.keys 1 0.000015 0.000031 0.000031\r\n", + "..tbox.py:739 DrawingArea.add_artist 8 0.000023 0.000031 0.000004\r\n", + "..l\\sqltypes.py:412 Unicode.__init__ 2 0.000013 0.000031 0.000015\r\n", + "..s\\matplotlib\\axis.py:342 70 0.000031 0.000031 0.000000\r\n", + "..6k\\lib\\sre_compile.py:595 isstring 24 0.000025 0.000031 0.000001\r\n", + "..ase.py:867 _ConnectionFairy._reset 1 0.000012 0.000030 0.000030\r\n", + "..n-68gteq6k\\lib\\enum.py:557 __new__ 26 0.000030 0.000030 0.000001\r\n", + "..ool\\base.py:235 QueuePool._creator 1 0.000005 0.000030 0.000030\r\n", + "..s\\numpy\\core\\multiarray.py:707 dot 67 0.000030 0.000030 0.000000\r\n", + "..\\lib\\sre_compile.py:413 5 0.000030 0.000030 0.000006\r\n", + "..owsSelectorEventLoop._check_closed 34 0.000030 0.000030 0.000001\r\n", + "..hemy\\orm\\query.py:537 Query._clone 6 0.000021 0.000030 0.000005\r\n", + "..portlib._bootstrap>:35 _new_module 9 0.000030 0.000030 0.000003\r\n", + "..\\sql\\selectable.py:3079 8 0.000014 0.000029 0.000004\r\n", + "..sql\\operators.py:1497 is_precedent 5 0.000018 0.000029 0.000006\r\n", + "..\\log.py:59 Engine._should_log_info 2 0.000006 0.000029 0.000015\r\n", + "..py:69 _SelectorMapping.__getitem__ 1 0.000022 0.000029 0.000029\r\n", + "..iler.py:410 _CompileLabel.__init__ 29 0.000029 0.000029 0.000001\r\n", + "..:221 Query._set_entity_selectables 6 0.000025 0.000029 0.000005\r\n", + "..per._iter_break_from_left_to_right 8 0.000010 0.000029 0.000004\r\n", + "..:94 PoolEventsDispatch.__getattr__ 12 0.000023 0.000029 0.000002\r\n", + "..ne\\result.py:956 ResultProxy.close 3 0.000008 0.000029 0.000010\r\n", + "..ngine\\base.py:590 Connection.begin 1 0.000006 0.000029 0.000029\r\n", + "..l\\_collections.py:910 LRUCache.get 6 0.000018 0.000028 0.000005\r\n", + "..\\cbook\\__init__.py:1737 74 0.000028 0.000028 0.000000\r\n", + "..ion-68gteq6k\\lib\\weakref.py:51 _cb 2 0.000007 0.000028 0.000014\r\n", + "..y:4590 _expression_literal_as_text 5 0.000009 0.000028 0.000006\r\n", + "..b\\function_base.py:2144 4 0.000013 0.000028 0.000007\r\n", + "..romnumeric.py:2185 _any_dispatcher 76 0.000028 0.000028 0.000000\r\n", + "..n38\\Lib\\socket.py:496 socket.close 1 0.000004 0.000028 0.000028\r\n", + "..ors.py:298 SelectSelector.register 1 0.000009 0.000027 0.000027\r\n", + "..array_function__ internals>:2 tile 1 0.000003 0.000027 0.000027\r\n", + "..ts.py:4056 ColumnClause._get_table 49 0.000027 0.000027 0.000001\r\n", + "..:513 Figure.set_constrained_layout 1 0.000010 0.000027 0.000027\r\n", + "..it__.py:1323 Manager._fixupParents 3 0.000018 0.000027 0.000009\r\n", + "..reading.py:261 Condition._is_owned 11 0.000017 0.000027 0.000002\r\n", + "..>:863 _ImportLockContext.__enter__ 30 0.000019 0.000027 0.000001\r\n", + "..ib\\figure.py:104 _AxesStack.bubble 1 0.000009 0.000027 0.000027\r\n", + "..8 SessionTransaction._prepare_impl 1 0.000013 0.000027 0.000027\r\n", + "..q6k\\lib\\sre_parse.py:921 fix_flags 12 0.000024 0.000026 0.000002\r\n", + "..compiler.py:419 _CompileLabel.type 29 0.000026 0.000026 0.000001\r\n", + "..is.py:1048 XAxis._set_artist_props 4 0.000005 0.000026 0.000007\r\n", + "..utionContext_psycopg2._log_notices 9 0.000026 0.000026 0.000003\r\n", + "..ents.py:3947 ColumnClause.__init__ 2 0.000010 0.000026 0.000013\r\n", + "..\\core\\getlimits.py:239 _get_machar 1 0.000013 0.000026 0.000026\r\n", + "..s.py:302 Rectangle.set_antialiased 8 0.000012 0.000026 0.000003\r\n", + "..io\\coroutines.py:18 _is_debug_mode 1 0.000010 0.000026 0.000026\r\n", + "..ages\\cycler.py:225 Cycler.__iter__ 12 0.000021 0.000026 0.000002\r\n", + "..ine\\url.py:161 URL._get_entrypoint 1 0.000006 0.000026 0.000026\r\n", + "..orms.py:1652 TransformWrapper._set 4 0.000023 0.000025 0.000006\r\n", + "..e.py:1907 Figure._set_artist_props 1 0.000007 0.000025 0.000025\r\n", + "..\\cbook\\__init__.py:1742 74 0.000025 0.000025 0.000000\r\n", + "..etbox.py:303 TextArea.get_children 33 0.000025 0.000025 0.000001\r\n", + "..240 QueuePool._should_wrap_creator 1 0.000005 0.000025 0.000025\r\n", + "..\\elements.py:709 Column.comparator 4 0.000019 0.000025 0.000006\r\n", + "..rl.py:152 URL._instantiate_plugins 1 0.000007 0.000025 0.000025\r\n", + "..base.py:321 _inspect_mapped_object 4 0.000025 0.000025 0.000006\r\n", + "..b\\function_base.py:2120 4 0.000024 0.000024 0.000006\r\n", + "..urceFileLoader._check_name_wrapper 9 0.000020 0.000024 0.000003\r\n", + "..xt_psycopg2.should_autocommit_text 3 0.000008 0.000024 0.000008\r\n", + "..y\\sql\\elements.py:4594 _literal_as 16 0.000016 0.000024 0.000001\r\n", + "..y:355 _ListenerCollection.__init__ 2 0.000018 0.000024 0.000012\r\n", + "...py:343 WeakKeyDictionary.__init__ 13 0.000024 0.000024 0.000002\r\n", + "..b\\socket.py:492 socket._real_close 1 0.000009 0.000023 0.000023\r\n", + "..llections_abc.py:72 _check_methods 14 0.000023 0.000023 0.000002\r\n", + "..\\__init__.py:43 normalize_encoding 1 0.000017 0.000023 0.000023\r\n", + "..ase.py:3227 AxesSubplot.get_xscale 4 0.000017 0.000023 0.000006\r\n", + "..gging\\__init__.py:214 _acquireLock 7 0.000015 0.000023 0.000003\r\n", + "..e.py:1757 RootTransaction.__init__ 1 0.000008 0.000023 0.000023\r\n", + "..lalchemy\\util\\compat.py:148 raise_ 12 0.000023 0.000023 0.000002\r\n", + "..\\encodings\\utf_8.py:33 getregentry 1 0.000010 0.000022 0.000022\r\n", + "..langhelpers.py:344 get_func_kwargs 1 0.000003 0.000022 0.000022\r\n", + "..y\\log.py:221 echo_property.__set__ 1 0.000001 0.000022 0.000022\r\n", + "..tlib\\axis.py:2166 XAxis.get_minpos 1 0.000011 0.000022 0.000022\r\n", + "..my\\util\\queue.py:43 Queue.__init__ 1 0.000009 0.000022 0.000022\r\n", + "..rms.py:1632 TransformWrapper._init 2 0.000008 0.000022 0.000011\r\n", + "..b\\asyncio\\futures.py:269 _get_loop 8 0.000018 0.000022 0.000003\r\n", + "..ok\\__init__.py:2125 _check_getitem 4 0.000018 0.000022 0.000006\r\n", + "..ery._adjust_for_single_inheritance 6 0.000019 0.000022 0.000004\r\n", + "..psycopg2\\_json.py:94 register_json 2 0.000010 0.000022 0.000011\r\n", + "..sion.py:3188 sessionmaker.__init__ 1 0.000021 0.000021 0.000021\r\n", + "..y:102 WeakValueDictionary.__init__ 1 0.000013 0.000021 0.000021\r\n", + "..l\\sqltypes.py:141 VARCHAR.__init__ 9 0.000021 0.000021 0.000002\r\n", + "..syncio\\tasks.py:751 _done_callback 1 0.000012 0.000021 0.000021\r\n", + "..29 _process_plot_var_args.__init__ 2 0.000005 0.000021 0.000011\r\n", + "..y\\sql\\operators.py:1409 is_boolean 6 0.000011 0.000021 0.000003\r\n", + "..dates.py:1496 YearLocator.__init__ 2 0.000012 0.000021 0.000010\r\n", + "..ok\\__init__.py:601 _AxesStack.push 2 0.000011 0.000021 0.000010\r\n", + "..157 CallbackRegistry._remove_proxy 2 0.000017 0.000021 0.000010\r\n", + "..nts.py:709 ColumnClause.comparator 4 0.000012 0.000021 0.000005\r\n", + "..mn._render_label_in_columns_clause 10 0.000014 0.000020 0.000002\r\n", + "..alect_psycopg2.create_connect_args 1 0.000009 0.000020 0.000020\r\n", + "..\\matplotlib\\transforms.py:768 null 1 0.000004 0.000020 0.000020\r\n", + "..\\lines.py:547 Line2D.set_markevery 30 0.000020 0.000020 0.000001\r\n", + ".._json.py:133 register_default_json 1 0.000003 0.000020 0.000020\r\n", + "..lib\\stride_tricks.py:266 30 0.000020 0.000020 0.000001\r\n", + "..58 PGCompiler_psycopg2.visit_table 6 0.000012 0.000020 0.000003\r\n", + "..ctions_abc.py:271 __subclasshook__ 5 0.000009 0.000020 0.000004\r\n", + "..\\numpy\\lib\\shape_base.py:1155 tile 1 0.000007 0.000020 0.000020\r\n", + "..patches.py:491 Rectangle.set_hatch 7 0.000011 0.000019 0.000003\r\n", + "..idspec.py:200 GridSpec.__getitem__ 1 0.000011 0.000019 0.000019\r\n", + "..tlib\\axis.py:2466 YAxis.get_minpos 1 0.000017 0.000019 0.000019\r\n", + "..range.py:449 RangeCaster._register 6 0.000011 0.000019 0.000003\r\n", + "..pg2\\extras.py:790 _solve_conn_curs 1 0.000005 0.000019 0.000019\r\n", + "..59 WeakValueDictionary.__setitem__ 1 0.000013 0.000019 0.000019\r\n", + "..7 BlendedGenericTransform.__init__ 2 0.000007 0.000019 0.000010\r\n", + "..hon38\\Lib\\uuid.py:271 UUID.__str__ 4 0.000019 0.000019 0.000005\r\n", + "..tlib\\legend.py:569 Legend._set_loc 1 0.000007 0.000019 0.000019\r\n", + "..otlib\\axis.py:662 Ticker.formatter 65 0.000019 0.000019 0.000000\r\n", + "..lements.py:2553 Cast._from_objects 2 0.000005 0.000019 0.000009\r\n", + "..book\\__init__.py:833 Grouper.clean 8 0.000016 0.000019 0.000002\r\n", + "..tlib\\transforms.py:274 Bbox.frozen 1 0.000003 0.000019 0.000019\r\n", + "..ments.py:4065 Column._from_objects 10 0.000013 0.000019 0.000002\r\n", + "..ib\\axis.py:819 XAxis.get_transform 4 0.000005 0.000019 0.000005\r\n", + "..my\\engine\\result.py:322 9 0.000019 0.000019 0.000002\r\n", + "..er_psycopg2._get_operator_dispatch 5 0.000015 0.000019 0.000004\r\n", + "..elpers.py:355 get_callable_argspec 1 0.000004 0.000019 0.000019\r\n", + "..g\\__init__.py:1392 Logger.__init__ 3 0.000013 0.000018 0.000006\r\n", + "..\\gridspec.py:246 GridSpec.__init__ 1 0.000008 0.000018 0.000018\r\n", + "..s.py:1096 _importlater.__getattr__ 1 0.000005 0.000018 0.000018\r\n", + "..m\\query.py:3551 Query._select_args 6 0.000018 0.000018 0.000003\r\n", + "..ns.py:738 PopulateDict.__missing__ 5 0.000010 0.000018 0.000004\r\n", + "..my\\engine\\result.py:460 6 0.000018 0.000018 0.000003\r\n", + "..bootstrap_external>:36 _relax_case 17 0.000018 0.000018 0.000001\r\n", + "..ors.py:234 SelectSelector.register 1 0.000009 0.000018 0.000018\r\n", + "..Compiler_psycopg2.construct_params 6 0.000017 0.000017 0.000003\r\n", + "..rm\\query.py:398 Query._entity_zero 6 0.000013 0.000017 0.000003\r\n", + "..nctools.py:524 decorating_function 1 0.000005 0.000017 0.000017\r\n", + "..ctions_abc.py:392 __subclasshook__ 40 0.000017 0.000017 0.000000\r\n", + "..bootstrap_external>:1508 1 0.000012 0.000017 0.000017\r\n", + "..tplotlib\\text.py:554 Text.set_wrap 24 0.000017 0.000017 0.000001\r\n", + "..:171 DynamicClassAttribute.__get__ 4 0.000015 0.000017 0.000004\r\n", + "..packages\\cycler.py:138 Cycler.keys 12 0.000017 0.000017 0.000001\r\n", + "..ler_psycopg2.escape_literal_column 2 0.000013 0.000017 0.000008\r\n", + "..utableColumnCollection.__getattr__ 10 0.000017 0.000017 0.000002\r\n", + "..y\\sql\\type_api.py:1465 to_instance 9 0.000013 0.000017 0.000002\r\n", + "..\\matplotlib\\figure.py:1089 fixlist 1 0.000007 0.000017 0.000017\r\n", + "..ents.py:180 _run_until_complete_cb 1 0.000012 0.000016 0.000016\r\n", + "..ocess_plot_var_args.set_prop_cycle 2 0.000008 0.000016 0.000008\r\n", + "..56 WeakInstanceDict.check_modified 10 0.000016 0.000016 0.000002\r\n", + "...py:258 Condition._acquire_restore 4 0.000012 0.000016 0.000004\r\n", + "..ollections_abc.py:657 _Environ.get 1 0.000004 0.000016 0.000016\r\n", + "..d_inline.py:59 draw_if_interactive 1 0.000010 0.000016 0.000016\r\n", + "..lib\\sre_parse.py:76 State.__init__ 12 0.000016 0.000016 0.000001\r\n", + "..nghelpers.py:248 PluginLoader.load 1 0.000004 0.000016 0.000016\r\n", + "..ections.py:396 OrderedSet.__iter__ 8 0.000012 0.000016 0.000002\r\n", + "..ib\\figure.py:70 _AxesStack.as_list 2 0.000012 0.000016 0.000008\r\n", + "..ql\\elements.py:4475 _expand_cloned 6 0.000013 0.000015 0.000003\r\n", + "..ts.py:4059 ColumnClause._set_table 2 0.000007 0.000015 0.000008\r\n", + "..bootstrap>:342 ModuleSpec.__init__ 10 0.000015 0.000015 0.000002\r\n", + "..registry.py:154 _EventKey.__init__ 4 0.000012 0.000015 0.000004\r\n", + "..WindowsSelectorEventLoop.get_debug 33 0.000015 0.000015 0.000000\r\n", + "..276 PGDialect_psycopg2._type_memos 1 0.000009 0.000015 0.000015\r\n", + "..ler.py:161 HandlerLine2D.get_xdata 4 0.000011 0.000015 0.000004\r\n", + "..s.py:1059 AutoDateLocator.__init__ 4 0.000005 0.000015 0.000004\r\n", + "..tableColumnCollection.__contains__ 10 0.000015 0.000015 0.000001\r\n", + "..til\\_collections.py:317 5 0.000015 0.000015 0.000003\r\n", + "..type_api.py:60 Comparator.__init__ 8 0.000014 0.000014 0.000002\r\n", + "..uery.py:698 Query.is_single_entity 6 0.000012 0.000014 0.000002\r\n", + "..matplotlib\\text.py:1115 Text.set_y 6 0.000006 0.000014 0.000002\r\n", + "..gging\\__init__.py:223 _releaseLock 7 0.000010 0.000014 0.000002\r\n", + "..e.py:117 LinearScale.get_transform 4 0.000005 0.000014 0.000003\r\n", + "..elements.py:4056 Column._get_table 20 0.000014 0.000014 0.000001\r\n", + "..tionContext_psycopg2.no_parameters 4 0.000012 0.000014 0.000003\r\n", + "..ncio\\coroutines.py:177 iscoroutine 2 0.000011 0.000014 0.000007\r\n", + "..nal>:939 SourceFileLoader.__init__ 9 0.000013 0.000013 0.000002\r\n", + ".._api.py:436 Unicode._type_affinity 2 0.000009 0.000013 0.000007\r\n", + "..\\rcsetup.py:163 validate_axisbelow 1 0.000006 0.000013 0.000013\r\n", + "..\\__init__.py:631 _AxesStack.bubble 1 0.000006 0.000013 0.000013\r\n", + "..lib\\figure.py:453 Figure._get_axes 1 0.000004 0.000013 0.000013\r\n", + "..19 ResultProxy._cursor_description 9 0.000013 0.000013 0.000001\r\n", + "..:3361 PGTypeCompiler.visit_VARCHAR 2 0.000008 0.000013 0.000007\r\n", + "..:2053 IdentityTransform.get_matrix 23 0.000013 0.000013 0.000001\r\n", + "..n\\Python38\\Lib\\typing.py:255 inner 1 0.000007 0.000013 0.000013\r\n", + "..py:1202 ResultProxy._fetchone_impl 3 0.000008 0.000013 0.000004\r\n", + "..rs.py:330 MarkerStyle._set_nothing 30 0.000013 0.000013 0.000000\r\n", + "..tlib\\dates.py:174 _get_rc_timezone 6 0.000006 0.000013 0.000002\r\n", + "..b\\function_base.py:2115 4 0.000007 0.000013 0.000003\r\n", + "..es\\thread.py:46 _WorkItem.__init__ 7 0.000012 0.000012 0.000002\r\n", + "..ib\\transforms.py:969 Bbox.mutatedx 2 0.000012 0.000012 0.000006\r\n", + "..-68gteq6k\\lib\\codecs.py:94 __new__ 1 0.000011 0.000012 0.000012\r\n", + "..Figure.set_constrained_layout_pads 1 0.000006 0.000012 0.000012\r\n", + "..y:154 to_unicode_processor_factory 1 0.000012 0.000012 0.000012\r\n", + "..ctions_abc.py:349 __subclasshook__ 5 0.000007 0.000012 0.000002\r\n", + ".. SessionTransaction._assert_active 8 0.000012 0.000012 0.000002\r\n", + "..base.py:707 Connection._begin_impl 1 0.000010 0.000012 0.000012\r\n", + "..\\_internal.py:830 npy_ctypes_check 4 0.000012 0.000012 0.000003\r\n", + "..py:210 WeakInstanceDict.all_states 2 0.000011 0.000012 0.000006\r\n", + "..lib\\os.py:668 _Environ.__getitem__ 1 0.000005 0.000012 0.000012\r\n", + "..b\\figure.py:66 _AxesStack.__init__ 1 0.000006 0.000012 0.000012\r\n", + "..matplotlib\\text.py:1104 Text.set_x 6 0.000005 0.000012 0.000002\r\n", + "..lotlib\\axes\\_base.py:232 8 0.000009 0.000012 0.000001\r\n", + "..208 _EmptyListener._adjust_fn_spec 4 0.000008 0.000012 0.000003\r\n", + "..ib\\threading.py:1110 Thread.daemon 2 0.000010 0.000011 0.000006\r\n", + "..chemy\\orm\\query.py:4634 27 0.000011 0.000011 0.000000\r\n", + "..ql\\base.py:1142 TIMESTAMP.__init__ 1 0.000006 0.000011 0.000011\r\n", + "..ib\\sre_compile.py:453 _get_iscased 29 0.000011 0.000011 0.000000\r\n", + "..200 BinaryExpression._from_objects 5 0.000011 0.000011 0.000002\r\n", + "..\\psycopg2\\_ipaddress.py:1 1 0.000011 0.000011 0.000011\r\n", + "..core\\multiarray.py:145 concatenate 29 0.000011 0.000011 0.000000\r\n", + "..b\\threading.py:1306 current_thread 3 0.000009 0.000011 0.000004\r\n", + "..tions.py:906 LRUCache._inc_counter 6 0.000011 0.000011 0.000002\r\n", + "..ments.py:765 Cast._select_iterable 29 0.000011 0.000011 0.000000\r\n", + "..y\\dialects\\__init__.py:24 _auto_fn 1 0.000006 0.000011 0.000011\r\n", + "..plots.py:214 subplot_class_factory 1 0.000006 0.000011 0.000011\r\n", + "..\\__init__.py:1837 _str_lower_equal 4 0.000008 0.000011 0.000003\r\n", + "..elements.py:4080 Column._key_label 10 0.000010 0.000010 0.000001\r\n", + "..:536 ScalarFormatter.set_useOffset 16 0.000010 0.000010 0.000001\r\n", + "...py:193 URL.translate_connect_args 1 0.000006 0.000010 0.000010\r\n", + "..ql\\operators.py:1386 is_comparison 6 0.000010 0.000010 0.000002\r\n", + "..ger.py:835 FontProperties.set_file 23 0.000010 0.000010 0.000000\r\n", + "..ages\\psycopg2\\compat.py:1 1 0.000010 0.000010 0.000010\r\n", + "..set.py:26 _IterationGuard.__exit__ 1 0.000009 0.000010 0.000010\r\n", + "..stry.py:169 _EventKey.with_wrapper 5 0.000006 0.000010 0.000002\r\n", + "..py:2606 BboxTransformFrom.__init__ 1 0.000004 0.000010 0.000010\r\n", + "..artist.py:1052 Line2D.sticky_edges 32 0.000010 0.000010 0.000000\r\n", + "..m\\session.py:1429 Session.get_bind 6 0.000010 0.000010 0.000002\r\n", + "..Compiler_psycopg2.bindparam_string 5 0.000010 0.000010 0.000002\r\n", + "..my\\engine\\result.py:319 9 0.000010 0.000010 0.000001\r\n", + "..ler.py:396 PGTypeCompiler.__init__ 1 0.000010 0.000010 0.000010\r\n", + "..lements.py:365 Column.get_children 27 0.000010 0.000010 0.000000\r\n", + "..ist.py:605 FancyBboxPatch.set_snap 1 0.000007 0.000009 0.000009\r\n", + "..__init__.py:60 _StrongRef.__hash__ 6 0.000006 0.000009 0.000002\r\n", + "..ure.py:487 Figure.set_tight_layout 1 0.000005 0.000009 0.000009\r\n", + "..tion-68gteq6k\\lib\\re.py:268 escape 1 0.000005 0.000009 0.000009\r\n", + "..on._memoized_attr__exec_once_mutex 1 0.000003 0.000009 0.000009\r\n", + "..pes.py:295 String.result_processor 5 0.000009 0.000009 0.000002\r\n", + "..b\\gridspec.py:31 GridSpec.__init__ 1 0.000007 0.000009 0.000009\r\n", + "..\\elements.py:232 Table._cloned_set 2 0.000008 0.000009 0.000005\r\n", + "..:3418 PGTypeCompiler.visit_unicode 1 0.000004 0.000009 0.000009\r\n", + "..gistry.py:263 _EventKey._listen_fn 16 0.000009 0.000009 0.000001\r\n", + "..\\futures.py:357 _call_check_cancel 6 0.000008 0.000009 0.000002\r\n", + "..CompositeGenericTransform. 3 0.000009 0.000009 0.000003\r\n", + "..\\figure.py:152 _AxesStack.__call__ 2 0.000005 0.000009 0.000005\r\n", + "..teq6k\\lib\\copy.py:257 _reconstruct 1 0.000005 0.000009 0.000009\r\n", + "..on.py:159 _create_json_typecasters 2 0.000006 0.000009 0.000005\r\n", + ".._.py:1663 Logger.getEffectiveLevel 3 0.000009 0.000009 0.000003\r\n", + "..y:980 _ConnectionFairy.__getattr__ 2 0.000005 0.000009 0.000004\r\n", + "..lib\\patches.py:2146 Round.__init__ 2 0.000009 0.000009 0.000004\r\n", + "..abc.py:816 WeakKeyDictionary.clear 1 0.000005 0.000009 0.000009\r\n", + "..ttr.py:257 _EmptyListener.__call__ 8 0.000009 0.000009 0.000001\r\n", + "..ing.py:255 Condition._release_save 4 0.000007 0.000009 0.000002\r\n", + ".._base.py:20 _atleast_1d_dispatcher 24 0.000009 0.000009 0.000000\r\n", + "..ctions_abc.py:367 __subclasshook__ 4 0.000005 0.000009 0.000002\r\n", + "..ler_psycopg2.get_select_precolumns 8 0.000009 0.000009 0.000001\r\n", + "..extensions.py:103 register_adapter 12 0.000009 0.000009 0.000001\r\n", + "..tgresql\\psycopg2.py:807 on_connect 2 0.000004 0.000009 0.000004\r\n", + "..tplotlib\\pyplot.py:612 get_fignums 1 0.000005 0.000009 0.000009\r\n", + "..lchemy\\util\\queue.py:135 Queue.get 1 0.000007 0.000008 0.000008\r\n", + "...py:284 WeakValueDictionary.update 1 0.000007 0.000008 0.000008\r\n", + "..ors.py:293 SelectSelector.__init__ 1 0.000003 0.000008 0.000008\r\n", + ":1 Deployment.__init__ 4 0.000008 0.000008 0.000002\r\n", + "..tplotlib\\path.py:197 Path.vertices 16 0.000008 0.000008 0.000001\r\n", + ".._memoized_property.expire_instance 2 0.000006 0.000008 0.000004\r\n", + "...py:299 NullFormatter._set_locator 31 0.000008 0.000008 0.000000\r\n", + "..mportlib._bootstrap>:725 find_spec 10 0.000005 0.000008 0.000001\r\n", + "..ure.py:155 _AxesStack.__contains__ 1 0.000002 0.000008 0.000008\r\n", + "..p>:143 _ModuleLockManager.__init__ 10 0.000008 0.000008 0.000001\r\n", + "..uery.py:505 Query._no_limit_offset 6 0.000008 0.000008 0.000001\r\n", + "..\\util\\_collections.py:771 5 0.000008 0.000008 0.000002\r\n", + "...py:1689 TransformWrapper. 6 0.000008 0.000008 0.000001\r\n", + "..\\Lib\\threading.py:944 Thread._stop 1 0.000006 0.000008 0.000008\r\n", + "..py:275 SelectSelector._key_from_fd 6 0.000008 0.000008 0.000001\r\n", + "..romnumeric.py:2273 _all_dispatcher 9 0.000008 0.000008 0.000001\r\n", + "..ty.py:17 WeakInstanceDict.__init__ 2 0.000008 0.000008 0.000004\r\n", + "..lotlib\\figure.py:78 _AxesStack.get 2 0.000006 0.000008 0.000004\r\n", + "..chemy\\orm\\query.py:4642 27 0.000008 0.000008 0.000000\r\n", + "..my\\sql\\compiler.py:2125 8 0.000007 0.000007 0.000001\r\n", + "..xesSubplot._request_autoscale_view 8 0.000007 0.000007 0.000001\r\n", + "..\\base.py:364 Connection.connection 11 0.000007 0.000007 0.000001\r\n", + "..py:4065 ColumnClause._from_objects 2 0.000005 0.000007 0.000004\r\n", + "..on38\\Lib\\socket.py:518 socket.type 1 0.000002 0.000007 0.000007\r\n", + "..\\matplotlib\\axis.py:372 14 0.000007 0.000007 0.000001\r\n", + "..artist.py:827 Line2D.get_clip_path 4 0.000007 0.000007 0.000002\r\n", + "..on38\\Lib\\uuid.py:259 UUID.__hash__ 4 0.000006 0.000007 0.000002\r\n", + "..axis.py:215 XTick.get_tick_padding 6 0.000007 0.000007 0.000001\r\n", + "..py:4335 _truncated_label.apply_map 27 0.000007 0.000007 0.000000\r\n", + "..b\\transforms.py:914 Bbox.intervaly 1 0.000005 0.000007 0.000007\r\n", + "..otlib\\transforms.py:394 Bbox.width 1 0.000006 0.000007 0.000007\r\n", + ".. HandlerLine2D.adjust_drawing_area 4 0.000007 0.000007 0.000002\r\n", + "..b\\_pylab_helpers.py:109 set_active 1 0.000006 0.000007 0.000007\r\n", + "..rtist.py:350 Text.is_transform_set 15 0.000007 0.000007 0.000000\r\n", + "..60 ScalarFormatter.set_useMathText 16 0.000007 0.000007 0.000000\r\n", + "..n-68gteq6k\\lib\\os.py:738 encodekey 1 0.000004 0.000007 0.000007\r\n", + "..rms.py:1284 TransformWrapper.depth 24 0.000007 0.000007 0.000000\r\n", + "..215 SelectSelector._fileobj_lookup 2 0.000003 0.000007 0.000003\r\n", + "..\\matplotlib\\axis.py:361 14 0.000007 0.000007 0.000000\r\n", + "..esql\\json.py:177 _PGJSONB.__init__ 1 0.000005 0.000006 0.000006\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..teq6k\\lib\\copyreg.py:99 _slotnames 1 0.000004 0.000006 0.000006\r\n", + "..lotlib\\axis.py:822 XAxis.get_scale 5 0.000006 0.000006 0.000001\r\n", + "..\\matplotlib\\axis.py:383 14 0.000006 0.000006 0.000000\r\n", + "..ckages\\psycopg2\\_range.py:36 Range 1 0.000006 0.000006 0.000006\r\n", + "..:493 Query._no_statement_condition 6 0.000006 0.000006 0.000001\r\n", + "...py:56 QueuePool._should_log_debug 1 0.000005 0.000006 0.000006\r\n", + "..b\\artist.py:819 Line2D.get_clip_on 3 0.000006 0.000006 0.000002\r\n", + "..b\\scale.py:43 LinearScale.__init__ 16 0.000006 0.000006 0.000000\r\n", + "..ycopg2.py:741 _psycopg2_extensions 1 0.000003 0.000006 0.000006\r\n", + "..otlib\\__init__.py:1267 get_backend 1 0.000002 0.000006 0.000006\r\n", + "..json.py:146 register_default_jsonb 1 0.000001 0.000006 0.000006\r\n", + "..otlib\\rcsetup.py:123 validate_bool 1 0.000005 0.000006 0.000006\r\n", + "..my\\engine\\default.py:855 11 0.000006 0.000006 0.000001\r\n", + "..y\\util\\_collections.py:140 __new__ 1 0.000005 0.000006 0.000006\r\n", + "..ngine\\url.py:299 _rfc_1738_unquote 1 0.000005 0.000006 0.000006\r\n", + "..ping.py:717 _GenericAlias.__hash__ 1 0.000004 0.000006 0.000006\r\n", + "..f.py:385 WeakKeyDictionary.__len__ 2 0.000005 0.000006 0.000003\r\n", + "..ib\\__init__.py:1285 is_interactive 2 0.000002 0.000006 0.000003\r\n", + "..07 ExtensionFileLoader.exec_module 1 0.000003 0.000006 0.000006\r\n", + "..ib\\cbook\\__init__.py:1575 10 0.000006 0.000006 0.000001\r\n", + "..ates.py:593 DateFormatter.__init__ 2 0.000002 0.000006 0.000003\r\n", + "..:687 Legend.get_legend_handler_map 1 0.000005 0.000006 0.000006\r\n", + ".._init__.py:44 get_projection_class 1 0.000005 0.000006 0.000006\r\n", + ".._init__.py:573 _AxesStack.__init__ 1 0.000003 0.000006 0.000006\r\n", + "..tion_base.py:1143 _diff_dispatcher 16 0.000006 0.000006 0.000000\r\n", + "..ig\\configurable.py:426 initialized 2 0.000003 0.000006 0.000003\r\n", + "..bootstrap_external>:1400 8 0.000005 0.000005 0.000001\r\n", + "..y:202 _broadcast_arrays_dispatcher 10 0.000005 0.000005 0.000001\r\n", + "..ng.py:1177 _make_invoke_excepthook 2 0.000005 0.000005 0.000003\r\n", + "..idspec.py:508 SubplotSpec.__init__ 1 0.000005 0.000005 0.000005\r\n", + "..ent\\registry.py:165 _EventKey._key 3 0.000004 0.000005 0.000002\r\n", + "..s.py:697 _GatheringFuture.__init__ 1 0.000005 0.000005 0.000005\r\n", + "..eq6k\\lib\\sre_parse.py:978 addgroup 1 0.000004 0.000005 0.000005\r\n", + "...py:112 PoolEventsDispatch._listen 3 0.000005 0.000005 0.000002\r\n", + "..s\\_base.py:386 Future.__get_result 7 0.000005 0.000005 0.000001\r\n", + "..qltypes.py:2793 TIMESTAMP.__init__ 1 0.000004 0.000005 0.000005\r\n", + "..ors.py:209 SelectSelector.__init__ 1 0.000004 0.000005 0.000005\r\n", + "..k\\__init__.py:827 Grouper.__init__ 2 0.000004 0.000005 0.000002\r\n", + "..elpers.py:1079 _importlater.module 1 0.000004 0.000005 0.000005\r\n", + "..is.py:1412 XAxis.get_major_locator 2 0.000004 0.000005 0.000002\r\n", + "..68gteq6k\\lib\\weakref.py:345 remove 2 0.000005 0.000005 0.000002\r\n", + "..esql\\base.py:1226 _PGUUID.__init__ 2 0.000005 0.000005 0.000002\r\n", + "..PGTypeCompiler._render_string_type 2 0.000005 0.000005 0.000002\r\n", + "..matplotlib\\colors.py:225 4 0.000005 0.000005 0.000001\r\n", + "..entifierPreparer_psycopg2.__init__ 1 0.000005 0.000005 0.000005\r\n", + "..oop._set_coroutine_origin_tracking 2 0.000005 0.000005 0.000002\r\n", + "..onfig\\configurable.py:381 instance 2 0.000002 0.000005 0.000002\r\n", + "...py:96 _AxesStack._entry_from_axes 1 0.000003 0.000005 0.000005\r\n", + "..ile.py:432 _generate_overlap_table 2 0.000004 0.000005 0.000002\r\n", + "..ry.py:390 Query._query_entity_zero 6 0.000004 0.000004 0.000001\r\n", + "..copg2\\tz.py:36 FixedOffsetTimezone 1 0.000004 0.000004 0.000004\r\n", + "..py:352 PGCompiler_psycopg2.__str__ 8 0.000004 0.000004 0.000001\r\n", + "..lotlib\\axes\\_base.py:321 12 0.000004 0.000004 0.000000\r\n", + "..packages\\psycopg2\\_json.py:47 Json 1 0.000004 0.000004 0.000004\r\n", + "..ctions_abc.py:252 __subclasshook__ 1 0.000002 0.000004 0.000004\r\n", + "..plotlib\\gridspec.py:382 1 0.000003 0.000004 0.000004\r\n", + "..process_plot_var_args._setdefaults 4 0.000004 0.000004 0.000001\r\n", + "..9 _ConnectionRecord.get_connection 1 0.000004 0.000004 0.000004\r\n", + "..et.py:20 _IterationGuard.__enter__ 1 0.000003 0.000004 0.000004\r\n", + "..py:155 HandlerLine2D.get_numpoints 4 0.000004 0.000004 0.000001\r\n", + "..se.py:2960 AxesSubplot.set_axis_on 1 0.000002 0.000004 0.000004\r\n", + "..f.py:463 WeakKeyDictionary.popitem 1 0.000003 0.000004 0.000004\r\n", + "..elpers.py:1381 parse_user_argument 2 0.000003 0.000004 0.000002\r\n", + "..ore\\numerictypes.py:239 obj2sctype 1 0.000003 0.000004 0.000004\r\n", + "..:964 SourceFileLoader.get_filename 9 0.000004 0.000004 0.000000\r\n", + "..ib\\artist.py:1013 Line2D.get_label 8 0.000004 0.000004 0.000000\r\n", + "..ges\\psycopg2\\extras.py:157 DictRow 1 0.000004 0.000004 0.000004\r\n", + "..teq6k\\lib\\codecs.py:952 getencoder 1 0.000003 0.000004 0.000004\r\n", + "..xtras.py:650 UUID_adapter.__init__ 4 0.000004 0.000004 0.000001\r\n", + "..8gteq6k\\lib\\weakref.py:323 __new__ 1 0.000003 0.000004 0.000004\r\n", + "..y:886 AxesSubplot.set_axes_locator 1 0.000002 0.000004 0.000004\r\n", + "..tenerCollection._memoized_attr_ref 2 0.000004 0.000004 0.000002\r\n", + "..reading.py:1095 _MainThread.daemon 2 0.000004 0.000004 0.000002\r\n", + "..chemy\\util\\queue.py:199 Queue._put 1 0.000003 0.000004 0.000004\r\n", + "..k\\__init__.py:626 _AxesStack.clear 3 0.000004 0.000004 0.000001\r\n", + "..tlib\\artist.py:1201 Text.mouseover 7 0.000004 0.000004 0.000001\r\n", + "..lotlib\\axis.py:645 Ticker.__init__ 4 0.000004 0.000004 0.000001\r\n", + "..py:357 String._has_bind_expression 2 0.000004 0.000004 0.000002\r\n", + "..py:140 _AxesStack.current_key_axes 2 0.000003 0.000004 0.000002\r\n", + "..s.py:1355 AutoDateLocator.set_axis 1 0.000003 0.000004 0.000004\r\n", + "..se.py:1699 RootTransaction._parent 1 0.000004 0.000004 0.000004\r\n", + "..ib\\function_base.py:2116 8 0.000004 0.000004 0.000000\r\n", + "..kers.py:286 MarkerStyle.get_marker 8 0.000003 0.000003 0.000000\r\n", + "..xecutionContext_psycopg2.post_exec 6 0.000003 0.000003 0.000001\r\n", + "..ansaction._is_transaction_boundary 4 0.000003 0.000003 0.000001\r\n", + "..ker.py:2004 _Edge_integer.__init__ 2 0.000003 0.000003 0.000002\r\n", + "..til\\_collections.py:991 3 0.000003 0.000003 0.000001\r\n", + "..Lib\\selectors.py:21 _fileobj_to_fd 2 0.000003 0.000003 0.000002\r\n", + "..WindowsSelectorEventLoop.set_debug 1 0.000003 0.000003 0.000003\r\n", + "..b\\cbook\\__init__.py:886 6 0.000003 0.000003 0.000001\r\n", + "..b\\cbook\\__init__.py:836 8 0.000003 0.000003 0.000000\r\n", + "..lchemy\\orm\\query.py:4795 6 0.000003 0.000003 0.000001\r\n", + "..strap>:397 ModuleSpec.has_location 10 0.000003 0.000003 0.000000\r\n", + "..ylab_helpers.py:29 get_fig_manager 1 0.000002 0.000003 0.000003\r\n", + "..s.py:263 MarkerStyle.get_fillstyle 8 0.000003 0.000003 0.000000\r\n", + "..ckages\\psycopg2\\extras.py:698 Inet 1 0.000003 0.000003 0.000003\r\n", + "..ctable.py:1982 Table._from_objects 6 0.000003 0.000003 0.000001\r\n", + ".._weakrefset.py:36 WeakSet.__init__ 1 0.000003 0.000003 0.000003\r\n", + "..ctions_abc.py:302 __subclasshook__ 6 0.000003 0.000003 0.000001\r\n", + "..__init__.py:51 _StrongRef.__init__ 3 0.000003 0.000003 0.000001\r\n", + "..gine\\default.py:295 get_pool_class 1 0.000001 0.000003 0.000003\r\n", + "..lectorEventLoop._process_self_data 6 0.000003 0.000003 0.000000\r\n", + ".. _ClsLevelDispatch._adjust_fn_spec 4 0.000003 0.000003 0.000001\r\n", + "..ogging\\__init__.py:189 _checkLevel 3 0.000002 0.000003 0.000001\r\n", + "..hemy\\engine\\url.py:56 URL.__init__ 1 0.000003 0.000003 0.000003\r\n", + "..\\matplotlib\\axis.py:153 6 0.000003 0.000003 0.000000\r\n", + "..ections.py:151 immutabledict.union 6 0.000003 0.000003 0.000000\r\n", + "..b\\path.py:251 Path.should_simplify 4 0.000003 0.000003 0.000001\r\n", + "..774 SourceFileLoader.create_module 9 0.000003 0.000003 0.000000\r\n", + "..copg2._check_max_identifier_length 1 0.000003 0.000003 0.000003\r\n", + "..y\\sql\\selectable.py:2987 6 0.000003 0.000003 0.000000\r\n", + "..g2.py:558 _PGUUID.result_processor 2 0.000003 0.000003 0.000001\r\n", + "..stgresql\\psycopg2.py:711 4 0.000003 0.000003 0.000001\r\n", + "..\\Lib\\threading.py:513 Event.is_set 5 0.000003 0.000003 0.000001\r\n", + "..ython38\\Lib\\inspect.py:80 ismethod 2 0.000002 0.000003 0.000001\r\n", + "..d_bases.py:2556 notify_axes_change 1 0.000003 0.000003 0.000003\r\n", + "..b\\weakref.py:328 KeyedRef.__init__ 1 0.000003 0.000003 0.000003\r\n", + "..ffsetbox.py:240 VPacker.set_offset 1 0.000001 0.000003 0.000003\r\n", + "..ath.py:230 Path.simplify_threshold 4 0.000003 0.000003 0.000001\r\n", + "..y:330 _ListenerCollection.__bool__ 1 0.000003 0.000003 0.000003\r\n", + "..tlib\\transforms.py:400 Bbox.height 1 0.000002 0.000003 0.000003\r\n", + "..tlib\\units.py:81 AxisInfo.__init__ 2 0.000003 0.000003 0.000001\r\n", + "..on38\\Lib\\inspect.py:158 isfunction 3 0.000002 0.000003 0.000001\r\n", + "..i.py:279 NullType.result_processor 4 0.000002 0.000002 0.000001\r\n", + "..lib\\transforms.py:931 Bbox.minposx 1 0.000002 0.000002 0.000002\r\n", + "..hemy\\util\\queue.py:195 Queue._full 1 0.000002 0.000002 0.000002\r\n", + "..ExecutionContext_psycopg2.pre_exec 6 0.000002 0.000002 0.000000\r\n", + "..n-68gteq6k\\lib\\os.py:732 check_str 1 0.000002 0.000002 0.000002\r\n", + "..gure.py:2059 Figure.add_axobserver 1 0.000002 0.000002 0.000002\r\n", + "..py:843 TextArea.set_minimumdescent 1 0.000001 0.000002 0.000002\r\n", + "..e.py:1694 RootTransaction.__init__ 1 0.000002 0.000002 0.000002\r\n", + "..teq6k\\lib\\copyreg.py:90 __newobj__ 1 0.000002 0.000002 0.000002\r\n", + "..6k\\lib\\enum.py:659 RegexFlag.value 4 0.000002 0.000002 0.000001\r\n", + "..dConnectionEventsDispatch.__init__ 1 0.000002 0.000002 0.000002\r\n", + "..vents.py:719 get_event_loop_policy 1 0.000002 0.000002 0.000002\r\n", + "..68gteq6k\\lib\\functools.py:63 wraps 1 0.000002 0.000002 0.000002\r\n", + "...py:1006 Legend.set_bbox_to_anchor 1 0.000002 0.000002 0.000002\r\n", + "..ng\\__init__.py:772 Logger.__init__ 3 0.000002 0.000002 0.000001\r\n", + "..ycopg2\\extras.py:65 DictCursorBase 1 0.000002 0.000002 0.000002\r\n", + "..mpl.py:143 QueuePool._inc_overflow 1 0.000002 0.000002 0.000002\r\n", + "..postgresql\\base.py:2708 1 0.000002 0.000002 0.000002\r\n", + "..meric.py:337 _full_like_dispatcher 4 0.000002 0.000002 0.000001\r\n", + "..idspec.py:67 GridSpec.get_geometry 3 0.000002 0.000002 0.000001\r\n", + "..plotlib\\gridspec.py:204 _normalize 1 0.000002 0.000002 0.000002\r\n", + "..my\\sql\\elements.py:4480 6 0.000002 0.000002 0.000000\r\n", + "..\\matplotlib\\path.py:211 Path.codes 4 0.000002 0.000002 0.000000\r\n", + "..mpy\\core\\multiarray.py:1043 copyto 4 0.000002 0.000002 0.000000\r\n", + "..set.py:16 _IterationGuard.__init__ 1 0.000002 0.000002 0.000002\r\n", + "..nit__.py:1220 PlaceHolder.__init__ 4 0.000002 0.000002 0.000000\r\n", + "..e.py:3867 AxesSubplot.set_navigate 1 0.000002 0.000002 0.000002\r\n", + "..tlib\\axis.py:1559 XAxis.have_units 2 0.000002 0.000002 0.000001\r\n", + "..b\\sre_parse.py:98 State.checkgroup 1 0.000001 0.000002 0.000002\r\n", + "..ib\\weakref.py:73 WeakMethod.__eq__ 1 0.000002 0.000002 0.000002\r\n", + "..g2\\extras.py:405 LoggingConnection 1 0.000002 0.000002 0.000002\r\n", + "..\\psycopg2\\extensions.py:109 SQL_IN 1 0.000002 0.000002 0.000002\r\n", + "..2.py:540 _PGJSONB.result_processor 1 0.000002 0.000002 0.000002\r\n", + "..g2\\extras.py:538 ReplicationCursor 1 0.000002 0.000002 0.000002\r\n", + "..\\transforms.py:939 Bbox.get_points 3 0.000002 0.000002 0.000001\r\n", + "..hemy\\util\\queue.py:183 Queue._init 1 0.000002 0.000002 0.000002\r\n", + "..nit__.py:1974 _OrderedSet.__init__ 1 0.000002 0.000002 0.000002\r\n", + "..ase.py:3618 AxesSubplot.get_yscale 1 0.000001 0.000002 0.000002\r\n", + "..end.py:666 get_default_handler_map 2 0.000002 0.000002 0.000001\r\n", + "..plotlib\\patches.py:1833 2 0.000002 0.000002 0.000001\r\n", + "..\\psycopg2\\extras.py:132 DictCursor 1 0.000002 0.000002 0.000002\r\n", + "..ib\\_pylab_helpers.py:99 get_active 1 0.000001 0.000002 0.000002\r\n", + "..\\sql\\selectable.py:3751 2 0.000002 0.000002 0.000001\r\n", + "..e.py:737 _ConnectionFairy.__init__ 1 0.000002 0.000002 0.000002\r\n", + "..:1088 ExtensionFileLoader.__init__ 1 0.000002 0.000002 0.000002\r\n", + "..ib\\axes\\_subplots.py:229 2 0.000002 0.000002 0.000001\r\n", + "..lotlib\\axes\\_base.py:586 4 0.000002 0.000002 0.000000\r\n", + "..plotlib\\axis.py:649 Ticker.locator 3 0.000002 0.000002 0.000001\r\n", + "..ec.py:93 GridSpec.set_width_ratios 1 0.000002 0.000002 0.000002\r\n", + "..lib\\transforms.py:935 Bbox.minposy 1 0.000002 0.000002 0.000002\r\n", + "..ib\\widgets.py:34 LockDraw.__init__ 2 0.000002 0.000002 0.000001\r\n", + "..610 _WindowsSelectorEventLoop.stop 1 0.000002 0.000002 0.000002\r\n", + "..sqltypes.py:2182 _PGJSONB.__init__ 1 0.000001 0.000001 0.000001\r\n", + "..nsaction._iterate_self_and_parents 1 0.000001 0.000001 0.000001\r\n", + "..matplotlib\\axis.py:1486 4 0.000001 0.000001 0.000000\r\n", + "..numeric.py:2354 _cumsum_dispatcher 3 0.000001 0.000001 0.000000\r\n", + "..q6k\\lib\\functools.py:486 lru_cache 1 0.000001 0.000001 0.000001\r\n", + "..Python38\\Lib\\inspect.py:260 iscode 2 0.000001 0.000001 0.000001\r\n", + "..hon38\\Lib\\inspect.py:285 isbuiltin 1 0.000001 0.000001 0.000001\r\n", + "..types.py:256 String.bind_processor 1 0.000001 0.000001 0.000001\r\n", + "..ements.py:1315 TypeClause.__init__ 2 0.000001 0.000001 0.000001\r\n", + "..y\\core\\multiarray.py:77 empty_like 4 0.000001 0.000001 0.000000\r\n", + "..copg2\\extras.py:233 RealDictCursor 1 0.000001 0.000001 0.000001\r\n", + "..indowsSelectorEventLoop.is_running 2 0.000001 0.000001 0.000001\r\n", + "...py:635 Legend._approx_text_height 2 0.000001 0.000001 0.000001\r\n", + "..matplotlib\\figure.py:97 1 0.000001 0.000001 0.000001\r\n", + "..copg2\\extensions.py:164 1 0.000001 0.000001 0.000001\r\n", + "..s\\psycopg2\\tz.py:108 LocalTimezone 1 0.000001 0.000001 0.000001\r\n", + "..matplotlib\\figure.py:74 2 0.000001 0.000001 0.000001\r\n", + "..WeakKeyDictionary._commit_removals 1 0.000001 0.000001 0.000001\r\n", + "..lotlib\\axes\\_base.py:588 4 0.000001 0.000001 0.000000\r\n", + "..ctionRegistry.get_projection_class 1 0.000001 0.000001 0.000001\r\n", + "..as.py:472 MinTimeLoggingConnection 1 0.000001 0.000001 0.000001\r\n", + "..sycopg2\\_range.py:242 RangeAdapter 1 0.000001 0.000001 0.000001\r\n", + "..psycopg2\\extras.py:261 RealDictRow 1 0.000001 0.000001 0.000001\r\n", + "..sycopg2\\extras.py:643 UUID_adapter 1 0.000001 0.000001 0.000001\r\n", + "..matplotlib\\figure.py:1073 fixitems 1 0.000001 0.000001 0.000001\r\n", + "..ycopg2\\extras.py:456 LoggingCursor 1 0.000001 0.000001 0.000001\r\n", + "..3883 AxesSubplot.set_navigate_mode 1 0.000001 0.000001 0.000001\r\n", + "...py:113 GridSpec.set_height_ratios 1 0.000001 0.000001 0.000001\r\n", + "..copg2\\extras.py:125 DictConnection 1 0.000001 0.000001 0.000001\r\n", + "..plotlib\\patches.py:1832 2 0.000001 0.000001 0.000000\r\n", + "..matplotlib\\figure.py:76 2 0.000001 0.000001 0.000000\r\n", + "..opg2\\extensions.py:133 NoneAdapter 1 0.000001 0.000001 0.000001\r\n", + "..opg2.py:548 _PGUUID.bind_processor 1 0.000001 0.000001 0.000001\r\n", + "..365 _ListenerCollection.for_modify 2 0.000001 0.000001 0.000000\r\n", + "..y:632 ThreadPoolExecutor.__enter__ 1 0.000001 0.000001 0.000001\r\n", + "..:505 Figure.get_constrained_layout 2 0.000001 0.000001 0.000000\r\n", + ".. LinearScale.limit_range_for_scale 2 0.000001 0.000001 0.000000\r\n", + "..38\\Lib\\urllib\\parse.py:624 unquote 1 0.000001 0.000001 0.000001\r\n", + "..ib\\threading.py:1095 Thread.daemon 1 0.000001 0.000001 0.000001\r\n", + "..b\\cbook\\__init__.py:828 2 0.000001 0.000001 0.000000\r\n", + "..util\\langhelpers.py:1500 only_once 1 0.000001 0.000001 0.000001\r\n", + "..sqltypes.py:786 TIMESTAMP.__init__ 1 0.000001 0.000001 0.000001\r\n", + "..chemy\\util\\langhelpers.py:906 memo 2 0.000001 0.000001 0.000000\r\n", + "..rs.py:63 _SelectorMapping.__init__ 1 0.000001 0.000001 0.000001\r\n", + "..emy\\engine\\url.py:129 URL.password 1 0.000001 0.000001 0.000001\r\n", + "..b\\gridspec.py:532 SubplotSpec.num2 1 0.000001 0.000001 0.000001\r\n", + "..y\\dialects\\__init__.py:52 1 0.000001 0.000001 0.000001\r\n", + "..ages\\psycopg2\\errors.py:1 1 0.000001 0.000001 0.000001\r\n", + "..y\\lib\\shape_base.py:1227 2 0.000001 0.000001 0.000000\r\n", + "..6 PGCompiler_psycopg2.default_from 2 0.000001 0.000001 0.000000\r\n", + "..ions.py:145 immutabledict.__init__ 1 0.000001 0.000001 0.000001\r\n", + "..emy\\util\\queue.py:191 Queue._empty 1 0.000001 0.000001 0.000001\r\n", + "..tors.py:272 SelectSelector.get_map 1 0.000001 0.000001 0.000001\r\n", + "..extras.py:296 NamedTupleConnection 1 0.000001 0.000001 0.000001\r\n", + "..y:512 LogicalReplicationConnection 1 0.000001 0.000001 0.000001\r\n", + "..ist.py:961 Rectangle.set_in_layout 1 0.000001 0.000001 0.000001\r\n", + "..py:536 PGDialect_psycopg2.do_begin 1 0.000001 0.000001 0.000001\r\n", + "..opg2\\extras.py:526 StopReplication 1 0.000001 0.000001 0.000001\r\n", + "..b\\gridspec.py:528 SubplotSpec.num2 1 0.000001 0.000001 0.000001\r\n", + "..:519 PhysicalReplicationConnection 1 0.000001 0.000001 0.000001\r\n", + "..s\\matplotlib\\dates.py:225 2 0.000001 0.000001 0.000000\r\n", + "..b\\_pylab_helpers.py:115 1 0.000001 0.000001 0.000001\r\n", + "..2\\extras.py:226 RealDictConnection 1 0.000001 0.000001 0.000001\r\n", + "..extras.py:500 MinTimeLoggingCursor 1 0.000001 0.000001 0.000001\r\n", + "..py:2459 AxesSubplot._get_axis_list 1 0.000000 0.000000 0.000000\r\n", + ".. FontProperties.get_size_in_points 1 0.000000 0.000000 0.000000\r\n", + "..ool\\base.py:231 QueuePool._creator 1 0.000000 0.000000 0.000000\r\n", + "..sycopg2\\_range.py:457 NumericRange 1 0.000000 0.000000 0.000000\r\n", + "..re\\multiarray.py:990 unravel_index 1 0.000000 0.000000 0.000000\r\n", + "..ib\\artist.py:800 XAxis.get_visible 2 0.000000 0.000000 0.000000\r\n", + "..2\\_range.py:486 NumberRangeAdapter 1 0.000000 0.000000 0.000000\r\n", + "..ec.py:549 SubplotSpec.get_gridspec 1 0.000000 0.000000 0.000000\r\n", + "..py:117 AxesSubplot.get_subplotspec 1 0.000000 0.000000 0.000000\r\n", + "..hape_base.py:1151 _tile_dispatcher 1 0.000000 0.000000 0.000000\r\n", + "..n\\Python38\\Lib\\typing.py:1146 cast 1 0.000000 0.000000 0.000000\r\n", + "..ycopg2\\_range.py:471 DateTimeRange 1 0.000000 0.000000 0.000000\r\n", + "..lib\\legend.py:918 Legend.get_frame 1 0.000000 0.000000 0.000000\r\n", + "..e\\interfaces.py:901 engine_created 1 0.000000 0.000000 0.000000\r\n", + "..opg2\\_range.py:476 DateTimeTZRange 1 0.000000 0.000000 0.000000\r\n", + "...py:101 State.checklookbehindgroup 1 0.000000 0.000000 0.000000\r\n", + "..chemy\\engine\\url.py:156 1 0.000000 0.000000 0.000000\r\n", + "..s\\psycopg2\\_range.py:466 DateRange 1 0.000000 0.000000 0.000000\r\n", + "..\\interfaces.py:856 get_dialect_cls 1 0.000000 0.000000 0.000000\r\n", + "..ion\\utils.py:58 profile_with_yappi 1 0.000000 0.000000 0.000000\r\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACdsAAAUsCAYAAADFYdzDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdeZhkVX0//vcZhhmQRVDBDRQV0a8YURGMkQhGTdyCRBOXaCIuWYxmMcZoXNFo8jOJ+s3XJXvcSUjcFZfEfUHAFTdQZFdAZWeG2fv8/rjVTnd1VdfaXTU1r9fz9NNd5957zumqe6qYmTefU2qtAQAAAAAAAAAAALpbM+kJAAAAAAAAAAAAwLQTtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAACYMaWUU0opdeHX7jQ+AAAAAMBKELYDAAAAAAAAAACAHoTtAAAAgF1GaVzcXjWtlLK9lHL7Sc8PAAAAAIDZJWwHAAAA7EoemuSOHdr3SHLy6k4FxqOUckKHAOkJE5zPW9vmcvGk5gKzwJoCAACA2SFsBwAAAOxKnrHMsaeXUsqqzQQAAAAAgN2KsB0AAACwSyil3CLJScuccuckJ6zObAAAAAAA2N0I2wEAAAC7iqckWd/WVtseL1f5jlVSaz2l1loWfk16TgAAAAAAoxK2AwAAAHYVT297fH6S97a1PbaUcvNVmg8AAAAAALsRYTsAAABg6pVS7pfkqLbmtyd5W1vb3kl+c1UmBQAAAADAbkXYDgAAANgVtG8PW5O8I8lHk/ykx7kAAAAAADCytZOeAAAAAMBySil7J3lSW/Pnaq2XtI6fmuRPFhw7upRyVK31nBWe155Jjk1yjyS3bDX/OMnXBhm7lLJ/kmOS3C3JAUk2JrkyyRdrrT8c66SXjn3LJPdPcpck+ye5PsnlSc6ptV6wkmMPo5RySJoKhwe1vmqSnya5IsmZtdYbVmEOd01ydJLbJ1mf5Oo0z9kXaq3XrvT4s6iUcs8khyc5OM1auinN63pxki/XWret8PjW8vDjTsuaPCrJIUn2TbI1yRW11nf0ef3tk9w9yWFJbp6mQuoNSa5Jcmmae3Dz+Gc+20op65LcL816uFWa98sbkpxVaz1rgH4OT7M25++xLUmuSvLDNPfYpjFPHQAAAJYlbAcAAABMu19PE4BY6G1tP/9J2/GnJ/njYQYrpZyQ5NNtzQ+utX6mdfx2SV6c5LeS7Nelj+8nedVyYY9Syr2SvCTJiWlCCJ3O+VKS59davzjYb7G8UsrxSV6U5CFJ9uhyzteS/EOSf6u11gH7PyXJyxe21VrLkHM9OMlzk/xqkiOXOXV7KeWsJG9KclqtdW7Acdp/x1fUWk9pHVuT5KlJ/jTJPbt0saOU8pkkL6m1ntnHeKek7Tlq8+lSej5lb6u1ntzrpH6UUi5Ocscuh+/Y4fnp5GfrpI/x7pVm3f5Kktstc+qGUsonkrymn+e1bYwTsouv5V5raaXXcpf+pmFN7pPkD5P8TpI7d+mi42tWSrlVkl9L8tAkxye5dY+pbC2lnJnkjUne0+/vsVJrqtd9PYgOc+z5nlJKOTnJW9qa71Rrvbh1/Mgkf57kcUn26dDF25IsG7YrpdwpzfvtI9P99U2SzaWUzyd5fa31o8v1CQAAAONiG1kAAABg2rVvC3tTknfPP6i1fiPJN9vOeUoppWPoZRSllMcm+W6SP0iXcE7LEUneXkr5r/Z5lMbLknwtyW+kSzin5QFJPl9KedFoM//Z2HuUUt6Y5DNJfjldwjkt903yL0k+1wo+rKpSyrpSyiuTXJjkhVk+1JM0/1PpA5OcmuScVgBqHPM4JMkXkvx7ugftkua5fEiSL5VSXj2OsWdRKeW2pZR3JflGkqdl+aBd0lQqOynN8/r+UsotxjQPa3nwMadlTd4/zWv311k+iNXp2lPTVN375ySPT++gXZKsS/KgJP+V5NutMBkdlFJekmZt/3Y6B+16Xb9/677+XpLnpPfru1eShyX5SCnl86WUOww6JgAAAAxK2A4AAACYWq3t4x7U1vz+WuuNbW1va3t8izQBnXHO5SlpQn7tVfaW8xtpQlrzfZQ0oZdXZPlwzKKhk7y6lPKcAcZd2kkz9juTPHvAS49L8tlSykChllG0AlX/k+SlGSKwkSYU98VSyq+OOI87JzkzTVBqEC8qpbxqlLFnUSnlqCRnJ/nNNPf1oB6T5MxSyhEjzsNaHnzMaVmTD0oTMBw2VPULGW23l/+T5h586Ah9zKRWSO4vM+TzW0q5Y5Ivprmv9xyii+OSnF1K+flhxgcAAIB+2UYWAAAAmGZPz9JQTnuwLkneleRvsjj08owkp41pHvdL8lcL5nJdko+kCWL9JMneaUIYj09yWNu1v1lKeX+t9b/TbPe4sFLfJUk+nOTbSa5OckCSY1v97N/Wz2tKKR+e36pvCM9L8sQFj29M8oEkX07y49bYd0+z9d+hbdcemuRTpZR711qvG3L8vpRSDkgTuLh7h8PfTvLZJN9J8xokycFpwnCPzOIKZfsm+e9SygNrrV8dYir7Jfloktu3HtckZyT5RJJLk2xIclCayl2/lqbC0kJ/UUr5UK2123aJVyY5Z8Fc79J2/ILWGMu5tMfxQXw3O5/TOyQ5cMGxba3jvXSdbynlfmm2vty37dBcks+neW4vas1h7ySHpNnis3171LumqWJ1dK31+j7m1M5aHnAtT9GavE2S92bxWjs7TQjwkjTPw22T3CNNOLKXHWmqEn4nyXlpXrcb0twb+6e5134+zRpf+D+t75vkP0sp96m1XrZM/yu6pqbM72Rx+HNDkv9Nc9/8OM3zd0iSB6d53hdpBe3OSudKg2e3+vlekmvTVBq8bZrg5COyuKLkrZOcXkq5b631ktF+JQAAAOis1FonPQcAAACAJUope6QJEy3cZvLyJIfWWuc6nH96mnDHvLkkdx70H9xLKSekCQUttCU7/0H/DUle1imo0tpm8rVZWnHqe2m21ftSmtDBTWkCM/9Sa+0UPLhNkvekCRMs9M+11t/r43c4JcnL25o3Z2dI5S1J/rTL77AmyXOTvCpLA2RvrbU+bZjxa619VTIrpbwvS6sSntGab7fg2nwg6KVp5r5wrIuT3KtDNcT269v/kmzh83VWkj+otX6ty7WHpXm97tt26OO11ocvN27r+hOy9J57cK31M72uXQmllLcmeeqCpktqrYeN0N+BaUJN7X28JckptdauocFSyl2SvCnJr7Qdem+t9XE9xj0h1vJIa7nVz7SsyR3ZGbz8ZpLfr7V+qcu1e9VaN3do/36Sb6WpDPipfgKbrSDYXyd5Utuh02utj+51fauPt2ZMa2qc7xellIuT3HFB09tqrSf3uObkNPfdQgtfm39M8pJa69Vdrl/02pRS1qXZqvuYtlM/nOTPa63nLjOX2yT52yRPaTv05SQP6LQmAQAAYFS2kQUAAACm1SOyOGiXJO/sFLRraa94tybJyWOay3w4549rrX/UrSJUrXVLrfU5ST7eduhuST7UmtOGJL9Ua/3HbkGAWuuVSR6d5Kdth55YStl7yN9hPmzz/9Van77M7zBXa31tmspQ29sOn9zaxnFFlFJ+N0tDPW9OctxyoZ4kqbVeV2t9XhZXG0uagNcfDDGd+efrw0lO6Ba0a419cZKHpangtNDDSinDbnc5S96UxUG7HUme0roPl63OV2u9IM17QXu457GllPsPMRdrudHXWp6yNTkf5vpikl/sFrRrjb0kaNdyTK31cbXW9/VbGbHWekmt9TeTnNJ26JGllE7V/nZH86/N82qtz+oWtEs6vjanZGnQ7oW11l9dLmjX6uvKWutvpdnOeaFjkvx672kDAADA4ITtAAAAgGnVHtBIkrcvc/4HsnPLvnlPa1V3GodTa63/r89zX9qh7eDW9z/uFVJJklrrtWkqay20f5ZWyBrEZ2qtf9HPibXWD6epiNXuj0YYv6tSyto0W3Mu9LFa67PrAFsz1FrfkuRf25qf26pUNqiL04TCugV3Fo57TZYGPtakCeHttkopd0vyhLbmF9da39VvH63X//eStAdvXjjktKzlxrJreUrX5PVJnlBrvWGIazPk1sPzXpmmYtq8kmarcxrvqbW+bpALWlUv/7Ct+R9rra8ZpJ9a6ylptq1daNj3BwAAAFiWsB0AAAAwdUopByd5VFvz12qt3+l2Ta11S5LT2prvmOQhY5jSjiwNnXRVa/1ymi1w230vSyt0LefdHdratyodxKBBudck+WFb22NKKbcdYQ7dPDGLtzOsWRrC6NcrW9fPu3WSBwzRzysGDOf8Z5p7ZaGjhxh3ljw/i/8O8qIkfzdoJ7XWbUn+qq35EaWU9u1Re7GWd+q1lqdxTb6u1vqjIecwklbA8B1tzcdNYi5TaC7Jnw1x3bOT7Lvg8YYkLxhyDq9se3zv1hbfAAAAMFbCdgAAAMA0emqSPdva2reJ7aRT5btOFfIG9Yla6yUDXvONDm1vGbAi1AVJ2is43W3Aecw7s9b6rUEuaFV0aw+XrE3y0CHnsJz2Lf8+U2v9wTAd1VovS9L+ux4/YDcbk5w64LjXJjm/rXnY12uXV0opSR7b1vzWbluu9uEjbY/XJxl0K1lreadea3na1mRN8u/DjD9G7ev7vqWU9s+q3dGnWttpD6r9HvvvYasWJjkjS6vbDnqPAQAAQE/CdgAAAMA0at+ab3uS/+h1Ua31jCwNQ5xUSrnFiPP53BDXdAr0fH4M/RwwRB9J8v4hr3tvh7afH7KvjlqhrF9saz5jxG4vant8nwGvP7PWunWIcS9oe3zzIfqYFfdKcmBb29Cva2ur3vZKg4O+rtbyYh3X8pSuyR/UWtur842klLJvKeWRpZQXllLeXko5vZTy+VLK10op32j/SvLGti7Wp6nSt7v79KAXtLaQ/bm25lHeH+aydI0Neo8BAABAT2snPQEAAACAhUopD0xy97bmj9Zaf9pnF29P8pcLHq9P8uQkbxhhWsNUc7pxhfoZNrz11SGv+1aSbVlcaXDcW6P+nyTtgcinllIePUKfd2h7fKsBr28PbfarPQy2O4ftHtih7Q2llC0j9HmztseDvq7Wcn9reRrX5NdGGHuRUsrRabY4PjHJ3iN2d0CWbtG7uxnmtXlAlhYD+ItSynNGmMfhbY8HvccAAACgJ2E7AAAAYNp02va1ny1k570jySuTlLY+RwnbXTvENdtWqJ9htyz83jAX1Vq3lFIuTnLXBc0HDzmHbg7p0tapfVi3HPD8a4YcZ1yv1yzo9Pq1B2lHNejrai33t5ancU3+ZNQBW1u+vj7JszK+XV9250DtvGFem0730p1HnUibQe8xAAAA6Mk2sgAAAMDUKKXsm+Txbc3XJvlwv33UWi9J8pm25qNalYyG1SlsM7Ba61j6GVJ7xbVRrh12+8tuViMQMWj1qkm+VrNiZl/X3WAtT+Nrd8Mog7WCdv+d5NkZ79+L786B2nnDvDbTeI8BAABAT8J2AAAAwDR5YpJ92tpOq7UOuu1kp0p4nSrm7U42jvHa/UaZSAcHjrk/poPXdWWsxlqextdu+4jXvyDJYzq0/yjJm5M8Jc3WpoemCSHuVWstC7+SPHjEOcyqYV6babzHAAAAoCfbyAIAAADTpFMg7vdLKb8/hr6fVEp5Xq110xj62hXtk+ErQ7UHIG8ccS7tOr0mJ9VaPzDmcVhdnV7XA2ut1636TGbLaqzlmVqTpZSDk/xFW/P2JM9P8sZaa79hMZXSxqfTPXbvWus5qz4TAAAAGIDKdgAAAMBUKKXcI8nPr+AQByR57Ar2P+1uPsZrxx2WuqpD253GPAarr9PrethqT2IGrcZanrU1eWKSm7W1vaDW+n8HCNolyS3GOKdpMMktcGftHgMAAGA3IWwHAAAATIvV2OZ1d95K9ohhLiqlrMvSgNRPRp7NYj/u0HavMY/B6vO6rozVWMuz9to9rO3xtUneOEQ/dx7DXEa1rUPbsKG5SYYHZ+0eAwAAYDdhG1kAAABg4kopeyb5rbbmrUnOHbHrQ7M4THBCKeXOtdYLR+x3V3R0kk8Ocd29sjTI8dXRp7PIN5NsTrLXgraHj3kMVt/ZHdoekeTtqz2RGbMaa3nW1uShbY/PqrVuHaKfB4xjMiPqtIXw/oN2Uko5JItf39V2Voe2RyR55WpPBAAAAAahsh0AAAAwDU5MclBb2/tqrfce5SvJS9r6LEmetiq/0fQ5acjrOm29e+YoE2lXa92c5AttzbctpTxknONMsU7bWO6x6rPYqX0+w87ljCQb29oeVUo5cMj+aKz4Wp7BNXmrtsfXDNpBKeVWSR485PjjWlNJ561/h6m4d/wIcxhZrfWSJD9oaz62lDJU5UYAAABYLcJ2AAAAwDTotL3rO8fQ72lpKuQtdHIpZXf8O5EHlFKOHOSCUsr6LK04uD3JJ8Y2q50+0KHtlBUYZxrd2KFt31WfxU7t8xlqLq3KYR9ra94vyfOG6Y+fWa21PEtrsj302R6+68ezM3wluLGsqZYfJdnQ1nbsEP387ghzGJf2e2xNkpdNYiIAAADQr93xL5YBAACAKVJKuX2SX25r/mmWhnQGVmu9JslH25oPSfIro/a9i/r7Ac//8zTP10IfqLVeMab5LPRvSa5sazuulPKCFRhr2lzboW2YSlXj0j6fA0aoRvfqDm1/Xko5bsj+aKzGWp6lNdn+e/5CKWWffi9uhRv/YoTxx7amaq1zSb7R1vyoUsrN++2jlHJikgcNM/6YvTbNdsULPbmU8oRJTAYAAAD6IWwHAAAATNrTsnRLvdNqrZ221hxGpwp5nSrp7Q4eUkp5VT8nllIekeSlHQ79v/FOqVFr3ZTOway/KqU8Z9h+SykPL6W8efiZrYrLklzf1vbISUyk5Vsd2oaaT63160ne09a8Z5L3lVKGCvuUUtaXUn63lPLcYa6fESu+lmdsTX6+7fG+SV7ez4WllMOSfDDJ+hHGH9uaamkPke+dpN/74V5J3jLC2GPTCnu+qcOhfy+lPG6YPkspe5RSnlBK6XTvAgAAwMiE7QAAAICJKaWUNGG7duPYQnbeh7I0yHRiKeWgMY6xK5ivHvTiUsq/dKuCVEpZU0r5kyTvTROKWuittdbPreAc35TO2wq+oZTyvlLKUf10Ukq5UynlBaWUb6YJpUxDBaeuaq01yZfamh9aSvnrUsrBE5jSmUnm2tpeW0p5TCml/Z7ox+8luait7VZJPllK+dtSym366aSUcv9SymuTXJzkn5LcZYi5zILVXMuzsibfk6X39PNLKX9ZSlnb7aJSypPSrM35SpM3DDn+uNfUW5PsaGt7TinlFd1+n1YI7RlJvpDkFklqlm6zPgkvSXJ2W9vNkry7lPKvpZS+1nkp5Z6llFcm+X6S/0zS170JAAAAg+r6FwkAAAAAq+DBWbpd5vm11rPGNUCtdUsp5b+TPHNB855JnpLk9eMaZxfwsiR/0/r5mUkeX0p5f5IvJ/lJkgOS3D3J45LcocP1lyRZ0UpitdZaSnlKmjBIe1DipCQnlVLOSfKZJOcnubp17IA04a17JTk6k92CdVj/nuThbW0vTPLCUsoVSa5J0l7t8YO11peNeyK11itKKR/L4spbt07y/iRbSymXJdmYJqyz0DNrrV/p0N/VrW0rv5BkYTBsbZI/S/JHpZQvJflckh+m2XJzfZrX9bZJ7pPkfkl2t4BsN6u2lmdlTdZav19KeWeS32479JIkJ5dS3p3km0k2pAmi3S3JiVkc6LwpyQuS/MMQ4497TV1eSnlDkj9pO/SyNNuwvifJua053zLJzyV5VBbfD69J8qQkdxz09xmnWuvmUsqvpQkkHtp2+BlpXp+vJPlsmqDtNWmq4R6Q5OAk907z/nD71ZozAAAAuzdhOwAAAGCSOm3nOs6qdgv7fGZb2zOye4Xt/i5NIOHxrcf7pwmetIdPOvlhkl+qtV63QnP7mVrrhlLKL6bZ5rDTNoJHZTYrFr0nySeTPKTDsdu2vtp9YwXn8/wkxyfZp619XbpXlNu3W2e11m+XUo5JU2Xtnh36PL71RW+rupZnaE3+UZJj0wQRFzokS0Nr7bYl+Y004bVhjXVNJXlxkodm6Xq6S5I/7zGX01rXP6nHeauiFR48Ns282qse7pHk/q0vAAAAmDjbyAIAAAATUUo5IMljOxx61woM97kkl7a1HVlK2W3+8b61VemTk/zjgJd+McnxtdYLxz+rzmqtN9Zafz3Js5L8aMTuLk0TEppqtda5JL+e5NRJzyVJaq3fTfKwJD8YY5/npwnMvC5NFa9RfCXJR0ae1C5oEmt5FtZkrfX6NOG0Mwe89PIkD621jnS/jXtN1VpvSnJClm7BuuxlacKav9l6z5katdYr04SNX5Kmet0ozk3yXyNPCgAAADoQtgMAAAAm5clJ9mpr+1Kt9YJxD9QKp3QK8XWqrDezaq3ba63PShM4+VSS5cIWX0/yO0l+cTWDdgvVWv8xzfaTv5PkE+mvqtRcmrn/bZptig+rtb52xSY5RrXW62qtT05TeeuUJB9OckGabVW3TWA+X2rN5ZFJ3pxmK9HL02y1OVRQp9Z6U631eUkOS/M7fiXJjj4u3Zzmnn1RkiNrrceMGn7alU1qLe/qa7LW+qM0ldOek6TXc3FJkpcmuXut9XNjGn+sa6rWenWSB6YJQS732bkjyUeTPLDW+vxpC9rNa93Xr06zte3z0jw/W/u4dHuSM5K8MsmxtdZ71FrfvnIzBQAAYHdWmr9rBgAAAGB3U0q5VZKfT7Pt4L5JbkhyRZKvr0TocVSllHVJjk6z7eOtkhyYJmRxY5Krknw/yfdrrZsmNkkGVkq5eZJjkhyc5JZJbp5kU5rX9fIk30tyYa21n1DeTCmlnJLk5Qvbaq2lw3kTWcu7+pospRyRZmvZg9Js77oxzVa736y1fm+ScxtG6/c5Os1a2i/N63BBkjNqraNWi5uIUsrN0mybfLs07w8HJNmS5nf7SZr3hx/UWvsJ5QEAAMDIhO0AAAAAAKZQv2E7AAAAAFaHbWQBAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAeSq110nMAAAAAAAAAAACAqaayHQAAAAAAAAAAAPQgbAcAAAAAAAAAAAA9CNsBAAAAAAAAAABAD8J2AAAAAAAAAAAA0IOwHQAAAAAAAAAAAPQgbAcAAAAAAAAAAAA9CNsBAAAAAAAAAABAD8J2AAAAAAAAAAAA0IOwHQAAAAAAAAAAAPQgbAcAAAAAAAAAAAA9CNsBAAAAAAAAAABAD2snPQHoppRy8yTHL2i6LMnWCU0HAAAAAAAAAACYvHVJDl3w+LO11utXY2BhO6bZ8Uk+MOlJAAAAAAAAAAAAU+sxST64GgPZRhYAAAAAAAAAAAB6ELYDAAAAAAAAAACAHmwjyzS7bOGD97///Tn88MMnNRcAAAAAAAAAAGDCfvCDH+Skk05a2HRZt3PHTdiOabZ14YPDDz88Rx555KTmAgAAAAAAAAAATJ+tvU8ZD9vIAgAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAbDbqFs2pZ7zhdSf/mjSUwEAAAAAAAAAdjHCdgDsFuoXT0991G1Tn/OQ1MfeOXOvenrq9u2TnhYAAAAAAAAAsIsQtgNg5tVrf5r6kickWzbtbPz4u5J3v2FykwIAAAAAAAAAdinCdgDMvk+elmzftqS5nv62CUwGAAAAAAAAANgVCdsBMPPqf/595wMXn7u6EwEAAAAAAAAAdlnCdgDMvg5V7QAAAAAAAAAABiFsB8Ds27510jMAAAAAAAAAAHZxwnYAzL5twnYAAAAAAAAAwGiE7QCYfbaRBWiT9noAACAASURBVAAAAAAAAABGJGwHwOzbIWwHwGIf/VbNmt/d8bOvr15SJz0lAAAAAAAAppywHQCzb8eOSc8AgCny6fNqHvWGuUVtx7x6Lt+7UuAOAAAAAACA7oTtAACA3cpj3jTXsf05p3ZuBwAAAAAAgETYDgAA2M1s2NK5/ZPnre48AAAAAAAA2LWsnfQEAAAAuvnxDTXv/VrNpdckv3T3kofdo0x6SgAAAAAAAOymhO0AAICpdPFVNb/02rlcfHXz+DUfq3nRI0teddLKFejesq1m/Z4CfQAAAAAAACxlG1kAAGAqvebj9WdBu3l/9ZGaS6+uKzbmh7+5Yl0DAAAAAACwixO2AwAAptI/fbZzqO5fv7ByYbtPf2/l+gYAAAAAAGDXJmwHAABM3I65mq9cXPOhc2qu3bh84O0T565cIO6GTSvWNQAAAAAAALu4tZOeAAAAsHu7ekPNr/zfuXzt0ubx2jXJqb8zmf8v6MKrVLYDAAAAAACgM5XtAACAifrT/6o/C9olyfa55PH/NDeRuZxxwUSGBQAAAAAAYBcgbAcAAEzUh765etXkrumxRW2SbN2uuh0AAAAAAABLCdsBAAATs31HzXU3rd54V2/ofc6GLSs/DwAAAAAAAHY9wnYAAMDEbNq2uuNt29H7nE1bV34eAAAAAAAA7HqE7QAAgIm5aYhg25kXDj9eP2G7y64dvn8AAAAAAABml7AdAAAwMd+4bHXH2z7X+5z/+W5d+YkAAAAAAACwyxG2AwAAJmbjlsGvucMthh+vn8p2ZfjuAQAAAAAAmGHCdgDMtFpVJwKYZpu2Df4+vaOP6nTd9BO2e/kHa07/ps8PAAAAAAAAFhO2A2C27egjVQHAxGzaOsQ124Yfb3ufHwu/+sa5fPw7AncAAAAAAADsJGwHwGybE7YDmGbDBOeGCejN66ey3bxXfGiEEnoAAAAAAADMHGE7AGZbFZQAmGbDVrYbdpvwrQOE7c68cKghAAAAAAAAmFHCdgDMNtvIAky1YbeE3bJ9yPFGqIoHAAAAAADA7k3YDoDZZhtZgKl205Dht2FDczdtHa4iHgAAAAAAAAjbATDbhO0Aptqwle1W67pht6sFAAAAAABg9gjbATDbbCMLMNU2DxuaG7Ky3aDjbR1yu1oAAAAAAABmj7AdALNNZTuAqbZtyDDbsJXtBg3PDTsOAAAAAAAAs0fYDoDZJmwHMNW2Dfk2PWwIbsugYbshK+gBAAAAAAAwe4TtAJhtwnYAU23r9jrUdcOG4LYO+LGgsh0AAAAAAADzhO0AmG07hO0Aptmwle0220YWAAAAAACAVbZ20hMAgBVV5yY9AwCWMWiluXnDhuAGDtttTS66qmbbjmRNSQ67ZbJ2j5IbNtVctSG5062SUspwkwEAAAAAAGCXImwHwGxT2Q5gqg1b2W7T1ppk8JDboOG+Y/+qc2h7jzXJjrnk0AOTdzxjTR50hMAdAAAAAADArLONLACzbU7YDmCaDVppbt5qVbbrZkcrg3fZtckj/n4uV15fx9MxAAAAAAAAU0vYDoDZNmcbWYBpNnRluyHDdsOOt5xN25LTvyVsBwAAAAAAMOuE7QCYbSrbAUy1Qbd1nbdp65DjjamyXbtPnrsy/QIAAAAAADA9hO0AmG07hO0AptlqV7Y788KVqUD3kxtVtgMAAAAAAJh1wnYAzDaV7QCm2rCV5s4aIjR30VU1F1893Hi9fOq8pFaBOwAAAAAAgFkmbAfAbBO2A5hqw1a2+/h3Br/m37+4smG4z5+/ot0DAAAAAAAwYcJ2AMy2ubnux9b4GASYtGEr2x1/xODXvPr0lQ3bffp7KtsBAAAAAADMMikDAGbbcpXt1uyxevMAoKNhK9vtWCZLPSmXrNAWtQAAAAAAAEwHYTsAZttyYbtSVm8eAHS0dciw3bAhvW6OuPXofVxxvcp2AAAAAAAAs0zYDoDZtmPMaQwAxmrY0Nz2MVe2WzuGPxldes3ofQAAAAAAADC9hO0AmG3LVbarKhABTNrW7cNdN+6w3eOOHr3a6UVXJdVnCwAAAAAAwMwStgNgtgnbAUy1oSvbDXHdfe/Q/dhjjho9bLd5W3Ll9SN3s8S1G2ve/dWav/7oXN7yxblcdo3PLwAAAAAAgElYO+kJAMCKWnYbWWEFgEnaMVczN+Rb8XlXDn7NjZs7t5/8CyX3WSaIN4gLr0pue8B4+kqS866oecjr5nLFghDfurU17/79NXn0vUYPCAIAAAAAANA/le0AmG3LVbYDYKJ6VbW7y0HJSx7VOVC2ZYjtZ8//SfdxShlPcO2iq8Yb5H7OfywO2iXN1ru/9W9z2bZdaBwAAAAAAGA1CdsBMNuW2yrWNrIAE7V1mcDc2S9ak/NfvUduv0yVuO07xvM+Ps5PgwuvGl9fm7fVfO77nY9dvyn58iXjGwsAAAAAAIDehO0AmG1zc92PCdsBTNTmbd2P7b2u+b7P+u7n3LR1sPH23KNz+3yVvF+7z2D9dfKuM2uuunE8ny83bEq2L/MxdvWGsQwDAAAAAABAn4TtANh9CdsBTNSm5cJ2ezbf73OH7tu7Lnd9ux1zteu2tScc0Yzx3IeO/sej83+SHPy8uTz2zTuyaetonzMnvnGZpF2STdt8jgEAAAAAAKwmYTsAZptAHcDU2rRMZbr5sN3890Gvb/ftH3U/tt9ezffj7lpy1ovG80ek938j+bN3D/8Z9F9fmcvZFy9/zpd7HAcAAAAAAGC8hO0AmHHLBx2qMB7AxCxb2a61jexyYbvltqFt94Fzur/fLxzjmMO6V9Ib1Pu+NvxnzB/+R+9rz7vCZxgAAAAAAMBqErYDYLb1CtMJ2wFMTD/byM6H7ga9vt11N3U/dueDFj9+3H3773c5V96QbNs+3OfMT2/sfc6htxhfMBAAAAAAAIDehO0AmG3CdABTq9s2sKUk69Y2P++13DayA4Ttljt3n/WLQ2tP/YU1KWPKsQ0yx0Ft3bFyfQMAAAAAALCUsB0AuzdhPICJueL6zu/Be++ZlFbabf3adA2+dQvrdfJPn+081hOPWdr5o+9V8q5nlNzn0GYuD75b/+O0W8mw3bbtK9c3AAAAAAAAS62d9AQAYEXZRhZgan3qvM7tC6vZlVKy19rOobVxBNn226tz+xOPXZMnHpvUWlNKyTGv3pGvXjJ4/4MEAued/+P+Ppu2CtsBAAAAAACsKpXtAJhxvQILwnYAk3L7Azu3X7Nx8eO913U+r98gWxOY63xs45blr52vsPfY+w63r+zmIQKB37m8v/O27vAZBgAAAAAAsJqE7QCYbSrbAUyt7Tv6O2/vPTu3b9rW33v4lu3d3+6Pu2t/czjxqNI1sLecbX3+jsNcs2UFt6gFAAAAAABgKWE7AGabsB3A1PrWDzu/Bz/k7osfj1rZbrnz7n+n/hJ0R96u5J3PKNlnfX9jzts6RNiu34p1w/QNAAAAAADA8ITtAACAifjItzu3f7ttG9Xule36G+dH13U/1q3vTp507Jpc/fo1OetFa3LF363J0x7YO6i3dXv//c/rt7LdMH0DAAAAAAAwvLWTngAArCiV7QB2OT++YfHjUcN2F/60+7Fb7NNfH/PWrS055rDm5xs2zfU8fyW3kVXZDgAAAAAAYHWpbAfAbOsZphO2A5h2o24ju1x47eD9+9tGtpN+8trDVJ/r9xqV7QAAAAAAAFaXsB0AM05lO4BpdNWN/b//jlrZbtO2lXmv76fXYarP2UYWAAAAAABgOgnbATDbbCMLMJX+7n8HCNuNWNmuWyjvLgf1PYWO+vkIsY0sAAAAAADA7BC2A2D3JmwHMBGfPHeQynadt3rtt7LdTV1Ced0q5vXrqEN7b0G7ktvIblHZDgAAAAAAYFWtnfQEAGBF9QzTCdsBTMK1G7sfe/0TFofY9upS2W5zv9vIdgvbdem3X888ruQVH1r+c2TrjpqkdyhvoX4r2/Vb2W/jlpqvX5psn0v2XZ/ss37x93VrB5sfAAAAAADA7krYDoDZpnIdwFS68Krux57+wMXhr24V6DZt7e89vlsFvFEr293+wJJnnVDyD5/pPo9hKtv1HbbrI2z4z5+by7NPrdkx1/2cPffYGbxbFMZbl+y7V8k+65c/vm+X40J8AAAAAADArBG2A2DG9QhiCOMBrLovX9z9vfffnlqy3159hu36rGz3li92Hm/UynZJ8sYnldz/TsnJb+k8Rr/BuWGu6VXZ7uyLan7/nb0/57btSK67qflaavgKsWvXJPvutTCYtzikd7Mlba3v61shvy7H161NShHkAwAAAAAAVp+wHQCzrVeYTtgOYNW96L3dy6zdZv+lIapuobh+t1HtFl7bawx/Giql5LcfUPI3H9uR716x9PiWISrbbe0zbLd9Ltm2vWbPLhXkPvzNyX7GbZ9b2RDfzmDezp/3Wd9U4lvueHubEB8AAAAAANAvYTsAdm/CdgCr7pPndT/2c4csbRu1st0Rt05+fMPS9rMu6u/6fqzv8ierzX3OcaFBquFt2pbs2WXsy68ffOxdwUqG+Dpth7swxLfc8e7b6QrxAQAAAADArBC2A2C29QzTCdsBTJNDDhx/Zbtu5z38nuMLQHWb46Bhu+07av7hM/1/Nm3aluy/d+djO4bYwnZ3tn0uuX5T87XU8P89sceabgG9ZN+2EF+3452uF+IDAAAAAIDVJ2wHwGyzjSzAVLl24+Dvu6NWtusWeLv3oQNPpatR5zjvj08b7Pn5+qXJw+/Z+dggFfJYOTtWOMTXOYy3M8S33PFO168X4gMAAAAAgK6E7QCYccJ2ANPk499Z/bBdt/P26tLvMEatvpck27bXnHrWYM/PO86sXSv0bZ/rfM1T7l/y0keXbNiSbNySbGh9bdxSF/y883vzc207d+f3QQOFjMdqhfj2WZfsu9fCn0tutqRt/ueSfffqdI0QHwAAAAAAs0HYDoDZJkwHMFXOu3Lwa/ZeV9IpHNRvkG3r9s7tYw3b7dlljgME0c67sltwqrv/OLvmXc/sfGzbjs6fgQfsk9z11p1CT8MFoXbM1QWhvKVhvA2tEF/78Y3dAn5bkw2bhfgmZfkQX7J8kG/5EN988G6fda1qeot+3hniW3p8cYhv4XEhPgAAAAAAVpOwHQCzzTayu50zLqg57jU7yzm99Wklv/2ANROcEbDQ1mW2Nn3xozoHZrpVtrtxc39jdttOdc89+ru+H90q23XbwraTbpXohrW9y++9dsxviXusKdl/72T/vbudMXyI76ZW8G5hCG/jz9rqgp93tjfX1EVtQnyTt2MuuWFz89XZcCG+NWVpcG/x1ritLXM7Ht+5nW778b32FOIDAAAAAGApYTsAdm/CdjPl7IsWB+2S5OS31GzaOpffO17gDqZBtypzSfLKE7uE7boE2bbPJbXWnoGYbmG7tWvGF6TpViXvE+f2/zlzydVjmkzL/57buX2cIcOVtMeakv32Svbbq9sZo4f4Nm5tVdvbvDDMVxe3bVkc4ltyzRYhvkmaqysb4vvZdrqLAnw7g3qdj5e2c3d+F+IDAAAAANi1CdsBMNt6humE7WbJs0/tXBbqWe+q+b3jV3kyQEfdKtuddO/uAZRule2S5LtXJEfebvkxV6WyXZc5Xn5d/3386+fHW9quW1W9cVe229WsdIhvXNvpzv98U5/bJTNeKxniWxrcW1xt72Zdj5cuwT8hPgAAAACA1SJsB8CMs43s7uSrl3Q/tmVbzfo9/SM0TFq3ynbr1nZfn7fat3t/X7+05sjbDVfZbpxhu+s3dW6/zf799zHubWQPuFly3U1L239843jHobFSIb65+Up8XcJ4G7bUrgG/jV0CfhuE+CZmrjZbYHffBnv0EF/nMF9Zcnyfdc32ufuuLwt+Xnx873VCfAAAAAAACwnbATDbeoXpVihsV2vNJ85NPn9+zRG3Tk48qmT/vf1D5SR97DvJY+496Vkk126s+eA5NRf8NDn+iJJfurt/xGY4l19X84Fv1FyzMfmVI0vud9iucR91DdstE3w7/ODux7pVb1toNcJ2B+032NidnHfleOYyr9suube7+XjHYWWtWVOaENQKhvg6h/U6V9u7aZmAnxDf5KxUiK+U9mDezp+b763tdDseb22nu9fS40J8AAAAAMCuSthuQkopeyQ5PMk9ktwuyc2TbElybZILknyl1rpxzGPumeSBSe6Q5LZJNiS5PMnXa60Xj3MsgKkxgbBdrTV/fFrNGz+1s++jDqn5n+euyUH7+UfFSfm1N8/lxY8q+cvHTG7/xCuvr3no6+by3Suax686veZ5v1zyt7/uvmAw515R8+C/m8tPWhXKXvbBmn94csnvPmj69wftGnxb5k8mywUyru1QuW2hWmvXinHjDNsdd3jJ33586WfK1X3+F/0ZF9Rces1wY++Yq9mjQ7Ku23N99B2957DyIb6NW5MNm1thvIU/z1fbazu+cfPiEN+S41uG/lUZQV0Y4ruh4xnLXd31SCmtAN7CMN76xSG+m3U93rad7oLjQnwAAAAAwEoTtltFpZQ7JHlskocm+cUky20qtaOU8r9J3lhrPX3EcQ9K8ookT0hyiy7nnJHkdbXW94wyFgDJOT/MoqDdfNubPl1zyon+8W+SXn16zTOPq7njLSfzOrz+E/VnQbt5r/2fZk53u417g/696L07g3ZJE4b4k9NqnnL/mputn+57acu2zuGL9T3+ZHL0HTtvFX3qWTXP///Zu/Mwuaoyf+DfU11dXdWdfSUJkJAQVtmRHVlF0BHBDUVRQUZHBweH8aeijsLM6LggboMO4AKKouiALLIkskPYCQGSACEhCQnZ916qqqvr/f1RXd236p5z7rlVt5bu/n6ep59U33PvubfWdN361vu+y7xdzlJZLsqwXarVPCYigeGPE75XeQ/Znqw+MGW67lFeb6Jy3hDfVO073mhCfF3F1rrFy+nSEF9xvCsNdGXFF/zr8lT1o/oTGayGWKsQn2s73cHLSrsNQ3xERERERERERETkxbBdnSil/gDgoyE2aQFwJoAzlVJ3AbhYRDZUsN+zANwAwNJ8CwBwHIDjlFK/B/DZqKvqERE1TGDluugr213zoH7O/7hLcMXZke+OQrp/qeCiExrzYamu6hUA/O/Dgh+dxw9wyd3ti/zL0r3Azc8IPt2gx7errCEAlgh4Z5I3ZNGmj7NvZ2vjGmXorM0StnttA7Dvbubxnmx1/xf19OrDdqbrHm/+AohEPrUM8fX0lgX3vK1x0+Jf5mmnq92GIb6GKQnx6dewbW0cKYb4TGG8YohPP24O+LUzxEdERERERERERDTkMGxXP/sYlq8FsAzABhTuj9kADgHg/QjsHwA8opQ6SUTWu+5QKXUygL8CSHgWC4DnAawAMA7AYQAmecY/BmCMUuocEam8vAYRUdOofxvZPz9rnnNnj+DZVcCWTmDRGsGtzwtaYsBPPxLDyfvywzZXmV7BkysK4ZYjZwLxFvfbbUdPtMciIli+CVj0JnDw7sDeU8Lfj9c+IvjRedEeF41MC5YDnz6h0Udhl83plycCgm8L39Qvb0/olxeZWsgC0Ybt9reE6Xal7dtWG8pZtwOYPLp0Wb3a5xINdbHYYEiqViG+rowujCclwbziv12Z0na6uu2p/rwhPv23IKMJ8emq7bVbAn6mCn4M8REREREREREREdUOw3aNsRDArwHcIyLLyweVUjMAfBPAZzyL9wHwZ6XUO0SCkyFKqd0B3IrSoN3jAP5RRJZ61msD8FkAVwEo1uN4L4D/AvC1MFeKiKgpBb1k1iBs12eZctyl+uTDaVcXlu/6WQwdTd4CstGeWyU488d5bOmvwbrXJGD+v8Ywe7Lb7dbTG92xZHoFH/tlHrcuHFx29iHAHz8TQ7LV/X5M9wKX35rHd85V/GCUqvKbxwVXni3YfXzzPo4qrWz3kbcr/PEZ/wvs8k327WyV7eIRhs7Gpsxjmzvt26YNAUQv0/UHgEP/I48bLlT4xLGD39fps4QMo7zeRKTnDfHpVRfiM4fxRBvQ67IE/IrtdWvwZzEFqGWIr73YTjdRqAhZenkwxOcfLw3xecdTrYXHNhERERERERER0UjGsF39CIC/AbhCRJ61riiyFsBnlVKLAFzjGToBwHkA/uiwvysBjPf8vgDA6SJSUldDRDIAfqqUWg3gNs/QZUqpa0VklcO+iIiaVwPCdtVUKDrpB3k8+w2mIEzyecE51wwG7QDgjc3Ax3+Vx6NfduuLGGXY7qp5UhK0A4A7FgHfvUdwxdnhPoj83r2CY2crnH1odMdHI9Onb8jjvn9t3tcRY2W7gHcme03SL3/BUPGuqF5tZG0Bto9en8e2n5hX2N5tn/sv/xTDKfvCGLYDgAtvEJywtwwEj+tV0Y+I6ssb4puiXaOyIJSIoCdrrqZnqrbXnS202tW10WWIr3FEBislGtawbW2duzyE19Ef6itcVuhImsaVNvjXkSgEAxniIyIiIiIiIiKioYJhu/r5kIisDLOBiPxcKXUqgA94Fl+AgLCdUmougE96FmUBfKo8aFe2r78qpW70bNcG4FsALgpzzEREQ09zffr3/OpGH0FzW/gmsHa7f/mTK4C3NMt1erLRHc9dL+ofP3e9KLji7PDz/e0lwdmH8oNGqs4DrxaqFzVrlUxT2C4oAJZsNY91ZwTthutbr7CdrSplUPvq51eb/y86Zjbw/sMVMr32/69EgD89K7j8rMJxWCv6uWWTiWgEUapQ6ay9hiG+rizQmS4P48ngMs94McRXsk3ZZYb4GqOWIb5iME/XTrcjaRpXnrCfv50uQ3xERERERERERBQ1hu3qJGzQzuMalIbtTnHY5nwA3o8ObxWRZQ7bfQ+lIb0PK6U+bwvpERE1PcuncAJga5eCoVhSxca3A9sCqhRRZV5aa74/12xzm6M7wrDdU2/ol+tCkw5d4HH9o4JrL6jyoGjE68sDW7tsrQsbyxQCSwQE30YnzWNbuwsBkTD7A5qnwpstBnDZOwvJuDaH1tRX3CG4/KzC5bSliqctuEhEFCVviM+wRkXzFkN8XcVqfOnBMF5hmXguDy4vaaerGe/MMMTXKMUQ38ZdutHKQ3zFdrolrXEHwnqD7XT948oQ/GOIj4iIiIiIiIhopGPYrvmVNadDSik1TkRs9XvOLfv9Ny47EpGlSqmnABzdv6gDwBkA7nA6UiKiZqT5tEwAfHfi/8PPJnweG787FXMm9+H7H4zh3MOi+cBkzmTgWTbhrgnbPRTUhrHIFkCppYyhmhdRWC7BzShDpVEzhd+Cgm/vOUjhslv0191WsXIohO1s99e7DnSfx3tduzdtBTBOu16KYTsiGuK8Ib7Jo7VrVDSviCDd62+H6w3xadvlekJ8unGG+BqnO1v4qVWITxfG62hTvmCfN+Cn36ZQmY8hPiIiIiIiIiKi5sewXfPTfTSfMK2slNoNwCFl2z8eYn8PYTBsBwBngWE7IhrS/B+SXDfuYvz7lCsHfl++CfjwtXk8/pUYjtqr+g83bMEOp+1zgtY4P2TRWbnFPHbFnXmnOaJsI2sjIiVtJeu1Xxr+XD6s72lQqNRFzvBUjQcE38a3m8ds17dZwna5PkG8Rf/abjr+yaOB0cnBbT51nMINC9zSGl3fvQTATdqxlPHdBBHRyKaUQipReJ2sVYhPH8aTkuBecbw7Yw74FS/nGeJriGKIDzUI8WnDeAlgVLIQ1NOPK4xK6gOADPEREREREREREUWLYbvmt3fZ7zkAmy3rv63s9xdFpCvE/haU/R6ilgYRURPSpFJ+P/YjvmV9eeBPz0okYTtTkMRVTy/Qyv+htZ5+w/zh1DMr3ebo6a3PJ5KL1gCH7uHdb112SyOAyyO4mcOdlVa2swXEhkJluzc2A3On6sdMrw97TSz93aX965ptghndK9CzYjkwW78OK9sREdVXrUN85jCevtpelyXgV7zMEF9jFEN8myIO8aVaMRjGS5RfVoVKfdrxQojPvw1DfEREREREREQ0cvGj/Ob3wbLfnxURW4zjgLLfXw+5v+UB8xERDXkL2o/TLv/N44Iffqj6+autbNfTC4xJVX8cw9FekxTcokZmUYWQcn3243h9Y2nYjm1kKSp5h0BvM4c7jZXtYvbtbAGxZqlsZ6s8t36nJWxneF0qDxjOmRx8DMs3AtMfvhE9saRxnXZWtiMiGha8Ib5JNQzxdWULrXQ7PUG9kja6/eMl7XS923guM8TXGD29hZ9ahfg6+tvqei8PtNPVjnva6ZaNtyeAFob4iIiIiIiIiKiJMWzXxJRSowB8umzxbQGblVfCWx1yt6vKfp+olBovIttCzkNE1Bxc+i32294dzS5zVYbtpn2pNIkyZzLwrgMVvvVehcmjR/aHDt0RBOWimGPjTsGX/8/+2PrwtXnMmgh851yFjxwVQ9YhbHfUrOqPjYa/kVrZLhZTSMShfS7Zrq+t2mhQwC+sfz7FHLZLWwKBprBgecDwfYcqfOOvYg3vdmcB5PN4PVH+tqBAKSDBd4FERGRRyxBfJtcfzMv2V9NLe8N4Mhjc84x3Z4HOdGmIzzvOEF/jDIT4tKPVhfh07XK9IT79+GCIz9dOt40hPiIiIiIiIiKKBj9maW7/DWA3z+/bAfwyYJtxZb9vDLNDEelUSqUBeEthjAVQVdhOKTUFgEMtjhJzqtknERGAUGG7qFRb2a7c8k3Azx8SPPSq4MnLYxiVHLkfENjCKq4eL6/hGtKutOCUH+axdF3wuiu3AOf/UtCZyeNohxbFT6+s7thoZHD5MLmpK9sZXiNdgm+pVkPYzlbZzhJMi7qy3REzzc/zLZ0CUzjBtbLd3lMU7rwkhs/elMcbm/Xb3LBAcGS+AxdNv14/Z6tAqZH7/wgRETWOUgrJ1kJb9En6NSqaVxfiG2iNmwa6slIa7PO2002LP/jn2b7PoaIwRa8Y4tvcqRuNJsTnUFNSuAAAIABJREFUD+uVhvjKA376bRjiIyIiIiIiIhqJGLZrUkqpcwFcUrb46yKyNWDTUWW/91Sw+x6Uhu2032MO6fMAvhXBPEREVVmc2L/m+4g6bFe0ZB0wfylw7mG1mX8o6M42vmTFvS/DKWjn9eO/C268iB/AUDRcMsQ9WXOwq9HMle2CjzfVCuzQ/HXb02u+vqb9xVShWl7UJo3SfzB872LgI0fptzFXtvMf3+kHKCz/Tgtin9FfsT8/J3jXXub/62zteImIiIaiWof4BoJ73ta5una6mbIgn2GcIb7GqVWIL9lqCvAVQnztloBfeXBvFEN8RERERERERE2PYbsmpJQ6BMBvyxbPA/ALh83Lw3bpCg6hB8B4y5xERENHWSrlheQhxlWjOo+drVHYDgAee11w7mEj94R7VK0x+/JS8QcXz64KH/hbss6tTTGLTZGLIV/ZzvDhctyhylx5pbci22tDpW1rK6X/8BaYNta8jalqZ9JwfQFgTBLYqflLXyng31a/07hdqrXxoWUiIqKhwBvim6g9M1Z5iC+bMwX4+tvpGgJ+XZZxhvgaJ91b+Kl1iK8jAYxKlrbT1Y+rsnUHxzvagLjDl1yIiIiIiIiIyIxhuyajlNoTwN9QGnBbBeDjIhX1QqzXNkRETeumMR/FIx0nog8tuHHcBcb1Zk2sfl9vbhVs7ap+HpNMEwdo6qE7orBdNmcO7dTqGHTVuMqJVBcEpJFhKIftnlgu2GX4KohL+M1Ulc3aRrbOYbuwxwEUKxH62arQHbw78Njr/uUiwI6+pH+gXzvDdkRERA2llEJbK9BWwxCfPqwn2oBe18CPf7wrC+xKM8TXKLUM8RXDeB2J/mp6xcvJ/na62nFVtu7gOEN8RERERERENJIwbNdElFJTAMwHMMOzeD2Ad4rIJsdpyk+/pCo4lPJtDPU5Qvk5gD+H3GYOgNsj2DcRjWQieKz9ePx63KcCV622/esr6wQHfKu2n0K8sXlkhySiChBVE7Z7/PXK7oMHXnHbLt1b+KCCyMTl6xdXzxNcelrtjyWMXz+Wxz/+znzw8VjwHKbn7WsbzNvUO2x3xgHAvCX+5U+/Yb7uphCvLWz3X+fEcPJV4f/PScVH9v8jREREw1WtQ3xdWaAzPRjC60wX/5WSZd7L3QHjporHVFvFEN8W7RcFKw/xtcXLgnve1rhJhfbyYJ+hnS5DfERERERERNTsGLZrEkqpCQD+DmAfz+LNAE4XkWUhpmrKsJ2IbASwMcw2ir30iCgKImiBW4qu2vavX7ut9p8U3PNyzXfR1CIL21VxX7/wZmXb/fwht4BLT5ZhO7JzqWz35rbaH0cYuT7Bl/4i1qCgUxtZQ/jsmgcFP/uofqy3T7/TWoXtJo9W0H0QqatCV2R6bbOFgidpP0QPlnd5ABERERH184b4JnRo16h47myuv5peMbiXKQ3x+ZZlSkN8pnGG+Bojkyv81CrENxDG87bG1bXTHVhPGbYp/MsQHxEREREREVWKYbsmoJQaC2AegIM8i7ehUNFuccjpdpT9PjnksYyCP2y3PeQxEBE1EUGLOIbtctXt6a8vVLe9i5kRtLodyqJsI9usorqONHy5VLYDgOUbBXOmNMcHSC+uAbZ329dxCb+ZqtTZ2oDXu7JdJVVS06awnaWy3dhKvlID4KUNlkmJiIiI6igRV5gQr12IL6p2ugzxNVYtQ3zmMF5/O13LuC4A2JEAWuPN8R6MiIiIiIiIaodhuwZTSo0GcC+AIzyLdwI4U0QqiW2UV8GbGXL78vW3ikiT1UYhIgqhjpXt6iGqcIiI4NX1wEtrgaP3AvacqCAiWPwW8Mp64Lg5wPRx9hPExfWfWSmYOkbhxLnA6GT0J5XzecFLa4HnVglWbYlmzkyFYbucoUJWlKKq3jecpXsFNy4QPP46cNkZCofuMbI+zHAtTLZxFzBnSm2PxdWOnuB1XNrIbjbUW7a9NprCby6V9CoxKmnYn+X6mQLACcu7tenj3I+JiIiIaCSpZYhPF+Dzhvj0AT/z+C6G+BqmGOLbGjrEZx9PxP0BPW9Ir10T4CsJ+SUK7ylKAn4M8RERERERETUVhu0aSCnVAeBuAMd4FncCOEtEnq5w2qVlv+8dcvvZZb8vqfA4iIiaRqxOle3Cmj4OeCtk7dCeCKqe9eUFn71J8OvHBk8Of+u9CovXCv7y/OB615yv8LmT9emQbE7w8V/mPesLxrUD914aw1F7RXcCON0rOO/aPO58MbIpAVR+X3dmoj0OHYbt7F7fKNjnG4OfRt30lODY2cBjX4mNmBb0rpXtmqlZ6HWPBB+NS5j4n09RuOwW/1zLNpq3MX14WavKdh8+QpW8vnqPI9cn2nZVlVTfU0rhohP0+yIiIiKi6CXiCok4ML6GIT5/WE98wb3ieHf/uCkAWEnFZapeNgdsrWGIrySM13+5I6HQkbSPj2orXi4dZ4iPiIiIiIgoPIbtGkQplQJwF4ATPIu7AbxHRBZUMfXLZb8frJRqF5GAxl0Djg+Yj4hoaAlR2a63r1CtrZLATp9DqakrzlZYvRWY2AGceaDC9h7gA78I9xX2KFqM3vy0+MIZV97pP/5//oPg9P0Fc6f6b4//fbg0mAcUWkR++No83vjv6EJPP71fIg/aAZVXMbzmwdqHWlZvAQ7do+a7GbK8QbuiJ1YA85cAZxzYgANqANfKdvkmqZDx1nbBn54NPmiXSnMzximYPoDasLNQZbNcvdvI6j98LXh0GXDKfv7llR7jhwzBPiIiIiIaOmod4uvKFtrglobxPAE/73gW6Erbx+v9RUUqqGWIryOB0jBeW2mIzzZeUqHPM84QHxERERERDWcM2zWAUioJ4A4AJ3sWpwGcLSKPVDO3iKxTSr0I4OD+RXEUAn3zHKc4uez3e6o5HiKihhNBi2NlO6AQeLC17TNxqTh32ekKozxtVu9bHD4gEUXVs1+FCGbc9JTgyrP9J0jveVk/x+qtwNJ1wAHTKz68Ene/VJsQSaUfDvz77bUPtSxeJzj7UJ6U1tnZY779L7oxjzXfr1F6qsm4hu2apTW262udSxvZ9oR5bN5iwQXHNj5sZzvGexcLTtnP/RgTAceYag1xYP1aY3kAI+O5QkRERDSS1SvEVxrGk5Jg3sB4phDis40zxNcY2VzhZ5v2q/rRhPi07XKTAeOGdrsM8RERERERUTNg2K7OlFIJALcCON2zOAPgHBG5P6Ld3IbBsB0AXAiHsJ1Saj8AR3sWdblsR0TU3AQtcC/vlM1VGLZzCMF5g3YAcPiegFLuLSEBIN1befW9oodfc1/3P+8SXPFewdrtwPSxQCymsGGn4L7F5m027gIOqPjoSi1dH9FEZTJNfBK/kvDMSLGjxzwWtiVzJUQEq7YUnoeNtKnTbb0o2k5HYeMut/WSDo/9w/cMv596h+3mTjGPmaqTVnqMlfx/9ZOTVwOYE35DIiIiIiLULsTXm5OB4J03xFdYJqXBPU07XdM4Q3yNUasQX2uLKaBXCOm1awJ63vEOw3iCIT4iIiIiIgqBYbs6UkrFAdwC4CzP4l4AHxSR+yLc1e8BfAODJSver5SaKyLLArb7Stnvt4hIOsLjIiKqOxFBLEzYrsJKUJWEWiaPVvjksQo3LAhXLS3dC6QslZOi1vLZcL0oowj4bNwpOO+6PDY5hnTCquRke961nFiVoqheOFzV6S7Q+utCwSU35+sS6otKszyWXG8zl6DptHHmD0BM17feYTvbhzSvrdc/iE3/9wQdYyXX4QOzNoFhOyIiIiJqNq1xhXFxYFy7bjSaEN9Aa1xNO93y8a6A8Wb+Et9w1ttXCPDVOsRXGsbzh/TKx8uDfcV/GeIjIiIiIhqeGLarE6VUCwohuPd5FucAnCcid0W5LxFZppS6EcBF/YsSAG5QSp1mCs8ppd4H4FOeRVkAV0Z5XEREjRKmjWyl33gOCrXEDOfWrv+Ewr67AX97UfDY62776s5WHraTMGX0KvTqBsFZB1V3MvGcn+fx5IqIDkijklDlD+bVKWzXJNXImlEdHr5ai94UfOjaPPrC5U4bricrqOZDqaj87AG3O86lsh0AnLSPvkLnnYsE33iPf3m9w3YAcOHxCr953H+95y/VVyc1H6P9/nNpves1O7sCk3Kbwm1ERERERDSE1TrEZwrjdWbEV2Wva+BHDNswxNcotQzxDQTwEsCopPdyIcRnGx9lGGeIj4iIiIiosRi2q59fA/hw2bKvAViolJoVcq71DhXnvgXgXADj+38/DsDflVIXi8grxZWUUm0APgPgh2Xb/1BEVoU8LiKi5iOCFrgnqyo9qRkUtpugba8CtMQUvnKmwlfOLPye/8HngTt+hdcSe+OAOS9WtC+bF96sfFtX1YbkVm2RmgbtACBTwW14yzOsbNdojapsd+tCGXJBO8DcsrSeNu1yv9NcWyiPatMvX27IkDUibNduCUS/8CZwWFk7XNMxBrWJDXsd5mSXQ15+EuqE94bbkIiIiIiISthDfEClQb5cn7manq0aX3cW6EzrA34M8TVObx+wvbvw41d5iC8eKw/m9f/bVgjptfuCe6Xj/mBf4d9EHL4vhxERERERkR/DdvXzCc2y7/f/hHUKgIdsK4jIGqXU+wHch0JlOwA4HsASpdRzAFYAGAvgcACTyza/C8C/V3BcRETNRyRUZbt0hUGnoPDW+w93PFF1x68AAKl8j3GVaiqfrahDQaPp46rbvh7HmM6Fr/i1YnNtjqUcK9uZNSpst7JO933UmiG4uXKL+7quFTsXGkLDh+yuX24KsoWtChfGPlPNYys2uYftgsJ08ZBhuy9v+SHU2LPCbURERERERHUTb1EY2w6MrWGIrysLdKbLwnxZGVzmGS+G+Eq28VxmiK8xcvnahvgGg3mDlwfa6ZYs07TT1YwzxEdEREREww3DdsOYiDyklDoXwA0YDNQpAEf2/+jcDOAfRUIkU4iImlq4ynaVhlNyAVWvPvr2cCeU2sUStqsiQNPTW/u0UrUBn3oEhCoJtNmOa9IoYHNn6bKT9wEWrwM27YpuPyOdLWxnqnZWjb684D/vEvzuyQal/KrUDI+lMM811xPvR84E7tjuX761y7+sNyf4wX36+6+Wle3ed4jCpX/U77fwOuzaRta+n7DX4fjuJ4DMKeE2IiIiIiKiIa/WIb6ubH81vfRgGK+wTDyXB5eXtNPVjFf6ZViqTi1DfKXBPO+/pe10deP+YB9DfERERETUWAzbDXMicrdS6m0ArgRwHgbbypZ7EsBVIvJ/dTs4IqJ6CFnZbldQk24DU1ACAP5wscJJ+4Y78WOrbFdNa0hTm8UopauszLZ2e7hg07SxwIadwFF7ubewDRtC6ssLsoZvax+9F/Dol2P44p8ENz8tyOSA9xyk8MtPKqzfAbzjB3ls2Om+L55QNhPLQyNshS8X/3ST4FePDc2gHQDctUhweYOLmJWHUE3OPNB9znfso3DHIv/9smiNf91P3WC+/2oZtttzovk1v7xKZl9ejI/twMp2IarzXbblR0igF/LyExV+jEZERERERFSqliG+7qy/Ha43xGdqt1sM8enGec6lMXJ5YEdP4cev8hBfS8wfwDOF+Ezjuu0Z4iMiIiKiIAzb1YmINOwvcxHZCOBzSqlLUWglOxPAbgC6AKwFsFBE3mjU8RER1VqYynYPvCI4cW74l+ycYRcxBXzkKLc0hKx5feByUsypv2rajN6pCahErZowIADc/aL7Mf7tCzGc+bbCydJUQiH2Gbf7OuxtaDsZ+5OPxBBvUfif8xV+8hFBXx5IxAuPodFJYN1VLehMF070JlsLp5njLcBXbxVc86D/uvZkh264q9Zsle2CWjmHtbNH8Nsn7PfFhccrfPucxp98/cSv8/j7Uv/yJxzDp7V072K3x3NHiMqEqVbz2OsbBXtPKdwnm3YJ/viMLWxX2/vuwOnA4rf8y//2ouCb/zD4uynIC0Rb2e6AzCuFC0/Nc9+IiIiIiIioAeItCmNSwJiUaY3K3s/15aUkmOcL82X0490Zc8CPIb7G6atxiE9bbS8BjEpaqvElFEYl9du3McRHRERENGwwbDeCiEgWwIONPg4ioroSwdTcRufVwwQ+vCptAVhi2aKBizEI2vJpZGJJ32rVtIY8aIbC86trG+aqtlXtrEkKwSfECqaNK5ykSiUKv196msJP7g/eNuxtaDtpmvQEf1piCi2abOWoZOFEm1eq1dRiMtyxjSTWsJ0lsFSJJevsFSuBwjeddxvb+JOkWwzV42ZPqu9x6Ewd47beOYe5347TxppfI55fPRi2e3GNvRpiLSvbAeZKogdOd2shCxQeYzZjjR88+U3NbShcOPh4942IiIiIiIiGkZZYbUN8pjCeqdpelyXg15XhOaJGsYf4APt5S3uIrxDW8wb3SkN87cbxwrlF3fYM8RERERHVH8N2REQ0vIng1K6HEJde5JSlHFK/Sr+JGknYbmNpD8SU9CADf9iuO50DEHxddHb01L5qWjWV9zK9gp8+4HaMe4wHDtm9dNlFx9cmbGerPNVW4V9TxYBguWpuv+HOFpzKC/Dde/JYthE4YibwiWMURiUrP9H45Irgx9EB0yqePlJ7TQIWvulfHlRlcuNOwW+fFPz33YJt3cC5hwHnHqZw/lEKsVg0J2ldH89nHui+v9P2d9tf0PWvddjO9P/J5s7Sx5YtbBd0jKmE++12UvejhQvZCvulExERERERkVa9Qnxd2UIr3U5PUK9TM+5tp6sbZ4ivMfrywM504Uev+hBfR6K/ml7J5cEQn3/c0063bJwhPiIiIiIzhu2IiGh4E8HUvo24Zc3H8NEZv9VWivN6Y3Nlu8nl9cvjjmEO2b4Z8j9fLlnWnu/B9pbxvnW7u3pRSdgumxP89YXQm4VWaRvZbE5wzs/z1kBV0eTRwO2XxHwnfA7aXeG6CxQ+9/tCO1eTsIG2bBWVp0xMrTB5wtPMVtkOAL52W2GF3zwO/PFpwbx/jSHZGv6k4EOvCi67JfiBeNCM5jjh+JGjYrh1of8Bv34nICLaE6PrtgtOvqoQTiy6bSFw20LBA68Av/pkNCdUXR7PN31aYeIo932NtoQor54v+ORxhcvbu+33oevrc6U+d7LCLx7yH8NdLwK70jJwPaoJ2wHA+Ucp/OFp+3X9r43fRLv0fyX/leeCJyUiIiIiIqKGq2WIr9sb3CuG9AaWSemyTOFyYRvxb5NhiK+RahXiiylzO93CZXM7XW+Ir3w82coQHxEREQ19DNsREdEwVzhhcHbnXdj02gwsSB2DpKTx7UlfxfxR7/St/ZvHBb/6ZPi99PbpT0y4Vk6SX13pW5YSfa+Cnp4sgHbXQxvw4KuhN6lIpSfWHngFuG+x27pvfi+GRFx/UubiE2P48JGCZ1YCV9yRx+PLqz9GW2W7RIWBHVa2Cy8obOf12OvArc8Lzj86/Mm7K++0JDU9TIHJerMdx4trgEP28C+//jEpCdp53bBA8KUzFA6YXv2x2R7P/3O+wiePVehoC38fHbx74bqVe2kt0JsTtMYV7lhkf8DUurLdKEtb8tsWCj5xbDRhu1kO7YLP7JxX8rvkclBxvhUkIiIiIiIaiVpiCqOTwGjjd5KrD/EVQ3gDrXHTQFdWPJfL2ummpSS45x2v9Iu9VJ281CfE5w/rlYb4ygN+5cG+4r8M8REREVE98RMWIiIa3jxl0tqlB6d3PwgA6DW0lD16r8p2Y6ps5xzm+Ot1vkWpvD5sl+6xJL8sbnk22hayx8wGnlzhX15pWGz+UrfjO+ttMAbtisakFE7bH7hxgcLjy/3zNnNlu3Rld++IkHfLwA14dhVw/tFh9yF4+DW3dU2ByXobZ8nePrJMcMge/ufLn56xP98eWSY4YHr1JyhNrVQvPlHh8yfHKp7XFmR7aS1w+ExgQoeC7eRurSvb2e8X4BPHFi5XG+a17adobH5H6YI3FgNzDwnekIiIiIiIiMhRrUN8A8E9b2tcTTtdb4hP2063/1+G+BqjliE+c4CvEOJrtwT8TAFAhviIiIhIh2E7IiIakVa37qldHqvwfbOpMlG88iwJkqI/49BTYRrrnpeiDdu95yCFJ1f456z0RNX2brf13nuI+53UavhLx1ZJSqcmle1MbWR5os8o7CPYdr+ZhHlsNEtluyNnmsfe3KpfvnSdfc7OTOXH49Wd1d9r1d52p+6nsEATpAUGjz3oPGitK9uduq857NfleXmvtrLdafvZQ4UzetdiVu+q0oXdu4InJiIiIiIiImoCtQrx5YuV+AxhvM6MaAN+3ZaAH0N8jZMXYFe68KMXXYivIwGMSpa209WPq7J1B8dTCYb4iIiIhjKG7YiIaHgT/RvlT27/Hb415Vu+5ZW2QDWFJaoJc7Tn9emz7p6QSbEauPJshb2n6McqvQ0Nd1WJU/cDLjjG/SSEqepc2BCWNWxXaWW7hD4gU+ntNxKEaSMLhA/nAfYqhuXam6SyXVur+Tlx1TzBBccIDto93Mm7dTuC13FhCo9WWxXw0tMU/utv+nt4xWbBO/ZRxqp6RbUO2719lnnspbWDx15t2O7QPYAvnKrwswf0t8e16z7v/9gho6+cSkRERERERDRSxGKqEIKqYYhPX43PX23PG+LTbcMQX+PUKsSnlCa413+58G9/O13vsrbiZeW5XDrOEB8REVF9MGxHRETDmyHBNSG/Tbu80qpiuRqE7VKmynbbdwCYUfnEAa67QGHlFuCt7cCYFLClE9jZI9hzosLEDuD0/RVOmKtw5yJBlGGxTEAA7oS9gTsvifWH1Ny0GcN24WJYtWgjm2Rlu9DCtpGtRJggZrO0kQUK7ZXveVk/dvFv83jqa+FejH40X/DDD1V/XKbXg2or200cpaCU/iX+0j8KPnVc8HOp1mG7WEzhS2coXDXPf5BLPJUFqw3bKaXw4/OAsw9RuOdlwZ/uXoO1rTPwye2/w1e2/AD7ZF/3b8SwHREREREREVFN1DrE15UFOtP9Ybz+y4V/pWRZ8XJXGujKim+bgfGIuhtQOOIN8e3UrmHb2jiiVHkwr6w1blKh3TiuytZliI+IiMiEYTsiIhrmDC0M8/qgQdSV7VzayIohEGg8xu2drodVIuZwLBM7gItPdOt9awrLdGcL1ynsm+8eQ7vJovOPVqGCdoC5xWuY6mWAOYAVU4VWFpUwtpHtrez2GwmibYSsF6aNbLNUtgMKJ75MnlkJbO0STOgoPKZcwqbVtMD2qlXYDgDGtwNbu/zLi9807um1X8+orqONLYyb7hUkW5X1Meca5lVK4bT9gVNnZ/D9n84N3oBhOyIiIiIiIqIhxRvimzpGt0blIb6e3v4KesXgXqY0xOdblikN8WnHGeJrCJHBaoi1CvENhPG8rXE17XS9IT7dNgzxERHRUMawHRERDW+mIJtEG7bLGSpuOVVO6tWXXzIeo2pzPKpSc6cUqtXZhAkzmap6iRTCaW0hwzRBFcUqCefUuo1spVXtJJ9Hcu0rAPbVjmdy5sp3I1noNrIVpPNcHxuzJgJJS/vWejt6tsJfnjdf4a1dwISOwuXFbwXPN3l0NMdlqi4XRVDRFoIVkcDKdsfNqf39N77dPLYrXXie28K/oavvde9yWk2WPgvMPQSItQAt8f6f/sveZQOXW3jik4iIiIiIiGgYisX625W21S7EF2U7XYb4GqMkxKdfw7a1caQY4tMH+AaDeqaAny7A19FWOPfIc1lERFRLDNsREdGIlMobWrRW0MIznxd86c/6N4xOQQlDhaF2Q2W7LZnKUlhRv7VMPXs3gDO1Yz294cN2QRXF2kNWtQMsYbuwle0M65sq59nIgrshXzkXybZDgNlPaNfpyTJsV5TpFby0FnhulWD+ktrWttvRLTjlh269ar9zbnOdrDn/KIUr7xTjCa/uLLBsg+Ccn+exdJ1+nfL1o2CaJ4oWvJe/W+Hrt/kfE3kpvJ7YwtPHzwHe4VAArlrvPkjh//1F/7jd0VMINdpe+1rCVt/LOlasu+WnkFt+GmpqicXMYbx48XJZYC/WUhgrC+65hfxajOPKO1eL5nh8x1W+X12gsGxd3XFptlMuZWOJiIiIiIiIRhhviE+vuhCfOYwn2oBeV1mIT7c91Z83xLdBv4Zta+OIUhhsl2uottduqLbXUd5O13OZIT4iIipi2I6IiIY3Q2mrZISV7X58v/lNXdwljLXhTe1iU2W7O7bpq6EFqbRqn44seQbJX14OzNaH7bqzwDhLRSedoLBdJeEcYxvZkJXtMoa2m2Er28n6VZCvnAvAfP8ChftqfLiph4V0r+DFNcDzqwXPrQKeXyV4+a1wrV29wkbzLv5tHm9sDl7vb1+I4ayDmuukyrRxCs98PYb9v6kPC27YCXz2d3ms3OI2X1Rhu1q2kT3jAH3YDgBufd5c2a6jDbj70hja6lCZcGzKPPalP+fx139uMT6+W1sqOHn3zP3h1g8jnwfyET0wqlSPltKuBLCG8QqXYw4hP0Nw0Bf4M4Qe43GoksBhzOG4HPZrDCwa5mU1RCIiIiIiIqohb4hvinaNaEJ8/jCelFXm8wb5/FX6Bv7NVtZ9g6ojMhiyrFWIryNRaOtcenkwxOcfV4ZtCudKYzGeRyEiGkoYtiMiouHN1EbWUDWuLw/05gStcfc3Nv/3nPnNl1Nlu6fnaRdvbplo3KQvL2gJ+eYr0rDdI7cj1ddt3lcFeYzAsF2EbWQzjWoju+DugYumxyBQ2e031PRkC8G65zzBusVvmVsy11q6V/C3l4LX++hRqumCdkVz9WcYAQC/eMg9aAcUno9hXwt1TI/lVAWVKn1zWF4T/vycGF/zvvcBhdHJ+tyHtmO888XCv7awXVjieY2hOurLFX4arNnO3Ys38GcM8VkqCIYO+ZkrFwZWQwwTLgyqhuhbzmqIREREREREza5WIT6RwhdCTWG8kmp7WaAz3d8jHaF4AAAgAElEQVRONwt0psUX3CuOM8TXGN4Qn2EN29bWuTuKAby2Qgiv9LJCh29Z8fJgiK98vD3BEB8RUa0wbEdERMOcIWwn+jayAJDOAa0h/od8YoV5bIlDu0bk9ImQv3ecatxka1eh/WAYLgEu57ddzz+IpJhr64dt0woEh+322y38nFFVtksbQjttYSvbPXHvwGXbYzDKYGQz6MkKFq0ptIJ9blWhct3itwrh1mbx6nrz/exVSevgerGdOHl+dfj5urPA2CrfLdSyst0scx4Zu9KWFrZ1bNFsq2zX0n93mV77Qod5gUI1M6JmUayG2Nv4BHkzff4gSjm0NNZUJgzRallbDVHT4lmVBwOdWi0H7DeuWddxXlZDJCIiIiKi4UapQqWz9hqG+IohvNIwnpQE84rjXZlCiK88uDewfYYhvkYphvg27tKNRhPi07XT9Yb4dO10R2nGGeIjImLYjoiIhruQle2AQihtdDKa3b/7bcFvOCSjPxZbmK2StprLNgavY33Lls1AfnE58PhdwLpVSMTGGdcNG2YD7NfpnfsDM8a7vXkTEchX3w8suBuJcRcC067xH1/I288Uwgod2ukdvE+D2sgOVd2ZwWDd86sL/y5Z15hgXZgTQ04tn1FhAKoJrN4afpvuLDA2ZDtor1yfGJ/X7RW0hfbN0WZ+TXjgFSBpeH7WM2wXiykcNwdYsNw/lssXbyP9A7WSynbo6apgIyKqKxFWQzQIrIboDQRaqx06VEMMCBeqksBgQDXEMPt1qbJYFlJkNUQiIiIiIirnDfEZ1qho3mKIrxi884b4CsukJJinbaerGWeIr3FqFeJrNwb4ytrpagJ+3uXecYb4iGgoGaIfFxIREVUnGVFVMQl4h/jOAxwmef5h7eIo24yu3Vb9O1n5z08BD9068HurmG+oqCvb/eVz7h8yyhUfH2jXmhD9DRU2DPjiWv1yU5jH6LkHBy4Ohzay3RnBC8Vg3arCv0vX1y9YN74duORUhVfWFdqGViPu+BBr9rDdyfsAD70WzVymynCubK+lqQjCdgDw7XMVvn6b/77Pi6WyXQQtbMP44YdiOPa7+ifFMyvNVQcrCts9Pb+CjYiImgSrIWqVVkM0VRXUVEMM0Wo5sBpi/3bmaoghqjBqqiyaqyHa52U1RCIiIiKiaHlDfPrOOpWH+NK9bu10vcu7+8fKg3ve7fPN9AZuBOnO9p9/rXGIr7zaXvlyb8BPF/wrVvZjiI+IotbkHxcSERFVyVTZzhK2e+FNYKalPaHX4rfs406hjpef0G8bYeWz2xZW945Ttm0CHr6tZJkpyAZUVnnPtM015yuMTjpWtcvngQf+MvB7VGG7+UsMj6MqKmTF0Ye49CKn/JM0Y2W7rozghTdLK9YtXVe/kxmpVuDQPYDDZyocMRM4Yk+F/acB8RaFj16nDzKF+bak6/VYv6O5z95EFWIDIgjbWbaPqrrcmAqqkNazsh1QOKFj8qvHBQ+9Ek1lO8mZX9jUZ/4T+PC/AH29hWpauRyQ7ytcLv7blyskZYuXvcsHLnuXedbt08xVsk3hsvSZ9tvnn8M3rtlvvq/0ugxs1xd8XPkm6mNNRGTDaohGYqp2qKuGaG1p7NLy2B4uVKZwYYStlgOrIfYvZzVEIiIiImo2SimkEoVzl7UK8enDeOJb5g3xmQJ8nQzxNUwtQ3wDAbxEoT3u4OVCUE8/rgYvl40zxEc0sjFsR0REw5shbTOhz9xTsTsrcH1z9/Ja+x/wTqGOtx0DvPykb/GXt/wQH59xo3YTU1tTk5cDQoFF3/wHw/VeucR3W7bCUtkuwjayoQIna0t7NbYZwnbpkMf39pnAqi3+5a9uCDcPdp8DrBk8xlS+B7ta/A+S7p4+NPLPtM50f7Bu9WDFulfW1+8EQ3vCE6zbEzhipsJ+uxWCdTpRFDVxDYi+ur76fdVSRdXQDGpa2S6iwNvu4xXCfvQ/Y3w0+3Y1bax5bN12wb67ASs2+8d0rzlWW9aZx1paoNqSACLqkV6hZjr1JCJlIT7HkF8x4OcQLtSPe0OA+dIQonHePv2xVrTfvuDjIiIaKoqva6yGWMJYDbGkqmBANcSSdWwhQIdqiKFaPDvstySk6NJamtUQiYiIiIarWof4zGE8fbW9LkvAjyG+xiqG+DZFHOJLtZYH9/r/bSuE+Np9wb7iuBq8XDbengBaGOIjanoM2xER0TCn/0M4KRnjFmGCbEGhLVugRDJpyC+/pQ3aAcCZnfOM24atHOeyfiIOfPAIwx/wGX+VPQUYK7M1LGxX9kFb0tCqNWyb1kdf1y9vCVs0oq/0SqakB7swxrdaT08W9fozTUTw+6cE37m7EKgDCuG1MFXhqtGeAA7zVqzrD9bV+81kzvE51dfkJ0P23U0Bi6I5yJpWtouoAt9p+4Xf5oBp0ezb1cRR5sfy6xuB3Q3hv9CvL5rX6QFHnhZysuFPKVWoLhRv/FviZjp1JiL9rTzLgnvaCoIu1RD94UJ/kLE8JGiohhgqXBhQDdG3X9125dUWWQ2RiIYIVkM0ElO1w8BqiCFCfkHVEIsVCOvQahnx8sAhqyESERERufCG+CZFHOLL5IDOdH8AL+u5XKy2l/WPe0N8unGG+Bqnp7fwU6sQ32Bwb/DyQDtd7binnW7ZOEN8RNFq/CcLREREtWRJDE3JbcDG+FTf8jABk6DQlilQIrleyKePBla9Ytx29NEnAtv1Y2HDdkFBotFJ4OZ/jGH6OFPYTt92t9UQtouyjWyosF3ZB+GmVryZHJDPi1OJ7wdeEWzYqR+76PiQb0zKbsdUXn+79tSxj+z/+4vg6vmlz5NaBe062jzBuv6KdfvWMFgX5mq4PmZdQ3mN8i+nKvzgvuYI2+mqtRW1RxS2G+XYYtqrERVNPneywi8e8t8vyzYWfnT+3VRp1OStFeax3fYMNxeNWEqpwVaFrRH2pa70eBp9AB7GaohhWi0HhAuDqywWKhNKYAtnh1bKzvt1aPFMRDRUsBqilijl0NK4JWDcUDFRF16MG1pA66ohOrVa7t+vU7gw5lYNsX9dVkMkIiKiKCmlkGwFkq21C/F1Zfur6aW9YbzBEJ93vDtb6HLj2ybDEF+jDYT4tKPVhfgGwnje1rhtg0E9/bjyLSte7mhjiI9GJobtiIhoxJqRW6cN24XJOQWta6xst+gxa9AOAFo6OhDb1oe88qfNoqps98HDgS+fGcMhuwOtccsfw4aKSQnJogftvuXZSMN2If5IX/Fyya+mMBsAbOsGJo4KnvLrt5kr2YQODGVLb0dTGDAdts9thbZ0Cn7899q8Wx7VBhy2J3D4noMV6/aZWps3XVF8/pFzLFjU7CcXbC1Lw6o2bHfdI+YbNao2smEdOL0x+917cvhtRreFW19uv9482JYKfwBEVILVEPV81RC9FQSrbbVc0vbYFnR0qYboqcSoG/ceb1A1xJJ1LMfFaohENFSIALleAPX70pfxUBp9AGWM1RAHQnoO1RCdQ34O1RBr3Gq5JLBoCTqyGiIREVFzKQnx6deoaN5iiE/XDrcQzDO30/WG+HTb9/Etc0MUQ3ybO3WjlYf4kq3+gJ43xNeuCfB5Q3ymACBDfNTMGn+WmIiIqJYsJbpS+W7t8jABk6CWs+M7DAMvPh48uVJolV5kNGG7sG1ac4bel5PHKBw5y+GPVUvYTqe3TxD2DVwkle06S0sBjssbSgMCWLIOOHFu8JRPvWEeM96/JpnysJ2psl19wna/e1IiCY+NTpa1gt2zEKxzqRxYS2Eq9Lk+p857e3O/uYvyNu/Khn8el2xv7taNRIPeheywdFqtpQlhXytQKPgRSrf2DElBIhn+AIiIHLAaopkMhBAdw4VB1RA14cLgKouGaoiVtFJ23q9Di2cioqGC1RC1/NUQQ7RSDqqG6AsBllVDLJtDhW7xbKiGaAwXxgLGWQ2RiIiGL2+IT1+4IJoQnz+MVxri6yoP8mVEHwBkiK9h0r2Fn1qF+EzV9josAb+ORKF9rm6cIT6KAsN2REQ0vFnDdvrURVBrWC9bhbn9dgN2H6//g012mUNgRWrOQWhd1YsM/CGJbMgwW9VBtow+mNgq+g/LwoYBgdq0kd0nu8y4aiaCL+2/c3/3+0A0J+iTpsdguj69SpeuC7/N6CRw+J6lrWDnTql/sE5WLgWefQCycyuw/GwAb6tqPteKlhceN3LehFVb2c4W5IzyA4j3HQLcvsht3TXbItttKKftrxD247FjZ4e8jSz/3/EDHyKi+lOxWOED+niDyrl6j6XRB+BhrYYYUatlf5DR3GpZrPPmzfvNlR1j4H41YUpWQySioYrVEI2kPNynq4ZoHQ8T8rO3WvZVQ4y01XJ/ANIYWCwNOrIaIhERedUyxJfNmavpeUN62mp8hnGG+BqnliG+kjBeSTCvv51uovB52LGzFU7dD2hrbaazK9QMGLYjIqJhzvwHVbuhhWeYNrK2sN21F+hPJEm6G/jzz4InnzzDWDkum80DcD9RZTrOuOsUnTu1i43H16CwnWxaW/K77U9fl06t+YCyb3OnhvjjWlMd0NRGdtW2+pyEdKlqd8q+wGGeVrB7T26CinV3/BJy1SWD4aLps4Gx/rCdhCht5xIs+/a5CnOmjJw3VNWG7V5co1/+iWOjvQ1/c2EME77odrbj40c35v7bfbzC9HHAW8E56wGzJobcyYrF+uVnXhByIiIiotphNUQzXzXEUOHCoGqItvChNzzoUA3RtZWyUzVET6jRVv2RiGioKL72NYFmCiJaqyE6tlL2V0w0VRhscauGGCZcGFgN0Rsu1AUlzVUW+eU4IqLoKKXQ1gq01SHE15UttNItLBNfsK843mUZ35VmiK9RiiG+LV260fK/ogQnzgXu+kIMo5P8f5sGMWxHRETDWwWV7cIETEwBsQOnAyfONfzRdeev3CZvH4VW6BNhvb19CPPfeM7wB7trkE3u+o1+e9EnE20hRO38IlUfIwDgDz/0LZqQ24KtcX9qxaWCoemYKtLtDyym8vo2sr9eMhm/jHDXJvMW20+9PvP1GI6Y2VxvHmTnVsjV/+LWI3bTWgB7Os07f4l9vjMOAC4/a/h9E/s/Nl6Bb065QjtWbdhO/0YVOHj36uYtN65d4WvvVvjO3cGPid3GRrvvML7+boV//oP7xx2hXvsAYMdm7WI19+CQExEREVEjsBqinnM1xDAhv7JwobWFc1A1xJLLmmqI3uMNqoZYst+A1tKshkhEQwmrIRr5qiH6qhUGjduqIZaH/Oytlq3VEKtuteyphhhU3ZHVEImoydQ6xFcS3CuG9LJAZ1r8yzKFy90B45F+tkV4dBnw84cEXzmzmd4tU6MxbEdERCNWSvRBp56Me9U4U6jMVpFInrnfaW50jDFXjtu0EcAebvPAUtnONcwxYSqwYbVvsfH4Qobtcpb1QwVORo0DOktLRxnv597gVrxhQ4NWy1/yLWqBfgetsTyAsEmb8Eb7OxSXaG98sRG/5x/2fUtcmU6VblkP17BdUDXGt+81dN5EnbA38NjrwetdtP0GfG3L9/FI+wn4+6jTfePVhO1sVQVrURhx8mi39VINfEyPagu3vvPrc5Bc4z/MICIiIqoUqyGaWash+toxV9ZqObiVcuF3Cayy6NBK2aUKY1CLZ1ZDJKKhhtUQtZyrIbqG/FyqIRpCgNpqiGHChUHVEL3H6FBlkdUQiYYPb4hvQod2jYrnzuZkIHhXDOENtMZNS0kwzzveZRkf6SG+eYsFXzmz0UdBzYRhOyIiGt5MgY9YDO35bu1QT9q9apxr61NZ/Rrw0gLglA8Cu7YFTzz3UGCfw9AqG/T7TWecji/scRqN0peDShi+kRo2pGZbP1zYbqwmbKevYJh2yJ/YQoD7TwtxXADQ608ubW7RpzLHtfYCqH1Fi8P2VFiyznwqLdn4ohp+O7c6ryo5937GY9vt46lmvC0M3neowmOvB58iPa77CQBAh+hfC6sJ29meX+3xPOSVhcCY8VDTZ1e+E4/j5ii4nBaO8n6UTA/w6kJg8nSoabMC13c9xqLQle1MUtozNUREREQ0xLEaot5ANURTC+ZqWy1rg4zmVsvWaoi5Pn1g0Fe90aEaoktraZcK8UREzYDVEI3s1RDjQIumPXIlLY8dWi2rmrZaNlRD1AUdWQ2RyCcRV5gQr12IbyC4522Nq2mX6w3xadvpZgrtdIdCiG/TrkYfATUbhu2IiGh4M70bnnMQkjv0Iaw1W93fQptCYol44Y9V2bUN8u7dBge++9ngSVtaoD55OdA+Gq2yRr/frPuJhk27xFjlyiXMISLAM3/XjsUNbWSDqoSV+8kD5ts8VOBk/SrfIlO74B6Hm9AWAgxdLjrjr7D3qe2/w4L243zLe/rqc3KgM21/rDdlwCzrvz+Nle1CCAqINuVtYfDxYxSufUTw+kbzOgenX8Q5u+4AAGPwuJqwne35deTVZ0C2PQ4AkP2PhPreX6HGT658ZwCOcCtgGFm1Rrn9eshP/w3IFoLPcuDRUN+7DWqsuazpnCnhXjPiIV4GbJUEMWv/UPslIiIiIhrKSqohNoGmCiK6VkOsotVycCvl8mqIpqCjQytll/0GtXhmNUQiGmpYDVFroBqiteqgvX2xr9KgKTyoq4bouRxcDTFEuDCoGmJQlUVWQ6SI1TLEpw/wAZ0Zc8CvO2A8yu5Vho+UaQRj2I6IiIY3UwChrd3YXvTpNe6pmqCKcXLR0c5zAQDecyHUu86HOuwdAIAE9Km13oz7X4gX/sb8lRCnMMejdxiHomgj+9gywddviyhsp9Em+iqAdy4SXHqafVvbH+JHzQr3xkHm3+xbtntOH6bs6avPhwK3L7KPN2PATBbc7b5uiHltVQyBQin3oWLqGIWHvxTDtY8InlslOHh3hfEdwMLVwLYuwXETN+Ofrj8L4/I7AADtpkBqNWE7y7btXZ6KnUufhXz7Iqir7qx8ZwBiMYWj9wKeesO+XhRtZGXxU5CrLilduPgpyH//I9R3b7Vuu/80YOm64H3EVOE6OXvlOcsgT6gRERERERGrIZoEVkMME/ILrIYYHC4Ua5XFPv1yXTXEwCqMDq2lWQ2RiIaKYjXEHKshlnOuhhgm5BdUDdEQAlS6cGFkrZZdqiEObscQYnNJxBUScWB8DUN8/jCePuD3yjrB/KX+uRi2o3IM2xER0TBneGuTTBmrOQGFcsYdbcF/wJkCOq0tgPRmtZXWTNTl10O9+xOl8yj9Dnodv46xKy24+2XnQ9CSx+4yjrUaKtuF+bbI7Yvsbz9dw3bSuUO73FTZbuPO4DltpatDhwBXvepbZDq2PomhNydojTf2DV8UwaTIbfG3VlYRnPwNesxG1tKzTqaNU7jibP3jR+67H5IfbGfdbmgj25Wp/Ha1VbbzPe6ffQDSvQuqfXTF+wOAMcngdaIIkIopgPz0fEi6Gypp7knc4ficiod8vMkjt4fbgIiIiIiIiACwGqLNYDXESsOFQa2WLS2cc6Xraqshhm2l7GnxHFjt0BZ6bJKqYkRETlgNUUtfDTFcK+WSkF9gK2Vzi2cVusWza7gwoBqi93iHaTXESkJ8f18imL/U/+HgzjTQlxe0hPmSPA1rDNsREdHwZgrhJDswOt9p3GzTLqCjLXh6U0An3gKgc3vwBF5z3uZbZArbZR1Lxy15yz6+3Zw3HLTxTeNQIoI2sg++Ek3YDlv9ISwAeLTjRO3yuVODp7QFsMKEYUQEmDwDWFPaz7ddzF+F6ekFWmv8l9qEDmBrl3k80eCwn9aM2cAKxwRpiHfvQZXtjpzZhLdFpcreLKdq0EY2Y3kNSJZXm+zLAds2AlWG7d62u8L8pfY7/aAZEdyPix7TL+/NAju2AJawnWuANeg1VHK9hf/fiv/H/fU688rD6OQIERERERER1Q+rIeqFqoboGvJzqYZYEnTUVEPUBiEN1RB9QUeX/Tq0lmY1RCIaKlgN0Ui0LYkDqiGGCfmFaLWsrYYYWavlsuX9643NtwHQf1axKw2MM5/+pxGGYTsiIhrejGG7dpzVeS8uxdXaYVtVJq9sTj9/awuATMiawvsc5p9H6UuruVa2C/ojPebSRva5B41DUVS2ywccpHPYzvDtrBO6H8Nj7Sf4lrsEAqutbCddOyFXXwo8cQ+wa5tv3FTZDigEncakgvdRqZfXijVo9+1zm+k0pkeI51WYN6k3PWVe+4iZwKF7hJisycmyF0p+N4U+Kw3bdaYF519vfvJo209n9G29w/j40Qo/mm+/1w/everdFE4eG8gXTgd+fA/U9Nna8c+8Q+HRZcGPzNmTDPM//FfIr//TPXBKRERERERERJFiNUSzwGqIYcKFQdUQja2U+6shRtFK2aUKY3k1RF3osUmqihERORmohpgJXLXWGhFEHNM6B9j7Je3Yjh6G7WgQw3ZERDS8mcJ28VZMgLmPaI9jyMQUKmttARCmrd/7/0lbmrk1pg+sZLZscpo2ExAaDKrmJXf/1jquDc0AmLc4uj+B3cN2+it7fPcTFYftbKFBp7Dd5R8EFj5sHE8FVLarlQ07BQdfaQ5DHTUL+OqZzXSqzuPp+b5Fqsq3XDc9aUlVApj3xeFTOl12bAH++OOSZaaW2pWG7T7wizxeWmse175urHkdmH1gZTvsd9ie9vtozwmI5n5c+qx5bN1KyCWnAzct0rbFPeMABZdTBF883X+c8tyDkG9+tHCiN4xh8tglIiIiIiIioubGaoh6JdUQa9RqObjK4mC4UFsNcWDesv0Z53XZb0Br6SaoKEZEVG5s3vzZ8Y6QNVZoeGPYjoiIhjlTqEEh1Wp+y+0adLKF7eTOG9wmAaAmzdAuTxjCdr3r1znN+9Qb9lBHUAbDGrbbcx8kcvo0zhK3w3PiHrbTp+fayltW9rO1uSyyhRHjAVUB5a03rEE7AEjlzdW8XAOflbhzkf1xcfV5wyNc5hrBu2GBec0vnKowvmPo3xYDnrjHt6jdUGGxkrDd2m2C+Uvt6+jCdvLI7VDveF/4HZZ55/4w7n/6uKqnL3xDO8imtcAz9wMnneMbSjmea27XtJuVe38fPmhHREREREREREQNVVoNsa3Rh9NcQcQw1RC91QhDtFo2zttXuq4YxwOqIYbZb1A1RG9QkYgaYmx+h3GMYTvyYtiOiIiGN1NlO6WQaGuBkjxE+VNTkVS2C2OKvrdha9dWoEOz3/HTnKbVBTa83rl/wFvrRY+ax8ZMxLLOudqho2bZp/WKBRyC822Z06fnTNX3sg7vV6upbCf33hQ4f6Mq233hZnsMbY/xtdt31RJJIFsaUqy2st0Dr1h2N8z+WpY3lviWdYi+n3AlYbsFy+3jLZJDCzSBsWQ0tddtz5uN5i+kudux2W29lUu1Ybug1+SilG69lf77zskwCM4SEREREREREdHww2qIeuZqiNG1Wg6e11sN0VZlMajFsm2/QdUQy/bLaohUB22SRVs+jUws6Rtj2I68htnHh0RERGVMYbtYDKothZT0oFv502xRVLZDJsRfXUefYZ5Ht1+HqmyAPSwGAMfvPXhZFj8FuesGYPlLcKoJNmY89tr2Bp5PHeYbSjseHwCkA27ratvIGsN2VbaRjZ0xFvli1bxYDNj38MLlyTOgTnwf0Lk9cP6UoaIYUF1lu7XbBD+5X/D0G4J9dlO4+ASFo/YaPF0QVNVvjwnNdGqhjKGaYq24ViJrdrJyKeS2a4Fbf+Ebi7KNbF/e/tphej5i1zbIb78HWfgQoBTUEacCH/oCVCLct31P21/hsdf1x3DM7Age146v65Lp0Z6gi8UU4jEgF1CgTlt5tXuX076JiIiIiIiIiIho6GI1RLPSaohBrZb7HEKAusqFAdUQ+9c1VkP0hgdDtHgOrHaY01VJZDXEWhib34GNmrDdti5Bcz0jqJEYtiMiouFNTIkGBbQl0Z7vRndMF7Zz+4PJGrZbu8LpENWX/gdq3CTtWGLaDGCbZr/r1zrNHRToSMQL11EWPgz50tm+imFWYybi1K6H8H9j3u8benGN+zRBwcZq28hWE7az3X6t4jnwfB5Y+mzh8tJnIY/cHjw5gFb0IiZ9yCv/ldwZ4q7w2rBTcNIP8ljRX4DrkWWC3z8puPeLMZw4N/gx/efPBvTHbSDp6wvVRrO6encF2gpjQ4y8sRTyhdOAHVu046bQZyVhu9YWBdstbwzbPfAXyAN/GfhVnrkfeOER4Pu3h2pp/J6DFK68U7//Dx1Zv7Cdbb1rL1D49I32R2f5405EgNWvue3bh2/+iYiIiIiIiIiIaOhjNUQ9ESkN7kUR8itrtRw8r6Eaoq/Koq0aYoj9BlVDLP5UYGzfTmyMT/Ut37m9G8CoKu8tGi4YtiMiouHN0kYWiRRSok80uYZMjGG7MHklQ1U7AGht0U+UVW5vJIIq2xXJH38cLmgHAKPHISVbjcM9WUEqEfx2I6iCW7zqsJ0+zRdU3Q0IqGyna4UZkkKhlWyX8v9xPm+J4N0HhX+7dvPTMhC0K+rpBX7y9zxOnBt8Y86ZEnqX9WOoalfNm9qebEDoqfHv2asmd1xvDNoBQLvoK9ulewuV6lqCej17BOXijGE7nSfvA15bOFg1skqRnPzIOL5OWl5PJ3bYA4mA5nG3ytLrOAjbyBIRERERERERERENW0opIB5HIf7DaohexmqI2lbLfcC2Dfje17+OXhXH2L4dGJvfibH5HRjbtxMTZt0F4JBGXyVqEgzbERHR8GYM2wHo3IZUSl99yLWFpzFs1xPcQrRwHAoYPd44nDCEATMtKafpbZXZLjnV8+fu4qed5isxaizG9b1hHF60BjhmdvA0tsp27Qm4V7XK6SdqK7Z6LZN1CCLmTPevZCN7s9AV038LZrS/QrWTm5/WP+ZvXei2/UR/ocfm0Ruu1JpI8L306gb7+KTh8CWlxU9Zh9sD2hmPCvFYzAW0kW0LE7YDgJefDBW227Yof1sAACAASURBVHOCeeyA6eF2reVc2c4StnN4TPme/5W8RhMRERERERERERERjWBhqyHKnvvg7J73aAt8qM2rwLAdFTVvnzAiIqIo2CrbQRkr2wW1Ni0yhu369AEvnwOPgeoYYxxOjdKH6tJoK5SFDmCrzPae1ucKbTkBIN0VOFc5tc+hOLn7YeN4l+NNYLut3/02/zLZuRVy3x+Qv+6bkEduhxRDLTVoI2u8fw3V8kLb/0jjkCnoF+SZlcHr2IJ8e0xopu8clTGE7VQVDWMzAXfl6fs38e3hqsf+/DZVtgPCt5INetyGqmwHAOluyKsLITf9AHLb/0LWr7KuPmWMwtF7+ZcfMA3Ye0pztJE9albw5geWBwMreI0ewMp2RERERERERERERESBVEsLMGWGfnDDm/U9GGpqDNsREdEwZw7bqY98EUlDRadqK9vFXQIlE6ZCffnn1lXaJ+qr3v294xRjJTcvW9jutB+fCPn2pyG5nHuAxGv0eIzJ7zIOb3XIhvTlxRp6u/q80j9VZMObkM+eAPmvC4HffQ/y9Q9DvnIOpKerUOJZwxTuWbcj+PhMlQHj4pDUC7LXAVCnfABH9egrVr3lWByxEmMNhRE/d3KTh3IMbWSrYXuO/M/5CruNbfLbxMXKpdbh9nx0Ybug1tVhw3Zyy88gFx8DufYbkKsvhXzqSMhLT1i3ue6CGKaMHvx9fDvwmwsjetvj+lqZNa/XGlc4aR/75ol46eNO1q82rzxtltsxERERERERERERERGR3dSZ2sXCsB15sI0sERENb8bqbwoYMwEpMYTtqq1slzcHStTFVwCz9gcOPwnK0kIWAFJt+oBIV2wUkOkEWhPW7U1Vps7qvBcxCDD/ZuDQE61zGCXbgVgME3JbsDU+0Td844I8PnRki3WKtOV2vv+yGHYfXxY4+e1/A2uWl6743IPAvD8Y2/EmLFXoMr2CtlZzmKomle0OPxnq/MuAt78TuP16zOxdjadTR/lW+92Tghsvqnw3Or05QWtcGa/XCXtHu7/IhW0j6zKlJRz2uZOGftBOHEK5tjayoSvbWVpXAxVUttu6vvT3rp2Qn1wG9Utz4O6g3RWW/kcMD74K9PYJTttPYdLoiO7LrLk9bImAUN4HDld4+LUQFRn/+CPjkLrhOWDhQ5CvfsCwwtB/HBMRERERERERERER1cVh7wDGTgCm7AE1dQ9gt5nA1D2AGbMbfWTURBi2IyKi4c0UtovFgESyhm1kDYGMWAz4xFehHMMPK3a1G8fe2pTBjFEVHp8nLCY/+LzTsfiMmWAddrkNbUGeSbrr9uid2nXl0Tug3vUx7VjKUrXrmZXACXPNx5Dr0z9+4qiwxyuA2E/uG7gsbYYScwBmT6p4F0aL1wGH7mFuodva0uShHENlu2rayGYNd2UiDufnaVN77YXAVTrEXIYy6sp2KUuwz9mrz0N2bbOGlcd3KLz/cACI+D5Mm19PSmTsoTxbK2et8VOAbRv9yw86Dqp9FESxYDkRERERERERERERUbViF/17ow+BhgCG7YiIaHgTQ5klpYC2FFL5ndrhatvItuYz+oG2VKgAz5pOc+W6dVuymLGXffuatUGduS/UtFmQfF5b1Q4A2u1F9wDYb+eUbntd2AQAnpoHnPZh7dBR6WeN+9gekPupSWU7r3grlrfO0Q51tFU25R7jgTe36cc6+/M/xuvVvRXy2AIgH1CerFE2WFppahgLW3oYbwt7UcahozO4H7EtABe6sl1A2O6EnsfDTWjStdNYzbKmXNvIBqx34lyFoNqLIlJoAbz8JfNrX3nlP61hEBolIiIiIiIiIiIiIiJqEgzbERHR8GZrI9uWQko2aEd7MnkAwZWCzJXtTGE7c6U6nWTC0uI0Exz4qlVYTF18ZeFC+2i8Z9fd+Nvod/vWcalsZ1sn1RryoPr0AcIx+V3GTTrTAlsQxXT7VRxWPPPjZRO14rydt+D51GG+Vd/YXNkubFnOYnDKeL2+/SlI17zKdtxAVVW2M9yViWEStpP7/xy4Thx9SOQzyMb8Cc8oK9vt2bsan9t2XbgJTVxDb1Fz3e+GN63DsycrfOYdCtc94n/sPvhvMcj2zZAvvRd49XnrPOqcz7odDxEREREREREREREREUWC/YaIiGh4M4Xt+ivbtRsqOvVk3NqEmoIliVUv6wcsbUN1Um3mxM/WTZ2B25uqTMVRRWW7Uz8EdfK5hcuHn4Sjep7RruZSHdAatiurbCdBZcpy5slm9K7VLr96vn1OU2VAX1hxt5nWeYrUgUeXLmiJY0rfJu26nYa8ZhDbbVocM7VOjaxiX5MQh4pevYZWwcOhsp1sWQ/cfaPTuu2ib4/67KpwQUbTcwYAHl55Gmb1hqtOaJRuTNhOHrndbcXt+ue11y8+pvC7Tysk+4PFo5PAU1+L4aR9FeSqSwKDdgCA6QHlTQF7ApeIiIiIiIiIiIiIiIhCYdiOiIiGN1vYLtmOlOgDG93p6sJ28R36inlIhOsN2p40/1f90qvB7SFNYbvWKtrIqqNOH/wlkTLehk6V7WxtZMsr2/UGpPcMle0AIClp7fIVAdXjjPdvWVhRnX+ZfaKiUWPLJopbW3h2ZcJXbLPdpj1ZQV9ejE+LhIQsYzYMGCvbDYf6z0+5VylM5fXPkWWGlzIT03Pm6O6nsEdOH3qtSKMq23WbK2WWk6w9MauUwseOjqH7mhbkr2vBjp+24O2zFCTXCzx1n9tO2pLOx0NERERERERERERERETVY9iOiIiGNNmxpdBur/izbRMk503P2CrbJZE0VrZzCzkZ27S2G9rFvrnMad6iNktlu9FtwcdYkzayR5wyePm1hUgZgmzVVrZLloft0l32ybL64wCA5Yk52uXTxmoXD+7ScHxt5aG0A44CZu5rnwwAjj2r9PeWODry5uu1NeAqlxMRa9vPnl57m89WDM3Kdiqo6qGF8TkyDCrbYct651XXtU7TLp80OtwujdUgyx9b73hfuInLZRsUtnOsYgkA6AwORGt17QTS+kqDPnMOrmwfREREREREREREREREVBGG7YiIaEiT898Gee+MwZ+zd4ec0oH8xw+GZNKWynax/qps+oBWt0PYri8vyBtWa33mHv3A1D0D53WVyVr6NfbLGQ4wXmllu0QSyhs2Oe7dxspsb+0Ins4UDEu1Fqo+AYD09SH/0y9B3qMPAxXJzT8yjn1w5/9ply9dZz8+UxjQF9Lc5zCoc//JPlnHGKiOMaXL4q04KLM49P5NevtgfEwW5zNVcgOAxHBrI+uQwTO21B0GYTtxqcIWK7wdaDNUtnMJzRbduCCPK+5we81R/3IVMNH+nLZqVGW7MPu1BIAj2cdJ50BNquI2JCIiIiIiIiIiIiIiotAYtiMiouFp1auQfz0LyBsCaUoBbSljUOyJtanAXVgrhJlCS8eeGTivq4dWVX6MLhXM1P9n776jJbnKc/8/+3Q4fc7MmZyzRqNRlkYRJZRFkJAsIcAiWbbwxTY22NjGXF/jCzZOF9YPJ0zwta9tAbYMNhhMEkgIAUIBhAIKKI3izGjyzMmhu+v3R/fp06H2rl1d3X3CfD9rsaa6au+q3dXVrfGax+/7yx+q3bFsjczXa3tKmo3HWdvIDnjkTGxBnp7s1HbwqT+QvvC30Sc7uMd66OqBr4XuLwbSeN6eyPr2Y+HHat7z0tUyxshc/y6Z930i/EQbj5X5akiyL5W23j8pXtDJZ/zIeBPP7fxFM/d/J50r8/5PyazbHO9GVbHdj+wcCNvpsx+xH9t4nPSW35H58C2SpDcMfDF0mK26Y72v/zTQL/2z/btU82yl0jIrN8h8/Dbp0jf4XaBO8OAPmpqXWJwAXbOBwL0e7XZveK/M/765ufMDAAAAAAAAAACgaenpXgAAAIm4Wov+9IfStgvDj02G7SyV7aRSS87J6mph3KElS/mw7uiAXDX71aUfj0ZXybOtMeVT2e7t71fXjb/vHpPNqcdSEUuSntkT6OgV9ncxMmEJs5VbyAbFovStf4tcahRXoO17T0qXnxB+7IEXLOerfs9LVlQ2zTXvkLnmHf4LS2XUW7S3i4xb2e7Z/e7jUZXt6sN25sO3yFx8XbxFTIfbvxO626e5rO1+zPbKdoEtaCxJF12nrj8pheyC+++QJPXaWmp7Bj7/9V733U6r6sdo5XpJklm3ReaPPif90ecU7N2h4PUxQpP33ir9+l/4j2+VOAG6seYq2wV3WyqjVumajvcOAAAAAAAAAAAAKtsBAGa58TH38d3PWw4YKZPVSJc9/OYK00nSmCMIlQ0sCZWYYbtfv8QeVDut+8XI+WOWIJFPu1DT5fHXBGO0aeI56+End1sPSfKobDc8IB14OXodEY4af8567Mk99pDQ2UeF73+s+/ipF0891OSqJK3aoJwj8Glrs2tzwJE9laIr2zU8t6s3xVvANHGFUqNYK9vN9v+XlMFD9mNBVRCv/JtkC6QOj/tEFqV/vc897pHuE6de7Hy2cUDM38ZWtuSOJU7Ybqi/uWu4gpKSdPVN8c7nCI0DAAAAAAAAAAAgntn+z4gAALiNWoIRxsgYo3PyD1qnjoy7AzeuKmK2amUmZqDk1HX2Y8PF6P+M28JsrmpqkqRM1n180vFn6OSxR+zXj8j02Y5PVrZrug1jnW1j9kCcq3KX7dgx409NvZi/qMlVSWbFOhlJueKIRkOCn3HbyEYFREcmYrSRXXe0tHVbvAXMQuOW+5F+ebuKN71NWrtZ5qobZc5pXQvodgqGBxXc/BfSt/7VOsa88pqpF+XfpJytsl3M6oo2R41XBeyWrGocEDdsF6edq0XwtX9RcMd/SLuekxavKH3GN7xXJu34bR2N+O2sNnCwuYVF/O6ZS66Pd77ALzAJAAAAAAAAAACAaFS2AwDMbbbKQuVKP0vT9lCDq6rYwaFAr/gze/Uha3vabM5+0hDGGP3yyvCg2J3FUyPnW8NsjraqkmT+792R5y6daL6zqtjOQ+6QR2TYbsczfuuIYCStndgReuz2x+1rvHt7+P4rhm6fenHVjQlWJqm3z/p5PLE7XkjmyYjxIxP2cJkkZVQuhXjs6TIf+7qzjfKMYllm4FHzzlrZbt/z0lMPSt/9ooL3X6fge19OsMDOCPJ5Bb/zOulzH5X2hj/vkqTTLpra7i79Jtl+s257vDVre+3grZVt88bfaBwQ87cxaRA3+MxHFPzFO6V7vyW98KT00A8UfPoDCv4sog10nNawzYbt7vhP6yHzvr+TOevy5s4LAAAAAAAAAACAxAjbAQBmt20Xuo/bqh+VQ0SVUFeIp/faj335IXeoyRpmi1u9SdLxC+ytCPMF9zpsgUFrGHBS7/yoZZXkeiVJm8fDU2lfibhP1sp75cJ6wddv9luHzY2/X9k8dvyJ0CHffDR86kTevvaa+9fEZ1pj+Vr1FMM/j5vvjhe2+6e7ou+3TxvZrn+4W2aWtJCVHG1kPSp6jVtaLWeCqgPFooLP/23sdXXcI3eX/hel+pmdbCNrqWznI/C4zzW/id2NwbrYwc4EYbugUFDw738dfvDbtyhwBRXHY1y3/0C8hU2yXf+KN8tc88vNnRMAAAAAAAAAAAAtQdgOADCrmbf8dpMTS/8JXJKxh8522zNu+pcfRoTtbMGVJoJZuaz9P9fPOAKBUoI2sguWRKyqLFt6P7vSIW0hJW1e7g7QWMOAk11sBw/7rcPC9C2ubB9ILQ0dsyl8t57aYz9vzeebcI3KZLUzsyb00PrFobutHnzRfXx0wh4uk+rayM4BiSrbBXUP50Pfb8GK2uzxH/mN6+2b2u4rfdeHu3qbvuyegegxY6Z76sX4WNPXmjphgsp2u56VDu+zH3/8xy25btDfZGU7W5W/0SH7nNlShRIAAAAAAAAAAGCWI2wHAJjdmm2nVw4mLOi2t4Idd1Q2u/NJ9+lztspxTYTtLlltr45ka8MadTyqipWZtyBqWSXZbskYjViCOq5gl2RfX27PdhX/7v3SnV/yW4dNVWhwWT48mThoyf242ghfPHxnZdus3tjU0ioyWeshVxW6ZuQLgVdlu9nGKF4FwGqHLLnTWRk8HI0I0ZaZ7FTwzZSrWJ4wZu8X66ryKLm/K5NOGqsqIXnUCdETosRp51pvNCIwZ6mIGhQK0kSM78hA/Mp2QRBIE5YfpQ1bY58PAAAAAAAAAAAArUXYDgAwq5l0RuYvv97ExHIVIEf4LSrIZpMrjqjLFv4JaZ8YZeNieyDQVrmuctwWtotqI+vJGCNlc3rz4VtCjz++q7k2sj1P3Svd8ldJlyctmCoNd9Ohfwkdsm9QGp1oXKcrQLR2YufUiy2nNr08SVI6q/fuD3+vd4d35w01FvIe6uWL7ipkmWBCuvad/hed5fpHAv2zpUrlbAweBk8/HDnG3PSHofs3TTxvnTMaFZr1uFXrJqpao67cED0hSpLKdoOHIo5bqlXa2pLbNFPZbmLc2v7YnHdV/PMBAAAAAAAAAACgpQjbAQBmPXPmZfEn9ZcrDnX36HhLRSefAEkYa1W78vXi6u7pth77yQv2gFUQBNb3kAscQZW4Vae6e7SssD/00L3PuqeOWivvtSYMONkiU5LmFwetw74aklG6Z3v4vU0HE8qoKn2Ua779piQpk9XyQnhLy4EYt+ErD0WPmShIf/+98PCmCYpKqSizdLX/RWeM8BaaUfHDm++2jwirbBdYQlAzxve+HD1mw7GN+zaf5Kx2edDRvVSSntwdfdme6t+cXPzfwQZxg29VgoiKmcEd/xl+IG7Arz9+ZTvnNZr47wcAAAAAAAAAAABai7AdAODI9PVylbNszhrsslWFi6ogdii12H6wibCEcQRT9tvzYxrPS0XLUnuLjnaT2ZjV97p7lFc69NCiiBzayHj4AntcYcA4lq6sbC4o9luH3fFE4zr6LVmevMnU7sjNa2ppFemMii34K9mdT3pUtivYn5nAlNfQNfv+ethsG9kvPeAI2ymknFvRXmVyRsjag7kVPSHPayGvvqK95OFju9ynfOFA9P2vqabZ2xc5PtJ4gt+IwxEhuIVLw/fHDdsNRFTQi3uNJiqjAgAAAAAAAAAAoLXC/2UcAIC5bnys9Geu11rlzRa2GxxLcN1mKhM55pQCQdnQY642uM42snHX2J3TaCE8BNId8TeNIVvlPUeVrVjWbK5snjn6E+uw/pDLZVKe19h0fMxF1V8oq0UFS9tKSYVioFRXeOW2akMez+VEQerORAxK+n6mg7FVtnPftzuesB8LrfT28F0Kdr8QZ2WdsXqTdMLZUjo79dsWJpWSTj6vcf+u57Q+b/9NyEdkDD0ez5r7aRaviJ4QpVBQkJ+QSUc90CFSET9MGUtoMW7YrplWt64QYbOV7WZ6RUYAAAAAAAAAAIBZhLAdAODI1t1jbZ84aMmeuEJskbLNhe3mFwY0mGqsBjU4bA/bvWzPbzlbRsaunpTt0av3fkv/tOjGhkO77cXkNDQW6LbwDr7qbVFlO2OMgoXLpMP7lAvsIaTP3RvoM++o3bfHUuhreX5P7TXSCf86lc7q9NEHrIdHxqX5Hh/JeCF6zERBuuuZ8GPX93+xtHHC2dEnmmGarWznEhbCDd5zRcuv0zIr1kvD9up0kmRu+qBM36LGAzf8lszNf2GdNzQWyNaqV/L7TXRW05z02l+QvnFz9LhJYyNSM2G7w+Ftm2vOGyZu69pmWt2OOeYkbVkNAAAAAAAAAACAxGZfnzAAAFqpO2et8vbxO8IDPCOWamy+12tmzvkjd4ce+uRd9qDJez9vL0flbNMat3pSrlfzi45+thZ/8jV7QMoZBpSkVRujL7ByQ+nPV7yqsuu9+//KOvyJl2vX88nvhq/v3JF7p170OVoG+8pk1RvYg0jPRuSCJk3kowNntqCdJF0wfFdpYy4FehJU9LK1l56x9rxoP3bs6TIf+5rML7w/9LBZe7Qkae3EjtDj/3SX+z76hO0yKg/aeJx90Mr10Seq1kzlOEm6+xvNnTd2ZbsmnqG94Z+BpOYr2wEAAAAAAAAAAKBlCNsBAI5s3T3qtlQ8W2TJNUQFSzKBI43XTFgi16ucJRDY12Wv1nbnk/ZT9rrCbHGr72W6reuTpB0Hw4M6X33YEbZzhQHXbpa59p3R65oMNmanAo6u9/2NR/yCWTXPi63dZBzprLPq1+0/81uXT2U7l+7J5zbbRCB02jXXRtbF+QzOMuZ3Py5z1uX2AdnSc2z7Ldx5yH1+nwBy5ZNw/AaaqPau9ZoN20WxVaSLez1XS1ibpx+2H2umMioAAAAAAAAAAABairAdAOCIZD58S2kj26P7c6eHjtmwJHzucESw5F0HPmU/2EzYbvk6/Th3Ruih9fPsYQ5XUa/lhb32g3HX+ND3tXHiBethWzvWR3faT2mrNihJ2rFdOu2i6HUdW75nY1NBtjMc7Vrr17nAkjnbk1o+9eLAy9HriNLd7bx/43m/00wkDNsdO/6EJMlkWxAg7DB7G9nmK9udMfqTpufOOJuOdx/vLbWo3p7dHHp45QL39LGIZ/TCoe9NvXBUTgwO7rEeC79wk2G7hUubO2/ssF0Tle0c37/ELasBAAAAAAAAAACQGGE7AMCR6ZxXS5JMd4+uHfhy6BBbBTtXFaf5hQH90uGb7QOaCNuZri5dZ1nj4bFU6P5iMbAGYF438DV3va+4YasLrtbqvD105tNisp6zjezqTdJxZ0y1iQ2T7Za59n9Iksxlb6zsvnzoduuUQ3XF5Wzrfkv/v0+9aEVbx2yPUrK3/PW9f76hPJtzRu5LdoLpZHmghwL3s7x6of3YRUPfT7CgmcVEtQbefKIk6fLB20IPDw65E8auZ68rKOjdBz85tcPRStucdZnzOg2aadMqSYf3R5zXFraLeb3xMQVF+3e7JdeYZJqv4ggAAAAAAAAAAAB/lEcAABxxzFdemgqfdOe0dfzp0HHWsJ0j/HTbC6/VSWOPhR/s6pLSmRgrnXJsbl/o/kf7w9NC/Y68xv/c9xH3xWIGyMyxp6v7B/9tPe7TYrKes7LdWZfJdHVJNz+g4ENvk+7+Ru3xi66VecNvyJxyfun1ivWVQ73BiC4e+q6+O+/ihtN+6s5An3hrabtQDKyV4rZUPy8XXO3xbiKU7/flg7fptvmNrT4/9u1AH/S4TNLKdtlgXLryxmQnmSa2mNGtoyc75+UtOahP7Hq3svJIOWZz0qLl0eNarZCX9u/yG7v1tOgx5WfwiqHbQ5/Be1/MKggCGUugy9XC+D9fukFXD36t4VqhFljKido0UdkuOLC7+fM+93js62moX+pb5D08uO/b4QdOvSD+tQEAAAAAAAAAANByhO0AAEeW86+SWVwVjsn1qicID1bYQmK2/YsKB3Wmq/Vkd481rBKlN2VPsxSKgVJdtef95iP29pm9lvdbEbdaW3dORlJvcUjDXfMaDoeFE3f3u9t79hSH7QfL6zO982U+8l9e66u2fuIl69CJfKBM2jgDgj3FqiBgCyrbme4eBbJ/LgOeha5cgSevdUjOqmOz1fBYoN5uS0jMUpFtZd6vnan56k6ZnsZnvt2CPS8puP5ov8E+6ys/x86Q67OPVSrg1Zuw3Me3H/psbdBOkrKO70zc79N4E21kHcHgCkt1ueDRe+Nf78e3S5dc7z/eFujLzr3vJgAAAAAAAAAAwGxEG1kAwJFloi5FNTZibVk6Mh4eCBuZCN9fE8IK4wqZRAj229u0Hg5Z/of+2x5mc7ZoVSn8FctkUMdy3uGQ+/jCAfcpjx7fbj8Y9z4uX1fzMi17Km3fYOlPV/XCmnDmi0/FW0uYcsBtR3pt6OFVC/xOk7SynSRpnqOv6gzWa+zpyJ2H7fNsYbtM4FmOMao960zg84yWv1NDxv5+Jv7jk9ZjtqBnNgj5Ij1nqfwpSas2liqA+mqmst3uF5s/7+qNsa+nQ+FVSa22nBK+/8kH418bAAAAAAAAAAAALUfYDgBwRDEXXVe74+TzlLNUczowHF4NyxbEslXIq0hQBe3s4k+tx8KqsE2GxsI4q1dJ8aubRVTFClufq3LcttGHdMzEM9bjccOA9ZXHruu3V8Ob/Gzdle2qPucTzoq1llDl93Pp0Heca4piC475WFeu9mfiVOCaQa6Z97D1mO2zLBYD673Neobtmq1U2VHbXhk5xKTTUiqtc0fusY4Zyaesx8bz4eHe0Pt47Bn2dSxcKp39KvtC61kq0DmNe8wZm6qsGXzlH1X8jctVfP1m6Uufjn+9uIHA8bHw/UefFP/aAAAAAAAAAAAAaDnCdgCAI8vpF9W+nr/QWektCBpDJLbwTq+r9amUqEVn38WvsR7bGxKsOzBkP1fLQ4ERle3uCsnNPb3HXnnv6y9cE3G9Ju5jb19l84zRB6zDdveX/nRXtpsK65hjtsVfS73y/btw+Aehh33Ddkkq231g35+XNjYd3/xJptHJ2Z3WY7b79+5b7M+gV9juihuix8wA5oKr/QZ292hR0V4GcKTgCtuF7w+rEGhOPNu5DPOhz0gX/pyU7S7tmO+otthEZTs9FP49qzFa+i0PbvlLBR99l/TQ96W9O+zjX3eTtcVu8Mwj8db34PdCd5uzLo93HgAAAAAAAAAAALQFYTsAwJGlPkjW3eMMnz30UuO+YUsOx1Yhz3rtGHpyaeuxrzxkDw2FniuijayyMcNs5fG2+/jZexrX92/3ha+5r9CvFYW97us1cx8XLqlsuj7vLz1QWtePn/dswxv3XoWpVAYMX9d4XioUoz/jJJXteovDkjFSJtv8SaZRT5c9kRgWjh0aC/TJ7yYM2/XO91lae8SpqOf7fcn1On8bnhpfZj1mbyMbch8j1mPmLVDXn35e5uu7Zf7jKZmv7pLWbQkf3EzY7vEfew0LBg8r+MLf+Z2zOyctWh5+7Af/7bmwCJPhQwAAAAAAAAAAAEwrwnYAgCNL3+La1909WpXfbR3+dhpawwAAIABJREFU05dCKtvZ2shGhdgShO0W9NjDNWMh61m5wH6ulocCy5XmdqTXhB4+ZW3jvhULwt/PQMqx8Mr1mriPualWsvOK9rJ/k5k2V3Ctrzgw9SJlr/blzZT+OtbreH5GParbJals1x2MSUEwO9qihkiZQNliePvNsO/rNyOKjWXlccMPRoRCZ4rFK/zGZXNaXthnPbw3P896zPZ9Cb2Pnt9f090js3KDTCpln9NM2O6YU/3GPXqPtOdFv7G5Xmn3C+HHTnqF3zkUXkm1YjSicioAAAAAAAAAAAA6grAdAOCIYnK9tTu6e7R54jnr+NGQEImtjWxPGyvbdffYqxqFrfHE8NybJKlLEVXSYle2K72vvmJIP1tJYyHrG52IV42vRjP3sSpwlFLROmwy1OYKt2VU9Ya2nBJ/LfW2llrRuiru2aopVrNVF/ORDhJMngmM/f6F3buDw+7nLxN4hO2WOb5kM8nxZ/mNy2S1oDpIWmes2Bgs3XUo0Me+XdQdT4TPCa1s10yFNtt3fjw8YOk0HvE7Pan/oPcpTXePVLR8h+Ks0bW2o0/2P0+DBL+3AAAAAAAAAAAAqEHYDgBw5Dj29MZ95RCHCcIDWB+9NUZlO0dYSlKylqO5Hp03/MPQQ997snGN3/lZ+GnefcCjLWLsynal8b914G9CD4e14rUFFn/l4P/1vl4sS1fVvLx88LbQYZ8pt7z92cvhp1mVrzvQ2xd/LfXmL5Tkroxou1/VklS2SynfmuDgNLKFXV862Pj9KNjzlpL82siaba/0Wtd0M2l7C+oaES2EDxRqg8ov7A90wUeK+t0vxGzH28z31/LbGdiqybk8b0kG1p/76Yf9z5nNyVz5i+HHfvJd//O4KvWtWOd/HgAAAAAAAAAAALQNYTsAwJFj7dENu0w6I6XSOmP0gdApT+9prMI2HW1kle3RUZYKfPc/73+a9RMebRGbDNvZKttJ0kTe7x4uy9vbWE5dr4nQYl0rzQ35kASgpIHRUivHv/1OeIBo43jdzU4SoJxUvn+uyogvehTZcrW+jZIKCg2BxNnG9v371J2Nn+Xd293n8gnbteSzb5Zvu99ykNNLuhS2O3YsPIz2hZHaCnl/e0egZyO+ruGV7Zr4HbR95//7H+Ofy9e//n/+Y7t7pFyC3/dJB+wtzZv63QMAAAAAAAAAAEDLEbYDABw58pYATXePFhQPW6fVh9lGLafpbWdlO0kTyniNCwJ7pam88ahyFXed5UDPfEfY7uEdta/trXgj7qHUVFjHLFtd89rVJvTFA9LmZeHHxrrq7k2SAOWk8vtZUOy3Dnl2X3QbyGSV7QrNteScKYzRmAlvT7o8pPjggoiPLevTRrYVn327pTyr2kmVyna2+7imqzbxGVZRs17ofWzmvtmeTd8WuWXBIY8wbzOKBalg/wK6fpNrvPCk/di8GMFJAAAAAAAAAAAAtA1hOwDAkcPW8rO7R5cM3WmdNlBXcGx4PDw4EVnZLk7wpd7azVpesAdFisWpNY06ckJrJ3ZGXysbHraxKrc3vHD4B9Yh/XW3punqgFJzYZ2zX1Xz8qyRH1uHDoxJKcvfkPq7ap8hk0rFX0sdk05LqbSzMqBPVmc8QdguHeSll55u/gQzwM7MmtD9qZAicAsi8qQ5R5XBqUG90WOmW5zfnHJlu+eym8JPFdQ+YPW/i2FyxZBBzVRosz2bcX9ThwfiX9vHqo3SsvDnT5J/kNUR2DOzvPIkAAAAAAAAAADAXEHYDgBwxDCXvTH8QHeP3nnI3o6wPlTywoHwcbmoqmxdCf6zu3qjru//ovVwdcDOFmSTpBPHHou+Vtqvgt4kU25p6QoD1q/ppzvCx7laqVY0EbYzR59U8/qaga9ax/aPSE/tCT/2Gwc+EfvaXiLe00uH3NMLxcArkGeTUkG68sbmTzDdjNGvH/hk6KG7nmncly+6T9e20GfLeLaRjfNdzpTGXtf/X6GHf1aoDZO5Qr2TQitVNnPfrvrF8P1jHp9TkvG+1h8jHXWC/fi453WTrM+3tTAAAAAAAAAAAAASIWwHADhy9C0O39+d09LCAc2zVBb7f3fVJnN+8kL4aXrCqjhV60pQBS3bo4WONqPVYbZhS4tWSeoNhqOvVW4nGcvKDZKkxYXwJOI92/2SYF4VxZqpjCVJ2y6sbLpatn7qTvta1+R3Tb04+bzm1hGmHEDaPL499PAffMl9/8bzyS6fCgoyi5YmO8k0s927sPa6US132/ocdlKcyovlynYbJ54PPXx/YUvNa1eod1JoeLaZsOxCy7MZN5y215LyTao7534e7rvN7zy2UN7azfHXBAAAAAAAAAAAgLYgbAcAOHLYQh7lkMlSS1Bsn727Z41s4Ei5SfbepD66e8KrRJVVB19GHMvwqtiVbiJsVw6aZIPwBM6uw1PbQ2P24FjkPZSaryiWmarylVZBJggvb3bX0671Vb2/VoatygHH7dnmQjVR4bEo6SCfLAw6A+QCe6vO5/fXfqZR96tLHuHQaa1s5ylOm9XyM+j6Do5NTN0X1+/MpFzY700z9802J27Y7rnH41/bR7ZHys2zHg4esLcpr2F7P7PhWQMAAAAAAAAAADhCELYDABw5Nh4Xvv+Zn0qSXshsCD28pLf2dcaSSRrqsoctJCULM3X3OINy1cEXV8Wp3qhWt1Jzle3KYZDd6ZWhhxdV3cODjuJ6y/L2VrQVme44K5uyq7ZiV2DC/xo06qgStzZfVRmrlQGYPS8lmu5TZcwlpWLz93VGMDp+zB6kqg/M5hOGEyXNjvvV0+c/tvy9X1AcsA6ZbKmdLwTq9yj+17I2stawncciqjXz2+aju0davtZ+vOj5wNneT9LfmiQ9pgEAAAAAAAAAAFCDsB0A4IhhbEGLk86VJL1q8Nuhhx+t6hxaKAbWqliXDt0RsYAE/9nNZNXraG3p20bWq7JdU2G7UppuSX5/6OGaMKBjfceNPxl9rXQmekwIc9Uv1rx+xfC9oeN2HrKfY+NEVQ/hVobtTr84ckjgCMz4VBlzSakgbd2W7CTT7JyR+6zH6u9P0kqAktoX3PJhjN+4vkX+5yxXtLxq8BvWIZO/M4c8ulFLIa21UymZZr6/tu/agZfjnSduOM9Xrlemy/H77tm+NrBVtstS2Q4AAAAAAAAAAGCmIGwHADgyLFxqP3bi2ZLsYbmdh6RisRR0coWa+ooR/WZTzVe2M8aox5Ht+a8Hp4JYLx20j8s5AnsVCdrIvnooPLD499+bWp+rsp2rVW5FsyGnTbWVDW/o/3zsU/QWqxbfwgCMOePSyDHjjop7SSvbpYO8lGouxDhTZGW/CT+oaw38zz9sQaWv2XC/+hb7jy1/r5YU7D8gT+8p/bl/yO+UDd/nZr8zLWrZHNwX/vuUSFfXVAD4ul8JH3PPrX7nsraRbWHLagAAAAAAAAAAACRC2A4AcGQ4HF5xTVKlalKPI4j2k3JBM1eoKTIolqSNrKRc1l7N6puPTIWH7tkeHiTKFUfUJY+QUYI2srlgLPRwvji1bVuf5Fl5r9mQU111LNfnbVMTVmxlACYb3ZL0qT32Y4kr2wUFKZVOdpLpVK70Nr8Q3gL1zidrn7lCMXRYPE1WWOyoOGG78vtxfQdvfax0Hw/4hu3qz9VsNUjHvODgXv/zvPR0c9d36e6Rmaw06FrnIY8W2dawHZXtAAAAAAAAAAAAZgrCdgCAI54pBxmOHXvCOua5clbPFWqKDIolaSMrqeuwPawxvyqrtbg3fMxol2dgo5nQ1ZMPSpKeyB4TeviE1VPbWcfpIwOLxjRfIXDD1pqXayZ2xpreXRytDSu2MAATDJdCYn+36z3WMfschROTVrZLqZCo8uJMMZjqC92/dF5tUHXbevs5fm/fR/0uNp1hO982sju3+5+zHPhcVLT3Ue4qX9Y7bFcfaPUIlYZastJ+zLNFqyRp0/HNXd+lqlqfWbrKPm7PS9HnsrW5Tfpb4/u8AAAAAAAAAAAAIBJhOwAAsqUKZRcO/8A6ZGS83EbWWdkuolJaC8JM3cXwawxVFZRLFLzKZKeqNMVRbsV7wfBdoYcPVWXoXIHFyCunM82tT5JZuaHm9SXDd8aa3xAEbGHYzpx6gSTp5/u/YB3jum9JK9ulg/zsqNRmE/FM/PCZ2sp2EwX72Df1/2f09VIpma6Z/9don/bEFd2llK6r+uXkc3ZgyK8Nb0MAudnqias22Y/ZqsElHeur+nfgouvs48Y9KmmOt6myXdCCtskAAAAAAAAAAACQRNgOAHCk2Hyi/ViuFDLJakKZIDy1NBlgc4btoirbJWwjq0vfoA/t/XDooburCljZ1vjawW9GXyPdRAtZSebk8yRJJ489Gnp8Z1WxLNv6zhz5cfSFmlxfxcKllc1czDayPXVBR9PK1o4LlkiSFhUPW4c8+JI9MPOpO5P1RS1VtpvFbWTLfnv/X4buf26/9NTuqfuXt4Ttfm7gK9o29nD0hZI+h52yPrzSZJjq5/m6/v8KHfPtyTayw37nbPiONfuMuSrixQnQ/eS7obvNOz4ovfV98dY0KVf1O7Bqo31c/4Hoc1nbyLawZTUAAAAAAAAAAAASIWwHAEBVyOTYsSdDh4xOhu1cbWSjWqAmDdtle5zXGJ0oBWGGLWvsLXokZDJNhojK99BV3W/XIXd1wPlFR5/USUmrrx3eX9k0kub5XLOs4d432xIzTFWYZlX+5dAhn/+RPWz3xQeSXT4VFGZ3Zbuy+kBktVuq7l/ekk187eCtfheaLfcqTkiraqztu/jYrtKf+z2/Ng1huybvmzHGXt2tFdXqcj3q+tU/aa6CXNUcY0ylUmq94P47os9ley/ZFgZ7AQAAAAAAAAAAkAhhOwDAEcG8+XfsB4tTyZtcMBY6xKeyXWSltKRtJ4f71ecIhz2zt/TnqCVsF1l5T2q+Ytey1ZKk1RO7rEMe3lH60xYGjGzDKzUfBrQY6prvPbbh/rWyst3ilZXNl9OrQodsWGKfnk1YlC6tWR62K7eRXZO3P38PvRgdtksHeb/rTXdlO99WynGe0aqxL2TWhw45dV3pzyHPtsUNLWmTVE+0vRef9qySAlcr1ZGh0p/NBPdefsFrPaaqqqbVmOW9tPK3BgAAAAAAAAAAAIkQtgMAzH3Zbun8K+3Hjz2tspmzVI6brGg3agnb5Yojioq/mISV7cwJZ+uyIXt1pMk12gKBXmG2ZtsVnn6JJOnM0futQyrrSxQGnL5AWMP9a2EAxvQtihxje/YKxUDjnhkxm1RQmBOBHler5Or7N2FpI5sJHGnaarMlmNhk2G5dfkfokMnfFlsb3khJ7lu53XcD34DceHiQWpK09TT7sShLVngNC3xCgZb30tKW1QAAAAAAAAAAAEiEsB0AYM4zf/6fMn2L7QPmL6xs2gJff/zVcgtUa1U2j8BH0jayp11kbTEqTVWMGxkPr+DktUZboCWC6S1ViEvJUjJM0oGh0rpsoTGv9SWpjBXissHbvcc2BDHbFID5n/s+Err/24+Hj7fdzzhSKljbX84OpajrhvxLOm7sZ6EjqkOotrBYWr6V7eZ22O6SoTtDhzy5u1QhzlYZMFKS76/t+Tyw22/+uOP3Zfna0p+nXxxrSZJkrv/12h3bLgwfePNfRJ/s8R+F7/cKQXtWOwQAAAAAAAAAAEAihO0AAHOeOfsK94CqkImr+tt4PtDIhCXIVvSoWpS0jWyuV2kVlAnCE3+TYSJrm1afynFJAmSbT5QkbRp/LvTwlx6ICCz63MMWt5FdUjzoPba3/v61Opy27mhJ0qLCoVjTbPczjnQmJZP0+Zwh3nL4ltD91aHExG1kM7MkbJft9h9b9d13tcR+eo9UaDZslySkaPltCm7/gt98VwW8yTDbAkevZpueulbUtnaxQaDAVV3Phcp2AAAAAAAAAAAAM8bc+FdVAACSqAoy7E7ZWwJ+6zFXi1afynYJ/7NbbjVqC80NR7aRbXPYrjx3sGte6OGVC0uVl6yBRZ/1Ja0odvTJNS9NEL6WMA3ra3UAZnhIkjRu4gUKh1oQtktlWxti7LiBqYCi7Tka8Wgjmw48+6Ompjts51nFLM4zWlV1zhX4vOuZaapsNzwQvn/9MZ7zB+3HJit6erRzbtC3sPb1vAX2sU89ZD0UuMKARY/ncvVG+7Hla6LnAwAAAAAAAAAAwAthOwAAslOBFFcbyef3B9YqYjmvynbJ2siacqtDW/W9yfax9spxHmG2JNXayvdxX3q5c5j9HvqE7ZKFwswNv1XzetuYPfxSr+H+tTpsd6DUInh9/iXrkIl8YzjwwFDyS8/6sN341HciF4RXD6t+7qzPoE/gU2p5hcW2ifOMbjq+snn+yN3WYSPjUrHpynYJwna7nmt+rlQTyGxQbjNuzrws/nlPfWXNS3OW4xyjji/riOPY+q2RyzAbjpXWbWk8sPkkmZUbIucDAAAAAAAAAADAD2E7AMARz6TTUqoUhHtT/39axwWBq2qcR9gulSxsN6m3OBy6/0fPlf584MXweV5rnKzw1IxyK8bXDXwt9PCjO8phQMs97O1EZbtTzqt5+fOHPVtQKuT+tTpsd9G1kqTjx35mHRLWIni/o2CXr3R3ghDUDGAuuLqybQuVPrG79Ge+YK/MZvtuNUj6HHZKnGe0qqpbX9H+UO0blPKeBQAbJKls9+q3hu9/8gG/+f37w/en0lOtYF95TeV76MvMr6tsd9F19sGH9tmPuSrbrVzvt5bf+2Ttb3hvn8zvftxrLgAAAAAAAAAAAPzM7n9ZBQCgVbI90sigsoG9J+ePnpOOWhZ+zKsilmlBxn3VRmubzL++PdBf/rx9qldluyQBsnLIY8NEeNrv3mdLf1oDiz7rS1pRLFfb4nZB0dKaMkTbK9utWBd+nSpfeSjQ28+tbSF6YNi/Fa5Nqrs78TmmVc/U55pzhEr3DgTKOXJyXoFUKXGFxcSMZxvZbIxn1HPsn3490OtP87x+vSQhxaWrwve/+JTf/P6D4fsXLJEp30+TyUof+px0/3cU/PRuaXxUZsESBZ/+gPcyTSaroGe+NNIYWAw+91GZy94YPtEVtvP8rTGnXSh95kHp7m+W2paf8xoZz6AeAAAAAAAAAAAA/BC2AwBAqlRcWp3fZR0yNBZoZCI8ZOIVFGtFZbtUSpnA3up2T789eJWSRzmqJG1ky/fQ1Yq3ULS34vWrDpjwry51YbvewLOSmUIClbkWh+3K722+o6rYD56W3n5u7b6DLWgj2zXbw3ZV7UnnOarT3f54oMuOtwfFXEG92uvNgsp2qXSpaqevrN8zMJ6XCh5tZLeNhrRoTvL9dbThDsZGZKICaQO2sN3impcmnZZe8SqZV7xq6vy2sF25tXeDbC40bKfDlup6Uk0r5AYxgr1m1Ubpul/xHg8AAAAAAAAAAIB4aCMLAIAkDR6SJF0xdLt1yFHLTbI2so6wiLcd27Umv9N6+EVLnkSSVuT3RJ8/Tjin3jM/leRuxTkyLo1bMn/dwVj0NRKGnEzv/LprjmtlfrfX3J5i3We8alOitTQ4uFeStCFv6QMsaSLk3oW1lpWkBYXDXpdNBXmZOBXQZqLVR1U2zx75kXXY/qHwezjJVdmyRmYWhO1iVl40vtXyJOWL0dUUP7j3Txp3ppq/b2aRpayoJA17VKi0VY7rmR++v/rav/4X4ft/9U/DJxy2tIudt8B+kRZUtgMAAAAAAAAAAED7EbYDAECSFiyRVApf2ew4KHtVNp/Kdq1oI3vMNv3m/r+1Hj7sWMaW8Weiz59gjebyUg/bawa+ah0zMlGqjBXGK+iUtI1siD/a+8de4+rb95qu1v41ypz72tKfjjEHhhpDTrYA6KaJ572umwoKUneCioYzwbLVlc2VBXuodGTCXZUtFXhUf5QShcY6po0BrXzEbTp75D5dHhZcTlLZrqrSXANXUK0ssI3xuU9XvFlac1Ttvi2nSOdfFT7+yhvD9z/7mP0arveQpOIoAAAAAAAAAAAAWoqwHQAAknTmpZXNNx++JXTILT8KNJqksl0r2siecJa2jT1sPbzb0UbWq3JckgBZuaXiksIB65Dn9ktjScJ2rWjfufW0mpdvsXze9WoClSvWJ19Hvb5Flc3fOPCJ0CFfCenM+YUfh3/miwqHvC6bVl7K9XqNnbHqAlPnDN8TOuzLDwTKu8J2Pq2WpelvI+tTha6ZsN2WU7yG7Xe0Lv7Q3j/WrS+8Lvw3Mcl9m7/QfmwoQWU7jyCbWbpK5uO3S299n3TOq6Vf/AOZv75VxlKpzpx+sfVcwT3fjL2+Vgd7AQAAAAAAAAAA0LwE5SUAAJhDqtpo9jqq1O0dCA82eVW2a0Ub2WzOea0fPO2YGliSgtWSVN8rh3t6A/v6vvVokKyyXSsqitWFa3I+QUnVBSrbUQmuKvDW42jFWywG6uqaClsdsASfeoMRdRdHNdblXmupst0sb1NZ95nOK4bflJf73ZXt0r6V7aY7bOejmWc00+017IeWIpm/t++j+sC+8JarkpJVtnM9oz+7Xzr6JPf8JJXtJJnla2V+NaQ1bsxzBnd+Weac1zQeGE22PgAAAAAAAAAAAHQGZRIAAJCk7Y9UNhcW7RXBntsfvj/nCJhVtCJst3O7egN7EMvFK8yWpIJSORSyMr/bOiRflMYteaaMTxiwFW1kjzq+5mWX7NUAq42YqvBSOwIwVeecMPYwV33b2ONXh4/7fu/5kUE7qVzNzTNkNVOZukpvd/eeEzpu68qINrKzpbKdj2Y+08d/VNm8vv+Lsaen5Li5kpROELabv8h+zKdq6JglVNuO73Ldb0yNPS+G708YBgQAAAAAAAAAAEBnELYDAECSzriksnlD/xesw2xVxLzayLagFaA54xK5Gkj2OzJ/XmG7JJXtsqVwjytwc3BYCSvbJS/Ka1791qbmnTty79SLdgRgqqorvm7w69ZhI3W3acKSD7t46Htel00H+da0OJ5BXjl8V+j+wTG528j6VrZL8j1pBZ82ss0EAk85v7L5vv0fiz09HVi+3JMSBI7rA5U1bEE1nzHt+C5vONZ+7ODe8P3jtvW1oYomAAAAAAAAAAAAmkbYDgAASWbTVCWirWNPWcftGwzf37E2sis3SJLOGPlJ6OG7nrZXaetUZTtJumogPCz2N7cH1nCYX9gu+T00p14gveZtNfveefAfIufVtJttS2W7qVDN2omd1mH1le1s4bEzR+/XJUN3RF42peLsqNQW5bSLKpsXWMJ2338qqo1sRFhs0mwIJ6abqAJ5wtmVzTNHw39jnJeMun9J79vmE0N3B/fcGj23g2E2Y4z0tt8LP/jUg+H7qWwHAAAAAAAAAAAwKxC2AwBAqgk09Pi0hK3jNacVYbvyOnssrWRtbW5NUFRaHkGiRJXtpu7hvKKlBKBreocq20mSufj1Na8HuuZHzqlZX7YN1aZqnkF7pcQH67pQ2sKL6SCvrEdr3lRQaNl9nVZVoSnX93FozH4K7zayrfgut1szAcq64JktNGsTef+S3rfu3vD9P/xa9NwOh9nM0pXWY8GLIYHuTra5BQAAAAAAAAAAQNMI2wEAIEkr1lU2XW1QbXqKnWkjqxXrJUlPZLeGHs5aMlPZYNzZfrYiSeWpZasqmy9k1see3t3BsJ165tW8fC6zMXJKpjq4Nn9ha9ZRbcGSyuaywj7rsJGJ2uqFeUu+KRNMeAUY08rPjcp2+3ZVNuc7wp7P7LVXf5w1bWR9pON/V0xdiHRpwZLetV0yqrJd0vv28vPh+4/ZFj133JKybFeYbYXjN/DZxxp2BbYwYJawHQAAAAAAAAAAwEwyC/6lEACADqhqnyhJS/P2sFMYv8p2LfjP7qbjJEkLi/2hh8ctWRevqnFSsjBMVbhk29jDsad3srKdNp8Ue0r1+uor47WCyUy1/cwF9vJrI3W3yVrZTnmvezpnKtttObWyecXgbdZhA45crFf1R0lKTfNfoY1HdLaZAGW2u+bl6wf+K9b0yPuX9Ddw7ebw/bagmscY064w25mXxluL7T3kCNsBAAAAAAAAAADMJITtAACQZOoquv3N7t+ONb+n2Jk2ssYYaeOxesvhW2LN8w7bJQjDmKoA0HnDd8ee39GwXc7SjtIhU12164KrW7OOeqdeUNlcnt8TOmTn4drXtrBdJvAM26kwJyrbmQuvqWyvLITfO0n6lx+2oLLdrGgjm40eU6+ust1Vg9+INT3y/iW8b+bKG8MPPPd49ORH7w3fXxcwbBXT22c9Ftx/R+PODre5BQAAAAAAAAAAQHMI2wEAMGn52srm4sLBWFNzgUcb2SQtWqsddaJfuK9KtroFqkvSNo8LlzU9taNhu7pQkdeUyfWlMw3hzJZZsrKyuTr/cuiQz/+oro2spetxOsh7fe7pIC8zFyrbVYWSuoMxmSD8xtz3nP0UKfmG7WbBX6GbCVBmaoNnRlKvoyVvwyWj7l/S740jeBYE9hBls+dMbONx4fu/9s+N+8Ys/w0hbAcAAAAAAAAAADCjzIJ/KQQAoEMGpgJ2SwsHYk31Cr8lDbJNGjwUe32dqGwnSRos3cOTxh6NPdUrENiiUJipe59v6P9i5JyMyuvLewYXm1EVrDmYWhw65PjVtS1Eba2DM8FEjDays7+ynRYurWwaSUHM75sJiuqSZ2BrVlS2a+IzXXd0w67hrnne0yMr2yX9DXS1zz1kb/0d5B3tbX1a0DZrxBJUnL+ocd+4ZR3tanMLAAAAAAAAAACAphC2AwBg0uhwZXPb6EOxpvYEHoGNVlVDGxvV5UO3x5ritT5JJmkYplAK25w89kjsqT5rbFcFtjf3fz5yTMa3OmASVWG7FzPrQ4cU6gq2jViW1ROM+LeRbVelvk7acmrNyxNH4wU+vavaSTMgbOcInU1qpo3syefFn1Ml6jtikt63zSfZj406KvDlHd+DDVubX0+URZZKn8WQZ63qvz81uuMrzsapAAAgAElEQVRX4QQAAAAAAAAAAED7ELYDAGDSua+tbKZk6c1pkQvGoge1KKBjLn+TNuRfijWn17ftbNLKdlffJKkUBTp19OFYU72qA7YybPf6X6tsrijsjRxeCRJddG3r1lCvKmz3joP/FDrkid211ddGLDminmBUGY+wXTooNFcFbYapb+37l7t/N9b8yKps1eZoG1mTztR8LyTpzJH7/S8pRwU5KXmos6p6YQNXhbqCY11LVzW/ngjmbe8LPzA80Nj21rZ+2sgCAAAAAAAAAADMKLPgXwoBAOiQ5WtqXl7b/2XvqR1tI9vbJ0k6evwZ7yk5z8p2SddoVm6obN9w+N9jzc0Fo9GDWliBzWw8tub17+z/mH1sUJwKYK5tbLXZMlXBmmWF8LaYD9flLG2V7XJFv8p2XSq0NsQ4nTafWNk8dvypWFMjg2LVpr2ynYd0c5+pueT6mtdHTTzrf8kg4h4mvW+u4NnLz9uPucJ27WyhvGi5/dgzP619PWb5/SNsBwAAAAAAAAAAMKMQtgMAYFJd0MwosAxs1NE2suXASqz1daqyXdU9zMi/7Wp3cVRdPu+nlaGwus87V7RXJwyqxxqPFp7Nqgoj+Xy+xWKgCUtBtlIb2ejPIDVHKtuVTH0284uDsWbGq2w3zWE7n2ew2c+0LtwVGaCrEnkPk353cr32Yy86wpXOsF0bg6a98+3H7vt27evx8LCdIWwHAAAAAAAAAAAwoxC2AwBg0rwFNS+HuxzBjjo+oaaWBXRWrJMkPZ3d4j2lx6dqnJQ8DFMVKDxu7Anvab3BsN/AJqt1haprSXn26I/85llCMa1gVm+sbE+Y8Pfam53aLji6HaeDvFe1wLTyc6ey3fZHKpsLi/2xpqY019rIZqPHhJm/sOblxokX/C/Z5jayJuN4T65nOO/4fW5htcwGm0+yHgqG68KgeUsVStd7BgAAAAAAAAAAQMfNgn8pBACgM8yFP1fz+hcOf9Z7bqaTYbvVmyRJ/+PgP3pP8aq8JyUPEZ18XmXzFSOe4TVJPUXPAFsrQ2FVLUcl6YrB272mmTMva90a6p1xSWXz0qHvhg4ZHpeCoFT1ruAofpcKCl4VDedUZbvzr6p5eenQd7ynxqngNu2V7Xw0+5kuWFLz8q2H/83/klGV7dp434Jdz9kPuirbtfHZd4YDf/Ld2tcTlrDdXPluAgAAAAAAAAAAzBGE7QAAmNS3uObl6old3lOzgSUoUa1V1bDKbQVPHX3Ye4p3G1mTcI1VbR69A35xxrYybFfXnjHr2/a2t691a6jXM9V20tUGtb98u4qOynZdCrwqGs6pynabjq95+dbDt3hPTclxM+uYuRy2m7+o5uWq/G7vqamoynatuG8nnRu+/5a/ss+ZrjaykvTKa8L3//SHCsaqvp+26nuE7QAAAAAAAAAAAGYUwnYAAEyqC195t15VhyvbldcZL8zm+V6SBgK7c1ObwZj3NO8wYBvDdm2f5yM7df9cn9l3yh16nZXtVFBvMbo971yqbGfqv8O+z5XK98HXdLeR9Wj37Kyq5pqXStW0ko3zOxNZHbAV9y3bbT0UDFlaBzvbyLY5bOf6vXjwzqlta9iONrIAAAAAAAAAAAAzCWE7AAAmLVtT8/K48Se8p3qF7ZoMvzQoV487ZfSn/lN8Q0dJwzCrj6psRseBpnT7VAaUWhuMWbS8uXkbj23dGupVVQY8duxJ67CDQ6WUnbOyXVD0CkqlVJwzle2CA7VV2FoaFKs2GyrbJflMBw9XNnMxQrPRYbsW3Le6Nrc1Du4J3z/ueA+O8F4rmKNPth/cV1U9lcp2AAAAAAAAAAAAswJhOwAAykyqNgjS52jjWS/j04K0RRXRjDFSOqNtYw95z/GubJewjaxpMriSmYawnWkyWGja2EbWVFUsmxfYq9KNlB+3qMp2OZ82skFeSs+NsJ056/Ka13FaLac0iyrb+WhhSMs3rJvuQBtZc/VN9oNjlud9zLH+dlaqlKRL32A9FHzqAwqC8pd4wvIb2KqQNgAAAAAAAAAAAFpiFvxLIQAAHbTmqJqX/7jznZFTUkHer4pbC0Md5sb/JSPpssHbvcZ7t9NsRYhoyarK5q8d+LTXFK/KgFLrK7BtPC7e+C2ntPb6YV791srmKZaw2P/5ZnRlu1RQ8PrcUyrMmcp2Wri05mVvjMp2c62NbKKQVl1A7Pf3fcRrWmRlu1QLKtudfJ792P3fCd/vCttVtW5uB7PmKPvzcmiv9NmPlrYLVLYDAAAAAAAAAACYDQjbAQBQrS4Q11cciJziHRRrZQWlXOlcqwq7IwaW9AQj0vpjogcmrGxXuthUK9ScZ9gpOx1tZKWatq1e2ljVrqJ7Kvwz31Jd8aWDpT9dle265NlGNijMnUBP3XfMO2Qqj6ps1WZDG9kkn2m27j56fo/TUYHFVvy+OH5Hg9s+H37AFrbr7qmpJtk2J7zCeij4xs2lDVtlu7ny3QQAAAAAAAAAAJgjCNsBAOaGay0V6N72e/HO88KTNS83TrwQOcUrKLZgidQzP95aHILhUgjrmcxmr/G5YEza+Wz0wFZU7NqxvbK5vLDPa0rWpw2v1JrKWNUO74833uceJvXy1DN3MLU4dEhPOX/jrGynglbnX468XDrIz53KdivX17z0DYlJMSvbtfo5bIckn+nO7TUvN0087zWtI21kXb9RPfPC99vay7a7heykwUP2Yy8+paBYlPJUtgMAAAAAAAAAAJgNCNsBAOYEc8UNja0VUymZy94Y70Qbtta8PG30wcgpXpXtLrxWpoUBHXPi2ZKkE8Z/5jU+G4xLm0/yOHFr/2pwXf+XvcZNWxvZ0y6KN37rttZeP0xVq9rLhu4IHTIyIQVB4K5sFxS9wqKlNrJzI9BjFq+oed2lQD3FYa+5acUI27X4e9IWST7To46veXn5kKU9a52OtJF1GW8M1QWH9yv4698OH9+psN1Zl7mPj49KBcu9I2wHAAAAAAAAAAAwo8yCfykEACCaOeV8mfd/WuorVwJbuEzmg5+RqQoueZ2nrkJelxxpprJMWDWnbLkVaFeXdNF1Mr/1sVjriLSoFCo6b/hur+GZYELmmndEh11a0R7zdTdVNrdMPOM1ZbrayJorfyHe+Mve1NLrh15j62mV7Tf1f8E6bjwfXdnOnHRO5PVSQWHuVLaTpOVra15+4uX3eE2rrmxn/uqb0tU32QdPextZj9an6eY/U3P82TWvF3i005bKwU3niVvzf3qYd344/MAj99S8DIYHFLznVdL+XeHjq1o2t5O57OfdA1yV79LZ1i4GAAAAAAAAAAAAicyhf1kFABzpzFU3Sq95m7T7BWnVRne7QZvu3oZdG8ef1/PZjdYpYVXZzDf2SC88UVrH/IXx1xElV6rI1OtZtSsbjEu53lKoquAIxLSijWxuqlqUkTS/MKDBVJ9zyrRVtss1ft5OnaiEVRUAygVj1mF7BhRZ2U59i7V4/wEdTC2xjkurMLeqZ61cL+3dUXm5qOAIMlXpmgyKGSOdfrF0z632wbOhjWySQGDIc755fLu2Z91tqyMr27Xi90WS5i+wHgryEzKTz/Pd35S2P2I/T7ZDle2ifjd+7KgcOJe+mwAAAAAAAAAAAHMAle0AAHOKSaVk1hzVXNBOkoLGUmHzgiHnlIag2Dmvlsl2y2w5pT1BO0lasFSStLSw32t4JpgoBT6iwmqtqDw1UBtuWuaxxux0he0WLq15eamlXeYvHfqX0kYnKmFVBXOW5fdZhz21Ryo4K9sVpQVLNGrca55zle0O7K552e0ILFarBMWCQMYYd0BqVrSRTfCZ1rfkll+wNzps16KQYm6e/djzT1Q2g09/wH2eTrWRXbTUeTh44Un7wQyV7QAAAAAAAAAAAGaSWfAvhQAAdFBI29krBm9zTqkP25nzrmzpksKYxcslSeeP+LWRzfqG7VpReWrRspqXrxpy3z9p+irbmdWbal6/ZvBboeOuGfjv0kZHKttNXWND/iXrsLEJqeiqbKeitGCxRrrc1ftSKiRqOTrj7NtZ8/KUUUdlsyr1LVCN67Oe9jayHpJU39tycsOuS4fuiJyWDmupXa1Vle1Ov9h+bLQqFLjrOfd5OhS2M8vWSJtPtA8YdQS6qWwHAAAAAAAAAAAwoxC2AwCgWl1QTJL+974/c07JBuNTLy66VnrdTa1eVbiFy5QLxrQkH105Lt3BsJ055fya13+8948i59TcQ5c2V2B718FP68qBb9Ts+9WDf6+rBsv7OtF20jMA9MzewF3ZLijILFiq6/u/6DxPOsjPrcp2r39Xzcu+4oDXtFRQDtttOr70p6uK4XS3kQ2pPNcgyWfat7hh1x/u+/PIaenA0aJaat19W77WfuzZR/3P04lKlWXmD/6f/eAXPm4/RtgOAAAAAAAAAABgRiFsBwBAtZCg08Jiv1KO9oiZyWPrtsj80b/KdKrt3/FnSpLeOOAOU0nlMFun2sjW3cNlhf1aXDjgnJKerjayklQVDswFY/rSS2/U3c++Un+/89f04PYz9bcv/5a6VC4hl3NXiWuJuvu3Kv9y6LA//XrgVdnu6PFnnJcrVbabO4Ge+tbNPcGI17xKC9TJaodHchvZkPe+uHgoZGCtyDayLbpvpqvL2l41+PQf+p+oU21kJZmt26STzo0/cQ59NwEAAAAAAAAAAOaCOVTGBACAFuiZH7o7FRRUMOH/2UyrHBQ79QKZTla8CkplzbqLo5FDM5qQcvM600Y22914/YgwnX9luzbc32JtebiUijpr9H6dNXp/49je8OejpXr7al4WZa9iFlXZTguWaknhOefluoLC3KpsV/d5VoKSEVIqzyt/r5zV4/Ke4dDplChsFx4q7QoKKhr7dzCyjezS1c2vqV7R8vAPHfY/h+V9ts2KdfHnELYDAAAAAAAAAACYUWZBWQ4AADrHWCqXjXc1BsgmVYJkHWxJKEmaKAXUQkNhdbLBuHTUCZ2pbDfZhrPKnvRK55RMVEhnUlcbwnZxAnSrNrb++vXqWmTa7l1PRl6V7eYFw87LpZWfW4GekLCnj0pVtud/VvrTFYwqeD6v7eLTRjbBd8Wkw38nXEE7KaKy3Yr10tZtTa+pQWAJ202MK7AF8ep1sLKdJJltF8SflO5QpVQAAAAAAAAAAAB4IWwHAEC9485o2HXR0J3W4ZWwXbbDwY2rflGSdPXA1yLHZoJ8qepeVOW6VlS261vcsOuMkZ84p3hXtvMJGcVkXv+r/mPbcP3Qa6w/pvL6D/b+eei45/ZHVLZTQVqwRD1FdxvV1FyrbHfC2Q27Lh+8LXJapSrba95e+nPdllauqvOSfqanXdSwa2l+n3PKZNjOvPujtdfv6pL5tT9r6ffHvOND1mPBL5+j4PD+6JN0OiB9+Q3x58ylICwAAAAAAAAAAMAcQNgOAIA65vzXNew7Z+Q+6/gxU66k1eEqSVpSqng2LxiKHJrtLa8tsrJd8jCMSWca2r2eOvawc05Um9mpk7ch7LZyg9+4Fetbf20Lc/27KtvbHPfOWdkuKFW26wkiwnYqzq1AT0h1yp8b/GrktFRQkCSZ8vdKmVleUSxh2M684lUN+84fuds5pxJYvOIGmU98V3rL70g3vFfm49+RufxNidbT4ORz7ceeekjBx94TfY5OV7brWySdcUm8SbP9OQQAAAAAAAAAAJhj5lAZEwAAWiSkDWVv0d6K8+7eUujDZDtcJakcFDGSeotDGu6aZx2ayZbDb1EBnFZUtpOkbE4amQoBuu6fFKOyXavWV3Nxz8+tk1WwqtbUXRy1Dts3YD9FSgWpb4l6HPOlcjWyuVTZLiRAFfX8SVVBsUz5++9q39m3qJmVdZalFay3kPvoVSWxPNeccJbMCWclW4NLVFDuO/+R/BztsMTdUrvBXArCAgAAAAAAAAAAzAFUtgMAoF5IGOK00QcjpwWDh9qxGrvNJ1Y2XUE7ScpmyhXhIivbteivBiO11faWFdztJ70r26kNle3WHOU3rpPBnHVHVzZXFPZah73cby9t15XJSPMXKhdZ2a4wtwI9a49u2OXz/Z1sgVqpJLZkpbR6Y+PAbLd0zmuSrDA5nwqPSQOUIc/7ttGH3JdUuTpgb1+ya/vYdHziU5hpCNuZrdv8B3d1za0gLAAAAAAAAAAAwBxA2A4AgHpnXtaw65LhOyOnmbMa57WTmbegsn3joc84x2YzHa5sV2fL+DPO41nfsF0b1md8g2adDOaceE5lc/P4s9ZhQ2P2U6SyWRlj/KqRzaFAjwmpQHjy2COR8yphu+POKJ3HGJnXv6tx4JU3yvS4w60zQhvCdj/f/wXnlC45+hq3mOmdn7zFaierVU669I3+Y7t7ZNrROhsAAAAAAAAAAABNI2wHAEC9qhDbpJ7A3YqzNG9hGxYTYeNxkqS3Hf6cc1imuxwo61RluwuurnkZFbarVLarqtYXql3Bk2Vrosd0MmxXFSLqcVSm++Yjjsp23aV2qD3rNjgvlTbFuRfo6Vtc89JIes3grc4pKRVLG1Wfs7nht2Te93fSqRdIx50h8z/+WOa9f93q1bZHKpVsfsjzviH/UvS8clixE8z7P53sBNlpqGy3Yl2c0W1bBwAAAAAAAAAAAJozd8qYAADQKs2GqqahJaF650tSZPWybLbDle3q7sUx4087h2eDcen0i2Vu+kMFv+GoENiqMGC9nMdnl+1cFSxjjIKeedLIkHKOoOfXLQXbTFCsVHjryUqTObIwKdO5amQdk+uVBg7W7FqWd7cyrlS2q3t2zTW/LHPNL7d0ecl5hLC6kobtmnzeO/k7mLTCYNLKeM1aulravyt63Mhg+9cCAAAAAAAAAACAWKhsBwBAHdNs4CxWxaIW6T8gSTpq4nnnsEx3OWQXFS5pVZjt0N6alwuL/c7h3cFYKaQTdf02tbn1qnDV6TDlyJAkd6zKVpAupUIpcCZpfbf73meMI4k3W+3d0bDrQGqJc0pa5bDd/EXtWFHnJW0ju/bo5ub97P5k141jzeZk89cf05p1xLWuyXsLAAAAAAAAAACAaUfYDgCAFjF90xDSOfe1kqSVhT3OYdnJNrJR1apaFGYzZzZWpztr5EfW8blgtBy2i6jY1a52pz5BuumoXBghsBSl6wqKlfUuiPjIe8x4i1c1Ayxc2rDr8qHbnVMmK9uZ9Bwp/JwwbGeaDaKtOSrRdWM5+iRp0/HNzV29STr+rJYux5e57I3Tcl0AAAAAAAAAAAAkR9gOAIAwJ50bb3y2uz3riGAue1Nl+5TRh63jMt3linZRgbFWVbY76ZyGXX+094+twythu6iwX7vayHqF7TrXRlaSdN6Vlc0/3fOHsaamVJiq1tfdo5t3/JJ1bE9XvqnlzWTmTe9p2HfmqLviWirIT1+ls3ZIWtlOktKZ+HMu/Lnk1/VkjJH52NfiTzzhbJm/vlUmlbDVbrOu/ZXpuS4AAAAAAAAAAAASI2wHAECYnnnxxi9a0Z51RKkKia3I26vbdU0GxaLapbaqTWtIeC0b2CuopYJCKcwWFaZrW2U7jyBdpyvbldvAStL84lCsqV0qTr2n7l4tK+yzjp2Tle2yjZ9nT3HUOSWlwuxpIevzPWhF2G7VxthTjE9L5hYyy9dKb32f/4TTLlLXp78vs3pT29YUxRgjvfHd03Z9AAAAAAAAAAAANI+wHQAAYQ7vb9h1+sgDoUPfc+Djna96Nmnx8srmGwa+FDpkeX6PtOfF0ouDu93n62pRpacljeHDdRM7rMPX5XdIB/dOX2W7xSujx4Q8E50yZrKxxpfCi5OV7XLqKY5Yx6bn4t8GxxuDdVGtltNBfka2Cm5aK8J2+3Y27PrN/X8TOvSVQ98vbUxDlU8T8ntjH9ymwG5MZonHb86lb2j/QgAAAAAAAAAAABDLXPznVQAAklu2umHXrx38dOjQXzx0c2glrU4wy9ZUtq8a/IZMUGwY89rBW6XF5TDKvIXuE7aosp1ZuaFh39ET27V17MmG/VvGn9Yx40+XAnpRQZg2BWXMOa+OHrRiXVuubWNOOb+yfcroT2PNrQmOdfcoF4zZB7eqmuFMsvnEhl1r8rucU9IqTF9oth1a0SI1CBp2XTX4jdChlf3TEVj0+f5OWrO5feuIw2PN5twrI8cAAAAAAAAAAACgs+bgv64CAJCcufLGhn2/cPizuvHQZ2r2/eXLv6NTxh6Z3opYJ5wtSVqdf1n/svMdSgX5yqHTRx7QR/f8vsxpF0qSzHkR4Y1WVo6ruydG0r/teLuW5fdW9i3L79UtL71NRpI5/ZLo67crGHbJ9ZFDzImvaM+1bS78ucpmVFCsXlq1YTujxtDUpLCA5qwXEvaUpLcc/jfrFCrbNTI3/q+GfZcM36kP7P2zmn3X9n9Z7znwd6UX03APzYZj/cde8vo2rsSf2XKKzLs/ah/wupukV725cwsCAAAAAAAAAACAlxb0lwIAYA7K9TbsSqmof9j1K/r9ff9Hj3afqFeM3KdVhXJb1ukM6WzdJj12nyTpLf3/rlcN3aYf9J6vtRM7dProA0qpKKUzfutsZZjtuDOkh35Qs+vUsZ9q+9PH6a7ecyVJ5w/frd6g3OK0OzdtbWRNV5eCo06Qnn3MPijkmWirqs+qJ7C3gQ2TDqaqtJmIzzw4uC/+2mY6S4W600Yf1L8uDA8w1bTenel8Kjy2oo3s/MZKmEbSh/b9id5x6J90T88rdOLYYzp+/GeqrGi67uFr3iZ987PR4zr9PXYwb3qPdOkbpYfvkoYHpInx0v075Txp7dEyM6TlLQAAAAAAAAAAAKYQtgMAIEy2O3S3kbRlYru2TGyvPTCd7SfrKpMtK+zXtQNfqR0zGbyJWmcrw2zzFoTu7g1GdMXQdxoPpDPR129n+CSkZWaNToeIcvMqmwuKA7GmZoIJKVtab/DS01qZ320du37ixebWN5NZ2iWngoJ1ysvpVdLEU+1aUed1taCNrOOZX5/fofUDX2w8MF0BMcvvTYMZFqg0y1ZLl75hupcBAAAAAAAAAAAAT7SRBQAgzKYT4o2fxgCHWbY2etA0VLabbF3rbdMJ0UGddrWRlaS1m93HO/wZm6rA59LCgVhz08pPBUYP79f6/A6dOPpow7j1Ey9q29hDidY5E5mlq0L3nzb6oHXOuMlKB/daj88qXV0yrfiunHJe/Dkbtia/bhPMaRf5DczOrLAdAAAAAAAAAAAAZhfCdgAAhOlbFG98dhor2513ZfSYSmW7iBaKraxsd+WN8cYvWOJx/fZVzTI3vNc9YJpDOpvHt0cPKksHeZl0tvSiHBL8yJ7fV644UjVmQh/b/XttvKMzz9bxp63HjAKZS6/v4GoSiAqltqKFrCStiQighlmysjXXjuvc1/qNm84qpAAAAAAAAAAAAJj1CNsBABDCpDNSKkYbxukMYs3rix5TCdt1sLLdgiVS32L/Cd09Utc0VrZbvcl9fDpCOsefWdl83cDXvKelg7yUqQ3bvXroNt377AX68J4P6oN7P6x7nn2lrhv4ckuXO6OEVCpMyd5G1iiI97zOZC0K25muLmtLbatcRKC3TUy2W+aDn4keOMPayAIAAAAAAAAAAGB2aVHZCwAA5qBMt1QY9hybae9aXKKq1UlSuvyf/FznwnaSpEXLpIGD0eMyWZmuLgVRFbtaWXmvXlRIaDpCRJmpoFN3MOY9La1CpXWw2bBVQXn/ieOP68T9j7dyhTNXpjEk1hUUrcONgrkTxOqKERSOkumWxv2fvWkNHvctjB4zTWFAAAAAAAAAAAAAzA1UtgMAwGbUM2gnSTuead86oixdFT1mMgCz9mj3uHVbkq+n2p6X/MZNBqOiwnRRYbwkFiyxV7dbsV5avKJ917YZ6q9s7sis9Z5WU9nuyl9o9apmh+caQ4WRle3mSovRVoZmq57BSKm0THoa/395tp7m/o1Yf4zMvAWdWw8AAAAAAAAAAADmHMJ2AADYrFjvPdSc/7o2LiTi2sZ4tEAthe1M2l2BL+p4bNe/y2/c5HWjQkJtbCNrjJF583vDj93wm6X73GHm2ndWtl8z+C3veSlNhe3MsjXuwRdM37PbVpe+oWFXKogI22VnS9gu6lls4bO6Yav/2GmuDGgWr5Be83b78Z//zQ6uBgCA/5+9Ow+z9KrrBP49VdV7d/ZOOk12spBASAiLgbAm7MhiDMIICo4OoojKICMgIIoo4jrOiKKjgDqgoiCLgmwyLBKWsCRsIfva2ZdOr9VV9c4f1Z2u6rrvvbdu3aXq1ufzPPepW+d33vf8qrq6q5L7rXMAAAAAgGEkbAcAdZ50YftzDz+6d320obz4Nc0nDCgEU855YnsT94XtWh4T29vAW/mRl6e86T3JuU9Pjnlgcu7TUt7wrpTnv7Kn69Y69WH3Pz1s8q62LxurJpKxlfsHmu3Kd/zpnXS26JWHnjdnrOnOdlU12CNQu6mbodTHP6/9uYvgGN7yq3+e8vK3Jg89b/rv8DEPTB79jJRf/9uU5/63QbcHAAAAAADAEjfAc54AYJGbT3Bk0MdPtgoJDaq/dj+H+4JhrXaP6+HOdvuUp7ww5Skv7Pk6bZmx09qaamfbl806RjZJ1qxL7q6Z3IfP6UA0+NprubPdIgiLdUUXd2Esq9akanfyIvj8ldHR5EW/kvKiXxl0KwAAAAAAAAyhIX11FQC6oOUuazMMOmRy7CnN66vX3v+0vOqPG8+58OVdbGivY05ub97Y3vx/q+DXfP5MhsGMkOQp41e1fdlYDtjZ7uZr6iePjHbS2eLX4O/ESKaaX7NyZfP6YtEyTNfFHSBb/dsy06BDxwAAAAAAANBjy+wVawBoX3n009ufPOiw3emPaF6f2d9jn52sWT+7PjKScsELut5WOaLN43XbPUa2izt2LQkz/tw2T2xp+7KxanJ2cOy4U+snD+vOdg8+d85Qs2NkRzK1/+twqevmn+kPPbX9uavWtp4DAJMLjsUAACAASURBVAAAAAAAS9iQvroKAF1w5DHtzx1w2K6MjDQPCs04ZrYceUzKH30sOeWs6fDaMSenvPn/pjz0Mb1prp3P4/1hu8EfI7uoHPB1tWnilrYuG6tm72xXnvXS2rllSHcLLGNjybqDZo81m58qGR2SsF03j5Fdf/D0McTtGHToGAAAAAAAAHpsOF9dBYBuWD2PXZpWLoLjE486tr62ctWsd8uDH5WRv/5Kyifvycj7vpPypAt719dhR7Wesy8Y1iL4VZbxznZJsmni1rYuG8tEsmLGznbNvpaHOcDYbEe/A5RUw7OzXTePkU2SU89pb55jZAEAAAAAABhyQ/zqKgAs0JoN7c9dDCGTJ13UePywTbUhtdKPvm+7qfWcfSGnYQ5+deKAEOcNYw9o67IDd7bL+K7audXkREetLQk3Xd321Ofc95GlE7br9w6Q7f47sRhCxwAAAAAAANBDXtEGgBplbKz9yStWtZ7TY+W8ZzUunPfM/jZyoEM3tp5z/zGyfjSZqRwQmjps8u62rhurJmbvinfqw+on7xnvpLWlYee2OUM/ffe75owdNXFrHrfji0snbNdKt3eAbPd42Jm7KQIAAAAAAMAQ8oo2ADTz7P/a3rxFEDIpDzk35RfePjtoc9ZjU17xu4NrKkm58OdaT7o/bLfMjoltx/Nfef/TX7z7T9u6ZCwTs3cjO7TJUb4TQxy2a/C193u3vTaP3fGF+98/fOKOfPiGCzOaKWG7Ou2G7UaH5PMHAAAAAAAANeaxZQ8ALD/lyGNTtTNxbPBhuyQpL/il5Bk/kXzny8nmE5PjTqs9QrZv1qxrPccxsrXKxs33fw2un5q7U1sjc3a2W9Vk58Xx3Z03t9itXjtn6KCp+/If1z01P1h5Su4YPTyP3HlJVmbPdHFYwmLd3iHSznYAAAAAAACQRNgOAJobGW1v3iIKmZSDDkse/YxBt7HfuoNaz3GMbL2JiXlfMpbJZOWMne3WHVw7t2w+sZOulojGQdOS5LTxK3JarphdGG3z7/ugtQrQdjtg2+7nZVh2BgQAAAAAAIAaXtEGgGZOe1h780bl12ud9djWc+xsV++Io+9/etruH7R1yVg1MSsAWg4+PDn5oY0nn/u0BbW3mJW6j7mRsRWD3wWyW7r8YZQHPaK9iWP+HQQAAAAAAGC4eUUbAJo57ZzWc1asHJ6QTg+Uee1s5/M4xwmn3//06IktbV2yotozZ5ex8kt/mKxZP3vii16THHfagltctB78qPbnDtOubN3eIfJxz2lv3iI5ThsAAAAAAAB6xfYTANDMqjWt5wiYtHbokcndt9XX930OHSM714yvwTXVrrYuGa0mktEDwnZnPy5591eT//xYqnvvTDnnicnZjxvuoOjqte3PXUJhu1JKquYTurvg2g3tzVtCn0MAAAAAAADohLAdADTTTthuhbBdSytWNa87RrbejMDY6qn2wnZjmWgYfCqbT0ouekW3TxldvFbNI2w3TEdBdzts1+6/cYLHAAAAAAAADDmvaANAE6Wd8JeASWvHtziqdGxf0GnZxMDat+n4+5+ur7a3dclYNSG4mKSsbBHynGl0iHZl6/IOkW3vfmhnOwAAAAAAAIacV2EBYKEETFoqL35N8wl2tqvVVuDzAGOlGu7jYefj2FPamzdMf4978Wd/0GGtl7XLJwAAAAAAAEPOK9oA0Mo5T2xeXzFEIZ1eOfvxzev7dgfs8o5cw+jNt/9myzljI1UfOlkayjN+sr2JY46Rber8i1rPGabAIgAAAAAAADTgFW0AaGXl6uZ1x8i2VEZGkmZHetrZrm1rpna2nDNWhO3ut6rF3999hiko1ovQ6qo1reeMDlFgEQAAAAAAABrwijYAtHLCg5rXm4XI2G98d31tX9DJ0aeNPe459z990PjlLafb2W6GE05vb95Qhe26//eoHHpk60mOkQUAAAAAAGDICdsBQAvlyS9oPmHV2v40stRtPrG2VPbuDliE7RoqT3/x/c/P3/7ZlvPtbDdDqyOM9xldYmG7Zn9XevH36Ek/2nrOMAUWAQAAAAAAoAFhOwBooZx2TvMJ7R5TucyVH391fVFIp6ny+Ocme3cWW1Ptajnfznb7lZWr2jueeJi+BntxjOym41vPcaQ2AAAAAAAAQ07YDgAWatWaQXewNDT7PI2O9q+PpeqZL2l7qrDdAY45ufWcoQrb9eAY2ZGR1kdmD9PnEAAAAAAAABoQtgOAdpxydn1t4+b+9bGUTU3Vlqqd2/vYyBJ15y33P/2hHV9uOnVMdnG2yYnWc4YpKNar45jHdzevr7CzHQAAAAAAAMNN2A4A2lBe+fb62mOf3cdOlrBmx/FOTfavjyWqnPCg+5+/4Y7faTp3rEdZqyXrEee3njM21vs+uqlZoK4Xx8gmybGnNK8PU2ARAAAAAAAAGhC2A4A2lIc9IXnWS+eO/+xvpZz79P43tBStP6i+Nils19KJZ9z/9BnbP9F0qmNkZysvfFXrSaNDFBTr0c525ZW/13zC6BILLAIAAAAAAMA8eUUMANo08tp3pvrF308++ffJxgckZz8uZe2GQbe1dKxcXV+zs11rB3z+ztj93Xx31RkNpzpG9gCr17WeM0y7svXqGNkNhzavO0YWAAAAAACAISdsNyCllJOSPDLJI/a+PSfJzMTGdVVVndDhvRe6nc2JVVVdu8B7AAylsnZD8tz/Nug2lqYmwcRy6tl9bGSJWjM7MLZ1pH6nwLER58jOsq7Jror7DFXYrkebVx/UImw3TJ9DAAAAAAAAaEDYro9KKU9M8rpMB+wOG2w3ANBfZdWaVGc/Pvnm52YXRkaSRz1lME0tJSc+eNa7N644pnaqne1mK2vWpeVvIiy1oFiz3et6tbPdsac2r69a05t1AQAAAAAAYJHo0bYX1Dg7yVMjaAfAMlV+6Q+TQzbOHnv1/0o5yLfGllavnfXui+59b+1UYbsGfvTnm9dHh+h3UHoUtiulJI98cv2EVWvrawAAAAAAADAEhuhVxSVtd5IbkzywB/f+cpIXzvOaG3vQBwCknHxm8jdfT778yeS+u5JHXJBy4hmDbmtJKCMjs3Zn2zRxS+3cMb9OMUd58A+l+ud31E9YajvbNdOrY2STlEdekOqrn2pcXLW6Z+sCAAAAAADAYiBs1397knwnydeSfHXv28uSnJfkP3qw3q6qqq7twX0BoCPl0COTp79o0G0seaPVZG1tbLRHx4guZWvWNa/fc3t/+uiaARwjmySHbaqvtfocAwAAAAAAwBInbNdf70ny51VV7TqwUHr5oigAMHS2jWyorY2N+blijgf/UPP6zu396aMfevlz5aOeMn3/qpo9fvTxyeFH925dAAAAAAAAWAQcMtZHVVXd3ShoBwDQlp96w/1Pn7z9M7XT7Gw3Vzn0yOT8i+onTNbvFLjk9PIY2UM3Jhe94oDBkvJTb/TLIwAAAAAAAAw9O9sBACwR5REXpHrXbyVJ1lQ76ueNjvarpSWlvOFdqT7zT42LkxP9baaXehx6K6/8/eSUs1Nd/PFkzfqU8y9KedRTeromAAAAAAAALAbCdgAAS8WqNfc/XT1Vv1luNbKiH90sOWXFylR1xakltrNds0Bdr8N2pSTP+ImUZ/xET9cBAAAAAACAxcYxsgAAS8WxJ9//9KG7v52xas+cKaPVRM5au6WfXQ0HO9sBAAAAAAAALQjbDb/jSinvKqV8p5RydyllvJRy6973/66U8rJSymGDbhIAaK2s3ZAcMx24O3hqa16w9f1z5ly09QM5eOUS26VtMRC2AwAAAAAAAFpwjOzwO3HvY6Yj9z7OSPKiJH9YSvnLJG+sqmpbL5oopRyZZOM8L3tgL3oBgKWsvPHdqX72sUmSv7z553LExB350IbnpErJc7d9JG+79deSsZ8bcJdLkGNkAQAAAAAAgBaE7UiSdUl+OckzSykXVlX1nR6s8fNJfr0H9wWA5WXdhvufrsye/MFtr80f3Pba2XPGVvS5qSFgZzsAAAAAAACgBcfIDq+JJJ9N8oYkz0lyTpJTkjwsyXOT/H6S2w645tQknyqlHN+/NgFgtvKytzQuPP3F/W1ksTr86NZzhO3qPfS8hsPlZ36jz430UPEjPgAAAAAAAPSCV+KG0xuSPKCqqidVVfXWqqo+UlXVN6qqurKqqm9WVfXhqqpek+T4JG9LUs24dlOSD5RiSxQABuSJP5KMzt18tzzxwgE0s/iU9Qe3niNsV6s8+QVzB9esTx7+pP430yt+jAMAAAAAAICeELYbQnsDdgfuWtdo3q6qql6X5JUHlM5J8l+63NY7kjxkno/ndrkHAJaAcuwpKW95X7Lh0OmB1WtTXvG2lPOeNdjGFpOTHtK8PipsV+t5L0te+Kr9u/8dfnTKH3w0ZcMhg+1rvpoF6oTtAAAAAAAAoCfmbhvDslNV1Z+WUp6a6eNm9/n5JO/t4hq3Ze6xtU3ZXA9g+SqPe07ymGclN16RHH1iyspVg25pcTnyAcnV366vj/kRr04pJeUVb0v1029KbrsxOfaU4fuZwzGyAAAAAAAA0BNeiWOf3zng/XNLKUtsixcAhkkZHU05/kGCdo0cfETzumNkWyqr16Ycd+rwBe0SO9sBAAAAAABAjwjbsc9Xktw94/3RJGcMqBcAoInyyCc3nyBst7wJ2wEAAAAAAEBPCNuRJKmqairJ9QcMbxxELwBACxc8v3l91DGyw69JoM4xsgAAAAAAANATXoljpp0HvL9mIF0AAE2VsRXJC3+5foKd7ZY3O9sBAAAAAABATwjbMdMRB7x/x0C6AABaW72uvjYqbDf0mgXqhO0AAAAAAACgJ4TtSJKUUo5IctIBwzcPohcAoLWyem19cZXNaYdes90LHSMLAAAAAAAAPeGVOPZ5YWZ/Pdya5HsD6gUAaGXV6s5qDIexlfU1O9sBAAAAAABATwjbkVLKUUnecMDwR6qqqgbRDwDQhpXNwnZ2tht6K4TtAAAAAAAAoN+E7YZIKeW0Usqz53nNpiQfTXLUjOHxJL/Tzd4AgC5rtrOZsN3wW9HsGFlhOwAAAAAAAOiFsUE3sNyUUo5J48/7pgPeHyulnFBzm21VVd3RYPzoJB8upVyW5O+SfLCqqitq+tiQ5CWZ3tHuqAPKv1VV1dU1awMAi8Hpj2g8PrYiOfGM/vZC/zULW476ER8AAAAAAAB6wStx/feFJMe3Me8BSa6pqb0nyUubXHtmkt9N8rullHuTfDvJHUnuS7I+ybFJzkrjP/+/qKrqLW30BwAM0gmnJ2c/Pvnm52aPP+1FKesOGkxP9E+zY2RHm+x6BwAAAAAAAHRM2G74HZzkvDbmbU/yqqqq/rLH/QAAXVBKSX73g6ne+YbkK59IVq5OHvfclJf+2qBbox9WrKqvjY72rw8AAAAAAABYRoTthsv3kvx2kickOSfJmjau+UGSdyf5y5qjaQGARaqsXZ/yqj8edBsMwrZ76muXf71/fQAAAAAAAMAyImzXZ1VVndDDe9+a5NeSpJQykuSUJA/M9JG0hyRZnWRnkruTbEny1aqqbu9VPwAA9MhNV9fXrry0f30AAAAAAADAMiJsN6SqqppKcvneBwAAAAAAAAAAAAswMugGAAAAAAAAAAAAYLETtgMAAAAAAAAAAIAWhO0AAGCpueDH6muPfkb/+gAAAAAAAIBlRNgOAACWmPLEC+trL39rHzsBAAAAAACA5UPYDgAAlprHPzd55AVzx897VspJD+5/PwAAAAAAALAMjA26AQAAYH7KyEjyB/+aXHlpqrf9bLJzW8pb/j7lgQ8ZdGsAAAAAAAAwtITtAABgCSqlJKeclfJXFw+6FQAAAAAAAFgWHCMLAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALYwNugGArtt9Z7LjxmRqT7LhlGTlwYPuCAAAAAAAAACAJU7YDhgeu+9MPn9RcttnZ4+v2Zw8+4pkbO1A2gIAAAAAAAAAYOlzjCwwPL7wgrlBuyTZeXPyxRf2vR0AAAAAAAAAAIaHsB0wHHbdkdz6mfr6TR+ZPlYWAAAAAAAAAAA6IGwHDIcdNySpWsy5sS+tAAAAAAAAAAAwfITtgOEwuXPQHQAAAAAAAAAAMMSE7YDhsPX7redMjfe+DwAAAAAAAAAAhpKwHTAcrvuH1nPu/Frv+wAAAAAAAAAAYCgJ2wHDYfXG1nOqyd73AQAAAAAAAADAUBK2A4bDTR9tPefilyS3/2fvewEAAAAAAAAAYOgI2wFL35X/J9lzb3tzP3lecvPHe9sPAAAAAAAAAABDR9gOWNqqqeTSN87vms8+oze9AAAAAAAAAAAwtITtgKVt29XJrlvmf1011f1eAAAAAAAAAAAYWsJ2wNK2577OrttxY3f7AAAAAAAAAABgqAnbAUvblo93dt11f9/dPgAAAAAAAAAAGGrCdsDSVVXJt17f2bXf/NXu9gIAAAAAAAAAwFATtgOWrq2XL+z6nbd2pw8AAAAAAAAAAIbe2KAbAGhq27XJHf+ZrD0mSdk/PjWeXPkXC7v3+F3JmqMWdg8AAAAAAAAAAJYFYTtgcdqzLXn/hs6vf9jvJZe9OZnYXj9nYlvn9wcAAAAAAAAAYFlxjCywOH1w08KuP/1XkqdenJz4k/VzLvuNha0BAAAAAAAAAMCyIWwHLD7VVPMd6VpZdfj020Mekpz77sw6fnamWz/T+RoAAAAAAAAAACwrwnbA4rNn68KuP/jB+5+XkqRqPG/FAo6pBQAAAAAAAABgWRG2AzpXVcn3/yj56BnJBzcnF//0wnak23fP775tYfc46b/Ofv/IJzSet+u25J+PTLZ8YmHrAQAAAAAAAAAw9ITtgM5d/ifJ1/97svV7yc4tydV/nXzuwgXe838m3/3dzq5dcVDyqHcmJ71k9vgZr6u/ZvftyX88Lbnjy52tCQAAAAAAAADAsiBsB3Tu6r+aO3bLJ5Lt13V+z6v+T+fXPvuK5OSXzR0fW9P62mv/rvN1AQAAAAAAAAAYesJ2QOfuuazx+JV/0dn9qiq59zud97PikMbja49tfe2tn+18XQAAAAAAAAAAhp6wHdB9u+/o7LrJXa3nPPxPGo8f+fhkdGXj2voTk0POWvjaAAAAAAAAAAAsW8J2QPdtu6az6675m+b18z+ZnPoLydFPm1t7/IebX/uEDzWvb7uyeR0AAAAAAAAAgGVtbNANAEPolk92dt2lb6ivPet7ycEPmn7+pI8ne7YmN/1rsvG8ZN1xre+97vhk3QnJ9mvr50yO1++OBwAAAAAAAADAsmZnO6AzU5P1tZWHzv9+E9ubHz+76vDZ7684KDnhv7QXtNtn87Oa1+/9Tvv3AgAAAAAAAABgWbGzHdCZqd31tTI6//vt2VZfG1mRrN44/3se6AHPTq740/r6xPaFrwEALA+7bktu/niy9XvT7x90WnL0M5I1Rw22LwAAAAAAAHpG2A7ozOSu7t2rmkr+9fT6+mP+b3fWOfopyckvT67888b1yZ3dWQcAGG73fjf59PnJrltnj6/amFzw6eSQMwfTFwAAAAAAAD3lGFmgM90M2932+WT87vr6xsd2Z50ykjzyHfX1yR3dWQcAGG6XvGpu0C5Jdt+efO0X+98PAAAAAAAAfSFsB3RmqlnYrprfva55T/P62Lr53a+ZUqZ3nWlkws52AEALU5PJ7Z+rr9/xxWRyvH/9AAAAAAAA0DfCdkBn7vhKfa2aZ9ju6nfV18Y2JCsOmt/9Whld03jcMbIAQCvVRPMdfqf2JFO7+9cPAAAAAAAAfSNsB3Tme79bXxu/q3vrPKzJOp0aE7YDADpUTbUxZ7L3fQAAAAAAANB3wnZAZ5rt6DIfu+9sXj/+x7uzzkx2tgMAOiZsBwAAAAAAsFwJ2wGdWXV48/rE9vbuc8unmtdHV7V3n/kQtgMAOtXWznZtzAEAAAAAAGDJEbYDOnPQg5rXd9/R3n12bmleH13d3n3mQ9iOxWZqcvoBwOBNTSYTO5LJ3cmercme+2bXHSMLAAAAAACwbI0NugFgSE20GVzbc2997YzXdqeXA42ubTx+3xW9WQ/qTOxMvvYLyY0fnA5mPODZySP/PFmxftCdASw/E9uTf6z593f9Sclpr0pO+4U4RhYAAAAAAGD5ErYDOjOysnm93V3iLntzfe3s32m7nXkZq9nZ7vr3J1N7kpEVvVkXDnTxS6a/7va59v8mu+9MnvSxwfUEsFzVBe2SZNvVySWvnA5DP+DZre9173eTtQ/oXm8AAAAAAAAsCo6RBTrzyHckL2gSqGsnbLfrtu71Mx/Njn+7/Qv964Plbfze5IYPzh3f8vFk5y397wdgOWv3Z5Kr39PeMbLX/f3C+gEAAAAAAGBRErYDOjeyKklpXGsnbHfvd7raTttu+VR97Y4v968Plrf7rkiqica1u77e314Alrsb/6W9eVu/194Rsde8e0HtAAAAAAAAsDgJ2wGdKyUZXd24Nrmr9fXbru1qO23bcHJ9bWq8f310w84tySX/PXlvmf349lsH3RmtTO2ur7UT5ACge/Zsa2/erluTfzuz9bxqKvn3RycTbfzyAQAAAAAAAEuGsB2wMKNrGo+3s7Pd9mu72krbDj27vrb9uv71sVC770w+9YTk8j+aW7v0Dcmlb+p/T7Rv+/VNatf2rQ0Aknzj1e3P3X1He/PuvDj5x7XtHTsLAAAAAADAkiBsByzMUgzbNXP9+wfdQftu+Ofpo0jrfPst/euF+bvyz+trV7+rf30ALHe72gzPderOr/T2/gAAAAAAAPSNsB2wMCvWNx7fdWvra5vtInfkEzrrpx2bf7i+tvExvVu329p58b7dY/Hov7qgapKs3tS/PgCWu7su6e39v/v23t4fAAAAAACAvhG2AxZm3QmNx5vtuLbP1u/V105+WUfttGXzM+prO27s3brddvO/tZ7zyfOS95bpx1denmy/ofd90Z77rqyvVXv61wfActfOLwgshJ3tAAAAAAAAhoawHbAwG05pPN4qbDd+T7Lrtsa1VYcnx71gYX01M7oqOfxRjWv3fie576rerd0tl/56snNL63n3XLr/+ZXvTD50XHL3N3vXF+2Z2Jlsa/J11s4xzAAs3K47kotf0ts1dt6UTO7q7RoAAAAAAAD0hbAdsDCdhu2++7v1tfM/k4yMdt5TO5qF+b79lt6uvVDbr0++/ZudX//N13evFzpz1f9pXp8QtgPoiyv+rHn9se9PzvuH5Jw/Tk55Refr3Pihzq8FAAAAAABg0RgbdAPAElcXtttxYzKxIxlb27jeLIy3/oQFt9XSioPqa7d+uvfrL8St/7Gw67d8LKmqpJTu9MP8bbumeX1yR3/6AFjubvpI8/pxF+1/vvOW5Io/7WydWz6dHN/DXXsBAAAAAADoC2E7YGHqwnbJ9DGZh5zZuLbnvvrrmgXhuuXIx9fXxu/t/frt2LMtue59ycT25KDTk/G7p8evfOfC7z01Pn2cLoOxp8XXmGNkAfpj25Xtz12zafrnnla79zZy3XuTR74jGfGfXwAAAAAAAEuZV3uAhVl3QlLGkmpibm3rD+rDdrd8ovH4EY/pWmtNHXRqsu74ZPt1c2sT9w1+57cbP5x87rm9u//kTmG7Qbr7683rjb4uAeiu8bv3B9kbWfOAuWNnvy35wgsa/9zTzMT25O9XJD/8g+SgJr+oAAAAAAAAwKI2MugGgCVuZCxZf2LjWt3OL7d/qf5+xzxn4T2169z31Ndu/GD/+jjQ+D29DdolyS2f6u39ae7ubw66AwC21AT/91l/0tyxYy9MnvLF5IxfTY69aPpxxuuSp301ecGu1mv+64M66xUAAAAAAIBFYaA725VSSpLXJFk9Y/hvqqq6doH3PTHJT8wY2lFV1e8v5J5AE3VHqtWF7W7+aP29Rtd0p6d2jK2rr93wL9MvqA/CTR/p/RpbPpEcd1Hv12Gudnet23V7snpjb3sBWM46OQ42SY541PSjkTN/M7nsTfXXVlPJ9huSdcd2tjYAAAAAAAADNehjZH88yduSVHvf/8BCg3ZJUlXVNaWUM5Pcn5QppVxdVdUHFnpvoIENpyb5t7njdS9i79xSf6/DHt6Vltpy8On1tWbHyvXSrtuTb76us2uPe35y/fvbm1vt6WwNFm7nLe3N23Z1suqIwR5nDDDMJnZ0/56HndN6zl1fFbYDAAAAAABYogZ2jGwpZSTJb+57N8kVSV7SxSVemuSqvfcuSd7axXsDM204pfF4Xdjuhia518PPXXg/7Wq2s92O6/vXR5Jc/e7kvSX5wJHJzpvmf/2Kg5Mzf6P9+RM7578G3THZZrjjE+cmHzouueKdve0HYLnac0/373nU+cnBZzSfs6OD7/MAAAAAAAAsCgML2yV5cpITM72rXZXkdVVVdW17iaqqtid57YyhU0sp53fr/sAMdWG7Xbcke7bOHrvnsmTPvY3nn/iTychod3tr5cw3Nx6/59L+9XDb55KLf2p+16w+Mll9VLL2mOTYi5ILPjO9U98Ldidrj2t9/fX/0FmvLNxlv9l6zj47bky++vLpY40B6K4r/qz79xxbk1zw2eZzLvnF6eNkAQAAAAAAWHIGGbZ78Yznl1RV9cFuL7D32NhLZgy9qNtrAKkPc8IFfwAAIABJREFU2yXJfVfOfv/6f6qfu3pTd/qZj2a72239QX96uPrd85s/ujq58NbkwluS592QPO79+4+tG12ZPO+65Mer6ccZv9r1dlmg2z47/2uEIwG6a3K8d/devTE58onN59x1SfM6AAAAAAAAi9Igw3ZPn/H8r3q4zr57lyTP7OE6sHytPTYZWdm4duBRsnVHyybJhgd2r6d2rW+y5oFBwV65+l3zm9+s5wPt3NJ4fPWR81uT7hldM/9rrvv77vcBsJzturW39z/mec3r/foZAwAAAAAAgK4aSNiulHJ8kiNmDH20h8vNvPeRpZRje7gWLE8jo/UBsAPDdduvrb/P5h/uWktt2/SU+trk9t6vP7l7/tcc/8L25x7x6Mbj43fPf10WrqqSyZ2D7gKAdv4tLqXz+x/z3Ob1+exYOrkr+davJR9/RPKhE/c/PvzA5PMXTR9HDwAAAAAAQF8Mame7s/a+rZJcVVXVTb1aqKqqG5PM3Dri7F6tBcta3VGyl75x//M9W5M7vtR43sbHJms3d7+vVlasr6994cd6v/7nL5rf/NNelTz49e3PX39S4/GpPfNbl+4QtANYHLZ+v7f3X39Ccv6n6+s3fii5/v2t71NVyecuTL7z29NHz26/dv9j29XJDf+cfOapAncAAAAAAAB9MjagdTfOeH5zH9a7OcnJe587OxF6oS5sN9PNH6+vHXVB93qZr1Ubk923N65N7kpGV/dm3a1XJDe32Njz6ZckZTQZW5esOz4ZWTG/NZodWXrvd5ODz5jf/ViY2z4/6A4ASJKr/qr3a2w6Pzn0Ycnd32hcv/xPkuOe3/weWy9Ptnys+Zyp3ckVf5Yc+fjO+gQAAAAAAKBtg9rZ7tAZz2/pw3oz1zikD+vB8tMs1DU1Of32rq/Vz1k9wBxsXdAumQ6k9cpdl7Sec9g5yaFnJRtOnn/QLklWH9Vk/ZoX/+mdbVe2ngNAH1Stp5zwEwtfptnPN3d+tfX1zX52mu+9AAAAAAAAWLBBhe1W9rmHmWus6sN6sPwc8ej62tSu6bc7mpwYvfnp3e2nWyZ39e7e93yreX3zMxe+RrMdB6d6+LHRWC+/ngBo39R48/rIita7zrXj6Gc06WF3sv265tff3uaOqNuuar8nAAAAAAAAOjaosN2OGc831s7qnplr7KidBXRu3bH1tW3XJrtuT657b/2c9Sd1vaW2Hf6o+tonz+vNmndcnHz3bc3nnPvuha9TSpMevrTw+zM/l75p0B0AkCSTO+trIyuSx/5TsvLgha9z6s8na4+rr3/ohOTe7zeuXf/PyZV/0f5a3/jVebUGAAAAAADA/A0qbDfzWNfj+7DezDVu7cN6sPw0O0b28j9OrvrL+voDf6b7/czH6Orm9Z09OO36W29oXn/hnmR1l7LIhz288fhVf9Wd+9Oe8XuSSXlvgEVhoiZst/G85MLbkmOe0511RlYkT/hQ8zn/+aK5Y1WVfOPV81vre29Ppibndw0AAAAAAADzMqiw3b5zjkqS40spJ/dqoVLKA5Oc0GBtoJtWHFRfu+ey5NbPdnZtPxx1fvP65X/c3fWqqeS2/1dfP/KJychY99ab2tO9e9G527846A4A2Gdye+PxY5+frDyku2utaLFD3t1fnzu2/brWR8w2cttn538NAAAAAAAAbRtU2O5bScaTVHvf79LWEQ09b8bzPUm+2cO1YPlafWR9rZpM9mytrx/1pO73Mx8P/Onm9S3/3t31Jncl1UR9vdufj7owY+lioI/Wmv0dAKC/xu9uPL7y0O6vte6E5kfJNtLp94yr/trudgAAAAAAAD00kLBdVVXjSf5fpne2K0n+RyllXbfX2XvP12Q61Fcl+dzetYFe2PzMxuN3fS2588v11216am/6adfaY+qPWk2S3Xd1d72JFkeJnvLy7q532i83Hq8m7HrXT5f9+qA7ACCZPqJ1952Na6sO6/56pSQP/5/N5xz4s8FkzTG3rVz33uRfNid77uvsegAAAAAAAJoa1M52SfK+vW+rJBuTvL0Ha7wtyZGZDvQlyXt7sAawzzE/Mv9rHv6/ktGV3e9lvp7w0frajuu7u9bNTdZ62lea7xLYibXH1teu+ZvurkVjd38zue+KxrW1xw5+d0eA5WRyRzJV8/s3Kw/vzZrHPq95/Yo/n/3+fT+on/uw32t+r123Jd9+S3t9AQAAAAAAMC+DDNu9N8mWvc9LkpeXUl7frZuXUl6b5BXZf1TtrRG2g94aXTP/a1Ye3P0+OjHSx8DfrZ+tr63Z3P31xtbW127+ePfXY66r/qq+trIHuygBUK9uV7ukNzvbteO6981+f+v3G88rY8mGU1rf73stAnkAAAAAAAB0ZGBhu73Hub4u00G7au/bt5RS/r6Ucmin9y2lHFJKeW+St864b5Xk9Y6QhR5rdhRr7TWP7H4fnWj14vpdlyTj93ZnrWqyvtaLsN2GU+trE9u7vx5z/eB/19fu+Vb2b8AKQM+NNzkevpcB6Ic0OU78vitnvz+2rvG8aiLZ9NTu9QQAAAAAAMC8DHJnu1RV9TdJPpTZgbvnJ7milPL2Ukob2zZMK6WcXEp5e5Irkrwg+5MLVZKPVFX17m72DjRw8IPmf81Bp3W/j06taLLL3scfkfzTIcmnnpCM37Owda79u/pa6UHoqtkxvXd8qfvrMT8n/dSgOwBYXnY3C9t1/Ds/rZ38M/W1Pfck3/md6edVlVz2G/Vzx9Ykh5zV3d4AAAAAAABoy0DDdnv9RJKvZXbg7rAkr07y/VLKjaWUD5RS3lpKeU0p5b/tffxKKeW3Sin/XEq5Icnle685/IB7fT3JiwfwcQGtbP7h3oTLOvXIP2s957bPJV98YedrXPu++tppr+r8vq2c9dbG43vuSfbc17t1aW3jeQsPcALQvjv+s/H4ioOTkbHerbv2mOSCz9bXv/X65OaPJdf9QzJVsyH30U+ffvuMbySbn9V8vakmO+kCAAAAAADQkR6+mtSeqqq2lVIuSPLuJD+S6ZBcsn9nus1Jnrv3UWdmWmfm9R9K8pKqqrZ1rWGge1YeMugOZhtd0968Lf8+vStOq6NnG7n+H+prY22u34nRtfW1LZ9IjvvR3q1Nc6Nrkru/PuguAJaPu2r+zV11eO/XPvJx0//uT+5sXL/+H5OdW+qv3/ezSinJEz6SvK/J707defF0oBsAAAAAAICuWQw726WqqvuqqvrRTO9MtzP7d6bb98jesUaPHDC3JNmV5H9UVfUjVVVt7dfHAczThlMH3cFsB82jnx3Xd7bGtqvra738fDS7d7Oe6L31Jw26A4DlZdURjcf78f2wjDQ/Anbb1ck9l9bXZ/6sUsr0bnx1tl83//4AAAAAAABoalGE7fapquqPkhyf5K1J7snsUF1V85g555691x5fVdXv97t/IMkZr21/7nEX9a6PThx0evtzP/aw5NPnJ9e/f35r3HNZfW3zM+d3r/k46kn1tbrddei5Las35C93/7+87syn5jVnPT1vOeNJ+cADzsiesqi+PQMMl7suaTzebBfYbjr5ZfW127/YfGe7435s9vunv6Z+rmPiAQAAAAAAum7RvZpfVdWdVVW9McmmJI9P8sYkH0/y7SQ3J9m997Fl79i/J3lTkickObqqqjdWVXXHIHoHkpz9O0kZbW/uwfMIt/VDKcnpv9L+/Fv/I/nCjyXX/WN78y//3/W1016VrN7Y/trzNbYmWXdC49r3fq9361LrzpVr8oennZdvbPtS7l25JtvHVmXLmoPyqU2n5K9PfMSg2wMYTtuvqz+6+6SX9KeHk16arD22ca2arL/u4f8zOeyc2WMPfn39/K++fN6tAQAAAAAA0NzYoBuoU1XVniRf2PsAlpInfSL5zAWD7qIza4+f/zVXvCM5/sfamNckbLfxMfNfd74OOTPZfu3c8YltvV+bOS459AHZPraqYe1bhx6de1asziF7dvW5K4Ah1ywg36+d7UpJHvKG5Cs/O49rxpJTfr7xvQ57eP1ufTu3JGuO7qxPAAAAAAAA5lh0O9sBQ6CdF3XPfnvv++hEJy9I3/2N1nMmdyVbL6+vr940/3Xna3J3k5pQV7/dsPbgpvUb1xzUp04AlpFm37PX9OF78T6r5/nzRjWRjNT8nlSze91Vs4sfAAAAAAAAHRG2A7rvoAcl609qPuekn+pPL/O16cnJSOPdxmrt2Zrc8MGkqurnTOxofo8jzp3fmp3Y+Nj62uTO3q+/nB0+9893fKT5cctVKb3qBmD5avb9bvOz+tfHpvPnN3/9A+trD/jh+tp9V85vHQAAAAAAAJoStgO6r5Tk8R+q363tEf87WX1Ef3tq18qDk8f/y/yPkvv8hcmlb6ivT2yvr537nvrdarrpuOfX1yaE7XqqQbBuvMWfeRVhO4CuqwvbrdqYHHx6//oYW5cc8tD25z+kyc8YD/yZ+tp3f7v9NQAAAAAAAGipD+kOYFk65CHJ865P7vxactclyR1fSg59aHLKK5IV6wfdXXObn5786B3TPU/cl3zuee1d9923JQ/678mqw+fWbvts/XVHPbGTLudvbE19bcoxsj3VYGfDVjvbTfWqF4DlrC5sd8rP9bePZHonvXsubW/uygY/W+wzMpqc/LLkyr+YW9t12/TOu3ZLBQAAAAAA6AphO6B3RlYkGx89/TjtFwbdzfyMrZk+4m1yHiG0aiq5/T+TY549t3bfFfXXrTh4/v11YmR1fc3Odr01ftfcIcfIAvRf3fe70SaB9F5Zecg85rb4WWH1UfW1nVuStZvbXwsAAAAAAIBajpEFaGZ0dbJmHi9QT9zXeLyarL+m1Qvo3WJnu8GY3JVsv37OcMuwXa/6AVjO6na2G0TY7qjz25s3ti45/FHN52x8XH1tYlv7PQEAAAAAANCUsB1AK0/4cPtzG4SqktTvpLNiHrvaLFSzIMH43f3rY7nZdnUaRefGR5pvLmtnO4AeuPfbjcebBdJ75bCHJ6e22Pm3jCSP+NPp8H/Te51TX7v9C/PvDQAAAAAAgIYcIwvQymEPT553Q/KN1yQ3/1uy6anJDf/UeO63Xpc8+LVzx+t20tn05O712UoZm37RvpqaW/v+H/e3l+Wk5gjh1jvbCdsB9M0gdrYrJXn4nyTHPC+59bNzd8ddvSnZ/PTk0LNb36tZ/1/+6eSB/3VBrQIAAAAAADBN2A6gHWuPSc573/73/+2s5J5L279+MRxbV0pSViTV7rm1bVf3r4/lZvt1DYfHRx0jC9BXe2qOek+mA+mDUEqy6YLpx0K02vlux43TP8sAAAAAAACwII6RBejEnq2Nx8fWNx6f3FEzf213+mnXVIOgXVLfNws3sW3O0GRKJkvzb8FTjpEF6K7xe+pra47uXx+9UEaSDafU13ff2b9eAAAAAAAAhpiwHUAnTvulxuMT25Lxu+eO1+2m0+9j6zY/s/H4tqv628dyMjF3V8NWR8gmjpEF6Lq64HuSbDi5f330ypm/UV+baPKxAwAAAAAA0DZhO4BOHPaI+toX/8vcsS0fbzy332G7Y57beHz8rv72sZxc+7dzhtoK28naAXTX5X9SX+v39+NeOP6F9bVr/qZ/fQAAAAAAAAwxYTuATow1eVF+y78ne+YeHdpQv1/cb7be9hv618dy0uDoPjvbAQzAzR+rrw1D2K6UZHR149pt/9HfXgAAAAAAAIaUsB1AJ9a3OG5u1y2z3x9b13je7tu600+7mvW94/r+9bGcHHLmnKHdo2MtL6t60QvAcja6skltCMJ2STK5q/H4ikP72wcAAAAAAMCQErYD6MTKg5Ojzq+vT+zY/7yqkontjecd9aTu9tXKET9UX5vc2b8+lpM9984dausY2QN2tqumutURwPK09fLG4+uOn94VbhisO7Hx+J0X+z4CAAAAAADQBcJ2AJ167Pvra9//g/3Pp8br560+qnv9tKM0+Wd/QtiuJ+797pyhdo6RnTrwGNm63YoAaG3nlvraWb/Tvz567Yz/UV/7RpMaAAAAAAAAbRm6sF0p5eGllItKKc8upbQ45xFgAVYeUl+75m/2P9/e5HjWQRxbt+rwxuN2tuu+8XsaDu9ua2e7Awa2XdWFhgCWqRv/pb5Wd9T7UtTs54or/0KwHgAAAAAAYIEWbdiulLK6lHLSjEfTZEIp5TmllGuTfCXJPyT5lySXl1K+UEo5ow8tA8tNs13iZtp5U31tzdHd6WU+6l6It3Na9937vYbD7exsVx24s92OJl9HADR3zd/W10ZW9q+PXlt7TH1t4r7kviv61wsAAAAAAMAQGht0A028Oslv7n1+Y5IT6iaWUn4syXuTlL2PmR6T5MullCdWVXVJD/oEaOy9JTn83GRqd/2cxRS2237N9Nvxu5Mr/iy565Lk0IclJ788WX1E//obJlONA4x7Rlp/+50Tthu/qxsdASxP93y7vtb8d3qWlo2PTVYclOzZ2rh++R8l576rvz0BAAAAAAAMkUW7s12S52V/cO6vqqqqGk0qpRya5J3Z/7HMnFftfaxL8oFSyuoe9QrQ2J0XJ3d/Y9BdzDZa80/hZW9Otl6efPr85Fu/ltzwgeTSNyafflKyW9CrIzVhh46Okb33O11oCGAZ2rN1ele3Ou3uVLsUjK5Kzv9Uff3qd08/AAAAAAAA6MiifGWplLImydnZH5z7aJPpr0xy8N65JcnNSf5Xkj9Kcn32B/aOSfKLvegXoCOD2NUuqd/ZLkk+9yPJ3d+cPXbvt5Pr/7G3PQ2rLZ9oODy+Yn3LS+fsbHe1nYgAOnLDB1tMODDdvMQd/shk05Pr6xf/VP96AQAAAAAAGDKLMmyX5Mwko5l+5Wt7VVVfbzL3xdkftLs8yUOqqvqlqqpevfc+X907ryR5ac86BpanQ87s/NqVh3avj3mte1h9bev3Go9//dW96WXYrdjQcHi8Gm956dSB2Y9DzupCQwDL0O1fHHQH/bfh1Ob13Xf2pw8AAAAAAIAhMzboBmqcuPdtleS7dZNKKQ9KcnL2Hxf7pqqq7t1Xr6pqWynllUku3jt0Winl2KqqbuhN28Cy84h3JJ96XGfXbnpKd3tpe90nJ1s+Pr9rJnf0ppdhV001HB5v5xjZA3damtzVjY4Alp+7vtp6zrA55nnJFe+or3/r15K1xyalJBlp8bbsPWq3nbcNrq+bW3efbq5d10u792t37Vm9AwAAAAAAw2yxhu2OmvF8S5N5+xIuJcl9SeacEVVV1VdKKTdm+hjZJHloEmE7oDs2ntf5tQ9+fff6mI+Tfzb5xq8MZu3lZuvlDYfH125ueemcsN2Bx/sC0No1f7s8//3cdEHz+pXv7E8fy1Kr4N8ggoMLCBA2DEEu5TBkN8KlbXwM7X4svfja6PjPZ99bAAAAAACaWaxhu7Uznt/XZN6+lEuV5NNVVU3UzPt29oftjltgbwD7lZKc+ebksjfP77ojHp2sPrIXHbW2Yn1y1lund7Wht276cMPh8ZUHJZlseml14Gude+7pTk8Ay8XURPKlnxx0F4NRRgbdwTJWJVWVZGr6v1JhqVmMQcyFBhIXtMPmIglDzvfPpR9/PvMN/fb8a0NYFAAAAID+WKxhu5n/h2xFk3mPmfH8803m3Tnj+UEddQRQZ+0xreccaPVRref00uja1nPomfE2Xgeas7NdMn0srQAFQHvu+NKgOwBYeqqpvW+b/2IILE49DmJ2uitl13fYnMfHNNAwZJc/lnmFS7v8sfTq8zlrPgAAALBULNaw3czd7BomUkopm5KcPGPoP5vcb+bH6f9eAN21+Znzv2Yhx892w+iawa6/HFRVUkYbvlA5XlpvdTNnZ7skmdyVjAlKArRl2zWD7mCwNpya3PeDQXcBAH1U7f/vL7uLsuS0Cv51KUA43+BguztsDnIH1Hl9TB18LIsxKNvTHWXne799bwEAAJaPxRq2u2nv25LkzJo5M9Mtu5N8vcn9DpnxfPsC+gKYa83RyYkvSa55T3vz15+cnPDi3vbUyuGPGuz6y8HUntodQcbXHJVMbml+eaNs+MQOYTuAdu24YdAdDNZj35987KxBdwEAQFscRc8StxiDmI6ib39uP/98OgqX9vJrQ1gUAID5W6xhu0tnPD+slPK0qqr+/YA5P7X3bZXkK1VV7Wlyv5NmPL+lGw0CzHLuu5JDH5Z8/Zdnjx/28GRs/fTzkZXJEY9OTnl5smZT/3ucqZOd7e79XnLw6d3vZVjtqv92M15GWl7e8BjZq/4iefDrF9IVwPJx6RsG3cFgHfrQ5Bnfmh24G12bHHZOpl/Mndr7gu7e5+28nXVd3dt53K/VfQAAgKXBUfQsaT0OYna6K+Vi3mGzb2HIJR6U7dXnc9Z8AGAQFmXYrqqqq0opV2T6mNiS5B2llCdXVXVNkpRSXp1k5hmMH6q7VyllfWYfN3tVD1oGlrtSkgf90vRjKRjrIGx300eE7eZjyydqS+P5/+zdd5xkVZn/8e+pzmF6ch4mAkPOSJYM4ioIKiAmzO4aWVdXXVcU/RlWMaBiREURQQyYkBwEhjggzMBEYHLOMz2d6/z+qO7p6up7Tt1bdau7wuftq19ddc655zxdXV09Uk8/T/b/8BjYRnbNX0m2A4AwOraFX1vO/2Fy9BHSFSWctGYDEv2yJe/FmjgYJYEw4LpsZ2d+jvPsuJIhoz6eeX8tEb6mqM+NbN+XuL8/AAAAAEqEFa3oUbqyJf7FlAwZNXGwIBU2SzEZssgSZWlFDwCxKcpku14/k/R1pf5pO0vSYmPMc5ImSNqvd9xIapd0k2efM3rXSVK3pBcKFC8AlI6GqdGvqfR2fFF173ZOdSqZ9fLAynb8dTAAhNO2Lvxay39JL1rGSKZquKMAcrMvGW8YkyFDJQzGlAwZNXkx1wqbsT+eMXwtxZgom+1ryroPAAAAgNKQ/v8BhjsWIAexJGLGnTiY575DVmGzgMmQsSbKxvS15JRcGvPjaKp61wPFnWz3XaVaxc5V6p8HNZKOlfZlH/T+10F9y1q72bPPxWnrn7PWdhQmXAAoIYlqqWWutGtJ+GuWfl/a+pR05FekSWcVLrZy0b3XOdXp7XyeYoP+oqenNZ+IAKBybLh3uCMAUOn2/Qc9SSJpFCVmQLJokSRDDnlyaYivIVKFzQhnh/oahisRM+LXEulriuu5xrvMAAAAQMno+4Mvik2gFJz+d2nqa4c7ChSJok22s9Z2GmPOl3SnpL6+hUap/2LS+1+t9QdJV7v26G0h+0b1/1eW+woWMACUmmO/Jz1wXrRrtj4hPfha6fwnpNFHFiaucvH854LHx5+mzhB534H1JHa+mFdIAFARdi6Wnrkq/HraFQAAMNCAZFGgBJV6MuSQVdiMkigbcb+oiZhD+bVEfW6E/Zri+v4AAAAAKE68l4A0RZtsJ0nW2tXGmKMkvVvShZJm9E4tlnSztfaPWba4UlJL2v2/xx4kAJSq6qbcrkt2SCtvIdnOx9OS0NaMUGeyPfsWrne2kj1SguooAOC06tbhjgAAAADDiVb0KGWDkvGKIBmSVvTh9i2HRNm8vz8AAADljBay6FfUyXaSZK3tkvTj3o+obpD067S9dsYVFwCUvKbpuV/74teko74aXyzlpsfdQranp0NJ1WTdwrr+OKJzq1Q/IcfAAKACRK0COvqYwsQBAAAAAFHtqy7KG3koQbSiD/c1Ra2wWRaJmDl+LaG+Lzk+N2hFDwCIisp2SFP0yXb5sNa2SWob7jgAoCg1ThvuCMpXt/tXT+eU8yTNy7qFs7JdD7/WAMBr3R3h105+jVQ7snCxAAAAAABQKWhFj1JXrq3oIyWXxpzYGenxzCERM7ZE2bi/lghfk/e5FeFrAVB4/EEM0pR1sh0AAMOie5dzqnPy2dLGEMl2rr+O8CTyAUDFW/MXqXtPuLUTXi2d/JvCxgMAAAAAAIDSQCt6lLJcWtEXOhmykFUp86qwGXMiZlm2oh/q70+p4C8K0I9kOwAA4rb+HudUZ8i/enD+HRKV7QDA7cWvu+dmXymd8HOpfaMkKzVMHqqoAAAAAAAAAKBwaEWPUjagFX2RJEMGzY06bGgfFxS1kky2M8ZMkzRb0hhJIyQZa+2vhjcqAChBM66QVt483FGUn/aNzqnO6rpQWyRdfx3RvimXiACg/FkrbX3cPT/muNR/dGqYNHQxAQAAAAAAAAAAtwGt6KkwitJQMsl2xpgZkq6SdKGkGQFLBiXbGWNOk3Rm793t1trvFS5CAChB09+Ue7Ld9uek0UfGG0+5SHYNGuoyCb3QMkH3bw3XstC6KhHvWS7p/NxjA4Bylezwl5yfdN7QxQIAAAAAAAAAAICyVPTJdsaYhKQvSfqkUmmsQekHrm57WyR9oW/eGHOHtfalAoQJAKVp6oW5X/uPo6RTbpFmXBZfPOVi1+IBdzsSVfrRnBO0pGW81PZCqC2sq7Ld8h9LB34o3wgBoPzsecU9N/NtUssBQxcLAAAAAAAAAAAAylJRN+02xtRIulPSpxWcGOhKsktNWrtI0gPqT9C7ItYAAaDUJaqkA/JI3Hryg4FV3Cre6t8PuPvUmGmpRLsIrHEk2+1YkGtUAFDeFnzBPXfoZ4csDAAAAAAAAAAAAJSvok62k3SDpHN6b1ulkuYelnSNpM8puMpdpj+k3aZ3FABkGnV47td27ZC2PRtfLOXCVA24u3hEtEQ7KUs2+d61kfcDgLK39Un3XHXz0MUBAAAAAAAAAACAslW0yXbGmLMlvU39SXYvSXqVtfZ0a+0XJP0m5FZ/79tS0vHGmPq4YwWAkjbjskHJYZF07YgvlnKRkdSxt7om8hbONrKS1MljDgCSpGSPtPVpaccL/kqrjdOGLiYAAAAAAAAAAACUraJNtpN0de9nI2mlpJOttU9H3cRau1JSX1ZCjaSD4gkPAMpE7aj82uv98yKppzO+eMpB184BdzsT0ZMZk642spK0/q7I+wG0xh1nAAAgAElEQVRA2dm9XPrrHOmu46U7DpPaHFU/p10s+V5TAQAAAAAAAAAAgJCKMtnOGDNG0slKVbWzkj5mrd2Sx5Yvpt0+MJ/YAKAsHf5F6bQ/SdPfLFU1RLu2p11a/M3CxFWKkj2DhnJJtvO2kX32E6nHHQAq2cNvlFpXZl83592FjwUAAAAAAAAAAAAVoSiT7SSdqlRsRtJma+1f8twvPVFvQp57AUD5MUba7w3Sqb+TLtsb/fo1f40/plK1e+mgoc5EdeDSyyd+UKeMPDdwzmarwrTpn5FDA4Cysfslacfz4dZGTSIHAAAAAAAAAAAAHIo12W5y72crKXLr2AC70243x7AfAJS3w6+Jtn7X4sLEUYo6tg4aclW2qzV1Mo5fxd7KdpLUtj5iYBH0tEtde6TutsBKfQAw7KIkHI86onBxAAAAAAAAAAAAoKIUa7LdmLTb22PYL72cRVcM+wFAeZv5FqlmVPj1XTukvx0krf5T4WIqFT2DKwN2uZLtEnUyjgp2Vlkq2wWck7e2jdLNRrq1QbpthPS7RumWaumJ90vJ7vjPA4ChUD9+uCMAAAAAAAAAAABAmSjWZLtdabdHxLDfxLTb22LYDwDK24j9pXMekKZdLDXNkiZfIE06x3/NriXSI2+WNj82NDEWqz0vDxpyV7arVcJV2S5bG9mFX44cmpe10p8mBc+99FPp2U/Gex4A5CPba2Sfo68tbBwAAAAAAAAAAACoKMWabLc57fYB+WxkjKmSdHTaUAH77gFAGRl9lPTqP0oXvSydeYd01j3SGXf6r7E90srfDk18xWrTQwPuJpWlsp2jgl2y78bYE4PPaVuXW3wuO1/0zy//ES1lARSRkMl2NS2FDQMAAAAAAAAAAAAVpViT7Rb0fjaS5hpjpuWx1wWSGntvW0mP5xMYAFS05tnZ1+xaUvg4ilnjwF9ZrkQ7Sao1njayfeOdjoKsibqcwnNa/hP/fE+71L4x3jMBoNCaZw13BAAAAAAAAAAAACgj1cMdQBBr7SJjzFpJU5VKuPuEpKui7mOMSUj6bN+2kp6z1u6ILVAAqDQtIYqN9rQVPg6fjQ9Kj18pta7sH5vyWmnmW6WZVxT+/K49A+66WshKfZXtHG1k+25MPl/avXTwgmSHZJOSySNvvnNHqh3tpoekbU9nX7/9WalxSu7nlbuND0gPvEZKdvaPjTpcmniWtPWpVLLqgR+SxjmqFQKI3/jThjsCAAAAAAAAAAAAlJFirWwnSb/p/WwkfdgYc24Oe3xFUvo72j/NOyoAqHSHftY/v/nhoYkjyIZ7pfvOHJhoJ0nr7pDmvVVacl3hY1j+owF3vcl2xt1G1vaNz3iL+6z2ze65bHo6pPvPkRZfGy7RTpIeep20Z0XuZ5azDfdK9501MNFOknYskJZ8V9oyT1pxk3Tf2dIWiuwC+QvRRnbaG6Sq2sKHAgAAAAAAAAAAgIpRzMl2/ydpl1LFfaok/dkY8/4wFxpjxhljfinpk+ovDrRB0s8LECcAVJbmOdnXJLsLH0eQbMl0i76RqgZXKG2D26z6ku1qEp5ku742stUN7vPW/DFSeANsfEDaNj/6df/6VO5nlrPF3w23rmevtOyHhY0FQMroo4c7AgAAAAAAAAAAAJSZok22s9Zuk/RRpcpWWEn1kn5ojFlmjPmqpAvT1xtjXmWMebsx5teSXpL09t5rjaQeSe+y1maUmwEARFY/IfuaPS8VPo4g6+/yz+9dI7WtK9z5K349aKgrS2W7hKMN7L42snWex3vXkgjBZdj6ZG7Xrbot9zPL2aYHw6995VcFCwOoGCZEZbv68YWPAwAAAAAAAAAAABWlergD8LHW/soYs7+kzymVd2AkzZGUWVbHSHos475Nu+Yz1tq7Cx8xAFSACWdIiTop2eFe091amLO3PJ5qCVs7JtUesHnmwPnMFp5BOrZJjdMKEp5aVw8a8raRTdQ6K9sl+xJJGqe4z+vxfA+y6dmb+7UYrHvPcEcAVJgQyXaTzy98GAAAAAAAAAAAAKgoRVvZro+19vOS3iWpvW+o93N6Ql1fUp1JW2MkdUp6p7X2m0MWMACUu5pm6dRb/WvmvS3+dq3LfyLdfZK08EvSM1dJdx4jbXs2bf5n4fbZ8Xy8cWXhSrarUrWqTLWM41exTU8kGX1U8Oab/5l7YLm0kO3TviX3a8tR24bhjgBAkObZwx0BAAAAAAAAAAAAykzRJ9tJkrX2RkkHS7peqaS7vgwEo4FJdn1jSUm/knSwtXZwTz8AQH6mXSRdstk9v2uRtO2Z+M7raZfmf2zgWOd26bnP9s53SE9/ONxez38uvrhC6EgEF5GtTdRKkoyjFaJNvzP2hODNd76Ye2Ab7nXPjTjAf+1LP8393HK0+NvDHQGATA2ThzsCAAAAAAAAAAAAlKGibiObzlq7StKHjTGfknRq78d+ksZKqpW0RdJGSfMk3Wet3TFcsQJARagfJ9WMlLp2Bs9vfEAae1w8Z63+YyrhLtP6O1Oftz3tb2ubztTEE1OQgMQ6V2W7WlOXCsfRCtEaI1U3997xVAm0ScnEmDu/35uk026Tbva0aNz4gHToZ+I7s9RtenC4IwCQyfYMdwQAAAAAAAAAAAAoQyWTbNfHWrtX0t29HwCA4TThdGntX4Ln/vUpac3t0kFXSdMulhxJZ6HsWOCf79oVfq/2jbnHkU3duEFDXa5ku0Qq2S7hbCMr6djvpu7UT3Sf2dMhVTdEiTIlURecoFhVn/o8533uCnauBMtK1d0a/ZotT0pjj5cclQ0BZJPlZyfg9RgAAAAAAAAAAADIV0m0kQUAFKnDr/bPb5knPfJm6ZZqqX1L4eLwtUTN1L1bWv6TwsTRvWfQkKuyXU1fZTtXG9makdL0S1N3pl3oPrOnLVqMUqoanqsS4Iy3pD4f9VX39VuflHo6o59bjnrapZ0vRL/u7hOk34+Wkl3xxwRAOuzzwx0BAAAAAAAAAAAAyhDJdgCA3I05Rhp1ZLi1f55emBiS3dLib0W75skPSLuWxB/Lsh8NGnK2kU3428gmRx4i1fS2ka1pcZ/Z10o3ii2Pu+fqxvR+Hisd9TX3uqXfj35uOVr0zdyv7dqZ3/VAJctWFXLUEUMTBwAAAAAAAAAAACoKyXYAgPyMOizculwqsO3jSarY+kRuW677R27X+dSMGDSUPdnO0UY2PZGkqtF95ob7wsfXZ90d7rmqtJa0DVNz26OS5Ps4PPfZeOIAKk6W/xtTlUN7bQAAAAAAAAAAACCL6uEOIApjTI2kkySdJmmOpDGSRkiStfbsYQwNACrXmGOlFb8JtzbZIyWqUq0ze9oDk9MC+SoYtW0It0emvWtyu86ncZrUunLAkDPZzvgr21nZtH09SW+2O1qMktS1yz3XMrf/9phj3et2vRj93OHUtUvqCGhlnOySqkdIjVNy2zfX51+6vWtSiY3ZKnUB6FdV556rGy817jd0sQAAAAAAAAAAAKBilESynTGmSdJVkj4saXzmtJSekTDgurdI+n+9d7dJOt5aG7gWAJCj6ZdKz/xnuLWbHpRW/0l65cZUpbsJp0sn3yw1TMz9/Mff5Z5rmCy1rQ+eW3yt1L1HOu77UiKmX4cBSWzuyna1kiRjHJXtbLL/jmONJGnnC+Hj69O9xz1XVd9/u+Ug97q29dLNRjr/KWnscdFjGCptG6V5b5U2PSClP6ZBzn5Qmnh6+L3X/FlqfSWv8CRJt++XStQ8+pvSjMvy3w+oBJseds/N/WgqsRsAAAAAAAAAAACIWdG3kTXGHCFpvqQvSpogby/BQf4qaaykmZKOlnRu3PEBQMXzVV3LdP850rIfpJK9bI+08X7poX/L7/zu3e65i1b5r13+Y+lfn87v/HQ7Fgwa6nQk8vVVtkuEqWwnSXM/HnzmtvlSMmJ1u5d/ETw++8qB942RXvUT/153HS+1B1SMKxYPXyxtvC97op0k3XeG1JrlOdNn+7+kh9/knj/5t9JJvw63l5SqbjfvCmnL4+GvASrV3rXSkm+75w/9n6GLBQAAAAAAAAAAABWlqJPtjDGHSHpI0gEaWMHOKETSnbV2j6Tb0obeGHeMAIA8bZsv7X4p/n1bDk5VrJv1Tv+6lbdIcRQ9dSRzdTmqK9UksrWRzdivutF99uZHs8cXRlXT4LHaMdmvW3dHPOfHbeciactj0a5Z85dw61b9wd/Ct3akNOtt0nE/CH+2TUorfxd+PVCp1v7VPVc3npbMAAAAAAAAAAAAKJiiTbYzxtRL+pukkWnDCyS9R9JsSQcrXJW7P6fdPju2AAEA/ea8J7/rX/5lLGEM0Lkt9XnE/v51bWulZEf+5wW0kJU8bWR7K9u52sgmMxMAmz1fx54IyYrJLvdcT+vgsWyPnyQ9+4nw5w+lHc9Hv2ZtyGS7Pcv9833fr5YDo50f5XsJVKrdnp+/5jlDFwcAAAAAAAAAAAAqTtEm20n6qFLtX/uyDa6TdIy19hfW2hWS2kPu80DvHkbSLGPMhJjjBAAckmcrVtuTZUEOVYqmvDb1eb8QRU07d0bfP1NPW/DWrmS7rJXtMpLtpnra7ToS/QI54pQkTQk4Y9QR2ffsKNI2shvuzeGae6T2zdnXbX3KPTfmOKnlgNTtCadLjdPCn+/7/gBI2bXYPTfj8qGLAwAAAAAAAAAAABWnmJPtPqL+RLvbrbUft9bRo8+jt5XsirShg2OIreQYY2qMMWcYY95hjPlvY8yHjDEXG2NmDndsAMrAiP2lU24p4AE5JNvt/4HU55EHS+NP9a99+OLo+2eKmmxnIraRrffkij9zVfb4+qy6zT3XEvAr0hjpjBBtYvesCB/DUGjfJL30s9yuve8MqXuve37Py/4KdGf8vf92okY65yFp7Inhzt5wT7h1QKVq3yyt+7t7fu5Hhy4WAAAAAAAAAAAAVJyiTLYzxhwiaar6sys+meeW6e+Iz85zr1gYY2YbYy4zxnzDGPOgMWaXMcamfayI6ZzxxpjrJW1QqsrfjZK+Jun7kv4o6RVjzKPGmBClnwDAY8Zl0hVWuniddNHK8MlFUiqhK241aV3Ip17oX7vlMWnvmvzO2/Zs4HDWynaONrKDKttJ0riT3Oe3rffH12fRN91z1Q3B480hfnWu/G2484fK6j+652rH+K/d+aK04T73/LIfuecOu3pwYmTzbOn8x/xnAghnzZ/dc3PeW5jfJwAAAAAAAAAAAECvoky2k3RU72craaG19uU899uRdnukc1WB9VaWu8sYs1WpBMBbJP2XpNMljSjAeRdIWijp3yX5MgtOlvR7Y8xNxpimuOMAUGEaJktN0/2JYUMSx8S025Oyr9/2TH7n9QRXQstW2S7hqmxnA5Lt6j1fhyPZb5D2Te65unGO8fHZ9902P9z5Q8X3/TzgP7Jfv91z/aJvuOdcj6EkHfW17Oc6ki8B9PL9bPpeIwEAAAAAAAAAAIAYFOs7uunv6i+LYb+OtNuNMeyXq6MknSd/4lssjDFnSLpdUnp5HStpvqTbJN0jaUvGZW+V9FvjKrMEAFFM/bfwa1/4ihSUXJarCWdItaP77086TzLBSW/75J1s1x443JWtsp3jV/GgNrKSNPV1nvOD29gOXhccpySppiV4vG6MNO5k/76r/yBtuDdcDEPBkfwoSZr7sRDXh3w8M/m+R3Pem/16m5SSXbmdDfTp3CktvV6a93bpkcukRy5Pvc7uyffvV4qAr8XzlNcOXRwAAAAAAAAAAACoSMWaVFWfdrvDuSq89Gp2u2PYL24dGtjqNi/GmGlKtYitTRt+VNKh1trjrLWXWmvPkzRN0sckpb+r/3pJX44rFgAVbOJZ0dbfdXw855pq6cRfDBxrmCidcov/uoVflDbPy/3ctg2Bw52J6sDxvsp2xtHyMBnURnbWO93nPxui47q17iS0E27wX3vyTdn3v/9cacl12dcNhRW/CR6vGyfVj5NetzjL9Tm2xW2e6Z6rGysd853se3TuzO1sQJI6t0v3nSU9/SFpxU3Sqt9Jq26Vnvsf6a4TpB0LhjvC/Lxyo3tu/DBXVAUAAAAAAAAAAEDZK9Zku/SKa55+bKHNTru9NYb98tEl6V+SfibpA5KOVaqFbIhyN6F9UVJaSSfNk3SOtXZR+iJrbYe19jpJl2Zc/5/GmBkxxgOgEhkjNe8ffv22+c6EtVDmflw69xHpsrbghKfpb5LetGPweLoFV+d+fkACiJWnjey+ynauNrIBle0SVVLz7MHjktT6itSeWbA0g6/aW8tc/7XNs6TLO6VJ5/rXzf+Y1BNHnnwefM+jvoTFlrnSZR1S7/dhkL2r4q222Oegj0lv2iZNv8y9Zu2f4z8XleOVm9ytVju2SC98dWjjiVPQ62KfMBUrAQAAAAAAAAAAgDwVa7Jd37vkRtLR+WxkjBkr6eC0oeX57JenGyW1WGuPtta+z1r7E2vtM9ba2PrFGWMOkJRe+qhT0pXWWmffQGvt7b2x9amTlEfGCQD0ap4Vbf3SHwSPO6q/7TP2BOnYb0vjT5EcleQkSbUjU2tdNj2Ue4JVQLJajzFKOmLfV9nO2UbWEUfNyOBxSdryqD/GHQvdc9XN/mslKVEjTbso+7r1d2ZfU0ibH3bPpT9+VbXSrHe417aujC+mdLWjpWOudc/n29IYlW3TQ1nm/zk0cRTCbs8/4xO17jkAAAAAAAAAAAAgJsWabDdPUl/pirHGmIi9CAd4t7SvbFCrpKfzCSwf1trtvqS3mFwhKb2M0h+ttctCXPf1jPuXGmPqA1cCQFhT/i3a+vV3OSayJNtVNYQ/Y+KZ7rlkl5TsDL/XAIN/pbqq2kkhKtu5ku188Xdl6ZTe0+aeG3mo/9ow5/fZtSTcXoXiexwmZfyTYuyr3Gv3BCT2JHtyiylT41T3nO2O5wxUpvaN+c0Xs27Pz/b4U4cuDgAAAAAAAAAAAFSsoky2s9Zul/RU2tCXjMlW1mgwY8xUSZ9WqpOflXSPDezLV1Yuzrj/izAX9baYfSJtqEnSeXEFBaBCzb5SGndS+PXbnpK6Pa1OXaIk22VrNdi1K/r5ktS6YtBQp6fKXl+yXcLx68356+qgT7hj2LvKPSf5H1tfRcB0LQdnfwz3rg23V6FsuNc9l/l8nPV299plPxo81rHJvf7k3/rjylQ/MXh819Jo+wB99rwibX7Ev8Z2S61ZXiuKle+1ZTL/bAUAAAAAAAAAAEDhFWWyXa/vpt0+UVLAO95uxpiJkv4iabT6SyJ9K57QipMxZpKkI9OGuiVl6Sk4wIMZ9y/INyYAFa52pHTm3dLJv5FGHRHumkWe9pou1RGS7RomSefOc88v/X708yVp5+AWrb7KdjUm1fIwchvZxilSw5Tguef+xx/jlsccwYzyX5fOGOmYb/vXLL0u/H5xs1Za6Uh6G3WkZDIe76o6aczxwetX/0FKZlSZ8z3GIw8JH6ckTcvMj++16cFo+wB9nvr3cOue/VRh4yiUf/23Y8JIVRRkBgAAAAAAAAAAQOEVbbKdtfYWSf/qvWskvdcY87Ax5jTfdcaYJmPMB3uvPUr9Ve3uttZGSTwrRYdl3H/eWtsa4frM7JOQPQUBwKOmWZp5hfTa56QrrHRJlhaGrkQpn90vRVvva+EZY6JTPm1kk65kO0mqn5RbQG3rgseraqPtE6bYrPXEX0gBSY/7VDcGj/uS5LY+OfD+xvuj7++S8DzucbWrReXo6ZA2PhBu7apbpZ5cW2YPoz2O13oS7QAAAAAAAAAAADBEQvaMGzZvkvS4pLG990+R9KAxZoOk5ekLjTE/lHSgpJMk1SmVoGd7P6+V5OkTVzYyswWWB65yy3wHM2KJHgAIoX6Cf37Xouh77ngu2vrGae45m0OSk7WpimkZrV+7fMl2pjfZLrPSWt+W8nQ9d7W6zZZwUuuoYNfuaY2aq2TH8CTAtG92z409IXh8/KnSKzcGz3VsGXi/p8O9f9Msf2yZfEmOPW1Sojnafqg83W2pJNqaEZKMlIyQQLfsemm/N6ZeF2pGFCzEWFU3S53bB4/3tOW1rbVWm7s2qCMZvE9jVZPGVE+QCZNoDAAAAAAAAAAAgLJW1Ml21tqXjTGvk/QnSZPVnzw3WVJ6WR8j6f1pt5W2do2k11lrM94tL0v7Z9xfFfH6lRn3xxpjRltrA97VBIA8zLhCWnmze/7pj0jHfEfal6yWJcGheXa0800i1Yo1qNLb5hyKoCa7BiXaSWHbyAZ/bdZXGW7uR6X5Hx083tPem/jneLxcCSl149xnuZz8G2neW93zHVv8SY2F4ku62f99weMzLpeedMx1ZxSIde0/9sS052tI0y6RFn0zeK6nLVUVEpXLJqW2DdLe1dLeVVJr78feVamx1lVShye5NJtnrkp9SNL0N0sn/ar4K8QFJdpJ0gEfynnLJXsX6Mb139GO7q3edeNqJuo9Uz6pGfWZ/9wGAAAAAAAAAABAJSnqZDtJstY+aYw5RtLPJV3QN5zxecAlSmVlGEn3SHqntXZDwQMtDpkliyKVKrLW7jHGtEtKf6d1pKS8k+2MMRMkjY942Zx8zwVQpI77nj/Zbun3U8lwh34mdT9bNaGmGdFjOOQz0vyPBM+1bZAaIrRq7QxO0thc1xQ4Xmvq9lVIcibb+SrbjTnOPbf+TmnKBcFzy34YPD7Zsd5n5hXSriXSwmuC5x97p3T2fdH3zdeS69xzrnaxNc1SVaPUs3fw3ItflWa+pf++K9nu8M+Hj7FPvefXYts6/zxKX9fuwclzffdbV0lta1KJvENh1W1S7WjpVT8emvNy0bbePTf9jTltuaNrq65f8yV12ewVAbd0bdR3V39eX5lzg+oTDTmdBwAAAAAAAAAAgNJX9Ml2kmSt3Sjp34wxx0r6mKSzlapuF2SnpPskfc9a+9AQhVgsMkvg5NJTq00Dk+3i6iv2H5KujmkvAKUuTPWkVbf1J9tlUz8x3hjW/V2a857we62/J3B4ZWNw29baRN2+2wlnG1lPZTtf7CtvcSfbuVTnmDgy573uZLuN96cShRI1ue2dq82PBI83TPFf17RfKnkw044F/beTPe42nVWN4eIbcI3ncV9/tzT6yOh7ojgku1MJk+nJc3tXSa1pVeq6dgx3lAOt/oN0/A9TlT+L0Zo/u+d8P0seC1qfDpVo16c9uVeLWp/V0SNOzuk8AAAAAAAAAAAAlL6SSLbrY62dL+kdkmSMmS1pP0ljJdVK2iJpo6QXrA3o5VcZMpPt2nPYo03SaM+eAJC/MIkRrSvC73fwJ6PH0HKQe25PhLMlZ9JMc3dwEseenl37bufURtbXNrfD0zW9ZW5wQlnQWBjZqv91bJMackiEzEfDFGnP8sHjQS2D07U6Oq83pOX2+1rU5pLs40sStd3R98PQsDbVzjQzeS79c9u6wNbSRa1jq9S1M1Xhrhj5foabc2vturUrUhFoSdKWHK4BAAAAAAAAAABA+SjKZDtjzAhJs9KGXrLWtqavsda+LOnlIQ2s9HgyNWK9BgCiMUY67H+lhV9yr+mM0MF69NHRYxh3kntuxW+kIz2xZXIkYXUlsleIciXbJX1tZGtHuud8j5srqW7C6e5rfBI10uTzpfV3Bc8HtWUtpKc+HJxoJ0kTz/ZfO+3i4NbG6a0rfcl2uVQHTHj+Gda9J/p+KKyVt0pLvydte8b/XCg2Iw5MJW/uCfHP5t+PkSaeKR3/I6nlwMLHFkXbBvdc/bictuxMdkS+piuHawAAAAAAAAAAAFA+irRPlN4i6dnejycl1fmXo1fmO/O59NTKvCaud/uvl3RYxI+LYjobQDE6/AvS/h/wr1n+sxAbmVTyXlSJKnfCXesr0tq/hd9r1W2Bw52NwR3Pj0lrQWhyaSMrSYd+Nnh8y2PB475ElZaD/Wf5nOD5Hi25Lvd9o3r2U9KyH7jnD/ig//pZb3PPdfcmVnV62n7m2MZSk84JHn/hK7nth8JYdZv06OXS5kdLK9FOko7+pnT2/dkTTvtsfEC69zSpbWNh44rCJqWXfho8N/n8nLftstET5zpsLoWjAQAAAAAAAAAAUC6KNdlunCTT+/GUtXbbMMdTKoo22c5au8la+0KUD0kvxXE2gCJlEtKrfiSdO8+9Zsl3su/TPCv7GpcRB7jnljsSO4Jsmx843FVVHzheY/pzyHNqIytJtWPcc60rB4+t+ZN7vSPOUGpa3HNLhzDZbtE3/PPZkuF88xvuTX1e/4/c93ep9nRr79qd256I37IfD+/5VQ2pNtCTzpXmvCda62yTkJpmSGffG/6a9k3Smtujx1ko255xz9XlVtVOcle2O37E6Tqs6bhI1wAAAAAAAAAAAKAyFGUbWUk7ez9bSWuGM5ASszPj/vgoFxtjmjU42c5TxgcAYtA41T23r+2pp3JdmNaILg1T3HM7ngu/T9OMwAS3rmS7pKZB47VpyXYJR9679bWRlfyxb38+FdOAsX/ltlc2VYO/vn2sTX3kUnkwbtm+Rt/8zgXStNdL3a3uNb7kR5+6se65XUukscEJPxhiUV4PIjOp51/TdKlxv97P0wd+rh0z8OeofUv2BNM+Y9KeQ2NfJW19Mtx1Bf2aIyrQ61eno7JdY1WT82WrI0llOwAAAAAAAAAAgEpWrMl269Nu1w5bFKVnWcb9GYGr3DLXb7PWbs8jHgDIrmm6e852S8keeZPt8jH1QunFrwXPRakqFlRJTlJnzQgpIGmuJtH/q81Z2S5bG9nJ57nnevYGBJOZj51mzLH+s3wSVamEoL2rAiatlOySqgr8qzzZ5Z9v3E8afaR/ja/KYV8bWV/70OocK9tNu1h66YbguVJrV1rOugN+psKqHpFKft2XPLffwGS6xqlSoibano7204EaJvbfPuQz0sMXh7uumJ5/vlimXpjztl3JzsDxGlOrHtMTONdJG1kAAAAAAAAAAICKVqzJdgvTbufRH7DiLMq4v3/E63EHdDMAACAASURBVGdn3H8xj1gAILyTb5bmXRE8t/UJ/7Wz3pH7ueNPkiaeJW28f/Bc5zbJJrMntbQGJZmldDVMlJLrB43XmLRkO0f5JCsra61z3lsR7Yn3STMu67+f7JJW3Rq8duyJqYS5fJx4g3T/ucFzW5+QJpyW3/7ZZKvUdfrfsn8fjZGaZwdXStzdW2Hxha8EXzv6mOwxukz9N/fczoWFf+yQnbXBCax9mmZkVKLLSKarHRl/TGGT7U769cD70y6S9nujtPoP2a99+ZfSib+IHFpBvORp6z3h1Jy3dVW2q03UOauLdtBGFgAAAAAAAAAAoKJFKIsxdKy1SyU9r1QpoyOMMZ4eg0izMOP+EcaYxgjXn5JlPwAojFGHu+cWftl/bVWOFcX6HPLf7rmtT2W/fvmPnVOdJrg6Xe2AynbuX8VZq9u1zA0e794t7V3Xf3/Tw+49xp/sPyOMBs+v6YVfyn//bLI9R0YfEW6f0UcHj6+6TerplGxwpatBLXujqh4RPL7o2vz2RTy6PFUhz3lYumiFdO4/pZNvko76inTAv6eSKEcdXphEOyl8sl3jfhnXGem030uXbJaODtGGtm1j9NjiZq20Y0Hw3PjcE+0kqdOROFdr6lSbqAuc66SNLAAAAAAAAAAAQEUrymS7Xt/r/WwkXTOcgZQKa+16pZIU+1RLivIu5BkZ9/+Rb0wAEErtaPfcjuelak/ecMtBhTt7sydJbd+aR5xTXY7KSLWmP4nD1UZWCpFsV+OL/ZHg24P2GOU/IwzfY7jzhfz3z8aViCNJs94Zfh8b/P3S6KOknZ4zqpvDnxGke0/weKLA7XcRzk5PoV/fc7+gQv4T3tWmu36cdPB/SZMcFSn7bHk0WliFsHeNe87kV5XTV9mu1tQHznU4rgEAAAAAAAAAAEBlKNpkO2vtDZL+rlSy3ZXGmE8Nc0il4k8Z998V5iJjzEGSTkgbapV0d1xBAYBXo6cyWk+bP6Fl2kX5ne2qZiZJXY4kqHTdrc6pzkRwt/aBbWR9le0cyV99Jp3tiSst9u7dnj3O8Z8RRsMk95yvKlhckp3uucOvDr9Pu6OKV0+H1OV5DCefF/6MQI6kSlclPQytnjb33MiDhy6OdGEr2zXP8s9ne/3sHIKf32xcyaiSNO6kvLZ2VrZLUNkOAAAAAAAAAAAAwYo22a7XW5RKHjOSvmqMucsYc+Ywx1TsfiMp/d35S4wxB4S4LrOP4u+stbybCGDoHPjR4PHObf5Ep2zJJNk4EuIkSetDFPjcNj94fMLp6rLBSWA1aRXLEr7KdjZLZbuDrnLPbXm8//bqP7rXjTvBPRfFXEcs3a1S24Z4znDp2Oyei/L8mPPu4PFdi/xnTH9z+DOCHPb54PHdS6VkV357I3++52/YpLe4hTn3lFuzr5l9pTTxLPf8E+8e/uegL9nxwA/ltXWn4zW61tSpLhFc2c6VoAcAAAAAAAAAAIDKULTJdsaYn0u6TtIuSbuVSrg7R9K9xpgdxpiHjDG3GWN+HuHjhuH8moaCtXaZpBvThmol/dIYRy8sScaYiyRdmTbUKemLBQkQAFymXOCee+mnweNNeSba9XFVd9r6pORLePNVfZr5NmeyXWxtZOvGSiMODJ7re8yS3dKel4PXzLgivmShyee7557/XDxnBPFUFtSZd0Xbq95Toe+5/wker26SqoIrYIXWMtc9t+Lm/PZG/hY6/klUO2Zo4xjA/bqxz4xLs6+pbpLOuMO/Zrifg+s9hZbrxue1dZevsp2zjSx/iwIAAAAAAAAAAFDJPOV8ht2VGthXzar/ncUWSadG3M/07vGevCPLgzFmmoIf98x3+KuNMTMd2+yx1m7xHHO1pIsl9fVdPFmpJMX3WmsXp8VSJ+n9kq7NuP5aa+1Kz/4AEL/qJvfczheCx02IhJMwqhrcc7sWSSMPCZ7b+ID7uuomdXYGJ3KkV7bztZFNZmsjK/lb7HZsk3Yvd8/7HvOofHv5kmXytemf7rmoX58veWr3suDxKmcue3i+ODfcI81+Z/5nIHed24PHfVUxCy1bkmyU535VXaod65bHgufX3z28z8HdS91zaa+lUVlrnZXtakytTCL49wuV7QAAAAAAAAAAACpbMSfbBclS4qckPCJpRoh1UyW94pi7UQMr0Q1grV1jjLlE0l1KVbaTpFMkvWiMmS/pZUkjJR0jKbMkyN8k/W+I+AAgXqOPzuGimJLtxp4grbwleK5jq/u6TvecHXuiutb9LnAudGW7bG1kJalpprT1ieC5ji3eGDX+5Oz7hzXG8/3r3BbfOYP2diRCSdGfU6OPjH6+7/kR1lhPK9849kd+qkekfpYytW8a+lj2yZJsN/ZV0bbzJdv5XkOGQsJTOTKPhOtu2y3rSGiuNXVKmKrAuS7bqaTtcc4DAAAAAAAAAACgvBVtG9leJsaPimKtfVCp6nab04aNpOMkXSrpfA1OtPutpMuttT1DESMADFDTLI05LuJFMb28z3yre65tnXtu7xrnVHfTNGcb2JpE2DayISrbzf2oe+5vc6VnPuGen/aG7PuHVd3kTvDpbpV6CtB60VrpMU/FrerGaPtFXS9Js98d/ZpMDZ72tevvlLr25H8Gctfq+NuHAz8ytHGky1bZ7lBH22OX/T/gntuxINpecds2P3jcV9UzhC7rrlBXm6hTnXEn+bkq4gEAAAAAAAAAAKD8FXOy3awCfMwe0q9gmFlr75B0mKQfSfKU/tHjkt5krb3CWts6JMEBQJBTHNXlXOJqI1ufmXuc5tHL3XMLvhA8PvoofyKHSWsj6/lV7ErWG2DU4f75XYuCxxM1Uu2o7PtHcXRmV/I0vqS/XL38c8l2B8+1HJTbnqOOiLZ+4lm5nZPpyP/nnnv6Q/GcgeisJ+F14hlDFsYg2V77Jp0dbb+WA92Jo23rUomtwyHZI217Knhu+pvz2trXDrY2UafahLtFNK1kAQAAAAAAAAAAKlfRtpG11q4c7hgKwVo7c4jP2yTp340xH1OqlewMSZMktUpaK+lZa62rXS0ADK2m6ZKpkkIX2IyxcGndeKljc/Bc997BVc981caqm7yVj2rSku0SnqSZUG1kqxqyrwnSMC2363x8leFW3Sod/4N4z1txs3su18cl6nXVOZ4z6Nwm99yav6SSjhK0rRxy2591z+X6HCtWvkTTnQuzJ/YWgivRTsr78e/0JETXmFpVG3eiZWeyAJU6AQAAAAAAAAAAUBKKNtkO8bLWdkp6YLjjAACvRI006khp+zPh1u9eGt/Z1c3uZLv2TVLzzIyxDe69akapy1P5qCYRtrJdiDayiWqpZa60a0n2tekaC5BsN2J/91zH1lR1rLiqEUrSxvvdc2mPcSQjD5W2PhFtfRxGefbp2iH17JUSI+I5C+G1rnLPxfW9Lxa+52Dr6uFJttu72j038rC8ts5W2c6X7NxhSbYDAAAAAAAAAACoVMXcRhYAUIkOjNAys8pTSS3yuf/hntv86OCxnjb3+jnv9VZNqjV1+24bT3W+ZJg2sr3nRRblcQ6rpkVqmuWeH8rWi/u/L7frZr0j2vqWubmdk2n8q/3zoas9IhatK6WbjfTwJe41TdOHLp6h4HsOtm8cujjS7XjBPTf19Xlt3eWpPlpr6lRHG1kAAAAAAAAAAAAEINkOAFBc5rxbqp8Ubu2My2M815Ow9tjbpD0ZHbef/1/3+knnqCvpaSObXtnO10Y2bLLdQZ8Ity7d9EujXxPGKb91z218KL5z2rIk/0x5XW77TjxdGndyuLVTL8ztjCBVtdIZd7jnN9wb31nw62mX/jzTv6Zu/JCEkpMxx+d2XZWnGuQT785tz3x07pQWftE93zAxv+191UdN7YB235k6aCMLAAAAAAAAAABQsUi2AwAUn4OuCreuqiG+M7PttfoP/betldb82btXp7dqUsg2sjZEG1kp1Zp19FHh1kpSdVO87VzT1Yx0z730s/jOWf4T/3x1Hs+NsImI9fkl+wzSuJ977uVfxHsW3NbdmX2NqSp8HLmqac792ubZ7rmorarztd7zfYihpa2r+miNqZUxRsaYAVVIw1wLAAAAAAAAAACA8keyHQCg+PiSjtLlk1CVKVEr1U9wz+9Y2H/b10JWkhJVzhaF1aZaibREnYSnjWzoynaSNPHs8GvDPr65aJjsnuvcGt85Cz7vn69qyn3vppCPT9yPoy+Ba52n6h3iFaaKW/uGwseRTfP+weOz35X7nr7n9E5PS9dCSH/NzRTDz56rsl1toi7tdnArWSrbAQAAAAAAAAAAVK7q4Q7AxRjzjhi3s5J2S9opaYOkxdbaCBkMAIAhNfn8cOvirGxnjDTtDe6Kaa/cKB1xjdQ0Xere695n/KmS3Ikcma0J/W1kQ1a2k6T9LpYWXxtu7bSLw+8bVa2nst2OBYU7N93Mt0mJPCqPTTonVf2vu9WzyEjTYmwjKxV3tbRS0NMp/evT0pJv94+d85A04dXR9uncHm9chTLtQmnxtwaOJeqkyRfksefF0iZHu+fuLEnGcbJWeuHL7vn9Lsn7CFd1uvRqdnWJOu3pCbjW04IWAAAAAAAAAAAA5a1ok+0k/VKKUtInklZjzFOSbpR0q7X0ggKAolI3Rpr6emntX/3r4ky2k6Rjvu1vT3rPqdK5j0qbHnSvOe4HkuSsbFeT0ZbQ30Y2wq/B8adIx31fevrDnkVGmnG5dPgXwu+bi0P+W3rx64PHO7ZIu5ZKLQcW9vzjr8/v+poW6cy7Ut9vl5N+JY0+Mr9zMmVLtmtb768cWMlsUrr31dLWJwaO33u6dPb90sQz4z2v5aB498vFkV+RWlf1tri2Uu0Y6dTbpPpxue859yPSMx8PnhvKynbz3uqfnx2i+mAWoSrbGUdlO0tlOwAAAAAAAAAAgEpVzMl2fdwlf3LXLOmM3o+vGmPeZa29uwDnAAByNfk1Q59sV90oHfJp6cWvBc/vXS29/EvplV+596gbI0nqSjqS7RIZle08v+aSUXPOD/yQNOe90vq7pZ0LpXEnal/HeGOkkYdKdWOj7ZmLxunuuWU/ko79lns+jLYsLTxrRuS3v5RKXvSZ9bb8z8iULdnulZukQz4Z/7nlYMfzgxPt+tx3lnRFzH+/UdUY7345xVAnnXab1L5FalsrjTwsv4qOkmQS0shDpJ0vDp5b9kPpqK/kt38YHduklb91z898a+r1LE+uhOjMynZBOmkjCwAAAAAAAAAAULGKPdku/Z006xjPlPluatBamzY3WdI/jDEftdb+IHqIAICCCJMUVohWftnO3TJPalvjnq9JtVEN06JQkozxVLaL0ka2T1WdNO31qY/hUjvGPbdlXv77b3k8/z3CmHyBtP4fg8fHnVSY8zzPBUnxPHblaqieE31mvX1oz/OpH5dfNbtMrja6ha5I2Wfrk/553+tLBKEq2yUcle1oIwsAAAAAAAAAAFCxijnZ7l29n0dI+ryksUolxyUlPS7pKUmrJO2SVCtpjKTDJZ0maVLvtVbSrZLulNQgaZSkQ3rXzNDApLtvG2MWWWvvL+hXBQAIZ+JZ2dcUopXjpPMkeaqHrb/Tf31vVbU4KttFaiNbTCZ5vnfdrfntba2/4uGYY/PbP92BHw5Otpv7sfjOGCDL9zvfx66cJbvi26uqQepp86+Z/c74zis2rudZ+6bhPb/PpHNjOabT2eq7/zU6Mzm6T5cjmRoAAAAAAAAAAADlL0sJleFjrb1R0jxJH1Iq0U6SfipplrX2FGvtx62137LW/sxae7219svW2sskTZP0RkmvKJVE92ZJM6y1P7LWfs1a+w5r7SxJr5P0cu8aq1Ti4bVD+kUCANzqx2df0zQr/nNHHS4ddnVu1x5//b6b7sp2A5PtEr5ku6htZItF/QR30tvOhamEuVxYKz39Yenln7vXnHlXbnsHmfKaVFvedDOukPZ7Y3xnpMv2uGy4pzDnlgObpQrk1qfD75Ut0e7gT0q1o8PvV2oO+XTweOsKac/LhT3bWumZq/xrprw2lqPCVLarc1a2o40sAAAAAAAAAABApSraZDtjTKOk2yXNldQt6S3W2g9Ya1f7rrPWJq21f5J0hKRHlPoarzbGXJmx7g5Jx0h6Nm34CGNMPOUyAACFV9UQ/57GSEd8QZrznujXjjl+301nIkdmG1nPr+Kc2sgWC1/1t03/zG3PHc9Ly653zzfvH679cFgmIb3qx9J5j0vHfV869xHppF9JiUIVBi7h7/ewy5Ko+PRHwm2T7HHPmUTquXD0/4UPqxTVT3DPPfe5wp69c6G01/NP/REHSomqWI5yVadLf41OT7xL53p9BwAAAAAAAAAAQPkr2mQ7SddIOlipd0+/bq39XZSLrbWtki6RtE2p6nXfN8aMz1izW9KblErm63uX9rw84wYAxCVbK9nqpsKdPe6U6NdUN++72eVqUZjZRta4K9slS7WNrDTgsRhkzZ9z23P5j/3zYaohRmUS0rgTpAM/JI0/JbZEn0BVIZ7Pe9cW7vySluVnZevjUtfu7NvsWuSeO+eR1HOh3Pl+djfcW9izs+0//tTYjnIlzKW/RtcZR2U7S2U7AAAAAAAAAACASlWUyXbGmGpJ7+i92yHp67nsY63dIqnvnfkGSVcErHlF0m3Svj5+OWRXAAAK4rDP++cbJhfu7FySOkYcsO+mM9kuo42s8baRLeFKZ+NOds/tXprbnst+6J+PMRFnWDRMlEYe6l/TuX1oYik12drISlLXrvzWjMryvSkX4z3/FO7YXNizsz2/fRUzox4VqrJdcLIdle0AAAAAAAAAAAAqV1Em20k6VdI4pcqUPNlbpS5Xd6fdfoNjzV29n42kaXmcBQCIky/p44QbUi1fC6XlAGn2leHX108cUPWsKxmcbJfZltDfRraEK9s1THTPrfu7tHNx+L16OqS7Tsq+7oB/D79nsTriGv/8poeGJo6SE+JnZd0/sq/p9vyTs3pE+HBKWeM0aeRh7vn5/ykVqurm+rvcc6OOkEYdHttRYV6j6xxtZDuSVLYDAAAAAAAAAACoVMWabDc97fa6PPdan3Z7hmNNes+w0XmeBwCIS6JauqxDmvGWgeNn3CHNeXfhzz/hhvBrD7pqwF1X1aRBle08CYMlnWwnSafc4p77+8Hh91n45VQb0GyaZ4Xfs1jtd4l0jieh7ukPSz3BSUIVLUzy15Pvy95Kdsl3g8erGgqb3FtsfK99S74trfxt/Gd2t0pbn3TPv2Z+rN+DUJXtTHCynetaAAAAAAAAAAAAlL9iTbZL7wvYlOdejb2fjaRJjjXpPauC31UDAAyPqlrplJulK2z/x5QLhuZsE+HXZEa7QVfVpMxku4Svsl2Y1pjFbMT+/vk9K8Lts/R7eYdSUia8WkrUuOe3PDp0sZSMkD8rG+71z29/Nni8KridaNmqbvTPr/lz/GduuN89N+OKVPJ1jFytYNNfo91tZKlsBwAAAAAAAAAAUKmKNdluV9rtQ/Lc69C023sca9LfSWvL8zwAQCUafeSAu502bBvZMq5s13KQf37jA+H26dqZfU1TGVS1SzfqSPfc3nyL/pahsG1N27I8dnVjg8c7twePl6sR+0tVnoS7bI9jLtrWuudGe34ecuSsbJfIXtmuw5GoBwAAAAAAAAAAgPJXrMl2a3o/G0mzjTEn5LHX23s/27R9M01KW7M5j7MAAOXm2JBV1cafMuBumBaFkr+NbLLUk+2qmyRPMqG2P+O/fvdy6eaQbSOP/0HosErCAR90z/XwdwGDhfxZefHr/vkdC4LHJ5wRKZqSV1Uvzb7SPb/5kfAJjmH5ntfTL433LLkr26Un29W5KttZKtsBAAAAAAAAAABUqmJNtntIUpdS75waSdcbY7L0sxrMGHOZpPPU/w7sPY6lx6TdXhH1HABAGZv7YX+FJ0k65+FBbT+dbWQTA9vImnJuIytJx1zrnlv6fWmvo5pV1x7prweEO+PEG4eutfBQmfMe99ya24cujlIR9mdl72rppZ8Hzy35vvu62e+KHlOpO/Y6qXa0e37JdfGet+Ca4PGqeql5ZrxnyVN9NC0hOrMSaZ+OZIds3MmGAAAAAAAAAAAAKAlFmWxnrd0l6W9KJdpZSUdJussYs1/YPYwx75V0o/oT9qykmxzLz0+7/VwuMQMAytiRX/bP148fNNTlqGxXYzKT7cq4jawkmWr//Nq/BI9vcOXHB5j9jvBrS8mYY4PHozw2FSPCz8orNwaPz/+I+5qq4ApnZS1RJR39Dff8y46kxVx17QgeH5tPgWvPcWEq25ng77tVUt22qyBxAQAAAAAAAAAAoLgVZbJdr/+SlN6j6RRJLxpjfmiMOcsY05J5gTHmQGPMB4wxT0n6saRa9Sfa3WCtHdQbrDeB7wz1v0v7cLxfBgCg5E272D/fNGvQUKejsl1mpSR/sl0ZVLab9gb//M7FweO7HOOZjvxqtHhKye7lweMjDxvaOEpBlCpjYZ9b6ZpmRL+mHDTNdM/tWhRfK1nfPl274zljwHE2r8p2krtVOAAAAAAAAAAAAMpblnIzw8da+4ox5t2Sfq1UUqCV1CTp/b0fMsbskrRbqaS6kb2fJe3LXOiraveEpP90HPVp9ScdtsvdahYAUKl8LQyb95eqagcNh65sZ4yMTGAVu7JoU9iUpShtx5aB9/e8Ii3+VqrFbBjTLsotrlIw6nBp8yODx7t2DX0sRS9CYmr7pujbjz0++jXlYPxp7rlkl9T6itQ8O/9zHFXmJEmTz3fPebT17NXd2/6gl9sWa2LtNJ05+nVqrhqhu7f9SUv2Pu9MZq5Jr2yXcFc0vHbVZ1RlqjWqeqyOaj5RJ488Ry+0ztfjux7Qxs7+9tjVpkaz6ufqnDEXaUzN4CqoAAAAAAAAAAAAKC1Fm2wnSdbaW4wxSUk/kdSi/upzfcl0I3s/Bl2atu4uSZdba1sdx/xa0u96b+/xrAMAVLI3rJZuD0gcu+DZwOVtyb2B47VmcGKeM9muHNrIStIb1ki3TwueW3mzdNIvpUSN1Lpauuc0qW1t8NpMp/1BGnlwbGEWndlXBifb7VmeqgRm3FURK07UxNR1d0pTXtN//5Wb/OtNMReDLqCqWum0P0oPXxI8f8cRqZ/v2lH5nbPuDvfcjEsjb9eV7NR1a67WyvZlkqRlbS9o3s57ZHv/55P+Gl3rSbbb0LlGkrS2Y4VeaJ2vu7f9QVu6Ngbuv7J9mZ7f84Q+OePrGlk9JvLXAwAAAAAAAAAAgOJR9O8cWmt/J+kwpRLiejSwal3mRx8jaYWk91prL7DW7vTs/7i19qHej/kF+BIAAOWgcZp0hZUufFk6/a/SG7ek7tc0D1ra6anSVBPQltA4fh0ny6GNrCQ1TpUO+A/3fF9C2YqbwiXaJWqlt/RI+zkSgMpFVYN7bteSoYujJERMtlv4pYH3F/1ffKGUG191u+5Wae3f8j/jBU876KrGyNst2fv8vkS7PkklQyUwp7eOrTPuNrKZNndt8O6/rXuz5u8KSJ4FAAAAAAAAAABASSn6ZDtJstausdZeLmmGpI9JulXSEklblUrA2ytpraRHJV0r6QJJ+1trfz48EQMAylbzLGnq66S6sc4l6S0EM9UHVEoyjgplZVPZTpLqxrnntjyR+rz1yXB7Hf2Nyqg05nvMtj4xdHGUhIg/K1vm9d/ubpN2LHCvbSnj6olh1I6SqtwV3mJ5Lrau9JwfvRLcHVt/l32RQ1NixL7bdYn6Qa2/87EiIwEQAAAAAAAAAAAApaeo28hmstaul/S93g8AAIqSr7Ld5NoZg8aMHMl2tkwq20nS5NdIC68JnnvuM1L7JmnN7eH2mnF5fHEVM19FsZ7gNsUVK5+fle49/vnjr89973KQqE79/Lp+Pjt35L735sekVb+TOja719R7kk4dVrQvzSmc6fX7q7m6Zd/9hKnSQY1HakHrUzntl6kj2R7LPgAAAAAAAAAAABg+FVAWBgCAodVp3cl21WZwnnvC8eu4rCrbjTvRP7/k2+H2OfEXUv2E/OMpBdWeNrLr/jF0cZSEHH5Wts2Xkj3SP452r6kbK004PfewysWx33HPrbhJ6skhiWzxt6V7TpaWePY++pvR981RS9UovWPSRwaNXzrxfRpfMymWM3y/GwAAAAAAAAAAAFAaSqqyHQAApcBV2a4+0RDYMtYYE5grVFbJdsZI0y6W1vwp9z0mny/NvjK2kErC2BOC23Su/evQx1LMbA4/K/M/Lh1xjdTmbvus1zybeu5WuqYZ0ux3Sy//PHh+zV+kGZeG369zu/TsJ7OvG3Nc+D1zlFCV3j/1v3VAw2FqqGocND+2ZoL+Z+Z3tbztRW3oXCNJunfb7drRvTXyWb6qpwAAAAAAAAAAACgNJNsBABAzV/WiWlMXOO5qI5sspzayklTTkn2NT8sh8cRRSkyVe65ja6ryGiTl8LOy+RFpdZbWxTUjcgunHNVPdM9tvC9ast2K30q2J/u6qvrwe+bo/LFv1BHNr/KuqU3U6ZCmo3VIU6oK4oI9T+aUbNdFZTsAAAAAAAAAAICSV3JtZI0xNcaYU4wx7zDGfNwY87/GmM8Pd1wAAPRxVS+qSbiS7SqgjawkTXh1ftdPrMB2niMPds917fRfm+yRtj0jrf1bqpJYOculsp0kLb3OP187Krd9y5Hv57czy3Mx08YHwq1rOTDavjlwJUH7NFeNzOmszmRnTtcBAAAAAAAAAACgeJRMZTtjzKmS/kvSeZKC3hW7JuCa10jqK7OxzVr7X4WLEACAlMiV7RxtKssu2W76m6XlP5W2Ph792knnptrIVpoDPyq9dEPwnC/BqW2j9MC50o4FqfsmIb3qJ9Kc98QfY1Eos5+VYjTxLPfcqlsl+9twLXc7t0urfx/uTFMTbl0eah1J0D7NVblV6XT9bgAAAAAAAAAAAEDpKPrKdsaYJmPMbyQ9JOn1kuolmYwPlxckfoLv6gAAIABJREFUvV3SOyVdZYw5ssDhAgCgLkf1IldSh7OyXdm1kR0hnXV39OsO/Ih0+l+GpKVk0Wme6Z5b+CX33FMf7E+0kySblJ54r7RzcWyhFZVy+1kpRlW10tyr3PNr/xZun2c+Ef7MMMl7eaoxtZGvGZFzZTuS7QAAAAAAAAAAAEpdUSfbGWNaJM2T/j97dx4na17Xh/7zVG9nnX3fGBgGGIYd2RQVQQORmGjQRG80JuqNV3LRJGoSREWNJt5cgyt6oy+D0ShGRWMStgEuhEVWQZB1gGGYfeYwyzlzzszpperJH30O02dO/Z6up6q6uqr7/X69zut017P9urrrqZlXf87nm29P/1BdY41JXdc3J3nDhmO/fawLBIA+ys12/UMdnUJufMc12yXrgbtHfne7Yx7zst0ZtEuSub3lbXe/v//jvdXk9jf133bb60df01Taga+VadQ0VnfQn61BQ3lJmv9NzXgM02y3f+7gUNfSbAcAAAAAADD7pn2M7J8keWIe+g3qSpI/SvL2JL0kvzPAOf4s6414SfINSV4+3iUCwKlK7UXlZrtS2G6HtnU99oeSL/znwfZdOKu53W2n6zSM0SwFEFePJN3j/bfd8ZbkmoZmsd5qcvzOwdc3LVaPbPcKdodznlbedvyOzY9fOZwsH2pxwQmE7QrjvZscnB+u2W6tXk2v7qZTzQ11PAAAAAAAANtvasN2VVV9a5Kvz0NBu/cm+ft1Xd9yYvsjBjzVyWqXKsmTq6o6UNf10bEuFgA2KDfbFcJ2Vf+i2V69Q9u6zn5Kcv5XJ4fetfm+j3lpc+BsN7jga5K73nn640dv6L//J/5t+VzLd/d/vLucfPAHkpv+KFk71n6N7A4XvqC87ZY/T+54W3JRn33u+Ujy/u9J7v2rdtcr3BvHaZhmuwNzZwx9vdV6NUvCdgAAAAAAADNrmsfI/tiGjz+e5BtOBu3aqOv6jiR3nfi0k+SaMawNAIpKzXYLrZvtdmjYrqqS571hveGuZPGc5GmvSp70s5Nb17R6zMvK29YeOPXzG343+fSryvvf86H+j3/wpckNrxG0o9n83uTql5a3v+PFyZHrT31s+e7kbc9vH7RLMplmu/7jvZscmBuu2S4pvz8AAAAAAAAwG6ay2a6qqouTPGXDQy+r6/qB0v4D+HSSC058fHWSD45wLgBo1LrZbreNkU2ShQPJ039p/Q/N5vaWt93xtuSyb3ro8y/+webnO3pDcuBRD33eXUlu+uPh18fusv+K8rbecnLz65JrX/7QY7e9MVm9b7hrVe3Ddt2622r/STfbld4fAAAAAAAAmA3T2mz3nBN/10luruu6z+y0Vu7Z8PG5I54LABqVmotKoY7SGNkd22xHOweuKm87+rlTP7/9zZuf78bXnvr58l3J2v3t18Xu1PTzmCT3P+xn8iM/PMLF2oft2jbHLRRC0E32zx1sfcxJmu0AAAAAAABm27SG7S7a8PFHx3C+oxs+PjCG8wFA0WrLZrtOqdmuFrYjyRmPLW/78L9I2v6cHL/z1M8fPop2pyiEWBnRxX8jWTy7vP2G//TQz9QX/kty/K4RLjZE2K4+3mr/YZrt5qq57O8MF7grvT8AAAAAAAAwG6b1t5Bnbvj4yBjOtzFg1+43cADQ0kpvpe/ji53Fvo9XhbfjHT1GlsFVVXLG48rb3/Hi9b+v//XBznf9r66Pjj3p8789/Nqm1d5Lk+f83navYmdaOCN5wdub9/mj/es/j+/9rtGuNcQY2bbNcaUQ9GYOzA83SlazHQAAAAAAwGyb3+4FFNy74eMzi3sN7pINH99T3AsAxmClZbNdVQiU9IyR5aT9j0yOfLr/ttvfmKw9mHz6VYOf79C7kotesP7xp/59eb+/+dFkft/g550GncVk3+XrQa2/+Af997ns7yTP+I31VsD/cXXS3aHtflvl7Ccn1/xo8qn/t7zPh/7pGC7UPmy33HaMbCEEvZkDc2fkztza+riVun8YGwAAAAAAgNkwrWG7Qxs+vnaUE1VVtZTkKRseumWU8wHAZkrNRaVxhVVxjKxmO05YONC8/eY/SY5+fvDz3fCa9bDdZiNoz3rCzh3HuvfiEx8ItQ5lz4Vbf41hmu3ajpGthg/bDUOzHQAAAAAAwGyb1t+efvjE31WSK6uqapidtqmXJDn5W7S1JO8bZWEAsJlSs91CqdmuOEZWCIgTLn5R8/YHbm53vht/PznymaQp+LPvsp0btGN0l3zjeM6zdO54znNCmzDbfLWQTjU31HWGDtsV3h8AAAAAAACYDVP5G9S6rr+Q5HMbHnr5MOc50Wr3ipOnTfLBuq6Pjbg8AGg0tmY7YTtOeuQ/bN5+0+van/NNz0iuf3V5+7N+u/052T3OvCZ5wk+Odo4rvys5/7njWc8JbcJspdHegzgwd+ZQx2m2AwAAAAAAmG1TGbY74TUn/q6SfGdVVd/d5uCqqjpJfivJNRsebviNMgCMx2oh7FEK23UKoxKNkeXLOvPN2+/9cPP2ftbuTz7yI+Xt+x/R/pzsLtf88GjHP+EVm+/T0nJv8DGypXvyIDTbAQAAAAAA7E7THLb75SR3Zb2Rrkry21VV/duqqvZtdmBVVY9Pcl2Sf3Di+DrrTXl/uHXLBYCkW3ezVq/13bZkjCyzZGG4MBG7yNze0Y5fPHs869igTXPcaM12Q4btNNsBAAAAAADMtKkN29V1/UCS707Sy3pYrpPkXyW5vaqq1yZ56cb9q6r6+1VV/URVVe9K8rEkX5f1kF6VZDnJd9R1LbUAwJZarVeK29qOke0J27HRec+Z7PX2XjzZ622b/q8/BtBZGP7Ys5+a7LlgfGs5Yblu02y3OPR1Ds4PN0a21HwKAAAAAADAbJjasF2S1HX95qyH6k4G7pLkYJK/l2Tj3LMqyR8k+akkX5lTv661JN9b1/UQ89UAoJ2m1qKFUrNdVWi2M0aWjZ75m5O71tUv3XwfSJLnvbH9MXN7k6f+wvjXknbNcaV78iA02wEAAAAAAOxOUx22S5K6rn8ryQuzPlK2Sk6p+ak3/Kke9niV5EtJXljX9Wsns1oAdrumIEXbZjtjZDnFWU9I/uZfTeZal79kMtdh9l3youRFLf5NyxN/OnnRXyYXPX9LltNqjGzhnjyI4cN25fZTAAAAAAAApt/Uh+2SpK7r/z/Jo5P8yyQ356HxsBv/ZMPHdyf5mSRX1XX99okvGIBda6VhROBiqdmuGLbTbMfDnPHYyVxnft9krjMVhFpHds5TB9/32lckZ16zZUtZaTFGdqEafozs0GE7Y2QBAAAAAABm2vx2L2BQdV0fS/ILSX6hqqrHJHluksuTnJtkMestdncm+YskH67r2m9OAZi4YZrtOqUxskJAPNzcnslc58wnTOY67CAPL6Au7ba1/9ZnuTd42G6UZrvFzlKWqj1ZbhHuS4yRBQAAAAAAmHUzE7bbqK7r65Ncv93rAICHa2otKrUoFZvt5MbZDnN7k4UD270KZs1X/2nyrm/ZfL+q//1uXNqMaS21jQ7qwPwZWV5tGbbTbAcAAAAAADDTZmKMLADMitVCa9FCtVhssCuF7XrGyNLPgau29vzP+P+29vzTQJB1/C7/5uSSb9zuVbQaIztKs12SHJg7s/Uxmu0AAAAAAABmm7AdAIxRqbWoqUGpMkaWNhbP3trzz+/d2vNPna1tWttVrvmXQxw03ue/1RjZUZvt5g62PmZVsx0AAAAAAMBME7YDgDEqtRYtdPqPkE2MkaWlJ75yuOMKoc7THHzMcOeHM69NqrltXUKb5jjNdgAAAAAAALQ1v90LaFKtV/08IcmTk1yR5Pwke5PUSR5McleSm5J8NMknaqkEALbZSr3S9/HGZrtS2M4YWfq58PnDHbfnwmTfFcnd7y/vc/Dq5KwnDXd+2HNecvnfTW76421bQqldtJ/Rm+3OaH1Mm/UBAAAAAAAwfaYybFdV1dck+f4kfzPJoJUR91ZV9fokv1XX9bu3bHEA0KDUWtTUoNQpFM0aI0tf8/uSv/WZ5H8+tt1xdZ08/7rkuuckhz95+vYDj06+/l1JZawqI3j2a1qG7cZ7n2vTHNfUODqIg0M12/UPZAMAAAAAADAbpipsV1XV45O8OsnXnHyoxeHnJPnOJN9ZVdXbk7y0ruvrx7xEAGhUai1qbLYrhJt6tWY7Cs4YctTrwhnJiz+RdFeS3vH1x+o66Swm83vHt76ZItQ6VvP7k0u+MbntDdty+eX6+MD7jtpst3/uYOtjNNsBAAAAAADMtv5VOtugqqq/l+QDWQ/aVSf+1H3+nNRv28njnp/kL6uqesmk1g8AyXDNdpVmOybhmh956OO5xfXg3cIZyeKZOzhoV/h3G4/8zskug4lZ6bUI243abDc/TLOdsB0AAAAAAMAsm4qwXVVV35bkD5Lsy6khu5PhuSQ5lOT6JO/Leijvs0m+tGGfjcclyf4kr62q6lsm81UAQLJSaFVqDtv1DwQJ29HojMcNvm81nzzi27duLdNqY8DwpPkDySV/a8MDxuZur/E+/23GtC6M2Gx3YO6M1sf00k23XhvpugAAAAAAAGyfbQ/bVVX12CSvObGWjSG7I0l+KcmLk5xX1/VFdV1fU9f1V9Z1/ey6rh9X1/WFSc5P8k1JfiXJ/Tk1dDef5D9XVXX1pL8uAHanYrPdEGNk6xgjS4MXfnCw/TpLyXP/a7Lv0q1dzzR64k+vjzQ9aeGM5Hmv38FNfrtbt15LN4MH2ZpC0IM4MNe+2S7RbgcAAAAAADDL5rd7AUl+LeuNdidDdr0kP5PkP9R1fXSzg+u6vjvJ65O8vqqqn0jyI0lekYdqMg4k+dUkLxr/0gHgVKVWpYWGcYXFMbK1ZjsaLBxIrvyu5MbfK+/zvDckF3xNMr9/cuuaJvN718N1R29IHrglOfdZydxoASsGsE33ruUWI2ST5hD0IA7MHRzquJV6OXuzS1+TAAAAAAAAM25bm+2qqvqqJC/IQ0G7+5O8sK7rnx4kaPdwdV3fX9f1K7MerDuWh0bKfkNVVV85pmUDQNFK3b7ZrmOMLMNaPKu8rbOYXPzC3Ru02+jAo9ZDh/2Cdpd98+TXs9Nd+LzB9z3/uWO7bNvGuFGb7fZ2hnttabYDAAAAAACYXds9RvalJ/4+Ofr1++u6ftuoJ63r+q1Jvn/DeZPkB0Y9LwBsZrU0RrYh1FEaI9szRpbNXPj8hm0vSKrt/k+9GXDND/d//En/ZrLr2Eke9T1JvxDxVd/bZ99/3H/fR373QJc6unYkHzry7rz1nv+Wd9z3hlbLHLXZrnTv3szb7v3vuX35Zu2lAAAAAAAAM2jbfgNbVdVSkm/KehiuTvK6uq7/cFznr+v6tUlel/Xf3lVJ/nZVVeUZfgAwBsM02xkjy9AufXFy+bee/vjS+clTfn7y65lFZz81eewPnfrYOV+RPOb/3p717AR7zkue9h9OfezAo5In/OTp+y6dkzz9l059bP+VyRN/atPLfP7BT+cnbvgn+U+3/0L+9NDv5Lp7XtdqmaM22w3rnfe9Mf/mxpflv3/p993nAQAAAAAAZsz8Nl772UkOnPi4TvKqLbjGf0jykhMfH0jynCT/awuuAwBJyuMBG5vtimNkNduxic5C8lWvTW7/R8mhdyfdB5MzH59c8uJk36XbvbrZUFXJ034xuezvJHe9Kznjcckl35gsHNj8WMoe98+T874qufOtyd7L1oOhS+f23/exP5ic95zkjrckey9d//ndc17j6eu6zn+67ReyXB8feomjNtuN6s33/EmesP/puWrfNdu6DgAAAAAAAAa3nWG755z4u07yqbqu3zfuC9R1/b6qqj6Z5PEbrilsB8CWKTXbLTSUqxab7aLxiAF05teDTJe+eLtXMruqKrnw69b/MD7nPXP9zyDOfcb6nwEdWr0j9659aciFrRtHs12Vqu+9+uz583Kse3/xPeGkzzzwMWE7AAAAAACAGbJtY2STXLvh4/ds4XXeXbgmAIxdt17r+/h8tVA8pqoKzXbGCwL09UD36EjHX7p05VjCdt92wff1ffyF57wkj9z7mE2Pf6B3bOQ1AAAAAAAAMDnbGba7asPH79/C62w891XFvQBgDLp1t+/jc9Vc8ZiOMbIAE1Olyt845++O5VxfcfCrc/7CRac8dsHCJXnawa/K15/zLZnb1iJxAAAAAAAAxm07f/tz4YaPv7iF19l47ouKewHAGJSa7eaq8ltuaYxszxhZgILy/fGypStTpZOLl67IZUtX5q6V23LT8g2p614uXLw0zzrjebn2wNPHsooD82fkh6/4+bzlnj/NLctfyBV7Hp2vO/ubcmD+jFw7/7T84OU/nfcefmved+Ttrb8OAAAAAAAAps92hu3O3fDxfVt4nZPnrpKcs4XXAYB0U2i2S7nZzhhZgHaa7o4/csX/M5YRsYM6Y/6svOSC7+m77ep91+bqfdfmgd6xfOzoB07bXgvbAQAAAAAAzJTtHCO78TdgWxm2O7zh4z1beB0AGLLZzhhZgHZ2RkhNphoAAAAAAGC2TEvYbnULr7Mx9bCwhdcBgHTrQrNd1dBsV3g71ngE0N+s3R9LoeqdEhoEAAAAAADYLbYzbAcAO045bNfQbFcaI6vZDqCvpohaOdi2nUr3eWE7AAAAAACAWSJsBwBjUtd1uimMkU252a5TarYzXxCgv8b74/SF7aZvRQAAAAAAAAxD2A4AxqTX0ETXPEa2fwyjp/EIoLVCWei2ms62PQAAAAAAANoqz7SbjJMpgmdXVXXlFl3joi06LwCcolv3b7VLjJEFGKem8auzFGwzRhYAAAAAAGC2bHfYLlmfqvTaLb5GHdObANhi3bpb3NbcbGeMLEA7szVGtrQmYTsAAAAAAIDZMg1hu0kE4fwWC4At10252a7T8JZbamESwgDob+aidqVFuc0DAAAAAADMlGkI2yV+zQTADjB8s50xsgBtzF4YWagaAAAAAABgJ9jOsN1NEbIDYAfp1uVmu7mq/JbbqYyRBWhntrrtSqFq/zsEAAAAAAAwW7YtbFfX9ZXbdW0A2Aq9MTfb9TTbAfTVHLWbnbCdZjsAAAAAAIDZ0r9KBwBorZumsF05314V3o6FMADaq6rpC9sBAAAAAACwMwjbAcCYNI6RTUOzXSEYImwHUGDMNgAAAAAAANtA2A4AxqQ75jGydW2MLEA/pTDyNI6QTYyRBQAAAAAA2CmE7QBgTBqb7RrGyHaMkQUYk+kM25XW5T4PAAAAAAAwW4TtAGBM1hrDdsbIAoxLudluOhVu83GbBwAAAAAAmC3CdgAwJt00jJFNudmuNF6wZ4wsQF+zF0YWqgYAAAAAANgJhO0AYExKY2Q7mSu21yVJZYwswJhMZ7ddKVQNAAAAAADAbBG2A4Ax6db9m+2aRsgm5RCGsB1AO7MXanOfBwAAAAAAmCXCdgAwJqVmu7mqPEI2Saqq0GxnjCxAX6UwckOJ6LYqLUvUDgAAAAAAYLYI2wHAmPQyXLNdR7MdQDt16f44pWk793kAAAAAAIAdQdgOAMak2GyXTZrtiiEMzXYA/RSb7aY0bFdel7AdAAAAAADALBG2A4Ax6dbDNduVxsj2is1NALvbzN0dC1k7t3kAAAAAAIDZImwHAGMydNjOeEGAlmbr/qjZDgAAAAAAYGcQtgOAMSmOka2MkQWYhNkbIwsAAAAAAMAsEbYDgDHpptBsl+HGyGq2A+ivdH+ctVCb+zwAAAAAAMBsEbYDgDEZttmuU2q2q4UwAAAAAAAAAGBaCNsBwJh060KzXbVJs13h7dgYWYD+SmHkqprOZrvyuHChagAAAAAAgFkibAcAYzJss10pHNITwgDoqxxSm86wXWldwnYAAAAAAACzRdgOAMakm/7Ndp1s1mxXGiOr2Q6gjemN2pVWJmwHAAAAAAAwS4TtAGBMxj9GVggDoJ+Za7YrLKswDRcAAAAAAIApJWwHAGMy9BhZ4wUBdrRysx0AAAAAAACzRNgOAMZk2Ga7TmWMLEA7/cPIsxdqE6oGAAAAAACYJcJ2ADAm3RSa7bJZs50xsgBtlIfITmfYToMpAAAAAADAziBsBwBj0huy2a4UwugJYQAUFO6P05m1Kxr2Lr/aWx3rOgAAAAAAABhMc9UOADCwtbrQbFdt0mxX9c++H+0ezqeO/VWu2f+UkdcGsFP06l7+/NDv9d02a812Hz36vhxeuzdnzp890Hned/jtecPdf5i7Vw/lEXsene+86J/mkqVHjHOpAAAAAAAANNBsBwBj0i2G7YZrtkuS37j153Lb8hdHWhfATvKmu/84h1bvKGydzrBd07p+5eZXpq4377j7xNG/zO/e8cv50uqdqdPLjcevzy/e/ON5oHt0nAsFAAAAAACggbAdAIxJtzRGdpMi2aaw3Vq9mo/c/96R1gWwk7z/yDuK26Y2atewsNtXbsrNyzdseo4PHPlfpz12rHt/PnHsw6MsDQAAAAAAgBaE7QBgTLoZrtnu3IULGrfftXLb0GsC2El6dS+HVm8vbj9nk/vpdjlnfvT7/Afvf2ffx//bod8dak0AAAAAAAC0J2wHAGNSbLbbJGx36dKVOX/h4vJ5CyE+gN1mtV5p3P7UA8+Z0EraecKBp2e+WihuX6mXhz73se79Qx8LAAAAAABAO8J2ADAm3brUbFcOWCRJp+rkBy//qYbz9g/xAew2K71yKO2afU/J15/zzRNczeAuXLw033/py4vbm74uAAAAAAAApoewHQCMybDNdkly7sKFef7Zf7vVeQF2m6YGuO+48P9Kp5re/725dv/TcsWeR/fdNkrYrk499LEAAAAAAAC0M72/jQKAGdNLIWyXzcN2STmUV2rMA9htmkJpC52lCa5kOEtV/zWOMkYWAAAAAACAyRG2A4AxKY+RnR/o+Ln0369bCPEB7Dar9Upx22IhyDZNSoHAzZrt6lp7HQAAAAAAwDQQtgOAMRlljGzTfprtANY1hdIWO4sTXMlwFqv+a2wKESbJWr26FcsBAAAAAACgJWE7ABiTkZvtimE7zXYASXnc6lzmB77XbqfFIZvtmsbMVqlGWhMAAAAAAACDE7YDgDEpjXudy6DNdoUxsprtAJKUQ2kLM9Bql5RH3TaF6ZLNw3gAAAAAAABMhrAdAIzJyM12hVCeZjuAdauFUFopxDZttqLZDgAAAAAAgMkRtgOAMSmF4krjYU/fr9BsV2jMA9htVnorfR9fnJFmuwXNdgAAAAAAADNN2A4AxmSrwnY9Y2QBkpRDaTu/2a5/yBAAAAAAAIDJErYDgDHpZsQxsoVQnjGyAOtWi812MxK2K4QCS+Nxv7y9IYzX034KAAAAAAAwMcJ2ADAmpVBcJyOOkdVsB5Ck3GxXGs86bcrNds3Ndcu948Vta/VaekLZAAAAAAAAEyFsBwBjUgrFDdxsVwjldbUWASQpj1udnWa7xb6Pl0KEg283ZhYAAAAAAGAShO0AYExKzXal8bCn76fZDqBJKXRWCrFNm3Kz3SZhuk22N42ZBQAAAAAAYHyE7QBgDOq6Tq/QQDdws10hlFcK8QHsNqXQ2cLMNNsVwnYjN9sJ2wEAAAAAAEyCsB0AjEE35fa50njY0/YrNtsJ2wEkTc12sxG2K4UC1+rV9Bru9au95jGxK5tsBwAAAAAAYDyE7QBgDJoCcQM32xVCed2spa7rodYFsJOUQmel8azTpikUuFKXA3Oa7QAAAAAAAKaDsB0AjEG3bmi2K4yHbbNfL73WawLYaWa92a4pFNjUXlcanzvodgAAAAAAAMZD2A4AxqC52W60MbLr5y+H+QB2i1KobLGzOOGVDKe52a4cmNu02a53fOg1AQAAAAAAMDhhOwAYg24awnYZcIxsQyivKcwHsFusFkJnCzPSbLfQEApsaqfbtNnOGFkAAAAAAICJELYDgDEYxxjZTkMorxvNdgArhVGrTeNZp0lTs10pSJgM0mwnbAcAAAAAADAJwnYAMAbNY2Q12wGMQyl0tljNyBjZLWu26x9CBAAAAAAAYLyE7QBgDMbRbNcUyms6P8BusTrjzXZz1XxxtHhTYK6p9S7RbAcAAAAAADApwnYAMAaNzXYN42FP2a+x2U7YDqDcbDcbYbuk3G7XFJhb3rTZTtgOAAAAAABgEoTtAGAMemlqths0bNfUbGeMLLC79epeVgvtbwsz0myXlIOBTYG5TcfIarYDAAAAAACYCGE7ABiDxma7QcfIpqHZriHMB7AblIJ2SbJY9W+Lm0alkbdNgbnNxshuth0AAAAAAIDxELYDgDFoGvM6eLNd0xhZzXbA7tYURisF2KbRgmY7AAAAAACAmSVsBwBj0BSG6wz4dmuMLEBZUxitNJp1Gg3TbNf0tQ+yHQAAAAAAgPEQtgOAMeimfxhuLvOpqmqgc8w3hu2MkQV2t6Yw2sIMNduVwnZNo2BXeuURuuvbhe0AAAAAAAAmQdgOAMagFIZrGg37cJ00jJEthPkAdovVuhw4m6lmu9IY2UJgrluvpZvmwPVKw3MDAAAAAADA+AjbAcAYlMa8tgnbVVVVDNxptgN2u6b2tsXO4gRXMprSWkvtdZu12q3vo9kOAAAAAABgEoTtAGAMys125dGw/fcvhe002wG720phzOpc5lvfa7dTsdmu8PWVHm+7DwAAAAAAAKMTtgOAMSiNeZ1rGA3bd/9CYESzHbDbldrbFmao1S5JFjrtxsiuDtBaN8g+AAAAAAAAjE7YDgDGYKub7XqFMB/AbrFaaG8rNcVNK812AAAAAAAAs0vYDgDGoDTmtRSeK5mLZjuAflZ6K30fX5yxZrvFls12pcc3WtZsBwAAAAAAMBHCdgAwBqUwXGdMzXalMB/AblFqb5u1ZruFqn84sNTctzxAa50xsgAAAAAAAJMhbAcAY1AcI5uWzXbCdgB9rRab7WYrbLcVzXYr9XLquh5pXQAAAAAAAGwQFdyCAAAgAElEQVSuXd0OAHCKL63cmfceeVveePcf9d3eeoxsoQnv9+98df762AfzqD2Py3PP+hvZN3eg9Vp3sy88eH0+dP87c+fKbUmSSxavyDPP+NpctueRI597pbecdx++Ljc+eH0uXroiX3XmN2Tf3P6857635PMPfioXLV6W55z5gpy9cN7I14Ldqlf38r/ue0PfbQsz1mxXauI7tHpHfu2Wnznt8SNr9256zjp1fu2Wn05Vlf8t1TMOfnWedebXDb5QAAAAAAAATiNsBwBDunPl1vziTa/Ike59xX1K4bni/g1NeB87+oF87OgH8qH735l/dvnPCtwN6K+Pfii/eevPp5uH2gc/eezDedd9b8o/vewn8+h9jx/63Ku9lbz6lp/JZx/8xPoD9yfvPfzW7O3sz83LN3x5v784/Nb88yt+LucuXDD0tWA3+/07X517177Ud9tip/9Y1mlVarZbrVfyyWMfHvq8n3rgrxq3X7nn6qHPDQAAAAAAwDpjZAFgSO+49/WNQbtkfM12G92yfGM+fP97Wp13N3vD3f/1lKDdScv18bz5nteNdO5PPfBXDwXtTvjS6p2nBO2S5J61Q3n3fdeNdC3Yre5auS3vPfy24vZSU9y0mrX1AgAAAAAA8BBhOwAY0ucf/OSm++zp7Gt1zkHDeZ8b4Nqsj3j94vHPFrd/7oFPFLcN4o13//HA+775nj8Z6VqwW33+wU81bp+1ls99c/u3ewkAAAAAAAAMSdgOAIZ0vPfgpvs8dt8TW51z0LGzy73jrc67W630lhu3L9fHU9f10OdvCvIB47HZvfax+548oZWMxyP3PDZL1Z7tXgYAAAAAAABDELYDgCGt9FYatz967+Pz3LNe2OqcnQzWbLdZiIx1K/Xmz9NavTqBlQDDWm241z75wLPzlIPPmuBqRrfQWcx3XPQD6fhfMQAAAAAAgJkzWH0OAHCaUpDr4sXL83fO/648bt+Ts9hZanXOQcfIDhIiY7BQ4kq9nIUsTmA1wDCa7nffd8mPDnzfnCbPPONrc/nSo/LJYx/Jke69Ax/XSSdX7Hl0Llq8LJ9/8JM5tHrHwMc+au/jhlkqAAAAAAAAGwjbAcCQSkGul1zwPXn8/qcOdc5Bx8hqthvMIKHEld5y9s8dnMBqgGGU7nfX7n/aTAbtTrp46fJcvHT5SMcDAAAAAAAwWWYXAcAQuvVaeun23bZU7Rn6vIM32zWPsGXdoM12wPQqvUYXKo2UAAAAAAAATJawHQAMoSnE1XZ07EZzA5bOrmq2G8igzXaT0qt7E7sW7BSl1+go91oAAAAAAAAYhrAdAAyhKcQ1SgBkftAxstrYBjJYs93kWgLX6tWJXQt2itL9brEStgMAAAAAAGCyhO0AYAjLDSGuUUYbDjpGdrVnjOwgVgcIJU6yJXCSLXqwU2i2AwAAAAAAYFoI2wHAELZsjGyLZru6roe+zm6xMkAocZItgRoJob1SaHZBsx0AAAAAAAATJmwHAENoakwbZbRhZ8Bmuzq1kaQDGCTcNsm2udUJjqyFnaIUmtVsBwAAAAAAwKQJ2wHAEJoCWiONkc1gzXaJlrRBDBKkm2iznTGy0Fop3DxKsBkAAAAAAACGIWwHAEMoBbQWq6VUVTX0eecGbLZLBLcGMUiQbnWAUbP9dOu11sf4nkF7mu0AAAAAAACYFsJ2ADCEUmhq1PDHXKXZbpy2stmuFADaimvBblZ63YzSIgoAAAAAAADDELYDgCE0NduNQrPdeA0Sbhv2eRwmOOd7Bu1tVbgZAAAAAAAA2hK2A4AhlMIfC6M226VF2K4ebvzpbrK6hc12g5x7XNeC3awcbtZsBwAAAAAAwGQJ2wHAEErhj6WRm+0GHyM7TNhrt1keJGw3wWa7VQFJaKVXd7NWr/bdptkOAAAAAACASRO2A4AhbNVYw1ZjZLWkbWqgMbJDPo/DhPSMkYV2mho8Rx3bDQAAAAAAAG0J2wHAEMpjDSfXbCe4tblBnqPV3nBtc8OM8fU9g3aaGjw12wEAAAAAADBpwnYAMIRSaGph1Ga7aLYbp9UtbLYbZoyv7xm0o9kOAAAAAACAaSJsBwBD0Gw3GwZ5joZ9HocJzvmeQTtNr5mFzuIEVwIAAAAAAADCdgAwlNLo0cURwx9zVYtmO8GtTQ0SiFsdYhxsMtzzP+y1YLdqaqfUbAcAAAAAAMCkCdsBwBCKzXajjpFtE7YzknRTK4VQ5Kn7DNts1z44JyAJ7TS9Zka93wIAAAAAAEBbwnYAMIRSAMQY2ekySCBx2NCiZjvYeqVQaydzre6XAAAAAAAAMA7CdgAwhGLYbsSmpU4Gb7YT3NrcIIG44Zvt2h+njRDa2ap7LQAAAAAAAAxD2A4AhrBSH+/7uGa76dGt19JLd9P9Jtls53sG7RRHdo94rwUAAAAAAIBhCNsBwBBWev1b5RZGbFuaqwZvttOS1mzQYNuwAbjVYZrthO2glXKz3eKEVwIAAAAAAADCdgAwlK1qW5rXbDc2g4YRV+uV9Ope+/MP02wnIAmtlMZla7YDAAAAAABgOwjbAcAQSkGrpVGb7dIibCe41ahNGG6tXm1/fs12sOVKr5lRW0QBAAAAAABgGMJ2O1BVVT9VVVU9wp/f2e6vAWDabVWzXasxsoJbjdqE4YZqqdNsB1uufK81RhYAAAAAAIDJE7YDgJZ6dbfYhDZq29JcizGyq4JbjVZ6/cdP9t13mJa6wnjLJqWRmEB/pVDromY7AAAAAAAAtoGwHQC01BSymmyzneBWkzYBumFCcJNqw4PdbKtaRAEAAAAAAGAYg9fnMMu+I8n7Wux/dKsWArATrDYEpkZtW2rTbGckabM2wbZJjYRdrVfSq3vpVP69AwyidL8dtUUUAAAAAAAAhiFstzvcUdf1jdu9CICdYrkpbDdqs13aNNsJ2zVpM2Z3mOeyKXTZZK1e1coFA9JsBwAAAAAAwDRRqwIALTU1mo3abNdpM0ZWs12j5d7xgfcd5rlsGifceJyQJAysNC571HstAAAAAAAADEPYDgBaagpLTXKM7Fq9ml7dHel6O9lWj5EdttlOSBIGV3q9LFSLE14JAAAAAAAACNsBQGtNYalRAyBzLZrt1tcyXLvabtDmuRmu2W640Nyq7xkMbFWzHQAAAAAAAFNE2A4AWio1ms1X863Dcg83l8Gb7ZrWQrvnpm2zXV3XQ4+DNUYWBlcKtS5WwnYAAAAAAABMnrAdALRUHms4evijfbOd4FZJm+em7fPYzVp66bVd0vq1hO1gYKXXi2Y7AAAAAAAAtkO7+hxm1fdXVfXjSa5Jcm6S1SR3J/likncneVNd1+/axvUBzJRS+GOps2fkc89V7d6aP3z/e3PW/DlJkipVLll6RC5evDxVVQ10/JdW7sgXj38uvfRy/sJFuWLPVemM2M43Le7vHh5439KoypLl3vG2y/myjx/7UO5ZO/Tlz3fa8z5r7lk9lBuPfzbdei3nzJ+fK/de3fp1yPj06m5uOv75HFq9I0lyrHt/3/0WRxzZDQAAAAAAAMPwm8Td4dsf9vlSkgNJHpHka5L8WFVVH0ry8rqu3zrpxQHMmpW6fzBrHGMNOy1LZ//s0O+c9tij916bl17249nT2Vs8rluv5Xdv/5V88P53nvL4BQuX5Acv/+mcs3B+q3VMm08f+2jee/htA+/fptnuge7R/Lsb/8Uwy0qSvPme15322IWLl+UHL/upnL1w3tDnpZ1e3c0f3vkf8+7D153y+Nnz5+WHLv+ZXLB4yTatbPe6Z/VQfuXmV+au1ds23VezHQAAAAAAANvBGFlO+ook11VV9XPVoHVILVRVdUFVVde2+ZPkqnGvA2AcymMNR29aGsct+HMPfiL/7dDvNu7zzvvedFrQLknuWr0tv3fHr468hu200lvOf7z137U+ZlCvu+s1pzTTjcOdK7fkv9zxa2M9J83ed+TtpwXtkuTetS/lt2/7hW1YEf/ljl8bKGiXjCfcDAAAAAAAAG1pttvZbk3yhiQfSPKpJPck6WV9lOzTkvytJC/csH+V5MeyHsJ8+ZjX8tIkrxzzOQG2RakFbWGKwh+fPPbhxu1/ffSDxW2ffeATOd57sLEZb5p99oGPZ7luN+Z1tdBW2M/Hj32o7ZIGcv0DH89y7/hYxhGzub8+Wv4+3rx8Qw6v3ZMzT4xoZust947n+gc+PvD+C2MINwMAAAAAAEBbwnY70weyHqJ7S13XdWGfv0jya1VVfUWSP0hy9YZt/7qqqvfVdf3nW7xOgJnUrdf6Pj5Xjedt9aq91+TzD35qpHMc7R5p3H5k7b7itl66Oda9f2bDdoe797Y+ZtBmu17dzf3dw63PP4hu1nKse7+w3YQcWWv+OTmydp+w3QQd696fXroD7dtJJ5cuXbm1CwIAAAAAAIA+jJHdgeq6fkNd19c1BO027vuhJM9Ocv3DNv18VVVzW7JAgBnXq3t9H5+rxvO2+rVnvThVRhsnu9lbwGqhne+kNmNVp81yr12rXVJuKzx9v8Eb8IYxy8/7rNn0NbDF32tO1eZn/5lnPC/75w5u4WoAAAAAAACgP812pK7re6qq+o4kH0q+nO54XJKvS/LWMV3m15P8cctjrkqiXQ+YOr30D9tVY8qwf8UZz81c1cm777su93cP5/H7n5oXn/sd+djR9+c9h9+S25Zv+vK+q/VKHuwda32NzYItmwWRplnT1/bUA8/JR46+t9UxG6027HfuwoW5cPHS3Hr8C6mTnLtwQfbN7U+VTm5evmFDALLOkW7/ZsFBQ3+MbqXXHKZr+l4zfk0/+wfnzkyVTs6cPztPOvDMvOjcb5vgygAAAAAAAOAhwnYkSeq6/nBVVddlffzsSS/KmMJ2dV3fleSuNsdU1WitTgBbpVf3H3XYGWMh6FMPfmWeevArT3ns6Wc8N08/47mnPPbXRz+Y37j151qff7NQ1yw3rK3U/Zvtrt57bS5YvLRwzKDNduX9fuiyn8l5ixdueo5uvZaXXf+t/c8/RCsfw9n0NSD4OFFN95x/e9Vvj21MNwAAAAAAAIzCGFk2etPDPn/StqwCYMqVmu062/K22j+YXKd5jOxmrV6zPEKzFNpZ7OzJYmex1TGn71d+XhY7SwOdY66az1zh3zssC3hNzGbf81kOnM6iUrhxLvOCdgAAAAAAAEwNYTs2uvFhn5+/HYsAmHa9uhC2q6bnbbUpbNet19LNWuPxsxw0Wi6sfamzlMWqfyBu0LG5TfsNGrZr2neWn/dZo9luupRDsv0DsgAAAAAAALAdpicVwDR48GGf792WVQBMuXqKmu2GGbg9SKBrloNGpTGyi9VSFooht8Ga/Jqeu4Vq8FDQUmdP4fzGyE5Cr+5mrV5t3EfwcbJK95xSQBYAAAAAAAC2g7AdG533sM+/tC2rAJhy3brb9/HtaLarhhgjO0iQbnXA8Nk0KjXbLXb2FIM7g4YLS+N156v5zFVzgy0w5QCRMbKTMciYZGG7ySo32wnbAQAAAAAAMD2E7djoWQ/7/LZtWQXAlCs32w0ethqbqtRt1xC22+nNdoV2uMVqqRjcGTRcWHruFlq2b5XXMbvP+ywZ5Hme5dfALCo9321fWwAAAAAAALCVhO1IklRVtSfJ333Yw+/YhqUATL1eXQjbTVOzXTlrN1CIaJZbvUpf31JnTxYLo14Hb7YrjbocfITsybX0s2yM7ETs9NfALNJsBwAAAAAAwCwQtuOkf5Xk0g2fd5O8fpvWAjDVuimMkZ2it9XGMbIDtLjNcqtXObSzp9woV68UQ5SDnbtdIGhhxNAfoxnkNbA6wKhZxme1FGQVtgMAAAAAAGCKTE8qgLGoquq7qqq6sOUx/2eSVz7s4d+p6/qL41sZwM5RF5vtJj9GttRs1zhGdoe3epXa4ZaqpSw2jKQcJFw1rlGXmu22105/DcyiYpDVGFkAAAAAAACmiLDdzvO9Sb5QVdV/rqrqxVVV7S/tWFXVV1RV9adJfjM5Ja1xa5If3+J1AsysXgphu214Wy2OkW04ZpAQ0Sw3rBVHvXaWGluyBnpextRst1j1D9vN8vM+S1Z3+GtgFpXaBhc77UY0AwAAAAAAwFaa3+4FsCX2JvmHJ/70qqr6bJIbkxzO+njYc5M8OUm/Brx7kryorus7JrNUgNlTGjdaVdOUYS/H7UrjGk/ZZ4ZbvUrtcIudPY0tWYOEq8Y16rIUINKmNhkrg7QY+l5MVDEkq9kOAAAAAACAKSJst/N1kjz2xJ/NvC3JP6rr+patXRLAbOul2/fxuUzTGNmynd5sVwrELVVLWdiqZjtjZGfKTn8NzKLS96TpNQsAAAAAAACTJmy38/xy1sfAflWSRwyw/7Ek1yV5dV3Xb9vKhQHsFKVmu852NNtVpTGy5Wa7wUJlmzd/TaNu3c1avdZ323qzXXkk5SCNf6VGtLajLktjZAdZA6MbJEin2W6yNNsBAAAAAAAwC4Ttdpi6rv8syZ8lSVVVZyW5NsnlWR8Zuy/rTXf3Jbk3yaeSfKyu6/4VTQD01UthjGwmH7Zr32s3YNBoRkNfKw3NcEudpcZxr4OEq0rjddsGgkrrWBbwmoiBvtcz+hqYVcXWSM12AAAAAAAATBFhux2sruv7krxnu9cBsNP0ChnlbWm2a1DXdao+zXejjEuddssNAanFak/mqvl0Mtd3FHCpte7UfcYz6rIUIGoKCzI+gzXbzWa746wqhRs12wEAAAAAADBNpisVAAAzoNRs18nchFeSNHXblUbJDhQqm9GwXVNY7WTArRx0Gz6A1TSetp+lwhjZWW0UnDUDfa99LyZKsx0AAAAAAACzQNgOAFrq1YWw3TY021WNg2QLYbsB2tNmdYTm8iBhu0JT1iBfcymA1TYQNErgj9EN9L32vZioUiulZjsAAAAAAACmibAdALTUbwRpknS24W21fdRu0BGasxk0amrtO9kmt9jp30I3yNjQ0vOy0DIQVAoQNYUFGR/NdtNntdhs1641EgAAAAAAALaSsB0AtFRutpuuMbLlZrtBgkabB8+mUam1r0on89VCknLQbZQQYttmu6VOaYzsSuq6FJNkXAYJVq7Vq+nV/YO1jF+xNbIwchkAAAAAAAC2g7AdALRUpxC225Zmu3LYri6F7QYIle20MbJLnaVU1fpzNcoI19Lz0nbUZWkNdXpZq1dbnYv2Bm2tm9XQ6ayp63psQVYAAAAAAADYSsJ2ANBSt9B21am24W21agjbFQrSBgmVrdVrxa9zmg3SjlUa+TrJZrumcN5ybZTsVht0THJptCnj1c1aeoUQc9sgKwAAAAAAAGwlYTsAaKncbDf5MbJNQ2RLY2RXB2zrGnS/aVIaI7vYWdzw8fDNduUwX9tmu/JozEGDYAxv8GY734tJaPqZ12wHAAAAAADANBG2A4CWenUhbLcNzXZDjZEdMMw1i6GvYvPchma7xWqx7z6DNdv1DyC2DQQtNew/i8/7rBn8NTB7gdNZ1DSuV9gOAAAAAACAaSJsBwAtlcYddrblbbW5266fgVu9ZjD0tVz42pY2NMktFMI7m40M7dbddLPWd1spwFfS1IS3YozsllvVbDdVmu41Cy1fWwAAAAAAALCVhO0AoKVys920jZHtb+BWrxkMGpXHyD4UbisF3ZratZLmsbqlAF9J0xjZ5RkMOc6andzuOIuMkQUAAAAAAGBWCNsBQEu9dPs+Pm3NdsUxsju52a6w5o3NdqXwzmZfb2MgqKGprp+5ai7z1Xz/68xgyHHWDPwa8L2YiKamwbavLQAAAAAAANhKwnYA0FK52W663laLYbud3GxXGMG6MbBTCu9sNlq0uX2r/ajLxap/u12pnY/xWek1txg+tN/svQZmkTGyAAAAAAAAzIrpSgUAwAzopX/YrtqGt9WqajdItlf3GsehbrQ6g0GjUmjnlDGyhWDcZgGspvDhMO1bpYY9Y2S33k5ud5xFpe/HYrXU+h4HAAAAAAAAW0nYDgBaKjXbzW1Ds11TDKWuT2+2W6tXBz73bDbblUI7G8bIFoJxm329je1bheBck2HXwegGDdFt1nbIeAwSkgUAAAAAAIBpIGwHAC2Vm+3mJryS9auWnR62W24xonQWW71KX9/SKc12hZDbJl9vc7Nd+1GXSx1jZLdDt15LL92B9p3F18Asamq2AwAAAAAAgGkibAcALfXq/kGdzrY025XDdnWfsF2b1rSVAcfNTpNyQ9ZDwbaFIRvlSmN156uFdKr2QcthQ3+Mps3zq2VwMkrfk2EaIwEAAAAAAGArCdsBQEulZrvODLyttgoazWDoq9hsV21ds92w7VvGyG6PVoHT3uwFTmdR+bXVvjESAAAAAAAAttL0pwIAYMrUdSFsNwPNdqutmu1mL/RV+vo2NtuVAjybPTfl1rwhw3aFMbJtRv3Snma76TPu1xYAAAAAAABsFWE7AGhpuprtWo6RbRE0Wp3BVq/lAUI7pdGUa/VacURwUh6ruzBk+1ax2W4GGwVnSbtmO9+LSRh3ayQAAAAAAABsFWE7AGipWwhkdaq5Ca8kqcpZu/TJ2hUDY/3MYqvXSt2/FW5jaKcpwNP0/KyOuX1rqXDccuFrYDzahEhn8TUwizTbAQAAAAAAMCuE7QCgpXqKmu2axsj202qE5oy1etV1XWy2W9o4RrYhwFMK1CXjb98qjZGdted91rQJ0DX9PDA+5ddW/9cIAAAAAAAAbJf57V4AAMySXt3rO541STrVdI2R/def/8epUuW8xQvzjINfkxee+6153aHXDHzm9xy+Lu89/LZUVZXLlx6VbzjnW/KUg88ex6LH6t7VL+VP7vrtfPLYR4pByI3BtqZw3Ms//73FAGNpfPBiZ7xjZD9+7EN52We+NVWVXLL4iHzt2d+Y55z5gk3P96773px33/fm3LZ805cfW+gs5qq9j8s3n/8Pc+nSlUOtc9o80D2aN9/zuvzlkXdnqbMnzz/7b+crz/z6VBtqHj997KN50z1/ki88+Jn06lO/b92sDXytjxx9b172mW/98ufz1XwesffqvOT8f5zL9zxq9C+GHF07kvceflvfbcO+tgAAAAAAAGCrCNsBQAulMFcyfc12vayPu71z5db8z7tfm/9592tbnbtOvR5MqpMvHP9Mfuu2f5+XXvbjuXb/00Za8zgt947nVTe/Inev3tm439LGMbINzXYnn7M2FoZutisfd/J5v2n58/m9O341VTp59plfV9z/3fe9Oa+98zdOP09vLZ849uHcePyzefkjXpVzFs4faq3T4vDavfmVm1+Z21ceChT+/p2vzmq9kued/eIkyRcevD6/fuvPZq1eHcs1N4bzuvVarn/gr/PLN/9kfvzKX85ZC+eO5Rq7Va/u5pdu/onidmNkAQAAAAAAmDbGyAJACw9vydqoU81NcCWTV6eXv7jvLdu9jFN8+thHNw3aJQ9rthtzgGfY8y0Vxsj2857D1zVuf/fh5u/Lse79+ejR9w98vWl03+rd+cWbXnFK0O6kt93756nr9cbJDxx5x9iCdiUP9Nbb9RjNFx68PretfLG4fdgRzQAAAAAAALBVhO0AoIXSKNFke5rtDs6f2dhuN263LpeDMdvh1uUbN92nk7kcnDvzy58vVkvZ29k/tjWcNT9cu1mb4zZ73m8b4PsyyD7T6p7VQ/nFm1+Ru1Zv67v97tW7cqR7X5Lk9pWbJ7Kmvzj81hztHpnItXaqWxuCdsnwry0AAAAAAADYKsJ2ANBCry6PGe1Uk39bPTB3Rh6193ETu95KvTyxaw1ipV7ZdJ/H7XtS9s7t+/LnnaqTJx54xtjW8OQDzxrquMfte/LAzV2rveavs9vwc9lmn2n0pZU78qqbfiyHVu9o3O/OlVuSJHVD++Q4rdYreee9b5zItXaq1V75ftJJJ0848PQJrgYAAAAAAAA2J2wHAC00N9ttzxjZ773kR3PJ4iOGPv6rzvyGfN8lPzpQ8Guz0NekrTSEdZLkiqWr8t0X/9Bpj//9C/5JHrPviSNdey7z+bYLvi9X77t2qOP3zu3LSy/7iezvHNx0327W0q3X+m7r1b3UDT+XXz7HDIbt7ly5Na+6+RW5Z+3QpvvesXwibDfC9fZ29m2+0wbvuO8Nm/4MUtYU3v2+S/5lzl24cIKrAQAAAAAAgM3Nb/cCAGCW9Bpas7aj2S5Jzpo/J6+48pdy1+ptuXv1rvTqbn791p8d+Pj/48KXpqqqPHH/M3PT8uez3HswXzz+ufyPL/3+aftOW7PdamE9+zsH86OP+Pc5f+GiVNXpY3b3zu3LP7v83+Se1UO540QjWhsL1WKu2HNVljp7Wh+70WP2PSE//+jfyc3Hb8gDvaM5tHJ7/utdv9l335XeSvbOnf6fboOG6LrpH9abVrcv35xfvvknc6R770D737Fy64mPhovbPX7fU/MDl73ixPfi2CnbPn70Q3nHfa8/7Zij3cP5wJF35LlnvXCoa+52paDio/dem6ccfPaEVwMAAAAAAACbE7YDgBZ6KQebqm0sjK2qKhcuXpoLFy9NXdfppNPYwnfSUrXny2G0hc5Crjoxkna+6v+fCKv1Snp1b9uChQ9XCus86eAzc8HixZsef87C+Tln4fxxL6uVuWouV+69Okly+/x5xf1W6uXszenNa4OG6Gap2e6W4zfmV255ZY52Dw98zB0rNydJ6iHDdgudpcxV87ly72NO23bl/2bv3sOjqu99j3/WTGZyIVdIIFwLiIpQFVG2iEEBRa1atdXaum3dtR63Vdt6OdrqtijWVmttS9sj3V6OVrp1e9zd3ahUi4qCilRBvFZECwoB5RIMhEtCZjKzzh9KzJD1m6w1t6zJvF/P4/O4Zt1+ycwQ43z4fEsO1N9anlW7vbfbvkXNj2lK1UzfvCfyiSm8Wxbsl+OVAAAAAAAAAAAAAO7wqSAAAB4ka7YLWr0zRnZ/lmUpHOh5JKwk43HJRlWNPk4AACAASURBVMpGbf+Mko0Y1uJmJK4fJXveooZgYdxts51hDK3fNO5dq99umOUpaCcppYbCroqTfO/LguU6tnqm476t0Y/11u7lad27UJnCsiErnOOVAAAAAAAAAAAAAO4QtgMAwINkbXEBH/1YdRs2M4btkgSPTAGZ3mAKoLkNG/pNsufNqVVNch+icxvK600ftr2v326YpT3xXcZjKoM1jo/v6PhEe+Ntsu3Umu3CVvKRwNNrvmx8jy9qfjSlexa6SLxvhWUBAAAAAAAAAADQ9/knFQAAQB6wkzTbWT4aIxly22xnCLUkC7uYRj/2BtNa8jWskzzk6BxMcjse1u242d6ypnWVfrfhRrXFW43HHFj6Rf1g+Gzj/i2Rj1IeI9tTQHNAaKAmVhzruO+Dvau1tm11SvctZMb3b56GZQEAAAAAAAAAAND3+ScVAABAHojJHGwKyh9jZCX3YTNTKC9ZWM9PzXZ9bQxlsnWbgkluQ3RuQ3m94b09b+nOjTcb2/skaWzZ4bp82CzVh4cbv0+b21MfJZtsjOw+M/t/xbiPdjvvTM2U+fr+BQAAAAAAAAAAQN9H2A4AAA/iedJs5yY4JKXWbBfNh2a7PG3GClgBY9DIFCx03Wzn07Ddqj2v6/cf/TRpY+L4fkfq0qE3KBwoVsAKaFB4iONxmyOph+16GiMrScNLRuvgssMc9721+xVtiXyU8v0LUV97/wIAAAAAAAAAAKDv808qAACAPGDLHLYL+OjHashls50plBcOJGlYy4Nmu3wO65iCjqaQo/uwnf/GyL69e4Xu+uhnitrOI3Il6fDyo3XJ0OsU6vKarA8Pdzx2S2Rj1sbI7mNqt7Nl67nmBSndu1AZ3795OgYaAAAAAAAAAAAAfZ9/UgEAAOSBZMGmgI+a7dwGh0yhlqBVpKCKHPdFkgSjcs0U0srnsE7IEHQ0N9u5HCObZARyb3h91990z0e3qyPJ+idWHKv/NeRaFVmhhMcHhYc6Hv9ps12KYTuXr5lDyiZoSPgLjvte3vmcdnXsSOn+hcj4/s3jsCwAAAAAAAAAAAD6Nv+kAgAAyAPJm+2COVxJcm6DQ6EkoRZTux3Ndtlleu6MYTuXITo/Ndu9uvNF3ffxHYrJvKZ/qjxeFw6+WkGre+izPjzM8ZymyOaUx+UWB3oeIytJlmXpxP5nOe6L2hE9v+OvKd2/EDFGFgAAAAAAAAAAAPmGsB0AAB7E7SRhuz7UbJdsnykgk2u2bRtb9vK52c703Jm+766b7VIMoWXayy2L9YdNcxRPElw9puoEXVD/AwUt5wDrIEPYLqYONUU3p7QuLwGvoyobVF00wHHf8zue9FUg1c8YIwsAAAAAAAAAAIB8459UAAAAeSCWtNnOPz9W3YZVkgWMjKEvnwSJOuwOY9NgssY+v/PcbOcyROeHZruXdjyj/9j8u6QNkVOrT9H5gy5XwBC0k6RB4SGyZDnu2xtvTWltXgJeRVZI02tOd9y3J7ZLf2t5NqU1FJq+2EwJAAAAAAAAAACAvs0/qQAAAPKAnSTYlCwclGumEbD7K04Sagn5vNkummQdYcvd1+9H5mY75xY/1812LsfNZsvz25/UQ1vmypZtPGZGzZf1jYGX9NgSGQqENSA0MKPrcztGdp+GqpNUEih13Pfc9scV90mToF/11WZKAAAAAAAAAAAA9G2E7QAA8CDZ6EtfNdu5bIYyBeqSXcMvzXbJ1pHPzVhev+9uQ3S9OUb22ebH9cjWe5Iec1L/r+rsuu/Ispwb6/ZXHx6eiaV1SvZecFIa7KeGqpMd9zVFN+uN3a9kYll9Vl9tpgQAAAAAAAAAAEDf5p9UAAAAeSBuO4dDLFmuQ0K5ELbctXSlMkY2WaNcLiVr2Avlc7OdIfRl+r67brbrpTGyCz/5b/256f6kx5w64Os6s/Zbnt5Dg8JD011agmQtjybTa05XQM6Nloua58u2zS1+ha6vNlMCAAAAAAAAAACgbyNsBwCAB6ZmO1Pgpre4bXZLNq7RtM8/zXbOIyil/G62CxlGABub7Vw21uV6rKlt2/rLtof1+LYHkx53Ru35Or32PM9h1frwsHSW103Y4xhZSaoJ1eqoyqmO+9bt/YfWtq1Kd1l9Vl9tpgQAAAAAAAAAAEDfRtgOAAAPTIGlgOWvH6nJQnQJxyVttjOFvswht1xK3oyVv2EdY8jR2GzncoysctdsZ9u2Htv2oJ785JGkx3217ts6ZcDXUrpHfXFmx8im+po5seYs475nmh9NdTl9XrJmynx+/wIAAAAAAAAAAKBv81cyAAAAnzM32/nrR6opKNftuFSa7fwyRjZJM1Zej5E1BCDNzXZux8jmptnOtm39uekPerr5z0mPO3fgxTqxvzmo1pN6H4yRlaRhJSM1ruwIx31v71mhTe0b0llWn0WzHQAAAAAAAAAAAPKRv5IBAAD4XNw2hO181mwXykCzXchj6CvXTKG/kBX2PJLUT7yGHONyF6KzZWd9lGzcjuuRrffoue2PG4+xZOmfB12qaTWnpXWvfsEKVQSr0rrGPkVWSAEr9VHQyUKDyb4XhYxmOwAAAAAAAAAAAOQjfyUDAADwOXOzXepBnWxw2wzVF5vt8r0VK1vNdp8em72wXdyO6+Et/64XdvzVeIylgL5V/301VJ+ckXsOCg/LyHXSDXcdXHaYhhWPctz3ys7FaunYntb1+yLT69mSpSIrlOPVAAAAAAAAAAAAAO4QtgMAwANTs53ls2Y7t+GhZME0r6GvXDOF/vK9Fcsccow4Pu4lQBdz2YLnVcyO6Y+bf6eXWp4xHhNQQN8efKUmV83I2H3rMxW2SzOgaVmWZhra7TrsDi3Z/kRa1++L+mozJQAAAAAAAAAAAPo2fyUDAADwOdPIzoDPfqQWB0pcHZdKs13UJ8120bhz+KyvNttFM9Js5/5YL9d8YNMcLd+5xHhMQEFdNOQaTao8LqP3rg8Pzch13L5fkplYcaz6F9U57ntxx0LtjbelfY++JNJH378AAAAAAAAAAADo2/yVDAAAwOdMzXYBvzXbuR0jS7Od73gd3+ulrS7TY2Q77Kj+78e/1MpdS43HFFlF+tehP9IRFVMyem9Jqi8enpHrZOI1E7SKNL3my477WuO79beWZ9O+R19iCu3m+/sXAAAAAAAAAAAAfVtRby8AAIB8YssQtvNZfj1khV0dlzRs5zH0lWum0F++N2N5DTn2VrNdNB7RvR//Qn/f86rxmJAV1r8OvU7j+03M2H27GpShZrtMvWaOrZ6pJz/5f2qLt3bb99z2x3Vc9ZcUtIIZuVe+M72eQ3n+/gUAAAAAAACAbLJtW/F4XLZt9/ZSAKAby7IUCARkWVZvLyWrCNsBAOCBqRksb5vtko2RDTgH9kzjH3MtYjuvw23Q0K+ShRxt2+72H6de2uoy1WwXibfr7o9u07utbxiPCVvF+u7Qf9PYfodn5J5OaopqFbaK0w6AFlvpj5GVpJJAqaZWf0lPN/+5275Polv1+q5lOqpyakbule9M799wnr9/AQAAAAAAACDTotGoWlpa1NLSomg0StAOgK9ZlqVQKKSqqipVVVUpFAr19pIyzl/JAAAAfC5ubLbzV1uV21GMyYJpIWPoa29Ka8q0Qmu2k6SoQ0Ap7mWMrNJvttsbb9PvP/pp0qBdsVWi7w27MatBO+nTkGsm2u0y2aY2reY0BQ1/n+WZ5vn8T5DPRPvo+xcAAAAAAAAAMqW9vV2NjY1as2aNmpqaFIlE+H/MAHzPtm1FIhE1NTVpzZo1amxsVHu7PyanZQphOwAAPLBtQ9jOZ812btrdwlZx0grfZONM/fDLXNTQZuY2aOhXppCj5DzCN5fNdm2xVs3d+BO93/q28ZiSQJm+P3y2xpSNT+tebtWHh6V9jeIMBryqi/rrnyqPd9y3of0Dvd/294zdK5+Z2gjz/f0LAAAAAAAAAJkQjUbV2NioPXv29PZSACAte/bsUWNjo6LRaG8vJWP8lQwAAMDnzM12/vqRallWj6GVcCD56EzT+XHFM9KQli5Ts13IMP42XyRr9nL6mmO2++fCy7H7a43t1v/ZOFtr2941HlMWKNcVw3+i0aVjU76PV5lotgtnaIzsPif0P9O4b1Hz/IzeK1/11WZKAAAAAAAAAEhXLBbThg0b1NHR+5/FAEAmdHR0aMOGDYrF0isG8QvnGVcAAMBR3NAMFrD8NUZW+jRMF4mZK3nDPbTf9RT6KgqGUl5bJkQcRqpK+d+M5XWMbC6a7XbHdur/bJitDe0fGI8pD1bqB8Nu1rCSUSndI1X1xcNdHWfJki3nRsZMB7yGFI/Q+H5H6p09K7vte2fPa/q4fb2GFH8ho/fMNzTbAQAAAAAAAICzTZs2dRu5GAgEVFlZqcrKSoVCIQUC/iqBAABJisfjikaj2rlzp3bu3Kl4/PMim/b2dm3atEnDhqU/taq3EbYDAMCDfGm2k9IL0316frJxphGVpbSqzIn20WasZM+bc7Odh7CdvIftdnXs0G833KSPI+uNx1QGq/WD4T/RkOIRnq+frnqXzXZhq1jt9l7HfZkcI7vPzP5nOYbtJGlR82O6YPAPMn7PfEKzHQAAAAAAAAB0F4vFtGvXroTHwuGwvvCFL6ioiHgHAP8Lh8Pq16+f6urqtH79ekUin5eJ7Nq1S7FYTMGg/4psvPBfMgAAAB+L24awneW/H6nphOl6Ot8UlMmlvtqM5XmMrIeRvl7HyLZ0NGvOhh8nDdpVFfXXVSN+1itBO0mqCw2R5eI/aYuTjE3O9BhZSTqw9IsaUTLGcd+KnS9oR/STjN8zn5jev6E8f/8CAAAAAAAAQDr27NmTsG1ZloYPH07QDkDeKSoq0vDhw2VZVsLj+/85l4/8lwwAAMDH4oZmMDdhn1xLJ0zX0/m+CNsZ1hDqodHP74IqMjYlOgWUvDTbmcYgO9ke3aY5jT/W5shG4zH9i+p09fCfaZDLdrlsCAVCqgvV93hcstd7NtrULMvSzJqzHPfF1KHFO/6S8XvmE5rtAAAAAAAAAKC7/VvtysrKFA7n9+ceAApXOBxWWVnivLTdu3f30moyx3/JAAAAfMzUbBe0/Fd122OYLknTV0/nRw2tVLlkbLbL87COZVnGr8F5jGzmm+0+iW7RrzfcoK3Rj43H1IYG6aoRP1NdeLDr+2eLm7Bfsva6bLUhTqg4RgNCAx33vbjjKbXFWrNy33wQtSOOj/c0/hoAAAAAAAAA+rL9G58qKip6aSUAkBnl5eUJ24TtAAAoMHE5h+3ystmuh1BLkRUy7vNzs12+h+0k83MXsfd2e8xLs13M0MzY1dbIJs1p/LE+iW4xHjMwNERXDf+ZMUiWa/XFw3o8JtkY2WT70hG0gppRc4bjvr3xVi1reSYr980Hffn9CwAAAAAAAACpsG1bsVji/8cvLS3tpdUAQGbs32wXi8Vk23YvrSYz/JcMAADAx0xjOAOW/36khnpstku+P2AFjCNZTa1yuWRuxsr/sI7puYvEu3/NMWWu2W5z+0bN2XCDmjuajMcMDg/XVSN+qppQrev7Zlt9uOewXa7HyO4zpepElQXKHfc9t32Bp2bCvsTYTNkH3r8AAAAAAAAAkIp4vHvhQzDov8lKAOCF059jTn/e5RP/JQMAAPAxU7NdUP77ZafnZrueQy1expnmWl9uxjI32zmNkfXQbJfk2I/b1+s3G36slo5m4zFDi0fqyuE/VVVRf9f3zAU3YTtTcFTKbsCrOFCi46q/5Lhve8c2rdz1Utbu7Wd9+f0LAAAAAAAAAKlwanqyLKsXVgIAmeP051i+N9sV9fYCAADIJ3HbMEbWh812xWk220mfhpD2aFe3x5/f8Ve92/qGwlaxDig9RBMqJitoZf8/K+J2XG/tXq41be+o3WGkqtQ3mrFMz83ync/ro/Z1CY+9s2el6+v+cfNvtbr1Tcd9b+1ert2xncZzhxeP1veHz1Z5sNL1/XJlUHhoj8cka5/M1hjZfabVnKZF2x9Vhx3ttm9R83xNqjgurf9hYtu23tmzUu+1vq22+B7P55cFyjWu3xEa2+/wlNfglbGZkrAdAAAAAAAAAAAAfIywHQAAHtiGZruAD8tiewqthK2eA0ama6xpe0dr2t6RJC3Z8YQO33W0LhpyjYqskPeFuhS343pw8516eedzSY9L1mCWL8KGr2H93n9o/d5/pHzdDrtDy1oWeT5vZMlB+t6wG1UWdB6H2tvKguWqDNZoZ2x7SudnOyhaWVStoyun6aWWZ7rt29i+Tqtb39Qh/SakdG3btvWnrfdpyY6/pLXGRdsf1ZcGnKsv1/5zWtdxy9RsF+oDYVkAAAAAAAAAAAD0Xf5LBgAA4GOmMZwBy39jZHsKrYQDPYfS3LbEvbn7Fb27x7kxLVPW7/1Hj0E7qW80Y/npazig9BD9YPjNvg3a7eOm3c7EUvZr+E/sf5Zx3zPN81O+7ubIxrSDdvv89ZP/0o4kY4QzxbZtx5HIkjloCgAAAAAAAAAAAPgBYTsAADyI51GzXWmgLOn+kh72f3pMqev7vd/6tutjU/Gey+t7WbNfuXlucuHgskP1vWE35cX3tL54WNL9ycJ4/YIVmV6O4/0PK/8nx32rW9/Uxr0fpnTdf7T+PZ1lZf16TkwjZCUp5CIEDAAAAAAAAAAAAPQW/yUDAADwMds2hO0s//1IPbDsi0n3H1R2aI/XcHPMPnvjra6PTYWb69cU1ao2VJ/VdeRCT89dLowrO0KXDv2xigM9jxv2g/H9JibdP73my6oq6t/t8cHhEeofqsvWshKcWGNut1u0/dGUrtmW4ffd3nhbRq/nxNQQKklFWR7pCwAAAAAAAAAAAKTDf8kAAAB8LCbDGFn5b4zsF0rG6J8qj3fcd2zVTA0OD+/xGg3VJ6s+nLwxbJ9I3HksZKb0dP2AAvpq3bdlWdkfCZptkyqmamTJQb12/8PLj9YlQ6/31Tjbnnyx35EaV3aE476T+5+j6qL+OrvuwoQWyiIrpK/UXZCrJeqA0kM0quRgx32v7lyq5miT52uaxrGmKtvvY0mKqcO4LyDCdgAAAAAAAAAAAPAvPs0CAMCDfGq2C1gBXVD/Ax3ab5Leb/u79sbaVBbsp4PKDtWE8smuQmlVRTW6esStWrlzqdbv/YdidlyN7Wu0JfJRt2MzHfrxcv1T+n9Nh1ccrS+UjMnqGnKlNNhPPxh+s1buXKoP9q5WRzwxnLQrtkOrW99M+fpBFWlixbHdHi8JlOqgsi9qYsWxeRdaDFhBXTrsx1q+c4k+aFutSDyi8qIKjSs7QuM+a707qnKqakOD9Obu5QpaQU0on6xhJaNytkbLsnRi/zN178e/6LYvrpgWb/+Lzh54oadrmsJxVUX9dVCpuZny3dY3tDvW0v16WX4fS8mb7YKW/4LLAAAAAAAAAAAAwD6E7QAA8CAuQ9jOp2WxASuoIysbdGRlQ8rXKA9W6viaUzu35zfN0zPN87sd11vNdsdWzdQZdedn9d69oSRQqmOrZ+pYzey274O21VrdmHrYrjxYoQuHXJXO8nwpaAV1TNUJOqbqBOMxI0sP0sjS3m0NrAsNVlN0U7d9L7U8rVMHnKvSYD/X1zOF40aXHJz0Of7thhv1Xutb3a+Xi2Y729xsF2SMLAAAAAAAAAAAAHzMn8kAAAB8Kp5HzXbZEracR4v2VrNdyLCevixslaR3fh6Nh+1rAlZQJ9Sc4bhvb7xNL+54ytP1ooZwXKiH59j0Po7aEU/3T0WcZjsAAAAAAAAAAADkqcJJBgAAkAFxOYdEAiqcgIgpqNVbzXaFGBwrTvNrLsSAop9Mrpqh8mCl477FO/6iDjvq+lqmEKopTLdPKBB2vl4umu0Mf45KNNsBAAAAAAAAAODWyJEjZVlW5z9Llizp7SUBBYGwHQAAHtBsl6zZLruNWKbGrbDlHBrqy8IBmu3yWThQrOOqv+S4r6WjWa/ufNH1tSJxw/vCEKbr3N9LDZVSD2NkCyi4DAAAAAAAAAAAgPxTOMkAAAAyIC7nsJ1VQD9STUEt0zjLTKHZ7nM9tZb1eH4Bfs/85vjqUxUyBEUXNT8q27ZdXSea4njl3nofS1KMMbIAAAAAAAAAAADIU4WTDAAAIANMzXbBAmq2M4V4st2Ileq4zL4o3TGyhfg985uKoipNrprhuO/jSKNW7XnN1XXMzXY9hO382mzHGFkAAAAAAAAAAAD4WOEkAwAAyACa7czjKU3Nc5lCs93nAlZQRVYo5fN7GjGK3Dih5gxZshz3Ldr+qKtrpBpCDRnfx9kdBy3RbAcAAAAAAAAAAID8VTjJAAAAMiBuCIkECiggkqwRy+3oy1QYQ0UFGLaTpGKrJOVzabbzh4HhITq8/GjHfe+1vq3GvWt7vEaqIVTTa8A0ljaTYkrSbCea7QAAAAAAAAAAAOBfhO0AAPDA1GxXSGNkk4V4onb2WrFMoSLTWNu+ztRM5u7cwvye+dHM/l8x7lvU3HO7nbnZLvnrw/Q+znZDpWRutgsoIMtybvoDAAAAAAAAAAAA/IDqCAAAPIjbjJFN1ooWsdsVVuaDXHE7bgzyFWyzXYBmu75gVOnBOqD0EK1te7fbvtd2vaQzo9/UgNAg4/lRw9jXngKVyRoqsy1mOzfbBS1+NQEAAAAAAAAAwG9s29Zrr72m1atXa+vWrWpvb1ddXZ2GDh2qhoYGlZeX9/YSU7ZhwwatWLFCGzduVFtbm2pra3XooYfqqKOOUiCQ3ue/W7du1YsvvqiPP/5YbW1tGjJkiEaPHq3JkyenfW0nq1at0ttvv62mpibt3LlT/fv31+DBg9XQ0KABAwZk/H6FjE+0AADwwDY02wUKKWyXJMQTibdLWZio22FHzesp0OBYOl93oQYU/erEmrMcw3ZxxfXc9gX62sD/ZTw39WY75/2m8F4mmZrtggU0jhsAAAAAAAAAAL/btm2bbr31Vj344INqampyPCYcDmvGjBmaPXu2jj76aFfX/fa3v6158+Z1bn/44YcaOXKkq3OXLFmi6dOnd27fdNNNmj17tvH4rhN1jj/+eC1ZskSStGzZMt1000167rnnFI93//x30KBBuuGGG3T55Zd7Dsa9/vrruvbaa7V48WLHaw8bNkyXXHKJrrvuOhUVFWn27Nm6+eabO/cvXrxY06ZNc3WvTz75RHfccYcefPBBffTRR47HBAIBTZkyRTfddJNOPPFET18LnBVOMgAAgAwwjj8soJBIspBXtsbIJhttaQoN9XU02/Udh5ZP0qDwUMd9y3YsUmtst+O+uB0zBlF7ClSaxi/npNlOhrAdfw8IAAAAAAAAAABfePTRRzV69GjNmTPHGLSTpEgkooULF2ry5Mm65JJL1NHhPN3GT2699VYdd9xxWrRokWMYTpK2bNmiH/zgBzrnnHMUibj//PPXv/61Jk2apGeffdZ47Y0bN2rWrFk6/vjjtWXLlpS+Bkn64x//qNGjR+v22283Bu0kKR6Pa+nSpZo5c6a+9a1vefp64IxPtAAA8CBOs13PzXZZkCwAVKjBMZrt+o6AFdAJNWfqP7f8vtu+dnuvXtjxV50y4Gvd9kWShFt7en2YXgORnDTbmcbIFk5oGQAAAAAAAAAyze7okJo29vYy+r66YbKK+nbU5v7779fFF1/cLSx2wAEHaNy4cSorK1NjY6OWL1+uWOzzv2B/zz33qLGxUQsWLFCRT79Hv/zlL3XDDTd0bh988ME6+OCD1a9fP23atEkvv/yy9u7d27l//vz5mjVrlm6//fYer/2rX/1K11xzTbfHx40bpwMPPFDFxcVqbGzUihUrFIvFtGzZMp177rk67rjjPH8dN954o2655ZaExyzL0sEHH6wDDzxQFRUV2r59u1599dWEsOSDDz6oTZs2aeHChb59jvIB3zkAADywbUPYziqcsJ2pEUvKYtguabNdYQbH0vm6CzWg6GdHV07Tgm0PaVespdu+Jduf0Ak1Zyq0X4tjNI33hWnMbEwditkdClrZ+zWBhlAAAAAAAAAAyIKmjbLPPbi3V9HnWf/1njR4ZG8vI2veeOMNXXrppQlBuwkTJmju3LmaMmVKwrFNTU2aNWuW7r777s7HFi5cqBtvvFG33nprztbs1ttvv60XX3xRknTWWWfptttu09ixYxOO2b59u66++mo98MADnY/96le/0qWXXpp01O3KlSt13XXXJTw2bdo03XnnnRo/fnzC401NTbrxxht111136YUXXtCqVas8fR3z5s1LCNoFAgFdfvnluuaaazRixIiEY23b1mOPPaYrrrhCjY2NkqRnn31Ws2bN0m233ebpvvhc4SQDAADIAGNIpIB+pBZZRbIMX2+2RlDSbNddOJ0xsgU6etfPQoGwptWc5rhvZ2yHlu98vtvj2Wi2k7LfbmdutuPvAQEAAAAAAAAA0JsuuuiihDGjDQ0Neumll7oF7SSprq5Od911l+64446Ex2+//Xa9/fbbWV+rV83NzYrH4/rhD3+o+fPndwvaSVJNTY3+8Ic/6Mwzz+x8LBaL6b777kt67csvvzxhhO5Xv/pVPfPMM92CdtKn37d///d/1y9+8QtJ0rZt21x/DevXr9ell17auV1cXKwnnnhCv/vd77oF7aRP2+7OOussrVixQmPGjOl8/I477tCHH37o+r5IVDjJAAAAMsA2jZEtoEYmy7KMrVg02+VOsZV62C5ZOyF6z9TqU4whuUXbH1N8v2bNZO+L/Vvwuu1P8hqIJgnxZUJMzqHloArnz1EAAAAAAAAAAPxm8eLFeu211zq3Kysr9cgjj6isrCzpeddcc41OP/30zu14PK45c+ZkbZ3paGhocNXo9rOf/Sxh+7nnnjMeu2LFCr3yyiud24MHD9b999/f45jWa6+9VieddFKPa+nqjjvuUFtbW+f2nDlzdMopp/R43sCBA/Wf//mfnduxWMy3z1E+IGwHpzTaMAAAIABJREFUAIAHcVPYrsB+pJoCbrlutgsoWLBtWOm00xVqQNHvyoOVOqbqBMd9WyIb9fc9ryY8Fk2j8THZ6ydbodl9aLYDAAAAAAAAAMB/5s2bl7B9+eWXa8iQIa7O/fnPf56w/fDDD6u9PbufN6TihhtuUCDQ8+e648ePTxgb+8YbbxiPffjhhxO2v/e976mqqsrVembNmuXqOEnas2eP7r///s7t0aNH65JLLnF9/qRJkzR16tTO7ccff9z1uUhUWMkAAADSFDeNkbUK60eqMWyX42a7Qg6NpTVGlmY73zqh5kzjmOZFzY8lbKfT+JjsNZCt0Ow+pj9HgwXUEAoAAAAAAAAAgN8sXbo0Yfub3/ym63PHjx+viRMndm7v3btXK1euzNjaMqG0tFQzZsxwffwhhxzS+e+tra3avXu343HLli1L2D733HNd36OhocF1oHHp0qUJrXbnnHOOq+BgV9OnT+/89/Xr16uxsdHT+fgU9REAAHhgbLYrsJCIKaiTrZCOqcGrkENj6YyRLeSQot/VhgfpiIpj9Nqul7rtW9P2jta1va+RpQdJkiKGca9uGh9DSV4D2W+2M4Xt+NUEAAAAAAAAAIDesH37dq1du7Zzu7q6OiFs5saUKVMSxtCuWLFCU6ZMydga03XAAQcoHHY/OaqmpiZhu6WlReXl5d2Oe/PNNzv/vbq6WmPGjPG0rqOOOspVy9z+YcghQ4Zo3bp1nu61/9f/wQcfaMSIEZ6uAcJ2AAB4ErcZIyuZgzrRuHP4J10Rw3XTGaWa70LpjJEt4JBiPpjZ/yuOYTtJeqb5UV089IeS0mt8DFvm10/UEOLLlJgMY2RVWKFlAAAAAAAAAMioumGy/uu93l5F31c3rLdXkBVNTU0J2wceeKAsy/J0jbFjxyZsb926Ne11ZdL+4bmehEKhhO1oNNrtmD179mjv3r2d26kE19yes2HDhoTtK6+8UldeeaXn+3XV3Nyc1vmFirAdAAAemJrtTGMf+6pcN9uZrlvIobHidMbI0mzna18oGaMDS8frH23vdNv3xu6X1RTZpLrw4CSNjz0HMQNWUEVWkTrs7sG3bI+RNTfbEbYDAAAAAAAAgFRZRUXS4JG9vQzkqe3btydsV1VVeb7G/uf4LcjldeSqGzt27EjYrqio8HyNyspKV8d98sknnq/dk127dmX8moWgsJIBAACkKU5IRJI5rJWt8ZPpNHj1VeF0xsgWcEgxX5zY/yuOj9uK67ntCySZGx+TjYhNOM4Ums36GFlDsx1jZAEAAAAAAAAA6BW2bSdse221c5KJa/hdcXHiZy2RiPfpQW7PSeXaPdn/eYc7hO0AAPDA1GwXsArrR6qpOSvXzXamsFAhKE4jaFjIIcV8Mb7fRA0OD3fct6xlkXZ37Ey78THXodl9aLYDAAAAAAAAAMBf+vfvn7Dd0tLi+Rr7n+N1bKsbsZjzZwy9Zf+vcf+GQDfcNgDW1tYmbC9btky2baf1z7e//W3P6wVhOwAAPInbjJGVaLbzg3Ta6YqsUAZXgmwIWAGd0P9Mx31RO6IXdvw17feF6TUUtTP/N6O6iolmOwAAAAAAAAAA/KSuri5h+/333/d8jffeey9he+DAgY7HFRUlfh7Q0eH8uYGTVMJs2RQMBjV06NDO7Q8++ECtra2ervH222+7Om7QoEEJ26k8R8iMwkoGAACQJtMY2UCB/Ug1hXRy3WxXyONQw4HUxsiGrHDBNTHmq0kVx6sq6Py3vpbseFJ7Yrsc95maJ7sdZwrNZul9vI+x2U402wEAAAAAAAAA0Btqamp0wAEHdG7v2LFD7777rqdrLFu2LGF70qRJjsdVVlYmbO/YscP1Pd555x1Pa8qFyZMnd/57PB7X888/7/rc5uZmvfnmm66OnTJlSsL2008/7fo+yCw+aQUAwAPzGNnCConkutkuSrNdN6mOkS3k71m+CQVCmlZzuuO+3bEWvbJzseM+t89xyDQOOutjZGm2AwAAAAAAAADAbxoaGhK2H3roIdfnvvvuu1q5cmXndklJiY488kjHY/dvvFu1apXr+zz55JOuj82VE088MWH73nvvdX3uvHnzFIm4mzh0wgknKBj8/DPpxx9/XFu3bnV9L2QOYTsAADywjWG7wvqRGjKOn8xOSKfdFLYr5GY7K/VmO+SPqdUnq9jwXO+KtTg+7vY5NoXysvU+3sfUbFdooWUAAAAAAAAAAPzkggsuSNi+8847tXnzZlfnXn/99Qnb3/jGN1Rc7Pw5xMSJExO2FyxY4OoeTz31lJYvX+7q2Fw6//zzVVFR0bk9f/58PfXUUz2e99FHH+knP/mJ6/vU1NTo/PPP79zevXu3rrnmGm+LRUYUVjIAAIA0xWxD2K7AfqSam+3c/c0Lr4xjZAOFGxxLtaGO9rD8UhYs17HVMz2d4/a1YRwHnfVmO8MYWcJ2AAAAAAAAAAD0mhkzZmjChAmd2y0tLTrvvPPU1taW9Lw5c+boscce69y2LEtXXXWV8fhjjjlGZWVlndvz58/Xq6++mvQe//jHP/Qv//IvPX0JvaKiokJXXHFFwmPnnnuuFi92nlAkSevWrdPMmTM9jdCVpNmzZyeEGP/jP/5DP/rRjxSLOX/2YrJq1Sq98MILns7B5worGQAAQBps207SbFdYIRFjSCdLjVim8E8hj0RNOWynwnqt9gXTa77sKdDrtvHRFFaN2NkJze4Tk2GMrAiCAgAAAAAAAACQqs2bN2vdunUp/bPPfffdp3D4888PlixZoqlTp+qVV17pdr9t27bp8ssv19VXX53w+A9/+EMddthhxnVWVFTo61//eud2LBbTaaedpqeffrrbsZFIRPfee68mT56sLVu2qKamxsu3JGdmzZqlQw89tHN7586dOuGEE3Tuuefqv//7v/XWW29p9erVevrpp3XllVdq/Pjxevfdd1VSUqIzzzzT9X1GjRqle+65J+GxX/ziF2poaNCCBQvU0eH8GYz0acBv7ty5mjFjhsaPH6/nnnvO+xcKSeITLQAA3DIF7SSa7fbJViOWaaylaZxtIUh1hC7NdvlnQGigjqxo0Ipd7v6GkdsgpnEcNM12AAAAAAAAAADknfPOOy/lc23blvTpiNc777xT3/3udxWPf/rZ6MqVKzV58mSNGTNG48ePV0lJiTZs2KDly5d3C3fNnDlTt9xyS4/3u+WWWzR//vzOZretW7fq5JNP1pgxY3TYYYepuLhYW7Zs0SuvvKI9e/ZIkurr63X77bf7suEuHA7riSee0IwZM7RmzRpJn35P//SnP+lPf/qT4zmWZWnu3LlqbGzs1gyYzAUXXKDNmzfr+uuv73yOXn75ZZ1xxhkqKyvTEUccoUGDBqm0tFS7du3Stm3btGrVKs8tejDj01YAAFyKE7brFLZMjVg02+VKwErtNUegKT+d2P8s12E7tyHUXDdU7hOzDc12vDYBAAAAAAAAAOh1F198sWpqanThhRdq9+7dnY+vWbOmM0jm5Dvf+Y7uuusuhUKhHu8xdOhQ/fnPf9ZZZ52lXbt29XiPUaNG6YknntCWLVs8fjW5M3z4cL344ou67LLLNH/+/KTHDhgwQPPmzdNpp52mH/3oRwn7KioqerzXvvbACy+8UJs3b+58vLW1VS+99JKr9fq1JTAfFFYyAACANMTtJGG7AguJ5LrZzhT+SbXdrZDRbJefhpeM1sFl5sr1rtyGUI1jZOPZHSMbNzTbBRhxDAAAAAAAAACAL5xzzjlau3atrrjiCtXW1hqPC4VCOumkk/TSSy/pvvvucxW022fGjBlavny5zjzzTGObW11dna699lq98cYbOuSQQzx/HblWX1+v//mf/+kM3Y0bN07V1dUqKSnR6NGjdeKJJ+ruu+/W2rVrddppp0lSt8a5qqoqV/c65ZRT9OGHH2ru3LmaMGFCj414oVBIU6ZM0ezZs/X+++/riiuuSO2LBM12AAC4lbTZLsWWsXxlCrmZxr2myxT+KeRmu1QFCTTlrZn9v6L3Wt/q8ThT82S34wzvn2y9j/eJydRsx68mAAAAAAAAAAC4tW7duqxef+DAgfrNb36jX//611q5cqVWr16tpqYmtbe3q7a2VsOGDVNDQ4OrJjaTsWPH6tFHH9W2bdv0/PPPa+PGjWptbdWgQYM0atQoTZ06VUVFn39+MG3atM6Rt254OXZ/DzzwgB544IGUzm1oaFBDQ4OrY1etWtX575ZlaeDAga7vU1JSossuu0yXXXaZmpub9fLLL2vTpk1qbm5WNBpVeXm5Bg4cqIMOOkhjx45VWVmZ568F3fGJFgAALpnamKTCGyMbMoR0OuwOxexYxsdB0myXOYzqzF+HlE3QkPAX9HFkfdLjTO/PbseZxshmudkuZvizlNcmAAAAAAAAAAD+EwgENGnSJE2aNClr96itrdXZZ5+dtev71Z49e/Taa691bh900EEphxf79++vU089NVNLQxKFlQwAACANycfIFtaP1GQht6id+aCOaTwtzXbe0R6WvyzL0on9z+rxOLchVFMDnincminmsB2vTQAAAAAAAAAAUDjmzZun1tbWzu1jjjmmF1cDt/hECwAAg9bYbn3cvl52l22TQIGN5kwWcntvz1sqC5Z3bg8KD1VlUbWkT6uam6Kb1NKxXUVWSMOKRykUCCW9V8zuUFzO4Ry34zLxOdrD8ttRlQ16fNuD2tHxifEYtyFU03Efta/T1sjHqgsNlmVZKa0zmZhtGCNbYH+OAgAAAAAAAACAwrVx40bNmjUr4bELLrigl1YDLwjbAQCwn5gd00Ob5+qVnUtky9xm1xXNdp+7++Pbuj32xX5H6Yzab+q+TXdoS+SjzsdDVlhfrfu2jq9xrjS2bVsPb7nLvA6a7TyjPSy/FVkhTa/5suY3PWA8xm0I1TRGVpJmf3iZBoWH6rKhP1ZdeLDXZSZlCs/y2gQAAAAAAAAAAPnqz3/+s1auXKmrrrpKdXV1SY99/fXXdfbZZ6u5ubnzscMPP1zTp0/P9jKRAXyiBQDAfp765L/18s7nPJ1jFdhkdq8ht7/veVV/3/Nqt8ejdkSPbL1H9cXDdXDZod32v9TytJa1LDJeN1lYCM5oD8t/DVUz9ddPHtHeeJvj/nSb7fbZEvlIczfeoptGzc1ow515jCyvTQAAAAAAAAAAkJ927dql2267Tb/85S91yimn6IQTTtDhhx+ugQMHqqioSM3NzXr77bf1l7/8RQsWLJBt253nhsNhzZs3rxdXDy8I2wEAsJ83dr/s+ZwAYbu0vLX7Fcew3Ru7kj8XNNt5V/HZSF/kr9JgPzVUnaxF2x913O82hOqmAW9r9GNtjmzU4OLhntaYjDlsx68mAAAAAAAAAAAgv0WjUS1YsEALFixwdXxpaan++Mc/6vDDD8/yypAphZUMAADAhe0d2zwdXxIoVU1oQJZW40/FVon6FyWvP/ZiR7TZ8fFkz0VpoJ+qi/pnbA356Ct1/+L4+OkDztPA0BDHfRMrjs3mkpAj02tOV8ChpTCgoAaFnZ/7/Q0uHuHquJYO5/dnqmLqcHycZjsAAAAAAAAAAJCvqqurFQx6+6zj2GOP1QsvvKBzzjknS6tCNhC2AwBgP5F4u6fj/6lyWsE1MlmWpSlVJ2bseqbwTcQ2PxeTq6YX3Pd9f0eUT1FJoCzhsWKrRBMrjnV8fgaFh+qA0kNytTxkUU2oVqcM6P6L18SKKSoLlru6Rv9QncaW5f5vSRmb7RhxDAAAAAAAAAAA8tRZZ52lLVu26MEHH9Sll16qhoYGDR8+XP369VMwGFR5eblGjBihqVOn6t/+7d+0dOlSLV26VEcddVRvLx0eFfYn1AAA7CduxxW1I66O7V9UpyMrG3Rm7TezvCp/+tKAc2VZAb3Sslhbox+ndS1T+MYUfBwQGqiz6y5M6559QW14kK4cfov+p+kBNe5dq+HFo3RG7TdVXzxMg8JDJUl/2/msdnZs19iyw/X1QZfQHtaHnDrg6woooL/tfFaS9MV+R+nsgd7eF/869Dr9acv/1d/3vKpdsRbHY2zZaa+1q5htarbjVxMAAAAAAAAAAJC/BgwYoPPPP1/nn39+by8FWcQnWgAAdNFhR437/veIn2tUyUGd25YsWZaVi2X5kmVZ+tKAr+lLA76muB3vfHxnx3b92wcXebqWKXxjCtudU3eRAoTGJEkjSg7QlcNvkW3bCa9Hy7J00oCv6qQBX+22D31DwAro1Nqv69Tar6d8jZJAqb41+PuybVvfe/9s2Yp3OybzYTtDsx3vaQAAAAAAAAAAAPgcYTsAALpINkK22CpRwGICu5Ou35fiQInn853CdrZtK2JoGQwHij3fo69LFqYjaIeeWJalgAKKOYTtMo1mOwAAAAAAAAAAAOQrEgMAAHQRsc1hOwJe7qTyfXJquuqwOxxbtiQpbPFcAJlmymRmvNlOhmY70WwHAAAAAAAAAAAAfyNsBwBAF0mb7QjbuRK0ihTwGJpxCt9ECT4COWZK2+VqjCzNdgAAAAAAAAAAAPA3wnYAAHSRtNmONjXXvIbhnMZKJgs+ErYDMs8yhO0y2WwXt+PGxsqARbMdAAAAAAAAAAAA/I2wHQAAXRDwygyvwUSnpqtkwceQFfa8JgC9z9RqJ9FsBwAAAAAAAAAAAP8jbAcAQBemgFdAQYIgHoQD3sJwNNsB/pXJIbIxdX+v7xP0OH4aAAAAAAAAAAAAyDXCdgAAdGEKeBHu8sZzs528Ndsx0hfIPNMY2UzG7eJJm+0I2wEAAAAAAAAAAMDfCNsBANBF1BDwItzljddwotdmO8bIAplnCtvZGQzbOb3X96E9FAAAAAAAAAAAAH5H2A4AgC4i8Yjj417Hoha6kMdwolPblanZLmwVy7JMDVwA/CxGsx0AAAAAAAAAAADyGGE7AAC6SBbwgnvem+0cwnbG4CPPBZANphCrbWew2U5Jmu1Esx0AAAAAAAAAAAD8jbAdAABdmEaXEvDyxms40SmAw0hfINdyMUaWZjsAAAAAAAAAAADkL8J2AAB0YWq28zoWtdBlptnO8FwQfASyIhfDmZOH7Wi2AwAAAAAAAAAAgL8RtgMAoAua7TLDe9iue7OdeaRvOKU1AehJ9uN2Tu/1fWi2AwAAAAAAAAAAgN8RtgMAoAtj2I5mO0+8fr/iisu2E0dVEnwE/CGjY2RFsx0AAAAAAAAAAADyF2E7AAC6MLapEfDyJJXvV0yJjVfmZjueCyAbLGOzXQbDdsma7USzHQAAAAAAAAAAAPyNsB0AAF3QbJcZqXy/YnZi4xXNdkBumcJ2mYvadX+fd8UYWQAAAAAAAAAAAPgdYTsAALowN9uFc7yS/JZSs51Nsx3Qq0zFdjlotrNkKUDYDgAAAAAAAAAAAD5H2A4AgC5oU8uMTDTbReMR52vzXABZYWy2szMYtpNzsx2tdgAAAAAAAAAAAMgHhO0AAOgiamhTC9Gm5kkqTYD7h3BMzXY8F0C25GKMrHOzXVBFGbwLAAAAAAAAAAAAkB2E7QAA6IJmu8xIJRDXbYwszwWQU8Ypshm0f4PlPoyQBQAAAAAAAACgMDU2NurHP/6xpk6dqkGDBikcDsuyrM5/Hnjggd5eIpCACgkAALowtamlMha1kKUSiOs2RtY2jJG1vLfmAeiZaYxsJrvtTGE7xsgCAAAAAAAAAODNyJEjtX79+s7txYsXa9q0ab23oBTce++9+v73v6/2dufPaAE/otkOAIAuInFDwIs2NU9SCSfSbAf4k53RsJ1pjCxhOwAAAAAAAAAACsmTTz6pSy65xHXQbsmSJQmNd7Nnz87uAgEDmu0AAOiCZrvMyESzHc8FkGvZb7aLy9Rsx68lAAAAAAAAAAAUkuuvv162/flnEP/8z/+siy66SMOHD1coFOp8vLa2tjeWBxjxqRYAAF3QppYZqQTi4qLZDuhN2Y/aJWm2Y4wsAAAAAAAAAAAF47333tNbb73VuX3qqafqoYce6sUVAe4xRhYAgM/E7A5j61LYCud4Nfktq812hO2A7LCc43Zd/1ZZuvZ/n+8ToNkOAAAAAAAAAICC8eqrryZsn3POOb20EsA7wnYAAHzG1KQmEfDyKpXvV4ftrtkuxBhZICusHHTbGZvtRLMdAAAAAAAAAACFYsuWLQnbw4YN66WVAN4RtgMA4DOmJjWJgJdXqYyR7RrCidtxRe2I87UJPgJ5K2ZoD2WMLAAAAAAAAAAAhWP37t0J26FQqJdWAnjHvCYAAD5Ds13mhFIYu9s1hNNhR43HpRLkA9AzU7Nd5nrtkjTbMUYWAAAAAAAAAABfsm1br732mlavXq2tW7eqvb1ddXV1Gjp0qBoaGlReXu75mvF4PAsrBXKDT7UAAPhMsmY7Al7eWJalsFWc9Hu6v64hnOTBR+9BPgA9y80YWZrtAAAAAAAAAADIB9u2bdOtt96qBx98UE1NTY7HhMNhzZgxQ7Nnz9bRRx9tvNa6des0atQo4/7p06c7Pv6HP/xBF154oeO+m2++WTfffLPxmosXL9a0adOM+4FUMUYWAIDPROLOY0slmu1S4fV71jWEQ/AR8A87J2E7/g4QAAAAAAAAAAB+8eijj2r06NGaM2eOMWgnSZFIRAsXLtTkyZN1ySWXqKPDecIN0JfwqRYAAJ9JFvBKZSxqofMaiksI2zHSF+iTYjKMkRXNdgAAAAAAAACQlniH1Lqxt1fR95UNkwJ9O2pz//336+KLL+426vWAAw7QuHHjVFZWpsbGRi1fvlyx2Oef791zzz1qbGzUggULVFTUt79HKGy8ugEA+Iwp4BWywgpYlMF6FfLcbNdljCzNdkDOWZbzGFma7QAAAAAAAAAgD7RulB43j+lEhpzxoVQ+srdXkTVvvPGGLr300oSg3YQJEzR37lxNmTIl4dimpibNmjVLd999d+djCxcu1I033qhbb7014dhhw4bpww8/7Nz+zW9+o9/+9red2w8//LAmT57cbT21tbWdo2BffvllnXfeeZ37rrjiCl155ZXGr6W+vr6HrxZIDZ9qAQDwmagh4EWTWmrCHtsA46LZDuhdhrCdncmwnaHZzqLZDgAAAAAAAACA3nbRRRcpEol0bjc0NOipp55SWVlZt2Pr6up01113acyYMbr22ms7H7/99tt13nnn6dBDD+18rKioSCNHjuzcrq6uTrhWfX19wv6uysvLJUnr1q1LeLy6utp4DpBN1PQAAPAZU8CLJrXUeA3FuWm2CyhIAxaQJc5Ru8wyN9sRtgMAAAAAAAAAoDctXrxYr732Wud2ZWWlHnnkEcegXVfXXHONTj/99M7teDyuOXPmZG2dQG8jbAcAwGeMYTua1FLiNaTYNYTDcwHknpWDuF1MhmY7CrcBAAAAAAAAAOhV8+bNS9i+/PLLNWTIEFfn/vznP0/Yfvjhh9Xebp5kBeQzPtUCABSMJ7c9omUti4z798bbHB+n2S41qTTbrWl9R4u3/0Wv7/6b8zV5LoAscg7bPdr0R/31k/9KemZ9eJiOrpqmSZXHG4+JxNv1t5ZnHffRbAcAAAAAAAAAQO9aunRpwvY3v/lN1+eOHz9eEydO7GzG27t3r1auXKkpU6ZkdI2AHxC2AwAUjNb4bjV3NHk+jza11IStEk/Hv9/2dz267T/UYUfN1wyE010WAANTs92e+C7tie9Kem5zR5NWtb6u9vheNVSf3G2/bdv6949+Zjyf8dAAAAAAAAAAAPSe7du3a+3atZ3b1dXVOuSQQzxdY8qUKQljaFesWEHYDn0Sn2oBANCDkEXAKxVeg3Fv7V7e8zVptgN87bntCxzDdh+1r9d7rW8ZzwvQbAcAAAAAAAAA6SkbJp3xYW+vou8rG9bbK8iKpqbEwpIDDzxQluX8l/RNxo4dm7C9devWtNcF+BFhOwAAelARrO7tJeSlyqLMf98qiqoyfk0An+oXrJDMxZKubI5sVCTe3q0RtLF9TdLzKoK8twEAAAAAAAAgLYEiqXxkb68CeWr79u0J21VV3v+//f7nNDc3p7UmwK8Cvb0AAAD87ovlE3t7CXlpfL8j8+KaAD51SL8JGblOXPFuj0Xi7UnPGdfviIzcGwAAAAAAAAAAeGfbdsK211Y7J5m4BuBHhO0AAEhiavUpOrJiam8vIy+NLh2rM2u/lbHrHVE+RdNqTsvY9QAkOrn/2RrfL/1wcdyOdXssWdjuzNpvaXTpWON+AAAAAAAAAACQXf3790/Ybmlp8XyN/c+pqalJa02AXzFGFgBQMI6qmKqhxSNdHVtkFWlUycGqDddnd1F93MkDztbRVdO1tnWVIna7yoNVeqZ5vta0veP6GkdWNOi0Ad/QoPBQ/gYMkEWhQFiXDZ2lTZENaty7VrZDQ90+OzqatWDbQ477Yk5hO9s5bFcXGqyTB5yd2oIBAAAAAAAAAEBG1NXVJWy///77nq/x3nvvJWwPHDgwrTUBfkXYDgBQMEaWHqSRpQf19jIKTnVRfx1Z2dC5vaxlkafzG6pPVn3xsEwvC4ADy7I0pHiEhhSPSHrcpvYNxrCdlzGydeHB3hcJAAAAAAAAAAAyqqamRgcccIDWrl0rSdqxY4feffddHXLIIa6vsWzZsoTtSZMmZXSNlHLALxgjCwAAcipoBT0dH7aKs7QSAKlK9j52GiMbtSOOx4atcMbWBAAAAAAAAAAAUtfQ0JCw/dBDzn/p3sm7776rlStXdm6XlJToyCOPzNjaJKm4OPEzw/Z257/oD2QbYTsAAJBTQY/FuuEAYRzAbwJKErbz0GwXDhCmBQAAAAAAAADADy644IKE7TvvvFObN292de7111+fsP2Nb3yjWzguXdXV1QnbmzZtyuj1AbcI2wEAgJyi2Q7IfwHL/GuEU7NdxDaE7Xh/AwAAAAAAAADgCzNmzNCECRM6t1taWnTeeeepra0t6Xlz5szRY4891rltWZauuuqqjK9v9OhI9A+jAAAgAElEQVTRCoc/L+lYvHixotFoxu8D9MRbtQwAAECaPIftaL4CfCeQbIwszXYAAAAAAAAAAOTc5s2btW7dupTOHTlypCTpvvvu0zHHHKNIJCJJWrJkiaZOnaq5c+fq6KOPTjhn27Ztuummm/T73/8+4fEf/vCHOuyww1JaRzLhcFjHHnusFi9eLElqbGzUGWecoe9+97s68MADVVZWlnB8fX29SkpKMr4OgLAdAADIqaDlcYwszVeA7wSSFGTHbYewnb3X8dgQ728AAAAAAAAAADLivPPOS/lc27YlSRMnTtSdd96p7373u4rHP/3//StXrtTkyZM1ZswYjR8/XiUlJdqwYYOWL1+ujo6OhOvMnDlTt9xyS+pfRA+uvvrqzrCdJC1cuFALFy50PHbx4sWaNm1a1taCwkXYDgAA5BTNdkD+SzZGNuY0RjYecTyW9zcAAAAAAAAAAP5y8cUXq6amRhdeeKF2797d+fiaNWu0Zs0a43nf+c53dNdddykUCmVtbaeffrp++tOf6qabblIs1v3zCCAXzJ+SAQAAZEHQQ9Y/oKDnJjwA2ReUOTRrO42RtQ1jZGm2AwAAAAAAAADAd8455xytXbtWV1xxhWpra43HhUIhnXTSSXrppZd03333ZTVot88NN9ygt956S9ddd52OO+441dfXq7S0NOv3Bfbh02sAAJBTXprtaL0C/Mny3GxnCNvxHgcAAAAAAAAAICXr1q3L6vUHDhyo3/zmN/r1r3+tlStXavXq1WpqalJ7e7tqa2s1bNgwNTQ0qKKiwvO1Z8+erdmzZ6e8tnHjxum2225L+XwgHYTtAABATnlpqqP1CvCnZM12cTmE7YzNduGMrQkAAAAAAAAAAGReIBDQpEmTNGnSpN5eCuALjJEFAAA55a3ZjiAO4EeBJM12cdthjCzNdgAAAAAAAAAAAOgDCNsBAICcCnoo1qXZDvAnK8mvEU7NdlFjsx3vcQAAAAAAAAAAAOQPwnYAACCnvDTbhWi9AnwpYAWMgbv9m+1idkwddofjsbzHAQAAAAAAAAAAkE8I2wEAgJwKeBkjazFGFvCrgClsp8SwXdSOGK9Bsx0AAAAAAAAAAADyCWE7AACQU0HLwxhZWq8A3wpYzr9KxOzEMbKRuPMIWYn3OAAAAAAAAAAAAPILYTsAAJBTQXlptiOIA/iVaSS0vV+zXdKwHe9xAAAAAAAAAAAA5BHCdgAAIKe8NNuFaL0CfMsy/CrRrdnOptkOAAAAAAAAAAAAfQNhOwAAkFOmNiwntF4B/mV6L8cZIwsAAAAAAAAAAIA+irAdAADIKS/NdgRxAP8KGH6ViO8/RjZJs13ICmd0TQAAAAAAAAAAAEA2EbYDAAA5FRTNdkBfEHDZbBc1NNsVWUWemi4BAAAAAAAAAACA3kbYDgAA5JSnMbIBWq8Av0q32S5EmBYAAAAAAAAAAAB5hrAdAADIKU9jZAnjAL4VsAxhO3u/sJ2h2a44UJLxNQEAAAAAAAAAAADZRNgOAADklLdmO8J2gF8FDCOhY0ocIxuxI47HEaYFAAAAAAAAAABAvnFfLYM+wbKsUZImSBoiqVzSJknrJS2zbTvam2sDABSGoBVyfSxjJgH/MjXb2S6b7RgTDQAAAAAAAAAAgHxD2K5AWJZ1jqSrJR1jOKTZsqxHJN1o2/a23K0MAFBogoY2LCc02wH+5b7ZzjlsR5gWAAAAAAAA/5+9O4+yqyzzxf/dVUkqhCRkDkiIAUOahEHARAQZG5qppaUBZXIp2K1eUZRuEBsnRllwwV4dQbuV9gavP1RaQKZWWxxCiwjcgDSQoCTKEKYYQkIGyFj790dCmVOp6VSdqkpVPh/WXuR9z36Hvc85u2qf89TzAgD0NZaR7eeKohhaFMX3kvwgrQfaJcmoJB9P8kRRFMf0yOQA2CZZRhb6h9bey41ls2C7VjPbeX8DAAAAAADQtwi268eKoqhPcnOS05o9tDjJT7MxAO+RJOVmj41PckdRFAf3yCQB2ObUFx1PrDtI5ivYahWtLCPb2GwZ2XWtZLbz/gYAAAAAAKCvEWzXv12V5PjNyuuSnJtkQlmWx5Rl+f6yLN+RZK8kv9lsv4YktxdFsVPPTRWAbYXMdtA/tLYkdGPzZWRltgMAAAAAAKCfEGzXTxVFsVuSTzerfl9ZlteXZbl288qyLOclOTKVAXejk1zcvbMEYFtUH5ntoD+o62Bmu7Uy2wEAAAAAANBPCLbrvy5OMnCz8o1lWd7R2s5lWb6R5Kwkmwfi/d2moD0AqJnqMtsN6saZAF1R18qtRGOaBdvJbAcAAAAAAEA/IdiuHyqKYrskpzSrvrq9dmVZPpXk9s2qBiQ5o4ZTA4DUFzLbQX9Q10rg7Iay2TKylUmVmwwsBNMCAAAAAADQtwi265+OSTJks/JvyrL8XQfbzmpWPqk2UwKAjarJbDdQ5ivYarWW2a6U2Q4AAAAAAIB+SrBd/3Rss/LsKtr+Ksn6zcr7FUUxvsszAoBNqstsJ/MVbK06ntmulWA7mSsBAAAAAADoYwTb9U97NSv/pqMNy7JcleTxZtV7dnlGALBJfTqW2W5AMbDVYB6g97WWpbJ5Zrt1MtsBAAAAAADQTwi265+mNisvqLL9H5qVp3VhLgBQoaPLyMp6BVu3opVbiQ5nthNsBwAAAAAAQB8j2K6fKYpiVJJRzaqfq7Kb5vvv3vkZAUCluqI+RYp29xOIA1u3+qLlW4nG8s+Z7dY0rs6SdX9qcT8BtQAAAAAAAPQ1gu36nxHNyq9vWhq2Gs2/Ed2hC/MBgC10JLudQBzYutW1siR0YzZmtlu5YXn++bnPtdpeQC0AAAAAAAB9zYDengA1N7RZ+Y1O9NG8zbBOzqVJURTjkoytstnbujouAFun+gzI+qxvc59BdYN6aDZAZ9S1k9nuv5bcmoVr/thqewG1AAAAAAAA9DWC7fqf5sF2qzvRR/Ngu+Z9dsY5SS6uQT8A9AMD6wZlzYa2f0QNKgb30GyAzmg9s93GYLunXn+8zfYNdd7jAAAAAADQXV5//fU88sgjmT9/fl555ZWsXr062223XcaPH58pU6Zkv/32y6BBkl901uGHH5577723qVyWZbeMM3v27BxxxBFN5YsvvjiXXHJJt4xFxwi26/86827unisAAGyy6+C/yOOr/l+b+7xtyNQemg3QGa1nttu4jOzrjatabTuoaMiEhl27ZV4AAAAAALCt2rBhQ/7jP/4js2bNyi9/+cusX9/6SlODBw/OMccck7//+7/Pe97znh6cJfRtLX9DRl+2sll5u0700bxN8z4BoEuOHnVSGtrIXLfDgFE5eIeje3BGQLVay2y3IRuD7TaUrd/AHzP6lAy0VDQAAAAAANTML37xi0ybNi1nnHFG7rnnnjYD7ZJk9erVueOOO3LCCSdkxowZeeSRR3poptWZNGlSiqJIURSZNGlSb08HZLbrh7bWYLuvJ/lBlW3eluSOGowNwFbmbUOm5h8nXpkHl/8yz695pimtcn1Rn7cOnpx373B0xgwa38uzBNrSWma7sty4jOybGe6a23fou3Lc6Pd127wAAAAAAGBbc+mll+bSSy/dYinToigyderUTJgwIaNHj87ixYvz3HPP5amnnqrYb86cOTnwwANz/fXX5yMf+UhPTh36HMF2/c9rzcpDiqLYvizL1tfx2tK4ZuVlXZxTyrL8U5I/VdOmKIquDgvAVmyXwbtll8G79fY0gE5qP7Ndy8F204cf2m1zAgAAAACAbc15552XmTNnVtQNGzYsF110Uc4888xMnDhxizYLFizIjTfemGuvvTZr1qxJkqxduzYf/ehHs2rVqpx33nk9Mnfoiywj28+UZbkkydJm1VteOdv21mbl+Z2fEQAA/VF9K5ntGjdlttuQltPT17cSpAcAAAAAAFTn29/+9haBdgcffHDmzZuXiy66qMVAuySZPHlyrrjiijz22GPZa6+9Kh47//zzM3v27O6acr8xe/bslGXZtLHtEGzXPz3ZrDy5yvbN0ww17w8AgG1c0cqtRGM2Bdu1ktmuvhBsBwAAAAAAXfXUU0/lk5/8ZEXdQQcdlB//+MeZMGFCh/qYMmVKfv7zn2fq1KlNdY2NjfnABz6QV155pabzhf5CsF3/9ESz8oEdbVgUxfZJ9mmnPwAAtnGtBc01lm8uI9tKZrtiQLfNCQAAAAAAthUXXHBBVq5c2VQeMWJEbr311gwdOrSqfsaNG5dbbrklgwYNaqp74YUXcvnll9dsrtCf+Karf/pJko9uVj68iraHpPJ18duyLBfVYlIAAPQfda0F26UxZVk2ZbhrTmY7AAAAAADomt/97ne5++67K+quuuqq7Ljjjp3qb9q0abngggty5ZVXNtV961vfyiWXXJKRI0d2aa5bmwULFuSxxx7LCy+8kBUrVqQoigwZMiTjx4/Prrvumr333jtDhgzp9nmsWbMm9957b55++um8+uqrGTduXCZMmJBDDjmkW8Z/6aWX8uCDD+ZPf/pTlixZkqFDh2bcuHGZMWNGdtut+QKYtEWwXf/0X0neSLLdpvKBRVHsUZbl7zrQ9qxm5R/WcmIAAPQPda0tI1tuyIa0nNUuSerdggAAAAAAQJfMnDkzZVk2lceMGZOzzz67S32ed955ueaaa7Ju3bokyapVq3LDDTfkwgsv3GLfs846K9/+9rebyk8//XQmTZrUoXFmz56dI444oql88cUX55JLLmmz/zc9++yzKYqi1b4/9KEP5cYbb9yifs2aNfnqV7+aG264IfPnz29zfvX19dl3331z4okn5h//8R9bDXw7/PDDc++99zaVN38+2vLaa6/lS1/6Um688cYsX758i8eHDRuWU089NZdeemne8pa3dKjP1qxbty7f+ta38vWvfz2PP/54q/vtvvvuueCCC/LhD384Awb4Hqc9lpHth8qyfD3JLc2qP9teu6IopiT5282q1if5bg2nBgBAP9FaZrsN5YZs2LSUbEtktgMAAAAAgK75yU9+UlH+4Ac/WLEMbGeMHTs2J5xwQpvj9EULFy7MfvvtlwsvvLDdQLsk2bBhQx5++OF88YtfzIsvvljTufzP//xPpk2blq9+9astBtolyYoVK/Lv//7v2XvvvfPrX/+602M9/PDD2WOPPfLxj3+8zUC7JJk/f34+9rGPZcaMGXnhhRc6Pea2Qjhi/3VJktOSDNxUPqsoih+WZXlnSzsXRTE4yawkm199v1WW5R+6dZYAAPRJrWW2K9OYDWUbme0KtyAAAAAAALW2odyQZetf6e1p9HsjBozp9T8qf/755/PMM89U1B199NE16fvoo4/Obbfd1lR+4IEHsm7dugwcOLCNVluvtWvX5thjj82TTz5ZUT9q1KjsvffeGT9+fAYOHJgVK1bkpZdeyrx587Jq1apumcu8efNy5JFHZsmSJRX148ePz3777ZcRI0Zk0aJFeeCBB/LGG2/k1VdfzXve855cc801VY91991359RTT83rr79eUb/TTjvl7W9/e0aNGpVVq1Zl3rx5FQGIjz76aA444IA88MADmTBhQucOdBvgm65+qizLPxZFMTPJBZtV31IUxT8m+WZZlmvfrCyKYmqSf09y0Gb7LklyaY9MFgCAPkdmOwAAAACArcey9a/ki3/8WG9Po9+7fLdvZPTA8b06h5aynU2fPr0mfb/jHe+oKL/xxht59NFHM2PGjJr031HXXntt09KyBx98cFO2tZ133jn33Xdfq+2GDh1aUZ41a1bmzZvXVJ40aVK+9rWv5dhjj01d3ZZJBcqyzMMPP5y777473/rWt2pwJButW7cuZ555ZkWg3U477ZSZM2fm5JNPrpjLypUr85WvfCVf/vKXs2zZshaX8W3LvHnzctppp1UE2h177LG59NJL8853vnOL/X/729/m05/+dH71q18lSV544YWcfvrpmT17durrfafTEsF2/ds/JdkzyXGbygOTXJfki0VRPJJkRZLdkuyfZPNFrdcm+duyLF/qwbkCANCH1LeV2S5tBdu5BQEAAAAAgM56/vnnK8rjx4/P6NGja9L3Xnvt1eJ4PR1sN2bMmIwZMyZJMmDAn79XGDBgQCZNmtThfu64446Ktvfcc08mT57c6v5FUWT69OmZPn16vvjFL6axsbH6ybfguuuuy6OPPtpU3mmnnXLfffdlt91222LfoUOH5uKLL85ee+2V97///Vm6dGmHx2lsbMypp55akZ3vkksuycUXX9xqm/322y+/+MUvcuqppzZlNbzvvvty00035YMf/GCHx96WtPwNGf1CWZYbkrw/yc3NHhqX5Ngk70vyjlQG2v0pyXvLsvxVj0wSAIA+qShavpXYULazjGz8FRQAAAAAAHTWq6++WlEeOXJkzfoePHhwGhoa2hyvL3n22Web/v32t7+9zUC75urr62uyfG5jY2Ouu+66irpvfvObLQbabe7kk0/OOeecU9VYt912W5544omm8vvf//42A+3eNGDAgHz729/OuHHjmuquvfbaqsbelgi26+fKslxZluVp2RhY90Abu76a5F+T7FWW5U96ZHIAAPRZrQXNNabtZWRbW34WAAAAAABoX/PgtxEjRtS0/+b9bb70aV/2pz/9qVfG/e///u8888wzTeUZM2bkPe95T4fafulLX6oq4O+rX/1q07+LoshVV13V4bZDhw7Nxz7256WoH3/88Yp582eC7bYRZVneUpblgdm4bOwpST6V5KIkZyf5yyQ7lWV5TlmWi3txmgAA9BF1rWS2a2wvs51lZAEAAAAAYKtVFEX7O/URe+yxR9O/Fy5c2CvZ2u67776K8umnn97htmPHjs3RRx/doX1XrVqVBx74cw6uGTNmZNddd+3wWElyxBFHVJR/9SuLYrbEN13bmLIsn07ydG/PAwCAvq21DHXtZbarl9kOAAAAAAA6bdSoURXl1157rab9L1u2rM3x+pIzzjgjt912W1P5M5/5TG6//facffbZOf7447PTTjt1+xzmzJlTUT7ggAOqan/AAQfkP//zP9vd74EHHsi6deuayrvttlvVmekaGxsryn/4wx+qar+tEGwHAABUra61ZWTLxjSmjcx2bkEAAAAAAGpuxIAxuXy3b/T2NPq9EQPG9PYUtgh+W7p0ac36Xr16dVavXl1RN3r06Jr139NOOumknHTSSRUBd7/+9a/z61//OkkyefLkHHTQQXn3u9+dQw45JFOnTq35HBYtWlRR3n333atqP2XKlA7tt3Dhwory97///Xz/+9+vaqzmmi9ZzEa+6QIAAKrW+jKyMtsBAAAAAPS0+qI+oweO7+1p0AN23nnnivLLL7+cJUuW1CQobu7cue2O15cURZGbb745F198cf75n/95i0DCBQsWZMGCBfm///f/JtkYfPeBD3wg5557bs0y+jUPhhw+fHhV7XfYYYcO7bdkyZKq+u2IFStW1LzP/qDlb8gAAADa0Fpmuw1pzIayjcx2hb/3AQAAAACAzjrooIO2qGu+VGlnNe9nu+22y7777luTvnvLgAED8uUvfznPPPNMrr322hxyyCFpaGhocd8FCxbkkksuyW677Zabb765h2faNWvXrq15n2VZ1rzP/kCwHQAAULXWMtuVZWObme3q3IIAAAAAAECnTZw4MRMnTqyo++lPf1qTvu+5556K8gEHHJBBgwbVpO83bdjQ+ncI3Wn8+PE5//zz89///d957bXXcv/99+faa6/Ne9/73gwdOrRi39deey2nn356br/99i6PO3LkyIry8uXLq2r/2muvdWi/MWMqlzi+8sorU5Zll7Ybb7yxqrluK3zTBQAAVK21oLkNm/5rSX0GpCiK7pwWAAAAAAD0e8cee2xF+Tvf+U7WrVvXpT4XL16cO++8s81x3jRgQOUqNuvXt77iTXPNl1XtDQ0NDTnwwANz/vnn5/bbb8+SJUvy/e9/P1OmTGnapyzLfOpTn0pjY2OXxho/vnJ55/nz51fV/qmnnurUOB1tR/UE2wEAAFWrL1peRrax3NDqMrKttQEAAAAAADru05/+dMUfty9evDizZs3qUp8zZ86sCNjbfvvt85GPfKTFfYcPH15RXrZsWYfHmTt3blXz6ok/4h80aFBOPfXUPPjgg9l5552b6hcuXJiHH364S31Pnz69ovzAAw9U1f7BBx/s0H4HHnhgxbm65557LAPbTQTbAQAAVWsts11jWl9GVrAdAAAAAAB03bRp03LcccdV1H32s5/NokWLOtXfvHnzcs0111TUnX322Rk1alSL+48bN26L9h31ox/9qKq5NTQ0NP17zZo1VbWt1ogRI3LSSSdV1D399NNd6vPggw+uKH/ve9/rcNvFixd3eIngsWPHZr/99msqv/DCC/nxj3/c4bHoOMF2AABA1eo6ldluQIv1AAAAAABAdb7yla9kyJAhTeVly5blpJNOysqVK6vqZ/HixTnllFOydu3aprqddtopX/rSl1pts//++1eU77rrrg6N9V//9V956KGHqprfiBEjmv79yiuvdHm53PY0XyJ382C/zjj00EMzadKkpvKcOXNy9913d6jtZZddVtXxfvKTn6woX3DBBVW/HmifYDsAAKBqrQbbpTEb0kpmu8hsBwAAAAAAtbDHHnvkuuuuq6i7//77c9xxx+X555/vUB/z58/PkUcemSeffLKprq6uLt/5zncyduzYVtsdeOCBFYF+P/zhDzNnzpx2x/rQhz7UoXltburUqU3/Xr9+fX75y192qN3rr7+e6667LitWrOjwWCtXrsxtt93W6vidUVdXt0UQ3Mc+9rF2M+bddttt+frXv17VWB/84Aezxx57NJWffPLJ/O3f/m2WLl1aVT+LFy/e4jzwZ4LtAACAqrW2jGySrGtc22K9zHYAAAAAAFA7H/7wh/OJT3yiou6+++7LtGnTctVVV2XhwoUttluwYEG+8IUvZO+9987jjz9e8djVV1+dI488ss1xhw0bllNPPbWpvGHDhvz1X/91i0uerl27NjfccEPe9a53ZdGiRRk5cmRHDy9JcsQRR1SUzz777Hz961/Pww8/nD/+8Y955plnmrZXXnmlYtxPfepTmTBhQj784Q/nrrvuajPw7qGHHsqRRx6ZZ599tqnuXe96V6ZMmVLVfFvyqU99Km9/+9ubyi+++GLe/e5355ZbbkljY2PFvqtWrcpll12W0047LY2NjVWdr/r6+txyyy0ZPnx4U93Pfvaz7LPPPvnXf/3XNo//1Vdfzc0335zTTz89u+yyS7761a9WcYTbFt92AQAAVWsts12SrC9bTmle30YbAAAAAACgetdff31GjhyZL3/5yynLMkmyYsWKXHTRRfnc5z6XadOmZZdddsnIkSOzZMmSPPvss/n973+/RT8DBw7MzJkz8/GPf7xD415++eX54Q9/mGXLliVJ/vSnP+WYY47J5MmTs88++6ShoSGLFi3Kgw8+mFWrViVJdtxxx1x99dVVZbh73/vel89//vNN2fpefPHFLQIM3/ShD30oN954Y0Xd8uXLM2vWrMyaNStFUWTy5MnZbbfdMmLEiAwYMCBLlizJE088sUU2wCFDhuSb3/xmh+fZloEDB+amm27KYYcdliVLliRJXnrppbzvfe/L+PHj8453vCM77LBDFi1alN/85jd54403kiQ77LBDrr766nz0ox/t8Fh77rlnbr311pxyyil57bXXkiTPP/98zjnnnJx77rnZe++9M3HixAwfPjyvv/56li1blqeeeqrD2RARbAcAAHRCW5nt1pYtZ7ark9kOAAAAAABq7vLLL89hhx2Wc845J/Pnz2+qL8syc+fOzdy5c9tsv//+++cb3/hGpk+f3uExd95559x666058cQTKzKmLViwIAsWLNhi/1133TX/+Z//mUWLFnV4jCTZbrvt8sMf/jAnnnhiXnjhharaNleWZebPn19xjlqy884757bbbsvee+/dpfE2t+eee+ZnP/tZjj/++Lz00ktN9YsWLcqPfvSjLfYfMWJE7rzzzmzYsKHqsY466qjMmTMnp59+esXyvhs2bMijjz6aRx99tN0+qs1AuC2xjCwAAFC1+qL1W4n1rQTb1UdmOwAAAAAA6A5HHXVU5s2bl5tuuilHHnlkBgxo+w/gGxoacsIJJ+SOO+7InDlzqgq0e9Nf/uVf5qGHHsp73/veFEXR4j5jx47NZz7zmTz66KOZOnVq1WMkyfTp0zNv3rz827/9W0488cRMnjw5w4cPT31969877LDDDrn33ntz4YUX5h3veEe75yNJ/uIv/iJXXnllnnrqqbzzne/s1Fzbsu++++bJJ5/Mueeem2HDhrW4z9ChQ3PWWWflscceyyGHHNLpsSZPnpyHHnood911V4466qg0NDS022bq1Kk599xz86tf/Sq33XZbp8fu74o3U0jC1qYoij2TPPFm+Yknnsiee+7ZizMCAOBNz69+Olc++w8tPnbMqFPyX6/eskX9Lg275aJJ/9zdUwMAAAAA6HPWr1+/Rbat3XffvUMBQtCSVatW5eGHH86CBQuyePHirF27Ng0NDRk/fnymTJmS/fffv0MBWB31yiuv5N57783zzz+f119/PePHj8+uu+6aQw45ZKt4Hb/xxhuZO3du/vCHP+Tll1/OqlWrUhRFhg8fnokTJ2afffbJW9/61h6bz5o1azJ79uw8/fTTWbp0acaOHZsJEybkkEMOyfbbb1/z8VavXp0HH3wwzz77bJYsWZJVq1Zl++23z8iRIzN58uRMnTo1o0ePrvm43XVtmzt3bvbaa6/Nq/Yqy7LtFI410vuvZgAAoM+payOz3brWMttZRhYAAAAAAHrE9ttvn0MPPTSHHnpoj4w3ZsyYnHzyyT0yVmdst912mT59eqcy+HWHhoaGHHPMMT023uDBg3PYYYf12Hj9mWVkAQCAqtW1sSRs69rj1N4AACAASURBVMF2lpEFAAAAAACg7xJsBwAAVK3NzHaNMtsBAAAAAADQ/wi2AwAAqtapzHZttAEAAAAAAICtnWA7AACgam1mtmt1GVmZ7QAAAAAAAOi7BNsBAABVqyvayGzX6jKyMtsBAAAAAADQdwm2AwAAqlbfxq3EunJdy20E2wEAAAAAANCHCbYDAACq1mZmu9aWkY1lZAEAAAAAAOi7BNsBAABVq2srs13jmhbrZbYDAAAAAACgLxNsBwAAVK3tzHatLSMrsx0AAAAAAAB9l2A7AACgam1mtmtlGdm2AvQAAAAAAABgayfYDgAAqFrbme1aDrarj8x2AAAAAAAA9F2C7QAAgKq1mdmusZVgO5ntAAAAAAAA6MME2wEAAFUriiJFK7cTrWa2K2S2AwAAAAAAoO8SbAcAAHRKfdHy7USZspX9ZbYDAAAAAACg7xJsBwAAdEprme1aUx/BdgAAAAAAAPRdgu0AAIBOqTZTnWVkAQAAAAAA6MsE2wEAAJ1SV2WmOsvIAgAAAAAA0JcJtgMAADqlrqhyGVmZ7QAAAAAAAOjDBNsBAACdUnVmuyr3BwAAAAAAgK2JYDsAAKBTZLYDAAAAAABgWyLYDgAA6JS6Km8n6guZ7QAAAAAAAOi7BNsBAACdUm3wnGA7AAAAAAAA+jLBdgAAQKcUVWe2s4wsAAAAAAAAfZdgOwAAoFOqzVRXF5ntAAAAAAAA6LsE2wEAAJ1SV/UysjLbAQAAAAAA0HcJtgMAADqlruplZGW2AwAAAAAAoO8SbAcAAHSKzHYAAAAAAABsSwTbAQAAnVJ1ZrvIbAcAAAAAAEDfJbUEAADQKXVFtcvIuv0AAAAAAICe8Prrr+eRRx7J/Pnz88orr2T16tXZbrvtMn78+EyZMiX77bdfBg0aVJOxnnvuuXzzm9/Mvffem6eeeipLly7NunXrmh6fNWtWzjrrrBbbPvTQQ5k1a1buv//+LFy4MK+99loaGxubHn/66aczadKkJMnhhx+ee++9t+mxsixrMn+ohm+7AACATqmrMlNdfZXLzgIAAAAAAB23YcOG/Md//EdmzZqVX/7yl1m/fn2r+w4ePDjHHHNM/v7v/z7vec97Oj3mDTfckHPPPTdr1qypqt369etzzjnn5IYbbuj02NAbLCMLAAB0SvWZ7QTbAQAAAABAd/jFL36RadOm5Ywzzsg999zTZqBdkqxevTp33HFHTjjhhMyYMSOPPPJI1WP+6Ec/ysc+9rGqA+2S5POf/7xAO/okme0AAIBOqa82s53bDwAAAAAAqLlLL700l1566RbLqhZFkalTp2bChAkZPXp0Fi9enOeeey5PPfVUxX5z5szJgQcemOuvvz4f+chHOjzuRRddVDHmGWeckb/7u7/LLrvskoEDBzbVjxkzpqLdokWL8i//8i9N5UGDBuWf/umfcvzxx2fs2LGpq/vzH/tPmDChw/OBnuDbLgAAoFMKme0AAAAAAKBXnXfeeZk5c2ZF3bBhw3LRRRflzDPPzMSJE7dos2DBgtx444259tprm7LSrV27Nh/96EezatWqnHfeee2O+/vf/z6PPfZYU/n444/PTTfd1KE533777Vm7dm1T+YorrshnPvOZDrWF3mYZWQAAoFOqDZ6rL/ytDwAAAAAA1Mq3v/3tLQLtDj744MybNy8XXXRRi4F2STJ58uRcccUVeeyxx7LXXntVPHb++edn9uzZ7Y49Z86civIpp5zS4Xl3tu3s2bNTlmXTBr1BsB0AANApdVXeTshsBwAAAAAAtfHUU0/lk5/8ZEXdQQcdlB//+McdXnp1ypQp+fnPf56pU6c21TU2NuYDH/hAXnnllTbbLlq0qKJczXKvXWkLvU2wHQAA0Cl11S4jG5ntAAAAAACgFi644IKsXLmyqTxixIjceuutGTp0aFX9jBs3LrfccksGDRrUVPfCCy/k8ssvb7Pd5mMnycCBAzs8ZlfaQm/zbRcAANApdal2GVmZ7QAAAAAAoKt+97vf5e67766ou+qqq7Ljjjt2qr9p06blggsuyJVXXtlU961vfSuXXHJJRo4c2WKbxsbGTo3V1ba1MG/evDz++ONZsmRJli5dmsGDB2fs2LGZOnVq9tlnnzQ0NHSq3/Xr1+ehhx7KH//4xyxevDhr1qzJ2LFjM2nSpLz73e/O4MGDa3wk9AbBdgAAQKdUndmucPsBAAAAAABdNXPmzJRl2VQeM2ZMzj777C71ed555+Waa67JunXrkiSrVq3KDTfckAsvvDBJ8swzz2TXXXdttf0RRxzRYv2sWbOSpM35FUXRYv3TTz+dSZMmNZUPP/zw3HvvvU3lzc9BexYuXJj//b//d37wgx9ssYzt5rbbbrscccQR+dCHPpSTTz459fXtJxJ48sknc8UVV+Tuu+/O8uXLW+33b/7mb3LZZZdlypQpHZ43Wx/LyAIAAJ0isx0AAAAAAPS8n/zkJxXlD37wgxXLwHbG2LFjc8IJJ7Q5Tl9UlmWuuOKKTJ48Oddff32bgXZJ8sYbb+RHP/pRTj311CxcuLDNfTds2JB/+Id/yF577ZXvfve7rQbavdnvzTffnD333DMzZ87s1LGwdZBaAgAA6JRqg+eqDc4DAAAAAKBj1m8o8/zS3p5F/zdhZDKgvuUsbD3l+eefzzPPPFNRd/TRR9ek76OPPjq33XZbU/mBBx7IunXrMnDgwJr039PWr1+f0047LbfeeusWj+24447Ze++9M2bMmKxZsyaLFi3K//zP/2TlypUd6vuNN97IiSeemJ/+9KcV9QMHDsy+++6bCRMmpKGhIS+//HIeeuihvP76601zOu+887J06dJccsklXT5Gep5gOwAAoFOKKhJl16W+1TTwAAAAAAB0zfNLk90+19jb0+j3/nhlXSaN6d05/PrXv96ibvr06TXp+x3veEdF+Y033sijjz6aGTNmZMKECXn66aebHvuXf/mXigxt3/ve9/Kud71riz7HjNl4wg4//PCmutNOOy0PPvhgU3nzfjc3YcKETh3Hm84///wtAu2OP/74XHLJJZkxY8YW+zc2NuaBBx7I97///dx4441t9v2JT3yiItBuhx12yCWXXJK/+7u/y7Bhwyr2feONN/L1r389X/jCF7J69eokyWWXXZYDDjggxx13XCePjt4i2A4AAOiUajLbWUIWAAAAAAC67vnnn68ojx8/PqNHj65J33vttVeL482YMSMDBgzIpEmTmupHjBhRsd+OO+5Y8XhzQ4cObfr34MGDKx5rq11n/fSnP81Xv/rVirqrrroqn/3sZ1ttU1dXl4MOOigHHXRQLrvssi3m+aYf/OAHmTVrVlP5rW99a2bPnt3qcWy33XY5//zzc+CBB+bII4/M6tWrU5ZlPvWpT+X3v/996uo6ntyA3ufZAgAAOqWu6PjtRH3h73wAAAAAAKCrXn311YryyJEja9b34MGD09DQ0OZ4fcVll11WUf5f/+t/tRlo19yIESNaDLYry7Ki7wEDBuTOO+/sUMDgm0F8b1qwYEFuv/32Ds+JrYNgOwAAoFPqqridkNkOAAAAAAC6rnnwW/MMc13VvL8lS5bUtP+e8Nhjj1Ustzts2LBcffXVNen7l7/8ZZ544omm8plnnpl99tmnw+0/8YlPVATx3XnnnTWZFz1HsB0AANApddUsIxuZ7QAAAAAAYGtXFEVvT6HLfv7zn1eUzzjjjAwfPrwmfd9zzz0V5VNPPbWq9kOGDMk73/nOpvKvfvWrmsyLnuMbLwAAoFNktgMAAAAAgJ41atSoivJrr71W0/6XLVvW5nh9wf33319RPvzww2vW93333VdRHjVqVJ555pmq+tg88O+ZZ55JY2Nj6urkS+srBNsBAACdUlVmO8F2AAAAAADdZsLI5I9XCtbpbhNG9vYMtgx+W7p0ac36Xr16dVavXl1RN3r06Jr131NeeumlivKee+5Zs74XLlxYUX7Xu97Vpf4aGxuzbNmyPhnUuK0SbAcAAHRKfaoJtnPrAQAAAADQXQbUF5k0prdnQU/YeeedK8ovv/xylixZUpOguLlz57Y7Xl+wZMmSivLIkbWLkmzedy2sWLFCsF0fIqwZAADolKKoYhnZKgLzAAAAAACAlh100EFb1M2ZM6cmfTfvZ7vttsu+++5bk757U1EUNetr7dq1NevrTWVZ1rxPuo9gOwAAoFNktgMAAAAAgJ41ceLETJw4saLupz/9aU36vueeeyrKBxxwQAYNGlSTvnvSmDGVaR5fffXVbul78ODBaWxsTFmWXdomTZpUs/nR/QTbAQAAnVJVZrtCZjsAAAAAAKiFY489tqL8ne98J+vWretSn4sXL86dd97Z5jh9xU477VRRnjdvXs36Hj9+fNO/V69eneeee65mfdM3CLYDAAA6pb6K2wmZ7QAAAAAAoDY+/elPVyyNunjx4syaNatLfc6cObMiYG/77bfPRz7ykS712Vve/e53V5Rnz55ds76bL+Nbq6yC9B2C7QAAgE7Zrn77ju9b1/F9AQAAAACA1k2bNi3HHXdcRd1nP/vZLFq0qFP9zZs3L9dcc01F3dlnn51Ro0Z1eo696aijjqoof/e7382KFStq0vcxxxxTUf73f//3mvRL3yHYDgAA6JS/GLJPh/fdo4p9AQAAAACAtn3lK1/JkCFDmsrLli3LSSedlJUrV1bVz+LFi3PKKadk7dq1TXU77bRTvvSlL9Vsrj1tzz33zGGHHdZUXr58eS666KKa9H3cccflbW97W1P5oYceyv/5P/+nJn3TNwi2AwAAOmXUwLF537i/b3e/aUP2y8Ejjml3PwAAAAAAoGP22GOPXHfddRV1999/f4477rg8//zzHepj/vz5OfLII/Pkk0821dXV1eU73/lOxo4dW9P59rTmwYJf+9rX8pWvfKXD7V977bWsXr16i/oBAwbksssuq6j7+Mc/nttuu63qOf7sZz/LH//4x6rb0bsE2wEAAJ12xMj35EuTrs+p4z6aE8acWbGdOOaDOW+Xy/PxCZ/PoLqG3p4qAAAAAAD0Kx/+8IfziU98oqLuvvvuy7Rp03LVVVdl4cKFLbZbsGBBvvCFL2TvvffO448/XvHY1VdfnSOPPLLb5txT/vIv/zLnn39+Rd0FF1yQv/mbv8nDDz/cYpvGxsb85je/yac//enssssuefnll1vc74wzzsiHP/zhpvLatWtz8skn58wzz2y17yTZsGFDfvvb3+bSSy/NtGnT8ld/9Vd57rnnOnF09KYBvT0BAACgb9uxYUJ2bJjQ29MAAAAAAIBtzvXXX5+RI0fmy1/+csqyTJKsWLEiF110UT73uc9l2rRp2WWXXTJy5MgsWbIkzz77bH7/+99v0c/AgQMzc+bMfPzjH+/pQ+g2V199dZ577rn84Ac/aKq76667ctddd+Utb3lL9t5774wePTpr1qzJyy+/nMceeywrVqzoUN//9m//lqVLl+aHP/xhU913v/vdfPe7383YsWPz9re/PaNHj05dXV2WL1+eF198MU8++WSL2fLoWwTbAQAAAAAAAABAH3X55ZfnsMMOyznnnJP58+c31Zdlmblz52bu3Llttt9///3zjW98I9OnT+/uqfao+vr63Hzzzdlzzz3z5S9/OevWrWt67MUXX8yLL77Y6b4HDhyYW2+9Nddcc00uvvjiiiC6xYsX52c/+1mH+th+++07PQd6h2VkAQAAAAAAAACgDzvqqKMyb9683HTTTTnyyCMzYEDb+bcaGhpywgkn5I477sicOXP6XaDdm4qiyMUXX5zf//73+chHPpJRo0a1uf/QoUNz4okn5vbbb8/EiRPb7fvCCy/M008/nX/6p3/KW9/61nbnM2zYsBx//PH52te+lpdeeikzZsyo6njofcWbKSRha1MUxZ5Jnniz/MQTT2TPPffsxRkBAAAAAAAAQO2tX7++IiNZkuy+++7tBkxBa1atWpWHH344CxYsyOLFi7N27do0NDRk/PjxmTJlSvbff/80NDT09jR7XGNjYx555JH87ne/yyuvvJKVK1dm++23z7hx47LHHntkn332ycCBAzvd/9NPP51HHnkkixcvztKlS1NXV5dhw4blLW95S/bYY4/svvvuqa+vr+ERbd2669o2d+7c7LXXXptX7VWWZdspHGvEVRkAAAAAAAAAAPqR7bffPoceemgOPfTQ3p7KVqWuri7Tp0/vtkx+u+66a3bddddu6Zutg2VkAQAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAHpRURRb1JVl2QszAaidxsbGLepaut71JYLtAAAAAAAAAAB6UV3dluEb69at64WZANTO+vXrt6hr6XrXl/Tt2QMAAAAAAAAA9HFFUWTQoEEVdStXruyl2QDURvPr2KBBg2S2AwAAAAAAAACga4YNG1ZRXr58uaVkgT6rLMssX768oq75da4vEmwHAAAAAAAAANDLmgehrFu3Li+88IKAO6DPKcsyL7zwwhbLYQ8fPryXZlQ7A3p7AgAAAAAAAAAA27rBgwdn4MCBFcEpK1asyB/+8IcMHz48Q4cOzYABA1JXJ68SsPVpbGzM+vXrs3LlyixfvnyLQLuBAwemoaGhl2ZXO4LtAAAAAAAAAAB6WVEUectb3pLnnnuuIpvdunXrsmTJkixZsqQXZwfQeW9e34qi6O2pdJlwZwAAAAAAAACArcCQIUMyceLEfhGQApBsDLSbOHFihgwZ0ttTqQnBdgAAAAAAAAAAW4k3A+4GDhzY21MB6JKBAwf2q0C7xDKyAAAAAAAAAABblSFDhuRtb3tb1qxZk+XLl2fFihVZu3Ztb08LoF2DBg3KsGHDMnz48DQ0NPS7TJ2C7QAAAAAAAAAAtjJFUWTw4MEZPHhwxo0bl7Is09jYmLIse3tqAFsoiiJ1dXX9LriuOcF2AAAAAAAAAABbuaIoUl9f39vTANim1fX2BAAAAAAAAAAAAGBrJ9gOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoxoLcnAG0YtHlhwYIFvTUPAAAAAAAAAABgK9BCDNGglvbrDkVZlj01FlSlKIq/SXJHb88DAAAAAAAAAADYar23LMs7e2Igy8gCAAAAAAAAAABAOwTbAQAAAAAAAAAAQDssI8tWqyiKHZIctlnVwiRre2k60Be8LZVLL783yR96aS5A/+Q6A3Q31xkAusrPEqC7uc4A3c11BuhurjNAfzAoyS6ble8ty/K1nhh4QE8MAp2x6U3QI+spQ39QFEXzqj+UZTm3N+YC9E+uM0B3c50BoKv8LAG6m+sM0N1cZ4Du5joD9CO/7Y1BLSMLAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0QbAcAAAAAAAAAAADtEGwHAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0QbAcAAAAAAAAAAADtEGwHAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0QbAcAAAAAAAAAAADtEGwHAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0Y0NsTAKBmFie5tFkZoJZcZ4Du5joDQFf5WQJ0N9cZoLu5zgDdzXUGoAuKsix7ew4AAAAAAAAAAACwVbOMLAAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtEOwHQAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtEOwHQAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtEOwHQAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtGNAb08A2HoURVGfZHKSaUnekmSHJGuSLE3yhyRzyrJcVeMxByZ5d5KJSXZKsjLJi0l+W5blM7Ucq6cURbFnkn2TjE3SkOTlJM8n+XVZlqt7c249qSiKkUn2TLJ7klFJBidZlmRxkofLsvxDL05vC0VR7JqNz9tbkgxN8lKSZ5PcX5bluhqO89Yk78jG1/sOSdZl43mZn43nZUWtxtoauc7UhuvMRn3tOkPPcJ2pDdeZjfrCdaYnX/N94XxALfTHnyX98ZhqpafuBfsK56Nn9Mf3ZH88plrxvqrkM7ie0R/fk/3xmGrFdYbe0B/fk/3xmGrFdcZncEAzZVnabLZteMvGX97OS3J3kteSlG1s65P8OMlf12DcsUm+nmRJG+P9OsnJXRxntySnJrkmyewky5uN8UyNzuOwJJ9P8kIbx7M8yXeSvK0Xn+9uOx9JBiY5Jsn1SZ5o57VUbjpXlyXZsZffA6ckub+NeS7Z9Fod04UxhiS5MMlT7ZyTDUn+M8nRvXlOuuEcu87U5jy6zvTB60x3vz46cA7a2yb11rmp8Xl2nanNeXSd6SPXmZ56zfeV82Gz1WLrjz9L+uMx1fg574l7we2THJzkH5LclI33hI3Nxjmrt1//zkePneN+957sj8dU4+fc+6rnz4fP4PrZe7I/HlONn3PXmT/P02dwPXOe+917sj8eU42f8236OtNTr4/4DM5m63Nbr0/AZrP13pbku124MbgryfhOjntckkVVjPX/Jdm+iv4PT/Jf7fyCWpMbrE3jHZCNf2XS0eNZleTjPfg8d/v52HQOXu3ka2lpkg/0wut/aJLvVTHPl5Mc04lxDkzyx06cl+8mGdLT56UbzrPrjOvMNned6cnXRxfeX29uk3rqvHTj+XadcZ3Zpq4zPfWa7yvnw2arxdZT76sWxu22nyX98Zhq+Hx3+71gNn7Z9Hg2ftnSXv9n9fLr3/nomfPc796T/fGYvK/67vnYNI7P4PrZe7I/HlNfel/1hetMfAbX0+e7370n++Mx1fD53uavMz31+ojP4Gy2PrlZRha2bVNaqX8hG9PpL8rG5aZ3S/L2JHWb7fOeJP9dFMVhZVm+3NEBi6I4PMntSQZtVl0meSQbPwwZkWS/JGM2e/zMJMOLojixLMvGDgyzb5KjOzqnriiK4qhs/GuGhmYPPZvksWz8InpCNv6iNHDTY0OSfL0oirqyLL/WA9PsifMxNsnIFurXZuMvyi9n4198jE4yfdP/3zQiyXeKohhXluU/d/M8kzSler45yfHNHlqc5Leb5vq2bHwtFpseG5/kjqIojirL8r4OjnNgkp9m403J5lYk+X/Z+B5ryMa003ul8j12epJxRVEcX5bl2g4e2tbIdaaLXGea9KXrTI+9PkjiOtNlrjNN+sp1pqde833lfEAt9MefJf3xmLqsp+4Fk5yRjUsKbdWcjx7VH9+T/fGYusz7qpLP4HpUf3xP9sdj6jLXmQo+g+tZ/fE92R+PqctcZ5r4DA5oXW9H+9lstt7bkszJnyPfH0nyybSyJFiSnZN8I1tGzP8qSdHB8SZky8j8+5JMbbZfQ5JPZeMvEZvve2UHxzmvhXmWSVYnWdCs7pkunL9J2fIvphYk+asW9h2Z5Lpm+25oad9ueJ67/Xxk4y+Nb/axIsm3khyZZLsW9i2S/G02foHffE7dfj42zeGaZuOu3fT6H9Rsv2nZMj32K0l26sAYg1s4v69vem0PbmH/tyW5s4VzclFPnJNuPNeuM64z29x1pqdeH5vG2ryvBza9ZqrZBnT3+eiB8+064zqzTV1neuo131fOh81Wi60//izpj8dUo+e62+8FN7Vf1sL5LJM838JjZ/Xia9/56Llz3e/ek/3xmGr0XHtf9fD5iM/g3jyufvee7I/HVKPn2nXmz3P0GVzPnu9+957sj8dUo+fadaYHXx/xGZzN1ie3Xp+AzWbrvS0b/6rv7iTTq2hzTgs/vE/rYNtvNWv367Twgcdm+5/YbP/VSd7agXHO2/SL32+T3JDko0n2z8ZMLIc36/OZLpy/5umT5ycZ106bC5u1mZukvpuf524/H5t+EVyU5Px0PD336CTzmo3/ZHu/dNbgfOyWLW9Q3tvG/ttly5uFf+vAOGc1a9OYdlJob/ol+Qf/f3v3HjVJUd5x/PfICstNFkFYQGFZXbyhBKIJKEkWAwT0eAGJGhKzK94SjEeNehK8nKgxahIkehKDGhVJvESjYsBFMCiLBC8ILsrNW2RRiCC7LIRF9gZP/uh52Z56Z6a7Z3q6u2q+n3P6j+q3q7uqpurp6Xq7e4J8dyu4gIlpIc4QZ2Y0zjTSP3rHyu9r9TTr1dWFOEOcmbU401Sfj6U9WFjqWFI8l6RYpxo+50auBXt571L29oFVkt7ei6n79v62Otjnypb6Pe3RbHsnNyZTrFMNnzPjqoX2EHNwc3VKbkymWKcaPmfiTH8ZmYNrtr2TG5Mp1qmGz5k403D/EHNwLCxRLq0XgIWFpb1F0pIx830uOHmvKpFnmaRtuTybJS0rke/jwbE+ViLPnsO+nKq+f8YuVfYml/y+ji6Z92tBvtOm/Dk30R6PKPsFMMh32IB2fOqU2+Pc4HjnlMhzSK/PzuXZKmlpQZ7PB8c5r2T5Fmv+hcyx02yTKbf3kjHzEWeIM+F+YoozU2+P3P7y+1o9zXp1dSHOEGdmLc401edjaQ8WljqWFM8lKdaphs+5kWvBXr6hjyZEhAAAGD9JREFUb3JQB/5pRHu00t5LxszX2TGZYp1q+JwZVy20h5iDm6vPkjHzdXZMplinGj5n4kx/OZiDa7a9l4yZr7NjMsU61fA5E2ca7h9iDo6FJcol/7vRAGaMu68dM+sHgvQxJfKcKmmHXPoL7v7jEvn+Nki/wMwWjsrg7hvcfVOJfU/iWVJfDP2Wu/93ybxnBumX1FOkwZpoD3e/w93vHSPf95S9IjuvTH8ai5ntLOmUYHXYx+Zx9x9J+mJu1QJlfXqUpUH6gsICZse6TdKVweplZfJ2EXFmIsSZ/mNEEWd6x2yif6CHODMR4kz/MaKIM031+VjaA6hDiueSFOs0iYavBeXuv6hUwIbRHs1LcUymWKdJMK76MQfXvBTHZIp1mgRxZj7m4JqV4phMsU6TIM70Yw4OwCjcbAdgHGuC9M5mtqggz0lB+pwyB3L3GyV9O7dqV0nHl8k7Zb8dpC+ukPeryp6anPM0M9tv8iJFK+xP+0/xWL8naZdc+pvu/oOSecM+e3LB9rsG6VtKHkeSfh6k96yQNxXEGeJMnZqMM4gHcYY4U6cY4sw4fb6uY3WxPYA6pHguSbFOUrPXgjGgPeKR4phMsU4S4yrEHFw8UhyTKdZJIs4gXimOyRTrJBFn6sIcHDADuNkOwDi2DVi347CNzWyxslfZ5vNfUeF4q4P0iRXyTssjg/R1ZTO6+2ZJP8mteoi6Uae2hP1paF+qwQlBenWFvJerv6yHm9m+I7a/LUhXedIo3PbOCnlTQZwhztSpyTiDeBBniDN1iiHOVOrzNR+ri+0B1CHFc0mKdZKavRaMAe0RjxTHZIp1khhXIebg4pHimEyxThJxBvFKcUymWCeJOFMX5uCAGcDNdgDG8ZggvU3SuhHbHxqkv1/xdbjfCNJPrJB3Wh4epO+qmD/c/kkTlCV2YX+a5mujw774zbIZe3322mD1qL54eZA+ouyxBmz7nQp5U0GcIc7Uqck4g3gQZ4gzdYohzlTt83Ueq4vtAdQhxXNJinWSmr0WjAHtEY8Ux2SKdZIYVyHm4OKR4phMsU4ScQbxSnFMplgniThTF+bggBnAzXYAxnFKkL7K3R8Ysf0TgvRPBm413P8U7K8NW4L0ThXzh9t3oU6NM7OHSTouWH3lFA/5+CA9zb74EfX3k9PMbOeiA5jZSZIOzK263t2vLl/EZBBniDO1aCHOtOlAMzvHzK43sw1mtsXMbu+lP2FmrzCz8OaqWUacIc7UIqI4U7XPjyWi9gDqkOK5JMU6Sc1eC8aA9ohHimMyxTpJjKsQc3DxSHFMplgniTjTJczBVZPimEyxThJxpi7MwQEzgJvtAFRiZrtJemmw+ryCbOFd9T+reNibg/ReZrZnxX3UbX2Q3q9i/nD7x05Qlpi9UtIuufTdki6dxoF6F7fhBW7Vvhhuv2zYhu5+k6QzcqseJenTZrbLkCwys6cqmyCc84CkV1csY/SIMw8iztSjsTjTAQdLWqlsEmORpIdK2qeX/kNJH5L0MzP7h944m1nEmQcRZ+rR+TgzZp8fV+fbA6hDiueSFOskNX8t2HW0RzxSHJMp1kliXIWYg4tHimMyxTpJxJkOYg6upBTHZIp1kogzdWEODpgd3GwHoKp3S1qcS9+l/omJQRYF6V9WOaC7b5S0KVi9R5V9TMGNQfrIshnN7EBJ+wer265P48xsiaS3Bqvf7+7hW3bqEvbDX1V8Tbc0v++O/Nzc/SxJb5S0tbfquZJuMLO/NLOjzWyZmT3RzJ5nZudIukLbL2a2SjrN3WfxizFxJkOcmVALcSYGu0p6raSrzWxWX+MvEWfmEGcmFFGcGafPVxZRewB1SPFckmKdpBauBTuO9ohHimMyxTpJjKsQc3DxSHFMplgniTgTI+bgMimOyRTrJBFn6sIcHDAjuNkOQGm9V+v/WbD6ze5+Z0HW8Mmd+8Y4fJhn9zH2UafLgvTzRz0tGfjjAevark+jzGxHSZ9Rf73XSvq7KR62lX7o7mdKOkzSxyRtkHSQsi/bl0v6kaTrlD3VslLZE3CSdImkI9393DHKGDXiTB/izARaijNt2SZptaS3SHqOpCOUPTV4uLJ/MJyp+RMdh0i6xMwOaq6Y3UCc6UOcmUAscWaCPl/1OFG0B1CHFM8lKdYpJ4YyNon2iECKYzLFOuXEUMYmMQcXgRTHZIp1yomhjLOAObgKUhyTKdYpJ4YydhpzcMBs4WY7AKWY2WGS/jVY/RVJZ5fIHn5BC5++KCP8gtb2q7dXKXsaYc4iSW8rymRmj5L0hgF/2sHMdq6naFH4iKTfyKXvl7RijKdkqmizHy5Q9nMUW4s2lHSupNe5+3erFCwFxJl5iDOTaSPOtOEtkg5w92Pc/W/c/QJ3X+PuP3H3a9z9fHd/o7J/MrxHkufyLpb0BTOzNgreBuLMPMSZyXQ+zkzY56vqfHsAdUjxXJJinQr218UyNon26LgUx2SKdSrYXxfL2CTm4DouxTGZYp0K9tfFMqaOObgKUhyTKdapYH9dLGNnMQcHzB5utgNQqPczYavU/6XoZkl/5O4+ONdITeWZGne/R9L7g9VvMLPXDMtjZo+UdJGGvza5U3WcFjP7a0kvDlaf4e5fb7goU++HZraTmf2jpO9JepmkfUpkWyHpWjM7v9dnZgJxZj7izPg6FGemrje5V/izA+6+yd3PkPTq4E9HSPqDqRSuY4gz8xFnxhdDnJlCnx91rM63B1CHFM8lKdZpSsdL+fxGe3RIimMyxTpN6Xgpjyvm4DokxTGZYp2mdLyU48zUMQdXXopjMsU6Tel4MxlnmIMDZtOCtgsAoNvMbB9J/yXpgNzq2yQd5+53lNzNxiA9zhtPwjzhPtvwLkknavvTAybpfWZ2iqSPSrpG2VMc+/e2+1Nt/6J1i6T8JM4md5/3lIiZLSlbGHdfW6n0LTCz1yp7AizvLHf/+5L5l5Q91oD2aLQfmtkCSV+UdEK+WMp+ruJcSVdJWidpJ0kHSnqGsgvwZb1tny3pKDM7zt2vGaOs0SDOjEScqajlONN57v4BMzte2U9dzDld0qdaKlIjiDMjEWcqiiHO1NTnyx5rovYAYpHiuSSmOsV0LdgE2iNNMY3JsmKqE+OqX0ztwRxceTGNybJiqlNM46oJqc0VhJiD6/6YLCumOhFn+jEHB2CauNkOwFBm9nBJl0g6JLd6naRj3f3HFXaV3Bc0SXL3LWZ2sqQLJT0596eje8sw6yW9VNLFuXV3Ddn2pgpF6vQryM3s5ZLOClaf7e6vr7CbSdqj6X74VvVP8t0n6RR3vzDYbouk6yVdb2YflvTPkk7r/W1vSV8ys8Pcff0Y5e084sxoxJlqOhBnYvFu9U/0HWlmi9x9WB+JGnFmNOJMNTHEmRr7fJlj1dEeQOeleC6JsE4xXQs2gfZITIRjslCEdWJc9YupPZiDKyHCMVkowjrFNK6akMxcwQjMwXV7TBaKsE7EmX7MwQGYGn5GFsBAZraHst+Sf1Ju9QZld+JfX3F3dwfpR1Qsy26a/wWtExcj7n6rpKdJ+pCkrSWyXCrpKZLuDdbfVnPROsXMXizpg+r/snqOpFc1WIywH+5iZrtW3Ef4ExQD+2HvC3b4Bff0AZN8fdx9s6SXS7ost/oASW+qWM4oEGfKIc6U05E4E4srlY21OTtIekJLZZkq4kw5xJlyYogzNff5omN1vj2AOqR4LkmxTgUauxaMBO3RMSmOyRTrVIBx1Y85uI5JcUymWKcCxJk4MQcX8ZhMsU4FiDMVMAcHgJvtAMxjZrtLukjSr+dW/5+kE8Z8lX549/5BFfOH29/p7hsGbtkCd7/X3f9E0mMlvVnZP6BvUfYU5T2SblT2kwXHSfrd3quIHx/s5qrGCtwwM3uRsi99+XPOJyW9zN29qXL0nkoN+82BFXcT9sVhT6Y8U1L+IuQmZX2gkLs/IOkdweoVZhbr03sDEWeqIc6M1pU4E4tenPlZsLrSBE8MiDPVEGdGiyHOTKHPjzpW59sDqEOK55IU61Sk4WvBzqM9uiXFMZlinYowrvoxB9ctKY7JFOtUhDgTJ+bg4h2TKdapCHGmPObgAEj8jCyAQO8phQslHZlbvVHSie5+5Zi7vTFIP6Zi/qVB+oYxyzFV7n6TpHf1liJHBelvD9ln1JM7ZvZ8Sf+m7ImtOf8haUXvQrOSGtrjRmVv7pnzGM3vn6OEfXFY3sOC9KUVv/R+XdlPW+zYS++lrKxJXJgQZ8ZHnJmvg3EmFvcF6XF+FqCziDPjI87MF0OcmVKfH3asWtsD6KoUzyUx1ymia8FG0B5piHlMDhNznRhX/SJqD+bgRoh5TA4Tc50iGleNiH2uoALm4KojzsxHnBkDc3AApok32wF4kJntLOlLko7Orf6VpGe5+zcm2PV1QfrJZrZLhfxPL9hfVHpPRz4jWH3ZoG1jZmbPkfRp9d/Y/UVJp7r7/e2Ual7fCW8SGKr3BfrJBfubsyhIV/pZPXffJml9sHrvKvvoKuJMM4gzrcaZWIQxZV0rpZgC4kwziDPdiTNT7PODjtX59gDqkOK5JMU6VdTUtWAsaI+WpTgmU6xTRYyrfszBtSzFMZlinSoizsSJObjqiDPzEWc6gDk4AHncbAdAkmRmCyWdL2l5bvUmSc9x969Psm93/4Wk7+dWLVD/F5Eiy4P0lycpTwc8Q9KSXPoyd0/iack5ZvZMZU9XPDS3epWkF/YmsdpyUZBeXiHvb6n/S+0ad799yLZ3BeldB2412m5BeuMY++gU4kyjiDMYysz21vynDP+3jbLUjTjTKOJMB0yzzw84VufbA6hDiueSFOs0hqauBWNBe7QoxTGZYp3GwLjqxxxci1IckynWaQzEmcgwBzce4sxAy4M0caZhzMEBCHGzHQCZ2Y6SviDp2NzqzZKe5+5frekw5wXpl5Qs2+Mk/WZu1b2SvlJTmdryF0H6Q62UYkrM7DhJn9f2n1+Qss/s+e6+pZ1SPehi9b+2/aheHytjZZAO+3ReeMF8eMljSJLMbJmk3YPVlZ7M7RriTOOIMxjlReq/DrhdCfz0F3GmccSZljXU5+eO1fn2AOqQ4rkkxTqNqalrwVjQHi1JcUymWKcxMa76MQfXkhTHZIp1GhNxJj7MwY2POLO9bMSZljEHB2AQbrYDZpyZLZD0WUkn5lZvlXSKu19c46E+KSn/WtuTe5MZRcJ/5H7W3TfVV6xmmdkKScflVl2j7OmEJJjZ70j6T0kLc6u/puwL5+Z2SrWdu/9K0ueC1WEfm8fMDpF0Um7VNkmfGpFldZB+upk9oUwZe14ZpH/o7ndUyN8pxJlmEWcwipntK+ktweoL3N3bKE9diDPNIs60r8E+H0V7AHVI8VySYp3G1eC1YBRoj3akOCZTrNO4GFf9mINrR4pjMsU6jYs4Exfm4CZGnNmOONMi5uAADOXuLCwsM7pI2kHSZyR5btkq6aQpHe+jwbGukLRwxPbPDbbfLOmgCcuwPNjn2gn3t6DCtidL2hK09eEt94Ha2kPSUZLuCfZ3maRd2qzjgHIuDT4HV/aa52HbL+z11fz2Hyw4hkn6YZDnakm7lyjfCQPK9862222C9ibOEGdmLs400R6SHivp2RXzLJb0nQF9fmnb7TJhmxJniDMzFWea7PMxtAcLSx1LiueSFOtUQxmnfi1Yshyrg32unGa9aY9uLCmOyRTrVEMZGVcNt4eYg8vXJ7kxmWKdaigjcaZ8GZcHZVw75n6Yg9ter+TGZIp1qqGMxJkW+oeYg2NhiW7J/242gNnzMUkvCNa9SdIaM1tScV+3efGTFH+l7MmGPXvpp0m6xMxe5u4/mNvIzHaS9ApJ7w3yv9fdby5TGDN7pDQwxi0O0gtG1HWju68rONS1ZrZK2St9v+3uDwwoy6GSzpB0avCnN7n7moL912La7WFmh0v6sqTdcqt/KOlVkvYxsyrF3eTuU/u5Bnf/qZm9X9Ibcqs/Z2Z/LunDnnsNs5k9XtJHlPXVOeslvb3gGG5mZyjrF3OOkHR17zir3N3zecxsL0mvUdZX8p/Veklnlq1fBxFniDMzF2ekRvrHfpLON7NrJX1C0nnu/uMhZdld0gplT9PuG/z5ne7+0yHHiAVxhjgza3GmkT4fUXsAdUjxXJJinSbSxLVgLv9ukvYe8ueFQXrvEZ/JLe6+rcwxq6I9GpfimEyxThNhXPVjDq5xKY7JFOs0EeLMfMzBNSrFMZlinSZCnOnDHByAoSy4zgAwQ8yszgBwjLuvLnHM5ZIuVv9vzc89cfhTSXsomxB5RJD1S8pek3u/SjCztZIOKrPtCOe6+8qC46yTtFcvuVHStZJ+IWmTsjocMqQc73T3t05YvtKm3R5m9jZlFwl1uMzdl9e0r4HMbAdJF6j/tc+S9EtJ31X29MhSZX0x/y12i6Rj3f3yksc5S9LrBvxpvbI+v07ZWFgi6dc0f1Jgs6RnuvvXyhyvi4gzhYgz/VKKM2s13fZYLunSYPXdkq5TFlvuUXZx/ihJh2nwpOOH3T38yZzoEGcKEWf6RR9nmurzsbQHUIcUzyUp1qkODV4LrpR0zqTllXSwu6+tYT8D0R7NSXFMplinOjCu+jEH15wUx2SKdaoDcaYfc3DNSXFMplinOhBnMszBARiFN9sBaJS7rzazkyR9XNu/KJqkp/SWQT4t6eVNfIGc0G7KXvM7ygZJp7v7vzdQHgzh7veb2QuUPXHzwtyf9lH2ExKD/FLSirIXCT2v7+V7u/ovnPaSdHxB3puVvRZ7dYXjQcQZEWdm2R6Snl5iu3slvc7d/2XK5UkWcYY4AwCTSvFcEkOdGrwWjALtkbYYxmRVMdSJcdWPObi0xTAmq4qhTsSZTmAOriExjMmqYqgTcQYAij2k7QIAmD3ufqGkQyV9UNk/a4f5lqRT3P1Ud7+3kcJV9z5JayTN+7m1wM8lvUPSo/nHdDe4+0Z3f5Gk31fW14a5U9LZkg5194sqHsPd/T2SniTpnzS6v8+5QdkE4aFM8o2POEOcmQE3SnqXpCsk3Vcyz4+UveZ+CZN8kyPOEGcAYFKJnUskxVGnJq4FY0J7pC2GMVlVDHViXPVjDi5tMYzJqmKoE3GmUczBtSyGMVlVDHUizgDAaPyMLIBWmdmOyp4AOkjSYmVP+twqaY2739Rm2aows4dJOlzSwcqeRFmo7MLrVknfc/cbWiweSjCzg5W98np/SbtKuk3Zk61XuPuWmo5hkh6n7HXye0t6mKRtku5S1leucvfb6zgWtiPOIHVm9hBJyyQ9WtIBkhZpe//YoOznQL/j7ne0VsjEEWcAAJNK5VySF0udmrgWjAntka5YxmQVsdSJcdWPObh0xTImq4ilTsSZZjAH175YxmQVsdSJOAMA/bjZDgAAAAAAAAAAAAAAAACAAvyMLAAAAAAAAAAAAAAAAAAABbjZDgAAAAAAAAAAAAAAAACAAtxsBwAAAAAAAAAAAAAAAABAAW62AwAAAAAAAAAAAAAAAACgADfbAQAAAAAAAAAAAAAAAABQgJvtAAAAAAAAAAAAAAAAAAAowM12AAAAAAAAAAAAAAAAAAAU4GY7AAAAAAAAAAAAAAAAAAAKcLMdAAAAAAAAAAAAAAAAAAAFuNkOAAAAAAAAAAAAAAAAAIAC3GwHAAAAAAAAAAAAAAAAAEABbrYDAAAAAAAAAAAAAAAAAKAAN9sBAAAAAAAAAAAAAAAAAFCAm+0AAAAAAAAAAAAAAAAAACjAzXYAAAAAAAAAAAAAAAAAABTgZjsAAAAAAAAAAAAAAAAAAApwsx0AAAAAAAAAAAAAAAAAAAW42Q4AAAAAAAAAAAAAAAAAgALcbAcAAAAAAAAAAAAAAAAAQAFutgMAAAAAAAAAAAAAAAAAoAA32wEAAAAAAAAAAAAAAAAAUICb7QAAAAAAAAAAAAAAAAAAKMDNdgAAAAAAAAAAAAAAAAAAFOBmOwAAAAAAAAAAAAAAAAAACnCzHQAAAAAAAAAAAAAAAAAABbjZDgAAAAAAAAAAAAAAAACAAtxsBwAAAAAAAAAAAAAAAABAAW62AwAAAAAAAAAAAAAAAACgADfbAQAAAAAAAAAAAAAAAABQgJvtAAAAAAAAAAAAAAAAAAAowM12AAAAAAAAAAAAAAAAAAAU4GY7AAAAAAAAAAAAAAAAAAAKcLMdAAAAAAAAAAAAAAAAAAAFuNkOAAAAAAAAAAAAAAAAAIAC3GwHAAAAAAAAAAAAAAAAAEABbrYDAAAAAAAAAAAAAAAAAKAAN9sBAAAAAAAAAAAAAAAAAFDg/wFRlxEKZVemhQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import yappi\n", + "\n", + "from apd.aggregation.analysis import interactable_plot_multiple_charts, Config\n", + "from apd.aggregation.analysis import clean_temperature_fluctuations, get_one_sensor_by_deployment\n", + "from apd.aggregation.utils import profile_with_yappi\n", + "\n", + "yappi.set_clock_type(\"wall\")\n", + "\n", + "filter_in_db = Config(\n", + " clean=clean_temperature_fluctuations,\n", + " title=\"Ambient temperature\",\n", + " ylabel=\"Degrees C\",\n", + " get_data=get_one_sensor_by_deployment(\"Temperature\"),\n", + ")\n", + "\n", + "with profile_with_yappi():\n", + " plot = interactable_plot_multiple_charts(configs=[filter_in_db])\n", + " plot()\n", + "\n", + "yappi.get_func_stats().print_all()" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r\n", + "Clock type: CPU\r\n", + "Ordered by: totaltime, desc\r\n", + "\r\n", + "name ncall tsub ttot tavg \r\n", + "..futures\\thread.py:52 _WorkItem.run 7 0.000000 9.515625 1.359375\r\n", + "..lchemy\\orm\\query.py:3232 Query.all 6 0.187500 6.390625 1.065104\r\n", + "..lchemy\\orm\\loading.py:35 instances 67353 0.046875 6.140625 0.000091\r\n", + "..esult.py:1257 ResultProxy.fetchall 6 0.000000 5.109375 0.851562\r\n", + "..py:1217 ResultProxy._fetchall_impl 6 0.000000 5.078125 0.846354\r\n", + "..38\\Lib\\threading.py:859 Thread.run 2/1 0.000000 3.125000 1.562500\r\n", + "..rrent\\futures\\thread.py:66 _worker 2/1 0.000000 3.125000 1.562500\r\n", + "..b\\asyncio\\events.py:79 Handle._run 29 0.000000 3.125000 0.107759\r\n", + "..WindowsSelectorEventLoop._run_once 17 0.000000 3.125000 0.183824\r\n", + "..lectorEventLoop.run_until_complete 1 0.000000 3.125000 3.125000\r\n", + "..ndowsSelectorEventLoop.run_forever 1 0.000000 3.125000 3.125000\r\n", + "..gation\\analysis.py:291 plot_sensor 1 0.031250 3.046875 3.046875\r\n", + "..egation\\analysis.py:313 4 0.015625 2.703125 0.675781\r\n", + "..and_clean_temperature_fluctuations 4 0.046875 2.687500 0.671875\r\n", + "..184 clean_temperature_fluctuations 4 0.062500 2.640625 0.660156\r\n", + "..sycopg2\\_json.py:164 typecast_json 67339 0.312500 2.562500 0.000038\r\n", + "..-input-1-879b7ebf06b8>:7 4 0.234375 2.515625 0.628906\r\n", + "..gregation\\query.py:116 subiterator 4 0.390625 2.281250 0.570312\r\n", + "..n38\\Lib\\json\\__init__.py:299 loads 67339 0.515625 2.250000 0.000033\r\n", + "..es\\psycopg2\\extras.py:686 67347 0.156250 1.796875 0.000027\r\n", + "..on38\\Lib\\uuid.py:130 UUID.__init__ 67347 1.000000 1.640625 0.000024\r\n", + "..\\decoder.py:332 JSONDecoder.decode 67339 0.718750 1.546875 0.000023\r\n", + "..d\\aggregation\\query.py:41 get_data 1 0.312500 1.531250 1.531250\r\n", + "..ion\\database.py:77 from_sql_result 67339 0.468750 1.218750 0.000018\r\n", + "..chemy\\orm\\loading.py:83 6 0.328125 0.984375 0.164062\r\n", + ".._collections.py:121 result._asdict 67343 0.375000 0.515625 0.000008\r\n", + "..thon38\\Lib\\uuid.py:231 UUID.__eq__ 67351 0.281250 0.359375 0.000005\r\n", + "..chemy\\orm\\loading.py:84 67347 0.343750 0.343750 0.000005\r\n", + "..y\\util\\_collections.py:112 __new__ 67347 0.234375 0.312500 0.000005\r\n", + "..\\matplotlib\\__init__.py:1535 inner 4 0.000000 0.296875 0.074219\r\n", + "..axes.py:1651 AxesSubplot.plot_date 4 0.000000 0.296875 0.074219\r\n", + "..xes\\_axes.py:1412 AxesSubplot.plot 4 0.000000 0.296875 0.074219\r\n", + "..gregation\\analysis.py:63 draw_date 4 0.000000 0.296875 0.074219\r\n", + ".._base.py:1842 AxesSubplot.add_line 4 0.000000 0.281250 0.070312\r\n", + "..oder.py:343 JSONDecoder.raw_decode 67339 0.265625 0.265625 0.000004\r\n", + "..s\\matplotlib\\dates.py:1911 convert 6 0.000000 0.265625 0.044271\r\n", + "..on_base.py:2063 vectorize.__call__ 4 0.000000 0.265625 0.066406\r\n", + "..b\\axis.py:1562 XAxis.convert_units 12 0.000000 0.265625 0.022135\r\n", + "...py:168 AxesSubplot.convert_xunits 48 0.000000 0.265625 0.005534\r\n", + "..lotlib\\lines.py:664 Line2D.recache 10 0.000000 0.265625 0.026562\r\n", + "..s\\matplotlib\\dates.py:401 date2num 6 0.000000 0.265625 0.044271\r\n", + "..tlib\\lines.py:1018 Line2D.get_path 10 0.000000 0.265625 0.026562\r\n", + "..68 AxesSubplot._update_line_limits 4 0.000000 0.265625 0.066406\r\n", + "...py:2154 vectorize._vectorize_call 4 0.046875 0.265625 0.066406\r\n", + ":1 DataPoint.__init__ 67339 0.234375 0.234375 0.000003\r\n", + "..tplotlib\\dates.py:210 _to_ordinalf 8467 0.140625 0.218750 0.000026\r\n", + "..alysis.py:327 plot_multiple_charts 1 0.000000 0.078125 0.078125\r\n", + "..ine\\base.py:916 Connection.execute 9 0.000000 0.062500 0.006944\r\n", + "..:291 Select._execute_on_connection 6 0.000000 0.062500 0.010417\r\n", + "..y\\orm\\query.py:3400 Query.__iter__ 6 0.000000 0.062500 0.010417\r\n", + ".. Connection._execute_clauseelement 6 0.000000 0.062500 0.010417\r\n", + "..:3425 Query._execute_and_instances 6 0.000000 0.062500 0.010417\r\n", + "..y:1159 Connection._execute_context 9 0.000000 0.046875 0.005208\r\n", + "..:589 PGDialect_psycopg2.do_execute 11 0.000000 0.046875 0.004261\r\n", + "..t.py:1240 ResultProxy.process_rows 9 0.000000 0.031250 0.003472\r\n", + "..y\\engine\\result.py:1253 9 0.031250 0.031250 0.003472\r\n", + "..\\_base.py:378 AxesSubplot.__init__ 1 0.000000 0.031250 0.031250\r\n", + "..ubplots.py:18 AxesSubplot.__init__ 1 0.000000 0.031250 0.031250\r\n", + "..ation\\analysis.py:191 datapoint_ok 10826 0.031250 0.031250 0.000003\r\n", + "..s.py:52 PlainEngineStrategy.create 1 0.000000 0.031250 0.031250\r\n", + "..regation\\query.py:24 with_database 2 0.000000 0.031250 0.015625\r\n", + ".._GeneratorContextManager.__enter__ 141 0.000000 0.031250 0.000222\r\n", + "..\\figure.py:1259 Figure.add_subplot 1 0.000000 0.031250 0.031250\r\n", + "..ngine\\__init__.py:85 create_engine 1 0.000000 0.031250 0.031250\r\n", + "..lib\\sre_parse.py:254 Tokenizer.get 1519 0.000000 0.015625 0.000010\r\n", + "..y:527 PGCompiler_psycopg2.__init__ 8 0.000000 0.015625 0.001953\r\n", + "..my\\util\\langhelpers.py:963 oneshot 21 0.000000 0.015625 0.000744\r\n", + "..rs.py:86 Select._compiler_dispatch 94/8 0.000000 0.015625 0.000166\r\n", + "..Preparer_psycopg2._requires_quotes 22 0.000000 0.015625 0.000710\r\n", + "..\\sre_parse.py:233 Tokenizer.__next 1696 0.015625 0.015625 0.000009\r\n", + "..on-68gteq6k\\lib\\re.py:287 _compile 84 0.000000 0.015625 0.000186\r\n", + ":1 Select. 8 0.000000 0.015625 0.001953\r\n", + "..iler_psycopg2._label_select_column 29 0.000000 0.015625 0.000539\r\n", + "..y:274 PGCompiler_psycopg2.__init__ 8 0.000000 0.015625 0.001953\r\n", + "..fierPreparer_psycopg2.format_label 29 0.000000 0.015625 0.000539\r\n", + "..my\\sql\\compiler.py:2127 8 0.000000 0.015625 0.001953\r\n", + "..gteq6k\\lib\\sre_parse.py:493 _parse 75/14 0.000000 0.015625 0.000208\r\n", + "..GIdentifierPreparer_psycopg2.quote 103 0.000000 0.015625 0.000152\r\n", + "..10 PGCompiler_psycopg2.visit_label 29 0.000000 0.015625 0.000539\r\n", + "..py:349 PGCompiler_psycopg2.process 8 0.000000 0.015625 0.001953\r\n", + "..8gteq6k\\lib\\sre_parse.py:937 parse 12 0.000000 0.015625 0.001302\r\n", + "..5 PGCompiler_psycopg2.visit_select 8 0.000000 0.015625 0.001953\r\n", + "..quoted_name._memoized_method_lower 21 0.000000 0.015625 0.000744\r\n", + "..q6k\\lib\\sre_compile.py:759 compile 12 0.000000 0.015625 0.001302\r\n", + "..sql\\elements.py:405 Select.compile 8 0.000000 0.015625 0.001953\r\n", + "..6k\\lib\\sre_parse.py:435 _parse_sub 59/12 0.000000 0.015625 0.000265\r\n", + "..._bootstrap>:1017 _handle_fromlist 20/18 0.000000 0.015625 0.000781\r\n", + "..l\\elements.py:470 Select._compiler 8 0.000000 0.015625 0.001953\r\n", + "..rrent\\futures\\thread.py:158 submit 7 0.000000 0.015625 0.002232\r\n", + "..dPoolExecutor._adjust_thread_count 7 0.000000 0.015625 0.002232\r\n", + "..\\Lib\\threading.py:834 Thread.start 2 0.000000 0.015625 0.007812\r\n", + "..>:777 SourceFileLoader.exec_module 9/2 0.000000 0.015625 0.001736\r\n", + "..\\artist.py:731 XAxis.set_clip_path 26 0.000000 0.015625 0.000601\r\n", + "..s\\postgresql\\psycopg2.py:735 dbapi 1 0.000000 0.015625 0.015625\r\n", + ".. _process_plot_var_args._plot_args 4 0.000000 0.015625 0.003906\r\n", + "..icker.py:2848 AutoLocator.__init__ 16 0.000000 0.015625 0.000977\r\n", + "..es\\_axes.py:299 AxesSubplot.legend 1 0.000000 0.015625 0.015625\r\n", + "..b\\cbook\\__init__.py:1320 _check_1d 8 0.000000 0.015625 0.001953\r\n", + "..53 _process_plot_var_args.__call__ 8 0.000000 0.015625 0.001953\r\n", + "..lib._bootstrap>:650 _load_unlocked 10/2 0.000000 0.015625 0.001563\r\n", + "..plotlib\\axis.py:744 XAxis.__init__ 2 0.000000 0.015625 0.007812\r\n", + "..ib\\axis.py:967 XAxis.set_clip_path 2 0.000000 0.015625 0.007812\r\n", + "..tlib\\artist.py:217 Rectangle.stale 171.. 0.015625 0.015625 0.000009\r\n", + "..__init__.py:2073 _check_isinstance 94 0.000000 0.015625 0.000166\r\n", + "..sSelectorEventLoop.run_in_executor 6 0.000000 0.015625 0.002604\r\n", + "..y\\core\\shape_base.py:24 atleast_1d 24 0.000000 0.015625 0.000651\r\n", + "..et_default_locators_and_formatters 16 0.000000 0.015625 0.000977\r\n", + "..ine\\url.py:234 _parse_rfc1738_args 1 0.000000 0.015625 0.015625\r\n", + "..end.py:727 Legend._init_legend_box 1 0.000000 0.015625 0.015625\r\n", + "..otlib\\axis.py:825 XAxis._set_scale 16 0.000000 0.015625 0.000977\r\n", + "..alchemy\\engine\\url.py:221 make_url 1 0.000000 0.015625 0.015625\r\n", + "..\\psycopg2\\extensions.py:1 1 0.000000 0.015625 0.015625\r\n", + "..mpy\\core\\_asarray.py:88 asanyarray 72 0.000000 0.015625 0.000217\r\n", + "..otlib\\axis.py:2231 YAxis._get_tick 3 0.000000 0.015625 0.005208\r\n", + "...py:89 HandlerLine2D.legend_artist 4 0.000000 0.015625 0.003906\r\n", + "..icker.py:2051 AutoLocator.__init__ 16 0.015625 0.015625 0.000977\r\n", + "..tplotlib\\axis.py:56 XTick.__init__ 6 0.000000 0.015625 0.002604\r\n", + "..b\\axis.py:589 YTick._get_tick2line 3 0.000000 0.015625 0.005208\r\n", + "..\\axis.py:687 _LazyTickList.__get__ 6/4 0.000000 0.015625 0.002604\r\n", + "..ines.py:1268 Line2D.set_markersize 30 0.000000 0.015625 0.000521\r\n", + "..ages\\psycopg2\\_range.py:1 1 0.000000 0.015625 0.015625\r\n", + "..y:229 HandlerLine2D.create_artists 4 0.000000 0.015625 0.003906\r\n", + "..otlib\\lines.py:269 Line2D.__init__ 30 0.000000 0.015625 0.000521\r\n", + "..tlib\\legend.py:306 Legend.__init__ 1 0.000000 0.015625 0.015625\r\n", + "..ms.py:986 TransformedBbox.__init__ 21 0.000000 0.015625 0.000744\r\n", + "..function__ internals>:2 atleast_1d 24 0.000000 0.015625 0.000651\r\n", + ".._function__ internals>:2 full_like 4 0.015625 0.015625 0.003906\r\n", + "..strap>:956 _find_and_load_unlocked 10/2 0.000000 0.015625 0.001563\r\n", + "..\\axes\\_base.py:948 AxesSubplot.cla 1 0.000000 0.015625 0.015625\r\n", + "..base.py:553 AxesSubplot._init_axis 1 0.000000 0.015625 0.015625\r\n", + "..rap>:211 _call_with_frames_removed 14/2 0.000000 0.015625 0.001116\r\n", + "..lib._bootstrap>:986 _find_and_load 10/2 0.000000 0.015625 0.001563\r\n", + "..ion-68gteq6k\\lib\\re.py:248 compile 10 0.000000 0.015625 0.001563\r\n", + "..es\\psycopg2\\__init__.py:1 1 0.000000 0.015625 0.015625\r\n", + "...py:343 WeakKeyDictionary.__init__ 13 0.000000 0.000000 0.000000\r\n", + "..pool\\impl.py:112 QueuePool._do_get 1 0.000000 0.000000 0.000000\r\n", + "..6k\\lib\\abc.py:96 __instancecheck__ 141 0.000000 0.000000 0.000000\r\n", + "..py:3730 Select._columns_plus_names 8 0.000000 0.000000 0.000000\r\n", + "..y:330 _ListenerCollection.__bool__ 1 0.000000 0.000000 0.000000\r\n", + "..yncio\\events.py:32 Handle.__init__ 24 0.000000 0.000000 0.000000\r\n", + "..py:4065 ColumnClause._from_objects 2 0.000000 0.000000 0.000000\r\n", + "..ions.py:145 immutabledict.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..ections.py:396 OrderedSet.__iter__ 8 0.000000 0.000000 0.000000\r\n", + "..qltypes.py:2793 TIMESTAMP.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..ib\\sre_parse.py:286 Tokenizer.tell 171 0.000000 0.000000 0.000000\r\n", + "..q6k\\lib\\sre_parse.py:921 fix_flags 12 0.000000 0.000000 0.000000\r\n", + "..\\sql\\selectable.py:3079 8 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\result.py:496 3 0.000000 0.000000 0.000000\r\n", + "..opg2.py:548 _PGUUID.bind_processor 1 0.000000 0.000000 0.000000\r\n", + "..es\\psycopg2\\__init__.py:82 connect 1 0.000000 0.000000 0.000000\r\n", + "..ib\\sre_parse.py:84 State.opengroup 27 0.000000 0.000000 0.000000\r\n", + "..gging\\__init__.py:223 _releaseLock 7 0.000000 0.000000 0.000000\r\n", + "..ql\\elements.py:2428 literal_column 2 0.000000 0.000000 0.000000\r\n", + "..dConnectionEventsDispatch.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..y\\engine\\strategies.py:106 connect 1 0.000000 0.000000 0.000000\r\n", + "..tras.py:657 UUID_adapter.getquoted 4 0.000000 0.000000 0.000000\r\n", + "..hemy\\sql\\compiler.py:652 10 0.000000 0.000000 0.000000\r\n", + "..query.py:3440 Query._get_bind_args 6 0.000000 0.000000 0.000000\r\n", + "..b\\sre_parse.py:96 State.closegroup 27 0.000000 0.000000 0.000000\r\n", + "..ctions.py:933 LRUCache.__setitem__ 3 0.000000 0.000000 0.000000\r\n", + "..eq6k\\lib\\sre_parse.py:978 addgroup 1 0.000000 0.000000 0.000000\r\n", + "..yEventsDispatch._event_descriptors 46 0.000000 0.000000 0.000000\r\n", + "..tgresql\\psycopg2.py:815 on_connect 2 0.000000 0.000000 0.000000\r\n", + "..ne\\strategies.py:194 first_connect 1 0.000000 0.000000 0.000000\r\n", + "..sult.py:700 ResultMetaData._getter 27 0.000000 0.000000 0.000000\r\n", + "..ry.py:4056 Query._simple_statement 6 0.000000 0.000000 0.000000\r\n", + "..elements.py:4692 _literal_as_binds 2 0.000000 0.000000 0.000000\r\n", + "...py:56 QueuePool._should_log_debug 1 0.000000 0.000000 0.000000\r\n", + "..session.py:1057 Session.connection 6 0.000000 0.000000 0.000000\r\n", + "..xecutionContext_psycopg2.post_exec 6 0.000000 0.000000 0.000000\r\n", + "..y:3229 BinaryExpression.self_group 4 0.000000 0.000000 0.000000\r\n", + "..py:4335 _truncated_label.apply_map 27 0.000000 0.000000 0.000000\r\n", + "..68gteq6k\\lib\\weakref.py:345 remove 2 0.000000 0.000000 0.000000\r\n", + "..123 ConnectionEventsDispatch._join 1 0.000000 0.000000 0.000000\r\n", + "..lalchemy\\pool\\base.py:490 checkout 1 0.000000 0.000000 0.000000\r\n", + "..y\\engine\\default.py:796 6 0.000000 0.000000 0.000000\r\n", + "..ctable.py:1982 Table._from_objects 6 0.000000 0.000000 0.000000\r\n", + "..emy\\sql\\compiler.py:1000 4 0.000000 0.000000 0.000000\r\n", + "..\\encodings\\utf_8.py:33 getregentry 1 0.000000 0.000000 0.000000\r\n", + "..ery._adjust_for_single_inheritance 6 0.000000 0.000000 0.000000\r\n", + "..ler_psycopg2.get_select_precolumns 8 0.000000 0.000000 0.000000\r\n", + "..ycopg2\\extras.py:664 register_uuid 2 0.000000 0.000000 0.000000\r\n", + "..:3418 PGTypeCompiler.visit_unicode 1 0.000000 0.000000 0.000000\r\n", + "..on._memoized_attr__exec_once_mutex 1 0.000000 0.000000 0.000000\r\n", + "..ngs\\__init__.py:70 search_function 1 0.000000 0.000000 0.000000\r\n", + "..uture.set_running_or_notify_cancel 7 0.000000 0.000000 0.000000\r\n", + "..lalchemy\\sql\\base.py:39 20 0.000000 0.000000 0.000000\r\n", + "..422 WeakKeyDictionary.__contains__ 386 0.000000 0.000000 0.000000\r\n", + "..4 PGCompiler_psycopg2.visit_column 36 0.000000 0.000000 0.000000\r\n", + "..py:536 PGDialect_psycopg2.do_begin 1 0.000000 0.000000 0.000000\r\n", + ".. _ClsLevelDispatch.update_subclass 77 0.000000 0.000000 0.000000\r\n", + ":1 VARCHAR.__init__ 9 0.000000 0.000000 0.000000\r\n", + "..tions.py:946 LRUCache._manage_size 3 0.000000 0.000000 0.000000\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..g2\\extensions.py:180 _param_escape 3 0.000000 0.000000 0.000000\r\n", + "..\\elements.py:232 Table._cloned_set 2 0.000000 0.000000 0.000000\r\n", + "..419 Query._connection_from_session 6 0.000000 0.000000 0.000000\r\n", + "..my\\sql\\type_api.py:1475 adapt_type 13 0.000000 0.000000 0.000000\r\n", + "..y\\sql\\elements.py:4594 _literal_as 14 0.000000 0.000000 0.000000\r\n", + "..94 QueryEventsDispatch.__getattr__ 8 0.000000 0.000000 0.000000\r\n", + ".._.py:1663 Logger.getEffectiveLevel 3 0.000000 0.000000 0.000000\r\n", + "..ngine\\strategies.py:183 on_connect 2 0.000000 0.000000 0.000000\r\n", + "..e.py:737 _ConnectionFairy.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..lalchemy\\util\\compat.py:148 raise_ 12 0.000000 0.000000 0.000000\r\n", + "..sre_parse.py:172 SubPattern.append 182 0.000000 0.000000 0.000000\r\n", + ":1 cast 2 0.000000 0.000000 0.000000\r\n", + "..\\langhelpers.py:301 get_cls_kwargs 35/16 0.000000 0.000000 0.000000\r\n", + "..ler_psycopg2._truncated_identifier 33 0.000000 0.000000 0.000000\r\n", + "..ler_psycopg2.escape_literal_column 2 0.000000 0.000000 0.000000\r\n", + "..s.py:880 memoized_property.__get__ 97/87 0.000000 0.000000 0.000000\r\n", + "..nts.py:709 ColumnClause.comparator 4 0.000000 0.000000 0.000000\r\n", + "..\\orm\\session.py:2462 Session.flush 9 0.000000 0.000000 0.000000\r\n", + "..gine\\default.py:753 _init_compiled 6 0.000000 0.000000 0.000000\r\n", + "..n-68gteq6k\\lib\\enum.py:557 __new__ 26 0.000000 0.000000 0.000000\r\n", + "..y\\util\\_collections.py:140 __new__ 1 0.000000 0.000000 0.000000\r\n", + "..WindowsSelectorEventLoop.get_debug 33 0.000000 0.000000 0.000000\r\n", + "..indowsSelectorEventLoop._call_soon 23 0.000000 0.000000 0.000000\r\n", + "..:715 PGDialect_psycopg2.initialize 1 0.000000 0.000000 0.000000\r\n", + "..t_psycopg2._use_server_side_cursor 9 0.000000 0.000000 0.000000\r\n", + "..lection.exec_once_unless_exception 1 0.000000 0.000000 0.000000\r\n", + "..iler_psycopg2._compose_select_body 8 0.000000 0.000000 0.000000\r\n", + "..sqltypes.py:2182 _PGJSONB.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..ements.py:1315 TypeClause.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..tionContext_psycopg2.no_parameters 5 0.000000 0.000000 0.000000\r\n", + "..:395 WeakKeyDictionary.__setitem__ 97 0.000000 0.000000 0.000000\r\n", + "..xt_psycopg2.should_autocommit_text 3 0.000000 0.000000 0.000000\r\n", + "..ts.py:724 ColumnClause.__getattr__ 9 0.000000 0.000000 0.000000\r\n", + "..qlalchemy\\inspection.py:38 inspect 16 0.000000 0.000000 0.000000\r\n", + "..ons.py:971 lightweight_named_tuple 6 0.000000 0.000000 0.000000\r\n", + "..m\\query.py:3551 Query._select_args 6 0.000000 0.000000 0.000000\r\n", + "..sycopg2\\extensions.py:146 make_dsn 1 0.000000 0.000000 0.000000\r\n", + "..chemy\\sql\\base.py:38 _from_objects 20 0.000000 0.000000 0.000000\r\n", + "..er_psycopg2._get_operator_dispatch 4 0.000000 0.000000 0.000000\r\n", + "..ine\\base.py:69 Connection.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..l\\psycopg2.py:747 _psycopg2_extras 2 0.000000 0.000000 0.000000\r\n", + "..tionContext_psycopg2.create_cursor 9 0.000000 0.000000 0.000000\r\n", + "..til\\_collections.py:779 41 0.000000 0.000000 0.000000\r\n", + "..\\base.py:364 Connection.connection 11 0.000000 0.000000 0.000000\r\n", + "..my\\sql\\compiler.py:2252 6 0.000000 0.000000 0.000000\r\n", + "..033 PGCompiler_psycopg2.visit_cast 2 0.000000 0.000000 0.000000\r\n", + "..ngine\\default.py:378 check_unicode 2 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\result.py:319 9 0.000000 0.000000 0.000000\r\n", + "..chemy\\sql\\elements.py:4327 __new__ 16 0.000000 0.000000 0.000000\r\n", + "..mpiler_psycopg2._add_to_result_map 29 0.000000 0.000000 0.000000\r\n", + ":1 Select.__init__ 8 0.000000 0.000000 0.000000\r\n", + "..py:4442 _anonymous_label.apply_map 6 0.000000 0.000000 0.000000\r\n", + "..py:2248 Engine._contextual_connect 1 0.000000 0.000000 0.000000\r\n", + "..:307 PGDialect_psycopg2.initialize 1 0.000000 0.000000 0.000000\r\n", + "..\\log.py:59 Engine._should_log_info 2 0.000000 0.000000 0.000000\r\n", + "..pg2\\extras.py:790 _solve_conn_curs 1 0.000000 0.000000 0.000000\r\n", + "..k\\lib\\encodings\\utf_8.py:15 decode 48 0.000000 0.000000 0.000000\r\n", + "..tions.py:906 LRUCache._inc_counter 6 0.000000 0.000000 0.000000\r\n", + "..ctorEventLoop.call_soon_threadsafe 6 0.000000 0.000000 0.000000\r\n", + "..y\\sql\\selectable.py:2987 6 0.000000 0.000000 0.000000\r\n", + ".._psycopg2._get_default_schema_name 1 0.000000 0.000000 0.000000\r\n", + "..ns.py:738 PopulateDict.__missing__ 5 0.000000 0.000000 0.000000\r\n", + "..tgresql\\psycopg2.py:847 on_connect 2 0.000000 0.000000 0.000000\r\n", + "..e\\result.py:1335 ResultProxy.first 3 0.000000 0.000000 0.000000\r\n", + ".._psycopg2._generate_generic_binary 4 0.000000 0.000000 0.000000\r\n", + "..se.py:325 Future._invoke_callbacks 7 0.000000 0.000000 0.000000\r\n", + "..\\sql\\selectable.py:3751 2 0.000000 0.000000 0.000000\r\n", + "..:4707 _interpret_as_column_or_from 29 0.000000 0.000000 0.000000\r\n", + "..compile.py:461 _get_literal_prefix 19/12 0.000000 0.000000 0.000000\r\n", + "..ts.py:4059 ColumnClause._set_table 2 0.000000 0.000000 0.000000\r\n", + "..317 VARCHAR._has_column_expression 12 0.000000 0.000000 0.000000\r\n", + "..my\\sql\\elements.py:4488 8 0.000000 0.000000 0.000000\r\n", + "..emy\\util\\queue.py:191 Queue._empty 1 0.000000 0.000000 0.000000\r\n", + "..tgresql\\psycopg2.py:800 on_connect 2 0.000000 0.000000 0.000000\r\n", + "..9 PGCompiler_psycopg2.visit_binary 4 0.000000 0.000000 0.000000\r\n", + "..ery.py:3929 Query._compile_context 6 0.000000 0.000000 0.000000\r\n", + "..til\\_collections.py:981 3 0.000000 0.000000 0.000000\r\n", + "..i.py:279 NullType.result_processor 4 0.000000 0.000000 0.000000\r\n", + "..1333 Connection._safe_close_cursor 9 0.000000 0.000000 0.000000\r\n", + "..ation-68gteq6k\\lib\\re.py:186 match 70 0.000000 0.000000 0.000000\r\n", + "..my\\sql\\elements.py:1955 1 0.000000 0.000000 0.000000\r\n", + "..276 PGDialect_psycopg2._type_memos 1 0.000000 0.000000 0.000000\r\n", + "..mn._render_label_in_columns_clause 10 0.000000 0.000000 0.000000\r\n", + "..sqltypes.py:786 TIMESTAMP.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..ments.py:765 Cast._select_iterable 29 0.000000 0.000000 0.000000\r\n", + "..200 BinaryExpression._from_objects 4 0.000000 0.000000 0.000000\r\n", + "..extensions.py:103 register_adapter 12 0.000000 0.000000 0.000000\r\n", + "..y\\util\\_collections.py:822 to_list 14 0.000000 0.000000 0.000000\r\n", + "..res\\_base.py:517 Future.set_result 7 0.000000 0.000000 0.000000\r\n", + "..ngine\\base.py:590 Connection.begin 1 0.000000 0.000000 0.000000\r\n", + "..eading.py:364 Condition.notify_all 7 0.000000 0.000000 0.000000\r\n", + "..ase.py:971 _ConnectionFairy.cursor 6 0.000000 0.000000 0.000000\r\n", + "..gine\\base.py:908 Connection.scalar 2 0.000000 0.000000 0.000000\r\n", + "..rm\\query.py:418 Query._bind_mapper 6 0.000000 0.000000 0.000000\r\n", + "..result.py:767 ResultProxy.__init__ 9 0.000000 0.000000 0.000000\r\n", + "..:3361 PGTypeCompiler.visit_VARCHAR 2 0.000000 0.000000 0.000000\r\n", + "..l\\sqltypes.py:141 VARCHAR.__init__ 9 0.000000 0.000000 0.000000\r\n", + "..my\\sql\\elements.py:4480 6 0.000000 0.000000 0.000000\r\n", + "..e_parse.py:174 SubPattern.getwidth 138.. 0.000000 0.000000 0.000000\r\n", + "..ResultMetaData._merge_cols_by_none 6 0.000000 0.000000 0.000000\r\n", + "...py:488 PGDialect_psycopg2.connect 1 0.000000 0.000000 0.000000\r\n", + "...py:2282 Engine._wrap_pool_connect 1 0.000000 0.000000 0.000000\r\n", + "..session.py:1588 Session._autoflush 6 0.000000 0.000000 0.000000\r\n", + "..\\threading.py:341 Condition.notify 15 0.000000 0.000000 0.000000\r\n", + "..ections.py:361 OrderedSet.__init__ 8 0.000000 0.000000 0.000000\r\n", + "..ql\\operators.py:1386 is_comparison 5 0.000000 0.000000 0.000000\r\n", + "..6 PGCompiler_psycopg2.default_from 2 0.000000 0.000000 0.000000\r\n", + "..58 PGCompiler_psycopg2.visit_table 6 0.000000 0.000000 0.000000\r\n", + "..elements.py:4483 _select_iterables 8 0.000000 0.000000 0.000000\r\n", + "..b\\sre_compile.py:65 _combine_flags 39 0.000000 0.000000 0.000000\r\n", + "..lchemy\\util\\langhelpers.py:1506 go 1 0.000000 0.000000 0.000000\r\n", + "..utionContext_psycopg2._log_notices 9 0.000000 0.000000 0.000000\r\n", + "..ation-68gteq6k\\lib\\re.py:323 _subx 3 0.000000 0.000000 0.000000\r\n", + "..py:486 UUID._cached_bind_processor 4 0.000000 0.000000 0.000000\r\n", + "..ttr.py:227 _EmptyListener.__init__ 77 0.000000 0.000000 0.000000\r\n", + "..ghelpers.py:281 _inspect_func_args 18 0.000000 0.000000 0.000000\r\n", + "..re_compile.py:249 _compile_charset 34 0.000000 0.000000 0.000000\r\n", + "..nContext_psycopg2.get_result_proxy 9 0.000000 0.000000 0.000000\r\n", + "..uery.py:4762 QueryContext.__init__ 6 0.000000 0.000000 0.000000\r\n", + "..gging\\__init__.py:214 _acquireLock 7 0.000000 0.000000 0.000000\r\n", + "..type_api.py:60 Comparator.__init__ 8 0.000000 0.000000 0.000000\r\n", + "..hon38\\Lib\\uuid.py:271 UUID.__str__ 4 0.000000 0.000000 0.000000\r\n", + "..velDispatch._assign_cls_collection 77 0.000000 0.000000 0.000000\r\n", + "..e_parse.py:111 SubPattern.__init__ 135 0.000000 0.000000 0.000000\r\n", + "..compile.py:492 _get_charset_prefix 10 0.000000 0.000000 0.000000\r\n", + "..arse.py:164 SubPattern.__getitem__ 707 0.000000 0.000000 0.000000\r\n", + "..2456 PGDialect_psycopg2.initialize 1 0.000000 0.000000 0.000000\r\n", + "..hreading.py:249 Condition.__exit__ 61 0.000000 0.000000 0.000000\r\n", + ".. NullType._cached_result_processor 30 0.000000 0.000000 0.000000\r\n", + "..116 QueryEventsDispatch._for_class 8 0.000000 0.000000 0.000000\r\n", + "..compiler.py:419 _CompileLabel.type 29 0.000000 0.000000 0.000000\r\n", + "..m\\session.py:1429 Session.get_bind 6 0.000000 0.000000 0.000000\r\n", + "..\\elements.py:4610 _literal_as_text 14 0.000000 0.000000 0.000000\r\n", + "..Compiler_psycopg2.bindparam_string 4 0.000000 0.000000 0.000000\r\n", + "..53 _ListenerCollection.__getattr__ 45/24 0.000000 0.000000 0.000000\r\n", + ".._psycopg2._get_server_version_info 1 0.000000 0.000000 0.000000\r\n", + "..teq6k\\lib\\sre_compile.py:598 _code 12 0.000000 0.000000 0.000000\r\n", + "..sql\\operators.py:1497 is_precedent 4 0.000000 0.000000 0.000000\r\n", + "..\\sql\\selectable.py:3746 6 0.000000 0.000000 0.000000\r\n", + "..Compiler_psycopg2.visit_clauselist 1 0.000000 0.000000 0.000000\r\n", + "..ExecutionContext_psycopg2.pre_exec 6 0.000000 0.000000 0.000000\r\n", + "..\\elements.py:688 Column.self_group 11 0.000000 0.000000 0.000000\r\n", + "..init__.py:1677 Logger.isEnabledFor 5 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\default.py:415 1 0.000000 0.000000 0.000000\r\n", + "..ql\\base.py:1142 TIMESTAMP.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..l\\_collections.py:910 LRUCache.get 6 0.000000 0.000000 0.000000\r\n", + "..ttr.py:269 _EmptyListener.__bool__ 17 0.000000 0.000000 0.000000\r\n", + "..pes.py:295 String.result_processor 5 0.000000 0.000000 0.000000\r\n", + "..b\\sre_parse.py:249 Tokenizer.match 311 0.000000 0.000000 0.000000\r\n", + "..copg2._check_max_identifier_length 1 0.000000 0.000000 0.000000\r\n", + "..gteq6k\\lib\\re.py:313 _compile_repl 1 0.000000 0.000000 0.000000\r\n", + "..lchemy\\orm\\query.py:4795 6 0.000000 0.000000 0.000000\r\n", + "..ult.py:269 ResultMetaData.__init__ 9 0.000000 0.000000 0.000000\r\n", + "..iler.py:399 PGTypeCompiler.process 2 0.000000 0.000000 0.000000\r\n", + "..GCompiler_psycopg2.order_by_clause 1 0.000000 0.000000 0.000000\r\n", + "..y:305 QueuePool._create_connection 1 0.000000 0.000000 0.000000\r\n", + "..sql\\type_api.py:546 NullType.adapt 13 0.000000 0.000000 0.000000\r\n", + "..rm\\query.py:398 Query._entity_zero 6 0.000000 0.000000 0.000000\r\n", + "..py:1202 ResultProxy._fetchone_impl 3 0.000000 0.000000 0.000000\r\n", + ".._psycopg2._setup_crud_result_proxy 3 0.000000 0.000000 0.000000\r\n", + "..esql\\base.py:1226 _PGUUID.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..nghelpers.py:1167 constructor_copy 13 0.000000 0.000000 0.000000\r\n", + "..piler_psycopg2._setup_select_stack 8 0.000000 0.000000 0.000000\r\n", + "..MetaData._merge_cursor_description 9 0.000000 0.000000 0.000000\r\n", + "..ttr.py:257 _EmptyListener.__call__ 8 0.000000 0.000000 0.000000\r\n", + "..wsSelectorEventLoop._write_to_self 6 0.000000 0.000000 0.000000\r\n", + "..q6k\\lib\\sre_compile.py:423 _simple 45 0.000000 0.000000 0.000000\r\n", + "..\\result.py:777 ResultProxy._getter 27 0.000000 0.000000 0.000000\r\n", + "..ycopg2\\extras.py:909 type.get_oids 1 0.000000 0.000000 0.000000\r\n", + "..arse.py:168 SubPattern.__setitem__ 48 0.000000 0.000000 0.000000\r\n", + "..text_psycopg2.get_result_processor 30 0.000000 0.000000 0.000000\r\n", + "..k\\lib\\sre_parse.py:81 State.groups 80 0.000000 0.000000 0.000000\r\n", + "..l\\sqltypes.py:412 Unicode.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..alchemy\\pool\\base.py:770 _checkout 1 0.000000 0.000000 0.000000\r\n", + ".. SessionTransaction._assert_active 8 0.000000 0.000000 0.000000\r\n", + ":1 select 8 0.000000 0.000000 0.000000\r\n", + ".. QueryEventsDispatch._for_instance 8 0.000000 0.000000 0.000000\r\n", + "..elements.py:4080 Column._key_label 10 0.000000 0.000000 0.000000\r\n", + "..ine\\default.py:981 _init_statement 3 0.000000 0.000000 0.000000\r\n", + "..\\lib\\enum.py:828 RegexFlag.__and__ 12 0.000000 0.000000 0.000000\r\n", + "..py:644 _ConnectionRecord.__connect 1 0.000000 0.000000 0.000000\r\n", + "..GCompiler_psycopg2.visit_bindparam 4 0.000000 0.000000 0.000000\r\n", + "..emy\\util\\langhelpers.py:1188 _next 7 0.000000 0.000000 0.000000\r\n", + "..py:77 QueryEventsDispatch.__init__ 8 0.000000 0.000000 0.000000\r\n", + "..\\__init__.py:43 normalize_encoding 1 0.000000 0.000000 0.000000\r\n", + "..util\\langhelpers.py:1175 46 0.000000 0.000000 0.000000\r\n", + "..ql\\elements.py:895 Cast.anon_label 2 0.000000 0.000000 0.000000\r\n", + "..y\\sql\\operators.py:1409 is_boolean 5 0.000000 0.000000 0.000000\r\n", + "..-68gteq6k\\lib\\codecs.py:94 __new__ 1 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\result.py:460 6 0.000000 0.000000 0.000000\r\n", + "..selectable.py:2169 Select.__init__ 8 0.000000 0.000000 0.000000\r\n", + "..ry.py:390 Query._query_entity_zero 6 0.000000 0.000000 0.000000\r\n", + "..re_parse.py:224 Tokenizer.__init__ 13 0.000000 0.000000 0.000000\r\n", + "..teq6k\\lib\\sre_parse.py:355 _escape 30 0.000000 0.000000 0.000000\r\n", + "..uery.py:698 Query.is_single_entity 6 0.000000 0.000000 0.000000\r\n", + "..19 ResultProxy._cursor_description 9 0.000000 0.000000 0.000000\r\n", + "..y:4696 _ColumnEntity.row_processor 27 0.000000 0.000000 0.000000\r\n", + "..ents.py:3947 ColumnClause.__init__ 2 0.000000 0.000000 0.000000\r\n", + "...py:543 NullType._gen_dialect_impl 13 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\default.py:855 10 0.000000 0.000000 0.000000\r\n", + "..lements.py:2553 Cast._from_objects 2 0.000000 0.000000 0.000000\r\n", + "..til\\_collections.py:991 3 0.000000 0.000000 0.000000\r\n", + "..PGTypeCompiler._render_string_type 2 0.000000 0.000000 0.000000\r\n", + "..reading.py:261 Condition._is_owned 11 0.000000 0.000000 0.000000\r\n", + "..ult.py:924 ResultProxy._soft_close 9 0.000000 0.000000 0.000000\r\n", + "..Compiler_psycopg2.construct_params 6 0.000000 0.000000 0.000000\r\n", + "..l\\selectable.py:3036 Select._froms 8 0.000000 0.000000 0.000000\r\n", + "..ging\\__init__.py:1412 Logger.debug 2 0.000000 0.000000 0.000000\r\n", + "..9 _ConnectionRecord.get_connection 1 0.000000 0.000000 0.000000\r\n", + "..Compiler_psycopg2.visit_typeclause 2 0.000000 0.000000 0.000000\r\n", + "..etaData._colnames_from_description 6 0.000000 0.000000 0.000000\r\n", + "..postgresql\\base.py:2708 1 0.000000 0.000000 0.000000\r\n", + "..ct_psycopg2._check_unicode_returns 1 0.000000 0.000000 0.000000\r\n", + "...py:434 _ConnectionRecord.__init__ 1 0.000000 0.000000 0.000000\r\n", + ".._api.py:527 NullType._dialect_info 25 0.000000 0.000000 0.000000\r\n", + "..lib\\sre_parse.py:76 State.__init__ 12 0.000000 0.000000 0.000000\r\n", + "..lchemy\\util\\queue.py:135 Queue.get 1 0.000000 0.000000 0.000000\r\n", + "..py:352 PGCompiler_psycopg2.__str__ 8 0.000000 0.000000 0.000000\r\n", + "..alect_psycopg2.get_isolation_level 1 0.000000 0.000000 0.000000\r\n", + "..owsSelectorEventLoop._check_closed 34 0.000000 0.000000 0.000000\r\n", + "..\\session.py:2508 Session._is_clean 10 0.000000 0.000000 0.000000\r\n", + "..q6k\\lib\\sre_compile.py:71 _compile 111.. 0.000000 0.000000 0.000000\r\n", + "..e.py:1694 RootTransaction.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..eral_and_labels_as_label_reference 3 0.000000 0.000000 0.000000\r\n", + "...py:903 PGDialect_psycopg2.oneshot 1 0.000000 0.000000 0.000000\r\n", + "..ql\\selectable.py:3735 name_for_col 27 0.000000 0.000000 0.000000\r\n", + "...py:3065 Select._get_display_froms 8 0.000000 0.000000 0.000000\r\n", + "..e.py:1134 Connection._execute_text 3 0.000000 0.000000 0.000000\r\n", + "..tgresql\\psycopg2.py:807 on_connect 2 0.000000 0.000000 0.000000\r\n", + "..chemy\\sql\\elements.py:4279 __new__ 16 0.000000 0.000000 0.000000\r\n", + "..copg2\\extensions.py:171 1 0.000000 0.000000 0.000000\r\n", + "..2.py:540 _PGJSONB.result_processor 1 0.000000 0.000000 0.000000\r\n", + "...py:793 ResultProxy._init_metadata 9 0.000000 0.000000 0.000000\r\n", + "..ts.py:4056 ColumnClause._get_table 48 0.000000 0.000000 0.000000\r\n", + "..\\util\\_collections.py:771 5 0.000000 0.000000 0.000000\r\n", + "..hemy\\sql\\compiler.py:650 6 0.000000 0.000000 0.000000\r\n", + "..pool\\base.py:354 QueuePool.connect 1 0.000000 0.000000 0.000000\r\n", + "..cio\\futures.py:364 _call_set_state 6 0.000000 0.000000 0.000000\r\n", + "..365 _ListenerCollection.for_modify 2 0.000000 0.000000 0.000000\r\n", + "..Context_psycopg2.should_autocommit 9 0.000000 0.000000 0.000000\r\n", + "..xtras.py:650 UUID_adapter.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..ne\\result.py:956 ResultProxy.close 3 0.000000 0.000000 0.000000\r\n", + "..y\\sql\\type_api.py:1465 to_instance 8 0.000000 0.000000 0.000000\r\n", + "..threading.py:441 Semaphore.release 7 0.000000 0.000000 0.000000\r\n", + "..ib\\sre_parse.py:969 parse_template 1 0.000000 0.000000 0.000000\r\n", + "..il\\_collections.py:775 unique_list 41 0.000000 0.000000 0.000000\r\n", + "..56 WeakInstanceDict.check_modified 10 0.000000 0.000000 0.000000\r\n", + "..m\\query.py:345 Query._adapt_clause 34 0.000000 0.000000 0.000000\r\n", + "..my\\util\\deprecations.py:115 warned 21/20 0.000000 0.000000 0.000000\r\n", + "..-68gteq6k\\lib\\enum.py:278 __call__ 26 0.000000 0.000000 0.000000\r\n", + "..:1136 Session._connection_for_bind 6 0.000000 0.000000 0.000000\r\n", + "..b\\sre_compile.py:536 _compile_info 12 0.000000 0.000000 0.000000\r\n", + "..539 PGDialect_psycopg2.do_rollback 2 0.000000 0.000000 0.000000\r\n", + ".._memoized_property.expire_instance 2 0.000000 0.000000 0.000000\r\n", + "..ections.py:151 immutabledict.union 6 0.000000 0.000000 0.000000\r\n", + "..ListenerCollection._exec_once_impl 1 0.000000 0.000000 0.000000\r\n", + "..reading.py:246 Condition.__enter__ 61 0.000000 0.000000 0.000000\r\n", + "..chemy\\util\\langhelpers.py:906 memo 2 0.000000 0.000000 0.000000\r\n", + "..g2.py:558 _PGUUID.result_processor 2 0.000000 0.000000 0.000000\r\n", + "..piler_psycopg2._truncate_bindparam 4 0.000000 0.000000 0.000000\r\n", + "..ql\\elements.py:4475 _expand_cloned 6 0.000000 0.000000 0.000000\r\n", + "..02 PGDialect_psycopg2._hstore_oids 1 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\result.py:463 6 0.000000 0.000000 0.000000\r\n", + "..ements.py:1946 ClauseList.__init__ 1 0.000000 0.000000 0.000000\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..copg2\\extensions.py:164 1 0.000000 0.000000 0.000000\r\n", + "..ent\\base.py:295 dispatcher.__get__ 10 0.000000 0.000000 0.000000\r\n", + "..6k\\lib\\sre_compile.py:595 isstring 24 0.000000 0.000000 0.000000\r\n", + "..:382 WeakKeyDictionary.__getitem__ 245 0.000000 0.000000 0.000000\r\n", + "..py:1293 Connection._cursor_execute 2 0.000000 0.000000 0.000000\r\n", + "..onTransaction._connection_for_bind 6 0.000000 0.000000 0.000000\r\n", + "..e_compile.py:276 _optimize_charset 34 0.000000 0.000000 0.000000\r\n", + "..pe_api.py:450 VARCHAR.dialect_impl 33 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\result.py:322 9 0.000000 0.000000 0.000000\r\n", + "..selectable.py:2760 Select.__init__ 8 0.000000 0.000000 0.000000\r\n", + "..my\\sql\\compiler.py:2125 8 0.000000 0.000000 0.000000\r\n", + "..sql\\elements.py:2489 Cast.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..PGDialect_psycopg2.type_descriptor 13 0.000000 0.000000 0.000000\r\n", + "..Compiler_psycopg2._bind_processors 6 0.000000 0.000000 0.000000\r\n", + "..\\result.py:1362 ResultProxy.scalar 3 0.000000 0.000000 0.000000\r\n", + "..mpl.py:143 QueuePool._inc_overflow 1 0.000000 0.000000 0.000000\r\n", + "..e.py:1757 RootTransaction.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..emy\\sql\\compiler.py:1002 4 0.000000 0.000000 0.000000\r\n", + "..y:357 _PGUUID._has_bind_expression 1 0.000000 0.000000 0.000000\r\n", + "..esql\\json.py:177 _PGJSONB.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..lchemy\\event\\base.py:87 5 0.000000 0.000000 0.000000\r\n", + "..base.py:707 Connection._begin_impl 1 0.000000 0.000000 0.000000\r\n", + "..ib\\sre_compile.py:453 _get_iscased 29 0.000000 0.000000 0.000000\r\n", + "..iler.py:410 _CompileLabel.__init__ 29 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\result.py:372 6 0.000000 0.000000 0.000000\r\n", + "..re_parse.py:160 SubPattern.__len__ 261 0.000000 0.000000 0.000000\r\n", + "..y:4713 _ColumnEntity.setup_context 27 0.000000 0.000000 0.000000\r\n", + "..chemy\\orm\\loading.py:59 6 0.000000 0.000000 0.000000\r\n", + "..py:436 prefix_anon_map.__missing__ 6 0.000000 0.000000 0.000000\r\n", + "..y:316 _ListenerCollection.__call__ 2 0.000000 0.000000 0.000000\r\n", + "..py:635 ThreadPoolExecutor.__exit__ 1 0.000000 0.000000 0.000000\r\n", + "..rs.py:63 _SelectorMapping.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..reading.py:1095 _MainThread.daemon 2 0.000000 0.000000 0.000000\r\n", + "..b\\threading.py:1306 current_thread 3 0.000000 0.000000 0.000000\r\n", + "..tors.py:180 SelectSelector.get_key 1 0.000000 0.000000 0.000000\r\n", + "..\\lib\\_weakrefset.py:81 WeakSet.add 22 0.000000 0.000000 0.000000\r\n", + "..n-68gteq6k\\lib\\os.py:732 check_str 1 0.000000 0.000000 0.000000\r\n", + "..hreading.py:222 Condition.__init__ 13 0.000000 0.000000 0.000000\r\n", + "..ctorEventLoopPolicy.new_event_loop 1 0.000000 0.000000 0.000000\r\n", + "..8\\Lib\\threading.py:979 Thread.join 1 0.000000 0.000000 0.000000\r\n", + "..y:632 ThreadPoolExecutor.__enter__ 1 0.000000 0.000000 0.000000\r\n", + "..ion\\analysis.py:367 wrap_coroutine 1 0.000000 0.000000 0.000000\r\n", + "..ib\\threading.py:1110 Thread.daemon 2 0.000000 0.000000 0.000000\r\n", + "..tures\\_base.py:316 Future.__init__ 7 0.000000 0.000000 0.000000\r\n", + "..ors.py:209 SelectSelector.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..y:102 WeakValueDictionary.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..futures\\_base.py:412 Future.result 7 0.000000 0.000000 0.000000\r\n", + "..b\\threading.py:761 Thread.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..\\Lib\\socket.py:219 socket.__init__ 3 0.000000 0.000000 0.000000\r\n", + "..lib\\os.py:668 _Environ.__getitem__ 1 0.000000 0.000000 0.000000\r\n", + "..b\\socket.py:492 socket._real_close 1 0.000000 0.000000 0.000000\r\n", + "..\\Lib\\threading.py:513 Event.is_set 5 0.000000 0.000000 0.000000\r\n", + "..ib\\threading.py:270 Condition.wait 4 0.000000 0.000000 0.000000\r\n", + "..n38\\Lib\\socket.py:496 socket.close 1 0.000000 0.000000 0.000000\r\n", + "...py:284 WeakValueDictionary.update 1 0.000000 0.000000 0.000000\r\n", + "..hreading.py:388 Semaphore.__init__ 2 0.000000 0.000000 0.000000\r\n", + ".._weakrefset.py:36 WeakSet.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..38\\Lib\\socket.py:285 socket.accept 1 0.000000 0.000000 0.000000\r\n", + "..215 SelectSelector._fileobj_lookup 2 0.000000 0.000000 0.000000\r\n", + ":1 __new__ 91 0.000000 0.000000 0.000000\r\n", + "..tion\\analysis.py:373 run_in_thread 1 0.000000 0.000000 0.000000\r\n", + ".. interactable_plot_multiple_charts 1 0.000000 0.000000 0.000000\r\n", + "..ib\\socket.py:97 _intenum_converter 2 0.000000 0.000000 0.000000\r\n", + "..indowsSelectorEventLoop.is_running 2 0.000000 0.000000 0.000000\r\n", + "..WindowsSelectorEventLoop.set_debug 1 0.000000 0.000000 0.000000\r\n", + "..ing.py:255 Condition._release_save 4 0.000000 0.000000 0.000000\r\n", + "..\\Lib\\threading.py:944 Thread._stop 1 0.000000 0.000000 0.000000\r\n", + "..ors.py:298 SelectSelector.register 1 0.000000 0.000000 0.000000\r\n", + "..lib\\functools.py:33 update_wrapper 2 0.000000 0.000000 0.000000\r\n", + "..ng.py:1177 _make_invoke_excepthook 2 0.000000 0.000000 0.000000\r\n", + "..Lib\\selectors.py:21 _fileobj_to_fd 2 0.000000 0.000000 0.000000\r\n", + "..on38\\Lib\\socket.py:518 socket.type 1 0.000000 0.000000 0.000000\r\n", + "..n\\Python38\\Lib\\typing.py:1146 cast 1 0.000000 0.000000 0.000000\r\n", + "..ion\\utils.py:58 profile_with_yappi 1 0.000000 0.000000 0.000000\r\n", + "..68gteq6k\\lib\\functools.py:63 wraps 1 0.000000 0.000000 0.000000\r\n", + "..ollections_abc.py:657 _Environ.get 1 0.000000 0.000000 0.000000\r\n", + "..38\\Lib\\threading.py:540 Event.wait 2 0.000000 0.000000 0.000000\r\n", + "..py:230 ThreadPoolExecutor.shutdown 1 0.000000 0.000000 0.000000\r\n", + "..:1017 Thread._wait_for_tstate_lock 1 0.000000 0.000000 0.000000\r\n", + "..ndowsSelectorEventLoop._add_reader 1 0.000000 0.000000 0.000000\r\n", + "...py:258 Condition._acquire_restore 4 0.000000 0.000000 0.000000\r\n", + ".._WindowsSelectorEventLoop.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..ors.py:293 SelectSelector.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..eq6k\\lib\\_weakrefset.py:38 _remove 19 0.000000 0.000000 0.000000\r\n", + "..38\\Lib\\socket.py:512 socket.family 1 0.000000 0.000000 0.000000\r\n", + "..vents.py:719 get_event_loop_policy 1 0.000000 0.000000 0.000000\r\n", + "..n-68gteq6k\\lib\\os.py:738 encodekey 1 0.000000 0.000000 0.000000\r\n", + ".._WindowsSelectorEventLoop.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..py:120 ThreadPoolExecutor.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..yncio\\events.py:756 new_event_loop 1 0.000000 0.000000 0.000000\r\n", + "..io\\coroutines.py:18 _is_debug_mode 1 0.000000 0.000000 0.000000\r\n", + "..threading.py:394 Semaphore.acquire 7 0.000000 0.000000 0.000000\r\n", + "..py:69 _SelectorMapping.__getitem__ 1 0.000000 0.000000 0.000000\r\n", + "..es\\thread.py:46 _WorkItem.__init__ 7 0.000000 0.000000 0.000000\r\n", + "..ib\\threading.py:505 Event.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..ors.py:234 SelectSelector.register 1 0.000000 0.000000 0.000000\r\n", + "..hon38\\Lib\\socket.py:579 socketpair 1 0.000000 0.000000 0.000000\r\n", + "..sSelectorEventLoop._make_self_pipe 1 0.000000 0.000000 0.000000\r\n", + "..s\\_base.py:386 Future.__get_result 7 0.000000 0.000000 0.000000\r\n", + "..tors.py:272 SelectSelector.get_map 1 0.000000 0.000000 0.000000\r\n", + "..Python38\\Lib\\threading.py:81 RLock 8 0.000000 0.000000 0.000000\r\n", + ".. _GeneratorContextManager.__exit__ 142.. 0.000000 0.000000 0.000000\r\n", + "..1254 Line2D.set_markerfacecoloralt 30 0.000000 0.000000 0.000000\r\n", + "..HandlerLine2D._default_update_prop 8 0.000000 0.000000 0.000000\r\n", + "..y:980 _ConnectionFairy.__getattr__ 2 0.000000 0.000000 0.000000\r\n", + "..\\axis.py:618 YTick.update_position 3 0.000000 0.000000 0.000000\r\n", + "..y:583 AxesSubplot._unstale_viewLim 2 0.000000 0.000000 0.000000\r\n", + "..py:133 GridSpec.get_grid_positions 1 0.000000 0.000000 0.000000\r\n", + "..lib\\transforms.py:782 from_extents 20 0.000000 0.000000 0.000000\r\n", + "..istry.py:246 _EventKey.base_listen 3 0.000000 0.000000 0.000000\r\n", + "..copg2\\tz.py:36 FixedOffsetTimezone 1 0.000000 0.000000 0.000000\r\n", + "..y\\orm\\session.py:893 Session.begin 3 0.000000 0.000000 0.000000\r\n", + "..ok\\__init__.py:2108 _check_in_list 449 0.000000 0.000000 0.000000\r\n", + "...py:556 UUID.coerce_compared_value 4 0.000000 0.000000 0.000000\r\n", + "..:1088 ExtensionFileLoader.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\colors.py:225 4 0.000000 0.000000 0.000000\r\n", + "..otlib\\axes\\_base.py:363 4 0.000000 0.000000 0.000000\r\n", + "..__.py:185 CallbackRegistry.process 26 0.000000 0.000000 0.000000\r\n", + "..array_function__ internals>:2 tile 1 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:229 XTick.set_clip_path 6 0.000000 0.000000 0.000000\r\n", + "..xesSubplot._set_title_offset_trans 5 0.000000 0.000000 0.000000\r\n", + "..plotlib\\spines.py:517 linear_spine 4 0.000000 0.000000 0.000000\r\n", + "..:776 Rectangle.get_patch_transform 18 0.000000 0.000000 0.000000\r\n", + "..rtist.py:350 Text.is_transform_set 15 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\figure.py:76 2 0.000000 0.000000 0.000000\r\n", + "..gistry.py:67 _stored_in_collection 3 0.000000 0.000000 0.000000\r\n", + "..set.py:16 _IterationGuard.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..nits.py:197 Registry.get_converter 24/14 0.000000 0.000000 0.000000\r\n", + "..tenerCollection._memoized_attr_ref 2 0.000000 0.000000 0.000000\r\n", + "..ler.py:396 PGTypeCompiler.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..lotlib\\dates.py:1921 default_units 8 0.000000 0.000000 0.000000\r\n", + "..base.py:563 AxesSubplot.set_figure 1 0.000000 0.000000 0.000000\r\n", + "..k\\lib\\abc.py:100 __subclasscheck__ 85/14 0.000000 0.000000 0.000000\r\n", + "..lib\\axis.py:922 _translate_tick_kw 8 0.000000 0.000000 0.000000\r\n", + "..manager.py:855 FontProperties.copy 3 0.000000 0.000000 0.000000\r\n", + "..pool\\impl.py:35 QueuePool.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..y:2462 composite_transform_factory 78 0.000000 0.000000 0.000000\r\n", + "..ctions_abc.py:252 __subclasshook__ 1 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:334 XTick._apply_params 14 0.000000 0.000000 0.000000\r\n", + "..t_manager.py:1043 get_default_size 22 0.000000 0.000000 0.000000\r\n", + "...py:1624 FigureCanvasBase.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..owsSelectorEventLoop.create_future 6 0.000000 0.000000 0.000000\r\n", + "..b\\_pylab_helpers.py:109 set_active 1 0.000000 0.000000 0.000000\r\n", + "..y:930 AxesSubplot._gen_axes_spines 1 0.000000 0.000000 0.000000\r\n", + "..es.py:375 FancyBboxPatch.set_alpha 1 0.000000 0.000000 0.000000\r\n", + "..x.py:690 DrawingArea.get_transform 4 0.000000 0.000000 0.000000\r\n", + "..ase.py:867 _ConnectionFairy._reset 1 0.000000 0.000000 0.000000\r\n", + "..ycopg2\\extras.py:805 HstoreAdapter 1 0.000000 0.000000 0.000000\r\n", + "..:536 ScalarFormatter.set_useOffset 16 0.000000 0.000000 0.000000\r\n", + "..emy\\orm\\query.py:1790 Query.filter 4 0.000000 0.000000 0.000000\r\n", + "..text.py:240 Text.set_rotation_mode 24 0.000000 0.000000 0.000000\r\n", + "..ages\\psycopg2\\errors.py:1 1 0.000000 0.000000 0.000000\r\n", + "..lEventsDispatch._event_descriptors 36 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\text.py:170 Text.update 65 0.000000 0.000000 0.000000\r\n", + "..py:913 AxesSubplot._gen_axes_patch 1 0.000000 0.000000 0.000000\r\n", + "..set.py:26 _IterationGuard.__exit__ 1 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:544 YTick._get_text1 3 0.000000 0.000000 0.000000\r\n", + "..rms.py:1632 TransformWrapper._init 2 0.000000 0.000000 0.000000\r\n", + "..:221 Query._set_entity_selectables 6 0.000000 0.000000 0.000000\r\n", + "..\\__init__.py:631 _AxesStack.bubble 1 0.000000 0.000000 0.000000\r\n", + "..6k\\lib\\enum.py:659 RegexFlag.value 4 0.000000 0.000000 0.000000\r\n", + "..CompositeGenericTransform.__init__ 69 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:603 YTick._get_gridline 3 0.000000 0.000000 0.000000\r\n", + "..stry.py:169 _EventKey.with_wrapper 5 0.000000 0.000000 0.000000\r\n", + "..langhelpers.py:344 get_func_kwargs 1 0.000000 0.000000 0.000000\r\n", + "..lib\\patches.py:2146 Round.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..b\\path.py:251 Path.should_simplify 4 0.000000 0.000000 0.000000\r\n", + "..ges\\numpy\\core\\_methods.py:44 _any 4 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:559 YTick._get_text2 3 0.000000 0.000000 0.000000\r\n", + "..xis.py:1969 XAxis._get_offset_text 1 0.000000 0.000000 0.000000\r\n", + "..base.py:375 QueuePool._return_conn 1 0.000000 0.000000 0.000000\r\n", + "..qlalchemy\\orm\\base.py:222 generate 5 0.000000 0.000000 0.000000\r\n", + "..orm._iter_break_from_left_to_right 8 0.000000 0.000000 0.000000\r\n", + "..ngine\\base.py:863 Connection.close 1 0.000000 0.000000 0.000000\r\n", + "..py:1240 Line2D.set_markerfacecolor 30 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:662 Ticker.formatter 65 0.000000 0.000000 0.000000\r\n", + "..7 BlendedGenericTransform.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..lchemy\\orm\\query.py:330 1 0.000000 0.000000 0.000000\r\n", + "..legend.py:1169 _get_legend_handles 5 0.000000 0.000000 0.000000\r\n", + "..tlib\\figure.py:275 Figure.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..t.py:49 Spine._stale_axes_callback 302 0.000000 0.000000 0.000000\r\n", + "..py:834 XAxis.limit_range_for_scale 2 0.000000 0.000000 0.000000\r\n", + "..otlib\\artist.py:74 Figure.__init__ 88 0.000000 0.000000 0.000000\r\n", + ".._base.py:3093 AxesSubplot.set_xlim 1 0.000000 0.000000 0.000000\r\n", + "..774 SourceFileLoader.create_module 9 0.000000 0.000000 0.000000\r\n", + "..34 new_figure_manager_given_figure 1 0.000000 0.000000 0.000000\r\n", + "..xis.py:1525 XAxis._update_axisinfo 13 0.000000 0.000000 0.000000\r\n", + "..ngine\\url.py:299 _rfc_1738_unquote 1 0.000000 0.000000 0.000000\r\n", + "..lotlib\\axis.py:645 Ticker.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..sSubplot.get_xaxis_text1_transform 3 0.000000 0.000000 0.000000\r\n", + "..y:2463 FancyBboxPatch.set_boxstyle 2 0.000000 0.000000 0.000000\r\n", + "..24 AxesSubplot.get_yaxis_transform 29/15 0.000000 0.000000 0.000000\r\n", + "..psycopg2\\_range.py:290 RangeCaster 1 0.000000 0.000000 0.000000\r\n", + "..owsSelectorEventLoop._add_callback 6 0.000000 0.000000 0.000000\r\n", + "..l.py:103 QueuePool._do_return_conn 1 0.000000 0.000000 0.000000\r\n", + "..e-packages\\cycler.py:227 110 0.000000 0.000000 0.000000\r\n", + "..ure.py:487 Figure.set_tight_layout 1 0.000000 0.000000 0.000000\r\n", + "..nal>:1520 path_hook_for_FileFinder 1 0.000000 0.000000 0.000000\r\n", + "..ib\\transforms.py:727 Bbox.__init__ 41 0.000000 0.000000 0.000000\r\n", + "..s.py:1247 AutoDateLocator.__init__ 2 0.000000 0.000000 0.000000\r\n", + "...py:1640 XAxis.set_minor_formatter 16 0.000000 0.000000 0.000000\r\n", + "..:171 DynamicClassAttribute.__get__ 4 0.000000 0.000000 0.000000\r\n", + "..nal>:939 SourceFileLoader.__init__ 9 0.000000 0.000000 0.000000\r\n", + "..610 _WindowsSelectorEventLoop.stop 1 0.000000 0.000000 0.000000\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..b\\function_base.py:2120 4 0.000000 0.000000 0.000000\r\n", + "...py:1423 Figure._add_axes_internal 1 0.000000 0.000000 0.000000\r\n", + "..mportlib._bootstrap>:800 find_spec 10 0.000000 0.000000 0.000000\r\n", + "..:94 PoolEventsDispatch.__getattr__ 12 0.000000 0.000000 0.000000\r\n", + "..axes.py:256 AxesSubplot.set_ylabel 4 0.000000 0.000000 0.000000\r\n", + "..lines.py:1058 Line2D.set_drawstyle 34 0.000000 0.000000 0.000000\r\n", + "..sforms.py:1940 Affine2D.rotate_deg 18 0.000000 0.000000 0.000000\r\n", + "..>:1010 SourceFileLoader.path_stats 9 0.000000 0.000000 0.000000\r\n", + "..b\\cbook\\__init__.py:836 8 0.000000 0.000000 0.000000\r\n", + "..lib\\lines.py:743 Line2D._is_sorted 3 0.000000 0.000000 0.000000\r\n", + "..\\elements.py:709 Column.comparator 4 0.000000 0.000000 0.000000\r\n", + "..tlib\\axis.py:1951 XAxis._get_label 1 0.000000 0.000000 0.000000\r\n", + "..ore\\numerictypes.py:365 issubdtype 4 0.000000 0.000000 0.000000\r\n", + "..\\axis.py:1605 YAxis.set_label_text 5 0.000000 0.000000 0.000000\r\n", + "..copg2\\extras.py:125 DictConnection 1 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\transforms.py:768 null 1 0.000000 0.000000 0.000000\r\n", + "..lib\\offsetbox.py:199 TextArea.axes 16 0.000000 0.000000 0.000000\r\n", + "..nction__ internals>:2 column_stack 12 0.000000 0.000000 0.000000\r\n", + "..ap_external>:90 _path_is_mode_type 13 0.000000 0.000000 0.000000\r\n", + ".._base.py:20 _atleast_1d_dispatcher 24 0.000000 0.000000 0.000000\r\n", + "..py:193 PGDialect_psycopg2.__init__ 1 0.000000 0.000000 0.000000\r\n", + "...py:765 FontProperties.set_variant 23 0.000000 0.000000 0.000000\r\n", + "...py:523 YTick._get_text1_transform 3 0.000000 0.000000 0.000000\r\n", + "..ath.py:230 Path.simplify_threshold 4 0.000000 0.000000 0.000000\r\n", + "..sql\\operators.py:358 Column.__eq__ 8/4 0.000000 0.000000 0.000000\r\n", + "..\\core\\fromnumeric.py:74 85 0.000000 0.000000 0.000000\r\n", + "..sql\\elements.py:4087 Column._label 10 0.000000 0.000000 0.000000\r\n", + "..WeakKeyDictionary._commit_removals 1 0.000000 0.000000 0.000000\r\n", + "..elements.py:724 Column.__getattr__ 3 0.000000 0.000000 0.000000\r\n", + "..k\\__init__.py:626 _AxesStack.clear 3 0.000000 0.000000 0.000000\r\n", + "..ool\\base.py:235 QueuePool._creator 1 0.000000 0.000000 0.000000\r\n", + "..s.py:302 Rectangle.set_antialiased 8 0.000000 0.000000 0.000000\r\n", + "..tlib\\transforms.py:773 from_bounds 1 0.000000 0.000000 0.000000\r\n", + "..68gteq6k\\lib\\weakref.py:44 __new__ 33 0.000000 0.000000 0.000000\r\n", + "..ction__ internals>:2 unravel_index 1 0.000000 0.000000 0.000000\r\n", + "..ycopg2\\_range.py:471 DateTimeRange 1 0.000000 0.000000 0.000000\r\n", + "..asyncio\\futures.py:377 wrap_future 6 0.000000 0.000000 0.000000\r\n", + "..sion.py:3188 sessionmaker.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..07 ExtensionFileLoader.exec_module 1 0.000000 0.000000 0.000000\r\n", + "..\\interfaces.py:856 get_dialect_cls 1 0.000000 0.000000 0.000000\r\n", + "..es.py:341 Rectangle._set_facecolor 20 0.000000 0.000000 0.000000\r\n", + ":1 Session.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..nsaction._iterate_self_and_parents 1 0.000000 0.000000 0.000000\r\n", + "..e\\fromnumeric.py:73 _wrapreduction 85 0.000000 0.000000 0.000000\r\n", + "..\\legend.py:1215 _parse_legend_args 1 0.000000 0.000000 0.000000\r\n", + "..2\\extras.py:226 RealDictConnection 1 0.000000 0.000000 0.000000\r\n", + "..ches.py:458 Rectangle.set_capstyle 11 0.000000 0.000000 0.000000\r\n", + "..chemy\\util\\queue.py:199 Queue._put 1 0.000000 0.000000 0.000000\r\n", + "..as.py:472 MinTimeLoggingConnection 1 0.000000 0.000000 0.000000\r\n", + "..y\\dialects\\__init__.py:52 1 0.000000 0.000000 0.000000\r\n", + "..idspec.py:200 GridSpec.__getitem__ 1 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\text.py:121 Text.__init__ 24 0.000000 0.000000 0.000000\r\n", + "..lotlib\\axes\\_base.py:586 4 0.000000 0.000000 0.000000\r\n", + "..n\\Python38\\Lib\\typing.py:255 inner 1 0.000000 0.000000 0.000000\r\n", + "..extras.py:296 NamedTupleConnection 1 0.000000 0.000000 0.000000\r\n", + "..tion_base.py:1143 _diff_dispatcher 16 0.000000 0.000000 0.000000\r\n", + "..s\\psycopg2\\_range.py:466 DateRange 1 0.000000 0.000000 0.000000\r\n", + "..plotlib\\transforms.py:177 39 0.000000 0.000000 0.000000\r\n", + "..ger.py:835 FontProperties.set_file 23 0.000000 0.000000 0.000000\r\n", + "..py:210 WeakInstanceDict.all_states 2 0.000000 0.000000 0.000000\r\n", + "..8gteq6k\\lib\\sre_parse.py:432 _uniq 22 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\figure.py:74 2 0.000000 0.000000 0.000000\r\n", + "..b\\spines.py:381 Spine.set_position 4 0.000000 0.000000 0.000000\r\n", + "..ib\\function_base.py:2116 8 0.000000 0.000000 0.000000\r\n", + "..mportlib._bootstrap>:725 find_spec 10 0.000000 0.000000 0.000000\r\n", + "..ernal>:629 spec_from_file_location 10 0.000000 0.000000 0.000000\r\n", + ":1 QueuePool.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..:519 PhysicalReplicationConnection 1 0.000000 0.000000 0.000000\r\n", + "..ures\\_base.py:371 Future.cancelled 6 0.000000 0.000000 0.000000\r\n", + ".._init__.py:1610 safe_first_element 24 0.000000 0.000000 0.000000\r\n", + "..cbook\\__init__.py:1933 _setattr_cm 280 0.000000 0.000000 0.000000\r\n", + "..ool\\base.py:231 QueuePool._creator 1 0.000000 0.000000 0.000000\r\n", + "..ker.py:2126 AutoLocator.set_params 16 0.000000 0.000000 0.000000\r\n", + "..\\offsetbox.py:410 VPacker.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..se.py:1699 RootTransaction._parent 1 0.000000 0.000000 0.000000\r\n", + "..__init__.py:60 _StrongRef.__hash__ 6 0.000000 0.000000 0.000000\r\n", + "..lors.py:193 _to_rgba_no_colorcycle 8 0.000000 0.000000 0.000000\r\n", + "..es\\matplotlib\\pyplot.py:427 figure 1 0.000000 0.000000 0.000000\r\n", + "..s.py:1355 AutoDateLocator.set_axis 1 0.000000 0.000000 0.000000\r\n", + "..s.py:263 MarkerStyle.get_fillstyle 8 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\axis.py:1456 XAxis.grid 4 0.000000 0.000000 0.000000\r\n", + "..hes.py:330 Rectangle.set_edgecolor 12 0.000000 0.000000 0.000000\r\n", + "..portlib._bootstrap>:35 _new_module 9 0.000000 0.000000 0.000000\r\n", + "..tlib\\transforms.py:274 Bbox.frozen 1 0.000000 0.000000 0.000000\r\n", + "..plotlib\\text.py:933 Text.set_color 24 0.000000 0.000000 0.000000\r\n", + "..s.py:2221 BlendedAffine2D.__init__ 6 0.000000 0.000000 0.000000\r\n", + ".. HandlerLine2D.adjust_drawing_area 4 0.000000 0.000000 0.000000\r\n", + "..b\\lines.py:1327 Line2D.update_from 8 0.000000 0.000000 0.000000\r\n", + "..ocess_plot_var_args.set_prop_cycle 2 0.000000 0.000000 0.000000\r\n", + "..alchemy\\log.py:174 instance_logger 3 0.000000 0.000000 0.000000\r\n", + "..pe_base.py:219 _vhstack_dispatcher 16 0.000000 0.000000 0.000000\r\n", + "..s\\psycopg2\\tz.py:108 LocalTimezone 1 0.000000 0.000000 0.000000\r\n", + "..mpy\\lib\\function_base.py:1147 diff 16 0.000000 0.000000 0.000000\r\n", + "..lib\\transforms.py:82 Bbox.__init__ 306 0.000000 0.000000 0.000000\r\n", + "..nctools.py:524 decorating_function 1 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\axis.py:1486 4 0.000000 0.000000 0.000000\r\n", + "..emy\\engine\\url.py:129 URL.password 1 0.000000 0.000000 0.000000\r\n", + "..sSelectorEventLoop._process_events 17 0.000000 0.000000 0.000000\r\n", + "..lib\\lines.py:1294 Line2D.set_ydata 39 0.000000 0.000000 0.000000\r\n", + ".._.py:1309 _to_unmasked_float_array 34 0.000000 0.000000 0.000000\r\n", + "..>:147 _ModuleLockManager.__enter__ 10 0.000000 0.000000 0.000000\r\n", + "..\\sqlalchemy\\event\\api.py:34 listen 3 0.000000 0.000000 0.000000\r\n", + "..gure.py:2059 Figure.add_axobserver 1 0.000000 0.000000 0.000000\r\n", + "..teq6k\\lib\\copy.py:257 _reconstruct 1 0.000000 0.000000 0.000000\r\n", + "..artist.py:827 Line2D.get_clip_path 4 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\legend.py:1253 1 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\figure.py:1073 fixitems 1 0.000000 0.000000 0.000000\r\n", + "..r.py:742 FontProperties.set_family 23 0.000000 0.000000 0.000000\r\n", + "..ap_external>:294 cache_from_source 18 0.000000 0.000000 0.000000\r\n", + "..forms.py:1669 TransformWrapper.set 2 0.000000 0.000000 0.000000\r\n", + "..tlib\\units.py:81 AxisInfo.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..ncio\\coroutines.py:177 iscoroutine 2 0.000000 0.000000 0.000000\r\n", + "..\\psycopg2\\extensions.py:109 SQL_IN 1 0.000000 0.000000 0.000000\r\n", + "..plotlib\\gridspec.py:382 1 0.000000 0.000000 0.000000\r\n", + "..xternal>:1265 _path_importer_cache 19 0.000000 0.000000 0.000000\r\n", + "..kages\\psycopg2\\_json.py:1 1 0.000000 0.000000 0.000000\r\n", + "..process_plot_var_args._setdefaults 4 0.000000 0.000000 0.000000\r\n", + "..b\\axis.py:459 XTick._get_tick1line 3 0.000000 0.000000 0.000000\r\n", + "..y\\lib\\shape_base.py:1227 2 0.000000 0.000000 0.000000\r\n", + "..ages\\psycopg2\\extras.py:1 1 0.000000 0.000000 0.000000\r\n", + "..\\transforms.py:939 Bbox.get_points 3 0.000000 0.000000 0.000000\r\n", + "..tlib\\legend.py:569 Legend._set_loc 1 0.000000 0.000000 0.000000\r\n", + "..tlib\\axis.py:2466 YAxis.get_minpos 1 0.000000 0.000000 0.000000\r\n", + "..s.py:1398 Line2D.set_dash_capstyle 30 0.000000 0.000000 0.000000\r\n", + "..on38\\Lib\\uuid.py:259 UUID.__hash__ 4 0.000000 0.000000 0.000000\r\n", + "..otlib\\artist.py:197 Rectangle.axes 117 0.000000 0.000000 0.000000\r\n", + "..py:2459 AxesSubplot._get_axis_list 1 0.000000 0.000000 0.000000\r\n", + "..\\orm\\session.py:1288 Session.close 1 0.000000 0.000000 0.000000\r\n", + "..\\offsetbox.py:356 HPacker.__init__ 7 0.000000 0.000000 0.000000\r\n", + "..ion-68gteq6k\\lib\\weakref.py:51 _cb 2 0.000000 0.000000 0.000000\r\n", + "..opg2\\_range.py:476 DateTimeTZRange 1 0.000000 0.000000 0.000000\r\n", + "..ycopg2\\extras.py:65 DictCursorBase 1 0.000000 0.000000 0.000000\r\n", + "..lectorEventLoop._process_self_data 6 0.000000 0.000000 0.000000\r\n", + "..y:154 to_unicode_processor_factory 1 0.000000 0.000000 0.000000\r\n", + "..:116 PoolEventsDispatch._for_class 2 0.000000 0.000000 0.000000\r\n", + "..hemy\\engine\\url.py:56 URL.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..otlib\\rcsetup.py:123 validate_bool 1 0.000000 0.000000 0.000000\r\n", + "..b\\scale.py:97 LinearScale.__init__ 16 0.000000 0.000000 0.000000\r\n", + "..b._bootstrap>:157 _get_module_lock 18 0.000000 0.000000 0.000000\r\n", + "..ping.py:717 _GenericAlias.__hash__ 1 0.000000 0.000000 0.000000\r\n", + "..y:512 LogicalReplicationConnection 1 0.000000 0.000000 0.000000\r\n", + "..r.py:774 FontProperties.set_weight 27 0.000000 0.000000 0.000000\r\n", + "..er.py:72 HandlerLine2D.update_prop 8 0.000000 0.000000 0.000000\r\n", + "..til\\_collections.py:317 5 0.000000 0.000000 0.000000\r\n", + "..ig\\configurable.py:426 initialized 2 0.000000 0.000000 0.000000\r\n", + "..t\\registry.py:193 _EventKey.listen 4/3 0.000000 0.000000 0.000000\r\n", + "..otlib\\transforms.py:394 Bbox.width 1 0.000000 0.000000 0.000000\r\n", + "..s\\matplotlib\\axis.py:841 XAxis.cla 12 0.000000 0.000000 0.000000\r\n", + "..ootstrap_external>:99 _path_isfile 12 0.000000 0.000000 0.000000\r\n", + "..d_bases.py:3325 new_figure_manager 1 0.000000 0.000000 0.000000\r\n", + "..sSubplot.get_yaxis_text2_transform 3 0.000000 0.000000 0.000000\r\n", + "..nit__.py:1974 _OrderedSet.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..lotlib\\axis.py:822 XAxis.get_scale 5 0.000000 0.000000 0.000000\r\n", + "..s\\_base.py:597 AxesSubplot.viewLim 2 0.000000 0.000000 0.000000\r\n", + "..f.py:385 WeakKeyDictionary.__len__ 2 0.000000 0.000000 0.000000\r\n", + "...py:526 YTick._get_text2_transform 3 0.000000 0.000000 0.000000\r\n", + "..bootstrap_external>:1508 1 0.000000 0.000000 0.000000\r\n", + "..plotlib\\axis.py:649 Ticker.locator 3 0.000000 0.000000 0.000000\r\n", + "..y:528 Text._update_clip_properties 15 0.000000 0.000000 0.000000\r\n", + "..lotlib\\axes\\_base.py:232 8 0.000000 0.000000 0.000000\r\n", + "..ing>:1 PGDialect_psycopg2.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..hes.py:260 Rectangle.get_transform 18 0.000000 0.000000 0.000000\r\n", + "..bootstrap>:103 _ModuleLock.release 18 0.000000 0.000000 0.000000\r\n", + "..lib\\artist.py:974 Rectangle.update 140 0.000000 0.000000 0.000000\r\n", + "..py:2249 BlendedAffine2D.get_matrix 4 0.000000 0.000000 0.000000\r\n", + "..tlib\\dates.py:174 _get_rc_timezone 6 0.000000 0.000000 0.000000\r\n", + "..e.py:117 LinearScale.get_transform 4 0.000000 0.000000 0.000000\r\n", + "..ase.py:746 Connection._commit_impl 1 0.000000 0.000000 0.000000\r\n", + "..ges\\numpy\\core\\_methods.py:47 _all 1 0.000000 0.000000 0.000000\r\n", + "..sSubplot.get_xaxis_text2_transform 3 0.000000 0.000000 0.000000\r\n", + "..ib\\axes\\_subplots.py:229 2 0.000000 0.000000 0.000000\r\n", + "..egation\\analysis.py:212 8613 0.000000 0.000000 0.000000\r\n", + "..mpy\\core\\fromnumeric.py:42 _wrapit 3 0.000000 0.000000 0.000000\r\n", + "..lib\\transforms.py:935 Bbox.minposy 1 0.000000 0.000000 0.000000\r\n", + "...py:2266 blended_transform_factory 8 0.000000 0.000000 0.000000\r\n", + "..93 vectorize._get_ufunc_and_otypes 4 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\artist.py:1006 140 0.000000 0.000000 0.000000\r\n", + "..py:2538 FigureManagerBase.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..json.py:146 register_default_jsonb 1 0.000000 0.000000 0.000000\r\n", + "..chemy\\engine\\url.py:156 1 0.000000 0.000000 0.000000\r\n", + ":1 Comparator. 4 0.000000 0.000000 0.000000\r\n", + "..ib\\stride_tricks.py:262 10 0.000000 0.000000 0.000000\r\n", + "..b\\sre_parse.py:98 State.checkgroup 1 0.000000 0.000000 0.000000\r\n", + "..extras.py:500 MinTimeLoggingCursor 1 0.000000 0.000000 0.000000\r\n", + "..syncio\\base_futures.py:13 isfuture 37 0.000000 0.000000 0.000000\r\n", + "..lalchemy\\event\\base.py:243 _listen 3 0.000000 0.000000 0.000000\r\n", + "..ok\\__init__.py:601 _AxesStack.push 2 0.000000 0.000000 0.000000\r\n", + "..s.py:2544 BboxTransformTo.__init__ 20 0.000000 0.000000 0.000000\r\n", + "..ist.py:961 Rectangle.set_in_layout 1 0.000000 0.000000 0.000000\r\n", + "..opg2\\extras.py:526 StopReplication 1 0.000000 0.000000 0.000000\r\n", + "..nghelpers.py:248 PluginLoader.load 1 0.000000 0.000000 0.000000\r\n", + "..1 _process_plot_var_args._makeline 4 0.000000 0.000000 0.000000\r\n", + "..ation-68gteq6k\\lib\\copy.py:66 copy 1 0.000000 0.000000 0.000000\r\n", + "..entifierPreparer_psycopg2.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..asyncio\\tasks.py:653 ensure_future 2 0.000000 0.000000 0.000000\r\n", + "..yncio\\futures.py:335 _chain_future 6 0.000000 0.000000 0.000000\r\n", + "..alchemy\\util\\queue.py:92 Queue.put 1 0.000000 0.000000 0.000000\r\n", + "..48 AxesSubplot.get_xaxis_transform 29/15 0.000000 0.000000 0.000000\r\n", + "..romnumeric.py:2185 _any_dispatcher 76 0.000000 0.000000 0.000000\r\n", + "...py:77 PoolEventsDispatch.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..b._bootstrap>:222 _verbose_message 90 0.000000 0.000000 0.000000\r\n", + "..mpy\\core\\multiarray.py:1043 copyto 4 0.000000 0.000000 0.000000\r\n", + "..\\lib\\sre_compile.py:411 _mk_bitmap 5 0.000000 0.000000 0.000000\r\n", + "..ctors.py:319 SelectSelector.select 17 0.000000 0.000000 0.000000\r\n", + "..ffsetbox.py:240 VPacker.set_offset 1 0.000000 0.000000 0.000000\r\n", + ".._comparator.py:41 _boolean_compare 4 0.000000 0.000000 0.000000\r\n", + "...py:1352 Line2D.set_dash_joinstyle 30 0.000000 0.000000 0.000000\r\n", + "..ase.py:3767 AxesSubplot.xaxis_date 4 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:485 XTick._get_gridline 3 0.000000 0.000000 0.000000\r\n", + "..\\numpy\\lib\\shape_base.py:1155 tile 1 0.000000 0.000000 0.000000\r\n", + "..s\\matplotlib\\dates.py:225 2 0.000000 0.000000 0.000000\r\n", + "..y:2175 XAxis.set_default_intervals 1 0.000000 0.000000 0.000000\r\n", + "..tstrap_external>:493 _classify_pyc 9 0.000000 0.000000 0.000000\r\n", + "..external>:1394 FileFinder.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..py:140 _AxesStack.current_key_axes 2 0.000000 0.000000 0.000000\r\n", + "..y:355 _ListenerCollection.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:444 XTick._get_text2 3 0.000000 0.000000 0.000000\r\n", + "..copg2\\extras.py:233 RealDictCursor 1 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\path.py:197 Path.vertices 16 0.000000 0.000000 0.000000\r\n", + "..t_comparator.py:359 _check_literal 4 0.000000 0.000000 0.000000\r\n", + "..ctions_abc.py:271 __subclasshook__ 5 0.000000 0.000000 0.000000\r\n", + "..es\\numpy\\core\\_methods.py:28 _amax 2 0.000000 0.000000 0.000000\r\n", + "..nal>:969 SourceFileLoader.get_data 9 0.000000 0.000000 0.000000\r\n", + "..ib\\weakref.py:73 WeakMethod.__eq__ 1 0.000000 0.000000 0.000000\r\n", + "..e.py:853 _ConnectionFairy._checkin 1 0.000000 0.000000 0.000000\r\n", + "..artist.py:841 TextArea.set_clip_on 16 0.000000 0.000000 0.000000\r\n", + "..e\\interfaces.py:901 engine_created 1 0.000000 0.000000 0.000000\r\n", + "..b\\weakref.py:328 KeyedRef.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..\\lines.py:730 Line2D.set_transform 38 0.000000 0.000000 0.000000\r\n", + "..s.py:1709 IdentityTransform.__eq__ 9/8 0.000000 0.000000 0.000000\r\n", + "..\\cbook\\__init__.py:1737 74 0.000000 0.000000 0.000000\r\n", + "..\\spines.py:226 Spine.register_axis 4 0.000000 0.000000 0.000000\r\n", + "..ng\\__init__.py:772 Logger.__init__ 3 0.000000 0.000000 0.000000\r\n", + "..Figure.set_constrained_layout_pads 1 0.000000 0.000000 0.000000\r\n", + "..nal>:849 SourceFileLoader.get_code 9 0.000000 0.000000 0.000000\r\n", + "...py:235 SubplotParams._update_this 12 0.000000 0.000000 0.000000\r\n", + "..y\\log.py:221 echo_property.__set__ 1 0.000000 0.000000 0.000000\r\n", + "..s\\matplotlib\\axis.py:342 70 0.000000 0.000000 0.000000\r\n", + "..:136 Affine2D._invalidate_internal 90/76 0.000000 0.000000 0.000000\r\n", + "..n.py:500 SessionTransaction.commit 1 0.000000 0.000000 0.000000\r\n", + "..b\\transforms.py:914 Bbox.intervaly 1 0.000000 0.000000 0.000000\r\n", + "...py:311 RangeCaster._create_ranges 6 0.000000 0.000000 0.000000\r\n", + "...py:1689 TransformWrapper. 6 0.000000 0.000000 0.000000\r\n", + "..ents.py:942 BindParameter.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..ib\\artist.py:800 XAxis.get_visible 2 0.000000 0.000000 0.000000\r\n", + "..ib\\threading.py:1095 Thread.daemon 1 0.000000 0.000000 0.000000\r\n", + "..e._process_projection_requirements 1 0.000000 0.000000 0.000000\r\n", + "..b._bootstrap>:549 module_from_spec 10/9 0.000000 0.000000 0.000000\r\n", + ".. Rectangle._update_patch_transform 18 0.000000 0.000000 0.000000\r\n", + "..\\cbook\\__init__.py:1742 74 0.000000 0.000000 0.000000\r\n", + "..book\\__init__.py:1296 is_math_text 30 0.000000 0.000000 0.000000\r\n", + "..ray_function__ internals>:2 copyto 4 0.000000 0.000000 0.000000\r\n", + "..is.py:1048 XAxis._set_artist_props 4 0.000000 0.000000 0.000000\r\n", + "..59 WeakValueDictionary.__setitem__ 1 0.000000 0.000000 0.000000\r\n", + "..hes.py:402 Rectangle.set_linestyle 7 0.000000 0.000000 0.000000\r\n", + "..y\\pool\\base.py:667 _finalize_fairy 1 0.000000 0.000000 0.000000\r\n", + ".._bootstrap>:477 _init_module_attrs 10 0.000000 0.000000 0.000000\r\n", + ".._bootstrap_external>:80 _path_stat 40 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\dates.py:1893 axisinfo 2 0.000000 0.000000 0.000000\r\n", + "..tbox.py:739 DrawingArea.add_artist 8 0.000000 0.000000 0.000000\r\n", + "..lib\\lines.py:1047 Line2D.set_color 30 0.000000 0.000000 0.000000\r\n", + "..py:2606 BboxTransformFrom.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..\\offsetbox.py:489 HPacker.__init__ 5 0.000000 0.000000 0.000000\r\n", + "..bootstrap_external>:68 _path_split 18 0.000000 0.000000 0.000000\r\n", + "..teGenericTransform.contains_branch 4 0.000000 0.000000 0.000000\r\n", + "..elements.py:4056 Column._get_table 20 0.000000 0.000000 0.000000\r\n", + "..y\\core\\multiarray.py:77 empty_like 4 0.000000 0.000000 0.000000\r\n", + "..offsetbox.py:175 TextArea.__init__ 16 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:529 YTick.apply_tickdir 3 0.000000 0.000000 0.000000\r\n", + "..nsforms.py:126 Affine2D.invalidate 76 0.000000 0.000000 0.000000\r\n", + "...py:792 FontProperties.set_stretch 23 0.000000 0.000000 0.000000\r\n", + "..ib\\__init__.py:1285 is_interactive 2 0.000000 0.000000 0.000000\r\n", + "..it__.py:1323 Manager._fixupParents 3 0.000000 0.000000 0.000000\r\n", + "..sycopg2\\_range.py:457 NumericRange 1 0.000000 0.000000 0.000000\r\n", + "..ib\\artist.py:1037 Spine.set_zorder 18 0.000000 0.000000 0.000000\r\n", + "...py:399 _ListenerCollection.append 3 0.000000 0.000000 0.000000\r\n", + "..lements.py:4145 Column._bind_param 4 0.000000 0.000000 0.000000\r\n", + ".._axes.py:147 AxesSubplot.set_title 4 0.000000 0.000000 0.000000\r\n", + "..tlib\\transforms.py:400 Bbox.height 1 0.000000 0.000000 0.000000\r\n", + "..ler.py:161 HandlerLine2D.get_xdata 4 0.000000 0.000000 0.000000\r\n", + "..e.py:3867 AxesSubplot.set_navigate 1 0.000000 0.000000 0.000000\r\n", + "..bootstrap_external>:36 _relax_case 17 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\axis.py:361 14 0.000000 0.000000 0.000000\r\n", + "..\\axis.py:884 XAxis.set_tick_params 8 0.000000 0.000000 0.000000\r\n", + "..800 AxesSubplot._update_transScale 2 0.000000 0.000000 0.000000\r\n", + "..b\\patches.py:42 Rectangle.__init__ 7 0.000000 0.000000 0.000000\r\n", + "..ib\\path.py:188 Path._update_values 14 0.000000 0.000000 0.000000\r\n", + "..ages\\cycler.py:225 Cycler.__iter__ 12 0.000000 0.000000 0.000000\r\n", + "..er.py:512 ScalarFormatter.__init__ 16 0.000000 0.000000 0.000000\r\n", + "..:220 Spine._ensure_position_is_set 28/24 0.000000 0.000000 0.000000\r\n", + "..function__ internals>:2 empty_like 4 0.000000 0.000000 0.000000\r\n", + "..lib\\legend.py:918 Legend.get_frame 1 0.000000 0.000000 0.000000\r\n", + "..ide_tricks.py:185 _broadcast_shape 10 0.000000 0.000000 0.000000\r\n", + "..tlib\\artist.py:1201 Text.mouseover 7 0.000000 0.000000 0.000000\r\n", + "..y:202 _broadcast_arrays_dispatcher 10 0.000000 0.000000 0.000000\r\n", + "..lib\\shape_base.py:597 column_stack 12 0.000000 0.000000 0.000000\r\n", + "..init__.py:882 Grouper.get_siblings 6 0.000000 0.000000 0.000000\r\n", + "..045 AxesSubplot._process_unit_info 6 0.000000 0.000000 0.000000\r\n", + "..ap_external>:578 _compile_bytecode 9 0.000000 0.000000 0.000000\r\n", + "..y:542 PGDialect_psycopg2.do_commit 1 0.000000 0.000000 0.000000\r\n", + "..ile.py:432 _generate_overlap_table 2 0.000000 0.000000 0.000000\r\n", + "<__array_function__ internals>:2 all 9 0.000000 0.000000 0.000000\r\n", + "..alchemy\\event\\api.py:23 _event_key 3 0.000000 0.000000 0.000000\r\n", + "..._bootstrap>:376 ModuleSpec.cached 19 0.000000 0.000000 0.000000\r\n", + "...py:1247 BboxTransformFrom.__add__ 78 0.000000 0.000000 0.000000\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..plotlib\\gridspec.py:204 _normalize 1 0.000000 0.000000 0.000000\r\n", + "..figure.py:199 SubplotParams.update 2 0.000000 0.000000 0.000000\r\n", + ".._json.py:133 register_default_json 1 0.000000 0.000000 0.000000\r\n", + "..p>:143 _ModuleLockManager.__init__ 10 0.000000 0.000000 0.000000\r\n", + "..:513 Figure.set_constrained_layout 1 0.000000 0.000000 0.000000\r\n", + ".. FontProperties.get_size_in_points 1 0.000000 0.000000 0.000000\r\n", + "..60 ScalarFormatter.set_useMathText 16 0.000000 0.000000 0.000000\r\n", + "..er.py:755 FontProperties.set_style 23 0.000000 0.000000 0.000000\r\n", + "...py:900 AutoDateFormatter.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..ok\\__init__.py:2125 _check_getitem 4 0.000000 0.000000 0.000000\r\n", + "..py:1210 Line2D.set_markeredgecolor 30 0.000000 0.000000 0.000000\r\n", + "..psycopg2\\extras.py:261 RealDictRow 1 0.000000 0.000000 0.000000\r\n", + "...py:978 Rectangle._update_property 42 0.000000 0.000000 0.000000\r\n", + "..rm\\session.py:655 Session.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..per._iter_break_from_left_to_right 8 0.000000 0.000000 0.000000\r\n", + "..stgresql\\psycopg2.py:711 4 0.000000 0.000000 0.000000\r\n", + "..lotlib\\spines.py:36 Spine.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..b\\asyncio\\futures.py:269 _get_loop 8 0.000000 0.000000 0.000000\r\n", + "..dates.py:1496 YearLocator.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..\\type_api.py:64 Comparator.operate 4 0.000000 0.000000 0.000000\r\n", + "..b\\figure.py:66 _AxesStack.__init__ 1 0.000000 0.000000 0.000000\r\n", + "...py:299 NullFormatter._set_locator 31 0.000000 0.000000 0.000000\r\n", + "..\\axis.py:501 XTick.update_position 3 0.000000 0.000000 0.000000\r\n", + "..re\\numerictypes.py:293 issubclass_ 8 0.000000 0.000000 0.000000\r\n", + "..init__.py:791 RcParams.__getitem__ 1343 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\axis.py:383 14 0.000000 0.000000 0.000000\r\n", + "..b\\transforms.py:909 Bbox.intervalx 3 0.000000 0.000000 0.000000\r\n", + "..ase.py:1731 RootTransaction.commit 1 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:1579 XAxis.set_units 12 0.000000 0.000000 0.000000\r\n", + "..sql\\elements.py:740 Column.operate 4 0.000000 0.000000 0.000000\r\n", + "..se.py:593 _column_stack_dispatcher 12 0.000000 0.000000 0.000000\r\n", + "..tlib\\axis.py:864 XAxis.reset_ticks 16 0.000000 0.000000 0.000000\r\n", + "..bootstrap_external>:1334 find_spec 10 0.000000 0.000000 0.000000\r\n", + "..\\gridspec.py:246 GridSpec.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..is.py:197 XTick._set_labelrotation 6 0.000000 0.000000 0.000000\r\n", + "..__.py:138 CallbackRegistry.connect 33 0.000000 0.000000 0.000000\r\n", + "..ib\\figure.py:70 _AxesStack.as_list 2 0.000000 0.000000 0.000000\r\n", + "..b\\artist.py:819 Line2D.get_clip_on 3 0.000000 0.000000 0.000000\r\n", + "..\\rcsetup.py:163 validate_axisbelow 1 0.000000 0.000000 0.000000\r\n", + "..ession.py:1333 Session._close_impl 1 0.000000 0.000000 0.000000\r\n", + "..ib\\figure.py:778 Figure.set_canvas 2 0.000000 0.000000 0.000000\r\n", + "...py:1623 TransformWrapper.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..otlib\\lines.py:645 Line2D.set_data 30 0.000000 0.000000 0.000000\r\n", + "..er.py:1712 AutoLocator.nonsingular 2 0.000000 0.000000 0.000000\r\n", + "..is.py:1654 XAxis.set_major_locator 17 0.000000 0.000000 0.000000\r\n", + "..y\\dialects\\__init__.py:24 _auto_fn 1 0.000000 0.000000 0.000000\r\n", + "..240 QueuePool._should_wrap_creator 1 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\text.py:1115 Text.set_y 6 0.000000 0.000000 0.000000\r\n", + "..plotlib\\scale.py:718 scale_factory 16 0.000000 0.000000 0.000000\r\n", + "..\\__init__.py:1837 _str_lower_equal 4 0.000000 0.000000 0.000000\r\n", + "..se.py:392 Future.add_done_callback 6 0.000000 0.000000 0.000000\r\n", + "..hemy\\util\\queue.py:195 Queue._full 1 0.000000 0.000000 0.000000\r\n", + "..on\\database.py:107 from_sql_result 4 0.000000 0.000000 0.000000\r\n", + ".. _GeneratorContextManager.__init__ 141 0.000000 0.000000 0.000000\r\n", + "..\\lib\\function_base.py:257 iterable 97 0.000000 0.000000 0.000000\r\n", + "..tion-68gteq6k\\lib\\re.py:268 escape 1 0.000000 0.000000 0.000000\r\n", + "..ger.py:619 FontProperties.__init__ 23 0.000000 0.000000 0.000000\r\n", + "..ments.py:4065 Column._from_objects 10 0.000000 0.000000 0.000000\r\n", + "..xis.py:325 XTick._set_artist_props 30 0.000000 0.000000 0.000000\r\n", + "..xternal>:1426 FileFinder._get_spec 10 0.000000 0.000000 0.000000\r\n", + "..py:1137 Text.set_verticalalignment 33 0.000000 0.000000 0.000000\r\n", + ".._bootstrap_external>:64 82 0.000000 0.000000 0.000000\r\n", + "..hes.py:475 Rectangle.set_joinstyle 7 0.000000 0.000000 0.000000\r\n", + "..py:843 TextArea.set_minimumdescent 1 0.000000 0.000000 0.000000\r\n", + "..s.py:1059 AutoDateLocator.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..ges\\psycopg2\\extras.py:157 DictRow 1 0.000000 0.000000 0.000000\r\n", + "..til.py:368 surface_column_elements 54 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\pyplot.py:612 get_fignums 1 0.000000 0.000000 0.000000\r\n", + "..teq6k\\lib\\copyreg.py:90 __newobj__ 1 0.000000 0.000000 0.000000\r\n", + ".. LinearScale.limit_range_for_scale 2 0.000000 0.000000 0.000000\r\n", + "..b\\scale.py:43 LinearScale.__init__ 16 0.000000 0.000000 0.000000\r\n", + "..umpy\\core\\getlimits.py:365 __new__ 2 0.000000 0.000000 0.000000\r\n", + "..psycopg2\\_json.py:94 register_json 2 0.000000 0.000000 0.000000\r\n", + "..hes.py:348 Rectangle.set_facecolor 12 0.000000 0.000000 0.000000\r\n", + ".. Line2D._split_drawstyle_linestyle 64 0.000000 0.000000 0.000000\r\n", + "..\\orm\\session.py:1554 Session.query 6 0.000000 0.000000 0.000000\r\n", + "..\\__init__.py:1640 normalize_kwargs 74 0.000000 0.000000 0.000000\r\n", + "..\\core\\getlimits.py:398 finfo._init 1 0.000000 0.000000 0.000000\r\n", + "..lib\\sre_parse.py:295 _class_escape 30 0.000000 0.000000 0.000000\r\n", + "..xesSubplot._set_lim_and_transforms 1 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\figure.py:97 1 0.000000 0.000000 0.000000\r\n", + "..q6k\\lib\\functools.py:486 lru_cache 1 0.000000 0.000000 0.000000\r\n", + "..y:4564 _literal_as_label_reference 3 0.000000 0.000000 0.000000\r\n", + "..\\figure.py:152 _AxesStack.__call__ 2 0.000000 0.000000 0.000000\r\n", + "..\\core\\getipython.py:17 get_ipython 2 0.000000 0.000000 0.000000\r\n", + "..on__ internals>:2 broadcast_arrays 10 0.000000 0.000000 0.000000\r\n", + "..:779 PGDialect_psycopg2.on_connect 1 0.000000 0.000000 0.000000\r\n", + "..ec.py:549 SubplotSpec.get_gridspec 1 0.000000 0.000000 0.000000\r\n", + "..ages\\psycopg2\\compat.py:1 1 0.000000 0.000000 0.000000\r\n", + "..s.py:129 AxesSubplot.update_params 1 0.000000 0.000000 0.000000\r\n", + "..tableColumnCollection.__contains__ 10 0.000000 0.000000 0.000000\r\n", + "..chemy\\orm\\query.py:4634 27 0.000000 0.000000 0.000000\r\n", + "..lib\\legend.py:938 Legend.set_title 1 0.000000 0.000000 0.000000\r\n", + "..essionTransaction._remove_snapshot 1 0.000000 0.000000 0.000000\r\n", + "..\\asyncio\\futures.py:351 _set_state 6 0.000000 0.000000 0.000000\r\n", + "..units.py:58 _is_natively_supported 12 0.000000 0.000000 0.000000\r\n", + "..my\\orm\\query.py:164 Query.__init__ 6 0.000000 0.000000 0.000000\r\n", + "..ray_function__ internals>:2 hstack 16 0.000000 0.000000 0.000000\r\n", + "..b\\gridspec.py:31 GridSpec.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..ython38\\Lib\\inspect.py:80 ismethod 2 0.000000 0.000000 0.000000\r\n", + "..tist.py:804 Rectangle.get_animated 1714 0.000000 0.000000 0.000000\r\n", + "..ericTransform._invalidate_internal 4/3 0.000000 0.000000 0.000000\r\n", + "..plotlib\\axis.py:653 Ticker.locator 33 0.000000 0.000000 0.000000\r\n", + "..query.py:88 get_data_by_deployment 1 0.000000 0.000000 0.000000\r\n", + "..otlib\\__init__.py:1267 get_backend 1 0.000000 0.000000 0.000000\r\n", + "...py:407 XTick._get_text1_transform 3 0.000000 0.000000 0.000000\r\n", + "..bootstrap>:58 _ModuleLock.__init__ 10 0.000000 0.000000 0.000000\r\n", + "...py:635 Legend._approx_text_height 2 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:1812 XAxis.axis_date 4 0.000000 0.000000 0.000000\r\n", + "..on.py:579 SessionTransaction.close 2 0.000000 0.000000 0.000000\r\n", + "..ures\\_base.py:443 Future.exception 6 0.000000 0.000000 0.000000\r\n", + "..ompat.py:61 inspect_getfullargspec 2 0.000000 0.000000 0.000000\r\n", + "..aggregation\\query.py:82 4 0.000000 0.000000 0.000000\r\n", + "..patches.py:491 Rectangle.set_hatch 7 0.000000 0.000000 0.000000\r\n", + "...py:410 XTick._get_text2_transform 3 0.000000 0.000000 0.000000\r\n", + "..zipimport>:63 zipimporter.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..__init__.py:1632 sanitize_sequence 8 0.000000 0.000000 0.000000\r\n", + "..es.py:768 Rectangle._convert_units 18 0.000000 0.000000 0.000000\r\n", + "..numpy\\core\\fromnumeric.py:2189 any 76 0.000000 0.000000 0.000000\r\n", + "..base.py:321 _inspect_mapped_object 4 0.000000 0.000000 0.000000\r\n", + "..re\\multiarray.py:990 unravel_index 1 0.000000 0.000000 0.000000\r\n", + "<__array_function__ internals>:2 any 76 0.000000 0.000000 0.000000\r\n", + "..registry.py:154 _EventKey.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..ist.py:605 FancyBboxPatch.set_snap 1 0.000000 0.000000 0.000000\r\n", + "..s.py:697 _GatheringFuture.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..38\\Lib\\asyncio\\tasks.py:717 gather 1 0.000000 0.000000 0.000000\r\n", + "..elpers.py:1381 parse_user_argument 2 0.000000 0.000000 0.000000\r\n", + "..kers.py:289 MarkerStyle.set_marker 42 0.000000 0.000000 0.000000\r\n", + "..s.py:424 Spine.get_spine_transform 28/24 0.000000 0.000000 0.000000\r\n", + "..chemy\\orm\\query.py:4642 27 0.000000 0.000000 0.000000\r\n", + "..ib\\lines.py:1196 Line2D.set_marker 4 0.000000 0.000000 0.000000\r\n", + "..sSubplot.get_yaxis_text1_transform 3 0.000000 0.000000 0.000000\r\n", + "..portlib._bootstrap>:890 _find_spec 10 0.000000 0.000000 0.000000\r\n", + "..__init__.py:51 _StrongRef.__init__ 3 0.000000 0.000000 0.000000\r\n", + "..b\\legend.py:701 get_legend_handler 8 0.000000 0.000000 0.000000\r\n", + "..py:155 HandlerLine2D.get_numpoints 4 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\axis.py:372 14 0.000000 0.000000 0.000000\r\n", + "..orms.py:1652 TransformWrapper._set 4 0.000000 0.000000 0.000000\r\n", + "..opg2\\extensions.py:133 NoneAdapter 1 0.000000 0.000000 0.000000\r\n", + "..kers.py:286 MarkerStyle.get_marker 8 0.000000 0.000000 0.000000\r\n", + ".._bootstrap>:78 _ModuleLock.acquire 18 0.000000 0.000000 0.000000\r\n", + "..nsforms.py:1972 Affine2D.translate 36 0.000000 0.000000 0.000000\r\n", + "..hape_base.py:1151 _tile_dispatcher 1 0.000000 0.000000 0.000000\r\n", + "..r.py:63 HandlerLine2D._update_prop 8 0.000000 0.000000 0.000000\r\n", + "..arkers.py:244 MarkerStyle._recache 80 0.000000 0.000000 0.000000\r\n", + "..y:163 TransformedBbox.set_children 149 0.000000 0.000000 0.000000\r\n", + "..EventLoop._asyncgen_firstiter_hook 18 0.000000 0.000000 0.000000\r\n", + "..packages\\psycopg2\\tz.py:1 1 0.000000 0.000000 0.000000\r\n", + "..b\\function_base.py:2144 4 0.000000 0.000000 0.000000\r\n", + "..b\\cbook\\__init__.py:886 6 0.000000 0.000000 0.000000\r\n", + "..syncio\\tasks.py:751 _done_callback 1 0.000000 0.000000 0.000000\r\n", + "...py:2680 AxesSubplot.set_axisbelow 1 0.000000 0.000000 0.000000\r\n", + "..plotlib\\patches.py:1832 2 0.000000 0.000000 0.000000\r\n", + "..ib\\figure.py:104 _AxesStack.bubble 1 0.000000 0.000000 0.000000\r\n", + "..lotlib\\axes\\_base.py:321 12 0.000000 0.000000 0.000000\r\n", + "..Subplot._validate_converted_limits 4 0.000000 0.000000 0.000000\r\n", + "..romnumeric.py:2273 _all_dispatcher 9 0.000000 0.000000 0.000000\r\n", + "..ates.py:593 DateFormatter.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..CompositeGenericTransform. 3 0.000000 0.000000 0.000000\r\n", + "..hemy\\orm\\query.py:537 Query._clone 5 0.000000 0.000000 0.000000\r\n", + "..ase.py:3227 AxesSubplot.get_xscale 4 0.000000 0.000000 0.000000\r\n", + "...py:735 MarkerStyle._set_tickright 3 0.000000 0.000000 0.000000\r\n", + "..is.py:1670 XAxis.set_minor_locator 16 0.000000 0.000000 0.000000\r\n", + "..>:863 _ImportLockContext.__enter__ 30 0.000000 0.000000 0.000000\r\n", + "..etbox.py:303 TextArea.get_children 33 0.000000 0.000000 0.000000\r\n", + "...py:113 GridSpec.set_height_ratios 1 0.000000 0.000000 0.000000\r\n", + "..ry.py:267 _EventKey.append_to_list 3 0.000000 0.000000 0.000000\r\n", + "..umpy\\core\\numeric.py:341 full_like 4 0.000000 0.000000 0.000000\r\n", + "..alect_psycopg2.create_connect_args 1 0.000000 0.000000 0.000000\r\n", + "..lib\\lines.py:1282 Line2D.set_xdata 39 0.000000 0.000000 0.000000\r\n", + "..atplotlib\\artist.py:192 Spine.axes 831 0.000000 0.000000 0.000000\r\n", + "..py:275 SelectSelector._key_from_fd 6 0.000000 0.000000 0.000000\r\n", + "..lotlib\\figure.py:78 _AxesStack.get 2 0.000000 0.000000 0.000000\r\n", + "..._bootstrap>:389 ModuleSpec.parent 14 0.000000 0.000000 0.000000\r\n", + "..sion.py:3236 sessionmaker.__call__ 1 0.000000 0.000000 0.000000\r\n", + "..util\\langhelpers.py:1500 only_once 1 0.000000 0.000000 0.000000\r\n", + "..book\\__init__.py:833 Grouper.clean 8 0.000000 0.000000 0.000000\r\n", + "..ib\\cbook\\__init__.py:1575 10 0.000000 0.000000 0.000000\r\n", + "..s\\numpy\\core\\multiarray.py:707 dot 67 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:819 XAxis.get_transform 4 0.000000 0.000000 0.000000\r\n", + "..g\\__init__.py:1392 Logger.__init__ 3 0.000000 0.000000 0.000000\r\n", + "..5 CompositeGenericTransform.__eq__ 12/8 0.000000 0.000000 0.000000\r\n", + "..otlib\\text.py:1227 Text.set_usetex 24 0.000000 0.000000 0.000000\r\n", + "..ents.py:180 _run_until_complete_cb 1 0.000000 0.000000 0.000000\r\n", + "..\\lines.py:547 Line2D.set_markevery 30 0.000000 0.000000 0.000000\r\n", + ".. _ClsLevelDispatch._adjust_fn_spec 4 0.000000 0.000000 0.000000\r\n", + "..se.py:2873 AxesSubplot.tick_params 2 0.000000 0.000000 0.000000\r\n", + "..b\\function_base.py:2164 4 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:427 XTick._get_text1 3 0.000000 0.000000 0.000000\r\n", + "..ist.py:358 Rectangle.set_transform 85 0.000000 0.000000 0.000000\r\n", + "..core\\multiarray.py:145 concatenate 29 0.000000 0.000000 0.000000\r\n", + "..re_parse.py:267 Tokenizer.getuntil 7 0.000000 0.000000 0.000000\r\n", + "..ms.py:1639 TransformWrapper.__eq__ 4 0.000000 0.000000 0.000000\r\n", + "..tableColumnCollection.__contains__ 10 0.000000 0.000000 0.000000\r\n", + "..b\\function_base.py:2115 4 0.000000 0.000000 0.000000\r\n", + "..ide_tricks.py:206 broadcast_arrays 10 0.000000 0.000000 0.000000\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + ":176 cb 10 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\artist.py:1095 Line2D.set 70 0.000000 0.000000 0.000000\r\n", + "..ogging\\__init__.py:189 _checkLevel 3 0.000000 0.000000 0.000000\r\n", + "..k\\__init__.py:827 Grouper.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..tlib\\axis.py:2166 XAxis.get_minpos 1 0.000000 0.000000 0.000000\r\n", + "..lalchemy\\orm\\query.py:4148 __new__ 32 0.000000 0.000000 0.000000\r\n", + "..abc.py:816 WeakKeyDictionary.clear 1 0.000000 0.000000 0.000000\r\n", + "..lections.py:316 OrderedDict.values 5 0.000000 0.000000 0.000000\r\n", + "..lements.py:365 Column.get_children 27 0.000000 0.000000 0.000000\r\n", + ".. ExtensionFileLoader.create_module 1 0.000000 0.000000 0.000000\r\n", + "..d_inline.py:59 draw_if_interactive 1 0.000000 0.000000 0.000000\r\n", + "..157 CallbackRegistry._remove_proxy 2 0.000000 0.000000 0.000000\r\n", + "..768 IdentityTransform.is_separable 8 0.000000 0.000000 0.000000\r\n", + "..hon38\\Lib\\contextlib.py:238 helper 141 0.000000 0.000000 0.000000\r\n", + "..29 _process_plot_var_args.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..ession.py:1339 Session.expunge_all 1 0.000000 0.000000 0.000000\r\n", + "..ent\\registry.py:165 _EventKey._key 3 0.000000 0.000000 0.000000\r\n", + "..lib\\stride_tricks.py:266 30 0.000000 0.000000 0.000000\r\n", + "..ib\\transforms.py:969 Bbox.mutatedx 2 0.000000 0.000000 0.000000\r\n", + "..ist.py:371 Rectangle.get_transform 31 0.000000 0.000000 0.000000\r\n", + "..end.py:666 get_default_handler_map 2 0.000000 0.000000 0.000000\r\n", + "..tlib\\axis.py:2238 YAxis._get_label 1 0.000000 0.000000 0.000000\r\n", + "..Python38\\Lib\\inspect.py:260 iscode 2 0.000000 0.000000 0.000000\r\n", + "..egation-68gteq6k\\lib\\re.py:201 sub 4 0.000000 0.000000 0.000000\r\n", + "..ers.py:743 MarkerStyle._set_tickup 3 0.000000 0.000000 0.000000\r\n", + ".._bootstrap_external>:62 _path_join 82 0.000000 0.000000 0.000000\r\n", + "..teq6k\\lib\\copyreg.py:99 _slotnames 1 0.000000 0.000000 0.000000\r\n", + "..py:663 PGDialect_psycopg2.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\text.py:554 Text.set_wrap 24 0.000000 0.000000 0.000000\r\n", + "..onfig\\configurable.py:381 instance 2 0.000000 0.000000 0.000000\r\n", + "..ctions_abc.py:367 __subclasshook__ 4 0.000000 0.000000 0.000000\r\n", + "..ansforms.py:1831 Affine2D.__init__ 49 0.000000 0.000000 0.000000\r\n", + "..ycopg2\\extras.py:456 LoggingCursor 1 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\figure.py:1959 Figure.sca 1 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\patches.py:1818 __new__ 2 0.000000 0.000000 0.000000\r\n", + "..ImmutableColumnCollection.__iter__ 5 0.000000 0.000000 0.000000\r\n", + "..ckages\\psycopg2\\extras.py:698 Inet 1 0.000000 0.000000 0.000000\r\n", + "..py:1367 Line2D.set_solid_joinstyle 30 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:413 XTick.apply_tickdir 3 0.000000 0.000000 0.000000\r\n", + "..offsetbox.py:783 TextArea.__init__ 5 0.000000 0.000000 0.000000\r\n", + "..orm\\session.py:1002 Session.commit 1 0.000000 0.000000 0.000000\r\n", + "..ker.py:2004 _Edge_integer.__init__ 2 0.000000 0.000000 0.000000\r\n", + ".._range.py:297 RangeCaster.__init__ 6 0.000000 0.000000 0.000000\r\n", + "..urceFileLoader._check_name_wrapper 9 0.000000 0.000000 0.000000\r\n", + ".._base.py:3484 AxesSubplot.set_ylim 1 0.000000 0.000000 0.000000\r\n", + "..p>:867 _ImportLockContext.__exit__ 30 0.000000 0.000000 0.000000\r\n", + "..es.py:315 Rectangle._set_edgecolor 20 0.000000 0.000000 0.000000\r\n", + "..8 SessionTransaction._prepare_impl 1 0.000000 0.000000 0.000000\r\n", + ".. SessionTransaction._take_snapshot 3 0.000000 0.000000 0.000000\r\n", + "..pool\\base.py:63 QueuePool.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..b\\cbook\\__init__.py:2088 188 0.000000 0.000000 0.000000\r\n", + "..y:886 AxesSubplot.set_axes_locator 1 0.000000 0.000000 0.000000\r\n", + "..ckages\\cycler.py:349 Cycler.by_key 10 0.000000 0.000000 0.000000\r\n", + "..kages\\numpy\\ma\\core.py:666 getdata 8 0.000000 0.000000 0.000000\r\n", + "..rl.py:152 URL._instantiate_plugins 1 0.000000 0.000000 0.000000\r\n", + "..es.py:2396 FancyBboxPatch.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..utableColumnCollection.__getattr__ 9 0.000000 0.000000 0.000000\r\n", + "..plotlib\\patches.py:1833 2 0.000000 0.000000 0.000000\r\n", + "..y\\orm\\query.py:1856 Query.order_by 1 0.000000 0.000000 0.000000\r\n", + "..ngine\\base.py:1869 Engine.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..\\psycopg2\\_ipaddress.py:1 1 0.000000 0.000000 0.000000\r\n", + "..\\psycopg2\\extras.py:132 DictCursor 1 0.000000 0.000000 0.000000\r\n", + "..p>:151 _ModuleLockManager.__exit__ 10 0.000000 0.000000 0.000000\r\n", + ":1 Deployment.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..is.py:1412 XAxis.get_major_locator 2 0.000000 0.000000 0.000000\r\n", + "..axis.py:215 XTick.get_tick_padding 6 0.000000 0.000000 0.000000\r\n", + "..b\\axis.py:574 YTick._get_tick1line 3 0.000000 0.000000 0.000000\r\n", + "..bootstrap>:194 _lock_unlock_module 8 0.000000 0.000000 0.000000\r\n", + "..lib\\transforms.py:931 Bbox.minposx 1 0.000000 0.000000 0.000000\r\n", + "..setbox.py:661 DrawingArea.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..ootstrap_external>:424 _get_cached 10 0.000000 0.000000 0.000000\r\n", + "..\\core\\getlimits.py:239 _get_machar 1 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:1504 XAxis.update_units 14 0.000000 0.000000 0.000000\r\n", + "..elpers.py:1079 _importlater.module 1 0.000000 0.000000 0.000000\r\n", + "..gine\\default.py:295 get_pool_class 1 0.000000 0.000000 0.000000\r\n", + "..xt.py:1214 Text.set_fontproperties 1 0.000000 0.000000 0.000000\r\n", + "..ec.py:586 SubplotSpec.get_position 1 0.000000 0.000000 0.000000\r\n", + "..\\numpy\\core\\_asarray.py:16 asarray 176 0.000000 0.000000 0.000000\r\n", + "..ndowsSelectorEventLoop.create_task 2 0.000000 0.000000 0.000000\r\n", + ".._init__.py:573 _AxesStack.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..lib\\figure.py:453 Figure._get_axes 1 0.000000 0.000000 0.000000\r\n", + "..s\\_base.py:31 _process_plot_format 4 0.000000 0.000000 0.000000\r\n", + "..packages\\cycler.py:138 Cycler.keys 12 0.000000 0.000000 0.000000\r\n", + "..numeric.py:2354 _cumsum_dispatcher 3 0.000000 0.000000 0.000000\r\n", + "..atplotlib\\lines.py:632 Line2D.axes 42 0.000000 0.000000 0.000000\r\n", + "..logging\\__init__.py:2003 getLogger 4 0.000000 0.000000 0.000000\r\n", + "..\\_internal.py:830 npy_ctypes_check 4 0.000000 0.000000 0.000000\r\n", + "..ckages\\psycopg2\\_range.py:36 Range 1 0.000000 0.000000 0.000000\r\n", + "..:687 Legend.get_legend_handler_map 1 0.000000 0.000000 0.000000\r\n", + "..ger.py:810 FontProperties.set_size 27 0.000000 0.000000 0.000000\r\n", + "..lib\\transforms.py:2779 nonsingular 2 0.000000 0.000000 0.000000\r\n", + "..unction__ internals>:2 concatenate 29 0.000000 0.000000 0.000000\r\n", + "..b\\_pylab_helpers.py:115 1 0.000000 0.000000 0.000000\r\n", + "..m\\state.py:328 type._detach_states 2 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\lines.py:59 _scale_dashes 83 0.000000 0.000000 0.000000\r\n", + "..\\futures.py:357 _call_check_cancel 6 0.000000 0.000000 0.000000\r\n", + "..b\\cbook\\__init__.py:2090 type_name 94 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\path.py:211 Path.codes 4 0.000000 0.000000 0.000000\r\n", + "..py:1765 RootTransaction._do_commit 1 0.000000 0.000000 0.000000\r\n", + "..s.py:749 MarkerStyle._set_tickdown 3 0.000000 0.000000 0.000000\r\n", + "..ffsetbox.py:187 VPacker.set_figure 16/1 0.000000 0.000000 0.000000\r\n", + "..pes.py:2997 _resolve_value_to_type 4 0.000000 0.000000 0.000000\r\n", + "..cbook\\__init__.py:1868 Text.method 5 0.000000 0.000000 0.000000\r\n", + "..rtist.py:937 Rectangle.set_visible 69 0.000000 0.000000 0.000000\r\n", + "..artist.py:1052 Line2D.sticky_edges 32 0.000000 0.000000 0.000000\r\n", + "..xesSubplot._request_autoscale_view 8 0.000000 0.000000 0.000000\r\n", + "..b\\axis.py:470 XTick._get_tick2line 3 0.000000 0.000000 0.000000\r\n", + "..e-packages\\cycler.py:371 20 0.000000 0.000000 0.000000\r\n", + "..ore\\numerictypes.py:239 obj2sctype 1 0.000000 0.000000 0.000000\r\n", + "..t\\futures\\_base.py:381 Future.done 6 0.000000 0.000000 0.000000\r\n", + "..ase.py:3618 AxesSubplot.get_yscale 1 0.000000 0.000000 0.000000\r\n", + "..bootstrap_external>:1400 8 0.000000 0.000000 0.000000\r\n", + "..elpers.py:355 get_callable_argspec 1 0.000000 0.000000 0.000000\r\n", + "..nit__.py:1220 PlaceHolder.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..lotlib\\colors.py:123 _is_nth_color 51 0.000000 0.000000 0.000000\r\n", + "..rms.py:1284 TransformWrapper.depth 24 0.000000 0.000000 0.000000\r\n", + "..py\\core\\fromnumeric.py:2358 cumsum 3 0.000000 0.000000 0.000000\r\n", + "..xis.py:2258 YAxis._get_offset_text 1 0.000000 0.000000 0.000000\r\n", + "..uery.py:505 Query._no_limit_offset 5 0.000000 0.000000 0.000000\r\n", + "..strap>:397 ModuleSpec.has_location 10 0.000000 0.000000 0.000000\r\n", + "..py:2644 ScaledTranslation.__init__ 17 0.000000 0.000000 0.000000\r\n", + "..sycopg2\\extras.py:643 UUID_adapter 1 0.000000 0.000000 0.000000\r\n", + "..hon38\\Lib\\inspect.py:285 isbuiltin 1 0.000000 0.000000 0.000000\r\n", + "..b\\cbook\\__init__.py:828 2 0.000000 0.000000 0.000000\r\n", + "..ycopg2.py:741 _psycopg2_extensions 1 0.000000 0.000000 0.000000\r\n", + "..s.py:1096 _importlater.__getattr__ 1 0.000000 0.000000 0.000000\r\n", + "..lib\\artist.py:923 Line2D.set_alpha 7 0.000000 0.000000 0.000000\r\n", + "..654 _WindowsSelectorEventLoop.time 17 0.000000 0.000000 0.000000\r\n", + "...py:3168 BinaryExpression.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..e.py:1907 Figure._set_artist_props 1 0.000000 0.000000 0.000000\r\n", + "..9 PoolEventsDispatch._for_instance 2 0.000000 0.000000 0.000000\r\n", + "..packages\\psycopg2\\_json.py:47 Json 1 0.000000 0.000000 0.000000\r\n", + "..py:117 AxesSubplot.get_subplotspec 1 0.000000 0.000000 0.000000\r\n", + ":1 Query.order_by 1 0.000000 0.000000 0.000000\r\n", + "..tlib\\lines.py:31 _get_dash_pattern 41 0.000000 0.000000 0.000000\r\n", + "..b\\text.py:1059 Text.set_fontweight 4 0.000000 0.000000 0.000000\r\n", + "<__array_function__ internals>:2 dot 67 0.000000 0.000000 0.000000\r\n", + "..se.py:2960 AxesSubplot.set_axis_on 1 0.000000 0.000000 0.000000\r\n", + "..py:1960 Affine2D.rotate_deg_around 18 0.000000 0.000000 0.000000\r\n", + ".._base.py:2048 _process_single_axis 12 0.000000 0.000000 0.000000\r\n", + "..pg2\\extras.py:303 NamedTupleCursor 1 0.000000 0.000000 0.000000\r\n", + ":1 Query.filter 4 0.000000 0.000000 0.000000\r\n", + "..m\\query.py:193 Query._set_entities 6 0.000000 0.000000 0.000000\r\n", + "..nd.py:558 Legend._set_artist_props 9 0.000000 0.000000 0.000000\r\n", + "..hemy\\util\\queue.py:183 Queue._init 1 0.000000 0.000000 0.000000\r\n", + "..idspec.py:508 SubplotSpec.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:666 Ticker.formatter 33 0.000000 0.000000 0.000000\r\n", + "...py:112 PoolEventsDispatch._listen 3 0.000000 0.000000 0.000000\r\n", + "..\\patches.py:704 Rectangle.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..s.py:266 MarkerStyle.set_fillstyle 38 0.000000 0.000000 0.000000\r\n", + ".._init__.py:44 get_projection_class 1 0.000000 0.000000 0.000000\r\n", + "...py:101 State.checklookbehindgroup 1 0.000000 0.000000 0.000000\r\n", + "..llections_abc.py:72 _check_methods 14 0.000000 0.000000 0.000000\r\n", + "..\\futures.py:315 _copy_future_state 6 0.000000 0.000000 0.000000\r\n", + "..nes.py:1035 Line2D.set_antialiased 30 0.000000 0.000000 0.000000\r\n", + "..kref.py:436 WeakKeyDictionary.keys 1 0.000000 0.000000 0.000000\r\n", + "..elements.py:4099 Column._gen_label 10 0.000000 0.000000 0.000000\r\n", + "..atplotlib\\path.py:96 Path.__init__ 14 0.000000 0.000000 0.000000\r\n", + "..b\\artist.py:336 Rectangle.pchanged 373 0.000000 0.000000 0.000000\r\n", + "..y\\core\\fromnumeric.py:55 _wrapfunc 3 0.000000 0.000000 0.000000\r\n", + "..5 Rectangle._stale_figure_callback 134 0.000000 0.000000 0.000000\r\n", + "..process_plot_var_args._getdefaults 4 0.000000 0.000000 0.000000\r\n", + "..ansaction._is_transaction_boundary 4 0.000000 0.000000 0.000000\r\n", + "..gure.py:168 SubplotParams.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..ure.py:155 _AxesStack.__contains__ 1 0.000000 0.000000 0.000000\r\n", + "..ib\\widgets.py:34 LockDraw.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..atplotlib\\legend.py:813 1 0.000000 0.000000 0.000000\r\n", + "..ansforms.py:1701 Affine2D.__init__ 165 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:1944 XAxis._get_tick 3 0.000000 0.000000 0.000000\r\n", + "...py:1626 XAxis.set_major_formatter 17 0.000000 0.000000 0.000000\r\n", + "..plots.py:214 subplot_class_factory 1 0.000000 0.000000 0.000000\r\n", + "..xes\\_base.py:2716 AxesSubplot.grid 2 0.000000 0.000000 0.000000\r\n", + "..:903 AxesSubplot._set_artist_props 7 0.000000 0.000000 0.000000\r\n", + "..8gteq6k\\lib\\weakref.py:323 __new__ 1 0.000000 0.000000 0.000000\r\n", + "...py:1412 Line2D.set_solid_capstyle 30 0.000000 0.000000 0.000000\r\n", + "..gistry.py:263 _EventKey._listen_fn 16 0.000000 0.000000 0.000000\r\n", + "..es\\numpy\\core\\_methods.py:32 _amin 2 0.000000 0.000000 0.000000\r\n", + "..xternal>:1431 FileFinder.find_spec 17 0.000000 0.000000 0.000000\r\n", + "..s\\matplotlib\\colors.py:157 to_rgba 51 0.000000 0.000000 0.000000\r\n", + "..lotlib\\axes\\_base.py:588 4 0.000000 0.000000 0.000000\r\n", + "..otlib\\figure.py:111 _AxesStack.add 1 0.000000 0.000000 0.000000\r\n", + "..2\\_range.py:486 NumberRangeAdapter 1 0.000000 0.000000 0.000000\r\n", + "..:505 Figure.get_constrained_layout 2 0.000000 0.000000 0.000000\r\n", + "..my\\util\\queue.py:43 Queue.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..on.py:159 _create_json_typecasters 2 0.000000 0.000000 0.000000\r\n", + "..bootstrap>:342 ModuleSpec.__init__ 10 0.000000 0.000000 0.000000\r\n", + "..tlib\\axis.py:1559 XAxis.have_units 2 0.000000 0.000000 0.000000\r\n", + "..ctions_abc.py:302 __subclasshook__ 6 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\figure.py:1651 Figure.clf 1 0.000000 0.000000 0.000000\r\n", + "..array_function__ internals>:2 diff 16 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\transforms.py:763 unit 19 0.000000 0.000000 0.000000\r\n", + "..schema.py:1640 Column.get_children 27 0.000000 0.000000 0.000000\r\n", + "..ib\\artist.py:719 Text.set_clip_box 23 0.000000 0.000000 0.000000\r\n", + "..umpy\\core\\shape_base.py:285 hstack 16 0.000000 0.000000 0.000000\r\n", + "..pg2\\extras.py:1007 CompositeCaster 1 0.000000 0.000000 0.000000\r\n", + "..on38\\Lib\\inspect.py:158 isfunction 3 0.000000 0.000000 0.000000\r\n", + "..rs.py:330 MarkerStyle._set_nothing 30 0.000000 0.000000 0.000000\r\n", + "..y\\orm\\base.py:353 _is_mapped_class 7 0.000000 0.000000 0.000000\r\n", + "..et.py:20 _IterationGuard.__enter__ 1 0.000000 0.000000 0.000000\r\n", + "..f.py:463 WeakKeyDictionary.popitem 1 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\axis.py:153 6 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\spines.py:238 Spine.cla 4 0.000000 0.000000 0.000000\r\n", + "..ray_function__ internals>:2 cumsum 3 0.000000 0.000000 0.000000\r\n", + "...py:1006 Legend.set_bbox_to_anchor 1 0.000000 0.000000 0.000000\r\n", + "..lotlib\\axes\\_base.py:945 5 0.000000 0.000000 0.000000\r\n", + "...py:96 _AxesStack._entry_from_axes 1 0.000000 0.000000 0.000000\r\n", + "..tstrap_external>:51 _unpack_uint32 27 0.000000 0.000000 0.000000\r\n", + "..ernal>:526 _validate_timestamp_pyc 9 0.000000 0.000000 0.000000\r\n", + "..\\cbook\\__init__.py:1938 140 0.000000 0.000000 0.000000\r\n", + "..g2\\extras.py:405 LoggingConnection 1 0.000000 0.000000 0.000000\r\n", + "..__init__.py:1272 Manager.getLogger 4 0.000000 0.000000 0.000000\r\n", + "..bootstrap_external>:1302 _get_spec 10 0.000000 0.000000 0.000000\r\n", + ".._.py:118 CallbackRegistry.__init__ 19 0.000000 0.000000 0.000000\r\n", + "..numpy\\core\\fromnumeric.py:2277 all 9 0.000000 0.000000 0.000000\r\n", + "..CompositeGenericTransform. 16/8 0.000000 0.000000 0.000000\r\n", + "..lines.py:1092 Line2D.set_linewidth 30 0.000000 0.000000 0.000000\r\n", + "..ib\\_pylab_helpers.py:99 get_active 1 0.000000 0.000000 0.000000\r\n", + "..38\\Lib\\urllib\\parse.py:624 unquote 1 0.000000 0.000000 0.000000\r\n", + "..ty.py:17 WeakInstanceDict.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..tist.py:1017 AxesSubplot.set_label 5 0.000000 0.000000 0.000000\r\n", + "..ansform.contains_branch_seperately 4 0.000000 0.000000 0.000000\r\n", + "..\\patches.py:436 Rectangle.set_fill 7 0.000000 0.000000 0.000000\r\n", + "..ticker.py:224 AutoLocator.set_axis 67 0.000000 0.000000 0.000000\r\n", + "..sycopg2\\_range.py:242 RangeAdapter 1 0.000000 0.000000 0.000000\r\n", + "..s.py:729 MarkerStyle._set_tickleft 3 0.000000 0.000000 0.000000\r\n", + "..s.py:1642 _fix_ipython_backend2gui 2 0.000000 0.000000 0.000000\r\n", + "..b\\gridspec.py:528 SubplotSpec.num2 1 0.000000 0.000000 0.000000\r\n", + "..py:1225 Line2D.set_markeredgewidth 30 0.000000 0.000000 0.000000\r\n", + "..ager.py:936 _normalize_font_family 46 0.000000 0.000000 0.000000\r\n", + "..oop._set_coroutine_origin_tracking 2 0.000000 0.000000 0.000000\r\n", + "..arkers.py:222 MarkerStyle.__init__ 38 0.000000 0.000000 0.000000\r\n", + "..ylab_helpers.py:29 get_fig_manager 1 0.000000 0.000000 0.000000\r\n", + "..alchemy\\events.py:328 _accept_with 3 0.000000 0.000000 0.000000\r\n", + "..:2053 IdentityTransform.get_matrix 23 0.000000 0.000000 0.000000\r\n", + "..n\\query.py:76 get_deployment_by_id 4 0.000000 0.000000 0.000000\r\n", + "..query.py:329 Query._adapt_col_list 1 0.000000 0.000000 0.000000\r\n", + "..py:2408 CompositeAffine2D.__init__ 9 0.000000 0.000000 0.000000\r\n", + "..meric.py:337 _full_like_dispatcher 4 0.000000 0.000000 0.000000\r\n", + "..ine\\url.py:161 URL._get_entrypoint 1 0.000000 0.000000 0.000000\r\n", + "..d_bases.py:2556 notify_axes_change 1 0.000000 0.000000 0.000000\r\n", + "..ctions_abc.py:392 __subclasshook__ 40 0.000000 0.000000 0.000000\r\n", + "..otstrap_external>:1252 _path_hooks 1 0.000000 0.000000 0.000000\r\n", + "...py:180 AxesSubplot.convert_yunits 48 0.000000 0.000000 0.000000\r\n", + "..g2\\extras.py:538 ReplicationCursor 1 0.000000 0.000000 0.000000\r\n", + "..sql\\elements.py:4451 _as_truncated 10 0.000000 0.000000 0.000000\r\n", + "..y:4590 _expression_literal_as_text 4 0.000000 0.000000 0.000000\r\n", + "..idspec.py:67 GridSpec.get_geometry 3 0.000000 0.000000 0.000000\r\n", + "..y:949 Text.set_horizontalalignment 28 0.000000 0.000000 0.000000\r\n", + "..ernal>:1479 FileFinder._fill_cache 1 0.000000 0.000000 0.000000\r\n", + "..ootstrap_external>:104 _path_isdir 1 0.000000 0.000000 0.000000\r\n", + "..:964 SourceFileLoader.get_filename 9 0.000000 0.000000 0.000000\r\n", + "..py:366 GridSpec.get_subplot_params 1 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\ticker.py:2118 _staircase 16 0.000000 0.000000 0.000000\r\n", + "..forms.py:817 Bbox.update_from_path 4 0.000000 0.000000 0.000000\r\n", + "..lines.py:1143 Line2D.set_linestyle 34 0.000000 0.000000 0.000000\r\n", + "..ctionRegistry.get_projection_class 1 0.000000 0.000000 0.000000\r\n", + "..b\\gridspec.py:532 SubplotSpec.num2 1 0.000000 0.000000 0.000000\r\n", + "..:2165 FigureCanvasBase.mpl_connect 7 0.000000 0.000000 0.000000\r\n", + "..e.py:516 _ConnectionRecord.checkin 1 0.000000 0.000000 0.000000\r\n", + "..rms.py:2093 BlendedAffine2D.__eq__ 4 0.000000 0.000000 0.000000\r\n", + "..artist.py:695 Rectangle.set_figure 95 0.000000 0.000000 0.000000\r\n", + "..:493 Query._no_statement_condition 5 0.000000 0.000000 0.000000\r\n", + "..y:208 _arrays_for_stack_dispatcher 28 0.000000 0.000000 0.000000\r\n", + "..lib\\ticker.py:2103 _validate_steps 16 0.000000 0.000000 0.000000\r\n", + "..WindowsSelectorEventLoop.call_soon 17 0.000000 0.000000 0.000000\r\n", + "..tors.py:313 SelectSelector._select 17 0.000000 0.000000 0.000000\r\n", + "..ase.py:1009 _ConnectionFairy.close 1 0.000000 0.000000 0.000000\r\n", + "..range.py:449 RangeCaster._register 6 0.000000 0.000000 0.000000\r\n", + "..3883 AxesSubplot.set_navigate_mode 1 0.000000 0.000000 0.000000\r\n", + "..ib\\figure.py:1070 Figure._make_key 1 0.000000 0.000000 0.000000\r\n", + "..\\artist.py:1074 Line2D.update_from 8 0.000000 0.000000 0.000000\r\n", + "...py:193 URL.translate_connect_args 1 0.000000 0.000000 0.000000\r\n", + "..chemy\\orm\\query.py:4625 27 0.000000 0.000000 0.000000\r\n", + "..r.py:234 _EmptyListener.for_modify 2 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\figure.py:1089 fixlist 1 0.000000 0.000000 0.000000\r\n", + "..teq6k\\lib\\codecs.py:952 getencoder 1 0.000000 0.000000 0.000000\r\n", + "..plotlib\\text.py:1151 Text.set_text 46 0.000000 0.000000 0.000000\r\n", + "..ib\\artist.py:1013 Line2D.get_label 8 0.000000 0.000000 0.000000\r\n", + "..transforms.py:1924 Affine2D.rotate 18 0.000000 0.000000 0.000000\r\n", + "..py:220 SessionTransaction.__init__ 3 0.000000 0.000000 0.000000\r\n", + "..hes.py:382 Rectangle.set_linewidth 12 0.000000 0.000000 0.000000\r\n", + "..208 _EmptyListener._adjust_fn_spec 4 0.000000 0.000000 0.000000\r\n", + "..tlib\\text.py:535 Text.set_clip_box 15 0.000000 0.000000 0.000000\r\n", + "..y:2444 PGDialect_psycopg2.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..lib\\text.py:1042 Text.set_fontsize 4 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\text.py:1104 Text.set_x 6 0.000000 0.000000 0.000000\r\n", + "..ec.py:93 GridSpec.set_width_ratios 1 0.000000 0.000000 0.000000\r\n", + "..\\transforms.py:1986 Affine2D.scale 13 0.000000 0.000000 0.000000\r\n", + "..sSelectorEventLoop._read_from_self 6 0.000000 0.000000 0.000000\r\n", + "..ctions_abc.py:349 __subclasshook__ 5 0.000000 0.000000 0.000000\r\n", + "..ery.py:4539 _ColumnEntity.__init__ 32/7 0.000000 0.000000 0.000000\r\n", + "..\\lib\\sre_compile.py:413 5 0.000000 0.000000 0.000000\r\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACdsAAAUsCAYAAADFYdzDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdeZhkVX0//vcZhhmQRVDBDRQV0a8YURGMkQhGTdyCRBOXaCIuWYxmMcZoXNFo8jOJ+s3XJXvcSUjcFZfEfUHAFTdQZFdAZWeG2fv8/rjVTnd1VdfaXTU1r9fz9NNd5957zumqe6qYmTefU2qtAQAAAAAAAAAAALpbM+kJAAAAAAAAAAAAwLQTtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAACYMaWUU0opdeHX7jQ+AAAAAMBKELYDAAAAAAAAAACAHoTtAAAAgF1GaVzcXjWtlLK9lHL7Sc8PAAAAAIDZJWwHAAAA7EoemuSOHdr3SHLy6k4FxqOUckKHAOkJE5zPW9vmcvGk5gKzwJoCAACA2SFsBwAAAOxKnrHMsaeXUsqqzQQAAAAAgN2KsB0AAACwSyil3CLJScuccuckJ6zObAAAAAAA2N0I2wEAAAC7iqckWd/WVtseL1f5jlVSaz2l1loWfk16TgAAAAAAoxK2AwAAAHYVT297fH6S97a1PbaUcvNVmg8AAAAAALsRYTsAAABg6pVS7pfkqLbmtyd5W1vb3kl+c1UmBQAAAADAbkXYDgAAANgVtG8PW5O8I8lHk/ykx7kAAAAAADCytZOeAAAAAMBySil7J3lSW/Pnaq2XtI6fmuRPFhw7upRyVK31nBWe155Jjk1yjyS3bDX/OMnXBhm7lLJ/kmOS3C3JAUk2JrkyyRdrrT8c66SXjn3LJPdPcpck+ye5PsnlSc6ptV6wkmMPo5RySJoKhwe1vmqSnya5IsmZtdYbVmEOd01ydJLbJ1mf5Oo0z9kXaq3XrvT4s6iUcs8khyc5OM1auinN63pxki/XWret8PjW8vDjTsuaPCrJIUn2TbI1yRW11nf0ef3tk9w9yWFJbp6mQuoNSa5Jcmmae3Dz+Gc+20op65LcL816uFWa98sbkpxVaz1rgH4OT7M25++xLUmuSvLDNPfYpjFPHQAAAJYlbAcAAABMu19PE4BY6G1tP/9J2/GnJ/njYQYrpZyQ5NNtzQ+utX6mdfx2SV6c5LeS7Nelj+8nedVyYY9Syr2SvCTJiWlCCJ3O+VKS59davzjYb7G8UsrxSV6U5CFJ9uhyzteS/EOSf6u11gH7PyXJyxe21VrLkHM9OMlzk/xqkiOXOXV7KeWsJG9KclqtdW7Acdp/x1fUWk9pHVuT5KlJ/jTJPbt0saOU8pkkL6m1ntnHeKek7Tlq8+lSej5lb6u1ntzrpH6UUi5Ocscuh+/Y4fnp5GfrpI/x7pVm3f5Kktstc+qGUsonkrymn+e1bYwTsouv5V5raaXXcpf+pmFN7pPkD5P8TpI7d+mi42tWSrlVkl9L8tAkxye5dY+pbC2lnJnkjUne0+/vsVJrqtd9PYgOc+z5nlJKOTnJW9qa71Rrvbh1/Mgkf57kcUn26dDF25IsG7YrpdwpzfvtI9P99U2SzaWUzyd5fa31o8v1CQAAAONiG1kAAABg2rVvC3tTknfPP6i1fiPJN9vOeUoppWPoZRSllMcm+W6SP0iXcE7LEUneXkr5r/Z5lMbLknwtyW+kSzin5QFJPl9KedFoM//Z2HuUUt6Y5DNJfjldwjkt903yL0k+1wo+rKpSyrpSyiuTXJjkhVk+1JM0/1PpA5OcmuScVgBqHPM4JMkXkvx7ugftkua5fEiSL5VSXj2OsWdRKeW2pZR3JflGkqdl+aBd0lQqOynN8/r+UsotxjQPa3nwMadlTd4/zWv311k+iNXp2lPTVN375ySPT++gXZKsS/KgJP+V5NutMBkdlFJekmZt/3Y6B+16Xb9/677+XpLnpPfru1eShyX5SCnl86WUOww6JgAAAAxK2A4AAACYWq3t4x7U1vz+WuuNbW1va3t8izQBnXHO5SlpQn7tVfaW8xtpQlrzfZQ0oZdXZPlwzKKhk7y6lPKcAcZd2kkz9juTPHvAS49L8tlSykChllG0AlX/k+SlGSKwkSYU98VSyq+OOI87JzkzTVBqEC8qpbxqlLFnUSnlqCRnJ/nNNPf1oB6T5MxSyhEjzsNaHnzMaVmTD0oTMBw2VPULGW23l/+T5h586Ah9zKRWSO4vM+TzW0q5Y5Ivprmv9xyii+OSnF1K+flhxgcAAIB+2UYWAAAAmGZPz9JQTnuwLkneleRvsjj08owkp41pHvdL8lcL5nJdko+kCWL9JMneaUIYj09yWNu1v1lKeX+t9b/TbPe4sFLfJUk+nOTbSa5OckCSY1v97N/Wz2tKKR+e36pvCM9L8sQFj29M8oEkX07y49bYd0+z9d+hbdcemuRTpZR711qvG3L8vpRSDkgTuLh7h8PfTvLZJN9J8xokycFpwnCPzOIKZfsm+e9SygNrrV8dYir7Jfloktu3HtckZyT5RJJLk2xIclCayl2/lqbC0kJ/UUr5UK2123aJVyY5Z8Fc79J2/ILWGMu5tMfxQXw3O5/TOyQ5cMGxba3jvXSdbynlfmm2vty37dBcks+neW4vas1h7ySHpNnis3171LumqWJ1dK31+j7m1M5aHnAtT9GavE2S92bxWjs7TQjwkjTPw22T3CNNOLKXHWmqEn4nyXlpXrcb0twb+6e5134+zRpf+D+t75vkP0sp96m1XrZM/yu6pqbM72Rx+HNDkv9Nc9/8OM3zd0iSB6d53hdpBe3OSudKg2e3+vlekmvTVBq8bZrg5COyuKLkrZOcXkq5b631ktF+JQAAAOis1FonPQcAAACAJUope6QJEy3cZvLyJIfWWuc6nH96mnDHvLkkdx70H9xLKSekCQUttCU7/0H/DUle1imo0tpm8rVZWnHqe2m21ftSmtDBTWkCM/9Sa+0UPLhNkvekCRMs9M+11t/r43c4JcnL25o3Z2dI5S1J/rTL77AmyXOTvCpLA2RvrbU+bZjxa619VTIrpbwvS6sSntGab7fg2nwg6KVp5r5wrIuT3KtDNcT269v/kmzh83VWkj+otX6ty7WHpXm97tt26OO11ocvN27r+hOy9J57cK31M72uXQmllLcmeeqCpktqrYeN0N+BaUJN7X28JckptdauocFSyl2SvCnJr7Qdem+t9XE9xj0h1vJIa7nVz7SsyR3ZGbz8ZpLfr7V+qcu1e9VaN3do/36Sb6WpDPipfgKbrSDYXyd5Utuh02utj+51fauPt2ZMa2qc7xellIuT3HFB09tqrSf3uObkNPfdQgtfm39M8pJa69Vdrl/02pRS1qXZqvuYtlM/nOTPa63nLjOX2yT52yRPaTv05SQP6LQmAQAAYFS2kQUAAACm1SOyOGiXJO/sFLRraa94tybJyWOay3w4549rrX/UrSJUrXVLrfU5ST7eduhuST7UmtOGJL9Ua/3HbkGAWuuVSR6d5Kdth55YStl7yN9hPmzz/9Van77M7zBXa31tmspQ29sOn9zaxnFFlFJ+N0tDPW9OctxyoZ4kqbVeV2t9XhZXG0uagNcfDDGd+efrw0lO6Ba0a419cZKHpangtNDDSinDbnc5S96UxUG7HUme0roPl63OV2u9IM17QXu457GllPsPMRdrudHXWp6yNTkf5vpikl/sFrRrjb0kaNdyTK31cbXW9/VbGbHWekmt9TeTnNJ26JGllE7V/nZH86/N82qtz+oWtEs6vjanZGnQ7oW11l9dLmjX6uvKWutvpdnOeaFjkvx672kDAADA4ITtAAAAgGnVHtBIkrcvc/4HsnPLvnlPa1V3GodTa63/r89zX9qh7eDW9z/uFVJJklrrtWkqay20f5ZWyBrEZ2qtf9HPibXWD6epiNXuj0YYv6tSyto0W3Mu9LFa67PrAFsz1FrfkuRf25qf26pUNqiL04TCugV3Fo57TZYGPtakCeHttkopd0vyhLbmF9da39VvH63X//eStAdvXjjktKzlxrJreUrX5PVJnlBrvWGIazPk1sPzXpmmYtq8kmarcxrvqbW+bpALWlUv/7Ct+R9rra8ZpJ9a6ylptq1daNj3BwAAAFiWsB0AAAAwdUopByd5VFvz12qt3+l2Ta11S5LT2prvmOQhY5jSjiwNnXRVa/1ymi1w230vSyt0LefdHdratyodxKBBudck+WFb22NKKbcdYQ7dPDGLtzOsWRrC6NcrW9fPu3WSBwzRzysGDOf8Z5p7ZaGjhxh3ljw/i/8O8qIkfzdoJ7XWbUn+qq35EaWU9u1Re7GWd+q1lqdxTb6u1vqjIecwklbA8B1tzcdNYi5TaC7Jnw1x3bOT7Lvg8YYkLxhyDq9se3zv1hbfAAAAMFbCdgAAAMA0emqSPdva2reJ7aRT5btOFfIG9Yla6yUDXvONDm1vGbAi1AVJ2is43W3Aecw7s9b6rUEuaFV0aw+XrE3y0CHnsJz2Lf8+U2v9wTAd1VovS9L+ux4/YDcbk5w64LjXJjm/rXnY12uXV0opSR7b1vzWbluu9uEjbY/XJxl0K1lreadea3na1mRN8u/DjD9G7ev7vqWU9s+q3dGnWttpD6r9HvvvYasWJjkjS6vbDnqPAQAAQE/CdgAAAMA0at+ab3uS/+h1Ua31jCwNQ5xUSrnFiPP53BDXdAr0fH4M/RwwRB9J8v4hr3tvh7afH7KvjlqhrF9saz5jxG4vant8nwGvP7PWunWIcS9oe3zzIfqYFfdKcmBb29Cva2ur3vZKg4O+rtbyYh3X8pSuyR/UWtur842klLJvKeWRpZQXllLeXko5vZTy+VLK10op32j/SvLGti7Wp6nSt7v79KAXtLaQ/bm25lHeH+aydI0Neo8BAABAT2snPQEAAACAhUopD0xy97bmj9Zaf9pnF29P8pcLHq9P8uQkbxhhWsNUc7pxhfoZNrz11SGv+1aSbVlcaXDcW6P+nyTtgcinllIePUKfd2h7fKsBr28PbfarPQy2O4ftHtih7Q2llC0j9HmztseDvq7Wcn9reRrX5NdGGHuRUsrRabY4PjHJ3iN2d0CWbtG7uxnmtXlAlhYD+ItSynNGmMfhbY8HvccAAACgJ2E7AAAAYNp02va1ny1k570jySuTlLY+RwnbXTvENdtWqJ9htyz83jAX1Vq3lFIuTnLXBc0HDzmHbg7p0tapfVi3HPD8a4YcZ1yv1yzo9Pq1B2lHNejrai33t5ancU3+ZNQBW1u+vj7JszK+XV9250DtvGFem0730p1HnUibQe8xAAAA6Mk2sgAAAMDUKKXsm+Txbc3XJvlwv33UWi9J8pm25qNalYyG1SlsM7Ba61j6GVJ7xbVRrh12+8tuViMQMWj1qkm+VrNiZl/X3WAtT+Nrd8Mog7WCdv+d5NkZ79+L786B2nnDvDbTeI8BAABAT8J2AAAAwDR5YpJ92tpOq7UOuu1kp0p4nSrm7U42jvHa/UaZSAcHjrk/poPXdWWsxlqextdu+4jXvyDJYzq0/yjJm5M8Jc3WpoemCSHuVWstC7+SPHjEOcyqYV6babzHAAAAoCfbyAIAAADTpFMg7vdLKb8/hr6fVEp5Xq110xj62hXtk+ErQ7UHIG8ccS7tOr0mJ9VaPzDmcVhdnV7XA2ut1636TGbLaqzlmVqTpZSDk/xFW/P2JM9P8sZaa79hMZXSxqfTPXbvWus5qz4TAAAAGIDKdgAAAMBUKKXcI8nPr+AQByR57Ar2P+1uPsZrxx2WuqpD253GPAarr9PrethqT2IGrcZanrU1eWKSm7W1vaDW+n8HCNolyS3GOKdpMMktcGftHgMAAGA3IWwHAAAATIvV2OZ1d95K9ohhLiqlrMvSgNRPRp7NYj/u0HavMY/B6vO6rozVWMuz9to9rO3xtUneOEQ/dx7DXEa1rUPbsKG5SYYHZ+0eAwAAYDdhG1kAAABg4kopeyb5rbbmrUnOHbHrQ7M4THBCKeXOtdYLR+x3V3R0kk8Ocd29sjTI8dXRp7PIN5NsTrLXgraHj3kMVt/ZHdoekeTtqz2RGbMaa3nW1uShbY/PqrVuHaKfB4xjMiPqtIXw/oN2Uko5JItf39V2Voe2RyR55WpPBAAAAAahsh0AAAAwDU5MclBb2/tqrfce5SvJS9r6LEmetiq/0fQ5acjrOm29e+YoE2lXa92c5AttzbctpTxknONMsU7bWO6x6rPYqX0+w87ljCQb29oeVUo5cMj+aKz4Wp7BNXmrtsfXDNpBKeVWSR485PjjWlNJ561/h6m4d/wIcxhZrfWSJD9oaz62lDJU5UYAAABYLcJ2AAAAwDTotL3rO8fQ72lpKuQtdHIpZXf8O5EHlFKOHOSCUsr6LK04uD3JJ8Y2q50+0KHtlBUYZxrd2KFt31WfxU7t8xlqLq3KYR9ra94vyfOG6Y+fWa21PEtrsj302R6+68ezM3wluLGsqZYfJdnQ1nbsEP387ghzGJf2e2xNkpdNYiIAAADQr93xL5YBAACAKVJKuX2SX25r/mmWhnQGVmu9JslH25oPSfIro/a9i/r7Ac//8zTP10IfqLVeMab5LPRvSa5sazuulPKCFRhr2lzboW2YSlXj0j6fA0aoRvfqDm1/Xko5bsj+aKzGWp6lNdn+e/5CKWWffi9uhRv/YoTxx7amaq1zSb7R1vyoUsrN++2jlHJikgcNM/6YvTbNdsULPbmU8oRJTAYAAAD6IWwHAAAATNrTsnRLvdNqrZ221hxGpwp5nSrp7Q4eUkp5VT8nllIekeSlHQ79v/FOqVFr3ZTOway/KqU8Z9h+SykPL6W8efiZrYrLklzf1vbISUyk5Vsd2oaaT63160ne09a8Z5L3lVKGCvuUUtaXUn63lPLcYa6fESu+lmdsTX6+7fG+SV7ez4WllMOSfDDJ+hHGH9uaamkPke+dpN/74V5J3jLC2GPTCnu+qcOhfy+lPG6YPkspe5RSnlBK6XTvAgAAwMiE7QAAAICJKaWUNGG7duPYQnbeh7I0yHRiKeWgMY6xK5ivHvTiUsq/dKuCVEpZU0r5kyTvTROKWuittdbPreAc35TO2wq+oZTyvlLKUf10Ukq5UynlBaWUb6YJpUxDBaeuaq01yZfamh9aSvnrUsrBE5jSmUnm2tpeW0p5TCml/Z7ox+8luait7VZJPllK+dtSym366aSUcv9SymuTXJzkn5LcZYi5zILVXMuzsibfk6X39PNLKX9ZSlnb7aJSypPSrM35SpM3DDn+uNfUW5PsaGt7TinlFd1+n1YI7RlJvpDkFklqlm6zPgkvSXJ2W9vNkry7lPKvpZS+1nkp5Z6llFcm+X6S/0zS170JAAAAg+r6FwkAAAAAq+DBWbpd5vm11rPGNUCtdUsp5b+TPHNB855JnpLk9eMaZxfwsiR/0/r5mUkeX0p5f5IvJ/lJkgOS3D3J45LcocP1lyRZ0UpitdZaSnlKmjBIe1DipCQnlVLOSfKZJOcnubp17IA04a17JTk6k92CdVj/nuThbW0vTPLCUsoVSa5J0l7t8YO11peNeyK11itKKR/L4spbt07y/iRbSymXJdmYJqyz0DNrrV/p0N/VrW0rv5BkYTBsbZI/S/JHpZQvJflckh+m2XJzfZrX9bZJ7pPkfkl2t4BsN6u2lmdlTdZav19KeWeS32479JIkJ5dS3p3km0k2pAmi3S3JiVkc6LwpyQuS/MMQ4497TV1eSnlDkj9pO/SyNNuwvifJua053zLJzyV5VBbfD69J8qQkdxz09xmnWuvmUsqvpQkkHtp2+BlpXp+vJPlsmqDtNWmq4R6Q5OAk907z/nD71ZozAAAAuzdhOwAAAGCSOm3nOs6qdgv7fGZb2zOye4Xt/i5NIOHxrcf7pwmetIdPOvlhkl+qtV63QnP7mVrrhlLKL6bZ5rDTNoJHZTYrFr0nySeTPKTDsdu2vtp9YwXn8/wkxyfZp619XbpXlNu3W2e11m+XUo5JU2Xtnh36PL71RW+rupZnaE3+UZJj0wQRFzokS0Nr7bYl+Y004bVhjXVNJXlxkodm6Xq6S5I/7zGX01rXP6nHeauiFR48Ns282qse7pHk/q0vAAAAmDjbyAIAAAATUUo5IMljOxx61woM97kkl7a1HVlK2W3+8b61VemTk/zjgJd+McnxtdYLxz+rzmqtN9Zafz3Js5L8aMTuLk0TEppqtda5JL+e5NRJzyVJaq3fTfKwJD8YY5/npwnMvC5NFa9RfCXJR0ae1C5oEmt5FtZkrfX6NOG0Mwe89PIkD621jnS/jXtN1VpvSnJClm7BuuxlacKav9l6z5katdYr04SNX5Kmet0ozk3yXyNPCgAAADoQtgMAAAAm5clJ9mpr+1Kt9YJxD9QKp3QK8XWqrDezaq3ba63PShM4+VSS5cIWX0/yO0l+cTWDdgvVWv8xzfaTv5PkE+mvqtRcmrn/bZptig+rtb52xSY5RrXW62qtT05TeeuUJB9OckGabVW3TWA+X2rN5ZFJ3pxmK9HL02y1OVRQp9Z6U631eUkOS/M7fiXJjj4u3Zzmnn1RkiNrrceMGn7alU1qLe/qa7LW+qM0ldOek6TXc3FJkpcmuXut9XNjGn+sa6rWenWSB6YJQS732bkjyUeTPLDW+vxpC9rNa93Xr06zte3z0jw/W/u4dHuSM5K8MsmxtdZ71FrfvnIzBQAAYHdWmr9rBgAAAGB3U0q5VZKfT7Pt4L5JbkhyRZKvr0TocVSllHVJjk6z7eOtkhyYJmRxY5Krknw/yfdrrZsmNkkGVkq5eZJjkhyc5JZJbp5kU5rX9fIk30tyYa21n1DeTCmlnJLk5Qvbaq2lw3kTWcu7+pospRyRZmvZg9Js77oxzVa736y1fm+ScxtG6/c5Os1a2i/N63BBkjNqraNWi5uIUsrN0mybfLs07w8HJNmS5nf7SZr3hx/UWvsJ5QEAAMDIhO0AAAAAAKZQv2E7AAAAAFaHbWQBAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAeSq110nMAAAAAAAAAAACAqaayHQAAAAAAAAAAAPQgbAcAAAAAAAAAAAA9CNsBAAAAAAAAAABAD8J2AAAAAAAAAAAA0IOwHQAAAAAAAAAAAPQgbAcAAAAAAAAAAAA9CNsBAAAAAAAAAABAD8J2AAAAAAAAAAAA0IOwHQAAAAAAAAAAAPQgbAcAAAAAAAAAAAA9CNsBAAAAAAAAAABAD2snPQHoppRy8yTHL2i6LMnWCU0HAAAAAAAAAACYvHVJDl3w+LO11utXY2BhO6bZ8Uk+MOlJAAAAAAAAAAAAU+sxST64GgPZRhYAAAAAAAAAAAB6ELYDAAAAAAAAAACAHmwjyzS7bOGD97///Tn88MMnNRcAAAAAAAAAAGDCfvCDH+Skk05a2HRZt3PHTdiOabZ14YPDDz88Rx555KTmAgAAAAAAAAAATJ+tvU8ZD9vIAgAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAbDbqFs2pZ7zhdSf/mjSUwEAAAAAAAAAdjHCdgDsFuoXT0991G1Tn/OQ1MfeOXOvenrq9u2TnhYAAAAAAAAAsIsQtgNg5tVrf5r6kickWzbtbPz4u5J3v2FykwIAAAAAAAAAdinCdgDMvk+elmzftqS5nv62CUwGAAAAAAAAANgVCdsBMPPqf/595wMXn7u6EwEAAAAAAAAAdlnCdgDMvg5V7QAAAAAAAAAABiFsB8Ds27510jMAAAAAAAAAAHZxwnYAzL5twnYAAAAAAAAAwGiE7QCYfbaRBWiT9noAACAASURBVAAAAAAAAABGJGwHwOzbIWwHwGIf/VbNmt/d8bOvr15SJz0lAAAAAAAAppywHQCzb8eOSc8AgCny6fNqHvWGuUVtx7x6Lt+7UuAOAAAAAACA7oTtAACA3cpj3jTXsf05p3ZuBwAAAAAAgETYDgAA2M1s2NK5/ZPnre48AAAAAAAA2LWsnfQEAAAAuvnxDTXv/VrNpdckv3T3kofdo0x6SgAAAAAAAOymhO0AAICpdPFVNb/02rlcfHXz+DUfq3nRI0teddLKFejesq1m/Z4CfQAAAAAAACxlG1kAAGAqvebj9WdBu3l/9ZGaS6+uKzbmh7+5Yl0DAAAAAACwixO2AwAAptI/fbZzqO5fv7ByYbtPf2/l+gYAAAAAAGDXJmwHAABM3I65mq9cXPOhc2qu3bh84O0T565cIO6GTSvWNQAAAAAAALu4tZOeAAAAsHu7ekPNr/zfuXzt0ubx2jXJqb8zmf8v6MKrVLYDAAAAAACgM5XtAACAifrT/6o/C9olyfa55PH/NDeRuZxxwUSGBQAAAAAAYBcgbAcAAEzUh765etXkrumxRW2SbN2uuh0AAAAAAABLCdsBAAATs31HzXU3rd54V2/ofc6GLSs/DwAAAAAAAHY9wnYAAMDEbNq2uuNt29H7nE1bV34eAAAAAAAA7HqE7QAAgIm5aYhg25kXDj9eP2G7y64dvn8AAAAAAABml7AdAAAwMd+4bHXH2z7X+5z/+W5d+YkAAAAAAACwyxG2AwAAJmbjlsGvucMthh+vn8p2ZfjuAQAAAAAAmGHCdgDMtFpVJwKYZpu2Df4+vaOP6nTd9BO2e/kHa07/ps8PAAAAAAAAFhO2A2C27egjVQHAxGzaOsQ124Yfb3ufHwu/+sa5fPw7AncAAAAAAADsJGwHwGybE7YDmGbDBOeGCejN66ey3bxXfGiEEnoAAAAAAADMHGE7AGZbFZQAmGbDVrYbdpvwrQOE7c68cKghAAAAAAAAmFHCdgDMNtvIAky1YbeE3bJ9yPFGqIoHAAAAAADA7k3YDoDZZhtZgKl205Dht2FDczdtHa4iHgAAAAAAAAjbATDbhO0Aptqwle1W67pht6sFAAAAAABg9gjbATDbbCMLMNU2DxuaG7Ky3aDjbR1yu1oAAAAAAABmj7AdALNNZTuAqbZtyDDbsJXtBg3PDTsOAAAAAAAAs0fYDoDZJmwHMNW2Dfk2PWwIbsugYbshK+gBAAAAAAAwe4TtAJhtwnYAU23r9jrUdcOG4LYO+LGgsh0AAAAAAADzhO0AmG07hO0Aptmwle0220YWAAAAAACAVbZ20hMAgBVV5yY9AwCWMWiluXnDhuAGDtttTS66qmbbjmRNSQ67ZbJ2j5IbNtVctSG5062SUspwkwEAAAAAAGCXImwHwGxT2Q5gqg1b2W7T1ppk8JDboOG+Y/+qc2h7jzXJjrnk0AOTdzxjTR50hMAdAAAAAADArLONLACzbU7YDmCaDVppbt5qVbbrZkcrg3fZtckj/n4uV15fx9MxAAAAAAAAU0vYDoDZNmcbWYBpNnRluyHDdsOOt5xN25LTvyVsBwAAAAAAMOuE7QCYbSrbAUy1Qbd1nbdp65DjjamyXbtPnrsy/QIAAAAAADA9hO0AmG07hO0AptlqV7Y788KVqUD3kxtVtgMAAAAAAJh1wnYAzDaV7QCm2rCV5s4aIjR30VU1F1893Hi9fOq8pFaBOwAAAAAAgFkmbAfAbBO2A5hqw1a2+/h3Br/m37+4smG4z5+/ot0DAAAAAAAwYcJ2AMy2ubnux9b4GASYtGEr2x1/xODXvPr0lQ3bffp7KtsBAAAAAADMMikDAGbbcpXt1uyxevMAoKNhK9vtWCZLPSmXrNAWtQAAAAAAAEwHYTsAZttyYbtSVm8eAHS0dciw3bAhvW6OuPXofVxxvcp2AAAAAAAAs0zYDoDZtmPMaQwAxmrY0Nz2MVe2WzuGPxldes3ofQAAAAAAADC9hO0AmG3LVbarKhABTNrW7cNdN+6w3eOOHr3a6UVXJdVnCwAAAAAAwMwStgNgtgnbAUy1oSvbDXHdfe/Q/dhjjho9bLd5W3Ll9SN3s8S1G2ve/dWav/7oXN7yxblcdo3PLwAAAAAAgElYO+kJAMCKWnYbWWEFgEnaMVczN+Rb8XlXDn7NjZs7t5/8CyX3WSaIN4gLr0pue8B4+kqS866oecjr5nLFghDfurU17/79NXn0vUYPCAIAAAAAANA/le0AmG3LVbYDYKJ6VbW7y0HJSx7VOVC2ZYjtZ8//SfdxShlPcO2iq8Yb5H7OfywO2iXN1ru/9W9z2bZdaBwAAAAAAGA1CdsBMNuW2yrWNrIAE7V1mcDc2S9ak/NfvUduv0yVuO07xvM+Ps5PgwuvGl9fm7fVfO77nY9dvyn58iXjGwsAAAAAAIDehO0AmG1zc92PCdsBTNTmbd2P7b2u+b7P+u7n3LR1sPH23KNz+3yVvF+7z2D9dfKuM2uuunE8ny83bEq2L/MxdvWGsQwDAAAAAABAn4TtANh9CdsBTNSm5cJ2ezbf73OH7tu7Lnd9ux1zteu2tScc0Yzx3IeO/sej83+SHPy8uTz2zTuyaetonzMnvnGZpF2STdt8jgEAAAAAAKwmYTsAZptAHcDU2rRMZbr5sN3890Gvb/ftH3U/tt9ezffj7lpy1ovG80ek938j+bN3D/8Z9F9fmcvZFy9/zpd7HAcAAAAAAGC8hO0AmHHLBx2qMB7AxCxb2a61jexyYbvltqFt94Fzur/fLxzjmMO6V9Ib1Pu+NvxnzB/+R+9rz7vCZxgAAAAAAMBqErYDYLb1CtMJ2wFMTD/byM6H7ga9vt11N3U/dueDFj9+3H3773c5V96QbNs+3OfMT2/sfc6htxhfMBAAAAAAAIDehO0AmG3CdABTq9s2sKUk69Y2P++13DayA4Ttljt3n/WLQ2tP/YU1KWPKsQ0yx0Ft3bFyfQMAAAAAALCUsB0AuzdhPICJueL6zu/Be++ZlFbabf3adA2+dQvrdfJPn+081hOPWdr5o+9V8q5nlNzn0GYuD75b/+O0W8mw3bbtK9c3AAAAAAAAS62d9AQAYEXZRhZgan3qvM7tC6vZlVKy19rOobVxBNn226tz+xOPXZMnHpvUWlNKyTGv3pGvXjJ4/4MEAued/+P+Ppu2CtsBAAAAAACsKpXtAJhxvQILwnYAk3L7Azu3X7Nx8eO913U+r98gWxOY63xs45blr52vsPfY+w63r+zmIQKB37m8v/O27vAZBgAAAAAAsJqE7QCYbSrbAUyt7Tv6O2/vPTu3b9rW33v4lu3d3+6Pu2t/czjxqNI1sLecbX3+jsNcs2UFt6gFAAAAAABgKWE7AGabsB3A1PrWDzu/Bz/k7osfj1rZbrnz7n+n/hJ0R96u5J3PKNlnfX9jzts6RNiu34p1w/QNAAAAAADA8ITtAACAifjItzu3f7ttG9Xule36G+dH13U/1q3vTp507Jpc/fo1OetFa3LF363J0x7YO6i3dXv//c/rt7LdMH0DAAAAAAAwvLWTngAArCiV7QB2OT++YfHjUcN2F/60+7Fb7NNfH/PWrS055rDm5xs2zfU8fyW3kVXZDgAAAAAAYHWpbAfAbOsZphO2A5h2o24ju1x47eD9+9tGtpN+8trDVJ/r9xqV7QAAAAAAAFaXsB0AM05lO4BpdNWN/b//jlrZbtO2lXmv76fXYarP2UYWAAAAAABgOgnbATDbbCMLMJX+7n8HCNuNWNmuWyjvLgf1PYWO+vkIsY0sAAAAAADA7BC2A2D3JmwHMBGfPHeQynadt3rtt7LdTV1Ced0q5vXrqEN7b0G7ktvIblHZDgAAAAAAYFWtnfQEAGBF9QzTCdsBTMK1G7sfe/0TFofY9upS2W5zv9vIdgvbdem3X888ruQVH1r+c2TrjpqkdyhvoX4r2/Vb2W/jlpqvX5psn0v2XZ/ss37x93VrB5sfAAAAAADA7krYDoDZpnIdwFS68Krux57+wMXhr24V6DZt7e89vlsFvFEr293+wJJnnVDyD5/pPo9hKtv1HbbrI2z4z5+by7NPrdkx1/2cPffYGbxbFMZbl+y7V8k+65c/vm+X40J8AAAAAADArBG2A2DG9QhiCOMBrLovX9z9vfffnlqy3159hu36rGz3li92Hm/UynZJ8sYnldz/TsnJb+k8Rr/BuWGu6VXZ7uyLan7/nb0/57btSK67qflaavgKsWvXJPvutTCYtzikd7Mlba3v61shvy7H161NShHkAwAAAAAAVp+wHQCzrVeYTtgOYNW96L3dy6zdZv+lIapuobh+t1HtFl7bawx/Giql5LcfUPI3H9uR716x9PiWISrbbe0zbLd9Ltm2vWbPLhXkPvzNyX7GbZ9b2RDfzmDezp/3Wd9U4lvueHubEB8AAAAAANAvYTsAdm/CdgCr7pPndT/2c4csbRu1st0Rt05+fMPS9rMu6u/6fqzv8ierzX3OcaFBquFt2pbs2WXsy68ffOxdwUqG+Dpth7swxLfc8e7b6QrxAQAAAADArBC2A2C29QzTCdsBTJNDDhx/Zbtu5z38nuMLQHWb46Bhu+07av7hM/1/Nm3aluy/d+djO4bYwnZ3tn0uuX5T87XU8P89sceabgG9ZN+2EF+3452uF+IDAAAAAIDVJ2wHwGyzjSzAVLl24+Dvu6NWtusWeLv3oQNPpatR5zjvj08b7Pn5+qXJw+/Z+dggFfJYOTtWOMTXOYy3M8S33PFO168X4gMAAAAAgK6E7QCYccJ2ANPk499Z/bBdt/P26tLvMEatvpck27bXnHrWYM/PO86sXSv0bZ/rfM1T7l/y0keXbNiSbNySbGh9bdxSF/y883vzc207d+f3QQOFjMdqhfj2WZfsu9fCn0tutqRt/ueSfffqdI0QHwAAAAAAs0HYDoDZJkwHMFXOu3Lwa/ZeV9IpHNRvkG3r9s7tYw3b7dlljgME0c67sltwqrv/OLvmXc/sfGzbjs6fgQfsk9z11p1CT8MFoXbM1QWhvKVhvA2tEF/78Y3dAn5bkw2bhfgmZfkQX7J8kG/5EN988G6fda1qeot+3hniW3p8cYhv4XEhPgAAAAAAVpOwHQCzzTayu50zLqg57jU7yzm99Wklv/2ANROcEbDQ1mW2Nn3xozoHZrpVtrtxc39jdttOdc89+ru+H90q23XbwraTbpXohrW9y++9dsxviXusKdl/72T/vbudMXyI76ZW8G5hCG/jz9rqgp93tjfX1EVtQnyTt2MuuWFz89XZcCG+NWVpcG/x1ritLXM7Ht+5nW778b32FOIDAAAAAGApYTsAdm/CdjPl7IsWB+2S5OS31GzaOpffO17gDqZBtypzSfLKE7uE7boE2bbPJbXWnoGYbmG7tWvGF6TpViXvE+f2/zlzydVjmkzL/57buX2cIcOVtMeakv32Svbbq9sZo4f4Nm5tVdvbvDDMVxe3bVkc4ltyzRYhvkmaqysb4vvZdrqLAnw7g3qdj5e2c3d+F+IDAAAAANi1CdsBMNt6humE7WbJs0/tXBbqWe+q+b3jV3kyQEfdKtuddO/uAZRule2S5LtXJEfebvkxV6WyXZc5Xn5d/3386+fHW9quW1W9cVe229WsdIhvXNvpzv98U5/bJTNeKxniWxrcW1xt72Zdj5cuwT8hPgAAAACA1SJsB8CMs43s7uSrl3Q/tmVbzfo9/SM0TFq3ynbr1nZfn7fat3t/X7+05sjbDVfZbpxhu+s3dW6/zf799zHubWQPuFly3U1L239843jHobFSIb65+Up8XcJ4G7bUrgG/jV0CfhuE+CZmrjZbYHffBnv0EF/nMF9Zcnyfdc32ufuuLwt+Xnx873VCfAAAAAAACwnbATDbeoXpVihsV2vNJ85NPn9+zRG3Tk48qmT/vf1D5SR97DvJY+496Vkk126s+eA5NRf8NDn+iJJfurt/xGY4l19X84Fv1FyzMfmVI0vud9iucR91DdstE3w7/ODux7pVb1toNcJ2B+032NidnHfleOYyr9suube7+XjHYWWtWVOaENQKhvg6h/U6V9u7aZmAnxDf5KxUiK+U9mDezp+b763tdDseb22nu9fS40J8AAAAAMCuSthuQkopeyQ5PMk9ktwuyc2TbElybZILknyl1rpxzGPumeSBSe6Q5LZJNiS5PMnXa60Xj3MsgKkxgbBdrTV/fFrNGz+1s++jDqn5n+euyUH7+UfFSfm1N8/lxY8q+cvHTG7/xCuvr3no6+by3Suax686veZ5v1zyt7/uvmAw515R8+C/m8tPWhXKXvbBmn94csnvPmj69wftGnxb5k8mywUyru1QuW2hWmvXinHjDNsdd3jJ33586WfK1X3+F/0ZF9Rces1wY++Yq9mjQ7Ku23N99B2957DyIb6NW5MNm1thvIU/z1fbazu+cfPiEN+S41uG/lUZQV0Y4ruh4xnLXd31SCmtAN7CMN76xSG+m3U93rad7oLjQnwAAAAAwEoTtltFpZQ7JHlskocm+cUky20qtaOU8r9J3lhrPX3EcQ9K8ookT0hyiy7nnJHkdbXW94wyFgDJOT/MoqDdfNubPl1zyon+8W+SXn16zTOPq7njLSfzOrz+E/VnQbt5r/2fZk53u417g/696L07g3ZJE4b4k9NqnnL/mputn+57acu2zuGL9T3+ZHL0HTtvFX3qWTXP///Zu/Mwuaoyf+DfU11dXdWdfSUJkJAQVtmRHVlF0BHBDUVRQUZHBweH8aeijsLM6LggboMO4AKKouiALLIkskPYCQGSACEhCQnZ916qqqvr/f1RXd236p5z7rlVt5bu/n6ep59U33PvubfWdN361vu+y7xdzlJZLsqwXarVPCYigeGPE75XeQ/Znqw+MGW67lFeb6Jy3hDfVO073mhCfF3F1rrFy+nSEF9xvCsNdGXFF/zr8lT1o/oTGayGWKsQn2s73cHLSrsNQ3xERERERERERETkxbBdnSil/gDgoyE2aQFwJoAzlVJ3AbhYRDZUsN+zANwAwNJ8CwBwHIDjlFK/B/DZqKvqERE1TGDluugr213zoH7O/7hLcMXZke+OQrp/qeCiExrzYamu6hUA/O/Dgh+dxw9wyd3ti/zL0r3Azc8IPt2gx7errCEAlgh4Z5I3ZNGmj7NvZ2vjGmXorM0StnttA7Dvbubxnmx1/xf19OrDdqbrHm/+AohEPrUM8fX0lgX3vK1x0+Jf5mmnq92GIb6GKQnx6dewbW0cKYb4TGG8YohPP24O+LUzxEdERERERERERDTkMGxXP/sYlq8FsAzABhTuj9kADgHg/QjsHwA8opQ6SUTWu+5QKXUygL8CSHgWC4DnAawAMA7AYQAmecY/BmCMUuocEam8vAYRUdOofxvZPz9rnnNnj+DZVcCWTmDRGsGtzwtaYsBPPxLDyfvywzZXmV7BkysK4ZYjZwLxFvfbbUdPtMciIli+CVj0JnDw7sDeU8Lfj9c+IvjRedEeF41MC5YDnz6h0Udhl83plycCgm8L39Qvb0/olxeZWsgC0Ybt9reE6Xal7dtWG8pZtwOYPLp0Wb3a5xINdbHYYEiqViG+rowujCclwbziv12Z0na6uu2p/rwhPv23IKMJ8emq7bVbAn6mCn4M8REREREREREREdUOw3aNsRDArwHcIyLLyweVUjMAfBPAZzyL9wHwZ6XUO0SCkyFKqd0B3IrSoN3jAP5RRJZ61msD8FkAVwEo1uN4L4D/AvC1MFeKiKgpBb1k1iBs12eZctyl+uTDaVcXlu/6WQwdTd4CstGeWyU488d5bOmvwbrXJGD+v8Ywe7Lb7dbTG92xZHoFH/tlHrcuHFx29iHAHz8TQ7LV/X5M9wKX35rHd85V/GCUqvKbxwVXni3YfXzzPo4qrWz3kbcr/PEZ/wvs8k327WyV7eIRhs7Gpsxjmzvt26YNAUQv0/UHgEP/I48bLlT4xLGD39fps4QMo7zeRKTnDfHpVRfiM4fxRBvQ67IE/IrtdWvwZzEFqGWIr73YTjdRqAhZenkwxOcfLw3xecdTrYXHNhERERERERER0UjGsF39CIC/AbhCRJ61riiyFsBnlVKLAFzjGToBwHkA/uiwvysBjPf8vgDA6SJSUldDRDIAfqqUWg3gNs/QZUqpa0VklcO+iIiaVwPCdtVUKDrpB3k8+w2mIEzyecE51wwG7QDgjc3Ax3+Vx6NfduuLGGXY7qp5UhK0A4A7FgHfvUdwxdnhPoj83r2CY2crnH1odMdHI9Onb8jjvn9t3tcRY2W7gHcme03SL3/BUPGuqF5tZG0Bto9en8e2n5hX2N5tn/sv/xTDKfvCGLYDgAtvEJywtwwEj+tV0Y+I6ssb4puiXaOyIJSIoCdrrqZnqrbXnS202tW10WWIr3FEBislGtawbW2duzyE19Ef6itcVuhImsaVNvjXkSgEAxniIyIiIiIiIiKioYJhu/r5kIisDLOBiPxcKXUqgA94Fl+AgLCdUmougE96FmUBfKo8aFe2r78qpW70bNcG4FsALgpzzEREQ09zffr3/OpGH0FzW/gmsHa7f/mTK4C3NMt1erLRHc9dL+ofP3e9KLji7PDz/e0lwdmH8oNGqs4DrxaqFzVrlUxT2C4oAJZsNY91ZwTthutbr7CdrSplUPvq51eb/y86Zjbw/sMVMr32/69EgD89K7j8rMJxWCv6uWWTiWgEUapQ6ay9hiG+rizQmS4P48ngMs94McRXsk3ZZYb4GqOWIb5iME/XTrcjaRpXnrCfv50uQ3xERERERERERBQ1hu3qJGzQzuMalIbtTnHY5nwA3o8ObxWRZQ7bfQ+lIb0PK6U+bwvpERE1PcuncAJga5eCoVhSxca3A9sCqhRRZV5aa74/12xzm6M7wrDdU2/ol+tCkw5d4HH9o4JrL6jyoGjE68sDW7tsrQsbyxQCSwQE30YnzWNbuwsBkTD7A5qnwpstBnDZOwvJuDaH1tRX3CG4/KzC5bSliqctuEhEFCVviM+wRkXzFkN8XcVqfOnBMF5hmXguDy4vaaerGe/MMMTXKMUQ38ZdutHKQ3zFdrolrXEHwnqD7XT948oQ/GOIj4iIiIiIiIhopGPYrvmVNadDSik1TkRs9XvOLfv9Ny47EpGlSqmnABzdv6gDwBkA7nA6UiKiZqT5tEwAfHfi/8PPJnweG787FXMm9+H7H4zh3MOi+cBkzmTgWTbhrgnbPRTUhrHIFkCppYyhmhdRWC7BzShDpVEzhd+Cgm/vOUjhslv0191WsXIohO1s99e7DnSfx3tduzdtBTBOu16KYTsiGuK8Ib7Jo7VrVDSviCDd62+H6w3xadvlekJ8unGG+BqnO1v4qVWITxfG62hTvmCfN+Cn36ZQmY8hPiIiIiIiIiKi5sewXfPTfTSfMK2slNoNwCFl2z8eYn8PYTBsBwBngWE7IhrS/B+SXDfuYvz7lCsHfl++CfjwtXk8/pUYjtqr+g83bMEOp+1zgtY4P2TRWbnFPHbFnXmnOaJsI2sjIiVtJeu1Xxr+XD6s72lQqNRFzvBUjQcE38a3m8ds17dZwna5PkG8Rf/abjr+yaOB0cnBbT51nMINC9zSGl3fvQTATdqxlPHdBBHRyKaUQipReJ2sVYhPH8aTkuBecbw7Yw74FS/nGeJriGKIDzUI8WnDeAlgVLIQ1NOPK4xK6gOADPEREREREREREUWLYbvmt3fZ7zkAmy3rv63s9xdFpCvE/haU/R6ilgYRURPSpFJ+P/YjvmV9eeBPz0okYTtTkMRVTy/Qyv+htZ5+w/zh1DMr3ebo6a3PJ5KL1gCH7uHdb112SyOAyyO4mcOdlVa2swXEhkJluzc2A3On6sdMrw97TSz93aX965ptghndK9CzYjkwW78OK9sREdVXrUN85jCevtpelyXgV7zMEF9jFEN8myIO8aVaMRjGS5RfVoVKfdrxQojPvw1DfEREREREREQ0cvGj/Ob3wbLfnxURW4zjgLLfXw+5v+UB8xERDXkL2o/TLv/N44Iffqj6+autbNfTC4xJVX8cw9FekxTcokZmUYWQcn3243h9Y2nYjm1kKSp5h0BvM4c7jZXtYvbtbAGxZqlsZ6s8t36nJWxneF0qDxjOmRx8DMs3AtMfvhE9saRxnXZWtiMiGha8Ib5JNQzxdWULrXQ7PUG9kja6/eMl7XS923guM8TXGD29hZ9ahfg6+tvqei8PtNPVjnva6ZaNtyeAFob4iIiIiIiIiKiJMWzXxJRSowB8umzxbQGblVfCWx1yt6vKfp+olBovIttCzkNE1Bxc+i32294dzS5zVYbtpn2pNIkyZzLwrgMVvvVehcmjR/aHDt0RBOWimGPjTsGX/8/+2PrwtXnMmgh851yFjxwVQ9YhbHfUrOqPjYa/kVrZLhZTSMShfS7Zrq+t2mhQwC+sfz7FHLZLWwKBprBgecDwfYcqfOOvYg3vdmcB5PN4PVH+tqBAKSDBd4FERGRRyxBfJtcfzMv2V9NLe8N4Mhjc84x3Z4HOdGmIzzvOEF/jDIT4tKPVhfh07XK9IT79+GCIz9dOt40hPiIiIiIiIiKKBj9maW7/DWA3z+/bAfwyYJtxZb9vDLNDEelUSqUBeEthjAVQVdhOKTUFgEMtjhJzqtknERGAUGG7qFRb2a7c8k3Azx8SPPSq4MnLYxiVHLkfENjCKq4eL6/hGtKutOCUH+axdF3wuiu3AOf/UtCZyeNohxbFT6+s7thoZHD5MLmpK9sZXiNdgm+pVkPYzlbZzhJMi7qy3REzzc/zLZ0CUzjBtbLd3lMU7rwkhs/elMcbm/Xb3LBAcGS+AxdNv14/Z6tAqZH7/wgRETWOUgrJ1kJb9En6NSqaVxfiG2iNmwa6slIa7PO2002LP/jn2b7PoaIwRa8Y4tvcqRuNJsTnUFNSuAAAIABJREFUD+uVhvjKA376bRjiIyIiIiIiIhqJGLZrUkqpcwFcUrb46yKyNWDTUWW/91Sw+x6Uhu2032MO6fMAvhXBPEREVVmc2L/m+4g6bFe0ZB0wfylw7mG1mX8o6M42vmTFvS/DKWjn9eO/C268iB/AUDRcMsQ9WXOwq9HMle2CjzfVCuzQ/HXb02u+vqb9xVShWl7UJo3SfzB872LgI0fptzFXtvMf3+kHKCz/Tgtin9FfsT8/J3jXXub/62zteImIiIaiWof4BoJ73ta5una6mbIgn2GcIb7GqVWIL9lqCvAVQnztloBfeXBvFEN8RERERERERE2PYbsmpJQ6BMBvyxbPA/ALh83Lw3bpCg6hB8B4y5xERENHWSrlheQhxlWjOo+drVHYDgAee11w7mEj94R7VK0x+/JS8QcXz64KH/hbss6tTTGLTZGLIV/ZzvDhctyhylx5pbci22tDpW1rK6X/8BaYNta8jalqZ9JwfQFgTBLYqflLXyng31a/07hdqrXxoWUiIqKhwBvim6g9M1Z5iC+bMwX4+tvpGgJ+XZZxhvgaJ91b+Kl1iK8jAYxKlrbT1Y+rsnUHxzvagLjDl1yIiIiIiIiIyIxhuyajlNoTwN9QGnBbBeDjIhX1QqzXNkRETeumMR/FIx0nog8tuHHcBcb1Zk2sfl9vbhVs7ap+HpNMEwdo6qE7orBdNmcO7dTqGHTVuMqJVBcEpJFhKIftnlgu2GX4KohL+M1Ulc3aRrbOYbuwxwEUKxH62arQHbw78Njr/uUiwI6+pH+gXzvDdkRERA2llEJbK9BWwxCfPqwn2oBe18CPf7wrC+xKM8TXKLUM8RXDeB2J/mp6xcvJ/na62nFVtu7gOEN8RERERERENJIwbNdElFJTAMwHMMOzeD2Ad4rIJsdpyk+/pCo4lPJtDPU5Qvk5gD+H3GYOgNsj2DcRjWQieKz9ePx63KcCV622/esr6wQHfKu2n0K8sXlkhySiChBVE7Z7/PXK7oMHXnHbLt1b+KCCyMTl6xdXzxNcelrtjyWMXz+Wxz/+znzw8VjwHKbn7WsbzNvUO2x3xgHAvCX+5U+/Yb7uphCvLWz3X+fEcPJV4f/PScVH9v8jREREw1WtQ3xdWaAzPRjC60wX/5WSZd7L3QHjporHVFvFEN8W7RcFKw/xtcXLgnve1rhJhfbyYJ+hnS5DfERERERERNTsGLZrEkqpCQD+DmAfz+LNAE4XkWUhpmrKsJ2IbASwMcw2ir30iCgKImiBW4qu2vavX7ut9p8U3PNyzXfR1CIL21VxX7/wZmXb/fwht4BLT5ZhO7JzqWz35rbaH0cYuT7Bl/4i1qCgUxtZQ/jsmgcFP/uofqy3T7/TWoXtJo9W0H0QqatCV2R6bbOFgidpP0QPlnd5ABERERH184b4JnRo16h47myuv5peMbiXKQ3x+ZZlSkN8pnGG+Bojkyv81CrENxDG87bG1bXTHVhPGbYp/MsQHxEREREREVWKYbsmoJQaC2AegIM8i7ehUNFuccjpdpT9PjnksYyCP2y3PeQxEBE1EUGLOIbtctXt6a8vVLe9i5kRtLodyqJsI9usorqONHy5VLYDgOUbBXOmNMcHSC+uAbZ329dxCb+ZqtTZ2oDXu7JdJVVS06awnaWy3dhKvlID4KUNlkmJiIiI6igRV5gQr12IL6p2ugzxNVYtQ3zmMF5/O13LuC4A2JEAWuPN8R6MiIiIiIiIaodhuwZTSo0GcC+AIzyLdwI4U0QqiW2UV8GbGXL78vW3ikiT1UYhIgqhjpXt6iGqcIiI4NX1wEtrgaP3AvacqCAiWPwW8Mp64Lg5wPRx9hPExfWfWSmYOkbhxLnA6GT0J5XzecFLa4HnVglWbYlmzkyFYbucoUJWlKKq3jecpXsFNy4QPP46cNkZCofuMbI+zHAtTLZxFzBnSm2PxdWOnuB1XNrIbjbUW7a9NprCby6V9CoxKmnYn+X6mQLACcu7tenj3I+JiIiIaCSpZYhPF+Dzhvj0AT/z+C6G+BqmGOLbGjrEZx9PxP0BPW9Ir10T4CsJ+SUK7ylKAn4M8RERERERETUVhu0aSCnVAeBuAMd4FncCOEtEnq5w2qVlv+8dcvvZZb8vqfA4iIiaRqxOle3Cmj4OeCtk7dCeCKqe9eUFn71J8OvHBk8Of+u9CovXCv7y/OB615yv8LmT9emQbE7w8V/mPesLxrUD914aw1F7RXcCON0rOO/aPO58MbIpAVR+X3dmoj0OHYbt7F7fKNjnG4OfRt30lODY2cBjX4mNmBb0rpXtmqlZ6HWPBB+NS5j4n09RuOwW/1zLNpq3MX14WavKdh8+QpW8vnqPI9cn2nZVlVTfU0rhohP0+yIiIiKi6CXiCok4ML6GIT5/WE98wb3ieHf/uCkAWEnFZapeNgdsrWGIrySM13+5I6HQkbSPj2orXi4dZ4iPiIiIiIgoPIbtGkQplQJwF4ATPIu7AbxHRBZUMfXLZb8frJRqF5GAxl0Djg+Yj4hoaAlR2a63r1CtrZLATp9DqakrzlZYvRWY2AGceaDC9h7gA78I9xX2KFqM3vy0+MIZV97pP/5//oPg9P0Fc6f6b4//fbg0mAcUWkR++No83vjv6EJPP71fIg/aAZVXMbzmwdqHWlZvAQ7do+a7GbK8QbuiJ1YA85cAZxzYgANqANfKdvkmqZDx1nbBn54NPmiXSnMzximYPoDasLNQZbNcvdvI6j98LXh0GXDKfv7llR7jhwzBPiIiIiIaOmod4uvKFtrglobxPAE/73gW6Erbx+v9RUUqqGWIryOB0jBeW2mIzzZeUqHPM84QHxERERERDWcM2zWAUioJ4A4AJ3sWpwGcLSKPVDO3iKxTSr0I4OD+RXEUAn3zHKc4uez3e6o5HiKihhNBi2NlO6AQeLC17TNxqTh32ekKozxtVu9bHD4gEUXVs1+FCGbc9JTgyrP9J0jveVk/x+qtwNJ1wAHTKz68Ene/VJsQSaUfDvz77bUPtSxeJzj7UJ6U1tnZY779L7oxjzXfr1F6qsm4hu2apTW262udSxvZ9oR5bN5iwQXHNj5sZzvGexcLTtnP/RgTAceYag1xYP1aY3kAI+O5QkRERDSS1SvEVxrGk5Jg3sB4phDis40zxNcY2VzhZ5v2q/rRhPi07XKTAeOGdrsM8RERERERUTNg2K7OlFIJALcCON2zOAPgHBG5P6Ld3IbBsB0AXAiHsJ1Saj8AR3sWdblsR0TU3AQtcC/vlM1VGLZzCMF5g3YAcPiegFLuLSEBIN1befW9oodfc1/3P+8SXPFewdrtwPSxQCymsGGn4L7F5m027gIOqPjoSi1dH9FEZTJNfBK/kvDMSLGjxzwWtiVzJUQEq7YUnoeNtKnTbb0o2k5HYeMut/WSDo/9w/cMv596h+3mTjGPmaqTVnqMlfx/9ZOTVwOYE35DIiIiIiLULsTXm5OB4J03xFdYJqXBPU07XdM4Q3yNUasQX2uLKaBXCOm1awJ63vEOw3iCIT4iIiIiIgqBYbs6UkrFAdwC4CzP4l4AHxSR+yLc1e8BfAODJSver5SaKyLLArb7Stnvt4hIOsLjIiKqOxFBLEzYrsJKUJWEWiaPVvjksQo3LAhXLS3dC6QslZOi1vLZcL0oowj4bNwpOO+6PDY5hnTCquRke961nFiVoqheOFzV6S7Q+utCwSU35+sS6otKszyWXG8zl6DptHHmD0BM17feYTvbhzSvrdc/iE3/9wQdYyXX4QOzNoFhOyIiIiJqNq1xhXFxYFy7bjSaEN9Aa1xNO93y8a6A8Wb+Et9w1ttXCPDVOsRXGsbzh/TKx8uDfcV/GeIjIiIiIhqeGLarE6VUCwohuPd5FucAnCcid0W5LxFZppS6EcBF/YsSAG5QSp1mCs8ppd4H4FOeRVkAV0Z5XEREjRKmjWyl33gOCrXEDOfWrv+Ewr67AX97UfDY62776s5WHraTMGX0KvTqBsFZB1V3MvGcn+fx5IqIDkijklDlD+bVKWzXJNXImlEdHr5ai94UfOjaPPrC5U4bricrqOZDqaj87AG3O86lsh0AnLSPvkLnnYsE33iPf3m9w3YAcOHxCr953H+95y/VVyc1H6P9/nNpves1O7sCk3Kbwm1ERERERDSE1TrEZwrjdWbEV2Wva+BHDNswxNcotQzxDQTwEsCopPdyIcRnGx9lGGeIj4iIiIiosRi2q59fA/hw2bKvAViolJoVcq71DhXnvgXgXADj+38/DsDflVIXi8grxZWUUm0APgPgh2Xb/1BEVoU8LiKi5iOCFrgnqyo9qRkUtpugba8CtMQUvnKmwlfOLPye/8HngTt+hdcSe+OAOS9WtC+bF96sfFtX1YbkVm2RmgbtACBTwW14yzOsbNdojapsd+tCGXJBO8DcsrSeNu1yv9NcWyiPatMvX27IkDUibNduCUS/8CZwWFk7XNMxBrWJDXsd5mSXQ15+EuqE94bbkIiIiIiISthDfEClQb5cn7manq0aX3cW6EzrA34M8TVObx+wvbvw41d5iC8eKw/m9f/bVgjptfuCe6Xj/mBf4d9EHL4vhxERERERkR/DdvXzCc2y7/f/hHUKgIdsK4jIGqXU+wHch0JlOwA4HsASpdRzAFYAGAvgcACTyza/C8C/V3BcRETNRyRUZbt0hUGnoPDW+w93PFF1x68AAKl8j3GVaiqfrahDQaPp46rbvh7HmM6Fr/i1YnNtjqUcK9uZNSpst7JO933UmiG4uXKL+7quFTsXGkLDh+yuX24KsoWtChfGPlPNYys2uYftgsJ08ZBhuy9v+SHU2LPCbURERERERHUTb1EY2w6MrWGIrysLdKbLwnxZGVzmGS+G+Eq28VxmiK8xcvnahvgGg3mDlwfa6ZYs07TT1YwzxEdEREREww3DdsOYiDyklDoXwA0YDNQpAEf2/+jcDOAfRUIkU4iImlq4ynaVhlNyAVWvPvr2cCeU2sUStqsiQNPTW/u0UrUBn3oEhCoJtNmOa9IoYHNn6bKT9wEWrwM27YpuPyOdLWxnqnZWjb684D/vEvzuyQal/KrUDI+lMM811xPvR84E7tjuX761y7+sNyf4wX36+6+Wle3ed4jCpX/U77fwOuzaRta+n7DX4fjuJ4DMKeE2IiIiIiKiIa/WIb6ubH81vfRgGK+wTDyXB5eXtNPVjFf6ZViqTi1DfKXBPO+/pe10deP+YB9DfERERETUWAzbDXMicrdS6m0ArgRwHgbbypZ7EsBVIvJ/dTs4IqJ6CFnZbldQk24DU1ACAP5wscJJ+4Y78WOrbFdNa0hTm8UopauszLZ2e7hg07SxwIadwFF7ubewDRtC6ssLsoZvax+9F/Dol2P44p8ENz8tyOSA9xyk8MtPKqzfAbzjB3ls2Om+L55QNhPLQyNshS8X/3ST4FePDc2gHQDctUhweYOLmJWHUE3OPNB9znfso3DHIv/9smiNf91P3WC+/2oZtttzovk1v7xKZl9ejI/twMp2IarzXbblR0igF/LyExV+jEZERERERFSqliG+7qy/Ha43xGdqt1sM8enGec6lMXJ5YEdP4cev8hBfS8wfwDOF+Ezjuu0Z4iMiIiKiIAzb1YmINOwvcxHZCOBzSqlLUWglOxPAbgC6AKwFsFBE3mjU8RER1VqYynYPvCI4cW74l+ycYRcxBXzkKLc0hKx5feByUsypv2rajN6pCahErZowIADc/aL7Mf7tCzGc+bbCydJUQiH2Gbf7OuxtaDsZ+5OPxBBvUfif8xV+8hFBXx5IxAuPodFJYN1VLehMF070JlsLp5njLcBXbxVc86D/uvZkh264q9Zsle2CWjmHtbNH8Nsn7PfFhccrfPucxp98/cSv8/j7Uv/yJxzDp7V072K3x3NHiMqEqVbz2OsbBXtPKdwnm3YJ/viMLWxX2/vuwOnA4rf8y//2ouCb/zD4uynIC0Rb2e6AzCuFC0/Nc9+IiIiIiIioAeItCmNSwJiUaY3K3s/15aUkmOcL82X0490Zc8CPIb7G6atxiE9bbS8BjEpaqvElFEYl9du3McRHRERENGwwbDeCiEgWwIONPg4ioroSwdTcRufVwwQ+vCptAVhi2aKBizEI2vJpZGJJ32rVtIY8aIbC86trG+aqtlXtrEkKwSfECqaNK5ykSiUKv196msJP7g/eNuxtaDtpmvQEf1piCi2abOWoZOFEm1eq1dRiMtyxjSTWsJ0lsFSJJevsFSuBwjeddxvb+JOkWwzV42ZPqu9x6Ewd47beOYe5347TxppfI55fPRi2e3GNvRpiLSvbAeZKogdOd2shCxQeYzZjjR88+U3NbShcOPh4942IiIiIiIiGkZZYbUN8pjCeqdpelyXg15XhOaJGsYf4APt5S3uIrxDW8wb3SkN87cbxwrlF3fYM8RERERHVH8N2REQ0vIng1K6HEJde5JSlHFK/Sr+JGknYbmNpD8SU9CADf9iuO50DEHxddHb01L5qWjWV9zK9gp8+4HaMe4wHDtm9dNlFx9cmbGerPNVW4V9TxYBguWpuv+HOFpzKC/Dde/JYthE4YibwiWMURiUrP9H45Irgx9EB0yqePlJ7TQIWvulfHlRlcuNOwW+fFPz33YJt3cC5hwHnHqZw/lEKsVg0J2ldH89nHui+v9P2d9tf0PWvddjO9P/J5s7Sx5YtbBd0jKmE++12UvejhQvZCvulExERERERkVa9Qnxd2UIr3U5PUK9TM+5tp6sbZ4ivMfrywM504Uev+hBfR6K/ml7J5cEQn3/c0063bJwhPiIiIiIzhu2IiGh4E8HUvo24Zc3H8NEZv9VWivN6Y3Nlu8nl9cvjjmEO2b4Z8j9fLlnWnu/B9pbxvnW7u3pRSdgumxP89YXQm4VWaRvZbE5wzs/z1kBV0eTRwO2XxHwnfA7aXeG6CxQ+9/tCO1eTsIG2bBWVp0xMrTB5wtPMVtkOAL52W2GF3zwO/PFpwbx/jSHZGv6k4EOvCi67JfiBeNCM5jjh+JGjYrh1of8Bv34nICLaE6PrtgtOvqoQTiy6bSFw20LBA68Av/pkNCdUXR7PN31aYeIo932NtoQor54v+ORxhcvbu+33oevrc6U+d7LCLx7yH8NdLwK70jJwPaoJ2wHA+Ucp/OFp+3X9r43fRLv0fyX/leeCJyUiIiIiIqKGq2WIr9sb3CuG9AaWSemyTOFyYRvxb5NhiK+RahXiiylzO93CZXM7XW+Ir3w82coQHxEREQ19DNsREdEwVzhhcHbnXdj02gwsSB2DpKTx7UlfxfxR7/St/ZvHBb/6ZPi99PbpT0y4Vk6SX13pW5YSfa+Cnp4sgHbXQxvw4KuhN6lIpSfWHngFuG+x27pvfi+GRFx/UubiE2P48JGCZ1YCV9yRx+PLqz9GW2W7RIWBHVa2Cy8obOf12OvArc8Lzj86/Mm7K++0JDU9TIHJerMdx4trgEP28C+//jEpCdp53bBA8KUzFA6YXv2x2R7P/3O+wiePVehoC38fHbx74bqVe2kt0JsTtMYV7lhkf8DUurLdKEtb8tsWCj5xbDRhu1kO7YLP7JxX8rvkclBxvhUkIiIiIiIaiVpiCqOTwGjjd5KrD/EVQ3gDrXHTQFdWPJfL2ummpSS45x2v9Iu9VJ281CfE5w/rlYb4ygN+5cG+4r8M8REREVE98RMWIiIa3jxl0tqlB6d3PwgA6DW0lD16r8p2Y6ps5xzm+Ot1vkWpvD5sl+6xJL8sbnk22hayx8wGnlzhX15pWGz+UrfjO+ttMAbtisakFE7bH7hxgcLjy/3zNnNlu3Rld++IkHfLwA14dhVw/tFh9yF4+DW3dU2ByXobZ8nePrJMcMge/ufLn56xP98eWSY4YHr1JyhNrVQvPlHh8yfHKp7XFmR7aS1w+ExgQoeC7eRurSvb2e8X4BPHFi5XG+a17adobH5H6YI3FgNzDwnekIiIiIiIiMhRrUN8A8E9b2tcTTtdb4hP2063/1+G+BqjliE+c4CvEOJrtwT8TAFAhviIiIhIh2E7IiIakVa37qldHqvwfbOpMlG88iwJkqI/49BTYRrrnpeiDdu95yCFJ1f456z0RNX2brf13nuI+53UavhLx1ZJSqcmle1MbWR5os8o7CPYdr+ZhHlsNEtluyNnmsfe3KpfvnSdfc7OTOXH49Wd1d9r1d52p+6nsEATpAUGjz3oPGitK9uduq857NfleXmvtrLdafvZQ4UzetdiVu+q0oXdu4InJiIiIiIiImoCtQrx5YuV+AxhvM6MaAN+3ZaAH0N8jZMXYFe68KMXXYivIwGMSpa209WPq7J1B8dTCYb4iIiIhjKG7YiIaHgT/RvlT27/Hb415Vu+5ZW2QDWFJaoJc7Tn9emz7p6QSbEauPJshb2n6McqvQ0Nd1WJU/cDLjjG/SSEqepc2BCWNWxXaWW7hD4gU+ntNxKEaSMLhA/nAfYqhuXam6SyXVur+Tlx1TzBBccIDto93Mm7dTuC13FhCo9WWxXw0tMU/utv+nt4xWbBO/ZRxqp6RbUO2719lnnspbWDx15t2O7QPYAvnKrwswf0t8e16z7v/9gho6+cSkRERERERDRSxGKqEIKqYYhPX43PX23PG+LTbcMQX+PUKsSnlCa413+58G9/O13vsrbiZeW5XDrOEB8REVF9MGxHRETDmyHBNSG/Tbu80qpiuRqE7VKmynbbdwCYUfnEAa67QGHlFuCt7cCYFLClE9jZI9hzosLEDuD0/RVOmKtw5yJBlGGxTEAA7oS9gTsvifWH1Ny0GcN24WJYtWgjm2Rlu9DCtpGtRJggZrO0kQUK7ZXveVk/dvFv83jqa+FejH40X/DDD1V/XKbXg2or200cpaCU/iX+0j8KPnVc8HOp1mG7WEzhS2coXDXPf5BLPJUFqw3bKaXw4/OAsw9RuOdlwZ/uXoO1rTPwye2/w1e2/AD7ZF/3b8SwHREREREREVFN1DrE15UFOtP9Ybz+y4V/pWRZ8XJXGujKim+bgfGIuhtQOOIN8e3UrmHb2jiiVHkwr6w1blKh3TiuytZliI+IiMiEYTsiIhrmDC0M8/qgQdSV7VzayIohEGg8xu2drodVIuZwLBM7gItPdOt9awrLdGcL1ynsm+8eQ7vJovOPVqGCdoC5xWuY6mWAOYAVU4VWFpUwtpHtrez2GwmibYSsF6aNbLNUtgMKJ75MnlkJbO0STOgoPKZcwqbVtMD2qlXYDgDGtwNbu/zLi9807um1X8+orqONLYyb7hUkW5X1Meca5lVK4bT9gVNnZ/D9n84N3oBhOyIiIiIiIqIhxRvimzpGt0blIb6e3v4KesXgXqY0xOdblikN8WnHGeJrCJHBaoi1CvENhPG8rXE17XS9IT7dNgzxERHRUMawHRERDW+mIJtEG7bLGSpuOVVO6tWXXzIeo2pzPKpSc6cUqtXZhAkzmap6iRTCaW0hwzRBFcUqCefUuo1spVXtJJ9Hcu0rAPbVjmdy5sp3I1noNrIVpPNcHxuzJgJJS/vWejt6tsJfnjdf4a1dwISOwuXFbwXPN3l0NMdlqi4XRVDRFoIVkcDKdsfNqf39N77dPLYrXXie28K/oavvde9yWk2WPgvMPQSItQAt8f6f/sveZQOXW3jik4iIiIiIiGgYisX625W21S7EF2U7XYb4GqMkxKdfw7a1caQY4tMH+AaDeqaAny7A19FWOPfIc1lERFRLDNsREdGIlMobWrRW0MIznxd86c/6N4xOQQlDhaF2Q2W7LZnKUlhRv7VMPXs3gDO1Yz294cN2QRXF2kNWtQMsYbuwle0M65sq59nIgrshXzkXybZDgNlPaNfpyTJsV5TpFby0FnhulWD+ktrWttvRLTjlh269ar9zbnOdrDn/KIUr7xTjCa/uLLBsg+Ccn+exdJ1+nfL1o2CaJ4oWvJe/W+Hrt/kfE3kpvJ7YwtPHzwHe4VAArlrvPkjh//1F/7jd0VMINdpe+1rCVt/LOlasu+WnkFt+GmpqicXMYbx48XJZYC/WUhgrC+65hfxajOPKO1eL5nh8x1W+X12gsGxd3XFptlMuZWOJiIiIiIiIRhhviE+vuhCfOYwn2oBeV1mIT7c91Z83xLdBv4Zta+OIUhhsl2uottduqLbXUd5O13OZIT4iIipi2I6IiIY3Q2mrZISV7X58v/lNXdwljLXhTe1iU2W7O7bpq6EFqbRqn44seQbJX14OzNaH7bqzwDhLRSedoLBdJeEcYxvZkJXtMoa2m2Er28n6VZCvnAvAfP8ChftqfLiph4V0r+DFNcDzqwXPrQKeXyV4+a1wrV29wkbzLv5tHm9sDl7vb1+I4ayDmuukyrRxCs98PYb9v6kPC27YCXz2d3ms3OI2X1Rhu1q2kT3jAH3YDgBufd5c2a6jDbj70hja6lCZcGzKPPalP+fx139uMT6+W1sqOHn3zP3h1g8jnwfyET0wqlSPltKuBLCG8QqXYw4hP0Nw0Bf4M4Qe43GoksBhzOG4HPZrDCwa5mU1RCIiIiIiIqohb4hvinaNaEJ8/jCelFXm8wb5/FX6Bv7NVtZ9g6ojMhiyrFWIryNRaOtcenkwxOcfV4ZtCudKYzGeRyEiGkoYtiMiouHN1EbWUDWuLw/05gStcfc3Nv/3nPnNl1Nlu6fnaRdvbplo3KQvL2gJ+eYr0rDdI7cj1ddt3lcFeYzAsF2EbWQzjWoju+DugYumxyBQ2e031PRkC8G65zzBusVvmVsy11q6V/C3l4LX++hRqumCdkVz9WcYAQC/eMg9aAcUno9hXwt1TI/lVAWVKn1zWF4T/vycGF/zvvcBhdHJ+tyHtmO888XCv7awXVjieY2hOurLFX4arNnO3Ys38GcM8VkqCIYO+ZkrFwZWQwwTLgyqhuhbzmqIREREREREza5WIT6RwhdCTWG8kmp7WaAz3d8jHaF4AAAgAElEQVRONwt0psUX3CuOM8TXGN4Qn2EN29bWuTuKAby2Qgiv9LJCh29Z8fJgiK98vD3BEB8RUa0wbEdERMOcIWwn+jayAJDOAa0h/od8YoV5bIlDu0bk9ImQv3ecatxka1eh/WAYLgEu57ddzz+IpJhr64dt0woEh+322y38nFFVtksbQjttYSvbPXHvwGXbYzDKYGQz6MkKFq0ptIJ9blWhct3itwrh1mbx6nrz/exVSevgerGdOHl+dfj5urPA2CrfLdSyst0scx4Zu9KWFrZ1bNFsq2zX0n93mV77Qod5gUI1M6JmUayG2Nv4BHkzff4gSjm0NNZUJgzRallbDVHT4lmVBwOdWi0H7DeuWddxXlZDJCIiIiKi4UapQqWz9hqG+IohvNIwnpQE84rjXZlCiK88uDewfYYhvkYphvg27tKNRhPi07XT9Yb4dO10R2nGGeIjImLYjoiIhruQle2AQihtdDKa3b/7bcFvOCSjPxZbmK2StprLNgavY33Lls1AfnE58PhdwLpVSMTGGdcNG2YD7NfpnfsDM8a7vXkTEchX3w8suBuJcRcC067xH1/I288Uwgod2ukdvE+D2sgOVd2ZwWDd86sL/y5Z15hgXZgTQ04tn1FhAKoJrN4afpvuLDA2ZDtor1yfGJ/X7RW0hfbN0WZ+TXjgFSBpeH7WM2wXiykcNwdYsNw/lssXbyP9A7WSynbo6apgIyKqKxFWQzQIrIboDQRaqx06VEMMCBeqksBgQDXEMPt1qbJYFlJkNUQiIiIiIirnDfEZ1qho3mKIrxi884b4CsukJJinbaerGWeIr3FqFeJrNwb4ytrpagJ+3uXecYb4iGgoGaIfFxIREVUnGVFVMQl4h/jOAxwmef5h7eIo24yu3Vb9O1n5z08BD9068HurmG+oqCvb/eVz7h8yyhUfH2jXmhD9DRU2DPjiWv1yU5jH6LkHBy4Ohzay3RnBC8Vg3arCv0vX1y9YN74duORUhVfWFdqGViPu+BBr9rDdyfsAD70WzVymynCubK+lqQjCdgDw7XMVvn6b/77Pi6WyXQQtbMP44YdiOPa7+ifFMyvNVQcrCts9Pb+CjYiImgSrIWqVVkM0VRXUVEMM0Wo5sBpi/3bmaoghqjBqqiyaqyHa52U1RCIiIiKiaHlDfPrOOpWH+NK9bu10vcu7+8fKg3ve7fPN9AZuBOnO9p9/rXGIr7zaXvlyb8BPF/wrVvZjiI+IotbkHxcSERFVyVTZzhK2e+FNYKalPaHX4rfs406hjpef0G8bYeWz2xZW945Ttm0CHr6tZJkpyAZUVnnPtM015yuMTjpWtcvngQf+MvB7VGG7+UsMj6MqKmTF0Ye49CKn/JM0Y2W7rozghTdLK9YtXVe/kxmpVuDQPYDDZyocMRM4Yk+F/acB8RaFj16nDzKF+bak6/VYv6O5z95EFWIDIgjbWbaPqrrcmAqqkNazsh1QOKFj8qvHBQ+9Ek1lO8mZX9jUZ/4T+PC/AH29hWpauRyQ7ytcLv7blyskZYuXvcsHLnuXedbt08xVsk3hsvSZ9tvnn8M3rtlvvq/0ugxs1xd8XPkm6mNNRGTDaohGYqp2qKuGaG1p7NLy2B4uVKZwYYStlgOrIfYvZzVEIiIiImo2SimkEoVzl7UK8enDeOJb5g3xmQJ8nQzxNUwtQ3wDAbxEoT3u4OVCUE8/rgYvl40zxEc0sjFsR0REw5shbTOhz9xTsTsrcH1z9/Ja+x/wTqGOtx0DvPykb/GXt/wQH59xo3YTU1tTk5cDQoFF3/wHw/VeucR3W7bCUtkuwjayoQIna0t7NbYZwnbpkMf39pnAqi3+5a9uCDcPdp8DrBk8xlS+B7ta/A+S7p4+NPLPtM50f7Bu9WDFulfW1+8EQ3vCE6zbEzhipsJ+uxWCdTpRFDVxDYi+ur76fdVSRdXQDGpa2S6iwNvu4xXCfvQ/Y3w0+3Y1bax5bN12wb67ASs2+8d0rzlWW9aZx1paoNqSACLqkV6hZjr1JCJlIT7HkF8x4OcQLtSPe0OA+dIQonHePv2xVrTfvuDjIiIaKoqva6yGWMJYDbGkqmBANcSSdWwhQIdqiKFaPDvstySk6NJamtUQiYiIiIarWof4zGE8fbW9LkvAjyG+xiqG+DZFHOJLtZYH9/r/bSuE+Np9wb7iuBq8XDbengBaGOIjanoM2xER0TCn/0M4KRnjFmGCbEGhLVugRDJpyC+/pQ3aAcCZnfOM24atHOeyfiIOfPAIwx/wGX+VPQUYK7M1LGxX9kFb0tCqNWyb1kdf1y9vCVs0oq/0SqakB7swxrdaT08W9fozTUTw+6cE37m7EKgDCuG1MFXhqtGeAA7zVqzrD9bV+81kzvE51dfkJ0P23U0Bi6I5yJpWtouoAt9p+4Xf5oBp0ezb1cRR5sfy6xuB3Q3hv9CvL5rX6QFHnhZysuFPKVWoLhRv/FviZjp1JiL9rTzLgnvaCoIu1RD94UJ/kLE8JGiohhgqXBhQDdG3X9125dUWWQ2RiIYIVkM0ElO1w8BqiCFCfkHVEIsVCOvQahnx8sAhqyESERERufCG+CZFHOLL5IDOdH8AL+u5XKy2l/WPe0N8unGG+Bqnp7fwU6sQ32Bwb/DyQDtd7binnW7ZOEN8RNFq/CcLREREtWRJDE3JbcDG+FTf8jABk6DQlilQIrleyKePBla9Ytx29NEnAtv1Y2HDdkFBotFJ4OZ/jGH6OFPYTt92t9UQtouyjWyosF3ZB+GmVryZHJDPi1OJ7wdeEWzYqR+76PiQb0zKbsdUXn+79tSxj+z/+4vg6vmlz5NaBe062jzBuv6KdfvWMFgX5mq4PmZdQ3mN8i+nKvzgvuYI2+mqtRW1RxS2G+XYYtqrERVNPneywi8e8t8vyzYWfnT+3VRp1OStFeax3fYMNxeNWEqpwVaFrRH2pa70eBp9AB7GaohhWi0HhAuDqywWKhNKYAtnh1bKzvt1aPFMRDRUsBqilijl0NK4JWDcUDFRF16MG1pA66ohOrVa7t+vU7gw5lYNsX9dVkMkIiKiKCmlkGwFkq21C/F1Zfur6aW9YbzBEJ93vDtb6HLj2ybDEF+jDYT4tKPVhfgGwnje1rhtg0E9/bjyLSte7mhjiI9GJobtiIhoxJqRW6cN24XJOQWta6xst+gxa9AOAFo6OhDb1oe88qfNoqps98HDgS+fGcMhuwOtccsfw4aKSQnJogftvuXZSMN2If5IX/Fyya+mMBsAbOsGJo4KnvLrt5kr2YQODGVLb0dTGDAdts9thbZ0Cn7899q8Wx7VBhy2J3D4noMV6/aZWps3XVF8/pFzLFjU7CcXbC1Lw6o2bHfdI+YbNao2smEdOL0x+917cvhtRreFW19uv9482JYKfwBEVILVEPV81RC9FQSrbbVc0vbYFnR0qYboqcSoG/ceb1A1xJJ1LMfFaohENFSIALleAPX70pfxUBp9AGWM1RAHQnoO1RCdQ34O1RBr3Gq5JLBoCTqyGiIREVFzKQnx6deoaN5iiE/XDrcQzDO30/WG+HTb9/Etc0MUQ3ybO3WjlYf4kq3+gJ43xNeuCfB5Q3ymACBDfNTMGn+WmIiIqJYsJbpS+W7t8jABk6CWs+M7DAMvPh48uVJolV5kNGG7sG1ac4bel5PHKBw5y+GPVUvYTqe3TxD2DVwkle06S0sBjssbSgMCWLIOOHFu8JRPvWEeM96/JpnysJ2psl19wna/e1IiCY+NTpa1gt2zEKxzqRxYS2Eq9Lk+p857e3O/uYvyNu/Khn8el2xv7taNRIPeheywdFqtpQlhXytQKPgRSrf2DElBIhn+AIiIHLAaopkMhBAdw4VB1RA14cLgKouGaoiVtFJ23q9Di2cioqGC1RC1/NUQQ7RSDqqG6AsBllVDLJtDhW7xbKiGaAwXxgLGWQ2RiIiGL2+IT1+4IJoQnz+MVxri6yoP8mVEHwBkiK9h0r2Fn1qF+EzV9josAb+ORKF9rm6cIT6KAsN2REQ0vFnDdvrURVBrWC9bhbn9dgN2H6//g012mUNgRWrOQWhd1YsM/CGJbMgwW9VBtow+mNgq+g/LwoYBgdq0kd0nu8y4aiaCL+2/c3/3+0A0J+iTpsdguj69SpeuC7/N6CRw+J6lrWDnTql/sE5WLgWefQCycyuw/GwAb6tqPteKlhceN3LehFVb2c4W5IzyA4j3HQLcvsht3TXbItttKKftrxD247FjZ4e8jSz/3/EDHyKi+lOxWOED+niDyrl6j6XRB+BhrYYYUatlf5DR3GpZrPPmzfvNlR1j4H41YUpWQySioYrVEI2kPNynq4ZoHQ8T8rO3WvZVQ4y01XJ/ANIYWCwNOrIaIhERedUyxJfNmavpeUN62mp8hnGG+BqnliG+kjBeSTCvv51uovB52LGzFU7dD2hrbaazK9QMGLYjIqJhzvwHVbuhhWeYNrK2sN21F+hPJEm6G/jzz4InnzzDWDkum80DcD9RZTrOuOsUnTu1i43H16CwnWxaW/K77U9fl06t+YCyb3OnhvjjWlMd0NRGdtW2+pyEdKlqd8q+wGGeVrB7T26CinV3/BJy1SWD4aLps4Gx/rCdhCht5xIs+/a5CnOmjJw3VNWG7V5co1/+iWOjvQ1/c2EME77odrbj40c35v7bfbzC9HHAW8E56wGzJobcyYrF+uVnXhByIiIiotphNUQzXzXEUOHCoGqItvChNzzoUA3RtZWyUzVET6jRVv2RiGioKL72NYFmCiJaqyE6tlL2V0w0VRhscauGGCZcGFgN0Rsu1AUlzVUW+eU4IqLoKKXQ1gq01SHE15UttNItLBNfsK843mUZ35VmiK9RiiG+LV260fK/ogQnzgXu+kIMo5P8f5sGMWxHRETDWwWV7cIETEwBsQOnAyfONfzRdeev3CZvH4VW6BNhvb19CPPfeM7wB7trkE3u+o1+e9EnE20hRO38IlUfIwDgDz/0LZqQ24KtcX9qxaWCoemYKtLtDyym8vo2sr9eMhm/jHDXJvMW20+9PvP1GI6Y2VxvHmTnVsjV/+LWI3bTWgB7Os07f4l9vjMOAC4/a/h9E/s/Nl6Bb065QjtWbdhO/0YVOHj36uYtN65d4WvvVvjO3cGPid3GRrvvML7+boV//oP7xx2hXvsAYMdm7WI19+CQExEREVEjsBqinnM1xDAhv7JwobWFc1A1xJLLmmqI3uMNqoZYst+A1tKshkhEQwmrIRr5qiH6qhUGjduqIZaH/Oytlq3VEKtuteyphhhU3ZHVEImoydQ6xFcS3CuG9LJAZ1r8yzKFy90B45F+tkV4dBnw84cEXzmzmd4tU6MxbEdERCNWSvRBp56Me9U4U6jMVpFInrnfaW50jDFXjtu0EcAebvPAUtnONcwxYSqwYbVvsfH4Qobtcpb1QwVORo0DOktLRxnv597gVrxhQ4NWy1/yLWqBfgetsTyAsEmb8Eb7OxSXaG98sRG/5x/2fUtcmU6VblkP17BdUDXGt+81dN5EnbA38NjrwetdtP0GfG3L9/FI+wn4+6jTfePVhO1sVQVrURhx8mi39VINfEyPagu3vvPrc5Bc4z/MICIiIqoUqyGaWash+toxV9ZqObiVcuF3Cayy6NBK2aUKY1CLZ1ZDJKKhhtUQtZyrIbqG/FyqIRpCgNpqiGHChUHVEL3H6FBlkdUQiYYPb4hvQod2jYrnzuZkIHhXDOENtMZNS0kwzzveZRkf6SG+eYsFXzmz0UdBzYRhOyIiGt5MgY9YDO35bu1QT9q9apxr61NZ/Rrw0gLglA8Cu7YFTzz3UGCfw9AqG/T7TWecji/scRqN0peDShi+kRo2pGZbP1zYbqwmbKevYJh2yJ/YQoD7TwtxXADQ608ubW7RpzLHtfYCqH1Fi8P2VFiyznwqLdn4ohp+O7c6ryo5937GY9vt46lmvC0M3neowmOvB58iPa77CQBAh+hfC6sJ29meX+3xPOSVhcCY8VDTZ1e+E4/j5ii4nBaO8n6UTA/w6kJg8nSoabMC13c9xqLQle1MUtozNUREREQ0xLEaot5ANURTC+ZqWy1rg4zmVsvWaoi5Pn1g0Fe90aEaoktraZcK8UREzYDVEI3s1RDjQIumPXIlLY8dWi2rmrZaNlRD1AUdWQ2RyCcRV5gQr12IbyC4522Nq2mX6w3xadvpZgrtdIdCiG/TrkYfATUbhu2IiGh4M70bnnMQkjv0Iaw1W93fQptCYol44Y9V2bUN8u7dBge++9ngSVtaoD55OdA+Gq2yRr/frPuJhk27xFjlyiXMISLAM3/XjsUNbWSDqoSV+8kD5ts8VOBk/SrfIlO74B6Hm9AWAgxdLjrjr7D3qe2/w4L243zLe/rqc3KgM21/rDdlwCzrvz+Nle1CCAqINuVtYfDxYxSufUTw+kbzOgenX8Q5u+4AAGPwuJqwne35deTVZ0C2PQ4AkP2PhPreX6HGT658ZwCOcCtgGFm1Rrn9eshP/w3IFoLPcuDRUN+7DWqsuazpnCnhXjPiIV4GbJUEMWv/UPslIiIiIhrKSqohNoGmCiK6VkOsotVycCvl8mqIpqCjQytll/0GtXhmNUQiGmpYDVFroBqiteqgvX2xr9KgKTyoq4bouRxcDTFEuDCoGmJQlUVWQ6SI1TLEpw/wAZ0Zc8CvO2A8yu5Vho+UaQRj2I6IiIY3UwChrd3YXvTpNe6pmqCKcXLR0c5zAQDecyHUu86HOuwdAIAE9Km13oz7X4gX/sb8lRCnMMejdxiHomgj+9gywddviyhsp9Em+iqAdy4SXHqafVvbH+JHzQr3xkHm3+xbtntOH6bs6avPhwK3L7KPN2PATBbc7b5uiHltVQyBQin3oWLqGIWHvxTDtY8InlslOHh3hfEdwMLVwLYuwXETN+Ofrj8L4/I7AADtpkBqNWE7y7btXZ6KnUufhXz7Iqir7qx8ZwBiMYWj9wKeesO+XhRtZGXxU5CrLilduPgpyH//I9R3b7Vuu/80YOm64H3EVOE6OXvlOcsgT6gRERERERGrIZoEVkMME/ILrIYYHC4Ua5XFPv1yXTXEwCqMDq2lWQ2RiIaKYjXEHKshlnOuhhgm5BdUDdEQAlS6cGFkrZZdqiEObscQYnNJxBUScWB8DUN8/jCePuD3yjrB/KX+uRi2o3IM2xER0TBneGuTTBmrOQGFcsYdbcF/wJkCOq0tgPRmtZXWTNTl10O9+xOl8yj9Dnodv46xKy24+2XnQ9CSx+4yjrUaKtuF+bbI7Yvsbz9dw3bSuUO73FTZbuPO4DltpatDhwBXvepbZDq2PomhNydojTf2DV8UwaTIbfG3VlYRnPwNesxG1tKzTqaNU7jibP3jR+67H5IfbGfdbmgj25Wp/Ha1VbbzPe6ffQDSvQuqfXTF+wOAMcngdaIIkIopgPz0fEi6Gypp7knc4ficiod8vMkjt4fbgIiIiIiIiACwGqLNYDXESsOFQa2WLS2cc6Xraqshhm2l7GnxHFjt0BZ6bJKqYkRETlgNUUtfDTFcK+WSkF9gK2Vzi2cVusWza7gwoBqi93iHaTXESkJ8f18imL/U/+HgzjTQlxe0hPmSPA1rDNsREdHwZgrhJDswOt9p3GzTLqCjLXh6U0An3gKgc3vwBF5z3uZbZArbZR1Lxy15yz6+3Zw3HLTxTeNQIoI2sg++Ek3YDlv9ISwAeLTjRO3yuVODp7QFsMKEYUQEmDwDWFPaz7ddzF+F6ekFWmv8l9qEDmBrl3k80eCwn9aM2cAKxwRpiHfvQZXtjpzZhLdFpcreLKdq0EY2Y3kNSJZXm+zLAds2AlWG7d62u8L8pfY7/aAZEdyPix7TL+/NAju2AJawnWuANeg1VHK9hf/fiv/H/fU688rD6OQIERERERER1Q+rIeqFqoboGvJzqYZYEnTUVEPUBiEN1RB9QUeX/Tq0lmY1RCIaKlgN0Ui0LYkDqiGGCfmFaLWsrYYYWavlsuX9643NtwHQf1axKw2MM5/+pxGGYTsiIhrejGG7dpzVeS8uxdXaYVtVJq9sTj9/awuATMiawvsc5p9H6UuruVa2C/ojPebSRva5B41DUVS2ywccpHPYzvDtrBO6H8Nj7Sf4lrsEAqutbCddOyFXXwo8cQ+wa5tv3FTZDigEncakgvdRqZfXijVo9+1zm+k0pkeI51WYN6k3PWVe+4iZwKF7hJisycmyF0p+N4U+Kw3bdaYF519vfvJo209n9G29w/j40Qo/mm+/1w/everdFE4eG8gXTgd+fA/U9Nna8c+8Q+HRZcGPzNmTDPM//FfIr//TPXBKRERERERERJFiNUSzwGqIYcKFQdUQja2U+6shRtFK2aUKY3k1RF3osUmqihERORmohpgJXLXWGhFEHNM6B9j7Je3Yjh6G7WgQw3ZERDS8mcJ28VZMgLmPaI9jyMQUKmttARCmrd/7/0lbmrk1pg+sZLZscpo2ExAaDKrmJXf/1jquDc0AmLc4uj+B3cN2+it7fPcTFYftbKFBp7Dd5R8EFj5sHE8FVLarlQ07BQdfaQ5DHTUL+OqZzXSqzuPp+b5Fqsq3XDc9aUlVApj3xeFTOl12bAH++OOSZaaW2pWG7T7wizxeWmse175urHkdmH1gZTvsd9ie9vtozwmI5n5c+qx5bN1KyCWnAzct0rbFPeMABZdTBF883X+c8tyDkG9+tHCiN4xh8tglIiIiIiIioubGaoh6JdUQa9RqObjK4mC4UFsNcWDesv0Z53XZb0Br6SaoKEZEVG5s3vzZ8Y6QNVZoeGPYjoiIhjlTqEEh1Wp+y+0adLKF7eTOG9wmAaAmzdAuTxjCdr3r1znN+9Qb9lBHUAbDGrbbcx8kcvo0zhK3w3PiHrbTp+fayltW9rO1uSyyhRHjAVUB5a03rEE7AEjlzdW8XAOflbhzkf1xcfV5wyNc5hrBu2GBec0vnKowvmPo3xYDnrjHt6jdUGGxkrDd2m2C+Uvt6+jCdvLI7VDveF/4HZZ55/4w7n/6uKqnL3xDO8imtcAz9wMnneMbSjmea27XtJuVe38fPmhHREREREREREQNVVoNsa3Rh9NcQcQw1RC91QhDtFo2zttXuq4YxwOqIYbZb1A1RG9QkYgaYmx+h3GMYTvyYtiOiIiGN1NlO6WQaGuBkjxE+VNTkVS2C2OKvrdha9dWoEOz3/HTnKbVBTa83rl/wFvrRY+ax8ZMxLLOudqho2bZp/WKBRyC822Z06fnTNX3sg7vV6upbCf33hQ4f6Mq233hZnsMbY/xtdt31RJJIFsaUqy2st0Dr1h2N8z+WpY3lviWdYi+n3AlYbsFy+3jLZJDCzSBsWQ0tddtz5uN5i+kudux2W29lUu1Ybug1+SilG69lf77zskwCM4SEREREREREdHww2qIeuZqiNG1Wg6e11sN0VZlMajFsm2/QdUQy/bLaohUB22SRVs+jUws6Rtj2I68htnHh0RERGVMYbtYDKothZT0oFv502xRVLZDJsRfXUefYZ5Ht1+HqmyAPSwGAMfvPXhZFj8FuesGYPlLcKoJNmY89tr2Bp5PHeYbSjseHwCkA27ratvIGsN2VbaRjZ0xFvli1bxYDNj38MLlyTOgTnwf0Lk9cP6UoaIYUF1lu7XbBD+5X/D0G4J9dlO4+ASFo/YaPF0QVNVvjwnNdGqhjKGaYq24ViJrdrJyKeS2a4Fbf+Ebi7KNbF/e/tphej5i1zbIb78HWfgQoBTUEacCH/oCVCLct31P21/hsdf1x3DM7Age146v65Lp0Z6gi8UU4jEgF1CgTlt5tXuX076JiIiIiIiIiIho6GI1RLPSaohBrZb7HEKAusqFAdUQ+9c1VkP0hgdDtHgOrHaY01VJZDXEWhib34GNmrDdti5Bcz0jqJEYtiMiouFNTIkGBbQl0Z7vRndMF7Zz+4PJGrZbu8LpENWX/gdq3CTtWGLaDGCbZr/r1zrNHRToSMQL11EWPgz50tm+imFWYybi1K6H8H9j3u8benGN+zRBwcZq28hWE7az3X6t4jnwfB5Y+mzh8tJnIY/cHjw5gFb0IiZ9yCv/ldwZ4q7w2rBTcNIP8ljRX4DrkWWC3z8puPeLMZw4N/gx/efPBvTHbSDp6wvVRrO6encF2gpjQ4y8sRTyhdOAHVu046bQZyVhu9YWBdstbwzbPfAXyAN/GfhVnrkfeOER4Pu3h2pp/J6DFK68U7//Dx1Zv7Cdbb1rL1D49I32R2f5405EgNWvue3bh2/+iYiIiIiIiIiIaOhjNUQ9ESkN7kUR8itrtRw8r6Eaoq/Koq0aYoj9BlVDLP5UYGzfTmyMT/Ut37m9G8CoKu8tGi4YtiMiouHN0kYWiRRSok80uYZMjGG7MHklQ1U7AGht0U+UVW5vJIIq2xXJH38cLmgHAKPHISVbjcM9WUEqEfx2I6iCW7zqsJ0+zRdU3Q0IqGyna4UZkkKhlWyX8v9xPm+J4N0HhX+7dvPTMhC0K+rpBX7y9zxOnBt8Y86ZEnqX9WOoalfNm9qebEDoqfHv2asmd1xvDNoBQLvoK9ulewuV6lqCej17BOXijGE7nSfvA15bOFg1skqRnPzIOL5OWl5PJ3bYA4mA5nG3ytLrOAjbyBIRERERERERERENW0opIB5HIf7DaohexmqI2lbLfcC2Dfje17+OXhXH2L4dGJvfibH5HRjbtxMTZt0F4JBGXyVqEgzbERHR8GYM2wHo3IZUSl99yLWFpzFs1xPcQrRwHAoYPd44nDCEATMtKafpbZXZLjnV8+fu4qed5isxaizG9b1hHF60BjhmdvA0tsp27Qm4V7XK6SdqK7Z6LZN1CCLmTPevZCN7s9AV038LZrS/QrWTm5/WP+ZvXei2/UR/ocfm0Ruu1JpI8L306gb7+KTh8CWlxU9Zh9sD2hmPCvFYzAW0kW0LE7YDgJefDBW227Yof1sAACAASURBVHOCeeyA6eF2reVc2c4StnN4TPme/5W8RhMRERERERERERERjWBhqyHKnvvg7J73aAt8qM2rwLAdFTVvnzAiIqIo2CrbQRkr2wW1Ni0yhu369AEvnwOPgeoYYxxOjdKH6tJoK5SFDmCrzPae1ucKbTkBIN0VOFc5tc+hOLn7YeN4l+NNYLut3/02/zLZuRVy3x+Qv+6bkEduhxRDLTVoI2u8fw3V8kLb/0jjkCnoF+SZlcHr2IJ8e0xopu8clTGE7VQVDWMzAXfl6fs38e3hqsf+/DZVtgPCt5INetyGqmwHAOluyKsLITf9AHLb/0LWr7KuPmWMwtF7+ZcfMA3Ye0pztJE9albw5geWBwMreI0ewMp2RERERERERERERESBVEsLMGWGfnDDm/U9GGpqDNsREdEwZw7bqY98EUlDRadqK9vFXQIlE6ZCffnn1lXaJ+qr3v294xRjJTcvW9jutB+fCPn2pyG5nHuAxGv0eIzJ7zIOb3XIhvTlxRp6u/q80j9VZMObkM+eAPmvC4HffQ/y9Q9DvnIOpKerUOJZwxTuWbcj+PhMlQHj4pDUC7LXAVCnfABH9egrVr3lWByxEmMNhRE/d3KTh3IMbWSrYXuO/M/5CruNbfLbxMXKpdbh9nx0Ybug1tVhw3Zyy88gFx8DufYbkKsvhXzqSMhLT1i3ue6CGKaMHvx9fDvwmwsjetvj+lqZNa/XGlc4aR/75ol46eNO1q82rzxtltsxERERERERERERERGR3dSZ2sXCsB15sI0sERENb8bqbwoYMwEpMYTtqq1slzcHStTFVwCz9gcOPwnK0kIWAFJt+oBIV2wUkOkEWhPW7U1Vps7qvBcxCDD/ZuDQE61zGCXbgVgME3JbsDU+0Td844I8PnRki3WKtOV2vv+yGHYfXxY4+e1/A2uWl6743IPAvD8Y2/EmLFXoMr2CtlZzmKomle0OPxnq/MuAt78TuP16zOxdjadTR/lW+92Tghsvqnw3Or05QWtcGa/XCXtHu7/IhW0j6zKlJRz2uZOGftBOHEK5tjayoSvbWVpXAxVUttu6vvT3rp2Qn1wG9Utz4O6g3RWW/kcMD74K9PYJTttPYdLoiO7LrLk9bImAUN4HDld4+LUQFRn/+CPjkLrhOWDhQ5CvfsCwwtB/HBMRERERERERERER1cVh7wDGTgCm7AE1dQ9gt5nA1D2AGbMbfWTURBi2IyKi4c0UtovFgESyhm1kDYGMWAz4xFehHMMPK3a1G8fe2pTBjFEVHp8nLCY/+LzTsfiMmWAddrkNbUGeSbrr9uid2nXl0Tug3vUx7VjKUrXrmZXACXPNx5Dr0z9+4qiwxyuA2E/uG7gsbYYScwBmT6p4F0aL1wGH7mFuodva0uShHENlu2rayGYNd2UiDufnaVN77YXAVTrEXIYy6sp2KUuwz9mrz0N2bbOGlcd3KLz/cACI+D5Mm19PSmTsoTxbK2et8VOAbRv9yw86Dqp9FESxYDkRERERERERERERUbViF/17ow+BhgCG7YiIaHgTQ5klpYC2FFL5ndrhatvItuYz+oG2VKgAz5pOc+W6dVuymLGXffuatUGduS/UtFmQfF5b1Q4A2u1F9wDYb+eUbntd2AQAnpoHnPZh7dBR6WeN+9gekPupSWU7r3grlrfO0Q51tFU25R7jgTe36cc6+/M/xuvVvRXy2AIgH1CerFE2WFppahgLW3oYbwt7UcahozO4H7EtABe6sl1A2O6EnsfDTWjStdNYzbKmXNvIBqx34lyFoNqLIlJoAbz8JfNrX3nlP61hEBolIiIiIiIiIiIiIiJqEgzbERHR8GZrI9uWQko2aEd7MnkAwZWCzJXtTGE7c6U6nWTC0uI0Exz4qlVYTF18ZeFC+2i8Z9fd+Nvod/vWcalsZ1sn1RryoPr0AcIx+V3GTTrTAlsQxXT7VRxWPPPjZRO14rydt+D51GG+Vd/YXNkubFnOYnDKeL2+/SlI17zKdtxAVVW2M9yViWEStpP7/xy4Thx9SOQzyMb8Cc8oK9vt2bsan9t2XbgJTVxDb1Fz3e+GN63DsycrfOYdCtc94n/sPvhvMcj2zZAvvRd49XnrPOqcz7odDxEREREREREREREREUWC/YaIiGh4M4Xt+ivbtRsqOvVk3NqEmoIliVUv6wcsbUN1Um3mxM/WTZ2B25uqTMVRRWW7Uz8EdfK5hcuHn4Sjep7RruZSHdAatiurbCdBZcpy5slm9K7VLr96vn1OU2VAX1hxt5nWeYrUgUeXLmiJY0rfJu26nYa8ZhDbbVocM7VOjaxiX5MQh4pevYZWwcOhsp1sWQ/cfaPTuu2ib4/67KpwQUbTcwYAHl55Gmb1hqtOaJRuTNhOHrndbcXt+ue11y8+pvC7Tysk+4PFo5PAU1+L4aR9FeSqSwKDdgCA6QHlTQF7ApeIiIiIiIiIiIiIiIhCYdiOiIiGN1vYLtmOlOgDG93p6sJ28R36inlIhOsN2p40/1f90qvB7SFNYbvWKtrIqqNOH/wlkTLehk6V7WxtZMsr2/UGpPcMle0AIClp7fIVAdXjjPdvWVhRnX+ZfaKiUWPLJopbW3h2ZcJXbLPdpj1ZQV9ejE+LhIQsYzYMGCvbDYf6z0+5VylM5fXPkWWGlzIT03Pm6O6nsEdOH3qtSKMq23WbK2WWk6w9MauUwseOjqH7mhbkr2vBjp+24O2zFCTXCzx1n9tO2pLOx0NERERERERERERERETVY9iOiIiGNNmxpdBur/izbRMk503P2CrbJZE0VrZzCzkZ27S2G9rFvrnMad6iNktlu9FtwcdYkzayR5wyePm1hUgZgmzVVrZLloft0l32ybL64wCA5Yk52uXTxmoXD+7ScHxt5aG0A44CZu5rnwwAjj2r9PeWODry5uu1NeAqlxMRa9vPnl57m89WDM3Kdiqo6qGF8TkyDCrbYct651XXtU7TLp80OtwujdUgyx9b73hfuInLZRsUtnOsYgkA6AwORGt17QTS+kqDPnMOrmwfREREREREREREREREVBGG7YiIaEiT898Gee+MwZ+zd4ec0oH8xw+GZNKWynax/qps+oBWt0PYri8vyBtWa33mHv3A1D0D53WVyVr6NfbLGQ4wXmllu0QSyhs2Oe7dxspsb+0Ins4UDEu1Fqo+AYD09SH/0y9B3qMPAxXJzT8yjn1w5/9ply9dZz8+UxjQF9Lc5zCoc//JPlnHGKiOMaXL4q04KLM49P5NevtgfEwW5zNVcgOAxHBrI+uQwTO21B0GYTtxqcIWK7wdaDNUtnMJzRbduCCPK+5we81R/3IVMNH+nLZqVGW7MPu1BIAj2cdJ50BNquI2JCIiIiIiIiIiIiIiotAYtiMiouFp1auQfz0LyBsCaUoBbSljUOyJtanAXVgrhJlCS8eeGTivq4dWVX6MLhXM1P9n776jJbnKc/8/+3Q4fc7MmZyzRqNRlkYRJZRFkJAsIcAiWbbwxTY22NjGXF/jCzZOF9YPJ0zwta9tAbYMNhhMEkgIAUIBhAIKKI3izGjyzMmhu+v3R/fp06H2rl1d3X3CfD9rsaa6au+q3dXVrfGax+/7yx+q3bFsjczXa3tKmo3HWdvIDnjkTGxBnp7s1HbwqT+QvvC30Sc7uMd66OqBr4XuLwbSeN6eyPr2Y+HHat7z0tUyxshc/y6Z930i/EQbj5X5akiyL5W23j8pXtDJZ/zIeBPP7fxFM/d/J50r8/5PyazbHO9GVbHdj+wcCNvpsx+xH9t4nPSW35H58C2SpDcMfDF0mK26Y72v/zTQL/2z/btU82yl0jIrN8h8/Dbp0jf4XaBO8OAPmpqXWJwAXbOBwL0e7XZveK/M/765ufMDAAAAAAAAAACgaenpXgAAAIm4Wov+9IfStgvDj02G7SyV7aRSS87J6mph3KElS/mw7uiAXDX71aUfj0ZXybOtMeVT2e7t71fXjb/vHpPNqcdSEUuSntkT6OgV9ncxMmEJs5VbyAbFovStf4tcahRXoO17T0qXnxB+7IEXLOerfs9LVlQ2zTXvkLnmHf4LS2XUW7S3i4xb2e7Z/e7jUZXt6sN25sO3yFx8XbxFTIfbvxO626e5rO1+zPbKdoEtaCxJF12nrj8pheyC+++QJPXaWmp7Bj7/9V733U6r6sdo5XpJklm3ReaPPif90ecU7N2h4PUxQpP33ir9+l/4j2+VOAG6seYq2wV3WyqjVumajvcOAAAAAAAAAAAAKtsBAGa58TH38d3PWw4YKZPVSJc9/OYK00nSmCMIlQ0sCZWYYbtfv8QeVDut+8XI+WOWIJFPu1DT5fHXBGO0aeI56+End1sPSfKobDc8IB14OXodEY4af8567Mk99pDQ2UeF73+s+/ipF0891OSqJK3aoJwj8Glrs2tzwJE9laIr2zU8t6s3xVvANHGFUqNYK9vN9v+XlMFD9mNBVRCv/JtkC6QOj/tEFqV/vc897pHuE6de7Hy2cUDM38ZWtuSOJU7Ybqi/uWu4gpKSdPVN8c7nCI0DAAAAAAAAAAAgntn+z4gAALiNWoIRxsgYo3PyD1qnjoy7AzeuKmK2amUmZqDk1HX2Y8PF6P+M28JsrmpqkqRM1n180vFn6OSxR+zXj8j02Y5PVrZrug1jnW1j9kCcq3KX7dgx409NvZi/qMlVSWbFOhlJueKIRkOCn3HbyEYFREcmYrSRXXe0tHVbvAXMQuOW+5F+ebuKN71NWrtZ5qobZc5pXQvodgqGBxXc/BfSt/7VOsa88pqpF+XfpJytsl3M6oo2R41XBeyWrGocEDdsF6edq0XwtX9RcMd/SLuekxavKH3GN7xXJu34bR2N+O2sNnCwuYVF/O6ZS66Pd77ALzAJAAAAAAAAAACAaFS2AwDMbbbKQuVKP0vT9lCDq6rYwaFAr/gze/Uha3vabM5+0hDGGP3yyvCg2J3FUyPnW8NsjraqkmT+792R5y6daL6zqtjOQ+6QR2TYbsczfuuIYCStndgReuz2x+1rvHt7+P4rhm6fenHVjQlWJqm3z/p5PLE7XkjmyYjxIxP2cJkkZVQuhXjs6TIf+7qzjfKMYllm4FHzzlrZbt/z0lMPSt/9ooL3X6fge19OsMDOCPJ5Bb/zOulzH5X2hj/vkqTTLpra7i79Jtl+s257vDVre+3grZVt88bfaBwQ87cxaRA3+MxHFPzFO6V7vyW98KT00A8UfPoDCv4sog10nNawzYbt7vhP6yHzvr+TOevy5s4LAAAAAAAAAACAxAjbAQBmt20Xuo/bqh+VQ0SVUFeIp/faj335IXeoyRpmi1u9SdLxC+ytCPMF9zpsgUFrGHBS7/yoZZXkeiVJm8fDU2lfibhP1sp75cJ6wddv9luHzY2/X9k8dvyJ0CHffDR86kTevvaa+9fEZ1pj+Vr1FMM/j5vvjhe2+6e7ou+3TxvZrn+4W2aWtJCVHG1kPSp6jVtaLWeCqgPFooLP/23sdXXcI3eX/hel+pmdbCNrqWznI/C4zzW/id2NwbrYwc4EYbugUFDw738dfvDbtyhwBRXHY1y3/0C8hU2yXf+KN8tc88vNnRMAAAAAAAAAAAAtQdgOADCrmbf8dpMTS/8JXJKxh8522zNu+pcfRoTtbMGVJoJZuaz9P9fPOAKBUoI2sguWRKyqLFt6P7vSIW0hJW1e7g7QWMOAk11sBw/7rcPC9C2ubB9ILQ0dsyl8t57aYz9vzeebcI3KZLUzsyb00PrFobutHnzRfXx0wh4uk+rayM4BiSrbBXUP50Pfb8GK2uzxH/mN6+2b2u4rfdeHu3qbvuyegegxY6Z76sX4WNPXmjphgsp2u56VDu+zH3/8xy25btDfZGU7W5W/0SH7nNlShRIAAAAAAAAAAGCWI2wHAJjdmm2nVw4mLOi2t4Idd1Q2u/NJ9+lztspxTYTtLlltr45ka8MadTyqipWZtyBqWSXZbskYjViCOq5gl2RfX27PdhX/7v3SnV/yW4dNVWhwWT48mThoyf242ghfPHxnZdus3tjU0ioyWeshVxW6ZuQLgVdlu9nGKF4FwGqHLLnTWRk8HI0I0ZaZ7FTwzZSrWJ4wZu8X66ryKLm/K5NOGqsqIXnUCdETosRp51pvNCIwZ6mIGhQK0kSM78hA/Mp2QRBIE5YfpQ1bY58PAAAAAAAAAAAArUXYDgAwq5l0RuYvv97ExHIVIEf4LSrIZpMrjqjLFv4JaZ8YZeNieyDQVrmuctwWtotqI+vJGCNlc3rz4VtCjz++q7k2sj1P3Svd8ldJlyctmCoNd9Ohfwkdsm9QGp1oXKcrQLR2YufUiy2nNr08SVI6q/fuD3+vd4d35w01FvIe6uWL7ipkmWBCuvad/hed5fpHAv2zpUrlbAweBk8/HDnG3PSHofs3TTxvnTMaFZr1uFXrJqpao67cED0hSpLKdoOHIo5bqlXa2pLbNFPZbmLc2v7YnHdV/PMBAAAAAAAAAACgpQjbAQBmPXPmZfEn9ZcrDnX36HhLRSefAEkYa1W78vXi6u7pth77yQv2gFUQBNb3kAscQZW4Vae6e7SssD/00L3PuqeOWivvtSYMONkiU5LmFwetw74aklG6Z3v4vU0HE8qoKn2Ua779piQpk9XyQnhLy4EYt+ErD0WPmShIf/+98PCmCYpKqSizdLX/RWeM8BaaUfHDm++2jwirbBdYQlAzxve+HD1mw7GN+zaf5Kx2edDRvVSSntwdfdme6t+cXPzfwQZxg29VgoiKmcEd/xl+IG7Arz9+ZTvnNZr47wcAAAAAAAAAAABai7AdAODI9PVylbNszhrsslWFi6ogdii12H6wibCEcQRT9tvzYxrPS0XLUnuLjnaT2ZjV97p7lFc69NCiiBzayHj4AntcYcA4lq6sbC4o9luH3fFE4zr6LVmevMnU7sjNa2ppFemMii34K9mdT3pUtivYn5nAlNfQNfv+ethsG9kvPeAI2ymknFvRXmVyRsjag7kVPSHPayGvvqK95OFju9ynfOFA9P2vqabZ2xc5PtJ4gt+IwxEhuIVLw/fHDdsNRFTQi3uNJiqjAgAAAAAAAAAAoLXC/2UcAIC5bnys9Geu11rlzRa2GxxLcN1mKhM55pQCQdnQY642uM42snHX2J3TaCE8BNId8TeNIVvlPUeVrVjWbK5snjn6E+uw/pDLZVKe19h0fMxF1V8oq0UFS9tKSYVioFRXeOW2akMez+VEQerORAxK+n6mg7FVtnPftzuesB8LrfT28F0Kdr8QZ2WdsXqTdMLZUjo79dsWJpWSTj6vcf+u57Q+b/9NyEdkDD0ez5r7aRaviJ4QpVBQkJ+QSUc90CFSET9MGUtoMW7YrplWt64QYbOV7WZ6RUYAAAAAAAAAAIBZhLAdAODI1t1jbZ84aMmeuEJskbLNhe3mFwY0mGqsBjU4bA/bvWzPbzlbRsaunpTt0av3fkv/tOjGhkO77cXkNDQW6LbwDr7qbVFlO2OMgoXLpMP7lAvsIaTP3RvoM++o3bfHUuhreX5P7TXSCf86lc7q9NEHrIdHxqX5Hh/JeCF6zERBuuuZ8GPX93+xtHHC2dEnmmGarWznEhbCDd5zRcuv0zIr1kvD9up0kmRu+qBM36LGAzf8lszNf2GdNzQWyNaqV/L7TXRW05z02l+QvnFz9LhJYyNSM2G7w+Ftm2vOGyZu69pmWt2OOeYkbVkNAAAAAAAAAACAxGZfnzAAAFqpO2et8vbxO8IDPCOWamy+12tmzvkjd4ce+uRd9qDJez9vL0flbNMat3pSrlfzi45+thZ/8jV7QMoZBpSkVRujL7ByQ+nPV7yqsuu9+//KOvyJl2vX88nvhq/v3JF7p170OVoG+8pk1RvYg0jPRuSCJk3kowNntqCdJF0wfFdpYy4FehJU9LK1l56x9rxoP3bs6TIf+5rML7w/9LBZe7Qkae3EjtDj/3SX+z76hO0yKg/aeJx90Mr10Seq1kzlOEm6+xvNnTd2ZbsmnqG94Z+BpOYr2wEAAAAAAAAAAKBlCNsBAI5s3T3qtlQ8W2TJNUQFSzKBI43XTFgi16ucJRDY12Wv1nbnk/ZT9rrCbHGr72W6reuTpB0Hw4M6X33YEbZzhQHXbpa59p3R65oMNmanAo6u9/2NR/yCWTXPi63dZBzprLPq1+0/81uXT2U7l+7J5zbbRCB02jXXRtbF+QzOMuZ3Py5z1uX2AdnSc2z7Ldx5yH1+nwBy5ZNw/AaaqPau9ZoN20WxVaSLez1XS1ibpx+2H2umMioAAAAAAAAAAABairAdAOCIZD58S2kj26P7c6eHjtmwJHzucESw5F0HPmU/2EzYbvk6/Th3Ruih9fPsYQ5XUa/lhb32g3HX+ND3tXHiBethWzvWR3faT2mrNihJ2rFdOu2i6HUdW75nY1NBtjMc7Vrr17nAkjnbk1o+9eLAy9HriNLd7bx/43m/00wkDNsdO/6EJMlkWxAg7DB7G9nmK9udMfqTpufOOJuOdx/vLbWo3p7dHHp45QL39LGIZ/TCoe9NvXBUTgwO7rEeC79wk2G7hUubO2/ssF0Tle0c37/ELasBAAAAAAAAAACQGGE7AMCR6ZxXS5JMd4+uHfhy6BBbBTtXFaf5hQH90uGb7QOaCNuZri5dZ1nj4bFU6P5iMbAGYF438DV3va+4YasLrtbqvD105tNisp6zjezqTdJxZ0y1iQ2T7Za59n9Iksxlb6zsvnzoduuUQ3XF5Wzrfkv/v0+9aEVbx2yPUrK3/PW9f76hPJtzRu5LdoLpZHmghwL3s7x6of3YRUPfT7CgmcVEtQbefKIk6fLB20IPDw65E8auZ68rKOjdBz85tcPRStucdZnzOg2aadMqSYf3R5zXFraLeb3xMQVF+3e7JdeYZJqv4ggAAAAAAAAAAAB/lEcAABxxzFdemgqfdOe0dfzp0HHWsJ0j/HTbC6/VSWOPhR/s6pLSmRgrnXJsbl/o/kf7w9NC/Y68xv/c9xH3xWIGyMyxp6v7B/9tPe7TYrKes7LdWZfJdHVJNz+g4ENvk+7+Ru3xi66VecNvyJxyfun1ivWVQ73BiC4e+q6+O+/ihtN+6s5An3hrabtQDKyV4rZUPy8XXO3xbiKU7/flg7fptvmNrT4/9u1AH/S4TNLKdtlgXLryxmQnmSa2mNGtoyc75+UtOahP7Hq3svJIOWZz0qLl0eNarZCX9u/yG7v1tOgx5WfwiqHbQ5/Be1/MKggCGUugy9XC+D9fukFXD36t4VqhFljKido0UdkuOLC7+fM+93js62moX+pb5D08uO/b4QdOvSD+tQEAAAAAAAAAANByhO0AAEeW86+SWVwVjsn1qicID1bYQmK2/YsKB3Wmq/Vkd481rBKlN2VPsxSKgVJdtef95iP29pm9lvdbEbdaW3dORlJvcUjDXfMaDoeFE3f3u9t79hSH7QfL6zO982U+8l9e66u2fuIl69CJfKBM2jgDgj3FqiBgCyrbme4eBbJ/LgOeha5cgSevdUjOqmOz1fBYoN5uS0jMUpFtZd6vnan56k6ZnsZnvt2CPS8puP5ov8E+6ys/x86Q67OPVSrg1Zuw3Me3H/psbdBOkrKO70zc79N4E21kHcHgCkt1ueDRe+Nf78e3S5dc7z/eFujLzr3vJgAAAAAAAAAAwGxEG1kAwJFloi5FNTZibVk6Mh4eCBuZCN9fE8IK4wqZRAj229u0Hg5Z/of+2x5mc7ZoVSn8FctkUMdy3uGQ+/jCAfcpjx7fbj8Y9z4uX1fzMi17Km3fYOlPV/XCmnDmi0/FW0uYcsBtR3pt6OFVC/xOk7SynSRpnqOv6gzWa+zpyJ2H7fNsYbtM4FmOMao960zg84yWv1NDxv5+Jv7jk9ZjtqBnNgj5Ij1nqfwpSas2liqA+mqmst3uF5s/7+qNsa+nQ+FVSa22nBK+/8kH418bAAAAAAAAAAAALUfYDgBwRDEXXVe74+TzlLNUczowHF4NyxbEslXIq0hQBe3s4k+tx8KqsE2GxsI4q1dJ8aubRVTFClufq3LcttGHdMzEM9bjccOA9ZXHruu3V8Ob/Gzdle2qPucTzoq1llDl93Pp0Heca4piC475WFeu9mfiVOCaQa6Z97D1mO2zLBYD673Neobtmq1U2VHbXhk5xKTTUiqtc0fusY4Zyaesx8bz4eHe0Pt47Bn2dSxcKp39KvtC61kq0DmNe8wZm6qsGXzlH1X8jctVfP1m6Uufjn+9uIHA8bHw/UefFP/aAAAAAAAAAAAAaDnCdgCAI8vpF9W+nr/QWektCBpDJLbwTq+r9amUqEVn38WvsR7bGxKsOzBkP1fLQ4ERle3uCsnNPb3HXnnv6y9cE3G9Ju5jb19l84zRB6zDdveX/nRXtpsK65hjtsVfS73y/btw+Aehh33Ddkkq231g35+XNjYd3/xJptHJ2Z3WY7b79+5b7M+gV9juihuix8wA5oKr/QZ292hR0V4GcKTgCtuF7w+rEGhOPNu5DPOhz0gX/pyU7S7tmO+otthEZTs9FP49qzFa+i0PbvlLBR99l/TQ96W9O+zjX3eTtcVu8Mwj8db34PdCd5uzLo93HgAAAAAAAAAAALQFYTsAwJGlPkjW3eMMnz30UuO+YUsOx1Yhz3rtGHpyaeuxrzxkDw2FniuijayyMcNs5fG2+/jZexrX92/3ha+5r9CvFYW97us1cx8XLqlsuj7vLz1QWtePn/dswxv3XoWpVAYMX9d4XioUoz/jJJXteovDkjFSJtv8SaZRT5c9kRgWjh0aC/TJ7yYM2/XO91lae8SpqOf7fcn1On8bnhpfZj1mbyMbch8j1mPmLVDXn35e5uu7Zf7jKZmv7pLWbQkf3EzY7vEfew0LBg8r+MLf+Z2zOyctWh5+7Af/7bmwCJPhQwAAAAAAAAAAAEwrwnYAgCNL3+La1909WpXfbR3+dhpawwAAIABJREFU05dCKtvZ2shGhdgShO0W9NjDNWMh61m5wH6ulocCy5XmdqTXhB4+ZW3jvhULwt/PQMqx8Mr1mriPualWsvOK9rJ/k5k2V3Ctrzgw9SJlr/blzZT+OtbreH5GParbJals1x2MSUEwO9qihkiZQNliePvNsO/rNyOKjWXlccMPRoRCZ4rFK/zGZXNaXthnPbw3P896zPZ9Cb2Pnt9f090js3KDTCpln9NM2O6YU/3GPXqPtOdFv7G5Xmn3C+HHTnqF3zkUXkm1YjSicioAAAAAAAAAAAA6grAdAOCIYnK9tTu6e7R54jnr+NGQEImtjWxPGyvbdffYqxqFrfHE8NybJKlLEVXSYle2K72vvmJIP1tJYyHrG52IV42vRjP3sSpwlFLROmwy1OYKt2VU9Ya2nBJ/LfW2llrRuiru2aopVrNVF/ORDhJMngmM/f6F3buDw+7nLxN4hO2WOb5kM8nxZ/mNy2S1oDpIWmes2Bgs3XUo0Me+XdQdT4TPCa1s10yFNtt3fjw8YOk0HvE7Pan/oPcpTXePVLR8h+Ks0bW2o0/2P0+DBL+3AAAAAAAAAAAAqEHYDgBw5Dj29MZ95RCHCcIDWB+9NUZlO0dYSlKylqO5Hp03/MPQQ997snGN3/lZ+GnefcCjLWLsynal8b914G9CD4e14rUFFn/l4P/1vl4sS1fVvLx88LbQYZ8pt7z92cvhp1mVrzvQ2xd/LfXmL5Tkroxou1/VklS2SynfmuDgNLKFXV862Pj9KNjzlpL82siaba/0Wtd0M2l7C+oaES2EDxRqg8ov7A90wUeK+t0vxGzH28z31/LbGdiqybk8b0kG1p/76Yf9z5nNyVz5i+HHfvJd//O4KvWtWOd/HgAAAAAAAAAAALQNYTsAwJFj7dENu0w6I6XSOmP0gdApT+9prMI2HW1kle3RUZYKfPc/73+a9RMebRGbDNvZKttJ0kTe7x4uy9vbWE5dr4nQYl0rzQ35kASgpIHRUivHv/1OeIBo43jdzU4SoJxUvn+uyogvehTZcrW+jZIKCg2BxNnG9v371J2Nn+Xd293n8gnbteSzb5Zvu99ykNNLuhS2O3YsPIz2hZHaCnl/e0egZyO+ruGV7Zr4HbR95//7H+Ofy9e//n/+Y7t7pFyC3/dJB+wtzZv63QMAAAAAAAAAAEDLEbYDABw58pYATXePFhQPW6fVh9lGLafpbWdlO0kTyniNCwJ7pam88ahyFXed5UDPfEfY7uEdta/trXgj7qHUVFjHLFtd89rVJvTFA9LmZeHHxrrq7k2SAOWk8vtZUOy3Dnl2X3QbyGSV7QrNteScKYzRmAlvT7o8pPjggoiPLevTRrYVn327pTyr2kmVyna2+7imqzbxGVZRs17ofWzmvtmeTd8WuWXBIY8wbzOKBalg/wK6fpNrvPCk/di8GMFJAAAAAAAAAAAAtA1hOwDAkcPW8rO7R5cM3WmdNlBXcGx4PDw4EVnZLk7wpd7azVpesAdFisWpNY06ckJrJ3ZGXysbHraxKrc3vHD4B9Yh/XW3punqgFJzYZ2zX1Xz8qyRH1uHDoxJKcvfkPq7ap8hk0rFX0sdk05LqbSzMqBPVmc8QdguHeSll55u/gQzwM7MmtD9qZAicAsi8qQ5R5XBqUG90WOmW5zfnHJlu+eym8JPFdQ+YPW/i2FyxZBBzVRosz2bcX9ThwfiX9vHqo3SsvDnT5J/kNUR2DOzvPIkAAAAAAAAAADAXEHYDgBwxDCXvTH8QHeP3nnI3o6wPlTywoHwcbmoqmxdCf6zu3qjru//ovVwdcDOFmSTpBPHHou+Vtqvgt4kU25p6QoD1q/ppzvCx7laqVY0EbYzR59U8/qaga9ax/aPSE/tCT/2Gwc+EfvaXiLe00uH3NMLxcArkGeTUkG68sbmTzDdjNGvH/hk6KG7nmncly+6T9e20GfLeLaRjfNdzpTGXtf/X6GHf1aoDZO5Qr2TQitVNnPfrvrF8P1jHp9TkvG+1h8jHXWC/fi453WTrM+3tTAAAAAAAAAAAAASIWwHADhy9C0O39+d09LCAc2zVBb7f3fVJnN+8kL4aXrCqjhV60pQBS3bo4WONqPVYbZhS4tWSeoNhqOvVW4nGcvKDZKkxYXwJOI92/2SYF4VxZqpjCVJ2y6sbLpatn7qTvta1+R3Tb04+bzm1hGmHEDaPL499PAffMl9/8bzyS6fCgoyi5YmO8k0s927sPa6US132/ocdlKcyovlynYbJ54PPXx/YUvNa1eod1JoeLaZsOxCy7MZN5y215LyTao7534e7rvN7zy2UN7azfHXBAAAAAAAAAAAgLYgbAcAOHLYQh7lkMlSS1Bsn727Z41s4Ei5SfbepD66e8KrRJVVB19GHMvwqtiVbiJsVw6aZIPwBM6uw1PbQ2P24FjkPZSaryiWmarylVZBJggvb3bX0671Vb2/VoatygHH7dnmQjVR4bEo6SCfLAw6A+QCe6vO5/fXfqZR96tLHuHQaa1s5ylOm9XyM+j6Do5NTN0X1+/MpFzY700z9802J27Y7rnH41/bR7ZHys2zHg4esLcpr2F7P7PhWQMAAAAAAAAAADhCELYDABw5Nh4Xvv+Zn0qSXshsCD28pLf2dcaSSRrqsoctJCULM3X3OINy1cEXV8Wp3qhWt1Jzle3KYZDd6ZWhhxdV3cODjuJ6y/L2VrQVme44K5uyq7ZiV2DC/xo06qgStzZfVRmrlQGYPS8lmu5TZcwlpWLz93VGMDp+zB6kqg/M5hOGEyXNjvvV0+c/tvy9X1AcsA6ZbKmdLwTq9yj+17I2stawncciqjXz2+aju0davtZ+vOj5wNneT9LfmiQ9pgEAAAAAAAAAAFCDsB0A4IhhbEGLk86VJL1q8Nuhhx+t6hxaKAbWqliXDt0RsYAE/9nNZNXraG3p20bWq7JdU2G7UppuSX5/6OGaMKBjfceNPxl9rXQmekwIc9Uv1rx+xfC9oeN2HrKfY+NEVQ/hVobtTr84ckjgCMz4VBlzSakgbd2W7CTT7JyR+6zH6u9P0kqAktoX3PJhjN+4vkX+5yxXtLxq8BvWIZO/M4c8ulFLIa21UymZZr6/tu/agZfjnSduOM9Xrlemy/H77tm+NrBVtstS2Q4AAAAAAAAAAGCmIGwHADgyLFxqP3bi2ZLsYbmdh6RisRR0coWa+ooR/WZTzVe2M8aox5Ht+a8Hp4JYLx20j8s5AnsVCdrIvnooPLD499+bWp+rsp2rVW5FsyGnTbWVDW/o/3zsU/QWqxbfwgCMOePSyDHjjop7SSvbpYO8lGouxDhTZGW/CT+oaw38zz9sQaWv2XC/+hb7jy1/r5YU7D8gT+8p/bl/yO+UDd/nZr8zLWrZHNwX/vuUSFfXVAD4ul8JH3PPrX7nsraRbWHLagAAAAAAAAAAACRC2A4AcGQ4HF5xTVKlalKPI4j2k3JBM1eoKTIolqSNrKRc1l7N6puPTIWH7tkeHiTKFUfUJY+QUYI2srlgLPRwvji1bVuf5Fl5r9mQU111LNfnbVMTVmxlACYb3ZL0qT32Y4kr2wUFKZVOdpLpVK70Nr8Q3gL1zidrn7lCMXRYPE1WWOyoOGG78vtxfQdvfax0Hw/4hu3qz9VsNUjHvODgXv/zvPR0c9d36e6Rmaw06FrnIY8W2dawHZXtAAAAAAAAAAAAZgrCdgCAI54pBxmOHXvCOua5clbPFWqKDIolaSMrqeuwPawxvyqrtbg3fMxol2dgo5nQ1ZMPSpKeyB4TeviE1VPbWcfpIwOLxjRfIXDD1pqXayZ2xpreXRytDSu2MAATDJdCYn+36z3WMfschROTVrZLqZCo8uJMMZjqC92/dF5tUHXbevs5fm/fR/0uNp1hO982sju3+5+zHPhcVLT3Ue4qX9Y7bFcfaPUIlYZastJ+zLNFqyRp0/HNXd+lqlqfWbrKPm7PS9HnsrW5Tfpb4/u8AAAAAAAAAAAAIBJhOwAAsqUKZRcO/8A6ZGS83EbWWdkuolJaC8JM3cXwawxVFZRLFLzKZKeqNMVRbsV7wfBdoYcPVWXoXIHFyCunM82tT5JZuaHm9SXDd8aa3xAEbGHYzpx6gSTp5/u/YB3jum9JK9ulg/zsqNRmE/FM/PCZ2sp2EwX72Df1/2f09VIpma6Z/9don/bEFd2llK6r+uXkc3ZgyK8Nb0MAudnqias22Y/ZqsElHeur+nfgouvs48Y9KmmOt6myXdCCtskAAAAAAAAAAACQRNgOAHCk2Hyi/ViuFDLJakKZIDy1NBlgc4btoirbJWwjq0vfoA/t/XDooburCljZ1vjawW9GXyPdRAtZSebk8yRJJ489Gnp8Z1WxLNv6zhz5cfSFmlxfxcKllc1czDayPXVBR9PK1o4LlkiSFhUPW4c8+JI9MPOpO5P1RS1VtpvFbWTLfnv/X4buf26/9NTuqfuXt4Ttfm7gK9o29nD0hZI+h52yPrzSZJjq5/m6/v8KHfPtyTayw37nbPiONfuMuSrixQnQ/eS7obvNOz4ovfV98dY0KVf1O7Bqo31c/4Hoc1nbyLawZTUAAAAAAAAAAAASIWwHAEBVyOTYsSdDh4xOhu1cbWSjWqAmDdtle5zXGJ0oBWGGLWvsLXokZDJNhojK99BV3W/XIXd1wPlFR5/USUmrrx3eX9k0kub5XLOs4d432xIzTFWYZlX+5dAhn/+RPWz3xQeSXT4VFGZ3Zbuy+kBktVuq7l/ekk187eCtfheaLfcqTkiraqztu/jYrtKf+z2/Ng1huybvmzHGXt2tFdXqcj3q+tU/aa6CXNUcY0ylUmq94P47os9ley/ZFgZ7AQAAAAAAAAAAkAhhOwDAEcG8+XfsB4tTyZtcMBY6xKeyXWSltKRtJ4f71ecIhz2zt/TnqCVsF1l5T2q+Ytey1ZKk1RO7rEMe3lH60xYGjGzDKzUfBrQY6prvPbbh/rWyst3ilZXNl9OrQodsWGKfnk1YlC6tWR62K7eRXZO3P38PvRgdtksHeb/rTXdlO99WynGe0aqxL2TWhw45dV3pzyHPtsUNLWmTVE+0vRef9qySAlcr1ZGh0p/NBPdefsFrPaaqqqbVmOW9tPK3BgAAAAAAAAAAAIkQtgMAzH3Zbun8K+3Hjz2tspmzVI6brGg3agnb5Yojioq/mISV7cwJZ+uyIXt1pMk12gKBXmG2ZtsVnn6JJOnM0futQyrrSxQGnL5AWMP9a2EAxvQtihxje/YKxUDjnhkxm1RQmBOBHler5Or7N2FpI5sJHGnaarMlmNhk2G5dfkfokMnfFlsb3khJ7lu53XcD34DceHiQWpK09TT7sShLVngNC3xCgZb30tKW1QAAAAAAAAAAAEiEsB0AYM4zf/6fMn2L7QPmL6xs2gJff/zVcgtUa1U2j8BH0jayp11kbTEqTVWMGxkPr+DktUZboCWC6S1ViEvJUjJM0oGh0rpsoTGv9SWpjBXissHbvcc2BDHbFID5n/s+Err/24+Hj7fdzzhSKljbX84OpajrhvxLOm7sZ6EjqkOotrBYWr6V7eZ22O6SoTtDhzy5u1QhzlYZMFKS76/t+Tyw22/+uOP3Zfna0p+nXxxrSZJkrv/12h3bLgwfePNfRJ/s8R+F7/cKQXtWOwQAAAAAAAAAAEAihO0AAHOeOfsK94CqkImr+tt4PtDIhCXIVvSoWpS0jWyuV2kVlAnCE3+TYSJrm1afynFJAmSbT5QkbRp/LvTwlx6ICCz63MMWt5FdUjzoPba3/v61Opy27mhJ0qLCoVjTbPczjnQmJZP0+Zwh3nL4ltD91aHExG1kM7MkbJft9h9b9d13tcR+eo9UaDZslySkaPltCm7/gt98VwW8yTDbAkevZpueulbUtnaxQaDAVV3Phcp2AAAAAAAAAAAAM8bc+FdVAACSqAoy7E7ZWwJ+6zFXi1afynYJ/7NbbjVqC80NR7aRbXPYrjx3sGte6OGVC0uVl6yBRZ/1Ja0odvTJNS9NEL6WMA3ra3UAZnhIkjRu4gUKh1oQtktlWxti7LiBqYCi7Tka8Wgjmw48+6Ompjts51nFLM4zWlV1zhX4vOuZaapsNzwQvn/9MZ7zB+3HJit6erRzbtC3sPb1vAX2sU89ZD0UuMKARY/ncvVG+7Hla6LnAwAAAAAAAAAAwAthOwAAslOBFFcbyef3B9YqYjmvynbJ2siacqtDW/W9yfax9spxHmG2JNXayvdxX3q5c5j9HvqE7ZKFwswNv1XzetuYPfxSr+H+tTpsd6DUInh9/iXrkIl8YzjwwFDyS8/6sN341HciF4RXD6t+7qzPoE/gU2p5hcW2ifOMbjq+snn+yN3WYSPjUrHpynYJwna7nmt+rlQTyGxQbjNuzrws/nlPfWXNS3OW4xyjji/riOPY+q2RyzAbjpXWbWk8sPkkmZUbIucDAAAAAAAAAADAD2E7AMARz6TTUqoUhHtT/39axwWBq2qcR9gulSxsN6m3OBy6/0fPlf584MXweV5rnKzw1IxyK8bXDXwt9PCjO8phQMs97O1EZbtTzqt5+fOHPVtQKuT+tTpsd9G1kqTjx35mHRLWIni/o2CXr3R3ghDUDGAuuLqybQuVPrG79Ge+YK/MZvtuNUj6HHZKnGe0qqpbX9H+UO0blPKeBQAbJKls9+q3hu9/8gG/+f37w/en0lOtYF95TeV76MvMr6tsd9F19sGH9tmPuSrbrVzvt5bf+2Ttb3hvn8zvftxrLgAAAAAAAAAAAPzM7n9ZBQCgVbI90sigsoG9J+ePnpOOWhZ+zKsilmlBxn3VRmubzL++PdBf/rx9qldluyQBsnLIY8NEeNrv3mdLf1oDiz7rS1pRLFfb4nZB0dKaMkTbK9utWBd+nSpfeSjQ28+tbSF6YNi/Fa5Nqrs78TmmVc/U55pzhEr3DgTKOXJyXoFUKXGFxcSMZxvZbIxn1HPsn3490OtP87x+vSQhxaWrwve/+JTf/P6D4fsXLJEp30+TyUof+px0/3cU/PRuaXxUZsESBZ/+gPcyTSaroGe+NNIYWAw+91GZy94YPtEVtvP8rTGnXSh95kHp7m+W2paf8xoZz6AeAAAAAAAAAAAA/BC2AwBAqlRcWp3fZR0yNBZoZCI8ZOIVFGtFZbtUSpnA3up2T789eJWSRzmqJG1ky/fQ1Yq3ULS34vWrDpjwry51YbvewLOSmUIClbkWh+3K722+o6rYD56W3n5u7b6DLWgj2zXbw3ZV7UnnOarT3f54oMuOtwfFXEG92uvNgsp2qXSpaqevrN8zMJ6XCh5tZLeNhrRoTvL9dbThDsZGZKICaQO2sN3impcmnZZe8SqZV7xq6vy2sF25tXeDbC40bKfDlup6Uk0r5AYxgr1m1Ubpul/xHg8AAAAAAAAAAIB4aCMLAIAkDR6SJF0xdLt1yFHLTbI2so6wiLcd27Umv9N6+EVLnkSSVuT3RJ8/Tjin3jM/leRuxTkyLo1bMn/dwVj0NRKGnEzv/LprjmtlfrfX3J5i3We8alOitTQ4uFeStCFv6QMsaSLk3oW1lpWkBYXDXpdNBXmZOBXQZqLVR1U2zx75kXXY/qHwezjJVdmyRmYWhO1iVl40vtXyJOWL0dUUP7j3Txp3ppq/b2aRpayoJA17VKi0VY7rmR++v/rav/4X4ft/9U/DJxy2tIudt8B+kRZUtgMAAAAAAAAAAED7EbYDAECSFiyRVApf2ew4KHtVNp/Kdq1oI3vMNv3m/r+1Hj7sWMaW8Weiz59gjebyUg/bawa+ah0zMlGqjBXGK+iUtI1siD/a+8de4+rb95qu1v41ypz72tKfjjEHhhpDTrYA6KaJ572umwoKUneCioYzwbLVlc2VBXuodGTCXZUtFXhUf5QShcY6po0BrXzEbTp75D5dHhZcTlLZrqrSXANXUK0ssI3xuU9XvFlac1Ttvi2nSOdfFT7+yhvD9z/7mP0arveQpOIoAAAAAAAAAAAAWoqwHQAAknTmpZXNNx++JXTILT8KNJqksl0r2siecJa2jT1sPbzb0UbWq3JckgBZuaXiksIB65Dn9ktjScJ2rWjfufW0mpdvsXze9WoClSvWJ19Hvb5Flc3fOPCJ0CFfCenM+YUfh3/miwqHvC6bVl7K9XqNnbHqAlPnDN8TOuzLDwTKu8J2Pq2WpelvI+tTha6ZsN2WU7yG7Xe0Lv7Q3j/WrS+8Lvw3Mcl9m7/QfmwoQWU7jyCbWbpK5uO3S299n3TOq6Vf/AOZv75VxlKpzpx+sfVcwT3fjL2+Vgd7AQAAAAAAAAAA0LwE5SUAAJhDqtpo9jqq1O0dCA82eVW2a0Ub2WzOea0fPO2YGliSgtWSVN8rh3t6A/v6vvVokKyyXSsqitWFa3I+QUnVBSrbUQmuKvDW42jFWywG6uqaClsdsASfeoMRdRdHNdblXmupst0sb1NZ95nOK4bflJf73ZXt0r6V7aY7bOejmWc00+017IeWIpm/t++j+sC+8JarkpJVtnM9oz+7Xzr6JPf8JJXtJJnla2V+NaQ1bsxzBnd+Weac1zQeGE22PgAAAAAAAAAAAHQGZRIAAJCk7Y9UNhcW7RXBntsfvj/nCJhVtCJst3O7egN7EMvFK8yWpIJSORSyMr/bOiRflMYteaaMTxiwFW1kjzq+5mWX7NUAq42YqvBSOwIwVeecMPYwV33b2ONXh4/7fu/5kUE7qVzNzTNkNVOZukpvd/eeEzpu68qINrKzpbKdj2Y+08d/VNm8vv+Lsaen5Li5kpROELabv8h+zKdq6JglVNuO73Ldb0yNPS+G708YBgQAAAAAAAAAAEBnELYDAECSzriksnlD/xesw2xVxLzayLagFaA54xK5Gkj2OzJ/XmG7JJXtsqVwjytwc3BYCSvbJS/Ka1791qbmnTty79SLdgRgqqorvm7w69ZhI3W3acKSD7t46Htel00H+da0OJ5BXjl8V+j+wTG528j6VrZL8j1pBZ82ss0EAk85v7L5vv0fiz09HVi+3JMSBI7rA5U1bEE1nzHt+C5vONZ+7ODe8P3jtvW1oYomAAAAAAAAAAAAmkbYDgAASWbTVCWirWNPWcftGwzf37E2sis3SJLOGPlJ6OG7nrZXaetUZTtJumogPCz2N7cH1nCYX9gu+T00p14gveZtNfveefAfIufVtJttS2W7qVDN2omd1mH1le1s4bEzR+/XJUN3RF42peLsqNQW5bSLKpsXWMJ2338qqo1sRFhs0mwIJ6abqAJ5wtmVzTNHw39jnJeMun9J79vmE0N3B/fcGj23g2E2Y4z0tt8LP/jUg+H7qWwHAAAAAAAAAAAwKxC2AwBAqgk09Pi0hK3jNacVYbvyOnssrWRtbW5NUFRaHkGiRJXtpu7hvKKlBKBreocq20mSufj1Na8HuuZHzqlZX7YN1aZqnkF7pcQH67pQ2sKL6SCvrEdr3lRQaNl9nVZVoSnX93FozH4K7zayrfgut1szAcq64JktNGsTef+S3rfu3vD9P/xa9NwOh9nM0pXWY8GLIYHuTra5BQAAAAAAAAAAQNMI2wEAIEkr1lU2XW1QbXqKnWkjqxXrJUlPZLeGHs5aMlPZYNzZfrYiSeWpZasqmy9k1see3t3BsJ165tW8fC6zMXJKpjq4Nn9ha9ZRbcGSyuaywj7rsJGJ2uqFeUu+KRNMeAUY08rPjcp2+3ZVNuc7wp7P7LVXf5w1bWR9pON/V0xdiHRpwZLetV0yqrJd0vv28vPh+4/ZFj133JKybFeYbYXjN/DZxxp2BbYwYJawHQAAAAAAAAAAwEwyC/6lEACADqhqnyhJS/P2sFMYv8p2LfjP7qbjJEkLi/2hh8ctWRevqnFSsjBMVbhk29jDsad3srKdNp8Ue0r1+uor47WCyUy1/cwF9vJrI3W3yVrZTnmvezpnKtttObWyecXgbdZhA45crFf1R0lKTfNfoY1HdLaZAGW2u+bl6wf+K9b0yPuX9Ddw7ebw/bagmscY064w25mXxluL7T3kCNsBAAAAAAAAAADMJITtAACQZOoquv3N7t+ONb+n2Jk2ssYYaeOxesvhW2LN8w7bJQjDmKoA0HnDd8ee39GwXc7SjtIhU12164KrW7OOeqdeUNlcnt8TOmTn4drXtrBdJvAM26kwJyrbmQuvqWyvLITfO0n6lx+2oLLdrGgjm40eU6+ust1Vg9+INT3y/iW8b+bKG8MPPPd49ORH7w3fXxcwbBXT22c9Ftx/R+PODre5BQAAAAAAAAAAQHMI2wEAMGn52srm4sLBWFNzgUcb2SQtWqsddaJfuK9KtroFqkvSNo8LlzU9taNhu7pQkdeUyfWlMw3hzJZZsrKyuTr/cuiQz/+oro2spetxOsh7fe7pIC8zFyrbVYWSuoMxmSD8xtz3nP0UKfmG7WbBX6GbCVBmaoNnRlKvoyVvwyWj7l/S740jeBYE9hBls+dMbONx4fu/9s+N+8Ys/w0hbAcAAAAAAAAAADCjzIJ/KQQAoEMGpgJ2SwsHYk31Cr8lDbJNGjwUe32dqGwnSRos3cOTxh6NPdUrENiiUJipe59v6P9i5JyMyuvLewYXm1EVrDmYWhw65PjVtS1Eba2DM8FEjDays7+ynRYurWwaSUHM75sJiuqSZ2BrVlS2a+IzXXd0w67hrnne0yMr2yX9DXS1zz1kb/0d5B3tbX1a0DZrxBJUnL+ocd+4ZR3tanMLAAAAAAAAAACAphC2AwBg0uhwZXPb6EOxpvYEHoGNVlVDGxvV5UO3x5ritT5JJmkYplAK25w89kjsqT5rbFcFtjf3fz5yTMa3OmASVWG7FzPrQ4cU6gq2jViW1ROM+LeRbVelvk7acmrNyxNH4wU+vavaSTMgbOcInU1qpo3syefFn1Ml6jtikt63zSfZj406KvDlHd+DDVubX0+URZZKn8WQZ63qvz81uuMrzsapAAAgAElEQVRX4QQAAAAAAAAAAED7ELYDAGDSua+tbKZk6c1pkQvGoge1KKBjLn+TNuRfijWn17ftbNLKdlffJKkUBTp19OFYU72qA7YybPf6X6tsrijsjRxeCRJddG3r1lCvKmz3joP/FDrkid211ddGLDminmBUGY+wXTooNFcFbYapb+37l7t/N9b8yKps1eZoG1mTztR8LyTpzJH7/S8pRwU5KXmos6p6YQNXhbqCY11LVzW/ngjmbe8LPzA80Nj21rZ+2sgCAAAAAAAAAADMKLPgXwoBAOiQ5WtqXl7b/2XvqR1tI9vbJ0k6evwZ7yk5z8p2SddoVm6obN9w+N9jzc0Fo9GDWliBzWw8tub17+z/mH1sUJwKYK5tbLXZMlXBmmWF8LaYD9flLG2V7XJFv8p2XSq0NsQ4nTafWNk8dvypWFMjg2LVpr2ynYd0c5+pueT6mtdHTTzrf8kg4h4mvW+u4NnLz9uPucJ27WyhvGi5/dgzP619PWb5/SNsBwAAAAAAAAAAMKMQtgMAYFJd0MwosAxs1NE2suXASqz1daqyXdU9zMi/7Wp3cVRdPu+nlaGwus87V7RXJwyqxxqPFp7Nqgoj+Xy+xWKgCUtBtlIb2ejPIDVHKtuVTH0284uDsWbGq2w3zWE7n2ew2c+0LtwVGaCrEnkPk353cr32Yy86wpXOsF0bg6a98+3H7vt27evx8LCdIWwHAAAAAAAAAAAwoxC2AwBg0rwFNS+HuxzBjjo+oaaWBXRWrJMkPZ3d4j2lx6dqnJQ8DFMVKDxu7Anvab3BsN/AJqt1haprSXn26I/85llCMa1gVm+sbE+Y8Pfam53aLji6HaeDvFe1wLTyc6ey3fZHKpsLi/2xpqY019rIZqPHhJm/sOblxokX/C/Z5jayJuN4T65nOO/4fW5htcwGm0+yHgqG68KgeUsVStd7BgAAAAAAAAAAQMfNgn8pBACgM8yFP1fz+hcOf9Z7bqaTYbvVmyRJ/+PgP3pP8aq8JyUPEZ18XmXzFSOe4TVJPUXPAFsrQ2FVLUcl6YrB272mmTMva90a6p1xSWXz0qHvhg4ZHpeCoFT1ruAofpcKCl4VDedUZbvzr6p5eenQd7ynxqngNu2V7Xw0+5kuWFLz8q2H/83/klGV7dp434Jdz9kPuirbtfHZd4YDf/Ld2tcTlrDdXPluAgAAAAAAAAAAzBGE7QAAmNS3uObl6old3lOzgSUoUa1V1bDKbQVPHX3Ye4p3G1mTcI1VbR69A35xxrYybFfXnjHr2/a2t691a6jXM9V20tUGtb98u4qOynZdCrwqGs6pynabjq95+dbDt3hPTclxM+uYuRy2m7+o5uWq/G7vqamoynatuG8nnRu+/5a/ss+ZrjaykvTKa8L3//SHCsaqvp+26nuE7QAAAAAAAAAAAGYUwnYAAEyqC195t15VhyvbldcZL8zm+V6SBgK7c1ObwZj3NO8wYBvDdm2f5yM7df9cn9l3yh16nZXtVFBvMbo971yqbGfqv8O+z5XK98HXdLeR9Wj37Kyq5pqXStW0ko3zOxNZHbAV9y3bbT0UDFlaBzvbyLY5bOf6vXjwzqlta9iONrIAAAAAAAAAAAAzCWE7AAAmLVtT8/K48Se8p3qF7ZoMvzQoV487ZfSn/lN8Q0dJwzCrj6psRseBpnT7VAaUWhuMWbS8uXkbj23dGupVVQY8duxJ67CDQ6WUnbOyXVD0CkqlVJwzle2CA7VV2FoaFKs2GyrbJflMBw9XNnMxQrPRYbsW3Le6Nrc1Du4J3z/ueA+O8F4rmKNPth/cV1U9lcp2AAAAAAAAAAAAswJhOwAAykyqNgjS52jjWS/j04K0RRXRjDFSOqNtYw95z/GubJewjaxpMriSmYawnWkyWGja2EbWVFUsmxfYq9KNlB+3qMp2OZ82skFeSs+NsJ056/Ka13FaLac0iyrb+WhhSMs3rJvuQBtZc/VN9oNjlud9zLH+dlaqlKRL32A9FHzqAwqC8pd4wvIb2KqQNgAAAAAAAAAAAFpiFvxLIQAAHbTmqJqX/7jznZFTUkHer4pbC0Md5sb/JSPpssHbvcZ7t9NsRYhoyarK5q8d+LTXFK/KgFLrK7BtPC7e+C2ntPb6YV791srmKZaw2P/5ZnRlu1RQ8PrcUyrMmcp2Wri05mVvjMp2c62NbKKQVl1A7Pf3fcRrWmRlu1QLKtudfJ792P3fCd/vCttVtW5uB7PmKPvzcmiv9NmPlrYLVLYDAAAAAAAAAACYDQjbAQBQrS4Q11cciJziHRRrZQWlXOlcqwq7IwaW9AQj0vpjogcmrGxXuthUK9ScZ9gpOx1tZKWatq1e2ljVrqJ7Kvwz31Jd8aWDpT9dle265NlGNijMnUBP3XfMO2Qqj6ps1WZDG9kkn2m27j56fo/TUYHFVvy+OH5Hg9s+H37AFrbr7qmpJtk2J7zCeij4xs2lDVtlu7ny3QQAAAAAAAAAAJgjCNsBAOaGay0V6N72e/HO88KTNS83TrwQOcUrKLZgidQzP95aHILhUgjrmcxmr/G5YEza+Wz0wFZU7NqxvbK5vLDPa0rWpw2v1JrKWNUO74833uceJvXy1DN3MLU4dEhPOX/jrGynglbnX468XDrIz53KdivX17z0DYlJMSvbtfo5bIckn+nO7TUvN0087zWtI21kXb9RPfPC99vay7a7heykwUP2Yy8+paBYlPJUtgMAAAAAAAAAAJgNCNsBAOYEc8UNja0VUymZy94Y70Qbtta8PG30wcgpXpXtLrxWpoUBHXPi2ZKkE8Z/5jU+G4xLm0/yOHFr/2pwXf+XvcZNWxvZ0y6KN37rttZeP0xVq9rLhu4IHTIyIQVB4K5sFxS9wqKlNrJzI9BjFq+oed2lQD3FYa+5acUI27X4e9IWST7To46veXn5kKU9a52OtJF1GW8M1QWH9yv4698OH9+psN1Zl7mPj49KBcu9I2wHAAAAAAAAAAAwo8yCfykEACCaOeV8mfd/WuorVwJbuEzmg5+RqQoueZ2nrkJelxxpprJMWDWnbLkVaFeXdNF1Mr/1sVjriLSoFCo6b/hur+GZYELmmndEh11a0R7zdTdVNrdMPOM1ZbrayJorfyHe+Mve1NLrh15j62mV7Tf1f8E6bjwfXdnOnHRO5PVSQWHuVLaTpOVra15+4uX3eE2rrmxn/uqb0tU32QdPextZj9an6eY/U3P82TWvF3i005bKwU3niVvzf3qYd344/MAj99S8DIYHFLznVdL+XeHjq1o2t5O57OfdA1yV79LZ1i4GAAAAAAAAAAAAicyhf1kFABzpzFU3Sq95m7T7BWnVRne7QZvu3oZdG8ef1/PZjdYpYVXZzDf2SC88UVrH/IXx1xElV6rI1OtZtSsbjEu53lKoquAIxLSijWxuqlqUkTS/MKDBVJ9zyrRVtss1ft5OnaiEVRUAygVj1mF7BhRZ2U59i7V4/wEdTC2xjkurMLeqZ61cL+3dUXm5qOAIMlXpmgyKGSOdfrF0z632wbOhjWySQGDIc755fLu2Z91tqyMr27Xi90WS5i+wHgryEzKTz/Pd35S2P2I/T7ZDle2ifjd+7KgcOJe+mwAAAAAAAAAAAHMAle0AAHOKSaVk1hzVXNBOkoLGUmHzgiHnlIag2Dmvlsl2y2w5pT1BO0lasFSStLSw32t4JpgoBT6iwmqtqDw1UBtuWuaxxux0he0WLq15eamlXeYvHfqX0kYnKmFVBXOW5fdZhz21Ryo4K9sVpQVLNGrca55zle0O7K552e0ILFarBMWCQMYYd0BqVrSRTfCZ1rfkll+wNzps16KQYm6e/djzT1Q2g09/wH2eTrWRXbTUeTh44Un7wQyV7QAAAAAAAAAAAGaSWfAvhQAAdFBI29krBm9zTqkP25nzrmzpksKYxcslSeeP+LWRzfqG7VpReWrRspqXrxpy3z9p+irbmdWbal6/ZvBboeOuGfjv0kZHKttNXWND/iXrsLEJqeiqbKeitGCxRrrc1ftSKiRqOTrj7NtZ8/KUUUdlsyr1LVCN67Oe9jayHpJU39tycsOuS4fuiJyWDmupXa1Vle1Ov9h+bLQqFLjrOfd5OhS2M8vWSJtPtA8YdQS6qWwHAAAAAAAAAAAwoxC2AwCgWl1QTJL+974/c07JBuNTLy66VnrdTa1eVbiFy5QLxrQkH105Lt3BsJ055fya13+8948i59TcQ5c2V2B718FP68qBb9Ts+9WDf6+rBsv7OtF20jMA9MzewF3ZLijILFiq6/u/6DxPOsjPrcp2r39Xzcu+4oDXtFRQDtttOr70p6uK4XS3kQ2pPNcgyWfat7hh1x/u+/PIaenA0aJaat19W77WfuzZR/3P04lKlWXmD/6f/eAXPm4/RtgOAAAAAAAAAABgRiFsBwBAtZCg08Jiv1KO9oiZyWPrtsj80b/KdKrt3/FnSpLeOOAOU0nlMFun2sjW3cNlhf1aXDjgnJKerjayklQVDswFY/rSS2/U3c++Un+/89f04PYz9bcv/5a6VC4hl3NXiWuJuvu3Kv9y6LA//XrgVdnu6PFnnJcrVbabO4Ge+tbNPcGI17xKC9TJaodHchvZkPe+uHgoZGCtyDayLbpvpqvL2l41+PQf+p+oU21kJZmt26STzo0/cQ59NwEAAAAAAAAAAOaCOVTGBACAFuiZH7o7FRRUMOH/2UyrHBQ79QKZTla8CkplzbqLo5FDM5qQcvM600Y22914/YgwnX9luzbc32JtebiUijpr9H6dNXp/49je8OejpXr7al4WZa9iFlXZTguWaknhOefluoLC3KpsV/d5VoKSEVIqzyt/r5zV4/Ke4dDplChsFx4q7QoKKhr7dzCyjezS1c2vqV7R8vAPHfY/h+V9ts2KdfHnELYDAAAAAAAAAACYUWZBWQ4AADrHWCqXjXc1BsgmVYJkHWxJKEmaKAXUQkNhdbLBuHTUCZ2pbDfZhrPKnvRK55RMVEhnUlcbwnZxAnSrNrb++vXqWmTa7l1PRl6V7eYFw87LpZWfW4GekLCnj0pVtud/VvrTFYwqeD6v7eLTRjbBd8Wkw38nXEE7KaKy3Yr10tZtTa+pQWAJ202MK7AF8ep1sLKdJJltF8SflO5QpVQAAAAAAAAAAAB4IWwHAEC9485o2HXR0J3W4ZWwXbbDwY2rflGSdPXA1yLHZoJ8qepeVOW6VlS261vcsOuMkZ84p3hXtvMJGcVkXv+r/mPbcP3Qa6w/pvL6D/b+eei45/ZHVLZTQVqwRD1FdxvV1FyrbHfC2Q27Lh+8LXJapSrba95e+nPdllauqvOSfqanXdSwa2l+n3PKZNjOvPujtdfv6pL5tT9r6ffHvOND1mPBL5+j4PD+6JN0OiB9+Q3x58ylICwAAAAAAAAAAMAcQNgOAIA65vzXNew7Z+Q+6/gxU66k1eEqSVpSqng2LxiKHJrtLa8tsrJd8jCMSWca2r2eOvawc05Um9mpk7ch7LZyg9+4Fetbf20Lc/27KtvbHPfOWdkuKFW26wkiwnYqzq1AT0h1yp8b/GrktFRQkCSZ8vdKmVleUSxh2M684lUN+84fuds5pxJYvOIGmU98V3rL70g3vFfm49+RufxNidbT4ORz7ceeekjBx94TfY5OV7brWySdcUm8SbP9OQQAAAAAAAAAAJhj5lAZEwAAWiSkDWVv0d6K8+7eUujDZDtcJakcFDGSeotDGu6aZx2ayZbDb1EBnFZUtpOkbE4amQoBuu6fFKOyXavWV3Nxz8+tk1WwqtbUXRy1Dts3YD9FSgWpb4l6HPOlcjWyuVTZLiRAFfX8SVVBsUz5++9q39m3qJmVdZalFay3kPvoVSWxPNeccJbMCWclW4NLVFDuO/+R/BztsMTdUrvBXArCAgAAAAAAAAAAzAFUtgMAoF5IGOK00QcjpwWDh9qxGrvNJ1Y2XUE7ScpmyhXhIivbteivBiO11faWFdztJ70r26kNle3WHOU3rpPBnHVHVzZXFPZah73cby9t15XJSPMXKhdZ2a4wtwI9a49u2OXz/Z1sgVqpJLZkpbR6Y+PAbLd0zmuSrDA5nwqPSQOUIc/7ttGH3JdUuTpgb1+ya/vYdHziU5hpCNuZrdv8B3d1za0gLAAAAAAAAAAAwBxA2A4AgHpnXtaw65LhOyOnmbMa57WTmbegsn3joc84x2YzHa5sV2fL+DPO41nfsF0b1md8g2adDOaceE5lc/P4s9ZhQ2P2U6SyWRlj/KqRzaFAjwmpQHjy2COR8yphu+POKJ3HGJnXv6tx4JU3yvS4w60zQhvCdj/f/wXnlC45+hq3mOmdn7zFaierVU669I3+Y7t7ZNrROhsAAAAAAAAAAABNI2wHAEC9qhDbpJ7A3YqzNG9hGxYTYeNxkqS3Hf6cc1imuxwo61RluwuurnkZFbarVLarqtYXql3Bk2Vrosd0MmxXFSLqcVSm++Yjjsp23aV2qD3rNjgvlTbFuRfo6Vtc89JIes3grc4pKRVLG1Wfs7nht2Te93fSqRdIx50h8z/+WOa9f93q1bZHKpVsfsjzviH/UvS8clixE8z7P53sBNlpqGy3Yl2c0W1bBwAAAAAAAAAAAJozd8qYAADQKs2GqqahJaF650tSZPWybLbDle3q7sUx4087h2eDcen0i2Vu+kMFv+GoENiqMGC9nMdnl+1cFSxjjIKeedLIkHKOoOfXLQXbTFCsVHjryUqTObIwKdO5amQdk+uVBg7W7FqWd7cyrlS2q3t2zTW/LHPNL7d0ecl5hLC6kobtmnzeO/k7mLTCYNLKeM1aulravyt63Mhg+9cCAAAAAAAAAACAWKhsBwBAHdNs4CxWxaIW6T8gSTpq4nnnsEx3OWQXFS5pVZjt0N6alwuL/c7h3cFYKaQTdf02tbn1qnDV6TDlyJAkd6zKVpAupUIpcCZpfbf73meMI4k3W+3d0bDrQGqJc0pa5bDd/EXtWFHnJW0ju/bo5ub97P5k141jzeZk89cf05p1xLWuyXsLAAAAAAAAAACAaUfYDgCAFjF90xDSOfe1kqSVhT3OYdnJNrJR1apaFGYzZzZWpztr5EfW8blgtBy2i6jY1a52pz5BuumoXBghsBSl6wqKlfUuiPjIe8x4i1c1Ayxc2rDr8qHbnVMmK9uZ9Bwp/JwwbGeaDaKtOSrRdWM5+iRp0/HNzV29STr+rJYux5e57I3Tcl0AAAAAAAAAAAAkR9gOAIAwJ50bb3y2uz3riGAue1Nl+5TRh63jMt3linZRgbFWVbY76ZyGXX+094+twythu6iwX7vayHqF7TrXRlaSdN6Vlc0/3fOHsaamVJiq1tfdo5t3/JJ1bE9XvqnlzWTmTe9p2HfmqLviWirIT1+ls3ZIWtlOktKZ+HMu/Lnk1/VkjJH52NfiTzzhbJm/vlUmlbDVbrOu/ZXpuS4AAAAAAAAAAAASI2wHAECYnnnxxi9a0Z51RKkKia3I26vbdU0GxaLapbaqTWtIeC0b2CuopYJCKcwWFaZrW2U7jyBdpyvbldvAStL84lCsqV0qTr2n7l4tK+yzjp2Tle2yjZ9nT3HUOSWlwuxpIevzPWhF2G7VxthTjE9L5hYyy9dKb32f/4TTLlLXp78vs3pT29YUxRgjvfHd03Z9AAAAAAAAAAAANI+wHQAAYQ7vb9h1+sgDoUPfc+Djna96Nmnx8srmGwa+FDpkeX6PtOfF0ouDu93n62pRpacljeHDdRM7rMPX5XdIB/dOX2W7xSujx4Q8E50yZrKxxpfCi5OV7XLqKY5Yx6bn4t8GxxuDdVGtltNBfka2Cm5aK8J2+3Y27PrN/X8TOvSVQ98vbUxDlU8T8ntjH9ymwG5MZonHb86lb2j/QgAAAAAAAAAAABDLXPznVQAAklu2umHXrx38dOjQXzx0c2glrU4wy9ZUtq8a/IZMUGwY89rBW6XF5TDKvIXuE7aosp1ZuaFh39ET27V17MmG/VvGn9Yx40+XAnpRQZg2BWXMOa+OHrRiXVuubWNOOb+yfcroT2PNrQmOdfcoF4zZB7eqmuFMsvnEhl1r8rucU9IqTF9oth1a0SI1CBp2XTX4jdChlf3TEVj0+f5OWrO5feuIw2PN5twrI8cAAAAAAAAAAACgs+bgv64CAJCcufLGhn2/cPizuvHQZ2r2/eXLv6NTxh6Z3opYJ5wtSVqdf1n/svMdSgX5yqHTRx7QR/f8vsxpF0qSzHkR4Y1WVo6ruydG0r/teLuW5fdW9i3L79UtL71NRpI5/ZLo67crGHbJ9ZFDzImvaM+1bS78ucpmVFCsXlq1YTujxtDUpLCA5qwXEvaUpLcc/jfrFCrbNTI3/q+GfZcM36kP7P2zmn3X9n9Z7znwd6UX03APzYZj/cde8vo2rsSf2XKKzLs/ah/wupukV725cwsCAAAAAAAAAACAlxb0lwIAYA7K9TbsSqmof9j1K/r9ff9Hj3afqFeM3KdVhXJb1ukM6WzdJj12nyTpLf3/rlcN3aYf9J6vtRM7dProA0qpKKUzfutsZZjtuDOkh35Qs+vUsZ9q+9PH6a7ecyVJ5w/frd6g3OK0OzdtbWRNV5eCo06Qnn3MPijkmWirqs+qJ7C3gQ2TDqaqtJmIzzw4uC/+2mY6S4W600Yf1L8uDA8w1bTenel8Kjy2oo3s/MZKmEbSh/b9id5x6J90T88rdOLYYzp+/GeqrGi67uFr3iZ987PR4zr9PXYwb3qPdOkbpYfvkoYHpInx0v075Txp7dEyM6TlLQAAAAAAAAAAAKYQtgMAIEy2O3S3kbRlYru2TGyvPTCd7SfrKpMtK+zXtQNfqR0zGbyJWmcrw2zzFoTu7g1GdMXQdxoPpDPR129n+CSkZWaNToeIcvMqmwuKA7GmZoIJKVtab/DS01qZ320du37ixebWN5NZ2iWngoJ1ysvpVdLEU+1aUed1taCNrOOZX5/fofUDX2w8MF0BMcvvTYMZFqg0y1ZLl75hupcBAAAAAAAAAAAAT7SRBQAgzKYT4o2fxgCHWbY2etA0VLabbF3rbdMJ0UGddrWRlaS1m93HO/wZm6rA59LCgVhz08pPBUYP79f6/A6dOPpow7j1Ey9q29hDidY5E5mlq0L3nzb6oHXOuMlKB/daj88qXV0yrfiunHJe/Dkbtia/bhPMaRf5DczOrLAdAAAAAAAAAAAAZhfCdgAAhOlbFG98dhor2513ZfSYSmW7iBaKraxsd+WN8cYvWOJx/fZVzTI3vNc9YJpDOpvHt0cPKksHeZl0tvSiHBL8yJ7fV644UjVmQh/b/XttvKMzz9bxp63HjAKZS6/v4GoSiAqltqKFrCStiQighlmysjXXjuvc1/qNm84qpAAAAAAAAAAAAJj1CNsBABDCpDNSKkYbxukMYs3rix5TCdt1sLLdgiVS32L/Cd09Utc0VrZbvcl9fDpCOsefWdl83cDXvKelg7yUqQ3bvXroNt377AX68J4P6oN7P6x7nn2lrhv4ckuXO6OEVCpMyd5G1iiI97zOZC0K25muLmtLbatcRKC3TUy2W+aDn4keOMPayAIAAAAAAAAAAGB2aVHZCwAA5qBMt1QY9hybae9aXKKq1UlSuvyf/FznwnaSpEXLpIGD0eMyWZmuLgVRFbtaWXmvXlRIaDpCRJmpoFN3MOY9La1CpXWw2bBVQXn/ieOP68T9j7dyhTNXpjEk1hUUrcONgrkTxOqKERSOkumWxv2fvWkNHvctjB4zTWFAAAAAAAAAAAAAzA1UtgMAwGbUM2gnSTuead86oixdFT1mMgCz9mj3uHVbkq+n2p6X/MZNBqOiwnRRYbwkFiyxV7dbsV5avKJ917YZ6q9s7sis9Z5WU9nuyl9o9apmh+caQ4WRle3mSovRVoZmq57BSKm0THoa/395tp7m/o1Yf4zMvAWdWw8AAAAAAAAAAADmHMJ2AADYrFjvPdSc/7o2LiTi2sZ4tEAthe1M2l2BL+p4bNe/y2/c5HWjQkJtbCNrjJF583vDj93wm6X73GHm2ndWtl8z+C3veSlNhe3MsjXuwRdM37PbVpe+oWFXKogI22VnS9gu6lls4bO6Yav/2GmuDGgWr5Be83b78Z//zQ6uBgCA/5+9Ow+z9KrrBP49VdV7d/ZOOk12spBASAiLgbAm7MhiDMIICo4OoojKICMgIIoo4jrOiKKjgDqgoiCLgmwyLBKWsCRsIfva2ZdOr9VV9c4f1Z2u6rrvvbdu3aXq1ufzPPepW+d33vf8qrq6q5L7rXMAAAAAgGEkbAcAdZ50YftzDz+6d320obz4Nc0nDCgEU855YnsT94XtWh4T29vAW/mRl6e86T3JuU9Pjnlgcu7TUt7wrpTnv7Kn69Y69WH3Pz1s8q62LxurJpKxlfsHmu3Kd/zpnXS26JWHnjdnrOnOdlU12CNQu6mbodTHP6/9uYvgGN7yq3+e8vK3Jg89b/rv8DEPTB79jJRf/9uU5/63QbcHAAAAAADAEjfAc54AYJGbT3Bk0MdPtgoJDaq/dj+H+4JhrXaP6+HOdvuUp7ww5Skv7Pk6bZmx09qaamfbl806RjZJ1qxL7q6Z3IfP6UA0+NprubPdIgiLdUUXd2Esq9akanfyIvj8ldHR5EW/kvKiXxl0KwAAAAAAAAyhIX11FQC6oOUuazMMOmRy7CnN66vX3v+0vOqPG8+58OVdbGivY05ub97Y3vx/q+DXfP5MhsGMkOQp41e1fdlYDtjZ7uZr6iePjHbS2eLX4O/ESKaaX7NyZfP6YtEyTNfFHSBb/dsy06BDxwAAAAAAANBjy+wVawBoX3n009ufPOiw3emPaF6f2d9jn52sWT+7PjKScsELut5WOaLN43XbPUa2izt2LQkz/tw2T2xp+7KxanJ2cOy4U+snD+vOdg8+d85Qs2NkRzK1/+twqevmn+kPPbX9uavWtp4DAJMLjsUAACAASURBVAAAAAAAS9iQvroKAF1w5DHtzx1w2K6MjDQPCs04ZrYceUzKH30sOeWs6fDaMSenvPn/pjz0Mb1prp3P4/1hu8EfI7uoHPB1tWnilrYuG6tm72xXnvXS2rllSHcLLGNjybqDZo81m58qGR2SsF03j5Fdf/D0McTtGHToGAAAAAAAAHpsOF9dBYBuWD2PXZpWLoLjE486tr62ctWsd8uDH5WRv/5Kyifvycj7vpPypAt719dhR7Wesy8Y1iL4VZbxznZJsmni1rYuG8tEsmLGznbNvpaHOcDYbEe/A5RUw7OzXTePkU2SU89pb55jZAEAAAAAABhyQ/zqKgAs0JoN7c9dDCGTJ13UePywTbUhtdKPvm+7qfWcfSGnYQ5+deKAEOcNYw9o67IDd7bL+K7audXkREetLQk3Xd321Ofc95GlE7br9w6Q7f47sRhCxwAAAAAAANBDXtEGgBplbKz9yStWtZ7TY+W8ZzUunPfM/jZyoEM3tp5z/zGyfjSZqRwQmjps8u62rhurJmbvinfqw+on7xnvpLWlYee2OUM/ffe75owdNXFrHrfji0snbNdKt3eAbPd42Jm7KQIAAAAAAMAQ8oo2ADTz7P/a3rxFEDIpDzk35RfePjtoc9ZjU17xu4NrKkm58OdaT7o/bLfMjoltx/Nfef/TX7z7T9u6ZCwTs3cjO7TJUb4TQxy2a/C193u3vTaP3fGF+98/fOKOfPiGCzOaKWG7Ou2G7UaH5PMHAAAAAAAANeaxZQ8ALD/lyGNTtTNxbPBhuyQpL/il5Bk/kXzny8nmE5PjTqs9QrZv1qxrPccxsrXKxs33fw2un5q7U1sjc3a2W9Vk58Xx3Z03t9itXjtn6KCp+/If1z01P1h5Su4YPTyP3HlJVmbPdHFYwmLd3iHSznYAAAAAAACQRNgOAJobGW1v3iIKmZSDDkse/YxBt7HfuoNaz3GMbL2JiXlfMpbJZOWMne3WHVw7t2w+sZOulojGQdOS5LTxK3JarphdGG3z7/ugtQrQdjtg2+7nZVh2BgQAAAAAAIAaXtEGgGZOe1h780bl12ud9djWc+xsV++Io+9/etruH7R1yVg1MSsAWg4+PDn5oY0nn/u0BbW3mJW6j7mRsRWD3wWyW7r8YZQHPaK9iWP+HQQAAAAAAGC4eUUbAJo57ZzWc1asHJ6QTg+Uee1s5/M4xwmn3//06IktbV2yotozZ5ex8kt/mKxZP3vii16THHfagltctB78qPbnDtOubN3eIfJxz2lv3iI5ThsAAAAAAAB6xfYTANDMqjWt5wiYtHbokcndt9XX930OHSM714yvwTXVrrYuGa0mktEDwnZnPy5591eT//xYqnvvTDnnicnZjxvuoOjqte3PXUJhu1JKquYTurvg2g3tzVtCn0MAAAAAAADohLAdADTTTthuhbBdSytWNa87RrbejMDY6qn2wnZjmWgYfCqbT0ouekW3TxldvFbNI2w3TEdBdzts1+6/cYLHAAAAAAAADDmvaANAE6Wd8JeASWvHtziqdGxf0GnZxMDat+n4+5+ur7a3dclYNSG4mKSsbBHynGl0iHZl6/IOkW3vfmhnOwAAAAAAAIacV2EBYKEETFoqL35N8wl2tqvVVuDzAGOlGu7jYefj2FPamzdMf4978Wd/0GGtl7XLJwAAAAAAAEPOK9oA0Mo5T2xeXzFEIZ1eOfvxzev7dgfs8o5cw+jNt/9myzljI1UfOlkayjN+sr2JY46Rber8i1rPGabAIgAAAAAAADTgFW0AaGXl6uZ1x8i2VEZGkmZHetrZrm1rpna2nDNWhO3ut6rF3999hiko1ovQ6qo1reeMDlFgEQAAAAAAABrwijYAtHLCg5rXm4XI2G98d31tX9DJ0aeNPe459z990PjlLafb2W6GE05vb95Qhe26//eoHHpk60mOkQUAAAAAAGDICdsBQAvlyS9oPmHV2v40stRtPrG2VPbuDliE7RoqT3/x/c/P3/7ZlvPtbDdDqyOM9xldYmG7Zn9XevH36Ek/2nrOMAUWAQAAAAAAoAFhOwBooZx2TvMJ7R5TucyVH391fVFIp6ny+Ocme3cWW1Ptajnfznb7lZWr2jueeJi+BntxjOym41vPcaQ2AAAAAAAAQ07YDgAWatWaQXewNDT7PI2O9q+PpeqZL2l7qrDdAY45ufWcoQrb9eAY2ZGR1kdmD9PnEAAAAAAAABoQtgOAdpxydn1t4+b+9bGUTU3Vlqqd2/vYyBJ15y33P/2hHV9uOnVMdnG2yYnWc4YpKNar45jHdzevr7CzHQAAAAAAAMNN2A4A2lBe+fb62mOf3cdOlrBmx/FOTfavjyWqnPCg+5+/4Y7faTp3rEdZqyXrEee3njM21vs+uqlZoK4Xx8gmybGnNK8PU2ARAAAAAAAAGhC2A4A2lIc9IXnWS+eO/+xvpZz79P43tBStP6i+Nils19KJZ9z/9BnbP9F0qmNkZysvfFXrSaNDFBTr0c525ZW/13zC6BILLAIAAAAAAMA8eUUMANo08tp3pvrF308++ffJxgckZz8uZe2GQbe1dKxcXV+zs11rB3z+ztj93Xx31RkNpzpG9gCr17WeM0y7svXqGNkNhzavO0YWAAAAAACAISdsNyCllJOSPDLJI/a+PSfJzMTGdVVVndDhvRe6nc2JVVVdu8B7AAylsnZD8tz/Nug2lqYmwcRy6tl9bGSJWjM7MLZ1pH6nwLER58jOsq7Jror7DFXYrkebVx/UImw3TJ9DAAAAAAAAaEDYro9KKU9M8rpMB+wOG2w3ANBfZdWaVGc/Pvnm52YXRkaSRz1lME0tJSc+eNa7N644pnaqne1mK2vWpeVvIiy1oFiz3et6tbPdsac2r69a05t1AQAAAAAAYJHo0bYX1Dg7yVMjaAfAMlV+6Q+TQzbOHnv1/0o5yLfGllavnfXui+59b+1UYbsGfvTnm9dHh+h3UHoUtiulJI98cv2EVWvrawAAAAAAADAEhuhVxSVtd5IbkzywB/f+cpIXzvOaG3vQBwCknHxm8jdfT778yeS+u5JHXJBy4hmDbmtJKCMjs3Zn2zRxS+3cMb9OMUd58A+l+ud31E9YajvbNdOrY2STlEdekOqrn2pcXLW6Z+sCAAAAAADAYiBs1397knwnydeSfHXv28uSnJfkP3qw3q6qqq7twX0BoCPl0COTp79o0G0seaPVZG1tbLRHx4guZWvWNa/fc3t/+uiaARwjmySHbaqvtfocAwAAAAAAwBInbNdf70ny51VV7TqwUHr5oigAMHS2jWyorY2N+blijgf/UPP6zu396aMfevlz5aOeMn3/qpo9fvTxyeFH925dAAAAAAAAWAQcMtZHVVXd3ShoBwDQlp96w/1Pn7z9M7XT7Gw3Vzn0yOT8i+onTNbvFLjk9PIY2UM3Jhe94oDBkvJTb/TLIwAAAAAAAAw9O9sBACwR5REXpHrXbyVJ1lQ76ueNjvarpSWlvOFdqT7zT42LkxP9baaXehx6K6/8/eSUs1Nd/PFkzfqU8y9KedRTeromAAAAAAAALAbCdgAAS8WqNfc/XT1Vv1luNbKiH90sOWXFylR1xakltrNds0Bdr8N2pSTP+ImUZ/xET9cBAAAAAACAxcYxsgAAS8WxJ9//9KG7v52xas+cKaPVRM5au6WfXQ0HO9sBAAAAAAAALQjbDb/jSinvKqV8p5RydyllvJRy6973/66U8rJSymGDbhIAaK2s3ZAcMx24O3hqa16w9f1z5ly09QM5eOUS26VtMRC2AwAAAAAAAFpwjOzwO3HvY6Yj9z7OSPKiJH9YSvnLJG+sqmpbL5oopRyZZOM8L3tgL3oBgKWsvPHdqX72sUmSv7z553LExB350IbnpErJc7d9JG+79deSsZ8bcJdLkGNkAQAAAAAAgBaE7UiSdUl+OckzSykXVlX1nR6s8fNJfr0H9wWA5WXdhvufrsye/MFtr80f3Pba2XPGVvS5qSFgZzsAAAAAAACgBcfIDq+JJJ9N8oYkz0lyTpJTkjwsyXOT/H6S2w645tQknyqlHN+/NgFgtvKytzQuPP3F/W1ksTr86NZzhO3qPfS8hsPlZ36jz430UPEjPgAAAAAAAPSCV+KG0xuSPKCqqidVVfXWqqo+UlXVN6qqurKqqm9WVfXhqqpek+T4JG9LUs24dlOSD5RiSxQABuSJP5KMzt18tzzxwgE0s/iU9Qe3niNsV6s8+QVzB9esTx7+pP430yt+jAMAAAAAAICeELYbQnsDdgfuWtdo3q6qql6X5JUHlM5J8l+63NY7kjxkno/ndrkHAJaAcuwpKW95X7Lh0OmB1WtTXvG2lPOeNdjGFpOTHtK8PipsV+t5L0te+Kr9u/8dfnTKH3w0ZcMhg+1rvpoF6oTtAAAAAAAAoCfmbhvDslNV1Z+WUp6a6eNm9/n5JO/t4hq3Ze6xtU3ZXA9g+SqPe07ymGclN16RHH1iyspVg25pcTnyAcnV366vj/kRr04pJeUVb0v1029KbrsxOfaU4fuZwzGyAAAAAAAA0BNeiWOf3zng/XNLKUtsixcAhkkZHU05/kGCdo0cfETzumNkWyqr16Ycd+rwBe0SO9sBAAAAAABAjwjbsc9Xktw94/3RJGcMqBcAoInyyCc3nyBst7wJ2wEAAAAAAEBPCNuRJKmqairJ9QcMbxxELwBACxc8v3l91DGyw69JoM4xsgAAAAAAANATXoljpp0HvL9mIF0AAE2VsRXJC3+5foKd7ZY3O9sBAAAAAABATwjbMdMRB7x/x0C6AABaW72uvjYqbDf0mgXqhO0AAAAAAACgJ4TtSJKUUo5IctIBwzcPohcAoLWyem19cZXNaYdes90LHSMLAAAAAAAAPeGVOPZ5YWZ/Pdya5HsD6gUAaGXV6s5qDIexlfU1O9sBAAAAAABATwjbkVLKUUnecMDwR6qqqgbRDwDQhpXNwnZ2tht6K4TtAAAAAAAAoN+E7YZIKeW0Usqz53nNpiQfTXLUjOHxJL/Tzd4AgC5rtrOZsN3wW9HsGFlhOwAAAAAAAOiFsUE3sNyUUo5J48/7pgPeHyulnFBzm21VVd3RYPzoJB8upVyW5O+SfLCqqitq+tiQ5CWZ3tHuqAPKv1VV1dU1awMAi8Hpj2g8PrYiOfGM/vZC/zULW476ER8AAAAAAAB6wStx/feFJMe3Me8BSa6pqb0nyUubXHtmkt9N8rullHuTfDvJHUnuS7I+ybFJzkrjP/+/qKrqLW30BwAM0gmnJ2c/Pvnm52aPP+1FKesOGkxP9E+zY2RHm+x6BwAAAAAAAHRM2G74HZzkvDbmbU/yqqqq/rLH/QAAXVBKSX73g6ne+YbkK59IVq5OHvfclJf+2qBbox9WrKqvjY72rw8AAAAAAABYRoTthsv3kvx2kickOSfJmjau+UGSdyf5y5qjaQGARaqsXZ/yqj8edBsMwrZ76muXf71/fQAAAAAAAMAyImzXZ1VVndDDe9+a5NeSpJQykuSUJA/M9JG0hyRZnWRnkruTbEny1aqqbu9VPwAA9MhNV9fXrry0f30AAAAAAADAMiJsN6SqqppKcvneBwAAAAAAAAAAAAswMugGAAAAAAAAAAAAYLETtgMAAAAAAAAAAIAWhO0AAGCpueDH6muPfkb/+gAAAAAAAIBlRNgOAACWmPLEC+trL39rHzsBAAAAAACA5UPYDgAAlprHPzd55AVzx897VspJD+5/PwAAAAAAALAMjA26AQAAYH7KyEjyB/+aXHlpqrf9bLJzW8pb/j7lgQ8ZdGsAAAAAAAAwtITtAABgCSqlJKeclfJXFw+6FQAAAAAAAFgWHCMLAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALYwNugGArtt9Z7LjxmRqT7LhlGTlwYPuCAAAAAAAAACAJU7YDhgeu+9MPn9RcttnZ4+v2Zw8+4pkbO1A2gIAAAAAAAAAYOlzjCwwPL7wgrlBuyTZeXPyxRf2vR0AAAAAAAAAAIaHsB0wHHbdkdz6mfr6TR+ZPlYWAAAAAAAAAAA6IGwHDIcdNySpWsy5sS+tAAAAAAAAAAAwfITtgOEwuXPQHQAAAAAAAAAAMMSE7YDhsPX7redMjfe+DwAAAAAAAAAAhpKwHTAcrvuH1nPu/Frv+wAAAAAAAAAAYCgJ2wHDYfXG1nOqyd73AQAAAAAAAADAUBK2A4bDTR9tPefilyS3/2fvewEAAAAAAAAAYOgI2wFL35X/J9lzb3tzP3lecvPHe9sPAAAAAAAAAABDR9gOWNqqqeTSN87vms8+oze9AAAAAAAAAAAwtITtgKVt29XJrlvmf1011f1eAAAAAAAAAAAYWsJ2wNK2577OrttxY3f7AAAAAAAAAABgqAnbAUvblo93dt11f9/dPgAAAAAAAAAAGGrCdsDSVVXJt17f2bXf/NXu9gIAAAAAAAAAwFATtgOWrq2XL+z6nbd2pw8AAAAAAAAAAIbe2KAbAGhq27XJHf+ZrD0mSdk/PjWeXPkXC7v3+F3JmqMWdg8AAAAAAAAAAJYFYTtgcdqzLXn/hs6vf9jvJZe9OZnYXj9nYlvn9wcAAAAAAAAAYFlxjCywOH1w08KuP/1XkqdenJz4k/VzLvuNha0BAAAAAAAAAMCyIWwHLD7VVPMd6VpZdfj020Mekpz77sw6fnamWz/T+RoAAAAAAAAAACwrwnbA4rNn68KuP/jB+5+XkqRqPG/FAo6pBQAAAAAAAABgWRG2AzpXVcn3/yj56BnJBzcnF//0wnak23fP775tYfc46b/Ofv/IJzSet+u25J+PTLZ8YmHrAQAAAAAAAAAw9ITtgM5d/ifJ1/97svV7yc4tydV/nXzuwgXe838m3/3dzq5dcVDyqHcmJ71k9vgZr6u/ZvftyX88Lbnjy52tCQAAAAAAAADAsiBsB3Tu6r+aO3bLJ5Lt13V+z6v+T+fXPvuK5OSXzR0fW9P62mv/rvN1AQAAAAAAAAAYesJ2QOfuuazx+JV/0dn9qiq59zud97PikMbja49tfe2tn+18XQAAAAAAAAAAhp6wHdB9u+/o7LrJXa3nPPxPGo8f+fhkdGXj2voTk0POWvjaAAAAAAAAAAAsW8J2QPdtu6az6675m+b18z+ZnPoLydFPm1t7/IebX/uEDzWvb7uyeR0AAAAAAAAAgGVtbNANAEPolk92dt2lb6ivPet7ycEPmn7+pI8ne7YmN/1rsvG8ZN1xre+97vhk3QnJ9mvr50yO1++OBwAAAAAAAADAsmZnO6AzU5P1tZWHzv9+E9ubHz+76vDZ7684KDnhv7QXtNtn87Oa1+/9Tvv3AgAAAAAAAABgWbGzHdCZqd31tTI6//vt2VZfG1mRrN44/3se6AHPTq740/r6xPaFrwEALA+7bktu/niy9XvT7x90WnL0M5I1Rw22LwAAAAAAAHpG2A7ozOSu7t2rmkr+9fT6+mP+b3fWOfopyckvT67888b1yZ3dWQcAGG73fjf59PnJrltnj6/amFzw6eSQMwfTFwAAAAAAAD3lGFmgM90M2932+WT87vr6xsd2Z50ykjzyHfX1yR3dWQcAGG6XvGpu0C5Jdt+efO0X+98PAAAAAAAAfSFsB3RmqlnYrprfva55T/P62Lr53a+ZUqZ3nWlkws52AEALU5PJ7Z+rr9/xxWRyvH/9AAAAAAAA0DfCdkBn7vhKfa2aZ9ju6nfV18Y2JCsOmt/9Whld03jcMbIAQCvVRPMdfqf2JFO7+9cPAAAAAAAAfSNsB3Tme79bXxu/q3vrPKzJOp0aE7YDADpUTbUxZ7L3fQAAAAAAANB3wnZAZ5rt6DIfu+9sXj/+x7uzzkx2tgMAOiZsBwAAAAAAsFwJ2wGdWXV48/rE9vbuc8unmtdHV7V3n/kQtgMAOtXWznZtzAEAAAAAAGDJEbYDOnPQg5rXd9/R3n12bmleH13d3n3mQ9iOxWZqcvoBwOBNTSYTO5LJ3cmercme+2bXHSMLAAAAAACwbI0NugFgSE20GVzbc2997YzXdqeXA42ubTx+3xW9WQ/qTOxMvvYLyY0fnA5mPODZySP/PFmxftCdASw/E9uTf6z593f9Sclpr0pO+4U4RhYAAAAAAGD5ErYDOjOysnm93V3iLntzfe3s32m7nXkZq9nZ7vr3J1N7kpEVvVkXDnTxS6a/7va59v8mu+9MnvSxwfUEsFzVBe2SZNvVySWvnA5DP+DZre9173eTtQ/oXm8AAAAAAAAsCo6RBTrzyHckL2gSqGsnbLfrtu71Mx/Njn+7/Qv964Plbfze5IYPzh3f8vFk5y397wdgOWv3Z5Kr39PeMbLX/f3C+gEAAAAAAGBRErYDOjeyKklpXGsnbHfvd7raTttu+VR97Y4v968Plrf7rkiqica1u77e314Alrsb/6W9eVu/194Rsde8e0HtAAAAAAAAsDgJ2wGdKyUZXd24Nrmr9fXbru1qO23bcHJ9bWq8f310w84tySX/PXlvmf349lsH3RmtTO2ur7UT5ACge/Zsa2/erluTfzuz9bxqKvn3RycTbfzyAQAAAAAAAEuGsB2wMKNrGo+3s7Pd9mu72krbDj27vrb9uv71sVC770w+9YTk8j+aW7v0Dcmlb+p/T7Rv+/VNatf2rQ0Aknzj1e3P3X1He/PuvDj5x7XtHTsLAAAAAADAkiBsByzMUgzbNXP9+wfdQftu+Ofpo0jrfPst/euF+bvyz+trV7+rf30ALHe72gzPderOr/T2/gAAAAAAAPSNsB2wMCvWNx7fdWvra5vtInfkEzrrpx2bf7i+tvExvVu329p58b7dY/Hov7qgapKs3tS/PgCWu7su6e39v/v23t4fAAAAAACAvhG2AxZm3QmNx5vtuLbP1u/V105+WUfttGXzM+prO27s3brddvO/tZ7zyfOS95bpx1denmy/ofd90Z77rqyvVXv61wfActfOLwgshJ3tAAAAAAAAhoawHbAwG05pPN4qbDd+T7Lrtsa1VYcnx71gYX01M7oqOfxRjWv3fie576rerd0tl/56snNL63n3XLr/+ZXvTD50XHL3N3vXF+2Z2Jlsa/J11s4xzAAs3K47kotf0ts1dt6UTO7q7RoAAAAAAAD0hbAdsDCdhu2++7v1tfM/k4yMdt5TO5qF+b79lt6uvVDbr0++/ZudX//N13evFzpz1f9pXp8QtgPoiyv+rHn9se9PzvuH5Jw/Tk55Refr3Pihzq8FAAAAAABg0RgbdAPAElcXtttxYzKxIxlb27jeLIy3/oQFt9XSioPqa7d+uvfrL8St/7Gw67d8LKmqpJTu9MP8bbumeX1yR3/6AFjubvpI8/pxF+1/vvOW5Io/7WydWz6dHN/DXXsBAAAAAADoC2E7YGHqwnbJ9DGZh5zZuLbnvvrrmgXhuuXIx9fXxu/t/frt2LMtue59ycT25KDTk/G7p8evfOfC7z01Pn2cLoOxp8XXmGNkAfpj25Xtz12zafrnnla79zZy3XuTR74jGfGfXwAAAAAAAEuZV3uAhVl3QlLGkmpibm3rD+rDdrd8ovH4EY/pWmtNHXRqsu74ZPt1c2sT9w1+57cbP5x87rm9u//kTmG7Qbr7683rjb4uAeiu8bv3B9kbWfOAuWNnvy35wgsa/9zTzMT25O9XJD/8g+SgJr+oAAAAAAAAwKI2MugGgCVuZCxZf2LjWt3OL7d/qf5+xzxn4T2169z31Ndu/GD/+jjQ+D29DdolyS2f6u39ae7ubw66AwC21AT/91l/0tyxYy9MnvLF5IxfTY69aPpxxuuSp301ecGu1mv+64M66xUAAAAAAIBFYaA725VSSpLXJFk9Y/hvqqq6doH3PTHJT8wY2lFV1e8v5J5AE3VHqtWF7W7+aP29Rtd0p6d2jK2rr93wL9MvqA/CTR/p/RpbPpEcd1Hv12Gudnet23V7snpjb3sBWM46OQ42SY541PSjkTN/M7nsTfXXVlPJ9huSdcd2tjYAAAAAAAADNehjZH88yduSVHvf/8BCg3ZJUlXVNaWUM5Pcn5QppVxdVdUHFnpvoIENpyb5t7njdS9i79xSf6/DHt6Vltpy8On1tWbHyvXSrtuTb76us2uPe35y/fvbm1vt6WwNFm7nLe3N23Z1suqIwR5nDDDMJnZ0/56HndN6zl1fFbYDAAAAAABYogZ2jGwpZSTJb+57N8kVSV7SxSVemuSqvfcuSd7axXsDM204pfF4Xdjuhia518PPXXg/7Wq2s92O6/vXR5Jc/e7kvSX5wJHJzpvmf/2Kg5Mzf6P9+RM7578G3THZZrjjE+cmHzouueKdve0HYLnac0/373nU+cnBZzSfs6OD7/MAAAAAAAAsCgML2yV5cpITM72rXZXkdVVVdW17iaqqtid57YyhU0sp53fr/sAMdWG7Xbcke7bOHrvnsmTPvY3nn/iTychod3tr5cw3Nx6/59L+9XDb55KLf2p+16w+Mll9VLL2mOTYi5ILPjO9U98Ldidrj2t9/fX/0FmvLNxlv9l6zj47bky++vLpY40B6K4r/qz79xxbk1zw2eZzLvnF6eNkAQAAAAAAWHIGGbZ78Yznl1RV9cFuL7D32NhLZgy9qNtrAKkPc8IFfwAAIABJREFU2yXJfVfOfv/6f6qfu3pTd/qZj2a72239QX96uPrd85s/ujq58NbkwluS592QPO79+4+tG12ZPO+65Mer6ccZv9r1dlmg2z47/2uEIwG6a3K8d/devTE58onN59x1SfM6AAAAAAAAi9Igw3ZPn/H8r3q4zr57lyTP7OE6sHytPTYZWdm4duBRsnVHyybJhgd2r6d2rW+y5oFBwV65+l3zm9+s5wPt3NJ4fPWR81uT7hldM/9rrvv77vcBsJzturW39z/mec3r/foZAwAAAAAAgK4aSNiulHJ8kiNmDH20h8vNvPeRpZRje7gWLE8jo/UBsAPDdduvrb/P5h/uWktt2/SU+trk9t6vP7l7/tcc/8L25x7x6Mbj43fPf10WrqqSyZ2D7gKAdv4tLqXz+x/z3Ob1+exYOrkr+davJR9/RPKhE/c/PvzA5PMXTR9HDwAAAAAAQF8Mame7s/a+rZJcVVXVTb1aqKqqG5PM3Dri7F6tBcta3VGyl75x//M9W5M7vtR43sbHJms3d7+vVlasr6994cd6v/7nL5rf/NNelTz49e3PX39S4/GpPfNbl+4QtANYHLZ+v7f3X39Ccv6n6+s3fii5/v2t71NVyecuTL7z29NHz26/dv9j29XJDf+cfOapAncAAAAAAAB9MjagdTfOeH5zH9a7OcnJe587OxF6oS5sN9PNH6+vHXVB93qZr1Ubk923N65N7kpGV/dm3a1XJDe32Njz6ZckZTQZW5esOz4ZWTG/NZodWXrvd5ODz5jf/ViY2z4/6A4ASJKr/qr3a2w6Pzn0Ycnd32hcv/xPkuOe3/weWy9Ptnys+Zyp3ckVf5Yc+fjO+gQAAAAAAKBtg9rZ7tAZz2/pw3oz1zikD+vB8tMs1DU1Of32rq/Vz1k9wBxsXdAumQ6k9cpdl7Sec9g5yaFnJRtOnn/QLklWH9Vk/ZoX/+mdbVe2ngNAH1Stp5zwEwtfptnPN3d+tfX1zX52mu+9AAAAAAAAWLBBhe1W9rmHmWus6sN6sPwc8ej62tSu6bc7mpwYvfnp3e2nWyZ39e7e93yreX3zMxe+RrMdB6d6+LHRWC+/ngBo39R48/rIita7zrXj6Gc06WF3sv265tff3uaOqNuuar8nAAAAAAAAOjaosN2OGc831s7qnplr7KidBXRu3bH1tW3XJrtuT657b/2c9Sd1vaW2Hf6o+tonz+vNmndcnHz3bc3nnPvuha9TSpMevrTw+zM/l75p0B0AkCSTO+trIyuSx/5TsvLgha9z6s8na4+rr3/ohOTe7zeuXf/PyZV/0f5a3/jVebUGAAAAAADA/A0qbDfzWNfj+7DezDVu7cN6sPw0O0b28j9OrvrL+voDf6b7/czH6Orm9Z09OO36W29oXn/hnmR1l7LIhz288fhVf9Wd+9Oe8XuSSXlvgEVhoiZst/G85MLbkmOe0511RlYkT/hQ8zn/+aK5Y1WVfOPV81vre29Ppibndw0AAAAAAADzMqiw3b5zjkqS40spJ/dqoVLKA5Oc0GBtoJtWHFRfu+ey5NbPdnZtPxx1fvP65X/c3fWqqeS2/1dfP/KJychY99ab2tO9e9G527846A4A2Gdye+PxY5+frDyku2utaLFD3t1fnzu2/brWR8w2cttn538NAAAAAAAAbRtU2O5bScaTVHvf79LWEQ09b8bzPUm+2cO1YPlafWR9rZpM9mytrx/1pO73Mx8P/Onm9S3/3t31Jncl1UR9vdufj7owY+lioI/Wmv0dAKC/xu9uPL7y0O6vte6E5kfJNtLp94yr/trudgAAAAAAAD00kLBdVVXjSf5fpne2K0n+RyllXbfX2XvP12Q61Fcl+dzetYFe2PzMxuN3fS2588v11216am/6adfaY+qPWk2S3Xd1d72JFkeJnvLy7q532i83Hq8m7HrXT5f9+qA7ACCZPqJ1952Na6sO6/56pSQP/5/N5xz4s8FkzTG3rVz33uRfNid77uvsegAAAAAAAJoa1M52SfK+vW+rJBuTvL0Ha7wtyZGZDvQlyXt7sAawzzE/Mv9rHv6/ktGV3e9lvp7w0frajuu7u9bNTdZ62lea7xLYibXH1teu+ZvurkVjd38zue+KxrW1xw5+d0eA5WRyRzJV8/s3Kw/vzZrHPq95/Yo/n/3+fT+on/uw32t+r123Jd9+S3t9AQAAAAAAMC+DDNu9N8mWvc9LkpeXUl7frZuXUl6b5BXZf1TtrRG2g94aXTP/a1Ye3P0+OjHSx8DfrZ+tr63Z3P31xtbW127+ePfXY66r/qq+trIHuygBUK9uV7ukNzvbteO6981+f+v3G88rY8mGU1rf73stAnkAAAAAAAB0ZGBhu73Hub4u00G7au/bt5RS/r6Ucmin9y2lHFJKeW+St864b5Xk9Y6QhR5rdhRr7TWP7H4fnWj14vpdlyTj93ZnrWqyvtaLsN2GU+trE9u7vx5z/eB/19fu+Vb2b8AKQM+NNzkevpcB6Ic0OU78vitnvz+2rvG8aiLZ9NTu9QQAAAAAAMC8DHJnu1RV9TdJPpTZgbvnJ7milPL2Ukob2zZMK6WcXEp5e5Irkrwg+5MLVZKPVFX17m72DjRw8IPmf81Bp3W/j06taLLL3scfkfzTIcmnnpCM37Owda79u/pa6UHoqtkxvXd8qfvrMT8n/dSgOwBYXnY3C9t1/Ds/rZ38M/W1Pfck3/md6edVlVz2G/Vzx9Ykh5zV3d4AAAAAAABoy0DDdnv9RJKvZXbg7rAkr07y/VLKjaWUD5RS3lpKeU0p5b/tffxKKeW3Sin/XEq5Icnle685/IB7fT3JiwfwcQGtbP7h3oTLOvXIP2s957bPJV98YedrXPu++tppr+r8vq2c9dbG43vuSfbc17t1aW3jeQsPcALQvjv+s/H4ioOTkbHerbv2mOSCz9bXv/X65OaPJdf9QzJVsyH30U+ffvuMbySbn9V8vakmO+kCAAAAAADQkR6+mtSeqqq2lVIuSPLuJD+S6ZBcsn9nus1Jnrv3UWdmWmfm9R9K8pKqqrZ1rWGge1YeMugOZhtd0968Lf8+vStOq6NnG7n+H+prY22u34nRtfW1LZ9IjvvR3q1Nc6Nrkru/PuguAJaPu2r+zV11eO/XPvJx0//uT+5sXL/+H5OdW+qv3/ezSinJEz6SvK/J707defF0oBsAAAAAAICuWQw726WqqvuqqvrRTO9MtzP7d6bb98jesUaPHDC3JNmV5H9UVfUjVVVt7dfHAczThlMH3cFsB82jnx3Xd7bGtqvra738fDS7d7Oe6L31Jw26A4DlZdURjcf78f2wjDQ/Anbb1ck9l9bXZ/6sUsr0bnx1tl83//4AAAAAAABoalGE7fapquqPkhyf5K1J7snsUF1V85g555691x5fVdXv97t/IMkZr21/7nEX9a6PThx0evtzP/aw5NPnJ9e/f35r3HNZfW3zM+d3r/k46kn1tbrddei5Las35C93/7+87syn5jVnPT1vOeNJ+cADzsiesqi+PQMMl7suaTzebBfYbjr5ZfW127/YfGe7435s9vunv6Z+rmPiAQAAAAAAum7RvZpfVdWdVVW9McmmJI9P8sYkH0/y7SQ3J9m997Fl79i/J3lTkickObqqqjdWVXXHIHoHkpz9O0kZbW/uwfMIt/VDKcnpv9L+/Fv/I/nCjyXX/WN78y//3/W1016VrN7Y/trzNbYmWXdC49r3fq9361LrzpVr8oennZdvbPtS7l25JtvHVmXLmoPyqU2n5K9PfMSg2wMYTtuvqz+6+6SX9KeHk16arD22ca2arL/u4f8zOeyc2WMPfn39/K++fN6tAQAAAAAA0NzYoBuoU1XVniRf2PsAlpInfSL5zAWD7qIza4+f/zVXvCM5/sfamNckbLfxMfNfd74OOTPZfu3c8YltvV+bOS459AHZPraqYe1bhx6de1asziF7dvW5K4Ah1ywg36+d7UpJHvKG5Cs/O49rxpJTfr7xvQ57eP1ufTu3JGuO7qxPAAAAAAAA5lh0O9sBQ6CdF3XPfnvv++hEJy9I3/2N1nMmdyVbL6+vr940/3Xna3J3k5pQV7/dsPbgpvUb1xzUp04AlpFm37PX9OF78T6r5/nzRjWRjNT8nlSze91Vs4sfAAAAAAAAHRG2A7rvoAcl609qPuekn+pPL/O16cnJSOPdxmrt2Zrc8MGkqurnTOxofo8jzp3fmp3Y+Nj62uTO3q+/nB0+9893fKT5cctVKb3qBmD5avb9bvOz+tfHpvPnN3/9A+trD/jh+tp9V85vHQAAAAAAAJoStgO6r5Tk8R+q363tEf87WX1Ef3tq18qDk8f/y/yPkvv8hcmlb6ivT2yvr537nvrdarrpuOfX1yaE7XqqQbBuvMWfeRVhO4CuqwvbrdqYHHx6//oYW5cc8tD25z+kyc8YD/yZ+tp3f7v9NQAAAAAAAGipD+kOYFk65CHJ865P7vxactclyR1fSg59aHLKK5IV6wfdXXObn5786B3TPU/cl3zuee1d9923JQ/678mqw+fWbvts/XVHPbGTLudvbE19bcoxsj3VYGfDVjvbTfWqF4DlrC5sd8rP9bePZHonvXsubW/uygY/W+wzMpqc/LLkyr+YW9t12/TOu3ZLBQAAAAAA6AphO6B3RlYkGx89/TjtFwbdzfyMrZk+4m1yHiG0aiq5/T+TY549t3bfFfXXrTh4/v11YmR1fc3Odr01ftfcIcfIAvRf3fe70SaB9F5Zecg85rb4WWH1UfW1nVuStZvbXwsAAAAAAIBajpEFaGZ0dbJmHi9QT9zXeLyarL+m1Qvo3WJnu8GY3JVsv37OcMuwXa/6AVjO6na2G0TY7qjz25s3ti45/FHN52x8XH1tYlv7PQEAAAAAANCUsB1AK0/4cPtzG4SqktTvpLNiHrvaLFSzIMH43f3rY7nZdnUaRefGR5pvLmtnO4AeuPfbjcebBdJ75bCHJ6e22Pm3jCSP+NPp8H/Te51TX7v9C/PvDQAAAAAAgIYcIwvQymEPT553Q/KN1yQ3/1uy6anJDf/UeO63Xpc8+LVzx+t20tn05O712UoZm37RvpqaW/v+H/e3l+Wk5gjh1jvbCdsB9M0gdrYrJXn4nyTHPC+59bNzd8ddvSnZ/PTk0LNb36tZ/1/+6eSB/3VBrQIAAAAAADBN2A6gHWuPSc573/73/+2s5J5L279+MRxbV0pSViTV7rm1bVf3r4/lZvt1DYfHRx0jC9BXe2qOek+mA+mDUEqy6YLpx0K02vlux43TP8sAAAAAAACwII6RBejEnq2Nx8fWNx6f3FEzf213+mnXVIOgXVLfNws3sW3O0GRKJkvzb8FTjpEF6K7xe+pra47uXx+9UEaSDafU13ff2b9eAAAAAAAAhpiwHUAnTvulxuMT25Lxu+eO1+2m0+9j6zY/s/H4tqv628dyMjF3V8NWR8gmjpEF6Lq64HuSbDi5f330ypm/UV+baPKxAwAAAAAA0DZhO4BOHPaI+toX/8vcsS0fbzy332G7Y57beHz8rv72sZxc+7dzhtoK28naAXTX5X9SX+v39+NeOP6F9bVr/qZ/fQAAAAAAAAwxYTuATow1eVF+y78ne+YeHdpQv1/cb7be9hv618dy0uDoPjvbAQzAzR+rrw1D2K6UZHR149pt/9HfXgAAAAAAAIaUsB1AJ9a3OG5u1y2z3x9b13je7tu600+7mvW94/r+9bGcHHLmnKHdo2MtL6t60QvAcja6skltCMJ2STK5q/H4ikP72wcAAAAAAMCQErYD6MTKg5Ojzq+vT+zY/7yqkontjecd9aTu9tXKET9UX5vc2b8+lpM9984dausY2QN2tqumutURwPK09fLG4+uOn94VbhisO7Hx+J0X+z4CAAAAAADQBcJ2AJ167Pvra9//g/3Pp8br560+qnv9tKM0+Wd/QtiuJ+797pyhdo6RnTrwGNm63YoAaG3nlvraWb/Tvz567Yz/UV/7RpMaAAAAAAAAbRm6sF0p5eGllItKKc8upbQ45xFgAVYeUl+75m/2P9/e5HjWQRxbt+rwxuN2tuu+8XsaDu9ua2e7Awa2XdWFhgCWqRv/pb5Wd9T7UtTs54or/0KwHgAAAAAAYIEWbdiulLK6lHLSjEfTZEIp5TmllGuTfCXJPyT5lySXl1K+UEo5ow8tA8tNs13iZtp5U31tzdHd6WU+6l6It3Na9937vYbD7exsVx24s92OJl9HADR3zd/W10ZW9q+PXlt7TH1t4r7kviv61wsAAAAAAMAQGht0A028Oslv7n1+Y5IT6iaWUn4syXuTlL2PmR6T5MullCdWVXVJD/oEaOy9JTn83GRqd/2cxRS2237N9Nvxu5Mr/iy565Lk0IclJ788WX1E//obJlONA4x7Rlp/+50Tthu/qxsdASxP93y7vtb8d3qWlo2PTVYclOzZ2rh++R8l576rvz0BAAAAAAAMkUW7s12S52V/cO6vqqqqGk0qpRya5J3Z/7HMnFftfaxL8oFSyuoe9QrQ2J0XJ3d/Y9BdzDZa80/hZW9Otl6efPr85Fu/ltzwgeTSNyafflKyW9CrIzVhh46Okb33O11oCGAZ2rN1ele3Ou3uVLsUjK5Kzv9Uff3qd08/AAAAAAAA6MiifGWplLImydnZH5z7aJPpr0xy8N65JcnNSf5Xkj9Kcn32B/aOSfKLvegXoCOD2NUuqd/ZLkk+9yPJ3d+cPXbvt5Pr/7G3PQ2rLZ9oODy+Yn3LS+fsbHe1nYgAOnLDB1tMODDdvMQd/shk05Pr6xf/VP96AQAAAAAAGDKLMmyX5Mwko5l+5Wt7VVVfbzL3xdkftLs8yUOqqvqlqqpevfc+X907ryR5ac86BpanQ87s/NqVh3avj3mte1h9bev3Go9//dW96WXYrdjQcHi8Gm956dSB2Y9DzupCQwDL0O1fHHQH/bfh1Ob13Xf2pw8AAAAAAIAhMzboBmqcuPdtleS7dZNKKQ9KcnL2Hxf7pqqq7t1Xr6pqWynllUku3jt0Winl2KqqbuhN28Cy84h3JJ96XGfXbnpKd3tpe90nJ1s+Pr9rJnf0ppdhV001HB5v5xjZA3damtzVjY4Alp+7vtp6zrA55nnJFe+or3/r15K1xyalJBlp8bbsPWq3nbcNrq+bW3efbq5d10u792t37Vm9AwAAAAAAw2yxhu2OmvF8S5N5+xIuJcl9SeacEVVV1VdKKTdm+hjZJHloEmE7oDs2ntf5tQ9+fff6mI+Tfzb5xq8MZu3lZuvlDYfH125ueemcsN2Bx/sC0No1f7s8//3cdEHz+pXv7E8fy1Kr4N8ggoMLCBA2DEEu5TBkN8KlbXwM7X4svfja6PjPZ99bAAAAAACaWaxhu7Uznt/XZN6+lEuV5NNVVU3UzPt29oftjltgbwD7lZKc+ebksjfP77ojHp2sPrIXHbW2Yn1y1lund7Wht276cMPh8ZUHJZlseml14Gude+7pTk8Ay8XURPKlnxx0F4NRRgbdwTJWJVWVZGr6v1JhqVmMQcyFBhIXtMPmIglDzvfPpR9/PvMN/fb8a0NYFAAAAID+WKxhu5n/h2xFk3mPmfH8803m3Tnj+UEddQRQZ+0xreccaPVRref00uja1nPomfE2Xgeas7NdMn0srQAFQHvu+NKgOwBYeqqpvW+b/2IILE49DmJ2uitl13fYnMfHNNAwZJc/lnmFS7v8sfTq8zlrPgAAALBULNaw3czd7BomUkopm5KcPGPoP5vcb+bH6f9eAN21+Znzv2Yhx892w+iawa6/HFRVUkYbvlA5XlpvdTNnZ7skmdyVjAlKArRl2zWD7mCwNpya3PeDQXcBAH1U7f/vL7uLsuS0Cv51KUA43+BguztsDnIH1Hl9TB18LIsxKNvTHWXne799bwEAAJaPxRq2u2nv25LkzJo5M9Mtu5N8vcn9DpnxfPsC+gKYa83RyYkvSa55T3vz15+cnPDi3vbUyuGPGuz6y8HUntodQcbXHJVMbml+eaNs+MQOYTuAdu24YdAdDNZj35987KxBdwEAQFscRc8StxiDmI6ib39uP/98OgqX9vJrQ1gUAID5W6xhu0tnPD+slPK0qqr+/YA5P7X3bZXkK1VV7Wlyv5NmPL+lGw0CzHLuu5JDH5Z8/Zdnjx/28GRs/fTzkZXJEY9OTnl5smZT/3ucqZOd7e79XnLw6d3vZVjtqv92M15GWl7e8BjZq/4iefDrF9IVwPJx6RsG3cFgHfrQ5Bnfmh24G12bHHZOpl/Mndr7gu7e5+28nXVd3dt53K/VfQAAgKXBUfQsaT0OYna6K+Vi3mGzb2HIJR6U7dXnc9Z8AGAQFmXYrqqqq0opV2T6mNiS5B2llCdXVXVNkpRSXp1k5hmMH6q7VyllfWYfN3tVD1oGlrtSkgf90vRjKRjrIGx300eE7eZjyydqS+P5/+zdd5xkVZn/8e+pzmF6ch4mAkPOSJYM4ioIKiAmzO4aWVdXXVcU/RlWMaBiREURQQyYkBwEhjggzMBEYHLOMz2d6/z+qO7p6up7Tt1bdau7wuftq19ddc655zxdXV09Uk8/T/b/8BjYRnbNX0m2A4AwOraFX1vO/2Fy9BHSFSWctGYDEv2yJe/FmjgYJYEw4LpsZ2d+jvPsuJIhoz6eeX8tEb6mqM+NbN+XuL8/AAAAAEqEFa3oUbqyJf7FlAwZNXGwIBU2SzEZssgSZWlFDwCxKcpku14/k/R1pf5pO0vSYmPMc5ImSNqvd9xIapd0k2efM3rXSVK3pBcKFC8AlI6GqdGvqfR2fFF173ZOdSqZ9fLAynb8dTAAhNO2Lvxay39JL1rGSKZquKMAcrMvGW8YkyFDJQzGlAwZNXkx1wqbsT+eMXwtxZgom+1ryroPAAAAgNKQ/v8BhjsWIAexJGLGnTiY575DVmGzgMmQsSbKxvS15JRcGvPjaKp61wPFnWz3XaVaxc5V6p8HNZKOlfZlH/T+10F9y1q72bPPxWnrn7PWdhQmXAAoIYlqqWWutGtJ+GuWfl/a+pR05FekSWcVLrZy0b3XOdXp7XyeYoP+oqenNZ+IAKBybLh3uCMAUOn2/Qc9SSJpFCVmQLJokSRDDnlyaYivIVKFzQhnh/oahisRM+LXEulriuu5xrvMAAAAQMno+4Mvik2gFJz+d2nqa4c7ChSJok22s9Z2GmPOl3SnpL6+hUap/2LS+1+t9QdJV7v26G0h+0b1/1eW+woWMACUmmO/Jz1wXrRrtj4hPfha6fwnpNFHFiaucvH854LHx5+mzhB534H1JHa+mFdIAFARdi6Wnrkq/HraFQAAMNCAZFGgBJV6MuSQVdiMkigbcb+oiZhD+bVEfW6E/Zri+v4AAAAAKE68l4A0RZtsJ0nW2tXGmKMkvVvShZJm9E4tlnSztfaPWba4UlJL2v2/xx4kAJSq6qbcrkt2SCtvIdnOx9OS0NaMUGeyPfsWrne2kj1SguooAOC06tbhjgAAAADDiVb0KGWDkvGKIBmSVvTh9i2HRNm8vz8AAADljBay6FfUyXaSZK3tkvTj3o+obpD067S9dsYVFwCUvKbpuV/74teko74aXyzlpsfdQranp0NJ1WTdwrr+OKJzq1Q/IcfAAKACRK0COvqYwsQBAAAAAFHtqy7KG3koQbSiD/c1Ra2wWRaJmDl+LaG+Lzk+N2hFDwCIisp2SFP0yXb5sNa2SWob7jgAoCg1ThvuCMpXt/tXT+eU8yTNy7qFs7JdD7/WAMBr3R3h105+jVQ7snCxAAAAAABQKWhFj1JXrq3oIyWXxpzYGenxzCERM7ZE2bi/lghfk/e5FeFrAVB4/EEM0pR1sh0AAMOie5dzqnPy2dLGEMl2rr+O8CTyAUDFW/MXqXtPuLUTXi2d/JvCxgMAAAAAAIDSQCt6lLJcWtEXOhmykFUp86qwGXMiZlm2oh/q70+p4C8K0I9kOwAA4rb+HudUZ8i/enD+HRKV7QDA7cWvu+dmXymd8HOpfaMkKzVMHqqoAAAAAAAAAKBwaEWPUjagFX2RJEMGzY06bGgfFxS1kky2M8ZMkzRb0hhJIyQZa+2vhjcqAChBM66QVt483FGUn/aNzqnO6rpQWyRdfx3RvimXiACg/FkrbX3cPT/muNR/dGqYNHQxAQAAAAAAAAAAtwGt6KkwitJQMsl2xpgZkq6SdKGkGQFLBiXbGWNOk3Rm793t1trvFS5CAChB09+Ue7Ld9uek0UfGG0+5SHYNGuoyCb3QMkH3bw3XstC6KhHvWS7p/NxjA4Bylezwl5yfdN7QxQIAAAAAAAAAAICyVPTJdsaYhKQvSfqkUmmsQekHrm57WyR9oW/eGHOHtfalAoQJAKVp6oW5X/uPo6RTbpFmXBZfPOVi1+IBdzsSVfrRnBO0pGW81PZCqC2sq7Ld8h9LB34o3wgBoPzsecU9N/NtUssBQxcLAAAAAAAAAAAAylJRN+02xtRIulPSpxWcGOhKsktNWrtI0gPqT9C7ItYAAaDUJaqkA/JI3Hryg4FV3Cre6t8PuPvUmGmpRLsIrHEk2+1YkGtUAFDeFnzBPXfoZ4csDAAAAAAAAAAAAJSvok62k3SDpHN6b1ulkuYelnSNpM8puMpdpj+k3aZ3FABkGnV47td27ZC2PRtfLOXCVA24u3hEtEQ7KUs2+d61kfcDgLK39Un3XHXz0MUBAAAAAAAAAACAslW0yXbGmLMlvU39SXYvSXqVtfZ0a+0XJP0m5FZ/79tS0vHGmPq4YwWAkjbjskHJYZF07YgvlnKRkdSxt7om8hbONrKS1MljDgCSpGSPtPVpaccL/kqrjdOGLiYAAAAAAAAAAACUraJNtpN0de9nI2mlpJOttU9H3cRau1JSX1ZCjaSD4gkPAMpE7aj82uv98yKppzO+eMpB184BdzsT0ZMZk642spK0/q7I+wG0xh1nAAAgAElEQVRA2dm9XPrrHOmu46U7DpPaHFU/p10s+V5TAQAAAAAAAAAAgJCKMtnOGDNG0slKVbWzkj5mrd2Sx5Yvpt0+MJ/YAKAsHf5F6bQ/SdPfLFU1RLu2p11a/M3CxFWKkj2DhnJJtvO2kX32E6nHHQAq2cNvlFpXZl83592FjwUAAAAAAAAAAAAVoSiT7SSdqlRsRtJma+1f8twvPVFvQp57AUD5MUba7w3Sqb+TLtsb/fo1f40/plK1e+mgoc5EdeDSyyd+UKeMPDdwzmarwrTpn5FDA4Cysfslacfz4dZGTSIHAAAAAAAAAAAAHIo12W5y72crKXLr2AC70243x7AfAJS3w6+Jtn7X4sLEUYo6tg4aclW2qzV1Mo5fxd7KdpLUtj5iYBH0tEtde6TutsBKfQAw7KIkHI86onBxAAAAAAAAAAAAoKIUa7LdmLTb22PYL72cRVcM+wFAeZv5FqlmVPj1XTukvx0krf5T4WIqFT2DKwN2uZLtEnUyjgp2Vlkq2wWck7e2jdLNRrq1QbpthPS7RumWaumJ90vJ7vjPA4ChUD9+uCMAAAAAAAAAAABAmSjWZLtdabdHxLDfxLTb22LYDwDK24j9pXMekKZdLDXNkiZfIE06x3/NriXSI2+WNj82NDEWqz0vDxpyV7arVcJV2S5bG9mFX44cmpe10p8mBc+99FPp2U/Gex4A5CPba2Sfo68tbBwAAAAAAAAAAACoKMWabLc57fYB+WxkjKmSdHTaUAH77gFAGRl9lPTqP0oXvSydeYd01j3SGXf6r7E90srfDk18xWrTQwPuJpWlsp2jgl2y78bYE4PPaVuXW3wuO1/0zy//ES1lARSRkMl2NS2FDQMAAAAAAAAAAAAVpViT7Rb0fjaS5hpjpuWx1wWSGntvW0mP5xMYAFS05tnZ1+xaUvg4ilnjwF9ZrkQ7Sao1njayfeOdjoKsibqcwnNa/hP/fE+71L4x3jMBoNCaZw13BAAAAAAAAAAAACgj1cMdQBBr7SJjzFpJU5VKuPuEpKui7mOMSUj6bN+2kp6z1u6ILVAAqDQtIYqN9rQVPg6fjQ9Kj18pta7sH5vyWmnmW6WZVxT+/K49A+66WshKfZXtHG1k+25MPl/avXTwgmSHZJOSySNvvnNHqh3tpoekbU9nX7/9WalxSu7nlbuND0gPvEZKdvaPjTpcmniWtPWpVLLqgR+SxjmqFQKI3/jThjsCAAAAAAAAAAAAlJFirWwnSb/p/WwkfdgYc24Oe3xFUvo72j/NOyoAqHSHftY/v/nhoYkjyIZ7pfvOHJhoJ0nr7pDmvVVacl3hY1j+owF3vcl2xt1G1vaNz3iL+6z2ze65bHo6pPvPkRZfGy7RTpIeep20Z0XuZ5azDfdK9501MNFOknYskJZ8V9oyT1pxk3Tf2dIWiuwC+QvRRnbaG6Sq2sKHAgAAAAAAAAAAgIpRzMl2/ydpl1LFfaok/dkY8/4wFxpjxhljfinpk+ovDrRB0s8LECcAVJbmOdnXJLsLH0eQbMl0i76RqgZXKG2D26z6ku1qEp5ku742stUN7vPW/DFSeANsfEDaNj/6df/6VO5nlrPF3w23rmevtOyHhY0FQMroo4c7AgAAAAAAAAAAAJSZok22s9Zuk/RRpcpWWEn1kn5ojFlmjPmqpAvT1xtjXmWMebsx5teSXpL09t5rjaQeSe+y1maUmwEARFY/IfuaPS8VPo4g6+/yz+9dI7WtK9z5K349aKgrS2W7hKMN7L42snWex3vXkgjBZdj6ZG7Xrbot9zPL2aYHw6995VcFCwOoGCZEZbv68YWPAwAAAAAAAAAAABWlergD8LHW/soYs7+kzymVd2AkzZGUWVbHSHos475Nu+Yz1tq7Cx8xAFSACWdIiTop2eFe091amLO3PJ5qCVs7JtUesHnmwPnMFp5BOrZJjdMKEp5aVw8a8raRTdQ6K9sl+xJJGqe4z+vxfA+y6dmb+7UYrHvPcEcAVJgQyXaTzy98GAAAAAAAAAAAAKgoRVvZro+19vOS3iWpvW+o93N6Ql1fUp1JW2MkdUp6p7X2m0MWMACUu5pm6dRb/WvmvS3+dq3LfyLdfZK08EvSM1dJdx4jbXs2bf5n4fbZ8Xy8cWXhSrarUrWqTLWM41exTU8kGX1U8Oab/5l7YLm0kO3TviX3a8tR24bhjgBAkObZwx0BAAAAAAAAAAAAykzRJ9tJkrX2RkkHS7peqaS7vgwEo4FJdn1jSUm/knSwtXZwTz8AQH6mXSRdstk9v2uRtO2Z+M7raZfmf2zgWOd26bnP9s53SE9/ONxez38uvrhC6EgEF5GtTdRKkoyjFaJNvzP2hODNd76Ye2Ab7nXPjTjAf+1LP8393HK0+NvDHQGATA2ThzsCAAAAAAAAAAAAlKGibiObzlq7StKHjTGfknRq78d+ksZKqpW0RdJGSfMk3Wet3TFcsQJARagfJ9WMlLp2Bs9vfEAae1w8Z63+YyrhLtP6O1Oftz3tb2ubztTEE1OQgMQ6V2W7WlOXCsfRCtEaI1U3997xVAm0ScnEmDu/35uk026Tbva0aNz4gHToZ+I7s9RtenC4IwCQyfYMdwQAAAAAAAAAAAAoQyWTbNfHWrtX0t29HwCA4TThdGntX4Ln/vUpac3t0kFXSdMulhxJZ6HsWOCf79oVfq/2jbnHkU3duEFDXa5ku0Qq2S7hbCMr6djvpu7UT3Sf2dMhVTdEiTIlURecoFhVn/o8533uCnauBMtK1d0a/ZotT0pjj5cclQ0BZJPlZyfg9RgAAAAAAAAAAADIV0m0kQUAFKnDr/bPb5knPfJm6ZZqqX1L4eLwtUTN1L1bWv6TwsTRvWfQkKuyXU1fZTtXG9makdL0S1N3pl3oPrOnLVqMUqoanqsS4Iy3pD4f9VX39VuflHo6o59bjnrapZ0vRL/u7hOk34+Wkl3xxwRAOuzzwx0BAAAAAAAAAAAAyhDJdgCA3I05Rhp1ZLi1f55emBiS3dLib0W75skPSLuWxB/Lsh8NGnK2kU3428gmRx4i1fS2ka1pcZ/Z10o3ii2Pu+fqxvR+Hisd9TX3uqXfj35uOVr0zdyv7dqZ3/VAJctWFXLUEUMTBwAAAAAAAAAAACoKyXYAgPyMOizculwqsO3jSarY+kRuW677R27X+dSMGDSUPdnO0UY2PZGkqtF95ob7wsfXZ90d7rmqtJa0DVNz26OS5Ps4PPfZeOIAKk6W/xtTlUN7bQAAAAAAAAAAACCL6uEOIApjTI2kkySdJmmOpDGSRkiStfbsYQwNACrXmGOlFb8JtzbZIyWqUq0ze9oDk9MC+SoYtW0It0emvWtyu86ncZrUunLAkDPZzvgr21nZtH09SW+2O1qMktS1yz3XMrf/9phj3et2vRj93OHUtUvqCGhlnOySqkdIjVNy2zfX51+6vWtSiY3ZKnUB6FdV556rGy817jd0sQAAAAAAAAAAAKBilESynTGmSdJVkj4saXzmtJSekTDgurdI+n+9d7dJOt5aG7gWAJCj6ZdKz/xnuLWbHpRW/0l65cZUpbsJp0sn3yw1TMz9/Mff5Z5rmCy1rQ+eW3yt1L1HOu77UiKmX4cBSWzuyna1kiRjHJXtbLL/jmONJGnnC+Hj69O9xz1XVd9/u+Ug97q29dLNRjr/KWnscdFjGCptG6V5b5U2PSClP6ZBzn5Qmnh6+L3X/FlqfSWv8CRJt++XStQ8+pvSjMvy3w+oBJseds/N/WgqsRsAAAAAAAAAAACIWdG3kTXGHCFpvqQvSpogby/BQf4qaaykmZKOlnRu3PEBQMXzVV3LdP850rIfpJK9bI+08X7poX/L7/zu3e65i1b5r13+Y+lfn87v/HQ7Fgwa6nQk8vVVtkuEqWwnSXM/HnzmtvlSMmJ1u5d/ETw++8qB942RXvUT/153HS+1B1SMKxYPXyxtvC97op0k3XeG1JrlOdNn+7+kh9/knj/5t9JJvw63l5SqbjfvCmnL4+GvASrV3rXSkm+75w/9n6GLBQAAAAAAAAAAABWlqJPtjDGHSHpI0gEaWMHOKETSnbV2j6Tb0obeGHeMAIA8bZsv7X4p/n1bDk5VrJv1Tv+6lbdIcRQ9dSRzdTmqK9UksrWRzdivutF99uZHs8cXRlXT4LHaMdmvW3dHPOfHbeciactj0a5Z85dw61b9wd/Ct3akNOtt0nE/CH+2TUorfxd+PVCp1v7VPVc3npbMAAAAAAAAAAAAKJiiTbYzxtRL+pukkWnDCyS9R9JsSQcrXJW7P6fdPju2AAEA/ea8J7/rX/5lLGEM0Lkt9XnE/v51bWulZEf+5wW0kJU8bWR7K9u52sgmMxMAmz1fx54IyYrJLvdcT+vgsWyPnyQ9+4nw5w+lHc9Hv2ZtyGS7Pcv9833fr5YDo50f5XsJVKrdnp+/5jlDFwcAAAAAAAAAAAAqTtEm20n6qFLtX/uyDa6TdIy19hfW2hWS2kPu80DvHkbSLGPMhJjjBAAckmcrVtuTZUEOVYqmvDb1eb8QRU07d0bfP1NPW/DWrmS7rJXtMpLtpnra7ToS/QI54pQkTQk4Y9QR2ffsKNI2shvuzeGae6T2zdnXbX3KPTfmOKnlgNTtCadLjdPCn+/7/gBI2bXYPTfj8qGLAwAAAAAAAAAAABWnmJPtPqL+RLvbrbUft9bRo8+jt5XsirShg2OIreQYY2qMMWcYY95hjPlvY8yHjDEXG2NmDndsAMrAiP2lU24p4AE5JNvt/4HU55EHS+NP9a99+OLo+2eKmmxnIraRrffkij9zVfb4+qy6zT3XEvAr0hjpjBBtYvesCB/DUGjfJL30s9yuve8MqXuve37Py/4KdGf8vf92okY65yFp7Inhzt5wT7h1QKVq3yyt+7t7fu5Hhy4WAAAAAAAAAAAAVJyiTLYzxhwiaar6sys+meeW6e+Iz85zr1gYY2YbYy4zxnzDGPOgMWaXMcamfayI6ZzxxpjrJW1QqsrfjZK+Jun7kv4o6RVjzKPGmBClnwDAY8Zl0hVWuniddNHK8MlFUiqhK241aV3Ip17oX7vlMWnvmvzO2/Zs4HDWynaONrKDKttJ0riT3Oe3rffH12fRN91z1Q3B480hfnWu/G2484fK6j+652rH+K/d+aK04T73/LIfuecOu3pwYmTzbOn8x/xnAghnzZ/dc3PeW5jfJwAAAAAAAAAAAECvoky2k3RU72craaG19uU899uRdnukc1WB9VaWu8sYs1WpBMBbJP2XpNMljSjAeRdIWijp3yX5MgtOlvR7Y8xNxpimuOMAUGEaJktN0/2JYUMSx8S025Oyr9/2TH7n9QRXQstW2S7hqmxnA5Lt6j1fhyPZb5D2Te65unGO8fHZ9902P9z5Q8X3/TzgP7Jfv91z/aJvuOdcj6EkHfW17Oc6ki8B9PL9bPpeIwEAAAAAAAAAAIAYFOs7uunv6i+LYb+OtNuNMeyXq6MknSd/4lssjDFnSLpdUnp5HStpvqTbJN0jaUvGZW+V9FvjKrMEAFFM/bfwa1/4ihSUXJarCWdItaP77086TzLBSW/75J1s1x443JWtsp3jV/GgNrKSNPV1nvOD29gOXhccpySppiV4vG6MNO5k/76r/yBtuDdcDEPBkfwoSZr7sRDXh3w8M/m+R3Pem/16m5SSXbmdDfTp3CktvV6a93bpkcukRy5Pvc7uyffvV4qAr8XzlNcOXRwAAAAAAAAAAACoSMWaVFWfdrvDuSq89Gp2u2PYL24dGtjqNi/GmGlKtYitTRt+VNKh1trjrLWXWmvPkzRN0sckpb+r/3pJX44rFgAVbOJZ0dbfdXw855pq6cRfDBxrmCidcov/uoVflDbPy/3ctg2Bw52J6sDxvsp2xtHyMBnURnbWO93nPxui47q17iS0E27wX3vyTdn3v/9cacl12dcNhRW/CR6vGyfVj5NetzjL9Tm2xW2e6Z6rGysd853se3TuzO1sQJI6t0v3nSU9/SFpxU3Sqt9Jq26Vnvsf6a4TpB0LhjvC/Lxyo3tu/DBXVAUAAAAAAAAAAEDZK9Zku/SKa55+bKHNTru9NYb98tEl6V+SfibpA5KOVaqFbIhyN6F9UVJaSSfNk3SOtXZR+iJrbYe19jpJl2Zc/5/GmBkxxgOgEhkjNe8ffv22+c6EtVDmflw69xHpsrbghKfpb5LetGPweLoFV+d+fkACiJWnjey+ynauNrIBle0SVVLz7MHjktT6itSeWbA0g6/aW8tc/7XNs6TLO6VJ5/rXzf+Y1BNHnnwefM+jvoTFlrnSZR1S7/dhkL2r4q222Oegj0lv2iZNv8y9Zu2f4z8XleOVm9ytVju2SC98dWjjiVPQ62KfMBUrAQAAAAAAAAAAgDwVa7Jd37vkRtLR+WxkjBkr6eC0oeX57JenGyW1WGuPtta+z1r7E2vtM9ba2PrFGWMOkJRe+qhT0pXWWmffQGvt7b2x9amTlEfGCQD0ap4Vbf3SHwSPO6q/7TP2BOnYb0vjT5EcleQkSbUjU2tdNj2Ue4JVQLJajzFKOmLfV9nO2UbWEUfNyOBxSdryqD/GHQvdc9XN/mslKVEjTbso+7r1d2ZfU0ibH3bPpT9+VbXSrHe417aujC+mdLWjpWOudc/n29IYlW3TQ1nm/zk0cRTCbs8/4xO17jkAAAAAAAAAAAAgJsWabDdPUl/pirHGmIi9CAd4t7SvbFCrpKfzCSwf1trtvqS3mFwhKb2M0h+ttctCXPf1jPuXGmPqA1cCQFhT/i3a+vV3OSayJNtVNYQ/Y+KZ7rlkl5TsDL/XAIN/pbqq2kkhKtu5ku188Xdl6ZTe0+aeG3mo/9ow5/fZtSTcXoXiexwmZfyTYuyr3Gv3BCT2JHtyiylT41T3nO2O5wxUpvaN+c0Xs27Pz/b4U4cuDgAAAAAAAAAAAFSsoky2s9Zul/RU2tCXjMlW1mgwY8xUSZ9WqpOflXSPDezLV1Yuzrj/izAX9baYfSJtqEnSeXEFBaBCzb5SGndS+PXbnpK6Pa1OXaIk22VrNdi1K/r5ktS6YtBQp6fKXl+yXcLx68356+qgT7hj2LvKPSf5H1tfRcB0LQdnfwz3rg23V6FsuNc9l/l8nPV299plPxo81rHJvf7k3/rjylQ/MXh819Jo+wB99rwibX7Ev8Z2S61ZXiuKle+1ZTL/bAUAAAAAAAAAAEDhFWWyXa/vpt0+UVLAO95uxpiJkv4iabT6SyJ9K57QipMxZpKkI9OGuiVl6Sk4wIMZ9y/INyYAFa52pHTm3dLJv5FGHRHumkWe9pou1RGS7RomSefOc88v/X708yVp5+AWrb7KdjUm1fIwchvZxilSw5Tguef+xx/jlsccwYzyX5fOGOmYb/vXLL0u/H5xs1Za6Uh6G3WkZDIe76o6aczxwetX/0FKZlSZ8z3GIw8JH6ckTcvMj++16cFo+wB9nvr3cOue/VRh4yiUf/23Y8JIVRRkBgAAAAAAAAAAQOEVbbKdtfYWSf/qvWskvdcY87Ax5jTfdcaYJmPMB3uvPUr9Ve3uttZGSTwrRYdl3H/eWtsa4frM7JOQPQUBwKOmWZp5hfTa56QrrHRJlhaGrkQpn90vRVvva+EZY6JTPm1kk65kO0mqn5RbQG3rgseraqPtE6bYrPXEX0gBSY/7VDcGj/uS5LY+OfD+xvuj7++S8DzucbWrReXo6ZA2PhBu7apbpZ5cW2YPoz2O13oS7QAAAAAAAAAAADBEQvaMGzZvkvS4pLG990+R9KAxZoOk5ekLjTE/lHSgpJMk1SmVoGd7P6+V5OkTVzYyswWWB65yy3wHM2KJHgAIoX6Cf37Xouh77ngu2vrGae45m0OSk7WpimkZrV+7fMl2pjfZLrPSWt+W8nQ9d7W6zZZwUuuoYNfuaY2aq2TH8CTAtG92z409IXh8/KnSKzcGz3VsGXi/p8O9f9Msf2yZfEmOPW1Sojnafqg83W2pJNqaEZKMlIyQQLfsemm/N6ZeF2pGFCzEWFU3S53bB4/3tOW1rbVWm7s2qCMZvE9jVZPGVE+QCZNoDAAAAAAAAAAAgLJW1Ml21tqXjTGvk/QnSZPVnzw3WVJ6WR8j6f1pt5W2do2k11lrM94tL0v7Z9xfFfH6lRn3xxpjRltrA97VBIA8zLhCWnmze/7pj0jHfEfal6yWJcGheXa0800i1Yo1qNLb5hyKoCa7BiXaSWHbyAZ/bdZXGW7uR6X5Hx083tPem/jneLxcCSl149xnuZz8G2neW93zHVv8SY2F4ku62f99weMzLpeedMx1ZxSIde0/9sS052tI0y6RFn0zeK6nLVUVEpXLJqW2DdLe1dLeVVJr78feVamx1lVShye5NJtnrkp9SNL0N0sn/ar4K8QFJdpJ0gEfynnLJXsX6Mb139GO7q3edeNqJuo9Uz6pGfWZ/9wGAAAAAAAAAABAJSnqZDtJstY+aYw5RtLPJV3QN5zxecAlSmVlGEn3SHqntXZDwQMtDpkliyKVKrLW7jHGtEtKf6d1pKS8k+2MMRMkjY942Zx8zwVQpI77nj/Zbun3U8lwh34mdT9bNaGmGdFjOOQz0vyPBM+1bZAaIrRq7QxO0thc1xQ4Xmvq9lVIcibb+SrbjTnOPbf+TmnKBcFzy34YPD7Zsd5n5hXSriXSwmuC5x97p3T2fdH3zdeS69xzrnaxNc1SVaPUs3fw3ItflWa+pf++K9nu8M+Hj7FPvefXYts6/zxKX9fuwclzffdbV0lta1KJvENh1W1S7WjpVT8emvNy0bbePTf9jTltuaNrq65f8yV12ewVAbd0bdR3V39eX5lzg+oTDTmdBwAAAAAAAAAAgNJX9Ml2kmSt3Sjp34wxx0r6mKSzlapuF2SnpPskfc9a+9AQhVgsMkvg5NJTq00Dk+3i6iv2H5KujmkvAKUuTPWkVbf1J9tlUz8x3hjW/V2a857we62/J3B4ZWNw29baRN2+2wlnG1lPZTtf7CtvcSfbuVTnmDgy573uZLuN96cShRI1ue2dq82PBI83TPFf17RfKnkw044F/beTPe42nVWN4eIbcI3ncV9/tzT6yOh7ojgku1MJk+nJc3tXSa1pVeq6dgx3lAOt/oN0/A9TlT+L0Zo/u+d8P0seC1qfDpVo16c9uVeLWp/V0SNOzuk8AAAAAAAAAAAAlL6SSLbrY62dL+kdkmSMmS1pP0ljJdVK2iJpo6QXrA3o5VcZMpPt2nPYo03SaM+eAJC/MIkRrSvC73fwJ6PH0HKQe25PhLMlZ9JMc3dwEseenl37bufURtbXNrfD0zW9ZW5wQlnQWBjZqv91bJMackiEzEfDFGnP8sHjQS2D07U6Oq83pOX2+1rU5pLs40sStd3R98PQsDbVzjQzeS79c9u6wNbSRa1jq9S1M1Xhrhj5foabc2vturUrUhFoSdKWHK4BAAAAAAAAAABA+SjKZDtjzAhJs9KGXrLWtqavsda+LOnlIQ2s9HgyNWK9BgCiMUY67H+lhV9yr+mM0MF69NHRYxh3kntuxW+kIz2xZXIkYXUlsleIciXbJX1tZGtHuud8j5srqW7C6e5rfBI10uTzpfV3Bc8HtWUtpKc+HJxoJ0kTz/ZfO+3i4NbG6a0rfcl2uVQHTHj+Gda9J/p+KKyVt0pLvydte8b/XCg2Iw5MJW/uCfHP5t+PkSaeKR3/I6nlwMLHFkXbBvdc/bictuxMdkS+piuHawAAAAAAAAAAAFA+irRPlN4i6dnejycl1fmXo1fmO/O59NTKvCaud/uvl3RYxI+LYjobQDE6/AvS/h/wr1n+sxAbmVTyXlSJKnfCXesr0tq/hd9r1W2Bw52NwR3Pj0lrQWhyaSMrSYd+Nnh8y2PB475ElZaD/Wf5nOD5Hi25Lvd9o3r2U9KyH7jnD/ig//pZb3PPdfcmVnV62n7m2MZSk84JHn/hK7nth8JYdZv06OXS5kdLK9FOko7+pnT2/dkTTvtsfEC69zSpbWNh44rCJqWXfho8N/n8nLftstET5zpsLoWjAQAAAAAAAAAAUC6KNdlunCTT+/GUtXbbMMdTKoo22c5au8la+0KUD0kvxXE2gCJlEtKrfiSdO8+9Zsl3su/TPCv7GpcRB7jnljsSO4Jsmx843FVVHzheY/pzyHNqIytJtWPcc60rB4+t+ZN7vSPOUGpa3HNLhzDZbtE3/PPZkuF88xvuTX1e/4/c93ep9nRr79qd256I37IfD+/5VQ2pNtCTzpXmvCda62yTkJpmSGffG/6a9k3Smtujx1ko255xz9XlVtVOcle2O37E6Tqs6bhI1wAAAAAAAAAAAKAyFGUbWUk7ez9bSWuGM5ASszPj/vgoFxtjmjU42c5TxgcAYtA41T23r+2pp3JdmNaILg1T3HM7ngu/T9OMwAS3rmS7pKZB47VpyXYJR9679bWRlfyxb38+FdOAsX/ltlc2VYO/vn2sTX3kUnkwbtm+Rt/8zgXStNdL3a3uNb7kR5+6se65XUukscEJPxhiUV4PIjOp51/TdKlxv97P0wd+rh0z8OeofUv2BNM+Y9KeQ2NfJW19Mtx1Bf2aIyrQ61eno7JdY1WT82WrI0llOwAAAAAAAAAAgEpWrMl269Nu1w5bFKVnWcb9GYGr3DLXb7PWbs8jHgDIrmm6e852S8keeZPt8jH1QunFrwXPRakqFlRJTlJnzQgpIGmuJtH/q81Z2S5bG9nJ57nnevYGBJOZj51mzLH+s3wSVamEoL2rAiatlOySqgr8qzzZ5Z9v3E8afaR/ja/KYV8bWV/70OocK9tNu1h66YbguVJrV1rOugN+psKqHpFKft2XPLffwGS6xqlSoibano7204EaJvbfPuQz0sMXh7uumJ5/vlimXpjztl3JzsDxGlOrHtMTONdJG1kAAAAAAAAAAICKVqzJdgvTbufRH7DiLMq4v3/E63EHdDMAACAASURBVGdn3H8xj1gAILyTb5bmXRE8t/UJ/7Wz3pH7ueNPkiaeJW28f/Bc5zbJJrMntbQGJZmldDVMlJLrB43XmLRkO0f5JCsra61z3lsR7Yn3STMu67+f7JJW3Rq8duyJqYS5fJx4g3T/ucFzW5+QJpyW3/7ZZKvUdfrfsn8fjZGaZwdXStzdW2Hxha8EXzv6mOwxukz9N/fczoWFf+yQnbXBCax9mmZkVKLLSKarHRl/TGGT7U769cD70y6S9nujtPoP2a99+ZfSib+IHFpBvORp6z3h1Jy3dVW2q03UOauLdtBGFgAAAAAAAAAAoKJFKIsxdKy1SyU9r1QpoyOMMZ4eg0izMOP+EcaYxgjXn5JlPwAojFGHu+cWftl/bVWOFcX6HPLf7rmtT2W/fvmPnVOdJrg6Xe2AynbuX8VZq9u1zA0e794t7V3Xf3/Tw+49xp/sPyOMBs+v6YVfyn//bLI9R0YfEW6f0UcHj6+6TerplGxwpatBLXujqh4RPL7o2vz2RTy6PFUhz3lYumiFdO4/pZNvko76inTAv6eSKEcdXphEOyl8sl3jfhnXGem030uXbJaODtGGtm1j9NjiZq20Y0Hw3PjcE+0kqdOROFdr6lSbqAuc66SNLAAAAAAAAAAAQEUrymS7Xt/r/WwkXTOcgZQKa+16pZIU+1RLivIu5BkZ9/+Rb0wAEErtaPfcjuelak/ecMtBhTt7sydJbd+aR5xTXY7KSLWmP4nD1UZWCpFsV+OL/ZHg24P2GOU/IwzfY7jzhfz3z8aViCNJs94Zfh8b/P3S6KOknZ4zqpvDnxGke0/weKLA7XcRzk5PoV/fc7+gQv4T3tWmu36cdPB/SZMcFSn7bHk0WliFsHeNe87kV5XTV9mu1tQHznU4rgEAAAAAAAAAAEBlKNpkO2vtDZL+rlSy3ZXGmE8Nc0il4k8Z998V5iJjzEGSTkgbapV0d1xBAYBXo6cyWk+bP6Fl2kX5ne2qZiZJXY4kqHTdrc6pzkRwt/aBbWR9le0cyV99Jp3tiSst9u7dnj3O8Z8RRsMk95yvKlhckp3uucOvDr9Pu6OKV0+H1OV5DCefF/6MQI6kSlclPQytnjb33MiDhy6OdGEr2zXP8s9ne/3sHIKf32xcyaiSNO6kvLZ2VrZLUNkOAAAAAAAAAAAAwYo22a7XW5RKHjOSvmqMucsYc+Ywx1TsfiMp/d35S4wxB4S4LrOP4u+stbybCGDoHPjR4PHObf5Ep2zJJNk4EuIkSetDFPjcNj94fMLp6rLBSWA1aRXLEr7KdjZLZbuDrnLPbXm8//bqP7rXjTvBPRfFXEcs3a1S24Z4znDp2Oyei/L8mPPu4PFdi/xnTH9z+DOCHPb54PHdS6VkV357I3++52/YpLe4hTn3lFuzr5l9pTTxLPf8E+8e/uegL9nxwA/ltXWn4zW61tSpLhFc2c6VoAcAAAAAAAAAAIDKULTJdsaYn0u6TtIuSbuVSrg7R9K9xpgdxpiHjDG3GWN+HuHjhuH8moaCtXaZpBvThmol/dIYRy8sScaYiyRdmTbUKemLBQkQAFymXOCee+mnweNNeSba9XFVd9r6pORLePNVfZr5NmeyXWxtZOvGSiMODJ7re8yS3dKel4PXzLgivmShyee7557/XDxnBPFUFtSZd0Xbq95Toe+5/wker26SqoIrYIXWMtc9t+Lm/PZG/hY6/klUO2Zo4xjA/bqxz4xLs6+pbpLOuMO/Zrifg+s9hZbrxue1dZevsp2zjSx/iwIAAAAAAAAAAFDJPOV8ht2VGthXzar/ncUWSadG3M/07vGevCPLgzFmmoIf98x3+KuNMTMd2+yx1m7xHHO1pIsl9fVdPFmpJMX3WmsXp8VSJ+n9kq7NuP5aa+1Kz/4AEL/qJvfczheCx02IhJMwqhrcc7sWSSMPCZ7b+ID7uuomdXYGJ3KkV7bztZFNZmsjK/lb7HZsk3Yvd8/7HvOofHv5kmXytemf7rmoX58veWr3suDxKmcue3i+ODfcI81+Z/5nIHed24PHfVUxCy1bkmyU535VXaod65bHgufX3z28z8HdS91zaa+lUVlrnZXtakytTCL49wuV7QAAAAAAAAAAACpbMSfbBclS4qckPCJpRoh1UyW94pi7UQMr0Q1grV1jjLlE0l1KVbaTpFMkvWiMmS/pZUkjJR0jKbMkyN8k/W+I+AAgXqOPzuGimJLtxp4grbwleK5jq/u6TvecHXuiutb9LnAudGW7bG1kJalpprT1ieC5ji3eGDX+5Oz7hzXG8/3r3BbfOYP2diRCSdGfU6OPjH6+7/kR1lhPK9849kd+qkekfpYytW8a+lj2yZJsN/ZV0bbzJdv5XkOGQsJTOTKPhOtu2y3rSGiuNXVKmKrAuS7bqaTtcc4DAAAAAAAAAACgvBVtG9leJsaPimKtfVCp6nab04aNpOMkXSrpfA1OtPutpMuttT1DESMADFDTLI05LuJFMb28z3yre65tnXtu7xrnVHfTNGcb2JpE2DayISrbzf2oe+5vc6VnPuGen/aG7PuHVd3kTvDpbpV6CtB60VrpMU/FrerGaPtFXS9Js98d/ZpMDZ72tevvlLr25H8Gctfq+NuHAz8ytHGky1bZ7lBH22OX/T/gntuxINpecds2P3jcV9UzhC7rrlBXm6hTnXEn+bkq4gEAAAAAAAAAAKD8FXOy3awCfMwe0q9gmFlr75B0mKQfSfKU/tHjkt5krb3CWts6JMEBQJBTHNXlXOJqI1ufmXuc5tHL3XMLvhA8PvoofyKHSWsj6/lV7ErWG2DU4f75XYuCxxM1Uu2o7PtHcXRmV/I0vqS/XL38c8l2B8+1HJTbnqOOiLZ+4lm5nZPpyP/nnnv6Q/GcgeisJ+F14hlDFsYg2V77Jp0dbb+WA92Jo23rUomtwyHZI217Knhu+pvz2trXDrY2UafahLtFNK1kAQAAAAAAAAAAKlfRtpG11q4c7hgKwVo7c4jP2yTp340xH1OqlewMSZMktUpaK+lZa62rXS0ADK2m6ZKpkkIX2IyxcGndeKljc/Bc997BVc981caqm7yVj2rSku0SnqSZUG1kqxqyrwnSMC2363x8leFW3Sod/4N4z1txs3su18cl6nXVOZ4z6Nwm99yav6SSjhK0rRxy2591z+X6HCtWvkTTnQuzJ/YWgivRTsr78e/0JETXmFpVG3eiZWeyAJU6AQAAAAAAAAAAUBKKNtkO8bLWdkp6YLjjAACvRI006khp+zPh1u9eGt/Z1c3uZLv2TVLzzIyxDe69akapy1P5qCYRtrJdiDayiWqpZa60a0n2tekaC5BsN2J/91zH1lR1rLiqEUrSxvvdc2mPcSQjD5W2PhFtfRxGefbp2iH17JUSI+I5C+G1rnLPxfW9Lxa+52Dr6uFJttu72j038rC8ts5W2c6X7NxhSbYDAAAAAAAAAACoVMXcRhYAUIkOjNAys8pTSS3yuf/hntv86OCxnjb3+jnv9VZNqjV1+24bT3W+ZJg2sr3nRRblcQ6rpkVqmuWeH8rWi/u/L7frZr0j2vqWubmdk2n8q/3zoas9IhatK6WbjfTwJe41TdOHLp6h4HsOtm8cujjS7XjBPTf19Xlt3eWpPlpr6lRHG1kAAAAAAAAAAAAEINkOAFBc5rxbqp8Ubu2My2M815Ow9tjbpD0ZHbef/1/3+knnqCvpaSObXtnO10Y2bLLdQZ8Ity7d9EujXxPGKb91z218KL5z2rIk/0x5XW77TjxdGndyuLVTL8ztjCBVtdIZd7jnN9wb31nw62mX/jzTv6Zu/JCEkpMxx+d2XZWnGuQT785tz3x07pQWftE93zAxv+191UdN7YB235k6aCMLAAAAAAAAAABQsUi2AwAUn4OuCreuqiG+M7PttfoP/betldb82btXp7dqUsg2sjZEG1kp1Zp19FHh1kpSdVO87VzT1Yx0z730s/jOWf4T/3x1Hs+NsImI9fkl+wzSuJ977uVfxHsW3NbdmX2NqSp8HLmqac792ubZ7rmorarztd7zfYihpa2r+miNqZUxRsaYAVVIw1wLAAAAAAAAAACA8keyHQCg+PiSjtLlk1CVKVEr1U9wz+9Y2H/b10JWkhJVzhaF1aZaibREnYSnjWzoynaSNPHs8GvDPr65aJjsnuvcGt85Cz7vn69qyn3vppCPT9yPoy+Ba52n6h3iFaaKW/uGwseRTfP+weOz35X7nr7n9E5PS9dCSH/NzRTDz56rsl1toi7tdnArWSrbAQAAAAAAAAAAVK7q4Q7AxRjzjhi3s5J2S9opaYOkxdbaCBkMAIAhNfn8cOvirGxnjDTtDe6Kaa/cKB1xjdQ0Xere695n/KmS3Ikcma0J/W1kQ1a2k6T9LpYWXxtu7bSLw+8bVa2nst2OBYU7N93Mt0mJPCqPTTonVf2vu9WzyEjTYmwjKxV3tbRS0NMp/evT0pJv94+d85A04dXR9uncHm9chTLtQmnxtwaOJeqkyRfksefF0iZHu+fuLEnGcbJWeuHL7vn9Lsn7CFd1uvRqdnWJOu3pCbjW04IWAAAAAAAAAAAA5a1ok+0k/VKKUtInklZjzFOSbpR0q7X0ggKAolI3Rpr6emntX/3r4ky2k6Rjvu1vT3rPqdK5j0qbHnSvOe4HkuSsbFeT0ZbQ30Y2wq/B8adIx31fevrDnkVGmnG5dPgXwu+bi0P+W3rx64PHO7ZIu5ZKLQcW9vzjr8/v+poW6cy7Ut9vl5N+JY0+Mr9zMmVLtmtb768cWMlsUrr31dLWJwaO33u6dPb90sQz4z2v5aB498vFkV+RWlf1tri2Uu0Y6dTbpPpxue859yPSMx8PnhvKynbz3uqfnx2i+mAWoSrbGUdlO0tlOwAAAAAAAAAAgEpVzMl2fdwlf3LXLOmM3o+vGmPeZa29uwDnAAByNfk1Q59sV90oHfJp6cWvBc/vXS29/EvplV+596gbI0nqSjqS7RIZle08v+aSUXPOD/yQNOe90vq7pZ0LpXEnal/HeGOkkYdKdWOj7ZmLxunuuWU/ko79lns+jLYsLTxrRuS3v5RKXvSZ9bb8z8iULdnulZukQz4Z/7nlYMfzgxPt+tx3lnRFzH+/UdUY7345xVAnnXab1L5FalsrjTwsv4qOkmQS0shDpJ0vDp5b9kPpqK/kt38YHduklb91z898a+r1LE+uhOjMynZBOmkjCwAAAAAAAAAAULGKPdku/Z006xjPlPluatBamzY3WdI/jDEftdb+IHqIAICCCJMUVohWftnO3TJPalvjnq9JtVEN06JQkozxVLaL0ka2T1WdNO31qY/hUjvGPbdlXv77b3k8/z3CmHyBtP4fg8fHnVSY8zzPBUnxPHblaqieE31mvX1oz/OpH5dfNbtMrja6ha5I2Wfrk/553+tLBKEq2yUcle1oIwsAAAAAAAAAAFCxijnZ7l29n0dI+ryksUolxyUlPS7pKUmrJO2SVCtpjKTDJZ0maVLvtVbSrZLulNQgaZSkQ3rXzNDApLtvG2MWWWvvL+hXBQAIZ+JZ2dcUopXjpPMkeaqHrb/Tf31vVbU4KttFaiNbTCZ5vnfdrfntba2/4uGYY/PbP92BHw5Otpv7sfjOGCDL9zvfx66cJbvi26uqQepp86+Z/c74zis2rudZ+6bhPb/PpHNjOabT2eq7/zU6Mzm6T5cjmRoAAAAAAAAAAADlL0sJleFjrb1R0jxJH1Iq0U6SfipplrX2FGvtx62137LW/sxae7219svW2sskTZP0RkmvKJVE92ZJM6y1P7LWfs1a+w5r7SxJr5P0cu8aq1Ti4bVD+kUCANzqx2df0zQr/nNHHS4ddnVu1x5//b6b7sp2A5PtEr5ku6htZItF/QR30tvOhamEuVxYKz39Yenln7vXnHlXbnsHmfKaVFvedDOukPZ7Y3xnpMv2uGy4pzDnlgObpQrk1qfD75Ut0e7gT0q1o8PvV2oO+XTweOsKac/LhT3bWumZq/xrprw2lqPCVLarc1a2o40sAAAAAAAAAABApSraZDtjTKOk2yXNldQt6S3W2g9Ya1f7rrPWJq21f5J0hKRHlPoarzbGXJmx7g5Jx0h6Nm34CGNMPOUyAACFV9UQ/57GSEd8QZrznujXjjl+301nIkdmG1nPr+Kc2sgWC1/1t03/zG3PHc9Ly653zzfvH679cFgmIb3qx9J5j0vHfV869xHppF9JiUIVBi7h7/ewy5Ko+PRHwm2T7HHPmUTquXD0/4UPqxTVT3DPPfe5wp69c6G01/NP/REHSomqWI5yVadLf41OT7xL53p9BwAAAAAAAAAAQPkr2mQ7SddIOlipd0+/bq39XZSLrbWtki6RtE2p6nXfN8aMz1izW9KblErm63uX9rw84wYAxCVbK9nqpsKdPe6U6NdUN++72eVqUZjZRta4K9slS7WNrDTgsRhkzZ9z23P5j/3zYaohRmUS0rgTpAM/JI0/JbZEn0BVIZ7Pe9cW7vySluVnZevjUtfu7NvsWuSeO+eR1HOh3Pl+djfcW9izs+0//tTYjnIlzKW/RtcZR2U7S2U7AAAAAAAAAACASlWUyXbGmGpJ7+i92yHp67nsY63dIqnvnfkGSVcErHlF0m3Svj5+OWRXAAAK4rDP++cbJhfu7FySOkYcsO+mM9kuo42s8baRLeFKZ+NOds/tXprbnst+6J+PMRFnWDRMlEYe6l/TuX1oYik12drISlLXrvzWjMryvSkX4z3/FO7YXNizsz2/fRUzox4VqrJdcLIdle0AAAAAAAAAAAAqV1Em20k6VdI4pcqUPNlbpS5Xd6fdfoNjzV29n42kaXmcBQCIky/p44QbUi1fC6XlAGn2leHX108cUPWsKxmcbJfZltDfRraEK9s1THTPrfu7tHNx+L16OqS7Tsq+7oB/D79nsTriGv/8poeGJo6SE+JnZd0/sq/p9vyTs3pE+HBKWeM0aeRh7vn5/ykVqurm+rvcc6OOkEYdHttRYV6j6xxtZDuSVLYDAAAAAAAAAACoVMWabDc97fa6PPdan3Z7hmNNes+w0XmeBwCIS6JauqxDmvGWgeNn3CHNeXfhzz/hhvBrD7pqwF1X1aRBle08CYMlnWwnSafc4p77+8Hh91n45VQb0GyaZ4Xfs1jtd4l0jieh7ukPSz3BSUIVLUzy15Pvy95Kdsl3g8erGgqb3FtsfK99S74trfxt/Gd2t0pbn3TPv2Z+rN+DUJXtTHCynetaAAAAAAAAAAAAlL9iTbZL7wvYlOdejb2fjaRJjjXpPauC31UDAAyPqlrplJulK2z/x5QLhuZsE+HXZEa7QVfVpMxku4Svsl2Y1pjFbMT+/vk9K8Lts/R7eYdSUia8WkrUuOe3PDp0sZSMkD8rG+71z29/Nni8KridaNmqbvTPr/lz/GduuN89N+OKVPJ1jFytYNNfo91tZKlsBwAAAAAAAAAAUKmKNdluV9rtQ/Lc69C023sca9LfSWvL8zwAQCUafeSAu502bBvZMq5s13KQf37jA+H26dqZfU1TGVS1SzfqSPfc3nyL/pahsG1N27I8dnVjg8c7twePl6sR+0tVnoS7bI9jLtrWuudGe34ecuSsbJfIXtmuw5GoBwAAAAAAAAAAgPJXrMl2a3o/G0mzjTEn5LHX23s/27R9M01KW7M5j7MAAOXm2JBV1cafMuBumBaFkr+NbLLUk+2qmyRPMqG2P+O/fvdy6eaQbSOP/0HosErCAR90z/XwdwGDhfxZefHr/vkdC4LHJ5wRKZqSV1Uvzb7SPb/5kfAJjmH5ntfTL433LLkr26Un29W5KttZKtsBAAAAAAAAAABUqmJNtntIUpdS75waSdcbY7L0sxrMGHOZpPPU/w7sPY6lx6TdXhH1HABAGZv7YX+FJ0k65+FBbT+dbWQTA9vImnJuIytJx1zrnlv6fWmvo5pV1x7prweEO+PEG4eutfBQmfMe99ya24cujlIR9mdl72rppZ8Hzy35vvu62e+KHlOpO/Y6qXa0e37JdfGet+Ca4PGqeql5ZrxnyVN9NC0hOrMSaZ+OZIds3MmGAAAAAAAAAAAAKAlFmWxnrd0l6W9KJdpZSUdJussYs1/YPYwx75V0o/oT9qykmxzLz0+7/VwuMQMAytiRX/bP148fNNTlqGxXYzKT7cq4jawkmWr//Nq/BI9vcOXHB5j9jvBrS8mYY4PHozw2FSPCz8orNwaPz/+I+5qq4ApnZS1RJR39Dff8y46kxVx17QgeH5tPgWvPcWEq25ng77tVUt22qyBxAQAAAAAAAAAAoLgVZbJdr/+SlN6j6RRJLxpjfmiMOcsY05J5gTHmQGPMB4wxT0n6saRa9Sfa3WCtHdQbrDeB7wz1v0v7cLxfBgCg5E272D/fNGvQUKejsl1mpSR/sl0ZVLab9gb//M7FweO7HOOZjvxqtHhKye7lweMjDxvaOEpBlCpjYZ9b6ZpmRL+mHDTNdM/tWhRfK1nfPl274zljwHE2r8p2krtVOAAAAAAAAAAAAMpblnIzw8da+4ox5t2Sfq1UUqCV1CTp/b0fMsbskrRbqaS6kb2fJe3LXOiraveEpP90HPVp9ScdtsvdahYAUKl8LQyb95eqagcNh65sZ4yMTGAVu7JoU9iUpShtx5aB9/e8Ii3+VqrFbBjTLsotrlIw6nBp8yODx7t2DX0sRS9CYmr7pujbjz0++jXlYPxp7rlkl9T6itQ8O/9zHFXmJEmTz3fPebT17NXd2/6gl9sWa2LtNJ05+nVqrhqhu7f9SUv2Pu9MZq5Jr2yXcFc0vHbVZ1RlqjWqeqyOaj5RJ488Ry+0ztfjux7Qxs7+9tjVpkaz6ufqnDEXaUzN4CqoAAAAAAAAAAAAKC1Fm2wnSdbaW4wxSUk/kdSi/upzfcl0I3s/Bl2atu4uSZdba1sdx/xa0u96b+/xrAMAVLI3rJZuD0gcu+DZwOVtyb2B47VmcGKeM9muHNrIStIb1ki3TwueW3mzdNIvpUSN1Lpauuc0qW1t8NpMp/1BGnlwbGEWndlXBifb7VmeqgRm3FURK07UxNR1d0pTXtN//5Wb/OtNMReDLqCqWum0P0oPXxI8f8cRqZ/v2lH5nbPuDvfcjEsjb9eV7NR1a67WyvZlkqRlbS9o3s57ZHv/55P+Gl3rSbbb0LlGkrS2Y4VeaJ2vu7f9QVu6Ngbuv7J9mZ7f84Q+OePrGlk9JvLXAwAAAAAAAAAAgOJR9O8cWmt/J+kwpRLiejSwal3mRx8jaYWk91prL7DW7vTs/7i19qHej/kF+BIAAOWgcZp0hZUufFk6/a/SG7ek7tc0D1ra6anSVBPQltA4fh0ny6GNrCQ1TpUO+A/3fF9C2YqbwiXaJWqlt/RI+zkSgMpFVYN7bteSoYujJERMtlv4pYH3F/1ffKGUG191u+5Wae3f8j/jBU876KrGyNst2fv8vkS7PkklQyUwp7eOrTPuNrKZNndt8O6/rXuz5u8KSJ4FAAAAAAAAAABASSn6ZDtJstausdZeLmmGpI9JulXSEklblUrA2ytpraRHJV0r6QJJ+1trfz48EQMAylbzLGnq66S6sc4l6S0EM9UHVEoyjgplZVPZTpLqxrnntjyR+rz1yXB7Hf2Nyqg05nvMtj4xdHGUhIg/K1vm9d/ubpN2LHCvbSnj6olh1I6SqtwV3mJ5Lrau9JwfvRLcHVt/l32RQ1NixL7bdYn6Qa2/87EiIwEQAAAAAAAAAAAApaeo28hmstaul/S93g8AAIqSr7Ld5NoZg8aMHMl2tkwq20nS5NdIC68JnnvuM1L7JmnN7eH2mnF5fHEVM19FsZ7gNsUVK5+fle49/vnjr89973KQqE79/Lp+Pjt35L735sekVb+TOja719R7kk4dVrQvzSmc6fX7q7m6Zd/9hKnSQY1HakHrUzntl6kj2R7LPgAAAAAAAAAAABg+FVAWBgCAodVp3cl21WZwnnvC8eu4rCrbjTvRP7/k2+H2OfEXUv2E/OMpBdWeNrLr/jF0cZSEHH5Wts2Xkj3SP452r6kbK004PfewysWx33HPrbhJ6skhiWzxt6V7TpaWePY++pvR981RS9UovWPSRwaNXzrxfRpfMymWM3y/GwAAAAAAAAAAAFAaSqqyHQAApcBV2a4+0RDYMtYYE5grVFbJdsZI0y6W1vwp9z0mny/NvjK2kErC2BOC23Su/evQx1LMbA4/K/M/Lh1xjdTmbvus1zybeu5WuqYZ0ux3Sy//PHh+zV+kGZeG369zu/TsJ7OvG3Nc+D1zlFCV3j/1v3VAw2FqqGocND+2ZoL+Z+Z3tbztRW3oXCNJunfb7drRvTXyWb6qpwAAAAAAAAAAACgNJNsBABAzV/WiWlMXOO5qI5sspzayklTTkn2NT8sh8cRRSkyVe65ja6ryGiTl8LOy+RFpdZbWxTUjcgunHNVPdM9tvC9ast2K30q2J/u6qvrwe+bo/LFv1BHNr/KuqU3U6ZCmo3VIU6oK4oI9T+aUbNdFZTsAAAAAAAAAAICSV3JtZI0xNcaYU4wx7zDGfNwY87/GmM8Pd1wAAPRxVS+qSbiS7SqgjawkTXh1ftdPrMB2niMPds917fRfm+yRtj0jrf1bqpJYOculsp0kLb3OP187Krd9y5Hv57czy3Mx08YHwq1rOTDavjlwJUH7NFeNzOmszmRnTtcBAAAAAAAAAACgeJRMZTtjzKmS/kvSeZKC3hW7JuCa10jqK7OxzVr7X4WLEACAlMiV7RxtKssu2W76m6XlP5W2Ph792knnptrIVpoDPyq9dEPwnC/BqW2j9MC50o4FqfsmIb3qJ9Kc98QfY1Eos5+VYjTxLPfcqlsl+9twLXc7t0urfx/uTFMTbl0eah1J0D7NVblV6XT9bgAAAAAAAAAAAEDpKPrKdsaYJmPMbyQ9JOn1kuolmYwPlxckfoLv6gAAIABJREFUvV3SOyVdZYw5ssDhAgCgLkf1IldSh7OyXdm1kR0hnXV39OsO/Ih0+l+GpKVk0Wme6Z5b+CX33FMf7E+0kySblJ54r7RzcWyhFZVy+1kpRlW10tyr3PNr/xZun2c+Ef7MMMl7eaoxtZGvGZFzZTuS7QAAAAAAAAAAAEpdUSfbGWNaJM2T/j97dx4na17Xh/7zVG9nnX3fGBgGGIYd2RQVQQORmGjQRG80JuqNV3LRJGoSREWNJt5cgyt6oy+D0ShGRWMStgEuhEVWQZB1gGGYfeYwyzlzzszpperJH30O02dO/Z6up6q6uqr7/X69zut017P9urrrqZlXf87nm29P/1BdY41JXdc3J3nDhmO/fawLBIA+ys12/UMdnUJufMc12yXrgbtHfne7Yx7zst0ZtEuSub3lbXe/v//jvdXk9jf133bb60df01Taga+VadQ0VnfQn61BQ3lJmv9NzXgM02y3f+7gUNfSbAcAAAAAADD7pn2M7J8keWIe+g3qSpI/SvL2JL0kvzPAOf4s6414SfINSV4+3iUCwKlK7UXlZrtS2G6HtnU99oeSL/znwfZdOKu53W2n6zSM0SwFEFePJN3j/bfd8ZbkmoZmsd5qcvzOwdc3LVaPbPcKdodznlbedvyOzY9fOZwsH2pxwQmE7QrjvZscnB+u2W6tXk2v7qZTzQ11PAAAAAAAANtvasN2VVV9a5Kvz0NBu/cm+ft1Xd9yYvsjBjzVyWqXKsmTq6o6UNf10bEuFgA2KDfbFcJ2Vf+i2V69Q9u6zn5Kcv5XJ4fetfm+j3lpc+BsN7jga5K73nn640dv6L//J/5t+VzLd/d/vLucfPAHkpv+KFk71n6N7A4XvqC87ZY/T+54W3JRn33u+Ujy/u9J7v2rdtcr3BvHaZhmuwNzZwx9vdV6NUvCdgAAAAAAADNrmsfI/tiGjz+e5BtOBu3aqOv6jiR3nfi0k+SaMawNAIpKzXYLrZvtdmjYrqqS571hveGuZPGc5GmvSp70s5Nb17R6zMvK29YeOPXzG343+fSryvvf86H+j3/wpckNrxG0o9n83uTql5a3v+PFyZHrT31s+e7kbc9vH7RLMplmu/7jvZscmBuu2S4pvz8AAAAAAAAwG6ay2a6qqouTPGXDQy+r6/qB0v4D+HSSC058fHWSD45wLgBo1LrZbreNkU2ShQPJ039p/Q/N5vaWt93xtuSyb3ro8y/+webnO3pDcuBRD33eXUlu+uPh18fusv+K8rbecnLz65JrX/7QY7e9MVm9b7hrVe3Ddt2622r/STfbld4fAAAAAAAAmA3T2mz3nBN/10luruu6z+y0Vu7Z8PG5I54LABqVmotKoY7SGNkd22xHOweuKm87+rlTP7/9zZuf78bXnvr58l3J2v3t18Xu1PTzmCT3P+xn8iM/PMLF2oft2jbHLRRC0E32zx1sfcxJmu0AAAAAAABm27SG7S7a8PFHx3C+oxs+PjCG8wFA0WrLZrtOqdmuFrYjyRmPLW/78L9I2v6cHL/z1M8fPop2pyiEWBnRxX8jWTy7vP2G//TQz9QX/kty/K4RLjZE2K4+3mr/YZrt5qq57O8MF7grvT8AAAAAAAAwG6b1t5Bnbvj4yBjOtzFg1+43cADQ0kpvpe/ji53Fvo9XhbfjHT1GlsFVVXLG48rb3/Hi9b+v//XBznf9r66Pjj3p8789/Nqm1d5Lk+f83navYmdaOCN5wdub9/mj/es/j+/9rtGuNcQY2bbNcaUQ9GYOzA83SlazHQAAAAAAwGyb3+4FFNy74eMzi3sN7pINH99T3AsAxmClZbNdVQiU9IyR5aT9j0yOfLr/ttvfmKw9mHz6VYOf79C7kotesP7xp/59eb+/+dFkft/g550GncVk3+XrQa2/+Af997ns7yTP+I31VsD/cXXS3aHtflvl7Ccn1/xo8qn/t7zPh/7pGC7UPmy33HaMbCEEvZkDc2fkztza+riVun8YGwAAAAAAgNkwrWG7Qxs+vnaUE1VVtZTkKRseumWU8wHAZkrNRaVxhVVxjKxmO05YONC8/eY/SY5+fvDz3fCa9bDdZiNoz3rCzh3HuvfiEx8ItQ5lz4Vbf41hmu3ajpGthg/bDUOzHQAAAAAAwGyb1t+efvjE31WSK6uqapidtqmXJDn5W7S1JO8bZWEAsJlSs91CqdmuOEZWCIgTLn5R8/YHbm53vht/PznymaQp+LPvsp0btGN0l3zjeM6zdO54znNCmzDbfLWQTjU31HWGDtsV3h8AAAAAAACYDVP5G9S6rr+Q5HMbHnr5MOc50Wr3ipOnTfLBuq6Pjbg8AGg0tmY7YTtOeuQ/bN5+0+van/NNz0iuf3V5+7N+u/052T3OvCZ5wk+Odo4rvys5/7njWc8JbcJspdHegzgwd+ZQx2m2AwAAAAAAmG1TGbY74TUn/q6SfGdVVd/d5uCqqjpJfivJNRsebviNMgCMx2oh7FEK23UKoxKNkeXLOvPN2+/9cPP2ftbuTz7yI+Xt+x/R/pzsLtf88GjHP+EVm+/T0nJv8DGypXvyIDTbAQAAAAAA7E7THLb75SR3Zb2Rrkry21VV/duqqvZtdmBVVY9Pcl2Sf3Di+DrrTXl/uHXLBYCkW3ezVq/13bZkjCyzZGG4MBG7yNze0Y5fPHs869igTXPcaM12Q4btNNsBAAAAAADMtKkN29V1/UCS707Sy3pYrpPkXyW5vaqq1yZ56cb9q6r6+1VV/URVVe9K8rEkX5f1kF6VZDnJd9R1LbUAwJZarVeK29qOke0J27HRec+Z7PX2XjzZ622b/q8/BtBZGP7Ys5+a7LlgfGs5Yblu02y3OPR1Ds4PN0a21HwKAAAAAADAbJjasF2S1HX95qyH6k4G7pLkYJK/l2Tj3LMqyR8k+akkX5lTv661JN9b1/UQ89UAoJ2m1qKFUrNdVWi2M0aWjZ75m5O71tUv3XwfSJLnvbH9MXN7k6f+wvjXknbNcaV78iA02wEAAAAAAOxOUx22S5K6rn8ryQuzPlK2Sk6p+ak3/Kke9niV5EtJXljX9Wsns1oAdrumIEXbZjtjZDnFWU9I/uZfTeZal79kMtdh9l3youRFLf5NyxN/OnnRXyYXPX9LltNqjGzhnjyI4cN25fZTAAAAAAAApt/Uh+2SpK7r/z/Jo5P8yyQ356HxsBv/ZMPHdyf5mSRX1XX99okvGIBda6VhROBiqdmuGLbTbMfDnPHYyVxnft9krjMVhFpHds5TB9/32lckZ16zZUtZaTFGdqEafozs0GE7Y2QBAAAAAABm2vx2L2BQdV0fS/ILSX6hqqrHJHluksuTnJtkMestdncm+YskH67r2m9OAZi4YZrtOqUxskJAPNzcnslc58wnTOY67CAPL6Au7ba1/9ZnuTd42G6UZrvFzlKWqj1ZbhHuS4yRBQAAAAAAmHUzE7bbqK7r65Ncv93rAICHa2otKrUoFZvt5MbZDnN7k4UD270KZs1X/2nyrm/ZfL+q//1uXNqMaS21jQ7qwPwZWV5tGbbTbAcAAAAAADDTZmKMLADMitVCa9FCtVhssCuF7XrGyNLPgau29vzP+P+29vzTQJB1/C7/5uSSb9zuVbQaIztKs12SHJg7s/Uxmu0AAAAAAABmm7AdAIxRqbWoqUGpMkaWNhbP3trzz+/d2vNPna1tWttVrvmXQxw03ue/1RjZUZvt5g62PmZVsx0AAAAAAMBME7YDgDEqtRYtdPqPkE2MkaWlJ75yuOMKoc7THHzMcOeHM69NqrltXUKb5jjNdgAAAAAAALQ1v90LaFKtV/08IcmTk1yR5Pwke5PUSR5McleSm5J8NMknaqkEALbZSr3S9/HGZrtS2M4YWfq58PnDHbfnwmTfFcnd7y/vc/Dq5KwnDXd+2HNecvnfTW76421bQqldtJ/Rm+3OaH1Mm/UBAAAAAAAwfaYybFdV1dck+f4kfzPJoJUR91ZV9fokv1XX9bu3bHEA0KDUWtTUoNQpFM0aI0tf8/uSv/WZ5H8+tt1xdZ08/7rkuuckhz95+vYDj06+/l1JZawqI3j2a1qG7cZ7n2vTHNfUODqIg0M12/UPZAMAAAAAADAbpipsV1XV45O8OsnXnHyoxeHnJPnOJN9ZVdXbk7y0ruvrx7xEAGhUai1qbLYrhJt6tWY7Cs4YctTrwhnJiz+RdFeS3vH1x+o66Swm83vHt76ZItQ6VvP7k0u+MbntDdty+eX6+MD7jtpst3/uYOtjNNsBAAAAAADMtv5VOtugqqq/l+QDWQ/aVSf+1H3+nNRv28njnp/kL6uqesmk1g8AyXDNdpVmOybhmh956OO5xfXg3cIZyeKZOzhoV/h3G4/8zskug4lZ6bUI243abDc/TLOdsB0AAAAAAMAsm4qwXVVV35bkD5Lsy6khu5PhuSQ5lOT6JO/Leijvs0m+tGGfjcclyf4kr62q6lsm81UAQLJSaFVqDtv1DwQJ29HojMcNvm81nzzi27duLdNqY8DwpPkDySV/a8MDxuZur/E+/23GtC6M2Gx3YO6M1sf00k23XhvpugAAAAAAAGyfbQ/bVVX12CSvObGWjSG7I0l+KcmLk5xX1/VFdV1fU9f1V9Z1/ey6rh9X1/WFSc5P8k1JfiXJ/Tk1dDef5D9XVXX1pL8uAHanYrPdEGNk6xgjS4MXfnCw/TpLyXP/a7Lv0q1dzzR64k+vjzQ9aeGM5Hmv38FNfrtbt15LN4MH2ZpC0IM4MNe+2S7RbgcAAAAAADDL5rd7AUl+LeuNdidDdr0kP5PkP9R1fXSzg+u6vjvJ65O8vqqqn0jyI0lekYdqMg4k+dUkLxr/0gHgVKVWpYWGcYXFMbK1ZjsaLBxIrvyu5MbfK+/zvDckF3xNMr9/cuuaJvN718N1R29IHrglOfdZydxoASsGsE33ruUWI2ST5hD0IA7MHRzquJV6OXuzS1+TAAAAAAAAM25bm+2qqvqqJC/IQ0G7+5O8sK7rnx4kaPdwdV3fX9f1K7MerDuWh0bKfkNVVV85pmUDQNFK3b7ZrmOMLMNaPKu8rbOYXPzC3Ru02+jAo9ZDh/2Cdpd98+TXs9Nd+LzB9z3/uWO7bNvGuFGb7fZ2hnttabYDAAAAAACYXds9RvalJ/4+Ofr1++u6ftuoJ63r+q1Jvn/DeZPkB0Y9LwBsZrU0RrYh1FEaI9szRpbNXPj8hm0vSKrt/k+9GXDND/d//En/ZrLr2Eke9T1JvxDxVd/bZ99/3H/fR373QJc6unYkHzry7rz1nv+Wd9z3hlbLHLXZrnTv3szb7v3vuX35Zu2lAAAAAAAAM2jbfgNbVdVSkm/KehiuTvK6uq7/cFznr+v6tUlel/Xf3lVJ/nZVVeUZfgAwBsM02xkjy9AufXFy+bee/vjS+clTfn7y65lFZz81eewPnfrYOV+RPOb/3p717AR7zkue9h9OfezAo5In/OTp+y6dkzz9l059bP+VyRN/atPLfP7BT+cnbvgn+U+3/0L+9NDv5Lp7XtdqmaM22w3rnfe9Mf/mxpflv3/p993nAQAAAAAAZsz8Nl772UkOnPi4TvKqLbjGf0jykhMfH0jynCT/awuuAwBJyuMBG5vtimNkNduxic5C8lWvTW7/R8mhdyfdB5MzH59c8uJk36XbvbrZUFXJ034xuezvJHe9Kznjcckl35gsHNj8WMoe98+T874qufOtyd7L1oOhS+f23/exP5ic95zkjrckey9d//ndc17j6eu6zn+67ReyXB8feomjNtuN6s33/EmesP/puWrfNdu6DgAAAAAAAAa3nWG755z4u07yqbqu3zfuC9R1/b6qqj6Z5PEbrilsB8CWKTXbLTSUqxab7aLxiAF05teDTJe+eLtXMruqKrnw69b/MD7nPXP9zyDOfcb6nwEdWr0j9659aciFrRtHs12Vqu+9+uz583Kse3/xPeGkzzzwMWE7AAAAAACAGbJtY2STXLvh4/ds4XXeXbgmAIxdt17r+/h8tVA8pqoKzXbGCwL09UD36EjHX7p05VjCdt92wff1ffyF57wkj9z7mE2Pf6B3bOQ1AAAAAAAAMDnbGba7asPH79/C62w891XFvQBgDLp1t+/jc9Vc8ZiOMbIAE1Olyt845++O5VxfcfCrc/7CRac8dsHCJXnawa/K15/zLZnb1iJxAAAAAAAAxm07f/tz4YaPv7iF19l47ouKewHAGJSa7eaq8ltuaYxszxhZgILy/fGypStTpZOLl67IZUtX5q6V23LT8g2p614uXLw0zzrjebn2wNPHsooD82fkh6/4+bzlnj/NLctfyBV7Hp2vO/ubcmD+jFw7/7T84OU/nfcefmved+Ttrb8OAAAAAAAAps92hu3O3fDxfVt4nZPnrpKcs4XXAYB0U2i2S7nZzhhZgHaa7o4/csX/M5YRsYM6Y/6svOSC7+m77ep91+bqfdfmgd6xfOzoB07bXgvbAQAAAAAAzJTtHCO78TdgWxm2O7zh4z1beB0AGLLZzhhZgHZ2RkhNphoAAAAAAGC2TEvYbnULr7Mx9bCwhdcBgHTrQrNd1dBsV3g71ngE0N+s3R9LoeqdEhoEAAAAAADYLbYzbAcAO045bNfQbFcaI6vZDqCvpohaOdi2nUr3eWE7AAAAAACAWSJsBwBjUtd1uimMkU252a5TarYzXxCgv8b74/SF7aZvRQAAAAAAAAxD2A4AxqTX0ETXPEa2fwyjp/EIoLVCWei2ms62PQAAAAAAANoqz7SbjJMpgmdXVXXlFl3joi06LwCcolv3b7VLjJEFGKem8auzFGwzRhYAAAAAAGC2bHfYLlmfqvTaLb5GHdObANhi3bpb3NbcbGeMLEA7szVGtrQmYTsAAAAAAIDZMg1hu0kE4fwWC4At10252a7T8JZbamESwgDob+aidqVFuc0DAAAAAADMlGkI2yV+zQTADjB8s50xsgBtzF4YWagaAAAAAABgJ9jOsN1NEbIDYAfp1uVmu7mq/JbbqYyRBWhntrrtSqFq/zsEAAAAAAAwW7YtbFfX9ZXbdW0A2Aq9MTfb9TTbAfTVHLWbnbCdZjsAAAAAAIDZ0r9KBwBorZumsF05314V3o6FMADaq6rpC9sBAAAAAACwMwjbAcCYNI6RTUOzXSEYImwHUGDMNgAAAAAAANtA2A4AxqQ75jGydW2MLEA/pTDyNI6QTYyRBQAAAAAA2CmE7QBgTBqb7RrGyHaMkQUYk+kM25XW5T4PAAAAAAAwW4TtAGBM1hrDdsbIAoxLudluOhVu83GbBwAAAAAAmC3CdgAwJt00jJFNudmuNF6wZ4wsQF+zF0YWqgYAAAAAANgJhO0AYExKY2Q7mSu21yVJZYwswJhMZ7ddKVQNAAAAAADAbBG2A4Ax6db9m+2aRsgm5RCGsB1AO7MXanOfBwAAAAAAmCXCdgAwJqVmu7mqPEI2Saqq0GxnjCxAX6UwckOJ6LYqLUvUDgAAAAAAYLYI2wHAmPQyXLNdR7MdQDt16f44pWk793kAAAAAAIAdQdgOAMak2GyXTZrtiiEMzXYA/RSb7aY0bFdel7AdAAAAAADALBG2A4Ax6dbDNduVxsj2is1NALvbzN0dC1k7t3kAAAAAAIDZImwHAGMydNjOeEGAlmbr/qjZDgAAAAAAYGcQtgOAMSmOka2MkQWYhNkbIwsAAAAAAMAsEbYDgDHpptBsl+HGyGq2A+ivdH+ctVCb+zwAAAAAAMBsEbYDgDEZttmuU2q2q4UwAAAAAAAAAGBaCNsBwJh060KzXbVJs13h7dgYWYD+SmHkqprOZrvyuHChagAAAAAAgFkibAcAYzJss10pHNITwgDoqxxSm86wXWldwnYAAAAAAACzRdgOAMakm/7Ndp1s1mxXGiOr2Q6gjemN2pVWJmwHAAAAAAAwS4TtAGBMxj9GVggDoJ+Za7YrLKswDRcAAAAAAIApJWwHAGMy9BhZ4wUBdrRysx0AAAAAAACzRNgOAMZk2Ga7TmWMLEA7/cPIsxdqE6oGAAAAAACYJcJ2ADAm3RSa7bJZs50xsgBtlIfITmfYToMpAAAAAADAziBsBwBj0huy2a4UwugJYQAUFO6P05m1Kxr2Lr/aWx3rOgAAAAAAABhMc9UOADCwtbrQbFdt0mxX9c++H+0ezqeO/VWu2f+UkdcGsFP06l7+/NDv9d02a812Hz36vhxeuzdnzp890Hned/jtecPdf5i7Vw/lEXsene+86J/mkqVHjHOpAAAAAAAANNBsBwBj0i2G7YZrtkuS37j153Lb8hdHWhfATvKmu/84h1bvKGydzrBd07p+5eZXpq4377j7xNG/zO/e8cv50uqdqdPLjcevzy/e/ON5oHt0nAsFAAAAAACggbAdAIxJtzRGdpMi2aaw3Vq9mo/c/96R1gWwk7z/yDuK26Y2atewsNtXbsrNyzdseo4PHPlfpz12rHt/PnHsw6MsDQAAAAAAgBaE7QBgTLoZrtnu3IULGrfftXLb0GsC2El6dS+HVm8vbj9nk/vpdjlnfvT7/Afvf2ffx//bod8dak0AAAAAAAC0J2wHAGNSbLbbJGx36dKVOX/h4vJ5CyE+gN1mtV5p3P7UA8+Z0EraecKBp2e+WihuX6mXhz73se79Qx8LAAAAAABAO8J2ADAm3brUbFcOWCRJp+rkBy//qYbz9g/xAew2K71yKO2afU/J15/zzRNczeAuXLw033/py4vbm74uAAAAAAAApoewHQCMybDNdkly7sKFef7Zf7vVeQF2m6YGuO+48P9Kp5re/725dv/TcsWeR/fdNkrYrk499LEAAAAAAAC0M72/jQKAGdNLIWyXzcN2STmUV2rMA9htmkJpC52lCa5kOEtV/zWOMkYWAAAAAACAyRG2A4AxKY+RnR/o+Ln0369bCPEB7Dar9Upx22IhyDZNSoHAzZrt6lp7HQAAAAAAwDQQtgOAMRlljGzTfprtANY1hdIWO4sTXMlwFqv+a2wKESbJWr26FcsBAAAAAACgJWE7ABiTkZvtimE7zXYASXnc6lzmB77XbqfFIZvtmsbMVqlGWhMAAAAAAACDE7YDgDEpjXudy6DNdoUxsprtAJKUQ2kLM9Bql5RH3TaF6ZLNw3gAAAAAAABMhrAdAIzJyM12hVCeZjuAdauFUFopxDZttqLZDgAAAAAAgMkRtgOAMSmF4krjYU/fr9BsV2jMA9htVnorfR9fnJFmuwXNdgAAAAAAADNN2A4AxmSrwnY9Y2QBkpRDaTu/2a5/yBAAAAAAAIDJErYDgDHpZsQxsoVQnjGyAOtWi812MxK2K4QCS+Nxv7y9IYzX034KAAAAAAAwMcJ2ADAmpVBcJyOOkdVsB5Ck3GxXGs86bcrNds3Ndcu948Vta/VaekLZAAAAAAAAEyFsBwBjUgrFDdxsVwjldbUWASQpj1udnWa7xb6Pl0KEg283ZhYAAAAAAGAShO0AYExKzXal8bCn76fZDqBJKXRWCrFNm3Kz3SZhuk22N42ZBQAAAAAAYHyE7QBgDOq6Tq/QQDdws10hlFcK8QHsNqXQ2cLMNNsVwnYjN9sJ2wEAAAAAAEyCsB0AjEE35fa50njY0/YrNtsJ2wEkTc12sxG2K4UC1+rV9Bru9au95jGxK5tsBwAAAAAAYDyE7QBgDJoCcQM32xVCed2spa7rodYFsJOUQmel8azTpikUuFKXA3Oa7QAAAAAAAKaDsB0AjEG3bmi2K4yHbbNfL73WawLYaWa92a4pFNjUXlcanzvodgAAAAAAAMZD2A4AxqC52W60MbLr5y+H+QB2i1KobLGzOOGVDKe52a4cmNu02a53fOg1AQAAAAAAMDhhOwAYg24awnYZcIxsQyivKcwHsFusFkJnCzPSbLfQEApsaqfbtNnOGFkAAAAAAICJELYDgDEYxxjZTkMorxvNdgArhVGrTeNZp0lTs10pSJgM0mwnbAcAAAAAADAJwnYAMAbNY2Q12wGMQyl0tljNyBjZLWu26x9CBAAAAAAAYLyE7QBgDMbRbNcUyms6P8BusTrjzXZz1XxxtHhTYK6p9S7RbAcAAAAAADApwnYAMAaNzXYN42FP2a+x2U7YDqDcbDcbYbuk3G7XFJhb3rTZTtgOAAAAAABgEoTtAGAMemlqths0bNfUbGeMLLC79epeVgvtbwsz0myXlIOBTYG5TcfIarYDAAAAAACYCGE7ABiDxma7QcfIpqHZriHMB7AblIJ2SbJY9W+Lm0alkbdNgbnNxshuth0AAAAAAIDxELYDgDFoGvM6eLNd0xhZzXbA7tYURisF2KbRgmY7AAAAAACAmSVsBwBj0BSG6wz4dmuMLEBZUxitNJp1Gg3TbNf0tQ+yHQAAAAAAgPEQtgOAMeimfxhuLvOpqmqgc8w3hu2MkQV2t6Yw2sIMNduVwnZNo2BXeuURuuvbhe0AAAAAAAAmQdgOAMagFIZrGg37cJ00jJEthPkAdovVuhw4m6lmu9IY2UJgrluvpZvmwPVKw3MDAAAAAADA+AjbAcAYlMa8tgnbVVVVDNxptgN2u6b2tsXO4gRXMprSWkvtdZu12q3vo9kOAAAAAABgEoTtAGAMys125dGw/fcvhe002wG720phzOpc5lvfa7dTsdmu8PWVHm+7DwAAAAAAAKMTtgOAMSiNeZ1rGA3bd/9CYESzHbDbldrbFmao1S5JFjrtxsiuDtBaN8g+AAAAAAAAjE7YDgDGYKub7XqFMB/AbrFaaG8rNcVNK812AAAAAAAAs0vYDgDGoDTmtRSeK5mLZjuAflZ6K30fX5yxZrvFls12pcc3WtZsBwAAAAAAMBHCdgAwBqUwXGdMzXalMB/AblFqb5u1ZruFqn84sNTctzxAa50xsgAAAAAAAJMhbAcAY1AcI5uWzXbCdgB9rRab7WYrbLcVzXYr9XLquh5pXQAAAAAAAGwQFdyCAAAgAElEQVSuXd0OAHCKL63cmfceeVveePcf9d3eeoxsoQnv9+98df762AfzqD2Py3PP+hvZN3eg9Vp3sy88eH0+dP87c+fKbUmSSxavyDPP+NpctueRI597pbecdx++Ljc+eH0uXroiX3XmN2Tf3P6857635PMPfioXLV6W55z5gpy9cN7I14Ldqlf38r/ue0PfbQsz1mxXauI7tHpHfu2Wnznt8SNr9256zjp1fu2Wn05Vlf8t1TMOfnWedebXDb5QAAAAAAAATiNsBwBDunPl1vziTa/Ike59xX1K4bni/g1NeB87+oF87OgH8qH735l/dvnPCtwN6K+Pfii/eevPp5uH2gc/eezDedd9b8o/vewn8+h9jx/63Ku9lbz6lp/JZx/8xPoD9yfvPfzW7O3sz83LN3x5v784/Nb88yt+LucuXDD0tWA3+/07X517177Ud9tip/9Y1mlVarZbrVfyyWMfHvq8n3rgrxq3X7nn6qHPDQAAAAAAwDpjZAFgSO+49/WNQbtkfM12G92yfGM+fP97Wp13N3vD3f/1lKDdScv18bz5nteNdO5PPfBXDwXtTvjS6p2nBO2S5J61Q3n3fdeNdC3Yre5auS3vPfy24vZSU9y0mrX1AgAAAAAA8BBhOwAY0ucf/OSm++zp7Gt1zkHDeZ8b4Nqsj3j94vHPFrd/7oFPFLcN4o13//HA+775nj8Z6VqwW33+wU81bp+1ls99c/u3ewkAAAAAAAAMSdgOAIZ0vPfgpvs8dt8TW51z0LGzy73jrc67W630lhu3L9fHU9f10OdvCvIB47HZvfax+548oZWMxyP3PDZL1Z7tXgYAAAAAAABDELYDgCGt9FYatz967+Pz3LNe2OqcnQzWbLdZiIx1K/Xmz9NavTqBlQDDWm241z75wLPzlIPPmuBqRrfQWcx3XPQD6fhfMQAAAAAAgJkzWH0OAHCaUpDr4sXL83fO/648bt+Ts9hZanXOQcfIDhIiY7BQ4kq9nIUsTmA1wDCa7nffd8mPDnzfnCbPPONrc/nSo/LJYx/Jke69Ax/XSSdX7Hl0Llq8LJ9/8JM5tHrHwMc+au/jhlkqAAAAAAAAGwjbAcCQSkGul1zwPXn8/qcOdc5Bx8hqthvMIKHEld5y9s8dnMBqgGGU7nfX7n/aTAbtTrp46fJcvHT5SMcDAAAAAAAwWWYXAcAQuvVaeun23bZU7Rn6vIM32zWPsGXdoM12wPQqvUYXKo2UAAAAAAAATJawHQAMoSnE1XZ07EZzA5bOrmq2G8igzXaT0qt7E7sW7BSl1+go91oAAAAAAAAYhrAdAAyhKcQ1SgBkftAxstrYBjJYs93kWgLX6tWJXQt2itL9brEStgMAAAAAAGCyhO0AYAjLDSGuUUYbDjpGdrVnjOwgVgcIJU6yJXCSLXqwU2i2AwAAAAAAYFoI2wHAELZsjGyLZru6roe+zm6xMkAocZItgRoJob1SaHZBsx0AAAAAAAATJmwHAENoakwbZbRhZ8Bmuzq1kaQDGCTcNsm2udUJjqyFnaIUmtVsBwAAAAAAwKQJ2wHAEJoCWiONkc1gzXaJlrRBDBKkm2iznTGy0Fop3DxKsBkAAAAAAACGIWwHAEMoBbQWq6VUVTX0eecGbLZLBLcGMUiQbnWAUbP9dOu11sf4nkF7mu0AAAAAAACYFsJ2ADCEUmhq1PDHXKXZbpy2stmuFADaimvBblZ63YzSIgoAAAAAAADDELYDgCE0NduNQrPdeA0Sbhv2eRwmOOd7Bu1tVbgZAAAAAAAA2hK2A4AhlMIfC6M226VF2K4ebvzpbrK6hc12g5x7XNeC3awcbtZsBwAAAAAAwGQJ2wHAEErhj6WRm+0GHyM7TNhrt1keJGw3wWa7VQFJaKVXd7NWr/bdptkOAAAAAACASRO2A4AhbNVYw1ZjZLWkbWqgMbJDPo/DhPSMkYV2mho8Rx3bDQAAAAAAAG0J2wHAEMpjDSfXbCe4tblBnqPV3nBtc8OM8fU9g3aaGjw12wEAAAAAADBpwnYAMIRSaGph1Ga7aLYbp9UtbLYbZoyv7xm0o9kOAAAAAACAaSJsBwBD0Gw3GwZ5joZ9HocJzvmeQTtNr5mFzuIEVwIAAAAAAADCdgAwlNLo0cURwx9zVYtmO8GtTQ0SiFsdYhxsMtzzP+y1YLdqaqfUbAcAAAAAAMCkCdsBwBCKzXajjpFtE7YzknRTK4VQ5Kn7DNts1z44JyAJ7TS9Zka93wIAAAAAAEBbwnYAMIRSAMQY2ekySCBx2NCiZjvYeqVQaydzre6XAAAAAAAAMA7CdgAwhGLYbsSmpU4Gb7YT3NrcIIG44Zvt2h+njRDa2ap7LQAAAAAAAAxD2A4AhrBSH+/7uGa76dGt19JLd9P9Jtls53sG7RRHdo94rwUAAAAAAIBhCNsBwBBWev1b5RZGbFuaqwZvttOS1mzQYNuwAbjVYZrthO2glXKz3eKEVwIAAAAAAADCdgAwlK1qW5rXbDc2g4YRV+uV9Ope+/MP02wnIAmtlMZla7YDAAAAAABgOwjbAcAQSkGrpVGb7dIibCe41ahNGG6tXm1/fs12sOVKr5lRW0QBAAAAAABgGMJ2O1BVVT9VVVU9wp/f2e6vAWDabVWzXasxsoJbjdqE4YZqqdNsB1uufK81RhYAAAAAAIDJE7YDgJZ6dbfYhDZq29JcizGyq4JbjVZ6/cdP9t13mJa6wnjLJqWRmEB/pVDromY7AAAAAAAAtoGwHQC01BSymmyzneBWkzYBumFCcJNqw4PdbKtaRAEAAAAAAGAYg9fnMMu+I8n7Wux/dKsWArATrDYEpkZtW2rTbGckabM2wbZJjYRdrVfSq3vpVP69AwyidL8dtUUUAAAAAAAAhiFstzvcUdf1jdu9CICdYrkpbDdqs13aNNsJ2zVpM2Z3mOeyKXTZZK1e1coFA9JsBwAAAAAAwDRRqwIALTU1mo3abNdpM0ZWs12j5d7xgfcd5rlsGifceJyQJAysNC571HstAAAAAAAADEPYDgBaagpLTXKM7Fq9ml7dHel6O9lWj5EdttlOSBIGV3q9LFSLE14JAAAAAAAACNsBQGtNYalRAyBzLZrt1tcyXLvabtDmuRmu2W640Nyq7xkMbFWzHQAAAAAAAFNE2A4AWio1ms1X863Dcg83l8Gb7ZrWQrvnpm2zXV3XQ4+DNUYWBlcKtS5WwnYAAAAAAABMnrAdALRUHms4evijfbOd4FZJm+em7fPYzVp66bVd0vq1hO1gYKXXi2Y7AAAAAAAAtkO7+hxm1fdXVfXjSa5Jcm6S1SR3J/likncneVNd1+/axvUBzJRS+GOps2fkc89V7d6aP3z/e3PW/DlJkipVLll6RC5evDxVVQ10/JdW7sgXj38uvfRy/sJFuWLPVemM2M43Le7vHh5439KoypLl3vG2y/myjx/7UO5ZO/Tlz3fa8z5r7lk9lBuPfzbdei3nzJ+fK/de3fp1yPj06m5uOv75HFq9I0lyrHt/3/0WRxzZDQAAAAAAAMPwm8Td4dsf9vlSkgNJHpHka5L8WFVVH0ry8rqu3zrpxQHMmpW6fzBrHGMNOy1LZ//s0O+c9tij916bl17249nT2Vs8rluv5Xdv/5V88P53nvL4BQuX5Acv/+mcs3B+q3VMm08f+2jee/htA+/fptnuge7R/Lsb/8Uwy0qSvPme15322IWLl+UHL/upnL1w3tDnpZ1e3c0f3vkf8+7D153y+Nnz5+WHLv+ZXLB4yTatbPe6Z/VQfuXmV+au1ds23VezHQAAAAAAANvBGFlO+ook11VV9XPVoHVILVRVdUFVVde2+ZPkqnGvA2AcymMNR29aGsct+HMPfiL/7dDvNu7zzvvedFrQLknuWr0tv3fHr468hu200lvOf7z137U+ZlCvu+s1pzTTjcOdK7fkv9zxa2M9J83ed+TtpwXtkuTetS/lt2/7hW1YEf/ljl8bKGiXjCfcDAAAAAAAAG1pttvZbk3yhiQfSPKpJPck6WV9lOzTkvytJC/csH+V5MeyHsJ8+ZjX8tIkrxzzOQG2RakFbWGKwh+fPPbhxu1/ffSDxW2ffeATOd57sLEZb5p99oGPZ7luN+Z1tdBW2M/Hj32o7ZIGcv0DH89y7/hYxhGzub8+Wv4+3rx8Qw6v3ZMzT4xoZust947n+gc+PvD+C2MINwMAAAAAAEBbwnY70weyHqJ7S13XdWGfv0jya1VVfUWSP0hy9YZt/7qqqvfVdf3nW7xOgJnUrdf6Pj5Xjedt9aq91+TzD35qpHMc7R5p3H5k7b7itl66Oda9f2bDdoe797Y+ZtBmu17dzf3dw63PP4hu1nKse7+w3YQcWWv+OTmydp+w3QQd696fXroD7dtJJ5cuXbm1CwIAAAAAAIA+jJHdgeq6fkNd19c1BO027vuhJM9Ocv3DNv18VVVzW7JAgBnXq3t9H5+rxvO2+rVnvThVRhsnu9lbwGqhne+kNmNVp81yr12rXVJuKzx9v8Eb8IYxy8/7rNn0NbDF32tO1eZn/5lnPC/75w5u4WoAAAAAAACgP812pK7re6qq+o4kH0q+nO54XJKvS/LWMV3m15P8cctjrkqiXQ+YOr30D9tVY8qwf8UZz81c1cm777su93cP5/H7n5oXn/sd+djR9+c9h9+S25Zv+vK+q/VKHuwda32NzYItmwWRplnT1/bUA8/JR46+t9UxG6027HfuwoW5cPHS3Hr8C6mTnLtwQfbN7U+VTm5evmFDALLOkW7/ZsFBQ3+MbqXXHKZr+l4zfk0/+wfnzkyVTs6cPztPOvDMvOjcb5vgygAAAAAAAOAhwnYkSeq6/nBVVddlffzsSS/KmMJ2dV3fleSuNsdU1WitTgBbpVf3H3XYGWMh6FMPfmWeevArT3ns6Wc8N08/47mnPPbXRz+Y37j151qff7NQ1yw3rK3U/Zvtrt57bS5YvLRwzKDNduX9fuiyn8l5ixdueo5uvZaXXf+t/c8/RCsfw9n0NSD4OFFN95x/e9Vvj21MNwAAAAAAAIzCGFk2etPDPn/StqwCYMqVmu062/K22j+YXKd5jOxmrV6zPEKzFNpZ7OzJYmex1TGn71d+XhY7SwOdY66az1zh3zssC3hNzGbf81kOnM6iUrhxLvOCdgAAAAAAAEwNYTs2uvFhn5+/HYsAmHa9uhC2q6bnbbUpbNet19LNWuPxsxw0Wi6sfamzlMWqfyBu0LG5TfsNGrZr2neWn/dZo9luupRDsv0DsgAAAAAAALAdpicVwDR48GGf792WVQBMuXqKmu2GGbg9SKBrloNGpTGyi9VSFooht8Ga/Jqeu4Vq8FDQUmdP4fzGyE5Cr+5mrV5t3EfwcbJK95xSQBYAAAAAAAC2g7AdG533sM+/tC2rAJhy3brb9/HtaLarhhgjO0iQbnXA8Nk0KjXbLXb2FIM7g4YLS+N156v5zFVzgy0w5QCRMbKTMciYZGG7ySo32wnbAQAAAAAAMD2E7djoWQ/7/LZtWQXAlCs32w0ethqbqtRt1xC22+nNdoV2uMVqqRjcGTRcWHruFlq2b5XXMbvP+ywZ5Hme5dfALCo9321fWwAAAAAAALCVhO1IklRVtSfJ333Yw+/YhqUATL1eXQjbTVOzXTlrN1CIaJZbvUpf31JnTxYLo14Hb7YrjbocfITsybX0s2yM7ETs9NfALNJsBwAAAAAAwCwQtuOkf5Xk0g2fd5O8fpvWAjDVuimMkZ2it9XGMbIDtLjNcqtXObSzp9woV68UQ5SDnbtdIGhhxNAfoxnkNbA6wKhZxme1FGQVtgMAAAAAAGCKTE8qgLGoquq7qqq6sOUx/2eSVz7s4d+p6/qL41sZwM5RF5vtJj9GttRs1zhGdoe3epXa4ZaqpSw2jKQcJFw1rlGXmu22105/DcyiYpDVGFkAAAAAAACmiLDdzvO9Sb5QVdV/rqrqxVVV7S/tWFXVV1RV9adJfjM5Ja1xa5If3+J1AsysXgphu214Wy2OkW04ZpAQ0Sw3rBVHvXaWGluyBnpextRst1j1D9vN8vM+S1Z3+GtgFpXaBhc77UY0AwAAAAAAwFaa3+4FsCX2JvmHJ/70qqr6bJIbkxzO+njYc5M8OUm/Brx7kryorus7JrNUgNlTGjdaVdOUYS/H7UrjGk/ZZ4ZbvUrtcIudPY0tWYOEq8Y16rIUINKmNhkrg7QY+l5MVDEkq9kOAAAAAACAKSJst/N1kjz2xJ/NvC3JP6rr+patXRLAbOul2/fxuUzTGNmynd5sVwrELVVLWdiqZjtjZGfKTn8NzKLS96TpNQsAAAAAAACTJmy38/xy1sfAflWSRwyw/7Ek1yV5dV3Xb9vKhQHsFKVmu852NNtVpTGy5Wa7wUJlmzd/TaNu3c1avdZ323qzXXkk5SCNf6VGtLajLktjZAdZA6MbJEin2W6yNNsBAAAAAAAwC4Ttdpi6rv8syZ8lSVVVZyW5NsnlWR8Zuy/rTXf3Jbk3yaeSfKyu6/4VTQD01UthjGwmH7Zr32s3YNBoRkNfKw3NcEudpcZxr4OEq0rjddsGgkrrWBbwmoiBvtcz+hqYVcXWSM12AAAAAAAATBFhux2sruv7krxnu9cBsNP0ChnlbWm2a1DXdao+zXejjEuddssNAanFak/mqvl0Mtd3FHCpte7UfcYz6rIUIGoKCzI+gzXbzWa746wqhRs12wEAAAAAADBNpisVAAAzoNRs18nchFeSNHXblUbJDhQqm9GwXVNY7WTArRx0Gz6A1TSetp+lwhjZWW0UnDUDfa99LyZKsx0AAAAAAACzQNgOAFrq1YWw3TY021WNg2QLYbsB2tNmdYTm8iBhu0JT1iBfcymA1TYQNErgj9EN9L32vZioUiulZjsAAAAAAACmibAdALTUbwRpknS24W21fdRu0BGasxk0amrtO9kmt9jp30I3yNjQ0vOy0DIQVAoQNYUFGR/NdtNntdhs1641EgAAAAAAALaSsB0AtFRutpuuMbLlZrtBgkabB8+mUam1r0on89VCknLQbZQQYttmu6VOaYzsSuq6FJNkXAYJVq7Vq+nV/YO1jF+xNbIwchkAAAAAAAC2g7AdALRUpxC225Zmu3LYri6F7QYIle20MbJLnaVU1fpzNcoI19Lz0nbUZWkNdXpZq1dbnYv2Bm2tm9XQ6ayp63psQVYAAAAAAADYSsJ2ANBSt9B21am24W21agjbFQrSBgmVrdVrxa9zmg3SjlUa+TrJZrumcN5ybZTsVht0THJptCnj1c1aeoUQc9sgKwAAAAAAAGwlYTsAaKncbDf5MbJNQ2RLY2RXB2zrGnS/aVIaI7vYWdzw8fDNduUwX9tmu/JozEGDYAxv8GY734tJaPqZ12wHAAAAAADANBG2A4CWenUhbLcNzXZDjZEdMMw1i6GvYvPchma7xWqx7z6DNdv1DyC2DQQtNew/i8/7rBn8NTB7gdNZ1DSuV9gOAAAAAACAaSJsBwAtlcYddrblbbW5266fgVu9ZjD0tVz42pY2NMktFMI7m40M7dbddLPWd1spwFfS1IS3YozsllvVbDdVmu41Cy1fWwAAAAAAALCVhO0AoKVys920jZHtb+BWrxkMGpXHyD4UbisF3ZratZLmsbqlAF9J0xjZ5RkMOc6andzuOIuMkQUAAAAAAGBWCNsBQEu9dPs+Pm3NdsUxsju52a6w5o3NdqXwzmZfb2MgqKGprp+5ai7z1Xz/68xgyHHWDPwa8L2YiKamwbavLQAAAAAAANhKwnYA0FK52W663laLYbud3GxXGMG6MbBTCu9sNlq0uX2r/ajLxap/u12pnY/xWek1txg+tN/svQZmkTGyAAAAAAAAzIrpSgUAwAzopX/YrtqGt9WqajdItlf3GsehbrQ6g0GjUmjnlDGyhWDcZgGspvDhMO1bpYY9Y2S33k5ud5xFpe/HYrXU+h4HAAAAAAAAW0nYDgBaKjXbzW1Ds11TDKWuT2+2W6tXBz73bDbblUI7G8bIFoJxm329je1bheBck2HXwegGDdFt1nbIeAwSkgUAAAAAAIBpIGwHAC2Vm+3mJryS9auWnR62W24xonQWW71KX9/SKc12hZDbJl9vc7Nd+1GXSx1jZLdDt15LL92B9p3F18Asamq2AwAAAAAAgGkibAcALfXq/kGdzrY025XDdnWfsF2b1rSVAcfNTpNyQ9ZDwbaFIRvlSmN156uFdKr2QcthQ3+Mps3zq2VwMkrfk2EaIwEAAAAAAGArCdsBQEulZrvODLyttgoazWDoq9hsV21ds92w7VvGyG6PVoHT3uwFTmdR+bXVvjESAAAAAAAAttL0pwIAYMrUdSFsNwPNdqutmu1mL/RV+vo2NtuVAjybPTfl1rwhw3aFMbJtRv3Snma76TPu1xYAAAAAAABsFWE7AGhpuprtWo6RbRE0Wp3BVq/lAUI7pdGUa/VacURwUh6ruzBk+1ax2W4GGwVnSbtmO9+LSRh3ayQAAAAAAABsFWE7AGipWwhkdaq5Ca8kqcpZu/TJ2hUDY/3MYqvXSt2/FW5jaKcpwNP0/KyOuX1rqXDccuFrYDzahEhn8TUwizTbAQAAAAAAMCuE7QCgpXqKmu2axsj202qE5oy1etV1XWy2W9o4RrYhwFMK1CXjb98qjZGdted91rQJ0DX9PDA+5ddW/9cIAAAAAAAAbJf57V4AAMySXt3rO541STrVdI2R/def/8epUuW8xQvzjINfkxee+6153aHXDHzm9xy+Lu89/LZUVZXLlx6VbzjnW/KUg88ex6LH6t7VL+VP7vrtfPLYR4pByI3BtqZw3Ms//73FAGNpfPBiZ7xjZD9+7EN52We+NVWVXLL4iHzt2d+Y55z5gk3P96773px33/fm3LZ805cfW+gs5qq9j8s3n/8Pc+nSlUOtc9o80D2aN9/zuvzlkXdnqbMnzz/7b+crz/z6VBtqHj997KN50z1/ki88+Jn06lO/b92sDXytjxx9b172mW/98ufz1XwesffqvOT8f5zL9zxq9C+GHF07kvceflvfbcO+tgAAAAAAAGCrCNsBQAulMFcyfc12vayPu71z5db8z7tfm/9592tbnbtOvR5MqpMvHP9Mfuu2f5+XXvbjuXb/00Za8zgt947nVTe/Inev3tm439LGMbINzXYnn7M2FoZutisfd/J5v2n58/m9O341VTp59plfV9z/3fe9Oa+98zdOP09vLZ849uHcePyzefkjXpVzFs4faq3T4vDavfmVm1+Z21ceChT+/p2vzmq9kued/eIkyRcevD6/fuvPZq1eHcs1N4bzuvVarn/gr/PLN/9kfvzKX85ZC+eO5Rq7Va/u5pdu/onidmNkAQAAAAAAmDbGyAJACw9vydqoU81NcCWTV6eXv7jvLdu9jFN8+thHNw3aJQ9rthtzgGfY8y0Vxsj2857D1zVuf/fh5u/Lse79+ejR9w98vWl03+rd+cWbXnFK0O6kt93756nr9cbJDxx5x9iCdiUP9Nbb9RjNFx68PretfLG4fdgRzQAAAAAAALBVhO0AoIXSKNFke5rtDs6f2dhuN263LpeDMdvh1uUbN92nk7kcnDvzy58vVkvZ29k/tjWcNT9cu1mb4zZ73m8b4PsyyD7T6p7VQ/nFm1+Ru1Zv67v97tW7cqR7X5Lk9pWbJ7Kmvzj81hztHpnItXaqWxuCdsnwry0AAAAAAADYKsJ2ANBCry6PGe1Uk39bPTB3Rh6193ETu95KvTyxaw1ipV7ZdJ/H7XtS9s7t+/LnnaqTJx54xtjW8OQDzxrquMfte/LAzV2rveavs9vwc9lmn2n0pZU78qqbfiyHVu9o3O/OlVuSJHVD++Q4rdYreee9b5zItXaq1V75ftJJJ0848PQJrgYAAAAAAAA2J2wHAC00N9ttzxjZ773kR3PJ4iOGPv6rzvyGfN8lPzpQ8Guz0NekrTSEdZLkiqWr8t0X/9Bpj//9C/5JHrPviSNdey7z+bYLvi9X77t2qOP3zu3LSy/7iezvHNx0327W0q3X+m7r1b3UDT+XXz7HDIbt7ly5Na+6+RW5Z+3QpvvesXwibDfC9fZ29m2+0wbvuO8Nm/4MUtYU3v2+S/5lzl24cIKrAQAAAAAAgM3Nb/cCAGCW9Bpas7aj2S5Jzpo/J6+48pdy1+ptuXv1rvTqbn791p8d+Pj/48KXpqqqPHH/M3PT8uez3HswXzz+ufyPL/3+aftOW7PdamE9+zsH86OP+Pc5f+GiVNXpY3b3zu3LP7v83+Se1UO540QjWhsL1WKu2HNVljp7Wh+70WP2PSE//+jfyc3Hb8gDvaM5tHJ7/utdv9l335XeSvbOnf6fboOG6LrpH9abVrcv35xfvvknc6R770D737Fy64mPhovbPX7fU/MDl73ixPfi2CnbPn70Q3nHfa8/7Zij3cP5wJF35LlnvXCoa+52paDio/dem6ccfPaEVwMAAAAAAACbE7YDgBZ6KQebqm0sjK2qKhcuXpoLFy9NXdfppNPYwnfSUrXny2G0hc5Crjoxkna+6v+fCKv1Snp1b9uChQ9XCus86eAzc8HixZsef87C+Tln4fxxL6uVuWouV+69Okly+/x5xf1W6uXszenNa4OG6Gap2e6W4zfmV255ZY52Dw98zB0rNydJ6iHDdgudpcxV87ly72NO23bl/2bv3sOjqu99j3/WTGZyIVdIIFwLiIpQFVG2iEEBRa1atdXaum3dtR63Vdt6OdrqtijWVmttS9sj3V6OVrp1e9zd3ahUi4qCilRBvFZECwoB5RIMhEtCZjKzzh9KzJD1m6w1t6zJvF/P4/O4Zt1+ycwQ43z4fEsO1N9anlW7vbfbvkXNj2lK1UzfvCfyiSm8Wxbsl+OVAAAAAAAAAAAAAO7wqSAAAB4ka7YLWr0zRnZ/lmUpHOh5JKwk43HJRlWNPk4AACAASURBVMpGbf+Mko0Y1uJmJK4fJXveooZgYdxts51hDK3fNO5dq99umOUpaCcppYbCroqTfO/LguU6tnqm476t0Y/11u7lad27UJnCsiErnOOVAAAAAAAAAAAAAO4QtgMAwINkbXEBH/1YdRs2M4btkgSPTAGZ3mAKoLkNG/pNsufNqVVNch+icxvK600ftr2v326YpT3xXcZjKoM1jo/v6PhEe+Ntsu3Umu3CVvKRwNNrvmx8jy9qfjSlexa6SLxvhWUBAAAAAAAAAADQ9/knFQAAQB6wkzTbWT4aIxly22xnCLUkC7uYRj/2BtNa8jWskzzk6BxMcjse1u242d6ypnWVfrfhRrXFW43HHFj6Rf1g+Gzj/i2Rj1IeI9tTQHNAaKAmVhzruO+Dvau1tm11SvctZMb3b56GZQEAAAAAAAAAAND3+ScVAABAHojJHGwKyh9jZCX3YTNTKC9ZWM9PzXZ9bQxlsnWbgkluQ3RuQ3m94b09b+nOjTcb2/skaWzZ4bp82CzVh4cbv0+b21MfJZtsjOw+M/t/xbiPdjvvTM2U+fr+BQAAAAAAAAAAQN9H2A4AAA/iedJs5yY4JKXWbBfNh2a7PG3GClgBY9DIFCx03Wzn07Ddqj2v6/cf/TRpY+L4fkfq0qE3KBwoVsAKaFB4iONxmyOph+16GiMrScNLRuvgssMc9721+xVtiXyU8v0LUV97/wIAAAAAAAAAAKDv808qAACAPGDLHLYL+OjHashls50plBcOJGlYy4Nmu3wO65iCjqaQo/uwnf/GyL69e4Xu+uhnitrOI3Il6fDyo3XJ0OsU6vKarA8Pdzx2S2Rj1sbI7mNqt7Nl67nmBSndu1AZ3795OgYaAAAAAAAAAAAAfZ9/UgEAAOSBZMGmgI+a7dwGh0yhlqBVpKCKHPdFkgSjcs0U0srnsE7IEHQ0N9u5HCObZARyb3h91990z0e3qyPJ+idWHKv/NeRaFVmhhMcHhYc6Hv9ps12KYTuXr5lDyiZoSPgLjvte3vmcdnXsSOn+hcj4/s3jsCwAAAAAAAAAAAD6Nv+kAgAAyAPJm+2COVxJcm6DQ6EkoRZTux3Ndtlleu6MYTuXITo/Ndu9uvNF3ffxHYrJvKZ/qjxeFw6+WkGre+izPjzM8ZymyOaUx+UWB3oeIytJlmXpxP5nOe6L2hE9v+OvKd2/EDFGFgAAAAAAAAAAAPmGsB0AAB7E7SRhuz7UbJdsnykgk2u2bRtb9vK52c703Jm+766b7VIMoWXayy2L9YdNcxRPElw9puoEXVD/AwUt5wDrIEPYLqYONUU3p7QuLwGvoyobVF00wHHf8zue9FUg1c8YIwsAAAAAAAAAAIB8459UAAAAeSCWtNnOPz9W3YZVkgWMjKEvnwSJOuwOY9NgssY+v/PcbOcyROeHZruXdjyj/9j8u6QNkVOrT9H5gy5XwBC0k6RB4SGyZDnu2xtvTWltXgJeRVZI02tOd9y3J7ZLf2t5NqU1FJq+2EwJAAAAAAAAAACAvs0/qQAAAPKAnSTYlCwclGumEbD7K04Sagn5vNkummQdYcvd1+9H5mY75xY/1812LsfNZsvz25/UQ1vmypZtPGZGzZf1jYGX9NgSGQqENSA0MKPrcztGdp+GqpNUEih13Pfc9scV90mToF/11WZKAAAAAAAAAAAA9G2E7QAA8CDZ6EtfNdu5bIYyBeqSXcMvzXbJ1pHPzVhev+9uQ3S9OUb22ebH9cjWe5Iec1L/r+rsuu/Ispwb6/ZXHx6eiaV1SvZecFIa7KeGqpMd9zVFN+uN3a9kYll9Vl9tpgQAAAAAAAAAAEDf5p9UAAAAeSBuO4dDLFmuQ0K5ELbctXSlMkY2WaNcLiVr2Avlc7OdIfRl+r67brbrpTGyCz/5b/256f6kx5w64Os6s/Zbnt5Dg8JD011agmQtjybTa05XQM6Nloua58u2zS1+ha6vNlMCAAAAAAAAAACgbyNsBwCAB6ZmO1Pgpre4bXZLNq7RtM8/zXbOIyil/G62CxlGABub7Vw21uV6rKlt2/rLtof1+LYHkx53Ru35Or32PM9h1frwsHSW103Y4xhZSaoJ1eqoyqmO+9bt/YfWtq1Kd1l9Vl9tpgQAAAAAAAAAAEDfRtgOAAAPTIGlgOWvH6nJQnQJxyVttjOFvswht1xK3oyVv2EdY8jR2GzncoysctdsZ9u2Htv2oJ785JGkx3217ts6ZcDXUrpHfXFmx8im+po5seYs475nmh9NdTl9XrJmynx+/wIAAAAAAAAAAKBv81cyAAAAnzM32/nrR6opKNftuFSa7fwyRjZJM1Zej5E1BCDNzXZux8jmptnOtm39uekPerr5z0mPO3fgxTqxvzmo1pN6H4yRlaRhJSM1ruwIx31v71mhTe0b0llWn0WzHQAAAAAAAAAAAPKRv5IBAAD4XNw2hO181mwXykCzXchj6CvXTKG/kBX2PJLUT7yGHONyF6KzZWd9lGzcjuuRrffoue2PG4+xZOmfB12qaTWnpXWvfsEKVQSr0rrGPkVWSAEr9VHQyUKDyb4XhYxmOwAAAAAAAAAAAOQjfyUDAADwOXOzXepBnWxw2wzVF5vt8r0VK1vNdp8em72wXdyO6+Et/64XdvzVeIylgL5V/301VJ+ckXsOCg/LyHXSDXcdXHaYhhWPctz3ys7FaunYntb1+yLT69mSpSIrlOPVAAAAAAAAAAAAAO4QtgMAwANTs53ls2Y7t+GhZME0r6GvXDOF/vK9Fcsccow4Pu4lQBdz2YLnVcyO6Y+bf6eXWp4xHhNQQN8efKUmV83I2H3rMxW2SzOgaVmWZhra7TrsDi3Z/kRa1++L+mozJQAAAAAAAAAAAPo2fyUDAADwOdPIzoDPfqQWB0pcHZdKs13UJ8120bhz+KyvNttFM9Js5/5YL9d8YNMcLd+5xHhMQEFdNOQaTao8LqP3rg8Pzch13L5fkplYcaz6F9U57ntxx0LtjbelfY++JNJH378AAAAAAAAAAADo2/yVDAAAwOdMzXYBvzXbuR0jS7Od73gd3+ulrS7TY2Q77Kj+78e/1MpdS43HFFlF+tehP9IRFVMyem9Jqi8enpHrZOI1E7SKNL3my477WuO79beWZ9O+R19iCu3m+/sXAAAAAAAAAAAAfVtRby8AAIB8YssQtvNZfj1khV0dlzRs5zH0lWum0F++N2N5DTn2VrNdNB7RvR//Qn/f86rxmJAV1r8OvU7j+03M2H27GpShZrtMvWaOrZ6pJz/5f2qLt3bb99z2x3Vc9ZcUtIIZuVe+M72eQ3n+/gUAAAAAAACAbLJtW/F4XLZt9/ZSAKAby7IUCARkWVZvLyWrCNsBAOCBqRksb5vtko2RDTgH9kzjH3MtYjuvw23Q0K+ShRxt2+72H6de2uoy1WwXibfr7o9u07utbxiPCVvF+u7Qf9PYfodn5J5OaopqFbaK0w6AFlvpj5GVpJJAqaZWf0lPN/+5275Polv1+q5lOqpyakbule9M799wnr9/AQAAAAAAACDTotGoWlpa1NLSomg0StAOgK9ZlqVQKKSqqipVVVUpFAr19pIyzl/JAAAAfC5ubLbzV1uV21GMyYJpIWPoa29Ka8q0Qmu2k6SoQ0Ap7mWMrNJvttsbb9PvP/pp0qBdsVWi7w27MatBO+nTkGsm2u0y2aY2reY0BQ1/n+WZ5vn8T5DPRPvo+xcAAAAAAAAAMqW9vV2NjY1as2aNmpqaFIlE+H/MAHzPtm1FIhE1NTVpzZo1amxsVHu7PyanZQphOwAAPLBtQ9jOZ812btrdwlZx0grfZONM/fDLXNTQZuY2aOhXppCj5DzCN5fNdm2xVs3d+BO93/q28ZiSQJm+P3y2xpSNT+tebtWHh6V9jeIMBryqi/rrnyqPd9y3of0Dvd/294zdK5+Z2gjz/f0LAAAAAAAAAJkQjUbV2NioPXv29PZSACAte/bsUWNjo6LRaG8vJWP8lQwAAMDnzM12/vqRallWj6GVcCD56EzT+XHFM9KQli5Ts13IMP42XyRr9nL6mmO2++fCy7H7a43t1v/ZOFtr2941HlMWKNcVw3+i0aVjU76PV5lotgtnaIzsPif0P9O4b1Hz/IzeK1/11WZKAAAAAAAAAEhXLBbThg0b1NHR+5/FAEAmdHR0aMOGDYrF0isG8QvnGVcAAMBR3NAMFrD8NUZW+jRMF4mZK3nDPbTf9RT6KgqGUl5bJkQcRqpK+d+M5XWMbC6a7XbHdur/bJitDe0fGI8pD1bqB8Nu1rCSUSndI1X1xcNdHWfJki3nRsZMB7yGFI/Q+H5H6p09K7vte2fPa/q4fb2GFH8ho/fMNzTbAQAAAAAAAICzTZs2dRu5GAgEVFlZqcrKSoVCIQUC/iqBAABJisfjikaj2rlzp3bu3Kl4/PMim/b2dm3atEnDhqU/taq3EbYDAMCDfGm2k9IL0316frJxphGVpbSqzIn20WasZM+bc7Odh7CdvIftdnXs0G833KSPI+uNx1QGq/WD4T/RkOIRnq+frnqXzXZhq1jt9l7HfZkcI7vPzP5nOYbtJGlR82O6YPAPMn7PfEKzHQAAAAAAAAB0F4vFtGvXroTHwuGwvvCFL6ioiHgHAP8Lh8Pq16+f6urqtH79ekUin5eJ7Nq1S7FYTMGg/4psvPBfMgAAAB+L24awneW/H6nphOl6Ot8UlMmlvtqM5XmMrIeRvl7HyLZ0NGvOhh8nDdpVFfXXVSN+1itBO0mqCw2R5eI/aYuTjE3O9BhZSTqw9IsaUTLGcd+KnS9oR/STjN8zn5jev6E8f/8CAAAAAAAAQDr27NmTsG1ZloYPH07QDkDeKSoq0vDhw2VZVsLj+/85l4/8lwwAAMDH4oZmMDdhn1xLJ0zX0/m+CNsZ1hDqodHP74IqMjYlOgWUvDTbmcYgO9ke3aY5jT/W5shG4zH9i+p09fCfaZDLdrlsCAVCqgvV93hcstd7NtrULMvSzJqzHPfF1KHFO/6S8XvmE5rtAAAAAAAAAKC7/VvtysrKFA7n9+ceAApXOBxWWVnivLTdu3f30moyx3/JAAAAfMzUbBe0/Fd122OYLknTV0/nRw2tVLlkbLbL87COZVnGr8F5jGzmm+0+iW7RrzfcoK3Rj43H1IYG6aoRP1NdeLDr+2eLm7Bfsva6bLUhTqg4RgNCAx33vbjjKbXFWrNy33wQtSOOj/c0/hoAAAAAAAAA+rL9G58qKip6aSUAkBnl5eUJ24TtAAAoMHE5h+3ystmuh1BLkRUy7vNzs12+h+0k83MXsfd2e8xLs13M0MzY1dbIJs1p/LE+iW4xHjMwNERXDf+ZMUiWa/XFw3o8JtkY2WT70hG0gppRc4bjvr3xVi1reSYr980Hffn9CwAAAAAAAACpsG1bsVji/8cvLS3tpdUAQGbs32wXi8Vk23YvrSYz/JcMAADAx0xjOAOW/36khnpstku+P2AFjCNZTa1yuWRuxsr/sI7puYvEu3/NMWWu2W5z+0bN2XCDmjuajMcMDg/XVSN+qppQrev7Zlt9uOewXa7HyO4zpepElQXKHfc9t32Bp2bCvsTYTNkH3r8AAAAAAAAAkIp4vHvhQzDov8lKAOCF059jTn/e5RP/JQMAAPAxU7NdUP77ZafnZrueQy1expnmWl9uxjI32zmNkfXQbJfk2I/b1+s3G36slo5m4zFDi0fqyuE/VVVRf9f3zAU3YTtTcFTKbsCrOFCi46q/5Lhve8c2rdz1Utbu7Wd9+f0LAAAAAAAAAKlwanqyLKsXVgIAmeP051i+N9sV9fYCAADIJ3HbMEbWh812xWk220mfhpD2aFe3x5/f8Ve92/qGwlaxDig9RBMqJitoZf8/K+J2XG/tXq41be+o3WGkqtQ3mrFMz83ync/ro/Z1CY+9s2el6+v+cfNvtbr1Tcd9b+1ert2xncZzhxeP1veHz1Z5sNL1/XJlUHhoj8cka5/M1hjZfabVnKZF2x9Vhx3ttm9R83xNqjgurf9hYtu23tmzUu+1vq22+B7P55cFyjWu3xEa2+/wlNfglbGZkrAdAAAAAAAAAAAAfIywHQAAHtiGZruAD8tiewqthK2eA0ama6xpe0dr2t6RJC3Z8YQO33W0LhpyjYqskPeFuhS343pw8516eedzSY9L1mCWL8KGr2H93n9o/d5/pHzdDrtDy1oWeT5vZMlB+t6wG1UWdB6H2tvKguWqDNZoZ2x7SudnOyhaWVStoyun6aWWZ7rt29i+Tqtb39Qh/SakdG3btvWnrfdpyY6/pLXGRdsf1ZcGnKsv1/5zWtdxy9RsF+oDYVkAAAAAAAAAAAD0Xf5LBgAA4GOmMZwBy39jZHsKrYQDPYfS3LbEvbn7Fb27x7kxLVPW7/1Hj0E7qW80Y/npazig9BD9YPjNvg3a7eOm3c7EUvZr+E/sf5Zx3zPN81O+7ubIxrSDdvv89ZP/0o4kY4QzxbZtx5HIkjloCgAAAAAAAAAAAPgBYTsAADyI51GzXWmgLOn+kh72f3pMqev7vd/6tutjU/Gey+t7WbNfuXlucuHgskP1vWE35cX3tL54WNL9ycJ4/YIVmV6O4/0PK/8nx32rW9/Uxr0fpnTdf7T+PZ1lZf16TkwjZCUp5CIEDAAAAAAAAAAAAPQW/yUDAADwMds2hO0s//1IPbDsi0n3H1R2aI/XcHPMPnvjra6PTYWb69cU1ao2VJ/VdeRCT89dLowrO0KXDv2xigM9jxv2g/H9JibdP73my6oq6t/t8cHhEeofqsvWshKcWGNut1u0/dGUrtmW4ffd3nhbRq/nxNQQKklFWR7pCwAAAAAAAAAAAKTDf8kAAAB8LCbDGFn5b4zsF0rG6J8qj3fcd2zVTA0OD+/xGg3VJ6s+nLwxbJ9I3HksZKb0dP2AAvpq3bdlWdkfCZptkyqmamTJQb12/8PLj9YlQ6/31Tjbnnyx35EaV3aE476T+5+j6qL+OrvuwoQWyiIrpK/UXZCrJeqA0kM0quRgx32v7lyq5miT52uaxrGmKtvvY0mKqcO4LyDCdgAAAAAAAAAAAPAvPs0CAMCDfGq2C1gBXVD/Ax3ab5Leb/u79sbaVBbsp4PKDtWE8smuQmlVRTW6esStWrlzqdbv/YdidlyN7Wu0JfJRt2MzHfrxcv1T+n9Nh1ccrS+UjMnqGnKlNNhPPxh+s1buXKoP9q5WRzwxnLQrtkOrW99M+fpBFWlixbHdHi8JlOqgsi9qYsWxeRdaDFhBXTrsx1q+c4k+aFutSDyi8qIKjSs7QuM+a707qnKqakOD9Obu5QpaQU0on6xhJaNytkbLsnRi/zN178e/6LYvrpgWb/+Lzh54oadrmsJxVUX9dVCpuZny3dY3tDvW0v16WX4fS8mb7YKW/4LLAAAAAAAAAAAAwD6E7QAA8CAuQ9jOp2WxASuoIysbdGRlQ8rXKA9W6viaUzu35zfN0zPN87sd11vNdsdWzdQZdedn9d69oSRQqmOrZ+pYzey274O21VrdmHrYrjxYoQuHXJXO8nwpaAV1TNUJOqbqBOMxI0sP0sjS3m0NrAsNVlN0U7d9L7U8rVMHnKvSYD/X1zOF40aXHJz0Of7thhv1Xutb3a+Xi2Y729xsF2SMLAAAAAAAAAAAAHzMn8kAAAB8Kp5HzXbZEracR4v2VrNdyLCevixslaR3fh6Nh+1rAlZQJ9Sc4bhvb7xNL+54ytP1ooZwXKiH59j0Po7aEU/3T0WcZjsAAAAAAAAAAADkqcJJBgAAkAFxOYdEAiqcgIgpqNVbzXaFGBwrTvNrLsSAop9Mrpqh8mCl477FO/6iDjvq+lqmEKopTLdPKBB2vl4umu0Mf45KNNsBAAAAAAAAAODWyJEjZVlW5z9Llizp7SUBBYGwHQAAHtBsl6zZLruNWKbGrbDlHBrqy8IBmu3yWThQrOOqv+S4r6WjWa/ufNH1tSJxw/vCEKbr3N9LDZVSD2NkCyi4DAAAAAAAAAAAgPxTOMkAAAAyIC7nsJ1VQD9STUEt0zjLTKHZ7nM9tZb1eH4Bfs/85vjqUxUyBEUXNT8q27ZdXSea4njl3nofS1KMMbIAAAAAAAAAAADIU4WTDAAAIANMzXbBAmq2M4V4st2Ileq4zL4o3TGyhfg985uKoipNrprhuO/jSKNW7XnN1XXMzXY9hO382mzHGFkAAAAAAAAAAAD4WOEkAwAAyACa7czjKU3Nc5lCs93nAlZQRVYo5fN7GjGK3Dih5gxZshz3Ldr+qKtrpBpCDRnfx9kdBy3RbAcAAAAAAAAAAID8VTjJAAAAMiBuCIkECiggkqwRy+3oy1QYQ0UFGLaTpGKrJOVzabbzh4HhITq8/GjHfe+1vq3GvWt7vEaqIVTTa8A0ljaTYkrSbCea7QAAAAAAAAAAAOBfhO0AAPDA1GxXSGNkk4V4onb2WrFMoSLTWNu+ztRM5u7cwvye+dHM/l8x7lvU3HO7nbnZLvnrw/Q+znZDpWRutgsoIMtybvoDAAAAAAAAAAAA/IDqCAAAPIjbjJFN1ooWsdsVVuaDXHE7bgzyFWyzXYBmu75gVOnBOqD0EK1te7fbvtd2vaQzo9/UgNAg4/lRw9jXngKVyRoqsy1mOzfbBS1+NQEAAAAAAAAAwG9s29Zrr72m1atXa+vWrWpvb1ddXZ2GDh2qhoYGlZeX9/YSU7ZhwwatWLFCGzduVFtbm2pra3XooYfqqKOOUiCQ3ue/W7du1YsvvqiPP/5YbW1tGjJkiEaPHq3JkyenfW0nq1at0ttvv62mpibt3LlT/fv31+DBg9XQ0KABAwZk/H6FjE+0AADwwDY02wUKKWyXJMQTibdLWZio22FHzesp0OBYOl93oQYU/erEmrMcw3ZxxfXc9gX62sD/ZTw39WY75/2m8F4mmZrtggU0jhsAAAAAAAAAAL/btm2bbr31Vj344INqampyPCYcDmvGjBmaPXu2jj76aFfX/fa3v6158+Z1bn/44YcaOXKkq3OXLFmi6dOnd27fdNNNmj17tvH4rhN1jj/+eC1ZskSStGzZMt1000167rnnFI93//x30KBBuuGGG3T55Zd7Dsa9/vrruvbaa7V48WLHaw8bNkyXXHKJrrvuOhUVFWn27Nm6+eabO/cvXrxY06ZNc3WvTz75RHfccYcefPBBffTRR47HBAIBTZkyRTfddJNOPPFET18LnBVOMgAAgAwwjj8soJBIspBXtsbIJhttaQoN9XU02/Udh5ZP0qDwUMd9y3YsUmtst+O+uB0zBlF7ClSaxi/npNlOhrAdfw8IAAAAAAAAAABfePTRRzV69GjNmTPHGLSTpEgkooULF2ry5Mm65JJL1NHhPN3GT2699VYdd9xxWrRokWMYTpK2bNmiH/zgBzrnnHMUibj//PPXv/61Jk2apGeffdZ47Y0bN2rWrFk6/vjjtWXLlpS+Bkn64x//qNGjR+v22283Bu0kKR6Pa+nSpZo5c6a+9a1vefp64IxPtAAA8CBOs13PzXZZkCwAVKjBMZrt+o6AFdAJNWfqP7f8vtu+dnuvXtjxV50y4Gvd9kWShFt7en2YXgORnDTbmcbIFk5oGQAAAAAAAAAyze7okJo29vYy+r66YbKK+nbU5v7779fFF1/cLSx2wAEHaNy4cSorK1NjY6OWL1+uWOzzv2B/zz33qLGxUQsWLFCRT79Hv/zlL3XDDTd0bh988ME6+OCD1a9fP23atEkvv/yy9u7d27l//vz5mjVrlm6//fYer/2rX/1K11xzTbfHx40bpwMPPFDFxcVqbGzUihUrFIvFtGzZMp177rk67rjjPH8dN954o2655ZaExyzL0sEHH6wDDzxQFRUV2r59u1599dWEsOSDDz6oTZs2aeHChb59jvIB3zkAADywbUPYziqcsJ2pEUvKYtguabNdYQbH0vm6CzWg6GdHV07Tgm0PaVespdu+Jduf0Ak1Zyq0X4tjNI33hWnMbEwditkdClrZ+zWBhlAAAAAAAAAAyIKmjbLPPbi3V9HnWf/1njR4ZG8vI2veeOMNXXrppQlBuwkTJmju3LmaMmVKwrFNTU2aNWuW7r777s7HFi5cqBtvvFG33nprztbs1ttvv60XX3xRknTWWWfptttu09ixYxOO2b59u66++mo98MADnY/96le/0qWXXpp01O3KlSt13XXXJTw2bdo03XnnnRo/fnzC401NTbrxxht111136YUXXtCqVas8fR3z5s1LCNoFAgFdfvnluuaaazRixIiEY23b1mOPPaYrrrhCjY2NkqRnn31Ws2bN0m233ebpvvhc4SQDAADIAGNIpIB+pBZZRbIMX2+2RlDSbNddOJ0xsgU6etfPQoGwptWc5rhvZ2yHlu98vtvj2Wi2k7LfbmdutuPvAQEAAAAAAAAA0JsuuuiihDGjDQ0Neumll7oF7SSprq5Od911l+64446Ex2+//Xa9/fbbWV+rV83NzYrH4/rhD3+o+fPndwvaSVJNTY3+8Ic/6Mwzz+x8LBaL6b777kt67csvvzxhhO5Xv/pVPfPMM92CdtKn37d///d/1y9+8QtJ0rZt21x/DevXr9ell17auV1cXKwnnnhCv/vd77oF7aRP2+7OOussrVixQmPGjOl8/I477tCHH37o+r5IVDjJAAAAMsA2jZEtoEYmy7KMrVg02+VOsZV62C5ZOyF6z9TqU4whuUXbH1N8v2bNZO+L/Vvwuu1P8hqIJgnxZUJMzqHloArnz1EAAAAAAAAAAPxm8eLFeu211zq3Kysr9cgjj6isrCzpeddcc41OP/30zu14PK45c+ZkbZ3paGhocNXo9rOf/Sxh+7nnnjMeu2LFCr3yyiud24MHD9b999/f45jWa6+9VieddFKPa+nqjjvuUFtbW+f2nDlzdMopp/R43sCBA/Wf//mfnduxWMy3z1E+IGwHpzTaMAAAIABJREFUAIAHcVPYrsB+pJoCbrlutgsoWLBtWOm00xVqQNHvyoOVOqbqBMd9WyIb9fc9ryY8Fk2j8THZ6ydbodl9aLYDAAAAAAAAAMB/5s2bl7B9+eWXa8iQIa7O/fnPf56w/fDDD6u9PbufN6TihhtuUCDQ8+e648ePTxgb+8YbbxiPffjhhxO2v/e976mqqsrVembNmuXqOEnas2eP7r///s7t0aNH65JLLnF9/qRJkzR16tTO7ccff9z1uUhUWMkAAADSFDeNkbUK60eqMWyX42a7Qg6NpTVGlmY73zqh5kzjmOZFzY8lbKfT+JjsNZCt0Ow+pj9HgwXUEAoAAAAAAAAAgN8sXbo0Yfub3/ym63PHjx+viRMndm7v3btXK1euzNjaMqG0tFQzZsxwffwhhxzS+e+tra3avXu343HLli1L2D733HNd36OhocF1oHHp0qUJrXbnnHOOq+BgV9OnT+/89/Xr16uxsdHT+fgU9REAAHhgbLYrsJCIKaiTrZCOqcGrkENj6YyRLeSQot/VhgfpiIpj9Nqul7rtW9P2jta1va+RpQdJkiKGca9uGh9DSV4D2W+2M4Xt+NUEAAAAAAAAAIDesH37dq1du7Zzu7q6OiFs5saUKVMSxtCuWLFCU6ZMydga03XAAQcoHHY/OaqmpiZhu6WlReXl5d2Oe/PNNzv/vbq6WmPGjPG0rqOOOspVy9z+YcghQ4Zo3bp1nu61/9f/wQcfaMSIEZ6uAcJ2AAB4ErcZIyuZgzrRuHP4J10Rw3XTGaWa70LpjJEt4JBiPpjZ/yuOYTtJeqb5UV089IeS0mt8DFvm10/UEOLLlJgMY2RVWKFlAAAAAAAAAMioumGy/uu93l5F31c3rLdXkBVNTU0J2wceeKAsy/J0jbFjxyZsb926Ne11ZdL+4bmehEKhhO1oNNrtmD179mjv3r2d26kE19yes2HDhoTtK6+8UldeeaXn+3XV3Nyc1vmFirAdAAAemJrtTGMf+6pcN9uZrlvIobHidMbI0mzna18oGaMDS8frH23vdNv3xu6X1RTZpLrw4CSNjz0HMQNWUEVWkTrs7sG3bI+RNTfbEbYDAAAAAAAAgFRZRUXS4JG9vQzkqe3btydsV1VVeb7G/uf4LcjldeSqGzt27EjYrqio8HyNyspKV8d98sknnq/dk127dmX8moWgsJIBAACkKU5IRJI5rJWt8ZPpNHj1VeF0xsgWcEgxX5zY/yuOj9uK67ntCySZGx+TjYhNOM4Ums36GFlDsx1jZAEAAAAAAAAA6BW2bSdse221c5KJa/hdcXHiZy2RiPfpQW7PSeXaPdn/eYc7hO0AAPDA1GwXsArrR6qpOSvXzXamsFAhKE4jaFjIIcV8Mb7fRA0OD3fct6xlkXZ37Ey78THXodl9aLYDAAAAAAAAAMBf+vfvn7Dd0tLi+Rr7n+N1bKsbsZjzZwy9Zf+vcf+GQDfcNgDW1tYmbC9btky2baf1z7e//W3P6wVhOwAAPInbjJGVaLbzg3Ta6YqsUAZXgmwIWAGd0P9Mx31RO6IXdvw17feF6TUUtTP/N6O6iolmOwAAAAAAAAAA/KSuri5h+/333/d8jffeey9he+DAgY7HFRUlfh7Q0eH8uYGTVMJs2RQMBjV06NDO7Q8++ECtra2ervH222+7Om7QoEEJ26k8R8iMwkoGAACQJtMY2UCB/Ug1hXRy3WxXyONQw4HUxsiGrHDBNTHmq0kVx6sq6Py3vpbseFJ7Yrsc95maJ7sdZwrNZul9vI+x2U402wEAAAAAAAAA0Btqamp0wAEHdG7v2LFD7777rqdrLFu2LGF70qRJjsdVVlYmbO/YscP1Pd555x1Pa8qFyZMnd/57PB7X888/7/rc5uZmvfnmm66OnTJlSsL2008/7fo+yCw+aQUAwAPzGNnCConkutkuSrNdN6mOkS3k71m+CQVCmlZzuuO+3bEWvbJzseM+t89xyDQOOutjZGm2AwAAAAAAAADAbxoaGhK2H3roIdfnvvvuu1q5cmXndklJiY488kjHY/dvvFu1apXr+zz55JOuj82VE088MWH73nvvdX3uvHnzFIm4mzh0wgknKBj8/DPpxx9/XFu3bnV9L2QOYTsAADywjWG7wvqRGjKOn8xOSKfdFLYr5GY7K/VmO+SPqdUnq9jwXO+KtTg+7vY5NoXysvU+3sfUbFdooWUAAAAAAAAAAPzkggsuSNi+8847tXnzZlfnXn/99Qnb3/jGN1Rc7Pw5xMSJExO2FyxY4OoeTz31lJYvX+7q2Fw6//zzVVFR0bk9f/58PfXUUz2e99FHH+knP/mJ6/vU1NTo/PPP79zevXu3rrnmGm+LRUYUVjIAAIA0xWxD2K7AfqSam+3c/c0Lr4xjZAOFGxxLtaGO9rD8UhYs17HVMz2d4/a1YRwHnfVmO8MYWcJ2AAAAAAAAAAD0mhkzZmjChAmd2y0tLTrvvPPU1taW9Lw5c+boscce69y2LEtXXXWV8fhjjjlGZWVlndvz58/Xq6++mvQe//jHP/Qv//IvPX0JvaKiokJXXHFFwmPnnnuuFi92nlAkSevWrdPMmTM9jdCVpNmzZyeEGP/jP/5DP/rRjxSLOX/2YrJq1Sq98MILns7B5worGQAAQBps207SbFdYIRFjSCdLjVim8E8hj0RNOWynwnqt9gXTa77sKdDrtvHRFFaN2NkJze4Tk2GMrAiCAgAAAAAAAACQqs2bN2vdunUp/bPPfffdp3D4888PlixZoqlTp+qVV17pdr9t27bp8ssv19VXX53w+A9/+EMddthhxnVWVFTo61//eud2LBbTaaedpqeffrrbsZFIRPfee68mT56sLVu2qKamxsu3JGdmzZqlQw89tHN7586dOuGEE3Tuuefqv//7v/XWW29p9erVevrpp3XllVdq/Pjxevfdd1VSUqIzzzzT9X1GjRqle+65J+GxX/ziF2poaNCCBQvU0eH8GYz0acBv7ty5mjFjhsaPH6/nnnvO+xcKSeITLQAA3DIF7SSa7fbJViOWaaylaZxtIUh1hC7NdvlnQGigjqxo0Ipd7v6GkdsgpnEcNM12AAAAAAAAAADknfPOOy/lc23blvTpiNc777xT3/3udxWPf/rZ6MqVKzV58mSNGTNG48ePV0lJiTZs2KDly5d3C3fNnDlTt9xyS4/3u+WWWzR//vzOZretW7fq5JNP1pgxY3TYYYepuLhYW7Zs0SuvvKI9e/ZIkurr63X77bf7suEuHA7riSee0IwZM7RmzRpJn35P//SnP+lPf/qT4zmWZWnu3LlqbGzs1gyYzAUXXKDNmzfr+uuv73yOXn75ZZ1xxhkqKyvTEUccoUGDBqm0tFS7du3Stm3btGrVKs8tejDj01YAAFyKE7brFLZMjVg02+VKwErtNUegKT+d2P8s12E7tyHUXDdU7hOzDc12vDYBAAAAAAAAAOh1F198sWpqanThhRdq9+7dnY+vWbOmM0jm5Dvf+Y7uuusuhUKhHu8xdOhQ/fnPf9ZZZ52lXbt29XiPUaNG6YknntCWLVs8fjW5M3z4cL344ou67LLLNH/+/KTHDhgwQPPmzdNpp52mH/3oRwn7KioqerzXvvbACy+8UJs3b+58vLW1VS+99JKr9fq1JTAfFFYyAACANMTtJGG7AguJ5LrZzhT+SbXdrZDRbJefhpeM1sFl5sr1rtyGUI1jZOPZHSMbNzTbBRhxDAAAAAAAAACAL5xzzjlau3atrrjiCtXW1hqPC4VCOumkk/TSSy/pvvvucxW022fGjBlavny5zjzzTGObW11dna699lq98cYbOuSQQzx/HblWX1+v//mf/+kM3Y0bN07V1dUqKSnR6NGjdeKJJ+ruu+/W2rVrddppp0lSt8a5qqoqV/c65ZRT9OGHH2ru3LmaMGFCj414oVBIU6ZM0ezZs/X+++/riiuuSO2LBM12AAC4lbTZLsWWsXxlCrmZxr2myxT+KeRmu1QFCTTlrZn9v6L3Wt/q8ThT82S34wzvn2y9j/eJydRsx68mAAAAAAAAAAC4tW7duqxef+DAgfrNb36jX//611q5cqVWr16tpqYmtbe3q7a2VsOGDVNDQ4OrJjaTsWPH6tFHH9W2bdv0/PPPa+PGjWptbdWgQYM0atQoTZ06VUVFn39+MG3atM6Rt254OXZ/DzzwgB544IGUzm1oaFBDQ4OrY1etWtX575ZlaeDAga7vU1JSossuu0yXXXaZmpub9fLLL2vTpk1qbm5WNBpVeXm5Bg4cqIMOOkhjx45VWVmZ568F3fGJFgAALpnamKTCGyMbMoR0OuwOxexYxsdB0myXOYzqzF+HlE3QkPAX9HFkfdLjTO/PbseZxshmudkuZvizlNcmAAAAAAAAAAD+EwgENGnSJE2aNClr96itrdXZZ5+dtev71Z49e/Taa691bh900EEphxf79++vU089NVNLQxKFlQwAACANycfIFtaP1GQht6id+aCOaTwtzXbe0R6WvyzL0on9z+rxOLchVFMDnincminmsB2vTQAAAAAAAAAAUDjmzZun1tbWzu1jjjmmF1cDt/hECwAAg9bYbn3cvl52l22TQIGN5kwWcntvz1sqC5Z3bg8KD1VlUbWkT6uam6Kb1NKxXUVWSMOKRykUCCW9V8zuUFzO4Ry34zLxOdrD8ttRlQ16fNuD2tHxifEYtyFU03Efta/T1sjHqgsNlmVZKa0zmZhtGCNbYH+OAgAAAAAAAACAwrVx40bNmjUr4bELLrigl1YDLwjbAQCwn5gd00Ob5+qVnUtky9xm1xXNdp+7++Pbuj32xX5H6Yzab+q+TXdoS+SjzsdDVlhfrfu2jq9xrjS2bVsPb7nLvA6a7TyjPSy/FVkhTa/5suY3PWA8xm0I1TRGVpJmf3iZBoWH6rKhP1ZdeLDXZSZlCs/y2gQAAAAAAAAAAPnqz3/+s1auXKmrrrpKdXV1SY99/fXXdfbZZ6u5ubnzscMPP1zTp0/P9jKRAXyiBQDAfp765L/18s7nPJ1jFdhkdq8ht7/veVV/3/Nqt8ejdkSPbL1H9cXDdXDZod32v9TytJa1LDJeN1lYCM5oD8t/DVUz9ddPHtHeeJvj/nSb7fbZEvlIczfeoptGzc1ow515jCyvTQAAAAAAAAAAkJ927dql2267Tb/85S91yimn6IQTTtDhhx+ugQMHqqioSM3NzXr77bf1l7/8RQsWLJBt253nhsNhzZs3rxdXDy8I2wEAsJ83dr/s+ZwAYbu0vLX7Fcew3Ru7kj8XNNt5V/HZSF/kr9JgPzVUnaxF2x913O82hOqmAW9r9GNtjmzU4OLhntaYjDlsx68mAAAAAAAAAAAgv0WjUS1YsEALFixwdXxpaan++Mc/6vDDD8/yypAphZUMAADAhe0d2zwdXxIoVU1oQJZW40/FVon6FyWvP/ZiR7TZ8fFkz0VpoJ+qi/pnbA356Ct1/+L4+OkDztPA0BDHfRMrjs3mkpAj02tOV8ChpTCgoAaFnZ/7/Q0uHuHquJYO5/dnqmLqcHycZjsAAAAAAAAAAJCvqqurFQx6+6zj2GOP1QsvvKBzzjknS6tCNhC2AwBgP5F4u6fj/6lyWsE1MlmWpSlVJ2bseqbwTcQ2PxeTq6YX3Pd9f0eUT1FJoCzhsWKrRBMrjnV8fgaFh+qA0kNytTxkUU2oVqcM6P6L18SKKSoLlru6Rv9QncaW5f5vSRmb7RhxDAAAAAAAAAAA8tRZZ52lLVu26MEHH9Sll16qhoYGDR8+XP369VMwGFR5eblGjBihqVOn6t/+7d+0dOlSLV26VEcddVRvLx0eFfYn1AAA7CduxxW1I66O7V9UpyMrG3Rm7TezvCp/+tKAc2VZAb3Sslhbox+ndS1T+MYUfBwQGqiz6y5M6559QW14kK4cfov+p+kBNe5dq+HFo3RG7TdVXzxMg8JDJUl/2/msdnZs19iyw/X1QZfQHtaHnDrg6woooL/tfFaS9MV+R+nsgd7eF/869Dr9acv/1d/3vKpdsRbHY2zZaa+1q5htarbjVxMAAAAAAAAAAJC/BgwYoPPPP1/nn39+by8FWcQnWgAAdNFhR437/veIn2tUyUGd25YsWZaVi2X5kmVZ+tKAr+lLA76muB3vfHxnx3b92wcXebqWKXxjCtudU3eRAoTGJEkjSg7QlcNvkW3bCa9Hy7J00oCv6qQBX+22D31DwAro1Nqv69Tar6d8jZJAqb41+PuybVvfe/9s2Yp3OybzYTtDsx3vaQAAAAAAAAAAAPgcYTsAALpINkK22CpRwGICu5Ou35fiQInn853CdrZtK2JoGQwHij3fo69LFqYjaIeeWJalgAKKOYTtMo1mOwAAAAAAAAAAAOQrEgMAAHQRsc1hOwJe7qTyfXJquuqwOxxbtiQpbPFcAJlmymRmvNlOhmY70WwHAAAAAAAAAAAAfyNsBwBAF0mb7QjbuRK0ihTwGJpxCt9ECT4COWZK2+VqjCzNdgAAAAAAAAAAAPA3wnYAAHSRtNmONjXXvIbhnMZKJgs+ErYDMs8yhO0y2WwXt+PGxsqARbMdAAAAAAAAAAAA/I2wHQAAXRDwygyvwUSnpqtkwceQFfa8JgC9z9RqJ9FsBwAAAAAAAAAAAP8jbAcAQBemgFdAQYIgHoQD3sJwNNsB/pXJIbIxdX+v7xP0OH4aAAAAAAAAAAAAyDXCdgAAdGEKeBHu8sZzs528Ndsx0hfIPNMY2UzG7eJJm+0I2wEAAAAAAAAAAMDfCNsBANBF1BDwItzljddwotdmO8bIAplnCtvZGQzbOb3X96E9FAAAAAAAAAAAAH5H2A4AgC4i8Yjj417Hoha6kMdwolPblanZLmwVy7JMDVwA/CxGsx0AAAAAAAAAAADyGGE7AAC6SBbwgnvem+0cwnbG4CPPBZANphCrbWew2U5Jmu1Esx0AAAAAAAAAAAD8jbAdAABdmEaXEvDyxms40SmAw0hfINdyMUaWZjsAAAAAAAAAAADkL8J2AAB0YWq28zoWtdBlptnO8FwQfASyIhfDmZOH7Wi2AwAAAAAAAAAAgL8RtgMAoAua7TLDe9iue7OdeaRvOKU1AehJ9uN2Tu/1fWi2AwAAAAAAAAAAgN8RtgMAoAtj2I5mO0+8fr/iisu2E0dVEnwE/CGjY2RFsx0AAAAAAAAAAADyF2E7AAC6MLapEfDyJJXvV0yJjVfmZjueCyAbLGOzXQbDdsma7USzHQAAAAAAAAAAAPyNsB0AAF3QbJcZqXy/YnZi4xXNdkBumcJ2mYvadX+fd8UYWQAAAAAAAAAAAPgdYTsAALowN9uFc7yS/JZSs51Nsx3Qq0zFdjlotrNkKUDYDgAAAAAAAAAAAD5H2A4AgC5oU8uMTDTbReMR52vzXABZYWy2szMYtpNzsx2tdgAAAAAAAAAAAMgHhO0AAOgiamhTC9Gm5kkqTYD7h3BMzXY8F0C25GKMrHOzXVBFGbwLAAAAAAAAAAAAkB2E7QAA6IJmu8xIJRDXbYwszwWQU8Ypshm0f4PlPoyQBQAAAAAAAACgMDU2NurHP/6xpk6dqkGDBikcDsuyrM5/Hnjggd5eIpCACgkAALowtamlMha1kKUSiOs2RtY2jJG1vLfmAeiZaYxsJrvtTGE7xsgCAAAAAAAAAODNyJEjtX79+s7txYsXa9q0ab23oBTce++9+v73v6/2dufPaAE/otkOAIAuInFDwIs2NU9SCSfSbAf4k53RsJ1pjCxhOwAAAAAAAAAACsmTTz6pSy65xHXQbsmSJQmNd7Nnz87uAgEDmu0AAOiCZrvMyESzHc8FkGvZb7aLy9Rsx68lAAAAAAAAAAAUkuuvv162/flnEP/8z/+siy66SMOHD1coFOp8vLa2tjeWBxjxqRYAAF3QppYZqQTi4qLZDuhN2Y/aJWm2Y4wsAAAAAAAAAAAF47333tNbb73VuX3qqafqoYce6sUVAe4xRhYAgM/E7A5j61LYCud4Nfktq812hO2A7LCc43Zd/1ZZuvZ/n+8ToNkOAAAAAAAAAICC8eqrryZsn3POOb20EsA7wnYAAHzG1KQmEfDyKpXvV4ftrtkuxBhZICusHHTbGZvtRLMdAAAAAAAAAACFYsuWLQnbw4YN66WVAN4RtgMA4DOmJjWJgJdXqYyR7RrCidtxRe2I87UJPgJ5K2ZoD2WMLAAAAAAAAAAAhWP37t0J26FQqJdWAnjHvCYAAD5Ds13mhFIYu9s1hNNhR43HpRLkA9AzU7Nd5nrtkjTbMUYWAAAAAAAAAABfsm1br732mlavXq2tW7eqvb1ddXV1Gjp0qBoaGlReXu75mvF4PAsrBXKDT7UAAPhMsmY7Al7eWJalsFWc9Hu6v64hnOTBR+9BPgA9y80YWZrtAAAAAAAAAADIB9u2bdOtt96qBx98UE1NTY7HhMNhzZgxQ7Nnz9bRRx9tvNa6des0atQo4/7p06c7Pv6HP/xBF154oeO+m2++WTfffLPxmosXL9a0adOM+4FUMUYWAIDPROLOY0slmu1S4fV71jWEQ/AR8A87J2E7/g4QAAAAAAAAAAB+8eijj2r06NGaM2eOMWgnSZFIRAsXLtTkyZN1ySWXqKPDecIN0JfwqRYAAJ9JFvBKZSxqofMaiksI2zHSF+iTYjKMkRXNdgAAAAAAAACQlniH1Lqxt1fR95UNkwJ9O2pz//336+KLL+426vWAAw7QuHHjVFZWpsbGRi1fvlyx2Oef791zzz1qbGzUggULVFTUt79HKGy8ugEA+Iwp4BWywgpYlMF6FfLcbNdljCzNdkDOWZbzGFma7QAAAAAAAAAgD7RulB43j+lEhpzxoVQ+srdXkTVvvPGGLr300oSg3YQJEzR37lxNmTIl4dimpibNmjVLd999d+djCxcu1I033qhbb7014dhhw4bpww8/7Nz+zW9+o9/+9red2w8//LAmT57cbT21tbWdo2BffvllnXfeeZ37rrjiCl155ZXGr6W+vr6HrxZIDZ9qAQDwmagh4EWTWmrCHtsA46LZDuhdhrCdncmwnaHZzqLZDgAAAAAAAACA3nbRRRcpEol0bjc0NOipp55SWVlZt2Pr6up01113acyYMbr22ms7H7/99tt13nnn6dBDD+18rKioSCNHjuzcrq6uTrhWfX19wv6uysvLJUnr1q1LeLy6utp4DpBN1PQAAPAZU8CLJrXUeA3FuWm2CyhIAxaQJc5Ru8wyN9sRtgMAAAAAAAAAoDctXrxYr732Wud2ZWWlHnnkEcegXVfXXHONTj/99M7teDyuOXPmZG2dQG8jbAcAwGeMYTua1FLiNaTYNYTDcwHknpWDuF1MhmY7CrcBAAAAAAAAAOhV8+bNS9i+/PLLNWTIEFfn/vznP0/Yfvjhh9Xebp5kBeQzPtUCABSMJ7c9omUti4z798bbHB+n2S41qTTbrWl9R4u3/0Wv7/6b8zV5LoAscg7bPdr0R/31k/9KemZ9eJiOrpqmSZXHG4+JxNv1t5ZnHffRbAcAAAAAAAAAQO9aunRpwvY3v/lN1+eOHz9eEydO7GzG27t3r1auXKkpU6ZkdI2AHxC2AwAUjNb4bjV3NHk+jza11IStEk/Hv9/2dz267T/UYUfN1wyE010WAANTs92e+C7tie9Kem5zR5NWtb6u9vheNVSf3G2/bdv6949+Zjyf8dAAAAAAAAAAAPSe7du3a+3atZ3b1dXVOuSQQzxdY8qUKQljaFesWEHYDn0Sn2oBANCDkEXAKxVeg3Fv7V7e8zVptgN87bntCxzDdh+1r9d7rW8ZzwvQbAcAAAAAAAAA6SkbJp3xYW+vou8rG9bbK8iKpqbEwpIDDzxQluX8l/RNxo4dm7C9devWtNcF+BFhOwAAelARrO7tJeSlyqLMf98qiqoyfk0An+oXrJDMxZKubI5sVCTe3q0RtLF9TdLzKoK8twEAAAAAAAAgLYEiqXxkb68CeWr79u0J21VV3v+//f7nNDc3p7UmwK8Cvb0AAAD87ovlE3t7CXlpfL8j8+KaAD51SL8JGblOXPFuj0Xi7UnPGdfviIzcGwAAAAAAAAAAeGfbdsK211Y7J5m4BuBHhO0AAEhiavUpOrJiam8vIy+NLh2rM2u/lbHrHVE+RdNqTsvY9QAkOrn/2RrfL/1wcdyOdXssWdjuzNpvaXTpWON+AAAAAAAAAACQXf3790/Ybmlp8XyN/c+pqalJa02AXzFGFgBQMI6qmKqhxSNdHVtkFWlUycGqDddnd1F93MkDztbRVdO1tnWVIna7yoNVeqZ5vta0veP6GkdWNOi0Ad/QoPBQ/gYMkEWhQFiXDZ2lTZENaty7VrZDQ90+OzqatWDbQ477Yk5hO9s5bFcXGqyTB5yd2oIBAAAAAAAAAEBG1NXVJWy///77nq/x3nvvJWwPHDgwrTUBfkXYDgBQMEaWHqSRpQf19jIKTnVRfx1Z2dC5vaxlkafzG6pPVn3xsEwvC4ADy7I0pHiEhhSPSHrcpvYNxrCdlzGydeHB3hcJAAAAAAAAAAAyqqamRgcccIDWrl0rSdqxY4feffddHXLIIa6vsWzZsoTtSZMmZXSNlHLALxgjCwAAcipoBT0dH7aKs7QSAKlK9j52GiMbtSOOx4atcMbWBAAAAAAAAAAAUtfQ0JCw/dBDzn/p3sm7776rlStXdm6XlJToyCOPzNjaJKm4OPEzw/Z257/oD2QbYTsAAJBTQY/FuuEAYRzAbwJKErbz0GwXDhCmBQAAAAAAAADADy644IKE7TvvvFObN292de7111+fsP2Nb3yjWzguXdXV1QnbmzZtyuj1AbcI2wEAgJyi2Q7IfwHL/GuEU7NdxDaE7Xh/AwAAAAAAAADgCzNmzNCECRM6t1taWnTeeeepra0t6Xlz5szRY4891rltWZauuuqqjK9v9OhI9A+jAAAgAElEQVTRCoc/L+lYvHixotFoxu8D9MRbtQwAAECaPIftaL4CfCeQbIwszXYAAAAAAAAAAOTc5s2btW7dupTOHTlypCTpvvvu0zHHHKNIJCJJWrJkiaZOnaq5c+fq6KOPTjhn27Ztuummm/T73/8+4fEf/vCHOuyww1JaRzLhcFjHHnusFi9eLElqbGzUGWecoe9+97s68MADVVZWlnB8fX29SkpKMr4OgLAdAADIqaDlcYwszVeA7wSSFGTHbYewnb3X8dgQ728AAAAAAAAAADLivPPOS/lc27YlSRMnTtSdd96p7373u4rHP/3//StXrtTkyZM1ZswYjR8/XiUlJdqwYYOWL1+ujo6OhOvMnDlTt9xyS+pfRA+uvvrqzrCdJC1cuFALFy50PHbx4sWaNm1a1taCwkXYDgAA5BTNdkD+SzZGNuY0RjYecTyW9zcAAAAAAAAAAP5y8cUXq6amRhdeeKF2797d+fiaNWu0Zs0a43nf+c53dNdddykUCmVtbaeffrp++tOf6qabblIs1v3zCCAXzJ+SAQAAZEHQQ9Y/oKDnJjwA2ReUOTRrO42RtQ1jZGm2AwAAAAAAAADAd8455xytXbtWV1xxhWpra43HhUIhnXTSSXrppZd03333ZTVot88NN9ygt956S9ddd52OO+441dfXq7S0NOv3Bfbh02sAAJBTXprtaL0C/Mny3GxnCNvxHgcAAAAAAAAAICXr1q3L6vUHDhyo3/zmN/r1r3+tlStXavXq1WpqalJ7e7tqa2s1bNgwNTQ0qKKiwvO1Z8+erdmzZ6e8tnHjxum2225L+XwgHYTtAABATnlpqqP1CvCnZM12cTmE7YzNduGMrQkAAAAAAAAAAGReIBDQpEmTNGnSpN5eCuALjJEFAAA55a3ZjiAO4EeBJM12cdthjCzNdgAAAAAAAAAAAOgDCNsBAICcCnoo1qXZDvAnK8mvEU7NdlFjsx3vcQAAAAAAAAAAAOQPwnYAACCnvDTbhWi9AnwpYAWMgbv9m+1idkwddofjsbzHAQAAAAAAAAAAkE8I2wEAgJwKeBkjazFGFvCrgClsp8SwXdSOGK9Bsx0AAAAAAAAAAADyCWE7AACQU0HLwxhZWq8A3wpYzr9KxOzEMbKRuPMIWYn3OAAAAAAAAAAAAPILYTsAAJBTQXlptiOIA/iVaSS0vV+zXdKwHe9xAAAAAAAAAAAA5BHCdgAAIKe8NNuFaL0CfMsy/CrRrdnOptkOAAAAAAAAAAAAfQNhOwAAkFOmNiwntF4B/mV6L8cZIwsAAAAAAAAAAIA+irAdAADIKS/NdgRxAP8KGH6ViO8/RjZJs13ICmd0TQAAAAAAAAAAAEA2EbYDAAA5FRTNdkBfEHDZbBc1NNsVWUWemi4BAAAAAAAAAACA3kbYDgAA5JSnMbIBWq8Av0q32S5EmBYAAAAAAAAAAAB5hrAdAADIKU9jZAnjAL4VsAxhO3u/sJ2h2a44UJLxNQEAAAAAAAAAAADZRNgOAADklLdmO8J2gF8FDCOhY0ocIxuxI47HEaYFAAAAAAAAAABAvnFfLYM+wbKsUZImSBoiqVzSJknrJS2zbTvam2sDABSGoBVyfSxjJgH/MjXb2S6b7RgTDQAAAAAAAAAAgHxD2K5AWJZ1jqSrJR1jOKTZsqxHJN1o2/a23K0MAFBogoY2LCc02wH+5b7ZzjlsR5gWAAAAAAAA/5+9O4+yqyzzxf/dVUkqhCRkDkiIAUOahEHARAQZG5qppaUBZXIp2K1eUZRuEBsnRllwwV4dQbuV9gavP1RaQKZWWxxCiwjcgDSQoCTKEKYYQkIGyFj790dCmVOp6VSdqkpVPh/WXuR9z36Hvc85u2qf89TzAgD0NZaR7eeKohhaFMX3kvwgrQfaJcmoJB9P8kRRFMf0yOQA2CZZRhb6h9bey41ls2C7VjPbeX8DAAAAAADQtwi268eKoqhPcnOS05o9tDjJT7MxAO+RJOVmj41PckdRFAf3yCQB2ObUFx1PrDtI5ivYahWtLCPb2GwZ2XWtZLbz/gYAAAAAAKCvEWzXv12V5PjNyuuSnJtkQlmWx5Rl+f6yLN+RZK8kv9lsv4YktxdFsVPPTRWAbYXMdtA/tLYkdGPzZWRltgMAAAAAAKCfEGzXTxVFsVuSTzerfl9ZlteXZbl288qyLOclOTKVAXejk1zcvbMEYFtUH5ntoD+o62Bmu7Uy2wEAAAAAANBPCLbrvy5OMnCz8o1lWd7R2s5lWb6R5Kwkmwfi/d2moD0AqJnqMtsN6saZAF1R18qtRGOaBdvJbAcAAAAAAEA/IdiuHyqKYrskpzSrvrq9dmVZPpXk9s2qBiQ5o4ZTA4DUFzLbQX9Q10rg7Iay2TKylUmVmwwsBNMCAAAAAADQtwi265+OSTJks/JvyrL8XQfbzmpWPqk2UwKAjarJbDdQ5ivYarWW2a6U2Q4AAAAAAIB+SrBd/3Rss/LsKtr+Ksn6zcr7FUUxvsszAoBNqstsJ/MVbK06ntmulWA7mSsBAAAAAADoYwTb9U97NSv/pqMNy7JcleTxZtV7dnlGALBJfTqW2W5AMbDVYB6g97WWpbJ5Zrt1MtsBAAAAAADQTwi265+mNisvqLL9H5qVp3VhLgBQoaPLyMp6BVu3opVbiQ5nthNsBwAAAAAAQB8j2K6fKYpiVJJRzaqfq7Kb5vvv3vkZAUCluqI+RYp29xOIA1u3+qLlW4nG8s+Z7dY0rs6SdX9qcT8BtQAAAAAAAPQ1gu36nxHNyq9vWhq2Gs2/Ed2hC/MBgC10JLudQBzYutW1siR0YzZmtlu5YXn++bnPtdpeQC0AAAAAAAB9zYDengA1N7RZ+Y1O9NG8zbBOzqVJURTjkoytstnbujouAFun+gzI+qxvc59BdYN6aDZAZ9S1k9nuv5bcmoVr/thqewG1AAAAAAAA9DWC7fqf5sF2qzvRR/Ngu+Z9dsY5SS6uQT8A9AMD6wZlzYa2f0QNKgb30GyAzmg9s93GYLunXn+8zfYNdd7jAAAAAADQXV5//fU88sgjmT9/fl555ZWsXr062223XcaPH58pU6Zkv/32y6BBkl901uGHH5577723qVyWZbeMM3v27BxxxBFN5YsvvjiXXHJJt4xFxwi26/86827unisAAGyy6+C/yOOr/l+b+7xtyNQemg3QGa1nttu4jOzrjatabTuoaMiEhl27ZV4AAAAAALCt2rBhQ/7jP/4js2bNyi9/+cusX9/6SlODBw/OMccck7//+7/Pe97znh6cJfRtLX9DRl+2sll5u0700bxN8z4BoEuOHnVSGtrIXLfDgFE5eIeje3BGQLVay2y3IRuD7TaUrd/AHzP6lAy0VDQAAAAAANTML37xi0ybNi1nnHFG7rnnnjYD7ZJk9erVueOOO3LCCSdkxowZeeSRR3poptWZNGlSiqJIURSZNGlSb08HZLbrh7bWYLuvJ/lBlW3eluSOGowNwFbmbUOm5h8nXpkHl/8yz695pimtcn1Rn7cOnpx373B0xgwa38uzBNrSWma7sty4jOybGe6a23fou3Lc6Pd127wAAAAAAGBbc+mll+bSSy/dYinToigyderUTJgwIaNHj87ixYvz3HPP5amnnqrYb86cOTnwwANz/fXX5yMf+UhPTh36HMF2/c9rzcpDiqLYvizL1tfx2tK4ZuVlXZxTyrL8U5I/VdOmKIquDgvAVmyXwbtll8G79fY0gE5qP7Ndy8F204cf2m1zAgAAAACAbc15552XmTNnVtQNGzYsF110Uc4888xMnDhxizYLFizIjTfemGuvvTZr1qxJkqxduzYf/ehHs2rVqpx33nk9Mnfoiywj28+UZbkkydJm1VteOdv21mbl+Z2fEQAA/VF9K5ntGjdlttuQltPT17cSpAcAAAAAAFTn29/+9haBdgcffHDmzZuXiy66qMVAuySZPHlyrrjiijz22GPZa6+9Kh47//zzM3v27O6acr8xe/bslGXZtLHtEGzXPz3ZrDy5yvbN0ww17w8AgG1c0cqtRGM2Bdu1ktmuvhBsBwAAAAAAXfXUU0/lk5/8ZEXdQQcdlB//+MeZMGFCh/qYMmVKfv7zn2fq1KlNdY2NjfnABz6QV155pabzhf5CsF3/9ESz8oEdbVgUxfZJ9mmnPwAAtnGtBc01lm8uI9tKZrtiQLfNCQAAAAAAthUXXHBBVq5c2VQeMWJEbr311gwdOrSqfsaNG5dbbrklgwYNaqp74YUXcvnll9dsrtCf+Karf/pJko9uVj68iraHpPJ18duyLBfVYlIAAPQfda0F26UxZVk2ZbhrTmY7AAAAAADomt/97ne5++67K+quuuqq7Ljjjp3qb9q0abngggty5ZVXNtV961vfyiWXXJKRI0d2aa5bmwULFuSxxx7LCy+8kBUrVqQoigwZMiTjx4/Prrvumr333jtDhgzp9nmsWbMm9957b55++um8+uqrGTduXCZMmJBDDjmkW8Z/6aWX8uCDD+ZPf/pTlixZkqFDh2bcuHGZMWNGdtut+QKYtEWwXf/0X0neSLLdpvKBRVHsUZbl7zrQ9qxm5R/WcmIAAPQPda0tI1tuyIa0nNUuSerdggAAAAAAQJfMnDkzZVk2lceMGZOzzz67S32ed955ueaaa7Ju3bokyapVq3LDDTfkwgsv3GLfs846K9/+9rebyk8//XQmTZrUoXFmz56dI444oql88cUX55JLLmmz/zc9++yzKYqi1b4/9KEP5cYbb9yifs2aNfnqV7+aG264IfPnz29zfvX19dl3331z4okn5h//8R9bDXw7/PDDc++99zaVN38+2vLaa6/lS1/6Um688cYsX758i8eHDRuWU089NZdeemne8pa3dKjP1qxbty7f+ta38vWvfz2PP/54q/vtvvvuueCCC/LhD384Awb4Hqc9lpHth8qyfD3JLc2qP9teu6IopiT5282q1if5bg2nBgBAP9FaZrsN5YZs2LSUbEtktgMAAAAAgK75yU9+UlH+4Ac/WLEMbGeMHTs2J5xwQpvj9EULFy7MfvvtlwsvvLDdQLsk2bBhQx5++OF88YtfzIsvvljTufzP//xPpk2blq9+9astBtolyYoVK/Lv//7v2XvvvfPrX/+602M9/PDD2WOPPfLxj3+8zUC7JJk/f34+9rGPZcaMGXnhhRc6Pea2Qjhi/3VJktOSDNxUPqsoih+WZXlnSzsXRTE4yawkm199v1WW5R+6dZYAAPRJrWW2K9OYDWUbme0KtyAAAAAAALW2odyQZetf6e1p9HsjBozp9T8qf/755/PMM89U1B199NE16fvoo4/Obbfd1lR+4IEHsm7dugwcOLCNVluvtWvX5thjj82TTz5ZUT9q1KjsvffeGT9+fAYOHJgVK1bkpZdeyrx587Jq1apumcu8efNy5JFHZsmSJRX148ePz3777ZcRI0Zk0aJFeeCBB/LGG2/k1VdfzXve855cc801VY91991359RTT83rr79eUb/TTjvl7W9/e0aNGpVVq1Zl3rx5FQGIjz76aA444IA88MADmTBhQucOdBvgm65+qizLPxZFMTPJBZtV31IUxT8m+WZZlmvfrCyKYmqSf09y0Gb7LklyaY9MFgCAPkdmOwAAAACArcey9a/ki3/8WG9Po9+7fLdvZPTA8b06h5aynU2fPr0mfb/jHe+oKL/xxht59NFHM2PGjJr031HXXntt09KyBx98cFO2tZ133jn33Xdfq+2GDh1aUZ41a1bmzZvXVJ40aVK+9rWv5dhjj01d3ZZJBcqyzMMPP5y777473/rWt2pwJButW7cuZ555ZkWg3U477ZSZM2fm5JNPrpjLypUr85WvfCVf/vKXs2zZshaX8W3LvHnzctppp1UE2h177LG59NJL8853vnOL/X/729/m05/+dH71q18lSV544YWcfvrpmT17durrfafTEsF2/ds/JdkzyXGbygOTXJfki0VRPJJkRZLdkuyfZPNFrdcm+duyLF/qwbkCANCH1LeV2S5tBdu5BQEAAAAAgM56/vnnK8rjx4/P6NGja9L3Xnvt1eJ4PR1sN2bMmIwZMyZJMmDAn79XGDBgQCZNmtThfu64446Ktvfcc08mT57c6v5FUWT69OmZPn16vvjFL6axsbH6ybfguuuuy6OPPtpU3mmnnXLfffdlt91222LfoUOH5uKLL85ee+2V97///Vm6dGmHx2lsbMypp55akZ3vkksuycUXX9xqm/322y+/+MUvcuqppzZlNbzvvvty00035YMf/GCHx96WtPwNGf1CWZYbkrw/yc3NHhqX5Ngk70vyjlQG2v0pyXvLsvxVj0wSAIA+qShavpXYULazjGz8FRQAAAAAAHTWq6++WlEeOXJkzfoePHhwGhoa2hyvL3n22Web/v32t7+9zUC75urr62uyfG5jY2Ouu+66irpvfvObLQbabe7kk0/OOeecU9VYt912W5544omm8vvf//42A+3eNGDAgHz729/OuHHjmuquvfbaqsbelgi26+fKslxZluVp2RhY90Abu76a5F+T7FWW5U96ZHIAAPRZrQXNNabtZWRbW34WAAAAAABoX/PgtxEjRtS0/+b9bb70aV/2pz/9qVfG/e///u8888wzTeUZM2bkPe95T4fafulLX6oq4O+rX/1q07+LoshVV13V4bZDhw7Nxz7256WoH3/88Yp582eC7bYRZVneUpblgdm4bOwpST6V5KIkZyf5yyQ7lWV5TlmWi3txmgAA9BF1rWS2a2wvs51lZAEAAAAAYKtVFEX7O/URe+yxR9O/Fy5c2CvZ2u67776K8umnn97htmPHjs3RRx/doX1XrVqVBx74cw6uGTNmZNddd+3wWElyxBFHVJR/9SuLYrbEN13bmLIsn07ydG/PAwCAvq21DHXtZbarl9kOAAAAAAA6bdSoURXl1157rab9L1u2rM3x+pIzzjgjt912W1P5M5/5TG6//facffbZOf7447PTTjt1+xzmzJlTUT7ggAOqan/AAQfkP//zP9vd74EHHsi6deuayrvttlvVmekaGxsryn/4wx+qar+tEGwHAABUra61ZWTLxjSmjcx2bkEAAAAAAGpuxIAxuXy3b/T2NPq9EQPG9PYUtgh+W7p0ac36Xr16dVavXl1RN3r06Jr139NOOumknHTSSRUBd7/+9a/z61//OkkyefLkHHTQQXn3u9+dQw45JFOnTq35HBYtWlRR3n333atqP2XKlA7tt3Dhwory97///Xz/+9+vaqzmmi9ZzEa+6QIAAKrW+jKyMtsBAAAAAPS0+qI+oweO7+1p0AN23nnnivLLL7+cJUuW1CQobu7cue2O15cURZGbb745F198cf75n/95i0DCBQsWZMGCBfm///f/JtkYfPeBD3wg5557bs0y+jUPhhw+fHhV7XfYYYcO7bdkyZKq+u2IFStW1LzP/qDlb8gAAADa0Fpmuw1pzIayjcx2hb/3AQAAAACAzjrooIO2qGu+VGlnNe9nu+22y7777luTvnvLgAED8uUvfznPPPNMrr322hxyyCFpaGhocd8FCxbkkksuyW677Zabb765h2faNWvXrq15n2VZ1rzP/kCwHQAAULXWMtuVZWObme3q3IIAAAAAAECnTZw4MRMnTqyo++lPf1qTvu+5556K8gEHHJBBgwbVpO83bdjQ+ncI3Wn8+PE5//zz89///d957bXXcv/99+faa6/Ne9/73gwdOrRi39deey2nn356br/99i6PO3LkyIry8uXLq2r/2muvdWi/MWMqlzi+8sorU5Zll7Ybb7yxqrluK3zTBQAAVK21oLkNm/5rSX0GpCiK7pwWAAAAAAD0e8cee2xF+Tvf+U7WrVvXpT4XL16cO++8s81x3jRgQOUqNuvXt77iTXPNl1XtDQ0NDTnwwANz/vnn5/bbb8+SJUvy/e9/P1OmTGnapyzLfOpTn0pjY2OXxho/vnJ55/nz51fV/qmnnurUOB1tR/UE2wEAAFWrL1peRrax3NDqMrKttQEAAAAAADru05/+dMUfty9evDizZs3qUp8zZ86sCNjbfvvt85GPfKTFfYcPH15RXrZsWYfHmTt3blXz6ok/4h80aFBOPfXUPPjgg9l5552b6hcuXJiHH364S31Pnz69ovzAAw9U1f7BBx/s0H4HHnhgxbm65557LAPbTQTbAQAAVWsts11jWl9GVrAdAAAAAAB03bRp03LcccdV1H32s5/NokWLOtXfvHnzcs0111TUnX322Rk1alSL+48bN26L9h31ox/9qKq5NTQ0NP17zZo1VbWt1ogRI3LSSSdV1D399NNd6vPggw+uKH/ve9/rcNvFixd3eIngsWPHZr/99msqv/DCC/nxj3/c4bHoOMF2AABA1eo6ldluQIv1AAAAAABAdb7yla9kyJAhTeVly5blpJNOysqVK6vqZ/HixTnllFOydu3aprqddtopX/rSl1pts//++1eU77rrrg6N9V//9V956KGHqprfiBEjmv79yiuvdHm53PY0XyJ382C/zjj00EMzadKkpvKcOXNy9913d6jtZZddVtXxfvKTn6woX3DBBVW/HmifYDsAAKBqrQbbpTEb0kpmu8hsBwAAAAAAtbDHHnvkuuuuq6i7//77c9xxx+X555/vUB/z58/PkUcemSeffLKprq6uLt/5zncyduzYVtsdeOCBFYF+P/zhDzNnzpx2x/rQhz7UoXltburUqU3/Xr9+fX75y192qN3rr7+e6667LitWrOjwWCtXrsxtt93W6vidUVdXt0UQ3Mc+9rF2M+bddttt+frXv17VWB/84Aezxx57NJWffPLJ/O3f/m2WLl1aVT+LFy/e4jzwZ4LtAACAqrW2jGySrGtc22K9zHYAAAAAAFA7H/7wh/OJT3yiou6+++7LtGnTctVVV2XhwoUttluwYEG+8IUvZO+9987jjz9e8djVV1+dI488ss1xhw0bllNPPbWpvGHDhvz1X/91i0uerl27NjfccEPe9a53ZdGiRRk5cmRHDy9JcsQRR1SUzz777Hz961/Pww8/nD/+8Y955plnmrZXXnmlYtxPfepTmTBhQj784Q/nrrvuajPw7qGHHsqRRx6ZZ599tqnuXe96V6ZMmVLVfFvyqU99Km9/+9ubyi+++GLe/e5355ZbbkljY2PFvqtWrcpll12W0047LY2NjVWdr/r6+txyyy0ZPnx4U93Pfvaz7LPPPvnXf/3XNo//1Vdfzc0335zTTz89u+yyS7761a9WcYTbFt92AQAAVWsts12SrC9bTmle30YbAAAAAACgetdff31GjhyZL3/5yynLMkmyYsWKXHTRRfnc5z6XadOmZZdddsnIkSOzZMmSPPvss/n973+/RT8DBw7MzJkz8/GPf7xD415++eX54Q9/mGXLliVJ/vSnP+WYY47J5MmTs88++6ShoSGLFi3Kgw8+mFWrViVJdtxxx1x99dVVZbh73/vel89//vNN2fpefPHFLQIM3/ShD30oN954Y0Xd8uXLM2vWrMyaNStFUWTy5MnZbbfdMmLEiAwYMCBLlizJE088sUU2wCFDhuSb3/xmh+fZloEDB+amm27KYYcdliVLliRJXnrppbzvfe/L+PHj8453vCM77LBDFi1alN/85jd54403kiQ77LBDrr766nz0ox/t8Fh77rlnbr311pxyyil57bXXkiTPP/98zjnnnJx77rnZe++9M3HixAwfPjyvv/56li1blqeeeqrD2RARbAcAAHRCW5nt1pYtZ7ark9kOAAAAAABq7vLLL89hhx2Wc845J/Pnz2+qL8syc+fOzdy5c9tsv//+++cb3/hGpk+f3uExd95559x666058cQTKzKmLViwIAsWLNhi/1133TX/+Z//mUWLFnV4jCTZbrvt8sMf/jAnnnhiXnjhharaNleWZebPn19xjlqy884757bbbsvee+/dpfE2t+eee+ZnP/tZjj/++Lz00ktN9YsWLcqPfvSjLfYfMWJE7rzzzmzYsKHqsY466qjMmTMnp59+esXyvhs2bMijjz6aRx99tN0+qs1AuC2xjCwAAFC1+qL1W4n1rQTb1UdmOwAAAAAA6A5HHXVU5s2bl5tuuilHHnlkBgxo+w/gGxoacsIJJ+SOO+7InDlzqgq0e9Nf/uVf5qGHHsp73/veFEXR4j5jx47NZz7zmTz66KOZOnVq1WMkyfTp0zNv3rz827/9W0488cRMnjw5w4cPT31969877LDDDrn33ntz4YUX5h3veEe75yNJ/uIv/iJXXnllnnrqqbzzne/s1Fzbsu++++bJJ5/Mueeem2HDhrW4z9ChQ3PWWWflscceyyGHHNLpsSZPnpyHHnood911V4466qg0NDS022bq1Kk599xz86tf/Sq33XZbp8fu74o3U0jC1qYoij2TPPFm+Yknnsiee+7ZizMCAOBNz69+Olc++w8tPnbMqFPyX6/eskX9Lg275aJJ/9zdUwMAAAAA6HPWr1+/Rbat3XffvUMBQtCSVatW5eGHH86CBQuyePHirF27Ng0NDRk/fnymTJmS/fffv0MBWB31yiuv5N57783zzz+f119/PePHj8+uu+6aQw45ZKt4Hb/xxhuZO3du/vCHP+Tll1/OqlWrUhRFhg8fnokTJ2afffbJW9/61h6bz5o1azJ79uw8/fTTWbp0acaOHZsJEybkkEMOyfbbb1/z8VavXp0HH3wwzz77bJYsWZJVq1Zl++23z8iRIzN58uRMnTo1o0ePrvm43XVtmzt3bvbaa6/Nq/Yqy7LtFI410vuvZgAAoM+payOz3brWMttZRhYAAAAAAHrE9ttvn0MPPTSHHnpoj4w3ZsyYnHzyyT0yVmdst912mT59eqcy+HWHhoaGHHPMMT023uDBg3PYYYf12Hj9mWVkAQCAqtW1sSRs69rj1N4AACAASURBVMF2lpEFAAAAAACg7xJsBwAAVK3NzHaNMtsBAAAAAADQ/wi2AwAAqtapzHZttAEAAAAAAICtnWA7AACgam1mtmt1GVmZ7QAAAAAAAOi7BNsBAABVqyvayGzX6jKyMtsBAAAAAADQdwm2AwAAqlbfxq3EunJdy20E2wEAAAAAANCHCbYDAACq1mZmu9aWkY1lZAEAAAAAAOi7BNsBAABVq2srs13jmhbrZbYDAAAAAACgLxNsBwAAVK3tzHatLSMrsx0AAAAAAAB9l2A7AACgam1mtmtlGdm2AvQAAAAAAABgayfYDgAAqFrbme1aDrarj8x2AAAAAAAA9F2C7QAAgKq1mdmusZVgO5ntAAAAAAAA6MME2wEAAFUriiJFK7cTrWa2K2S2AwAAAAAAoO8SbAcAAHRKfdHy7USZspX9ZbYDAAAAAACg7xJsBwAAdEprme1aUx/BdgAAAAAAAPRdgu0AAIBOqTZTnWVkAQAAAAAA6MsE2wEAAJ1SV2WmOsvIAgAAAAAA0JcJtgMAADqlrqhyGVmZ7QAAAAAAAOjDBNsBAACdUnVmuyr3BwAAAAAAgK2JYDsAAKBTZLYDAAAAAABgWyLYDgAA6JS6Km8n6guZ7QAAAAAAAOi7BNsBAACdUm3wnGA7AAAAAAAA+jLBdgAAQKcUVWe2s4wsAAAAAAAAfZdgOwAAoFOqzVRXF5ntAAAAAAAA6LsE2wEAAJ1SV/UysjLbAQAAAAAA0HcJtgMAADqlruplZGW2AwAAAAAAoO8SbAcAAHSKzHYAAAAAAABsSwTbAQAAnVJ1ZrvIbAcAAAAAAEDfJbUEAADQKXVFtcvIuv0AAAAAAICe8Prrr+eRRx7J/Pnz88orr2T16tXZbrvtMn78+EyZMiX77bdfBg0aVJOxnnvuuXzzm9/Mvffem6eeeipLly7NunXrmh6fNWtWzjrrrBbbPvTQQ5k1a1buv//+LFy4MK+99loaGxubHn/66aczadKkJMnhhx+ee++9t+mxsixrMn+ohm+7AACATqmrMlNdfZXLzgIAAAAAAB23YcOG/Md//EdmzZqVX/7yl1m/fn2r+w4ePDjHHHNM/v7v/z7vec97Oj3mDTfckHPPPTdr1qypqt369etzzjnn5IYbbuj02NAbLCMLAAB0SvWZ7QTbAQAAAABAd/jFL36RadOm5Ywzzsg999zTZqBdkqxevTp33HFHTjjhhMyYMSOPPPJI1WP+6Ec/ysc+9rGqA+2S5POf/7xAO/okme0AAIBOqa82s53bDwAAAAAAqLlLL700l1566RbLqhZFkalTp2bChAkZPXp0Fi9enOeeey5PPfVUxX5z5szJgQcemOuvvz4f+chHOjzuRRddVDHmGWeckb/7u7/LLrvskoEDBzbVjxkzpqLdokWL8i//8i9N5UGDBuWf/umfcvzxx2fs2LGpq/vzH/tPmDChw/OBnuDbLgAAoFMKme0AAAAAAKBXnXfeeZk5c2ZF3bBhw3LRRRflzDPPzMSJE7dos2DBgtx444259tprm7LSrV27Nh/96EezatWqnHfeee2O+/vf/z6PPfZYU/n444/PTTfd1KE533777Vm7dm1T+YorrshnPvOZDrWF3mYZWQAAoFOqDZ6rL/ytDwAAAAAA1Mq3v/3tLQLtDj744MybNy8XXXRRi4F2STJ58uRcccUVeeyxx7LXXntVPHb++edn9uzZ7Y49Z86civIpp5zS4Xl3tu3s2bNTlmXTBr1BsB0AANApdVXeTshsBwAAAAAAtfHUU0/lk5/8ZEXdQQcdlB//+McdXnp1ypQp+fnPf56pU6c21TU2NuYDH/hAXnnllTbbLlq0qKJczXKvXWkLvU2wHQAA0Cl11S4jG5ntAAAAAACgFi644IKsXLmyqTxixIjceuutGTp0aFX9jBs3LrfccksGDRrUVPfCCy/k8ssvb7Pd5mMnycCBAzs8ZlfaQm/zbRcAANApdal2GVmZ7QAAAAAAoKt+97vf5e67766ou+qqq7Ljjjt2qr9p06blggsuyJVXXtlU961vfSuXXHJJRo4c2WKbxsbGTo3V1ba1MG/evDz++ONZsmRJli5dmsGDB2fs2LGZOnVq9tlnnzQ0NHSq3/Xr1+ehhx7KH//4xyxevDhr1qzJ2LFjM2nSpLz73e/O4MGDa3wk9AbBdgAAQKdUndmucPsBAAAAAABdNXPmzJRl2VQeM2ZMzj777C71ed555+Waa67JunXrkiSrVq3KDTfckAsvvDBJ8swzz2TXXXdttf0RRxzRYv2sWbOSpM35FUXRYv3TTz+dSZMmNZUPP/zw3HvvvU3lzc9BexYuXJj//b//d37wgx9ssYzt5rbbbrscccQR+dCHPpSTTz459fXtJxJ48sknc8UVV+Tuu+/O8uXLW+33b/7mb3LZZZdlypQpHZ43Wx/LyAIAAJ0isx0AAAAAAPS8n/zkJxXlD37wgxXLwHbG2LFjc8IJJ7Q5Tl9UlmWuuOKKTJ48Oddff32bgXZJ8sYbb+RHP/pRTj311CxcuLDNfTds2JB/+Id/yF577ZXvfve7rQbavdnvzTffnD333DMzZ87s1LGwdZBaAgAA6JRqg+eqDc4DAAAAAKBj1m8o8/zS3p5F/zdhZDKgvuUsbD3l+eefzzPPPFNRd/TRR9ek76OPPjq33XZbU/mBBx7IunXrMnDgwJr039PWr1+f0047LbfeeusWj+24447Ze++9M2bMmKxZsyaLFi3K//zP/2TlypUd6vuNN97IiSeemJ/+9KcV9QMHDsy+++6bCRMmpKGhIS+//HIeeuihvP76601zOu+887J06dJccsklXT5Gep5gOwAAoFOKKhJl16W+1TTwAAAAAAB0zfNLk90+19jb0+j3/nhlXSaN6d05/PrXv96ibvr06TXp+x3veEdF+Y033sijjz6aGTNmZMKECXn66aebHvuXf/mXigxt3/ve9/Kud71riz7HjNl4wg4//PCmutNOOy0PPvhgU3nzfjc3YcKETh3Hm84///wtAu2OP/74XHLJJZkxY8YW+zc2NuaBBx7I97///dx4441t9v2JT3yiItBuhx12yCWXXJK/+7u/y7Bhwyr2feONN/L1r389X/jCF7J69eokyWWXXZYDDjggxx13XCePjt4i2A4AAOiUajLbWUIWAAAAAAC67vnnn68ojx8/PqNHj65J33vttVeL482YMSMDBgzIpEmTmupHjBhRsd+OO+5Y8XhzQ4cObfr34MGDKx5rq11n/fSnP81Xv/rVirqrrroqn/3sZ1ttU1dXl4MOOigHHXRQLrvssi3m+aYf/OAHmTVrVlP5rW99a2bPnt3qcWy33XY5//zzc+CBB+bII4/M6tWrU5ZlPvWpT+X3v/996uo6ntyA3ufZAgAAOqWu6PjtRH3h73wAAAAAAKCrXn311YryyJEja9b34MGD09DQ0OZ4fcVll11WUf5f/+t/tRlo19yIESNaDLYry7Ki7wEDBuTOO+/sUMDgm0F8b1qwYEFuv/32Ds+JrYNgOwAAoFPqqridkNkOAAAAAAC6rnnwW/MMc13VvL8lS5bUtP+e8Nhjj1Ustzts2LBcffXVNen7l7/8ZZ544omm8plnnpl99tmnw+0/8YlPVATx3XnnnTWZFz1HsB0AANApddUsIxuZ7QAAAAAAYGtXFEVvT6HLfv7zn1eUzzjjjAwfPrwmfd9zzz0V5VNPPbWq9kOGDMk73/nOpvKvfvWrmsyLnuMbLwAAoFNktgMAAAAAgJ41atSoivJrr71W0/6XLVvW5nh9wf33319RPvzww2vW93333VdRHjVqVJ555pmq+tg88O+ZZ55JY2Nj6urkS+srBNsBAACdUlVmO8F2AAAAAADdZsLI5I9XCtbpbhNG9vYMtgx+W7p0ac36Xr16dVavXl1RN3r06Jr131NeeumlivKee+5Zs74XLlxYUX7Xu97Vpf4aGxuzbNmyPhnUuK0SbAcAAHRKfaoJtnPrAQAAAADQXQbUF5k0prdnQU/YeeedK8ovv/xylixZUpOguLlz57Y7Xl+wZMmSivLIkbWLkmzedy2sWLFCsF0fIqwZAADolKKoYhnZKgLzAAAAAACAlh100EFb1M2ZM6cmfTfvZ7vttsu+++5bk757U1EUNetr7dq1NevrTWVZ1rxPuo9gOwAAoFNktgMAAAAAgJ41ceLETJw4saLupz/9aU36vueeeyrKBxxwQAYNGlSTvnvSmDGVaR5fffXVbul78ODBaWxsTFmWXdomTZpUs/nR/QTbAQAAnVJVZrtCZjsAAAAAAKiFY489tqL8ne98J+vWretSn4sXL86dd97Z5jh9xU477VRRnjdvXs36Hj9+fNO/V69eneeee65mfdM3CLYDAAA6pb6K2wmZ7QAAAAAAoDY+/elPVyyNunjx4syaNatLfc6cObMiYG/77bfPRz7ykS712Vve/e53V5Rnz55ds76bL+Nbq6yC9B2C7QAAgE7Zrn77ju9b1/F9AQAAAACA1k2bNi3HHXdcRd1nP/vZLFq0qFP9zZs3L9dcc01F3dlnn51Ro0Z1eo696aijjqoof/e7382KFStq0vcxxxxTUf73f//3mvRL3yHYDgAA6JS/GLJPh/fdo4p9AQAAAACAtn3lK1/JkCFDmsrLli3LSSedlJUrV1bVz+LFi3PKKadk7dq1TXU77bRTvvSlL9Vsrj1tzz33zGGHHdZUXr58eS666KKa9H3cccflbW97W1P5oYceyv/5P/+nJn3TNwi2AwAAOmXUwLF537i/b3e/aUP2y8Ejjml3PwAAAAAAoGP22GOPXHfddRV1999/f4477rg8//zzHepj/vz5OfLII/Pkk0821dXV1eU73/lOxo4dW9P59rTmwYJf+9rX8pWvfKXD7V977bWsXr16i/oBAwbksssuq6j7+Mc/nttuu63qOf7sZz/LH//4x6rb0bsE2wEAAJ12xMj35EuTrs+p4z6aE8acWbGdOOaDOW+Xy/PxCZ/PoLqG3p4qAAAAAAD0Kx/+8IfziU98oqLuvvvuy7Rp03LVVVdl4cKFLbZbsGBBvvCFL2TvvffO448/XvHY1VdfnSOPPLLb5txT/vIv/zLnn39+Rd0FF1yQv/mbv8nDDz/cYpvGxsb85je/yac//enssssuefnll1vc74wzzsiHP/zhpvLatWtz8skn58wzz2y17yTZsGFDfvvb3+bSSy/NtGnT8ld/9Vd57rnnOnF09KYBvT0BAACgb9uxYUJ2bJjQ29MAAAAAAIBtzvXXX5+RI0fmy1/+csqyTJKsWLEiF110UT73uc9l2rRp2WWXXTJy5MgsWbIkzz77bH7/+99v0c/AgQMzc+bMfPzjH+/pQ+g2V199dZ577rn84Ac/aKq76667ctddd+Utb3lL9t5774wePTpr1qzJyy+/nMceeywrVqzoUN//9m//lqVLl+aHP/xhU913v/vdfPe7383YsWPz9re/PaNHj05dXV2WL1+eF198MU8++WSL2fLoWwTbAQAAAAAAAABAH3X55ZfnsMMOyznnnJP58+c31Zdlmblz52bu3Llttt9///3zjW98I9OnT+/uqfao+vr63Hzzzdlzzz3z5S9/OevWrWt67MUXX8yLL77Y6b4HDhyYW2+9Nddcc00uvvjiiiC6xYsX52c/+1mH+th+++07PQd6h2VkAQAAAAAAAACgDzvqqKMyb9683HTTTTnyyCMzYEDb+bcaGhpywgkn5I477sicOXP6XaDdm4qiyMUXX5zf//73+chHPpJRo0a1uf/QoUNz4okn5vbbb8/EiRPb7fvCCy/M008/nX/6p3/KW9/61nbnM2zYsBx//PH52te+lpdeeikzZsyo6njofcWbKSRha1MUxZ5Jnniz/MQTT2TPPffsxRkBAAAAAAAAQO2tX7++IiNZkuy+++7tBkxBa1atWpWHH344CxYsyOLFi7N27do0NDRk/PjxmTJlSvbff/80NDT09jR7XGNjYx555JH87ne/yyuvvJKVK1dm++23z7hx47LHHntkn332ycCBAzvd/9NPP51HHnkkixcvztKlS1NXV5dhw4blLW95S/bYY4/svvvuqa+vr+ERbd2669o2d+7c7LXXXptX7VWWZdspHGvEVRkAAAAAAAAAAPqR7bffPoceemgOPfTQ3p7KVqWuri7Tp0/vtkx+u+66a3bddddu6Zutg2VkAQAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAHpRURRb1JVl2QszAaidxsbGLepaut71JYLtAAAAAAAAAAB6UV3dluEb69at64WZANTO+vXrt6hr6XrXl/Tt2QMAAAAAAAAA9HFFUWTQoEEVdStXruyl2QDURvPr2KBBg2S2AwAAAAAAAACga4YNG1ZRXr58uaVkgT6rLMssX768oq75da4vEmwHAAAAAAAAANDLmgehrFu3Li+88IKAO6DPKcsyL7zwwhbLYQ8fPryXZlQ7A3p7AgAAAAAAAAAA27rBgwdn4MCBFcEpK1asyB/+8IcMHz48Q4cOzYABA1JXJ68SsPVpbGzM+vXrs3LlyixfvnyLQLuBAwemoaGhl2ZXO4LtAAAAAAAAAAB6WVEUectb3pLnnnuuIpvdunXrsmTJkixZsqQXZwfQeW9e34qi6O2pdJlwZwAAAAAAAACArcCQIUMyceLEfhGQApBsDLSbOHFihgwZ0ttTqQnBdgAAAAAAAAAAW4k3A+4GDhzY21MB6JKBAwf2q0C7xDKyAAAAAAAAAABblSFDhuRtb3tb1qxZk+XLl2fFihVZu3Ztb08LoF2DBg3KsGHDMnz48DQ0NPS7TJ2C7QAAAAAAAAAAtjJFUWTw4MEZPHhwxo0bl7Is09jYmLIse3tqAFsoiiJ1dXX9LriuOcF2AAAAAAAAAABbuaIoUl9f39vTANim1fX2BAAAAAAAAAAAAGBrJ9gOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoxoLcnAG0YtHlhwYIFvTUPAAAAAAAAAABgK9BCDNGglvbrDkVZlj01FlSlKIq/SXJHb88DAAAAAAAAAADYar23LMs7e2Igy8gCAAAAAAAAAABAOwTbAQAAAAAAAAAAQDssI8tWqyiKHZIctlnVwiRre2k60Be8LZVLL783yR96aS5A/+Q6A3Q31xkAusrPEqC7uc4A3c11BuhurjNAfzAoyS6ble8ty/K1nhh4QE8MAp2x6U3QI+spQ39QFEXzqj+UZTm3N+YC9E+uM0B3c50BoKv8LAG6m+sM0N1cZ4Du5joD9CO/7Y1BLSMLAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0QbAcAAAAAAAAAAADtEGwHAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0QbAcAAAAAAAAAAADtEGwHAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0QbAcAAAAAAAAAAADtEGwHAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0Y0NsTAKBmFie5tFkZoJZcZ4Du5joDQFf5WQJ0N9cZoLu5zgDdzXUGoAuKsix7ew4AAAAAAAAAAACwVbOMLAAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtEOwHQAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtEOwHQAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtEOwHQAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtGNAb08A2HoURVGfZHKSaUnekmSHJGuSLE3yhyRzyrJcVeMxByZ5d5KJSXZKsjLJi0l+W5blM7Ucq6cURbFnkn2TjE3SkOTlJM8n+XVZlqt7c249qSiKkUn2TLJ7klFJBidZlmRxkofLsvxDL05vC0VR7JqNz9tbkgxN8lKSZ5PcX5bluhqO89Yk78jG1/sOSdZl43mZn43nZUWtxtoauc7UhuvMRn3tOkPPcJ2pDdeZjfrCdaYnX/N94XxALfTHnyX98ZhqpafuBfsK56Nn9Mf3ZH88plrxvqrkM7ie0R/fk/3xmGrFdYbe0B/fk/3xmGrFdcZncEAzZVnabLZteMvGX97OS3J3kteSlG1s65P8OMlf12DcsUm+nmRJG+P9OsnJXRxntySnJrkmyewky5uN8UyNzuOwJJ9P8kIbx7M8yXeSvK0Xn+9uOx9JBiY5Jsn1SZ5o57VUbjpXlyXZsZffA6ckub+NeS7Z9Fod04UxhiS5MMlT7ZyTDUn+M8nRvXlOuuEcu87U5jy6zvTB60x3vz46cA7a2yb11rmp8Xl2nanNeXSd6SPXmZ56zfeV82Gz1WLrjz9L+uMx1fg574l7we2THJzkH5LclI33hI3Nxjmrt1//zkePneN+957sj8dU4+fc+6rnz4fP4PrZe7I/HlONn3PXmT/P02dwPXOe+917sj8eU42f8236OtNTr4/4DM5m63Nbr0/AZrP13pbku124MbgryfhOjntckkVVjPX/Jdm+iv4PT/Jf7fyCWpMbrE3jHZCNf2XS0eNZleTjPfg8d/v52HQOXu3ka2lpkg/0wut/aJLvVTHPl5Mc04lxDkzyx06cl+8mGdLT56UbzrPrjOvMNned6cnXRxfeX29uk3rqvHTj+XadcZ3Zpq4zPfWa7yvnw2arxdZT76sWxu22nyX98Zhq+Hx3+71gNn7Z9Hg2ftnSXv9n9fLr3/nomfPc796T/fGYvK/67vnYNI7P4PrZe7I/HlNfel/1hetMfAbX0+e7370n++Mx1fD53uavMz31+ojP4Gy2PrlZRha2bVNaqX8hG9PpL8rG5aZ3S/L2JHWb7fOeJP9dFMVhZVm+3NEBi6I4PMntSQZtVl0meSQbPwwZkWS/JGM2e/zMJMOLojixLMvGDgyzb5KjOzqnriiK4qhs/GuGhmYPPZvksWz8InpCNv6iNHDTY0OSfL0oirqyLL/WA9PsifMxNsnIFurXZuMvyi9n4198jE4yfdP/3zQiyXeKohhXluU/d/M8kzSler45yfHNHlqc5Leb5vq2bHwtFpseG5/kjqIojirL8r4OjnNgkp9m403J5lYk+X/Z+B5ryMa003ul8j12epJxRVEcX5bl2g4e2tbIdaaLXGea9KXrTI+9PkjiOtNlrjNN+sp1pqde833lfEAt9MefJf3xmLqsp+4Fk5yRjUsKbdWcjx7VH9+T/fGYusz7qpLP4HpUf3xP9sdj6jLXmQo+g+tZ/fE92R+PqctcZ5r4DA5oXW9H+9lstt7bkszJnyPfH0nyybSyJFiSnZN8I1tGzP8qSdHB8SZky8j8+5JMbbZfQ5JPZeMvEZvve2UHxzmvhXmWSVYnWdCs7pkunL9J2fIvphYk+asW9h2Z5Lpm+25oad9ueJ67/Xxk4y+Nb/axIsm3khyZZLsW9i2S/G02foHffE7dfj42zeGaZuOu3fT6H9Rsv2nZMj32K0l26sAYg1s4v69vem0PbmH/tyW5s4VzclFPnJNuPNeuM64z29x1pqdeH5vG2ryvBza9ZqrZBnT3+eiB8+064zqzTV1neuo131fOh81Wi60//izpj8dUo+e62+8FN7Vf1sL5LJM838JjZ/Xia9/56Llz3e/ek/3xmGr0XHtf9fD5iM/g3jyufvee7I/HVKPn2nXmz3P0GVzPnu9+957sj8dUo+fadaYHXx/xGZzN1ie3Xp+AzWbrvS0b/6rv7iTTq2hzTgs/vE/rYNtvNWv367Twgcdm+5/YbP/VSd7agXHO2/SL32+T3JDko0n2z8ZMLIc36/OZLpy/5umT5ycZ106bC5u1mZukvpuf524/H5t+EVyU5Px0PD336CTzmo3/ZHu/dNbgfOyWLW9Q3tvG/ttly5uFf+vAOGc1a9OYdlJob/ol+Qf/f3v3HjVJUd5x/PfICstNFkFYQGFZXbyhBKIJKEkWAwT0eAGJGhKzK94SjEeNehK8nKgxahIkehKDGhVJvESjYsBFMCiLBC8ILsrNW2RRiCC7LIRF9gZP/uh52Z56Z6a7Z3q6u2q+n3P6j+q3q7uqpurp6Xq7e4J8dyu4gIlpIc4QZ2Y0zjTSP3rHyu9r9TTr1dWFOEOcmbU401Sfj6U9WFjqWFI8l6RYpxo+50auBXt571L29oFVkt7ei6n79v62Otjnypb6Pe3RbHsnNyZTrFMNnzPjqoX2EHNwc3VKbkymWKcaPmfiTH8ZmYNrtr2TG5Mp1qmGz5k403D/EHNwLCxRLq0XgIWFpb1F0pIx830uOHmvKpFnmaRtuTybJS0rke/jwbE+ViLPnsO+nKq+f8YuVfYml/y+ji6Z92tBvtOm/Dk30R6PKPsFMMh32IB2fOqU2+Pc4HjnlMhzSK/PzuXZKmlpQZ7PB8c5r2T5Fmv+hcyx02yTKbf3kjHzEWeIM+F+YoozU2+P3P7y+1o9zXp1dSHOEGdmLc401edjaQ8WljqWFM8lKdaphs+5kWvBXr6hjyZEhAAAGD9JREFUb3JQB/5pRHu00t5LxszX2TGZYp1q+JwZVy20h5iDm6vPkjHzdXZMplinGj5n4kx/OZiDa7a9l4yZr7NjMsU61fA5E2ca7h9iDo6FJcol/7vRAGaMu68dM+sHgvQxJfKcKmmHXPoL7v7jEvn+Nki/wMwWjsrg7hvcfVOJfU/iWVJfDP2Wu/93ybxnBumX1FOkwZpoD3e/w93vHSPf95S9IjuvTH8ai5ntLOmUYHXYx+Zx9x9J+mJu1QJlfXqUpUH6gsICZse6TdKVweplZfJ2EXFmIsSZ/mNEEWd6x2yif6CHODMR4kz/MaKIM031+VjaA6hDiueSFOs0iYavBeXuv6hUwIbRHs1LcUymWKdJMK76MQfXvBTHZIp1mgRxZj7m4JqV4phMsU6TIM70Yw4OwCjcbAdgHGuC9M5mtqggz0lB+pwyB3L3GyV9O7dqV0nHl8k7Zb8dpC+ukPeryp6anPM0M9tv8iJFK+xP+0/xWL8naZdc+pvu/oOSecM+e3LB9rsG6VtKHkeSfh6k96yQNxXEGeJMnZqMM4gHcYY4U6cY4sw4fb6uY3WxPYA6pHguSbFOUrPXgjGgPeKR4phMsU4S4yrEHFw8UhyTKdZJIs4gXimOyRTrJBFn6sIcHDADuNkOwDi2DVi347CNzWyxslfZ5vNfUeF4q4P0iRXyTssjg/R1ZTO6+2ZJP8mteoi6Uae2hP1paF+qwQlBenWFvJerv6yHm9m+I7a/LUhXedIo3PbOCnlTQZwhztSpyTiDeBBniDN1iiHOVOrzNR+ri+0B1CHFc0mKdZKavRaMAe0RjxTHZIp1khhXIebg4pHimEyxThJxBvFKcUymWCeJOFMX5uCAGcDNdgDG8ZggvU3SuhHbHxqkv1/xdbjfCNJPrJB3Wh4epO+qmD/c/kkTlCV2YX+a5mujw774zbIZe3322mD1qL54eZA+ouyxBmz7nQp5U0GcIc7Uqck4g3gQZ4gzdYohzlTt83Ueq4vtAdQhxXNJinWSmr0WjAHtEY8Ux2SKdZIYVyHm4OKR4phMsU4ScQbxSnFMplgniThTF+bggBnAzXYAxnFKkL7K3R8Ysf0TgvRPBm413P8U7K8NW4L0ThXzh9t3oU6NM7OHSTouWH3lFA/5+CA9zb74EfX3k9PMbOeiA5jZSZIOzK263t2vLl/EZBBniDO1aCHOtOlAMzvHzK43sw1mtsXMbu+lP2FmrzCz8OaqWUacIc7UIqI4U7XPjyWi9gDqkOK5JMU6Sc1eC8aA9ohHimMyxTpJjKsQc3DxSHFMplgniTjTJczBVZPimEyxThJxpi7MwQEzgJvtAFRiZrtJemmw+ryCbOFd9T+reNibg/ReZrZnxX3UbX2Q3q9i/nD7x05Qlpi9UtIuufTdki6dxoF6F7fhBW7Vvhhuv2zYhu5+k6QzcqseJenTZrbLkCwys6cqmyCc84CkV1csY/SIMw8iztSjsTjTAQdLWqlsEmORpIdK2qeX/kNJH5L0MzP7h944m1nEmQcRZ+rR+TgzZp8fV+fbA6hDiueSFOskNX8t2HW0RzxSHJMp1kliXIWYg4tHimMyxTpJxJkOYg6upBTHZIp1kogzdWEODpgd3GwHoKp3S1qcS9+l/omJQRYF6V9WOaC7b5S0KVi9R5V9TMGNQfrIshnN7EBJ+wer265P48xsiaS3Bqvf7+7hW3bqEvbDX1V8Tbc0v++O/Nzc/SxJb5S0tbfquZJuMLO/NLOjzWyZmT3RzJ5nZudIukLbL2a2SjrN3WfxizFxJkOcmVALcSYGu0p6raSrzWxWX+MvEWfmEGcmFFGcGafPVxZRewB1SPFckmKdpBauBTuO9ohHimMyxTpJjKsQc3DxSHFMplgniTgTI+bgMimOyRTrJBFn6sIcHDAjuNkOQGm9V+v/WbD6ze5+Z0HW8Mmd+8Y4fJhn9zH2UafLgvTzRz0tGfjjAevark+jzGxHSZ9Rf73XSvq7KR62lX7o7mdKOkzSxyRtkHSQsi/bl0v6kaTrlD3VslLZE3CSdImkI9393DHKGDXiTB/izARaijNt2SZptaS3SHqOpCOUPTV4uLJ/MJyp+RMdh0i6xMwOaq6Y3UCc6UOcmUAscWaCPl/1OFG0B1CHFM8lKdYpJ4YyNon2iECKYzLFOuXEUMYmMQcXgRTHZIp1yomhjLOAObgKUhyTKdYpJ4YydhpzcMBs4WY7AKWY2WGS/jVY/RVJZ5fIHn5BC5++KCP8gtb2q7dXKXsaYc4iSW8rymRmj5L0hgF/2sHMdq6naFH4iKTfyKXvl7RijKdkqmizHy5Q9nMUW4s2lHSupNe5+3erFCwFxJl5iDOTaSPOtOEtkg5w92Pc/W/c/QJ3X+PuP3H3a9z9fHd/o7J/MrxHkufyLpb0BTOzNgreBuLMPMSZyXQ+zkzY56vqfHsAdUjxXJJinQr218UyNon26LgUx2SKdSrYXxfL2CTm4DouxTGZYp0K9tfFMqaOObgKUhyTKdapYH9dLGNnMQcHzB5utgNQqPczYavU/6XoZkl/5O4+ONdITeWZGne/R9L7g9VvMLPXDMtjZo+UdJGGvza5U3WcFjP7a0kvDlaf4e5fb7goU++HZraTmf2jpO9JepmkfUpkWyHpWjM7v9dnZgJxZj7izPg6FGemrje5V/izA+6+yd3PkPTq4E9HSPqDqRSuY4gz8xFnxhdDnJlCnx91rM63B1CHFM8lKdZpSsdL+fxGe3RIimMyxTpN6Xgpjyvm4DokxTGZYp2mdLyU48zUMQdXXopjMsU6Tel4MxlnmIMDZtOCtgsAoNvMbB9J/yXpgNzq2yQd5+53lNzNxiA9zhtPwjzhPtvwLkknavvTAybpfWZ2iqSPSrpG2VMc+/e2+1Nt/6J1i6T8JM4md5/3lIiZLSlbGHdfW6n0LTCz1yp7AizvLHf/+5L5l5Q91oD2aLQfmtkCSV+UdEK+WMp+ruJcSVdJWidpJ0kHSnqGsgvwZb1tny3pKDM7zt2vGaOs0SDOjEScqajlONN57v4BMzte2U9dzDld0qdaKlIjiDMjEWcqiiHO1NTnyx5rovYAYpHiuSSmOsV0LdgE2iNNMY3JsmKqE+OqX0ztwRxceTGNybJiqlNM46oJqc0VhJiD6/6YLCumOhFn+jEHB2CauNkOwFBm9nBJl0g6JLd6naRj3f3HFXaV3Bc0SXL3LWZ2sqQLJT0596eje8sw6yW9VNLFuXV3Ddn2pgpF6vQryM3s5ZLOClaf7e6vr7CbSdqj6X74VvVP8t0n6RR3vzDYbouk6yVdb2YflvTPkk7r/W1vSV8ys8Pcff0Y5e084sxoxJlqOhBnYvFu9U/0HWlmi9x9WB+JGnFmNOJMNTHEmRr7fJlj1dEeQOeleC6JsE4xXQs2gfZITIRjslCEdWJc9YupPZiDKyHCMVkowjrFNK6akMxcwQjMwXV7TBaKsE7EmX7MwQGYGn5GFsBAZraHst+Sf1Ju9QZld+JfX3F3dwfpR1Qsy26a/wWtExcj7n6rpKdJ+pCkrSWyXCrpKZLuDdbfVnPROsXMXizpg+r/snqOpFc1WIywH+5iZrtW3Ef4ExQD+2HvC3b4Bff0AZN8fdx9s6SXS7ost/oASW+qWM4oEGfKIc6U05E4E4srlY21OTtIekJLZZkq4kw5xJlyYogzNff5omN1vj2AOqR4LkmxTgUauxaMBO3RMSmOyRTrVIBx1Y85uI5JcUymWKcCxJk4MQcX8ZhMsU4FiDMVMAcHgJvtAMxjZrtLukjSr+dW/5+kE8Z8lX549/5BFfOH29/p7hsGbtkCd7/X3f9E0mMlvVnZP6BvUfYU5T2SblT2kwXHSfrd3quIHx/s5qrGCtwwM3uRsi99+XPOJyW9zN29qXL0nkoN+82BFXcT9sVhT6Y8U1L+IuQmZX2gkLs/IOkdweoVZhbr03sDEWeqIc6M1pU4E4tenPlZsLrSBE8MiDPVEGdGiyHOTKHPjzpW59sDqEOK55IU61Sk4WvBzqM9uiXFMZlinYowrvoxB9ctKY7JFOtUhDgTJ+bg4h2TKdapCHGmPObgAEj8jCyAQO8phQslHZlbvVHSie5+5Zi7vTFIP6Zi/qVB+oYxyzFV7n6TpHf1liJHBelvD9ln1JM7ZvZ8Sf+m7ImtOf8haUXvQrOSGtrjRmVv7pnzGM3vn6OEfXFY3sOC9KUVv/R+XdlPW+zYS++lrKxJXJgQZ8ZHnJmvg3EmFvcF6XF+FqCziDPjI87MF0OcmVKfH3asWtsD6KoUzyUx1ymia8FG0B5piHlMDhNznRhX/SJqD+bgRoh5TA4Tc50iGleNiH2uoALm4KojzsxHnBkDc3AApok32wF4kJntLOlLko7Orf6VpGe5+zcm2PV1QfrJZrZLhfxPL9hfVHpPRz4jWH3ZoG1jZmbPkfRp9d/Y/UVJp7r7/e2Ual7fCW8SGKr3BfrJBfubsyhIV/pZPXffJml9sHrvKvvoKuJMM4gzrcaZWIQxZV0rpZgC4kwziDPdiTNT7PODjtX59gDqkOK5JMU6VdTUtWAsaI+WpTgmU6xTRYyrfszBtSzFMZlinSoizsSJObjqiDPzEWc6gDk4AHncbAdAkmRmCyWdL2l5bvUmSc9x969Psm93/4Wk7+dWLVD/F5Eiy4P0lycpTwc8Q9KSXPoyd0/iack5ZvZMZU9XPDS3epWkF/YmsdpyUZBeXiHvb6n/S+0ad799yLZ3BeldB2412m5BeuMY++gU4kyjiDMYysz21vynDP+3jbLUjTjTKOJMB0yzzw84VufbA6hDiueSFOs0hqauBWNBe7QoxTGZYp3GwLjqxxxci1IckynWaQzEmcgwBzce4sxAy4M0caZhzMEBCHGzHQCZ2Y6SviDp2NzqzZKe5+5frekw5wXpl5Qs2+Mk/WZu1b2SvlJTmdryF0H6Q62UYkrM7DhJn9f2n1+Qss/s+e6+pZ1SPehi9b+2/aheHytjZZAO+3ReeMF8eMljSJLMbJmk3YPVlZ7M7RriTOOIMxjlReq/DrhdCfz0F3GmccSZljXU5+eO1fn2AOqQ4rkkxTqNqalrwVjQHi1JcUymWKcxMa76MQfXkhTHZIp1GhNxJj7MwY2POLO9bMSZljEHB2AQbrYDZpyZLZD0WUkn5lZvlXSKu19c46E+KSn/WtuTe5MZRcJ/5H7W3TfVV6xmmdkKScflVl2j7OmEJJjZ70j6T0kLc6u/puwL5+Z2SrWdu/9K0ueC1WEfm8fMDpF0Um7VNkmfGpFldZB+upk9oUwZe14ZpH/o7ndUyN8pxJlmEWcwipntK+ktweoL3N3bKE9diDPNIs60r8E+H0V7AHVI8VySYp3G1eC1YBRoj3akOCZTrNO4GFf9mINrR4pjMsU6jYs4Exfm4CZGnNmOONMi5uAADOXuLCwsM7pI2kHSZyR5btkq6aQpHe+jwbGukLRwxPbPDbbfLOmgCcuwPNjn2gn3t6DCtidL2hK09eEt94Ha2kPSUZLuCfZ3maRd2qzjgHIuDT4HV/aa52HbL+z11fz2Hyw4hkn6YZDnakm7lyjfCQPK9862222C9ibOEGdmLs400R6SHivp2RXzLJb0nQF9fmnb7TJhmxJniDMzFWea7PMxtAcLSx1LiueSFOtUQxmnfi1Yshyrg32unGa9aY9uLCmOyRTrVEMZGVcNt4eYg8vXJ7kxmWKdaigjcaZ8GZcHZVw75n6Yg9ter+TGZIp1qqGMxJkW+oeYg2NhiW7J/242gNnzMUkvCNa9SdIaM1tScV+3efGTFH+l7MmGPXvpp0m6xMxe5u4/mNvIzHaS9ApJ7w3yv9fdby5TGDN7pDQwxi0O0gtG1HWju68rONS1ZrZK2St9v+3uDwwoy6GSzpB0avCnN7n7moL912La7WFmh0v6sqTdcqt/KOlVkvYxsyrF3eTuU/u5Bnf/qZm9X9Ibcqs/Z2Z/LunDnnsNs5k9XtJHlPXVOeslvb3gGG5mZyjrF3OOkHR17zir3N3zecxsL0mvUdZX8p/Veklnlq1fBxFniDMzF2ekRvrHfpLON7NrJX1C0nnu/uMhZdld0gplT9PuG/z5ne7+0yHHiAVxhjgza3GmkT4fUXsAdUjxXJJinSbSxLVgLv9ukvYe8ueFQXrvEZ/JLe6+rcwxq6I9GpfimEyxThNhXPVjDq5xKY7JFOs0EeLMfMzBNSrFMZlinSZCnOnDHByAoSy4zgAwQ8yszgBwjLuvLnHM5ZIuVv9vzc89cfhTSXsomxB5RJD1S8pek3u/SjCztZIOKrPtCOe6+8qC46yTtFcvuVHStZJ+IWmTsjocMqQc73T3t05YvtKm3R5m9jZlFwl1uMzdl9e0r4HMbAdJF6j/tc+S9EtJ31X29MhSZX0x/y12i6Rj3f3yksc5S9LrBvxpvbI+v07ZWFgi6dc0f1Jgs6RnuvvXyhyvi4gzhYgz/VKKM2s13fZYLunSYPXdkq5TFlvuUXZx/ihJh2nwpOOH3T38yZzoEGcKEWf6RR9nmurzsbQHUIcUzyUp1qkODV4LrpR0zqTllXSwu6+tYT8D0R7NSXFMplinOjCu+jEH15wUx2SKdaoDcaYfc3DNSXFMplinOhBnMszBARiFN9sBaJS7rzazkyR9XNu/KJqkp/SWQT4t6eVNfIGc0G7KXvM7ygZJp7v7vzdQHgzh7veb2QuUPXHzwtyf9lH2ExKD/FLSirIXCT2v7+V7u/ovnPaSdHxB3puVvRZ7dYXjQcQZEWdm2R6Snl5iu3slvc7d/2XK5UkWcYY4AwCTSvFcEkOdGrwWjALtkbYYxmRVMdSJcdWPObi0xTAmq4qhTsSZTmAOriExjMmqYqgTcQYAij2k7QIAmD3ufqGkQyV9UNk/a4f5lqRT3P1Ud7+3kcJV9z5JayTN+7m1wM8lvUPSo/nHdDe4+0Z3f5Gk31fW14a5U9LZkg5194sqHsPd/T2SniTpnzS6v8+5QdkE4aFM8o2POEOcmQE3SnqXpCsk3Vcyz4+UveZ+CZN8kyPOEGcAYFKJnUskxVGnJq4FY0J7pC2GMVlVDHViXPVjDi5tMYzJqmKoE3GmUczBtSyGMVlVDHUizgDAaPyMLIBWmdmOyp4AOkjSYmVP+twqaY2739Rm2aows4dJOlzSwcqeRFmo7MLrVknfc/cbWiweSjCzg5W98np/SbtKuk3Zk61XuPuWmo5hkh6n7HXye0t6mKRtku5S1leucvfb6zgWtiPOIHVm9hBJyyQ9WtIBkhZpe//YoOznQL/j7ne0VsjEEWcAAJNK5VySF0udmrgWjAntka5YxmQVsdSJcdWPObh0xTImq4ilTsSZZjAH175YxmQVsdSJOAMA/bjZDgAAAAAAAAAAAAAAAACAAvyMLAAAAAAAAAAAAAAAAAAABbjZDgAAAAAAAAAAAAAAAACAAtxsBwAAAAAAAAAAAAAAAABAAW62AwAAAAAAAAAAAAAAAACgADfbAQAAAAAAAAAAAAAAAABQgJvtAAAAAAAAAAAAAAAAAAAowM12AAAAAAAAAAAAAAAAAAAU4GY7AAAAAAAAAAAAAAAAAAAKcLMdAAAAAAAAAAAAAAAAAAAFuNkOAAAAAAAAAAAAAAAAAIAC3GwHAAAAAAAAAAAAAAAAAEABbrYDAAAAAAAAAAAAAAAAAKAAN9sBAAAAAAAAAAAAAAAAAFCAm+0AAAAAAAAAAAAAAAAAACjAzXYAAAAAAAAAAAAAAAAAABTgZjsAAAAAAAAAAAAAAAAAAApwsx0AAAAAAAAAAAAAAAAAAAW42Q4AAAAAAAAAAAAAAAAAgALcbAcAAAAAAAAAAAAAAAAAQAFutgMAAAAAAAAAAAAAAAAAoAA32wEAAAAAAAAAAAAAAAAAUICb7QAAAAAAAAAAAAAAAAAAKMDNdgAAAAAAAAAAAAAAAAAAFOBmOwAAAAAAAAAAAAAAAAAACnCzHQAAAAAAAAAAAAAAAAAABbjZDgAAAAAAAAAAAAAAAACAAtxsBwAAAAAAAAAAAAAAAABAAW62AwAAAAAAAAAAAAAAAACgADfbAQAAAAAAAAAAAAAAAABQgJvtAAAAAAAAAAAAAAAAAAAowM12AAAAAAAAAAAAAAAAAAAU4GY7AAAAAAAAAAAAAAAAAAAKcLMdAAAAAAAAAAAAAAAAAAAFuNkOAAAAAAAAAAAAAAAAAIAC3GwHAAAAAAAAAAAAAAAAAEABbrYDAAAAAAAAAAAAAAAAAKAAN9sBAAAAAAAAAAAAAAAAAFDg/wFRlxEKZVemhQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import yappi\n", + "\n", + "from apd.aggregation.analysis import interactable_plot_multiple_charts, Config, clean_temperature_fluctuations, get_data_by_deployment\n", + "from apd.aggregation.utils import profile_with_yappi\n", + "\n", + "async def filter_and_clean_temperature_fluctuations(datapoints):\n", + " filtered = (item async for item in datapoints if item.sensor_name==\"Temperature\")\n", + " cleaned = clean_temperature_fluctuations(filtered)\n", + " async for item in cleaned:\n", + " yield item\n", + "\n", + "filter_in_python = Config(\n", + " clean=filter_and_clean_temperature_fluctuations,\n", + " title=\"Ambient temperature\",\n", + " ylabel=\"Degrees C\",\n", + " get_data=get_data_by_deployment,\n", + ")\n", + "\n", + "with profile_with_yappi():\n", + " plot = interactable_plot_multiple_charts(configs=[filter_in_python])\n", + " plot()\n", + "\n", + "yappi.get_func_stats().print_all()" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from apd.aggregation.utils import yappi_package_matches\n", + "import yappi\n", + "\n", + "yappi.get_func_stats().save(\"callgrind.filter_in_python\", \"callgrind\") " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "apd.aggregation", + "language": "python", + "name": "apd.aggregation" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Ch10/apd.aggregation-chapter10/pyproject.toml b/Ch10/apd.aggregation-chapter10/pyproject.toml new file mode 100644 index 0000000..4d3bb67 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10/pyproject.toml @@ -0,0 +1,5 @@ +[build-system] +requires = [ + "setuptools", +] +build-backend = "setuptools.build_meta" diff --git a/Ch10/apd.aggregation-chapter10/pytest.ini b/Ch10/apd.aggregation-chapter10/pytest.ini new file mode 100644 index 0000000..8c26fbc --- /dev/null +++ b/Ch10/apd.aggregation-chapter10/pytest.ini @@ -0,0 +1,4 @@ +[pytest] +markers = + functional: these tests are significantly slower as they start a HTTP server + performance: very slow tests that provide performance guarantees \ No newline at end of file diff --git a/Ch10/apd.aggregation-chapter10/setup.cfg b/Ch10/apd.aggregation-chapter10/setup.cfg new file mode 100644 index 0000000..3ee0436 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10/setup.cfg @@ -0,0 +1,83 @@ +[mypy] +namespace_packages = True +mypy_path = src +plugins = sqlmypy + +[mypy-alembic] +ignore_missing_imports = True + +[mypy-alembic.config] +ignore_missing_imports = True + +[mypy-alembic.script] +ignore_missing_imports = True + +[mypy-alembic.runtime.environment] +ignore_missing_imports = True + +[mypy-matplotlib] +ignore_missing_imports = True + +[mypy-matplotlib.axes._base] +ignore_missing_imports = True + +[mypy-matplotlib.figure] +ignore_missing_imports = True + +[mypy-matplotlib.pyplot] +ignore_missing_imports = True + +[mypy-IPython.core] +ignore_missing_imports = True + +[mypy-yappi] +ignore_missing_imports = True + +[mypy-pint] +ignore_missing_imports = True + +[mypy-pytest] +ignore_missing_imports = True + +[flake8] +max-line-length = 120 +ignore = E501 + +[metadata] +name = apd.aggregation +version = attr: apd.aggregation.VERSION +description = A programme that queries apd.sensor endpoints and aggregates their results. +long_description = file: README.md, CHANGES.md, LICENCE +long_description_content_type = text/markdown +keywords = +license = BSD +classifiers = + Programming Language :: Python :: 3 + Programming Language :: Python :: 3.7 + +[options] +zip_safe = False +include_package_data = True +package_dir = + =src +packages = find_namespace: +install_requires = + sqlalchemy + aiohttp + pint + psycopg2 + alembic + click + + +[options.extras_require] +jupyter = ipywidgets +yappi = yappi + +[options.packages.find] +where = src + +[options.entry_points] +console_scripts = + collect_sensor_data = apd.aggregation.cli:collect_sensor_data + sensor_deployments = apd.aggregation.cli:deployments diff --git a/Ch10/apd.aggregation-chapter10/setup.py b/Ch10/apd.aggregation-chapter10/setup.py new file mode 100644 index 0000000..6068493 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10/setup.py @@ -0,0 +1,3 @@ +from setuptools import setup + +setup() diff --git a/Ch10/apd.aggregation-chapter10/src/apd/aggregation/__init__.py b/Ch10/apd.aggregation-chapter10/src/apd/aggregation/__init__.py new file mode 100644 index 0000000..3277f64 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10/src/apd/aggregation/__init__.py @@ -0,0 +1 @@ +VERSION = "1.0.0" diff --git a/Ch10/apd.aggregation-chapter10/src/apd/aggregation/alembic/README b/Ch10/apd.aggregation-chapter10/src/apd/aggregation/alembic/README new file mode 100644 index 0000000..97a87d5 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10/src/apd/aggregation/alembic/README @@ -0,0 +1,12 @@ +Generic single-database configuration. + + +# Database setup + +To generate the required database tables you must create an alembic.ini file, as follows: + + [alembic] + script_location = apd.aggregation:alembic + sqlalchemy.url = postgresql+psycopg2://apd@localhost/apd + +and run `alembic upgrade head`. This should also be done after every upgrade of the software. \ No newline at end of file diff --git a/Ch10/apd.aggregation-chapter10/src/apd/aggregation/alembic/env.py b/Ch10/apd.aggregation-chapter10/src/apd/aggregation/alembic/env.py new file mode 100644 index 0000000..4c8a2c2 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10/src/apd/aggregation/alembic/env.py @@ -0,0 +1,80 @@ +from logging.config import fileConfig + +from sqlalchemy import engine_from_config +from sqlalchemy import pool +from alembic import context + +from apd.aggregation.database import metadata + + +# this is the Alembic Config object, which provides +# access to the values within the .ini file in use. +config = context.config + +# Interpret the config file for Python logging. +# This line sets up loggers basically. +if config.config_file_name: + fileConfig(config.config_file_name) + +target_metadata = metadata + + +def include_object(object, name, type_, reflected, compare_to): + if object.info.get("is_view", False): + return False + return True + + +def run_migrations_offline(): + """Run migrations in 'offline' mode. + + This configures the context with just a URL + and not an Engine, though an Engine is acceptable + here as well. By skipping the Engine creation + we don't even need a DBAPI to be available. + + Calls to context.execute() here emit the given string to the + script output. + + """ + url = config.get_main_option("sqlalchemy.url") + context.configure( + url=url, + include_object=include_object, + target_metadata=target_metadata, + literal_binds=True, + dialect_opts={"paramstyle": "named"}, + ) + + with context.begin_transaction(): + context.run_migrations() + + +def run_migrations_online(): + """Run migrations in 'online' mode. + + In this scenario we need to create an Engine + and associate a connection with the context. + + """ + connectable = engine_from_config( + config.get_section(config.config_ini_section), + prefix="sqlalchemy.", + poolclass=pool.NullPool, + ) + + with connectable.connect() as connection: + context.configure( + connection=connection, + target_metadata=target_metadata, + include_object=include_object, + ) + + with context.begin_transaction(): + context.run_migrations() + + +if context.is_offline_mode(): + run_migrations_offline() +else: + run_migrations_online() diff --git a/Ch10/apd.aggregation-chapter10/src/apd/aggregation/alembic/script.py.mako b/Ch10/apd.aggregation-chapter10/src/apd/aggregation/alembic/script.py.mako new file mode 100644 index 0000000..2c01563 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10/src/apd/aggregation/alembic/script.py.mako @@ -0,0 +1,24 @@ +"""${message} + +Revision ID: ${up_revision} +Revises: ${down_revision | comma,n} +Create Date: ${create_date} + +""" +from alembic import op +import sqlalchemy as sa +${imports if imports else ""} + +# revision identifiers, used by Alembic. +revision = ${repr(up_revision)} +down_revision = ${repr(down_revision)} +branch_labels = ${repr(branch_labels)} +depends_on = ${repr(depends_on)} + + +def upgrade(): + ${upgrades if upgrades else "pass"} + + +def downgrade(): + ${downgrades if downgrades else "pass"} diff --git a/Ch10/apd.aggregation-chapter10/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py b/Ch10/apd.aggregation-chapter10/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py new file mode 100644 index 0000000..ef671bd --- /dev/null +++ b/Ch10/apd.aggregation-chapter10/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py @@ -0,0 +1,32 @@ +"""Add indexes to datapoints + +Revision ID: 4b2df8a6e1ce +Revises: 6d2eacd5da3f +Create Date: 2019-12-02 16:07:41.123116 + +""" +from alembic import op + + +# revision identifiers, used by Alembic. +revision = "4b2df8a6e1ce" +down_revision = "6d2eacd5da3f" +branch_labels = None +depends_on = None + + +def upgrade(): + op.create_index( + op.f("ix_datapoints_collected_at"), + "datapoints", + ["collected_at"], + unique=False, + ) + op.create_index( + op.f("ix_datapoints_sensor_name"), "datapoints", ["sensor_name"], unique=False, + ) + + +def downgrade(): + op.drop_index(op.f("ix_datapoints_sensor_name"), table_name="datapoints") + op.drop_index(op.f("ix_datapoints_collected_at"), table_name="datapoints") diff --git a/Ch10/apd.aggregation-chapter10/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py b/Ch10/apd.aggregation-chapter10/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py new file mode 100644 index 0000000..eb02455 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py @@ -0,0 +1,38 @@ +"""Add daily summary view + +Revision ID: 6962f8455a6d +Revises: 4b2df8a6e1ce +Create Date: 2019-12-03 11:50:24.403402 + +""" +from alembic import op + + +# revision identifiers, used by Alembic. +revision = "6962f8455a6d" +down_revision = "4b2df8a6e1ce" +branch_labels = None +depends_on = None + + +def upgrade(): + create_view = """ + CREATE VIEW daily_summary AS + SELECT + datapoints.sensor_name AS sensor_name, + datapoints.data AS data, + count(datapoints.id) AS count + FROM datapoints + WHERE + datapoints.collected_at >= CAST(CURRENT_DATE AS DATE) + AND + datapoints.collected_at < CAST(CURRENT_DATE AS DATE) + 1 + GROUP BY + datapoints.sensor_name, + datapoints.data; + """ + op.execute(create_view) + + +def downgrade(): + op.execute("""DROP VIEW daily_summary""") diff --git a/Ch10/apd.aggregation-chapter10/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py b/Ch10/apd.aggregation-chapter10/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py new file mode 100644 index 0000000..b4a3545 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py @@ -0,0 +1,31 @@ +"""Create datapoints table + +Revision ID: 6d2eacd5da3f +Revises: N/A +Create Date: 2019-09-29 13:43:21.242706 + +""" +from alembic import op +import sqlalchemy as sa +from sqlalchemy.dialects import postgresql + +# revision identifiers, used by Alembic. +revision = "6d2eacd5da3f" +down_revision = None +branch_labels = None +depends_on = None + + +def upgrade(): + op.create_table( + "datapoints", + sa.Column("id", sa.Integer(), nullable=False), + sa.Column("sensor_name", sa.String(), nullable=True), + sa.Column("collected_at", postgresql.TIMESTAMP(), nullable=True), + sa.Column("data", postgresql.JSONB(astext_type=sa.Text()), nullable=True), + sa.PrimaryKeyConstraint("id"), + ) + + +def downgrade(): + op.drop_table("datapoints") diff --git a/Ch10/apd.aggregation-chapter10/src/apd/aggregation/alembic/versions/d8cdc709086b_add_deployment_table.py b/Ch10/apd.aggregation-chapter10/src/apd/aggregation/alembic/versions/d8cdc709086b_add_deployment_table.py new file mode 100644 index 0000000..204e096 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10/src/apd/aggregation/alembic/versions/d8cdc709086b_add_deployment_table.py @@ -0,0 +1,32 @@ +"""Add deployment table + +Revision ID: d8cdc709086b +Revises: d8d4cf6a178f +Create Date: 2019-12-17 16:28:58.585616 + +""" +from alembic import op +import sqlalchemy as sa +from sqlalchemy.dialects import postgresql + +# revision identifiers, used by Alembic. +revision = "d8cdc709086b" +down_revision = "d8d4cf6a178f" +branch_labels = None +depends_on = None + + +def upgrade(): + op.create_table( + "deployments", + sa.Column("id", postgresql.UUID(as_uuid=True), nullable=False), + sa.Column("uri", sa.String(), nullable=True), + sa.Column("name", sa.String(), nullable=True), + sa.Column("colour", sa.String(), nullable=True), + sa.Column("api_key", sa.String(), nullable=True), + sa.PrimaryKeyConstraint("id"), + ) + + +def downgrade(): + op.drop_table("deployments") diff --git a/Ch10/apd.aggregation-chapter10/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py b/Ch10/apd.aggregation-chapter10/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py new file mode 100644 index 0000000..88d5219 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py @@ -0,0 +1,34 @@ +"""Add deployment id to DataPoint + +Revision ID: d8d4cf6a178f +Revises: 6962f8455a6d +Create Date: 2019-12-03 20:58:11.285509 + +""" +from alembic import op +import sqlalchemy as sa +from sqlalchemy.dialects import postgresql + +# revision identifiers, used by Alembic. +revision = "d8d4cf6a178f" +down_revision = "6962f8455a6d" +branch_labels = None +depends_on = None + + +def upgrade(): + op.add_column( + "datapoints", + sa.Column("deployment_id", postgresql.UUID(as_uuid=True), nullable=True), + ) + op.create_index( + op.f("ix_datapoints_deployment_id"), + "datapoints", + ["deployment_id"], + unique=False, + ) + + +def downgrade(): + op.drop_index(op.f("ix_datapoints_deployment_id"), table_name="datapoints") + op.drop_column("datapoints", "deployment_id") diff --git a/Ch10/apd.aggregation-chapter10/src/apd/aggregation/analysis.py b/Ch10/apd.aggregation-chapter10/src/apd/aggregation/analysis.py new file mode 100644 index 0000000..dfa852b --- /dev/null +++ b/Ch10/apd.aggregation-chapter10/src/apd/aggregation/analysis.py @@ -0,0 +1,391 @@ +from __future__ import annotations + +import asyncio +import collections +from concurrent.futures import ThreadPoolExecutor +import dataclasses +import datetime +import functools +import math +import typing as t + +from uuid import UUID + +import matplotlib.pyplot as plt +from matplotlib.axes._base import _AxesBase +from matplotlib.figure import Figure +from pint import _DEFAULT_REGISTRY as ureg + +from apd.aggregation.query import ( + get_data, + get_data_by_deployment, + with_database, + get_deployment_by_id, +) +from apd.aggregation.database import DataPoint, deployment_table +from .utils import merc_x, merc_y, convert_temperature +from .typing import IntermediateMapData, T_key, T_value, CleanerFunc, Cleaned +from .typing import ( + CLEANED_COORD_FLOAT, + CLEANED_DT_FLOAT, + COORD_FLOAT_CLEANER, + DT_FLOAT_CLEANER, +) + +# Static UUID to represent aggregation of other deployments +GLOBAL = UUID("bd02526e-7619-4a59-b04b-1fafd1c262d1") + + +@dataclasses.dataclass +class Config(t.Generic[T_key, T_value]): + title: str + clean: CleanerFunc[Cleaned[T_key, T_value]] + draw: t.Optional[ + t.Callable[ + [t.Any, t.Iterable[T_key], t.Iterable[T_value], t.Optional[str]], None + ] + ] = None + get_data: t.Optional[ + t.Callable[..., t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]] + ] = None + ylabel: t.Optional[str] = None + sensor_name: dataclasses.InitVar[str] = None + + def __post_init__(self, sensor_name: t.Optional[str] = None) -> None: + if self.draw is None: + self.draw = draw_date # type: ignore + if self.get_data is None: + if sensor_name is None: + raise ValueError("You must specify either get_data or sensor_name") + self.get_data = get_one_sensor_by_deployment(sensor_name) + + +def draw_date( + plot: _AxesBase, + x: t.Iterable[datetime.datetime], + y: t.Iterable[float], + colour: t.Optional[str], +) -> None: + plot.plot_date(x, y, color=colour, linestyle="-", marker="", xdate=True) + + +def draw_map( + plot: _AxesBase, + x: t.Iterable[t.Tuple[float, float]], + y: t.Iterable[float], + colour: t.Optional[str], +) -> None: + lon = [merc_y(coord[0]) for coord in x] + lat = [merc_x(coord[1]) for coord in x] + + for axis in "x", "y": + plt.tick_params( + axis=axis, + which="both", + bottom=False, + top=False, + left=False, + right=False, + labelbottom=False, + labelleft=False, + ) + + plot.tricontourf(lat, lon, y) + plot.plot(lat, lon, "wo", ms=3) + plot.set_aspect(1.0) + + +def get_map_cleaner_for(sensor_name: str,) -> COORD_FLOAT_CLEANER: + """Given a sensor_name that represents a float, return a coroutine that acts as a cleaner + extracting that sensor's data keyed by the value of a Location sensor.""" + + async def clean_latest_coord_and_value( + datapoints: t.AsyncIterator[DataPoint], + ) -> CLEANED_COORD_FLOAT: + + # We will iterate over data points and build an entry in cleaned_data + # for each deployment. This lets newer data replace older data, as + # datapoints is assumed to be in date order + # IntermediateMapData is a typing hint for a dictionary with specific key/values + cleaned_data: t.Dict[UUID, IntermediateMapData] = {} + async for datapoint in datapoints: + # Get the existing data for this deployment, if we've seen it before + row_data = cleaned_data.get(datapoint.deployment_id, None) + if row_data is None: + # This is the first time we've seen this deployment + row_data = {"coord": None, "value": None} + if datapoint.sensor_name == "Location": + # Coord is a 2-tuple of floats + row_data["coord"] = ( + float(datapoint.data[0]), + float(datapoint.data[1]), + ) + elif datapoint.sensor_name == sensor_name: + # Value is a single float + row_data["value"] = float(datapoint.data) + # Store the info about this deployment back into the cleaned_data set + cleaned_data[datapoint.deployment_id] = row_data + + for data in cleaned_data.values(): + if data["coord"] is None or data["value"] is None: + # We only got a partial record, don't plot this + continue + yield data["coord"], data["value"] + + # Return the set up cleaner coroutine + return clean_latest_coord_and_value + + +async def clean_watthours_to_watts( + datapoints: t.AsyncIterator[DataPoint], +) -> CLEANED_DT_FLOAT: + last_watthours = None + last_time = None + async for datapoint in datapoints: + if datapoint.data is None: + continue + time = datapoint.collected_at + if datapoint.data["unit"] == "watt_hour": + watt_hours = datapoint.data["magnitude"] + else: + watt_hours = ( + ureg.Quantity(datapoint.data["magnitude"], datapoint.data["unit"]) + .to(ureg.watt_hour) + .magnitude + ) + if last_watthours: + seconds_elapsed = (time - last_time).total_seconds() + hours_elapsed = seconds_elapsed / (60.0 * 60.0) + additional_power = watt_hours - last_watthours + power = additional_power / hours_elapsed + yield time, power + last_watthours = watt_hours + last_time = datapoint.collected_at + + +async def clean_magnitude(datapoints: t.AsyncIterator[DataPoint],) -> CLEANED_DT_FLOAT: + async for datapoint in datapoints: + if datapoint.data is None: + continue + yield datapoint.collected_at, datapoint.data["magnitude"] + + +def convert_temperature_system( + cleaner: DT_FLOAT_CLEANER, temperature_unit: str, +) -> DT_FLOAT_CLEANER: + async def converter(datapoints: t.AsyncIterator[DataPoint],) -> CLEANED_DT_FLOAT: + results = cleaner(datapoints) + async for date, temp_c in results: + yield date, convert_temperature(temp_c, "degC", temperature_unit) + + return converter + + +async def clean_temperature_fluctuations( + datapoints: t.AsyncIterator[DataPoint], +) -> CLEANED_DT_FLOAT: + allowed_jitter = 2.5 + allowed_range = (-40, 80) + window_datapoints: t.Deque[DataPoint] = collections.deque(maxlen=3) + + def datapoint_ok(datapoint: DataPoint) -> bool: + """Return False if this data point does not contain a valid temperature""" + if datapoint.data is None: + return False + elif datapoint.data["unit"] != "degC": + # This point is in a different temperature system. While it could be converted + # this cleaner is not yet doing that. + return False + elif not allowed_range[0] < datapoint.data["magnitude"] < allowed_range[1]: + return False + return True + + async for datapoint in datapoints: + if not datapoint_ok(datapoint): + # If the datapoint is invalid then skip directly to the next item + continue + + window_datapoints.append(datapoint) + if len(window_datapoints) == 3: + # Find the temperatures of the datapoints in the window, then average + # the first and last and compare that to the middle point. + window_temperatures = [dp.data["magnitude"] for dp in window_datapoints] + avr_first_last = (window_temperatures[0] + window_temperatures[2]) / 2 + diff_middle_avr = abs(window_temperatures[1] - avr_first_last) + if diff_middle_avr > allowed_jitter: + pass + else: + yield window_datapoints[1].collected_at, window_temperatures[1] + elif len(window_datapoints) == 1: + # The item in the iterator can't be compared to both neighbours + # so should be yielded + yield datapoint.collected_at, datapoint.data["magnitude"] + else: + # Otherwise, let the window fill up, it will be yieleded later + pass + # When the iterator ends the final item is not yet in the middle + # of the window, so the last item must be explicitly yielded. + if len(window_datapoints) > 1 and datapoint_ok(datapoint): + yield datapoint.collected_at, datapoint.data["magnitude"] + + +async def clean_passthrough( + datapoints: t.AsyncIterator[DataPoint], +) -> CLEANED_DT_FLOAT: + async for datapoint in datapoints: + if datapoint.data is None: + continue + else: + yield datapoint.collected_at, datapoint.data + + +def get_one_sensor_by_deployment( + sensor_name: str, +) -> t.Callable[..., t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]]: + return functools.partial(get_data_by_deployment, sensor_name=sensor_name) + + +def get_all_data() -> t.Callable[ + ..., t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]] +]: + async def get_all_data_inner( + *args: t.Any, **kwargs: t.Any + ) -> t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]: + yield GLOBAL, get_data(*args, **kwargs) + + return get_all_data_inner + + +configs = ( + Config( + sensor_name="SolarCumulativeOutput", + clean=clean_watthours_to_watts, + title="Solar generation", + ylabel="Watts", + ), + Config( + sensor_name="RAMAvailable", + clean=clean_passthrough, + title="RAM available", + ylabel="Bytes", + ), + Config( + sensor_name="RelativeHumidity", + clean=clean_passthrough, + title="Relative humidity", + ylabel="Percent", + ), + Config( + sensor_name="Temperature", + clean=clean_temperature_fluctuations, + title="Ambient temperature", + ylabel="Degrees C", + ), +) + + +def get_known_configs() -> t.Dict[str, Config[t.Any, t.Any]]: + return {config.title: config for config in configs} + + +async def plot_sensor( + config: Config[t.Any, t.Any], + plot: _AxesBase, + location_names: t.Dict[UUID, str], + **kwargs: t.Any +) -> _AxesBase: + locations = [] + if config.get_data is None: + raise ValueError("You must provide a get_data function") + async for deployment_id, query_results in config.get_data(**kwargs): + if deployment_id == GLOBAL: + name = "Global" + else: + try: + deployment = await get_deployment_by_id(deployment_id) + except IndexError: + name = str(deployment_id) + colour = None + else: + name = deployment.name or str(deployment_id) + colour = deployment.colour + # Mypy currently doesn't understand callable fields on datatypes: https://github.com/python/mypy/issues/5485 + points = [dp async for dp in config.clean(query_results)] # type: ignore + if not points: + continue + locations.append(name) + x, y = zip(*points) + plot.set_title(config.title) + plot.set_ylabel(config.ylabel) + if config.draw is None: + raise ValueError("You must provide a get_data function") + config.draw(plot, x, y, colour) + plot.legend(locations) + return plot + + +async def plot_multiple_charts(*args: t.Any, **kwargs: t.Any) -> Figure: + # These parameters are pulled from kwargs to avoid confusing function + # introspection code in IPython widgets + location_names = kwargs.pop("location_names", None) + configs = kwargs.pop("configs", None) + dimensions = kwargs.pop("dimensions", None) + db_uri = kwargs.pop("db_uri", "postgresql+psycopg2://apd@localhost/apd") + + with with_database(db_uri) as session: + loop = asyncio.get_running_loop() + coros = [] + if configs is None: + # If no configs are supplied, use all known configs + configs = get_known_configs().values() + if dimensions is None: + # If no dimensions are supplied, get the square root of the number + # of configs and round it to find a number of columns. This will + # keep the arrangement approximately square. Find rows by multiplying + # out rows. + total_configs = len(configs) + columns = round(math.sqrt(total_configs)) + rows = math.ceil(total_configs / columns) + if location_names is None: + location_query = session.query( + deployment_table.c.id, deployment_table.c.name + ) + location_data = await loop.run_in_executor(None, location_query.all) + location_names = dict(location_data) + + figure = plt.figure(figsize=(10 * columns, 5 * rows), dpi=300) + for i, config in enumerate(configs, start=1): + plot = figure.add_subplot(columns, rows, i) + coros.append(plot_sensor(config, plot, location_names, *args, **kwargs)) + await asyncio.gather(*coros) + return figure + + +_Coroutine_Result = t.TypeVar("_Coroutine_Result") + + +def wrap_coroutine( + f: t.Callable[..., t.Coroutine[t.Any, t.Any, _Coroutine_Result]] +) -> t.Callable[..., _Coroutine_Result]: + """Given a coroutine, return a function that runs that coroutine + in a new event loop in an isolated thread""" + + @functools.wraps(f) + def run_in_thread(*args: t.Any, **kwargs: t.Any) -> _Coroutine_Result: + loop = asyncio.new_event_loop() + wrapped = f(*args, **kwargs) + with ThreadPoolExecutor(max_workers=1) as pool: + task = pool.submit(loop.run_until_complete, wrapped) + # Mypy can get confused when nesting generic functions, like we do here + # The fact that Task is generic means we lose the association with + # _CoroutineResult. Adding an explicit cast restores this. + return t.cast(_Coroutine_Result, task.result()) + + return run_in_thread + + +def interactable_plot_multiple_charts( + *args: t.Any, **kwargs: t.Any +) -> t.Callable[..., Figure]: + with_config = functools.partial(plot_multiple_charts, *args, **kwargs) + return wrap_coroutine(with_config) diff --git a/Ch10/apd.aggregation-chapter10/src/apd/aggregation/cli.py b/Ch10/apd.aggregation-chapter10/src/apd/aggregation/cli.py new file mode 100644 index 0000000..64b1246 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10/src/apd/aggregation/cli.py @@ -0,0 +1,184 @@ +import asyncio +import typing as t +import uuid + +import aiohttp +import click +from sqlalchemy import create_engine +from sqlalchemy.orm import sessionmaker + +from . import collect +from .database import Deployment, deployment_table + + +@click.command() +@click.argument("server", nargs=-1) +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +@click.option("--api-key", metavar="", envvar="APD_API_KEY") +@click.option( + "--tolerate-failures", + "-f", + help="If provided, failure to retrieve some sensors' data will not abort the collection process", + is_flag=True, +) +@click.option("-v", "--verbose", is_flag=True, help="Enables verbose mode") +def collect_sensor_data( + db: str, server: t.Tuple[str], api_key: str, tolerate_failures: bool, verbose: bool +): + """This loads data from one or more sensors into the specified database. + + Only PostgreSQL databases are supported, as the column definitions use + multiple pg specific features. The database must already exist and be + populated with the required tables. + + The --api-key option is used to specify the access token for the sensors + being queried. + + You may specify any number of servers, the variable should be the full URL + to the sensor's HTTP interface, not including the /v/2.0 portion. Multiple + URLs should be separated with a space. + """ + if tolerate_failures: + attempts = [(s,) for s in server] + else: + attempts = [server] + success = True + for attempt in attempts: + try: + collect.standalone(db, attempt, api_key, echo=verbose) + except ValueError as e: + click.secho(str(e), err=True, fg="red") + success = False + return success + + +@click.group() +def deployments(): + pass + + +@deployments.command() +@click.argument("uri") +@click.argument("name") +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +@click.option("--api-key", metavar="", envvar="APD_API_KEY") +@click.option("--colour") +def add( + db: str, uri: str, name: str, api_key: t.Optional[str], colour: t.Optional[str], +): + """This creates a record of a new deployment in the database. + """ + deployment = Deployment(id=None, uri=uri, name=name, api_key=api_key, colour=colour) + + async def http_get_deployment_id(): + async with aiohttp.ClientSession() as http: + collect.http_session_var.set(http) + return await collect.get_deployment_id(uri) + + deployment.id = asyncio.run(http_get_deployment_id()) + insert = deployment_table.insert().values(**deployment._asdict()) + + engine = create_engine(db) + sm = sessionmaker(engine) + Session = sm() + Session.execute(insert) + Session.commit() + return True + + +@deployments.command() +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +def list(db: str): + """This creates a record of a new deployment in the database. + """ + engine = create_engine(db) + sm = sessionmaker(engine) + Session = sm() + deployments = Session.query(deployment_table).all() + for deployment in deployments: + click.secho(deployment.name, bold=True) + click.echo(click.style("ID ", bold=True) + deployment.id.hex) + click.echo(click.style("URI ", bold=True) + deployment.uri) + click.echo(click.style("API key ", bold=True) + deployment.api_key) + click.echo(click.style("Colour ", bold=True) + str(deployment.colour)) + click.echo() + Session.rollback() + return True + + +@deployments.command() +@click.argument("id") +@click.option("--uri") +@click.option("--name") +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +@click.option("--api-key", metavar="", envvar="APD_API_KEY") +@click.option("--colour") +def edit( + db: str, + id, + uri: t.Optional[str], + name: t.Optional[str], + api_key: t.Optional[str], + colour: t.Optional[str], +): + """This creates a record of a new deployment in the database. + """ + update = {} + if uri is not None: + update["uri"] = uri + if name is not None: + update["name"] = name + if api_key is not None: + update["api_key"] = api_key + if colour is not None: + update["colour"] = colour + deployment_id = uuid.UUID(id) + + update_stmt = ( + deployment_table.update() + .where(deployment_table.c.id == deployment_id) + .values(**update) + ) + + engine = create_engine(db) + sm = sessionmaker(engine) + Session = sm() + Session.execute(update_stmt) + deployments = Session.query(deployment_table).filter( + deployment_table.c.id == deployment_id + ) + Session.commit() + + for deployment in deployments: + click.secho(deployment.name, bold=True) + click.echo(click.style("ID ", bold=True) + deployment.id.hex) + click.echo(click.style("URI ", bold=True) + deployment.uri) + click.echo(click.style("API key ", bold=True) + deployment.api_key) + click.echo(click.style("Colour ", bold=True) + str(deployment.colour)) + click.echo() + + return True diff --git a/Ch10/apd.aggregation-chapter10/src/apd/aggregation/collect.py b/Ch10/apd.aggregation-chapter10/src/apd/aggregation/collect.py new file mode 100644 index 0000000..1d9ea08 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10/src/apd/aggregation/collect.py @@ -0,0 +1,112 @@ +import asyncio +from contextvars import ContextVar +import datetime +import typing as t +import uuid + +import aiohttp +from sqlalchemy import create_engine +from sqlalchemy.orm import sessionmaker +from sqlalchemy.orm.session import Session + +from .database import DataPoint, datapoint_table, Deployment, deployment_table + +http_session_var: ContextVar[aiohttp.ClientSession] = ContextVar("http_session") + + +async def get_deployment_id(server): + http = http_session_var.get() + if not server.endswith("/"): + server += "/" + url = server + "v/2.1/deployment_id" + async with http.get(url) as request: + if request.status != 200: + raise ValueError(f"Error loading deployment id from {server}") + result = await request.json() + return uuid.UUID(result["deployment_id"]) + + +async def get_data_points(server: str, api_key: t.Optional[str],) -> t.List[DataPoint]: + if not server.endswith("/"): + server += "/" + url = server + "v/2.1/sensors/" + headers = {} + if api_key: + headers["X-API-KEY"] = api_key + http = http_session_var.get() + + # Get the deployment ID in parallel to the sensor data + deployment_id = asyncio.create_task(get_deployment_id(server)) + + async with http.get(url, headers=headers) as request: + result = await request.json() + ok = request.status == 200 + now = datetime.datetime.now() + if ok: + points = [] + for value in result["sensors"]: + points.append( + DataPoint( + sensor_name=value["id"], + collected_at=now, + data=value["value"], + deployment_id=await deployment_id, + ) + ) + return points + else: + raise ValueError( + f"Error loading data from {server}: " + result.get("error", "Unknown") + ) + + +def handle_result(result: t.List[DataPoint], session: Session) -> t.List[DataPoint]: + for point in result: + insert = datapoint_table.insert().values(**point._asdict()) + sql_result = session.execute(insert) + point.id = sql_result.inserted_primary_key[0] + return result + + +async def add_data_from_sensors( + session: Session, servers: t.Iterable[Deployment] +) -> t.List[DataPoint]: + tasks: t.List[t.Awaitable[t.List[DataPoint]]] = [] + points: t.List[DataPoint] = [] + async with aiohttp.ClientSession() as http: + http_session_var.set(http) + tasks = [get_data_points(server.uri, server.api_key) for server in servers] + for results in await asyncio.gather(*tasks): + points += results + loop = asyncio.get_running_loop() + await loop.run_in_executor(None, handle_result, points, session) + return points + + +def standalone( + db_uri: str, servers: t.Tuple[str], api_key: t.Optional[str], echo: bool = False +) -> None: + engine = create_engine(db_uri, echo=echo) + sm = sessionmaker(engine) + Session = sm() + deployments: t.Iterable[Deployment] + if servers: + deployments = tuple( + Deployment(id=None, name=None, colour=None, api_key=api_key, uri=server) + for server in servers + ) + else: + deployment_data = Session.query(deployment_table).all() + deployments = tuple( + Deployment.from_sql_result(deployment) for deployment in deployment_data + ) + asyncio.run(add_data_from_sensors(Session, deployments)) + Session.commit() + + +if __name__ == "__main__": + standalone( + db_uri="postgresql+psycopg2://apd@localhost/apd", + servers=("http://pvoutput:8080/",), + api_key="h3hdfjksfhwkjehnwekj", + ) diff --git a/Ch10/apd.aggregation-chapter10/src/apd/aggregation/database.py b/Ch10/apd.aggregation-chapter10/src/apd/aggregation/database.py new file mode 100644 index 0000000..f28b469 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10/src/apd/aggregation/database.py @@ -0,0 +1,129 @@ +from __future__ import annotations + +from dataclasses import dataclass, field, asdict +import datetime +import typing as t +import uuid + +import sqlalchemy +from sqlalchemy.dialects.postgresql import JSONB, DATE, TIMESTAMP, UUID +from sqlalchemy.ext.hybrid import ExprComparator, hybrid_property +from sqlalchemy.orm import sessionmaker +from sqlalchemy.schema import Table + + +metadata = sqlalchemy.MetaData() + +deployment_table = Table( + "deployments", + metadata, + sqlalchemy.Column("id", UUID(as_uuid=True), primary_key=True), + sqlalchemy.Column("uri", sqlalchemy.String, index=False), + sqlalchemy.Column("name", sqlalchemy.String, index=False, nullable=True), + sqlalchemy.Column("colour", sqlalchemy.String, index=False, nullable=True), + sqlalchemy.Column("api_key", sqlalchemy.String, index=False), +) + +datapoint_table = Table( + "datapoints", + metadata, + sqlalchemy.Column("id", sqlalchemy.Integer, primary_key=True), + sqlalchemy.Column("sensor_name", sqlalchemy.String, index=True), + sqlalchemy.Column("collected_at", TIMESTAMP, index=True), + sqlalchemy.Column("deployment_id", UUID(as_uuid=True), index=True), + sqlalchemy.Column("data", JSONB), +) + +daily_summary_view = Table( + "daily_summary", + metadata, + sqlalchemy.Column("sensor_name", sqlalchemy.String), + sqlalchemy.Column("data", JSONB), + sqlalchemy.Column("count", sqlalchemy.Integer), + info={"is_view": True}, +) + + +class DateEqualComparator(ExprComparator): + def __init__(self, fallback_expression, raw_expression): + # Do not try and find update expression from parent + super().__init__(None, fallback_expression, None) + self.raw_expression = raw_expression + + def __eq__(self, other): + """ Returns True iff on the same day as other """ + other_date = sqlalchemy.cast(other, DATE) + return sqlalchemy.and_( + self.raw_expression >= other_date, self.raw_expression < other_date + 1, + ) + + def operate(self, op, *other, **kwargs): + other = [sqlalchemy.cast(date, DATE) for date in other] + return op(self.expression, *other, **kwargs) + + def reverse_operate(self, op, other, **kwargs): + other = [sqlalchemy.cast(date, DATE) for date in other] + return op(other, self.expression, **kwargs) + + +@dataclass +class DataPoint: + sensor_name: str + data: t.Any + deployment_id: uuid.UUID + id: t.Optional[int] = None + collected_at: datetime.datetime = field(default_factory=datetime.datetime.now) + + @classmethod + def from_sql_result(cls, result) -> DataPoint: + return cls(**result._asdict()) + + def _asdict(self) -> t.Dict[str, t.Any]: + data = asdict(self) + if data["id"] is None: + del data["id"] + return data + + @hybrid_property + def collected_on_date(self): + return self.collected_at.date() + + @collected_on_date.comparator # type: ignore + def collected_on_date(cls): + return DateEqualComparator( + fallback_expression=sqlalchemy.cast(datapoint_table.c.collected_at, DATE), + raw_expression=datapoint_table.c.collected_at, + ) + + +@dataclass +class Deployment: + id: t.Optional[uuid.UUID] + uri: str + name: t.Optional[str] + colour: t.Optional[str] + api_key: t.Optional[str] + + @classmethod + def from_sql_result(cls, result) -> Deployment: + return cls(**result._asdict()) + + def _asdict(self) -> t.Dict[str, t.Any]: + data = asdict(self) + return data + + +def main() -> None: + engine = sqlalchemy.create_engine( + "postgresql+psycopg2://apd@localhost/apd", echo=True + ) + sm = sessionmaker(engine) + Session = sm() + if False: + metadata.create_all(engine) + print(Session.query(DataPoint).all()) + pass + + +if __name__ == "__main__": + main() diff --git a/Ch10/apd.aggregation-chapter10/src/apd/aggregation/query.py b/Ch10/apd.aggregation-chapter10/src/apd/aggregation/query.py new file mode 100644 index 0000000..f3a8c95 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10/src/apd/aggregation/query.py @@ -0,0 +1,148 @@ +import asyncio +import contextlib +from contextvars import ContextVar +import datetime +import typing as t +from uuid import UUID + +from sqlalchemy import create_engine +from sqlalchemy.orm import sessionmaker +from sqlalchemy.orm.session import Session + + +from apd.aggregation.database import ( + datapoint_table, + DataPoint, + deployment_table, + Deployment, +) + + +db_session_var: ContextVar[Session] = ContextVar("db_session") + + +@contextlib.contextmanager +def with_database(uri: t.Optional[str] = None) -> t.Iterator[Session]: + """Given a URI, set up a DB connection, and return a Session as a context manager """ + if uri is None: + uri = "postgresql+psycopg2://localhost/apd" + engine = create_engine(uri) + sm = sessionmaker(engine) + Session = sm() + token = db_session_var.set(Session) + try: + yield Session + Session.commit() + finally: + db_session_var.reset(token) + Session.close() + + +async def get_data( + sensor_name: t.Optional[str] = None, + deployment_id: t.Optional[UUID] = None, + collected_before: t.Optional[datetime.datetime] = None, + collected_after: t.Optional[datetime.datetime] = None, +) -> t.AsyncIterator[DataPoint]: + db_session = db_session_var.get() + loop = asyncio.get_running_loop() + query = db_session.query(datapoint_table) + if sensor_name: + query = query.filter(datapoint_table.c.sensor_name == sensor_name) + if deployment_id: + query = query.filter(datapoint_table.c.deployment_id == deployment_id) + if collected_before: + query = query.filter(datapoint_table.c.collected_at < collected_before) + if collected_after: + query = query.filter(datapoint_table.c.collected_at > collected_after) + query = query.order_by( + datapoint_table.c.deployment_id, + datapoint_table.c.sensor_name, + datapoint_table.c.collected_at, + ) + + rows = await loop.run_in_executor(None, query.all) + for row in rows: + yield DataPoint.from_sql_result(row) + + +async def get_deployment_ids() -> t.List[UUID]: + db_session = db_session_var.get() + loop = asyncio.get_running_loop() + query = db_session.query(datapoint_table.c.deployment_id).distinct() + return [row.deployment_id for row in await loop.run_in_executor(None, query.all)] + + +async def get_deployment_by_id(deployment_id: UUID) -> Deployment: + db_session = db_session_var.get() + loop = asyncio.get_running_loop() + query = db_session.query(deployment_table).filter( + deployment_table.c.id == deployment_id + ) + return [ + Deployment.from_sql_result(row) + for row in await loop.run_in_executor(None, query.all) + ][0] + + +async def get_data_by_deployment( + *args: t.Any, **kwargs: t.Any +) -> t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]: + """Return an Async Iterator that contains two-item pairs. + These pairs are a string (deployment_id), and an async iterator that contains + the datapoints with that deployment_id. + + Usage example: + + async for deployment_id, datapoints in get_data_by_deployment(): + print(deployment_id) + async for datapoint in datapoints: + print(datapoint) + print() + """ + # Get the data, using the arguments to this function as filters + data = get_data(*args, **kwargs) + + # The two levels of iterator share the item variable, initialise it with the + # first item from the iterator. Also set last_deployment_id to None, so the + # outer iterator knows to start a new group. + last_deployment_id: t.Optional[UUID] = None + try: + item = await data.__anext__() + except StopAsyncIteration: + # There were no items in the underlying query, return immediately + return + + async def subiterator(group_id: UUID) -> t.AsyncIterator[DataPoint]: + """Using a closure, create an iterator that yields the current + item, then yields all items from data while the deployment_id matches + group_id, leaving the first that doesn't match as item in the enclosing + scope.""" + # item is from the enclosing scope + nonlocal item + while item.deployment_id == group_id: + # yield items from data while they match the group_id this iterator represents + yield item + try: + # Advance the underlying iterator + item = await data.__anext__() + except StopAsyncIteration: + # The underlying iterator came to an end, so end the subiterator too + return + + while True: + while item.deployment_id == last_deployment_id: + # We are trying to advance the outer iterator while the underlying iterator + # is still part-way through a group. Speed through the underlying until we + # hit an item where the deployment_id is different to the last one (or, is not + # None, in the case of the start of the iterator) + try: + item = await data.__anext__() + except StopAsyncIteration: + # We hit the end of the underlying iterator: end this iterator too + return + last_deployment_id = item.deployment_id + # Don't yield an iterator for unclassified deployments + if last_deployment_id is not None: + # Instantiate a subiterator for this group + yield last_deployment_id, subiterator(last_deployment_id) diff --git a/Ch10/apd.aggregation-chapter10/src/apd/aggregation/typing.py b/Ch10/apd.aggregation-chapter10/src/apd/aggregation/typing.py new file mode 100644 index 0000000..5db1337 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10/src/apd/aggregation/typing.py @@ -0,0 +1,48 @@ +import datetime +import typing as t +from typing_extensions import Protocol + +from apd.aggregation.database import DataPoint + + +# Aliases for common types +# These type variables allow for generic functions. T_key represents the place +# in a chart that an item will be placed, and T_value the kind of data that is plotted. +T_key = t.TypeVar("T_key") +T_value = t.TypeVar("T_value") + +# Cleaned is a placeholder type, representing an async iterator of key and value functions +# Cleaned[float, float] is equivalent to typing.AsyncIterator[Tuple[builtins.float, builtins.float]] +Cleaned = t.AsyncIterator[t.Tuple[T_key, T_value]] + +# T_cleaned represents a placeholder for the result of a cleaner function, and is *covariant* +# because it can accept compatible types (such as ints where floats were declared). +# It is bound to Cleaned, so only items that match the specification for Cleaned (for any values +# of T_key or T_value) are valid +T_cleaned = t.TypeVar("T_cleaned", covariant=True, bound=Cleaned) + + +# CleanerFunc is a generic protocol, it matches any Callable that converts an async iterator +# of datapoints to its type. So, CleanerFunc[float] would be equivalent to t.Callable[[t.AsyncIterator[DataPoint]], float] +class CleanerFunc(Protocol[T_cleaned]): + def __call__(self, datapoints: t.AsyncIterator[DataPoint]) -> T_cleaned: + ... + + +# CLEANED_DT_FLOAT is a Cleaned represents datetime/float pairs, for simple charts +CLEANED_DT_FLOAT = Cleaned[datetime.datetime, float] +# and CLEANED_COORD_FLOAT represents (lat/lon), float pairs +CLEANED_COORD_FLOAT = Cleaned[t.Tuple[float, float], float] + +# The _CLEANER variants are functions that return their matching iterators from above +DT_FLOAT_CLEANER = CleanerFunc[CLEANED_DT_FLOAT] +COORD_FLOAT_CLEANER = CleanerFunc[CLEANED_COORD_FLOAT] + + +# When drawing a map we will be building a dictionary of UUID to dictionary +# That inner dictionary should contain coord (float, float) +# and value (float) only. Either or both can be None. +# This class is abstract, it's just for type checking. +class IntermediateMapData(t.TypedDict): + coord: t.Optional[t.Tuple[float, float]] + value: t.Optional[float] diff --git a/Ch10/apd.aggregation-chapter10/src/apd/aggregation/utils.py b/Ch10/apd.aggregation-chapter10/src/apd/aggregation/utils.py new file mode 100644 index 0000000..861d4c4 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10/src/apd/aggregation/utils.py @@ -0,0 +1,86 @@ +from __future__ import annotations + +import contextlib +import functools +import importlib +import io +import math +import os +import typing as t + +from pint import _DEFAULT_REGISTRY as ureg + + +# Set up mercator transform from https://wiki.openstreetmap.org/wiki/Mercator#Python +# Thanks to Paulo Silva and the OSM contributors +def merc_x(lon: float) -> float: + r_major = 6378137.000 + return r_major * math.radians(lon) + + +def merc_y(lat: float) -> float: + if lat > 89.5: + lat = 89.5 + if lat < -89.5: + lat = -89.5 + r_major = 6378137.000 + r_minor = 6356752.3142 + temp = r_minor / r_major + eccent = math.sqrt(1 - temp ** 2) + phi = math.radians(lat) + sinphi = math.sin(phi) + con = eccent * sinphi + com = eccent / 2 + con = ((1.0 - con) / (1.0 + con)) ** com + ts = math.tan((math.pi / 2 - phi) / 2) / con + y = 0 - r_major * math.log(ts) + return y + + +@functools.lru_cache +def convert_temperature(magnitude: float, origin_unit: str, target_unit: str) -> float: + # if origin_unit == "degC" and target_unit == "degF": + # return (magnitude * 1.8) + 32 + temp = ureg.Quantity(magnitude, origin_unit) + return temp.to(target_unit).magnitude + + +@contextlib.contextmanager +def jupyter_page_file() -> t.Iterator[io.StringIO]: + from IPython.core import page + + output = io.StringIO() + yield output + output.seek(0) + page.page(output.read()) + + +@contextlib.contextmanager +def profile_with_yappi() -> t.Iterator[None]: + import yappi + + yappi.clear_stats() + yappi.start() + try: + yield None + finally: + yappi.stop() + + +@functools.lru_cache +def get_package_prefix(package: str) -> str: + mod = importlib.import_module(package) + prefix = mod.__file__ + if prefix.endswith("__init__.py"): + prefix = os.path.dirname(prefix) + return prefix + + +def yappi_package_matches(stat, packages: t.List[str]): + """ This object can be passed to yappi's filter_callback to limit + by Python package.""" + for package in packages: + prefix = get_package_prefix(package) + if stat.full_name.startswith(prefix): + return True + return False diff --git a/Ch10/apd.aggregation-chapter10/tests/__init__.py b/Ch10/apd.aggregation-chapter10/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/Ch10/apd.aggregation-chapter10/tests/conftest.py b/Ch10/apd.aggregation-chapter10/tests/conftest.py new file mode 100644 index 0000000..328e95f --- /dev/null +++ b/Ch10/apd.aggregation-chapter10/tests/conftest.py @@ -0,0 +1,124 @@ +import datetime +from uuid import UUID + +from apd.aggregation.database import datapoint_table + +from alembic.config import Config +from alembic.script import ScriptDirectory +from alembic.runtime.environment import EnvironmentContext +import pytest + + +@pytest.fixture +def db_uri(): + return "postgresql+psycopg2://apd@localhost/apd-test" + + +@pytest.fixture +def db_session(db_uri): + from sqlalchemy import create_engine + from sqlalchemy.orm import sessionmaker + + engine = create_engine(db_uri, echo=True) + sm = sessionmaker(engine) + Session = sm() + yield Session + Session.close() + + +@pytest.fixture +def migrated_db(db_uri, db_session): + config = Config() + config.set_main_option("script_location", "apd.aggregation:alembic") + config.set_main_option("sqlalchemy.url", db_uri) + script = ScriptDirectory.from_config(config) + + def upgrade(rev, context): + return script._upgrade_revs(script.get_current_head(), rev) + + def downgrade(rev, context): + return script._downgrade_revs(None, rev) + + with EnvironmentContext(config, script, fn=upgrade): + script.run_env() + + try: + yield + finally: + # Clear any pending work from the db_session connection + db_session.rollback() + + with EnvironmentContext(config, script, fn=downgrade): + script.run_env() + + +@pytest.fixture +def populated_db(migrated_db, db_session): + datas = [ + { + "id": 1, + "sensor_name": "Test", + "data": "1", + "collected_at": datetime.datetime(2020, 4, 1, 12, 0, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 2, + "sensor_name": "Test", + "data": "2", + "collected_at": datetime.datetime(2020, 4, 1, 12, 1, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 3, + "sensor_name": "Test", + "data": "3", + "collected_at": datetime.datetime(2020, 4, 1, 12, 2, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 4, + "sensor_name": "Test", + "data": "4", + "collected_at": datetime.datetime(2020, 4, 1, 12, 3, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 5, + "sensor_name": "OtherTest", + "data": "5", + "collected_at": datetime.datetime(2020, 4, 1, 12, 4, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 6, + "sensor_name": "Test", + "data": "1", + "collected_at": datetime.datetime(2020, 4, 1, 12, 0, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + { + "id": 7, + "sensor_name": "Test", + "data": "1", + "collected_at": datetime.datetime(2020, 4, 1, 12, 1, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + { + "id": 8, + "sensor_name": "Test", + "data": "2", + "collected_at": datetime.datetime(2020, 4, 1, 12, 2, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + { + "id": 9, + "sensor_name": "OtherTest", + "data": "3", + "collected_at": datetime.datetime(2020, 4, 1, 12, 3, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + ] + for data in datas: + insert = datapoint_table.insert().values(**data) + db_session.execute(insert) diff --git a/Ch10/apd.aggregation-chapter10/tests/test_analysis.py b/Ch10/apd.aggregation-chapter10/tests/test_analysis.py new file mode 100644 index 0000000..6b3f31b --- /dev/null +++ b/Ch10/apd.aggregation-chapter10/tests/test_analysis.py @@ -0,0 +1,503 @@ +import collections.abc +import datetime +import functools +import uuid + +import pytest + +from apd.aggregation import analysis +from apd.aggregation.database import DataPoint, datapoint_table +from apd.aggregation.query import db_session_var + + +async def generate_datapoints(datas): + deployment_id = uuid.uuid4() + for i, (time, data) in enumerate(datas, start=1): + yield DataPoint( + id=i, + collected_at=time, + sensor_name="TestSensor", + data=data, + deployment_id=deployment_id, + ) + + +@functools.singledispatch +def consume(input_iterator): + items = [item for item in input_iterator] + + def inner_iterator(): + for item in items: + yield item + + return inner_iterator() + + +@consume.register +async def consume_async(input_iterator: collections.abc.AsyncIterator): + items = [item async for item in input_iterator] + + async def inner_iterator(): + for item in items: + yield item + + return inner_iterator() + + +class TestPassThroughCleaner: + @pytest.fixture + def cleaner(self): + return analysis.clean_passthrough + + @pytest.mark.asyncio + async def test_float_passthrough(self, cleaner): + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 65.0), + (datetime.datetime(2020, 4, 1, 13, 0, 0), 65.5), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == data + + @pytest.mark.asyncio + async def test_Nones_are_skipped(self, cleaner): + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), None), + (datetime.datetime(2020, 4, 1, 13, 0, 0), 65.5), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 13, 0, 0), 65.5), + ] + + +class TestTemperatureCleaner: + @pytest.fixture + def cleaner(self): + return analysis.clean_temperature_fluctuations + + @pytest.mark.asyncio + async def test_window_not_full(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [(datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0)] + + @pytest.mark.asyncio + async def test_window_exactly_full(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 1), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 21.0), + ] + + @pytest.mark.asyncio + async def test_window_overfilled(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 3), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 4), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 1), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 3), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 4), 21.0), + ] + + @pytest.mark.asyncio + async def test_outlier_dropped(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 61.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 21.0), + ] + + @pytest.mark.asyncio + async def test_limited_to_DHT22_range(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 91.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 91.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 91.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [] + + @pytest.mark.asyncio + async def test_Nones_dropped(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 31.0, "unit": "degC"}, + ), + (datetime.datetime(2020, 4, 1, 12, 0, 1), None,), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 32.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 31.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 32.0), + ] + + +class TestWattHourCleaner: + @pytest.fixture + def cleaner(self): + return analysis.clean_watthours_to_watts + + @pytest.fixture(scope="class") + def huge_data_set(self): + date = datetime.datetime(2020, 4, 1, 12, 0, 0) + power = 500 + data = [] + for i in range(50_000): + date += datetime.timedelta(hours=1) + power += i + data.append((date, {"magnitude": power, "unit": "watt_hour"},)) + return data + + @pytest.mark.asyncio + async def test_one_entry_insufficient_to_find_diff(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [] + + @pytest.mark.asyncio + async def test_two_entries_provides_diff_with_second_time(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 13, 0, 0), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 1 + assert output[0][0] == datetime.datetime(2020, 4, 1, 13, 0, 0) + assert output[0][1] == pytest.approx(9.0, 0.0001) + + @pytest.mark.asyncio + async def test_nonstandard_units_can_be_used(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 13, 0, 0), + {"magnitude": 10000.0, "unit": "joule"}, + ), + ( + datetime.datetime(2020, 4, 1, 14, 0, 0), + {"magnitude": 3.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 2 + assert output[0][0] == datetime.datetime(2020, 4, 1, 13, 0, 0) + assert output[0][1] == pytest.approx(1.7777, 0.001) + assert output[1][0] == datetime.datetime(2020, 4, 1, 14, 0, 0) + assert output[1][1] == pytest.approx(0.22222, 0.001) + + @pytest.mark.asyncio + async def test_fractional_hour(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 23, 42), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 1 + assert output[0][0] == datetime.datetime(2020, 4, 1, 12, 23, 42) + assert output[0][1] == pytest.approx(22.7848, 0.001) + + @pytest.mark.asyncio + async def test_diff_happens_pairwise(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 23, 42), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 13, 23, 42), + {"magnitude": 13.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 2 + assert output[0][0] == datetime.datetime(2020, 4, 1, 12, 23, 42) + assert output[0][1] == pytest.approx(22.7848, 0.001) + assert output[1][0] == datetime.datetime(2020, 4, 1, 13, 23, 42) + assert output[1][1] == pytest.approx(3, 0.001) + + @pytest.mark.asyncio + async def test_None_ignored(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + (datetime.datetime(2020, 4, 1, 12, 58, 0), None,), + ( + datetime.datetime(2020, 4, 1, 13, 0, 0), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 1 + assert output[0][0] == datetime.datetime(2020, 4, 1, 13, 0, 0) + assert output[0][1] == pytest.approx(9.0, 0.0001) + + @pytest.mark.asyncio + @pytest.mark.performance + async def test_performance_of_cleaner(self, cleaner, huge_data_set): + import cProfile + + # Generate data point objects before profiling starts + datapoints = await consume(generate_datapoints(huge_data_set)) + profiler = cProfile.Profile() + profiler.enable() + + # Run the cleaner to completion + await consume(cleaner(datapoints)) + + profiler.disable() + cleaner_stat = [ + stat for stat in profiler.getstats() if stat.code == cleaner.__code__ + ][0] + # Assert that the cleaner may take no more than 0.5 seconds to process + # these 50k data points + assert cleaner_stat.totaltime < 0.5 + + +class TestTemperatureMap: + @pytest.fixture + def temperature_data(self): + return { + (53.8667, -1.3333): -1, + (53.35, -2.2833): 1, + (52.45, -1.7333): 3, + (51.5, -0.1333): 6, + (51.55, -2.5667): 5, + (54.9667, -1.6167): -1, + (55.9667, -3.2167): -1, + (54.7667, -1.5833): 0, + (53.7667, -0.3): 1, + (53.7667, -3.0167): 0, + (51.4833, -3.1833): 4, + (53.2667, -3.5167): 2, + (52.0833, -2.8): 2, + (52.0167, -0.6): 2, + (52.6667, 1.2667): 5, + (50.4333, -4.9833): 9, + (50.35, -4.1167): 10, + (50.5167, -2.45): 9, + (50.8333, -1.1667): 9, + (56.45, -5.4333): 4, + (57.5333, -4.05): -2, + (54.5167, -3.6167): 3, + (53.0833, 0.2667): 4, + (51.35, 1.3333): 7, + (50.8833, 0.3167): 8, + (58.45, -3.1): 3, + (50.1, -5.6667): 9, + (58.2167, -6.3333): 4, + (55.6833, -6.25): 7, + } + + @pytest.fixture + def temperature_datapoints(self, migrated_db, db_session, temperature_data): + datas = [] + now = datetime.datetime.now() + for (coord, temp) in temperature_data.items(): + deployment_id = uuid.uuid4() + datas.append( + DataPoint( + sensor_name="Location", + deployment_id=deployment_id, + collected_at=now, + data=coord, + ) + ) + datas.append( + DataPoint( + sensor_name="Temperature", + deployment_id=deployment_id, + collected_at=now, + data=temp, + ) + ) + return datas + + @pytest.fixture + def populated_db(self, migrated_db, db_session, temperature_datapoints): + for data in temperature_datapoints: + insert = datapoint_table.insert().values(**data._asdict()) + db_session.execute(insert) + + @pytest.fixture + def cleaner(self): + return analysis.get_map_cleaner_for("Temperature") + + @pytest.fixture + def get_data(self, db_session): + db_session_var.set(db_session) + return analysis.get_all_data() + + @pytest.mark.asyncio + async def test_latest_coord_temp_cleaner( + self, temperature_data, populated_db, get_data, cleaner + ): + data = get_data() + deployments = 0 + async for deployment, data_points in data: + deployments += 1 + cleaned = {a async for a in cleaner(data_points)} + # There should only be one deployment + assert deployments == 1 + expected = set(temperature_data.items()) + assert cleaned == expected + + @pytest.mark.asyncio + async def test_newer_items_superceed_older( + self, db_session, temperature_datapoints, populated_db, get_data, cleaner + ): + # Pick any of the deployment ids and find the pair of DataPoints in that deployment id + deployment_1 = temperature_datapoints[0].deployment_id + existing = [ + datapoint + for datapoint in temperature_datapoints + if datapoint.deployment_id == deployment_1 + ] + old_location = [ + datapoint for datapoint in existing if datapoint.sensor_name == "Location" + ][0] + old_temperature = [ + datapoint + for datapoint in existing + if datapoint.sensor_name == "Temperature" + ][0] + + new_location = DataPoint( + sensor_name="Location", + deployment_id=deployment_1, + collected_at=datetime.datetime(2031, 4, 1, 12, 0, 0), + data=(-10.5, 150.1), + ) + new_temperature = DataPoint( + sensor_name="Temperature", + deployment_id=deployment_1, + collected_at=datetime.datetime(2031, 4, 1, 12, 0, 0), + data=21, + ) + for data in [new_location, new_temperature]: + insert = datapoint_table.insert().values(**data._asdict()) + db_session.execute(insert) + + data = get_data() + deployments = 0 + async for deployment, data_points in data: + deployments += 1 + cleaned = {a async for a in cleaner(data_points)} + # There should only be one deployment + assert deployments == 1 + + # We expect the newer one, not the older + assert (new_location.data, new_temperature.data) in cleaned + assert (old_location.data, old_temperature.data) not in cleaned + # The cleaner converts two data points to one plottable + assert len(cleaned) == len(temperature_datapoints) / 2 diff --git a/Ch10/apd.aggregation-chapter10/tests/test_cli.py b/Ch10/apd.aggregation-chapter10/tests/test_cli.py new file mode 100644 index 0000000..5cab441 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10/tests/test_cli.py @@ -0,0 +1,155 @@ +from unittest import mock +import uuid + +from click.testing import CliRunner +import pytest + +import apd.aggregation.cli +from apd.aggregation.database import Deployment, deployment_table + + +@pytest.mark.functional +def test_sensors_are_passed_to_get_data_points(db_uri): + runner = CliRunner() + with mock.patch("apd.aggregation.collect.get_data_points") as get_data_points: + runner.invoke( + apd.aggregation.cli.collect_sensor_data, + [ + "http://localhost", + "http://otherhost", + "--db", + db_uri, + "--api-key", + "key", + ], + ) + calls = get_data_points.call_args_list + assert len(calls) == 2 + details = {call[0] for call in get_data_points.call_args_list} + assert details == { + ("http://localhost", "key"), + ("http://otherhost", "key"), + } + + +@pytest.mark.functional +def test_add_deployment_to_db(db_uri, db_session, migrated_db): + runner = CliRunner() + deployment_id = uuid.UUID("76587cdd42dc489ea1d220e9b0bc62ca") + with mock.patch("apd.aggregation.collect.get_deployment_id") as get_deployment_id: + get_deployment_id.return_value = deployment_id + runner.invoke( + apd.aggregation.cli.deployments, + ["add", "http://otherhost", "Other", "--db", db_uri, "--api-key", "key"], + ) + deployments = db_session.query(deployment_table).all() + assert len(deployments) == 1 + deployment = Deployment.from_sql_result(deployments[0]) + assert deployment.uri == "http://otherhost" + assert deployment.api_key == "key" + assert deployment.id == deployment_id + + +@pytest.mark.functional +def test_use_stored_deployments(db_uri, migrated_db): + runner = CliRunner() + + deployment_id = uuid.UUID("76587cdd42dc489ea1d220e9b0bc62ca") + with mock.patch("apd.aggregation.collect.get_deployment_id") as get_deployment_id: + get_deployment_id.return_value = deployment_id + runner.invoke( + apd.aggregation.cli.deployments, + [ + "add", + "http://specifiedhost", + "Specified", + "--db", + db_uri, + "--api-key", + "an_api_key", + ], + ) + + with mock.patch("apd.aggregation.collect.get_data_points") as get_data_points: + runner.invoke( + apd.aggregation.cli.collect_sensor_data, ["--db", db_uri], + ) + calls = get_data_points.call_args_list + assert len(calls) == 1 + details = {call[0] for call in get_data_points.call_args_list} + assert details == { + ("http://specifiedhost", "an_api_key"), + } + + +@pytest.mark.functional +def test_list_deployments(db_uri, migrated_db): + runner = CliRunner() + + deployment_id = uuid.UUID("76587cdd42dc489ea1d220e9b0bc62ca") + with mock.patch("apd.aggregation.collect.get_deployment_id") as get_deployment_id: + get_deployment_id.return_value = deployment_id + runner.invoke( + apd.aggregation.cli.deployments, + [ + "add", + "http://specifiedhost", + "Specified", + "--db", + db_uri, + "--api-key", + "an_api_key", + ], + ) + + result = runner.invoke(apd.aggregation.cli.deployments, ["list", "--db", db_uri],) + expected = """Specified +ID 76587cdd42dc489ea1d220e9b0bc62ca +URI http://specifiedhost +API key an_api_key +Colour None + +""" + assert result.output == expected + + +@pytest.mark.functional +def test_edit_deployment(db_uri, migrated_db): + runner = CliRunner() + return + deployment_id = uuid.UUID("76587cdd42dc489ea1d220e9b0bc62ca") + with mock.patch("apd.aggregation.collect.get_deployment_id") as get_deployment_id: + get_deployment_id.return_value = deployment_id + runner.invoke( + apd.aggregation.cli.deployments, + [ + "add", + "http://specifiedhost", + "Specified", + "--db", + db_uri, + "--api-key", + "an_api_key", + ], + ) + + result = runner.invoke( + apd.aggregation.cli.deployments, + [ + "edit", + "--db", + db_uri, + deployment_id.hex(), + "--colour", + "red" "--name", + "New name", + ], + ) + expected = """New name +ID 76587cdd42dc489ea1d220e9b0bc62ca +URI http://specifiedhost +API key an_api_key +Colour red + +""" + assert result.output == expected diff --git a/Ch10/apd.aggregation-chapter10/tests/test_http_get.py b/Ch10/apd.aggregation-chapter10/tests/test_http_get.py new file mode 100644 index 0000000..df575c6 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10/tests/test_http_get.py @@ -0,0 +1,188 @@ +from concurrent.futures import ThreadPoolExecutor +import datetime +import typing as t +from unittest.mock import patch, MagicMock +import wsgiref.simple_server + +import aiohttp +from apd.sensors.base import Sensor +from apd.sensors.sensors import PythonVersion, ACStatus +from apd.sensors.wsgi import set_up_config +import flask +import pytest + +from apd.sensors.wsgi import v21 + +from apd.aggregation import collect +from apd.aggregation.database import Deployment + +pytestmark = [pytest.mark.functional] + + +@pytest.fixture +def sensors() -> t.Iterator[t.List[Sensor[t.Any]]]: + """ Patch the get_sensors method to return a known pair of sensors only """ + data: t.List[Sensor[t.Any]] = [PythonVersion(), ACStatus()] + with patch("apd.sensors.cli.get_sensors") as get_sensors: + get_sensors.return_value = data + yield data + + +def get_independent_flask_app(name: str) -> flask.Flask: + """ Create a new flask app with the v20 API blueprint loaded, so multiple copies + of the app can be run in parallel without conflicting configuration """ + app = flask.Flask(name) + app.register_blueprint(v21.version, url_prefix="/v/2.1") + return app + + +def run_server_in_thread( + name: str, config: t.Dict[str, t.Any], port: int +) -> t.Iterator[str]: + # Create a new flask app and load in required code, to prevent config conflicts + app = get_independent_flask_app(name) + flask_app = set_up_config(config, app) + server = wsgiref.simple_server.make_server("localhost", port, flask_app) + + with ThreadPoolExecutor() as pool: + pool.submit(server.serve_forever) + yield f"http://localhost:{port}/" + server.shutdown() + + +@pytest.fixture(scope="module") +def http_server(): + yield from run_server_in_thread( + "standard", + { + "APD_SENSORS_API_KEY": "testing", + "APD_SENSORS_DEPLOYMENT_ID": "a46b1d1207fd4cdcad39bbdf706dfe29", + }, + 12081, + ) + + +@pytest.fixture(scope="module") +def bad_api_key_http_server(): + yield from run_server_in_thread( + "alternate", + { + "APD_SENSORS_API_KEY": "penny", + "APD_SENSORS_DEPLOYMENT_ID": "38cf2bae9adb445fad946c82e290487a", + }, + 12082, + ) + + +class TestGetDataPoints: + @pytest.fixture + def mut(self): + return collect.get_data_points + + @pytest.mark.asyncio + async def test_get_data_points( + self, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + # Get the data from the server, storing the time before and after + # as bounds for the collected_at value + async with aiohttp.ClientSession() as http: + collect.http_session_var.set(http) + time_before = datetime.datetime.now() + results = await mut(http_server, "testing") + time_after = datetime.datetime.now() + + assert len(results) == len(sensors) == 2 + + for (sensor, result) in zip(sensors, results): + assert sensor.from_json_compatible(result.data) == sensor.value() + assert result.sensor_name == sensor.name + assert time_before <= result.collected_at <= time_after + + @pytest.mark.asyncio + async def test_get_data_points_fails_with_bad_api_key( + self, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + with pytest.raises( + ValueError, + match=f"Error loading data from {http_server}: Supply API key in X-API-Key header", + ): + async with aiohttp.ClientSession() as http: + collect.http_session_var.set(http) + await mut(http_server, "incorrect") + + +class TestAddDataFromSensors: + @pytest.fixture + def mut(self): + return collect.add_data_from_sensors + + @pytest.fixture + def mock_db_session(self): + return MagicMock() + + @pytest.mark.asyncio + async def test_get_get_data_from_sensors( + self, mock_db_session, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + results = await mut( + mock_db_session, + [ + Deployment( + id=None, colour=None, name=None, uri=http_server, api_key="testing" + ) + ], + ) + assert mock_db_session.execute.call_count == len(sensors) + assert len(results) == len(sensors) + + @pytest.mark.asyncio + async def test_get_get_data_from_sensors_with_multiple_servers( + self, mock_db_session, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + results = await mut( + mock_db_session, + [ + Deployment( + id=None, colour=None, name=None, uri=http_server, api_key="testing" + ), + Deployment( + id=None, colour=None, name=None, uri=http_server, api_key="testing" + ), + ], + ) + assert mock_db_session.execute.call_count == len(sensors) * 2 + assert len(results) == len(sensors) * 2 + + @pytest.mark.asyncio + async def test_data_points_not_added_if_only_partial_success( + self, + mock_db_session, + sensors: t.List[Sensor[t.Any]], + mut, + http_server: str, + bad_api_key_http_server: str, + ) -> None: + with pytest.raises( + ValueError, + match=f"Error loading data from {bad_api_key_http_server}: Supply API key in X-API-Key header", + ): + await mut( + mock_db_session, + [ + Deployment( + id=None, + colour=None, + name=None, + uri=http_server, + api_key="testing", + ), + Deployment( + id=None, + colour=None, + name=None, + uri=bad_api_key_http_server, + api_key="testing", + ), + ], + ) + assert mock_db_session.execute.call_count == 0 diff --git a/Ch10/apd.aggregation-chapter10/tests/test_query.py b/Ch10/apd.aggregation-chapter10/tests/test_query.py new file mode 100644 index 0000000..9b6e0aa --- /dev/null +++ b/Ch10/apd.aggregation-chapter10/tests/test_query.py @@ -0,0 +1,111 @@ +import datetime +from uuid import UUID + +import pytest + +from apd.aggregation.query import ( + get_data, + get_deployment_ids, + get_data_by_deployment, + db_session_var, +) + + +class TestGetData: + @pytest.fixture + def mut(self): + return get_data + + @pytest.mark.asyncio + @pytest.mark.parametrize( + "filter,num_items_expected", + [ + ({}, 9), + ({"sensor_name": "Test"}, 7), + ({"deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd")}, 5), + ({"collected_after": datetime.datetime(2020, 4, 1, 12, 2, 1)}, 3), + ({"collected_before": datetime.datetime(2020, 4, 1, 12, 2, 1)}, 4), + ( + { + "collected_after": datetime.datetime(2020, 4, 1, 12, 2, 1), + "collected_before": datetime.datetime(2020, 4, 1, 12, 3, 5), + }, + 2, + ), + ], + ) + async def test_iterate_over_items( + self, mut, db_session, populated_db, filter, num_items_expected + ): + db_session_var.set(db_session) + points = [dp async for dp in mut(**filter)] + assert len(points) == num_items_expected + + @pytest.mark.asyncio + async def test_empty_db(self, mut, db_session, migrated_db): + db_session_var.set(db_session) + points = [dp async for dp in mut()] + assert len(points) == 0 + + +class TestGetDeployments: + @pytest.fixture + def mut(self): + return get_deployment_ids + + @pytest.mark.asyncio + async def test_get_all_deployments(self, mut, db_session, populated_db): + db_session_var.set(db_session) + deployment_ids = await mut() + assert set(deployment_ids) == { + UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + } + + @pytest.mark.asyncio + async def test_empty_db(self, mut, db_session, migrated_db): + db_session_var.set(db_session) + deployment_ids = await mut() + assert deployment_ids == [] + + +@pytest.mark.usefixtures("populated_db") +class TestGetDataByDeployment: + @pytest.fixture + def mut(self): + return get_data_by_deployment + + @pytest.mark.asyncio + @pytest.mark.parametrize( + "filter,num_items_expected", [({}, 9), ({"sensor_name": "Test"}, 7)] + ) + async def test_iterate_over_all_items( + self, mut, db_session, filter, num_items_expected + ): + db_session_var.set(db_session) + num_items = 0 + num_deployments = 0 + async for deployment_id, items in mut(**filter): + num_deployments += 1 + async for item in items: + num_items += 1 + assert num_deployments == 2 + assert num_items == num_items_expected + + @pytest.mark.asyncio + @pytest.mark.parametrize( + "filter,num_items_expected", [({}, 5), ({"sensor_name": "Test"}, 4)] + ) + async def test_skip_first_deployment( + self, mut, db_session, filter, num_items_expected + ): + db_session_var.set(db_session) + num_items = 0 + num_deployments = 0 + async for deployment_id, items in mut(**filter): + num_deployments += 1 + if num_deployments == 2: + async for item in items: + num_items += 1 + assert num_deployments == 2 + assert num_items == num_items_expected diff --git a/Ch10/apd.aggregation-chapter10/tests/test_sensor_aggregation.py b/Ch10/apd.aggregation-chapter10/tests/test_sensor_aggregation.py new file mode 100644 index 0000000..311dd19 --- /dev/null +++ b/Ch10/apd.aggregation-chapter10/tests/test_sensor_aggregation.py @@ -0,0 +1,199 @@ +from __future__ import annotations + +import contextlib +from dataclasses import dataclass +import json +import typing as t +from unittest.mock import patch, Mock + +import pytest +import sqlalchemy + +import apd.aggregation.collect +from apd.aggregation.database import Deployment + + +@pytest.fixture +def data() -> t.Any: + return { + "sensors": [ + { + "human_readable": "3.7", + "id": "PythonVersion", + "title": "Python Version", + "value": [3, 7, 2, "final", 0], + }, + { + "human_readable": "Not connected", + "id": "ACStatus", + "title": "AC Connected", + "value": False, + }, + ] + } + + +@dataclass +class FakeAIOHttpClient: + responses: t.Dict[str, str] + + @contextlib.asynccontextmanager + async def get( + self, url: str, headers: t.Optional[t.Dict[str, str]] = None + ) -> t.AsyncIterator[FakeAIOHttpResponse]: + if url in self.responses: + yield FakeAIOHttpResponse(body=self.responses[url]) + else: + yield FakeAIOHttpResponse(body="", status=404) + + +@dataclass +class FakeAIOHttpResponse: + body: str + status: int = 200 + + async def json(self) -> t.Any: + return json.loads(self.body) + + +@pytest.fixture +def mockclient(data) -> FakeAIOHttpClient: + return FakeAIOHttpClient( + { + "http://localhost/v/2.1/sensors/": json.dumps(data), + "http://localhost/v/2.1/deployment_id": json.dumps( + {"deployment_id": "b29ba0ee10f14552b6b21327bb96d3fb"} + ), + } + ) + + +class TestGetDataPoints: + @pytest.fixture + def mut(self): + return apd.aggregation.collect.get_data_points + + @pytest.mark.asyncio + async def test_get_data_points( + self, mut, mockclient: FakeAIOHttpClient, data + ) -> None: + token = apd.aggregation.collect.http_session_var.set(mockclient) + try: + datapoints = await mut("http://localhost", "") + finally: + apd.aggregation.collect.http_session_var.reset(token) + + assert len(datapoints) == len(data["sensors"]) + for sensor in data["sensors"]: + assert sensor["value"] in (datapoint.data for datapoint in datapoints) + assert sensor["id"] in (datapoint.sensor_name for datapoint in datapoints) + + +class TestAddDataFromSensors: + @pytest.fixture + def mut(self): + return apd.aggregation.collect.add_data_from_sensors + + @pytest.fixture(autouse=True) + def patch_aiohttp(self, mockclient): + with patch("aiohttp.ClientSession") as ClientSession: + ClientSession.return_value.__aenter__.return_value = mockclient + yield ClientSession + + @pytest.fixture + def db_session(self): + session = Mock() + sql_result = session.execute.return_value + sql_result.inserted_primary_key = [1] + return session + + @pytest.mark.asyncio + async def test_datapoints_are_added_to_the_session(self, mut, db_session) -> None: + assert db_session.execute.call_count == 0 + datapoints = await mut( + db_session, + [ + Deployment( + id=None, colour=None, name=None, uri="http://localhost", api_key="" + ) + ], + ) + assert db_session.execute.call_count == len(datapoints) + + +@pytest.mark.usefixtures("migrated_db") +class TestDatabaseConnection: + @pytest.fixture(autouse=True) + def patch_aiohttp(self, mockclient): + with patch("aiohttp.ClientSession") as ClientSession: + ClientSession.return_value.__aenter__.return_value = mockclient + yield ClientSession + + @pytest.fixture + def table(self): + return apd.aggregation.database.datapoint_table + + @pytest.fixture + def daily_summary_view(self): + return apd.aggregation.database.daily_summary_view + + @pytest.fixture + def model(self): + return apd.aggregation.database.DataPoint + + @pytest.fixture + def mut(self): + return apd.aggregation.collect.add_data_from_sensors + + @pytest.mark.asyncio + async def test_datapoints_are_added_to_the_session(self, db_session, table) -> None: + datapoints = await apd.aggregation.collect.add_data_from_sensors( + db_session, + [ + Deployment( + id=None, colour=None, name=None, uri="http://localhost", api_key="" + ) + ], + ) + num_points = db_session.query(table).count() + assert num_points == len(datapoints) == 2 + + @pytest.mark.asyncio + async def test_datapoints_can_be_mapped_back_to_DataPoints( + self, mut, db_session, table, model + ) -> None: + datapoints = await mut( + db_session, + [ + Deployment( + id=None, colour=None, name=None, uri="http://localhost", api_key="" + ) + ], + ) + db_points = [ + model.from_sql_result(result) for result in db_session.query(table) + ] + assert db_points == datapoints + + @pytest.mark.asyncio + async def test_daily_summary_view_matches_query( + self, db_session, model, table, daily_summary_view + ) -> None: + await apd.aggregation.collect.add_data_from_sensors( + db_session, + [ + Deployment( + id=None, colour=None, name=None, uri="http://localhost", api_key="" + ) + ], + ) + + headers = table.c.sensor_name, table.c.data + value_counts = ( + db_session.query(*headers, sqlalchemy.func.count(table.c.id)) + .filter(model.collected_on_date == sqlalchemy.func.current_date()) + .group_by(*headers) + ) + + daily_summary_view = db_session.query(daily_summary_view) + assert value_counts.all() == daily_summary_view.all() diff --git a/Ch10/apd.sensors-chapter10/.pre-commit-config.yaml b/Ch10/apd.sensors-chapter10/.pre-commit-config.yaml new file mode 100644 index 0000000..d3b6ec7 --- /dev/null +++ b/Ch10/apd.sensors-chapter10/.pre-commit-config.yaml @@ -0,0 +1,26 @@ +repos: + +- repo: local + hooks: + - id: black + name: black + entry: pipenv run black + args: [--quiet] + language: system + types: [python] + + - id: mypy + name: mypy + exclude: (?x)^( + (.*)/setup.py + )$ + entry: pipenv run mypy + args: ["--follow-imports=skip"] + language: system + types: [python] + + - id: flake8 + name: flake8 + entry: pipenv run flake8 + language: system + types: [python] diff --git a/Ch10/apd.sensors-chapter10/CHANGES.md b/Ch10/apd.sensors-chapter10/CHANGES.md new file mode 100644 index 0000000..3334453 --- /dev/null +++ b/Ch10/apd.sensors-chapter10/CHANGES.md @@ -0,0 +1,39 @@ +## Changes + +### 2.1.1 (2020-01-06) + +* Cache DHT sensor connections (Matthew Wilkes) +* Force use of bitbang interface for DHT sensors, to improve reliability on Linux (Matthew Wilkes) + +### 2.1.0 (2019-12-09) + +* Add optional APD_SENSORS_DEPLOYMENT_ID parameter and v2.1 API which allows + users to find a unique identifier for a webapp sensor deployment (Matthew Wilkes) + +### 2.0.0 (2019-09-08) + +* Add `to_json_compatible` and `from_json_compatible` methods to Sensor + to facilitate better HTTP API (Matthew Wilkes) + +* HTTP API is now versioned. The API from 1.3.0 is available at /v/1.0 + and an updated version is at /v/2.0 (Matthew Wilkes) + +### 1.3.0 (2019-08-20) + +* WSGI HTTP API support added (Matthew Wilkes) + +### 1.2.0 (2019-08-05) + +* Add external plugin support through `apd.sensors.sensors` entrypoint (Matthew Wilkes) + +### 1.1.0 (2019-07-12) + +* Add --develop argument (Matthew Wilkes) + +### 1.0.1 (2019-06-20) + +* Fix broken 1.0.0 release (Matthew Wilkes) + +### 1.0.0 (2019-06-20) + +* Added initial sensors (Matthew Wilkes) diff --git a/Ch10/apd.sensors-chapter10/LICENCE b/Ch10/apd.sensors-chapter10/LICENCE new file mode 100644 index 0000000..053f694 --- /dev/null +++ b/Ch10/apd.sensors-chapter10/LICENCE @@ -0,0 +1,19 @@ +Copyright (c) 2019 Matthew Wilkes + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. diff --git a/Ch10/apd.sensors-chapter10/Pipfile b/Ch10/apd.sensors-chapter10/Pipfile new file mode 100644 index 0000000..f6cd446 --- /dev/null +++ b/Ch10/apd.sensors-chapter10/Pipfile @@ -0,0 +1,34 @@ +[[source]] +name = "pypi" +url = "https://pypi.org/simple" +verify_ssl = true + +[[source]] +name = "piwheels" +url = "https://piwheels.org/simple" +verify_ssl = true + +[dev-packages] +ipykernel = "*" +remote-ikernel = "*" +pytest = "*" +pytest-cov = "*" +mypy = "*" +flake8 = "*" +black = "*" +pre-commit = "*" +wheel = "*" +twine = "*" +webtest = "*" +apd-sensors = {editable = true,extras = ["webapp"],path = "."} + +[packages] +apd-sensors = {editable = true,path = "."} +apd-sunnyboy-solar = {editable = true,path = "./plugins/apd.sunnyboy_solar"} +waitress = "*" +pint = "*" + +[requires] + +[pipenv] +allow_prereleases = true diff --git a/Ch10/apd.sensors-chapter10/Pipfile.lock b/Ch10/apd.sensors-chapter10/Pipfile.lock new file mode 100644 index 0000000..3b587bb --- /dev/null +++ b/Ch10/apd.sensors-chapter10/Pipfile.lock @@ -0,0 +1,1018 @@ +{ + "_meta": { + "hash": { + "sha256": "b5f132c374a0a891097a70c6f3be719ec794dec7b855ed5f0ed9adad4d72b0e7" + }, + "pipfile-spec": 6, + "requires": {}, + "sources": [ + { + "name": "pypi", + "url": "https://pypi.org/simple", + "verify_ssl": true + }, + { + "name": "piwheels", + "url": "https://piwheels.org/simple", + "verify_ssl": true + } + ] + }, + "default": { + "apd-sensors": { + "editable": true, + "path": "." + }, + "apd-sunnyboy-solar": { + "editable": true, + "path": "./plugins/apd.sunnyboy_solar" + }, + "click": { + "hashes": [ + "sha256:8a18b4ea89d8820c5d0c7da8a64b2c324b4dabb695804dbfea19b9be9d88c0cc", + "sha256:e345d143d80bf5ee7534056164e5e112ea5e22716bbb1ce727941f4c8b471b9a" + ], + "version": "==7.1.1" + }, + "pint": { + "hashes": [ + "sha256:308f1070500e102f83b6adfca6db53debfce2ffc5d3cbe3f6c367da359b5cf4d", + "sha256:5690c85948dfb283382aa73357c3d5a333e8c7d818be7d8643db18e07597dd99", + "sha256:833ec1b2561a29dd5ab316825924ec2ce64dc7d69ab09505cd1bea7709c8f0f8" + ], + "index": "pypi", + "version": "==0.11" + }, + "psutil": { + "hashes": [ + "sha256:002bd856770037221256765a472f50d677074ad207276a39e2bccdb7394e333b", + "sha256:1413f4158eb50e110777c4f15d7c759521703bd6beb58926f1d562da40180058", + "sha256:298af2f14b635c3c7118fd9183843f4e73e681bb6f01e12284d4d70d48a60953", + "sha256:60b86f327c198561f101a92be1995f9ae0399736b6eced8f24af41ec64fb88d4", + "sha256:685ec16ca14d079455892f25bd124df26ff9137664af445563c1bd36629b5e0e", + "sha256:73f35ab66c6c7a9ce82ba44b1e9b1050be2a80cd4dcc3352cc108656b115c74f", + "sha256:75e22717d4dbc7ca529ec5063000b2b294fc9a367f9c9ede1f65846c7955fd38", + "sha256:833b2b19c04fc0aecad22daa3e35108d6ee2e4f92061a4a8f2dd77c6fa9154f5", + "sha256:a02f4ac50d4a23253b68233b07e7cdb567bd025b982d5cf0ee78296990c22d9e", + "sha256:d008ddc00c6906ec80040d26dc2d3e3962109e40ad07fd8a12d0284ce5e0e4f8", + "sha256:d84029b190c8a66a946e28b4d3934d2ca1528ec94764b180f7d6ea57b0e75e26", + "sha256:e2d0c5b07c6fe5a87fa27b7855017edb0d52ee73b71e6ee368fae268605cc3f5", + "sha256:f344ca230dd8e8d5eee16827596f1c22ec0876127c28e800d7ae20ed44c4b310", + "sha256:f3e7f183162622eae9fbdee44ff19b226edec68b94ae7cba47f9afcf4c3ec66c" + ], + "version": "==5.7.0" + }, + "waitress": { + "hashes": [ + "sha256:045b3efc3d97c93362173ab1dfc159b52cfa22b46c3334ffc805dbdbf0e4309e", + "sha256:77ff3f3226931a1d7d8624c5371de07c8e90c7e5d80c5cc660d72659aaf23f38" + ], + "index": "pypi", + "version": "==1.4.3" + } + }, + "develop": { + "apd-sensors": { + "editable": true, + "path": "." + }, + "appdirs": { + "hashes": [ + "sha256:9e5896d1372858f8dd3344faf4e5014d21849c756c8d5701f78f8a103b372d92", + "sha256:d8b24664561d0d34ddfaec54636d502d7cea6e29c3eaf68f3df6180863e2166e" + ], + "version": "==1.4.3" + }, + "async-generator": { + "hashes": [ + "sha256:01c7bf666359b4967d2cda0000cc2e4af16a0ae098cbffcb8472fb9e8ad6585b", + "sha256:6ebb3d106c12920aaae42ccb6f787ef5eefdcdd166ea3d628fa8476abe712144" + ], + "version": "==1.10" + }, + "atomicwrites": { + "hashes": [ + "sha256:03472c30eb2c5d1ba9227e4c2ca66ab8287fbfbbda3888aa93dc2e28fc6811b4", + "sha256:75a9445bac02d8d058d5e1fe689654ba5a6556a1dfd8ce6ec55a0ed79866cfa6" + ], + "markers": "sys_platform == 'win32'", + "version": "==1.3.0" + }, + "attrs": { + "hashes": [ + "sha256:08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c", + "sha256:f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72" + ], + "version": "==19.3.0" + }, + "backcall": { + "hashes": [ + "sha256:1fac21e6861f538700a5d498620153f38407a4bacf9e1d5047b3d717f10bc4ab", + "sha256:38ecd85be2c1e78f77fd91700c76e14667dc21e2713b63876c0eb901196e01e4", + "sha256:bbbf4b1e5cd2bdb08f915895b51081c041bac22394fdfcfdfbe9f14b77c08bf2" + ], + "version": "==0.1.0" + }, + "beautifulsoup4": { + "hashes": [ + "sha256:594ca51a10d2b3443cbac41214e12dbb2a1cd57e1a7344659849e2e20ba6a8d8", + "sha256:a4bbe77fd30670455c5296242967a123ec28c37e9702a8a81bd2f20a4baf0368", + "sha256:d4e96ac9b0c3a6d3f0caae2e4124e6055c5dcafde8e2f831ff194c104f0775a0" + ], + "version": "==4.9.0" + }, + "black": { + "hashes": [ + "sha256:1b30e59be925fafc1ee4565e5e08abef6b03fe455102883820fe5ee2e4734e0b", + "sha256:c2edb73a08e9e0e6f65a0e6af18b059b8b1cdd5bef997d7a0b181df93dc81539" + ], + "index": "pypi", + "version": "==19.10b0" + }, + "bleach": { + "hashes": [ + "sha256:cc8da25076a1fe56c3ac63671e2194458e0c4d9c7becfd52ca251650d517903c", + "sha256:e78e426105ac07026ba098f04de8abe9b6e3e98b5befbf89b51a5ef0a4292b03" + ], + "version": "==3.1.4" + }, + "certifi": { + "hashes": [ + "sha256:1d987a998c75633c40847cc966fcf5904906c920a7f17ef374f5aa4282abd304", + "sha256:51fcb31174be6e6664c5f69e3e1691a2d72a1a12e90f872cbdb1567eb47b6519" + ], + "version": "==2020.4.5.1" + }, + "cfgv": { + "hashes": [ + "sha256:1ccf53320421aeeb915275a196e23b3b8ae87dea8ac6698b1638001d4a486d53", + "sha256:c8e8f552ffcc6194f4e18dd4f68d9aef0c0d58ae7e7be8c82bee3c5e9edfa513" + ], + "version": "==3.1.0" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:8a18b4ea89d8820c5d0c7da8a64b2c324b4dabb695804dbfea19b9be9d88c0cc", + "sha256:e345d143d80bf5ee7534056164e5e112ea5e22716bbb1ce727941f4c8b471b9a" + ], + "version": "==7.1.1" + }, + "colorama": { + "hashes": [ + "sha256:7d73d2a99753107a36ac6b455ee49046802e59d9d076ef8e47b61499fa29afff", + "sha256:e96da0d330793e2cb9485e9ddfd918d456036c7149416295932478192f4436a1" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.3" + }, + "coverage": { + "hashes": [ + "sha256:03f630aba2b9b0d69871c2e8d23a69b7fe94a1e2f5f10df5049c0df99db639a0", + "sha256:046a1a742e66d065d16fb564a26c2a15867f17695e7f3d358d7b1ad8a61bca30", + "sha256:0a907199566269e1cfa304325cc3b45c72ae341fbb3253ddde19fa820ded7a8b", + "sha256:165a48268bfb5a77e2d9dbb80de7ea917332a79c7adb747bd005b3a07ff8caf0", + "sha256:1b60a95fc995649464e0cd48cecc8288bac5f4198f21d04b8229dc4097d76823", + "sha256:1f66cf263ec77af5b8fe14ef14c5e46e2eb4a795ac495ad7c03adc72ae43fafe", + "sha256:2e08c32cbede4a29e2a701822291ae2bc9b5220a971bba9d1e7615312efd3037", + "sha256:327ff84602ee3b5c0c921ff8bbe605e2dd3599fc2a12620b0085f847af4ebb2a", + "sha256:3844c3dab800ca8536f75ae89f3cf566848a3eb2af4d9f7b1103b4f4f7a5dad6", + "sha256:408ce64078398b2ee2ec08199ea3fcf382828d2f8a19c5a5ba2946fe5ddc6c31", + "sha256:443be7602c790960b9514567917af538cac7807a7c0c0727c4d2bbd4014920fd", + "sha256:4482f69e0701139d0f2c44f3c395d1d1d37abd81bfafbf9b6efbe2542679d892", + "sha256:4a8a259bf990044351baf69d3b23e575699dd60b18460c71e81dc565f5819ac1", + "sha256:513e6526e0082c59a984448f4104c9bf346c2da9961779ede1fc458e8e8a1f78", + "sha256:5f587dfd83cb669933186661a351ad6fc7166273bc3e3a1531ec5c783d997aac", + "sha256:62061e87071497951155cbccee487980524d7abea647a1b2a6eb6b9647df9006", + "sha256:641e329e7f2c01531c45c687efcec8aeca2a78a4ff26d49184dce3d53fc35014", + "sha256:65a7e00c00472cd0f59ae09d2fb8a8aaae7f4a0cf54b2b74f3138d9f9ceb9cb2", + "sha256:6ad6ca45e9e92c05295f638e78cd42bfaaf8ee07878c9ed73e93190b26c125f7", + "sha256:73aa6e86034dad9f00f4bbf5a666a889d17d79db73bc5af04abd6c20a014d9c8", + "sha256:7c9762f80a25d8d0e4ab3cb1af5d9dffbddb3ee5d21c43e3474c84bf5ff941f7", + "sha256:85596aa5d9aac1bf39fe39d9fa1051b0f00823982a1de5766e35d495b4a36ca9", + "sha256:86a0ea78fd851b313b2e712266f663e13b6bc78c2fb260b079e8b67d970474b1", + "sha256:8a620767b8209f3446197c0e29ba895d75a1e272a36af0786ec70fe7834e4307", + "sha256:922fb9ef2c67c3ab20e22948dcfd783397e4c043a5c5fa5ff5e9df5529074b0a", + "sha256:9fad78c13e71546a76c2f8789623eec8e499f8d2d799f4b4547162ce0a4df435", + "sha256:a37c6233b28e5bc340054cf6170e7090a4e85069513320275a4dc929144dccf0", + "sha256:c3fc325ce4cbf902d05a80daa47b645d07e796a80682c1c5800d6ac5045193e5", + "sha256:cda33311cb9fb9323958a69499a667bd728a39a7aa4718d7622597a44c4f1441", + "sha256:db1d4e38c9b15be1521722e946ee24f6db95b189d1447fa9ff18dd16ba89f732", + "sha256:eda55e6e9ea258f5e4add23bcf33dc53b2c319e70806e180aecbff8d90ea24de", + "sha256:f0db0dc803e0f81f2a4098d4f25904f41be13b6d3e69f098b5b2bbba17cb7985", + "sha256:f372cdbb240e09ee855735b9d85e7f50730dcfb6296b74b95a3e5dea0615c4c1" + ], + "version": "==5.0.4" + }, + "decorator": { + "hashes": [ + "sha256:41fa54c2a0cc4ba648be4fd43cff00aedf5b9465c9bf18d64325bc225f08f760", + "sha256:e3a62f0520172440ca0dcc823749319382e377f37f140a0b99ef45fecb84bfe7" + ], + "version": "==4.4.2" + }, + "defusedxml": { + "hashes": [ + "sha256:6687150770438374ab581bb7a1b327a847dd9c5749e396102de3fad4e8a3ef93", + "sha256:f684034d135af4c6cbb949b8a4d2ed61634515257a67299e5f940fbaa34377f5" + ], + "version": "==0.6.0" + }, + "distlib": { + "hashes": [ + "sha256:2e166e231a26b36d6dfe35a48c4464346620f8645ed0ace01ee31822b288de21", + "sha256:8a041060c5a140131768a2e2450813f5577f7e4c68a4585824c5585502dcfbea" + ], + "version": "==0.3.0" + }, + "docutils": { + "hashes": [ + "sha256:0c5b78adfbf7762415433f5515cd5c9e762339e23369dbe8000d84a4bf4ab3af", + "sha256:c2de3a60e9e7d07be26b7f2b00ca0309c207e06c100f9cc2a94931fc75a478fc" + ], + "version": "==0.16" + }, + "entrypoints": { + "hashes": [ + "sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19", + "sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451" + ], + "version": "==0.3" + }, + "filelock": { + "hashes": [ + "sha256:18d82244ee114f543149c66a6e0c14e9c4f8a1044b5cdaadd0f82159d6a6ff59", + "sha256:929b7d63ec5b7d6b71b0fa5ac14e030b3f70b75747cef1b10da9b879fef15836" + ], + "version": "==3.0.12" + }, + "flake8": { + "hashes": [ + "sha256:45681a117ecc81e870cbf1262835ae4af5e7a8b08e40b944a8a6e6b895914cfb", + "sha256:49356e766643ad15072a789a20915d3c91dc89fd313ccd71802303fd67e4deca" + ], + "index": "pypi", + "version": "==3.7.9" + }, + "flask": { + "hashes": [ + "sha256:4efa1ae2d7c9865af48986de8aeb8504bf32c7f3d6fdc9353d34b21f4b127060", + "sha256:8a4fdd8936eba2512e9c85df320a37e694c93945b33ef33c89946a340a238557" + ], + "version": "==1.1.2" + }, + "identify": { + "hashes": [ + "sha256:2bb8760d97d8df4408f4e805883dad26a2d076f04be92a10a3e43f09c6060742", + "sha256:faffea0fd8ec86bb146ac538ac350ed0c73908326426d387eded0bcc9d077522" + ], + "version": "==1.4.14" + }, + "idna": { + "hashes": [ + "sha256:7588d1c14ae4c77d74036e8c22ff447b26d0fde8f007354fd48a7814db15b7cb", + "sha256:a068a21ceac8a4d63dbfd964670474107f541babbd2250d61922f029858365fa" + ], + "version": "==2.9" + }, + "ipykernel": { + "hashes": [ + "sha256:08997a27ccafbb998437d167ccc893666c6088ec3aa90c054bfb3d588bb3fc20", + "sha256:37c65d2e2da3326e5cf114405df6d47d997b8a3eba99e2cc4b75833bf71a5e18", + "sha256:39746b5f7d847a23fae4eac893e63e3d9cc5f8c3a4797fcd3bfa8d1a296ec6ed" + ], + "index": "pypi", + "version": "==5.2.0" + }, + "ipython": { + "hashes": [ + "sha256:1807adeae64502fcaa491cd93405644faa055b646efb40c1e48648ad66f65a75", + "sha256:ca478e52ae1f88da0102360e57e528b92f3ae4316aabac80a2cd7f7ab2efb48a", + "sha256:eb8d075de37f678424527b5ef6ea23f7b80240ca031c2dd6de5879d687a65333" + ], + "version": "==7.13.0" + }, + "ipython-genutils": { + "hashes": [ + "sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8", + "sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8" + ], + "version": "==0.2.0" + }, + "itsdangerous": { + "hashes": [ + "sha256:321b033d07f2a4136d3ec762eac9f16a10ccd60f53c0c91af90217ace7ba1f19", + "sha256:b12271b2047cb23eeb98c8b5622e2e5c5e9abd9784a153e9d8ef9cb4dd09d749" + ], + "version": "==1.1.0" + }, + "jedi": { + "hashes": [ + "sha256:b4f4052551025c6b0b0b193b29a6ff7bdb74c52450631206c262aef9f7159ad2", + "sha256:d5c871cb9360b414f981e7072c52c33258d598305280fef91c6cae34739d65d5" + ], + "version": "==0.16.0" + }, + "jinja2": { + "hashes": [ + "sha256:39cbce1ffc25cbf4860b09195654763be95b9e4900475b24d5c345d3e0948c53", + "sha256:c10142f819c2d22bdcd17548c46fa9b77cf4fda45097854c689666bf425e7484", + "sha256:c922560ac46888d47384de1dbdc3daaa2ea993af4b26a436dec31fa2c19ec668" + ], + "version": "==3.0.0a1" + }, + "jsonschema": { + "hashes": [ + "sha256:4e5b3cf8216f577bee9ce139cbe72eca3ea4f292ec60928ff24758ce626cd163", + "sha256:c8a85b28d377cc7737e46e2d9f2b4f44ee3c0e1deac6bf46ddefc7187d30797a" + ], + "version": "==3.2.0" + }, + "jupyter-client": { + "hashes": [ + "sha256:5724827aedb1948ed6ed15131372bc304a8d3ad9ac67ac19da7c95120d6b17e0", + "sha256:81c1c712de383bf6bf3dab6b407392b0d84d814c7bd0ce2c7035ead8b2ffea97" + ], + "version": "==6.1.2" + }, + "jupyter-core": { + "hashes": [ + "sha256:394fd5dd787e7c8861741880bdf8a00ce39f95de5d18e579c74b882522219e7e", + "sha256:a4ee613c060fe5697d913416fc9d553599c05e4492d58fac1192c9a6844abb21" + ], + "version": "==4.6.3" + }, + "jupyterlab-pygments": { + "hashes": [ + "sha256:31deda75bd11b014190764c79f6199aa04ef2d4cf35c1c94270fc2e19c23a5c5", + "sha256:cc15f2a9850899d108a3c22743a86edcd3b42791a6c88b6e5b558d021d14d065" + ], + "version": "==0.1.0" + }, + "keyring": { + "hashes": [ + "sha256:197fd5903901030ef7b82fe247f43cfed2c157a28e7747d1cfcf4bc5e699dd03", + "sha256:8179b1cdcdcbc221456b5b74e6b7cfa06f8dd9f239eb81892166d9223d82c5ba", + "sha256:dcb7f54f06c868526b97f9825b558e5199661f9647849acf9204c2d6028501dc" + ], + "version": "==21.2.0" + }, + "markupsafe": { + "hashes": [ + "sha256:00bc623926325b26bb9605ae9eae8a215691f33cae5df11ca5424f06f2d1f473", + "sha256:09027a7803a62ca78792ad89403b1b7a73a01c8cb65909cd876f7fcebd79b161", + "sha256:09c4b7f37d6c648cb13f9230d847adf22f8171b1ccc4d5682398e77f40309235", + "sha256:1027c282dad077d0bae18be6794e6b6b8c91d58ed8a8d89a89d59693b9131db5", + "sha256:13d3144e1e340870b25e7b10b98d779608c02016d5184cfb9927a9f10c689f42", + "sha256:19536834abffb3fa155017053c607cb835b2ecc6a3a2554a88043d991dffb736", + "sha256:24982cc2533820871eba85ba648cd53d8623687ff11cbb805be4ff7b4c971aff", + "sha256:29872e92839765e546828bb7754a68c418d927cd064fd4708fab9fe9c8bb116b", + "sha256:3d61f15e39611aacd91b7e71d903787da86d9e80896e683c0103fced9add7834", + "sha256:43a55c2930bbc139570ac2452adf3d70cdbb3cfe5912c71cdce1c2c6bbd9c5d1", + "sha256:46c99d2de99945ec5cb54f23c8cd5689f6d7177305ebff350a58ce5f8de1669e", + "sha256:500d4957e52ddc3351cabf489e79c91c17f6e0899158447047588650b5e69183", + "sha256:535f6fc4d397c1563d08b88e485c3496cf5784e927af890fb3c3aac7f933ec66", + "sha256:596510de112c685489095da617b5bcbbac7dd6384aeebeda4df6025d0256a81b", + "sha256:62fe6c95e3ec8a7fad637b7f3d372c15ec1caa01ab47926cfdf7a75b40e0eac1", + "sha256:6788b695d50a51edb699cb55e35487e430fa21f1ed838122d722e0ff0ac5ba15", + "sha256:6dd73240d2af64df90aa7c4e7481e23825ea70af4b4922f8ede5b9e35f78a3b1", + "sha256:717ba8fe3ae9cc0006d7c451f0bb265ee07739daf76355d06366154ee68d221e", + "sha256:7952deddf24b85c88dab48f6ec366ac6e39d2761b5280f2f9594911e03fcd064", + "sha256:79855e1c5b8da654cf486b830bd42c06e8780cea587384cf6545b7d9ac013a0b", + "sha256:7c1699dfe0cf8ff607dbdcc1e9b9af1755371f92a68f706051cc8c37d447c905", + "sha256:88e5fcfb52ee7b911e8bb6d6aa2fd21fbecc674eadd44118a9cc3863f938e735", + "sha256:8defac2f2ccd6805ebf65f5eeb132adcf2ab57aa11fdf4c0dd5169a004710e7d", + "sha256:98c7086708b163d425c67c7a91bad6e466bb99d797aa64f965e9d25c12111a5e", + "sha256:9add70b36c5666a2ed02b43b335fe19002ee5235efd4b8a89bfcf9005bebac0d", + "sha256:9bf40443012702a1d2070043cb6291650a0841ece432556f784f004937f0f32c", + "sha256:ade5e387d2ad0d7ebf59146cc00c8044acbd863725f887353a10df825fc8ae21", + "sha256:b00c1de48212e4cc9603895652c5c410df699856a2853135b3967591e4beebc2", + "sha256:b1282f8c00509d99fef04d8ba936b156d419be841854fe901d8ae224c59f0be5", + "sha256:b2051432115498d3562c084a49bba65d97cf251f5a331c64a12ee7e04dacc51b", + "sha256:ba59edeaa2fc6114428f1637ffff42da1e311e29382d81b339c1817d37ec93c6", + "sha256:c8716a48d94b06bb3b2524c2b77e055fb313aeb4ea620c8dd03a105574ba704f", + "sha256:cd5df75523866410809ca100dc9681e301e3c27567cf498077e8551b6d20e42f", + "sha256:cdb132fc825c38e1aeec2c8aa9338310d29d337bebbd7baa06889d09a60a1fa2", + "sha256:e249096428b3ae81b08327a63a485ad0878de3fb939049038579ac0ef61e17e7", + "sha256:e8313f01ba26fbbe36c7be1966a7b7424942f670f38e666995b88d012765b9be" + ], + "version": "==1.1.1" + }, + "mccabe": { + "hashes": [ + "sha256:ab8a6258860da4b6677da4bd2fe5dc2c659cff31b3ee4f7f5d64e79735b80d42", + "sha256:dd8d182285a0fe56bace7f45b5e7d1a6ebcbf524e8f3bd87eb0f125271b8831f" + ], + "version": "==0.6.1" + }, + "mistune": { + "hashes": [ + "sha256:59a3429db53c50b5c6bcc8a07f8848cb00d7dc8bdb431a4ab41920d201d4756e", + "sha256:88a1051873018da288eee8538d476dffe1262495144b33ecb586c4ab266bb8d4" + ], + "version": "==0.8.4" + }, + "more-itertools": { + "hashes": [ + "sha256:5dd8bcf33e5f9513ffa06d5ad33d78f31e1931ac9a18f33d37e77a180d393a7c", + "sha256:b1ddb932186d8a6ac451e1d95844b382f55e12686d51ca0c68b6f61f2ab7a507" + ], + "version": "==8.2.0" + }, + "mypy": { + "hashes": [ + "sha256:15b948e1302682e3682f11f50208b726a246ab4e6c1b39f9264a8796bb416aa2", + "sha256:219a3116ecd015f8dca7b5d2c366c973509dfb9a8fc97ef044a36e3da66144a1", + "sha256:3b1fc683fb204c6b4403a1ef23f0b1fac8e4477091585e0c8c54cbdf7d7bb164", + "sha256:3beff56b453b6ef94ecb2996bea101a08f1f8a9771d3cbf4988a61e4d9973761", + "sha256:7687f6455ec3ed7649d1ae574136835a4272b65b3ddcf01ab8704ac65616c5ce", + "sha256:7ec45a70d40ede1ec7ad7f95b3c94c9cf4c186a32f6bacb1795b60abd2f9ef27", + "sha256:86c857510a9b7c3104cf4cde1568f4921762c8f9842e987bc03ed4f160925754", + "sha256:8a627507ef9b307b46a1fea9513d5c98680ba09591253082b4c48697ba05a4ae", + "sha256:8dfb69fbf9f3aeed18afffb15e319ca7f8da9642336348ddd6cab2713ddcf8f9", + "sha256:a34b577cdf6313bf24755f7a0e3f3c326d5c1f4fe7422d1d06498eb25ad0c600", + "sha256:a8ffcd53cb5dfc131850851cc09f1c44689c2812d0beb954d8138d4f5fc17f65", + "sha256:b90928f2d9eb2f33162405f32dde9f6dcead63a0971ca8a1b50eb4ca3e35ceb8", + "sha256:c56ffe22faa2e51054c5f7a3bc70a370939c2ed4de308c690e7949230c995913", + "sha256:f91c7ae919bbc3f96cd5e5b2e786b2b108343d1d7972ea130f7de27fdd547cf3" + ], + "index": "pypi", + "version": "==0.770" + }, + "mypy-extensions": { + "hashes": [ + "sha256:090fedd75945a69ae91ce1303b5824f428daf5a028d2f6ab8a299250a846f15d", + "sha256:2d82818f5bb3e369420cb3c4060a7970edba416647068eb4c5343488a6c604a8" + ], + "version": "==0.4.3" + }, + "nbclient": { + "hashes": [ + "sha256:193731fd5039061dbd7d6d3f765a2fa59d23012594d68b1798deea9c3eae4a01", + "sha256:44dde0356def1d9345908c8f58dc604a434f2fe61c49ac13fac6e2da2ae429de", + "sha256:4589b7d656adfb90397ffe34b19e16fab74f0e732bbda7828f96d1f3111744ac" + ], + "version": "==0.2.0" + }, + "nbconvert": { + "hashes": [ + "sha256:4b2eff78c254a85d1668af70fca1cab4cecb077324ca72a1ac8959af08e78e3d", + "sha256:b327e1e75673fa4e76659396a0a012cb144bf3adc7aba3b55756de9497a2215e", + "sha256:fa440adb42328e35ee904c948932086744c23881883afc9630f81514fcbd4c3d" + ], + "version": "==6.0.0a1" + }, + "nbformat": { + "hashes": [ + "sha256:65a79936a128fd85aef392b7fea520166364037118b6fe3ed52de742d06c4558", + "sha256:f0c47cf93c505cb943e2f131ef32b8ae869292b5f9f279db2bafb35867923f69" + ], + "version": "==5.0.5" + }, + "nest-asyncio": { + "hashes": [ + "sha256:14e194b72144052a82173ca9109bd07c57813a320f42c7acfad1e4d329988350", + "sha256:b4cdd08655e2848098d204a26590cbfa39fcbc4ad1811c568678ffc8a0c8e279" + ], + "version": "==1.3.2" + }, + "nodeenv": { + "hashes": [ + "sha256:5b2438f2e42af54ca968dd1b374d14a1194848955187b0e5e4be1f73813a5212" + ], + "version": "==1.3.5" + }, + "notebook": { + "hashes": [ + "sha256:3edc616c684214292994a3af05eaea4cc043f6b4247d830f3a2f209fa7639a80", + "sha256:47a9092975c9e7965ada00b9a20f0cf637d001db60d241d479f53c0be117ad48" + ], + "version": "==6.0.3" + }, + "packaging": { + "hashes": [ + "sha256:3c292b474fda1671ec57d46d739d072bfd495a4f51ad01a055121d81e952b7a3", + "sha256:82f77b9bee21c1bafbf35a84905d604d5d1223801d639cf3ed140bd651c08752" + ], + "version": "==20.3" + }, + "pandocfilters": { + "hashes": [ + "sha256:41a309da81cba5509389b19d96b0ee49551cee8165a6406754f2565e95429860", + "sha256:b3dd70e169bb5449e6bc6ff96aea89c5eea8c5f6ab5e207fc2f521a2cf4a0da9" + ], + "version": "==1.4.2" + }, + "parso": { + "hashes": [ + "sha256:0c5659e0c6eba20636f99a04f469798dca8da279645ce5c387315b2c23912157", + "sha256:8515fc12cfca6ee3aa59138741fc5624d62340c97e401c74875769948d4f2995" + ], + "version": "==0.6.2" + }, + "pathspec": { + "hashes": [ + "sha256:163b0632d4e31cef212976cf57b43d9fd6b0bac6e67c26015d611a647d5e7424", + "sha256:562aa70af2e0d434367d9790ad37aed893de47f1693e4201fd1d3dca15d19b96" + ], + "version": "==0.7.0" + }, + "pexpect": { + "hashes": [ + "sha256:0b48a55dcb3c05f3329815901ea4fc1537514d6ba867a152b581d69ae3710937", + "sha256:fc65a43959d153d0114afe13997d439c22823a27cefceb5ff35c2178c6784c0c" + ], + "version": "==4.8.0" + }, + "pickleshare": { + "hashes": [ + "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca", + "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56" + ], + "version": "==0.7.5" + }, + "pint": { + "hashes": [ + "sha256:308f1070500e102f83b6adfca6db53debfce2ffc5d3cbe3f6c367da359b5cf4d", + "sha256:5690c85948dfb283382aa73357c3d5a333e8c7d818be7d8643db18e07597dd99", + "sha256:833ec1b2561a29dd5ab316825924ec2ce64dc7d69ab09505cd1bea7709c8f0f8" + ], + "index": "pypi", + "version": "==0.11" + }, + "pkginfo": { + "hashes": [ + "sha256:7424f2c8511c186cd5424bbf31045b77435b37a8d604990b79d4e70d741148bb", + "sha256:a6d9e40ca61ad3ebd0b72fbadd4fba16e4c0e4df0428c041e01e06eb6ee71f32" + ], + "version": "==1.5.0.1" + }, + "pluggy": { + "hashes": [ + "sha256:15b2acde666561e1298d71b523007ed7364de07029219b604cf808bfa1c765b0", + "sha256:966c145cd83c96502c3c3868f50408687b38434af77734af1e9ca461a4081d2d" + ], + "version": "==0.13.1" + }, + "pre-commit": { + "hashes": [ + "sha256:487c675916e6f99d355ec5595ad77b325689d423ef4839db1ed2f02f639c9522", + "sha256:9707b4f7069365ffdb57d2782086a9f3019afde2a6e9f85df785c9bf090e1118", + "sha256:c0aa11bce04a7b46c5544723aedf4e81a4d5f64ad1205a30a9ea12d5e81969e1" + ], + "index": "pypi", + "version": "==2.2.0" + }, + "prometheus-client": { + "hashes": [ + "sha256:09b5750fd1c153420dccd35881116e853c730081bea0dbf0ea6649103bcb8445", + "sha256:71cd24a2b3eb335cb800c7159f423df1bd4dcd5171b234be15e3f31ec9f622da" + ], + "version": "==0.7.1" + }, + "prompt-toolkit": { + "hashes": [ + "sha256:563d1a4140b63ff9dd587bda9557cffb2fe73650205ab6f4383092fb882e7dc8", + "sha256:df7e9e63aea609b1da3a65641ceaf5bc7d05e0a04de5bd45d05dbeffbabf9e04" + ], + "version": "==3.0.5" + }, + "psutil": { + "hashes": [ + "sha256:002bd856770037221256765a472f50d677074ad207276a39e2bccdb7394e333b", + "sha256:1413f4158eb50e110777c4f15d7c759521703bd6beb58926f1d562da40180058", + "sha256:298af2f14b635c3c7118fd9183843f4e73e681bb6f01e12284d4d70d48a60953", + "sha256:60b86f327c198561f101a92be1995f9ae0399736b6eced8f24af41ec64fb88d4", + "sha256:685ec16ca14d079455892f25bd124df26ff9137664af445563c1bd36629b5e0e", + "sha256:73f35ab66c6c7a9ce82ba44b1e9b1050be2a80cd4dcc3352cc108656b115c74f", + "sha256:75e22717d4dbc7ca529ec5063000b2b294fc9a367f9c9ede1f65846c7955fd38", + "sha256:833b2b19c04fc0aecad22daa3e35108d6ee2e4f92061a4a8f2dd77c6fa9154f5", + "sha256:a02f4ac50d4a23253b68233b07e7cdb567bd025b982d5cf0ee78296990c22d9e", + "sha256:d008ddc00c6906ec80040d26dc2d3e3962109e40ad07fd8a12d0284ce5e0e4f8", + "sha256:d84029b190c8a66a946e28b4d3934d2ca1528ec94764b180f7d6ea57b0e75e26", + "sha256:e2d0c5b07c6fe5a87fa27b7855017edb0d52ee73b71e6ee368fae268605cc3f5", + "sha256:f344ca230dd8e8d5eee16827596f1c22ec0876127c28e800d7ae20ed44c4b310", + "sha256:f3e7f183162622eae9fbdee44ff19b226edec68b94ae7cba47f9afcf4c3ec66c" + ], + "version": "==5.7.0" + }, + "ptyprocess": { + "hashes": [ + "sha256:923f299cc5ad920c68f2bc0bc98b75b9f838b93b599941a6b63ddbc2476394c0", + "sha256:d7cc528d76e76342423ca640335bd3633420dc1366f258cb31d05e865ef5ca1f" + ], + "version": "==0.6.0" + }, + "py": { + "hashes": [ + "sha256:5e27081401262157467ad6e7f851b7aa402c5852dbcb3dae06768434de5752aa", + "sha256:c20fdd83a5dbc0af9efd622bee9a5564e278f6380fffcacc43ba6f43db2813b0" + ], + "version": "==1.8.1" + }, + "pycodestyle": { + "hashes": [ + "sha256:95a2219d12372f05704562a14ec30bc76b05a5b297b21a5dfe3f6fac3491ae56", + "sha256:e40a936c9a450ad81df37f549d676d127b1b66000a6c500caa2b085bc0ca976c" + ], + "version": "==2.5.0" + }, + "pyflakes": { + "hashes": [ + "sha256:17dbeb2e3f4d772725c777fabc446d5634d1038f234e77343108ce445ea69ce0", + "sha256:d976835886f8c5b31d47970ed689944a0262b5f3afa00a5a7b4dc81e5449f8a2" + ], + "version": "==2.1.1" + }, + "pygments": { + "hashes": [ + "sha256:647344a061c249a3b74e230c739f434d7ea4d8b1d5f3721bc0f3558049b38f44", + "sha256:aa931c0bd5daa25c475afadb2147115134cfe501f0656828cbe7cb566c7123bc", + "sha256:ff7a40b4860b727ab48fad6360eb351cc1b33cbf9b15a0f689ca5353e9463324" + ], + "version": "==2.6.1" + }, + "pyparsing": { + "hashes": [ + "sha256:67199f0c41a9c702154efb0e7a8cc08accf830eb003b4d9fa42c4059002e2492", + "sha256:700d17888d441604b0bd51535908dcb297561b040819cccde647a92439db5a2a" + ], + "version": "==3.0.0a1" + }, + "pyrsistent": { + "hashes": [ + "sha256:28669905fe725965daa16184933676547c5bb40a5153055a8dee2a4bd7933ad3", + "sha256:3217696df78f9222a3d1179b119c27be346b969a9e4d617de2a215a87d9aa456", + "sha256:9324b762b52e5a901611b25f50f9cdf8789c61ece3ff7c24dc872603c4faca62", + "sha256:c11415790cc5803e173de7d71d54f94c66a9154f81a72ffdf45a70096916f226" + ], + "version": "==0.16.0" + }, + "pytest": { + "hashes": [ + "sha256:0e5b30f5cb04e887b91b1ee519fa3d89049595f428c1db76e73bd7f17b09b172", + "sha256:84dde37075b8805f3d1f392cc47e38a0e59518fb46a431cfdaf7cf1ce805f970" + ], + "index": "pypi", + "version": "==5.4.1" + }, + "pytest-cov": { + "hashes": [ + "sha256:cc6742d8bac45070217169f5f72ceee1e0e55b0221f54bcf24845972d3a47f2b", + "sha256:cdbdef4f870408ebdbfeb44e63e07eb18bb4619fae852f6e760645fa36172626" + ], + "index": "pypi", + "version": "==2.8.1" + }, + "python-dateutil": { + "hashes": [ + "sha256:73ebfe9dbf22e832286dafa60473e4cd239f8592f699aa5adaf10050e6e1823c", + "sha256:75bb3f31ea686f1197762692a9ee6a7550b59fc6ca3a1f4b5d7e32fb98e2da2a" + ], + "version": "==2.8.1" + }, + "pywin32": { + "hashes": [ + "sha256:300a2db938e98c3e7e2093e4491439e62287d0d493fe07cce110db070b54c0be", + "sha256:31f88a89139cb2adc40f8f0e65ee56a8c585f629974f9e07622ba80199057511", + "sha256:371fcc39416d736401f0274dd64c2302728c9e034808e37381b5e1b22be4a6b0", + "sha256:47a3c7551376a865dd8d095a98deba954a98f326c6fe3c72d8726ca6e6b15507", + "sha256:4cdad3e84191194ea6d0dd1b1b9bdda574ff563177d2adf2b4efec2a244fa116", + "sha256:7c1ae32c489dc012930787f06244426f8356e129184a02c25aef163917ce158e", + "sha256:7f18199fbf29ca99dff10e1f09451582ae9e372a892ff03a28528a24d55875bc", + "sha256:9b31e009564fb95db160f154e2aa195ed66bcc4c058ed72850d047141b36f3a2", + "sha256:a929a4af626e530383a579431b70e512e736e9588106715215bf685a3ea508d4", + "sha256:c054c52ba46e7eb6b7d7dfae4dbd987a1bb48ee86debe3f245a2884ece46e295", + "sha256:f27cec5e7f588c3d1051651830ecc00294f90728d19c3bf6916e6dba93ea357c", + "sha256:f4c5be1a293bae0076d93c88f37ee8da68136744588bc5e2be2f299a34ceb7aa" + ], + "markers": "sys_platform == 'win32'", + "version": "==227" + }, + "pywin32-ctypes": { + "hashes": [ + "sha256:24ffc3b341d457d48e8922352130cf2644024a4ff09762a2261fd34c36ee5942", + "sha256:9dc2d991b3479cc2df15930958b674a48a227d5361d413827a4cfd0b5876fc98" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.2.0" + }, + "pywinpty": { + "hashes": [ + "sha256:1e525a4de05e72016a7af27836d512db67d06a015aeaf2fa0180f8e6a039b3c2", + "sha256:2740eeeb59297593a0d3f762269b01d0285c1b829d6827445fcd348fb47f7e70", + "sha256:2d7e9c881638a72ffdca3f5417dd1563b60f603e1b43e5895674c2a1b01f95a0", + "sha256:33df97f79843b2b8b8bc5c7aaf54adec08cc1bae94ee99dfb1a93c7a67704d95", + "sha256:5fb2c6c6819491b216f78acc2c521b9df21e0f53b9a399d58a5c151a3c4e2a2d", + "sha256:8fc5019ff3efb4f13708bd3b5ad327589c1a554cb516d792527361525a7cb78c", + "sha256:b358cb552c0f6baf790de375fab96524a0498c9df83489b8c23f7f08795e966b", + "sha256:dbd838de92de1d4ebf0dce9d4d5e4fc38d0b7b1de837947a18b57a882f219139", + "sha256:dd22c8efacf600730abe4a46c1388355ce0d4ab75dc79b15d23a7bd87bf05b48", + "sha256:e854211df55d107f0edfda8a80b39dfc87015bef52a8fe6594eb379240d81df2" + ], + "markers": "os_name == 'nt'", + "version": "==0.5.7" + }, + "pyyaml": { + "hashes": [ + "sha256:06a0d7ba600ce0b2d2fe2e78453a470b5a6e000a985dd4a4e54e436cc36b0e97", + "sha256:240097ff019d7c70a4922b6869d8a86407758333f02203e0fc6ff79c5dcede76", + "sha256:4f4b913ca1a7319b33cfb1369e91e50354d6f07a135f3b901aca02aa95940bd2", + "sha256:589929630502f3b0e87daee190b399f98401b6bccea87ed634a73fe5da43d3d4", + "sha256:69f00dca373f240f842b2931fb2c7e14ddbacd1397d57157a9b005a6a9942648", + "sha256:6e8383720b2127b09dba5b323ac896c702cf02bc5786fce16cd6791825d92d16", + "sha256:73f099454b799e05e5ab51423c7bcf361c58d3206fa7b0d555426b1f4d9a3eaf", + "sha256:74809a57b329d6cc0fdccee6318f44b9b8649961fa73144a98735b0aaf029f1f", + "sha256:7739fc0fa8205b3ee8808aea45e968bc90082c10aef6ea95e855e10abf4a37b2", + "sha256:95f71d2af0ff4227885f7a6605c37fd53d3a106fcab511b8860ecca9fcf400ee", + "sha256:b8eac752c5e14d3eca0e6dd9199cd627518cb5ec06add0de9d32baeee6fe645d", + "sha256:cc8955cfbfc7a115fa81d85284ee61147059a753344bc51098f3ccd69b0d7e0c", + "sha256:d13155f591e6fcc1ec3b30685d50bf0711574e2c0dfffd7644babf8b5102ca1a" + ], + "version": "==5.3.1" + }, + "pyzmq": { + "hashes": [ + "sha256:07bfbf192f22ef1dde65b6046efff191e3201e74da6d47098e68958469ecbe48", + "sha256:0bbc1728fe4314b4ca46249c33873a390559edac7c217ec7001b5e0c34a8fb7f", + "sha256:1e076ad5bd3638a18c376544d32e0af986ca10d43d4ce5a5d889a8649f0d0a3d", + "sha256:242d949eb6b10197cda1d1cec377deab1d5324983d77e0d0bf9dc5eb6d71a6b4", + "sha256:26f4ae420977d2a8792d7c2d7bda43128b037b5eeb21c81951a94054ad8b8843", + "sha256:32234c21c5e0a767c754181c8112092b3ddd2e2a36c3f76fc231ced817aeee47", + "sha256:3f12ce1e9cc9c31497bd82b207e8e86ccda9eebd8c9f95053aae46d15ccd2196", + "sha256:4557d5e036e6d85715b4b9fdb482081398da1d43dc580d03db642b91605b409f", + "sha256:4f562dab21c03c7aa061f63b147a595dbe1006bf4f03213272fc9f7d5baec791", + "sha256:54ecd00daa474885bbf318108401d318614425a05dfeae917611dd93f99f2678", + "sha256:5e071b834051e9ecb224915398f474bfad802c2fff883f118ff5363ca4ae3edf", + "sha256:5e1f65e576ab07aed83f444e201d86deb01cd27dcf3f37c727bc8729246a60a8", + "sha256:5f10a31f288bf055be76c57710807a8f0efdb2b82be6c2a2b8f9a61f33a40cea", + "sha256:6aaaf90b420dc40d9a0e1996b82c6a0ff91d9680bebe2135e67c9e6d197c0a53", + "sha256:75238d3c16cab96947705d5709187a49ebb844f54354cdf0814d195dd4c045de", + "sha256:7f7e7b24b1d392bb5947ba91c981e7d1a43293113642e0d8870706c8e70cdc71", + "sha256:84b91153102c4bcf5d0f57d1a66a0f03c31e9e6525a5f656f52fc615a675c748", + "sha256:944f6bb5c63140d76494467444fd92bebd8674236837480a3c75b01fe17df1ab", + "sha256:a1f957c20c9f51d43903881399b078cddcf710d34a2950e88bce4e494dcaa4d1", + "sha256:a49fd42a29c1cc1aa9f461c5f2f5e0303adba7c945138b35ee7f4ab675b9f754", + "sha256:a99ae601b4f6917985e9bb071549e30b6f93c72f5060853e197bdc4b7d357e5f", + "sha256:ad48865a29efa8a0cecf266432ea7bc34e319954e55cf104be0319c177e6c8f5", + "sha256:b08e425cf93b4e018ab21dc8fdbc25d7d0502a23cc4fea2380010cf8cf11e462", + "sha256:bb10361293d96aa92be6261fa4d15476bca56203b3a11c62c61bd14df0ef89ba", + "sha256:bd1a769d65257a7a12e2613070ca8155ee348aa9183f2aadf1c8b8552a5510f5", + "sha256:cb3b7156ef6b1a119e68fbe3a54e0a0c40ecacc6b7838d57dd708c90b62a06dc", + "sha256:d2f64994f9628f621e0f636f9532055887defc9fa5213aaeceb770d9c579f9ac", + "sha256:e8e4efb52ec2df8d046395ca4c84ae0056cf507b2f713ec803c65a8102d010de", + "sha256:f37c29da2a5b0c5e31e6f8aab885625ea76c807082f70b2d334d3fd573c3100a", + "sha256:f4d558bc5668d2345773a9ff8c39e2462dafcb1f6772a2e582fbced389ce527f", + "sha256:f5b6d015587a1d6f582ba03b226a9ddb1dfb09878b3be04ef48b01b7d4eb6b2a" + ], + "version": "==19.0.0" + }, + "readme-renderer": { + "hashes": [ + "sha256:1b6d8dd1673a0b293766b4106af766b6eff3654605f9c4f239e65de6076bc222", + "sha256:e67d64242f0174a63c3b727801a2fff4c1f38ebe5d71d95ff7ece081945a6cd4" + ], + "version": "==25.0" + }, + "regex": { + "hashes": [ + "sha256:08119f707f0ebf2da60d2f24c2f39ca616277bb67ef6c92b72cbf90cbe3a556b", + "sha256:0ce9537396d8f556bcfc317c65b6a0705320701e5ce511f05fc04421ba05b8a8", + "sha256:1cbe0fa0b7f673400eb29e9ef41d4f53638f65f9a2143854de6b1ce2899185c3", + "sha256:2294f8b70e058a2553cd009df003a20802ef75b3c629506be20687df0908177e", + "sha256:23069d9c07e115537f37270d1d5faea3e0bdded8279081c4d4d607a2ad393683", + "sha256:24f4f4062eb16c5bbfff6a22312e8eab92c2c99c51a02e39b4eae54ce8255cd1", + "sha256:295badf61a51add2d428a46b8580309c520d8b26e769868b922750cf3ce67142", + "sha256:2a3bf8b48f8e37c3a40bb3f854bf0121c194e69a650b209628d951190b862de3", + "sha256:4385f12aa289d79419fede43f979e372f527892ac44a541b5446617e4406c468", + "sha256:5635cd1ed0a12b4c42cce18a8d2fb53ff13ff537f09de5fd791e97de27b6400e", + "sha256:5bfed051dbff32fd8945eccca70f5e22b55e4148d2a8a45141a3b053d6455ae3", + "sha256:7e1037073b1b7053ee74c3c6c0ada80f3501ec29d5f46e42669378eae6d4405a", + "sha256:9016fe9da2a10642e25543c9ffaa2466dac697d87d42653666ec84007e4d37d3", + "sha256:90742c6ff121a9c5b261b9b215cb476eea97df98ea82037ec8ac95d1be7a034f", + "sha256:a58dd45cb865be0ce1d5ecc4cfc85cd8c6867bea66733623e54bd95131f473b6", + "sha256:c087bff162158536387c53647411db09b6ee3f9603c334c90943e97b1052a156", + "sha256:c162a21e0da33eb3d31a3ac17a51db5e634fc347f650d271f0305d96601dc15b", + "sha256:c9423a150d3a4fc0f3f2aae897a59919acd293f4cb397429b120a5fcd96ea3db", + "sha256:ccccdd84912875e34c5ad2d06e1989d890d43af6c2242c6fcfa51556997af6cd", + "sha256:e04db93ad8072c40ce03e5ea074fe811e483a2fc5b539f481264e09bf6522559", + "sha256:e91ba11da11cf770f389e47c3f5c30473e6d85e06d7fd9dcba0017d2867aab4a", + "sha256:ea4adf02d23b437684cd388d557bf76e3afa72f7fed5bbc013482cc00c816948", + "sha256:fa4c724fc5b867d3a2461d4d78e0feb6adfeee5f2976071aba4b2325fae71045", + "sha256:fb95debbd1a824b2c4376932f2216cc186912e389bdb0e27147778cf6acb3f89" + ], + "version": "==2020.4.4" + }, + "remote-ikernel": { + "hashes": [ + "sha256:5253216e87a8c31f1b0ca9305454f223147518b580e853b7635a3d8b9c88c295", + "sha256:740b80a57fa1af40cadef541c5a4eb293675b504092ecf00c57dd2f0011bd840" + ], + "index": "pypi", + "version": "==0.4.6" + }, + "requests": { + "hashes": [ + "sha256:43999036bfa82904b6af1d99e4882b560e5e2c68e5c4b0aa03b655f3d7d73fee", + "sha256:b3f43d496c6daba4493e7c431722aeb7dbc6288f52a6e04e7b6023b0247817e6" + ], + "version": "==2.23.0" + }, + "requests-toolbelt": { + "hashes": [ + "sha256:380606e1d10dc85c3bd47bf5a6095f815ec007be7a8b69c878507068df059e6f", + "sha256:968089d4584ad4ad7c171454f0a5c6dac23971e9472521ea3b6d49d610aa6fc0" + ], + "version": "==0.9.1" + }, + "send2trash": { + "hashes": [ + "sha256:60001cc07d707fe247c94f74ca6ac0d3255aabcb930529690897ca2a39db28b2", + "sha256:f1691922577b6fa12821234aeb57599d887c4900b9ca537948d2dac34aea888b" + ], + "version": "==1.5.0" + }, + "six": { + "hashes": [ + "sha256:236bdbdce46e6e6a3d61a337c0f8b763ca1e8717c03b369e87a7ec7ce1319c0a", + "sha256:8f3cd2e254d8f793e7f3d6d9df77b92252b52637291d0f0da013c76ea2724b6c" + ], + "version": "==1.14.0" + }, + "soupsieve": { + "hashes": [ + "sha256:e914534802d7ffd233242b785229d5ba0766a7f487385e3f714446a07bf540ae", + "sha256:f24cabf0197b86c6d5e3fb96fd11a1c0739618375d95de91a477aa9652282150", + "sha256:fcd71e08c0aee99aca1b73f45478549ee7e7fc006d51b37bec9e9def7dc22b69" + ], + "version": "==2.0" + }, + "terminado": { + "hashes": [ + "sha256:4804a774f802306a7d9af7322193c5390f1da0abb429e082a10ef1d46e6fb2c2", + "sha256:a43dcb3e353bc680dd0783b1d9c3fc28d529f190bc54ba9a229f72fe6e7a54d7" + ], + "version": "==0.8.3" + }, + "testpath": { + "hashes": [ + "sha256:60e0a3261c149755f4399a1fff7d37523179a70fdc3abdf78de9fc2604aeec7e", + "sha256:bfcf9411ef4bf3db7579063e0546938b1edda3d69f4e1fb8756991f5951f85d4" + ], + "version": "==0.4.4" + }, + "toml": { + "hashes": [ + "sha256:229f81c57791a41d65e399fc06bf0848bab550a9dfd5ed66df18ce5f05e73d5c", + "sha256:235682dd292d5899d361a811df37e04a8828a5b1da3115886b73cf81ebc9100e" + ], + "version": "==0.10.0" + }, + "tornado": { + "hashes": [ + "sha256:0fe2d45ba43b00a41cd73f8be321a44936dc1aba233dee979f17a042b83eb6dc", + "sha256:22aed82c2ea340c3771e3babc5ef220272f6fd06b5108a53b4976d0d722bcd52", + "sha256:2c027eb2a393d964b22b5c154d1a23a5f8727db6fda837118a776b29e2b8ebc6", + "sha256:503700d85d9a2c2aa737fb16df58bfa2ac0d5ec501881fea2acceae64ce17858", + "sha256:5217e601700f24e966ddab689f90b7ea4bd91ff3357c3600fa1045e26d68e55d", + "sha256:5618f72e947533832cbc3dec54e1dffc1747a5cb17d1fd91577ed14fa0dc081b", + "sha256:5f6a07e62e799be5d2330e68d808c8ac41d4a259b9cea61da4101b83cb5dc673", + "sha256:7182a9285e364e55e6902b5fb4d4a219efd8d7818d9000b419a0eaf3909fc0bc", + "sha256:c58d56003daf1b616336781b26d184023ea4af13ae143d9dda65e31e534940b9", + "sha256:c952975c8ba74f546ae6de2e226ab3cc3cc11ae47baf607459a6728585bb542a", + "sha256:c98232a3ac391f5faea6821b53db8db461157baa788f5d6222a193e9456e1740" + ], + "version": "==6.0.4" + }, + "tqdm": { + "hashes": [ + "sha256:00339634a22c10a7a22476ee946bbde2dbe48d042ded784e4d88e0236eca5d81", + "sha256:ea9e3fd6bd9a37e8783d75bfc4c1faf3c6813da6bd1c3e776488b41ec683af94" + ], + "version": "==4.45.0" + }, + "traitlets": { + "hashes": [ + "sha256:70b4c6a1d9019d7b4f6846832288f86998aa3b9207c6821f3578a6a6a467fe44", + "sha256:d023ee369ddd2763310e4c3eae1ff649689440d4ae59d7485eb4cfbbe3e359f7" + ], + "version": "==4.3.3" + }, + "twine": { + "hashes": [ + "sha256:c1af8ca391e43b0a06bbc155f7f67db0bf0d19d284bfc88d1675da497a946124", + "sha256:d561a5e511f70275e5a485a6275ff61851c16ffcb3a95a602189161112d9f160" + ], + "index": "pypi", + "version": "==3.1.1" + }, + "typed-ast": { + "hashes": [ + "sha256:0666aa36131496aed8f7be0410ff974562ab7eeac11ef351def9ea6fa28f6355", + "sha256:0c2c07682d61a629b68433afb159376e24e5b2fd4641d35424e462169c0a7919", + "sha256:249862707802d40f7f29f6e1aad8d84b5aa9e44552d2cc17384b209f091276aa", + "sha256:24995c843eb0ad11a4527b026b4dde3da70e1f2d8806c99b7b4a7cf491612652", + "sha256:269151951236b0f9a6f04015a9004084a5ab0d5f19b57de779f908621e7d8b75", + "sha256:3791f73e5d75aa9a95274679ab4821bd9d16de623c4ecf4900a77a29864ee144", + "sha256:4083861b0aa07990b619bd7ddc365eb7fa4b817e99cf5f8d9cf21a42780f6e01", + "sha256:498b0f36cc7054c1fead3d7fc59d2150f4d5c6c56ba7fb150c013fbc683a8d2d", + "sha256:4e3e5da80ccbebfff202a67bf900d081906c358ccc3d5e3c8aea42fdfdfd51c1", + "sha256:6daac9731f172c2a22ade6ed0c00197ee7cc1221aa84cfdf9c31defeb059a907", + "sha256:715ff2f2df46121071622063fc7543d9b1fd19ebfc4f5c8895af64a77a8c852c", + "sha256:73d785a950fc82dd2a25897d525d003f6378d1cb23ab305578394694202a58c3", + "sha256:8c8aaad94455178e3187ab22c8b01a3837f8ee50e09cf31f1ba129eb293ec30b", + "sha256:8ce678dbaf790dbdb3eba24056d5364fb45944f33553dd5869b7580cdbb83614", + "sha256:aaee9905aee35ba5905cfb3c62f3e83b3bec7b39413f0a7f19be4e547ea01ebb", + "sha256:bcd3b13b56ea479b3650b82cabd6b5343a625b0ced5429e4ccad28a8973f301b", + "sha256:c9e348e02e4d2b4a8b2eedb48210430658df6951fa484e59de33ff773fbd4b41", + "sha256:d205b1b46085271b4e15f670058ce182bd1199e56b317bf2ec004b6a44f911f6", + "sha256:d43943ef777f9a1c42bf4e552ba23ac77a6351de620aa9acf64ad54933ad4d34", + "sha256:d5d33e9e7af3b34a40dc05f498939f0ebf187f07c385fd58d591c533ad8562fe", + "sha256:df74880bdb70f34304ccc52b0c99d3e578f96a906b86f3ae172a1f1c2edef2bc", + "sha256:fc0fea399acb12edbf8a628ba8d2312f583bdbdb3335635db062fa98cf71fca4", + "sha256:fe460b922ec15dd205595c9b5b99e2f056fd98ae8f9f56b888e7a17dc2b757e7" + ], + "version": "==1.4.1" + }, + "typing-extensions": { + "hashes": [ + "sha256:6e95524d8a547a91e08f404ae485bbb71962de46967e1b71a0cb89af24e761c5", + "sha256:79ee589a3caca649a9bfd2a8de4709837400dfa00b6cc81962a1e6a1815969ae", + "sha256:f8d2bd89d25bc39dabe7d23df520442fa1d8969b82544370e03d88b5a591c392" + ], + "version": "==3.7.4.2" + }, + "urllib3": { + "hashes": [ + "sha256:2f3db8b19923a873b3e5256dc9c2dedfa883e33d87c690d9c7913e1f40673cdc", + "sha256:87716c2d2a7121198ebcb7ce7cccf6ce5e9ba539041cfbaeecfb641dc0bf6acc" + ], + "version": "==1.25.8" + }, + "virtualenv": { + "hashes": [ + "sha256:6ea131d41c477f6c4b7863948a9a54f7fa196854dbef73efbdff32b509f4d8bf", + "sha256:94f647e12d1e6ced2541b93215e51752aecbd1bbb18eb1816e2867f7532b1fe1" + ], + "version": "==20.0.16" + }, + "waitress": { + "hashes": [ + "sha256:045b3efc3d97c93362173ab1dfc159b52cfa22b46c3334ffc805dbdbf0e4309e", + "sha256:77ff3f3226931a1d7d8624c5371de07c8e90c7e5d80c5cc660d72659aaf23f38" + ], + "index": "pypi", + "version": "==1.4.3" + }, + "wcwidth": { + "hashes": [ + "sha256:cafe2186b3c009a04067022ce1dcd79cb38d8d65ee4f4791b8888d6599d1bbe1", + "sha256:ee73862862a156bf77ff92b09034fc4825dd3af9cf81bc5b360668d425f3c5f1" + ], + "version": "==0.1.9" + }, + "webencodings": { + "hashes": [ + "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", + "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923" + ], + "version": "==0.5.1" + }, + "webob": { + "hashes": [ + "sha256:a3c89a8e9ba0aeb17382836cdb73c516d0ecf6630ec40ec28288f3ed459ce87b", + "sha256:aa3a917ed752ba3e0b242234b2a373f9c4e2a75d35291dcbe977649bd21fd108" + ], + "version": "==1.8.6" + }, + "webtest": { + "hashes": [ + "sha256:71114cd778a7d7b237ec5c8a5c32084f447d869ae62e48bcd5b73af211133e74", + "sha256:da9cf14c103ff51a40dee4cac7657840d1317456eb8f0ca81289b5cbff175f4b" + ], + "index": "pypi", + "version": "==2.0.34" + }, + "werkzeug": { + "hashes": [ + "sha256:2de2a5db0baeae7b2d2664949077c2ac63fbd16d98da0ff71837f7d1dea3fd43", + "sha256:6c80b1e5ad3665290ea39320b91e1be1e0d5f60652b964a3070216de83d2e47c" + ], + "version": "==1.0.1" + }, + "wheel": { + "hashes": [ + "sha256:8788e9155fe14f54164c1b9eb0a319d98ef02c160725587ad60f14ddc57b6f96", + "sha256:df277cb51e61359aba502208d680f90c0493adec6f0e848af94948778aed386e" + ], + "index": "pypi", + "version": "==0.34.2" + } + } +} diff --git a/Ch10/apd.sensors-chapter10/README.md b/Ch10/apd.sensors-chapter10/README.md new file mode 100644 index 0000000..7f015bf --- /dev/null +++ b/Ch10/apd.sensors-chapter10/README.md @@ -0,0 +1,66 @@ +# Advanced Python Development Sensors + +This is the data collection package that forms part of the running example +for the book [Advanced Python Development](https://advancedpython.dev). + +## Usage + +This installs a console script called `sensors` that returns a report on +various aspects of the system. The available sensors are: + +* Python version +* IP Addresses +* CPU Usage +* RAM Available +* Battery charging state +* Ambient Temperature +* Ambient Humidity + +There are no command-line options, to view the report run `sensors` on the +command line. + +## Caveats + +The Ambient Temperature and Ambient Humidity sensors are only available on +RaspberryPi hosts and assume that a DHT22 sensor is connected to pin `D20`. + +The location and type of the sensor can be controlled by setting a pair of +environment variables: `APD_SENSORS_TEMPERATURE_BOARD` and +`APD_SENSORS_TEMPERATURE_PIN`. + +If there is an entry in `/etc/hosts` for the current machine's hostname that +value will be the only result from the IP Addresses sensor. + +## Installation + +You can install with `pip3 install apd.sensors` under Python 3.7 or higher. + +We recommend using pipenv to manage your environment, in which case you would +install using `pipenv --three install apd.sensors` and run the programme using +`pipenv run sensors`. + +## API server + +There is an optional API server shipped with apd.sensors. To use this you +should install the `apd.sensors[webapp]` extra. The API can then be started +with the non-production quality wsgiref server using: + + python -m apd.sensors.wsgi.serve + +or through Waitress (if installed) using: + + waitress-serve --call apd.sensors.wsgi:set_up_config + +Other WSGI servers will also work, you should use set_up_config as a factory +function. + +An environment variable is required to use the API server, `APD_SENSORS_API_KEY` +should be set to the API key required to gain access. One can be generated +using: + + python -c "import uuid; print(uuid.uuid4().hex)" + +The following endpoints are supported: + +* /v/2.0/sensors +* /v/2.0/sensors/sensorid diff --git a/Ch10/apd.sensors-chapter10/plugins/apd.sunnyboy_solar/pyproject.toml b/Ch10/apd.sensors-chapter10/plugins/apd.sunnyboy_solar/pyproject.toml new file mode 100644 index 0000000..4d3bb67 --- /dev/null +++ b/Ch10/apd.sensors-chapter10/plugins/apd.sunnyboy_solar/pyproject.toml @@ -0,0 +1,5 @@ +[build-system] +requires = [ + "setuptools", +] +build-backend = "setuptools.build_meta" diff --git a/Ch10/apd.sensors-chapter10/plugins/apd.sunnyboy_solar/setup.cfg b/Ch10/apd.sensors-chapter10/plugins/apd.sunnyboy_solar/setup.cfg new file mode 100644 index 0000000..0f5db10 --- /dev/null +++ b/Ch10/apd.sensors-chapter10/plugins/apd.sunnyboy_solar/setup.cfg @@ -0,0 +1,33 @@ +[mypy] +ignore_missing_imports = True + +[flake8] +max-line-length = 88 + +[metadata] +name = apd.sunnyboy_solar +version = attr: apd.sunnyboy_solar.VERSION +description = APD Sensor for reading data from Sunnyboy inverters +long_description = file: README.md, CHANGES.md, LICENCE +long_description_content_type = text/markdown +keywords = iot solar +license = MIT +classifiers = + Programming Language :: Python :: 3 + Programming Language :: Python :: 3.7 + +[options] +zip_safe = False +include_package_data = True +package_dir = + =src +packages = find_namespace: +install_requires = + apd.sensors + +[options.packages.find] +where = src + +[options.entry_points] +apd.sensors.sensors = + SolarCumulativeOutput = apd.sunnyboy_solar.sensor:SolarCumulativeOutput diff --git a/Ch10/apd.sensors-chapter10/plugins/apd.sunnyboy_solar/setup.py b/Ch10/apd.sensors-chapter10/plugins/apd.sunnyboy_solar/setup.py new file mode 100644 index 0000000..6068493 --- /dev/null +++ b/Ch10/apd.sensors-chapter10/plugins/apd.sunnyboy_solar/setup.py @@ -0,0 +1,3 @@ +from setuptools import setup + +setup() diff --git a/Ch10/apd.sensors-chapter10/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/Pipfile b/Ch10/apd.sensors-chapter10/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/Pipfile new file mode 100644 index 0000000..e69de29 diff --git a/Ch10/apd.sensors-chapter10/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/__init__.py b/Ch10/apd.sensors-chapter10/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/__init__.py new file mode 100644 index 0000000..3277f64 --- /dev/null +++ b/Ch10/apd.sensors-chapter10/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/__init__.py @@ -0,0 +1 @@ +VERSION = "1.0.0" diff --git a/Ch10/apd.sensors-chapter10/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/sensor.py b/Ch10/apd.sensors-chapter10/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/sensor.py new file mode 100644 index 0000000..aa37a2e --- /dev/null +++ b/Ch10/apd.sensors-chapter10/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/sensor.py @@ -0,0 +1,69 @@ +import os +import subprocess +import typing as t + +from pint import _DEFAULT_REGISTRY as ureg + +from apd.sensors.base import Sensor + + +class SolarCumulativeOutput(Sensor[t.Optional[t.Any]]): + name = "SolarCumulativeOutput" + title = "Solar panel cumulative output" + + def __init__( + self, path: t.Optional[str] = None, bt_addr: t.Optional[str] = None + ) -> None: + self.path = os.environ.get( + "APD_SUNNYBOYSOLAR_PATH", "/home/pi/opensunny-master/opensunny" + ) + self.bt_addr = os.environ.get("APD_SUNNYBOYSOLAR_BT_ADDRESS", None) + + def value(self) -> t.Optional[t.Any]: + if self.bt_addr is None: + return None + try: + output: bytes = subprocess.check_output( + [self.path, "-i", self.bt_addr], stderr=subprocess.STDOUT, timeout=15 + ) + except (subprocess.CalledProcessError, FileNotFoundError): + return None + + lines = filter(None, output.split(b"\n")) + found = {} + for line in lines: + start, value = line.rsplit(b"=", 1) + start, key = start.rsplit(b" ", 1) + found[key] = value + + try: + yield_total = float(found[b"yield_total"][:-3].replace(b".", b"")) + power_dc_1 = int(found[b"power_dc_1"][:-1]) + power_dc_2 = int(found[b"power_dc_2"][:-1]) + if power_dc_1 > 1500 or power_dc_2 > 1500: + return None + except (ValueError, IndexError, KeyError): + return None + return ureg.Quantity(yield_total, "watt") + + @classmethod + def format(cls, value: t.Optional[t.Any]) -> str: + if value is None: + return "Unknown" + return "{:~P}".format(value.to(ureg.kilowatt)) + + @classmethod + def to_json_compatible( + cls, value: t.Optional[t.Any] + ) -> t.Optional[t.Dict[str, t.Union[str, float]]]: + if value is not None: + return {"magnitude": value.magnitude, "unit": str(value.units)} + else: + return None + + @classmethod + def from_json_compatible(cls, json_version: t.Any) -> t.Optional[t.Any]: + if json_version: + return ureg.Quantity(json_version["magnitude"], ureg[json_version["unit"]]) + else: + return None diff --git a/Ch10/apd.sensors-chapter10/pytest.ini b/Ch10/apd.sensors-chapter10/pytest.ini new file mode 100644 index 0000000..861f3d0 --- /dev/null +++ b/Ch10/apd.sensors-chapter10/pytest.ini @@ -0,0 +1,3 @@ +[pytest] +markers = + functional: these tests are significantly slower as they run the whole CLI script \ No newline at end of file diff --git a/Ch10/apd.sensors-chapter10/setup.cfg b/Ch10/apd.sensors-chapter10/setup.cfg new file mode 100644 index 0000000..cf99b51 --- /dev/null +++ b/Ch10/apd.sensors-chapter10/setup.cfg @@ -0,0 +1,69 @@ +[mypy] +namespace_packages = True +mypy_path = src + +[mypy-psutil] +ignore_missing_imports = True + +[mypy-adafruit_dht] +ignore_missing_imports = True + +[mypy-board] +ignore_missing_imports = True + +[mypy-pint] +ignore_missing_imports = True + +[mypy-pytest] +ignore_missing_imports = True + +[mypy-webtest] +ignore_missing_imports = True + +[flake8] +max-line-length = 88 + +[metadata] +name = apd.sensors +version = attr: apd.sensors.VERSION +description = APD Sensor package +long_description = file: README.md, CHANGES.md, LICENCE +long_description_content_type = text/markdown +keywords = iot +license = MIT +classifiers = + Programming Language :: Python :: 3 + Programming Language :: Python :: 3.7 + +[options] +zip_safe = False +include_package_data = True +package_dir = + =src +packages = find_namespace: +install_requires = + psutil + click + pint + adafruit-circuitpython-dht ; 'arm' in platform_machine + +[options.package_data] +apd.sensors = py.typed + +[options.packages.find] +where = src + +[options.entry_points] +console_scripts = + sensors = apd.sensors.cli:show_sensors +apd.sensors.sensors = + PythonVersion = apd.sensors.sensors:PythonVersion + IPAddresses = apd.sensors.sensors:IPAddresses + CPULoad = apd.sensors.sensors:CPULoad + RAMAvailable = apd.sensors.sensors:RAMAvailable + ACStatus = apd.sensors.sensors:ACStatus + Temperature = apd.sensors.sensors:Temperature + RelativeHumidity = apd.sensors.sensors:RelativeHumidity + +[options.extras_require] +webapp = flask \ No newline at end of file diff --git a/Ch10/apd.sensors-chapter10/setup.py b/Ch10/apd.sensors-chapter10/setup.py new file mode 100644 index 0000000..6068493 --- /dev/null +++ b/Ch10/apd.sensors-chapter10/setup.py @@ -0,0 +1,3 @@ +from setuptools import setup + +setup() diff --git a/Ch10/apd.sensors-chapter10/src/apd/sensors/__init__.py b/Ch10/apd.sensors-chapter10/src/apd/sensors/__init__.py new file mode 100644 index 0000000..127c148 --- /dev/null +++ b/Ch10/apd.sensors-chapter10/src/apd/sensors/__init__.py @@ -0,0 +1 @@ +VERSION = "2.1.0" diff --git a/Ch10/apd.sensors-chapter10/src/apd/sensors/base.py b/Ch10/apd.sensors-chapter10/src/apd/sensors/base.py new file mode 100644 index 0000000..74b32ae --- /dev/null +++ b/Ch10/apd.sensors-chapter10/src/apd/sensors/base.py @@ -0,0 +1,51 @@ +#!/usr/bin/env python +# coding: utf-8 +import typing as t + + +T_value = t.TypeVar("T_value") + + +class Sensor(t.Generic[T_value]): + name: str + title: str + + def value(self) -> T_value: + raise NotImplementedError + + @classmethod + def format(cls, value: T_value) -> str: + raise NotImplementedError + + def __str__(self) -> str: + return self.format(self.value()) + + @classmethod + def to_json_compatible(cls, value: T_value) -> t.Any: + raise NotImplementedError() + + @classmethod + def from_json_compatible(cls, json_version: t.Any) -> T_value: + raise NotImplementedError() + + +class JSONSensor(Sensor[T_value]): + @classmethod + def to_json_compatible(cls, value: T_value) -> t.Any: + return value + + @classmethod + def from_json_compatible(cls, json_version: t.Any) -> T_value: + return t.cast(T_value, json_version) + + +version_info_type = t.NamedTuple( + "version_info_type", + [ + ("major", int), + ("minor", int), + ("micro", int), + ("releaselevel", str), + ("serial", int), + ], +) diff --git a/Ch10/apd.sensors-chapter10/src/apd/sensors/cli.py b/Ch10/apd.sensors-chapter10/src/apd/sensors/cli.py new file mode 100644 index 0000000..1ee27b9 --- /dev/null +++ b/Ch10/apd.sensors-chapter10/src/apd/sensors/cli.py @@ -0,0 +1,74 @@ +import enum +import importlib +import sys +import pkg_resources +import typing as t + +import click + +from .sensors import Sensor + + +class ReturnCodes(enum.IntEnum): + OK = 0 + BAD_SENSOR_PATH = 17 + + +def get_sensor_by_path(sensor_path: str) -> Sensor[t.Any]: + try: + module_name, sensor_name = sensor_path.split(":") + except ValueError: + raise RuntimeError( + "Sensor path must be in the format dotted.path.to.module:ClassName" + ) + try: + module = importlib.import_module(module_name) + except ImportError: + raise RuntimeError(f"Could not import module {module_name}") + try: + sensor_class = getattr(module, sensor_name) + except AttributeError: + raise RuntimeError(f"Could not find attribute {sensor_name} in {module_name}") + if ( + isinstance(sensor_class, type) + and issubclass(sensor_class, Sensor) + and sensor_class != Sensor + ): + return sensor_class() + else: + raise RuntimeError( + f"Detected object {sensor_class!r} is not recognised as a Sensor type" + ) + + +def get_sensors() -> t.Iterable[Sensor[t.Any]]: + sensors = [] + for sensor_class in pkg_resources.iter_entry_points("apd.sensors.sensors"): + class_ = sensor_class.load() + sensors.append(t.cast(Sensor[t.Any], class_())) + return sensors + + +@click.command(help="Displays the values of the sensors") +@click.option( + "--develop", required=False, metavar="path", help="Load a sensor by Python path" +) +def show_sensors(develop: str) -> None: + sensors: t.Iterable[Sensor[t.Any]] + if develop: + try: + sensors = [get_sensor_by_path(develop)] + except RuntimeError as error: + click.secho(str(error), fg="red", bold=True) + sys.exit(ReturnCodes.BAD_SENSOR_PATH) + else: + sensors = get_sensors() + for sensor in sensors: + click.secho(sensor.title, bold=True) + click.echo(str(sensor)) + click.echo("") + sys.exit(ReturnCodes.OK) + + +if __name__ == "__main__": + show_sensors() diff --git a/Ch10/apd.sensors-chapter10/src/apd/sensors/py.typed b/Ch10/apd.sensors-chapter10/src/apd/sensors/py.typed new file mode 100644 index 0000000..e69de29 diff --git a/Ch10/apd.sensors-chapter10/src/apd/sensors/sensors.py b/Ch10/apd.sensors-chapter10/src/apd/sensors/sensors.py new file mode 100644 index 0000000..e45c047 --- /dev/null +++ b/Ch10/apd.sensors-chapter10/src/apd/sensors/sensors.py @@ -0,0 +1,189 @@ +#!/usr/bin/env python +# coding: utf-8 +import math +import os +import socket +import sys +import typing as t + +import psutil +from pint import _DEFAULT_REGISTRY as ureg + +from .base import Sensor, JSONSensor, version_info_type + + +class PythonVersion(JSONSensor[version_info_type]): + name = "PythonVersion" + title = "Python Version" + + def value(self) -> version_info_type: + return version_info_type(*sys.version_info) + + @classmethod + def from_json_compatible(cls, json_version: t.Any) -> version_info_type: + return version_info_type(*json_version) + + @classmethod + def format(cls, value: version_info_type) -> str: + if value.micro == 0 and value.releaselevel == "alpha": + return "{0.major}.{0.minor}.{0.micro}a{0.serial}".format(value) + return "{0.major}.{0.minor}".format(value) + + +class IPAddresses(JSONSensor[t.Iterable[t.Tuple[str, str]]]): + name = "IPAddresses" + title = "IP Addresses" + FAMILIES = {"AF_INET": "IPv4", "AF_INET6": "IPv6"} + + def value(self) -> t.List[t.Tuple[str, str]]: + hostname = socket.gethostname() + addresses = socket.getaddrinfo(hostname, None) + + address_info: t.List[t.Tuple[str, str]] = [] + for address in addresses: + family, ip = (address[0].name, address[4][0]) + if family not in self.FAMILIES: + continue + value = (family, ip) + if value not in address_info: + address_info.append(value) + return address_info + + @classmethod + def format(cls, value: t.Iterable[t.Tuple[str, str]]) -> str: + return "\n".join( + "{0} ({1})".format(address[1], cls.FAMILIES.get(address[0], "Unknown")) + for address in value + ) + + +class CPULoad(JSONSensor[float]): + name = "CPULoad" + title = "CPU Usage" + + def value(self) -> float: + return float(psutil.cpu_percent(interval=3)) / 100.0 + + @classmethod + def format(cls, value: float) -> str: + return "{:.1%}".format(value) + + +class RAMAvailable(JSONSensor[int]): + name = "RAMAvailable" + title = "RAM Available" + UNITS = ("B", "KiB", "MiB", "GiB", "TiB", "PiB", "EiB") + UNIT_SIZE = 2 ** 10 + + def value(self) -> int: + return int(psutil.virtual_memory().available) + + @classmethod + def format(cls, value: int) -> str: + magnitude = math.floor(math.log(value, cls.UNIT_SIZE)) + max_magnitude = len(cls.UNITS) - 1 + magnitude = min(magnitude, max_magnitude) + scaled_value = value / (cls.UNIT_SIZE ** magnitude) + return "{:.1f} {}".format(scaled_value, cls.UNITS[magnitude]) + + +class ACStatus(JSONSensor[t.Optional[bool]]): + name = "ACStatus" + title = "AC Connected" + + def value(self) -> t.Optional[bool]: + battery = psutil.sensors_battery() + if battery is not None: + value = battery.power_plugged + if value is None: + return None + else: + return bool(value) + else: + return None + + @classmethod + def format(cls, value: t.Optional[bool]) -> str: + if value is None: + return "Unknown" + elif value: + return "Connected" + else: + return "Not connected" + + +class DHTSensor: + def __init__(self) -> None: + self.board = os.environ.get("APD_SENSORS_TEMPERATURE_BOARD", "DHT22") + self.pin = os.environ.get("APD_SENSORS_TEMPERATURE_PIN", "D20") + + @property + def sensor(self) -> t.Any: + try: + import adafruit_dht + import board + + # Force using legacy interface + adafruit_dht._USE_PULSEIO = False + + sensor_type = getattr(adafruit_dht, self.board) + pin = getattr(board, self.pin) + return sensor_type(pin) + except (ImportError, NotImplementedError, AttributeError): + # No DHT library results in an ImportError. + # Running on an unknown platform results in a + # NotImplementedError when getting the pin + return None + + +class Temperature(Sensor[t.Optional[t.Any]], DHTSensor): + name = "Temperature" + title = "Ambient Temperature" + + def value(self) -> t.Optional[t.Any]: + try: + return ureg.Quantity(self.sensor.temperature, ureg.celsius) + except (RuntimeError, AttributeError): + return None + + @classmethod + def format(cls, value: t.Optional[t.Any]) -> str: + if value is None: + return "Unknown" + else: + return "{:.3~P} ({:.3~P})".format(value, value.to(ureg.fahrenheit)) + + @classmethod + def to_json_compatible(cls, value: t.Optional[t.Any]) -> t.Any: + if value is not None: + return {"magnitude": value.magnitude, "unit": str(value.units)} + else: + return None + + @classmethod + def from_json_compatible(cls, json_version: t.Any) -> t.Optional[t.Any]: + if json_version: + return ureg.Quantity(json_version["magnitude"], ureg[json_version["unit"]]) + else: + return None + + def __str__(self) -> str: + return self.format(self.value()) + + +class RelativeHumidity(JSONSensor[t.Optional[float]], DHTSensor): + name = "RelativeHumidity" + title = "Relative Humidity" + + def value(self) -> t.Optional[float]: + try: + return float(self.sensor.humidity) + except (RuntimeError, AttributeError): + return None + + @classmethod + def format(cls, value: t.Optional[float]) -> str: + if value is None: + return "Unknown" + else: + return "{:.1%}".format(value) diff --git a/Ch10/apd.sensors-chapter10/src/apd/sensors/wsgi/__init__.py b/Ch10/apd.sensors-chapter10/src/apd/sensors/wsgi/__init__.py new file mode 100644 index 0000000..b279326 --- /dev/null +++ b/Ch10/apd.sensors-chapter10/src/apd/sensors/wsgi/__init__.py @@ -0,0 +1,14 @@ +import flask + +from .base import set_up_config +from . import v10 +from . import v20 +from . import v21 + + +__all__ = ["app", "set_up_config"] + +app = flask.Flask(__name__) +app.register_blueprint(v10.version, url_prefix="/v/1.0") +app.register_blueprint(v20.version, url_prefix="/v/2.0") +app.register_blueprint(v21.version, url_prefix="/v/2.1") diff --git a/Ch10/apd.sensors-chapter10/src/apd/sensors/wsgi/base.py b/Ch10/apd.sensors-chapter10/src/apd/sensors/wsgi/base.py new file mode 100644 index 0000000..c9be130 --- /dev/null +++ b/Ch10/apd.sensors-chapter10/src/apd/sensors/wsgi/base.py @@ -0,0 +1,43 @@ +from hmac import compare_digest +import functools +import os +import typing as t + +import flask + + +ViewFuncReturn = t.TypeVar("ViewFuncReturn") +ErrorReturn = t.Tuple[t.Dict[str, str], int] +REQUIRED_CONFIG_KEYS = {"APD_SENSORS_API_KEY"} + + +def require_api_key( + func: t.Callable[[], ViewFuncReturn] +) -> t.Callable[[], t.Union[ViewFuncReturn, ErrorReturn]]: + @functools.wraps(func) + def wrapped() -> t.Union[ViewFuncReturn, ErrorReturn]: + api_key = flask.current_app.config["APD_SENSORS_API_KEY"] + headers = flask.request.headers + supplied_key = headers.get("X-API-Key", "") + if not compare_digest(api_key, supplied_key): + return {"error": "Supply API key in X-API-Key header"}, 403 + return func() + + return wrapped + + +def set_up_config( + environ: t.Optional[t.Dict[str, str]] = None, + to_configure: t.Optional[flask.Flask] = None, +) -> flask.Flask: + if environ is None: + environ = dict(os.environ) + if to_configure is None: + from apd.sensors.wsgi import app + + to_configure = app + missing_keys = REQUIRED_CONFIG_KEYS - environ.keys() + if missing_keys: + raise ValueError("Missing config variables: {}".format(", ".join(missing_keys))) + to_configure.config.from_mapping(environ) + return to_configure diff --git a/Ch10/apd.sensors-chapter10/src/apd/sensors/wsgi/serve.py b/Ch10/apd.sensors-chapter10/src/apd/sensors/wsgi/serve.py new file mode 100644 index 0000000..0b1f684 --- /dev/null +++ b/Ch10/apd.sensors-chapter10/src/apd/sensors/wsgi/serve.py @@ -0,0 +1,10 @@ +from . import app +from .base import set_up_config + +if __name__ == "__main__": + import wsgiref.simple_server + + set_up_config(None, app) + + with wsgiref.simple_server.make_server("", 8000, app) as server: + server.serve_forever() diff --git a/Ch10/apd.sensors-chapter10/src/apd/sensors/wsgi/v10.py b/Ch10/apd.sensors-chapter10/src/apd/sensors/wsgi/v10.py new file mode 100644 index 0000000..7eee6dd --- /dev/null +++ b/Ch10/apd.sensors-chapter10/src/apd/sensors/wsgi/v10.py @@ -0,0 +1,26 @@ +import json +import typing as t + +import flask + +from apd.sensors.cli import get_sensors +from .base import require_api_key + +version = flask.Blueprint(__name__, __name__) + + +@version.route("/sensors/") +@require_api_key +def sensor_values() -> t.Tuple[t.Dict[str, t.Any], int, t.Dict[str, str]]: + headers = {"Content-Security-Policy": "default-src 'none'"} + data = {} + for sensor in get_sensors(): + value = sensor.value() + try: + json.dumps(value) + except TypeError: + # This value isn't JSON serializable, skip it + continue + else: + data[sensor.title] = sensor.value() + return data, 200, headers diff --git a/Ch10/apd.sensors-chapter10/src/apd/sensors/wsgi/v20.py b/Ch10/apd.sensors-chapter10/src/apd/sensors/wsgi/v20.py new file mode 100644 index 0000000..fe7688f --- /dev/null +++ b/Ch10/apd.sensors-chapter10/src/apd/sensors/wsgi/v20.py @@ -0,0 +1,32 @@ +import typing as t + +import flask + +from apd.sensors import cli +from .base import require_api_key + +version = flask.Blueprint(__name__, __name__) + + +@version.route("/sensors/") +@version.route("/sensors/") +@require_api_key +def sensor_values(sensor_id=None) -> t.Tuple[t.Dict[str, t.Any], int, t.Dict[str, str]]: + headers = {"Content-Security-Policy": "default-src 'none'"} + sensors = [] + for sensor in cli.get_sensors(): + if sensor_id and sensor_id != sensor.name: + continue + try: + value = sensor.value() + sensor_data = { + "id": sensor.name, + "title": sensor.title, + "value": sensor.to_json_compatible(value), + "human_readable": sensor.format(value), + } + sensors.append(sensor_data) + except NotImplementedError: + pass + data = {"sensors": sensors} + return data, 200, headers diff --git a/Ch10/apd.sensors-chapter10/src/apd/sensors/wsgi/v21.py b/Ch10/apd.sensors-chapter10/src/apd/sensors/wsgi/v21.py new file mode 100644 index 0000000..9709a54 --- /dev/null +++ b/Ch10/apd.sensors-chapter10/src/apd/sensors/wsgi/v21.py @@ -0,0 +1,39 @@ +import typing as t + +import flask + +from apd.sensors import cli +from .base import require_api_key + +version = flask.Blueprint(__name__, __name__) + + +@version.route("/sensors/") +@version.route("/sensors/") +@require_api_key +def sensor_values(sensor_id=None) -> t.Tuple[t.Dict[str, t.Any], int, t.Dict[str, str]]: + headers = {"Content-Security-Policy": "default-src 'none'"} + sensors = [] + for sensor in cli.get_sensors(): + if sensor_id and sensor_id != sensor.name: + continue + try: + value = sensor.value() + sensor_data = { + "id": sensor.name, + "title": sensor.title, + "value": sensor.to_json_compatible(value), + "human_readable": sensor.format(value), + } + sensors.append(sensor_data) + except NotImplementedError: + pass + data = {"sensors": sensors} + return data, 200, headers + + +@version.route("/deployment_id") +def deployment_id() -> t.Tuple[t.Dict[str, t.Any], int, t.Dict[str, str]]: + headers = {"Content-Security-Policy": "default-src 'none'"} + data = {"deployment_id": flask.current_app.config["APD_SENSORS_DEPLOYMENT_ID"]} + return data, 200, headers diff --git a/Ch10/apd.sensors-chapter10/tests/test_acstatus.py b/Ch10/apd.sensors-chapter10/tests/test_acstatus.py new file mode 100644 index 0000000..d2fe71e --- /dev/null +++ b/Ch10/apd.sensors-chapter10/tests/test_acstatus.py @@ -0,0 +1,55 @@ +from unittest import mock + +import pytest + +from apd.sensors.sensors import ACStatus + + +@pytest.fixture +def sensor(): + return ACStatus() + + +class TestACStatusFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_True(self, subject): + assert subject(True) == "Connected" + + def test_format_False(self, subject): + assert subject(False) == "Not connected" + + def test_format_None(self, subject): + assert subject(None) == "Unknown" + + +class TestACStatusValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def sensors_battery(self): + with mock.patch("psutil.sensors_battery") as sensors_battery: + yield sensors_battery + + def test_sensors_battery_called(self, subject, sensors_battery): + sensors_battery.return_value.power_plugged = True + assert subject() is True + assert sensors_battery.call_count == 1 + + def test_sensor_but_battery_unknown(self, subject, sensors_battery): + sensors_battery.return_value.power_plugged = None + assert subject() is None + assert sensors_battery.call_count == 1 + + def test_no_sensor(self, subject, sensors_battery): + sensors_battery.return_value = None + assert subject() is None + + def test_str_representation_is_formatted_value(self, sensor, sensors_battery): + sensors_battery.return_value.power_plugged = True + assert str(sensor) == "Connected" + assert sensors_battery.call_count == 1 diff --git a/Ch10/apd.sensors-chapter10/tests/test_api_server.py b/Ch10/apd.sensors-chapter10/tests/test_api_server.py new file mode 100644 index 0000000..7ce8dc3 --- /dev/null +++ b/Ch10/apd.sensors-chapter10/tests/test_api_server.py @@ -0,0 +1,140 @@ +import os +import uuid +from unittest import mock + +import flask +import pytest +from webtest import TestApp + +from apd.sensors.wsgi import set_up_config +from apd.sensors.sensors import PythonVersion +from apd.sensors.wsgi import v10 +from apd.sensors.wsgi import v20 +from apd.sensors.wsgi import v21 + + +@pytest.fixture(scope="session") +def api_key(): + return uuid.uuid4().hex + + +def test_api_key_is_required_config_option(): + app = mock.MagicMock() + with pytest.raises( + ValueError, match="Missing config variables: APD_SENSORS_API_KEY" + ): + set_up_config({"APD_SENSORS_DEPLOYMENT_ID": ""}, to_configure=app) + + +def test_os_environ_is_default_for_config_values(api_key): + app = mock.MagicMock() + os.environ["APD_SENSORS_API_KEY"] = api_key + os.environ["APD_SENSORS_DEPLOYMENT_ID"] = "8f1b57faa04b430c81decbbeee9e300c" + try: + assert app.config.from_mapping.call_count == 0 + set_up_config(None, to_configure=app) + assert app.config.from_mapping.call_count == 1 + assert app.config.from_mapping.call_args[0][0] == os.environ + finally: + del os.environ["APD_SENSORS_API_KEY"] + del os.environ["APD_SENSORS_DEPLOYMENT_ID"] + + +class CommonTests: + @pytest.mark.functional + def test_sensor_values_fails_on_missing_api_key(self, api_server): + response = api_server.get("/sensors/", expect_errors=True) + assert response.status_code == 403 + assert response.json["error"] == "Supply API key in X-API-Key header" + + @pytest.mark.functional + def test_sensor_values_require_correct_api_key(self, api_server): + response = api_server.get( + "/sensors/", headers={"X-API-Key": "wrong_key"}, expect_errors=True + ) + assert response.status_code == 403 + assert response.json["error"] == "Supply API key in X-API-Key header" + + +class Testv10API(CommonTests): + @pytest.fixture + def subject(self, api_key): + app = flask.Flask("testapp") + app.register_blueprint(v10.version) + set_up_config( + { + "APD_SENSORS_API_KEY": api_key, + "APD_SENSORS_DEPLOYMENT_ID": "8f1b57faa04b430c81decbbeee9e300c", + }, + to_configure=app, + ) + return app + + @pytest.fixture + def api_server(self, subject): + return TestApp(subject) + + @pytest.mark.functional + def test_sensor_values_returned_as_json(self, api_server, api_key): + value = api_server.get("/sensors/", headers={"X-API-Key": api_key}).json + python_version = PythonVersion().value() + + sensor_names = value.keys() + assert "Python Version" in sensor_names + assert value["Python Version"] == list(python_version) + + @pytest.mark.functional + def test_unserializable_sensor_is_omitted(self, api_server, api_key): + value = api_server.get("/sensors/", headers={"X-API-Key": api_key}).json + sensor_names = value.keys() + assert "Temperature" not in sensor_names + + +class Testv20API(CommonTests): + @pytest.fixture + def subject(self, api_key): + app = flask.Flask("testapp") + app.register_blueprint(v20.version) + set_up_config( + { + "APD_SENSORS_API_KEY": api_key, + "APD_SENSORS_DEPLOYMENT_ID": "8f1b57faa04b430c81decbbeee9e300c", + }, + to_configure=app, + ) + return app + + @pytest.fixture + def api_server(self, subject): + return TestApp(subject) + + @pytest.mark.functional + def test_sensor_values_returned_as_json(self, api_server, api_key): + value = api_server.get("/sensors/", headers={"X-API-Key": api_key}).json + sensors = value["sensors"] + + python_version = [ + sensor for sensor in sensors if sensor["id"] == "PythonVersion" + ][0] + assert python_version["title"] == "Python Version" + assert python_version["value"] == list(PythonVersion().value()) + + +class Testv21API(Testv20API): + @pytest.fixture + def subject(self, api_key): + app = flask.Flask("testapp") + app.register_blueprint(v21.version) + set_up_config( + { + "APD_SENSORS_API_KEY": api_key, + "APD_SENSORS_DEPLOYMENT_ID": "8f1b57faa04b430c81decbbeee9e300c", + }, + to_configure=app, + ) + return app + + @pytest.mark.functional + def test_deployment_id(self, api_server, api_key): + value = api_server.get("/deployment_id", headers={"X-API-Key": api_key}).json + assert value == {"deployment_id": "8f1b57faa04b430c81decbbeee9e300c"} diff --git a/Ch10/apd.sensors-chapter10/tests/test_cpuusage.py b/Ch10/apd.sensors-chapter10/tests/test_cpuusage.py new file mode 100644 index 0000000..445f4e5 --- /dev/null +++ b/Ch10/apd.sensors-chapter10/tests/test_cpuusage.py @@ -0,0 +1,45 @@ +from unittest import mock + +import pytest + +from apd.sensors.sensors import CPULoad + + +@pytest.fixture +def sensor(): + return CPULoad() + + +class TestCPULoadFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_simple_percentage(self, subject): + assert subject(0.05) == "5.0%" + + def test_format_multiple_decimal_places(self, subject): + assert subject(0.031415926) == "3.1%" + + def test_format_multiple_decimal_places_int(self, subject) -> None: + assert subject(1) == "100.0%" + + +class TestCPULoadValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def cpuload(self): + with mock.patch("psutil.cpu_percent") as cpu_percent: + cpu_percent.return_value = 50.1 + yield cpu_percent + + def test_cpu_percent_called_With_interval(self, subject, cpuload): + assert subject() == 0.501 + assert cpuload.call_count == 1 + assert tuple(cpuload.call_args) == ((), {"interval": 3}) + + def test_str_representation_is_formatted_value(self, sensor, cpuload): + assert str(sensor) == "50.1%" diff --git a/Ch10/apd.sensors-chapter10/tests/test_dht.py b/Ch10/apd.sensors-chapter10/tests/test_dht.py new file mode 100644 index 0000000..52a5ee9 --- /dev/null +++ b/Ch10/apd.sensors-chapter10/tests/test_dht.py @@ -0,0 +1,67 @@ +import pytest + +from apd.sensors.sensors import Temperature, RelativeHumidity, ureg + + +@pytest.fixture +def temperature_sensor(): + return Temperature() + + +@pytest.fixture +def humidity_sensor(): + return RelativeHumidity() + + +class TestTemperatureFormatter: + @pytest.fixture + def subject(self, temperature_sensor): + return temperature_sensor.format + + @staticmethod + def to_degc(magnitude): + return ureg.Quantity(magnitude, "degree_Celsius") + + def test_format_21c(self, subject): + assert subject(self.to_degc(21.0)) == "21.0 °C (69.8 °F)" + + def test_format_negative(self, subject): + assert subject(self.to_degc(-32.0)) == "-32.0 °C (-25.6 °F)" + + def test_format_unknown(self, subject): + assert subject(None) == "Unknown" + + +class TestTemperatureSerializer: + @pytest.fixture + def serialize(self, temperature_sensor): + return temperature_sensor.to_json_compatible + + @pytest.fixture + def deserialize(self, temperature_sensor): + return temperature_sensor.from_json_compatible + + @staticmethod + def to_degc(magnitude): + return ureg.Quantity(magnitude, "degree_Celsius") + + def test_serialize_21c(self, serialize): + assert serialize(self.to_degc(21.0)) == {"magnitude": 21.0, "unit": "degree_Celsius"} + + def test_serialize_negative(self, serialize): + assert serialize(self.to_degc(-32.3)) == {"magnitude": -32.3, "unit": "degree_Celsius"} + + def test_deserialize_21c(self, deserialize): + assert deserialize({"magnitude": 21.0, "unit": "degree_Celsius"}) == self.to_degc(21.0) + + +class TestHumidityFormatter: + @pytest.fixture + def subject(self, humidity_sensor): + return humidity_sensor.format + + def test_format_percentage(self, subject): + assert subject(0.035) == "3.5%" + + def test_format_unknown(self, subject): + assert subject(None) == "Unknown" diff --git a/Ch10/apd.sensors-chapter10/tests/test_ipaddresses.py b/Ch10/apd.sensors-chapter10/tests/test_ipaddresses.py new file mode 100644 index 0000000..bd61d85 --- /dev/null +++ b/Ch10/apd.sensors-chapter10/tests/test_ipaddresses.py @@ -0,0 +1,59 @@ +import socket +from unittest import mock + +import pytest + +from apd.sensors.sensors import IPAddresses + + +@pytest.fixture +def sensor(): + return IPAddresses() + + +class TestIPAddressFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_single_ipv4(self, subject): + ips = [("AF_INET", "192.0.2.1")] + assert subject(ips) == "192.0.2.1 (IPv4)" + + def test_format_single_ipv6(self, subject): + ips = [("AF_INET6", "2001:DB8::1")] + assert subject(ips) == "2001:DB8::1 (IPv6)" + + def test_format_mixed_list(self, subject): + ips = [("AF_INET", "192.0.2.1"), ("AF_INET6", "2001:DB8::1")] + assert subject(ips) == "192.0.2.1 (IPv4)\n2001:DB8::1 (IPv6)" + + def test_unusual_protocols_are_marked_as_unknown(self, subject): + ips = [("AF_IRDA", "ffff")] + assert subject(ips) == "ffff (Unknown)" + + +class TestIPAddressesValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def gethostname(self): + with mock.patch("socket.gethostname") as gethostname: + gethostname.return_value = "localhost" + yield gethostname + + @pytest.fixture + def getaddrinfo(self, gethostname): + with mock.patch("socket.getaddrinfo") as getaddrinfo: + yield getaddrinfo + + def test_getaddrinfo_used_for_value_collection(self, getaddrinfo, subject): + getaddrinfo.return_value = [(socket.AF_INET, 0, 0, "", ("192.0.2.1", 0))] + assert subject() == [("AF_INET", "192.0.2.1")] + assert getaddrinfo.call_count == 1 + + def test_str_representation_is_formatted_value(self, getaddrinfo, sensor): + getaddrinfo.return_value = [(socket.AF_INET6, 0, 0, "", ("2001:DB8::1", 0))] + assert str(sensor) == "2001:DB8::1 (IPv6)" diff --git a/Ch10/apd.sensors-chapter10/tests/test_pythonversion.py b/Ch10/apd.sensors-chapter10/tests/test_pythonversion.py new file mode 100644 index 0000000..43ad806 --- /dev/null +++ b/Ch10/apd.sensors-chapter10/tests/test_pythonversion.py @@ -0,0 +1,61 @@ +from collections import namedtuple +from unittest import mock + +import pytest + +from apd.sensors.sensors import PythonVersion + + +@pytest.fixture +def version(): + return namedtuple( + "sys_versioninfo", ("major", "minor", "micro", "releaselevel", "serial") + ) + + +@pytest.fixture +def sensor(): + return PythonVersion() + + +class TestPythonVersionFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_py38(self, subject, version): + py38 = version(3, 8, 0, "final", 0) + assert subject(py38) == "3.8" + + def test_format_large_version(self, subject, version): + large = version(255, 128, 0, "final", 0) + assert subject(large) == "255.128" + + def test_alpha_of_minor_is_marked(self, subject, version): + py39 = version(3, 9, 0, "alpha", 1) + assert subject(py39) == "3.9.0a1" + + def test_alpha_of_micro_is_unmarked(self, subject, version): + py39 = version(3, 9, 1, "alpha", 1) + assert subject(py39) == "3.9" + + +class TestPythonVersionValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def python_version(self): + import sys + + return sys.version_info + + def test_data_value_is_sys_versioninfo(self, python_version, subject): + assert subject() == python_version + + +class TestPythonVersionSensor: + def test_str_representation_is_formatted_value(self, sensor, version): + with mock.patch("sys.version_info", new=version(3, 4, 1, "final", 1)): + assert str(sensor) == "3.4" diff --git a/Ch10/apd.sensors-chapter10/tests/test_ramusage.py b/Ch10/apd.sensors-chapter10/tests/test_ramusage.py new file mode 100644 index 0000000..197ad06 --- /dev/null +++ b/Ch10/apd.sensors-chapter10/tests/test_ramusage.py @@ -0,0 +1,47 @@ +from unittest import mock + +import pytest + +from apd.sensors.sensors import RAMAvailable + + +@pytest.fixture +def sensor(): + return RAMAvailable() + + +class TestRAMAvailableFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_bytes(self, subject): + assert subject(15) == "15.0 B" + + def test_format_kibibytes(self, subject): + assert subject(15000) == "14.6 KiB" + + def test_format_mibibytes(self, subject): + assert subject(15000000) == "14.3 MiB" + + def test_format_gibibytes(self, subject): + assert subject(15000000000) == "14.0 GiB" + + +class TestRAMAvailableValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def virtual_memory(self): + with mock.patch("psutil.virtual_memory") as virtual_memory: + virtual_memory.return_value.available = 1024 + yield virtual_memory + + def test_virtual_memory_called(self, subject, virtual_memory): + assert subject() == 1024 + assert virtual_memory.call_count == 1 + + def test_str_representation_is_formatted_value(self, sensor, virtual_memory): + assert str(sensor) == "1.0 KiB" diff --git a/Ch10/apd.sensors-chapter10/tests/test_sensors.py b/Ch10/apd.sensors-chapter10/tests/test_sensors.py new file mode 100644 index 0000000..c67a180 --- /dev/null +++ b/Ch10/apd.sensors-chapter10/tests/test_sensors.py @@ -0,0 +1,88 @@ +import json +from unittest import mock + +from click.testing import CliRunner + +import pytest + +import apd.sensors.cli +import apd.sensors.sensors + + +def test_sensors(): + assert hasattr(apd.sensors.sensors, "PythonVersion") + + +@pytest.mark.functional +def test_first_sensor_is_first_two_lines_of_cli_output(): + runner = CliRunner() + with mock.patch("apd.sensors.cli.get_sensors") as get_sensors: + get_sensors.return_value = [apd.sensors.sensors.PythonVersion()] + result = runner.invoke(apd.sensors.cli.show_sensors) + python_version = str(apd.sensors.sensors.PythonVersion()) + assert ["Python Version", python_version] == result.stdout.split("\n")[:2] + + +class TestSensorFromPath: + @pytest.fixture + def subject(self): + return apd.sensors.cli.get_sensor_by_path + + def test_get_sensor_by_path(self, subject): + assert isinstance( + subject("apd.sensors.sensors:PythonVersion"), + apd.sensors.sensors.PythonVersion, + ) + + def test_invalid_format(self, subject): + with pytest.raises(RuntimeError, match="dotted.path.to.module:ClassName"): + subject("apd.sensors.sensors.PythonVersion") + + def test_invalid_module(self, subject): + with pytest.raises(RuntimeError, match="Could not import module"): + subject("apd.nonsense.sensor:FakeSensor") + + def test_missing_sensor(self, subject): + with pytest.raises(RuntimeError, match="Could not find attribute"): + subject("apd.sensors.sensors:FakeSensor") + + def test_invalid_sensor(self, subject): + with pytest.raises(RuntimeError, match="is not recognised as a Sensor"): + subject("apd.sensors.sensors:Sensor") + + +@pytest.mark.functional +def test_develop_option_finds_sensor_by_path(): + runner = CliRunner() + result = runner.invoke( + apd.sensors.cli.show_sensors, ["--develop", "apd.sensors.sensors:PythonVersion"] + ) + python_version = str(apd.sensors.sensors.PythonVersion()) + assert ["Python Version", python_version, "", ""] == result.stdout.split("\n") + + +class TestDefaultSerializer: + @pytest.fixture + def python_version(self): + return apd.sensors.sensors.PythonVersion() + + @pytest.fixture + def serialize(self, python_version): + return python_version.to_json_compatible + + @pytest.fixture + def deserialize(self, python_version): + return python_version.from_json_compatible + + def test_serialize_deserialize_is_symmetric( + self, python_version, serialize, deserialize + ): + value = python_version.value() + serialized = serialize(value) + json_version = json.dumps(serialized) + assert ( + json_version == f"[{value.major}, {value.minor}, {value.micro}," + f' "{value.releaselevel}", {value.serial}]' + ) + deserialized = deserialize(serialized) + assert deserialized == value diff --git a/Ch10/chapter10-yappi.ipynb b/Ch10/chapter10-yappi.ipynb new file mode 100644 index 0000000..153122f --- /dev/null +++ b/Ch10/chapter10-yappi.ipynb @@ -0,0 +1,3140 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAEwsAAAmZCAYAAABbjid3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdd5RkVdWw8WcPM+TMkNMgIAiISBSUJAgoiqAEBcQhmMWE8XsNmHPEHMiCooKBFzGg6IsEQVCRoIiAgkgacmZmf3+cGqm+fau7UndVM89vrV5w973nnF1xrened5/ITCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNn2mDTkCSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJElSPZuFSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSUPKZmGSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEnSkLJZmCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkjSkbBYmSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDSmbhUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJElDymZhkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0pCyWZgkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZI0pGwWJkmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA0pm4VJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJQ8pmYZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSdKQslmYJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSNKRsFiZJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNKZuFSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSUPKZmGSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEnSkLJZmCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkjSkbBYmSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDSmbhUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJElDymZhkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0pCyWZgkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZI0pGwWJkmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA0pm4VJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJQ8pmYZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSdKQslmYJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSNKRsFiZJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNKZuFSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSUPKZmGSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEnSkLJZmCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkjSkbBYmSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDSmbhUmSJEmSJPUgIrLyc/Sgc5I0dfmdIkmSJEmSJEmSJEmSJEkLlog4ulo7NpHjBiUiZtXUyM1eUNaXJEmSJKlX0wedgCRJkiRJemKLiOnARsBTgGUbPwsB9wP3ATcC1wPXZ+bDA0pTkiRJkiRJkiRJkiRJkiRJkiRJkiRJGko2C5MkSZIkSX0XEYsA+wCHAc8CFmtj2KMR8RfgYuA3wM8z8/aJy1KSJEmSJEmSJEmSJEmSJI0nImYB13Uw5GHgHuBu4FrgMuBC4KeZ+Ui/85svIp4NnFNz6meZuUef1tgJ+PUYl+ycmef2YZ1DgBPGuGSdzLy+13UkSZIkSZI0dUwbdAKSJEmSJOmJJSL2Av4OnAo8h/YahQHMAJ4OvBL4NnBLRHxhQpKUpD6JiOsjIpt+jh90TpIkSZIkSZIkSZIkSdKALQKsCKwH7A68E/ghcFNEfDwilpygdQ9vEX9ORKw1QWtWHTZk80iSJEmSJOkJwmZhkiRJkiSpL6L4MvAjYI0+TDkNmKziHEmSJEmSJEmSJEmSJEmSNLFmAm8H/hIR2/Zz4ohYFnhRi9PTgNn9XG8ML46IpXuZICKeBOzQp3wkSZIkSZL0BDF90AlIkiRJkqQnjK8Cr2xx7p/Ar4ArgNuA+4ElgeWA9YEtgKdRdhOUJEmSJEmSJEmSJEmSJEnD7X7g7y3OLQ4sD6zQ4vzawNkRsWNm/rFP+RwELDrG+UMj4oOZmX1ar5XFgQOAb/Qwx2FA9CcdSZIkSZIkPVHYLEySJEmSJPUsIvamvlHYpZRdAH81XoFNRCwO7AHs0/hZot95StKwy0yL/CRJkiRJkiRJkiRJkjQVXJKZO411QUSsAbwAOApYt3J6aeD7EfGUzHy0D/kcXjlORjbcmgXsAvyyD2tV3UnZPHW+w+iyWVhETANeXgnPoTRf0xNUZh4NHD3gNCRJkiRJ0pCbNugEJEmSJEnS1BYRAXy25tTpwHaZeU47O/Fl5gOZeXpmvgxYHXgzcE1/s5UkSZIkSZIkSZIkSZIkSZMhM2/MzK8AT6PUFFatC7yq13UiYjPg6ZXwZ4FHKrHDel2rhe8Ac5uOnxERT+lyrt2BNZqO7wJ+2m1ikiRJkiRJeuKwWZgkSZIkSerVdpQd95rdBMzOzIe7mTAz787Mz2Xm23pNTpIkSZIkSZIkSZIkSZIkDU5m3g8cBFxVc/plfVjiiOqSwOeBMyvxF0XEcn1Yr+rfwM8rsW4bk1XHnQI81OVckiRJkiRJegKxWZgkSZIkSerVc2tix2fmvZOeiSRJkiRJkiRJkiRJkiRJGjqZ+RDw0ZpTW0bE8t3OGxGLAgdWwudm5j+BEyrxRShNyybCsZXjl0XE9E4miIgVgL3GmVeSJEmSJEkLqI5+2SRJkiRJklRj7ZrYHyY9ixYiYiVgS2Clxs9c4FbgFuDCzLxngOmN0Mh1Q2BdYFlgCeBeYA5wE/D7zLxvknJZFtiqKZdpjTx+mpk3TFIOawGbA6sBywH3AdcBF2fmzZOUw2LA1sCqlPfPksAdwG3AnzLz2knIYRngGcD6wDKU5+E24NLMvHoC190EWI/yuFcAHmisez3lNXh0otZurL8QsBmwEbAysChwP/DnzDynzfFPonymVgeWBhYC7mz8XA1cnpnzJuQBDImICOCplPfPisDywN2U78HrKO+jCX8OBvU+liRJkiRJkiRJkiRJ0lA5uyY2DdgAuKDLOV9EqS9rdmLjv2dRalRWbDp3OPDFLtcay4+B24GZjeOVgec14u06GFi46fjPmfmHUgI0HBbEuqyIWJ3yeGdRap8WA+6h1FT+k1JP99DAEuyTiFiYUjO4IbAK5bWF8jjnUF7Xv05SLtMptb8bUz5T84CbKTVvF2bm3MnIo13DUGsqSZIkSVow2CxMkiRJkiT1aqWa2P2TnkWTxh/dXw8cQGk21apS5rGIuAA4HjhhsosHImIpyi6AuwE7AWuNM2RuRFwGfA04MTMf6WLN44GXN4VuyMxZTeefC7wF2JlSwFN1KOX5mhCNxkYvB15LaVZWJyPid8DHM/PMprHXM7J53QmZObuLHKZRdo88GNiB0qSq1bXXAacBn8rM2ztc53jGfi02A95NeY/MaDHHDcCnga/2o3lXRGwKvAnYndKkrZX7IuKXlNfgwg7X2An4dSW8c2ae2zi/FvB2ym6f1SI+gN8Atc3CImJ9SvHfs4FnUhrujeXuiPgF5fW7qM38Z1EKjlp5eUS8fIzzAGRm7fdSRGQl9P7MPLqd3CrzPJnyPD6PUoDUyh0R8TPKc3BZF+scz5C9jyVJkiRJkiRJkiRJkjScMvO2iLiHx5sQzTez7vo2HV45fgD4fmO9xyLiFOCNTec3i4ind1MrM5bMfCQivl1Z6zA6axZ2WOX42J4T64PJqMtqrHM5sElT6DZg9V5qiiLipcAplfDrMvPLY4yZCewD7ArsSGn8NpZHIuJCShO6H3TTKC0ijgbe1xxrVWPWT436rr0pNaPbAIuMc/1twJmU1/bKCchnZeCdwGzKRrd1bo2I04APZOZt/c6hXZNVaypJkiRJUrNpg05AkiRJkiRNeXW7oa1dE5sUEXEAcA3wCWALWjcKg9JIfXvgW8CfImKHic+wiIhPALcCJwOHMH6jMCjNu7YEvgFcGxHb9zGfJSPi+5SdFHelvlHYhGo0YfotcBytG4VBeU2fBfwkIr4bEYv3MYc9gMspO0vuxhjFGw3rAO8A/hERbxzn2nZzmBYRHwQuAV5MiwZLDWsDXwAuioi6xn3trrlqo1Dtj5SGcGM1CoOy693ewAUR8cOIWL7btSt5HA5cBbyO+kZhrcatEBGXAn8DPkZ57cYrSIOyy+O+wIUR8aOIaFVcNGVExOIR8WXgCkoh5FiNwgBWoDRm+0NEnBQRbT/v4+Qx6e9jSZIkSZIkSZIkSZIkTQn31cSqzcPaEhHrUJocNTs9M5vXOKFmaLXBWL98q3K8Z7v1MBGxJbBpU+gRSn3hwAygLuu4yvGKwJ7t5tvC7Mrxw8CprS5uNJe7Gfg6sD/jNwoDWJjSLOo04C8RsXFXmU6iiNgwIv4KXEZpUrYD4zQKa1iRUmP4l4j4RkS0M6bdnJ4HXEnZ8HSs98xKlA2Fr4qIl/Rr/U4MQ62pJEmSJGnBZLMwSZIkSZLUq//UxPaf9CyAiHgP8B1g9S6Gbwz8IiIO7G9WLW3N+MUBY1kDOCciXtZrIhGxBHAOpaHPQETEupRGYc/qcOj+wE8jYuE+5PBW4H+BjboYvhTwuYj4ZkRM7yGHaZTikXfTWcO2pwO/jYglu1jzacDvKQ2jutmJ8IWUoq4ndzG2OY+3Ad8Eumn+thTlOejFXsDvI2KNHucZmMaOlr8CXkNphtjRcMoOh+dFRDvNC8fKY9Lfx5IkSZIkSZIkSZIkSZoy6poA3dPlXIcxuubpxOaDzLyM0tSn2UER0Uv9Xq3MvBz4Q1NoOtBujd9hleMfZ+YdfUmse5Ndl3Uy8Ggldmi3CzfW3LUS/mFm3jnGsO3ovPaq2VMo9XTVdYfNKkAvNX8BHEGp9+qq2d+IySJeAPwI6GTj0hWAUyLilb2u34lhqDWVJEmSJC24/MekJEmSJEnq1flA9Q/tu0bEkZl5zGQl0WgU9oGaU48BvwZ+CdxE+X3ImsDzgGcwslBoYeDkiHgsM0+b2IxHSEox0uXAVcBtlOKnuZTCgCcBW1F2QJzRNG4G8I2IuCIzL+1h/a9TmpfN92/gLODPwK2UXRvXphTt9F1ELENpcLRmzel/AD+k7Ex4J2VXuqdSGlSt0rhmB+AzPebwMcqubVVzgF9QCrhuBR6gFKttDOwBbFC5/nDgLuCtXabyYeCgpuN/UYpKLgduB5akFBO9mLLTXLMNKLs3vr7dxRq7Uf66MW+zecD/UT7f11Ee02KUJnU7ArswsgnU+sBZEbFFZt7d7vpNdgPe2XT8cCOvcykNCR9rrL1NTa517gMupnyergHuBu6lfMaXoxTp7Ex5LputD3w3InbMzMdazP0I8Kem440Y+bm8E/hnGzn2VUQsRnnONqk5fTtwBo9/plfg8ffRapVrN6I0DNssM+d0mc6kvo8lSZIkSZIkSZIkSZI0NTQ2lazbTPAfXcw1DZhdCd9E2Tiz6kTgk03HywIvAk7pdN02HAts0XR8GPDpsQY0Gpe9tGaeYTORdVlk5q0RcRalPnC+50XESpl5axf5HgJMq8Q6eV7nApcCVwBXA3dQajuDUle5PqUO9ZmVdZYEvhMRT8/Mf3WR9yDcyeOv7bWUx3kfpW5wJqVmcjeguhHl1pRNQnvZZHgd4Bgev985KbWLZwE3No7XBJ5Lea6b634D+GpE3JGZP+ghh7YMUa2pJEmSJGkBZbMwSZIkSZLUq7OABykFAc2+EBHPAT6RmedNZAIR8UzgfTWnzgMOz8y/1Zz7UERsSyn82LB5OuDrEXFRZt7Q/2z/ax7wc0oR0s8z87bxBkTETOC9lCY684sdFgFOoDTQ6sYawIGN/38QeBfw5cys7s4H8O6J2E0R+CyjC0jupRRBfCMzszogIt4AvA04mvI7rtdSmjh1LCL2YXTxxp2U5lUnZuZDLcYFsDfwVWClplNHRcRvM/PHHaayalMe9wJHAcdm5tyatf8fpTneOyunXh0RH83Mm8ZbLCKWA77H6OZbxwFHZ2arhlcfaRTtfQnYvSm+LuXz9OLx1q7xdh5/T/8AeHOrIqkx3oN3UXaW/D5wfov3cHWu7YDPA1s2hbcD3gR8qm5MZv4b2KxpjuspzfTm+3Fmzh5v7QnwWUY3CpsLfBz4YN37OCLeDLwF+CDlu2S+NSkFXC/qIo9JfR9LkiRJkiRJkiRJkiRpSqmrLbqT0qCoU7tT6t+anZyZ82quPZmygV3zBomHMzHNwk6hNAebX+e0UURsk5kXjTHmRZTGQvPdRKkvHAaTUpfV5FhGNgubDhxMdxuKzq4c30jZeHYsjwCnUx7zr9rZPDMi1gY+ysiGbysAXwGe326yA/Af4HjKRpSXtPjs/FejZvK5wOcojdLm2y8i9s3M73eZx9t5/PNyNTC7xeflIxGxdSPn5oZ0AXwlIn6Tmbd3mcO4hqjWVJIkSZK0AKt2RZckSZIkSepIo8nVF1ucfgHwfxFxY0QcGxGviIinRUTfGpg3/oj+LUYW8UBpYrZLi0ZhAGTmBZRdxi6vnFqG1o+pX/bJzN0z89vtNAoDyMzbM/MNwKGVU5tExG5d5jH/ebsf2CMzPz9WMU+rYoZuRcQzGP147mvk8vW6RmGNPB7JzA9TGp3NpRR7LFJ37Tjrr0RpjtXsGmDTxvotH28WZ1AKmm6snP5o473ZiYUpj2MOsH1mfqOuwVJj7Ucz813ANyqnFmL089nKl4BZTcdzgYMz87AxGoXNX/9aStFP9bl7UURs0+b6zea/D48B9htrN8UWr8m/gdUy88jM/E07BWmNuc4HtgfOrpx6Qz+/pyZao2HiqyrhecChmfk/rd7HmTk3Mz9JKTasPmf7REQ3jd8m+30sSZIkSZIkSZIkSZKkKSAiVqVsIFl16nhNilo4vCZ2Yt2FmfkfRjff2jki1uli3TFl5l2U5kvNxquFqT6WE1rV3EyyQdRlnQXcUonNbmfdZo2aqvUr4RPaeK9tlZkvzswz2mkUBpCZN2TmgZTNT5s9LyI2rBkyDH4PrJmZ78rM37fzGWzUTJ4FbANcVjn9lh5ymd8o7ArgWWM11svM31PeW1dUTq1I2VhzQgxZrakkSZIkaQFmszBJkiRJktQP7wUuGOP86pRil68DfwTujYiLIuILEbFvRKzcw9p7AhtUYv8E9s/MR8YbnJlzKLvQPVidNyKq8/ZNu0UkLcaeQNmlr9kRvWXEOzPztz3O0Y3X1cTe1igWGldmfo+yA2G33khpDjffA5RGZdWCjLFy+Bfwkkp4I2CvLnM6NDP/1Oa17wSqRSa7jzeo8d4+oBL+n8z8dpvr0mjk9ipG7+r5znbnqPg98OZWDeLGyeWRzKx+htsd+xDwcsprP9+aQLcN+AbhzTWxz2XmSe0MbhRwvafm1FE95DTh72NJkiRJkiRJkiRJkiRNDRGxLqVx1IqVUw8AH+1ivpmUzUybXZKZV44x7ITqNEzchnbHVo5fEhGL1V0YEbOAnSvhalOigRhEXVZmPgacXAk/NSK26DCFutd23Oe1l9pO4APAxU3HARzWw3wTJjMfaDzX3Yy9EzikEt42IjbqIaVHgBdl5h1trH8HZYPMao3wQY3vhokwjLWmkiRJkqQFkM3CJEmSJElSzxpFHc8DftLmkEWBrYEjge8BN0fEuRFxWEQsOvbQUV5fE3trZt7f7gSZeR2jdxQL6htZDYvqDojP6mGua4Ev9TC+KxGxLLBfJXwVpalcJ94H3NXF+ksCr62EP52Z/+h0rsz8HXBOJbxPp/MAv8nMH3ew7hzKTorNNouI8X7v9zZG/m7wOuBT7a7btP6jwEcq4ed28TmG0iRuILthZuatjN7FspfP1KSJiNWBvSvhWylNHDvxGcpOh822jYjNu0hrst7HkiRJkiRJkiRJkiRJGkIRsWhErB4Re0bE14E/A5vWXPqKTprtNDkEWLgSq9bUVf0IqDaCmj1BNSrnADc0HS8DvLjFtYdS6hXn+21m/n0Ccpp0PdRlVZutAcxud92IWBzYvxL+bWZe2+4c3WhslFnd4HFK1KF1KjP/AlxaCffyWI/JzL91sP7fgGMq4UXo4H3SriGtNZUkSZIkLaC82UqSJEmSJPVFZt4FvJBShNNpoUoAOwLfAv4aEQe1NShi4ca4Zv8BzuhwfYCvAdVd0p7TxTyTpdrUZ9WIWKvLuY5rFKlMtmdSijOquczrZJLMvA/4bhfr7wosW4l9q4t55vvfynH1vdmOb3Qx5veV4yWB1VtdHBFB2VWv2fE9NOqqNnlaBNimwzmuyczfdrl+v1Q/U88YSBadezawUCV2YicNE+G/jd/q3n/dfA9O+PtYkiRJkiRJkoZd48b4XSLi8Ih4R0S8MSL2i4inDTo3SZIkSeqTHSMi636AB4EbgTOBVwCLV8Y+AByUmad0ufZhleNHgVPHGtDYFPW0SnhNYLcucxhrrQSOr4SrOdNoVPbySriuUdZU1nFdVmZeyeh6ogMjolpv2MqLgaUqsePaHNur6uPdPCJmTNLak62fNXfd1JzVbUz73B5yaGUYa00lSZIkSQuo6YNOQJIkSZIkPXHM3xUtIk4F9gAOBPYElu5gmrWAkyNiV+DVmfnwGNduDixaif0wM6tNv8aVmf+JiPOAnZrCG0TECpl5R6fzdapRxPIs4GnAJsCKlOdtSUY3AoLRuyJCee7+2cXyv+5iTD/UFYZUG0+160zgVR2OqRZY3JSZN9Re2Z7rKsezImLZRiO9dv2mi3XrdjtcBvhXi+s3BZarxM7vYl0AMnNORNzdWHO+p9PZYzm32/VbiYjVge0oj/fJlPyWBhZj5E6c861SOe62+d5ke2ZN7PtdznUa8Ik25h/PZLyPJUmSJEmSJD2BRMSTgK2ALRv/3ZyRN/XekJmzBpBaxyJiE+C9wAsY/Xes+ddcQ7lJ+dOZ+cgkpidJkiRJg3YvZWPID2RmV3UhEfEMYONK+KzMvL2N4SdQmpc1Oww4u5tcxnEc5d+H82uVdoqIdTKzuc5sV2DtpuN76b72Z1JMYl3WccDWTcfLA3sB32tj7KGV4/vaHDdKRCwJ7EB5vBsBK1Ae7xLAtJohS1aOFwFWpjTPG2oRsS6lrnNTYF3K41ya8hjqXtvqa9ltzd3VmfnXTgdl5t8i4gpGfh9sFRHTOt20dhzDWGsqSZIkSVpA2SxMkiRJkiT1XaNZ15nAmRGxELAZpRHWlpSbOzagvgFWs9mUYor9x7hm85rYJZ3m2+RiRjYLC0rTo1/2MOeYImI94J3AvoxsttSN6s5l7Ujgjz2u262nVo4fBK7ucq7LuhhTbYK0XET08lxUi3wAZgLtFnA8lJndFATdXRMb671U1/zpmIgYqzHfeKo7f87scPylPaw9QkTsC7yWUqBTV4zVrm4+T4NQ/R58DPhTNxNl5g0RcSuw0hjzj2ey3seSJEmSJEmSpriI2Al4F+XvR8sPNpveRUQA7wGOpv4G2mbrAx8BXhoRB2bmXyY4PUmSJEkaFpcAx3TbKKzh8JrYie0MzMzfRcTfgfWawi+MiJltNhtrW6MW51fALo1QUOoi39d02WGVYd/NzPv7mUe/DKAu61TgM5QmZPPNZpymXxGxNiPrQAFO6/R5jYgtgLdRGpQtNs7l41mWIW0WFhHTKJ+pV1AauPei25q7P/Sw5qWMbBa2FKWJXbe1qHWGrdZUkiRJkrQAs1mYJEmSJEmaUJk5l/KH/P/+MT8iFge2AXYG9gM2bDF8v4g4MjOPaXG+riHRVT2ke2Wba/RFRLwX+H+UXdf6oZvGOvdl5gN9Wr9TK1SO/9V4v3QsM2+KiEeBGR0MW6NyvDjwtG7WH8MKwN/bvHZOl2s8WhMb63moPm5o/RnsVvW1Hc+tvS4YEasBJwHP7nWuhqnSqKr6HXVdZj7Uw3xXMbJZWKffgZP1PpYkSZIkSZI09W0G7DboJProG4y+YX0e5Ub464GFgY0oN6zO91TgnIjYNjP/MRlJSpIkSVIf3U99bdQMYDlg1ZpzOwMXR8TszDy10wUjYgnggEp4DmVz03adCHyg6Xhh4GDgc53m04ZjebxZGMDsiHh/Zs6LiOWAvWuuHyqDqsvKzLsj4gzgwKbw7hGxambePMbQ2Yxu4n1cu8lFxAzgs8Br6K0pWrOhrEWLiKcA36ZsqtsP3T7Ov/awZl1TsJVaxLs1bLWmkiRJkqQFWL9+WSFJkiRJktS2zHwgM3+dme/NzKcAewBXtLj83Y3mYnWWq4n1srPWnTWxCdnJPiK+BLyf/jUKg+4a69zTx/U7VX397u5xvk7HT8hrW9HJjoJ1zZImQqeNvLrR6U6KPb0PI2J14Fz6V5AGU2ejhernqNfdBavfg4uM8R1cZ7Lex5IkSZIkSZKeuB4Grh10Ep2IiCMZ3SjsO8BamblNZh6Qmftk5gbA1sBlTdetBPw0IhadpHQlSZIkqV8uyczNan42zszVKHVKsxndtGdh4KSIeEEXa+4PLFWJfSczH+lgjhOBrMSq/6brl9MZWc+zFo83DzuIkfWDV2fmBROUR1eGoC6r2uRrIeBlrS6OiAAOqYSvyczz2lms0Sjse8Dr6O+9t0O3aWJEbAL8hv41CoPuH2cvtaN1Y5ftYb46w1ZrKkmSJElagNksTJIkSZIkDVxm/gzYCvhpzemVgL1aDK0W/UDZrbBbdWPr1uhJRBwMvLbm1BzgW8BhwPbALEojoMUyM5p/gHX6lM5jfZqnG9VGaZ0UbNV5uN0LG82P+tmobSqpa7I3aL2+D48H1q+J/xH4KLAPsDmwCrA0sHDNZ+r9PeYwKNXvqF6+A1uN7/v3oCRJkiRJkiQ1PEr5Xe43gVcBW1B+J3nEIJPqRESsAHykEj4mM1+ambxgrjgAACAASURBVDdVr8/Mi4EdgN83hZ8MvGnispQkSZKkyZeZczLzBGAzSkPlZgsBJ0fErA6nrWvqdWKHed1AaZLUbJOI2LrDXNpZ6yHg1Er40MZ/D6vEj+33+n1wPIOtyzoHuKESO7TuwoYdgSdVYtWGY2N5B/DCmvhNwJeBg4FtgTUpDakWrXm8O3ew3kA0mqKdBqxYc/p3wNHA84GnUWp4lwKm1zzWE/qU0tDW/S7gtaaSJEmSpCHUSRd2SZIkSZKkCZOZD0bESyg7xc+snN6F0cVCAPfWxJboIY26sXVrdK1RZPGJmlMfAz6QmQ+2OdUTYRex6o5uvRZoLN3BtQ8B8xjZTP+HmblPjzlMBXXvseUy866a+NCLiD2BXSvhW4FDGo0I2zVVP1P3MnInxF6+A1uN7+v3oCRJkiRJkiQ1nAB8tXHj9AgRMYB0unYksGTT8VXAUWMNyMz7IuIg4EpgRiP8roj4WmbeOTFpSpIkSdJgZObDEfEyYGVGNlJamrK55i7tzBMRGwDPrDl1YZ/+HXkYIxs798txwGuajveJiJ2BpzfFHgNOmoC1uzYMdVmZmRFxAvDepvCGEfGMzLywZki1kdhc2mwmFxErAe+qhB8D3gZ8MTPb3RBzKtShvRJ4SiV2LfCSzLykg3n69ViHue53Qa41lSRJkiQNoWnjXyJJkiRJkjQ5MvMeyk50VRu0GFJ3s8SyNbF21Y2d08N8dXYEVq3EjsnMd3XQKAxg+T7mNCjV12+FbieKiIUZeSPOmDJzHlBtjrVOt+tPMbfXxGZNdhJ99NLK8VzgBR0WpMHU/UxVP0e9fAfWjX84Mx/ocU5JkiRJkiRJGiUz76xrFDYFvaBy/PnMfHS8QZn5d+CHTaGlgRf1MzFJkiRJGhaNRkuHAPdUTj07Ig5oc5rD+5vVKC+NiMX7PWlmXgxc3hRaFDi5ctlZmfmffq/do2GpyzoeyEpsdvWiiFgSeHEl/PPMvKnNdfYCqq//OzLzcx00CoOpUYdWfW3vBXbtsFEY9O+xLtPnsX3bOHUBrzWVJEmSJA0hm4VJkiRJkqRhU7cz38wW195WE6vudtaJjWpidY2VevGcyvE84MNdzPOkPuQyaP+qHK8eEct1OddTgU63h7ylcvzkiFiky/WnkurjBth00rPon+pn6uzM7GaHz6n6map+D67T4/u4+j3Y7+9ASZIkSZIkSRq4iFgyInaPiEMj4u0RcVREvCwitoyItmtrI2IpYLNKuJObps+uHO/bwVhJkiRJmlIy80bgvTWnPhIRM8YaGxHTKc3GJtLSTNy/y46rHK9WOT52gtbtxVDUZWXmdcC5lfBLImLRSmx/YIlKrPq8j6X6eO8EvtjB+PmGug6t0VRt20r4xMy8vovp+vVYn9zD2LrNiG/tYb46C2qtqSRJkiRpCNksTJIkSZIkDZu7a2KtdmW7tCa2ZQ9rb1U5zhZr9GLNyvHfMrOuedN4qsUaU1Fd4dAzupyrm3HV9RcDdupy/amk7nl/7qRn0QcRsTCwUiX8f13MsxCwdV+SmnzV76jpjL4xrS0RsRajn88/dDOXJEmSJEmSJA2jRoOwXwFzKI26jgU+DnwKOBG4GLglIj7W5gYnqzGyFvf+Dm+uvbxyvIs3m0qSJEl6gvsK8I9K7EnA4eOMez6wciX2H+BPPf5UjZdHt04CHmlx7lbgfydo3a4MYV1WtenXMsA+ldjsyvEc4McdrFGt7bwoM1u9ZmMZ9trO6u8yoLvXdiX61yxsiz6OvRf4Ww/z1VlQa00lSZIkSUPIZmGSJEmSJGnYVAt6YPSuXPNdCjxUie3dKDDpSESsDGxfCf81M+d0Otc4ZlaOO56/sYvi3v1JZ6AuqIkd2OVcB3Ux5hc1sYO7XH8qOR+4vxLbs82bnoZN9fMEXXymgOcBS3aZQ7WZYcffPz06vybW7Q6n+7U5vyRJkiRJkiRNKRExMyJ+QWkQtjMwY4zLZwLvAK6JiB3GmXr5yvFdHaZWvX4GsGGHc0iSJEnSlNFovvSBmlP/M07z5LomXodm5ma9/DC6CdAOEbFet4+vlcy8HTizxemTMrPVhqqDMgx1Wc1+ANxTiR06/38iYl1G139+OzMf7mCNftR2zqT83mGY9eu1PaDXRJo8JSI26HRQRDwZ2LgSvjgz5/Unrf9aUGtNJUmSJElDyGZhkiRJkiRp2Dy7JnZt3YWZ+Sjw60p4FbprpPVKYHol9vMu5hlPtUlTXeHFeA4EVu1DLgOVmX8Crq6E942IdTqZJyKeRXe78f2M0c3mXtpN0clU0ii4O7sSXgo4agDp9Kr6eYLuPlNv6SGHeyvH/Shu68Q5wNxK7GURsUQnk0TEdOAVNacm4ntQkiRJkiRJkiZN4ybvi4BdK6fuBc4Fvgt8H7gEaL6ZdAXgFxGx+xjTP1I5HuvG9jp112/U4RySJEmSNNWcDPytEluD+toVImJV4LmV8C3UN/DpJpeqw/owb51jO4wP0jDUZf1XZj5A+fd7s10iYs3G/8+uGXZch8v0o7bzdcCiXYybTD2/to0Nb4/sTzr/dUQXY+q+M37aayI1FshaU0mSJEnScLJZmCRJkiRJ6klEvKDT5k5jzLUusH/NqVY76gF8qSb2qYhYvIN11wbeWQlni7l7dXPl+MkRMavdwRGxMvCpfiY0YF+tHC8KfDUiFmpncEQsWTNHWxq7NX69El4IOCUiFutmzinkwzWxtzcar00ZmXk38EAlvFsnc0TEEcBOPaRxZ+X4ST3M1bHM/DdwRiW8MvC+Dqd6E1AtXvpdZl7WbW6SJEmSJEmSNGiNvxedwcjf3f4V2BdYLjN3zsyXZOZ+mbkV5eb0bzRduzBwckSs3mKJOyrHy0VEJzcF120O442mkiRJkp7QMnMu8MGaU+9q8W+q2ZS6rmanNubp1XeAxyqxl7dbv9ahsyj/Dmz+WTkzr5yAtXoyJHVZVdXmX9OAQyJiGnBI5dyfuqh7qtZ2btfJho0RsTHwrg7XHITq44QOX1tKbdr6fcil2ZGNhu9taVxbbVj2MHB8P5OCBb7WVJIkSZI0ZGwWJkmSJEmSerUn8LeIOC4iNux2kohYjXKzRrXJ123AL8cYehZwdSU2i/JH+OltrLsc8KOadX+SmdXdC/vh/2piH29nYEQsT2mc1s2OdcPqWODGSmw34ISIWGSsgRGxLOX52LiH9T/K6J3yNgfOaLw3OhYRa0fEMRGxSQ95TahGIdQPKuEZlMe9QzdzRsQiEfHKiHhzzwl25rzK8U4R8bx2BkbEHsAXelz/8srxJk07Vk6Wz9bEjoqIl7QzOCJ2p76B3Kd7ykqSJEmSJEmSBu+TQPPv638KPD0zf1B3U3lm3pyZrwSOagrPpP4mdih/47iv6XghYMsO8tu2JrZMB+MlSZIkaao6hdF1f6sBr6659tCa2Mn9SCIzbwN+VpPHc/sxf2WtzMz/VH5u7fc6fTTouqwRMvMCRr9nZgO7AGtV4sd2sUS1tnNJ2tywsbFh7I+BMWseh0HjPVetjT0oIp7WzviIOJSJaYq2CHB6O3WbjWtOZ/TzfUqjsddEWCBrTSVJkiRJw8dmYZIkSZIkqR+mU4ouroqICyPi9RFRtxP6KBGxeES8GrgMeGrNJW/LzIdajc/MBA4Hqjd0vBD4+Vg7jUXENpSClmqRw12M3nGsX84G7q3E9o+Ib461C11E7AZcyOM3mNwzQflNqsy8F3hlzamDgL9ExMsiYsRNMRGxSkS8nlL4s2MjfB1wSxfr/wd4OZCVU7sDf4iIg9tsOrdERBwQEacDfwdeD9TtcjlMXkV53prNBM6JiE9GxCrtTBIR20TEp4Hrga8B6/Y1y/GdVhP7bkTs22pARCwaEe+lNAqcv7Nft5+p8yvH04DvRUQnN4P1JDPPB75Sk8dJEXF0RCxcNy4iFoqItwA/BKrXnJGZZ/Q/W0mSJEmSJEmaHI2Nao5oCl0P7JuZD443NjM/Q9mwZr6D6n5vnpmPAb+rhF/WZn4BHFxzaql2xkuSJEnSVJaZ84D315x6Z0T8d+PPiNgRWL9yzdWZ+Yc+plPXeOzwPs4/VQ26LqvOcZXj9YDPV2KPAN/uYu4fAPMqsbdFxAfHqiGMiJcCFwBPaoSmQm1n9bWdAZwdETu1GhARy0bE54Fv8fh9yf16rPNrhJ8KnBcRW4+Rx1aUxm7VeuPbgHf0KZ9RFvBaU0mSJEnSEBn3H5+SJEmSJEkd2qbxc0xEXA9cBFwJ3A7cQflD+dLA2sCmlF3dWjXJOi0zTxhvwcw8PyLeD3ygcmpn4MqIOAf4FXATZUf3NYHnAdsBUZ0OeFVm/nO8dbuRmXdGxGeB91ZOHQ7sHRHfAy4F7gSWpRSQPJ+RhQ1zgTcyuvBlSsrMn0bEh4H/qZxaDzgRmBsRt1CauM0EVmTk6/YIcAiji7aqDeRarf+DRoHSByun1gFOAj4VEecCl1AKSu6nvIeXbeS4JeW9PPS7AjbLzDsiYi9Kw7zmhmzTgbcCb4iIC4DfAjdS3pOLUB73qsDTKY99xcnMu8aJlJ0Km5uULUlp2HUp8BNKUc2jwErAFpTP1ApN11/ZuK6bYqEfAXOA5Zti2wAXR8S9wL95vJjpvzJzsy7WGstRwPZA8y6D0ym7W74mIs4A/kz5Ll4O2Ah4EbBGzVz/YuQNdJIkSZIkSZI0Fb2akRslvD8zH+hg/Kcpf0+iMc8ewPE1151MuTF0vkMj4iuZ+cdx5j+S0Te8g83CJEmSJC04TgPeDWzcFFsZeC3wqcZxXdOuk/qcx48oTY+WbortGRErZeatfV5rKhl0XVadk4CPUOpA53tK5ZqfZOYdnU6cmX+LiJMptYjN3g3MjojvU+qv7qPUim0A7MXI5+cBymOtbvw4bD5LaVK1bFNsFeDXEfFb4GeUpuvzGvHtgOdSXv/5zqHU5Fafr258AnhLY/6NgAsj4jzgp5RaNih1v3tQauTq6n5fk5m39SGXlhbUWlNJkiRJ0nCxWZgkSZIkSZpIsxo/3TiBDnbny8wPNnZgr+42OINSILBHG9M8ChyamXU74vXTh4AdGz/NVqDcuDKWpBRDndv/tAYnM98dEUkprKlaCFit8VP1MHBQZp5Xsytb27vWZeaHIuLfwJcYvUvbysABjZ8nlMz8S2OnvdMZ2WQKyo1Pde/ToZKZj0bEfpSmZ4tXTm/e+BnLTcCewOwu138oIt5M+c6qWopSFDbhMvPBiHg2cCZQ3VlxJeBVbU51FbBHZs7pZ36SJEmSJEmSNADPafr/ucD3Oxx/HvAYj9fabk99s7DvAEfz+M3BM4CfRMQemXlF3cQRcQCP3/heNa/DPCVJkiRpSsrMeY1NQqv1em+PiK9Q6sZeXB0GfLvPeTwYEaczsn5oBqUJUqt/uz3hDbouq0VON0fE2Y15Wzm2hyXeQKm92rASXwN40zhjHwX2ozQMG2qZOSciDgJ+zMjGawA7NH7G8hfKY/1sn1K6DjiIUse4EKUZ2PaNn/Ek8OrM/EGfchl7sQW01lSSJEmSNDymDToBSZIkSZI05Z1EKb65q0/z/QN4YWbOzsy5nQzMzA8ALwX+3cW6VwLPycy+FhLVycxHgRdSmvp04i5g/8z8ev+zGrzMfA+wG3BNm0P+CDyrqchjucr5uztc/1hgW+BXnYyr8RDlxqB/9jjPpMjMa4BtgM9QdrLrxSXAWT0n1aHMvAzYHbi5w6EXAs/IzOt7XP9E4Ajg3l7m6VVjZ8Sdga9SbmDraDhwCvDMzJwS711JkiRJkiRJaiUiFgW2aAr9C5gZEbPa/aFsYtL89691qZGZj1FuaH2kKbwGcGlEfDkido+IDSPiqRFxQEScSfk7wozGtTdWpuzX39wkSZIkaSr4PvDnSmxF4EjgQEY3qTovM2+YgDxOrom1vdnpE9Wg67JaGKsZ2M3Az7qdODPvBnal5N+JfwO7Zuak1851q5HrfnSwKWvDmcD2mXlnn/P5MbA3nf1eZA5ls9lJraldUGtNJUmSJEnDwWZhkiRJkiSpJ5n5u8w8GFgJ2AX4AOUP4Pd1MM0tlIZjewIbNP7o320+3wHWA94OXEppgNPKY5Rd744ANs3M33S7bqcaRSV7UW4eqRY7Vd0KfJLy3HS66/2Ukpm/ADYGng8cB1wO3A7MpTT/+hPwdUoB0uaZeQlARCzF6MKwOV2s/8fM3AV4BnAio2/QaeVmSsHYy4FVMvOlmXlrp+sPSmY+kJlHAbOAoylNv9pp1vcQ5fP+/4CNM3OrQRU8ZeZ5wNOATzB+wdAllNfqmZnZ7ms83vrfAlYHDqU0UbyM8tl9sB/zd5DHA5n5GmATSmHcf8YZMgc4FdgiMw/qdxGXJEmSJEmSJA3IKjzejAvK77+v6+JnZtMcy7daLDMvAg6m/N58voWB1wBnA1dR/h70Hcrfw+b7IXB8ZTqbhUmSJElaYGRmUuqVqt4KvKomXtfUqx9+DdxUiW0YEdtN0HpTxqDrsmr8hFJTWOfETjeprcrMm4AdgNdTNr8dyw3Ae4ANM/O3vaw7CJl5BrAp8DXGrnObB5xL2Qj4BZk5Ib+7yMwzgY2ALzF2E7PbgC9SnvdTJyKX8SyotaaSJEmSpMGL8vs0SZIkSZKk/oqIoDTOWR9YC1gaWIrSvOse4F7KH70vz8zxmtn0ksfKwFaUZmYrUhog3UZpoHNho2nXwEXEWpSdxlamPFcPUXabuwL4c/pLnDFFxHOAn1fCu2Rmrzu3ERHrUQpQVmj8LExphnc35Uahq5+IxRoRsQyPf3ZWAJahFATdS3lv/hX4R6/FVRMhIhYCtqQ0npsJTKfkfR1wyUR+5wybxnfxppTv4pWAZSnfwbfx+PMxb3AZSpIkSZIkSdJoEbET5Ubt+W7IzFkdjN+CcoNyP12fmeuMs+6WwJcpv18fy6PAR4APN64/ouncmzLz870kKkmSJEnSRFgQ67Ii4snA1pT60yWA+ymNof6cmX8dZG79FBGLANsAG1DqBadRmsNdC1ycmR1v3tpjPjMov1/ZuJHPPErN8XXABUNat7hA1ppKkiRJkiaXzcIkSZIkSZI05UXE54A3NoXmActl5li7y0mSJEmSJEmSpCHUh2Zh2wLn9zmttnNobHKyF7A9sBplI4c5wA3A/wInZeZ1jWvPA57ZNPxZmfm7PuYtSZIkSZIkSZIkSZKeAKYPOgFJkiRJkiSpFxGxPHB4JfwnG4VJkiRJkiRJkrTAur1y/PPM3H2yFs/MXwC/GO+6iJgBbNEUegy4dKLykiRJkiRJkiRJkiRJU9e0QScgSZIkSZIkdSsiAjgBWLJy6usDSEeSJEmSJEmSJA2HWyrHTx5IFuN7JrBo0/FFmfngoJKRJEmSJEmSJEmSJEnDy2ZhkiRJkiRJGriIOCQidu1wzNLA6cDzK6fuAk7uV26SJEmSJEmSJGlqycx7gCuaQrMiYv1B5TOGwyvH3xxIFpIkSZIkSZIkSZIkaejZLEySJEmSJEnDYDvgFxHx14j4WETsHBHLVy+KiBkRsVVEfAi4Dti7Zq7XZ+Z9E52wJEmSJEmSJEkaaj+rHL9iIFm0EBHrAvs2he4CvjugdCRJkiRJkiRJkiRJ0pCLzBx0DpIkSZIkSVrARcRXgVfVnLqdcnPMw8CywExgkTGm+lZmHtH/DCVJkiRJkiRJ0mSJiJ2AXzeFbsjMWR3OsR5wFTC9EXoI2DIzr+hHjr2IiIWAs4Fdm8JvzcxPDyglSZIkSZIkSZIkSZI05KYNOgFJkiRJkiRpDDOB9YCNgdUZu1HYh4BXTEZSkiRJkiRJkiRpuGXm34HjmkKLAmdFxEadzBMR/5+9e4/zqq7zB/46A8NNQJCbF0xESRMvZWqIeMPc7LJlZZZZZrVl6u5qrt1+ZdjWau5WWqubm5tJWayleasWTYW8kPdKE68p4pWLiIJchsv5/TEwzgwzw3dgmO/APJ+Px3nwfX/O5/I+MwzyePD2fXoXRXHieub0bOt+s7m1SX6Wpo3C7k5yQXvyAgAAAAAAAAC6F83CAAAAAOgK7kgyawPX3pTk0LIszyrLsuy4lAAAAAAAgE2pKIqRRVGMan4l2bbZ1J4tzVtzDW3jiDOSPNAofkOSe4ui+LeiKHZsI6++RVG8vSiKHyR5Jk2bjrXkqKIo7i2K4pTW9l3TdOz9a/I5rtGtl5OcUJblqvWcAQAAAAAAAAB0Y4X/fxIAAACArqIoir2THJzkgCS7pP5/2hmUpG+Slan/H2ZeSvJokluT3FSW5czqZAsAAAAAAGyMoihmJdlpI7eZXJbliW2csWOSG5Ps3sLtJ5M8kmRhkp5Jtk4yKsmuSXo0nliWZdHGGe9Jcn2joWeTzEyyIEltkhFJ3pJkq2ZLX0ry7rIs72ptbwAAAAAAAACApL6wAQAAAAC6hLIsH0jyQJKLqp0LAAAAAACw+SvL8pmiKPZPcnGS45vdHr3mWp+F7Tx25JqrLXckOaEsyyfbuTcAAAAAAAAA0A3VVDsBAAAAAAAAAAAAANhUyrJcXJblx5Lsk+TyJC9XsOz5JD9P8qEk265n7kNJJid5cX2pJLl1zZ4HaxQGAAAAAAAAAFSqKMuy2jkAAAAAAAAAAAAAQKcoiqImyd5J9kiyTZJBSZYleTXJrCQPl2X5zAbuPSrJXkl2TLJ16l/s+2qSvyW5qyzLlzYuewAAAAAAAACgO9IsDAAAAAAAAAAAAAAAAAAAAAAAALqommonAAAAAAAAAAAAAAAAAAAAAAAAALRMszAAAAAAAAAAAAAAAAAAAAAAAADoojQLAwAAAAAAAAAAAAAAAAAAAAAAgC5KszAAAAAAAAAAAAAAAAAAAAAAAADoojQLAwAAAAAAAAAAAAAAAAAAAAAAgC5KszAAAAAAAAAAAAAAAAAAAAAAAADoojQLAwAAAAAAAAAAAAAAAAAAAAAAgC5KszAAAAAAAAAAAAAAAAAAAAAAAADoojQLAwAAAAAAAAAAAAAAAAAAAAAAgC6qZ7UTgGorimLrJIc2GnomSV2V0gEAAAAAAAAA2Bi9kuzYKP5DWZavVCsZAFCjBwAAAAAAAABsIapan6dZGNQXIV1b7SQAAAAAAAAAADaB9yW5rtpJANCtqdEDAAAAAAAAALZEnVqfV9NZBwEAAAAAAAAAAAAAAAAAAAAAAADto1kYAAAAAAAAAAAAAAAAAAAAAAAAdFE9q50AdAHPNA6uueaa7LrrrtXKBQAAAAAAAABggz3xxBM5+uijGw8909pcAOgkavQAAAAAAAAAgM1etevzNAuDpK5xsOuuu2bs2LHVygUAAAAAAAAAoCPVrX8KAGxSavQAAAAAAAAAgC1Rp9bn1XTmYQAAAAAAAAAAAAAAAAAAAAAAAEDlNAsDAAAAAAAAAAAAAAAAAAAAAACALkqzMAAAAAAAAAAAAAAAAAAAAAAAAOiiNAsDAAAAAAAAAAAAAAAAAAAAAACALkqzMAAAAAAAAAAAAAAAAAAAAAAAAOiiNAsDAAAAAAAAAAAAAAAAAAAAAACALkqzMAAAAAAAAAAAAAAAAAAAAAAAAOiiNAsDAAAAAAAAAAAAAAAAAAAAAACALkqzMAAAAAAAAAAAAAAAAAAAAAAAAOiiNAsDAAAAAAAAAAAAAAAAAAAAAACALkqzMAAAAAAAAAAAAAAAAAAAAAAAAOiiNAsDAAAAAAAAAAAAAAAAAAAAAACALkqzMAAAAAAAAAAAAAAAAAAAAAAAAOiiNAsDAAAAAAAAAAAAAAAAAAAAAACALqpntRMAAAAAAAAAALqOsiyzevXqlGVZ7VRgi1EURWpqalIURbVTAQAAAAAAAACADqfuDKiW7lSfp1kYAAAAAAAAAHRjZVlm2bJlWbRoURYtWpS6urpqpwRbrF69emXAgAEZMGBA+vTp0y2KkwAAAAAAAAAA2PKoOwO6mu5Qn6dZGAAAAAAAAAB0U0uWLMnzzz+fFStWVDsV6Bbq6ury0ksv5aWXXkptbW2233779OvXr9ppAQAAAAAAAABAxdSdAV1Rd6jPq6l2AgAAAAAAAABA51uyZElmz56tYAuqZMWKFZk9e3aWLFlS7VQAAAAAAAAAAKAi6s6AzcGWWp+nWRgAAAAAAAAAdDNrC7bKsqx2KtCtlWW5RRYkAQAAAAAAAACw5VF3BmxOtsT6vJ7VTgAAAAAAAAAA6DxlWeb5559fp2CrtrY2AwcOTP/+/VNbW5uiKKqUIWx5yrLMihUrsnjx4rz66qtN3qy69mdyl1128XMHAAAAAAAAAECXpO4M6Kq6U32eZmEAAAAAAAAA0I0sW7asSSFEkgwYMCA77LDDFlEIAV1VbW1t+vXrl2HDhuW5557LokWLGu6tWLEiy5cvT58+faqYIQAAAAAAAAAAtEzdGdCVdZf6vJpqJwAAAAAAAAAAdJ7GBRBJfYGEgi3oPEVRZIcddkhtbW2T8VdffbVKGQEAAAAAAAAAQNvUnQGbgy29Pk+zMAAAAAAAAADoRpoXbQ0cOFDBFnSyoigycODAJmPNfzYBAAAAAAAAAKCrUHcGbC625Po8zcIAAAAAAAAAoJsoyzJ1dXVNxvr371+lbKB7a/6zV1dXl7Isq5QNAAAAAAAAAAC0TN0ZsLnZUuvzNAsDAAAAAAAAgG5i9erV64zV1tZWIROgZ8+e64y19DMKAAAAAAAAAADVpO4M2NxsqfV5moUBAAAAAAAAQDfR0lvRiqKoQiZATc26ZTtbwpsLAQAAAAAAAADYsqg7AzY3W2p9nmZhAAAAAAAAAAAAAAAAAAAAAAAA0EVpFgYAAAAAAAAAAAAAAAAAAAAAAABdlGZhAAAAAAAAAAAAAAAAAAAAAAAA0EVpFgYAAAAAAAAAAAAAAAAAAAAAAABdlGZhAAAAAAAAAAAAAAAAAAAAAAAA0EX1rHYCNFUUxe5J9kkyMknfJMuSzE3yRJK/lGX52kbsXZvkPQtRGwAAIABJREFUoCRvSLJdksVJnk/yp7IsZ21c5uuctXOSNyfZPkn/JC8keTrJjLIsV3TkWQAAAAAAAAAAAAAAAAAAAAAAAFsqzcK6gKIoBiU5LcmnUt/IqzWriqL4c5Iry7L8djv2H5bkG0k+nGSbVubMSPK9siyvqjjxlvc5JskZSQ5sZcqCoiiuSPL1siznb8xZAAAAAAAAAAAAAAAAAAAAAAAAW7qaaifQ3RVF8aEkTyQ5O203CkuSHknemuT0duz/ziR/TXJyWmkUtsb4JFcWRXF5URRbVbp/o3P6F0UxJcmv0nqjsKzJ4eQkfy2K4h3tPQcAAAAAAAAAAAAAAAAAAAAAAKA70SysioqimJTkl0mGNLs1O8lNSaYkuTrJnUle24D9D0tyTZLhjYbLJPelvqnX75PMb7bs+CRTiqKo+PdGURQ9klyR5CPNbs1LcuOas+5fc/ZaI5JcWxTFhErPAQAAAAAAAABor9mzZ+drX/taDj744IwYMSK9evVKURQN12WXXVbtFAEAAAAAAAAAALYIo0aNalKfNX369GqnBFuMntVOoLsqiuJfkpzdbHhKknPLsnywhfk1SQ5M8sEk76hg/5FJfp2kV6PhO5J8pizLhxvN653kpCTfSVK7Zvjvk3wryf+r8HG+neRdjeIVSc5I8qOyLOsanbVHkv9Z8xxJ0jvJNUVR7FWW5QsVngUAAAAAAAAAdIJRo0bl6aefboinTZuWww47rHoJbYBLLrkk//RP/5Tly5dXOxUAAAAAAAAAAACADVZT7QS6o6Io9kl9g621ViT5UFmWH22pUViSlGW5uizLO8qyPCPJPhUc840kgxvFM5K8vXGjsDX7Li/L8gdJjm22/oyiKHaq4FlGJzmt2fCHyrK8sHGjsDVnzUxyRJI/NhoekmTS+s4BAAAAAAAAAGiP3/3udznppJMqbhQ2ffr0Jm+0PPvsszdtggAAAAAAAAAAAAAV6lntBLqboih6Jrk0Tb/2J5VleWWle5RluXI9Z4xJ8olGQ3VJTizLclkbe15TFMXkRut6p76J16fWk86kJLWN4svKsry2jXOWFkVxYpIHk/RaM/zpoij+vSzLJ9dzFgAAAAAAAABARb7yla+kLMuG+KMf/Wg+/elPZ8cdd0xt7eulDkOHDq1GegAAAAAAAAAAAAAV0yys830oyb6N4pvLsvxJB5/x0SQ9GsW/Lsvy8QrWnZemTcaOLYrilNaajBVF0TfJMS3s0aayLB8riuKaJMeuGeq5JudvVZAjAAAAAAAAAECbHn300TzwwAMN8bve9a78/Oc/r2JGAAAAAAAAAAAAABuuptoJdEMnNYvP2QRnvL9ZXFEzsrIsH05yV6OhrZL8XRtL3pGkX6P4j2VZPlJRhuvm9IEK1wFdQVkm8+9KHv1BMvfWZPXKamcEAAAAAAAA0ODee+9tEh9zTPN3oQEAdBOrVyR/+0ly/5nJnOnVzgYAAAAAAAAA2EA9q51Ad1IUxa5JDm00NCvJtA4+Y9sk+zQaWpnkjnZsMT3J2xrF70xyXStzj2phbaVuS31ua38PvqUoihFlWc5pxx5ANZSrk3v/MXn8h6+P7fjB5KApSU1t9fICAAAAAAAAWGPOnKblByNHjqxSJgAAVfTa08m1o16PH/lu/a9HP5P08/cjAAAAAAAAANicaBbWuQ5vFt9clmXZwWfs2Sx+oCzL19qxfkazeGw7zvpjpYeUZflaURQPJnlLs7M0C4Ou7sWbmjYKS5Jnrkpm/SIZ/Ynq5AQAAAAAAADQyOLFi5vEtbVefAQAdEONG4U1ds2OyUc7unwVAAAAAAAAoPOUZZn7778/jzzySObOnZvly5dn2LBh2WGHHTJhwoT079+/2ilusGeeeSb33HNPnn322SxdujRDhw7NXnvtlf322y81NTUbtffcuXNz22235fnnn8/SpUuz/fbbZ/To0Rk3btxG792SmTNn5sEHH8y8efPy6quvZptttsl2222XCRMmZMiQIR1+3pZOs7DOdUCz+I9JUhRFkeSIJMcneVuSHVL/vZmf5PEkNyX537IsZ1Vwxh7N4ifamePf1rNfY2/qgLMaNwvbI8kt7dwD6Gwz/73l8QfP1iwMAAAAAAAAaLdNUbS1evXqTZApAMBmZPmCtu8vfjLpP7pzcgEAAAAAAADoIPPnz88555yTyy+/PPPmzWtxTq9evTJx4sScffbZedvb3lbRvieeeGImT57cED/11FMZNWpURWunT5+eww8/vCGeNGlSzj777Fbn17caqnfooYdm+vTpSZIZM2Zk0qRJueWWW1qsgRsxYkS++tWv5tRTT213Y68//elP+cIXvpBp06a1uPfIkSNz0kkn5ctf/nJ69uyZs88+O9/4xjca7k+bNi2HHXZYRWe99NJL+Y//+I9cfvnlee6551qcU1NTk/Hjx2fSpEl5+9vf3q5n6c46vp0bbdmvWfxwURSjUt8M7PdJTkx9A66BSfoleUPqm4idm+SxoiguKoqi33rO2LVZPLudOT7dLB5SFMXg5pOKotgmyTYbeVbz+WPauR6ohjk3tzz+2qxOTQMAAAAAAADYvM2fPz9nnHFGRowYkf322y8f+9jHcsYZZ+QrX/lK/uEf/iHvfOc7M2TIkLzzne/MXXfd1eZes2bNSlEUDVfjIqUkOfzww5vcX3tddtllDZ8bF2slyTe+8Y0W16y91hZoAQB0SS9Mbfv+s9cnZdk5uQAAAAAAAAB0gGuuuSajR4/O+eef32qjsCSpq6vL1KlTM27cuJx00klZuXJlJ2a5Yc4555wccsghuemmm1p9WeacOXPyz//8zznmmGNSV1dX8d7f+973sv/+++fmm29ude9nn302Z511Vg499NDMmTNng54hSX76059m9OjROe+881ptFJbUvxD09ttvz5FHHpmPf/zj7Xqe7qxntRPoZrZrFvdLck+SoRWsrU1ySpIDi6J4d1mWL7Qyb1CzeG57EizLcnFRFMuS9Gk0vHWSl9dzzpKyLF9rz1kt5LZ1O9cDAAAAAAAAAJuha665JieccEIWLVrU5ry1RVtTp07NZz/72Vx00UXp2VO5CwDAej33m7bv3396Mv+PyX7/mfQekpSrkxp/zwIAAAAAAAC6pksvvTSf+cxn1ml2tcsuu2SPPfZIv379Mnv27Nx9991ZtWpVw/0f/ehHmT17dq6//vouW3v2ne98J1/96lcb4t122y277bZbttpqq7zwwgu58847s2zZsob7V199dc4666ycd9556937u9/9bs4888x1xvfYY4+MGTMmvXv3zuzZs3PPPfdk1apVmTFjRo499tgccsgh7X6Or3/96/nmN7/ZZKwoiuy2224ZM2ZMBgwYkJdffjn33ntvk2Zvl19+eV544YVMnTq1y36Pugpfnc7VvMHWT/J6o7DXklyc5P+SPJtkqyT7JPlUkgmN1rwlyVVFURxaluWKFs7o3yxeugF5Lk3TZmEDNuE5jbV0TrsURTE8ybB2LttlY88FAAAAAAAAACqzJRdtAQB0CatXJs//3/rnzb6i/mpsx2OSXf4hGXFosmJR0rN/svT5pN+OSY9e655TtyDpM7zjcgcAAAAAAABo5s9//nNOPvnkJjVnb37zm3PRRRdl/PjxTebOmzcvZ511Vv77v/+7YWzq1Kn5+te/nnPOOafTcq7Ugw8+mNtuuy1JcvTRR+fcc8/N7rvv3mTOyy+/nDPOOCOXXXZZw9h3v/vdnHzyyRk1alSre99333358pe/3GTssMMOy4UXXpixY8c2GZ83b16+/vWv5+KLL86tt96amTNntus5Jk+e3KRRWE1NTU499dSceeaZecMb3tBkblmWufbaa3Paaadl9uzZSZKbb745Z511Vs4999x2ndvdqJzsJEVR9E7Su9nwyDW/zkxyVFmWzzS7f3+SnxRF8S9JvtNo/MAkX0ryrRaOat7Ea1kLc9ZnaZLBbezZkee0teeGOCXJpA7YBwAAAAAAAIDmVq9Mljxb7Sy2fP1GJjVbZknHpiraGjlyZJ566qmG+IILLsj3v//9hnjKlCkZN27cOvkMHTo0hx12WJLkzjvvzHHHHddw77TTTsvpp5/e6rNsu+2263laAIBqKZJDrkme/03y8HfWP72xZ66sv9pr6IHJyPcng9+cDH5L0mfo+tcAAAAAAADQLZQrVybz1J1tcsNGpthCX8L46U9/OnV1dQ3xhAkTcsMNN6Rfv37rzB02bFguvvji7LrrrvnCF77QMH7eeefluOOOy1577dUpOVdqwYIFSZIvfvGLOe+881qcM3jw4PzkJz/Jyy+/nGuvvTZJsmrVqvz4xz9u0qCruVNPPTUrV65siD/wgQ/kiiuuaPFlncOGDcsPf/jDjB49Ol/84hczf/78ip/h6aefzsknn9wQ9+7dO9dcc02OOuqoFucXRZGjjz4648ePz0EHHZQnnngiSfIf//Ef+exnP5udd9654rO7my3zJ7xr6tHK+CtpuVFYg7Isv1sUxQ5JPt9o+PNFUVxQluXi9ZxbtjPPrr4GAAAAAAAAgGpZ8mxynSKMTe69TyX9R1U7i01iUxVt9ezZs8kbEgcNGtRkr2233bbVNyj271//brNZs2Y1GR80aFCbb10EAOiyanokIw6tvx79QbK6bv1rNtb8P9Zfrfm7u5KhB2z6PAAAAAAAAOh65j2b8tjdqp3FFq/45aPJdqOqnUaHmzZtWu6///6GeODAgbniiitarDlr7Mwzz8wf/vCH/OY3v0mSrF69Oueff34uvfTSTZrvhpgwYULOPffc9c77t3/7t4ZmYUlyyy23tNos7J577sldd93VEG+33Xa59NJLW2wU1tgXvvCF3HTTTbnxxhsrzL6+ydfSpUsb4vPPP7/VRmGNDR8+PL/4xS9ywAH1/5a8atWqnH/++fnBD35Q8dndTU21E+guyrJckmR1C7e+11ajsEbOSn1jsbW2SfLOFuY1bx7Wt7IM21zTUkOyzjoHAAAAAAAAANgCbEzR1nve856GeG3RFgAAFdj7X6udQb0b35b8okhWLl3/XAAAAAAAAIA1Jk+e3CQ+9dRTs/3221e09tvf/naTeMqUKVm+fHmH5dZRvvrVr6amZv1toMaOHdvkBZh//vOfW507ZcqUJvE//uM/Zuutt64on7POOquieUny2muvNWnANnr06Jx00kkVr99///1z8MEHN8TXXXddxWu7I83COtdrLYz9tJKFZVm+luTXzYYPa2Fqd28W9l9J9mzn9b4OOBcAAAAAAAAAaEN3KNoCAOhy9vhStTNo6pdtN4oFAAAAAAAAaOz2229vEn/sYx+reO3YsWOz7777NsTLli3Lfffd12G5dYS+fftm4sSJFc9/05ve1PB5yZIlWby45XY9M2bMaBIfe+yxFZ8xYcKEimv7br/99ixd+vpLo4455piKGp81dvjhhzd8fvrppzN79ux2re9OelY7gW5mYZIBjeI5ZVnOasf6O5N8slH8phbmvNIsHtaO/VMURf+s28RrYQXn9CuKYqs1Tc0qNbyCc9qlLMu5Sea2Z01RFBt7LAAAAAAAAACwHh1RtHX//fcneb1oa/z48R2aIwDAFumYl5MrB1c7i9e9+ngycEy1swAAAAAAAAC6uJdffjl/+9vfGuJBgwY1aZZVifHjxzfUnSXJPffc06XqznbZZZf06tWr4vmDBzf9t99XXnkl/fv3X2feX/7yl4bPgwYNyq677tquvPbbb79cd911653XvC5w++23z6xZs9p1VvPnf/LJJ/OGN7yhXXt0F5qFda7HkuzYKH6hneufbxYPaWHO483indp5RvP5C8qyfLn5pLIsXyqK4uUkjf8EeUOShzfirOa5AwAAAAAAAABbgO5QtAUA0GX1GpQctyqZ0qPamdT7zRtf/7zzCck+5yZ9RiRFkaRY8ysAAAAAAADQ3c2bN69JPGbMmBTt/PfE3XffvUk8d+7cjc6rIzVv/rU+tbW1TeIVK1asM+e1117LsmXLGuINabxV6ZpnnnmmSXz66afn9NNPb/d5jS1YsGCj1m/JNAvrXA8lOaJRvLyd65vP79PCnObNutrX1i8Z3Sye2cbch5M0rrrdtYXz23NWe9YCAAAAAAAAAJuJ7lC0BQDQpRU1yQ5/nzx3fbUzaeqpn9ZfzQ3aOxlzSjL0wGTgG5MeLZXMAgAAAAAAAFuyl19+uUm89dZbt3uP5mu6WiOqmpqaDt9z4cKFTeIBAwa0e4+BAwdWNO+ll15q997rs2jRog7fc0uhWVjneqBZPKid65vPb+mn5a/N4r2LouhXluWSCs84aD37Nb/XuFnYgUkqqiIpimKrJHu34ywAAAAAAAAAqq3fyOS9T1U7iy1fv5HVzqDDdYeiLQCALm+PL3W9ZmGtWfhAcs/n2p5T0ys54EdJ0TNZtbS+sdigsZ2THwAAAAAAAJUbNjLFLx+tdhZbvmFbXt1ZWZZN4va+oLIlHbFHV9e7d+8mcV1dXbv3qHTNhuy9Ps2/77xOs7DO9X9JyiRr/9QYXRRFn7Isl1W4fs9m8bPNJ5Rl+UJRFA/k9UZcPZNMSHJjhWcc1iz+vzbmTk3y2TbWtuXgNP3996eyLOe0Yz0AAAAAAAAAna2mZ9J/VLWzYDOkaAsAoAsYMi4Z8rbkpbuqnUnHWF2X3Hli6/ePmJ6MOLSzsgEAAAAAAKAVRc+eyXajqp0Gm6FtttmmSfzKK6+0e4/mawYPHrxRObVk1apVHb7nxmj+jM1f9lmJSl/mOXTo0CbxjBkzcuCBB7b7PCpTU+0EupOyLJ9P8sdGQ7VJjmjHFkc1i29rZd7VzeJPVrJ5URS7J3lbo6HX0naTsRuSLG0UH7hmj0qc2CxunjMAAAAAAAAAsIXYXIq2AAC2aDU9kok3JrudlgzaJ9nxA8lOH6l2VpvOzYclvyjWvWZfWe3MAAAAAAAAgAoMGzasSfzYY4+1e49HH320STx8+PAW5/Xs2bNJvHLlyorP2JBmXJtSjx49ssMOOzTETz75ZJYsWdKuPR588MGK5o0YMaJJvCHfIyqnWVjn+0mz+IxKFhVFcXCSAxoNrU7yu1am/zxJ45aDHyiKYkwFx3ypWfzLsiyXtTa5LMslSZpXTDTfYx1FUbwxyfsbDa1M8osK8gMAAAAAAAAANkOdWbQFAEAbagcmb70gedefk4OvSg6akhy3Ktn1c0nR4/V5/XZMxk9J3rOev7ft+73kwMuTnltt2rw70u0fWreB2C1HJi/dW3+/LJMVryarWi2hBQAAAAAAADrB4MGDs8suuzTECxcuzMMPP9yuPWbMmNEk3n///VucN3DgwCbxwoULKz7joYcealdOnWHcuHENn1evXp0//OEPFa9dsGBB/vKXv1Q0d/z48U3iG2+8seJzaD/NwjrfT5I0/lNnYlEUbTYMK4pieNZtMvbLsiz/1tL8siwfTzK50VCvJJcVRdGnjTPel+TERkN1Sb7RVl5rnJ1kRaP4xKIo3tvGOX1S/yy9Gg3/uLVnAQAAAAAAAAA2f51ZtLWhiqLo0P0AADYbRU1ywA+TD76UvOvB+uZhR89ORn2k/l5rxl2W7P75ZOfjk/e/kBxyXTJiYn2jsZreSb+RnfYIG+3Fm5Ib9q9vHDalJvnV1skVfddtKvaLIpkzPVld+VvEAQAAAAAAgA03YcKEJvHPf/7zitc+/PDDue+++xriPn365K1vfWuLc5u/vHLmzJkVn/O73/2u4rmd5e1vf3uT+JJLLql47eTJk1NXV1fR3COOOCI9erz+Yqrrrrsuc+fOrfgs2kezsE5WluWqJKclWd1o+LtFUXy/KIrBzecXRfH2JHck2aXR8MtJ/t96jpq0Zt5a45PcVBTF7s32710UxT8l+VWz9d8ty/Lp9ZyRsiyfTPL9ZsNXFkXxj0VRNG4IlqIo3pTk5jW5rPVSKmtKBgAAAAAAAABsxjqraGtD9e7du0m8fPnyDt0fAKDL67V1MmjPpg3C+oxoff6QA17/XDsgGfn3yRE31zca+8iy5Ohnkh0/uOnyrZabD0/+t7blRmIz/z2pq/wN4wAAAAAAAEDbTjjhhCbxhRdemBdffLGitV/5yleaxB/5yEfWqRNba999920SX3/99RWdccMNN+Tuu++uaG5nOv744zNgwICG+Oqrr84NN9yw3nXPPfdc/vVf/7XicwYPHpzjjz++IV68eHHOPPPM9iVLxTQLq4KyLH+f+oZhjf1zkjlFUdxaFMWUoiiuKYpiVpLfJ9m10by6JMeVZfnUes54NskH1sxf66AkM4uiuKcoiiuKopia5JkkP0hS22jeb5Kc1Y5H+nKS/2sU1yb5zyTPFEXxf0VR/LIoinuTPJSmjcLqkry/LMsX2nEWAAAAAAAAALAZ6qyirQ01aNCgJvELLyhnAABIbf9k27evOz5wt2TrN61//c6f6PicurI/fym5cnDLjcSuHpnccmTy7LXJkueTsqx2tgAAAAAAANDlTZw4MW9+85sb4ldeeSXHHXdcli5d2ua6888/P9dee21DXBRFPv/5z7c6/8ADD0y/fv0a4quvvjr33ntvm2c8/vjj+cQnuua/iQ4YMCCnnda0vdGxxx6badOmtbpm1qxZOfLII7NwYftekHT22Wc3qef72c9+li996UtZtWpVu/aZOXNmbr311nat6W40C6uSsiwvTHJKkiWNhmuTHJzkI0nel2SnZsvmJDm8LMv1t+mrP2N6kvcnmddouEiyX5Jjk7wjybBmy6Yk+UhZlhX/tK2Ze2ySK5rdGp7kqCQfSvLWNWevNTfJ+8qyvK3ScwAAAAAAAACAzVdnFW1tqNGjR6dXr14N8bRp07JixYoOPwcAYLNzwI+SrUa9HvcemoyfUtnakX+fHPjTTZLWZmfpc8mLNyW3Hp1cs0Mypaa+idivt01mfDx5/IfJsvnVzhIAAAAAAAA61IsvvphZs2Zt0LXWj3/84ya1XdOnT8/BBx+cu+66a53z5s+fn1NPPTVnnHFGk/EvfvGL2XvvvVvNc8CAAfnwhz/cEK9atSrvfve7c+ONN64zt66uLpdccknGjRuXOXPmZPDgwe35knSas846K3vttVdD/Oqrr+aII47IsccemyuvvDIPPPBAHnnkkdx44405/fTTM3bs2Dz88MPp06dP3ve+91V8zs4775wf/ehHTcb+/d//PRMmTMj111+flStXtrp21qxZueiiizJx4sSMHTs2t9xyS/sftBvpWe0EurOyLH9YFMWNSc5OfXOwAa1MfTHJxUkuKMvylXae8buiKPZM8o0kH07S2p8udyb5TlmWV7Vn/0bnLE7ykaIorkzyL0nGtTJ1Qeqbik0qy3JeK3MAAAAAAAAAgC5mbdHWhhg1alSS+qKtAw88MHV1dUleL9q66KKL8ra3va3Jmvnz52fSpEn5r//6rybj6yva2lC9evXKQQcd1PDmxNmzZ+e9731vPve5z2XMmDFN3hqZJNtuu2369OnT4XkAAHQ5/XdO3vNwMm9Gsnp5MmxCUttayWsLdv54ss1+yS1vT5Y+v+79okdy4OXJgnuSR77XcXlvLpbNSWZdXn/dc8q694e8Ldl6bLLdO5IBY5IVC5NBeycpktqtk5oenZ4yAAAAAAAAVOq4447b4LVlWSZJ9t1331x44YX53Oc+l9WrVydJ7rvvvowbNy677rprxo4dmz59+uSZZ57J3XffvU5zqiOPPDLf/OY313veN7/5zVx99dVZuHBhkmTu3Ll5xzvekV133TV77713evfunTlz5uSuu+7Ka6+9lqS+juy8887LJz7xiQ1+zk2lV69e+e1vf5uJEyfmiSeeSFL/Nf3Vr36VX/3qVy2uKYoiF110UWbPnr3OSz7bcsIJJ+TFF1/MV77ylYbv0Z133pn3vve96devX97ylrdkxIgR6du3bxYtWpT58+dn5syZDV9rKqNZWJWVZfm3JB8viqJvkoOSjEyybZK6JPOS/KUsywc28oy5SU4uiuK0NWfstOaM15I8l+RPZVk+tTFnNDrryiRXFkWxc5J9k2yfZKvUNzx7OskdZVnWdcRZAAAAAAAAAEDn2ZyKtjbUGWec0dAsLEmmTp2aqVOntjh32rRpOeywwzZZLgAAXUqPPsm2Ezd8/dZvSt77ZPLSXUlZJjW1yaqlSd2CZNghSd8RyU4frm+K9dz1ycK/Jouf6Lj8N2cv3VV/PXlp63OGH5r06Jvs8PfJtkckA3erHy/LZD1F+xWrW5jMvyvpt0P996mj9gUAAAAAAIAKfOYzn8ngwYPzyU9+MosXL24Yf+KJJxoaYbXkU5/6VC6++OLU1tau94wddtghV111VY4++ugsWrRovWfsvPPO+e1vf5s5c+a082k6z4477pjbbrstp5xySq6++uo25w4ZMiSTJ0/Ou9/97nzpS19qcm/AgPW/UGrti0A/+clP5sUXX2wYX7JkSe64446K8h08eHBF87orzcK6iLIslya5aROfUZdk2nondsxZTyXpkAZkAAAAAAAAAMCWozOKtjbUe97znnzrW9/KpEmTsmrVqk12DgBAt9SjdzL8kNbvF0Wyy6fqrySZMz159AfJoseSZXOT7d+V9OyXDNor2XrP5N5Tk4UPdkrqXd7cP9T/+kLLjW5zwCXJTscmq1fWfw1ffSxZ8mwydFzSe5u2965bmFy9Q7JqSdPxYxcnPbfa+NwBAAAAAACgQsccc0wOOeSQnHPOOfn5z3+e+fPntzivtrY2hx9+eCZNmpTx48e364yJEyfm7rvvzpe//OVcd911DS/KbGzYsGE58cQT87WvfS0DBw7s0s3CkmTbbbfNr3/969x+++2ZMmVKpk+fnueffz7Lli3L9ttvn9GjR+dDH/pQPvzhD2frrbdOkixcuLDJHmvH1+eoo47KU089lUsvvTSXXHJJ/vKXv7T4NVyrtrY2+++/f/6JHjndAAAgAElEQVTu7/4uH/3oRzNmzJgNf9BuQLMwAAAAAAAAAAA6VWcUbW2or371q3n/+9+fn/3sZ5kxY0Yee+yxvPLKK1m6dGmnnA8AwBojDqu/WvPOvySLn0x69EmKnsk9Jydzbk5WvNrxuQx4Y33Tss3V3Z+pv1pz4E+TnT9e/7ksk5RJUZOsWJxc2cqbu3/zpuTo2R2eKgAAAAAAAJu3WbNmbdL9hw8fngsuuCDf+973ct999+WRRx7JvHnzsnz58gwdOjQjR47MhAkTMmDAgA0+Y/fdd88111yT+fPn5w9/+EOeffbZLFmyJCNGjMjOO++cgw8+OD17vt626bDDDmuzIVZz7Znb3GWXXZbLLrtsg9ZOmDAhEyZMqGjuzJkzGz4XRZHhw4dXfE6fPn1yyimn5JRTTsmCBQty55135oUXXsiCBQuyYsWK9O/fP8OHD88b3/jG7L777unXr1+7n6W7KjbmNw9sCYqiGJvkr2vjv/71rxk7dmwVM4Iu7hdF6/c+6r8pAAAAAAAAXdnKlSvz+OOPNxkbM2ZMk6IV6GyrV6/eZEVbXdmm+nl86KGHsueeezYe2rMsy4c2alMA2Ahq9OhUZZk88aPkns+te2/bv0vm3JSUq9u/74Qrk7/9T/LC1I3PcUty3Kr6pmIAAAAAAMAWTd0ZdC+vvfZahg8fniVLliRJdttttzzyyCNVzqp9ttT6PH/qAgAAAAAAAABQNTU1Ndl///2z//77VzsVAAA2d0WRjDkpKVclT/x3smxOst1RyX7/mdQOSOZMS2ZflaxenvQekjzyvWT1irb33OPLyY4fSOpebrtZ2G6nJ289v/7z6pXJH96TvHBDxz1bV7T0xaTf9tXOAgAAAAAAAOhAkydPbmgUliQHHnhgFbOhMc3CAAAAAAAAAAAAAIAtxxtPqb+aG3F4/bXWm7+dzJmePP7D5NVHk3JFssP7km32rW8mtvWeSZ9h9XN3+XSy+Mlk5rnr7tujb7LzCa/HNT2TPSdt+c3CVi+rdgYAAAAAAABAB3r22Wdz1llnNRk74YQTWplNZ9MsDAAAAAAAAAAAAADonkYcVn+tT1Ekbz4n2fOsZN7t9Q3GXrqzvqHYnl9LtnlL0/lDDkgGjEkWPd50fK+zkwfP7pjcq63ulWpnAAAAAAAAALThqquuyn333ZfPf/7zGTZsWJtz//SnP+WDH/xgFixY0DC2zz775PDDD29jFZ1JszAAAAAAAAAAAAAAgEr07Jtsd2T91ZaaHskRtyR3fjKZe2vSe2iy22nJm76QzPr5uk3ENkdzpq3bJA0AAAAAAADoMhYtWpRzzz033/nOd3LUUUfliCOOyD777JPhw4enZ8+eWbBgQR588MH85je/yfXXX5+yLBvW9urVK5MnT65i9jSnWRgAAAAAAAAAAAAAQEfrNzKZ+Ptk1fKkpldSFPXjB1ySTD8qWbWsPu7RN+nRJ6l7+fW12+yXDB2XPHZh5+ddqaenJG86o9pZAAAAAAAAAOuxYsWKXH/99bn++usrmt+3b9/89Kc/zT777LOJM6M9NAsDAAAAAAAAAAAAANhUevRuGo84NHnPY8kzV9U3Edv+XfWNxZ69Jpl/ZzJoz2THDyRLX0yeujxZsbA6ea/P0PHVzgAAAAAAAABow6BBg9KjR4+sWrWq4jUHHXRQLrjgguy3336bMDM2hGZhAAAAAAAAAAAAAACdaasdk91Pbzr2hmPqr7VqByZvn548dE4y+5edml5Ftt59/XPK1UndwqRuQbLVzklNj6b3lr6Y9N02KWo2XZ4AAAAAAADQTR199NGZM2dOpk6dmjvuuCMPPvhgnn766SxYsCDLli1L3759s80222SnnXbKwQcfnHe961056KCDqp02rdAsDAAAAAAAAAAAAACgKxq8TzLhiiRX1Mer6pIeveo/z701eeGGpM92yeC9k+d+mzz6/WT18s7J7Z5T6q+1dvj75OBfJ4seT24/Nnnlr+3bb5d/SIZNSHptk2y9RzJgl47NFwAAAAAAALqhIUOG5Pjjj8/xxx9f7VTYSJqFAQAAAAAAAAAAAABsDtY2CkuS4YfUX43jt5xX/7ksk1ceqr+GjkuWvpjcOG7T5vbc9cn/1m74+r/9T/3V2H4XJqM/mSybm/TdLunRe+NyBAAAAAAAANhMaRYGAAAAAAAAAAAAALAlKYpk0J71V5JstVPy0bL+8/KXknl3JDW9kxWvJPNuS17+U/1YV3PvP9ZfbXnjPyf7fb9z8gEAAAAAAACoEs3CAAAAAAAAAAAAAAC6i95DkpHvfT3e6dim95c8lzx3XbJsbrLdO5K7Pp28MrNzc2yPx35Qf6018ffJiIlJUVO9nAAAAAAAAAA6mGZhAAAAAAAAAAAAAADU67dDMubk1+Nhh3TtZmHN3XJk6/d6D0kOuTYZdlDn5QMAAAAAAADQATQLAwAAAAAAAAAAAACgZXt8MXni4mpn0TGWv5T8fkLL9/rtmLz520nRI1n0ePLKQ8keX04G79O5OQIAAAAAAAC0QLMwAAAAAAAAAAAAAABa1n/npHZgsuLVameyaS15JplxfNOxp//39c87fiDpsVUy/OBku3ckfUYkPXp3bo4AAAAAAABAt6VZGAAAAAAAAAAAAAAA/5+9O4+zs6zvh/+5Z8+QyR4SIEAgIRA2WWURbEBFpZS60J+ASou4L5VWXKi2ICLV1uen+KB1eRRtpWjdwFJErQ1UREA2EQ0JWwhhCdmTIclklvP8cZPMnCSTdTIny/v9en1fZ67ruu/r+t6RoM6Z85n+7fWaZM5/1LqL2nrqR+Xr7H/b9LUjjkym/VfSOiHp6Uqe/kmy8tlkz5cnww5J6hq3b68AAAAAAADALkdYGAAAAAAAAAAAAAAA/Zv4FmFhW2LJg8kN+27+9Xu9OnnZ9Ul9a1LfvP36AgAAAAAAAHZawsIAAAAAAAAAYDdRFMV6c5VKpQadAD09PevNbejvKAAA7BD2OiNpHJZ0Ltv6PYYdkkx+d3L/3yaV9f/38G7t2Z8lPxi1/vzolyaHX1b++fesTuqHJP5/AwAAAAAAAOyWhIUBAAAAAAAAwG6irq5uvbnOzs40NjbWoBvYvXV1da03t6G/owAAsEOob05e/pPktj9LupZv/n0TXpd0r0pGHZNM+etkyLhkr1cnz/0iaRia/O5jyarnt1/fO7uFdye3/Wn/62fNSoYdNHj9AAAAAAAAADUjLAwAAAAAAAAAdhNFUaSpqSmrV69eO9fe3p7W1tYadgW7p/b29qpxU1NTiqKoUTcAALAZxv1J8obnkgV3JkP2SoYdnCx5MFn6cLLgN8msL1ZfP+q45NQfJev+79zhh5SVJBPPS+b8IFl0TzLy6GS/v0ge+XJy/4cH55l2djdN2fD88MOTgz+QjDwmGXlUUudjAwAAAAAAALCz864fAAAAAAAAAOxG2trasnDhwrXjZcuWZezYsUKKYBBVKpUsW7asaq6tra1G3QAAwBZoaE3Gn947HnlUWfu/KWkelTz61WT10mT8K5MTv7l+UNi66luSA95S1hpTL0kaRySPfSPpXJysfC5pHpu0P7rl/Y49NZn/qy2/b2e39KHk7ndt+rqDL06O+kxS37z9ewIAAAAAAAC2ibAwAAAAAAAAANiNrBsW1tnZmaeffjr77LOPwDAYBJVKJU8//XQ6Ozur5ocNG1ajjgAAYAAURXLEZcnh/5BUupK6xm3bb/Lby+qrp7Pct9KTLP5dUtQnIw5Pnv1Z8r+vT3o6qq8/+p+T8a9KfnbC+muUZn6hrP7sf14y6phkyIQyDG7J75OxpyRjThi8HgEAAAAAAIAkwsIAAAAAAAAAYLfS0tKSxsbGqqCi5cuX57HHHsuwYcMydOjQNDQ0pK6uroZdwq6lp6cnXV1daW9vz7Jly9YLCmtsbExzc3ONugMAgAFUFEmxjUFh/VkTQFbUJaOO7p3f+7XJ6+Ymz99Wnl/XUoZZNY8u16fdlDzwd8mSB5NRx5YBYg99cgsOfjEI7feXD9ST7DyevL6sTalvTca/Mpn0tmTcaUmjMGQAAAAAAAAYaMLCAAAAAAAAAGA3UhRF9t5778yZMyeVSmXtfGdnZxYuXJiFCxfWsDvY/az5O1kURa1bAQCAnVfLmGS/N254bfwrk9e8Mqn0lEFjSdLYljz4D0n3iqRxRLLH/uXX3SuTFXN77y3qkhOuTfb50+ShK8o9WF/3iuTpn5S1xoTXJ13tZUDbonuTjgXJnn+SHPWPSX1L7XoFAAAAAACAnZSwMAAAAAAAAADYzbS2tma//fZbLzAMGFxFUWS//fZLa2trrVsBAIBd35qgsCSZ+qFkygeSF2YnbZOr13q6koW/Ldf2PDVpnVDOv/RryV1vH8yOd25zf1y+PveL3rnF9yczv9A7nvKBpG1KsvdrktZ9k/rmwe0RAAAAAAAAdiLCwgAAAAAAAABgN7QmMOyZZ55JZ2dnrduB3U5jY2P23ntvQWEAAFAr9U3JsCnrz9c1JGNPKquvSRclY09JHvpUMvu6welxVzfr/y1f793INQdemEy9JBl+6KC0BAAAAAAAADsqYWEAAAAAAAAAsJtqbW3NpEmT0tHRkWXLlmX58uVZvXp1rduCXVZTU1Pa2toybNiwNDc3pyiKWrcEAABsiWEHJyd/p6w1Vj6XLLqv/LpjQTL2ZcmQvZMFvy7XRh+fPPCxZO4NG97zuGuS5rHJHecllZ5N93DsF3uv3x08fm1ZfZ35UDLisNr0AwAAAAAAADUiLAwAAAAAAAAAdmNFUaSlpSUtLS3Zc889U6lU0tPTk0qlUuvWYJdRFEXq6uqEgwEAwK5oyPhknzPXnx//yt6vX/7jpLM9ee6/k2duSrpXJ/u+Idn3db3XNLYl93wgaX+s/7P2fWMy+V1JepKmUcnqRQP2GDuVmw9PXn13GcQGAAAAAAAAuwlhYQAAAAAAAADAWkVRpL6+vtZtAAAAwK6lcWgZDtY3IKyvvV+bnP1osvLZ5JmfJk/9KOlantS3Jq37JFM+kIw4IinqyutP/+/kV69PXnhy8J5hR/KzlybnCzoHAAAAAABg9yEsDAAAAAAAAAAAAAAAdgRD9komva2sjRl1dHL2E0n7Y0nLuKSoT373iWTm57dPX+csSppGJj8al6x6fvucsSWK+qSnK6nzkQgAAAAAAAB2D3W1bgAAAAAAAAAAAAAAANhCRZG0TU4a25KG1uTY/5ucsyQ56jNlsNeII5IjLk8OvywZc1Iy7hXJidcm+5+3ZedMfGu5X5Ics53CyLZUpTvpXlnrLgAAAAAAgF3UnDlz8olPfCKnnnpqxo0bl6amphRFsba+9a1v1bpFdkN+jQ4AAAAAAAAAAAAAAOwKmoYnh360rL6OvLz364lvTcacmDzxnWTRb5P6luTAC5N9z0me/PfksW/0Xjvm5OS4L/aO9/mzZNRxyaJ7Nnz+UZ9N/vDppHPZgD1Sv3o6t/8ZAAAAAADAFpk4cWKefPLJtePp06dn2rRptWtoK3z961/PBz7wgXR0dNS6FahSV+sGAAAAAAAAAAAAAACAQVJXnxz818lr7k7OryRvWpkc/+Vk/OnJCf9fcm5XcsZdyVkzk1fdnjSN6L23sS05/b+Tl/zj+vvu9xfJwRcnk94+OM8hLAwAAAAAABhgN998c971rndtdlDYrbfemqIo1tbll1++fRtkt9ZQ6wYAAAAAAAAAAAAAAIAdRF19Mual/a83DU8O+1hZncuSBXcmQyclQw9MiiJ5yaeT9ieSuT/etj6GHZyc+uPkvw7d8Hr3iuSZnyY9XcmeLy/7AgAAAAAA2AaXXnppKpXK2vH555+fiy66KPvuu28aGxvXzo8ZM6YW7bGbExYGAAAAAAAAAAAAAABsucZhyV5nVM/VtyQv/1Gy8rlkxVNloNjK55LRL03uvyR5+iebt/dB7y/36s9PDtz0HsMPS15+Y9I2qf9rulf19g0AAAAAAOy2Zs6cmQcffHDt+Mwzz8x1111Xw46gmrAwAAAAAAAAAAAAAABgYA0ZX1Zff3JjGRzWsTAZfmiy4DfJHW9JXnii95oxJyUHvi2Z/PZkxdxt62HpH5L/nLx5145/VXLaz5Ki2LYzAQAAAACAndI999xTNT7nnHNq1AlsmLAwAAAAAAAAAAAAAABgcPQNERt7cnL2Y8kLs5OWcUlDa/W1dc2D19dzv0iur6ue+/M5yR77Dl4PAAAAAABAzcybN69qPGHChBp1AhsmLAwAAAAAAAAAAAAAAKiNokiGHrDhteYxg9vLum7cr/frqZckR302Ker6vx4AAAAAANhptbe3V40bGxtr1AlsmLAwAAAAAAAAAAAAAABgx1MUyb5vSJ76Ua07SWZ8rqy9Xp2MPiEZc2L52jyq1p0BAAAAAMBup1Kp5L777svDDz+c559/Ph0dHRk7dmz22WefnHLKKRk6dOgW79nT07MdOoWBIywMAAAAAAAAAAAAAADYMZ3yg+T6ulp30evZn5W1RtuUMjhsTXjYiCOSusba9QcAAAAAALuwBQsW5Kqrrsp3vvOdzJ8/f4PXNDU15fTTT8/ll1+eE044od+9Zs+enQMOOKDf9dNOO22D89dee20uvPDCDa598pOfzCc/+cl+95w+fXqmTZvW7zpsjLAwAAAAAAAAAAAAAABgx1QUte5g45bPKuuJfy3H9UOSUcdVB4i17lPbHgEAAAAAYBdwww035IILLsjy5cs3et3q1atzyy235JZbbsk73/nOfOlLX0pDg5gldn7+KQYAAAAAAAAAAAAAAHZcR/8/yf0fqnUXm6d7ZTL/V2Wt0TohGX1ib4DYyGOShiG16xEAAAAAAHYy3/zmN/OOd7wjPT09VfOTJk3KoYcemtbW1syZMyd33313uru7165/7Wtfy5w5c/Kf//mfAsPY6fknGAAAAAAAAAAAAAAA2HHt+4bk95cnXcu3/N7D/z6Z+ObkpkMGvK3NtmJusuIHyVM/KMdFQzLyJdUBYkMnJUVRux4BAAAAALaXnq7y+6RsX60TkrpdM0rogQceyHve856qoLCjjjoqX/rSl3LyySdXXTt//vz8/d//fb761a+unbvlllvyD//wD7nqqquqrp0wYUKeeOKJteMvfOELufrqq9eOr7/++px44onr9TNmzJhMmzYtSXLnnXfmvPPOW7v2wQ9+MBdffHG/zzJ+/PhNPC30b9f8Gw4AAAAAAAAAAAAAAOwahk5MTv95cu/fJAvv3Pz7msckB1yQtE1ORh6TLL5vu7W4RSpdyaJ7y3rkS+Vc8+je8LDRJySjX5o0Da9tnwAAAAAAA2HF3OQnB9S6i13f2U+U30/fBV100UVZvXr12vEpp5ySn/3sZ2ltbV3v2rFjx+YrX/lKJk+enA9/+MNr5z/72c/mvPPOyxFHHLF2rqGhIRMnTlw7HjFiRNVe48ePr1rva+jQoUmS2bNnV82PGDGi33tgWwkLAwAAAAAAAAAAAAAAdmxjTkxe/ZukpzvpWp7M/3Wyx8SkZVxyx5uTeb9MKt3ltSOOTEYdk0z9cBkUliSH/E3ym7cOTC9D9kpWPjswe63RsTB55r/KSpIUyfCp1QFiww9L6uoH9lwAAAAAANiBTZ8+Pffd1/vLQIYNG5bvfe97GwwK6+uSSy7JbbfdlptuuilJ0tPTk89//vP55je/uV37he1JWBgAAAAAAAAAAAAAALBzqKtPmkYk+/xp79zpP0s6lyd1zUl904bv2+//JHNvSJ764badP+4Vyem/SFbMTRbemSy4q3xddG/SvWrb9q5SSZb+sazHX/zgUsPQZPTx1QFiQ8YN4JkAAAAAALBj+fa3v101ft/73pe99957s+79zGc+szYsLEmuv/76/Mu//Euam5sHtEcYLMLCAAAAAAAAAAAAAACAnVtj28bX65uSl303mX97sviBZMSRybCDk9Z9kse/ldzzgaSrvQziWnhn//sc/vdJUSR77FvWfn9RznevTpY8mCy4szdErP3RAXu8JGV/86aXtcYeE5MJr08OuzRpGZsseyR57hfJ0APKYLP+wtMAAAAAAGAncPvtt1eN3/KWt2z2vYcddliOOeaY3HfffUmSVatW5d57783JJ588oD3CYBEWBgAAAAAAAAAAAAAA7PrqGpJx08rq68C/KmuNjkXJ/56dzP919XXDD0vG9vMBovqmZPRxZeX95dyq+cnCu3sDxBbenXQuG5BHWeuF2cnMz5c1ZJ9k5dPV63XNSU9H7/gln04OvbQMPAMAAAAAgB3Y4sWL89hjj60djxgxIlOnTt2iPU4++eS1YWFJ8tvf/lZYGDstYWEAAAAAAAAAAAAAAABrNI9KXnV7MvfG5OH/m7Q/nuw5LTnm80ld4+bv0zI22edPy0qSSk+y7OEyPGxNgNiSh5JUBqbvdYPCkuqgsCT53cfLWmPopORl1yejjks6lyaNw5KibmD6AQAAAACAbTB//vyq8UEHHZRiC38ZxiGHHFI1fv7557e5L6gVYWEAAAAAAAAAAAAAAADrmvDnZQ2Uoi4ZfmhZk95WznUuTxbdUx0gtmoQP6jU/ljys5dueG3I3smJ3yr7qqtP9j0nGTZl8HoDAAAAAHYNrROSs5+odRe7vtYJte5gwC1evLhqPHz48C3eY917Fi1atE09QS0JCwMAAAAAAAAAAAAAAKiFxrZk3GllJUmlkrwwu0942F3J4vuSns7B723lM8n0M3rHv/t4+Tr5ncnYlydjT0r2OCApisHvDQAAAADYedQ1JEMn1roLdkKVSqVqXAzA96MHYg+oFWFhAAAAAAAAAAAAAAAAO4KiSIYeUNbE88q57lXJ4gd6A8TmfK+2PT76tbKSpGXPZMxJvTXquKShtbb9AQAAAACwSxg1alTVeOnSpVu8x7r3jBw5cpt6gloSFgYAAAAAAAAAAAAAALCjqm9JxpxYVpJ0fzv5Xktte1pj1fPJ3BvLSpKiIRn5kmT0iWV42NiTkj0OKEPQAAAAAABgC4wdO7ZqPGvWrC3eY+bMmVXjPffcc5t6gloSFgYAAAAAAAAAAAAAALCzqG9O3rgw+eHoWneyvkpXsujesh75UjnXMu7FsLOTyhp1XNLQumX7rpqf/GgzP8B11GeTSncy7JBk/CuS7tXJiifLPlonbNm5AAAAAADUzMiRIzNp0qQ89thjSZIlS5ZkxowZmTp16mbvcccdd1SNjz/++AHtsfDLMhhEwsIAAAAAAAAAAAAAAAB2Js2jkvMrveNljyQ3TaldPxuzal4y98aykqRoSEa+pDc8bMxJyR4Tk/4+UFXp2fygsCR54KP9rw07OHnZd5O2KcmCO5NfvynpWJAceGFy2MfLPrpfSCqVZPH95fVD9tr8swEAAAAAGFCnnHLK2rCwJLnuuuty5ZVXbta9M2bMyL333rt23NLSkmOPPXZA+2tubq4ad3R0DOj+0JewMAAAAAAAAAAAAAAAgJ3ZsIOS8Wckz/1809c2jkg6l2z/nvpT6UoW3VvWrGvKuZZx1eFho45LGoaUa8/+YuDOXjYz+enR688/fm1Zm7LXq5OjP5eMOHzgegIAAAAAoF8XXHBBvv3tb68dX3PNNXn/+9+f8ePHb/LeSy+9tGp87rnnrhfuta1GjBhRNX722WcHdH/oS1gYAAAAAAAAAAAAAADAzu7lNyT3vG/joVcHvS85/precWd70tOR/HivpKdz886pb026VyapbFO7VVbNS+beUFaSFA3JyKPK4LDnbx24c7bVsz8r66xZZUAbAAAAAADb1emnn56jjjoqDzzwQJJk6dKlOe+883LzzTdnyJAh/d73+c9/PjfeeOPacVEU+Zu/+ZsB7+/AAw9MU1NTVq9enSSZPn16Ojs709jYOOBngbAwAAAAAAAAAAAAAACAnV3DkOTEbyYHXJD86o3J6kW9a+Nflez7hmTyO6vvaRyaZGhywjeT37x102ccflly5OXJ6qXJwruSBb95se5KOpcM3LNUupJF95S1I7ppSnLqj5J9X1/rTgAAAAAAdmjPPfdcZs+evVX3Tpw4MUnyjW98IyeddNLaQK5bb701p556ar70pS/lhBNOqLpnwYIFueyyy/LlL3+5av4jH/lIjjzyyK3qY2Oampryspe9LNOnT0+SzJkzJ2effXbe/e5356CDDkpra2vV9ePHj09LS8uA98HuQVgYAAAAAAAAAAAAAADArmLctOQN85Ilv0/22D9pHrXpe/Y6IykaypCu/tS3JPv/n/LrpuHlPXudUY4rPcmymX3Cw36TLP1jksq2Ps2O61dvSF769WTy22vdCQAAAADADuu8887b6nsrlfJ7zMccc0yuueaavPvd705PT0+S5N57782JJ56YyZMn57DDDktLS0ueeuqp3H333enqqv5e96te9ap86lOf2vqH2IS//du/XRsWliS33HJLbrnllg1eO3369EybNm279cKuTVgYAAAAAAAAAAAAAADArqSuIRl19OZf37JncuoPkl+fm3SvKuda90uaRiZL/5CMfEly9OeS4Ydu+P6iLhk+taxJbyvnVi9NFt7VJ0DszqRz6bY9147m7nckky5KiqLWnQAAAAAA7NLe8Y53ZOTIkbnwwgvT3t6+dv7RRx/No48+2u99b3vb2/KVr3wljY2N2623s846K1deeWUuu+yydHd3b7dzQFgYAAAAAAAAAAAAAADA7m7CnydvXFgGfA2dlOyxXznf053U1W/5fk3Dk73OKCtJKj3Jsof7hIf9Jln6x4Hrv1aW/C4ZeVStuwAAAAAA2OWdc845efnLX56rrroq1113XRYsWLDB6xobG3Paaaflsssuy8knnzwovX384x/P61//+vzbv/1b7rjjjsyaNStLly7NypUrB+V8dg9FpVKpdQ9QU0VRHJbkoTXjhx56KIcddlgNO4IdUOey5IG/S+b9snyDvr6oUUkAACAASURBVD/n++8UAAAAAAAAgFr6wx/+kMMPP7zv1OGVSuUPteoHAPyMHgCwUauXJAvv7hMgdmfSubTWXW2Zk/41OeCtte4CAAAAALabrq6uPPLII1VzBx10UBoaGmrUESQ9PT2599578/DDD2f+/Pnp6OjImDFjMmHChJxyyilpa2urdYvU0Pb691atfz7Pv3UB2LhKTzL9tcmCO2rdCQAAAAAAAAAAAACwK2kakex1RllJ+bPLyx7uEx72m2TpH7ftjOOuSaa8r/z634tt22tDls4Y+D0BAAAAANiourq6HH/88Tn++ONr3QoMGmFhAGzc4gcEhQEAAAAAAAAAAAAA219Rlww/tKxJF5Vzq5ckC+5KFt6ZtD+RLJuZ7H1mMv6VydiTkvbZyW/fkzx7y/r7HfXZ5KD39o4P/Wjyx88OcNM9A7wfAAAAAADA+oSFAbBxD11Z6w4AAAAAAAAAAAAAgN1V04hk71eXtSFDJyan/TSZ/e/Jk99LKj3Jvq9PDrwwKYrqa/c/P5l5ddK9auD6W3R/+Qua2w5KGvYYuH0BAAAAAAD6EBYGwMZ1zK91BwAAAAAAAAAAAAAAGzfx/LI2ZuSRybSfJg9+Iln8YDLq2OSAt5ZhX/NvTxbfv+XnPvfz5Kc/r5477ppkyvu2fC8AAAAAAIB+CAsDAAAAAAAAAAAAAABg9zBuWvKq25NKJSmK9de7VyW/+0TyzM1Jy9jk+f/d8jPueX9Z/Wk7qOyhaVRS6UrqmjfcCwAAAAAAwIuEhQEAAAAAAAAAAAAAALB76S+cq74lOeZzZSXJynnJ9DOSJQ8O3NnLH0l+NK7/9SF7J6+5L2keldQ1Dty5m9LTmSy4KynqkuGHJUV90jh08M4HAAAAAAD6JSwMgE2o1LoBAAAAAAAAAAAAAIDaGDIuee0DyU0HlyFfg2HlM8mPx294bcLrkpf8Y9K5LBk2JWkaMTBnLvl9cvOR/a+PPTWZekky7OAkdcns7ySL70+6VyYHvi3Z/9z+A9gAAAAAAIBtJiwMAAAAAAAAAAAAAAAA+lMUyRGXJ3e8udadJHNvKGtzTHxzMu4VyZ4vL0PFmkdv+LpKJbn1Tze+1/xflbUhz/13csf5veOhByYHvScZe0pS1Cfzb0+WP5a0HZQ8/Z/JvF+W4WN7vybZ+6xkxBGCxgAAAAAAYBOEhQGwCd50BQAAAAAAAAAAAAB2c/u9KXniO8mzP611J5tv9nVlrWvvs5I99k+KuqRjYTL0gGTFUwN3bvvjyf0f3vg1a8LHfvfxDa+3HZSMOjZ5/n/L4LFDP5bU+RgUAAAAAAC7L98lBwAAAAAAAAAAAAAAgI2pq0+m/VfyzM3JspnJE99OljxY6662zjM31bqDTVv+SFlJ8uDfl9W6bzLutGTYIb01dFJS31TbXgEAAAAAYBAICwMAAAAAAAAAAAAAAIBNKYpknz8ta+rfJt8fmXQuqXVXu48VTyVP/Gv1XNGQtE2qDhAbdkgy7OCkaWRt+gQAAAAAgO1AWBgAm1CpdQMAAAAAAAAAAAAAADueKe9N/nBVrbvYvVW6kmUzy8qN1Wst4zYQInZIssd+SVFXk3YBAAAAAGBrCQsDAAAAAAAAAAAAAACALXXghcLCdmSr5pX1/G3V8/VDkrYpveFhw6eWr20HJQ2ttekVAAAAAAA2QVgYAJtQ1LoBAAAAAAAAAAAAAIAdT9vk5JgvJPddXD0/+Z3JS/4x+elRyYqnatMb/etemSz5XVlVimSP/XtDxPpWy55J4WfrAQAAAACoHWFhAAAAAAAAAAAAAAAAsDUO+WCyz1nJ/F8lbVOS0S9N6l78uM4r/ieZ/tqk/dHa9shmqiQvzC7r2VuqlxpHlKFhw9cJERt6YFLXWItmAQAAAADYzQgLA2ATKrVuAAAAAAAAAAAAAABgx9U2qaz15icnZz+SvPBkMu+2ZPF9SeeyMlRs3LRkjwOSBz6SPP+/ZUBVwx7JmJOSoZOTp36YdMwf7Cep1jQyWb1449cM2SvpWZ10LOz/mjPuSsa8tHru34ut72vo5OSFx5NKz9bvsaU6lyQL7yyrr7rGsp9h64SIDTs4aRo+eP0BAAAAALDLExYGAAAAAAAAAAAAAAAA28se+ycHXpDkgvXXTvr2hu85/BPJ3BuSe97fOzfq2KRlXPLMzdulzSoH/00y+R3Jr9+ULPn9hq8pGpJj/9/k+VuTWdds+JrWfZPRx68/P+Wvk1lf3PK+Xv9MGVDW3ZEsfzRZ9nCfmlG+dr2w5fturZ7OF8+dsf7akL02ECJ2SNI6ISnqBq9HAAAAAAB2CcLCAAAAAAAAAAAAAAAAYEfSuk8y5X1ldXckncuTljFJpZI8+/Pk2VuSJ7+bNI9KRrwkmfc/yap56+9T1CXNY5JVz2/+2XVNyaEfTYaMS858sLx30f3J4vuThqFJV3tS6U72OSsZ+ZJk79cm7bOTZ26q3qdhjzIMrSjWP+OwS5N5v0yW/mHz+9r/3DKAK0nqm5MRh5XVV6WSrHy6DA1b+nB1mNjKpzf/rIGw8tmy5k2vnq9vTYYdnAybWoaHDX8xRKztoKS+ZXB7BAAAAABgpyEsDIBN2MAbswAAAAAAAAAAAAAADI765rKSMnhr71eXdezne6/p6UrmfD+Z/+skPUldc9LYlkz482TkMcnyWcmi+8rwqgc+mlS6+j/v6H8ug8LWaNmz98wNaWhNpv1nsuKZpP3R8ozuVcn4V5ahZxsyZHxyxh3JM7ckv37Tpv8Mjrg8OezvNn1dUSStE8oa/8rqtc7lybKZ1QFiyx4u/2x6Oje990DpXlEGry2+f52FIhl6QBkctm41j9lw6BoAAAAAALsNYWEAAAAAAAAAAAAAO5GiKBqSHJPksCRjkzQlaU/ydJJZSf5QqWws/QEAgF1OXUMy8byyNmTYwWUlycijkse/WQaLVbqTlnFlWFbLnskBb00mvmXremjdu6zN1Tgs2f//lNWxKHlhdhmWtWJuMuzQlKFnjVvXywbPa0tGH1dWXz1d5dlLZ6wTJDYjWb144M7fpErS/nhZz9xcvdQ0qjc4bPjU3q/3mFj+Zw8AAAAAwC7Pd4MB2IRKrRsAAAAAAAAAAIDtriiKA5Mcn+S4F1+PSdLW55InK5XKxBq0tlZRFAcl+XCSNyUZtpFLVxZFcXuSf6lUKj8elOYAANh5jD+9rB1J86iykqRp5IuT9YNzdl1D0ja5rPxZ73ylknQsWCdA7MVqfyKD+rP2qxclC+4oq6r3pqTtoN7wsLV1cBmOBgAAAADALkNYGAAAAAAAAAAAALBbKopiWpJLUwaEjaptN/0riqIhyT+k7HVzfvZzSJJXJVmURFgYAABsjaJIWsaWteep1WtdK5P2R8vgsKUPJ8tmvBgkNjPpXjF4PfasTpb+oax1DdmnOkBs+CHJsKnJkL3LZwMAAAAAYKciLAwAAAAAAAAAAADYXR2V5IxaN7ExRVEMSfKDJGeus1RJ8ockc5IsSTI0yYFJDomfDwUAgO2rYUgy4oiy+qr0JCvmvhgctk6tfHZwe1z5dFnzflk93zC0OkRsTbVNTuqbB7dHAAAAAAA2mx8GAWAT/MYgAAAAAAAAAAB2Ox1J5iaZVMsmiqIoknw31UFhq5L8U5KvVSqVpzdwT2uSVyU5N8nqwegTAAB4UVGX7LFfWXutk0u8emmybOY6IWIzkuWPJpWuweuxqz1ZdE9Z6/V+YBkcNnydILHm0YPXHwAAAAAAGyQsDIBNqNS6AQAAAAAAAAAA2J46k/whyT1Jfvvi6++TvCzJ9Br2lSTvTXJ2n/GzSV5RqVRm9HdDpVJZkeTGJDcWReHnRAEAYEfRNDwZ89Ky+urpTNofrw4RW/pikFjn0sHrr9KTtD9a1jM3Va81j3kxOGxqb4DY8EOS1v2TuvrB6xEAAAAAYDfmh0AAAAAAAAAAAACA3dW3k3ylUqmsWnehKIoatFN1/n5JPtNnalWSV24sKGxdlUqla8AbAwAABlZdYzLs4LLy573zlUqy6vnqELE19cLswe2xY0Ey//ay+qprToZN6Q0QW1sHJw17DG6PAAAAAAC7OGFhAAAAAAAAAAAAwG6pUqksrnUPG/HxJEP7jD9dqVT+WKtmAACAQVYUyZBxZY37k+q1rhXJ8keSpTOqQ8SWz0y618tC3n56OpIlvy9rXa37VgeIDZ9avraML58NAAAAAIAtIiwMgE3wJhwAAAAAAAAAAAymoijakpzfZ+qFJFfXqB0AAGBH09CajHxJWX1VepIX5lQHiK2pVfMGt8cVT5X13C+q5xuHVYeIramhk5L6psHtEQAAAABgJyIsDAAAAAAAAAAAAGDH8qYkQ/uMf1ipVJbXqhkAAGAnUdQlQyeWtfdrqtdWL06WzewND1s6o3xtfyypdA9ej53LkoV3l9VXUV8Ghq0bIjb8kKRp5OD1BwAAAACwgxIWBsAmVGrdAAAAAAAAAAAA7G5OW2f8i5p0AQAA7DqaRiZjTiyrr+7VZWDYmhCxvtW5bPD6q3Qny2eV9fRPqtdaxq0fIjbskGSP/cqANAAAAAB2KitWrMh9992XRx55JAsWLMiqVasyZMiQjBs3LlOmTMnRRx+dpqamATlrzpw5+drXvpbbbrsts2bNyuLFi9PZ2bl2/dprr81f/dVfbfDeu+++O9dee23uuOOOPPXUU1m6dGl6enrWrj/xxBOZOHFikmTatGm57bbb1q5VKrI6GHjCwgAAAAAAAAAAAAB2LC9dZ/ybJCmKYkiS1yc5N8lhSfZO0pFkQZL7U4aKXV+pVJYPXqsAAMBOrb4pGT61rL4qlWTVc73BYUv7hIitmDO4Pa6aV9bzt1XP17ckbQdXB4gNPyRpm5I0tA5ujwAAAABsVHd3d/7jP/4j1157baZPn56urq5+r21pacmrX/3qvP3tb89ZZ5211Wd+/etfzwc+8IF0dHRs0X1dXV1573vfm69//etbfTZsD8LCAAAAAAAAAAAAAHYQRVGMSDK5z9TqJI8XRfEnSa5NcsA6t7QkGZ5kUpJzklxVFMUVlUrli4PRLwAAsIsqimTIXmWNO616rbM9WT6rNzxsbc1Kerbsg5fbpHtVsuR3Za1rj/2TYVOrg8SGHZK07Fk+GwAAAACD5n/+53/ynve8J7Nmzdqs61etWpUbb7wxN954Y4477rh89atfzTHHHLNFZ958881517velUqlssX9fvzjHxcUxg5JWBgAm+BNMAAAAAAAAAAAGETj1xk/k+QNSf4jSd1m3D86ydVFURyf5MJKpdL/r2MGAADYGo1Dk1HHlNVXT3ey4slk6bohYg8nHfMHt8cXnizr2Vuq5xtHlKFhw9cJERt6YFLXOLg9AgAAAOwGPvnJT+aTn/zkeqFdRVFk6tSpmTBhQkaPHp358+dnzpw56wWK3XPPPTnppJNyzTXX5B3veMdmn3vppZdWnXn++efnoosuyr777pvGxt7vA40ZM6bqvnnz5uULX/jC2nFTU1M+9rGP5cwzz8zYsWNTV9f7tv2ECRM2ux8YCMLCANiELU9JBQAAAAAAAAAAttqIdcZDk3wnvUFhTyb5UpLbkyxMMirJKUnel2Rin/vekmRekksGqrGiKPZMMnYLb5s0UOcDAAA7uLr6MnRr6IHJPmdWr3UsrA4PWxMo9sLjSaVn8HrsXJIsvLOsvoqGpG1ynwCxqS++Hpw0DR+8/gAAAAB2IRdffHGuvvrqqrm2trZceumlefOb35z99ttvvXseffTRfOtb38rnPve5dHR0JElWr16dd77znXnhhRdy8cUXb/LcmTNn5sEHH1w7PvPMM3PddddtVs833HBDVq9evXZ85ZVX5sMf/vBm3Qvbm7AwAAAAAAAAAAAAgB3HumFhfX+N8feT/GWlUlm5zjV3FkVxTZJ/TfIXfeY/VBTFjZVK5VcD1Nt7k1w2QHsBAAC7k+bRydiXldVXd0ey/NHqILE11dU+eP1VunrPXdeQvfqEiPWp1glJUbf+9QAAAADk29/+9npBYaecckquv/76TJgwod/7Jk+enCuvvDIXXHBB3vjGN+ahhx5au/ahD30oRx11VKZNm7bRs++5556q8TnnnLPZfW/tvbfeeutmnwFbS1gYAAAAAAAAAAAAwI6jv0+a/zbJ+ZVKpWtDi5VKZVVRFOcnmZjk+D5Ln0jy6gHtEAAAYKDUNycjDiurr0olWflMb4DX0hm9X698enB7XPlsWfOmV8/XtybDDl4/RKztoKRhyOD2CAAAALADmTVrVt7//vdXzZ188sn56U9/mqFDh27WHlOmTMkvf/nLTJs2LTNmzEiS9PT05C1veUseeOCBjBkzpt97582bVzXeWDjZQN4L25uwMAAAAAAAAAAAAIAdR3s/85f0FxS2RqVS6SqK4m+T/KrP9BlFUexZqVSeH7AOAQAAtreiSFr3KWv8K6rXOpcny2b2hoetqeWPJD2rB6/H7hXJ4vvLqlIkQw9YP0Rs2CFJ85jy2QAAAAB2YZdcckna23vf+h4xYkR++MMfbnZQ2Bp77rlnfvCDH+Too4/O6tXl932efvrpfOpTn8rVV1/d7319z06SxsbGzT5zW+6F7U1YGACb4E0oAAAAAAAAAAAYRBsKC3uyUqn87+bcXKlUbi+K4vEkB/aZ/pMk3x+A3r68FftMSnLjAJwNAABQamxLRh9XVl89XckLs9cPEVs6I1m9aBAbrCTtj5f1zM3VS02jNhwiNvSApM5H/QAAAICd38MPP5ybbrqpau4zn/lMxo8fv1X7HXroobnkkkty1VVXrZ37xje+kcsvvzwjR47c4D09PT1bdda23jsQ/vjHP+b3v/99Fi5cmMWLF6elpSVjx47N1KlTc+SRR6a5uXmr9u3q6srdd9+dxx9/PPPnz09HR0fGjh2biRMn5mUve1laWloG+EnYHnwHEYBNqNS6AQAAAAAAAAAA2J0s2cDcnVu4x12pDgubuvXt9KpUKs8neX5L7ikKv6wQAAAYJHUNSdvksvY5q3pt1fz1Q8SWPZy0P5FB/dzE6kXJgjvK6quuMWk7KBk2dZ0gsYPLcDQAAACAncTVV1+dSqX3+y1jxozJhRdeuE17Xnzxxfnnf/7ndHZ2JkleeOGFfP3rX89HPvKRJMns2bNzwAEH9Hv/aaedtsH5a6+9Nkk22l9/73k/8cQTmThx4trxtGnTctttt60d9/0z2JSnnnoq//RP/5Tvf//7mTdvXr/XDRkyJKeddlr+8i//Mm984xtTX1+/yb1nzJiRK6+8MjfddFOWLVvW775nn312rrjiikyZMmWz+2bwCQsDAAAAAAAAAAAA2HE8maQjSd9fB/zsFu7xzDrj0dvUEQAAwM6uZWxZe55aPd+9Kln+SBkctnSdILHuFYPXX09nsvSPZa1ryD7VAWLDX3wdsk8ioBkAAADYwdxyyy1V4wsuuCBNTU3btOfYsWPzZ3/2Z/nRj35Udc6asLCdVaVSyac//el86lOfyurVqzd5/cqVK3PzzTfn5ptvXi+sbF3d3d255JJL8sUvfjE9PT2b3Pd73/tefvjDH+Zzn/tcPvjBD27pozBIhIUBAAAAAAAAAAAA7CAqlUp3URQzkxzZZ7pjC7dZ9/qWbesKAABgF1Xfkow4oqy+Kj3JiqdfDA6bUR0itnJL85y30cqny5r3y+r5hqHJsIOrg8SGTU3aJif1zRveCwAAAGqgq7uSuYtr3cWub8LIpKG+tsHic+fOzezZs6vmzjjjjAHZ+4wzzqgKC7vzzjvT2dmZxsbGAdl/sHV1deXcc8/ND3/4w/XWxo8fnyOOOCJjxoxJR0dH5s2bl9/97ndpb2/frL1XrlyZ173udfn5z39eNd/Y2JijjjoqEyZMSHNzc5577rncfffdWbFixdqeLr744ixevDiXX375Nj8jA09YGAAAAAAAAAAAAMCO5cFUh4WN2ML7171+4ba1AwAAsJsp6pI99i1rr1dVr61emiybWR0gtuzhZPkjSaVr8Hrsak8W3VvWer0fWIaHDT+kOkysefTg9QcAAAAvmrs4OfDvemrdxi7v8avqMnFMbXv49a9/vd7ccccdNyB7H3vssVXjlStX5oEHHsjxxx+fCRMm5Iknnli79oUvfCFXX3312vH111+fE088cb09x4wp/8CmTZu2du7cc8/NXXfdtXbcd9++JkyYsFXPscaHPvSh9YLCzjzzzFx++eU5/vjj17u+p6cnd955Z7773e/mW9/61kb3ft/73lcVFDZ8+PBcfvnlueiii9LW1lZ17cqVK/PlL385n/jEJ7Jq1aokyRVXXJETTjghr33ta7fy6dhehIUBAAAAAAAAAAAA7FhuTvKWPuPDtvD+w9cZz922dgAAAFiraXgy5qVl9dXTmbQ/0SdAbEay9MWvO5cMXn+VnqT90bKeual6rXlMdXjYmtpjYlJXP3g9AgAAALukuXOr35oeN25cRo8emPDyww9f923w8rzjjz8+DQ0NmThx4tr5ESOqf7/W+PHjq9bXNXTo0LVft7S0VK1t7L6t9fOf/zxf/OIXq+Y+85nP5KMf/Wi/99TV1eXkk0/OySefnCuuuGK9Ptf4/ve/n2uvvXbteP/998+tt97a73MMGTIkH/rQh3LSSSflFa94RVatWpVKpZK//uu/zsyZM1NXV7flD8h2IywMAAAAAAAAAAAAYMdyU5KOJM0vjo8vimJUpVJZtKkbi6IYmWSdT6znVwPcHwAAAOuqa0yGTSkrZ/fOVyrJquf7hIj1qReeTFIZvB47FiTzby+rqvfmpO2gZPjU6hCxtilJ49AN7wUAAACwjkWLqt/SHjly5IDt3dLSkubm5nR0dPR73s7iiiuuqBq/+93v3mhQ2LrWDUNbo1KpVO3d0NCQn/zkJ5sVeLYmhOwjH/lIkuTRRx/NDTfckDe84Q2b3Rfbn7AwAAAAAAAAAAAAgB1IpVJZXhTFD5K8+cWp5iTvT3JF/3et9f4kfX+F8JNJHhrYDuH/Z+/Oo/Q66zvBf28tqpKqSqXVsmVb3m3JZgvtDvsS4gScNGEC6ZCGE5qQrUn+4EySSRqGxk13pwNZZoYJ9GShIRmm4QRCEyAhwUBiNpMQMInBlmR5lW1ZtqylqlSlUm3P/HEl1XtLJVmySm9p+XzO+Z2q+zz33uf75nBkVHF9AQAATlhVJUvX1bPuZc29qbFkZNs8RWJbk+kD7cs4czAZ+l49cy27tFkgdniWXlR/NgAAAIBD5pZ3HavU6ulasWJFHn/88SPXu3fvXtD3t8Odd96Zr3/960euBwYG8t73vndB3v13f/d3+d73Zn++88Y3vjHPetazTvj5X/7lX8673vWujI+PJ0k+85nPKAs7wygLAwAAAAAAAAAAADiNqqoqc5Z+oJRy21M89h+S/OskSw5dv6Oqqi+UUr5xnHNekOSdc5Z/q5Qy93wAAADOBF3LkpXPrqdVmUlGt89TIrYlGX98/nedLmMP17PzC831roHZ4rDBTbPf91+VdC6Z/10AAAAAp6A6B4rLv/SlLzWu3/CGN2T58uUL8u4vfKH585vXv/71J/X8smXL8v3f//35yle+kiT56le/uiC5WDjKwgAAAAAAAAAAAIDzVlVVl2T+f5/ywjnXXVVVXX6M1+wvpTy5kLlKKQ9UVfXbmS3/6klya1VVv57kg6WUycP3VlXVleRnk/xuZsvFkuSbST68kLkAAABog6oj6b+8nvWvau5N7E2Gtx5dIjZyb1Km25dxaiTZ84/1tKo668Kww+VhRwrFNiZLVrYvHwAAANB2q1atalwPDQ0t6Pv37dt33PPOBrfffnvj+uUvf/mCvftrX/ta43rVqlV58MEHT+odrcVlDz74YGZmZtLR0bEQ8VgAysIAAAAAAAAAAACA89nXklx2AvddnOSBY+z9aZI3L1SgFu9Kcl2Sf33ouj/Jf0vyX6uq+vske5KsSvL8JCvmPPtokteVUiZOQy4AAAAWy5KVyZrn19NqeiLZf39Lgdjm2e8nh9uXr0wnI/fU8+hnmnu9FxxdIrZ8U9K3oS5IAwAA4Jx0ycrk/v/q732n2yVnQEf33PKuvXv3Lti7x8fHMz4+3lhbvXr1gr2/XR577LHG9Q033LBg73744Ycb189//vOPceeJmZmZyb59+87KUrZzlbIwAAAAAAAAAAAAgDNQKaVUVfXTqUvBfrFla0WSVx3n0W8m+fFSyo7TmQ8AAIAzSOeSZHBjPa1KScZ3zhaHDW2Z/X5se3szjj9RzxNfaa539iYD1zVLxAY3JgPXJl3L2psRAACABdfVWeXyNYudgna4+OKLG9c7d+7M7t27F6TU66677nrK884Gu3fvblyvXLlwLW9z370QRkZGlIWdQZSFAQAAAAAAAAAAAJyhSikHk/y7qqo+keQ3krwiSecxbv9ekt9N8v+VUqbbFBEAAIAzWVUlSy+qZ90PNPemRpPhe2bLw4a3JMOb67WZg+3LOD2e7Pvneubqu6xZInZ4etfVnw0AAAA4Y7zwhS88au1b3/pWXvnKV57yu7/1rW81rpcuXZrnPOc5p/zexVYt4M83JiYmFuxdh5VSFvydPH3KwgAAAAAAAAAAAIDzVinl8jacccr/dm8p5UtJvlRV1dokz09yUZI1SUaSPJ7k9lLKI6d6DgAAAOeRrr5k1ffV02pmOhl7KBnaMqdIbEtycFd7M44+VM9jn2+ud6+oS8MG55SI9V+ZdHS3NyMAAACQJNmwYUM2bNiQ7du3H1m79dZbF6Qs7Atf+ELj+nnPe16WLFlyyu9ttzVr1jSu9+zZk4svvnjB3r1jx44kSW9vb8bGxha0jIzFpywMAAAAAAAAAAAA4CxRStmV5LOLnQMAAIBzWEdnXbrVf2Vy8Y809w7uToa3Hl0itv++pMy0L+PkvmT339fTqupKBq5uFogdniWD7csHAAAA56lXtXYQhwAAIABJREFUvepV+aM/+qMj1x/5yEfynve8J93dT7/ce9euXfnMZz5z1Dlno4suuqhxfffdd+eZz3zmgrx73bp1R8rCxsfHs3379lx22WUL8m7ODMrCAAAAAAAAAAAAAAAAAICn1rM6WfvCelpNH0xG7j26RGx4SzK1v335ytTsuXP1XjhbHDa4afb7ZZckVUf7MgIAAMA57G1ve1v++I//OKWUJHXR14c//OH8wi/8wtN+5/ve975MTk4eue7r68vP//zPn3LWxfCiF70on/jEJ45c33bbbXn961+/IO9+4QtfmO985ztHrm+99daz9v9OzE9ZGAAAAAAAAAAAAAAAAADw9HX2JCtuqKdVKcmBHfOXiI090t6M4zvreeK25nrnsmT5dbPlYYdn4Jqka2l7MwIAAMBZ7vrrr8/NN9+cz33uc0fWfuM3fiOvec1rsm7dupN+3913353f+Z3faaz9zM/8TFatWnXKWRfDTTfd1Lj+6Ec/mt/+7d/OwMDAKb/7la98ZT7wgQ8cuf7gBz+oLOwcoywMAAAAAAAAAAAAAAAAAFh4VZUsu7ieC3+wuTc5kozckwxtSYY3z5aIjWxLZibal3F6LNn7nXoaqqTv8tnysMHDRWKbkp419WcDAAAAjvJ7v/d7ue222zI2NpYk2bdvX1772tfm85//fPr7+0/4Pbt27cpP/MRPZGJi9ucEF110Ud71rncteOZ2ueGGG/Kyl70sX/7yl5Mkw8PDefvb3573v//9p/zum2++OVdddVXuu+++JMk3v/nNfOhDH8pb3vKWU343ZwZlYQAAAAAAAAAAAAAAAABAe3UPJKv+RT2tZqaS0Qdny8MOz9DmZGJPGwOWZPSBeh776+bWklWzJWKt039F0uHXNgEAADi/bdy4Mb//+7+fn/3Znz2ydvvtt+fmm2/Oxz72sVxyySVP+Y5t27blda97XTZv3nxkraOjIx/5yEeydu3a05K7Xd71rnflB39wtlT9Ax/4QK644or86q/+6gk9PzQ0lJ6envT29jbWu7q68p/+03/KG9/4xiNrb33rW7NixYq89rWvPamMX/ziF3PllVfmyiuvPKnnOL06FjsAAAAAAAAAAAAAAAAAAECSumxr4Ork4n+VbPq15HkfTH7oa8lP7E5euyu56avJ9/9xsvFXk/U/mvRflVRt/lXJiT3Jk7cn938o+adfT77yY8lfXpt8fFnyVzckX31d8s//e/LAR5Ld/5hMDrc3HwAAACyyt7zlLfnlX/7lxtrXvva1XH/99XnPe96Thx9+eN7n7r333rzzne/MM5/5zHz3u99t7L33ve9tlGydrV7xilccVQz2a7/2a/mxH/uxfPvb3573mZmZmXzjG9/I2972tlx66aXZuXPnvPe94Q1vyFve8pYj1xMTE3nd616XN77xjcd8d5JMT0/nO9/5Tt797nfn+uuvzw/90A9l+/btT+PTcTqpqAcAAAAAAAAAAAAAAAAAzny9a5LeFycXvLi5Pj2ejGxLhrckQ1vqr4dneqx9+WYmk6G765lr6fpk+aZk+cZ6Bg99XXpxUlXtywgAAABt8v73vz8rV67Mb/7mb6aUkiQZGRnJ29/+9rzjHe/I9ddfn0svvTQrV67M7t2789BDD2Xr1q1Hvae7uzvve9/78ta3vrXdH+G0ee9735vt27fnE5/4xJG1z372s/nsZz+b9evX55nPfGZWr16dgwcPZufOnbnzzjszMjJyQu/+gz/4g+zduzef+tSnjqx99KMfzUc/+tGsXbs2z372s7N69ep0dHRkeHg4O3bsyObNmzM+Pr7gn5OFpSwMAAAAAAAAAAAAAAAAADh7dfYmK55ZT6syk4w92iwPOzwHdrQ344Ed9Tz+peZ6V99sgVjrDFyTdPa0NyMAAAAssP/8n/9zXvayl+WXfumXsm3btiPrpZTcddddueuuu477/HOf+9z84R/+YW688cbTHbWtOjs782d/9me54YYb8pu/+ZuZnJw8srdjx47s2PH0f27R3d2dT37yk/md3/md3HLLLY0SsF27duWLX/ziCb2jr6/vaWfg9FAWdp6oqqo7yYuSbEhyUZL9SXYk+U4p5cEFPuuKJM9Jsj5Jf5LHkjyU5PZSyuTxngUAAAAAAAAAAAAAAACABVF1JH2X1nPRDzX3JoeToXlKxEa2JWWqfRmnRpM9367nqOxX1MVhg5uaRWI9q9uXDwAAAE7RTTfdlLvvvjsf//jH86EPfShf/vKXMzV17L979/T05Id/+Ifzcz/3c3n1q1+dqqramLZ9qqrKLbfckje96U35rd/6rXzyk5/Mnj17jnl/f39/brrpprz5zW/Ohg0bnvLdv/7rv543velNed/73pePfexjeeihh477zMDAQF7ykpfkR3/0R/P6178+q1f7+cOZpiqlLHaG80ZVVf8xyS2n8Io/LaW8+STPXJvk3Ulen2TVMW67Pcn/UUr55ClkS1VVP5HkV5K84Bi37EnyZ0neVUp58lTOWkhVVd2Q5HuHr7/3ve/lhhtuWMREcIa59UXJk7ef2L1v8M8UAAAAAAAAgMV011135RnPeEbr0jNKKcf/n98EgNPIv6MHAADAWWdmMtn/wNElYkObk8l9i52u1rOmWR52ePouTzo6FzsdAABwjpmamsq2bdsaa9dcc026uroWKRFnu9HR0Xz729/Ovffem127dmViYiI9PT1Zt25drr322jz3uc9NT0/PYsdsu5mZmdxxxx3ZsmVLnnzyyezfvz99fX254IILsnHjxjzrWc9Kd3f3037/Aw88kDvuuCO7du3K3r1709HRkYGBgaxfvz4bN27MNddck87Oc+PnCqfrz63F/vfz/Kl7Dquq6uYkf5Lkgqe49YVJXlhV1f9I8oullNGTPKc/yR8n+amnuHVVkrcmeW1VVf+2lPL5kzkHAAAAAAAAAAAAAAAAAE6rju5k+bX15Mdm10tJDu5qlocd/n70oSSlfRkPPpns+lo9jew9ycA1zQKxwU3JwLVJd3/78gEAAMBx9PX15aUvfWle+tKXLnaUM0pHR0duvPHG3Hjjjafl/VdccUWuuOKK0/Ju2kNZ2DmqqqqXJ/mLJEtalkuSO5Lcn2RFku9LsqZl/41JlldV9b+UUmZO8JzOJH+W5EfmbO1K8p0kQ0muOnRWdWhvXZJPV1V1Uyllzk8jgTNOVT31PQAAAAAAAAAAAAAAAHAuq6qk94J6Lpjzy8xTY8nIttnysCOzNZk+0L6MMweToe/VM9eyS5slYodn6UV+fwgAAADgLKAsbHH9myR/fxL37z+Rm6qquiTJ/0yzKOzrSX6+lLK55b6eJL+Y5HeTdB9afnWS/5LkHSeY6T1pFoVNJvmVJH9USploOev6JB9M8oJDSz1J/qKqqmeWUh47wbMAAAAAAAAAAAAAAAAA4MzStSxZ+ex6WpWZZOzhZKi1QGxz/XX88fZmHHu4np1faK53DcwWhw22lIj1X510Lpn/XQAAAAC0nbKwxbWzlPLgaXjvu5OsbLm+PclNpZTx1ptKKQeT/N9VVW1P8qmWrV+pquoPSykPHe+QqqquTPK2Ocv/upTy6bn3llLurqrqB5N8KbOFYauT3JLk353AZwIAAAAAAAAAAAAAAACAs0fVkfRdVs/6Vzb3JvYmw1tbSsQOzci9SZluX8apkWTPP9bTyN6Z9F+ZLN80WyB2uFBsycr53wUAAADAaaMs7BxTVdU1Sf5ty9JEkjfPLQprVUr5i6qq/rTluZ7UJV5veYrjbknS3XL9J/MVhbWcc6Cqqjcn+W6Sw/+TAj9bVdVvl1Luf4qzgMVSymInAAAAAAAAAAAAAAAAgHPLkpXJmufX02p6Itl//9ElYsObk8nh9uUr08nItnoe/Uxzr/eCZoHY4em7rC5IAwAAAGDBKQs797whSWfL9f8spWw7gefem2bJ2E9WVfVLxyoZq6pqaZKfmOcdx1VKuaeqqr9I8pOHlroOZf4vJ5ARAAAAAAAAAAAAAAAAAM5dnUuSwY31tColGX+8Lg0b3pIMtRSJjW1vb8bxJ+p54ivN9c7eZODalgKxTfXnGLg26VrW3owAAAAA5xhlYeeeH59z/eETeaiUsrmqqn9I8rxDS31JfjjJZ47xyCuTtP507hullC0nmPHDmS0LS5LXRlkYnLmqarETAAAAAAAAAAAAAAAAwPmtqpKlF9az7geae1OjyfA9s+VhR2ZrMnOwfRmnx5N9d9YzV99lLSViLdO7zu8vAQAAAJwAZWHnkKqqLkzy7JalqSRfP4lX3JbZsrAkuTnHLgt71TzPnqivps52+D9/31dV1bpSyuMn8Q4AAAAAAAAAAAAAAAAAoKsvWfV99bSamU7Gts+Whw1tnv3+4K72Zhx9qJ7HPt9c7x48ukBscFPSf2XS0d3ejAAAAABnMGVh55ZnzLm+s5QyehLP3z7n+oaTOOsbJ3pIKWW0qqrvJmn9yeMNSZSFwZlo6sBiJwAAAAAAAAAAAAAAAABOVkdn0n9FPetvbu4d3J0Mb50tDzs8++9Lykz7Mk4OJbv/oZ5WVVcycPXRRWLLr0uWrGhfPgAAAIAzhLKwxfWLVVW9M8mmJKuTTCbZneShJF9L8jellK+exPuun3N970nmue8p3tdq0wKc1VoWdn2Svz3JdwDtsPeOxU4AAAAAAAAAAAAAAAAALKSe1cnaF9bTavpgXRh2uDxsqKVIbGqkffnK1Oy5c/VeeHSJ2ODGZNmlSdXRvowAAAAAbaQsbHH91JzrniT9SS5L8tIk76iq6ltJ3l5K+eIJvO/qOdfbTzLPQ3OuV1dVtbKUsrd1saqqVUlWneJZc++/5iSfBwAAAAAAAAAAAAAAAAAWUmdPMnh9Pa1KSQ7smC3wap2xR9qbcXxnPU/c1lzvXJYsv+7oIrGBa5Kupe3NCAAAALDAlIWd+W5McmtVVb+V5J2llHKce1fMuX7iZA4qpeyvqmo8SW/L8mCSvXNunXvOWCll9GTOmifb4Ek+DwAAAAAAAAAAAAAAAAC0Q1Ulyy6u58IfbO5NjiQj9yRDc0rERu5JZibal3F6LNn7nXoaqqTv8tnysMGWIrGetfVnAwAAADjDKQtbHI8m+VySbybZnGRPkpkkq5M8N8m/SvLKlvurJO9I0pHk7cd5b/+c6wNPI9uBNMvCBk7jOa3mO+ekVVV1QZK1J/nYVQtxNgAAAAAAAAAAAAAAAACcd7oHklX/op5WM9PJ6APNArHhLcnQ5mRiTxsDljrH6APJY3/d3FqycrY4bPnGZPmm+mv/FUmHX8EFAAAAzhx+UtFe30xdAvaFUko5xj23J3l/VVU3Jvlokmta9v59VVV/X0r59DGenVviNf40Mh5IsvI471zIc473zqfrl5LcskDvAgBgoY1uT/bdmaz6l8nSdYudBgAAAAAAAAAAAACA06WjMxm4up6L/1Vzb/zJo0vEhrfUhV5lpn0ZJ/YmT36jnkb27mTgmjlFYhuT5dcl3cvblw8AAADgEGVhbVRK+dxJ3Putqqqen+QbSa5t2XpPVVV/WUqZPpHXnGzGM/wZAADOVqUkd/yvydb3za4957eT6/+3xcsEAAAAAAAAAAAAAMDi6F2T9L44ueDFzfXp8WTk3maB2NDm+uv0WPvyzUwmQ3fXM9fS9fOUiG1Mll2SVFX7MgIAAADnFWVhZ7BSyp6qqv5Nkm8lOfwToo1JfiDJF+d5ZP+c66VP49i5z8x9ZzvPAQDgXPHwnzeLwpLkn349ueAlyZrnL04mAAAAAAAAAAAAAADOLJ29yYpn1NOqzCRjjzZLxA7PgR3tzXhgRz2P/21zvatv/hKxgavrzwUAAGepap5S3FLKIiQBODHz/Rk1359lZxtlYWe4UsodVVXdmuSVLcuvirKwY/lvST5xks9cleTTC3Q+AADz2fJ/zb++7f9RFgYAAAAAAAAAAAAAwPFVHUnfpfVc9EPNvcnhZHjr0SViI9uSmcn2ZZwaTfZ8u56jsl8xf5FY75r25QMAgKepo6PjqLXp6el0d3cvQhqApzY9PX3U2nx/lp1tlIWdHf4mzbKwZx3jvqE512tP5pCqqvpzdInXvhM4Z1lVVX2llNGTOO6CEzjnpJVSnkjyxMk8cy60/gEAnPGevH3+9Qf+3+QFf9reLAAAAAAAAAAAAAAAnDu6lyer/2U9rWamkv33H10iNrQ5mVyQX2k8MWUm2X9fPTv+qrnXs/pQcdimZolY3+VJR2f7MgIAwHFUVZXOzs5G+c6BAwfS29u7iKkAjm1sbKxx3dnZeU50DCkLOzs8OOf6WCVg2+ZcX3aS58y9f08pZe/cm0opu6uq2ptkZcvyhiSbT+GsudkBAAAAAAAAAAAAAAAAAJ6ejq5k+bX15Mdm10tJDu5qKQ9rKRIbfTBJaV/Gg7uTXV+vp5F9STJwbbNAbHBjMnBd0t3fvnwAAHBIX19fhoeHj1yPjIxk5cqVx3kCYPHs37+/cd3ff278XVpZ2NnhwJzrpce4b25Z19Unec6Vc67vPs69m5O8cM5ZJ1MWNvesk3kWAAAAAAAAAAAAAAAAAODkVVXSe0E9F7y0uTd1IBnZlgxvni0QG96SDG9Npuf+qudpNDORDH2vnrmWXdIsEVu+qf669KL6swEAwGkwMDDQKAsbGxvLxMRElixZsoipAI42MTGRsbGxxpqyMNppzZzrJ49x39yf+jyrqqplpZSxee8+2oue4n1z91rLwl6Q5LMnckhVVX1JnnUSZwEAAAAAAAAAAAAAAAAAnF5dS5OVz6qnVZlJxh5OhrbMKRHbkozvbG/GsUfq2fnF5nrXwGyB2GBLmVj/1UmnAgcAAE5NX19f47qUkocffjiXXXZZurrU1wBnhqmpqTz88MMppTTW5/4Zdrbyp+3Z4XlzrnfMd1Mp5bGqqu7MbBFXV5IXJ7n1BM95+Zzrvz7OvX+T5BeO8+zxvCTN/+x9p5Ty+Ek8DwAAAAAAAAAAAAAAAADQHlVH0ndZPetf2dyb2JcMb20pENtcfx25NynT7cs4NZLs+cd6Gtk7k/4rZ8vDWqdnVfvyAQBwVuvs7MzAwEBGRkaOrE1MTOS+++7L8uXLs3z58nR3d6ejo2MRUwLno5mZmUxOTmZ4eDjDw8OZmZlp7A8MDKSzs3OR0i0sZWFnuKqqepO8ds7ybcd55FOZLQtLkp/JCZSFVVW1Mc1SstGneO7zSQ4kWXro+gVVVW0spWx5qrOSvHnO9adO4BkAAAAAAAAAAAAAAAAAgDPLkhXJmufV02p6Itl/f0uJWEuZ2ORw+/KV6WRkWz2Pfra517M2Gdx0dInYsg1Jx7nxi9QAACyciy66KBMTEzl48OCRtZmZmezbty/79u1bxGQA8+vp6clFF1202DEWjLKwM99vJLm45Xo6yV8d5/7/keSdSQ7/FOa1VVVdU0rZdgLntPp4KWX8WDeXUsaqqvrzJD895x0/c7xDqqq6NsmPtyxNJfnoU2QDAAAAAAAAAAAAAAAAADh7dC5JBjfW06qUZPzxeUrEtiSjD7U348FdyRO7kie+0lzv7E0Grj26RGz5tUlXX3szAgBwxujs7Myll16aBx98MFNTU4sdB+C4uru7c+mll6az89wpw1YW1iZVVf10kltLKY+fxDM/n+SWOct/Uko55k97Sinbqqr60yRvObS0JMmfVFX1g8cq/6qq6jVJ3tyyNJHk3ScQ8T8m+akk3Yeu31xV1adKKZ85xjm9ST58KNNh/72Uct8JnAUA55epsWR0e/3/RKk6FjsNAAAAAAAAAAAAAAAAC6GqkqUX1rPu5c29qdFk+J55isS2JjMH25dxejzZd2c9cy3bUBeHDW5qFon1rqs/GwAA57Tu7u5s2LAhjz/+eEZHRxc7DsC8+vr6sm7dunR3dz/1zWcRZWHt87NJ/rCqqk8k+XiS20op8/5Tr6qqG5O8I8mPz9l6NMk7T+CsWw49u/LQ9QuTfLGqqp8rpWxpOacnyS8k+b05z//e8QrJDiul3F9V1fuS/FrL8p9XVfUrSf6olDLRctamJB88lOWw3TmxUjIAOH+Ukvzz25Mt/2cyM5H0XpC86OPJupctdjIAAAAAAAAAAAAAAABOp66+ZNX31dNqZjoZ2z5PidiWZPyJ9mYc217Pzlub692DzfKwwzNwVdJxbv1yNgDA+a6npycbNmzI5ORkhoaGMjQ0lMnJyZRSFjsacJ6qqird3d0ZHBzM4ODgOVcSdpiysPZamuRNh2amqqptSR5MMpRkOsnqJM9Osm6eZ/ckeVUpZedTHVJKeaSqqtcm+XySJYeWX5Tk7qqqvp3k/iSDSZ6bZO2cx/8yyX84ic/075PckOTmQ9fdSX4/yX+oquqOJCNJrjx0Vmsl/ESSHy+lPHYSZwHAue++/57c/d7Z6/Enktt+JHnNg0nv3H9sAwAAAAAAAAAAAAAAcM7r6Ez6r6hn/c3NvYN7kuGth8rDNs+WiO2/PynT7cs4OZTs/od6WlVddWFYo0RsU7L8umTJivblAwBgwXV3d2fNmjVZs2ZNSikppWRmZmaxYwHnmY6OjlRVlaqqnvrms5yysMXTkeS6Q/NUvpTkzaWUR0705aWU26qq+vEkf5LZQrAqyY2HZj4fS/LzpZz4T39KKdNVVf1kkg8meX3L1gVJXnWMx55I8m9LKV890XMA4Lxx3wePXpseSx75dHL1z7U/DwAAAAAAAAAAAAAAAGeunlXJ2hfU02r6YLL/vtnysKEts99PjbQvX5k6VGa2Ncmnm3u9F84pEduYDG5Mll2aVB3tywgAwCk7XNTT0eG/xwGcLsrC2ud9SR5N8qIkl53A/aNJbk3ygVLKl57OgaWUz1VV9Ywk705d5LXyGLf+fZLfLaV88mmesz/JT1VV9edJfjXJ849x654kf5bkllLKrqdzFgCc8+b+r6cc9t1blIUBAAAAAAAAAAAAAABwYjp7ksHr62lVSnLgsdnisOEtyfDm+uvYI+3NOL6znidua653Lk2WX3d0kdjAtUnX0vZmBAAAgDOEsrA2KaV8KsmnkqSqqhVJbkhyaZJ1SZYl6UiyL8neJJuT3FlKmV6Ac59I8taqqt6W2aKyC1OXkT2a5DullAdO9ZxDZ/15kj+vquqKJM9Nsj5JX5KdSR5K8vVSysRCnAUAAAAAAAAAAAAAAAAAwEmqqmTZ+noufEVzb3IkGbknGdrSLBMbuSeZaeOvh04fSPb+Uz0NVdJ3+Wx52GBLkVjP2vqzAQAAwDlKWdgiKKXsS/L1Np85keTv2nTWA0kWpIAMAAAAAAAAAAAAAAAAAIA26B5IVv2LelrNTCejDzYLxIa3JMObk4O72xiwJKMP1PPYXze3lqycLQ5rnf4rkw6/Tg0AAMDZz99uAQAAAAAAAAAAAAAAAACA+XV0JgNX1XPxjzb3xp+cp0RsS13oVWbal3Fib/LkN+ppZO9O+q+ui8MGN7UUiV2XdC9vXz4AAAA4RcrCAAAAAAAAAAAAAAAAAACAk9e7Jul9cXLBi5vr0+PJyL3zF4lNjbYv38xkMry5nkc+1dxbur6lPKxlll2SVFX7MgIAAMAJUBYGAAAAAAAAAAAAAAAAAAAsnM7eZMUz6mlVSnLg0bo0bGhzs0TswI72Zjywo57H/7a53tWXDFw3Wx42uDFZvikZuLr+XAAAALAIlIUBAAAAAAAAAAAAAAAAAACnX1Ulyy6p58KbmnuTw8nw1maB2PCWZGRbMjPZvoxTo8neO+ppZO9I+q6YLRFrnd417csHAADAeUlZGAAAAAAAAAAAAAAAAAAAsLi6lyer/2U9rWamkv0PHF0iNrw5mdjbvnxlJtl/Xz07/qq517N6/hKxviuSjs72ZQQAAOCcpSwMAAAAAAAAAAAAAAAAAAA4M3V0JcuvqSevnl0vJTm4a7Y8bKilSGz0wSSlfRkP7k52fb2eRvYlycC1zQKxwY3JwHVJd3/78gEAAHDWUxYGAHBWqBY7AAAAAAAAAAAAAAAAAJw5qirpvaCeC17a3Js6kIxsmy0Pa53pA+3LODORDH2vnrmWXdIsETs8S9fXnw0AAABaKAsDAAAAAAAAAAAAAAAAAADOHV1Lk5XPqqdVmUnGHk6G5ikRG9/Z3oxjj9Sz84vN9a7+Q8Vhm5LBlhKx/quTziXtzQgAAMAZQ1kYAAAAAAAAAAAAAAAAAABw7qs6kr7L6ln/yubexL5keOvRJWIj9yZlqn0Zp/Yne75VTyN7Z9J/5Wx5WOv0rGpfPgAAABaFsjAAAAAAAAAAAAAAAAAAAOD8tmRFsuZ59bSamUz23z9bHja0efb7yaH25SvTyci2eh79bHOvZ+3RBWKDm5JlG5KOzvZlBAAA4LRRFgYAAAAAAAAAAAAAAAAAADCfju5k+XX15DWz66Uk44/PFoe1zuhD7c14cFeya1ey66vN9c7eZODao4vEll+bdPW1NyMAAACnRFkYAAAAAAAAAAAAAAAAAADAyaiqZOmF9ax7eXNvajQZ2ZYMzSkRG9maTI+3L+P0eLLvznrmWrZhtjxssKVIrPfC+rMBAABwRlEWBgBwNjjw6GInAAAAAAAAAAAAAAAAAE5EV1+y8jn1tCozyehDzQKxwzP+RHszjm2vZ+etzfXuwdnisNYZuCrp6G5vRgAAAI5QFgYAAAAAAAAAAAAAAAAAAHC6VR1J/xX1rL+5uXdwTzK89egSsf33JWW6fRknh5Ld/1BPI3tXXRg2X5HYkhXtywcAAHCeUhYGAAAAAAAAAAAAAAAAAACwmHpWJWtfUE+r6Ym6MGx4c10eNtRSJDY10r58ZepQmdnWJJ9u7vWuaykP21R/HdyYLLu0LkgDAADglCkLAwAAAAAAAAAAAAAAAAAAOBN1LkkGN9XTqpTkwGOzxWGtM/ZwezOOP17PE19urncuTZZf11IkdmgGrk26lrY3IwAAwFlOWRgAAACjH0ltAAAgAElEQVQAAAAAAAAAAAAAAMDZpKqSZevrufAVzb3J/cnIPXVx2NDm2RKxkXuSmYn2ZZw+kOz9p3oaqqTvsmaB2OCm+mvP2vqzAQAA0KAsDAAAAAAAAAAAAAAAAAAA4FzR3Z+sem49rWamk9EHZ8vDWufgk20MWOocow8mj/1Nc2vJymaJ2OHpvzLp8KvxAADA+cvfiAAAAAAAAAAAAAAAAAAAAM51HZ3JwFX1XPyjzb3xJ5ORrbPlYUNbkuHNyegDSZlpX8aJvcmT36inkb076b96niKx65Ilg+3LBwAAsEiUhQEAAAAAAAAAAAAAAAAAAJzPetfUs/ZFzfXp8WTk3tkSsdaZGm1fvpnJurxsePPRe0vXz1MitjFZdklSVe3LCAAAcBopCwMAAAAAAAAAAAAAAAAAAOBonb3JimfU06qU5MCjdWnY0JwSsQOPtjfjgR31PP63zfWuvmTgutnysMFDXweuqT8XAADAWURZGAAAAAAAAAAAAAAAAAAAACeuqpJll9Rz4U3NvcnhZPieZHhzs0RsZFsyM9m+jFOjyd476mmokv4rZkvElm+a/b53TfvyAQAAnARlYQAAAAAAAAAAAAAAAAAAACyM7uXJ6hvraTUzlex/oFkgNrylLhWb2NvGgCXZf389Oz7X3OpZ3VIi1jJ9lycdfjUfAABYPP5GAgAAAAAAAAAAAAAAAAAAwOnV0ZUsv6aevHp2vZTk4JPNArGhzfXX0QeTlPZlPLg72fX1ehrZlyQD18xfJNbd3758AADAeUtZGAAAAAAAAAAAAAAAAAAAAIujqpLetfVc8JLm3tSBZGRbs0hseEsyvDWZHmtfxpmJZOiueuZadsn8JWJL19efDQAAYAEoCwMAAAAAAAAAAAAAAAAAAODM07U0WfmselqVmWTskXlKxLYkBx5rb8axR+rZ+cXmelf//CViA1cnnT3tzQgAAJz1lIUBAAAAAAAAAAAAAAAAAABw9qg6kr4N9Vz0w829iX3J8NajS8RG7k3KVPsyTu1P9nyrnqOyX5kMbjq6SKxnVfvyAQAAZxVlYQAAAAAAAAAAAAAAAAAAAJwblqxI1jyvnlYzk8n++5sFYkNbkuHNyeRQ+/KVmWT/vfU8+tnmXs/aowvEBjcmyy5LOjrblxEAADjjKAsDAAAAAAAAAAAAAAAAAADg3NbRnSy/rp68Zna9lGT8ibo0rLVIbHhLMvpQezMe3JXs2pXs+mpzvaMnWX7toQKxTS1lYtcmXX3tzQgAACwKZWEAAAAAAAAAAAAAAAAAAACcn6oqWbqunnUvb+5NjSUj9yRDc0rERrYm0+PtyzhzMNn33XrmWrZhtjxscOPs970X1p8NAAA4JygLAwAAAAAAAAAAAAAAAAAAgLm6liUrn1NPqzKTjG5vKRDbPPv9+BPtzTi2vZ6dtzbXu5fPFoe1Tv9VSeeS9mYEAABOmbIwAAAAAAAAAAAAAAAAAAAAOFFVR9J/eT3rX9XcO7gnGd7aUiR2aPbfl5Tp9mWcHE52f7OeVlVXMnDV/EViS1a0Lx8AAHBSlIUBAAAAAAAAAAAAAAAAAADAQuhZlax9QT2tpifqwrC5JWJDm5OpkfblK1OHysy2Jvl0c6933fwlYn0b6oI0AABg0SgLAwAAAAAAAAAAAAAAAAAAgNOpc0kyuKmeVqUkBx47ukRseEsy9nB7M44/Xs8TX26udy5NBq6ts7eWiA1ck3Qta29GAAA4TykLAwAAAAAAAAAAAAAAAAAAgMVQVcmy9fVc+Irm3uT+ZOSeeYrE7klmDrYv4/SBZN8/19NQJX2XNQvEDk/vBfVnAwAAFoSyMAAAAAAAAAAAAAAAAAAAADjTdPcnq55bT6uZ6WTsoWRoSzK8uVkkdvDJNgYsyeiD9Tz2N82t7hV1adjg4QKxTfXX/iuSju42ZgQAgHODsjAAAAAAAAAAAAAAAAAAAAA4W3R0Jv1X1nPxjzT3xp9MRrbOlocNHfo6en9SZtqXcXJfsvvv62lk7076rz5UINY61yVLBtuXDwAAzjLKwgAAAAAAAAAAAAAAAAAAAOBc0LumnrUvaq5PH0xG7p0tERvekgxvrr9OjbYv38zkoXM3H7239KJ5SsQ2JssuSaqO9mUEAIAzkLIwAAAAAAAAAAAAAAAAAAAAOJd19iQrbqinVSnJgUfr0rChLc0ysQOPtjfjgcfqefzvmutdfcnAdbPlYYOHvg5ck3T2tjcjAAAsEmVhAAAAAAAAAAAAAAAAAAAAcD6qqmTZJfVceFNzb3IkGd7aLBAb3pKM3JPMTLYv49RosveOehqqpP+K2RKx1ulZU382AAA4RygLAwAAAAAAAAAAAAAAAAAAAJq6B5LVN9bTamYqGX0wGdo8p0hsczKxt40BS7L//np2fK65tWRVXRo2uKlZItZ3edKhZgEAgLOP/xYLAAAAAAAAAAAAAAAAAAAAnJiOrmTg6nry6tn1UpKDT84pEDs0+x9IUtqXcWJP8uTt9TSyL0kGrmkWiC3fmCy/ri5HAwCAM5SyMAAAAAAAAAAAAAAAAAAAAODUVFXSu7aeC17S3Js6kOy/ty4OG9qSDG8+VCS2NZkea1/GmYlk6K565lp6cbNAbHBjsnxTsnR9/dkAAGARKQsDAAAAAAAAAAAAAAAAAAAATp+upcmKZ9bTqswkY48cKg6bMwcea2/GA4/W8/iXmutd/c0SscMzcHXS2dPejAAAnLeUhQEAAAAAAAAAAAAAAAAAAADtV3UkfRvqueiHm3sTQ8nw1jklYpuTkXuTMtW+jFP7kz3fqueo7FfWxWGDc4rEela3Lx8AAOcFZWEAAAAAAAAAAAAAAAAAAADAmWXJYLLm++tpNTOZ7L+/WSI2dKhIbHKoffnKTLL/3np2/GVzr2dtszzscKHYssuSjs72ZQQA4JyhLAwAAAAAAAAAAAAAAAAAAAA4O3R0J8uvqyevmV0vJRl/olkidnhGH2xvxoO7kl27kl1fba539CTLrz26SGz5dUlXX3szAgBwVlEWBgAAAAAAAAAAAAAAAAAAAJzdqipZuq6edS9r7k2NJSP3JENzSsRGtibT4+3LOHMw2ffdeuZadmmyfFNdHjbYUiTWe2H92QAAOK8pCwMAAAAAAAAAAAAAAAAAAADOXV3LkpXPqadVmUlGtzcLxA7P+OPtzTj2cD07b22udy+fLQ5rnf6rks4l7c0IAMCiURYGAAAAAAAAAAAAAAAAAAAAnH+qjqT/8nrWv6q5N7E3Gd5aF4cNbZ4tEdt/X1Km25dxcjjZ/c16WlWddWFYa4HY4KZk+XXJkpXtywcAQFsoCwMAAAAAAAAAAAAAAAAAAABotWRlsub59bSanqgLww6Xh7XO5HD78pXpZOSeeh79THOvd12zROzw9G2oC9IAADjrKAsDAAAAAAAAAAAAAAAAAAAAOBGdS5LBTfW0KiUZ3zlbHDbUUiI2tr29Gccfr+eJLzfXO5cmA9c2C8QGN9ZrXcvamxEAgJOiLAwAAAAAAAAAAAAAAAAAAADgVFRVsvSietb9QHNvcn8ycs9sediRuSeZOdi+jNMHkn3/XM9cfZclyzc1i8SWb0x6L6g/GwAAi0pZGAAAAAAAAAAAAAAAAAAAAMDp0t2frHpuPa1mppOxh5KhuSViW5KDu9qbcfSheh77m+Z694q6NGxwTolY/5VJR3d7MwIAnMeUhQEAAAAAAAAAAPz/7N17lOZ5XR/497eq+t5VNZeenivMfbp7QBCUcI2LghG8EDWGuCbnQOK6BE1Wj3E37m4UyHGzm2w0u+we4yUq7K4aL1EwKqKgrCDKIoKCdPf0MDM9MNMzPZeequpLdXdVffePXzX1PNU1/VT1VP+e56l6vc75nHp+3+/v9/u+q2GKGWjeDQAAAAAAANC2kdGmdGv3HcnN39i9d/ap7vKwC4Vipx5I6kJ7Gc8/kzz1Z810KmPJ+F2L5WEHOorE9iVbJ9vLBwCwSSgLAwAAAAAAAAAAAAAAAAAAABgk265Nrnt1M53mzyYz93cXiV2YuZPt5atzS+fmfd17O27sKA/rmJ23JGWkvYwAABuIsjAAAAAAAAAAAAAAAAAAAACAYTC6LbnqBc10qjU582hT3jV1sLtE7Mwj7WY8c6yZx/+oe310ZzKxb6k8bPJA83X87mR0e7sZAQCGjLIwAAAAAAAAAAAAAAAAAAAAgGFWSrLz5mZueF333vmZZPpwd4HY9KFk5kiycK69jPOnkxOfbqZLSXbfvlQi1jnb9jTfGwDAJqcsDAAAAAAAAAAAAAAAAAAAAGCj2jKeXPvVzXRamEtOPdRdIDZ1MJk+mJw70WLAmpx8oJlHf7d7a+s1K5eI7b49GVGZAQBsHv7OBwAAAAAAAAAAAAAAAAAAAGCzGRlLxu9q5uZvXlqvNTn7ZHeJ2IU5+WCS2l7Gc08nT368ma7sW5Pxu1coEtvXlKMBAGwwysIAAAAAAAAAAAAAAAAAAAAAaJSSbL+umb1/s3tvfjaZOdIUh00tKxKbP91exoVzydRfN7Pcjpu7C8QmF7/uuLn53gAAhpCyMAAAAAAAAAAAAAAAAAAAAAB6G92eXPUVzXSqC8npRxaLww52l4idOdZuxjOPNPP4h7vXx3YnE/sWS8QOLJWJjd+VjG5rNyMAwBopCwMAAAAAAAAAAAAAAAAAAADg8pWRZNfzmrnx67v3zk0l04e7C8SmDyUzR5I6117GuZPJ059q5qLsdzTFYZP7l0rEJvYn265tLx8AwCUoCwMAAAAAAAAAAAAAAAAAAADgytg6mez5G810WjifnHywo0DsYDK1+Pn8M+3lqwvJyfubefS3u/e27ekuD5vYn0weSHbemoyMtpcRANj0lIUBAAAAAAAAAAAAAAAAAAAA0K6RLcnEPc3kTUvrtSazxztKxDrm1NEktb2MZ59MnvhYM13Zty1mX1YkNn5PsmV3e/kAgE1DWRgAAAAAAAAAAAAAAAAAAAAAg6GUZMf1zVz/X3TvzZ1OZo6sUCR2OJk/017GhbPJM59tZrmdz7u4RGxif7LjxuZ7AwC4DMrCAAAAAAAAAAAAAAAAAAAAABh8YzuTq1/cTKe6kJx6eIUSsUPJ7OPtZjz9xWYe+4Pu9S0TK5eI7b4zGd3abkYAYOgoCwMAAAAAAAAAAAAAAAAAAABgeJWRZPdtzdz0hu69cyeS6cMXl4jN3J/U+fYynp9Onvr/mulURpvCsOUlYpP7k61Xt5cPABhoysIAAAAAAAAAAAAAAAAAAAAA2Ji2Xp3seUUznebPJScfWCwPO9hdJHZ+ur18dT6Zua+ZR36re2/73sXysAPdRWK7nt8UpAEAm4ayMAAAAAAAAAAAAAAAAAAAAAA2l9GtyeT+ZvKtS+u1JrOPLRWHTXWUiJ1+uN2Ms8ebOf7H3euj25Pxfd0FYpP7k/F7krGd7WYEAFqhLAwAAAAAAAAAAAAAAAAAAAAAkqSUZMeNzVz/td17c6eS6fuWysOmDyXTB5u1hbPtZZyfTZ75y2aW23Vrd4nYxIHm6/a9zfcGAAwlZWEAAAAAAAAAAAAAAAAAAAAA0MvYruSalzTTaWE+OX00mTq0rEjsUHL2iXYznjrazLEPdq9vuaopDZvc310mtvuOZGRLuxkBgDVTFgYAAAAAAAAAAAAAAAAAAAAAl2tktCnd2n1HcvM3du+dfSqZPnxxidjJLyR1ob2M559JnvqzZjqVsWT8ru4CsQuzdbK9fADAJSkLAwAAAAAAAAAAAAAAAAAAAIArYdu1yXWvaqbT/Nlk5v6LS8SmDyVzJ9vLV+eWzl1u+w3J5IGLS8R23pKUkfYyAgDKwgAAAAAAAAAAAAAAAAAAAACgVaPbkqte0EynWpMzj65cInb6S+1mnH2smcf/qHt9dGcyse/iErHxu5OxHe1mBIBNQlkYAECSLMwnI6P9TgEAAAAAAAAAAAAAAAAAwGZWSrLz5mZueF333vmZZOa+ZOpgd4nYzJFk4Vx7GedPJyc+3UyXkuy6bak8bPLA0udte5rvDQC4LMrCAIDN7Yu/kXz2nc1/EXLtK5KX/WRy1Qv7nQoAAAAAAAAAAAAAAAAAALptGU+u+apmOi3MJace6i4Qmz7UlIqde7rFgDU59WAzxz7QvbX1mqXisM7ZfXsyov4EAHrxn5YAwOb1+P+bfOzNSZ1vrp/4aPLhr0u+6a+T7df1NxsAAAAAAAAAAAAAAAAAAKzGyFgyflczN39z997sk8tKxA42X08+mKS2l/Hc08mTH2+m08iWZPzulYvEtoy3lw8ABpyyMABg8zr6y0tFYRecfSI59vvJ7X+/P5kAAAAAAAAAAAAAAAAAAGC9bN+TbH9Nsvc13evzs8nMkaY4bOpQd6HY/On28i2cT6Y+38xyO27uLg+bXPy64+aklPYyAsAAUBYGAGxe9//0yuuf+IfKwgAAAAAAAAAAAAAAAAAA2LhGtydXfUUznepCcvqR7vKwC3Pm0XYznnmkmcc/3L0+tjuZ2NddJDaxPxm/Oxnd1m5GAGiJsjAAhtP8bHL/zyRHfyW5623Jbd+VjPiPNdbJwvl+JwAAAAAAAAAAAAAAAAAAgPaVkWTX85q58eu7985PJ1MrlIjNHEnqXHsZ504mT3+qmYuy394Uh00e6C4S23Zte/kA4ArQqgLA8Dn7dPKfOv5h7MmPJ3/2luTNp5OxHf3LBQAAAAAAAAAAAAAAAAAAsFFtmUj2/I1mOi2cT04+eHGJ2NTB5Pwz7eWrC8nJLzTz6O90723b010edmF23ZaMjLaXEQAuk7IwAIbPx//ByuuffUfykn/TbhYAAAAAAAAAAAAAAAAAAIDNbGRLMnFPM3nT0nqtydknusvDLnw+dTRJbS/j2SeTJz7WTFf2bcn43d0FYpMHkvF7ki2728sHAD0oCwNg+Bz7wMrrB/9XZWEAAAAAAAAAAAAAAAAAAACDoJRk+95m9n5N997c6WTmyFJ52JfncDJ/pr2MC2eTqc81s9zO53WXiF2YHTc23xsAtEhZGAAAAAAAAAAAAAAAAAAAAADQnrGdydUvbqZTXUhOfzGZ6iwQO9h8nX283Yynv9jMY3/QvT42vlQcNtlRIrb7rmR0a7sZAdg0lIUBAAAAAAAAAAAAAAAAAAAAAP1XRpJdtzZz0zd07507kUwf7igRW5yZ+5M6317GuZnk6U8205V9NNl951J5WGeh2Nar28sHwIakLAwAAAAAAAAAAAAAAAAAAAAAGGxbr072vKKZTvPnkpMPXFwiNn0wOT/dXr46n8zc18wjv9W9t33vxSViE/ubUrQy0l5GAIaWsjAAAAAAAAAAAAAAAAAAAAAAYDiNbk0m9zfTqdZk9rGl8rCpjiKx0w+3m3H2eDPH/7h7fXR7Mr6vu0Bscn8yfk8ytrPdjAAMNGVhAAyXcyf6nQAAAAAAAAAAAAAAAAAAAIBBV0qy48Zmrv/a7r25U8n0fUvlYV+ew8nC2fYyzs8mz/xlM8vturW7ROzCbL+++d4A2FSUhQEwXJY3JQMAAAAAAAAAAAAAAAAAAMBajO1KrnlJM50W5pPTDy+Vh00dXPp89ol2M5462syxD3avb5nsLg+bPNB83X1HMrKl3YwAtEZZGAAAAAAAAAAAAAAAAAAAAADAyGiy+/Zmbnpj997Zp5Lpw0vlYRfm5BeSutBexvNTyVOfaKZTGUvG7+ouEpvYn0zsS7Ze1V4+AK4IZWEAAAAAAAAAAAAAAAAAAAAAAJey7drkulc102n+bFMYdqE8bKqjSGxupr18dW7p3OW233Bxidjk/mTn85Iy0l5GAC6bsjAAhky59PbcqWRsVztRAAAAAAAAAAAAAAAAAAAA2NxGtyWT9zbTqdbkzKNLBV6dc/pL7WacfayZ4x/pXh/dmUzsu7hIbPzuZGxHuxkBuCRlYQAMmR5lYeeeURYGAAAAAAAAAAAAAAAAAABAf5WS7Ly5mRte1713fiaZuS+ZWlYiNnNfsnCuvYzzp5MTn26mS0l23bZUHjbZUSS27brmewOgVcrCANhg/EMFAAAAAAAAAAAAAAAAAAAAA2zLeHLNVzXTaWE+OfVgd4HY9KFk6mBy7ukWA9Ymx6kHk2Mf6N7aevVicdiBpQKxif3J7tuTEVU2AFeKn7AA9FCS1H6HWNKrYbiMtJMDAAAAAAAAAAAAAAAAAAAA1tPIaDJ+VzM3f3P33uyTF5eITR9qCr3qQnsZz51InvzTZrqyb0nG7+4uEJvYn0zsS7ZMtJcPYINSFgbApZWRpM73O0WHHmVhPfcBAAAAAAAAAAAAAAAAAABgyGzfk2x/TbL3Nd3r87PJzP1L5WFTB5c+z59uL9/C+WTq880st+OmjvKwA8nk4ucdNydFRwDAaigLA+DSBq4srAf/IAAAAAAAAAAAAAAAAAAAAMBmMbo9ueqFzXSqC8npR5aKwzrnzKPtZjzzaDOP/2H3+tiujhKxjhm/q/m+APgyZWEA9DBs5VvDlhcAAAAAAAAAAAAAAAAAAADWWRlJdj2vmRu/vnvv/HQyffjiErGZI8nC+fYyzp1Knv5UMxdlv/3iErHJA8m2a9vLBzBAlIUB0MOglW/Vfgdgo6j+vQQAAAAAAAAAAAAAAAAAAGxCWyaSa1/WTKeF88nJBy8uEZs6mJx/pr18dSE5+YVmHv2d7r1tey4uEZvYn+y6LRkZbS8jQMuUhQFwaWWk3wnWSAEUq3T0P/Y7AQAAAAAAAAAAAAAAAAAAwOAY2ZJM3NNM3rS0Xmty9omO8rCOIrFTD6XV/5//2SeTJz7WTFf2rcn4Pd0FYpP7k/F9yZbd7eUDuEKUhQFwaYNWFjay9dL7VVkYq3To3/U7AQAAAAAAAAAAAAAAAAAAwOArJdm+t5m9X9O9N3cmmTmSTB9cKhCbPpRMH07mz7SXceFcMvW5ZpbbectigdiB7jKxHTc23xvAEFAWBkAPA/Y3tjNHetygLIxVevqT/U4AAAAAAAAAAAAAAAAAAAAw3MZ2JFe/qJlOdSE5/cVk6tCyErFDyexj7WY8/aVmHvtQ9/rY+FJx2GRHidjuu5LRre1mBOhBWRgAl1ZG+p2g2+zxHjcoCwMAAAAAAAAAAAAAAAAAAIC+KiPJrlubuekbuvfOPZNMH14sDzu4VCI2c39S59vLODeTPP3JZrqyjya771gqD5vYn0wcSCb2JduuaS8fQAdlYQD0UPodoNvWqy+9X5WFAQAAAAAAAAAAAAAAAAAAwMDaelWy5+XNdJo/l5x8YKk87MtzMDk/3V6+Op/MHGnmkf/cvbd977ISscXZ+fxkZLS9jMCmoywMgOFSF3rd0EoMAAAAAAAAAAAAAAAAAAAAYB2Nbk0m9zfTqdZk9vGLS8SmDianH2434+zxZo7/cff66PZk/J4VisTuScZ2tZsR2JCUhQHQQ+l3gGWUhQEAAAAAAAAAsP5KKXckeVmSr178+tIk4x23HK213taHaM+qlLIzyWeT3LFs67211re2nwgAAAAAAADgCigl2XFDM9e/tntv7lQyfd/FRWLTh5OFs+1lnJ9NnvmrZpbbdesKJWL7k+3XN98bwCooCwNguNQeZWFVWRgAAAAAAAAAAKtTSnltkv8+TUHYNf1Nc1n+p1xcFAYAAAAAAACweYztSq55STOdFuaT0w+vUCJ2KJk93m7GU0ebOfbB7vUtkyuXiI3fmYxsaTcjMPCUhQEwXHqVhUVZGAAAAAAAAAAAq/aVSf5Wv0NcjlLKK5L8N/3OAQAAAAAAADCQRkaT3bc3c9Mbu/fOPp1MH06mD3aXiJ38wio6DdbR+ankqU8006mMNYVhEweWFYntS7Ze1V4+YKAoCwNgyCgLAwAAAAAAAADgijub5EtJ7ux3kJWUUrYm+bkkI4tLM0nG+5cIAAAAAAAAYIhsuya57pXNdJo/2xSGXSgPm+ooEpubaS9fnVssMzt88d72G5YViO1PJvcnO5+XlJGL7wc2DGVhAAyXXi28VVkYAAAAAAAAAABrcj7JXyf58ySfXPz62SSvTvJHfcx1KT+a5N7Fz0eT/FqSH+pfHAAAAAAAAIANYHRbMnlvM51qTc4cWyoOmz6UTB9svp7+UrsZZx9r5vhHutdHdyQT+5YViR1Ixu9Oxna0mxG4IpSFAXBppfQ7QbdeZWHptQ8AAAAAAAAAAF/23iQ/VWudXb5RBu33zSwqpbw4yT/vWHp7kpf3KQ4AAAAAAADAxldKsvOmZm74uu698zPJzH3J1KHuMrGZ+5KFc+1lnD+TnPhMM11Ksuu2pQKxyY4ysW3XDV6nBPCslIUBMFx6lYXV2k4OAAAAAAAAAACGXq31RL8zrEUpZSzJz2fp93/+cq31A6UUZWEAAAAAAAAA/bBlPLnmq5rptDCfnHqou0Bs+lAyfTA5+1SLAWty6sFmjn2ge2vr1UvFYZ2z+45kRC0RDBp/VQIwZHqUhUVZGAAAAAAAAAAAG9Z/m+Sli5+fTvIDfcwCAAAAAAAAwLMZGU3G72zm5m/q3pt9coUSsUNNoVft1amwjs6dSJ7802a6sm9Jxu9eoUhsX7Jlor18QBdlYQD0UPodoFuvv7GtysIAAAAAAAAAANh4Sin7kryjY+mf1VqP9ysPAAAAAAAAAJdp+55k+2uSva/pXp+fTWbuX7lIbO5Ue/kWzidTn29muR03rVAitj/ZeUtSBqyfAjYYZWEADJeeLbjKwgAAAAAAAAAA2FhKKSNJfi7JtsWlP6y1vqd/iQAAAAAAAABYd6Pbk6te2EynWpMzjzSlYVMHu0vEzjzabsYzjzbz+B92r4/tSsb3NcVhkweWSsTG72q+L+A5UxYGwKUNXHOrsjAAAAAAAAAAADadf5Lk1YufzyR5Wx+zAAAAAAAAANCmUpKdtzRzw+u7985PJ9OHuwvEpg8lM0eShfPtZZw7lZz4i2a6so8ku25fKg/rnO172ifL/oMAACAASURBVMsHG4CyMACGS+1RFlaVhQEAAAAAAAAAsHGUUm5L8q86lt5Va72/P2kAAAAAAAAAGChbJpJrX9ZMp4W55OSDF5eITR9Mzp1oL19dSE5+oZlHf6d7b9u1K5SIHUh23ZaMjLaXEYaEsjAAhkud73VDKzEAAAAAAAAAAKAlP5tk1+Lnv0zy4/0KUkrZm+S6NT5255XIAgAAAAAAAMAljIwlE3c3k29ZWq81OfvEUnnYVEeR2KmH0mpnw9mnkif+pJmu7FuT8Xu6S8Qm9yfj+5Itu9vLBwNGWRgAw6Uu9LqhlRgAAAAAAAAAAHCllVK+O8nrFy8XknxPrXWuj5G+N8k7+ng+AAAAAAAAAM9FKcn2vc3s/ZruvbkzycyRpfKwzpk/017GhXPJ1OeaWW7nLd0lYhdmx03N9wYbmLIwAIZLr7KwqiwMAAAAAAAAAIDhV0q5Kcm/7Vh6d631k/3KAwAAAAAAAMAGN7YjufpFzXSqC8npLyZTK5SIzT7WbsbTX2rmsQ91r4/tXiwOO5BMdpSI7b4rGd3abka4QpSFAdDDoDWn9igLi7IwAAAAAAAAAAA2hJ9MctXi56NJ/kUfswAAAAAAAACwWZWRZNetzdz0Dd17555Jpg9fXCI2c39S59rLOHcyefrPm+nKPprsvmOpPKxztl3TXj5YB8rCABguVVkYAAAAAAAAAAAbWynlO5P87Y6lt9daT/UrT4efTPJra3zmziTvvwJZAAAAAAAAAOi3rVcle17eTKeF88nJB5risKmD3UVi56fay1fnk5kjzTzyn7v3tl3XXR42eaD5uvP5ychoexlhlZSFbRKllC1JXp3k+UluTHIyyaNJPl1rfWidz7o9yVcmuSnJ7iTH0vyphh+vtZ5fz7OANpR+B+jWqyysKgsDAAAAAAAAAGB4lVL2JHl3x9Iv11o/0K88nWqtx5McX8szpQzY7z8CAAAAAAAA4Mob2ZJM7Gvmlo4/K6vWZPbx7vKwC3PqaLsZzz6RPPFE8sRHu9dHtyfj93QXiU3sTybuScZ2tZsROigLG0CllP+Y5O8tWz5aa73tMt51XZJ3Lb7vmme55+NJfqLW+p/W+v5l7/mOJD+Y5JXPcsvTpZRfSfKjtdYnn8tZwGbWoyys5z4AAAAAAAAAAAy0dye5bvHz00l+oI9ZAAAAAAAAAGD9lJLsuKGZ61/bvTd3Kpk5kkx1logdTGbuS+Zn28s4P5s881fNLLfz+UvlYZMXSsQOJNuvb743uIKUhQ2YUsqbcnFR2OW+641J3pNkb49bX5XkVaWUX0zytlrrqTWeszvJzyb5zh63XpPk7Um+vZTyllrrB9dyDkCSpPYoA6u1nRwAAAAAAAAAALDOSin7kvyXHUv/W5KdpZTbejx61bLr3cueWai1Pvxc8wEAAAAAAADAFTO2K7n6K5vptDCfnH64o0CsY2aPt5vx9MPNPPb73etbJpdKxDpn/M5kZEu7GdmwlIUNkFLKVUn+/Tq967VJ3pdka8dyTfIXSR5I8xuDXpJkT8f+308yUUr51lp7tfF8+ZzRJL+S5BuXbT2R5NNJppLcuXjWhfrD65O8v5Ty+lrrx9bwbQH0LgvLqn58AQAAAAAAAADAINqx7PpfLs5a/Z3FuWAqFxeKAQAAAAAAAMDgGxlNdt/ezE1v7N47+3QyffjiErGTX0jqfHsZz08lT32imU5lrCkMW6lIbKv/GZ+1URY2WH48yU2Ln2eSjF/OS0optyT5jXQXhf1Jku+ptR7suG9bkrcl+bdJLlQQfkuSH0vyP6zyuP8l3UVh55P8YJKfqbWe6zjr3iT/IckrF5e2JXlfKeUraq3HVnkWQHqWga2u6xAAAAAAAAAAAAAAAAAAAACAYbbtmuS6VzbTaf5ccvL+pfKwqY4isbmZ9vLVucUys8NJ3t+9t/2GiwvEJvcnO5+XlJH2MjI0lIUNiFLK65P8o8XLuSQ/muTfXebr3pXk6o7rjyd5fa11tvOmWuvZJO8upTyc5Dc7tn6wlPLTtdajPTLfkeT7ly3/3Vrr+5ffW2v9fCnldUk+nKXCsGuTvCPJP17F9wT0Syn9TtCtVxmYsjAAAAAAAAAAAAAAAAAAAACAzWt0azJ5bzOdak3OHFsqDuuc019sN+PsY80c/0j3+uiOZGLfxUVi4/ckYzvazchAURY2AEopu5L8bMfSTyT5zGW+6+4kb+lYOpfkrcuLwjrVWt9XSnlvx3Pb0pR4/aNne2bRO5Js6bh+z0pFYR3nnCmlvDXJZ5NsXVz+7lLKv6m1PtDjLICGsjAAAAAAAAAAADaoWutnkqz5T/crpbwzze/pu+C9tda3rlMsAAAAAAAAANgYSkl23tTMDV/XvXf+ZDJzX1McNnVwqURs5r5k4Vx7GefPJCc+00yXkuy6tSkOu+alyW3/IJk80F4u+k5Z2GD4n5Pctvj5gSTvTPLyy3zXdyUZ7bj+jVrrkVU896/TXTL25lLK9z5byVgpZUeS71jhHZdUa72vlPK+JG9eXBpbzPxjq8gI9MWaf+/hldWzDExZGAAAAAAAAAAAAAAAAAAAAABrsGV3U8J1zUu71xfmk1MPLZWHdc7ZJ1sMWJscpx5Kjv1e8tf/KrnlW5N7fzjZc7lVRQwTZWF9Vkp5VZLv61h6W631TCmXXc7zbcuuf2E1D9VaD5ZSPpGlkrJdSf5Wkt96lke+IcnOjus/rbUeWmXGX8hSWViSfHuUhQGr1qMMrGeZGAAAAAAAAAAAtKuUUpctfW2t9SP9yAIAAAAAAAAArMHIaDJ+ZzM3f1P33uyTyczhpfKwqUPJ9MHk1IPt9F986X3NfP3Hk+teeeXPo6+UhfVRKWVbkp9PMrK49N5a64eew/tuSPLijqW5JH+yhld8JEtlYUnyxjx7WdgbVnh2tT6aJtuFf/+9pJRyfa318TW8A9isev3NkLIwAAAAAAAAAADWoJRyS1b+/ZQ3LLseK6Xc9iyvOVlrbfOPCwYAAAAAAAAA+m37nmaue3X3+vxsMnP/UolY58ydWt8MV7042fOK9X0nA0lZWH+9M8m+xc9PJPlnz/F9L1x2/Ve11rX8dPj4susXrOGsP13tIbXWU6WUzyZ5ybKzlIXBQCr9DtCtzve4QVkYAAAAAAAAAABr8rEkt67ivpuTPPgse+9N8tb1CgQAAAAAAAAADLHR7clVL2ymU63JmUea0rCpZSViZx65vLPu/eGkDFg3CFeEsrA+KaW8NMkPdSz9QK31qef42nuXXd+/xue/0ON9nQ6sw1mdZWH3JvnDNb4D2IymPnfp/aosDAAAAAAAAAAAAAAAAAAAAIABU0qy85Zmbnh999756WT6cHeB2PShZOZIsnB+5fftviN5/ndc+dwMBGVhfVBKGUvy81n69f+9WusvrcOr71p2/fAanz+67PraUsrVtdYTnYullGuSXPMcz1p+/91rfB7YrKYPX3pfWRgAAAAAAAAAAAAAAAAAAAAAw2TLRHLty5rptDCXnHywKQ575i+Th381eeazzd6B/y4ZUSG1WfhXuj9+OMmLFz+fSvL2dXrvVcuuj6/l4VrryVLKbJLtHcuTSU4su3X5OadrrafWctYK2SbX+PyKSil7k1y3xsfuXI+zgQGhLAwAAAAAAAAAgDWotd7WwhnlCr//nUneeSXPAAAAAAAAAAD6YGQsmbi7mVu+JXnB/5gc+2By/88kd7yl3+lokbKwlpVS7k3yLzqWfqTW+tA6vX73suszl/GOM+kuCxu/gud0Wumcy/G9Sd6xTu8ChpKyMAAAAAAAAAAAAAAAAAAAAAA2oFKSm97QDJvKSL8DbCallJEkP5dk2+LSp5K8ex2PWF7iNXsZ71he4rX8nW2eAwyCckX/UNP1V5WFAQAAAAAAAAAAAAAAAAAAAAAbh7Kwdn1/klcsfp5L8l/VWuev4Hl1gz0Dm8fCXDK3vFOPJMmOGy+9rywMAAAAAAAAAAAAAAAAAAAAANhAxvodYLMopdyR5Mc6ln6i1vqZdT7m5LLrHZfxjuXPLH9nm+dcjp9M8mtrfObOJO9fp/PhuVmYS/78nyYP/WKycC656Q3JK96bbJ3sY6jSx7NXMNrrR46yMAAAAAAAAAAAAAAAAAAAAABg41AW1oJSSknys0l2Li49kOSdV+CoTV8WVms9nuT4Wp5p/uWBAfHpH0ru/6ml6y+9P/no30le96H+ZRo0tUcZWK99AAAAAAAAAAAAAAAAAAAAAIAhMtLvAJvE9yT5uo7rt9Vaz1yBc6aWXV+3lodLKbtzcYnXM6s4Z2cpZddazkqydxXnwOZSa3L0Vy5ef/zDyewT7ef5sgEr1FMWBgAAAAAAAAAAAAAAAAAAAABsImP9DrBJvKvj8+8mub+UcluPZ25Ydj22wjOP1lrPdVwfWbZ/6yrzPdv9T9daTyy/qdb6VCnlRJKrO5afn+TgczhreXbYfM4+mcw+tvLew7+a3PN97eYZWLXHvrIwAAAAAAAAAAAAAAAAAAAAAGDjUBbWjh0dn78xyYOX8Y6bV3juJUk+03G9vKzrrjWeccey689f4t6DSV617Ky1lIUtP2stzwKbWe1RBrYw304OAAAAAAAAAAAAAAAAAAAAAIAWjPQ7AOvqc8uuX1RK2bmG51/d432X2nvlag8ppexK8qI1nAWbRO13gCHRoyys5z4AAAAAAAAAAAAAAAAAAAAAwPBQFraB1FqPJfmrjqWxJK9Zwyteu+z6A5e49/d6PHspfzNNtgs+XWt9fA3PwyZU+h1gcNQeZWC99gEAAAAAAAAAAAAAAAAAAAAAhoiysBbUWq+qtZa1TJKvXfaaoyvc95kVjvvNZdf/cDUZSyn7k7y8Y+lUkt+/xCMfTHKm4/qVi+9Yjbcuu16eGTanWvudYGVl0IrKevw6KQsDAAAAAAAAAAAAAAAAAAAAADYQZWEbzy8mme+4/vZSyt2reO6fL7v+1Vrr7LPdXGs9neTXe7zjIqWUe5J8W8fSXJJfWkU+2NwGrrCrj3qWgSkLAwAAAAAAAAAAAAAAAAAAAAA2DmVhG0yt9UiS93YsbU3ynlLK9md7ppTyt5O8tWPpXJJ3reK4dyY533H91lLKmy5xzvYkv7CY6YKfq7V+YRVnwSZQ+x1gOPQqC+tZJgYDbGG+9z0AAAAAAAAAAAAAAAAAAAAAbCrKwjamdyQ50XH9qiQfKqXs77yplLKtlPJPk/zasud/vNZ6tNchtdYHkvzvy5Z/vZTyT0opnYVgKaUcSPLhxSwXPJXVlZIBKZv07BUoC2Oj+sIvJL+xt98pAAAAAAAAAAAAAAAAAAAAABgwY/0OwPqrtX6plPLtST6Y5EJp16uTfL6U8qkkDySZTPLSJNcte/y3k/zIGo774SQvSPLGxestSf6PJD9SSvmLJDNJ7lg8q7Nx6FySb6u1HlvDWQBJepWBKQtjCB3/4+QT352k9jsJAAAAAAAAAAAAAAAAAAAAAANGWdgGVWv9SCnl25K8J0uFYCXJVy/OSn45yffUWufXcM58KeXNSf5Dkr/XsbU3yRue5bHjSd5Sa/3oas8B+qn0vqVNtUeZUlUWxhB66JeiKGyNjv1B8uD/lZx7Jrn5m5O7/uukDNjPKwAAAAAAAAAAAAAAAAAAAIB1MNLvAFw5tdbfTfLCJD+V5MQlbv2zJN9Ra/2uWuupyzjnZK31O5P83cV3PZunk/z7JC+stf7eWs+BjU9R0Or0KANTFsYwuv+n+51guHzxN5OPvDF56P9JHv3t5JP/OPmLH+x3KgAAAAAAAAAAAAAAAAAAAIArYqzfAVhZrfUjSco6vOd4kreXUr4/yauT3JrkhiSnkjyS5NO11gef6zmLZ/16kl8vpdye5KVJbkqyK8ljSY4m+ZNa67n1OAs2n+f842Dj6FUGpiwMNr7P/+ukznev3fd/Ji96V7Jloj+ZAAAAAAAAAAAAAAAAAAAAAK4QZWGbxGJJ1x+1dNaDSdalgAw2lVr7nWA49CwDUxYGG95Tn7h4rc4lD/7fyT3f134eAAAAAAAAAAAAAAAAAAAAgCtopN8BAFiFUvqdYID0KFXrWSYGbFhnHu13AgAAAAAAAAAAAAAAAAAAAIB1pywMYGD0KMHql0ErKutVBqYsDDa2eomflf76BwAAAAAAAAAAAAAAAAAAADYgZWEAQ2HACrv6qlcZkLIg2LTqfL8TAAAAAAAAAAAAAAAAAAAAAKw7ZWEA9DBgRWW1RxlYr31g41IWBgAAAAAAAAAAAAAAAAAAAGxAysIAGB61ruIeZWGwsV3i54C//gEAAAAAAAAAAAAAAAAAAIANSFkYwMBYRRHWpreaXyNlQbBp1fl+JwAAAAAAAAAAAAAAAAAAAABYd8rCAIZC2aRnL1NXUQS2mnuA4VUvURo4c197OQAAAAAAAAAAAAAAAAAAAABaoiwMYFBcqgCHhrIw4FKOfbDfCQAAAAAAAAAAAAAAAAAAAADWnbIwgGFQSr8TDIjVlIXNX/kYAAAAAAAAAAAAAAAAAAAAAAAtURYGMDBqvwMMvrqKX6O6ikIxYIj5WQkAAAAAAAAAAAAAAAAAAABsLsrCAIZC6ePRfTz7IqspAlMWBgAAAAAAAAAAAAAAAAAAAABsHMrCABgedRVFYKu5Bxhi9dm3dt/VXgwAAAAAAAAAAAAAAAAAAACAligLA2B4KAsDLmXnTf1OAAAAAAAAAAAAAAAAAAAAALDulIUBDIza7wDPovQ7QIfVFIEpC4NNqw7qz1EAAAAAAAAAAAAAAAAAAACAy6csDGAoDFJhVx+tpgioKguDDU0hGAAAAAAAAAAAAAAAAAAAALDJKAsDGBQKcHpbTRGYsjDYvIpiRQAAAAAAAAAAAAAAAAAAAGDjURYGMAz6WoAzSCVmysKAS/xMUroIAAAAAAAAAAAAAAAAAAAAbEDKwgAGhpKbnlZVBKYsDAAAAAAAAAAAAAAAAAAAAADYOJSFAQyF0u8Ag2E1ZWGrKhQDAAAAAAAAAAAAAAAAAAAAABgOysIAGCJ1FbcoC4ONbRU/BwAAAAAAAAAAAAAAAAAAAAA2EGVhAAyPVRWBKQsDAAAAAAAAAAAAAAAAAAAAADYOZWEAA6P2O8AQWEUR2KoKxQAAAAAAAAAAAAAAAAAAAAAAhoOyMIChUPodYDCspghMWRhsbFWxIgAAAAAAAAAAAAAAAAAAALC5KAsDGBQKcFZhNb9GysIAAAAAAAAAAAAAAAAAAAAAgI1DWRjAMCil3wkGQ11FEdhq7gGGmGJFAAAAAAAAAAAAAAAAAAAAYHNRFgYwMAa0AKcOUC5lYQAAAAAAAAAAAAAAAAAAAADAJqMsDGAolH4HGAzKwoBLGqByQwAAAAAAAAAAAAAAAAAAAIB1oiwMgCGymiIwZWGwsSkEAwAAAAAAAAAAAAAAAAAAADYXZWEADI+6ipKgOn/lcwAAAAAAAAAAAAAAAAAAAAAAtERZGMCgWE0R1qa30PuWuop7gOHlZyUAAAAAAAAAAAAAAAAAAACwySgL4/9n786jZb3LOtF/n5MTkpAEAoEACZBAQAkgo4hMymCDaBuGRsb2ggyXi63Sja2t12aU5dWG9iIoglcFlBaQeWgmm0FGRSE0JIQxkDRNIIYEQkLGk+f+UXU8lWIP7z577xr2/nzWqlXv+3t/w7Orzq6z16rf+r7AUqh5F7AYhgSBCQtjJ/v+N5Krr5x3FQAAAAAAAAAAAAAAAAAAAADMkLAwgIXR8y5g8Q0KAhMWxg72lhOSNxybfPa5SfvMAAAAAAAAAAAAAAAAAAAAANgNhIUBLIOqeVewIAaEIw0KFIMldtX3ks8+JznrFfOuZE6EpAEAAAAAAAAAAAAAAAAAAAC7i7AwgIUhAGddQ4LAhIWxW3z1r+ZdAWydS7857woAAAAAAAAAAAAAAAAAAABgYQkLA1gKNce1FyjETFgYHHDeB+ddwZws0GcSW+fir867AgAAAAAAAAAAAAAAAAAAAFhYwsIAWCJDgsCEhQEAAAAAAAAAAAAAAAAAAAAAO4ewMACWRw8IAhvSB9ihet4FAAAAAAAAAAAAAAAAAAAAAGw5YWEAi6KF3KxvwGskLAx2Np+VAAAAAAAAAAAAAAAAAAAAwC4jLAxgKdS8C1gMg4LAhIUBAAAAAAAAAAAAAAAAAAAAADuHsDCAhdHzLmAJDHiNBgWKAcvLZ+XO5H0FAAAAAAAAAAAAAAAAAACA1QgLA1gGVfOuYDEMCQITFgYAAAAAAAAAAAAAAAAAAAAA7CDCwgAWRs+7gCUw5DUSFsZWENAHAAAAAAAAAAAAAAAAAAAAwGIQFgawFAQXJUl6QBDYkD6wLuF9i8t7AwAAAAAAAAAAAAAAAAAAAOwuwsIAWMciBfMMqEVYGAAAAAAAAAAAAAAAAAAAAACwgwgLA2B5DAkCExYGO1svUoAhAAAAAAAAAAAAAAAAAAAAwPYTFgawKATgrG/QayQsDAAAAAAAAAAAAAAAAAAAAADYOYSFASyDqnlXsCAGBIG1sDDYtYQuAgAAAAAAAAAAAAAAAAAAADuQsDCAhSHkZl1DgoCEhbElBPQtLp+VAAAAAAAAAAAAAAAAAAAAwO4iLAxgKQguGhkSFrZv+8sAAAAAAAAAAAAAAAAAAAAAAJgRYWEAC2NAENZu11cP6DSkD6zH7+PCau8NAAAAAAAAAAAAAAAAAAAAsLsICwNYCjXvAhbEgJCgQYFiACwWIXAAAAAAAAAAAAAAAAAAAACwGmFhACyPIUFgwsIAAAAAAAAAAAAAAAAAAAAAgB1EWBgAS6QHdBEWxlaoeRfAqgZ8DgAAAAAAAAAAAAAAAAAAAADsIMLCABZFL2gAziLVNSgITFgYAAAAAAAAAAAAAAAAAAAAALBzCAsDWAZV865gQQwILhsUKAYsrwUKMAQAAAAAAAAAAAAAAAAAAACYAWFhAAtDAM66hgSBCQsDAAAAAAAAAAAAAAAAAAAAAHYQYWEAy+CC0+ZdwYIYEqgmLIytILxvOXnfAAAAAAAAAAAAAAAAAAAAgJ1HWBjAwlgj5OYLL5pdGYusBwSBDekDLK8WCAYAAAAAAAAAAAAAAAAAAADsLsLCABZF71v92lUXz66OhTYgJEhYGFui5l0AAAAAAAAAAAAAAAAAAAAAACQRFgawOK6+at4VLL5BQWDCwmBnGxAaCAAAAAAAAAAAAAAAAAAAALCDCAsDWBS9b94VLIEBIUGDAsUAAAAAAAAAAAAAAAAAAAAAAJaDsDCARdFXzbuCxdfCwgB2pCGf7wAAAAAAAAAAAAAAAAAAALBLCQsDWBRXXznvClaxSAEuA4LAhIXBDrdIn0kAAAAAAAAAAAAAAAAAAAAA209YGMCiuPqqeVew+HpISJCwMAAAAAAAAAAAAAAAAAAAAABg5xAWBrAoWljY+gYEgbWwMNjRBoUGAgAAAAAAAAAAAAAAAAAAAOwcwsIAFoWwsPUNCQkSFgYAAAAAAAAAAAAAAAAAAAAA7CDCwgAWxdXCwtY3JAhMWBjsWkMCBVlQ3jsAAAAAAAAAAAAAAAAAAABYjbAwAJbHkCCg3rf9dQBzJFQKAAAAAAAAAAAAAAAAAAAA2F2EhQEsiqp5V7AErl6/Sw/oA8CC8X8gAAAAAAAAAAAAAAAAAAAArEZYGADLo3tAH2FhbAHhfYtr36XzrgAAAAAAAAAAAAAAAAAAAABgpoSFAbA8BgWB9bBQMViLf0OL65zXz7sCAAAAAAAAAAAAAAAAAAAAgJkSFgbAOhYpNGloLYtUM7ClvvPZeVcAAAAAAAAAAAAAAAAAAAAAMFPCwgAWRQu4WldfvbX9gOVT/nzdmfwfCAAAAAAAAAAAAAAAAAAAAKuRtgDAEhkYJiMsDHawWuOawCkAAAAAAAAAAAAAAAAAAABg5xEWBsASGRoEJCwMdqxa489XQYEAAAAAAAAAAAAAAAAAAADADiQsDIDlMTQISGAQm1U17wpY1Vrvjd99AAAAAAAAAAAAAAAAAAAAYOcRFgbAEumB3QQGsUk98N8as7dWkJvffQAAAAAAAAAAAAAAAAAAAGAHEhYGwPIYHAQkMAh2LmFhO5OAPgAAAAAAAAAAAAAAAAAAAFiNsDCAhSEoZX0DXyOBQbCDrREWJigQAAAAAAAAAAAAAAAAAAAA2IGEhQGwPIaGgAkLg52r1vjztffNrg622FohcAAAAAAAAAAAAAAAAAAAALC7CQsDYG3d865gwsBahIWxWSW4aHGt8d743QcAAAAAAAAAAAAAAAAAAAB2oL3zLmA7VNWtk5ya5BZJLk9yZpI3dveFcy0MgM0ZHAQkMAh2rLWC3ISFAQAAAAAAAAAAAAAAAAAAADvQwoeFVdVJSe4/0fTq7r5ilb6V5AVJnp5kz9TlP6iqX+3uV25DmQDMQvfAfgKDYOcSFgYAAAAAAAAAAAAAAAAAAADsLgsfFpbk3yf5lfHxJ7v7L9bo+7tJnjFxvj9VppIcleTPq6q6+xVbXyYA229gEJDAIDZraDAds1fTebCT/O4vL79zAAAAAAAAAAAAAAAAAAAAsJq10hYWxc9mFPaVJKuGfFXVDyX59YySBiZDwvaP7fHxS6rqhO0pFWAzBKWsa3CAk8Ag2Llq9UuCAgEAAAAAAACWRlXdoKqOnncdAAAAAAAAAACwDBY6LKyqbpDk5Immd67R/Rm55s/zjiT/JslDkrwpo2SJTnJEkt/Y2koBmI2BYWECg2AHExYGAAAAAAAAsKyq6sSq+suq+k6SbyX5TlV9vaqeX1VHzLs+AAAAAAAAAABYVAsdFpbkdhPH/9zdZ6/UqaoOySgYbH+KzHu7+9TufnN3v727H5Hk1RmlS1SSR1bVGkkTACwmYWHMiD8TFlet9eer330AAAAAAACAWaqqx1fVOePHGVV12Bp975DkH5M8Lsl1cmA/3/FJfivJP45vMAoAn/UGzgAAIABJREFUAAAAAAAAAExZ9LCwE8fPneTMNfr9aJJjM9o4lCTPX6HPb+dAysxxSU7ZigIBmKEeGha2b3vrAObn0Ousfu2Qa8+uDgAAAAAAAACS5DFJbprkhCQf7O7LV+pUVXuTvC7JDTLa59dTj0py2yRvnEHNAAAAAAAAAACwdBY9LOzYieNvr9HvPhPH53b3R6c7dPf/yjUDx26/ydoAmLmhYWFXb28ZwPwc+2OrXzvmR2ZXB1traBgkAAAAAAAAsDCqak+Se080vXmN7v9Hkh/OgXCwJDk9yaen2u5dVY/a4lIBAAAAAAAAAGDpLXpY2BETx5es0e+e4+dO8t41+n1x4vhGB1sUwO6ySAEuQ2sRFgY7Vi36n68AAAAAAAAAu8Ztk1x7fHxlkr9bo++Txs+V5LtJ7tHdd+zuuya5S5Jv5cDGkKdtQ60AAAAAAAAAALDUFj1t4aqJ4yNW7XUgLCxJPrJGv4snjo86qIoAtksvUijXghr6GrWwMNixfFbuTFXzrgAAAAAAAADYuJPHz53kS9195UqdqurGSX583K+TPL+7P7H/end/JsmvZhQkVknuXVXX287CAQAAAAAAAABg2Sx6WNhFE8c3XalDVZ2S5LiJpo+vMd9k4Ni+TdQFwFwICwPWIkgMAAAAAAAAYIZOmDj+6hr9fiIHgsCuSvIXK/R5c5Lvjo8ryZ22okAAAAAAAAAAANgpFj0s7KzxcyW5Y1UdvkKfh0wcX9jdZ64x3/Unjr+32eIAmLWhQUDCwgAAAAAAAAAAttlRE8cXrdoruff4uZN8vLu/M92hu/clOW2i6VabLw8AAAAAAAAAAHaORQ8L+3RGG4Q6yeFJnjh5sar2Jnny+LSTfHid+W4zcfz1LaoRgFnpgWFhLSwMdq41PgeGfkYAAAAAAAAAsBUOHdjvHhPHH1yj3zcnjq+z4WoAAAAAAAAAAGAHW+iwsO4+L8nHxqeV5Per6heq6tpVdVKS1ya55cSQN6w2V1XdOMlNJpq+tLXVArD9hIUB7EiC3gAAAAAAAGAZXTxxfL2VOlTVkUnuNNH00TXm2zdxfNgm6gIAAAAAAAAAgB1nocPCxl6UUVBYJzkyySuTfC/JV5I8LAeSY87NGmFhSX564vjiJF/Y6kIB2G5Dw2SEhcHOtdbngMApAAAAAAAAgBk6f+L4lFX6/FSSQ8bHneQf1pjvmInj72+iLgAAAAAAAAAA2HEWPiysu9+Y5E05EBhWE49MtP9ad1++xlQP3z9lkk90tzQJYMH4WFrX0I/uFhYGAAAAAAAAALDNTh8/V5ITq+r2K/R59Pi5k5ze3RetMd8JE8ff3oL6AAAAAAAAAABgx1j4sLCxxyb58xwICNuvklye5D909+tWG1xVN0vy4BxI4nnPdhQJwDYbGgImLAx2KaGLAAAAAAAAADN0ekahXvu/rP2Dqjp0/8WquneSR0xcf9dqE1XV3iS3nWj66taWCgAAAAAAAAAAy23vvAsYoruvSPKUqnphklOTnDi+9Pkkb+rub6wzxYNz4C6GSfL2ra8SYKdapPCdgbUIC4OdqxfpMwkAAAAAAABg9+rufVX1miS/nNGmjgck+UxVvT3JcRkFhe3J6KagneSv1pjubkmuNXF+xrYUDQAAAAAAAAAAS2opwsL26+4vJHnBQYz70yR/uvUVATBbQ0OChIXBjvW9L6x+TZDYEvPeAQAAAAAAwJJ6fpJfSHKd8fkPJ/mh8fH+kLBO8sbu/twa8zx0/NxJvtzdF25DrQAAAAAAAAAAsLT2zLsAABhsaBBQCwuDHevs1867AgAAAAAAAADGuvu8JP8myWU5EA72L5fHbV9J8rTV5qiqPUkeOTH2g9tRKwAAAAAAAAAALDNhYQAsEWFhsOtd+Ok1Lg78jGAB1bwLAAAAAAAAAA5Sd78/yR2TvC7J9zP6ArCSfDvJHyX58e7+9hpTnJrkxBz44vCd21ctAAAAAAAAAAAsp73zLmA9VXXW+LCT3Ke7v3GQ85yQ5MP75+ruk7eiPoAt00Ju1jf0NRIWBgAAAAAAAAAwK9395SSPSZKqusG47fyBw7+a5GET5+/Z2uoAAAAAAAAAAGD5LXxYWJKTxs+dzdW7d2ouAJbN0EC1FhbGZtX6XVg8QhcBAAAAAAAA5m4DIWH7+//PJP9zm8oBAAAAAAAAAIAdYc+8CwCA4YSFMStCpwAAAAAAAAAAAAAAAAAAAABYDMLCAFgiwsKAtQh5W17eOwAAAAAAAAAAAAAAAAAAAFjN3nkXMEOHThxfObcqADh4PTRMRlgYAAAAAAAAAMAiqKpjkhydpLr7nHnXAwAAAAAAAAAAy2g3hYXdaOL4e3OrAoBNGBgW1vu2twxgQQ0NFAQAAAAAAABgu1TVQ5OcmuQ+SU5Ksmd8qbPCnsWqOinJzcenl3T3J7e9SAAAAAAAAAAAWDK7KSzsQePnTvL1eRYCsFR6kcJ3hoaFXb29ZbAL1LwLAAAAAAAAAIClUlUPSvLiJLfa3zRw6MlJ/jajjSFXVNXx3X3hNpQIAAAAAAAAAABLayHCwqrq5uv3SpKcULWh8I7DktwkyQOT/NpE+6c3MgnAbCxSKNeCGhpcJiwMdqeFCjcEAAAAAAAA2D2q6llJnpVRQFjlmhthOmsEh3X3+6rqzCSnJLlWkkcledn2VQsAAAAAAAAAAMtnIcLCknwt66fkVJKPbGKNyc1Gb9rEPADMzdAgIGFhAMtF0BsAAAAAAAAsq6r61STPGZ/u//Lv8iSfSHJRkn89YJrXTczxsxEWBgAAAAAAAAAA17Bn3gVMqRUe610f8kgObEL6eJJ3bNtPAMA2Ghgm08LC2CzBRcvJ+wYAAAAAAAAwS1V16yQvzOgL284oJOw3khzb3fdN8isDp3rb/imT3KeqpvcOAgAAAAAAAADArrZoYWHbZf/GoTcm+bnuliQBsIyGfnwLCwNYMvb5AwAAAAAAwJJ6XpK9GX3pd1mSB3T3C7v70g3O85nx+CQ5Osmtt65EAAAAAAAAAABYfnvnXcDYq9a49vjxcyd5U5KLB865/y6F30lyZpK/6+6zD7pCABaAsDBgLfJgAQAAAAAAAGalqg5LcmoOfFn7n7v74wczV3dfXVVnJrnzuOk2Sb64+SoBAAAAAAAAAGBnWIiwsO7+xdWuVdXjc2Az0a919zmzqQqAxTM0CEhYGJtV8y4AAAAAAAAAABbdvZIcMT6+JMlLNznfN3IgLOz4Tc4FAAAAAAAAAAA7yp55FzCQxA5gFxgahLWL9cDXqIWFwa7kdx8AAAAAAABglk4aP3eST3T35Zuc76KJ46M3ORcAAAAAAAAAAOwoe+ddwAC/OHF8/tyqAGABCAsD1vDNv513BRw0gZkAAAAAAACwhG44cfzNLZhvzyrHAAAAAAAAAACw6y18WFh3v2reNQDsbgsU4NJDaxEWBrvWvsuTQw6bdxUAAAAAAAAAu8HlE8db8UXtsRPHF27BfAAAAAAAAAAAsGMsfFhYVT1r4vRF3X3RQc5z3SRP33/e3c/bbG0AzNrAELAWFrai7qRq3lXA9jr33clNHzLvKgAAAAAAAAB2g3+eOL7pFsx3x1XmBgAAAAAAAACAXW/hw8KSPCdJj49fmeSgwsKSHDM1l7AwgGXTvX6fRFjYtC+8OPnyy5PLz0+O/5nkri9ODj163lXB9rjyYP9UBAAAAAAAAGCDzho/V5I7VdWR3X3JwUxUVXdJcsOJpk9ttjgAAAAAAAAAANhJ9sy7gIFqQecCYKYGhoVFWNi/+OJLk08+Pfnu55LLzkvOemXyoYfMuyrYRv7UAwAAAAAAAJiRT2R0889OcmiSJ25irmdMHJ/d3WdvpjAAAAAAAAAAANhpliUsDGDn66FBWLvZwNeohYX9i7P+4gfbvvWB5OKvzbwUgFX5PxAAAAAAAACWTnfvS/LfM7qrUyV5blXdbKPzVNXDkjw2o40hneQ1W1knAAAAAAAAAADsBHvnXcAM1cTx3FNkquqIJLdJcmKS45McndHdFS9K8u0kpyc5o7uv2qL1Dk1yryQ3T3KTJBcn+UaS07r7a1uxxsRat0hyp4x+rqOSnJvk7CQf6+4rt3ItYJcZGiYjLOyACz65cvun/kPyE2+ebS0wE7V+FwAAAAAAAAC2yu8keVRGX9Yek+SDVXVqd58xZHBVPSHJn2QUElZJLk3yh9tTKgAAAAAAAAAALK/dFBZ23Ynj78+jgKr6xST3T3L3JCcn2bPOkIur6m+SvKS7P32Qa94wyXMz2pB1/VX6fCzJH3T3Gw9mjYl5HpHkGUnusUqXC6rqdUme1d3nb2YtYLcSFrZlvv6WeVcAcEAJeQMAAAAAAIBl1N2fr6qXJHl6Rhs7bpHkU1X16iR/k+SC6TFVdbMkD0zy5CQ/lgN3heokz+7u82ZROwAAAAAAAAAALJPdFBZ2p/FzJ5lXUNXvJDlhA/2PSvLEJI8fb6j69e6+aujgqnpwklcmOW6drvdMcs+q+m9Jntrdl2ygxlTVUUn+vySPXqfr9ZM8LcnDq+rx3f2ejawDMDgsLMLCAAAAAAAAAABm5NeS3DbJv8poc8ehSZ4wfmTcVklSVZckOXxibE1cf3N3v3AmFQMAAAAAAAAAwJLZFWFhVXXrJL850fS5edUy5ftJvpLknCQXJdmTUaDWjyS58US/Q5L8+yQnVdUjunvfehNX1X2TvCXJtSaaO8mnkpyV5Jgkd05yg4nrj0tynap6aHcPStqpqkOSvC7Jz0xd+uckpyX5bpKTx2vtvwPkjZK8tap+qrs/MmQdgCRJDwwLG/YRBuxEVev3AQAAAAAAAGDLdPfVVfWQJC/NKCBs/waP/V/g9kTbEZNDJ/r9RZL/a3srBQAAAAAAAACA5bUQYWFV9f6BXV9bVZdtYOrDktwkyYlT7e/bwBxb6ZIkb0vyriQfS3L6aqFcVfXjSZ6f5AETzQ9N8owkL1hrkaq6aZI35ZpBYR9N8pTuPnOi32FJnprkhRndzTFJfm687v898Gf6vVwzKOzKcY1/2t1XTKx12yR/luQe46bDkrylqn6ku88duBYwFwMDumZCWBiwHmFhAAAAAAAAALPW3ZcleWJVvSvJM5PcfrWu4+caP76S5Fnd/Zrtr3K5VdURSU5JcpskN0xyVJKLk1yQ5PQkn+3uq+ZXIQAAAAAAAAAA22khwsKS3DfrJ8BUkrsfxNyTdydMku8kefVBzLMVbt/dVw7p2N1/X1UPTPKqJP924tJvV9WLu/vyNYY/N8n1Js4/luSnxhuyJte4PMmLq+qcJG+euPSMqnp5d5+9Vo1VdcskT59q/vnufusKP8/nquoBGQW17Q8MOzbJs+OOkDC2SKFci2poWNi+7S0DgK3V/g8EAAAAAACAnaC7X5/k9VV1vyT/Ksm9k9wso71i10pyfpJvZbSn7T1J3tW9OBs9xnvi7pbkR8fPd0ly9ESXs7v7pBnWc5eMbjJ6/yQ/lgM3BV3JJVX1uiR/2N2fmUV9AAAAAAAAAADMzqKEhW2nzoG7EH4vyWO7+/y5FDIwKGyi/9VV9e+SPCzJkePm6ya5X5J3rzSmqm6d5PETTVckecJ0UNjUOm+pqldNjDssoxCvJ65T4rNzzc1Hr1wpKGxinUur6glJPpvRxq8keVJV/ZfuPmudtQA2ECZz9baWASyyWr8LAAAAAAAAANuquz+Q5APzrmOIqrpvkt/KKCDs+vOtZqSqDk9yRpJbbmDYkRnt+Xt8Vb0wyTM3umcRAAAAAAAAAIDFtWfeBUyoVR5D+qz2uCLJeUk+mFGw1W26+z3b/HNsqe6+KMlHpppvtcaQxyY5ZOL8Td39pQFL/f7U+SPHG45WVFVHJHnEOnP8gO7+YpK3TDTtzahmgAEGhoW1sDAAAAAAAAAAAAa5U5IHZkGCwsb2ZuWgsE7y+STvTfLXSd6WZPpGnYck+U9JXltVu+GGsgAAAAAAAAAAu8JChIV1957VHvu7jB8nrdV3hccR3X2T7r5/d/9Od587xx9zMy6YOj96jb4Pmzp/xZAFuvvMJP8w0XRkRhugVvOgJNeeOP94d39+yFor1PTwgeOAXU9YGAAAAAAAAAAAM3F5kq/Mu4gk+5K8K8mjkxzX3ad094O6+3Hd/ZDuPjnJjyb50NS4hyd5zmxLBQAAAAAAAABguyxEWNgANe8C5uzEqfNvrNSpqm6c5I4TTVcl+egG1vng1PmD1+j70+uMXcuHM6ptvztX1Y02MB7YrVpYGLOy2//0WGLlvQMAAAAAAACYlap6//jxvqo6bhPz3Ghyrq2scaArk3w6yZ8leWqSu2Z0U88nz6GW/S5P8scZ3WT1Z7r7dd19/kodu/uTSe6f5DVTl369qqb3HwIAAAAAAAAAsIT2zruAAT6UZH86zGXzLGQequqHktx9oqmT/N0q3W8/df6Z7r5kA8t9bOr8dmv0nV7r40MX6e5LquqzSe48tda3hs4B7FYDw8IiLIzNGvpvjcUjLAwAAAAAAABghu6bA1+yH76JeQ4fz5XM/kv7VyV5WXf/wP7Emt8Nqy5Lcqvu/vrQAd29r6qelOTeSW42br5WkkcmecHWlwgAAAAAAAAAwCztmXcB6+nu+3b3/caP8+ZdzyxV1U2SvD7JIRPNb+jur60y5LZT51/e4JJfWWe+SafMcC3YJYQTrasHvkYtLAwAAAAAAAAAYEaW+q5O3X3hSkFh89TdV20kKGxi3KVJXjHVfL+tqQoAAAAAAAAAgHnaO+8COKCq9ia5XkZBXP86yVOTXGeiy1lJfnmNKW41dX7OBks4e+r82Kq6XndfOFXn9ZNcf5NrTfe/9QbHA7uSsDBgHfO7qzMAAAAAAAAALILTps6Pn0sVAAAAAAAAAABsKWFhc1RVL0ry9IHdP5DkF7r7vDX6HDN1vlbfH9DdF1fVZUkOn2i+bpILp7pOr/P97r5kI2utUNt1NzgemJUeGNA1E0NrERYGAAAAAAAAALBEJvcyXjW3KnaG6dfvWnOpAgAAAAAAAACALSUsbPG9Lckfd/d7B/Q9aur80oNY79JcMyzs6G1cZ9JK62xYVR2X5IYbHHbyVqwNzMDQ4LIWFsZm1bwLAAAAAAAAAIDd5AYTxxu9cSXXdKup83PnUgUAAAAAAAAAAFtqacPCqurYJKckuV6S6ybZs5Hx3f2X21HXNnhwkkOq6rLu/tA6fadDvC47iPUuzeg1XW3OrVxnrTkP1i8lefYWzQUsHGFhwHoEvQEAAAAAAAAsoZ8YP3eSb8yzkB3gEVPnn5hLFQAAAAAAAAAAbKmlCgurqhtkFAb1uPzg3e82ahHCwp6X5EUT50ckOTbJnZI8LMn9kxya5GeT/GxV/XGSp3f3voHzD0zVWZoxwK439KNDWBjsXsLClpM/DQEAAAAAAGAH2NAXf1V1aJKbJHlgkt+euPTZrSxqN6mquyW511Tzm+dRCwAAAAAAAAAAW2tpwsKq6uFJ/iLJ0Tn4FIgej12INILuviDJBStc+kiSP6qqeyd5dZITx+3/LqNAsSetMuXFU+dHHERZ02Om55zlOrC79EJ8NC22oa9RCwtjs/w+AgAAAAAAAECSVNWQm1tWkq9VHfQNniYHvu1gJ9nNxuFrL59q/nB3f2Ie9QAAAAAAAAAAsLWWIiysqh6X5C+zckjYZJrH9PXpawe9E2keuvsjVXW/JP+Y5Nhx8xOr6m3d/dYVhggLS16a5PUbHHNykpVeT2DhDAwBExYGAAAAAAAAALBVhu6728z+vP03Av18kjdsYp7d7AVJ7jxxfmWSX93qRarquCQ33OCwk7e6DgAAAAAAAACA3Wbhw8Kq6hZJ/jSjjUD7NwR9Jsmbk1ya5PfGXTvJLya5TpLjk9wzyb2S7BlfOy/J85N8b4blb1p3f7WqnpfkDyeafyMrh1t9d+p8Qxtyquqo/GCI13cGrHPtqjqyuy/ZwHLHDVhnw7r7vIze68E2cTdLYNa61++TCAuD3cz/6wAAAAAAAADbYf/eve1SSf4pyaO6+8ptXGdHqqonJnn6VPNzuvvT27DcLyV59jbMCwAAAAAAAADAGhY+LCzJf8wowGp/Qsxzkzyvu7uqTsyBsLB096smB1bVrZL8lyQPzSg466lJHtjd586i8C302lwzLOzHq+qY7p4O2PrS1PmJG1xnuv8F3X3hdKfu/nZVXZjkehPNN09y5ibWmq4dYAUDw8IiLIzNEjgFAAAAAAAAAGMfyuqbNn5y/NxJPpHksoFzdpLLM7rJ5JlJPtDdH95MkbtVVf10kpdNNb8jyf8zh3IAAAAAAAAAANgmCx0WVlV7kvzbHNho9Prufu7Q8d395SQPr6rnJnlmktsmeXtV3WOZ7j7Y3edNhXPtSXKLJKdNdZ0O67rVBpe65dT559boe2aSe06ttZGwsOm1NjIW2LUGhoW1sDDYvQS9AQAAAAAAAGyl7r7vateq6uoc2NDxqO4+ZyZFkSSpqnsleWOSQyeaP5LRezH0rnwAAAAAAAAAACyBhQ4LS3KHJEePjzvJ8w5mku5+dlX9SJKHJrlzkl9N8l+3pMLZmQ43O2yFPqdPnd+hqq7d3d8fuMa91plv+tpkWNg9krx9yCJVdWRG7+3QtYC5WqB9g0P3MAoLAwAAAAAAAACYlcpCbTDZHarqrkn+e5JrTzR/IsnPbmDP4MF4aZLXb3DMyUneug21AAAAAAAAAADsGoseFnb78XMnOae7P7dW56qqNe6G91sZhYUlyZOyRGFhVXV4khtMNX9rul93n1tVn8mBIK69Se6d5L0Dl7rv1Pm71uj77iT/5xpj13KfXPPf3mnd/QM/D+w+9kyub+hrJCwMAAAAAAAAAGAGnjtx/J25VbHLVNUdMtoXeN2J5tOSPKi7L9rOtbv7vCTnbWRMVW1TNQAAAAAAAAAAu8eih4Vdf+L4jBWuT6fGHJ7k0pUm6u4vVNWZSU5J8sNVdbvuXmnORfSAJHsmzr+f5H+v0vfNORAWliS/mAFhYVV1myR3n2i6ZJ1x78notT5ifH6PqrpNd39+vbWSPGHq/M0DxgBkcFhYCwuD3csGYwAAAAAAAIBZ6e7nrt+LrVRVt03yP3LN/ZWnJ3lgdwtsAwAAAAAAAADYofas32Wujp44vnCF65es0X8lX5w4PuWgKpqxqtqT5JlTze/u7itWGfLfkuybOH94Vd16wFL/aer8b7r7stU6d/f3k7xhnTl+QFX9UJKHTTRdleSvB9QHkPTQsLB96/cBAAAAAAAAAGBTxvvbmJGq+uEk70tyw4nmzyf5qe4+fz5VAQAAAAAAAAAwC4u+UWcyDOzQFa5/b+r8hHXmu3ji+MYHVdFBqqpfqaqbbHDMoUn+PMndpy798WpjuvtLSV410XStJK+sqsPXWOchSZ4w0XRFkiF3fHxOkisnzp9QVaeusc7hSV4xrmm/P+/urwxYCyDJ0LCwq7e3DGBxVc27AgAAAAAAAIDd5JyqenZVrbd3j02qqlsleX+uuffxS0nu393fmk9VAAAAAAAAAADMyqKHhU3e6e460xe7+4qpPrdfZ77JsK6jNlHXwXhSkq9U1aur6ueq6ujVOlbVEVX1mCSn5ZohXknyV939/nXWenaSCyfO75nkf1TVbabWOayqfiXJ66fG/9fuPnudNdLdZyX5w6nmN1TVL1fVZCBYquqUjO5oeM+J5m9nWCgZwJiwMICdaeDnOwAAAAAAALBojk/yrCRfrao3VdUD513QTlRVt8goKOz4ieazMgoKO3c+VQEAAAAAAAAAMEt7513AOr44cXzrVfqckeQnx8cPSPJXK3WqqiOT/NhE04Ur9dtmRyR53PjRVfXlJF9L8p0kVyQ5OsmJSW6b5NAVxr8jyVPWW6S7v15VD0/yniT7Q7vuleRzVfXJjDYJXTfJXZLccIU1nrmBn+k3k9wuyYPH54cmeUmSZ1bVp5J8L8ktx2vVxLgrkjzMRiVgQ3pomIywMAAAAAAAAACAGdqb5CFJHlJVX03y8iSv6O7z1x7Geqrq5hkFhd1sovnsjILCvj6fqgAAAAAAAAAAmLVFDwv7XJJ9SQ5JcouqunZ3f3+qz4czCgurJD9fVc/u7rNXmOs3kxw1cX7GdhS8AZVRANpqIWiTLk3y/CQv6O4rh0ze3R+sqocleWUOBIJVkh8dP1bymiRP6e59Q9YYr7Ovqh6Z5M+SPGri0nFJfnqVYecleXx3f3joOrA7rBOE9fW3J994Z3LYDZITH50cc7vZlLVQBoaFtbAw2L1q/S4AAAAAAAAAbJUrMrqh5f5NHZXRzSV/L8nzquqNSV7W3R+ZU31LraqOT/K+JCdNNP/vjILCVtonCQAAAAAAAADADrVn3gWspbsvTvKp8WklecAK3V63v3uSI5K8t6p+Yv/FqrpuVT0/yW/nwIakC5L8w7YUvbqnZBT49fEklw8c8/kkz0zyQ939u0ODwvbr7ncmuX2SlyW5cI2uf5/kEd392O6+ZCNrjNe5uLsfneTnx3Ot5oIkf5Lk9t397o2uA7veh05Nvvyy5IznJ+/98eSfPz7vin7QvivmXcGIsDDYxYSFLaUrL553BQAAAAAAAMDBOT7JbyT5cg58Ydvj48OSPCbJ31XVZ6vql6rq6PmUOX9V1VOP+67T/7iMgsJuNdF8bpL7dfdZ21gqAAAAAAAAAAALaO+8CxjgPUnuNj4+NcnbJy929xlV9dYkD8lok9Gtk3ygqi5JclGS45IcMu5e4z5/tNHgrc3q7n9M8o9JnllVhyY5JaM7KJ6Q5Kgkhya5eFzz15Kc1t1rBXwNXfe8JE+rqqcnuVeSE5PcOMklGd1h8LTu/upm1xmv9YYkb6iqWyS5S0YbwY5M8s0kZyf5aHcvSJIQLLmrLk5O/53kfu+cdyXX9L0vJcfcbvvm716/T5JEWBjAUvnii5ObPXTeVQAAAAAAAAAb1N0XJHlhkhdU55f/AAAgAElEQVRW1QOSPC2jfX57c+DmnpXkdklekuT3q+qvk7y8uz+1wpRzUVU3zcr7KW88db63qk5aZZqLu/v8LarnmCR/m+Q2E82XJHlSkivXqGFF3f21ragLAAAAAAAAAID5WYawsNcl+c8ZbRh6TFX9x+7+7lSfpye5e5Ib5cBdCY8aP/bb3/5PSX53u4teyzio7DPjx6zWvCLJB2a01leTbEkAGbCGc981o4WGBnTNwsBaWlgY7FpV6/dh8XxrJn+mAgAAAAAAANuou9+X5H1VdaMkT0ny5CQ33385o/17R47bn1xV/5TkT5K8trsvm0PJkz6S0Y0413NCVt8b96okT9iieu6U5A5TbUcmOdg7C/oyHQAAAAAAAABgye2ZdwHr6e4zktw1yd2S/GSSfSv0OSfJA5Kcnmtuaulc8+6E70rywHFYF8APuuR/JX//xOQdt00+8ujkwk/PuyKuQVgYAAAAAAAAAMAi6+5vdffzk9wiyakZBVzt3/QxuZ/vbkn+PMk3qur/rarbzLxYAAAAAAAA+P/Zu/NoSfO6vuOfb3cP0w0DDIszAyIQBwiBsKOIAs4YZBGNgQCuOUE5xrhEj+YPj0aDmgWXRLMARlyiqEQBESOKgjoDxEFwDqMITAQGwYVpBpjNgXtn6fvLH7c6XV1zl1ruU/U8t16vc+r0rarnqef7PPfWr/ucrvO+AAADcWzVA0yjtXbVFNtcXVWPT/K8JF+Z5KFJzk9yQ5I/S/JrrbU/7HRQYNhuvT75g0uSWz68ff/mq5OTb06e8Y7kHn9/paMxK7EwWFs3vje5/3OS8kuRAQAAAAAAAFaptdaSvDHJG6vqc5J8c5JvSHK/05tkOxp2fpLvSPIdVfW2JK9I8huttTuWPzUAAAAAAAAAAPTTymNhVfXGJJeNbleNPiA0l9baqSSvHd0AZvOx3zkTCjvtthuSj7w6efQPdX/8+Ze//ug6zjPtNWpiYbC2/ux7kw+9MvmSNyd3f8iqpwEAAAAAAAAgSWvtr5N8f1W9JMlzsx0O+5KxTU5/6ORpo9t1VfVzSX6mtfbRJcz34CUcY+oP1rTWLs+ZawIAAAAAAAAAADmy6gGSfFmSH0vyJ0k+VVVvqKrvqKpHrXguYN2888U7P/7eH17uHEPWefBMLIwl6Tp8R7c+/ZfJW//xqqcAAAAAAAAAYEJr7VRr7XWttS9N8rAk/znJp7L9oZCW7UBWJbkwyfcm+VBVvb6qnrKqmQEAAAAAAAAAoA/6EAs7rZKcn+Qrkvxkkj+tqk9U1Wur6lur6uGrHQ849LZuW/UE7EssDJjSzVcnN75v1VMAAAAAAAAAsLt7JLlnkuNjj7WxW5IcTfKVSd5aVW+qqouXOyIAAAAAAAAAAPRDn2Jh4x/wOf3bAe+T5HlJ/nuS91XVtVX16qr6pqp6yIrmBGA3VaueYEQsjAW1KcN09Nu1b1r1BAAAAAAAAACMqaoTVfWNVfXOJFcmeXGSu45vkuSOJBujr8c/U/jMJH9WVc9Z4sgAAAAAAAAAANALfYiFfU+SNyX5u5yJhCU7x8MuTPJVSf5Hkr+oqr+qql+sqhdV1YOWOzYASzdtwKmJhQGxFgAAAAAAAAD0RFU9oqr+W5KPJfmZJE/Mmc8Knv584LVJfjDJg5LcP8m3J3lfzkTDWrbDYq+pqouXOT8AAAAAAAAAAKzaymNhrbUfb619eZJ7J3lSzsTDbsn+8bAHJPn6JD+X5MNV9eGq+tmq+rqquv8STwOApRALA2Yx5ZoBAAAAAAAAwIGrqruMPsv39iR/nuTbktwzZz4TmNHXlyd5YZIHtdZ+uLV2srV2c2vtFa21Ryd5TpKrx/Y7nuS7lnUeAAAAAAAAAADQB8dWPcBprbWtJH8yuv14VR3J9m8PvCTJpUm+KMl547uMfX36Q0APTvINo1uq6kNJLkvyh0kub61d190ZACyqp1Gb1qe5pp1FLAxIz9YvAAAAAAAAgPVQVQ9N8s1J/nm2f4losv0Zv9O/MLSy/ctEfynJy1trV+/1eq21N1XVZUn+T5LHj/b/0m6mBwAAAAAAAACAfupNLGzSKB72rtHtx6rqaLbjYZdmOyD2RUnuNr7L2Nen42EPTfKQJN+UJFV1dbbjYZe11l7f5fwArFATC2NBVftvwwBYCwAAAAAAAACWYfT5vucm+ZfZ/oxfcuZzfG3s/vuS/FSSV7XWbpn29Vtrm1X10iSvHT30OQsPDQAAAAAAAAAAA9LbWNik1tqpJO8c3X6kqo4l+bxsh8MuTfKFSe46vsvY16c/dPSI0e1bMqBzB2Cktf23ScTCgG3TrhkAAAAAAAAAzKWqHpTkXyT5xiQXnH4425/fa6OvTyV5Q5KXt9beusDh3j/29bkLvA4AAAAAAAAAAAzOYINZrbU7krxjdHvpKB72+dkOh12S5MnZOR5WORMPA2BQpg3/iIUByfRrBgAAAAAAAABzuiZnfyZv/HN61yZ5ZZJXttauPYBjfWbiGAAAAAAAAAAAsDYGGwubNIqHXTG6/YeqOifJk5K8IMk3xW8SBFiCrluMU37Wc+tUt2MMRfPZ2Lm5doeD7yMAAAAAAABA145k+wMdLWeiYW9L8vIkvzH6XN9BqwiGAQAAAAAAAACwZg5NLOy0qrpXki9OcmmSS5I8Mt3XawDola1VD8DQtTuST/1Jcv6jkqPHVz0Nc7MWAAAAAAAAACxBJbklyS8leUVr7X1dHKS19tFsx8kAAAAAAAAAAGDtDD4WVlXnJ3lazsTBHpWd42Djj/mtgkAPzbE0tZbUGvUQ25TXqAkEcQB+7/O3Q2FPfHly8TeuehrmMe2aAQAAAAAAAMC8rk7yiiSvaq393aqHAQAAAAAAAACAw2pwsbCqukfOjoM9JmeHwCrbxZ3JONh7krx1dHvbMmYF4KBNGf65/srkxj9Pzn9Ut+Nw+J3aTN754uRej0nu/YRVT8PMxMIAAAAAAAAAutRae+SqZwAAAAAAAAAAgHXQ+1hYVd09yVNzJg722CRHxjfJznGwq3ImDvb21toNy5gXYLkml7/Dbobwz5sel3zhryQP+qruxuk9oaQD8+FfEAsbJO8BAAAAAAAAAAAAAAAAAAAAYPh6Fwurqrvl7DjY45IcHd9kh922krw7Z8fBbu52UoAeaG0JrbCBxnbaqeRd/zL5nOcnR47uvz3s5QMvS57431c9BbNqA12/AAAAAAAAAAAAAAAAAAAAAMasPBZWVXdN8pSciYM9IfvHwW5PcmXOxMH+qLV2S7eTArBys4Z/br8xOfnm5P7P7mYeYPnu/cTk+iun3FgsDAAAAAAAAKAPquo+SV6Q5ElJLkyykeRvkvx+kt9rrd22wvEAAAAAAAAAAKD3Vh4LS3Jj9o+D3ZbkXTk7DraxhNkAem4JIZyZAl07LeEHaY7zvelqsTA4TI6emH7bttXdHAAAAAAAAABrqqrum+TRST4rya1JPpzkva3d+T9pq6qSfG+S70uy03/4fnuSj1bVt7bWfre7qQEAAAAAAAAAYNj6EAs7lu36y3hhZjPJH+dMHOyPW2ubK5gNYHlminL9/50OfIyzbN2R3H5jt8eYyRznW0cOfgxgIJYQVAQAAAAAAABYE1X12CQ/nuSSJJMfyLiuqv5Lkv/UWjs12r6S/GKSr8vZnw88/Z+5px97cJLfqqoXtdZ+pZvpAQAAAAAAAABg2PoQCxvXkvx+kh9N8rbW2h0rngdgvX3452fcoY9hntp/k8NqrgAd9N0sP9feAwAAAAAAAAAHoaq+OsmrkhzNzh/GuDDJf0zytKr6itbaVpLvTPL12f7P2/FA2On9x/9T92iSn6+qq1pr7+/gFAAAAAAAAAAAYNAmf7vfKp3+4M/Tk7wlyU1V9ftV9f1V9dSqOmeFswH0U9cxqPe9tNvXn9U851t9+qsOWCrBPAAAAAAAAICFVdXnJfmlbP9y0srZ8a+M3a8kz0ryr6vq7kl+MGdHwq5N8sYkr07yu0luyNnhsXOS/NeuzgMAAAAAAAAAAIbs2KoHSHJ1kofnzr9t8ESSS0e3JNmsqj9O8tYklyf549babcsaEqCfOg7hfPojM+6w0y+OPUhiYcAstlY9AAAAAAAAAMBh8FNJjubs8NcNST40+vriJPfKmWDYdyW5Kck9Ro99KsmLW2u/Nf6iVXUkyYuT/Jckx0f7fklVXdxau6bjcwIAAAAAAAAAgEFZeUGltfbIJBcmeWG2P1R09djTNXY7keSSJC9JclmSG6vqsqr6waq6pKrOXergACxfmyeO1nXAbKBE1BisGdaBudYMAAAAAAAAAE6rqicleXzOhMA+meR5Se7bWntSa+3zk9w3yXOTXDfa7sIk3z16iduTPH0yFJYkrbWt1trPJPma0Wuf/k/eF3R3RgAAAAAAAAAAMEzHVj1AkrTWPpnkdaNbquqCbIfBTt8ePtp0vPhyPMnTRrcfSHJbVb0ryeVJ3prkitbaZufDA6yUEM6+RLFgjVkjAQAAAAAAABb0T0d/VrbDX89orf3Z+AattZbkN6vqL5P8SbY/l/iwbP+n7S+31t6z1wFaa/+7qi5Lculonyce7CkAAAAAAAAAAMDw9bKg0lq7rrX2mtbat7bWHpHkftn+7YE/neQDY5vW2O3cJE9J8v1J3pLkxqp6e1X9u6r6R1V1YrlnAbCGqvbfZiFzhH/WOhYmlMSaa1urngAAAAAAAABg6B4/+rMlec1kKGzcKAr2qzn7l4L++pTHGd/ukTNNCAAAAAAAAAAAa+DYqgeYRmvt40l+bXRLVV2U5JJs/ybBS5I8dLTp+IeM7pLkC0e370tye1VdmeStSS5vrb1lGbMDTG+OsFPrWQyq83nmef2uA2bAUs20zvRsjQQAAAAAAAAYnoeNff3GKbb/nST/bOz+e6Y8zukIWSW5z5T7AAAAAAAAAADA2hhELGxSa+1ktn8D4a8mSVXdL2fCYZcmuXi06WQ87Mmj2/dkoOcOcLY1C+HMFSMTC9tR30Jz0AU/5wAAAAAAAACLuufY138xxfaT23xqyuN8cuzre0y5DwAAAAAAAAAArI1DEcxqrV2b5NWjW6rq/tmOhp0OiH1uzhR1VGMA1kkdWfUEwMpsrXoATmu+FwAAAAAAADBQ5419fdMU2988fqe1tjnlcca3O2fKfQAAAAAAAAAAYG0ciljYpNbax6rq/UkuSHJhkvsnOXe1UwF0oe2/yTJV1z3Gnp1v77leHEYz/Fw374HeeNc3r3oCAAAAAAAAYD7jHwY5NcX202wDAAAAAAAAAADM6NDEwqrqMUkuSXJpkqcmOX+lAwEsw9qFcOY533W7RsAZ3v+98JmPJdf87KqnAAAAAAAAAAAAAAAAAAAAgMEabCysqh6VM3GwpyW51/jTY1+3XR4H4KB1HS+b5/Xb1sHPAQyEWFgvfOBlq54AAAAAAAAAAAAAAAAAAAAABm0wsbCqemTOjoPdZ/zpsa9bzpQhauy5v0ly2dgNoGfmidr0LIRz89XJPR++6ikm9OwaAYuZJRooFtgPt1yz6gkAAAAAAAAAAAAAAAAAAABg0HobC6uqf5AzcbAvTnLf8afHvt4tDnZtksszioO11lQKgEOoZyGs9/9o8jnP7fAAc5zvLGGhteK6sA78nPeCaBsAAAAAAAAAAAAAAAAAAAAspDexsKr6+zk7DnbB+NNjX+8WB/tEzo6D/UWH4wKwk42PdXyAecI/axwLEkpj3V3/7lVPQJJELAwAAAAAAAAG7vQHEL6gqh68z7YXjd+pqqfm7M//TbUfAAAAAAAAAABwtpXHwqrqV7IdCRv/sM80cbDrk7w1Z+Jg7+t2UoAe6lsMqnUchJnrfHt2jYAFzfCevv7K7sZgen37uwoAAAAAAACYRyX5X3Psc/kM27dMFxYDAAAAAAAAAIC1s/JYWJKvydkf8tktDnZjkrflTBzsPcscEqCf+hZg6XqeOV7/Lvc5+DEAmEHHIUkAAAAAAABgGWYJeY1/wGOW+FffPggDAAAAAAAAAAC90YdY2GmnP0x0+sNBf5fk7RnFwZJc1VrzYSCAPmunVj3BnR2/YNUTAKy3JhYGAAAAAAAAh8Q8n9/zmT8AAAAAAAAAADgAfYmFVZJPJ/mjnImDXdmasgCwRubqIfbt85Rdz9O38+0714vDyM/14Oj9AgAAAAAAwJD9VfxHLQAAAAAAAAAArFwfYmE/kO042Ltaa3esehiAQelbgKXreQ5FUA1g3ViHAQAAAAAAYKhaaw9e9QwAAAAAAAAAAEAPYmGttf+w6hkAOChbHb++4AzA4LSu/24AAAAAAAAAAAAAAAAAAACAw+3IqgcAYBE9i2cJwgBdaz1b95iCvxsAAAAAAAAAAAAAAAAAAABgEWJhAEPWt2hO57Gwnp0v0G/3fsKqJyDp399VAAAAAAAAAAAAAAAAAAAAMDBiYQAcoI6DMPMEZ9Y6UrPO5w6Jf+r2RdchSQAAAAAAAAAAAAAAAAAAADjcFBQAemOesFPPYlCt6yBMz84XWIFZ1gFrRi90/ncDAAAAAAAAAAAAAAAAAAAAHG5iYQCD1rMQjiAM0Cs9WyPXlu8DAAAAAAAAAAAAAAAAAAAALEIsDIAD1HUQZp7XF6kBWCkhSQAAAAAAAAAAAAAAAAAAAFiIWBjAkLWehbC6DsL07Xz7zvXiUJrh59p7oB/EwgAAAAAAAAAAAAAAAAAAAGAhYmEAg9a3EE7X8/TtfIF+s2b0g1gYAAAAAAAAAAAAAAAAAAAALEIsDICD0/oYhBELAlipZh0GAAAAAAAAAAAAAAAAAACARYiFAfTGPDGVngVY2qmOX79n5wssn3UAAAAAAAAAAAAAAAAAAAAAWDNiYQAMiEgQMAtrBgAAAAAAAAAAAAAAAAAAADB8YmEADMgc4Z+2zrGgdT53yJq//3ukatUTAAAAAAAAAAAAAAAAAAAAwKCJhQEMWd9COIIwQOd6tu4BAAAAAAAAAAAAAAAAAAAAdEwsDIDh6FscDeg5awYAAAAAAAAAAAAAAAAAAAAwfGJhAIO2biGcec533a4RcEategAAAAAAAAAAAAAAAAAAAACAhYmFAfRFE7Xan2s0G9eLw2iGn+tjd+tuDAAAAAAAAAAAAAAAAAAAAIAlEQsDAOBwOnLOqicAAAAAAAAAAAAAAAAAAAAAWJhYGMCgtVUPsFxtjvOdZx/gkPD+BwAAAAAAAAAAAAAAAAAAAIZPLAyAARH+AWYgFtgTteoBAAAAAAAAAAAAAAAAAAAAYNDEwgCGrHchnK6DMH07X2DpZlr3rBkAAAAAAAAAAAAAAAAAAADA8ImFAXCAhHl6pXcxOViytrXqCQAAAAAAAAAAAAAAAAAAAAAWJhYG0BvCTvuaK37lusL68v4HAAAAAAAAAAAAAAAAAAAAhk8sDGDQ1i2Es27nC9zZDOtA2+puDAAAAAAAAAAAAAAAAAAAAIAlEQsD4ABVx68vFgbM4PabVj0BAAAAAAAAAAAAAAAAAAAAwMLEwgAGTTxrf+t8jdb53CHJxslVTwAAAAAAAAAAAAAAAAAAAACwMLEwAA5Qx3GqJn4FzLAO3H5jcmqzu1GYUq16AAAAAAAAAAAAAAAAAAAAABg0sTAABkQsDJjR5sdXPQEAAAAAAAAAAAAAAAAAAADAQsTCAPqizRHCmmefTlXHr38YrhGwVBsnVz0BAAAAAAAAAAAAAAAAAAAAwELEwgAAGI5ZA4CbYmEAAAAAAAAAAAAAAAAAAADAsImFAQzajNGcoZs1ErT2XC/IhlgYAAAAAAAAAAAAAAAAAAAAMGxiYQAMyDzxK8EsOFxmfE9vioUBAAAAAAAAAAAAAAAAAAAAwyYWBsDOmsgWcAhsiIWtXNWqJwAAAAAAAAAAAAAAAAAAAIBBEwsDGLQug15iYUAfzbg2bYqFAQAAAAAAAAAAAAAAAAAAAMMmFgbQGz2Lc7V55unwHOaaJ+nddV2mua8ZHCIbYmEAAAAAAAAAAAAAAAAAAADAsImFAQxZpzGorQ5fex7CV0BmX/c2xcIAAAAAAAAAAAAAAAAAAACAYRMLA2BnnYbI5tC3eYBh2LjW+gEAAAAAAAAAAAAAAAAAAAAMmlgYALsQ1wEOga1bk9tvWvUUAAAAAAAAAAAAAAAAAAAAAHMTCwMYtA6DXm2ru9eey5zn2kTP4HCZ4z29cfLgxwAAAAAAAAAAAAAAAAAAAABYErEwAHYxR5Cn0zCX6NfsXDNIkmyKha1WrXoAAAAAAAAAAAAAAAAAAAAAGDSxMIDeEOfaU6fnCgzHHGvBhlgYAAAAAAAAAAAAAAAAAAAAMFxiYQDsrG2teoIDIjIGa29TLAwAAAAAAAAAAAAAAAAAAAAYLrEwAHbRt8hW3+YBVqLNsRaIhQEAAAAAAAAAAAAAAAAAAAADJhYGMGgdBrTmCfJ0qm/zDIFrBkmSDbEwAAAAAAAAAAAAAAAAAAAAYLjEwgDYxdYc+/QxXiaYBYfLHO/pzSXGwrZOJTf/RXLDn55Zt1pL/u5Dyc0f7GGIEQAAAAAAAAAAAAAAAAAAAOi7Y6seAIBF9DHO1TMf/OnkAV+56imAVdpYUizsM3+TXPbs5Kb3bt+/12OTJ74sufI7khvePXrsccklb0pOXLicmQAAAAAAAAAAAAAAAAAAAIDBO7LqAQAY6V2c65DMc+2bko/86sGOcljcdtOqJ4DZzbNWbi4pFnbF158JhSXJDX+avOUpZ0JhSXLDVckVX7uceXqjVj0AAAAAAAAAAAAAAAAAAAAADJpYGAA7a1urnmDCAvGyj/zSwY1xmPz161Y9ASzHrZ9Itk51e4zbbkg+8fbptv34Hya3Xt/tPL3St/gkAAAAAAAAAAAAAAAAAAAADItYGMCQtS4DLD2Luyxyrh/7nYObY0j2u2bX/Pxy5oBVa1vbwbAubX5itsjiDVd1NwsAAAAAAAAAAAAAAAAAAABwqIiFAbCzTkNkAPOac23aPHmwY0yaJRSWJLVO/wyvVQ8AAAAAAAAAAAAAAAAAAAAAg7ZOlQKAQ6jLoNeM4ZvOiZcduBLwYY1sXNvxAWZdM73/AAAAAAAAAAAAAAAAAAAAgOmIhQGws9a3OFff5gFWY861YOPkwY4xqYmFAQAAAAAAAAAAAAAAAAAAAN0QCwPojb7FsHo2z17xsme8Y3lzDMp+30OxItbIZsexsFnXzPL+AwAAAAAAAAAAAAAAAAAAAKYjFgYwaB0GvdpWd6990I6cm5xz/qqnGCCxIgZor3DgXjY6joXNvGau0ftPGA0AAAAAAAAAAAAAAAAAAAAWIhYGwC46DJHNZZ95xGiAvWyKha3MvIE3AAAAAAAAAAAAAAAAAAAAIIlYGMCwdRlgmTl807U9zlUoDNbInOte17GwzLhmWrcAAAAAAAAAAAAAAAAAAACAKYmFAbCLDkNk89gzjCa6A+xjo+NY2MyBxTVat4TRAAAAAAAAAAAAAAAAAAAAYCFiYQDsomexsD0J0exoz8BaBHwYqDnXpk2xMAAAAAAAAAAAAAAAAAAAAGCYxMIABq3DoNfM4Zuu7Xeuwjuzc81YI7ffnNzxme5ef9Y1U6wPAAAAAAAAAAAAAAAAAAAAmJJYGEBvdBj+mkcb0DyiO8A0Nj/e4YvPGlhcp3Vrnc4VAAAAAAAAAAAAAAAAAAAADp5YGAC76FksbM95pgjR9C1+1gsCPgzQIu/ljZMHN8ekNmMsrNbpn+HWXwAAAAAAAAAAAAAAAAAAAFjEOlUKAA4hAZZtlZTwFbCPzQ5jYTOvx9YsAAAAAAAAAAAAAAAAAAAAYDpiYQAMxKJhtHUMq63jOXP4LfBz3WUsrG3Ntr3AIQAAAAAAAAAAAAAAAAAAADAlsTCAIWtrFIPa61ynie6s07WallgR62ajR7GwrNP7b53OFQAAAAAAAAAAAAAAAAAAAA6eWBgAu+hbXGuveSpiNLAuFlibNq49uDHuRCwMAAAAAAAAAAAAAAAAAAAA6IZYGEBftL7FuYZkmuiO63tnYkWsmc2T3b12mzEWVt5/AAAAAAAAAAAAAAAAAAAAwHTEwgAGbZ0CWOt0rgfFNeMQWiSsuNGjWNhaxfrW6VwBAAAAAAAAAAAAAAAAAADg4ImFAbCzRYI8XdhrnqrsH6Pp2fkAy7fZYSxsZusU0LL+AgAAAAAAAAAAAAAAAAAAwCLEwgAGbZ0CLHud6zpFdw6S68aa2TzZnxBief8BAAAAAAAAAAAAAAAAAAAA0xELA+AQmCK605dAUJ+IFTFIC7yXt25Pbrvh4EZZyDq9/9bpXAEAAAAAAAAAAAAAAAAAAODgiYUBMBD7BIKEr1hHIniz2zy56gkAAAAAAAAAAAAAAAAAAAAAZiIWBpD0JLgzxwydzt2HazJmr3OdKhTWs/NZhn1/PgTWGKIF38sbYmEAAAAAAAAAAAAAAAAAAADAsIiFATAQewWCxMKAKW32JRZmTQIAAAAAAAAAAAAAAAAAAACmIxYGMGhiM0mSmiYWBhwKbcF1b6MvsTAAAAAAAAAAAAAAAAAAAACA6YiFASQR3RqC/b5H+wTDFg0MHUoia6yhza5iYTOuMdYkAAAAAAAAAAAAAAAAAAAAYEpiYQDsomchmz3DOqJXO+vZ95AOrOP3eMFz3ugqFgYAAAAAAAAAAAAAAAAAAADQDbEwgEHrYSjo5g909MKLxsJ6eK1WrUTWOMSOnLvz45t9iYWt0ZpkrQEAAAAAAAAAAAAAAAAAAICFiIUBJEnrQ7SlDzMcgA//wvKPWZXpgmHA8E25Vp64386P9yYWBgAAAAAAAAAAAAAAAAAAADAdsTCAIetF5GzC+1/a0Qsveq49vFZAd3aLhW1cu9w5dmVNAgAAAAAAAAAAAAAAAAAAAKYjFgbAzvoWIttznlraGIeL68Yhtlss7NZPJlu3L3eWtWetAQAAAAAAAAAAAAAAACDdzXUAACAASURBVAAAgEWIhQEkSXoWxmIH+8TCap8YTd/iZ0ux3zkL+AzeOv5cT3vOx3eJhSXJ5nUHM8si1up7t07nCgAAAAAAAAAAAAAAAAAAAAfv2KoHWFdVdTTJQ5I8Isn9k9wzya1JbkhyTZIrW2ufPuBjnpPki5I8MMn9ktyS5GNJrmqtfeSAj/X3kjw22+d2XpJrk3w0yRWttdsP8liw3gRYkuwfCkviWsGaObFXLOxkctfPXt4sAAAAAAAAAAAAAAAAAAAAAAsQC1uiqnpgkucleXqSpya5xx6bn6qqtyR5WWvttxc87mcl+aEkX5Xk3rtsc0WSn2it/fqCx3p+ku9O8uRdNrm+qn4tyb9trX1ykWMBa6aJfR24qSJr0DdTrgXn3jepo0k7defnNk4e7EgAAAAAAAAAAAAAAAAAAAAAHTqy6gHWRVW9OslHk/xkkudk71BYkhxN8qwkb6yq36qqC+c87rOTvDfJt2SXUNjIFyZ5XVX9clXdbY7jnFdV/yvJa7N7KCyjGb4lyXur6pmzHge604MQ1TwxrE4DWj24JmfZa54a3ebdHzh06mhyfJd/Pm12EAubeT1epzVJmBAAAAAAAAAAAAAAAAAAAAAWcWzVA6yRh+3y+N8m+WCSj2f7+/G5SR6Ts0NuX57kbVX1xa21qesWVXVJkjckucvYwy3Ju5N8OMn5SR6X5L5jz39dkntU1T9prW1NeZyjSX4tyZdNPPWJJFcluSnJxaNjna5FXJjkN6vq6a21/zPtOQHrbL9YGHfSaUwOVmXKn+s6mhy/KNn42J2f2+ggFgYAAAAAAAAAAAAAAAAAAADQkSP7b0IHrkryr5I8pLX2gNbapa21r26tPb+19vgkD0zyyol9HpbktVU1VRGnqh6Q5PU5OxT2R0ke2Vp7Ymvtha21ZyR5QJLvTHL72HZfkeTfz3A+P5KzQ2G3j87vAa21Z46O9YQk/zDJO8a2OzfJG6rqfjMcCw4xYae5TbM0rmU4a79zFlkbvnX8uZ5SHUlOXLTzc5t9iIX53gEAAAAAAAAAAAAAAAAAAADTEQtbnpbkt5N8Xmvt8a21l7XWrtlxw9b+trX2zUm+beKppyT5qimP90NJ7jV2/4okT2+tXT1xrFtba/8tyQsn9v/uqnrQfgepqs/Ndmxs3AtG53fbxLHen+Qf5exg2H2SvGS/40DnBhuSGurcc9j3eyR8dSdta9UTwMGbdr2uo8nxXWJhG32IhQEAAAAAAAAAAAAAAAAAAABMRyxseV7QWvvy1tqV0+7QWntFkl+fePif7bdfVT00yT8fe+i2JC9qrW3ucaw3JPnFsYfOzXQRr5ckOWfs/i+01n5zj+NsJHnRaKbTXjyKjsGa61v4a0jzTBMK69v5LMN+sTCBNQ6xOpqc2CUWttmDWNhgI5UAAAAAAAAAAAAAAAAAAADAsomFLUlr7SNz7vryifuXTrHP1yY5Onb/9a21D06x349O3H9hVR3fbeOqOpHk+fu8xp201j6Q5A1jDx3L9szAzNYpNiMWNrO2TyysxMIYoinfy3UkOX6/nZ/b6EEsDAAAAAAAAAAAAAAAAAAAAGBKYmH9d9XE/RNVdf4++zx34v7/nOZArbWrk7xz7KG7JXnGHrs8M8ldx+6/o7X2f6c51g4zPW/K/aAjPQhJtR7MMFRVwlc72S8WBodZHU1OXLTzc5t9iIVZ8wEAAAAAAAAAAAAAAAAAAIDpiIX13x07PHaX3TauqouSPGZi/z+a4XiXT9x/9h7bPmuffffy9px9bo+rqgtn2B9YN4vG1NYxxiYWxjqro8nxXWJhd9yS3H7LcudZa2KOAAAAAAAAAAAAAAAAAAAAsAixsP57yMT9O5J8co/t/+HE/fe01j49w/GumLj/yBmO9Y5pDzKa6c9nOBasgTliVl0GsHoX19prHiGaHbVTq56AzvXtfboE065NdSQ5sUssLEk2Tx7MPPPq3RoLAAAAAAAAAAAAAAAAAAAA9JVYWP89f+L+la21rT22f8TE/Q/NeLxr9nm9cf9giceCjvUh2tKHGfps0VjYOl7fvf66SETWONTqaHJ8j1jYxkHHwtZxjQEAAAAAAAAAAAAAAAAAAACWQSysx6rqvCQvnnj4N/bZ7SET9/9qxsN+dOL+farqXjvMdu8k917wWJPbP3TG/eHg3HbTqieYkzhNkqQqwlc72LMtmdF1g6GZct2ro8k55yXH7rbz85sHHQsDAAAAAAAAAAAAAAAAAAAA6IZYWL+9NMlFY/dvTPKz++xz/sT962Y5YGvtliSbEw/fc4rjfKa19ulZjpU7z7bTcWA5/u9PrHqCpAl/7WnR67OO13e/WBgcaqN/5h6/aOenN1YdC1vDNQkAAAAAAAAAAAAAAAAAAACYy7FVD8DOquq5Sb594uF/01q7fp9dz5u4vzHH4TeSHB+7f/cOjzNup+PMpKouSPJZM+528aLH5RC4+sdWPUEP9S1ks9c8tbQphmW/WJjrxhBNuTYdObr954mLkluuufPzm6uOhQEAAAAAAAAAAAAAAAAAAABMRyysh6rqMUleNfHwm5P81BS7T0a8NucYYSPJvfZ4zYM8zl6vOY9vTfKSA3gdWIF54lx9C3p1aY9zrcr+4at1ulYjbb9YGIPX1vDnelo1ioUdv2jn51ceC1uj710JEwIAAAAAAAAAAAAAAAAAAMAijqx6AM5WVQ9M8ts5O5z10SRf39pcRZDDtg+wrvZcAqcJ0azhknPLNaueAA7etP8cOnpi+8/dYmEbq46FAQAAAAAAAAAAAAAAAAAAAExHLKxHquqCJG9J8tljD59M8qWttU9M+TK3TNw/Mccok/tMvuYyjwPrY54e4FwNQdbGR391nw2miazBQJ1zz+0/T+wSC9tccSzM+g0AAAAAAAAAAAAAAAAAAABM6diqB2BbVd07ye8nedjYw59M8vTW2gdneKl1j4W9IslrZ9zn4iS/eQDHhkOmbyGbveappPYJX61jmOevX7/38/tdM+ilKd/Lx87b/vP4LrGwjRXHwgAAAAAAAAAAAAAAAAAAAACmJBbWA1V1zyRvTvKosYdvSPKlrbX3zfhyN03c/6wZZzkvd4543TjFce5aVXdrrX16hsNdMMVxZtJauy7JdbPsU2I59MYaxqxmssf18T4GJtWR7T9P7BIL2/x40rbObLd01nwAAAAAAAAAAAAAAAAAAABgOquqIzBSVXdP8rtJnjD28M1JntVa+9M5XvKDE/cfNOP+k9tf31q7YXKj1tqnsh00G/fABY81OTuwrzWKzbS9znWaWNgaXSvWiJ/r3Y3WhRP32/npdkdy6/UHeDzfCwAAAAAAAAAAAAAAAAAAAKAbYmErVFV3S/I7Sb5g7OFbkjy7tfauOV/26on7D5lx/8+duP/+JR5r8vVgzfQsNLNnnKtvKtMFw4Dhm3JtqtE/c49ftPs2mycXH2duQ1pjAQAAAAAAAAAAAAAAAAAAgFUSC1uRqjqR5I1JnjL28GeSPKe1dsUCL/3eifuPrqq7zrD/F+3zens99+RpDzIKpT16hmMBO1qn2Myi57pO12paAmscZqOf7+MX7L7JSmNh68RaAwAAAAAAAAAAAAAAAAAAAIsQC1uBqjqe5H8nuWTs4c0k/7i19rZFXru1dm2S94w9dCxnB8n2c8nE/Tftse3v7rPvXp6a7dlOu6q19vEZ9ofDp4lZ7Wmv61NCNPNx3RigadfKGv0z98g5ybn33XmbjRXGwqz5AAAAAAAAAAAAAAAAAAAAwJTEwpasqu6S5PVJnj728K1J/klr7Q8O6DC/MXH/G6ac7eFJnjT20KeTvHmPXX4vycbY/SePXmMaL5q4PzkzwIS9wjqVfcNXwjywZsbWhOMX7bzJxrXLGQUAAAAAAAAAAAAAAAAAAABgAWJhS1RVx5K8Jsmzxx6+PcnzW2u/d4CH+pUkp8buP6+qHjrFft8zcf81rbXN3TZurX0myev2eY07qaqHJXnu2EN3JHn1FPPBITdHzKrTANaQ4lr7hMKSDOt8lqSmuW702zr+XE95zjX2z9z/x969B9121oUd/z0nJ8negRASSXICVK6xVRiVi1WD7dDWqnTGIgwC9VKZqdZRp+OUdjq1U4vM+AetlQ7VWm+tYNVKvcF4Kdh21EGitQLekTuoJIcjJAEC7z45532f/nHek7zZZ6+911p7XZ691+czk3mz195rrd+67JUzk3e+Z14RC1uc3X4cAAAAAAAAAAAAAAAAAAAAgJ6JhQ0kpXRVXIp4Pf/E4osR8ZKc8y91ua+c83si4nUnFl0TEa9NKc3WzPf8iHjZiUUPRMQra+zuu+JS8Oyyl6WU/v6a/cwi4seOZ7rsv+Sc31djX8CkTTGKBLR2MoY3q4iFHYwZC/NMAwAAAAAAAKCdlNIzU0ovSSm9/Pifl6SUnjH2XAAAAAAAAAAA9Of02ANMyH+NiBcvLftXEfGOlNITG27rbM55seEzr4iIF0TEjcev74iI/51S+sac859e/lBK6dqI+McR8b1L639vzvlDmwbJOb8/pfSaiPjnJxb/bErp5RHxwznnB07s67Mj4kePZ7nsY1EvSgYT0CYcM6HYTF5zrCejQNUb6GwUYEx1v8snngvziljYYsxYGAAAAAAAAAClSSk9OSK+ICKeffzzmRFx/YmPfCjn/MQRRouU0tUR8c8i4hsj4ikVn3lvXPodvVfnnC+s+gwAAAAAAAAAALtJLGw4/3DFsn93/E9Tfysifn3dB3LOf5FSemFEvDkirjle/JyI+JOU0tsi4v0RcUNc+mWmm5dW/6WI+M4G8/zLiHhaRDzv+PXVEfF9EfGdKaW3R8QnI+LJx/s6WfR5ICJekHO+u8G+gMlaFwhKNYNhPJxzxh5Lpx7699kAsbB1QcPVK3S3bwAAAAAAAABaSyk9NyK+Iy4Fwm4ad5rVUkq3R8RPx6XfwVvnqRHxqoj46pTSS3PO7+19OAAAAAAAAAAABiEWtsdyzr+eUnpBRLw2HgqCpbj0S03Prljtv0fEN+WcDxvs5zCl9OK49DcSvuTEW7dExFdUrHYuIr4h5/yWuvuBvdc4NNO30uZZp0b0qrjzC/TrxHOhKhZ20GEsjDWECQEAAAAAAICifX5EfNnYQ1RJKZ2JiP8VEU9Yeuu9EfHHcel/yj4tIp5y4r1nRcSvppS+KOd8bpBBAQAAAAAAAADo1amxB6BfOedfiYinR8QPRsS9az762xHxopzz1+ScP9ViP/fnnF8aEV99vK0q90TEf46Ip+ec39R0P8CyHgNYFxs/Cnom9tU9AZ+dN8UIXt1jTif+mDuviIU9cE/E4fntZ2pjitcOAAAAAAAAYLecj4j3jTlASulURLwhHh4KuzsivjznfHvO+atyzs/POT81Ip4XESf/1qwnRcQvpJT8gggAAAAAAAAAwB44PfYAU5FzHu0Xbo7/ZsBvSSl9e0Q8Jy794tCZiPhURHw4It6Rc/5AR/v62Yj42ZTSkyLimRHx2Ih4RFz6JaQPRcRbc84PdLEv2D+FhWM+8mtjT/Bw68I6KcXm8FVh5xfo2YlnwqwiFhYRsTgX8Yi/0v84AAAAAAAAAJTsQkT8cUT8bkT8v+OffxiXft9uzF+i+dqI+MITr++JiDtyzh9c/mDO+U0ppTsi4m0RcePx4jsi4iUR8dM9zwkAAAAAAAAAQM/EwibkONI1yC8uHcfHOgmQASP5w+8ae4Il62JfdXqME4uF3fXmsSeAntT8LqdTD/37fF0s7OxIsbCJPZMAAAAAAAAAyvW6iPjBnPNi+Y2URvs7QiOldFVEvHJp8ctXhcIuyzl/IKX08oj4sROLvzul9D9yzkc9jAkAAAAAAAAAwEBObf4IAMNoEY7JYjOXjPeLmcV69/dv/syIv9AK/Ttxf19zU8Spq1d/7ODsMOMAAAAAAAAAUKSc872rQmEF+JKIeNKJ1x+OiJ+osd5/O/7sZU+JiDs6nAsAAAAAAAAAgBGIhQGwIzaF0TaEr6YWVrvrl2p8SCyMXVTzu5xO/DE3pYjZmdWfW4wVC5vYMwkAAAAAAACApl6w9PrHc86Hm1Y6/sxyVOyFnU0FAAAAAAAAAMAoxMIAStEqZjWh2My685NEr5iqCT0DGlt6LlTFwg7GioUBAAAAAAAAwFpfsfT61xusu/zZ5201CQAAAAAAAAAAoxMLAyiG6M96685PnViY83slkTV2UO2w4tL9Pa+IhS3Ewnon6AgAAAAAAADQSErp2oh46tLi326wiTuXXt+eUrpmu6kAAAAAAAAAABiTWBgAuy8lMZqTaseUYI+lpT/mzvqOhTX83k3pezqlYwUAAAAAAADoxl+NiKtOvD6Xc/5E3ZWPP/vRE4uuiojP6mg2AAAAAAAAAABGIBYGUIw2MZUpBVimdKxbOjo/9gTQo5rPguWA4LwiFnZw93bjAAAAAAAAAED3nrr0+s9abGN5ndtbzgIAAAAAAAAAQAHEwgDYDVksrLZ8WO9zyzEl2GezqljY2WHneNCEnmmeNQAAAAAAAABNPXrp9bkW21he54aWswAAAAAAAAAAUIDTYw8AwLE2MaxJBbSqjjUt/Wy6PjAJ84pY2OLspWepoBUAAAAAAAAA5Xjk0uuDFttYXuf6lrM8TErploi4ueFqT+li3wAAAAAAAAAAUyYWBsBuE/i5Uu2InHO3+6YYwWt5zLOKWNjhQcTFT0Zc/aj2I7UyxWsHAAAAAAAAQE3LsbBFi20sx8KWt9nWt0bEKzraFgAAAAAAAAAANZ0aewAALhOOWc/56Z5YGBMyr4iFRUQcnB1ujknyrAEAAAAAAADYUptfnPHLNgAAAAAAAAAAe0QsDGCnTeh3+nLVsR5HaNKGGE3l+sBOaftdnt1a/d5ihFiYZxIAAAAAAAAA1e5fej1vsY3ldZa3CQAAAAAAAADADjk99gAAXCYcs96GWBgnuJfgCqcfEXH6+oiLn7zyvYMRYmGT4pkEAAAAAAAA0FDJsbAfiIifabjOUyLijR3tHwAAAAAAAABgksTCAHZZFmCJJBbWmnPHTqrx3Dv9yNXL52ciPrkiFrYYIxbm+Q0AAAAAAABApY8vvb65xTZuWXp9X8tZHibnfC4izjVZJ/kdFQAAAAAAAACArZ0aewAAjgl/ref8wJV8LypU/JLx7Mzq5QddxMJci2p+6RsAAAAAAACgofcsvX5Ci20sr7O8TQAAAAAAAAAAdohYGAA7oirEk5Z+Nl1/H9U9VgEf9lSq+CPu/LbVyxddxMIAAAAAAAAAoDPviojDE69vSSldX3fllNKjIuIxJxYdhlgYAAAAAAAAAMBOEwsDqOMjvzHATtrErASwBK+AK1U8F2ZnVi8/GCEWlqf0/AYAAAAAAACgiZzz+Yh439LiL26wiTuWXr/neJsAAAAAAAAAAOwosTCAOt75PWNPQJUkFtaac8euqRvYqrq35xWxsMUIsbBJ8awBAAAAAAAAaOFNS6+f22Dd5c/+z60mAQAAAAAAAABgdGJhAHXc9cv976NuBOfhK3U+RrE2np8NMZpW53dHTelYYaWK58GspFjYlL6nUzpWAAAAAAAAgM78wtLrr08pXbVppePPfN2GbQEAAAAAAAAAsGPEwgDYEVWxmQ2RMNhrIkwrpYrnwrwqFnYu4uiwv3kAAAAAAAAAoLm3RMQHTrx+fFwZAVvl6yLicSdevy8i3trhXAAAAAAAAAAAjEAsDKCufNT3Dnre/q4TC+vc4tzYE0BDdZ+TFc+FWUUsLB9GnP9oq4nam9Iz33MaAAAAAAAAIKWUl/557rrP55wPI+IVS4tfnVJ64pp9PDEi/sPS4n+dc++/+AQAAAAAAAAAQM9Ojz0AwM44PB9xej72FA+XpxSbqZDSw38StSNEd/1Kv2PAaCqeB/OKWFhExOJsxPzWfsYBAAAAAAAAoGgppcfH6t+nXP4fzafXxLruzzl3/TdV/WREfFtEfOHx65si4s6U0styzr968oMppS+PiNdGxI0nFt8ZEa/veCYAAAAAAAAAAEYgFgZQ19EiIvqMhQl/rbV1GM35hZ1X9zlQFQ+89ua4FBJbsZ2DsxE3fl7byZo/o8QeAQAAAAAAAErymxHxhBqfe1xEfKDivddFxMu6GigiIud8lFJ6QUT8dkR85vHi2yLizSml90TEH8el/xH+tIh46tLqH4yIF+bsf1ADAAAAAAAAAOwDsTCAuo4Ox55ghSn9Ll/VsVZEgYAJq3gunDodMbs5YnHuyvcWZ/sdCQAAAAAAAABayDnfnVL6uxHx0xHxjBNv3X78zypvj4iX5Jw/0vd8AAAAAAAAAAAM49TYAwDsjNxzLMxf4rnBpliYaNhD3EvTMbVrXfN405o/4s7OrF4+eCxsQtcueT4DAAAAAAAAbCPn/O6I+MKI+I6IeP+aj77v+DNflHN+7xCzAQAAAAAAAAAwjNNjDwCwO47GHoBVakdoJhTmqevWvz32BNCTNc+F2ZmI+IMrlx8MHQubEDFMAAAAAAAAoHA55ycOsI+t/qalnPOFiHhVRLwqpfSsiPisiHjs8dt3RcS7c85v225KAAAAAAAAAABKJRYGUFfuOxbWJqYyoQCL2Ez3rnn02BNAQ3WfA2t+v3p+ZvXyhVgYAAAAAAAAALvhOAomDAYAAAAAAAAAMCGnxh4AYGfkw7EnmLiqSFBa+kntsFrvATwYSVrzPJhVxMIOho6FTSiAuO56AAAAAAAAAAAAAAAAAAAAABuJhQHU1XtYqUU4pm4Uai9sioXRmFgYu6b2M2/Nc2F+2+rli6FjYQAAAAAAAAAAAAAAAAAAAAD1iIUB1NZzWGlS4a8OpZqxMOd3Bedk57mvK6x5LszOrF5+MHAszLUDAAAAAAAAAAAAAAAAAAAAahILA6gr9xwLYz1hnQZqniv3NPtqXURwXhELu3BfxOGin3kAAAAAAAAAAAAAAAAAAAAAtiAWBlBXPux7BwOts6uqjvU4CrQuDsRqYmHsnLrPvDXPg1lFLCwiYvGRRtM8XNPn8ZSe3wAAAAAAAAAAAAAAAAAAAMA2xMIA6hJWGllFWKd2JEyY50ruafbVmufCfE0s7OBs96MAAAAAAAAAAAAAAAAAAAAAbEksDKCu3mNhbWJWAlhro0BTlWveF3U/B8Woec+uiwhefUPEqWtXv7cYMhbm+3eFowtjTwAAAAAAAAAAAAAAAAAAAABFEgsDqK3vWBhrbQxbiYY1557efYJTq615HqQUMT+z+r2Du/sZZ/JqPp/f/2P9jgEAAAAAAAAAAAAAAAAAAAA7SiwMYGOE6vLnDsuYY7Kqzo9IWGtZLIwdU/c5mTb8EXdWFQs722yebXjmX+mPvnvsCQAAAAAAAAAAAAAAAAAAAKBIYmEAlRGq5Y8VGFaaUmym6lhT3VjYhM7VLt/T0IUbnr7+/XlFLGwxYCyMK336z8eeAAAAAAAAAAAAAAAAAAAAAIokFgZQN7jVe1hpSjGrLqWln9TnnmPX1Lxnn/6d69+fiYUNqnbUEQAAAAAAAAAAAAAAAAAAAFhFLAygbnwmH/Y8RpsY2ZRiT1M61oH0HsCDETz++RE3ft76z1TFwg6GjIVN6JlWN8oJAAAAAAAAAAAAAAAAAAAArHR67AEAxldKxES4ab2q65Rqrl7KdR5C3WN1z7FH5o+N+Ox/EXH7t0SkDT3ceUUsbDFkLAwAAAAAAAAAAAAAAAAAAACgHrEwgNoRqZ5jU1m4aa2q65TSw39Sn3tuD0wpghex9nj/xi9EPOav19vMrCIWdnD20rOm1fOk6bWY2rUDAAAAAAAAAAAAAAAAAAAA2jo19gAA4ysk2JIP26zU+Ri7RySstYufHnsC6E6TwNf8ttXLj85HXPh4N/PwEDFHAAAAAAAAAAAAAAAAAAAA2IpYGEDd4FbuOcyVj/rd/s4TRqut7r36wD39zgFd6+o5PD9T/d7B2W72sUnf/00BAAAAAAAAAAAAAAAAAAAA9oZYGEApwZY2sbBSZh9E1bGmpZ9N15+ww8XYE0CHNj0DTpjdWv3eYqBYGAAAAAAAAAAAAAAAAAAAAEBNYmEAtSNSPcem8mG/2991VWG01CAQxBIBNXZNR/fsVbOIqx+9+r2DoWJhvn8AAAAAAAAAAAAAAAAAAABAPWJhAMUEW47GHmBHiYVdqZR7mt5VRfSmqGk4cH5m9fLFULEwAAAAAAAAAAAAAAAAAAAAgHrEwgBqx3Z6jvLkwzYrdT5GuTYd66ZQ0JTOVV3OCbumw3t2NnYszPcPAAAAAAAAAAAAAAAAAAAAqEcsDKCUYEs+GnuCwlVdp02RMCrVDuXBLmj4LJhXxMIOhoqFTYnnNAAAAAAAAAAAAAAAAAAAAGxDLAygbiys77BSq1jYhGJPVec/idBcqe59MaH7h/3Q5XN4VhULu7vd9sT3AAAAAAAAAAAAAAAAAAAAgJ6IhQGUEnjJh2NPsKPEwlor5d6HTjR8FswrYmGLs9uPUofvHwAAAAAAAAAAAAAAAAAAAFCTWBhA1A229Bx2yUf9bn/nbTj/aUMoSJhnBedk97mGrc1GjoUBAAAAAAAAAAAAAAAAAAAA1CQWBlBMbKdFLGxSAayqY90QCZui2vfFlO6fJZP67uyTDq9bZSzsLyOOLna3n0ruQQAAAAAAAAAAAAAAAAAAAKAesTCAUsJK+bDf7e+6quuUxMJam3Qwa8rHvqeaPgvmFbGwyBHn/3LrcQAAAAAAAAAAAAAAAAAAAAC6IhYGUEo0aNLhpm2kpZ9VpnR+ax7rxU/2O0bJfN92VIfXbVYVC4uIg7Pd7aeKexAAAAAAAAAAAAAAAAAAAACoSSwMoG6wpciwS4kz9WVKx7qle3+v/mcvHvQ3R9HcT/tnUzBwybWPiUgVfxReDBALm5SG1wYAAAAAAAAAAAAAAAAAAAB4GLEwgNrRoL7jQuJF61WdHxGaK9z5aN2G+QAAIABJREFUdfU/+5Ff62+Oou3J963IiGGPujzeU1dFzG5d/d7BELGwiV07AAAAAAAAAAAAAAAAAAAAoDWxMIBdDrace8vYEwynKhKULsfCRMMiIuL+90dcuK/+5z/2O/3NUrKpRbYmocUzYHZm9fLFELEwAAAAAAAAAAAAAAAAAAAAgHrEwgDe+e9rfrDAuNAHfnzsCQpQNxBU4PXrw8ffOfYEO2Ii98Pe6fi6VcXCDtrEwprO5h4EAAAAAAAAAAAAAAAAAAAA6hELA6btL34x4p3fM/YUx1qEYy5+svsxiiWsU0/deNrUuZ/2Tmpx788rYmGLNrEwAAAAAAAAAAAAAAAAAAAAgH6IhQHT9oHX1f9sFhcaV8X5vxwIahMKwnljt3T9HJ6JhQEAAAAAAAAAAAAAAAAAAADlEwsDpu3Pf27sCairMhJUM3Yl9sZJe3M/7MtxdKFF+G5eEQs7GCAWtjf3IAAAAAAAAAAAAAAAAAAAANA3sTCA2noOuwjHtNQiEAQiW0REzCpiYYsBYmFTkjynAQAAAAAAAAAAAAAAAAAAYBtiYQDsiE1xJzGaiBDlqU0sbDd1fN3mFbGwC5+IuPjpbvd1BfcgAAAAAAAAAAAAAAAAAAAAUI9YGEBtfYddhGPWyhXnRxyLNqruJ3ZYi2fBrCIWFhGxONt+FAAAAAAAAAAAAAAAAAAAAIAOiYUBsCOq4k51A0HiUJzkfthNHV+3+ZpY2EHfsTD3IAAAAAAAAAAAAAAAAAAAAFCPWBhAXVnYpUx1Y2FT4XzUsy/f5305jg6kFvf+6esjrpqvfm/RdywMAAAAAAAAAAAAAAAAAAAAoB6xMIBiiP6st+n8iGRd4jzUIv63m7q+bilFzM6sfu+gaSys4WzuQQAAAAAAAAAAAAAAAAAAAKAmsTCA2oRdRlUV1kniWNuZ6vnzfd4/Le/leUUsbNE0FgYAAAAAAAAAAAAAAAAAAADQD7EwAHZEVdypbiBoInEo8bSaJnI/7J0ertv8ttXLD/qOhU3pHvRcAgAAAAAAAAAAAAAAAAAAgG2IhQHUlXsOu/S9/b11HKEpKZJ1//sj7npzxIVPjD1JDe479kXLZ8DszOrli75jYQAAAAAAAAAAAAAAAAAAAAD1nB57AACoZweiVkcXIu78+og/e/2l16eujrjjpyI+80XjzrXOVCN1Uz3undfDdauKhR2IhQEAAAAAAAAAAAAAAAAAAABlODX2AAC7Q1xoVFVxp5S2W79L73rNQ6GwiEvxsLe+NOLTH+5/361N9b7ek+MWPXtI3WfBsnlFLGzRdyzMtQMAAAAAAAAAAAAAAAAAAADqEQsDKEaLcMxNz+p+jGJVnZ+09HNE7/zeK5flw4gP/uSAQzQ9DxMNFolscdlsTSzMfQIAAAAAAAAAAAAAAAAAAAAUQCwMoLYCozHXPX7sCQpQQCTsssXZ1cvf/X3DzkENBX6f2ayPeNe8IhZ2dCHigXu7399lQmQAAAAAAAAAAAAAAAAAAABATWJhALtsUrGZXT7WgoJmyyZ1D5001ePeZy2/Z7OKWFhEdQBwlcl+l+oo+BkIAAAAAAAAAAAAAAAAAAAAO0AsDKCu3kMwbbbf40y3Pa+/bbdRdf5TevjP6g10Ok6xNp6HZRM5L8uEnXZUD9dtdkv1ewcNYmGNuQcBAAAAAAAAAAAAAAAAAACAesTCAHZZn8GjW76kv223UnWsTeNYYyh5xqkGi/bluPflOLrQ8nt21bUR19y0+r2Du9uPwwnuUwAAAAAAAAAAAAAAAAAAANiGWBhAbT3HTlqFv/qcaVf+E1FyiGsH3PO2sScYiXjRburpus3PrF6+ONvP/iLCPQgAAAAAAAAAAAAAAAAAAADUtSslGABWmlJsZtOxboiGtYqxdSQNGTRruK+739zPGKUb836gH9t8z2ZjxMKmRNQRAAAAAAAAAAAAAAAAAAAAtiEWBlBbgXGhXoNHhR1v1bEOGuJqq+BYGOySvp55VbGwgx5jYYJ1AAAAAAAAAAAAAAAAAAAAQE1iYQDFaBOOmVJspupYxbFoY0rfnanY4lkwr4iFLXqMhQEAAAAAAAAAAAAAAAAAAADUJBYGUFcWFxrXplhYydGwgme74WljTzCSffk+78txjGxWEQs7EAvrRCr4GQgAAAAAAAAAAAAAAAAAAAA7QCwMoLYSozwlzlSqEc/VkKGcpvv6jC/oZ47Sif/tqJ6u2/y21csXfcbC3IMAAAAAAAAAAAAAAAAAAABAPWJhAKVoEy+aUvCo6liHDHHto3w09gQjmdB3Zyq2eRbMz6xefv6jEUcXam7EPQUAAAAAAAAAAAAAAAAAAAD0QywMoLYSQzB9zlTa8VbNswuxsIJnFAtjp/R03WYVsbCIiMW5fvbpHgQAAAAAAAAAAAAAAAAAAABqEgsD2GkTis3kimNN6eE/qzfQ6TjNDBkLa7ivqcbCqu4ndtgW37O1sbCz7bcLAAAAAAAAAAAAAAAAAAAA0AGxMGC6msaCeo8Ltdi+4BHbyodjTzCSPfnuTO0Z0NfxXntTRDq9+r2DnmJhU7t2AAAAAAAAAAAAAAAAAAAAQGtiYcB03feHY0/QgSnFZqqONQ06xf45GnuAkezLd2dfjqMLWzwL0qmI2a2r31v0FAsDAAAAAAAAAAAAAAAAAAAAqEksDJiuxUcartB3lKfN9qcUCtoUCys4GpYKni0fjj0BNNDjM29+ZvXyg75iYVN6fhf8DAQAAAAAAAAAAAAAAAAAAIAdIBYGTFfag0dg7jE20+e226iaJ9WMhY16PEOGchruKx/1M0bpSru/W9uX4+jAtlG+WVUs7O7ttku4TwEAAAAAAAAAAAAAAAAAAGA7e1DKAWiraVimxNhJiTMN7fg6bhsK2hsN74mpxsL25buzN9Gzuno83nlFLGxxtqcdTu3aAQAAAAAAAAAAAAAAAAAAAG2JhQHTVVpcqlX0Z0qxmU3HWtj1PKm0e+2kfDj2BOPYm8jWvhxHF7b8ns2GjoVNScHPQAAAAAAAAAAAAAAAAAAAANgBYmHAhDV8BO5NXGhXVZ3/tPSz6fpDKDiUk4/GnmAkvs8sqYqFHdSMhflvBAAAAAAAAAAAAAAAAAAAANATsTBgulLBAae6phSnqTrWy9dxH67nKMTCdtu+HEdNfT7z5hWxsEXNWFhTU3p+AwAAAAAAAAAAAAAAAAAAAFsRCwOore+wS5vt9znTroRs0tLPEg05W8Prlg/7GaN0+xJq2pfj6MSW37NZRSzs4qciLty/3bYBAAAAAAAAAAAAAAAAAAAAtiAWBkzYPjwCpxQK2nSsJcfCCpaPxp5gJPvy3dmX46irx+Od31b93uJsDzuc0rXzfAYAAAAAAAAAAAAAAAAAAIBt7EMpB6Cd1DBect8f9DPHNvKUYjNVx3p8HTdezxHPVdN7bRtN7wmxMPbFtt+z2a3V7x30EQubEt83AAAAAAAAAAAAAAAAAAAA2IZYGDBhDcMy7/2hfsZ4UJuYyoQCLFURrAcDQQMGuRobcramsbDDfsYo3d6E9vblOGrq87pd/ciI049c/d6ih1jY3tyDAAAAAAAAAAAAAAAAAAAAQN/EwoAJaxhwWpzrZ4xtiM3EQ9ex5FhYyY7GHoBteAac0MEzYHZm9fKDHmJhk+L5DAAAAAAAAAAAAAAAAAAAANsQCwOmK+1DvKTHUFBxEaJN82x4f9TjGfJea3icR4f9jFG80u7vtvblOOrq+XjnFbGwRR+xsKldOwAAAAAAAAAAAAAAAAAAAKAtsTBgwgqLhbWKWU0pNlN1rGnD+xPT+D466mWM8rlf9k8Hz/TZNrEw9xQAAAAAAAAAAAAAAAAAAADQD7EwYMIKi4W10SowtqOqjjUdX8dccPQqFXyvlXze+rQv3519OY7aej7eeUUs7KBOLKypCV27kp+BAAAAAAAAAAAAAAAAAAAAsAPEwoDpSqU9AtuEYwqNzQwaMLocoSn0XAyu4XnIh/2MUbx9uV/25Tg60EWQalYRC1v0EQubkMlF7QAAAAAAAAAAAAAAAAAAAKBbpZVyAIbTRViGAW2IzWyM0YwZqxnwXmsa5clH/cxRvILiRZ/+8BYrF3Qc+2BeEQs7uHvYOQAAAAAAAAAAAAAAAAAAAABOEAsD2Gl9hoK22XYfc1VtM214vwRDhukanof7fr+fMUrXNKrWp3t/b+wJdkff121WEQtbfKT7sF5J9yAAAAAAAAAAAAAAAAAAAABQNLEwYMJKewS2CMdMKTZTdaxpF2JhhbvwibEnGEFJ98sWMbkpPQM26iDKN6+IheXDiPMf2377U5WGDCYCAAAAAAAAAAAAAAAAAADA/imtlAMwnKbxkutv72eOrRQaCho0YHR8HfPRhs+NeK4GDeW0OM6z/6f7MYpX0HcnbfPHsYKOYxA9H++sIhYWEbE42/HOpnbtAAAAAAAAAAAAAAAAAAAAgLbEwoDpahq0etxX9jPHVkqNzfQx16ZtlnouIh4Mmg2hTajtrl/ufo7SDRq022TImNw+6+A8zm6p3s5B17EwAAAAAAAAAAAAAAAAAAAAgHrEwoAJaxgLOnVtP2Nc1iZeVFTwqGeVx5o2vM9GD9w39gTTlrb549jU7vuej/fU1RHXPmb1e4uuY2FTu3YAAAAAAAAAAAAAAAAAAABAW2JhALWVGHbpc6Zttt3HXBXbTKnHfXYlbf5IZ0o+DyUp6DylLe4PkbyHbHMeT5qfWb38YFMszLUAAAAAAAAAAAAAAAAAAAAA+iEWBkxY07BLiSGYEmcaWs1YWN9RpXXb7ypiVIt7opaiIlvb/HGspOMYwBDXbVYRC1tsioU1VNQ9CAAAAAAAAAAAAAAAAAAAAJRMLAyYrqahlt7DLi22X2psppe5Ro6BbTT2/o+1Og9DxsxKUcj1ihg4JrfPOjqPVbGwg45jYZPiHgcAAAAAAAAAAAAAAAAAAIBtiIUB1FZQXOhBJc7Uk6oI1uXQUj4abpZVRo+VbWGSsaqSrtc2fxwr6TiGMMDxzitiYYuuY2FTu3YAAAAAAAAAAAAAAAAAAABAW2JhwIQ1DbX0HXZps/1SYzN9zFW1zbTh/U3rd2VdrGzIGFep90RhSoq7bRNrK+k49sVsqFgYAAAAAAAAAAAAAAAAAAAAQD1iYcB0NY3slBjl6XOmEo93pbqxsJ6tPV9iYeUp6Txtc3+UdBxj6+h7Nq+IhR2IhQEAAAAAAAAAAAAAAAAAAADjEAsDqE2Up74+ztWGbY4eNxt7/9sYMmZWipKuV0mzlG6AczWriIU9cE/E4fkOd+S6AwAAAAAAAAAAAAAAAAAAAPWIhQET1jDU0neMqtX2JxSbqTo/6XLoauRzkY+q30sDxrha3UcTjIWNHpfryr4cRwe6+p7NK2JhERGLc93sAwAAAAAAAAAAAAAAAAAAAKABsTBgwppGdkqM8pQ4U/QUYqraZt1YWN/nat32h4xxFXpPFKeg87TN92Vvomc1DXG8szWxsIO7u9vP1K4dAAAAAAAAAAAAAAAAAAAA0JpYGDBdjUMtBYZdxGbiwRBXPhp3jBLvj7rSkDEzurXD913nOrqPr7kx4tTVq99bnK1ez/N4Dc8YAAAAAAAAAAAAAAAAAAAA2IZYGEBdvYdgWmz/4K7ux3jQNsfbx7natM2RQz1rY2VDhnIEi+op6TyVNEvpBjhXKUXMzqx+b10srDHXHQAAAAAAAAAAAAAAAAAAAKhHLAyYsKahlgLDLhfvHyBiVoiq40xp/fub1u9MIdeh1XEOGTMrxN58b/blODqQOryPq2JhB13GwgAAAAAAAAAAAAAAAAAAAADqEQsDJmwPYmEREff9wdgTrNDHuaraZtrw/kDWxae6jBhtJBZWT0nf5y1m2ZvoWV0DHe+8Iha26DIWNrVrBwAAAAAAAAAAAAAAAAAAALQlFgZQV+9Rnpbb/9NXdzvGzjkOXY0eTTta896AMa73/kjzdQaNmZViX0JN+3IcXejwPp7ftnr5QZexMAAAAAAAAAAAAAAAAAAAAIB6To89AMNIKV0dEc+JiM+MiNsi4v6IuCsi3pFz/mDH+3pSRHx+RDw2Ih4ZEXdHxIci4s6c84Uu9wVbaRz/KjTKk9dFqkbSS1htwzavvz3ik+/pYb81HV0cb98nnf3V5uvMbu1+jtL1Hv9roKRZuGR2ZvXyRYexMNcdAAAAAAAAAAAAAAAAAAAAqEksbCQppSdHxBdExLOPfz4zIq4/8ZEP5Zyf2MF+bo6IV0bESyLiporP3BkRr845/9yW+3pRRLw8Ir644iP3pJReHxH/Juf80W32Bd3Yk1hYb3MVdrxVYZ2ULv284ekbYmE9H8+536h+76jwTuKpa8eeYASF3d9tTS04NdTxzitiYQcdxsIAAAAAAAAAAAAAAAAAAAAAahILG1BK6bkR8R1xKRC2MtzV8f6eFxGvjYhbNnz0joi4I6X0kxHxzTnnTzXczyMj4kci4qUbPnpTRHxLRLwwpfQNOec3N9kPjK7vSE3b7RcZC+pjpqptph721cK9v1/93mGjx+oIjsYeYAQlfW+2maWk4xhbh8+CWUUsbHH20jM3FfLcAQAAAAAAAAAAAAAAAAAAACZBLGxYnx8RXzbEjo7DZG+IiGtOLM4R8faIeH9EPDoinhERjznx/tdGxKNSSl+Vc65VjkkpXRURr4+Iv7f01l9GxDsi4uMR8ZTjfV0ua9waEW9MKX1pzvk3GxwWdKxpZKfUKE+pcw2lkGjPVbPq9y5+erg52qj3yN8vRUb22tiX46hroOOtioUdHkRc/GTE1Y9a8ea+/DcFAAAAAAAAAAAAAAAAAAAAKM2psQcgIiLOR8T7utpYSunxEfHz8fBQ2Fsj4mk552fnnF+cc/6yiHh8RHx7RFw48bmvjIjvbrC7V8XDQ2EXIuKfRMTjc85ffryvZ0XE0yPit0587tqIeENK6bYG+4JuNY4F9R12abv9EoMzfcy07TZ7Pk+nr1uz64v97ntrJd5DU+L8dyJ1GA6cV8TCIiIOzna3HwAAAAAAAAAAAAAAAAAAAIAaxMKGdyEifi8ifjQivjkinhUR10fEN3a4j1dGxI0nXt8ZEV+ac37nyQ/lnM/nnP9jRLx4af2Xp5SesGknKaUnx6XY2ElfnXP+/pzzA0v7+pOI+Dvx8GDYZ0TEKzbtB4rROC42kL7m+tjv9LPdtqqO88FA0MjX54anV793898cbo428tHYE4yg0O9zU0elh+i6NtB1m91a/d6iq1jYntyDAAAAAAAAAAAAAAAAAAAAQO/Ewob1uoh4VM75GTnnb8o5/3DO+e055wtd7SCldHtEfMOJRQ9ExMtyzouqdXLObzie7bJro17E6xURcfWJ16/NOb9xzX4OIuJlxzNd9o+Oo2Mwgn0JtfRwHIeLiLvf3H79XgJmVdtMFcsHdup09XunrxtujjamGAsrKf63zSz3vK27OXZeh8+C09dFXP2o1e8ddBULAwAAAAAAAAAAAAAAAAAAAKhHLGxAOed710W7OvI1EXHVidc/n3N+T431/u3S6xenlGZVH04pzSPiRRu2cYWc87sj4g0nFp2OSzPDCJoGevqOC7Xdfg9z3fWm7rfZm0JiYWuDTwWFqVaZYiys9GtS171vH3uCYQ0ZeZudWb180VEsrKRgXe+mdKwAAAAAAAAAAAAAAAAAAADQPbGw/fOCpdc/VmelnPM7I+L/nlj0iIj4sjWrfHlEXHfi9W/lnP+01oRXzvTCmutBtxqHWgqNnfQRnHnvD225gT7O1aZtboiG9R7mKfT+qGWXZ2+rpGPeYpZHfXZ3Y+y8jsOB84pY2MHd3e4HAAAAAAAAAAAAAAAAAAAAYAOxsD2SUjoTEZ93YtHFiHhrg038+tLr56357FdsWHedt8Sl2S57Rkrp1gbrwzh6j021VepcHas6/6njQFBra65DsffOsXw09gTDK/2a1HXd48aeYGADXrdZRSxscbajHezJPQgAAAAAAAAAAAAAAAAAAAD0Tixsvzx96fUf5Jw/1WD9O5deP63Bvn6r7k6OZ/rDBvuCnjQNtfQcdmkdL+pjrm23OeRMacP7A1l7/UqPAk0wFlbSNdkmXLYv0bMudB0OrIqFHXQVCwMAAAAAAAAAAAAAAAAAAACoRyxsv3zO0uv3Nlz/fRu2d9JnD7gv6ElhsbC2ph4L6joQ1NoOX4dJ3kNTPGYamVfEwhYdxcIm+b0DAAAAAAAAAAAAAAAAAAAA2hAL2y9PXXr9Zw3X/9DS689IKd24/KGU0k0RcdOW+1r+/O0N14fhFRt2KXCuPs7V1tvs+Tzlo/H2vbV1s++por7P28xS0nEMYMjrNr9t9fKDqljYxK4FAAAAAAAAAAAAAAAAAAAAMBixsP3y6KXX55qsnHO+PyIWS4tvqLGfT+ecP9VkX3HlbKv2A/1qHJ3pOwTTdvtTCdRUHWcadIpqa65DUWGqFdaGzvbUhY83X6fI61jiTGPp+FkwO7N6+flzEUeH3e6Lhzi3AAAAAAAAAAAAAAAAAAAAcIXTYw9Apx659PqgxTYOImJ24vX1Pe7npFX7aSyldEtE3Nxwtad0sW92UcPITpGhoOhnrq232ce5KjwWtvacFXrvPKj0+XrwrteMPcEJEzz/bT1wz3D7mlfEwvJRxPmPRsxv3XIHrvtKP3064h8cRiRNYwAAAAAAAAAAAAAAAAAAALhMLGy/LEe8Fi22cRARN67ZZpf7WbfNtr41Il7R0bZgSc9hl9aBrokHZ9JxLOyGz4n4izdUf6732NsOX4d8NPYEw7vnd1uslKOYON1lpUYM+/LBn1rzZsfXZlYRC4uIWJztIBZGpXe9JuKv/dOxpwAAAAAAAAAAAAAAAAAAAIBinBp7AHrVpiBS8jrQrcPlZt0GH/yJfubYVomxoD5m2rTN27+1+302sma+Eq/RSVOMhZWk9PujJB/+xeH2de3NEanij8oHZzvYgete6e0vH3sCAAAAAAAAAAAAAAAAAAAAKIpY2H65f+n1vMU2ltdZ3uaQ+4F+nf/o2BN0ZCrBmarjTJd+XPe4iNu/bbBprrA2+FT6NSp9vkIUGfUqcaYepdTuvTZOXXUpGLbKootYGAAAAAAAAAAAAAAAAAAAAEA9p8cegE6JhUX8QET8TMN1nhIRb+xo/+ySw/NjT7CkbfSnxFhQHzNtiIVFRDz7+yLe85962HcdOxwLy0djT7Aj+rqO22y38Hura2ngzu3sTMTiI1cu7yIWVmR8DgAAAAAAAAAAAAAAAAAAACiRWNh++fjS65ubrJxSemRcGfG6r8Z+rkspPSLn/KkGu7ulxn4ayzmfi4hzTdZJKW3+EHtqT0ItvQRndujcnPwOpxRx6pqIowdWfLDvY9qhc7ZMLIydsS4W1sN/z+dnIu77/SuXH3QQCwMAAAAAAAAAAAAAAAAAAACoaV1xgd3znqXXT2i4/vLn78k537v8oZzzxyJieflnbrmv5dmB2kqMVPUwU+0o2kgBwHXz9RJ061Lp85Wir/O0xXaLv7c6NnTgc3Zm9fJFF7GwiV07AAAAAAAAAAAAAAAAAAAAoDWxsP3yzqXXT224/pOXXv/JgPta3h70r7jITtt5SjuOvlQd50hxsCusuw6FX6N8NPYEUNO6P7r28CyYV8TCDlbEwor7bwoAAAAAAAAAAAAAAAAAAACwL8TC9ssfLb3+3JTSdQ3Wf86G7a1774vr7iSl9IiI+NwG+4Ke7EnYpcRATS8zbRsL6/s8FXgdahMLq6Wv79pW293l+66FNHAccFYRC1vc3cHGJ3btAAAA+P/s3XmcW1d9///3kWbRjD2O7Ti2Yzv7bjshJJCNAGEPhS8Uyg79krIV+m2hv/JtS6Bl+9JC+4PyZSlbCVspEAiEQCgJJBAITsKSOHHikMRZsOPE+zr7jKTz/UOzSBpd6epenXuPRq/n4yHP3HPvPfdzF8ka6egtAAAAAAAAAAAAAAAAAAAAAAAAIDLCwuYRa+0OSZvKmrokXdxEF5dUTf+4zrLXNVi3nqeqVNu0jdbaXU2sD6DcyFYHnbZRiE11eFDSYULT6gY+eX48fQyc85KPx8nHmlxK+KlrUFjY6M5k62h7nXadAgAAAAAAAAAAAAAAAAAAAAAAAAAAAADQWoSFzT9XV03/WZiVjDGnSzq/rGlY0k/qrHK9pNGy6Qun+gjjsqrp6pqBhHgWXhI1sOnw/a2toyUcHFvvA63q1Od97cW0C+hwvl8fHjH1nro6OI59AWFhk4ek/GjteQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC1GWNj881+SCmXTLzXGnBJivb+vmv62tXYsaGFr7Yikqxr0MYcx5lRJLylrykv6Roj6AHS8oCAgk2gVweoEFW27Utp7W3KlNMsWGi8DeRnq5X0QXYstPSd4nsm2fnt9RwfPG9sVr+9OO3cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAywsLmGWvtFklfLWvqkfQVY0wuaB1jzIslXVbWNCHpAyE2935Jk2XTlxljXlRnOzlJX56qadoV1tqHQmwLaD2CWhxycWxjhoW5Pt+N+v/Zc6T9G93WALecXUM8FoW24pnB8zJdrd9ebmXwvLGdrd8eAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABADYSFJcwYs8YYc3z1TVJ1GkVXreWmbssabOZ9kg6UTV8k6QZjzOlVtfQaY/5K0neq1v+YtXZro32x1j4s6RNVzVcZY/7SGFMeCCZjzBmSbpyqZdo+hQslAxzxLaDHt3rahKkOCwsZHtZyDc5ffkh6+EvJlNIsgvPaWKedu4D7d6andntc3YukbEDe6mjcsLBOO3cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCqrrQL6EC/knRciOVWS3okYN5XJV0WtKK1drsx5qWSrpc0nZ7xFEn3GmNul/SwpCM/q+KTAAAgAElEQVQknSPpqKrVr5X0jyHqm/YuSeskPX9qulvSpyT9ozHmDkmDkk6c2lZ5wseEpJdYa3c0sS1gnvMoOCZueJSL8CnfA63C1PfAp6Unfcp9LU3z/Nh6w9FxinVtd9q5C9jfRae52ZwxUm6lNPyHufPG4oaFAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhENY2Dxlrb3JGPMSSV/RbCCYkfSkqVst35T0ZmttoYntFIwxr5D0RUmvLJu1XNKlAavtlvR6a+3NYbcDuOFZyI7vYVipCzo+JqA97Pqt0sbnj2sP7cIWA2Zk3G0zKCxstDosrNn7Efc7AAAAAAAAAAAAAAAAzD/5gtXeIWn3oLRnULrkNCmbCTvODwAAAAAAAAAAAAAQhLCwecxa+9/GmPWSPqBSkNeSgEVvk/RRa+13I25nSNKrjDFXSXqnpAsCFt0v6UpJ77PW7omyLWB+m0/BMS72JWxYWEqDigJDjNrBfLr2XHJ1nGL023FBbwH7axze7/tW1m4fqw4LAwAAAAAAAAAAAAAAADrTll1Wf/yZonYflvYNV87b9bGMjhpIpy4AAAAAAAAAAAAAmE8IC0uYtfb4hLe3W9LbjDHvkPQUScdJWilpWNJjkjZaax9p0bauknSVMeYESedIWiVpgaSdkrZK2mCtnWjFtoCW8C5kx7d62oTLkKCmtPP5a+faE+TdY0YHCgzly7jbZs5RWBjXEwAAAAAAAAAAAAAAAOaJ/h7p9ztqz9s9KMLCAAAAAAAAAAAAAKAFCAvrEFMhXT9PaFuPSGpJABngVoSglslBqdvRqBWvgmPi1uJgX7w6PrX4Xl8d3h/b+S7O8e+0cxewvy5DA/sCwsJGY4aFAQAAAAAAAAAAAAAAAPNEvTCwXYeldauSqwUAAAAAAAAAAAAA5qtM2gUAQFvZdZPDzjst9KdZQccnbEiQ4+MbNnBrbLfbOiLh2gvHw+PUaUFvgfvrMCwsFxAWNhY3LKzDzh0AAAAAAAAAAAAAAADmrZ4uo8X9tec9+9+Ksp02zgkAAAAAAAAAAAAAHCAsDEAHizD45I6/bn0ZM+bRYBgXA3vChgQZh6FBdYXc5xue7raMSObRtRdWpiftCmYxEK4JxdrNxuFT2r6AsLDRnZy7sDhOAAAAAAAAAAAAAAAA897ygeB5X7uV8SMAAAAAAAAAAAAAEBdhYQDQDFtw2HfEwTC55a2to92kFg5WLeT5O3yf2zKi6MQgn4FTI6zk43HysSaHwoYGtlIuICysOC5NHnK3XQAAAAAAAAAAAAAAAKCNPLAreN7VGztsnBMAAAAAAAAAAAAAOEBYGIDO5V1AUtR6fAnLKufi2Mbs0/X59u56akY7154gZ+eY4x9eCmFhfQFhYZI0uiNGxx103r0JdQQAAAAAAAAAAAAAAIAr739R8BiRHXwnHwAAAAAAAAAAAADERlgYgA7mW1CLT2Fhvh0bKXxIUFqhNJ4cs+5FaVfQJjw5X7HNl/0IyRZrtxuHT2lzK4Lnje10t935pK3DFAEAAAAAAAAAAAAAABDGuy4NHrs3nk+wEAAAAAAAAAAAAACYpwgLA4CmOAyiihqmYtIKx6rHQTBM0PHxZv99CcOJ8l+7L7X7ztVxitFvx4UwpfA4kM1J3YtrzxstDwtr8lx03LkDAAAAAAAAAAAAAADAfNbTZfTRl9cexzM+mXAxAAAAAAAAAAAAADAPERYGoINFCWpxGe4StW9fwrLS4sn+exP8E6EOb2pPUifu8zwQeK06fhzoO7p2+9jO2u0AAAAAAAAAAAAAAABABzqir3b7eD7ZOgAAAAAAAAAAAABgPiIsDAC8MY/Ci5yET8Xt0/Xxbefz1861J8nRcYp1f+m0c1es3WwcP6XtW1m7fTROWFgnnbtO2lcAAAAAAAAAAAAAAIDO1dtVu52wMAAAAAAAAAAAAACIj7AwAJ3LSaBVDD7V41MtM4JqMg2mk+LLMYtShy+1JyjKNd5W94t5KvAcOL7f5wLCwsbihIUBAAAAAAAAAAAAAAAA80tvV+1xPBOEhQEAAAAAAAAAAABAbISFAehgvoXs+FZPHA72JSgkyKQVDlbFyyCpkNq59nmB4x9eMaA9pbCw0ThhYZx3AAAAAAAAAAAAAAAAzC89XbXbxwkLAwAAAAAAAAAAAIDYCAsDAF9EDmzyJCwrNWH333UwjyfBP5GuI09qT9Q8OU6dFvQWGBro+CltX0BY2FicsLBO0mHXKQAAAAAAAAAAAAAAQIfqJSwMAAAAAAAAAAAAAJwhLAxAB/MtvMS3euJwsS8h+zRphae18/lr59rngU4L/Iol6Fg5vt/nHISFcd4BAAAAAAAAAAAAAAAwzwSFhU0WpGKR8TIAAAAAAAAAAAAAEAdhYQDQDKfhLgyEqS+lkKCwvAn+iVCHN7Unab4cJx9rcsgWa7e7DgnsCwoL2yMV+drThry87wAAAAAAAAAAAAAAAKDVeruD500WkqsDAAAAAAAAAAAAAOYjwsIAdK5I4SUOA0+ihqk4CcmJuZ8ugmGC+nQdEhSaL2E4nl3XvvLq/h+n3047d0H76/gpbS4gLExWGt/jdtsAAAAAAAAAAAAAAABAm+jJBs8b5zv5AAAAAAAAAAAAACAWwsIAoCkug3k6LfSnVUKGhbkIMEuyf6fauXZ0lpRCA/uCwsIkje4s/Wz6MYD7HQAAAAAAAAAAAAAAAOaXTJ1hPG09xA4AAAAAAAAAAAAAPNCVdgEAkJ4II09cjlaxxYgrOg7JicTFcQrbZ1rHI+r5azFGVIUU5Ti5OrYx+h15rHVltIPAx0nH9/ueIyWTlWxh7ryxnW63PS/wuAQAAAAAAAAAAACg/RhjTpB0tqRVkhZK2iFpq6RbrLWTKda1VNKTJJ0gabFKb5ofkrRd0m+ttbyRDSA19b7zjxEkAAAAAAAAAAAAABAPYWEAOlekUCWHw1UKI+76nheCjr0nYWntHNLVzrV3ukevks79eNpVJCjgWjUZt5vNZKXccml0x9x5oxHHWHO/AwAAAAAAAAAAAAAvGWNeJulvJF0YsMh+Y8yVkt5rrd2bUE1G0isl/S9JFzdYdqOkz0n6krU2n0B5ADAjU2c4X5HhMgAAAAAAAAAAAAAQi+NkBQCYbxyNVikWoq/bvah1dcyIuZ8uQnCC+qz3VYSVHbSslHT6DytCHYWx1pfhuyjXqKtwpzj9jmxvXR3tIPBYJRAamFtZu32sRoAYAAAAAAAAAAAAAKDtGGMWGmO+Kek7Cg4Kk6Slkt4m6R5jzPMSqGulpBslfVMNgsKmPFHS5yXdZow52WVtAFCt3nA+vlsPAAAAAAAAAAAAAOLpSrsAAEhPlLCgYuvLkKR9v4m+bqa7dXW0perRRQmEBtXky0imCHUcuKMUGJbNtb6cecXVOfbl2mkDgY/BKYaFje6M2GEnnfdO2lcAAAAAAAAAAAAA7cgYk5V0paQ/qpq1R9JGSYcknaRSENf0m9QrJF1jjHm2tfZXjuo6StLPJZ1eNWtyqq6tkoqS1kg6V1L54I9zJf3cGHOxtXari/oAoFq9UTyEhQEAAAAAAAAAAABAPJm0CwCAtuIqLKw45qbfyEIE7/QdXWemi1E9no8UaveRTNu+m3YFCfPpfPlUi+8CjpVJ4Clt0GPeWNSwMAAAAAAAAAAAAACARz6iyqCwSUl/JWmNtfZ51tpXWGvPlbRe0q1ly/VK+r4xpt5Amjj+r+YGhX1uqq7zp+p6lbX2YklHT+1H+QCnNZI+76g2AJjD1Bl6yCgpAAAAAAAAAAAAAIiHsDAAHSzK0BNXw1ViPBw7CakK0eczfupgu/UE1RQi2CwRngxlino93PXu1tYxLzk6x+0eNJekoMDGeqMMW6VvZe320ahhYZx3AAAAAAAAAAAAAPCBMeZESe+oan65tfbT1tqJ8kZr7b2SnqXKwLAjJb3PQV3HS3pNVfOHrbVvs9burl7eWnvQWnu55u7L84wx57e6PgCopW5YGMNlAAAAAAAAAAAAACAWwsIAdK5II08cjVYxcR6OUxpB07OkzkwHNQWdr9AhQa6PU5uPZBrZlnYFCfPpfPlUi+9SDA3MBYSFjUUNC+sgjPQEAAAAAAAAAAAA4Lf3Seoum/6KtfaaoIWttaOSLpNUHiT2xqnQsVb6H1XTuyR9IMR6/y5pU4O+AMCJTJ1hPEWGkAAAAAAAAAAAAABALISFAUAzXAWe+BYWFmY/Q4d0uVZVR1p1eROG40sd85A357iTBYUGJvCUti8gLGx0OiysyeuD6wkAAAAAAAAAAAAAUmeM6ZP0sqrmf2m0nrX2AUnfL2vqkvSaFpYmSdXhYz+x1o43WslaayX9sKr5lJZVBQB11Bu9x3AZAAAAAAAAAAAAAIiHsDAAHSzKyBNXo1ViPBz7OILGSU0e7mcFX+rzpQ7PRbpGXR1bzllothgwI4GQwFxAWFh+UMoPu99+W+MaBwAAAAAAAAAAAOCt50nqL5u+1Vp7X8h1v1w1/dLWlDRjQdX09ibWfbRqeknMWgAglHrf9ckIEgAAAAAAAAAAAACIh7AwAGiGq2CueiNkGkprCE0C4TwVgvYzZB3OQ9UYytRePDpfPgb+eSvgWJkEntIGhYVJ0tgu99sHAAAAAAAAAAAAALhwadX0TU2se7OkfNn0E40xK2JXNGtn1XSuiXWrl90fsxYACKVuWBjDpAAAAAAAAAAAAAAgFsLCAHSwKCNPii2voiTOw7GPI2gc1BQ0UmjO6KKkQ8ym+DKSyZc65iVXx5ZzFlrg9Z3A/b6vTljYaPX47DA47wAAAAAAAAAAAADggfVV07eGXdFaOyzp7qrmdbErmnVz1fQ5Tax7btX0b2PWAgChZOoM47mf7+MDAAAAAAAAAAAAgFgICwPQuaKEKrkKYjIxHo5TC4dKOpQrxZCgUAj+aS8+nS+favFdUGBjAo8DXQulbH/teWNRwsI6SRtc42O7pb23SYWJtCsBAAAAAAAAAAAAkKwzqqYfbHL9h6qm18aopdqNku4vm36qMeasRisZY1ZL+pOypklJ32xhXQAQqN4onlf/R1EHhq0Gx6wsX4oJAAAAAAAAAAAAAE0jLAwAmuJhWJiXISw+1uSaL/vsSx3zkKsBagx8Cy/oWMV6DA3JGKlvZe15o1HCwjjvXigWpNveKH1vhfSTC6XvHik9fn3aVQEAAAAAAAAAAABIgDFmqaSlVc3bmuymevlToldUyVpblPQGSeNTTRlJVxljjg9axxizQtL3JZV/G9aHrLWPt6ouAKinWGdIzJ5B6cj/r6gj3l7U2vcW9Y1fB31xIAAAAAAAAAAAAACgFsLCAHSwKEEthIXNMPW+A9CBwJCgsHU4Pk7eBD75UofnIp0vV8eWcxZe0ADBhB6PcgFhYWNRwsLghQc+KT38pdnp/JD0yxdLY3vTqwkAAAAAAAAAAABAUhZXTY9Ya4eb7GN31fQRMeqZw1p7i6QXStoz1XSKpE3GmI8bY55njDndGHOaMeZZxph/lrRZ0pPKuvi8pP/TypoAoJ5Do+GWu3+X9KdfsvrJZsZOtZNivTS4Jvsp1OjLlo3rKxSt9g1ZWVu6HRypve1C0VasV95XrXYAAAAAAAAAAACgnXWlXQAAtBUfBw4UCw46jbmfTo5TUJ9VIUFJh5jN8PDaQGtZF/c1iWunCbFDA2PqCwgLG90pLTi+ub58/P/EFZ/39cEvzG0rjkuPflc65c+TrwcAAAAAAAAAAABAkhZWTYeMuKm7zkDEWgJZa28wxpwh6a8lvVbSCVO//3Wd1e6T9F5r7XdaXY8xZrmko5pc7aRW1wHAT8cfGX5Za6VLPxH05YElX/yfRi95otHopNSTlY5cKI3npV2HS8FkB4al3YPSCctKy69aLO08JGUz0pbd0gUnSmuWpDWmcH7Yus/qvddYXbvJ6sBI2tW48+rzjMYnrb63sbL9lOXSW55mdP8u6UebrC67yOj4ZVJ3tvxmZn7vyVbPC771dJV+ZjOSSW3sKwAAAAAAAAAAANoJYWEAOliU8BJHgSdxglTsZOvqaErSAxNChoWlxZcwHF/q8F6E41QYb30ZcR2xNu0KEhZ03jLJbD4XEBY2tjOZ7aP1Dt9Xu/33HyUsDAAAAAAAAAAAAJj/qsPCxiL0UR0WVt1nq0yP9QwzeOEWSe+XdIOjWv5C0vsc9Q2gzS0bMDrnWOmOba3p701fs3rT1+KNiXvTU40++1qjbMaTsYZtZN+Q1dP//6K27U+7Eve++Zva19mW3dLfXjU778M/rrVc/HGbYYPFqm9ZI930gDQyMdvXqSukB3ZV9n/RSdKqI6Sr7qhsX9wvHYwQAnfOsdL61UbrVknrVxmduUZavZjQMwAAAAAAAAAAANcICwPQuaKEKtn632IXXYyBAsWJxss0Le7AhQQDq0IPLHBdEyFd856T+5riBbz1LG1dHe0g6DE4qQFGQWFhozvU/GMAjxl+4/wAAAAAAAAAAAAAHcijbx6cZYx5s6SPS1oQcpWLJP1E0j3GmLdaazc4Kw4AavjaGzJa/35XYy2b98WbrU46Svpfl0iHRqWurPSbR6ShcatzjzPaPyz9/XeLunmL9NrzjR47YHVgRNozJI1PSksWSEcukJ58gtF5x0snLDPa/LjV9gPS4Jj0snONFvRK126y+vptVo8flC45TbrkNKOf3mu1cpHRMUulE4+S7nxUOmaJ9OrzjFYtTidUaXzSqmhL4VPZjNH4pNXwhLQoJxWKUjYjjU2WhmR98me2I4LCfDBZKN1aoTooTJJueaj2slGCwqRSIOAd26afBpV+HtEnrV8lrVtttH5VKUxs/apSiCAAAAAAAAAAAABag7AwAGiKq/F9ccLCJltXRlMSfvM+dKBSWoMKfAmW8aWOKjtvkB79npTpkXqWSKM7JZOVjn25tOLpKRQU4Ti5CguLdc48Pd/OBO1vQvf7vqNrt4/tTGb7basNr1Nn4aAAAAAAAAAAAAAAPDJUNd0XoY/qdar7jMUY8x5JH6pq/p2kz0i6WdLjkoqSVkq6QNJbJD1jarn1kn5hjHmjtfarrawLACTJTo3pM1Vf9Ld2ldHgpzK66CNF3f1YGpXNdfn3rC7/Xq0xLJVt//XrucvsG5YelPTrR2zNdT5x49x1rt1UCg+rtbwk/e1VtcfTLFsorVsl9XWXAp8e3ltzMUnSS58o3b5N2rqvNP28daVj/+uHbWAwFODSoVFpw0PShocqr/0ViypDxM5cbbR2lTSQI0QMAAAAAAAAAACgWYSFAehgHn0ZaOggrBqcBRjF4eI4pRwS1Mj2a9KuwF8P/of0m7fUnrfl36WLvikd/6pka4rCx7CwOI8d7Shof00mme33razdPrYrQrhUh527dmPzaVcAAAAAAAAAAAAAwD2vw8KMMc+U9H+qmt8v6YPWznkD/Q9Tt28ZY94i6XMqDarJSrrCGPOgtXZDi0r7jKTvNLnOSZIYXAO0KTs+Kl33ddnd26XvfU4aOjgzz3z9Lum40+ess6DX6K73ZTWZt7rxPum6zVafrBGqhUp7h6RfPBBu2e9trJy+frN0/WaOMfyz63DpduN9lSFixx8prV8trVtltH61tH6V0ekrpd5uT8YFAwAAAAAAAAAAeIiwMABohrNgnjhhYZOtK6MZJuk34z0PCzuwsfEyncgWpbveXX+ZW16dfFhYlPuyq7CwTgv8iiUokCuhx4FcQFhYcVKaOJBMDUjGyKNpVwAAAAAAAAAAAADAvUNV0/3GmAXW2uEm+lheNX2w5lLR/JMq3xD/qrX2A41WstZ+wRhzjKR/mGrKSvqEpCe1oihr7W5Ju5tZxyQ+zghAaxnZj/5l7Vm3/HfNsLBp3V1Gl66XnrdOOq3wkP7qpuNVVEJfDAjAa3/YV7pdu2k2RCybkU5ZLq1fJa1fY7R+KkjspKOkbIbnEwAAAAAAAAAAAISFAehgEQJ6bKH1ZUjxwoLSCgurJ8nwo7CDCV3WNLbXXd/N8DF0as8GaTzE8TmwSVpylvt64rBBQVWxO05p3TYUdI2bhAYQ9gWEhUnS6M7m+vLx/upKJ+0rAAAAAAAAAAAAgLZhrd1njDkgaUlZ87GSft9EN8dVTW+JXZgkY8xqSRdUNTcMCivzEUnvlNQ3NX2uMeYsa+2mVtQHoLOY3lzgKCX7mctlr/68zD99W+aUJ8he/w3ZD/1ZzWX/XNL5vWfpqkUv1UeW/d1Me3+PdPYx0i0Ptb52uLVGuzWpLu3S0qbWy6qggrIz0xdrk4rW6szhu3TRwGM63L9cWrZKO7NHqW/sgD7y6AUayg5U9NFvxnXhkt3aPdqjx4Z7VLBGq7sO6YxDt+u0ZZO60TxZvx4/sSX7OS1jrE5ZbpQvSpOFWjeryQKBVnEUitJ9O0u3q+6wmh4jmeu2OmOFtG6V1cpF0vC41Xkndem81RM6ZqnRiO3WQ3ukvh6jPYPSeF46YZm0bhXnAwAAAAAAAAAAzC+EhQHoXF6Fl8QJIUprPxJ+Az30+Urhjf3CSPLbbBdju8It9+DnpCd/xm0tFaLcbxzd1+I8Fnn1OJaEgMfKpMLCequ/ELrMWJNhYQAAAAAAAAAAAAAAH/xe0kVl0yerubCw6hSSZtat5+yq6YettY+EXdlaO2yMuU3SM8qaz5dEWBiA1tvxB9k3nCd75kXS3bfUXfTs8U06e88mfWjP+2cbc/3SXbNj8ArK6EcL/0hfP+LV2tB/kd574F+16JnPV1dxQrcOPFWHM4u0b8jqzNXSCUdM6PgVXVKmS2OT0jd/Y/WN33TamKpkZW1e27ecqKMKyX3J6ruaXeEx6YMhFy3KyMiGH3l679RPY2qO37OS8urSpOmuvJW1TZieOW3Tt/xU+8wyNdaf7adbkyqt85mlbw27BzOOyu9WVkXt7Ar+Es2szatgZj9y8rqD/6WnjfxK9/eeos2963RP7zpt717T9LabNTZptHG7tHH77Jn67M1WUvfUlK36OeuikVv07r3/omcO36QeteALmi99nczL/0rm1OqnawAAAAAAAAAAAO4RFgYAPogV+OPjwBYXNQX1ybd+zfLxWgh5frZ8tnPDwhCeDQpWTCgsLNsj9R4pje+bO4+wsDq47wAAAAAAAAAAAADw1j2qDAu7UNIPw6xojFkg6awa/bXC4qrpKG9KV6+zLGItABBOg6CwQGOVX9aZVVEvGrpWLxq6drbx25+VJL28QVfjAy/SN9Z8K1odDnXbCU2anrTLaIl/3XV5okFhrmWijm0KGPdrJHUrr26bl+xo9MKa9MldfyNJ+soRf6o3rfr8nPnPG/qJfvToHzvZ9sHMEdrce4Y2967T5t61uqd3re7pXad9XX489bil/yK98NhrAucfmd+r1x36hn654Gn6fc9pGsv0zcx79tANGs4s0DGT2/XDgRfouMltum/r6dJHJalQd7snL5ce3F173jueZXTno1a/eCDcPgzkpOeulYpWunrjbPvbLjG6/PlGh0el4Qnp8Kj02EGrOx+VfvuI1eolRodHrRb3G73yyUZnrpZ+t9Xq6jukK39n9eInSEsWGC1bKD37DKM/7LM6OCKtWSKN56Xv3m5192PSkgXS196Q0VlrSmOCrbWaLJSWGRyTlvRLGVPK0Bsck/7xGqvP/aJ0H+nKSPmi9JSTpPt3SXuHpGOXStv2V+7fkn7pWWcYvfv5Rictnzv2OF+wslbq7mLcOAAAAAAAAACgsxEWBqCD+RReEqOWWEFjMfo0Sb/Z6nNYmA81wDkX97VSxymt24aCwsJMQmFhkpRbWTssbLTZcdkddu4AAAAAAAAAAAAAwE/XSXpL2fQlTaz7VFWOwdxord3ViqIkHayaXhChj4VV00MRawEA6ZxLpDtuSruKhgoNvnTwbfs/r+cO36Dt3au1Ir9L3XZSB7OLlbUFPWf4Rh1V2Ktb+s7Xzq6VWlgc0tNHbtawWaCRTL9uz52jXV3L1WMn1GdHdenQTzSS6deEurWoOKh+O6IeO1ExmnDc9KjXTkiSijL6Wf8l+vTSv9C1Ay8IrHHt+L166sgGjZte3d27Xrf3nRNq31fmd2pn18rA+aeN36+37/933dd7mv7ziNfoYHaJjszv1QuHfqwXDP23rIzypkv7s0v1i/6nasT069d9T9a+rmU6dfwBXTp0vV46+H1dPHprqHqQjlcd/rbevvLfNJKpfOrwnr0fdrbNxcVDesrobXrK6G0zbVbS7uzymeCwzbl1uqd3rTb3rtVwpvopSrr2dS3TJ458e815Nyx8tiRp+qq/r/f00P0GBYVJ0idubG784OCY9N075rZ/9iarz95Ury878/Nbv5273DV3zS7z0Z8E9/PoAensDwZ92Wt9+anVNjw021YeFCaV9m9wTPryBqsvb2h8bJYPlG5dWSmbKQWSdWWmfs+W/V72sytrZn7PzLTVXj9rAvrJVvc5vawJ109A3+V1zO1bMomP2QcAAAAAAAAA+IywMADwwnwLC0qwptBvgDqsyZc3YZ2FWcXgy7GpFulY+RgW1mk8CQs7tHlu+1iUL3EGAAAAAAAAAAAAAKTsekmjkvqmpi80xpxurb0vxLqXVU1f3cK6Hq+aPs0Y02+tHWmij+p0Gd7YBhCZefcXZV92ctplNHTqxJbAeQ9vOVXH5rc37OOi0V9XTPfaCS0tHtCaocfmLHtE8XDdvqaDwiQpI6tnj/xczx75ecMa4phUl37fe7qWFA7omPzcmiXp47v+tm4fbzvwBRelIQE5O66HHjxDly//kH7Vf5FOmXhQ79z38TnXtWtG0orCbq0Y2a1njdw0016U0bbuY0oBYtNBYr1rdV/PaZrI9CZaI9rX7sHSrTkux+q6HQdsTNhAtPqhY7XDz0xFWzZE380Fq5k5ddSqLXzoW2UbQWoAAAAAAAAAOhFhYQA6WIQ35ly9oeRjyFNDCb+5FvYYdYV4/e0AACAASURBVPSbfj5eR/PofLi6n8bq18dz7pAN+ma6BMPC+gK+fXPiQJMdddK566R9BQAAAAAAAAAAANBOrLUjxpirJP1pWfPfS/qzeusZY06V9JKyprykb7SwtE2SDkhaMjWdm6rx82FWNsa8UNLqquZftaw6AB3HrDhG+ti1su98Ydql1LV+fLPOGtukTbmzKtpPnHhYx4QICpsPupXXWeP3pF0GUnRUYa++uOOtaZdRU0ZWx09u0/GT2/TCoR/PtE+qSw/2nFQRILa5d60e7DlJRZNNsWIgfdZKk4XSzUHvLjpNrP+MCRtaFiVYzcwJNKvXd6Pws7k1muB+6tQWJliNIDUAAAAAAABgfiMsDEDnihLQ4yzUKygAJyRr/QrJcnKcgvr0Yb99qMFXvh6bKNeoq/t/jH7bMmgwhqCwMJNgWFguICwMAAAAAAAAAAAAANCu3i/pVZK6p6YvM8Zcba39Qa2FjTE5SV+W1FPWfIW19qF6GzHGVL/J/wxr7U21lrXWFqZCzN5c1vwRY8wGa23dBBhjzLGSPlfVvMFau6PeegDQiDnvOdIvx6SbfyD7nlc0t/L6C6R7bnNTWBkj6eO7/rf+ZM2VOpgt5S3miqP6wo63eTuSbV7IZqWCkxQbdIhu5XXGxP06Y+J+vWzw6pn2UZPT73tPnwoRW6vNvet0V+9Z2tF9dIrVAvBF0UoT+amJyVb33t5BanPCzQJDy6IEq5k54WTN9N04WM2ED1FrMlgtYwhSAwAAAAAAQPsjLAwAfBA78MeqtaFMYepJ+k2SmGFhHRGq1An7mCYPw8I6jQ9hYX0tCgvriMckAAAAAAAAAAAAAPCftfZhY8wnJP3vsuarjDF/I+kL1tqJ6UZjzBmSvijporJl90n6gIPSPijpdZL6pqYXS7rFGPNuSV+y1o6UL2yM6ZH0akkflbSsqq/LHdQHoAMZY6SnvVj695/JXvFB6Y6b6i9/zTaZpStmpu01/yH70b+cXaB/oDSOZnSoNP30P5aWrZK++5nINT595Fe68+HzdP3C52jM5PTiwR9qTf6xyP2hyilny1xxm2StTGZ23Ja1VrrtOmnXo9LYsLR0pdS/UFpzsnT0CVJ3j7R9i/TYw9KS5dIJ60orjo9I+3ZJx5wsZbtkjCn1NTkhZTIyXd0BhUxt8+BeqbdPpn/hTFt5CIjdv0t6YKP0yL2y2x+UOfkJ0pkXlbabyUrHnV76st6enEw2W9n/4f3S3bdKgwekxVP/tWayUiYjyZR+GlMav2ZM1e9TPxsuoxr9BfRTvkz574W89OiDpeN+1Bppcly6+xbZ266TbrteOvZU6YlPl0aGpN/eIPXkpEteIrP+QmnFMaVl7/yltPGX0vDh2QOw/gJp305pxx+knl7pRW+SWXmcdPbTpurR3HFwFdM2oL1qOuh3Sf2yOlfSueXzittUvOfbuvUHt+kruZfpW12XavXk43pd/od64znD+umdo/pQ9o16qOckAUCnKhRLt4nGi0bQ/kFqzYSONResZmZ+z9QNRIsarGbq99NU6Fvl+pkMIWoAAAAAAADtgrAwAB3Mp6CWmLVYm3x2V10JHts53+zi1YGAt9+8E+EadRXuFKtfnx7HkuBBWFiuRWFhnYRgNAAAAAAAAAAAAAD+e5ekdZKePzXdLelTkv7RGHOHpEFJJ0o6R5WDUyYkvcRau6PVBVlrtxtjXivpO5Km00sGpur6V2PM7ZIeV+nN9JWSniRpYY2u3mOtvbnV9QHobOasp8h84npJki0Wpftul73hSmnLXVI2K/OMPykFC1WNHzMvfrPMi99cWm90WMr1z1lGkvTXHy8tMzEu09MrOzYi/fIa2Xt/UwqdmpyQbvyOdHDP7DpPuLgUivTDL2nN6cfqTecfJzs6JI29SCpMStsfkk5cJ7P6JGnRUinXL/XkZL/zKenXPyn1ceI6mZe8VcotkIYPSd290jNeKm3bIvvNj5XGKfUPSHu2S7+9sRTANDkhyUojgzLPfLnsF99fuS9HHi0duVJauqIUinbXr+Id/N4+aXw0Xh9RXfRHMn/32dI5qz63xkgXPj9gxSnHnla6levNlc5HdV89vQ3LMcZIS46a21Y+vXSFdMGl0gWXNj261CxaKj3lBU2ulZIlyyunTz1b5k/+Ity6a58s88p3tL4mh7JnXaSLXyNdrFKKq7RI0umSpNdP3STpunus/uiTAeMOHTph4hGdPXaXrl70xzXnrx2/V9u7Vutw9oiEKwMATAepudHeQWqtCB0LDj8zsyFndQPRGgerza3DNO6nRlvYfSRIDQAAAAAA+IawMADwQtwX7VMIYkk6BMrrsBlPavPyGM2nN0Z8PL4dxga9M5tgWFhfq8LCuJ4AAAAAAAAAAAAAwBfW2oIx5hUq5U28smzWckmXBqy2W9LrXQZxWWuvNsa8WNIVklaUzepTKR+jnmFJ77LWftpVfQAgSSaTKYUNrX1yc+v1LWi8zFRglMn1S899tcxzXz07cypQbI6/++zs+mHqOP+5jRdad57Mh64M0ZtkXn95qOVawebz0v6d0uS4tGy1TG9u7jKFgnTf76RMthSG1ttXCngbPixlu6R9O6RfXy/lJ6UT1pVC1JYdLW17QDq0XxrcL62/UDrlCTJd3YntG9AKl643Kn4hO6d9dMJqcExavqj2o8T4pJ0KEjEaPzwo+4KjVTQZ5ex4cwU8JhVllGnheMFRk9Nvc+fqRwPP10BxSEfnd+r4iT/omPx2HVE4rKMKe7Q7u1wHsot18sRDuju3Xv95xGv1pcWv12sOXalTJx7Q+aO/UY+d1FBmgQrKaqA4pHt7z9CWnpN13OQ2veHgV9SlgiTpq0e8Tl854k+1tHhAp4/fr3PGNmpx4aCsjH7T92RNmm4NFAf1dys+MlPjx3e+U2878AVlVah4HLaSRk2f+u2o8sqqSwWNmx7d23OGPrH0L/X9gRdpKDsQuO9Zm9c/7v1nLXvuC5U/9VzlpwJ/Zn4WNLdtqr28rTDTZkvzy9vs3H6q189XLTvTVlUHALSb6cey8byL3l2OnXc7Lt+YsIFotUPHGoWfZafCzkrBZOGC2cIHq5lw/YQOfav8SZAaAAAAAADpICwMQOfyKVgpdi0e7YskN/UE9enBi8uBAUZJ8+06kLw4P7VEus+5Or5x+vXxnDsUdF8zCYaF5VoVFpaQ4a3Sls9LhzZLyy6QTnu71NV4oGVHaPTYbW3ywZgAAAAAAAAAAAAAUmOtHZL0KmPMVZLeKemCgEX3S7pS0vustXsSqOtHxpi1kv5c0hslndRglV2S/lPSp621W13XBwBIj+nqkpavqb9MNiutO7+yLZORBhaXJvpPkY45Ze6Kqxv9dwO0r74eo76e4Pm93bPjxnoGFsoeuawUrBdBK4PCJKnPjulpoxv0tNENgcusLOzSysIuSdI5Y3fqnLE79fFdf1u33/PGflez/fWHvq7XH/p6zXnPHvn5zO9/s/+TjUqXkdRvRyVpJoys107oieN36Ss73izteHPDPiRJhVFlntVcQGUailNhZHFDx4ID0WzNvhuFn9XqO1+QihV12Ia1xQlWA4B2Yq2Uty4fv9o7SC0oiKw1wWpmpi0bGIgWNVjNhOunTt/19tHwOQQAAAAAgEOEhQHoYBFe9HT2Yl3MF2BTCT5L+oXLuGFhDo/Rls82XqYcATTtydn9LEa/PoUeJsKDsLC+o1vUUQLnbvhR6adPlUYeLU0/9gPp8R9Jz7xBys79FlF3PL1O7/2X+vMf+Zp04uuTqQUAAAAAAAAAAACAN6y1V0m6yhhzgqRzJK2StEDSTklbJW2w1k5E6DfyYBFr7X5JH5b0YWPMGknnSjpa0mKVBs8ckrRH0kZr7YNRtwMAAIBKxhjZ57xS+tb/TbsUTJsYS7uCUDIZox6nw1vbcyy6tVZFWycQLUToWP3QMhu677DBaoWK9W2oQLS6oW8B+1ggSA1Am7FWmiyUbo624Kpjx31LGRM2EC1KsJqpWD8Tsu/wwWomuI5IoW+zbQSpAQAAAEBrEBYGAM1wFcxj476z0+K64u5nkgFGc14kTPhFw6GHpXs/0uRKVm7q9DCQx9cXcYtNj9mVs+PbcYFfMQQ+ViYYFtazRMp0S8XJ5LYZ1UNXzAaFTduzQdp5o7T6BenU5JOt36o//7bLCAsDAAAAAAAAAAAAOpi19hFJj6RdRzVr7XZJ29OuAwAAoFOYt/6zbH5S+sEVbRNUNa8VSVRqZ8YYZacCVHqcfKLN07HrIUwHqQWFljUVrFYzEM2G6rtR+Fn5vMpt2qZC35oJVisy3B5AmylaqTgdpNbyj564flB0H6QWN3QsKLysK2sq5levX6vvRnVUBquZ8P00uY8ZQ5AaAAAAgPAICwPQwXx6xyBuLWnsS8IvQPkaqLT9B82vY207vw/ZJA931Fpp8nCUFVteSvx+Pb1fuBIUFmYSDAszGSm3Qhppg3HX93ygdvvGdyYcFubpdXpwU9oVAAAAAAAAAAAAAAAAAAA8Z7JZmXf8m+zbPyaNjcj0LZizjLVWKhSkTEYyRsYY2ccflh68Wxo8KC1aImW7pLOeIvUtlPKTMr052fFRSWb2y3lHBqVNG6RtD0jnXCLdc6vsT78ljQ5JW+8vLbNslXTymdKBPVKuX1qwSOaCS6XBg7K3/lg67YnS0CHp+v8qLT+wRLr0ddLvfyuNj0n9C6U1J8s851VSfkLasVVad77Um5OGDksDi0t1ZLJSV7d0+89k798oHdonHdxb2sfD+2We+xqpu0fq6ZV94C7puv+Uslnp4v8hc+ZFsvt3SVvukk59olTIS9sflGSlX107e+CWrZKWHS3dd3vZATf1x43H/pJuwE/lQWq9brbgpNckWGvnhpPFCFabG1pmawaiRQ1WK87px0YLfQsRrEaQGoB2U7TSRF6acNJ7ewepVQeL1Q5Eqx9+FhysZuaGqNUMRIsarGbq99NE6Ft13wSpAQAAAHMRFgYAPogbhOVdkJaLeoL6DPtij6NjtPVbEVYqSsq2uhIPrwPJyzcV88OKdD04O76EhYXnQViYJOVWxg8LS/P+evj+9LYNAAAAAAAAAAAAAAAAAEAbMsZINYLCZuZ1VX48x6w6UVp1Yu3OsqVxxKa3r7K9p1d62otnp9c+WeYVbw9f4//8+9mJf/hS6PXqOmFtw9HARpLe88W5bTEUP/h66ac1xmmTjAN0HGNMKUgkS5BatekgtTChY6GC1eYEotm6oWW1+q5XR6EQvu8owWrl7V5+vAYA6pgOxnSjvYPUwgWiRQ1WMzNtmRp9xwtWM437aSr0rbItk2nf5zAAAACIh7AwAJ3Lq1d+49aSwjckJZ7IHnCMqutIuq7iePPreBk61UEmD0Vc0dHx9eqxyHOB3waXQlhYu7M2hcdxAAAAAAAAAAAAAAAAAACAEIK+SDZwLCkAdJ7yIDV1O9mCi04TUSzaOcFitULH6oaf1Q1bs4GhZVGC1YoVbcF9hwp9qxOslue/UQBtaPoxdTzvoneXn+tz/5nBVoSOBYefmZm2euuHDVarXMc0308T+0iQGgAAmO8ICwPQwSL8se0sWCXmH/7FCUm1v6kqFYmGH6X8h3txovl1bKH1dfjKxzCiycMRV/Qw1KvTgsaCBngEDQhxpa8VYWEpn7u7PyCd9f5ktuXjdVoYS7sCAAAAAAAAAAAAAAAAAAAQJGgMcpGUEwBAY5mMUSbjKENNUuqfZYqhWBVGFjZ0rCL8rG4gmm0YWtZMsFrlNsP3HWUfAaDd5J0+frVvkJoxYQPRgkPH6oefmdl5DfpuPljNNAx4ay70rXKe8fHzvgAAoGmEhQFAM1Y+x02/cb/haPs10omXtaSUkjB/bCf8R6GPYTOSVIgQFnbgTumoC1tfS9rhQzV5+OJBlIA3yeE16ON585QvYWG5VoSFpey+f5PWv0fKuHv702uPX5d2BQAAAAAAAAAAAAAAAAAAIEjQ2NC44+4BAOhwmYxRj9OPYHj4OaIQrLUq2uDQsqaC1WoGotm6fUcKVquow4aqLWqwGgC0E2ulyULp5mgLrjp23LeUMa0JHasdfmYq2jKBgWiNw89qB6uZ4H6a6LvWPmYzBKkBANoLYWEAOliEP5q6FrS+DEmx/4DbvzGFsDCX6zfTZ8g/wFwFPdkIrxg8fIWjsLAYjKunBD7+gRz1WvAxLKzTgsY8CQvra0VYWMrnLj8o7bxBWvX8dOtIy+ShtCsAAAAAAAAAAAAAAAAAAABBMkFhYZ02dhYAACTBGKPsVIBKj5OPWPn4+apwpoPUAkPLQoaOBYeW2ab6DhOsVlmHjRb6FmIfCVID0G6KVio6C1Jz/fe6+yC1uKFjweFlpmL9bHU/sYPVTHAdIUPfgvYxYwhSAwAfERYGAM1w9U1EbfmmZcJP7oOO0Zw/MhKuy6c/cuJcRz2LW1dHOZ+Oz7TIx8lV4BxhYaEFPgYnHBaWa0VYmAcmDia0oQ67TgEAAAAAAAAAAAAAAAAAQDxBXyRbJJEBAAAgSeVBao624Kpj56y1c8PJIoSOBQei2cBAtOq+G4WfFWrUUSjaOX23KlityEeJALSZopUm8lMTk63uvb2D1CrCzRqEjjUKP5vbj5kbolYzEC1qsJqp209zoW+V6xOkBiBNhIUB6FyRAnpcPWGO22+L64odXubiOAX12YZPpNMMh1v3D9LmD81tdxWE5+X5iXj8nZ03Xv0MLeg6DRoQ4kpfC8LC2jIkEgAAAAAAAAAAAAAAAAAAIAGZgDHIzsY8AwAAAM0xxpQCRLJSr5stOOk1CdNBanUD0eqEn80JL5vTZmsGokUNVivM6cfGDn0LClbjI2UA2s104OSEk97bP0gtbuhYcLCamWnL1A1Eqx+sVrsO07ifWvWG3MdM0Ot6AFqGsDAAHSzCEzxvw4JSeIXAm7TbsHV0wqsoIfZx6TkBq3bSG+dRrwVH11Ccx5WOe3XQk7CwXAvCwgAAAAAAAAAAAAAAAAAAAFBbJmBsaLGTxjwDAAAA7ak8SM3RFlx17FyxWApSCxs6VjP8rG4gmm0YWtZMsFqxyb6jBKtNTwNAu5kOUhvPu+jd5efH3X82PVwg2tzQsUbhZ6WfZqYtG9B39GA103w/TQSrEaSGViEsDACa4iosKOZfsi0PDIrZn5MAo7B9tsOTpBRD5wJDlVy9muJhmJV3AVtx6vFtXxwLfKxMOixsRQs66aRz10n7CgAAAAAAAAAAAAAAAAAAYgsa89xRX5AMAAAAYL7JZIwyGalbmvqn1drh87W1TQepxQkdqx+IZmsGojUbrDbdXqjox9atLW6wGgC0m+nHOTfaN0jNmNpBZK0KVnvTUzN67rr2fS6A8AgLA9DBIvxn7SxkKG6/aQSxJPxEIejYG56wNCfhN87D3mdWvdDN9muKeH/x9v7fQYKu08AQPEe6F0pdC6X8ULLbbTmuPQAAAAAAAAAAAAAAAAAA4KFMwNjQIp+SBgAAAID5qCJIzYn2/SxycTrorCL8LFzoWGD4WUWbbdh3M8FqxYo6bPOhb03sIwC0E2ulvHUXpPasM6za+f87hEdYGAA0xVGwStwQopYHPfkYXhbUZ9pPWNLefpkw11Hi37IVst9sztH2a4h8f/MxWMnHmlzyJCxMkvqOlga3JL/dduQsaA8AAAAAAAAAAAAAAAAAAMxLiY95BgAAAADAT5mMUU9G6nGWDOLR56SbYK1V0bYmdKx2IJoNDlsLGX5WHaxWqGizoUPfmt1HgtSAzpRN4eP2SAdhYQA6V5TwEmdvLvoYztVI0n/8xQ0L8ymsJsVaAt84L7jZnpchQZ6FhXl5jDwV9BicRlhYbmW8sDDOOwAAAAAAAAAAAAAAAAAAQG0mYIx4kU+7AgAAAAAAyRijrCmF47gJUmvPEDVpNkitZsBYnfCzmuFlNdryRRsYiBYlWK0wpx8bLfQtRLBakY/2Yh7ryqZdAZJCWBiADhbl2ZyrZ4CehYXFDrFJ8Jly9RvBQW8Md4QQx90EPctLOwgvyb+uIm7LWbhTjH47LXAqMLAxhbCwvpXJb7PleLwEAAAAAAAAAAAAAAAAAAAeCvyCZMLCAAAAAAAA6ikPUut1swUnvSbBWjsnWKxW6FjoYLU569vA0LIowWrFOf3YhoFoYYPVqusgSK39daXwcXukg7AwAGiKo2c53gX+hAmdSviJvHfHKIY0Q6cSf+Pcw7CwyMffw7Aw3wOPhh6R7vmQtPcWafFZ0rr3SEvOit5f0HUadF27lIsbFub5uWspD/d1Pv2fAgAAAAAAAABpsUUpPyxNDkqTh0u3/OHZ6Uy3dOR50sDJaVcKAAAAAACAdpMJGBu64UfJ1gEAAAAAAIB5wxijrqzUlXW2BVcdO1ecCiKLGzoW3GZrrh82WK26jkL5Ok303Wyw2mQh7TMTXpawsI5BWBiADhYhKMRVuEjcoCbfQk+c1BPUZ8gnzc6OUbs9aU84LMzLb+/yLCzMt/tvq4ztln72bGno4dL04fuknT+VnnubtOjUiJ16FBbWFzcsDOmap/c7AAAAAAAAAGjEWqk4XhnwNXlYyldNT8/PV01XLDuoUK+3PuGfpLWXJ/9lRAAAAAAAAGhfo0OBs+zPvyctGJAWLJL6F0n9C0u/9y2UyTr7pCcAAAAAAAAwb2UyRpmM1C1N/dNq7Tt2bDpIrZnQseYC0Wxg3830c8ry9j3GaA5hYQDQFFfhInH7bXVdYfqr92QhzbCwdngSk2LoVGCoki2t3/IPaYTc10QDsyJuy1mNcfr1OPBo03tng8KmTRyQtn5LOvO90foMDJ9LISwsFzcszONz1wm8DDIEAAAAAAAAgDqKhdqBXvkaAV9B4V/TyxYnk639rvdIK54lLTs/2e0CAAAAAACgfT14d+As+95XB8/rWyD1DZTCxPqnA8Wmfy/9NOUBYwumfi9v6x8oBY9lUhifCgAAAAAAAMArFUFqTrRDPgZ8QlgYgM4VJfjHWbiIb2FhHgo6X+34DeSJBmNVCQwLk0rXUYuPZ+h9TfCYRD7+HoaFpXkt1TP4oPTQFbXnHdgYvd+gx+C617UjscPCOomP16mPNQEAAAAAAACYd6yVCiO1w7waBXpVL18YSXtv4tlxPWFhAAAAAAAACG/wQLT1RodLt/07AxcJPbq5KmRsNnRsNoDM1Aobq2gbkPoWyLTjmHcAAAAAAAAAgHcICwPQwaIEhTgKF4kb+NPqwKBQ/dV7wzLJEBbeOJ0V5rjXCVWyBQehSz4G8vgWFjYPbXqvZPMBM+OEoxVqt6cRFtYXMyzM16A3F3zcV2fhnwAAAAAAAADmhcLEVJhXyICvoPn5QV6PnDaxP+0KAAAAAAAA0E76B9KuQBoZLN32Bi8SaoRkJiPbNxUkNv1zJoBsNmTMVISRLawIJZtp7+0jeAwAAAAAAAAAOhhhYQDQFFeBJ3H7TSGIJfE3GdvwGCUtTCBPvVAlJx9W8fG4R6zJVeBRrH49PL4H7pK2fjN4fpz9HX0sYEYKYWG5mGFhXkjq+vHwOj20Oe0KAAAAAAAAALRasSDlhxoHejUMABuUiuNp7838Q2gaAAAAAAAAOlWxKA0fLt3qCDXaMpuV7asKFJsJIJtq618kExQ2Vh5S1tNL8BgAAAAAAAAAtBnCwgB0sAjhJc7CguIOjm91XTH7c3KcgvqsfoOSNyzrMtngeS4+pBG6zwTDhCJfn76GBXrmrvckv816IXiu5I5S6fHGt+vJRx7u68NfaryMyZYeLxgIAwAAAAAAALhjrVQYnQ3pygcEfNUK9JoJ/ppedyjtvUFdHr5WDAAAAAAAALSbQkEaOli61REueKxLtjxQrCKAbGAmWMwsmAoX659tKw8m04JFMt09Ldk9AAAAAAAAAEB9hIUBQFM8DQvqXdaaMmaEqSfh8JSggKd2DHHJ9jrqOMR5qxuq5OIb3UNe266C+GpvLOH1HPab6HELYc8G6fEfNVgoYs2TdT7kNfpYtD7jyHSXHnvH9yS/7XbjIogwrvxw42VsQSpOOHzMBgAAAAAAANpYcTJaoFetZW0h7b2BJGVzUvciqWtR6Wf3wNTPqVtX1fT0/Orlb7tMevR7c/v38bViAAAAAAAAtKf+AWlsWCrymlMshbx0eH/pVkeYkb+2u2cqUGwqbKxGAJmZbqsRNla+nunqbs3+AQAAAAAAAMA8RFgYgM4VKWTHw7AgSRo4pTVltIyL4xTUZ9iwMEfnLkpY2VEXt76OsOqFhbn4kIZvYVaSIl8LrvYlVr8eHV9rpTsvd9h/nQ+LLT7L3Xbr6VtJWFgoHl2nzbJ5SYSFAQAAAAAAYJ6wRSk/VBnala8K8Kob/lU2XRhLe28gSSZbP9ArKOBrzryB0pdktKqmmtr4tWIAAAAAAAB4JXP9XllrpbERaWRQGj5c+jnz+5A0Uvpphw9XtQ1Kw4OVy48OeTrmuY1MTkiH9pZuAcIeYduTmwoUG5gKIJv+fepn34DMgkWzbdUhZWXrmWzQ65UAAAAAAAAA0J4ICwOAZrj6xuu4by6m8U3cUUKynKiqI+m6ohz7wA9JxBXmOko4LCz827oOth20qajb8jQs0Bc7rpP23Nx4ucjHv871mVsRsc+Ycisl3R1xZcfnPdRxrvN40ErtPIAmjf9fAQAAAAAAgHLWSsXx4ECvfIiAr+n5+cG09wbTuhZGCPSamtdVNp3NefSe3bSAeni9FQAAAAAAAC1kjJH6FpRuR64MXi5EX7ZYlMaGK8PGagSQ2eHD0mhZ2FjFMlM/R4dat5OdamKsdDsY/IW+oUeo5/qnAsWmw8YWzQSOTYeNmQVTYWP9c8PGZgLJ+hYSPAYAAAAAAADAC4SFAehgdd4iMlnJFppbx1UtoVZv8eD62MEuLo5TQJ9pfwCieyDCSikG5/w/9u48zJX0oO/975XUi6TuPsucM3Nmxp7xzHiZzTM2xjE2PYR4lgAAIABJREFU+2IDDiFsF3ggYQ1c58YJD6uNjcGOsTEQdq6Bm7AEEogDuSwBYt/EBmMDIcF4Vo/tGY/twZ7xzJk5S3dL6kXSe/8oqVUq1VsqlWpT6/t5Hj2nJVWV3pJK6tMl1VcmKg6UwUEacbfNXGNCxykWVpIIk+1Ld78m+9twidyuM7Tu/nBJ4eI893J7/SzJdpoEB68BAAAAAAAgqX43EO2KCnpNiX/ZbtFrA0mqrE0GvWqBuNe0+NfKllRtSpVjfFCZa589+1sBAAAAAABQUqZSGcWkzlzjni7Gsmyv54XHWtujgFh7MkBmhz+3dtwBsr12eiu5rPba3unC485JYofH6k0vItbcnAyQDWJjR+Gx5lZgms3RZetNb5sDAAAAAAAAgASIhQFYYo63dU6/QHraV0j3vC5kloyCJ/N+OD71D9eXMOySa0xqBvVrpYt3zTZPZttRjOVGRZX6YYG8ecVd1zwPEEl4/5d1GyyDR353hudB0vs/ahsp6A3z+tXJ5818e4rznMopFrbQzx0OXgMAAAAAAFgq1krdVnTQqxsn/rUt9TpFrw0k732RWYJeNUfgq7YpVVeLXpsF4dpnv8j7igEAAAAAAIB4TLXqRaGaW9HTxViW7Xalzu5kbKw1DJB5P9tgkCwsUnawl84KLrNOyzs99Zhzklh7QY2RrW+MRcZGgbHRz2YYGasHYmP+SNl6Q6boL18HAAAAAAAAkCtiYQAQdOI2ud9+y+pD7PMut2Qxk0zCMK5lxnxzq1SxmgK3IxP1TfUZbEdx7/c8H5/Et1Vg5C2LedPSPwyPK6YtKhYWFcHLUv1cMbcbR5yIZG4fDijZ76hZpB7jBAAAAAAAQCZ6++HBrmlBr8MdX/xrW+rusk+oLGrN8KBXLSTwFRUAqzZy3BcKSe77m+cWAAAAAAAAMBNTq0mbJ71T1HQxlmW7h4O4mC8g1tkZhcUGITI7MU1IpOzwIJ0VXFbWDmJuO9GTxVlWpSLb2AwEx4YBslFkzBzFyQaXDedp+sJjq+uExwAAAAAAAIAFQCwMQHEuvF86eGry8sb10tazsr/9qMiO80PsJY2Fpf7h+rjjMTNMOy/H7Uw8Vnm/QZXk9ooMPEVElTI5SCPuuuZ5n5QsFjbXcksQC3v4N6SdB2eYIemYSxgLW58nFpbxYxfn+ZxXbK4MUbukOHgNAAAAAAAgO/3eIN41JegVFQDrDs73OTCpFCorg2jXDEGvsfODn2sbUoWPMiwu1z579rcCAAAAAAAARTG1FWnrtHeKmi7GsuzB/ih21fbFxobhsfa27DA21t71AmNhkbLWttTrprOCy6rfl3Yve6cIsT7JW63KNoJBsc1RZGxwMs2Qy4ORstU1wmMAAAAAAABARviELYDi3P2D0mPvmLz81ldJz3tL/uM5YuT+EHtGwZN5Qyqli5nkGYYp+k2kBOtaZHQuKqqUxXYUd5l5bsNJ7/+sHrdFDil1O9K9b8jntiK3kYJiYfV5YmFZi/OcKjj2uAhK9/sVAAAAAACgYNZKvfb0wFdY0Cs4bbdV9NpAkmTGg161aYGviOuqa0WvDMog9y9lAgAAAAAAAJAns7omra5JJ8+4p4mxHGutdLDvxcTaO6PYWGtb6gzCYq1BeKzti435A2X+AFmvl95KLqNeT9q56J0ixNrTW1uRDQbEjgJkW0c/m2BsbCJAtimzsprK6gEAAAAAAADHBbEwAEss4m0K54fYs4qGzPvh+JTHFffD+sbk98F+5+3EjYVlFXpKct8XeDBEVCwsk290j7uued4nSW+rwMhbJvOm4MFfkjqfdFxpFDq+xLG2iO0zcrvO0Po8sbCMH7s4r025HZi1yAeAEQsDAAAAAADHRO/AHfTqhgW+IqYlsF4O1Xq8oNe0+FetUdw+VhxPru2J1w4AAAAAAAAAPsYYaW3dO5260j1djGVZa6X9znhErL09HhRr78gehcZ2JiNl/ggZX34wn+6hdPkp7xQhzr1sV9ekui82NhYUG0bHfLExZ6RsU6a2ks76AQAAAAAAAAUiFgZgebnewDFG7reUyhgLUgYfrp93PbO4n+IuM248LC1J1jWrcFmM5UYd8JPJQRrHKBaW2Zu+cyy3yDeiD7elD7w5/LrKqvS0r5Ae+c8p3mAJY2H1eWJhGYv1fC469rgALN8yBwAAAAAACmT7Und3MtgVJ+gVnL6/X/TaQJJMbTLoVQsJfE3Ev4IBsE2pwlv9KCvXPvsF3lcMAAAAAAAAoNSMMdJ6wzudvso9XYxlWWulTmsQDxuPjY0iY7uyw8v8kbGjSJnvcsznYN87XX7SOUnsIxbW6qOAWH1zFBbzBciMKzbmj5Q1NmWq1XTWDwAAAAAAAJgRnyAGgFA5x8LmjTQV9k3cOYa5IuNuBUpy3xcanYqKhWUQxYm7rnluw4nv/wIjb2X0wE9L+45ve3rmK6TqmmPGpLG2EsbCVk56YbT+wezzZv64lygWtsgHgBX2+xUAAAAAACwsa6Xenjvo5Qp8hV3f3S16bTB0FO6KEfSqOQJfK1tSZa349zWArLm2cfa3AgAAAAAAAFgAxphBLGpD0tXu6WIsy/b70l4rNDbmv8wOw2T+yFgwQNZppbaOS2u/450uPuGcJHZ4bL0xCIoNYmNjkTHvMtMIhMaOImW+y+sbMpWCPgsPAAAAAACAhUQsDMASc+3GNxEfYi9rLKhkH67P5H6KeLwKlWRdCwznREWVMjlII+4y87xPShYLm2u5BW1Le+elD/5U+HW1pnT7a6UHHNcnFbl9FvQGqTHS+jmp/Ugxtx+l254+TV6hukU+AGyRxw4AAAAAAGbTPxyFu2YJek2c35Fst+i1gSRV18ODXmGBr8j410ZxX1gALCTX84X9rQAAAAAAAACWi6lUvChUYzN6uhjLsr2e1NkdD4gdBchGsTEbjIwdhcl8P+930lnBZbbX9k4X3JPEDo/VN0axsUFALBggMw1fZCwYIGtsepGyetOL3QEAAAAAAOBYIxYGoHw+8OPSHW+UKisFDcDI/XZLGWNByiBmEnc8ZXgjIe4YyvTYFTgWU42YPYODNOLGiPKKFnk3lnC2AiNvZXP/j0nd3fDrnvPd0vqVETMnvf8jts8iD9SrlzAWdvkD0p8+N8aEeW3Ti/zc4eA1AAAAAABKzfalbms86NWNE/jy/dwdnO9xUEQpmGp00KsWiHs5A1+bUnW16LUBlpNrnz3vswAAAAAAAABAYqZalTZOeKeo6WIsy3a7UmdnFBtrDcJjw9MgNmaDkbGJSNm2dLCfzgous86ud4oQaw+7MbKNYFBsGCAbhcXMMDTmj40FI2VrdcJjAAAAAAAAJUUsDEA5/a//U/qMX8v4RiJ2lzvDM2UKTvlnTzlmMveH9bO4nxzLDL4BkfcbEknu+yIPhoiMKmURxYn9fTgZ3LbDwcWEM5bx+V/AttT6e+nBt4Zft3pauuX7vJ9Tfy6WNBa2fi7hjBk+du/92pivTcTCpsoioggAAAAAwLKzVurvxw96Rca/drTQ+x6Ok1rTF++KGfQKm75az38/P4CUuZ7D7G8FAAAAAAAAgDIwtZq0eco7RU0XY1n28MAXGRsGx7ZHP7e2pc4wPOafJhApa21L3cN0VnBZWevdj63t6MniLKtSkW1sjQfFjgJkvvBYMEzW2BqPlDU2pdV1wmMAAAAAAAApIhYGoJw++pvSHT8qNa7J7jZcwSZj5HxbI6toyLzxqKJiJsbk2Jop6wFfScaV0brEuo8iokqZbEcx1zXPbfhT70w4Y5GPWwbzJnXfG7yDOcPc+mppNfrbqhKPOXIbKTAWVk8aC8vI9oPS5fvjTZvX865sr9+zjIdYGAAAAAAAI/3uKNDlD3p1tycDX6HxL9/5Ph/0L4XK6vSgV80R+PJPX9uQKtWi1wZAWbi+4IP9rQAAAAAAAABw7JiVVenEFd4paroYy7IH++Gxsfaud1l7R7Y1eVlogKzXTWcFl1W/L+1e8k4RYn0qu1qT9YfGxgJko7CYCblsNK33s1ldS2X1AAAAAAAAFhmxMADlZHvSw78m3f5DBQ3A9VZEVsGTeT8cn/aH6+dcz86j6QxjjGtMMb9hJKtYTaLlZrUdxViu6wANKZuDNGLfPznGhD7675PN9+G3Sjd/d7pjkZTrus9r+0PSw78efl39GunZr8zutqO2z6jtOmvrCWNhWR0UdeF9swwimzEUdjtxzTCenQelrWdnNxQAAAAAALJmrdRrjwe74ga9gtP32kWvDSRJZnrgy3n9MO41+LnKh+kBZCHv91kBAAAAAAAAAMeBWV2TVtekk2fc08RYjrVWOtgbj421tgdxsd2joJg9CowFQmNjAbJtL5yF5Hpdaeeid4oQ510Eu7I6Co4dBcg2vJjYIDZmmltSPTw2dhQpa27J1FbSWT8AAAAAAICcEQsDUF6X78/4BiLiU8bxFkKpglP++Yt688FxP/3Pb5Vu/JaUbytuLMwVDSpR6O1wN/1hSJo7FpZ6dG6WZS7AASK7D0kHF6XVUykveJ51z/l+u+d17teb239YqtV9F6R8MNDBBfd1RcbC6gljYVk9dq7fX2EuvC+D1+oQhf2Octh/Kv607/4y6Ss/JdWvym48AAAAAACE6R0Mwl0xA1/+67uBn8v2t/myqjbCg1614Pkp8a9qY7Z9QACQN9c+e34fAQAAAAAAAAByYIyR1ure6dSV7uliLMtaK+13vJBYa1vqjGJjo6DYjqz/sk4wUjaaLrNjkpbF4YF0+Snv5BD76+5X18YiY15QbGMsQGaa/ssCkbLhfPVNmRqH6AIAAAAAgPywJwJAeRUawMr7G69LFguL+wZE/8B93eGOdxBT1oIHRTlDbxltT0nerPnkH0m3fn8xY4mKKtleemM5WmbM+yfP53utKXVbyeb95J9IN/yTdMcz1xt+Ob5ZeOHvpEd+N/y6jWdKN31btre/94T7OlPgf2nXr042X2bb/AwHin74F6VP/4WMxuFXsje1P/622aZ/9I+lm749m7EAAAAAAI6Xfk/q7k4PenVjxL+i9r0iP6YmrZ6YLegVnHZlS6ptSBXelgWwJJzvRZVsXzEAAAAAAAAAAFMYY6T1hne6wv0l07HCY/2+tNeW2oHYmD8o1tqRbe8MptkNiZTtjs5jPgf70sF56dJ55ySxw2Nr9bHI2NjPg9iYaWx6gbF6IDbmj5TVN2Sq1XTWDwAAAAAAHFt8Kh1AiWX9gfGo5S9YLExpR2dSWM/230snbp1/OUPOoFIwFpb3AQgJ7vt6wrjQVHHGEhULyyJeFDcWluMBIs98hfTBn0o276V70h2LpIU5OObu17ivu+NfS5WVwIVpv45GzLeylXCZKai73/SNltHj7gomurQflRrXZDOWIyXbxh/6pdmm/5t/RiwMAAAAAI4za6VexxHtmhL0OtwZhL+G1ycM1CNlxot1uYJetZDAlysAVlmbfX8LACy9nL/YBwAAAAAAAACABWAqlUFAaiN6uhjLsv2+LyA2CI91JgNk9ujn3ckA2fCyvXY6K7jM9jve6cLjzklih8fqzfGAWGNzdGp6cbGj8FhjMxAp81223vS2OQAAAAAAcOwQCwOwvFxxImPcwamsgkZxlrt2Vtp6jnT+vSHzl/DD9amPKe5973rsMrqPkmwT60njQlPEWcfIA9sy2L5j3z85xoTWzrivu+YfSo/+SX5jmVdekbXH3y099o7w607eKV3/ddmPwbV9V9eLPWAz6fM5s9ftGe+Li+/PPhY263ZqMv4TJc84IQAAAAAgO/3DZEGvsOltr+i1gSRV64PIV0jgKyroFZy+1oz4UgkAQOac77OW8P1MAAAAAAAAAAAWkKlUvCBUM/pLt2OFx7pdLzzW3hmdWtuj8NggMmaHYTJ/gKy1PR4p2++ks4LLrNPyTk+5J4l9lM5YZMwfFxudN67Y2PCyxqZUb8rwJVsAAAAAAJQGsTAABSrxjkLnTsysPsQ+ZVftqedLL/4t6a5XOWYv44fr046xuJYXeKxyPwAhwXpmFi6Ls9yI510mAZ2Y65rrNuxYzyteJH32f5Hetp7jWKRcQ2lJWCvd/YPu6+98U/jzLu03g1zbyMqJdG9nVutXJZuvLLGwXMy4jdca2QzjSMmfcwAAAABwnNm+1N2NF/hyXT/8ubdX9NpAkkw1EO8KCXqFBb4mrtuUKitFrw0AIA3OYCP7ZgEAAAAAAAAAKBtTq0mbJ71T1HQxlmW7h76g2HhszAuQDcJj7e3ANIFIWWdHOthPZwWX2fB+fdI9Sax3byqVUXhsIkA2ioyZRiA21twaBMc2RpGytTrhMQAAAAAA5kQsDMASi4pPOXY8ZhJTkjsac/qF0hf8d2l1EMPJLYSVwnqmfV+5lhfcSew8AKHIQFdQkeGyqJ3qGWzfsbeDPA8QiXjuV9ekjRul3YdzHM48657D/fbJP5ae/Ovw685+pnTNy2dbXuL1dTxvnM/5nNTqXrDs8PKMM2b0OjDzG2c5vNE262Oe1e/a0Q1kvHwAAAAAOGas9cJcrqBXNyTw5Zx2p+i1wVBtI0HQK+R8dT39aDwAYMG53mct45cfAQAAAAAAAACAtJjairR12jtFTRdjWfbwYBQQa+960bGWLzzW3pEdC5MFA2SDaXcvS71uOiu4rPp9737cjT5mItan9KtV2XowKBaIjDW2ZIbXNbekum86f6RsdY3wGAAAAABgKRELA4AJEbGwzAIjrhBWZRQKG54PlfKH61MJteQVMAs+VnkF1Y4WnGCWAsNlUTvCMwn0lDAWNi08l3moKKjEsTDbl+55rfv6O38sYptK+U0X5/ZdcCxMkurnZo+FZfaaVIL7Y0LJDgDL/TkOAAAAAAXpdwPRrkDAa5b4l+WDs6VQWZsMetVC4l5T418bxQfYAQDHl/N3DPtmAQAAAAAAAABAPGZlVTpxhXdyTRNjOdZa6WB/PCA2iI2NYmQ7skeRsfHLJwJkvV56K7mMej1p95J3ihDrXaXaiuwwIDYRIBv9bAYBsqPYmD9QNoiUmZXVVFYPAAAAAIA8EAsDUF6Zxzwilu+K32Q2prKGsOaQW4wlcB85H7sCA11pzJPacqPeDikwFpZrvGfa822RYmEZ+9jvSJfuDb/u6i+VrvzsBAtNuL6u7bsMB7aun5O2PzTbPFm9Dsz6zTh5fJNO6eJcZRsPAAAAAPhYK3Vb0UGvbkjgK2z6XqfotYHk7buYJehVcwW+NqUqH04FACyCnN+rAwAAAAAAAAAAcDDGSGvr3unUWfd0MZblhcf2RiGx1jBA5guKtbZlO4MgmT8ydhQp2/XOt7ZL+Dn7BdM9lLYveKcIce5lu7I6FhhTc0uqb4wFyIwvLiZnpGxTpraSzvoBAAAAAOBALAzA8nLtVDVG7t28Ge2IjRyL//wCxcJSv69i3keuoJqyuo8SrKfN6ptEShgLi71t5rgNT3u+5f18mucNnizfHOodSPf+sPv6O980ZQFpR6hKHgubWVbbWQ7xr5nNup1m/KYnb6oCAAAAyEJvPzrw5Qp6TZzfEZHjkqg1w4NeYYEv5/WbUrWRT6wbAICyWKj3MwEAAAAAAAAAAOLxwmN173T6Kvd0MZZlrZX22qPwWHsUG1NrR+p4ATI7vMwfGRv+PAyQdXb5jPy8Dg+ky096J4e497BdXR8FxBq+sJjvMjO8rLE5GSnzzWeq1XTWDwAAAABwrBALA4AwuX+I3RUvqkSfP5L2uFLYSZz2fRV3x7Xzscs59BYpo+0ozliiDkzM5D6Kucxc35hw3ZaZcn1WSvqmzMO/Ku0+HH7ddV8nnX5+wgUnXF/na0oJYmH1BLGwzLb5WQ8+zuNg5bJt42UbDwAAAIDC9Hu+UJcv2NWdFvgKmbZ/UPTaQJIqK9LKieigVy14PmTa2qZU4QOXAAAk49pvz75ZAAAAAAAAAAAAaRAeqze9k652TxdjWbbfl/Za47GxYICsvSvb2h6PjI1Ns+Nd12mlto5L62DPO118wjlJ7PDYemMQFBvGxgaRsfooNmaGlzc23ZGy+oZMpQTH3gAAAAAAUkEsDMASiwoGuXanZhWcckVwguPIK2KWxnqmfV9NCzwNz+YVVJtjuZlF5+IsN+qtggy279hBpDIdIFKmsUyT0Vi7bem+N4ZfZ6rSHY7rxqZLOULlet44n/M5Wk8QC8vqNWnm+z2H7X3mMFrWY1qk5zgAAACACdZKvfZktCtO0Cs4bZcPOJaDGQ961cICXxHxL//11bWiVwYAALj2U2f2/hgAAAAAAAAAAMDyMpXKKBZ15hr3dDGWZXs9qbPrC4gNImL+n4/CY4NpOoN/gwGyvXZ6K7ms9tre6cLjzkliH7VV3xgFxBwBMjOMjYUFyIaXrTcJjwEAAABAwYiFAcCEAmJh84aw0v5w/cxhl4yWMb7A8IsnDjjIK6g2XG6C9cxsLCWMhcVdZq4HiEx5vqW+7U4zz+1lNNYP/4LUeSz8uhu/Tdp6VvJlJ75/SxwLqyeIhWW2zaccaUtFyQ4Ay/05DgAAAECS1DtwB726IYGviWkH13e3CU2URbURL+gVFv/yT19rph8dBwAABcr7i30AAAAAAAAAAACQBlOtShsnvFPUdDGWZbvdQXjMFxtrebExLzrmRcZsa3sUHHNFyg720lnBZdbZ9U5POY4VUswjlIzxwmNjQbFhgGwUFjsKjzVcAbJNab0hw2eGAAAAAGBmxMIALLGIXVjOb7zOKDDiWm5wHM4oThk/XJ/XmAoKqo0WnGCWAscStRM1i+079rrmGO+Z+nzLOSRUtnDRwSXpAz8efl1lTXruD8dcUMo77F3bUhliYeuLHAvL4Y2VWbfxzJ8TJXvOAQAAAGVm+1J3dzLYFSfoFZy+v1/02kCSTG0y6FULCXxNDYBtShXeYgIAACGc79WxbxYAAAAAAAAAAGBZmFpN2jzpnaKmi7Es2z0cj421tgfBseHPXlTMTkwTEik7PEhnBZeVtaP7NWqyOMuqVGQDkbHxoNggPOaPkzWH0/siZc0taXWd8BgAAACApcGRHABKLOMPjEcGg1w7h7Iak2u5wXHkHcKaQ9of+Hcur+BYWKLlFjmWqB2fWWzfcZeZ5wEi07alqLFkseN4jnXP4sCaB35SOrgYft2zXyk1njbnDSQcs3P7LkEsrF6iWFgp39wo2wFgZRsPAAAAkDJrpd6eL+YVM/AVdl13t+i1wdBYtGtK0MsV+FrZ8kLgpfzbEQAAHB+u/2uU8P1MAAAAAAAAlBfvaQEAgAFTW5G2TnunqOliLMse7A9iV4GoWGvn6HI7/Lm1I3UiAmS9bjoruKz6fWn3sneKEOsIkGpVtrE1iow5AmQmeNkwNtbclOqDaVbXUlk9AAAAAMgKsTAACOMKTuUdCwuOI7cQVhrrmfZ9FXd5eR+AkGA9Cw2XlTQWlmvwbkosLO9vtp/r9lIea+dT0gd/Nvy62qZ066tnWFjKH9JwbSPO1+scrV+dYKastvlZ7488Pkwz63ZaUCwUAAAAKFr/0B3tigp6hZ23vaLXBpJUXR/Eu2IEvvzXT8S/muX4+xcAACAO5/uZ7JsFAAAAAADADNifBAAAMmBW16TVNenkGfc0MZZjrZUO9gfRsUFYzB8TGwTFbHt3PEzW2pY6u+MBss6O1OPzXnPp9aSdi94pQpz/Ydraynh0bCxAtumFxRqbMsHYWGNzIlJmVlbTWT8AAAAA8CEWBmCJRQWDHLv12p/IaCiuaExgHIsUC8sr/hT81qjc7qM5llvkWKK+ZSuLccV+oz7HN/RdYzq6byLGcvm+1IeT67pPc/+bpF47/Lpbvk9ad78ZEl/C9X38neGXX74/+VDSsnbGe+2Z5TmU1etAGb9Jr3Qf2CnbeAAAALDQbF/qtsaDXt2QuFdU/Gs4fW+v6LWBJJlqdNCrFhL3ck1bWSl6bQAAAPLn2k+d6xfHAAAAAAAAAAAAANkxxkhr697p1JXu6WIsy1or7XdCY2NHQbH2jqz/smCkrDOarnzHcCyY7qF0+SnvFCFWeGx1bSIgdnRqenEx4wuQhUbKmltSfVOmRg4AAAAAgIe/DgAUqIRBE0mRsbDMRIXL/GcdISyV8cP1Ke5YjNxJGfc+ymhHZ/8wyUypD8MTZx0jtu0L75Ou+ry0BjMQ837f/pD06H+Trv6SHGJH055vEWN+9E/THkz07U1zEP2NFzPZ/aj00K+EX7d2Vrr5u2dbXtqP4yf+IN3lpalSldaulPY+NcNMWb35MuP9fhD95kU6Zn3NK+EbU9aWM8QGAACAZKyV+vvxg17dkMDX0fS7KuX/YZdRbSNZ0Gtla3z6ap3//wMAAMxlkd7PBAAAAAAAAAAAAIpljJHWG97pinPu6WIsy1ordVqD4Ni2FxObiIztyvrDZBORMt/PmM/BvnRwXrp03jlJ3E8f2rX6WGRM/sjY4GRcsbFGYLpqNZ31AwAAAFAIYmEAyitRhGkWEbtSLt/rvm7nIWnzmekOZfvD4ZdPHJjo+HB9Kb+JO68DZWPeR7sPZ3Pzuw/NPs/f/7/pj0OSDi5MnybqYNcPvEW65XvTG48027b55y+XnvXPpRe+Nd0xTJgSC1vWb9C49/Xu193bXuMdMJ2G43r/1s/NFgvL6nV71gPa/+obpau/WFq7IpvxSCV8zBOM5+++R3rBz6Q/FAAAAMym3x3EvGIEvqKu7+7ksN8JsVTWpge9XIEv//W1DS/kDAAAgOK5vtindPuKAQAAAAAAAAAAgOPFGDOIRW1Iuto9XYxl2X5f6uyGxsbU2j66zLa3JyNjLd9lnR0vYIb57He808UnnJPEDo/Vm1LdFxsbi4wNgmKNQGzsKFLmu6y+IVNxfZkUAAAAgKwQCwNQXpWMX6JcH0g3RupEBF/2zqcfC3vs7Y4rArvenB+uTzk6k8aH9VMdU8R4gmEc1330sf8oveQ/pDckSdqPEedysXYsv57tAAAgAElEQVT2qM8097xuvvn3n0xnHGNm3JYe/CXppu+QTj8/g7EMRD33vQmyu+0w8z7f9p+aP/R06X7po78Vfl3j6dKzXpFgoSlv32W37v72llCZRR4T3O9/9qXSl/yv9IdypGQHgCV5zn3oZ4mFAQAAJGWt1G1FB726wfOOaXvtotcGkrfvZZagV80R+FrZlKprRa8NAAAAUufaT13GLz8CAAAAAABAaaX9OWsAAADMxFQqXhSquSWdvdY9XYxl2V7PC4/5o2MtX3is44XFrD80NhYg802730lvJZdVp+WdLriPoY0fHhvEw4bhscZkgMy4YmNH82xJ9aYXuwMAAAAwFbEwAOV1uJvt8vccOzOq69HzZbHT4dxLpU/8/uTlF94XuG1XaT3tD9dP2Z3zzO/0/q1tegfwJlnGTMOZYVnG8att5WQ6Y/G7fF/yeS/dK526I72xSNLFu6KvP5VhgMslSZTn8XdlGwtzbpuD53Ym0bQocz5Xnni39PSvmm8Z9/yQexzPff3018WZlCwclZb6jLGwrA6KqtZnn+fC/05/HGNmfMzTCFZGOftZ0iNvy/Y2AAAAjoPevhfp6obEvaKCXsH4V3cnw1guZlJthAe9aiGBr4kAmO/naoMP5gMAAMAtry8/AgAAAAAAAAAAALAQTLUqbZzwTlHTxViW7XYHcTFfQOwoLrZ9FBmzwcjY2DSDYNnBfjoruMw6u94p4nC8WEcJVSqj8Njw36Ow2OhnMxYk2xyFx/yRsrU64TEAAAAca8TCAJTX4Xa2y+86YmT1a6WOu4oeb7fTjFw7HyYuz+vD9VN2wdz47d6/znhZ2qLGE7iPXPelPUxtNEe6c3wTgTOylqHnvSX/20wShtr9SPrDGDMlFhbl7GelOhLPnGGkecNKT/6N9Ik/CL9u62bphm+ab/lpOXGrdPkDk5evbOU/ljDrM8bClumgqKzjX7PaenbRIwAAAMhOv+ft75gW9IoTAOsfFL02kKTKyuxBr7BpaxtShbcDAAAAkAPn+4cl21cMAAAAAAAAAAAAYOGYWk3aPOWdoqaLsSx7eOCLiA3jYsOfB2Gxzq5sa3t0mStA1s3g2MVl0u9792Mr+pjiWO86V6uy9c3x4NhRgGwQGWtseuGxsNiYP1K2ukZ4DAAAAKXD0UEAyqubcSzMFS8xFXdwypsgg7E4ojHXf2PgpkvyTdxn/oH3r6m6p0k1DjNDLOymfyY9+qcZj2co4n6/8vO8g3I/+V8zuN0Ezr1MuvJz87/dRQwiXfEi6am/Cb9u7Uz6tzf3tjnn/He/xn3dHW+c42By12tlwvGuXxUeC3v2K5MtL231q2ebfhGfG4k5HvOTd0qX7o4/fVrKFi8DAACwVup1pge+XNf7z3dbRa8NJEnGF+4KxL1WNn0xr2nxry2pulb0ygAAAAAzcn2xzzLtFwcAAAAAAMDc+KwfAAAAMmZWVqUTV3inqOliLMse7A/iYoHYmC8oZo8iY7tedMz/89F121Kvl84KLqteT9q95J0ixAuP1WQngmKDqFjdFx5rDq/fOrrsKDzW8OY3q3weFAAAAOkgFgagvA4zjoU5/5yfsvsmixK468PxwRiX85u4C/pwvXM8eY4h8HhUVh0TZvCGcdRBDV/w/0l/9U/Tv82kPvcPCzrAuIRv1DtDgUVV/guMhX3qf0iPvyv8utMvkJ7+1cmXnTbn4xYRLczTuZeFX26qkg3bSZ/V63YZn3OOdT3zYkcsLGslvI8AAMBi6h8mC3qFTRv6f0bkrlp3B76igl5j5zelWrMc+0wAAACAIjj/L8y+WQAAAAAAAAAAAADHk1ldk1bPSqfOuqeJsRxrrXSwNwqNDcNjY0GxHdmjGNnueJTsaJ7BZX2+1Gkuva60fcE7RYjzbrhdWfUFx0ICZI1NGf/lgdjYUaSssSlTW0ln/QAAALCQiIUBKK/DnYxvICIYFPlNRHnGwoIfpnd8uD7tb+KO+01MeR34OtPj4Xp8coyF1Takykq5Dgyurhd0w2U88CNhKDD2NLOa8z5K+s1p1kp3vcZ9/Z1vni+g5po38Te9zfO45eDEzdIzXyE99MujyxpPl274p9L9b56cPqtvvCvlN+nNGujLeB1cr90n75Au3ZPtbQMAgOLZvtTdjRH4ihH/6u0VvTaQvEDvyonxoFdtWuAr7LpN7295AAAAAHNyvT/Ah9ABAAAAAAAAAAAAIIoxRlqre6fTV7mni7Esa6201x4ExLalziAsNoyMDQJkdixMFoyU+U6lPGZpgRweSJef8k4Oce9hu7o+FhlTY2v0c3NTqg/DYxuDwJj/Z9989U2ZGqkJAACARcP/4ACU1+G2twNhnlhNFOfOiSICTzFjYa74VOofro8bC6vOv4xYZoiFpR4oijLlcStTLKwopdwJWLLo1Nz3UcL5P/H70oX/HX7dlZ8nnXtp4hFlo2SPW5gXvlU690XS+fdIzeul679e+uSfhE+7TAdFler3reSOl0X9TgMAAIWy1gtzBYNdw6BXN2bg63DHuwzlMAx0xQl6RcW/quvZ7TsCAAAAMLvc3s8EAAAAAAAAAAAAALgYY6R60ztdcc49XYxl2X5/EB7zxcaGkbHhqbXjhcc6vtjYWKRscFlnN72VXFYHe97p0nnnJLHDY2v1UUSssTn4eWMsMGbGLnNEyuobMlWOzQIAAMgDsTAAJWalbkta2chu+WGMiT7INIsDUF0fji8sFhZXXqGXWWJIrscng2iV836vBP5dZiU88MMVLlrUg8uTxMb6PenuH3Jf/7wfS+H+SPm5uAiPmzHSdV/tnfyXhcrqubFAgb5c445jNxB+8bRYWJYBUwAAjqt+1x34igx6hUxvu0WvDSQvzBUMetW2wgNfE/Ev3/W1DQLbAAAAwHHl/L9+GfdfAwAAAAAAoLT4vB4AAABQGqZSGcSiNqQz17ini7Es2++PAmLtYVhsMkBmh7Gx9u4gUuYLkA0v22unt5LLar/jnS487pwkdnis3hyLjIUFyMwwNua/3h8ga25J601vmwMAAEAoYmEAChQjlHK4nV0szBkjmbZLIoM/Mm0v3m05P1xfUJAprwN7o8IxE28ElyAWNrxfOPA5h+hPEkmf+1mZ9z5KMP/HfkvafiD8umu/XDrzGfMNKRNle9ziKlvksQgle+ycr91T/jSy/elBMQAAjgM7CHdHBb2iAmD+63qdotcGkve36SxBL2fga1Oqrha9NgAAAABKz/VFEcu0XxwAAAAAAAAAAAAAEMZUKl4QqrkVPV2MZdlu1wuPBWNjw7DYIDJm28Eg2fBf388He+ms4DLrtLzTU+5JYh0JaYxsfWMsMhYWIDsKj9UDsTF/pGy9IUOMGgAAHDPEwgAUp38wfZpuK8MBRMVLIv74y+IPw2nRqSN5RWdixociY1h5RaICj4fr8ckkWkUsbLoSxsIShwKlbNYn51hYb1+650ccVxrpzjfNOZ7hotJ+LpYsOBWX63Ugs4Oiyvici/s7Li+O+6gyLQTWl0QsDABQYr39ZEGvifM7KuX/KZZRrTl70Cvs+mqdb1wGAAAAkB/nvl/+1gQAAAAAAAAAAAAApMfUatLmSe8UNV2MZdnu4SAwNoiNtbalji88NoiM2fZ2YJpApKyzIx3sp7OCy8ra0WMRNVmcZVUqssN42FFMbBggG0XGjD80NgyPBSNla3XCYwAAoBSIhQEoTpxYWKYfGncse+ofa1n8MRczpJJXdCZ2zCevP2yjxhMcg2tMGWxL0wI4xMKU6H7PJOw2dgPhF8fZUZNF4Gne9Z11/od+RWo/En7dM75ROnn7fOPJims9y76Dzfk6kFEsLPPnTxKuMRV0wJjztXtKCCyzwBsAYKn1e5OhrsNtqRuIe0XFv7qD8/3DotcGklRZkVZORAe9aiGBr4kY2EaMmCkAAAAAlFHeX6IBAAAAAAAAAAAAAMB8TG1F2jrtnaKmi7Ese7A/il21x2Nj3r/bskc/70oTATLfz71uOiu4rPp9afeyd4oQ62i2alW2EQyK+SNkg/BY03dZfRAbC0bKVtcIjwEAgMSIhQEoTi9GLCzLD407gyoFxMKc6xkzFpZ6dGaBYmHBP4idfyDnGAsbPm7TwjPLYKHCRbF21aU5kJSWOcP8h7vSfT8afp2pSXe8Yc6xjC3QcXnS9Z3ncSsSB0W5Q28FBRWd45nyp9EyPWYAgGjWSr32eLArbtArOH2vXfTaQJJkxoNetZDAV1T86ygAtilV14peGQAAAAAoluu9OvaxAgAAAAAAAAAAAACWgFldk1bXpJNn3NPEWI61VjoKj217AbFheKwzjI3tyLaCUTL/+Z3R/L1eeiu5jHo9aeeid4oQ6+jJ2orsUXQsGCAbhMWaWzLDwFhzdFkwUmZWVlNZPQAAsDiIhQEoTj9GLCyTMM+0ZRcQnnF9OH4ipFKy6ExU6CXNSNRMy3IdgJBFLMyxc+QoEhaxLZUyopWBJNtm1kV0Zygoxu1m8lzLMRb2oZ+V9s+HX/fM75Q2bpxzLAUoe0Hf+TqZ1WtAGV9bZn3OZb0OCWNhqYc5AQC56x24g17dkMCXKwDW3eEA57KoNuIFvVzxr+H0tWb5/18JAAAAAAsj7/3iAAAAAAAAOJaW5bPWAAAAAOBgjJHW1r3TqbPu6WIsy1or7Xd8QbFdLyA2DIoNw2NhkTF/jGw4P3+zzad7KG1f8E4R4tzLdnVNqvtiY80tqT4Iiw0uM41AbCw0UrYpU1tJZ/0AAECmiIUBKE5/P8ZEGf7B6Ax0GUX+eZzJAcQxY2Gu6EzqB6rHvd/zOpg6ajzBMeQYn5kWeYuKqS2NMu70mSMUmEUUYt4dY3Hn339KeuAnw6+r1qXbf2i+cUxI+bm4qDsQc3vdLjPXY1fQa6Tztbsafvm0+QAA2er3pO5ueODLGfRyxL9i/Q2KzJlaIOblCHxNu762KVXYtQkAAAAApeN6L5V9rAAAAAAAAAAAAAAAFMIYI603vNPpq9zTxViWtVbaaw8CY4PwWMsXHut4/9r2KEI2GSnzzYP5HOx7p8tPOieJe2SmXV0fRcbqg/DYUWRsQ2psybhiY75p1NiUqU45Vg8AACTGEXUAitOLcaB2pnGYpMGgDAJZccMlzvhUyh+uj/th/chwWk5hn+AYMom5uUyLvBELK2csbB5lPJAl5n38gR/3IhlhnvNdUv3q9IaUiTkib0XKPRZWwuec63e5877Jeh0cy58WG+FANgCIz1qp1xlFurrT4l6B6/3Td3eLXhtIkoxU23AHvWoxA18rW1JlLee/2wAAAAAA+crp/UwAAAAAAAAcb3y2AAAAAABKyRgj1ZveSe5jEmOFx/p9aa81Hhsbi4v5wmPByFgwQNZppbaOS+tgzztdfMI5Sezw2HpjEA4bxsb8kTHvMtMYhMaGsbGjSJnvsvqGTIVjtQEA8CMWBqA4/YM4E2U4gIjwTN5vLjpjYZXo89PmT3s8EyLup1RjL1HLCo5hypjSfGyd99PgcQrG3pZRku3g0r3pj2PMHNGpTGJB8z5XYszf/qT04V8Iv27lpHTrD8w5hhCu51ri14YFjYU5x5fR77fMQ1tJxPwdlxtXvGzaazYHsgFYAv3DQLQrZtArbHrbK3ptIEnVdV/Ma4agVzD+VWsW+LsbAAAAALBQCvuiCAAAAAAAAAAAAAAAsEhMpTKKRUVNF2NZtteTOru+6FgwQOaFxWxrezwyFhYg2++ks4LLbK/tnS64J4kdHqsPg2MbRwGxsQBZfVNmGBsLBsiOYmVbUr3pxe4AAFhwxMIAFKe/P32aLD807lr21P/oZzCmadEp5/lp8ycUd3mR91WK91PkdlDgH2bTIm9RB9Pbw/THU0oJts3z701/GH6Jn/uSPvXf0x2LNP/rXJz573uj1NsLv+7WH5BWT803hjzM87gVKa/IY5k5t1HXY5fxAWPO1+4psbBleswALBbbl7qt8aBX1xH4cgXAhtO7/r+AfJlqdNBr7PyU6yorRa8NAAAAAGDp5PwlGgAAAAAAAAAAAAAAYOmZalXaOOGdoqaLsSzb7UqdnfHYWDAoNgyPdQbTjAXIfPMdcJzG3Dq73ilCrCMSjZFtBINig6hYffMoNmaGkbGGL0AWjJStNwiPAQAKQywMQHF6MWJhmQZDIuIlJ58XMVsWY5oSnXKdHyosYJJTLGymZUWMyfYkk+avvjliYZ/4I+mqz09xLCmx/ehxz7y8Mn5L/JRw0bSgQr8rVdLcjua9j6bMv/OQ9JFfDb9u/SrpOf9qztt3STsENWtwqiRcAap+VsHABXrOpflaM5OE49l5SFq7Iv3hAFhO1nrx5LhBr7Hzwet2Vc7X/yVU2xhFumpbMYNeIdNX18sfRAUAAAAAwMX5fib7LwAAAAAAAAAAAAAAQPmZWk3aPOWdoqaLsSzbPRwFxoYBsfYgLOYLkNlWIDLWDkTKWttSN6tjEpeEtYPHYTt6sjjLqlRkG1uj4NhYgGwQG2tuyQQv888zDI+trhMeAwDMhFgYgOL0D2JMVFAs7OlfJb3vX8443zxDmTMWluc3cZ/6tNHPUWGVVD/wH7Gs4B9AUdvV438mXf3SdIYkTX/czn6m9MGfds2c3jjStPtRafOmFBdYwvV0Pm6DqNP1Xy+df697/t2Hpa1npzmgbOe/54cl2w2/7vbXSbXmnLeflwWNhdU2wi/vttKP883j4JK0ejL95Ub+LijosXMGNqeM54M/LX3W21IfDoAF0+/6wl2zBL1CzmcWjsRMKmuTQa9azMCX/3y1KVUckVAAAAAAAJaKa19rUV9+BAAAAAAAAAAAAAAAUAxTW5G2TnunqOliLMse7E/GxlqDn9vbg+jYji86FhEg6zmOOUU8/b60e8k7RYh19HC1JhsMih0FyPzhsY3BNKPLjsJjdW9+s7qWyuoBAMqNWBiA4vT3p0/jDHqkwBUwMUaqrkfNmMFYXOsZjMi4vok7xw/XP+sVvjNRf37mFYkKjKHXcU966Z58YmHDx+maL3PPW1lNbxxDpirZ3uTls8SgYkX8ZpDnthnblFDQuSnbiCu8ldS8Yb2o+S/eLX38d8Kva94g3fQd8912pJRDUFGv2WW2csJxhfVCMquu65NKuD31YvxOTiQq9lhUUCVheO7yfamPBEBOrPUijcFglz/o1Y0R+DrckXrtotcGkhfbnCXoVQsJfNU2vfNV3ggBAAAAACBVri/JKOV7RgAAAAAAAAAAAAAAAIvBrK5Jq2vSyTPuaWIsx1orHeyNwmHD8FggKGbbO+Oxsda21BlGynZG4bI+nwmZS68r7Vz0ThHiHDlqayujiFgwQDYIi5nmllQPxMaGYbKjnzdlVjI4Dh4AkApiYciEMeYGSc+TdI2kDUmPSfq4pL+y1h4WOTYsmiyDUxGxkKj4zLxhn1COP4SCH6Yvw4frN27wnckpFhZ5nwfHkGPAzHW/Dx+nasQfQlk8Zmc/U3riLyYvnykIlfb2XcI/8qc9blvPlm57rXT/m2abP/mAspv/7te6r7vjDdHbaGaSrm/CwFPRnLEwSYeX04+FJf4dldFzNer54vqdljVneK4ifeG7pHd+gWO+Er6eAcddb98LdHUdgS9X0Oso/jU4393hOVwWtWZ40Css5hUV/6o2yh8MBQAAAABgWTn3/eb1RUMAAAAAAAAAAAAAAABwMcZIa3XvdOpK93QxlmWtlfY747Gx4c+tUXzMDi9v7UidQKSs44uVZXIM/xLpHkqXn/JODnHvYbu6NoiMDcNi/p+9AJkZxsb8gTJ/pKy5JdU3ZWpkbQAgTbyqIlXGmK+R9D2SXuyY5IIx5m2Sftha+2R+I8PCyvQ/9VHhmRyDU9L0eJHr/JEc4wf+xyQq9JLqYxexrGAkIM/Qm+2FX26qo5+v/UfSJ/9ryLxZPGaOdV/ZGj9/4lbp8gfCp017XEmXZ/sZhoQiQkFDN39PjrGweTnW5/xfSo/+Sfh1J26Trv+G7IYkZRDwWNBYWFQM7PByfuOYJqvtOjIWVnVfZ22GERjXmIzUuM49W+me+0BJ9XtSd3d60MsVAPNP2z8oem0gSZWVQbhrhqBXLSTwVduQKuyGAgAAAADg+HPs22UfKwAAAAAAAAAAAAAAwLFijJHWG97pinPu6WIsy/b70l5bagdiY8OwWNuLjdn2zmCa3ZBImS9Ahvkc7EsH56VL552TxA6PrdXHImMaRsZ8cbGj8Fg9EBvzR8rqGzLViONSAWBJcJQmUmGM2ZD0byV9/ZRJT0v655K+yhjzzdbad2Q+OCy4DGNhrnCUKXEsTI54UmEfrs/pfpop8pXnYxfjccs18BY3phQVeVuCWJhzTHEeNyn9x27O7TLs+WGtdNcPuue5801SpaA/iJNG+yJfs0tsJSIWdpBFLCzp/ZvV75GoWFhWQcAporalyIAZB7LhGLNW6nWmB75c1/nPd1tFrw0kSWY86hUMeoUFvlzXV9eKXhkAAAAAALBIXPt++eZXAAAAAAAAAAAAAAAAOJhKZRCT2oieLsaybL/vBcOGEbHWjtSZDJDZsTBZIEA2nKfDsVJz2+94pwuPOyeJHR6rNwdBsWFUzB8d8/41ja1RjGwsUjaIjjW3pPWmt80BwAIiFoa5GWOqkt4m6eWBq85Ler+ky5JukvR8jf7/dZWkPzTGfJG19r15jRULKNMwR0RYKSo+k8kH2WPEi6SID9fnGTDxrX9kpCfN+ylqWcExRE2b8mMXJzqVZ+Atbkwp1xDWHLGwrMSJ80XdR6kH1ebdLkPmf+zt0vn3hE9+xYuka798ztssQtwYXslU16TKmtTfn7zuMItYWFIZPeeini9RYS5ZZffYuralSs6vj0AKegeBcFfMoNfEtNsE8cqiWo8X9KpNCXzVGsVFGQEAAAAAwHLL9Yt0AAAAAAAAcGz9g5dKH3xf0aMAAAAAAAALyFQqoyjU2Wvd08VYlu12R+Gx9nhszPt3EB4bRsaOphlM54+U7XfSW8ll1Wl5pwufck4SOzwWiIyNomOjCJlxxcaOLtuU6k2ZyOYCAKSLWBjS8BaNh8IOJX2PpP/HWnswvNAYc6ukfyfpxYOL1iT9gTHmudbax/IaLBZNlt8wHRVWyvk/ZHHiRWHnj+T44fqxsFHeUbUwgTFE3W7aY5onOpVJkCNmTCnXEFbS5RURC/PfTzneR3O/zgXmt33p7te4J7/zzVNCf2lx3UbS9V3QWJjkRVv2z09enkUsLOnrXFaRoMjlFhSxiXoNyPP1EcvL9qXu7mSwK07QKzh9WIgQ+TO1yaBXLSTwNREAC7muwm4aAAAAAACw6Bz77dnHCgAAAAAAgBmYf/wdsr/5lskrvuZf5D8YAAAAAACwtEytJm2e9E5R08VYlu0eeuGx1vYoINb2h8e8sJgdXt7aCY+UtbelA44rm9vwfn3SPUmsI3YrFdn6xlhkbBQgG0XGzFiMLDD98PK1OuExAFNxFCrmYoy5UdJ3BS7+P6y1fxic1lr7AWPMF0p6p0bBsCsk/YikV2Q6UCyuLINTzmVPi4VlMKZ5Y2G5frg+Ziws1fspYlkT/+GNut20H7s5YmGZxLDixpQWIBaW6TbtWnacx03li4UFX8se+V3p4l3h0577IuncF8x3e0VxvWYvwh+9Kyfyi4Ul3Z4ye85FLNdU3ddZm2EHzrUtVZRvKBALxVqpt+cOenUdga+w6bu7Ra8Nho7CXTGCXlHxr+r6Yvw+AgAAAAAAyIPzPZa8vmgIAAAAAAAAx4G58mnSK94k+8uvHV34jFtkvunVxQ0KAAAAAABgDqa2Im2e8k5R08VYlj08mAyIDWJjw/CYPYqM+cJkYZGy7mE6K7is+v1BAG47crJYn56qVmXrgaDYMEQ2vKyxJROMjQ1/9kfKVtcIjwHHFLEwzOtHJK34zv9GWChsyFrbMcZ8i6R7Ja0OLv52Y8xPWGsfzm6YWFxZxsJc0Q8TfbB/FgEz51iCH6Z3xcJ6aY5mSuzAt/5xp5tX5H0+QywstxBWxfFzhmOR4seU8gxhlTEWFifOF3UfpR16m/s1xTd//1C653XuSe9885y3NQvX60Par6EL8Ifqylb45YclCgZl9ZyLWm7k8yxDkb//c3zuIx/9w0HMKyTw5Qx6OeJftlv02kDywlzBoFctEPCKjH8Nrq9tFPc6BAAAAAAAcKw59tvzhQwAAAAAAACYkfnG75Ne8PnS+/5MuvoZ0oteJtN0fCYTAAAAAABgiZiVVenEFd7JNU3MZdmD/UFgzBcQG4bGBkEyG7x8LFK2O5q/l3LzYNn0etLuJe8UIV54rCbb3PICYhMBslFYzDQHcTF/bMwXJlNzy9veAJQGsTAkZoypS/qawMU/Pm0+a+2HjTF/IOlrBxfVJH2DpB9Nd4Q4FjL90LgrrFRR9H9/swiYxYgXhZ0fyvPD9WNho6joVJr30wyxsMjbTfmxmyc6lclj5lq/GWJhqcdwki6vqOf+UI5BtXm3S/82//BvSDsPhk/39K+SrnjhfLdVqJjbdxlVHH8EZxIeSro9FRELq0bNmPpQpi97SiyMA9nyY/tStzUe9OoGAl9x41+9TtFrA8l7vkcFvWpxA1+bUpUdiwAAAAAAAKVWhvczAQAAAAAAcGyYm18g3fyCoocBAAAAAABwbJnVNWn1rHTqrHuaGMux1koHe6OoWGsYHNse/dzalu3sjmJjE5GyYYBsR+rzeaO59LrS9gXvFCHO0bx2ZXUQFBvExhqBqFhzS2Z42fDysEhZY1OmtpLO+gFLjFgY5vHFkhq+839trf1gzHl/XaNYmCR9lYiFIVRBsZC8Y2FxolNh56fNnwnf+pu87qdZlpXlNhO8qTixMFcMJ4PHzBVKm3iccozhJF1eltu0c9kxIm+R8yc17zY7GE+3I937hvBJTEW6I+dfs67Xh8QhwRyf22mrOP7L3c8iFpZQVs+5yFhYVLgwQ87XyoryDSTe0mUAACAASURBVAUeQ7398GBXWNArGP8am35HC/2cP05qzdmDXmHTV+tT/t8IAAAAAACA48O1n5V9fgAAAAAAAAAAAAAAAMBxZYyR1ure6fRV7uliLMtaK+21R+Gx9ig2NgqK7cq2ticjY63A9J3dOY5thiTp8EC6/KR3coh7D9vV9VFArDEIjzU3ff8OwmPDy4KRsubm0Xym6uo4AMcbsTDM40sC5/98hnnfI6mr0Tb4fGPMVdbax9MYGI6TDP/jFTusFHO+ucYSI14Uen6ooFhYXlG1qPs8+HhFxVxSf+xcsTDffyxzDbxFBfD8Z4mFhfJvS5ERo5IFg4br8+Bbpc4nw6e54ZukE7fkN6YsJH3NLgPj+C+3zSAWlvR1LrPnXFQsrKg/wl1jMov13E9LvxeIeu34Yl5RQS/f9cNp+4dFrw0kqbI6PehVcwW+/D9vSBV2lgEAAAAAAGBGzi8TOab7WAEAAAAAAAAAAAAAAACkyhgj1ZveSVe7p4uxLNvvS3ut8diYP0LW8oXHOoPY2ESkbPBvZze1dVxaB3ve6eITzklih8fWG4Og2DA2tuXFxOqj2Jjxh8lckbL6BuExLBRiYZjH7YHzfx13Rmttyxhzr6Tn+y6+TRKxMIzLtNIaEVaKjM9kEQvrOYZSiT5/NH+OH673PyaR0am8CrvBxyrqdlMekzM6VQn/Oc68c0kjFubYFpNKurxMt+k4cb6I14DU76M5t0vb9yI9H/ix8Osrq9JzXz/fbSTiug+Trm/M7buMKjnGwhLfvxk956KeL5FhroJioXm+Ps7DWqnXngx8xQl6BafttYteG0iSzPTA17TraoOfq2tFrwwAAAAAAACWmXM/K9/OCQAAAAAAAAAAAAAAACBfplIZxaTOXOOeLsaybK/nBcP8AbH2ZIDMDn9u7YwCZO1AhGyPYzvnttf2ThfcmZrY4bH6xnhAzB8gGwTGjsJjza3ANJujy9ab3jaXA2utdPEJmdNX5XJ7KA9iYZjHLYHzD804/0c0Hgu7VdK75hoRjqEsg0FR4ZmcY2Gu9SwsFhZ3/fO6n6KWVWQszBWOqTh+jjPvHKICOOMXRCwk7W0p6fIyfO7HirwNXwdC7tPUn2/zbpd96YGfkvafCr/6ma+QmtfPeRtlEHf7LiHj+C93P4tYWEJZhbAiny/5/LE7yfWcq0yJhaXw3O8dDGJe0wJfU+Jf3Z18Q6FwqzYmY15hQa+o+NfKlrecRXg9AwAAAAAAAKYqwZcfAQAAAAAAAAAAAAAAAEDKTLUqbZzwTlHTxViW7XYH4TFfbKw1+Lk9io3ZYZDsKDgWEik72EtnBZdZZ9c7PfWYc5JYRQBjvPCYLzI2CpCNYmPmKEzmCpBtSesNGcdxp9Za2Z//XunPf1/6uXfIXPfsZOuNhUQsDIkYY05LOh24+JEZFxOc/lnJR4Rj68Fflh7902yW3dsPv9xMiYV9+BelT/xBumM53HGMJfhheseH6w8vS+///hTHczniSt9/Y6KiFh/9D9KFv01pPI77J2wMrmCWJH30N6XubjpjkqQn3uMYUyX8Z78Lf5vuYyZJbdfLcOA+inrcHvyldJ9zl+5LNt+9r5dqzfTG4Xfp3vDLw+J8YQGlB39Zeuzt6Y1n9yPzzf/If5EuO+7nWlO6/bXzLT8xx3bWeTTZtr/3xGy3UyamGn754+9K/3VgJ+H29MBPS/UMytGRr9+O+0WS3v8qqRJx/Twu3uUYj1FkwOzgYvTjZftSt+UOfB3uSH3H/z2QL1OTVk/MFvSqhQXBNqQKf1IDAAAAAAAAY5zvQ2XxhUwAAAAAAAAAAAAAAAAAsHhMrSZtnvROUdPFWJbtHg5CYr6AWMcXFmt58TE7MU1IpOzwIJ0VXFbWDmJuEcdXK+an6SoV2UYwKLbhxcTePeqd2H/1Munn3yFz3XPmGzsWBkc2I6ngb5y2tbY14zKC1Y/ofCaW0yP/uYAbNdExpY//p/yGEoyWuMJTvY70wL/JfjhSIMYVcT89+sfeKXcR/zXafTif+ylOLGz7g94pFzPElB753eyGMYsHf6mAG40ZC/v738tnOHE99T/d1z3nu6X1K/MbSxz7T6b8PFyAWJgrJnThb9OLKs7rY7+V/226Xh8l6UM/k984jkz5/S/l97sWIYwX63IFvWohga+JANjg58ra9McaAAAAAAAAQEIR+36tZd8cAAAAAAAAAAAAAAAAAKTI1FakrdPeKWq6GMuyB/uj2JUvNHYUHmtvyw5jY62dQZQsJFLW2pZ63XRWcFn1+9LuZe8U5anHZP/ly6Sfe7vMM27JZWgoFrEwJLURON9JsIzgPJsJx3LEGHOlpLMzznbTvLeL48aoNPGZYEglKqxSiDLcT4Ex2DJ8K3nF8XNBOOginon7qQSP3TxWT0u3fF9xt5/XdrcI27fhv9yhTLXoEYwr3e/YY6JaH0S+QgJfUUGvYPyr1uQxAgAAAAAAABZB1H572y/fvmEAAAAAAAAAAAAAAAAAgCTJrK5Jq2vSyTPuaWIsx1orHexL7UBsrLUtdYaxsUF4rO2LjY1FynwBsl4vvZU8ji58Sva7vlj62XfI3EAw7LijXICkgrGwvQTLCMbCgstM4v+S9CMpLAfLrLrqxShMVbIF/6ehshZ9vgjrV45+Pv3p0vn3FDcWSaqsjp+vX13MOPyqa+E/FyV4H518nvTEXxQzljILPr+qa1J/v5ixpOHWV0urJ4q7/eB2t+i3M4/qetEjKKeVuTux6aqsEnYbMtXxmFcw6FULxL6c8a9NqbJS9NoAAAAAAAAAyFVU9L8viVgYAAAAAAAAAAAAAAAAABxnxhhpbd07nbrSPV2MZVlrpf2OLyIWEhRr78j6LwtGyvzzWpveipbJ9gXpUx+TiIUdexwNj7QkeTU8pq+giO15PyHd9QNFj2KcqUqnX+jFws68WDr/3iIHI5150fhFZz7Du7zIp8+Zzxj9fMM3Sh/6meLG0niad/K78rOLGYvfmZeM//yhnytuLMMx+N38XdKHf76YsZTZ2c8cP3/mJdJjby9mLPOqXyM9+5XFjuHMi3O6nZdMn6ZoZz9T+th/LHoU5dJ8hnTuZVKtKXVbRY/Gc+Yl5Qg8zqO2kSDoFXK+ui6ZOLtYAAAAAAAAACDARMTCjuuHrAAAAAAAAAAAAAAAAAAAmTDGSOsN73T6Kvd0MZZlrZU6rUFAbDw25oXFvMusP0o2ESnzXV4WtRWZN/6OzIu/tOiRIAfEwpDUbuB8PcEygvMEl4nj7sZvlh7+NWn7g0WPZOS210qrJ7yfn/t66d1fJvX2ihnLra+S1q4Yv2z9rHTL90sP/EQxY3rhL49/wP/U86Wt50jbHypgMEa6882TMRNTkZ71L6QH/+8CxiRp62Zv2x669h9KZz+ruPDcdV8rnf608cs2bpRO3CZdvr+YMZXRuS/yTn63v046/57yhIziqq5LL/ltqZbkV3OKTt4hXf8N0sd/O7vbuPHbpM1nZbf8tFz/9dKDvyJduruY269teNvEXa+Sth8oZgx+puK9fldXpTveKP3d9xQ9IunKz5GuGfwB/KJfk/7m2/K77craZNCrFjPw5b++thF9EB4AAAAAAAAA5CLqI1f93EYBAAAAAAAAAAAAAAAAAICfMUZqbHgnXe2eLsaybL8v7bW8kFhrEB4LCZDZ9vZkZOwoQDaYpzNHz2B1TeZHfkvms/5R8mVgoRALQ1JljYW9VdLvzjjPTZL+MIXbxqzWr5S+6N3Sw//eC6hU61K1Ie0+VMBYznlRp6d95eiyc18ovfQvpY//p3yjSutXSte8XHr614Rf/7y3SKdfID3236S9J7Idy/n3SofbkqlKn/NH0rUvH7/eVKSX3yfd/RrpgZ/0LmtcJ528PdtxNW+Qrvtq6arPD7/+hb8onbhF+ttXeudXTkpnX5LtmCqr0pkXSzd+i/cYDtWa0uf9qfTwb0hP/IXUa2c7jqGVE942fMM3h8djXn6PdNerR4/b5rOyjS71D6RP/Y/R+eu+Vrp4l7Tz4fHpGk/zIlN5qTWls58j3fRtUnVt/LqzL5Fe+lfSx39HunSvpBy+7X734fGA4vN/yosGPvHnUv1a6fCy9OFf9K5bv1I6/enj85+4Xbr+6yYDcUUwRnrxb3oRtsffKR1cTG/Zq6elcy+Vbvgnk8HAMlo9JX3hu6SHf106/5dSfz+nGzbe8+kZ3+C9Lp95kfc79yP/Tmp9TDrzEqnWyGksAxs3SU//aumqz/XO3/zd0uZzpE/+odT+RL5jkbz/d1z5udJN3zq6L276VmntjPQXXz6a7pqXh88fVGuGB71qrsDXphdNAwAAAAAAAIDjYvWUdO5l3vtTpiLJjP6N9REqAAAAAAAAAAAAAAAAAADKzVQqUmPTO5291j1djGXZXk/q7AaiY4PAWGtb6gzDY77I2F5LOnedzFd8p8x1z0lvxVB6xtocwhc4dowxV0h6MnDxhrU2dq7QGPNvJH2v76Kft9Z+Vxrjm4Ux5jZJ9w3P33fffbrtttvyHgYAAAAAAAAAAAAAAMDc7r//ft1++9gXPN1urc3xG7IAABjHZ/QAAAAAAAAAAAAAAMBxUPTn8yp53RCOF2vtU5IuBi6+bsbFXB84/2DyEQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABw/xMIwjwcC55854/w3TlkeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUiMWhnncFzj/4rgzGmOaku6YsjwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIClRiwM83h74PznzTDvZ0uq+c6/31r7+NwjAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOEaIhWEe75DU8Z1/sTHm5pjzfkvg/O+nMiIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBjhFgYErPWtiX9XuDiV02bzxjzbElf6buoK+m3UxwaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAsUAsDPN6vaRD3/lvMcZ8uWtiY8y6pF+XtOq7+FettR/JZngAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACLi1gY5mKtfVjSzwUu/j1jzCuNMf4gmIwxt0h6p6SX+C5+StIbsh0lAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAYqoVPQAcC6+WdJukLx2cX5H0C5JeZ4z5O0k7km6U9GmSjG++A0lfaa19LMexAsD/z969R0+XlfWB/+6maRoaBASaq9BcjYASiJmIkrFjAEEnIEqUkGToGDUTk0xwNJlBzZpoMiYzGiauxAuJCo4XRkVBEATGxEaEeAEbRSAKSKMYGrkLLU1z2fNH1dtv1fndqn5VdersXZ/PWnuxTr116uxn1342dZ7zW7sBAAAAAAAAAAAAAAAAAAAAAJphszA2Vmv9VCnlq5P8UJKvWfinK5M84YTT/iTJM2qtr951/wAAAAAAAAAAAAAAAAAAAAAAAFp1yb47QB9qrR+ttT4tyV9P8munvPUDSX4gycNrrS8fpXMAAAAAAAAAAAAAAAAAAAAAAACNunTfHaAvtdYXJHlBKeX+SR6V5F5JrkhyQ5J3JnlNrfXmPXYRAAAAAAAAAAAAAAAAAAAAAACgGTYLYydqre9I8o599wMAAAAAAAAAAAAAAAAAAAAAAKBll+y7AwAAAAAAAAAAAAAAAAAAAAAAAMDxbBYGAAAAAAAAAAAAAAAAAAAAAAAAE2WzMAAAAAAAAAAAAAAAAAAAAAAAAJgom4UBAAAAAAAAAAAAAAAAAAAAAADARNksDAAAAAAAAAAAAAAAAAAAAAAAACbKZmEAAAAAAAAAAAAAAAAAAAAAAAAwUTYLAwAAAAAAAAAAAAAAAAAAAAAAgImyWRgAAAAAAAAAAAAAAAAAAAAAAABMlM3CAAAAAAAAAAAAAAAAAAAAAAAAYKJsFgYAAAAAAAAAAAAAAAAAAAAAAAATZbMwAAAAAAAAAAAAAAAAAAAAAAAAmCibhQEAAAAAAAAAAAAAAAAAAAAAAMBE2SwMAAAAAAAAAAAAAAAAAAAAAAAAJspmYQAAAAAAAAAAAAAAAAAAAAAAADBRNgsDAAAAAAAAAAAAAAAAAAAAAACAibJZGAAAAAAAAAAAAAAAAAAAAAAAAEyUzcIAAAAAAAAAAAAAAAAAAAAAAABgomwWBgAAAAAAAAAAAAAAAAAAAAAAABNlszAAAAAAAAAAAAAAAAAAAAAAAACYKJuFAQAAAAAAAAAAAAAAAAAAAAAAwETZLAwAAAAAAAAAAAAAAAAAAAAAAAAmymZhAAAAAAAAAAAAAAAAAAAAAAAAMFE2CwMAAAAAAAAAAAAAAAAAAAAAAICJslkYAAAAAAAAAAAAAAAAAAAAAAAATJTNwgAAAAAAAAAAAAAAAAAAAAAAAGCibBYGAAAAAAAAAAAAAAAAAAAAAAAAE2WzMAAAAAAAAAAAAAAAAAAAAAAAAJioS/fdAZiAyxYP3va2t+2rHwAAAAAAAAAAGznm7x4uO+59ADAif6MHAAAAAAAAADRv33+fV2qtY14PJqeU8qQkP7/vfgAAAAAAAAAA7MCTa60v3ncnADhc/kYPAAAAAAAAAOjUqH+fd8lYFwIAAAAAAAAAAAAAAAAAAAAAAADWY7MwAAAAAAAAAAAAAAAAAAAAAAAAmKhSa913H2CvSil3TPLFCy/9UZKb99Qd2KUHJvn5heMnJ3n7nvoCjEv+w+GS/wDtsXbD4ZL/cNisAXC45D+wC5cl+ayF41fVWj+8r84AgL/R40C4v4PDZg2AwyX/Adpi3YbDZg2AwyX/4bBZA4Bt2+vf51061oVgquYJ9+J99wN2rZQyfOnttdY37aMvwLjkPxwu+Q/QHms3HC75D4fNGgCHS/4DO3TdvjsAABf4Gz0Ogfs7OGzWADhc8h+gLdZtOGzWADhc8h8OmzUA2JG9/X3eJfu6MAAAAAAAAAAAAAAAAAAAAAAAAHA6m4UBAAAAAAAAAAAAAAAAAAAAAADARNksDAAAAAAAAAAAAAAAAAAAAAAAACbKZmEAAAAAAAAAAAAAAAAAAAAAAAAwUTYLAwAAAAAAAAAAAAAAAAAAAAAAgImyWRgAAAAAAAAAAAAAAAAAAAAAAABMlM3CAAAAAAAAAAAAAAAAAAAAAAAAYKJsFgYAAAAAAAAAAAAAAAAAAAAAAAATZbMwAAAAAAAAAAAAAAAAAAAAAAAAmCibhQEAAAAAAAAAAAAAAAAAAAAAAMBE2SwMAAAAAAAAAAAAAAAAAAAAAAAAJurSfXcAgNG8N8l3DI6BwyD/4XDJf4D2WLvhcMl/OGzWADhc8h8AAKAP7u/gsFkD4HDJf4C2WLfhsFkD4HDJfzhs1gCgK6XWuu8+AAAAAAAAAAAAAAAAAAAAAAAAAMe4ZN8dAAAAAAAAAAAAAAAAAAAAAAAAAI5nszAAAAAAAAAAAAAAAAAAAAAAAACYKJuFAQAAAAAAAAAAAAAAAAAAAAAAwETZLAwAAAAAAAAAAAAAAAAAAAAAAAAmymZhAAAAAAAAAAAAAAAAAAAAAAAAMFE2CwMAAAAAAAAAAAAAAAAAAAAAAICJslkYAAAAAAAAAAAAAAAAAAAAAAAATJTNwgAAAAAAAAAAAAAAAAAAAAAAAGCibBYGAAAAAAAAAAAAAAAAAAAAAAAAE2WzMAAAAAAAAAAAAAAAAAAAAAAAAJgom4UBAAAAAAAAAAAAAAAAAAAAAADARNksDAAAAAAAAAAAAAAAAAAAAAAAACbq0n13AGhHKeVWSR6U5KFJ7pXkjkk+nuSDSd6e5HW11hu3fM1bJ/miJPdNcs8kH03y35JcV2u9fpvXGksp5WFJ/nySuyW5TZIbkrwryWtqrTfts29jKqXcOcnDkjw4yWcmuTzJh5K8N8nra61v32P3jiil3D+z7+1eSW6f5N1J3pnktbXWT2zxOvdL8hcym+93TPKJzMblrZmNy0e2da01+yX/t0D+z7SW/4dO/m+H/J9pIf/HnPMtjAdt6nHt7jGmbRnrXqUVhz4ePeZKjzFty6HP96FDr93M+9ZdvvQY07ZYA1jUY670GNO2yH/1GwAA+uVeaDs8n59p7X5GjdcasC3WgJnW1oBDJ/+3Q/7PtJD/ary0rsd1u8eYtsWzuWXGo8986TGmbTHnlx16/abHXOkxpm2R/wz1mC89xrQt1gD1G5i8WqumadqJLbMfW89M8gtJPpykntI+meQXk3z5Fq57tyTfn+T9p1zvNUm+asPrPCDJ1yT57iTXJvnTwTWu39I43iHJtyX541Pi+dMkP5bkgXv8vnc2HkluneRLk/z7JL97xlyq87H6ziT32HMOPDXJa0/p5/vnc/WuG1zjdkn+aZLfP2NMPpXkpUkeP1Ls8n874yj/G8z/Xc+PFcbgrHbVjuOX/9sZR/nfSP6PNedbGQ+tzdbj2t1jTFv+zse4V7kiyWOSfFOSn8jsnuXTg+tcs+/5f+jj0WOu9BiT+d78eEyydjPvW3f50mNMDc75JtaAqN90lys9xrTl7/yg83+s+RH1G03TNE3TNG3k1vu9UDyfH208Wr2fiRqvNWA742gNaHAN2PX8WGEMzmpX7Th++b+dcZT/jeT/WHO+lfHQ2ms9rts9xrTl7/ygn80ZjyN96y5feozJnG9+PCZZv+kxV3qMqcH53kT+58BrN/M+dpcvPca05e/8oNeAseZH1G80beO29w5omjbdluQnN/iR/ZIkdz/ndZ+Y5D1rXOvHk1yxxudfneQVZ/yg3MrNyvx6fymzXW1XjefGJH9/xO955+MxH4MPnHMufTDJ39rD/L99kuev0c8bknzpOa7z6CR/cI5x+ckkt9th/PJf/h9c/o85PzbIrwvtqh2Og/yX/weV/2PN+VbGQ2uzjTWPj7nuztbuHmPa4ve983uVzB5evDGz4v1Zn3/Nnuf/QY9Hj7nSY0zme7vjMb/OJGs3veZLjzG1NOdbWAOiftNtrvQY0xa/74PP/7HmR9RvNE3TNE3TtJFbr/dC8Xx+9PFo8X4marzWAGvAQa4BY86PDfLrQrtqh+Mg/+X/QeX/WHO+lfHQ2mtjzeFjruvZnGdzNQfw9zlTH48e86XHmMz5dsdjfp1J1m96zJUeY2ppvreQ/1G76Tpfeoxpi9/3wa8BY82PqN9o2lbapQE42UNOeP2Pk7w1sx9ml2a2O/Ajklyy8J7/IcmvlFK+uNZ6w6oXLKVcneRFSS5beLkm+a3MbvjvlOSRSe668O9/M8lnlFK+otb66RUu8+eTPH7VPm2ilPLYzHZPvc3gn96Z5Hcye+h4n8x+2Nx6/m+3S/L9pZRLaq3fN0I3xxiPuyW58zGv35zZD9sbMtth9i5JPn/+vxfcKcmPlVKurLU+e8f9TJKUUm6V5KeSfNngn96b5Lp5Xx+Y2Vws83+7e5KfL6U8ttb6qyte59FJXpnZTcSijyT5zcxy7DZJHpTk4VnOsb+R5MpSypfVWm9eMbR1yP8Nyf9btJT/o82PiZP/G5L/t2gl/8ea862MB23qce3uMaaNjXWvkuTpSe64eY93y3gk6TNXeoxpY+b7MrWbW/SYLz3GtDFrwBL1m5kec6XHmDYm/2+hfgMAQK96vRfyfH6Z5/MDary3sAZsyBpwi5bWADXeGfm/Ifl/i1byX42X1vW4bvcY08Y8m1tmPG7RY770GNPGzPll6jdJ+syVHmPamPxfonZzUY/50mNMG7MG3EL9Blqy7d3HNE3rpyV5XS7utPlbSf5hkgee8N57J3lOju7Q+eokZcXr3SdHdwL91SSfM3jfbZL8z5n9n/7ie79rxes885h+1iQ3JXnb4LXrNxi/q3J09+S3JXncMe+9c5J/N3jvp4577w6+552PR2Y/8i58xkeS/HCSv5rktse8tyR5SmYPa4d92vl4zPvw3YPr3jyf/5cN3vfQJK8dvPd9Se65wjUuP2Z8/2w+ty8/5v0PTPLiY8bkWTsaA/kv/w8u/8eaH/NrLX7Wr83nzDrt0h2Og/yX/weV/2PN+VbGQ2uz9bh29xjTlr7rnd+rzM//0DHjWZO865h/u2aPc//gx6PHXOkxJvO9zfHIxGs3veZLjzG1Mufn509+DYj6Tbe50mNMW/qu5f+I8yPqN5qmaZqmadrIrdd7oXg+P/p4tHY/EzXeC9e0BlgDDm4NGGt+zK+1+FlqvPJf/vsbvcmMh9Ze63Hd7jGmLX3Xns0Zj4PIlx5jMufbHI9MvH7TY670GFMr831+/uTzP2o3XedLjzFt6bu2Bow4P6J+o2lbaXvvgKZp022Z7bz9C0k+f41zvvGY/7N92orn/vDgvNfkmJv6hfd/xeD9NyW53wrXeeb8h9p1Sf5jkm9I8qjM/qtBVw8+8/oNxu/5g896a5Irzzjnnw7OeVOSW+34e975eMx/uL0nyTcnuWLFc+6S5M2D67/lrB+JWxiPB+ToDcWTT3n/bXP0x/0PrnCdawbnfDrJl55xTknyM4PzPpzBDceWxkH+y/9DzP9R5sf8Woufde0u4zpH3+S//D+o/B9rzrcyHlqbrce1u8eYtvA9j3KvMj/3Q5n91zhemuQ75mvY3ef/du3gM6/Z07w3HrXPXOkxJvO9zfHIxGs38+t1ly89xtTKnJ+f28IaoH5T+8yVHmPawvcs/0eeH1G/0TRN0zRN00Zuvd4LxfP50cejpfuZqPEuXs8aYA04xDVAjbfKf/l/ePk/1pxvZTy09lqP63aPMW3he/ZszngcTL70GJM53+Z4ZOL1mx5zpceYWpnv83NbyH+1m4v96y5feoxpC9+zNWDk+RH1G03bStt7BzRNm25LctU5z3vB4P9sX7rCOQ9O8smFcz6e5MErnPe8wbV+ZIVz7nzSj8ls78HbAzL7rw4tftZjVjz3Pw/O+9odf89jjMfdVv3BNjjvblCzNwAAIABJREFUEceM41/c8Xj86OB6z13hnIfM5+yFcz6R5AFnnPOzg+u8cMX+3SNHbzweu4NxuOqc58l/+T/8nJbyf+fjsfB5i5917S7jOkffrjrnefJf/g8/p4n8H2vOtzIeWputx7W7x5i28D2Pcq8yP+/E/7JJJvAQwngsXf+qc5432VzpMaYtfM/m+x7GIxOv3cyvddU5z5tsvvQY0xa+Z2vAcj/Ub2qfudJjTFv4nuX/yPMj6jeapmmapmnayK3Xe6Ex7t/j+fzwc5q5nxnrfjdqvMNzrAEXz7UGXDzP3+jtqcl/+X9o+T/WnG9lPLT2Wo/rdo8xbeF79mzOeJzUh6vOed5k86XHmLbwPZvzexiPTLx+02Ou9BjTFr5n+b/cD7Wbi/276pznTTZfeoxpC9+zNWDk+RH1G03bSrskACeotV5/zlO/b3D8V1Y45+lJbrVw/HO11reucN7/OTj+6lLK5aedUGv9YK31phU+exNfniytsb9Wa/3VFc/9nsHx39lOl443xnjUWt9ba73xHOf9dpLhuK0yn86llHLbJE8dvDycY0fUWn8/yYsWXro0szl9mgcMjl9yZgdn17ohyW8MXn7wKueuQ/5vRP4vX6OJ/J9fc4z5MXnyfyPyf/kaTeT/WHO+lfGgTT2u3T3GtImR71VSa333Wh0cmfG4qMdc6TGmTZjvy9Rujlzr+nOeOtl86TGmTVgDjlK/mekxV3qMaRPyf5n6DQAAver1Xsjz+WWez1+kxnvkWtef81RrgDVgeI0m1oD5NdV4I/83JP+Xr9FE/qvx0roe1+0eY9qEZ3PLjMeyHvOlx5g2Yc4vU79Zus715zx1srnSY0ybkP9Hqd1c1GO+9BjTJqwBy9RvoC02CwN24brB8W1LKXc645ynDI6fu8qFaq1vSfLrCy9dkeTxq5y7Y//94PgVa5z7nzLb2fyCLyyl3HPzLjVrOJ/utcNrfWmS2y0c/5da639d8dzhnP3KM95/xeD4XSteJ0n+aHB85zXO3TX5L/+3acz8Z3PyX/5vUwv5f545v61rTXE8aFOPa3ePMSXj3qu0wHhsrsdc6TGmxHwfUrvZjh7zpceYEmsA29djrvQYUyL/t0X9BgCAXvV6L7QOz+e3x9/nHaXGO2cNOAhqGm2R//J/m1rIfzVeWtfjut1jTIlnc0PGYzt6zJceY0rM+SH1m831mCs9xpTIf3ajx3zpMabEGrAt6jewBzYLA3bhk8e8dtlJby6l3CPJIwbnv2aN6107OH7iGufuyn0Gx7+76om11o8nedvCS5dkGjHty3A+nTiXtuAJg+Nr1zj31Vnu6yNLKXc/5f03DI7X2dl4+N4PrHHursl/+b9NY+Y/m5P/8n+bWsj/teb8lq81xfGgTT2u3T3GlIx7r9IC47G5HnOlx5gS831I7WY7esyXHmNKrAFsX4+50mNMifzfFvUbAAB61eu90Do8n98ef593lBrvsmsHx1PIF2vA9qhptEX+y/9taiH/1XhpXY/rdo8xJZ7NDRmP7egxX3qMKTHnh9RvNtdjrvQYUyL/2Y0e86XHmBJrwLao38Ae2CwM2IUHDY4/meR9p7z/4YPj36m13rjG9V47OH7YGufuymcOjj+05vnD93/uBn1p3XA+vXuH1xrOxf+y6onzOfvGwcunzcVXD44fteq1jnnvb65x7q7Jf/m/TWPmP5uT//J/m1rI/3Xn/DavNcXxoE09rt09xpSMe6/SAuOxuR5zpceYEvN9SO1mO3rMlx5jSqwBbF+PudJjTIn83xb1GwAAetXrvdA6PJ/fHn+fd5Qa7zJrQN/UNNoi/+X/NrWQ/2q8tK7HdbvHmBLP5oaMx3b0mC89xpSY80PqN5vrMVd6jCmR/+xGj/nSY0yJNWBb1G9gD2wWBuzCUwfHr6u1fvqU9z90cPy2Y991sref8Xn7cPPg+DZrnj98/xRiGl0p5TOSPG7w8m/s8JKfMzje5Vz8oSzPk68tpdz2rAuUUp6S5L4LL72p1vr61bu4c/Jf/m/FHvJ/n+5bSnluKeVNpZQPllJuLqW8Z37846WUbyilDP/AZYrkv/zfiobyf905fy4NjQdt6nHt7jGmZNx7lRYYj831mCs9xpSY70NqN9vRY770GFNiDZgS9ZuZKc7BHmNK5P+2qN8AANCrXu+F1uH5/Bb4+7yj1HiPZQ3o1IHVNNR4Z+S//E/SVP6r8dK6HtftHmNKPJsbMh7b0WO+9BhTYs4Pqd9srsdc6TGmRP5PSS+1m6TPfOkxpsQasC3qN7AHNgsDtqqUcvskf3fw8gvPOG24i+cfrnnZdw6O71JKufOan7Ft7x8c33PN84fv/+wN+tKyv5fkdgvHH07yy7u40PxGcXizuO5cHL7/wSe9sdb6jiTPWnjps5I8v5RyuxNOSSnlL2ZWBLvg00n+0Zp93Bn5fwv5vx2j5f8E3D/JNZkVA+6U5NZJrpwf/80kz0nyh6WU/3ueZ5Mj/28h/7dj8vl/zjl/XpMfD9rU49rdY0zJ+PcqU2c8NtdjrvQYU2K+D6ndbEeP+dJjTIk1YILUb2YmlSs9xpTI/21RvwEAoFe93gudg+fz2+Hv85b7qMZ7PGtAvw6ppqHGOyP/5f8Fk89/NV5a1+O63WNMiWdzQ8ZjO3rMlx5jSsz5IfWbzfWYKz3GlMj/CWq+dpP0mS89xpRYA7ZF/Qb2x2ZhwLb9qyT3WDj+UJZvvo9zp8Hxn6xzwVrrR5PcNHj5jut8xg68ZXD8BaueWEq5b5J7DV7edzyjK6VcleSfDV7+3lrr8L8ItS3DefhntdYb1/yM4dw99XurtT47yT9J8on5S09O8uZSyv9WSnlMKeXBpZSHlVK+opTy3CSvycWbj08k+dpa65R+yMr/Gfm/oT3kfwuuSPLMJK8vpTxs3505hvyfkf8baij/zzPn19bQeNCmHtfuHmNK9nCvMnHGY3M95kqPMSXm+5DazXb0mC89xpRYA1qkfjMg/89N/m+H+g0AAL3q9V5oXZ7Pb8jf56nxrsoa0Cc1jWOp8Q7I/z41lP9qvLSux3W7x5gSz+aGjMd29JgvPcaUmPND6jeb6zFXeowpkf8tmnrtJukzX3qMKbEGbIv6DeyJzcKArSmlPCXJPxy8/G211g+ccepwF9+PnePyw3PucI7P2KZXDY6/6rQdzQf+x2Ne23c8oyqlXJbkp7Ic9/VJ/q8dXnYv87DW+j1JHpHkR5J8MMn9Mvtx/Ookv5/kdzPbRfeazHbDTpJfSvIFtdYfPUcfd0L+L5H/G9hT/u/LJ5Ncm+TbkzwpyaMy2z38kZkVt78nRwsGD0nyS6WU+43XzdPJ/yXyfwOt5P8Gc37d6zQxHrSpx7W7x5gWtNDHMRmPDfSYKz3GtKCFPo5J7WZDPeZLjzEtaKGPh0D9Ztlk5mGPMS1ooY+Tpn4DAECvOr8XWpfn8xvw93lqvOe4vDWgIwdW01DjXSb/j9p3PKNqJf/VeGldj+t2jzEtaKGPYzIeG+oxX3qMaUELfRyT+s0GesyVHmNa0EIfD0EXtZukz3zpMaYFLfRx0tRvYL9sFgZsRSnlEUn+n8HLr0zyAyucPvxBNdztdRXDH1TDzxzbSzPb/fSCOyX552edVEr5rCTfcsw/3aqUctvtdK0JP5Tkv1s4/lSSZ5xjV9517HMeXprk07m4A/5pfjTJN9Vaf2udju2S/D9C/m9mH/m/D9+e5N611r9Sa/0/aq0vqbVeV2t9W631DbXWF9da/0lmBe5/naQunHuPJD9XSin76Pgi+X+E/N/M5PN/wzm/rsmPB23qce3uMaYzPm+KfRyT8TinHnOlx5jO+Lwp9nFMajcb6DFfeozpjM+bYh97p34z0XnYY0xnfN4U+zhZ6jcAAPTqAO6F1uX5/Gb8fd7J1HiPZw3oy6HUNNR45f8t5P8tJp//ary0rsd1u8eYzvi8KfZxTMZjAz3mS48xnfF5U+zjmNRvzqnHXOkxpjM+b4p97F0XtZukz3zpMaYzPm+KfZws9RvYP5uFARsrpdw3swdviz9i3pnkb9Va6/FnnWqsc3am1vqRJN87ePlbSin/+KRzSin3SfLyJHc86WO31L1JK6X8iyR/e/Dys2qtvzJyV3Y+D0sptyml/Lskv53k65JcucJpz0jyxlLKi+dzZq/k/1Hy//wmlP87Ny9gDXe1P+59N9Van5XkHw3+6VFJ/sZOOrci+X+U/D+/FvJ/B3P+tGtNfjxoU49rd48x7eh6Pf//ifFYQY+50mNMO7pez/Nd7WZFPeZLjzHt6Ho9rwE7p35zrL3Pwx5j2tH1DjL/1W8AAOjVgd4Lncrz+fOb0P2MGu+KrAFHWQPOb0JrwM6p8R5L/p/wsVvq3qS1kP9qvLSux3W7x5h2dL2e/7/EeKyox3zpMaYdXa/nOa9+s4Iec6XHmHZ0vZ7zf+d6qN0kfeZLjzHt6HoHuQao38A0XLrvDgBtK6VcmeT/S3LvhZdvSPK4Wut7V/yYjw6Oz/Nf5xmeM/zMffiuJE/Mxd1KS5J/W0p5apIfTvKGzHaNvdf8fX8/F38YvSvJYqHiplrrkV1pSylXrdqZWuv1a/V+D0opz8xsN+hFz661fveK51+16rWOGY9R52Ep5dIkL0ryhMVuJXlhZrvbvy7J+5LcJsl9k3xJZjezD56/968leXQp5XG11jeco68bk/+nkv9r2nP+T16t9ftKKY9P8qSFl78xyU/uoz/y/1Tyf00t5P+W5vyq19poPOAkPa7dLcXU0r3KGIzHuFrKlVW1FJP5vqyl8eihdpO0lS+raimmlub8GHq7nx1SvzmR/D+D/F+mfgMAAMtauhfaA8/n1+Tv89R456wB1oBFk/obnX1S4z2R/D9DC/O9hfxX46V1Pa7bLcXU0r3KGIzH+FrKl1W1FJM5v6yl8eihftNSrqyqpZhamu9j6O1edmhqtZukrXxZVUsxWQOWqd/AYbFZGHBupZTPTPJLSR6y8PL7kjy21vrWNT6qux9USVJrvbmU8pVJXpbk8xb+6THzdpL3J/m7SV6x8NqHTnjvO9boUlnjvaMrpXx9kmcPXv6BWus3r/Exm4zH2PPwn2W5kPWxJE+ttb5s8L6bk7wpyZtKKf8hyfcn+dr5v901yS+UUh5Ra33/Ofp7bvL/dPJ/PRPI/1b8qywXs76glHKnWutJc2Qn5P/p5P96Wsj/Lc75Va61jfGAI3pcuxuMqaV7lTEYj5E0mCtnajAm831ZS+PRdO0maTJfztRgTC3N+TF0cz97CvWbo+T/2eT/MvUbAACYa/BeaFSez69nAs/n1XjXZA04nTVgPRNYA1qhxnuU/D/bpOd7C/mvxkvrely3G4yppXuVMRiPETWYL2dqMCZzfllL49F0/abBXDlTgzG1NN/H0M297CkmUbtJmsyXMzUYkzVgmfoNHJBL9t0BoE2llDsmeWWSz114+YOZ7fz5pjU/7sOD47ut2Zfb5+gPqtF/2B+n1vrHSb4wyXOSfGKFU345yecnuXHw+g1b7tqklFL+dpIfzPKPy+cm+QcjdmM4D29XSrlizc+4cnB87Dyc/yAe/iD9xmMKWUtqrR9P8vVJXrXw8r2TfOua/dyI/F+N/F/NRPK/Fb+RWa5dcKskDx2zA/J/NfJ/NS3k/5bn/FnXmvx40KYe1+4eYzrDaPcqjTAeK+oxV3qM6Qzm+zK1mzX0mC89xnQGa0Cb1G+W+yL/z0f+r0H9BgCAXh3gvdC5eD6/moncz6jxrsEasBprwGomsga0Qo13uS/yv3Et5L8aL63rcd3uMaYzeDa3zHisocd86TGmM5jzy9RvVtRjrvQY0xnkf5v2XrtJ+syXHmM6gzVgDeo3MD02CwPWVkq5Q5KXJ/kLCy//aZIn1FrfcI6PHO4Wer81zx++/wO11g8e+849qLXeWGv9n5J8dpJvy+xh47sy2+n8I0nekuRHkzwuyV+ttV6f5HMGH/O60To8slLK0zL7kbb4/0k/keTraq11rH7Md44fzpv7rvkxw7l40k64X5Zk8abhHZnNgTPVWj+d5DsHLz+jlDLKTt7yfz3y/3RTyf9WzPP/Dwcvr1Uo2YT8X4/8P10L+b+DOX/atSY/HrSpx7W7x5jOMvK9yuQZj9X0mCs9xnQW832Z2s3qesyXHmM6izWgTeo3R8j/c5D/q1O/AQCgV4d4L7QJz+dPN5X7GTXe1VkD1mMNON1U1oBWqPEeIf8b1kL+q/HSuh7X7R5jOotnc8uMx+p6zJceYzqLOb9M/WY1PeZKjzGdRf63ad+1m6TPfOkxprNYA1anfgPTdOm+OwC0Zb4r6suSfMHCyx9N8sRa62+c82PfMjh+0JrnP2Bw/OZz9mOnaq3vSPJd83aWRw+Of/2EzxztD1B2oZTyVUl+LLPdmy/4mSTPmN+0rWUL4/GWzP4rUxc8KEfn52mGc/Gkcx8xOP7lNX+k/kqSm5NcNj++S2Z93emNhPw/P/l/1ATzvxUfGxwPd0jfCfl/fvL/qBbyf0dz/qRrbXU84IIe1+6WY2roXmUUxmO3Ws6Vk7Qck/m+rKHxaLJ2k7SdLydpOaaG5vwoWr+fXYP6zUXy//zk/xnUbwAA6FXL90L75vn8URN8Pq/GewZrwPlZA46a4BrQCjXei+R/o1rIfzVeWtfjut1yTA3dq4zCeOxey/lykpZjMueXNTQeTdZvWs6Vk7QcU0PzfRSt38uuYS+1m6TtfDlJyzFZA5ap38BhueTstwDMlFJum+QXkjxm4eU/S/LltdbXbvDRvzs4/rxSyu3WOP+Lzvi8psx3MP+Swcuv2kdfdqmU8qQkz8/yxpUvSvL0Wuun9tOrI3Nn+ED4RPMfvJ93xuddcKfB8Q2rXidJaq2fTPL+wct3Xecz1iX/xyH/95r/rRjm+vt2fUH5Pw75P5383+GcP+5akx8P2tTj2t1jTGsa616lFcbjBD3mSo8xrcl8X6Z2c4oe86XHmNZkDWiT+s1F8v/85P8p1G8AAOiVe6FxeD7v7/POosZ7hDWgQRNdA1qhxnuR/G9QC/mvxkvrely3e4xpTZ7NLTMep+gxX3qMaU3m/DL1mxP0mCs9xrQm+d+m0Ws3SZ/50mNMa7IGnEL9BqbNZmHASkoplyd5cZKrF16+KcmTaq2/ssln11rfneR3Fl66NMs/HM5y9eD4FzfpzwR8SZKrFo5fVWvd+X+RbkyllC/LbDfXWy+8/NIkXzMv1OzLywfHV69x7l/O8o/Q62qt7znhvR8aHF+xxnUuuP3g+KPn+IyVyP9RyX9OVEq5a47uNv7fdnxN+T8e+T8Bu5zzx1xr8uNBm3pcu3uM6RzGuldphfE4Ro+50mNM52C+L1O7OUGP+dJjTOdgDWiM+s0RVw+O5f/q5P8J1G8AAOiVe6FReT6/P2q8J7AGjMoawInUeI+4enAs/yeuhfxX46V1Pa7bPcZ0Dp7NLTMeJ+gxX3qM6RzM+WXqN8foMVd6jOkc5H9j9lG7mV+3u3zpMaZzsAacQP0Gps9mYcCZSimXJfm5JI9dePnjSb6i1vqftnSZFw6O/86KfftzSf7Swks3Jnnllvq0L//r4Pg5e+nFjpRSHpfkZ5NctvDyK5N8Va315v306havSPKxheNHz+fYKq4ZHA/n9KLhzecjV7xGkqSU8uAkdxi8vNbu+WtcS/6PS/5zmqdl+ff7e5K8ZVcXk/+jk/97NtKcv3CtyY8Hbepx7e4xpnMa616lFcZjoMdc6TGmczLfl6ndHH+97vKlx5jOyRrQHvWbi32T/5uR/8dQvwEAoFfuhUbn+fz+qPEefz1rwLisAZxGjfdi3+R/Y1rIfzVeWtfjut1jTOfk2dwy43GMHvOlx5jOyZxfpn5z9Frd5UqPMZ2T/G/PqLWbpM986TGmc7IGHEP9BtpgszDgVKWUS5P8dJInLrz8iSRPrbW+YouX+okkn1o4/sr5DftZhg/tfrrWetP2ujWuUsozkjxu4aU3ZLYbahdKKV+c5OeTXL7w8n/O7Afix/fTq4tqrX+W5AWDl4dz7IhSykOSPGXhpU8m+clTTrl2cPxFpZSHrtLHub83OP69Wut71zh/JfJ/XPKf05RS7p7k2wcvv6TWWnd0Pfk/Ivm/fyPO+SbGgzb1uHb3GNN5jXiv0gTjsazHXOkxpvMy35ep3RzVY770GNN5WQPaon5zhPzfgPw/Sv0GAIBeuRcal+fz+6XGe5Q1YFzWAE6jxnuE/G9IC/mvxkvrely3e4zpvDybW2Y8juoxX3qM6bzM+WXqN8t6zJUeYzov+d+WsWs382t2ly89xnRe1oCj1G+gIbVWTdO0Y1uSWyX5qSR1oX0iyVN2dL0fHlzrNUkuP+X9Tx68/+NJ7rdhH64efOb1G37epWu89yuT3DwY60fueQ5sbTySPDrJRwaf96okt9tnjMf08wGD76EmedIp7798PlcX3/+DZ1yjJPm9wTmvT3KHFfr3hGP69y93MA7yX/4fXP6PMR5JPjvJX1vznHsk+c1j5vwDdhSr/Jf/B5X/Y875FsZDa7P1uHb3GNMW+rjze5UV+3Ht4DOv2WXcxuPM63eXKz3GtIU+mu8jj0caqN3Mr9VdvvQYUwtzfsV+TGINOKOPVw/6eP05P0f95uj15L/832v+jzk/on6jaZqmaZqmjdgO8V5oW/fvC5/n+fzFz2rifmaM+92o8Z50PWuANWDSbVvjETXe464n/+X/XtuYc76F8dDaaz2u2z3GtIU+ejZnPE7qQ3f50mNMW+ijOT/yeKSB+k2PudJjTC3M9xX7MYn8P6OPVw/6eP05P2fytZv5NbvLlx5j2kIfrQF7mB9Rv9G0jdulATjZjyT56sFr35rkulLKVWt+1g317J1b//fMdlK98/z4C5P8Uinl62qt//XCm0opt0nyDUn+zeD8f1NrfecqnSml3Cc5dg28x+D40lNi/Wit9X1nXOqNpZSXJvnZJL9ea/30MX15eJJnJXn64J++tdZ63RmfvxW7Ho9SyiOT/GKS2y+8/HtJ/kGSK0sp63T3plrrDeucsI5a6x+UUr43ybcsvPyCUsr/kuQ/1FpvvvBiKeVzkvxQZnP1gvcn+Y4zrlFLKc/KbF5c8Kgkr59f56W11rp4TinlLkn+cWZzZfG7en+S71k1vjXIf/l/cPmfjDI/7pnkxaWUNyb58SQvrLW+9YS+3CHJMzLb8f7ug3/+l7XWPzjhGpuS//L/0PJ/lDnf0HjQph7X7h5j2sgY9yoL598+yV1P+OfLB8d3PeU7eVet9ZOrXHNdxuMWPeZKjzFtxHxfpnazpMd86TGmjVgDjlK/SdJnrvQY00bk/xL1GwAAetXtvZDn80f64Pn8nBrvEmuANeDg1oBEjXdO/sv/Q8t/NV5a1+O63WNMG/FsbpnxWNJjvvQY00bM+WXqN7foMVd6jGkj8v8otZtb9JgvPca0EWvAEvUbaEmdwI5lmqZNs2V5N85N29UrXvPqzHZ6XTz305nt+PtTSV6e5E+O+fyXJLnVGrFdv4WYnrfCdd638P6PJHltZgWMn0jyylP68S9G/q53Oh5J/vkW59K1I4zHrZK87JhrvyezH6A/neR187m5+O8fT/KX17jOs0+I8X1JXjGfJz8zn/+fOOZ9NyX5Evkv/+V/U+Nx9THv/1CSX03yoiQ/luSFma0xx+V9TfKcHY+B/Jf/B5X/Y835VsZDa7ONNY8H17w6O1y7e4xpS9/1WPcq12xp7K8yHrsdjx5zpceYzPemx2OytZte86XHmBqb89dsaex3vQZcv4U+Pu+MOTF8v/qN/Jf/e8z/seZH1G80TdM0TdO0kVvP90LxfH7U8WjtfiZqvNYAa8ChrwG7Ho+rj3m/Gq/8l/97zP+x5nwr46G118aaw4NrXh3P5taKaUvftWdzxuMg8qXHmMz5psdjsvWbHnOlx5gam+/XbGnsd53/12+hj887Y04M3z+p2k2v+dJjTNaA9uZ81G80bSvtuF09Afam1nptKeUpSZ6X5G7zl0uSz5+34zw/ydfXWj+1+x5u5PZJHn3Gez6Y5Btrrf/vCP3hBLXWT5VSvjqzHX6/ZuGfrkzyhBNO+5Mkz6i1vnqNS33z/LzvSHLZwut3SfL4M859Z5Jraq3XrnG9SZP/8v+A3THJF63wvhuTfFOt9T/uuD+jk//yH2hPj2t3CzGNeK/SBOOxHy3kyrpaiMl8X6Z2sz8t5Mu6WojJGjAJ6jcN5Mq6WohJ/gMAANvWwr3QBjyfb4Qa7/5YA6wBB0yNV/7Lf6ApPa7bLcTk2dwy47E/LeTLulqIyZxfpn6zHy3kyrpaiEn+T8LB126SNvJlXS3EZA0AWnTJvjsAMFRrfVmShyf5wcwezJ3k15I8tdb69FrrjaN0bn3/Nsl1me0We5o/SvKdSR7oIeQ01Fo/Wmt9WpK/ntlcO8kHkvxAkofXWl++5jVqrfVfJ/ncJP8+p8/3C96cWRHs4T0Vsi6Q//L/ALwlyXcleU2Sj614zu8n+dbMdvzuspCVyH/5D7Sos7U7SRsxjXGv0hLjsR8t5Mq6WojJfF+mdrM/LeTLulqIyRowKvWbE7SQK+tqISb5DwAAbFsL90Jr8Hy+UWq8+2MNsAYcADXeE8h/+Q+0pbN1O0kbMXk2t8x47E8L+bKuFmIy55ep3+xHC7myrhZikv+jUrs5RQv5sq4WYrIGAK0ptdZ99wHgRKWUyzLbDfh+Se6R2a6/f5zkulrrO/bZt3WUUj4jySOT3D+znW8vz+wm5o+T/Hat9c177B4rKKXcP8mjktwryRVJbshs9/nX1Fpv3tI1SpI/l+QRSe6a5DOSfDLJhzKbK6+rtb5nG9dqgfynd6WUS5I8OMkDk9w7yZ1ycX58MMm7k/xmrfW9e+vknsh/gPb0snYvaiWmMe5VWmI8xtdKrqyjlZjM92VqN/vRSr6so5WYrAHjUL85WSvjoXbWAAAgAElEQVS5so5WYpL/AADANrVyL3QWz+fbp8a7H9YAeqfGezL5D9CWXtbtRa3E5NncMuOxH63kyzpaicmcX6Z+M75WcmUdrcQk/8ehdnO6VvJlHa3EZA0Aps5mYQAAAAAAAAAAAAAAAAAAAAAAADBRl+y7AwAAAAAAAAAAAAAAAAAAAAAAAMDxbBYGAAAAAAAAAAAAAAAAAAAAAAAAE2WzMAAAAAAAAAAAAAAAAAAAAAAAAJgom4UBAAAAAAAAAAAAAAAAAAAAAADARNksDAAAAAAAAAAAAAAAAAAAAAAAACbKZmEAAAAAAAAAAAAAAAAAAAAAAAAwUTYLAwAAAAAAAAAAAAAAAAAAAAAAgImyWRgAAAAAAAAAAAAAAAAAAAAAAABMlM3CAAAAAAAAAAAAAAAAAAAAAAAAYKJsFgYAAAAAAAAAAAAAAAAAAAAAAAATZbMwAAAAAAAAAAAAAAAAAAAAAAAAmCibhQEAAAAAAAAAAAAAAAAAAAAAAMBE2SwMAAAAAAAAAAAAAAAAAAAAAAAAJspmYQAAAAAAAAAAAAAAAAAAAAAAADBRNgsDAAAAAAAAAAAAAAAAAAAAAACAibJZGAAAAAAAAAAAAAAAAAAAAAAAAEyUzcIAAAAAAAAAAAAAAAAAAAAAAABgomwWBgAAAAAAAAAAAAAAAAAAAAAAABNlszAAAAAAAAAAAAAAAAAAAAAAAACYKJuFAQAAAAAAAAAAAAAAAAAAAAAAwETZLAwAAAAAAAAAAAAAAAAAAAAAAAAmymZhAAAAAAAAAAAAAAAAAAAAAAAAMFE2CwMAAAAAAAAAAAAAAAAAAAAAAICJslkYAAAAAAAAAAAAAAAAAAAAAAAATJTNwgAAAAAAAAAAAAAAAAAAAAAAAGCibBYGAAAAAAAAAAAAAAAAAAAAAAAAE2WzMAAAAAAAAAAAAAAAAAAAAAAAAJgom4UBAAAAAAAAAAAAAAAAAAAAAADARNksDAAAAAAAAAAAAAAAAAAAAAAAACbKZmEAAAAAAAAAAAAAAAAAAAAAAAAwUTYLAwAAAAAAAAAAAAAAAAAAAAAAgImyWRgAAAAAAAAAAAAAAAAAAAAAAABMlM3CAAAAAAAAAAAAAAAAAAAAAAAAYKJsFgYAAAAAAAAAAAAAAAAAAAAAAAATZbMwAAAAAAAAAAAAAAAAAAAAAAAAmCibhQEAAAAAAAAAAAAAAAAAAAAAAMBE2SwMAAAAAAAAAAAAAAAAAAAAAAAAJspmYQAAAAAAAAAAAAAAAAAAAAAAADBRNgsDAAAAAAAAAAAAAAAAAAAAAACAibJZGAAAAAAAAAAAAAAAAAAAAAAAAEyUzcIAAAAAAAAAAAAAAAAAAAAAAABgomwWBgAAAAAAAAAAAAAAAAAAAAAAABNlszAAAAAAAAAAAAAAAAAAAAAAAACYKJuFAQAAAAAAAAAAAAAAAAAAAAAAwETZLAwAAAAAAAAAAAAAAAAAAAAAAAAmymZhAAAAAAAAAAAAAAAAAAAAAAAAMFE2CwMAAAAAAAAAAAAAAAAAAAAAAICJslkYAAAAAAAAAAAAAAAAAAAAAAAATJTNwgAAAAAAAOD/Z+/Ow2S7qrrxf1cYwhBImAeBhEFAUEBmBEwi+DIpo4LMgQiC4MiMiAFRX15BfV9EUJQZFBAZZPKnYJhnZVCUmQgBZCYJQ0LI+v1x6krf09VDVVd3V/f9fJ6nn9yzz9l7r6pzdt0nXeuuDQAAAAAAAAAAAAAAsKQUCwMAAAAAAAAAAAAAAAAAAAAAAIAlpVgYAAAAAAAAAAAAAAAAAAAAAAAALCnFwgAAAAAAAAAAAAAAAAAAAAAAAGBJKRYGAAAAAAAAAAAAAAAAAAAAAAAAS0qxMAAAAAAAAAAAAAAAAAAAAAAAAFhSioUBAAAAAAAAAAAAAAAAAAAAAADAklIsDAAAAAAAAAAAAAAAAAAAAAAAAJaUYmEAAAAAAAAAAAAAAAAAAAAAAACwpBQLAwAAAAAAAAAAAAAAAAAAAAAAgCWlWBgAAAAAAAAAAAAAAAAAAAAAAAAsKcXCAAAAAAAAAAAAAAAAAAAAAAAAYEkpFgYAAAAAAAAAAAAAAAAAAAAAAABLSrEwAAAAAAAAAAAAAAAAAAAAAAAAWFKKhQEAAAAAAAAAAAAAAAAAAAAAAMCSUiwMAAAAAAAAAAAAAAAAAAAAAAAAlpRiYQAAAAAAAAAAAAAAAAAAAAAAALCkFAsDAAAAAAAAAAAAAAAAAAAAAACAJaVYGAAAAAAAAAAAAAAAAAAAAAAAACwpxcIAAAAAAAAAAAAAAAAAAAAAAABgSSkWBgAAAAAAAAAAAAAAAAAAAAAAAEtKsTAAAAAAAAAAAAAAAAAAAAAAAABYUoqFAQAAAAAAAAAAAAAAAAAAAAAAwJJSLAwAAAAAAAAAAAAAAAAAAAAAAACWlGJhAAAAAAAAAAAAAAAAAAAAAAAAsKQUCwMAAAAAAAAAAAAAAAAAAAAAAIAlpVgYAAAAAAAAAAAAAAAAAAAAAAAALCnFwgAAAAAAAAAAAAAAAAAAAAAAAGBJKRYGAAAAAAAAAAAAAAAAAAAAAAAAS0qxMAAAAAAAAAAAAAAAAAAAAAAAAFhSioUBAAAAAAAAAAAAAAAAAAAAAADAklIsDAAAAAAAAAAAAAAAAAAAAAAAAJaUYmEAAAAAAAAAAAAAAAAAAAAAAACwpBQLAwAAABipqmOqqkc/J+x2XDupqk4evf6Tdzum/cj7vLdV1Unjz4q9ML/nDgAAAAAAAADg0LZX814AAAAA4FCmWBgAAAAAAAAAAAAAAAAAAAAAAAAsqXPvdgAAAADAcqqqY5J8eoYuZyY5Lck3k3wyyb8meVeS13f3WYuODwAAAAAAAAAAAFaqqsqQ93b06NT3kxzd3afufFQAAAAAAFt32G4HAAAAAOwbhye5RJKrJLlVkkcneWWSU6vqyVV1xG4Gt99V1XOrqlf8fGa3YwL2l6r6zOhz5rm7HRMAAAAAAAAAwMgts7pQWJKcK8kJOxsKLEZVHTfK2+mqOm4X45GvCAtkTQEAALBZioUBAAAA2+3iSR6Z5N+q6ia7HQwAAAAAAAAAAAD71onrnLt/VdWORQIAAAAAsEDn3u0AAAAAgD3lW0k+sca5CyS5aJKLrXH+6CRvqKpju/sD2xEcAAAAAAAAAAAAh6aqumiSO65zyZWSHJfkn3ckIAAAAACABVIsDAAAAJjF+7r7uPUuqKrLJfnZJA9LcuXR6Qsn+duq+pHu/t72hMgibHSfgaS7T0py0i6HMTPrGwAAAAAAAADYp+6V5PBRWyepFccnRrGwXbdX824AAAAAYDcdttsBAAAAAPtLd3+uu5+R5NpJ/m7KJVdO8ks7GxUAAAAAAAAAAAD73P1Hxx/P6hy2O1fVkTsUDwAAAADAwigWBgAAAGyL7v5Wknsm+Y8pp++9w+EAAAAAAAAAAACwT1XV9TNscLnS85M8b9R2/iT32JGgAAAAAAAWSLEwAAAAYNt093eT/MGUU9evqovudDwAAAAAAAAAAADsSyeOjjvJC5K8PsmXNrgWAAAAAGDpnXu3AwAAAAD2vTdMaTssydWSvHPeQavqsCQ/nuSYJJdIctEkpyX5cpJPJPnX7j5n3vEXqap+KMnVM8R6ZIbdKU9L8rUk/5XkvZPCamyDqjp/khsmuUySSyY5IslXMzwrH+zuT+5ieJtSVZdIcuMkV8oQ/zczJDG+u7tP2c3YtltVHZnhtf9whvXz3SSnJnnnLK+9qi6b5AYZ1uERGdbf55K8ubtPW3DYc6mqw5PcNMkVklw6yfeT/HeSDyf5QHf3LoYHAAAAAAAAALCUJvlBdx81v+VAbklVvTjJr684d72qunZ3f3Cb4zpPhrylayS52KT5v5P8yyxzV9WFM+S9XC3JUUm+leSLSd7e3Z9baNCr575YkhsluXKSC2fIW/p8ljTvqqoul+TaGXIKL5GhaNyXk3whybt2Ik+oqn44yfWS/FCSwzPkqn0+ydu6++vbPf9+VFU/muQqGfL/Lpbk2xnu62cy5F9+b5vnt5bnn3dZ1uS1k1wuQ+7gWUm+0N0v2GR/OcDboKrOm+T6GdbDxTN8Xp6WIS/23TOMc5UMa/PAM3Zmkq9kyA99V3d/Z8GhAwAA7CrFwgAAAIBt1d1frqrTMiQXrHTxecarqpsneUiSn85QIGwtX6uq1yX5g+7+yDxzzauqLp7kTklumeTYJJfaoMtZVfWuJH+a5OWbLXJWVZ9JcvQap4+uqs0UFjq+u0+eMvbJGWI/4M3dfdwacXw4yY+uaPpykh/aSgJOVd09yYtHzQ/p7j/bZP/Dktwzyb2S/GSS861z7aeTvDTJU7r7K/NFvD2q6rgkj01yiwxF9qZd85Ekv5/kxbMUk6qqE5I8Z9R8xe7+zBxxjud9QneftEGfk5L8zsq27q4V52+Q5HFJbps1fo9ZVW9O8ujuftc68/xskkcl+YkkNeWSs6rqFUke2d3/tV7Ms76GGcY5JslJGT43xp+VB3yxqp6Z5Kndfcasc4zmOzmbWN+TuD69zlD3rar7bjTfgfdkkux2aoaEqwNO7u7jNwx6HVX1f5P86qj5Otud0AsAAAAAAAAALI2fy1DAZaXnjf7866Pz90/ya/NMNsnp+edR8//kYU02tfutJPdOcqE1xvhYkietV6ymqq6VIX/m9hmKqEy75p1JHtHdb5/tVayvqo7ND/KWzrXGNf+S5BlJ/mrWTfAWlXczGeuSSX4jyc8mueY6l55dVe9O8vQkL5l1M9L1cqQm+Wr3TfKbOTiXbqXvT/J2HrdevtOK+U7K6D0a+eeqDd+y53X3CRtdtBnbma+4xnzXyrBub5XksutcekZV/VOSJ2/mfR3NcVz2+FreRB7etq7lNcZbhjV5wSS/kuQBGTZpnWbqPdvrOcAbPdezmBLjhp8pG+WmVtU1kzwyyV2SXHDKEM9Lsm6xsKq6YobP29tm7fubJN+tqrcm+ePufv16YwIAAOwVU/+BIQAAAMCCTStss1ZBnKmq6qqT4l9vSXK3rF8oLJPz90ry4ar6y6pas1jUIk12ofxCkr9IctdsnCSQJOfNUNDqpUn+bfJF+F4y/lL/Eklut8UxTxgdn5nkrzfTsapuneTDSZ6f5H9lnUJhE1fMUEzqU1U1VwLgolXV4VX1rAwJGz+d9X+Pd40kL0zyhkmCy55Wg99N8q4MyVHrbXhwbJJ3VNXDp4xzZFW9PMmrk9w00wuFJcP6u1uSj1TVLbcU/Bwmz9y/Z0gWXO9z8dIZCor9e1VdbwdCW7jJLpAvHDUfV1U/Mu+Yk52B7zNqfqdCYQAAAAAAAABwSDlxdPztJH974KC7P5DkQ6Nr7lVVU4v2bEVV3TnJR5L8ctYoLjRx1STPr6qXjuOY5M88Psm/JPn5rFFcaOImSd5aVY/dWuT/M/e5qupPk5ycIfdqanGhiesmeVaSt0wKt+yoqjpvVT0xyaeSPDrrFyVKhjykm2bYxPKDkwJOi4jjckneluTZWbtQWDK8l7dI8s6q+r1FzL0fVdVlqupFST6Q5H5Zv1BYMmxceMcM7+srq2qj3NLNxmEtzz7nsqzJG2W4d3+Q9QtJTet7KOYA75iqelyGtX2fTC8UtlH/C0+e648meWg2vr/ny5CD+7qqemtVXWHWOQEAAJaNYmEAAADATjhqSttpm+1cVbfIsEvUbeaY+7AMyWBvrqrNfGm/VT+R9YsbbeRHkrxrN4oWbcELk3xv1Ha/eQebJE+NX/8ru/vrm+j78CSvzVBAa1YXSvInk+JyW7mHWzIpbPf6JL84Y9f/lSGhYb2knr3gmRl2Udzs7y4ryR9W1QP/p6HqqCRvTHLnGea9YJJXV9UNZuizJZOkvz9JcoEZul0hw+fZniwYlmH3xLEHbWG8u2f13zHP2MJ4AAAAAAAAAMAeUlVXyVCkZaVXdvfpo7bnjY4vmqHA0CJjuVeGImVHztDt5zMUmTowRmUo2vOErF/c56Cpk/xeVT10hnlXDzLM/cIkD5mx680y5LPMVJRnKyYFof6/JL+dOQrOZCjq9faq+tktxnGlDJsi3mTGro+tqidtZe79qKquneQ9Se6RtTeHXM8dMuRfXnWLcVjLs8+5LGvyJzMUSJu3KNShmAO8IyZFvn43c76/VXV0krdneK7PM8cQN0vynqq68TzzAwAALItd+0ePAAAAwKGhqq6c6YVwPrXJ/j+b5OVZ/cXuWUnelKGI2GeTfDPDDnHHJPmpJDcfXX/DJK+sqp/s7nFhq+3y/Qw7wv17kv9M8tUMRdIqyYWT/HCSG2fYGW1lYaQjkvxNVf14d392nfE/kuQbkz9fIclFVpz73uT8Rs7YxDXr6u4vVdXrMiTaHHDbqrpkd39pjiHvk9WFop497cKVqup/J3nUlFNfS/KPSd6f5EsZdg49KsOudbdOcrXR9SdmeF8fPlPUi/PsJMevOP5ohuJh/5nhtRyZ5MeT3CWrd637ySS/keQp2x/m4lXVryV54IqmU5L8fZJ/y/Daj0pyowyJVRcedf+TqvqHDJ8Hf5NkZTGt9yd5Q5JPJzk9w/v2U0lun4OftfMneVZVXb+7z17Qy5qqqn4zybRdIM+cxPqWJJ/PkDh1xQzr68DOoxdM8sqs2AF3m5yV5IMrjq+Rgz+Lv57kv2YZsLv/vapOTnLciub7VNVjuvvbc8T44NHxV5O8bI5xAAAAAAAAAIC96f5ZXVRoXBgsSV6U5P/k4KI9JyZ5yYLiuH6S318RyzeSvC5DIakvZchL+ZEkd82Q47bSParqld39sgz5JCeuOHdKktdkyJ/5aob8mRtOxhnnzzy5ql7T3Z+Z8zU8LMkvrDg+Pcmrkrw3yX9P5r56hryly4/6Xj7Jm6rqOt39jWyjyUaCb5/EMvZvSd6cIWfvQByXzFDM67YZNpQ84IgkL6uqm3b3++cI5UIZ8rp+aHLcSd6R5J8y5NSckeQSGfID75TkfKP+j6mqv+/ud68x/hfzg9ydI5JceXT+k9k4/2+m3J4NbGu+YlVdP8k/Z3itK52T5K0Z3ttPT2I4f5LLJTk2yS1y8Lr+4Qybbl6vu7+5iZjGrOUZ1/ISrclLJ/m7HLzW3pOhiNkpGd6Hy2TIg/v5TYx3SOQA75AH5ODidWdkyOt9e4Zn8rAMa/r4DO/7QSaFwt6d1TmzyXCP354h1/brSc6b4T7/RIZNqg9fce2lkry2qq7b3ads7SUBAADsjuru3Y4BAAAAWEJVdUyGxIqV3tzdx804ziOTPHnU/PUkF+/uczboe8UMX7QftaL57CR/nOQPu/vL6/S9TpK/zMEFg5Lkj7r7YRvMe0xWv/b7dfdz1+s36fuxJB/OsCvbmzaTbDL5EvsPktx9dOq13f0zG/WfjPHcJPdd0XRKdx+zmb5rjHdyhkSaA9a991V1+wzJJCs9rLv/aI65P5YhieKAzyU5er3nparulCHJY6WvJ3l0kud393fX6FcZdgh9ZoYElJXu0N2vnjH8mUx5n7+bHySqfDHJr3T31IJQVXVEkqdnKK620jeSXLa7v7PB3Cckec6o+YrzJBhV1fiXjE/o7pM26HNSkt8ZNZ+ZITHj2xkSlp7V3dMSPy6VoYjgTUen/iJDwsdTJ8efSvLA7n7jGjFcP8lrs/re36O7/3q9+Nd6Dd294Y6WVXW1JB/I6gTA10/i/dwa/e6U5Bn5QcLLdzIkn806/8mZYX2v6PeZJEevaHped5+wUb8p49wlqwudndjdGxYFHI1zvSTvGzU/pbsfMWtMAAAAAAAAAMDeU1XnylAM6bIrmj+f5PLTco2q6rUZitMccE6SK81aMKSqjstQ1GilA3kvSfK0JI+fVminqg7PkNvykNGpj2bIA3pnhqIpG+XPXDpD/sxPjE79RXf/0iZew0lZnbuzMnfpOUl+c43XcFiGDQ2flNX5L8/t7vvNM/9m8l4mfV+RIedrpXdM4l2r8NaBgka/nSH2lXN9Jsm1uvv0DeYd50itfL/eneSXu/tf1uh7TIb7dd3RqX/o7luvN++k/3FZ/cwd390nb9R3O2xDvuJFMuSKjsd4TpKTunvNomeTDW2fnuRWo1N/19132WDe42Itb2ktT8ZZljX5/fygcNyHkjyou9+5Rt/zTcsr3Q85wIv8vJgnZ3CN3NSV9+aZSR7X3V9do/9B96aqzpvkbUluMLr0NUke2d3/sU4sl07yh0nuNTr13iQ3mbYmAQAAlt1hG18CAAAAMJ+qukySh0859dcbFQqbeFEOLhT27SS36u5HrlcoLEm6+wMZkif+cXTqV6pqvBPaIt2gu+/S3a/Y7K503X1Kd98jyUmjU7etqmk7rS2j12XY3WulE2YdpKpumoMLhSVDcsF6hcIumdWJBR/PkCzyF2sVCkuSHrwiw26A4wJNfzApJraTDiTcfCrJjdcqFJYk3X1Ghvf4H0anjsqw499edKBQ2C27+5lrJWJ0938n+ZkMOzWudK8kT5z8+d8zJHNMLRQ2Ged9mf5ebSrJaQuekdXJVS9N8jNrFQpLksmzemx+8LrPv9a1S+6VWb3eHjzHOOM+neTP54oIAAAAAAAAANiLbpODC4UlyQvXyTV63uj4sMyR47SGA8WFfq27f3VaYZ4k6e4zu/uhWZ3zc7Ukfz+J6YwkP7VB/swXM+TPjPPofqGq5s0pOZDP8r+7+/7rvIZzuvupSX4+w+afK51QVT855/wbqqoHZnVRoj9LcrP1ihIlSXd/Y7LR6ImjU8ck+eU5wjnwfr0myXFrFQqbzP2ZJD+d1Tl2P11VV5hj7v3m6Tm4UNj3k9xr8hyuWSgsSbr7kxk+C8Y5hHeuqhvNEYu1PNjUWl6yNXmgGNXbk9x8rUJhk7nXyis9VHOAt9uBe/Ow7n7wWoXCkqn35qSsLhT26O7+2fUKhU3G+mJ33zvJE0anbpDk5zYOGwAAYPkoFgYAAABsi8lubW9IconRqW9n2EFro/4/neQmo+b7d/ebNhtDd5+VIYnhKyuaz5PkNzc7xqw2mxywhidm2K3qgEpy/61FtDO6++wMO6mt9GNVdb0Zh5pWpGmcxDP2a0mOXHH87SS3Xq/o0lh3fzbJL4yar5Hk9psdY4G+l+Sum9mxtLs705/n8S6Je8mvr5ekc8Akgekpo+YLJLlghp0R79rd42Ji08Z5W4bPqpWOr6pxMa+FqKofS3L8qPkTSe6zmSKK3X1g58k9a5L4Ni7qdf2quv5mx6iqI7N6J8Z/7O5PbDU+AAAAAAAAAGDPGBeYSZLnr3P9q5KMi+bcr6oW9W/sXtzd/2+T1/72lLZLTv77axsV2UmS7v56kqeOmi+cYZPNeZ3c3Y/ZzIXd/ZokT5py6le3MP+aqurcSR47an5Ddz9kkke1Kd39nCR/OWr+jao6fNr1G/hMhqJWa25ouWLer2V1wZrDMhQRO2RV1dWS3G3U/Fvd/aLNjjG5/7+UZFw46NFzhmUtD9Zdy0u6Jr+Z5G7dfdocfQ/ZHOAd8vLu/qNZOlTVRZL8yqj5md395FnG6e6Tsnrz6Xk/HwAAAHaVYmEAAADAQlTV+arqh6rqdlX1F0k+lORaUy59wCaLOD1qdPzW7n7JrHFNvrj/v6PmO806zk6YJEe8YNR8s92IZU7PntJ2wmY7V9UFktx11PyWyc5/a/U5Iqt3kHtqd39qs/Me0N1vT/LGUfNuPCsv7u73b/bi7v5IkvGulLMWaVsWH8vqpJ/1vHyN9hdM3pfN+tvR8bmT/NgM/WfxoCltD+vuMzc7QHf/Q4bdJ/eyv0hy1qjtwTP0v2+G4nArPXNLEQEAAAAAAAAAe0ZVXTLJ7UbN/9Ld/75Wn0l+xjgH7egkt1hASN/P6qI5a+ru9yb5rymnPpqNN1dcaZz3kiTXnaH/2KyFvp6cZJwPeIequswWYljLL2S4Xwd0VheR2awnTvofcKms3tx0M54wY3Ghv8nwrKy0V3O9FuUROfjfuX46qzeR3FB3fy/J74+abzPHppHW8g9stJaXcU3+UXefOmcMW7IPcoC30zlJHj5Hv4ckOWLF8RlZnV++WU8cHV+nqo6ZcywAAIBdo1gYAAAAMItjq6qn/ST5ToZEgdckeUBWF3H5dpJ7dveLN5qkqi6a5KdGzbMUEBp77ej46Ko6euqVu+/jo+PrVtV5diWSGU2KM71n1HyPGXZ3u0uSC43aNkqWuWWSo0Ztf7XJ+aYZPyvHbmGseT1rjj7j9/2qiwhkFzxnxh0FP5VhJ8CxWZ+Bf53SdrUZx9is24yOv5DVz91m/PkCYtk13f2lJC8bNf9CVY3X81p+aXR8avZ+ATUAAAAAAAAAYPPum2ScV/W8TfR7/pS2E7ceTv6pu0+Zsc8HprTNmj/zySSnjZrnzXt5V3d/eJYO3f3drC6Oc+4MeV2L9nOj45O7+xPzDNTdn00yfq2z5op9K8mG+ZCjeb+e1TmC25WntPSqqpLcedT83O4eF1TbrNeNjg9PcqMZx7CWf2Cjtbxsa7IzfdPbnbRnc4C32Zu6+zNz9Bs/Yy/r7vE62ax3JPnGqG03coQBAAC2RLEwAAAAYLudnqHQ19U3Uyhs4uZJatT2ji3E8OkpbT++hfE2raqOqKrbVtWjq+r5VfXaqnprVf1LVX1g/JPkT0dDHJ5hh7S9Ylzc66JJbr/JvvcbHZ+R1cWExsZf1J86R6LOSuNn5ZgZihctwneyuvDXZnxydHyuqjpi6pXL7S1z9BnvyvjtJO+fcYzPTGlb+H2f7Gh7xVHzq+ZMbvuHDAmHe9n48+4CSe6zUaeqOjbJNUbNz+rusxcVGAAAAAAAAACw9O4/Oj47yV9v1Km735HVxVzuONngcivmyXuZluf01gWMM2/eyyvn7Pd3U9puPOdYU02KSt181LyVnMJkda7YrDmF7+rus+aYd5zrdeQcY+wX1+6QKh4AACAASURBVEpykVHb3Pe1u7+W1ZtPznpfreWDTV3LS7omP9Hdn9tiDAc5BHOAt8s/z9qhqi6S5MdGzVv5fDgnq9fYjuSSAwAALNK5dzsAAAAAYN97X5KnTXb92qybTml7eVVtepe1Tbj4Asdapaqul+QRGQplnX+Lwx2VZKEJDNvor5P8UQ5+zSdkg6JfVXV0kuNGzS/t7o2KIY2flYtMEi7mNa3A1sWzejex7XJKd39vjn7jBKdkSCI7Y4vx7LR5dhU8fXR8yhxFo8ZjJNuThHe9KW2zFjZLknT32VX1oSQ32VpIu6e731VV78/B78uDkvy/Dbo+eHR8doailAAAAAAAAADAIaCqbprk6qPm13f3lzc5xPOT/O6K48OT3DPJ07YQ1iLyXhY1zrx5L3PlsST5cJLvJTnPirZpeTJb8SMZNq5c6b5V9TNbGPMKo+NZcwrHRec2a5zrdSgXC5uWK/q0qjpzC2NeYHQ86321lje3lpdxTf7LFuY+yCGcA7xd5rk3N0ly2KjtMVX10C3EcZXR8bbmkgMAAGwHxcIAAACAWXwr0xMYzpNhd7fLTDl3fJL3VtUJ3b3hzo0Tl5vSdq1N9t2siy14vCRJVZ0nyR9nKGYz/pJ6XnsmGai7v1lVr0hyjxXNt6qqy3T3F9bpekKSGrU9ZxNTjp+VCyS59ib6zeJimS9xZx5fm7PftAJj55nStuy+Pkef8WufeYzu/t6w0eFBtuP9u+SUto9uYbz/zB4uFjbxpzl4rf9IVR3X3SdPu7iqLpnkTqPmV3f3qdsUHwAAAAAAAACwfE6c0va8Gfq/IMkTc3C+0onZWrGwReS9LGqcefNe5spj6e4zq+ozSX54RfO0PJmtmJZTeLk12uc1a07honK99mKe16JMu3/jQoBbNet9tZY3t5aXcU1+aasTHuo5wNtonnsz7Vm60lYDGdmWXHIAAIDttKj/WQUAAAAODe/r7utM+blmd182w5emJ2QoYLPSeZO8oKp+dpPz7MSXr1vd6WuVSZLAy5I8JIv9vcteSwYaF/k6V5J7r3VxDVWa7jNq/nh3v20Tc413ptsOC39W1jEtaeiQ0d2LeP3L/B4eNaVtvFPoLLbSd1n8TZKvjtoetM71J2b4O2WlZyw0IgAAAAAAAABgaVXVEUnuOmr+epLXbHaM7j4lycmj5mtX1fW2ENpCclYWlD8zr0XmsUzLk9mKZcwpXOY8pb1i397XQ2AtL+O9O20rk8kB3lbz3JtlfMYAAAB2nWJhAAAAwMJ099e6+3lJrpOhAMxK50rywqo6ZhNDXWTBoe2URyW5w5T2U5P8WZJ7JblJkstnSKA4X3fXyp8kx+9YtNvnjUlOGbXdb53rj83q3b7GBcdWqaoLJDl8ttBgV11oStu3tjDeVvouhe7+bpK/GjXfuaouNb62qg5L8sBR88czfOYAAAAAAAAAAIeGX0hywVHbS7r7zBnHed6UthPnC2nfWGQey7Q8ma3YqzmFrM993R47sZaX8d6dvcX+coC3zzz3ZhmfMQAAgF137t0OAAAAANh/uvvMqrp3kkvl4C++L5yhKMwtNhjiO6Pjb3T3Un/pW1WXTPKYUfPZSR6R5E+7e7NfdO/5Xaq6u6vqeUkev6L56lV14+5+15Qu40Ji30/y/E1M9d0k5+Tggviv7O47zRQw7JzTp7SNk1dnsZW+y+TPkjw8P1jL58mQfPv7o+tuk+SYUdufd3dva3QAAAAAAAAAwDKZVtDrQVX1oAWMffeqelh3j/PXDhUXTHLaFvquNC1PZium3ZM7dverFjwPO2vafb1Id39jxyPZX3ZiLe+rNSkHeClNe8au090f3PFIAAAAlshhG18CAAAAMLvJF+P3yeqEg5+qqrtt0P0ro+OjquqohQW3PW6f5AKjtkd195/MkCSQJBddYEy76blJxgV8ThhfVFVHJLnLqPn/6+5TN5qgu89JMk4KuuLmQ2QRquo8ux3DHjItie3ILYy3lb5Lo7tPSfKaUfMDq2r8++sHj46/m+GzBgAAAAAAAAA4BFTVNZLceBunOCrJnbdx/GW3yDyWRRd7GucUJnLF9oNp9/WYnQ5iH9qJtbzf1qQc4Ol2Mz90vz1jAAAAC6FYGAAAALBtuvtzSR4/5dTvb1Bg6L+ntF1rMVFtm58eHX89yZ/OMc6VFhDLruvuTyc5edT8C1V1vlHbXbN6J7rnzDDV+Fm5alUdPkP/Q9n3prTNk9hxsa0Gcgj50pS2q21hvKtvoe+yGX9eHp3kNgcOquqg44mXdvdXtzswAAAAAAAAAGBpnLhP5lhWV52nU1WdN6sLPE3Lk9mKvZhTyMbc1+2xE2t5v927/ZQDvKjc0GR3i5/tt2cMAABgIRQLAwAAALbbM5J8atR2payfVPWeKW3jIjHL5vKj43d391lzjHOTRQSzJMZFv45McqdR2wmj468lefUMc4yflfMnOW6G/oey06a0XXiOca6y1UAOIe+f0na9eQaqqnNnfyW+/FOSj47aHrzizw/M6t9nP2NbIwIAAAAAAAAAlsZkc8p7j5rPSvLBLf58bTTmcVW1DMVedsNceSwZcljGhWim5clsxYeSfHfUdusFz8HO24u5onvBTqzl/bYm91MO8EJyQ6vqcknGGwTvpHdPafP5AAAAHPIUCwMAAAC21eTL8idOOfVbVXX4Gt3+cUrb3SbFcZbVxUfH4ySyDVXVxZMcP+f8Z4+OzzXnOIv08qxOOrjfgT9U1ZWT3Hx0/kXdfeYMc0x7Vu41Q/9D2TemtM2T6HjsVgM5VHT3l5J8etR8+6qa5/e0t0pywa1HNZNt+5zp7k7yZ6Pm21TV0ZNk33GByQ9097sWNT8AAAAAAAAAsPRun+QSo7ZXdPd1tvKT5HGjMSsrcpwOMXecs9+dp7QtNK+ju7+b5G2j5stU1S0WOc8SG+ftJLubI7ioPKJ3JPnWqO12VXWROcdjsO1reR+uyf2UA7wvckO7+5Qknxg137Cqrrob8QAAACwLxcIAAACAnfDCJB8btV0uyQOmXdzdp2b1bmRXTHLCwiNbnHHCyjhxYDMekvl34Tp9dHzEnOMsTHd/O8lLRs23qKoDO7CdMKXbc2ac5h+yene6u1fV1WYc51D00SltN5xlgKo6V5L7LyacQ8brR8eXTXK7OcaZ+vm5zbb7c+a5Sc5YcXxYkgcmuVOSS42ufcaC5wYAAAAAAAAAltt4o7FkyEvbqpckOWvUdsKcm7/tdTepqmvO0mGyYei9R81nJ/mnhUX1A6+a0nbSNsyzjMZ5O8nu5gguJI9oshntG0bNF0rysHnG43/s1FreT2tyP+UAn5qD8/CSGXNDJx64hRgWZfyMHZbk8bsRCAAAwLI4FH9pCQAAAOyw7v5+kt+dcuoxVbXWF+O/N6XtKUu8I9QXRsc/UVUX3GznSWLGY7Yw/9dHx0ctye564+JfhyW5zySZ7j6jcx/s7n+dZfDu/kqSvxg1nyvJi6vq/DNFeojp7i8l+dyo+a6TAmCb9ZDMt+PcoeyZU9qeUlXn3ewAVXXLJHdYXEibNv6cWei97+7Tkrxg1Hxikl8ZtZ2W5MWLnBsAAAAAAAAAWF5V9UNJ/teo+ctZXWRoZt39taze/O1ySW611bH3qP874/WPzPB+rfSq7h7n0y3CXyX54qjtZlX1qG2Ya9mM83aS3c3bWmS+4rRc0UdW1c3mHI/BTqzl/bQm900OcHefk+QDo+bbVdWRmx2jqm6f5CfnmX/BnprVGwrfs6ruthvBAAAALAPFwgAAAICd8uIk/zlqu2ySB027uLtfkeR9o+Yjk7x+1h3PDqiqC1XVI6rqXvP038BbR8dHJPmdzXSsqmOSvDrJ4VuY/8NT2m67hfEWorvfmdX3/YQkt0hyhVH7s+ec5g+yele36yZ5xbzJElV1dFU9rap+dM6Y9opxouMVkvz6ZjpW1S2S/J+FR7TPdfeHk/zzqPmqSZ6zmR1pq+qHs7qg1k4Zf878aFVdfsFz/Ono+FJJxol/L+zu8c6HAAAAAAAAAMD+db8MGwiu9JLuPntB479wStuJCxp7r7lFVT1pMxdW1W2S/PaUU/9vsSENuvs7mV5Y6ver6qHzjltVt66qP5s/sh3x2STfHLXtZn7gwvIVJxuMvnzUfJ4M+X9zFSuqqsOr6oFV9Rvz9N8ntn0t77M1ud9ygMe5oedPstnn4VpZvVHwrpgUq3v6lFPPrqq7zDNmVZ2rqu5WVdOeXQAAgKWnWBgAAACwIyY7VT1hyqlHV9UF1uh29yRfG7VdKcm7q+q3NrPLVVUdVlXHV9Uzk/xXhuJGl54h9M16eZJzRm2PqKrfrapzrxPf3ZO8Mz/Y5e+0Oed/15T5n1pVd6iq88w55qKMkwauktW71p2V5EXzDN7dX0xy3yQ9OnWrJO+vqnutdw8OqKoLThIA/i7JJ5I8NMn55olpD/nLKW1Prqpfqqqa1qGqzjfZ+e/1GZJbxru2sbFfzur37R5JXj3ZCXeqqrpjkrfkB59h39me8Nb0jtHxYUleVlXXX9QE3f2RrC6mNvbMRc0HAAAAAAAAACy3SQ7L/aacmlbga15/n9WFmG5fVZdY4Bx7wYF8lt+qqmetlZ83ycn79SR/l6Go00rP7e63bGOMT0/yqlHbYUmeVlWvqKprb2aQqrpiVT2qqj6UIQ9qrqJUO6W7O0Oe4Uq3rKo/qKpL7kJIi85X/KUknx61XTzJG6vqD6tqUzmfVXWjqnpqks8k+fMkV54jlv1gJ9fyflmT+y0H+LlJvj9qe2hVPWGt1zMponVikrcluWiGnNyz5ph70R6X5D2jtgsk+duq+suq2tQ6r6ofraonJvlYkr9JsqlnEwAAYNls+I8kAQAAABbopRm+tL3mirZLZSic85Txxd39iaq6a5LXJTnvilMXzLDD1WOq6m1J3p7kC0m+keEL4KOSXD7JdSc/Ry38layO9WNV9cIk9xmdelySE6rqb5N8KMkZGb5Ev1qS2+fgZJRvJ3lUkmfMMf8XquoNOXgnsUsleWWSs6rqs0m+ldUFtX6xu98363wzekGS38/Bu3v+yOiav+/ur847QXe/vKoen+R3R6euOJn/KVV1cpL3JflyhvfiwhmejaskuX6Sa2VrO7vtOd39nqp6VZI7rGg+V4ZiTA+pqldkKJx2VpJLJLlehmdsZYLZr0fxppl0939W1W8leero1O2SfKKqXp9hp8IvZNjR70oZ7tGPrbj21CQvy/D+75RXZSjgeNEVbTdK8t6qOj3J5zOleFx3X2fGeZ6e5Pg1zr2tu6ftoggAAAAAAAAA7E/H5wdFWA74eHe/e1ETdPeZVfWyJL+4ovk8Se6V5I8XNc8e8PgMm3Emw3tx16p6ZZL3JvlShlyrqye5S5IrTOl/SpLf2M4Au7ur6l4ZitmMC73cMckdq+qDSU5O8vEkB3LSjspQfOpaGXKgxs/UXvDsJLcetT06w4atX8iQ13P26Pyru/vxiw5k0fmK3f3Vqrp9hvu6srDVuZM8PMmvVtU7M2y0+LkkX8+Q63dUkssk+fEMOYCHWoG/tezYWt4va3K/5QB39+er6mlZnV/4+CT3rKqXJ/mPScwXy5CbeLsc/Dw8OcOmz0fP+noWqbu/W1V3ylBQ7fKj0ydmuD/vS/LmDIUCv5YhD/aoDLmu18nw+bDmRq4AAAB7iWJhAAAAwI7p7nOq6gkZioat9MiqekZ3f2tKnzdW1c2T/G1Wf8l7wSS3mvwsg19NcsMMSRQrXS4bF/T5XpKfz/DF+7wekeTYDO/LSufN2jvkHbGF+TZlRRLD7da57NkLmOdJVfX5DIWGzjc6fakkd5v8cLAHJblBksuO2n8sBxenmuYPu/vPq0qxsBl19x9V1cWTPGZ06nxJ7jT5Wcu3MiRS/cw2hTfVJOnmN5I8b8rpC2VIgFqEVyb5bFZ/5idzJFIBAAAAAAAAAHvaiVPaXrgN87wwBxcLOzD3oVQs7CkZCqrcdXJ84QyFc8bFc6b5XJKf6u5vbFNs/6O7z5jkFD4nQ7GjsWtnddGi/eDlSd6Y5BZTzl1m8jP2gW2MZ6H5it39b1V1gyR/l+RHp4x57OSHje3oWt5Ha3K/5QD/VpJbZvV6unKSR24Qy0sm/e++wXU7YlL87IYZ4vrJ0elzZdj09EY7HhgAAMAuOGy3AwAAAAAOOQd211rpEkl+Za0O3f2eJNfNkEjwvS3M3Rl2J3vrFsZYe/Dub2b4Yv1dM3b9fJJbdvfrtjj/R5L8dJJPbGWcbbJeMbAvJPmHRUzS3c9OcpMkb9riUN9N8jdJ/mvLQS257v5ikptltufmrCQP7+6NEkZYR3c/NsMOjLMkCH0uyfHTdgPcCd39/AyJsadv4xzfT/LnU059OUPSIwAAAAAAAABwCKiqo5LcecqpF23DdG/J6lyha1bVIVN8pLs7yT2TzLpx4NuTHNvdn1p8VNN19+nd/XNJHpzk1C0O918ZchOXWnefk+Tnkrx4t2NJtidfsbs/nqHgzx9l2FBxK96XZEs5mXvVbqzl/bAm91sOcHd/O8lxSd4zS7cMxebuMfnMWRqTXNdbJHlckq9tcbj/yOqNrwEAAPYExcIAAACAHTVJQjhpyqmHV9WF1un3le6+f5KrZPgi+t8zfCm9kdOTvDZDQZ4rdvfx3f3umQPfpO4+NcOuVQ9NslHCxClJfjvJ1bv7LQua/50ZdjW7bZI/S/K2DIkIZyTZzS/u/z7JV9Y49/xJcaCF6O4PdPctktw4yfMzFFfajC9k2CH0vkku3d137+4vLSquZdbdn05yrSSPzfA+rOWsDDuz/Xh3P3UnYtvvuvtPklwzyfOSnLbOpV9K8qQk1+zu9+5EbGvp7r9K8kNJ7pfkBUn+NUN831ngNNOKoT27u89c4BwAAAAAAAAAwHK7Z5Lzjdre2d2fXPREk7y2aUXITlz0XMusu8/u7gdnKJjzpqyfc/avSR6Q5OY7WShspe5+ZpIrTeL4p2xu075zMsT+h0mOT3LMXsmF6u5vdPc9M+QInpTkNUk+meTr2dpGrPPGs/B8xe7+dnc/LMkxGV7j+5JsJr/wuxme2cdmyLG6wVaLN+1lu7WW9/qa3G85wN391SQ3zVDEbb2/O7+f5PVJbtrdj1i2QmEHTJ7r30tydJKHZXh/ztpE17OTvCPJE5PcsLuvMdk4FQAAYM+p4feYAAAAAHtPVV0iyfWSXCLJxZIckWE3udMzFIj6zySn9C7+AqSqrprkhpMYLziJ73NJPtTdH92tuA41VXWVJNfI8JxcLMl5MyRPfDPJp5P856FSGGwzqupaSa6d5OJJLpDhffpohmTLM3Yztv2sqg5PcrMkV0hy6QzJPf+d5ENJPrCsCTjboapenOTuK5o6yVV2K7EUAAAAAAAAAOBQVFUXz7Bp45Uz5OedlmEzwn/djqJtW1VV582QU3i5DLlPF8lQJOb0DJtdfizJx7p7kZvisc2q6sgkN0hyyQz5f0dm2Njw9AyFlD6a5FOL3LR0r6iqk5L8zsq27q4p1+3KWt7ra3K/5QBPXs/1MqylC2W4D59M8o7u/tpuxjavqrpAkusnuWyGz4ejkpyZ4bV9KcPnwye6ezNFxQAAAJaeYmEAAAAAACyNSSHIzyY5fEXzG7r7NrsUEgAAAAAAAAAAwNLZbLEwAAAAYH84bLcDAAAAAACAFR6QgwuFJcnTdyMQAAAAAAAAAAAAAAAAgGWgWBgAAAAAAEuhqi6Y5NdGzZ9I8rpdCAcAAAAAAAAAAAAAAABgKSgWBgAAAADAsnhikkuO2v6ku8/ZjWAAAAAAAAAAAAAAAAAAloFiYQAAAAAA7KqqumhVPSXJb45OnZLkWbsQEgAAAAAAAAAAAAAAAMDSOPduBwAAAAAAwKGlqv4yyfUnhxdPctkkNeXSR3T3WTsWGAAAAAAAAAAAAAAAAMASUiwMAAAAAICddpUk197gmud398t2IhgAAAAAAAAAAAAAAACAZXbYbgcAAAAAAAAjL0zyi7sdBAAAAAAAAAAAAAAAAMAyOPduBwAAAAAAwCHvO0lOTfLOJM/u7pN3NxwAAAAAAAAAAAAAAACA5VHdvdsxAAAAAAAAAAAAAAAAAAAAAAAAAFMcttsBAAAAAAAAAAAAAAAAAAAAAAAAANMpFgYAAAAAAAAAAAAAAAAAAAAAAABLSrEwAAAAAAAAAAAAAAAAAAAAAAAAWFKKhQEAAAAAAAAAAAAAAAAAAAAAAMCSUiwMAAAAAAAAAAAAAAAAAAAAAAAAlpRiYQAAAAAAAAAAAAAAAAAAAAAAALCkFAsDAAAAAAAAAAAAAAAAAAAAAACAJaVYGAAAAAAAAAAAAAAAAAAAAAAAACwpxcIAAAAAAAAAAAAAAAAAAAAAAABgSSkWBgAAAAAAAAAAAAAAAAAAAAAAAEtKsTAAAAAAAAAAAAAAAAAAAAAAAABYUoqFAQAAAAAAAAAAAAAAAAAAAAAAwJI6924HALutqo5McuyKps8mOWuXwgEAAAAAAAAA2IrzJrn8iuM3d/c3dysYAJCjBwAAAAAAAADsE7uan6dYGAxJSK/a7SAAAAAAAAAAALbBHZK8ereDAOCQJkcPAAAAAAAAANiPdjQ/77CdmggAAAAAAAAA+P/Zu/M4u+r68P/vc2cmCYEAARJkUUIAQVMBqXxlCciiaLVfpZQv1dKitl9LhbZYv4D6tQjqryp1a79fqNStxKXWrwsgasEqi0DKIovSAipLCGDINpOQfe7c+/n9QWaYmdzlnJububM8nzx4mHPO55zPmZuc65B88roAAAAAAAAAAAAAAMWIhQEAAAAAAAAAAAAAAAAAAAAAAMA41d3pG4Bx4KnhG9dee20cfPDBnboXAAAAAAAAAICWPfroo3H66acP3/VUvbEAMEas0QMAAAAAAAAAJrxOr88TC4OI/uEbBx98cCxYsKBT9wIAAAAAAAAA0E79zYcAwA5ljR4AAAAAAAAAMBmN6fq80lhOBgAAAAAAAAAAAAAAAAAAAAAAAOQnFgYAAAAAAAAAAAAAAAAAAAAAAADjlFgYAAAAAAAAAAAAAAAAAAAAAAAAjFNiYQAAAAAAAAAAAAAAAAAAAAAAADBOiYUBAAAAAAAAAAAAAAAAAAAAAADAOCUWBgAAAAAAAAAAAAAAAAAAAAAAAOOUWBgAAAAAAAAAAAAAAAAAAAAAAACMU2JhAAAAAAAAAAAAAAAAAAAAAAAAME6JhQEAAAAAAAAAAAAAAAAAAAAAAMA4JRYGAAAAAAAAAAAAAAAAAAAAAAAA45RYGAAAAAAAAAAAAAAAAAAAAAAAAIxTYmEAAAAAAAAAAAAAAAAAAAAAAAAwTomFAQAAAAAAAAAAAAAAAAAAAAAAwDglFgYAAAAAAAAAAAAAAAAAAAAAAADjVHenbwAAAAAAAAAA2iGlFNVqNVJKnb4VgBGyLItSqRRZlnX6VgAAAAAAAAAAAIAJSCwMAAAAAAAAgAmpUqnEhg0bYt26dbFhw4aoVCqdviWAhqZNmxazZs2KWbNmxYwZM8TDAAAAAAAAAAAAgFzEwgAAAAAAAACYUCqVSixbtizWrVvX6VsBKKS/vz9Wr14dq1evjp6enth3331j5syZnb4tAAAAAAAAAAAAYJwrdfoGAAAAAAAAACCvcrkcTz75pFAYMOGVy+VYunRpbNy4sdO3AgAAAAAAAAAAAIxzYmEAAAAAAAAATAhbtmyJJUuWxJYtWzp9KwBtkVISDAMAAAAAAAAAAACa6u70DQAAAAAAAABAHsuXL4+BgYER+7Isi5kzZ8asWbNip512iq6ursiyrEN3CFBbSinK5XKsX78+nnvuuSiXyyOO/eY3v4mDDjrI+xcAAAAAAAAAAABQk1gYAAAAAAAAAONeuVyODRs2jNg3bdq0ePGLXxzTpk3r0F0B5NfT0xMzZ86MOXPmxDPPPBPr1q0bOlYul2PLli0xY8aMDt4hAAAAAAAAAAAAMF6VOn0DAAAAAAAAANDM2rVrR2yXSqU44IADhMKACSfLsthvv/2ip6dnxP7nnnuuQ3cEAAAAAAAAAAAAjHdiYQAAAAAAAACMe6NjYbvuumt0d3d36G4Atk+WZbHrrruO2Ldu3boO3Q0AAAAAAAAAAAAw3omFAQAAAAAAADCupZSiv79/xL7RkR2AiWaXXXYZsd3f3x8ppQ7dDQAAAAAAAAAAADCeiYUBAAAAAAAAMK5Vq9Vt9vX09HTgTgDap7u7e5t9td7vAAAAAAAAAAAAAMTCAAAAAAAAABjXUkrb7CuV/HE3MLHVeh+r9X4HAAAAAAAAAAAAYPU0AAAAAAAAAAAAAAAAAAAAAAAAjFPdnb4BxkaWZT0RcXxEvCQi9omI9RHxm4i4P6W0pM1zHRgRR0bEvhGxS0Qsi4gnI2JxSqnczrkAAAAAAAAAAAAAAAAAAAAAAAAmM7GwDsmybH5EHB0Rr9r6v0dFxKxhQ55MKc1rwzxzIuLDEfEHEbFHnTGLI+IzKaXvbOdcZ0bEeyPi2DpDerMs+2ZEfCiltGp75gIAAAAAAAAAAAAAAAAAAAAAAJgKxMLGUJZlJ0XEB+L5QFjNcFeb5/udiLg6IuY2GXpcRByXZdnXI+LclNKGgvPsEhFfiIi3Nhm6R0S8OyLOyLLs7SmlG4vMAwAAAAAAAAAAAAAAAAAAAAAAMNWIhY2tIyPitLGYaGuY7NqImDZsd4qI+yLi8YjYPSJeGRF7DTt+dkTsmmXZ6Smlas55uiLimxHxxlGHVkbE/RGxNiIO2jpXtvXY3hFxXZZlr00p3V7gywIAAAAAAAAAAAAAAAAAAAAAAJhSSp2+ASIiYktEPNaui2VZtn9EfDdGhsLuiIgFKaVXpZTOSimdFhH7R8QFEVEeNu6/R8T/V2C6T8TIUFg5Iv4yIvZPKb1+61y/HRG/FRH/MWzc9Ii4NsuyfQrMBQAAd3Xq+gAAIABJREFUAAAAAAAAAAAAAAAAAAAAMKWIhY29ckQ8EBFfjIhzI+K3I2JWRPzPNs7x4YiYPWx7cUS8NqX08PBBKaUtKaX/ExFnjTr/vVmWHdBskizL5sfzsbHh/kdK6YqUUv+ouR6KiFNjZDBsz4i4tNk8AAAAAAAAAAAAAAAAAAAAAAAAU5VY2NhaFBG7ppRemVJ6V0rp8yml+1JK5XZNkGXZIRHx9mG7+iPiHSmlzfXOSSldu/XeBk2PfBGvSyOiZ9j21Sml6xrMsyki3rH1ngb96dboGAAAAAAAAAAAAAAAAAAAAAAAAKOIhY2hlFJfo2hXm/xhRHQN2/5uSunXOc67fNT2WVmWzag3OMuynSLizCbX2EZK6VcRce2wXd3x/D0DAAAAAAAAAAAAAAAAAAAAAAAwiljY5PN7o7b/Oc9JKaWHI+KuYbt2jojTGpzy+oiYOWz7P1JKj+S6w23v6Yyc5wEAAAAAAABAU/PmzYssy4b+veWWWzp9SwAAAAAAAAAAAADQMrGwSSTLshdFxBHDdg1ExB0FLnHLqO3faTD2DU3ObeS2eP7eBr0yy7K9C5wPAAAAAAAAAAAAAAAAAAAAAAAwJYiFTS6/NWr7FymlDQXOXzxqe0GBuf4j7yRb7+nBAnMBAAAAAAAAAAAAAAAAAAAAAABMSWJhk8vLR20/WvD8x5pcb7iXjeFcAAAAAAAAAAAAAAAAAAAAAAAAU1J3p2+Atjp41PbSguc/OWp7zyzLZqeU+obvzLJsj4jYYzvnGj3+kILnAzBBlKv9kSJFREQpK0V31rN1fzlSVLfr2l1Zd3RlXXXnnFaanus61VSNUqahSnu169fV4LPSk02LLMtGHEspRYo0Yp5KGohKquS6dlfWFV1Z99Z5XnhWt0cWpegp9Wy9l0pU0kDNcc2ez5RSlFN/3WvnUU2VGBg1//D3jeE/R8Pfk4rOAwAAAAAAAADAC1K1GlnJeiwAAAAAAACAdhILm1x2H7W9osjJKaX1WZZtjogZw3bvFhF9o4aOnmdjSmlDkblq3NtuBc8HYJy7c+3N8e+918Sy/hf6kKXoimpUohRd8XziaPtiYdOzGXHozofHH+59XuzavXvctfbm+NGwOef07BMn7v47ceoeb655/qMb/yuuWfmVeGrL4/Hi6fPjjDnviINmvmy77omprZqq8YPV/xp3rr0pNlc3xhG7vDrO2vvPYkZpp8LX+uXGB+O6lV+JJzc/FimqsVvX7HjVrifG7805JyKyuG7VV+Pu526NShqIw3f5b3HK7DfHt1d8KR7b9PA2ka16urOeGEjl6Mmm5T4nj126dov1lbUxLZse/WlLzTF79uwdC3c7LU7b44wREbRqqsQ1KxfFz567LdZWRn4bmkUpXjLjoHjLXn8Uh+18RN35N1TWxTeWfy4e2vBAbK5uHHGsJ5sWA6kcu3TtGpuqG2MglSOLUsTWd6Xn58nixTMOijfvdXa8fOdXtvgqAAAAAAAAAABMLemGr0X6+qcili2JdOQJkV14RWQvOqDTtwUAAAAAAAAwKYiFTS67jNre1MI1NsXIWNisHTjPcLXmKSzLsrkRMafgaQe1Y24AXvDAujvjK8/+wzb7q1EZ8b/ba0vaHL9Yf3es7F8W/32vs2PRqDlXlpfFd1Z+OXpK0+LE3d8w4tizW56OK57+yFDI6InNv4wrnv5wvH/ep2Pvafu15f6Yen6w+hvxb6u/NbR953M3x/rKujhv/78pdJ1ntiyJf3z6oyMCXmsrffGTvuuiGpXoiu74cd+1Q8cWr/1xLF7748L3O5DKERFtDYVFRKyvrI2IqBsKi4hYXV4e1636anRn3XHqHm8Z2v/tFV+OW9b8oOY5Karx5OZfx+ee+du46CV/F/vPmLftmJTiyqc/Eks2/7rmNQa/1nVb73HwuiPnSbF086Nx1TMfiwtf8ol4yQzfLgIAAAAAAAAANJJ+el2kv/3TF3bc9aNIf3VaxFcfiGx68Q/aAwAAAAAAAGAksbDJZXTEa3ML19gUEbMbXLOd8zS6ZqvOi4hL23QtAFp0z3O3jul8y/qfim+v+FLd43etvXmbWNj96/9jm5DRlrQ5fr7urjhtzzN2yH0yuVVTNe5Y8+/b7P/PDT+LdQNrY1b3brmvdf+6/6gb8Lp77a2RZVnL9zne3PXczUOxsEqqxN053j/KqT/uX39HzVjYivJv6obCihpI5bhv3R1iYQAAAABAXSmluO++++KRRx6JFStWxJYtW2LOnDmx3377xcKFC2OXXdr1R+Fj76mnnop77rknnn766di0aVPstdde8YpXvCJe9apXRalU2q5rr1ixIm677bb4zW9+E5s2bYp999035s+fH8ccc8x2X7uWhx56KB588MFYuXJlPPfcc7HHHnvEPvvsEwsXLow999yz7fMBAMBUlG78+rY7ly2J+MUdEUe/dqxvBwAAAAAAAGDSEQub3NIkOweACeLZ/mfGfM7egZV1jz3b//Q2+65fVWNxWkRcu+orYmG05LnKmniusqbmsRXlZYViYbV+zQ7aUF1X+N7Gs2VbXvha11fWxsbq+lznPbul9mtUb3+rGv1cAAAAAABT16pVq+JjH/tYfO1rX4uVK2v/GcW0adPilFNOicsuuyxe/epX57ruO97xjli0aNHQ9hNPPBHz5s3Lde4tt9wSJ5988tD2pZdeGpdddlnd8cM/mOI1r3lN3HLLLRERsXjx4rj00kvjpptuimq1us15e++9d3zwgx+M888/v3DY6/7774+LLroobr755prX3n///ePcc8+N97///dHd3R2XXXZZfPjDHx46fvPNN8dJJ52Ua67Vq1fHJz/5yfja174WzzxT+8+uSqVSHHfccXHppZfGa18rXgAAANvlp9fV3J2+/NHIxMIAAAAAAAAAtlv7P46VThpdVtiphWuMPqdWrWGs5gFggkqx7V/u6KTxdj9MTn3lVXWPpVQZwzuZWKrDns9KgdepOkbPdTV5/wAAAAAARrr22mtj/vz58dnPfrZuKCwior+/P2644YY45phj4txzz42BgYExvMvWfOxjH4sTTzwxfvzjH9eMeUVELF++PP7qr/4qzjzzzOjv78997c985jNx9NFHx09+8pO613766afjkksuide85jWxfPnylr6GiIivfOUrMX/+/Lj88svrhsIiIqrVatx+++3xute9Lv74j/+40NcDAADktGlDp+8AAAAAAAAAYFLo7vQN0FZiYRH/GBHfKnjOQRFR++PMAGhJitTpWxhB7Iex0DdQ/y+EjVXYaiJKUY2UUmRZVuhZLRIW2x5+7gAAAACA4b785S/Hu971rm1iVwcddFC8/OUvj5kzZ8bSpUvj7rvvjkrlhd/H/PznPx9Lly6N66+/Prq7x+dSjU996lPxwQ9+cGj70EMPjUMPPTR23nnnWLZsWdx5552xefPmoePXXHNNXHLJJXH55Zc3vfanP/3puPDCC7fZ//KXvzwOOeSQmD59eixdujTuueeeqFQqsXjx4jjrrLPixBNPLPx1fOhDH4qPfvSjI/ZlWRaHHnpoHHLIITFr1qzo6+uLn/3sZyNib1/72tdi2bJlccMNN4zbnyMAAJiQuns6fQcAAAAAAAAAk4LVjZPL2lHbc4qcnGXZLrFtxGtNjnlmZlm2c0qpyEd/zc0xT2EppRURsaLIOVmWtWNqAIZJqVgs7NW7nhyv2f13co394m8+Gb0Noky1VGNsokJMbb3lBrGwwsG69gT3Xjx9frxt7z8fse9fV3w+lm5+tOF5r519ehw167jc89z93K1xy5oftHSPEc8Hubqiq9CzWi/i1e5YYXWMomQAAAAA7FhpYCBi5dOdvo3Jb87+kU3iyNIDDzwQ7373u0eEwo488si48sor47jjRv6e6sqVK+OSSy6Jf/qnfxrad8MNN8SHPvSh+NjHPjZm95zXgw8+GLfddltERJx++unx8Y9/PA477LARY/r6+uK9731vXH311UP7Pv3pT8e73/3umDdvXt1r33vvvfH+979/xL6TTjoprrjiiliwYMGI/StXrowPfehDcdVVV8VPf/rTeOihhwp9HYsWLRoRCiuVSnH++efHhRdeGC95yUtGjE0pxXXXXRcXXHBBLF26NCIifvKTn8Qll1wSH//4xwvNCwAANCAWBgAAAAAAANAWk3eV7tT061HbBxQ8f/T43pRS3+hBKaXVWZb1RcTsYbtfEhEPb8dco+8dgAks1Yn41LNHz14xb6eX5ho7vTS6a9lc8VATFNc3sKrusXphqx1t565Z2zxbO5d2aXre3Gn75H4mIyIe2/RI4Xsbrpqq0ZV1FXpWxyri1amfOwAAAADabOXTkc46tNN3Mell/++XEfvM6/Rt7DB/+qd/Gv39/UPbCxcujBtvvDFmzpy5zdg5c+bEVVddFQcffHBcdNFFQ/svv/zyeNvb3haveMUrxuSe8+rt7Y2IiIsvvjguv/zymmNmz54d//zP/xx9fX1x3XXXRUREpVKJL33pSyMCXaOdf/75MTAwMLR9xhlnxDe/+c3orhGWmzNnTnzuc5+L+fPnx8UXXxyrVtX/vffRnnzyyXj3u989tD19+vS49tpr4w1veEPN8VmWxemnnx7HHXdcHH/88fHoo89/0MYnP/nJ+LM/+7M48MADc88NAAA0IBYGMKaeXJ3iqltTvPmILI6Z78PVAQAAAABgMil1+gZoq9GxroMLnj9/1Hajj+ht91xFQmMAjHPVSIXGZwW+JSllxb99qUY1Uip2T1BUb7lBLGyMwlajlbKuGvuaP0NFnsm812xkMDBYjfyvU2WsYmEd+rkDAAAAAMaXm2++Oe67776h7V133TW++c1v1gyFDXfhhRfG7/7u7w5tV6vV+OxnP7vD7nN7LFy4MD7+8Y83Hfe3f/u3I7ZvuummumPvueeeuOuuu4a299lnn/jyl79cMxQ23EUXXRSnnXZa03sZ7pOf/GRs2rRpaPuzn/1s3VDYcHPnzo1/+Zd/GdquVCrj9ucIAAAmJLEwgDGRUoqFl1fiwA9U4/IbUhx/eTW6zq3G5rL1swAAAAAAMFmIhU0u/zlq+/AsyxqvTB7p+CbXa3Ts2LyTZFm2c0QcXmAuACaYlKqFxnfVCBrVU2rx25fBGBHsKH3llXWPVQv++mtX267W85InBFY0/tUVzZ/h7qz+X/waDH8VCYAVCYttj2rB9zMAAAAAYHJatGjRiO3zzz8/9t1331znfuITnxix/Y1vfCO2bNnStntrlw9+8INRKjX//eEFCxbEvHnzhrYfeOCBumO/8Y1vjNj+i7/4i9htt91y3c8ll1ySa1xExIYNG+LLX/7y0Pb8+fPj3HPPzX3+0UcfHSeccMLQ9ve+973c5wIAAE30TOv0HQBMCd+9L2LxY9vuf/3fWwMHAAAAAACThVjYJJJSWhYRvxi2qzsiFha4xEmjtv+twdgbmpzbyAnx/L0Nuj+ltLzA+QBMMnniRYNKBcJiwxWNNUFRfQOr6h7rVHCqVvQrT5yvlCP+1Wye0bqz+p8SOxjzK/KcjtVrOlZRMgAAAABgfLv99ttHbP/RH/1R7nMXLFgQRx111ND25s2b4957723bvbXDTjvtFKecckru8S972cuGfrxx48ZYv359zXGLFy8esX3WWWflnmPhwoW5g2y33357bNq0aWj7zDPPzBU+G+7kk08e+vGTTz4ZS5cuLXQ+AABMZanSYH1Fd/01IwC0zx9+sfaautt+PcY3AgAAAAAA7DDdzYcwwVwTEYcP235nRPyo2UlZlh0WEa8etmtDk/NujIhNEbHT1u1jsyw7LKX0SI57fMeo7WtynAPABFI0zJUnXjSo1GLrtJqqEVlLp0JT/dUtsa6ytu7xTgWnumpEv/I8Q3niXyPHN3+Gn4+Fbap5rJKef32KBMDGKgDYqdAbAAAAADB+9PX1xWOPPTa0vfvuu4+IZeVx3HHHxX333Te0fc8998Rxxx3XtnvcXgcddFBMmzYt9/jZs2eP2F67dm3ssssu24z7+c9/PvTj3XffPQ4++OBC9/WqV70qvve97zUdNzrmtu+++8aSJUsKzTX663/88cfjJS95SaFrAADAlDXQX/9Yl1gYQD2VaorFj0X8/KkUR8/L4r8dGJFlrS12LftcTAAAAAAAmPTEwiafr0fE30QMlSHOyLLskJRSs8+Ded+o7f+XUtpcb3BKaWOWZd+OiD8edY13Npoky7KXRsTvDds1EBH/0uTeAJhgUqRC44sEwIpGjAaNVViIqWnNwOqGx4sHp4o9Q/XUinjlCXsVCfhFRJRqRMlGez4WVtvg81lN+Vcr1Rtb9P2n6TwdCr0BAAAAAOPHypUrR2wfcsghhf/S5mGHHTZie8WKFdt9X+00Ov7VTE/PyN/zLZfL24zZsGFDbN78wrKDVsJbec956qmnRmy/5z3vife85z2F5xuut7d3u84HAIAppdwgFtYtFgZQS/9Aij/6YjW+PdSXT/Huk7L4v2+NKJXa++m4/QMppnX7xF0AAAAAAJjoxMImmZTSr7MsWxQRf7J117SIuDrLslPrxb+yLHtLRLxj2K7+iPhwjukui4i3RsTgn+K/I8uya1JKNT/WN8uyGRHxz1vvadCXUkqP1RoPwMSVUsFYWIEwUZ4oUS1FIkRQVF95VcPjnYrV1Xpe8sT5sgIBv4h8Eb/urP5/eqStMbVKgTBXZYye6eKhNwAAAADGpTn7R/b/ftnpu5j85uzf6TvYIfr6+kZs77bbboWvMfqc8RaiKpVa+7CWRtasWTNie9asWYWvseuuu+Yat3p14w/1aMW6devafk0AAJi0Nm+sf0wsDKCmf70nDQuFPe9zt6Q445VZnPqy9s91zrFiYQAAAAAAMNGJhY2xLMv2j9qv+4tGbXdnWTavzmXWp5QaFSkujYjfi4jBj/49LiJ+nGXZ/0wpPTLsXqZHxJ9FxKdHnf/plNKTDa4fEREppcezLPuHiLhw2O5vZ1n23oj4fEpp6GPCsix7WUR8ceu9DFod+aJkAEwwqWAYKU+8aGhsjihRLYI/7Ei9AysbHu9UrK7W85InztdVIOAXkS/i15XVX/g5GAkr8jpVC4TFtkelQ6E3AAAAANor6+6O2Gdep2+DCWr0h6Rk2fb/xcp2XGO8mz59+ojt/v7+OiPry3tOK9dupuiH4wAAwJT25CP1j02bXv8YwBT2Dz+u/XsP/3hLNU59WWsfrFvPvz8Ucc6xbb0kAAAAAADQAWJhY+/2iDggx7j9IuKJOscWRcQ76p2YUno6y7IzIuLGiJi2dffxEfFQlmX3RsTjEbFbRBwVEXNGnf79iLgkx/0Nen9ELIiI39m63RMR/zciLsmy7L6IWBcR87fONXy1c39E/F5KaVmBuQCYIFIU+8sTeeJFg7pyRIlqqYxRWIipqa/cqOMaUe1QcKpmLCxHnC8rEPCLiOjKEfHryer/p0faGvMr8jqNVQAwCQ0CAAAAwJS3xx57jNheu3Zt4WuMPmf27Nl1RrauUhlffxYy+mvs6+srfI3e3t5c4/baa68R24sXL45jj/U3YAEAYMwMlOseyvY5cAxvBGD8uv3XKb7/YIqerojTj8zi/qdqj7vm/vbP3btBFB0AAAAAACYDsbBJKqV0S5ZlvxcRV8cLQbAsIl619d9avhER70op5V5BnFKqZFl2VkR8MSL+YNihuRHxhjqnrYiIt6eUbss7DwATS9FPWs8TLxqU5YgS1SL4w47UN9AkFlbw11/R4F49teJ6tQJirYwZLk9crDvrqXtsMOZXzf9taIMAYHsXNQkNAgAAAABz5oz8DK5f/epXha/xy1/+csT23Llza47r7h65jGNgYCD3HK3EuHakrq6u2G+//eKZZ56JiIjHH388Nm7cGDNnzsx9jQcffDDXuL333nvE9q9+9SuxMAAAGEv9m+sfy7L6xwCmiKturcZ5X39hbdvl/9b+eNfuMyPWbKx97N/+s+3TAQAAAAAAHdBabYMJIaX0w4j4rYi4KiIarQq+MyLOTCn9YUppQwvzrE8pvTUi/sfWa9XTGxGfi4jfSindUHQeACaOahQLIxUJExUJiw0n+MOO1Fte2fB4kQhWO5WyGrGwGgGx0WpFxhqOrzHPaI1iYYMxtSLvHWP1mgoNAgAAAACzZ8+Ogw46aGh7zZo18fDDDxe6xuLFi0dsH3300TXH7brrriO216xZk3uO//qv/yp0T2PhmGOOGfpxtVqNW2+9Nfe5vb298fOf/zzX2OOOO27E9o9+9KPc8wAAAG2wpUEsrOAHTwJMNlvKKS7+9sj3woEdsCytXigMAAAAAACYPMTCxlhKaV5KKdvOf99RYL4VKaV3R8SLIuKUiHhnRHwgIv4qIn4/IuanlI5NKX2nDV/bt1NKx0bE/Ig4c+scH9g65ykRsU9K6byUUuOaBgCTQLEFXkUCYLXiR3kI/rAj9Q6sani8aECvXWo9W3nifFmBgN/z19y+WFja+vpUCgTAxioWJjQIAAAAAERELFy4cMT217/+9dznPvzww3HvvfcObc+YMSN++7d/u+bYuXPnjth+6KGHcs/zwx/+MPfYsfLa1752xPYXvvCF3OcuWrQo+vv7c4099dRTo6vrhd+r/t73vhcrVqzIPRcAALCdylvqHxMLA6a4Ox6LWN/gbbJdsqzx8d4N3o8BAAAAAGCiEwubIlJK/Smlm1NKV6eUPpFS+r8ppe+mlJ7YAXM9kVL6ztY5PrF1zptTSvlW8QIw4aWisbACYaIiYbHhBH/YUVJKsabcJBZWMGzVriU5tSJeeZ63roLPWVc0j4V1Zd11jw1Gwoq8TvUCbO1eziQ0CAAAAABERJxzzjkjtq+44op49tlnc537gQ98YMT2W9/61pg+fXrNsUcdddSI7euvvz7XHDfeeGPcfffducaOpbPPPjtmzZo1tH3NNdfEjTfe2PS8Z555Jj7ykY/knmf27Nlx9tlnD22vX78+LrzwwmI3CwAAtK7aaH2FOA0wtT27dmzeB2fV/u2mIes3j8ltAAAAAAAAO5BYGADQdqngp0GWcoSGBnXViB/lURX8YQfZWF0fW1LjVTT1wlY7Wq24Xp7gXlbwOctyBMi6s566x9LW16fI6zRWz7TQIAAAAAAQEXHKKafEkUceObS9du3aeNvb3habNm1qeN5nP/vZuO6664a2syyLv/7rv647/thjj42ZM2cObV9zzTXxs5/9rOEcv/71r+Ptb397sy+hI2bNmhUXXHDBiH1nnXVW3HzzzXXPWbJkSbzuda+LNWvWFJrrsssuGxFh++pXvxrve9/7olIp9vu8Dz30UPz0pz8tdA4AANBgvVjBtWQAk82m8tjMM9BkSd1zYmEAAAAAADDhiYUBAG1XNIxUyhEaGpS1+O1L6lCsicmvt7yy6ZhOxepqxfVKOUJgXQWfszzjexrEwipbX59qyv8XtsYq4iU0CAAAAACTw7PPPhtLlixp6d9BX/rSl2LatGlD27fcckuccMIJcdddd20z36pVq+L888+P9773vSP2X3zxxXH44YfXvc9Zs2bFH/zBHwxtVyqVeNOb3hQ/+tGPthnb398fX/jCF+KYY46J5cuXx+zZs4u8JGPmkksuiVe84hVD288991yceuqpcdZZZ8W3v/3t+MUvfhGPPPJI/OhHP4r3vOc9sWDBgnj44YdjxowZ8Za3vCX3PAceeGB8/vOfH7Hv7/7u72LhwoVx/fXXx8DAQN1zlyxZEldeeWWccsopsWDBgrjpppuKf6EAADCVCYIB1HXTI2MzT7nJkrofP+y9GgAAAAAAJrruTt8AADD5pEafFFlDKZrHiwZ1FQiLDVcpECGCIvoGVjUdUy0ctmrPopxaIb5SjrBXkYDf8+ObP8PdWf3/9BgMDBYJDdYPi7V3QVORgBkAAAAAMH697W1va/nctPUvvR911FFxxRVXxJ//+Z9Htfr872fee++9ccwxx8TBBx8cCxYsiBkzZsRTTz0Vd9999zZxqte97nXx0Y9+tOl8H/3oR+Oaa66JNWvWRETEihUr4vWvf30cfPDBcfjhh8f06dNj+fLlcdddd8WGDRsiIuJFL3pRXH755fH2t7+95a9zR5k2bVr84Ac/iFNOOSUeffTRiHj+Nf3Wt74V3/rWt2qek2VZXHnllbF06dK47rrrRuxv5Jxzzolnn302PvCBDwz9HN15553x5je/OWbOnBmvfOUrY++9946ddtop1q1bF6tWrYqHHnpo6LUGAABaVG2w5kNIDJjiXrRb8XNSSk1/H2S0gSbL79ZsLH4fAAAAAADA+CIWBgC0XSq4wKtImChrMRaWCkSIoIi+co5YWOrMr79aIb48z1uWIyg2cp7m47uznrrH0tYgV5GoX/EAW2uKBMwAAAAAgMnvXe96V8yePTve+c53xvr164f2P/roo0MhrFr+5E/+JK666qro6an/e6WD9ttvv/jOd74Tp59+eqxbt67pHAceeGD84Ac/iOXLlxf8asbOi1/84rjtttvivPPOi2uuuabh2D333DMWLVoUb3rTm+J973vfiGOzZs1qOtfFF18chx9+eLzzne+MZ599dmj/xo0b44477sh1v7Nnz841DgAAGNRgvZhYGDDFlVtY6tY/EDG9+W8jDalUU9O32498P8UZR6U4fP9iETIAAAAAAGD8aK22AQDQQNEwVynbNmhUT1eN+FEelQ7Fmpj8egdWNh3TqeBUrWerVkBstK4Cz2S9eba9Zv1OcWXr61PkdRqrZ1poEAAAAAAY7cwzz4zHHnssLrjggthrr73qjuvp6YnTTjst7rjjjvjSl76UKxQ26JRTTom777473vKWt0SW1f4LnHPmzImLLrooHnjggXjZy15W+OsYay960Yviu9/97lA07OUvf3nsvvvuMWPGjJg/f3689rWvjX/6p3+Kxx57LN70pjfQQVaJAAAgAElEQVRFRMSaNWtGXGO33XbLNdcb3vCGeOKJJ+LKK6+MI488su5rOKinpyeOO+64uOyyy+JXv/pVXHDBBa19kQAAMFU1LNSIhQFT26b+Fs4pFxs/kDNIduRHqvHYCu/LAAAAAAAwUdX/G/sAAC1KBRd4lQr0S7OstdZpp2JNTH595VVNx1Q7FKurFdcr5XiGsoJN4bwBsixKNeNbaevrU035P0IxRTWqqZrr69keQoMAAAAAMDEtWbJkh15/7ty58fd///fxmc98Ju6999545JFHYuXKlbFly5bYa6+9Yv/994+FCxfGrFmzWp7jsMMOi2uvvTZWrVoVt956azz99NOxcePG2HvvvePAAw+ME044Ibq7X1j2cdJJJ0Vq+Bf0RyoydrSrr746rr766pbOXbhwYSxcuDDX2Iceemjox1mWxdy5c3PPM2PGjDjvvPPivPPOi97e3rjzzjtj2bJl0dvbG+VyOXbZZZeYO3duvPSlL43DDjssZs6cWfhrAQAAtmrw3xcppWic7wWY3DYXDH9FPB8Y273Ab1WU8y+9i6/fneJDv+udGQAAAAAAJiKxMACg7QrHwrLmoaFBteJHeRSJEEERfQM5YmEFY3VFn6F6asX18oa9isgzvhRdUYpSVGq8FpV4/vks+pw+Hx4b+TVuz19uqzdHSimyzOIoAAAAAGBbpVIpjj766Dj66KN32Bx77bVX/P7v//4Ou/54tWHDhrjvvvuGtl/60pe2HF/bY4894o1vfGO7bg0AABit0XqNNq/lAJhoNvUXfx/cVDAwtmUg/9jLvpfiQ79b7PoAAAAAAMD4sG09AABgO7QS6ikV+JakVCN+lEfRWBPk1Vte2XRMp2J1XTWerTzPUJFnMvc1s1LdcdX0/PNZKyTWSGWMXlfvHwAAAAAAY2/RokWxcePGoe1jjz22g3cDAAA0lKytAKinaPirlXNamQMAAAAAAJh4xMIAgLZKLUR1SllX/rGRf+xwnYo1MblVUiXWDPQ2Hdep2FStZyvPM1TkmXz+mnkCZF11xw2+bxR9Tsfqda1a0AoAAAAAMKaefvrpuOSSS0bsO+ecczp0NwAAQFONPmCyhQ+fBJhMNvYXP2dTwXOKjgcAAAAAACYmsTAAoK1SFF/clSc0NDQ2a+3bl07Fmpjc1g705grkdSpWV+vZyvMMFXkmn79mngBZqe7cla2vT9HntNbruiOWl1ZDbBAAAAAAYHt85zvfif/9v/93rFy5sunY+++/P0488cTo7X3hwzqOOOKIOPnkk3fkLQIAANujYRBMLAyY2loJeW0q79jxAAAAAADAxNTd6RsAACaXagufBNlVIABWiuZRolqqSSyM9usrr8o1rlOxuloRrzwhsKxglC/PNUtRqhsVGwyuFY2qjdVz7f0DAAAAAGD7rFu3Lj7+8Y/Hpz71qXjDG94Qp556ahxxxBExd+7c6O7ujt7e3njwwQfj+9//flx//fWRhv1507Rp02LRokUdvHsAAKC5BmvGWlhPBjCZbBkofk7RwFgrcwAAAAAAABOPWBgA0FaphShSliM0NKhUMGI0aHiEqFn4J6UUWZa1NA9TS+/AylzjOhWb6qoVC6sT7BpxXsEoX55rlrJS3ahYZevzWY1isbBKwfGtKnpfAAAAAADUVi6X4/rrr4/rr78+1/iddtopvvKVr8QRRxyxg+8MAADYLo2CYGJhwBRXbmH52aZysfH9BWJh8/Ysdm0AAAAAAGD8aK22AQBQR2r0KZF11Aoa1VMvNtRMdVjErFn4p5XgGVNTX3lVrnFFY1OpTYskaz0veZ6holG+PHGxUnTVjYoNxtQqBaNqwyOAL2j/AtNOxd4AAAAAACaL3XffPbq6in1QxfHHHx8//elP48wzz9xBdwUAALSNWBhAXf2txML6i713FomFVb0tAwAAAADAhNXd6RsAACaXVmJhWYEAWNGI0aDhUaFm4Z9KqtaNGsFwfQM5Y2Edik3Vel7yPENFf/3nu2apbqhsMNBXO/5VX9EIW6vGah4AAAAAgMnq9NNPj+XLl8cNN9wQd9xxRzz44IPx5JNPRm9vb2zevDl22mmn2GOPPeKAAw6IE044Id74xjfG8ccf3+nbBgAA8qo2WBsjFgZMceVWYmHlYuOLBMmKXhsAAAAAABg/xMIAgLZKLSzu6ioQJipFaxGvalRr/riW1OQ4DOotr8w1rlOxqVrPS71gV9ExI8bneIZLUaobFatsjYQ1eza3PW9sntVOxd4AAAAAACaTPffcM84+++w4++yzO30rAABA2wmCAdTTP1D8nMKxsAJzrN0UcesvU/zsyRSbyxFvOjyLQ+ZGLH7s+bDZCYdEzJqRFbsBAAAAAABgTIiFAQBt1Upoq0iYqF5sqJlqqtT8cS2VJsdhUN/AqlzjisamUpsWUNaKeOUKexV8znIFyLKuurG/wfeNZs/maLXGt+u1GzFPh2JvAAAAAAAAAAATQsMPmBQSA6a2cgvLzzYXjIVtKRAL6x+IOPnTL6xpvOS6ke/TO0+PuP4vSnHSoYJhAAAAAAAw3rRW2wAAqKOVUE9WIExUJCw2XHVYxKzaJGjWSvCMqamvnDMW1qFfU121YmF5wl4Fn7Na89S6Zr0I2WCgr1IwyjVWr2vR2BsAAAAAAAAAwJTSKBbWMCQGMPn1Fwh5DdrUX3SO9r3XbtgSccbnqlFu4zUBAAAAAID2EAsDANoqtbC4qyuah4YGlXJEiWoZHvtpFv4RBiKPLdXNsaG6LtfYamrhowHbIKvx7X69YFez87Z3fCkrRanOsz4Y/UoFn72xel07FXsDAAAAAAAAAJgQxMIA6iq3sMxtU7nY+P42L6VbszFi8WPtvSYAAAAAALD9xMIAgLZKLUR1shzxokGlFr99GR77aRb+qURnwk5MLH3lVbnHdio21VUjrlcv2PXC8VJkWVZonlJWiiwan1PKuuqGygYjYUWfveoYPasCggAAAAAAAAAALRILA6a4VkJehWNhA8XnaGb5Ou/fAAAAAAAw3oiFAQBtVY3iiwO6msSLhivViB/lUU2Vmj+uJQkDkUPvwMrcYzsVm6oV16sX7Mp7vP5czSNk9WJ/la0xtaKvU6Xm+PYvUKo0ec8AAAAAAAAAAJjSqo3WfIjNAFNXtZqi0sLyweVri43/xL+1/732hv9s+yUBAAAAAIDtJBYGALRVamFxV5E4Uasho2q8sNqiWZCoEsJANNdXXpV77PBff2OpVlyvWXCvWfSr/lzNImRddeceDPQ1C/mNVnR8q1KHfv4AAAAAAAAAACaEJAgGUEu5xSVu/3J3/vfVzeUUS1a3Nk8jVy9Okby/AwAAAADAuCIWBgC0VWoS4qqlWbxoxNgWQ0bDA2HNwk2tfA1MPX0DBWJhYxS1Gq1U49v9WvtGHG8xyNf0ulv/qWUw0Fc01DdWYb9Kh37+AAAAAAAAAAAmhgYxGaEZYAprNRZ2wJ75x97yy9bmyGNp7467NgAAAAAAUJxYGADQVqnRwq86mkWGRoxtMWRUHRYVahZuahYTg4iI3vLK3GOL/ppq5TmqpatGiK9ZnK/VIF/T62ZddZ/fwUBf0VBfrWd5RywvTd4TAAAAAAAAAADqaxQEEwsDprD+FmNhs2fmH/vL5Tvuffbx/MskAQAAAACAMSAWBgC0VUuxsAIBsFZDRtVhEaJm4aZKk5gYRET0DRSIhRWMYLVLrYBXszhfq0G+ZueVtv5Ty+AzWYliz95Yhf28JwAAAAAAAAAANCAWBlBTucWlZwMFzutpbVltLo+v8h4OAAAAAADjiVgYANBWqYXFXc3iRSPGthgyqg6LEFWbhH/SGAWImNj6yqtzj232a25HqfVsNY2FtfifCF1NQn6lrFT3+R2McRWNqo1VxGusomQAAAAAAAAAABNSwzVjQjPA1NU/0Np5AwWWrHXvwL8V9MSqHXdtAAAAAACgOLEwAKCtWgltZUViYS1++zI8QtQs/DNWASImrpRS9A6szD2+eGyqPYska8W5SlmzqFdrHzPY9LpRilKdoNjg+0bRqFqt95tWgoXNdCr2BgAAAAAAAAAwEaRGHxC3A9ZyAEwU5RaXnhU5r6e1JX+5LBELAwAAAACAcaW70zcAAEwuqWDkqBSlyLIs//ga8aM8qvHCyolqo8Vp0VrwjKllfWVtDKRy7vHFY2HtUSvO1ewZajXI1+y8UtZVd+7BQF/R12mswn6d+vkDAAAAAAAAAJgQBMEAauofaO28gQJL1hotwZ2/V8Tj2xH8enxV+97fH/pNiv9zU4p7nkgxc1rESYdl8b7XZ7HLjPxriAEAAAAAYKoTCwMA2qpwLCwr9pFmXTXiR3kMD4QND4fVUmkSE4O+gWKrZ6pjFLUaravG89U86tViLCxHhKxWvCzihUBf0fjXWL2unfr5AwAAAAAAAACYEBrFwoTEgCms3OLSsydX5x+7en39Y+efnMX/+lbr78NPbEdobLhHlqV4zSersXrDC/vueCzFzY+kuPl/laKnWzAMAAAAAADyaK0EAABQR7VgaKtZuGi0rMWQ0fAIUbN7rIZYGI31lovGwjrza6pWnKt51Ku1IF+z80pZqe7cg69Ps5DfNucVHN8q7wkAAAAAAAAAAI2IhQHU0t9kidsBe27/HN//Re332cNeFLH7zO279vLnIjZs2f738S/enkaEwgYtfizitke3+/IAAAAAADBliIUBAB1VyoqFibpaDBmlYbGfZoGhlMYmQMTE1TuwstD4olGrdi2RrBXnyhP1akVXk2e5FF1144CVra9P0ahapeb49i8w7VTsDQAAAAAAAABgQmgYBBMLA6au/oH6xzZcUYqPviWre7xvQ773z5fuXfsay9ZGvGyf+tfPa8nq7b5E3P1E/a/lrgbHAAAAAACAkcTCAIC2Gh7lyqNePKierMWQUXV4LKxJ+KdS8Gtg6ukrF4yFdSg2VSvG1ywGVvSZHJQ1Oa+UlerGAdPW16da8NkrGmFrVdH7AgAAAAAAAACYUhrFwhqGxAAmt03l+sdm9EQs2Ld+zGtjf745Buosb1u7KeLoeRF77pzvOvW84rJqnPvVaqzf3Nr7+eZyitsfrX8879cJAAAAAACIhQEAbVYtuLirXjyonq4oNn7Q8FhTs/BP6lDYiYmjb2BVzf1Z1F64UzSi1y5dNb7dbxYDaxYTqztXk2e5tPWfWipbo1/VVCz+VXR8q8ZqHgAAAAAAAACACanaYG2MWBgwhW2qE8Ka0RORZVnDkFej0Nhw/3xH7ffZtx6dRVcpi2+eu/1/begLt6U4/R9bWwc58/zG5/30V/5/AgAAAAAA8hILAwDaqmgUqVm4aJvxLYaMRsTCmoR/BsNFUE9vuXYsbLfuPWrurxSNTbVpkWStGF+zQF+pxSBf0+tmXXXHDAb6ir5OtcbviGVDzQKDAAAAAAAAAABTm9ALQC31gl879Wz932kNzq0TGhuuUq3//rvH1hDZKYdlcdaran8QahE3PRLx6Ipi7/fPrm0+/rZft3pHAAAAAAAw9YiFAQBtlQou/Coa/2oWJKqnOiwA1iz8MzwsBrX0lVfW3L9Xz94193cqNlUrxtcs0NdqkK/pdbf+U8vg61MtGOobq9fVewIAAAAAAAAAQAONPhivTR+aBzARbeqv/R44GAkbjIbVPLdOaGy436ypf6x72HLbc47d/lhYRMQvni42/l/vaf7/ASce0uLNAAAAAADAFCQWBgC0VeFYWMFvR4qOHzQ89tMs/JM6FHZiYhhI5XiuUnuFzZ71YmEdik3Vius1C+6VorUgX7PIWCnrqjtm8PUp+jqN1etaNGIGAAAAAAAAADClNAyCiYUBU1e94NdgJGwwGlbz3P7Wrx8R8Tu/9UIg7ORDI2bNaH695vMVe09ftrb5mLLleQAAAAAAkJtYGADQVqlgvKdZYGi0rMVvXyrDYj/VJjGwSrLygPrWlHvrRvH27Jlbc3+zX3OjFY3u1VMr/NUsuFf0mWw01+h5640ZjHEVjXLVHt/+Baadir0BAAAAACxdujT+5m/+Jk444YTYe++9Y9q0aZFl2dC/V199dadvEQAAoHEsrGFIDGByu2dJ7f2DsbCuUhY9dZbeNQqBDVqyqv6xVx0wbL5pWfzwr0qxx87Nr9nIxhwBs+G+dmfz/w/ot2QXAAAAAABy6+70DQAAk0vRyFGzwNBoXVmx8YOGR8yahX9SwbATU0vvwMq6x+rFwopG9NqlVvir2TNUavEZy3PdeiGyytbXp2iUa6zCflUBQQAAAACYcObNmxdPPvnk0PbNN98cJ510UuduqAVf+MIX4i//8i9jy5Ytnb4VAACAJsTCAGp54Kna74E7TRv2456Ico0lanliYTf8V/332MEg2aDjD87i2U+V4v6nIubsEvGWK6vx4DPN5xhxTwVjYcvWNh+zJcfXCQAAAAAAPK/239YHAGhR4VhYnXhQu8YPqsQLKymq0Tj8M1YBIiamvnLtj+LbqbRz7FSq/bF7lSa/5naUUo1v97Mm/wlQ65xW5xp9vN7zOxjoK/o6jVXEqyogCAAAAACMsR/+8Idx7rnn5g6F3XLLLZFl2dC/l1122Y69QQAAgOGqDdZWaIUBU9iCfbOa++9Z8sKPh4fDhtvU3/wNdHp3/WO1rtvdlcXR87KYt1cWf/jq2vfWyJaBYuMPqf35qyP0W7ILAAAAAAC5NfijAQCA4lLBT4IsRdf/z96dx8lRFXob/53unp4t24QkhFV2IewoFwRUQPG64MJVr+KC2wuu9+rF5b4uiKgv6n3d8IrbVVwRdwFRQPQNICACSQCFsAVC2JMhk2XWXuq8f/T0TC91TnXVdPdMZp6vHz7prlPVVd1T1cLk9NMx108WMrJ2ckJaYP3hn6hxzG0DhU2hyxd3LHXHsGKeU3Gje2FSSsmY+sk8UcG9xLEw47+WUyblfOzyNRc3/hUW8WrGa1e3HwKCAAAAAAAAANrsox/9aNXfubzhDW/QO97xDu2xxx7q6OiYWL5kyZLpODwAAAAAqOabMxZzPhkAzCbDY+HvgcvmT97u7ghdRSP56McfyrnHwuYPVjrtSKNzL7fKxQiAxVlXkjINTBGO+5gAAAAAAAAAAMxlxMIAAEBT2ZB4j09UuGiq65cVNRn7CeQP/0SNY27bnO8PXd6XWaK0I35XnIZzyhXvigr0RUW/3NtFRMhMWsYZCyu9PmHxL59imyJecY8LAAAAAAAAAKbi3nvv1Z133jlx/6UvfakuvvjiaTwiAAAAAIhCEAwAwvxqdfjylx46GfLqzoavM9pALOyb14a//776qOhtD9jZ6HfvS+k9Fwdat0nqyUrDnviYJOVjTtlrZP0cU3YBAAAAAAAAAGgYsTAAANBUQcyJX3HDRFGhI5fABqG3o9YFag0UwmNhizuWyjiCWdNxTqUcYa7oqFeyIJ9rf5Xjacf1Xo5xBTHjX+0K+/GeAAAAAAAAAKCdbrvttqr7r3nNa6bpSAAAAACgQdY3Z4yQGADUuuGByffG7o7wdUYaiIVlUlIxZHrb/C5TvzDEKSuM7v8/aT21zWqnXin7bv9cubhhr1yhOesAAAAAAAAAAICSZCUAAAAABxs3FhbzX0eShoysKmJh8k9msBHjmNsG8ptCl/dllijtiNlNxznlCvE1EvVq5v4mx1PO67c4HgmLG+VqV8SrXVEyAAAAAAAAAJCkp556qur+7rvvPk1HAgAAAAAN8sXCvCExAJibHtg4ebvLFQvLRT/OQbuEL7/z0XjvvTsvMMqkowNjccNe+Qam3hELAwAAAAAAAACgccTCAABAU9mY8Z50RGCoVsoRY4pSjhFJUmD9sw+KEeOY2zYX+kOXL+5YIuOIYVnZtoWtylzhMmOMjOc/A5IG+Vz7m3hcpZzXbzmmVnREuTImE7q8XRGvdv/sAAAAAAAAAMxtg4ODVfc7OhyfGAUAAACAmYJYGADUGR5r7P2v2xULy0dv6wqKveCg6PBXErmYU/YaiYWNEQsDAAAAAAAAAKBh4Z+6BwAASMgq3uQuX7QoTNKQUTlGJEmB/OGfqHHMXSPFIY0Gw6FjfZml3m1L52D7Wr2+ayVtUio4AlhJg3ypiPBfyqSdx1SOcbmiXBmTVcHWzwhqV8SL9wQAAAAAAAAALtZarV69Wvfcc482btyosbExLV26VLvttptOOOEEzZs3L/ZjBgG/kwQAAACwg/HN4SAWBmCO+uI1DcbCsuHLXSGwqnUcQbEDlze069gaiX9VyjUQAssVS79jM6Y1gTMAAAAAAAAAAGYTYmEAAKCp4sbC0jHjX0lDRsWKCWk2IjDUrgARdjwDhX7nWF/HEm0rDDjHAxso3ca5LClPmMwX6Usa5PPtrzzu2m+goqy1ChQ+k6jDdGg0ZHnRxpx5lFC79gMAAAAAAABgx9Hf36/zzz9fP/nJT7Rp06bQdbLZrE4++WR96lOf0jHHHON8rPXr12vvvfd2jp900kmhy7///e/rbW97W+jYeeedp/POO8/5mCtXrtSJJ57oHAcAAACAWLxBMGJhAOamK//eYCyswyjsvdIVAmtkne6OhnYdWyPxr0qNxMWslQpFqYNPNwEAAAAAAAAAEIlfpwMAgKaKGwvzRYvCJA0ZWU0GwKLCP4GIhSHc5nz4B76MUlqUWaztha3ObYsqqtH5N3GvozAp4w7r+cJeUdEv9/4iYmEmpbTjmAIbVF2jtTIm/JULi4s147Wrf0zeEwAAAAAAAABMuvTSS3XGGWdo+/bt3vVyuZyuuuoqXXXVVTrrrLN04YUXKpNhmgYAAACAWcgbCwOAual/0D32s7Mmv3m0Oxu+zmgjsbBc+PLubLJvNj3jOUY/+qv7PT3fgliYJI0W3LGw0bzV7++UVm8oHde8Lqk3K83rLN82FberxzsybfyGVwAAAAAAAAAA2oBZqAAAoKmsjRfVccWDXFKKt35ZZSAsKgYW9zlg7hgoPB26fGGmT2mT8Z7P7T6vvLEwk3Z+aatvu6T7k0rXritEFqioouf1ccbCIsJ/zRIVGAQAAAAAAAAwd1x00UU688wzFQTVv9Pcd999tWLFCvX09GjDhg265ZZbVCxO/m7xO9/5jjZs2KDf/e53BMMAAAAAzEKeWBghMQBzUBBYrQv/blJJ0ssPm4xYdTm+hdQVAqs0OBa+vLvRbzat8e7nG/1qldWwY9+Nxr8kyVqrQoPTJkdy0vyu+uWDo1avvDDQynu9e3KOZDO1YbHS7d5OaV6nUW9deKx6fPL25J9EyAAAAAAAAAAA04kZqAAAoKmsb+JXCOOIB7mkTLz1yyoDYVGBoaIIAyHc5nz47J2+zBJJ/vO53edV2hPW811HrqBXlKjtUiblDIoFNlDgeX06HLEwX2CsmWxEYBAAAAAAAAA7gKAgDT863Ucx+/XsLqVm7zSE22+/Xe9+97urQmFHHHGELrzwQh133HFV627atEnnnHOOvv3tb08su+qqq/TJT35S559/ftW6u+++ux566KGJ+1/96ld1wQUXTNy/5JJLdOyxx9Ydz5IlS3TiiSdKkm6++WadfvrpE2Pvf//79YEPfMD5XJYvXx7xbAEAAAAgBl8QjFgYgDnohgfcY99+s1F3djI25Qp7jeT975+5gnu8O+vd1OmYfYz+3wdTOvZz4XPmcsXG39PjhMVG8uHLf3SzjQiF+eUKpX8GhsNGo56Le7wjPRkOq4+JGfV0+sd7HeNZImQAAAAAAAAAgAizd5YuAACYFnFjYWlHPMglacioMhAWRIR/bJsCRNjxDBTCY2GLO5ZK8ke44p1XU58kaTzH4g+JxbsmJx7Ts11qfH+u6zdQoMDz+mRS4TOXwgJjtgUTTIsRgUEAAAAAAADsAIYflS7fe7qPYvZ7xUPSvL2m+yha5h3veIdyudzE/RNOOEFXX321enp66tZdunSpvvWtb2m//fbThz/84YnlX/jCF3T66afr0EMPnViWyWS01157TdxftGhR1WMtX768arzSvHnzJEnr16+vWr5o0SLnNgAAAADQdMTCAKDKO37ong+3R191EMoV9hrJhS8vW/uEe8wVIGvEP+1tdPYpRl++pv79e8wR9QoTKxbmeK4r75mZ/x+SL5YCZK2KkIXHxExIeKx6vHYZETIAAAAAAAAAmH2IhQEAgKbyBX/CxI1/GWNklJKNCH7VqjyuqG2LIQEiQJIG8v2hy/sySyT5g1lRkbpmS3uuLV9ILGmQL+UNkKW8+w1sEBr+Kusw4TOXgjZFvNr9swMAAAAAAAAw86xcuVKrV6+euL9gwQL9/Oc/Dw2FVfrQhz6k6667TldccYUkKQgCfeUrX9FFF13U0uMFAAAAgLYKfGGUmRl6AYBWWhf+vaSSpOfsU33fFfYaiQhzDXliYgcu928bpctxTKOFxh8jKnZWta7juW4fbfwxZoNWRshCA2NZaV5XKULmG3cFyoiQAQAAAAAAAED7EQsDAABNZWNO7kp54kouaZNSIWaUrDIQVozYNm7wDHPH5oIjFtZRioUZT2ir2KawVZnv2kp7w17xr8nSdu7nXt6fa7+Bit7wV8YVC2tTxKtdUTIAAAAAAAAAM9cPf/jDqvvvfe97teuuuza07ec///mJWJgkXXLJJfrmN7+pzs7Oph4jAAAAAEwfz5wxSywMACot7KkOLHVnw9eLim35xnun+GsnVyys0QCYtVav+07j8/vWPy0duWf98jxT95oiX5S2DJf+qZc8QpZJSfO6KsNi1ZGxnrplNZEyxzgRMgAAAAAAAABwIxYGAACaKnYszBNXcvEFmVwqQ01R4R/bpgARdiyBDbQl/3To2OLMUkmlkJ1Lu88rX/TLeI4zyTVZ2i56f66gWGADFT2vT4cJnw3VrgBbu6JkAAAAAAAAAGauG264oer+m970poa3Pfjgg3XUUUdp9erVkqTR0VGtWrVKxx13XFOPEQAAAACmDUEwAG5Gt0gAACAASURBVJjwxJZ474ndrjBX3r+da7y7QzJmarGlpMdUdvsj0sp7G9/ft64NdNqR9XMQC46pezv1lsJSg6PS4Jg0Vmh8X2ieQtDaCFlvthQPq7zd22nU2+kfr11Wvp3NTP3aAAAAAAAAAIDpRiwMAAA0lbXxojq+oJFL2qSVjzm/rDLUFBX+aVeACDuW7cUtKip8RsnijlIszBeyK8a4NpoxfdIX/fKOeUJi3v01ECBz7TdQ4I34dZjwmUftingFMd/XAAAAAAAAAMwuAwMDWrdu3cT9RYsW6aCDDor1GMcdd9xELEySbr31VmJhAAAAAGYPXyyMkBiAOeamddHrVEoa5hp1jHc6Hi+O7vDv99RIrrHtv/bneO/916wNX553TCv8j1OMPvbSyfmIhaLV0FgpHDaUK0XEyn+WltmK25PjQ2PS4KitWXdy3PUao7VaGSHr7RwPiHXW3i5FyHzj9ctKfxIhAwAAAAAAANBOxMIAAEBTxZ3a5YsWufiCTC6VAbCo8I9tU4AIO5bN+X7nWF9miSR//K7d51Xacyy+40wpfsCv0f25gmKBDbzXZcYVC2tT2I9YGAAAAAAAADC3bdq0qer+/vvvH/vDXwceeGDV/Y0bN075uAAAAABgxiAWtsMbyVk95/OB7ny0dH+/ZdLqT6Q0r4v4CRDXcM79vrfrovplrjDX0Jh/P/li+H6yyaYAVkkaMCu77r7mvPcXHFMEO2qeYyZttLBHWtjjeqRk72XlCNlQrhQSq4yQlZbZitvVEbKhMVu9zZgmgmZEyKZHIZC2jpT+qdecCFl9TKw6QuYaDwuUESEDAAAAAAAAEIZYGAAAaKq4QSRXPKjZ2wQVxxV1jMU2BYiwYxkobApd3mGy6k3PlySlPSG7dgenfCE+71iC60vyR/zK+zOOEFmgogK5r7tMKnzmUbuuVd+xAQAAAAAAYAfRs7v0ioem+yhmv57dp/sIWmJgYKDq/sKFC2M/Ru02mzdvntIxAQAAAMDM4gtsEAub6ay16n1f9dymBzZKC/49UP5bKaVThEqAOHKe6WY3fKR+nl13h1HYe2X/oH8/+QZDWkm4YmEbGvyV1vqnp34MknTbw+HLM8mmOcbWygjZcDkwVhERK/85OGYrbk8uHx4fq16XCNl0a1WELJ1yBcaqI2S+8bDtO4mQAQAAAAAAADs0YmEAAKCpbMzJXSlHPMgnnWCbylBTVGAoiBk8w9wwkO8PXb64Y+nEX5obT2grTtjKNuEbVVPGfZ2kPcfpC4n5pD37KwfIXPsNbOB9fTImfOZRWMQr7ntQI9odegMAAAAAAEALpDLSvL2m+yiwg6r9nW0zPkjFh7EAAAAAzCqBZ25FE+bBoLX+/ph77Nb10rH7tO1QgFkhVwhfvmSetNeS+t8JdWfdj9W/3WrJ/PDfIxVaGAvrcgTMJCkIrFLTHBFsxnOcTpm00YJuaUG3a41kr28xsCHhscoYmQ0NlA15AmVDY9IIEbJpUWxThKw3K83rqrxt1FO3rHzbaF5X2DZEyAAAAAAAAIB2IRYGAACaysaM6qQ80SIXX5DJpTIAZiNiYEGMqBPmjs2FTaHL+zJLJm77QnZR512z+aJfxjOW5Jos7c8TCxvfn2u/gYre16fDhM+GalfEKyxKBgAAAAAAAGDuWLx4cdX9rVu3xn6M2m36+vqmdEwAAGDmMMakJe0naYWkXSUtlDQmaUDSOkm3WWuHmrzPDknHS9pT0i6SBiU9LmmNtXZ9M/cFAA3xBcFaFAuz1hKkaJJLbnH/jL5/o9Wx+0zv68zPGrVm+jmRc0w322Vh+PJl892PtXqD9KKDw8fyLYyF+R7j0QFpz53c40m/LDXOz3VgONEuZr10qrURMldMbHA8QlY7PuQIlBEhm17+CJnkD5H5I2TlcFhvthQSq749GSGrH6+OkFWOEyEDAAAAAAAAqhELAwAATWUjv6moWpIwkS/I5FIZACtGxMCCNkedsGPYnO8PXd7XMRkL84Xsos67ZksZ93WS9oz5ol/+/bmfe3l/rv0GNvC+PhnTEbq82KaIV7uiZAAAAAAAAABmpqVLl1bdv++++2I/xr333lt1f9myZVM6JgAAML2MMXtK+hdJL5T0XEkLPKsXjTHXSPq6tfb3U9zvUknnSXqdpMWOdW6S9GVr7a+nsi8AiKc1QbAwT2yxet8lgVbeK+29k/TBFxm94ZhkX46Hkg2b3WP/8xerdz3f6sg92xvpsNbqi3+0uugGq4Fh6dTDjS54nVFvJ7GQueyBjVb/8fNAf7lfOmgX6RMvS+llh828cyJXCF+edXx65/Dd3Y/liym1MhZ2mOeYhnP+bQfHku0zV5A6K6YKBoH7/1tW7DLzfu6zWSsjZMM5aXB0PCBWeXs8QjYUMl4ZIQsbJ0I2PYqBtG209E+4ZBGylKkPj/V2ji/rlHo7Tel+6LiZvF0z3tVBhAwAAAAAAAA7JmJhAACgqWLHwhR/opYvyORSGQCLioFZwkAIMZDfFLp8cWbyQ2K+89nGitBNfQKlLwhmPMeZJOAn+Z97eX+udYLx/7l0OGJh4ddq8yefBm2KkgEAAAAAAACYmfr6+rTvvvtq3bp1kqQtW7Zo7dq1Ouiggxp+jJtuuqnq/tFHH93UY+RDTQAAtI8x5qeSTo+xSVrSiyW92BhzhaT/Za19KsF+XyLpB5KiqqPHSTrOGHOxpHdaa4fi7gsAYrOe+Rq+sZjyBauTvhTovvF30TXD0pu+Z9XbafXKI/jvoqTyBf/P6AVfDnT7OSntuVP7XuMvXWP1n7+ePK6LbrB6fMDqD+9vQgUJO6Qtw1YnfynQowOl+397SDrtG4H+/MGUnrv/zLr+nbEwx+mbSrmP/5HNVq4QkysWlmnCZTKv0z02FBELW3Z2sjm4I/nqWFjB8zC7LEq0C8ww6ZTR/C5pfpdrjalHyIZypZDYxO1RaShnq5eN3y5tY+u3GSNCNp0C29oIWW9nWIBsMjQWPm5q1p38kwgZAAAAAAAAWo1YGAAAaKogZmgr5QkauaQVf5vATs6KiIqBFYmFIcRAoT90eV/HkonbvkBX3GtjqnzxLl8QLEnAT/I/9/L+XKG/wBarrtFaHSYburzo2aaZ2v2zAwAAAAAAADDznHDCCROxMEm6+OKL9dnPfrahbdeuXatVq1ZN3O/q6tKznvWsph5fZ2f1JzjHxsaa+vgAAKDKAY7lj0m6X9JTKs3N3EfS4VLVX8KeKul6Y8zzrbVPNrpDY8yJki6VVPmXp1bSakkPSlok6UhJSyrG3yhpgTHmVZZvTQPQat4gWPNiYTc8oIlQWKXv3xjolUcQkUrKFRwq2zIs/WaN1Qde2L7wxff+Un/eXHWX9NiA1W59BDjmomvu1kQorKwQSD++2c68WJjjmur0fHpnz8XShs31y1fea/W+k8O3cV27HU14O+wOn7InSfrrOqtnPSP8Nd8ybDXmiKVFGclJi3om7/vem5rxHDF7tTpCNjQ2HhAbq7hdESGrHR8aq46Q1Y4PRwT40BqtjJDVh8cqlxn1OMeNM2BGhAwAAAAAAABlxMIAAEBT2ZiTu5KEiVzBIZ9Ak/Nei/LPbrJijiyq5YIxbS9uDR1bnFk6cdt4zueo867Z/EEwX9gr2Swa33bl/blCf4ECb/grk+oIXR606TVt134AAAAAAAAAzFxnnHGGfvjDH07c//rXv673ve99Wr58eeS2H/3oR6vuv/71r6+Le03VokWLqu4/8cQTTX18AADgtEbSRZKutNauqx00xuwm6ZOSzqpYfICkXxpjnmett65TfozdJf1G1aGwGyWdaa1dW7Fep6R3SvqipPJfsr5c0mclfSzOkwKA2HxvZ9FvdQ37wlXh87ouv0MKAqv1T0uLe6V1m6StI9KRe0h9vUQVag2OWuWK0uLx1yYqFiZJazY0b/+5gtWjA9JeO0mpVP3PpxhY3RsShZOkn95i9eF/5mc6F/3v34Rf/9/9i9V33tzmg4mQc8Sysp5P74SFwiRpn6Xu872VsTBf2KwrfDqfJOnKfyR/zx/JV98veN6bMsm+ExWYklZFyILxCFldgGzitg0NlJVCZOGBskEiZNMmsNL20dI/4aYeIZv4MyvN6yovM55xU7Pu5Hh3lggZAAAAAADAjoZYGAAAaLKYsbAEYaJ0gsBYUPEluVFfmOuLFmFu2lJ42jnW1zH5xcy+QFecL2puxhRJfxDMFxJLNovGt115f77QX9G6v04wYxyxsJDXtHnTS/37AQAAAAAAADC3nHzyyTriiCN0++23S5K2bt2q008/XX/4wx/U3d3t3O4rX/mKLrvsson7xhj9x3/8R9OPb5999lE2m1UuV/oE2MqVK5XP59XR4fn0JgAASMpK+r2kT1lrb/OuaO1jkt5pjLlD0oUVQydIep2knzWwv/Mk9VXcv0nSC621VR89ttaOSfqaMWaDpN9WDJ1tjPm2tfbhBvYFAMn45lY0MRb25Db3WOZd7mPYckFKC7qJIGwftTrje4F+/3epaKXj95V+flaqoVhYoQnTZ4LA6oO/tPruDaXoyZJ50mdeafTO51fPKRrxxE3+89dWb/gnq936+HnONZu2u8fuftxqxa4z55zIOa4pXyzMZWjMPdbKWJgvHLNlxL3doOd4oxzx6UD/+FRKe+4UHTJsxnMEZopUypQiTi2MkIXFxCojZJXjw+NjtWGyQSJk06pVETJjQsJj47dLf5YiZOHjRvM6K9clQgYAAAAAANAOxMIAAEBTBXFjYQnCRL7QkUugyVkDRflnNwUiDIRqA/l+51hfZknV/ZTSVedbWdR512y+EF/aGxJLNovGt115zLffgs2HLjcyypjw/2xp12vKewIAAAAAAACw43vyySe1fv36RNvutddekqTvfe97es5znjMR5Lr22mv13Oc+VxdeeKGOOeaYqm36+/t17rnn6hvf+EbV8o985CM67LDDEh2HTzab1fHHH6+VK1dKkjZs2KBXvOIVete73qX9999fPT09VesvX75cXV3OT58BAAC/11pr18fZwFr7DWPMyZJeXbH4zYqIhRlj9pf0lopFOUlvrQ2F1ezrUmPMDyu265R0rqS3xzlmAIjFFwRrYizszkeTbbfo/YGC71CWedv3A112x+T9Gx6QXvbfgRa5G9gTRvNT/zl+7kqrC/48+Tj9g9K7L7bac7HVSw6djElERUhefEGgO89NEaCYYzoz7hDVSV8K9PDnU+rqmBnnRM7xvZlZz9vQ6482+tmt9dfZt66z+sYbw7dpZSxMkg7aRVr7RP3yj/zK6kMvCt/m6UH/Y552pPTbNeFjg2PSi74aaO2nS9e3L1KYSfadqMCc0s4I2VBOGhwtL7P1y3LS0GhNoKx2fAqxQSRnKyNkoWHe5BGy3qyqY2KdUm9neZlRj3Pc1Kw7OU6EDAAAAAAAgFgYAABoMuv7lsgQScJEKU9wyCewgVImpSDiGC1hINTYXNgUunxeeoGyqc6qZaVzrH4WTtxrY6p8IT7jCe4lifGV9ueJhY0fi++x845YWEpp53MJe51bIeo9AwAAAAAAAMDMd/rppyfe1o5/sP2oo47S17/+db3rXe9SEJR+b7hq1Sode+yx2m+//XTwwQerq6tLjzzyiG655RYVCtWfDD3llFP0mc98JvmTiHD22WdPxMIk6aqrrtJVV10Vuu7KlSt14okntuxYAACYzeKGwipcqOpY2EkNbPMGqeovY39jrb2/ge2+oOrI2L8aY97ji4wBwJR4g2DNi4VNxdZhq4U9czcsMDhqdcXf65ff/oi0bH709iMRAa9G/OK28HPhl6uqY2Ej4dOIJtz1eClgtGLXqR8TdhxdHe6xTdullfdILzm0fcfj44yFZdzvQT2dziEnV0yrWbEwV4xMkgpFq0y6/vn8/TH3Nh98kdHnTjPKvts9H+++p0rvS0fu6d9/s54jgPhaHSErR8SGxoNkE7dHqyNk5fGhUWkoZ6vCY1XjRMimhbXjP78xtSxCNhETq7jd22kqbteOm9BtiJABAAAAAIAdDbEwAADQVDbm5C5f0Mi5TcKYUaCiUkpFxsCKbQoQYccxkO8PXd6XWVK3LK20CqqfsRa0OUKX9oT4fGNJY3y+67K8P+O53gs2fIZUyqScUcG2xcIICAIAAAAAAAAYd+aZZ6qvr09ve9vbNDg4OLH8gQce0AMPPODc7u1vf7u+9a1vqaPD88nWKTr11FP12c9+Vueee66KRf6uAwCAGWhNzf1uY8wia+0Wzzan1dz/fiM7stauNcb8TdIx44t6Jb1I0uUNHSkAxBY+Z2xraoFuzR2iA/qt9loy9Q/fr9hFuvuJZNvetG7mhISmw2Nb3AGjjdujt48KeDXCFRH68c1WF721Yl8NhMlueMBqxa4EHeaSZfNL57HLg/1WSQM1zeaKXPkCV09vD38f7ck2dz9xPLDRPfbEVmmPxfXL91/m3ub1R5vQwFit7/zF6ptvNBr1vO9k+SQUMOtURsh2XhC2RvII2Ui+Jjw2HhErLbP1y8ak4TFpcMyGb0OEbNpURcjC1/Bt7RwpR8hcMbFyhCx83B0o6yFCBgAAAAAAWoBfkQMAgKaKHQvzRIuc2ySMGQU2kEx0DMxawkCoNlBwxMI66mNhxqRC/y4xXoRu6t+o6rtOfNGupDE+X/ivvD9fpKxgw2f2pJRyPpdiSMQr7ntQI9oVJQMAAAAAAACwY3jNa16j5z3veTr//PN18cUXq78//HfIHR0dOumkk3TuuefquOOOa8uxffzjH9dpp52mH//4x7rpppt03333aevWrRoZGWnL/gEAgFdYosWZfzDGLJd0eM32N8bY37WajIVJ0ktELAxAq9j6+Rpf63uPPrzz51XcnpE+Fuilh0i/eGdKPZ3JPyy/z9LksbBi86eU7FB80Z1GNBLw8rEh50hZsWYKUDPCZJh9jt/faM0j7vNoJp03Bcd0s4xn6us/H2J02R31z28kX7p+wkIjrY6F+bgu6TFHlFCSjtqzscceGCr9OfzwQ5KeEbpOd+t6/ABmmVRqMvLUqgjZ0FhYTMxWhcXKfw6NR8hqw2OVf6L9KiNkT4Wv4dvaOWJMKRgWHiArhcZ6PIGy8G2IkAEAAAAAMNcRCwMAAE0VN7TlCww5t0kYMwrGw0I2JDBUqSjCQKi2Ob8pdPnizNK6Za5zOuq8azbfdeK77pJck5I/BFY+Fl+krGDDZxSmTFppx3NpV8QraPPPDgAAAAAAAMDUrV+/vqWPv2zZMn31q1/Vl7/8Za1atUr33HOPNm3apLGxMS1ZskS77767TjjhBM2fPz/2Y3/qU5/Spz71qcTHtmLFCn3uc59LvD0AAGiZ/WruFySFV0dLDqm5f6e1dijG/m6quX9wjG0BIJ6aasyN3cfq7OVfrFr2h39I51xu9aXXJv9QuyuMg2hPbZva9lMNMcX52TWyr0yyKU7YgUXFoaYatGumgmO6me+8PXQ3o7DYiLWl6ycb8skfdyysOfGQpfOlTdvDx7aNhi93Xb/PfsZk1OSNxxhd/Dd3WOUXt1ldcqbV8AUfk3ovDl2nx5ncBYD2qIyQhZtahMwdE7MhYbLyP+GBssExaSjnDj2idayd/Pm0KkLWm5XmddXenoyQ1Y8bxzalf99KpYiQAQAAAAAw0xELAwAATWW9f2FRL0n4K+WJEvmUw0LFiKBZEDN4htlvcyF8fnZfR0gszHF+Rp13zea7tvxhr2TXVyMBMt9+8zZ8llDapJVS+Hbtini1K0oGAAAAAAAAYMeTSqV09NFH6+ijj57uQwEAADPfa2ru32b938i2oub+AzH3ty7i8QCgeWrezn4372Whq/3uDqsvvTb5boiFJbfmkanVIYanGGKKCjn1b7daMt80tK4kpYmFzTlRgZOpBu2aKV8MP9gOz9Q8XwxtJBcvFtasmN4Ru0vXrA0fW7PB6pDd6mMirut3n6WT6zYU+nrobo3090u94cNdEfE4ANhRVUbIloWukSzkZK3VSM4VICtFyMICZcM5aXA0PFBGhGz6VEbIHGv4tvY+dm85INZZiohV3zbqrVtWvj0ZIasd78kSIQMAAAAAoJmIhQEAgKaKHQvzBIaauY00GQGzEYGhQMwqwyRrrbbkw2NhizNL6pa5zk8b47yKex2FcQW2JMk0EPaKvb8GAmS+gFnBFhzHk3Y+dmjEqwV/49yuKBkAAAAAAAAAAACA2ckYM0/SO2oW/zZis/1q7m+IuduHa+7vZIzps9YOxHwcAIhWM1/jR4veFLraAxuntpvCFKZ1feHKQJ+/UnrmcqO9l0iH7mZ00jOlBd1z40PrDcV5PKYaYrrnSf/4O38S6DOvTGnFrka58GlEVWgNzD1BVCxsikG7ZnK9V2U8sTBf/GokLy2MsR9flCyO952c0jVrw+fOpRxTAUcd7xWVMbQj9ojed3Dz1Rox3aFjnRlLcAQAYjLGqKdT6mlhhGwoJw2O1sbE7OSyivFyhKxqm/HbQ+OPR4RsepQjZBu3h402J0LW2zkeE5u4XR0hqx43dWGy8jgRMgAAAADAXEUsDAAANFXcyFHaExhy8UWJfMrBn8D7xbzR45hbhoNBjdnR0LG+jpBYmCOI1e7zyndtpT3RLl/Qy8cbCxsPkPkiZQUbPksoZVLO59KusF9olAwAAAAAAAAAAAAAGvc5Scsr7m+R9N2IbRbV3I+V2LHWDhpjRiV1VSxeKIlYGIDmq/kk/8bMzp5VrYxJ9oHu/BSmcNy4rvTnTevKx2q1e5/0p7NTOmDn2f8B8+EphpQe35J82x//NdBbvu+fV/jbNdJv1wT65KlGR+wR/fOYyrmAHVPUzNSpBu2ayXV++iJe3Z6gn+u5ufbji5LF8YID3WOu95SRXPhPqqvi+b3qCKNPX2H11Db34w/ZLn1i2adDx7o9YTUAQHtVRsgcayR63HKErBwOm4iITcTEbFVYrHy7FLqy1duMESGbCVoVIetxBshKEbKeumWTgbLK5ZXjRMgAAAAAADMdsTAAANBUNubfnvjiQS6pBNtIk7GwYkRgyIpYGCZtzm9yji3OLK1b5jo/gzafVym5Z/wYXyws4fWVbmA7X6TMGQsb/1+YYpsCbO3+2QEAAAAAAAAAAACYPYwxp0l6X83ij1trN0dsOq/m/kiC3Y+oOhY2P8FjVDHGLJNU/5flfvtOdb8AZrgYc8ZyBakzYeil2YGoRwek914c6Jqzm1TWmcFGphgLS2pgyOrtP2z8/Pj0FVYf/ufo9a6/X3r7CVM4MOxwgogpXKMzKBZWcBxrxjPFzhfAcl2/+WL4teWLksXR02m0uFfaPFQ/dsUdVmc+t365K2xW+fx2WWR03YdTOvW/Az3gyOF+ZN0JuqPrYMdjUXkBgNmuMkK2NPQ3GckjZKP58YDYeLyqOiZmJ5dVjFdGyMLGiZBNn+HceMS0xRGy6tiYqVteGSgLC5f1dkq9RMgAAAAAAE1CLAwAADRV3KhO2sSflZDyBId8AluaLWYjAkNFy9cOYtJAoT90eUppLcjUfpGz+/wM2hS2ijoOSUp7QmKpBNekJJkGtvPFAfNB+IymtEk7j8kqUGCDqudqI79DMj7eEwAAAAAAAAAAAAAkYYw5XNKPahb/UdI3G9i8NhY2muAQRiT1eR4zifdIOrcJjwNgNqn4ZHzBMy9FKoVkZkosTJL+fI80krPqzs7uD227Aj5xPLXNaucF8V6nlfdKxZjTpq64M3r+z+AoNYa5JuonPl1BvDCu9ypfxMsbC3Ncv0n2E9fufeGxMNfPw3WsPdnq+wfsbPSHf0/pgE+Ev0F859HwUJgk9RALAwAkZIxRd1bqzrYuQhYeG7OhgbHhMXegrHw74P/2pkUrI2QTAbGsNK+r8nYpNBY+biZv14wTIQMAAACAuYdYGAAAaKq4oR5fPMgllWAbaTLWFBX+sTGDZ5jdBvLhsbBFmcWhEauUY8JjUe0NTvmuE+MJiSW9vtINbOeLAxZsIfx4TNp7TKXrNdkxNyoqMAgAAAAAAAAAAAAAtYwxe0r6vaoDXQ9LepO1NslHPdu1DQAkYPWBnb+ogsnonuwB3jVz4VNEIo3lre54NNm2UbaPloIBs9lwE0JKA0PSzgvibdM/GP//ip7YGr3Ozgv5MPxcExXKGMnPjH/t2TxktfLe8LGMLxbmeQ9yhdAKbYiF3el4310yL/wadB1rWAxt7yXJjqk7w3w+AMDM0uoImTsmZkMDY0M1EbKw7YmQTY9yhGxTkyNk3R214bHxPztLEbKeujBZedxM3q4Z78lKaSJkAAAAADAjEQsDAABNFTeqk/JEi5q5jSQF47GmqBhYkTAQKmwubApdvrhjaehy1/nZ7uBUWMhsYswT10p6ffn218h+Czb8KwVTSnsjY0VbVNq09j9rigQEAQAAAAAAAAAAAMRgjFkm6RpJu1UsflLSKdba8L+ErjdYc787waHUblP7mADQHEGgb/adpWIDczhyCb5vbzRvtezs1s3faEZIa6YbCZ+aE0uSn93DT8ffZstw9DquIBFmr6jU6hV3tuc4fB7fYvXCL7vfq3wRr460lDLh4Y4tI+Hb5NsQCzt+X+nGdfXL/7ou/Afieq8Ji6GlU0bZTPyIJLEwAMBcURkhW9LkCNlYQRocHQ+I5Spul0NjufrxocpAWcg4EbLpM5Iv/dOqCNlkeGzydm+nUW/dsvH1ymMh472dRMgAAAAAYKqIhQEAgKayMb+U1hcBckkp2UyGYDzWFESEf6LGMbcM5PtDl/dlHLEwx/kZ57xK9iXS1ZJcW1Ly68sXAisznhCZMxZmUt4QWTuu13aH3gAAAAAAAAAAAADsuIwxiyX9SdIBFYv7Jb3QWnt/jIeaqbGwb0j6Zcxt9pV0WRP2DWCmslZpW2wsFhYzCiNJl91e+kB6qzy2RdprSesefyZoRlwryc/uy9e0phZALGzuaSQ8cCqoSgAAIABJREFUMTBk1dc7feGBC/5sdc+T7vGMZ4pdOQYyFPJe9+tVVqceVv+82hELO+oZRjeGhMHufSp8fde12d0RvvyjLzE673fx3ieKTOcDAGBKjDHq6pC6OloXIRvKleJhE7dHqyNklePDOWlwtDpCVjlOhGz6TETIQkenFiGbDItN3u6tCI2Fj5u6ZUTIAAAAAMxFxMIAAEBTxY2FmQYCQ7VSnuCQT6DSzIjA+r/ikDAQKg0UHLGwjvAZgq7zM+q8a7ZG4l2h2yW8vnxBr7K0J0TmjIWN/8+lHa9rUe392QEAAAAAAAAAAADYMRljFkr6o6RDKxYPSDrFWntXzIfbWnM//But3McyT/WxsC0xj6GOtXajpI0xj2WquwUw41mlG5xfkSQ4ddENrf1k+LpNVsfvN7vfq0ZyU38NxxL87PZeIm88KamRPLWAuaaRQMS3r7f63y+Zvmv50jX+g4yKeLkiWCPhU+vaEgvzhbmstXX/nuc61u5s+PL5XfGPafUTnfE3AgAALVcVIQtfI9HjhkXIhsYqY2S2Okw2Pj40VoqQ1W1TcZsI6fQoR8j6Q7/WIHmErKujPjBWGSHrCQmQVUbIXAEzImQAAAAAZhpiYQAAoKnixsLSDQSGaqU8wSGfYDwCFsj/G33CQKi0OR/+PSiLM45YmCNsFXXeNVsj8a7Q7RJeX41cy8YTIss7YmFpk/Y+dtCGuB8BQQAAAAAAAAAAAABRjDHzJV0l6VkVi7dJerG19vYED3l/zf1nxNy+dv3N1tqBBMcBANGsVbrBL3zLJZiadc3a+Nu0i7VWl9xidcWd0sIe6c3HGi1fIH3nL1b3PWl1wv5G7znRqKsj/MPFdz1uddGNVrdvsNpnqdEb/snopAOb80HkymO7NMn/E9VIEnprVS9yJNeax93R9G+3OuUrge54tHT/+281estxyb4scqazDUxNvfouq//9ktYfi8v9ETnVTMSPZtQR2so6ps+5YmGZJsbClsxzj+UKUmdHY8fkeg7PP8AoKvoAAADmtlZHyIbGXDExW7W88k/fOBGy6TOaL/3TqghZeEzMVIXFagNlvVlpXlf4OBEyAAAAAEkRCwMAAE1lG5mRUcE4wko+KU9wyCcYj4AVIyamEQZCWdEWtbWwOXSsryP8S5tdka6o867ZXNGyyO0SXl++a7kcEUx7QmRFGz6bMKW0N2DWjrgfAUEAAAAAAAAAAAAAPsaYXkl/kHRsxeJBSS+x1t6S8GFr0zj7xdx+n5r7dyc8DgCIZq3SDc6vSBKcarWphKfOuczq/D9Mzpn79nXV8+cuvd3q6n9Y/f7fU8qkqz8IvPphqxd8OdDWkdL9lfdaff9Gq5+eafSvz5568OkTl1p97srmRXjiht6KgdXaJ5q2+yozOSDXLgNDVss+WD3X8W0/sNo0GOhDL5p9wbCggVN5OiNyNz4QfYAdERGv5+0vXV+bi5X0k79Z/egd9ctdYa6o/cTx0kONPn1F+HMbGJaWL6xe5nqP70iHhxCO2nMqRwcAAJBcZYRsp9BAavIIWa5QGx6rjIlZZ6BsyDNOhGz6tDJCVhUTqwqLlSJk4eOTEbLa8d5O1f3uAQAAAMDsQywMAAA0lVW83z6nHWElH184yCcYj4BFxcAIA6Fsa2GzAsc53ZcJ/14aV6QrzrVhm/BNeUmuLSn59ZVuIDLmC5EVbPjXIqZMyhlgk6SgJsLWjNeufh/8rRoAAAAAAAAAAACAcMaYbklXSDqhYvGwpJdZa2+awkP/o+b+YcaYHmvtcIPbHx/xeADQPNbKNDhnI25wqhEvOURa1GO0Yhdpxa5Gr/5mvLkeI+HTViJtH7X64h+jn/c1a6UbH5Ce/8zq5Rf82U6EwsoCK33mCqt/fXayYyrbNtLYscURN/R284NN3T1q/PSW8J/vR35l9aEXtflg2qCR77FNei03w/+9Ovp9JxMxNe9Zexldf3/4Ew0Cq1Sq+kP/7YiFze9yj112u9U7nz+1YzLG6JWHS5fdkfAAAQAAZhhjjDo7pM4WRsgmYmI5aXC0vMzWB8rGx4c849tHiZBNl3KE7OmhsNHkEbLOTCkeNhETq7zdZdRTu2zithkPldWPEyEDAAAAZhZiYQAAoKnihnpcYSXvNg1EicKUo0+u+FNZVEwMc8dAvt85trjDEQtzhK3aHZwyCa4tKfn11UhkzHdMeRv+tY4pk/aGyII2xP3asQ8AAAAAAAAAAAAAOx5jTJekyyWdWLF4VNIrrLXXT+WxrbVPGGPulHTY+KKMSkGyPzb4ECfW3L9yKscDAF7Waku6r6FVx1oQ8/nv01PaZ2npQ6uPb4kfyBoOn7YS6derbcMBrc9fFej5z6yeX/O7O8OP9a7Hpa3DVgt7kn8Qd9XD7mhPUnFjYede3rr5UobPKOvfLnGf69tGrBZ0z64XKWjg0t5/WeuPw+XyBmJXmYipeV2eT/c8sEk6YOfqZe2IhS3udY/d82T9siTH1NtpFBU8qHTSblslLW54fQAAgNmg1RGyqvBYOTKWkwZHbX2YbPz2cMj4UK60zuCoVOCjWdNirFD6p1URsomYWFVYbDJCVj9eHSGrHSdCBgAAAMRHLAwAADRV3CBSkjBRI1GiMIEtjv/pP8aomBjmjoFCeCysK9Wt7lT4LBjXOd3u4FTaES2LkiTgJ7kjaSV2fJ2UjExoVLBgw2cTppTyRsaKbYqwBTZIHFIDAAAAAAAAAAAAMPsYY7KSfiPphRWLxyS9ylr75ybt5reajIVJ0tvUQCzMGHOgpGMqFg01sh0AJGYbj7zkEkyh2X+ZdP9G9/jeFd/5t+sioxW7SHc/0fjjjyQMmK3b1Pi6V98lpc4q6sg9StttG/WvP5STFvYkO67NQ1ZnXNT8OTW5olWcD6D/v3uafggTrC19qN1QDQs1mpcWdDf3Ma+/z+or1wRatUEqTsMUyy3D0esctOvMPh+6s/7x5x9g9Lkrw99Ph8bql7niC82Mhe28wP2ajoVM+UsSC4t7vB858hERCwMAAGiOyghZeCg2+b9j5wp2IhxWjogNjZVjYrYqLFY5PuQZJ0I2fdoVIauOiRn1ugJl42OugBkRMgAAAMxmxMIAAEBThUWAfJKEiZIGe8oRsKhoU9G2N+qEmWtzPnxGX19miXOimeucjhvSmyp/vKsF2zV4LRulZEOuwYINn3WZNmlv+CyouV7jvgc1KlAxcUgNAAAAAAAAAAAAwOxijMlI+oWkl1Qszkt6jbX26ibu6mJJn5AmvlXtX4wx+1tr74/Y7j9r7v/CWhuRpQGAKYgTCwv/PjmvqJBM7Tye75yR0ksvCCKDXGUjufjHJEl/ezD+PJU1jzS23nDCYxrLW530xUCPbUm2vfexY/zstgy3Zg5PpdF8dHxprhpNGMBzuWmd1T9/NYh1DkyHZj/vRj2xpbHzvbvD/2H15x3gHhsMiYUlCXMlsc8S6cGQ71391nVW33jj5H1rrTPckPV8cikd83hfuOxJSYfH2wgAAABtl80YLc60LkI2ER6ruD00ZuuWVUbIwsaHxqTtRMimTSsjZO6YWHWELGw8LGDWm5U6MkTIAAAAMP2IhQEAgKaKHQtLECZKGuwpx5qiok1W/IYXJQOFkBkukvo6ljq3cZ3T7Y7QpdTa6FctX9Crdr3awJfkjoUZpbzPJSr+1yyBDaby91EAAAAAAAAAAAAAZgljTFqliNcrKxYXJL3OWntFM/dlrb3fGPNDSW8fX5SV9ANjzAtc8S9jzCslvbViUU7Sec08LgCo19pY2EjMANBx+xqt/XRKf7zbas0j0tf+7D++kZG8pM7Yx/WntbE3adjtj0j7LYu/3cp7pb8/1vzjkeL97H7/99bHwkaIhTnFvWai/M/1dsaHwqTk4b+p+uktjcbC/OOdnk/3XH+f1XP3r57A1q5Y2IkHGj14Q/hz3DpstbDHeI8n6piGYiRtu4IRmTtukI7958Y3AgAAwKzSyghZeIBMGhxzB8qGI8Z9/56M1ilHyDbHjpD5x7OZ2rBYKSI2r6sUGeupW1Y9Xr5dO06EDAAAAHEQCwMAAE0VN7SVJEyUJDAmScH4sQURx9juqBNmLlcsbHFmiXMb1znd7ghdyiSLfiXfrrHr0vX6uGJhaZP2hsjadb1GvW8AAAAAAAAAAAAAmDMukvSvNcs+JmmNMWavmI/1pCv6VeFcSadJ6hu/f5ykPxlj/pe19p7ySsaYTklnSfpSzfZfstY+HPO4ACAe23gYaqxgFffDu75I0aG7hS/fZZHRW44zOiMI9OWv90iS3rLrd3XxwjfUrTu8eauk+GWuxb2uD51O3Wg+/uskSas3tC7SFScWtXpDyw5jwkhOUuiHw9HsWNhtD7c+/tYMzX7ejbrr8cbW23mBf9wY9zXfExLGa1csbNl899idj0nP3d9/PFHHdPkdjZ9fn+j/nMy8vugVAQAAgJiyGaNsRuprYYSsPiYWHiirjJC5xomQTY9cQdrcwghZVUyss3zbqLfLPz55u3qcCBkAAMDsRCwMAAA0VYx5X5KShb/SCWNG5ahQYP3Rn3ZHnTBzbc5vCl3e1+GJhTnOzzixKRvj21adx5EgxCclj/H59lf5bIxJhf5+Ox+Ez9RKKe09pnZdrwERQQAAAAAAAAAAAAAlZ4Qs+6/xf+I6SdK1vhWstY8aY/5F0tWSypmI4yXdbYxZJelBSQslHSVpac3mV0g6J8FxAUA8MSaNJYn5+D4Ae+phER96zE02GbuD8D7jSC7ZXJ2ghf2k0YTRo+Fcc4+j0kiMx27lcZRNVxhqpnjBgdKf7wkfi/Oz8hnNW/37z2zDMazp1qzn3ar9HuKIGzZitCbWd++TVv2D4etmUs39MPjLDzP6/JXhb3iVzz1pLCzOtfzabb+WCm9pfAMAAABgmrU6QjaUkwZHq2NiQzk7uaxyPCcNjfrHczFC4WieVkbIqsNi49GxTmleZylC5hufvD35JxEyAACA6UcsDAAANFXccE+SoJFJGEEqH1sgf/SnGBETw9wxkO8PXd6XqZ1fPcl1TkdF6potnTD6lU4cGWtsu7TCj6tgw2f8pE3a+z7Rruu13T8/AAAAAAAAAAAAACiz1l5rjDlN0g80GQQzkp49/k+YSySdaS3fjASgDWLMq7jj0fgP7wvQfOJlER9OfGL9xM1uOxK6ykjC6tSW4USbNSRpCOuPd7WuYBYnADbqWffnZ6V05o8CbRtvtx2/r/TF16b0nM/Hm58zXWGomWJRj3usWSG1t//A6me3trCK12Q/u9Xqp2e2f78/v62x18iY6A9TH757+Pvk//m91UdfUrq9ddjqxC+6rxdfmCuJ5+zrPu7Ht1qVAwdJY2GNygZj2jf/kOzqa2Xe8tGpPyAAAACwA2tVhCxfsKWA2FgpIlYdE7OTyyrHx6ojZGHjRMimR65Q+mcg9HdYySNkHenJcFh9TMyop9M/3usYzxIhAwAAaAixMAAA0FQ28hdF1VIJgkZJI0hFW1Rgg8hjtApkrW1oYgZmr7FgVEPB9tCxxR1LnNu5olntjk0lubYkyTQY/arbnyMC1ujju2JhRinvNR+0aV57EDOECAAAAAAAAAAAAADNZK39gzHmEEnnSXqdpD7HqjdL+qK19tdtOzgAsI3PGfvLffHDQwXH9JDL3ptSdzZijte1v5m42RU4YmFbtsU+pmLQ2oBS0hDWqg2NrdfVIa36REqPDpQ+4Hnyl6LnxsQJULnWffsJRq99ttGph6X01welZfOlg3ctRZRGv5HSdfdJ514eaPuo9MKDjP5pb+mN3w1/rZsVxJqNRpvw2mwbsfr1av95ftqR0quPav88y/N+Z3X/xrbvti12WRgeC6uM9V11l9VTnretZsfCJGnpfGlTyHTK6+6V3npc6bbvw/9ZzyeXlsyT+gejj+GdW75burH2tuiVAQAAACTSkTFalHEFqpsTIRsaq42J2cllleNj0vCYf5wI2fTIF0sBslZFyMJjYiYkPFY9XruMCBkAAJitiIUBAICmsjEmfklSSvHDRCbBNtJ4BKzB4I9VINNg/Aiz00C+3znWl/HEwhznTaD2fllzkmtrStv5ImMV7wtpx+O7YmFpk/Je88U2va7tipIBAAAAAAAAAAAAmNmstdP2qRJr7UZJ7zbGvF/S8ZKeIWm5pCFJj0laY619aLqOD8AcZq1eNHiN/jjvlMhVD90t/tto3jFto5Egjt0+MHG7xzpiYane2Me0MX5fLJbhhLGw5+wj3bQuer33nWR00C5GB+0iDY81NucvTpxrNB/+mL3Z0p/dWaOTD6wey2aMTlkhnbJi8gdbDKw7FpbwNZotfL26gWGr9f3SbotKH/ROYt0m97VX9uZjU3rVke3/V6Ob1gW6f2P4C1AoWmXS4ceUL1g99LSUMqVzcZdFzTn2nRfIG++SStdmI7aNhi9PGU18Ce7aJ/yP0YpYWFgoTJJ2q8jX+s4X3zH928lG514e/T60R/6R0o0VR0euCwAAAGBmaXWELDwmNhkZqx0fihgfI0I2LVoZIQsNjGWleV2lCJlv3BUoI0IGAACmC7EwAADQVI3GuMpSJv6shHSCbSSpaIsKbGPHV7RBomPD7LG5sMk5tsgXC3NEsxo990qm/s2jSc/fVp/3xvX6ON47UiatlEnJyMiGvC61Ea+wdZrBdXwAAAAAAAAAAAAA0G7W2pykldN9HAAwwVq9avvlDcXChnLx53a4AjSZiO/Es9ZKv/z6xP3uwBELK8b/cr2hFoeq4oS5yq640zYUCpOkfzlq8sOMPZ1Gpx0p/XZNxDHFeM45x4dqO2N+eiGdMupIh58DSV6j2STwTGd68/esJKvlC6QLXp/Sa58d78Or1lp97LfR86WO2jPWwzbNSc80+sa14e8lo3lpXsgUuC/+MdBHflW9zdF7Sb95d0q79U3tw72NXBvnvryx95kXHGR007qweXKl6yCbiT73WxELc7nh/sljTRoLe/VRjcXCXr7996UbTz/Z6OEBAAAAmOXaFSGrj5HZquVDVSEy69iGCNl0yRelLcOlf+olj5BlUtK8rsqwWHVkrKduWU2kzDFOhAwAAEQhFgYAAJoqbqgnpfgTrZJsI5ViTY0Gf+JGzzD7DOT7Q5cvSPepI9Xh3M51frY7NpVOeJ0kvb5a9fgppSf+LKr+t+Ltel1ro2QAAAAAAAAAAAAAAAAoszpzy/e0vmNPfW3x+zSa6nauGRWkqhUEVoFjSlpkEOfHX6i6221HQ1cbKcYv63zystZ8oV1Z3BDWfU9Z/cs3GptH8/23Gh27j6lZltLQWKBr1krW8dRixcIcU22yCT690N1BLCxMI2fgk9ukN30v0IpdUzp418Y/aPqjv1pdfVf0er2dDT9kUx2ws3vsnielZ+9Vvey3a2xdKEySbl0vveLrgVadM7W6VtS5ePYpRi86uLHX/xWHG33mivCf7g9usjrreUYX/83/029FLMwVFLz+fmn7qNX8LpM4FvbM5dH7P2pkjfbPj9cQ16+N3gAAAAAApsAfIZOShsgKRTsZFstJg6O1MbLw8eGcNDhaEyirGCdCNj0KQWsjZL3ZUjys8nZvp1Fvp3+8dln5djYjGUOIDACA2YBYGAAAaKq44Z6USRALM8lmMlgFDQd/ioSB5ryBQngsrK9jiXc71/nZ7thU0usknXC7Vj1++T0iZVIqhvwetF3XartjbwAAAAAAAAAAAAAAADsMa2Uknb/pXH2y/3zdl91fP174Bn1lpw9M+aELnikbmYhpKPZ/zq263x2MhK43Uow/pf5nt7Y2FjYcI8wlSZffYb2vVdmX/9XoLcfVz9lb0G101QfSenrQ6r0/tfrFbfXPbyTf+HPOOT6kmigWlpW2hXTeRnJWST+cOxu4Inq18kXpijttrFjYb1Y39uDd7u/cbKnurHvs8jusnr1X9XP99Sr381nziLRuo9W+y5J/0NsVyfrEy4w+eapRJt34Y/te01/cZnXW86TNQ/7HaEUsrDdr5Pog85/WlmJirkhg1DGlU0Yd6fAoYNmrt/+m6r4d2ibTu8BzxAAAAAAw82TSRgt7pIVtiJBVxchytuL25PjQWClCVr3u5PjoHA+1T5dWRsh6O8cDYp21t0sRMt94/bLSn0TIAABoP2JhAACECGygx8ce1oOj96po62etpE1G+3Q9U7t2PiNR7CqMtVaP5x7Wo6MPaa/uA7SsY9cZ8x/JG3OP6/7hu5SzY971jIweGL675ceTUrLXfHN+k1Zvv6mhdZ/KParHcxs0FoxqXnqB9u0+SP35p/T42MOyEb9U6Up164CeQ7RTx84aDUZ0//A/1J9/amJ8WXZX7de9Qp2pLklSPsjpwZF7NBQM6oCeQzQvvaBq+dbigA7oPkSLOnZK9LxnolwwpnUja/Vk7lGlTUZ7dx2g3Tr3atr11Ayb85tCly/ORMTCHOfnrduv14kjL9OeXfs5g1mBLerRsYe0fvT+eAcb4ziimITb+VReM3EfP6XSa5U2aYXNN6yNsBWC1vwm+uatKzU/szByvfnpRXr2ghNacgwAAAAAAAAAAAAAAAAzUjBZqeqyYzps7B96Oh0+12np/HgP7YvHxA3i9NjQT9hpJJh5U+pHY8bCbri/sbjTiw/2z0ncaZ7R7n3hjzUWY1qOMxaWIGLkiieNzPEPrAYxvvvw8S3xHvt3dza2Xtc0xcJ273OPbQ8Jy/30Fv/18fBmad9lyY7Fdx6+/PB4oTBJeoZnmui28d7hEXtINz/oXq8VsbBnLnePre8vhft879dR1/6By6W/P+bZf65mTuXTT0jEwgAAAABAUusjZEO58ZDYeJBsIkY2ZituT44PjUlDY7Zm3clxImTToxBIW0dK/9RrToSsPiZWHSFzjYcFyoiQAQDgNvP+ZhMAgGlWtEX96IkLdOv26yPX/acFz9cZy/9dKUf4p1GBDXTJU9/UjVuvmVh2yuLT9KolZ0zrf9Baa3XF05foyqd/MW3HEMYkDEpd8fQlDa/7Xxs+kmgflY5b+ELdOXirBotb68b6Mkv0/j0+o85Up776yCf1VO5RSVKHyeo9u5+jnbO76YJHztFTudLsB6OUzlj+bzpm4UlTPq7ptjm/SRc8co425Z+sWn7U/OP0tl0+6AxptdtAITwW1tex1Lud7/3g/274Tz2z51C9a7ePT8TiyvJBXt99/L/096Fb4x9szOPwb9faYFvcn296/HjK0bBagSZnvQ0WtunS/h8lPziPqzb/sqH19uzcl1gYAAAAAAAAAAAAAACYW2z9h8WeN3yDfrTozXXLR2JGsApNjIV1ByEVIUnDwfQUj1KmFOBZ+0T92EjYt+p5+F6nsmc/wx/8Kcs6PmGQa2AfUeu6HtunOxu+PO65NNvEO0NaI5WanvmtXR3u/V7wZ6v/fLHV8oWNH9tUziXftq7QnU9vp/u4b3s4ep9Sa2Jhr3mW0TmXhZ9128bfWqcSdzzjOUYf/pX7rH7h4J+rF4yGfrIZAAAAANBErYyQDY8HxGojY6VltuL25PLh8bHqdYmQTbdWRcjSKVdgrDpC5hsP276TCBkAYBYgFgYAQI1btl3bUCistO51OrDncB278OQp7XPN9puqQmGSdM3m3+qgniN0YO/hU3rsqXhw9N4ZFwqTpLQjGjTT3LT1T86xgUK/Ln7yQs3PLJwIhUlS3ub03cf+Swf0HDIRCpMkq0A/evJrWtF7pOZnFrX0uFvtFxv/py4UJkmrt9+kA3oO0/MWvXgajqreQP7p0OV9mSXe7VLyx7buHf67/rT5Ur1syeurll+/5cqmhcJKxzEzrxMT8frUKkfPXPGzwE7OMGpVKAwAAAAAAAAAAAAAAAA+9R/q2rXweOiaIzE/tOeLz2Rifidelw2Py4zYeEWfYjD1TNPBu0rnnGq06mFp7RP1jzfc5BBWT1a68v2phj4Il3VMO8oVGt+fa13XY/u4gkujMY5nNopzGs6EsFizvf5oo5/dGv7M3vWTQJe+t/GT7TdrrF52WLIPifre05LEwiTpv083+rdLwp/bowM28n0004Kpg89cbpQy4efd56+0OvflUt5zTUbFws4+xWg0L33m97bu/eOeBw7RPDtUvXCMWBgAAAAA7KgyaaMF3dKCbtcayf4bvRjYuvBYdVTMhgbKhjyBsqGx+L/PRHMU2xQh681K87oqbxv11C0r3zaa1xW2DREyAEB7EQsDAKDGPUN3xFp/7dAdU46F/WngstDl1225clpjYWuH1rR8HxkTfzZEysSc5TVDrRtZq0D1s9mGgu1aM/jXuuVWVv8YWqXnLHxBOw6vJQJb9F5j9w7dOSNiYdZabS5sCh1b3OGPhaVN9L9i3z20pi4Wtnb49sYPsAFpR1xLkhZldmrqvqIs6Zj8StJMA69PpfT4f7KkHZGxymso7vs3AAAAAAAAAAAAAAAAmsDWf/iqOwgPuRQDKV+w6sg09sEpXyzMF5+xY6MNH1PBdKhQtMqkGzum0QY/IBh8J61iYJVOGW0fterNSrli6TXo7Szt6+7Hg9BtR5ocC7vy/SntNK+x59fpmNKX8/wsGl03m+DTC67gUrNfox1NEH7qzBnuDxRLf7xbyhWsshmjoIGq2rqNyXNqvvOwO5vsMRf1uMeu+oeNjAkmifI14pQV0tV3ucdd79cpI6VS/vcfY4w+/jKjj73UatvL95fdvkWddkyd1vFkiYUBAAAAAGqkU62NkLliYoPjEbLa8SFXoCwnDY4SIZsu/giZ5A+R+SNk5XBYb7YUEqu+PRkhqx+vjpBVjhMhAwCEIRYGAECNoWAw1vrDwfYp7/Ph0ftDl98xePOUH3sqhovxXou4ds7upgWZRbG3SzmiQTuasFBYlLt28FhYzuaUs2PO8ZFgyDnWToPFrSrY8N+49WWWerd9Rtf+kY8/VKx/3xgOWZZUd6pHy7K7OsePW/hCXd7/E9maX1Dt333NATelAAAgAElEQVTwlPZ7xLxj/z97dx4fZXXof/x7npnJCoGEJSI7IgUVVAQV3FBUXNC6VdzqdttaW6ve6rX1tu61P62296JevdRata219irudVeoaIGCogJa2fedAMlkMttzfn9MZjLLOed5ZklmknzfffkiedYzk8yUhPN8HixRvG+dVHdW4uOhFQdifXCV62MOq4w9n5YmfhaVbbPeVM9r3EFVh2N5szmAOKBsMCQktoY2uh4fERERERERERERERERERERUbenioXJzFhXXCAM+FzOYo8YgkheUxCnsSFjUZXUx2UCYaCny8BONpEqT2sgp2dF7M+KtKlvld4ooJgPl+3Fgk49pKosokW60FAo4v4Yum2ziYXJSBh4688o/3x/oDrzhq7d/YJKFw2sBMVLVCsSdbfx1NHuj9kexg/Rr2sJxy74LPNIvPKZ8+Pp2yP3cZi+D3WhOyfjhwjoLj7dus/8HtSnGhhcl9t5nSzfrF4eP58uEmgKO6YTQqBnlQXsNc+nlH+4D1izDPB4AcsT+zP+sTd5mSd1vSdtW0/atqr1imXC6hrzmImIiIiIiMhZe0bImlvDYckRMX9imUz6uG15bB+ZsowRsuKL2sC+lth/arlFyCyRGR6rLm9dVh67KUW1dr1o+zhtfYWPETIios6MsTAiIqI0tswu4BTNcvvOJJpDzCobp9Sdm9N+umgQlb6I3Tl+29QQ2aldV+czx8IOrh6P/cuGYnNonXabsOJud4V8Lzm57hx4DK+Tnt5emNzrZHy0953EMgsWptZ9M6/zTqmdjmX+T1Ie36E9jkJ/X1u47Lje07Co8e8I2M2OxxtSfgC+UTUuNj7N40mO7tnQzw79Zr9vo2p3Dyxq/FC7zSl150JC4o9bH3YcGxEREREREREREXVuzc3N+OSTT7BixQrs3LkTLS0tqKysRH19PUaNGoXDDz8cZWVZXElNKaZMmYK5c+cmPpfZXJWchTlz5uDEE09MfH7HHXfgzjvvbJdzERERERGRgSoWZpvDXPqL61L95h39zxPGAE0wc26KaUzNIaBnhbsxNWcRCzORwQAq3ngawHfzPkfYYepRNtEiXdCrILEwl1P/ZDAAeXLsRqSVg55XbpNNtK2zC0cklm0BFq+TWLwO+GSdxKcbCn+eYFjiwlmGQl+Sfz+luLGkcw4T+P6f9O8PyzcDVz1lY+0u52Pl85o27ZtNpC/Z6P306z74Shov+r12ikhECgvtkqME7n8z8zlfuT0WmdO9D2UTCQQAbNHPvUz4dC7kp3Odt2snUgh1hCwlXGY5rE+Ok5kiZl7AY6nXe70Q6WEzx3G5OK9Xsa0hnpa8LS80JiIiIiIicsdjCfSsMP1OMv8ImT8UC4klR8j8IZm6LJgaIcvYJ8gIWTHZsn0jZNXlqgBZW2hMvV6kbdv2JyNkREQdg7EwIiKiNKbYTCG270x04bQKqwp13r4AgIDdbAwrxR3X6zQMqTgAS5rmo0yUYWLNCTis59E5jcsUQcrW2OqJ+ML/z5z27ePrj3IR+23MrvB2BA13w6QYVSSrFO0Oq7+nvcKLHp4a476VnircOPgevL17Nt5teEm5TURm/nbM9F5yZM0J8MCLTcG1iX09wot+ZQMQlVHsjexCyA6iztcfh/echEm9phrHCAAX138fA8oGY6l/MXp4ajC518kYXX2o434mo6oOwfWD7sK8vW9jT2QnvlF1KE6u+2bKL3gGVQzHjYN/gb/veQPrWlbAlpmPu9yqxIFVh+DUunNRbsVeY5biDqpA6vuULrj2zb7fxuCKEbhiwI0YXDECy/2foMrqgZAMAZAoExU4suYEHNrzKABApVWNf+77O7aFNmb9HPQtM8zUIiIiIiIiIiIioqKKRqP461//iieffBIffPABIhH9Vc4VFRWYNm0avvOd72D69OkdOEoiIiIiIqJOSDH/o1Lqw1wtLi8s29QgMfO9HGNhyzPnhJnGtHRtEPXj3NXCCnZh3GtPomrtZ8AAxTkKHQvLIlqkC3qFsrgXom7bMq/LC8X+9nTiQ93XLRBqnzB1sYUiEss2t4bB1sfCYJ9vBIJZxNpy9dTHEq9+7rzdK9dZOGNscS/6618j8OEtFo77lXrendtQGJBfLEz3WhUih0hWYl+BqaOB977KXPfBv2LHVpk+Drjr7Pb7uhw2WL9u9qcSlmZgxvfqNHLX1ixHVSRSAtFI7L9iD6XYA0gjk4Nl6TExb1rQTBU2yypS5jGuF7o4mnJcSdsax5U+Rs36tHMJq7iBRSIiIiIi6j7aO0LmD7YGxIJtH8f+lCnL4h/H/pMZ+8Q/LtSNGSg77RkhywyPJS8TqNKuF5pwGSNkRETpGAsjIiJKowrXAICAgFT8EKMLanUFuudiXI+JuHLAvwMAPm9aiP/d9EvHYwkhcEzvU3BM71PyHpeFwsTCvMKHawf9DO/sfhEv7njaeYc0397vRxhVNRYA8MjGu7Hc/0lBxtWVhRWRrFK0O7JDubzW2xeWcP4H+x7eGpzX/0ocUDkGszb/v4z1qudB915yYf/vYkrtmY7nzJYlPDip7mycVHd2QY97QNUYHFA1xrjN4IoRuHS/H2Z1XEsTCYwHwqSUsKF+DodVHAggFho8pe5cnFJ3rvFch/U8OueYIREREREREREREZWm999/H9deey2+/vprV9u3tLTg5Zdfxssvv4wJEyZg1qxZGD9+fDuPMnvDhg3DunXrAABDhw7F2rVrizsgIiIiIiLqnmTmvLpKw40X3Yaw/jjfnEApN8yEl6u+yGpMj762B1PHubtJXKFiYfKj11Fp9ynIOZxiYdXZxMI0z2s2sSrdtm6jQfIP9yc+rrQ1sbDdDQD6uh9UCQpFJJZuAhavl1i8rjUMtgkIFbg/pHiJKpnifHHHHABMH1caF+Ydsr9+ndtQGJBnLEzzWq3M8wLGXpX6dbqv509Os9r1osnqcgHdxaDvLAdOGq1el00sDIs/yH5gVFqi0dh/4eJf7V1KITUphHOEzLIc1ivCZ8qImRfwWNqImUhZ5iKO5ua8HsW2hnha8ra82JuIiIiIqHNorwiZ3Roh08XEmoJSGyjzawJlTYyQFY0tgcaW2H9q+UfI1DEykbG+ugzoURGLkLV9nLq+sowRMiLqnBgLIyIiSqML9niFD2GZ+RNitAvHwqKa8E5yrMuCuzsdiRx/2Fee30WsyQ1P6+PINT6Wy/PQ3YVlsNhDcKUhvFO5vNbXL6vj+Cz1LLtIFu8lukhWd+PRvMZsxKKGEuq4IcDnkIiIiIiIiIiIqLu76667cNddd0GmXUkphMCYMWMwaNAg9OnTBzt27MD69eszgmKLFi3CpEmT8Mgjj+C73/1uRw6diIiIiIioc1CUaypsQyzMZQjrL/80Zz769DDMSbMy54tU2c3azV9c635ekNvYmY5c/y9gzovAP99Fec9zlNtkG4syxcJG9gf69XQxLv8+yJvPgm/9UGDgk3mNqcUQUHJl5+a2fTSRt0CgwEWtdhYMSyzdDCxe1xoGWy/xRTuEwfLx1VbnbawSmirZq6ow81L9ecXC1O9Trr/XNcbsL4BPs0sdVWURBczFUcP16/Y0S4Qi6q9HVrGwfVlU3og6EymBaCT2X7GHUuwBpJHpwbLkSJlXETSzdOEyN5EyTRytdZlwE0dLjEt3XlPIrXVfyzDW1uWilP4Pl4iIiIioHVmWiEWc2jFCpo6NSWWgrNkQKGOErHjaK0ImRHpYrO3j2J+xCJl6vYhFyyoy1zNCRkTtjbEwIiKiNLYmOKOLhem27wp04TRPUnjHbYRHFDCm5XER9/KJMuXXK1k8OpZrfCz5efAwRuRK2DbP9JMl8k/QDZEdyuW13uzuROkV6r9uR2QEtrRTvvdsTZzPzfd7d6B7r4m/T0UlY2FERERERERERESU6cYbb8TMmTNTlvXs2RO33norLr30UgwZMiRjn5UrV+Kpp57Cgw8+iGAwdhOMUCiE733ve/D7/bjxxhs7ZOxERERERESdR+acn0oZ0G7tNha2Lp9mzNZ1GYsqbf2YsvHZxtznOMnPP4a8+Swg0AQA8El1NCSU5T1MTbGw284UjhcmycYGyDP2AwCU9RygHpPLvkk4IhHVTOWpzCFmVKH5ugVCpTHXTCUYjoXAFq+TWLwe+GRd7HPT16k9FfKZsrrgNW75XOSpiwfm8r2e7OpjBO59PbuvXL6BMif9euq/+C98AhypiYllEwuTG1dlOSoi6vSi0dh/4eJfcV9Kf7OQQhhjYpnxM12kzHIRMfMCXo82YiaMUbYcz+tRbOv0eFvPzwvuiYiIiMiN9o6Q+UNAU0trTCz549YIWfp6f0tqhCxjfTDnh0p5kMkRsn3KLUx7a9cI0RoQS46JlQPV5fFlAlXa9SJt27b1jJARURxjYURERGl08S+f8EE15UQX1OoKdPEiKyle5DZkZBXwBxDhIu6li7sliweEco0xJQeILAadXIk4fE1Kxe7wTuXyOl92sTCf0M/4icgwykR54nNbE7vKNWbX1WhjYa3v2br3KwDwFDBWSERERERERERERJ3H008/nREKO/bYY/Hss89i0KBB2v1GjhyJX/ziF7j88stx/vnnY+nSpYl1N910Ew477DBMmTKlvYbdJcyZM6fYQyAiIiIioo4kMy+KKZdBCGlDKua+LF4nMfkA5/lkew1tr6mjHXZ+5y8Zi3xwWSlzcNerecTCfndnIhQGAD7NfKpwNLtz6CJU08cB357kYu7MC48lPiyT6ufJbcCs0XBhWy4xo0rZolweaNgLQB0260gtyWGwdbEw2NLNHRcGK/MCYwcCFxwh8MFXEm8vb9/z5RXxaweH7A8s3ZzfMfKKhWneVqryjIUNqct+n3wDZW7cerrA/3tD/f70m3fUy8uymV77wqP6dYceB0RCgB0FIhEgGol9nPiz9ePEn0nr4x/bXfcG0UTUxUjZ9v5V7KEUewBpZEokTRUZc1qvC5+pImUe43qRfiynOJrTeTPG7QG8msBb+lgszpcnIiIi6gjJEbL6GtUWhYmQ+UOxkFji45bUCFl8vb8F8Iekep8gI2TFImXr1yKIdouQJWJiSR9Xl4ukj9PXC+U+jJARdU6MhREREaXRxb+8Qj1LJdqFY2FRF/EiXcAnncjxh1wVN3EvnyhDAH5Xx3H7GNJZSQEiT47H6G7CmolkpaYhoo6F1Xr7ZXUc3fsG0BoLQ1IsTBMqZIguRve6j78Hm8KNub7GiYiIiIiIiIiIqPP6+uuvcd1116Usmzx5Mt544w306NHD1TFGjRqF9957D1OmTMGXX34JALBtG5dddhmWLFmCvn2zu8EEERERERFRl6WIhQlAGQoDzBEwtxzjQAeMBVZ9kTEmnTIrCricp5NrBEpGIsCnc1OW+XRhriy7ELoxnTnW3bw9+cRdSWNSl5OCLsf09Tb9uupy/brEWNK+nyql+hsmIHMoj+WpJSzx+cbWMNj61jDYJiDSQf2hMi9w6CBg/FCB8UOAI4YIHDIQKPPGvs6L16q/ERQv0ZytLbFYWE1l/sfIJxam2zeXMF4yj5X9nNuaivzO6UYvw/O9TXnhoz6opjRoJLBxZebyg46E9ci7WRxITUppjollxMbsto9V+6XsY1qfvH8UsKOQ6cszxhJ1WJ/NeZ2OUfwYERGRa/H3tXDxb2JeSiE1KYQxJpZY5hgps1xEzLyAVxdla42oaeNomqBa/LzJcTRtqM1Snld3XEYPiIiIqDNozwhZINwWDosHrBIft8iUsFh8fXMQaArKjPBY8v7U8VIiZOotTHtr18QjZLqYWDxCpl6vD5RVMUJG1G4YCyMiIkpjawJZuuiPja4bC9PFd5LDWO5jYYW7U4mbc/osH5y+NPHj5Br6Sn0eeCcWN8KaiWSlJCLD2BdpUK6r9WV34ZdP6G/Vl/5cuHm9dWe611j8eYsaXvAMrhEREREREREREXU/N998M5qamhKf9+7dGy+88ILrUFhc//798fzzz+Pwww9HKBT7ve6mTZtwzz33YObMmQUdMxERERERUaelmXOn43U51WpAL2DLXvU6XRxLSgk8998ZoTAn5+y/CcBwV9uWuZiKcuPJigtgQpnRqzLNfCpbCkRt6ToYpHs+fDlMm9HFuUIRuBqTKQY3qt7FAEItqeOx1Qdskfq5WYWyfLPE/3tD4pkFHZ+CKE8Kgx0xFDhiqMDBAwCfV//8xy68KqVsRfvbqnmPyEZzKPbekcuFawFdLKz9vz0z1Fa3/4V3J47O/nts/e4sNtZ9DRq2Z3VO/eFFLELiLf6lVKV0maSUMhZGS4+JRfKNlLXF0bTBNUUcTWrDZhEgauvDZ5G0MSaPK6I6r+08LruDapBERPmSEoiEART/5u6l9rdRmR5Jy4iQpcXJnCJl2vXOcTSRETwzjSub8yad3+t1eLytY7F4DRQREVF3YFltkSe1wkXIUmNiMiNM5k98LJXhMr8xgkXtKTlCpr4XSO4RsqoyXYAsFhqrMgTK1PswQkYEMBZGRESUQRf/0sbCspzo1Jnonovk8I7HZYSnkH/xdhML8xoiTYnjtAbMrBxDZsnPA2NE7kQ0d8IsJXvCuyE1P6DWeftldSyfpb89YNhOfS50sSu3Qb6uTvcasxF7Dza9FzO4RkRERERERERE1L189dVXeO2111KW3Xfffdhvv/1yOt5BBx2Em2++Gb/85S8Ty5544gnceeedqK2tzWuspWblypX4/PPPsWnTJjQ2NkIIgaqqKtTX12P48OEYO3Ysqqqq2n0cwWAQc+fOxZo1a7B79270798fgwYNwnHHHdcu59+yZQsWLFiA7du3Y9euXejRowf69++PiRMnYsSIEQU/HxERERFRlyM1c20iu7Db2ydjebPL+w3mMuVM/uZ64KXfatcf3rIEn1YclrG80nI/ryniMGXwwP7ATacoBh90HwsDYgEwj8upbQWNhdkt2nUtYdOFZbGLxE6faZjH4yZ+lvY8VUr1eALR9p0TtGyzxPh7bO1zW0gVvqQw2JBYGOwghzAYxdw2XeCqp/JLUkgJBCOxr0O2nl+sPndlDsfqDI4Ykv0+3z8hi+/jDSuUi8V538/+xOSaEKItluIrQukufTzFHkASmYioKYJoecfRTOuT42exY8qMc6WH2gp03qjLx0tE1FnE39fCxb/xfSmF1KQQxphY4nPHSJnlImLmBbz6aJvwpAXPHMeVdF5tHE2xrcvjMjxBRETkrL0jZOoAWSw0pgqM+Q2BsqYg4A9p/xmD2pGUbZG49oqQVZcBPSrSP26LkGWuF5p9Yr/TtVzewIWo2BgLIyIiSqMLzvgs9T9+6gI/XUFUOseL3EZ4RI5BLhWPi2P5NHG3lOO0jj3XGFMuz0N3F7Kd/oGl+D9xN0R2atfV+vpmdSxTtC49nGbrXm8FfO10ZpZQPw/x9ynd82fal4iIiIiIiIiIiLqmmTNnQibN8Orbty+uuuqqvI5544034oEHHkA4HPvdrt/vx+OPP45bbrklY9srr7wSTz/9dOLzNWvWYNiwYa7OM2fOHJx44omJz++44w7ceeedxuPHrVu3zjh5/YorrsBTTz2VsTwYDOKhhx7C448/jhUr1Bdkxnk8Hhx22GE455xz8OMf/1gb7poyZQrmzp2b+Fy6nHG3d+9e3H777Xjqqaewb9++jPU9e/bEjBkzcNddd2H//fd3dUydcDiMJ554Ao8++ii++OIL7XYHHnggbr75Zlx99dXwejnNhoiIiIhISfN3/okti/FWj1MzlgdcdrkChqlGqus1pH+fMRQG6GNhIdv9/BJdPOrA/sBNpwqcd7hA357uYmE+RLTnCWURLypoLExmjjNueyMw3BALW7JBv65XpcsBpMfCbPV4Anb7/oz22BzZLqGwCh9w2GBg/BCBI4bGwmBj9mvfMFjxZ+W1n8kHCBTiETaHcouFfbZRvbyjY2FnHNIx57EsgW/UA/9SX92nNLK/u+3k5tX6lX3z+z0QUa6EZcUCI97iFwBL6VJVKSWQCKklxcQiqohZJItIWXpwLWIIl7VtL9OPlbK/rYmrJQfZ3J7Xzlyffly7696Inoi6GCmBSBiA+3B2uw2l2ANII9MjYhmBMVVkzG2kLH0fcxxNmOJo2pCbm/MmxeC0wbW0sVi8LoeIiNpfcoRM/Sul3H46llIiEEoPjyXHyKQiTBb7nWFTi9SEyxghK5bkCJlmC9PexmNXxwNi5bGIWOrHAtUZy+Ift0XI0tdXlTFCRoXHWYxERERpbE38yyvU/7dpCtR0djbU/1jlSQrvuI3wFPKvsW7iXj5DpCn9OLmGvlKeBzAW5kbEcCfMUrE7vEO5vNKqRoXldsZajClaF057LnShQoboYjya11j8PVv3fmXal4iIiIiIiIiIiLqmN998M+Xzyy+/HGVlzv9uYNKvXz+cddZZmD17dsp5VLGwzmTDhg2YNm0avvzyS1fbR6NRLF68GIsXL8ZFF12EkSNHFmwsn332Gc444wxs3rxZu01jYyN+97vfYfbs2XjllVdyPtfixYtx4YUXYvVqw0WorVasWIFrrrkGjz32GF577TUMHDgw5/MSEREREXVZmqthquxm5XJTBCxZi+Ga5e8dr5iR9vUSx2P6pPqg2UShdNv++kIL08cZZsopYmFlhvlUhRiTz5P9zL2+0V3adat3AMMN91t87Qv9hTZ79Q2yVOmxME28LGC3b7jl0Tn5X+VVGQ+DDW0Ngw0RGDMA8ObwdXHD0BAvmO8eV1oXNQ3tU5jjNIeAuurs9jHF0d1GEU2+c5zA7z509324y5//+dzq1zO7WJjr75hlC/Xraurcn5CI2p0Qoi2W4svvd+8FGU+xB5BEJiJqmphYRmws+ziaNrgWSd1WZoTYdPEzU8jNxXmTo2za9V33mhsi6oLikcsSUErtESmEQ6TM0xYg0673pm2jiZRZHsDr0UbMhCqO5va8ruJoquCa5riWZbyhFxERlQYhBKrKgap2jJD5Q0BTS9ufsWUy6eO29f5gLEKWum3S/kFGyIolHiHb3qhaW5gIWXV5a0ws8XFqhCx1vcgIk8XXM0LWvTEWRkRElEYX7NHFp7p0LEzz2JLDWG4jWQKFu4OA5eJYHk3cLfU4npQ/sx9H0vPgMprW3YU1k+1KSUNEHQur8/XL+limaF0k7bmIakKFbuJ43YHueYi/T5nei/kcEhERERERERERdR8bN27E2rVrU5adeuqpBTn2qaeemhILmz9/PsLhMHy+9r04ub2EQiGcdtppGaGwuro6jB07FvX19fD5fGhsbMSWLVuwfPly+P3tc+Xp8uXLMXXqVOzalXpBen19PQ4//HD07t0b27Ztw/z58xEIBLB7925Mnz4dDzzwQNbneu211zBjxgw0N6dGCwYMGIBDDz0UdXV18Pv9WL58OVasWJFYv2TJEhx11FGYP38+Bg0alNsDJSIiIiLqstQXQegiT80uY2GmWJYyyrVrq+MxdXGusO3+goqI5p52XqcpZC3ZxcJCEddDQkgbC3PeV0ZST7R/ZEvOY1q4ugBXMKU9T5V2i3KzBrsq/3MVUFVZUhhsCHDEUIHR+7VfGCxOvv0s5Cu/A1Yvg6x7DKg6O3ObAl5Y9m/HltbFR2XewozHH8x+H9N71Kj98h/Xz89wHwvb3YGxsFMOEpi30v031dEjXD4XAcODGHeM6/MRERWTsKxYYMRb/H83KKX/x5ZStsXJkuNpkTwiZclxNGWITR9Hk9o4WlL4TLU+kjZGp/PatvO4WAAgos5CSiASBlD868JK7Z1TJiJjmkiZcX0WkTJLc6ykiJmw0o6ljaMpgmvG86YF11KCaep9hMVrLYmo60uOkGm2yOm48QhZPByWHCGLLZMpYbHkCJk/KFP3CTJCVgraK0IW/3eJ604UuOhI/n9vd8JYGBERURob6pk8XqH+B5uoZvuuIKqLhSWFdzwuIzyFrOS7Cf94hAcWPLA1AabYNlbr8XL7C3Auz0N3F7ZdzvQrooaw+s6YtV7DLTE1TNG6cNpEP13sypNjzK6r0b1Oo62BR11sLbYvn0MiIiIiIiIiou4uKqPYE9lZ7GF0eb29fYv++/KPPvooY9mECRMKcuwjjjgi5fNAIIAlS5Zg4sSJBTm+Ww8++CDuvPNOAMCxxx6LTZs2AQAGDhyIefPmaffr0aNHyudPPvkkli9fnvh82LBh+J//+R+cdtppsBQTd6WUWLx4MV577TU88cQTBXgkMeFwGJdeemlKKGzAgAGYOXMmzj///JSxNDU14de//jXuvfde7NmzB7fccktW51q+fDkuuuiilFDYaaedhrvuugtHHnlkxvaffvopbrjhBnz44YcAgE2bNuHiiy/GnDlz4PHwd89ERERERAmaaxV0kacWF9eVSim1Ua5JI4Cjhqdtb9uQd33b8bheSz3YkJtBtdIFghzDXM2ZV4H4DDdfNIWICjYmAAg2O2/TKuDwNA3pI6D7hvjmoW5P0pTyaYUmOhcu8qUQxxzQGgYb2hYG81gdm+WQb/0Z8hdXJT4XPTXFq2AAQHXe5/vZmQITh+V9mJLkNmKYLGDY58pJ+X8vDOkjMKAXsGWv87ZXTO64770bTxa44xX3VxUOqXO3ndy4UrtOVJRWHJCIiLIjhGiLpZSAkgqp2XZaIE0XMUv60zFSpgiuZaxPC65FI5Cq4yqDa3me1ynKFt+fiKiziEZL5n2rlPovUgiHSJkqfqYJm8U/9moiZZYH8KYtT1ovHONohvO6iaMlj1ETckNSyK2Q19kSUdeUHCHr11O5RU7HlVKiJdwaEGuNV6XGxGTbsqT1zcHWQFnyPkkf+4OAXUr/J9SNNIeAj1cBH6+SEMLGjIkMhnUXjIURERGlsaV6hpFPEwvTBX66Al04LTleZLkMGYkC/pOKmwuNPPDAEpbx6xMfe64xplyeh+4uYpjcVip2R3Yol4DrUf4AACAASURBVNf6so+FWcKCV3gRkZm31AwnPRdSSu3rTeQYs+tqdK9T2fq86d67Y/vyOSQiIiIiIiIi6u72RHbittXXFHsYXd49I2ahj6++qGPYuHFjyuf19fXo06dPQY59yCGHKM/X0bGwvn37om/f2O+svd62aR9erxfDhg1zfZyXX345Zd933nkHI0eO1G4vhMCECRMwYcIE3HbbbbDtwtxQ5+GHH8aSJUsSnw8YMADz5s3DiBEjMrbt0aMH7rjjDhxyyCG48MIL0dDQ4Po8tm1jxowZ8Pv9iWV33nkn7rjjDu0+hx9+ON5//33MmDEDs2fPBgDMmzcPzzzzDC6//HLX5yYiIiIi6vI0Px9USXWEqrklCjjM54gYpuXdf77iorqvPzUeL65MM80rvMfdzxe2LSE1F704hrmWfJg5HsN8qlBHxcI+zwxv7xfZiq3e/TKWt4QlTBci7d9bf5peVS7nEKaNp9JWx8IAYNV2iQP6F/4CS6n7Irf6/gkCj15a/DlJ8qVZ7jbcth7AGOMmURdXc919tujUF7T++67/xn/1uVG5LpdY2Lrd+nU9K7I/nsr/fd/Csfc7/w6mUOdzo2eFQH0NsG2fu+29bqfXLnxHvXz0EerlREREXYCwrFi0xKu+XqlDx1LsASSRUrbFyRwjZrnF0TJDbPo4mtSeNxL74VUVRLOjsXOmj9F43qjzuBx+ViEiKhlSApFw7L9iD6XYA0gjMyJp6ZExy2F9NpEyxbGS1gtVHM3pvMrgmiYGpwquaUJtnfl3TkSdhRAClWVAZVn7RcjUMTGZGShLipCp9mGELHuPzZGY0bHTGKmIGAsjIiJKY0M9a8YryrLavivQhbaSY12Wy5CRVcBYj5tjWcIDDzyIQP8LJav1cVgu4mPq/a2kjxkLcyMsc5hR08EawupYWJ23X07H84oydSzMbnsudKEwgKGrON1rLNr6PhU1hQH5+iQiIiIiIiIiIuo2du9OvUqztra2YMeuqKhAeXk5gsGg9nydybp16xIfH3roocZQWDqPxwOPJ//fvdq2jYcffjhl2W9/+1tlKCzZ+eefjx/84Ad45JFHXJ9r9uzZWLp0aeLzCy+80BgKi/N6vXj66acxb948bN++HQDw4IMPMhZGRERERJRCfbVGhSby1NwYAGC+GF4XvwJSA1gyHIpddLjiM6dBAr4y+Fr2AYqLYEKV7n5+NI3LMYhTnXlinykWljnlSCmaT8AMAHZsylhUYbcoNw3kcX3neYe7vNCooirl0/0jW7SbfrEJOKB/7mPS2dlkXl9eKldhrPzc1WZyr/PvLza66OWV6kWbRwwFFq8zb1NpN+Pe7XdgZt2PYCvmk+USCzPFsvpXRSFbQhBp38/Z2r+Xu+0qC9QXkY17gB69HL/WbkNhgMv3IQD4xnhg1ReZy79a7P5kRERE1CUIIVrjIaVxHUAp/S1Y2nZmUEwZMcs1jqZbnxw/i20rVSG3lFCbbV7v9rzRCBC1HdZ33Wv7iKgLikZL5n2rlBo8UgiHSJkn7WPV+rSImi5+Znliv8zVRMxENnE0VXDNMY7mcYyntY1VceMMohLT3hEyfUxMKgNjfkOgLP5xV4yQfbqh2COgjlQq/0xFRERUMmypjvb4LPW/pJsCNZ2d7rElh3c8LiM8hfyB1E34xxJWLOZl+Au7J+9YWPLz0DFBp85+ExCnWFgpPLyGyE7l8jpf35yO5xM+qKbORZIm+unCfABDV3EW1M9DPNhoCjfq9iUiIiIiIiIiIqKuJz3e1bt374Iev3fv3ti2bVvi8127dhX0+MUSj2B1tL///e9Yu3Zt4vOJEydi+vTprva9/fbbMWvWLITD7q5Uf+ihhxIfCyFw3333uR5njx49cM011+Cee+4BAHzxxRdYu3Ythg0b5voYRERERERdmmZSU6VUB6f2BJznkjnFwqR/H+RpWd78b8JU+L5W/wwRlu7mt21vNI/LRG5albGszDCfyvQcJPt8o2FMbq4WCGZG3SqlOvQWcAgqmcZ84mgXY1GM54Dwau2mgbBEe1y67xSOKoXr86SUQEtzyjKRxww8t99vpWj6OIHF68yPfVrTOyhDGFV2M5o8mVes5RILM70e6i4aANnSDHnI0RC3/hZi4AHZnwDAsL7uvtkq1fdDdk2+8jvIP/0K2LIO6D8YuPhGiAuu024/oBewZa+7Y3vdTq9N+34mIiIiokzCsmLREm+BarH5jKXYA0gipWwLjzlGzJIiak5xNGVwTRdqawuaSe15I0AkqgmepR/XzXmjzo+3s1+IRkTdh5Sxm0JE8rhbQaGGUuwBpJHKiFhyuEwRNFOFzVxFylRxtLb1wimO5nRe5fq0GJwqCqfYjxG1ri85Qta3wBGyYARoamkNiIWSPg4CTUGZuqz14+QImWp9sSNkjS2xm8t4LL42ugPGwoiIiNLogjNeof5Fqi4u1hXongsLVtLHLmNhBfw1sMfFOT3wOEaW4o/Dg9xCX8nj6KgYkY3O/f0Wtov/yxqTQNSPgK2ecFLrzTUWpp6FkxxOizJ05UgX5IuH1kzBNbdRQyIiIiIiIiIiIiInXWmi2ejRo7F8+XIAwIYNG/Dggw/i5ptv7tAxzJs3L+Xziy++2PW+/fr1w6mnnorXX3/dcVu/34/58+cnPp84cSKGDx/ufqAATjzxxEQsDAA+/PBDxsKIiIiIiOI0F55WaebhLNpW5XhIx1hYtqGwkeMgfjoLZb+aB+zOXB223f28N+VB/fwtUyxMRqPA7P/NWG6KhYVcxJv2BSSOvT+3MSXGtmxhxrJKWx16W7jGfKyIYcw9K9w9x/LtZ1M+N+3lFC/LlT9oXl8S11qHHAaZxM14TV+7UvfT0wSWbpJ44RP1+iMCn+B/t8bCV9WyGU1QxcKyD8/FYnUa/n2xPz+bB/mjU4Bnl0OUV2R1/LiTRgPvf2XeptKX+++s5NyXIB/4YduC7RsgZ94E9KyDmHaJcp/bpwtc+4y7F4Kb9yEAwPv/p15+0rdcHoCIiIiIuishRGs4pDSuHSmlf1GWtp0aF9NGzHKPo6nXtwbXkraV6aGzjGBa1GG9y/Mm1jmsJyLqLOLvaXD/+8D2Ugq/Fo2TQhhjYinxM6dIWXy91xQpUxyr9WORaxxNFVxT7qcJvSWPN/Gn1aXmt7UHIQQqfECFr/0iZP5QLB6W+LglNUKWvL45BDS1pEbIktdnEyFrbAF6O/8THHUBjIURERGl0cW/fLpYmCHy09npnovk8I7bCI/IMcil4hQBi2/jFBWLH8fN8ZzGkesxsmUKInUGYcPktlLQENmpXVfry3KCYStdaDAiI4mPGbpypnuNRVvfp6KGkJ6lCY0RERERERERERFR11NXV5fy+d69ewt6/D179hjP15lccsklmD17duLz//iP/8BLL72Eq666CmeccQYGDBjQ7mNYtGhRyudHHXVUVvsfddRRrmJh8+fPRzjcdkOTESNGYO3atVmdy7ZTfw+9atWqrPYnIiIiIurSNCWiSqkOTgFAc1Ciqlx/wYUplOVt1M/xURFPfwIMPwhCCPjK1HNQwrbz/JI1OyXWGE7tNR3iy38qF/uk/uaLpmBa3FvLgIDh/o2uIj1ff5qxqEIGlJv+c635ihTdmKcd7GIccau+yFg0OvgVviofnbHc9NjzsWid+XF6S2FK17b1GYtEHpfrOX2/9e2R86HbXblP4P++78G6XRIrtwNHDo9dYPXPtcDwbfMx+u4picu7dBHD5hymNur2GRJO+9rs2AR8Ogc4+rTsTwJg7ECB978yf20r1dMUXZFv/1m9/K1ntLGwmkr3x3cVLWxu1K9UvEcREREREZE7wrJioRRvHj80FGosxR5AEillanisEJGytDiaMrimiaNJ7Xmjsbq3MniWflw3542a10fa6RctRETtQcrY+1YJvHeVUkQNAGRGmCz9Y8thvSJ8poufWZpjta4XVtqxjHE0p/MqgmvK5ZqxtHNELSVCpt4ip+PGI2T+YCwc9tVW4PSZ6uup9wYYC+suGAsjIiJKo4t/6YI/EhK2tLtkjCaqeS5yiWSJAv5Kz3IRHrPgcRxbPCZmOUTF3IzDKUxWKJ09ThcxTG4rBQ1h9Ww+AQu9vbld8OWzypTLk8NpujAfwNBVnO51H39NmIJrub7GiYiIiIiIiIiIqPNJj3c1NDQU7NgtLS1oaUm90L1Pnz4FO35HO++883DeeeelBMM++ugjfPTRRwCAkSNHYvLkyTjmmGNw3HHHYcyYMQUfw7Zt21I+P/DAA7Paf9SoUa6227BhQ8rnf/nLX/CXv/wlq3Ol2717d177ExERERF1KZpYWI29T7vLhgbgG/vpD2kKF/nWL3M7MuCUiyBGtJWqynzqOShuYmHPLDBf8mMM4mxYod4H+vlUoYh2VcLnm/IYU9yBh2aMb0HlkcpNDxtsngcY0UyDcjUOALJhO1BZDQT8Kct14bn2ioU5zXY8bmQJXOK8Z4frTd1crKb72sVdfWwJPGYHQ/sIDG39VU3PCmD6OEB+tCvl8RcyFtai+f6rsDO/X+WSeRA5xsKGq68sy3obrb+/rF7+z3e1u4zoK+D2MkiP4u1VhoKxMODWdUB1DbB5jf4AG1e6Og8REREREZFbQojWcIgHQHmxh1NaITXbdhFPa42jxQNkbuJoquBayvrM4JrUHVcRXMvrvIl1hscb7dzXdBJRNxN/T0Ow2CMpqZCatCxjTEwfP9NEyuLxM21QTXGs1j+FLo6mGVe55UG5x4M6jxeVoQoAJygf4171fWCoC2IsjIiIKI0u2qOLhQGxWI2bgFVnE5Xq2UbJ4R23j7uQxV038SSPsBzHFo+JeVwGz1L2hZXymDoq6BQ1BJE6g+RAVinaHVHHwnp5a+ERuf3V2ad574jYbTOFdGE+gKGrOF38Lx4J08XCBASDa0REREREREREhN7evrhnxKxiD6PL6+3N56rEwhg4cGDK51u3bsWuXbsKEvVatizzYvT083UmQgg899xzuOOOO/Cb3/wmI4S2cuVKrFy5En/4wx8AxOJhl112GX70ox9lRNlylR5zq6mpyWr/Xr16udpu165dWR3XjcbGxoIfk4iIiIio09LMuTvZ/752F7/DNSrGWJjt/gIXccpFqftqqlUhF7Ewp5iQKYglF76jXC4AeGUYEcUcIzexsKhD4MlVpCuaeaLB4Y1YWzYsc0xR86U9uq+b0zhkcyPkbRcDmuepwlZf4RJoh+loti1xxZPmxzm18D3t7AULe9XPp+vNj/mC8aV06bJ7cumClM8rpfp5c3pPSvfVFokf/ln9nJVLxcFC6uCdG2cfKnDjc+avjym+mA/7p+dB3PkniIqqlOUTh7k/Rvr8Yfl/D0M+dHMBRkdERERERESFJiwrFkrx6q+l7bCxFHsASaSUqeExY8QstzhaZrxMsaz1Y6k9bxSIRDPPpRyLm/OqomrJ52qnkj8RUXuw7dh/JfDelU9ErQY+YMxe5TrGwroPxsKIiIiSSClhQz17xifKtPvZ0s75tw+6OFkp0I3NkxTecRvaEgX89YwuGpS+jdPY4gGhXEJC6WNwM6ZC6PyxMPMPUVJzl9GOsjusvttibR4XuHk17x3J4TRpeB/IJWbXFemiafHQmi64xtgaEREREREREREBsd+z9fHVF3sY1AEmT56csWzRokWYNm1a3sdetGhRyueVlZU47LDD8j5uMXm9Xtx77724/vrr8ac//Qkvv/wyFi5ciGAw86LWlStX4s4778R//dd/YdasWZgxY0YRRpybUKjwV48X+980iIiIiIhKiubvx30i+nCvU3jLFAvzvvg/bkYFABCTTk/53FemnksSDjvP41uxzfxzgFczDU3u2w28+5x2vzIZUsbCNjZIOE1MDDoExVzFwhQXxpzb+BL+q8+NGcudAmYRzdPotcyPQ/76em0oDNAHngLtcE3PIx+Yv86f3mahurwELlfduCpjkcjxEqNwROI7f9Dv+4erBSYMK4HHnCUZCgJ/+lXKsiq7Wbmt03tSMtuWmPbf+veMMtU8yZdmAdc/6P4kSYb1FaitAhrUQ8fg2sLe0DfFR69DPnQTxC2PpSy2LIFD9geWbjbvfstpaaGwhe8wFEZERERERESdjhAC8Hhi/6G82MMprZCabbuIp8XjaNHM5S7iaOr1yctj20pjHC2aef5cz5sIqTmsJyJqB2UIo8IOoMWqzFjHWFj3wVgYERFREqkJhQGAV+j/bzOfgJOtCdyUAt3YkuM7Au5CW263c8PjIv5jweMY8IofJ5eYkJX2eNyMqRBK+fvFjXAWd/UshoaIOhZW5+uX8zF17x3J4TRd6Apg7CrOo4n6xaOGtuZ9OJcYIBEREREREREREXVeQ4YMwZAhQ7B+/frEsrfffrsgsbB33km9aPmoo45CWZn+ZjO5iBZpsmB9fT1uuukm3HTTTQgGg/jkk0/w8ccf48MPP8R7772HpqamxLZ79+7FxRdfjPLycpxzzjl5nbe2tjbl83379qFfP/e/k9+7V32XxHR9+6beFOSXv/wlbr31VtfnISIiIiIiB5pYWBnC8MqwMoTlzyMW5vt6kX5lspq6zDHpYmGKMaZbrZ5alKANcxkiWEAsFtaM6ozli9cDVzuMKeDwPLqKhUUzC2DK2BGc42S6r5tpHDISAT56zXjcSrtFuTwQtIECzk0EgNte1kezJg4DDh1cGpdjylWfu9/WoSH2j9Xm9ZccWRqPOWufz8tYVKUJz2UTC1u8HtjQoF/vk4qDhfMLmZ85VuBPC9RfyGG53wsVcrPDFx8A/v4K5H88mhEkO3h/gaWbzd9cNRVp5/v7y9kOkYiIiIiIiIhKmLAswLIAr/PvV9t9LMUeQBIpZWp4zClSZtsOEbPkEJvtsD4zfCa1540CEU3gLafzOjxexe+iiSh7vex9mliY801oqGtgLIyIiCiJbYqFWfqLPfIJOMVDNyqFDGzlQhdBS45wWcKCgGUMrQGFvWuZUwQMADzC4xhZih/H4+J4TmNwM6ZCMH2/dAZhzSSyUtEQ3qlcXuvNfTaNT6jfOyJJE4J0oSuAsas43Wss/r6te//O5fVNREREREREREREndtpp52G3/72t4nP//jHP+K+++6Dz5f7xMQdO3bglVdeyTiPitebOhUjEnE/0a2hwXClaQcpLy/HpEmTMGnSJNx0000IhUJ48cUXcfvtt+Prr78GEJvUeP311+Pss8+GZeX+e+z6+vqUz1esWJFVLCw+nmzP43Y/IiIiIiJySx+LqbKbsc/TK2O53+Geg8ZYWM8aYM8u52ENPyhz37A6FBQSPshoFMKjn2syql7g0w36x9q/JvantG1gxWfAqi8AKSGf/bVxmHs8tcrl+9UYdwPQfrGwcqn+AoUcfsTVNbA9Kz+F/bP7gX4DIUYcDHhaf0YfcTBQ1x/w7zMet0o2K5cHAhHkcklES1hi/mpgTzNw/CigrrptfmOjuksGIBZHKhm19RmLhOG1aPKvbeb9LKuEHrdLsmkv5IuzMpZX2ervpWxiYXO/Nj9fZapY2MARkJvXAMsWAHX1wCGTIMorMrfTMJ1xjXraozvbNjpvs3cnEAwAFVUpi/fLfGvPUJn+67htG9yPjYiIiIiIiIiokxJCAF4vYr+7LC/2cEoqHSRt20U8LQpEUoNn2cTREIk4hNpi28qM46afS3EO1T7GcSUdSzeu+Hoil3pF92KbN/PfCPY0RlHoG6xQaWIsjIiIKIkpxOQz3DlQF9Vyw7SvKPKPYLqAUXp8xyMsRBwiVoV8LJaLv6hawoLHIbIUj4k5RcVUPGn7uBlTIUTzCNOVgohqEkwJ2R3RxMJ8ecTCLPV7R9huC6eZQoWMXcXoXqfx9ylt3DCH1zcRERERERERERF1bjfccAMef/zx2F06EQt9Pfnkk/je976X8zFnzpyJcLjt97rV1dX47ne/q9y2pib1au49e/a4Ps+yZcuyGlchb9aiU1ZWhhkzZmDatGk45JBDsGnTJgDAhg0bsHjxYkycODHnY0+YMAEvv/xy4vP58+dj8uTJrvdfsGCBq+0mTZoEIUTie+Kdd96BlLJDnj8iIiIiom5B6jM21ZpYWHPIfHdzYyxs71ZXwxJnXpmxrGz4gcCXivMJXyyGU9VDezyvwzQUjyUg/fsgf3Iu8Nk8V2M02dnkvE3A4d6NrmJhisi1MnYEIOQwfU33dfOtXgJsif38l/Hd0sO5OFRpqyNvu5qyv/nmim0SU39jY2Nrr9trAX/+roULjnD+GfHbR5fQz5ER9zfulA7zNw0v4U5JLnwH8j+/FXtNp9HFwpzCe8mcvguUr59NqyFnjG77vM8AYOabEENHZ26rMGOiwDML1F+obx6Wx/dlUP18ZAj4M2Jhl08SmPme+ZunMv1eq599mMXgiIiIiIiIiIioqxGWBVgW4M39po8FG0uxB5BESmmIozlEylzG0fTrM+NoUnveCBC1NcGzXM6rOFbyesXNTgiosdU3YNm7cy+A3K+Hp86DsTAiIqIkpmCP1xAL00W13J1Tv69V5AsUdM9HehgrFuMx/4W7kDEtIQQsWMavlwWPYyQoHhOzHKJiyuOn7dNRQad8vtdKQVi6n6DU0WxpY09YfcfROm+/nI/rFemzXWLCSROCTNFAxq5idK+x+HOne21YjK0RERERERERERF1OwcddBBOP/10/O1vf0ss+8lPfoJvfvObqK/PvKOek+XLl+OBBx5IWXbVVVehrq5OuX3//v0z9p8wYYKrcyWP2Y3y8ra7jwaDwaz2zVbv3r1x3nnn4eGHH04sW7NmTV6xsGOPPTbl82effRY//vGPXe27Y8cOvP3226627devHw4//HB88sknAIBNmzbhjTfewBlnnJHdgImIiIiISM0UC5N+5XK/w48wxliYyzlI4vRvZ+5bVancNiTKgECTORZmmGZ2wfjYn/KJu7MOhZ3Z+De83jPz55OH35eYeZF530DIHOpxFQtTXGyjjYU5XJcT0Uzp80rDjk17zQcFUClblMtf+KJcudzkiifbQmFAbMwXP27jxG9Y6NPDPGfzxNEldPlYJPNrJDJTbK3M3ydvfNF1amEyGID8+QxlKAwAqqU6jtWcRSzM6XVV7uamqru2QN51BcTv3YXQD+yvX3f0CFeHUAuqX1sZAk1Abeo8ykMHOe9WlTR9UkoZi44RERERERERERFRCiEE4PUilgDK/vfehVZCvwmHzAiKmSJluuCaJo6mCq4ZjitNx00Lrrk6r+7xxLdTjaulGb2iqf+u0iPaiF72PpQHQmAsrHtgLIyIiCiJKcRkioVFDcGvfM4pChjYyoUuYJQe37GEx2kuScFZwoIt9bEwj/A4RoLi63MJfSmfgw7Q6WNhdhYzajpYY3QPoproXa0v9x+OfJr3jkjSpEXT17WjQnSlThccjAcXdeHFQoYKiYiIiIiIiIiIqPP49a9/jTlz5qC5OXYB6J49e3DeeefhrbfeQo8e+gu/0+3YsQMXXHABQqG2328PGDAAt99+u3af8ePHp3z+6quv4vLLL3c811tvvYWFCxe6HhsQC3jF7dy5E+FwGD5f+9150+tNnWaSHCvLxfHHH49hw4Zh7dq1AIBFixbhtddew/Tp0x33vfvuuxEOu79JyXXXXYerr7468fnNN9+M448/PqvvByIiIiIi0jDM46qy1WEev8M0IlMszOtwY0sAwAnnKBf7KtQ/M4VEGbBqPtBnP+0hLcM0lBH9Wy+dmf+m89jSlMvc488Bhx+LygocCws6PPXhqHoiodvAm47uObJEdhMXd/sl5q/OXB61gTeXSZw1LpfRFUm4cHPxsglllbzP5hmDVJWa96Rmh/BeMqdYmO71k2HFEshdWyEM7ztxmrcuAEBtVR6X7mmiahlaMp83yxLweczv1+XJv0pavSy7sREREREREREREVG3JywLsMqcN+wApRJRm3X2RMit16FXdB9q7H3wtl5fLWY8AWBkcQdHHYJXzhMRESUxxad0wZ/YfrkHnKLQn1MU8a+NUkptfMcDj/FzFSEK+9cOy+GcFjyOkaX4MZyOpZL+mHM5Ri5M3y+dQcRx0lfx7lC4O7xTu67O20+7zolPqH8IDSfHwgzBwY4K0ZU6S/MeEn/fjmrev3X7ERERERERERERUdc2evRoPPzwwynLPv74Y5x++unYuHGjq2OsWLECU6dOxZdffplYZlkW/vjHP6JfP/3vjSdNmoSqqqrE5y+++CIWLVrkeK4rrrjC1biSjRkzJvFxJBLBBx984Gq/5uZmPPzww2hsbHR9rqamJsyePVt7/lxYloXrrrsuZdk111yDNWvWGPebPXs2Hn300azOdfnll2P06NGJz7/88kuce+65aGhoyOo4O3bsyHgeiIiIiIi6Pamf86OLhTnFiXTxGa8lXc2qE6MnKJdX9FdHeaLCi0jQPLfJ8DBxweBNsQ8atrsYXar1vsHK5fvVOO8bMDyPh+wPlPvani0ZDkH+4w3IJ38B+cFsSP++2IpI5uMu18SOQo6xMPVyj3QReDNY5RuhXD64Z3YRsh2GH4M/3wjs1jem8I36rE7V/iLuC19Or5r9e+vXXzBeu6o07Ta/BqukOo6VTTCtzOuw3m0sDIgFw179PeRzMyHXLNduNqQu9l+66nLgpNGZy11zGwvTBNhMoTAAqKlI+t5q2OZyUERERERERERERESkM6yvwPDwOtTZDYlQGABg6/riDYo6FK+cJyIiShI1BHu8plhYHgGnqGESTFFjYYbHlB4vchPjsQr8WJwCSpawIBz+qhOPiTlFxXTHTz1Wx/y1Kp8wXSkIZzMJpoM1RHYol/tEGao9PXM+ru69I5L0XOhCVwBg8a/sAPRBvvj7tjZuyNgaERERERERERFRt3X11Vfjhz/8YcqyefPm4aCDDsJ9992HDRs2KPdbuXIlfv7zn2Ps2LH4e1hguAAAIABJREFU4osvUtbdf//9mDp1qvG8PXv2xIwZMxKfR6NRnHnmmXj77bcztg2FQnj88cdx9NFHY9u2baitrXX78AAAJ554YsrnV111FR599FEsXrwYq1evxtq1axP/7dzZdtOMUCiE66+/HoMGDcLVV1+NV1991RgOW7hwIaZOnYp169Yllh199NEYNWpUVuNVuf7663HooYcmPt+8eTOOOeYYPP/887Dt1N+f+/1+3H333bjoootg23ZWz5fH48Hzzz+Pmpq2q+3fffddjBs3Do899pjx8e/evRvPPfccLr74YgwePBgPPfRQFo+QiIiIiKgb0FW0DjkaVVIdC/MHzYfUBWh8lou5enX1wMkXKldVV+jn4gQC5qCVKYpz+E8Phvz4b0DTXufxpbl077PK5Vv3Oe8bMLSybjg5KRQWDED+9DzIW86B/P09kLdfDPmDKZC7twHRzMetix2tcGihRXRfN2QX9Up3ZtMbyuXr9qlv5Khjer5awkDI8DW+55wSm8cVznwwQvdadLiHp+lxXzulxB63kz3qeYBxuoCh03tSMt33eVw2sTD5H9+E/NW1kI/cAnnlEZBv/FG5nRAC/35K5jzca08QqPDlMT/XbSysRR0L+7FiTMnGDEj6pMnFmxoRERERERERERERmdWrb0Ijt6nnQ1LX43BPEyIiou5FGoI9PqGfVBLNI+Bkij+JDgpQqRjjRWnxHY9w/iuFU7grWx5NOCixXngcA17x4JdTeEy5b9r5dSGjQtMFkTqLko6FhXcql9f5+kGI3CfT+Cz1e0dYtk3WMr0PuInxdQe66Ff8udM9hx312iQiIiIiIiIiIqLS9Mgjj6C2thb33nsvZOsFs42Njbj11lvxn//5nzjooIMwePBg1NbWYteuXVi3bh3+9a9/ZRzH5/Nh5syZuPbaa12d95577sGLL76IPXv2AAC2b9+OadOmYeTIkRg3bhzKy8uxbds2LFiwAH5/7GLL/fbbD/fffz+uuOIK14/vW9/6Fn72s59h48aNAGKhrfRAWtwVV1yBp556KmXZvn378OSTT+LJJ5+EEAIjR47EiBEj0Lt3b3i9XuzatQtLly5NHD+uqqoKv/3tb12P08Tn8+GZZ57BCSecgF27dgEAtmzZgm9961uor6/HEUccgV69emHbtm34xz/+gUAgdhFrr169cP/99+N73/ue63MdfPDBeOGFF3DBBRdg797YBfwbN27ED37wA/zoRz/C2LFjMWTIENTU1KC5uRl79uzB119/nfH4iYiIiIgojS5QNOwgVC/RhHkcphFpY2HCUD0aMgo4ZBLEpTdD7DdUuUmloS21crcH43MY06V7/wwRCkLeeZlhb70DQyu16wIhicoy/dwlXfzq2JHAvx2bNO/orWeAhe+kbrR6GeQzDwKRzIOYYkdSSu18Kt1z5M1jjqV47kvU/9stOe+fLGD4vvvLPyW+d7z+uT7+wIIMoXDCWQSpnA4VUW8xZgBw4uji3fQ2F/L5/zGu18XCmrOY2mgKBwJAmcwxjmfbkA9eB5x4PkRFVcbqG6Za6F1p488LJIIR4NzxAteflOfXJ89Y2GVHC/zmHf13WFnS9GL59p+124n7X4T8ybnuxkJERERERERERETUndUPif3pKwP6D4p93n8wxKHHFndc1GEYCyMiIkoSNYSYvJZPu84U+nFiwxDlKnBgKxumKJUnbVxuxplPbEnFKaBkweMYCYqvz+V5Tg8X5RIcy0U+Ybpis6WNiDTffbOYdkfUdxSs9fbN67heoX7vCNtts4tM7z2MXcXoXmPx91/da6OjXptERERERERERERUuu655x6ccMIJ+MEPfoAVK1YklkspsWzZMixbtsy4//jx4zFr1ixMmDDB9TkHDhyIF154Aeeccw4aGxsTy1euXImVKzMvAh8+fDhef/11bNu2zfU5AKCyshIvvvgizjnnHGzatCmrfdNJKbFixYqU50hl4MCBmD17NsaOHZvX+ZIdfPDBePfdd3HGGWdgy5YtieXbtm3D3/72t4zte/fujVdeeQXRaPb/bnLyySdj0aJFuPjii7Fo0aLE8mg0iiVLlmDJkiWOx6itrc36vEREREREXZsmFFNRiWpbHZhpDprzReGoer3P0sy3q66B9cwXxmMCQKV+GiBmfj0STxv2jWjG1Cu6L/ZBQP1YzQPqgR52k3b1P1YDJ43W766LX105OXW+nvzwVfWG814FPJmXFJhiYf/aCoweoF4X0Xx5fDnEk8R/vwlxxIkAAK/hqodt+yTqa9zNT9TF1QBgVH9zBMpXatOQIplfI+GYBVMLaR73yWM6VygMAFDVw7xaquNYhYyFVWrO4UqoBVj0HnDsWcrVV0y2cMXk3A+vPJ8bmve3HuXm3VLec3Vhsl59ISafkeN3LxEREREREREREVH3Ir79E+CyW4C6egireC0KKh7GwoiIiJJIqQ93+TTBH8Ac1nJiij8VOrCVDVMALT2+kx7OUhEodCzMIQQmPI7bxMftZvxO58/lGLmwDd+jpS6S693yOsju8E7l8lpffrEw3XtH8vOhe70JCMcwXnehi/rFg4u68GJ63JCIiIiIiIiIiIi6p5NPPhnLly/HX//6V/z+97/H3LlzEYnob3BRXl6OU089Fd/5zndw1lln5fRvNieddBIWLlyIn/70p3jllVcgZeYlj/369cOVV16Jn//856ipqck6FgYAEyZMwPLly/Hss8/izTffxNKlS7F9+3b4/X5tTKtXr16YO3cuXn/9dbz33nv47LPPjM8HAHzjG9/AFVdcgRtuuAFVVVVZj9PJYYcdhi+//BK33XYbnnrqqZTIWlyPHj1wwQUX4O6778bgwYMxZ86cnM41cuRILFy4EK+//jpmzpyJDz/8EMFg0LjPmDFjcPLJJ+PCCy/EMccck9N5iYiIiIi6LMXPOwCAimptmMffYgOGm+jpYjw+oVlR7u7nlDLD7PkXNg81xsJ0Y/LmMS9K3PE0xt96mXb9nmbz/rrAUWVZ2oL5b6o33LwG2H94xuIjWj7RnrPBMCbtc4QcbjI5pi3aPUJu1m62pxmor3F3SFMQqqYSCBmG6fnv62EHtrs7UUdYuqBgh9J93Uyvl5LVuMe4uspWfwNnEwvTRfHijmn+2P3BVNZ+pY2FFZrUBbzSaWJhI/oCfaqBXZpWYu/yKOTf/gz50izgy0Xqjfaq524SERERERERERERUSbRZ79iD4GKrDP+8w3lSAjRE8CxAAYB6AugEcBmAEullF8X8Dw+AMcAGAJgAICm1vN8KqVcW6jzEBG1h6gh+uU1xMKieQScTFEuUcTIjem5sNImaTlFuYDCPxZdOCjOA8sx4BV/HLmMLf38TuMplHzCdMXmJhZWzDvDNUTUE07qvP3yOq5PpM+8iwkn3X1TF7pKf611Z7rXczygp3svdfP+RERERERERERERN2D1+vFJZdcgksuuQR+vx+LFy/GypUrsWPHDoRCIZSXl6O+vh6jRo3C+PHjUV5envc5R48ejZdeegk7d+7E3LlzsXHjRjQ3N6O+vh7Dhw/HcccdB6+3berGlClTlFExJzU1NbjmmmtwzTXXuNpeCIHjjz8exx9/PAAgEAhg2bJlWLVqFbZu3Qq/3w8hBGpqajBkyBCMGzcOQ4cOdT2eXCNevXr1wkMPPYQHHngAc+bMwZo1a9DQ0IB+/fph0KBBOO6441BdXZ3YPtfnC4g9B9OnT8f06dPR0tKCBQsWYN26ddi1axf8fj+qq6tRW1uLkSNHYsyYMejTp09O5yEiIiIi6hZs9dwXUVmNaltdkGluiQLQz8nTxsJ00anyCtMI2/Y3TCVptvXjAfSBoJxCWABw9GnAUdO0QTUACIQlYLhRZ0AzJavSl0X0WhGPHhper918k6HFFNF93XIIqomqnomP64X+pLrnQLmtIQgVCOm/7wCg7M0nAZT2DTN1nH5y1kXSTK+XUiTXfw3s1IflAGhfb1v3uT+P6fvk6Ob5OKNJE+dzK8ffdeRk4yp327Wo38stS+C+8wW++4fMMf/6AkDeeRkw90XzsSdOdTcGIiIiIiIiIiIiIiJiLKw7EEIcA+A2AFOh+ZoLIT4D8L8AZskcZ9IKIfoBuAvADAB1mm0+BvAbKeULuZyDiKi92YbolykWZgp+OZ7TGOXK/i71hWJ6LtKjPW6CRqLAj8UpAGQJj2PAyxJW4k8BC1ITbFLJeA46KEgUzeN7rdiS41ilqCG8Q7m81tc3r+Pq3jvCSRPgdF/X+Pco6V9j8bCh/jnsZDPWiIiIiIiIiIiIqENUV1enxLLaW9++fXH++ed3yLlyUVlZiQkTJmDChAnFHgoAoLy8HNOmTeuw81VUVOCEE07osPMREREREXU9mqnH5ZWospuVq5pbzNOVtbGwlkbtudzw5jEdRzsmmVssTPzy/yC8PsiyCgwPrcGasuEZ25jiVqb1ler7G6pFMgNYAkCFHUCLlfm8/n6ejQuOUM/J0T9H+UW2Ki39/l9slDhssLv5ibH4mlqzQyzM1wlCYSLH23XqHndZJ5t6Jf/6kOM2VZqAIQDYtoRlOX8v6cKBAPDGhrNRLdXveyXJKeQVF9A/pn871sKQOomrn7ITMcFnviNwUeUCSDfHP/hod2MgIiIiIiIiIiIiIiLGwroyIYQPwMMA3Nw6+FAAjwG4WAhxmZRyQ5bnOh3AUwD6O2w6GcBkIcQzAK6RUur/tY2IqAhMsSifIRYWNQS/nEQNUa5CB7ayYQqgpQeMPC6CRkIU9rF4HAJllvA4RoKSg18eYSFi+FpkHD/t/E7jKZR8wnTFFrZLd7JU2A6hMbpXua7O2y+vY/ss9cy7iN02U0/3dU2P0nVnuihh/LnThRc76rVJRERERERERERERERERERE1G3p7lNcUYUqe5dylT+YYyzMq5mHFnQX5/HlMZVENyZvrrEwX+u8olALKmVAuU3AMOUqEpXaaFGlfrpjpt1blYtVoTAAiBqm2RX6OYqr8OpPujuLLpMpvhYIAyHNMD0yUsTZnPlzSohpX2+dberVkg8dNymXQe26lTuAUfXOp9E9X1P8c9DTbnI+gJMCz7c1GjkOWPm542ayxW98DZxykMCGX6V+w8g/zXM1BNGjl6vtiIiIiIiIiIiIiIiIsbAuSwjhBfAqgPRb7YYBLACwEUA1YpGwIUnrjwfwjhDiGCml+l/nM881BcBLAJJLGBLAJwBWA+gN4HAAfZPWXwqgRghxjpRZlFmIiNpZ1BBi8ggvBASkYtpEPgEn077CRYSrvZgCaOnxHV3EJ1mhw2fpwbJ0ntb/GY+RtD72sfsJSekhMqcwWaHYhqBdqQtLh9tcFlFDRP/XnlpfX+06N3ShwUjSBDjd19XNa6u70EUJE7EwzV8pnd4riIiIiIiIiIiIiIiIiIiIiMhMvv405F9nAmu/BOykORrjjoF48FV9LKy8CtWa+wo3h3KMhTVp5vlsWWc8XmL/PKbjRHRjQg43UTzylJRPK+0W5WZOcSudytZZ3bJhB+QzD2Q7OiNTx0g3pkqZ9PhOOAf4+8v67xsA4mdPpH7uKcw8KtNzFgjrv+/KSnjuWzLtl8ahFhbSPe7OdrXJXufLHw4Ofqld16R+GabYskfi3tfVT2i+UbwEuwNvKut2fl0g+wiabG50t+ERJ2V9bCIiIiIiIiIiIiKi7opXzndd9yMzFPYQgHop5XFSyoullGdLKYe2brc6abtvAJgthPMtaYQQgwDMRmoo7CMAB0spJ0gpL5RSngpgEIAbgJR/DT8LwC+yfWBERO1JGkJMlvBowz35BJxMUa5iMkXMcglliQL/tcMpomQJy3FcyeuzjX2lh4t0IaNCMwXtSl1Jx8LCO7Trar35xcK8oky5PPn50L3eOipC1xkIzWs+2vr+q3svZXCNiIiIiIiIiIiIiIiIiIiIKE97dwKrl6WGwgDg848gT60DIpoCU0UVqu1m5Sp/0DxNWR9t0pzrhHONx4vz5jHNSxsw043JQPzkf9s+GTgCFTKg3O7DFfrKkykkVukDZNNeyB+dDDw3M+vxAcAle59VLn97uX6fVZppWJV22+MTF/07xDUOU8hPnpH6uceH8hyCaulWbtevC4QK+zUuJdLhZq/ax92Jpl5JKYE9+nmAcT1tfcDKFJMDgF1NEic8qJ8v7Eu+Ye3gA4HpVzuOR0V+Mien/XISUr/3ZAio38uNFrztvM23rgMOOCT7YxMRERERERERERERdVOd7V4v5IIQYgyAG9MW3ySl/I1qeynl20KIY/D/2bvzOCnqO3/8r0/fPczAzDAICCIioigRLzxQsxgTr9yJWf1pbnOfZmNi3Li/VWPcJJrdmDXZ7JosmsMcRk2MV/Ai660EFRXEA5BD7hkG5uqrPt8/unumj8/7U1V9TQ+8nnnkQVd9qurzmeqqcqDf/fpkQ75m5Va/FcB5AH7n0t2VADoKlh8H8HatddGnsVrrBIAfK6XWA7ijoOmflFL/rbX2Np0XEVGdZbQlLAwBBFQAGUPtTTUBTrZQrtFkC0ArDTAKegg0CrhnUPri1mcAQQRcAryCBQFmQZ+BQqUBRI0KJHKQgdYaHjI9m07KU8GUyxSGddKdNhcJtQbHIxKIVnXssAob16d0avi9dISgqyCzfYdJgXz5Z6gjPL+9PJ+IiIiIiIiIiIiIiIiIiIiIqA7iLWiRwsJSlYUXhSDUIE0+wNOQQlWUkohj0mlzQ95HvwX88nvZ18eeBnXVLVDjO0faZ81DfJ05sOfuF+TD2oKN4mEAj98DvPGyfWwW8xIviW19QxqtseL3UGu59qtFF1wH4zugLrwEmH8K9M3XAE/+daTtY5dBffxyqFDJ1xyCIRw/+AweGXdq2bHdAp4K3bbcEr6WApKmAlEIYWEf+Lz3juutpQ3q6LdC/SYEeMx+KpQULuGxFBaG1y03y0GHQ33uu9Arn0Hk5mugtANtqEdzC56741ltDZwrehaceCbUl64FFr0f+ol7gdt+6vIDFPj7w963rdaQxwtmqN//sV951t5+/tegvvBvY7IeloiIiIiIiIiIiIhotDAsbO90KVCULPGAFBSWp7XeopT6JIClBauvUUrdqrU5xUYpdQiAjxWsSgL4eGlQWEk/f1JK3VywXxTAvwKobNocIqIaswdkBRBUQaQMtSDVBH7Z+tSjFJwE2APQSgOMAh4CjZTLzHR+lQaWlQqqoGsAWOEx3ILF3Pp3G08taThQDQonq6W042MKxwbrSe0wru8IdVV97LCKGNdrOHCQQRAhMaiwkddVs5MC+fJBa1LgGs8hERERERERERERERERERERUZUsIVBWwTDGKXNZ8UDKXq+VEAKgjKFNABCNexpSNaE0SaGkThxTvs/3fw7q01fKG/RsQ3dworFp9n7ybrZgo3gE0C89ZR2Xm85Mj9i2YhOw8ODidVt65WMVnfXx2Z9VzTsR6to7vQ1m2wbEu8zXklvAU6GTDwZuF/KLBpNyIFyk9D0+80IEvvYj7x03ym+kkCn7PSz+3GPp2yYrnxGb1Df/C2reicDalQCAuB7EgBpXtp1b8NzNj9vP4+bQ1JGFoQGoQAA44QyoE86AnjEH+j9K54MXTD3Q23a1kPAYFta/2/+x2ycBu8wTuQKAOvcLDAojIiIiIiIiIiIiIvLJXyoGNT2V/bTknSWrr/Oyr9b6bwAKPyU7CMAiyy4XAEWpDbdrrV/10NX3S5b/USkV8zJGIqJ6s4V+BRBwDauphC2UyzbTXr1Zz0UFQVmqxr92uAWUBVTQdVzFYWH+AoWCJduXLteTFCzV7FK6icPC0kJYWLj6sLBQICy2pXJFZAy6ciedi/wzVHpmeQkzJCIiIiIiIiIiIiIiIiIiIiKLSsNclEJLMG1s2p0KWevjbn7C3BZ3zME2ymNYWDWkUKoWbQ/bUV1Tre1IJdHmmIN4kubTlx2PJdioJQJgaMDer4uz+paIbQMJwzpLedhbhl4Yfq3aK6jJGuxHi2P+edwCngplLKV3gyn5fIdR3Ik64QzvnTaScK9ql8lepZ879JNvwDl/LpyffAs67eNEN5DeugHO5edDX/sFeaPDjsv+Gc1+ZUG+luw1u4+9bh/LnkDr8Gt10OHFjX6eUanKz7W+55dwPr0Qzunj4bznADhXfhS6Rw7s8hwW1rfL/2D2yIGDOGQ+1OQZ/o9JRERERERERERERLSP4zfn9z6HAyj8BDUJYKmP/e8rWT7Xsu37S5YXe+lAa70KQOFUVeMANOknpkS0r3EgV4IoBCxhNZWHN9lCubRlPPVmC0ArDU0LCiFqhZRLsYlfAeUSFmYJd8srHLeXn6H0+LbleqomnG40pVxm0BxN3SlzMUxnaFLVxw4rS1iYk62Qk54Dfq/LvZkUyJd/TkrP4UYG+RERERERERERERERERERERFRAaXQEpJr4KSAoj89q/HGTnObGMwV9T5v8e/OXC22JYbkGicplEoKMAMAfODzruNRb/9HfHLXzca29d3yfrZwrngYwD3mY3o1Pb1JbHtpc3mo0rY98rHGO5ZGLy68BHHhvf/Z37xPyvrn5+3te4bM68OFtW9nfxR424c899lICsK5cDlFKaEkMbJnG7BpDfC7/4D+gSWMa5TogT7oL58O/O0O63YqFMq+iGQDu+La/EavsWRqefHR3l+PLBx5SnGjn7AwrwFeJfRfb4H+t08DL/8dSCaAnm3AA7+H/so75LC3pMe+dlseRpKMnHaovv2//o9HREREREREREREREQMC9sLTS9ZflVrbZi7SfRCyfI7TRsppaYAmF+wKg3gMR/9LC1ZPtvHvkREdSMF9gQQgFIKQeE/ndWEN9n21W4VGnVkC0ArDd+RQtQKqUpnlxS4BoGpIIIugWKFP4db+FhZ/xWcg1qxBcw1s5S2VKeNsp70DuP6jnD1YWEhFRHb8uckIz17fF6XezMpkC//rJKepW7PCiIiIiIiIiIiIiIiIiIiIiJycezbKttPKYwLy3VoUhDWzx+R9xGDuXwE8cyaJNeyPf6yXHYthoVJAWYA1FGnug8oNg6tTr/YnM6Y6wgHhXIspYAw5JAePyYKdVV3LC8f090vyPWOw+doyoEVjUO1tosBTxmPc7I6jns95m4hLCySr31beA7UZf8DFWzWmiTzte32kyeFksSikLQHfgc9KF+no2LZg8DmN+zbHP0PI69zzwnpOfLAqupqdscV3seRkgDD0mWbSsPC/vILc8O6VcALT5Rvn04BGY/1qLt7/I1l42tim/rebVAHz/N1PCIiIiIiIiIiIiIiymL6wN6ns2R5l8/9S7c/QCk1wbBd6aczK7TWfj79e7xk+Qgf+xIR1Y0Dc9VIPghKCoSqJrzJFsql9eiFhdl+ptIAIy+BRkooQqlUaWBZqYAKQrn8qlP4fvoNFAqWbF+6XE+ZKsLpRlPKac6wMK01elJCWFioq+rjh1VYbEvniqnEZw9/XR8mPX81HDjaEZ9Zbs8KIiIiIiIiIiIiIiIiIiIiIrJThx7tK4xrZMcA9g/1is1vClXO97woH1IKjELE+/imdcj1JG9sExLBAAwI5U9igBkAKbypSKwFYctEjJuE8ySGl4U11LqV7v16sFOon5reUf5zBS2lTi3OQPbFFpdgJ0kojJ5Au7GpNertEOt2um+zR7i8hkOzZsyp+cSptaQqnKA2JZQkRgrDwlJJYMOrFR2/bl63PCxMcvW6r0TnGJsPnVLde9sfGDeyMHFycWPARy1gcqiy+mHb+Xi9dE55+Asl29Ptb0xrLc+gGYd6Pw4RERERERERERERERVh+sDep/STYo8ff1q3P9zDOnnqF7PXPfRBRNRwUthMPrBHCqvJVBEW5liCn6QAoUawBVKVBmt5CcqqdViY9F7kBRF0DxQrGLffQKHS/t3GU0uOJWCumaW1XEiXpyssVqrGgNOHhFBE2BmuRVhYRGwbDguTnj0Muhpme85oOOIzy0uYIRERERERERERERERERERERHZqQu/UcFOCpOjQvoS5LArGzGYy0eY2ZSJ8uR/Q0Np4/qMo5E0NyGuLYE7c+a7Dygax5EJOeRnUMgRG0yZa63ig93QnzzevV9JMOS6yWvbyvuWxgkAwWprIcMRHDu03NjUl/B2COn9KyQFwoV1dmc1/xRvnY0hGUeLIWmh0po/p7kmOtWJAddt1AlnjCzMOdq67ZDLM8ktmO6YoWdH+h1fMge835C5pPzsFPVZ5pk3Hc9PWFgmAwzs8b59Qh6/OuAQ78chIiIiIiIiIiIiIqIi/Ob83qd0zqOpPvc3bW+aumV2yfJ6n/2UTgs1USnV4fMYREQ1J4Uw5QN7pLCaakK9pJAgYHSCk/KkcSmosvAdL4FGqsaBPQGXX2MCKuAeKFYwJr+hTOXnoHG/VtmumWaWssx+OZp6UjvEts7QpKqPHwrIxYWpXDGVFDjIsLARtnssozPy89tDmCERERERERERERERERERERERufjIN/3vo5Q1xMsUFqa1vWYuroVwoGjM+7iicbRneoxNyzaYa01sIUJxxxLqE291H08khnFOv9i8Wzi8FM4lBqp5VRBy9JXuG4ybPL2u/L26bbn5vTut/+GRhXecX9mYwlEsHHhCbE5n3Gstf/yQ+zY/edi8TThf+3bgYa7HaEbaMtnrVXfJ5yVSWvOXabLaxVt+6L7NmReOvB43HgDw8V2/NG66+DH7NeK4XEL7pbe7j8crn2FhOm1Pw9PP/q18pZ+wMADY3e19Ww9BbkRERERERERERERE5B/DwvY+L5csT1NKTfex/0mGdRMM69pLlrf56ANa6z4ApZ9gmfohImooB0JgT+4/mVJYTTXhTVJIEABoIfymEaQANFPwjpcwHmUpNqmEWzhXAEEx3K1wm5HX/n4tKj22W1+1lBGu02aXKp1lsEl0CwU6AQQxPlT6K49/YRUR21L/JOT3AAAgAElEQVROtphKevY08rpqdrbgNAeO+BwOMnCNiIiIiIiIiIiIiIiIiIiIqGoqFAbe9iF/O2UyQDSGyemtxuahVHnyzqrN9kOKwVyWULIysRYcknzN2LT8TfPEgFIwFwC0SAFmXscVjSOu5dCeJ9eYE4pMYWtADcLC2kZqptoye8TNlpdMNb2udMrrnMnpgjLz+LjKxhSOIK7l8KQN5uy3In/8e+WTt4bztW9+rrNRoMQyTfln//WTclsYJReZ02S1iy7hggCK37Pca1s4n9yVFu+5vOH7ePKM8sZgyF+HfoO8Xnjc3r7mper78BUWJhz7QNM89kRERERERERERERE5JXPTxyo2WmttyilVgMo/BTlIwD+zW1fpdQ4AB8wNLUZ1pVOc1XJp8qDAAqn8TL144tSaj8Ak3zudnC1/RLR3sMRwrnyITVSKFY14U22fbWlQKPepBAzU0hX0CW4C/AfxuXGLUQpqILugWIFIUJ+A4VKg4tsQUa1Vk043WhKl84y2CR6UjuM69tDnTV5X4MqiAACxgC+dK6ITH72MNs3z/YMcXRGfJZ6CTMkIiIiIiIiIiIiIiIiIiIiIg8eutXf9lveyAZhCeFVpgCuV12mLxZDtfyEOEXjeCa+wNh0eEc/TCXNA5bSJ2s4l8ewsKhOiM0xc36ZGGBmCx7zZP0rwy+lUDUAeH27xrEHjqRTHT8TeGpt+XaronNHFja+XtmYwhHsn5aT5LbuBg7qsh8iWEUp1pbQlOyLjv0qP8go0tqcIqa1xlpz+RwAIOqUXJevvwA95D9oq+YiMeCwY4EJXUCv5QeY0AWMGz+y3NYBAHg9Msu4+aGT5UMl0+7ZZC35Z8HW9eWNb1lo37mU3yCv7Zvs7YfMN/QhB/AZDfR531Yaf6S5A/eIiIiIiIiIiIiIiJodw8L2Tr8G8J2C5W8qpX6ptXb5BAjfATDBsN5LWJjPT4oAZMPCOizHrMQXAPxrDY5DRPsoRwybyVaJSIFS1YQ32fY1hQs1ijQu0znwEqikIE5ZVxG3PgMq6BoSVPiz+A0UKt2+kYFEo3ldVCPpNGlYWNpcLNQZ9ps/KgupMJKGgr5ULkCNQVfubIF+GZ0Rn1kMXCMiIiIiIiIiIiIiIiIiIiKqEaXc03IKaQ1E44hpc5nxYMqwLmk/fkaqp/ERFqZCYcxIrcX68Iyytt1CRfQuS25PXPj5EAgAQQ/l+tG4tbrOdJ4A4DdPmc+VdL49a50A9PUCAM7qXyJuVhoytXqrebujh54bWZhrDmlzFYpg//SbYrMtzC0vVcUcnWf23w8AUOFI5QdpAOVzgtoh4drKK7229Q+/7HdI9ROJAkk5ZA8AcPqHoAIj9WMqGIQGcNzg33Ff65llm0vXMCDfh4VsQX1q3Hh/747fIC+3cDFTu99AsqSPMUnj9xPsSEREREREREREREREZfjN+b3TDQB6C5bbAdyrlJom7aCU+icAFwvNXhJJ/H2yWPk+RER15WjzIy8fNiMFVEn7eetTrkDRfgqrakwOTjOEhXkINFKqxmFhLn0GELCGC+W3GX7tIfCsULAkgKh0uZ4yVYTTjaa09lAtMwq6U9uN6ztCLlNN+hBW5iKxVO6c+Ann21fZ7nkn9z8TnkMiIiIiIiIiIiIiIiIiIiKiGvEb8uJkgEhcDNNa8lJ5fZxbIM/m8NSajO2DA3cZ19+13jzB4KW3yTWCcUcI3InGvdXNxbJjP2bwWWPzfS+Wn6c12zWWrzcfrsUZcO/T5owLgH94PwCgK7NT3Oyy24vHtUvo9vjBZ4Zfq4PnVTamcNgaqPbgKvday2S6sq4B4D17/gLMO6nyA4wy6ey4haxVfS3Vk1tQ2Ds/AfXla8vXH/8OzE2+LO4m1e0OegikG34WnPVh8wYtpjncBT6DvPTypS7HMzyHkz7DwnyMST/we3NDjGFhRERERERERERERETVYFjYXkhrvQvAJ0tWvwXAKqXUD5RSpymlDlVKHaWU+rhS6hEAPwSGP0PdWLLvLkM3fSXLlXxqU7pP6TGJiBpOCpvJh0oFhP90ZoRgLS8ylkxG7SmvsT4yQgCaKXjHSxiPqvGvHW7hXEEVdA0AK2z3G/ZV+vPU+uezsQXMNbOU9lAtMwp60juM6zvC5sK/SoQCYeP6lJM9J1IAnN8Qu72Z7Vw4OiOfQw9hhkRERERERERERERERERERETkgd+wsHAUiMURE8K0NveWr3MLC5ua2iyMLeZraC1BfxMfPiRnCyGuhQCdiMfzlTuv4xxzKfXW3eXr7n5BDscaCLR469c2nnjr8OL8oRXiprsGsuPY0iuPp+j8RPy9T8NC2ckaOzLdxubl693DwlJVlN3F9SDQOqHyAzSI3zld3e43Keiv2anr/4rAt34GFTLU7bVOQNyRf65Xt5nXu50rAIjlz5f0rGxtdz9Ins+wMGwr/QqIh+P57cMtoK3QkBA05/e/I0REREREREREREREVIRhYXsprfXtAL4KFKXMtAH4BoCHALwM4FkAiwGcUrDNjwE8WHK4sRQW9lMA83z+/7016JeI9hKOEJAVyAVJSaFY1YQ32fbV4nxu9ecIAWimwB5vYWG15RoEhqAY7pYXLAgR8hsoVPozK6UaFkokvTfNLuX4K7BrlO7UduP6zlBXzfoIK3NYWFpnz4kUDOh2De9LbIF+DjLis5SBa0REREREREREREREREREREQ14jfk5eR3AtE4nmg5ydg8a1J5Vdmgy3yE5/TdZ27wGsyVsyndYVw/MWQOuImG5GPFpEAlr+dr4v4AgEfGnWpsnm2Y8/C5DfLhegOWUKs5R7sOR82aB+waSUyamDFPxgiMBJltMlWb58xIrR9ZiFUYFBSJAgB6gp3G5q5W9wrFZBVld4clXgE2vFL5AZpUwi2cLy2E8zW72UfKbauW4YjES2Lzph7zerewsCOGXkIgX/Mr3fvbLDduKb9BXlMO9H+8hM8wOD9jmn6wef2LT/nrk4iIiIiIiIiIiIiIijB9YC+mtf4xgLMBrPaweR+ALwK4GMC0krYthu1L5/IyfAwtU0q1ojwszPIxsTda621a65f8/B/A69X2S0R7D0cM7MmGzUihM9WEN9n21dDQenQCw6TgnaAhEMtLSJaq8a8dbn0GVNA1xKzw/fQbKFRpaFotZIRQu2aX1i6VfKMgozPoTZtnm+wI1zIsLGJcn8qdE+k9bdQ1NRbY7vmMdsRnqS1kjIiIiIiIiIiIiIiIiIiIiIh8iMR8ba5aJwDROE4YMIfDDCbLa+NsgTzHDS7DUYnnzY0+g8xO73/IuH5nuqVsndYafQnhOH0PyhNpRr2dLxXKJpGdPPCYsd10ToYqnLdRffJy+wZd+wMLz4Z66/uGV32u50Zx8/7cebGFvJ04+PTIwsy5XoZZLhcG154xJzm9stVeZ5lxNKopxexwdgEF52SseT1lLvW3Bah9ZNevERRqapudGm8OlQMAHP92HJxaKzYPCA8htyDDT+3635EFv8GKJn7Dwl560t6eNIWF+eyjv/QrJBab15nXH3uavz6JiIiIiIiIiIiIiKgIvzm/l9NaLwFwBIAPAvgFgFUAugGkAGwC8CiASwAcorX+qc4m0hxWcphlhkO/WrLsMhVNmdLtu7XWwjw8RESNIwVkBXJhM6agLKC68KaM0GeexuiEhUnjChiCd7wEbSnlPnOfH6ZxFAqqgOu4CkOE/IYymUPTGvOrlXSdNruUrrBCrY56091iSGBHyFcWqlVIhY3r07lzIgVdeQni21fY7mdHZ8TncK2DComIiIiIiIiIiIiIiIiIiIj2WT4CcNRDe7J/RuNYNPB/xm1MmTwDlkCee9a/1xLM5S+cZ78jDhHbSif47LXk6Vy+49/kRj9jmjwDp/oIC/vt0xXWFbbvB3XHOnPbKe+CuuGBbNDSjDnDq8/u+6t4uFty47CFvEUKJ5mMVBiilDuXn9h1s7H5mXX23ZPpyrotpOYuqP4gdSbdH8uSM43rbefl2m2XuXcYDDXu/15NsX+tQc2aBwAIC5OfPrvE9NUJ+zV+3dZv4ss9/zXSR6w8dBAA8I7zrWMrkhzyvi0AbFpjb0+UH08/tcRXF/qPN3jf+E1zIJs67BhffRIRERERERERERERUTEfn5rQWKW1zgC4Pfd/K6XUAQCmF6zapLXeZNh0VcnybJ/DmlWyvNLn/kREdSGFBuUDe6SwmmrCmxyXoLHRCgtzOxeFgi7BXUDtA3vcQpQCCHraZuS1v/GJoWkNeLsyQrBUs0tpYXrNUdST2iG2dYa7atZPWEWM6/MBatIzxG+I3d7Mdo86yPAcEhEREREREREREREREREREdVbJOptu/d+Giqcq5cJhRHXu42bmYLBBoWwsHfuuQedjjAvsVJA2FyfI4kF5UKvNduBg/cbWf7DMnnbFm1JEovEfAwojpa+AWOT6Tzt1wZs22M+1GHJ1XI/0ThU11SoR1xquQrGHtNyaNGLm3JhYcL7Ns7pKw6w8hnqNrJfdjwRy4SV6YxGKGiOy0rVouQuVuHYG0jLcXoYTGrEI8XtSct5iTkuYVWdUxD48xt+hlcV57sXAff92n1DKagrL3cNdmR6sC00uax504pXACwsWy9d40GdxsXdJSFaIfPkoq5jK5SwPFtK6G0bKzveUL/38QCAU4MCWZ/PaiIiIiIiIiIiIiIiKlbb1A7aG5xesrxU2O7FkuUjlVI+Pr3CyS7HIyIaFVLYTD4YSgqdcaoIb3LbVwuhXfXmJ3jHLZQLAJSlCKUSbgFlARX0tI3ptRfm0LTGhBJVE043mlKOZWq9nNJZOeutJ20OC4uqGOKBcTXrJxwwF/+kc7MTSgFwplC6fZXt/srojPgs9fJ8IiIiIiIiIiIiIiIiIiIiIiIvvNWAqa79RxYSg4g75tAbU/jOoFBiFLeFckXjUMpffdrBbzwotvWUZHb9+klLWJhjDvjKj8uzSFz8GU3nacoE+VAf2n2bZUweA8ymjcwLbTuz8VxZ1GDKfI5K33vV0uqt/1K5c2kLLjOFquUl05V1CwCtmVwq22HHVn6QBmkNyOdnt6HJFqIW0ZYTCgDdWzyOqsHWlc6JXiJ3LZmCwgCgfdD8c4nPJsPzTQ+aQ7jU3AX2sRXyERaG3p2ej6cTQ9BL74Dzk28Bj93tvQ8A6NzPfRsAOmO5sGxtRERERERERERERETkiukDVOqikuWfmzbSWm8GsKJgVQjAKT76WVSyfK+PfYmI6sYRgrnyQVIB4T+dmSrCm9z2bXR4Ul5Gm6tjTKFaXoK2Aj6LsdyPZ+8ziKBrSFBh+FDQZ6BQpaFptSAFSzW7lFvx0CjoTm03ru8MT/JdQGgTUuawsHyAmqOFZw+DrobZ7nkHjvgs9RsESERERERERERERERERERERERVOu0DI6+PeiviQsDTsxvK1w35COQZ5ieUK6frH04T23pLutplyQOzh5h5DOYCgGgcccd8np7fWL5uhWFd3jl991n78aS1vWjxoORa42YPrc7+uUfIqJLee99y47b9bFKYE2APxXLzlZ6fAABUh7egpNF0Xssysc0UOnftffJktmG4TA7qJ/iqkd52rr09kr0vh0PgSmwOTTGuH0wKgXiGZ4A66lRz3299LzD9YPv48vyEhXnZNp2C7t8N/c33Qv/L+cDv/sP78fNWyddXkaTlvp93ov9+iYiIiIiIiIiIiIhoGMPCaJhS6hQUB36t1lovtexyR8nyJzz2cxiAEwpW9QNY4mVfIqJ6E8Nmcv/JlEJnpKAfLxyX4CeNUQoLk4LTDL8+eAnaUjX+tcMtRCmgAq4hQYU/i99AIXNoWmN+tXKqCKcbTWntUjw0CnrSO4zrO8KTatpPSEWM6/MBatJ7agql21dJYY1A9vxJYY9B/pWHiIiIiIiIiIiIiIiIiIiIqLE6C8J2WlqtQV+lk2maAo0AoMUayuU/LCw8dQZCQj3T7c8Wj+nFNy3HESbl9D2uaMwaPOY42vi61A+2fgvjHXMIkp8xqUAACI/UPH249xbjdvmQsD89KwQpFb73h8z31LdRbtwdmR5xE+naAaoLCztx4KnmDcYqMS1oOT8ll3t3v8afnzdvG9ZJuE61efw7fI2tUZRbGFWsBQBwVr/56wu/bP+Icb0URmcMxIu3msc2YSLUfz4IfOhLwKHHAEecYNwOAJDwEbS35kVv2935c2D5UvftIlHvfZsM2J5BLdUdm4iIiIiIiIiIiIhoH8dvzhMAQCnVAuBnJau/7bLbb4CihJsPKKUO8dDdpSXLf9C6VtNGERFVR0thM7nAHikUyy3wy8YtaEwKwKk3P+FFXkKylHvpiC9uIUoBFbSGC+W3GXnt79ciY2hag4KdpFC7ZpcPxmomUlhYZ6irpv2EVdi4Ph+glhGeIbUO2RvLbPeXox3xmeU3CJCIiIiIiIiIiIiIiIiIiIiIqhQrCIOJxBGzlAm/uq14eSBpDp2KWQLHEIn5GV2WJTSrp794ucU8TyAAYJzTLzdG/ISFxa2haqu2jLx+eYu4GQ5IbXTtx8+Y8gKWOsY9QxptMXN9oC6sG3SqqIXMvcctlnMkhTkBQLKKkjvb9dtsWoLySSgNU/vNU3LoXMRTrV+jJ8L1WIPqVguau661cLzDEi8b14thYaZr0nKfqa6pCHzlhwj8/AkEfvZ/wDGLjNvphOWZV6p7m/s2APTtpV8XEVgCvXQy4b7/G+ZzCABoGedtDEREREREREREREREZMT0gb2UUirkY9tWAHcDOKJg9W1a69ts+2mtXwVwc8GqCICblFLiJ+5KqfcC+HjBqiSAK72OlYio3qQQpnxgjxQ6U014k9u+pTMnNooUgBYwBKZ5C+OpbViYWxBYEEHXcRWGv0lBcOK+ptA0n8eo1GgFyFUrJczEOZq6U9uN6zvCtQ4LM1cM5gPU/ITz7atswWkZZMRnKcPCiIiIiIiIiIiIiIiIiIiIiGrFWy2bChfUykRjWDC4TNx210DxshjIYwts8hOAVbBPWpgAMFJShf2uI+Xat3antzbjisZxwuDTYnNvQW7QLkuGkO0YAPwFq02YOPxyVnKtuNnuQSAuBKq9Gi2Yh/r1F7z3XUIFsrVDcS3/8AOWfKtUFWFhYZ0CVj1T+QEaKK7kGr3S8/Pwy1WGhfmcoLVhZh1hbw9HAQCvRmYbm03Pmjue1fjSLebzZXw2RX3cZ9Jzwk9YWNiSaFio25I0WGjaLLltyBKQmJeyXD9TD/I2BiIiIiIiIiIiIiIiMmrST2ioBj6rlHpIKfVxpdQk0wZKqVal1McAvAxgUUHTOgBf8NjPvwLoKVheCOABpdRhJX1FlVJfBnBryf4/1Fq/4bEvIqK600IIU1Dlw8LM/+mUgrW8cNtXGlO9+Qne8RK0FVA1DgtzKTQJqKBr0FLhz+I3UMi0faNCiaRgqWaXctwLiHSDZxvsSe0wru8IGX99qlgoYC4sTDnZ4iwpAM7tOt+XBFRADAxzdEZ8lvoNAiQiIiIiIiIiIiIiIiIiIiKiKrROKF6OxnFQap24+d0vFNcLDQolRnHHEpxTUVhYDMcOLjc2/fm54jE9s85c0xRymzwxEvUxnjhmpDeIzdv3jLyWzhEAHJDeaB1PPnTLk84pwy9PGXhM3GzrbuCuFeZzdHrfgyMLb32v974FtuvAFhaWTFfeZxAZ4IwLKj9AA4WVg4BQX7i9r3h5tyV/L+JhYlA1/2Q/Q2ucAw+zt+eCtc7f/Qdj87Oxo4qWv3OXgw/+l1zHGzNdkz6DAo3WrfR8CL3F49cxkglv2x38FrnNS4jZwB6xSdW4lpiIiIiIiIiIiIiIaF/D9IG9lwJwGoDFALYqpV5XSt2jlPqNUuoOpdQTAHYCuAnAtIL91gJ4h9Z6m5dOtNYbAXwAQOHHqycDWKmUekYp9Xul1H0ANgD4MYDCpIy7APxLZT8eEVF9ZLT5A/18QI0UOuMI+3nhFvzU6PCkPOlnChrCi7yEZEkhP5UKuAQABXL/s25T8LO4Hc9L/8EG/WolBbk1u5SX2QYbKOEMod8xF6V0hrtq2ldYmWfuS+eKqsRwPgZdFTE9f4Bs2Jr0zGLgGhEREREREREREREREREREVGteAh5WfjO4uVoHEE4CAu1Q9+5qyQsTMgoiusah4XFWnCyEIDVW9LVWvN8hPhK9w32PnwFBsWgAMSdAWPz758ZOU/iOXIG7O9QxOd56pw8/LLFcv5veVpjR5+57fDkyyML02f767/U/FMQRkoMw3pqrVxrmaqi5C6kM8DUmZUfoIGUku+VPzxTfH4eetm4GQAg46UWMjbOz9AaJxiyt4eytXyT0sKNXaBvSOO799hreI3nuxZhYc88aF5vcs8vvW/rRVuH3LbNEkiYo5+4z9xQ8EwhIiIiIiIiIiIiIqLK8Jvz+wYFYBaAswFcAOB9AE4EUJpacSeAE7TWr/k5uNZ6KYD3A9he0udxAP4RwJkAJpXs9lsA52s9RtNOiGivJQV3BXNhWFIoVjXhTVJAWZ7WoxQWBu/hRW6hXACgvBSK+RC0BJQFEIBSyjXErDD8TQohkvuvLDStFqT3pplprYeDsZpFT0ou9ukI1TosLGxcnw9Qc3v2UJYUOpjRGWR8PLOIiIiIiIiIiIiIiIiIiIiIqE4SJWFXsRYAQEqYbA8orpEbFOYjjOshuc9I1PPwRvaJI6PkUKF0ZmRME4VMpIGAS1hSJOZ9PAP9AIDBQIuxOVhQNiOeI8cSqAb4D1WbOBLs0yZMyggAb+6SD5EsfN8HhUQxryLZQDVHquO0lGImqyi5CyJTfl03sf5Aq3F9pORynztVPsaOUGnpv0HMfK3WjfJYg+oWFhbO1vI5lprRgUT2/v/7G0AybT9c3DE8m/zca9J9ceBh3o8x70Tv23phG//WDe77t7Wb1w/IzxEiIiIiIiIiIiIiIvKGYWF7r0cB3Aqgx2W7NIB7AbxDa/1erfV2l+2NtNb3AJgH4GcufT4J4Fyt9QVa6/5K+iIiqicNc7VIPqBGCp2pJrzJbV9pTPUmBaCZArG8BBopr4UaHtmCufJtQZeQoMJj+A36MoamNSoszCVgrhllkIbG6ATfSbrT8q897TUPCzMXO+YD1PyE8+3LpGeNozMMXCMiIiIiIiIiIiJfBgYG8Oijj2Lx4sW49tpr8Z3vfAfXXXcdfvWrX+Gpp55CMil887oC69evx+WXX45TTz0VkydPRiQSgVJq+P833XSTuO/TTz+Nz3/+85g/fz46OzsRDAaL9l23bt3wtosWLSpqIyIiIiIiGhVtnUWLKhQGgkEclFwr7pIoCOMZEP461uJYwprcwoFMDpqLg5Ovi82DBfMiSlVPLY69FFr5CTHzURM2mDKPyBqoBgBRH+FlANTCc4Zfx3RC3G4gKdeFFb3vfsPKSlURTpVyCXyyCek0VKsQftRsLP8eUDpv7RGWsDBP/IThNVLIPLHnsHC2lu+QxKviJv2551CffNkPi2tDSJ+fczPYfF+pULOPlBsdD/XS0iTJQ2MndI+IiIiIiIiIiIiIqFlV8MkojQVa6+cA/KPKVgDPAXA4gOkAxiP7mfUuAK8AeEprXZMpWrTW2wB8Xin1VQAnAzgQwBQA/QA2AXhWay1/0k9E1AQyQsFNIDeDWFCYSUwK1vJCCrgZbh+lgCUpvMgUvOMlJEvVOKM0YDlePiTMbVyFQUx+Q5mMoWkNCnbKVBFON1pSTsp9owbrSe0wrh8f7EA44FIw5FNImY+XyoWFuT17KMsW2OgIwYqNCvEjIiIiIiIiIiKi5pfJZPCHP/wBixcvxsMPP4x0Wv6mcCwWw5lnnolPfepTeNe73lVxnzfeeCO+/OUvI5Hw8O3SAul0Gl/4whdw4403Vtw3ERERERFR7bnXsqlF7ytfGYnjB9v+GR+a/lvjPgNJIJYrr9kgTFkcdwyBPHmBCupDYuNw2sDfxObBJNAWGxmfyVsHHrX34RZaVECdeBb0A7/HO/fcg7vbzilrv/uFkXO/vtt8DGNoUSG/YV3Hvb1o8dT+R/DIuFPLNrvzefkQp/c/PPxaHXmyv/5L5cY/LbUJm8LTypr/9U6NS88y75qsouQuiAww97jKD9Bg5+y5F/e0nV22/tdPafzyopHlUFDByz0tqjb8rV7cwgND2bCw/dObxU12DwKT2opDAyVlz6Zo3FeIu3rre6GfeaC8IekS/ldo+VLv23oxbZbYpJc9DPX28+z7J4VnUbXPACIiIiIiIiIiIiIiqnFqBzUdnbVaa32H1vo/tdbf1Vpfo7X+qdb6gVoFhZX0mdRaP6y1vklr/b1cv7czKIyIxgIthM24hU9JITVeuAU/6dEKC5PCiwy/PngJ2gqgtjPYm0LLhvtyCXcbOUag4LW/gjFzaFpjfrVyC5hrRmktVMyNop60OSysI9xV875CQvhYysmeF/HZw6CrItIzOKMd8b6wBQsSERERERERERHRvuOhhx7C4YcfjgsuuAD333+/NSgMAIaGhvDnP/8Z7373u7FgwQIsX77cd5/33HMPPvvZz/oOCgOAb3/72wwKIyIiIiKisSneVr4uGsfcxCpxl0dfzf7pOHKtXFxbgnMC/utDVCCAcUE5CSgfEuQ4GkPCZi3OgL2TcMT7gOLjAACHJlcbm3cVdHXnc+bzZA1UA3yHO6lgEGjrGF4+cfApX/sDQIsuGHisxff+RXLj78rsNDYnLX/VT1UTFqYzzRuMVUZhTvIVT1umM1XWpjb6nHgN4HILC8vdl7ZnygOrsudmMOl+jsqO4/e8tBiemQCQ8BEWVmvRGHDgYea2uxe77y+Nff+DKh8TEREREREREREREREBAFw+CSEiItq3ZISwGZULgZJCsTLa/oWSSvrM00JoV71J4zKF9biFcmXVNixMWQKA8mN0CzErPIbfQKFKQ9NqYSyGhaW0hyn2Gqw7td24vjNU+7CwsDIX/uicLboAACAASURBVKVz50W83xp0TY0VQeE+1ciIAYcMXCMiIiIiIiIiIqIrr7wSV155JbQu/oKnUgpz587F9OnTMXHiRGzfvh3r16/HK68Uf6l22bJlOOmkk3DDDTfg05/+tOd+L7vssqI+L7jgAlx00UU44IADEA6PTDLR1VX879Jbt27Fj370o+HlSCSCb33rWzjnnHMwadIkBAq+BD99+nTP4yEiIiIiImqI1gnl63Ztx6SgXPO0vlsDUNjQIx82aKvRC1RWHxK3VNIP5OZGlILCAA9hYSEfYWG5gKHu4ERj87T2kdfzpikse6M8xGhjeJq9j0jM+3jy9oy8KS3aJYzMoCjYq9pwqf7dAIDnY0f63jVReYknQjoNxFsrP0CDJVVUbktrRELZWs5qAtQAVHY91VswmA25s8ndlx0Z+YHTk7u1+zzkv8dL7wu/17m0fdLH/RYMApka1pVGW4Bd5slYMX22+/4JYezRJrxmiIiIiIiIiIiIiIjGGIaFERERFdAQwmZygT1S6Ew14U1u+2pUOXtbhRyYxxU0hBd5CTRSXmd188gWAJQfoynYTBqT27alzKFpjQklygjXaTNL6eRoD6FMT9pczNIRnlTzvsIqbFyfPy/Sc8Dvdbm3k85HRjvICM8snkMiIiIiIiIiIqJ928UXX4zrr7++aF1bWxsuu+wyXHjhhZgxY0bZPq+99hpuuukmXHfddUgkst8KTSaT+MxnPoP+/n5cfPHFrv2uXr0aK1asGF4+55xz8Jvf/MbTmP/0pz8hmRz5d/Wrr74a3/jGNzztS0RERERENOpmzDGunpjpFnfJBzkNWEqMjky8KDdWGhZmyfIazI1l0BIWFtdD9g7C/sPCpqU2GZv7C85NUgi+6gl22vsImWuYvDqj7wFcOelffO1T9L5XGxYmXFuFUmmNcKi8VnEwWXkdZhAZYPrBFe/faMcN/V1sG0wCkdw3SNLVliFG5FCyUdPa7r5N7r60hd/ln0nd/e6HizmlYWE+A7Gk7ft6Pe2uM5naBoUB2Xu1vQvoNdRYbjc/o4pIYWGRKp8BRERERERERERERESEgPsmRERE+46MENijVPY/mQHhP51OFeFNUihXnhRgVm9+wou8hPEo1DYszNZnvs1PeJffoC9jaFqDQomqCacbLSmnCcPCUkJYWKir5n2FlLnwL6Wz1YRyOB9/XS8k3WMOMuJ9YbpXiYiIiIiIiIiIaN9w8803lwWFnXLKKVi5ciUuu+wyY1AYAMyePRtXX301VqxYgXnz5hW1ff3rX8fSpUtd+162bFnR8rnnnut53JXuu3TpUmith/9PREREREQ0GpQpkGrB2wEAXentxn3+/f7s32EGLSVGrU6f3BisfVjYk2uzY7IFmLU4A/YOQv7Dwo4bWm5s3lXQ1S1Pm//O96me/7X34Se8LO+9nxp+efTQc/73LxTxGaJUQh13uus2UribLfTNTVBngGB1QWsNoxSOG5TDwnoLMpzufkE+zPiMh6CqYBPOW9/mISys4Bk1J/GKcZNfP5m9x7pdbnHAEBroNxDLEqKnvYSAScFc1YjGoT78TbE/13FJY6o2MJCIiIiIiIiIiIiIiJg+QEREVEgK/cqHzUhBNVLImBcZbQ8DG60vc0jjCqjyXx+8BG1JQWuVClgCgPJ9+enTdjzj9qbQtAb9auUWMNeM8qFYzUJrjZ60OSysM1z7sLCwMheLpXPnRb7fGHRVSAr+yuiM+Pw2PbOIiIiIiIiIiIho7/fKK6/gS1/6UtG6hQsX4t5778X06dM9HWPOnDl48MEHMXfu3OF1juPgwx/+MHbsMP8bc97WrVuLlr32We2+RERERERETal9EgDgLYkXjc2bc7lEtkCnuLYE4lRYHxKJhqCEup3f5QK5XtxkG9OQ3Aj4C+fKhejELD/nYNJeSzjecQl4MgW5ucm9dwAQRgoBH7WSBybfKF4RrS4szEvQ0Frhr+u2IDo3IWQqO3ejxHavLFnprR416FajGAxBqdpOIOvKS39tHR4Oo4bfz0OT5rCw13O5ht2WjMK8uFNyvv0GYtnCxXq2ym15Wzf468+LaBxoHS+3r3rGvn8yYVytGBZGRERERERERERERFQ1fnOeiIiogCMUsuTDZqRQLGm/avocbsfohIVJgVSmsB4pwKdQrQtDgpYCr/z75CdoyW+gkOnYXkLTaqGacLrRktJVVFvVQV9mtzimjtAk4/pqhAPmwr90bgzS/cawsGJKuE/TljA6v0GAREREREREREREtHe45JJL0Nc38o3O9vZ23HbbbWhtbfV1nP322w9//OMfEYmM/Dvvpk2b8J3vfMe6X2HfABAOe/9ScTX7EhERERERNaVcQMzuwARzcyj7pxTopLSDiK3+KFBZfYhauxJaqEeZkMu0sQWYdWXsQdK+wsIm7Q8AaHXkdKJ1O7N/Tms3t28NTbb3EfIxnjxnJExNAXB81DO16IHiFbZQJC86snVd//Pm58VNtu8xr7e9j26COgMExs7XLiant4ltewry7aaab0cAwA+3XmrvxM+13UhvrPa2XTgKANgcmmpsntGZ/bO7371+tyw0MBL1Noa8Dsvkpls3uu/vJVDMj3AEKhAAJs+Qt1m70n6MhBBYV21gIBERERERERERERERITTaAyAiImomDsyzBObDZqTQGSnox1uf9n21MKZ6k4PTys+Bl0AjVeOMUlsAUH48XkLM8vxsm92+/OdpVCiRI8xm2cxsYU6FdIPC8XrS28W2jrCl+KZCIWX+Ildap+FoR7zf/F6XezvTfQcAKUcuBm1UiB8RERERERERERE1j5dffhl33XVX0brvfe97mDJlSkXHO/zww3HJJZfgmmuuGV73i1/8AldccQU6OjqM+zhO5f+WX82+tbBy5Uq88MIL2LlzJ3p6ehCLxTBp0iTMnTsXRx55JKJRn196zUmn03j66aexZs0abN++HYlEApMmTcLMmTNx8sknIxbjF0aJiIiIiPZauYCYUwcewd/jx5Q1J9KA42gx0CmuB2GdqjJY+/qQnf3ZPweScj1TTCfsBwl5D39WbR3QAOYm5LCjfJjagFAqc+TQCzUbz/C4jlkE/avv+94PAOJOSYhStMqwsFx40bl7bsdn8F/GTaRraJsQIuZFMKRqPllq3SigRQtBTQCeL8ieSlv++eHMvvvt/VRwLTVEqyUBrVA0Dgz24eih57AsfmxZcz50rrvf/VBxp+R8B31+RWfKTLktKb+Xw6Rgrkrl79PZR1bep9Qe4b/9EBERERERERERERFVi2FhREREBeSArEDRn6UyVYQ3ZYQ+87RuTHhSqYwQYmYKxPIWFlbbYhnpvQBGApaUZZvy4/krGDNt36hQomrC6UaLLcxpNHSnzLN6hlQIbUGPBUM+hJU8k2Jap8TngO063xdJ96ktjM7vvU1ERERERERERERj3/XXX1/0+UpXVxc+8YlPVHXMiy++GNdeey1Sqey/R/b39+PGG2/EN7/5TQDAunXrcNBBB4n7n3baacb1ixcvBgDr+KQvJK9duxYzZ84cXl60aBH+9re/DS/7+Yxpw4YN+MEPfoBbb70VW7duFbeLx+M47bTT8LGPfQwf/OAHEfTwhfxVq1bh6quvxl133YXdu3eLx33Pe96Dq666CnPmzPE8biIiIiIiGiNiLQCAc3ffjh9N/Kpxk6EUMJgy/z2mLIynVKU1Nu//LP750e/hmq5vlTU9uSb7pxQ+1Zne6X78sFwzJIlbgp5efFPjmAOVOKbDknLQGIDKAp6mzSpa/MiuX+NX7R/2tGus9GepMixMBQLQAMY7cvLXw6s13j2//O/RP1xSeR1maAyWcM0fWoHnY+VhT798QuN/PqIRCSmkhTLEz3f/NyZnttk7CPm/tqvnoQb1jAu8HSp3LZ7d91fc2HFRWXP+HusecD9U2T3r8z7LX9dGXoLANq3x1Z+raPZ5rZSCbmkDBsrvN73iMahzvygfQwo5qzYwkIiIiIiIiIiIiIiIMAY/uiIiIqofB+bQr3xgT9AQlJXdr/LwJqnPPC2XAdSVIwSgBQ2FVUEPv1LUemY9WwBQvk16v0z8Bn2ZQ9Ma86uVW8BcM0rp5goL60mbw8I6Ql11eR9DSs7oTeuU/Ozhr+tFpPvedn3xHBIREREREREREe177rvvvqLlj370o4hEqvsS66RJk/Dud7/b2s9YpLXG1VdfjdmzZ+OGG26wBoUBwODgIO655x6cd9552LBhg3XbTCaDr33ta5g3bx5uueUWMSgsf9zf//73OOKII3D99ddX9LMQEREREVETGDfeuFrlAmLiekjcdTAFDAolILb9AADBCutDoi2YkOkVmxMpLY5panqL+/H9BipNmoaITkIJtXsPrsr+PW5ICAtzDVWrJOCpJNxngiP/3c46HqUqCk8r09oOAJie2mhsfvTV8nrLvqHqajCDlV5foyFXpzk1vVnc5NHXsn+mhdLVM/ofcO+nkuC5BlBew6iiMQCGQLsCfUMa3f3uhyp7PgXlWkFRqzDBacLl2QdAv/x3c8PEqVD//aj/seTODQDg4LeYt1m70n4MadwMCyMiIiIiIiIiIiIiqloFn0QQERHtvaSArHzYjBRU41QR3uS2r3YJE6sXaVymc2AL7spTXmZ188EWBJYfj5/QJ7+BQqZwMVOAWD1UE043WpotLKw7td24vj3UVZf+wkoudEvppK/7bV8m3fdpLVRAwn8QIBEREREREREREY1tGzduxLp164rWnXHGGTU59hlnnIHbb799ePnJJ59EKpVCONycX5B1k06ncf755+O2224ra5syZQre8pa3oKurC4lEAlu3bsXzzz+Pvr4+T8ceHBzE+973PixZsqRofTgcxlFHHYXp06cjGo1iy5YtePrppzEwMDA8posvvhg9PT244oorqv4ZiYiIiIiosdSXrzOu1zuzwUVxSzDPYCr7fxPXEKxAhfUhqQRiQs0gAGzbAwyIAWYuYwKASNTfeLZvggKghbq3thjEoDBPYwpV8NWB8ROLFteED/K8a1GIUjRemwlH+3YBADaGpxubD+gsX/emnAfnSTA09uqP5iRfxX0409i2docGoJASyhCDOu3eQbP+W0hh0JV1uxYAwPiMHH73Zq8cYFgoVvp8qiRILRIHYLhQEx6eM11Tzet3bpbbbN5cO/J65VPmbWbOtR9DGjfDwoiIiIiIiIiIiIiIqsawMCIiogKOEMyVD+yRQmcyVYSFue3r6OpmtatURgikMgVieQnJqnVYmC0IzC3czXw8fwU9pv4bFUokhdo1s5QlzGk09KTNYWGd4Ul16S8ckAuAUk5KvN8YdFVMuu9t11ejQvyIiIiIiIiIiKi5pTMaG3tGexR7v+kdQChY288D/HrsscfK1h133HE1Ofaxxx5btDw4OIjnnnsOCxYswPTp07F27ciXKX/0ox/h+uuvH17+7W9/ixNPPLHsmF1d2UksFi1aNLzu/PPPx1NPjXwZs/C4haZPN38x2quvf/3rZUFh55xzDq644gosWLCgbHvHcfDkk0/id7/7HW666Sbrsb/4xS8WBYVNmDABV1xxBS666CK0tbUVbTs4OIif/vSnuPzyyzE0lP0i+VVXXYUTTjgBZ599doU/HRERERERNVxrO7DQ/Du8OvIU6D//3Br61Z+Qg3lcQ7AqDAtTJ52Fd/zln8T2qgLMAP/BOIceA6xeLjb3JeTxZMc0JDcCQFie8FCiQiEUVjAuHHwC97R5+7ta0ftW45CgrvR27AiV13rtNGRcewl8sglFmjQYy+K83lvx484vGdvy5yMtlK6G4CEsLNik58TrdZbbbnZqjbjJYBJIeyjVLHs+BSv4io4UcuYlLMy2Tdf+/scy5cCR1zMPB15/oXyb5Uvtx+gXQti8hrkREREREREREREREZGIYWFEREQFHCG4azh8CuagGilkzFOfQkhQnq7i2NWQzoUpvMhLoJESzl2lbAFA+WCyoI+QIL+hTKZjNyqUqJpwutGSdqqsuKqxntRO4/rOcFdd+gspudAupZOWZw+DrgpJ5yOl5evLbxAgERERERERERHtnTb2ALP+eexNxDDWrLkmgJn1+WdWzzZu3Fi0PHnyZEycOLEmx543b56xvwULFiAUCmHmzJnD69vb24u2mzJlSlF7qdbW1uHXsVjxFydt+1VqyZIl+PGPf1y07nvf+x4uvfRScZ9AIICFCxdi4cKFuOqqq8rGmXfrrbdi8eLFw8sHHnggli5dKv4c8XgcX//613HSSSfh9NNPx9DQELTW+MpXvoLVq1cjEKjtZ0xERERERFQf6vq/QnXsZ26cOAUAENdymNU//cHBybPNAdQxy34AgEr/3jDlQHSlzXVEADCQtAWYuYwJ8B2Qpd73Gejvfw6f2HUzFrd/rKz9l09ofPd9cki3a6haqPqAp0OSr3netihQrVZhYae8G3j0L/hsz8/x3UmXlTX/36vlu9gC1rwIRv2HrI0alb0+Thh6RtxkMAVorcUgrJD2EBZWQfBc1ZSHgHrPYWHZf9Owhf7d/qxGxktYWGlIXyX3mTBuvXwp1Ls/ad9XCgt724egAgH4na5YvesTIwsLzzGHhe3uhk4loQzXgc5Y6lsjtQ0NJCIiIiIiIiIiIiLaF7GikoiIqIAU+hVQubAwIXRGCvox6U13496df8DPNl2Dn268GjtSW63ba98f1deGeC4Mvz7kz4+N8lKo4YOXcC8/IUF+Q5lMx/ZyHmrBLWCuGaW014qrxlzv3entxvUdofp8iy2s5AKgtE7B0fZnD2VJ933aka+vIM8hERERERERERHRPqW7u7touaOjo2bHjsViiEaj1v7Giquuuqpo+XOf+5w1KKxUe3u7MSxMa1107FAohDvvvNNT4Fk+hCzvtddew5/+9CfPYyIiIiIiotGl5hwlN+aCcFqcAXGTe1+UQ51ipWE8pQIVTiYXjaNFy2MaTMpjcg3myh3fl1gLAPt5GrDM2WgLPgIAhKoPeHLto3DbwkC1iDlw2rfcOfV0/nNs58yLMRUWVmDhwOPG9YMpWEOwPIWF1SB4ri48h4Vlt7MFET75uhyoVqjsWgyGvI3BMJ4y3fb6YgDAkHAv5I/Z2m5uF8cycq+q3DPJaMVj5vWbXpf3qfQ50D6psv2IiIiIiIiIiIiIiPZC/OY8ERFRATGwJxckJQXVZDyGN/WkduC69d/CX3bcghV9T+PF/mWu+4xWWFhGCEAzhWQFPQRtmULGquElCMxPn35DmUzH9hJgVgt+wumaRUpXWXFVQ2mdwu50j7GtI1yfopKwkgvG0jolPkO83Fv7Eum+t11ffoMAiYiIiIiIiIiIaGwrDe9qb/f5hUgXpcfbuXNnTY/fCCtWrMBjj418obOtrQ3f//73a3Lshx9+GC+++OLw8oUXXogjjzzS8/5f/OIXi0LI7rzzzpqMi4iIiIiIRpnHgKchMZirTmFhk6YjqhNQQt3gQFIOmrIFeg3zGxaWC9J5OTLH2Dx7Pzm8DPBwnmoQ8HRk4kX3jXJihcFifs+F5OVszeX2oHlSyBZDmdYuD2+VJKAzULUaeyO8umL4pRTsNpSS7zUAiOmEez81CJ6rC69hVLmgq6AwqS4AjIvaQ9XyDk6uKV5RyX22erl5/X4HuO/bt8u8vnV89s9D5vsby+yC7Q9+i7zdzi3m9bstwfr7z7T3/aEvGVerr/+nfT8iIiIiIiIiIiIion0Iw8KIiIgKSCFM+SApKXTGa3jTo71/xc7UNl9j0kIhUr1JP5MpEMtLcJeCqnpMRX16+DVGKe99+g1lMv3MjQolyozSNVGNZgoL25XqFkP4OkP1CQsLKbkAKKWTlmcPg64KSfd9SsvVa36DAImIiIiIiIiIiIhs/Hz20KwefPDBouULLrgA48ePr8mx77///qLl8847z9f+LS0tOP7444eXH3nkkZqMi4iIiIiIRlkkCgCuFWSDQomRFHo0rMKwMBUMQkEOMVu3U2NLr7nOyDWYC/AfkJXb/qz+Jcbm17bJ5whwP0+q0rCwk84efjk9vcnzbkXnqFaBW7mxnDbwN2PzQBLQuvg96+6vfMLWIDK1G3sjLHj78Esp9Gvlm9oldM7lfgNqEjznm5d/kvH6Xh1/xvDLuBD899wGb4dqKT1fwQqeR7OOMK9fv9p93z3miVNVW2f2z/d9xt9Y5p8y8vq4t8nb7dxsXp+wXD/t9vpMdeaHgVhL8cpps+zjICIiIiIiIiIiIiLax/Cb80RERAUcYZawfAiUFDrjeAxvemXA+6x6eVKoUb05EMKLDIFYnsLCavzlmVoHAPkNZTL136hgJ+m9aWYpx1Jd1GA96R1iW0fYPONktZRSYmBYyknKzx6GhRWR7vu0JYyuUSF+RERERERERERE1Bw6OzuLlnt7e2t6/F27dln7Gwsef/zxouVFixbV7NiPPvpo0XJnZyfWrVvn6/+FwWXr1q2D44y9SVSIiIiIiKiExwAfKcDINbwoUEUt2eQZYsjW136vca9Q8ucaYAYAkZi/seTO0wGpjeIm/bawMLfzVGHAk1pwetHyMYPPetqv6BzVKHBLzTgUANCRMQckAeUhT939lfcX0ukxFRamps0afi1dD3c+X13oHAAgHPE7tMbw+F6pQ+YPv75o103GbdbtrHAMldxnxywyr1/5tPu+u7vN68d3AADU286FuuLXwPxTgdYJ2f9bqIL3VkXjwISJxu30z680H0AKCwuFXeuI1aFHQ133l2wo4NQDgXf8f1A/vh/KZcxERERERERERERERPuS0GgPgIiIqJk4WgjIygXUBIXQmYzH8KbetPChvG1MoxQWlhEC0ExhPUEP+aOqxhmltQ4A8hvKZLoWgjUOMJNI12kzs4U5NVp3artxfTwwDrFA/Qq7wiqMtC6vaEwKMzgC3u6tfYn0DLaF0QUZuEZERERERERERLRPKQ3v6umRvzzs19DQEIaGhorWTZxo/sJkM9u8eXPR8hFHHFGzY2/YUPyN7BNPPLGq4zmOg127do3JUDYiIiIiIioQG+dps10D5lq5uB4yrh8WqKI+JBxGGGljU18CiIaAhKE5IEwOOCwShfIbYpYLF2txBsRNnlxjPkdhnUTQbUwVhoWV7teR8VYH2aILfo5gjWp4cmMZZzlHf31J4+gZI6FEPfKmroI64z/0bTQVvFchbb6uAWCPXLKGmKWebViwSb+G4jXYreB6fLTl5NqOoZJzY9lHO479WbJnl3l9W8fwS3X6h6BO/9DwsvP5RcCLT3gbW9f+QK+P5LSE8LxuafO0u5p/CtT8U7z3R0RERERERERERES0j2nST2mIiIhGhyMUy+SDqaRAKS/hTVpr9Kb9fyFFC6Fd9eYIAWimsB4vQVv2+cD8q3UAkN9QJtPPXOsAM4nXcLpmkjKEZJk0IhqvJ20OC+sMT6prvyFlLrZLOHIxo98Qu72ddD5SljA6nkMiIiIiIiIiIgKA6R3AmmsYzl9v0zvct6m3adOmFS1v2bIFO3furEmo10svveTa31iwc2fxFzw7Omr3xpUeuxb27NnDsDAiIiIiorFuwsjfyd695y78pe1dxs227TbvHncGrYdX1QRRbXwdew5tNfcbBrpagQ2Gsr+NIZe/DwYrCOY64BAAwIKhv4ubvCnkAsUsNUjDwhH/YwLKfpYTB5/Gg62nu+4WLxzTiscq67tULnDo8MQqcZO+kqyr/irmuQwiA0SilR+g0QrutTanT9ys13JLRbxMDFpp8Fy9eQ0LS48Eqa2Izqu4uw/uvr18ZSVhYSHLvZlK2H+uoX7z+hbzcw0A1Mcvg77kPeUNF15Svm7bRvNBYi3m9Qnh4vL63hARERERERERERERkRXDwoiIiApIoV8BFcj9KYSFwYHWGkrJkVhDzoA10EaiGxKfVE4+F5WFZCmfYVxuah3M5TdQyNR/o0KJnFEKkKtGJdd+vfSkzF9U6gh11bXfsDIX9FjDwhoUQDdWSOcjbZkFM1DjZw8REREREREREY1NoaDCzPr+EyA1iYULF5atW7ZsGc4888yqj71s2bKi5Xg8jqOOOqrq44422+dbfiWTtf88QOvR+ayMiIiIiIgMKvz9XCk1XAX3zzu+L4aFbe417x/T9rAwqCrqQ2YdgUt3XIf/f78rypoGU0BCKEs5p+8++3EDFYypdQIAYFJmh7jJll7ze1DXgKfDji1a/HjvL/HdSZe57hYvfN9OP6+yvkvNygY7RSBPXrnyzeJztHZ75X+vDOl0ZcFvo2X67OGXF/beghs7LjJutseSLRf0MplppcFz1fDy7xfRmLdjzT95+GVYp5CooPazxenHV7pvKG+o4HpRJ78T+jfXmhuTQ2LQlta6snCuoxcB804CXnxiZF3HflDv/Hj5tud+EVh8dfn63d3QA3ugcgF+wxIDwng8vjdERERERERERERERGTFb84TEREVcGAOYcqHzQQt/+mU9s3rTRumF6xiTPWWEcLCgoaiCNO6UrX8ogkwEuBWs+P5DGUKGvoPNijYSQpya2ZpLRdnNVp3ertxfUe4vt8UDClzEZAtLMzLvbUvMd13AJC2FDvyHBIREREREREREe1bZsyYgRkzZhStW7JkSU2Off/99xctn3DCCYhERuHLsVXq6ir+9/Du7u66HDsWi8FxshPuVPP/mTNn1mx8REREREQ0ig44BAAwLf2muMkaISMrbqmvAQAEqqgPOeIELBr4m9jcK+TwtDtCslleBfVtSikgkg3UmZg2n4zbnzXvG/FSn1Vp6FVJyM9BqTfQ4vS77hZ3Rk6emjGnsr4tY/nA7juMm/zpueLlu1+ovLsgMkBwDM3PXhAQNT29SdzszV1ygFrQS31ipcFz9WYLyCrarmX4ZQjyRJWShQOP48E3zsLJg0+WN4YquF7Gd8hteyy1x+kU4Ag1xpZzoSJRqB/eBfXJfwEWvB04XzcwwQAAIABJREFU94tQNzwIlXtOF2176NFy/w/8vnydFF4W8fjeEBERERERERERERGRFcPCiIiICjhaCAvLhc0ELKEzbgFOvZnKwsK0MKZ6k4PTys+BW3CXqsOvHLb3ohJ+A4VMP1OtA8wkGS8z9zWZpJMY7SEM60mZw8I6Q5Pq2m84YP7CWMIy82mjrqmxQrrvU5Zix3o8f4iIiIiIiIiIiKi5nXXWWUXLv/rVr5BKVTepxfbt23HnnXda+xkrpk6dWrS8cuXKmh178uTJw6+Hhoawfv36mh2biIiIiIiaQDUTRjrZmqc2Z4/vXeOW+hoAQLCKWrJMBi2OfPyEkCMUtkxuBwAIVFizkgv4yfisZ4u4jQeoPOCppa1s1YzUBn/HKAkcq1hBAFJamUOZxpd0dVAVc0gGtVNZ+NNoibcOv2xz+sTNVm2WDxHSHsKzKg2eqzevYWEtI+fp/bv/7Lub/9n8BSwY+ruxTVUSLjduvNy2/hW5LWkJUnQ5F6qlFeoTlyPw73cj8NV/lwP9WuSx6eWGoMWEMCav7w0REREREREREREREVnxm/NEREQFHCGEKZD7T6YpKCvPLcBpd7qyWdk15Bnc6kkKPzOFatnOCwAoVFEkJgjW+NcYv6FMylD4VusAM4lbMF0zSnuZubJBeoRZNzvDVVSFeRBW5gKphCVIze3e2tdI5yMlFDsqBBi4RkREREREREREtA/66le/WvTv+Nu3b8fixYurOub1119fFDg2btw4fPrTn67qmKPl5JNPLlpeunRpzY69cOHCouUlS5bU7NhERERERDTGbVoDwB5gJIlbwrwAVB7MBQA923BYcrXv3VzDuSqtWckF6uwKdvjbTXuYzLHSsLCu/YFps4pWvRw9zHW3Wam1Iwu1CgoqOE5CRc2blPyYLeY5Hj0JIV35eRsFqiAEa2JGrllNWUoQg14mM60kEKtaXsIKQx7f7Omzh19e3P2fvodiDVSrJEht4lS5LWPpK2F5NkZqFNA39zi5rb+3bJWWxsSwMCIiIiIiIiIiIiKimuA354mIiAo42jGuz4fNmIKyRva1F0j0pnsqGtNohYVJ4WemQKyAClgDwQLVzCgpHrO2IUq1CGUKNijYyYH5Om1mqSYJCxvM9GPQGTC2dYTqGxYWUuZCpISlmJFBV8Wk85F2zNdXkOePiIiIiIiIiIhon3T44Yfj7LPPLlp36aWXYuvWrRUdb+XKlbj22mv/H3t3Hh/XWd97/PucZUarZcmWt3iJ7cRxHDv7QkIWSJzQLCQsCSmhZUnZUmhpC5d7oZQEKAVK6S0tbSlQblkulLbABUoplFKgQIA2LAkhIXscssq2vEi2pJk55/4haaSRzjpzziz25/165ZWz/M45j+acGVvWT9+nZtvLXvYyDQ0N1T3GVtq5c2fN+qc+9SkdPHgwk3M/61nPqln/yEc+ksl5AQAAABwBzpr7XmTL5D2pDu32J6ILGugRMec/O1nQ1gKxYWH1BpgVpwN+rjn4xWzHI9Ud8GSMkfnNd9ds+909fxZ73HB5ZG6lkH1Y2K/t/1RgyciCb3HDgrEKEZM8zrL9SkeFhSX1iyfC+1LtJJOZNhLQl6eE92p+yPwpk7env4yiwsLS95EGTV5b9eQj4fuiwsKK2YSFma4eqXdJ8M7vfzX5mDIaDwAAAAAAAAAAR7s2/SkNAACtERbCNBskFRXcExY0NqvusLCY8+YlLPzMCvnrQ1TYlsnhrxzR10sfThYVBJdU1gFmYSpJmnHaTMlL0Iym/MPxRsu7Q/cNusO5Xts1wY1Ik154M2OzAug6Rdj7vhTS7JhFCCAAAAAAAACAzvS+971PPT091fV9+/bpec97nsbGxlKdZ2RkRNdee62mpub+HXL16tV661vfmtlYm+2kk07SRRddVF0/cOCA3vSmN2Vy7ssvv1ybN2+urv/whz/URz/60UzODQAAAKAN+A309qw7vrp45di/pDq0O2IyPkl1hfNU9Q3ISOr10n2/GBvOVW+A2UwY1skTd6QcT4LJHBt4ncyF19Ssb556MPYYd36gUjGjsDDHrQZVLavsCS3zvLlntRzSbnds6eH4y6nceWFhm7ZXF8OC+f71zvDDI4OwZllt2pdVx70yShZ+N19koFqdoXxasTZws/+VT4QfExUWllVAnyRzwxtC9/kLxzAVFhaW3XgAAAAAAAAAADiaERYGAMA8oQFZM407UcEzFUUHOB2oMyzMyzk8KfS6ISFlYaFaUUFq9YR3xcki3Gu+LEKFwoLUshb2nLazcpJmtCYYLQWHhRlZWuoM5Xpt1yoEbo8KC2tWAF2nsEM+Z0KDHnn9AAAAAAAAgKPW1q1b9Rd/8Rc12773ve/p8ssv1y9/+ctE57j33nt1ySWX6K677qpusyxLn/jEJzQ8nO8EFHlbGHb2l3/5l3rf+96X+Pj9+/drYmLxv287jqO3v/3tNdtuuukmfe5zn0s9xq9//et64IEHUh8HAAAAoE2V58K1hirpeum6/ZiwsEaCi5ZM9wyNW32pDivGhYVZdfaSje2XJPkpe+7cuPFI9YcYzVq9obq4zx6ILa8JVFsy2Ni1ZxhjJG+6V6grou/qvpG55VJIu12vfyj2erZf6bywsJlnSEp2nxaykvSs2m34ayi2M/181GG4Ej4JaRAnql/YqfN9dnBf8PZlq8KPmQx/D2QaztUf8Rzd+9Pa9bAxERYGAAAAAAAAAEAm2vCnNAAAtE5Y4MxsMFVUQFVcgNOBlA1Os/yQMeUtLPwsLHzHNuENDnmEhUWFk7XqfFkHmIXxYoLp2lEpSTNaE+wtBzf1DDiDkc9wFpyQ80/6hIUllfb1sDMIAQQAAAAAAADQuW688Ua95jWvqdn2ne98R9u2bdO73/1uPfLII4HH3XfffXrLW96iHTt26I477qjZ9573vEeXXHJJbmNulosvvlivf/3ra7a94Q1v0NVXX63bbrst8BjP83Trrbfqda97ndatW6cnnngisO6GG27QjTfeWF2fmprS85//fL3oRS8KPbckVSoV/fjHP9bb3vY2bdu2TZdeeql27dpVx1cHAAAAoB2ZYzZXl3eOfyPVsV0R/TWSGgsL23FuXYcVYsPC6hzTU9MB16dP/CTb8UiNh4U9/nB10Uvwawju/Akmt9f3OkfZNnV36L7xybnlckgLZo83HnsNWxUZu8PCwvbP9cg95axMdajtl5MVZty/mfCi0bsbCHVL+5lkR/UL1/s+OzwWvN2L6CGejAhSzDKc6+xLw/dNLHgfhY2pQFgYAAAAAAAAAABZyDcRAQCADlMJ+QG+mWlsiQwLiwlw2l+uMyzMTzBLWw7Cws/CwneiQnnqna0tipVxCFAWQV/NCnaq+K0JkGtE24SFlUYCtw86y3O/tmMKgdsnI2a4tMn2rZH2fZ91qCAAAAAAAACAzvOBD3xAg4ODeuc731n9mcvBgwf1pje9SW9+85u1bds2rVu3ToODg9qzZ48efvhh/eIXv1h0Htd19f73v1833XRTs7+E3LznPe/Rrl279I//+I/VbV/60pf0pS99SWvWrNGOHTu0bNkyTU5O6oknntDtt9+ugwcPJjr3Bz/4QY2Ojurzn/98ddunPvUpfepTn9Lw8LBOOeUULVu2TJZl6cCBA3rsscd01113aWIiJgAAAAAAQOc64+Lq4pkT4UHCQboi+mskSVb9PSKm2C1f0qkTP9VPuk5JfFx8WFidY/qVX5P+9ZM6tR3Dwq58qfTlv0tcPn9MptjV2LXnO+OZ0m3/oT4vJFxJ0liisLBDsZdy/HJDIVStYF70BvkffYck6Y2736s/Xv4/Eh/rJA0LaySgLy8N3KfTUr7fIl+net9n17xc+sJHFm+/9Svhx4ztC95ujOQG9yvWwxyzWWGdzP7t35M5c16wflhYWBdhYQAAAAAAAAAAZIGwMAAA5vEV3BVizQT2RAXVxAU41R0WFvoj9vz4vi8v7LUICd+JCuUxcTO61SHrEKAswseyDjALU0nakNNGSl57hIWNlncHbh9yh3O/tmuCm5EmvfDZ/ZoVQNcp0ob68foBAAAAAAAAkKR3vOMduuiii/Sbv/mbuvfee6vbfd/XnXfeqTvvvDPy+NNPP11/8zd/ozPPPDPvoTaVbdv6zGc+o5NOOknvfOc7VSqVqvsee+wxPfbYY3Wf23Vdffazn9V73/te3XzzzTUhYCMjI/r617+e6By9vb11jwEAAABAm5kXFGMkbZx6UA8WNiY6tNsP76+R1Hhw0fZztWn0gWzDwuqdYHPpdB+THdK/FzoeleKLGg0LW5puQkbXnxnTxdc1dt2F1m+RbvsPFf1JGd+TH9BL+K17fF1w/PQ9KIXMA9ubICzMlifZHdaDtHSuF25V+clUh9oxk+ZWNRDQlxun/nAsI2nL5D26p7gl2aWUfViYGV6bulvY//G3g3cUu7Of5HdgmbR/z+Lt//x/pBv/YG49LCysSFgYAAAAAAAAAABZICwMAIB5vJDAr9nAmajgmT/Z9b90THG91hQ3yPM97Sk9peHCKp27ZKckX4e98brG9LHH/0zfGN1UXR9yV2iZu0KHKmN6dPJhaaY9oNdeokFnmSSjRycfrIaMdVu9OqH3ZF249FfkGFdPTj2q7+77Nz08cV9oOFpUQFlYIFbUa2PUho0hC6QNIQo+R3O+zr3lEf3prjeraHXp+O7tumjwChWtDGdezEHJT9CMJmnXxH36011vljQdMreua7POG9ipNcX18n1f3z/wDf1s7DYdrOxTl9WjE3p26MKll8u1kjX6jJZGArcPOuka2erhmuAx7i6FN2Q1K4CuU1gpP0tsXj8AAAAAAAAAM3bu3Kmf//zn+od/+Ad99KMf1be+9S2Vy+G/2FksFnXZZZfp5S9/uZ797Gdn/wuWbcIYo5tvvlkvfvGL9a53vUuf/exntXfv3tD6vr4+7dy5Uy996Uu1fv362HO/8Y1v1Itf/GK9//3v16c//Wk9/PDDkcf09/frggsu0JVXXqnrr79ey5Ytq+vrAgAAANCGBlfUrD7hrEx8aLc3EV3QaFjYk7tUKgZPBBimGBcWVm+Y0tT017q8EjwpYuh4vMn4ogbDwkx3X7Wz8Fnj/6a36pbwWt+bC546GP59Zl1mQoeMFBgUJkm981q1pkK+/e/143s6bb8iOemejZbrngveXl1+ItWhTtKJTBt9z9Uj7t9m0t6ncy6TfvC16upD7obEh9p+RKhane8zf2x/8I7u8CB1s3R5cLfvRHwQXmpBQWGStHx17fpkyOc1YWEAAAAAAAAAAGSCsDAAAObxQmZFs2YaSqKCZ8Yq+/WLQ3foF4fumNs4Lv3H6D83NKZJf0L3Hf753Ib5ywndMf5fuufQHbp6+a/pzx55i8YqB+oeT1ioVtRr0wm/QBMVdpb4HE0KJir7peozcef4j3Tn+G167dpb5Frt2ZRU8Suh760g85/3ew/fqVv3/7t+Z9079IMD39Q3Rr9YU/uz8f/W3Yd+qlcf8/uJAt/2loOb6Abd/MPCHBN8f8oRQWpZhNgdSdK+T60mBfgBAAAAAAAA6AyO4+iGG27QDTfcoPHxcd1222267777NDIyoqmpKRWLRa1cuVJbtmzR6aefrmKxWPe1brnlFt1yyy11HfvNb36zqcdJ0saNG/WhD31IH/zgB/WjH/1Id999t3bv3q2xsTH19vZqxYoV2rp1q04++WS5brqfR6xatUrvete79K53vUsPPvigfvSjH2lkZESjo6OyLEv9/f1as2aNtm7dquOPP162zb+NAwAAAEcis2SoJtRmTflx3V/YnOjYbv9wdEG9wVyzDo/rvMqt+lL/VYkP6fZixlRn34rZdrb8z/11fBjZwvHEvUZSw2FhetqzpI/cIkk6feLHkaWuX1K1a3Ddlsauu1CC0KGJmcwr3/d1KOSlHEjQR2n75c4LCzv9GdXFnePfSHWonbTPrxVhYXFS3idzwdXy54WFTVnJ/x3IUUSoWp3vM3PsicHBX4cjQu284AmDc+EWpFLAm2nPgslSp4I/iwxhYQAAAAAAAAAAZIKwMAAA5vH84B+czwZhdXLwzO1jP9TB8v6GgsKk8LCeqNfGqLmvWz3hZEaNB5plEThWj3sP36l7D/9M23pPa8n140SFYSVx2BvXl/f8ve4Y++/A/XeO/0gPTdyrzd1bI8/j+Z72lYJntxtyhhsaYxKuVYgvWqCTP3PykDY8rVkBfgAAAAAAAAA6T29vry688EJdeOGFrR5KW7EsS2eeeabOPPPMXM6/ceNGbdy4MZdzAwAAAOgsb979Hv3Gmg8lqo0N5mo0uOiaV+iaf/y83rTynYkPyS3AbMup1cU37n6v/nj5/0g4non4IqfBXx3YvKO6aCRdc/CL+kL/1YGlhXlhZ+bpVzZ23QVMsacaqnTqxE/1k65TFtX85z2+3nS5NBmR6bTESxAWpkrnhYUNrphb9PZpSWW/DtgDiQ61/aRhYW3Y15Yy3FxX3Sj9yWurqy/Z9wl9bOmvJzrU8bMPC9Pa8PBEv1ySCXoOyyG9mcedXN8YIphXvkP+X/7PxTueeqR2fTLks7HYlfmYAAAAAAAAAAA4GrXhT2kAAGgN3/flKTgszMwE9rQqDCorD078ouFzdFs9Idt7I47JZ0awsLGc3Hd2dXmJvTSw5sz+C2rWHdN4hmrYeJrhwcON39u8lFLOchnk9rEfyg95f0rSQ4fviT3Hwco+VUJm9Bt0l9c9tqR6rL5U9a4pEHa1gJXy25e04WIAAAAAAAAAAAAAAADI0eoN1cWBBEFNs2KDsOzGekRMd6964gLJ5tf7nor+ZExRnW368wJ1jp+6P/FhsYFqUv0hRjOM49a81ucdujW0dszun1spZtw/OO81WlV+IrDkBw9O//9wROvaQGV/7KVsvyLZHRYW5rg1YV7XHvx88kOVNCysDfuyUt4nY9vSxm3V9SThcbOsiF7Gul+bqPfJU78M3OxXQkLL+gfrG0OUJUOhu/xd8/o3Jw4FFxXy6SMGAAAAAAAAAOBoQ1gYAAAzooKI7Jk/Mu2jPLhn0FmuYXd14L4TesJnItvSsyN0XyNO7jsncPsp87ZfvuwFgTXPHLyqZt02jrb1np7ous8aujZw+7Hdx6towmc/u2jpFYnOX49y1Ex1LVb2Qmavy5CXoElpb2l36L4hZzjL4QQ6sXfxDJZRTug5WVa9TYNHqLSBjZ0e8AgAAAAAAAAAAAAAAHBEefzh6uL60q7Eh3XFhYU1GFzk79+j4cpIqvGYuCKrzr6foVXVxQEvPsxqbkz5h4VJkipzfVrHlB9LdkxEyFBdCnM9ej8vnhhYcvbG6f9PRbSVLfEOxl7KUXk6fKuDGGMkb64fNixQLYjtJwwLazCgry4m5l1Xz33qnpsAtNsLCblaeBm/FP3+r/e9v2xV+L69TwZvDwsLczJ4ry80L+xxkV3zJrsthST0FcJ7awEAAAAAAAAAQHKkDwAAMKPih4eFmZnAmayDZ1YW1mZ6vjwVTFEvWf266UaSAM9a9nytL25etH11YZ2evfxFuYzpmuW/phXumpptz1n+Yq0ozG07b2CnTloQAnbp0HN1bNeWRed7wYqXa6mzrLruGFfbek6rqTm2a4suG3pu4Hgc4+olq39HVkCo3LkDl+jaFb+hC5b+SvwXVockYVmtMuVHTM/YRKPl4LAw1xTUO38my5ysLqzXlct+NVHtoLNc1634jZxH1HmslN++pK0HAAAAAAAAAAAAAABAjnqXVBdPm/hJ4sNcP2aywgYn5DPbzlIxRY9Tt5cgmKvOMZmunuryRYf+M/Fx3V5MoJqUecDT5WNfTVa4ZlOm19WZF1cX15Z+GVjy1IHp/1fC20LV543FXsr2Kx0XFrbQdQc+m7jWTtqH2I6TYLqF9McsGawuPnvsy4kOceImdq03LGz5mvB9EyFBZuWQz8YsggEX2nFe+L7ReWGLYWOq5/4AAAAAAAAAAIBFcvgpAAAAnclXeFeIPRM4k2XwzLXDN+qiwSt076E79dDEvfri7k9mdu60Tu47OzDoa9agu1wn9pyqpe6y0Jpeu1+/t/6PdO+hn2nX5P3yfV9ruzZqS88OdVndeQxbS91l+l/Hvk/3HLpDe0pP6fju7VrbdWxNjWsV9Opj3qz7D9+lRycf1qburVpf3BwYeraisEZvOfb9uvvQ7ZrwDmlrzykacof12OQu3XvoZxourNZx3dtUsIqhYzq1/2m6ZeNf6e5DP9GB8j65VkGbu0/UsV1bZBlLv7riVXrakot13+Gfq+RN6sGJe3Tn+G2Jvt6rlr1Q/3Xw23py6tFF+7ykM/q1QLkJYWG+78fWjJaCZ/8cdJaHhuBlyRijK5f/qk7uO1v3HvqZJkKaBlcV12lrz8nqsfsC9x/N7JSBjWnrAQAAAAAAAAAAAAAAkB9z/e/I/+jbp5dTHBcbFtZoCNbwMZKkcw79QD/oOSe2vNtPEMxVb2CQJPX0S4cOaknlQOJDuv0EAWZZBAidcr700+9Ikga8hOMrhPfb1WXpcHXxyrGv6Hs9i0OMfvzI9P+9iLayPm889lK2vM4MC9txnnTH96YXJ+9MfFhsENYMY7VhX1Y996l/qLq4ffLnyS4TGxZW32tjjFHY4+p/8o9l5oXkVVVCxpLDM2scN3x8f3yTzLNvnF4phfSLduL7CAAAAAAAAACANkRYGAAAMyoRYUvWzCxoxhhZsuRFBIsl1WsvkW0cbe09RVt7T9F3939Ne0pPNXzeepza9zQ9bSCgkSClglXUSX1n6KS+MzIYVTJdVrdO7js7ssY2jrb07NCWnh2x5+ux+3R6f23z0Jrieq0prk88puWFlTq/8KzAfcYYbezeoo3dWyRJDx2+N1FY2NaeU3TF8uv1yOSDgWFhFb/xZzIvpbhmvSbZWw4OCxtyhwO352Vd1yat68p4tsyjhJUy/MtSGzalAQAAAAAAAAAAAAAAHK26aiedXFV+Qk84q2IPsxUzkWIjwVySVOiSJK2oBPcXLZQomMs0MKahFdKhg3JVluOXVDbxITvdIRMX1sgiLKw75QSIxe7sJ3Iszj1HXV54cNvhKV+ViLa6Hj8+LMzxy42H0bVCb3/N6mBlr0btoZDiOXbSSUsbfc/lwa4jjGpg7jVJ9B6S5CgmLKyR56V/UDo4unj7T/4zuD4sLCyL93qQdcdLj9wbuMufnJApdkmVkH5Rh19dAgAAAAAAAAAgC234UxoAAFrDjwgAmx84kzasJoxtan/wbVLNlZitrL4mpGclbISafT7skCYyL64hroVKXshMcU02WtoduH3QXd7kkaBeacO/+GwDAAAAAAAAAAAAAABoH/6B2hAcP0HPXMGbjK9y6ggJmm/tZknSQGV/ovJEoUKNhCn98v7qYpKgMEkq+gl6tLIIELo7fmLMGpPJAphSmXe/eyKC20YOSp4ffpo+byz2UrYqjT9frXDXf9esJgkKkxIE882yWtCXFddrWU8Y1RO75g5P+LU7fkxYWCOvTVBQmCQNrgjePjUZvN0p1D+GKDPBioH2zYQtlkI+i/IaEwAAAAAAAAAARxnCwgAAmFGJmBHNmhfQZKcMqwljLwixMS38YzltAA+yk/S+m5lnMOxeeUln9GuBsh8yU1yT7S2HhIU5hIV1irCwvKzqAQAAAAAAAAAAAAAAkB9z6vk16y/Z9/HYY1wl6D0qdtc7JEmS6R+UJL3owKcT1XdHBFRVNRIWFhXIE6Loh4QGzZdFWNhJZzd+jgaZeaFRO8f/PbTucEmqhM8hq17vUOy1HL/cmWFh2+q7T7FBWLMaeb7z4qYPozJnXpz6mNhQsUbCws7aGbx992PB28PC+Lp66h9DBHPVS0P3+Z94t3zfl8ohn9md+D4CAAAAAAAAAKANteFPaQAAaA1P4V0h8wOarIzCZxaHhcXPkpgXAnVaJ+l9n62zTHAjSSXpjH4tUEoya2UTjJZGArcPucNNHgnqlTbYkCBEAAAAAAAAAAAAAACANtI/VLP6yn1/G3uIm2SiwkJjYWGSpLMu0bmHfpCotNtLEBbWSE/epS+sLr589KOJDkn0OmUQFmZ2nJfugOe+quFrBtp5vSRpoHIgtOSLP/Xl+eGn6PPGYi9jqyLZnRdyZE5+es361Qe/lOg4O6KPtkY7hoXVE0a1cl3N6pt2vyf+MnGBag28Nua614bu80cD+h+nQj6LiukDBxOZ99m0yBc+It3xvfD9dYS5AQAAAAAAAACAxdrwpzQAALSG54eHLc0PCAsLa0rLNrWNN6aFgV0E6rTO/FkOI+tmwsLskHvl+QmbdFqgHcLCSt6UDlb2B+4bcggL6xRpwxqz+rwGAAAAAAAAAAAAAACApGWrGju+WBvq1ZMgdCtRCFYxg7Cw/kF1+wlCwCR1+xPxRY2EKRWL1cWuJNeSVEjSo5VBWFjq17qQU2jRzDh6/EOhJd9/wFcloq0uyX20/Up9IVStVijWrHZ5yZ4jO6KPtobVir6smF7LekLdFjyfPV748zQrPiysgdemqyd83w//bfG2yZDPrCwCFINEjU+S/63/F76zA0P3AAAAAAAAAABoR4SFAQAww4uYEc2a90dmWFhTWgvPY8U1MuSIQJ3WMQn/OjYbkhQWlhQVdtdqJS//sDBfEVNAShot7wndN+guz3o4yEnaYEOLb3cAAAAAAAAAAAAAAAAyY176+8E7Lr422QnWHlezOlwZiT3EjQvm6e6V1h2f7PpR7vpv2RE9hPMV/cn4okYmD911T3VxZfnJRIe4inmdpGzCwraclq6+nCDsrR4P/EyS1BVxL4qOkRfRVpYkGMvxy50ZFrZkWc3q5tIDiQ6zkzxHkmS3Yc9pPfdpaGXN6vbJn8ceYivmuWkkLGzzjvB9e5+oWfVLU9L3vxpcm0WAYgATd96vfCJ8n1vIdjAAAAAAAAAAAByl+O15AABAJkwjAAAgAElEQVRm+H5EWNi8MK2sgrUWnse0MCzMJiysZZLe99m6sOevEteA0kKlJLN75my0FN5YOOgQFtYp0n7+EoQIAAAAAAAAAAAAAACQoeNPlXacV7vNcWWe/RuJDjfFrtr1BMcU/JiJCq9++aLz1uX8qxKXukn6oaz62/TNeVdUl6898LlEx7hxr5OUTVjYSeekKjcXXN34NYPOe96V1eWCFxwY9tAeX5WI/LfY0CdpOkCuE8PCTr+oZvXF+z6Z6LAkAWqSGgvDy0s9z/eKtTWrl43/W+whTlyAYQNhYWbJUOg+f/fjc8uHx+W/4dnh58kpLEySVIj4vD04Gr6vE99HAAAAAAAAAAC0oTb8KQ0AAK0RFbZkzfsj08roj0/b1DYmmBY2T2T1NSE9K+F9r4aFhdwrL2mTTguUkjSiNchXxBSQkvaWg8PC+uwlKljFPIaEHKQNNrTbsSkNAAAAAAAAAAAAAACgQxnblvmTL0rXvVbatF16+pUy7/m8zJkXJz/JltNqVq88+C+R5YHBXKs2SNvOlrnpj2Re857k145g1m2RJD390Hdja2MDzKSGAoO0/Jjq4jHlxxIdkijALIOwMGPb0WFBCw2taviagVZtqC7+9t4PBJZ8/wHJi2grs3xPF45/O/IytiqdGXLU3Vezelzp/kSHzQ9QMze+Nbywkec7L/U83wtCtYoJ3tvxYWEN9qyddlHw9n/487nlL3xI+tE3w8+RRYBimGteUd9xnfg+AgAAAAAAAACgDWUwPRAAAEcGzw+fQs6aF1CTNqwmjK3a85hE8yTmI2lgFbKX9L6bmZCwsOfPU8QUiC1WTtKIlrPR0u7A7YPO8iaPBI1IG2xoqQ2b0gAAAAAAAAAAAAAAADqY6emX+e331X+CBYExvd54ZLmr2t4j89aPyVz6q/VfP0xhesLB2CAgSa5fng7MmpoILzIN9APacz0vXX7ENeZJFmCWUZ/gkiFp93SI2erS43rcXb2o5NxDt04v5BVaNC/kyY7onatEtNXZqqg75vV1/HLN/egYXT01q0mfxurzv/3c6HvXitck7j1VT4CZu3ii0b7KQY3Z/aGHOBETE9c9jpoLhIRq9S2tLvr/N+YzeEEIWqZ6wl+bSISFAQAAAAAAAACQCcLCAABHlf/c91V9e99XAveVvPBmmfkBNVZWYWGmjcLCCNRpmcRhYTONLmH3quLHNKC0UNR7q1lGyyFhYS5hYZ0k7edvVp/XAAAAAAAAAAAAAAAAyMjPf1izet7hW/UPA9eFlrsLw7t2nJvHqKTjTpEkbSjtii0t+FNS75LosLBGgrlWbZg7jXwNl5/SiLMi8hA3bkJH26n2oDVsJihMkl544O/1p8t+d1HJjfs+Nr2QV2jRvCCrffbSwJKlPZLnh5/C8j3d1nVa5GVsv9KRIUfGLSjiSw9lzwZh/exW6dLrIy7QhhPUOul7xYxlLXqdev1DGlNEWFhcoGCjQWpPhnwG9S6ZW943En2OHMPCzBnPkP+xP0p/YAe+jwAAAAAAAAAAaEdt+FMaAADyc7C8T49OPhT431Olx0KPs+Y1NmQVrGWb2sxO08LmiYXBZWgek/CvY7OBdWHhR147h4UlmbWyYdGtTXtLwc0xQ85wHoNBTuyUn79p6wEAAAAAAAAAAAAAAJCzi55Ts3r9gX+KLK8JwbriJTLzgrQytekkSdJNox+KLXX9ktQbHiYkqbEwpeE1NatvG3lH7CGFBGFhmTlrZ3XxlaN/q9Wlx2t275i4Q889+IXpldzCwubOe9nY1wNL9h2SKl74KWxV9Ov7/2/kZWxVJPvoCTmyZ/sQL3lB9L2z2rAvK6Nn/C273xV9GcWEhTXYC2yuelnwjid3ya8k7BPNMSxMO86T3EL64+o5BgAAAAAAAAAALEJYGAAACcwPaLIzCvVaGNBlKaNZ++oQFkCF/CWdrdHMPB9hz5+ndg4Li2lEa4LR8u7A7YPu8iaPBI1I+1llteMMlgAAAAAAAKhL0L+lel7Eb3sCQAcI+hxL+rMjAAAAoGNt2FqzOlzZrb7KwdByd3aiwrXHyfzPD+Y3Lmc6EOr4qftiS11/SupZEl1kNdC3siDo53kH/1/sIYW4CR0zDAszO86tLh9XekDfevgSvXH3e3XFwa/olpG36+u7LtdSb/90QV6hRfOCh/q9A6FlP3kkfBJKS552TN4ZeRnbL1efjY5z4lmpD3Fm+xDXb4kJC2tBX1bc98v1PuOnnF+zesn4NyLLHT8mLKzR12bNpvB9d3wv2TkKXY2NIYJxXJm/+mb6Azv1fQQAAAAAAAAAQJvJcIogAACOTK4pyDVzP6S2lE2wlr3gj2HTwgxPi/zQljEJQ+JmfzEk7Pmr+O37S3GluEa0nPm+r9FSSFiYM9zk0aARacMaCUIEAAAAAAA4clgBv2RXKpVUKBQCqgGgM5TLi3/BOOjzDgAAADiSmGKPFsY3DXr7NGb3B9a7MxMVmhf8lkyOf182xsiX1OuNx9a6fik+uKiRSe4KtSFNfd5YsjFFsTPso+nqqVndVHpIfzRyc3BtXgFBvQPVxYGIsLBv3BUeFmbL06Affux0TaVzQ46mJlIfYvszYWGlqehn+FB4wF/L1BsWVq597wxUop+J2LCwgWX1jWNWb0QQ4Y+/LX/b2fHnyCukb9bgivTHOPw7LgAAAAAAAAAAWaDDEACAGMf3bJdt5poIsgqfsRecJ2loVB4WjgXNkzSobTZMLuz582abdNpQ2YtpRMtAeEuXdMgb06Qf3Pg05C7PZ0DIRdpQRTujcEcAAAAAAAC0njFmUTDYgQPRv7gHAO1ubKz2F/4LhUJ1AhkAAADgiHXqBYs2PeKuCy2vhmAVcg6/mb2eYoKAJBVUklZtiC5qINjMOLWhR13+ZPyY4iZ0tDLsozntosSluX2Ps3FbdfGUidtDyw5GvHR2saAeO/p+234Hh4Xdf0fN6rmHbo09ZDYIy3T3SWuPCy8s598TmFq9YWE9tUGFKytPRZY7UZ8RW06TGVpZ3zhmnXRO6C7/o2+XDo7GnyPvsLAVa9Mf06nvIwAAAAAAAAAA2gxhYQAARFjmrtALV76qZltWwVoLQ59a2fhvEajTMknv+2yYXFj4kaf2DQsrxTWi5Wy0tDt035Az3MSRoFFpP3+zCncEAAAAAABAexgYGKhZP3DggMrl+F/gBYB25Pv+otDD/v7+kGoAAADgCLL9aYs23bT3b0LLq+FdeYffSNWQnvMPfSeyzPVLNWFVgRoIC6tHNVQtTJb9iSecnqzOLcTX1MlYVjUcyononbv7iYhzFLvV7URNUzlz7k4NOfqVX6tZ/cORm2MPqQZhnXS2tKzB0KtmqzMQzzzv1anqnfkTu84PKOvqkXnte+oaQ814unsj9/uvvyr+JDl/XhpjpOtfl+6gTn0fAQAAAAAAAADQZuqcPgUAgM50Yu9p6rJ7EtWuKqzV5u4TVbS6arZbGWVtLgy9MS3M8CRQp3WS3vfZUDHLBNdX/HYOC2vtLIJ7yyOB2y3ZWuIsbfJo0Ii0wYZZfV4DAAAAAACgPQwMDGhkZO7f+zzP08MPP6x169apUMjvl08BIGu+7+vRRx9VqVT7M5QlS5a0aEQAAABA8xjLkl/okqYmqts2lR4IrX/A3Ti9UOwKrcnMCadLd/5Azxj/tr7Tc35oWcGfkukdVmTMVEifV2Lbnyb97PvV1TMO/0i3dYeHdBUUFxaWXR+NMUZ+V480cSi6cPu5mV0z0PWvkz71PknSs8a+pq/2Xbao5OE9wYfaflkq9sSGhdl+RbI7NORo+Zqa1eFy+KSbsxx/Jiysq0cqNOE9l0Zc4J1d56/GLFu9aNOxUw/pocKxgeXV1+i618pc8RLpu1+eDsY7/yqZ9SfUN4aFdl4vff0zwfvuvyP++K78wxXNM54n/zPvT1ZsOy2dUBkAAAAAAAAAgCMJYWEAgKPKxu4t2ti9paFzZBWsZS/4Y9iodT8ItzNsBEI6Se/7bOhR2PPnyctsTFkr+VNNuEp409ZoKbjJaakzRFBeh0l7vxaGMgIAAAAAAKCzua6r3t5ejY+PV7dNTU3pgQceUE9Pj/r6+tTT0yPbtvnlMwBtx/M8lctljY2N6cCBA4uCwlzXVbFYbNHoAAAAgCabFxQmScsrIYlOku4pzvT71RsElMbU5Mx4okOVXL8k9cSE/VoN9uTtr31Ner2x+DHlOZ6F4oLCJKmYc2BRaa4vbY+9LNWhljyp2KXu/U9IA+F1jsqS3aE9SIcO1Kwuq+yNPcTWzKSlvUuk7r7wwpPOaWRkuTD1fkZ0LZ6A2Ivoqa2+Rgf3yxx3snTcyfVdN8qSocaOz/u9J0kDKd5zLhM9AAAAAAAAAACQFcLCAABIyVZGYWELQmysFv7ikpXR14T0kv7C2myoWNjz5/mVzMaUtZLXjLCwcKMhMyIOucNNHgkalTbYkDA4AAAAAACAI8/KlSu1a9culcvl6jbf9zU+Pl4TIgYAncQYozVr1hB0CAAAgKPWzvFvxBdt3p77OMz64+VLunT83yPrCv7UdJhS5MkaDOd67MGa1Q2lXfFjih5QY+OpR86BRWbz9uoUk0856XrBbL8iFbvVfSg6QMs2fsd+r2aWDtdMwbmy8lTsMc5sH+K6LTK2Lf+cy6QffK22aNlqadvZ2Q00K/WGhRW7Fm06buo+7XLXB5ZPmJmg7/6IlLkGmbN3yv/cX9d/gkITwsLWHpe8thnhZQAAAAAAAAAAHCUyniIIAIAjX1bhM7apbUwwLfxjmUCd1rES3vfZ5yPsXlXaOCysHDdrZc72lkYCtw86y5s8EjQqbbBhVuGOAAAAAAAAaB/FYlHHHnusisViq4cCAJkwxmj9+vXq6elp9VAAAACA5rn42prV1eUn4o/piQnnysLpz5QknTB1b2SZ65el3v7oc1kN9gM+/zdrVo+buj9mTDE9Wo2OZ6ETTo+vyTsgaNs51cWX7vt4qkMteVKxWz1nXxBZZ3dmTti0rWcs2nTlwX+JPMTxpwP6jT3dd2V+98+klfNCs7p7ZW7+mEzWz1MiMTfDrrNXLCBY64+eemto+UFr+r1vTr2wvuslce4VjR3fhHAuY0yyzwFJcgr5DgYAAAAAAAAAgKMIYWEAAKRkNTrj3+x5FvwxbFoxc98MAnVaJ+l9n52dMCxczFP7hoWVYmetbJzv+6H7Rsu7A7cPuulmk0TrpQ02zOrzGgAAAAAAAO3FdV1t2LBB/f0xv5QLAG3OdV2CwgAAAHB0mh8+lFQTwm9U7Koubp/4WWhZwZ+Suvuiz9Vg34rpW1qzfvzUfZH1BX9KWrs54oQZ9yeuSnAP572euZh3/n7vYKpDbb8iFbvVPTQQWedY4X1pba9r8fea5x7+fuQhjspS39xrYo7ZLPOx22Te/VmZt35M5u/vkjntosyHmgmrzj7YgM+WDaVdoeVj1sx7P8fnu+EwtmZ8XkrSmRcnq9vzeL7jAAAAAAAAAADgKOK0egAAAHSaLIK1bDnV8KdZpoWhNgTqtE7S+z4bKmaHhCV5vpfZmLJWipu1MmejpeCwsCFneZNHgkal/fy1CEIEAAAAAAA4Ytm2rbVr16pSqWh8fFxjY2MaGxtTpdK+EysAgCQVCgX19/dryZIlKhaLi35mCAAAABwV9j6Z/hi3kP04FhpaWV2csMKDgHzHldxi9LkaDftRbUjViVN3R1bb8qRTL5J+eX9wQdY9goUEYUR5BxYtnZsscnX5iVSHWvKkQpd6uqJ/naKjw8KWrV60ySj663H8sjS2v/aY3iXS06/KdGi5cOr81ZiA4L+Byv6AwmmHrZnnOu4zoFFn7ZT+6+vpj1s6LGM3p2/OLF8d80QBAAAAAAAAAICsERYGAEBKVkhYUxpBgU+zYVCtkMXXhPokve9G081aYfeqovb9BbiyP9Wya1f8ivaV9wTuG3QJC+s0aYMNw8L1AAAAAAAAcOSwbVtLlizRkiVLJEm+78vzPPk+v6YGoL0YY2RZFuFgAAAAgCSz7vjUATPN+Lu0WTJUHdf5h76n+wrHBdZVnC6pqyfmZA2Gc516Yc3q9sk744/pjhhTw+FlCyQJAss5LMz09FXv12Vj6UKVbL8iFbtlFbs0UNmn/fbSwLpu09qJMhuy7vhFm54x/u3IQ+w27kOMZdf3qzHGcRZ9HhWU4L5v3FbX9ZIy518lv56wsGYGu517ufT+1zfvegAAAAAAAAAAgLAwAADSsnTkhYXZGXxNqE/S+27NNLuFPX+e375NOiWvdWFh+8t75ckL3DfoDAduR/tKG2xIECIAAAAAAMDRxxgj2+bfhQAAAAAAaGubt6er33BCPuMIcuqF0k++rdft/Qv93dIXB5ZU3C6p2BV9nkbDuY7ZVLOaqMusqzd8X9btiXFfvySTc1iYpOmAqEpZQ95oqsMseVKxW6bYrQ8/fpNesPbTgXVdppzFKFvCGLMoBGtDaVfkMbZfls66JL9BNSIuMLDOsDBJ0o7zpDu+l+6YvJ/va14pfeHD0gMJggJnnXqhzG/9cX5jWsAcs1n++c+WvvOlpl0TAAAAAAAAAICjXcZTBAEAcOSzG53xT8EBNlYG560XgTqtYxL+dWw2VCzs+fP84ECsdlDyWxcWNlreE7pvyF3exJEgC1bKb1/S1gMAAAAAAAAAAAAAAKAJCvFBUzUGV+YzjiDrjpMk9XljoSXGceKDghrtBww4/8kTt0dfMjIsLOM+miRBSWnvcz1WH1tdXFl+MvFhtrzpwLOubq0qPxFaZ9mtmwQ2Exu21qx2+4cjyx2/LPUP5jmi/DQSFja8JnlpeWR6oZBvWJixbZk/+LvkBzz9Spk//5pM75LcxhTEXPmSpl4PAAAAAAAAAICjHb89DwBASlkEa9la3JRgMp+6LzkCdVrHipvtbsZsqJil4OevokpmY8payS+17NqjpZHA7UXTpW4rojkObclO+fmbth4AAAAAAAAAAAAAAABNsGbjok0v3ffxwNK/evy3pkOdmsVxJUmryk+qywsOVjr/sS9KAzETFVoN9q30LV206RX7PhpYeuH4t6cXlkWEqiXsU0vKBNzDhfyDo5leM9DjD1UXn3SSh8pZvjcdeFbsVrc3EVHY4f1HD99ds9rvHYwsd1TJPQQrN42EhY08tmjT2Yd/GFh6476PSbY9HRqYt5XrktcOrpTJ+H2eyJpN8TXPe3X+4wAAAAAAAAAA4ChBMggAACmFhTWlERRg06rALktWaxoEICl5SNzsPQoLq/P89gwL831f5SaEhfnyA7fvDQkLG3KHee47kEn5OZlFuCMAAAAAAAAAAAAAAACyZdYet2jb8w58ftG2bu+QLh/71+lQpyYxF1w9fW1/Qlcf/OdF+0+cvEvbpu6ScQvRJ7Ia600y9uK+l6sOfjkwwOwFBz47vdAVMXmiybg/8bwrYkvMSedke80gJz+9rsNclebCwvzgUDhJ8q0mBELlaUGPnBXSZzfL9ivNDedLI67fr5Fgt1MvWLTpBQf+adG2Xm9MV4z9a9MC1Uz/YPLasy7JcSQRNm6b/i+CecbzmzQYAAAAAAAAAACOfISFAQCQUlDQVxbnaFVwEWE6rZU0/Gi2Luz589SeYWHNCAqLMlreHbh90B1u8kiQBctYqQLDsgh3BAAAAAAAAAAAAAAAQA4WhGFdMf5VfeDx12l5eXpywI1TD+rLu67RuvKjTQ0L0/GnVhc//PhNes6BL8iZ6YE659AP9JVdV8tcfN10wfAx4eexMmjTP/vSmtV15Uf1z488RxumHpYk9VcO6M27361X7fuwNLAsOkwpi/HMY4aPiT/n0MpMrxk4jue8srr8/AOfS3yc45dlij1SsXs6ICvMnscbGV7rXf0bizb97ydeH1ruqNzc91uW7PqD3cwpi0PnXrf3A3rD7vep1xuTJG2aekD/sutqrao8KRWaF6hmXvPuZIXrT8h3ICGMMTJ/8iVp+9OC97/pwzKnXdjkUQEAAAAAAAAAcOTq8KluAABoPiuDGfZss/iP4DQBOFmyCdNpqaQhcUbTdVbIc1LxvczGlKWSP9XS64eGhTnLmjwSZMU2lsoJn3c76xlRAQAAAAAAAAAAAAAAkI3VG6Vf3lez6dX7PqxX7vuInrJXTAfyzCo0Mbyoq6e62Osf0j89+kKNmV5NWkUtq+yd3uG40//vH5RGHg0+TxZ9K/2DizY949B/6v77T9SjzhqtLD8pZ3aSyYFl0dfMYzLTs3ZKP/ha+P5mhE4V50KberxDiQ9z/PL0sYWu6YCsEN2V8YaG13LFnkWbBrwDoeX7rAGp6Oc5ovw0EBYW9DoZSe8e+QO9Y+RtGnGGtaY8LziumYFqy1Ynqys2L8BsIbNircxff0v+/j3S6FPTn0dTk9KKtS2bSBkAAAAAAAAAgCMVYWEAAKRkZRCuFRTQNRsG1WxZhJ+hMUaWfEWHH1kzDROWCX7+fHnyfK/t7mezwsJ8BTco7S2NBG4fcofzHA5yNP0ZHN6gt7gWAAAAAAAAAAAAAAAAbWdBUNgsS35tUJjU3BCcgBCgPn9cffNDo2ZDiaICg6zG+7jMxm0hXVHSMeXHajfsuif6mnn0lbnF6P3NCFTq6q0u+il6MB2VpUKX5HnaUNql4fJTGnFW1NS4/pQuHf/3zIbaEo89sGjTqvIToeW77eXSk3fkOaL82A30im04IXSXq3JtUJgkPfVI/ddKa+O2ZHXNDDALYQaWTQeFAQAAAAAAAACA3LRXmgQAAB3ANo1nbQadw7Toj+Ww8Ck0T5KguNnnIyhoblZc4FgrlLxSS68/Wt4duH3QISysU6X5zOLzDQAAAAAAAAAAAAAAoE119yWvLTQvLMyYBIFTToKwsCzCuZ75/OS1/YNS1NiTfF0pmct/PbqgGeFF80Kerjv42cSHOX5ZcguSmZ7q86X7Pr6o5toDn9MS72Amw2wVc8YzF2078/CPwuvlBx7TFuKeYbv+3l4zuCK+qFU270hW1wZhYQAAAAAAAAAAIH+EhQEAkJKdQROPHRBgk6jJKAdR4VNoDivBvZ8NFIsKP6r4lczGlJWSP9Wya096ExqvBDdrDbrLmzwaZMVK8S1M0GctAAAAAAAAAAAAAAAA2sAlL0he2+wQnIuvjd4/G0rUFTEuq/E+Q7N+S/LiZz4vJiwsh18b2HFu9P5m3Ld519g2eVfiw1y/LDmF6mv2zpGb9fsj79LGqQe1pvSYXrP3r/W3j70q8+E23Yp1izbZCu8zNPKlZavyHFF+GggLkyQtW5289tIXNnatFIwxMu//anwhYWEAAAAAAAAAABwVGvyJCAAARx8rg3At2yz+I9hSa8LCosKn0BwmQfjRbFhYVFidJy+zMWWl7Jdadu3R0u7QfUMOYWGdKs1nVpL3FgAAAAAAAAAAAAAAAFqgUEhcatzktZkoxITuzIYSucX8x7J+i7Trnvi6Ynd0QFkG4WWB12xkfyZj6Kku9niHEx9mqyy5BalvQJJkydfbdr9Db9v9DvlSi7o5c9DVs2iTHTEpqZE6N3TKbrAXtm9A2vN4stpmv0bL18TXFLryHwcAAAAAAAAAAGg5fnseAICUsgjXCgoca1WojcVfB1rOJGgtMjMhYVFhdV5EE0+rlPypll17tBweFraUsLCOZaf4zLIJQwQAAAAAAAAAAAAAAGhPh8YTl/oH9uY4kMXM5pOiC2ZDeSrl8Jrxg9kM5tH7k9W5RSliIkqZ7OOvTE+/tO744J3HnigTEFSV+RgKc4FtKypPJT7O8WfCwnact/icmYysTRx/6qJNtqLCwvw2DguLuTNRz38SD9+dvLbY5GCuNZuk/sHw/SecLpNHICAAAAAAAAAAAGg7/EQAAICU7IiwpsTnCAiwMTk04yRBmE7rJQoLm6mJCqurtGVYWKkp1/HlL9q2tzQSWLvEXirXcvMeEnKSJrCRMEQAAAAAAAAAAAAAAID2ZJ7x3OS1Zzwzx5EEuPSF0ftnwpTMpb8aWmLOvjSbsVzzymR1jhsdCNZokFLYaa9/Xartuejpn75mikMcvyw5roxbiC68KPlz2o7M4PCibXZEn2F7h4XFaLQH97wrktc2+TUyjiNz3WvD97/gt5s4GgAAAAAAAAAA0Er89jwAAClZGTTNBIaFtWg+ujTBO8iHSfBMzYYeRYW7eREz/rVK2Ztq2bVHy7sDtw+6ixug0DlShYXx+QYAAAAAAAAAAAAAANCelq9OXts3kN84Aphlq6L3d/VML6xYF16U0ZiTBqUZx5WsiD60qH0NMNe8Qubmj0tPe5a0ZqP0tF+RueWTMle9LJfrBXruq6qLm6YeSHSIo7I0GxR24pnhheu3NDKy9rC0tl/OjugznA4L68p7RPlosLfXnHZh8uJWBKq99Pdl3vAB6fRnTL/X1myUzrtC5g8/I3NZTMAhAAAAAAAAAAA4YjitHgAAAJ0mi/AZ2yz+I9i0KMPTEmE6rZYkKM7MzHpnRTwnlYgZ/1plym9dWNje0kjg9iFneZNHgizZKT6z0tQCAAAAAAAAAAAAAACgibp7k9cWWhBeVChKU5PB+2bDlAaGwo9fmtGEhklfJ9uNDksy+U1manZeL7Pz+tzOH3v9Yrf8lMc4fkVyCrNnCC+0joD+I7u2X9WSF1pqfL8177csNPqMd/clv1QLwsKMMdI1r5C55hVNvzYAAAAAAAAAAGgfrUklAQCgg2URPhN0DpNjM04Uu8HZ1NC4qACwWbOBYlFhdZ4f3sTTKuWmhYUtbvcaLe8OrBx0CQvrZFaKz6wswh0BAAAAAAAAAAAAAACQg7XHJ69tQTBPaFCYJBVmxrP+BGnVhsX7l6+RtpyazThOPCtZnetGhyUdyX2C88KtHihsSnSI45cldyYs7JF7wgutI+B12/N4zWpsp2o1RK3NxPXYNtqDe/LTk9cWOzRQDQAAAAAAAAAAdLwj4KdXAAA0V1XeIS0AACAASURBVBbhM7ZxFm1LEhiVByuD8DM0JklQnJl5PqLC6jxVMhtTVkp+qWXXHi2FhIU5Gc3aiZZI85lFGCIAAAAAAAAAAAAAAEB7MmlCmFoRzPOiN4TvmwkvM8bIvPyW2pCimW1ZTR5q+gaSFTpudCBYiyYzbYp5YXI37P90okMcledCsZ776tA6cyT0H133W4lLLXnTz1InavReHXti8tpiT2PXAgAAAAAAAAAAqNMR8NMrAACaK4tQr6DAMRM/X1susgg/Q2OS3PvZ5rGo+1Xx2zAszJtqyXV939doOTgsbMhd3uTRIEtWiqYuwhABAAAAAAAAAAAAAADa2Lazk9UVuuNrMmZOuzB857xwKvOsG2Te/1Xpua+SrnmFzJ/+i8yVL8l2MMtWx9c4rhQVwHYkhF6FmXc/Tpm4PdEhjl+W3OmwMLP2uPDCNKF2bcqceGbyWvkdHBbWWA+uMUY66ZxkxcXmfyYBAAAAAAAAAABIktPqAQAA0GnsDMK1gs6R1UyCaWXx9aAxJkEA3WygWFRQkqf2Cwsr+6WmXMf3a9fHKgdU8oODygYdwsI6WZqAQ8IQAQAAAAAAAAAAAAAA2tjURLK6Yle+4wjStzRi30DNqjntIpnTLspvLJOH4mtsNzoQrEX9iU0x717ZCXvo5oeFLWo+m8efPNyiaWBb46zD/y05L2v1MOqTRbBbV0+yukILPpMAAAAAAAAAAACkBMkUAACgRhbhM3ZAXmeSwKg8WPx1oOWSBMXN3idb4c+f53uZjSkrYYFdeRstj4TuG3SHmzgSZC3qPbColrAwAAAAAAAAAAAAAACA9tXVm6zOLeY7jiAnnC71Llm8vdAlbX9ac8cytj++xi0c2YFgUU69oLp4+uEfJzrEUXkuhG7dceGFk4cbGVl7WL9l0abnHfj8om0Fb1IvOPBPkuM2Y1TpxT7fGTz/xe5kdbNBcwAAAAAAAAAAAE1GOggAAClZKYJqwgQF2JgWzT+XRfgZGpPk3s/WRN2vip9sVsRmalVY2N7S7sDtjnHUbw8E7kNnsKJmQF1Yy7c7AAAAAAAAAAAAAAAAbctc99pkhU7zg3mM48r83p9L1rz+E2Nkfud/y3T1NHcwl784vsZxa8d6FDGDc5NHnjR1V6JjHL8sFWaCoZavDi8st6b/LVNLF0+u+YcjN2tN6bGabX/+5O+p15pMNPlpW8pi3EnDwto1UA0AAAAAAAAAABzxnFYPAACATmOnCKoJP0f7hIXZGYSfoTFJAo3MzHMXFVbnqQ3DwrxSU67jy69ZHy0Hh4UNOstThU2h/aQJbCQMEQAAAAAAAAAAAAAAoI0NrYyvMUayW9MDYi57obRpu/SDr0qVinTOZTInnNb8cazdvKA7KoDjSlF9UX7sGTrb+i3SrnvU7R1OVO6oMhcMVYgIiCodAWFhAQFYW6bu0389eJ6+3He5nnKGden4v+uMiR9Lha4WDDAjWYTlJQ0Lc5sfYAgAAAAAAAAAACARFgYAQGppgmrSnKNVAUaE6bRekpn4ZsPkosLqPL8Nw8L81jRL7S2NBG5f6ixv8kiQtaCwxdBawhABAAAAAAAAAAAAAADa19IEvTxuIVF/VV7McTuk43a07PqJ2c50sNrRas8TkqQufyJRueOX54Kx+gZC68zWMxoeWsv19AduXll5Sjfu/1jtRsdtwoDqFPd8Z/H8e16yunZ+nQAAAAAAAAAAwBGtNakkAAB0sCzCtWyzOK9zNgyq2VoVUoY5Se79bI2J+OtbRQkbVZqo7Jdact3RcnBY2JA73OSRIGtpPoMJQwQAAAAAAAAAAAAAAGhjG7bG1ziF/MfR7k46J77GcaWjuRdw/IAkyZKfqNzxy5I7/WyZrh7p9GcEF559aRajaylTKCYv7ugQrMZ7cM1JZycr5HMJAAAAAAAAAAC0yFH8E0EAAOpjZxIWtvgcUSFQebJFmE6rJbn3s6FuxhhZIffM8yuZjisLJX+qSVeqbfIaLe0JrBpyE8xGirZmpfisJAwRAAAAAAAAAAAAAACgfRmTINzHJZRHG06Ir3ELknUU98rsvD5VuaOKzLzXy7zxr6SV6+cKjJH5nx+UWbUhqxG21qaTktV1clhYFs//069MVtfJrxMAAAAAAAAAAOhoTqsHAABAp0kTVBPGNov/CE7U+JQDK4PwMzTGJJjRbn6NbezAYLC2DAvzSi257t7ySOD2QYewsE6XJrCRMEQAAAAAAAAAAAAAAIA2t2m79MDPwvc7hIWp2B1f47hHd1hYktdoHtt4NevmmM3SJ38q3f5dad9u6bQLZYaPyXKErbVhq/TAnfF1nRyClUUPbiHhc0SIIQAAAAAAAAAAaBHCwgAASCmLcK2gAJskgVF5sAjTaTlj4pu05j8fYYF1FbVhWJg/FbjdMY7KfjmXa5b9kg6URwP3DbrDuVwTzZMmsJEwRAAAAAAAAAAAAAAAgDb38N3R+wnlkbr742tsV2pRD2JbuP27qcrdBWFhkmS6eqSzL81qRO2lFNzHt4jdzr9eEvd8Z/D89y9NVtfWrxMAAAAAAAAAADiSHcXTBwEAUJ+goK/U5zCLGwXSBOBkyU4QVIV8WQmaVOYHioUFIHn+4gamVgsLC3NNtk18/rzl/eW98mu2zBlyCAvrdGkCwAhDBAAAAAAAAAAAAAAAaHOVmAkHHbc542hjxnGk3iXRRY4rWUdxL+DwMdXFy8b+LbbcCQgLO5KZM56ZrLCT328ZPP8m6ddPiCEAAAAAAAAAAGiRo/gnggAA1CdNUE0YO+AcxrRmVr8svh40xiQJC5tXE/T8SJKnSmZjykrZLwVud00xt2vuLe0O3TfoLs/tumiONAFghCECAAAAAAAAAAAAAAC0uee9Ono/oTySJPOmD0cXuAXpaO6V2bituvjGPX8SW+5YwZNRHrHOuSxZXSeHhWXVg7v93PiaTn6dAAAAAAAAAABARzuKfyIIAEB9sgifsY2zaFuSwKg8pAneQT5MgmfKzPtrW9g9q/jtFxZW8qYCt7tWfs0ye0sjgdu7rV51Wd25XRfNkeYz2PDtDgAAAAAAAAAAAAAAQHsr9kTvdwgLkyQNrYze77gxYUlHeDhWca4vrNubiC0/6sLCign75to5BCs2DCyjHtxlq+Jr+FwCAAAAAAAAAAAtwm/PAwCQUhbhWlbAH8GtCrWxDWFhrZYkKM6a1+hihYQlee0YFuaXArc7JutmmbnmrdHy7sCKIXc442uiFayEn1mWbJmsZosEAAAAAAAAAAAAAABALsza46ILCsXmDKTdrdkYvd92JDuir8bzsh1PmzGX/3p1eVPpwdh652hrKxpckayuncPC4lgZ3dTJw/E1nfw6AQAAAAAAAACAjkZYGAAAKSUNqoliG2fRtiSBUXkIC55C8yS59/NrwgLePLVfQ1fZnwrc7pr8mmVGS8FhYYPO8tyuieZJGthIECIAAAAAAAAAAAAAAEAHOO+K6P3F7uaMo82ZZauiCxxXciMmcKyUsx1Qu9mwtbo4XAnuH5vPsdqv1y5PJurZmM/u4BCsjCaWNBdcHV+U9PUEAAAAAAAAAADIGOkgAACklEUATdA5TItCu5IG7yA/Se69mffXtrB7VvErmY0pK1OhYWH5NcvsLY8Ebh90CQs7EiT9DLb4VgcAAAAAAAAAAAAAAKDtmeWrowsIC5szENH/5BamA8PCHOFhYcYYmY/cmrjeORpbiy5/cXxN1DPU9jKasPfk8+JrOvp1AgAAAAAAAAAAnexo/DEXAAANySKAxjZOwHkzalRIKYvwMzQmyb0382qskHvmtWFYWNkrBW53rWzDwnz51eXRUvDMkEPOcKbXRGtYCYMVw94nAAAAAAAAAAAAAAAA6CCEhc1Zuix8n+NKTkRP1hEeFiZJGj4mcelRGRbWNxBfY7dxz5WJ6bO0MrqpST5z7MU9wAAAAAAAAAAAAM1wNP6YCwCAhmQRQGNr8TlMi8LCrICxoLlMgr+SmXmNLnZIfUXtFxZW8qcCt7sm27Cw+UbLI4HbB92ImTXRMZIGNhKECAAAAAAAAAAAAAAA0BnMjX8Qvm/T9iaOpM09/IvwfY4ruUd5WNjSuckkP/7oyyJLHcuP3H8kMpt3xBc5bv4DyUtcmFhScaFzjlvTzwkAAAAAAAAAANBMhIUBAJBSUNBX6nMEhNgY05o/lq0WXRdzkgTFzQ8UCwus83wvszFlwfd9lfxS4D7X5NNUdLhySIe9Q4H7hhzCwo4ESQMbCUIEAAAAAAAAAAAA0AzGmE3GmOuNMe81xnzTGHPAGOPP+++hBs7tN/jfsZl9oQCQp+e8KnzfJdc1bxztbtNJ4ftsNzro6SgICzPWXI/dlWNfiax1jsa2yadfGV9DWJhM3GsQFcoHAAAAAAAAAACQs6Pxx1wAADQkaVBNFNs4i7YlCYzKQ1BwGZorySxz1rznIzQsTJXMxpQFTxX5Cg4wc022DTO+Pz3T42h5d2jNoDscug+dI2kIGEGIAAAAAAAAAAAAAPJijHmGMearxpg9ku6X9PeS3iDpIkn9LR0cAHQgMzgs83/+q3Zjd6/Mh74rs35LawbVjjZsDd/nuJIT0ZP1/9m783DJrrpe3J+1q04P6e70nAlCEkKCkESmACIqiKgggoCACCh4nQAFnO69zvycxevwu15UFBTBCQWDAgp4AZFJFBGRUTJA5jkd0un0cIZ9/+gmOX26dlWd0zV11fs+z3ly9lprr/U9u6rr7Dy9+rMXJ2tv2dCcflaSZOvSHTnr0JWNw9ozuG2ybOvjYZuTHBbWa5/lAPeLle/9+ebO/fsGtg4AAAAAAMBqHZtUAgB0NYgAmk4BXeMKC+s3eIfhKX3kt5Zl77tWw2u2WE/Whq75er6xr10NZ1PRnvmbO7aXlGxr7xjKmoxWvwGHlVxkAAAAAAAAYHgenOQbxl0EwDQp9/vylPcfHHcZk+3e92vu6xXytNC8l2uq3Hrj3d+ed+jSXLnurI7D2rO6tejU+yQ3XtXc35rgsLBe+nhoa99O2jS4uQAAAAAAAAZIWBgArFJTUNPq5jj2V3AZ4FPNVqPqM3iH4eknKG75mKbAuqVJCwtbat68N1e6PMXyONy2cEvH9q3tHWkVt77ToN8QsH5DxQAAAAAAAAAG6GCSa5KcO4S5/yXJs1d5zjVDqAOAMSmPe0bqP3nFsR0PuDilOrynpm46eWlpaHVNlEMH7v72nzZ9TeOwmQ0LO7Cve3+v0LlJNsiwsAc8fHBzAQAAAAAADNCs/jUXAKzZIMK1OoXYVH0ERg1Dy+3A2FV9bFI5KiysIbBuKZO1oWu+bn4a5bDCwvbMdw4L297eNZT1GL1+P4MFIQIAAAAAAABDNp/kP5K8Jsn3J3lYki1JvmdI6x2o6/oLq/xaGFItAIzDuRclj/yGo9uqKuXZP9z73Hqy9paNwjPv+OvGvnZrPPs1x63ne+WEDgsb4F7YL7t4cHMBAAAAAAAMUHvcBQDAiaYpqGlVc3QIsSljCu0SqDN+/bz2ZdlGlk5hc0myWC8OrKZBmK8PNfatq4YTFnbbws0d27fPCQubFk3v/5UG8VkNAAAAAAAA0OB1SV5V1/WBlR2ljweGAcBalFKSX35T8ue/kfrf3pPsPDXlCc9LedQTe5+8NFl7y4bmlHsnN12TJHnAwc82DmvP6taihz62e397gv95Sa97rAHeg5VWK/XAZgMAAAAAABicCf7bHACYTK0BPH2sU9hNNcinmq2CsLDxK+m9SWX5mKbXbCmTtaFrfmm+sa9dBhsWVh/ZmrNnvnNY2I727oGux/j0GwI2iM9qAAAAAAAAgE7qut4z7hoAmE1l3frkBT+Z8oKfXN2JS0vDKWjSPPhrkn/48yRJ3WVfXqs1o+GeJ23u3n/DVaOpYxgGHdj6qCcm//z2Y9vvdd/BrgMAAAAAALAK/gU9AKxSGcCvz1aHvM5+AqOGodVn8A7DU/oINaqWh4U1vAeX6skKC1uoDzX2zZW5oax528ItHdu3z+0aynqMXr/Biv2GigEAAAAAAAAAwNRbmqy9ZcNSHveMu7/fWO9vHNduz2hY2H3u373/YPM1m3gDfrjk8vfSUR73zIGuAwAAAAAAsBrCwgBglcoAnj7WKseG2IwrLKzf4B2Gp5/XfnlIXaf3T5Is1pP19Mf5er6xb66sG/h6S/VSbp+/tWPf9rawsGnRFJZ3zLiGPycAAAAAAAAAADBzliZrb9nQPPzxd3/7iP0faRy2VA3nYZeTrlRVyo/+n+YBiwujK2bVeuyzHMDe3qN8zVOTCx91dNsZ56Q89fsGuw4AAAAAAMAqtMddAADMolY59ldwGVNoVxWBOuPWV1jYso0sTa/ZUibr6Y/z9aGO7VVaQwhyqrN38fYspvNmpR1zuwe8HuPSFJa31nEAAAAAAAAAADD1liZrb9mwlHXrU2/eltx5ezbUBxvHLVTrR1jVZClP/b7Uv/GSzp2LJ/D7ZMBhYeWkzclvvC1555+m/vRHUu57QfINz0nZedpA1wEAAAAAAFgNYWEAMAadQmz6CYwaBoE641f1ERRXcs+YptdsqZ6sjTrzS53DwubKcJ7KeNv8LY19O9rCwqZFv0FzVcYTwAgAAAAAAAAwJPcppbw2ySOSnJFkU5I9SW5J8rEk70vyprqubxtfiQBMrBkJC0uSbN2R3Hl7diw2/0o8de7OERZ0Alns/LDOE8IQHthbTtqcPO2FKU974cDnBgAAAAAAWAv/gh4AxqDVIa+zjOnXcr/BOwxPP0Fxy8c0hYstZrI2dM3X8x3b56p1Q1lvz0LnsLC5si6bWluGsiajV6XPsDCfbQAAAAAAAMB0OSfJC5I8MMm2JHNJTjly/Nwkv5/kqlLKb5VSNo+rSAAm1NLSuCsYnYd9bZLk7Pkrc+6hy4/p3rFwax62+YZRV3ViOJFD5cp4HtgLAAAAAAAwSsLCAGAMWh1CbKoxbVSo3A6MXT9hYcvfH01hSUv1ZG3oWqgPdWyfK4MPC6uT7Jm/uWPf9vauFBuBpkarzydAtvoMFQMAAAAAAACYIpuS/FCSj5ZSLhjGAqWUU0opF6zmK8m5w6gFgFU4kUOgVql8188c/m+S373+JTlpad/dfXP1obzm+helNXfsA19Jsrgw7gqa9doDaI8gAAAAAAAwA/wtFwCMQasc+yu4n8CoYegUXMZolT4C25aPaXrNlurJ2tA1X893bB9GWFiS3LbQOSxsx9zuoazHeDSF5R0zzmcbAAAAAAAAMB0WknwgybuS/GeSa5LsTbI5yX2SfHWS70xyyrJzzk/yrlLKV9R1feWA63lxkpcPeE4Ahq2ux13ByJRdp+dLP+3X3fXe/OcVD8s7N31DFko733jnP+R+81ck7R8ba40Ta5LDwnrp8yGUAAAAAAAAJzJhYQAwBlWHTQn9BEYNg0Cd8St9PNFueZhcU1jSYiYtLOxQx/Z2mRvKenvmb+nYvn1u11DWYzz6/czq9DkLAAAAAAAAcIL56SSvruv6pob+/0jyllLKz+RwgNf/TO7eYHBakktKKRfX9QwlxADMurPun1z5X8e2P3d2w7HOnr8q33/7a45ubA9nD9sJY+vO5Iu3HtNcnvbCMRQzIH3swwQAAAAAADjR+Rf0ADAGrQ55ncvDoEap1RA8xehUfdySLQ8UawpBWqonKyxsYWm+Y/tctW4I7/Y6ty00hIW1hYVNk1afYWE+2wAAAAAAAIATXV3Xv9QlKGz5uAN1Xf9Ekpes6Hpokm8fSnEATKTyzJW/Co60f+NzR1zJZCut2Q4LK8962bGNVZU89umjL6ZfvcLAhIUBAAAAAAAzQFgYAIxYleqo4Kcv6dQ2Ck3BU4xOP0FxZdltW1NY0lKWBlbTIByqD3ZsnyvD2Wi1Z/7mju075nYPZT3Go/T5vzBVn6FiAAAAAAAAANOiruvfSfKWFc0vHvAyv5vkwlV+fcuAawCgyZO+K1kRDFZ+5H+nnPPAMRU0Jk/4ju797dkOC8u3vSx59JPuOW61Un7mj1N2nT6+mo6XvbAAAAAAAMAMaI+7AACYNa3S+ddvvwE4g1ZFoM649RMUtzxQrOk1W6wXB1bTICzU8x3b20MIC5tfms/exS927NvRFhY2TZrC8lby2QYAAAAAAADMqF9J8pRlx19RStlW1/Xtg5i8ruubkty0mnPG9QA9gFlU2u3kp/4wef5PJF/4THLBI1N2nDruskZvZ4+fuT3b/4yirN+Q/MpfH36PXHt5ctFXpmzdOe6yjo/7DQAAAAAAYAbM9t9yAcAYNAXdVBnPRoV+g3cYnn6C4qplT72rGl6zpQkLC5uvD3VsX1etH/haexZuaezbPrdr4OsxPlWfwYotT4oEAAAAAAAAZtO/JtmTZPuR41aSByb50NgqAmCkSinJmecd/ppR5dQzU3cb0B78Ay9PNKWU5JwHHv6aBsLCAAAAAACAGeBf0APAiLUasjrLmIJtmoKnGJ3SR1Dc8jFNIUhLmbCwsKX5ju3tMviNVrfN39zYt70tLGya9PuZ5bMNAAAAAAAAmEV1XS8luWpF8+5x1AIAY/OV39S9X1jYCaf0CgPzcEkAAAAAAGAG+BsRABix7XM7O7b3Exg1DJXbgbHruYklR78/qnQOQVqslwZW0yAs1Ic6ts+VdcmA3+97Fm7p2L65dXLWVesHuhbj1Wp4/6/U9OcEAAAAAAAAYAbsX3G8cSxVAMCYlFPvk1z4Fc0DWp0f+soJrI99mAAAAAAAACc66SAAMGIP2tx5A8q4wsJaRaDOuPUT2FaWjakaXrOlenFgNQ3CfD3fsX2uDP6pjPuX9nVs397eNfC1GK+m9/9KPtsAAAAAAACAGbbyL8s7P4ELAKZY+Zpvae5sDX4PG2MmLAwAAAAAAJgBHokDACNSpZVHbX1cnrDzmR37SxlPhmcVgTrj1k9QXFm2kaXV8JotZdLCwg51bG+XdSOrYfucsLBp0+rzs7Ia02cqAAAAAAAAwDiVUnYlue+K5uvGUQsAjNX6jc1969aPrg4Go9Xjn77YLwYAAAAAAMwAYWEAMGQP2vwV+cYdT89p68/Mhqp580k/gVHDUBVhYeNW0nuTyvL3R1MI0mI9YWFhS53Dwuaq0T2VcUd798jWYjT6DTgUhAgAAAAAAADMqGcnR21EuDHJZ8ZUCwCMT7ewsG59TKZ2j32HZTx7cAEAAAAAAEZJWBgADNk5G87P2RvP7zmuGlNYWMvT1Mau9LFJpVq2j7cp4G0pSwOraRDm6/mO7XNl3chq2D63a2RrMRpNYXkrtQQhAgAAAAAAADOmlHJqkp9e0fzWuq7rcdQDAGPVNSxsw+jqYDDmeuw7FBYGAAAAAADMAOkgADAhyph+LVcRqDNupY+guOWBYq2G12ypXhxYTYOwUB/q2D7SsLD27pGtxWj0+5nlsw0AAAAAAAA4UZVS7l9KefIqzzktyduSnLqs+VCSXxlkbQBwwljXJRBsXZcgMSZTW1gYAAAAAABAe9wFAACHlTFtVKiKQJ1x6ycobvmYptdsccLCwubr+Y7tc2Wur4C0Qdgxt2sk6zA6/X5mVUUuMgAAAAAAADA8pZR7p/MezNNWHLdLKWc3THNnXde3dGg/PclbSimfSPKnSd5c1/WlDXVsSfL8JD+do4PCkuQX67q+omFtAJhu5z+4c3urlZx74Whr4fjNdQkLq6qx7cEFAAAAAAAYJWFhADAh+gmMGoZWhIWNW9XHJpXl4VpVw3tlKRMWFrZ0qGN7u+rxhL8B2t4WFjZtWn2GgDX9OQEAAAAAAAAYkA8kOauPcfdK8vmGvtcleUGXcy9K8ookryilfDHJJ5PckmRvks1JzkzyoHTeC/oHdV3/Qh/1AcBUKqedlfpRT0z++e1HdzzuWSkn7xhPUaxdu8u+w6Wl0dUBAAAAAAAwRsLCAGBCLA+DGqWqz+Adhqef1375U+9apXPA21I9WRte5uvOYWFzZW4ktVapsrW9fejrMFpVnwGHVcOfEwAAAAAAAIAT1NYkj+5j3L4kP1zX9auHXA8ATLzyC29I/fs/nXz4HUmrnXzVk1O++2fHXRZrMTe6h5QCAAAAAABMKmFhADAhqjKusDCBOuNW0juwrVo2puk1W8ziwGoahPl6vmP7XFmXg/WBoa+/rb3T+3sK9fuaNoXqAQAAAAAAAJwAPpPkl5M8JslDk2zs45zPJfnjJK+u6/qW4ZUGACeOsn5Dykt/PXnpr4+7FI6XsDAAAAAAAABhYQAwKfoJjBqGVgTqjFvpIyiu5J4xVcNrtlRPVljYQn2oY3u7zOVghh8Wtn1u19DXYPT6/cxq+nMCAAAAAAAAMAh1XZ89xLlvTPJTSVJKqZKcl+TcJPdKsi3JhiT7k+xJcn2Sj9R1ffOw6gEAGDthYQAAAAAAAMLCAGBSLA+DGqWqCNQZt36C4g7v/T2sVTqPX6qXBlbTIMwvzXdsX1etz77FvUNff0d799DXYPSqhvf/WscBAAAAAAAATLK6rpeS/NeRLwCA2SQsDAAAAAAAQFgYAEyKUsYUFtZHUBXD1U9Q3PIxVToHvC3U87lj4faB1XU86ixlMQsd+9plbiQ1bJ8TFjaN+g04bDX8OQEAAAAAAAAAAOAE0xYWBgAAAAAAICwMACZEGUNoV5VqbCFl3KPq4zU4KiysISzpYH0gP375CwZV1tDMldFs2tne3jmSdRitfgMO+w0VAwAAAAAAAAAAYMJt3DTuCgAAAAAAAMZu9KkkAEBHy8OgRkWYzmToJyhu+ZjWCf66zZW5kayzY273SNZhtPp9/5/of04AAAAAAAAAAAA44tyLmvta7dHVAQAAAAAAMEbCwgBgQlRl9L+WWxGmMwn6CYqryj1jqhP8Fm6uWjeSdba3hYVNo37C9ZIT/88JAAAAAAAAAAAAh5X2XMoP/lrnvtd+ZMTVAAAAAAAAjIdHqMyQUsrGJA9OrtH0bgAAIABJREFU8oAk25NsSHJHkpuS/HuSy+q6rgewzlySRye5T5LTk9yZ5LokH6vr+gvHOz/AJHjmKd+TN970mr7GXnzyV/c1bmt7R1ppZzELHfvbpZ2FunNfJ5taW7JvcW/XMTvmTul7Poann6C45YFiu+ZOHWY5Q9Uu7Wxt78jOHu+9k1vbc8finuNaZ9e6E/c60awqVXa0d+e2hZu7juv1HgMAAAAAAAAAAODEUb7tZcnZD0j9Y0++p+0vP5tyxjljrAoAAAAAAGB0eidTcMIrpTyqlPKXSW5P8qEkf5jk15P8YpLfTvKGJJ9LcnUp5edKKTvWuM7uUsrvJrkhyT8meV2SX03yyiSXJPl8KeWDpZRvPd6fCWDcLtr08MyVdT3Hnb3hvOyY293XnBuqjXngpod07KtS5XmnvSStVeR8Pnnnc3LK3Bldxzxsy6P7no/hqdLqOaYsu23bte60nLn+vsMsaWgu2HRxNlQbc+7GB+Tk1raOY7a3d+Xpp7zguNZ58OZHZUO18bjmYHI9tMdn17b2zpyz8f4jqgYAAAAAAAAAAIBRKI/8hlTvP3j3l6AwAAAAAABglggLm2KllHYp5ZVJPpjkWUl6pdrcK8nPJvl0KeUJq1zriUk+meRFSbqFjX1lkjeVUv60lLJpNWsATJJd607Ni+71U9nRPhwEtrm1Nc8+9YX5ipMfl3aZS0nJeRsvyIvu9VOrmvcFp/9wLtx08VHhUdvaO/PdZ/z3POLkx+R77/U/sq298+6+KlUeuOmh+dH7/GrOWHdWksOhY9+089vy1duekJec+f/l7A3nHbPOurI+j932zXnCzmeu5cdnwKrSR1hYKUcdv/jeP5P7bXxgSkrDGZOlSpWLNj08zz/9ZUmSuWpdXnbmL+Re688+atyZ6++bl535C3nEyY/JBZsetqZ1HrT5K/Kc0148iLKZUN+y+3l59Nav7xjaeOb6++aHzvyFtEr/4YoAAAAAAAAAAAAAAAAAAAAwyUpd1+OugSEohxNF/irJMzp0fzbJZ5LsT7I7ycVJtq8YcyjJt9R1/Y4+1npsknfm6DCyOsm/J7kiybYkD0mya8Wpb03y1Lqul3qtMUyllAtyOOgsSfLJT34yF1xwwRgrAk4kdV3njsXbs6W1NVU5nMF5aOlgFur5nNTavOZ59y/eldsXbs1cWZedc6ccFRRV13VuW7gph5YOZVt7Rza27sle3LvwxZzU2pzWivCpOxfuyN7FLyZJSkp2rTs17TK35voYrPfc9pa86eY/auwvqfI797+kY9++xb25Y+H2YZU2MNvndmVDtbFj3x0Lt2ff4t5sbm3Jlva2u9svu+tT+c2ruwfu/bfTf/SowLFu6zB95pcO5Zb5G+8+XvkeAgAAAACAWfSpT30qF1544fKmC+u6/tS46gEAe/QAAAAAAAAAgGkw7v157VEtxMh9T44NCntfkh+o6/qTyxtLKe0k35Hkt5JsPdK8LsnrSinn13X9xaZFSin3TnJJjg4K+2CS763r+jPLxq1P8v1Jfj3Jl9JpnpzkF5P85Op+NIDJUUrJ1vbReYvrqvVZl/XHNe/G1knZ2Dqpcc2dc6d27NvS3tqxfXP75Gxun3xcNTE81Ypwt5VKSmPfptaWbGptGXRJI3Vye1tO7hDw1Ou6JMnp68/M6evPHEZZnADmqnVefwAAAAAAAAAAAAAAAAAAAKZeNe4CGJqVAVzvS/L4lUFhSVLX9UJd169N8vgkB5d1nZLkhT3W+bkky1NyPnRknc8sH1TX9cG6rn87ybNWnP8jpZSzeqwBAFOtVyhWVZrDwqZZld5hYcXtLAAAAAAAAAAAAAAAAAAAADDlpCtMoVLKRUnOXtH80rqu57udV9f1vyV59YrmJ3dZ57wkz1/WdCjJC+q6PtBljb9J8rplTeuTvLxbXQAw7Vo9QrFmNRCr1SNELUlKZjNIDQAAAAAAAAAAAAAAAAAAAJgds5k8Mf3uu+L46rquP97nuX+74vi8LmOfkxyVbnJJXdeX9rHGK1YcP6uUsqGf4gBgGlWl+y3ZrAZi9bou/Y4BAAAAAAAAAAAAAAAAAAAAOJFJV5hOm1YcX7OKc69ecby9y9inrTh+bT8L1HX9mST/sqxpU5Jv6OdcAJhG1VHZm8ea2bCwHtclSYrbWQAAAAAAAAAAAAAAAAAAAGDKSVeYTjesON6winNXjr2t06BSymlJHrSsaSHJB1exzntXHD9xFecCwFRplR5hYWU2b9l6XZckqWY0SA0AAAAAAAAAAAAAAAAAAACYHbOZPDH9PpLk4LLjB5RSNvZ57sM6zNXJhSuO/7Ou6319rpEkH1pxfMEqzgWAqVL1Cgub0UCsKr3DwkqZzWsDAAAAAAAAAAAAAAAAAAAAzA5hYVOoruu9SV6/rGlDku/udV4ppZXkB1c0v65h+ANXHF/Wd4GHXd5jPgCYGVWPW7Je/dOqKr1/7jKj1wYAAAAAAAAAAAAAAAAAAACYHdIVptePJ/nCsuNfK6U8vmlwKWUuyR8keciy5vck+euGU+634viqVdZ35YrjnaWU7aucAwCmQqu0u/aXUkZUyWRplVbPMSWzeW0AAAAAAAAAAAAAAAAAAACA2dE9mYITVl3Xt5VSvjbJJTkcALYxyTtLKW9K8qYkn02yP8muJI9K8v1J7r9sin9N8oy6ruuGJbatOL5plfXdWUo5kGTDsuatSfasZh4AmAa9QrFmNRCrSh9hYUX2LQAAAAAAAAAAAAAAAAAAADDdhIVNsbquv1BKeWSSFyT5viQPS/KsI19Nbk3ym0n+V13X813GbV5xvH8NJe7P0WFhW9Ywx1FKKack2b3K08493nUB4HhU6R54VXr0T6teIWrJ7AapAQAAAAAAAAAAAAAAAAAAALNDWNj0ax35OpikTromalyd5GeTvKFHUFhybFjYgTXUtj/J9i5zrsWLk7x8APMAwMhUPUKxSpnNQKxe1yVJKmFhAAAAAAAAAAAAAAAAAAAAwJSrxl0Aw1NKeXSSzyT5vSSPTu/X+8wkr01yVSnle1a5XL36Ctd0DgBMnVZ6hIXNaCBW1cetanE7CwAAAAAAAAAAAAAAAAAAAEw56QpTqpTydUneleTsZc3XJvnxJA9Jsi3JuiSnJXlCktclWTgybneSV5dS/qCU0pROcueK441rKHPlOSvnBICZUJXuYWH9hGZNo1aP65IkzbcqAAAAAAAAAAAAAAAAAAAAANOhPe4CGLxSyu4kf5Fkw7LmtyZ5Xl3Xd6wYfmOSdyZ5ZynlVUnelmTnkb7vTXJ5kld0WGZSw8J+N8kbV3nOuUn+dgBrA8CatEr3MLBZDcQqfYSklczmtQEAAAAAAAAAAAAAAAAAAABmh7Cw6fQjSXYvO/5skmfVdX2g20l1XX+4lPJtSd61rPnlpZTX1nV904rhX1xxvDurUErZnGPDwm5fzRydHKlzZa29ajneZQHguFRp9ejvHZo1japSpaRKnaXGMf0EigEAAAAAAAAAAAAAAAAAAACcyKQrTKdnrjh+Ra+gsC+p6/rdSd6/rGljkmd3GHrpiuOz+i+v4/jb6rres8o5AGAqVKV7WNgsB2K1SvefXegnAAAAAAAAAAAAAAAAAAAAMO1mN3liSpVSNiU5d0Xzu1c5zbtWHD+yw5jPrDi+3yrXuO+K40+v8nwAmBqtXmFhMxyIVaX7tanczgIAAAAAAAAATLab3pf8+48mb1iX/HlJ3vukZP/1464KAAAAAAAAAE4o7XEXwMBt69B2wyrnWDl+V4cxn1xx/OWllJPqur6rzzUe3WM+AJgZvQKvSmY4LKy0krq5f5avDQAAAAAAAADAxLv095KPvPjotuv+PnnzGclTPp9sPnssZQEAAAAAAADAiaZ7MgUnots7tG1a5RybVxzfuXJAXdfXJ/nPZU3tJF+1ijUeu+L47as4FwCmSlVaXfvLDN+ytdLj2hRhYQAAAAAAAAAAE2nxUPKx/9nc/6lfGl0tAAAAAAAAAHCCm93kiSlV1/W+JHesaH7IKqd52IrjGxrGvXnF8Xf1M3kp5cuSPHJZ074k/9BfaQAwfXoGYmV2A7FagtQAAAAAAAAAAE5Mez6WLOxt7r/8NaOrBQAAAAAAAABOcNIVptN7Vxx/X78nllJOS/KUFc3vbxj+Z0kWlx0/vZRyXh/LrHxM3F/VdX2gzxIBYOpUPQKxqjK7YWG9rs0sB6kBAAAAAAAAAEy0bkFhAAAAAAAAAMCqCAubTn+54vjbSinP63VSKWV9kj9JsnlZ851J3tlpfF3XlyZ53bKmdUn+uJSyocsa35LkBcuaDiX5uV61AcA0q0r3W7Iyw7dsVY+fXVgYAAAAAAAAAMCE2nfVuCsAAAAAAAAAgKkxu8kT0+0NST6+7LgkeX0p5X+XUk7vdEIp5WuTfDjJ41d0vaKu6z1d1np5kuX9X5nkXaWUL1sx//pSykuSvHHF+b9R1/WVXeYHgKnXSqtr/ywHYrVK87UpKSlldq8NAAAAAAAAAMBE+/zreo+p6+HXAQAAAAAAAABToD3uAhi8uq6XSinPSPLBJKccaS5JXprkB0sp/5nkiiT7k+xI8pAkp3WY6u+TvKLHWteUUp6e5J1J1h1pfnSST5dSPnpkna1JHppk94rT35bkZ1b30wHA9Km6BGIlSSmzm+/a7drMcogaAAAAAAAAAMDEW39K7zEHbko2njr8WgAAAAAAAADgBCcsbErVdX1ZKeUxSf4kycXLuqokDz7y1Xh6klcn+aG6ruf7WOu9pZSnJfnj3BMIVo6se3HDaX+R5Hvrul7sNT8ATLsqPcLCZjgUq9u1KZndEDUAAAAAAAAAgIl39Zt6j3nzacnTb0w29BEsBgAAAAAAAAAzTMLCFKvr+rNJHpXk+Un+OYdDwLrZn+TPknxlXdffX9f1/lWs9fdJLkzyqiR7ugz9cJJn1HX9nLqu9/U7PwBMs1bpfks2y2Fh3a5NKbN7XQAAAAAAAAAAJtpnf6v/sZecmiwtDK8WAAAAAAAAAJgC7XEXwHDVdb2Q5PVJXl9K2Zrk4iTnJNmWZH2SvTkc7vXJJJ84Mn6ta92U5EWllJcleXSSs5KclmRfkmuTfKyu688fx48DAFOp9MhvrXqEiU2zKq3GvlkOUQMAAAAAAAAAmGiX/t7qxl/zt8l9vnU4tQAAAAAAAADAFBAWNkPquv5iknePYJ1DSf5x2OsAwLQopaRKK0tZ7Nw/w6FYVWkOC6t6hKwBAAAAAAAAADAGC3cley9d3Tkfeq6wMAAAAAAAAADoQsICAMAEaHUJxZrlsLCu16XM7nUBAAAAAAAAAJhYC/tWf87SwcHXAQAAAAAAAABTRFgYAMAEqLrclpUyu7dsXa/LDIeoAQAAAAAAAABMrI//1NrO23/9YOsAAAAAAAAAgCkyu8kTAAATpCqtxr5ZDsXqfl3cygIAAAAAAAAATJzPv35t51371sHWAQAAAAAAAABTpD3uAgAASFrCwjpqpct1KbN7XQAAAAAAAAAAxmr/9cn1/5BsOjtZvodj35XJ0sG1zbn30oGUBgAAAAAAAADTSFgYAMAEqLqEYlWpRljJZKm6hqjN7nUBAAAAAAAAABiLpfnkDeuGM/cd/zWceQEAAAAAAABgCkhYAACYAFVpvi0ry5++OmO6XZcqs3tdAAAAAAAAAADG4t2PW/u5j3lrcurXNfdf+9a1zw0AAAAAAAAAU05YGADABGiVVmNfmeFbtla6XRdhYQAAAAAAAAAAI3XzB9Z+7ub7JV/3ruTMZzSP2Xfl2ucHAAAAAAAAgCk2u8kTAAATpBKK1VHVLUStuJUFAAAAAAAAAOiqrpPbP5lcfUmy//rjn2ut2puSzWcf/n7nw5vHXft3Sb209nUAAAAAAAAAYEpJWAAAmADdQ7FmOCxMiBoAAAAAAAAAwNosHkre/63J3190+L9vvldy2avXNtfSYvKv37f2Ws5+XtLacPj7s57dPO7ffiB531OTxYNrXwsAAAAAAAAAppCwMACACdDqcltWZviWrVW6XRdhYQAAAAAAAAAAjS79neSaNy9rqA8Hft35+dXPddVfJpe/Zm11PODHkotfec/xpvt0H3/tW5P/+u21rQUAAAAAAAAAU2p2kycAACZIVVrNfTMcitXtupQuQWIAAAAAAAAAADPvitc2tP/x6ue67u1rq2H3VycP+V9J1T66ff3uHuu9bW3rAQAAAAAAAMCUkrAAADABuodizXBYWISoAQAAAAAAAACsye2f6Nz+mV9f/Vz7r11bDee9sHP7zod3P++m961tPQAAAAAAAACYUsLCAAAmQKtLKFaZ4Vu2VrcQtRm+LgAAAAAAAAAAa7Z41yrHH0hu/MfuY05+QOf2M57Uuf38l66uBgAAAAAAAACYcRIWAAAmQFWab8tKyggrmSxdr0uZ3esCAAAAAAAAADAyV72xe/8z9iRP+mRy5tPvadtwWvK0G5J1Wzufc8Y3Jid/Wfd5lxZXVycAAAAAAAAATLH2uAsAACCp0mrsKzOc79r9uggLAwAAAAAAAAAYuhve3dx38SuTddsOf//Vf726ec95fvLxn2ju/+Inku0PXt2cAAAAAAAAADClhIUBAEyAVukSilVmNxSr63WZ4RA1AAAAAAAAAICRufatzX27v3rt857xTd3Dwg7dvva5AYDVufZth78O3JBUG5LdX5Xc9zuTuZPHXRkAAAAAAHCEsDAAgAlQdQnFqjK7YWFVuoWFze51AQAAAAAAAAAYiav/Jjl0W3P/tovWPve2i5Kzvj258i869y/ctfa5AYD+fepXko//5NFtV/1l8oU/Sx73D8nclvHUBQAAAAAAHKUadwEAACRVl9uyMsO3bFVp/tmrIiwMAAAAAAAAAGCo3v+05r4LfzY5nv0bpSSP+pPm/sX9a58bAOjP/J3JJ17eue/WDydXXzLaegAAAAAAgEazmzwBADBBWqXV2FdmOBSr63VxKwsAAAAAAAAAMDxL89371+04/jWqVrLx9M59wsIAYPhu+2j33/k3f3B0tQAAAAAAAF1JWAAAmABVuoVizW5YmOsCAAAAAAAAALAG17y1e39d955j4a7u/ac9vv96umlt7NwuLAwAhm/xwPH1AwAAAAAAIyMsDABgArRKt1Cs2b1lq7pdlzK71wUAAAAAAAAAoKv527v3Lx3qPcfNH+jev/WB/dfTjbAwABijpe7d9eJoygAAAAAAAHqSsAAAMAG6h2KVEVYyWVpdbldLZve6AAAAAAAAAAB0tTTfvf/gLb3n+Oxvdu8f1J6W1kmd24WFAcDw1cLCAAAAAADgRCEsDABgArTSHBZWzfAtW9cQNWFhAAAAAAAAAACdlXb3/juv6D3H/uub+879ntXV0017Y+f2hbsGtwYA0JmwMAAAAAAAOGH02AkAAMAoVKU5EGyWQ7G6hYV1u2YAAAAAAAAAADOty56LJMnSwd5z3HlZc9/9X7q6erppNYSFHbx5cGswWy591eGv/dckpz4uedhvJxtPG3dVAKN317XJ39z72PaNpyenPzF52P+fpEdY2NKhoZQGAAAAAACsnoQFAIAJ0C0Uq5TZDQtrpct1meEQNQAAAAAAAACA47Kwv3v//N5kab5zX2kl2y4aXC1NYWGX/t7g1mB2XPr7yUdelNz+8eTgrclVb0ze9ZhkUdgNMGMW9ncOCkuS/dcnV/xR8k9PSerF7vNc+5bB1wYAAAAAAKyJsDAAgAnQPRRrdm/ZqtL8swsLAwAAAAAAAABosPPhycW/09y/dKD7+Ve9qbnv4leuraYmi12Cy+64dLBrMf0uf/WxbXs/l9z8vtHXAjBON76n95ib3pvc8V+9x/UKGQUAAAAAAEZidpMnAAAmSFW6hYXNbihW1S1ErUuQGAAAAAAAAADATDv5/OT8Fycn3btzf6/Qjxv/sblv31Vrr6uT69/Z3LfnY4NdaxgW9iV3XpHc9tHk4G3jrobbPtq5/co3jLYOgHH7tx/ob9w1f9N7zJ2XHV8tAAAAAADAQLTHXQAAAEnVJcN1lsPCWkLUAAAAAAAAACZeKaUk+e9JNixrfn1d1184znnPSfIdy5ruquv6149nTpg5rY2d2xd7hIXddWVzX72w9no6WbcjOdQQsrU0P9i1Bmn+juRD35Fc+5Zj+552fbLxtNHXNOuWFpv79l09ujoAJsG+Lr/Ll7v1X3uP+fsvTx72f5L7/+Dx1QQAAAAAABwXYWEAABOgWyhWVZqDxKZdJSwMAAAAAAAA4ETwnCS/mqQ+cnzJ8QaFJUld158vpVyU5OlfaiulXFHX9SXHOzfMjLWGhR24qblv0AFeux+dXPvWzn23fzzJcwe73qB88DnJdX/Xue/NpyfPqTv3MTwLdzT33fAPo6sDYNwW7hr8nB99SbLtwuTUxw5+bgAAAAAAoC+zmzwBADBBhGJ1VnW5Xe3WBwAAAAAAAMBolFKqJD//pcMklyZ5/gCXeEGSy4/MXZL80gDnhunXGBbWJUSkrpO7rm3urwb8rOL2pua+Wz8y2LUG5dCe5Pp3dB9z5xWjqYV7XNMQOgcwa258z3DmvfT3hjMvAAAAAADQFwkLAAAToJVuYWGze8vW6haiVmY3RA0AAAAAAABggjw+yTlJ6iNfP1HXdZcUotWp63pfkh9f1nR+KeVxg5ofpt667Z3b913VfM6hPcnC3ub++37X8dW00vkvbe7bcr/BrjUod34hqRe7j/n0ryX/+qLkitcn83eMpKyZt+/K5r71u0ZXB8C47b1sOPNe9VfDmRcAAAAAAOjL7CZPAABMkKo035bNcihW1S0szK0sAAAAAAAAwCR43rLvP1rX9ZsHvUBd15ck+eiypucOeg2YWpvP7dy+99Lmc7r1rd+VnPyA46tppZ2PaO67/DVJXQ92veNVLyX/8t29x132+8llr0o+/PzkjVuTT/z88Gubddf9XXNfaY+uDoBxWlpM/v2Hhzd/vTS8uQEAAAAAgK4kLAAATIAq3UKxZjcsrNXlunQLWAMAAAAAAABgZJ6w7Ps/HOI6X5q7JPmmIa4D02XLeZ3b936u+ZyPvKi574kfTwb94LuqlZzxzc393QKgxuGyP0j2fGz1533i5cl1bx98PRxW18mt/9Lcv7h/dLUAjNMX/nS481/26uHODwAAAAAANJKwAAAwAVqlSyjWDN+yCQQDAAAAAAAAmFyllLOS7FrW9LYhLrd87lNKKWcOcS2YHief37n9rmuShbs69x24oXP75nOTk84YTF0rnXz/5r5r/nY4a67V8dQzaT/LNOkWgJcICwNmR7ewsM33Tb59KXnqNcnXvGVt8/tdBgAAAAAAY9MedwEAACRVl7CwMuinsZ5AqjRfFwAAAAAAAADG7kFH/lsnubyu62uHtVBd19eUUi5Lcr8jTQ9OcvWw1oOpseW85r47L0+2XXRse73Uefz+6wdTUyfbvry5766hfbR0t7AvufyPkuv+7nB9G89ISpVc/461z3nrRwZXH0fr9T5ZOpQsLSaV/UjAlLv5A819d16RlJKcdK9k3faktSFZPLC6+a9/ezK/N5nbcnx1AgAAAAAAqyYsDABgAlSpGvtKZjcsrNUlRG2paWMqAAAAAAAAAKOye9n3141gvetyT1jYKSNYD058m85OSjupF47t23vpsWFhSwvJgRs7z3W/7x14eXe71zc3913/9uGt22TvZclblwWtXf/Owcy7598HMw/HOnRb7zGL+5Nq8/BrARiXxQPdw792f9U937dPSs75zuSyP1j9Om88OXnSZ5KtX7b6cwEAAAAAgDVrTqUAAGBkuoVilRm+Zau6XJc69QgrAQAAAAAAAKCD7cu+v2EE6y1fY9sI1oMTX9VONp/TuW/vpce2XfkXzXOd/oTB1NTJ+h3Jud/d3H9oz/DW7uSdjxze3LU9L0Px6Vf0HrNw5/DrABinmz/QvX/rhUcfX/w7yQN/ItlyflKtT1obDweKfWWX+4Ev+fuLeo8BAAAAAAAGqj3uAgAA6B6KVVJGWMlkqboEpQkLAwAAAAAAABi7dcu+H8WTsJavsX4E68F02HJe52CwTm3XvaN5nvZJg6upk61dQkdueHdyn2cMd/0vmd+bHLptePN/8dPJtguGN/+sOnBj7zG3/2ey8bTh1wIwLnd8bnXjq3by4F8+/NWp7wPPbD63XkgO3pqs37m6NQEAAAAAgDUbxeYcAAB6qNIlLKzM7i1bq0uIWl0vjbASAAAAAAAAADq4a9n3u0ew3vI17mocBRxty3md2zuFhe2/pnme7Q8eTD1Ndj6iue/gLcNdO0nuuiZ539OTN5483HVG8bPMormtvcf8x48n17w1WVoYfj0A47Bw5+Dm2vnw3mP2XTW49QAAAAAAgJ5mN3kCAGCCtLoEglUpI6xksnQLUatTj7ASAAAAAAAAADq4Ydn3Z41gveVr3DiC9WA6NIWF3fG5o48X9ic3va95nrkhh2h1Cwvb8/Hhrr3n48nfnJlc8+a1nX/Wc5JNfX4MLso6HLi6Tr74yd7j9nwsed9Tkg89V2AYMJ1u/cjg5tp0VnLWt3cfc+3bBrceAAAAAADQk7AwAIAJ0C0Uq8xyWFjpFha2NMJKAAAAAAAAAOjg8iP/LUnOKqXcb1gLlVLOTXJ2h7WBXrac37n9wA3J/N57jq9+U/McD37FYGvqpGol2x7Uue+yVw137fd9y+rGz52cbLsoOfVxyYN/LXnU65KnfD6591N7n3vT+9dWI832/Mfqxl/1V8n17xxOLQDj1O13+Vo86vXd+z/xs4cDGwEAAAAAgJFoj7sAAAC6h2KVMrv5rq0uP/uSDSYAAAAAAAAA4/bxJIeSzB05fkqS3xzSWssTeOaTrDIZBmbYlvOa+/Zelux4yOHvb3xP87i5LYOtqUlrw2jWWa6uk31Xru6cp1yRrN95bPvXvPme7//q5GRh77FjFvcZzLkWAAAgAElEQVSvbi166/bebfKJlyf3etLgawGYJlU7uc+zDocsNrnzimTLuaOrCQAAAAAAZpiwMACACdDqFhaWMsJKJkuV5utSR1gYAAAAAAAAwDjVdX2olPJPSb7+SNP/KKX8fl3X+wa5TillU5L/ntz9F8Xvq+v60CDXgKl20plJtS5Z6vDHZu+l94SFHbi5eY5THjOc2lYax0P1OgV6dbP1gs5BYf3OO45AtGl36PbVn3PbRwdfB8A4LS0OZ96znt09LGzf5/sLC7v5n5Mr/zy547/uaSutZMdDk/v+N4FjAAAAAADQhzH8jToAACtVXW7LZjosrEuIWp2lEVYCAAAAAAAAQIO/OPLfOsnuJL82hDV+Nckpyd1/gf7nQ1gDplfVSjY3BHBcfcnh/y4tJtf9XfMcJz9g8HV1cv4PNvftu3Lw6y0tJu/9ptWd86Bf6W/cprM7t9/8/tWtR283f2DcFQCM32rDL/t1xhO797/n65NDe7qPufbvknc/JvncK5Mb/u89X9e/I/nULyf/99FHh4gBAAAAAAAdCQsDAJgA3UKxyjiemDohWukSFlbXjX0AAAAAAAAAjMyfJ7n+yPclyQtLKT85qMlLKT+e5AdyOIwsSW6MsDBYvS3ndW6/6i8P//fWf2k+98KfScqIHnbXFLCVJB//qcGvd+uHk5s/2N/Y81+SfONHkns/ub/xOx/Rub3f9ejfTe8ddwUA43fdO4Yzb+v/sXfnYXKVdfr/70/1np3ubEAgIWEXlEUWQSSICCKLgCO4IO6jP7dxwXFGR8d1FGf8juio46AiKir7IqAghLBKCEsgYUnIQvZ97XSnt3p+f1R1urr7nFPnVJ2qU1X9fl1XXVX1rJ8qYldMPX2fZuldHcFjXr0huH/hN6V0j3//ng2ZIDEAAAAAAAAAABBo5CZPAAAAVJCgUKyUynTYsgKlAoLSnAgLAwAAAAAAAAAAAICkOee6Jf2LMkFhLnv/LTP7o5ntU+i6ZjbBzK6X9J2cdZ2kf83uCSCKuhbv9jEHZ+43PeI/t7E1/np89wr4sbHi9/HvF/S6JWnSqdJ7XOb2+qultteHX7vXJ1ilYUL4NRBO0J8bABgptj+Xf8ykUwtbu74l+Gdt0OdpX5e0ZV7+PfJ9JgMAAAAAAAAAAMLCAAAAKkHK/MPCRnIkVvD7ki5jJQAAAAAAAAAAAAAAP8656yTdrsGBYf8gaYmZXWVmh4Rdy8wONrOrJC2RdGl2LWXXvdM5d22ctQMjhl/AR/srmftdi/3nTj0r/nr8jDu8fHtJ0vLrgvtnfazwtRvGebf37Ch8TXjr3pZ0BQCQPNcT3J9qkg64pPD1p77Fv2/F76Te3d59254Nt37YcQAAAAAAAAAAjGCEhQEAAFSAwFAsN3JDserk/76kR3SMGgAAAAAAAAAAAABUnMslzdfgwLBWSV+Q9JKZrTazW8zsO2Z2pZl9NHv7opl928xuNrNVkl7OzmkbstbTkt6XwOsCakNQwEf7cmnpL/37xx8Zfz1+zIL7194T314rrpd2vODf39gqTb+08PWnX+bT4aR0nkAXhLfz5aQrAIDK0Nvp32cp6eRfSfUtha//uv8I7r9hjDT0vOvuldK9J4ff44kiQjoBAAAAAAAAABgB6pMuAAAAAFJdQIarG8GhWISoAQAAAAAAAAAAAEB1cM61m9mZkq6VdJG098vu/uSf/SRdmL35yU0Jyp1/u6QrnHPtsRUMjDT1o/z75v2jf9+0i/IHeJXT3POld/fGs9ZL/x3cf/F6KdVQ+PoNY/37Nj4kTT2z8LUxYNmvk64AACpDX0BY2LmLpPGHF7f+2FnSIZ+UlvyP/5itT0ltJww8f/UP0fZY+n/SSb8orD4AAAAAAAAAAEYA/1QKAAAAlE1QKFZaIzcUK0WIGgAAAAAAAAAAAABUDefcLufcJZK+IKlTmaAvl3NTts3rpiFjTdIeSV9yzl3knNtZrtcB1KTmKf596+8rbF4SXF9M6zhp21P+/Yd8origMCn4vdv6dHFrYwDvJQBk9Prk6s76SPFBYf3GHxHcv/LGwc+3BnzW+unaEn0OAAAAAAAAAAAjBGFhAAAAFSAl/7CwkRyKZQFXph3J7wsAAAAAAAAAAAAAVDLn3P+TNF3SdyRt1+BQMOdzyx2zPTt3unPuP8tdP1CT9jmmsHn7nRtvHWG87jul3yPdLbmAC/jF8brHBQSz+AW6ILqgsDsAGEn8QrYaW+PbY99zgvuHhoP1dkTf4+aJ0q6l0ecBAAAAAAAAADACEBYGAABQAeosICzMEYrlxQUd2AQAAAAAAAAAAAAAJMo5t8U592+Spkp6k6R/k/QXSQslrZXUlb2ty7b9VdLXJJ0uaV/n3L855zYnUTtQkywljT00+rz9z4u/lnyOuLL0e+xe6d835Uxpv7cXv4eZf0DLwm8Wvz6kNX9OugIAqBzdW73bm9ri22PsLGnGe/37Nzww+Pnauwrb586DpZ6dhc0FAAAAAAAAAKCG1SddAAAAAKSU+We4OhGK5cWJEDUAAAAAAAAAAAAAqHTOuR5Jj2RvAJI05Qxp1+Lw4w/9dCbwqtxSDcH9neullqnF7bHqJv++1/8kvtc98RRprU+gVV+3VNcYzz4j1Su/SLoCAKgcfmFhfsGVhZr1YWnF7/37d6+SRh9Q/D7r7pUOfGfx6wAAAAAAAAAAUEP8UykAAABQNnWq8+0jFMtbmvcFAAAAAAAAAAAAAAAgvK5N0caPiiHoo1AHXOzft+xXUpdPIEpYXVv8+1r2LW7tXHXN/n2dq+PbZ6Rac2fSFQBA5fD7bGxqi3ef1uOD+7cvGHhcP8Z7zPgj8+/z7JfD1wQAAAAAAAAAwAhBWBgAAEAFSFlAWJgjFMuLc+mkSwAAAAAAAAAAAAAAAKgerSdEGz/tgtLUEcbR3/DvW/AV6eY26a6jpD2bC1t/xe/8+xrHF7aml2nv8O/r7YxvHww35uCkKwCA8unrlnp3efc1tsa7V8O44P6550vpnsxndG+795gjrsy/T+ea6LUBAAAAAAAAAFDjCAsDAACoAEFhYWkRiuXFiRA1AAAAAAAAAAAAAACA0Ma/Jtr4cYeVpo4wJhyVf8yORdIj74y+9rZnpT0bvPv2PSf6ekGmne/ft/SaePfCEJy5AjCCdAWEZzbFHBYmSZfkCetc8FXpsXf794+ZKZ31SPAafXui1wUAAAAAAAAAQI0jLAwAAKAC1AX8tYxQLG+OA30AAAAAAAAAAAAAAADhpRrDj23Zr3R1hNU8Nf+YjXOlzvXR1l11i3/fqGnR1sqnrsW/b82d8e6FwdqXJV0BAJTPlnn+fY1t8e/X1CYd/HH//pd/JK3/m39/XYs06VTp1D/FXxsAAAAAAAAAADWMsDAAAIAKkLI63z7nCMXyQogaAAAAAAAAAAAAAABABJNODT923GGlqyO0kGdDlvxc6t4Wftn25f59Yw8Nv04YqQb/vvpR8e6FvXospcVj2vTMhH318piJ6jGOzAOocX2d/n3Nk0uz5z7H+Pelu4LnjpmVua+Iv28AAAAAAAAAAFA96pMuAAAAAFJKAWFhhGJ5co73BQAAAAAAAAAAAAAAILSGMeHHzri8dHWEddD7pRd/kH/cwm9IC78pHfN96cgrg8c6J634nX//ARdHqzGM5qnSnvXD27c/H/9e0EtjJ+l/Z52orrqBY/JNfb366NJ5OnLXpgQrA4AS2vSwf1+qRL82NP1S6cmPR5+3/wVSU2vm8YTXBo91aYnARwAAAAAAAAAA9uJfzQEAACpAnREWFlVa6aRLAAAAAAAAAAAAAAAAqC7v6gg3btYHS1tHGId+KsJgJz37JWnjQ8HDVlzv39d2kjR2VoQ9Qzrme/59fV3x7zeC7UnV62cHDw4Kk6Suunr9/OCT1FHHdbYB1KB0n7TkZ959Yw8p3b6NE6STfxN93qk5n8Vm0huu8x+7+rbo6wMAAAAAAAAAUMMICwMAAKgAqYArnzlCsTwRogYAAAAAAAAAAAAAABBRfYt04KVJVxFO3ajoc9b8OU//nf59U8+Kvl8Y9aP9+zY9Upo9R6iXx05UT8o7EKw3VafFYyaWuSIAKIOtT/r31Y8t7d4TT442fsblwz8XR8/wH7/i95FLAgAAAAAAAACgllVVWJiZPZC93W9mk4tYZ0ruWnHWCAAAUIiU6nz70o5QLC+O9wUAAAAAAAAAAAAAACC6fY4J7g8KtyqnpjapZf9oc179g5Tu8e/fs86/r/XYaHuFFfR+dwbUg2AeZ4d2NDQHTmlvaCpVNQCQnKDPklJ9tvULCvryMmq/4W0TjvIfv3NxtPUBAAAAAAAAAKhxVRUWJmm2pNOz98Hf5gZrzq7RfwMAAEhUyvz/WjaufkIZK6keU5umJV0CAAAAAAAAAAAAAABA9Zl+qdTY6t//xhvLV0sQM+nQT0ab07FaevBcqXe3d//Gh/znTj0r2l5hjT3Yv69vT2n2HAnS3cOaulP+F2yUpLSsVNUAQHL6Ov37Zn6otHvXNUr1Y8KP96qncR/J6r3H71gouXRhtQEAAAAAAAAAUIOqLSxMEt/SAgCA2nRQ82HD2kwpnTRudvmLqSBvmvA2z/Zz2y4tcyUAAAAAAAAAAAAAAAA1YMxB0lselPY7b3jfG66T9vM+q5GII78sHX+11HZi+Dnr/yYt/knEff5ZahgbbU4Uow/ybg8KeEEwj/euuy44LMxxCh1ALQr6LJl0Sun3P/7q8GNbpnq3vyUgzHPNXdHqAQAAAAAAAACghlVjWBgAAEBNekvrhbIhfz1744S3alRdhKuu1aA3jn+rWlKjBrUd3HKkZrYMD1cDAAAAAAAAAAAAAABACBOOlmbfKb3HDb4ddHnSlQ1mJh32aensJ6TzXg4/b929w9s61vqPHz0jcmmRNLV6t/ftKe2+taxn57Cm7lR94BTHNasB1CK/z5JxR5Rn/4YIZ1zrWrzbxx/uP2fbs9HqAQAAAAAAAACghgV/I1q7cl93b2JVAAAA5Dh27Cn6/6Z9VX/f8YB29+3S0WNO0OkTzk26rMRNaz5InzvgO5q7/W5t6F6rQ0YdqbNaL1a9NSRdGgAAAAAAAAAAAAAAAMpl7CHhx3ZtGd7W7dHWr9SBKn7hKH2dpd23lrUvHdbUnaoLnEJYGICa5PdZ4vfZE7e2k8ONaz1BSvmc+2zcx39e767oNQEAAAAAAAAAUKNGaljYxJzHuxOrAgAAYIjXjD5Orxl9XNJlVJxpzQfpvVM/mXQZAAAAAAAAAAAAAAAASIqZdNwPpac/n3/s9gXD23oDgrlajy+8rjDqmr3bNz5U2n1r2a4lw5q68oWFkRUGoBbt2eDd7vfZE7fRB0gzPyAtu9Z/jNVJr/lyYeu/+APpmO9n/h4AAAAAAAAAAMAIN1LDwt6UvXeS1iZZCAAAAAAAAAAAAAAAAAAAAIAQDv+c1Ngm/f2K/GO7tkhNbQPP+wLCwupaiq8tiN/6G+4v7b61zCMsrCdfWJgImgFQg165xru91J9tuU68Rmp9vbT2L1LXpsF944+QZlwuTX1z8BrTL5Ne/aN33/bnpH1eF0+tAAAAAAAAAABUsWoOC3NRBptZg6R9Jb1V0ldyup6PsygAAAAAAAAAAAAAAAAAAAAAJTLz/ZmbJK26VXr4Yu9xGx+SDrho4LlfWFiqQcoTMlU01xfQl5YsVdr9a1HH6mFN3Xn+O6bJCgNQi/Z5beYzbyjXU74aUnXSoZ/M3ArVMM6/b8McwsIAAAAAAAAAAFAFhoWZWcC34QPDJK0wK/gb29yJdxS6CAAAAAAAAAAAAAAAAAAAiJ+ZHS/pIEldkl50zr2ScEkAKtGk0/z7urYMft7X4T2ublR89fhpnurf17dHqi9DDbWmd/ewpq5U8NF4J9LCANQg8wlK3PpMeeso1uTTpVd+4d3Xs7O8tQAAAAAAAAAAUKEq8TJUFnALOy7fzWXXeEnSTaV7KQAAAAAAAAAAAAAAAAAAjFxm1mxmM3NuPmkGe8dfYGYrJM2T9CdJt0l62cweMbMjy1AygGrSPNG/b95HJecGnndt9h5X1xJvTV5mfci/r9cnxAzB1t49rKk7FfgRQ1gYgNq0YY53+6yPlLeOYk17h3/fyhvKVwcAAAAAAAAAABWsEsPCpIEwr1IxSfMlneec6ynxXgAAAAAAAAAAAAAAAAAAjFRfkLQke5sjKe030MzeJekWSQdo+EVCT5H0hJkdX+qCAVSZCa/179v2zMDj1bd7jylHWFjTZP++zY+Xfv9a5PqGNfXkCwsjKwxArdm11L+vZd/y1RGH+lHS1LO8+3YsKm8tAAAAAAAAAABUqPqkC/DwkPzDwk7P3jtlrhq4J+SaTlKXpO2SXpQ0xzn3cDFFAgAAAAAAAAAAAAAAAACAvN6hTNiXk/RL55zn+UAz20fS/ypzEVSXvfXHuvTPGS3pFjM7zDkX9vwggFrX1Obft+kxqfW4zOPR073HdG+Lv6ahmlr9+9oDgl7gr65Z6hv8UdCdLyxMpIUBqDFbnvDvC/rsqVSW8u9L90l5fs4DAAAAAAAAAFDrKi4szDk326/PzNIaOPRzqXNuZVmKAgAAAAAAAAAAAAAAAAAAkZhZi6RjNHDu788Bwz8tabwGQsLWSLpFUq+kiyX1p/xMk/QZSVeVoGQA1WjqWdKGOd59fbsHHqd7vcf0bI+/pqGCAs3SPaXfvxb1Dc+M7MoXFpabFdayX8wFAUAC+rr8+6aeVb464jL2MGndX737etulxvHlrQcAAAAAAAAAgAoTcNmNisUlnQAAAAAAAAAAAAAAAAAAqHxHS6pT5tzfbufc0wFj36eBoLCXJR3lnPusc+4L2XWezI4zSR8oWcUAqs+hn/Lve/bLA4/X3eM9Zto74q3HT12zd3tfZ3n2ryU+wW/decLC0rnH0DvXxlkRACTjxR/4940+sHx1xGXmFf59j723fHUAAAAAAAAAAFChqi0s7BvZ2zclleEyXgAAAAAAAAAAAAAAAAAAoEAHZe+dpBf8BpnZ4ZIOzhn7Nefcjv5+51y7pE/nTDnMzA6IuVYA1aphrDTpVP/+dF/mvmO1d3/LvvHX5GXSG73bCQuLbut8z+aePGFhjmtWA6glzkk7X0y6ing1jPPvW3uX1Lm+fLUAAAAAAAAAAFCBqioszDn3jZzbzqTrAQAAAAAAAAAAAAAAAAAAvqbkPF4XMO607L1Japd069ABzrl5knKTfl5bdHUAasemRwP6Hpb69khjD/XuL1fwSF2Ld3vfnoHHLj0QbgZ/OxcPa+qTqTdfWNjQrLC+7hiLAoAy66nBX6lpmiRZwK85bX2qfLUAAAAAAAAAAFCBqiosDAAAAAAAAAAAAAAAAAAAVI1ROY93BYw7NXvvJN3vnOv1Gbcw5/GBxRQGoMYEBYvcf4b0pxZp1/CAKUnSqGmlqWkov7CwZb+W0r3S/M9Kt0yRbp4o/f1DUm9neeqqRuk9w5q68wSFSZLTkLSw7q1xVQQA5de7O+kK4tc4Xpr0Jv/+uedlgjUBAAAAAAAAABihCAsDAAAAAAAAAAAAAAAAAAClkJvK0hAw7pScxw8HjNuS83hcQRUBqE0zLi987qRT84+JQ12zd3vPDunuo6XFV0tdm6We7ZkAsb9fUZ66qtG254Y1hQoLsyFhYZ3r4qoIAMrv+a8lXUFpvOE3wf1PfLg8dQAAAAAAAAAAUIEICwMAAAAAAAAAAAAAAAAAAKWwK+fxFK8BZjZV0sE5TY8FrFefO7WIugDUmoYi8gPrWuKro9B9dr40vG3VrVL3jtLVU802D/+oCBMWlh7asPGheOoBgCQs+3XSFZTG6AOlmR/07192bdlKAQAAAAAAAACg0tTnH1K5zOwMSW+WdKykyZLGK/jqg16cc25W3LUBAAAAAAAAAAAAAAAAADDCrcnem6Sjfcacm/O4S9LTAetNyHm8u4i6ANSagz8qLf5xYXNHz4i1lNj2cb3ShjnSAe8oSTlVbfxR0rZnBjWFCQtzQ3MmjetuA6hSLp251aoJrw3u3/yElGrM/hw3yUxSyvt+75jsvTzacu8HrZFn7N69AQAAAAAAAAAoj6oMCzOzsyVdrcFXEyz0X9hd8RUBAAAAAAAAAAAAAAAAAIAhnst53GpmZzvn/jpkzAez907SPOdcT8B6M3Mer4+jQAA1YvxRhc+d4JdlGLNp75AW/Eu0Oemu0tRS7bq3Dm9K5T8W74aeNu/rjKkgACizlTcmXUFpTb9Mevpz/v33nly+WkLJE1gWKXwsIADNb2zsAWghQtiSek2lqKHY9cKODXwNhQbVxfF+AgAAAAAAAKgmVRcWZmZXSvpe/1MNhH0VEvrFv2oCAAAAAAAAAAAAAAAAAFACzrmlZrZEmQuDmqSfmtlbnHPLJcnMviDp1Jwpt/utZWZjNPgCo0tLUDKAamUmnXSN9MRHos076ZflC0kYf7i079ukdfeUZ79atvauYU3ddXV5p7mhR8fX3Ckd+aW4qgKA8uhcLz16WdJVlFbL1KQriMhJzklKF/abTUCihgaPxR2+VuYAtEoOyQsbKBcqWC6m1xT2/RxUU6X8Gel/DgAAAAAAMLJUVViYmZ0t6fvZpy576/9XnQ5J2yUFXVUQAAAAAAAAAAAAAAAAAACUzzXKnPtzkg6S9JKZLZA0WdIBGjgHuEfS7wLWma2B84K9khaVqF4A1WrckQXMOTz+OoJMv5SwsGK5tGdzdypEWNjQMIGO1XFUBADltdo3XxcACkDYHapc1EC5UoavJRWSV5bXFHG9sGPLGZJXcaGDhN0BAAAAAApTVWFhkr6Xve8/HLRKmUNEf3bOrUysKgAAAAAAAAAAAAAAAAAA4OVHkj4o6TBlzv41SDpe2hv81X/h0B865zYFrHNRzvgFzrmu0pQLoGqNjxgWZilp7KGlqcVXxAQGR2LDML27PZtDhYUNbYj6ZwYAKsGi7yZdAQAAlaM/TNj1JVsHUJCI4WNRw9eqISSvEl9T2EC5YkPyShHUV7bQQcLuAAAAgCRVTViYmc2S9DoNfE/7hKS3Oud2JVcVAAAAAAAAAAAAAAAAAADw45zrNrOzJf1F0hHZZtPARUNN0s2Svu63hpmNkXSJBs4P3l+yggFUr8bx0tSzpPX3hRu/33lS88TS1jRU24nRxu9ZX5o6qllvh2dzmLCwtIb8Muvau+OoCADKq2Nl0hWUx0m/kp74UNJVAAAAlJAbCLojKxxVJ2KgXKQQtgoPlCv3aypFoFyxIXmJhw5GCOrzrB0AAKC6VU1YmKQ3ZO9NUlrS+wkKAwAAAAAAAAAAAAAAAACgsjnnVpnZMZI+JOkCSdOzXS9Jut45d0ueJT4gaVzO87tiLxJAbTj9Dum+06St8/3HNLZK0y6UXv+T8tXVr25UtPFPf046/J9KU0u1al/q2dydyn8s3nn9LmDPLqlhbJFFAUCZpHuSrqB8Zn1Q2vmC9OJ/Jl0JAAAAgGEIu0M18wswSzJQrogAtEoOyQu7d6hwvJheU1Hva8J/Rgi7AwBkVVNY2OTsvZP0jHNuSZLFAAAAAAAAAAAAAAAAAACAcJxzPZL+N3uL6peSfpuz1o646gJQY+qapXOelFw68wuLVpf5JZq+bsn1DoyxVDL11UcMC5Mk5/gloFwb53o2d6fq8k518ngfN8yRpl1QbFUAUB6bn0i6gvI69geZ297PcZf5jB9675yk/nufMYPuc8fnuw+zXs66Ycd61l5MDQHz/faO7f2M8r4WuV6+9zPp1wQAAACgCuT+XT/pWoACRA2UK2X4WlIheeV4TWED5QbVVGEhebG8r3H9GenvBxCHagoLy/1f/iuJVQEAAAAAAAAAAAAAAAAAAMrGOdcpqTPpOgBUEUtpUCBYXaOkxsTK2atpUvQ5q26R9jtHqh8dfz3VyKU9m0OFhXn9Isqe9cVWBADl07km6QqSUSmf40A+ecPIYghAK0Wg3NBawgaqRQ1fK0dIXkUGylXJawIAAABQHfr/jdz1JVsHUIiogXJhA8uqKSSvlK9p//Ok1uNL9B8PlaSawsJyv9XI/20uAAAAAAAAAAAAAAAAAAAAAFQKM6ntRGnLvPBzHnmntM9x0pvvlZraSldbtdi+wLO5K0xYmFdjz87i6gGAcunrlh69LOkqAAQZ9MueQJXZGyoWV/CZRwBa2EC5UMFyRYa6RQ1fKzQkrxID5Urxfib9mgAAAABUh9y/v5NbHb+W/QgLGyGqKSxsUc7jAxKrAgAAAAAAAAAAAAAAAAAAAAAKcdS/SXPPjzZn29PSC1dJx36/NDVVk5U3ejb3jJ2Zd6qTDW9c/jvpiC8WWxUAlN6qm5KuAABQy/aG3UlS/iBeoKJ4ht3FHYAWcb2wY0OF4yUUklcxgXIR3teqDMkjJQMAAABx8fgeDDWpasLCnHPPm9lCSUdJOt7M9nHObUu6LgAAAAAAAAAAAAAAAAAAEJ2ZTZM0U1KrpLGSzDl3XbJVAUCJ1Y8pbN6LhIUNuuL8EN2W/xcg0l5jmlqLqQgAymf938KPrWspXR0AAACVhrA7VLugILQkAtAKCparkEA5v9dQCYFyYd/PqgrJI+wOAICKYqmkK0CZVE1YWNZ/Sfq1Mv+P/QuSvppsOQAAAAAAAAAAAAAAAAAAICwzmy7pc5IukDTdY8iwsDAzO03SGdmn25xzPy5dhQBQYq3HJ11B9erb49vVVdcgqS9wuuevLzaML6okACibbc+GH3vCT0tXBwAAAIB4mUlG0B2qVOgQshBhbn4BaKUIlIslWK5CQvLCjiUkz2MdAKg1+S+sg9pQVWFhzrnfmNl5ki6R9CUze9Q5d0/SdQEAAAAAAAAAAAAAAAAAAH9mlpL0LUlXKnPBUK+Tqn4n8zdL+vf+fjO72zm3tARlAkDpNYxNuoLq1dfp29U9+gCpd0XgdGceHz0BawJAxdjxksNsAmcAACAASURBVLTtmXBj9zlGmvaO0tYDAAAAAICUCbuTSZZKuhIgumFhYiUIQAsbwhYqHK/IULdYQtiqJFAu0vtapa8J8OL1PRhqUlWFhWVdIalBmasK3m5m35P0Q+fc9mTLAgAAAAAAAAAAAAAAAAAAQ5lZg6S7JJ2pTEjY0FAwp4DL3DrnXjSzOZLOyI59jzLBYwCAkWTbs75dPan8x+I9EykJCwNQDV78fnD/vmdL9aOl1uOlgz8uNU4oT10AAAAAAADVirA7VLO9QWclDEALGyhXcLBcmHC8MofkFV1DCQLlorz+5qlF/9FCdaiqsDAz+1r24QJJp0iaKOkrkj5vZo9LekHSNkmRohCdc9+Ms04AAAAAAAAAAAAAAAAAALDXLyW9RXtPvcokPSxpjqRuSd8OscbNyoSFSdJbRVgYgGqWapDSPdHnda6TWvaNv55qsWORb1eX+vJOd165lF1bi6kIAMpjw1z/vuN+KB3+ufLVAgAAAAAAACBZe8PuJKku4WIAlFtVhYVJ+ncNvqhT/6GhUZLenL0VgrAwAAAAAAAAAAAAAAAAAABiZmZnSnqfBs77vSLpPc65+dn+6QoXFnaXpJ9k1zjBzJqdc3tKUzUAlNjR/y4t+Er0eUt+Jr12BB97TvcOa3p57EQ93nagVnQvzzvdmUdY2I6FmautWyqOCgGgNHYH/IybUuiv0QAAAAAAAAAAgGpTC99q9l9psBAe3/gCAAAAAAAAAAAAAAAAAICYfD17b5JelXRKf1BYFM65VyVtzz5tkHR4POUBQAIO+URh8xZ+S1r03XhrqSZb5g16+tz4qfrxIW/QvLYDQk1P+3Vsf764ugCglDrW+veNmiZNeG35agEAAAAAAAAAAImqxrAwi/EGAAAAAAAAAAAAAAAAAABKwMxaJZ2igYuCftY5t7mIJV/IeXxoMbUBQKIa9yl87gs/kNI98dVSTVb+adDT+6YcrLSFPw7vzOf4+NJriqkKAErr1T/49514jeT3sw0AAAAAAAAAANSc+qQLiOiMpAsAAAAAAAAAAAAAAAAAAAChvFEDFzXd6Jy7o8j1coPGJhe5FgAk65BPSkv+J/q8nu3SzsXShNfEX1OlG/8aacciSZkEyuVjooWuOb+O3vaiygKAktr8d/++5onlqwMAAAAAAAAAACSuqsLCnHNzk64BAAAAAAAAAAAAAAAAAACEsm/23kmaH8N6u3Iej4lhPQBIzqwPFhYWJklbnhiZYWHpnr0P+8yUtlTA4OGczLtj3X3FVAUA8du+SHruq9LW+VLHav9xE44pX00AAAAAAAAAACBx0b4hBQAAAAAAAAAAAAAAAAAACKc15/G2GNZryXnc4zsKAKpB6/HS0d8obO4TH5baV8RaTlXYtXjvw+5UXeTpznzCwjrXSNsWFFoVAMRr9yrp/jOk1bcFB4VNPEUq4GchAAAAAAAAAACoXoSFAQAAAAAAAAAAAAAAAACAUtiZ83hsDOtNyXm8NYb1ACBZR39NOu8l6fgfR5+78ob466lkLj3oaXeqPvoSQZ3Lfxt5PQAoidW3Sl2b8o/b/+2lrwUAAAAAAAAAAFQUwsIAAAAAAAAAAAAAAAAAAEAp5KYcHFLMQmZWJ+nYnKZ1xawHABVj3GHSYZ+Sznwg2rwtT5Smnkq1Z+Ogp92pOt+hJ4w93bM9bea//rZnCyorUM8uqWtL5t4FRpUBwICnPhtuXMt+pa0DAAAAAAAAAABUnOiXVAKAWtO+XFr8E2nHC1LbSdIRX5QaxiRdFQAAkKSendJDF0sb7s88n3G59IbfSEGHNwEAAAAAAAAAAABUiuez9ybpMDOb5pxbXeBab5M0KvvYSfp7scUBQEWZdJrUNFHq2hxu/KpbpLkXZs5RNE4obW2VoK9j0NOgsLCmVLNnu1PAeZOOVQWV5al9uXTHzOHtx18tHfbp+PYBMLLt+7akKwAAAAAAAAAAAGVW9WFhZtYg6Q2STpM0S1KrpLGS5Jw7M8HSAFSD9hXSfadKndkLja77i7T2LumsR6S6pkRLAwBgxOvtkG4cP7htxW+lLX+Xzl+cTE0AAAAAAAAAAAAAQnPOvWhmayTtr0xg2BckfS7qOmaWkvSv/ctKWuCc2x5boQBQCVL10ux7pAfPlbo2hZuz5g7p4YulMx8obW2VoGfX4KcFhYUF2BXTWRSX9g4Kk6SnPiM1T5GmvyuevQCMbC1Tkq4AAAAAAAAAAACUWSrpAgplZqPN7KuSVkmaI+mbkq6QdL6kMyTN9pn3bjNblr3NN7OAS0QBqHlLfzkQFNZv63xp7T3J1AMAAAas/5t3+64lUveO8tYCAAAAAAAAAAAAoFC/z96bpE+Z2VkFrPFdSSfnPP+/oqsCgErU9nrporXS2fOkC1dIl/VI+54TPGfDHKljTVnKS9Tmvw962h0QFtaY8r5YrMt3bHzXK5HLGmbz48H9K34f3A8AYRxwSdIVAAAAAAAAAACABFRlWJiZvVbSU5K+IWmyMoeIwrpTUpukGZKOlVTIwSMAtWLRt73bX/iP8tYBAACGW32rf9/KG8pXBwAAAAAAAAAAAIBiXCVppyQnqU7S7Wb2sTATzWyimV0r6crsfElaL+lXJagTACpDql5qO0EaPT3zePpl+ee0Ly19XUP1dkjr7pOW/lra8KDUsba0+6XqBz31CwtrsEbVybvPebbm2LWkgMJytK+Q/nZ68Jg1dxS3Ry1pXy4tu1Z64fsDF/5tXyZ1rE60LKAqjJmZdAUAAAAAAAAAACAB9fmHVBYzO1LSXEnjlAkJc9n7/sCwwO9xnXPtZnajpA9lmy6RdG9pqgVQtbbMS7oCAACwfaF/34YHpYM/WrZSAAAAAAAAAAAAABTGObfVzD4j6Vplzvc1S/qZmV0p6SZJg9JlzOxESYdJequkCySN0cD5wD5JH3TOdZenegCoAPudm39Mb2fp68i16D+kBf86vH3qW6XTbpIaxsa/554Ng576hYU1pppk5n0daufTvldvR0GlqXODNPc8aev8cOM3PyFNPKmwvWpB5zrpzsOk3l0Dbc9+efCYyadLb7pNapxQ3tqAanHgPyRdAQAAAAAAAAAASEAq6QKiMLNmSX+WND6n+XlJH5Y0U9IRGjgUFOT2nMdnxlYgAAAAgPi4tH/fq9dLc86Vdr1SvnoAAAAAAAAAAAAAFMQ5d52kb2vwBUJnSfqSpP/OGWqSHlcmWOw9kvrTZvovIvovzjkuDgpgZGmelH/Mhr+Vvo5+q+/wDgqTpPX3SvM/XZp9F3xl0FO/sLAma5b5HCdP5ztm/vKPCipNj707fFCYJN17spTuK2yvWvDIuwYHhXnZOFd64iPlqQeoRm0nJF0BAAAAAAAAAABIQFWFhUn6jKQZGjj4c7Wk45xzv3bOrZC0J+Q6czRw4OggM5scc50AAAAAitU8Jbh/3T3SfW+UureVpx4AAAAAAAAAAAAABXPOfU3SBzVwzq//HGB/gFj/zTRw0dD+592SrnDO/WfZCgaASjL5TcH9WyIEVRVr9a35++MOwkr3DGvyCwtrSDXJfI7I93/waPRB3vtsXxC9tq6tmWCrqLY8EX1OLdizUdr0SLixq26W+sL+egAwgow7POkKAAAAAAAAAABAQqotLOzTGvie9jbn3D8559JRF3HOtUtakdN0RAy1AQAAAIjTuMPyj9mzIXPFWgAAAAAAAAAAAAAVzzn3G2XO6/1UmdCw/lAw0+CQsP62tKTrJB3hnPttGUsFgMoy+fTg/uZJ8e7X0y6tuVva+JDU1z24r315nrk747/wW+e6YU1+YWGN1igb9HEywFm2fbfPa2jZv4Da1kjRj7NLL18dfU4t6FgTbfzulaWpA6hmuxYnXQEAAAAAAAAAAEhIfdIFhGVmR0rq/wbWSbqyyCWXSuq/LNRMSQVc0glARXBOeuV/pTV3Sg3jpYOukPY7O8S8Ag5nAACAMnL5h0jSU/8kzbyitKUAAAAAAAAAAAAAiIVzbqWkT5nZlyS9MXs7QFKbpEZJmyVtkPSYpPudc9uTqhUAKsb0y6QX/0vq6/DuX3mj1Nsh1Y8qfq8t86UHzpJ6sj9+xx4qnTlHGrWf1LVV2hjiyHXXJql5YvG17DX8DEmPX1hYqklm3tfTdv0hYvufnzlzOtTOF6OX1tsZfY4krb+3sHnVroPwL6BoB16adAUAAAAAAAAAACAh3t+EVqZjsvdO0kLn3LIi18s9QDS+yLUAJOnpz0tPfkJae7f06h+kB8/JHHzJJ91bXD8AAIiPc9LOJVJfV05byGDPnhh+N6BzvbT+AcJEAQAAAAAAAAAAgDJxznU45+51zn3NOfdB59wFzrlznHPvc859wTl3M0FhAJA1/kjpzXnCpV64qvh9nJMevnjwWYxdi6UnP555vOBfwq2z+CfF15Krb8+wpu6U9zWzG61Jqf5QsCFcf/P0y/z3ciEvbtdv44PRxvfr3ial+wqbW82e/GTSFQDV74BLkq4AAAAAAAAAAAAkpJrCwiblPF4Sw3o5KQSK4TJaABLRvUNa/OPh7Y+8K/9clycMrLe9sJoAAEA06++Xbt1P+vOh0k0TpIXfyR68jHj4shC9u6XrTbp1X+mBM6U/1Emv/F/p9wUAAAAAAAAAAAAAAIhi0qnS0d/w7193T/F7bHlS6lg1vH3NnVK6R1obco8dLxRfS66+zmFN3ak6z6GNqSaZX1hYf3tdi/9eUWvfvtC73VLS+a8Ez936VLS9akHnmqQrAKpfPb/+AgAAAAAAAADASFVNYWHNOY+7fEeFNz7n8a4Y1gOQhNW3Ss7nympr7g6emy8srIcfDQAAlFzHGumBt0h71mee9+2RnvuqtPIGKZ3nszoOt88Y3jbvY1LH6tLvDQAAAAAAAAAAAAAAEEXbCf59W+ZlLpg25xypc11h629+1L+vt8M7SMxLe56QrKh6I4SFWZPMvI/IpyXp+Kul1tf779W1MVptDWO8211aGjMzeG7UvaqdK+DCgc9+OfNnD8CAfY5LugIAAAAAAAAAAJCQagoL25zzeGIM6+V++7olhvUAJGF3wMGTuW/PHLbw4xcy1q+3vbCaAABAeEt+5t2+/DrplZ+HX2f3yuh7u7TUtdm77/H3R18PAAAAAAAAAAAAAACglKackX/Mur9Kt+4nbV8U795hg8KkzEXaVt0S3959EcLCUk0ymWefSzVKB75TGn2A/15Rg9bW3efdXtcimUkz3uc/d8Xvo+1V7Xa+FH3O6lulG0ZL3TvirweoVi1Tkq4AAAAAAAAAAAAkpJrCwtZn703SscUsZGZtko7IaYr58lUAysbn6m97bQq4yl26N3huz67o9QAAgGgWfce7fe3d0daZe370vf2CwiRpw5zo6wEAAAAAAAAAAAAIxcwazOxNZvYVM/uVmd1mZveb2f1J1wYAFa2uWTrpl+HG3n1UARt4h2xJkp77WrSl5v2jlM5zUdewtswb1uQXFtZgAWFhY2ZILftmntSP8d7rpf8XrbZ2n2Po/SFhp/zWf+6rf4zvPaoGz3yp8LmLvhtfHUA1O/DSpCsAAAAAAAAAAAAJqqawsMckpbOP28zszUWs9SENfJu9W9L8YgoDkKBUY3D/ypv8+1yesLBewsIAAJBLS1vmS8t/J7UvS7oaf9ufk/Zsijana2tpagEAAAAAAAAAAADgycxGm9lXJa2SNEfSNyVdIel8SWdImu0z791mtix7m29mAWk2AFDjRk1LZt+oF17r2pw5zxGH7m3Dm3zCwhpTTTKfC9G6VP3AE/Oer9728HXtCbhQXe764w7zHxfXe1QNNgdcADifF6+Krw6gmjWOT7oCAAAAAAAAAACQoKoJC3PObZP0ZE7Ttwo58GNm+0v6siSXvd3nnEsHzwJQsfJ94bn6Fv8+l+dqbFEOfAAAUIv6uqSHLpL+eoL0+OXSHbOkF/8r6ar8PfvP0cb3dZSmDgAAAAAAAAAAAADDmNlrJT0l6RuSJmvggp9h3CmpTdIMScdKOivu+gCgarSdFH5szy7p5R9Lj71feum/pe7the/bU8DcF6+S+roL37NfXfPwcvzCwqxRKZ+PGOdczgI7vPdKNYWvK+g9GXf4wONJp/mPe+AtnmFoidv4iDT/M9LcCwZuc86VrrfM7U+jpA1zw6/X21n863zio9Kq24pbA6h2k96UdAUAAAAAAAAAACBBVRMWlvWjnMcnS/p5lMlmNkXSHZL20cBBox/GUxqARPR2Bvd3rPbvS/cGz+3ZFb0eAABqyZKfS2vuGNz2zBel7YvCr7FlvvT4B6T7TpMWfEXq3R1riYMs+3W08X15/h4Rx2FVAAAAAAAAAAAAADKzIyXNlXSIMmf3+tNaTCFCw5xz7ZJuzGm6JO4aAaBq5LvIaq4bx0lPfUZa8Vvp6c9lg6l8QrJK4dU/Sg9fLKV7ilunfemwpm6/sLBUk8zniLxTzvWlZ33Ye6/tC6Sw16H2CxyTpAMuHnh8+Of9x3VvlW5qrazAsBXXS/efLi3+sbTmzoHbunsGxvR1SvfPll69If96fXukuW8vvq6l10gPXyQ99/Xi1wIq1a5XgvunXVieOgAAAAAAAAAAQEWqqrAw59wfJT2bfWqSPmJmD5tZwOWWJDMbbWYfz849RpmDRk7Svc65R0tZM4ASyxfyEcTlCQvzOFwCAMCI8vKPvNuXXhNu/pb50v1nSMt/I216RFr0XWnO2VK6L74ah9qzKfzYvj3B/UEHOgEAAAAAAAAAAACEYmbNkv4sKTfd5nlJH5Y0U9IRChEYJun2nMdnxlYgAFSjKWcUNm/rU9LKGwMGhPlxPMTsu4P7194lbXw4+rq5Vvx+WJNvWJg1ycz7daT3ZlVKmniK/35b5oera81d/n1NrQOPxx+Rf60Vfwi3Z6m5tLTgX8MHpj16af4x6/4qbZjj33/6ndLk08PtJ2XOIJUz9A4oJ78ze5J02GelhjHlqwUAAAAAAAAAAFScqgoLy3qnpC0auLLgqZIeNLM1kq7LHWhmPzOz+yVtkvQ/kqb0d0laK+nyslQMoHT6OvKP6Wn3bnd5gkpe/VP0egAAqCW7l3u3v/zf4eYv+ZnUO+RzeNOj0sbs4b90nuDOQtwyOXwYWb7Q0bV5DrMCAAAAAAAAAAAACOMzkmZo4Mzf1ZKOc8792jm3QlKeq/zsNSe7hkk6yMwmx1xnVTCzBjObbWbvN7N/NrNPmtlFZjYj6doAlNH+FxY+9+nPxVeHJDW2SaMPCh6z7i/F7dF6wrAm37CwVJPMJ/TM5QZgNU7w32/TQ+Hq6t7q31fXMvh5vvdo/ifD7Vlqu16Rdr8abU5XwPsg5Q+LG32QdMz3w+/neqXNj4cfD1SToP+9NE8tXx0AAAAAAAAAAKAiVV1YmHNumaTzJK1X5tBP/+GffSW9MWeoSfqYpNmSmoeMXS3p7c65zWUrHEBp7FqSf8zOl7zb8wWUjD8yej0AAIwUq+/IP2bZr7zbHzgrc7/5sfjqybX46nDj8oWFLfl58bUAAAAAAAAAAAAA+LQGgsJuc879kxuU1hKOc65d0oqcpiNiqK1oZjbTzC41sx+Y2YNmttPMXM5tRUz7TDKznypzdnKOpN9I+p6kn0i6RdJyM3vUzC6JYz8AFW7mBwqfO/TCb8VqPVaaembwmC1PxLun8oWFeR+Rd3s/jiRNPj1g8R3hiujr8u+zITVMfXO4NZO288Xoc9bfF9zfscq/r3mqNP4IqfU4qbE1/J5x/zkGKsX2Bf59U2aXrQwAAAAAAAAAAFCZqi4sTJKcc/MkHSfpHmnvpZ9czr3LeZ7bZ5Luk3Sic+65MpQKoJR2LpZe/WP+cbuXe7e7PGFhXVui1wQAwEjxUPYKtek+ybnh/em+/Gus/1u8NfV7+vNSmN8t6MtzgfLenfHUAwAAAAAAAAAAAIxQZnakpP01cM7vyiKXXJrzeGaRaxXMzGab2V/NbEu2pj9K+qKk0yWNLcF+b5O0UNInJAUlqZwi6SYz+52ZjY67DgAVpHF8cYFhfszyjxkq1SAd9W/BYzY+JO1eWVhNkrT1yWFNfmFhDdYkk/frGBQW1tTmv9+ib4er6xWfC9GN88izzPceSdLOl8PtW0oPvSP6nEcvkzb5XDSwt1NaeYP/3BN/nglWSzVIJ/w0/J6d66PVCFSDbQG/4tIwXmo7qXy1AAAAAAAAAACAilSVYWGS5Jzb4Jx7u6QTJP1Omavlmc9tpzJXzjvDOXe2c45vB4Fa8OJV4ca9/CPv9rxhYRuj1QMAwEjz8D9IN02Qbp8hLfru4NCweR8Lnnu9SQu/VbraNjyQf0xfZ3C/CxF4BgAAAAAAAAAAACDIMdl7J2mhc25Zkettz3k8vsi1inGMpLcqOLgrFmY2W9JtkibnNDtJT0m6UZkLqG4eMu29kv5gZlV7RhRACCf/WnrT7dLog5KrYfp7MvejD8w/dsX1sW2bltSTqvfsa0w1KeUTeuaGXnxuWkAwVue64CJ2Lvbvm3jy8LbR04PXk6Rl1+YfU0rtRXxML/EJ+tpwv/+cKWdI0y4ceD79UuncheH2W3NH+NqAavHKL/z7TrqmsEBHAAAAAAAAAABQU6r+IIhz7inn3Pudc/tLOljSGZLeKek9yhzGeZ2kNufcO51zcxMsFUDclv4y3Li+Pd7t6TwBIF1botUDAMBIs+omqbdd6lgpLfiK9JfjpI410sobpWW/Sra2J/KElUlSX1dwfyVcrRUAAAAAAAAAAACobpNyHi+JYb3cL/lGxbBe3LokLY1rMTObpsyFUhtzmh+V9Brn3Oudc+9yzr1V0jRJn5XUkzPufEnfjqsWABVq2gXShcuk9zhp/FHl379l6sDj1hOCx26ZV9geHmdAe63Od3ijNcl8jsg7ucENzZM9x0mStswPrivo9TRN8m5vO7HwNcthcxH7+9X+0g/954w7fHjbhNeE+7M89pBwdQHVJOhnQNDPKwAAAAAAAAAAMGJUfVhYLufcMufcXOfcLc65Pzrn/uace94NuwwUSsnMGsxstpm938z+2cw+aWYXmdmMpGvDCOUXFuZ6g+ele4L7AQDAYNuele6YJT3yrqQrkXYvzz/G5QkOlaQdLxZfCwAAAAAAAAAAADByNec8znM1n1DG5zzeFcN6xeiR9KykayT9o6TjJY2V9JEY9/iGpH1ynj8m6S3OuUFfZDrnupxzV0sa+mXt581seoz1AKhkU84IP3brM/Hsuf953o+9rL41/4XdvPR2DGvqTgWEhaUaZTLPvvTQsLB9z/Hft3trcF19w+vaaz+fdfc/P3jNDQ9I8z8tORc8rlSCXtNRXwueu3uFd/uGB/3nTDrNu/2kEBcT9jsbjJFpzZ+le0+R/tgo/aFOumGM9MDZ0rbnkq4smq6N/n1tJ5evDgAAAAAAAAAAULFqKiwMGWZ2rZm5mG4rIuw7ycx+Kmm9pDmSfiPpe5J+oszVDZeb2aNmdkkpXjfga4/PF6f5wsLy9QMAgOHScZzvL5MwYWHzPlr6OgAAAAAAAAAAAIDatTnn8cQY1puZ83hLDOsV6jeSxjnnjnXOfdQ59wvn3NPOudiuTmhmh0i6IqepW9IHnHO+6SjOuduytfVrkvT1uGoCUOFe85XwY/9ynLRnk0eHd8iWpyO+JE2enfP8i9LUs4LnPP7+8Ov36+sc1hQYFmZNMvM+Iu805PrT0y703/fvHwiua/si/77c9yXX4V+QJhwdvO7in0gLIvy3jNPzAR8ZR39dmnG5f3+6R0p7ncUJCD6b8mbv9oknSvue7T9Pkpb9KrgfI8eGB6WH3iFtfjzz59Clpd7d0vp7pftnS7tXJV1heLtf9W4/8B+kusby1gIAAAAAAAAAACoSYWHIZ/g37B7M7G2SFkr6hKTWgKGnSLrJzH5nZqNjqA8jVU97+LFdmzNf/A6VzhMGlo7t7B4AAEiCx5VlB/H6+8GwNUL9dRgAAAAAAAAAAACAt/XZe5N0bDELmVmbpCNyml4pZr1iOOe2BYV2xeQ9knLTcG5xzi0JMe/7Q56/y8ya4ysLQMVqCjq+62HJzwvb54gvSectlo79vmQ54WL1o6TZ92RCbfysulnq2hptv+0LhzUFhoWlmmQ+oWfODQmuspQ05mD/vTvX+/dt+Jt3e+sJg9+XXPUt0jnPSAflCU174T/CnWuJk3NSx2rvvn2Oy7xXp1wnHXOV/xob7o+2Z12Tf98Zf5He9kzw/HzngDEyLLvW/6KR3dukVbeUtZyC7XzZv2//88tXBwAAAAAAAAAAqGiEhSGfm/MNMLPZkm6TNDmn2Ul6StKNku7T4CtEStJ7Jf3/7N15nFxVnf//96nurl6TdBKSdMhOQsK+KvsOggiKKCIyoIgC44o6+B39OeMyo6Mzysyo48Io7gqoA4qIsu/7JmsCIQnZ973Xqu46vz+qOl1dfc+te2/t3a/n41GPrns/Z0tTqW4edfI+NxjX0V1APhscmyw8Wakv5yDR3a9L956epxubCAAAY5jnSZ81pneTf921SSzb+IXFWQsAAAAAAAAAAAAwNj0qaTDtZLIx5rQCxrpc2pP+0iXp6UIWVgPOz7n+aZBO1trFkp7IutUq6cxiLQpAFYs1SE3Tgrd/8Yvh55hzUTokbPy+jjXUSTPOc/e3A9KuJeHmHOgaccs3LMw0ucPC5BHA1TrLPffOl921iY4MzF2L3X2k9PfIL1BtUNeq/G2KacDnQL1U39Dz6T4/UrZ5/GiO+4TY1Y/zX9PEw6RFV7vrvT5hbhg7drzoX9+Zp14tPIIR92ieUb51AAAAAAAAAACAqlZTQU3GmIOMMfdmHvcYY6bm7zVijGmZvoPjjMZ//X+NpHkRHrmfPFtJP/GbyBgzU9LNkuJZtx+RdKC19k3W2guttWdKminpaknJrHZvl/TVCH8+QOpdH679PTn7DP/k2KiSLZVMn5QGAMBYlL3Jr1blQO51gwAAIABJREFUCwvz2gCaa+WNRVkKAAAAAAAAAAAAMBZZa7dLeirr1r8aY7wTXHwYY2ZI+pzSe9qspLustQE+8KtNxpgOSYdm3epXel9eUPfnXJ9d6JoA1IiZ7wzXfsQeyTxv0XXN+cfc+61SrNFd9wul8tLfPeKWb1hYLK6Y4yxjK489oX7fM7+19o8MMZMkGffa9pgWIDszyCF4xTTQ6651vGXoefsh7nZe+2wS29ztff477jHd50dYf8jXEkafVFLa/qx/mzW3lmcthervdNemnFC+dQAAAAAAAAAAgKpWU2Fhkq6SdIqkkyUlrLX5/vX/CNbajUoHVg2Oc0UR11cVrLVbrLVvhH1IOiNnqPustcvzTPcVSROzrh+VdEbmdMLsNfVZa78j6cKc/p8xxsyJ8MfEWJdK5m+TbWfWaUu7lwXvN3r3FAIA4C/sz9pSOfI70v7XSB1nSAd+QZr17uB9d7zgX+fnPAAAAAAAAAAAAFAO3856foykH4bpbIyZJulWpfepDabY/Gdxlla1Dsq5fsFa60il8fRozvWBBa4HQK044lpp77cFb7/0B+HGr2vJ36ZxsnTKn931V74Rbk6P/R+usLA61avO1Ms4Qs+s1wGyCz/unnv5z921NX/wvr8gwNb0+hbp1Dv826z+ff5ximnZj9y1ff9+6Lkx7tfYjhelvq1D1zuXuMc8/FvB1jX5Te5aZ4j9wBidnvts/jZ9m6WulaVfS6H8/ix1cXcNAAAAAAAAAACMKbUWFnZe1nOfT1/zGuxrJJ1fwDijhjGmWdJFObevz9NnX0kfyLqVkHSZtdZ5tJS19g8a/t+uUdKXwq0WULQT0wY3eezy2XyQq3d9+HkAABgNbH+lV5DejLnw49Lh35ROu0s69KvS0ddLk48J1n/Jtf71oL9P9G4O1g4AAAAAAAAAAADACNbaGyX9LXNpJH3YGPOQMeZEv37GmFZjzN9n+h4myWYed1prHynlmqvAATnXr4fsn5uekjsegNGqvjUd1PXOtdJJt0qn/NW//ZISZS92nC41tHvXNtwdbqxtz4y45QoLi8fSgTqusLCUPA6WMzGpZab33BvvCbbGbEEC1SRp2mn+9ZW/DT93Id64wV2rax5+PeNcd9t1fxl6vuZmd7umqcHWlTt3tvV5AtcwutmUtPLGYG1f/3Fp11IMfY49ahNyM2QBAAAAAAAAAMBYVl/pBQRljNlH0uAnsSlJtxUw3J8kDUiqkzTPGDPbWruqwCXWugskTci63i7J5xNaSdLFSn8PB91srV0aYK5/1/CQsQuNMR/1CxkDRogUFtYvmQYpsSN4n61PujeBAAAwmqUqGBY27XTpqOukcfNH1uITpLc8LC3/ifTklf7jNO7lX7ceG0C9bH9Omn5msLYAAAAAAAAAAAAAvFwg6XFJkzPXx0u63xizQTlBWMaYH0haKOlYpQ+jNEqHhBlJayVdWqY1V9KCnOuw+xtX5lxPNsZMtNZuL2BNAGpJy97pRz6dudmCeay9VXrz/wRrm3Ts1WycEm7OcQukjfcOH9oVFmYaJUnGeJ+nbWW95+he432/ZZZ7XfGJUsLjbbUn4CG1sTzb+B1/hpJJ+Wzjbpo2/Lr9UHfb7NfUbp/XV1vujzoHv7CwusZgY2B0sFbq2yp1r5b6u6TmDql3Y7C+L39VGr+fNPEwacIBkvEOFKwYv31s/bsjDdlvk1rZu0y9A10ji8ZoZuNcTaifFGlsAAAAAAAAAABQOTUTFiZp8EgUK+lVa21n1IGstZ3GmFc1dFrewQq/mWa0+VDO9a8DhHedn3P90yATWWsXG2OekHR05larpDMl3RqkPyApWljYQJ8Ua5D6NgXvU8mgFAAAKskmyz9n2wJp0dXSoo/7t4vVSZOOyD9eYpt/PejvE7tfJywMAAAAAAAAAAAAKIC1drkx5lxJt0iarqHwr+mSOrKaGklXZj1XVts1ks611m4py6Irqz3nOsSGpz17JHslNWXdnqD0IaIAxpqD/ll66V/d9ac/IR357XQ4Vb4Anb2OCT5vxxnShrtH3u/bHHwMSeod2T7hCguLZcLC5P3nsNYRFjbpTdK2p0fe3/GCe11eQWGSNOUEd59ck4+Rtj7uXdv2dDocqVyhRrtedddyQ7n2OtbdtmfD0POBHne7yUcFW5ffnz/M4cGofgO9UtdqqXuV1LUqHQq253nmq99rKp/HLkl/bZwsvfVZqXV2cdZdDAM+/2xj1gWhh3u561ldv+6b6k35f7+OHHeCPjD9atWbhtBzAAAAAAAAAACAyqilsLA5Wc9DHmPlaZmGwsKq6JOe8jPGzJd0Us7t6/P06ZCUfSxUv6RHQkx7v4bCwiTpbBEWhjAihYX1SA1t7g0axZoHAIDRoJyBmft/Vjr8P8L1mXCQVNciDXS72/idTir5n8iY7cUvSQs/GnxtAAAAAAAAAAAAAEaw1j5pjDlC0k+U3i8mpYPAsr8O66J0SJiRdJekD1hrN3i0G43acq6jJGP0aHhY2LjoyxlijJkqaUrIbvOLMTeAiA75F/+wsNf+R2o/VFrw4fxjte0TfN79rvEOC5Okbc9Ik44MNs6aW0bcWjx+qmfTBpMOtYop5lm3cuwVWfhx6fHLvGtdq0aGCrlCxySpZaa7lustD0s3+mznf+M30ry/Cz5eVP0++2+O+dnIe8ak//tte2Zk7fUfSkf9IP3cFew087z0YYFBzbpAWv17j7muk476YfBxUDk2JfVuGh781Z0JBBt83hsqGzW6vq3SIxdJZz5anvmC2PGSuzbv0lBD7e7fqevW/pv6bf79f8/sflgd8Zk6Z6+LQs0BAAAAAAAAAAAqp5bCwrI3quwswni7sp6PL8J4texyadgRWs9aa/+Wp89BOdcvWGu7QsyZ++nagSH6AtECTHYtkZqmSIkQbyEBPigFAGBUKufPQBNi89+gukZpxtulVTe526T6pGRnOizUu0GwufrGwsHkAAAAAAAAAAAAQOlZazdKOscYc6SkqyWdLmm6o/lOSfdI+q619oEyLbFa5H7I2RthjB5JE33GjOqjkr5UpLEAVIs1fwwWFtbUEXzM+maf+W4NHhbmYVdDo+f9eCwuSTLDtkUPsZ7ZlJLqfNa67i/SvlcNv9e10t2+rsldyxWrk479lfTYJd71tX8sT1jYxnvdtfhE7/ttC7zDwqR0MJSJucPCxi0Mtz7n3h9UjWTn8OCvEaFga6RUotKrHLLlMalnvdTs+jW0zNb92V3ze3/y8ErXc4GCwga90PkkYWEAAAAAAAAAANSQWgoLy/60sBjhXtnhYwNFGK8mGWPqJH0g5/b1AboekHP9esipl+UZD/BnI/y1TSXTX/t3+bcrdB4AAEaDwZ+b5RAlLEySjrleSvWmN6y6rLtdmnOhdy3Mz3lr06eiAgAAAAAAAAAAACiYtfYZSe+XJGPMPpJmSZosKS5pi6SNkl621gY8AWjUc6TbFL0PgNGq/WBpx4vuevfqzJM8eyPmvC/4nBN8zhHuXhVsDMfBshMT3iFUb/QulSQZxx4PKytr7cj6xEPda+hZN/Je7yZ3+9Y57pqXsHOXwqYH3bX2Q7zv+4UR9XenA75cYWEhw4/U7fg+NLSHGweFSe5Ov1Z2viR1rR4eBpbYXunVhffg+dIJv5NaZ1V6JdJAt7vWOjfUUDv7t4Vqv71/a6j2AAAAAAAAAACgsmopLGxL1vOQn6J6mp31fCx/wvFWSTOyrnsk/SZAvwU51wE/td8j90itycaYidbaGvykEBURKSysL/01sbO08wAAMBqEOF2wYHufHa1ffat00h+kxA7p945TTHvWuvuH+XcFvZuk5mnh1gcAAAAAAAAAAACMccaYcZLmZd1aZq3tym5jrV0uaXlZF1b9OnOuQ6aqePbJHRPAWHLgP0mPvNdd3/G8NJDIP06YvRONk9215T+TjvxuOlDKjyNsKhHzPphuVuM+kiSjmHNIKyuTG4o2bqF7DbsWj7zXu8Hdvink/hK/ULXNj5T+gLsl/y0t/qa73jbX+/68S6XV/+ddG+hJ/7fd+qR3PWxY2Kx3SRvuHHk/uYMDAMtl12vSPaf578WqNVufkP44Wzr2l9K8Syq7lpU3umt18VBDJWxfuPap3lDtAQAAAAAAAABAZbk/Ca0+g2FURtLBxhifT5D9ZfpmH3M0ij61Cu3ynOv/s9buCNAv9ygmnyOyRrLWdkrK/WRpQpgxvBhjphpjDgzzkDS/0HlRAVFCvPoz+93W3FLaeQAAGA1SyfLM0zRN2uvYwsaI+5wSuuUJdy3Mz/mBrvxtAAAAAAAAAAAAAOR6n6TnMo8nJTVWdjk1o5rDwr4v6aCQj/OKNDeAqOZcKB3zU/82y6/3rzdOCT/vgivdtcXfyt+/K/ds4rSkIyxsUUt6e/iIMLAsVnbkTWOkjjO8O6z63ch7z3/BOb5iIc/yNkY69Ovu+uaHw40XRn+P9Oyn3fX2g901v5CzDfekvw44QojChoWN29dd23R/uLEQzZNX1U5Q2P6flY6/KXj7xy6V+raVbj359PdI3Wu8a3MuCj1cIhUyLMz2KRXm0E0AAAAAAAAAAFBRIT+NrKjHJfVJiisdGPYxSf8ScayPaigorV/SIwWvrgYZY6ZIenvO7Tyf9O+Re5SX99Fd/nokNWVdj4swRq6PSvpSEcZBtYsS4rX+TmnWu0s/DwAAo0Gqv7jj7XWc1LtJ6nx9+P2T/ySZImQYTznBe3PkqpskOU5eDLPJaceLUts+kZYGAAAAAAAAAAAAjGF7SXsSW56y1lYwiaGm7My5DpXQY4xp08iwsCCHiOZlrd2kkIeLGuMO7QFQRvtclg5pesQRPrP+DqnjTHf/+tbwc8Ynumvr75AO+bJ//80Ped5OOMLC4rF0JqXx2YtilZLk0d9vramkFGsYuu5c7t0ubAjWoOYOd239HdLUE6ONm8/qm/3rcZ+zvf1eD1secYevSVJd3H/eEXO1uGvrbpemnRpuPITT3+X8u1gyjVOk1tlSy+zM11nS2tuChcO1zkkHJG56QFr6/WDzbbxHmv2egpYcmd/3tj73n2zkl7DeYWHt9ZO1o3+rZ63fJhU3ZPoCAAAAAAAAAFALaiYszFrbZ4x5SNLgJ4fXGGNusda+GGYcY8xBkj4r7TkW6hFrbVcRl1pL3i8p65NrLZP0QMC+uZ88OY5+8tUjKfuT9fCfZmHsihLitfE+affr+dtlSxEWBgAYo2yRw8IO+Jw04xxp+9/Sp4dO2F+adrpUH3GTZK62+e6TVK1Nn8I64n6IsLBH3ie9tzva2gAAAAAAAAAAAICxazD0ykpaU8mF1JilOddzQvbPbb/NWru9gPUAGC0mH+Wu9Wz079v1RoT5jnbX+rbk7z+Q8LyddISFNZh0CFVM7pBCa608y37hV/1dUrx96Np4z6+BKGcvq/DvU1Rv/Mq/vtcx7lqTT8CZTUkJ71AiSVLrPP95c7Uf4q4l+PFWcontxT18ua45Hf41LAwsKxSsZZb3nrLdrwcLC5vzvvTXee8PHhZWyr9nhczt93fQIZHyDgtrqxvvDAvrS/XuCVsEAAAAAAAAAADVrWbCwjK+pXRYmFU6WOovxpgLrLWPB+lsjDlK0u8ltSr9Ma/NjDlWfTDn+ifWWuvZMr8o/aLOBUT70LlzWXrDRhgp740mAACMeqlkccebfJRkYtKkI9KPYvP7Gb/1Ce+NU2F+nxjoSW9k9Dl5FgAAAAAAAAAAAMAI67Oexyu2itqzOOd6Qcj+++Rcv1LAWgCMJm0+IU1bH5fmXuyu+wWNuUw/y13rDHD46/KfeN52hYUNht0Yv7Aw1/bleZdJy3/mXdvymLT32ZnJd0n9u73bLbjKOa+v8fu5a69fJx31w2jj5rP+r/71fS5317wO7hvUuUzqXOGuh30t1be4a2v+IB3943DjIZz+MAcsGql5eib8a5ZHGNhsqXGy/+vHOXTAPo2T0l8nvzn42Ovvkvb9SPg1FcPmR921me8MPVzCusPC3H16JU0IPRcAAAAAAAAAACi/mgoLs9beaYy5X9IpSgdN7S3pQWPMLyVdJ+mp3LArY4yR9CZJV0m6VFJDpq+V9JC19vay/QGqiDHmGEkHZt0akPSzEEN05lx7HN+TV26f3DGj+L6k34XsM1/SH4swN8op1R+t39YnwrVfd5u0/2eizQUAQC2zEX/WurhOVC2WRZ+QVv/eu/bsP0hnPuJRSIWbI7lr+CmxAAAAAAAAAAAAAPJ5Keu5T0INcryUc32IMabFWhs0reP4POMBGMuO+G/p2U951zbe4+7nF2jlUt8iHfUj6ckrvOs9G6TmDu9aql/a8YJnKdHQ6nm/waRzKY3PYXAp136RtrnOPnr200NhYa5AMUmaeb675seYdDCXIxxN3WullhnRxnbJd770KbdL4/f1bzP/CmnZj0beX3+HNNDr7ucX/uWy78ekpd8beb9va/ixEE7XG+7afv8gTTx0KAyseYZUV6p82ACHPO517NBzE5Mu7JbuOUXa+qR/vzW3FLSygni9riUpPikdrBZS0nFQtl9YWF/KO2AMAAAAAAAAAABUn5oKC8u4SNKzkqYrHfhVL+myzKPLGPOqpO2Z2iRJCyW1ZfqazH0jabWkC8u47mrzoZzrv1hr14XoX5VhYdbaTZI2heljopxMhMqzA9H6PRXy1Ke6CBsSgCAG+qStT0lN06RxC6KdkgYApbT0B8Udr2SbwDKmnOCubXlUWnubNOPc4ffD/j6R2EFYGAAAAAAAAAAAABCCtfY1Y8wLkg5ROvBqhrV2baXXVe2steuzvm9Sep/kCZLuDDjEKTnXfynS0gCMBvGJ7trmR921tgXR5muZ5a5tvE+a+z7vmiMoTJKSjjCwPWFhcu/Hs66QrPpxzj7a9Wo6XMsYaeO97nYNPmPk4xcKtPE+ad4l0cf20r3Gvz7pTfnHiDV432/qSAecOfs15h97RB+fvUelCFPDkM7l7tqhX5PqIvz3jMInBHCPaacNv65vls7KHDR9y0ypx+d1mdxd2N/hKPxC+5qmRhoyYb2Dv9rqJrj7pHzC/QAAAAAAAAAAQFUJ8IlJdcmEQb1V0koNhX8p87xN0pGSTpd0Rub5uExNGgoKe13SWzNjjTnGmFZJ7825fX3IYXbmXE8JuYY2jQwL2xFyDRjLooaFhcXmAZTC5kelmzuku0+Ublso3fdWqT/owa8AUCar/694Y008TGpwn0xYFPk2gz3w9pH3rOOkWJe1t4ZrDwAAAAAAAAAAAECSvpv5aiT9SyUXUmNuybn+YJBOxpj9JB2ddatLwUPGAIwFU09y1/z2Zs46P9p8ex3jriVztyMHqyVi3udlx2MBwsLk2C/SOMm9FklKJTOTb3e3mXSE/xh+/P67+H2fokrm2bbdFGBreK9jK74x/nt5ohyuOvFQd60U3x9k8fnvVa6gMClYWNiiT7prs/OcM5/cHW49xTDgE9IVNSws5QoLcweh9TkCxgAAAAAAAAAAQPWpubAwSbLWvqR0ENiNGgoAs1mPPU2zHkZSStIvJL3ZWru4nGuuMu9ROkRt0EZJt4UcY2nO9ZyQ/XPbb7PW+nx6DuQoV1hYuebB2DGQkO4/Z/hGmw13Ss9/oXJrAoBiudhKh/7b8HumTjroi5VZT67ckxjDhoUl2FgIAAAAAAAAAAAAhGWtvV7Sn5Xew3eZMeb/VXhJteLXkrI3L73LGLNvgH7/mHP9W2utTxIFgDGnba67ltjmrk04MNp88Qnu2sob3LVdrzpLSUfYVNykg4uMzxZ5K+us6eCvuGtdK9N7TzY96F1vmibVNbn759PxFnft6Y9HH9fFL/Ts8G8FG2P2e7zv96yXdr/mXZv/oWBj59r7HHdtw93RxkQwG++r9AoyAvzTF7+ALb8gMUl6+qPhllMMAz3u2n7XRBoy6Qj+aow1q8HEPWuJFL8qAgAAAAAAAABQK2oyLEySrLXbrbUXSzpA0n9JejFTMjkPSXpe0rckLbLWXmatHev/yj/3U9ZfWGv7Q46RG7a2IGT/fXKuXwnZH2Nd2cLCQoaIAPlsuNP7RL7X/qf8awEAl1TYXw2zHPh56cSbpXkfkPb9iHT6fdFPli22dbcPPe98Q+pZF67/RjYWAgAAAAAAAAAAABG9T9ItSu/p+7ox5g5jzKkVXlNVs9YulfTzrFtxST8zxjiTaIwx50m6LOtWQpJP8g2AMWvBleHaN06WHAFdgUw+2vu+K3hLkl79juftlKR+ee9taYilg3BiPmu1uYfNZXOFX0nSsh/5BpjpgM+5a0HUNUqTjnTXu0Puc8lnzR/dtUWfCjZGc0f4eaedEb6PJDWMd9de/HK0MRHMqpu8708+qrzrMHn+6cvJf/Kvt82Vzv6bu77mj1Lf1tDLKsh2n/WMXxhpyEQq4Xk/HmtUPNboWetLeQeMAQAAAAAAAACA6lNf6QUUylr7mqR/kCRjTJukaZImZ8pbJG201nZVaHlVxxizUNIJObevjzDUSznXhxhjWqy13QH7H59nPMAfYWGoVW/82vt+6MxGACihKJt/9rl86Pms86snICzbA+dKJ/1RevC8aP39NqgCAAAAAAAAAAAA8GSM+Unm6S5JuyWNk3SGpDOMMbuVPgx0U6YWlLXW5h6aWVbGmJny3oOZm5xSb4yZ6xim01q7xWeaL0k6X9LEzPVxku42xnzYWrskay2Nkq6UdG1O/2uttSt9xgcwVsUnhexQ4PnUfnsx+7uk+taR9+vbPJsnY+7t7w0mHYRjfNZr5bOW+ER3becr0pZHovUNqsknfGvLI/5hZmEN+OwPitUFG6NpWvh5o36fYg3uWn/Q7euIpL41/fc0V7m/7/kCC4O8tsYvkkydex/6lsekGeeGX1tUu3LPb8/S0B5pyIT1/rsdN3E1miZ1efzKnbC9keYCAAAAAAAAAADlVzNhYcaYDknZx888bK3dlt3GWtspqVPSsnKurcZcnnP9sLXW55grb9ba9caYFyQdkrlVr3QI2Z0Bhzgl5/ovYdeAMc71IW0sLjlORIo2D2FhKDJeUwBqQWJn+D4LP1b8dZRC1KAwSWqbX7x1AAAAAAAAAAAAAGPHZZJs1rWVNJj2MF4jD7/Mx2TGqGhYmKSHJc0J0G6GpBWO2s+V/v54stauMca8S9IdkuKZ28dLesUY84yk5ZImSDpC0pSc7rdJ+ucA6wMwFnWcIb3yjeDt84X05NN+sLTtKe+aKywssW3kPUlJ4w4CazDpt0oj93pTw34k5Wj2Ceta92epy/V2rvT3tFAdZ6Tn8RJlP4+f9UXYuj1uYfg+U8P+2M8wRqprkgY8Qo1SfZK1hb9O4c0VCtaU+6tHqeUJLZz05vxD1DVJU06QNj3gXfcKRSulVNJda44Qxicp4TgotCHWqHis0bPWlyIsDAAAAAAAAACAWlHgMU9l9S5Jt2Qev5bkc5wRvBhj6iS9P+f29QUMeUvO9QcDrmM/SUdn3epS8JAxIM32e9/f53Lp2F+mP8gNY+6ljgLBTiiyVb+t9AoAwF9ip3Tn0fnbZVtwpTTpiNKsp5r4bc4CAAAAAAAAAAAAEIbNesCHtfZ+SedL2px120h6k6QLJZ2lkUFhN0i6yFrXiYwAxrxpp4bsUGAI06Kr3bV1t4+8l0pKnd5nRyf2+4RzqMEgHOMTGmXz/ejpeIu7tvMVd61lhv+4QSy4wl170qcW1ro7pM7l3rXJIfYNRQnn8gqGC+rI77prz302+rhwsz6/rvn9vS4Fn6BATT9bqou769mO/La7tuGucGsq1MtfLfqQCev9z2ziJq54rMm7jyNgDAAAAAAAAAAAVJ9aCgtrV/qTZiPpKWttmY9tGRXeJml61vVuSb8rYLxfS8reTPQuY8y+Afr9Y871b621HEeDcFz72GL10rxLpLc8FG68Ou8PP2UJC0MRJTsrvQIAyO+5z0rda4K3n3m+/0a80YR99AAAAAAAAAAAAEBUpoiPMcdae7ukgyT9UNJ2n6aPS7rAWnsxeywB+DIx6eAvl2++xr3ctSX/OfLeJvce0GTrLGctbtJhQcZni7zNty+043T/upepJ4fv46W+VRq/n7veva4487zydXet/eBwY00MccDgxMPDjZ2r/RB3bcm10kCisPEx0o4X3bXGqeVbhyT1+/xqM891aLSHiYdK8YnetWWFnMMekrVS31bvWsT3lJRNqd96H4gZjzWq0TR61hL8Uw4AAAAAAAAAAGpGfaUXEMK2zFcraX0lF1LDPpRzfWMhG4KstUuNMT+XdHnmVlzSz4wxp7vCv4wx50m6LOtWQtJXoq4BY5grrMPUhR/rqOukbc865iEsDEW05pZKrwAA/PVtlZb9yL/NzPOkRZ+Stj4lTTo8vTEp1lCe9VUcvxcAAAAAAAAAAAAAEcyr9AJKwVo7t8zzbZL0EWPM1ZKOlzRHUoekLklrJT1nrV1RzjUBqHF+oVS5ejcWNpcrmEeSkrtG3tv2jLN5It4u9XjXGmLpsLCYT7aklXWvRZKaOvzrXhqnhO/j0jpH2rXEu7b9Wall78Ln2PSAu+YX7OalucM/xjLbQIGBRM15/tvsfk1qP6iwOTDczpfcteZp5VuHJO1a7K41Ti7OHOMXFWecIPo2F33IpHUH5sVNo+Ix78O1E6m+oq8FAAAAAAAAAACURi2FhWUHhLVWbBU1yhgzTdI5Obd/XIShvyTpfEmDn+IfJ+luY8yHrbV7Pqk2xjRKulLStTn9r7XWrizCOjDWpAKEhZ2/Xrplev6x5l8hbf+Ya6LQSwOcXv/fSq8AAPwt/WH+Ngf/izTxEGnaKSVfTtXpWZ8OEjXu02cBAAAAAAAAAAAADMf+sOKy1iYk3VfpdQAYBfZ+W/nmqm9217pWSv1dUn3W9vDeDc7myYmHSD3eB3fGTaMkyRi/sLA8+0Knn+Vf9zLj3PB9XPZ+m7Tja2WdAAAgAElEQVT+Du/agCMlrZjC/ln2fpu07vZgbSe/Ofx6srXOlpr3lnrWeddtf2HjY8hAr3STz99bSWrbpzxrGeQXNjf1pHBjNU2VEh4pd7teDTdOIRI73LWpp0Qb0if0Kx5rVGOs0bPWR1gYAAAAAAAAAAA1o5b+lftz0p6jnBZWciE16gMaHg73krX2yUIHtdaukfQuSdnH0Bwv6RVjzFPGmJuMMX+VtFrSdyQ1ZLW7TdI/F7oGjFE2QFhYc0ewE56MkfPt0I7ysLANd0tPfFh69BJptffmGRTR5of96zbPiYUAUGov/FP+Nu0Hl34dUR385eKMM/Fwd23JfxVnDgAAAAAAAAAAAAAAgEpqGCcd/ZNgbaedXvh8R37HXXv4vcOvl/yns2ki5r3f08io3jRknru3yNt8+/SaO6QFf+/fJte8S8O197PvR9y1l75a+Pjda/zrU44PN96Cq4K33e8z4cb2csLv3LVVPjWEky8orBL8wsLqmsKNdcDn3bUN94QbK6pH/85dW3BlpCET1icszDQqbry/Twnr870FAAAAAAAAAABVpWbCwqy1qyQ9LslIWmSMITAsnA/mXF9frIGttfdLOl/S5qzbRtKbJF0o6SxJU3K63SDpImtdiU9AHkHCwiTpnMXBNheYMRgW9sZvpHvPlJZdL73xa+mhd0mLr630qkavno3524zm1xuA6rfmT8Ha+Zy8WnFz3qf0r6EFmnKCu/bcNdLuZYXPAQAAAAAAAAAAAAAAUGlzLgrWrnGvwuca57P1e92fpZ4N6eedy93tZp6npE14lupNg0xmX4vx2T+SUoBDPfe5LH+bQU3T3HtQo4g1SOP29a7teKHw8V/+RuFjZIvVS4s+Haxtw7jC52s/xF1bVrTt8WNbYnv+Ns0zSr+OXGEDwfzE2921Fb8o3jwuyU5p29Puen1rpGETKXdYWEOsUY0x7+9hn08/AAAAAAAAAABQXWomLCzjm47n8GGMOV7Sflm3EpJ+Vcw5rLW3SzpI0g8l+X1C+LikC6y1F1tru4q5BowxQcPCjJGOCBCAldtvj1Ec3vTSv0q5m15e+lcp1V+R5Yx6O54P0GgUv94AVDebkh58R/52M99Z+rUUYvxC6bgCf8096jopPtG/zas+J90CAAAAAAAAAAAAAADUiqDhO/XNhc/VOtu/vmtJ+uvOV9xtWmY7w8LipnHPc+MT3mWD7NNrmZW/TZS2QSV3ed83MckGCDvzs/R77lp8UrQx8/23laRYPB2sVijnfl9JvQEOdR1LOpdLa2+XUiHP9l57e/42PWujrakQ++SenZ7Rfmj4sVp8XrN+70HF0rXCXTMxqb4t0rBJ6w79ipu44rFGz1oi1RtpPgAAAAAAAAAAUH41FRZmrf2DpJ9IMpLONcZ8zxhTX+FlVT1r7SPWWpP1aLTWbinBPJustR+R1CHpNEkflPR5SZ+U9G5J+1hrj7XW/l+x58YYFDQsLCjXxhA7SsObutcObazJltwpbXqg/OsZC4J8cO96XY9lyd3SGzdIL35F2nB34RudAHh76iP525h6ad+Pln4thZp7sXRhxEza0++VFlyZ/2TG1wgLAwAAAAAAAAAAAAAAo4Ax0rTT8rerK0JY2Pj9pPH7u+v3nColdki9m91tZp2vRMo7LKwhFt/z3Mg4h7BB9qC17C01z8jfTpJmvTtYuzA6zvC+b1PSQAlDffb/bLR+M96e3lvkZ/pZ+ffkBBF1n/BYsuUJ6TdGunW+9MA50o310r1vCd5/oErPA59+lnfA4ewLwo818TB3rXtN+PHCevIqd23WBVIs2us8kfIJC4s1qtF4B0QmfELGAAAAAAAAAABAdampsLCMqyR9W+nAsL+X9DdjzAeNMZMruywMstYmrLX3WWt/Zq39hrX2u9bam621PkfgACHZfu/7RQ8LG6XhTa5T5yT/jTaIrr8zf5vR+nqLqm+rdPcp0qMXSy9+Ob1Z5ZmrCQwDSuH1/83f5uTbpOkhNo1VUn1L+MCwU++Upp2afh4kLHS0BooCAAAAAAAAAAAAAICx5c0/zN+mGGFhxkin/Nm/zaN/Jz1xubs+7VRnqE3cNO55HvMLC1PA/Wdvfcq/buqlBX8fPWDLz6JPuWsv/FP0cfPtvYv6Zxk3XzrxZv82x/482ti58u0T3vRwceapVX1bpTuPGXl/w93Ssp8GG2PbM/nbtM4Jt65iaJkhnfwnqWlq+trUSfOvkA74fPixjJH2/3/etd4N0dcYxBs3Slsec9eP/nHkoRPWO0wxpjrVmXo1xBo9632pEoYQAgAAAAAAAACAospzhE91Mcbcm3W5W9I4SQdI+nGmvkbSpkwtKGutPb1oiwRQHq5QpVjUtzVHWFgqGXG8KucXShXxNCrk8ZxjU0E2gmeGu+9safuzw++99l1p/uX+p7oBKL4D/0na+6xKryKc+pZg7c5fJzVPz7kZ4P246w2pbZ+wqwIAAAAAAAAAAADGHGPM+4s4nFV6f+BOSRskLbGWU8cAoCCNk/K3KUZYmCS1zZOaOtxhPOtu9+m7QJKUTHmH4TTE4nueG5/ztG2QfSFSej/JxVbqWiWtvllqP2To+2Bi0oQDpIZxwcYKy+/7vfIG6Yhro427a4l/vZD9ozPf7q7NukCKT4w+djbX4cCDVv9emnpCceaqRRvucdeeuFya/8H8Y2x+JH+bptz9VmXScYZ0/vr0a7llVmF/B9sPdtd6NkrN06KP7Wfxf7hrsYaC/kyJlCNMMRMS1mi8w8Jc/QAAAAAAAAAAQPWpqbAwSadIw45zspJM5iFJszKPoJt/TIi2AKqJK+wq34lhLq5+G+6KNl61S+xw16J+D+Fvx/P52/iFuI01256RtjlOZlz6A+mo68q7HmA0S+zM32a+z4mtta6hfeS9VID3423PERYGAAAAAAAAAAAABPMzlW6fXpcx5ilJP5d0k7WWpAMACCtIiFP3muLNN36ROyzMT32rJCnpeKtvMFlhYcZ4tpGkVNiMydbZ0n6fCtenUK1z3LUge31cdr8WvW8QU06UNj808v5+ny7eHD7/bSWlDwAcy4rx33ji4dLOl/3bHPb1wueJajCsr1Ats9y17lWlCwvb/py7Nm5hQUO73h/jmZCweKzJs95newuaFwAAAAAAAAAAlE+eo3VqgvV4ABjtejd7348adOV3CtPAKNxDuP6v7pqptRzJGjDgfZLhCISFDXnhy+7ail+VbRnAmJBvY9e4fdOnutaieJ6Tb2Nxqc5jA1SQ9+Ntz0RbEwAAAAAAAAAAADB2mRI82pQ+hPSnkpYbY84s258GAEYLE2A7+dSTijffvPdH65c57C5pvffjxWONe54buQOlrFLR5i+nhjapaap3baBbCht4Jkk7XpQefKe7fuS3w4+Zy+u/7bh9pclHFz52UJ0ryjdXNcq3BziVzD9GMkAg3ZQTg62nmk05zl3b/Ghp5sy3J33eBwoaPpFyvT+mwxQbs94nh/cjLAwAAAAAAAAAgFpRi2FhxdwoBKBWdTk+zI8aFuZ36t2WEn3gW0l+36e65vKtY6xY8q1g7WwNbEIql3W3+RTJBQWKKt/Jr6feUZ51lMLh3/Svx9u9TxuddX7+sV+p4OmYAAAAAAAAAAAAQO3J/mAu6MGgQQ4RHbxvJE2X9BdjzMcKWCcAjE0Hf8W/3jyjeHPNvzz/ng4vmRCdRMo7bKfBxPc8Nz5b5G2t7D877jfu2oa7wo1lrXT7If5tFn0y3JheFnxYOvxaqWVW+hC/jjOl0++TYhH39kax44XyzVWLlvxn/jZr/+Rff8eK8v43LZVYg7v27KdKs6f3lW/41/e/pqDhE9b7/TFu0iFh8ZjHwZqS+hzvqwAAAAAAAAAAoPrkOTqmulhrazHcDEA5hQ0La5mdv19yd/T1VKsNd1d6BWPL818I1s4OlHYdo8VAT/p0O7+NGgCC693krtU1S23zyreWYtv7HP96wwTv++2HSG3zpc5l/v0TO9KBYwAAAAAAAAAAAAD8fDDzdZykL0qarHS4V0rS45KekrRK0i5JcUmTJB0s6URJHZm+VtJNkv4qqVlSu6QDMm3maHho2H8ZYxZba+8t6Z8KAEaTpmn+9foiH0K6/zXS8/9feh9YUJmDUBM24VmOZ4eFeR0el1EzYWHxSe7ail9J088MPtaO5/3rbfODj5XP/p+R9vt0+r9tXTx/+1Lo7yn+a7Zm5Hl9r71NOuAfow2932ekI66N1rdaNYyXkru8a9v/Jk06orjzrfU7SFfeB1+G4AxTjKXDwhozoWG5UhpQv02q3rAvFwAAAAAAAACAakf4FoDa43dSU3+39/39P+t9/8hvp7/Wt7nHTHlvLKlpWx5112x/+daB4QgLC+73k6SXvpY+8RBAYfp8wsLOebl86yiF5mnStNPc9clHed83Rjrlz1LrXP/x+7ZGXhoAAAAAAAAAAAAwVlhrfy7pUUkfUzooTJJ+JGmetfZ4a+2nrLX/aa39sbX2+9bar1pr3ytppqR3S1qhdAjYeyTNsdb+0Fr7DWvt+6218ySdK2l5po1V+hDVUZZkAQAlNvsC//qEg4o/Z/th4dpngqeSjj2dDbGhYKqYzxZ567cHtZqMX+SubXkk3Fiv/Lt/vbnDvx6WMaUNCtvrOP96Ynvp5q52+V7fuxbnH6Npqvd9v0Mpa9VEn/ehfAdNRtG9xl0rQmhfwnqHhQ2GKcZjTe6+jqAxAAAAAAAAAABQXQgLA1B7Bnrctakned/f5zKpoX34vQkHSR1npJ/H6t1j7loSank1L0VYWMXUyiakatDfKb3wT+kHgMK4NnHNfKfUNq+8aymFY38pNU4eeb+uSdr3o+5+4xdJ71guTTrS3YYNUgAAAAAAAAAAAEBexpgWSX+QtEhSv6T3WWuvstau9utnrU1Za2+RdIikh5Xe7/glY8xlOe1ul3SEpOeybh9ijHlL8f4UADDKNU6Wmmd41ya9WWqcVPw5F34seNv2Q/c8dYfhNO55bmScQ1nVyAGV9S3uWudyacPdwcZ5+RvSyhv92yy6Ovi6qkG+187Ge8qzjqqU5/Xdt1Xa9Zp/G9d+sulnRltSNfPbP/bwhVLv5uLNNZCQeje464MHYBfAFfgVj6XfHxsJCwMAAAAAAAAAoOYRFgag9uxe6q41jPe+P+EA6Yz7pLmXShOPkBZ+XDr9XqmhLf98626Pts5aZQkLK6oN9wZvawdKt47R6uV/k9aOsb+jQLG5Nnc1TSvvOkqlZW/prCfTwaHjF0lt+0iz3yOdepc0Jc8po8ZIB3/FXR9ggxQAAAAAAAAAAAAQwL9I2l/p9Ip/t9b+Nkxna22XpHdJ2ibJSPofY8yUnDa7JV2gdBjZYErGKEy0AIASOm+F1H7I8HvTz5bOfLQ08+3zgeBt9/v0nqfJVMKzSUMsvue5Me6wsFSthIVJ0sl/dtfuDZCJ2bVSev7z+dvNeHvwNVWDuRdLR37HXX/s/eVbS7WxAV7fT3/CXeta6a6Nlv1k2ea817/+4peLN9fK37hrcy+VZpxT8BRJ6/3+OBimmB2qmKvP9hY8PwAAAAAAAAAAKL36Si8AAEJL7HDXWue4axMPk477Rfj5tjwWvk81y7cRgMCq4rr39OBt+d5H88wnpRlvq/QqgNq15RHv+01Ty7uOUmrbRzrmp9H6TjvVXRtggxQAAAAAAAAAAADgxxhTL2kwsaNP0r9HGcdau8UYc52kz0tqlnSxpG/ntFlhjPldpmYlHR913QAwJsUapLc9X+lVeKtv3fPUFYbTkBWCY3zO07Y2Vbx1ldr4hf71rtVS6yx3fXnAPbMxd4BQ1Zr/ofTeQZeuVVLr7PKtp2oEeH1vuk8aSEh18ZG19Xe5+9W1RF9WNRu3UNr9mndtg8/3I6z1d7pr8y8vyhSJlPfhlw2Zv+ONsabQfQEAAAAAAAAAQHVxfxIKANXK78PShnHRxhy/f7R+1aK/K/19WfdXqb87T9tO/3qqv3jrGuuSu8O1r6VNSNWkc5m0c3GlVwHUpsR2qXeTd61xFIWFFaLOvUFKia3lWwcAAAAAAAAAAABQm06QtJfS4V1PWmu7Chgre9PQOx1t7sh8NZJmFjAXAKAcDvpSsHZ7HbPnqSssLG6Ggo+MjHMoqzwHrlaT1nn+9c7l7lpiu/TiF4PNY9zfr6pV3yK1+ISB9Y3RfT35DhSWpFTSvZc4sc3db9Lh0dZU7fY61l3bvbR48/h+b48szhTWO/ArnglTjPsEA/alODgTAAAAAAAAAIBaUPNhYcaYw4wxXzTG3GWMWW6M2WGMGTDGeKbdGGPajTGzM49p5V4vgCJY9uPijznTtX+wBuxcLP1poXTfWdL9Z0u3zvcPTlr1O//xLGFhRZPcFa69HSjNOsaC7jWVXgFQm1bf4q41ERYmSTIx98bCJ64o71oAAAAAAAAAAACA2pP9Ydu6Asdan/V8jqNN9qaZiQXOBwAotf0+lb/N+P2klqH8x0TKOwynISsExz8srIYO9YzV+ddf+Gfv+72bpN9PCjbHcTeEW1M1OfSr7lpyZ/nWUVUChuE9/THv+3/7R3ef+tbwy6kFiz7pX9/yZHHmWX+Huxb1sOwcrvfHwZCwetOgmLzfV1xBYwAAAAAAAAAAoLrUbFiYMeZgY8zdkp6R9CVJp0maK2m80qcCuj7lPVXSisxjqTGmpfSrBVBUfZuLP2Z9c/HHLJfHPyj1ZO2l7N0gPXapu/0TH/Ifj7Cw4gkb/kVYWHS1eLIhUA2e/ri7RljYkAn7e9/v3SB1rijvWgAAAAAAAAAAAIDaMj3reaEJE4N7/YykDkeb7VnPGx1tAADVIt4unfJX/zZHDz9gNmET3kOZ+J7nxhhnYJi1AcOUqsWiq921zQ9JPetH3l96XbCxT7pVmntRtHVVg7mXuGtr/li+dVQTGzAMb+WNI/c9da1yt+84I/qaqt2kI6Qj/stdd4XyhTHg/b4lSTr064WPn5F0BH41ZL0/Nsa8f0XuS/UWbR0AAAAAAAAAAKB0ajIszBhzmaTHlQ7+yv0kN98nuH+UtCrTr1XSu4u9PgAom+510tYnRt7f9ozUs2H4PZuSdr2Wf8wUYWFFMxD2lK0aOrGw6hAWBkQy0OOuERY2pNHne7H2tvKtAwAAAAAAAAAAAKg9u7KeH1DgWAdmPe90tGnKeu7zgSgAoGq0H+hfbxqeD5lMOcJwYvFh186wsLxbzavM5KP865seHHlv+fXBxp759vDrqSZ+h4wmd5RvHVUlxOt7433Dr1/2Ca0yddGWUyumnOCubbw7eAiby/Zn3bWGcYWNnSWRcoQpZgWExY13WFiCsDAAAAAAAAAAAGpCfaUXEJYx5t2Srlc6FWTw0yyjdADYNkmH+fW31qaMMTdJ+n+ZW++Q9MvSrBYASmzXYp/aq1JzZpPMur9Kj10i9W3NP6YlLKxo/EJ4vNiB0qxjLNj+nNRxeqVXAYwufgFZY43fz9tVN0mLPlG+tQAAAAAAAAAAAAC1ZU3mq5G0jzHmaGutx8l4gVya+Wqzxs3VkdVmc8R5AADl1DLTvz5u/rDLpHWE4eQE4BjF5HWAZ6rWDvWc+U7/ejIrl7N7jfTa96SulfnHnXpSYeuqdqbm/plEkYQIC0vkBKqtvMHdtv3QaMupFRN9/nw2JfVulJqnRx8/++9prmmnhhqqN9Wj+7b/SSt6XlNHfKZOnni2NiXW66ldD2hF76uefbLfH+OxJslju/LtW2/SQzvu0NT43jpq/Mma0ThH9+/4s5b3LFEylZQk1Zk6zW1eqJPaz9bkBvYXAgAAAAAAAABQCTX1KZgxZrqkn2cuBz/J+r6ka621K4wxcyUtDzDUH5UOCzOSTi7yMgGgfBLb3bXBU/K610j3nx18TAKrimcg5ClbfO/TbISTG1/9trT/NcVfCzCWNU6q9AqqR8fp0ranvWsD3qfVAgAAAAAAAAAAAJAkPSApqfReRSPp+8aYE6213WEGMca8V9KZGto3eJej6RFZz98It1QAQMUc9b/Sk1eOvH/syPOgdw/s9ByiwcSHXRtjPHOTbJgwpWpQ3yLNe7+04hfe9Rf+WVpwhdS9TrrrRKnrjWDjvun7RVtiRU08PH3YaK5lP5aO/lH511NpYfZfPvcP0v6fST9P9UtJ779bkqQFHn8/R5NYg3TgF6SXv+Zdv/M46e1LpVjEf37z+v+6a+P3DzxMMpXQd1d/eU8o2EtdT+vu7X/I2y8eGwoLa4w1erbZnNygzckNWt67RI/vutc51tKel/XUrgd1zexvaFLDlMBrBwAAAAAAAAAAxRGr9AJC+qKkFqU3DaUkXWit/bi1dkWmHvTTraeU3oAkSZONMfOKu0wAKDLXh/c7XnD3MbF0vz/MCjdXKpm/DYLZ+WK49rbGTiwslSjfh27XgcEAnFb9n3/d1Nr/KpRQ8wx3je8TAAAAAAAAAAAA4GSt3SXpNqX3/FlJh0m6wxgTeEOLMebDSh8yarPG+ZWj+VlZz5+PsmYAQAUsuEI67Z7h9854SJp3ybBbKZ8DORtiOWFhMp7tbC3u0zv25+5a70ZpIJEOEwsSFNa2QDpvpdR+YNGWV1F7HeuuRTm4tOaFfH13vpH+uuUx/3bNHZFWU1P8DqztekPa8mj0sVc79uo1TpGM93uVl8Xdf9sTFBZGPCtMMW6aQvfPtaN/qx7beU/+hgAAAAAAAAAAoOhq5l+2G2PqJL1P6Y0+VtK/W2vzJBx4s9b2S1qSdWu/wlcIACWwa6l075nSb9ukvxwhrb55eL1hgrvvncdIN0R4m7f94fvA2zOfCtfeZyPTmML3ASg9a6UnPuSuH/zlsi2lJkw7xV3L2WgKAAAAAAAAAAAAYIRrJPVmXR8v6RVjzA+MMacZY8bndjDGLDTGXGWMeUrSdZLiGgoKu95aO+IEt0wA2SkaOnT0oeL+MQAAJdVxmnSxHXpMPWFEk83JDc7uDWb4Ho6YY5u8DXw2dZWZdqq7tvPl/GFPg972gtQ6uzhrqgamzl3rWV++dVSLsAFpg6+bfK+fWOEBU1WvYbxU5/Pn3BwxLCyxPVo/D7dv/W2kfi114/Y8b6sf8at3JMt7luRvBAAAAAAAAAAAiq6+0gsI4RhJg59MJCT9R4HjrZF0cOZ54FMKAVRYyidEaP4V5VtHOSR2SvecIvWsS19vf056+D3SqXelN8VI/pscokolij/mWJEakLY+LnWtTJ9W198Zrj8hWRk1eHIjUGt2viwld7rrsy8s31pqwYSD3LXkTim5W9ryuNS5LL1pLD5RamiX4oOPif4byQAAAAAAAAAAAIBRzFq7whhzuaRfKn3AqZXUKunKzEPGmF2SdisdCjYh81VKB4Qp08dIekLSZxxTfU5DB6j2SrqrqH8QAEDFJVJ9ztrejcMDsIwx8soFq9mwsI4zpY33edf+ekSwMSa9SapvLt6aqsFex0mvfde7NtBd3rVUhZCv776t6a+r8oRQxUqwX7namJg0/WxpzS3e9e414cZLDUgv/5v04hfdbSYdGWrIVb2vh1uDpHpTr31bDtxzvX/LYXqh88nQ4+RKWPf7MQAAAAAAAAAAKJ1aCgtbkPlqJT1lrd1V4HjZ/YtzPAqA0vPZ6KH5HyrfOsphw11DQWGDbEp645dZYWHeJ98VZICwsEj6u6T73yZtejD6GISFpVnCwoCSsinpgXf4t6lrLM9aaoUx0uHfkp67ZmRtx4vS7YdKXSv8x4g1DoWHNUzMep4JExt23T4ycCzWUJo/GwAAAAAAAAAAAFAG1tobjTEpSf+r9H69wSSLwTCwCZnHiK5Z7e6QdJG1tssxzS8lDSZddPq0AwDUKL+wsKbY8BAss+dHzHCpWt2ftuiT0vOfL2yM435VnLVUk47T3bVND0njFrjro1HY1/czn5DaD5S2PeNu87aXCltTLTn8m+6wsKXfk478bykW8J/gPPMJaekP/Nsc9vVw6wspppgu7fjEsPfH4yacoZe7ntVLXU8XNLbf+zEAAAAAAAAAACidWgoLm5L1fHURxsv+JKyWvg/A2Ob3weJoCzbxCiSRpOU/k475afq5LcEJdynCwiJ5+RuFBYVJhGQNIjQNKK3X/idYsBWGG7evu5bv+ymlf4fp3Zh+RFHfOjw8LG/gWNZ1/fixcbonAAAAAAAAAAAAqpq19rfGmEclfUvSuzS0b89rA4zJ+rpC0testT/JM/7jxVorAKA6Jaz3HtKY6lRnhm8HN/I+jNV6/tipAfUt6T09UQN6DvuGNH5RcddUDeqa3bWlP5Dmf7B8a6kKEV7fj73fXWs/OB0mNlaMmy9NO13aeI93fcuj0tST8o/T3yUt8/3VNa1lVrj1hfCOvS7RkeOO15T49GH3G2JxXTXjc1rWs0Rv9LymAQ3oz1tuVErh9u663o8BAAAAAAAAAEBp1VJIVvYnV8X4l+6Tsp7vKMJ4AMoh1e+umYbSzbv+Lmn6W0o3vpfezQEalSBcirCwaNb8ofAxCMlKIzQNKJ3eTdIzV+dvV9dU+rXUmvik/G1Kqb8r/ehZG61/w4SsILGsMLGGAIFj9W2S8T5tFwAAAAAAAAAAAAjDWrtG0kXGmOmSLpB0nKRDJe0lqV1Sn6TtklZKelzS3ZLutLYUJ+oBAGpNwhGUFfc4GM849jrUbFiYJLXOlnYvjdZ3/P7FXUu1qG9x14Lsd+nvSe+VGi17Y6L8ytS9xl3b8WL0tdSq8fu5w8K2PRssLGz9ncGC/erHhVtbCKdNfLvne6Mk1Zl6LWw5SAtbDpIkPbj9du0c2B5qfNf7MQAAAAAAAAAAKK1aCgvLTs3ZuwjjHZT1fGsRxgNQDtYnLCxWwre0F79U/rAw432q3TClCFUiLCyanS8VPgZhYRkRX9epASlWjDxRYBRbfG2wdpUOxqpGjZMrvYLCJHemH1oZvq+py4SNTfQPHItPzHqeFTg2mjZUAj/c87UAACAASURBVAAAAAAAAAAAoCisteslfTfzAAAgkIR1hIUZj7Awee/BtLV8mOXe50qv/lf4fnXN0rTTir+eauC313aHz77OLU9IT39c2v6s1NQhLbhSOuiLo2CPSw2/vqvFjHOlpd/zru1+PdgYb/wqWLu6eLB2ETSY4GO31U8IHxbmeD8GAAAAAAAAAAClVUthYasyX42kw40xDdbaZJSBjDELJc3IuvVCoYsDUCY969y1WENhY8+9xP3h7JbHChs7ikBhYSUIlyIsrHJqeRNSMaUivq53vypNOKC4awFGm8X/kb9Ny+xRsOmtBMZygJodkBLb0o8oYvHh4WFhA8dKuCkOAAAAAAAAAAAAAADUjkTKERYWG7m3ICbv/S9WtqhrKqtD/zV9sOmGu8L1O/lWqaGtNGuqBod+TXr+CyPvD3RL/V1Sfevw+12rpHvPkPo709c966QXvyzVtUgHfLbkyy0pW+TX95QTizteLZh+lru29HvSkd/2P9h261PS6puLv64Q4qZRJsQewLa68aHncL0fAwAAAAAAAACA0qqlsLDHJPVIapLULOl9kn4RcaxPZj3faK19tcC1ASiXlTe6a6bAt7R9PxL8JKdySO7K36YU4VKEhVVOKcLfalLE1/X6uwgLw+iR6pdiRf5VffG1wdqdfGtx5x0tGsdwWFihUgmpd1P6EUVdy/DwsCCBY4PXDRP8N+cBAAAAAAAAAAAAAICakbCOsDDTOOKecYaF1fChnvWt0ql3SDcEOIx20JmPSXsdU7o1VYPmGe7ahnukme8Yfm/NH4aCwrKt+EXth4UVOwxvLB46aYw0/a3S+r9617c8Jk09wd3fb697mcRjI98T/YyrmxB6jqRNKGVTigU5HBsAAAAAAAAAABRNzYSFWWv7jDH3SDo3c+trxphbrbU7woxjjDle0lUa+iSssse2AAhn8bfctULDwqYcV1j/SihFuBRhYaUXa5BSyZH3CQtLixqC1xcxhAaoJt1rpSeukDbeKzXvLe3/D9LCjxU+bn+X9LfPBWs78dDC5xuNYg1S4xSpb3Ow9mc9md6ImNwhJbZLiR3pR/Z1MnMv9zq5ozSBoLVqoFvq6U6f4hpFw/isILFMmFiDR/iYV+BY/bixuekRAAAAAAAAAAAAAIAqlHTsb/QKxjGOAJuULXKYUrkZI005Qdr8cIC2MWncwtKvqdLa5rlru18bec8V5rTzJfc4A4l03WvvZzXpWV/pFYwOvq+pV91hYclOad3tpVlTCF4Bin5a68ZFmqffJkPPBQAAAAAAAAAAClMzYWEZX1M6LMxKmiHpTmPMudbaQOkgxphTJf1eUkySkdQvySd5CEBNiZX4LS2xIx0aUQ75NhNselCaelJpgkQICyutqf8/e/cdJslR2P//U5M2717Od7rjlFBC2coCBSRAIgiQCBLYxkYm88P4azBgE43BYBvbyCQbY0ASAgMmCCEhFJGEUECghHQn6aIu3+2FTRPq90fvamZ3u3q6e3p2Znbfr+fpZ6e7q6prZmd7d6erP/VCafcDjrAwgmEkxQ9N27cm2X4AU61UkG4+pzxA7cDT0n3v9MKKnvem2tped51kC7X3cabrO1Ladmu4spkuqXOJpCXRj2NL3uylfgFjYQLH8nujH3M6y+/1loH10eualJTtGx8wFipwbHQ93UHYGAAAAAAAAAAAgIMxJivpZEmrJc2R1CPJWGs/3tCOAQCa1ogd9t2e9QmrMfK/Xm/V4mFhkrTi0nBhYQvPldrm1L8/jTbvVPe+kf7x6wObpR13u8uXilIqPX7b41+Qfvchb8JGzAzLXyM9+R/++379Z9KyV43/2SoVpfvfLT151dT0r4psKhepfE+6L9ZxRkrDvmGNAAAAAAAAAACgfloqLMxa+2tjzLWSXicvMOxESY8bY/5Z0nWSJiXcGGPSkl4o6c8lvVZ67sqvlfQFa+0z9e85gERUm80tla39GMsvkTZ833/f4JbmCQt75prRsLCQoUqzjvZmqzrwdIhjExZWV7vuc79X44ZkTTfVQtOWvNR/5rXh7fXpDzBVdv7afybLtV+rPSys/5Ha6sPTtSJCYf/ZaUMxKSnb6y2RjjmqVJTy/RVBYqNhYq71iYFjxYH4fZ9ubGn0ddkdr34qWxEyFjVwbJaUZjAdAAAAAAAAAACYfowxZ0h6v6QXS/K7IDIpLMwYc6GkS0dXd1lr31+/HgIAmtVIyT8szC+sxh0WNg0m9Tz0ndLARumxz7rLLDxXOv3aqetTI6WyUucy7zWZ6JFPSi/4RHn9jkuC29r6S2nx+eX1zT+THnhvMv1E61h0TvD+u6+QXvjT8vrj/9Q0QWGSlPMJUAzSne6NdRxXgCMAAAAAAAAAAKiflgoLG/UWSYdJOk5e4NcsSR8dXcYl3BhjHpO0StJYKosZrWMk3SXpA1PRYQAOd79Z2v1bqTQsFYek4ujXoz8qHf6eyeUdgzyeYxI4pR39MXdY2E+fL80+Tlp4jnT030nZntqP51ItLGnNl6ST/0MKO2hlpF866YvSHa+uHgZWJCysrgr7pbZ5/vsICxtV5X296Dz/sLChrfXpDjBVnvqG//btd9TetvEf/IiIDqwPX7aRr3kq7c1cGXdm2OKIFzY2Fh6WDxs4NhqqVS30dCYp5b0wy7iBlumOyWFirsCxSQFkfVKqFf/lBwAAAAAAAAAA05UxpkvSV+RNFirJN8XFNZvgI5Ku0OisPcaYb1prH0q8kwCApuYKpvELxjHGf6I36/xV00KMkY77jHTMx6XhHZKsNLxTKg56Y2m7V0ltcxvdy6k161j/sLBKAxu9CR2DPPqZ8WFhrjHFmP7mny5t/5X/vmdvlPJ7vckgJWnD/9a9O7bapNsV/AIUg3Rn+qJ2R5I7wBEAAAAAAAAAANRPy905bK0dNMZcIOlaSeeoPDjIyJtlcCwMzMgLFXuuasW+GyVdai2pLEBD7XtS2vO7ydsL+/zLFw4Et5dEWFjXQcH7dz/oLTvuks67vXoAw/BO6cAz0qwXRAtrCHt6CltuYL209CLpwgekTT+STEraea//IIZqYWKonWMQUtWQuJmi2vu6bYH/9qFtyfcFmEr5Pe59paIXABVbyOCqRedXLzOTzT1J2nZryMKOc30rSOek9HypfX70utZ64a+VAWORAsf2EJ5ZqTgoDQ5Kg8/Gq5/pKQeJ+QaOBaxne9x/swAAAAAAAAAAAERkjOmVdIeko1Se9LPS2Ng+X9baDcaY6yVdPFr2dZIICwOAGcYVTOMXjJNy/FqJErjT9NJtUudS73Hnssb2pdEKe937rPUC1vofq97O1pvHr0eZXHA6mk4/L1H1HuEOC7MFaXCLFxZWHKoeQpeAvA0/vjtrcpHa7k7Hm0DbFeAIAAAAAAAAAADqp+XCwiTJWrvDGHO+pPePLmN3sdsJX8eMhYftkfSPkj5LUBjQBFyzFhUdFw73/qFKewmc0rIhL3buuFvacY+04Az//aWidN87pDVfkWS9wIUzvyctOjdc+6HDwiKGS8060lsk6fcfJywsKVG/D8YR+MOvJk+11zM32397vr88qAdoSQHv3dKIlOqoT9uVTvt2DceYAXoOCV92pp6LjJEyHd7SsTh6fWulwv6K8LDd5WCxUIFj/ck/p1ZW2OctAxtiVDZStq8cIBY1cCzdOXN/DgAAAAAAAAAAgJ/vSTpa5bF9I5Kuk3SLpJKk/w7Rxg/khYVJ0vmSPphsFwEAzc4VTJMzk8ejGsdEb1ZM6jktrbhM2na7/7673iidfrW07bZwbVVO7LjlxmT6h9az6gpp7Vfd+39ymDeJ8y0XTEl3hktDocv6BSgG6U73Re2OJHeAIwAAAAAAAAAAqJ+WDAuTJOtN6/SPxph/k/R6eYN/zpC0RBp3dXe3pLsk/VzSN6213D0ONIt0u/9218XMoAuukmSm+JS2+Xp3WNgT/y6t+XJ5Pb9Huu0i6ZWbpLY51dsOGz41+Gy4cn4XfVOOWaMIC4tu35rwZYNm7yMszFM1LMwxKKGU92Zoy9QSqAQ00Prr3PtKI5JqeG8b/8GPk7TPr15mJttxV/iyYV9zjGeMF96a7ZG0PHr9UtGbKXZcwNjEwDHHen6PVDiQ+FNqXdZ7TfJ7pDgvi8mUw8OeCxKbEDgWFECWjjZoEQAAAAAAAAAANC9jzGsknadyUNjdki6z1m4c3X9QyKZuGGtS0guMMd3W2v2JdhYA0NRcwTQ5n/GQxjHBVSnq5KBoDfNOde9bd410yNukRz4Vrq21X5UO+Qup/9Fk+tYoJi3NPdmbINkl1Sap5I2/9G1jBk8Ut+BM6bRrpLte7y5zw/FT1h1XWKIfvwDFID3p3qjdkRStTwAAAAAAAAAAIBktGxY2xlo7JOnro4uMd2V3tqScpJ3WWseVKwAN5woAKDouHD7138HtTfUF6QNPu/c98+3J24pD0qafSM97U/W2w4RGDWyWnv5G9XKSdMQHJm9zhYXt/HW4NlFmC+HLLnmZtPlnjp0MQpIU/P4//C+lbMAMZvm9hIVhenINxgptBg/aSlK6M0JhXvOGSKVHg6dmx6tfyksj/V6AWD5q4NhuQlcr2YI0vMNb4ki3jw8PqwwcCwogy87ygkVT2WSfDwAAAAAAAAAAqMXfVDx+WNL51tqBqI1Ya7cYY7ZJWiBvQtHnS/pNMl0EALSCvCOYJuczoapxjN2wz2VXYlpJVxk3eOtLwrf12w94YWGbr3eXOfYz0qHvCt9mI5i0lM5JP1whDWzwL3PpfklWutYxpnimO+iy4LCwKeQKS/Tjd04M0pnukZGJfH6M0icAAAAAAAAAAJCMpg8LM8a8QNKLJR0had7o5h2SHpN0k7X2wcry1loradeUdhJAPKl2/+3Focnb7BQOzlhwtrTtturlula59+1yjEN85JPhwsLChEY98N4Q7Yxafsnkba6wMEQXJtxtTPsibwBGre1MZ0EzNx7+vuDXKd8vdSxMvk9Aow1tldrnVS/nEiZQM+34vYyylW+UnrwqXFmTqm9fUB+prPezFvfnrTg0GiK2uyJILELgGH8LlBWHpOIWaWhLvPqZ7orwsBCBY5Xr2V5+hgEAAAAAAAAASIgxZrGkYys2vStOUFiFx+WFhUnSISIsDABmlBHHJF5Z4xcW5n/dt8SkntNTz+rg/YUD4dvK90tD26TBgDEL88+cHhObppr+dpLGMkaac4K06/5G90TDJZ/x9Q45n3NikLRJqzPVrQOlfZHquQIcAQAAAAAAAABA/TTt1R1jzPGS/lnSGQHFPm2M+ZWk91lr75uangFIjCuUpOgzHvDA0/XtS6WD3xouLKzaLGS1CBMUsf674dtr9wlPKkYY+IBgfgF3LnNPkp75tv8+AkJGBQzGSrcHD04ZIS8U09T666RZH4tff2eIP5VXXhG//Zmi9/AIhUMEtGH6SbdLHYu8JSprvYGpYwFjEwPHqgaQ9UvMflxW2O8t2hijspGyfeUgsaiBY5mucCGNAAAAAAAAAADMDKeOfrWSNlhrb6+xvcqBAXNrbAsA0GJGHME0uZRfWJj/dVvLtfXpKZVNtr2fHiUNb3fvn3tyssdD8zrsPdLdYSaKrq8RG36scjbGhNLdmV4dGIkWFuYKcAQAAAAAAAAAAPXTlGFhxphXSLpaUrvG32U/dnW2ctsZkm43xrzBWvvDKeoigCTkZvlvH9k9eduar9S3L5XmnBSuXGF/9Lb3PxWuXJKhUXNOlDp8wsLaFwcc3xJwEEUxwsxYC8+RM8ijlE+kOy0v6P1vUlKmR0rlJL9BBkMBg3OAVratxvHyW26sXoYBbNW5gk598XsUERkjZbu9pXNZ9Pq2JOX3BgeM+a2PPY7zt+20Zb3XJb9HipOva9KjIWOzJwSOTVx3BI5FOtcAAAAAAAAAAND0KmdZeSiB9iovanQn0B4AoIWMlBxhYWZyWFjKMQbSWsLCpq2lF0ubfpxMW0FBYUtfLqXSyRxnSjCOqSarrqgtLCzT5U0gWCPX+c+P3zmxmu50r7ZqU6Q6rgBHAAAAAAAAAABQP00XFmaMOVzSNfKCwqTxAWF+wWEaLXu1MeYEa+1j9e8lgETkZvtv9wsLe/QzwW3NekHt/RmT6wtXbu1XpeOq9GuisCFgthStXZdMj3T8P/vv636eu97ARqlreTJ9mAnCzoy15KVSpkPav9Z//8YfSoe+I7l+taqhbe59JuWFqbQv8N6nEw0H1AVa2exj63+MpRfX/xitLt0RvqxJ1a8fgB+TKgdOxVEqSPn+cAFjfoFjxfCzl057tigN7/SWOFJtFaFi1QLHZk8IH5uV/GzJAAAAAAAAAADUpnIgzt4E2qsMCOMCBQDMMK5gmlxqcjCOkf/YDauExmei+fQcMjXH6VhUvUxTISCvYRIcwxElmMvvnFhNdzrk+PkKUQLMAAAAAAAAAABAMpouLEzSl+SFf1WGhOUl3Sdpw+j6MkknSMqNlrOjdb4s6awp7i+AuHJz/LcPbY3e1orX1taXSibkbF9+oWaSVG3WOWu9sKPAMiFDxYKc8AVp6UXuULBUwK+AtV+TjvlY7X2YKcJ+v573p8H7t/yi9r60usKgdMsF7v1jP59tjrCwZ2+SVr+lPn0D6q1tvntGyqRCJF0WnCV1LKzvMaaDar+/xxeuWzeAukhlpLa53hJHcUga6S+Hh43sqQgVCxE4ZgvJPp9WVhr2/ieK83+R5M1IWxkeFjZwLDdLyvS22OzHAAAAAAAAAIAWUDnAJnoCwWRLKh7vSqA9AEALcQXT5IxfWJj/2A1LcNL0teyV0uP/VP/jzD+j/sdAcznig9Kjn45e77h/kh76QCJdGC6Fz8n1OydW053uiVwnSoAZAAAAAAAAAABIRlOFhRljjpIX9mXl3V1vJX1e0t9ba3dPKDtL0gclvb9i8+nGmGOstb+boi4DqEXncv/tB56RiiNSOuet5/cHt3PYe6QjP5hcv8KGhbkMbAjen98r5aqMfaw1LOyg10uHvTu4TNDzXP8dwsKiCPv9ihQyM0NtualKgdHZHtsX+O9+9oZEuwNMrYCBiMPb6nfYhedIp3+nfu3PVMZ/dlpg2kq3Sx3t8YIHrZWKA+WAsYmBY5XrleFjlYFjDOYuKxzwlsFN8epn+yqCxCrCxLIhAscy3fzNCwAAAAAAAACYqHLGpCNracgY0ybp2IpNPrOMAQCms7wjmCaX8gkLc4zdsNUmhEXrmneqN2an3hMzLntFfdtH8znir6KHhfUdIR30OumhZMa4u8IS/fidE6vpTkfP9Y3SJwAAAAAAAAAAkIymCguT9OrRr2NBYe+21n7Rr6C1do+kvzbGPC3pKpXvDL5EEmFhQCvofp7/dlvyAgDGgga2/MLdxvJLpBP+Jdl+1RoWtm9N8P58f4iwsBoHKoQJKDEBvwJKNYaVzTRhw8IYZFTdQx8K3j/23h7e6b9/1tHJ9geYUgHniKEaw8LmnSrtuHvy9gVnSefeXFvbM83y10gbvheiIGE5QGjGSJkub+lcGr2+LUn5fe6AsWqBY4V9yT+nVpbv9xati17XpEfDxmYHB47lZlc8rggcS7cTNgYAAAAAAAAA088Do1+NpJXGmMOttY/HbOvVkkZnH1RB0j21dg4A0DqKtqiCLfjuy5ncpG3GMXajpDoHSaFxUhnp0gHpO+31O0bnCinbW7/20Zxys6VLtkvfnx+u/DGfkA6+Umqfl1gXRhxhiX6yJnpYWE86+vs6Sp8AAAAAAAAAAEAymi0s7KTRr1bSPa6gsErW2i8ZY94o6fTReifXsX8AkpTKBuysCExZf5272KnfSqw7z6k1LKywP3h/mGCpsOFTLmGeQyrgV0Ctx59peL2S0/9w8P6x97ZrsE3hQDL9KBzwvq8M6sFUCgoU3PrL+O2O7HGfpxa8KH67M9Wso8OFhYUJ7gSQDJPywnhzfVLXQdHrlwpeONZzQWIRA8eKg8k/p1Zli9LILm+JI5UbHx4WNXAsPfkGAAAAAAAAAABAY1lrnzbGrJF08OimD0p6c9R2jDFtksZmILOSfmOtTWiQAACgFYyU3KE0udTkYBxXWJgNmtAPrS/dJvUdIfU/Wp/22xfWp100vyjBX0d9OPHDD5eGQpfNpaKPn+jOVJkI20c+4LwMAAAAAAAAAADqo9nCwp5f8fgbEer9j7ywMEk6PLnuAGgK665x78t0JH+8sGFhXav8t1cLK9r7uNTtqDum5rCwEAElQc/TMfseHAgLmzpj7+3ll0hbb568f/eDtbU/uEX6weLx2158tzTvlNraBUKpMhDRWsn4D2L0tfUW6eZzgssEBUfCX6YrZMEI3ysAjZXKSG1zvSWO4vBo2NjucrBYZZhYtcCxUj7Z59PKSiPS0DZviSPdOT48LEzg2Nh6tk9K1RgcDQAAAAAAAABw+bqkT8m7iHa5MeaX1trQ4wONMSlJX9X48YVVJyIFAEwvI9YdSpM1k8PCUo5xlNaWEusTmlUdx+3MP716GUxfR31EevgTDTl0UGDiRDmfc2I13enok+sGnZcBAAAAAAAAAEB9NFs6wKyKxw9EqDdW1kxoA0BTC7oYXxGYkspO7Q30YcPCrKNPxcHgeo//i7TkJVXarnUwSpiwsIBfAQMbajz+DDPdwtUGt0rP/lwaWO8NbJl/VhMFJ4yeN7IBgxK23CwtOjd609ZODgqTpBtPlU66Slr1ZinTOb78zl9L238l9R7uHTPdHv24QFiDm6TOZeHKDmyqHhQmhf+dh7L8vnDlwgR3Apge0m1SeoHUviB6XWu9/x8mBow5A8cmrOf3JPC/wzRSHJAGB6TBzfHqZ3srgsRGw8SyPuFjfoFjmZ5ooZ4AAAAAAAAAMLN8QdJ7JM2Xd+H/P40xh0n6pLV2IKiiMeYISf8q6UUqDyhaI+na+nUXANCM8gFBObnU5GAc4xijaqtN6IfWt/ot0gPvq0/bz39/fdpFazj8fTHCwpI55wzbodBlsz7nxGpihYWVRiLXAQAAAAAAAAAAtWm2sLC+isc7I9TbXfG4J6G+AKi3oBup+x+VOkZDe7pWSfuemJo+SeGDU1wBZtVu1t95T/W2bTFcH1x23FW9TKrZfgW0sFKN369msvt30i/PlYZ3lLcd9Abp1P/2gvvqqdrr2LG0fN7oO9Jd7pfnSW+IMbhi7x/c+37zdmnt16UXXi+1z/OCPX77Aemxz5bLzD9TeuFPpSx/iiAmW+V9m98bvq113wlXrv+R8G3CE3aGRgJjAIRhjBdGmumUtCR6fWulwj7/gLEwgWNRfrfMBPm93jKwPnpdk5KyfeMDxkIFjo2upzv43QEAAAAAAABg2rLWDhhj3izpJ/JmwEtJ+mtJ7zDGXC9p3AezxpjLJB0q6cWSTpUXMDb2IeqQpNdbW+0CKwBguhmxAWFhhrAwVMjWce7xjhjX9huOa9GJyc2SzvqhdPsrp/zQQYGJE+VMLnL7scLCAs7LAAAAAAAAAACgPpotKSZV8ThK8kpl2ZSzFIDmUjjg3rf5Z9Kic73HrqCwJS9Nvk9S+Bu0XWFhqhIWFiYIrFrgWDV7H69eJt1R2zFQFuZ7ajLSovO8x4e+S3ri3xxt2caGBNz3zvFBYZK07mrpoMukZS+vvf0n/0N6+ptSYUBa/irpyA9LqdGAvonHneicm8qPZx0TXHbzz6UlF0Tr27prgvfv+o103zukM74j7XlofFCYJG2/Q3ryKumIv452XOA5VQYi7lsr9R0RrqkH/zJcuWe+LZ32rXBl4QkbnMi9CQCmgjFSttdbulZEr18qSvn+iiCx0TCxyvWgwLHiQPLPqVXZ0ujrsrt6WT+pbEXIWNTAsVlSOvqswAAAAAAAAAAwlay1PzfGvF3SVSqP8euRdOmEokbS1RPWxy6+FSS9xVr7QD37CgBoTiMBQTm5lE9YmPEfUm6rjfFE65tzQv3aZhIozD6+IYcdjhIW5nNOrKYn3Re5TtB5GQAAAAAAAAAA1EezhYUBmEnSne59Y0EcpYK7TO/hyfYnKldYWLWgrzBBYGHCp4I874+rl2mbV9sxUBbm+7X4QikX4kL67t9Kc46rvU9xFIe8wCs/679be1jYY5+THvyr8vqeh6TBZ6WTvzR6/MHg+n3PLz9OpaVMj1TY51/21gulV++U2uZE6GCIYJ/110kHPic9cZX//kc/S1hYWPufktb+l7TsFdKcExlEJanqe3DzT6VlFyd7yHoOjJuuekMGtpl0ffsBAElIpb2/lyL9zVShOOKFjfmFibkCyCrLlEaSfT6trJSXhrd7SxzpjslhYq7AsUkBZH1Sio8IAQAAAAAAANSftfarxpi1kr4taaHGXyStfFwZEGZH13dIusxae8tU9BUA0HxGrDuUJmtyk7YZ+Y9HKjEB3PQ36+j6tLvy8vq0i9bStdwb87jrvpAVkhkbOWKHQpfNmehhYdlUTm2mXcMRjkNYGAAAAAAAAAAAU487AQE0Tu+h7n19R3pf+x91l8nFvKE9KdYRZFY1LCxEsFStYWELz6teZiyQDbUL+n6lstLil0infau8bWSXu/zexxsbFuay897a2rZWeuLfJ29/6uvScZ+Tst1Sfq+7/unf8dl2tXRbQHDS09+UDn9P+D5mesKVW3+dtPZr/vuCvrfwWCv99PnS3j946498yvt62ZCUjj5AZVqpNhBxxz3JH/PgK5Nvc7pbcmH1Mtm+cAGRANDq0jkpPV9qnx+9rrXe35+V4WFRA8dq/b9pOikOSoODXhhvHJmecpCYb+BYwHq2R3LMyg4AAAAAAAAAE1lrf2mMOVjS2yS9U9IKR9GxVIUdkq6S9HlrrWNGMQDATOAKpcmanFI+16tcYWE2zKSSaG3GSOf/Srrp9Gj1Xni9dOtL3fuP+2xt/cL0cfKXpBtOnNJDDkcI5sql4o3F7M70ajgfPiwsHxDiCAAAAAAAAAAA6oOwoFmIogAAIABJREFUMACNE3QzcWnE+/rUf7vLLAm4ID8VSnn/7UmEhalKG0HmnCQte0X8+mOKQ1K6vfZ2ZgJXcFzHEuniJ6RM14QdAbOEpRr5qzlgEFRhf21ND22VDqybvL00Im2+XjroUumJf3XXX3zB5G3VzgEPvDdaWFi2O1y5x/5Rga/V4LNSx+Lwx51p1n6tHBRW6Tvt0utL3kCtGavKQMTuVckfct4pybc53aU7q5c58Yv17wcAtDpjpEyHt8T528la72/UiQFjoQPH+pN/Tq2ssM9bBjbEqGxGgzJnxwscS3fO8L8BAQAAAAAAgJnHWntA0uckfc4Yc6ikMyQtlzRXUk5eQNhWSXdJesDaajMvAQBmghE74rs9Z/xDcVLyH6NqaxmfidYx/7TodRZfKL1qi/TkF6Udd0v7n/bGfx71EWnJy7zr24AkzTlhyg85EiGYy3VerKY73aed+W2hy7tCHAEAAAAAAAAAQP00Y1jY2MCeU4wxK0PWWVS5Yow5U4FJLBMOaO3tYcsCSFjvYf6hMWMXD3fd666bCRHWUU+24N2gPumm5gTCwkIFijmc8/PwoUdBnr1JWnZx7e3MBK7vV6bLJyhMCvwVZRr4qzko6K7WsLCS/0AtSVJ+r/d17X+6y2R7Jm8zKannUGnfE7X1bUwm5M/N0Nbg/T8+VLqUyYyd7nuXe9+dr5HO/N+p60vTqTK+PUqoyaLzpC2/qF4uTPAVxgsKOx2z6o317wcAzHTGeH8jZnvk3T8WUakoFfaWg8TyFWFjYQLICgcSf0qty3qvSX6PFOdlMZlyeNhzQWITAseCAsjS8QY5AwAAAAAAAGgO1tonJCV04R8AMJ25QmmyqZzvduOYsIYMSjgZI3UslI75eKN7kqwj/p903zsnb+85dOr7Mp1kuqZ07MBIaShUOSOjjMnGOkZ3ujdS+SgBZgAAAAAAAAAAIBnNGBYmeSkq19RQ99YI5a2a93UApr+U46be4ujFw/1Puet2H5x8f8Z0LJUGN1Uvd01Kes0u7wblMUGBS2HFDQs76Uvj+1KLTf9HWFhYru+XM/gr4D1i0jV3J7agQVBjgV5xlfLufY5BWePLOMJ5Xny39L9z3fW2/0qaf3r19iX3+Siqwn4vSCI3K5n2ppugmeQ2fF86sE7qOmjq+tNMqg1EjPJzmA05aCfNbJeRhQkLAwA0v1R6NHgq5v9Ppbw00l8OD3MGjvmt7w4O051pbEEa3uEtcaTbx4eHVQaOBQWQZWdJuT4pFW+QNAAAAAAAAAAAAKaWK5QmZ/zHfRn5j/Gw1SaExfSx8grpmW+GK/u8P6lvXxpp+WukB943+Tr1oe9oTH+miyTGi0fgCkycKGtyzrDEanqihoUx9gEAAAAAAAAAgCnXrCFZVl7oV9Q6Y+Jd3QAw9VzhPGMXNOeeIm38gaNuHUOVDr5S+v3fhiv7vTnSGypOQWEu/g5skjqXuvfHuYDcsURa/upodboPlvav8d83sid6H2YqZ1iY4z1aKrjbyu+rvT+xVQkqsjZcsJefYtCMZjUE77TNkRacLW27zX//TWdIF94nzTmheltxQ/r87Pi1tOSC5NqbSbbdLq26otG9iK84JD17k9T/e+932NyTpGdvkHbdL/UcIi15mdSxKF7bI/0R+hFyEE6GsLDoqpwHV1w6Nd0AADRWKiu1z/OWOIpD5RCxOIFjSf7t2uqKQ1JxizS0JV79THdFeFiIwLHK9WwvQaIAAAAAAAAAAABTJO8Iysk5xqEaxxgPW22cHKaPU/4rXFjYwhdJJ3yh/v1plI6F0ln/J935Wm8yVEla/efSoe9sbL9a3tSeS4Zt0DjcMtc5MYyuiGFhRRVUtAWlnZMrAwAAAAAAAACApDXzp/K1XD0JW5dQMaDRUo7T0NiNz65ZkLLRLkZGtvpPwoeFSdLglorwlxBBX4WB4P2umZZSbdLh75Me/fT47SteKx372eg3qq9+i/TQB+P1EWVRw8JsQFjYrvulVW+svU+xVPn1ufu30pzj4jVdChikYExwgFo1R37IHRYmSTecKB3/z9Lh7w1uJ8lZ3oa3JdfWdGPSweEWd79JWvnG1gxdKAxIt10kbb3FXaZ9oXTOTdKso312VvkZdIU7+hnZFa5cmrCwyKqFJs4/c2r6AQBobel273/IOCGi1kqFA+WAsbEwsefWqwWQ9WuqBy03tcL+0QHxG2NUNlK2rxwkFjVwLNMVP5AZAAAAAAAAAABghhmxjrAw4wgLc1yHKVmulc0YqYy08nLpmW+5y7z8aal75ZR1qWGWXCi9eqe0+wGpe7XUPr/RPZoGpvZa74hrTP0ErnNiGD3pvsh1Rkoj6kg3821JAAAAAAAAAABML832qfx6cbciMLO4wpRKY2FhjtCs5/1JffozpnOZdPBbpTVfCVd+w/elQ9/uPQ4TODSyU9ozLP32g9LOX0vdq6Sd91avl+6Qjv17b0lCzyHufcXBZI4xE7iCruKEhXUs9m7+f+KL0tPfkAr7pGWvlI75hJTKRuvXvrVeGNyOe7xgoqM+Is07xV2+2nt3w/fih4UVAt5PJiMN1RCutejc6mUe/Ctp1RVS29yAQgmGhRG257boPOnZnweX2X6ntOCsqelPktb+V3BQmCQNbfXO/S/8ic/OEH8GD++s8j4eFfYcXsMsgnBY+rJG9wAAMN0ZI2W7vaVzWfT6tiTl904IGJsYODZhvTJwbGymaUiy3muT3yMdiFHdpEdDxmZPCBybuO4IHEu3J/6MAAAAAAAAgHoxxqQkHSXpBZJWSJovqUPehdJBSdvkjR98SNIj1pLkAgAYzxWUk3OMfzHyn6zQJjlODM2ve7V734IXzoygsDHpnHsM6YKz/SdtPfqjde1SSzv5y97kqBMd9IbJ5e7ymUT4oNdVPUS+lNeG4bXKl0aUt44x9RNkaxgT2J2JPpn35uF1Wt35/NjHBAAAAAAAAAAA0TRVWJi1dmWj+wBgijnDlKqEhWVn1ac/lU7+srTiMun2V1S/GXrTT6KFhf3hC9K6a8vrw9vD9altXrhyoQWMqywSdhTa2Pt1Itf7e9ax0sb/c7f1+Oe9cKsxj35GGtgsnfY/4fs0tEO6+UXSwAZvfWCDtO126cV3ecFh/gcPbjNfQyhAaci9z6SkQsCd9cteEdy28R/UNY4tSBt+IB38ZwFlHN/HOLbeIh1yZXLtzTQP/rV0wd2N7kV0D380XLnNP/VCBlMT/hQPM9Z9yy+kgy4LcZCQ4+YdM6iiBt2rGt0DAACCmVQ5cCqOUkHK91cPGPNbz++RigH/G8w0tuiFwQ7vjFc/1VYRKlYtcGz2hPCxWdEDqQEAAAAAAIAYjDFnSbpS0ksk9YWsttsY81NJX7XW3lm3zgEAWsqIjRYWlpL/uBjLvNYzy4pXS498yn+S15Wvn/r+NKuDLpscFtaxRJp3WmP60woWXyBle73JuioddOn49UXnS9k+7zp7pRWvDWz+zj0/13e3/WfokLAxOZOLVL5SZ6o7cp3Pb/iglrWt1NuX/a1mZebEPjYAAAAAAAAAAAinqcLCAMxAxnEaGrsoP+QI0ZqqG1oXnSO95EHpx4cEl3v2Z9KWm6VF50phZp2rDAqLYv+aePWcAga9FAgLC80VMjUxCGjM6rdID3/M3daTX5u8fd3V0on/JuVCjpvdfH05KGxMYb/0zNXSsZ92HLvKIKhawuoKg+59tiTtX+ve/4J/iH/cSg9/okpYWIIzRq7/jqSYP+fTXZhArJ33eOVaLcgqSsjDrgekeSdP2BjitVnz5XBhYUyy3RiLL2h0DwAAqL9URmqb6y1xFIekkf7RELHRQLHnQsVCBI75DeKfqUrD0tBWb4kj0zU+PCxs4FhulpTplVKOgGwAAAAAAABAkjHmCElflHTW2KYI1edIulzS5caYWyS93Vr7RMJdBAC0mJGSIyzM+IeFGccklJZxNTPLrKOlM78v3fdOaWC9ty07Szr8/5NW/3lj+9ZMDv4LaXCrNxlyfo805wTptKultP/PFyS1L5BedJN0z5ulvY9760f93eQJctvnS+f8wivX/6jUNl866iPS8kucTT81+Liu3vofsbrlClAMoy3VHqvexuFn9NVNn9FfHfSZ2McGAAAAAAAAAADhEBYGoLGM48bSsfClvY/570/Fn/UosrDH+uV50utLyQYOTTT3j5JtL2jQS5GwsNBcYWGu93fXcndbwzv9g7NsUdrwfWn1n4Tr071v9d/+6D+4w8KqBd098gnp6I+EO/5ExaCwsIJ060vc+3uqhPVJ0vPfLz32ueAyYwN9nP2o488uKoR8nbfcJC1+cX270kg3/pH0honn4BADEbfeIg3tkNqrhfcxqLEhaglVBABgpki3Sx3tUsfC6HWt9f5XHakID3suSCxk4Bh/J5UVDnjL4KZ49bN9FUFiFWFi2RCBY5nu1gsHBgAAAAAAQGjGmEsl/ZekDpVDwvw+nAuz7xxJ9xtj/tha+7+JdhQA0FJGSiO+27PGf4xnSo6wsLDjlzB9LLtYWnqRNLBRKo1IXSuZGGciY6RjPuqFWOX7pbY5je5Ra5h3snTRY97Y39wc9zXQuSdKL3tktNxsyRFmOOb3+++L3SXXOTGMrnR37LpPD/1B+wr96smEnBQZAAAAAAAAAADEQlgYgMaqFhbmksom35ckjrXjbu9Cbr0se3my7WUCLuqWCskeazqLGhYmSQvOkrbdPnl7achdp3AgfJ8csygGqjZjYikfvc0xQX2/p0oAWphBOUtfXj0sTJL2PyN1r/TfV+28g2SEDWV78P9N77AwyQuuyM0ur4edtXTTj6TVf1qlUIi2OpaGOx7CY+ZZAADqyxgp0+UtnTH+lrElKb9vfMDYxMCxyvXK8LGRPVJhX/LPqZXl+71F66LXNenRsLHZwYFjudkVjysCx9LthI0BAAAAAAA0KWPMayVdLT2X0DJ2Ea0yGGy7pN2jS0rSLEmzJc2vaKqyXpeka4wxl1lrf1C/3gMAmlnB+o9fyzjGeBr5X0uwTC4zMxkTPNErPKk0QWFxtM1NtFx/YVfsrixpO6imuh2pLg2Wxo/5zZqc2lMd2lfsD6zfX9hNWBgAAAAAAAAAAHVGWBiAxko5TkOlQnDgRpTQpFqlIsywdNPp9euHJK16U7LtLTrXvS/Ojdcz0f6npIc/7r8vKCzMON77xYCQr7rPZBdiEJS18W7ILg5ErxPFgjPDlRvY4A4LY8bIKRJysN2eh+rbjWbwh3+Xjv5IxYaQr80T/149LCxMaFXYnxsAAIDpwqSkXJ+3dMUYIF0qSPm9wQFjQYFjxcHkn1OrskVpZJe3xJHKjQ8Pixo4lo4/mzYAAAAAAADcjDGHSfq6vACwyrCv/tHtN0m6x1q721F/rqRTJJ0v6Y8l9Va0k5H0DWPMw9baJ+v1HAAAzaso/wlQ047h8MYxzq3EODEATS9eqGHGZHVy79mxj5oxWZ3Wd65u3v2jcdtP7j1bc7IL9OMd347dNgAAAAAAAAAASAZhYQAayxWmZIvBN9EuiH8hM7IoYWH11rks2fbSbe59QaFV8NiS9Mvz3ftdgWCSVPKf5VBP/VdAe3UOC7MhBkENbJC6VkRvuzgUvU5UL75HuvGU4DLb73AHJIV5/qgdr3PZ7/9WWnW51L1qdEPIAT67HwxRKERbiy8MdzwAAAB4UhlvFu24M2kXh6V8fzk87LkwsZCBY67/I2ei0og0tM1b4kh3lsPDKsPEggLHxtazfVMQ5g0AAAAAANCy/l1Sp7wLlkberF0fl/R5a+3+apWttTsl/VTST40xH5H0fkkfGm1Lkrol/ZskLnYCwAxUtEXf7WnHuDqjlO92G2YSPgBooGpnqXnZhdqV36552UXalt+stDJa1XGoXjbv9VrRvrqmY79q/h8rl2rXfXvvUMHmdXzP6Xrl/CuUUloppXTL7h9rb3FPzJ4DAAAAAAAAAIBaERYGoLGCwsL2/sFdL9tbn/74SWWn7lhBeg+vT7snfEG6/z2Tt5emINyp1e26X9r/lHt/psu9b/sd0Y+XVFhY/+NSn9/7KcRF+qFt8cLCpiIgau7JUts8aXiHu8yu+937HIPJkLAo74Vd90tzTqhfX5rB+uukI/66Dg2H+Hle8Zo6HHeGS/HvFQAACJBuk9ILpPYF0eta64WqV4aHRQ0cI7i3rDggDQ5Ig5vj1c/2VgSJ+QWOzS7vmxg4lumRjKl+DAAAAAAAgBZjjDld0rkqB4Xtk3SJtfbmOO1Za/dJ+jtjzB2Svi+pa7Td840xp1lr70qm5wCAVlG0Bd/taceknkb+n8dbwmwANDnXeeqU3nP0psXvruuxUyali+e9QRfPe8OkfRfMfbXOnHWB3r/mct+6nF8BAAAAAAAAAKg/7mYH0FiOQRqyheDAn+6VdemOL9MkYWHpjqlttzhcn+NNJ2u+Erw/053s8ZIKC3vq69Jxn/HZEeIifd41G1g1MW9Kf8Gnwpc1Rjrz+9Ltr5RGdvmXCfqeJHnjfKYnubamnQiDQW44UbpsyAtVmK5++4FyWFiSs5ZWez+f8o3gQEMEm3uytPPeydsP/8up7wsAAJgZjJEynd6iJdHrWysV9k0IGJsYOLZ7QvhYReBYfm/iT6ml5fd6y8D66HVNSsr2jQ8YCxU4Nrqe7iBsDAAAAAAANKu3j3418i4MXxk3KKyStfYXxpgrJX1b5QvOb5NEWBgAzDBFx2SQace4OuP4PN3GHcsGAFOG0C0AAAAAAAAAAOCPsDAAjeUKP7JF7yZWl2xvffrjJ5VQQFOtXMFqtUo5QnhKhIVVtfGHwfsTD+JJJdNMacR/e5igorVfl+aeImUjBqHFDUFa/WfRyi84U3rp76UfLvXf//T/SKd+w39fkmFhDChzi/o633W5dOZ369OXphPh58TaKgEBVdp63pvCHwuTrXzj5LCwvqOkWUc3pj8AAADVGON9lpLtlbpWRK9fKkqFve6AMWfg2Oh6cSD559SqbGn0ddkdr34qWxEyFiNwLJ1L9vkAAAAAAABIMsa0SbpY5QuV/2utvTap9q211xhjLpH06tFNLzfG5Ky1jgEQAIDpqCRHWJj8x3imHOPtbJIT+gFAHbhOU0aNn1QoqA+WkDMAAAAAAAAAAOqOsDAAjRUUFpbf778vN6d+/WlmqTqdstOOsLCBjfU53nQyvCN4f9u8qelHVM6wsBAhTuuu9pbz75LmnxrhoDEHALQviF6nc4l0zCel3304YsUEA74KB5Jra7qJGha24XvS4FapY2F9+pOk7oOl/Wui17MlyUQMA9z6S2nRuQFtMuimrg59l5TfJz15lTS8U1r4IumUr1cJcAMAAGhhqfRo8NTsePWLI1K+3z9M7LnHAYFjrv9jZ6JSXhre7i1xpDsmh4lVho+NW58YQNZXv8+nAAAAAABAqztF0tisY1bSP9XhGJ9XOSysW9Kpkm6rw3EAAE2qaAu+29OOiVhdgTaE2QBofs60sCZQwySnAAAAAAAAAACgZtzZA6CxXDcYlgpSYZ//vvb59euPyxnfk+58zdQft5IrWK1W6fb6tIvg8J++o6T+h6euL5WcN1lHuEh/xyulVz0bPuAoakCUJPUeHr3OmFTWva+U999v/WeeRNJiDAZZ8xXp6I8k35WkdSyMFxa2+Xppycui1fnDF4LDwoJe57l/FO1YmMwY6agPSUf+jXdOdQVvAgAAwJPOSen58T7TsVYqDo0PD4saOMb/e2XFQWlwUBp8Nl79TE85SCxU4FjFerYnelAyAAAAAABoFWOzjVlJj1lr70n6ANbae4wxj0o6ouKYhIUBwAxSdHzen3aMrTTy/0y6lOSkkgAwhVwhiFPah4AJNYkKAwAAAAAAAACg/ggLA9BYrgAsW5TyjrCwTE/9+uOy+MVTf8yJHLPf1Sy/371vYJPUubQ+x211w7uqlwkK5Fl+SfSwsL2PRyvvkkRY2NA2afdD0pzjQlaIMQTg4Cuj1xkz7zT3vuEdUsfiydvjBJoF2fOwNOuoZNucDuK8zr//Wy8Ya37A97UZxH0P3f4q6bKhaHWq3WBvA37mVl4e7VhwM4agMAAAgHozRsp0eIvf/3LVWCsV9k8OGAsKHKtcz/cn/5xaWWGftwxsiFHZSNm+coBY1MCxdKf3fgAAAAAAAM3oyIrHv6rjce5UOSzsyKCCAIDpp2gLvtvTjrGVrkAbGzSuBgCagHWMuW2GsLAgnF8BAAAAAAAAAKg/wsIANFZQWFjBERaWbUBYWCOOOVGqTqfsA0+79+1+kLAwl6Gt1cssPNu9b+nF0sMfj3bMNV+Wjv37aHX8uC7GRw062vdk+LCwqAMA+o6SDn1ntDqVeg5x7xvaNjVhYTvuJizMl+N1Puy90h/+xV3tV5dJr4xzM/oUijvQxRakHy6JWKlKWJgroC+VlQ59e8RjAQAAAC3MGO9znWyPpOXR65dGP6PyCxgLE0BWOJD4U2pd1ntN8nukOC+LyZTDw54LEpsQOBYUQEbQLwAAAAAA9bS64vGv63icX0t6q88xAQAzQFFF3+1p+Y9DdYXqWNf4JQBAVc0eWAYAAAAAAAAAwHRHWBiAxnLM6CZbkNb+p/++TIOCu1b/mbT2a/Vpe/lrpIMuk+58rbuM67Wq1YKAQKtsb32OOR088cXg/YsvkDJd7v2pXPRjjuyKXseXa7BTxKCjdddIB11a4zEdXvSz2gLy2uZKMvJ9TkPbRrtUkDb+QNr+K6ljidT/aPzj+WJAhC9XoFbnMmnhOdLWX/rvH9hYvz4lJuB9fsFvpJ+f5N4/9r4Ma+MPqhRwvM4nXiWZakFjAAAAAJ6TSpdDqOIo5aWR/nJ4WNTAsdJwss+nldmCNLzDW+JIt48PD6sMHAtaz86Scn1e+DIAAAAAAHBZWPF4XR2PU9n2ojoeBwDQhIq24Ls97RhbaRyT8dmo4+QAYIq5zlPNH9TF+RUAAAAAAAAAgHojLAxAYxn/Gd1ki9LQVv992QaFhZ38lfqFhZ32LSndJs0+Ttr9oH+ZoOCpWsw7pT7tTndrv+ret/Jy6dT/Ca5f7xtMUzmpNOK/79kb/Le7QpxcNv4wfNmobdc6oCGVkdrmScPbJ+8b2ioVR7xwvk0/qu04gRj04M8VqGWkpRe5w8IkKb+vcb8DwnC9z5//fmnOCc3RF9Psg4UAAACAaSaVldrneUscxaHR4LA9PoFju8v7XOu2mOzzaWXFIam4RRraEq9+prsiPCxq4Fgvwc0AAAAAgOlubsXjPXU8zljbRtKcOh4HANCEio7PvNOOcagpxzgZwsIANDv3earx4/+CAss4uwIAAAAAAAAAUH+EhQForKCwMJc9v6tPX6oxRjrvdukXZyXdsBcUJnk3D7rUKywsKLSqOFyfY04HriAuSTrtm9Xrp3LJ9cVPutPdx+Gdjkr1vEwfoe1Mt9SxuPZD5mb7h4UV9knP/jx8UNi8U6Udd8foAMMefFlHWJhJSQf/ufTA+9x1110jHfzW+vQrEY7vedsC73fImd+X7rgkucMNPhvws+IKZePmdAAAAKClpNuljkXeEpW1UuFAOWBsYuBY1QCyfvG/bYXCfm/RxhiVjZTtKweJRQ0cy3QR/gwAAAAAaHZtFY/rGRbWX/G4vY7HAQA0oahhYa5Am5Jr/BIANI1WvUbXqv0GAAAAAAAAAKB1EBYGoLFSjtNQfp+7TmGwPn0JY8GZ0oUPSDccn1ybR3yg/Lgw4C4XFOpVq3SnVPQ5dnGo4vGItPMe76bRBWcHB5tNd0kMFqp3WFi1C+77n5G6V06oEuN5HdggdS0P0Z0IbR98pRccVStXwN7O+yTzQPh20p3S8f8UHGLlh0FlDo73pklVD0W898rmDgtzBqGNDjxc/qpkj/eDJdLrClLKZ8Cjdb3O3FwOAAAAzBjGSNlub+lcFr2+LUn5vRVBYhEDxwr7k39OLct6r01+j3QgRnWTHg0Zmz0hcGziuiNwLM290wAAAACAuqsMC8vX8TiFisd1HEgDAGhGxXG/BsrSxn8cqnFMqmcJswHQ5JzD/xwhiFMpqA+cXwEAAAAAAAAAqD/CwgA0lmNGNxUCwsKqhcnU25zjpAvvl244IZn22heWH4/scpfrOzKZ4/lJt/uHhZWGva+DW6Sbz5H2PuatZ7qkF/7MC0+biXbc7d4X9vuU7Yl+XMegJn9VLrgPrJ8cFhbnIv3WW6Tnvan2/oxJd0jHfiZ6P/y4zhVbbpIGNoRvx6Skw94rPfNtadf9yfRtJnOGqI0OIDnu89KDfxlQ3zZx4JXrfV7R3wVnSdtuT+6Qj35aOurD8foCAAAAAEFMqhw4FUepIOX7y+Fh+YpwsaAAsrHAscoQ+5nOFqXhnd4SR6qtIlSsWuDY7AnhY7PqO4kBAAAAAAAAAIRUtEXf7Sn5j0M1jjFGhNkAaFlNMfwvKCwMAAAAAAAAAADUG2FhABrLGRbmE1w15uC31qcvUcw5Xjr7x9JtF9feVmWg0YrLpEc+6V9uxWtrP5ZLus1/e3E0LOz+95SDwiSpcEC64xLpVVuklON7OJ3tW+ved+IXw7WRiREW1j4/fFnXtGJjCgf8KkXqjiSpFPbG3ZBtv2pzcu8pV/jerKOjhYXtut8LpzrvDum2i6StvwxZkWEPvlxhYWZ0Js/VbwkOC9t6s7TovOT7lQjXdH4Vs5TOPi7ZsLDffUQ68kM+AWqEhQEAAABosFRGapvrLXEUh6SR/nJ42MiEMLHAALLdki0k+3xaWWlYGtrqLXFkusaHh4UNHMvNkjK9M/PzQwAAAAAAAACJKzo+9804JuE0Svlut87JDgGgWfiP/zNNMP4vcK7XamOXAQAAAAAAAABAzQgLA9BYjkEa/kFGo5olJGbhi8KV61gsDT4bUKBi4EnvYe5iuTnhjheHY8Y97fuD93X9dZP3De+Qtt0qLTq3bt1qXgGDhRaeHa4uWQfwAAAgAElEQVSJODdJlqLc5FplQNO226QlLxm/Lc4gqHuvDBfgF6bvp/6PdxNpUkzWf/vm66O1MxY6lumQzv6JtO5a6dd/GuL4/Jnlr0qgVq5POv070q8u8y/36D9KC8+tMuKkQZw/QxV97VoVvd0FL/TOty57fifNfoH3eP8zXgCka9BNM75uAAAAAOAn3S51tEsdC6PXtVYqDvgHjIUNHCMEvKxwwFsGN8Wrn+2rCBKrCBPLhggcy3TzvywAAAAAAAAASVLRMc4x7QwL8/9s0fL5L4Am5zpPNUVYWEAfOL8CAAAAAAAAAFB/pFgAaCzjCEwaWO+uk+2tT1+iynRJL75buvFU//0mLR3yDql9gfS7D7vbqQxRWvZyKZWVSvnxZWYdLWU6a++zy9A2/+1rviId/TF3va23zsywMFcIT8oRTtWMHv2MdOw/TNgY8yK9tcE3bW7+mfTYZ4Pb6DlEWnl5vOO7HPIX0m/elmybmQ5p9Z9IK14t3fFaacuN7rJt85M99nQRJlBr6UXu+ltulH58sHTWD71zY1Nx/QxVPLfOZdGbPfYfpBtPce+/963S6ddIt71c6n+kSmONHywEAAAAAHVnjPfZXaZL6lwavb4tSfl9FUFiEQPHCvuSf06tLN/vLVoXva5Jj4aNzQ4OHMvNrnhcsZ5uJ2wMAAAAAKbO2AXTU4wxK+t0jEV1ahcA0OSstSrJFRbmPw415fhs0FabiBMAGqy5I7eCrrs0d88BAAAAAAAAAJgOCAsD0FgpR1hYkGYJC5OkeadIry9Kux6QioPeuklL/Y9KXSu8vj76meA2FpxZfpztlQ5+m/TEv44vc/j7k+97GENbFXjhthVvtCsVpI0/kLbfJfUeLh10mXcDYSSO16Qjxs2nSRzXt2iMC+5x6kjS4Gb3jbcHNki3vjS4fucy6cX3JP9+Snck216lbK90zs+lgc3SDx3P3TGT5YznCgszqfLjauGI+5+Srj9Gel1eSjXRn7Nhntvck6K323uodPGT0o8P8d+/817pR6tDNtaC520AAAAAmGomJeX6vKXroOj1SwUpv9cLD6sMHAtarwwcKw4m/5xalS1KI7u8JY5UriJULGLgWHaWlM4l+3wAAAAAYPozkq6p8zGsuPAJADOOKyhMktKO4fBGKd/tpbjj5ABgyvifpwx/BgMAAAAAAAAAMOM1UboCgBnJxDgNVQuRmWomJc09cfy2WUdVrPgPOHlO31Hj10/4F6lntbTxR1K2R1r1Zmn5KxPpaizTaWBMqSjdfYW07trytievks75hdQ+P3w7hf2O9odr6181wzsiFI4TFhZzxsQ1X5WO+aj/vjsuqV7/gt9IbXPiHTvInOOTaadjsXtf5xKpbZ7/94awMAfXe3PCufKEf5Xuf3dwU3e9QTrjukR6lQzXc6sYoNO1Qpp/hrT9zvDN5mZ7S7pdKg7V1MOWDHkEAAAAgFaTynifdcT9vKM4LOX7y+FhE8PEAgPHdkulfLLPp5WVRqShbd4SR7qzHB5WGSYWFDg2tp7tizdZBgAAAAC0tqkI8ppGA1kAAGEVbMG5L238P4dzhepYfpUAaHLu81Tjx/8F9YCzKwAAAAAAAAAA9UdYGIDGcgzSmFZMlbCwicEtxkiHvdtbmkLMAKlmtONX44PCJGnP76S1X5OO/GD4dtZ/13/74LPR+nPwldKaL0erM7LHu+GwqjiX3GNepn/4Y+6wsF33Bddd8lKpY1G841bTvjCZdpZcFLzfFXoYMEBtRnOF0k08F4YJhlz/XW9Z8dra+5UEV7jixN8DJ/6bdNvF0sDG6m1ecG/58fLXSM98K37/JFUNsAQAAAAANF66TUovkNoXRK9rrVQcnBwwFiVwLG6g/HRUHJAGB6TBzfHqZ3srgsT8Asdml/dNDBzL9BD6DQAAAKBVkREAAEhcMTAszH/8ljssjM9AASA+97ULwhgBAAAAAAAAAKg/wsIANFbUsLCulXXpRl0FhYXNOnrq+hFk6culTT/y3zedbg588j/8tz/0N9HCwrbfmUx/0iHCkCZ66hvS4e+pXi7W962Gi/TFISndPn7bSH+IinW84THTk0w7C18YvN91HrPFZI4/7bjemxPOlQvPCdfcnZdKL7pRWnx+Tb1KRsggtNnHSi/9vfS92dWbnHtS+fHqt9QeFsZNxgAAAAAwvRnjBXBnOiUtiV7fWqmwrxwklq8IGwsTOJbfm/hTamn5vd4ysD56XZOSsn3jA8ZCBY6Nrqc7+BwAAAAAwFRaL0LCAAB1VAwYi5V2jN8yjrGb1jUhIAA0uWb42N8VxOjh/AoAAAAAAAAAQL0RFgagsRwzujktf3V9+lFPQYFoR/zN1PUjyJzj3WFhPz54avtST+uubXQPxtv7WPQ6O3+dfD/G1DIIaniH1Lls/LYwN4cGhenVKt3utV9r4N3Si4L3u37GN18vrbqitmNPR6732cT3Qvui8G2u/c/mCAtz/gz5DI7JzZJO+7Z01xvd7WW6xq9XC64LpQlGCwEAAAAAmpcxUrbXW7pWRK9fKkqFvT4BY471iYFjxYHkn1OrsqXR12l3vPqpbEXIWIzAsXQu2ecDAAAAYFqz1q5sdB8AANNbUUFhYf7jUF2BNpYwGwBNzhVqGBzUNTVMQGIZZ1cAAAAAAAAAAOqPsDAAjZUKCNLyUxysTz/qacHZ7n3VQoimSlBo28DGqetHvaVyUmmk0b0oe/aG6HVKwyELxrnkHhCq1bFUGtzk3j+ye3JY2MYfhDhmHQcuGCNleqR8f/w2jviAd3Ns4HEc57F110qnfIMbKydxvc8mvBcyHeGbXP8d6emLpFWXx+5VIlwzmLreIysuDQ4LO/+uydsufEC64fjofXuuL40fLAQAAAAAmMZS6dHgqdnx6hdHvM9yxsLD8lECx3Y312d/jVbKS8PbvSWOdMfkMLHK8LFx6xMDyPqkFJcgAQAAAAAAkJyiLTj3peU/Nicl/4ksbdA4OQBoAu5QwyYf/1fLpMUAAAAAAAAAACAURuoDaKygkCo/s4+tTz/qadYxUvdqaf/a8duXXixluxvTp4lcQTbVKybajbpLtbX+DYPFkGFhNsaApqCL9BfcI936UmnP7/33j/gEct3/nurHrHdwUaartrCwYz9dvUzQjY/bbpMWnx//+NOR671p/AfnhXb3FdLwTunwEO+7enGdX1KOwLhURjrk7dKTV03e9/Knpe6Vk7fPOS529zwtdt4GAAAAAMws6ZyUni+1z49e11qpODQ+PKwyTCxM4JgrCHwmKg5Kg4PS4LPx6md6ykFioQLHKtazPbV/VgQAAAAAAIBppRjw2V3KMf7ROMamlWJNxAkAjdcso/+MjG+gmTvkDAAAAAAAAAAAJIWwMACNlW6PVn7uSfXpRz0ZI73o59LtL5f6H/W2LTxXOvWbje1XpdhhYS0m3SYV9jW6F2V+IXLVFIdCFgxxwd2WJtx0F1CnfbH0koekaxw36U0M5BrcWv34kuSYvTExATNKVjX3j0IeI+B123ITYWGTOF4vvxtAOxZHuyH18c9Jh727/iF0LqW8/3ZXWJgkHfc5aXi7tP57kqzUd6R01v/5B4WNOeaT0u8+HLOTzTJcCAAAAACAhBkjZTq8pWNx9PrWSoX948PDJoaJjeyueDwxcKyGwPrpqLDPWwY2xKhspGxfOUAsauBYurNxnw8BAAAAAACgLooB48DSjklrjWOcjI0zEScATCF36FazfPZtFGqcMgAAAAAAAAAASBxhYQAaK9MVrXzH0vr0o956Vksve0Ta/4yU6ZTaFzS6R+OlZsivg0yXNLzDf19h0LuRcCod9h7p/ndHq1MaDlcuKMDqubbyXoDac3UCBkEZ4y1t871go4km3gy58Yfh+llvvUdIQ9vi1V3yknDl9q9x74t6jpsJnO8zn0Esh7wjWijWwEZp35NS76GxuhZZYVAa2uIFmg0+6w4jTGXdbWQ6pDOuG72xuD84JGzMoRFfl0p+oWwAAAAAAMD77Cvb4y1aHr1+qeh9NuAXMBYmgKxwIPGn1Lqs95rk90hxXhaTKYeHPRckNiFwLCiArPIzUwAAAAAAADSFoi0696Udk6Uax0SW7hAeAGgW/ucpVwjiVCMqDAAAAAAAAACAxpkh6TAAmla6M1r59vn16cdUCRMC0wiOwTIhKibajbrLzZUOrPPfN7xNyhw0tf1Zfkn0sLBiyLCwMHY/JM07uWJD0KX70e91ts8/LGzTT6WVbyiv73syXB923huuXFxLXiptuzVe3WWvqP34/Y/V3sZ04woL8wux6j0sevuFfV5Ynol5frLWu0m3MgTM9XhiSJ5LKle9TG62t4SR7QtXLm5fAAAAAABAdKl0OYQqjlLeCxLPhwwYm7gedpKBmcAWvEkjXBNHVJNuHx8eVhk4FrSenSXl+oKD4wEAAAAAABBLSQXnvrRjOLxxjB8iLAxAs2vVsxTnVwAAAAAAAAAA6o+wMACNlelqdA8g1RAW1mKCwuaGtkldUxwW1rk0ep2AGRInFKxe5JFPSWf/X7g6YwOnOhZJ+9dM3r/uaun0b5fX+x8J1UsNbgpXLq7D3iVtv0Pa9GN3mb6jpP6Hx2879h+kWS+o/fjrvyPp2trbmVYc7zO/sLA456YbTpQ6l0uHvE064gPl926pIA1tHR/2NbhFGpr4eEvyN9cmfYNo3CA0ibAwAAAAAACaVSortc/zljiKQ6PBYaPhYWNBYqECx3ZH+NxxBigOScUt3udIcWS6K8LDogaO9fp/TgYAAAAAADDDFQM+v0o7xhgZx2So1jXZIQAgJMIYAQAAAAAAAABoFMLCADQWYWHNwca8OBv2ZqmRfmnrLVLhgLToPKljYbzj1Srb6943tG3q+lGLsDftdSyRBjcHl9n0owltu94HFRf1u58nbb/Tv9j/z96dx8lV1Xkf/56qruolSWcP2QMhCWEzggEEFFAQQVGBccUNnRkZdRSXURmXB/FRZ1HRcXdGRceFeUZxXEaQxQ0EAWUHWQIhbAlZyNpJumu55/mj0unq6ntu3Xurbq2f9+tVL/res/2qursqdJ36Xq8gpfb90yJs8Nrc08L1iyvdJ530U+nKVRMDwUadeaf0zK3S2sukgYXSQW+UJh+UbF3dzLnZzm/zSMxQrD1PSHd9uHSbtqoUAja8WU273l7P5Oas66fewWUAAAAAAKA1pPtKQf/9c6OPtbb0t9v9QWIVgWO+AWTbxtryO9S0v7u0osJQ6aYnYww2UmbqWJBY1MCxnkm1Bc0DAAAAAAC0qKItONvSxn87fEr+oeyE2QBoeY79vKZF/v7rCmMEAAAAAAAAAADJIywMQHNFCQtb+tbk6uh2cd88Xv/L6n12PSxdd4q096nScc8k6ZQrpTknxVszKXtCfnBrkyMoq1HChoVNWVE9LGwCR4hT+c/HpIAQrad+IS06Z98Y/41WExxwarh+tTAp6bhvSdccN7HtyE9IqbQ0+/jSLQmF3QQjlnOFhfn9zIT9OQqy/a7a56hFqleasbr+8x7+Eem+T8WoJ1v/WgAAAAAAQHszRspMLt0GFkYfbz0pvys4YCwocKwwVP/71LZs6bHJb5d2xxhu0vtCxqZXBI5VHjsCx9J9db9HAAAAAAAA9VAM2DfnCgVzhdl4hIUBaHGuUMNWCekyRr7XECGMEQAAAAAAAACA5BEWBqC5+ueXgku8XPW+81+SfD1dK+abx2ECtv70jrGgMKkUnHTj66Szn4wfUhaXK6RIkh78vLT8girjrXTd8+tbU2QB92GckG+473pY+sXyKp3Kvk8r3inde4l/twf/bSwsrDgSbv3lbw/Xr1YzV0sH/630yH+MnZu2qk7rO3Y9jGpEWNiWW6QHPidtvT18oFyz5Hc4GhIKC2u21V+SevrrP+8hF8YMC8vUvxYAAAAAANDdTErKTi3d4vAKpb8ZjYaHRQ0cKw7X9/60M1uURp4p3eJI9ZaFilULHJteET42jb89AQAAAACAxBTlvycqrR4Zxz5E49h7ZIP2EQJAC3CHbrVGWJizDktYGAAAAAAAAAAASSMsDEBzZaaUQsCe/Gm4vkhGUoE8xWHp6Wsnnt+7XtpyszT7+GTWdQp4E3rng6XgLC8vDa70DzLbdntypYUV9o30sBuaqgaFafzPR99sd79Nvx/72gsRFjb/rPgfIIzKpKRjvy4tfIW0+UZp8BBp4dn1Wb9nslTY5W4fWif1zal9HZett0nXPDe5+RvF73cuO7PxdcSV7pf650l9c0v/nXywtPhVpaC6JPTNLr1+rr8yYp19ydQDAAAAAAAQV6pH6p1ZusVRHJZyO8bCw3IVYWKBAWTbJFuo7/1pZ96INLyxdIujZ9L48LCwgWPZaVLPoJRK1/f+AAAAAACAjlF0/A0nbdx/TzCOMBt3CA8AtLbWiQrj+RUAAAAAAAAAgGYhLAxA8z33O9KNr5M2XBXcb0ZCgStQYm8f53e627bd3viwsGoBWqPBWYMrpVOulCYfNL79L/+STF2RhH0jvZ5XP4zx81EMCgsz0rzTpRO+H7uiWExKWvDS0q2egoLCJGnd96VZx9Z3zVFeXvpVpzw3+oQWzjxW6p0ljWxpfDmjsjPGh4CN3sqP++ZKmUH/wLMknXi59IfXVn/9LDe4Mrl6AAAAAAAAmiHdJ/X3Sf0HRB9rrVTc4x8w5gwcqzjmw09jCrtLt71PxRufmVoWJFYWJpYJETjWM7nxf58DAAAAAAANU7RF3/PxwsLqubcOAOrPHbrV2n8D5a/lAAAAAAAAAAAkj7AwAM2XnSq94Erph1XewOyd0Zh6upHxCempBxv0tq/j+22tdP+/SndeVDpedoF0zFfrVGPIt6F3PiD9/izppfeNP5+ZVocaahXyPgQ+9lFVfK8Wv0Z6/P/5dx15RuqdKa2/0r996fnSUZ8t9ekUz/5X6c4Putsf+pK08j3S5KX1X7slAuzqxO9nIpWWDv+IdPt767uW6ZH6DggRAnaAlO6t79r1lBksvX7+7CBp97pwY1KZREsCAAAAAABoK8ZIPZNKt4EF0cdbTyoMuQPGqgWOVbsQQbfJ7yjd9Fj0sSa9L2xsenDgWHZ62ddlx+k+wsYAAAAAAGhhRVvwPZ827q3wKceeQ3cIDwC0Cv/nKVcIYqO56+D5FQAAAAAAAACApBEWBgBILiws6E3fyg/dWFv6YNTvXyFt+t3Y+Ye/IT3yLem1udo/qGMjXBFwx1+k7fdJgyuk4oiUmVz6AFe7iHJfq6l83Be8zB0WdsUs6YiLpeIe//a+AzorKEyS5r04OCxMkn5+sHTWA9LgIfVd++6P1Xe+ZslMk2Ye49+28j3SwELp8R+VPvD32OXR5l71TxNDwHpnJvi81wTZ6eHCwk5xhPgBAAAAAAAgHpMqBbpnBqVJS6KP9wpSfmfpb8/7g8S2Tzx2BY4V99b/PrUrW5RyW0u3OFLZslCxiIFjmWlSOlvf+wMAAAAAAMYpquh7PigszBVm80x+k4q2EDgWAJrpwT33+J5vlesduJ5ft+Q3hhq/o7BNf9h+tZ4aWacD+1bopOlnqi/VX88SAQAAAAAAAADoWLzLCQCQErvSVEBYWKHsQ0wPfkm67d0B0xSknfdLUw+rsZyIV6y68oja1kvC8KaQHet5da6KUCVXqNOoey8JmKq39nJazfRnhet3/TnSWX+p37pRf55bVc8k6eSfSamMu8/iV5ZuUunDd2u+Fm7upedLh19Uc4kd4dAPSPPOaHYVAAAAAAAAKJfqkXpnlG5xFEek/I6x8LDKMDFXANlo+JiXr+/9aWdervT399B/g6+QHhgLDysPEwsKHBs9zkyVUun63h8AAAAAADpM0RZ8z6fl/n9qV5iNJH1z/Wf1t/M/qFQnXXAQQEf45Zb/anYJsf1o0zd12KSjdEB2gbPPzsJ2ff7xj2hTfr0k6c6hm3Xn0M26cNEn1Jvqa1SpAAAAAAAAAAC0LcLCAABSUhtegsKM7ni/dOj7pPVXBweFjbr9H6QXXFlrQTWOT8DAImnPE+H757aVPgCWrhK6VdxTW11Bc/XNiT9Xtbo72c776zvfjnuD24/+fOlDZq2s7wBpzklSZnL4MdOPCt83Mz16TZ3m+T+Rpj9bmnxQsysBAAAAAABAvaV7pfSceH+ztVYq7p0YMBYlcMx69b9P7aq4R9q7R9q7Pt74zGBZkJhf4Nj0sbbKwLGeKZJJ6qIwAAAAAAC0hqIt+p5PG/dWeBOwL/KuoZv15MhaLe5bVnNtAFAvI96wrt56RUCP1v874PXbr9Kr5vyNs/2Wnb/bHxQ2at3wQ7pv9206esqJSZcHAAAAAAAAAEDbIywMQHs47tvNrqDDNenqeLnt0u/OCNd3w1W1r9eKH1ya/1Lp4a9HG7Ppemnei9ztue3S9ntqqytILQFUqQ4NC5uyXNq1prFrDm8Obl/5nsbU0WhRfoa8keTqaBeLzml2BQAAAAAAAGhFxkg9A6Wb5kcfb61U2DUWJBY1cCy/s+53qa3ld5Zuex6PPtakSn+3Lw8YCxU4tu843U/YGAAAAACg5RVtwfd82qSdY/pS/YFzPrL3AcLCALSUx4cfUcHmne3VntcapS89oJHCsG/bI3sfCBz7P5u/43v+F1suJywMAAAAAAAAAIAQCAsD0DpMWnJc/U0Hvr6xtXSbxD4EUiWc66GvJLSui23weiEc8RHp6eukoYfDj9m1Jjgs7KEv115XkFp+Xly/4+3u1N9IP13U2DV7Btxtx/574+potIANfhNkpiRXBwAAAAAAANDNjJEyg6XbpMXRx3tFqbBzLFxsf8BY5bEjcKy4p/73qV1Zb9/jti3e+FRmfHhY1MCxdLa+9wcAAAAAAB9F+e87Sxv3Vvhl/YfJKCXr2McYFMgDAM0w4u0NbF/ef0SDKgm2ov8I/WnX9b5tI55/iFg1G3NP1lISAAAAAAAAAABdg7AwAK3DpNxBQnzQIGGpZKa1VcLC7v5oMuu6VKunGQYWSi++RbpiZvgxXpVNSnd/rLaawljxbumhL0YfN+uE+tfSCgYWhuv30FekFe+sz5rb73W3LX1LfdZoRakI/3wdPCy5OgAAAAAAAADEl0rvC56aHm98MSfld0wME/MNHNs2MXzMy9X3/rQzLy+NbC7d4kj3TwwTy5SFjQUGkE2N9jdfAAAAAEDXKtqC7/m03BceHEhP1nkHvF0/2Oh/UVPXnADQLDnr/rvl6TPO1ZK+ZQ2sxu0Vs9/oDAvLeyMNrgYAAAAAAAAAgO7CzlsALSShwCpUZ5IKC3OEvzWNbXYB/npnSIOHSDsfDNd/+53utk3+b77X3dGXSht/I+0ICKzyM+u4ZOppF3/+e2n5OyRjap/rkW+62zr5w1UBVwOdYNE5ydUBAAAAAAAAoHnSWSk9W+qbHX2stVJxuCw8LEbgWMu9/9FExb3S3r3S3g3xxvdMGQsSCxU4VnacmZLce1wAAAAAgJbiDAurspfoxGkv0s+2fE9DxZ0+c/L/9wBaS1DQ1itmvVGmHntP62BGZrZed8DbdfnGr01oy1nCwgAAAAAAAAAASFIHJ0kAaDuHf1i65+KJ56etanwtXSehN4+tl8y8cbVaPeVMJnzftd+Rjvv2xMApryBdd3Jdy5Ikrfa5smIqLb30HumHEX52jv68lIpwP9tNZqqU31G9X26r1Duz9vWeuaX2OdqRcV8NdILMlOTqaCmtsQEIAAAAAAAAaAvGSD39pVv/vOjjrZUKQ+PDwyrDxHLbpbwrcCzE35G7SWFX6bbniRiDTelv86MBYlEDx9ID9bm4BwAAAAAgca5gr3SIvUQLepfowT33hJ4TAJolZ3O+5+dk5rdMUNioqT3Tfc/nAgLPAAAAAAAAAABA7QgLA9A6DnqDdM/HJdnx55e9rRnVdJekrrpe7800uR1SdmoNE9jqXZrFJ0TLs0Z7igOa3LN7Yv+d90tTDxt/bvONydS24h3utrkvkp6+Ntw8K99Tn3pa1bK/le7/bPV+W26WFrw0+Xo6VcHn98HPlBXJ1tFK+mY3uwIAAAAAAACgexhTulBBZoqkRdHHe8VSONaEgLEqx6OBY2H/RtoVbOlxyW+X4jwspmcsPGx/kJjPsSuALN1b93sEAAAAAPBXS1hY2rFdvqhCTTUBQL25grayqWyDK6kua/z/NpazI7LWtly4GQAAAAAAAAAAnYKwMACtY/JS6fjvSje/ZSxk6qA3ScsuaG5d3SBuWJhPwNU41os3r8vep2oLC6t3PZVWvCv+WDP2kmyt9InHPqavPPUObc3P0AlT/6jvHfomLel7fKz/hmsnhoVt/E389SXpkPdKD35+7HjSgdILqwSBZaeFm3vF38cuq20c+XFp253S09cF98vvrH0t28LBd0nbtSZkv4eSraOVHPlxacPVE88v+quGlwIAAAAAAACgilR6LIQqDi9furhKPkTAmN+x4wOHXckWpJEtpVsc6b7x4WFBgWPlx5lppfe7qr3PBgAAAADYzxXs5QoCK5dyBIq5AsgAoFly1v9vdxlHMFczZVPumvI25wwTAwAAAAAAAAAAtSEsDEBrOeiN0oKXSVtulgZXSpMPbHZF3SFuWNiMY4Lb672ZZsM1EwOyIkkwYCndXwq3iys19pL85afeqUvWXbz/+A87nqdT77xWDx53qNJmX+DZjnsnzrH+qvjrS9JzLpUOfV/p969/vjTzmOofVBlYHG7ubggL65kkveAaadsd0q+e4+53+3ulA19X21o7769tfDtLhfzn68CiZOtoJTNWS9OPlrbdPnbOpKWD/6Z5NQEAAAAAAABIRioj9c0q3eIoDu8LDtseI3BsW/3f+2lnxWGp+LQ0/HS88T2Ty8LDogaODcZ/fw8AAAAA2pAr2MsVBFaux/jvNypa/wAyAGiWnCPoP5vKNriS6oLCwPI2p6wICwMAAAAAAAAAIAmEhe2U5bsAACAASURBVAFoPdlp0vwzml1FlzExh1XZaFPvzTQPfF5a+Z74460Xf+yKd0vrr5R6+qUl50kHvl668yJpy43S4GHS4RdJM1fHnz89sP/L/7fpNROa1w4frD/vWq3jBm8tndh0/cQ5tv4p/voLX1H678BCafErw4+btCRcv8FDotfUjoyRZhwtzTnJ/3skScMbSx8gSvfFX2f3E/HHtrt0f7h+C16ebB2tJNUjnXqddMcHpKd/I00+SDrkQl5LAQAAAAAAAEyU7pP655ZuUVkrFXaXBYntCxArPw4MINuhRC/s0m4KQ6Wbnowx2EiZqWNBYlEDx3omld7TSMqWm6VNv5fmv1SaeniyawEAAADoCq5gr7QjCCxMH1cAGQA0S976h4VlAoK5miWbcteU80Y0KT1lwnmP510AAAAAAAAAAGpGWBgAQLHDwqp9oGP3upjzOux5vMYJHPUe+Qnpnv/jHnb6zdKs4yT92/jzJ/6gxnrKHH6RtPHXkqSbdp7g2+WfHrtIPz3y3NLBpMXjG4cerb7GjGPcgWKr/jlspeMtOke67d3BfU5zhGZ1sqMvlX4VEB736H9Ky97WuHo6yeJXSnf8Q/V+Ia4a2lGy06XjvtnsKtqS51n901VWV9xulU1LrzvO6N0vNDJ8eA0AAAAAAAAYzxgpM7l0G1gYfbz1pPyuiQFjQcfl4WOFofrfp7ZlS49Nfru0O8Zwk94XMja9InDMcVwZOFbtgiiPfl9a85XShXcGFknzX1IKDpv7wlJQGQAAAABE5Ar2SofYI+TqU1SdL4YKADXKeTnf80HBXM2SDQgwyzlCz3LW//4BAAAAAAAAAIDwCAsDAEh9B8QbZ73g9qG18eZNiqveaoEws46rfy2VZp9UtYstD3XLbRvfeOdF1ddYer50+k3SA58b63/UZ6WD3ij1zQlfa7mgDwPNe7F07L9PDDbrBjOeUwoDe/jf/dtvvaB6WFh+p/TMrdKU5dKkJePbinvd42YeG63WdlP5WLhsviHZOtAx3vcjqy/+eixM8tZ1Vjv3Sh87i7AwAAAAAAAAoK5MSspOLd3i8ApSfkf1gDFX4FhxuL73p53ZojTyTOkWR6q3LFSsMmBsWikobNSeJ6SHv1G6HfgG6YTv1ec+AAAAAOgqrmCvdIit8K4+rgAyAGgWV8hWUDBXswQFmOU8//uRd5wHAAAAAAAAAADhERYGACiFYfUdIA1vjDau2mYZLx+/pkRY/9Mm1dgy/KSzVbuMCwvbelsp/Gy09sf/O3hwZpq0/O2lYLTDPlS61ctfPSNdMXP8udOul+Y8v35rtKNjvuYOC6vm0R9It7xl7Hdo6VulY78hpfb90+2JK9xjT7ky3pqdZtsdza4AbWAkb/XNGya+Nnz991YffamVqRYmCQAAAAAAAKBxUj1S78zSLY7isJTbMRYelisPE6sWQLZNsv4fTO9K3kjpfcWo7y3OPzOZegAAAAB0PFewV9qkq4519fEICwPQYlxhWkHBXM2SCQgwy9mc43xwWJhnPaVaYU83AAAAAAAAAAAtjLAwAEApcOpZn5BuvSDaOOtV6xC7JF89U2ob76y3PcJgrK2o89H/lJaeH27wkReXgsKS0DtDOs9Khd2lK9BPWpzMOu3GpKT+edLeDX6NkrX+35OhddIf36hxvz9rvy3NPFZavu93dN333evG/ZBUpznqc82uAG3gNw9Ie3z2JW3YIT20UTpkbuNrAgAAAAAAAJCQdJ/U3yf1HxB9rLVScU9FwFjEwLF6v2/WbkxKmvfiZlcBAAAAoE25gr3ChYX5b5cvEgoNoMW4wrQypvoFiRutx/TIKCWriXuzXaFnOc8/RGx/ux1Rn+mvS30AAAAAAAAAAHQqwsIAACXL3iYNLJaeuEJ65JshB1UJC7N1/tBDYVeNEzjqaZOrUNnKULMHPh8+LCwzte71TNAzqXTDmNVfkW4416fBSvkdUnbaxKb1v5Tvz+pjPxwLC0N1S9/c7ArQBvyCwkaNsB8UAAAAAAAAwChjxt4HGVgQfbz1pMKQT8CY47gycKzm98hawMzncsETAAAAALG5gr1cQWDj+/gHihUICwPQYnKOkK1sqrfBlVRnjFHWZDVihye0uULPXOdH5b0R9aUICwMAAAAAAAAAIAhhYQCAMfPPKN1WfUr6SYirqjuu1lfWoS5ljVPMSemYV8iyrnAzIx33TemWv5nYdOQl8dZqhO13h++7+K+SqwNu01e52574iXTwWyeev+di//6bri/918vXXlc34ANHCCEVkBXpJfASBgAAAAAAAKBLmZSUGSzdJi2JPt4rSPmdwQFjzsCxbVJxb/3vU1QLXtbsCgAAAAC0saL89yq6gsDKpeTfxzUnADRLzvpf/TJrWi8sTCqFmI0UfcLCHKFnrvP726uEiQEAAAAAAAAAAMLCAAB+emeF6+cM39rfoeZSJtj4a2n+mTEHO+oxKWnBy6WBRdKeJ8bOZ6dLS14Xc636szLxBi59a+nDJ2i83jnutlv+2j8srJo1X4tfD4BxUgFPq5awMAAAAAAAAACtItUj9c4o3eIojkj5HWPhYZVhYvu/9gsc21b7hUz65kgr3lHbHAAAAAC6WtEWfM+nQ2yFTxv/Pq45AaBZ8o4wrWyqdcPC/HIXXaFfOW9isNj4dv+wNAAAAAAAAAAAMIawMADARCYVrl+1sLAoSSun3SA99kNp42+lnQ+4+w09Gn7OCfW46jVS32zptN9Ld39MeuZWafqzpcM/LA0uj79enfmGhVlPCnpzfNqR0rHfSK4oBOuZFH2MV2UT2m0XxqsFwARBYWEeYWEAAAAAAAAAOkW6V0rPKYV2RWWtVNw7MWAsTOCYJE0/WjrqM1zYBgAAAEBNitYnjUbuILDxfdKR5gSAZnGFbGVNa4aFZUzW93zOEXrmun9h2wEAAAAAAAAAAGFhAICaVAkLU4Sklf550jFfLX299rvSzef799u7IfycYesZDUebfJB0wvdrmD9Z1vqk2ux5IjiU7ehLS1ebR3OYgCQil/yO+tfRaeadKW24yt0++lwCVBEUFlas9hIHAAAAAAAAAN3AGKlnoHTT/GZXAwAAAKBLFa3/BRhdQWDj+/jvn3PNCQDNknNcPDib8g/lajZXiJkzLMxxPmw7AAAAAAAAAACQUs0uAADQxqpdWS8oxKpSz8DY1wML3f3u+6Tkxbyin3Ulv8QIdGoVa78rFYbc7VOPbFwtqN36q4Pb9zzZmDpa3YHnudvSfdKBb2hcLWhrQWFhXoSXMAAAAAAAAAAAAAAAACSn6Nir6AoCG9dH/oFiRcXchwgACclZ/7CsjCOUq9myKUdYmON+5Kx/GFq1cQAAAAAAAAAAYAxhYQAAf31zq/fZ+WCVDhGSVtL9Y1/POTm4723vCj/vOI56THu8HFq/ULP1v5QKu92DMpOTKwjhrP6yu23H/eOP/3RB8FzDm2uvpxMc9AbpqM9NfJ6asVp68Z+lzJTm1IW2kwp4+icsDAAAAAAAAAAAAAAAoDW4gr1cQWDj+jgCxTxbqKkmAKi3nOcfluUK5Wq2rCPEzHU/XOfDtgMAAAAAAAAAAMLCAAAuz/tRuH42KE0lZNKKSUs9ZeE+qSpX+1vzNWloXbi5x5XjuQqIPlcT+IaF9c4ODgsrD2FDcwwsdLf9/uVjX1tP2v1Y8FwjW4Lb2yT4ri4OfZ909pPSq/dIr/OkVw9JZ/xJmnZ4sytDG0kFPP0HvrwBAAAAAAAAAAAAAACgYYqOYC9XENj4Pv6BYkXrH0AGAM1QtAV5jmDErMk2uJpwMo4Qs7zN+Z7PWcLCAAAAAAAAAACoVRclSgAAIpnzPOnMO6r323Gvuy1s0sqS10qp6lf4G+fxkGFm4zjqaZOAJd+wMFuUfnOqe1Cb3LeOdkDA92fo4bGvt91Zfa7fnh7cPmlpuJo6RSot9fRLxkg9k5pdDdpQUFiYR1gYAAAAAAAAAAAAAABAS3AFe7mCwMb38Q8UIywMQCsJCsrKOkK5mi1r/Oty3ZdqYWD5KmFiAAAAAAAAAACAsDAAQJDpz5bOeii4z4arAxpDJK3MPlFa/eVIZUmS7vygtD0gqMy3HM/REJAW00Ks9alzZEvjC0E0mcnB7fldpf9uv6f2tYp7ap8D6CImKCzM9ZIBAAAAAAAAAAAAAACAhiragu95VxDY+D7+gWJF+c8JAM2QszlnW8YRytVs2VTW93zOEfpVLQysWpgYAAAAAAAAAAAgLAwAUM3gcmnVp93td3wgYLAjLGzOSdIZt0svWyOddoOUnRavtmueKxX2RhjgqCcoLaaFWL9Qs61/bnwhqK8df5GslZ7+de1zHfzXtc8BdJFUUFhYiLxLAAAAAAAAAAAAAAAAJM8V7OUKAhvXR46wMFusqSYAqKd8QFBWNtWqYWH+deUdwWfVwsBcIWMAAAAAAAAAAGAMYWEAgOq8KlfQs57jvCucKy3NOEqasswd1DX3RdXrKuyWNv+her/99Tjq5OUQzVTYLd35QWnd92qfa8l5tc8BdJGgsDCywgAAAAAAAAAAAAAAAFqDK9jLFQQ2ro/pccxZZV8kADRQUFBW1rRoWJijLlco2Ei1sDDPP2QMAAAAAAAAAACMIR0FAFBdtTdfR7Y6GlxRKwHpLKPmv7R6H0la++1w/aSA8LIQ9bQAG+ZxQ/vZdrt0/2drn2fVp6WpK2ufB+giQWFhRVe+JAAAAAAAAAAAAAAAABrKFezlCgIb38c/UMwVQAYAzeAK2JKkTCrbwErCy6aihYUFBaKFaQcAAAAAAAAAAISFAQDCiH2lphrCwsJetc8VAObLlfzSKi+HwY9L5LCwU66soRY0zB0fqH2OqUdIh/9j7fMAXSYd8PTvRXl5AQAAAAAAAAAAAAAAQGJcwV6uILDxffwDxVwBZADQDEFBWVnTomFhxhEW5rgv+YBANCk4MA0AAAAAAAAAAJS0SjoKAKCVxX3z1RXkZUKEXhWHw62RGWxMPY1w9KWBzdZGrHP+mTUUg7YyZVmzKwDaUtDTv+fKlwQAAAAAAAAAAAAAAEBDuYK9XEFg4/rIP1CsKP8AMgBoBldQVo/JKBUiGLEZMilHWJjjvgQFooVpBwAAAAAAAAAAhIUBAMLwclU6OEK4nOdDhF4tOrd6H0l64opw/SS562mRl8OD3iRNW9XsKtCOimyQAOJwZUhKkhfQBgAAAAAAAAAAAAAAgMZxBXu5gsDG9XEEihUtYWEAWkfe+u/Vzhr/QK5W4KrNFfrlChEblY97cWsAAAAAAAAAALpIi6SjAABaWt+84HbnppkawsIGV0qTl1Xvl9tavc/+cjxHOSHqaYTeGdKpv3E22zCP234tcp/QGGyQAGIJygMjKwwAAAAAAAAAAAAAAKA1uIK9XEFg5VLGP1DMypPn2lMIAA3mCtLKplo4LMxRW95xkWpXiFjYdgAAAAAAAAAAQFgYACCMg98S3O4KC7OOqJUw4VzGSKf8snq/KPY87mhooZfD3hnOpkhhYYd9qA7FoG6WvDbZ+QkLA2JxvUxJksdeUAAAAAAAAAAAAAAAgKbzrCcr/40criCwckGBYq4QMgBotJz1D9jKmhYOCzNZ3/Ou0C9XIFrYdgAAAAAAAAAA0FLpKACAljWwMLjdFlwNjvMhQ68GV0jP+WK4vtUMb3G3hQkvawGRwsIWnJVcIYhu+TuSnb84nOz8QIcKDAsLaAMAAAAAAAAAAAAAAEBjBAV6BQWB7e8jd6BYUa69jwDQWK6grEzKP5CrFWRT/kFmeZuTZyeGPLoC0UaNOELGAAAAAAAAAADAGMLCAAC189uMY61qDguTpANfH6eiiTZcFdDYHi+H1kZ43LIzkisE0c15frLzF9kgAdRb0f+CtAAAAAAAAAAAAAAAAGigoECvoCCw/X2Mu48XEEQGAI2UcwRlZY1/IFcrCKot7xMMlncEooVtBwAAAAAAAAAAUvXLKaEjGWNWSlolaaGkfknDkjZJeljSXdba3TXMnZF0oqTFkuZJGpK0XtId1tp1tVUOoCV5ZRtmnviJdO8npaFHpPxO//4mQuhVb51Cr+74oLstSj1NZCcfHL5zz6TkCkHrYYMEEIsr0lKSvKBGAAAAAAAAAAAAAAAANERQoFdQENhYH/d2+YJ1B5EBQCPlHPtAs6lsgysJL5tyh4XlvBH1pvr2H1trnYFo+8dUaQcAAAAAAAAAAISFdRVjzDRJF0p6q0pBXi5FY8ydkn5srf3nCPPPlnSJpNdI8k33McbcJOlSa+0VoQsH0PpGN+NsuFa64ZUKjl+RpIjhXAe+UVr3vTiVScObpc1/kIafDuiUijd3o/XPlV7+iPTzEKFhmcHk60HrmHtasysA2pINeLmysor8egUAAAAAAAAAAAAAAIC6KgYEegUFgY3qCegTNDcANFLe5nzPZ4w7kKvZMsYdZFYZ/JW3uX178txcgWkAAAAAAAAAAGAMYWFdwhjzKklfkzQzRPe0pOdIWigpVFiYMeZMSd+RNKdK1xMknWCM+YGkC6y1u8PMD6DFjYaFPfIfqh4UJkUOX1nymnhhYU9fJ11/jlQYqlJOe4TBWCtp8lLpFeuknx0Y3Dk7rQEVoWUs+7tmVwC0paCwMM9rXB0AAAAAAAAAAAAAAADw90x+k7MtKAhsVNqknW0P7/2LDksdpUnpKbFq6wZDxZ3alFuvlFKa37tE2VTtwUUFm9fm3NOak52///uzq7BDBZvX9MysmucH2lHOG/Y9X4/fuaQE1bZ27wPaUdi6/3jY21t1vmFvr9bufcDZPik9RQdkF0QrEgAAAAAAAACADkNYWBcwxlws6eM+TY9LekjSZkl9kuZJOlLSpIjznyLpp5LKLw1jJd0uaa2kaZKOklT+7u3rJQ0aY8621hLFALS70bCwx38Urn/UcK65L4rWX5K8vHTjedWDwiSpvz3eON6faTNpiXTg66V1P2hmOWgl045sdgVAWwqKt/TCZF8CAAAAAAAAAAAAAAAgETsK2/SNpz6tdcNrnH2CgsD29wnYLn/ZhktlZHTUlOP15rnvUSaVdfbtNjlvRJdtuFR3D90qu2+XTY/p0Qumv0xnz3qTTMyLtN6w/Wr9ZNNlGrHD6ksN6NzZb9ZdQ7fovt23S5KW9C3X3y34R03tmVG3+wK0uvUjj+sPO67xbcuaFg4LC6jtsg2XRp4vb3P67OMXOdtXTX6uLljgbgcAAAAAAAAAoBukml0AkmWMeb8mBoVdLulZ1tol1toXWWvPs9aea609XtKgpOdJ+rykZ0LMv1DSTzQ+KOxGSYdba1dba19trT1d0kJJF0rKl/V7maRPxrxrAFrJaFhYaBE3iaRjbMDZcK00sjlc31nHRZ+/CWx5cM3x33N3PO5bideCFnL4R6IH8AGQVPG8WqFInC0AAAAAAAAAAAAAAEDTfHP9vwYGhUnBQWD7+1QJFLOyun3XTfqfzd+NVF+n+/Gmb+uuoVv2B4VJUsEWdO3W/9GNjlCjatbsuU+Xb/yaRuywJGnY26Mfbvza/qAwSXpseI3+/al/qa14oI0UbVFfeuJiZ3srhxhmU60bZAYAAAAAAAAAQKciLKyDGWNWSfrnslN5Sa/aFw52j98Ya61nrb3RWvs+SatCLHOJpOllxzdJOs1ae3/FvCPW2i9KenXF+PcZY5aEWAdAK7OFaP3jBBtlpkbr/9TPwvdNZaLN3QqMkc5ZP/H80rdKS89veDlootz2ZlcAtK2ArDAVCAsDAAAAAAAAAAAAAABoih2FbXpk7/1V+1ULAiv1qR4oJkl3DP0xVL9uYK3VnUM3O9vv2BXvsboz5GP86PCD2l7YGmsNoN08uvcB7Shuc7ZnTesGcqVNj1Kq/jwMAAAAAAAAAADqh7CwDmWM6ZH0bWncJbMusNb+OOwc1gan/xhjlkt6c9mpnKTzrd13uSf/OX8qqfzSW72S3JfCAdAebFEq5iIMiBEWdvDf+J8fWOx//okrws277O+i19IktjLVpn+edJ6VznpQOuln0qt2Ss/9lmR4eW9J/fOSmbewK5l5gS6XLza7AgAAAAAAAAAAAAAAgO60Lb+lap/J6UFNSg9W7ZcKESgmSTsKW1W0bBiRpLzNaai4w9m+tVD9++Pnt9v+N3Tf+3ffEWsNoN08k98c2D6vd1GDKomn1esDAAAAAAAAAKDTkCbSuV4l6eiy419bay+r8xrnSeMuBfMTa+2aEOP+peL41caYvvqVBaDhinulzX+IMCBGWNjgCv/zex73P1905haOt/yC6LU0SWVW2H6DK6SFL5cyUxpZDqJa+f5k5s3OSGZeoAtMCGEsQ1gYAAAAAAAAAAAAAABAc+TsSNU+xw2eolSIC2umx113OVjeRrloaueq9vjnverfn1pZ945JoKMEPe9MTg/qyEmrG1hNdCdMPa3ZJQAAAAAAAAAA0FUIC+tclek3n05gjXMqjkOFkVlr75d0S9mpSZJOr1dRABISdHW9v/yL9OAXIswVIywsqoGF4fpNf3aydQCjVvy9lB6o/7wHvbH+cwJdgrAwAAAAAAAAAAAAAACA1hMURjW9Z5ZOn3Guzpn95lBzpYP2PlbINSAEqx1UexxyDQhVM3EuSgu0oaBwvvcs+qSm9ExrYDXRnTLtpTp39vmak5kfadxgerokaUp6ahJlAQAAAAAAAADQscJfKgltwxizTNLJZafWSfptndeYK2lV2amCpBsjTPE7SceVHZ8p6ee1VwYgMSYtWUdyyoarpVnHh59rZGv09Tdd72578IvSgpdJkw8aOxdmg89rhqPX0URBoTZoA+le6cTLpetfEW98/3xp7/rx56atIvAOqEHQ0yphYQAAAAAAAAAAAAAAAM3hCs/Jml59cul/yES4YGnKpGSUkpVXfV3CwiRJ+SphYEFhbgCicT3vHNi3QvN7Fze4muiMMTptxtk6bcbZynv50ON6TI+MMbLWqmALocakGnGxagAAAAAAAAAAWlyq2QUgES+oOP61tXWPmDmi4vhua+3uCONvqjg+vMZ6ADTblj+G77vpd9HnH1rrbrvtQunnS6U1Xx87Vy0srH9eKbypjZAV1gEibISY4JynpGO+Kg2ulDKD0qJXSi+8VjL8cw6IK+hfyIXq+0MBAAAAAAAAAAAAAACQAFd4zkB6cqSgsFHpMBcflTukrNtUC03L2RHVf2v6eJYdk+gSeVc4Yqq99jhLUiaVCX0bfS43xoQekzY9Tb6HAAAAAAAAAAA0H38t70zHVhz/UZJM6R2VUyW9XtJxkhao9DOwRdIaSddJ+i9r7boQaxxWcfxwxBofqTIfgJbT5I0XYTaW/Ont0vyXSJMWS9vvCe7bN7c+ddVZ0AaahPfWoBHmnBxv3LwzSv9d/vbSzVqJK6QBNQt6Ws0XG1YGAAAAAAAAAAAAAAAAyuRszvd81sQLz0krrYKqX+ixWkhWt6j2OFhZFWxeGZNNrIaCLSQ2N9BKXL9vSf5+AQAAAAAAAACA9kVYWGdaXXF8vzHmQEnfkvRCn/6L991OlfQJY8x/SPqAtXZPwBrLKo4fj1jjYxXHM40x06212yLOA6BrhEzKWnuZNOM51fvNfn5t5SSEQLAO1zcr3riFZ48/JigMqIug51zCwgAAAAAAAAAAAAAAAJrDFZ6TTcULz0mbnlBbEPOOkLJuk7PVQ9NydkQZJRdmlCe4DV0i59U3HBEAAAAAAAAAAHS2VLMLQCLmVRwPSPqT/IPCKmUkvUPSH4wxlfOUm1ZxvCl8eZK1dkjScMXpqVHmANBodQwnWnZB/eaq9Oh/Sn9+d/V+qz6VXA0JIUisQ7z8keD2gYVS78zS1+k+6dAPSsvelnxdQBciLAwAAAAAAAAAAAAAAKD1uMKqMjHDc9ImXdO63cYV1ha1T0018L1Al3D9rGdThIUBAAAAAAAAAICJeppdABJRGeR1maRZ+77eLenrkq6S9KSkSZJWSXqrpOeVjTlK0hXGmJOttXmfNSZXHO+NUedeSX1lx1NizDGOMWaOpNkRhx1c67oAIlrxrhiDIiRl7X40uP2wi6RM5dNYawi6l2SFdYjJS6VpR0rb75nY9sptUnZaKcFoaK3UP1/q6W98jQAICwMAAAAAAAAAAAAAAGiSnFd5PeKSuOE5aRNuy3zSAVjtIkxQV9QwLxvxaql8L9At8q6wsJjhiAAAAAAAAAAAoLMRFtZhjDG9kirfGVq4779/kXSGtfaJivbbJV1mjHm/pM+WnT9e0ockfdJnqcqUHf935YPtlTQ9YM443iHp4jrMA2CCOkZVTTs8xvIh1x9aG9w+63hp1aejr98gQXdz/fbG1YGEnXmXdNMbpMd+WDqed6Z0yv9KJlU6NkaaQpYlkLSgVxbCwgAAAAAAAAAAAAAAAJrDFUQVNzwnbdLh1iWgSlK4xyHqY1XwvXZ1wPwRw8iAdpXzcr7ns6lsgysBAAAAAAAAAADtgLCwzuN6N3uH/IPC9rPWfs4Ys0DSe8tOv9cY8wVr7VCVdeOkCNUxeQhA56vTU8ayt5WCmFpUUFjYpl2NqwMJM0Y68QelG4CmCXrOJSwMAAAAAAAAAAAAAACgOVxBVNlUzLCwkFvm8wRUSQoX1JWz/gFHtcxZLu8IUAI6jTMcMebzHQAAAAAAAAAA6GypZheA+rLW7pHk+TRdGhQUVuZjKgWLjZoh6UyffpXhYf3hKgwcUy2QDEAzLTy7PvMMrow3bvaJ9VkfAIB9gmIoCQsDAAAAAAAAAAAAAABojpwjKCprYoaFGde1mCvXJSxMCvc45CM+VlEf26jhYkC7cv1uZGI+3wEAAAAAAAAAgM5GWFhn2u1z7j/DDLTW7pb0k4rTp/h0bdWwsK9KOiLi7RV1WBfofCv/oT7z9EyKN+6gNzV3/QYJCq4BANSX5xexu0+BsDAAAAAAAAAAAAAAAICmcAVFZVMJh4URUCUp3OMQ9bGK3J/gdyRnaAAAIABJREFUNnQJ18963Oc7AAAAAAAAAADQ2XqaXQASsV3SlLLjjdbadRHG3yzpLWXHh/r02VFxPDvC/DLGTNbEsLDtUebwY63dJGlTxFpqXRboDjNXS8v+Tnr467XNY2K+9PTOrG1dSTIpac4ptc+TIEtaGAA0jBfwnJsnLAwAAAAAAAAAAAAAAKAp8nUOz0mF3LeY83Kx5u80YYK6oj5WUcO/cpbvBbpD3hWOaLINrgQAAAAAAAAAALSDVLMLQCIeqjjeEHH8+opjv4SeNRXHSyKuUdl/q7V2W8Q5ADSSSUnHfFVa9ana5nnmlpgD6/CSNfd0qS9StiEAoIMF5TPmCqQ3AgAAAAAAAAAAAAAANEPOGZ4TLywsrXRN63abMI+DK+DIPWey4WJAu3L9rGdiPt8BAAAAAAAAAIDORlhYZ7qv4jjqu6WV/ft8+txfcbws4hpLK47/EnE8gGYwRlrwsiatXYeXrBN+UPscCSOaBgAax/PcbblC4+oAAAAAAAAAAAAAAADAGFd4TjYVMyzM9NS0brfJh3gcoj5WYeYcNz/BbegSriC9uM93AAAAAAAAAACgsxEW1pnurjieFnF8Zf9nfPrcW3H8LGPMQIQ1TqwyH4BWFXLTTP3XrfEl65ALpd4Z9aklQbZKWtj2PcSJAUC9eAFPqbli4+oAAAAAAAAAAAAAAADAGFdQVNbEDQtL17RutwnzOER9rKL2jxouBrSrvOv5jrAwAAAAAAAAAADgg7CwznSVpPLog6XGmL4I44+oOH6ysoO1doPGh5L1SHpehDVOqTi+KsJYAM2UyjRr4dqGDx5SnzKaLFdodgUA0HzWWg3naw9P9AISGnm+BQAAAAAAAAAAAAAAaI6cIygqbnhOOuRFUgmoKsl5uRB9IoaFRe1PcBu6QNEWVbD+G9XihiMCAAAAAAAAAIDORlhYB7LWrpf0x7JTGUmnRpjijIrjGxz9/qfi+C1hJjfGrJR0XNmp3ZKuCVcagKYLuWnGafGrY65b40vWwnNrG98gAbk1kqSC15g6AKBVfe4aT4s+5GnwXZ5O/kxR67bEDw3zAoaOEBYGAAAAAAAAAAAAAADQFDnrH1aViRmek1Y65LoEVEnhHoeoj1Xk/gS3oQvkHc91UvxwRAAAAAAAAAAA0NkIC+tcl1Ucvy/MIGPM8yUdW3bKk3Slo/sPJBXLjs81xiwPscyHKo7/21o7HKY+AC0gVWNY2IKXxRtXa1hY/wG1jW+QapE3hNcA6GbfucnTB35stX57KTzxhjXSyZ/xlC/ECwwLCgvL8XwLAAAAAAAAAAAAAADQFHlHUFQ2lY01X9qEDAsjoEpSuMch6mMVtX9QiBLQKYJ+L7IxwxEBAAAAAAAAAEBnIyysc10m6f6y4xcaYwIDw4wxczQxZOy/rbWP+PW31q6R9N2yU1lJ3zHG9AWs8QpJ55edykm6JKguAC3GZGob3zurPnV0KFsl72Yk35g6AKAVXX7LxCfJJ7ZJv3kw3nye527LFd1tAAAAAAAAAAAAAAAASIa1VjnrCAuLGZ6TNuEukpojoEpSyLAwx/eoljkr+9tqGyqBNhf0e5Ex8cIRAQAAAAAAAABAZyMsrENZa4uSLpRUHoHwOWPMvxljplf2N8acJulGSQeXnd4m6cNVlrp4X79RJ0i6zhizsmL+XmPMuyT9qGL856y1j1VZA0AnsTHTV7xCfetoUyM8DAC62LX3+5//6E8DUr8CeAH7CXM83wIAAAAAAAAAAAAAADRc3uZk5b+pozflvJ5xoLRJh+oXNdCqU+VDBIHlvWjBavmIQWyePBXFBh50tqDQvWwqXjgiAAAAAAAAAADobOEuk4S2ZK291hhzoaQvlZ1+t6S3G2NulvSUpH5Jz5a0pGJ4TtLrrLWPVlnjSWPMuZKuljR6+ZoTJf3FGHObpLWSpko6WtLsiuH/K+ljke8YgOZK13ilqt6ZzVm3TVS7Dh5hYQAw0cad8cYRFgYAAAAAAAAAAAAAANBagsJzMiZeeE7ahNsyH7R2NwkTmhb1sYrz2Oa8EfWkM5HHAe0iKESPsDAAAAAAAAAAAOCHsLAOZ639sjGmKOmzkgb2nc5Ien7AsI2SzrXW3hRyjd8ZY86R9B2NBYIZSav33fxcLulvrbXFMGsAaCHZ6fHHZgalmcc2ft0FL48/tsFslbQwwsIAYKKiF29cYFgY/0oFAAAAAAAAAAAAAABouKCgqrjhOemQW+bzIUKyukGYYK8wgWK19C/Vkdu/+R3oREG/FxnTHRdZBgAAAAAAAAAA0aSaXQCSZ639mqRnSfq+pF0BXZ+W9HFJh4QNCitb40pJR0j6uqRtAV1vlvRKa+151trdUdYA0ELihm8961OSacJLz/yXNH7NhIzkm10BALSeRMLCCGcEAAAAAAAAAAAAAABouLzNOdtih4WZdKh+YUKyusFIiGCvoO+TnziPbZyAMaCduH4vekxP6OctAAAAAAAAAADQXcJdJgltz1r7iKQ3GmP6JZ0oaaGkuZJykjZLustae3eNa2yS9HZjzIX71liyb43dkp6SdIe19tFa1gDQIha+XHrq59HHHfL3ta1rUpKNkQgzaUlt6zaQDQiukaQRwmsAYIKg0K/AcQEvKXHnBAAAAAAAAAAAAIB6McZ8XNLFNUzxXWvt+fWpBgAaIyggKmuyseZMm3Bb5nPeiKy1MsbEWqcTFG1BnopV+0UN8sp70cLF4qwBtBvXz3jGxAtGBAAAAAAAAAAAnY+wsC5jrd0r6bqE18hJ+m2SawBoMi/fnHXjBIVJ0pzn17eOBFXLpinEfAgAoJMVYz43BgWCxZ0TAAAAAAAAAAAAAAAA8QWGhaXiBeikTTpUP0+eiiqoR5lY63SCsAFdORstyCtqf0nKxxgDtBPX71vc5zoAAAAAAAAAAND5Us0uAADQhmJc4a1p+udLPZOaXUVotkpaWKH6BfsAoOsEhX7FHRd3TgAAAAAAAAAAAAAAAMTnCpVKKaV0zOtkRxkXNiyrU4UN9Yr6OMV5XHO2jfaqAjG4AvGyhrAwAAAAAAAAAADgL947pgCALhcja/LA19e/jDBWf7k56yakaK0k0+wyAKClJBEWVvTizQkAAAAAAAAAAAAACXqdpJsj9B9KqhAASIorVCqb6pUx8fbOpU06/Po2p4FYq3SGsKFeYUPFos5b6xignbh+xjMm2+BKAAAAAAAAAABAuyAsDAAQ3aKzpdveFdD+SumJKyTtS2GZdKD0rP9b+7pzT5Oevi7amFR7XV2rWt5NodiQMgCgrcQNC7OEhQEAAAAAAAAAAABoL09ba9c1uwgASJIrhCpr4u8FjBQW1uUBVWFDwKI+TlHDxSQpH2MM0E5yNud7Pttme58BAAAAAAAAAEDjEBYGAIhuYKG7bcYx0vN/JG2/R9pwrdQ/V5p3htQ7o/Z1F78meliYSdW+bgMFBddIhNcAgB8v5nNj0FNu3AAyAAAAAAAAAAAAAAAAxOcKoaolPCdtwm+Z7/qwMM8/vKhS3ubkWU+pkHs04zyu3f69QOdzBeIRFgYAAAAAAAAAAFwICwMAxLPktdJj/zXx/LFfL/132pGlWz3NXB19TMiNK+2iSHgNAEwQ97kxKKCRcEYAAAAAAAAAAAAAAIDGy7nCc0z88Bxb7SqeZVzhPd3C9fj7Kdh86O9LlHn3jyEsDB3OGY5Yw/MdAAAAAAAAAADobOEu5QMAQKUjL5H6Dhh/btErpenPTm7NYozgr8FD6l9HgqrtSSoUG1MHgOZYt8Xqoz/19KqvF/WF6zwN50kIDMNLINjL46EHAAAAAAAAAAAAAABoOGd4Tip+eE5RhZrX7xZR7n+UALB8jAu/xgkYA9pJzvF7kU1lG1wJAAAAAAAAAABoFz3NLgAA0KYGV0in3ySt/Y6062FpzsnSwX8tmQRzKNMR3/yefLA0ZUUytSSkWjZNMYFAHACtYe1mq5M+42n99tLxFbdbXXOf1c/emVKmxzS3uBZXjBnsFRTQ6NnSVWWN4bEHAAAAAAAAAAAAAABoFFdAVMbUEBZmw1+ls9sDqvIR7n/OG5HSIfvGeFy7PbgNnc/1e5Gt4fkOAAAAAAAAAAB0NsLCAADxTV4qPesTjVtv6pFSdoaU2zqx7awHpd+9RBp6pHTcP186+edSm4W8BAXXSFKBsDCgY33jers/KGzUr+6TbnpEOvmQ5tTULqo9dzrHhZi3zV5GAAAAAAAAAAAAAAAA2porICqbqiUsrFDz+t0iyv3P21yofp71QvcdV0uMMUA7cf2+ZWp4vgMAAAAAAAAAAJ2NsDAAQPtIpaUV75Tu/b/jzx92kTS4ohQYtv1OyStIM54jpTrvZa4YISzMWqub10q/fsDqoFnSWUcaTR0g9QZoVZ+52j+66uO/8PTbQ0JegrNDbd9j9ct7YiaCBagWMlb0pFSq7ssCAAAAAAAAAAAAQFwXGGM+KulQSTMl5SU9I+kxSX+Q9Ctr7Q1NrA8AapazjrAwU0tYWDF036u3/li37Pxdac1Ur5b3H67jp54aGFbm2aJu3vlbPbj7Hu31dmtKeqoOn3y0jpp8gkybXaluzZ77QvcNGyy2Ob8hVi237bpB60cekySlTEpL+pbr+KmnalrPjFjzwd+GkSd0687f6amRx5QyKS3qXarnTn2BZmYOaHZpHafyueKx4TW+/bIm2+DKAAAAAAAAAABAu+i8FBUAQGc78hIpO0N67HJJRlr8Kmnl+0ptqXQpJKyNVYvCKUQIC/vE/1pd8ouxGQ+fb3X1e1KaP629Nh8B3e6WR5tdQXNt2G71ws95enBj49d+Zrc0d2rj1wUAAAAAAAAAAAAAh9dWHPdKmixpiaSTJH3YGPNnSf9orb0uiQKMMXMkzY447OAkagHQmfKOAKqgsK5qiiqE7vvkyDo9ObJu//Htu27UXUO36O0LPqpMKjOhv7VW39nwBf151/isxj/u/LVOn3Guzp79pth1N9p9u2/XH3f+OnT/MGFhz+Q36tPr3hurnmfym/RMftP+47uHbtVNO67Texd9UjMyUV+K4OfRvQ/pS09+XMPenv3n7h66VTdsv1rvXfxJHZBd0LziOozrucJPLc93AAAAAAAAAACgs6WaXQAAAJEYI618j/TiW6QX3ywd+v7SuQ5hq6SFFUOGhT2yaXxQmCTdt176wnXV4sgAoLV86kqbWFBYtWfETbuSWRcAAAAAAAAAAAAAErRa0jXGmE8Zk8immndIujfi7WcJ1AGgQ+WsIyzM1BAWZouxx0rSA3vu0kN77vZte2pknTP859qtP9VQcWdNazfSL7f8V6T+ru9Vueu3/0p5+//Zu/c4ucrC/uPfc2ZnZi9JNhdCQhIQQQXBe1ER8ALipRb9obX2Z2uprVVLEduiUH+lXKzlVi8UikKtoiCKWBVQqqhAQBFUkItUsIpCLiSQJdnsJrs7c2bmPL8/NruZ2T3PmefMfXY+79drX2TPfc7OORuyz35OUOshzbO98JR+PPaDhm2v131vx9crQmEzxkujun30v9twRAvXE/kNTqEwSUrXcb8DAAAAAAAAAAALG7EwAAC6iGss7MYHoxM4n/g+sTCg2yycHGJtPnN78+5b1QKNhfrGiQIAAAAAAAAAAABAozwh6T8lvVfSMZIOk3SopKMlnSrpe3OW9yT9o6TzW3iMANAQQRgdlkr7mZq3efDAoTWvO+O3U7+KnP7o1MPWdYxC/c6yXqcphAU9nvt1onWCsHos7NFJ+/mp1aOTv2z4NnvVbycfsc6Le28jud8mOJ+D/lATjwQAAAAAAAAAAHSzvnYfAAAA2KtauKboGAv75n1EwQCgmmr33KDYmuMAAAAAAAAAAAAAAIufSXqDpB8YY/0J512SLvM87whJX5H07LJ5H/E87yfGmBubfJwA0DChogfJ+XU8I/sFi16uPq9PRVP7YJCiKUROz4VTsevlw1zN+2ylvIl/HVECUz0Wlq9yfmpR7ZzDXdy55Dw3VpLzeejQC5t4JAAAAAAAAAAAoJsRCwMAoINUS3yVHGNhSwfqPhQA6HmFUruPAAAAAAAAAAAAAEAvM8Z8J8Gy93qed6SkuyU9p2zWhZ7n3WSMadRPQD8j6b8SrnOwJIJlAJyElttVykvVvM2s3693rjpZ1zx5mcyeUXr9/qBSXkoTpV01b1eSClWCWUFYPajVCWo5Tpd1XIJiifdrgoZvsxeVTFEl2QN6hS5573YL12vh91f8kfbNrGny0QAAAAAAAAAAgG5FLAwAgC5SdIyFeV5zjwMAFoJqgUZiYQAAAAAAAAAAAAC6iTFmh+d575R0r6SZ0SOHSjpW0i0N2sc2SduSrOMxkAVAAkbRg+R8z69ru68Yfq0O6D9YD088oMWpYR0+9BJl/KwenrhfG3K/UWlPpOyB3Xdre2H+bc5YRppUC2Y1I5bVDPkwZ52X9jIqRAS6XF5bEEaHvY4aPl5rswdqR2FEKa9PB/Y/W77na0Pu0dlzujXYpIcn7ovYpv1Y4W6hvHe7he1875NepRcuOlID/qAOGXyBDh58bouPDAAAAAAAAAAAdBNiYQAAdBBTpVxTakAszBjDIEwAUPV7bmB/cCYAAAAAAAAAAAAAdCRjzH2e531f0hvKJr9RDYqFAUCzlUz0IDlP9cXCJGlt9kCtzR5YMe3Fi1+hFy9+xeznTwabI2NhtsfS2WJYMwpV5neKuDDUsr59tK2wZd50l9dm2+7zho7QixYfOW/6Cxa9bPbPPx+/0xILI2LVCNViYEGYZ7xpA9nO9/7Zg/WH+/5Fi48GAAAAAAAAAAB0q/p/agoAABqmSrdGxZLbduKGZoTVdgIAkCQVHO+5AAAAAAAAAAAAANBhbp7z+QvachQAUAOj6FhYyku1ZP+eZfSdbdhd1eBSlfmdIi7ANZRaHL2Ow2uzbTfjZ6uum/H7I6fnTa7quqiuWnQtVKiSeNpioxTquBYAAAAAAAAAAABmEAsDAKCDmCohr5Jj6CvuQW6l6LFUANBzqt1SA2JhAAAAAAAAAAAAALrT43M+X9mOgwCAWoQmeoCb16HD3qsFl6rN7xRBGB3gSqlPA6khyzrxr61kigoVPQAn42WqHlPWElEqmoJCw8CeeuUd3pvd8v7tBra4XsYjFgYAAAAAAAAAANx15k9NAQBAJNfQV0wrTKFjcAxAZ4iL/6E+1QKNBddCIwAAAAAAAAAAAAB0lqk5nw+05SgAoAYlS1zKb9Gwd886+i56HIktAOQ6v1PkbSEjP2sNexVMELvNuNBUxhICq1gmJqIUVNk3qis4vDc5z40ThNHnMuNXD+cBAAAAAAAAAADMIBYGAEAHqR6uqX8frsExAJ2h2n0B08IaSoituOcCAAAAAAAAAAAAQBvsM+fzp9tyFABQA2OiB7ilvFRL9u9ZnuxnbLGwmCCWy/xOEYS5yOlZv98a9qr62mNiVOmYENiMjN9vnZe3HC/cubw3C13y/u0GtuvBJZwHAAAAAAAAAAAwg1gYAAAdpFrqxjX0ZRmvlGgbANBuW3a6B8C2TzR+/0Gx8dsEAAAAAAAAAAAAgBZ4+ZzPt7TlKACgBqGiB7h5XnuHvdseSleICWJJ8cGsTmKLb2W8rDKWsFe111YIA+s8l0BSNmYZIlb1y5vqwbVuef92A1uczSWcBwAAAAAAAAAAMINYGAAAXaRILAzoOe65rIXn4QTD1TfuSL79aue2UEq+TQAAAAAAAAAAAABoJ8/z+iW9bc7k29twKABQk9BED3DzWzTs3ZNt8F30SBNbAMh1fqcITHTYK+v3W8NeVV97TGjKFiCrXKbfOs8ldIV4QUzMLckycGO7XlzCeQAAAAAAAAAAADOIhQEA0EFsTx+cUXQM18S0woiFAV2m2n1hIQsTvPZa7m3Vzi2xMAAAAAAAAAAAAABd6B8krS37vCTpv9t0LACQWKjoARutioXZGFssLCaIJUmFKvM7RRBGx7cyflZpLxO9TpXXFhcTcwkkxS3TLRG2Tuby3qz2NYY72/l2CecBAAAAAAAAAADMIBYGAEAHqdbFcY6FxdTCksR3AKCdktyvagl7Vdt8QCwMAAAAAAAAAAAAQJt4nvdnnuetSrjOeyWdM2fyF40xGxp3ZADQXKGJfmKc76VadARxj+qcLwiDuuZ3irwtFuZlrdGuasGuuNCULUDmugyxsPrZvublOM+NYzuXLuE8AAAAAAAAAACAGcTCAADoIKZKuaaWGM5cpeixVAA6VC/3/ZLEwlxjikk04p4LAAAAAAAAAAAAADV6j6THPM+7yvO8P/A8b8i2oOd5R3ie901Jn1Vl5eYJSf/U5OMEgIYKZYuFtWbYuy0VZiyjeAITH1yKC2Z1EttxZvx+ZbzomFGhymuzxZHSXsbp6+l7vnXf+SrnHdW5hMCqfY3hLm+7xizvcQAAAAAAAAAAgCh97T4AAADgruhYzol7tmGpl8tDQBeqFhFcyBLFwmoIIbYi0AgAAAAAAAAAAAAAdRiQdNKej9DzvN9IelzSmKSSpBWSXihpVcS6OyS90RjzZGsOFQAaIzTRAzb8Fj0j27OMvouKhRljqgaXXIJMnSAIo+NbWT+rtB8dMwrCIH6bJnp+kjhSxs8qKM0/h91yXjuZS8iO89w4tnOZsVxfAAAAAAAAAAAAUYiFAQDQQaqFa4qO4Rrf9yTLkwxLNQR1ALRPkmDWQhMmuF81IxYWFJNvEwAAAAAAAAAAAACaxJd0yJ6Pam6V9G5jzObmHhIANF6o6EEgvpdq0RFYHtUZMc6kpKL1eGe4BJk6Qd4WMvL6rXGvaq/NFkdK+xnn47LtO2+Jm8GdSwiMWFhjlExRoaIHACeJ5wEAAAAAAAAAABALAwCgg1RrAhUcY2GW4UqSiIUB3aaXr9kkoTTXmGK5Rt1zAQAAAAAAAAAAAKAJLpH0hKSjJT3DYfkJSd+X9GljzK3NPDAAaCZjLLEw+S3Zvxc3+G6OhRRbsoW/sn5WGT86ZlQIg5q2mSSOlPX7E20b7lzOIee5MeLuA7brCwAAAAAAAAAAIAqxMAAAukjRMRoUN2ApSXwHANopUSysCVG1oNj4bQIAAAAAAAAAAACAC2PM9ZKulyTP85ZKOlzS/pJWSRqU5EvaKWlU0iOSfmGM4ZFIALpeSdG3Mt9rTSzM9qhOE/FYusDEx7IkqeCwTCcIwlzk9Izfr4yXiV6nSkiqYAkkZfzo7UVJW0JK3RJh62QLKXbX6eKulSTxPAAAAAAAAAAAAGJhAAB0EFMljFNwHNIZFwsrNSGoAwDNkCQWVkvYq9o9d2wq+TYBAAAAAAAAAAAAoNGMMTsl/bjdxwEArRCa6AFuvlIt2b9niYUpKhbmEFIqmoJCU5Lvteb4a5W3xIwyXlYZS7CrYAKFJrSG3GwxtXSCOFLWsmxgouNmcOdyDl2CeKgu7l5hu74AAAAAAAAAAACitOoRSwAAwEG1Lk7RMRbmEwsDsACE1WpeZfLFBGWxPaqtsW08+TYBAAAAAAAAAAAAAABQOyNLLMwSpGo0WyzM1BgLk7ojuBSE0eGojJ9VJibuVYh5bbbzkySOlPH7E20b7oKw+vuS89wYgSXGJyn2+gIAAAAAAAAAAJiLWBgAAB2kWhen6Bj6IhYGYCEIE9yv8sXG7/+pXY3fJgAAAAAAAAAAAAAAAOxKJvqJml4HDnsvxASAKpbrguCSLQqV9ftj415xMSnb+UkSR8pa9p3vgnPa6eICVjNc3+OIFxdmSxLPAwAAAAAAAAAA6Gv3AQAAAHeF6HFQ86RixkWVqgTJRnYZXXeP0YObpRcfIL3zpZ6WDcXUxwCgScIq96tytcTCqgUaRyeSbxMAAAAAAAAAAAAAAAC1M4p+upzvtSYW5il6rJzR/IEmcaGsiuW6ILiUN7nI6RmvPzbuFffabOcnSRzJtu/AcrxwF4TVz6Hrexzx4q6TPi/dwiMBAAAAAAAAAADdjlgYAAAdpFq4phg9DiqRMGYbT4wavfZToX791N5pl99udOtpvvZdQjAMQGsliYUFTYiFuQYaAQAAAAAAAAAAAAAA0BihiR7gllKqRUeQIBbmGAELwqCuI2oFWxQq62eV9jOJ15Ps5ycuPjZvWb8/8X7hxuUcdkPorhvYznXay7QshAgAAAAAAAAAABYGfrIAAEAHqdbFcQ3X+DHf4UsxO/n07aYiFCZJv9wife7OBMUeAGiQJLGwfC2xsCrzA2JhAAAAAAAAAAAAAAAALWOMUajoWJjXoqCOZ3umZsRAE9dgVacHl0ITqmCig2YZvz827lWIeW2285PxE8TCLPsmFlY/l/cl57kxbNdJkmsBAAAAAAAAAABAIhYGAEBXKTqGa1K2AUuSStFjqSRJ3/uf6HTO1+4lFgag9ZodC6smaMI2AQAAAAAAAAAAAAAAEM1YQmGS5Lds2Hv04DsTUQtzjYB1enAp7nVkvGxs0CjutQWWAFnayzgfm23feZNz3gaiBWH016dimQ4P3XULazgvJsQHAAAAAAAAAAAQhVgYAAAdxFQJ4xRjQl/l/Jjv8HGxsPs3RU//xWa3/QJAI4WO9zxJyheSb7/aPTdwDDQCAAAAAAAAAAAAAACgfmFcLMxLtfBIokTEwhwjYJ0eXIp7HVk/q5TXJ1/R598WBIvbblx8bP7++xNtG+4Ch+Aa57kxGnEtAAAAAAAAAAAASFJfuw8AAIBWGtlldOHNRnf+xujQ1Z7OeKOnw9dEPwmwHap0a1RwDNf4MS8pLhYGAJ0krHZTLJMvJt9+tc0HNWwTAAAAAAAAAAAAAAAAtQlNTCysRc/I9hQ9+C5qnIlrBKzTg0tBaI9GZbzpWFfGzyoXTkasa39ttvOT8dwDSbZlOz3A1umMMU7vy7gYHNzlG3AtAAAAAAAAAAAASMTCAAA9ZCJv9PqLQz24efrzex43+vYvjH78D76eu1/nBMPiFNsYCyuFRqm4DQNGdf0JAAAgAElEQVRAgzU9FlZl+4XS9MA4z+PeBwAAAAAAAAAAAAAA0GyhYmJhXqtiYe5cI2CdHgvLG3ssLOtPx4wyXlY5zY+FFWKiXYUwOjSV9jPOx5bxo2NK+ZjAGaorqRh7vc0odPh7t1vYzqPt/Q0AAAAAAAAAAGDTmp+aAgDQAW55RLOhsBk7J6XP3ZmgRtNkLuGaeiWJ75Sb4gFxQNuEtV64XS7Jyw5qiIW5aMR9FwAAAAAAAAAAAAAAANWFxj5Qw2/ZsPfoXJjR/IEsQUwoq1xcUKsTBJaolyRl/P49/40OfMWtazs/Gc89kJTds//5++3sc9rpnEN3Hf7e7Ra285j23MN5AAAAAAAAAAAAErEwAEAPuey26KegXfyDzonwVIuFFas/yK3qdmqOhRVqWw9A/UqO1/5C0+xYWLV7bq3bBQAAAAAAAAAAAAAAQHKh7INkfK81w949SyxMUbEw1+BSh4etgjBnnTcTM7IFvuJiUgXL68747rGwWvaL6hbKe7db2M5jkmsBAAAAAAAAAABAIhYGAOghP9/Y7iOorlq3xjkWFjOv1lhYjlgY0DalzmkatlSYIJKWryUW5rBMYH9gLQAAAAAAAAAAAAAAABooNDGxMKVacxCWVljUQ+lcg1WdHrbKm+hYWNrLzEbabFGjuJiU7XXbAmCRy/r9kdOLpqDQMLCnVkneu8bliYyI1YhrAQAAAAAAAAAAQCIWBgDoIYsWwM/UCw0Y25IkvlNuilgY0DbFHh3XliRumC82Z1BaUEOEDAAAAAAAAAAAAAAAAMmFiomFea0Z9u7ZamERj6UrhIHTNgPH5drFFvzKloW60paokS2CZIyxbtcWHotcNiamlI8JlSFePowOxEUpmM5+/3aDRlwLAAAAAAAAAAAAErEwAEAPSbfowYL1qPYANtdgUNx2SjX2dKYY7wG0TanGyF+3SxQLqyFo6PLQyzyxMAAAAAAAAAAAAAAAgJYIjX2AnN+iYe+2WJiJiIXZQlm1LtcutnBUeagr42cil7FFkEoqWuNvcQGwucqDZfP23eHntZMFCQJgnOf62c5hxrO/vwEAAAAAAAAAAKIQCwMA9Iy+LviuV61bExopdKjnxC0R1hgdmqohxAOgMWqN/HW7RLGwGqJeLpsPiIUBAAAAAAAAAAAAAAC0hLHEpSTJ9zpvAKAtlFXrcu1iCxmVh7psgS/bunGvOW0Jj0XJ+PawWGCJnKG6QoL3ZKe/f7uB7RzGvb8BAAAAAAAAAACidN5PTQEAaJK+VLuPoDGKNca+ZsTFd7J99nlT7g+SA9BgpTqv+25lmh0Lc9h+YH9gLQAAAAAAAAAAAAAAABqoZOyDZLwWDXv35EVONxGPpXONKBVMZw++s4eM9sbC0paokS06FcS8Zlt4LOmyeSJWNcsnCK11+vu3G9jOYcZzD+cBAAAAAAAAAABIUkwSBACAhaWvCxKZLuGaYknKVPkOHreduOiQFz3OSZI0VYjfJ4DmKfZosCoubjhXUEMsrJ3bBQAAAAAAAAAAAAAAQCUj++C2lNeqp4VGD6KbLO3WptzvtLRvuRb3LZUkBcYtuDRW3KFNud9pwB/SivS+8uIG6rVYaErakPtN5LzykJEt2jVWHNWm3O/mTd9Z3G7dZ8YSHouSLQuWzbU5/5iMQu2bWRO7XLmJ0i7tKIzMfr48vVJDqcXOx9OJcuGUSqaofn8w8jrJhVMaCbZWTNuQe9R5+5tyv5sNymX8rFamV8tv2fW4MNjibEmuBQAAAAAAAAAAAIlYGACghyyUWFjBIRoUt524+E7cPJf9AmiOUoJo1kKSJBaWryHq5XLPJRYGAAAAAAAAAAAAAADQGqGxx8J8tWYAoGeJhT0y+YAe2fCAJOmZ/Yfo+OX/R5vzjztt81eTD+qCDadJklak99V79vuwDhx4TkOOtx537vy+rh+5SlPhROT8TFmAyxY1Kj8vrmzhsSjpsmDZXFc/eYkkKaU+vXTJq/Snq/9GKS/61yOmShP6/JZP6JHJB2S0d9CQJ0+HDr5Qf7XmdA2khpyPqxOEJtQPdlyv7+34hnLhpJb17aM/W32qDh16oSSpEBb0pScv1X277lKo2geAXrn1kxWfL0kt05/td6oOH3pJXcffKzbkHtXm/GOR85JcCwAAAAAAAAAAABKxMABAD0nHPMgsDI18v/1P63Pp4hTt46GchMbI9vTDuHAOwRygfUp1XvfdqumxMIdlAkKJAAAAAAAAAAAAAAAALVEy9oEanteip4U6DCN8LPe/+s8t/1rT5rcXtunSzefovIM+19Y41f9OPqSvPPWZ2GWyZYGwRkaNbOGxKJ7nKeNlFZi8dZmSivrJ+G1a3Dest67888hlvrj13/Tw5P3zphsZPTL5gK568hL99dp/dD6udgtNSV968jL9dHz97LTR4tO64onzdd7Bn9NQarG+PvJ53bvrRw3f93hpVJ974l/1T8+8VCvS+zZ8+wvJVGlSl2w62zo/ybUAAAAAAAAAdAJjjMIwlIn7hXQAaAPP8+T7vjyv/c2QZiMWBgDoGX0xsbBCScq2aCxRvVxiYXH/ixUXHYqNhZXskTEAzVXs0WBVmCCSVlMszOHfo/KF5NsFAAAAAAAAAAAAAABAckb2wSK+WjPAz2vBGLlcOKVHJh/QSxYf3fR92dy/666qy2S8/r1/9jMN23efl060fMbvV1Cyx8Jm3LfrrshYWC6c0sMT80Nh5X65+z7lwin1+wOJjq0dSqaoq7ZeEhkCC0xePx1br2OXvVkP7vpp044hb3K6ZccN+uNV72vaPhaCX00+oFw4aZ1PLAwAAAAAAADdoFAoaGxsTGNjYyoUCoTCAHQsz/OUTqc1PDys4eFhpdPJfibVLbokiwIAQP36Yr7rBR0S4nH5/6Oxqfr2EcbsI273QQ0hHgCNUerRfzuJu1/NVUsszEWnfH8AAAAAAAAAAAAAAABY6MK4WJgX87TQBto3s6Yl+9le2NaS/dSz/1WZtZF/rse+6TXyvWS/wrA6s85puR2FbZG/pDZe3KmS4gcXlVTUeHFnouNqh6Ip6HNbPhEZCpuxOf/49OspjTb1WO4eu1W7S+NN3Ue3q3ad7ZtuzHUFAAAAAAAANEM+n9fGjRv16KOPamRkREEQEAoD0NGMMQqCQCMjI3r00Ue1ceNG5fPVH0jTbYiFAQB6Rl/MWKFCh8RgXP4X6XcjDtuJ2VBcfCduHrEwoH1K9nGQC1qiWFgh+fZdNv/rp/jHKwAAAAAAAAAAAAAAgFYIjX0gn9+iYe8vGHqZ+v2Bpu8nCNv7iwnV9p/xsnrx4qNmP3/u0Iu1JLW07v0eOXxs09YxMiqa+YOISsZt8KPrcu1SCAN99omL9ODun8Qu92Sw2enBtfUKTF4/HP1u83fUxeKus/2zB2lt9hktPBoAAAAAAADAXaFQ0MaNGzUxMdHuQwGAmk1MTGjjxo0qFGr4JfQORiwMANAz0l0QC2uUuHEecfGduAEiwQI7R0A3Kfbo9ZckFlbLPcplUNxpXzP6zkMEwwAAAAAAAAAAAAAAAJotNPYn6vlea4a975NZpVPXnasD+58jr4ah9qcfcJGePfA8pdQXu1xg2hsLK8Ts/4D+Z+nUdedq38x+s9P6/QH9/QHn6VkDh1d9bVGG+5brTSv+WG9Y/vbE6x41fLzevu97tCK9b9Vlo85rKSZCV8ty7RCEeV3xxPn6n4l7qy77VLBZbo9RjLa8b6Xzsrfv/I4KYVDzvha6wNjPzanrzpXneS08GgAAAAAAAMBNqVTSpk2bVCx29gMWAMBFsVjUpk2bVCp17s+Bkkr+kzoAALpUX8y4nU6JhbmEa/J1/r9VyTKeylTZecD/0wFtU+rRVlWSWFgt90bXJ2ie8O+hilf48n0GZwEAAAAAAAAAAAAAADRLqJhYmGKeFtpgzxw4RGc8418VhHkVTUEfe+xUjZVGq653xOJX6pkDh+jvD/gXFcJABRPoi1v/LTLwFITtjYXZ9v+Wfd6lN66IDnqtyqzVaQecN/vakhjwh+oKIx237M06btmbNVWa0EjhSV244UORywVhXkOpxRXTQrkNLHJdrtXyYU6XP3Gefj35kNPyU+GkxorV369RXr7kWJ20+oPKhZMyZcGx9aM36b+3f3Xe8rtLY/rp+Hods/QNNe1vobNdZy9Y9DIt6lvS4qMBAAAAAAAA3GzdulX5fOW/bfm+ryVLlmjJkiVKp9Py/dY84AMAXIVhqEKhoPHxcY2PjysM9/7cMZ/Pa+vWrVq3bl0bj7BxiIUBAHpGXCysU0JYLuEal2ON244tvlNt30GHBNWAhcrz7NehLfK30IUJXndQnI4eVhtUaJ7cIG3bLB16hKS08/YvvsXoQ68nFgYAAAAAAAAAAAAAANAsobEPUvO91v/iUcbPKqOssv6A5BALy/r9s39O+xmlldGAPxS5bGDaHAuz7H9RqnrAaOa1tcNAakhLzDLr/KjXVYp5X9WyXCtNlSb1mSc+pt9OPZJova3Bppr2l/Gz8jxPA6nK9+2xy07QLTtuUN7k5q1zy44bddTw69pyjXa6guU6y3jZFh8JAAAAAAAA4KZUKmnXrl0V0zKZjJ7xjGeor488DYDOlslkNDQ0pJUrV2rDhg0Kgr0Pv9m1a5dKpZJSqdY9oKhZ+IkMAKBnpGK+63VKiMehFaagVH2p2FiY5bVW22qnBNWAhSouaFjsvHFoLWGLG9rE3adMkFd45jtk/ug5MqccJ/PmtTIjTzhv+/SvJzwYAAAAAAAAAAAAAAAAJBIqenCb3+Yh7xnfLYyVjggA2dYthEHk9FYJLPvP+J0fMcp49q9HEEbFwtwGP7ou1yqTpd36983nJg6FSdKTweaa9mmLWA2mFumopcdHzttW2KKHdt9T0/4Wuqj3o9Qd1xkAAAAAAAB608TERMXnnudp//33JxQGoKv09fVp//33l+d5FdPn3uO6FbEwAEDPSPmedV6xQ2JhLvKF+ta3tcbiAmMSsTCg2WKDhj3YqTLGKHzsV4nWycfFwq6+UPrhjXsnTO6Suftm5233pxMdCgAAAAAAAAAAAAAAABKyxsK89j7hOyoCFiUqAGSLAuXDXF3HVK+CsUSMHF9rO8WFlqJjYW5PanRdrhV2l8Z1yaaz9Xju19ZlFqWWaGV6v8h5T+Y31bTfuHN73LI3W8N9t4zeUNP+Frqgi68zAAAAAAAA9KZdu3ZVfD44OKhMxu2BGgDQSTKZjAYHByum7d69u01H01jEwgAAPSMuxFNs0BiPXMFoKqi96lMt2CVJQZ3HGlrCaGG1WFjnjIMBFqSYnqFKXRQ0bBTzmY/I/PimROvExcL0navmTyu5VxBzdYYaAQAAAAAAAAAAAAAAEC80llhYm4e8xwWUKpbz5v/ClC0KZIsItUoQBpHTXV9rO6XUZ31PRJ3XkhxjYY7LNduu4k5dsulsbcr/zrrMktRS/d3+/6JDBp8fOX9rUFssLOv1W+etSK/SSxYfHTnvt1OP6HdTyR4M2Qui4nVSd1xnAAAAAAAA6E0TExMVny9evLhNRwIA9Vu0aFHF58TCAADoMnGxsEKdYzwm80Z/8p+hlv/d9Mcf/0eoiXzyaJjLGrExnJntxGzIFgWrFioL3Js6AGrQiqBhtzCjI9J1l8h4MQW1CLH3qZEn5u9HybZvXIqOAAAAAAAAAAAAAAAAqEloogfJ+F57h7xnfXtAqVxUAMgWBbJFhFqhZIoqKXqgTToieNZpPM9LdF5Lxm3wo+tyzTRW3KGLN/2Tnsg/bl1muG+5/v6A87Qme4BWZdZFLvNksLmm/af9+K//8ctPtM67ZccNNe1zIbNFAbvhOgMAAAAAAEDvMcaoVKr8d/qBgYE2HQ0A1G9wcLDi81KptCB+V5xYGACgZ8SGeKIfSOjsvV8y+uo9RrnCdMzrv35u9BdfqHOjFvVGu6yxsGr77bFYEdBqcdmqUnNuJ53re1+uXjCM4BJTLJc0Fra7vQ90BQAAAAAAAAAAAAAAWNBCRQ+S8do85D3jRYepXJazrVuwRIRaIQgD6zxbhKvT2M5rVJypZInQ1bpcs4wWntbFG/8pNvS1vG+lTtv/PK3KrJUkrc5Gx8Jy4WRNx1DtvX5A/8E6ZPD5kfMe3P1TbQu21LTfhcoWBeyW6wwAAAAAAAC9JQzn/xt9KpVqw5EAQGNE3cOi7nXdhlgYAKBn+DFNmHpiYZN5o+vvnx+1+dYvpN25ZLEblzaOSwwnbjO26FC1v9fUGykDULt6g4bdxjz28PR/E8a8mh0Lu+PXybYPAAAAAAAAAAAAAAAAd8YSC0t57f1lpLSfcVou4/dHrGuJWsUEu5otKqg1wzWM1m728xoVC3MbVOS6XDNsLzylT206U9sK9tjWPulV+vsDztPKzH6z01bviYY1SjbiPTzX8ctOjJxuZHTrjm819Hi6XWCir/Nuuc4AAAAAAADQW0zEL7l7XrLfwQSAThJ1D4u613WbvnYfAAAArZKKSWQW63gg3P2bpFxh/vSgKN3zuHTsoe7bcvm7Rb3RrtCyj2q7LrR4HMxPfmf0sZtCPbxVOupgT+e/1dMzVvA/lVi44q7BXouFqcbafNJYWFJfu8fohBdU3oeMMbpsvdFXf2b02xFpyYC0dEAaHpCWDkpLBjwtHayctnTA2/vnwenpS/olP65qCQAAAAAAAAAAAAAAsMCVTPRAPr/Nz8d2DftkIgJWtnXjgl3NVogIas3IOIbR2i3JeS3JbYCo63KNNhJs1SWbztaO4oh1mX3Ta/S3+/+zlqX3qZi+rG+l0l5GBUuUKqmo9/Bchw29RGsyB2hLsHHevJ+M36YT9vm/Wty3tCHH0+1s15rLeQYAAAAAAAAAAIhCLAwA0DPiGiz1hHgKMeNDSk0I/LjEcOKiY9ZYWJVaWNDCcTAPbjJ67SdDTe2JsG3YbnTXb43uP8vX0kFiOug99UYCu44/HQszSna95yPCjXGSbj+Tnj/twpuNzrx+7w102675e4na81yeJy3OVgbElg5ISwe96QBZRXCsLDZWFiHL9HF/BAAAAAAAAAAAAAAA3Ss00QPuPK/NsTDHsE/Gmx/asq0bxAS7mi2ICUu5htHazXZeC+H811YyboOvXJdrpKeCJ/Rvm87SWHGHdZn9Mvvrg/t/VMN9y+fN8z1fqzJrtTn/WEOOx+Xr73mejl9+oq5+8tJ58wom0B07v6sT9nlnQ46n29migOkuuc4AAAAAAAAAAEDnIRYGAOgZcS2sYh0hLFt8S5L8hGOUqvS6JEk5hxhOXPjLFjCrtu+g6HJ0jXHlj81sKGzGhu3Stx40OukVxHDQe6avvx5676dq+98UW0zRhNE3vqSxsGDOfckYo/+4ozH3RmOk8dz0x8aKsX9usTFJGkjvDYftDY6VxcbmRMjmBseGstOD+QAAAAAAAAAAAAAAANrBKHqMR0qpFh9JJdeAVlTAKiogJtkjQq0QFypLO4bR2i3JeS0ZtwGirss1ypb8Bl266RyNl3Zal1mbPVAfXPdRLe4bti6zOrOucbEwx6//EUteqRufviYycnbHzu/o9cvf5rythcx2rWX86PcvAAAAAAAAAABANcTCAAA9Iy6gVbQEtOrdri3MVcu2ZrjEwuLY4maWls6soIUPzfv326IP8t1fMDrpFa07DqBTBK0dh9Z+e2JhiWNetvtUMfrGaRKGscamKu9NOyfnhr3aa6ow/fHkePlU2zeW+dNTfnlMbG94bHjAi4yQzZ02PCClfGJjAAAAAAAAAAAAAACgNrZYk+clfGpng7lGj6KiYrZ1i6ag0JTke60PocWFymwRrk5jO69RcaaScRv86LpcI2zOPaZLN5+j3aVx6zL7Zw/Sqfufq0WpJbHbWp1Z17Djcg3j9XlpHbv0BN3w9NXz5k2UdunusVv16mVvathxdSNjjPVacz3PAAAAAAAAAAAAcxELAwD0jLgOV7GOEE9c4GsqaNy2ZuQdxqPEbcYWC6u260KvxYqAFou7/lsZ6+sIqdoGQVrvU5ZYWFLjucrPbffTblUKpR0T0x+Vol5o9Itf3B8VHPO0JCJCFhUc608TGwMAAAAAAAAAAAAAoFcZRT/x0lebY2GOYZ+M359o3cAE6vcGaj6uWhUiglqS1Of1tSVeVgvbeY2KM5XkNvjRdbl6bcg9qn/fdK4mw93WZQ7sf44+sO5sDaYWVd3e6mwDY2GOYTxJeuXSN+jmHf+lXDg1b95to9/SK5e+oWveT81QMPYBxEnOMwAAAAAAAAAAQDliYQCAnhEX4ilGjzFy227MvKmCkdTY8EnOoXkT91pLltdaLVRGLAxon6DXrr9UWpJkEt4/rfep/GTk5KTbH5s/rg1z7MpNf2weLZ9q+wYzf3q2rywoNrA3NjY8GB0hmzttcb/keQTHAAAAAAAAAAAAAADoRqGxxMLaHBxyDftEBazi1i2EefX7rY+FRQW1JCntGEXrBGnLeQ0iQmgl4xgLc1yuHr+b+pUu2/zPyoXR45kk6eCB5+qUdWc7vzdWZxoYC0vwHhhIDeno4dfr1tEb580bKTypB3f/VC9efFTDjq3b2K4zKdl5BgAAAAAAAAAAKEcsDADQM+JjYbVHveK2O2l/MFj0thyWyRVclrILLavbps/ouVgR0EGCYruPoMVKDlXECHNjYSafk7n8/0nf+Ezk8kljYTsm5qwfc99891GesmlpbFLaOWk0NiXtnJJ2Tk5Hx5J+f+gV+aL01Pj0x17usTHfm46GDe8JiJUHx5ZETFsaESHrSxEbAwAAAAAAAAAAAACgHUqKHqTmy2/xkVRyDftEhcHi1o2LCTVTVFBLco+idQLbeY06pyXjNvjKdbla/Wbyl/rM5o8pb3LWZQ4ZfL7+eu2Zyvr9zttdmV4jT76M6nhq7h5J3wPHLjtB60dvUhhx7f5gxw160aJX9OyD/2zXmdRd1xoAAAAAAAAAAOgsxMIAAJBUrCOEFdfYShwLc+iA5RwaOnGbCS3jQarte26EB0Dr9Nz1F0wPlEoa8yoPP5rJ3TJvWNHQw9q4QzLGOA1gO+11np631r5cUJwOiI2VBcR2Tko7p0zZn6XxqenY2Owye9YZm3L7ntFrQiONTk5/aHv5nKiTFX0Ch7LzA2JLBz1rhGzutIGMenaQIwAAAAAAAAAAAAAA9TAmenCb77U5FuYY9olaLh2zbhC252lzBRO9X9coWiewfU2iAk2hcRt85bpcLX418aCueOL82EDcYYMv1vvWfiRxSCrtp7VPepVGClvrPczE+16eXqkjlhyjn43fMW/e47lf67dTj+hZg4fVfVzdyHadSd11rQEAAAAAAAAAgM5CLAwA0DPioirFOh6oFrfdKYewV1JOsbCYYwot86o1Z3ouVoSOZozRJbcaXX230a6c9JYXebrgrZ4yfd0b6Im7BoPmPrSy80zurmm1mfuUGd0m85b9qy6fNEYmSU/vllYunlm/dpk+TysX793WXm7HFIbT7/2ZgNje4JiZDYrNTBubM21mee7r0Sby0x9bdpZPtX21509Pp8oiY2XBseGZsFh5hGzAKwuSTc9b3C/5fvfeywAAAAAAAAAAAAAAqFUoSyxMbY6FOYZ90l4m0bpx4ahmigpqSclDUe1kO6+FiHNaktvgK9flkvrlxH367BMXxsajnjd0hN675gyl/fnvIRerMmvrjoX58pWq4ddLjl92YmQsTJJuGb2hZ2NhtutM6q5rDQAAAAAAAACiHHjggdqwYcPs5+vXr9drXvOa9h0Q0EOIhQEAekZc1KVYRzDFFt+SpMmED/5zCc+4xMLilCxhtLjXIfVOVMYYo0e3SY9slY48SNp3CcGWTvSJ7xv9wzf2vmkv/oHRk2PSl/9qYX69gh65/mbd/KXp/3rJvp6FkmSKBZm/fpXT8rXEvu59XPr951dfLuGhJ+b7noYHpeFB6YDKPTutb4xRrlAWGZsqi41NVkbIxi0Rst3tGa/a8QolaWTX9EelqHfc/GmeJy3prwyOTcfE9nzNK4JjXmV8bM9/uzmcCAAAAAAAAAAAAADoXaGxxMK8VIuPpJJL2KfP61Mq4jgzMfGnuJhQM9kiZa5RtE5gO69BOH/QZsm4Db5yXS6JX+z+mT635V9VNPYQ2YsWHam/XPMh9XnpmvezOrNO/zNxb83rS1LG75dXw6Cndf3P1HMHX6RHJh+YN+8Xu3+mJ/ObtTq7rq5j60Zx13e6i641AAAAAAAAAADQWYiFAQB6hompwtQTworb7lTSWJhDuSbn8PC6uO3YomDV9h0056F5HaVYMnrv1UZX3T19MjxP+vSfePrrV7f3yZSoZIzR5bfPf8Ne+zOjy95ptGxo4UVyeuH6a4RCSdIt10lbHnNa3jiGtcptnzCaCXK53LM7led5GshIAxlpv6UVc5y3USwZjZUFxGzBsXFLhGxsqnqoshcZo9nzOmdO1NKR2xhIVwbEpoNj07GxqAjZ0jkRssGMahr8CQAAAAAAAAAAAABAPUJFD+Tz1d7xWy5hn4zXHzk95fUppT6VNH8AkC3a1WxRQS1JSseEzTqNLWwWdU5LMaGuWpZzdd+uu3Tllk9a39eSdMTiV+rP9/u7yNBcEo2IcdUTizt++YmRsTBJunX0Rv3p6lNq3na3sl3fnnz1efwaDwAAAAAAAAAAqA0/ZQAA9Iy4qEsx+oGEbtuNmTdVSLgtl1hYwm3OVWssrJ6gWrf4wl17Q2HS9Dn5my8bvfo5Rs/dj2hKp9iVkx7fHj3vwpuNLvrDhfe1Cnrg+pthcpN7/5ww5lUoSea89zT6kCqcdKXRSVeWtGxQuva99oGoC+9dOF9fytOKRdKKRXPnuL16Y4x25/eGw/bGxEzFNFtwbGyq/u+JC9VUQZoak7aOlU+1faOfPz3l7w2HDZf9d3jAi4yQLZ0TIVsyIKX8XrgKAAAAAAAAAAAAAACNFL1YBTAAACAASURBVJrogXy+195YWMZ3iIXFLJPxM5oKI2JhYZtiYZaIUT2xqFazne+oc1qyvK/mL9e4QVr3jN+hq7ZeolD2fR+55Fi9a/UH5NcZCpOk1ZkGxMLqiMUdOvhCrcs+U5vz8x/y+NPx9Tphnz/RcN+yeg6v6xRMdJQv42V4iB8AAAAAAAAAAKgZsTAAAFRnLCwmstWMwJZLGCWu+1WyvFZbRGxGL8TCvvjj6JPwtXuNznkzgzM6Rdx78Yo7jC76w9YdSyPF3UuCGh9aWSgabdslrVmq7hlgtHOk5lULu3YlWj5pjKzc6KT0xkvs3zy65XS3k+d5WtwvLe6X9q+c47yNXMFobKosLGYJjo1bImS7co1+VQtDKZS2T0x/VIq6UUXfvBb3z8TEVBYT8yriY3sDY/MjZNk0FxEAAAAAAAAAAAAA9BpbWMlXe2NhWZdYWExoK+NlNaXJedPbFguz7LeeWFSrpS3nOyqEVpLb4KtGxcLuHrtV1zx5mUzMSM6jh1+nd646uWEhvIbEwrz+mtf1PE/HLz9RX9x68bx5RVPUHaPf0VtW/mk9h9d17NdZ90T5AAAAAAAAAABA5yEWBgDoGXEtrGIdYzwaGfip0uuS5BgLi9mQLQpWbd+dEgsrhUYpvzkBkbt/Fz39o982OufNTdklahB3XS3U8E8tsbB/+e9QH/+e0a6cdOAK6dr3+nr5QV0Q39n5dM2rBvfdmWh5Q9Gr6/WnPfWnpVVL5s5x+9qWQrMnJLY3Ijb9X1MxbTo4Nj2tPDg2NlVfcHQh25Wb/tg0Wj7V9reN+dOzfXvDYXvDYp6GB6MjZEvnRMgWZbsokggAAAAAAAAAAAAAkCSFxhILa1BQqVZxIbDZZWJCWxk/K0WMvytEhK1aoWCCyOkur7NT2IJLUYGm0DEC5hoVi3Pnzu/pK09dHrvMq5e+SX+071819H09mFqkJamlGi/trHkb9Uasfm/x0bpx5EsaLc4f//XDnd/V61e8Tf3+QF376CZR4TqJWBgAAAAAAAAAAKgPsTAAQM+IC2jVE/qwxbckKZiYlLTIeVtxxzjDJRYWxxoLq7LvoENiYUFRGuieBxiiCfL1j8nqOkljfdf8JNTZN+69qB/fLr3u4lAbLvS1bKjD4zmj22b/aByDTzMKD9xddZmtfav17UV/oK19q3X3wJGJD89Vh59l7JHyPS0bkpYNzZ3j9hU0xmgyKAuIzUbEzHRkrCw4Nm6JkE3V+X19ocoXpafGpz/2co+N+V55ZExlMbH5wbHhAS8iTCb1pbiSAQAAAAAAAAAAAKCVQkUP5PPU5liYQ9wnHRPass2LClu1gm2/6S6KGNm+JlEBtpJxG3BWcoyK2awfvUn/te1zscu8dtlb9LaVf9GUB6CtyqzV+FT7YmEpr0/HLXuzvjHyhXnzJsPdunvsVh277IS69tFNbNdZN0X5AAAAAAAAAABA5yEWBgDoGXEtrGIdYzzithvcfYvMmw6V94xDa9/BHDmHcSsmpvxli4XFRc+k5LGiZiEWhnqDed0oSBhI++Z98y/o3Xnp278wOukVHR6/GR2pedWCl46d/5urRvTajxe0pbS05n0A5TzP01BWGspKa5dVzHHeRlA0s/Gwiv/uCY7NRMjGbBGynFtstNeERhqdnP6oFHWyok/gULY8MrYnJjboWSNkc4Nj/Wk1ZXAvAAAAAAAAAAAAACxUoSXWlPJSLT6Sufvvk6+UQtkH0cWFlmzzgoiwVSvY9ttNESPbsRZNUSVTqnjPuEbAXKNiUX6w4wZdP/LF2GXesPztess+f9q0sQSrM/vrN1O/rHn9Rnz9j176en1n+3WaCucN2NBto9/Sq5b+ftuv51ZZCFE+AAAAAAAAAGg3Y4zuu+8+/epXv9K2bduUz+e1cuVKrV27Vsccc4wWLVrU7kOs2aZNm3TPPfdo8+bNmpqa0j777KPnP//5OuKII+T79T1IZ9u2bfrRj36kLVu2aGpqSmvWrNFBBx2kI488su5tR3n44Yf10EMPaWRkROPj41q+fLn2228/HXPMMVqxYkXD99friIUBAHpGXEijGP1Awrq3GwQlmSs/Ju+jX3bblsMyQVEKQyPftw8YidtOyfJaq4VGOiYW1iHHcc/jRmdeH+rnG6Tfe4Z04dt8veQZBEFaobRAozix95Jishd9wwPR00/7mtFJr0i0qdYb3Tb7R5MguCTFx8K8f/yc/vm2RdrSojcQfSC4yvR5WrlYWrl47hy3N1EYGu3KVQbEds6ExSriY9L45PxpOyc753t8p5nIT388UfHQXds9ZP70dErzAmJLB6Qlg978CNlMbKxs2uJ+xf59DwAAAAAAAAAAAAAWmlDRg9s8Nf6XFpLK+FnlIgJIM7J+f+y6UYIwqPu4amGLGGX87nmKZ1ycrWACpbyB2c9LcouAuUbF5vru9v/St5+OHyN6wop36vdXvKOpDx1blV1b1/px59RVvz+gVy59o76/45vz5m0vbNP9u+7WEUuOqXs/3WAhRPkAAAAAAAAAoF2efvppnX/++brmmms0MjISuUwmk9Fxxx2nc889Vy9/+cudtvvud79bV1111eznjz32mA488ECndW+//XYde+yxs5+fc845Ovfcc63Ll/9M4NWvfrVuv/12SdJdd92lc845R7fddpvCcP7PxlatWqUzzzxTp5xySuKw1/3336/TTz9d69evj9z2unXr9P73v18f+chH1NfXp3PPPVcf/ehHZ+evX79er3nNa5z2tX37dn384x/XNddcoyeeeCJyGd/3ddRRR+mcc87R8ccfn+i1wI5YGACgZ7QlFuZlpNu+LrnGwhwbNvmiNFDjuJzQso9quy6Upuu7zRys4iKo/eF9sYzryZf06Daj118camxq+vNbHpGOvzjUvWf6OmglUY9mS/ClWjByDXrfT7ZnfKETk5uU/udumZuvqXkbOctAKu/SH8h78at07fsoImHh8X1Pw4PS8ODcOW7fj4wxyhX2RMbKgmNjUyZimjQWERybaM+DjjteoSSN7Jr+qBT1jWz+NM+TlvTPD44ND0x/zSsjZN7eP+8Jjg0PTMfoAAAAAAAAAAAAAKBbhCZ6IJ/vdUAszMsqJ3ssLC4AZJtniwk1W8Gy33QXRYzizncQ5tXvl8XCHCNgrlGxGcYY3bT9Wn13+9dilztxn5P0+hVvS7TtWqzOrKtr/UZFrF6z7ATduuNbkefzlh3X6/cWH932caitYI/ydc91BgAAAAAAAADtcMMNN+ikk07Srl3zfjGvQhAEuvnmm3XzzTfrfe97nz796U+rr6+zM0rnn3++zj77bJVK9p9dPPXUU/rgBz+o9evX66tf/aoyGbeoxKc+9SmdccYZsdvevHmzzjrrLH33u9/VN785/8Efrq6++mqdeuqpGh8fj10uDEPdeeedet3rXqd3vetd+vznP+/8emDX2e9yAAAaKK4vVKyjHxO33cBLJ9uWYwTpsaelw9bUtp2ICKzTvo2RSqHUl6p+fM2Ub1IsrNp2y0Np37jPzIbCZuyclK6/3+hDr1/4g1jarRdjYY2KfOUKjdlOo5lNv5H50B9IWzdUTneMHc14OrVP5HTvxa+q+dhq1QPj2bBAeJ6ngcx0hHS/pRVznLdRKBqN5yoDYlHBsbGYCJktZtrLjNlz3qakuXfHiKUjtzGQrgyILR2Qlg56WjIwP0K2NCJCNphRTwzQBQAAAAAAAAAAANAZjCyxMHVALMzPSDHjDNO+/RcbbHEgW0yo2RZCxCjuWOe+PudYmONy0vR4whuevlo/2HF97HJ/uPIv9drlb3Hebj3qjYVl/f6GHMfSvuV66ZJX6Sfjt82btzH/W/1m6n/0nMHnN2Rfnaxgogf9pT1+CQoAAAAAAAAAbK688kq9973vVTgniHDwwQfrsMMO0+DgoDZu3Kif/exnFVGsz372s9q4caO+/e1vd2ww7BOf+ITOPPPM2c8POeQQHXLIIRoaGtLWrVv1k5/8RLlcbnb+9ddfr7POOksXXXRR1W1/8pOf1Ic//OF50w877DA9+9nPVjab1caNG3XPPfeoVCrprrvu0jve8Q696lXJf//67LPP1sc+9rGKaZ7n6ZBDDtGzn/1sLV68WKOjo7r33ns1MjIyu8w111yjrVu36uabb+7Yr1G34OwBAHpGXGCoaAlouQhjNhzs+aF+eWiqETaPVomFxaxri3G4RDoKpdpjYcYYXX230Y0PGPX50p+9wtebX5j8nARNioXtysXPH5+Shgen//z/vhl9sk7/utGHXt/gA0MimQX6t9uJ9owLbBnzJ89ryHZ2+Ysbsp1GIK2DXpLu87RikbRi0dw5bleCMUa789PhsPLg2GxYrHyaJTjWrJhot5sqSFNj0tax8qm2v/TNn97nl8XEyoJjw4Pe7PTyCNnwnAjZkgEp5XNHBAAAAAAAAAAAAODGFmvyvTY/4VJSxosPKWU8e7zKNi8wbYqFWfYb9xo6Tdyxzn19JeM2qMB1OWOMvj7yea0fvSl2uT/e93169bI3OW2zEZb17aOs16+8qTIY0qKREavjl58YGQuTpB/suKEnYmHWKF8XXWcAAAAAAACAK1MsSiOb230YvWHlOnkLNLT0wAMP6OSTT64Ihb3oRS/Spz/9aR111FEVy46MjOiss87Sf/zHf8xOu/nmm3X22Wfr/PPPb9kxu3rooYf0ox/9SJJ04okn6oILLtChhx5asczo6KhOO+00ffGLX5yd9slPflInn3yyDjzwQOu2f/7zn+sjH/lIxbTXvOY1uuyyy3T44YdXTB8ZGdHZZ5+tK664Qj/84Q/18MMPJ3odV111VUUozPd9nXLKKfrwhz+sAw44oGJZY4xuvPFG/e3f/q02btwoSbr11lt11lln6YILLki0X1RamHcAAAAimJioV7EkbdlpNJCWlg0lCxrERchmYmEqFqR09YEUDr0uSdLTu41qTdGEljBa3OuYUShJAzXtVTr320Yfu2nvTr5+X6gvvNvTnx+V7KmPgfvD+xLZXWXc1VRBGm7OrpFQ3Fv12ENadhgNF/e6FnIsLPzEKdZ5JuF9ruCl503zTv904mMC0Fqe52lxv7S4X9p/ecUc523kCmY2HDbz351Te6fNTB+zRMiqRUN7VTGUtk9Mf1SK+q4V/Z1sSb8qw2KD0tIBT0vmRci8imVmImTZNLExAAAAAAAAAAAAoFcYRQ9u85VsjFkzZPz4wE/cfNu8giUm1GyFMIicXu01dpK4Y50baSrJbdChLVZXLjShrnvqs/rR2M3WZTx5+pNVf6Ojl77Oab+N4nmeVmXWamP+tzWt38iv/5rsATp86CX65cR98+b9cuLn2pLfqDXZAyLWXDisUT6/cVE2AAAAAAAAoGOMbJZ5Rxf/gm8X8b72v9J+B7b7MJriPe95j4Jg788wjjnmGH3ve9/T4ODgvGVXrlypK664Qs961rN0+umnz06/6KKL9M53vlPPf35nPbRix44dkqQzzjhDF110UeQyy5Yt0xe+8AWNjo7qxhtvlCSVSiV9/vOfrwh0zXXKKaeoWNz7QJS3ve1tuu6669QXEZVbuXKlLr/8ch100EE644wz9PTTTzu/hg0bNujkk0+e/TybzeqGG27QG9/4xsjlPc/TiSeeqKOOOkpHH320Hn30UUnSxz/+cb3vfe/TM5/5TOd9oxKxMABAz4gL8Vxyq9Eltxp5nvSWF0hf/itfg1m3MEFcZKswEwsr5N1iYY61sFyh9u2Elnkuuy7UGOqazBtd/IP5e7jgu0Z/flTECjHybg/vS6xaJGSqyjlHZ0gt0J5IrddepzPFonTj5xq2vSAiFqYT/rJh20/CW6DvRaBT9ac99aelVUvKp7pfiKXQaHxPOKw8ODY2ZSKnzY2Q7ZySSpYga68bz01/bBotn+oeG+tP7w2H7Y2JeRoeiI6QDc+JkC3KTv/DIgAAAAAAAAAAAIDOFxpLLMzr/FhY1uu3r+tFr2uLCTWbNWJkOc5OlPbs4zHnvr6ScRt0GFaJioWmpC8/9RndPXardRlPvk5afapePnys0z4bbVVmXe2xsAZ//Y9f/tbIWJgk3brjRv3Zfqc2dH+dZm60bkY3RfkAAAAAAAAAoFXWr1+v++7b+2/KS5Ys0XXXXRcZCiv34Q9/WHfccYduuukmSVIYhrr44ot15ZVXNvV4a3HMMcfoggsuqLrceeedNxsLk6TbbrvNGgu755579NOf/nT28/32209XXnllZCis3Omnn65bbrlF3//+9x2PfjryNTU1Nfv5xRdfbA2Fldt33331la98RS972cskTQfQLr74Yl166aXO+0YlYmEAgJ7hEuIyRrrxQekD1xpd+W7HWFjMvNlwTT4nDS522p6LoI5wkC0WFjoELoIaQ13//ZC0O2Lcw6+fknZMGC0fcg841HoM1UQdX7mp6Icpog3iruXiAg21dGsszOwaldZ/Q+axh+U996XSq98qL1s2MHLzb+LXTxh3KcyJhXn/fos8f3qwqHGtMQLoSSnf07IhadnQ3Dmu8VijyWBPQGxKZTExMxsTmwmLjVkiZIRJo+UK0x9PjZdPtd3T50/3vfKYWNmfBz0tiYiQLZ0TIRsekPoWao0UAAAAAAAAAAAA6DChLLEwpVp8JPNVCymlYwJAtjiQLSbUbEEYPRgu7Vd/IGqn8D1faS+jgpn/Wgrh3FiY2+CruKhYyZT0pScv1c/G77Afk3y9e7/TdMSSY5z21wyrs+ukXbWtm/Ia+6slzxl4ng7IHhwZL/vZ+B1688o/1dK+5Q3dZydZCFE+AAAAAAAAAGiVq666quLzU045RWvWrHFa98ILL5yNhUnStddeq8svv1zZbGf9e+yZZ54p36/+gJzDDz9cBx54oB5//HFJ0gMPPGBd9tprr634/AMf+ICGh4edjuess85yjoVNTExUBNgOOuggvf/973daV5Je+tKX6pWvfKV+9KMfSZK+9a1vEQurA7EwAEDPSJKJuf5+o/88ySjlVw8DxPVngpmn1xXcBvW4HmO1cFDcMZUsMSWXfdcaLPrtiH3rtuOxaVosLBc/n4BH54h7ryZ9P3WLboygmae3ypz2Jumxh6c/l6TvXi1d+E152YHphSZqHJlmEZQ9MdS76Hp5L3rl7Oetfm+QlQF6i+d5GspKQ1lp7bKKOc7bCIpmb2RsT1RsOjxmKiJkY7YI2VT1ffSi0Eijk9MflaL+RhH9t4xF2ajgmKfhmcjYnAjZ8JwIWX96+j0CAAAAAAAAAAAAIF5oiTr5XvVfnGi2TJWQVsazz7fFgYKI0FWzlUxRJUUPwuu2iFHGy0bGwuZGmuIiYJXLRb//SqaoL2z9lO7bdZd13ZT69J41H9aLFh/ptK9mWZ1Z29b9l/M8T8cvf6uu3PqJefNKKur20Zt04sqT2nBkrWGLAdrigQAAAAAAAADQy+68886Kz9/1rnc5r3v44YfrJS95ie677z5JUi6X089//nMdddRRDT3GegwMDOi4445zXv65z33ubCxscnJSu3fv1qJFi+Ytd9ddlT+7eMc73uG8j2OOOUZr1qzRli1bqi575513ampq7y8wvv3tb3cKn5U79thjZ2NhGzZs0MaNG3XAAQck2gamEQsDAPSMuIDWXGNT0vbd0r5Lqi8b/n/27jxOjrLA//j3qb577iQzOUgg4QiXnCZyQ0K4YQMIihhFQEHlJyusLoKLogvi6rrKroAskYVwihgCxCCHyn0IhACBAOHKTc65p++u5/dHT09f9VQ9fc3R/X2/XvPKdD1V1dVnZnqqPlXJWJjmNjoFs+xjStajOtddaizMLtKTKHKd0SrFwpzWG2EsbEyo1VhYqa+94SalBO64HvIvi4BP1xbO8NrfgeceAY47J3U5bB8Lk0Umt+LCM/S9OPyUnLFafW4QUe3wugXam4D2pvwRvffCpCnRF8FQcCwTHsuLkIWBnpDMzBPOzDtW/r8Zbv3R1NfG7uypqh+eC6d73blBsaHAWDoslhcha82LkDX5AUMjYkxEREREREREREREREQ01pmw3sHDwCiIhTmEtOwCQB5FaGxLbCMWbvwFPIYPuwf2wSHNc5TzVsKqgRV4tfdZ5fhYixh5DC+snjJPdC7Ba73PDV1eH/1Ya33rox9j4cZfFEzfkdiGdZEPlcu5hQcXTfkB9mucpXU91TTJO63kZavxV+mDmg7D+O0d2BHfWjD2XPdjOGn8F+A3AiWte3VoJd7qfwVd8e1FLRd0NWLvhgNxUOPhVT3xV1wqYmFjLMpHREREREREREREVG1dXV346KOPhi63trZi7733Lmodhx9++FAsDABeffXVURUL22233eD16v8NqK2tLedyT0+PZSzszTffHPq+tbUVu+++e1HbNWvWLDzyyCOO8+XH3KZMmTIUM9OVf/s//vhjxsJKxFgYERHVjWJiYQCQ0AzL2K13KBYW04uF6XrHOdCqpLpddtGztFIDEm6X/jqlwwPlFEorlVNIKDz8J3EkBbuniO7rdjSqidt1x88g/+9a21nky49DpGNhof6KXv2rgdmIww2PxdlPh/s+rOJ+ZEREllxGKjLVGgR2GZ89oveGJKVEOJYJiGWCYzInKNYTzkzPj5ANVPZH3poRSwBb+1Jfuaz+8y+cJkQqGpYOiA3FxAZjY7kRsqzYWFaEzOPmf0xEREREREREREREREQ0+plSEQsTNjugDROPQ0jLLgCkGouYIazofwkA8Erv03i97wV8e6er4TE8lvOX42+dj2Dxtv+znWesRYxU27s28gHW4oOS1pl+PHR5hBff3Okq7NNwUEnXV2nt3kkwYCjDe8PNJVw4tm0+Htj6+4KxsBnCC91PYt64+UWv9/nuJ3DvlptL3q4Xep7EnNbT8MWJ3yh5HU5ipvVOp07vJURERERERERERET1Ztu2bTmX99hjj6JP9rDXXnvlXN66tfAkFiMpP/7lxOPJ/VtRPB4vmGdgYACRSGTocinhLd1l1q9fn3P5sssuw2WXXVb09WXr7Owsa/l6xlgYERHVjSJbYYgU/sxU9HpjYvAHMc1YmG7Q7PF37Ge0W48qiqVz3bESY2Eem3218gM+TttR6jY4cQoJhTWfD1R9pTy/x7pElZ73lSSlhFxqv0MhAODxe4CrB+cLFVRTctdZwvkqT9n5YTz4jQRa8qaPhfuQiGgkCSEQ9AFBHzC5NWdEex3xhERvJDcg1h3KCosNXu4NF05LR8h0Arb1Rsr0/QiszR2xmttyHUFvdlAsKzYWtIiQ5QXHWgKp5at5RmUiIiIiIiIiIiIiIiIiADBhvYOHAWOYt6SQT/htx702ASC7sWzvhd7Ee6E3sF/j7KK2zUnMjOKR7Xc7zuc19M9oPxro3q/V4hN+fHvqv2FmcL8R3Y5sbuHBBM8kbI2XcUbaCjusZR6Wbf8DQmbhiSX/3vUI5rSdApfQP6wlKZN4ePtdZW/X091/xrxx8zHe01H2uqzEpPV+w2MtykdERERERERERKSlfSrEH98f6a2oD+1TR3oLKq6rqyvncktL/hHCzvKXGW0hKsOo/N+6uru7cy43NTUVvY7m5mat+Xbs2FH0up309dkfY05qjIUREVHd0A1xpenGoezWGxODO8/ENWNheleJ2dNLX48qiqVz3fESYzsum59f89fptB3RhEQx0QpdSYcyRTRR8aukKnCKvo1Vpb72hlVfF7BtY3HLOMTCSvFUw1zc0Gvimrzpwx38Y0+FiOqRxy0wvhEY35g/ovemaJoS/dGsyNhQcEwWTOuxiJB1h4EYf2azFIqlvjblfAas+vm3cLrbQE5ALB0cawkKywhZawBoCWYiZM1+wDD4nyMRERERERERERERERHZM6X1zj+GGPlYWMDVYD9uqMeDNmP5Pgi9U/FY2LrIh4jLmON8fiNY0eutNrv7vNr8RgD/b6cfY7fg3iO2DSqTfFNLioVN8e1Sha1J3VdHt56MxzofKBjrSmzH8r4X8LnmY7TX92l0PQaSldnv7MPQOxjfUp1YWNy0fs2NtSgfERERERERERGRDuF2A5Onj/Rm0Bgl82INogIH6FZiHaOdz5d7copYzPlvQfl0lyll3U7yH3fSx1gYERHVjWJ/XAhr/sxit96hWFgsorcuzY185E29+awkFNEhh1YWgNLjC26bfbWKjTtVK5qUdNiOVEys9n8xGAtsY3hjIapVgjERQduxRW++9p2GvpWfrLKdVZb4mvvTCgPXnJ47rVfvbRgA0CoG8JW5jdhvJ+Clj4A7Xiz+F06+WxARFc8wBJoDQHMAmDYue0T/XTUSl+gOZYJjqZhY7rTuMNA7GCHLzJP6t6+I/y/qScIEtvenvnJZ/R9p/f9ms98qOCbQYjGtNYiCCJnPw/9diYiIiIiIiIiIiIiIap0J651kBEY+FrZncD8sVYz5jQB28e+hXHbXwN5wwY0knHfAi5jhErewvHVO8+2KBlfxZ5wfSXsG98MH4beH/XoDRhDfmfoTzAjMHPbr1rFfw2y81f+K5dhU33T4jQZ8GH4nZ3qDqwl7BD9TtW06pu0U/LVrCRKy8DXw186HMLvpaO0Dt6IVfI1U4/WWlpDWZ7d08RAeIiIiIiIiIiIiohzjxuUcSIaenp6i15G/TFtbW1nbZCWZHF0Hseffxq6urqLX0dnZqTXfhAkTci6/+OKLOOyww4q+PqoM/qWBiIjqRrFx0Yj13+kLmDYRn6FYWDxa3JVrGIhKNPisd46wu63lRIdKjYW5bPbVyo9/OT1OpW6DE6f7ZUzEmuqE3XNEJ3o3WtlterUieRX14jK9+ZpaM98/9WBVNuUdixNj9haxX9dXdizC/3zpUgDAqfvJkmJhREQ0MvwegUktwKSW7Kn6kalEUqI3khUWUwTHesJAj0WErCfsHKGtV70Rq3infmzM78mEwzIxMTF0OeffweBYdoSswVcfZwUhrnALzQAAIABJREFUIiIiIiIiIiIiIiIay0xpvZOMS7iGeUsKTffPxBEtx+OFnidzpgsY+GLHRfAYHuWyAVcQZ3VcgD9uXeh4PTFZ+X0NY9L+zKk+4cdZHRdW/Hqr7ei2k/Fm/z+wPvrxsF1ns6sNl0y9Gjv7dxu26yzW7Oaj8UrvMwUhNZ/w4wsdF8EjPPjthp8ibA4AAAwYOKfj4qq+zlrcbTikeW7B6wcANkQ/wfuht7BXwwFa66rka8TptVGOJEbv+xkRERERERERERHRaNLe3p5zefXq1UWv4/3338+53NHRYTmf252bWUok9MMFpcS4qsnlcmGnnXbCxo0bAQAff/wxQqEQgsGg9jpWrlypNd/EiRNzLq9evZqxsBHEWBgREdWNYmNhYY1Y2FPvSXz/T+oVJ4QHJgRcMb2dE4rZxKfeB07bX7EemxWp4gU690+kxFCXewzEwpyiDow+jA21+jglTUBKOaoDF/KPv9WbMTyQ+X6f2cBLf1Gvs4i4S8GyefdXYZzEnnmUD3C5MPkH/4sLjliA218o7j+RUfxQERGRDbdLYFwDMK4hf0TvjV1KiYFoJhyWiYnJnGndoVTI0ipCpvN7SD2KxIHNcWBzb/ZU1f/PhdNdRjoklhcWC6aCY/kRsta8CFmzP/X8ICIiIiIiIiIiIiIiouoxYb3zj4DNDmjDxBAGzp34bRzYeCg+CK9C1Ayj2d2GzzR8FtP8uzouP6ftVEz374FVAyvQl+zBB6F3sCm2tmC+uFmFWJjNOs9uvxD7Nc5Gu3dyxa+32hpdzbhs2nVYOfAq1kY+gCkzz5+oGcHLvX8ved2zm45B0JX7h+MO7xQc0jwHQVdjyesdDl7Dh0unXYMVfS9hbeRDJGUC7d7J2K9h1tDj/MPpv8Fb/a8gZkaxb8NnMdU/verbNa/tdMtYGAA82blEPxameD674MaRrSdYjr3R/zJ6Ep0F06vxektLKuOHPISHiIiIiIiIiIiIKFtbWxt22203fPTRRwCA7u5uvPvuu9h777211/Hiiy/mXJ49e7blfM3NzTmXu7u7ta/jnXfe0Z53uBx66KFYvHgxAMA0TTzzzDM4+eSTtZbt7OzEm2++qTXv4Ycfjt/85jdDl5944gl87WtfK36DqSL4lwYiIqobRbbCEHI4YdivnzTx/Qec1xoXHv1YWBEbuaFLQjdakC1RRkwpWmK4wGNzIrREfizMYV0x6/0nyuYUmcrfTpUNXRJT2xgRqCa750iy2Bf6GJI0AfdoPqlg52a9+UL9me+j4epsC4BoAvBnnbC1t4irEulnWTIJef03cMtJz2HfL9yi9Z5PRET1TQiBRj/Q6AemtuWMaK8jGpfoSYfF8oJj2dN6VRGyIgOZ9SJpAp0Dqa9cVv+/W/+f3+jLCogFMmGxlqB1hKw1L0Lm9/D3BCIiIiIiIiIiIiIiIjvZsadshhj5WBiQ2o59Gz+LfRs/W9Ly0wMzMT0wEwDw4NY7LGNhMVmFWJhinR2eKTh23PyKX99wCriC+FzzMfhc8zE50/uTvWXFwk5v/wrGedrL3bwR4xYezG4+GrObj7YcH+/pwNy204Z1myb5pmK/htlYOfBqwdi7oTewIbJGK1qmej4HXQ04Z+LFlmNbYhstY2Ex6bCjcIlMaUIq4ocuMZp3AiQiIiIiIiIiIiIaGUceeeRQLAwA7rnnHlx33XVay7777rtYvnz50GW/34/Pftb6bzkdHR05l1etWoVZs2ZpXc+jjz6qNd9wOu6444ZiYQCwcOFC7VjYokWLEIvpfU4+b948uFwuJJOp4MIjjzyCrVu3FtyfNDwYCyMiorpRTIgLALb3q2Nc/RGpHY2JCS/8scofsR/0qsfstkwVvdK5f6IJ53msuGz21Yrnx8IctiNW4jY4cYqo6UbWnlwlccERjABUk91zxCn6NpbFk6M8FqYrnIqFyY0fAa8/bTurVLwHHxxegdcDB9ku2x/JjYVF4vr/CYi8d1HXY4tw+bevxYHTOnDcr/WeZHwXICKiUvk8Ah0eoKM5f0Tvf5ekKdEXyY6MpcNjMuv7dHAsNS0/OFZOYLiW9UdTXxu6sqeqfsYonO51Z0fG0t8LNBdMS0XIWvMiZI0+wDD4UwYREREREREREREREdUuE9Y7t7lQCzvN5PIaPsvpMbPysbC4Yp2qbagFPuEva/lavm9G0vHjzrCMhQHAX7sewvmTL3Nch+o1YveYDefrDQCSUn12WhcP4SEiIiIiIiIiIiIqcN5552HRokVDl2+88UZ85zvfwaRJkxyXveqqq3Iuf+lLX4LPZ/258MEHH5xzeenSpTjvvPMcr+Pxxx/HK6+84jjfcFuwYAGuuOIK9PX1AQCWLFmCxx9/HCeeeKLtchs3bsS///u/a19PW1sbFixYgDvvvBMA0N/fj+9///tDl2l48S8NRERUN4psheGy+yW+fqT12A1/019bTHiBaFhr3mKCZu9v1p83WzkH/qdiO8UfnC5sFsnfHqe7ID8uVilOkSndCFVf5btwVASz2Bf6KOL0+h/N0Q75ybv6M8cikAO9kF/ap+Trmxlb7RgL64sCE5oyl4t677B6MB67Gx3H/EsRKyEiIhoZLmMwMhXMH9H7OV5KiXCsMCDWE5ZDkbF0cKw3DHSHCiNkoeqcfHnMiyWArX2prwz92JghkAqLZQXEWgNAS1AMXc6OkOVPawkAHjdjY0RERERERERERERENHqZ0noHGSFszlY5RnmFIl4kK//HtphUxJUU21AL3MIDAQFZ9J6jKbV834yk3QL7YLp/JtZEVheMvdb7HOZPWIBxnnbbdcQVrxG7x0w1Fle8NsqlCh8CgEvUXvyQiIiIiIiIiIiIqFzHHnssDjzwQLzxxhsAgJ6eHpx77rl49NFHEQgElMv95je/wcMPPzx0WQiByy+/XDn/YYcdhmAwiFAoBCAV13rttdcwa9Ys5TIffPABvva1rxV7k4ZFU1MTvvvd7+K6664bmvbFL34RDz30EObOnWu5zJo1a3DKKaegu7u7qOv6yU9+gvvvvx/RaOqz9bvuuguTJ0/G9ddfD5dL/7PvVatWYfv27Tj66KOLun7KYCyMiIjqRjEhLgAYiKYOlBcWpas/La9SLEx7rcCzq9Vz291WVfRK57qjCY2ZrNZts/L8gI/T4xSrUizsmkfsr1g31KQbFaPSlfL8rgWJKj33K0H+pcjy82N3661XURoUkPhq9924q/UrymX788J95YYG5cqX0GQf0s5hF0kkIiIazYQQCPqAoA+Y0pozor2OeEIOxcN6sgNjIVkwrSdUGCHrCRf/+1s9MGUm3pbL6s6yvgOD3qzIWDo4FhTWEbJAJjyXDo4FvLD8HZmIiIiIiIiIiIiIiKgSJKx3/jFQg7EwQxELMysfL1KtU7UNtUAIAa/wISpLO/unR3grvEUEpB6X48edgYWbflkwZiKJp7uW4fMd59uuQ/V89tg8n4fz9QYASane2dYleAgPERERERERERER1Z7NmzdjzZo1JS07ffp0AMBtt92Gww47DLFY6qQRTz/9NI466ijcdNNNOOSQQ3KW2b59O6655hrcfPPNOdOvuOIK7L///srrampqwjnnnIPbb78dAJBMJnHqqafirrvuwgknnJAzbywWw6JFi3DllVeis7MTbW1t6OrqKuk2VtOPfvQjPPzww1i5ciUAoLe3F/PmzcPZZ5+NL37xi5g5cya8Xi/WrVuHRx99FAsXLkQoFILf78eJJ56YE1uzM2PGDNx666054bRf/vKXePbZZ/HDH/4QJ598Mtxu68/A16xZg2XLlmHx4sV46qmncM011zAWVgb+pYGIiOpGKQeb//Vd4Ph9CqdPbQXe2qC3jhg8QFRvh5NitnHPyYUHaK/vlLj+LxKPvaNeTjd6ZWVUxMJK3AY72/skOgfs59ENNSUZNRhRtRwLKzd2VVX3/bqo2eUN6iq3rhnxNbbjfXn7cRVz/wmbuAYRERE587gFJjQBE5ryR/QiU6Yp0R/NDYilvpepWFZWcKzXIkLWHa7O7w21IBRLfW3KOfmH6peYwukeVyYolg6ItQaB5nRYLCc4JnLnDQLNfsAwGBsjIiIiIiIiIiIiIiJrplTEwoT+2cjHCmW8SFYhFqZYZy3HwgDAZ/gRTRYfC/MKH0+gU0UHNB6Cds8kbItvLhh7vudxnDz+Cwi4GpTLK5/PQv18VsXfqvF6A4CkVO+s5qrB9zMiIiIiIiIiIiKic889t+Rl5WBc4OCDD8aNN96Ib33rWzDN1N+Mli9fjkMPPRS777479t13X/j9fqxfvx6vvPIKEoncg4eOP/54XHvttY7Xd+2112LJkiXo7k4dXLN161aceOKJ2H333bH//vvD5/Nhy5Yt+Mc//oGBgVSAYNKkSfjFL36RE8oaLbxeL5YtW4Zjjz0WH374IYDUffrAAw/ggQcesFxGCIGbbroJ69aty4mFOf195LzzzsPmzZtx1VVXDT1GL7/8MubPn49gMIiDDjoIEydORCAQQF9fH7Zv345Vq1YN3ddUGYyFERFR3Sil4XTab01Ef5f7h/nNPRIvf6K/jpjwQkZDmofF6xvI24dlW5/EnF+Z+GS7/XKq6JVOqCwS19u2YuhGuNKqcdD/46ucb7xuaMis4VjVaGH3aJk1HGsb1bGwYSYg4XPYUWtbX+7lYkKJlrEwIdBQRCyM+wsSERGVzjAEmgNAcyB/RP8/2Eh8MCyWFRwbio1lT1NEyPqrs0/4mBdPAtv7U1+5rH4QL5wmBNDkG4yJ5QTHUo95/rRMeCwTHPO6+YMWEREREREREREREVGtMmG9g4wBY5i3pPpUYaO4WYVYmGKddnGlWuA1fFA8pZyXo6oxhAvHts3H/VtvLRiLmGE83/MEjh93pnJ55fPZ5nFTjcXNmMPWliZp88RzCR7CQ0RERERERERERKRy0UUXoa2tDRdccAH6+zMHr3z44YdDISwrF154IW655RZ4PB7H69hpp52wePFinHHGGejryxyMrLqOGTNmYNmyZdiyZUuRt2b4TJs2Dc899xwuueQSLFmyxHbe8ePHY9GiRTj11FPxgx/8IGesqanJ8bquuOIK7L///rjggguweXPmxCChUAgvvPCC1va2tbVpzUfW+JcGIiKqGzoxrHzZcZ5wTOLLC008/GZx64gJLxANa80ri0iafdqTO++SFdIxFAYAyTJiVtESQ112tyo/gOR0D8SqEEy66Snn+103FlDLsarRwu61XM7ze6Q5vUfVXSysrQPycycAq62HnWJhf3lb4vQDMyGJYu6/uNWZJHfeE0GffpiCCQsiIqKR5fcITGoBJrVkT9X/HzqRlOiNZIXFQtbBsR5FhKw7xN8NrEgJ9EZSX+s6c0as5rZcR8CTCYdlYmKZ2JgqOJae1uBzPtMJERERERERERERERGNDFNa7/xjiBqMhSniRTGHfWJKEVMEkTxGEWfOG4NKjaHVekRtNDisZR6W7fgD+pO9BWNPdf0Zc9tOg1tYH9AVl4rns9U+X4NUj2k1Xm8AkJTqnW1dcCnHiIiIiIiIiIiIiAg4++yzcfTRR+P666/HPffcg+3brQMKHo8Hc+fOxTXXXIPDDz+8qOs49thj8corr+DKK6/EI488AmlxkHd7ezvOP/98XH311Whubh7VsTAAmDRpEh588EE8//zzuO+++/D0009j06ZNiEQimDJlCnbddVd84QtfwDnnnIOWltQBV93d3TnrSE93ctJJJ+GTTz7B//3f/2HhwoV48803Le/DNI/Hg9mzZ+OEE07Al7/8Zeyxxx6l31BiLIyIiOpHqcdpSykhhMBVS2TRoTCgyFhYERv57Ae5ly+7X2/hhCKmpLN0ybEwm5UnTInsg/ad7oNYidtgZ8YEgZc/tr/ivojeutgDGFljORbmpBqhvFHJH4S44zVgyq7AnRJYXfiqEpDwO5xFtT0vXl1MLOxt3z6FE92pX53OPAhYskJ/XURERDQ2uV0C4xqAcQ35I3qRKSklBqKZcFjP0L/SYpp1cCwSr/jNqgnheOprc85xA6rfxAqnu4zsmFh2eExYRsha8iJkLQHAZTA2RkRERERERERERERUDSYUsTDUYCxMFS8yo0P7LFaKKohU61Esr+EvaTmPIuRGleM1fDi69WQ8uuP+grHuxA681vs8Dm2Za7lsTLHfmN3zWRnnc9gHrVRJqd5ZzRCMhREREREREREREdHYt2bNmqquv6OjAzfccAN+/etfY/ny5Xjvvfewbds2RKNRTJgwAVOnTsWRRx6JpqYm55Up7LXXXnjooYewfft2PPPMM9iwYQNCoRAmTpyIGTNm4KijjoLbnckyzZkzxzaIla+YefPdcccduOOOO0pa9sgjj8SRRx6pNe+qVauGvhdCoKOjQ/t6/H4/LrnkElxyySXo7OzEyy+/jE8//RSdnZ2Ix+NobGxER0cHZs6cib322gvBYLDo20LWGAsjIqK6UerPUzv6gQlNwL3/KG0FqViYZmmqSKYpYQwepKx7ILkyFqZx80o9WN1u1fkBH6fNSFQhmLTnJOd5ejUfwlqOVZXKNCWSJuBxV2YHNrvniFnDtbZqhPIqQSYqW7EQX/8xxE67pdZt88bkczirYyjvBJKq9z4rM2MfFk5MpB6AS481sGSF88oquL8mERERjUFCCDT6gUY/MLUtZ0R7HdG4HAqHpcNiVsGxHkWETPd3mHqTNIHOgdRXLqufPa1/Hm3yZ4JjmZiYQLNFhKzVIkLm9/CHRSIiIiIiIiIiIiIiK6ZUxMJqMK6jClKZMJFEAm54KnZdcVVcqcajWL4Sb59XeCu8JWTlmNZT8GTnEsRlrGDsr50P4ZDmOZbRPGX8zlA/bso4n8M+aKVKSvXOfq4afD8jIiIiIiIiIiIiqhbDMDB79mzMnj27atcxYcIEnHXWWVVb/2g1MDCA119/fejyzJkzS46vjRs3DqecckqlNo0cMBZGRER1o9RYWMf3TIRuMrC9v7TlY8IDRMNa8xa7jWt2ALu2F7dMObGtaImxIrvbVRALc7gPYlWIhelE0PrCmQ2b3AJ82lP6uuqFlBJXPyRx2/MS/VHghH2A275moK2hvAPj7Z4jtRxrG62xMKx9v7Lr8zqf0VNICb+0r1/kx8Ly32vsfL5vSeHEZOrFPa5Bfz1ERERE5fB5BDo8QEdz/ojez9NJU6IvMhgZG4yKpcJjMjMtHRgLZcJk2cGxYoKr9aQvkvra0JU9VfWLSuF0nzs7Jpb+XqAlaB0ha8mLkDX5YXlgBBERERERERERERHRWGfCegcPA8Ywb0n12QWpYmYUblflYmHKuJIioFQrvMJ5PyTL5Wo8ojZaNLlbcGjzsXiu57GCsU2xtVgVWoF9Gw4uGLOKiwH2j5tHERJTratcSaneWc3FQ3iIiIiIiIiIiIiIaBRYtGgRQqHQ0OXDDjtsBLeGisG/NBARUd0osRUGADjtt6UfIR0TXiCWGwuT6z8AVjwLjOsADp4LEWwsaRtXfVp8LEwVU9IJlVUjFpYfL3OMhSXKeSSthTX29+jL2l/qwGmMhem4bpnEz/+SebweegPY1mfiuR9U78x4YzkW5vTMrkYoryLWrVaPNbUBfV3qcSsz9tWa7YjQi7bjobx9HIuJhc0deKZwYjL1BtikuQ8h0w1EREQ00lyGGIxN5Y/o/aQipUQ4VhgQ6w7LrO9T03tC1hGy/IArpUQTwNa+1FeGfmzMEKloWEtWQKx1MDjWbBEhy50n9b3bxZ9YiYiIiIiIiIiIiGj0MaX1zj+GqMFYmE3YKGZGEXQ1Vuy6oqb1SflqPYpV6u2r9YjaaDJv3Hw83/M4pMXfxP7a+ZBlLCxmFh+/U42p1lUuE+qdbV2ievtPEhERERERERERERHp2LBhA370ox/lTDvvvPNGaGuoWIyFERFR3dCJYan8/b3Sl40JLxDNxMLkY3dD/sfFQHKwXLPLXsANf4GYMKXobeyPSBSbpEmUEVOKViGElR/wcQwmlRgss6NzAHt2BMzuHmcsLOPefxQ+mi98BHy8TWLX9tIPTLd7nZiVb8mNGtV47leCfH+5ckx877eQP/mK/sqCTcABRzrOJiDRkdxmO8+HW3OfDMXEwtxWZ6nt7wUANHFfQCIiIqoTQggEfUDQB0xpzRnRXkc8MRgWywuO9YRlzrTUdIsIWbi83+VrlSmBrlDqCzuyR6zuLOs7sMFXGBBrDYqcCFl2cCx/WsCbeo4QEREREREREREREVWSCUUsDDUYC7MJG8VkZQNGMWm9g1ytR7FKjoXVeERtNOnwTsH+jYfgzf6XC8beD72FdZGPsLN/t5zpyliYzeOmGqtWLCwp1TuruQQP4SEiIiIiIiIiIiKiylq8eDGWL1+Oyy+/HO3t7bbzrlixAmeddRY6OzuHph1wwAGYO3dutTeTKoR/aSAioroxUscXx4UX6N+c2oZQH+TPvp47w9r3IH//U4gr/7fodf/lbeBLnytuGVUsTOf+KTWEZbfu/O1xOhA8VkTwR5fO7cqex24TI6M06DQS3t9iPf3W5yT+4/NlxMJsxpJlxPBGu9EaC8M9v1KPjZ9U1KrElbdCGJmdO+3eD/wOO0W+9HHu5YTme8e0+Hrrgb/cCfxwIZr8euthN4GIiIgI8LgFJjQBE5ryR/R+WDJNif5obkCsO5QVFssOjllM6woVF42tJwPR1Nem7uypqh/AC6d7XFmRsazgWEs6LJYdIQuIrCBZaqzJDxgGf2gmIiIiIiIiIiIiolymVMTCRA3GwmzCRpUOGMVLiCvVAp/Q3NEnT61H1Eab48edYRkLA4C/dj6EC6d8L2eaKqbnEV7ldage05iMQUpZ8ZPkJKV6Zz+XcFX0uoiIiIiIiIiIiIiI+vr68POf/xy/+tWvcNJJJ2HevHk44IAD0NHRAbfbjc7OTqxcuRJ//vOfsXTpUsisA7i9Xi8WLVo0gltPxWIsjIiI6oZThKpaulytQNfK1IUliiDYE/cCV/5v0UGzu16WWHRhccvoBnOshGKl3Yl2933+gdtO1xC2PslhWXRuVzRr3w272xMtMahWT3rD1Vt3cqSqgMOgGqG8ckm7F8MhJwC77FXU+sTcz+vNV0L+UTcS8fXu260HJkwBAPg8ejuGMRZGREREVD7DEGgOAM0BYOecEb0ftqSUiMSzImNDwTFZMK1HESHrr87JxMe8eBLY1pf6ymX1s3rhNCGAZn9uQCz1vUBLQYRMpMaDuREyr5s/dBMRERERERERERHVGhPWsTCB2ovr2AWpVDGkUqnjSrUdxSo1hlbrEbXRZtfAXtgtsDc+Cr9bMPZ63ws4Pf5VjPd0DE1TxfTsXlOqkJiEiYRMwCM8RW61vaRU76xm1OD7GRERERERERERERGNDvF4HEuXLsXSpUu15g8EArjzzjtxwAEHVHnLqJIYCyMioroxUrGwR5pOw9e2LYY0Tchb/s16pniqgFXKNsYTEp4iDpBNWu9PpXXdpYa67FatG/BJ2zFQ2jbY0bldkawImN3ticZruFZVIaEyg292z1VT8fweC5xegzH1yQZHzkCveswfhGhr1896feawgklOy57ffSfuaD3PcsxtAKYpYRip90fd95pd4uusBzyZHcaEGLn/U4iIiIhInxACAS8Q8AKTWnJGtNeRSEr0RgbDYoMBsW6L4Fjv4LTsedLjJn92LCDlYKQtDKzrzBmxmttyHQFPJhw29G8gKzaWFyFrzYuQBb2o+FniiYiIiIiIiIiIiKg8Ulrv/GMIY5i3pPrcwgMBAWnxObgqhlQqZVzJsA4o1Qq7eJSdWo+ojUbHtZ1hGQszYeKprqU4u+PrQ9NU8Tu7yJvdWFxG4UGFY2Gw3lnNgIt/nyIiIiIiIiIiIiKiimttbYXL5UIyqR9uOOKII3DDDTdg1qxZVdwyqgbGwoiIqG6M1LG5O8fXA9EwsPQ22/lkPIZS/mt+51PgwGn68ydMQEpZ0g4HpUae7KI6ibz9u5wCPF2h4q//6fclFr8u4TKAsw8WOHKP3NsejisWzBLRmAcAIqMx6DTKlBqdS7N7jiRr+CD8WFKimKjBsOjaqhwSX/xuwbSQCGBR61fxin8W9ou+jfN67sGE5I7U4LaN2lebvhcu7bxJGQtLmMBADGjypy7rxsKO3NMFvGIx8OmaoW99buf3hFH2SBERERFRidwugXENwLiG/BG9n/iklOiPZsJhmZiYLJjWYxEh6wnr/z5ab8JxINwDfNqTPVX1S2HhdJeRHRPLBMdaAiInQtaqmNYcAFwGf/InIiIiIiIiIiIiqiR1YKf2YmFCCHiFD1EZKRhTxZBKIaVUx5VqPIrlM/wlLWcXlqLq2K9xNjo8U7A1vqlg7IXuJ3HK+HMQdDUCAOKm9Q6IpcbCYjKGYJHb6yQprXckdQlXha+JiIiIiIiIiIiIiAg444wzsGXLFjz22GN44YUXsHLlSqxduxadnZ2IRCIIBAIYN24cdtllFxx11FE45ZRTcMQRR4z0ZlOJGAsjIqK64RShqpZOVxsAwPzVdxASQTRIRe0q1Acp24pe/wsfSszsKG4ZUwKuvONZde4enaiWFbv7Pj/g4/Q4DRS5H9RdL5k4/w45tN6bnpK480KBcz+X2YFMJ4KWfXC23TbyIG5n8SoWvaQsPYY32sVGY4iua5t6bI8DUv82tQF9XYgIH+ZPW4ynG+YMzbKo5av427qTUsGwSOF7o9P7wQHRlbh/w5dxztR7LccHoplYWNL6xLMFdj32KMhX7rIckwO9EA3N8Lr4WiciIiIiPUIINPlTP5dOzfmVX/93lmh8MCAWzoqNhQqDY72KCFlv4TFGhNTvCDsGUl+5rH4Rsf7lpMlvFRwTg9Gx3AhZa15wrCUA+D2197srERERERERERERUTmktN7BwxC1FwsDAI/hQzRpEQtTxJBKEZfqddV6FMtbaixMeCvnkyHBAAAgAElEQVS8JeTEEAaOG3c67t3yu4KxqIzg2e7HcNL4swGoY3oem/idx+YxjZmVi/OlJaV1+NAlePgOEREREREREREREVXH+PHjsWDBAixYsGCkN4WqjH9tICKiujFCrTD0G434XdvFuH78D7DZPRGzIstx26ZvYp/Ye7kzhvogYR0Lm9oGbOiyXv+l90lcfn9xty5pAq4S9p/a3Fv8Mk4S+bEwh/n7o/oxKCklrloic4JDSRP40UMSX5qdWYdOgCySFWpiLKw85UavnJ4jVjG8WjAqY2HdiliYPwgRaEh9f8bFwF2/wOMNJ+SEwgDgHf++uLvlXFzWeSNw2vnaVyuyngWfjbyunG9dJzCpJfV9fphQKdioHJJ3/RLiW9ch6HUOLtRgr46IiIiIRojPI9DhATqa80f0fuhMmhK9YVgExwojZD0hie4wCoJjCc34br3pi6S+1ud8ZqP6rbVwus+dHRPLio0FrSNk+dMafajJWDYRERERERERERHVLxOKWBhqMxamilLFFTGkUqjCSqnrr/FYWInRr1qPqI1WhzTPxdLt96Iv2VMw9nTXMsxrOx0u4VIG8OweN7ux6sTCrHf2cwlXxa+LiIiIiIiIiIiIiIjqC2NhRERUN+wCT9mO3gO4+lQDJ9xQmSNhH26aj4eb5g9dfjUwG/N2eQyrP/oMmsz+zIyhfoulU5wO+yz2oN1EEvDm/RSgc/9s6gZuf8HESfsKTG7VPxjVbtX5AR+n7UiaqWXyt9/K2xtT25zv4+3Au58C+0xJXR7QOBFjdgTMbhMZC0uRNg9kTDfapFy3/XgiWVoMb7Qr936rBvmPx60H2tqHvhVePySAqzqutZz1+xN/ics6b4TwBQvXr/G+1Ja0eJEP+mS7xOdmpN6rdGJhXz1UAAcerZ7hnv+EPPI0eGN7AigoNRARERERjUouQ6CtAWhryB/R+71eSolQLCsgFgZ6QkB3WGbCY4NjvYMRsuzgWE8YCGn83l2PoglgS2/qK0M/NmaITDzMKjiWP601L0LWEgDctVjbJiIiIiIiIiIiojErKa138DBqNLCjChhVMl5kt65aj2J5DX9py9V4RG208hheHNN6Cv68476Csd5kF17tewazmo5SLm8Xh7N7TCsZ50tLwvq9zMXDd4iIiIiIiIiIiIiIqEz8awMREdUN3VjYmh3AcfsI/PM8gf/5m+ZCRdrm7sBfG+bhzL6HMxMHem23ca9JwHubK3P9xcbFsn19kURbUGLZPxs4dFfdA4vVYwWxMI31xRJ6sbDOAfXY5t6sWJjGvh7RROoAaSHsbzNjYSnFPOaVFk8CPk91r6ManJ77MeuTDY6s1W9YT2/tyHzf1Jqa1TfTfl1e/Z3sRNa91WL2KufrCWe+jyed310Wnicg3O22j4X89jFYt3dIYxuJiIiIiGqDEAINPqDBB0xpzRnRXkcsIdGTFRDLRMZyg2NDsbH8CFlE/3OdemJKoCuU+spldWdZ34ENvtyAWGsAaAkKZYQsf5rfA8fPSoiIiIiIiIiIiIh0SVjv2GagBs8cCHXAKFbBeFFcqs/oUetRLF+psbAaj6iNZke3nYwnOh+0fA38tfMh7NcwS7msx+b57BbqHQpjNq+RUiWl9c5+rhoNHxIRERERERERERER0fBhLIyIiOqG7jGlXzk0dYDjz8+sXiwMAL4w9T7MHXgKl3TdmoqGhfuU2yhE5UJhgHUsrJiDbrtCwAW3m3j3Wr0dF+xWnb8tOtsR04xN+W2CUeGs/TvCGoEvKVMRKq/bfhsjozHoNMqUG71yjGpVOUY2Uip1u0xTwjAqdCB36wTr6V1bM98fNR+44XLndQUaCibpvC2Ji34KPG89dvPTEhcfnfo+YXP/uQ1g0YUCXrfe/fKV7ntwd+sCrXmJiIiIiAjwugXam4D2pvwRvZ/BTVOiL5KKh6WDYz3psFh2hCwM9FpM6w5VP1w9Vg1EU18bu7Onqn4bK5zucWVFxrKCY81BkRUZS4+nYmPZ05r8qNzvqERERERERERERDSmmdKEVHw+aYgajYUpolQxs3KxMLt11XoUq9QYWq3fL6NZo6sZh7XMwzPdjxaMbY5twIq+l5TL2j1uhjDgEV7LeF4lX29pSWn9hynGwoiIiIiIiIiIiIiIqFyMhRERUd3QjWE1DZ5MLuAViNxsYMHvTSx+vTrb9FTDXDzVMBf3b/gyzu7vhVScyE4IwOcGohUKUdlFc3S9vwXY1C0xpdX5gE67+z7/YF2tWJjm/eCziYVFsgJhIc0Tw0Xig7Ewm3miGuGxemB3H730cXWvu1YPAC83spYWTwIr10l43cB+OwFClHFQdvd26+kTpw19Kzqm6sUaW9u1r1YccCTEaT8FDp4D8ZlDsfdHSbz7aeF8rqybtvQt63W5DWDFjw3sO0X/fjgk8iruhn0srJy7lYiIiIiIchmGQEsQaAnmj+j94C2lRCSeFRkbCo7Jgmm9igjZQOWPE6kJ8SSwrS/1lcvqN8HCaUIAzf7C4FhLIPWY50bIRNZ45l/d8DMRERERERERERGNbhIWZ8AcZKA2AzuqmFVMDk8szFNiTGusKDX6Vev3y2g3r20+nu1+zPI94fHOxcrlnB5vr+FDPFm4s2i8gq+3tKS03tnPJXj4DhERERERERERERERlYd/bSAiorqh2QqDN2u/Iq9b4IFvufDntyTm36jeGalc50y9F7GuW4HJ1uMCqYMftxYceFkaq5iS7v2TbdlKiYuOKi8WVkq4rBIxqEhCAhCIJySSmg9tJA40B+xvT6RCQaexTjfOV411VyqqNdpU6nbt+kMTn/akvt9/KvD4ZQYmNpd4YPV7yy0ni3lfzJ3wueMBp/evtsJYmPKxnrY7xHlXDl20CoUBeoHFfz1RFITCxO2vQV4wS7nMuT3349JJN9iul7EwIiIiIqLRQwiBgBcIeIHJrTkj2utIJCV68gJiPemwWFZwrCcrQpYdHOsJA2YVf1ceq6TE0P26NnfEam7LdQQ8gzGxdEQsALQGBZoD+dNSEbL8MFnQW2ZIm4iIiIiIiIiIiCrClDaxMGEM45YMH48ibmQX+CqWKjwmYMBd4+Ein6E4e6uDUiNjVBkTvJNwUNOheL3vxYKxroTi5JYAvMJru16PYrySr7e0JKx3cnXVaPiQiIiIiIiIiIiIiIiGT23/hY+IiCiLbrzIY/G3+NP2F/iPzwtc+WD1jur82TszMW2SevxHpwlcel9lrj9mFQsrYdW6kS07+bEwnc3QjSbZbV8knvo3HNdbV/YytrGwItZXz6SUJR+I6/RcrURMbiQ43a5KhejSoTAAeGsD8PU7TPz5nyu8E1JjS85F8d1fA9c5LNNaGAvT9fUjBW57vvAOXJUVEZvUDGzuLVx2i0XETOy+n+17UavZgwU99+Keli8Xv7FERERERDQmuV0C4xuB8Y35I3q/20op0R/NhMMyMbHBsFhWcKzXIkLWHdILItejcBwI9+T+vqv+hKlwutvIhMPS/7YGgOZ0WCwvQtaSFyFrDgAug7ExIiIiIiIiIiKicpmwiYWhNmNhXqGIhSkCX6VQhZC8wlvzJ1JQ3b/VWo4q57i2My1jYXacIm/q11usqOvRkZSKWFiNB/qIiIiIiIiIiIiIiKj6+NcGIiKqG7oxLK/if8dGsw9AwRGhFfPTjXOwUDEmBHDmQRWMhVXo4NKtFpEdK3ZbnR920nmcrGJnVuxiYeHB/TuKioVp3G+MhaU4PY494dSBtdVQqef3aPPW+urECh99GxiISjT4itv5T67/QD3ozj0Lo9h5JqA4W+KQrFiYlKmD4lW3OH9LD94ZuE0x7yNvSMw/UCgPqp8xXnEdP/w95PXfUG7uHZu+YRsLq+1dKYmIiIiIqFhCCDT5gSY/MC13RHsdkbgcCo3l/BuWBdOsImR9kUrfqtqQMIEdA6mvXFa/lVr/ptrkT8fEsoNjAs3p74fiYpnYWHZwzOfhb5FERERERERERESmIq4DAIao0ViY4bWcHjcrFy9Shcecwkq1oNTbqHpcaPhMD+yBPQL74oPwO1rzCxhwORwao3o+xBVBvXIkpfXOai5R4ZN6EhERERERERERERFR3WEsjIiI6oZuZsej+Ft8w/svAjihUptj6aI7rbdSAJjSKjB9PLBmR/nXYxXN0Y2pZdvcozef3boTZu6gzmboxqDsYmHpSFm4iP2q0iEwp/hZ0pRwGTzI0862vtJjYU7PkfwAXa14TG+/p5Js6AL2nFTcMvLWH6sHw/3Fb0RTGwDgoRUS33vAxCfb9Rf1e9RjZ9xswrzVhZDitX7QzorX6glfBmxiYQLARV23YWHb1/U3lIiIiIiIqAx+j4DfA0xszh/R+wwiaUr0DobD0mGxVExMojsvQtZrMa07bP9ZSz3ri6S+1ndlT9WPjfk9mXBYJjg2GBuziJDlB8cafakgHRERERERERER0VhmQv0BpIHaDOyo4kWqwFcpYooQUl3EwoS/xOVq/74ZC44bdyY+2Ki305xXeB0/J1c9rpV8vaWp4ocuwcN3iIiIiIiIiIiIiIioPPxrAxERUR6v4n/Hho9eRbVjYU6e+r6BGVeVf1SmbmzLyS3PSNy8wHk+p7hWzrwatbCYZgzK7gDW9DrCcb11AZnImtM2RuNAsM73F3J6GH/zV4nxjRKHzBA4fm/A59E/oNXp/td9fow1MydWb90lHU/89IPqsZkHFb8NbjdWrJM451bTMfiWv73H7S1g96z71ROmZSQRAAKK0JhwuYDLfgN5w+XK9boVZ4C02kYiIiIiIqKR5jIE2hqAtob8Eb1fYKSUCMUy4bCecFZsLH+aIkJWzOcw9SQST31t6c2eqvo9t3C6IbJjYlnfWwbHREGYrCUAuF38RZaIiIiIiIiIiEaWKW1iYcIYxi0ZPsp4kSLwVQpVCKkegljuEsNM9RBSGwv2bTgYk7xTsTm2wXFencfMY3gtp1fy9ZaWhPV+ZbUaPiQiIiIiIiIiIiIiouHDWBgREdUNnQgVAHgUf4tv+PAfwM6V255ipKMzu4yvzEF7VjElzbunJHb3faKUWJhm7Gwg5ryOsM08Besb3CfEaRMjCcbCnB7HW55JzyBx/N7AkksMBH0Ven5XKIY32vRFqrfuYu95aTpEC3f7TEnbsWSFdAyFWZk2zv4WXPEn9RMyaL0PWMqZ3wJsYmEu1GiZjoiIiIiIyIIQAg0+oMEH7NSWM6K9jlhCZkXGssNjucGxHkWErDei/xlfPTEl0BVKfeWyurOs78BGn1VwbDA2ZhEhyw+O+T2p5wgREREREREREVGpTKj3RxGo0ViYInBUyXhR3LTeQc5TB0GsUj+zrIeQ2lhgCAPHjTsDd2++0XFenViYMs6nCOqVIymt9ytzCcbCiIiIiIiIiIiIiIioPIyFERFR3dA9jtDrst5BpNHsr9zGFCl7n5XV1xmYebVDqMdBpWJKHhcgpXTcqcbuIM78MJDO46S7/b98TH0/RdOxsLjeugDgo20Sc/YUjgelRotYJwFPvgvc/Q+Ji4/W2znL6TlSSmxqLKhqLKzY/eK22Z+tsdQd7a5bpvdObbX20w8AHn6z+OsM2MTChGFA7nkw8P7rluMuqX4z4uHRREREREREhbxugfYmoL0pf0TvtyjTlOiLpAJi2cGxnrDMnRYGekIyL0iW+r5WPzcoV3809bWxO3uq6vf0wuleNwoCYq0BoCUdFsuLkOVPa/IDhsHfpomIiIiIiIiI6pmpiOsAtRvYGY54kWpdDGKp6YSnaHjMbjoGj2y7B73JLtv5dJ7PqsdVFdQrR1KxX5lL8PAdIiIiIiIiIiIiIiIqD//aQEREdcMp8JTmUexX1NAcrNzGFCn7MLndO8o/aM4qtqV7/2SLJ1MBo+ZA6dtSEAvT2I6Y5kGdT72vHktHwsJF7Ofx0Ta9+SIVirGNZcU+nZa9JXHx0Zrrdlh5pWJ4o004rhfnK0XRr//3V6jHDp5TzqaUbNGFBlq/W3xIMWgTCwMANLcph1zgEeZERERERETDyTAEWoJASxDYZXz2iGaAXEpE4oUBse50WCwrONYzGBzLj5ANVO4YvZoSSwDb+lJfuaw+dCicJkQqGlYQHAsKNBdEyETWeCY45nEzNkZERERERERENJaZUO/3YcAYxi0ZPh5FvChmVjAWplgXg1hqDDqNHh7Dgzltp+KR7XfbzyecdgIbnjhfWlIRP6zV8CEREREREREREREREQ0f/iWLiIjqhm4Mx6v437HRPXoKRPdfbOCcW4uP4qTpxrZ0DESdY2F2d30yb1DnYapEDCodCQsVEQvrH9wnxOm5FImXtk21pNj41NK3Knfd+QG6WpE0U7dN9R6VTYjiHoNDfm7ig+sMjG/UPKi2T32mRnHDY/pXnPaly4ua3aqX1hwQ+MJnBR5YXtyTL+BxmGHGvsCrf7Mc8kr1i70KTTciIiIiIiIqkxACAS8Q8AKTW3NGtNcRT0j0RgqDYz1hmTOtxyZCZpYQ7a91UqbDbcDa3BGruS3XEfQWBsRag4OBOYvgWEswd1rQi6pE2omIiIiIiIiISI+U6v3hhKjNWNhwxItU6/JqxJWIRoOjW0/C4zv+hKiMKOfRid+p5qlknC9NGQvj4TtERERERERERERERFQm/rWBiIjqhu4xeF7FibsaIjuA5optTlHyj1H7pwPKW59VbKvUYxQ7Q/kHV1qs22bliRLCTjqxMOlQSkoHvaJFhMcG0rEwh/lUsbCPt0n87hmJD7dIHLGHwPwDBBa9KPHupxKH7Cpw6VyBoI8HJDpximCNxViY0/M1LRzTi4UZojDEZ6c7BFx6n8S9F2k+/7q2KYdKOahWnHlx0ctY+d1XBN5YL/HBVv1lgg77PYrTL4L84/9YjvlsdszkscVERERERES1yeMWGN8IjG/MH9H7RVBKif5oJoyViYnJofBYdnAsP0LWFapMSL8WhWKpr097sqeqPiApnO42smJiWcGxlqCwjJC1BpATHGvyAy6DHwgQERERERERERWjL9GDgWQfAGBHQr3DhwuKnfrGOFW8KGqGsTm6Yehys7sVQVfmQ8nu+A5EzDCa3C1ocDXZXocqhKQTVyIaDYKuRhzRejz+3rVUOY8qvJfNowjkbYyugSmTMETl3meSsP4g31XB6yAiIiIiIiIiIiIiovrEWBgREdUNzRYPGv2K6WF1HKfa8g8x83sEfrdA4Nv3lJb4iiWkxVpL8+QqiX2n2K/LbisTeSeE1HmcYknn7f/FY/YrCsdS/8aLKCqF0rEwh0WsYmGrt0js82MT5uCyD78pccWfMit66A2Jv6yUePwyAz7P2D+oUPf1VtK6HcaLiWSNNeE40KIxn8sAkuqTrVr6w6sS93xDasW+ZJdi58xDTrCcvL3P/kERU3Z1vM6c+RWbOK5B4KWrDEy4XP/GB5xOkjp5unLILhZGREREREREZEUIgSZ/Kiw1bVzOiPY6IvGssNhQcKxwWo8iQtYXqfjNqgkJE9jen/rKZfW5hvVnHc3+rNhYOjwWEGgpiJAJyzBZLXwuSERERERERESkY1vsU/x+039iffRjrfmFMKq8RSPDq4gXhc0Q/n3Nd4YuCwjsHtgHx7bNx4Pbbse2+Oah6TP8e+IbU/4VrZ7xBevpSXTi5d6/K66bsTAaO+a2/ROe7loGE9b7hXk04neqQN62+Gb864fn4fhxZ+Kk8WeXtZ1pSWl9xlOX4OE7RERERERERERERERUHv61gYiI6oZuP6jBYv8bKSWC4R0V3Z5yXXRUGbEwi/0QSo07PbpS4rLj7OexW3cib1u0YmHWJ13L8cMl9isaiKXG49b7ZNgu4yQ/FrapW2KvHznHi579AHh6NXDivvrbNFqV8nRKJCXcrvIPiCw2kjWWhC1CdFZKvRuTJuDWOXlhlyKe2NpuOfn+14av4DauQWDLfxmY+D29J4LP4Tci4fFCTt4F+HRt4bKKM68Cxb23EBERERERERXD7xHwe4CJzdlT9T8MSJoSveFUPGwoNhZSBceswmS1/flLOXojqa/1XdlT9WNjfk8mHJYJjgm0FExLRcjyg2MNPmiF4ImIiIiIiIiIRpIpk/jv9T9GZ0L/5J0GajQWphE4AgAJiQ/C7+CD8DsF0z+OvIcbN/wU/zb9vws+G7ppw7U21604qyrRKDTe04GDm47Aa33PWY7rxO/s5gmbA3hk+91odY/DoS3HlrydaUlpvZOrS+jsnEdERERERERERERERKTGWBhVlBDCA+AIADsDmAygH8AmACuklGtGcNOIiLRjWA1W+wNEw3DJJAJmCGEjWNZ23HrKZvz2wW1Y6d9Pexmr47vEQA++t2Mh/mv8vxS9DVGN2JaucQ3OB5/Z3ffJvDGdh8kqdgYAL30kcex/mVq3ry9ivy4rA4NdIKdtzI+FTb1C/+jJKxebOHHf+twhpD+aOrDRidNrOWlKFHOA7FgSjqnHXvxI4u/vSewyTj8qlk87Fta91Xp6m3Us7NL7KhsLc3p025sE4rcY8HzL/rXXFtQ7gFZ85QrI//x/BdMPiryhXCbgcVwtERERERER0YhwGQJtDUBbQ/6I3ucpUkoMRDPhsExwTBZM61FEyEr97KLWReLA5jiwuTd7qupzlcLpLiMdEstExFL/WgXHBFpz5gGa/ahIzJ+IiIiIiIiIyM4n4dVFhcIAwBA1GgvTCBzp2BRbhy2xjZjkmzo0bUtsIzZEP6n6dRMNl+PHnamOhRkWZwnO49GY5/W+FysUC7PeMdXFw3eIiIiIiIiIiIiIiKhM/GtDDRJC/ATANWWsYpGU8vwir7MdwE8BnANgnGKeFwH8Wkq5uIxtIyIqWVmxsPAAAKDR7C87Fnb+nAD27N+CY54tLxaGeBTjk50lbUPMIqale//k++NrEgvPk2jyl3YQWSJvnwid7YhaHEz427+b+O4f9G9EOhYWLyUW5nA12bGy19cWd8e+uaGo2UetUp5PfRHNWJjDeFK/zTZq6N5fIUUs7No/m7jmkfKDXNr33at/s5wsWq1jYZWms50uQ6DrBgP/9pDEzU9b3zcn7qv3viXmfwPw+CCv/0bO9KPCL2BKfBM2eabkTJ8zEwh4eWAtERERERER1SYhBBr9QKMf2KktZ0R7HbFEVkBsKCpWGBzrVUXIwhW/WTUhaQKdA6mvXFafjVh/XtLoywqIBTJhsZagdYSsNS9C5vfwMxEiIiIiIiIisrc9vrmo+RtdzQgYBeX7mjDBMwkCBiTK3+FpR3xLTixse3yL7fwd3sllX+dYcMr4c/DojvsLphswYFrc759rPmY4NotKMM2/K/YM7o/3Q28VjHV4d3JcvsM7xXGezrjiJJpFMqGIhYn6PJEsERERERERERERERFVDmNhVDYhxMkA7gDQ4TDr4QAOF0LcA+CbUsqCQxWIiCpBSgn5i28Dy24fmiZueAwSR2st32B18rCP3wYAtJi92Ob4dmfP1diMA0+fAzxb1moqHgsrxz3/kPjWMeqDwOwSRom8/W10ckfRvO1PJGVRoTAA6B8MfxUTCwsPRsqcwk6RuAQgsPRNidNvGoPlqgooJVuVDriVayzGwnSFLUJ563bIioTCACCpsRoZi6oH28p7f5w9HXh1jfN8a3fo3d6WoMCNXxb4z7MlzrnVxJ+z9hPbdQLw88/rH7wqTv4q5KZPgDt+lpkG4LZPL8bnp/5xKCQ5sRm4aUFtns2WiIiIiIiIqFK8boH2JqC9KX9E73f1pCnRF0EmODYYEesO50XIwkBPSGaNZ+bP/1ySUvqjqa8NXdlTVZ/FFE73urMjY5nAWEtQWEbIWvMiZI0+wDAYHCMiIiIiIiKqZTGpOFuewqymo2CI2twXo9HdjH0aDsI7A8vLXlcyL04UM9X7+ASMBuzb8Nmyr3MsOLjpCDzRuRgJmdnp0C08OG/Sd3Hn5v9GQubukDW7SW8/UxoZp0/4Kn69/qqcx9MjvDio8VDHZWcG9kOLexx6Eur9biuzFx6QlIyFERERERERERERERFRdTAWRmURQswB8BCA7LSOBPA6gI8BtAI4CMCErPEFAJqFEGdIKXkoBhFVnLzhspxQGADIy06CPLwLgM9xea/F/45y2SIAQHtiGz707l7W9gm3G01NbkBx5jDLZawmRiOlx8Isrlq1k4PLAJZfbeDMm018st16nuuWSXzL5oR6dnGtRN62OIW4gMJg0ssfOy+TLx2mKiYWlo6UOW1iJAE8uUri87/jf3PF6M/bP60vIvHcB8CkZuCAaYBr8CBBp+eITvBqrApb7Cu58PnK3WCt0NqqV9Rjbe0Fk3pC+tvn9+jNt2K99ioBAAGvwIPfNvDMauCVNRIzOwSO2zt1kGoxRENzwev/+IG/452PDsTfvvkYgrvuhhP2ERjfyANaiYiIiIiIiKrJZQxGpoLALuOzR/R+J5dSIhzLDYilImNyKDKWDo71Dk7Pj5AN2PTU61ksAWztS33lsvqMqHCaELmRsaGYWFAMXc6MZ54H2ct43PxshoiIiIiIiGg0s4tYZQsYDZjVfBTO6riwyls0sr4+5fu4e/Nv8Xb/csRk6R86JWXuGTjt7ufLpl2LJndLydc1lkzx7Yxv73Q1Htj6e2yObcBk7844q+MC7NNwEIKuBizeejs+ja3DeE8HTh3/JezbWB8RtbFqemAPXDj5+1i6/V5sjq3HJO80LJh0CSZ4Jzku6zE8+JdpP8Odm/8HH4XfVcxVqZN2Wp/R1yV4+A4RERERERERERHRaLJu3TrceuuteOaZZ7B69Wp0dXUhHs+EDG6//Xacf/75I7eBRBb414b6cC6Al4uYv19nJiHEVAAPIjcU9gKAi6SU72bN5wPwTQC/ApBOQPwTgOsA/LCI7SIiciQTCeDBW6zH+roBTHRchxAWBxI9eR8AoCO5rZzNwz/7lgGYDwAYuPQNNPz2QK3lrDYJ8ZnPwowAACAASURBVBjGJXaUtB0xi/0QVAEmAWD/qQL/eqLAJfdYz7Sp2/767HafSOTFiXRiYZG8WNjKjcXvoJEOU5USC3MSiQO3PS/1wks1SudxzNcbznz/9/ck5t9oIjQYxzp8N2DZpYZW3KmW7/f8UB4APPb2MMfCOreox/Y7POfioyslzioimpcfD1Rpcu4+FnC7BObtDczbu4yDRVsnWE7eObEBF7z9Ixhf+kPp6yYiIiIiIiKiYSOEQNAHBH3A5NacEe11xBOpgJhVcCx7Wq8iQtYTLu0ztFon5eB9FCoYsZrbch1Bb1ZkbCgwJtAStIiQWQTHAl7F3wmIiIiIiIiIqCJUQaydfbvh21OvHrrc5GqGIVzDtVkjxm8E8I0pVyAh4xhIZnbh/sXa76O7iP0DkzJ3x5u44n5u90zGNP+upW3sGLV3w4H48YwbETOj8BqZHY/2aTgI+8w4CBEzDL8RGMEtpGIc2HQoDmg8BAkZh8fwOi+Qpd07Gd/b+ed4YseDeGj7nQXjslKxMMXJhF118J5GRERERERERERE9WH69OlYu3bt0OWnnnoKc+bMGbkNKsHChQtx6aWXIhrlGYRpbGEsrD5sllKuqcJ6fwqgLevyiwCOk1JGsmeSUkYB/I8QYh2AJVlD/yKE+F8p5VoQEVXKp58oh2SoH/A6x8IKlss6Yqs9sb2kzQKAqYmN+M7Xdh667G9uwKzwcrwWcD4TneVhSbEIxic7S9qWWBGBrLSpbQKlnjXN7qC3gliYxvryg0kTGovftv5o6rEtJhaWjpQ5HcQXiQN/fK2+j/Qr5UDHe1+ROG4fgWhc4sybM6EwAHjxI+CqJRI3LxCO6x6LsTDdu6s/KpH/jmBU8LjFE28wcdw+At+ZKwZf8xa6tiqXF42ZM472RyTOvsXUiuxJKSGE0H7sfnjKCB2sOXGaeuyZJeoxIiIiIiIiIqo5HrfAhCZgQlP+iN7nFqYp0R8tDIh1h2QmPOYQHLM6KQQBoVjqK/ckF6pP4Aqnuw0UBMRag0BzOiyWFyFrDWTNGwSa/YBRyQ/tiIiIiIiIiGpMzLQ+4CLgakCLu81yrB64hSfn9vuKjFclZe6HRar7OTuWVW9Ut52hsLFHCAGPKC4Uls1n+C2nV2qvz/zXY5qLh+8QERERERH9f/buPEyOqtAC+LnV+8xkZpJMhiQECCRhCQJ5yBIgSAIiyuMhID5AAWUHQREQnoBAEAVFEURZREB4GlaVHQMICY/VmEREMGFNCIRAtslklt7rvj9quqeq+t7qqu6e/fy+r7901V3qTk3PpKf63lNEREREg8KTTz6JM844w5Ej4WXhwoWYM2dOcfuKK67A3Llz+2h0RN74aQNVRAgxDcA3bLsyAL7pDgqzk1I+LIS429YuBuAKACf32UCJaOTpbNcWSZ+LtEqseqv4tNHU9+/lh5MW4BtHbIOtdp3Ru7NuFK799Fs4cPIzlY0rm648LEwxD0H3Vlb0nLYDdwjSv8Qn7cBWY6xJGV7vkysJdkpmnNuxCt7RSGktGAuyoK4QelTubf8tC6ubMrJohcRe2468xWR3vSxx5zeBp/8NdCjeUdz6vMTNXy9//odiWJhfqvNSy1fK0lXA0lUSDy6WePEiAxOaS3uXr7+sbvyZfRybzy3vDdgrJ5cHIuHS8ECVSAg4fLcB+vnYddbAHJeIiIiIiIiIhh3DEGhMAI0J6zpqL//XPVJZW7BYMXDM2mcPHNusCSHr5I3QlHImsL7TejiprkyW7hMCGBUrDRxrSgg0lYSQiWLImD2ELBoeedeHiYiIiIiIaOTISk2IlRi5IVYq0YBBSHk475qZ4Xkm0hLa67C1iQvLS/VdbA0Rqkn/RERERERERERERFSdiy++2BEU9rWvfQ2nnHIKttpqK0QikeL+lpaWgRgekSeGhVGlvgbA/mnVn6WU7/ho91M4Q8b+WwjxLa+QMSIiv2TXZsjT99OXVxipI//w8+Lzpvxm3+3O3XAjrjNugfHg2wA+X1qhbhQ+l3wJJ2z6A37ffLxnX0I19EwaY2oYFlbu2HUx7/O3ZpPEhGaBnz1l4sdPSGxOAROagHtONTzb5VxzIvwE8LoDiNIBvh67jhSQVc/JUNrUbf1bbozvrK1sPAU3Pivxh1OH9mKwSqfMrNog8dA/qptwM5zDwjYnS/cZ3j9iFVmxHrhnkcQFX1C8Dp97UN1o9DjH5jPL/H8fsz1hYeW+dw0x4L7TDbSMGpifDxEK1ezukURERERERERE1YpHBMY3AeOb7Hv9XzfJ5a3ruPbAMStMTJbsa0+qgsmG97W4SkkJbE5Zj1WOS/j+wsYAIB4phInBFiZmBcypQsjc++pj1o08iIiIiIiIiAajjKkJsTIYYmUX9Hy4w4kyZkZZL2oECyEjGpY0186knwmsPuSlelJrSHD5DhEREREREREREdFAe+utt/D6668Xtw899FDMmzdvAEdEFAw/baBKHena/p2fRlLKZUKIvwHYu2dXPYAvAHi0hmMjohFKXnOad7mPRVIH7ajYuWxR8Wmj6T8s7Oub7wNGe1RINAAAfrfm9IrCwuSCPyKKLAyZhxnwbmMZRUCWnzkOd50k8M3fqSs+s0yiPgr8z596y9e0A4f80sTpn9Of+5xrMZmfqRbusLDOdGUTNDrTwcLCAGsBXY3mg2jds0jiD6f27TEG0oQm67Wh8tJ7EqEy4Vflzn9+GKc5bVbEq/bVkr8L/yhxwRcUBTvtASxbXLo/4xzca6v8fyMKvwfcvw8KzjtY4Jg9BHabBMQiXORIRERERERERFQL4ZDAmHpgTL27xN/1FyklutK9wWGbugvhYrJk32ZFCNmmZOm1XrKkssAnWeATx0cSuuttpftDRm9wmD1wrCkhbM97Q8iaXCFkTQkgZPA6HBEREREREfWNjNSEhQmGhdkFPR/ucCLdeY7wPBNB9NmsO4s7vK8gFHCuLxERERERERERERHV3uLFzjXSRx999ACNhKgyDAujwIQQ4wHsZtuVA/BSgC4WojcsDAC+BIaFEVGVZLILeP5h7zo+Ptw/bi9FnQ/eKj5tMLt8j2m7zApAjNGWC8OATNQDyS7s3/UCXqjf33ffAIAlCwAAMZlGUtQFappR37RMyX5GTpipDwt7/J8SEcU7i0wO+ONifWhQSViYj3yhZMZZafkn5duobE4GDwt74l+VHWuk8fo+3nCMgWNuU6dCnXufxNGf9QiXy8uygXJ5TeDUcNCeLN3X72v2ujvV+12phi+957/Lwu8B3fduyjhgr225OJGIiIiIiIiIaDARQqAhDjTEgUmOG2f4v46Tzkq0F4LFkrCFiTkDx9ptIWT2wDFVuD5Z19k2dlkPJ9XVVfUV14ZYIUzMFixWJ9CoCCFrVoSQxRn6T0RERERERBoZUxMWZjDEyi7o+XCHE/E8E+n19ZWrPDRhYWBYGBEREREREREREdFA+/TTTx3bkyZNGqCREFWGYWFUic+4tl+XUvpPzwFedm3vXOV4iIiAJc+VrSKF98f7R/4H8LW9nXWk6UyuqQ8QFtZobgbEWO9KiVFAsgv1stuzmnLko1uB1e8jKjNIovqwMD8hXcLjHP5xKaBbVPTJZn2fOdecCD/jaLOdLiklfvaUutGB6RfxF+MixCMvKcPiNnYFDwv79r0mWhqCtRmJvL6N22+hL1vfCaxu07dObdwIQB/CBwzNsDA/r3sA2KDI6TKM2o6lrJT695XY/8sVd1n4OdR978L9/TV6EKfOhbx9bmnB+G36eyhERERERERERENeLCLQGgFaG90l/pbr5U2JjpQzQMwKGZO25z3BYop9m7pLb2hBls609fiozb5XdyGzdH8sbA8TKzwXaCoEirlCyJpcIWQNMcDo9zslEBERERERUX/IyIxyf0RE+3kkg1tUBA0Lc04KzEhNWFjAfolGkvK3MvXHlOo7+oYEl+8QERERERERERERDbTOTudi7UgkMkAjIaoMP20YGc4QQvwAwE4AxgLIAtgA4AMALwKYL6V8IUB/013b7wYcz3tl+iMiCkw+/3D5OprFRftsB/z0Kwb2mQKE3AtP7r/BsTkx97Gv8YRkDgYkUCagDHX1wMbyIWTKbt54FQAQ1Uye8qIKCwt07BpyhwP5mWqxamPv84sf0rcYnV6L0OrXMHbaeqwPjyspX9shA4eFTR3nDCvrK1JKz3C2oUwIKzDs7U/V5c/82wSgTodKLfo/yAlHePY/GMLC5MfvA8uWANvPACZNrdn3ckNn6eu9318l3R3q/fW9Kzql3/SzHoXQQN3CzNAgCgvDuC3V+z/5oH/HQURERERERERECBmiJ2zKXeLvqpmUEsmMFSBmDxxrT0rnviTQ3q0OIesOfol+REjngLUd1qOX/7AxQ1ihYU22ALHmnsCxRlUImWtfUwKIhIfnNXYiIiIiIqKhLmNqQqwMhljZBT0feTgnwmV5nok86K4b1SYsLC/VE1NDIlST/omIiIiIiIiIiIhGCiklli5diuXLl2Pt2rVIp9MYN24cttxyS8yaNQsNDQ2B+zTNQbAQnagKDAsbGY51bccANADYBsDnAFwihFgM4GIp5V999DfVtb0q4HjcSQpjhRCjpZRtytpERH4s+FPZKrqwsDMOEJg1TV0m//cnju29kosxOr8RbaExnsc6ZvOD1hNRJuEmYk28aSgXFuYely2IJyqz3sdQyORLJzT4neJw0I7As8sDH1IrZzqDsfxkDK3cAHSmJBriAtfO1zf4MDIJANCaX6cJCwOyAYLTACAeqdV0EG/ZPBAdwu/Uyn0fdUFhAJDK6X9u0p9+Ajneu++BDAuTUkLeeilwz3W9O7/6beDbP6tJYFhK8Xrtz0w5mcsCHZq3bE1ji0+XrQnWbyG0b8V6dfmgCgsL6X8wpWlCGINpsERERERERERE5EUIgboYUBcDJjY7Snz3kc3J3kCxngAxVeBYexJo71aEkCX9XRcfaUxp3bijrRvWbbCKVCdLfQLrY/aQsd5gsUb3Pk3gWCKKYXtTDyIiIiIiooGUkZoQK8EQK7tIwPORl86JRTzPRHpCc/1P1iwsTD0x1QDDwoiIiIiIiIiIiIj8WL9+Pa6++mr84Q9/wLp165R1otEoDjzwQMydOxd77723tq+VK1di22231ZbPmTNHuf93v/sdTjrpJGXZlVdeiSuvvFLb54IFCzB79mxtOVE1hnAEBdXYHgCeFkJcA+AHUnpOSW92ba8NciApZacQIgUgbtvdBIBhYURUuVn/BTz7gGcVXViY5zKPznbHZhRZXL32cpw14dfaJuNya3Hhhl/0dF5mEUk4CgCoLxMWViLZWXyakMlgbQFkAgRkub+Cs2YbeHZ5bdOYTAmEeg7kd6rFsk+ALZu9a39n400AgHG5dVZUpsslD0mkAmatzX8T2HVSsDYFVx8pcMlD/r7CZGb4hoVVs7QqlVbfcc9OkYXXfxY94wwKA4AHfwV8djaw32FVd59WvF67M1V369+nHhmxo1uLT29aGOybsLELmPuY/vdKeDDlb0Wi+rL29Y7zQEREREREREREw18kLNAyCmgZ5S7xdyXUNCU6084AsWLYWLczhKy9W7rqWM+DXPMfSbrS1uPjTfa9umuXpfsjIZQEiDXXAU2FYDFH4JiwBZJZ/zbGAcNg2BgREREREZFb1tSEWBkMsbILej7y0jmvKsPzTBRYraYe5qGe5xgSQ3hSKBEREREREREREVE/efjhh3HiiSeio6PDs14mk8H8+fMxf/58nH766bjpppsQDvM6LA1/fJUPb6sBPAlgEYBlADYCMAGMBbA7gMMAHGKrLwBcAsAAcLFHvw2u7eApNVYbe1hYyfT5SgghWgGMC9hsSi2OTUQDbMLkslW0YWEB12mctulObJ95G4+d8gwMAXx+J4GVF5+NVxN7YVrmXRy3+X5Mzq7y13lP6ExdmbCwkm46ele2fCb1Jt6NTg30NagWDnnGRNr8166BDuVLLg+EAoYBvfmxxPw3vOsc0fEoAKA1r04MDhoUVuD3XLlNbRXwO52kOwM01VV2nMEu6M+cXSqdL3sG87XNsgtEPnybev8Dv4LwCAvz+5pKK352+3Wt2dP36ctG974F61LPNdTa48fe37TIYLqh4k576Mva1jEsjIiIiIiIiIiIAjEMgcYE0Jhwl/i/8JfK9gSLOQLHZDFkrBA41q4JIesMeD1vpMjmgfWd1sNJdUG3dJ8QVmBYaeCYQFMxZKx3X3PC+lzAHkIWDTNsjIiIiIiIhp+MZIiVH1HhcUM7hbx0TizKSPUdCKOC55lIaCcx1iYuzP3zWBASg2kiHBEREREREREREdHgc+edd+K0006DaTrXHU+ZMgXTp09HXV0dVq1ahUWLFiGf771xw2233YZVq1bhscceY2AYDXt8hQ9Pi2CFgD0jpTZ64mUAvxZC7AHgHgDTbGXfF0K8KqV8RNPWHRaWqmCMSQCjPfqs1LcAXFGjvohoKGlfX7ZKrcLCAOAA/BNz/rs33crcdAdO33SHovMyCVg9YWETc2s8q4Xd3Sx+rvj0qx1/wsONX/Y+jktGfdMyJff5ifTBwpScCRSmIPkNTXpjNfD0m/rKZ7bdhnjPxLLWnDosrBKj6yoLCzvjAIEtGv3X71bP1Royyp2im78u8K15wU9kKp0re/7NWt3erxIvPqbev3RhTbpXBdztNEHgbyv654uW836mL7SFZO2xDfC/r9TuuLtNGkQL4lomaovkafsAj62GqKtJDi4REREREREREZEv8YjA+CZgfJN9r/9rarm8xOYUSgLHisFiPfvaNSFkm7oH+LrsICVl73lbtdFRoqqt7CMR6Q0OK/6bsIWNuULIml0hZPUxr8WvREREREREAyNjasLCGGLlEDQ8zYRzUqDuPEeMYCFkRMOR0Fw70y+9CCYv1ZN0GRZGRERERERERETDlpkDuj8a6FGMDHWTAGN4RgW99tprOOussxxBYTNmzMBNN92Efffd11F33bp1uOyyy/Cb3/ymuG/+/Pm4/PLLcfXVVzvqTpo0CStWrChu33DDDfjlL39Z3L733nsxc+bMkvG0tLRg9uzZAIBXX30Vxx13XLHs3HPPxXe/+13t1zJ+/PgyXy1R5Ybnb4ARTkr5ZIC6i4UQMwG8AmB7W9FPhBCPS6n5pMrVTdAxVtiGiEivrXwYlNQshtDeHyyv/xUovv49P6MCjDJhYeEIAGBSbrVntajIAeidJCAf6H0DeljHk9gxvRzLYzv6GxOATCbv6A8I9ov5ssMErnq8dr/K87ZwX79zLf79scSUccAbH6vLf/LppcXnEc1dEr1MbQXeXVu6vzNd2X9i3zs4WFhYUhEKNZR4fR+FAE6cWVlY2J7vfRdX7+rdLm96Fg9pacUNB2s0P8nnAJLaIvuCs1CZX31B7Thh8CxmE5Eo5KjRQEdbaWEmDXlIC+Sx3wViCYhoHIjGgGjc9YgBsYRzX6y0nij3fwgREREREREREVENhEMCY+qBMfXuEn/X5aSU6Epb4WHFsLFuYFPSFixmCxxzh5BtSqpvlEDWZwXJdmBNu32v7qJw6f6QYQ8T6w0ca0oIZQhZsyuErDEBhIzBc32WiIiIiIiGB21YWMBwrOEuasQD1c9J58SijGQoG9FA0YeFcfkOERERERERERENU90fAY9uO9CjGBkOXwE0TB7oUfSJU045BZlMbybArFmz8NRTT6Gurq6k7rhx43Drrbdi6tSpuPDCC4v7f/rTn+K4447DLrvsUtwXDocxefLk4nZzc7Ojr/HjxzvK7RoaGgAAK1eudOxvbm7WtiHqa/y0gSCl3CiEOA7AYvTO+N4RwBwAf1U06XRtJyo4rLuNu08iomDaFKlOLlKzqEUIayFLyZ3V//mCvrOZX/Q3rkSDd/nYCQCAPZJLPKuF3/sHZNt2EKNbrR3vv1ksq5fdWPjBwfhxy/fxUmJfbJX7EN/Y9AdMyK3BPtuqv4bMirch2ydANI0t+yWoMtYur3FYWM4eFuazzb9WA6s36csbZFfx+dbZDwOPaUKTOiwsm1cHNnmZMg6Y0iogpUTYcH69Ot3B882GDAGgLiaw8hoDky8Onux1yUMMC7Pz83rqb0F/Roac0ePUYWEF990AoPp0XBmJloaMOQLG4p6BYyKWUISVufvoqePuKxwp/X+RiIiIiIiIiIhIQQiBhjjQEAcmjXaU+O4jnZXF4DB74Fh7Ujr2tWtCyDanav5lDQt5E9jQZT2cVFcv1Vc0R8WdgWPWv6IndMwZQqYKHItFeJ2RiIiIiIh6SSmR0dz4kSFWTkHPR94VFpZlKBuRlghw3SooKSXyUE+gC7lu8ktERERERERERERElgULFmDp0qXF7cbGRtx///3KoDC7733ve3j++efx+OOPAwBM08T111+PO++8s0/HSzSQGBZGAAAp5VIhxNMADrHt/iKGXljYzQAeDNhmCoBHanR8IhoovsLCNG65BPLyOyB3nw1x/o0QLVaAl3zwV/rOJk1xbu9/OPDCoyXVxGlXeo5J7Hso5NP3oF52e9aLdm8CHv4tcNKlPTtiQKZ3Mk9LfgOu//TCknbXf3IBzht/Xcn+TDoHPP474OvfK+6TAVJtan0X+ZztJmp+x+EVFHbR+p85tvdLvhJ4TGM8/nboDLDoaItG4I9nGgCsBVOtjcDHHmMvSA7xsDA/38atx/bNhJuhGBbm98evSzGHL6e+CWHNyW6Pt2vT93Js1jIs7Mu71a6vmln1dv8cJ5uxHl2bK2peVViZEJDFMDFFyFhhOxYHoomSsDLhqJNQh5XFXP8WHpEYRIgT44iIiIiIiIiIRpJYRKA1ArQ2ukv8XUfOmxIdqZ4AsWKoGLCpuzSErF2xb1P34Lwxw2DQkbIeHzrun6C7+ujcbwhg3ynADccY2H0bhoYRERERERGQkzlIqP8AizDEyiFoqFdeOicRZaQmLIyhbETQXXOSVd8eEjA1v+MAICS4fIeIiIiIiIiIiIhI5e6773Zsn3322Zg4caKvtj/5yU+KYWEAcO+99+KWW25BLMbPRGh44qcNZDcfzrCwXTX12l3b44IcRAjRgNKwMB+xKeVJKdcCKJ8Y5BxPLQ5NRAOtbV3ZKlLz4b74dJUVxPLCo5Cr3gLuWgIRjgDppLYvUTfKuX3I1yHdYWETtwV22dd7UPseCgAIS+9knYjMQt75Q4iTLoVcscwRFFYiXgekrPCxqMwqq2REFPKV+RA+wsJ0vyVv+brAWfOqnxgBOBfg1KLHMXnHihXUm12B+xhdL7Sj6fA4/Xb7TQEe+7aB5rres1gf9de2e6iHhXl8I+3/9T53gYEDr6vtCqyhGBbm12ZFUF02X5ufw7LWfaQtEid+37Fdy7CwvgqVq8rus4GlCwd6FH1LSuv/QY//Cz2bV3v4cMQZIOYOFIvGnPtc5UIVcObuI+YOL+sJNQtH+DcCEREREREREdEQEzIEmuuA5pIbgfi7ziOlRHemNzisN3BMOvcV9isCx4b6df2+YErgxXeBOdeZWP5DAxOaed2NiIiIiGiky2oCrAAgKnxOrBohgp4Pe1iYlBIZUxMWxlA2Iq1ahIXlPeYDhwRvoEhERERERERERESk8uKLLzq2jz/+eN9td955Z+y+++5YunQpACCVSmHJkiXYd98yOQ9EQxTDwshupWtbFwL2jmt7m4DHcdffKKVsU9YkIvJB5rLAVtOAt//hWW9duFW5X9g/3P/gLeDff4dsmQD8/VnfYxAHHAFc/FvI+28A1qwEdtsf4sKbIKLeE2tEoh7yy6ch/Og8z3pR2bvCRJ44Q1/x8FOsca9ZWdLOLi1iwD9f8DxmOWccYOC8B/JIqfPIAsnZbmrY5TOIy0tLfoNju7KwMH2Z3zF+dQ/hCAoDgHqfc62G86Ii+xnZb0rt+++v7KyB8ulmiS0ae89irr/C0bxCGfc40LGZrsHvhYLYIPyLRezzJcjhHhY20HJZ69HdUVHzqn4NCAHpDiazh4kVt9V1lEFlxYCzhKttaT0R4qRAIiIiIiIiIqL+JoRAfcy6hj+x2VHiu49srjRAbJMicGxz0hY2Zg8hS3rfiGMo60gB9yySuOALDAsjIiIiIhrp0qbiTnk9GGLlFPR85JFzPDehnlQUFTzPRH15hcIe3OcWEoNwMhwRERERERERERHRAGtra8N7771X3G5ubsZOO+0UqI999923GBYGAH//+98ZFkbDFj9tILukazuhqbfMtT014HG2c23/O2B7IiIHEY5A3PEqzNn1QF59Ry6vtRXCVSrv/CFgGPoGR5yu7ufQEyEOPRHSNCG82rvbTdkFEemdrFMnu62xrXD/Cnb1NX4yZNfm4rYuLCyjuOug7hwJj1kRG28wUHd29UlFuRXLgbHWm/Ybn62+vwm5NY7terM7cB+j66oeBuoUN3dc5zP3JpmV6NspKX3L74KmSLj2X2O+v8KzBsj5D0jMO7X3vGX1c4tqSxcWlmiAiDnfNqb1N0cMLB6pXV81wzCn4U1KIJ20HpU0r/bw4UhpyJg7nEwVVFYIG4slFCFkMVd7VZ04EIlCeP3HT0REREREREREWpGwQMsooGWUu8Tf9RbTlOhIQRE4VhpC1t4tiyFjhcCxTd39eL24Av9YNdAjICIiIiKiwSAj9XdpZIiVU9DzYQ8oypj68xwxFJPaiEYc9fUaWfXMH2dwn1sInHdGRERERERERERE5LZunXP98rRp0wKvc9xxxx0d22vXrq16XESDFcPCyK7Ftb1eU+8N1/auQog6KaXfJJb9yvRHRFQR8YM7Ia88UVm2IjLZf0ddm4HlS/TH2cU7RTZIUBgAIFGPsMfkAAAYk28DAMgTZ3j39bnDgXuuK27qw8L8p+94vZWORwTabzTQ9J3q0pmyF30F8n8fhZg0FQ+/VlVXAIDdU85O6mVX4D6aElZQmt/QK5Vxo0rPXs7n7zmaLQAAIABJREFUqepWfOuklHh3LdBcp+57qOjrHJqhGBYW5HV27yKJeaf2buf6a/HXJk1Y2OhxJbtS3vmHgXTobyg7cEI+/oz6zEzr33QKyBQeaevfdNL6l0gll7Ue3T7TJV2qDisrhom5gshi9uCxhDKsTDjCzRL6sLKSwLOe9gziIyIiIiIiIqIRzDAEmuqApjpga0eJv4vqUkqkss4AsULYWDF4rKdssyaErFO/lrxq76ytfrEtERERERENfV4hVlGDYWF2Qc9HXvbOQcxo5g0CDGUjAqBfZFbNhNEe9uA+t5Dg8h0iIiIiIiIiIhqm6iYBh68Y6FGMDHWTBnoENdfW1ubYbmpqCtyHu83GjRurGhPRYMZPG8hub9f2x6pKUso1QojXAezasysMYBaAp30eZ7Zr+y9+B0hE5EV8/hjI5x8GFv65pKwtNFrbbnp6mXPHxk+9D/QZ96/LKsXrYZSJ9vg01Fq+n6POgthmR8g5RwGP3QkAiGnDwqy7A8q2dRA9QT+VznEYFRdYfKmBo24xsarC9805EYa87tsQ19fmv4RxeWfeZVRmEJI55ANMtIiGgPpodQtjRsVL9/38qwIn3FH+ZGdc+XFvfixx+K9NrFhvhW199bMCd58kEIsMztAwr6/QPc/mmqMELv5z7RYJDcWwsGr4DaCrmjYsrPT3U9o7/zCQT9pr11fNGOUDjcRV90G0TNCWSymBbMYWJGYLFEungExPoFjaFjJmqyMLgWPuIDJHm6QtrMzVR66GiW40vBReIxWoOqgsFFaHicVKg8lUgWNCF3BWEkxmr9MTahaJBr7bABERERERERHRYCKEQCIKJKLAeMe8J//XPHJ5K0BMFThm37dZE0LWngRMzUWid3mjRiIiIiIiQrkQK8VkqxEsaKiXaQsoYigbkTfd1ZJazGK0B/e5hQRvpEdERERERERERMOUEQYaJg/0KGiIkq6Qg1qs8+NaQRrOGBZGAAAhRBzAUa7dCz2aPITesDAAOAk+wsKEEDvCGUrW5acdEZFfxlX3QmbSwN+eglzwZ+CZewEAJgxtm62zHzp3rP3I8xhi4nZVj9MhUVe2yhEdj5atI87+qfXv7KMge8LCImXCwvDsA8DRZ3v3m+yAecHxEPv9J3DQf0M0jS2ps/s2AiuuMbD8rBOws3l32bG65UQYWPxc4HYqJ276fck+AaDe7MLmkP8k4VgEaIhVFxYWU7zT+sruPsPCbDeXy+QkdpnbmwglJfDAYonGBLDbJIl/rwH23hY4dk+BaHhw/PESJHzunDnDKCwsHOmXECYpZfEP1az+RoS1PaYuLKy5pWSXO+yuGolo7fqqme0+U75OOOJZLIToCSyKAQiecl7tT7rM59VBZcWwsRSQTiqCynrCyjKaOu5wsmKomaufGtyFk4ahfA5IdlqPClQdVuYIIisEiiX0YWWF7ViiNKisGFIW6w0kU4WVFYLOwrw8Q0REREREREQDLxwSGNsAjG1wl/i7IimlxF/eAA77VemF+rZuYEOnxNiGwfE5BhERERERDYysJsRKwEA4wI0gR4JIwFCvPHon7HiGhQUMISManvouLswe3OfGsDAiIiIiIiIiIiKiUmPGjHFst7e3B+7D3Wb06NFVjYloMOOnqlTwPwC2tG3nATzhUX8egB8AKHxidZQQYpqU8h0fx7F7QEqZCjRSIqIyRDQG7H845OsvFfdJj0UMBvwnC4kzf1zV2JQSJSsuSozJbyxbR0R7JvHM+FxxX7RMWJj8YHnxzGinOJh5YNEzkIueAR76DfDLpyDGbFF6fCGww5sPYvT216MtNEbRkV6u5y1JMlP9RIuvdDzUO6Z5r0M+egewfCnqu7oDhYU1xgUa4hLYXPlYoop3WvGIwJwdgAVvebcthC3lTYn4t9Sv0dtf6D1ftywEHvi7xJ+/ZQyawDAd9+jqkhvwydu7Yvz2HyrrB2UOZAbRqNFA21plkcxmICK1Sb5qTwLNPTmDuf4KR3tlvnp/c2vJrnQNw8JKF6UNAjvvXb5OmbCwgSZCISBRbz0qaV/FsaWUVqieI3CsJ1AsrQgwK5a7gspKAsoKz90BZ64++iHQj4aowmukAlUHlYXCpSFjJcFj+sAxEUs496kCztx1bH3xTglEREREREREVAtCCPzHVvorJe+sHaTXfImIiIiIqN9kpDrEKiqi/NzSJWioV94WUJTVnGcAiAYMISMajkTVt2rUy8MjLIzLd4iIiIiIiIiIiIhKjBs3zrH99ttvB+7jrbecC/dbW0vXPhMNF/y0YZgRQpwA4Gkp5acB2pwG4ArX7ruklB/o2kgp3xFC3A3g5J5dUQB3CSEO0oV/CSG+DOCbtl0ZAFf6HScRUWCxuuJT0+ODfREk3uHos6sZkVq8fFDL9Mxyz3Lx4wd6n0djxa9IFxZmihDyMBDaWP6/C8f5WbkMeOxO4BsXO+rI9Wsgf3I6AKDB7AocFpbvuVvaP2qQFTUq31F8LrbeAeKcawEA9d9PAeUz14qaEsCK9dWNJaZ5p/WHUwxseZF3wlOmZ77ITQv8vz6ffAPY88cmll5mIGQM7OS5QKEpb/4NLfkNyC3r/Zk9aOu/4Pn6Ayo6dr6/wrNU4gl9WbITiKh/NoKGzKzt6A0Ly+rnFtXWmpXq/c0tJbvS2dolth35H4NvIqgIhcp/z+ob+2MoQ5IQAohErUcF56naV4TM54FsWh04lnaFjDnqJEvDytJpKEPP3GFl9nI5kImGNGjlc9b/E8nOippXHVYWjQHRRE+omDpQzAobKw0hE8XyuK0PReCZMvQsDhHmpSkiIiIiIiKi4WR8E1AfA7oU69LfXycxc7vBd82XiIiIiIj6T8bUhIUxwKpE1Ah2U0J7WJjuPANAWAzuG+AR9Q/19QlZ9QwMIC/1d9oMiZC2jIiIiIiIiIiIiGikGj16NKZMmYL33nsPALBp0yYsW7YMO+20k+8+Xn75Zcf2nnvuWdMx8qY3NJhwRebwcwqA3wghHgTwAICFUsouVUUhxB4ALgFwpKtoNYAf+DjWFT1tR/ds7wvgr0KIU6WUxVQbIUQMwOkArnO1v84rkIyIqGrZ3gkv0uMNmAH/yUIi5hEEVKl4XdkqE3NrvCvsvLdyd1RmtU0yIorE6N6kXV3AkjtMTd4+F8IWFiZNE/KUmcDGTwAAo8wOBJWDNQHigw3VT7QYn7cC0MRV9zn219dFAoWFjYoDs7cHnvXOafMU1czrmNAscPkeH+KHi7fStp33qsQ2Y0x89/5g5+Rfq4GL/yxx7dF9+0eHlBLpHNCdsRb8FP7tyljPP9yoH7f7x1F+/6iSOnGPu1uWM6BhYTGPn+dkF9AYLEhPZ+1mYPstrOe5fggLk1ICoRCQLz2YUIQ9pfXznQKZPgHYe9va9NWvEvX8w38QE6EQEKrz9f+vsn0Vx5ZSArmsIqjMFSimCR2TjnJXWFlJ2Jmij6w6RJTIeq1U9n9v1UFloVCZQLGYZ7kzrCxuCzVzh5XZtm11+PuaiIiIiIiIqLaEEDhyhoApgamt1mNaq8C0LYAx9fw7nIiIiIhopMto5gQxLKxUSIQRQhh5+JuIYw8o0p3niIjCEEZNxkc0HNXiFoD24D63kODyHSIiIiIiIiIiIiKVWbNmFcPCAGDevHn40Y9+5KvtsmXLsGTJkuJ2PB7HZz/72ZqOLxZzfpaVTle+Dp6oWvy0YXhKADix52EKId4BsBJAO4A8gLEAdgOwhaLtRgBflFJ+Uu4gUsqPhBBHAXgKQOH2VfsB+LcQYgmA9wE0AdgdwDhX88cBXBbsyyIiCsjsTQwyoZ/gYkifyUL/+c0qB6SRqK+6CzF2vHPHrMOAFx9HVOpDQTIiioS0pjZIKXHe/erzkDBT3gd//M5iUBgANJid/gZtk+uZAPHeusBNS0zLvGs9OeAIx/76gPPJQgZw8iyBZ5dXPv0j6vFO67L2nyG2tgmXtl6lLH9nLXDSXZUd++dPS1xzlEQ62xvepQr06kpL619bnUI96yEd7Qp1C8/NCk+NfSmQ1ATXxIZqWJhX+FBKmd9akbW2TL5aTFAqK9mpDAoDAIxpLdmV0ucU+rbNWOC5CwyEjKG3eEyczLe5pCaEACJR66EI2ivbvsrjS9N0hYmpAseSiqCynrCyYiBZsrSdPZysGGqWdvYr++U3Fg01+bwVqJms7P/JqsPKVKFixTAxj9CxWKI0qEzbhzusLA5EExBhXpYjIiIiIiKi4el/T+HCcyIiIiIiUsuYmrAwwbAwlagRRdL0GRaG3rk92vPMUDYiAF5zcKqf22IP7nMzhOYOtEREREREREREREQj3Iknnoi77767uP3rX/8a55xzDsaPH+/RynLxxRc7to899tiScK9qNTc3O7bXrFlT0/6JguCqxOHPALBDz6OcZwF8U0r5kd/OpZQLhRBHArgLvYFgAsAePQ+VewGcJqXHbXOIiGpAfPUcyPuuB+AdFiZ8frgvvnFx+UqViFthYae33Y7bRp9aUnz12h94t9+m9Fe82OMgyDJhYS3bf4zJ76/HitO9fx3Xm/rgBrluNeTPznbsqyYs7PJHqptosWV2tTWJY/peViCLTX1U2URrhy2ADZ0C1Uz+iHm80xKP3o7/AfBqYm88Nuqwio+hEzlzIBOzAnjzb8rd1YWFDWAYTcwjLKzCEBSVtR0S1ccGBfDRe/qy3WaV7Er7m6Po6c9nGWhtHHpBYQAA3oGVBilhGFaooVewoVf7Ko4tpQTyOWeYWDqlDSbrDRzrrSPT9lAzTVCZrg9NOCWR9dpJw8pXD6bqoLJQSB8oVgwVUwSR9ZSJaEIfVtYTaKYOKosDkZj1O4GIiIiIiIiIiIiIiIioH+lCrCIMsVKKGnEkzW5fde0BRRnN3CuGshFZ3PNLC2RNwsL0c3JDXL5DREREREREREREpHTggQdixowZeO211wAA7e3tOO644/Dkk08ikUho211//fV45JFHittCCJx33nk1H992222HaDSKTMZap7hgwQJks1lEIpGaH4uoHH7aMPz8EsBqAPsB2MZH/S4ATwO4SUr5bCUHlFI+KYT4DIArARwDYLSm6qsAfi6l/FMlxyEiCkq0ToLcdT/g9ZcgPeItDPgLVRITJtdoZC4JKyzsiI5HSsLCwjKLIzc/omrVO66LbindGbL+i/cKC5PCwIp8a9nh1cmkun1nO+RR25XsH1VJWFiN3pKcuulOAIA44IiSsvoA85ymTwAa4gIzt6tu4kdU82XJ1b3BS17fo+EqbLs5nnzsTmWduJmquP/8QOakxeL6Mo+wMBnwpfbsMokzD6isbUXe/oe+rKmlZFctwsLCQzm/hOErRCWEEEA4Yj3qRlXWRxXHl6YJZNPOoLGSwDFX6FgxbCwN6aivrqPsp1BuDpEQT+pf+bz1/qDCQNGqw8oiUVugmCKsLBrTlotY+TrK0LPC81BYO/maiIiIiIiIiIiIiIiIhi+GWAUT5LzYA4p0oWxRhrIR9dB8Xl2DuXh56CfPhURIW0ZEREREREREREQ0lH3yySdYuXJlRW0nT54MALjjjjuwzz77FAO5Fi5ciP333x833XQT9t57b0eb9evX44orrsDNN9/s2H/RRRdh1113rWgcXqLRKPbbbz8sWLAAALBq1SocfvjhOPPMMzFt2jTU1dU56o8fPx7xuMeac6IqMCxsmJFSPgTgIQAQQjQD2BnAVgC2AFAHwACwCUAbgGUAXpfS4/Y1/o+7FsBZQohz0RtUNh5WGNlqAP+QUq6o9jhEREGJH94DecQ2MIU+uEX4+XT/2O/WcFSu44cjkOEIvtD1LH71yXfxg3Fz0R5qRktuHW5fcyamZd/Ttz3/Rohd91MUWBMZYprJVUGEdP9N/PlW5e6GCsLC8iKEDaExgdu5bZFbaz0Jl6bw1scE/M7keOl/rNfLqCrfg8d0YWHXnFF8PtLCwsaNArbqiRWVC/4EPH2Psl6sivOS74/wLB2vkKhUZUEgKo+/3vu8X8LCkvqfazGquWRfTcLChvK8KIafEA06wjCsQKNYAqggq6yqoDIpgXxOEVDmChRThY711JeqdvZtrz4y1b8fpGEqm7EeaA/ctOq3H4YBWQwQS6iDyhyBY7Y6sTiEu04xsEwVVhZz1onErN8JRERERERERERERERE1O8YYhVMkPOSl70TdjKauVcMZSOy6OaByBqkheU1c24FDBgec5mJiIiIiIiIiIiIhrLjjjuu4rayZ6H07rvvjl//+tc488wzYZomAGDJkiWYOXMmpk6dip133hnxeBwffvghFi1ahFzOuZj54IMPxlVXXVX5F1HG+eefXwwLA4D58+dj/vz5yroLFizA7Nmz+2wsNLIxLGwYk1JuAvBSPx8zA2BB2YpERP1EjB0PXHUf5DU36+v46eeLJ9RuUCq5LADgrLbbcFrbHVgV2QqTsx/A8Jh4IOavg6hv1BRaX1VUZqse2s7pN5X75W8vV+4fVUFYWE6E8VT9wYHbubXk11tPItGSsrrSXSWebrkWn7/64uK2EAJbjwFWbaxsPFHdO61/vtBbpwbfo6Hk0kMFDENAfvw+5OVf09aLy1TFx8ibFTetnulx8GTtwsJ237pmXXkyTWl9v/54E56sPwTzGw7BmPxGHLP5QeyUeUvbriZhYYN9XtSBXwWee1BdtosixJGIRiwhhBVkGo4AdRUklaHKsDLTBLJpfVhZMbBMFVSWhvSqoww9c/Xr9X8jjVymCaS6rUcFqp2eLSPR0nCyYuCYKqwsBkStchHT1Cnpo7DPFXoWClu/F4iIiIiIiIiIiIiIiEagrDbEysfkrhEoSLhXHr0BRVmGshGVof7MtjZhYerJcyExlO+eSURERERERERERNQ/TjvtNIwePRonnXQSOjt7MwveffddvPvuu9p2J598Mm699VZEIpE+G9thhx2GH/3oR7jiiiuQz6tvHEHUHxgWRkREw9+4iTChTp0R0md4wZjWGg7IWxh5bJdd6V1ppz31QWEAChMZoprJVUEc3vlEoPoN+Y7Ax8gjjCXx/wjczq0p3249CZW+ka/3Mc9p0rK/ALjYsW/cqCrCwnzM7ajF92iwCRvW+a6LWv/WR4HtxgHH7mngq3tYr015/42efUQnbQ1Ulh0xsGFh0mOyUA3Dwl5533bImvVaavknwPSJwDXxM3BZ03eK+3855hz8ZdV/YeZeE5XtMrUICxvkc6PEEadB6sLCtp/Rv4MhIvIgDMMKKIolgAqyyqqNNJK5nCtMLKUPHbPXcYeVlYSdafpxB6IRqWQz1qNrc+CmVb/3MgxId6CYPUysJISsEFYW7wkr09Qp7LMHlsVK6wljsCeyEhERERERERERERHRcJZhiFUgUcN/iFpe9i5KyUj1eY4wlI0IACCqng2hZ/9ZtAthkE+IIyIiIiIiIiIiIhokjj76aHzuc5/D1VdfjXnz5mH9+vXKepFIBHPmzMEVV1yBfffdt1/Gdumll+LII4/E73//e7z88st4++230d7ejmQy2S/HJwIYFkZERCOBMGAK9YJoAz5ThZpaajgghc/MBN541Xd1cdnvylSoXVjYlzseDVR/lNlZvpJLToQgazD5osnsWewfKZ3UtMlH8FS0fU3JvtYKQjUAYPoEwDDKf00DERYWC9vCvKK9oV694V4CCdc+Z13hCAJz14mEfXwv/3yLZ3Fi+gxgcWVf38CGhXkcPFW7sDDHIfswLeyRf0psNQb4Yewsx/6OUCOuGncpnnj/AmW7moSFDfYcixmfA/7rZOCxOx27xe2vQoi+m0xGRDTUiHAYCDcAdQ2Vta/i2NI0rUAoR5hYUhEylrYFjSXVQWWOeklNWFna1kcSMAfyTQkNWqYJpLqtRwWqfesnwxFnoFhJ8FjMM3BMRONATBNUVmzj+rfwCEf4PomIiIiIiIiIiIiIaITThVhFBcPCVCIBzkte9k7YYSgbUaWqn4yXhyYsTHDpDhEREREREREREQ0fK1eu7NP+W1tbccMNN+AXv/gFlixZguXLl2PdunVIp9NoaWnBpEmTMGvWLIwaFTwIYO7cuZg7d27FY5s+fTquueaaitsTVYufOBAR0fAnhDaIyldYWDQGYfRxak2iPlB1sdW0MhWsrzcuU5WOCABw8fqfwlBMfpBt67RtmrYYHXi+RA5hrAuPCzq80mPn260n4UhJ2cHTgbte9m4flVnHtjRNtGx6F8DUwGM5ZZb6NSc//dB1TPXErGpccqjAgTsKZRBYXRQI+QgxG2ixiVuh0ok3AxsW5jHmpD4srJLAr86URENc1GB6kp4hgHl/k8ii9GfqqYYvANMPUbbLqOc7BVI/yOcmCiEgLroF8vgLIf98K8SkqcAXj4eI1w300IiIqIcwDCusKBavrH2Vx5e5nCtMTBU4Zg8Zs4eapVxhZemS8pK+0646RCq5rPXo2lxR86reewoBWQwUS6iDyhwhYwlHWJlwB5MVQ81ipUFlxb566kRiECHeqZuIiIiIiIiIiIiIaKAxxCqYIOfFlL0TdhjKRuRNaGYE1GIunv1n0S4k+HklERERERERERERUVCGYWDPPffEnnvuOdBDIRo0GBZGRETDnxAwoQ77Ej4SesQ5P6v1iEqtWVnb/nrCwsKaO5T5VW+qw43kGbO0bZr23AdYFOw4eRHC2lANwsLMngXv4WhJ2fQJAuWmcsRkGvKjdyEmTYXMZSHnNGBc64+Bsef5HsNu8Y9x0pe3xHcO0gTMffi2Y9MdUFYLVxwmEAkP3kAwmcuVrRMrzabyLd+X6VnlrHpbWyRTXVWHjti9/B7whZ1r2KGCIYB/faQ/oWLKLsr96fLfYk/xCDCmfvC+hu3ExO0gzrl2oIdBRESDkAiHgXADUNdQWfsqji2lLA0Yc4eOpZO28DJnHemoowgrKwk9cwWe5at8M0DDk5TWayadBDragjev9vDhSGk4WTFwrLCtLy8JK1P1EVPUiSWAcARCDI33t0RERERERERERERE1ejIteNP6+7Uln+Qele5P8IQK6Ug4V555NCea8OSjhfxcvtf1f0xlI3IU8ZM464112vLoyKOaXU7Y/dR+yIk1EtxPs2sVu7X1SciIiIiIiIiIiIiIgqCnzgQEdHwJwSkZqm9AbN8+/Fb13hApcSh34S87TJ/leN1fnqsajwFo8xOdcGaldo2TTvtFDgsLCfC2BxqDNZIdWyz3XpSV19SNtZHRkNUZiD/dDPEub+AvOtqAEAe/u/mdtfqU3D87DoYB92srSNv/UHJMWvp118b3EFhAIBNa73LjzwD8WrCwnz8WPeZdeqJPgCApDp8r1LrOyXk2tWQ6wBgQk37LjAEkEtnAJQG8AGADEWUv20yVeaD/OU7mrA9IiIi8kUIYYUWxeKVta/y+DKXA7JpW5iYInAsXQgZS5YEkcmSeqqgMo86RCq5rPXo7qioeVVhZUJAukPG7GFihW13WFkhqMxepySsLA5EE7a2pfVEiHcpJyIiIiIiIiIiIqL+kZEpLNr8fOB2DLFSC3JecjKHn6/6H2zI6udmBQkfIxrOdDf6MZEv+zvsxfan8FrHKzh54vcQEs7P4Val3sMTG+5TtnPXJSIiIiIiIiIiIiIiqgTDwoiIaAQQMIU6eEb4We6758E1Ho9Cc4vvquLbP+/DgTiNy60L3Ka5pRHwE8Jmk0MYKaEOMtgh/Ra+s/EmnD3hRs8+mvKbECsEb42bVFJer846cojKDPDHmyCPPhu42woL2z/5Mn6J75RvjJ7XU7JbWy67O4C3lpYes4ZO3m+QB4UBwJKFnsVi9zmIVZEVNVBhYTKT9q6Q1ITvVej/3kzh2GtnQzY8CsT6JiysMQH89lX9D4+580y4v1VSSmTzlR/znR8ZmNI6BF7HREREpCXCYSAcBhKlIb6+2ldxbCklkM24gsmS+rCyYrkiqCyjruMMKHOV56tMTaXhSUrrNZJOVta82sOHwj2hZK5AMXvAmKq8EDZWEmRmDyqzPUrqxIFIVLvYgoiIiIiIiIiIiIiogCFWakHPi1dQGMBQNqJa+UfnK3in+w3sWL+bY/+TG+7Xtglx6Q4REREREREREREREdUAP3EgIqLhTwiYJXE2FsNHqJUI98N/l4kG/3UPO6l8HdtC3MM6nsDjo/6zgkEB+yVfCdZgdCvGVpAHkBNhdBt1yrLvbvwVjmu/H99v/RE6Qo3aPlrtwWatirAwH/OcIjILAJDHTi/um9O1sHzDHmkRA1JtyjL50K2QN36vZH+tw8JiQ+DdnfxRmdfw7gcg/mbl/W/S57X1rXSZA6f05Wvagx/utldjuHnth0CAXx9BbTNGwCuaIDdmYskfFJkq8jGO31swKIyIiIiqIoToCTqKAWgK3r7K48tcDsimSwPHimFjrqAyV4CZVAWVOcLJXM8ddSoLoqIRIJ8DujusRwWqDisrhoklnEFkMUU4mauOUJZrwspKQs/iECHeoZ2IiIiIiIiIiIhoKEiE1HPHRrpan5e4Zo4e0UhTi4DCd5P/LgkLe7v7DW39mKG+oS4REREREREREREREVEQQyBOgoiIqEpCQLfk25Dlw8L6xR4H+qt34vchDHXwmYMtLOyCDdfjufrZ6DZ6U7xCModb15yDc8bfgLTHBIQtcx/7G1fhsN+5Dq36PC+tnAgjKRLKsoSZRIPswoUbfoHLW+dq+xiX7w0LEw2loQDRsPey/7DMwlAsgW4yN3u2s2sLNQOpj0r2y2WLIX9xrrJNLcPCYuGecIRBTHaow9SKjjkXonEMYuHKfzbf+rTiptXJZb3Lk53aokNu0H+9iQiQ1HT9YmIfvBXbwc/oKrJivXcsgBktnUCYyVd+vEM+U3lbIiIiosFAhMNAOAwkKkhRRnVhZVJKIJspDSHLpG0BY0lNWFnaCiqzh5qVhJWle0PJ3OWZVPn3wzRyFV4jnZsCN606qCwUdoWTxYBoQh1Upggsv1z7AAAgAElEQVQcKw0rcwedafqJJYBIdND/jU5EREREREREREQ0WGyf2GWghzAo1fq87FDH80wEAJMT2yOEMPKo/M6YGTPt2JZSImXqbyg6rW7nio9FRERERERERERERERUwLAwIiIa/oSACXXAlii37LR5XB8MSDGO5payC2DF+TdCHHmGzw57F6Pun3wZz31wCO5uOgHLYjtgz+RinNn2W2yT+xDT08tw85gzMK/payVdnL/h+gBfQeFgh2NsBe8ucgih21CHhdVJa/LEJRuu9QwLa82t05b54RXadXrb7bht9Kll+1gXagGSpZM95FkHeBy3dgvqY0Phnd1LT3oWi7N/CgCIRwSqXxbezzIp7/Jkl3J3R0ri/fX6Zl5nYfbkZ8uPqwqvvu9dnlNknGUqnz+F5gQX0hMRERFVSgjRE1gUA1AaoFy2fZXHl/k8kE2rA8fS7vCypDqszBFO5n7uCidz9JkC5BD7+4H6Rz5nBTd7hDd7qTqszBEgFnOGienCygpBZbGEIoTMVscWalbaT9wKLyQiIiIiIiIiIiIaAj4/+gi0RLcY6GEMStsmdsBejbOxaPPCqvua2XggtolPq35QRMNA3EjgqNZv4sG1t1fchwnn5LlsmRvHHjT6yxUfi4iIiIiIiIiIiIiIqICrRYiIaAQQkEK97NmAIunG3vLi2/piQGqGAZj68fgOCrNqO7b2SC3FHqmlJbX2Tv0de3/8dxzb/gCOmTQP3UY9AODArudw2fprAhwPwDcugYjFK3pzkRNhJIU6LCxu9gYwbZ1dhVWRrZX1WvM9YWGGOhgOAOadKvD129VLfUMyr23347WX+wsLC7cCb7zi2Ce7O63FyRpeIWVBxSM166rvrFnpWSx6flarDT6TUhb76jeZtHd5Sn3XwPVl1qyfM0fg508PTPDB3a94H7c9CTS6fnTb9DdHLGtIvIaJiIiISEmEQkCoDojXVda+imNLKYFc1hUmluwJJkuVBJP1liuCyjIpIF0IJkv2tE9795GrXQg0DTOF10wFqg4qC4XVIWP2gDGPwDFRbGfvQ9FPLF4SVIZorP//JiciIiIiIiIiIqJBISYS2KfpIF9164wG7FQ/AzvVzejjUQ1dhjBw4vjvYEbDTLyTfAMpM4lkvguvdb7qu4+xkVZ8ZdzJ2LVhLxhCP7eOaKSZM/owbBXbDm92LcXmfJu23ltdr2Oj4ma2pmvOaUbq5w9+Z9KVGB1pqXywREREREREREREREREPRgWRkREw58QMDXLjkW5pZd7H9IHA9KQNQwDCrgg80tdT+Ojd7bDy4mZ2DL3MXZO/xtGwGWp4vBTAtW3y4go0kZcWVYne5OHDu58FneMPklZb3zuE+uJR+DajuMFdMttuw39gvbR5ib8bcV+2Hvbl7R1AOCgrucAAHL9GoiWCdbORc94thnuYWGyuxNY/CzwyQfA7rMh7/yhvrLtdZuo8mvJm0A4VF0fgSW7ypSrU8Gy+pw6AMAJMwcuLKycJ/4lceYBzt8375XOi/JtW86HIiIiIqIKCCGASNR61DcGb1/l8WU+D2TT6sCxYiiZKnQsBaRTzrCytLufpD6srFBey+sJNHzkc9bfoZq/RcupOqysGCqWAGLuoDJb6FgxsCzmDCqLxmxBZAlN4Jkq9CwOEeZHX0RERERERERERAOlIdyIE8Z/e6CHMawYwsCMUTMxY9RMAMDazMeBwsK+tsW3sFM9A9mIVKbWTcfUuumedW7/+Fps7FCEhbluVpwx9WFhYyKtlQ2QiIiIiIiIiIiIiIjIhSsmiIho+BMCUrP015D6YCkAEKF+TBsawLAwAGg0O/DFLu9gK89Dtk4qPr/oiwLXzvf/9XQYo7RlCTNVfH7+xhu0YWFf7Hy67HFGqfPIAAB54f226LOpf3iWC2nikML5e/lJoCc8TV52rGe74RwWJtvWQl5wGPDOP33VFyddVnw+tqG6Y5sDsVZ+U5mULE2YWLmwsJ0nAluPAVZtrHBcfei1D0v35b1/rWrtsiWw3bhqYxqIiIiIiPqfCIWAUB0Q14dQe7av4thSSiCXLQkgKwkUU4aVWdvSHmjmDivLuEPPXOXZ2v1NS8NMJm090B64adVBZaFQmUAxRehYLO4RVlYINXO3i7naW3VEBdfliIiIiIiIiIiIiPwKiWBzGqMi1kcjIRoZDKh/5kzpnPiX9ZgLGjP4c0hERERERERERERERLXBsDAiIhr+hIAJQ1lkoMJUm8Gunxclimsfdmx/9yCB+W9IvP6Rv/ZdRr22LC57w8J2yLyDi9b/DNe2XOioc2bbbdgztdja2OtgbV/1UX/jqcQvP70AY/NWmpN85zUIAHLlsrLtojJbszEMurCwe67zHRQGADjqzOLTlirDwjZ1A62N1fURWHend3mqW7m7PalvcsvXBQxD4NbjDRx64+D7fbVti3PbNCXmPhp8nA0x4JfHqn9PExERERGRnhACiEStR31lfwRVFVZmmkA2bQsTUwWO9YSM2ev07JPFcDPbv6qwsmJgmWu7lsHrNHzk81Zgtya0u5yqw8p0oWLFwDJ9uTKoTNmHKqwsDhEeZBeHiIiIiIiIiIiIqOZCAaf/RxlSRFQVQ6jnteXhDAvLmGltHwztIyIiIiIiIiIiIiKiWmFYGBERDX9CYIfM27hw/c9hCgMSVniYhECd9Ejpmb5X/42xnDFbBKvf32Fh+3zJsT2+SeCFiww8+S+J435bfollt6jTlsWkcwLF1euuwKGd87Gw/gDkEcL+3S9iTvfzxcXN4qiztH3VVznf4q8fHILPb/NUyf4vdD6Db7X9pndHz/mXvzi3bJ8Rj7vJBRUfbO/s7rvBd1Vx5o8hmsYWt0fFqzv0wdebeO1yw1o431+y+sk+AICkOkzsv36lD9c6fqY1/i9Mr3hUWtNagXfWVtdHl+tLPv9BicUf+G9/+WECWzQCX/yMwLYt/ft7i4iIiIiIqicMwwoviiUqa1/FsaWUQD7nDBpzB4q5Q8eKgWXWtkyXr6Mtz9bu73kaZjJp64H2wE2rDioLhdQhY/ZtR+CYPYgs3hNWFteHlRUDy0qDyhCJWb8TiIiIiIiIiIiIqE+FRChQfYaFEVXH0NysWErnvD/PsDD+HBIRERERERERERERUY0MtkgJIiKi2hMCu6bfwK7r3gjWbsb+fTMenc/OAZYsUJftNitgZ/0YuqMZ26i4wDF7Ctz9ch7z3/TuosvQh4VF7WFaXz4NeOS3mJV8BbOSr6gbzPyitq+YxzufqMdEjYLZ3S/g0nXX4MfjLi7u26/7JTzx4ZedFXNZyHWrgX88X7bPaA3DwmIfvwWZmwYRjtSsz34zdRfHZl20uu7+tRpY8gGwx+Tq+gkkU+Y1lOqGNE3Hwtl3PpVo69Y3ifTM7TOM2v9MH7qLwM4TgfMekCWhX36t7eh93pWWuPFZ/8ua559r4As7MyCMiIiIiIgqI4QAwhHrUTeqsj6qOL40TSs02h5W5n6uCh3rKZeOuu46qtCztLPc1AdP0wiWzwPJLutRgarDyiJRW6CYJqxMUy5i5esoQ88K7ULh/g2NJyIiIiIiIiIiGiAhEWz6f0RUORGLaIQzNAF9eXdYmFRPwjMQCvxzS0REREREREREREREpMNPHYiIaPirdJFYtnYhTr7UN+rLwgEn7PTjwjjxlW95lm9Klu+j2zMsLNt7rP/+NuQjv9WP5fwbIUL6OydGPd75xGXKe5A9rlx/FeauvwpvR6dhauY9hKBYnJtJQ/7oZF/9RT//FeAdX1XLim9cBfzxKeDY82rTYX8Szrvv1WJx5+9elthjcj8uEs34eA2lk0Civri54C3vZbgR28v5iW8b+M9f1W4xeMgATt3fwCmzJKJnmchX0PUmW9DZ/73tXXeHLYC/XWJgYxcwuYWLd4mIiIiIaGgThmGFFcUSQAVZZdX+VSRzWUU4mStQTBtWloYslivqFLZ1fZQLy6aRK5uxHl2bAzetNqgMhgFpDxSLKQLG3KFjsd5/hapOLKFp5wo0i8Qc4fBERERERERERER9SRdcpBM1Yn00EqKRwYD6Z0665o5mNDes5c8gERERERERERERERHVEsPCiIhoBKg0LKyfFz5O3FZfFjQ4qR/DwrDfYZ7F9jAhnS6hDwuLFe62NmkKxNY7eC4cFEee4XkcrwCqmOaubsp+AOyQ8Uj42rQOWLrQV1+xo04Bflr1ckgAQFymIZ9/BGIQhIVJGfBr6oMFle9+Wpvz6puf3xndHY6wsM4yTeyv2S/tIvDs+QYO+kVtAsPCod5jtI4C1rQH7+OBxRL3nW49X/yB9/lubQQaEwKNieDHISIiIiIiIicRjgDhCFBXQVIZqgsrk6ZpBUJlkvqwssK2PZSsEFRWEl7mfrhDz1zbZu2CtGkYMU0g1W09KlDtVSQZiarDyQqBYiVBZIXtBERMF2jm7qNnnzsILRypSfA+ERERERERERENDaGA0/+jgkFFRNUwhHpuY17mHdsZzRxU/gwSEREREREREREREVEtMSyMiIiGv0oXSmWztR1HGeKI0yHvu0FTWPuwMPGrv0LM2B/yvushb/p+sP4Lxm8DEfWeyHD8TIEfPOy93K7b0IeFRWUGACBue9na8dk5wJIFJfXEFb8vM1hvRiSi3C/OvxHyibuAt5b67+xvT/uqJm79P8TCAtUvR7TEZBp44xVfdWU+by2wTXX1LqRMdVvbyS6rLNkFpLuBZBekvTzlbqfoI/DCzNovaExEa96lt2ymfJ32DcDY8cXNhoDzgObsKGDeFsK8/zwBJ2x5V7DGLiHbKTdqcPpvWuD9Ov6PrblolYiIiIiIaDgQhmGFFcXiQAVZZdX+dShzOWe4mDtQzBFWlrJCzXRhZYV2xVAzRT/pdG8fmX6+uQANHdmM9ejaHLhp1VcGDQNSFTJWDCZzhYs5wsriELo69n4KgWUxd6BZ3PqdQERERERERERE/SYkQoHqR0R/T6IiGl4MqH/mTLjCwkxNWJjBn0EiIiIiIiIiIiIiIqodhoUREdHwV2FYmNj9gBoPpIyJ22mLxK77BuzMx9fcs4hLHHse5IplwJN3BzwGgHFblq3y/+zdd5xU1f3/8fe5U7YvLG0lIE1EQFFQEEHBRsQaEQtijC2JRBPLT42mfCMYS/SrJl9LTGxfMMao+SqimMRoTDCWoIFILJgIikRQKUtfts/5/bGw7MzO3LnTd2dez8djH+w999xzPjPM3YWZc9/3oP7xw7Dq4oWFTTxRpqK7JMlc8hPZb02SmtuFufUdKB1+kqeSYwmVVEiBYHjgU+9+0pSz5Jw2S6FJab6724ix0ohxKvoifUMWh+olSaGbLooR+rWzLfxLjfXpmzgdMnBRYXlRlsOpvDynW2vCNm2SV4PO3PZbPVl5pp6vSP5172v3lKcSFlbbYPXvL6T122P3KSuSvn44YWEAAAAAgNQZv1/yl0ul5ckdn8LcNhRqfe+oQ6BYlKCyyPaG+oigsohwsqihZw3txqiTWlriF4nCEwrtCfFPQqphZdYfCA8UiwwrCxbtCiOLHjhm2h8Ta4yi3eOUhLf7AzLJ3iwEQMbY2m2yN10klXeTyiql8m4ypRWt20efLlNRlesSAQAAAKBLc4wjI0dWobh9g6aI90+AFDkm+trGkA0/BxttjLAwk+a1pwAAAAAAAAAAoKARFgYAyH/JLnY54pT01hGHMUb2kKOlpX/puPPwkxMdzEunPd9W9Uls/N169Y3b5ZjhUkWxtN0lR2mnKYm5L2gbZb4+u23b7DdGuvsl2Udvk/7zb2nkeJlLb5EpKUuo9Egh45e5b5HsI7dIH78vjRgn862b2i5aMbc9I3vdaSnN0ebUb8p862YZx1FpMNXL8fYo3r3Y5I+PpW3MrImxoCYVxVm+IZ9tjL7YJ8z2zWGbjUlc42vn3ixJ6tucWtJc+1deKlltOxulb/3affHhy1c5GtWfhYcAAAAAgK7NOE5raFFRcXLHpzi/bW7uGFTWIXAsMmRsTz/btr8+ejBZ2Bj1UkNEHyCa5qbWr50uSfIuUnp31BjZDqFiEUFlke1FMYLK2vaXhLcVRY61K7AsUCTj86VSPZC/ttZIry0Ma9p9rptDjpYICwMAAACAlPmMT83WQ1iYQ0gRkCpHMcLCFL74rzEUIyyM8xAAAAAAAAAAAKQRYWEAgPyXRFiY+cFDMqXlGSgmzrxX3SV7+VSp5vM9bZffIdNzrwQH8vKY91yGZU65UPax2zt26bO3NGR/afEL0ac55aK4s5QEje77qtEF/xtSi41eV60TPejLsS3yKST1HRg+76gJMv+9IO7ciQhZyQw/ROYnT0fvcOhx0nHnSC/+JqV5zILVYX+fZWkMtCq2XfiizQzcwXJHtp+OpvhhYfbFx2Umn9q23dic2BS2fqfs//5YklQS2pnYwREamvZ876Tw9Nc2SEtWx95/55lGhw4mKAwAAAAAgFQZv1/yl0tJvm+Zyv/OrbVSU2N4mFi00LGGiD93B5WF9alzCSurlxrrOgaetST4JgoKg7Wtr6eGuuQOT3V6fyBGOFnJnu2i2PujhpW1HVPSLqwssk+xFAjKZOA9VSAt3MIDSyuzVwcAAAAA5DGffGpWU9x+QUNIEZAqn4l+04AWGxEWZqOvHwxwHgIAAAAAAAAAgDQiLAwAUACSCAs74WsZqMPDvAP2k+Ytkf7+J6nmC2nsMTJDD0xiIA+PuXFPkpLpt4/siLHSB0vC+5zwNZnzvy97w9ekVyLCufrsLY05ylM5Xx3v6ODGd7X/owdE3b/ViX5xSNA2tn6ThYtH4l0YZvx+6YcPS6MmyN55WdLzRAa/laVxHUhRVw4LczrefW/aaGnBsuSH3FaX6uV+CfIQFhbZp6klRr9YXlvY9m1RjMVFXjW0u8Y2lbCwv3/ivv/MsVy0CAAAAABAV2eM2RVYlNybWam+O2Cbm1vfV3ELHGtoHzpWFzusrEOf9kFl7fq0HwOIprmp9cstGMlFSu9eGiMbLaisLWAsyvft+pgO+yLDyiJCzyL6GV/0CyQBSdKOrbH3lXfLXh0AAAAAkMd8xu/pzYWAQ0gRkCrHdFzbKElWobDtxlD09XxBzkMAAAAAAAAAAJBGhIUBAPKfl+Cs9t2v/FmGCvE4f/de0pfPzvxEDXXh8962QPamC6V/LJKKy6QTz5O56EcyjiPd+IT06G2yv71b2r5ZGjFO5vp5rQFaHg3v0aBZmx/U/VXf7LBvh68i6jG7w5CyceFRSyh+H+M40rSLpX5DZK86KfFJ9h3doakkEP+w/evfV7/mz/Ri+Zdd+xXHWGzSJURZUPPgeY4WLPPwFxPDtmxfx9nUGL9PcWnYZmOCYWH24Rv2DJViWFhdu5uLphIWdv5c97+j/lWEhQEAAAAAgNQYv1/y+6WSsuSOT2Fua23r+z5hgWOR4WIRYWXt2mzkcY0xQs8aouxvrG8NowIiWdv6+ol4n9/z4alO7/NHDxQriggmixE4ZtqCyUqiB5WFtZWEtwWCrQGG6LxqY4SFBYtlAsHs1gIAAAAAecpnvK2nCxr+HwakylH0863FRoSFxVjPFzSEhQEAAAAAAAAAgPQhLAwAkP8SuWhkyP7ZCerKNC+PuSE8SclU9Za583nZ+p1SoCgsoMsYI533Penca6X6nTKl5UmV5bfNCfUPWg/hS2kSSuDqKDNuisyrDbKrlsueN8b7cdf9skOb4yGladmqcfqv3jfEDwuzaUrHCha3XnhZVCqVlLaGxxWXtvsqk4pL2tpN2P52+z56V/bea73N6XQMC+tZbnTd8Ua3vZDcpWtvfCRd/GhIFcVSeZHa/mz93rT7fld7sVRRJAX8SV5o1uzh9d0YviCoMYFTwlorrfmobbsoxbCw+nanVyphYfUu16tO3jf5cQEAAAAAADoDY8yuoKMiSd0SPz7F+W1zs9TUED1wrKFeaqyLHlS2q59tqIsRVNauLWaf5IKoUABamqW6Ha1fSUg5rKx9eFhRtO/Dw8na9zFR95fEDisLCz0rzsrNTbq82u3R28sT/xkKAAAAAIjOZ7xdAhB0CCkCUuVEuRGqJFmFh4U1xbjZK+chAAAAAAAAAABIJ8LCAAD5z0tw1pfPlhlygHTqN2QqqjJfU2dQVBK12RSXxjzEOI6UZFCYJPkSDAsrD9VKx5yR9HyJ2LdPEgf1+pL3vn32ltnPe7DYbhdueURG3oKhwsLCuvWSTjxvV5hX+yCviNCvkrLW18LucLDi0ta/5zSwMV5j0UU/T38y3dHBA6z+uNyqqqhZd76c2IVYD70a67Kz2JejBf3RwsX2hIyVxQgZK90+QuWlk1QR2qH+TWtV3bK+4+Bvv9L27c4Gqy+2eX8s9qeXh22nGha23157vk/TX3kHj1yUoYEBAAAAAAAKhPH7Jb+/9f27ZI5PYW5rrdTcFBEmtjtgrD48VKxDWFmDbKNLn8iAs2hjNLuk1KOw7X6NJCHloDKfPyKELDJQrMg1cKxDWFlRx0Cz6OO0tplEbpCTK7Vbo7eXVmS3DgAAAADIYz7jbQ1V0BBSBKTKUfTzrcW2hG03xljPx3kIAAAAAAAAAADSibAwAEABiHPhxAET5Fz/SHZKyRYvF4uMPSbzdbRnjAJK7OKuslCtzPceSGsZlxxl9ItFHS8HumlaEqFGJd6D08zPfh9z33EjpReXd2wvDdXqznXXSpKCtjHuHMXtFpuYK+6U+fLZnuvLiG013vu6pFWdOdbozLFGUlB3vtwSs1+6NDZLm5qlTbXR9rpdSnaFNPCKtq2JO9/Q42vPU7/mz/Z0qd2m5harb//G6tHFVvUup8T/+3LEebwg/FwoTjEsbMa4PeM7Gbi+rEeZNLBnF7hwDQAAAAAAAFEZY6RAsPVL3RI/PsX5bUuL1BQjUKwhIrysbX+ssLIGqbEu4tiOAWdhY9hUY6WQl1qapbodrV9JSDmsrH14WFFEoFhRSeywst1BZZGhZEWR4WWxQs+KW8MLvdgR4y4Z5Yn/HAEAAAAAROfzeAlA0CGkCEiVEyOcLxQZFhaKvsYz6ATTXhMAAAAAAAAAAChchIUBAPKfSwiRpNYLHvKNh7AwU1SShULC+W1iQU+OQlJxaVpruOhwo1/9zaq2Xc7SAV+SjhqW+FjG72+9MKexPn7fAbEn+PbRjv70QUihdlcJDWj6jz5aObztgroiD8FQRaF2fQaPjNs/4wbs571vSZmnbqcU/UMLGw5OsqDseqN0ok7d+2n9fdWEPRdGFpXo+uesHnw1/iVhF0zYcx7brR2D18L+vhN0yoHS0D6ZDQt74ptJBPABAAAAAAAAuxifT/KVJv0ecSpveVlrpeam8DCxhvooQWVRQsca6sODytrCyqKEnkUbo6GudW4gmt2vkySkHFTm80nBkughY+0DxtZ+FH2AssoUKwAAAAAA7OYzHsPCTB6ujQSyzFH0dXAhhcK2G2Os8SS0DwAAAAAAAAAApBNhYQCA/BcvOMuXj78OM5D8kypj5LfNCR3yTvGBMh6CzxJxyECjF6909NOXQvrXF9LhQ41uPNWotCjJeUrK41+YEycI65SDjBZ829E9v1qhjeu368jaV3TjhhvC/haDNv7FYcV2Vx17DZT2GRW3f8b1H+qtX7denoPFpnT/RAvXdY2wMElaVnyQPgoM0dCmj1sbGur0f0tCineOHjpIGtW/XVjY//y/Dn28BMhFc+3xRjecEj5/JsLCJu2b/jEBAAAAAACAbDDGSIFg61cSAUepvt1mW1qkpsgQssjAsShBZbvabNv+iOPah5O17xMZVmZTjZVCXmppkep2tH4lg7AwAAAAAEgbn/F56kdIEZA6x8QIC4u4eW5jjJt/BgjtAwAAAAAAAAAAaZSP6SgAAEQowLCweAFb0y/JTh0R/EosLOz2dddJuiPtdUzYx+j/9vG2YCqu0nJp60bXLuYbc+IOc/KBRicOf1x685ao+70EQxXbeqmkTOYHD6U9ZC0Zxhhp9qOyN3wtdqdAUOZH/yvjRF9QE6mqMiCtS1OBWbI6MED9m9dqxD7v6NPA3tKG+MecMKpdUJi10p+e7NCnLRwuAa+tOlITTvmzTCAY1p7usLDD95GKArl/DQIAAAAAAABdkfH5JF+pVFya3PEpzG2tlVqaw8PEGmIEkzVECSFrrJdta6+LElYWGXoWsb+pMYXq0amVdct1BQAAAACQN3zG25pHQoqA1DmKvraxRaGw7VhhYYT2AQAAAAAAAACAdMrDdBQAACLEC03y5+GvwziP2Uy7OEuFtJ/UKGCbEjrka1t/o0yEhaVVSXn8Pl8+29tYLoFZnsLCjjtD5tz/ken1JW/zZYGZcpa03xjZ+74nbd8ic/GPpSEHSK8skJoapCNOkenV1/N41d29hYp9qekzHV/0jrbvNVw7WgKqbfZre3NAO5r92rH7+5ZAsg8rIS3Gpz7D1minU+b5mD4VrX/apkbp2Qei9gnaxC+aM5K0tUaKeM49ZrV59ocr0jwgAAAAAAAAgKwwxkj+QOtXWWVyY6Qwvw2FWt87bgsjixY41i50rH2oWWODbFiIWfQ+HcbZvb+hTrI2herhqqJ7risAACDvGGMGSxot6UuSyiV9Lmm1pDesTXCBBgCgS/HJ240yCSkCUucz0c83a8PDwppirPEMEtoHAAAAAAAAAADSKA/TUQAAiBAvLMyXh78O44WFDR6ZpULC+W2z575LPj5MvVpqMlhNmpRWxO1iqvp4GsoYR7EuQ6pq2Rz3+OIjpsr06uZprmwye+8r85OnwxtPOj+psQ4baKW/x94/oOk/+m7NT3XJ5l0BW+/H7huS0U5Tqh1OuXY4ZdruVGiHU7Zru7xDe61Tru272nf/Wdtu/wZ/9L/ntf5+CQWFSVKfCiNb84XstdOkD9+O2sdLgFxU2zZ1DAtL5eq9CPMvcVRenMYBAQAAAAAAABQM4xfCeVIAACAASURBVDhSUUnrV/y33zsen8Lc1lqppbldUFl9x+9jhY7t6mMbYvRpqIseVNZ+f1PiN4joSszBR+a6BAAA8oYx5gxJV0maEKPLJmPMk5Kut9ZuzF5lAIBsiRVeFCloghmuBMh/TozzrUUtYduNoRhhYYT2AQAAAAAAAACANMrDdBQAACIQFhZu4H7Zq6M9Y+SXt7Cwyzfdq9EN72S4oDQpSSwEyo1tif389PQQnFZcHEhbLZ1V+YTJ0lOx93+0crjni8EcWZXbWpW31Cpi3U5Suu23XrVOeYf25ypOTnisPpWS/fl1MYPCJKk4VJ/wuEZW2trxtZTOsLBpYwgKAwAAAAAAAND1GGMkf6D1y8ONQqKOkcL8NhSSmhqiBJQ1tAscixVU1iDbWNfuuMhgsl1tbWNECSsLhVKoPo5DjpbGfTlz4wMAUCCMMeWSHpR0dpyuPSRdImm6MeZ8a+0fM14cACCrfMbbmkdCioDUOXKitlsb/l5KY4ybfwYN5yEAAAAAAACAwrNz50794x//0IoVK7Rx40bV19erpKRE1dXVGjZsmMaMGaNgkJueJOuoo47SK6+80rZtrc3IPIsWLdLRRx/dtj179mzNmTMnI3PBuzxMRwEAIFIBhoW5PeaybtkrI4LfegsLO3frbzJcSRolecFQVMtejbmrOMZd59orKsn/sDBTUaXKlk3a5uv4Oq5uXpfShVip8tnoiWMLkwgL61VupZeecO1TZBsTHtfISts2dWhPZ1gYAAAAAAAAACBxxnGkopLWryQ+ekj1bV7b3CyFBY5FCyarcwkri9InEJTZf7x04vkyQS6MBQAgFcYYn6QnJZ0YsWuDpLclbZW0j6Qx2vNPg2pJzxpjplhrX8tWrQCAzPMZn6d+hBQBqXNinG8tEXcobQxFX89HaB8AAAAAAACAQtHS0qLf/va3mjt3rv7yl7+ouTl2rkBxcbGmTp2qb3zjGzr55MSvwwYKWT6mowAAEM4UYFiY22Muq8xeHWGMAh7Cwu5Yd60Orl/WujFuSoZrSoOKqvSN9c/YYWFFMe46196+fb0tAuvqLtt0n27u/f0O7Zdu+mUOqtnDaxieF31WvRG3j5fXRCQjK22t6dCerrCw+75K6hgAAAAAAAAAdEXG75f8FUnfJIV3hwEAyLhbFR4U1iTpKkkPWLvnTlPGmJGSHpI0YVdTkaQFxphR1trPs1UsACCzfMbbmkdCioDUOYq+LjPU7uaiLbZZLYq+fjBoghmpCwAAAAAAAAA6kz//+c+65JJL9OGHH3rqX19fr2effVbPPvusxo4dq/vvv18HH3xwhqtM3KBBg7R69WpJ0sCBA/XJJ5/ktiBAkpPrAgAAyDjCwsKVd8teHRH8MRZD7Hbz+h/pyk33tm74fDKnX5qFqlLUvZf7/sEj0zKNl2Co7qWF8U+7c3ssU8/mjWFtvZvXa+a2J3NUUStfxJ0CU9HtuvhBeWVjJyY8bsywsARfOv0qop/L5xzK5WAAAAAAAAAAAAAAkE7GmCGSrohoPtNae2/7oDBJstYul3SspL+1a+4paXZmqwQAZJMvRnhRJMLCgNQ5JvriupBCbd83hhqj9pE4DwEAAAAAAADkvxtuuEFTpkzpEBRmjNHIkSN13HHHaebMmZoyZYqGDRvW4fglS5ZowoQJevDBB7NVMtCl5WE6CgAAEeKGhXlbONOluD3mqt7Zq6M9Y1Qcqnft0rf5C2ngftKA/WRO/YbM+KlZKi55pnsvWbcOoya47fWsyMZeTFJohh05Ti//6njd2eNKvV08WofUv61ran6qIU2f7OlUUhY/yC3NfO0W/6TKcX9VSZIGnjhVvt9ILQlMa2Rl33ldkT8h1m9LrL7Fl27S9xdV69dvttbZo0x6b46jyhLCwgAAAAAAAAAAAAAgzWZLCrTbnmetfTZWZ2ttnTHmAknvSgruav66Mea/rbUfZ65MAEC2+Iy3SwAChpAiIFWOYoSF2T03F210uRks5yEAAAAAAACAfHbllVfqrrvuCmurqKjQ97//fX31q1/VgAEDOhyzcuVKzZs3T3fccYcaGlrfX21sbNTFF1+s2tpaXXnllVmpHeiqCAsDAOS/uGFh+fjr0OUxl1Zmr4wIJbbOdX+3Gx+WM6aLhQ0Fi113m5Mv8j5WVR9p8/qou6qb17keOq5pmaRDvM/VlZWW6YCG5Zr7+cXR91f2kPO7z7NbkyT/rC/kIeMrrplbn/DUr2j0YRrwgrRqY4ITLH6hQ9N/NiU2RKC4SL/6uqNffT3BuQEAAAAAAAAAAAAAnhljSiSdEdF8W7zjrLUfGmMWSDprV5Nf0jmSbkpvhQCAXHCMtxukBk0wficArhwTKyxsz10+m0Kxw8KCDmFhAAAAAAAAAPLTI4880iEo7IgjjtDjjz+u/v37xzxu6NChuummm3Teeefp9NNP13vvvde27+qrr9bo0aN11FFHZarsvLBo0aJcl4Aciv7JBQAAeaUAw8LcAtJy9XiNUXGo3rVLRVdcEzH2GPf9+x3sfawjTo65K6Bm10PPb4x50+A8FOecjrE4J9N8JaVpGefizQ956mcqe6jSPauu4zE2eppZXVOC4wS74skKAAAAAAAAAAAAAF3OVEntP4z+m7X2Xx6PnRuxPT09JQEAcs3nNSyMkCIgZT5FP99C2hMW1mhdwsIM5yEAAAAAAACA/PPhhx/qO9/5TljbxIkT9Yc//ME1KKy9YcOG6eWXX9aIESPa2kKhkM4991xt3LgxrfUC+YSwMABA/nPi/LorsLAw4/O2UCgTim2csLAEg486hf5DXXebeK+/9n2nX+q6/5JN90dtn7jzDc2y8z3P0+W5heFJ8c/5DPGVlqVlnAl1b8btY+b+XZJUnuA6ohaPCwXjzh/siicrAAAAAAAAAAAAAHQ5x0dsL0rg2FelsDuTjTHGVKdcEQAg53zytuYxQEgRkDInxpq7FtvS9n1jyCUsjNA+AAAAAAAAAHnommuu0Y4dO9q2u3fvrqefflrl5eUJjdOnTx899dRTCgaDbW1r167VjTfemLZagXyTh+koAABEiBcsVGBhYXJyFBZmjEpsnWuXrhgWZoyRTddg+xwgnXSh9LvIm/u2umrT/+h3FSfoP4EBbW3H7nhZz605XaZ3Aa3njXdOm9yEhfkTOLVKQ7W6c911uqTvvW1txob04OeXyK8WlyN36bePpMTPmTqTnpPM5ydzGAAAAAAAAAAAAACy4ICI7b95PdBaW2uMeVfSmHbN+0tal47CAAC54/N4w0BCioDUOYq+Vs4q1PZ9o40dFhYwwZj7AAAAAAAAAKAr+te//qXnn38+rO3WW2/VXnvtldR4I0eO1DXXXKNbbrmlre3hhx/WnDlzVFVVlVKtnc3KlSv1zjvvaO3atdq+fbuMMSotLVV1dbUGDx6sUaNGqbS0NON1NDQ06JVXXtGqVau0adMm9enTR/3799ekSZMyMv/nn3+uN998U+vXr1dNTY3Ky8vVp08fjRs3TkOGDEn7fPkuD9NRAACIFCdYyB/IThlZ5fKYcxSkJEnFLndPk7pmWFg6GWOka++T9fukZx/qsH9w02q9/slRerzyLH0YHKZD6/6ur257XEW2UVr/aQ4qzpF4YWFObl7jvgSmPXX7Qn1zy/9qv4Z/a2HFSTKyOnX7Qh1et9jT8aakTJJUUWykBOLqap3W42xjg0ywqO37RP9bEO+vAAAAAAAAAAAAAACQFiMitlcmePxHCg8LGynpzylVBADIOZ/xttaHsDAgdU6McD4rq5ANyTGOGmKsjQ2YoJwcrtkFAAAAAAAAgEy46667ZO2ea5t79eqlCy+8MKUxr7zySt1+++1qamqSJNXW1urBBx/Utdde26HvBRdcoEceeaRte9WqVRo0aJCneRYtWqSjjz66bXv27NmaM2eO6/i7rV69ujULIIbzzz9f8+bN69De0NCgu+++Ww8++KBWrFjhWp/P59Po0aM1bdo0XXXVVTGDu4466ii98sorbdvt/z7cbN26Vddff73mzZunbdu2ddhfUVGhGTNm6IYbbtCXvvQlT2PG0tTUpIcfflj33Xef3n333Zj99t13X11zzTW66KKL5PcTg+UFzxIAIP/FS7Xx5eGvQ7fHnKMgJcmoxNa59ij0sDBJMo4jnfIN2ShhYZLUt/kLXbXp7ixX1cnEWzyTo9e4P4FpL9/0c0nS5LrXNbnu9aTnLE/wnKlzWv9TaI+tlD1tlkz1ANm5N0lDahIah6wwAAAAAAAAAAAAAMgsY0wPST0imv+T4DCR/fdNviIAQGfhixFeFCloghmuBMh/jmIvDAypRY4cNdnoYWFBQ2AfAAAAAAAAgPzzwgsvhG2fd955CgZT+0yid+/eOuWUUzR//vyweaKFhXUln376qaZOnaoPPvjAU/+WlhYtXbpUS5cu1dlnn62hQ4emrZZ//vOfOvHEE/XZZ5/F7LN9+3Y99NBDmj9/vp577rmk51q6dKnOOussffzxx3H7rlixQrNmzdIvfvELPf/88+rXr1/S8xaKPExHAQAgQpywMFNoYWHxwtMyqNjWu+4nLGyX3kkk7R5xSvrr6KzivYZzdCc+XwLTHlL/j7TMWZ7gWqID6t/bs/HM/fKWE91RzjIHAQAAAAAAAAAAAKBwdI/Y3mmtrU1wjPUR291SqAcA0En4PF4CEHQIKgJS5biE84VsSI22QQ99dnvU/QGHwD4AAAAAAAAA+WXNmjX65JNPwtqOO+64tIx93HHHhYWFLV68WE1NTQoEAmkZP9saGxt1/PHHdwgK69Gjh0aNGqXq6moFAgFt375dn3/+uZYvX67a2kSXBHizfPlyHXvssaqpqQlrr66u1pgxY9S9e3etW7dOixcvVl1dnTZt2qSTTz5Zt98e/f1vN88//7xmzJihnTt3hrX37dtXBx10kHr06KHa2lotX75cK1asaNu/bNkyjR8/XosXL1b//v2Te6AFIg/TUQAAiBAvWMjxdpe9vOHL0eM1RiUh97Awn5O7ILPOxPSoTjjEyXxjTgYq6aTintO5eR15DQt79tPpcpKO6QqXSMDe0MaV2rfpo7TMy5kKAAAAAAAAAAAAABlXHrFdl8QYkcdUJFlLG2NMH0m9Ezxsn1TnBQDs4XMJL9rNkeM5VAxAbD6Xm5eGFNLjX/wi5v6gIbAPAAAAAAAAhaHFtmhL88Zcl1EQuvt7efqcIFNef/31Dm1jx45Ny9iHHHJI2HZdXZ2WLVumcePGpWV8r+644w7NmTNHknTEEUdo7dq1kqR+/frptddei3lceXn4R/xz587V8uXL27YHDRqkn//85zr++OPlOB3fe7bWaunSpXr++ef18MMPp+GRtGpqatJXv/rVsKCwvn376q677tLpp58eVsuOHTt055136uabb9aWLVt07bXXJjTX8uXLdfbZZ4cFhR1//PG64YYbdOihh3bo//bbb+uKK67Qq6++Kklau3atZs6cqUWLFsmXq0yMLoBPAAEABSBesJDHhJ+uxC1MKYfhaMXWPSwMSZp5lcw+B+S6iiyKc067LM7JJL/HaU/Y8ce0zdmjzHvfx9aen7Z54+W1AQAAAAAAAAAAAABSFhkWlsyii8iwsMgxk3GppNlpGAcAkCQvFwEFnSIZFvkAKTOKvTCwIVSvZTsWx9wfdAgLAwAAAAAAQGHY0rxRP/p4Vq7LKAg3DrlfPQPVOZt/zZo1YdvV1dXq2bNnWsY+4ICO18qvWbMm62FhvXr1Uq9evSRJfv+eWCa/369BgwZ5HufZZ58NO/all17S0KFDY/Y3xmjs2LEaO3asfvSjHykUCiVefBT33HOPli1b1rbdt29fvfbaaxoyZEiHvuXl5Zo9e7YOOOAAnXXWWdq8ebPneUKhkGbMmKHa2tq2tjlz5mj27NjLC8aMGaM///nPmjFjhubPny9Jeu211/TYY4/pvPPO8zx3ocnDdBQAACLEW/CSj2FhbmFKuXq8xqgklMxNbgvUvgfF3GWuuFP6ytelky6UmbdUzqU/yWJhnUAnPad9HqYd2rhSjmza5tz/S94W9I2r+7sOqX87bfM6rCMEAAAAAAAAAAAAgGxL5sPm9H1ADQDoNHoF+sbt09tDHwDxuYXzbW7aqCbbGHN/78BemSgJAAAAAAAAAHJm06ZNYdtVVVVpG7u4uFhFReE3YYicrytZvXp12/cHHXSQa1BYJJ/Pp0AgkHINoVBI99xzT1jbAw88EDUorL3TTz9dl156aUJzzZ8/X++9917b9llnneUaFLab3+/XI488oj59+rS13XHHHQnNXWjyMR0FAIBw8YKF8vHueW6PyeTu139ATTmbu6sx/zU3+o6+g2TO+I6c794n53u/lNmnY0py3ot7TnfesLCVQe//kfPiiKFS99L4/R7+LL2J7Pn4YxMAAAAAAAAAAAAAOpkdEdslSYwReUzkmACALmhk2WiVOuWufcZWTs5SNUB+My6X3DS7BIVJ0tjKSekuBwAAAAAAAAByKjK8q3v37mkdP3K8mpqatI6fK+vXr8/JvH/961/1ySeftG2PGzdOJ598sqdjr7/++oQCy+6+++62740xuvXWWz0fW15erlmz9lwL/+6774bVjXCEhQEA8l8nDRbKKLfH7OTo8Roj8oW8M0P2l77y9fDGfkNk7n05NwV1JvHO6Ry9xv0epp1+UEta5ywrMvrJacb1KfnW5gc0svFfaZ2XcxkAAAAAAAAAAAAAMq6zhoXdJ+mABL9OTcO8AIBdSn3lunLvG9WvaFCHfSVOmab2OF1TqvjRC6SDz/hi7mt0CQs7oedZGlMxMRMlAQAAAAAAAEDeMvGuIe9Chg8f3vb9p59+qjvuuCPrNbz22mth2zNnzvR8bO/evXXcccd56ltbW6vFixe3bY8bN06DBw/2PJckHX300WHbr776akLHFxJ/rgsAACDz4oWF5c8/Gtu4PaYch6NVtmzVNl+3Du3TRuegmE7OXPNzafxU2Xdel+k3RDrqdJmq3rkuqxOIc862pDeQyyufh1NrQG+/VNlD2rYpfmePZh3paFR/q4X/tPL9+ieasHOxPg4O0arAQE3e+bpO2fF82ubazcnDH5sAAAAAAAAAAAAA0MlsjdguNcaUWWtrExijT8T2lhRrkrV2vaSEbnucTwu6AaCz6F88WD8c9D/a0bxN9aE6Sa3LBqv8veS4hBsBSIyj2OdTUyh2WNgxVadkohwAAAAAAAAAyKkePXqEbW/dGvmxdmq2bAn/SDtyvq7knHPO0fz589u2v/vd72rBggW68MILdeKJJ6pv374Zr2HJkiVh2+PHj0/o+PHjx+t3v/td3H6LFy9WU1NT2/aQIUP0ySefJDRXKBQK2/7oo48SOr6QEBYGAMh/8RYcOrkNz8oMl8fs5HYh0KnbF+rR7ud2bB/NwtBIxhhp8qkyk7nLY5h453RLk/v+DPESFlbkl8y9L8ueNyatc0/cx2jiPkahRx+Saj+TElkangTWcQMAAAAAAAAAAABAZllra4wxmyVVtWseIOmDBIYZGLG9IuXCAACdSrm/UuWqzHUZQN5yXG7Q22Rjr1X0GS7VAQAAAAAAAJB/IsO7Nm/enLax6+vrVV9fH9bWs2fPtI2fbdOnT9f06dPDAsNef/11vf7665KkoUOHauLEiTr88MM1adIkjRgxIu01rFu3Lmx73333Tej4YcOGeer36aefhm0/8cQTeuKJJxKaK9KmTZtSOj6f8QkEACD/xQ0Dy8PUG7ckn5yFo7XW9O3Nv9QzFadqh6+ibc/wphU6bcx+OaoLXU4nTaryewwLU/+hmSsiEMzc2O100r8CAAAAAAAAAAAAAMg3H0ia2G57qBILCxsSZTwAAAB45JjYN+htsg0x9/mU2xv7AgAAAAAAANnU3d9LNw65P9dlFITu/l45nb9fv35h21988YVqamrSEur1/vvvx52vKzHG6Mknn9Ts2bP105/+tEMQ2sqVK7Vy5Ur96le/ktQaHnbuuefqsssu6xDKlqzIMLfKysRuQNOtWzdP/WpqahIa14vt27enfcx8QVgYACDvGWNk3TrkLDwrg9ySfFzucpYNY+v/ob+sPk739fiW/hUcpvF1b+l7TXNVWfJuTutCFxIvqcr1hM8cn5ewsIBkAsHMlRgsztTIYRzCwgAAAAAAAAAAAAAgG95TeFjYBEkLvRxojCmTdGCU8QAAAOCRT7EXBjbZptjHuYSMAQAAAAAAAPnGZ3zqGajOdRnIgokTJ3ZoW7JkiaZOnZry2EuWLAnbLikp0ejRo1MeN5f8fr9uvvlmXX755fr1r3+tZ599Vm+99ZYaGjrejGLlypWaM2eOfvazn+n+++/XjBkzclBxchobG9M+prU5CgzoAvIwHQUAgChcw7PyMPXG7THlKhytXUljGv6pBz+/RK+uPlZ3rP++ejldPNn17CujNpvvPZDlQgpEvH/ch0LZqSOCp7Cw3VG9Bx+VmSJW/ysz40Yw+fhzEwAAAAAAAAAAAAA6nxcito9K4NhJCr+h7NvW2nUpVwQAAFBAjMsNeptC0S9+MjJyCAsDAAAAAAAAkIcGDBigAQMGhLW9+OKLaRn7pZdeCtseP368gsFgWsberaWlJa3jeVVdXa2rr75af/3rX7V161a98cYbuuOOO3TqqaeqvLw8rO/WrVs1c+ZMLViwIOV5q6qqwra3bduW0PFbt2711K9Xr15h27fccoustSl9zZs3L6FaCwlhYQCAwuAWkOXyQX6X5RqO1gkfr69rL4owU2ZIweLwxh7V0oTjc1NQvosXFmZzExbmd+IHaO0OCzNfv961n/n2bckV0X+fpA4b0fBBcvMBAAAAAAAAAAAAADLpj5Lq2m1PMMYM93jsBRHbz6SlIgAAgALiU+z1rU22IfoxBIUBAAAAAAAAyGPHHx9+/fyjjz6qpqamlMbcsGGDnnvuOdd5dvP7/WHbzc3NnufZvHlz4sWlWVFRkSZMmKCrr75aCxYsUE1NjZ544gkNGzasrY+1VpdffrlCodSuma+urg7bXrFiRULHf/jhh0nN4/U4JKcTpoUAAJABjssH727BWl2Wy2NyC07LJLfnuauHhe13sMxtz0gHHSGVd5PGHydz1x9lelTHPxiJixcWluJ/fJLl83BqtYWFHXh462smmr33lWZckVwRR56W1GFzNtzoua+HTDQAAAAAAAAAAAAAQBpYa3dKeiqi+bp4xxljhklq/wFys6TfpLE0AACAgmBcbtDbZKNf/OaTP2o7AAAAAAAAAOSDK664QqZdbsCGDRs0d+7clMa86667wgLHysrK9M1vfjNq38rKyrDtLVu2eJ7n/fffT6guk4UcimAwqBkzZujNN99Uv3792to//fRTLV26NKWxx44dG7a9ePHihI5/8803PfWbMGFC2HP10ksvycbLA0DSCAsDABQGlw/rXfd1VW7/8HQLTsuVzlhTgszYY+Tc+7LM79fJuWOhzKARuS4pj8X5z4HtvGFhDe3Cqc3EE2VufVoKFu1pDBbLXHZ763+ITrow6hjm27fGnsAf8FhtuJN3/F4nbf+9p755ma8IAAAAAAAAAAAAAJ3XHEntkyguMMZ8JVZnY0yxpLmSgu2aH7bWfpSZ8gAAAPKXT7HXtzaFGqO2O6brr4kFAAAAAAAAgFhGjhypE044Iaztuuuu07p165Iab/ny5br99tvD2i688EL16NEjav8+ffp0ON6r3//e27XUuxUV7bkGvKGhIaFjE9W9e3dNnz49rG3VqlUpjXnEEUeEbT/++OOej92wYYNefPFFT3179+6tMWPGtG2vXbtWf/jDHzzPhcTkYToKAABROG5hYXmYfOMaFpajX/9uNfny5y5q2UgILnihOGFg8fZniN/DqXXo4PDXhzn8ZJmHFstcfKPMrJtav5/Q+h9kc9S0jgMEgtKkmGu+ZXzJhYUV2Ub9du05+u2amXH78goHAAAAAAAAAAAAgOyx1n4s6a6I5qeMMd8xxrQPBJMxZoSklyVNbNdcI+mGzFYJAACQn9yCv5ps9LAwn8mfNbEAAAAAAAAAEM2dd96p0tLStu0tW7Zo+vTp2rFjR0LjbNiwQWeccYYaG/e839q3b19df/31MY85+OCDw7YXLlzoaa4//vGPeuuttxKqr3v37m3fb9y4UU1NTS69U+f3h7+/3D6sLBmTJ0/WoEGD2raXLFmi559/3tOxP/7xjxN6vN/5znfCtq+55pqEXw/whrAwAEBhcFzu0pWr8KxMcgusMp3w8br9/QCRrI2zPzdhYV5+lPQo7dhmBo+U+dq1Mud+V2bwiD3thx0vc+XPpPJuuw6ulvnJUzL99ok5vt2yPtGy2xTZRk3f/mzcfvn4IxMAAAAAAAAAAAAAOrnvSWp/292ApHskfWqM+YMx5rfGmCWS3ld4UFijpNOstZ9nr1QAAID84bhcchM7LIw1sQAAAAAAAADy2/Dhw3XPPfeEtb3xxhs64YQTtGbNGk9jrFixQscee6w++OCDtjbHcfToo4+qd+/eMY+bMGFCWFDZM888oyVLlsSd6/zzz/dUV3sjRuy57ru5uVl/+ctfPB23c+dO3XPPPdq+fbvnuXbs2KH58+fHnD8ZjuN0CPGaNWuWVq1a5Xrc/Pnzdd999yU013nnnafhw4e3bX/wwQc67bTTtHnz5oTG2bBhQ4fnAeG41B8AUBhc021cgrXyUc6SflyeZx93UUMi4oSFhXITFubzcGr1Kk9sTHP6pTILP5P57b9lFqyWGT/V/YCXnkxsgiQU2E9MAAAAAAAAAAAAAMg5a22LpLMkRX4o3EfS8ZLOlHSIwj/SXS/pVGvtq1kpEgAAIA8ZY2RiXHbTFIoRFibCwgAAAAAAAADkv4suukjf/va3w9pee+01jRw5Urfeeqs+/fTTqMetXLlS//Vf/6VRo0bp3XffDdt322236dhjj3WdTJBsJAAAIABJREFUt6KiQjNmzGjbbmlp0UknnaQXX3yxQ9/GxkY9+OCDOuyww7Ru3TpVVVV5fXiSpKOPPjps+8ILL9R9992npUuX6uOPP9Ynn3zS9rVx48aweS+//HL1799fF110kRYuXOgaHPbWW2/p2GOP1erVq9vaDjvsMA0bNiyheqO5/PLLddBBB7Vtf/bZZzr88MP11FNPKRRxTX5tba1+/OMf6+yzz1YoFEro+fL5fHrqqadUWVnZ1vanP/1JBx54oH7xi1+4Pv5NmzbpySef1MyZM7X33nvr7rvvTuARFh6SOQAAhcFx+eA9Z+FZGeQWlmQ6YdSPP5DrCtCV2DhhYfW12akjgt/Dj5JupYmff8bvl/oO8tY5WJzw+JFGNizX8qKRsevphD9CAAAAAAAAAAAAACDfWWt3SDrbGPOUpKslHRaj6ya1horNttZuyFZ9AAAA+cqRoxZ1XJfbZGOEhRku0wEAAAAAAABQGO69915VVVXp5ptvlt11/ff27dv1/e9/Xz/4wQ80cuRI7b333qqqqlJNTY1Wr16tf//73x3GCQQCuuuuu3TJJZd4mvfGG2/UM888oy1btkiS1q9fr6lTp2ro0KE68MADVVRUpHXr1unNN99UbW3rded77bWXbrvtNp1//vmeH9+ZZ56pH/7wh1qzZo2k1qCtyIC03c4//3zNmzcvrG3btm2aO3eu5s6dK2OMhg4dqiFDhqh79+7y+/2qqanRe++91zb+bqWlpXrggQc81+kmEAjoscce05FHHqmamhpJ0ueff64zzzxT1dXVOuSQQ9StWzetW7dOf/vb31RXVydJ6tatm2677TZdfPHFnufaf//99fTTT+uMM87Q1q1bJUlr1qzRpZdeqssuu0yjRo3SgAEDVFlZqZ07d2rLli368MMPOzx+uONTCABAYTAuKT75mHxjXcLCchWO5vY8B4LZqwNdX7ywsKboC3AyLRDnZoDdSrJQxNRzpN/cmdIQ39j8v7pqrzti7nfy8EcmAAAAAAAAAAAAAHQV1tqnJD1ljBks6WBJX5JUJukLSaslvW5tjOQKAAAAJMwxjlqiLFuMHRYWZzEhAAAAAAAAAOSRG2+8UUceeaQuvfRSrVixoq3dWqv3339f77//vuvxBx98sO6//36NHTvW85z9+vXT008/rWnTpmn79u1t7StXrtTKlSs79B88eLB+97vfad26dZ7nkKSSkhI988wzmjZtmtauXZvQsZGstVqxYkXYcxRNv379NH/+fI0aNSql+drbf//99ac//UknnniiPv/887b2devW6fe//32H/t27d9dzzz2nlpaWhOeaMmWKlixZopkzZ2rJkiVt7S0tLVq2bJmWLVsWd4yqqqqE5y0kOUoLAQAgy3wuH7y7BYl1VW7/8HI64SIEXyDXFaArcQvDy6FgnBjeg/pnvgbz5Zkpj1EUZ814PuYrAgAAAAAAAAAAAEBXY61dZa192lp7j7X2VmvtPGvtXwgKAwAASK9Y4V+NoVhhYXEWEwIAAAAAAABAnpkyZYqWL1+uxx57TMcee6z8fvf3SYuKinTKKafo2Wef1ZIlSxIKCtvtmGOO0VtvvaVTTz1VJsbFz71799Z3v/tdLVu2TCNGjEh4DkkaO3asli9frl/+8peaNm2ahg4dqsrKSvlc8iu6deumV155Rddee60OOeSQuM+HJO2333665ZZb9OGHH+rQQw9NqlY3o0eP1gcffKDLLrtMFRUVUfuUl5frggsu0DvvvKNJkyYlPdfQoUP11ltvaeHChZoyZYqKioriHjNixAhddtllevXVVzV//vyk5y4EfAoBACgMboFg+Zh84xam5Baclkluz3OAsDAkwEa5RV8nUBTnX9YVxVkoYp8DUh7Cd/l/S/8Xe38e/sQEAAAAAAAAAAAAAAAAACAqo+hrkJttU9R2nzrhTX0BAAAAAAAAIMP8fr/OOeccnXPOOaqtrdXSpUu1cuVKbdiwQY2NjSoqKlJ1dbWGDRumgw8+2FOAVDzDhw/XggULtHHjRr3yyitas2aNdu7cqerqag0ePFiTJk0KC+o66qijZJO4Tr2yslKzZs3SrFmzPPU3xmjy5MmaPHmyJKmurk7vv/++PvroI33xxReqra2VMUaVlZUaMGCADjzwQA0cONBzPYsWLUr4MUitIWZ33323br/9di1atEirVq3S5s2b1bt3b/Xv31+TJk1SWVlZW/9kny+p9Tk4+eSTdfLJJ6u+vl5vvvmmVq9erZqaGtXW1qqsrExVVVUaOnSoRowYoZ49eyY1TyEiLAwAUBjcArIclyCxrirkEhbmFpyWK37CwpCAThoWFowbFpb5mC1jjFJ5dswLGxRYViK5jLKjIYUJAAAAAAAAAAAAAAAAAADoQnwm+hrkJht9MZ3PcJkOAAAAAAAAgMJWVlYWFpaVab169dLpp5+elbmSUVJSorFjx2rs2LG5LkWSVFRUpKlTp2ZtvuLiYh155JFZmy/fdcK0EAAAMsA1ICvzAT5ZF2qJvS9X4WjG5Xn2sTACCYgXFlZcmp06IgTj3AywLPWAa29mXJH0oaasUj7+hwAAAAAAAAAAAAAAAAAAgCTJiXHZTZNtitoeK1wMAAAAAAAAAAAgVUQBAAAKg+MSVJWr8KxMCoVi73MNTssRfyDXFaBLiRMWNnladsqIUBQn866iODt1mKPPcO/QZ+/ox/1hvSTJ3wl/RAAAAAAAAAAAAAAAAAAAkAtOjPCvplBj1HbCwgAAAAAAAAAAQKbEiTQAACBPOC4fvBuXILGuyrqEhbk9F5nk9jz7+CcJEuAWhifJHBMnLCtDgp0kLEzBItfdztMrJUl25w7prZek0ZNkuvdq2+8jLAwAAAAAAAAAAAAAAAAAAEmSo+iL6hptjLAwLtMBAAAAAAAAAAAZwqcQAIDCYFzSb9z2dVVuYUpOJ3y8uQowQ9dkrfv+8cdlp44I8cLCyt0zvNLHH/TUzZSWS0ed1qH9gH5GUpznGAAAAAAAAAAAAAAAAACAAuDEWGfcHCMszDGsiQUAAAAAAAAAAJnRCdNCAADIAJ/LB++dMTwrVdYlLCxn4Wgm9i4f+aVIgEtYmJn9qIw/kMVi9iiK8zKuKs1OHQqk9viH75WmOgAAAAAAAAAAAAAAAAAA6OIcRV+D3BiKHhbmM6yJBQAAAAAAAAAAmZGH6SgAAESRs4CsHKkeEHtfn37Zq8Mrh7uoIQHGJXhu9BHZqyNCMM7LuLrSpe50CgRTOtznZKlOAAAAAAAAAAAAAAAAAAA6OSfGGuSQWqK2+wxrYgEAAAAAAAAAQGYUWHIKAKBguYVROfn369AMGCbtvW/HHUMOkNlrYPYLktwDnnzcRQ0JqKiKva+xIXt1RAj63UO2+lRkqRAR9gUAAAAAAAAAAAAAAAAAQDo4Siz8yyfWxAIAAAAAAAAAgMzIv3QUAACicQsEcwux6sLMd++Tikv3NJSUy1x9d+4KcuPjnyRIwMQTo5/TpRVSn/7Zr2eX4oD7/h5l2alDPffK0kQAAAAAAAAAAAAAAAAAAOQ3n0kwLCzB/gAAAAAAAAAAAF5xyxIAQGEwbmFh+RlUZcZMln71trT4hdbHeNhUmb0G5rAgl1A2H/8kgXemey/Z8VOlv/0hfMfkaTL+OIldGVQWjLO/KDt1GH9ANjtTAQAAAAAAAAAAAAAAAACQ10yC64wJCwMAAAAAAAAAAJlCMgcAoDD4XD54dwux6uJM30HSad/KdRnxOSyMQGLM9Y/I3nyR9LcXWs/vI0+TuebenNYULwysNE6YGAAAAAAAAAAAAAAAAAAA6Fx8SmyNq89wmQ4AAAAAAAAAAMgMPoUAABQGt7t6OYnd8QtJcgtl8/FPEiTGlHeT+cnTsg11UigkU1KW65LUt5v7/rIuFBZ2wUSjeW/YXJcBAAAAAAAAAAAAAAAAAEBOOW5rkKPwExYGAAAAAAAAAAAyhHQUAEBh8Lnd1cslxArZQVgYkmSKSjpFUJgk9aty/1kS8HednzUnjopd6//M6DqPAwAAAAAAAAAAAAAAAACAVDgJXnbjyG3NMgAAAAAAAAAAQPIICwMAFAa3u3o5/DrMOYeFEUBnctqY2PsunkxYGAAAAAAAAAAAAAAAAACgMDgmsTWuPsMNdAEAAAAAAAAAQGaQjgIAKAxuYVSG4JvscHmefSyMADoTn2P0gxM7nrPXHm9UHOBnJgAAAAAAAAAAAAAAAACgMDgJXnbjSzBcDAAAAAAAAAAAwCuSOQAAhcFx+aDekJ2Za8bHwgigs7nxVKOqUunxt6z8jnTGWKOrv0xQGAAAAAAAAAAAAAAAAACgcDgJhn/5DJfpAAAAAAAAAACAzOBTCABAYTAuATdu+5A+bs+zj3+SAJ2NMUZXH2d09XG5rgQAAAAAAAAAAAAAAAAAgNzwJRoWJm6gCwAAAAAAAAAAMsPJdQEAAGSFa1gYvw5zjrAw5Ikxe0dv71mW3ToAAAAAAAAAAAAAAAAAAEDqTIKX3fgMa2IBAAAAAAAAAEBmkI4CAIBbkBjSx+159nEXNeSHy46N/jq/ZTo/ZwAAAAAAAAAAAAAAAAAA6Gp8Cd6U2GdYEwsAAAAAAAAAADKDsDAAQGFwC6py+HWYcw4LI5Afpo8xGjswvG303tJZhxAWBgAAAAAAAAAAAAAAAABAV+MosTWuPuPPUCUAAAAAAAAAAKDQ8SkEAAAixCcr3ALb/IHs1QFkUGWJ0Uv/z9HcN6yWrpYO7C/NmmxUWcLPGQAAAAAAAAAAAAAAAAAAuhrHJHZTYp/hBroAAAAAAAAAACAzCAsDABQGt6AqJ7EP8ZGkUCj2PsLCkEe6lRpdOYVwMAAAAAAAAAAAAAAAAAAAujpHiYV/+RLsDwAAAAAAAAAA4BXpKAAAuAWJIX1ammPv8xEWBgAAAAAAAAAAAAAAAAAAgM7FMYldduMz/gxVAgAAAAAAAAAACh1hYQCAAuESCJbgh/hIUnNT7H1+wsIAAAAAAAAAAAAAAAAAAADQuTjyJdTfZxLrDwAAAAAAAAAA4BXpKAAAGJcgMaRPc3PsfYSFAQAAAAAAAAAAAAAAAAAAoJNxErwpsc/4M1QJAAAAAAAAAAAodISFAQAKg1sgmMOvw6woq4i9r3e/7NUBAAAAAAAAAAAAAAAAAAAAeODIl1B/X4L9AQAAAAAAAAAAvCIdBQAAuQSJIW1Mn/7SwP067ujZVxo1IfsFAQAAAAAAAAAAAAAAAAAAAC58JrHLbnzGn6FKAAAAAAAAAABAoSMsDABQGIxLIJjDr8NsMbNuknztFkEYI/Otm2Tc/n4AAAAAAAAAAAAAAAAAAACAHDAJXnbjGF+GKgEAAAAAAAAAAIWOW5YAAEBQVdaYSV+R7lsk+8ozUkuzzKSvyBx0RK7LAgAAAAAAAAAAAAAAAAAAADrwJRj+5TNcpgMAAAAAAAAAADKDTyEAADCJ3fELqTEjx8mMHJfrMgAAAAAAAAAAAAAAAAAAAABXTqJhYUqsPwAAAAAAAADkm//P3r2HSVbV98L/ru65MTDIAMPNAUa5HAW8BqKir2JQCJxovJ3ogTyJlxDjJZG8GJXEEwHR4zVHjJqL0dHXiDFGRTQmQY34KsQQRINc5CIgIELGYbgMMswMs88f3TRdNTM9XV3VVbV3fT7Psx5m7dpr7bV2rd+i96rq1b/4xS9y2WWX5brrrsvPf/7zbNiwITvttFP23nvvHHrooXnSk56URYsW9eRaN998c/76r/863/rWt3Lttddm3bp12bRp09Trq1evzstf/vJtlr3kkkuyevXqXHzxxbnlllty9913Z8uWLVOv33jjjVm1alWS5Jhjjsm3vvWtqdeqqupJ+6FTNgsDgFIG3QIAAAAAAAAAAAAAYMiMpbM/Sjze4eZiAAAAAABN8OCDD+bv//7vs3r16nzzm9/M5s2bt3vukiVLcvzxx+d3fud38mu/9mtzvuZHP/rR/P7v/34eeOCBjspt3rw5r33ta/PRj350zteGQensUwsAaKLif4cAAAAAAAAAAAAAQKuxDjf/Gi8L5qklAAAAAADD6V//9V9z2GGH5aSTTsrXvva1GTcKS5INGzbkS1/6Up73vOflqKOOymWXXdbxNb/61a/m1a9+dccbhSXJn/zJn9gojNryKQQAo6GUGV7rXzMAAAAAAAAAAAAAgHoYS2d/lHi8w83FAAAAAADq7Mwzz8yZZ56ZqqpajpdS8tjHPjYrV67MHnvskTVr1uTmm2/Otdde23LepZdemqc97Wn50Ic+lFNOOWXW1z399NNbrnnSSSflVa96Vfbff/8sXLhw6viee+7ZUu6OO+7IBz7wgan8okWL8pa3vCUnnnhiVqxYkbGxh9eEV65cOev2QL/YLAyAETHDjmBjnX2IDwAAAAAAAAAAAAA031iHm3+N+zUdAAAAAGBEnHrqqTnnnHNaji1btiynn356Tj755BxwwAFblbn++uvziU98Iu973/vywAMPJEk2btyY3/3d3819992XU089dYfXveaaa3L55ZdP5U888cR8+tOfnlWbzzvvvGzcuHEqf/bZZ+eP/uiPZlUWhoHdUQAYDcuWz/DiDBuJAQAAAAAAAAAAAAAjabzDX7sZ73BzMQAAAACAOvrkJz+51UZhz3jGM3LVVVfl9NNP3+ZGYUly8MEH5+yzz87ll1+eI444ouW10047LRdeeOEOr33ppZe25F/ykpfMut1zLXvhhRemqqqpBINiszAARsMuu27/tTH/OwQAAAAAAAAAAAAAWpXS6WZhC+apJQAAAAAAw+Haa6/N61//+pZjRx99dP7pn/4pK1eunFUdhx56aL7xjW/ksY997NSxLVu25Dd/8zfz85//fMayd9xxR0t+ttfstiwMA7ujADAaStn+azYLAwAAAAAAAAAAAADajGe8s/NLZ+cDAAAAANTNG9/4xqxfv34qv9tuu+Xzn/98dtlll47q2WuvvfIP//APWbRo0dSxn/70p3n7298+Y7np106ShQsXzvqa3ZSFYeBPlgBAZthIDAAAAAAAAAAAAAAYSWOlsz9KPF78mg4AAAAA0Fw/+tGP8pWvfKXl2Lve9a7ss88+c6rvsMMOyxvf+Ma8853vnDr2sY99LGeccUaWL1++zTJbtmyZ07W6LdsLV111VX74wx9m7dq1WbduXZYsWZIVK1bksY99bB7/+Mdn8eLFc6p38+bNueSSS3LDDTdkzZo1eeCBB7JixYqsWrUqT3/607NkyZIe94RB8SkEAIx19iE+AAAAAAAAAAAAANB8Y2W8o/PH09n5AAAAAAB1cs4556Sqqqn8nnvumVe84hVd1Xnqqafmve99bzZt2pQkue+++/LRj340b3rTm5IkN910Ux71qEdtt/yzn/3sbR5fvXp1kszYvlLKNo/feOONWbVq1VT+mGOOybe+9a2p/PR7sCO33HJL3vOe9+Rzn/tc7rjjju2et9NOO+XZz352fvu3fzsvfvGLMz6+4/Xmq6++OmeffXa+8pWv5J577tluvc9//vNz1lln5dBDD511uxlOdkcBgO38AAcAAAAAAAAAAAAAjK6xDjf/Gu9wczEAAAAAgDr553/+55b8b/3Wb2XRokVd1blixYo873nPm/E6dVRVVc4+++wcfPDB+dCHPjTjRmFJcv/99+erX/1qXvrSl+aWW26Z8dwHH3wwf/iHf5gjjjgi55577nY3Cnuo3s9+9rM5/PDDc84558ypLwyPBYNuAAD0xwwbghV7ZwIAAAAAAAAAAAAArcY6+J5xScmYzcIAAAAAgIa69dZbc9NNN7UcO+6443pS93HHHZcvfOELU/nvfve72bRpUxYuXNiT+vtt8+bNednLXpbPf/7zW722zz775HGPe1z23HPPPPDAA7njjjvyn//5n1m/fv2s6r7//vvzghe8IBdccEHL8YULF+aJT3xiVq5cmcWLF+f222/PJZdckl/84hdTbTr11FOzbt26nHHGGV33kcGwWRgAlBk2EgMAAAAAAAAAAAAARtJYZr/517iNwgAAAAAYQZsfrHLrukG3YjSsXJ4sGB/c3ggXXXTRVseOPPLIntT9S7/0Sy35+++/Pz/4wQ9y1FFHZeXKlbnxxhunXvvABz6Qc845Zyr/mc98Jk996lO3qnPPPfdMkhxzzDFTx172spfl3//936fy0+udbuXKlXPqx0NOO+20rTYKO/HEE3PGGWfkqKOO2ur8LVu25Lvf/W7+7u/+Lp/4xCdmrPt1r3tdy0Zhj3jEI3LGGWfkVa96VZYtW9Zy7v3335+PfOQjeetb35oNGzYkSc4666w85SlPyQknnDDH3jFINgsDYDTMtCFYB3/xCwAAAAAAAAAAAAAYDWMdfM943K/oAAAAADCCbl2XPPqPtwy6GSPhhneOZdWeg7v+rbfe2pLfe++9s8cee/Sk7iOOOGKb1zvqqKOyYMGCrFq1aur4brvt1nLePvvs0/J6u1122WXq30uWLGl5baZyc3XBBRfkgx/8YMuxd73rXXnzm9+83TJjY2M5+uijc/TRR+ess87aqp0P+dznPpfVq1dP5Q888MBceOGF2+3HTjvtlNNOOy1Pe9rTcuyxx2bDhg2pqip/8Ad/kGuuuSZjY/baqBvvGADMtJEYAAAAAAAAAAAAADCSxjr4tZuxMj6PLQEAAAAAGKw777yzJb98+fKe1b1kyZIsXrx4xuvVxVlnndWS/73f+70ZNwprt9tuu21zs7CqqlrqXrBgQc4///xZbXj20CZkD7n++utz3nnnzbpNDA+bhQGA3U4BAAAAAAAAAAAAgDbjHWwANl4WzGNLAAAAAAAGq33zrt12262n9bfXt3bt2p7W3w+XX355Lrrooqn8smXL8u53v7sndX/zm9/MFVdcMZU/+eST8/jHP37W5V/3ute1bEJ2/vnn96Rd9JfdUQAgZdANAAAAAAAAAAAAAACGzFgHv3bTycZiAAAAAAC0KqX++z584xvfaMmfdNJJ2XXXXXtS99e+9rWW/Etf+tKOyi9dujS//Mu/PJX/9re/3ZN20V/+bAkAo2GmHwzH7J0JAAAAAAAAAAAAALQa62ADsPHYLAwAAAAAaK7dd9+9JX/33Xf3tP677rprxuvVwcUXX9ySP+aYY3pW93e+852W/O67756bbrqpozqmb1x20003ZcuWLRmz30at2CwMABqwwywAAAAAAAAAAAAA0FsdbRZW/IoOAAAAANBc7Zt3rVu3rmd1b9iwIRs2bGg5tscee/Ss/n752c9+1pI//PDDe1b3Lbfc0pJ/6lOf2lV9W7ZsyV133VXLTdlGmU8iABgNM20IVux0CgAAAAAAAAAAAAC0Gsvsv2c83sHGYgAAAADQFCuXJze80+/r98PK5YO9/iMf+ciW/O233561a9f2ZFOvK6+8cofXq4O1a9e25Jcv792b1l53L9x77702C6sZm4UBwEwbiQEAAAAAAAAAAAAAI2msgw3Axotf0QEAAABg9CwYL1m156BbQT8cffTRWx279NJLc/zxx3dd96WXXtqS32mnnfLEJz6x63oHrfRwL4uNGzf2rK6HVFXV8zqZX7ZmBGA0PPjg9l9bsLB/7QAAAAAAAAAAAAAAamGsg1+7Gc/sNxYDAAAAAKibAw44IAcccEDLsQsuuKAndX/ta19ryT/lKU/JokWLelJ3P+25Z+vOeXfeeee81L1kyZJs2bIlVVV1lVatWtWz9tEfNgsDYDQ8uHn7r9ksDAAAAAAAAAAAAABoM1462CysLJjHlgAAAAAADN6v/uqvtuQ/9alPZdOmTV3VuWbNmpx//vkzXqcu9t1335b8VVdd1bO6995776l/b9iwITfffHPP6qY+bBYGwGh48MHtvzbug3kAAAAAAAAAAAAAoNVYxmd97niZ/bkAAAAAAHX0hje8IaWUqfyaNWuyevXqruo855xzWjYc23nnnXPKKad0VeegPP3pT2/JX3jhhT2r++ijj27JX3DBBT2rm/qwWRgAo2HL9jcLm/7DKAAAAAAAAAAAAABAkoyV2f/ajc3CAAAAAICmO+yww3LCCSe0HHvzm9+cO+64Y071XXXVVXnve9/bcuwVr3hFdt999zm3cZCe85zntOTPPffc3HvvvT2p+/jjj2/J/83f/E1P6qVebBYGwGiYYbMwAAAAAAAAAAAAAIB2Y5n9BmDjWTCPLQEAAAAAGA7vf//7s3Tp0qn8XXfdlRe96EVZv359R/WsWbMmL3nJS7Jx48apY/vuu2/+9E//tGdt7bfDDz88z3rWs6by99xzT04//fSe1H3CCSfkoIMOmspfcskl+fjHP96TuqkPm4UBMBp2ecSgWwAAAAAAAAAAAAAA1MhYmf2v3YyV2W8sBgAAAABQV495zGPy53/+5y3HLr744pxwwgm59dZbZ1XHddddl2OPPTZXX3311LGxsbF86lOfyooVK3ra3n5r3+zswx/+cN7//vfPuvzdd9+dDRs2bHV8wYIFOeuss1qOveY1r8kXvvCFjtv49a9/PTfccEPH5Rg8m4UBMBLKC1+97Ree8Iz+NgQAAAAAAAAAAAAAqIWxzH4DsPGyYB5bAgAAAAAwPF75ylfmda97Xcux73znOznssMPyrne9K7fccss2y11//fV561vfmsc97nH54Q9/2PLau9/97hx77LHz1uZ++ZVf+ZWcdtppLcfe+MY35vnPf36+973vbbPMli1b8m//9m95wxvekP333z+33377Ns876aST8spXvnIqv3Hjxrz4xS/OySefvN26k+TBBx/M97///Zx55pk57LDD8tznPjc333zzHHrHoPkkAoDRsP+hyRP+n+Q/v91yuPzaK7dTAAAAAAAAAAAAAAAYZWNlbNbnjpfZbywGAAAAAFB3H/rQh7J8+fK84x3vSFVVSZJ77703p59+ev74j/84hx12WPbff/8sX77r4kpmAAAgAElEQVQ8a9euzU9+8pNcc801W9WzcOHCnHPOOXnNa17T7y7Mm3e/+925+eab87nPfW7q2Je//OV8+ctfzn777ZfHPe5x2WOPPfLAAw/k9ttvz+WXX5577713VnX/5V/+ZdatW5cvfvGLU8fOPffcnHvuuVmxYkWe8IQnZI899sjY2Fjuueee3Hbbbbn66quzYcOGnveT/rNZGAAjoZSSvOeLqf78TcklX0v22CflBb+b8qsnD7ppAAAAAAAAAAAAAMAQGutgA7Bxv6IDAAAAAIyYt7/97XnWs56V1772tbnuuuumjldVlSuvvDJXXnnljOWf/OQn56/+6q9y5JFHzndT+2p8fDyf/exnc/jhh+cd73hHNm3aNPXabbfdlttuu23OdS9cuDCf//zn8973vjdve9vbWjYBW7NmTb7+9a/Pqo6dd955zm1gcGb/J04AoObK0mUZe/NfZOzz12fsr7+TcuJvDbpJAPPjf7x+m4fLKWf2uSEAAAAAAAAAAABQX7uML8vismRW5+6xcK95bg0AAAAAwPB5znOek6uuuiqf/vSnc+yxx2bBgpn/sMLixYvzvOc9L1/60pdy6aWXNm6jsIeUUvK2t70t11xzTU455ZTsvvvuM56/yy675AUveEHOO++8HHDAATus+01velNuvPHGvOUtb8mBBx64w/YsW7YsJ554Yj784Q/nZz/7WY466qiO+sNwKFVVDboNMFCllMOTXPFQ/oorrsjhhx8+wBYBAHSnuvziVK//lWT6z/oLF6V87JKURz12cA0DAAAAAADm3ZVXXpkjjjhi+qEjqqqa+U90AsA88h09AKDuVt/2f/If935rxnPGMpY3HfieHLDk4D61CgAAAAB6Z/Pmzbnuuutajh1yyCE73PQJtuW+++7L9773vVx//fVZs2ZNNm7cmMWLF2fvvffOoYcemic/+clZvHjxoJvZd1u2bMlll12WH/3oR/n5z3+e9evXZ+edd85ee+2VxzzmMXn84x+fhQsXzrn+G2+8MZdddlnWrFmTdevWZWxsLMuWLct+++2XxzzmMTnkkEMyPj7ewx4Nt/ma1wb9/TyzMgAANEx5/NHJW1en+vBbkjtvT/baP+W0D9ooDAAAAAAAAAAAADp08j6vzeZqYy5f/x95MJu3ev0R48vzP/Y+xUZhAAAAAABJdt555zzzmc/MM5/5zEE3ZaiMjY3lyCOPzJFHHjkv9T/qUY/Kox71qHmpm+FhszAAAGigctz/TJ77suTOO5Ld904pZdBNAgAAAAAAAAAAgNpZNLY4pzzyzXlgy4bcuWlNy2sLy6LssXAv39EDAAAAAADmnc3CAACgoUopyR77DLoZAAAAAAAAAAAAUHuLx5Zk38X7D7oZAAAAAADAiLJZGD1VSlmY5OlJDkiyb5L1SW5L8v2qqm4aYNMAAAAAAAAAAAAAAAAAAAAAAABqx2ZhI6yU8ndJXtp2+CdVVa2aQ10rkpw5Wd/u2znn4iR/VlXV5zutHwAAAAAAAAAAAAAAAAAAAAAAYBSNDboBDEYp5fnZeqOwudZ1QpIrkrwm29kobNLRSf6hlPK3pZSde3FtAAAAAAAAAAAAAAAAAAAAAACAJlsw6AbQf6WU3ZL8RY/qOibJeUkWTTtcJbksyQ1JdkvypCR7Tnv95CS7llJeUFXVll60AwAAAAAAAAAAAAAAAAAAAAAAoInGBt0ABuL9Sfab/Pe9c62klLIyyRfSulHYRUkOr6rqyKqqfqOqquOSrEzyhiSbpp33vCRnz/XaAAAAAAAAAAAAAAAAAAAAAAAAo8BmYSOmlPKcJK+czG5O8qddVHdmkuXT8hcneU5VVVdPP6mqqgeqqvpgkt9oK///llIO7OL6AAAAAAAAAAAAAAAAAAAAAAAAjWazsBFSStk5yUenHfqzJD+YY12HJPntaYc2Jnl5VVUbtlemqqrzknxy2qHFSd42l+sDAAAAAAAAAAAAAAAAAAAAAACMApuFjZb/nWTV5L9vSHJGF3WdlGR8Wv4LVVVdN4ty727L/0YpZUkX7QAAAAAAAAAAAAAAAAAAAAAAAGgsm4WNiFLK0UleN+3Qq6uqur+LKl/Yll89m0JVVV2d5N+nHdo5yXFdtAMAAAAAAAAAAAAAAAAAAAAAAKCxbBY2Akopi5N8PA+/35+squrrXdS3T5InTDu0OclFHVRxYVv+hLm2BQAAAAAAAAAAAAAAAAAAAAAAoMlsFjYazkjy3yb/vSbJaV3Wd0Rb/vKqqu7roPzFbfnDu2wPAAAAAAAAAAAAAAAAAAAAAABAI9ksrOFKKU9O8sZph06tqmptl9Ue1pa/vsPyP95BfQAAAAAAAAAAAAAAAAAAAAAAAMRmYY1WSlmQ5ONJFkwe+ueqqs7tQdUHt+Vv7rD8T9rye5RSlnfRHgAAAAAAAAAAAAAAAAAAAAAAgEayWVizvSXJEyb/fV+S1/So3t3a8v/VSeGqqtYn2dB2+BFdtQgAAAAAAAAAAAAAAAAAAAAA6EgpZatjVVUNoCUAvbFly5atjm1rrqubBYNuAPOjlHJYkrdOO/S/qqq6qUfV79KWv38OddyfZMm0/LK5N+dhpZS9kqzosNhBvbg2AAAAAAAAAAAAAAAAAAAAANTJ2NjYVsc2bdqUhQsXDqA1AN3bvHnzVse2NdfVjc3CGqiUMpbkY0kWTx76XpIP9vAS7ZuFbZhDHfcnWT5DnXP12iRv61FdAAAAAAAAAAAAAAAAAAAAANBYpZQsWrQoGzdunDq2fv36LF26dICtApi79evXt+QXLVqUUsqAWtM79d/ujG15Q5KnTv57c5LfqarqwXm8XtWnMgAAAAAAAAAAAAAAAAAAAABADy1btqwlf88996SqbA0C1E9VVbnnnntajrXPcXVls7CGKaU8OsnZ0w79WVVVP+jxZda35XeaQx3tZdrrBAAAAAAAAAAAAAAAAAAAAADmWftGOps2bcpPf/pTG4YBtVJVVX76059m06ZNLcd33XXXAbWotxYMugH0TimlJPlokqWTh25IcsY8XGqYNwv7SJLPdVjmoCRf6tH1AQAAAAAAAAAAAAAAAAAAAKA2lixZkoULF7ZssHPvvffmxz/+cXbdddfssssuWbBgQcbGxgbYSoCtbdmyJZs3b8769etzzz33bLVR2MKFC7N48eIBta63bBbWLKck+ZVp+VdXVXX/PFzn7rb8ik4Kl1J2ydabhd3VVYsmVVX1X0n+q8P29OLSAAAAAAAAAAAAAAAAAAAAAFA7pZTst99+ufnmm1NV1dTxTZs2Ze3atVm7du0AWwcwNw/NbU3ZX8hmYc1y5rR/fzXJ9aWUVTsos09bfsE2ytxWVdXGafnr2l4/cJbt2975d1ZVta7DOgAAAAAAAAAAAAAAAAAAAACAHli6dGkOOOCArTYMA6ijUkoOOOCALF26dNBN6RmbhTXLTtP+fWKSG+dQxyO3Ue5JSX4wLX912+sHd3iNR7flr+qwPAAAAAAAAAAAAAAAAAAAAADQQw9tGHbbbbdl06ZNg24OwJwsXLgw++23X6M2CktsFsbcXNGWf3wpZWlVVb+YZfmn76A+AAAAAAAAAAAAAAAAAAAAAKDPli5dmoMOOigPPPBA7rnnntx7773ZuHHjoJsFMKNFixZl2bJl2XXXXbN48eKUUgbdpJ6zWRgdq6rqZ6WUy5M8fvLQgiTPSHLBLKs4pi3/Tz1qGgAAAAAAAAAAAAAAAAAAAADQhVJKlixZkiVLlmSvvfZKVVXZsmVLqqoadNMAWpRSMjY21sjNwdrZLKxBqqrardMypZRjknxz2qGfVFW1ahZFv5iHNwtLkldkFpuFlVIek+Qp0w7dN5tyAAAAAAAAAAAAAAAAAAAAAED/lVIyPj4+6GYAjLSxQTeA2vp0kgen5V9USjlkFuXe3Jb/+6qqNvSuWQAAAAAAAAAAAAAAAAAAAAAAAM1hszDmpKqq65J8ctqhRUk+UUpZsr0ypZRfT/LyaYc2JjlzXhoIAAAAAAAAAAAAAAAAAAAAAADQADYLoxtvS7JuWv7oJF8vpTxm+kmllMWllN9P8rm28u+vquon89xGAAAAAAAAAAAAAAAAAAAAAACA2low6AZQX1VV3VpKeVGSf0myaPLw05NcVUr5XpIbkjwiyZOTrGgr/pUk/6tfbQUAAAAAAAAAAAAAAAAAAAAAAKgjm4XRlaqqLiylvDDJJ/LwhmAlyZGTaVs+k+SUqqoenP8WAgAAAAAAAAAAAAAAAAAAAAAA1NfYoBtA/VVV9dUkRyT5yyTrZjj1u0leUlXVSVVV3deXxgEAAAAAAAAAAAAAAAAAAAAAANTYgkE3gMGqqurCJKUH9fxXkteUUt6Q5OlJDkyyT5L7kvw0yferqrqx2+sAAAAAAAAAAAAAAAAAAAAAAACMEpuF0VNVVW1M8s1BtwMAAAAAAAAAAAAAAAAAAAAAAKAJxgbdAAAAAAAAAAAAAAAAAAAAAAAAAGDbbBYGAAAAAAAAAAAAAAAAAAAAAAAAQ8pmYQAAAAAAAAAAAAAAAAAAAAAAADCkbBYGAAAAAAAAAAAAAAAAAAAAAAAAQ8pmYQAAAAAAAAAAAAAAAAAAAAAAADCkbBYGAAAAAAAAAAAAAAAAAAAAAAAAQ8pmYQAAAAAAAAAAAAAAAAAAAAAAADCkFgy6ATAEFk3PXH/99YNqBwAAAAAAAABAV7bxvYdF2zoPAPrId/QAAAAAAAAAgNob9PfzSlVV/bweDJ1SyvOTfGnQ7QAAAAAAAAAAmAe/XlXV+YNuBACjy3f0AAAAAAAAAICG6uv388b6dSEAAAAAAAAAAAAAAAAAAAAAAACgMzYLAwAAAAAAAAAAAAAAAAAAAAAAgCFVqqoadBtgoEopj0jyrGmHbkmycUDNgfl0UJIvTcv/epIfD6gtQH+Jfxht5gCAejFvw2gzB8DoEv8wusQ/MB8WJdl/Wv5bVVXdPajGAIDv6DEiPN/BaDMHwOgS/wD1Yt6G0WYOgNEl/mG0mQOAXhvo9/MW9OtCMKwmA+78QbcD5lsppf3Qj6uqunIQbQH6S/zDaDMHANSLeRtGmzkARpf4h9El/oF59P1BNwAAHuI7eowCz3cw2swBMLrEP0C9mLdhtJkDYHSJfxht5gBgngzs+3ljg7owAAAAAAAAAAAAAAAAAAAAAAAAMDObhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADKkFg24AAH2zJsmZbXlgNIh/GG3mAIB6MW/DaDMHwOgS/zC6xD8AAEAzeL6D0WYOgNEl/gHqxbwNo80cAKNL/MNoMwcAjVKqqhp0GwAAAAAAAAAAAAAAAAAAAAAAAIBtGBt0AwAAAAAAAAAAAAAAAAAAAAAAAIBts1kYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADKkFg24AUB+llPEkByc5LMl+SR6R5IEk65L8OMmlVVXd1+NrLkzy9CQHJNk3yfoktyX5flVVN/XyWv1SSjk8yROTrEiyOMntSW5NclFVVRsG2bZ+KqUsT3J4kkOS7J5kSZK7kqxJ8r2qqn48wOZtpZTyqEy8b/sl2SXJz5L8JMnFVVVt6uF1DkzyS5kY749IsikT9+W6TNyXe3t1rQ7bJf57QPxPqFv8Yw7oFXPAhDrMAf0c83W4H9RPE+ftJvapV/r1rFIX7kcz46WJfeoVY76V9ZvmxUoT+9Qr4p/pmhgrTexTr4h/azcAADSXZ6He8Nn8hLo9z4z6+u5k28wBPWAOmFC3OWDUif/eEP8T6hD/1nipuybO203sU6/4bK6V+9HMeGlin3rFmG816us3TYyVJvapV8Q/7ZoYL03sU6+YA6zfwNCrqkqSJGm7KRM/bJ2a5CtJ7k5SzZA2J/mnJP+9B9ddkeQjSdbOcL2Lkry4y+s8OslLk7w3yYVJ7mm7xk09uo/LkvxJkp/O0J97knwqyUEDfL/n7X4kWZjk+CQfSnLFDsZSNXmvzkqyz4Bj4CVJLp6hnWsnx+qeXVxjaZI3Jbl2B/fkwST/mOS4PvVd/PfmPor/Gsb/fI+PWdyDHaVVfbgH5oDe3EdzQE3mgH6N+brcD6l+qYnzdhP71OP3vB/PKjsneUaSP0zy6Uw8s2xpu87LBz3+3Y9mxksT+2TM1/5+WL9pva74b/Z4r0X8Z8TXb5oYK03sU4/f85GO/36Nj1i7kSRJkiRJkvqcmv4sFJ/N9+1+1PV5JiO8vjvZNnNAb+6jOaCGc8B8j49Z3IMdpVXz3H/x35v7KP5rEv/9GvN1uR9S/VIT5+0m9qnH7/lIfzbnfmzVtsbFSxP7ZMzX/n4M5fpNE2OliX2q4XivRfxnxNduJtvYuHhpYp96/J6P9BzQr/ER6zeS1HUaeAMkSRrelOTcLn7I/nKSved43ROS3NHBtf42yc4d1H9Mkn/ZwQ+UPXlYmbzeUzKxq+1s+3Nfktf08X2e9/sxeQ/unONYWpfkNwcw/ndJ8pkO2nl7kuPncJ2nJblhDvfl3CRL57H/4l/8j1z893N8dBFfD6VV83wvzAHmgJGaA/o15utyP6T6pX6N4W1cd97m7Sb2qYfv97w/q2Tiw4sfZmLxfkf1v3zA43/k70cT46WJfTLm63s/Jq9j/aZPsdLEPtVpvNch/mP9prGx0sQ+9fD9Hvn479f4iLUbSZIkSZIkqc+pqc9C8dl83+9HHZ9nMuLru5NtMweYA0ZuDujn+Ogivh5Kq+bxPoh/8T9S8d+vMV+X+yHVL/VrDG/juj6b89lclRH4bs6w348mxksT+2TM1/d+TF5nKNdvmhgrTexTncZ7HeI/1m4aHS9N7FMP3++RnwP6NT5i/UaSepIWBGD7Dt3O8Z8muS4TP5gtyMTuwE9IMjbtnF9L8v+XUp5VVdXts71gKeWYJOclWTTtcJXkskw88O+W5ElJ9pz2+slJdi2lvKCqqi2zuMwTkxw32zZ1o5TynEzsnrq47aWfJLk8Ex86rszEDzYLJ19bmuQjpZSxqqo+3Idm9uN+rEiyfBvHN2biB9vbM7HD7B5Jjpz870N2S/KpUspeVVX92Ty3M0lSShlP8tkkJ7a9tCbJ9yfbelAmxmKZfG3vJF8qpTynqqrvzPI6T0tyQSYeIqa7N8l/ZCLGFic5OMkRaY2x/5lkr1LKiVVVbZxl1zoh/rsk/qfUKf77Nj5qwBzQJXPAlLrMAf0a83W5H9RPE+ftJvapa/16VklyUpJHdN/i+eV+TGlivDSxT10z5ltZv0nSzFhpYp+6Jv5bWL+Z0MRYaWKfuib+p1i7AQCgqZr6LOSz+VY+m29jfXeKOaBL5oApdZoDrPFOEP9dEv9T6hL/1nipuybO203sU9d8NtfK/ZjSxHhpYp+6Zsy3sn6TpJmx0sQ+dU38t7B287AmxksT+9Q1c8AU6zdQJ73efUySpOakJJfm4Z02L0vy+iQHbefcRyb5q2y9Q+e3k5RZXm9ltt4J9DtJHtt23uIkf5CJ/+lPP/eds7zOqdtoZ5VkQ5Lr247d1MX9W5Wtd0++Pslzt3Hu8iR/3nbug9s6dx7e53m/H5n4Ie+hOu5N8rEkxybZaRvnliQvzMSHte1tmvf7MdmG97Zdd+Pk+F/Udt5hSS5uO/fnSfadxTWWbOP+/mJybC/ZxvkHJTl/G/fk9Hm6B+Jf/I9c/PdrfExea3pd350cM52kBfN8L8wB5oCRmgP6Nebrcj+k+qUmzttN7FOP3ut5f1aZLH/XNu5nleTWbbz28gGOffejofHSxD4Z8/W8H7F+0/dYaWKf6jLeJ8sPffzH+k1jY6WJferRey3++zg+Yu1GkiRJkiRJ6nNq6rNQfDbf9/tRt+eZWN996JrmAHPAyM0B/Rofk9eaXpc1XvEv/n0/b2juh1S/1MR5u4l96tF77bM592Mk4qWJfTLm63k/MuTrN02MlSb2qS7jfbL80Md/rN00Ol6a2KcevdfmgD6Oj1i/kaSepIE3QJKk4U2Z2Hn7K0mO7KDMa7fxP9uXzbLsx9rKXZRtPNRPO/8FbedvSHLgLK5z6uQPat9P8tEkv5vkyZn4q0HHtNV5Uxf37zNtdV2XZK8dlHlTW5krk4zP8/s87/dj8ge3O5KclmTnWZbZI8lVbde/ekc/JPbgfjw6Wz9Q/PoM5++UrX+4/8tZXOflbWW2JDl+B2VKks+1lbs7bQ8cPboP4l/8j2L892V8TF5rel0Xzme/5tg+c4A5YKTmgH6N+brcD6l+qYnzdhP71IP3uS/PKpNl78rEX+P4xyRnTs5fe0++dmFbnS8f0Lh3Px5uX+PipYl9MubreT9i/abvsdLEPtVlvE+WrUP8W7+pmhkrTexTD95n8d/n8RFrN5IkSZIkSVKfU1OfheKz+b7fjzo9z8T67vTrmQPMAaM4B1jjrcS/+B+9+O/XmK/L/ZDql5o4bzexTz14n302536MTLw0sU/GfD3vR4Z8/aaJsdLEPtVlvE+WrUP8W7t5uH2Ni5cm9qkH77M5oM/jI9ZvJKknaeANkCRpeFOSVXMs9w9t/7P9x1mUOSTJ5mllHkhyyCzKfaLtWh+fRZnl2/thMr374O3RmfirQ9PresYsy/5rW7lXzvP73I/7sWK2P7C1lXvCNu7jUfN8Pz7Zdr3Vsyhz6OSYfajMpiSP3kGZz7dd54uzbN8+2frB4znzcB9WzbGc+Bf/7fXUKf7n/X5Mq296XRfOZ7/m2L5VcyxnDjAHtNdTizmgX2O+LvdDql9q4rzdxD714H3uy7PKZLnt/mWTDMGHEO7HVm1YNcdyQxsvTexTD95nY34A9yPWb6aXEf9z7FMP3mfx39oO6zdVM2OliX3qwfss/vs8PmLtRpIkSZIkSepzauqzUD+e3+Oz+fZ6avM806/n3Qz5+u7ktVbNsZw5wBzQXk+d5gBrvJX4F/+jF//9GvN1uR9S/VIT5+0m9qkH77PP5tyP7bVh1RzLDW28NLFPPXifjfkB3I8M+fpNE2OliX3qwfss/lvbYe3m4fatmmO5oY2XJvapB++zOaDP4yPWbySpJ2ksANtRVdVNcyz64bb8s2dR5qQk49PyX6iq6rpZlHt3W/43SilLZipQVdW6qqo2zKLubvz3pGWO/W5VVd+ZZdn3teVf0ZsmbVs/7kdVVWuqqrpvDuX+M0n7fZvNeJqTUspOSV7Sdrh9jG2lqqprk5w37dCCTIzpmTy6Lf/lHTZw4lq3J7mk7fAhsynbCfHfFfHfeo1axP/kNfsxPmrBHNAVc0DrNWoxB/RrzNflflA/TZy3m9inbvT5WSVVVf2sowb2mfvRqonx0sQ+dcOYb2X9puU6N82x6NDGShP71A3xvzXrNxOaGCtN7FM3xH8razcAADRVU5+FfDbfymfzD7O+u9W1bppjUXOAOaD9GrWYAyavaY034r9L4r/1GrWIf2u81F0T5+0m9qkbPptr5X60amK8NLFP3TDmW1m/abnOTXMsOrSx0sQ+dUP8b83azcOaGC9N7FM3zAGtrN9AvdgsDJgP32/L71RK2W0HZV7Yll89mwtVVXV1kn+fdmjnJMfNpuw8e2Zb/l86KPuNTOxs/pCjSyn7dt+k2mofT/vN47WOT7J0Wv7fqqr60SzLto/ZF+3g/J3b8rfO8jpJcktbfnkHZeeb+Bf/vdTP+Kc3zAHmgF6qwxwwlzHfq2sN4/2gfpo4bzexT0l/n1XqwP3ojSbGSxP7lBjz7azfdK+JsdLEPiXin95rYqw0sU+J+O8VazcAADRVU5+FOuGz+d7x/bytDfP6bmIOSMwBvWRNo17Ev/jvpTrEvzVe6q6J83YT+5T4bK6d+9EbTYyXJvYpMebbWb/pXhNjpYl9SsQ/86OJ8dLEPiXmgF6xfgMDYLMwYD5s3saxRds7uZSyT5IntJW/qIPrXdiWP6GDsvNlZVv+itkWrKrqgSTXTzs0luHo06C0j6ftjqUe+NW2/IUdlP12Wtv6pFLK3jOcf3tbvpOdjdvPvbODsvNN/Iv/Xupn/NMb5gBzQC/VYQ7oaMz3+FrDeD+onybO203sU9LfZ5U6cD96o4nx0sQ+JcZ8O+s33WtirDSxT4n4p/eaGCtN7FMi/nvF2g0AAE3V1GehTvhsvnd8P29rw7y+m5gDEnNAL1nTqBfxL/57qQ7xb42XumvivN3EPiU+m2vnfvRGE+OliX1KjPl21m+618RYaWKfEvHP/GhivDSxT4k5oFes38AA2CwMmA8Ht+U3J/n5DOcf0Za/vKqq+zq43sVt+cM7KDtfdm/L39Vh+fbzH9dFW+qufTz9bB6v1T4W/222BSfH7A/bDs80Fr/dln/ybK+1jXP/o4Oy8038i/9e6mf80xvmAHNAL9VhDuh0zPfyWsN4P6ifJs7bTexT0t9nlTpwP3qjiQNOiPoAAB9ASURBVPHSxD4lxnw76zfda2KsNLFPifin95oYK03sUyL+e8XaDQAATdXUZ6FO+Gy+d3w/b2vDvL6bmAMSc0AvWdOoF/Ev/nupDvFvjZe6a+K83cQ+JT6ba+d+9EYT46WJfUqM+XbWb7rXxFhpYp8S8c/8aGK8NLFPiTmgV6zfwADYLAyYDy9py19aVdWWGc4/rC1//TbP2r4f76C+QdjYll/cYfn284ehT31XStk1yXPbDl8yj5d8bFt+Psfi36R1nLyylLLTji5QSnlhkgOmHbqyqqrvzb6J8078i/+eGED8D9IBpZTVpZQrSynrSikbSyl3TOb/tpTyu6WU9i+4DCtzgDmgJ2o0B3Q65uekRveD+mnivN3EPiX9fVapA/ejN5oYL03sU2LMt7N+070mxkoT+5SI/2HSlPWbJsZKE/uUiP9esXYDAEBTNfVZqBM+m+8B38/bWg3WdxNzQGIO6IkRW9OwxjtB/Iv/JLWKf2u81F0T5+0m9inx2Vw796M3mhgvTexTYsy3s37TvSbGShP7lIj/YdKUtZukmfHSxD4l5oBesX4DA2CzMKCnSim7JHlV2+Ev7qBY+y6eN3d42Z+05fcopSzvsI5eW9uW37fD8u3n/7cu2lJnr06ydFr+7iTfnI8LTT4otj8sdjoW288/ZHsnVlV1Y5LTpx3aP8lnSilLt1MkpZSjMrEI9pAtSX6/wzbOG/E/Rfz3Rt/ifwg8KsnLM7EYsFuShUn2msyfnOSvktxcSvk/k3E2lMwBU8wBvTH0c8Acx/xcDf39oH6aOG83sU9J/59Vhp370RtNjJcm9ikx5ttZv+leE2OliX1KxP8Qqv36TRNjpYl9SsR/r1i7AQCgqZr6LDQHPpvvDd/Pa23jUK/vJuaAacwBvTFKaxrWeCeIf/H/kKGPf2u81F0T5+0m9inx2Vw796M3mhgvTexTYsy3s37TvSbGShP7lIj/IVT7tZukmfHSxD4l5oBesX4Dg2OzMKDX/neSfabl70rrw/e27NaW/69OLlhV1fokG9oOP6KTOubB1W35p862YCnlgCT7tR0edH/6rpSyKsn/ajt8TlVV7X8Rqlfax+Evqqq6r8M62sfujO9bVVV/luSPkmyaPPTrSa4qpbyllPKMUsohpZTDSykvKKWsTnJRHn742JTklVVVDdMPsuJ/gvjv0gDivw52TnJqku+VUg4fdGO2wxwwwRzQpRrNAXMZ8x2r0f2gfpo4bzexT8kAnlWGnPvRG02Mlyb2KTHm21m/6V4TY6WJfUrEfx0N+/pNE2OliX1KxH+vWLsBAKCpmvos1CmfzXfJ9/Nqub6bmAMeYg7okjWNbbLG20b8N1ON4t8aL3XXxHm7iX1KfDbXzv3ojSbGSxP7lBjz7azfdK+JsdLEPiXiv46Gfe0maWa8NLFPiTmgV6zfwIDYLAzomVLKC5O8vu3wn1RVdecOirbv4nv/HC7fXmbZHOropW+15V88047mbX5rG8cG3Z++KqUsSvLZtPb7piTvmcfLDmQcVlX1viRPSPLxJOuSHJiJH46/neTaJFdkYhfdl2diN+wk+XqSp1ZV9ck5tHFeiP8W4r8LA4r/Qdmc5MIkb03y/CRPzsTu4U/KxOL2+7L1gsGhSb5eSjmwf83cMXNAC3NAF+oyB3Qx5ju9Ti3uB/XTxHm7iX2apg5t7Cf3o0tNjJcm9mmaOrSxn6zfdKGJsdLEPk1ThzaOgkas3zQxVprYp2nq0MahZu0GAICmavizUKd8Nt8F38+r3/puYg5oYw7owoitaVjjbSX+tzbo/vRVXeLfGi9118R5u4l9mqYObewn96NLTYyXJvZpmjq0sZ+s33ShibHSxD5NU4c2joJGrN0kzYyXJvZpmjq0cahZv4HBslkY0BOllCck+f/aDl+Q5C9mUbz9B6r23V5no/0HqvY6++0fM7H76UN2S3LGjgqVUvZP8sZtvDReStmpN02rhb9J8svT8g8m+e057MrbiUGOwwVJtuThHfBn8skkf1hV1WWdNGw+if+tiP/uDCL+B+GtSR5ZVdWzq6p6R1VVX66q6vtVVV1fVdUPqqo6v6qqP8rEAve7klTTyu6T5AullDKIhrczB2zFHNCdoZ8DuhzznRr6+0H9NHHebmKfdlDfMLaxn9yPLjQxXprYpx3UN4xt7CfrN3PUxFhpYp92UN8wtrHpGrF+08RYaWKfdlDfMLZxaFm7AQCgqUbgWahTPpvvju/nbd//be/ug6a96vqAf09IQwpBsMRIxYGI4tsgDNSZGtHpM9Q4YEcUpEqZOklb6AtOx7Y604G20/oytDOtjE5rBVtbOhZfUAtFiYHaGmhxquIESyGlzkhooQZJhJZEkvBy+sfeT7K79+69e+29e+11zv35zFx/7HXv7nV+5zm/X+7rdz3PyeT6u4kasIIacD4Xpaehxyv/HyL/HzL5/NfjpXU91u0eY9rwfVMc45jMxzn0mC89xrTh+6Y4xjHp3+yox1zpMaYN3zfFMfaui95N0me+9BjThu+b4hgnS/8Gjs9mYcC5lVKelNmDt/lfYj6Y5M/XWuvqT51prM8cTK31E0l+ZOn095ZSvnvdZ0opX5jk1iSPXfe1exrepJVSfiDJdy6dfkWt9R0jD+Xg67CU8shSyj9N8ttJXprkui0+dlOS95RS3nyyZo5K/p8m/3c3ofw/uJMG1vKu9qved3+t9RVJ/vrSj56V5M8dZHADqAGnqQG7a6EGHGDNn3Wtyc8H7emxbvcY04Gu1/N/S8zHlnrMlx5jOtD1el7z+jdb6DFXeozpQNfrOf8Prof+TY+50mNMB7rehcx/vRsAAHp1Qe+FzuTZ/O4mdD+jv7slNeA0NWB3E6oBB6fHu5L8X/O1exrepLWQ/3q8tK7Hut1jTAe6Xs//LTEfW+oxX3qM6UDX63nN699socdc6TGmA12v5/w/uB56N0mf+dJjTAe63oWsAfo3MA1XHnsAQNtKKdcl+Q9Jnjh3+q4kN9ZaP7rl19y79HqX/zvP8meWv/MYXpXkeXl4t9KS5IdLKS9K8hNJ3p3ZrrFfcPK+v5aHfzH6UJL5RsX9tdZTu9KWUq7fdjC11jsHjf4ISil/I7PdoOe9utb6j7f8/PXbXmvFfIy6DkspVyZ5U5Lnzg8ryRsz293+XUnuTvLIJE9K8pzMbmafevLeb05yQynlxlrru3cY67nJ/zPJ/4GOnP+TV2v90VLKNyZ5/tzplyf5qSMNSQ04mxowUAs1YE9rfttrnWs+YJUe63ZLMbV0rzIG8zG+lvJlWy3FZM0vamk+9G8eMql12FJMLa33MfR2L7tsav2blnJlWy3FJP8X6d0AAMDuWroXOgLP5gfy9/Pa6u8masAGasBALfz9nGPS411L/m/QwnpvIf/1eGldj3W7pZhaulcZg/kYX0v5sq2WYrLmF7U0Hz30b1rKlW21FFNL630Mvd3LLpta7yZpK1+21VJMasAi/Ru4WGwWBuyslPLHkvxKki+dO313km+otf7OgK/q7heqJKm1PlhKeWGSW5I8fe5HX3dyrHNPkr+U5K1z5z6+5r0fGDCkMuC9oyulvCzJq5dO/1it9XsGfM155mPsdfj3stjI+mSSF9Vab1l634NJ3pvkvaWUH0/yz5P8xZOfXZvkl0opz6i13rPDeHcm/88m/4eZQP634h9msZn1NaWUx9Va162Rg1EDzqYGDNNCDdjjmt/mWvuYD1jQY91uMKaW7lXGYD5G1GC+bNRgTNb8opbmQ/9mZjLrsMGYWlrvY+jmXvYMk+jfNJgrGzUYk/xfpHcDAAA7aPBeaFSezQ8zgWfz+rsDqQFnUwOGmUANaIUe72nyf7NJr/cW8l+Pl9b1WLcbjKmle5UxmI8RNZgvGzUYkzW/qKX5aLp/02CubNRgTC2t9zF0cy97hkn0bpIm82WjBmNSAxbp38AFcsWxBwC0qZTy2CRvS/JVc6c/ltnOn+8d+HX/d+n15w0cyzU5/QvV6L/Yr1Jr/XCSr03y2iSf2uIjv5rkq5Pct3T+rj0PbVJKKd+Z5DVZ/OXyXyf5rhGHsbwOH1VKefTA77hu6fXKdXjyC/HyL6QvX9HIWlBrfSDJy5K8fe70E5O8cuA4z0X+b0f+b2ci+d+K38gs1y57RJKvHHsQasB21IDttFAD9rzmN11r8vNBe3qs2z3GtMFo9yqNMB8D9JgvPca0gTW/SP9mSz3mSo8xbSD/23T0/k2PudJjTBvI/wH0bgAA6NUFvBfaiWfz25nI/Yz+7gBqwHbUgO1MpAa0Qo93cSzyv3Et5L8eL63rsW73GNMGns0tMh8D9JgvPca0gTW/SP9mSz3mSo8xbSD/23T03k3SZ770GNMGasAA+jcwPTYLAwYrpTwmya1J/sTc6f+X5Lm11nfv8JXLu4U+eeDnl9//B7XWj6185xHUWu+rtf7VJF+W5O9k9rDxQ5ntdP6JJHck+TdJbkzyp2utdyb5iqWveddoAx5ZKeXFmf2SNv/fpNcneWmttY41jpOd45fXzZMGfs3yWly3E+43JZm/afhAZmtgo1rrZ5N8/9Lpm0opo+zkLf+Hkf9nm0r+t+Ik///X0ulBjZLzUgOGUQPO1kINOMCaP+tak58P2tNj3e4xpk1GvleZPPOxvR7zpceYNrHmF+nfbKfHXOkxpk3kf5uO3b/pMVd6jGkT+b89vRsAAHp1Ee+FzsOz+bNN5X5Gf3d7asAwasDZplIDWqHHe4r8b1gL+a/HS+t6rNs9xrSJZ3OLzMf2esyXHmPaxJpfpH+znR5zpceYNpH/bTp27ybpM196jGkTNWB7+jcwTVceewBAW052Rb0lydfMnb43yfNqrb+x49fesfT6SwZ+/ilLr9+34zgOqtb6gSSvOjk2uWHp9a+v+c7R/gLKIZRSvi3JT2a2e/NlP5fkppObtkH2MB93ZPZ/mbrsS3J6fZ5leS2u++wzll7/6sBfUt+R5MEkV528fnxmYz3ojYT83538P22C+d+KTy69Xt4h/WDUgN2pAae1UAMOtObXXWuv8wFJn3W75ZgaulcZhfk4vJbzZZ2WY7LmFzU0H/o3D5P/p8n/HbR+LzvAUfo3LefKOi3HJP8X6d0AAMD2Wr4XOjbP5k+b4LN5/d0N1IDdqQGnTbAGtEKP92Hyv1Et5L8eL63rsW63HFND9yqjMB+H13K+rNNyTNb8oobmo8n+Tcu5sk7LMTW03kfR+r3sAP595SI1YHdqwAb6NzBdV2x+C8BMKeWPJvmlJF83d/oPk/yZWuuvneOr//vS66eXUh414PPP3vB9TTnZwfw5S6fffoyxHFIp5flJfjqLG1e+KclLaq2fOc6oTq2d5QfCa538wvv0Dd932eOWXt+17XWSpNb66ST3LJ2+dsh3DCX/xyH/j5r/rVjO9bvHuKgaMA41YDo14IBrftW1Jj8ftKfHut1jTAONda/SCvNxhh7zpceYBrLmF+nfrNFjrvQY00Dyv02j9296zJUeYxpI/p9B7wYAgF65FxqHZ/P+ft4mx+jvJmrAWNQAPY0t6PE+TP43qIX81+OldT3W7R5jGsizuUXm4ww95kuPMQ1kzS/Sv1mjx1zpMaaB5H+b/PvKRWrA7tSAM+jfwLTZLAzYSinl6iRvTnJp7vT9SZ5fa33Heb671vp7Sf7b3Kkrs/iLwyaXll7/8nnGMwHPSXL93Ou311oP/n+kG1Mp5Zsy2831j8ydfkuS7zhp1BzLrUuvLw347Ndn8ZfQ22utH1nz3o8vvX70gOtcds3S63t3+I6tyP9RyX/WKqVcm9O7jf+fEa6rBoxHDZiAQ675Fdea/HzQnh7rdo8x7WCse5VWmI81esyXHmPagTW/SP9mhR5zpceYdiD/G3OM/k2PudJjTDuQ/2vo3QAA0Cv3QqPybP549HfXUANGpQawlh7vKZeWXsv/iWsh//V4aV2PdbvHmHbg2dwi87FGj/nSY0w7sOYX6d+s0GOu9BjTDuR/Y/z7ypUuLb1WA7anBqyhfwPTZ7MwYKNSylVJ/l2Sb5g7/UCSb621/sc9XeaNS6//wpZj+/Ikf3Lu1H1J3ranMR3L3156/dqjjOJASik3JvmFJFfNnX5bkm+rtT54nFE95K1JPjn3+oaTNbaNm5deL6/pecs3n8/c8hpJklLKU5M8Zun0oN3zB1xL/o9L/nOWF2fx9/ePJLnjkBdUA0anBhzZSGv+8rUmPx+0p8e63WNMOxrrXqUV5mOFHvOlx5h2ZM0v0r85fa3ucqXHmHYk/9szav+mx1zpMaYdyf8V9G4AAOiVe6HReTZ/PPq7q6+nBoxLDeAserwPj03+N6aF/NfjpXU91u0eY9qRZ3OLzMcKPeZLjzHtyJpfpH9z+lrd5UqPMe1I/rfHv69cHJsacD5qwAr6N9AGm4UBZyqlXJnkDUmeN3f6U0leVGt96x4v9fokn5l7/cKTG/ZNlh/avaHWev/+hjWuUspNSW6cO/XuzHZD7UIp5U8l+fdJrp47/Z8y+wXxgeOM6mG11j9M8vNLp5fX2CmllC9N8oK5U59O8lNnfOS2pdfPLqV85TZjPPFXll6/v9b60QGf34r8H5f85yyllM9P8neXTv9irbUe8JpqwIjUgOMbcc03MR+0p8e63WNMuxrxXqUJ5uO0HvOlx5h2Zc0v0r9Z1GOu9BjTruR/W8bu3/SYKz3GtCv5f5reDQAAvXIvNC7P5o9Lf/c0NWBcagBn0eM9Rf43pIX81+OldT3W7R5j2pVnc4vMx2k95kuPMe3Kml+kf7Oox1zpMaZdyf+2+PeVK6kB56AGnKZ/Aw2ptTocDsfKI8kjkvxskjp3fCrJCw50vZ9YutY7k1x9xvu/Zen9DyR58jnHcGnpO+885/ddOeC9L0zy4NJcP/PIa2Bv85HkhiSfWPq+tyd51DFjXDHOpyz9OdQkzz/j/VefrNX5979mwzVKkvcvfea3kjxmi/E9d8X4fvAA8yD/5f+Fy/8x5iPJlyX55oGfeUKS31yx5p9ywHjVADXgQtWAMdd8C/PhaO/osW73GNMexnjwe5Utx3Hb0nfefMi4zcdWY+guX3qMaQ9jtOZHno/o36y6nvyX/0fP/w1jvLQ0xjt3/J7J9296zJUeY9rDGOX/EdZH9G4cDofD4XA4HCMeF/FeaF/373Pf59n8w9/VxP3MGPe7aaC/e3ItNUANuHA1YIz5iB7vquvJf/l/1GPMNd/CfDjaO3qs2z3GtIcxejZnPtaNobt86TGmPYzRmh95PtJA/6bHXOkxphbW+5bjmET+bxjjpaUx3rnj90y+d3Nyze7ypceY9jBGNeAI6yP6Nw7HuY8rA7Dev0ry7UvnXpnk9lLK9QO/6666eefWv5/ZTqqfe/L6a5P8SinlpbXW/3H5TaWURyb5y0l+aOnzP1Rr/eA2gymlfGGysgY+Yen1lWfEem+t9e4Nl3pPKeUtSX4hya/XWj+7YixPS/KKJC9Z+tEra623b/j+vTj0fJRSnpnkl5NcM3f6/Um+K8l1pZQhw72/1nrXkA8MUWv93VLKjyT53rnTP19K+VtJfrzW+uDlk6WUr0jyLzNbq5fdk+T7NlyjllJekdm6uOxZSX7r5DpvqbXW+c+UUh6f5LszWyvzf1b3JPkn28Y3gPyX/xcu/5NR1scfT/LmUsp7kvzbJG+stf7OmrE8JslNme14//lLP/7BWuvvrrnGPqgBasBFqwGjrPmG5oP29Fi3e4zpXMa4V5n7/DVJrl3z46uXXl97xp/Jh2qtn97mmkOZjwU95kuPMZ2LNb9I/+YhPeZKjzGdi/w/Tf8mSZ+50mNM5yL/F+jdAADQq27vhTybPzUGz+ZP6O8uUAPUgAtXAxI93hPyX/5ftPzX46V1PdbtHmM6F8/mFpmPBT3mS48xnYs1v0j/5iE95kqPMZ2L/D9N7+YhPeZLjzGdixqwQP8GWlInsGOZw+GY5pHF3TjPe1za8pqXMtvpdf6zn81sx9+fTXJrkt9f8f2/mOQRA2K7cw8xvW6L69w99/5PJPm1zBoYr0/ytjPG8QMj/1kfdD6S/IM9rqXbRpiPRyS5ZcW1P5LZL6BvSPKuk7U5//MHknz9gOu8ek2Mdyd568k6+bmT9f+pFe+7P8lz5L/8l/9NzcelFe//eJL/kuRNSX4yyRszqzGr8r4mee0I86AGqAEXqgaMteZbmQ9He8dYa3jpmpdywLrdY0x7+rMe617l5j3N/fXm4/Dz0WO+9BiTNd/0fOjfyH/5P738v3MPY3zdhjWx/P5J9W96zJUeY5L/7a356N04HA6Hw+FwOEY+er4Ximfzo85Ha/cz0d9VA9SAi14DDj0fl1a8X49X/sv/I+b/WGu+lflwtHeMtYaXrnkpns0NimlPf9aezZmPC5EvPcZkzTc9H5Pt3/SYKz3G1Nh6v3lPc3/o/L9zD2N83YY1sfz+SfVues2XHmNSA9pb89G/cTj2cqza1RPgaGqtt5VSXpDkdUk+7+R0SfLVJ8cqP53kZbXWzxx+hOdyTZIbNrznY0leXmv9mRHGwxq11s+UUr49sx1+v2PuR9clee6aj/1+kptqrf95wKW+5+Rz35fkqrnzj0/yjRs++8EkN9dabxtwvUmT//L/Antskmdv8b77kvzNWuu/OPB4jkINUAOAtvRYt1uIacR7lSaYj+NpIV+GaiEma36R/s1xtJArQ7UQk/yfhAvfv2khV4ZqISb5DwAA7FsL90Ln4Nl8I/R3j0cNUAMuMD1e+S//gab0WLdbiMmzuUXm43hayJehWojJml+kf3McLeTKUC3EJP8n4cL3bpI28mWoFmJSA4AWXXHsAQAsq7XekuRpSV6T2YO5df5rkhfVWl9Sa71vlMEN98NJbs9st9iz/O8k35/kiz2EnIZa67211hcn+bOZrbV1/iDJjyV5Wq311oHXqLXWf5Tkq5L8s5y93i97X2ZNsKf11Mi6TP7L/wvgjiSvSvLOJJ/c8jP/M8krM9vxu8tG1mVqgBoAtKWzup2kjZjGuFdpifk4nhbyZagWYrLmF+nfHEcLuTJUCzHJ/1Hp36zRQq4M1UJM8h8AANi3Fu6FBvBsvlH6u8ejBqgBF4Ae7xryX/4DbemsbidpIybP5haZj+NpIV+GaiEma36R/s1xtJArQ7UQk/wfld7NGVrIl6FaiEkNAFpTaq3HHgPAWqWUqzLbDfjJSZ6Q2a6/H05ye631A8cc2xCllM9J8swkX5TZzrdXZ3YT8+Ekv11rfd8Rh8cWSilflORZSb4gyaOT3JXZ7vPvrLU+uKdrlCRfnuQZSa5N8jlJPp3k45mtlXfVWj+yj2u1QP7Tu1LKFUmemuSLkzwxyePy8Pr4WJLfS/KbtdaPHm2QR6QGALSll7o9r5WYxrhXaYn5OI5W8mWIVmKy5hfp34yvlVwZopWY5P849G/WayVXhmglJvkPAADsUyv3Qpt4Nt8+/d3jUAPonR7vevIfoC291O15rcTk2dwi83EcreTLEK3EZM0v0r8ZXyu5MkQrMcn/cejdnK2VfBmilZjUAGDqbBYGAAAAAAAAAAAAAAAAAAAAAAAAE3XFsQcAAAAAAAAAAAAAAAAAAAAAAAAArGazMAAAAAAAAAAAAAAAAAAAAAAAAJgom4UBAAAAAAAAAAAAAAAAAAAAAADARNksDAAAAAAAAAAAAAAAAAAAAAAAACbKZmEAAAAAAAAAAAAAAAAAAAAAAAAwUTYLAwAAAAAAAAAAAAAAAAAAAAAAgImyWRgAAAAAAAAAAAAAAAAAAAAAAABMlM3CAAAAAAAAAAAAAAAAAAAAAAAAYKJsFgYAAAAAAAAAAAAAAAAAAAAAAAATZbMwAAAAAAAAAAAAAAAAAAAAAAAAmCibhQEAAAAAAAAAAAAAAAAAAAAAAMBE2SwMAAAAAAAAAAAAAAAAAAAAAAAAJspmYQAAAAAAAAAAAAAAAAAAAAAAADBRNgsDAAAAAAAAAAAAAAAAAAAAAACAibJZGAAAAAAAAAAAAAAAAAAAAAAAAEyUzcIAAAAAAAAAAAAAAAAAAAAAAABgomwWBgAAAAAAAAAAAAAAAAAAAAAAABNlszAAAAAAAAAAAAAAAAAAAAAAAACYKJuFAQAAAAAAAAAAAAAAAAAAAAAAwETZLAwAAAAAAAAAAAAAAAAAAAAAAAAmymZhAAAAAAAAAAAAAAAAAAAAAAAAMFE2CwMAAAAAAAAAAAAAAAAAAAAAAICJslkYAAAAAAAAAAAAAAAAAAAAAAAATJTNwgAAAAAAAAAAAAAAAAAAAAAAAGCibBYGAAAAAAAAAAAAAAAAAAAAAAAAE2WzMAAAAAAAAAAAAAAAAAAAAAAAAJgom4UBAAAAAAAAAAAAAAAAAAAAAADARNksDAAAAAAAAAAAAAAAAAAAAAAAACbKZmEAAAAAAAAAAAAAAAAAAAAAAAAwUTYLAwAAAAAAAAAAAAAAAAAAAAAAgImyWRgAAAAAAAAAAAAAAAAAAAAAAABMlM3CAAAAAAAAAAAAAAAAAAAAAAAAYKJsFgYAAAAAAAAAAAAAAAAAAAAAAAATZbMwAAAAAAAAAAAAAAAAAAAAAAAAmCibhQEAAAAAAAAAAAAAAAAAAAAAAMBE2SwMAAAAAAAAAAAAAAAAAAAAAAAAJspmYQAAAAAAAAAAAAAAAAAAAAAAADBR/x+Xhcjgi63IuAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from apd.aggregation.analysis import interactable_plot_multiple_charts, configs\n", + "from apd.aggregation.utils import jupyter_page_file, profile_with_yappi, yappi_package_matches\n", + "import yappi\n", + "\n", + "with profile_with_yappi():\n", + " plot = interactable_plot_multiple_charts()\n", + " plot()\n", + "\n", + "with jupyter_page_file() as output:\n", + " yappi.get_func_stats(filter_callback=lambda stat:\n", + " yappi_package_matches(stat, [\"apd.aggregation\"])\n", + " ).print_all(output)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r\n", + "Clock type: WALL\r\n", + "Ordered by: totaltime, desc\r\n", + "\r\n", + "name ncall tsub ttot tavg \r\n", + "..futures\\thread.py:52 _WorkItem.run 7 0.000092 3.204091 0.457727\r\n", + "..tion\\analysis.py:373 run_in_thread 1 0.000053 1.844382 1.844382\r\n", + "..38\\Lib\\threading.py:859 Thread.run 2/1 0.000025 1.839877 0.919939\r\n", + "..rrent\\futures\\thread.py:66 _worker 2/1 0.000022 1.839852 0.919926\r\n", + "..lectorEventLoop.run_until_complete 1 0.000027 1.839745 1.839745\r\n", + "..ndowsSelectorEventLoop.run_forever 1 0.000088 1.839611 1.839611\r\n", + "..WindowsSelectorEventLoop._run_once 17 0.000408 1.839497 0.108206\r\n", + "..alysis.py:327 plot_multiple_charts 1 1.643447 1.839309 1.839309\r\n", + "..py:635 ThreadPoolExecutor.__exit__ 1 0.000005 1.837286 1.837286\r\n", + "..py:230 ThreadPoolExecutor.shutdown 1 0.000009 1.837281 1.837281\r\n", + "..8\\Lib\\threading.py:979 Thread.join 1 0.000006 1.837272 1.837272\r\n", + "..:1017 Thread._wait_for_tstate_lock 1 0.000011 1.837263 1.837263\r\n", + "..gation\\analysis.py:291 plot_sensor 1 0.000000 1.407986 1.407986\r\n", + "..query.py:88 get_data_by_deployment 1 1.397146 1.397188 1.397188\r\n", + "..d\\aggregation\\query.py:41 get_data 1 1.283592 1.375576 1.375576\r\n", + "..lchemy\\orm\\query.py:3232 Query.all 6 0.004333 1.362649 0.227108\r\n", + "..ctors.py:319 SelectSelector.select 17 0.000177 1.362418 0.080142\r\n", + "..tors.py:313 SelectSelector._select 17 0.000069 1.362216 0.080130\r\n", + "..y\\orm\\query.py:3400 Query.__iter__ 6 0.000054 0.958316 0.159719\r\n", + "..:3425 Query._execute_and_instances 6 0.000073 0.956631 0.159439\r\n", + "..ine\\base.py:916 Connection.execute 9 0.000062 0.740051 0.082228\r\n", + "..:589 PGDialect_psycopg2.do_execute 11 0.000042 0.738361 0.067124\r\n", + "..y:1159 Connection._execute_context 9 0.000307 0.734166 0.081574\r\n", + "..:291 Select._execute_on_connection 6 0.000047 0.731436 0.121906\r\n", + ".. Connection._execute_clauseelement 6 0.000127 0.731389 0.121898\r\n", + "..b\\asyncio\\events.py:79 Handle._run 29 0.000071 0.476528 0.016432\r\n", + "..lchemy\\orm\\loading.py:35 instances 10836 0.002535 0.400000 0.000037\r\n", + "..esult.py:1257 ResultProxy.fetchall 6 0.000339 0.363463 0.060577\r\n", + "..py:1217 ResultProxy._fetchall_impl 6 0.000013 0.359396 0.059899\r\n", + "..query.py:3440 Query._get_bind_args 6 0.000028 0.225079 0.037513\r\n", + "..419 Query._connection_from_session 6 0.000021 0.224996 0.037499\r\n", + "..session.py:1057 Session.connection 6 0.000029 0.224975 0.037496\r\n", + "..:1136 Session._connection_for_bind 6 0.000016 0.224937 0.037489\r\n", + "..onTransaction._connection_for_bind 6 0.000041 0.224921 0.037487\r\n", + "..py:2248 Engine._contextual_connect 1 0.000009 0.224836 0.224836\r\n", + "...py:2282 Engine._wrap_pool_connect 1 0.000003 0.223656 0.223656\r\n", + "..pool\\base.py:354 QueuePool.connect 1 0.000005 0.223653 0.223653\r\n", + "..alchemy\\pool\\base.py:770 _checkout 1 0.000011 0.223648 0.223648\r\n", + "..lalchemy\\pool\\base.py:490 checkout 1 0.000034 0.223632 0.223632\r\n", + "..pool\\impl.py:112 QueuePool._do_get 1 0.000011 0.223585 0.223585\r\n", + "..y:305 QueuePool._create_connection 1 0.000003 0.223563 0.223563\r\n", + "...py:434 _ConnectionRecord.__init__ 1 0.000013 0.223560 0.223560\r\n", + "..py:644 _ConnectionRecord.__connect 1 0.000043 0.223547 0.223547\r\n", + "..egation\\analysis.py:313 4 0.000024 0.186344 0.046586\r\n", + "..184 clean_temperature_fluctuations 4 0.000000 0.186293 0.046573\r\n", + "..gregation\\query.py:116 subiterator 4 0.000000 0.186226 0.046557\r\n", + "..sycopg2\\_json.py:164 typecast_json 10822 0.016073 0.181846 0.000017\r\n", + "..n38\\Lib\\json\\__init__.py:299 loads 10822 0.032198 0.165773 0.000015\r\n", + "..regation\\query.py:24 with_database 2 0.000043 0.140628 0.070314\r\n", + ".._GeneratorContextManager.__enter__ 141 0.000202 0.140299 0.000995\r\n", + "..ngine\\__init__.py:85 create_engine 1 0.000022 0.138392 0.138392\r\n", + "..s.py:52 PlainEngineStrategy.create 1 0.000087 0.138370 0.138370\r\n", + "..lib._bootstrap>:986 _find_and_load 10/2 0.000144 0.134169 0.013417\r\n", + "..strap>:956 _find_and_load_unlocked 10/2 0.000091 0.134084 0.013408\r\n", + "..lib._bootstrap>:650 _load_unlocked 10/2 0.000096 0.131844 0.013184\r\n", + "..>:777 SourceFileLoader.exec_module 9/2 0.000063 0.131659 0.014629\r\n", + "..y\\engine\\strategies.py:106 connect 1 0.000007 0.125748 0.125748\r\n", + "...py:488 PGDialect_psycopg2.connect 1 0.000005 0.125741 0.125741\r\n", + "..es\\psycopg2\\__init__.py:82 connect 1 0.000015 0.125737 0.125737\r\n", + "..rap>:211 _call_with_frames_removed 14/2 0.000022 0.122924 0.008780\r\n", + "..\\decoder.py:332 JSONDecoder.decode 10822 0.046535 0.121966 0.000011\r\n", + "..es\\psycopg2\\extras.py:686 10830 0.021009 0.119481 0.000011\r\n", + "..s\\postgresql\\psycopg2.py:735 dbapi 1 0.000004 0.113976 0.113976\r\n", + "..es\\psycopg2\\__init__.py:1 1 0.000046 0.102701 0.102701\r\n", + "..on38\\Lib\\uuid.py:130 UUID.__init__ 10830 0.069266 0.098473 0.000009\r\n", + "..lection.exec_once_unless_exception 1 0.000007 0.097685 0.097685\r\n", + "..y:316 _ListenerCollection.__call__ 2 0.000017 0.097680 0.048840\r\n", + "..ListenerCollection._exec_once_impl 1 0.000016 0.097677 0.097677\r\n", + "..ion\\database.py:77 from_sql_result 10822 0.019580 0.089918 0.000008\r\n", + "..ngine\\strategies.py:183 on_connect 2 0.000008 0.075679 0.037840\r\n", + "..tgresql\\psycopg2.py:847 on_connect 2 0.000013 0.075669 0.037834\r\n", + "..tgresql\\psycopg2.py:815 on_connect 2 0.000012 0.075598 0.037799\r\n", + "...py:903 PGDialect_psycopg2.oneshot 1 0.000013 0.075586 0.075586\r\n", + "..02 PGDialect_psycopg2._hstore_oids 1 0.000026 0.075573 0.075573\r\n", + "..ycopg2\\extras.py:909 type.get_oids 1 0.000038 0.075520 0.075520\r\n", + "..gregation\\analysis.py:63 draw_date 4 0.000031 0.072437 0.018109\r\n", + "..\\matplotlib\\__init__.py:1535 inner 4 0.000037 0.072405 0.018101\r\n", + "..axes.py:1651 AxesSubplot.plot_date 4 0.000035 0.072294 0.018074\r\n", + "..xes\\_axes.py:1412 AxesSubplot.plot 4 0.000082 0.071675 0.017919\r\n", + ".._collections.py:121 result._asdict 10826 0.061631 0.063835 0.000006\r\n", + "..nal>:849 SourceFileLoader.get_code 9 0.000243 0.063569 0.007063\r\n", + "..._bootstrap>:1017 _handle_fromlist 20/18 0.000074 0.061614 0.003081\r\n", + "..nal>:969 SourceFileLoader.get_data 9 0.000317 0.060499 0.006722\r\n", + "..b._bootstrap>:549 module_from_spec 10/9 0.000052 0.059592 0.005959\r\n", + ".. ExtensionFileLoader.create_module 1 0.000007 0.059071 0.059071\r\n", + ".._base.py:1842 AxesSubplot.add_line 4 0.000108 0.055449 0.013862\r\n", + "..68 AxesSubplot._update_line_limits 4 0.000106 0.053296 0.013324\r\n", + "..tlib\\lines.py:1018 Line2D.get_path 10 0.000046 0.052416 0.005242\r\n", + "..lotlib\\lines.py:664 Line2D.recache 10 0.001214 0.052370 0.005237\r\n", + "...py:168 AxesSubplot.convert_xunits 48 0.000078 0.048491 0.001010\r\n", + "..b\\axis.py:1562 XAxis.convert_units 12 0.000042 0.048443 0.004037\r\n", + "..s\\matplotlib\\dates.py:1911 convert 6 0.000028 0.048202 0.008034\r\n", + "..s\\matplotlib\\dates.py:401 date2num 6 0.000082 0.048174 0.008029\r\n", + "..on_base.py:2063 vectorize.__call__ 4 0.000117 0.047604 0.011901\r\n", + "...py:2154 vectorize._vectorize_call 4 0.003677 0.047487 0.011872\r\n", + "..\\figure.py:1259 Figure.add_subplot 1 0.000035 0.043835 0.043835\r\n", + "..ubplots.py:18 AxesSubplot.__init__ 1 0.000041 0.043601 0.043601\r\n", + "..tplotlib\\dates.py:210 _to_ordinalf 8467 0.029289 0.041988 0.000005\r\n", + "..oder.py:343 JSONDecoder.raw_decode 10822 0.037424 0.037424 0.000003\r\n", + "..\\_base.py:378 AxesSubplot.__init__ 1 0.000143 0.036550 0.036550\r\n", + "..chemy\\orm\\loading.py:83 6 0.013648 0.033343 0.005557\r\n", + "..\\psycopg2\\extensions.py:1 1 0.000186 0.025350 0.025350\r\n", + "..\\axes\\_base.py:948 AxesSubplot.cla 1 0.000154 0.024886 0.024886\r\n", + "..lchemy\\util\\langhelpers.py:1506 go 1 0.000010 0.021983 0.021983\r\n", + "..ne\\strategies.py:194 first_connect 1 0.000039 0.021972 0.021972\r\n", + "..:715 PGDialect_psycopg2.initialize 1 0.000026 0.021725 0.021725\r\n", + "..2456 PGDialect_psycopg2.initialize 1 0.000048 0.021698 0.021698\r\n", + "..l\\psycopg2.py:747 _psycopg2_extras 2 0.000024 0.020241 0.010120\r\n", + "..:779 PGDialect_psycopg2.on_connect 1 0.000012 0.020232 0.020232\r\n", + "..:307 PGDialect_psycopg2.initialize 1 0.000057 0.019880 0.019880\r\n", + "..53 _process_plot_var_args.__call__ 8 0.000061 0.015955 0.001994\r\n", + ".. _process_plot_var_args._plot_args 4 0.000148 0.015865 0.003966\r\n", + "..\\axis.py:884 XAxis.set_tick_params 8 0.000121 0.015507 0.001938\r\n", + "..\\axis.py:687 _LazyTickList.__get__ 6/4 0.000042 0.013303 0.002217\r\n", + "..tplotlib\\axis.py:56 XTick.__init__ 6 0.000433 0.013213 0.002202\r\n", + "..n\\query.py:76 get_deployment_by_id 4 0.010913 0.013115 0.003279\r\n", + "..function__ internals>:2 atleast_1d 24 0.000048 0.012936 0.000539\r\n", + "..y\\core\\shape_base.py:24 atleast_1d 24 0.000157 0.012825 0.000534\r\n", + "..b\\cbook\\__init__.py:1320 _check_1d 8 0.000033 0.012712 0.001589\r\n", + "..mpy\\core\\_asarray.py:88 asanyarray 72 0.000061 0.012631 0.000175\r\n", + "..xes\\_base.py:2716 AxesSubplot.grid 2 0.000022 0.012290 0.006145\r\n", + "..matplotlib\\axis.py:1456 XAxis.grid 4 0.000042 0.012264 0.003066\r\n", + "..ages\\psycopg2\\extras.py:1 1 0.000066 0.010984 0.010984\r\n", + "..chemy\\orm\\loading.py:84 10830 0.010873 0.010873 0.000001\r\n", + "..otlib\\lines.py:269 Line2D.__init__ 30 0.001371 0.010610 0.000354\r\n", + "..on-68gteq6k\\lib\\re.py:287 _compile 85 0.000336 0.010565 0.000124\r\n", + "..q6k\\lib\\sre_compile.py:759 compile 12 0.000126 0.009982 0.000832\r\n", + "..es\\_axes.py:299 AxesSubplot.legend 1 0.000023 0.009283 0.009283\r\n", + "..tlib\\legend.py:306 Legend.__init__ 1 0.000569 0.009178 0.009178\r\n", + "..ct_psycopg2._check_unicode_returns 1 0.000050 0.009017 0.009017\r\n", + "..portlib._bootstrap>:890 _find_spec 10 0.000165 0.009003 0.000900\r\n", + "..thon38\\Lib\\uuid.py:231 UUID.__eq__ 10834 0.006940 0.008965 0.000001\r\n", + "..y\\util\\_collections.py:112 __new__ 10830 0.004995 0.008821 0.000001\r\n", + "..my\\engine\\default.py:415 1 0.000011 0.008803 0.008803\r\n", + "..ngine\\default.py:378 check_unicode 2 0.000053 0.008793 0.004396\r\n", + "..bootstrap_external>:1334 find_spec 10 0.000027 0.008728 0.000873\r\n", + "..bootstrap_external>:1302 _get_spec 10 0.000084 0.008701 0.000870\r\n", + "..ib\\axis.py:967 XAxis.set_clip_path 2 0.000036 0.008564 0.004282\r\n", + "..e.py:1134 Connection._execute_text 3 0.000057 0.008541 0.002847\r\n", + "..es\\matplotlib\\pyplot.py:427 figure 1 0.000053 0.008060 0.008060\r\n", + "..xternal>:1431 FileFinder.find_spec 17 0.000331 0.007932 0.000467\r\n", + "..ion-68gteq6k\\lib\\re.py:248 compile 10 0.000012 0.007849 0.000785\r\n", + "..d_bases.py:3325 new_figure_manager 1 0.000026 0.007841 0.007841\r\n", + "..tlib\\figure.py:275 Figure.__init__ 1 0.000636 0.007679 0.007679\r\n", + ".._psycopg2._get_server_version_info 1 0.000022 0.007530 0.007530\r\n", + "..end.py:727 Legend._init_legend_box 1 0.000729 0.007464 0.007464\r\n", + ".._bootstrap_external>:80 _path_stat 40 0.000085 0.007435 0.000186\r\n", + "..py:1293 Connection._cursor_execute 2 0.000014 0.007370 0.003685\r\n", + "..8gteq6k\\lib\\sre_parse.py:937 parse 12 0.000138 0.007321 0.000610\r\n", + "..ation\\analysis.py:191 datapoint_ok 10826 0.007280 0.007280 0.000001\r\n", + "..rrent\\futures\\thread.py:158 submit 7 0.000144 0.007162 0.001023\r\n", + "..6k\\lib\\sre_parse.py:435 _parse_sub 59/12 0.000420 0.007081 0.000120\r\n", + "..s.py:129 AxesSubplot.update_params 1 0.000018 0.006972 0.006972\r\n", + "..ec.py:586 SubplotSpec.get_position 1 0.000379 0.006954 0.006954\r\n", + "..gteq6k\\lib\\sre_parse.py:493 _parse 75/14 0.002524 0.006897 0.000092\r\n", + "..dPoolExecutor._adjust_thread_count 7 0.000109 0.006843 0.000978\r\n", + "..kages\\psycopg2\\_json.py:1 1 0.000022 0.006798 0.006798\r\n", + ":1 Select. 8 0.000037 0.006789 0.000849\r\n", + "..sql\\elements.py:405 Select.compile 8 0.000033 0.006752 0.000844\r\n", + "..l\\elements.py:470 Select._compiler 8 0.000041 0.006719 0.000840\r\n", + "..y:527 PGCompiler_psycopg2.__init__ 8 0.000111 0.006678 0.000835\r\n", + "..otlib\\axis.py:1944 XAxis._get_tick 3 0.000021 0.006665 0.002222\r\n", + "..otlib\\axis.py:2231 YAxis._get_tick 3 0.000021 0.006593 0.002198\r\n", + "..y:274 PGCompiler_psycopg2.__init__ 8 0.000058 0.006562 0.000820\r\n", + ":1 DataPoint.__init__ 10822 0.006522 0.006522 0.000001\r\n", + "..py:349 PGCompiler_psycopg2.process 8 0.000029 0.006504 0.000813\r\n", + "..rs.py:86 Select._compiler_dispatch 97/8 0.000331 0.006475 0.000067\r\n", + "..5 PGCompiler_psycopg2.visit_select 8 0.000210 0.006430 0.000804\r\n", + "..ib\\axis.py:334 XTick._apply_params 14 0.000333 0.006152 0.000439\r\n", + "..\\artist.py:731 XAxis.set_clip_path 26 0.000415 0.005825 0.000224\r\n", + "..\\Lib\\threading.py:834 Thread.start 2 0.000033 0.005717 0.002858\r\n", + "..ib\\threading.py:270 Condition.wait 4 0.000112 0.005571 0.001393\r\n", + "..egation\\analysis.py:212 8613 0.005513 0.005513 0.000001\r\n", + "..tplotlib\\artist.py:1095 Line2D.set 70 0.000373 0.005507 0.000079\r\n", + "..38\\Lib\\threading.py:540 Event.wait 2 0.000027 0.005495 0.002747\r\n", + "..otlib\\axis.py:825 XAxis._set_scale 16 0.000049 0.005371 0.000336\r\n", + "..ap_external>:90 _path_is_mode_type 13 0.000052 0.005363 0.000413\r\n", + "..ootstrap_external>:99 _path_isfile 12 0.000029 0.005197 0.000433\r\n", + "..et_default_locators_and_formatters 16 0.000126 0.005196 0.000325\r\n", + "..base.py:553 AxesSubplot._init_axis 1 0.000047 0.005155 0.005155\r\n", + "...py:89 HandlerLine2D.legend_artist 4 0.000047 0.004979 0.001245\r\n", + "..lib\\artist.py:974 Rectangle.update 140 0.001036 0.004733 0.000034\r\n", + "..y:229 HandlerLine2D.create_artists 4 0.000094 0.004674 0.001168\r\n", + "..s\\matplotlib\\axis.py:841 XAxis.cla 12 0.000087 0.004533 0.000378\r\n", + "..my\\sql\\compiler.py:2127 8 0.000069 0.004473 0.000559\r\n", + "..iler_psycopg2._label_select_column 29 0.000356 0.004404 0.000152\r\n", + "..hes.py:260 Rectangle.get_transform 18 0.000077 0.004024 0.000224\r\n", + "..plotlib\\axis.py:744 XAxis.__init__ 2 0.000070 0.003973 0.001986\r\n", + "<__array_function__ internals>:2 dot 67 0.000177 0.003854 0.000058\r\n", + "..\\transforms.py:1986 Affine2D.scale 13 0.000153 0.003812 0.000293\r\n", + "..ib\\axis.py:229 XTick.set_clip_path 6 0.000032 0.003711 0.000619\r\n", + "..:776 Rectangle.get_patch_transform 18 0.000038 0.003626 0.000201\r\n", + ".. Rectangle._update_patch_transform 18 0.000235 0.003587 0.000199\r\n", + "..se.py:2873 AxesSubplot.tick_params 2 0.000242 0.003572 0.001786\r\n", + "..tlib\\artist.py:217 Rectangle.stale 171.. 0.002093 0.003507 0.000002\r\n", + "..sSelectorEventLoop.run_in_executor 6 0.000084 0.003206 0.000534\r\n", + "..\\__init__.py:1640 normalize_kwargs 74 0.002561 0.003200 0.000043\r\n", + "..icker.py:2848 AutoLocator.__init__ 16 0.000044 0.003190 0.000199\r\n", + "..icker.py:2051 AutoLocator.__init__ 16 0.000061 0.003118 0.000195\r\n", + "..t.py:1240 ResultProxy.process_rows 9 0.000037 0.003098 0.000344\r\n", + "..y\\engine\\result.py:1253 9 0.003062 0.003062 0.000340\r\n", + "..ker.py:2126 AutoLocator.set_params 16 0.000144 0.003058 0.000191\r\n", + "..gine\\base.py:908 Connection.scalar 2 0.000026 0.002811 0.001405\r\n", + "..es\\numpy\\core\\_methods.py:32 _amin 2 0.000005 0.002705 0.001352\r\n", + "..10 PGCompiler_psycopg2.visit_label 29 0.000329 0.002675 0.000092\r\n", + "..ges\\numpy\\core\\_methods.py:47 _all 1 0.000018 0.002555 0.002555\r\n", + "..matplotlib\\text.py:170 Text.update 65 0.000382 0.002549 0.000039\r\n", + "..b\\patches.py:42 Rectangle.__init__ 7 0.000199 0.002508 0.000358\r\n", + "..teq6k\\lib\\sre_compile.py:598 _code 12 0.000055 0.002475 0.000206\r\n", + "..ation-68gteq6k\\lib\\re.py:186 match 70 0.000140 0.002414 0.000034\r\n", + "..ages\\psycopg2\\_range.py:1 1 0.000042 0.002367 0.002367\r\n", + "..tplotlib\\text.py:121 Text.__init__ 24 0.000320 0.002354 0.000098\r\n", + "..ent\\base.py:295 dispatcher.__get__ 10 0.000075 0.002312 0.000231\r\n", + "..yncio\\events.py:756 new_event_loop 1 0.000022 0.002309 0.002309\r\n", + "..ib\\axis.py:485 XTick._get_gridline 3 0.000044 0.002301 0.000767\r\n", + "..ctorEventLoopPolicy.new_event_loop 1 0.000014 0.002285 0.002285\r\n", + ".._WindowsSelectorEventLoop.__init__ 1 0.000031 0.002271 0.002271\r\n", + ".. _GeneratorContextManager.__exit__ 142.. 0.000276 0.002267 0.000016\r\n", + "..arkers.py:222 MarkerStyle.__init__ 38 0.000106 0.002225 0.000059\r\n", + "..alect_psycopg2.get_isolation_level 1 0.000009 0.002224 0.002224\r\n", + "..otlib\\axes\\_base.py:363 4 0.000021 0.002202 0.000550\r\n", + "..\\orm\\session.py:1554 Session.query 6 0.000028 0.002200 0.000367\r\n", + "..1 _process_plot_var_args._makeline 4 0.000055 0.002180 0.000545\r\n", + "..y:930 AxesSubplot._gen_axes_spines 1 0.000012 0.002176 0.002176\r\n", + "..my\\orm\\query.py:164 Query.__init__ 6 0.000024 0.002172 0.000362\r\n", + "..lotlib\\axes\\_base.py:945 5 0.000015 0.002164 0.000433\r\n", + "..lib\\ticker.py:2103 _validate_steps 16 0.001337 0.002151 0.000134\r\n", + "..plotlib\\spines.py:517 linear_spine 4 0.000037 0.002150 0.000537\r\n", + "..m\\query.py:193 Query._set_entities 6 0.000089 0.002148 0.000358\r\n", + "..init__.py:791 RcParams.__getitem__ 1343 0.001641 0.002147 0.000002\r\n", + "..sSelectorEventLoop._make_self_pipe 1 0.000029 0.002112 0.002112\r\n", + "..\\numpy\\core\\_asarray.py:16 asarray 176 0.000180 0.002109 0.000012\r\n", + "..psycopg2\\_range.py:290 RangeCaster 1 0.000006 0.002101 0.002101\r\n", + "..py:133 GridSpec.get_grid_positions 1 0.000057 0.002062 0.002062\r\n", + "..lchemy\\event\\base.py:87 5 0.000156 0.002010 0.000402\r\n", + "..hon38\\Lib\\socket.py:579 socketpair 1 0.000134 0.001971 0.001971\r\n", + "..kers.py:289 MarkerStyle.set_marker 42 0.000327 0.001957 0.000047\r\n", + "..lib\\sre_parse.py:254 Tokenizer.get 1519 0.001009 0.001919 0.000001\r\n", + "..lotlib\\spines.py:36 Spine.__init__ 4 0.000116 0.001912 0.000478\r\n", + ".._axes.py:147 AxesSubplot.set_title 4 0.000101 0.001903 0.000476\r\n", + "..ap_external>:578 _compile_bytecode 9 0.000053 0.001885 0.000209\r\n", + "..ray_function__ internals>:2 cumsum 3 0.000009 0.001882 0.000627\r\n", + "..alchemy\\engine\\url.py:221 make_url 1 0.000009 0.001880 0.001880\r\n", + "..ine\\url.py:234 _parse_rfc1738_args 1 0.000020 0.001870 0.001870\r\n", + "..py\\core\\fromnumeric.py:2358 cumsum 3 0.000009 0.001860 0.000620\r\n", + "..y\\core\\fromnumeric.py:55 _wrapfunc 3 0.000014 0.001851 0.000617\r\n", + "..my\\util\\deprecations.py:115 warned 21/20 0.000099 0.001850 0.000088\r\n", + "..ery.py:4539 _ColumnEntity.__init__ 32/7 0.000771 0.001838 0.000057\r\n", + "..mpy\\core\\fromnumeric.py:42 _wrapit 3 0.000024 0.001835 0.000612\r\n", + "..otlib\\artist.py:74 Figure.__init__ 88 0.001132 0.001813 0.000021\r\n", + "..pg2\\extras.py:1007 CompositeCaster 1 0.000009 0.001811 0.001811\r\n", + "..py:1960 Affine2D.rotate_deg_around 18 0.000105 0.001796 0.000100\r\n", + "<__array_function__ internals>:2 any 76 0.000151 0.001772 0.000023\r\n", + "..q6k\\lib\\sre_compile.py:71 _compile 111.. 0.000776 0.001769 0.000016\r\n", + "..nContext_psycopg2.get_result_proxy 9 0.000073 0.001769 0.000197\r\n", + "..ib\\axis.py:603 YTick._get_gridline 3 0.000039 0.001746 0.000582\r\n", + "..ttr.py:227 _EmptyListener.__init__ 77 0.000409 0.001742 0.000023\r\n", + "..b\\axis.py:459 XTick._get_tick1line 3 0.000093 0.001732 0.000577\r\n", + "...py:1247 BboxTransformFrom.__add__ 78 0.000260 0.001679 0.000022\r\n", + "..result.py:767 ResultProxy.__init__ 9 0.000119 0.001671 0.000186\r\n", + "..ction__ internals>:2 unravel_index 1 0.000005 0.001658 0.001658\r\n", + "..s\\matplotlib\\colors.py:157 to_rgba 51 0.000440 0.001653 0.000032\r\n", + "..nction__ internals>:2 column_stack 12 0.000039 0.001614 0.000135\r\n", + "..forms.py:817 Bbox.update_from_path 4 0.000067 0.001561 0.000390\r\n", + "..ery.py:3929 Query._compile_context 6 0.000129 0.001552 0.000259\r\n", + "...py:793 ResultProxy._init_metadata 9 0.000094 0.001552 0.000172\r\n", + "..t.py:49 Spine._stale_axes_callback 302 0.000583 0.001530 0.000005\r\n", + "..s.py:880 memoized_property.__get__ 99/89 0.000358 0.001519 0.000015\r\n", + "..lib\\shape_base.py:597 column_stack 12 0.000149 0.001496 0.000125\r\n", + "..e\\fromnumeric.py:73 _wrapreduction 85 0.000478 0.001495 0.000018\r\n", + "..4 PGCompiler_psycopg2.visit_column 37 0.000844 0.001478 0.000040\r\n", + "..numpy\\core\\fromnumeric.py:2189 any 76 0.000191 0.001477 0.000019\r\n", + "..ycopg2\\extras.py:805 HstoreAdapter 1 0.000007 0.001458 0.001458\r\n", + "..ult.py:269 ResultMetaData.__init__ 9 0.000173 0.001445 0.000161\r\n", + "..res\\_base.py:517 Future.set_result 7 0.000077 0.001440 0.000206\r\n", + "..ger.py:619 FontProperties.__init__ 23 0.000332 0.001434 0.000062\r\n", + "..unction__ internals>:2 concatenate 29 0.000060 0.001405 0.000048\r\n", + "..y:2462 composite_transform_factory 78 0.000261 0.001376 0.000018\r\n", + "..sql\\operators.py:358 Column.__eq__ 10/5 0.000033 0.001365 0.000136\r\n", + "..sql\\elements.py:740 Column.operate 5 0.000015 0.001345 0.000269\r\n", + "..ansform.contains_branch_seperately 4 0.000037 0.001339 0.000335\r\n", + "..b\\axis.py:574 YTick._get_tick1line 3 0.000036 0.001315 0.000438\r\n", + "..teGenericTransform.contains_branch 4 0.000029 0.001287 0.000322\r\n", + ":1 Comparator. 5 0.000021 0.001285 0.000257\r\n", + "..\\sqlalchemy\\event\\api.py:34 listen 3 0.000015 0.001278 0.000426\r\n", + "..\\type_api.py:64 Comparator.operate 5 0.000039 0.001264 0.000253\r\n", + ".. QueryEventsDispatch._for_instance 8 0.000024 0.001262 0.000158\r\n", + "..se.py:325 Future._invoke_callbacks 7 0.000055 0.001261 0.000180\r\n", + "..b\\axis.py:589 YTick._get_tick2line 3 0.000027 0.001250 0.000417\r\n", + "..116 QueryEventsDispatch._for_class 8 0.000031 0.001238 0.000155\r\n", + "..ine\\base.py:69 Connection.__init__ 2 0.000042 0.001217 0.000608\r\n", + ".._comparator.py:41 _boolean_compare 5 0.000056 0.001207 0.000241\r\n", + "..py:77 QueryEventsDispatch.__init__ 8 0.000082 0.001206 0.000151\r\n", + "..cio\\futures.py:364 _call_set_state 6 0.000042 0.001206 0.000201\r\n", + ".. _ClsLevelDispatch.update_subclass 77 0.000399 0.001202 0.000016\r\n", + "..sycopg2\\extensions.py:146 make_dsn 1 0.000017 0.001179 0.001179\r\n", + "..ib\\axis.py:1504 XAxis.update_units 14 0.000096 0.001168 0.000083\r\n", + "..cbook\\__init__.py:1933 _setattr_cm 280 0.000727 0.001165 0.000004\r\n", + "..ctorEventLoop.call_soon_threadsafe 6 0.000037 0.001160 0.000193\r\n", + "..t\\registry.py:193 _EventKey.listen 4/3 0.000077 0.001157 0.000289\r\n", + "..xesSubplot._set_title_offset_trans 5 0.000122 0.001149 0.000230\r\n", + "..er.py:72 HandlerLine2D.update_prop 8 0.000034 0.001139 0.000142\r\n", + "..__init__.py:2073 _check_isinstance 94 0.000869 0.001139 0.000012\r\n", + "..offsetbox.py:783 TextArea.__init__ 5 0.000093 0.001137 0.000227\r\n", + "..MetaData._merge_cursor_description 9 0.000098 0.001134 0.000126\r\n", + "..py:1240 Line2D.set_markerfacecolor 30 0.000106 0.001118 0.000037\r\n", + "..5 CompositeGenericTransform.__eq__ 12/8 0.000035 0.001090 0.000091\r\n", + "..es.py:341 Rectangle._set_facecolor 20 0.000067 0.001055 0.000053\r\n", + "..ms.py:1639 TransformWrapper.__eq__ 4 0.000010 0.001052 0.000263\r\n", + ".._psycopg2._get_default_schema_name 1 0.000004 0.001048 0.001048\r\n", + "..y:163 TransformedBbox.set_children 149 0.000873 0.001042 0.000007\r\n", + "..rms.py:2093 BlendedAffine2D.__eq__ 4 0.000027 0.001042 0.000260\r\n", + "..\\sre_parse.py:233 Tokenizer.__next 1696 0.001032 0.001032 0.000001\r\n", + "..wsSelectorEventLoop._write_to_self 6 0.000028 0.001026 0.000171\r\n", + "..t_comparator.py:359 _check_literal 5 0.000066 0.001021 0.000204\r\n", + "..s.py:1709 IdentityTransform.__eq__ 9/8 0.000612 0.001013 0.000113\r\n", + "..\\spines.py:226 Spine.register_axis 4 0.000008 0.001009 0.000252\r\n", + "..b\\axis.py:470 XTick._get_tick2line 3 0.000027 0.000999 0.000333\r\n", + ".._api.py:527 NullType._dialect_info 26 0.000128 0.000985 0.000038\r\n", + "..matplotlib\\spines.py:238 Spine.cla 4 0.000004 0.000982 0.000246\r\n", + "..9 PoolEventsDispatch._for_instance 2 0.000005 0.000975 0.000488\r\n", + "..:116 PoolEventsDispatch._for_class 2 0.000007 0.000971 0.000485\r\n", + "...py:77 PoolEventsDispatch.__init__ 2 0.000046 0.000963 0.000482\r\n", + "..lements.py:4145 Column._bind_param 5 0.000049 0.000942 0.000188\r\n", + "..pe_api.py:450 VARCHAR.dialect_impl 34 0.000097 0.000924 0.000027\r\n", + "..arkers.py:244 MarkerStyle._recache 80 0.000208 0.000923 0.000012\r\n", + "..nsforms.py:1972 Affine2D.translate 36 0.000172 0.000893 0.000025\r\n", + "..ents.py:942 BindParameter.__init__ 5 0.000112 0.000893 0.000179\r\n", + "..6k\\lib\\abc.py:96 __instancecheck__ 141 0.000157 0.000879 0.000006\r\n", + ".._function__ internals>:2 full_like 4 0.000014 0.000867 0.000217\r\n", + "..ist.py:358 Rectangle.set_transform 85 0.000295 0.000867 0.000010\r\n", + "..umpy\\core\\numeric.py:341 full_like 4 0.000030 0.000839 0.000210\r\n", + "..GIdentifierPreparer_psycopg2.quote 105 0.000165 0.000838 0.000008\r\n", + "..tplotlib\\artist.py:1006 140 0.000107 0.000834 0.000006\r\n", + "..piler_psycopg2._setup_select_stack 8 0.000088 0.000830 0.000104\r\n", + "..ib\\transforms.py:727 Bbox.__init__ 41 0.000282 0.000827 0.000020\r\n", + "..text_psycopg2.get_result_processor 30 0.000083 0.000823 0.000027\r\n", + "..otlib\\axis.py:544 YTick._get_text1 3 0.000044 0.000805 0.000268\r\n", + "..ry.py:4056 Query._simple_statement 6 0.000093 0.000802 0.000134\r\n", + "..sforms.py:1940 Affine2D.rotate_deg 18 0.000166 0.000798 0.000044\r\n", + "..\\patches.py:704 Rectangle.__init__ 2 0.000027 0.000793 0.000396\r\n", + "..threading.py:394 Semaphore.acquire 7 0.000100 0.000787 0.000112\r\n", + "..function__ internals>:2 empty_like 4 0.000014 0.000772 0.000193\r\n", + ":1 select 8 0.000064 0.000770 0.000096\r\n", + "..otlib\\axis.py:559 YTick._get_text2 3 0.000038 0.000762 0.000254\r\n", + "..CompositeGenericTransform.__init__ 69 0.000255 0.000761 0.000011\r\n", + "..ernal>:1479 FileFinder._fill_cache 1 0.000077 0.000740 0.000740\r\n", + ".. NullType._cached_result_processor 30 0.000178 0.000739 0.000025\r\n", + "...py:978 Rectangle._update_property 42 0.000194 0.000726 0.000017\r\n", + "..my\\engine\\result.py:463 6 0.000119 0.000720 0.000120\r\n", + "..lib\\transforms.py:782 from_extents 20 0.000102 0.000710 0.000036\r\n", + ":1 Select.__init__ 8 0.000126 0.000706 0.000088\r\n", + "...py:3065 Select._get_display_froms 8 0.000363 0.000704 0.000088\r\n", + "..hon38\\Lib\\contextlib.py:238 helper 141 0.000235 0.000704 0.000005\r\n", + "..arse.py:164 SubPattern.__getitem__ 707 0.000520 0.000702 0.000001\r\n", + "..tplotlib\\ticker.py:2118 _staircase 16 0.000089 0.000697 0.000044\r\n", + "..ok\\__init__.py:2108 _check_in_list 449 0.000565 0.000690 0.000002\r\n", + "..lines.py:1143 Line2D.set_linestyle 34 0.000284 0.000683 0.000020\r\n", + "..orm\\session.py:1002 Session.commit 1 0.000010 0.000682 0.000682\r\n", + "..ult.py:924 ResultProxy._soft_close 9 0.000043 0.000679 0.000075\r\n", + "..n.py:500 SessionTransaction.commit 1 0.000042 0.000673 0.000673\r\n", + "..xternal>:1265 _path_importer_cache 19 0.000032 0.000670 0.000035\r\n", + "..sSelectorEventLoop._read_from_self 6 0.000062 0.000662 0.000110\r\n", + "..otlib\\axis.py:427 XTick._get_text1 3 0.000032 0.000661 0.000220\r\n", + "..hreading.py:249 Condition.__exit__ 61 0.000614 0.000660 0.000011\r\n", + "..b\\sre_compile.py:536 _compile_info 12 0.000120 0.000648 0.000054\r\n", + "..1254 Line2D.set_markerfacecoloralt 30 0.000080 0.000645 0.000021\r\n", + "..93 vectorize._get_ufunc_and_otypes 4 0.000076 0.000640 0.000160\r\n", + "..sql\\type_api.py:546 NullType.adapt 13 0.000055 0.000638 0.000049\r\n", + "..Preparer_psycopg2._requires_quotes 22 0.000133 0.000636 0.000029\r\n", + "..otstrap_external>:1252 _path_hooks 1 0.000024 0.000636 0.000636\r\n", + "..1333 Connection._safe_close_cursor 9 0.000021 0.000635 0.000071\r\n", + "..transforms.py:1924 Affine2D.rotate 18 0.000301 0.000632 0.000035\r\n", + "..ms.py:986 TransformedBbox.__init__ 21 0.000147 0.000625 0.000030\r\n", + "..hes.py:348 Rectangle.set_facecolor 12 0.000023 0.000619 0.000052\r\n", + "..>:1010 SourceFileLoader.path_stats 9 0.000024 0.000617 0.000069\r\n", + "..egation-68gteq6k\\lib\\re.py:201 sub 5 0.000024 0.000614 0.000123\r\n", + "..ray_function__ internals>:2 hstack 16 0.000025 0.000608 0.000038\r\n", + "..ing>:1 PGDialect_psycopg2.__init__ 2 0.000012 0.000593 0.000296\r\n", + "..\\matplotlib\\transforms.py:763 unit 19 0.000080 0.000585 0.000031\r\n", + "..nghelpers.py:1167 constructor_copy 13 0.000121 0.000583 0.000045\r\n", + "..ase.py:3767 AxesSubplot.xaxis_date 4 0.000017 0.000583 0.000146\r\n", + "..sion.py:3236 sessionmaker.__call__ 1 0.000014 0.000579 0.000579\r\n", + "..qlalchemy\\orm\\base.py:222 generate 6 0.000049 0.000578 0.000096\r\n", + "..nd.py:558 Legend._set_artist_props 9 0.000085 0.000576 0.000064\r\n", + "..iler_psycopg2._compose_select_body 8 0.000089 0.000575 0.000072\r\n", + "..otlib\\axis.py:1812 XAxis.axis_date 4 0.000045 0.000566 0.000141\r\n", + ":1 Session.__init__ 1 0.000005 0.000563 0.000563\r\n", + "..velDispatch._assign_cls_collection 77 0.000249 0.000561 0.000007\r\n", + "..atplotlib\\lines.py:632 Line2D.axes 42 0.000206 0.000552 0.000013\r\n", + "..rm\\session.py:655 Session.__init__ 1 0.000024 0.000551 0.000551\r\n", + "..y\\orm\\session.py:893 Session.begin 3 0.000013 0.000548 0.000183\r\n", + "..b\\artist.py:336 Rectangle.pchanged 373 0.000436 0.000548 0.000001\r\n", + "..selectable.py:2760 Select.__init__ 8 0.000175 0.000540 0.000068\r\n", + "..ansforms.py:1701 Affine2D.__init__ 165 0.000352 0.000537 0.000003\r\n", + "..py:220 SessionTransaction.__init__ 3 0.000029 0.000535 0.000178\r\n", + "..tist.py:804 Rectangle.get_animated 1714 0.000533 0.000533 0.000000\r\n", + "..nsforms.py:126 Affine2D.invalidate 76 0.000275 0.000533 0.000007\r\n", + "..38\\Lib\\socket.py:285 socket.accept 1 0.000037 0.000532 0.000532\r\n", + ".._psycopg2._setup_crud_result_proxy 3 0.000016 0.000524 0.000175\r\n", + "..\\patches.py:436 Rectangle.set_fill 7 0.000032 0.000523 0.000075\r\n", + "..nits.py:197 Registry.get_converter 24/14 0.000201 0.000520 0.000022\r\n", + "..otlib\\axis.py:444 XTick._get_text2 3 0.000025 0.000517 0.000172\r\n", + ".._bootstrap>:477 _init_module_attrs 10 0.000100 0.000517 0.000052\r\n", + "..is.py:1670 XAxis.set_minor_locator 16 0.000092 0.000517 0.000032\r\n", + "..py:663 PGDialect_psycopg2.__init__ 1 0.000027 0.000515 0.000515\r\n", + "..k\\lib\\abc.py:100 __subclasscheck__ 85/14 0.000067 0.000514 0.000006\r\n", + "..:382 WeakKeyDictionary.__getitem__ 248 0.000508 0.000508 0.000002\r\n", + "..\\lines.py:730 Line2D.set_transform 38 0.000085 0.000508 0.000013\r\n", + "..ckages\\cycler.py:349 Cycler.by_key 10 0.000223 0.000505 0.000051\r\n", + "..\\asyncio\\futures.py:351 _set_state 6 0.000023 0.000503 0.000084\r\n", + "..umpy\\core\\shape_base.py:285 hstack 16 0.000116 0.000487 0.000030\r\n", + ".._base.py:3093 AxesSubplot.set_xlim 1 0.000060 0.000483 0.000483\r\n", + "..artist.py:695 Rectangle.set_figure 95 0.000217 0.000482 0.000005\r\n", + "..es.py:2396 FancyBboxPatch.__init__ 1 0.000023 0.000480 0.000480\r\n", + "..on__ internals>:2 broadcast_arrays 10 0.000034 0.000478 0.000048\r\n", + "..e_parse.py:174 SubPattern.getwidth 138.. 0.000375 0.000478 0.000003\r\n", + "..lalchemy\\event\\base.py:243 _listen 3 0.000010 0.000476 0.000159\r\n", + "..__.py:138 CallbackRegistry.connect 33 0.000252 0.000473 0.000014\r\n", + "..ler_psycopg2._truncated_identifier 34 0.000151 0.000470 0.000014\r\n", + "..is.py:1654 XAxis.set_major_locator 17 0.000121 0.000470 0.000028\r\n", + "..gine\\default.py:753 _init_compiled 6 0.000166 0.000470 0.000078\r\n", + ".. _GeneratorContextManager.__init__ 141 0.000401 0.000469 0.000003\r\n", + "..istry.py:246 _EventKey.base_listen 3 0.000082 0.000467 0.000156\r\n", + "..:903 AxesSubplot._set_artist_props 7 0.000135 0.000464 0.000066\r\n", + "..py:913 AxesSubplot._gen_axes_patch 1 0.000004 0.000464 0.000464\r\n", + "..\\futures.py:315 _copy_future_state 6 0.000106 0.000461 0.000077\r\n", + "..lib\\transforms.py:82 Bbox.__init__ 306 0.000454 0.000454 0.000001\r\n", + "..ore\\numerictypes.py:365 issubdtype 4 0.000025 0.000451 0.000113\r\n", + "..lotlib\\colors.py:123 _is_nth_color 51 0.000107 0.000451 0.000009\r\n", + "..ansforms.py:1831 Affine2D.__init__ 49 0.000156 0.000449 0.000009\r\n", + "..offsetbox.py:175 TextArea.__init__ 16 0.000049 0.000449 0.000028\r\n", + ":1 Query.order_by 1 0.000002 0.000428 0.000428\r\n", + "..r.py:63 HandlerLine2D._update_prop 8 0.000011 0.000425 0.000053\r\n", + "..re\\numerictypes.py:293 issubclass_ 8 0.000019 0.000425 0.000053\r\n", + "..53 _ListenerCollection.__getattr__ 45/24 0.000285 0.000424 0.000009\r\n", + "..e_compile.py:276 _optimize_charset 34 0.000263 0.000415 0.000012\r\n", + "..HandlerLine2D._default_update_prop 8 0.000010 0.000414 0.000052\r\n", + "..y\\orm\\query.py:1856 Query.order_by 1 0.000007 0.000413 0.000413\r\n", + ".. Line2D._split_drawstyle_linestyle 64 0.000256 0.000413 0.000006\r\n", + "..ide_tricks.py:206 broadcast_arrays 10 0.000179 0.000412 0.000041\r\n", + "..s.py:424 Spine.get_spine_transform 28/24 0.000181 0.000406 0.000014\r\n", + "..query.py:329 Query._adapt_col_list 1 0.000003 0.000405 0.000405\r\n", + "..b\\lines.py:1327 Line2D.update_from 8 0.000061 0.000403 0.000050\r\n", + "..lchemy\\orm\\query.py:330 1 0.000009 0.000402 0.000402\r\n", + "..ine\\default.py:981 _init_statement 3 0.000233 0.000401 0.000134\r\n", + "..sql\\elements.py:4087 Column._label 10 0.000026 0.000394 0.000039\r\n", + "..y:4564 _literal_as_label_reference 3 0.000009 0.000390 0.000130\r\n", + "..es.py:315 Rectangle._set_edgecolor 20 0.000076 0.000387 0.000019\r\n", + "..array_function__ internals>:2 diff 16 0.000028 0.000387 0.000024\r\n", + "..pg2\\extras.py:303 NamedTupleCursor 1 0.000019 0.000382 0.000382\r\n", + "..py:120 ThreadPoolExecutor.__init__ 2 0.000074 0.000374 0.000187\r\n", + "..xis.py:1525 XAxis._update_axisinfo 13 0.000026 0.000368 0.000028\r\n", + "..elements.py:4099 Column._gen_label 10 0.000123 0.000368 0.000037\r\n", + "..rtist.py:937 Rectangle.set_visible 69 0.000142 0.000366 0.000005\r\n", + "..hreading.py:222 Condition.__init__ 13 0.000311 0.000361 0.000028\r\n", + "<__array_function__ internals>:2 all 9 0.000071 0.000355 0.000039\r\n", + "..zipimport>:63 zipimporter.__init__ 1 0.000016 0.000350 0.000350\r\n", + "..\\langhelpers.py:301 get_cls_kwargs 35/16 0.000206 0.000348 0.000010\r\n", + "...py:399 _ListenerCollection.append 3 0.000007 0.000345 0.000115\r\n", + "..atplotlib\\path.py:96 Path.__init__ 14 0.000076 0.000344 0.000025\r\n", + "...py:1624 FigureCanvasBase.__init__ 2 0.000173 0.000339 0.000170\r\n", + "..ry.py:267 _EventKey.append_to_list 3 0.000231 0.000338 0.000113\r\n", + ".._bootstrap_external>:62 _path_join 82 0.000138 0.000338 0.000004\r\n", + "..ap_external>:294 cache_from_source 18 0.000119 0.000335 0.000019\r\n", + "...py:1626 XAxis.set_major_formatter 17 0.000066 0.000330 0.000019\r\n", + "..ase.py:1731 RootTransaction.commit 1 0.000019 0.000326 0.000326\r\n", + "..._bootstrap>:376 ModuleSpec.cached 19 0.000049 0.000324 0.000017\r\n", + "..mpy\\lib\\function_base.py:1147 diff 16 0.000281 0.000320 0.000020\r\n", + "..er.py:512 ScalarFormatter.__init__ 16 0.000165 0.000317 0.000020\r\n", + "..422 WeakKeyDictionary.__contains__ 387 0.000313 0.000313 0.000001\r\n", + "..l\\selectable.py:3036 Select._froms 8 0.000141 0.000313 0.000039\r\n", + "..9 PGCompiler_psycopg2.visit_binary 5 0.000029 0.000312 0.000062\r\n", + "..tlib\\axis.py:1951 XAxis._get_label 1 0.000030 0.000311 0.000311\r\n", + "..base.py:563 AxesSubplot.set_figure 1 0.000026 0.000308 0.000308\r\n", + "..fierPreparer_psycopg2.format_label 29 0.000027 0.000306 0.000011\r\n", + "..py:1765 RootTransaction._do_commit 1 0.000012 0.000304 0.000304\r\n", + "..5 Rectangle._stale_figure_callback 134 0.000139 0.000303 0.000002\r\n", + "..otlib\\lines.py:645 Line2D.set_data 30 0.000098 0.000302 0.000010\r\n", + "..asyncio\\futures.py:377 wrap_future 6 0.000060 0.000301 0.000050\r\n", + "..tlib\\axis.py:2238 YAxis._get_label 1 0.000024 0.000300 0.000300\r\n", + "..py:4442 _anonymous_label.apply_map 7 0.000252 0.000300 0.000043\r\n", + "..ons.py:971 lightweight_named_tuple 6 0.000162 0.000300 0.000050\r\n", + "..my\\engine\\result.py:496 3 0.000020 0.000296 0.000099\r\n", + "...py:543 NullType._gen_dialect_impl 13 0.000038 0.000295 0.000023\r\n", + "..chemy\\orm\\loading.py:59 6 0.000037 0.000293 0.000049\r\n", + "..ase.py:746 Connection._commit_impl 1 0.000022 0.000292 0.000292\r\n", + "...py:1640 XAxis.set_minor_formatter 16 0.000053 0.000286 0.000018\r\n", + ".._init__.py:1610 safe_first_element 24 0.000070 0.000285 0.000012\r\n", + "..tionContext_psycopg2.create_cursor 9 0.000085 0.000276 0.000031\r\n", + "..ootstrap_external>:424 _get_cached 10 0.000043 0.000275 0.000027\r\n", + "..py:2408 CompositeAffine2D.__init__ 9 0.000044 0.000273 0.000030\r\n", + ".._.py:1309 _to_unmasked_float_array 34 0.000116 0.000273 0.000008\r\n", + "..py:3730 Select._columns_plus_names 8 0.000046 0.000270 0.000034\r\n", + "..y:542 PGDialect_psycopg2.do_commit 1 0.000014 0.000268 0.000268\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..hreading.py:388 Semaphore.__init__ 2 0.000014 0.000267 0.000134\r\n", + ".._psycopg2._generate_generic_binary 5 0.000033 0.000264 0.000053\r\n", + "..s.py:1398 Line2D.set_dash_capstyle 30 0.000145 0.000262 0.000009\r\n", + "..\\cbook\\__init__.py:1938 140 0.000205 0.000262 0.000002\r\n", + "..nal>:1520 path_hook_for_FileFinder 1 0.000022 0.000261 0.000261\r\n", + "..hes.py:330 Rectangle.set_edgecolor 12 0.000025 0.000260 0.000022\r\n", + "..es.py:768 Rectangle._convert_units 18 0.000084 0.000258 0.000014\r\n", + "..y:4696 _ColumnEntity.row_processor 27 0.000176 0.000257 0.000010\r\n", + "..k\\lib\\encodings\\utf_8.py:15 decode 48 0.000188 0.000257 0.000005\r\n", + "..PGDialect_psycopg2.type_descriptor 13 0.000030 0.000257 0.000020\r\n", + "..:136 Affine2D._invalidate_internal 90/76 0.000214 0.000256 0.000003\r\n", + "..:395 WeakKeyDictionary.__setitem__ 97 0.000253 0.000256 0.000003\r\n", + "..chemy\\orm\\query.py:4625 27 0.000065 0.000250 0.000009\r\n", + "..tplotlib\\lines.py:59 _scale_dashes 83 0.000123 0.000249 0.000003\r\n", + "..24 AxesSubplot.get_yaxis_transform 29/15 0.000047 0.000249 0.000009\r\n", + "..numpy\\core\\fromnumeric.py:2277 all 9 0.000041 0.000249 0.000028\r\n", + "..atplotlib\\artist.py:192 Spine.axes 831 0.000248 0.000248 0.000000\r\n", + "..b\\sre_parse.py:96 State.closegroup 27 0.000035 0.000243 0.000009\r\n", + "..s.py:266 MarkerStyle.set_fillstyle 38 0.000124 0.000241 0.000006\r\n", + "..ger.py:810 FontProperties.set_size 27 0.000167 0.000241 0.000009\r\n", + "..s\\_base.py:31 _process_plot_format 4 0.000033 0.000239 0.000060\r\n", + "..chemy\\sql\\elements.py:4327 __new__ 17 0.000109 0.000239 0.000014\r\n", + "..py:2644 ScaledTranslation.__init__ 17 0.000081 0.000238 0.000014\r\n", + "..r.py:774 FontProperties.set_weight 27 0.000211 0.000237 0.000009\r\n", + "...py:180 AxesSubplot.convert_yunits 48 0.000064 0.000233 0.000005\r\n", + "..units.py:58 _is_natively_supported 12 0.000072 0.000232 0.000019\r\n", + "..my\\sql\\type_api.py:1475 adapt_type 13 0.000077 0.000227 0.000017\r\n", + "..s.py:2544 BboxTransformTo.__init__ 20 0.000076 0.000226 0.000011\r\n", + "..48 AxesSubplot.get_xaxis_transform 29/15 0.000037 0.000223 0.000008\r\n", + "..b\\sre_parse.py:249 Tokenizer.match 311 0.000150 0.000222 0.000001\r\n", + "..py:1137 Text.set_verticalalignment 33 0.000098 0.000222 0.000007\r\n", + "..il\\_collections.py:775 unique_list 41 0.000166 0.000221 0.000005\r\n", + "..x.py:690 DrawingArea.get_transform 4 0.000006 0.000220 0.000055\r\n", + "..>:147 _ModuleLockManager.__enter__ 10 0.000027 0.000219 0.000022\r\n", + "..tlib\\text.py:535 Text.set_clip_box 15 0.000057 0.000216 0.000014\r\n", + "..sre_parse.py:172 SubPattern.append 182 0.000164 0.000209 0.000001\r\n", + "...py:523 YTick._get_text1_transform 3 0.000015 0.000208 0.000069\r\n", + "..800 AxesSubplot._update_transScale 2 0.000024 0.000206 0.000103\r\n", + "..indowsSelectorEventLoop._call_soon 23 0.000097 0.000204 0.000009\r\n", + "..xis.py:1969 XAxis._get_offset_text 1 0.000012 0.000204 0.000204\r\n", + "..b\\threading.py:761 Thread.__init__ 2 0.000128 0.000203 0.000101\r\n", + "..manager.py:855 FontProperties.copy 3 0.000012 0.000199 0.000066\r\n", + "..ootstrap_external>:104 _path_isdir 1 0.000003 0.000198 0.000198\r\n", + "..re_parse.py:160 SubPattern.__len__ 261 0.000148 0.000197 0.000001\r\n", + "..on.py:579 SessionTransaction.close 2 0.000022 0.000197 0.000098\r\n", + "..ib\\artist.py:719 Text.set_clip_box 23 0.000038 0.000195 0.000008\r\n", + "..xis.py:2258 YAxis._get_offset_text 1 0.000013 0.000195 0.000195\r\n", + "..lines.py:1092 Line2D.set_linewidth 30 0.000090 0.000192 0.000006\r\n", + "..sSubplot.get_yaxis_text1_transform 3 0.000033 0.000192 0.000064\r\n", + "...py:2266 blended_transform_factory 8 0.000033 0.000190 0.000024\r\n", + "..s.py:749 MarkerStyle._set_tickdown 3 0.000018 0.000189 0.000063\r\n", + "..xis.py:325 XTick._set_artist_props 30 0.000038 0.000188 0.000006\r\n", + "..til.py:368 surface_column_elements 54 0.000119 0.000185 0.000003\r\n", + "..setbox.py:661 DrawingArea.__init__ 4 0.000023 0.000184 0.000046\r\n", + "..lors.py:193 _to_rgba_no_colorcycle 8 0.000103 0.000183 0.000023\r\n", + ":1 __new__ 91 0.000108 0.000181 0.000002\r\n", + "..\\offsetbox.py:356 HPacker.__init__ 7 0.000017 0.000180 0.000026\r\n", + "..WindowsSelectorEventLoop.call_soon 17 0.000051 0.000178 0.000010\r\n", + "..lines.py:1058 Line2D.set_drawstyle 34 0.000088 0.000178 0.000005\r\n", + "..yncio\\futures.py:335 _chain_future 6 0.000060 0.000177 0.000029\r\n", + "...py:1352 Line2D.set_dash_joinstyle 30 0.000088 0.000176 0.000006\r\n", + "..y:4713 _ColumnEntity.setup_context 27 0.000148 0.000173 0.000006\r\n", + "..b._bootstrap>:157 _get_module_lock 18 0.000077 0.000172 0.000010\r\n", + ".._bootstrap_external>:64 82 0.000128 0.000171 0.000002\r\n", + "..pool\\impl.py:35 QueuePool.__init__ 1 0.000011 0.000171 0.000171\r\n", + "..y:2175 XAxis.set_default_intervals 1 0.000018 0.000170 0.000170\r\n", + "..y:949 Text.set_horizontalalignment 28 0.000075 0.000170 0.000006\r\n", + "..ib\\sre_parse.py:286 Tokenizer.tell 171 0.000133 0.000169 0.000001\r\n", + "..text.py:240 Text.set_rotation_mode 24 0.000106 0.000169 0.000007\r\n", + "..539 PGDialect_psycopg2.do_rollback 2 0.000010 0.000169 0.000085\r\n", + "..:220 Spine._ensure_position_is_set 28/24 0.000023 0.000169 0.000006\r\n", + ":1 Query.filter 5 0.000016 0.000169 0.000034\r\n", + "..\\lib\\function_base.py:257 iterable 97 0.000125 0.000168 0.000002\r\n", + "..68gteq6k\\lib\\weakref.py:44 __new__ 33 0.000135 0.000168 0.000005\r\n", + "...py:407 XTick._get_text1_transform 3 0.000009 0.000166 0.000055\r\n", + "..xesSubplot._set_lim_and_transforms 1 0.000026 0.000165 0.000165\r\n", + "...py:1412 Line2D.set_solid_capstyle 30 0.000083 0.000165 0.000006\r\n", + "..uture.set_running_or_notify_cancel 7 0.000124 0.000165 0.000024\r\n", + "..y\\util\\_collections.py:822 to_list 14 0.000064 0.000164 0.000012\r\n", + "..xternal>:1426 FileFinder._get_spec 10 0.000056 0.000162 0.000016\r\n", + "..sql\\elements.py:4451 _as_truncated 10 0.000028 0.000162 0.000016\r\n", + "..\\axis.py:1605 YAxis.set_label_text 5 0.000022 0.000161 0.000032\r\n", + "..es.py:375 FancyBboxPatch.set_alpha 1 0.000006 0.000160 0.000160\r\n", + "...py:526 YTick._get_text2_transform 3 0.000012 0.000159 0.000053\r\n", + "..GCompiler_psycopg2.visit_bindparam 5 0.000043 0.000159 0.000032\r\n", + "..045 AxesSubplot._process_unit_info 6 0.000020 0.000159 0.000026\r\n", + "..reading.py:246 Condition.__enter__ 61 0.000111 0.000158 0.000003\r\n", + "..py:1367 Line2D.set_solid_joinstyle 30 0.000079 0.000158 0.000005\r\n", + "..er.py:1712 AutoLocator.nonsingular 2 0.000009 0.000157 0.000078\r\n", + "..sSubplot.get_xaxis_text1_transform 3 0.000040 0.000156 0.000052\r\n", + "..asyncio\\tasks.py:653 ensure_future 2 0.000023 0.000154 0.000077\r\n", + "..axes.py:256 AxesSubplot.set_ylabel 4 0.000017 0.000150 0.000037\r\n", + "..q6k\\lib\\sre_compile.py:423 _simple 45 0.000051 0.000150 0.000003\r\n", + "..atplotlib\\legend.py:813 1 0.000026 0.000149 0.000149\r\n", + "..otlib\\axis.py:1579 XAxis.set_units 12 0.000039 0.000148 0.000012\r\n", + "..lib\\transforms.py:2779 nonsingular 2 0.000031 0.000148 0.000074\r\n", + "..b\\spines.py:381 Spine.set_position 4 0.000023 0.000147 0.000037\r\n", + "..sSubplot.get_yaxis_text2_transform 3 0.000019 0.000146 0.000049\r\n", + "..s.py:729 MarkerStyle._set_tickleft 3 0.000015 0.000146 0.000049\r\n", + "..\\lib\\enum.py:828 RegexFlag.__and__ 12 0.000068 0.000143 0.000012\r\n", + "..ts.py:724 ColumnClause.__getattr__ 9 0.000082 0.000143 0.000016\r\n", + "..lalchemy\\orm\\query.py:4148 __new__ 32 0.000063 0.000141 0.000004\r\n", + "..\\offsetbox.py:489 HPacker.__init__ 5 0.000012 0.000141 0.000028\r\n", + ".._base.py:2048 _process_single_axis 12 0.000029 0.000139 0.000012\r\n", + "..lib\\lines.py:1282 Line2D.set_xdata 39 0.000084 0.000139 0.000004\r\n", + ".._base.py:3484 AxesSubplot.set_ylim 1 0.000020 0.000137 0.000137\r\n", + "..ib\\path.py:188 Path._update_values 14 0.000068 0.000137 0.000010\r\n", + "..e-packages\\cycler.py:371 20 0.000137 0.000137 0.000007\r\n", + ":1 QueuePool.__init__ 1 0.000002 0.000136 0.000136\r\n", + "..er.py:755 FontProperties.set_style 23 0.000065 0.000136 0.000006\r\n", + "..tures\\_base.py:316 Future.__init__ 7 0.000034 0.000135 0.000019\r\n", + "..orm._iter_break_from_left_to_right 8 0.000027 0.000134 0.000017\r\n", + "..34 new_figure_manager_given_figure 1 0.000007 0.000134 0.000134\r\n", + "..ches.py:458 Rectangle.set_capstyle 11 0.000066 0.000134 0.000012\r\n", + "...py:1423 Figure._add_axes_internal 1 0.000015 0.000134 0.000134\r\n", + "..s.py:2221 BlendedAffine2D.__init__ 6 0.000039 0.000133 0.000022\r\n", + "..book\\__init__.py:1296 is_math_text 30 0.000081 0.000133 0.000004\r\n", + "..tlib\\lines.py:31 _get_dash_pattern 41 0.000103 0.000132 0.000003\r\n", + "..chemy\\sql\\base.py:38 _from_objects 21 0.000045 0.000131 0.000006\r\n", + "...py:410 XTick._get_text2_transform 3 0.000011 0.000129 0.000043\r\n", + "..py:1225 Line2D.set_markeredgewidth 30 0.000057 0.000129 0.000004\r\n", + "..033 PGCompiler_psycopg2.visit_cast 2 0.000013 0.000128 0.000064\r\n", + "..pool\\base.py:63 QueuePool.__init__ 1 0.000050 0.000128 0.000128\r\n", + "..re_compile.py:249 _compile_charset 34 0.000098 0.000127 0.000004\r\n", + "..plotlib\\scale.py:718 scale_factory 16 0.000053 0.000126 0.000008\r\n", + "..ib\\sre_parse.py:84 State.opengroup 27 0.000072 0.000125 0.000005\r\n", + "..ffsetbox.py:187 VPacker.set_figure 16/1 0.000045 0.000124 0.000008\r\n", + "...py:792 FontProperties.set_stretch 23 0.000090 0.000124 0.000005\r\n", + "...py:735 MarkerStyle._set_tickright 3 0.000013 0.000124 0.000041\r\n", + "..chemy\\sql\\elements.py:4279 __new__ 17 0.000095 0.000123 0.000007\r\n", + "..\\Lib\\socket.py:219 socket.__init__ 3 0.000122 0.000122 0.000041\r\n", + "..hes.py:402 Rectangle.set_linestyle 7 0.000053 0.000122 0.000017\r\n", + "...py:3168 BinaryExpression.__init__ 5 0.000064 0.000121 0.000024\r\n", + "..otlib\\text.py:1227 Text.set_usetex 24 0.000053 0.000120 0.000005\r\n", + "..ngine\\base.py:863 Connection.close 1 0.000008 0.000119 0.000119\r\n", + "..selectable.py:2169 Select.__init__ 8 0.000024 0.000118 0.000015\r\n", + "..lib\\sre_parse.py:295 _class_escape 30 0.000080 0.000118 0.000004\r\n", + "..ib\\artist.py:1037 Spine.set_zorder 18 0.000045 0.000118 0.000007\r\n", + "..ib\\lines.py:1196 Line2D.set_marker 4 0.000008 0.000117 0.000029\r\n", + "..sSubplot.get_xaxis_text2_transform 3 0.000017 0.000117 0.000039\r\n", + "..ndowsSelectorEventLoop.create_task 2 0.000057 0.000117 0.000058\r\n", + "..ide_tricks.py:185 _broadcast_shape 10 0.000112 0.000116 0.000012\r\n", + "...py:765 FontProperties.set_variant 23 0.000054 0.000115 0.000005\r\n", + "..lib\\text.py:1042 Text.set_fontsize 4 0.000013 0.000115 0.000029\r\n", + "..r.py:742 FontProperties.set_family 23 0.000047 0.000115 0.000005\r\n", + "..uery.py:4762 QueryContext.__init__ 6 0.000109 0.000115 0.000019\r\n", + "..\\sql\\selectable.py:3746 6 0.000021 0.000115 0.000019\r\n", + "..\\matplotlib\\dates.py:1893 axisinfo 2 0.000024 0.000114 0.000057\r\n", + "..umpy\\core\\getlimits.py:365 __new__ 2 0.000023 0.000113 0.000057\r\n", + "..teq6k\\lib\\sre_parse.py:355 _escape 30 0.000088 0.000113 0.000004\r\n", + "..essionTransaction._remove_snapshot 1 0.000037 0.000113 0.000113\r\n", + "..forms.py:1669 TransformWrapper.set 2 0.000009 0.000112 0.000056\r\n", + "..my\\util\\langhelpers.py:963 oneshot 21 0.000055 0.000112 0.000005\r\n", + "..ase.py:1009 _ConnectionFairy.close 1 0.000008 0.000111 0.000111\r\n", + "..\\result.py:1362 ResultProxy.scalar 3 0.000010 0.000110 0.000037\r\n", + "..threading.py:441 Semaphore.release 7 0.000035 0.000110 0.000016\r\n", + "..yncio\\events.py:32 Handle.__init__ 24 0.000093 0.000110 0.000005\r\n", + "..Subplot._validate_converted_limits 4 0.000026 0.000109 0.000027\r\n", + "..hes.py:382 Rectangle.set_linewidth 12 0.000039 0.000107 0.000009\r\n", + "..ndowsSelectorEventLoop._add_reader 1 0.000026 0.000106 0.000106\r\n", + "..b\\cbook\\__init__.py:2090 type_name 94 0.000106 0.000106 0.000001\r\n", + "..alchemy\\event\\api.py:23 _event_key 3 0.000022 0.000106 0.000035\r\n", + "..bootstrap_external>:68 _path_split 18 0.000082 0.000105 0.000006\r\n", + "..plotlib\\text.py:933 Text.set_color 24 0.000056 0.000104 0.000004\r\n", + "..ers.py:743 MarkerStyle._set_tickup 3 0.000012 0.000104 0.000035\r\n", + "..e.py:853 _ConnectionFairy._checkin 1 0.000008 0.000103 0.000103\r\n", + "..gistry.py:67 _stored_in_collection 3 0.000028 0.000103 0.000034\r\n", + "..y:556 String.coerce_compared_value 5 0.000019 0.000103 0.000021\r\n", + "..py:2249 BlendedAffine2D.get_matrix 4 0.000017 0.000103 0.000026\r\n", + "..lib\\legend.py:938 Legend.set_title 1 0.000008 0.000102 0.000102\r\n", + "..ql\\elements.py:895 Cast.anon_label 2 0.000018 0.000102 0.000051\r\n", + "..lib\\lines.py:1294 Line2D.set_ydata 39 0.000054 0.000101 0.000003\r\n", + "..e\\result.py:1335 ResultProxy.first 3 0.000030 0.000100 0.000033\r\n", + "..tstrap_external>:493 _classify_pyc 9 0.000056 0.000099 0.000011\r\n", + "..otlib\\artist.py:197 Rectangle.axes 117 0.000099 0.000099 0.000001\r\n", + "..:2165 FigureCanvasBase.mpl_connect 7 0.000012 0.000099 0.000014\r\n", + ":1 cast 2 0.000004 0.000098 0.000049\r\n", + "..\\artist.py:1074 Line2D.update_from 8 0.000065 0.000097 0.000012\r\n", + "..lotlib\\dates.py:1921 default_units 8 0.000033 0.000096 0.000012\r\n", + "..\\orm\\session.py:1288 Session.close 1 0.000011 0.000096 0.000096\r\n", + "..y\\pool\\base.py:667 _finalize_fairy 1 0.000012 0.000096 0.000096\r\n", + "..tist.py:1017 AxesSubplot.set_label 5 0.000025 0.000095 0.000019\r\n", + "..sql\\elements.py:2489 Cast.__init__ 2 0.000010 0.000094 0.000047\r\n", + "..compile.py:461 _get_literal_prefix 19/12 0.000068 0.000094 0.000005\r\n", + "..logging\\__init__.py:2003 getLogger 4 0.000010 0.000094 0.000023\r\n", + "..ql\\selectable.py:3735 name_for_col 27 0.000047 0.000094 0.000003\r\n", + "..ines.py:1268 Line2D.set_markersize 30 0.000057 0.000093 0.000003\r\n", + "..317 VARCHAR._has_column_expression 12 0.000092 0.000092 0.000008\r\n", + "..ernal>:629 spec_from_file_location 10 0.000070 0.000091 0.000009\r\n", + "..Context_psycopg2.should_autocommit 9 0.000058 0.000091 0.000010\r\n", + "..ngs\\__init__.py:70 search_function 1 0.000030 0.000089 0.000089\r\n", + "..Compiler_psycopg2._bind_processors 6 0.000020 0.000089 0.000015\r\n", + "..syncio\\base_futures.py:13 isfuture 37 0.000051 0.000089 0.000002\r\n", + "..nes.py:1035 Line2D.set_antialiased 30 0.000046 0.000089 0.000003\r\n", + "..ements.py:1946 ClauseList.__init__ 1 0.000012 0.000088 0.000088\r\n", + "..\\threading.py:341 Condition.notify 15 0.000069 0.000088 0.000006\r\n", + "..-68gteq6k\\lib\\enum.py:278 __call__ 26 0.000057 0.000087 0.000003\r\n", + "..e_parse.py:111 SubPattern.__init__ 135 0.000087 0.000087 0.000001\r\n", + "..\\axis.py:618 YTick.update_position 3 0.000022 0.000086 0.000029\r\n", + "..lalchemy\\sql\\base.py:39 21 0.000053 0.000086 0.000004\r\n", + "..lib\\artist.py:923 Line2D.set_alpha 7 0.000019 0.000085 0.000012\r\n", + "..piler_psycopg2._truncate_bindparam 5 0.000012 0.000085 0.000017\r\n", + "..ession.py:1333 Session._close_impl 1 0.000012 0.000085 0.000085\r\n", + "..y:2463 FancyBboxPatch.set_boxstyle 2 0.000023 0.000085 0.000042\r\n", + "..my\\sql\\compiler.py:2252 6 0.000017 0.000084 0.000014\r\n", + "..__init__.py:1272 Manager.getLogger 4 0.000024 0.000084 0.000021\r\n", + "..38\\Lib\\asyncio\\tasks.py:717 gather 1 0.000016 0.000083 0.000083\r\n", + ":1 VARCHAR.__init__ 9 0.000026 0.000083 0.000009\r\n", + "..\\core\\getlimits.py:398 finfo._init 1 0.000044 0.000082 0.000082\r\n", + "..\\legend.py:1215 _parse_legend_args 1 0.000010 0.000082 0.000082\r\n", + "..bootstrap>:58 _ModuleLock.__init__ 10 0.000026 0.000082 0.000008\r\n", + "..tlib\\axis.py:864 XAxis.reset_ticks 16 0.000077 0.000082 0.000005\r\n", + "..t\\futures\\_base.py:381 Future.done 6 0.000031 0.000082 0.000014\r\n", + "..bootstrap>:194 _lock_unlock_module 8 0.000018 0.000081 0.000010\r\n", + "..\\result.py:777 ResultProxy._getter 27 0.000037 0.000081 0.000003\r\n", + "..123 ConnectionEventsDispatch._join 1 0.000078 0.000080 0.000080\r\n", + "..ections.py:361 OrderedSet.__init__ 8 0.000050 0.000080 0.000010\r\n", + "..ges\\numpy\\core\\_methods.py:44 _any 4 0.000009 0.000079 0.000020\r\n", + "..elements.py:4692 _literal_as_binds 2 0.000005 0.000079 0.000040\r\n", + "..sSelectorEventLoop._process_events 17 0.000043 0.000079 0.000005\r\n", + "..otlib\\figure.py:111 _AxesStack.add 1 0.000033 0.000079 0.000079\r\n", + "..session.py:1588 Session._autoflush 6 0.000022 0.000079 0.000013\r\n", + "..xt.py:1214 Text.set_fontproperties 1 0.000004 0.000079 0.000079\r\n", + "..copg2\\extensions.py:171 1 0.000005 0.000078 0.000078\r\n", + "..e-packages\\cycler.py:227 110 0.000078 0.000078 0.000001\r\n", + "..qlalchemy\\inspection.py:38 inspect 16 0.000051 0.000076 0.000005\r\n", + "..py:1210 Line2D.set_markeredgecolor 30 0.000040 0.000075 0.000003\r\n", + "..tlib\\transforms.py:773 from_bounds 1 0.000008 0.000075 0.000075\r\n", + "..b\\text.py:1059 Text.set_fontweight 4 0.000009 0.000074 0.000019\r\n", + "..__init__.py:1632 sanitize_sequence 8 0.000015 0.000074 0.000009\r\n", + "..alchemy\\log.py:174 instance_logger 3 0.000011 0.000073 0.000024\r\n", + "..init__.py:1677 Logger.isEnabledFor 5 0.000041 0.000073 0.000015\r\n", + "..8gteq6k\\lib\\sre_parse.py:432 _uniq 22 0.000044 0.000073 0.000003\r\n", + "..g2\\extensions.py:180 _param_escape 3 0.000005 0.000073 0.000024\r\n", + "..ase.py:971 _ConnectionFairy.cursor 6 0.000013 0.000073 0.000012\r\n", + ".._range.py:297 RangeCaster.__init__ 6 0.000022 0.000072 0.000012\r\n", + "..y:2444 PGDialect_psycopg2.__init__ 1 0.000008 0.000072 0.000072\r\n", + "..lib\\offsetbox.py:199 TextArea.axes 16 0.000042 0.000072 0.000004\r\n", + "..emy\\orm\\query.py:1790 Query.filter 5 0.000032 0.000072 0.000014\r\n", + "..b._bootstrap>:222 _verbose_message 90 0.000071 0.000071 0.000001\r\n", + "..py:366 GridSpec.get_subplot_params 1 0.000011 0.000071 0.000071\r\n", + "..artist.py:841 TextArea.set_clip_on 16 0.000026 0.000071 0.000004\r\n", + "..\\orm\\session.py:2462 Session.flush 9 0.000021 0.000071 0.000008\r\n", + "..s.py:1642 _fix_ipython_backend2gui 2 0.000025 0.000071 0.000035\r\n", + "..alchemy\\events.py:328 _accept_with 3 0.000026 0.000071 0.000024\r\n", + "..re_parse.py:267 Tokenizer.getuntil 7 0.000040 0.000070 0.000010\r\n", + "..figure.py:199 SubplotParams.update 2 0.000018 0.000070 0.000035\r\n", + "..b\\cbook\\__init__.py:2088 188 0.000070 0.000070 0.000000\r\n", + "..\\axis.py:501 XTick.update_position 3 0.000018 0.000069 0.000023\r\n", + "..hemy\\sql\\compiler.py:650 6 0.000010 0.000069 0.000011\r\n", + "..\\core\\fromnumeric.py:74 85 0.000069 0.000069 0.000001\r\n", + "..my\\sql\\elements.py:1955 1 0.000009 0.000069 0.000069\r\n", + "..ist.py:371 Rectangle.get_transform 31 0.000050 0.000068 0.000002\r\n", + "..ctions.py:933 LRUCache.__setitem__ 3 0.000026 0.000068 0.000023\r\n", + "..lib\\lines.py:1047 Line2D.set_color 30 0.000032 0.000068 0.000002\r\n", + "..bootstrap>:103 _ModuleLock.release 18 0.000061 0.000068 0.000004\r\n", + "..t_manager.py:1043 get_default_size 22 0.000028 0.000067 0.000003\r\n", + "..lib\\axis.py:922 _translate_tick_kw 8 0.000058 0.000067 0.000008\r\n", + "..otlib\\axis.py:666 Ticker.formatter 33 0.000048 0.000067 0.000002\r\n", + "..p>:151 _ModuleLockManager.__exit__ 10 0.000020 0.000066 0.000007\r\n", + "..re_parse.py:224 Tokenizer.__init__ 13 0.000043 0.000065 0.000005\r\n", + "..aggregation\\query.py:82 4 0.000013 0.000065 0.000016\r\n", + "..eading.py:364 Condition.notify_all 7 0.000022 0.000065 0.000009\r\n", + "..\\lib\\sre_compile.py:411 _mk_bitmap 5 0.000029 0.000065 0.000013\r\n", + "..ImmutableColumnCollection.__iter__ 5 0.000030 0.000064 0.000013\r\n", + "..gure.py:168 SubplotParams.__init__ 1 0.000009 0.000064 0.000064\r\n", + ".._WindowsSelectorEventLoop.__init__ 1 0.000024 0.000064 0.000064\r\n", + "..plotlib\\text.py:1151 Text.set_text 46 0.000052 0.000064 0.000001\r\n", + "..k\\lib\\sre_parse.py:81 State.groups 80 0.000048 0.000064 0.000001\r\n", + "..ghelpers.py:281 _inspect_func_args 18 0.000064 0.000064 0.000004\r\n", + "..tstrap_external>:51 _unpack_uint32 27 0.000044 0.000064 0.000002\r\n", + "..GCompiler_psycopg2.order_by_clause 1 0.000003 0.000063 0.000063\r\n", + "..yEventsDispatch._event_descriptors 46 0.000040 0.000063 0.000001\r\n", + "..__.py:185 CallbackRegistry.process 26 0.000047 0.000062 0.000002\r\n", + ".._bootstrap>:78 _ModuleLock.acquire 18 0.000056 0.000061 0.000003\r\n", + "..py:834 XAxis.limit_range_for_scale 2 0.000019 0.000061 0.000031\r\n", + "..pes.py:2997 _resolve_value_to_type 5 0.000017 0.000061 0.000012\r\n", + ".. SessionTransaction._take_snapshot 3 0.000027 0.000061 0.000020\r\n", + "..tableColumnCollection.__contains__ 10 0.000041 0.000060 0.000006\r\n", + "..ib\\axis.py:529 YTick.apply_tickdir 3 0.000024 0.000059 0.000020\r\n", + "..ures\\_base.py:443 Future.exception 6 0.000042 0.000059 0.000010\r\n", + "..schema.py:1640 Column.get_children 27 0.000049 0.000059 0.000002\r\n", + "..hemy\\sql\\compiler.py:652 11 0.000017 0.000059 0.000005\r\n", + "..emy\\util\\langhelpers.py:1188 _next 7 0.000036 0.000058 0.000008\r\n", + "..futures\\_base.py:412 Future.result 7 0.000034 0.000058 0.000008\r\n", + "..\\session.py:2508 Session._is_clean 10 0.000041 0.000057 0.000006\r\n", + ".. interactable_plot_multiple_charts 1 0.000009 0.000057 0.000057\r\n", + "..matplotlib\\patches.py:1818 __new__ 2 0.000037 0.000057 0.000028\r\n", + "...py:1623 TransformWrapper.__init__ 2 0.000009 0.000057 0.000028\r\n", + "..ging\\__init__.py:1412 Logger.debug 2 0.000008 0.000057 0.000028\r\n", + "..ager.py:936 _normalize_font_family 46 0.000041 0.000057 0.000001\r\n", + "..elements.py:4483 _select_iterables 8 0.000017 0.000057 0.000007\r\n", + "..Python38\\Lib\\threading.py:81 RLock 8 0.000056 0.000056 0.000007\r\n", + "..packages\\psycopg2\\tz.py:1 1 0.000016 0.000056 0.000056\r\n", + "..se.py:392 Future.add_done_callback 6 0.000030 0.000056 0.000009\r\n", + "..ericTransform._invalidate_internal 4/3 0.000013 0.000055 0.000014\r\n", + "..py:193 PGDialect_psycopg2.__init__ 1 0.000024 0.000055 0.000055\r\n", + "..til\\_collections.py:779 41 0.000042 0.000055 0.000001\r\n", + "..Compiler_psycopg2.visit_clauselist 1 0.000004 0.000054 0.000054\r\n", + "..eral_and_labels_as_label_reference 3 0.000012 0.000054 0.000018\r\n", + "..my\\engine\\result.py:372 6 0.000054 0.000054 0.000009\r\n", + "..ResultMetaData._merge_cols_by_none 6 0.000022 0.000054 0.000009\r\n", + "..plotlib\\axis.py:653 Ticker.locator 33 0.000047 0.000054 0.000002\r\n", + "..rm\\query.py:418 Query._bind_mapper 6 0.000024 0.000054 0.000009\r\n", + "..s.py:1247 AutoDateLocator.__init__ 2 0.000023 0.000054 0.000027\r\n", + "..plotlib\\transforms.py:177 39 0.000031 0.000053 0.000001\r\n", + "..\\offsetbox.py:410 VPacker.__init__ 2 0.000003 0.000053 0.000027\r\n", + "..se.py:593 _column_stack_dispatcher 12 0.000030 0.000053 0.000004\r\n", + "..EventLoop._asyncgen_firstiter_hook 10 0.000023 0.000053 0.000005\r\n", + "..ation-68gteq6k\\lib\\re.py:323 _subx 3 0.000008 0.000052 0.000017\r\n", + "..on\\database.py:107 from_sql_result 4 0.000025 0.000052 0.000013\r\n", + "..t_psycopg2._use_server_side_cursor 9 0.000044 0.000052 0.000006\r\n", + "..hes.py:475 Rectangle.set_joinstyle 7 0.000030 0.000052 0.000007\r\n", + "..e.py:516 _ConnectionRecord.checkin 1 0.000008 0.000052 0.000052\r\n", + "..elements.py:724 Column.__getattr__ 3 0.000026 0.000051 0.000017\r\n", + "..e._process_projection_requirements 1 0.000008 0.000050 0.000050\r\n", + "..y\\orm\\base.py:353 _is_mapped_class 7 0.000026 0.000050 0.000007\r\n", + "..lEventsDispatch._event_descriptors 36 0.000030 0.000050 0.000001\r\n", + "..\\lib\\_weakrefset.py:81 WeakSet.add 14 0.000040 0.000050 0.000004\r\n", + "..Compiler_psycopg2.visit_typeclause 2 0.000008 0.000049 0.000025\r\n", + "..ernal>:526 _validate_timestamp_pyc 9 0.000023 0.000049 0.000005\r\n", + ".._.py:118 CallbackRegistry.__init__ 19 0.000049 0.000049 0.000003\r\n", + "..tgresql\\psycopg2.py:800 on_connect 2 0.000007 0.000049 0.000024\r\n", + "..quoted_name._memoized_method_lower 21 0.000041 0.000048 0.000002\r\n", + "..py:436 prefix_anon_map.__missing__ 7 0.000034 0.000048 0.000007\r\n", + "..ion\\analysis.py:367 wrap_coroutine 1 0.000014 0.000047 0.000047\r\n", + "..eq6k\\lib\\_weakrefset.py:38 _remove 11 0.000037 0.000046 0.000004\r\n", + "..kages\\numpy\\ma\\core.py:666 getdata 8 0.000036 0.000046 0.000006\r\n", + "..ib\\threading.py:505 Event.__init__ 2 0.000008 0.000046 0.000023\r\n", + "..emy\\sql\\compiler.py:1000 4 0.000005 0.000046 0.000011\r\n", + "..y:208 _arrays_for_stack_dispatcher 28 0.000026 0.000045 0.000002\r\n", + "..b\\transforms.py:909 Bbox.intervalx 3 0.000024 0.000045 0.000015\r\n", + "...py:2680 AxesSubplot.set_axisbelow 1 0.000010 0.000045 0.000045\r\n", + "..\\elements.py:4610 _literal_as_text 16 0.000021 0.000045 0.000003\r\n", + "..tras.py:657 UUID_adapter.getquoted 4 0.000022 0.000044 0.000011\r\n", + "...py:311 RangeCaster._create_ranges 6 0.000040 0.000044 0.000007\r\n", + "..b\\function_base.py:2164 4 0.000006 0.000044 0.000011\r\n", + "..gteq6k\\lib\\re.py:313 _compile_repl 1 0.000010 0.000044 0.000044\r\n", + "...py:235 SubplotParams._update_this 12 0.000021 0.000043 0.000004\r\n", + "..sult.py:700 ResultMetaData._getter 27 0.000043 0.000043 0.000002\r\n", + "..lib\\functools.py:33 update_wrapper 2 0.000026 0.000043 0.000022\r\n", + ":176 cb 10 0.000031 0.000043 0.000004\r\n", + "..is.py:197 XTick._set_labelrotation 6 0.000026 0.000043 0.000007\r\n", + "..ib\\axis.py:413 XTick.apply_tickdir 3 0.000017 0.000042 0.000014\r\n", + "..base.py:375 QueuePool._return_conn 1 0.000003 0.000042 0.000042\r\n", + "..:486 String._cached_bind_processor 5 0.000027 0.000042 0.000008\r\n", + "..b\\scale.py:97 LinearScale.__init__ 16 0.000035 0.000042 0.000003\r\n", + "..ycopg2\\extras.py:664 register_uuid 2 0.000027 0.000041 0.000021\r\n", + "..CompositeGenericTransform. 16/8 0.000035 0.000041 0.000003\r\n", + "..external>:1394 FileFinder.__init__ 1 0.000023 0.000041 0.000041\r\n", + "..init__.py:882 Grouper.get_siblings 6 0.000022 0.000041 0.000007\r\n", + "..iler.py:399 PGTypeCompiler.process 2 0.000006 0.000041 0.000021\r\n", + "..emy\\sql\\compiler.py:1002 4 0.000006 0.000041 0.000010\r\n", + "..tors.py:180 SelectSelector.get_key 1 0.000010 0.000041 0.000041\r\n", + "..s\\_base.py:597 AxesSubplot.viewLim 2 0.000005 0.000041 0.000020\r\n", + "..mpiler_psycopg2._add_to_result_map 29 0.000032 0.000040 0.000001\r\n", + "..ation-68gteq6k\\lib\\copy.py:66 copy 1 0.000013 0.000040 0.000040\r\n", + "..ib\\stride_tricks.py:262 10 0.000024 0.000040 0.000004\r\n", + "..654 _WindowsSelectorEventLoop.time 17 0.000028 0.000040 0.000002\r\n", + "..process_plot_var_args._getdefaults 4 0.000018 0.000040 0.000010\r\n", + "..tplotlib\\legend.py:1253 1 0.000006 0.000040 0.000040\r\n", + "..my\\sql\\elements.py:4488 8 0.000029 0.000039 0.000005\r\n", + "..ttr.py:269 _EmptyListener.__bool__ 17 0.000039 0.000039 0.000002\r\n", + "..l.py:103 QueuePool._do_return_conn 1 0.000005 0.000039 0.000039\r\n", + "..y:3229 BinaryExpression.self_group 5 0.000009 0.000039 0.000008\r\n", + "..r.py:234 _EmptyListener.for_modify 2 0.000013 0.000038 0.000019\r\n", + "..til\\_collections.py:981 3 0.000020 0.000038 0.000013\r\n", + "..util\\langhelpers.py:1175 46 0.000038 0.000038 0.000001\r\n", + "..arse.py:168 SubPattern.__setitem__ 48 0.000030 0.000038 0.000001\r\n", + "..y\\engine\\default.py:796 6 0.000020 0.000037 0.000006\r\n", + "..p>:867 _ImportLockContext.__exit__ 30 0.000026 0.000037 0.000001\r\n", + "..mportlib._bootstrap>:800 find_spec 10 0.000013 0.000037 0.000004\r\n", + "..tplotlib\\figure.py:1959 Figure.sca 1 0.000008 0.000037 0.000037\r\n", + "..ib\\figure.py:1070 Figure._make_key 1 0.000006 0.000037 0.000037\r\n", + "..pe_base.py:219 _vhstack_dispatcher 16 0.000014 0.000037 0.000002\r\n", + "..cbook\\__init__.py:1868 Text.method 5 0.000009 0.000036 0.000007\r\n", + "..ray_function__ internals>:2 copyto 4 0.000014 0.000036 0.000009\r\n", + "..ib\\figure.py:778 Figure.set_canvas 2 0.000008 0.000036 0.000018\r\n", + "..ql\\elements.py:2428 literal_column 2 0.000010 0.000036 0.000018\r\n", + "..y:583 AxesSubplot._unstale_viewLim 2 0.000010 0.000036 0.000018\r\n", + "..owsSelectorEventLoop._add_callback 6 0.000025 0.000036 0.000006\r\n", + "..38\\Lib\\socket.py:512 socket.family 1 0.000006 0.000035 0.000035\r\n", + "..768 IdentityTransform.is_separable 8 0.000031 0.000035 0.000004\r\n", + "..tplotlib\\figure.py:1651 Figure.clf 1 0.000016 0.000035 0.000035\r\n", + "..es\\numpy\\core\\_methods.py:28 _amax 2 0.000003 0.000034 0.000017\r\n", + "..ib\\sre_parse.py:969 parse_template 1 0.000016 0.000034 0.000034\r\n", + "..owsSelectorEventLoop.create_future 6 0.000031 0.000034 0.000006\r\n", + "..:4707 _interpret_as_column_or_from 29 0.000022 0.000034 0.000001\r\n", + "..tions.py:946 LRUCache._manage_size 3 0.000029 0.000034 0.000011\r\n", + "..b\\legend.py:701 get_legend_handler 8 0.000028 0.000034 0.000004\r\n", + "..ngine\\base.py:1869 Engine.__init__ 1 0.000005 0.000034 0.000034\r\n", + "..legend.py:1169 _get_legend_handles 5 0.000016 0.000034 0.000007\r\n", + "..lib\\lines.py:743 Line2D._is_sorted 3 0.000015 0.000034 0.000011\r\n", + "..py:2538 FigureManagerBase.__init__ 1 0.000012 0.000034 0.000034\r\n", + "..alchemy\\util\\queue.py:92 Queue.put 1 0.000018 0.000034 0.000034\r\n", + "..ib\\socket.py:97 _intenum_converter 2 0.000010 0.000034 0.000017\r\n", + "..ures\\_base.py:371 Future.cancelled 6 0.000017 0.000034 0.000006\r\n", + "..b\\sre_compile.py:65 _combine_flags 39 0.000033 0.000033 0.000001\r\n", + "...py:900 AutoDateFormatter.__init__ 2 0.000016 0.000033 0.000017\r\n", + "..m\\state.py:328 type._detach_states 2 0.000020 0.000033 0.000017\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..ession.py:1339 Session.expunge_all 1 0.000012 0.000033 0.000033\r\n", + "..lections.py:316 OrderedDict.values 5 0.000018 0.000032 0.000006\r\n", + "..\\core\\getipython.py:17 get_ipython 2 0.000022 0.000032 0.000016\r\n", + "..m\\query.py:345 Query._adapt_clause 35 0.000032 0.000032 0.000001\r\n", + "..y:528 Text._update_clip_properties 15 0.000032 0.000032 0.000002\r\n", + "..94 QueryEventsDispatch.__getattr__ 8 0.000027 0.000032 0.000004\r\n", + "..._bootstrap>:389 ModuleSpec.parent 14 0.000022 0.000032 0.000002\r\n", + "..etaData._colnames_from_description 6 0.000030 0.000032 0.000005\r\n", + "..\\elements.py:688 Column.self_group 13 0.000031 0.000031 0.000002\r\n", + "..ompat.py:61 inspect_getfullargspec 2 0.000019 0.000031 0.000016\r\n", + "..compile.py:492 _get_charset_prefix 10 0.000024 0.000031 0.000003\r\n", + "..ticker.py:224 AutoLocator.set_axis 67 0.000031 0.000031 0.000000\r\n", + "..kref.py:436 WeakKeyDictionary.keys 1 0.000015 0.000031 0.000031\r\n", + "..tbox.py:739 DrawingArea.add_artist 8 0.000023 0.000031 0.000004\r\n", + "..l\\sqltypes.py:412 Unicode.__init__ 2 0.000013 0.000031 0.000015\r\n", + "..s\\matplotlib\\axis.py:342 70 0.000031 0.000031 0.000000\r\n", + "..6k\\lib\\sre_compile.py:595 isstring 24 0.000025 0.000031 0.000001\r\n", + "..ase.py:867 _ConnectionFairy._reset 1 0.000012 0.000030 0.000030\r\n", + "..n-68gteq6k\\lib\\enum.py:557 __new__ 26 0.000030 0.000030 0.000001\r\n", + "..ool\\base.py:235 QueuePool._creator 1 0.000005 0.000030 0.000030\r\n", + "..s\\numpy\\core\\multiarray.py:707 dot 67 0.000030 0.000030 0.000000\r\n", + "..\\lib\\sre_compile.py:413 5 0.000030 0.000030 0.000006\r\n", + "..owsSelectorEventLoop._check_closed 34 0.000030 0.000030 0.000001\r\n", + "..hemy\\orm\\query.py:537 Query._clone 6 0.000021 0.000030 0.000005\r\n", + "..portlib._bootstrap>:35 _new_module 9 0.000030 0.000030 0.000003\r\n", + "..\\sql\\selectable.py:3079 8 0.000014 0.000029 0.000004\r\n", + "..sql\\operators.py:1497 is_precedent 5 0.000018 0.000029 0.000006\r\n", + "..\\log.py:59 Engine._should_log_info 2 0.000006 0.000029 0.000015\r\n", + "..py:69 _SelectorMapping.__getitem__ 1 0.000022 0.000029 0.000029\r\n", + "..iler.py:410 _CompileLabel.__init__ 29 0.000029 0.000029 0.000001\r\n", + "..:221 Query._set_entity_selectables 6 0.000025 0.000029 0.000005\r\n", + "..per._iter_break_from_left_to_right 8 0.000010 0.000029 0.000004\r\n", + "..:94 PoolEventsDispatch.__getattr__ 12 0.000023 0.000029 0.000002\r\n", + "..ne\\result.py:956 ResultProxy.close 3 0.000008 0.000029 0.000010\r\n", + "..ngine\\base.py:590 Connection.begin 1 0.000006 0.000029 0.000029\r\n", + "..l\\_collections.py:910 LRUCache.get 6 0.000018 0.000028 0.000005\r\n", + "..\\cbook\\__init__.py:1737 74 0.000028 0.000028 0.000000\r\n", + "..ion-68gteq6k\\lib\\weakref.py:51 _cb 2 0.000007 0.000028 0.000014\r\n", + "..y:4590 _expression_literal_as_text 5 0.000009 0.000028 0.000006\r\n", + "..b\\function_base.py:2144 4 0.000013 0.000028 0.000007\r\n", + "..romnumeric.py:2185 _any_dispatcher 76 0.000028 0.000028 0.000000\r\n", + "..n38\\Lib\\socket.py:496 socket.close 1 0.000004 0.000028 0.000028\r\n", + "..ors.py:298 SelectSelector.register 1 0.000009 0.000027 0.000027\r\n", + "..array_function__ internals>:2 tile 1 0.000003 0.000027 0.000027\r\n", + "..ts.py:4056 ColumnClause._get_table 49 0.000027 0.000027 0.000001\r\n", + "..:513 Figure.set_constrained_layout 1 0.000010 0.000027 0.000027\r\n", + "..it__.py:1323 Manager._fixupParents 3 0.000018 0.000027 0.000009\r\n", + "..reading.py:261 Condition._is_owned 11 0.000017 0.000027 0.000002\r\n", + "..>:863 _ImportLockContext.__enter__ 30 0.000019 0.000027 0.000001\r\n", + "..ib\\figure.py:104 _AxesStack.bubble 1 0.000009 0.000027 0.000027\r\n", + "..8 SessionTransaction._prepare_impl 1 0.000013 0.000027 0.000027\r\n", + "..q6k\\lib\\sre_parse.py:921 fix_flags 12 0.000024 0.000026 0.000002\r\n", + "..compiler.py:419 _CompileLabel.type 29 0.000026 0.000026 0.000001\r\n", + "..is.py:1048 XAxis._set_artist_props 4 0.000005 0.000026 0.000007\r\n", + "..utionContext_psycopg2._log_notices 9 0.000026 0.000026 0.000003\r\n", + "..ents.py:3947 ColumnClause.__init__ 2 0.000010 0.000026 0.000013\r\n", + "..\\core\\getlimits.py:239 _get_machar 1 0.000013 0.000026 0.000026\r\n", + "..s.py:302 Rectangle.set_antialiased 8 0.000012 0.000026 0.000003\r\n", + "..io\\coroutines.py:18 _is_debug_mode 1 0.000010 0.000026 0.000026\r\n", + "..ages\\cycler.py:225 Cycler.__iter__ 12 0.000021 0.000026 0.000002\r\n", + "..ine\\url.py:161 URL._get_entrypoint 1 0.000006 0.000026 0.000026\r\n", + "..orms.py:1652 TransformWrapper._set 4 0.000023 0.000025 0.000006\r\n", + "..e.py:1907 Figure._set_artist_props 1 0.000007 0.000025 0.000025\r\n", + "..\\cbook\\__init__.py:1742 74 0.000025 0.000025 0.000000\r\n", + "..etbox.py:303 TextArea.get_children 33 0.000025 0.000025 0.000001\r\n", + "..240 QueuePool._should_wrap_creator 1 0.000005 0.000025 0.000025\r\n", + "..\\elements.py:709 Column.comparator 4 0.000019 0.000025 0.000006\r\n", + "..rl.py:152 URL._instantiate_plugins 1 0.000007 0.000025 0.000025\r\n", + "..base.py:321 _inspect_mapped_object 4 0.000025 0.000025 0.000006\r\n", + "..b\\function_base.py:2120 4 0.000024 0.000024 0.000006\r\n", + "..urceFileLoader._check_name_wrapper 9 0.000020 0.000024 0.000003\r\n", + "..xt_psycopg2.should_autocommit_text 3 0.000008 0.000024 0.000008\r\n", + "..y\\sql\\elements.py:4594 _literal_as 16 0.000016 0.000024 0.000001\r\n", + "..y:355 _ListenerCollection.__init__ 2 0.000018 0.000024 0.000012\r\n", + "...py:343 WeakKeyDictionary.__init__ 13 0.000024 0.000024 0.000002\r\n", + "..b\\socket.py:492 socket._real_close 1 0.000009 0.000023 0.000023\r\n", + "..llections_abc.py:72 _check_methods 14 0.000023 0.000023 0.000002\r\n", + "..\\__init__.py:43 normalize_encoding 1 0.000017 0.000023 0.000023\r\n", + "..ase.py:3227 AxesSubplot.get_xscale 4 0.000017 0.000023 0.000006\r\n", + "..gging\\__init__.py:214 _acquireLock 7 0.000015 0.000023 0.000003\r\n", + "..e.py:1757 RootTransaction.__init__ 1 0.000008 0.000023 0.000023\r\n", + "..lalchemy\\util\\compat.py:148 raise_ 12 0.000023 0.000023 0.000002\r\n", + "..\\encodings\\utf_8.py:33 getregentry 1 0.000010 0.000022 0.000022\r\n", + "..langhelpers.py:344 get_func_kwargs 1 0.000003 0.000022 0.000022\r\n", + "..y\\log.py:221 echo_property.__set__ 1 0.000001 0.000022 0.000022\r\n", + "..tlib\\axis.py:2166 XAxis.get_minpos 1 0.000011 0.000022 0.000022\r\n", + "..my\\util\\queue.py:43 Queue.__init__ 1 0.000009 0.000022 0.000022\r\n", + "..rms.py:1632 TransformWrapper._init 2 0.000008 0.000022 0.000011\r\n", + "..b\\asyncio\\futures.py:269 _get_loop 8 0.000018 0.000022 0.000003\r\n", + "..ok\\__init__.py:2125 _check_getitem 4 0.000018 0.000022 0.000006\r\n", + "..ery._adjust_for_single_inheritance 6 0.000019 0.000022 0.000004\r\n", + "..psycopg2\\_json.py:94 register_json 2 0.000010 0.000022 0.000011\r\n", + "..sion.py:3188 sessionmaker.__init__ 1 0.000021 0.000021 0.000021\r\n", + "..y:102 WeakValueDictionary.__init__ 1 0.000013 0.000021 0.000021\r\n", + "..l\\sqltypes.py:141 VARCHAR.__init__ 9 0.000021 0.000021 0.000002\r\n", + "..syncio\\tasks.py:751 _done_callback 1 0.000012 0.000021 0.000021\r\n", + "..29 _process_plot_var_args.__init__ 2 0.000005 0.000021 0.000011\r\n", + "..y\\sql\\operators.py:1409 is_boolean 6 0.000011 0.000021 0.000003\r\n", + "..dates.py:1496 YearLocator.__init__ 2 0.000012 0.000021 0.000010\r\n", + "..ok\\__init__.py:601 _AxesStack.push 2 0.000011 0.000021 0.000010\r\n", + "..157 CallbackRegistry._remove_proxy 2 0.000017 0.000021 0.000010\r\n", + "..nts.py:709 ColumnClause.comparator 4 0.000012 0.000021 0.000005\r\n", + "..mn._render_label_in_columns_clause 10 0.000014 0.000020 0.000002\r\n", + "..alect_psycopg2.create_connect_args 1 0.000009 0.000020 0.000020\r\n", + "..\\matplotlib\\transforms.py:768 null 1 0.000004 0.000020 0.000020\r\n", + "..\\lines.py:547 Line2D.set_markevery 30 0.000020 0.000020 0.000001\r\n", + ".._json.py:133 register_default_json 1 0.000003 0.000020 0.000020\r\n", + "..lib\\stride_tricks.py:266 30 0.000020 0.000020 0.000001\r\n", + "..58 PGCompiler_psycopg2.visit_table 6 0.000012 0.000020 0.000003\r\n", + "..ctions_abc.py:271 __subclasshook__ 5 0.000009 0.000020 0.000004\r\n", + "..\\numpy\\lib\\shape_base.py:1155 tile 1 0.000007 0.000020 0.000020\r\n", + "..patches.py:491 Rectangle.set_hatch 7 0.000011 0.000019 0.000003\r\n", + "..idspec.py:200 GridSpec.__getitem__ 1 0.000011 0.000019 0.000019\r\n", + "..tlib\\axis.py:2466 YAxis.get_minpos 1 0.000017 0.000019 0.000019\r\n", + "..range.py:449 RangeCaster._register 6 0.000011 0.000019 0.000003\r\n", + "..pg2\\extras.py:790 _solve_conn_curs 1 0.000005 0.000019 0.000019\r\n", + "..59 WeakValueDictionary.__setitem__ 1 0.000013 0.000019 0.000019\r\n", + "..7 BlendedGenericTransform.__init__ 2 0.000007 0.000019 0.000010\r\n", + "..hon38\\Lib\\uuid.py:271 UUID.__str__ 4 0.000019 0.000019 0.000005\r\n", + "..tlib\\legend.py:569 Legend._set_loc 1 0.000007 0.000019 0.000019\r\n", + "..otlib\\axis.py:662 Ticker.formatter 65 0.000019 0.000019 0.000000\r\n", + "..lements.py:2553 Cast._from_objects 2 0.000005 0.000019 0.000009\r\n", + "..book\\__init__.py:833 Grouper.clean 8 0.000016 0.000019 0.000002\r\n", + "..tlib\\transforms.py:274 Bbox.frozen 1 0.000003 0.000019 0.000019\r\n", + "..ments.py:4065 Column._from_objects 10 0.000013 0.000019 0.000002\r\n", + "..ib\\axis.py:819 XAxis.get_transform 4 0.000005 0.000019 0.000005\r\n", + "..my\\engine\\result.py:322 9 0.000019 0.000019 0.000002\r\n", + "..er_psycopg2._get_operator_dispatch 5 0.000015 0.000019 0.000004\r\n", + "..elpers.py:355 get_callable_argspec 1 0.000004 0.000019 0.000019\r\n", + "..g\\__init__.py:1392 Logger.__init__ 3 0.000013 0.000018 0.000006\r\n", + "..\\gridspec.py:246 GridSpec.__init__ 1 0.000008 0.000018 0.000018\r\n", + "..s.py:1096 _importlater.__getattr__ 1 0.000005 0.000018 0.000018\r\n", + "..m\\query.py:3551 Query._select_args 6 0.000018 0.000018 0.000003\r\n", + "..ns.py:738 PopulateDict.__missing__ 5 0.000010 0.000018 0.000004\r\n", + "..my\\engine\\result.py:460 6 0.000018 0.000018 0.000003\r\n", + "..bootstrap_external>:36 _relax_case 17 0.000018 0.000018 0.000001\r\n", + "..ors.py:234 SelectSelector.register 1 0.000009 0.000018 0.000018\r\n", + "..Compiler_psycopg2.construct_params 6 0.000017 0.000017 0.000003\r\n", + "..rm\\query.py:398 Query._entity_zero 6 0.000013 0.000017 0.000003\r\n", + "..nctools.py:524 decorating_function 1 0.000005 0.000017 0.000017\r\n", + "..ctions_abc.py:392 __subclasshook__ 40 0.000017 0.000017 0.000000\r\n", + "..bootstrap_external>:1508 1 0.000012 0.000017 0.000017\r\n", + "..tplotlib\\text.py:554 Text.set_wrap 24 0.000017 0.000017 0.000001\r\n", + "..:171 DynamicClassAttribute.__get__ 4 0.000015 0.000017 0.000004\r\n", + "..packages\\cycler.py:138 Cycler.keys 12 0.000017 0.000017 0.000001\r\n", + "..ler_psycopg2.escape_literal_column 2 0.000013 0.000017 0.000008\r\n", + "..utableColumnCollection.__getattr__ 10 0.000017 0.000017 0.000002\r\n", + "..y\\sql\\type_api.py:1465 to_instance 9 0.000013 0.000017 0.000002\r\n", + "..\\matplotlib\\figure.py:1089 fixlist 1 0.000007 0.000017 0.000017\r\n", + "..ents.py:180 _run_until_complete_cb 1 0.000012 0.000016 0.000016\r\n", + "..ocess_plot_var_args.set_prop_cycle 2 0.000008 0.000016 0.000008\r\n", + "..56 WeakInstanceDict.check_modified 10 0.000016 0.000016 0.000002\r\n", + "...py:258 Condition._acquire_restore 4 0.000012 0.000016 0.000004\r\n", + "..ollections_abc.py:657 _Environ.get 1 0.000004 0.000016 0.000016\r\n", + "..d_inline.py:59 draw_if_interactive 1 0.000010 0.000016 0.000016\r\n", + "..lib\\sre_parse.py:76 State.__init__ 12 0.000016 0.000016 0.000001\r\n", + "..nghelpers.py:248 PluginLoader.load 1 0.000004 0.000016 0.000016\r\n", + "..ections.py:396 OrderedSet.__iter__ 8 0.000012 0.000016 0.000002\r\n", + "..ib\\figure.py:70 _AxesStack.as_list 2 0.000012 0.000016 0.000008\r\n", + "..ql\\elements.py:4475 _expand_cloned 6 0.000013 0.000015 0.000003\r\n", + "..ts.py:4059 ColumnClause._set_table 2 0.000007 0.000015 0.000008\r\n", + "..bootstrap>:342 ModuleSpec.__init__ 10 0.000015 0.000015 0.000002\r\n", + "..registry.py:154 _EventKey.__init__ 4 0.000012 0.000015 0.000004\r\n", + "..WindowsSelectorEventLoop.get_debug 33 0.000015 0.000015 0.000000\r\n", + "..276 PGDialect_psycopg2._type_memos 1 0.000009 0.000015 0.000015\r\n", + "..ler.py:161 HandlerLine2D.get_xdata 4 0.000011 0.000015 0.000004\r\n", + "..s.py:1059 AutoDateLocator.__init__ 4 0.000005 0.000015 0.000004\r\n", + "..tableColumnCollection.__contains__ 10 0.000015 0.000015 0.000001\r\n", + "..til\\_collections.py:317 5 0.000015 0.000015 0.000003\r\n", + "..type_api.py:60 Comparator.__init__ 8 0.000014 0.000014 0.000002\r\n", + "..uery.py:698 Query.is_single_entity 6 0.000012 0.000014 0.000002\r\n", + "..matplotlib\\text.py:1115 Text.set_y 6 0.000006 0.000014 0.000002\r\n", + "..gging\\__init__.py:223 _releaseLock 7 0.000010 0.000014 0.000002\r\n", + "..e.py:117 LinearScale.get_transform 4 0.000005 0.000014 0.000003\r\n", + "..elements.py:4056 Column._get_table 20 0.000014 0.000014 0.000001\r\n", + "..tionContext_psycopg2.no_parameters 4 0.000012 0.000014 0.000003\r\n", + "..ncio\\coroutines.py:177 iscoroutine 2 0.000011 0.000014 0.000007\r\n", + "..nal>:939 SourceFileLoader.__init__ 9 0.000013 0.000013 0.000002\r\n", + ".._api.py:436 Unicode._type_affinity 2 0.000009 0.000013 0.000007\r\n", + "..\\rcsetup.py:163 validate_axisbelow 1 0.000006 0.000013 0.000013\r\n", + "..\\__init__.py:631 _AxesStack.bubble 1 0.000006 0.000013 0.000013\r\n", + "..lib\\figure.py:453 Figure._get_axes 1 0.000004 0.000013 0.000013\r\n", + "..19 ResultProxy._cursor_description 9 0.000013 0.000013 0.000001\r\n", + "..:3361 PGTypeCompiler.visit_VARCHAR 2 0.000008 0.000013 0.000007\r\n", + "..:2053 IdentityTransform.get_matrix 23 0.000013 0.000013 0.000001\r\n", + "..n\\Python38\\Lib\\typing.py:255 inner 1 0.000007 0.000013 0.000013\r\n", + "..py:1202 ResultProxy._fetchone_impl 3 0.000008 0.000013 0.000004\r\n", + "..rs.py:330 MarkerStyle._set_nothing 30 0.000013 0.000013 0.000000\r\n", + "..tlib\\dates.py:174 _get_rc_timezone 6 0.000006 0.000013 0.000002\r\n", + "..b\\function_base.py:2115 4 0.000007 0.000013 0.000003\r\n", + "..es\\thread.py:46 _WorkItem.__init__ 7 0.000012 0.000012 0.000002\r\n", + "..ib\\transforms.py:969 Bbox.mutatedx 2 0.000012 0.000012 0.000006\r\n", + "..-68gteq6k\\lib\\codecs.py:94 __new__ 1 0.000011 0.000012 0.000012\r\n", + "..Figure.set_constrained_layout_pads 1 0.000006 0.000012 0.000012\r\n", + "..y:154 to_unicode_processor_factory 1 0.000012 0.000012 0.000012\r\n", + "..ctions_abc.py:349 __subclasshook__ 5 0.000007 0.000012 0.000002\r\n", + ".. SessionTransaction._assert_active 8 0.000012 0.000012 0.000002\r\n", + "..base.py:707 Connection._begin_impl 1 0.000010 0.000012 0.000012\r\n", + "..\\_internal.py:830 npy_ctypes_check 4 0.000012 0.000012 0.000003\r\n", + "..py:210 WeakInstanceDict.all_states 2 0.000011 0.000012 0.000006\r\n", + "..lib\\os.py:668 _Environ.__getitem__ 1 0.000005 0.000012 0.000012\r\n", + "..b\\figure.py:66 _AxesStack.__init__ 1 0.000006 0.000012 0.000012\r\n", + "..matplotlib\\text.py:1104 Text.set_x 6 0.000005 0.000012 0.000002\r\n", + "..lotlib\\axes\\_base.py:232 8 0.000009 0.000012 0.000001\r\n", + "..208 _EmptyListener._adjust_fn_spec 4 0.000008 0.000012 0.000003\r\n", + "..ib\\threading.py:1110 Thread.daemon 2 0.000010 0.000011 0.000006\r\n", + "..chemy\\orm\\query.py:4634 27 0.000011 0.000011 0.000000\r\n", + "..ql\\base.py:1142 TIMESTAMP.__init__ 1 0.000006 0.000011 0.000011\r\n", + "..ib\\sre_compile.py:453 _get_iscased 29 0.000011 0.000011 0.000000\r\n", + "..200 BinaryExpression._from_objects 5 0.000011 0.000011 0.000002\r\n", + "..\\psycopg2\\_ipaddress.py:1 1 0.000011 0.000011 0.000011\r\n", + "..core\\multiarray.py:145 concatenate 29 0.000011 0.000011 0.000000\r\n", + "..b\\threading.py:1306 current_thread 3 0.000009 0.000011 0.000004\r\n", + "..tions.py:906 LRUCache._inc_counter 6 0.000011 0.000011 0.000002\r\n", + "..ments.py:765 Cast._select_iterable 29 0.000011 0.000011 0.000000\r\n", + "..y\\dialects\\__init__.py:24 _auto_fn 1 0.000006 0.000011 0.000011\r\n", + "..plots.py:214 subplot_class_factory 1 0.000006 0.000011 0.000011\r\n", + "..\\__init__.py:1837 _str_lower_equal 4 0.000008 0.000011 0.000003\r\n", + "..elements.py:4080 Column._key_label 10 0.000010 0.000010 0.000001\r\n", + "..:536 ScalarFormatter.set_useOffset 16 0.000010 0.000010 0.000001\r\n", + "...py:193 URL.translate_connect_args 1 0.000006 0.000010 0.000010\r\n", + "..ql\\operators.py:1386 is_comparison 6 0.000010 0.000010 0.000002\r\n", + "..ger.py:835 FontProperties.set_file 23 0.000010 0.000010 0.000000\r\n", + "..ages\\psycopg2\\compat.py:1 1 0.000010 0.000010 0.000010\r\n", + "..set.py:26 _IterationGuard.__exit__ 1 0.000009 0.000010 0.000010\r\n", + "..stry.py:169 _EventKey.with_wrapper 5 0.000006 0.000010 0.000002\r\n", + "..py:2606 BboxTransformFrom.__init__ 1 0.000004 0.000010 0.000010\r\n", + "..artist.py:1052 Line2D.sticky_edges 32 0.000010 0.000010 0.000000\r\n", + "..m\\session.py:1429 Session.get_bind 6 0.000010 0.000010 0.000002\r\n", + "..Compiler_psycopg2.bindparam_string 5 0.000010 0.000010 0.000002\r\n", + "..my\\engine\\result.py:319 9 0.000010 0.000010 0.000001\r\n", + "..ler.py:396 PGTypeCompiler.__init__ 1 0.000010 0.000010 0.000010\r\n", + "..lements.py:365 Column.get_children 27 0.000010 0.000010 0.000000\r\n", + "..ist.py:605 FancyBboxPatch.set_snap 1 0.000007 0.000009 0.000009\r\n", + "..__init__.py:60 _StrongRef.__hash__ 6 0.000006 0.000009 0.000002\r\n", + "..ure.py:487 Figure.set_tight_layout 1 0.000005 0.000009 0.000009\r\n", + "..tion-68gteq6k\\lib\\re.py:268 escape 1 0.000005 0.000009 0.000009\r\n", + "..on._memoized_attr__exec_once_mutex 1 0.000003 0.000009 0.000009\r\n", + "..pes.py:295 String.result_processor 5 0.000009 0.000009 0.000002\r\n", + "..b\\gridspec.py:31 GridSpec.__init__ 1 0.000007 0.000009 0.000009\r\n", + "..\\elements.py:232 Table._cloned_set 2 0.000008 0.000009 0.000005\r\n", + "..:3418 PGTypeCompiler.visit_unicode 1 0.000004 0.000009 0.000009\r\n", + "..gistry.py:263 _EventKey._listen_fn 16 0.000009 0.000009 0.000001\r\n", + "..\\futures.py:357 _call_check_cancel 6 0.000008 0.000009 0.000002\r\n", + "..CompositeGenericTransform. 3 0.000009 0.000009 0.000003\r\n", + "..\\figure.py:152 _AxesStack.__call__ 2 0.000005 0.000009 0.000005\r\n", + "..teq6k\\lib\\copy.py:257 _reconstruct 1 0.000005 0.000009 0.000009\r\n", + "..on.py:159 _create_json_typecasters 2 0.000006 0.000009 0.000005\r\n", + ".._.py:1663 Logger.getEffectiveLevel 3 0.000009 0.000009 0.000003\r\n", + "..y:980 _ConnectionFairy.__getattr__ 2 0.000005 0.000009 0.000004\r\n", + "..lib\\patches.py:2146 Round.__init__ 2 0.000009 0.000009 0.000004\r\n", + "..abc.py:816 WeakKeyDictionary.clear 1 0.000005 0.000009 0.000009\r\n", + "..ttr.py:257 _EmptyListener.__call__ 8 0.000009 0.000009 0.000001\r\n", + "..ing.py:255 Condition._release_save 4 0.000007 0.000009 0.000002\r\n", + ".._base.py:20 _atleast_1d_dispatcher 24 0.000009 0.000009 0.000000\r\n", + "..ctions_abc.py:367 __subclasshook__ 4 0.000005 0.000009 0.000002\r\n", + "..ler_psycopg2.get_select_precolumns 8 0.000009 0.000009 0.000001\r\n", + "..extensions.py:103 register_adapter 12 0.000009 0.000009 0.000001\r\n", + "..tgresql\\psycopg2.py:807 on_connect 2 0.000004 0.000009 0.000004\r\n", + "..tplotlib\\pyplot.py:612 get_fignums 1 0.000005 0.000009 0.000009\r\n", + "..lchemy\\util\\queue.py:135 Queue.get 1 0.000007 0.000008 0.000008\r\n", + "...py:284 WeakValueDictionary.update 1 0.000007 0.000008 0.000008\r\n", + "..ors.py:293 SelectSelector.__init__ 1 0.000003 0.000008 0.000008\r\n", + ":1 Deployment.__init__ 4 0.000008 0.000008 0.000002\r\n", + "..tplotlib\\path.py:197 Path.vertices 16 0.000008 0.000008 0.000001\r\n", + ".._memoized_property.expire_instance 2 0.000006 0.000008 0.000004\r\n", + "...py:299 NullFormatter._set_locator 31 0.000008 0.000008 0.000000\r\n", + "..mportlib._bootstrap>:725 find_spec 10 0.000005 0.000008 0.000001\r\n", + "..ure.py:155 _AxesStack.__contains__ 1 0.000002 0.000008 0.000008\r\n", + "..p>:143 _ModuleLockManager.__init__ 10 0.000008 0.000008 0.000001\r\n", + "..uery.py:505 Query._no_limit_offset 6 0.000008 0.000008 0.000001\r\n", + "..\\util\\_collections.py:771 5 0.000008 0.000008 0.000002\r\n", + "...py:1689 TransformWrapper. 6 0.000008 0.000008 0.000001\r\n", + "..\\Lib\\threading.py:944 Thread._stop 1 0.000006 0.000008 0.000008\r\n", + "..py:275 SelectSelector._key_from_fd 6 0.000008 0.000008 0.000001\r\n", + "..romnumeric.py:2273 _all_dispatcher 9 0.000008 0.000008 0.000001\r\n", + "..ty.py:17 WeakInstanceDict.__init__ 2 0.000008 0.000008 0.000004\r\n", + "..lotlib\\figure.py:78 _AxesStack.get 2 0.000006 0.000008 0.000004\r\n", + "..chemy\\orm\\query.py:4642 27 0.000008 0.000008 0.000000\r\n", + "..my\\sql\\compiler.py:2125 8 0.000007 0.000007 0.000001\r\n", + "..xesSubplot._request_autoscale_view 8 0.000007 0.000007 0.000001\r\n", + "..\\base.py:364 Connection.connection 11 0.000007 0.000007 0.000001\r\n", + "..py:4065 ColumnClause._from_objects 2 0.000005 0.000007 0.000004\r\n", + "..on38\\Lib\\socket.py:518 socket.type 1 0.000002 0.000007 0.000007\r\n", + "..\\matplotlib\\axis.py:372 14 0.000007 0.000007 0.000001\r\n", + "..artist.py:827 Line2D.get_clip_path 4 0.000007 0.000007 0.000002\r\n", + "..on38\\Lib\\uuid.py:259 UUID.__hash__ 4 0.000006 0.000007 0.000002\r\n", + "..axis.py:215 XTick.get_tick_padding 6 0.000007 0.000007 0.000001\r\n", + "..py:4335 _truncated_label.apply_map 27 0.000007 0.000007 0.000000\r\n", + "..b\\transforms.py:914 Bbox.intervaly 1 0.000005 0.000007 0.000007\r\n", + "..otlib\\transforms.py:394 Bbox.width 1 0.000006 0.000007 0.000007\r\n", + ".. HandlerLine2D.adjust_drawing_area 4 0.000007 0.000007 0.000002\r\n", + "..b\\_pylab_helpers.py:109 set_active 1 0.000006 0.000007 0.000007\r\n", + "..rtist.py:350 Text.is_transform_set 15 0.000007 0.000007 0.000000\r\n", + "..60 ScalarFormatter.set_useMathText 16 0.000007 0.000007 0.000000\r\n", + "..n-68gteq6k\\lib\\os.py:738 encodekey 1 0.000004 0.000007 0.000007\r\n", + "..rms.py:1284 TransformWrapper.depth 24 0.000007 0.000007 0.000000\r\n", + "..215 SelectSelector._fileobj_lookup 2 0.000003 0.000007 0.000003\r\n", + "..\\matplotlib\\axis.py:361 14 0.000007 0.000007 0.000000\r\n", + "..esql\\json.py:177 _PGJSONB.__init__ 1 0.000005 0.000006 0.000006\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..teq6k\\lib\\copyreg.py:99 _slotnames 1 0.000004 0.000006 0.000006\r\n", + "..lotlib\\axis.py:822 XAxis.get_scale 5 0.000006 0.000006 0.000001\r\n", + "..\\matplotlib\\axis.py:383 14 0.000006 0.000006 0.000000\r\n", + "..ckages\\psycopg2\\_range.py:36 Range 1 0.000006 0.000006 0.000006\r\n", + "..:493 Query._no_statement_condition 6 0.000006 0.000006 0.000001\r\n", + "...py:56 QueuePool._should_log_debug 1 0.000005 0.000006 0.000006\r\n", + "..b\\artist.py:819 Line2D.get_clip_on 3 0.000006 0.000006 0.000002\r\n", + "..b\\scale.py:43 LinearScale.__init__ 16 0.000006 0.000006 0.000000\r\n", + "..ycopg2.py:741 _psycopg2_extensions 1 0.000003 0.000006 0.000006\r\n", + "..otlib\\__init__.py:1267 get_backend 1 0.000002 0.000006 0.000006\r\n", + "..json.py:146 register_default_jsonb 1 0.000001 0.000006 0.000006\r\n", + "..otlib\\rcsetup.py:123 validate_bool 1 0.000005 0.000006 0.000006\r\n", + "..my\\engine\\default.py:855 11 0.000006 0.000006 0.000001\r\n", + "..y\\util\\_collections.py:140 __new__ 1 0.000005 0.000006 0.000006\r\n", + "..ngine\\url.py:299 _rfc_1738_unquote 1 0.000005 0.000006 0.000006\r\n", + "..ping.py:717 _GenericAlias.__hash__ 1 0.000004 0.000006 0.000006\r\n", + "..f.py:385 WeakKeyDictionary.__len__ 2 0.000005 0.000006 0.000003\r\n", + "..ib\\__init__.py:1285 is_interactive 2 0.000002 0.000006 0.000003\r\n", + "..07 ExtensionFileLoader.exec_module 1 0.000003 0.000006 0.000006\r\n", + "..ib\\cbook\\__init__.py:1575 10 0.000006 0.000006 0.000001\r\n", + "..ates.py:593 DateFormatter.__init__ 2 0.000002 0.000006 0.000003\r\n", + "..:687 Legend.get_legend_handler_map 1 0.000005 0.000006 0.000006\r\n", + ".._init__.py:44 get_projection_class 1 0.000005 0.000006 0.000006\r\n", + ".._init__.py:573 _AxesStack.__init__ 1 0.000003 0.000006 0.000006\r\n", + "..tion_base.py:1143 _diff_dispatcher 16 0.000006 0.000006 0.000000\r\n", + "..ig\\configurable.py:426 initialized 2 0.000003 0.000006 0.000003\r\n", + "..bootstrap_external>:1400 8 0.000005 0.000005 0.000001\r\n", + "..y:202 _broadcast_arrays_dispatcher 10 0.000005 0.000005 0.000001\r\n", + "..ng.py:1177 _make_invoke_excepthook 2 0.000005 0.000005 0.000003\r\n", + "..idspec.py:508 SubplotSpec.__init__ 1 0.000005 0.000005 0.000005\r\n", + "..ent\\registry.py:165 _EventKey._key 3 0.000004 0.000005 0.000002\r\n", + "..s.py:697 _GatheringFuture.__init__ 1 0.000005 0.000005 0.000005\r\n", + "..eq6k\\lib\\sre_parse.py:978 addgroup 1 0.000004 0.000005 0.000005\r\n", + "...py:112 PoolEventsDispatch._listen 3 0.000005 0.000005 0.000002\r\n", + "..s\\_base.py:386 Future.__get_result 7 0.000005 0.000005 0.000001\r\n", + "..qltypes.py:2793 TIMESTAMP.__init__ 1 0.000004 0.000005 0.000005\r\n", + "..ors.py:209 SelectSelector.__init__ 1 0.000004 0.000005 0.000005\r\n", + "..k\\__init__.py:827 Grouper.__init__ 2 0.000004 0.000005 0.000002\r\n", + "..elpers.py:1079 _importlater.module 1 0.000004 0.000005 0.000005\r\n", + "..is.py:1412 XAxis.get_major_locator 2 0.000004 0.000005 0.000002\r\n", + "..68gteq6k\\lib\\weakref.py:345 remove 2 0.000005 0.000005 0.000002\r\n", + "..esql\\base.py:1226 _PGUUID.__init__ 2 0.000005 0.000005 0.000002\r\n", + "..PGTypeCompiler._render_string_type 2 0.000005 0.000005 0.000002\r\n", + "..matplotlib\\colors.py:225 4 0.000005 0.000005 0.000001\r\n", + "..entifierPreparer_psycopg2.__init__ 1 0.000005 0.000005 0.000005\r\n", + "..oop._set_coroutine_origin_tracking 2 0.000005 0.000005 0.000002\r\n", + "..onfig\\configurable.py:381 instance 2 0.000002 0.000005 0.000002\r\n", + "...py:96 _AxesStack._entry_from_axes 1 0.000003 0.000005 0.000005\r\n", + "..ile.py:432 _generate_overlap_table 2 0.000004 0.000005 0.000002\r\n", + "..ry.py:390 Query._query_entity_zero 6 0.000004 0.000004 0.000001\r\n", + "..copg2\\tz.py:36 FixedOffsetTimezone 1 0.000004 0.000004 0.000004\r\n", + "..py:352 PGCompiler_psycopg2.__str__ 8 0.000004 0.000004 0.000001\r\n", + "..lotlib\\axes\\_base.py:321 12 0.000004 0.000004 0.000000\r\n", + "..packages\\psycopg2\\_json.py:47 Json 1 0.000004 0.000004 0.000004\r\n", + "..ctions_abc.py:252 __subclasshook__ 1 0.000002 0.000004 0.000004\r\n", + "..plotlib\\gridspec.py:382 1 0.000003 0.000004 0.000004\r\n", + "..process_plot_var_args._setdefaults 4 0.000004 0.000004 0.000001\r\n", + "..9 _ConnectionRecord.get_connection 1 0.000004 0.000004 0.000004\r\n", + "..et.py:20 _IterationGuard.__enter__ 1 0.000003 0.000004 0.000004\r\n", + "..py:155 HandlerLine2D.get_numpoints 4 0.000004 0.000004 0.000001\r\n", + "..se.py:2960 AxesSubplot.set_axis_on 1 0.000002 0.000004 0.000004\r\n", + "..f.py:463 WeakKeyDictionary.popitem 1 0.000003 0.000004 0.000004\r\n", + "..elpers.py:1381 parse_user_argument 2 0.000003 0.000004 0.000002\r\n", + "..ore\\numerictypes.py:239 obj2sctype 1 0.000003 0.000004 0.000004\r\n", + "..:964 SourceFileLoader.get_filename 9 0.000004 0.000004 0.000000\r\n", + "..ib\\artist.py:1013 Line2D.get_label 8 0.000004 0.000004 0.000000\r\n", + "..ges\\psycopg2\\extras.py:157 DictRow 1 0.000004 0.000004 0.000004\r\n", + "..teq6k\\lib\\codecs.py:952 getencoder 1 0.000003 0.000004 0.000004\r\n", + "..xtras.py:650 UUID_adapter.__init__ 4 0.000004 0.000004 0.000001\r\n", + "..8gteq6k\\lib\\weakref.py:323 __new__ 1 0.000003 0.000004 0.000004\r\n", + "..y:886 AxesSubplot.set_axes_locator 1 0.000002 0.000004 0.000004\r\n", + "..tenerCollection._memoized_attr_ref 2 0.000004 0.000004 0.000002\r\n", + "..reading.py:1095 _MainThread.daemon 2 0.000004 0.000004 0.000002\r\n", + "..chemy\\util\\queue.py:199 Queue._put 1 0.000003 0.000004 0.000004\r\n", + "..k\\__init__.py:626 _AxesStack.clear 3 0.000004 0.000004 0.000001\r\n", + "..tlib\\artist.py:1201 Text.mouseover 7 0.000004 0.000004 0.000001\r\n", + "..lotlib\\axis.py:645 Ticker.__init__ 4 0.000004 0.000004 0.000001\r\n", + "..py:357 String._has_bind_expression 2 0.000004 0.000004 0.000002\r\n", + "..py:140 _AxesStack.current_key_axes 2 0.000003 0.000004 0.000002\r\n", + "..s.py:1355 AutoDateLocator.set_axis 1 0.000003 0.000004 0.000004\r\n", + "..se.py:1699 RootTransaction._parent 1 0.000004 0.000004 0.000004\r\n", + "..ib\\function_base.py:2116 8 0.000004 0.000004 0.000000\r\n", + "..kers.py:286 MarkerStyle.get_marker 8 0.000003 0.000003 0.000000\r\n", + "..xecutionContext_psycopg2.post_exec 6 0.000003 0.000003 0.000001\r\n", + "..ansaction._is_transaction_boundary 4 0.000003 0.000003 0.000001\r\n", + "..ker.py:2004 _Edge_integer.__init__ 2 0.000003 0.000003 0.000002\r\n", + "..til\\_collections.py:991 3 0.000003 0.000003 0.000001\r\n", + "..Lib\\selectors.py:21 _fileobj_to_fd 2 0.000003 0.000003 0.000002\r\n", + "..WindowsSelectorEventLoop.set_debug 1 0.000003 0.000003 0.000003\r\n", + "..b\\cbook\\__init__.py:886 6 0.000003 0.000003 0.000001\r\n", + "..b\\cbook\\__init__.py:836 8 0.000003 0.000003 0.000000\r\n", + "..lchemy\\orm\\query.py:4795 6 0.000003 0.000003 0.000001\r\n", + "..strap>:397 ModuleSpec.has_location 10 0.000003 0.000003 0.000000\r\n", + "..ylab_helpers.py:29 get_fig_manager 1 0.000002 0.000003 0.000003\r\n", + "..s.py:263 MarkerStyle.get_fillstyle 8 0.000003 0.000003 0.000000\r\n", + "..ckages\\psycopg2\\extras.py:698 Inet 1 0.000003 0.000003 0.000003\r\n", + "..ctable.py:1982 Table._from_objects 6 0.000003 0.000003 0.000001\r\n", + ".._weakrefset.py:36 WeakSet.__init__ 1 0.000003 0.000003 0.000003\r\n", + "..ctions_abc.py:302 __subclasshook__ 6 0.000003 0.000003 0.000001\r\n", + "..__init__.py:51 _StrongRef.__init__ 3 0.000003 0.000003 0.000001\r\n", + "..gine\\default.py:295 get_pool_class 1 0.000001 0.000003 0.000003\r\n", + "..lectorEventLoop._process_self_data 6 0.000003 0.000003 0.000000\r\n", + ".. _ClsLevelDispatch._adjust_fn_spec 4 0.000003 0.000003 0.000001\r\n", + "..ogging\\__init__.py:189 _checkLevel 3 0.000002 0.000003 0.000001\r\n", + "..hemy\\engine\\url.py:56 URL.__init__ 1 0.000003 0.000003 0.000003\r\n", + "..\\matplotlib\\axis.py:153 6 0.000003 0.000003 0.000000\r\n", + "..ections.py:151 immutabledict.union 6 0.000003 0.000003 0.000000\r\n", + "..b\\path.py:251 Path.should_simplify 4 0.000003 0.000003 0.000001\r\n", + "..774 SourceFileLoader.create_module 9 0.000003 0.000003 0.000000\r\n", + "..copg2._check_max_identifier_length 1 0.000003 0.000003 0.000003\r\n", + "..y\\sql\\selectable.py:2987 6 0.000003 0.000003 0.000000\r\n", + "..g2.py:558 _PGUUID.result_processor 2 0.000003 0.000003 0.000001\r\n", + "..stgresql\\psycopg2.py:711 4 0.000003 0.000003 0.000001\r\n", + "..\\Lib\\threading.py:513 Event.is_set 5 0.000003 0.000003 0.000001\r\n", + "..ython38\\Lib\\inspect.py:80 ismethod 2 0.000002 0.000003 0.000001\r\n", + "..d_bases.py:2556 notify_axes_change 1 0.000003 0.000003 0.000003\r\n", + "..b\\weakref.py:328 KeyedRef.__init__ 1 0.000003 0.000003 0.000003\r\n", + "..ffsetbox.py:240 VPacker.set_offset 1 0.000001 0.000003 0.000003\r\n", + "..ath.py:230 Path.simplify_threshold 4 0.000003 0.000003 0.000001\r\n", + "..y:330 _ListenerCollection.__bool__ 1 0.000003 0.000003 0.000003\r\n", + "..tlib\\transforms.py:400 Bbox.height 1 0.000002 0.000003 0.000003\r\n", + "..tlib\\units.py:81 AxisInfo.__init__ 2 0.000003 0.000003 0.000001\r\n", + "..on38\\Lib\\inspect.py:158 isfunction 3 0.000002 0.000003 0.000001\r\n", + "..i.py:279 NullType.result_processor 4 0.000002 0.000002 0.000001\r\n", + "..lib\\transforms.py:931 Bbox.minposx 1 0.000002 0.000002 0.000002\r\n", + "..hemy\\util\\queue.py:195 Queue._full 1 0.000002 0.000002 0.000002\r\n", + "..ExecutionContext_psycopg2.pre_exec 6 0.000002 0.000002 0.000000\r\n", + "..n-68gteq6k\\lib\\os.py:732 check_str 1 0.000002 0.000002 0.000002\r\n", + "..gure.py:2059 Figure.add_axobserver 1 0.000002 0.000002 0.000002\r\n", + "..py:843 TextArea.set_minimumdescent 1 0.000001 0.000002 0.000002\r\n", + "..e.py:1694 RootTransaction.__init__ 1 0.000002 0.000002 0.000002\r\n", + "..teq6k\\lib\\copyreg.py:90 __newobj__ 1 0.000002 0.000002 0.000002\r\n", + "..6k\\lib\\enum.py:659 RegexFlag.value 4 0.000002 0.000002 0.000001\r\n", + "..dConnectionEventsDispatch.__init__ 1 0.000002 0.000002 0.000002\r\n", + "..vents.py:719 get_event_loop_policy 1 0.000002 0.000002 0.000002\r\n", + "..68gteq6k\\lib\\functools.py:63 wraps 1 0.000002 0.000002 0.000002\r\n", + "...py:1006 Legend.set_bbox_to_anchor 1 0.000002 0.000002 0.000002\r\n", + "..ng\\__init__.py:772 Logger.__init__ 3 0.000002 0.000002 0.000001\r\n", + "..ycopg2\\extras.py:65 DictCursorBase 1 0.000002 0.000002 0.000002\r\n", + "..mpl.py:143 QueuePool._inc_overflow 1 0.000002 0.000002 0.000002\r\n", + "..postgresql\\base.py:2708 1 0.000002 0.000002 0.000002\r\n", + "..meric.py:337 _full_like_dispatcher 4 0.000002 0.000002 0.000001\r\n", + "..idspec.py:67 GridSpec.get_geometry 3 0.000002 0.000002 0.000001\r\n", + "..plotlib\\gridspec.py:204 _normalize 1 0.000002 0.000002 0.000002\r\n", + "..my\\sql\\elements.py:4480 6 0.000002 0.000002 0.000000\r\n", + "..\\matplotlib\\path.py:211 Path.codes 4 0.000002 0.000002 0.000000\r\n", + "..mpy\\core\\multiarray.py:1043 copyto 4 0.000002 0.000002 0.000000\r\n", + "..set.py:16 _IterationGuard.__init__ 1 0.000002 0.000002 0.000002\r\n", + "..nit__.py:1220 PlaceHolder.__init__ 4 0.000002 0.000002 0.000000\r\n", + "..e.py:3867 AxesSubplot.set_navigate 1 0.000002 0.000002 0.000002\r\n", + "..tlib\\axis.py:1559 XAxis.have_units 2 0.000002 0.000002 0.000001\r\n", + "..b\\sre_parse.py:98 State.checkgroup 1 0.000001 0.000002 0.000002\r\n", + "..ib\\weakref.py:73 WeakMethod.__eq__ 1 0.000002 0.000002 0.000002\r\n", + "..g2\\extras.py:405 LoggingConnection 1 0.000002 0.000002 0.000002\r\n", + "..\\psycopg2\\extensions.py:109 SQL_IN 1 0.000002 0.000002 0.000002\r\n", + "..2.py:540 _PGJSONB.result_processor 1 0.000002 0.000002 0.000002\r\n", + "..g2\\extras.py:538 ReplicationCursor 1 0.000002 0.000002 0.000002\r\n", + "..\\transforms.py:939 Bbox.get_points 3 0.000002 0.000002 0.000001\r\n", + "..hemy\\util\\queue.py:183 Queue._init 1 0.000002 0.000002 0.000002\r\n", + "..nit__.py:1974 _OrderedSet.__init__ 1 0.000002 0.000002 0.000002\r\n", + "..ase.py:3618 AxesSubplot.get_yscale 1 0.000001 0.000002 0.000002\r\n", + "..end.py:666 get_default_handler_map 2 0.000002 0.000002 0.000001\r\n", + "..plotlib\\patches.py:1833 2 0.000002 0.000002 0.000001\r\n", + "..\\psycopg2\\extras.py:132 DictCursor 1 0.000002 0.000002 0.000002\r\n", + "..ib\\_pylab_helpers.py:99 get_active 1 0.000001 0.000002 0.000002\r\n", + "..\\sql\\selectable.py:3751 2 0.000002 0.000002 0.000001\r\n", + "..e.py:737 _ConnectionFairy.__init__ 1 0.000002 0.000002 0.000002\r\n", + "..:1088 ExtensionFileLoader.__init__ 1 0.000002 0.000002 0.000002\r\n", + "..ib\\axes\\_subplots.py:229 2 0.000002 0.000002 0.000001\r\n", + "..lotlib\\axes\\_base.py:586 4 0.000002 0.000002 0.000000\r\n", + "..plotlib\\axis.py:649 Ticker.locator 3 0.000002 0.000002 0.000001\r\n", + "..ec.py:93 GridSpec.set_width_ratios 1 0.000002 0.000002 0.000002\r\n", + "..lib\\transforms.py:935 Bbox.minposy 1 0.000002 0.000002 0.000002\r\n", + "..ib\\widgets.py:34 LockDraw.__init__ 2 0.000002 0.000002 0.000001\r\n", + "..610 _WindowsSelectorEventLoop.stop 1 0.000002 0.000002 0.000002\r\n", + "..sqltypes.py:2182 _PGJSONB.__init__ 1 0.000001 0.000001 0.000001\r\n", + "..nsaction._iterate_self_and_parents 1 0.000001 0.000001 0.000001\r\n", + "..matplotlib\\axis.py:1486 4 0.000001 0.000001 0.000000\r\n", + "..numeric.py:2354 _cumsum_dispatcher 3 0.000001 0.000001 0.000000\r\n", + "..q6k\\lib\\functools.py:486 lru_cache 1 0.000001 0.000001 0.000001\r\n", + "..Python38\\Lib\\inspect.py:260 iscode 2 0.000001 0.000001 0.000001\r\n", + "..hon38\\Lib\\inspect.py:285 isbuiltin 1 0.000001 0.000001 0.000001\r\n", + "..types.py:256 String.bind_processor 1 0.000001 0.000001 0.000001\r\n", + "..ements.py:1315 TypeClause.__init__ 2 0.000001 0.000001 0.000001\r\n", + "..y\\core\\multiarray.py:77 empty_like 4 0.000001 0.000001 0.000000\r\n", + "..copg2\\extras.py:233 RealDictCursor 1 0.000001 0.000001 0.000001\r\n", + "..indowsSelectorEventLoop.is_running 2 0.000001 0.000001 0.000001\r\n", + "...py:635 Legend._approx_text_height 2 0.000001 0.000001 0.000001\r\n", + "..matplotlib\\figure.py:97 1 0.000001 0.000001 0.000001\r\n", + "..copg2\\extensions.py:164 1 0.000001 0.000001 0.000001\r\n", + "..s\\psycopg2\\tz.py:108 LocalTimezone 1 0.000001 0.000001 0.000001\r\n", + "..matplotlib\\figure.py:74 2 0.000001 0.000001 0.000001\r\n", + "..WeakKeyDictionary._commit_removals 1 0.000001 0.000001 0.000001\r\n", + "..lotlib\\axes\\_base.py:588 4 0.000001 0.000001 0.000000\r\n", + "..ctionRegistry.get_projection_class 1 0.000001 0.000001 0.000001\r\n", + "..as.py:472 MinTimeLoggingConnection 1 0.000001 0.000001 0.000001\r\n", + "..sycopg2\\_range.py:242 RangeAdapter 1 0.000001 0.000001 0.000001\r\n", + "..psycopg2\\extras.py:261 RealDictRow 1 0.000001 0.000001 0.000001\r\n", + "..sycopg2\\extras.py:643 UUID_adapter 1 0.000001 0.000001 0.000001\r\n", + "..matplotlib\\figure.py:1073 fixitems 1 0.000001 0.000001 0.000001\r\n", + "..ycopg2\\extras.py:456 LoggingCursor 1 0.000001 0.000001 0.000001\r\n", + "..3883 AxesSubplot.set_navigate_mode 1 0.000001 0.000001 0.000001\r\n", + "...py:113 GridSpec.set_height_ratios 1 0.000001 0.000001 0.000001\r\n", + "..copg2\\extras.py:125 DictConnection 1 0.000001 0.000001 0.000001\r\n", + "..plotlib\\patches.py:1832 2 0.000001 0.000001 0.000000\r\n", + "..matplotlib\\figure.py:76 2 0.000001 0.000001 0.000000\r\n", + "..opg2\\extensions.py:133 NoneAdapter 1 0.000001 0.000001 0.000001\r\n", + "..opg2.py:548 _PGUUID.bind_processor 1 0.000001 0.000001 0.000001\r\n", + "..365 _ListenerCollection.for_modify 2 0.000001 0.000001 0.000000\r\n", + "..y:632 ThreadPoolExecutor.__enter__ 1 0.000001 0.000001 0.000001\r\n", + "..:505 Figure.get_constrained_layout 2 0.000001 0.000001 0.000000\r\n", + ".. LinearScale.limit_range_for_scale 2 0.000001 0.000001 0.000000\r\n", + "..38\\Lib\\urllib\\parse.py:624 unquote 1 0.000001 0.000001 0.000001\r\n", + "..ib\\threading.py:1095 Thread.daemon 1 0.000001 0.000001 0.000001\r\n", + "..b\\cbook\\__init__.py:828 2 0.000001 0.000001 0.000000\r\n", + "..util\\langhelpers.py:1500 only_once 1 0.000001 0.000001 0.000001\r\n", + "..sqltypes.py:786 TIMESTAMP.__init__ 1 0.000001 0.000001 0.000001\r\n", + "..chemy\\util\\langhelpers.py:906 memo 2 0.000001 0.000001 0.000000\r\n", + "..rs.py:63 _SelectorMapping.__init__ 1 0.000001 0.000001 0.000001\r\n", + "..emy\\engine\\url.py:129 URL.password 1 0.000001 0.000001 0.000001\r\n", + "..b\\gridspec.py:532 SubplotSpec.num2 1 0.000001 0.000001 0.000001\r\n", + "..y\\dialects\\__init__.py:52 1 0.000001 0.000001 0.000001\r\n", + "..ages\\psycopg2\\errors.py:1 1 0.000001 0.000001 0.000001\r\n", + "..y\\lib\\shape_base.py:1227 2 0.000001 0.000001 0.000000\r\n", + "..6 PGCompiler_psycopg2.default_from 2 0.000001 0.000001 0.000000\r\n", + "..ions.py:145 immutabledict.__init__ 1 0.000001 0.000001 0.000001\r\n", + "..emy\\util\\queue.py:191 Queue._empty 1 0.000001 0.000001 0.000001\r\n", + "..tors.py:272 SelectSelector.get_map 1 0.000001 0.000001 0.000001\r\n", + "..extras.py:296 NamedTupleConnection 1 0.000001 0.000001 0.000001\r\n", + "..y:512 LogicalReplicationConnection 1 0.000001 0.000001 0.000001\r\n", + "..ist.py:961 Rectangle.set_in_layout 1 0.000001 0.000001 0.000001\r\n", + "..py:536 PGDialect_psycopg2.do_begin 1 0.000001 0.000001 0.000001\r\n", + "..opg2\\extras.py:526 StopReplication 1 0.000001 0.000001 0.000001\r\n", + "..b\\gridspec.py:528 SubplotSpec.num2 1 0.000001 0.000001 0.000001\r\n", + "..:519 PhysicalReplicationConnection 1 0.000001 0.000001 0.000001\r\n", + "..s\\matplotlib\\dates.py:225 2 0.000001 0.000001 0.000000\r\n", + "..b\\_pylab_helpers.py:115 1 0.000001 0.000001 0.000001\r\n", + "..2\\extras.py:226 RealDictConnection 1 0.000001 0.000001 0.000001\r\n", + "..extras.py:500 MinTimeLoggingCursor 1 0.000001 0.000001 0.000001\r\n", + "..py:2459 AxesSubplot._get_axis_list 1 0.000000 0.000000 0.000000\r\n", + ".. FontProperties.get_size_in_points 1 0.000000 0.000000 0.000000\r\n", + "..ool\\base.py:231 QueuePool._creator 1 0.000000 0.000000 0.000000\r\n", + "..sycopg2\\_range.py:457 NumericRange 1 0.000000 0.000000 0.000000\r\n", + "..re\\multiarray.py:990 unravel_index 1 0.000000 0.000000 0.000000\r\n", + "..ib\\artist.py:800 XAxis.get_visible 2 0.000000 0.000000 0.000000\r\n", + "..2\\_range.py:486 NumberRangeAdapter 1 0.000000 0.000000 0.000000\r\n", + "..ec.py:549 SubplotSpec.get_gridspec 1 0.000000 0.000000 0.000000\r\n", + "..py:117 AxesSubplot.get_subplotspec 1 0.000000 0.000000 0.000000\r\n", + "..hape_base.py:1151 _tile_dispatcher 1 0.000000 0.000000 0.000000\r\n", + "..n\\Python38\\Lib\\typing.py:1146 cast 1 0.000000 0.000000 0.000000\r\n", + "..ycopg2\\_range.py:471 DateTimeRange 1 0.000000 0.000000 0.000000\r\n", + "..lib\\legend.py:918 Legend.get_frame 1 0.000000 0.000000 0.000000\r\n", + "..e\\interfaces.py:901 engine_created 1 0.000000 0.000000 0.000000\r\n", + "..opg2\\_range.py:476 DateTimeTZRange 1 0.000000 0.000000 0.000000\r\n", + "...py:101 State.checklookbehindgroup 1 0.000000 0.000000 0.000000\r\n", + "..chemy\\engine\\url.py:156 1 0.000000 0.000000 0.000000\r\n", + "..s\\psycopg2\\_range.py:466 DateRange 1 0.000000 0.000000 0.000000\r\n", + "..\\interfaces.py:856 get_dialect_cls 1 0.000000 0.000000 0.000000\r\n", + "..ion\\utils.py:58 profile_with_yappi 1 0.000000 0.000000 0.000000\r\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACdsAAAUsCAYAAADFYdzDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdeZhkVX0//vcZhhmQRVDBDRQV0a8YURGMkQhGTdyCRBOXaCIuWYxmMcZoXNFo8jOJ+s3XJXvcSUjcFZfEfUHAFTdQZFdAZWeG2fv8/rjVTnd1VdfaXTU1r9fz9NNd5957zumqe6qYmTefU2qtAQAAAAAAAAAAALpbM+kJAAAAAAAAAAAAwLQTtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAACYMaWUU0opdeHX7jQ+AAAAAMBKELYDAAAAAAAAAACAHoTtAAAAgF1GaVzcXjWtlLK9lHL7Sc8PAAAAAIDZJWwHAAAA7EoemuSOHdr3SHLy6k4FxqOUckKHAOkJE5zPW9vmcvGk5gKzwJoCAACA2SFsBwAAAOxKnrHMsaeXUsqqzQQAAAAAgN2KsB0AAACwSyil3CLJScuccuckJ6zObAAAAAAA2N0I2wEAAAC7iqckWd/WVtseL1f5jlVSaz2l1loWfk16TgAAAAAAoxK2AwAAAHYVT297fH6S97a1PbaUcvNVmg8AAAAAALsRYTsAAABg6pVS7pfkqLbmtyd5W1vb3kl+c1UmBQAAAADAbkXYDgAAANgVtG8PW5O8I8lHk/ykx7kAAAAAADCytZOeAAAAAMBySil7J3lSW/Pnaq2XtI6fmuRPFhw7upRyVK31nBWe155Jjk1yjyS3bDX/OMnXBhm7lLJ/kmOS3C3JAUk2JrkyyRdrrT8c66SXjn3LJPdPcpck+ye5PsnlSc6ptV6wkmMPo5RySJoKhwe1vmqSnya5IsmZtdYbVmEOd01ydJLbJ1mf5Oo0z9kXaq3XrvT4s6iUcs8khyc5OM1auinN63pxki/XWret8PjW8vDjTsuaPCrJIUn2TbI1yRW11nf0ef3tk9w9yWFJbp6mQuoNSa5Jcmmae3Dz+Gc+20op65LcL816uFWa98sbkpxVaz1rgH4OT7M25++xLUmuSvLDNPfYpjFPHQAAAJYlbAcAAABMu19PE4BY6G1tP/9J2/GnJ/njYQYrpZyQ5NNtzQ+utX6mdfx2SV6c5LeS7Nelj+8nedVyYY9Syr2SvCTJiWlCCJ3O+VKS59davzjYb7G8UsrxSV6U5CFJ9uhyzteS/EOSf6u11gH7PyXJyxe21VrLkHM9OMlzk/xqkiOXOXV7KeWsJG9KclqtdW7Acdp/x1fUWk9pHVuT5KlJ/jTJPbt0saOU8pkkL6m1ntnHeKek7Tlq8+lSej5lb6u1ntzrpH6UUi5Ocscuh+/Y4fnp5GfrpI/x7pVm3f5Kktstc+qGUsonkrymn+e1bYwTsouv5V5raaXXcpf+pmFN7pPkD5P8TpI7d+mi42tWSrlVkl9L8tAkxye5dY+pbC2lnJnkjUne0+/vsVJrqtd9PYgOc+z5nlJKOTnJW9qa71Rrvbh1/Mgkf57kcUn26dDF25IsG7YrpdwpzfvtI9P99U2SzaWUzyd5fa31o8v1CQAAAONiG1kAAABg2rVvC3tTknfPP6i1fiPJN9vOeUoppWPoZRSllMcm+W6SP0iXcE7LEUneXkr5r/Z5lMbLknwtyW+kSzin5QFJPl9KedFoM//Z2HuUUt6Y5DNJfjldwjkt903yL0k+1wo+rKpSyrpSyiuTXJjkhVk+1JM0/1PpA5OcmuScVgBqHPM4JMkXkvx7ugftkua5fEiSL5VSXj2OsWdRKeW2pZR3JflGkqdl+aBd0lQqOynN8/r+UsotxjQPa3nwMadlTd4/zWv311k+iNXp2lPTVN375ySPT++gXZKsS/KgJP+V5NutMBkdlFJekmZt/3Y6B+16Xb9/677+XpLnpPfru1eShyX5SCnl86WUOww6JgAAAAxK2A4AAACYWq3t4x7U1vz+WuuNbW1va3t8izQBnXHO5SlpQn7tVfaW8xtpQlrzfZQ0oZdXZPlwzKKhk7y6lPKcAcZd2kkz9juTPHvAS49L8tlSykChllG0AlX/k+SlGSKwkSYU98VSyq+OOI87JzkzTVBqEC8qpbxqlLFnUSnlqCRnJ/nNNPf1oB6T5MxSyhEjzsNaHnzMaVmTD0oTMBw2VPULGW23l/+T5h586Ah9zKRWSO4vM+TzW0q5Y5Ivprmv9xyii+OSnF1K+flhxgcAAIB+2UYWAAAAmGZPz9JQTnuwLkneleRvsjj08owkp41pHvdL8lcL5nJdko+kCWL9JMneaUIYj09yWNu1v1lKeX+t9b/TbPe4sFLfJUk+nOTbSa5OckCSY1v97N/Wz2tKKR+e36pvCM9L8sQFj29M8oEkX07y49bYd0+z9d+hbdcemuRTpZR711qvG3L8vpRSDkgTuLh7h8PfTvLZJN9J8xokycFpwnCPzOIKZfsm+e9SygNrrV8dYir7Jfloktu3HtckZyT5RJJLk2xIclCayl2/lqbC0kJ/UUr5UK2123aJVyY5Z8Fc79J2/ILWGMu5tMfxQXw3O5/TOyQ5cMGxba3jvXSdbynlfmm2vty37dBcks+neW4vas1h7ySHpNnis3171LumqWJ1dK31+j7m1M5aHnAtT9GavE2S92bxWjs7TQjwkjTPw22T3CNNOLKXHWmqEn4nyXlpXrcb0twb+6e5134+zRpf+D+t75vkP0sp96m1XrZM/yu6pqbM72Rx+HNDkv9Nc9/8OM3zd0iSB6d53hdpBe3OSudKg2e3+vlekmvTVBq8bZrg5COyuKLkrZOcXkq5b631ktF+JQAAAOis1FonPQcAAACAJUope6QJEy3cZvLyJIfWWuc6nH96mnDHvLkkdx70H9xLKSekCQUttCU7/0H/DUle1imo0tpm8rVZWnHqe2m21ftSmtDBTWkCM/9Sa+0UPLhNkvekCRMs9M+11t/r43c4JcnL25o3Z2dI5S1J/rTL77AmyXOTvCpLA2RvrbU+bZjxa619VTIrpbwvS6sSntGab7fg2nwg6KVp5r5wrIuT3KtDNcT269v/kmzh83VWkj+otX6ty7WHpXm97tt26OO11ocvN27r+hOy9J57cK31M72uXQmllLcmeeqCpktqrYeN0N+BaUJN7X28JckptdauocFSyl2SvCnJr7Qdem+t9XE9xj0h1vJIa7nVz7SsyR3ZGbz8ZpLfr7V+qcu1e9VaN3do/36Sb6WpDPipfgKbrSDYXyd5Utuh02utj+51fauPt2ZMa2qc7xellIuT3HFB09tqrSf3uObkNPfdQgtfm39M8pJa69Vdrl/02pRS1qXZqvuYtlM/nOTPa63nLjOX2yT52yRPaTv05SQP6LQmAQAAYFS2kQUAAACm1SOyOGiXJO/sFLRraa94tybJyWOay3w4549rrX/UrSJUrXVLrfU5ST7eduhuST7UmtOGJL9Ua/3HbkGAWuuVSR6d5Kdth55YStl7yN9hPmzz/9Van77M7zBXa31tmspQ29sOn9zaxnFFlFJ+N0tDPW9OctxyoZ4kqbVeV2t9XhZXG0uagNcfDDGd+efrw0lO6Ba0a419cZKHpangtNDDSinDbnc5S96UxUG7HUme0roPl63OV2u9IM17QXu457GllPsPMRdrudHXWp6yNTkf5vpikl/sFrRrjb0kaNdyTK31cbXW9/VbGbHWekmt9TeTnNJ26JGllE7V/nZH86/N82qtz+oWtEs6vjanZGnQ7oW11l9dLmjX6uvKWutvpdnOeaFjkvx672kDAADA4ITtAAAAgGnVHtBIkrcvc/4HsnPLvnlPa1V3GodTa63/r89zX9qh7eDW9z/uFVJJklrrtWkqay20f5ZWyBrEZ2qtf9HPibXWD6epiNXuj0YYv6tSyto0W3Mu9LFa67PrAFsz1FrfkuRf25qf26pUNqiL04TCugV3Fo57TZYGPtakCeHttkopd0vyhLbmF9da39VvH63X//eStAdvXjjktKzlxrJreUrX5PVJnlBrvWGIazPk1sPzXpmmYtq8kmarcxrvqbW+bpALWlUv/7Ct+R9rra8ZpJ9a6ylptq1daNj3BwAAAFiWsB0AAAAwdUopByd5VFvz12qt3+l2Ta11S5LT2prvmOQhY5jSjiwNnXRVa/1ymi1w230vSyt0LefdHdratyodxKBBudck+WFb22NKKbcdYQ7dPDGLtzOsWRrC6NcrW9fPu3WSBwzRzysGDOf8Z5p7ZaGjhxh3ljw/i/8O8qIkfzdoJ7XWbUn+qq35EaWU9u1Re7GWd+q1lqdxTb6u1vqjIecwklbA8B1tzcdNYi5TaC7Jnw1x3bOT7Lvg8YYkLxhyDq9se3zv1hbfAAAAMFbCdgAAAMA0emqSPdva2reJ7aRT5btOFfIG9Yla6yUDXvONDm1vGbAi1AVJ2is43W3Aecw7s9b6rUEuaFV0aw+XrE3y0CHnsJz2Lf8+U2v9wTAd1VovS9L+ux4/YDcbk5w64LjXJjm/rXnY12uXV0opSR7b1vzWbluu9uEjbY/XJxl0K1lreadea3na1mRN8u/DjD9G7ev7vqWU9s+q3dGnWttpD6r9HvvvYasWJjkjS6vbDnqPAQAAQE/CdgAAAMA0at+ab3uS/+h1Ua31jCwNQ5xUSrnFiPP53BDXdAr0fH4M/RwwRB9J8v4hr3tvh7afH7KvjlqhrF9saz5jxG4vant8nwGvP7PWunWIcS9oe3zzIfqYFfdKcmBb29Cva2ur3vZKg4O+rtbyYh3X8pSuyR/UWtur842klLJvKeWRpZQXllLeXko5vZTy+VLK10op32j/SvLGti7Wp6nSt7v79KAXtLaQ/bm25lHeH+aydI0Neo8BAABAT2snPQEAAACAhUopD0xy97bmj9Zaf9pnF29P8pcLHq9P8uQkbxhhWsNUc7pxhfoZNrz11SGv+1aSbVlcaXDcW6P+nyTtgcinllIePUKfd2h7fKsBr28PbfarPQy2O4ftHtih7Q2llC0j9HmztseDvq7Wcn9reRrX5NdGGHuRUsrRabY4PjHJ3iN2d0CWbtG7uxnmtXlAlhYD+ItSynNGmMfhbY8HvccAAACgJ2E7AAAAYNp02va1ny1k570jySuTlLY+RwnbXTvENdtWqJ9htyz83jAX1Vq3lFIuTnLXBc0HDzmHbg7p0tapfVi3HPD8a4YcZ1yv1yzo9Pq1B2lHNejrai33t5ancU3+ZNQBW1u+vj7JszK+XV9250DtvGFem0730p1HnUibQe8xAAAA6Mk2sgAAAMDUKKXsm+Txbc3XJvlwv33UWi9J8pm25qNalYyG1SlsM7Ba61j6GVJ7xbVRrh12+8tuViMQMWj1qkm+VrNiZl/X3WAtT+Nrd8Mog7WCdv+d5NkZ79+L786B2nnDvDbTeI8BAABAT8J2AAAAwDR5YpJ92tpOq7UOuu1kp0p4nSrm7U42jvHa/UaZSAcHjrk/poPXdWWsxlqextdu+4jXvyDJYzq0/yjJm5M8Jc3WpoemCSHuVWstC7+SPHjEOcyqYV6babzHAAAAoCfbyAIAAADTpFMg7vdLKb8/hr6fVEp5Xq110xj62hXtk+ErQ7UHIG8ccS7tOr0mJ9VaPzDmcVhdnV7XA2ut1636TGbLaqzlmVqTpZSDk/xFW/P2JM9P8sZaa79hMZXSxqfTPXbvWus5qz4TAAAAGIDKdgAAAMBUKKXcI8nPr+AQByR57Ar2P+1uPsZrxx2WuqpD253GPAarr9PrethqT2IGrcZanrU1eWKSm7W1vaDW+n8HCNolyS3GOKdpMMktcGftHgMAAGA3IWwHAAAATIvV2OZ1d95K9ohhLiqlrMvSgNRPRp7NYj/u0HavMY/B6vO6rozVWMuz9to9rO3xtUneOEQ/dx7DXEa1rUPbsKG5SYYHZ+0eAwAAYDdhG1kAAABg4kopeyb5rbbmrUnOHbHrQ7M4THBCKeXOtdYLR+x3V3R0kk8Ocd29sjTI8dXRp7PIN5NsTrLXgraHj3kMVt/ZHdoekeTtqz2RGbMaa3nW1uShbY/PqrVuHaKfB4xjMiPqtIXw/oN2Uko5JItf39V2Voe2RyR55WpPBAAAAAahsh0AAAAwDU5MclBb2/tqrfce5SvJS9r6LEmetiq/0fQ5acjrOm29e+YoE2lXa92c5AttzbctpTxknONMsU7bWO6x6rPYqX0+w87ljCQb29oeVUo5cMj+aKz4Wp7BNXmrtsfXDNpBKeVWSR485PjjWlNJ561/h6m4d/wIcxhZrfWSJD9oaz62lDJU5UYAAABYLcJ2AAAAwDTotL3rO8fQ72lpKuQtdHIpZXf8O5EHlFKOHOSCUsr6LK04uD3JJ8Y2q50+0KHtlBUYZxrd2KFt31WfxU7t8xlqLq3KYR9ra94vyfOG6Y+fWa21PEtrsj302R6+68ezM3wluLGsqZYfJdnQ1nbsEP387ghzGJf2e2xNkpdNYiIAAADQr93xL5YBAACAKVJKuX2SX25r/mmWhnQGVmu9JslH25oPSfIro/a9i/r7Ac//8zTP10IfqLVeMab5LPRvSa5sazuulPKCFRhr2lzboW2YSlXj0j6fA0aoRvfqDm1/Xko5bsj+aKzGWp6lNdn+e/5CKWWffi9uhRv/YoTxx7amaq1zSb7R1vyoUsrN++2jlHJikgcNM/6YvTbNdsULPbmU8oRJTAYAAAD6IWwHAAAATNrTsnRLvdNqrZ221hxGpwp5nSrp7Q4eUkp5VT8nllIekeSlHQ79v/FOqVFr3ZTOway/KqU8Z9h+SykPL6W8efiZrYrLklzf1vbISUyk5Vsd2oaaT63160ne09a8Z5L3lVKGCvuUUtaXUn63lPLcYa6fESu+lmdsTX6+7fG+SV7ez4WllMOSfDDJ+hHGH9uaamkPke+dpN/74V5J3jLC2GPTCnu+qcOhfy+lPG6YPkspe5RSnlBK6XTvAgAAwMiE7QAAAICJKaWUNGG7duPYQnbeh7I0yHRiKeWgMY6xK5ivHvTiUsq/dKuCVEpZU0r5kyTvTROKWuittdbPreAc35TO2wq+oZTyvlLKUf10Ukq5UynlBaWUb6YJpUxDBaeuaq01yZfamh9aSvnrUsrBE5jSmUnm2tpeW0p5TCml/Z7ox+8luait7VZJPllK+dtSym366aSUcv9SymuTXJzkn5LcZYi5zILVXMuzsibfk6X39PNLKX9ZSlnb7aJSypPSrM35SpM3DDn+uNfUW5PsaGt7TinlFd1+n1YI7RlJvpDkFklqlm6zPgkvSXJ2W9vNkry7lPKvpZS+1nkp5Z6llFcm+X6S/0zS170JAAAAg+r6FwkAAAAAq+DBWbpd5vm11rPGNUCtdUsp5b+TPHNB855JnpLk9eMaZxfwsiR/0/r5mUkeX0p5f5IvJ/lJkgOS3D3J45LcocP1lyRZ0UpitdZaSnlKmjBIe1DipCQnlVLOSfKZJOcnubp17IA04a17JTk6k92CdVj/nuThbW0vTPLCUsoVSa5J0l7t8YO11peNeyK11itKKR/L4spbt07y/iRbSymXJdmYJqyz0DNrrV/p0N/VrW0rv5BkYTBsbZI/S/JHpZQvJflckh+m2XJzfZrX9bZJ7pPkfkl2t4BsN6u2lmdlTdZav19KeWeS32479JIkJ5dS3p3km0k2pAmi3S3JiVkc6LwpyQuS/MMQ4497TV1eSnlDkj9pO/SyNNuwvifJua053zLJzyV5VBbfD69J8qQkdxz09xmnWuvmUsqvpQkkHtp2+BlpXp+vJPlsmqDtNWmq4R6Q5OAk907z/nD71ZozAAAAuzdhOwAAAGCSOm3nOs6qdgv7fGZb2zOye4Xt/i5NIOHxrcf7pwmetIdPOvlhkl+qtV63QnP7mVrrhlLKL6bZ5rDTNoJHZTYrFr0nySeTPKTDsdu2vtp9YwXn8/wkxyfZp619XbpXlNu3W2e11m+XUo5JU2Xtnh36PL71RW+rupZnaE3+UZJj0wQRFzokS0Nr7bYl+Y004bVhjXVNJXlxkodm6Xq6S5I/7zGX01rXP6nHeauiFR48Ns282qse7pHk/q0vAAAAmDjbyAIAAAATUUo5IMljOxx61woM97kkl7a1HVlK2W3+8b61VemTk/zjgJd+McnxtdYLxz+rzmqtN9Zafz3Js5L8aMTuLk0TEppqtda5JL+e5NRJzyVJaq3fTfKwJD8YY5/npwnMvC5NFa9RfCXJR0ae1C5oEmt5FtZkrfX6NOG0Mwe89PIkD621jnS/jXtN1VpvSnJClm7BuuxlacKav9l6z5katdYr04SNX5Kmet0ozk3yXyNPCgAAADoQtgMAAAAm5clJ9mpr+1Kt9YJxD9QKp3QK8XWqrDezaq3ba63PShM4+VSS5cIWX0/yO0l+cTWDdgvVWv8xzfaTv5PkE+mvqtRcmrn/bZptig+rtb52xSY5RrXW62qtT05TeeuUJB9OckGabVW3TWA+X2rN5ZFJ3pxmK9HL02y1OVRQp9Z6U631eUkOS/M7fiXJjj4u3Zzmnn1RkiNrrceMGn7alU1qLe/qa7LW+qM0ldOek6TXc3FJkpcmuXut9XNjGn+sa6rWenWSB6YJQS732bkjyUeTPLDW+vxpC9rNa93Xr06zte3z0jw/W/u4dHuSM5K8MsmxtdZ71FrfvnIzBQAAYHdWmr9rBgAAAGB3U0q5VZKfT7Pt4L5JbkhyRZKvr0TocVSllHVJjk6z7eOtkhyYJmRxY5Krknw/yfdrrZsmNkkGVkq5eZJjkhyc5JZJbp5kU5rX9fIk30tyYa21n1DeTCmlnJLk5Qvbaq2lw3kTWcu7+pospRyRZmvZg9Js77oxzVa736y1fm+ScxtG6/c5Os1a2i/N63BBkjNqraNWi5uIUsrN0mybfLs07w8HJNmS5nf7SZr3hx/UWvsJ5QEAAMDIhO0AAAAAAKZQv2E7AAAAAFaHbWQBAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAeSq110nMAAAAAAAAAAACAqaayHQAAAAAAAAAAAPQgbAcAAAAAAAAAAAA9CNsBAAAAAAAAAABAD8J2AAAAAAAAAAAA0IOwHQAAAAAAAAAAAPQgbAcAAAAAAAAAAAA9CNsBAAAAAAAAAABAD8J2AAAAAAAAAAAA0IOwHQAAAAAAAAAAAPQgbAcAAAAAAAAAAAA9CNsBAAAAAAAAAABAD2snPQHoppRy8yTHL2i6LMnWCU0HAAAAAAAAAACYvHVJDl3w+LO11utXY2BhO6bZ8Uk+MOlJAAAAAAAAAAAAU+sxST64GgPZRhYAAAAAAAAAAAB6ELYDAAAAAAAAAACAHmwjyzS7bOGD97///Tn88MMnNRcAAAAAAAAAAGDCfvCDH+Skk05a2HRZt3PHTdiOabZ14YPDDz88Rx555KTmAgAAAAAAAAAATJ+tvU8ZD9vIAgAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAbDbqFs2pZ7zhdSf/mjSUwEAAAAAAAAAdjHCdgDsFuoXT0991G1Tn/OQ1MfeOXOvenrq9u2TnhYAAAAAAAAAsIsQtgNg5tVrf5r6kickWzbtbPz4u5J3v2FykwIAAAAAAAAAdinCdgDMvk+elmzftqS5nv62CUwGAAAAAAAAANgVCdsBMPPqf/595wMXn7u6EwEAAAAAAAAAdlnCdgDMvg5V7QAAAAAAAAAABiFsB8Ds27510jMAAAAAAAAAAHZxwnYAzL5twnYAAAAAAAAAwGiE7QCYfbaRBWiT9noAACAASURBVAAAAAAAAABGJGwHwOzbIWwHwGIf/VbNmt/d8bOvr15SJz0lAAAAAAAAppywHQCzb8eOSc8AgCny6fNqHvWGuUVtx7x6Lt+7UuAOAAAAAACA7oTtAACA3cpj3jTXsf05p3ZuBwAAAAAAgETYDgAA2M1s2NK5/ZPnre48AAAAAAAA2LWsnfQEAAAAuvnxDTXv/VrNpdckv3T3kofdo0x6SgAAAAAAAOymhO0AAICpdPFVNb/02rlcfHXz+DUfq3nRI0teddLKFejesq1m/Z4CfQAAAAAAACxlG1kAAGAqvebj9WdBu3l/9ZGaS6+uKzbmh7+5Yl0DAAAAAACwixO2AwAAptI/fbZzqO5fv7ByYbtPf2/l+gYAAAAAAGDXJmwHAABM3I65mq9cXPOhc2qu3bh84O0T565cIO6GTSvWNQAAAAAAALu4tZOeAAAAsHu7ekPNr/zfuXzt0ubx2jXJqb8zmf8v6MKrVLYDAAAAAACgM5XtAACAifrT/6o/C9olyfa55PH/NDeRuZxxwUSGBQAAAAAAYBcgbAcAAEzUh765etXkrumxRW2SbN2uuh0AAAAAAABLCdsBAAATs31HzXU3rd54V2/ofc6GLSs/DwAAAAAAAHY9wnYAAMDEbNq2uuNt29H7nE1bV34eAAAAAAAA7HqE7QAAgIm5aYhg25kXDj9eP2G7y64dvn8AAAAAAABml7AdAAAwMd+4bHXH2z7X+5z/+W5d+YkAAAAAAACwyxG2AwAAJmbjlsGvucMthh+vn8p2ZfjuAQAAAAAAmGHCdgDMtFpVJwKYZpu2Df4+vaOP6nTd9BO2e/kHa07/ps8PAAAAAAAAFhO2A2C27egjVQHAxGzaOsQ124Yfb3ufHwu/+sa5fPw7AncAAAAAAADsJGwHwGybE7YDmGbDBOeGCejN66ey3bxXfGiEEnoAAAAAAADMHGE7AGZbFZQAmGbDVrYbdpvwrQOE7c68cKghAAAAAAAAmFHCdgDMNtvIAky1YbeE3bJ9yPFGqIoHAAAAAADA7k3YDoDZZhtZgKl205Dht2FDczdtHa4iHgAAAAAAAAjbATDbhO0Aptqwle1W67pht6sFAAAAAABg9gjbATDbbCMLMNU2DxuaG7Ky3aDjbR1yu1oAAAAAAABmj7AdALNNZTuAqbZtyDDbsJXtBg3PDTsOAAAAAAAAs0fYDoDZJmwHMNW2Dfk2PWwIbsugYbshK+gBAAAAAAAwe4TtAJhtwnYAU23r9jrUdcOG4LYO+LGgsh0AAAAAAADzhO0AmG07hO0Aptmwle0220YWAAAAAACAVbZ20hMAgBVV5yY9AwCWMWiluXnDhuAGDtttTS66qmbbjmRNSQ67ZbJ2j5IbNtVctSG5062SUspwkwEAAAAAAGCXImwHwGxT2Q5gqg1b2W7T1ppk8JDboOG+Y/+qc2h7jzXJjrnk0AOTdzxjTR50hMAdAAAAAADArLONLACzbU7YDmCaDVppbt5qVbbrZkcrg3fZtckj/n4uV15fx9MxAAAAAAAAU0vYDoDZNmcbWYBpNnRluyHDdsOOt5xN25LTvyVsBwAAAAAAMOuE7QCYbSrbAUy1Qbd1nbdp65DjjamyXbtPnrsy/QIAAAAAADA9hO0AmG07hO0AptlqV7Y788KVqUD3kxtVtgMAAAAAAJh1wnYAzDaV7QCm2rCV5s4aIjR30VU1F1893Hi9fOq8pFaBOwAAAAAAgFkmbAfAbBO2A5hqw1a2+/h3Br/m37+4smG4z5+/ot0DAAAAAAAwYcJ2AMy2ubnux9b4GASYtGEr2x1/xODXvPr0lQ3bffp7KtsBAAAAAADMMikDAGbbcpXt1uyxevMAoKNhK9vtWCZLPSmXrNAWtQAAAAAAAEwHYTsAZttyYbtSVm8eAHS0dciw3bAhvW6OuPXofVxxvcp2AAAAAAAAs0zYDoDZtmPMaQwAxmrY0Nz2MVe2WzuGPxldes3ofQAAAAAAADC9hO0AmG3LVbarKhABTNrW7cNdN+6w3eOOHr3a6UVXJdVnCwAAAAAAwMwStgNgtgnbAUy1oSvbDXHdfe/Q/dhjjho9bLd5W3Ll9SN3s8S1G2ve/dWav/7oXN7yxblcdo3PLwAAAAAAgElYO+kJAMCKWnYbWWEFgEnaMVczN+Rb8XlXDn7NjZs7t5/8CyX3WSaIN4gLr0pue8B4+kqS866oecjr5nLFghDfurU17/79NXn0vUYPCAIAAAAAANA/le0AmG3LVbYDYKJ6VbW7y0HJSx7VOVC2ZYjtZ8//SfdxShlPcO2iq8Yb5H7OfywO2iXN1ru/9W9z2bZdaBwAAAAAAGA1CdsBMNuW2yrWNrIAE7V1mcDc2S9ak/NfvUduv0yVuO07xvM+Ps5PgwuvGl9fm7fVfO77nY9dvyn58iXjGwsAAAAAAIDehO0AmG1zc92PCdsBTNTmbd2P7b2u+b7P+u7n3LR1sPH23KNz+3yVvF+7z2D9dfKuM2uuunE8ny83bEq2L/MxdvWGsQwDAAAAAABAn4TtANh9CdsBTNSm5cJ2ezbf73OH7tu7Lnd9ux1zteu2tScc0Yzx3IeO/sej83+SHPy8uTz2zTuyaetonzMnvnGZpF2STdt8jgEAAAAAAKwmYTsAZptAHcDU2rRMZbr5sN3890Gvb/ftH3U/tt9ezffj7lpy1ovG80ek938j+bN3D/8Z9F9fmcvZFy9/zpd7HAcAAAAAAGC8hO0AmHHLBx2qMB7AxCxb2a61jexyYbvltqFt94Fzur/fLxzjmMO6V9Ib1Pu+NvxnzB/+R+9rz7vCZxgAAAAAAMBqErYDYLb1CtMJ2wFMTD/byM6H7ga9vt11N3U/dueDFj9+3H3773c5V96QbNs+3OfMT2/sfc6htxhfMBAAAAAAAIDehO0AmG3CdABTq9s2sKUk69Y2P++13DayA4Ttljt3n/WLQ2tP/YU1KWPKsQ0yx0Ft3bFyfQMAAAAAALCUsB0AuzdhPICJueL6zu/Be++ZlFbabf3adA2+dQvrdfJPn+081hOPWdr5o+9V8q5nlNzn0GYuD75b/+O0W8mw3bbtK9c3AAAAAAAAS62d9AQAYEXZRhZgan3qvM7tC6vZlVKy19rOobVxBNn226tz+xOPXZMnHpvUWlNKyTGv3pGvXjJ4/4MEAued/+P+Ppu2CtsBAAAAAACsKpXtAJhxvQILwnYAk3L7Azu3X7Nx8eO913U+r98gWxOY63xs45blr52vsPfY+w63r+zmIQKB37m8v/O27vAZBgAAAAAAsJqE7QCYbSrbAUyt7Tv6O2/vPTu3b9rW33v4lu3d3+6Pu2t/czjxqNI1sLecbX3+jsNcs2UFt6gFAAAAAABgKWE7AGabsB3A1PrWDzu/Bz/k7osfj1rZbrnz7n+n/hJ0R96u5J3PKNlnfX9jzts6RNiu34p1w/QNAAAAAADA8ITtAACAifjItzu3f7ttG9Xule36G+dH13U/1q3vTp507Jpc/fo1OetFa3LF363J0x7YO6i3dXv//c/rt7LdMH0DAAAAAAAwvLWTngAArCiV7QB2OT++YfHjUcN2F/60+7Fb7NNfH/PWrS055rDm5xs2zfU8fyW3kVXZDgAAAAAAYHWpbAfAbOsZphO2A5h2o24ju1x47eD9+9tGtpN+8trDVJ/r9xqV7QAAAAAAAFaXsB0AM05lO4BpdNWN/b//jlrZbtO2lXmv76fXYarP2UYWAAAAAABgOgnbATDbbCMLMJX+7n8HCNuNWNmuWyjvLgf1PYWO+vkIsY0sAAAAAADA7BC2A2D3JmwHMBGfPHeQynadt3rtt7LdTV1Ced0q5vXrqEN7b0G7ktvIblHZDgAAAAAAYFWtnfQEAGBF9QzTCdsBTMK1G7sfe/0TFofY9upS2W5zv9vIdgvbdem3X888ruQVH1r+c2TrjpqkdyhvoX4r2/Vb2W/jlpqvX5psn0v2XZ/ss37x93VrB5sfAAAAAADA7krYDoDZpnIdwFS68Krux57+wMXhr24V6DZt7e89vlsFvFEr293+wJJnnVDyD5/pPo9hKtv1HbbrI2z4z5+by7NPrdkx1/2cPffYGbxbFMZbl+y7V8k+65c/vm+X40J8AAAAAADArBG2A2DG9QhiCOMBrLovX9z9vfffnlqy3159hu36rGz3li92Hm/UynZJ8sYnldz/TsnJb+k8Rr/BuWGu6VXZ7uyLan7/nb0/57btSK67qflaavgKsWvXJPvutTCYtzikd7Mlba3v61shvy7H161NShHkAwAAAAAAVp+wHQCzrVeYTtgOYNW96L3dy6zdZv+lIapuobh+t1HtFl7bawx/Giql5LcfUPI3H9uR716x9PiWISrbbe0zbLd9Ltm2vWbPLhXkPvzNyX7GbZ9b2RDfzmDezp/3Wd9U4lvueHubEB8AAAAAANAvYTsAdm/CdgCr7pPndT/2c4csbRu1st0Rt05+fMPS9rMu6u/6fqzv8ierzX3OcaFBquFt2pbs2WXsy68ffOxdwUqG+Dpth7swxLfc8e7b6QrxAQAAAADArBC2A2C29QzTCdsBTJNDDhx/Zbtu5z38nuMLQHWb46Bhu+07av7hM/1/Nm3aluy/d+djO4bYwnZ3tn0uuX5T87XU8P89sceabgG9ZN+2EF+3452uF+IDAAAAAIDVJ2wHwGyzjSzAVLl24+Dvu6NWtusWeLv3oQNPpatR5zjvj08b7Pn5+qXJw+/Z+dggFfJYOTtWOMTXOYy3M8S33PFO168X4gMAAAAAgK6E7QCYccJ2ANPk499Z/bBdt/P26tLvMEatvpck27bXnHrWYM/PO86sXSv0bZ/rfM1T7l/y0keXbNiSbNySbGh9bdxSF/y883vzc207d+f3QQOFjMdqhfj2WZfsu9fCn0tutqRt/ueSfffqdI0QHwAAAAAAs0HYDoDZJkwHMFXOu3Lwa/ZeV9IpHNRvkG3r9s7tYw3b7dlljgME0c67sltwqrv/OLvmXc/sfGzbjs6fgQfsk9z11p1CT8MFoXbM1QWhvKVhvA2tEF/78Y3dAn5bkw2bhfgmZfkQX7J8kG/5EN988G6fda1qeot+3hniW3p8cYhv4XEhPgAAAAAAVpOwHQCzzTayu50zLqg57jU7yzm99Wklv/2ANROcEbDQ1mW2Nn3xozoHZrpVtrtxc39jdttOdc89+ru+H90q23XbwraTbpXohrW9y++9dsxviXusKdl/72T/vbudMXyI76ZW8G5hCG/jz9rqgp93tjfX1EVtQnyTt2MuuWFz89XZcCG+NWVpcG/x1ritLXM7Ht+5nW778b32FOIDAAAAAGApYTsAdm/CdjPl7IsWB+2S5OS31GzaOpffO17gDqZBtypzSfLKE7uE7boE2bbPJbXWnoGYbmG7tWvGF6TpViXvE+f2/zlzydVjmkzL/57buX2cIcOVtMeakv32Svbbq9sZo4f4Nm5tVdvbvDDMVxe3bVkc4ltyzRYhvkmaqysb4vvZdrqLAnw7g3qdj5e2c3d+F+IDAAAAANi1CdsBMNt6humE7WbJs0/tXBbqWe+q+b3jV3kyQEfdKtuddO/uAZRule2S5LtXJEfebvkxV6WyXZc5Xn5d/3386+fHW9quW1W9cVe229WsdIhvXNvpzv98U5/bJTNeKxniWxrcW1xt72Zdj5cuwT8hPgAAAACA1SJsB8CMs43s7uSrl3Q/tmVbzfo9/SM0TFq3ynbr1nZfn7fat3t/X7+05sjbDVfZbpxhu+s3dW6/zf799zHubWQPuFly3U1L239843jHobFSIb65+Up8XcJ4G7bUrgG/jV0CfhuE+CZmrjZbYHffBnv0EF/nMF9Zcnyfdc32ufuuLwt+Xnx873VCfAAAAAAACwnbATDbeoXpVihsV2vNJ85NPn9+zRG3Tk48qmT/vf1D5SR97DvJY+496Vkk126s+eA5NRf8NDn+iJJfurt/xGY4l19X84Fv1FyzMfmVI0vud9iucR91DdstE3w7/ODux7pVb1toNcJ2B+032NidnHfleOYyr9suube7+XjHYWWtWVOaENQKhvg6h/U6V9u7aZmAnxDf5KxUiK+U9mDezp+b763tdDseb22nu9fS40J8AAAAAMCuSthuQkopeyQ5PMk9ktwuyc2TbElybZILknyl1rpxzGPumeSBSe6Q5LZJNiS5PMnXa60Xj3MsgKkxgbBdrTV/fFrNGz+1s++jDqn5n+euyUH7+UfFSfm1N8/lxY8q+cvHTG7/xCuvr3no6+by3Suax686veZ5v1zyt7/uvmAw515R8+C/m8tPWhXKXvbBmn94csnvPmj69wftGnxb5k8mywUyru1QuW2hWmvXinHjDNsdd3jJ33586WfK1X3+F/0ZF9Rces1wY++Yq9mjQ7Ku23N99B2957DyIb6NW5MNm1thvIU/z1fbazu+cfPiEN+S41uG/lUZQV0Y4ruh4xnLXd31SCmtAN7CMN76xSG+m3U93rad7oLjQnwAAAAAwEoTtltFpZQ7JHlskocm+cUky20qtaOU8r9J3lhrPX3EcQ9K8ookT0hyiy7nnJHkdbXW94wyFgDJOT/MoqDdfNubPl1zyon+8W+SXn16zTOPq7njLSfzOrz+E/VnQbt5r/2fZk53u417g/696L07g3ZJE4b4k9NqnnL/mputn+57acu2zuGL9T3+ZHL0HTtvFX3qWTXP///Zu/Mwuaoyf+DfU11dXdWdfSUJkJAQVtmRHVlF0BHBDUVRQUZHBweH8aeijsLM6LggboMO4AKKouiALLIkskPYCQGSACEhCQnZ916qqqvr/f1RXd236p5z7rlVt5bu/n6ep59U33PvubfWdN361vu+y7xdzlJZLsqwXarVPCYigeGPE75XeQ/Znqw+MGW67lFeb6Jy3hDfVO073mhCfF3F1rrFy+nSEF9xvCsNdGXFF/zr8lT1o/oTGayGWKsQn2s73cHLSrsNQ3xERERERERERETkxbBdnSil/gDgoyE2aQFwJoAzlVJ3AbhYRDZUsN+zANwAwNJ8CwBwHIDjlFK/B/DZqKvqERE1TGDluugr213zoH7O/7hLcMXZke+OQrp/qeCiExrzYamu6hUA/O/Dgh+dxw9wyd3ti/zL0r3Azc8IPt2gx7errCEAlgh4Z5I3ZNGmj7NvZ2vjGmXorM0StnttA7Dvbubxnmx1/xf19OrDdqbrHm/+AohEPrUM8fX0lgX3vK1x0+Jf5mmnq92GIb6GKQnx6dewbW0cKYb4TGG8YohPP24O+LUzxEdERERERERERDTkMGxXP/sYlq8FsAzABhTuj9kADgHg/QjsHwA8opQ6SUTWu+5QKXUygL8CSHgWC4DnAawAMA7AYQAmecY/BmCMUuocEam8vAYRUdOofxvZPz9rnnNnj+DZVcCWTmDRGsGtzwtaYsBPPxLDyfvywzZXmV7BkysK4ZYjZwLxFvfbbUdPtMciIli+CVj0JnDw7sDeU8Lfj9c+IvjRedEeF41MC5YDnz6h0Udhl83plycCgm8L39Qvb0/olxeZWsgC0Ybt9reE6Xal7dtWG8pZtwOYPLp0Wb3a5xINdbHYYEiqViG+rowujCclwbziv12Z0na6uu2p/rwhPv23IKMJ8emq7bVbAn6mCn4M8REREREREREREdUOw3aNsRDArwHcIyLLyweVUjMAfBPAZzyL9wHwZ6XUO0SCkyFKqd0B3IrSoN3jAP5RRJZ61msD8FkAVwEo1uN4L4D/AvC1MFeKiKgpBb1k1iBs12eZctyl+uTDaVcXlu/6WQwdTd4CstGeWyU488d5bOmvwbrXJGD+v8Ywe7Lb7dbTG92xZHoFH/tlHrcuHFx29iHAHz8TQ7LV/X5M9wKX35rHd85V/GCUqvKbxwVXni3YfXzzPo4qrWz3kbcr/PEZ/wvs8k327WyV7eIRhs7Gpsxjmzvt26YNAUQv0/UHgEP/I48bLlT4xLGD39fps4QMo7zeRKTnDfHpVRfiM4fxRBvQ67IE/IrtdWvwZzEFqGWIr73YTjdRqAhZenkwxOcfLw3xecdTrYXHNhERERERERER0UjGsF39CIC/AbhCRJ61riiyFsBnlVKLAFzjGToBwHkA/uiwvysBjPf8vgDA6SJSUldDRDIAfqqUWg3gNs/QZUqpa0VklcO+iIiaVwPCdtVUKDrpB3k8+w2mIEzyecE51wwG7QDgjc3Ax3+Vx6NfduuLGGXY7qp5UhK0A4A7FgHfvUdwxdnhPoj83r2CY2crnH1odMdHI9Onb8jjvn9t3tcRY2W7gHcme03SL3/BUPGuqF5tZG0Bto9en8e2n5hX2N5tn/sv/xTDKfvCGLYDgAtvEJywtwwEj+tV0Y+I6ssb4puiXaOyIJSIoCdrrqZnqrbXnS202tW10WWIr3FEBislGtawbW2duzyE19Ef6itcVuhImsaVNvjXkSgEAxniIyIiIiIiIiKioYJhu/r5kIisDLOBiPxcKXUqgA94Fl+AgLCdUmougE96FmUBfKo8aFe2r78qpW70bNcG4FsALgpzzEREQ09zffr3/OpGH0FzW/gmsHa7f/mTK4C3NMt1erLRHc9dL+ofP3e9KLji7PDz/e0lwdmH8oNGqs4DrxaqFzVrlUxT2C4oAJZsNY91ZwTthutbr7CdrSplUPvq51eb/y86Zjbw/sMVMr32/69EgD89K7j8rMJxWCv6uWWTiWgEUapQ6ay9hiG+rizQmS4P48ngMs94McRXsk3ZZYb4GqOWIb5iME/XTrcjaRpXnrCfv50uQ3xERERERERERBQ1hu3qJGzQzuMalIbtTnHY5nwA3o8ObxWRZQ7bfQ+lIb0PK6U+bwvpERE1PcuncAJga5eCoVhSxca3A9sCqhRRZV5aa74/12xzm6M7wrDdU2/ol+tCkw5d4HH9o4JrL6jyoGjE68sDW7tsrQsbyxQCSwQE30YnzWNbuwsBkTD7A5qnwpstBnDZOwvJuDaH1tRX3CG4/KzC5bSliqctuEhEFCVviM+wRkXzFkN8XcVqfOnBMF5hmXguDy4vaaerGe/MMMTXKMUQ38ZdutHKQ3zFdrolrXEHwnqD7XT948oQ/GOIj4iIiIiIiIhopGPYrvmVNadDSik1TkRs9XvOLfv9Ny47EpGlSqmnABzdv6gDwBkA7nA6UiKiZqT5tEwAfHfi/8PPJnweG787FXMm9+H7H4zh3MOi+cBkzmTgWTbhrgnbPRTUhrHIFkCppYyhmhdRWC7BzShDpVEzhd+Cgm/vOUjhslv0191WsXIohO1s99e7DnSfx3tduzdtBTBOu16KYTsiGuK8Ib7Jo7VrVDSviCDd62+H6w3xadvlekJ8unGG+BqnO1v4qVWITxfG62hTvmCfN+Cn36ZQmY8hPiIiIiIiIiKi5sewXfPTfTSfMK2slNoNwCFl2z8eYn8PYTBsBwBngWE7IhrS/B+SXDfuYvz7lCsHfl++CfjwtXk8/pUYjtqr+g83bMEOp+1zgtY4P2TRWbnFPHbFnXmnOaJsI2sjIiVtJeu1Xxr+XD6s72lQqNRFzvBUjQcE38a3m8ds17dZwna5PkG8Rf/abjr+yaOB0cnBbT51nMINC9zSGl3fvQTATdqxlPHdBBHRyKaUQipReJ2sVYhPH8aTkuBecbw7Yw74FS/nGeJriGKIDzUI8WnDeAlgVLIQ1NOPK4xK6gOADPEREREREREREUWLYbvmt3fZ7zkAmy3rv63s9xdFpCvE/haU/R6ilgYRURPSpFJ+P/YjvmV9eeBPz0okYTtTkMRVTy/Qyv+htZ5+w/zh1DMr3ebo6a3PJ5KL1gCH7uHdb112SyOAyyO4mcOdlVa2swXEhkJluzc2A3On6sdMrw97TSz93aX965ptghndK9CzYjkwW78OK9sREdVXrUN85jCevtpelyXgV7zMEF9jFEN8myIO8aVaMRjGS5RfVoVKfdrxQojPvw1DfEREREREREQ0cvGj/Ob3wbLfnxURW4zjgLLfXw+5v+UB8xERDXkL2o/TLv/N44Iffqj6+autbNfTC4xJVX8cw9FekxTcokZmUYWQcn3243h9Y2nYjm1kKSp5h0BvM4c7jZXtYvbtbAGxZqlsZ6s8t36nJWxneF0qDxjOmRx8DMs3AtMfvhE9saRxnXZWtiMiGha8Ib5JNQzxdWULrXQ7PUG9kja6/eMl7XS923guM8TXGD29hZ9ahfg6+tvqei8PtNPVjnva6ZaNtyeAFob4iIiIiIiIiKiJMWzXxJRSowB8umzxbQGblVfCWx1yt6vKfp+olBovIttCzkNE1Bxc+i32294dzS5zVYbtpn2pNIkyZzLwrgMVvvVehcmjR/aHDt0RBOWimGPjTsGX/8/+2PrwtXnMmgh851yFjxwVQ9YhbHfUrOqPjYa/kVrZLhZTSMShfS7Zrq+t2mhQwC+sfz7FHLZLWwKBprBgecDwfYcqfOOvYg3vdmcB5PN4PVH+tqBAKSDBd4FERGRRyxBfJtcfzMv2V9NLe8N4Mhjc84x3Z4HOdGmIzzvOEF/jDIT4tKPVhfh07XK9IT79+GCIz9dOt40hPiIiIiIiIiKKBj9maW7/DWA3z+/bAfwyYJtxZb9vDLNDEelUSqUBeEthjAVQVdhOKTUFgEMtjhJzqtknERGAUGG7qFRb2a7c8k3Azx8SPPSq4MnLYxiVHLkfENjCKq4eL6/hGtKutOCUH+axdF3wuiu3AOf/UtCZyeNohxbFT6+s7thoZHD5MLmpK9sZXiNdgm+pVkPYzlbZzhJMi7qy3REzzc/zLZ0CUzjBtbLd3lMU7rwkhs/elMcbm/Xb3LBAcGS+AxdNv14/Z6tAqZH7/wgRETWOUgrJ1kJb9En6NSqaVxfiG2iNmwa6slIa7PO2002LP/jn2b7PoaIwRa8Y4tvcqRuNJsTnUFNSuAAAIABJREFUD+uVhvjKA376bRjiIyIiIiIiIhqJGLZrUkqpcwFcUrb46yKyNWDTUWW/91Sw+x6Uhu2032MO6fMAvhXBPEREVVmc2L/m+4g6bFe0ZB0wfylw7mG1mX8o6M42vmTFvS/DKWjn9eO/C268iB/AUDRcMsQ9WXOwq9HMle2CjzfVCuzQ/HXb02u+vqb9xVShWl7UJo3SfzB872LgI0fptzFXtvMf3+kHKCz/Tgtin9FfsT8/J3jXXub/62zteImIiIaiWof4BoJ73ta5una6mbIgn2GcIb7GqVWIL9lqCvAVQnztloBfeXBvFEN8RERERERERE2PYbsmpJQ6BMBvyxbPA/ALh83Lw3bpCg6hB8B4y5xERENHWSrlheQhxlWjOo+drVHYDgAee11w7mEj94R7VK0x+/JS8QcXz64KH/hbss6tTTGLTZGLIV/ZzvDhctyhylx5pbci22tDpW1rK6X/8BaYNta8jalqZ9JwfQFgTBLYqflLXyng31a/07hdqrXxoWUiIqKhwBvim6g9M1Z5iC+bMwX4+tvpGgJ+XZZxhvgaJ91b+Kl1iK8jAYxKlrbT1Y+rsnUHxzvagLjDl1yIiIiIiIiIyIxhuyajlNoTwN9QGnBbBeDjIhX1QqzXNkRETeumMR/FIx0nog8tuHHcBcb1Zk2sfl9vbhVs7ap+HpNMEwdo6qE7orBdNmcO7dTqGHTVuMqJVBcEpJFhKIftnlgu2GX4KohL+M1Ulc3aRrbOYbuwxwEUKxH62arQHbw78Njr/uUiwI6+pH+gXzvDdkRERA2llEJbK9BWwxCfPqwn2oBe18CPf7wrC+xKM8TXKLUM8RXDeB2J/mp6xcvJ/na62nFVtu7gOEN8RERERERENJIwbNdElFJTAMwHMMOzeD2Ad4rIJsdpyk+/pCo4lPJtDPU5Qvk5gD+H3GYOgNsj2DcRjWQieKz9ePx63KcCV622/esr6wQHfKu2n0K8sXlkhySiChBVE7Z7/PXK7oMHXnHbLt1b+KCCyMTl6xdXzxNcelrtjyWMXz+Wxz/+znzw8VjwHKbn7WsbzNvUO2x3xgHAvCX+5U+/Yb7uphCvLWz3X+fEcPJV4f/PScVH9v8jREREw1WtQ3xdWaAzPRjC60wX/5WSZd7L3QHjporHVFvFEN8W7RcFKw/xtcXLgnve1rhJhfbyYJ+hnS5DfERERERERNTsGLZrEkqpCQD+DmAfz+LNAE4XkWUhpmrKsJ2IbASwMcw2ir30iCgKImiBW4qu2vavX7ut9p8U3PNyzXfR1CIL21VxX7/wZmXb/fwht4BLT5ZhO7JzqWz35rbaH0cYuT7Bl/4i1qCgUxtZQ/jsmgcFP/uofqy3T7/TWoXtJo9W0H0QqatCV2R6bbOFgidpP0QPlnd5ABERERH184b4JnRo16h47myuv5peMbiXKQ3x+ZZlSkN8pnGG+Bojkyv81CrENxDG87bG1bXTHVhPGbYp/MsQHxEREREREVWKYbsmoJQaC2AegIM8i7ehUNFuccjpdpT9PjnksYyCP2y3PeQxEBE1EUGLOIbtctXt6a8vVLe9i5kRtLodyqJsI9usorqONHy5VLYDgOUbBXOmNMcHSC+uAbZ329dxCb+ZqtTZ2oDXu7JdJVVS06awnaWy3dhKvlID4KUNlkmJiIiI6igRV5gQr12IL6p2ugzxNVYtQ3zmMF5/O13LuC4A2JEAWuPN8R6MiIiIiIiIaodhuwZTSo0GcC+AIzyLdwI4U0QqiW2UV8GbGXL78vW3ikiT1UYhIgqhjpXt6iGqcIiI4NX1wEtrgaP3AvacqCAiWPwW8Mp64Lg5wPRx9hPExfWfWSmYOkbhxLnA6GT0J5XzecFLa4HnVglWbYlmzkyFYbucoUJWlKKq3jecpXsFNy4QPP46cNkZCofuMbI+zHAtTLZxFzBnSm2PxdWOnuB1XNrIbjbUW7a9NprCby6V9CoxKmnYn+X6mQLACcu7tenj3I+JiIiIaCSpZYhPF+Dzhvj0AT/z+C6G+BqmGOLbGjrEZx9PxP0BPW9Ir10T4CsJ+SUK7ylKAn4M8RERERERETUVhu0aSCnVAeBuAMd4FncCOEtEnq5w2qVlv+8dcvvZZb8vqfA4iIiaRqxOle3Cmj4OeCtk7dCeCKqe9eUFn71J8OvHBk8Of+u9CovXCv7y/OB615yv8LmT9emQbE7w8V/mPesLxrUD914aw1F7RXcCON0rOO/aPO58MbIpAVR+X3dmoj0OHYbt7F7fKNjnG4OfRt30lODY2cBjX4mNmBb0rpXtmqlZ6HWPBB+NS5j4n09RuOwW/1zLNpq3MX14WavKdh8+QpW8vnqPI9cn2nZVlVTfU0rhohP0+yIiIiKi6CXiCok4ML6GIT5/WE98wb3ieHf/uCkAWEnFZapeNgdsrWGIrySM13+5I6HQkbSPj2orXi4dZ4iPiIiIiIgoPIbtGkQplQJwF4ATPIu7AbxHRBZUMfXLZb8frJRqF5GAxl0Djg+Yj4hoaAlR2a63r1CtrZLATp9DqakrzlZYvRWY2AGceaDC9h7gA78I9xX2KFqM3vy0+MIZV97pP/5//oPg9P0Fc6f6b4//fbg0mAcUWkR++No83vjv6EJPP71fIg/aAZVXMbzmwdqHWlZvAQ7do+a7GbK8QbuiJ1YA85cAZxzYgANqANfKdvkmqZDx1nbBn54NPmiXSnMzximYPoDasLNQZbNcvdvI6j98LXh0GXDKfv7llR7jhwzBPiIiIiIaOmod4uvKFtrglobxPAE/73gW6Erbx+v9RUUqqGWIryOB0jBeW2mIzzZeUqHPM84QHxERERERDWcM2zWAUioJ4A4AJ3sWpwGcLSKPVDO3iKxTSr0I4OD+RXEUAn3zHKc4uez3e6o5HiKihhNBi2NlO6AQeLC17TNxqTh32ekKozxtVu9bHD4gEUXVs1+FCGbc9JTgyrP9J0jveVk/x+qtwNJ1wAHTKz68Ene/VJsQSaUfDvz77bUPtSxeJzj7UJ6U1tnZY779L7oxjzXfr1F6qsm4hu2apTW262udSxvZ9oR5bN5iwQXHNj5sZzvGexcLTtnP/RgTAceYag1xYP1aY3kAI+O5QkRERDSS1SvEVxrGk5Jg3sB4phDis40zxNcY2VzhZ5v2q/rRhPi07XKTAeOGdrsM8RERERERUTNg2K7OlFIJALcCON2zOAPgHBG5P6Ld3IbBsB0AXAiHsJ1Saj8AR3sWdblsR0TU3AQtcC/vlM1VGLZzCMF5g3YAcPiegFLuLSEBIN1befW9oodfc1/3P+8SXPFewdrtwPSxQCymsGGn4L7F5m027gIOqPjoSi1dH9FEZTJNfBK/kvDMSLGjxzwWtiVzJUQEq7YUnoeNtKnTbb0o2k5HYeMut/WSDo/9w/cMv596h+3mTjGPmaqTVnqMlfx/9ZOTVwOYE35DIiIiIiLULsTXm5OB4J03xFdYJqXBPU07XdM4Q3yNUasQX2uLKaBXCOm1awJ63vEOw3iCIT4iIiIiIgqBYbs6UkrFAdwC4CzP4l4AHxSR+yLc1e8BfAODJSver5SaKyLLArb7Stnvt4hIOsLjIiKqOxFBLEzYrsJKUJWEWiaPVvjksQo3LAhXLS3dC6QslZOi1vLZcL0oowj4bNwpOO+6PDY5hnTCquRke961nFiVoqheOFzV6S7Q+utCwSU35+sS6otKszyWXG8zl6DptHHmD0BM17feYTvbhzSvrdc/iE3/9wQdYyXX4QOzNoFhOyIiIiJqNq1xhXFxYFy7bjSaEN9Aa1xNO93y8a6A8Wb+Et9w1ttXCPDVOsRXGsbzh/TKx8uDfcV/GeIjIiIiIhqeGLarE6VUCwohuPd5FucAnCcid0W5LxFZppS6EcBF/YsSAG5QSp1mCs8ppd4H4FOeRVkAV0Z5XEREjRKmjWyl33gOCrXEDOfWrv+Ewr67AX97UfDY62776s5WHraTMGX0KvTqBsFZB1V3MvGcn+fx5IqIDkijklDlD+bVKWzXJNXImlEdHr5ai94UfOjaPPrC5U4bricrqOZDqaj87AG3O86lsh0AnLSPvkLnnYsE33iPf3m9w3YAcOHxCr953H+95y/VVyc1H6P9/nNpves1O7sCk3Kbwm1ERERERDSE1TrEZwrjdWbEV2Wva+BHDNswxNcotQzxDQTwEsCopPdyIcRnGx9lGGeIj4iIiIiosRi2q59fA/hw2bKvAViolJoVcq71DhXnvgXgXADj+38/DsDflVIXi8grxZWUUm0APgPgh2Xb/1BEVoU8LiKi5iOCFrgnqyo9qRkUtpugba8CtMQUvnKmwlfOLPye/8HngTt+hdcSe+OAOS9WtC+bF96sfFtX1YbkVm2RmgbtACBTwW14yzOsbNdojapsd+tCGXJBO8DcsrSeNu1yv9NcWyiPatMvX27IkDUibNduCUS/8CZwWFk7XNMxBrWJDXsd5mSXQ15+EuqE94bbkIiIiIiISthDfEClQb5cn7manq0aX3cW6EzrA34M8TVObx+wvbvw41d5iC8eKw/m9f/bVgjptfuCe6Xj/mBf4d9EHL4vhxERERERkR/DdvXzCc2y7/f/hHUKgIdsK4jIGqXU+wHch0JlOwA4HsASpdRzAFYAGAvgcACTyza/C8C/V3BcRETNRyRUZbt0hUGnoPDW+w93PFF1x68AAKl8j3GVaiqfrahDQaPp46rbvh7HmM6Fr/i1YnNtjqUcK9uZNSpst7JO933UmiG4uXKL+7quFTsXGkLDh+yuX24KsoWtChfGPlPNYys2uYftgsJ08ZBhuy9v+SHU2LPCbURERERERHUTb1EY2w6MrWGIrysLdKbLwnxZGVzmGS+G+Eq28VxmiK8xcvnahvgGg3mDlwfa6ZYs07TT1YwzxEdEREREww3DdsOYiDyklDoXwA0YDNQpAEf2/+jcDOAfRUIkU4iImlq4ynaVhlNyAVWvPvr2cCeU2sUStqsiQNPTW/u0UrUBn3oEhCoJtNmOa9IoYHNn6bKT9wEWrwM27YpuPyOdLWxnqnZWjb684D/vEvzuyQal/KrUDI+lMM811xPvR84E7tjuX761y7+sNyf4wX36+6+Wle3ed4jCpX/U77fwOuzaRta+n7DX4fjuJ4DMKeE2IiIiIiKiIa/WIb6ubH81vfRgGK+wTDyXB5eXtNPVjFf6ZViqTi1DfKXBPO+/pe10deP+YB9DfERERETUWAzbDXMicrdS6m0ArgRwHgbbypZ7EsBVIvJ/dTs4IqJ6CFnZbldQk24DU1ACAP5wscJJ+4Y78WOrbFdNa0hTm8UopauszLZ2e7hg07SxwIadwFF7ubewDRtC6ssLsoZvax+9F/Dol2P44p8ENz8tyOSA9xyk8MtPKqzfAbzjB3ls2Om+L55QNhPLQyNshS8X/3ST4FePDc2gHQDctUhweYOLmJWHUE3OPNB9znfso3DHIv/9smiNf91P3WC+/2oZtttzovk1v7xKZl9ejI/twMp2IarzXbblR0igF/LyExV+jEZERERERFSqliG+7qy/Ha43xGdqt1sM8enGec6lMXJ5YEdP4cev8hBfS8wfwDOF+Ezjuu0Z4iMiIiKiIAzb1YmINOwvcxHZCOBzSqlLUWglOxPAbgC6AKwFsFBE3mjU8RER1VqYynYPvCI4cW74l+ycYRcxBXzkKLc0hKx5feByUsypv2rajN6pCahErZowIADc/aL7Mf7tCzGc+bbCydJUQiH2Gbf7OuxtaDsZ+5OPxBBvUfif8xV+8hFBXx5IxAuPodFJYN1VLehMF070JlsLp5njLcBXbxVc86D/uvZkh264q9Zsle2CWjmHtbNH8Nsn7PfFhccrfPucxp98/cSv8/j7Uv/yJxzDp7V072K3x3NHiMqEqVbz2OsbBXtPKdwnm3YJ/viMLWxX2/vuwOnA4rf8y//2ouCb/zD4uynIC0Rb2e6AzCuFC0/Nc9+IiIiIiIioAeItCmNSwJiUaY3K3s/15aUkmOcL82X0490Zc8CPIb7G6atxiE9bbS8BjEpaqvElFEYl9du3McRHRERENGwwbDeCiEgWwIONPg4ioroSwdTcRufVwwQ+vCptAVhi2aKBizEI2vJpZGJJ32rVtIY8aIbC86trG+aqtlXtrEkKwSfECqaNK5ykSiUKv196msJP7g/eNuxtaDtpmvQEf1piCi2abOWoZOFEm1eq1dRiMtyxjSTWsJ0lsFSJJevsFSuBwjeddxvb+JOkWwzV42ZPqu9x6Ewd47beOYe5347TxppfI55fPRi2e3GNvRpiLSvbAeZKogdOd2shCxQeYzZjjR88+U3NbShcOPh4942IiIiIiIiGkZZYbUN8pjCeqdpelyXg15XhOaJGsYf4APt5S3uIrxDW8wb3SkN87cbxwrlF3fYM8RERERHVH8N2REQ0vIng1K6HEJde5JSlHFK/Sr+JGknYbmNpD8SU9CADf9iuO50DEHxddHb01L5qWjWV9zK9gp8+4HaMe4wHDtm9dNlFx9cmbGerPNVW4V9TxYBguWpuv+HOFpzKC/Dde/JYthE4YibwiWMURiUrP9H45Irgx9EB0yqePlJ7TQIWvulfHlRlcuNOwW+fFPz33YJt3cC5hwHnHqZw/lEKsVg0J2ldH89nHui+v9P2d9tf0PWvddjO9P/J5s7Sx5YtbBd0jKmE++12UvejhQvZCvulExERERERkVa9Qnxd2UIr3U5PUK9TM+5tp6sbZ4ivMfrywM504Uev+hBfR6K/ml7J5cEQn3/c0063bJwhPiIiIiIzhu2IiGh4E8HUvo24Zc3H8NEZv9VWivN6Y3Nlu8nl9cvjjmEO2b4Z8j9fLlnWnu/B9pbxvnW7u3pRSdgumxP89YXQm4VWaRvZbE5wzs/z1kBV0eTRwO2XxHwnfA7aXeG6CxQ+9/tCO1eTsIG2bBWVp0xMrTB5wtPMVtkOAL52W2GF3zwO/PFpwbx/jSHZGv6k4EOvCi67JfiBeNCM5jjh+JGjYrh1of8Bv34nICLaE6PrtgtOvqoQTiy6bSFw20LBA68Av/pkNCdUXR7PN31aYeIo932NtoQor54v+ORxhcvbu+33oevrc6U+d7LCLx7yH8NdLwK70jJwPaoJ2wHA+Ucp/OFp+3X9r43fRLv0fyX/leeCJyUiIiIiIqKGq2WIr9sb3CuG9AaWSemyTOFyYRvxb5NhiK+RahXiiylzO93CZXM7XW+Ir3w82coQHxEREQ19DNsREdEwVzhhcHbnXdj02gwsSB2DpKTx7UlfxfxR7/St/ZvHBb/6ZPi99PbpT0y4Vk6SX13pW5YSfa+Cnp4sgHbXQxvw4KuhN6lIpSfWHngFuG+x27pvfi+GRFx/UubiE2P48JGCZ1YCV9yRx+PLqz9GW2W7RIWBHVa2Cy8obOf12OvArc8Lzj86/Mm7K++0JDU9TIHJerMdx4trgEP28C+//jEpCdp53bBA8KUzFA6YXv2x2R7P/3O+wiePVehoC38fHbx74bqVe2kt0JsTtMYV7lhkf8DUurLdKEtb8tsWCj5xbDRhu1kO7YLP7JxX8rvkclBxvhUkIiIiIiIaiVpiCqOTwGjjd5KrD/EVQ3gDrXHTQFdWPJfL2ummpSS45x2v9Iu9VJ281CfE5w/rlYb4ygN+5cG+4r8M8REREVE98RMWIiIa3jxl0tqlB6d3PwgA6DW0lD16r8p2Y6ps5xzm+Ot1vkWpvD5sl+6xJL8sbnk22hayx8wGnlzhX15pWGz+UrfjO+ttMAbtisakFE7bH7hxgcLjy/3zNnNlu3Rld++IkHfLwA14dhVw/tFh9yF4+DW3dU2ByXobZ8nePrJMcMge/ufLn56xP98eWSY4YHr1JyhNrVQvPlHh8yfHKp7XFmR7aS1w+ExgQoeC7eRurSvb2e8X4BPHFi5XG+a17adobH5H6YI3FgNzDwnekIiIiIiIiMhRrUN8A8E9b2tcTTtdb4hP2063/1+G+BqjliE+c4CvEOJrtwT8TAFAhviIiIhIh2E7IiIakVa37qldHqvwfbOpMlG88iwJkqI/49BTYRrrnpeiDdu95yCFJ1f456z0RNX2brf13nuI+53UavhLx1ZJSqcmle1MbWR5os8o7CPYdr+ZhHlsNEtluyNnmsfe3KpfvnSdfc7OTOXH49Wd1d9r1d52p+6nsEATpAUGjz3oPGitK9uduq857NfleXmvtrLdafvZQ4UzetdiVu+q0oXdu4InJiIiIiIiImoCtQrx5YuV+AxhvM6MaAN+3ZaAH0N8jZMXYFe68KMXXYivIwGMSpa209WPq7J1B8dTCYb4iIiIhjKG7YiIaHgT/RvlT27/Hb415Vu+5ZW2QDWFJaoJc7Tn9emz7p6QSbEauPJshb2n6McqvQ0Nd1WJU/cDLjjG/SSEqepc2BCWNWxXaWW7hD4gU+ntNxKEaSMLhA/nAfYqhuXam6SyXVur+Tlx1TzBBccIDto93Mm7dTuC13FhCo9WWxXw0tMU/utv+nt4xWbBO/ZRxqp6RbUO2719lnnspbWDx15t2O7QPYAvnKrwswf0t8e16z7v/9gho6+cSkRERERERDRSxGKqEIKqYYhPX43PX23PG+LTbcMQX+PUKsSnlCa413+58G9/O13vsrbiZeW5XDrOEB8REVF9MGxHRETDmyHBNSG/Tbu80qpiuRqE7VKmynbbdwCYUfnEAa67QGHlFuCt7cCYFLClE9jZI9hzosLEDuD0/RVOmKtw5yJBlGGxTEAA7oS9gTsvifWH1Ny0GcN24WJYtWgjm2Rlu9DCtpGtRJggZrO0kQUK7ZXveVk/dvFv83jqa+FejH40X/DDD1V/XKbXg2or200cpaCU/iX+0j8KPnVc8HOp1mG7WEzhS2coXDXPf5BLPJUFqw3bKaXw4/OAsw9RuOdlwZ/uXoO1rTPwye2/w1e2/AD7ZF/3b8SwHREREREREVFN1DrE15UFOtP9Ybz+y4V/pWRZ8XJXGujKim+bgfGIuhtQOOIN8e3UrmHb2jiiVHkwr6w1blKh3TiuytZliI+IiMiEYTsiIhrmDC0M8/qgQdSV7VzayIohEGg8xu2drodVIuZwLBM7gItPdOt9awrLdGcL1ynsm+8eQ7vJovOPVqGCdoC5xWuY6mWAOYAVU4VWFpUwtpHtrez2GwmibYSsF6aNbLNUtgMKJ75MnlkJbO0STOgoPKZcwqbVtMD2qlXYDgDGtwNbu/zLi9807um1X8+orqONLYyb7hUkW5X1Meca5lVK4bT9gVNnZ/D9n84N3oBhOyIiIiIiIqIhxRvimzpGt0blIb6e3v4KesXgXqY0xOdblikN8WnHGeJrCJHBaoi1CvENhPG8rXE17XS9IT7dNgzxERHRUMawHRERDW+mIJtEG7bLGSpuOVVO6tWXXzIeo2pzPKpSc6cUqtXZhAkzmap6iRTCaW0hwzRBFcUqCefUuo1spVXtJJ9Hcu0rAPbVjmdy5sp3I1noNrIVpPNcHxuzJgJJS/vWejt6tsJfnjdf4a1dwISOwuXFbwXPN3l0NMdlqi4XRVDRFoIVkcDKdsfNqf39N77dPLYrXXie28K/oavvde9yWk2WPgvMPQSItQAt8f6f/sveZQOXW3jik4iIiIiIiGgYisX625W21S7EF2U7XYb4GqMkxKdfw7a1caQY4tMH+AaDeqaAny7A19FWOPfIc1lERFRLDNsREdGIlMobWrRW0MIznxd86c/6N4xOQQlDhaF2Q2W7LZnKUlhRv7VMPXs3gDO1Yz294cN2QRXF2kNWtQMsYbuwle0M65sq59nIgrshXzkXybZDgNlPaNfpyTJsV5TpFby0FnhulWD+ktrWttvRLTjlh269ar9zbnOdrDn/KIUr7xTjCa/uLLBsg+Ccn+exdJ1+nfL1o2CaJ4oWvJe/W+Hrt/kfE3kpvJ7YwtPHzwHe4VAArlrvPkjh//1F/7jd0VMINdpe+1rCVt/LOlasu+WnkFt+GmpqicXMYbx48XJZYC/WUhgrC+65hfxajOPKO1eL5nh8x1W+X12gsGxd3XFptlMuZWOJiIiIiIiIRhhviE+vuhCfOYwn2oBeV1mIT7c91Z83xLdBv4Zta+OIUhhsl2uottduqLbXUd5O13OZIT4iIipi2I6IiIY3Q2mrZISV7X58v/lNXdwljLXhTe1iU2W7O7bpq6EFqbRqn44seQbJX14OzNaH7bqzwDhLRSedoLBdJeEcYxvZkJXtMoa2m2Er28n6VZCvnAvAfP8ChftqfLiph4V0r+DFNcDzqwXPrQKeXyV4+a1wrV29wkbzLv5tHm9sDl7vb1+I4ayDmuukyrRxCs98PYb9v6kPC27YCXz2d3ms3OI2X1Rhu1q2kT3jAH3YDgBufd5c2a6jDbj70hja6lCZcGzKPPalP+fx139uMT6+W1sqOHn3zP3h1g8jnwfyET0wqlSPltKuBLCG8QqXYw4hP0Nw0Bf4M4Qe43GoksBhzOG4HPZrDCwa5mU1RCIiIiIiIqohb4hvinaNaEJ8/jCelFXm8wb5/FX6Bv7NVtZ9g6ojMhiyrFWIryNRaOtcenkwxOcfV4ZtCudKYzGeRyEiGkoYtiMiouHN1EbWUDWuLw/05gStcfc3Nv/3nPnNl1Nlu6fnaRdvbplo3KQvL2gJ+eYr0rDdI7cj1ddt3lcFeYzAsF2EbWQzjWoju+DugYumxyBQ2e031PRkC8G65zzBusVvmVsy11q6V/C3l4LX++hRqumCdkVz9WcYAQC/eMg9aAcUno9hXwt1TI/lVAWVKn1zWF4T/vycGF/zvvcBhdHJ+tyHtmO888XCv7awXVjieY2hOurLFX4arNnO3Ys38GcM8VkqCIYO+ZkrFwZWQwwTLgyqhuhbzmqIREREREREza5WIT6RwhdCTWG8kmp7WaAz3d8jHaF4AAAgAElEQVRONwt0psUX3CuOM8TXGN4Qn2EN29bWuTuKAby2Qgiv9LJCh29Z8fJgiK98vD3BEB8RUa0wbEdERMOcIWwn+jayAJDOAa0h/od8YoV5bIlDu0bk9ImQv3ecatxka1eh/WAYLgEu57ddzz+IpJhr64dt0woEh+322y38nFFVtksbQjttYSvbPXHvwGXbYzDKYGQz6MkKFq0ptIJ9blWhct3itwrh1mbx6nrz/exVSevgerGdOHl+dfj5urPA2CrfLdSyst0scx4Zu9KWFrZ1bNFsq2zX0n93mV77Qod5gUI1M6JmUayG2Nv4BHkzff4gSjm0NNZUJgzRallbDVHT4lmVBwOdWi0H7DeuWddxXlZDJCIiIiKi4UapQqWz9hqG+IohvNIwnpQE84rjXZlCiK88uDewfYYhvkYphvg27tKNRhPi07XT9Yb4dO10R2nGGeIjImLYjoiIhruQle2AQihtdDKa3b/7bcFvOCSjPxZbmK2StprLNgavY33Lls1AfnE58PhdwLpVSMTGGdcNG2YD7NfpnfsDM8a7vXkTEchX3w8suBuJcRcC067xH1/I288Uwgod2ukdvE+D2sgOVd2ZwWDd86sL/y5Z15hgXZgTQ04tn1FhAKoJrN4afpvuLDA2ZDtor1yfGJ/X7RW0hfbN0WZ+TXjgFSBpeH7WM2wXiykcNwdYsNw/lssXbyP9A7WSynbo6apgIyKqKxFWQzQIrIboDQRaqx06VEMMCBeqksBgQDXEMPt1qbJYFlJkNUQiIiIiIirnDfEZ1qho3mKIrxi884b4CsukJJinbaerGWeIr3FqFeJrNwb4ytrpagJ+3uXecYb4iGgoGaIfFxIREVUnGVFVMQl4h/jOAxwmef5h7eIo24yu3Vb9O1n5z08BD9068HurmG+oqCvb/eVz7h8yyhUfH2jXmhD9DRU2DPjiWv1yU5jH6LkHBy4Ohzay3RnBC8Vg3arCv0vX1y9YN74duORUhVfWFdqGViPu+BBr9rDdyfsAD70WzVymynCubK+lqQjCdgDw7XMVvn6b/77Pi6WyXQQtbMP44YdiOPa7+ifFMyvNVQcrCts9Pb+CjYiImgSrIWqVVkM0VRXUVEMM0Wo5sBpi/3bmaoghqjBqqiyaqyHa52U1RCIiIiKiaHlDfPrOOpWH+NK9bu10vcu7+8fKg3ve7fPN9AZuBOnO9p9/rXGIr7zaXvlyb8BPF/wrVvZjiI+IotbkHxcSERFVyVTZzhK2e+FNYKalPaHX4rfs406hjpef0G8bYeWz2xZW945Ttm0CHr6tZJkpyAZUVnnPtM015yuMTjpWtcvngQf+MvB7VGG7+UsMj6MqKmTF0Ye49CKn/JM0Y2W7rozghTdLK9YtXVe/kxmpVuDQPYDDZyocMRM4Yk+F/acB8RaFj16nDzKF+bak6/VYv6O5z95EFWIDIgjbWbaPqrrcmAqqkNazsh1QOKFj8qvHBQ+9Ek1lO8mZX9jUZ/4T+PC/AH29hWpauRyQ7ytcLv7blyskZYuXvcsHLnuXedbt08xVsk3hsvSZ9tvnn8M3rtlvvq/0ugxs1xd8XPkm6mNNRGTDaohGYqp2qKuGaG1p7NLy2B4uVKZwYYStlgOrIfYvZzVEIiIiImo2SimkEoVzl7UK8enDeOJb5g3xmQJ8nQzxNUwtQ3wDAbxEoT3u4OVCUE8/rgYvl40zxEc0sjFsR0REw5shbTOhz9xTsTsrcH1z9/Ja+x/wTqGOtx0DvPykb/GXt/wQH59xo3YTU1tTk5cDQoFF3/wHw/VeucR3W7bCUtkuwjayoQIna0t7NbYZwnbpkMf39pnAqi3+5a9uCDcPdp8DrBk8xlS+B7ta/A+S7p4+NPLPtM50f7Bu9WDFulfW1+8EQ3vCE6zbEzhipsJ+uxWCdTpRFDVxDYi+ur76fdVSRdXQDGpa2S6iwNvu4xXCfvQ/Y3w0+3Y1bax5bN12wb67ASs2+8d0rzlWW9aZx1paoNqSACLqkV6hZjr1JCJlIT7HkF8x4OcQLtSPe0OA+dIQonHePv2xVrTfvuDjIiIaKoqva6yGWMJYDbGkqmBANcSSdWwhQIdqiKFaPDvstySk6NJamtUQiYiIiIarWof4zGE8fbW9LkvAjyG+xiqG+DZFHOJLtZYH9/r/bSuE+Np9wb7iuBq8XDbengBaGOIjanoM2xER0TCn/0M4KRnjFmGCbEGhLVugRDJpyC+/pQ3aAcCZnfOM24atHOeyfiIOfPAIwx/wGX+VPQUYK7M1LGxX9kFb0tCqNWyb1kdf1y9vCVs0oq/0SqakB7swxrdaT08W9fozTUTw+6cE37m7EKgDCuG1MFXhqtGeAA7zVqzrD9bV+81kzvE51dfkJ0P23U0Bi6I5yJpWtouoAt9p+4Xf5oBp0ezb1cRR5sfy6xuB3Q3hv9CvL5rX6QFHnhZysuFPKVWoLhRv/FviZjp1JiL9rTzLgnvaCoIu1RD94UJ/kLE8JGiohhgqXBhQDdG3X9125dUWWQ2RiIYIVkM0ElO1w8BqiCFCfkHVEIsVCOvQahnx8sAhqyESERERufCG+CZFHOLL5IDOdH8AL+u5XKy2l/WPe0N8unGG+Bqnp7fwU6sQ32Bwb/DyQDtd7binnW7ZOEN8RNFq/CcLREREtWRJDE3JbcDG+FTf8jABk6DQlilQIrleyKePBla9Ytx29NEnAtv1Y2HDdkFBotFJ4OZ/jGH6OFPYTt92t9UQtouyjWyosF3ZB+GmVryZHJDPi1OJ7wdeEWzYqR+76PiQb0zKbsdUXn+79tSxj+z/+4vg6vmlz5NaBe062jzBuv6KdfvWMFgX5mq4PmZdQ3mN8i+nKvzgvuYI2+mqtRW1RxS2G+XYYtqrERVNPneywi8e8t8vyzYWfnT+3VRp1OStFeax3fYMNxeNWEqpwVaFrRH2pa70eBp9AB7GaohhWi0HhAuDqywWKhNKYAtnh1bKzvt1aPFMRDRUsBqilijl0NK4JWDcUDFRF16MG1pA66ohOrVa7t+vU7gw5lYNsX9dVkMkIiKiKCmlkGwFkq21C/F1Zfur6aW9YbzBEJ93vDtb6HLj2ybDEF+jDYT4tKPVhfgGwnje1rhtg0E9/bjyLSte7mhjiI9GJobtiIhoxJqRW6cN24XJOQWta6xst+gxa9AOAFo6OhDb1oe88qfNoqps98HDgS+fGcMhuwOtccsfw4aKSQnJogftvuXZSMN2If5IX/Fyya+mMBsAbOsGJo4KnvLrt5kr2YQODGVLb0dTGDAdts9thbZ0Cn7899q8Wx7VBhy2J3D4noMV6/aZWps3XVF8/pFzLFjU7CcXbC1Lw6o2bHfdI+YbNao2smEdOL0x+917cvhtRreFW19uv9482JYKfwBEVILVEPV81RC9FQSrbbVc0vbYFnR0qYboqcSoG/ceb1A1xJJ1LMfFaohENFSIALleAPX70pfxUBp9AGWM1RAHQnoO1RCdQ34O1RBr3Gq5JLBoCTqyGiIREVFzKQnx6deoaN5iiE/XDrcQzDO30/WG+HTb9/Etc0MUQ3ybO3WjlYf4kq3+gJ43xNeuCfB5Q3ymACBDfNTMGn+WmIiIqJYsJbpS+W7t8jABk6CWs+M7DAMvPh48uVJolV5kNGG7sG1ac4bel5PHKBw5y+GPVUvYTqe3TxD2DVwkle06S0sBjssbSgMCWLIOOHFu8JRPvWEeM96/JpnysJ2psl19wna/e1IiCY+NTpa1gt2zEKxzqRxYS2Eq9Lk+p857e3O/uYvyNu/Khn8el2xv7taNRIPeheywdFqtpQlhXytQKPgRSrf2DElBIhn+AIiIHLAaopkMhBAdw4VB1RA14cLgKouGaoiVtFJ23q9Di2cioqGC1RC1/NUQQ7RSDqqG6AsBllVDLJtDhW7xbKiGaAwXxgLGWQ2RiIiGL2+IT1+4IJoQnz+MVxri6yoP8mVEHwBkiK9h0r2Fn1qF+EzV9josAb+ORKF9rm6cIT6KAsN2REQ0vFnDdvrURVBrWC9bhbn9dgN2H6//g012mUNgRWrOQWhd1YsM/CGJbMgwW9VBtow+mNgq+g/LwoYBgdq0kd0nu8y4aiaCL+2/c3/3+0A0J+iTpsdguj69SpeuC7/N6CRw+J6lrWDnTql/sE5WLgWefQCycyuw/GwAb6tqPteKlhceN3LehFVb2c4W5IzyA4j3HQLcvsht3TXbItttKKftrxD247FjZ4e8jSz/3/EDHyKi+lOxWOED+niDyrl6j6XRB+BhrYYYUatlf5DR3GpZrPPmzfvNlR1j4H41YUpWQySioYrVEI2kPNynq4ZoHQ8T8rO3WvZVQ4y01XJ/ANIYWCwNOrIaIhERedUyxJfNmavpeUN62mp8hnGG+BqnliG+kjBeSTCvv51uovB52LGzFU7dD2hrbaazK9QMGLYjIqJhzvwHVbuhhWeYNrK2sN21F+hPJEm6G/jzz4InnzzDWDkum80DcD9RZTrOuOsUnTu1i43H16CwnWxaW/K77U9fl06t+YCyb3OnhvjjWlMd0NRGdtW2+pyEdKlqd8q+wGGeVrB7T26CinV3/BJy1SWD4aLps4Gx/rCdhCht5xIs+/a5CnOmjJw3VNWG7V5co1/+iWOjvQ1/c2EME77odrbj40c35v7bfbzC9HHAW8E56wGzJobcyYrF+uVnXhByIiIiotphNUQzXzXEUOHCoGqItvChNzzoUA3RtZWyUzVET6jRVv2RiGioKL72NYFmCiJaqyE6tlL2V0w0VRhscauGGCZcGFgN0Rsu1AUlzVUW+eU4IqLoKKXQ1gq01SHE15UttNItLBNfsK843mUZ35VmiK9RiiG+LV260fK/ogQnzgXu+kIMo5P8f5sGMWxHRETDWwWV7cIETEwBsQOnAyfONfzRdeev3CZvH4VW6BNhvb19CPPfeM7wB7trkE3u+o1+e9EnE20hRO38IlUfIwDgDz/0LZqQ24KtcX9qxaWCoemYKtLtDyym8vo2sr9eMhm/jHDXJvMW20+9PvP1GI6Y2VxvHmTnVsjV/+LWI3bTWgB7Os07f4l9vjMOAC4/a/h9E/s/Nl6Bb065QjtWbdhO/0YVOHj36uYtN65d4WvvVvjO3cGPid3GRrvvML7+boV//oP7xx2hXvsAYMdm7WI19+CQExEREVEjsBqinnM1xDAhv7JwobWFc1A1xJLLmmqI3uMNqoZYst+A1tKshkhEQwmrIRr5qiH6qhUGjduqIZaH/Oytlq3VEKtuteyphhhU3ZHVEImoydQ6xFcS3CuG9LJAZ1r8yzKFy90B45F+tkV4dBnw84cEXzmzmd4tU6MxbEdERCNWSvRBp56Me9U4U6jMVpFInrnfaW50jDFXjtu0EcAebvPAUtnONcwxYSqwYbVvsfH4Qobtcpb1QwVORo0DOktLRxnv597gVrxhQ4NWy1/yLWqBfgetsTyAsEmb8Eb7OxSXaG98sRG/5x/2fUtcmU6VblkP17BdUDXGt+81dN5EnbA38NjrwetdtP0GfG3L9/FI+wn4+6jTfePVhO1sVQVrURhx8mi39VINfEyPagu3vvPrc5Bc4z/MICIiIqoUqyGaWash+toxV9ZqObiVcuF3Cayy6NBK2aUKY1CLZ1ZDJKKhhtUQtZyrIbqG/FyqIRpCgNpqiGHChUHVEL3H6FBlkdUQiYYPb4hvQod2jYrnzuZkIHhXDOENtMZNS0kwzzveZRkf6SG+eYsFXzmz0UdBzYRhOyIiGt5MgY9YDO35bu1QT9q9apxr61NZ/Rrw0gLglA8Cu7YFTzz3UGCfw9AqG/T7TWecji/scRqN0peDShi+kRo2pGZbP1zYbqwmbKevYJh2yJ/YQoD7TwtxXADQ608ubW7RpzLHtfYCqH1Fi8P2VFiyznwqLdn4ohp+O7c6ryo5937GY9vt46lmvC0M3neowmOvB58iPa77CQBAh+hfC6sJ29meX+3xPOSVhcCY8VDTZ1e+E4/j5ii4nBaO8n6UTA/w6kJg8nSoabMC13c9xqLQle1MUtozNUREREQ0xLEaot5ANURTC+ZqWy1rg4zmVsvWaoi5Pn1g0Fe90aEaoktraZcK8UREzYDVEI3s1RDjQIumPXIlLY8dWi2rmrZaNlRD1AUdWQ2RyCcRV5gQr12IbyC4522Nq2mX6w3xadvpZgrtdIdCiG/TrkYfATUbhu2IiGh4M70bnnMQkjv0Iaw1W93fQptCYol44Y9V2bUN8u7dBge++9ngSVtaoD55OdA+Gq2yRr/frPuJhk27xFjlyiXMISLAM3/XjsUNbWSDqoSV+8kD5ts8VOBk/SrfIlO74B6Hm9AWAgxdLjrjr7D3qe2/w4L243zLe/rqc3KgM21/rDdlwCzrvz+Nle1CCAqINuVtYfDxYxSufUTw+kbzOgenX8Q5u+4AAGPwuJqwne35deTVZ0C2PQ4AkP2PhPreX6HGT658ZwCOcCtgGFm1Rrn9eshP/w3IFoLPcuDRUN+7DWqsuazpnCnhXjPiIV4GbJUEMWv/UPslIiIiIhrKSqohNoGmCiK6VkOsotVycCvl8mqIpqCjQytll/0GtXhmNUQiGmpYDVFroBqiteqgvX2xr9KgKTyoq4bouRxcDTFEuDCoGmJQlUVWQ6SI1TLEpw/wAZ0Zc8CvO2A8yu5Vho+UaQRj2I6IiIY3UwChrd3YXvTpNe6pmqCKcXLR0c5zAQDecyHUu86HOuwdAIAE9Km13oz7X4gX/sb8lRCnMMejdxiHomgj+9gywddviyhsp9Em+iqAdy4SXHqafVvbH+JHzQr3xkHm3+xbtntOH6bs6avPhwK3L7KPN2PATBbc7b5uiHltVQyBQin3oWLqGIWHvxTDtY8InlslOHh3hfEdwMLVwLYuwXETN+Ofrj8L4/I7AADtpkBqNWE7y7btXZ6KnUufhXz7Iqir7qx8ZwBiMYWj9wKeesO+XhRtZGXxU5CrLilduPgpyH//I9R3b7Vuu/80YOm64H3EVOE6OXvlOcsgT6gRERERERGrIZoEVkMME/ILrIYYHC4Ua5XFPv1yXTXEwCqMDq2lWQ2RiIaKYjXEHKshlnOuhhgm5BdUDdEQAlS6cGFkrZZdqiEObscQYnNJxBUScWB8DUN8/jCePuD3yjrB/KX+uRi2o3IM2xER0TBneGuTTBmrOQGFcsYdbcF/wJkCOq0tgPRmtZXWTNTl10O9+xOl8yj9Dnodv46xKy24+2XnQ9CSx+4yjrUaKtuF+bbI7Yvsbz9dw3bSuUO73FTZbuPO4DltpatDhwBXvepbZDq2PomhNydojTf2DV8UwaTIbfG3VlYRnPwNesxG1tKzTqaNU7jibP3jR+67H5IfbGfdbmgj25Wp/Ha1VbbzPe6ffQDSvQuqfXTF+wOAMcngdaIIkIopgPz0fEi6Gypp7knc4ficiod8vMkjt4fbgIiIiIiIiACwGqLNYDXESsOFQa2WLS2cc6Xraqshhm2l7GnxHFjt0BZ6bJKqYkRETlgNUUtfDTFcK+WSkF9gK2Vzi2cVusWza7gwoBqi93iHaTXESkJ8f18imL/U/+HgzjTQlxe0hPmSPA1rDNsREdHwZgrhJDswOt9p3GzTLqCjLXh6U0An3gKgc3vwBF5z3uZbZArbZR1Lxy15yz6+3Zw3HLTxTeNQIoI2sg++Ek3YDlv9ISwAeLTjRO3yuVODp7QFsMKEYUQEmDwDWFPaz7ddzF+F6ekFWmv8l9qEDmBrl3k80eCwn9aM2cAKxwRpiHfvQZXtjpzZhLdFpcreLKdq0EY2Y3kNSJZXm+zLAds2AlWG7d62u8L8pfY7/aAZEdyPix7TL+/NAju2AJawnWuANeg1VHK9hf/fiv/H/fU688rD6OQIERERERER1Q+rIeqFqoboGvJzqYZYEnTUVEPUBiEN1RB9QUeX/Tq0lmY1RCIaKlgN0Ui0LYkDqiGGCfmFaLWsrYYYWavlsuX9643NtwHQf1axKw2MM5/+pxGGYTsiIhrejGG7dpzVeS8uxdXaYVtVJq9sTj9/awuATMiawvsc5p9H6UuruVa2C/ojPebSRva5B41DUVS2ywccpHPYzvDtrBO6H8Nj7Sf4lrsEAqutbCddOyFXXwo8cQ+wa5tv3FTZDigEncakgvdRqZfXijVo9+1zm+k0pkeI51WYN6k3PWVe+4iZwKF7hJisycmyF0p+N4U+Kw3bdaYF519vfvJo209n9G29w/j40Qo/mm+/1w/everdFE4eG8gXTgd+fA/U9Nna8c+8Q+HRZcGPzNmTDPM//FfIr//TPXBKRERERERERJFiNUSzwGqIYcKFQdUQja2U+6shRtFK2aUKY3k1RF3osUmqihERORmohpgJXLXWGhFEHNM6B9j7Je3Yjh6G7WgQw3ZERDS8mcJ28VZMgLmPaI9jyMQUKmttARCmrd/7/0lbmrk1pg+sZLZscpo2ExAaDKrmJXf/1jquDc0AmLc4uj+B3cN2+it7fPcTFYftbKFBp7Dd5R8EFj5sHE8FVLarlQ07BQdfaQ5DHTUL+OqZzXSqzuPp+b5Fqsq3XDc9aUlVApj3xeFTOl12bAH++OOSZaaW2pWG7T7wizxeWmse175urHkdmH1gZTvsd9ie9vtozwmI5n5c+qx5bN1KyCWnAzct0rbFPeMABZdTBF883X+c8tyDkG9+tHCiN4xh8tglIiIiIiIioubGaoh6JdUQa9RqObjK4mC4UFsNcWDesv0Z53XZb0Br6SaoKEZEVG5s3vzZ8Y6QNVZoeGPYjoiIhjlTqEEh1Wp+y+0adLKF7eTOG9wmAaAmzdAuTxjCdr3r1znN+9Qb9lBHUAbDGrbbcx8kcvo0zhK3w3PiHrbTp+fayltW9rO1uSyyhRHjAVUB5a03rEE7AEjlzdW8XAOflbhzkf1xcfV5wyNc5hrBu2GBec0vnKowvmPo3xYDnrjHt6jdUGGxkrDd2m2C+Uvt6+jCdvLI7VDveF/4HZZ55/4w7n/6uKqnL3xDO8imtcAz9wMnneMbSjmea27XtJuVe38fPmhHREREREREREQNVVoNsa3Rh9NcQcQw1RC91QhDtFo2zttXuq4YxwOqIYbZb1A1RG9QkYgaYmx+h3GMYTvyYtiOiIiGN1NlO6WQaGuBkjxE+VNTkVS2C2OKvrdha9dWoEOz3/HTnKbVBTa83rl/wFvrRY+ax8ZMxLLOudqho2bZp/WKBRyC822Z06fnTNX3sg7vV6upbCf33hQ4f6Mq233hZnsMbY/xtdt31RJJIFsaUqy2st0Dr1h2N8z+WpY3lviWdYi+n3AlYbsFy+3jLZJDCzSBsWQ0tddtz5uN5i+kudux2W29lUu1Ybug1+SilG69lf77zskwCM4SEREREREREdHww2qIeuZqiNG1Wg6e11sN0VZlMajFsm2/QdUQy/bLaohUB22SRVs+jUws6Rtj2I68htnHh0RERGVMYbtYDKothZT0oFv502xRVLZDJsRfXUefYZ5Ht1+HqmyAPSwGAMfvPXhZFj8FuesGYPlLcKoJNmY89tr2Bp5PHeYbSjseHwCkA27ratvIGsN2VbaRjZ0xFvli1bxYDNj38MLlyTOgTnwf0Lk9cP6UoaIYUF1lu7XbBD+5X/D0G4J9dlO4+ASFo/YaPF0QVNVvjwnNdGqhjKGaYq24ViJrdrJyKeS2a4Fbf+Ebi7KNbF/e/tphej5i1zbIb78HWfgQoBTUEacCH/oCVCLct31P21/hsdf1x3DM7Age146v65Lp0Z6gi8UU4jEgF1CgTlt5tXuX076JiIiIiIiIiIho6GI1RLPSaohBrZb7HEKAusqFAdUQ+9c1VkP0hgdDtHgOrHaY01VJZDXEWhib34GNmrDdti5Bcz0jqJEYtiMiouFNTIkGBbQl0Z7vRndMF7Zz+4PJGrZbu8LpENWX/gdq3CTtWGLaDGCbZr/r1zrNHRToSMQL11EWPgz50tm+imFWYybi1K6H8H9j3u8benGN+zRBwcZq28hWE7az3X6t4jnwfB5Y+mzh8tJnIY/cHjw5gFb0IiZ9yCv/ldwZ4q7w2rBTcNIP8ljRX4DrkWWC3z8puPeLMZw4N/gx/efPBvTHbSDp6wvVRrO6encF2gpjQ4y8sRTyhdOAHVu046bQZyVhu9YWBdstbwzbPfAXyAN/GfhVnrkfeOER4Pu3h2pp/J6DFK68U7//Dx1Zv7Cdbb1rL1D49I32R2f5405EgNWvue3bh2/+iYiIiIiIiIiIaOhjNUQ9ESkN7kUR8itrtRw8r6Eaoq/Koq0aYoj9BlVDLP5UYGzfTmyMT/Ut37m9G8CoKu8tGi4YtiMiouHN0kYWiRRSok80uYZMjGG7MHklQ1U7AGht0U+UVW5vJIIq2xXJH38cLmgHAKPHISVbjcM9WUEqEfx2I6iCW7zqsJ0+zRdU3Q0IqGyna4UZkkKhlWyX8v9xPm+J4N0HhX+7dvPTMhC0K+rpBX7y9zxOnBt8Y86ZEnqX9WOoalfNm9qebEDoqfHv2asmd1xvDNoBQLvoK9ulewuV6lqCej17BOXijGE7nSfvA15bOFg1skqRnPzIOL5OWl5PJ3bYA4mA5nG3ytLrOAjbyBIRERERERERERENW0opIB5HIf7DaohexmqI2lbLfcC2Dfje17+OXhXH2L4dGJvfibH5HRjbtxMTZt0F4JBGXyVqEgzbERHR8GYM2wHo3IZUSl99yLWFpzFs1xPcQrRwHAoYPd44nDCEATMtKafpbZXZLjnV8+fu4qed5isxaizG9b1hHF60BjhmdvA0tsp27Qm4V7XK6SdqK7Z6LZN1CCLmTPevZCN7s9AV038LZrS/QrWTm5/WP+ZvXei2/UR/ocfm0Ruu1JpI8L306gb7+KTh8CWlxU9Zh9sD2hmPCvFYzAW0kW0LE7YDgJefDBW227Yof1sAACAASURBVHOCeeyA6eF2reVc2c4StnN4TPme/5W8RhMRERERERERERERjWBhqyHKnvvg7J73aAt8qM2rwLAdFTVvnzAiIqIo2CrbQRkr2wW1Ni0yhu369AEvnwOPgeoYYxxOjdKH6tJoK5SFDmCrzPae1ucKbTkBIN0VOFc5tc+hOLn7YeN4l+NNYLut3/02/zLZuRVy3x+Qv+6bkEduhxRDLTVoI2u8fw3V8kLb/0jjkCnoF+SZlcHr2IJ8e0xopu8clTGE7VQVDWMzAXfl6fs38e3hqsf+/DZVtgPCt5INetyGqmwHAOluyKsLITf9AHLb/0LWr7KuPmWMwtF7+ZcfMA3Ye0pztJE9albw5geWBwMreI0ewMp2RERERERERERERESBVEsLMGWGfnDDm/U9GGpqDNsREdEwZw7bqY98EUlDRadqK9vFXQIlE6ZCffnn1lXaJ+qr3v294xRjJTcvW9jutB+fCPn2pyG5nHuAxGv0eIzJ7zIOb3XIhvTlxRp6u/q80j9VZMObkM+eAPmvC4HffQ/y9Q9DvnIOpKerUOJZwxTuWbcj+PhMlQHj4pDUC7LXAVCnfABH9egrVr3lWByxEmMNhRE/d3KTh3IMbWSrYXuO/M/5CruNbfLbxMXKpdbh9nx0Ybug1tVhw3Zyy88gFx8DufYbkKsvhXzqSMhLT1i3ue6CGKaMHvx9fDvwmwsjetvj+lqZNa/XGlc4aR/75ol46eNO1q82rzxtltsxERERERERERERERGR3dSZ2sXCsB15sI0sERENb8bqbwoYMwEpMYTtqq1slzcHStTFVwCz9gcOPwnK0kIWAFJt+oBIV2wUkOkEWhPW7U1Vps7qvBcxCDD/ZuDQE61zGCXbgVgME3JbsDU+0Td844I8PnRki3WKtOV2vv+yGHYfXxY4+e1/A2uWl6743IPAvD8Y2/EmLFXoMr2CtlZzmKomle0OPxnq/MuAt78TuP16zOxdjadTR/lW+92Tghsvqnw3Or05QWtcGa/XCXtHu7/IhW0j6zKlJRz2uZOGftBOHEK5tjayoSvbWVpXAxVUttu6vvT3rp2Qn1wG9Utz4O6g3RWW/kcMD74K9PYJTttPYdLoiO7LrLk9bImAUN4HDld4+LUQFRn/+CPjkLrhOWDhQ5CvfsCwwtB/HBMRERERERERERER1cVh7wDGTgCm7AE1dQ9gt5nA1D2AGbMbfWTURBi2IyKi4c0UtovFgESyhm1kDYGMWAz4xFehHMMPK3a1G8fe2pTBjFEVHp8nLCY/+LzTsfiMmWAddrkNbUGeSbrr9uid2nXl0Tug3vUx7VjKUrXrmZXACXPNx5Dr0z9+4qiwxyuA2E/uG7gsbYYScwBmT6p4F0aL1wGH7mFuodva0uShHENlu2rayGYNd2UiDufnaVN77YXAVTrEXIYy6sp2KUuwz9mrz0N2bbOGlcd3KLz/cACI+D5Mm19PSmTsoTxbK2et8VOAbRv9yw86Dqp9FESxYDkRERERERERERERUbViF/17ow+BhgCG7YiIaHgTQ5klpYC2FFL5ndrhatvItuYz+oG2VKgAz5pOc+W6dVuymLGXffuatUGduS/UtFmQfF5b1Q4A2u1F9wDYb+eUbntd2AQAnpoHnPZh7dBR6WeN+9gekPupSWU7r3grlrfO0Q51tFU25R7jgTe36cc6+/M/xuvVvRXy2AIgH1CerFE2WFppahgLW3oYbwt7UcahozO4H7EtABe6sl1A2O6EnsfDTWjStdNYzbKmXNvIBqx34lyFoNqLIlJoAbz8JfNrX3nlP61hEBolIiIiIiIiIiIiIiJqEgzbERHR8GZrI9uWQko2aEd7MnkAwZWCzJXtTGE7c6U6nWTC0uI0Exz4qlVYTF18ZeFC+2i8Z9fd+Nvod/vWcalsZ1sn1RryoPr0AcIx+V3GTTrTAlsQxXT7VRxWPPPjZRO14rydt+D51GG+Vd/YXNkubFnOYnDKeL2+/SlI17zKdtxAVVW2M9yViWEStpP7/xy4Thx9SOQzyMb8Cc8oK9vt2bsan9t2XbgJTVxDb1Fz3e+GN63DsycrfOYdCtc94n/sPvhvMcj2zZAvvRd49XnrPOqcz7odDxEREREREREREREREUWC/YaIiGh4M4Xt+ivbtRsqOvVk3NqEmoIliVUv6wcsbUN1Um3mxM/WTZ2B25uqTMVRRWW7Uz8EdfK5hcuHn4Sjep7RruZSHdAatiurbCdBZcpy5slm9K7VLr96vn1OU2VAX1hxt5nWeYrUgUeXLmiJY0rfJu26nYa8ZhDbbVocM7VOjaxiX5MQh4pevYZWwcOhsp1sWQ/cfaPTuu2ib4/67KpwQUbTcwYAHl55Gmb1hqtOaJRuTNhOHrndbcXt+ue11y8+pvC7Tysk+4PFo5PAU1+L4aR9FeSqSwKDdgCA6QHlTQF7ApeIiIiIiIiIiIiIiIhCYdiOiIiGN1vYLtmOlOgDG93p6sJ28R36inlIhOsN2p40/1f90qvB7SFNYbvWKtrIqqNOH/wlkTLehk6V7WxtZMsr2/UGpPcMle0AIClp7fIVAdXjjPdvWVhRnX+ZfaKiUWPLJopbW3h2ZcJXbLPdpj1ZQV9ejE+LhIQsYzYMGCvbDYf6z0+5VylM5fXPkWWGlzIT03Pm6O6nsEdOH3qtSKMq23WbK2WWk6w9MauUwseOjqH7mhbkr2vBjp+24O2zFCTXCzx1n9tO2pLOx0NERERERERERERERETVY9iOiIiGNNmxpdBur/izbRMk503P2CrbJZE0VrZzCzkZ27S2G9rFvrnMad6iNktlu9FtwcdYkzayR5wyePm1hUgZgmzVVrZLloft0l32ybL64wCA5Yk52uXTxmoXD+7ScHxt5aG0A44CZu5rnwwAjj2r9PeWODry5uu1NeAqlxMRa9vPnl57m89WDM3Kdiqo6qGF8TkyDCrbYct651XXtU7TLp80OtwujdUgyx9b73hfuInLZRsUtnOsYgkA6AwORGt17QTS+kqDPnMOrmwfREREREREREREREREVBGG7YiIaEiT898Gee+MwZ+zd4ec0oH8xw+GZNKWynax/qps+oBWt0PYri8vyBtWa33mHv3A1D0D53WVyVr6NfbLGQ4wXmllu0QSyhs2Oe7dxspsb+0Ins4UDEu1Fqo+AYD09SH/0y9B3qMPAxXJzT8yjn1w5/9ply9dZz8+UxjQF9Lc5zCoc//JPlnHGKiOMaXL4q04KLM49P5NevtgfEwW5zNVcgOAxHBrI+uQwTO21B0GYTtxqcIWK7wdaDNUtnMJzRbduCCPK+5we81R/3IVMNH+nLZqVGW7MPu1BIAj2cdJ50BNquI2JCIiIiIiIiIiIiIiotAYtiMiouFp1auQfz0LyBsCaUoBbSljUOyJtanAXVgrhJlCS8eeGTivq4dWVX6MLhXM1P9n776jJbnKc/8/+3Q4fc7MmZyzRqNRlkYRJZRFkJAsIcAiWbbwxTY22NjGXF/jCzZOF9YPJ0zwta9tAbYMNhhMEkgIAUIBhAIKKI3izGjyzMmhu+v3R/fp06H2rl1d3X3CfD9rsaa6au+q3dXVrfGax+/7yx+q3bFsjczXa3tKmo3HWdvIDnjkTGxBnp7s1HbwqT+QvvC30Sc7uMd66OqBr4XuLwbSeN6eyPr2Y+HHat7z0tUyxshc/y6Z930i/EQbj5X5akiyL5W23j8pXtDJZ/zIeBPP7fxFM/d/J50r8/5PyazbHO9GVbHdj+wcCNvpsx+xH9t4nPSW35H58C2SpDcMfDF0mK26Y72v/zTQL/2z/btU82yl0jIrN8h8/Dbp0jf4XaBO8OAPmpqXWJwAXbOBwL0e7XZveK/M/765ufMDAAAAAAAAAACgaenpXgAAAIm4Wov+9IfStgvDj02G7SyV7aRSS87J6mph3KElS/mw7uiAXDX71aUfj0ZXybOtMeVT2e7t71fXjb/vHpPNqcdSEUuSntkT6OgV9ncxMmEJs5VbyAbFovStf4tcahRXoO17T0qXnxB+7IEXLOerfs9LVlQ2zTXvkLnmHf4LS2XUW7S3i4xb2e7Z/e7jUZXt6sN25sO3yFx8XbxFTIfbvxO626e5rO1+zPbKdoEtaCxJF12nrj8pheyC+++QJPXaWmp7Bj7/9V733U6r6sdo5XpJklm3ReaPPif90ecU7N2h4PUxQpP33ir9+l/4j2+VOAG6seYq2wV3WyqjVumajvcOAAAAAAAAAAAAKtsBAGa58TH38d3PWw4YKZPVSJc9/OYK00nSmCMIlQ0sCZWYYbtfv8QeVDut+8XI+WOWIJFPu1DT5fHXBGO0aeI56+End1sPSfKobDc8IB14OXodEY4af8567Mk99pDQ2UeF73+s+/ipF0891OSqJK3aoJwj8Glrs2tzwJE9laIr2zU8t6s3xVvANHGFUqNYK9vN9v+XlMFD9mNBVRCv/JtkC6QOj/tEFqV/vc897pHuE6de7Hy2cUDM38ZWtuSOJU7Ybqi/uWu4gpKSdPVN8c7nCI0DAAAAAAAAAAAgntn+z4gAALiNWoIRxsgYo3PyD1qnjoy7AzeuKmK2amUmZqDk1HX2Y8PF6P+M28JsrmpqkqRM1n180vFn6OSxR+zXj8j02Y5PVrZrug1jnW1j9kCcq3KX7dgx409NvZi/qMlVSWbFOhlJueKIRkOCn3HbyEYFREcmYrSRXXe0tHVbvAXMQuOW+5F+ebuKN71NWrtZ5qobZc5pXQvodgqGBxXc/BfSt/7VOsa88pqpF+XfpJytsl3M6oo2R41XBeyWrGocEDdsF6edq0XwtX9RcMd/SLuekxavKH3GN7xXJu34bR2N+O2sNnCwuYVF/O6ZS66Pd77ALzAJAAAAAAAAAACAaFS2AwDMbbbKQuVKP0vT9lCDq6rYwaFAr/gze/Uha3vabM5+0hDGGP3yyvCg2J3FUyPnW8NsjraqkmT+792R5y6daL6zqtjOQ+6QR2TYbsczfuuIYCStndgReuz2x+1rvHt7+P4rhm6fenHVjQlWJqm3z/p5PLE7XkjmyYjxIxP2cJkkZVQuhXjs6TIf+7qzjfKMYllm4FHzzlrZbt/z0lMPSt/9ooL3X6fge19OsMDOCPJ5Bb/zOulzH5X2hj/vkqTTLpra7i79Jtl+s257vDVre+3grZVt88bfaBwQ87cxaRA3+MxHFPzFO6V7vyW98KT00A8UfPoDCv4sog10nNawzYbt7vhP6yHzvr+TOevy5s4LAAAAAAAAAACAxAjbAQBmt20Xuo/bqh+VQ0SVUFeIp/faj335IXeoyRpmi1u9SdLxC+ytCPMF9zpsgUFrGHBS7/yoZZXkeiVJm8fDU2lfibhP1sp75cJ6wddv9luHzY2/X9k8dvyJ0CHffDR86kTevvaa+9fEZ1pj+Vr1FMM/j5vvjhe2+6e7ou+3TxvZrn+4W2aWtJCVHG1kPSp6jVtaLWeCqgPFooLP/23sdXXcI3eX/hel+pmdbCNrqWznI/C4zzW/id2NwbrYwc4EYbugUFDw738dfvDbtyhwBRXHY1y3/0C8hU2yXf+KN8tc88vNnRMAAAAAAAAAAAAtQdgOADCrmbf8dpMTS/8JXJKxh8522zNu+pcfRoTtbMGVJoJZuaz9P9fPOAKBUoI2sguWRKyqLFt6P7vSIW0hJW1e7g7QWMOAk11sBw/7rcPC9C2ubB9ILQ0dsyl8t57aYz9vzeebcI3KZLUzsyb00PrFobutHnzRfXx0wh4uk+rayM4BiSrbBXUP50Pfb8GK2uzxH/mN6+2b2u4rfdeHu3qbvuyegegxY6Z76sX4WNPXmjphgsp2u56VDu+zH3/8xy25btDfZGU7W5W/0SH7nNlShRIAAAAAAAAAAGCWI2wHAJjdmm2nVw4mLOi2t4Idd1Q2u/NJ9+lztspxTYTtLlltr45ka8MadTyqipWZtyBqWSXZbskYjViCOq5gl2RfX27PdhX/7v3SnV/yW4dNVWhwWT48mThoyf242ghfPHxnZdus3tjU0ioyWeshVxW6ZuQLgVdlu9nGKF4FwGqHLLnTWRk8HI0I0ZaZ7FTwzZSrWJ4wZu8X66ryKLm/K5NOGqsqIXnUCdETosRp51pvNCIwZ6mIGhQK0kSM78hA/Mp2QRBIE5YfpQ1bY58PAAAAAAAAAAAArUXYDgAwq5l0RuYvv97ExHIVIEf4LSrIZpMrjqjLFv4JaZ8YZeNieyDQVrmuctwWtotqI+vJGCNlc3rz4VtCjz++q7k2sj1P3Svd8ldJlyctmCoNd9Ohfwkdsm9QGp1oXKcrQLR2YufUiy2nNr08SVI6q/fuD3+vd4d35w01FvIe6uWL7ipkmWBCuvad/hed5fpHAv2zpUrlbAweBk8/HDnG3PSHofs3TTxvnTMaFZr1uFXrJqpao67cED0hSpLKdoOHIo5bqlXa2pLbNFPZbmLc2v7YnHdV/PMBAAAAAAAAAACgpQjbAQBmPXPmZfEn9ZcrDnX36HhLRSefAEkYa1W78vXi6u7pth77yQv2gFUQBNb3kAscQZW4Vae6e7SssD/00L3PuqeOWivvtSYMONkiU5LmFwetw74aklG6Z3v4vU0HE8qoKn2Ua779piQpk9XyQnhLy4EYt+ErD0WPmShIf/+98PCmCYpKqSizdLX/RWeM8BaaUfHDm++2jwirbBdYQlAzxve+HD1mw7GN+zaf5Kx2edDRvVSSntwdfdme6t+cXPzfwQZxg29VgoiKmcEd/xl+IG7Arz9+ZTvnNZr47wcAAAAAAAAAAABai7AdAODI9PVylbNszhrsslWFi6ogdii12H6wibCEcQRT9tvzYxrPS0XLUnuLjnaT2ZjV97p7lFc69NCiiBzayHj4AntcYcA4lq6sbC4o9luH3fFE4zr6LVmevMnU7sjNa2ppFemMii34K9mdT3pUtivYn5nAlNfQNfv+ethsG9kvPeAI2ymknFvRXmVyRsjag7kVPSHPayGvvqK95OFju9ynfOFA9P2vqabZ2xc5PtJ4gt+IwxEhuIVLw/fHDdsNRFTQi3uNJiqjAgAAAAAAAAAAoLXC/2UcAIC5bnys9Geu11rlzRa2GxxLcN1mKhM55pQCQdnQY642uM42snHX2J3TaCE8BNId8TeNIVvlPUeVrVjWbK5snjn6E+uw/pDLZVKe19h0fMxF1V8oq0UFS9tKSYVioFRXeOW2akMez+VEQerORAxK+n6mg7FVtnPftzuesB8LrfT28F0Kdr8QZ2WdsXqTdMLZUjo79dsWJpWSTj6vcf+u57Q+b/9NyEdkDD0ez5r7aRaviJ4QpVBQkJ+QSUc90CFSET9MGUtoMW7YrplWt64QYbOV7WZ6RUYAAAAAAAAAAIBZhLAdAODI1t1jbZ84aMmeuEJskbLNhe3mFwY0mGqsBjU4bA/bvWzPbzlbRsaunpTt0av3fkv/tOjGhkO77cXkNDQW6LbwDr7qbVFlO2OMgoXLpMP7lAvsIaTP3RvoM++o3bfHUuhreX5P7TXSCf86lc7q9NEHrIdHxqX5Hh/JeCF6zERBuuuZ8GPX93+xtHHC2dEnmmGarWznEhbCDd5zRcuv0zIr1kvD9up0kmRu+qBM36LGAzf8lszNf2GdNzQWyNaqV/L7TXRW05z02l+QvnFz9LhJYyNSM2G7w+Ftm2vOGyZu69pmWt2OOeYkbVkNAAAAAAAAAACAxGZfnzAAAFqpO2et8vbxO8IDPCOWamy+12tmzvkjd4ce+uRd9qDJez9vL0flbNMat3pSrlfzi45+thZ/8jV7QMoZBpSkVRujL7ByQ+nPV7yqsuu9+//KOvyJl2vX88nvhq/v3JF7p170OVoG+8pk1RvYg0jPRuSCJk3kowNntqCdJF0wfFdpYy4FehJU9LK1l56x9rxoP3bs6TIf+5rML7w/9LBZe7Qkae3EjtDj/3SX+z76hO0yKg/aeJx90Mr10Seq1kzlOEm6+xvNnTd2ZbsmnqG94Z+BpOYr2wEAAAAAAAAAAKBlCNsBAI5s3T3qtlQ8W2TJNUQFSzKBI43XTFgi16ucJRDY12Wv1nbnk/ZT9rrCbHGr72W6reuTpB0Hw4M6X33YEbZzhQHXbpa59p3R65oMNmanAo6u9/2NR/yCWTXPi63dZBzprLPq1+0/81uXT2U7l+7J5zbbRCB02jXXRtbF+QzOMuZ3Py5z1uX2AdnSc2z7Ldx5yH1+nwBy5ZNw/AaaqPau9ZoN20WxVaSLez1XS1ibpx+2H2umMioAAAAAAAAAAABairAdAOCIZD58S2kj26P7c6eHjtmwJHzucESw5F0HPmU/2EzYbvk6/Th3Ruih9fPsYQ5XUa/lhb32g3HX+ND3tXHiBethWzvWR3faT2mrNihJ2rFdOu2i6HUdW75nY1NBtjMc7Vrr17nAkjnbk1o+9eLAy9HriNLd7bx/43m/00wkDNsdO/6EJMlkWxAg7DB7G9nmK9udMfqTpufOOJuOdx/vLbWo3p7dHHp45QL39LGIZ/TCoe9NvXBUTgwO7rEeC79wk2G7hUubO2/ssF0Tle0c37/ELasBAAAAAAAAAACQGGE7AMCR6ZxXS5JMd4+uHfhy6BBbBTtXFaf5hQH90uGb7QOaCNuZri5dZ1nj4bFU6P5iMbAGYF438DV3va+4YasLrtbqvD105tNisp6zjezqTdJxZ0y1iQ2T7Za59n9Iksxlb6zsvnzoduuUQ3XF5Wzrfkv/v0+9aEVbx2yPUrK3/PW9f76hPJtzRu5LdoLpZHmghwL3s7x6of3YRUPfT7CgmcVEtQbefKIk6fLB20IPDw65E8auZ68rKOjdBz85tcPRStucdZnzOg2aadMqSYf3R5zXFraLeb3xMQVF+3e7JdeYZJqv4ggAAAAAAAAAAAB/lEcAABxxzFdemgqfdOe0dfzp0HHWsJ0j/HTbC6/VSWOPhR/s6pLSmRgrnXJsbl/o/kf7w9NC/Y68xv/c9xH3xWIGyMyxp6v7B/9tPe7TYrKes7LdWZfJdHVJNz+g4ENvk+7+Ru3xi66VecNvyJxyfun1ivWVQ73BiC4e+q6+O+/ihtN+6s5An3hrabtQDKyV4rZUPy8XXO3xbiKU7/flg7fptvmNrT4/9u1AH/S4TNLKdtlgXLryxmQnmSa2mNGtoyc75+UtOahP7Hq3svJIOWZz0qLl0eNarZCX9u/yG7v1tOgx5WfwiqHbQ5/Be1/MKggCGUugy9XC+D9fukFXD36t4VqhFljKido0UdkuOLC7+fM+93js62moX+pb5D08uO/b4QdOvSD+tQEAAAAAAAAAANByhO0AAEeW86+SWVwVjsn1qicID1bYQmK2/YsKB3Wmq/Vkd481rBKlN2VPsxSKgVJdtef95iP29pm9lvdbEbdaW3dORlJvcUjDXfMaDoeFE3f3u9t79hSH7QfL6zO982U+8l9e66u2fuIl69CJfKBM2jgDgj3FqiBgCyrbme4eBbJ/LgOeha5cgSevdUjOqmOz1fBYoN5uS0jMUpFtZd6vnan56k6ZnsZnvt2CPS8puP5ov8E+6ys/x86Q67OPVSrg1Zuw3Me3H/psbdBOkrKO70zc79N4E21kHcHgCkt1ueDRe+Nf78e3S5dc7z/eFujLzr3vJgAAAAAAAAAAwGxEG1kAwJFloi5FNTZibVk6Mh4eCBuZCN9fE8IK4wqZRAj229u0Hg5Z/of+2x5mc7ZoVSn8FctkUMdy3uGQ+/jCAfcpjx7fbj8Y9z4uX1fzMi17Km3fYOlPV/XCmnDmi0/FW0uYcsBtR3pt6OFVC/xOk7SynSRpnqOv6gzWa+zpyJ2H7fNsYbtM4FmOMao960zg84yWv1NDxv5+Jv7jk9ZjtqBnNgj5Ij1nqfwpSas2liqA+mqmst3uF5s/7+qNsa+nQ+FVSa22nBK+/8kH418bAAAAAAAAAAAALUfYDgBwRDEXXVe74+TzlLNUczowHF4NyxbEslXIq0hQBe3s4k+tx8KqsE2GxsI4q1dJ8aubRVTFClufq3LcttGHdMzEM9bjccOA9ZXHruu3V8Ob/Gzdle2qPucTzoq1llDl93Pp0Heca4piC475WFeu9mfiVOCaQa6Z97D1mO2zLBYD673Neobtmq1U2VHbXhk5xKTTUiqtc0fusY4Zyaesx8bz4eHe0Pt47Bn2dSxcKp39KvtC61kq0DmNe8wZm6qsGXzlH1X8jctVfP1m6Uufjn+9uIHA8bHw/UefFP/aAAAAAAAAAAAAaDnCdgCAI8vpF9W+nr/QWektCBpDJLbwTq+r9amUqEVn38WvsR7bGxKsOzBkP1fLQ4ERle3uCsnNPb3HXnnv6y9cE3G9Ju5jb19l84zRB6zDdveX/nRXtpsK65hjtsVfS73y/btw+Aehh33Ddkkq231g35+XNjYd3/xJptHJ2Z3WY7b79+5b7M+gV9juihuix8wA5oKr/QZ292hR0V4GcKTgCtuF7w+rEGhOPNu5DPOhz0gX/pyU7S7tmO+otthEZTs9FP49qzFa+i0PbvlLBR99l/TQ96W9O+zjX3eTtcVu8Mwj8db34PdCd5uzLo93HgAAAAAAAAAAALQFYTsAwJGlPkjW3eMMnz30UuO+YUsOx1Yhz3rtGHpyaeuxrzxkDw2FniuijayyMcNs5fG2+/jZexrX92/3ha+5r9CvFYW97us1cx8XLqlsuj7vLz1QWtePn/dswxv3XoWpVAYMX9d4XioUoz/jJJXteovDkjFSJtv8SaZRT5c9kRgWjh0aC/TJ7yYM2/XO91lae8SpqOf7fcn1On8bnhpfZj1mbyMbch8j1mPmLVDXn35e5uu7Zf7jKZmv7pLWbQkf3EzY7vEfew0LBg8r+MLf+Z2zOyctWh5+7Af/7bmwCJPhQwAAAAAAAAAAAEwrwnYAgCNL3+La1909WpXfbR3+dhpawwAAIABJREFU05dCKtvZ2shGhdgShO0W9NjDNWMh61m5wH6ulocCy5XmdqTXhB4+ZW3jvhULwt/PQMqx8Mr1mriPualWsvOK9rJ/k5k2V3Ctrzgw9SJlr/blzZT+OtbreH5GParbJals1x2MSUEwO9qihkiZQNliePvNsO/rNyOKjWXlccMPRoRCZ4rFK/zGZXNaXthnPbw3P896zPZ9Cb2Pnt9f090js3KDTCpln9NM2O6YU/3GPXqPtOdFv7G5Xmn3C+HHTnqF3zkUXkm1YjSicioAAAAAAAAAAAA6grAdAOCIYnK9tTu6e7R54jnr+NGQEImtjWxPGyvbdffYqxqFrfHE8NybJKlLEVXSYle2K72vvmJIP1tJYyHrG52IV42vRjP3sSpwlFLROmwy1OYKt2VU9Ya2nBJ/LfW2llrRuiru2aopVrNVF/ORDhJMngmM/f6F3buDw+7nLxN4hO2WOb5kM8nxZ/mNy2S1oDpIWmes2Bgs3XUo0Me+XdQdT4TPCa1s10yFNtt3fjw8YOk0HvE7Pan/oPcpTXePVLR8h+Ks0bW2o0/2P0+DBL+3AAAAAAAAAAAAqEHYDgBw5Dj29MZ95RCHCcIDWB+9NUZlO0dYSlKylqO5Hp03/MPQQ997snGN3/lZ+GnefcCjLWLsynal8b914G9CD4e14rUFFn/l4P/1vl4sS1fVvLx88LbQYZ8pt7z92cvhp1mVrzvQ2xd/LfXmL5Tkroxou1/VklS2SynfmuDgNLKFXV862Pj9KNjzlpL82siaba/0Wtd0M2l7C+oaES2EDxRqg8ov7A90wUeK+t0vxGzH28z31/LbGdiqybk8b0kG1p/76Yf9z5nNyVz5i+HHfvJd//O4KvWtWOd/HgAAAAAAAAAAALQNYTsAwJFj7dENu0w6I6XSOmP0gdApT+9prMI2HW1kle3RUZYKfPc/73+a9RMebRGbDNvZKttJ0kTe7x4uy9vbWE5dr4nQYl0rzQ35kASgpIHRUivHv/1OeIBo43jdzU4SoJxUvn+uyogvehTZcrW+jZIKCg2BxNnG9v371J2Nn+Xd293n8gnbteSzb5Zvu99ykNNLuhS2O3YsPIz2hZHaCnl/e0egZyO+ruGV7Zr4HbR95//7H+Ofy9e//n/+Y7t7pFyC3/dJB+wtzZv63QMAAAAAAAAAAEDLEbYDABw58pYATXePFhQPW6fVh9lGLafpbWdlO0kTyniNCwJ7pam88ahyFXed5UDPfEfY7uEdta/trXgj7qHUVFjHLFtd89rVJvTFA9LmZeHHxrrq7k2SAOWk8vtZUOy3Dnl2X3QbyGSV7QrNteScKYzRmAlvT7o8pPjggoiPLevTRrYVn327pTyr2kmVyna2+7imqzbxGVZRs17ofWzmvtmeTd8WuWXBIY8wbzOKBalg/wK6fpNrvPCk/di8GMFJAAAAAAAAAAAAtA1hOwDAkcPW8rO7R5cM3WmdNlBXcGx4PDw4EVnZLk7wpd7azVpesAdFisWpNY06ckJrJ3ZGXysbHraxKrc3vHD4B9Yh/XW3punqgFJzYZ2zX1Xz8qyRH1uHDoxJKcvfkPq7ap8hk0rFX0sdk05LqbSzMqBPVmc8QdguHeSll55u/gQzwM7MmtD9qZAicAsi8qQ5R5XBqUG90WOmW5zfnHJlu+eym8JPFdQ+YPW/i2FyxZBBzVRosz2bcX9ThwfiX9vHqo3SsvDnT5J/kNUR2DOzvPIkAAAAAAAAAADAXEHYDgBwxDCXvTH8QHeP3nnI3o6wPlTywoHwcbmoqmxdCf6zu3qjru//ovVwdcDOFmSTpBPHHou+Vtqvgt4kU25p6QoD1q/ppzvCx7laqVY0EbYzR59U8/qaga9ax/aPSE/tCT/2Gwc+EfvaXiLe00uH3NMLxcArkGeTUkG68sbmTzDdjNGvH/hk6KG7nmncly+6T9e20GfLeLaRjfNdzpTGXtf/X6GHf1aoDZO5Qr2TQitVNnPfrvrF8P1jHp9TkvG+1h8jHXWC/fi453WTrM+3tTAAAAAAAAAAAAASIWwHADhy9C0O39+d09LCAc2zVBb7f3fVJnN+8kL4aXrCqjhV60pQBS3bo4WONqPVYbZhS4tWSeoNhqOvVW4nGcvKDZKkxYXwJOI92/2SYF4VxZqpjCVJ2y6sbLpatn7qTvta1+R3Tb04+bzm1hGmHEDaPL499PAffMl9/8bzyS6fCgoyi5YmO8k0s927sPa6US132/ocdlKcyovlynYbJ54PPXx/YUvNa1eod1JoeLaZsOxCy7MZN5y215LyTao7534e7rvN7zy2UN7azfHXBAAAAAAAAAAAgLYgbAcAOHLYQh7lkMlSS1Bsn727Z41s4Ei5SfbepD66e8KrRJVVB19GHMvwqtiVbiJsVw6aZIPwBM6uw1PbQ2P24FjkPZSaryiWmarylVZBJggvb3bX0671Vb2/VoatygHH7dnmQjVR4bEo6SCfLAw6A+QCe6vO5/fXfqZR96tLHuHQaa1s5ylOm9XyM+j6Do5NTN0X1+/MpFzY700z9802J27Y7rnH41/bR7ZHys2zHg4esLcpr2F7P7PhWQMAAAAAAAAAADhCELYDABw5Nh4Xvv+Zn0qSXshsCD28pLf2dcaSSRrqsoctJCULM3X3OINy1cEXV8Wp3qhWt1Jzle3KYZDd6ZWhhxdV3cODjuJ6y/L2VrQVme44K5uyq7ZiV2DC/xo06qgStzZfVRmrlQGYPS8lmu5TZcwlpWLz93VGMDp+zB6kqg/M5hOGEyXNjvvV0+c/tvy9X1AcsA6ZbKmdLwTq9yj+17I2stawncciqjXz2+aju0davtZ+vOj5wNneT9LfmiQ9pgEAAAAAAAAAAFCDsB0A4IhhbEGLk86VJL1q8Nuhhx+t6hxaKAbWqliXDt0RsYAE/9nNZNXraG3p20bWq7JdU2G7UppuSX5/6OGaMKBjfceNPxl9rXQmekwIc9Uv1rx+xfC9oeN2HrKfY+NEVQ/hVobtTr84ckjgCMz4VBlzSakgbd2W7CTT7JyR+6zH6u9P0kqAktoX3PJhjN+4vkX+5yxXtLxq8BvWIZO/M4c8ulFLIa21UymZZr6/tu/agZfjnSduOM9Xrlemy/H77tm+NrBVtstS2Q4AAAAAAAAAAGCmIGwHADgyLFxqP3bi2ZLsYbmdh6RisRR0coWa+ooR/WZTzVe2M8aox5Ht+a8Hp4JYLx20j8s5AnsVCdrIvnooPLD499+bWp+rsp2rVW5FsyGnTbWVDW/o/3zsU/QWqxbfwgCMOePSyDHjjop7SSvbpYO8lGouxDhTZGW/CT+oaw38zz9sQaWv2XC/+hb7jy1/r5YU7D8gT+8p/bl/yO+UDd/nZr8zLWrZHNwX/vuUSFfXVAD4ul8JH3PPrX7nsraRbWHLagAAAAAAAAAAACRC2A4AcGQ4HF5xTVKlalKPI4j2k3JBM1eoKTIolqSNrKRc1l7N6puPTIWH7tkeHiTKFUfUJY+QUYI2srlgLPRwvji1bVuf5Fl5r9mQU111LNfnbVMTVmxlACYb3ZL0qT32Y4kr2wUFKZVOdpLpVK70Nr8Q3gL1zidrn7lCMXRYPE1WWOyoOGG78vtxfQdvfax0Hw/4hu3qz9VsNUjHvODgXv/zvPR0c9d36e6Rmaw06FrnIY8W2dawHZXtAAAAAAAAAAAAZgrCdgCAI54pBxmOHXvCOua5clbPFWqKDIolaSMrqeuwPawxvyqrtbg3fMxol2dgo5nQ1ZMPSpKeyB4TeviE1VPbWcfpIwOLxjRfIXDD1pqXayZ2xpreXRytDSu2MAATDJdCYn+36z3WMfschROTVrZLqZCo8uJMMZjqC92/dF5tUHXbevs5fm/fR/0uNp1hO982sju3+5+zHPhcVLT3Ue4qX9Y7bFcfaPUIlYZastJ+zLNFqyRp0/HNXd+lqlqfWbrKPm7PS9HnsrW5Tfpb4/u8AAAAAAAAAAAAIBJhOwAAsqUKZRcO/8A6ZGS83EbWWdkuolJaC8JM3cXwawxVFZRLFLzKZKeqNMVRbsV7wfBdoYcPVWXoXIHFyCunM82tT5JZuaHm9SXDd8aa3xAEbGHYzpx6gSTp5/u/YB3jum9JK9ulg/zsqNRmE/FM/PCZ2sp2EwX72Df1/2f09VIpma6Z/9don/bEFd2llK6r+uXkc3ZgyK8Nb0MAudnqias22Y/ZqsElHeur+nfgouvs48Y9KmmOt6myXdCCtskAAAAAAAAAAACQRNgOAHCk2Hyi/ViuFDLJakKZIDy1NBlgc4btoirbJWwjq0vfoA/t/XDooburCljZ1vjawW9GXyPdRAtZSebk8yRJJ489Gnp8Z1WxLNv6zhz5cfSFmlxfxcKllc1czDayPXVBR9PK1o4LlkiSFhUPW4c8+JI9MPOpO5P1RS1VtpvFbWTLfnv/X4buf26/9NTuqfuXt4Ttfm7gK9o29nD0hZI+h52yPrzSZJjq5/m6/v8KHfPtyTayw37nbPiONfuMuSrixQnQ/eS7obvNOz4ovfV98dY0KVf1O7Bqo31c/4Hoc1nbyLawZTUAAAAAAAAAAAASIWwHAEBVyOTYsSdDh4xOhu1cbWSjWqAmDdtle5zXGJ0oBWGGLWvsLXokZDJNhojK99BV3W/XIXd1wPlFR5/USUmrrx3eX9k0kub5XLOs4d432xIzTFWYZlX+5dAhn/+RPWz3xQeSXT4VFGZ3Zbuy+kBktVuq7l/ekk187eCtfheaLfcqTkiraqztu/jYrtKf+z2/Ng1huybvmzHGXt2tFdXqcj3q+tU/aa6CXNUcY0ylUmq94P47os9ley/ZFgZ7AQAAAAAAAAAAkAhhOwDAEcG8+XfsB4tTyZtcMBY6xKeyXWSltKRtJ4f71ecIhz2zt/TnqCVsF1l5T2q+Ytey1ZKk1RO7rEMe3lH60xYGjGzDKzUfBrQY6prvPbbh/rWyst3ilZXNl9OrQodsWGKfnk1YlC6tWR62K7eRXZO3P38PvRgdtksHeb/rTXdlO99WynGe0aqxL2TWhw45dV3pzyHPtsUNLWmTVE+0vRef9qySAlcr1ZGh0p/NBPdefsFrPaaqqqbVmOW9tPK3BgAAAAAAAAAAAIkQtgMAzH3Zbun8K+3Hjz2tspmzVI6brGg3agnb5Yojioq/mISV7cwJZ+uyIXt1pMk12gKBXmG2ZtsVnn6JJOnM0futQyrrSxQGnL5AWMP9a2EAxvQtihxje/YKxUDjnhkxm1RQmBOBHler5Or7N2FpI5sJHGnaarMlmNhk2G5dfkfokMnfFlsb3khJ7lu53XcD34DceHiQWpK09TT7sShLVngNC3xCgZb30tKW1QAAAAAAAAAAAEiEsB0AYM4zf/6fMn2L7QPmL6xs2gJff/zVcgtUa1U2j8BH0jayp11kbTEqTVWMGxkPr+DktUZboCWC6S1ViEvJUjJM0oGh0rpsoTGv9SWpjBXissHbvcc2BDHbFID5n/s+Err/24+Hj7fdzzhSKljbX84OpajrhvxLOm7sZ6EjqkOotrBYWr6V7eZ22O6SoTtDhzy5u1QhzlYZMFKS76/t+Tyw22/+uOP3Zfna0p+nXxxrSZJkrv/12h3bLgwfePNfRJ/s8R+F7/cKQXtWOwQAAAAAAAAAAEAihO0AAHOeOfsK94CqkImr+tt4PtDIhCXIVvSoWpS0jWyuV2kVlAnCE3+TYSJrm1afynFJAmSbT5QkbRp/LvTwlx6ICCz63MMWt5FdUjzoPba3/v61Opy27mhJ0qLCoVjTbPczjnQmJZP0+Zwh3nL4ltD91aHExG1kM7MkbJft9h9b9d13tcR+eo9UaDZslySkaPltCm7/gt98VwW8yTDbAkevZpueulbUtnaxQaDAVV3Phcp2AAAAAAAAAAAAM8bc+FdVAACSqAoy7E7ZWwJ+6zFXi1afynYJ/7NbbjVqC80NR7aRbXPYrjx3sGte6OGVC0uVl6yBRZ/1Ja0odvTJNS9NEL6WMA3ra3UAZnhIkjRu4gUKh1oQtktlWxti7LiBqYCi7Tka8Wgjmw48+6Ompjts51nFLM4zWlV1zhX4vOuZaapsNzwQvn/9MZ7zB+3HJit6erRzbtC3sPb1vAX2sU89ZD0UuMKARY/ncvVG+7Hla6LnAwAAAAAAAAAAwAthOwAAslOBFFcbyef3B9YqYjmvynbJ2siacqtDW/W9yfax9spxHmG2JNXayvdxX3q5c5j9HvqE7ZKFwswNv1XzetuYPfxSr+H+tTpsd6DUInh9/iXrkIl8YzjwwFDyS8/6sN341HciF4RXD6t+7qzPoE/gU2p5hcW2ifOMbjq+snn+yN3WYSPjUrHpynYJwna7nmt+rlQTyGxQbjNuzrws/nlPfWXNS3OW4xyjji/riOPY+q2RyzAbjpXWbWk8sPkkmZUbIucDAAAAAAAAAADAD2E7AMARz6TTUqoUhHtT/39axwWBq2qcR9gulSxsN6m3OBy6/0fPlf584MXweV5rnKzw1IxyK8bXDXwt9PCjO8phQMs97O1EZbtTzqt5+fOHPVtQKuT+tTpsd9G1kqTjx35mHRLWIni/o2CXr3R3ghDUDGAuuLqybQuVPrG79Ge+YK/MZvtuNUj6HHZKnGe0qqpbX9H+UO0blPKeBQAbJKls9+q3hu9/8gG/+f37w/en0lOtYF95TeV76MvMr6tsd9F19sGH9tmPuSrbrVzvt5bf+2Ttb3hvn8zvftxrLgAAAAAAAAAAAPzM7n9ZBQCgVbI90sigsoG9J+ePnpOOWhZ+zKsilmlBxn3VRmubzL++PdBf/rx9qldluyQBsnLIY8NEeNrv3mdLf1oDiz7rS1pRLFfb4nZB0dKaMkTbK9utWBd+nSpfeSjQ28+tbSF6YNi/Fa5Nqrs78TmmVc/U55pzhEr3DgTKOXJyXoFUKXGFxcSMZxvZbIxn1HPsn3490OtP87x+vSQhxaWrwve/+JTf/P6D4fsXLJEp30+TyUof+px0/3cU/PRuaXxUZsESBZ/+gPcyTSaroGe+NNIYWAw+91GZy94YPtEVtvP8rTGnXSh95kHp7m+W2paf8xoZz6AeAAAAAAAAAAAA/BC2AwBAqlRcWp3fZR0yNBZoZCI8ZOIVFGtFZbtUSpnA3up2T789eJWSRzmqJG1ky/fQ1Yq3ULS34vWrDpjwry51YbvewLOSmUIClbkWh+3K722+o6rYD56W3n5u7b6DLWgj2zXbw3ZV7UnnOarT3f54oMuOtwfFXEG92uvNgsp2qXSpaqevrN8zMJ6XCh5tZLeNhrRoTvL9dbThDsZGZKICaQO2sN3impcmnZZe8SqZV7xq6vy2sF25tXeDbC40bKfDlup6Uk0r5AYxgr1m1Ubpul/xHg8AAAAAAAAAAIB4aCMLAIAkDR6SJF0xdLt1yFHLTbI2so6wiLcd27Umv9N6+EVLnkSSVuT3RJ8/Tjin3jM/leRuxTkyLo1bMn/dwVj0NRKGnEzv/LprjmtlfrfX3J5i3We8alOitTQ4uFeStCFv6QMsaSLk3oW1lpWkBYXDXpdNBXmZOBXQZqLVR1U2zx75kXXY/qHwezjJVdmyRmYWhO1iVl40vtXyJOWL0dUUP7j3Txp3ppq/b2aRpayoJA17VKi0VY7rmR++v/rav/4X4ft/9U/DJxy2tIudt8B+kRZUtgMAAAAAAAAAAED7EbYDAECSFiyRVApf2ew4KHtVNp/Kdq1oI3vMNv3m/r+1Hj7sWMaW8Weiz59gjebyUg/bawa+ah0zMlGqjBXGK+iUtI1siD/a+8de4+rb95qu1v41ypz72tKfjjEHhhpDTrYA6KaJ572umwoKUneCioYzwbLVlc2VBXuodGTCXZUtFXhUf5QShcY6po0BrXzEbTp75D5dHhZcTlLZrqrSXANXUK0ssI3xuU9XvFlac1Ttvi2nSOdfFT7+yhvD9z/7mP0arveQpOIoAAAAAAAAAAAAWoqwHQAAknTmpZXNNx++JXTILT8KNJqksl0r2siecJa2jT1sPbzb0UbWq3JckgBZuaXiksIB65Dn9ktjScJ2rWjfufW0mpdvsXze9WoClSvWJ19Hvb5Flc3fOPCJ0CFfCenM+YUfh3/miwqHvC6bVl7K9XqNnbHqAlPnDN8TOuzLDwTKu8J2Pq2WpelvI+tTha6ZsN2WU7yG7Xe0Lv7Q3j/WrS+8Lvw3Mcl9m7/QfmwoQWU7jyCbWbpK5uO3S299n3TOq6Vf/AOZv75VxlKpzpx+sfVcwT3fjL2+Vgd7AQAAAAAAAAAA0LwE5SUAAJhDqtpo9jqq1O0dCA82eVW2a0Ub2WzOea0fPO2YGliSgtWSVN8rh3t6A/v6vvVokKyyXSsqitWFa3I+QUnVBSrbUQmuKvDW42jFWywG6uqaClsdsASfeoMRdRdHNdblXmupst0sb1NZ95nOK4bflJf73ZXt0r6V7aY7bOejmWc00+017IeWIpm/t++j+sC+8JarkpJVtnM9oz+7Xzr6JPf8JJXtJJnla2V+NaQ1bsxzBnd+Weac1zQeGE22PgAAAAAAAAAAAHQGZRIAAJCk7Y9UNhcW7RXBntsfvj/nCJhVtCJst3O7egN7EMvFK8yWpIJSORSyMr/bOiRflMYteaaMTxiwFW1kjzq+5mWX7NUAq42YqvBSOwIwVeecMPYwV33b2ONXh4/7fu/5kUE7qVzNzTNkNVOZukpvd/eeEzpu68qINrKzpbKdj2Y+08d/VNm8vv+Lsaen5Li5kpROELabv8h+zKdq6JglVNuO73Ldb0yNPS+G708YBgQAAAAAAAAAAEBnELYDAECSzriksnlD/xesw2xVxLzayLagFaA54xK5Gkj2OzJ/XmG7JJXtsqVwjytwc3BYCSvbJS/Ka1791qbmnTty79SLdgRgqqorvm7w69ZhI3W3acKSD7t46Htel00H+da0OJ5BXjl8V+j+wTG528j6VrZL8j1pBZ82ss0EAk85v7L5vv0fiz09HVi+3JMSBI7rA5U1bEE1nzHt+C5vONZ+7ODe8P3jtvW1oYomAAAAAAAAAAAAmkbYDgAASWbTVCWirWNPWcftGwzf37E2sis3SJLOGPlJ6OG7nrZXaetUZTtJumogPCz2N7cH1nCYX9gu+T00p14gveZtNfveefAfIufVtJttS2W7qVDN2omd1mH1le1s4bEzR+/XJUN3RF42peLsqNQW5bSLKpsXWMJ2338qqo1sRFhs0mwIJ6abqAJ5wtmVzTNHw39jnJeMun9J79vmE0N3B/fcGj23g2E2Y4z0tt8LP/jUg+H7qWwHAAAAAAAAAAAwKxC2AwBAqgk09Pi0hK3jNacVYbvyOnssrWRtbW5NUFRaHkGiRJXtpu7hvKKlBKBreocq20mSufj1Na8HuuZHzqlZX7YN1aZqnkF7pcQH67pQ2sKL6SCvrEdr3lRQaNl9nVZVoSnX93FozH4K7zayrfgut1szAcq64JktNGsTef+S3rfu3vD9P/xa9NwOh9nM0pXWY8GLIYHuTra5BQAAAAAAAAAAQNMI2wEAIEkr1lU2XW1QbXqKnWkjqxXrJUlPZLeGHs5aMlPZYNzZfrYiSeWpZasqmy9k1see3t3BsJ165tW8fC6zMXJKpjq4Nn9ha9ZRbcGSyuaywj7rsJGJ2uqFeUu+KRNMeAUY08rPjcp2+3ZVNuc7wp7P7LVXf5w1bWR9pON/V0xdiHRpwZLetV0yqrJd0vv28vPh+4/ZFj133JKybFeYbYXjN/DZxxp2BbYwYJawHQAAAAAAAAAAwEwyC/6lEACADqhqnyhJS/P2sFMYv8p2LfjP7qbjJEkLi/2hh8ctWRevqnFSsjBMVbhk29jDsad3srKdNp8Ue0r1+uor47WCyUy1/cwF9vJrI3W3yVrZTnmvezpnKtttObWyecXgbdZhA45crFf1R0lKTfNfoY1HdLaZAGW2u+bl6wf+K9b0yPuX9Ddw7ebw/bagmscY064w25mXxluL7T3kCNsBAAAAAAAAAADMJITtAACQZOoquv3N7t+ONb+n2Jk2ssYYaeOxesvhW2LN8w7bJQjDmKoA0HnDd8ee39GwXc7SjtIhU12164KrW7OOeqdeUNlcnt8TOmTn4drXtrBdJvAM26kwJyrbmQuvqWyvLITfO0n6lx+2oLLdrGgjm40eU6+ust1Vg9+INT3y/iW8b+bKG8MPPPd49ORH7w3fXxcwbBXT22c9Ftx/R+PODre5BQAAAAAAAAAAQHMI2wEAMGn52srm4sLBWFNzgUcb2SQtWqsddaJfuK9KtroFqkvSNo8LlzU9taNhu7pQkdeUyfWlMw3hzJZZsrKyuTr/cuiQz/+oro2spetxOsh7fe7pIC8zFyrbVYWSuoMxmSD8xtz3nP0UKfmG7WbBX6GbCVBmaoNnRlKvoyVvwyWj7l/S740jeBYE9hBls+dMbONx4fu/9s+N+8Ys/w0hbAcAAAAAAAAAADCjzIJ/KQQAoEMGpgJ2SwsHYk31Cr8lDbJNGjwUe32dqGwnSRos3cOTxh6NPdUrENiiUJipe59v6P9i5JyMyuvLewYXm1EVrDmYWhw65PjVtS1Eba2DM8FEjDays7+ynRYurWwaSUHM75sJiuqSZ2BrVlS2a+IzXXd0w67hrnne0yMr2yX9DXS1zz1kb/0d5B3tbX1a0DZrxBJUnL+ocd+4ZR3tanMLAAAAAAAAAACAphC2AwBg0uhwZXPb6EOxpvYEHoGNVlVDGxvV5UO3x5ritT5JJmkYplAK25w89kjsqT5rbFcFtjf3fz5yTMa3OmASVWG7FzPrQ4cU6gq2jViW1ROM+LeRbVelvk7acmrNyxNH4wU+vavaSTMgbOcInU1qpo3syefFn1Ml6jtikt63zSfZj406KvDlHd+DDVubX0+URZZKn8WQZ63qvz81uuMrzsapAAAgAElEQVRX4QQAAAAAAAAAAED7ELYDAGDSua+tbKZk6c1pkQvGoge1KKBjLn+TNuRfijWn17ftbNLKdlffJKkUBTp19OFYU72qA7YybPf6X6tsrijsjRxeCRJddG3r1lCvKmz3joP/FDrkid211ddGLDminmBUGY+wXTooNFcFbYapb+37l7t/N9b8yKps1eZoG1mTztR8LyTpzJH7/S8pRwU5KXmos6p6YQNXhbqCY11LVzW/ngjmbe8LPzA80Nj21rZ+2sgCAAAAAAAAAADMKLPgXwoBAOiQ5WtqXl7b/2XvqR1tI9vbJ0k6evwZ7yk5z8p2SddoVm6obN9w+N9jzc0Fo9GDWliBzWw8tub17+z/mH1sUJwKYK5tbLXZMlXBmmWF8LaYD9flLG2V7XJFv8p2XSq0NsQ4nTafWNk8dvypWFMjg2LVpr2ynYd0c5+pueT6mtdHTTzrf8kg4h4mvW+u4NnLz9uPucJ27WyhvGi5/dgzP619PWb5/SNsBwAAAAAAAAAAMKMQtgMAYFJd0MwosAxs1NE2suXASqz1daqyXdU9zMi/7Wp3cVRdPu+nlaGwus87V7RXJwyqxxqPFp7Nqgoj+Xy+xWKgCUtBtlIb2ejPIDVHKtuVTH0284uDsWbGq2w3zWE7n2ew2c+0LtwVGaCrEnkPk353cr32Yy86wpXOsF0bg6a98+3H7vt27evx8LCdIWwHAAAAAAAAAAAwoxC2AwBg0rwFNS+HuxzBjjo+oaaWBXRWrJMkPZ3d4j2lx6dqnJQ8DFMVKDxu7Anvab3BsN/AJqt1haprSXn26I/85llCMa1gVm+sbE+Y8Pfam53aLji6HaeDvFe1wLTyc6ey3fZHKpsLi/2xpqY019rIZqPHhJm/sOblxokX/C/Z5jayJuN4T65nOO/4fW5htcwGm0+yHgqG68KgeUsVStd7BgAAAAAAAAAAQMfNgn8pBACgM8yFP1fz+hcOf9Z7bqaTYbvVmyRJ/+PgP3pP8aq8JyUPEZ18XmXzFSOe4TVJPUXPAFsrQ2FVLUcl6YrB272mmTMva90a6p1xSWXz0qHvhg4ZHpeCoFT1ruAofpcKCl4VDedUZbvzr6p5eenQd7ynxqngNu2V7Xw0+5kuWFLz8q2H/83/klGV7dp434Jdz9kPuirbtfHZd4YDf/Ld2tcTlrDdXPluAgAAAAAAAAAAzBGE7QAAmNS3uObl6old3lOzgSUoUa1V1bDKbQVPHX3Ye4p3G1mTcI1VbR69A35xxrYybFfXnjHr2/a2t691a6jXM9V20tUGtb98u4qOynZdCrwqGs6pynabjq95+dbDt3hPTclxM+uYuRy2m7+o5uWq/G7vqamoynatuG8nnRu+/5a/ss+ZrjaykvTKa8L3//SHCsaqvp+26nuE7QAAAAAAAAAAAGYUwnYAAEyqC195t15VhyvbldcZL8zm+V6SBgK7c1ObwZj3NO8wYBvDdm2f5yM7df9cn9l3yh16nZXtVFBvMbo971yqbGfqv8O+z5XK98HXdLeR9Wj37Kyq5pqXStW0ko3zOxNZHbAV9y3bbT0UDFlaBzvbyLY5bOf6vXjwzqlta9iONrIAAAAAAAAAAAAzCWE7AAAmLVtT8/K48Se8p3qF7ZoMvzQoV487ZfSn/lN8Q0dJwzCrj6psRseBpnT7VAaUWhuMWbS8uXkbj23dGupVVQY8duxJ67CDQ6WUnbOyXVD0CkqlVJwzle2CA7VV2FoaFKs2GyrbJflMBw9XNnMxQrPRYbsW3Le6Nrc1Du4J3z/ueA+O8F4rmKNPth/cV1U9lcp2AAAAAAAAAAAAswJhOwAAykyqNgjS52jjWS/j04K0RRXRjDFSOqNtYw95z/GubJewjaxpMriSmYawnWkyWGja2EbWVFUsmxfYq9KNlB+3qMp2OZ82skFeSs+NsJ056/Ka13FaLac0iyrb+WhhSMs3rJvuQBtZc/VN9oNjlud9zLH+dlaqlKRL32A9FHzqAwqC8pd4wvIb2KqQNgAAAAAAAAAAAFpiFvxLIQAAHbTmqJqX/7jznZFTUkHer4pbC0Md5sb/JSPpssHbvcZ7t9NsRYhoyarK5q8d+LTXFK/KgFLrK7BtPC7e+C2ntPb6YV791srmKZaw2P/5ZnRlu1RQ8PrcUyrMmcp2Wri05mVvjMp2c62NbKKQVl1A7Pf3fcRrWmRlu1QLKtudfJ792P3fCd/vCttVtW5uB7PmKPvzcmiv9NmPlrYLVLYDAAAAAAAAAACYDQjbAQBQrS4Q11cciJziHRRrZQWlXOlcqwq7IwaW9AQj0vpjogcmrGxXuthUK9ScZ9gpOx1tZKWatq1e2ljVrqJ7Kvwz31Jd8aWDpT9dle265NlGNijMnUBP3XfMO2Qqj6ps1WZDG9kkn2m27j56fo/TUYHFVvy+OH5Hg9s+H37AFrbr7qmpJtk2J7zCeij4xs2lDVtlu7ny3QQAAAAAAAAAAJgjCNsBAOaGay0V6N72e/HO88KTNS83TrwQOcUrKLZgidQzP95aHILhUgjrmcxmr/G5YEza+Wz0wFZU7NqxvbK5vLDPa0rWpw2v1JrKWNUO74833uceJvXy1DN3MLU4dEhPOX/jrGynglbnX468XDrIz53KdivX17z0DYlJMSvbtfo5bIckn+nO7TUvN0087zWtI21kXb9RPfPC99vay7a7heykwUP2Yy8+paBYlPJUtgMAAAAAAAAAAJgNCNsBAOYEc8UNja0VUymZy94Y70Qbtta8PG30wcgpXpXtLrxWpoUBHXPi2ZKkE8Z/5jU+G4xLm0/yOHFr/2pwXf+XvcZNWxvZ0y6KN37rttZeP0xVq9rLhu4IHTIyIQVB4K5sFxS9wqKlNrJzI9BjFq+oed2lQD3FYa+5acUI27X4e9IWST7To46veXn5kKU9a52OtJF1GW8M1QWH9yv4698OH9+psN1Zl7mPj49KBcu9I2wHAAAAAAAAAAAwo8yCfykEACCaOeV8mfd/WuorVwJbuEzmg5+RqQoueZ2nrkJelxxpprJMWDWnbLkVaFeXdNF1Mr/1sVjriLSoFCo6b/hur+GZYELmmndEh11a0R7zdTdVNrdMPOM1ZbrayJorfyHe+Mve1NLrh15j62mV7Tf1f8E6bjwfXdnOnHRO5PVSQWHuVLaTpOVra15+4uX3eE2rrmxn/uqb0tU32QdPextZj9an6eY/U3P82TWvF3i005bKwU3niVvzf3qYd344/MAj99S8DIYHFLznVdL+XeHjq1o2t5O57OfdA1yV79LZ1i4GAAAAAAAAAAAAicyhf1kFABzpzFU3Sq95m7T7BWnVRne7QZvu3oZdG8ef1/PZjdYpYVXZzDf2SC88UVrH/IXx1xElV6rI1OtZtSsbjEu53lKoquAIxLSijWxuqlqUkTS/MKDBVJ9zyrRVtss1ft5OnaiEVRUAygVj1mF7BhRZ2U59i7V4/wEdTC2xjkurMLeqZ61cL+3dUXm5qOAIMlXpmgyKGSOdfrF0z632wbOhjWySQGDIc755fLu2Z91tqyMr27Xi90WS5i+wHgryEzKTz/Pd35S2P2I/T7ZDle2ifjd+7KgcOJe+mwAAAAAAAAAAAHMAle0AAHOKSaVk1hzVXNBOkoLGUmHzgiHnlIag2Dmvlsl2y2w5pT1BO0lasFSStLSw32t4JpgoBT6iwmqtqDw1UBtuWuaxxux0he0WLq15eamlXeYvHfqX0kYnKmFVBXOW5fdZhz21Ryo4K9sVpQVLNGrca55zle0O7K552e0ILFarBMWCQMYYd0BqVrSRTfCZ1rfkll+wNzps16KQYm6e/djzT1Q2g09/wH2eTrWRXbTUeTh44Un7wQyV7QAAAAAAAAAAAGaSWfAvhQAAdFBI29krBm9zTqkP25nzrmzpksKYxcslSeeP+LWRzfqG7VpReWrRspqXrxpy3z9p+irbmdWbal6/ZvBboeOuGfjv0kZHKttNXWND/iXrsLEJqeiqbKeitGCxRrrc1ftSKiRqOTrj7NtZ8/KUUUdlsyr1LVCN67Oe9jayHpJU39tycsOuS4fuiJyWDmupXa1Vle1Ov9h+bLQqFLjrOfd5OhS2M8vWSJtPtA8YdQS6qWwHAAAAAAAAAAAwoxC2AwCgWl1QTJL+974/c07JBuNTLy66VnrdTa1eVbiFy5QLxrQkH105Lt3BsJ055fya13+8948i59TcQ5c2V2B718FP68qBb9Ts+9WDf6+rBsv7OtF20jMA9MzewF3ZLijILFiq6/u/6DxPOsjPrcp2r39Xzcu+4oDXtFRQDtttOr70p6uK4XS3kQ2pPNcgyWfat7hh1x/u+/PIaenA0aJaat19W77WfuzZR/3P04lKlWXmD/6f/eAXPm4/RtgOAAAAAAAAAABgRiFsBwBAtZCg08Jiv1KO9oiZyWPrtsj80b/KdKrt3/FnSpLeOOAOU0nlMFun2sjW3cNlhf1aXDjgnJKerjayklQVDswFY/rSS2/U3c++Un+/89f04PYz9bcv/5a6VC4hl3NXiWuJuvu3Kv9y6LA//XrgVdnu6PFnnJcrVbabO4Ge+tbNPcGI17xKC9TJaodHchvZkPe+uHgoZGCtyDayLbpvpqvL2l41+PQf+p+oU21kJZmt26STzo0/cQ59NwEAAAAAAAAAAOaCOVTGBACAFuiZH7o7FRRUMOH/2UyrHBQ79QKZTla8CkplzbqLo5FDM5qQcvM600Y22914/YgwnX9luzbc32JtebiUijpr9H6dNXp/49je8OejpXr7al4WZa9iFlXZTguWaknhOefluoLC3KpsV/d5VoKSEVIqzyt/r5zV4/Ke4dDplChsFx4q7QoKKhr7dzCyjezS1c2vqV7R8vAPHfY/h+V9ts2KdfHnELYDAAAAAAAAAACYUWZBWQ4AADrHWCqXjXc1BsgmVYJkHWxJKEmaKAXUQkNhdbLBuHTUCZ2pbDfZhrPKnvRK55RMVEhnUlcbwnZxAnSrNrb++vXqWmTa7l1PRl6V7eYFw87LpZWfW4GekLCnj0pVtud/VvrTFYwqeD6v7eLTRjbBd8Wkw38nXEE7KaKy3Yr10tZtTa+pQWAJ202MK7AF8ep1sLKdJJltF8SflO5QpVQAAAAAAAAAAAB4IWwHAEC9485o2HXR0J3W4ZWwXbbDwY2rflGSdPXA1yLHZoJ8qepeVOW6VlS261vcsOuMkZ84p3hXtvMJGcVkXv+r/mPbcP3Qa6w/pvL6D/b+eei45/ZHVLZTQVqwRD1FdxvV1FyrbHfC2Q27Lh+8LXJapSrba95e+nPdllauqvOSfqanXdSwa2l+n3PKZNjOvPujtdfv6pL5tT9r6ffHvOND1mPBL5+j4PD+6JN0OiB9+Q3x58ylICwAAAAAAAAAAMAcQNgOAIA65vzXNew7Z+Q+6/gxU66k1eEqSVpSqng2LxiKHJrtLa8tsrJd8jCMSWca2r2eOvawc05Um9mpk7ch7LZyg9+4Fetbf20Lc/27KtvbHPfOWdkuKFW26wkiwnYqzq1AT0h1yp8b/GrktFRQkCSZ8vdKmVleUSxh2M684lUN+84fuds5pxJYvOIGmU98V3rL70g3vFfm49+RufxNidbT4ORz7ceeekjBx94TfY5OV7brWySdcUm8SbP9OQQAAAAAAAAAAJhj5lAZEwAAWiSkDWVv0d6K8+7eUujDZDtcJakcFDGSeotDGu6aZx2ayZbDb1EBnFZUtpOkbE4amQoBuu6fFKOyXavWV3Nxz8+tk1WwqtbUXRy1Dts3YD9FSgWpb4l6HPOlcjWyuVTZLiRAFfX8SVVBsUz5++9q39m3qJmVdZalFay3kPvoVSWxPNeccJbMCWclW4NLVFDuO/+R/BztsMTdUrvBXArCAgAAAAAAAAAAzAFUtgMAoF5IGOK00QcjpwWDh9qxGrvNJ1Y2XUE7ScpmyhXhIivbteivBiO11faWFdztJ70r26kNle3WHOU3rpPBnHVHVzZXFPZah73cby9t15XJSPMXKhdZ2a4wtwI9a49u2OXz/Z1sgVqpJLZkpbR6Y+PAbLd0zmuSrDA5nwqPSQOUIc/7ttGH3JdUuTpgb1+ya/vYdHziU5hpCNuZrdv8B3d1za0gLAAAAAAAAAAAwBxA2A4AgHpnXtaw65LhOyOnmbMa57WTmbegsn3joc84x2YzHa5sV2fL+DPO41nfsF0b1md8g2adDOaceE5lc/P4s9ZhQ2P2U6SyWRlj/KqRzaFAjwmpQHjy2COR8yphu+POKJ3HGJnXv6tx4JU3yvS4w60zQhvCdj/f/wXnlC45+hq3mOmdn7zFaierVU669I3+Y7t7ZNrROhsAAAAAAAAAAABNI2wHAEC9qhDbpJ7A3YqzNG9hGxYTYeNxkqS3Hf6cc1imuxwo61RluwuurnkZFbarVLarqtYXql3Bk2Vrosd0MmxXFSLqcVSm++Yjjsp23aV2qD3rNjgvlTbFuRfo6Vtc89JIes3grc4pKRVLG1Wfs7nht2Te93fSqRdIx50h8z/+WOa9f93q1bZHKpVsfsjzviH/UvS8clixE8z7P53sBNlpqGy3Yl2c0W1bBwAAAAAAAAAAAJozd8qYAADQKs2GqqahJaF650tSZPWybLbDle3q7sUx4087h2eDcen0i2Vu+kMFv+GoENiqMGC9nMdnl+1cFSxjjIKeedLIkHKOoOfXLQXbTFCsVHjryUqTObIwKdO5amQdk+uVBg7W7FqWd7cyrlS2q3t2zTW/LHPNL7d0ecl5hLC6kobtmnzeO/k7mLTCYNLKeM1aulravyt63Mhg+9cCAAAAAAAAAACAWKhsBwBAHdNs4CxWxaIW6T8gSTpq4nnnsEx3OWQXFS5pVZjt0N6alwuL/c7h3cFYKaQTdf02tbn1qnDV6TDlyJAkd6zKVpAupUIpcCZpfbf73meMI4k3W+3d0bDrQGqJc0pa5bDd/EXtWFHnJW0ju/bo5ub97P5k141jzeZk89cf05p1xLWuyXsLAAAAAAAAAACAaUfYDgCAFjF90xDSOfe1kqSVhT3OYdnJNrJR1apaFGYzZzZWpztr5EfW8blgtBy2i6jY1a52pz5BuumoXBghsBSl6wqKlfUuiPjIe8x4i1c1Ayxc2rDr8qHbnVMmK9uZ9Bwp/JwwbGeaDaKtOSrRdWM5+iRp0/HNzV29STr+rJYux5e57I3Tcl0AAAAAAAAAAAAkR9gOAIAwJ50bb3y2uz3riGAue1Nl+5TRh63jMt3linZRgbFWVbY76ZyGXX+094+twythu6iwX7vayHqF7TrXRlaSdN6Vlc0/3fOHsaamVJiq1tfdo5t3/JJ1bE9XvqnlzWTmTe9p2HfmqLviWirIT1+ls3ZIWtlOktKZ+HMu/Lnk1/VkjJH52NfiTzzhbJm/vlUmlbDVbrOu/ZXpuS4AAAAAAAAAAAASI2wHAECYnnnxxi9a0Z51RKkKia3I26vbdU0GxaLapbaqTWtIeC0b2CuopYJCKcwWFaZrW2U7jyBdpyvbldvAStL84lCsqV0qTr2n7l4tK+yzjp2Tle2yjZ9nT3HUOSWlwuxpIevzPWhF2G7VxthTjE9L5hYyy9dKb32f/4TTLlLXp78vs3pT29YUxRgjvfHd03Z9AAAAAAAAAAAANI+wHQAAYQ7vb9h1+sgDoUPfc+Djna96Nmnx8srmGwa+FDpkeX6PtOfF0ouDu93n62pRpacljeHDdRM7rMPX5XdIB/dOX2W7xSujx4Q8E50yZrKxxpfCi5OV7XLqKY5Yx6bn4t8GxxuDdVGtltNBfka2Cm5aK8J2+3Y27PrN/X8TOvSVQ98vbUxDlU8T8ntjH9ymwG5MZonHb86lb2j/QgAAAAAAAAAAABDLXPznVQAAklu2umHXrx38dOjQXzx0c2glrU4wy9ZUtq8a/IZMUGwY89rBW6XF5TDKvIXuE7aosp1ZuaFh39ET27V17MmG/VvGn9Yx40+XAnpRQZg2BWXMOa+OHrRiXVuubWNOOb+yfcroT2PNrQmOdfcoF4zZB7eqmuFMsvnEhl1r8rucU9IqTF9oth1a0SI1CBp2XTX4jdChlf3TEVj0+f5OWrO5feuIw2PN5twrI8cAAAAAAAAAAACgs+bgv64CAJCcufLGhn2/cPizuvHQZ2r2/eXLv6NTxh6Z3opYJ5wtSVqdf1n/svMdSgX5yqHTRx7QR/f8vsxpF0qSzHkR4Y1WVo6ruydG0r/teLuW5fdW9i3L79UtL71NRpI5/ZLo67crGHbJ9ZFDzImvaM+1bS78ucpmVFCsXlq1YTujxtDUpLCA5qwXEvaUpLcc/jfrFCrbNTI3/q+GfZcM36kP7P2zmn3X9n9Z7znwd6UX03APzYZj/cde8vo2rsSf2XKKzLs/ah/wupukV725cwsCAAAAAAAAAACAlxb0lwIAYA7K9TbsSqmof9j1K/r9ff9Hj3afqFeM3KdVhXJb1ukM6WzdJj12nyTpLf3/rlcN3aYf9J6vtRM7dProA0qpKKUzfutsZZjtuDOkh35Qs+vUsZ9q+9PH6a7ecyVJ5w/frd6g3OK0OzdtbWRNV5eCo06Qnn3MPijkmWirqs+qJ7C3gQ2TDqaqtJmIzzw4uC/+2mY6S4W600Yf1L8uDA8w1bTenel8Kjy2oo3s/MZKmEbSh/b9id5x6J90T88rdOLYYzp+/GeqrGi67uFr3iZ987PR4zr9PXYwb3qPdOkbpYfvkoYHpInx0v075Txp7dEyM6TlLQAAAAAAAAAAAKYQtgMAIEy2O3S3kbRlYru2TGyvPTCd7SfrKpMtK+zXtQNfqR0zGbyJWmcrw2zzFoTu7g1GdMXQdxoPpDPR129n+CSkZWaNToeIcvMqmwuKA7GmZoIJKVtab/DS01qZ320du37ixebWN5NZ2iWngoJ1ysvpVdLEU+1aUed1taCNrOOZX5/fofUDX2w8MF0BMcvvTYMZFqg0y1ZLl75hupcBAAAAAAAAAAAAT7SRBQAgzKYT4o2fxgCHWbY2etA0VLabbF3rbdMJ0UGddrWRlaS1m93HO/wZm6rA59LCgVhz08pPBUYP79f6/A6dOPpow7j1Ey9q29hDidY5E5mlq0L3nzb6oHXOuMlKB/daj88qXV0yrfiunHJe/Dkbtia/bhPMaRf5DczOrLAdAAAAAAAAAAAAZhfCdgAAhOlbFG98dhor2513ZfSYSmW7iBaKraxsd+WN8cYvWOJx/fZVzTI3vNc9YJpDOpvHt0cPKksHeZl0tvSiHBL8yJ7fV644UjVmQh/b/XttvKMzz9bxp63HjAKZS6/v4GoSiAqltqKFrCStiQighlmysjXXjuvc1/qNm84qpAAAAAAAAAAAAJj1CNsBABDCpDNSKkYbxukMYs3rix5TCdt1sLLdgiVS32L/Cd09Utc0VrZbvcl9fDpCOsefWdl83cDXvKelg7yUqQ3bvXroNt377AX68J4P6oN7P6x7nn2lrhv4ckuXO6OEVCpMyd5G1iiI97zOZC0K25muLmtLbatcRKC3TUy2W+aDn4keOMPayAIAAAAAAAAAAGB2aVHZCwAA5qBMt1QY9hybae9aXKKq1UlSuvyf/FznwnaSpEXLpIGD0eMyWZmuLgVRFbtaWXmvXlRIaDpCRJmpoFN3MOY9La1CpXWw2bBVQXn/ieOP68T9j7dyhTNXpjEk1hUUrcONgrkTxOqKERSOkumWxv2fvWkNHvctjB4zTWFAAAAAAAAAAAAAzA1UtgMAwGbUM2gnSTuead86oixdFT1mMgCz9mj3uHVbkq+n2p6X/MZNBqOiwnRRYbwkFiyxV7dbsV5avKJ917YZ6q9s7sis9Z5WU9nuyl9o9apmh+caQ4WRle3mSovRVoZmq57BSKm0THoa/395tp7m/o1Yf4zMvAWdWw8AAAAAAAAAAADmHMJ2AADYrFjvPdSc/7o2LiTi2sZ4tEAthe1M2l2BL+p4bNe/y2/c5HWjQkJtbCNrjJF583vDj93wm6X73GHm2ndWtl8z+C3veSlNhe3MsjXuwRdM37PbVpe+oWFXKogI22VnS9gu6lls4bO6Yav/2GmuDGgWr5Be83b78Z//zQ6uBgCA/5+9Ow+z9KrrBP49VdV7d/ZOOk12spBASAiLgbAm7MhiDMIICo4OoojKICMgIIoo4jrOiKKjgDqgoiCLgmwyLBKWsCRsIfva2ZdOr9VV9c4f1Z2u6rrvvbdu3aXq1ufzPPepW+d33vf8qrq6q5L7rXMAAAAAgGEkbAcAdZ50YftzDz+6d320obz4Nc0nDCgEU855YnsT94XtWh4T29vAW/mRl6e86T3JuU9Pjnlgcu7TUt7wrpTnv7Kn69Y69WH3Pz1s8q62LxurJpKxlfsHmu3Kd/zpnXS26JWHnjdnrOnOdlU12CNQu6mbodTHP6/9uYvgGN7yq3+e8vK3Jg89b/rv8DEPTB79jJRf/9uU5/63QbcHAAAAAADAEjfAc54AYJGbT3Bk0MdPtgoJDaq/dj+H+4JhrXaP6+HOdvuUp7ww5Skv7Pk6bZmx09qaamfbl806RjZJ1qxL7q6Z3IfP6UA0+NprubPdIgiLdUUXd2Esq9akanfyIvj8ldHR5EW/kvKiXxl0KwAAAAAAAAyhIX11FQC6oOUuazMMOmRy7CnN66vX3v+0vOqPG8+58OVdbGivY05ub97Y3vx/q+DXfP5MhsGMkOQp41e1fdlYDtjZ7uZr6iePjHbS2eLX4O/ESKaaX7NyZfP6YtEyTNfFHSBb/dsy06BDxwAAAAAAANBjy+wVawBoX3n009ufPOiw3emPaF6f2d9jn52sWT+7PjKScsELut5WOaLN43XbPUa2izt2LQkz/tw2T2xp+7KxanJ2cOy4U+snD+vOdg8+d85Qs2NkRzK1/+twqevmn+kPPbX9uavWtp4DAJMLjsUAACAASURBVAAAAAAAS9iQvroKAF1w5DHtzx1w2K6MjDQPCs04ZrYceUzKH30sOeWs6fDaMSenvPn/pjz0Mb1prp3P4/1hu8EfI7uoHPB1tWnilrYuG6tm72xXnvXS2rllSHcLLGNjybqDZo81m58qGR2SsF03j5Fdf/D0McTtGHToGAAAAAAAAHpsOF9dBYBuWD2PXZpWLoLjE486tr62ctWsd8uDH5WRv/5Kyifvycj7vpPypAt719dhR7Wesy8Y1iL4VZbxznZJsmni1rYuG8tEsmLGznbNvpaHOcDYbEe/A5RUw7OzXTePkU2SU89pb55jZAEAAAAAABhyQ/zqKgAs0JoN7c9dDCGTJ13UePywTbUhtdKPvm+7qfWcfSGnYQ5+deKAEOcNYw9o67IDd7bL+K7audXkREetLQk3Xd321Ofc95GlE7br9w6Q7f47sRhCxwAAAAAAANBDXtEGgBplbKz9yStWtZ7TY+W8ZzUunPfM/jZyoEM3tp5z/zGyfjSZqRwQmjps8u62rhurJmbvinfqw+on7xnvpLWlYee2OUM/ffe75owdNXFrHrfji0snbNdKt3eAbPd42Jm7KQIAAAAAAMAQ8oo2ADTz7P/a3rxFEDIpDzk35RfePjtoc9ZjU17xu4NrKkm58OdaT7o/bLfMjoltx/Nfef/TX7z7T9u6ZCwTs3cjO7TJUb4TQxy2a/C193u3vTaP3fGF+98/fOKOfPiGCzOaKWG7Ou2G7UaH5PMHAAAAAAAANeaxZQ8ALD/lyGNTtTNxbPBhuyQpL/il5Bk/kXzny8nmE5PjTqs9QrZv1qxrPccxsrXKxs33fw2un5q7U1sjc3a2W9Vk58Xx3Z03t9itXjtn6KCp+/If1z01P1h5Su4YPTyP3HlJVmbPdHFYwmLd3iHSznYAAAAAAACQRNgOAJobGW1v3iIKmZSDDkse/YxBt7HfuoNaz3GMbL2JiXlfMpbJZOWMne3WHVw7t2w+sZOulojGQdOS5LTxK3JarphdGG3z7/ugtQrQdjtg2+7nZVh2BgQAAAAAAIAaXtEGgGZOe1h780bl12ud9djWc+xsV++Io+9/etruH7R1yVg1MSsAWg4+PDn5oY0nn/u0BbW3mJW6j7mRsRWD3wWyW7r8YZQHPaK9iWP+HQQAAAAAAGC4eUUbAJo57ZzWc1asHJ6QTg+Uee1s5/M4xwmn3//06IktbV2yotozZ5ex8kt/mKxZP3vii16THHfagltctB78qPbnDtOubN3eIfJxz2lv3iI5ThsAAAAAAAB6xfYTANDMqjWt5wiYtHbokcndt9XX930OHSM714yvwTXVrrYuGa0mktEDwnZnPy5591eT//xYqnvvTDnnicnZjxvuoOjqte3PXUJhu1JKquYTurvg2g3tzVtCn0MAAAAAAADohLAdADTTTthuhbBdSytWNa87RrbejMDY6qn2wnZjmWgYfCqbT0ouekW3TxldvFbNI2w3TEdBdzts1+6/cYLHAAAAAAAADDmvaANAE6Wd8JeASWvHtziqdGxf0GnZxMDat+n4+5+ur7a3dclYNSG4mKSsbBHynGl0iHZl6/IOkW3vfmhnOwAAAAAAAIacV2EBYKEETFoqL35N8wl2tqvVVuDzAGOlGu7jYefj2FPamzdMf4978Wd/0GGtl7XLJwAAAAAAAEPOK9oA0Mo5T2xeXzFEIZ1eOfvxzev7dgfs8o5cw+jNt/9myzljI1UfOlkayjN+sr2JY46Rber8i1rPGabAIgAAAAAAADTgFW0AaGXl6uZ1x8i2VEZGkmZHetrZrm1rpna2nDNWhO3ut6rF3999hiko1ovQ6qo1reeMDlFgEQAAAAAAABrwijYAtHLCg5rXm4XI2G98d31tX9DJ0aeNPe459z990PjlLafb2W6GE05vb95Qhe26//eoHHpk60mOkQUAAAAAAGDICdsBQAvlyS9oPmHV2v40stRtPrG2VPbuDliE7RoqT3/x/c/P3/7ZlvPtbDdDqyOM9xldYmG7Zn9XevH36Ek/2nrOMAUWAQAAAAAAoAFhOwBooZx2TvMJ7R5TucyVH391fVFIp6ny+Ocme3cWW1Ptajnfznb7lZWr2jueeJi+BntxjOym41vPcaQ2AAAAAAAAQ07YDgAWatWaQXewNDT7PI2O9q+PpeqZL2l7qrDdAY45ufWcoQrb9eAY2ZGR1kdmD9PnEAAAAAAAABoQtgOAdpxydn1t4+b+9bGUTU3Vlqqd2/vYyBJ15y33P/2hHV9uOnVMdnG2yYnWc4YpKNar45jHdzevr7CzHQAAAAAAAMNN2A4A2lBe+fb62mOf3cdOlrBmx/FOTfavjyWqnPCg+5+/4Y7faTp3rEdZqyXrEee3njM21vs+uqlZoK4Xx8gmybGnNK8PU2ARAAAAAAAAGhC2A4A2lIc9IXnWS+eO/+xvpZz79P43tBStP6i+Nils19KJZ9z/9BnbP9F0qmNkZysvfFXrSaNDFBTr0c525ZW/13zC6BILLAIAAAAAAMA8eUUMANo08tp3pvrF308++ffJxgckZz8uZe2GQbe1dKxcXV+zs11rB3z+ztj93Xx31RkNpzpG9gCr17WeM0y7svXqGNkNhzavO0YWAAAAAACAISdsNyCllJOSPDLJI/a+PSfJzMTGdVVVndDhvRe6nc2JVVVdu8B7AAylsnZD8tz/Nug2lqYmwcRy6tl9bGSJWjM7MLZ1pH6nwLER58jOsq7Jror7DFXYrkebVx/UImw3TJ9DAAAAAAAAaEDYro9KKU9M8rpMB+wOG2w3ANBfZdWaVGc/Pvnm52YXRkaSRz1lME0tJSc+eNa7N644pnaqne1mK2vWpeVvIiy1oFiz3et6tbPdsac2r69a05t1AQAAAAAAYJHo0bYX1Dg7yVMjaAfAMlV+6Q+TQzbOHnv1/0o5yLfGllavnfXui+59b+1UYbsGfvTnm9dHh+h3UHoUtiulJI98cv2EVWvrawAAAAAAADAEhuhVxSVtd5IbkzywB/f+cpIXzvOaG3vQBwCknHxm8jdfT778yeS+u5JHXJBy4hmDbmtJKCMjs3Zn2zRxS+3cMb9OMUd58A+l+ud31E9YajvbNdOrY2STlEdekOqrn2pcXLW6Z+sCAAAAAADAYiBs1397knwnydeSfHXv28uSnJfkP3qw3q6qqq7twX0BoCPl0COTp79o0G0seaPVZG1tbLRHx4guZWvWNa/fc3t/+uiaARwjmySHbaqvtfocAwAAAAAAwBInbNdf70ny51VV7TqwUHr5oigAMHS2jWyorY2N+blijgf/UPP6zu396aMfevlz5aOeMn3/qpo9fvTxyeFH925dAAAAAAAAWAQcMtZHVVXd3ShoBwDQlp96w/1Pn7z9M7XT7Gw3Vzn0yOT8i+onTNbvFLjk9PIY2UM3Jhe94oDBkvJTb/TLIwAAAAAAAAw9O9sBACwR5REXpHrXbyVJ1lQ76ueNjvarpSWlvOFdqT7zT42LkxP9baaXehx6K6/8/eSUs1Nd/PFkzfqU8y9KedRTeromAAAAAAAALAbCdgAAS8WqNfc/XT1Vv1luNbKiH90sOWXFylR1xakltrNds0Bdr8N2pSTP+ImUZ/xET9cBAAAAAACAxcYxsgAAS8WxJ9//9KG7v52xas+cKaPVRM5au6WfXQ0HO9sBAAAAAAAALQjbDb/jSinvKqV8p5RydyllvJRy6973/66U8rJSymGDbhIAaK2s3ZAcMx24O3hqa16w9f1z5ly09QM5eOUS26VtMRC2AwAAAAAAAFpwjOzwO3HvY6Yj9z7OSPKiJH9YSvnLJG+sqmpbL5oopRyZZOM8L3tgL3oBgKWsvPHdqX72sUmSv7z553LExB350IbnpErJc7d9JG+79deSsZ8bcJdLkGNkAQAAAAAAgBaE7UiSdUl+OckzSykXVlX1nR6s8fNJfr0H9wWA5WXdhvufrsye/MFtr80f3Pba2XPGVvS5qSFgZzsAAAAAAACgBcfIDq+JJJ9N8oYkz0lyTpJTkjwsyXOT/H6S2w645tQknyqlHN+/NgFgtvKytzQuPP3F/W1ksTr86NZzhO3qPfS8hsPlZ36jz430UPEjPgAAAAAAAPSCV+KG0xuSPKCqqidVVfXWqqo+UlXVN6qqurKqqm9WVfXhqqpek+T4JG9LUs24dlOSD5RiSxQABuSJP5KMzt18tzzxwgE0s/iU9Qe3niNsV6s8+QVzB9esTx7+pP430yt+jAMAAAAAAICeELYbQnsDdgfuWtdo3q6qql6X5JUHlM5J8l+63NY7kjxkno/ndrkHAJaAcuwpKW95X7Lh0OmB1WtTXvG2lPOeNdjGFpOTHtK8PipsV+t5L0te+Kr9u/8dfnTKH3w0ZcMhg+1rvpoF6oTtAAAAAAAAoCfmbhvDslNV1Z+WUp6a6eNm9/n5JO/t4hq3Ze6xtU3ZXA9g+SqPe07ymGclN16RHH1iyspVg25pcTnyAcnV366vj/kRr04pJeUVb0v1029KbrsxOfaU4fuZwzGyAAAAAAAA0BNeiWOf3zng/XNLKUtsixcAhkkZHU05/kGCdo0cfETzumNkWyqr16Ycd+rwBe0SO9sBAAAAAABAjwjbsc9Xktw94/3RJGcMqBcAoInyyCc3nyBst7wJ2wEAAAAAAEBPCNuRJKmqairJ9QcMbxxELwBACxc8v3l91DGyw69JoM4xsgAAAAAAANATXoljpp0HvL9mIF0AAE2VsRXJC3+5foKd7ZY3O9sBAAAAAABATwjbMdMRB7x/x0C6AABaW72uvjYqbDf0mgXqhO0AAAAAAACgJ4TtSJKUUo5IctIBwzcPohcAoLWyem19cZXNaYdes90LHSMLAAAAAAAAPeGVOPZ5YWZ/Pdya5HsD6gUAaGXV6s5qDIexlfU1O9sBAAAAAABATwjbkVLKUUnecMDwR6qqqgbRDwDQhpXNwnZ2tht6K4TtAAAAAAAAoN+E7YZIKeW0Usqz53nNpiQfTXLUjOHxJL/Tzd4AgC5rtrOZsN3wW9HsGFlhOwAAAAAAAOiFsUE3sNyUUo5J48/7pgPeHyulnFBzm21VVd3RYPzoJB8upVyW5O+SfLCqqitq+tiQ5CWZ3tHuqAPKv1VV1dU1awMAi8Hpj2g8PrYiOfGM/vZC/zULW476ER8AAAAAAAB6wStx/feFJMe3Me8BSa6pqb0nyUubXHtmkt9N8rullHuTfDvJHUnuS7I+ybFJzkrjP/+/qKrqLW30BwAM0gmnJ2c/Pvnm52aPP+1FKesOGkxP9E+zY2RHm+x6BwAAAAAAAHRM2G74HZzkvDbmbU/yqqqq/rLH/QAAXVBKSX73g6ne+YbkK59IVq5OHvfclJf+2qBbox9WrKqvjY72rw8AAAAAAABYRoTthsv3kvx2kickOSfJmjau+UGSdyf5y5qjaQGARaqsXZ/yqj8edBsMwrZ76muXf71/fQAAAAAAAMAyImzXZ1VVndDDe9+a5NeSpJQykuSUJA/M9JG0hyRZnWRnkruTbEny1aqqbu9VPwAA9MhNV9fXrry0f30AAAAAAADAMiJsN6SqqppKcvneBwAAAAAAAAAAAAswMugGAAAAAAAAAAAAYLETtgMAAAAAAAAAAIAWhO0AAGCpueDH6muPfkb/+gAAAAAAAIBlRNgOAACWmPLEC+trL39rHzsBAAAAAACA5UPYDgAAlprHPzd55AVzx897VspJD+5/PwAAAAAAALAMjA26AQAAYH7KyEjyB/+aXHlpqrf9bLJzW8pb/j7lgQ8ZdGsAAAAAAAAwtITtAABgCSqlJKeclfJXFw+6FQAAAAAAAFgWHCMLAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALYwNugGArtt9Z7LjxmRqT7LhlGTlwYPuCAAAAAAAAACAJU7YDhgeu+9MPn9RcttnZ4+v2Zw8+4pkbO1A2gIAAAAAAAAAYOlzjCwwPL7wgrlBuyTZeXPyxRf2vR0AAAAAAAAAAIaHsB0wHHbdkdz6mfr6TR+ZPlYWAAAAAAAAAAA6IGwHDIcdNySpWsy5sS+tAAAAAAAAAAAwfITtgOEwuXPQHQAAAAAAAAAAMMSE7YDhsPX7redMjfe+DwAAAAAAAAAAhpKwHTAcrvuH1nPu/Frv+wAAAAAAAAAAYCgJ2wHDYfXG1nOqyd73AQAAAAAAAADAUBK2A4bDTR9tPefilyS3/2fvewEAAAAAAAAAYOgI2wFL35X/J9lzb3tzP3lecvPHe9sPAAAAAAAAAABDR9gOWNqqqeTSN87vms8+oze9AAAAAAAAAAAwtITtgKVt29XJrlvmf1011f1eAAAAAAAAAAAYWsJ2wNK2577OrttxY3f7AAAAAAAAAABgqAnbAUvblo93dt11f9/dPgAAAAAAAAAAGGrCdsDSVVXJt17f2bXf/NXu9gIAAAAAAAAAwFATtgOWrq2XL+z6nbd2pw8AAAAAAAAAAIbe2KAbAGhq27XJHf+ZrD0mSdk/PjWeXPkXC7v3+F3JmqMWdg8AAAAAAAAAAJYFYTtgcdqzLXn/hs6vf9jvJZe9OZnYXj9nYlvn9wcAAAAAAAAAYFlxjCywOH1w08KuP/1XkqdenJz4k/VzLvuNha0BAAAAAAAAAMCyIWwHLD7VVPMd6VpZdfj020Mekpz77sw6fnamWz/T+RoAAAAAAAAAACwrwnbA4rNn68KuP/jB+5+XkqRqPG/FAo6pBQAAAAAAAABgWRG2AzpXVcn3/yj56BnJBzcnF//0wnak23fP775tYfc46b/Ofv/IJzSet+u25J+PTLZ8YmHrAQAAAAAAAAAw9ITtgM5d/ifJ1/97svV7yc4tydV/nXzuwgXe838m3/3dzq5dcVDyqHcmJ71k9vgZr6u/ZvftyX88Lbnjy52tCQAAAAAAAADAsiBsB3Tu6r+aO3bLJ5Lt13V+z6v+T+fXPvuK5OSXzR0fW9P62mv/rvN1AQAAAAAAAAAYesJ2QOfuuazx+JV/0dn9qiq59zud97PikMbja49tfe2tn+18XQAAAAAAAAAAhp6wHdB9u+/o7LrJXa3nPPxPGo8f+fhkdGXj2voTk0POWvjaAAAAAAAAAAAsW8J2QPdtu6az6675m+b18z+ZnPoLydFPm1t7/IebX/uEDzWvb7uyeR0AAAAAAAAAgGVtbNANAEPolk92dt2lb6ivPet7ycEPmn7+pI8ne7YmN/1rsvG8ZN1xre+97vhk3QnJ9mvr50yO1++OBwAAAAAAAADAsmZnO6AzU5P1tZWHzv9+E9ubHz+76vDZ7684KDnhv7QXtNtn87Oa1+/9Tvv3AgAAAAAAAABgWbGzHdCZqd31tTI6//vt2VZfG1mRrN44/3se6AHPTq740/r6xPaFrwEALA+7bktu/niy9XvT7x90WnL0M5I1Rw22LwAAAAAAAHpG2A7ozOSu7t2rmkr+9fT6+mP+b3fWOfopyckvT67888b1yZ3dWQcAGG73fjf59PnJrltnj6/amFzw6eSQMwfTFwAAAAAAAD3lGFmgM90M2932+WT87vr6xsd2Z50ykjzyHfX1yR3dWQcAGG6XvGpu0C5Jdt+efO0X+98PAAAAAAAAfSFsB3RmqlnYrprfva55T/P62Lr53a+ZUqZ3nWlkws52AEALU5PJ7Z+rr9/xxWRyvH/9AAAAAAAA0DfCdkBn7vhKfa2aZ9ju6nfV18Y2JCsOmt/9Whld03jcMbIAQCvVRPMdfqf2JFO7+9cPAAAAAAAAfSNsB3Tme79bXxu/q3vrPKzJOp0aE7YDADpUTbUxZ7L3fQAAAAAAANB3wnZAZ5rt6DIfu+9sXj/+x7uzzkx2tgMAOiZsBwAAAAAAsFwJ2wGdWXV48/rE9vbuc8unmtdHV7V3n/kQtgMAOtXWznZtzAEAAAAAAGDJEbYDOnPQg5rXd9/R3n12bmleH13d3n3mQ9iOxWZqcvoBwOBNTSYTO5LJ3cmercme+2bXHSMLAAAAAACwbI0NugFgSE20GVzbc2997YzXdqeXA42ubTx+3xW9WQ/qTOxMvvYLyY0fnA5mPODZySP/PFmxftCdASw/E9uTf6z593f9Sclpr0pO+4U4RhYAAAAAAGD5ErYDOjOysnm93V3iLntzfe3s32m7nXkZq9nZ7vr3J1N7kpEVvVkXDnTxS6a/7va59v8mu+9MnvSxwfUEsFzVBe2SZNvVySWvnA5DP+DZre9173eTtQ/oXm8AAAAAAAAsCo6RBTrzyHckL2gSqGsnbLfrtu71Mx/Njn+7/Qv964Plbfze5IYPzh3f8vFk5y397wdgOWv3Z5Kr39PeMbLX/f3C+gEAAAAAAGBRErYDOjeyKklpXGsnbHfvd7raTttu+VR97Y4v968Plrf7rkiqica1u77e314Alrsb/6W9eVu/194Rsde8e0HtAAAAAAAAsDgJ2wGdKyUZXd24Nrmr9fXbru1qO23bcHJ9bWq8f310w84tySX/PXlvmf349lsH3RmtTO2ur7UT5ACge/Zsa2/erluTfzuz9bxqKvn3RycTbfzyAQAAAAAAAEuGsB2wMKNrGo+3s7Pd9mu72krbDj27vrb9uv71sVC770w+9YTk8j+aW7v0Dcmlb+p/T7Rv+/VNatf2rQ0Aknzj1e3P3X1He/PuvDj5x7XtHTsLAAAAAADAkiBsByzMUgzbNXP9+wfdQftu+Ofpo0jrfPst/euF+bvyz+trV7+rf30ALHe72gzPderOr/T2/gAAAAAAAPSNsB2wMCvWNx7fdWvra5vtInfkEzrrpx2bf7i+tvExvVu329p58b7dY/Hov7qgapKs3tS/PgCWu7su6e39v/v23t4fAAAAAACAvhG2AxZm3QmNx5vtuLbP1u/V105+WUfttGXzM+prO27s3brddvO/tZ7zyfOS95bpx1denmy/ofd90Z77rqyvVXv61wfActfOLwgshJ3tAAAAAAAAhoawHbAwG05pPN4qbDd+T7Lrtsa1VYcnx71gYX01M7oqOfxRjWv3fie576rerd0tl/56snNL63n3XLr/+ZXvTD50XHL3N3vXF+2Z2Jlsa/J11s4xzAAs3K47kotf0ts1dt6UTO7q7RoAAAAAAAD0hbAdsDCdhu2++7v1tfM/k4yMdt5TO5qF+b79lt6uvVDbr0++/ZudX//N13evFzpz1f9pXp8QtgPoiyv+rHn9se9PzvuH5Jw/Tk55Refr3Pihzq8FAAAAAABg0RgbdAPAElcXtttxYzKxIxlb27jeLIy3/oQFt9XSioPqa7d+uvfrL8St/7Gw67d8LKmqpJTu9MP8bbumeX1yR3/6AFjubvpI8/pxF+1/vvOW5Io/7WydWz6dHN/DXXsBAAAAAADoC2E7YGHqwnbJ9DGZh5zZuLbnvvrrmgXhuuXIx9fXxu/t/frt2LMtue59ycT25KDTk/G7p8evfOfC7z01Pn2cLoOxp8XXmGNkAfpj25Xtz12zafrnnla79zZy3XuTR74jGfGfXwAAAAAAAEuZV3uAhVl3QlLGkmpibm3rD+rDdrd8ovH4EY/pWmtNHXRqsu74ZPt1c2sT9w1+57cbP5x87rm9u//kTmG7Qbr7683rjb4uAeiu8bv3B9kbWfOAuWNnvy35wgsa/9zTzMT25O9XJD/8g+SgJr+oAAAAAAAAwKI2MugGgCVuZCxZf2LjWt3OL7d/qf5+xzxn4T2169z31Ndu/GD/+jjQ+D29DdolyS2f6u39ae7ubw66AwC21AT/91l/0tyxYy9MnvLF5IxfTY69aPpxxuuSp301ecGu1mv+64M66xUAAAAAAIBFYaA725VSSpLXJFk9Y/hvqqq6doH3PTHJT8wY2lFV1e8v5J5AE3VHqtWF7W7+aP29Rtd0p6d2jK2rr93wL9MvqA/CTR/p/RpbPpEcd1Hv12Gudnet23V7snpjb3sBWM46OQ42SY541PSjkTN/M7nsTfXXVlPJ9huSdcd2tjYAAAAAAAADNehjZH88yduSVHvf/8BCg3ZJUlXVNaWUM5Pcn5QppVxdVdUHFnpvoIENpyb5t7njdS9i79xSf6/DHt6Vltpy8On1tWbHyvXSrtuTb76us2uPe35y/fvbm1vt6WwNFm7nLe3N23Z1suqIwR5nDDDMJnZ0/56HndN6zl1fFbYDAAAAAABYogZ2jGwpZSTJb+57N8kVSV7SxSVemuSqvfcuSd7axXsDM204pfF4Xdjuhia518PPXXg/7Wq2s92O6/vXR5Jc/e7kvSX5wJHJzpvmf/2Kg5Mzf6P9+RM7578G3THZZrjjE+cmHzouueKdve0HYLnac0/373nU+cnBZzSfs6OD7/MAAAAAAAAsCgML2yV5cpITM72rXZXkdVVVdW17iaqqtid57YyhU0sp53fr/sAMdWG7Xbcke7bOHrvnsmTPvY3nn/iTychod3tr5cw3Nx6/59L+9XDb55KLf2p+16w+Mll9VLL2mOTYi5ILPjO9U98Ldidrj2t9/fX/0FmvLNxlv9l6zj47bky++vLpY40B6K4r/qz79xxbk1zw2eZzLvnF6eNkAQAAAAAAWHIGGbZ78Yznl1RV9cFuL7D32NhLZgy9qNtrAKkPc8IFfwAAIABJREFU2yXJfVfOfv/6f6qfu3pTd/qZj2a72239QX96uPrd85s/ujq58NbkwluS592QPO79+4+tG12ZPO+65Mer6ccZv9r1dlmg2z47/2uEIwG6a3K8d/devTE58onN59x1SfM6AAAAAAAAi9Igw3ZPn/H8r3q4zr57lyTP7OE6sHytPTYZWdm4duBRsnVHyybJhgd2r6d2rW+y5oFBwV65+l3zm9+s5wPt3NJ4fPWR81uT7hldM/9rrvv77vcBsJzturW39z/mec3r/foZAwAAAAAAgK4aSNiulHJ8kiNmDH20h8vNvPeRpZRje7gWLE8jo/UBsAPDdduvrb/P5h/uWktt2/SU+trk9t6vP7l7/tcc/8L25x7x6Mbj43fPf10WrqqSyZ2D7gKAdv4tLqXz+x/z3Ob1+exYOrkr+davJR9/RPKhE/c/PvzA5PMXTR9HDwAAAAAAQF8Mame7s/a+rZJcVVXVTb1aqKqqG5PM3Dri7F6tBcta3VGyl75x//M9W5M7vtR43sbHJms3d7+vVlasr6994cd6v/7nL5rf/NNelTz49e3PX39S4/GpPfNbl+4QtANYHLZ+v7f3X39Ccv6n6+s3fii5/v2t71NVyecuTL7z29NHz26/dv9j29XJDf+cfOapAncAAAAAAAB9MjagdTfOeH5zH9a7OcnJe587OxF6oS5sN9PNH6+vHXVB93qZr1Ubk923N65N7kpGV/dm3a1XJDe32Njz6ZckZTQZW5esOz4ZWTG/NZodWXrvd5ODz5jf/ViY2z4/6A4ASJKr/qr3a2w6Pzn0Ycnd32hcv/xPkuOe3/weWy9Ptnys+Zyp3ckVf5Yc+fjO+gQAAAAAAKBtg9rZ7tAZz2/pw3oz1zikD+vB8tMs1DU1Of32rq/Vz1k9wBxsXdAumQ6k9cpdl7Sec9g5yaFnJRtOnn/QLklWH9Vk/ZoX/+mdbVe2ngNAH1Stp5zwEwtfptnPN3d+tfX1zX52mu+9AAAAAAAAWLBBhe1W9rmHmWus6sN6sPwc8ej62tSu6bc7mpwYvfnp3e2nWyZ39e7e93yreX3zMxe+RrMdB6d6+LHRWC+/ngBo39R48/rIita7zrXj6Gc06WF3sv265tff3uaOqNuuar8nAAAAAAAAOjaosN2OGc831s7qnplr7KidBXRu3bH1tW3XJrtuT657b/2c9Sd1vaW2Hf6o+tonz+vNmndcnHz3bc3nnPvuha9TSpMevrTw+zM/l75p0B0AkCSTO+trIyuSx/5TsvLgha9z6s8na4+rr3/ohOTe7zeuXf/PyZV/0f5a3/jVebUGAAAAAADA/A0qbDfzWNfj+7DezDVu7cN6sPw0O0b28j9OrvrL+voDf6b7/czH6Orm9Z09OO36W29oXn/hnmR1l7LIhz288fhVf9Wd+9Oe8XuSSXlvgEVhoiZst/G85MLbkmOe0511RlYkT/hQ8zn/+aK5Y1WVfOPV81vre29Ppibndw0AAAAAAADzMqiw3b5zjkqS40spJ/dqoVLKA5Oc0GBtoJtWHFRfu+ey5NbPdnZtPxx1fvP65X/c3fWqqeS2/1dfP/KJychY99ab2tO9e9G527846A4A2Gdye+PxY5+frDyku2utaLFD3t1fnzu2/brWR8w2cttn538NAAAAAAAAbRtU2O5bScaTVHvf79LWEQ09b8bzPUm+2cO1YPlafWR9rZpM9mytrx/1pO73Mx8P/Onm9S3/3t31Jncl1UR9vdufj7owY+lioI/Wmv0dAKC/xu9uPL7y0O6vte6E5kfJNtLp94yr/trudgAAAAAAAD00kLBdVVXjSf5fpne2K0n+RyllXbfX2XvP12Q61Fcl+dzetYFe2PzMxuN3fS2588v11216am/6adfaY+qPWk2S3Xd1d72JFkeJnvLy7q532i83Hq8m7HrXT5f9+qA7ACCZPqJ1952Na6sO6/56pSQP/5/N5xz4s8FkzTG3rVz33uRfNid77uvsegAAAAAAAJoa1M52SfK+vW+rJBuTvL0Ha7wtyZGZDvQlyXt7sAawzzE/Mv9rHv6/ktGV3e9lvp7w0frajuu7u9bNTdZ62lea7xLYibXH1teu+ZvurkVjd38zue+KxrW1xw5+d0eA5WRyRzJV8/s3Kw/vzZrHPq95/Yo/n/3+fT+on/uw32t+r123Jd9+S3t9AQAAAAAAMC+DDNu9N8mWvc9LkpeXUl7frZuXUl6b5BXZf1TtrRG2g94aXTP/a1Ye3P0+OjHSx8DfrZ+tr63Z3P31xtbW127+ePfXY66r/qq+trIHuygBUK9uV7ukNzvbteO6981+f+v3G88rY8mGU1rf73stAnkAAAAAAAB0ZGBhu73Hub4u00G7au/bt5RS/r6Ucmin9y2lHFJKeW+St864b5Xk9Y6QhR5rdhRr7TWP7H4fnWj14vpdlyTj93ZnrWqyvtaLsN2GU+trE9u7vx5z/eB/19fu+Vb2b8AKQM+NNzkevpcB6Ic0OU78vitnvz+2rvG8aiLZ9NTu9QQAAAAAAMC8DHJnu1RV9TdJPpTZgbvnJ7milPL2Ukob2zZMK6WcXEp5e5Irkrwg+5MLVZKPVFX17m72DjRw8IPmf81Bp3W/j06taLLL3scfkfzTIcmnnpCM37Owda79u/pa6UHoqtkxvXd8qfvrMT8n/dSgOwBYXnY3C9t1/Ds/rZ38M/W1Pfck3/md6edVlVz2G/Vzx9Ykh5zV3d4AAAAAAABoy0DDdnv9RJKvZXbg7rAkr07y/VLKjaWUD5RS3lpKeU0p5b/tffxKKeW3Sin/XEq5Icnle685/IB7fT3JiwfwcQGtbP7h3oTLOvXIP2s957bPJV98YedrXPu++tppr+r8vq2c9dbG43vuSfbc17t1aW3jeQsPcALQvjv+s/H4ioOTkbHerbv2mOSCz9bXv/X65OaPJdf9QzJVsyH30U+ffvuMbySbn9V8vakmO+kCAAAAAADQkR6+mtSeqqq2lVIuSPLuJD+S6ZBcsn9nus1Jnrv3UWdmWmfm9R9K8pKqqrZ1rWGge1YeMugOZhtd0968Lf8+vStOq6NnG7n+H+prY22u34nRtfW1LZ9IjvvR3q1Nc6Nrkru/PuguAJaPu2r+zV11eO/XPvJx0//uT+5sXL/+H5OdW+qv3/ezSinJEz6SvK/J707defF0oBsAAAAAAICuWQw726WqqvuqqvrRTO9MtzP7d6bb98jesUaPHDC3JNmV5H9UVfUjVVVt7dfHAczThlMH3cFsB82jnx3Xd7bGtqvra738fDS7d7Oe6L31Jw26A4DlZdURjcf78f2wjDQ/Anbb1ck9l9bXZ/6sUsr0bnx1tl83//4AAAAAAABoalGE7fapquqPkhyf5K1J7snsUF1V85g555691x5fVdXv97t/IMkZr21/7nEX9a6PThx0evtzP/aw5NPnJ9e/f35r3HNZfW3zM+d3r/k46kn1tbrddei5Las35C93/7+87syn5jVnPT1vOeNJ+cADzsiesqi+PQMMl7suaTzebBfYbjr5ZfW127/YfGe7435s9vunv6Z+rmPiAQAAAAAAum7RvZpfVdWdVVW9McmmJI9P8sYkH0/y7SQ3J9m997Fl79i/J3lTkickObqqqjdWVXXHIHoHkpz9O0kZbW/uwfMIt/VDKcnpv9L+/Fv/I/nCjyXX/WN78y//3/W1016VrN7Y/trzNbYmWXdC49r3fq9361LrzpVr8oennZdvbPtS7l25JtvHVmXLmoPyqU2n5K9PfMSg2wMYTtuvqz+6+6SX9KeHk16arD22ca2arL/u4f8zOeyc2WMPfn39/K++fN6tAQAAAAAA0NzYoBuoU1XVniRf2PsAlpInfSL5zAWD7qIza4+f/zVXvCM5/sfamNckbLfxMfNfd74OOTPZfu3c8YltvV+bOS459AHZPraqYe1bhx6de1asziF7dvW5K4Ah1ywg36+d7UpJHvKG5Cs/O49rxpJTfr7xvQ57eP1ufTu3JGuO7qxPAAAAAAAA5lh0O9sBQ6CdF3XPfnvv++hEJy9I3/2N1nMmdyVbL6+vr940/3Xna3J3k5pQV7/dsPbgpvUb1xzUp04AlpFm37PX9OF78T6r5/nzRjWRjNT8nlSze91Vs4sfAAAAAAAAHRG2A7rvoAcl609qPuekn+pPL/O16cnJSOPdxmrt2Zrc8MGkqurnTOxofo8jzp3fmp3Y+Nj62uTO3q+/nB0+9893fKT5cctVKb3qBmD5avb9bvOz+tfHpvPnN3/9A+trD/jh+tp9V85vHQAAAAAAAJoStgO6r5Tk8R+q363tEf87WX1Ef3tq18qDk8f/y/yPkvv8hcmlb6ivT2yvr537nvrdarrpuOfX1yaE7XqqQbBuvMWfeRVhO4CuqwvbrdqYHHx6//oYW5cc8tD25z+kyc8YD/yZ+tp3f7v9NQAAAAAAAGipD+kOYFk65CHJ865P7vxactclyR1fSg59aHLKK5IV6wfdXXObn5786B3TPU/cl3zuee1d9923JQ/678mqw+fWbvts/XVHPbGTLudvbE19bcoxsj3VYGfDVjvbTfWqF4DlrC5sd8rP9bePZHonvXsubW/uygY/W+wzMpqc/LLkyr+YW9t12/TOu3ZLBQAAAAAA6AphO6B3RlYkGx89/TjtFwbdzfyMrZk+4m1yHiG0aiq5/T+TY549t3bfFfXXrTh4/v11YmR1fc3Odr01ftfcIcfIAvRf3fe70SaB9F5Zecg85rb4WWH1UfW1nVuStZvbXwsAAAAAAIBajpEFaGZ0dbJmHi9QT9zXeLyarL+m1Qvo3WJnu8GY3JVsv37OcMuwXa/6AVjO6na2G0TY7qjz25s3ti45/FHN52x8XH1tYlv7PQEAAAAAANCUsB1AK0/4cPtzG4SqktTvpLNiHrvaLFSzIMH43f3rY7nZdnUaRefGR5pvLmtnO4AeuPfbjcebBdJ75bCHJ6e22Pm3jCSP+NPp8H/Te51TX7v9C/PvDQAAAAAAgIYcIwvQymEPT553Q/KN1yQ3/1uy6anJDf/UeO63Xpc8+LVzx+t20tn05O712UoZm37RvpqaW/v+H/e3l+Wk5gjh1jvbCdsB9M0gdrYrJXn4nyTHPC+59bNzd8ddvSnZ/PTk0LNb36tZ/1/+6eSB/3VBrQIAAAAAADBN2A6gHWuPSc573/73/+2s5J5L279+MRxbV0pSViTV7rm1bVf3r4/lZvt1DYfHRx0jC9BXe2qOek+mA+mDUEqy6YLpx0K02vlux43TP8sAAAAAAACwII6RBejEnq2Nx8fWNx6f3FEzf213+mnXVIOgXVLfNws3sW3O0GRKJkvzb8FTjpEF6K7xe+pra47uXx+9UEaSDafU13ff2b9eAAAAAAAAhpiwHUAnTvulxuMT25Lxu+eO1+2m0+9j6zY/s/H4tqv628dyMjF3V8NWR8gmjpEF6Lq64HuSbDi5f330ypm/UV+baPKxAwAAAAAA0DZhO4BOHPaI+toX/8vcsS0fbzy332G7Y57beHz8rv72sZxc+7dzhtoK28naAXTX5X9SX+v39+NeOP6F9bVr/qZ/fQAAAAAAAAwxYTuATow1eVF+y78ne+YeHdpQv1/cb7be9hv618dy0uDoPjvbAQzAzR+rrw1D2K6UZHR149pt/9HfXgAAAAAAAIaUsB1AJ9a3OG5u1y2z3x9b13je7tu600+7mvW94/r+9bGcHHLmnKHdo2MtL6t60QvAcja6skltCMJ2STK5q/H4ikP72wcAAAAAAMCQErYD6MTKg5Ojzq+vT+zY/7yqkontjecd9aTu9tXKET9UX5vc2b8+lpM9984dausY2QN2tqumutURwPK09fLG4+uOn94VbhisO7Hx+J0X+z4CAAAAAADQBcJ2AJ167Pvra9//g/3Pp8br560+qnv9tKM0+Wd/QtiuJ+797pyhdo6RnTrwGNm63YoAaG3nlvraWb/Tvz567Yz/UV/7RpMaAAAAAAAAbRm6sF0p5eGllItKKc8upbQ45xFgAVYeUl+75m/2P9/e5HjWQRxbt+rwxuN2tuu+8XsaDu9ua2e7Awa2XdWFhgCWqRv/pb5Wd9T7UtTs54or/0KwHgAAAAAAYIEWbdiulLK6lHLSjEfTZEIp5TmllGuTfCXJPyT5lySXl1K+UEo5ow8tA8tNs13iZtp5U31tzdHd6WU+6l6It3Na9937vYbD7exsVx24s92OJl9HADR3zd/W10ZW9q+PXlt7TH1t4r7kviv61wsAAAAAAMAQGht0A028Oslv7n1+Y5IT6iaWUn4syXuTlL2PmR6T5MullCdWVXVJD/oEaOy9JTn83GRqd/2cxRS2237N9Nvxu5Mr/iy565Lk0IclJ788WX1E//obJlONA4x7Rlp/+50Tthu/qxsdASxP93y7vtb8d3qWlo2PTVYclOzZ2rh++R8l576rvz0BAAAAAAAMkUW7s12S52V/cO6vqqqqGk0qpRya5J3Z/7HMnFftfaxL8oFSyuoe9QrQ2J0XJ3d/Y9BdzDZa80/hZW9Otl6efPr85Fu/ltzwgeTSNyafflKyW9CrIzVhh46Okb33O11oCGAZ2rN1ele3Ou3uVLsUjK5Kzv9Uff3qd08/AAAAAAAA6MiifGWplLImydnZH5z7aJPpr0xy8N65JcnNSf5Xkj9Kcn32B/aOSfKLvegXoCOD2NUuqd/ZLkk+9yPJ3d+cPXbvt5Pr/7G3PQ2rLZ9oODy+Yn3LS+fsbHe1nYgAOnLDB1tMODDdvMQd/shk05Pr6xf/VP96AQAAAAAAGDKLMmyX5Mwko5l+5Wt7VVVfbzL3xdkftLs8yUOqqvqlqqpevfc+X907ryR5ac86BpanQ87s/NqVh3avj3mte1h9bev3Go9//dW96WXYrdjQcHi8Gm956dSB2Y9DzupCQwDL0O1fHHQH/bfh1Ob13Xf2pw8AAAAAAIAhMzboBmqcuPdtleS7dZNKKQ9KcnL2Hxf7pqqq7t1Xr6pqWynllUku3jt0Winl2KqqbuhN28Cy84h3JJ96XGfXbnpKd3tpe90nJ1s+Pr9rJnf0ppdhV001HB5v5xjZA3damtzVjY4Alp+7vtp6zrA55nnJFe+or3/r15K1xyalJBlp8bbsPWq3nbcNrq+bW3efbq5d10u792t37Vm9AwAAAAAAw2yxhu2OmvF8S5N5+xIuJcl9SeacEVVV1VdKKTdm+hjZJHloEmE7oDs2ntf5tQ9+fff6mI+Tfzb5xq8MZu3lZuvlDYfH125ueemcsN2Bx/sC0No1f7s8//3cdEHz+pXv7E8fy1Kr4N8ggoMLCBA2DEEu5TBkN8KlbXwM7X4svfja6PjPZ99bAAAAAACaWaxhu7Uznt/XZN6+lEuV5NNVVU3UzPt29oftjltgbwD7lZKc+ebksjfP77ojHp2sPrIXHbW2Yn1y1lund7Wht276cMPh8ZUHJZlseml14Gude+7pTk8Ay8XURPKlnxx0F4NRRgbdwTJWJVWVZGr6v1JhqVmMQcyFBhIXtMPmIglDzvfPpR9/PvMN/fb8a0NYFAAAAID+WKxhu5n/h2xFk3mPmfH8803m3Tnj+UEddQRQZ+0xreccaPVRref00uja1nPomfE2Xgeas7NdMn0srQAFQHvu+NKgOwBYeqqpvW+b/2IILE49DmJ2uitl13fYnMfHNNAwZJc/lnmFS7v8sfTq8zlrPgAAALBULNaw3czd7BomUkopm5KcPGPoP5vcb+bH6f9eAN21+Znzv2Yhx892w+iawa6/HFRVUkYbvlA5XlpvdTNnZ7skmdyVjAlKArRl2zWD7mCwNpya3PeDQXcBAH1U7f/vL7uLsuS0Cv51KUA43+BguztsDnIH1Hl9TB18LIsxKNvTHWXne799bwEAAJaPxRq2u2nv25LkzJo5M9Mtu5N8vcn9DpnxfPsC+gKYa83RyYkvSa55T3vz15+cnPDi3vbUyuGPGuz6y8HUntodQcbXHJVMbml+eaNs+MQOYTuAdu24YdAdDNZj35987KxBdwEAQFscRc8StxiDmI6ib39uP/98OgqX9vJrQ1gUAID5W6xhu0tnPD+slPK0qqr+/YA5P7X3bZXkK1VV7Wlyv5NmPL+lGw0CzHLuu5JDH5Z8/Zdnjx/28GRs/fTzkZXJEY9OTnl5smZT/3ucqZOd7e79XnLw6d3vZVjtqv92M15GWl7e8BjZq/4iefDrF9IVwPJx6RsG3cFgHfrQ5Bnfmh24G12bHHZOpl/Mndr7gu7e5+28nXVd3dt53K/VfQAAgKXBUfQsaT0OYna6K+Vi3mGzb2HIJR6U7dXnc9Z8AGAQFmXYrqqqq0opV2T6mNiS5B2llCdXVXVNkpRSXp1k5hmMH6q7VyllfWYfN3tVD1oGlrtSkgf90vRjKRjrIGx300eE7eZjyydqS+P5/+zdd5xkVZn/8e+pzmF6ch4mAkPOSJYM4ioIKiAmzO4aWVdXXVcU/RlWMaBiREURQQyYkBwEhjggzMBEYHLOMz2d6/z+qO7p6up7Tt1bdau7wuftq19ddc655zxdXV09Uk8/T/b/8BjYRnbNX0m2A4AwOraFX1vO/2Fy9BHSFSWctGYDEv2yJe/FmjgYJYEw4LpsZ2d+jvPsuJIhoz6eeX8tEb6mqM+NbN+XuL8/AAAAAEqEFa3oUbqyJf7FlAwZNXGwIBU2SzEZssgSZWlFDwCxKcpku14/k/R1pf5pO0vSYmPMc5ImSNqvd9xIapd0k2efM3rXSVK3pBcKFC8AlI6GqdGvqfR2fFF173ZOdSqZ9fLAynb8dTAAhNO2Lvxay39JL1rGSKZquKMAcrMvGW8YkyFDJQzGlAwZNXkx1wqbsT+eMXwtxZgom+1ryroPAAAAgNKQ/v8BhjsWIAexJGLGnTiY575DVmGzgMmQsSbKxvS15JRcGvPjaKp61wPFnWz3XaVaxc5V6p8HNZKOlfZlH/T+10F9y1q72bPPxWnrn7PWdhQmXAAoIYlqqWWutGtJ+GuWfl/a+pR05FekSWcVLrZy0b3XOdXp7XyeYoP+oqenNZ+IAKBybLh3uCMAUOn2/Qc9SSJpFCVmQLJokSRDDnlyaYivIVKFzQhnh/oahisRM+LXEulriuu5xrvMAAAAQMno+4Mvik2gFJz+d2nqa4c7ChSJok22s9Z2GmPOl3SnpL6+hUap/2LS+1+t9QdJV7v26G0h+0b1/1eW+woWMACUmmO/Jz1wXrRrtj4hPfha6fwnpNFHFiaucvH854LHx5+mzhB534H1JHa+mFdIAFARdi6Wnrkq/HraFQAAMNCAZFGgBJV6MuSQVdiMkigbcb+oiZhD+bVEfW6E/Zri+v4AAAAAKE68l4A0RZtsJ0nW2tXGmKMkvVvShZJm9E4tlnSztfaPWba4UlJL2v2/xx4kAJSq6qbcrkt2SCtvIdnOx9OS0NaMUGeyPfsWrne2kj1SguooAOC06tbhjgAAAADDiVb0KGWDkvGKIBmSVvTh9i2HRNm8vz8AAADljBay6FfUyXaSZK3tkvTj3o+obpD067S9dsYVFwCUvKbpuV/74teko74aXyzlpsfdQranp0NJ1WTdwrr+OKJzq1Q/IcfAAKACRK0COvqYwsQBAAAAAFHtqy7KG3koQbSiD/c1Ra2wWRaJmDl+LaG+Lzk+N2hFDwCIisp2SFP0yXb5sNa2SWob7jgAoCg1ThvuCMpXt/tXT+eU8yTNy7qFs7JdD7/WAMBr3R3h105+jVQ7snCxAAAAAABQKWhFj1JXrq3oIyWXxpzYGenxzCERM7ZE2bi/lghfk/e5FeFrAVB4/EEM0pR1sh0AAMOie5dzqnPy2dLGEMl2rr+O8CTyAUDFW/MXqXtPuLUTXi2d/JvCxgMAAAAAAIDSQCt6lLJcWtEXOhmykFUp86qwGXMiZlm2oh/q70+p4C8K0I9kOwAA4rb+HudUZ8i/enD+HRKV7QDA7cWvu+dmXymd8HOpfaMkKzVMHqqoAAAAAAAAAKBwaEWPUjagFX2RJEMGzY06bGgfFxS1kky2M8ZMkzRb0hhJIyQZa+2vhjcqAChBM66QVt483FGUn/aNzqnO6rpQWyRdfx3RvimXiACg/FkrbX3cPT/muNR/dGqYNHQxAQAAAAAAAAAAtwGt6KkwitJQMsl2xpgZkq6SdKGkGQFLBiXbGWNOk3Rm793t1trvFS5CAChB09+Ue7Ld9uek0UfGG0+5SHYNGuoyCb3QMkH3bw3XstC6KhHvWS7p/NxjA4Bylezwl5yfdN7QxQIAAAAAAAAAAICyVPTJdsaYhKQvSfqkUmmsQekHrm57WyR9oW/eGHOHtfalAoQJAKVp6oW5X/uPo6RTbpFmXBZfPOVi1+IBdzsSVfrRnBO0pGW81PZCqC2sq7Ld8h9LB34o3wgBoPzsecU9N/NtUssBQxcLAAAAAAAAAAAAylJRN+02xtRIulPSpxWcGOhKsktNWrtI0gPqT9C7ItYAAaDUJaqkA/JI3Hryg4FV3Cre6t8PuPvUmGmpRLsIrHEk2+1YkGtUAFDeFnzBPXfoZ4csDAAAAAAAAAAAAJSvok62k3SDpHN6b1ulkuYelnSNpM8puMpdpj+k3aZ3FABkGnV47td27ZC2PRtfLOXCVA24u3hEtEQ7KUs2+d61kfcDgLK39Un3XHXz0MUBAAAAAAAAAACAslW0yXbGmLMlvU39SXYvSXqVtfZ0a+0XJP0m5FZ/79tS0vHGmPq4YwWAkjbjskHJYZF07YgvlnKRkdSxt7om8hbONrKS1MljDgCSpGSPtPVpaccL/kqrjdOGLiYAAAAAAAAAAACUraJNtpN0de9nI2mlpJOttU9H3cRau1JSX1ZCjaSD4gkPAMpE7aj82uv98yKppzO+eMpB184BdzsT0ZMZk642spK0/q7I+wG0xh1nAAAgAElEQVRA2dm9XPrrHOmu46U7DpPaHFU/p10s+V5TAQAAAAAAAAAAgJCKMtnOGDNG0slKVbWzkj5mrd2Sx5Yvpt0+MJ/YAKAsHf5F6bQ/SdPfLFU1RLu2p11a/M3CxFWKkj2DhnJJtvO2kX32E6nHHQAq2cNvlFpXZl83592FjwUAAAAAAAAAAAAVoSiT7SSdqlRsRtJma+1f8twvPVFvQp57AUD5MUba7w3Sqb+TLtsb/fo1f40/plK1e+mgoc5EdeDSyyd+UKeMPDdwzmarwrTpn5FDA4Cysfslacfz4dZGTSIHAAAAAAAAAAAAHIo12W5y72crKXLr2AC70243x7AfAJS3w6+Jtn7X4sLEUYo6tg4aclW2qzV1Mo5fxd7KdpLUtj5iYBH0tEtde6TutsBKfQAw7KIkHI86onBxAAAAAAAAAAAAoKIUa7LdmLTb22PYL72cRVcM+wFAeZv5FqlmVPj1XTukvx0krf5T4WIqFT2DKwN2uZLtEnUyjgp2Vlkq2wWck7e2jdLNRrq1QbpthPS7RumWaumJ90vJ7vjPA4ChUD9+uCMAAAAAAAAAAABAmSjWZLtdabdHxLDfxLTb22LYDwDK24j9pXMekKZdLDXNkiZfIE06x3/NriXSI2+WNj82NDEWqz0vDxpyV7arVcJV2S5bG9mFX44cmpe10p8mBc+99FPp2U/Gex4A5CPba2Sfo68tbBwAAAAAAAAAAACoKMWabLc57fYB+WxkjKmSdHTaUAH77gFAGRl9lPTqP0oXvSydeYd01j3SGXf6r7E90srfDk18xWrTQwPuJpWlsp2jgl2y78bYE4PPaVuXW3wuO1/0zy//ES1lARSRkMl2NS2FDQMAAAAAAAAAAAAVpViT7Rb0fjaS5hpjpuWx1wWSGntvW0mP5xMYAFS05tnZ1+xaUvg4ilnjwF9ZrkQ7Sao1njayfeOdjoKsibqcwnNa/hP/fE+71L4x3jMBoNCaZw13BAAAAAAAAAAAACgj1cMdQBBr7SJjzFpJU5VKuPuEpKui7mOMSUj6bN+2kp6z1u6ILVAAqDQtIYqN9rQVPg6fjQ9Kj18pta7sH5vyWmnmW6WZVxT+/K49A+66WshKfZXtHG1k+25MPl/avXTwgmSHZJOSySNvvnNHqh3tpoekbU9nX7/9WalxSu7nlbuND0gPvEZKdvaPjTpcmniWtPWpVLLqgR+SxjmqFQKI3/jThjsCAAAAAAAAAAAAlJFirWwnSb/p/WwkfdgYc24Oe3xFUvo72j/NOyoAqHSHftY/v/nhoYkjyIZ7pfvOHJhoJ0nr7pDmvVVacl3hY1j+owF3vcl2xt1G1vaNz3iL+6z2ze65bHo6pPvPkRZfGy7RTpIeep20Z0XuZ5azDfdK9501MNFOknYskJZ8V9oyT1pxk3Tf2dIWiuwC+QvRRnbaG6Sq2sKHAgAAAAAAAAAAgIpRzMl2/ydpl1LFfaok/dkY8/4wFxpjxhljfinpk+ovDrRB0s8LECcAVJbmOdnXJLsLH0eQbMl0i76RqgZXKG2D26z6ku1qEp5ku742stUN7vPW/DFSeANsfEDaNj/6df/6VO5nlrPF3w23rmevtOyHhY0FQMroo4c7AgAAAAAAAAAAAJSZok22s9Zuk/RRpcpWWEn1kn5ojFlmjPmqpAvT1xtjXmWMebsx5teSXpL09t5rjaQeSe+y1maUmwEARFY/IfuaPS8VPo4g6+/yz+9dI7WtK9z5K349aKgrS2W7hKMN7L42snWex3vXkgjBZdj6ZG7Xrbot9zPL2aYHw6995VcFCwOoGCZEZbv68YWPAwAAAAAAAAAAABWlergD8LHW/soYs7+kzymVd2AkzZGUWVbHSHos475Nu+Yz1tq7Cx8xAFSACWdIiTop2eFe091amLO3PJ5qCVs7JtUesHnmwPnMFp5BOrZJjdMKEp5aVw8a8raRTdQ6K9sl+xJJGqe4z+vxfA+y6dmb+7UYrHvPcEcAVJgQyXaTzy98GAAAAAAAAAAAAKgoRVvZro+19vOS3iWpvW+o93N6Ql1fUp1JW2MkdUp6p7X2m0MWMACUu5pm6dRb/WvmvS3+dq3LfyLdfZK08EvSM1dJdx4jbXs2bf5n4fbZ8Xy8cWXhSrarUrWqTLWM41exTU8kGX1U8Oab/5l7YLm0kO3TviX3a8tR24bhjgBAkObZwx0BAAAAAAAAAAAAykzRJ9tJkrX2RkkHS7peqaS7vgwEo4FJdn1jSUm/knSwtXZwTz8AQH6mXSRdstk9v2uRtO2Z+M7raZfmf2zgWOd26bnP9s53SE9/ONxez38uvrhC6EgEF5GtTdRKkoyjFaJNvzP2hODNd76Ye2Ab7nXPjTjAf+1LP8393HK0+NvDHQGATA2ThzsCAAAAAAAAAAAAlKGibiObzlq7StKHjTGfknRq78d+ksZKqpW0RdJGSfMk3Wet3TFcsQJARagfJ9WMlLp2Bs9vfEAae1w8Z63+YyrhLtP6O1Oftz3tb2ubztTEE1OQgMQ6V2W7WlOXCsfRCtEaI1U3997xVAm0ScnEmDu/35uk026Tbva0aNz4gHToZ+I7s9RtenC4IwCQyfYMdwQAAAAAAAAAAAAoQyWTbNfHWrtX0t29HwCA4TThdGntX4Ln/vUpac3t0kFXSdMulhxJZ6HsWOCf79oVfq/2jbnHkU3duEFDXa5ku0Qq2S7hbCMr6djvpu7UT3Sf2dMhVTdEiTIlURecoFhVn/o8533uCnauBMtK1d0a/ZotT0pjj5cclQ0BZJPlZyfg9RgAAAAAAAAAAADIV0m0kQUAFKnDr/bPb5knPfJm6ZZqqX1L4eLwtUTN1L1bWv6TwsTRvWfQkKuyXU1fZTtXG9makdL0S1N3pl3oPrOnLVqMUqoanqsS4Iy3pD4f9VX39VuflHo6o59bjnrapZ0vRL/u7hOk34+Wkl3xxwRAOuzzwx0BAAAAAAAAAAAAyhDJdgCA3I05Rhp1ZLi1f55emBiS3dLib0W75skPSLuWxB/Lsh8NGnK2kU3428gmRx4i1fS2ka1pcZ/Z10o3ii2Pu+fqxvR+Hisd9TX3uqXfj35uOVr0zdyv7dqZ3/VAJctWFXLUEUMTBwAAAAAAAAAAACoKyXYAgPyMOizculwqsO3jSarY+kRuW677R27X+dSMGDSUPdnO0UY2PZGkqtF95ob7wsfXZ90d7rmqtJa0DVNz26OS5Ps4PPfZeOIAKk6W/xtTlUN7bQAAAAAAAAAAACCL6uEOIApjTI2kkySdJmmOpDGSRkiStfbsYQwNACrXmGOlFb8JtzbZIyWqUq0ze9oDk9MC+SoYtW0It0emvWtyu86ncZrUunLAkDPZzvgr21nZtH09SW+2O1qMktS1yz3XMrf/9phj3et2vRj93OHUtUvqCGhlnOySqkdIjVNy2zfX51+6vWtSiY3ZKnUB6FdV556rGy817jd0sQAAAAAAAAAAAKBilESynTGmSdJVkj4saXzmtJSekTDgurdI+n+9d7dJOt5aG7gWAJCj6ZdKz/xnuLWbHpRW/0l65cZUpbsJp0sn3yw1TMz9/Mff5Z5rmCy1rQ+eW3yt1L1HOu77UiKmX4cBSWzuyna1kiRjHJXtbLL/jmONJGnnC+Hj69O9xz1XVd9/u+Ug97q29dLNRjr/KWnscdFjGCptG6V5b5U2PSClP6ZBzn5Qmnh6+L3X/FlqfSWv8CRJt++XStQ8+pvSjMvy3w+oBJseds/N/WgqsRsAAAAAAAAAAACIWdG3kTXGHCFpvqQvSpogby/BQf4qaaykmZKOlnRu3PEBQMXzVV3LdP850rIfpJK9bI+08X7poX/L7/zu3e65i1b5r13+Y+lfn87v/HQ7Fgwa6nQk8vVVtkuEqWwnSXM/HnzmtvlSMmJ1u5d/ETw++8qB942RXvUT/153HS+1B1SMKxYPXyxtvC97op0k3XeG1JrlOdNn+7+kh9/knj/5t9JJvw63l5SqbjfvCmnL4+GvASrV3rXSkm+75w/9n6GLBQAAAAAAAAAAABWlqJPtjDGHSHpI0gEaWMHOKETSnbV2j6Tb0obeGHeMAIA8bZsv7X4p/n1bDk5VrJv1Tv+6lbdIcRQ9dSRzdTmqK9UksrWRzdivutF99uZHs8cXRlXT4LHaMdmvW3dHPOfHbeciactj0a5Z85dw61b9wd/Ct3akNOtt0nE/CH+2TUorfxd+PVCp1v7VPVc3npbMAAAAAAAAAAAAKJiiTbYzxtRL+pukkWnDCyS9R9JsSQcrXJW7P6fdPju2AAEA/ea8J7/rX/5lLGEM0Lkt9XnE/v51bWulZEf+5wW0kJU8bWR7K9u52sgmMxMAmz1fx54IyYrJLvdcT+vgsWyPnyQ9+4nw5w+lHc9Hv2ZtyGS7Pcv9833fr5YDo50f5XsJVKrdnp+/5jlDFwcAAAAAAAAAAAAqTtEm20n6qFLtX/uyDa6TdIy19hfW2hWS2kPu80DvHkbSLGPMhJjjBAAckmcrVtuTZUEOVYqmvDb1eb8QRU07d0bfP1NPW/DWrmS7rJXtMpLtpnra7ToS/QI54pQkTQk4Y9QR2ffsKNI2shvuzeGae6T2zdnXbX3KPTfmOKnlgNTtCadLjdPCn+/7/gBI2bXYPTfj8qGLAwAAAAAAAAAAABWnmJPtPqL+RLvbrbUft9bRo8+jt5XsirShg2OIreQYY2qMMWcYY95hjPlvY8yHjDEXG2NmDndsAMrAiP2lU24p4AE5JNvt/4HU55EHS+NP9a99+OLo+2eKmmxnIraRrffkij9zVfb4+qy6zT3XEvAr0hjpjBBtYvesCB/DUGjfJL30s9yuve8MqXuve37Py/4KdGf8vf92okY65yFp7Inhzt5wT7h1QKVq3yyt+7t7fu5Hhy4WAAAAAAAAAAAAVJyiTLYzxhwiaar6sys+meeW6e+Iz85zr1gYY2YbYy4zxnzDGPOgMWaXMcamfayI6ZzxxpjrJW1QqsrfjZK+Jun7kv4o6RVjzKPGmBClnwDAY8Zl0hVWuniddNHK8MlFUiqhK241aV3Ip17oX7vlMWnvmvzO2/Zs4HDWynaONrKDKttJ0riT3Oe3rffH12fRN91z1Q3B480hfnWu/G2484fK6j+652rH+K/d+aK04T73/LIfuecOu3pwYmTzbOn8x/xnAghnzZ/dc3PeW5jfJwAAAAAAAAAAAECvoky2k3RU72craaG19uU899uRdnukc1WB9VaWu8sYs1WpBMBbJP2XpNMljSjAeRdIWijp3yX5MgtOlvR7Y8xNxpimuOMAUGEaJktN0/2JYUMSx8S025Oyr9/2TH7n9QRXQstW2S7hqmxnA5Lt6j1fhyPZb5D2Te65unGO8fHZ9902P9z5Q8X3/TzgP7Jfv91z/aJvuOdcj6EkHfW17Oc6ki8B9PL9bPpeIwEAAAAAAAAAAIAYFOs7uunv6i+LYb+OtNuNMeyXq6MknSd/4lssjDFnSLpdUnp5HStpvqTbJN0jaUvGZW+V9FvjKrMEAFFM/bfwa1/4ihSUXJarCWdItaP77086TzLBSW/75J1s1x443JWtsp3jV/GgNrKSNPV1nvOD29gOXhccpySppiV4vG6MNO5k/76r/yBtuDdcDEPBkfwoSZr7sRDXh3w8M/m+R3Pem/16m5SSXbmdDfTp3CktvV6a93bpkcukRy5Pvc7uyffvV4qAr8XzlNcOXRwAAAAAAAAAAACoSMWaVFWfdrvDuSq89Gp2u2PYL24dGtjqNi/GmGlKtYitTRt+VNKh1trjrLWXWmvPkzRN0sckpb+r/3pJX44rFgAVbOJZ0dbfdXw855pq6cRfDBxrmCidcov/uoVflDbPy/3ctg2Bw52J6sDxvsp2xtHyMBnURnbWO93nPxui47q17iS0E27wX3vyTdn3v/9cacl12dcNhRW/CR6vGyfVj5NetzjL9Tm2xW2e6Z6rGysd853se3TuzO1sQJI6t0v3nSU9/SFpxU3Sqt9Jq26Vnvsf6a4TpB0LhjvC/Lxyo3tu/DBXVAUAAAAAAAAAAEDZK9Zku/SKa55+bKHNTru9NYb98tEl6V+SfibpA5KOVaqFbIhyN6F9UVJaSSfNk3SOtXZR+iJrbYe19jpJl2Zc/5/GmBkxxgOgEhkjNe8ffv22+c6EtVDmflw69xHpsrbghKfpb5LetGPweLoFV+d+fkACiJWnjey+ynauNrIBle0SVVLz7MHjktT6itSeWbA0g6/aW8tc/7XNs6TLO6VJ5/rXzf+Y1BNHnnwefM+jvoTFlrnSZR1S7/dhkL2r4q222Oegj0lv2iZNv8y9Zu2f4z8XleOVm9ytVju2SC98dWjjiVPQ62KfMBUrAQAAAAAAAAAAgDwVa7Jd37vkRtLR+WxkjBkr6eC0oeX57JenGyW1WGuPtta+z1r7E2vtM9ba2PrFGWMOkJRe+qhT0pXWWmffQGvt7b2x9amTlEfGCQD0ap4Vbf3SHwSPO6q/7TP2BOnYb0vjT5EcleQkSbUjU2tdNj2Ue4JVQLJajzFKOmLfV9nO2UbWEUfNyOBxSdryqD/GHQvdc9XN/mslKVEjTbso+7r1d2ZfU0ibH3bPpT9+VbXSrHe417aujC+mdLWjpWOudc/n29IYlW3TQ1nm/zk0cRTCbs8/4xO17jkAAAAAAAAAAAAgJsWabDdPUl/pirHGmIi9CAd4t7SvbFCrpKfzCSwf1trtvqS3mFwhKb2M0h+ttctCXPf1jPuXGmPqA1cCQFhT/i3a+vV3OSayJNtVNYQ/Y+KZ7rlkl5TsDL/XAIN/pbqq2kkhKtu5ku188Xdl6ZTe0+aeG3mo/9ow5/fZtSTcXoXiexwmZfyTYuyr3Gv3BCT2JHtyiylT41T3nO2O5wxUpvaN+c0Xs27Pz/b4U4cuDgAAAAAAAAAAAFSsoky2s9Zul/RU2tCXjMlW1mgwY8xUSZ9WqpOflXSPDezLV1Yuzrj/izAX9baYfSJtqEnSeXEFBaBCzb5SGndS+PXbnpK6Pa1OXaIk22VrNdi1K/r5ktS6YtBQp6fKXl+yXcLx68356+qgT7hj2LvKPSf5H1tfRcB0LQdnfwz3rg23V6FsuNc9l/l8nPV299plPxo81rHJvf7k3/rjylQ/MXh819Jo+wB99rwibX7Ev8Z2S61ZXiuKle+1ZTL/bAUAAAAAAAAAAEDhFWWyXa/vpt0+UVLAO95uxpiJkv4iabT6SyJ9K57QipMxZpKkI9OGuiVl6Sk4wIMZ9y/INyYAFa52pHTm3dLJv5FGHRHumkWe9pou1RGS7RomSefOc88v/X708yVp5+AWrb7KdjUm1fIwchvZxilSw5Tguef+xx/jlsccwYzyX5fOGOmYb/vXLL0u/H5xs1Za6Uh6G3WkZDIe76o6aczxwetX/0FKZlSZ8z3GIw8JH6ckTcvMj++16cFo+wB9nvr3cOue/VRh4yiUf/23Y8JIVRRkBgAAAAAAAAAAQOEVbbKdtfYWSf/qvWskvdcY87Ax5jTfdcaYJmPMB3uvPUr9Ve3uttZGSTwrRYdl3H/eWtsa4frM7JOQPQUBwKOmWZp5hfTa56QrrHRJlhaGrkQpn90vRVvva+EZY6JTPm1kk65kO0mqn5RbQG3rgseraqPtE6bYrPXEX0gBSY/7VDcGj/uS5LY+OfD+xvuj7++S8DzucbWrReXo6ZA2PhBu7apbpZ5cW2YPoz2O13oS7QAAAAAAAAAAADBEQvaMGzZvkvS4pLG990+R9KAxZoOk5ekLjTE/lHSgpJMk1SmVoGd7P6+V5OkTVzYyswWWB65yy3wHM2KJHgAIoX6Cf37Xouh77ngu2vrGae45m0OSk7WpimkZrV+7fMl2pjfZLrPSWt+W8nQ9d7W6zZZwUuuoYNfuaY2aq2TH8CTAtG92z409IXh8/KnSKzcGz3VsGXi/p8O9f9Msf2yZfEmOPW1Sojnafqg83W2pJNqaEZKMlIyQQLfsemm/N6ZeF2pGFCzEWFU3S53bB4/3tOW1rbVWm7s2qCMZvE9jVZPGVE+QCZNoDAAAAAAAAAAAgLJW1Ml21tqXjTGvk/QnSZPVnzw3WVJ6WR8j6f1pt5W2do2k11lrM94tL0v7Z9xfFfH6lRn3xxpjRltrA97VBIA8zLhCWnmze/7pj0jHfEfal6yWJcGheXa0800i1Yo1qNLb5hyKoCa7BiXaSWHbyAZ/bdZXGW7uR6X5Hx083tPem/jneLxcCSl149xnuZz8G2neW93zHVv8SY2F4ku62f99weMzLpeedMx1ZxSIde0/9sS052tI0y6RFn0zeK6nLVUVEpXLJqW2DdLe1dLeVVJr78feVamx1lVShye5NJtnrkp9SNL0N0sn/ar4K8QFJdpJ0gEfynnLJXsX6Mb139GO7q3edeNqJuo9Uz6pGfWZ/9wGAAAAAAAAAABAJSnqZDtJstY+aYw5RtLPJV3QN5zxecAlSmVlGEn3SHqntXZDwQMtDpkliyKVKrLW7jHGtEtKf6d1pKS8k+2MMRMkjY942Zx8zwVQpI77nj/Zbun3U8lwh34mdT9bNaGmGdFjOOQz0vyPBM+1bZAaIrRq7QxO0thc1xQ4Xmvq9lVIcibb+SrbjTnOPbf+TmnKBcFzy34YPD7Zsd5n5hXSriXSwmuC5x97p3T2fdH3zdeS69xzrnaxNc1SVaPUs3fw3ItflWa+pf++K9nu8M+Hj7FPvefXYts6/zxKX9fuwclzffdbV0lta1KJvENh1W1S7WjpVT8emvNy0bbePTf9jTltuaNrq65f8yV12ewVAbd0bdR3V39eX5lzg+oTDTmdBwAAAAAAAAAAgNJX9Ml2kmSt3Sjp34wxx0r6mKSzlapuF2SnpPskfc9a+9AQhVgsMkvg5NJTq00Dk+3i6iv2H5KujmkvAKUuTPWkVbf1J9tlUz8x3hjW/V2a857we62/J3B4ZWNw29baRN2+2wlnG1lPZTtf7CtvcSfbuVTnmDgy573uZLuN96cShRI1ue2dq82PBI83TPFf17RfKnkw044F/beTPe42nVWN4eIbcI3ncV9/tzT6yOh7ojgku1MJk+nJc3tXSa1pVeq6dgx3lAOt/oN0/A9TlT+L0Zo/u+d8P0seC1qfDpVo16c9uVeLWp/V0SNOzuk8AAAAAAAAAAAAlL6SSLbrY62dL+kdkmSMmS1pP0ljJdVK2iJpo6QXrA3o5VcZMpPt2nPYo03SaM+eAJC/MIkRrSvC73fwJ6PH0HKQe25PhLMlZ9JMc3dwEseenl37bufURtbXNrfD0zW9ZW5wQlnQWBjZqv91bJMackiEzEfDFGnP8sHjQS2D07U6Oq83pOX2+1rU5pLs40sStd3R98PQsDbVzjQzeS79c9u6wNbSRa1jq9S1M1Xhrhj5foabc2vturUrUhFoSdKWHK4BAAAAAAAAAABA+SjKZDtjzAhJs9KGXrLWtqavsda+LOnlIQ2s9HgyNWK9BgCiMUY67H+lhV9yr+mM0MF69NHRYxh3kntuxW+kIz2xZXIkYXUlsleIciXbJX1tZGtHuud8j5srqW7C6e5rfBI10uTzpfV3Bc8HtWUtpKc+HJxoJ0kTz/ZfO+3i4NbG6a0rfcl2uVQHTHj+Gda9J/p+KKyVt0pLvydte8b/XCg2Iw5MJW/uCfHP5t+PkSaeKR3/I6nlwMLHFkXbBvdc/bictuxMdkS+piuHawAAAAAAAAAAAFA+irRPlN4i6dnejycl1fmXo1fmO/O59NTKvCaud/uvl3RYxI+LYjobQDE6/AvS/h/wr1n+sxAbmVTyXlSJKnfCXesr0tq/hd9r1W2Bw52NwR3Pj0lrQWhyaSMrSYd+Nnh8y2PB475ElZaD/Wf5nOD5Hi25Lvd9o3r2U9KyH7jnD/ig//pZb3PPdfcmVnV62n7m2MZSk84JHn/hK7nth8JYdZv06OXS5kdLK9FOko7+pnT2/dkTTvtsfEC69zSpbWNh44rCJqWXfho8N/n8nLftstET5zpsLoWjAQAAAAAAAAAAUC6KNdlunCTT+/GUtXbbMMdTKoo22c5au8la+0KUD0kvxXE2gCJlEtKrfiSdO8+9Zsl3su/TPCv7GpcRB7jnljsSO4Jsmx843FVVHzheY/pzyHNqIytJtWPcc60rB4+t+ZN7vSPOUGpa3HNLhzDZbtE3/PPZkuF88xvuTX1e/4/c93ep9nRr79qd256I37IfD+/5VQ2pNtCTzpXmvCda62yTkJpmSGffG/6a9k3Smtujx1ko255xz9XlVtVOcle2O37E6Tqs6bhI1wAAAAAAAAAAAKAyFGUbWUk7ez9bSWuGM5ASszPj/vgoFxtjmjU42c5TxgcAYtA41T23r+2pp3JdmNaILg1T3HM7ngu/T9OMwAS3rmS7pKZB47VpyXYJR9679bWRlfyxb38+FdOAsX/ltlc2VYO/vn2sTX3kUnkwbtm+Rt/8zgXStNdL3a3uNb7kR5+6se65XUukscEJPxhiUV4PIjOp51/TdKlxv97P0wd+rh0z8OeofUv2BNM+Y9KeQ2NfJW19Mtx1Bf2aIyrQ61eno7JdY1WT82WrI0llOwAAAAAAAAAAgEpWrMl269Nu1w5bFKVnWcb9GYGr3DLXb7PWbs8jHgDIrmm6e852S8keeZPt8jH1QunFrwXPRakqFlRJTlJnzQgpIGmuJtH/q81Z2S5bG9nJ57nnevYGBJOZj51mzLH+s3wSVamEoL2rAiatlOySqgr8qzzZ5Z9v3E8afaR/ja/KYV8bWV/70OocK9tNu1h66YbguVJrV1rOugN+psKqHpFKft2XPLffwGS6xqlSoibano7204EaJvbfPuQz0sMXh7uumJ5/vlimXpjztl3JzsDxGlOrHtMTONdJG1kAAAAAAAAAAICKVqzJdgvTbufRH7DiLMq4v3/E63EHdDMAACAASURBVGdn3H8xj1gAILyTb5bmXRE8t/UJ/7Wz3pH7ueNPkiaeJW28f/Bc5zbJJrMntbQGJZmldDVMlJLrB43XmLRkO0f5JCsra61z3lsR7Yn3STMu67+f7JJW3Rq8duyJqYS5fJx4g3T/ucFzW5+QJpyW3/7ZZKvUdfrfsn8fjZGaZwdXStzdW2Hxha8EXzv6mOwxukz9N/fczoWFf+yQnbXBCax9mmZkVKLLSKarHRl/TGGT7U769cD70y6S9nujtPoP2a99+ZfSib+IHFpBvORp6z3h1Jy3dVW2q03UOauLdtBGFgAAAAAAAAAAoKJFKIsxdKy1SyU9r1QpoyOMMZ4eg0izMOP+EcaYxgjXn5JlPwAojFGHu+cWftl/bVWOFcX6HPLf7rmtT2W/fvmPnVOdJrg6Xe2AynbuX8VZq9u1zA0e794t7V3Xf3/Tw+49xp/sPyOMBs+v6YVfyn//bLI9R0YfEW6f0UcHj6+6TerplGxwpatBLXujqh4RPL7o2vz2RTy6PFUhz3lYumiFdO4/pZNvko76inTAv6eSKEcdXphEOyl8sl3jfhnXGem030uXbJaODtGGtm1j9NjiZq20Y0Hw3PjcE+0kqdOROFdr6lSbqAuc66SNLAAAAAAAAAAAQEUrymS7Xt/r/WwkXTOcgZQKa+16pZIU+1RLivIu5BkZ9/+Rb0wAEErtaPfcjuelak/ecMtBhTt7sydJbd+aR5xTXY7KSLWmP4nD1UZWCpFsV+OL/ZHg24P2GOU/IwzfY7jzhfz3z8aViCNJs94Zfh8b/P3S6KOknZ4zqpvDnxGke0/weKLA7XcRzk5PoV/fc7+gQv4T3tWmu36cdPB/SZMcFSn7bHk0WliFsHeNe87kV5XTV9mu1tQHznU4rgEAAAAAAAAAAEBlKNpkO2vtDZL+rlSy3ZXGmE8Nc0il4k8Z998V5iJjzEGSTkgbapV0d1xBAYBXo6cyWk+bP6Fl2kX5ne2qZiZJXY4kqHTdrc6pzkRwt/aBbWR9le0cyV99Jp3tiSst9u7dnj3O8Z8RRsMk95yvKlhckp3uucOvDr9Pu6OKV0+H1OV5DCefF/6MQI6kSlclPQytnjb33MiDhy6OdGEr2zXP8s9ne/3sHIKf32xcyaiSNO6kvLZ2VrZLUNkOAAAAAAAAAAAAwYo22a7XW5RKHjOSvmqMucsYc+Ywx1TsfiMp/d35S4wxB4S4LrOP4u+stbybCGDoHPjR4PHObf5Ep2zJJNk4EuIkSetDFPjcNj94fMLp6rLBSWA1aRXLEr7KdjZLZbuDrnLPbXm8//bqP7rXjTvBPRfFXEcs3a1S24Z4znDp2Oyei/L8mPPu4PFdi/xnTH9z+DOCHPb54PHdS6VkV357I3++52/YpLe4hTn3lFuzr5l9pTTxLPf8E+8e/uegL9nxwA/ltXWn4zW61tSpLhFc2c6VoAcAAAAAAAAAAIDKULTJdsaYn0u6TtIuSbuVSrg7R9K9xpgdxpiHjDG3GWN+HuHjhuH8moaCtXaZpBvThmol/dIYRy8sScaYiyRdmTbUKemLBQkQAFymXOCee+mnweNNeSba9XFVd9r6pORLePNVfZr5NmeyXWxtZOvGSiMODJ7re8yS3dKel4PXzLgivmShyee7557/XDxnBPFUFtSZd0Xbq95Toe+5/wker26SqoIrYIXWMtc9t+Lm/PZG/hY6/klUO2Zo4xjA/bqxz4xLs6+pbpLOuMO/Zrifg+s9hZbrxue1dZevsp2zjSx/iwIAAAAAAAAAAFDJPOV8ht2VGthXzar/ncUWSadG3M/07vGevCPLgzFmmoIf98x3+KuNMTMd2+yx1m7xHHO1pIsl9fVdPFmpJMX3WmsXp8VSJ+n9kq7NuP5aa+1Kz/4AEL/qJvfczheCx02IhJMwqhrcc7sWSSMPCZ7b+ID7uuomdXYGJ3KkV7bztZFNZmsjK/lb7HZsk3Yvd8/7HvOofHv5kmXytemf7rmoX58veWr3suDxKmcue3i+ODfcI81+Z/5nIHed24PHfVUxCy1bkmyU535VXaod65bHgufX3z28z8HdS91zaa+lUVlrnZXtakytTCL49wuV7QAAAAAAAAAAACpbMSfbBclS4qckPCJpRoh1UyW94pi7UQMr0Q1grV1jjLlE0l1KVbaTpFMkvWiMmS/pZUkjJR0jKbMkyN8k/W+I+AAgXqOPzuGimJLtxp4grbwleK5jq/u6TvecHXuiutb9LnAudGW7bG1kJalpprT1ieC5ji3eGDX+5Oz7hzXG8/3r3BbfOYP2diRCSdGfU6OPjH6+7/kR1lhPK9849kd+qkekfpYytW8a+lj2yZJsN/ZV0bbzJdv5XkOGQsJTOTKPhOtu2y3rSGiuNXVKmKrAuS7bqaTtcc4DAAAAAAAAAACgvBVtG9leJsaPimKtfVCp6nab04aNpOMkXSrpfA1OtPutpMuttT1DESMADFDTLI05LuJFMb28z3yre65tnXtu7xrnVHfTNGcb2JpE2DayISrbzf2oe+5vc6VnPuGen/aG7PuHVd3kTvDpbpV6CtB60VrpMU/FrerGaPtFXS9Js98d/ZpMDZ72tevvlLr25H8Gctfq+NuHAz8ytHGky1bZ7lBH22OX/T/gntuxINpecds2P3jcV9UzhC7rrlBXm6hTnXEn+bkq4gEAAAAAAAAAAKD8FXOy3awCfMwe0q9gmFlr75B0mKQfSfKU/tHjkt5krb3CWts6JMEBQJBTHNXlXOJqI1ufmXuc5tHL3XMLvhA8PvoofyKHSWsj6/lV7ErWG2DU4f75XYuCxxM1Uu2o7PtHcXRmV/I0vqS/XL38c8l2B8+1HJTbnqOOiLZ+4lm5nZPpyP/nnnv6Q/GcgeisJ+F14hlDFsYg2V77Jp0dbb+WA92Jo23rUomtwyHZI217Knhu+pvz2trXDrY2UafahLtFNK1kAQAAAAAAAAAAKlfRtpG11q4c7hgKwVo7c4jP2yTp340xH1OqlewMSZMktUpaK+lZa62rXS0ADK2m6ZKpkkIX2IyxcGndeKljc/Bc997BVc981caqm7yVj2rSku0SnqSZUG1kqxqyrwnSMC2363x8leFW3Sod/4N4z1txs3su18cl6nXVOZ4z6Nwm99yav6SSjhK0rRxy2591z+X6HCtWvkTTnQuzJ/YWgivRTsr78e/0JETXmFpVG3eiZWeyAJU6AQAAAAAAAAAAUBKKNtkO8bLWdkp6YLjjAACvRI006khp+zPh1u9eGt/Z1c3uZLv2TVLzzIyxDe69akapy1P5qCYRtrJdiDayiWqpZa60a0n2tekaC5BsN2J/91zH1lR1rLiqEUrSxvvdc2mPcSQjD5W2PhFtfRxGefbp2iH17JUSI+I5C+G1rnLPxfW9Lxa+52Dr6uFJttu72j038rC8ts5W2c6X7NxhSbYDAAAAAAAAAACoVMXcRhYAUIkOjNAys8pTSS3yuf/hntv86OCxnjb3+jnv9VZNqjV1+24bT3W+ZJg2sr3nRRblcQ6rpkVqmuWeH8rWi/u/L7frZr0j2vqWubmdk2n8q/3zoas9IhatK6WbjfTwJe41TdOHLp6h4HsOtm8cujjS7XjBPTf19Xlt3eWpPlpr6lRHG1kAAAAAAAAAAAAEINkOAFBc5rxbqp8Ubu2My2M815Ow9tjbpD0ZHbef/1/3+knnqCvpaSObXtnO10Y2bLLdQZ8Ity7d9EujXxPGKb91z218KL5z2rIk/0x5XW77TjxdGndyuLVTL8ztjCBVtdIZd7jnN9wb31nw62mX/jzTv6Zu/JCEkpMxx+d2XZWnGuQT785tz3x07pQWftE93zAxv+191UdN7YB235k6aCMLAAAAAAAAAABQsUi2AwAUn4OuCreuqiG+M7PttfoP/betldb82btXp7dqUsg2sjZEG1kp1Zp19FHh1kpSdVO87VzT1Yx0z730s/jOWf4T/3x1Hs+NsImI9fkl+wzSuJ977uVfxHsW3NbdmX2NqSp8HLmqac792ubZ7rmorarztd7zfYihpa2r+miNqZUxRsaYAVVIw1wLAAAAAAAAAACA8keyHQCg+PiSjtLlk1CVKVEr1U9wz+9Y2H/b10JWkhJVzhaF1aZaibREnYSnjWzoynaSNPHs8GvDPr65aJjsnuvcGt85Cz7vn69qyn3vppCPT9yPoy+Ba52n6h3iFaaKW/uGwseRTfP+weOz35X7nr7n9E5PS9dCSH/NzRTDz56rsl1toi7tdnArWSrbAQAAAAAAAAAAVK7q4Q7AxRjzjhi3s5J2S9opaYOkxdbaCBkMAIAhNfn8cOvirGxnjDTtDe6Kaa/cKB1xjdQ0Xere695n/KmS3Ikcma0J/W1kQ1a2k6T9LpYWXxtu7bSLw+8bVa2nst2OBYU7N93Mt0mJPCqPTTonVf2vu9WzyEjTYmwjKxV3tbRS0NMp/evT0pJv94+d85A04dXR9uncHm9chTLtQmnxtwaOJeqkyRfksefF0iZHu+fuLEnGcbJWeuHL7vn9Lsn7CFd1uvRqdnWJOu3pCbjW04IWAAAAAAAAAAAA5a1ok+0k/VKKUtInklZjzFOSbpR0q7X0ggKAolI3Rpr6emntX/3r4ky2k6Rjvu1vT3rPqdK5j0qbHnSvOe4HkuSsbFeT0ZbQ30Y2wq/B8adIx31fevrDnkVGmnG5dPgXwu+bi0P+W3rx64PHO7ZIu5ZKLQcW9vzjr8/v+poW6cy7Ut9vl5N+JY0+Mr9zMmVLtmtb768cWMlsUrr31dLWJwaO33u6dPb90sQz4z2v5aB498vFkV+RWlf1tri2Uu0Y6dTbpPpxue859yPSMx8PnhvKynbz3uqfnx2i+mAWoSrbGUdlO0tlOwAAAAAAAAAAgEpVzMl2fdwlf3LXLOmM3o+vGmPeZa29uwDnAAByNfk1Q59sV90oHfJp6cWvBc/vXS29/EvplV+596gbI0nqSjqS7RIZle08v+aSUXPOD/yQNOe90vq7pZ0LpXEnal/HeGOkkYdKdWOj7ZmLxunuuWU/ko79lns+jLYsLTxrRuS3v5RKXvSZ9bb8z8iULdnulZukQz4Z/7nlYMfzgxPt+tx3lnRFzH+/UdUY7345xVAnnXab1L5FalsrjTwsv4qOkmQS0shDpJ0vDp5b9kPpqK/kt38YHduklb91z898a+r1LE+uhOjMynZBOmkjCwAAAAAAAAAAULGKPdku/Z006xjPlPluatBamzY3WdI/jDEftdb+IHqIAICCCJMUVohWftnO3TJPalvjnq9JtVEN06JQkozxVLaL0ka2T1WdNO31qY/hUjvGPbdlXv77b3k8/z3CmHyBtP4fg8fHnVSY8zzPBUnxPHblaqieE31mvX1oz/OpH5dfNbtMrja6ha5I2Wfrk/553+tLBKEq2yUcle1oIwsAAAAAAAAAAFCxijnZ7l29n0dI+ryksUolxyUlPS7pKUmrJO2SVCtpjKTDJZ0maVLvtVbSrZLulNQgaZSkQ3rXzNDApLtvG2MWWWvvL+hXBQAIZ+JZ2dcUopXjpPMkeaqHrb/Tf31vVbU4KttFaiNbTCZ5vnfdrfntba2/4uGYY/PbP92BHw5Otpv7sfjOGCDL9zvfx66cJbvi26uqQepp86+Z/c74zis2rudZ+6bhPb/PpHNjOabT2eq7/zU6Mzm6T5cjmRoAAAAAAAAAAADlL0sJleFjrb1R0jxJH1Iq0U6SfipplrX2FGvtx62137LW/sxae7219svW2sskTZP0RkmvKJVE92ZJM6y1P7LWfs1a+w5r7SxJr5P0cu8aq1Ti4bVD+kUCANzqx2df0zQr/nNHHS4ddnVu1x5//b6b7sp2A5PtEr5ku6htZItF/QR30tvOhamEuVxYKz39Yenln7vXnHlXbnsHmfKaVFvedDOukPZ7Y3xnpMv2uGy4pzDnlgObpQrk1qfD75Ut0e7gT0q1o8PvV2oO+XTweOsKac/LhT3bWumZq/xrprw2lqPCVLarc1a2o40sAAAAAAAAAABApSraZDtjTKOk2yXNldQt6S3W2g9Ya1f7rrPWJq21f5J0hKRHlPoarzbGXJmx7g5Jx0h6Nm34CGNMPOUyAACFV9UQ/57GSEd8QZrznujXjjl+301nIkdmG1nPr+Kc2sgWC1/1t03/zG3PHc9Ly653zzfvH679cFgmIb3qx9J5j0vHfV869xHppF9JiUIVBi7h7/ewy5Ko+PRHwm2T7HHPmUTquXD0/4UPqxTVT3DPPfe5wp69c6G01/NP/REHSomqWI5yVadLf41OT7xL53p9BwAAAAAAAAAAQPkr2mQ7SddIOlipd0+/bq39XZSLrbWtki6RtE2p6nXfN8aMz1izW9KblErm63uX9rw84wYAxCVbK9nqpsKdPe6U6NdUN++72eVqUZjZRta4K9slS7WNrDTgsRhkzZ9z23P5j/3zYaohRmUS0rgTpAM/JI0/JbZEn0BVIZ7Pe9cW7vySluVnZevjUtfu7NvsWuSeO+eR1HOh3Pl+djfcW9izs+0//tTYjnIlzKW/RtcZR2U7S2U7AAAAAAAAAACASlWUyXbGmGpJ7+i92yHp67nsY63dIqnvnfkGSVcErHlF0m3Svj5+OWRXAAAK4rDP++cbJhfu7FySOkYcsO+mM9kuo42s8baRLeFKZ+NOds/tXprbnst+6J+PMRFnWDRMlEYe6l/TuX1oYik12drISlLXrvzWjMryvSkX4z3/FO7YXNizsz2/fRUzox4VqrJdcLIdle0AAAAAAAAAAAAqV1Em20k6VdI4pcqUPNlbpS5Xd6fdfoNjzV29n42kaXmcBQCIky/p44QbUi1fC6XlAGn2leHX108cUPWsKxmcbJfZltDfRraEK9s1THTPrfu7tHNx+L16OqS7Tsq+7oB/D79nsTriGv/8poeGJo6SE+JnZd0/sq/p9vyTs3pE+HBKWeM0aeRh7vn5/ykVqurm+rvcc6OOkEYdHttRYV6j6xxtZDuSVLYDAAAAAAAAAACoVMWabDc97fa6PPdan3Z7hmNNes+w0XmeBwCIS6JauqxDmvGWgeNn3CHNeXfhzz/hhvBrD7pqwF1X1aRBle08CYMlnWwnSafc4p77+8Hh91n45VQb0GyaZ4Xfs1jtd4l0jieh7ukPSz3BSUIVLUzy15Pvy95Kdsl3g8erGgqb3FtsfK99S74trfxt/Gd2t0pbn3TPv2Z+rN+DUJXtTHCynetaAAAAAAAAAAAAlL9iTbZL7wvYlOdejb2fjaRJjjXpPauC31UDAAyPqlrplJulK2z/x5QLhuZsE+HXZEa7QVfVpMxku4Svsl2Y1pjFbMT+/vk9K8Lts/R7eYdSUia8WkrUuOe3PDp0sZSMkD8rG+71z29/Nni8KridaNmqbvTPr/lz/GduuN89N+OKVPJ1jFytYNNfo91tZKlsBwAAAAAAAAAAUKmKNdluV9rtQ/Lc69C023sca9LfSWvL8zwAQCUafeSAu502bBvZMq5s13KQf37jA+H26dqZfU1TGVS1SzfqSPfc3nyL/pahsG1N27I8dnVjg8c7twePl6sR+0tVnoS7bI9jLtrWuudGe34ecuSsbJfIXtmuw5GoBwAAAAAAAAAAgPJXrMl2a3o/G0mzjTEn5LHX23s/27R9M01KW7M5j7MAAOXm2JBV1cafMuBumBaFkr+NbLLUk+2qmyRPMqG2P+O/fvdy6eaQbSOP/0HosErCAR90z/XwdwGDhfxZefHr/vkdC4LHJ5wRKZqSV1Uvzb7SPb/5kfAJjmH5ntfTL433LLkr26Un29W5KttZKtsBAAAAAAAAAABUqmJNtntIUpdS75waSdcbY7L0sxrMGHOZpPPU/w7sPY6lx6TdXhH1HABAGZv7YX+FJ0k65+FBbT+dbWQTA9vImnJuIytJx1zrnlv6fWmvo5pV1x7prweEO+PEG4eutfBQmfMe99ya24cujlIR9mdl72rppZ8Hzy35vvu62e+KHlOpO/Y6qXa0e37JdfGet+Ca4PGqeql5ZrxnyVN9NC0hOrMSaZ+OZIds3MmGAAAAAAAAAAAAKAlFmWxnrd0l6W9KJdpZSUdJussYs1/YPYwx75V0o/oT9qykmxzLz0+7/VwuMQMAytiRX/bP148fNNTlqGxXYzKT7cq4jawkmWr//Nq/BI9vcOXHB5j9jvBrS8mYY4PHozw2FSPCz8orNwaPz/+I+5qq4ApnZS1RJR39Dff8y46kxVx17QgeH5tPgWvPcWEq25ng77tVUt22qyBxAQAAAAAAAAAAoLgVZbJdr/+SlN6j6RRJLxpjfmiMOcsY05J5gTHmQGPMB4wxT0n6saRa9Sfa3WCtHdQbrDeB7wz1v0v7cLxfBgCg5E272D/fNGvQUKejsl1mpSR/sl0ZVLab9gb//M7FweO7HOOZjvxqtHhKye7lweMjDxvaOEpBlCpjYZ9b6ZpmRL+mHDTNdM/tWhRfK1nfPl274zljwHE2r8p2krtVOAAAAAAAAAAAAMpblnIzw8da+4ox5t2Sfq1UUqCV1CTp/b0fMsbskrRbqaS6kb2fJe3LXOiraveEpP90HPVp9ScdtsvdahYAUKl8LQyb95eqagcNh65sZ4yMTGAVu7JoU9iUpShtx5aB9/e8Ii3+VqrFbBjTLsotrlIw6nBp8yODx7t2DX0sRS9CYmr7pujbjz0++jXlYPxp7rlkl9T6itQ8O/9zHFXmJEmTz3fPebT17NXd2/6gl9sWa2LtNJ05+nVqrhqhu7f9SUv2Pu9MZq5Jr2yXcFc0vHbVZ1RlqjWqeqyOaj5RJ488Ry+0ztfjux7Qxs7+9tjVpkaz6ufqnDEXaUzN4CqoAAAAAAAAAAAAKC1Fm2wnSdbaW4wxSUk/kdSi/upzfcl0I3s/Bl2atu4uSZdba1sdx/xa0u96b+/xrAMAVLI3rJZuD0gcu+DZwOVtyb2B47VmcGKeM9muHNrIStIb1ki3TwueW3mzdNIvpUSN1Lpauuc0qW1t8NpMp/1BGnlwbGEWndlXBifb7VmeqgRm3FURK07UxNR1d0pTXtN//5Wb/OtNMReDLqCqWum0P0oPXxI8f8cRqZ/v2lH5nbPuDvfcjEsjb9eV7NR1a67WyvZlkqRlbS9o3s57ZHv/55P+Gl3rSbbb0LlGkrS2Y4VeaJ2vu7f9QVu6Ngbuv7J9mZ7f84Q+OePrGlk9JvLXAwAAAAAAAAAAgOJR9O8cWmt/J+kwpRLiejSwal3mRx8jaYWk91prL7DW7vTs/7i19qHej/kF+BIAAOWgcZp0hZUufFk6/a/SG7ek7tc0D1ra6anSVBPQltA4fh0ny6GNrCQ1TpUO+A/3fF9C2YqbwiXaJWqlt/RI+zkSgMpFVYN7bteSoYujJERMtlv4pYH3F/1ffKGUG191u+5Wae3f8j/jBU876KrGyNst2fv8vkS7PkklQyUwp7eOrTPuNrKZNndt8O6/rXuz5u8KSJ4FAAAAAAAAAABASSn6ZDtJstausdZeLmmGpI9JulXSEklblUrA2ytpraRHJV0r6QJJ+1trfz48EQMAylbzLGnq66S6sc4l6S0EM9UHVEoyjgplZVPZTpLqxrnntjyR+rz1yXB7Hf2Nyqg05nvMtj4xdHGUhIg/K1vm9d/ubpN2LHCvbSnj6olh1I6SqtwV3mJ5Lrau9JwfvRLcHVt/l32RQ1NixL7bdYn6Qa2/87EiIwEQAAAAAAAAAAAApaeo28hmstaul/S93g8AAIqSr7Ld5NoZg8aMHMl2tkwq20nS5NdIC68JnnvuM1L7JmnN7eH2mnF5fHEVM19FsZ7gNsUVK5+fle49/vnjr89973KQqE79/Lp+Pjt35L735sekVb+TOja719R7kk4dVrQvzSmc6fX7q7m6Zd/9hKnSQY1HakHrUzntl6kj2R7LPgAAAAAAAAAAABg+FVAWBgCAodVp3cl21WZwnnvC8eu4rCrbjTvRP7/k2+H2OfEXUv2E/OMpBdWeNrLr/jF0cZSEHH5Wts2Xkj3SP452r6kbK004PfewysWx33HPrbhJ6skhiWzxt6V7TpaWePY++pvR981RS9UovWPSRwaNXzrxfRpfMymWM3y/GwAAAAAAAAAAAFAaSqqyHQAApcBV2a4+0RDYMtYYE5grVFbJdsZI0y6W1vwp9z0mny/NvjK2kErC2BOC23Su/evQx1LMbA4/K/M/Lh1xjdTmbvus1zybeu5WuqYZ0ux3Sy//PHh+zV+kGZeG369zu/TsJ7OvG3Nc+D1zlFCV3j/1v3VAw2FqqGocND+2ZoL+Z+Z3tbztRW3oXCNJunfb7drRvTXyWb6qpwAAAAAAAAAAACgNJNsBABAzV/WiWlMXOO5qI5sspzayklTTkn2NT8sh8cRRSkyVe65ja6ryGiTl8LOy+RFpdZbWxTUjcgunHNVPdM9tvC9ast2K30q2J/u6qvrwe+bo/LFv1BHNr/KuqU3U6ZCmo3VIU6oK4oI9T+aUbNdFZTsAAAAAAAAAAICSV3JtZI0xNcaYU4wx7zDGfNwY87/GmM8Pd1wAAPRxVS+qSbiS7SqgjawkTXh1ftdPrMB2niMPds917fRfm+yRtj0jrf1bqpJYOculsp0kLb3OP187Krd9y5Hv57czy3Mx08YHwq1rOTDavjlwJUH7NFeNzOmszmRnTtcBAAAAAAAAAACgeJRMZTtjzKmS/kvSeZKC3hW7JuCa10jqK7OxzVr7X4WLEACAlMiV7RxtKssu2W76m6XlP5W2Ph792knnptrIVpoDPyq9dEPwnC/BqW2j9MC50o4FqfsmIb3qJ9Kc98QfY1Eos5+VYjTxLPfcqlsl+9twLXc7t0urfx/uTFMTbl0eah1J0D7NVblV6XT9bgAAAAAAAAAAAEDpKPrKdsaYJmPMbyQ9JOn1kuolmYwPlxckfoLv6gAAIABJREFUvV3SOyVdZYw5ssDhAgCgLkf1IldSh7OyXdm1kR0hnXV39OsO/Ih0+l+GpKVk0Wme6Z5b+CX33FMf7E+0kySblJ54r7RzcWyhFZVy+1kpRlW10tyr3PNr/xZun2c+Ef7MMMl7eaoxtZGvGZFzZTuS7QAAAAAAAAAAAEpdUSfbGWNaJM2T/j97dx4na17Xh/7zVG9nnX3fGBgGGIYd2RQVQQORmGjQRG80JuqNV3LRJGoSREWNJt5cgyt6oy+D0ShGRWMStgEuhEVWQZB1gGGYfeYwyzlzzszpperJH30O02dO/Z6up6q6uqr7/X69zut017P9urrrqZlXf87nm29P/1BdY41JXdc3J3nDhmO/fawLBIA+ys12/UMdnUJufMc12yXrgbtHfne7Yx7zst0ZtEuSub3lbXe/v//jvdXk9jf133bb60df01Taga+VadQ0VnfQn61BQ3lJmv9NzXgM02y3f+7gUNfSbAcAAAAAADD7pn2M7J8keWIe+g3qSpI/SvL2JL0kvzPAOf4s6414SfINSV4+3iUCwKlK7UXlZrtS2G6HtnU99oeSL/znwfZdOKu53W2n6zSM0SwFEFePJN3j/bfd8ZbkmoZmsd5qcvzOwdc3LVaPbPcKdodznlbedvyOzY9fOZwsH2pxwQmE7QrjvZscnB+u2W6tXk2v7qZTzQ11PAAAAAAAANtvasN2VVV9a5Kvz0NBu/cm+ft1Xd9yYvsjBjzVyWqXKsmTq6o6UNf10bEuFgA2KDfbFcJ2Vf+i2V69Q9u6zn5Kcv5XJ4fetfm+j3lpc+BsN7jga5K73nn640dv6L//J/5t+VzLd/d/vLucfPAHkpv+KFk71n6N7A4XvqC87ZY/T+54W3JRn33u+Ujy/u9J7v2rdtcr3BvHaZhmuwNzZwx9vdV6NUvCdgAAAAAAADNrmsfI/tiGjz+e5BtOBu3aqOv6jiR3nfi0k+SaMawNAIpKzXYLrZvtdmjYrqqS571hveGuZPGc5GmvSp70s5Nb17R6zMvK29YeOPXzG343+fSryvvf86H+j3/wpckNrxG0o9n83uTql5a3v+PFyZHrT31s+e7kbc9vH7RLMplmu/7jvZscmBuu2S4pvz8AAAAAAAAwG6ay2a6qqouTPGXDQy+r6/qB0v4D+HSSC058fHWSD45wLgBo1LrZbreNkU2ShQPJ039p/Q/N5vaWt93xtuSyb3ro8y/+webnO3pDcuBRD33eXUlu+uPh18fusv+K8rbecnLz65JrX/7QY7e9MVm9b7hrVe3Ddt2622r/STfbld4fAAAAAAAAmA3T2mz3nBN/10luruu6z+y0Vu7Z8PG5I54LABqVmotKoY7SGNkd22xHOweuKm87+rlTP7/9zZuf78bXnvr58l3J2v3t18Xu1PTzmCT3P+xn8iM/PMLF2oft2jbHLRRC0E32zx1sfcxJmu0AAAAAAABm27SG7S7a8PFHx3C+oxs+PjCG8wFA0WrLZrtOqdmuFrYjyRmPLW/78L9I2v6cHL/z1M8fPop2pyiEWBnRxX8jWTy7vP2G//TQz9QX/kty/K4RLjZE2K4+3mr/YZrt5qq57O8MF7grvT8AAAAAAAAwG6b1t5Bnbvj4yBjOtzFg1+43cADQ0kpvpe/ji53Fvo9XhbfjHT1GlsFVVXLG48rb3/Hi9b+v//XBznf9r66Pjj3p8789/Nqm1d5Lk+f83navYmdaOCN5wdub9/mj/es/j+/9rtGuNcQY2bbNcaUQ9GYOzA83SlazHQAAAAAAwGyb3+4FFNy74eMzi3sN7pINH99T3AsAxmClZbNdVQiU9IyR5aT9j0yOfLr/ttvfmKw9mHz6VYOf79C7kotesP7xp/59eb+/+dFkft/g550GncVk3+XrQa2/+Af997ns7yTP+I31VsD/cXXS3aHtflvl7Ccn1/xo8qn/t7zPh/7pGC7UPmy33HaMbCEEvZkDc2fkztza+riVun8YGwAAAAAAgNkwrWG7Qxs+vnaUE1VVtZTkKRseumWU8wHAZkrNRaVxhVVxjKxmO05YONC8/eY/SY5+fvDz3fCa9bDdZiNoz3rCzh3HuvfiEx8ItQ5lz4Vbf41hmu3ajpGthg/bDUOzHQAAAAAAwGyb1t+efvjE31WSK6uqapidtqmXJDn5W7S1JO8bZWEAsJlSs91CqdmuOEZWCIgTLn5R8/YHbm53vht/PznymaQp+LPvsp0btGN0l3zjeM6zdO54znNCmzDbfLWQTjU31HWGDtsV3h8AAAAAAACYDVP5G9S6rr+Q5HMbHnr5MOc50Wr3ipOnTfLBuq6Pjbg8AGg0tmY7YTtOeuQ/bN5+0+van/NNz0iuf3V5+7N+u/052T3OvCZ5wk+Odo4rvys5/7njWc8JbcJspdHegzgwd+ZQx2m2AwAAAAAAmG1TGbY74TUn/q6SfGdVVd/d5uCqqjpJfivJNRsebviNMgCMx2oh7FEK23UKoxKNkeXLOvPN2+/9cPP2ftbuTz7yI+Xt+x/R/pzsLtf88GjHP+EVm+/T0nJv8DGypXvyIDTbAQAAAAAA7E7THLb75SR3Zb2Rrkry21VV/duqqvZtdmBVVY9Pcl2Sf3Di+DrrTXl/uHXLBYCkW3ezVq/13bZkjCyzZGG4MBG7yNze0Y5fPHs869igTXPcaM12Q4btNNsBAAAAAADMtKkN29V1/UCS707Sy3pYrpPkXyW5vaqq1yZ56cb9q6r6+1VV/URVVe9K8rEkX5f1kF6VZDnJd9R1LbUAwJZarVeK29qOke0J27HRec+Z7PX2XjzZ622b/q8/BtBZGP7Ys5+a7LlgfGs5Yblu02y3OPR1Ds4PN0a21HwKAAAAAADAbJjasF2S1HX95qyH6k4G7pLkYJK/l2Tj3LMqyR8k+akkX5lTv661JN9b1/UQ89UAoJ2m1qKFUrNdVWi2M0aWjZ75m5O71tUv3XwfSJLnvbH9MXN7k6f+wvjXknbNcaV78iA02wEAAAAAAOxOUx22S5K6rn8ryQuzPlK2Sk6p+ak3/Kke9niV5EtJXljX9Wsns1oAdrumIEXbZjtjZDnFWU9I/uZfTeZal79kMtdh9l3youRFLf5NyxN/OnnRXyYXPX9LltNqjGzhnjyI4cN25fZTAAAAAAAApt/Uh+2SpK7r/z/Jo5P8yyQ356HxsBv/ZMPHdyf5mSRX1XX99okvGIBda6VhROBiqdmuGLbTbMfDnPHYyVxnft9krjMVhFpHds5TB9/32lckZ16zZUtZaTFGdqEafozs0GE7Y2QBAAAAAABm2vx2L2BQdV0fS/ILSX6hqqrHJHluksuTnJtkMestdncm+YskH67r2m9OAZi4YZrtOqUxskJAPNzcnslc58wnTOY67CAPL6Au7ba1/9ZnuTd42G6UZrvFzlKWqj1ZbhHuS4yRBQAAAAAAmHUzE7bbqK7r65Ncv93rAICHa2otKrUoFZvt5MbZDnN7k4UD270KZs1X/2nyrm/ZfL+q//1uXNqMaS21jQ7qwPwZWV5tGbbTbAcAAAAAADDTZmKMLADMitVCa9FCtVhssCuF7XrGyNLPgau29vzP+P+29vzTQJB1/C7/5uSSb9zuVbQaIztKs12SHJg7s/Uxmu0AAAAAAABmm7AdAIxRqbWoqUGpMkaWNhbP3trzz+/d2vNPna1tWttVrvmXQxw03ue/1RjZUZvt5g62PmZVsx0AAAAAAMBME7YDgDEqtRYtdPqPkE2MkaWlJ75yuOMKoc7THHzMcOeHM69NqrltXUKb5jjNdgAAAAAAALQ1v90LaFKtV/08IcmTk1yR5Pwke5PUSR5McleSm5J8NMknaqkEALbZSr3S9/HGZrtS2M4YWfq58PnDHbfnwmTfFcnd7y/vc/Dq5KwnDXd+2HNecvnfTW76421bQqldtJ/Rm+3OaH1Mm/UBAAAAAAAwfaYybFdV1dck+f4kfzPJoJUR91ZV9fokv1XX9bu3bHEA0KDUWtTUoNQpFM0aI0tf8/uSv/WZ5H8+tt1xdZ08/7rkuuckhz95+vYDj06+/l1JZawqI3j2a1qG7cZ7n2vTHNfUODqIg0M12/UPZAMAAAAAADAbpipsV1XV45O8OsnXnHyoxeHnJPnOJN9ZVdXbk7y0ruvrx7xEAGhUai1qbLYrhJt6tWY7Cs4YctTrwhnJiz+RdFeS3vH1x+o66Swm83vHt76ZItQ6VvP7k0u+MbntDdty+eX6+MD7jtpst3/uYOtjNNsBAAAAAADMtv5VOtugqqq/l+QDWQ/aVSf+1H3+nNRv28njnp/kL6uqesmk1g8AyXDNdpVmOybhmh956OO5xfXg3cIZyeKZOzhoV/h3G4/8zskug4lZ6bUI243abDc/TLOdsB0AAAAAAMAsm4qwXVVV35bkD5Lsy6khu5PhuSQ5lOT6JO/Leijvs0m+tGGfjcclyf4kr62q6lsm81UAQLJSaFVqDtv1DwQJ29HojMcNvm81nzzi27duLdNqY8DwpPkDySV/a8MDxuZur/E+/23GtC6M2Gx3YO6M1sf00k23XhvpugAAAAAAAGyfbQ/bVVX12CSvObGWjSG7I0l+KcmLk5xX1/VFdV1fU9f1V9Z1/ey6rh9X1/WFSc5P8k1JfiXJ/Tk1dDef5D9XVXX1pL8uAHanYrPdEGNk6xgjS4MXfnCw/TpLyXP/a7Lv0q1dzzR64k+vjzQ9aeGM5Hmv38FNfrtbt15LN4MH2ZpC0IM4MNe+2S7RbgcAAAAAADDL5rd7AUl+LeuNdidDdr0kP5PkP9R1fXSzg+u6vjvJ65O8vqqqn0jyI0lekYdqMg4k+dUkLxr/0gHgVKVWpYWGcYXFMbK1ZjsaLBxIrvyu5MbfK+/zvDckF3xNMr9/cuuaJvN718N1R29IHrglOfdZydxoASsGsE33ruUWI2ST5hD0IA7MHRzquJV6OXuzS1+TAAAAAAAAM25bm+2qqvqqJC/IQ0G7+5O8sK7rnx4kaPdwdV3fX9f1K7MerDuWh0bKfkNVVV85pmUDQNFK3b7ZrmOMLMNaPKu8rbOYXPzC3Ru02+jAo9ZDh/2Cdpd98+TXs9Nd+LzB9z3/uWO7bNvGuFGb7fZ2hnttabYDAAAAAACYXds9RvalJ/4+Ofr1++u6ftuoJ63r+q1Jvn/DeZPkB0Y9LwBsZrU0RrYh1FEaI9szRpbNXPj8hm0vSKrt/k+9GXDND/d//En/ZrLr2Eke9T1JvxDxVd/bZ99/3H/fR373QJc6unYkHzry7rz1nv+Wd9z3hlbLHLXZrnTv3szb7v3vuX35Zu2lAAAAAAAAM2jbfgNbVdVSkm/KehiuTvK6uq7/cFznr+v6tUlel/Xf3lVJ/nZVVeUZfgAwBsM02xkjy9AufXFy+bee/vjS+clTfn7y65lFZz81eewPnfrYOV+RPOb/3p717AR7zkue9h9OfezAo5In/OTp+y6dkzz9l059bP+VyRN/atPLfP7BT+cnbvgn+U+3/0L+9NDv5Lp7XtdqmaM22w3rnfe9Mf/mxpflv3/p993nAQAAAAAAZsz8Nl772UkOnPi4TvKqLbjGf0jykhMfH0jynCT/awuuAwBJyuMBG5vtimNkNduxic5C8lWvTW7/R8mhdyfdB5MzH59c8uJk36XbvbrZUFXJ034xuezvJHe9Kznjcckl35gsHNj8WMoe98+T874qufOtyd7L1oOhS+f23/exP5ic95zkjrckey9d//ndc17j6eu6zn+67ReyXB8feomjNtuN6s33/EmesP/puWrfNdu6DgAAAAAAAAa3nWG755z4u07yqbqu3zfuC9R1/b6qqj6Z5PEbrilsB8CWKTXbLTSUqxab7aLxiAF05teDTJe+eLtXMruqKrnw69b/MD7nPXP9zyDOfcb6nwEdWr0j9659aciFrRtHs12Vqu+9+uz583Kse3/xPeGkzzzwMWE7AAAAAACAGbJtY2STXLvh4/ds4XXeXbgmAIxdt17r+/h8tVA8pqoKzXbGCwL09UD36EjHX7p05VjCdt92wff1ffyF57wkj9z7mE2Pf6B3bOQ1AAAAAAAAMDnbGba7asPH79/C62w891XFvQBgDLp1t+/jc9Vc8ZiOMbIAE1Olyt845++O5VxfcfCrc/7CRac8dsHCJXnawa/K15/zLZnb1iJxAAAAAAAAxm07f/tz4YaPv7iF19l47ouKewHAGJSa7eaq8ltuaYxszxhZgILy/fGypStTpZOLl67IZUtX5q6V23LT8g2p614uXLw0zzrjebn2wNPHsooD82fkh6/4+bzlnj/NLctfyBV7Hp2vO/ubcmD+jFw7/7T84OU/nfcefmved+Ttrb8OAAAAAAAAps92hu3O3fDxfVt4nZPnrpKcs4XXAYB0U2i2S7nZzhhZgHaa7o4/csX/M5YRsYM6Y/6svOSC7+m77ep91+bqfdfmgd6xfOzoB07bXgvbAQAAAAAAzJTtHCO78TdgWxm2O7zh4z1beB0AGLLZzhhZgHZ2RkhNphoAAAAAAGC2TEvYbnULr7Mx9bCwhdcBgHTrQrNd1dBsV3g71ngE0N+s3R9LoeqdEhoEAAAAAADYLbYzbAcAO045bNfQbFcaI6vZDqCvpohaOdi2nUr3eWE7AAAAAACAWSJsBwBjUtd1uimMkU252a5TarYzXxCgv8b74/SF7aZvRQAAAAAAAAxD2A4AxqTX0ETXPEa2fwyjp/EIoLVCWei2ms62PQAAAAAAANoqz7SbjJMpgmdXVXXlFl3joi06LwCcolv3b7VLjJEFGKem8auzFGwzRhYAAAAAAGC2bHfYLlmfqvTaLb5GHdObANhi3bpb3NbcbGeMLEA7szVGtrQmYTsAAAAAAIDZMg1hu0kE4fwWC4At10252a7T8JZbamESwgDob+aidqVFuc0DAAAAAADMlGkI2yV+zQTADjB8s50xsgBtzF4YWagaAAAAAABgJ9jOsN1NEbIDYAfp1uVmu7mq/JbbqYyRBWhntrrtSqFq/zsEAAAAAAAwW7YtbFfX9ZXbdW0A2Aq9MTfb9TTbAfTVHLWbnbCdZjsAAAAAAIDZ0r9KBwBorZumsF05314V3o6FMADaq6rpC9sBAAAAAACwMwjbAcCYNI6RTUOzXSEYImwHUGDMNgAAAAAAANtA2A4AxqQ75jGydW2MLEA/pTDyNI6QTYyRBQAAAAAA2CmE7QBgTBqb7RrGyHaMkQUYk+kM25XW5T4PAAAAAAAwW4TtAGBM1hrDdsbIAoxLudluOhVu83GbBwAAAAAAmC3CdgAwJt00jJFNudmuNF6wZ4wsQF+zF0YWqgYAAAAAANgJhO0AYExKY2Q7mSu21yVJZYwswJhMZ7ddKVQNAAAAAADAbBG2A4Ax6db9m+2aRsgm5RCGsB1AO7MXanOfBwAAAAAAmCXCdgAwJqVmu7mqPEI2Saqq0GxnjCxAX6UwckOJ6LYqLUvUDgAAAAAAYLYI2wHAmPQyXLNdR7MdQDt16f44pWk793kAAAAAAIAdQdgOAMak2GyXTZrtiiEMzXYA/RSb7aY0bFdel7AdAAAAAADALBG2A4Ax6dbDNduVxsj2is1NALvbzN0dC1k7t3kAAAAAAIDZImwHAGMydNjOeEGAlmbr/qjZDgAAAAAAYGcQtgOAMSmOka2MkQWYhNkbIwsAAAAAAMAsEbYDgDHpptBsl+HGyGq2A+ivdH+ctVCb+zwAAAAAAMBsEbYDgDEZttmuU2q2q4UwAAAAAAAAAGBaCNsBwJh060KzXbVJs13h7dgYWYD+SmHkqprOZrvyuHChagAAAAAAgFkibAcAYzJss10pHNITwgDoqxxSm86wXWldwnYAAAAAAACzRdgOAMakm/7Ndp1s1mxXGiOr2Q6gjemN2pVWJmwHAAAAAAAwS4TtAGBMxj9GVggDoJ+Za7YrLKswDRcAAAAAAIApJWwHAGMy9BhZ4wUBdrRysx0AAAAAAACzRNgOAMZk2Ga7TmWMLEA7/cPIsxdqE6oGAAAAAACYJcJ2ADAm3RSa7bJZs50xsgBtlIfITmfYToMpAAAAAADAziBsBwBj0huy2a4UwugJYQAUFO6P05m1Kxr2Lr/aWx3rOgAAAAAAABhMc9UOADCwtbrQbFdt0mxX9c++H+0ezqeO/VWu2f+UkdcGsFP06l7+/NDv9d02a812Hz36vhxeuzdnzp890Hned/jtecPdf5i7Vw/lEXsene+86J/mkqVHjHOpAAAAAAAANNBsBwBj0i2G7YZrtkuS37j153Lb8hdHWhfATvKmu/84h1bvKGydzrBd07p+5eZXpq4377j7xNG/zO/e8cv50uqdqdPLjcevzy/e/ON5oHt0nAsFAAAAAACggbAdAIxJtzRGdpMi2aaw3Vq9mo/c/96R1gWwk7z/yDuK26Y2atewsNtXbsrNyzdseo4PHPlfpz12rHt/PnHsw6MsDQAAAAAAgBaE7QBgTLoZrtnu3IULGrfftXLb0GsC2El6dS+HVm8vbj9nk/vpdjlnfvT7/Afvf2ffx//bod8dak0AAAAAAAC0J2wHAGNSbLbbJGx36dKVOX/h4vJ5CyE+gN1mtV5p3P7UA8+Z0EraecKBp2e+WihuX6mXhz73se79Qx8LAAAAAABAO8J2ADAm3brUbFcOWCRJp+rkBy//qYbz9g/xAew2K71yKO2afU/J15/zzRNczeAuXLw033/py4vbm74uAAAAAAAApoewHQCMybDNdkly7sKFef7Zf7vVeQF2m6YGuO+48P9Kp5re/725dv/TcsWeR/fdNkrYrk499LEAAAAAAAC0M72/jQKAGdNLIWyXzcN2STmUV2rMA9htmkJpC52lCa5kOEtV/zWOMkYWAAAAAACAyRG2A4AxKY+RnR/o+Ln0369bCPEB7Dar9Upx22IhyDZNSoHAzZrt6lp7HQAAAAAAwDQQtgOAMRlljGzTfprtANY1hdIWO4sTXMlwFqv+a2wKESbJWr26FcsBAAAAAACgJWE7ABiTkZvtimE7zXYASXnc6lzmB77XbqfFIZvtmsbMVqlGWhMAAAAAAACDE7YDgDEpjXudy6DNdoUxsprtAJKUQ2kLM9Bql5RH3TaF6ZLNw3gAAAAAAABMhrAdAIzJyM12hVCeZjuAdauFUFopxDZttqLZDgAAAAAAgMkRtgOAMSmF4krjYU/fr9BsV2jMA9htVnorfR9fnJFmuwXNdgAAAAAAADNN2A4AxmSrwnY9Y2QBkpRDaTu/2a5/yBAAAAAAAIDJErYDgDHpZsQxsoVQnjGyAOtWi812MxK2K4QCS+Nxv7y9IYzX034KAAAAAAAwMcJ2ADAmpVBcJyOOkdVsB5Ck3GxXGs86bcrNds3Ndcu948Vta/VaekLZAAAAAAAAEyFsBwBjUgrFDdxsVwjldbUWASQpj1udnWa7xb6Pl0KEg283ZhYAAAAAAGAShO0AYExKzXal8bCn76fZDqBJKXRWCrFNm3Kz3SZhuk22N42ZBQAAAAAAYHyE7QBgDOq6Tq/QQDdws10hlFcK8QHsNqXQ2cLMNNsVwnYjN9sJ2wEAAAAAAEyCsB0AjEE35fa50njY0/YrNtsJ2wEkTc12sxG2K4UC1+rV9Bru9au95jGxK5tsBwAAAAAAYDyE7QBgDJoCcQM32xVCed2spa7rodYFsJOUQmel8azTpikUuFKXA3Oa7QAAAAAAAKaDsB0AjEG3bmi2K4yHbbNfL73WawLYaWa92a4pFNjUXlcanzvodgAAAAAAAMZD2A4AxqC52W60MbLr5y+H+QB2i1KobLGzOOGVDKe52a4cmNu02a53fOg1AQAAAAAAMDhhOwAYg24awnYZcIxsQyivKcwHsFusFkJnCzPSbLfQEApsaqfbtNnOGFkAAAAAAICJELYDgDEYxxjZTkMorxvNdgArhVGrTeNZp0lTs10pSJgM0mwnbAcAAAAAADAJwnYAMAbNY2Q12wGMQyl0tljNyBjZLWu26x9CBAAAAAAAYLyE7QBgDMbRbNcUyms6P8BusTrjzXZz1XxxtHhTYK6p9S7RbAcAAAAAADApwnYAMAaNzXYN42FP2a+x2U7YDqDcbDcbYbuk3G7XFJhb3rTZTtgOAAAAAABgEoTtAGAMemlqths0bNfUbGeMLLC79epeVgvtbwsz0myXlIOBTYG5TcfIarYDAAAAAACYCGE7ABiDxma7QcfIpqHZriHMB7AblIJ2SbJY9W+Lm0alkbdNgbnNxshuth0AAAAAAIDxELYDgDFoGvM6eLNd0xhZzXbA7tYURisF2KbRgmY7AAAAAACAmSVsBwBj0BSG6wz4dmuMLEBZUxitNJp1Gg3TbNf0tQ+yHQAAAAAAgPEQtgOAMeimfxhuLvOpqmqgc8w3hu2MkQV2t6Yw2sIMNduVwnZNo2BXeuURuuvbhe0AAAAAAAAmQdgOAMagFIZrGg37cJ00jJEthPkAdovVuhw4m6lmu9IY2UJgrluvpZvmwPVKw3MDAAAAAADA+AjbAcAYlMa8tgnbVVVVDNxptgN2u6b2tsXO4gRXMprSWkvtdZu12q3vo9kOAAAAAABgEoTtAGAMys125dGw/fcvhe002wG720phzOpc5lvfa7dTsdmu8PWVHm+7DwAAAAAAAKMTtgOAMSiNeZ1rGA3bd/9CYESzHbDbldrbFmao1S5JFjrtxsiuDtBaN8g+AAAAAAAAjE7YDgDGYKub7XqFMB/AbrFaaG8rNcVNK812AAAAAAAAs0vYDgDGoDTmtRSeK5mLZjuAflZ6K30fX5yxZrvFls12pcc3WtZsBwAAAAAAMBHCdgAwBqUwXGdMzXalMB/AblFqb5u1ZruFqn84sNTctzxAa50xsgAAAAAAAJMhbAcAY1AcI5uWzXbCdgB9rRab7WYrbLcVzXYr9XLquh5pXQAAAAAAAGwQFdyCAAAgAElEQVSuXd0OAHCKL63cmfceeVveePcf9d3eeoxsoQnv9+98df762AfzqD2Py3PP+hvZN3eg9Vp3sy88eH0+dP87c+fKbUmSSxavyDPP+NpctueRI597pbecdx++Ljc+eH0uXroiX3XmN2Tf3P6857635PMPfioXLV6W55z5gpy9cN7I14Ldqlf38r/ue0PfbQsz1mxXauI7tHpHfu2Wnznt8SNr9256zjp1fu2Wn05Vlf8t1TMOfnWedebXDb5QAAAAAAAATiNsBwBDunPl1vziTa/Ike59xX1K4bni/g1NeB87+oF87OgH8qH735l/dvnPCtwN6K+Pfii/eevPp5uH2gc/eezDedd9b8o/vewn8+h9jx/63Ku9lbz6lp/JZx/8xPoD9yfvPfzW7O3sz83LN3x5v784/Nb88yt+LucuXDD0tWA3+/07X517177Ud9tip/9Y1mlVarZbrVfyyWMfHvq8n3rgrxq3X7nn6qHPDQAAAAAAwDpjZAFgSO+49/WNQbtkfM12G92yfGM+fP97Wp13N3vD3f/1lKDdScv18bz5nteNdO5PPfBXDwXtTvjS6p2nBO2S5J61Q3n3fdeNdC3Yre5auS3vPfy24vZSU9y0mrX1AgAAAAAA8BBhOwAY0ucf/OSm++zp7Gt1zkHDeZ8b4Nqsj3j94vHPFrd/7oFPFLcN4o13//HA+775nj8Z6VqwW33+wU81bp+1ls99c/u3ewkAAAAAAAAMSdgOAIZ0vPfgpvs8dt8TW51z0LGzy73jrc67W630lhu3L9fHU9f10OdvCvIB47HZvfax+548oZWMxyP3PDZL1Z7tXgYAAAAAAABDELYDgCGt9FYatz967+Pz3LNe2OqcnQzWbLdZiIx1K/Xmz9NavTqBlQDDWm241z75wLPzlIPPmuBqRrfQWcx3XPQD6fhfMQAAAAAAgJkzWH0OAHCaUpDr4sXL83fO/648bt+Ts9hZanXOQcfIDhIiY7BQ4kq9nIUsTmA1wDCa7nffd8mPDnzfnCbPPONrc/nSo/LJYx/Jke69Ax/XSSdX7Hl0Llq8LJ9/8JM5tHrHwMc+au/jhlkqAAAAAAAAGwjbAcCQSkGul1zwPXn8/qcOdc5Bx8hqthvMIKHEld5y9s8dnMBqgGGU7nfX7n/aTAbtTrp46fJcvHT5SMcDAAAAAAAwWWYXAcAQuvVaeun23bZU7Rn6vIM32zWPsGXdoM12wPQqvUYXKo2UAAAAAAAATJawHQAMoSnE1XZ07EZzA5bOrmq2G8igzXaT0qt7E7sW7BSl1+go91oAAAAAAAAYhrAdAAyhKcQ1SgBkftAxstrYBjJYs93kWgLX6tWJXQt2itL9brEStgMAAAAAAGCyhO0AYAjLDSGuUUYbDjpGdrVnjOwgVgcIJU6yJXCSLXqwU2i2AwAAAAAAYFoI2wHAELZsjGyLZru6roe+zm6xMkAocZItgRoJob1SaHZBsx0AAAAAAAATJmwHAENoakwbZbRhZ8Bmuzq1kaQDGCTcNsm2udUJjqyFnaIUmtVsBwAAAAAAwKQJ2wHAEJoCWiONkc1gzXaJlrRBDBKkm2iznTGy0Fop3DxKsBkAAAAAAACGIWwHAEMoBbQWq6VUVTX0eecGbLZLBLcGMUiQbnWAUbP9dOu11sf4nkF7mu0AAAAAAACYFsJ2ADCEUmhq1PDHXKXZbpy2stmuFADaimvBblZ63YzSIgoAAAAAAADDELYDgCE0NduNQrPdeA0Sbhv2eRwmOOd7Bu1tVbgZAAAAAAAA2hK2A4AhlMIfC6M226VF2K4ebvzpbrK6hc12g5x7XNeC3awcbtZsBwAAAAAAwGQJ2wHAEErhj6WRm+0GHyM7TNhrt1keJGw3wWa7VQFJaKVXd7NWr/bdptkOAAAAAACASRO2A4AhbNVYw1ZjZLWkbWqgMbJDPo/DhPSMkYV2mho8Rx3bDQAAAAAAAG0J2wHAEMpjDSfXbCe4tblBnqPV3nBtc8OM8fU9g3aaGjw12wEAAAAAADBpwnYAMIRSaGph1Ga7aLYbp9UtbLYbZoyv7xm0o9kOAAAAAACAaSJsBwBD0Gw3GwZ5joZ9HocJzvmeQTtNr5mFzuIEVwIAAAAAAADCdgAwlNLo0cURwx9zVYtmO8GtTQ0SiFsdYhxsMtzzP+y1YLdqaqfUbAcAAAAAAMCkCdsBwBCKzXajjpFtE7YzknRTK4VQ5Kn7DNts1z44JyAJ7TS9Zka93wIAAAAAAEBbwnYAMIRSAMQY2ekySCBx2NCiZjvYeqVQaydzre6XAAAAAAAAMA7CdgAwhGLYbsSmpU4Gb7YT3NrcIIG44Zvt2h+njRDa2ap7LQAAAAAAAAxD2A4AhrBSH+/7uGa76dGt19JLd9P9Jtls53sG7RRHdo94rwUAAAAAAIBhCNsBwBBWev1b5RZGbFuaqwZvttOS1mzQYNuwAbjVYZrthO2glXKz3eKEVwIAAAAAAADCdgAwlK1qW5rXbDc2g4YRV+uV9Ope+/MP02wnIAmtlMZla7YDAAAAAABgOwjbAcAQSkGrpVGb7dIibCe41ahNGG6tXm1/fs12sOVKr5lRW0QBAAAAAABgGMJ2O1BVVT9VVVU9wp/f2e6vAWDabVWzXasxsoJbjdqE4YZqqdNsB1uufK81RhYAAAAAAIDJE7YDgJZ6dbfYhDZq29JcizGyq4JbjVZ6/cdP9t13mJa6wnjLJqWRmEB/pVDromY7AAAAAAAAtoGwHQC01BSymmyzneBWkzYBumFCcJNqw4PdbKtaRAEAAAAAAGAYg9fnMMu+I8n7Wux/dKsWArATrDYEpkZtW2rTbGckabM2wbZJjYRdrVfSq3vpVP69AwyidL8dtUUUAAAAAAAAhiFstzvcUdf1jdu9CICdYrkpbDdqs13aNNsJ2zVpM2Z3mOeyKXTZZK1e1coFA9JsBwAAAAAAwDRRqwIALTU1mo3abNdpM0ZWs12j5d7xgfcd5rlsGifceJyQJAysNC571HstAAAAAAAADEPYDgBaagpLTXKM7Fq9ml7dHel6O9lWj5EdttlOSBIGV3q9LFSLE14JAAAAAAAACNsBQGtNYalRAyBzLZrt1tcyXLvabtDmuRmu2W640Nyq7xkMbFWzHQAAAAAAAFNE2A4AWio1ms1X863Dcg83l8Gb7ZrWQrvnpm2zXV3XQ4+DNUYWBlcKtS5WwnYAAAAAAABMnrAdALRUHms4evijfbOd4FZJm+em7fPYzVp66bVd0vq1hO1gYKXXi2Y7AAAAAAAAtkO7+hxm1fdXVfXjSa5Jcm6S1SR3J/likncneVNd1+/axvUBzJRS+GOps2fkc89V7d6aP3z/e3PW/DlJkipVLll6RC5evDxVVQ10/JdW7sgXj38uvfRy/sJFuWLPVemM2M43Le7vHh5439KoypLl3vG2y/myjx/7UO5ZO/Tlz3fa8z5r7lk9lBuPfzbdei3nzJ+fK/de3fp1yPj06m5uOv75HFq9I0lyrHt/3/0WRxzZDQAAAAAAAMPwm8Td4dsf9vlSkgNJHpHka5L8WFVVH0ry8rqu3zrpxQHMmpW6fzBrHGMNOy1LZ//s0O+c9tij916bl17249nT2Vs8rluv5Xdv/5V88P53nvL4BQuX5Acv/+mcs3B+q3VMm08f+2jee/htA+/fptnuge7R/Lsb/8Uwy0qSvPme15322IWLl+UHL/upnL1w3tDnpZ1e3c0f3vkf8+7D153y+Nnz5+WHLv+ZXLB4yTatbPe6Z/VQfuXmV+au1ds23VezHQAAAAAAANvBGFlO+ook11VV9XPVoHVILVRVdUFVVde2+ZPkqnGvA2AcymMNR29aGsct+HMPfiL/7dDvNu7zzvvedFrQLknuWr0tv3fHr468hu200lvOf7z137U+ZlCvu+s1pzTTjcOdK7fkv9zxa2M9J83ed+TtpwXtkuTetS/lt2/7hW1YEf/ljl8bKGiXjCfcDAAAAAAAAG1pttvZbk3yhiQfSPKpJPck6WV9lOzTkvytJC/csH+V5MeyHsJ8+ZjX8tIkrxzzOQG2RakFbWGKwh+fPPbhxu1/ffSDxW2ffeATOd57sLEZb5p99oGPZ7luN+Z1tdBW2M/Hj32o7ZIGcv0DH89y7/hYxhGzub8+Wv4+3rx8Qw6v3ZMzT4xoZust947n+gc+PvD+C2MINwMAAAAAAEBbwnY70weyHqJ7S13XdWGfv0jya1VVfUWSP0hy9YZt/7qqqvfVdf3nW7xOgJnUrdf6Pj5Xjedt9aq91+TzD35qpHMc7R5p3H5k7b7itl66Oda9f2bDdoe797Y+ZtBmu17dzf3dw63PP4hu1nKse7+w3YQcWWv+OTmydp+w3QQd696fXroD7dtJJ5cuXbm1CwIAAAAAAIA+jJHdgeq6fkNd19c1BO027vuhJM9Ocv3DNv18VVVzW7JAgBnXq3t9H5+rxvO2+rVnvThVRhsnu9lbwGqhne+kNmNVp81yr12rXVJuKzx9v8Eb8IYxy8/7rNn0NbDF32tO1eZn/5lnPC/75w5u4WoAAAAAAACgP812pK7re6qq+o4kH0q+nO54XJKvS/LWMV3m15P8cctjrkqiXQ+YOr30D9tVY8qwf8UZz81c1cm777su93cP5/H7n5oXn/sd+djR9+c9h9+S25Zv+vK+q/VKHuwda32NzYItmwWRplnT1/bUA8/JR46+t9UxG6027HfuwoW5cPHS3Hr8C6mTnLtwQfbN7U+VTm5evmFDALLOkW7/ZsFBQ3+MbqXXHKZr+l4zfk0/+wfnzkyVTs6cPztPOvDMvOjcb5vgygAAAAAAAOAhwnYkSeq6/nBVVddlffzsSS/KmMJ2dV3fleSuNsdU1WitTgBbpVf3H3XYGWMh6FMPfmWeevArT3ns6Wc8N08/47mnPPbXRz+Y37j151qff7NQ1yw3rK3U/Zvtrt57bS5YvLRwzKDNduX9fuiyn8l5ixdueo5uvZaXXf+t/c8/RCsfw9n0NSD4OFFN95x/e9Vvj21MNwAAAAAAAIzCGFk2etPDPn/StqwCYMqVmu062/K22j+YXKd5jOxmrV6zPEKzFNpZ7OzJYmex1TGn71d+XhY7SwOdY66az1zh3zssC3hNzGbf81kOnM6iUrhxLvOCdgAAAAAAAEwNYTs2uvFhn5+/HYsAmHa9uhC2q6bnbbUpbNet19LNWuPxsxw0Wi6sfamzlMWqfyBu0LG5TfsNGrZr2neWn/dZo9luupRDsv0DsgAAAAAAALAdpicVwDR48GGf792WVQBMuXqKmu2GGbg9SKBrloNGpTGyi9VSFooht8Ga/Jqeu4Vq8FDQUmdP4fzGyE5Cr+5mrV5t3EfwcbJK95xSQBYAAAAAAAC2g7AdG533sM+/tC2rAJhy3brb9/HtaLarhhgjO0iQbnXA8Nk0KjXbLXb2FIM7g4YLS+N156v5zFVzgy0w5QCRMbKTMciYZGG7ySo32wnbAQAAAAAAMD2E7djoWQ/7/LZtWQXAlCs32w0ethqbqtRt1xC22+nNdoV2uMVqqRjcGTRcWHruFlq2b5XXMbvP+ywZ5Hme5dfALCo9321fWwAAAAAAALCVhO1IklRVtSfJ333Yw+/YhqUATL1eXQjbTVOzXTlrN1CIaJZbvUpf31JnTxYLo14Hb7YrjbocfITsybX0s2yM7ETs9NfALNJsBwAAAAAAwCwQtuOkf5Xk0g2fd5O8fpvWAjDVuimMkZ2it9XGMbIDtLjNcqtXObSzp9woV68UQ5SDnbtdIGhhxNAfoxnkNbA6wKhZxme1FGQVtgMAAAAAAGCKTE8qgLGoquq7qqq6sOUx/2eSVz7s4d+p6/qL41sZwM5RF5vtJj9GttRs1zhGdoe3epXa4ZaqpSw2jKQcJFw1rlGXmu22105/DcyiYpDVGFkAAAAAAACmiLDdzvO9Sb5QVdV/rqrqxVVV7S/tWFXVV1RV9adJfjM5Ja1xa5If3+J1AsysXgphu214Wy2OkW04ZpAQ0Sw3rBVHvXaWGluyBnpextRst1j1D9vN8vM+S1Z3+GtgFpXaBhc77UY0AwAAAAAAwFaa3+4FsCX2JvmHJ/70qqr6bJIbkxzO+njYc5M8OUm/Brx7kryorus7JrNUgNlTGjdaVdOUYS/H7UrjGk/ZZ4ZbvUrtcIudPY0tWYOEq8Y16rIUINKmNhkrg7QY+l5MVDEkq9kOAAAAAACAKSJst/N1kjz2xJ/NvC3JP6rr+patXRLAbOul2/fxuUzTGNmynd5sVwrELVVLWdiqZjtjZGfKTn8NzKLS96TpNQsAAAAAAACTJmy38/xy1sfAflWSRwyw/7Ek1yV5dV3Xb9vKhQHsFKVmu852NNtVpTGy5Wa7wUJlmzd/TaNu3c1avdZ323qzXXkk5SCNf6VGtLajLktjZAdZA6MbJEin2W6yNNsBAAAAAAAwC4Ttdpi6rv8syZ8lSVVVZyW5NsnlWR8Zuy/rTXf3Jbk3yaeSfKyu6/4VTQD01UthjGwmH7Zr32s3YNBoRkNfKw3NcEudpcZxr4OEq0rjddsGgkrrWBbwmoiBvtcz+hqYVcXWSM12AAAAAAAATBFhux2sruv7krxnu9cBsNP0ChnlbWm2a1DXdao+zXejjEuddssNAanFak/mqvl0Mtd3FHCpte7UfcYz6rIUIGoKCzI+gzXbzWa746wqhRs12wEAAAAAADBNpisVAAAzoNRs18nchFeSNHXblUbJDhQqm9GwXVNY7WTArRx0Gz6A1TSetp+lwhjZWW0UnDUDfa99LyZKsx0AAAAAAACzQNgOAFrq1YWw3TY021WNg2QLYbsB2tNmdYTm8iBhu0JT1iBfcymA1TYQNErgj9EN9L32vZioUiulZjsAAAAAAACmibAdALTUbwRpknS24W21fdRu0BGasxk0amrtO9kmt9jp30I3yNjQ0vOy0DIQVAoQNYUFGR/NdtNntdhs1641EgAAAAAAALaSsB0AtFRutpuuMbLlZrtBgkabB8+mUam1r0on89VCknLQbZQQYttmu6VOaYzsSuq6FJNkXAYJVq7Vq+nV/YO1jF+xNbIwchkAAAAAAAC2g7AdALRUpxC225Zmu3LYri6F7QYIle20MbJLnaVU1fpzNcoI19Lz0nbUZWkNdXpZq1dbnYv2Bm2tm9XQ6ayp63psQVYAAAAAAADYSsJ2ANBSt9B21am24W21agjbFQrSBgmVrdVrxa9zmg3SjlUa+TrJZrumcN5ybZTsVht0THJptCnj1c1aeoUQc9sgKwAAAAAAAGwlYTsAaKncbDf5MbJNQ2RLY2RXB2zrGnS/aVIaI7vYWdzw8fDNduUwX9tmu/JozEGDYAxv8GY734tJaPqZ12wHAAAAAADANBG2A4CWenUhbLcNzXZDjZEdMMw1i6GvYvPchma7xWqx7z6DNdv1DyC2DQQtNew/i8/7rBn8NTB7gdNZ1DSuV9gOAAAAAACAaSJsBwAtlcYddrblbbW5266fgVu9ZjD0tVz42pY2NMktFMI7m40M7dbddLPWd1spwFfS1IS3YozsllvVbDdVmu41Cy1fWwAAAAAAALCVhO0AoKVys920jZHtb+BWrxkMGpXHyD4UbisF3ZratZLmsbqlAF9J0xjZ5RkMOc6andzuOIuMkQUAAAAAAGBWCNsBQEu9dPs+Pm3NdsUxsju52a6w5o3NdqXwzmZfb2MgqKGprp+5ai7z1Xz/68xgyHHWDPwa8L2YiKamwbavLQAAAAAAANhKwnYA0FK52W663laLYbud3GxXGMG6MbBTCu9sNlq0uX2r/ajLxap/u12pnY/xWek1txg+tN/svQZmkTGyAAAAAAAAzIrpSgUAwAzopX/YrtqGt9WqajdItlf3GsehbrQ6g0GjUmjnlDGyhWDcZgGspvDhMO1bpYY9Y2S33k5ud5xFpe/HYrXU+h4HAAAAAAAAW0nYDgBaKjXbzW1Ds11TDKWuT2+2W6tXBz73bDbblUI7G8bIFoJxm329je1bheBck2HXwegGDdFt1nbIeAwSkgUAAAAAAIBpIGwHAC2Vm+3mJryS9auWnR62W24xonQWW71KX9/SKc12hZDbJl9vc7Nd+1GXSx1jZLdDt15LL92B9p3F18Asamq2AwAAAAAAgGkibAcALfXq/kGdzrY025XDdnWfsF2b1rSVAcfNTpNyQ9ZDwbaFIRvlSmN156uFdKr2QcthQ3+Mps3zq2VwMkrfk2EaIwEAAAAAAGArCdsBQEulZrvODLyttgoazWDoq9hsV21ds92w7VvGyG6PVoHT3uwFTmdR+bXVvjESAAAAAAAAttL0pwIAYMrUdSFsNwPNdqutmu1mL/RV+vo2NtuVAjybPTfl1rwhw3aFMbJtRv3Snma76TPu1xYAAAAAAABsFWE7AGhpuprtWo6RbRE0Wp3BVq/lAUI7pdGUa/VacURwUh6ruzBk+1ax2W4GGwVnSbtmO9+LSRh3ayQAAAAAAABsFWE7AGipWwhkdaq5Ca8kqcpZu/TJ2hUDY/3MYqvXSt2/FW5jaKcpwNP0/KyOuX1rqXDccuFrYDzahEhn8TUwizTbAQAAAAAAMCuE7QCgpXqKmu2axsj202qE5oy1etV1XWy2W9o4RrYhwFMK1CXjb98qjZGdted91rQJ0DX9PDA+5ddW/9cIAAAAAAAAbJf57V4AAMySXt3rO541STrVdI2R/def/8epUuW8xQvzjINfkxee+6153aHXDHzm9xy+Lu89/LZUVZXLlx6VbzjnW/KUg88ex6LH6t7VL+VP7vrtfPLYR4pByI3BtqZw3Ms//73FAGNpfPBiZ7xjZD9+7EN52We+NVWVXLL4iHzt2d+Y55z5gk3P96773px33/fm3LZ805cfW+gs5qq9j8s3n/8Pc+nSlUOtc9o80D2aN9/zuvzlkXdnqbMnzz/7b+crz/z6VBtqHj997KN50z1/ki88+Jn06lO/b92sDXytjxx9b172mW/98ufz1XwesffqvOT8f5zL9zxq9C+GHF07kvceflvfbcO+tgAAAAAAAGCrCNsBQAulMFcyfc12vayPu71z5db8z7tfm/9592tbnbtOvR5MqpMvHP9Mfuu2f5+XXvbjuXb/00Za8zgt947nVTe/Inev3tm439LGMbINzXYnn7M2FoZutisfd/J5v2n58/m9O341VTp59plfV9z/3fe9Oa+98zdOP09vLZ849uHcePyzefkjXpVzFs4faq3T4vDavfmVm1+Z21ceChT+/p2vzmq9kued/eIkyRcevD6/fuvPZq1eHcs1N4bzuvVarn/gr/PLN/9kfvzKX85ZC+eO5Rq7Va/u5pdu/onidmNkAQAAAAAAmDbGyAJACw9vydqoU81NcCWTV6eXv7jvLdu9jFN8+thHNw3aJQ9rthtzgGfY8y0Vxsj2857D1zVuf/fh5u/Lse79+ejR9w98vWl03+rd+cWbXnFK0O6kt93756nr9cbJDxx5x9iCdiUP9Nbb9RjNFx68PretfLG4fdgRzQAAAAAAALBVhO0AoIXSKNFke5rtDs6f2dhuN263LpeDMdvh1uUbN92nk7kcnDvzy58vVkvZ29k/tjWcNT9cu1mb4zZ73m8b4PsyyD7T6p7VQ/nFm1+Ru1Zv67v97tW7cqR7X5Lk9pWbJ7Kmvzj81hztHpnItXaqWxuCdsnwry0AAAAAAADYKsJ2ANBCry6PGe1Uk39bPTB3Rh6193ETu95KvTyxaw1ipV7ZdJ/H7XtS9s7t+/LnnaqTJx54xtjW8OQDzxrquMfte/LAzV2rveavs9vwc9lmn2n0pZU78qqbfiyHVu9o3O/OlVuSJHVD++Q4rdYreee9b5zItXaq1V75ftJJJ0848PQJrgYAAAAAAAA2J2wHAC00N9ttzxjZ773kR3PJ4iOGPv6rzvyGfN8lPzpQ8Guz0NekrTSEdZLkiqWr8t0X/9Bpj//9C/5JHrPviSNdey7z+bYLvi9X77t2qOP3zu3LSy/7iezvHNx0327W0q3X+m7r1b3UDT+XXz7HDIbt7ly5Na+6+RW5Z+3QpvvesXwibDfC9fZ29m2+0wbvuO8Nm/4MUtYU3v2+S/5lzl24cIKrAQAAAAAAgM3Nb/cCAGCW9Bpas7aj2S5Jzpo/J6+48pdy1+ptuXv1rvTqbn791p8d+Pj/48KXpqqqPHH/M3PT8uez3HswXzz+ufyPL/3+aftOW7PdamE9+zsH86OP+Pc5f+GiVNXpY3b3zu3LP7v83+Se1UO540QjWhsL1WKu2HNVljp7Wh+70WP2PSE//+jfyc3Hb8gDvaM5tHJ7/utdv9l335XeSvbOnf6fboOG6LrpH9abVrcv35xfvvknc6R770D737Fy64mPhovbPX7fU/MDl73ixPfi2CnbPn70Q3nHfa8/7Zij3cP5wJF35LlnvXCoa+52paDio/dem6ccfPaEVwMAAAAAAACbE7YDgBZ6KQebqm0sjK2qKhcuXpoLFy9NXdfppNPYwnfSUrXny2G0hc5Crjoxkna+6v+fCKv1Snp1b9uChQ9XCus86eAzc8HixZsef87C+Tln4fxxL6uVuWouV+69Okly+/x5xf1W6uXszenNa4OG6Gap2e6W4zfmV255ZY52Dw98zB0rNydJ6iHDdgudpcxV87ly72NO23bl/2bv3sOjqu99j3/WTGZyIVdIIFwLiIpQFVG2iEEBRa1atdXaum3dtR63Vdt6OdrqtijWVmttS9sj3V6OVrp1e9zd3ahUi4qCilRBvFZECwoB5RIMhEtCZjKzzh9KzJD1m6w1t6zJvF/P4/O4Zt1+ycwQ43z4fEsO1N9anlW7vbfbvkXNj2lK1UzfvCfyiSm8Wxbsl+OVAAAAAAAAAAAAAO7wqSAAAB4ka7YLWr0zRnZ/lmUpHOh5JKwk43HJRlWNPk4AACAASURBVMpGbf+Mko0Y1uJmJK4fJXveooZgYdxts51hDK3fNO5dq99umOUpaCcppYbCroqTfO/LguU6tnqm476t0Y/11u7lad27UJnCsiErnOOVAAAAAAAAAAAAAO4QtgMAwINkbXEBH/1YdRs2M4btkgSPTAGZ3mAKoLkNG/pNsufNqVVNch+icxvK600ftr2v326YpT3xXcZjKoM1jo/v6PhEe+Ntsu3Umu3CVvKRwNNrvmx8jy9qfjSlexa6SLxvhWUBAAAAAAAAAADQ9/knFQAAQB6wkzTbWT4aIxly22xnCLUkC7uYRj/2BtNa8jWskzzk6BxMcjse1u242d6ypnWVfrfhRrXFW43HHFj6Rf1g+Gzj/i2Rj1IeI9tTQHNAaKAmVhzruO+Dvau1tm11SvctZMb3b56GZQEAAAAAAAAAAND3+ScVAABAHojJHGwKyh9jZCX3YTNTKC9ZWM9PzXZ9bQxlsnWbgkluQ3RuQ3m94b09b+nOjTcb2/skaWzZ4bp82CzVh4cbv0+b21MfJZtsjOw+M/t/xbiPdjvvTM2U+fr+BQAAAAAAAAAAQN9H2A4AAA/iedJs5yY4JKXWbBfNh2a7PG3GClgBY9DIFCx03Wzn07Ddqj2v6/cf/TRpY+L4fkfq0qE3KBwoVsAKaFB4iONxmyOph+16GiMrScNLRuvgssMc9721+xVtiXyU8v0LUV97/wIAAAAAAAAAAKDv808qAACAPGDLHLYL+OjHashls50plBcOJGlYy4Nmu3wO65iCjqaQo/uwnf/GyL69e4Xu+uhnitrOI3Il6fDyo3XJ0OsU6vKarA8Pdzx2S2Rj1sbI7mNqt7Nl67nmBSndu1AZ3795OgYaAAAAAAAAAAAAfZ9/UgEAAOSBZMGmgI+a7dwGh0yhlqBVpKCKHPdFkgSjcs0U0srnsE7IEHQ0N9u5HCObZARyb3h91990z0e3qyPJ+idWHKv/NeRaFVmhhMcHhYc6Hv9ps12KYTuXr5lDyiZoSPgLjvte3vmcdnXsSOn+hcj4/s3jsCwAAAAAAAAAAAD6Nv+kAgAAyAPJm+2COVxJcm6DQ6EkoRZTux3Ndtlleu6MYTuXITo/Ndu9uvNF3ffxHYrJvKZ/qjxeFw6+WkGre+izPjzM8ZymyOaUx+UWB3oeIytJlmXpxP5nOe6L2hE9v+OvKd2/EDFGFgAAAAAAAAAAAPmGsB0AAB7E7SRhuz7UbJdsnykgk2u2bRtb9vK52c703Jm+766b7VIMoWXayy2L9YdNcxRPElw9puoEXVD/AwUt5wDrIEPYLqYONUU3p7QuLwGvoyobVF00wHHf8zue9FUg1c8YIwsAAAAAAAAAAIB8459UAAAAeSCWtNnOPz9W3YZVkgWMjKEvnwSJOuwOY9NgssY+v/PcbOcyROeHZruXdjyj/9j8u6QNkVOrT9H5gy5XwBC0k6RB4SGyZDnu2xtvTWltXgJeRVZI02tOd9y3J7ZLf2t5NqU1FJq+2EwJAAAAAAAAAACAvs0/qQAAAPKAnSTYlCwclGumEbD7K04Sagn5vNkummQdYcvd1+9H5mY75xY/1812LsfNZsvz25/UQ1vmypZtPGZGzZf1jYGX9NgSGQqENSA0MKPrcztGdp+GqpNUEih13Pfc9scV90mToF/11WZKAAAAAAAAAAAA9G2E7QAA8CDZ6EtfNdu5bIYyBeqSXcMvzXbJ1pHPzVhev+9uQ3S9OUb22ebH9cjWe5Iec1L/r+rsuu/Ispwb6/ZXHx6eiaV1SvZecFIa7KeGqpMd9zVFN+uN3a9kYll9Vl9tpgQAAAAAAAAAAEDf5p9UAAAAeSBuO4dDLFmuQ0K5ELbctXSlMkY2WaNcLiVr2Avlc7OdIfRl+r67brbrpTGyCz/5b/256f6kx5w64Os6s/Zbnt5Dg8JD011agmQtjybTa05XQM6Nloua58u2zS1+ha6vNlMCAAAAAAAAAACgbyNsBwCAB6ZmO1Pgpre4bXZLNq7RtM8/zXbOIyil/G62CxlGABub7Vw21uV6rKlt2/rLtof1+LYHkx53Ru35Or32PM9h1frwsHSW103Y4xhZSaoJ1eqoyqmO+9bt/YfWtq1Kd1l9Vl9tpgQAAAAAAAAAAEDfRtgOAAAPTIGlgOWvH6nJQnQJxyVttjOFvswht1xK3oyVv2EdY8jR2GzncoysctdsZ9u2Htv2oJ785JGkx3217ts6ZcDXUrpHfXFmx8im+po5seYs475nmh9NdTl9XrJmynx+/wIAAAAAAAAAAKBv81cyAAAAnzM32/nrR6opKNftuFSa7fwyRjZJM1Zej5E1BCDNzXZux8jmptnOtm39uekPerr5z0mPO3fgxTqxvzmo1pN6H4yRlaRhJSM1ruwIx31v71mhTe0b0llWn0WzHQAAAAAAAAAAAPKRv5IBAAD4XNw2hO181mwXykCzXchj6CvXTKG/kBX2PJLUT7yGHONyF6KzZWd9lGzcjuuRrffoue2PG4+xZOmfB12qaTWnpXWvfsEKVQSr0rrGPkVWSAEr9VHQyUKDyb4XhYxmOwAAAAAAAAAAAOQjfyUDAADwOXOzXepBnWxw2wzVF5vt8r0VK1vNdp8em72wXdyO6+Et/64XdvzVeIylgL5V/301VJ+ckXsOCg/LyHXSDXcdXHaYhhWPctz3ys7FaunYntb1+yLT69mSpSIrlOPVAAAAAAAAAAAAAO4QtgMAwANTs53ls2Y7t+GhZME0r6GvXDOF/vK9Fcsccow4Pu4lQBdz2YLnVcyO6Y+bf6eXWp4xHhNQQN8efKUmV83I2H3rMxW2SzOgaVmWZhra7TrsDi3Z/kRa1++L+mozJQAAAAAAAAAAAPo2fyUDAADwOdPIzoDPfqQWB0pcHZdKs13UJ8120bhz+KyvNttFM9Js5/5YL9d8YNMcLd+5xHhMQEFdNOQaTao8LqP3rg8Pzch13L5fkplYcaz6F9U57ntxx0LtjbelfY++JNJH378AAAAAAAAAAADo2/yVDAAAwOdMzXYBvzXbuR0jS7Od73gd3+ulrS7TY2Q77Kj+78e/1MpdS43HFFlF+tehP9IRFVMyem9Jqi8enpHrZOI1E7SKNL3my477WuO79beWZ9O+R19iCu3m+/sXAAAAAAAAAAAAfVtRby8AAIB8YssQtvNZfj1khV0dlzRs5zH0lWum0F++N2N5DTn2VrNdNB7RvR//Qn/f86rxmJAV1r8OvU7j+03M2H27GpShZrtMvWaOrZ6pJz/5f2qLt3bb99z2x3Vc9ZcUtIIZuVe+M72eQ3n+/gUAAAAAAACAbLJtW/F4XLZt9/ZSAKAby7IUCARkWVZvLyWrCNsBAOCBqRksb5vtko2RDTgH9kzjH3MtYjuvw23Q0K+ShRxt2+72H6de2uoy1WwXibfr7o9u07utbxiPCVvF+u7Qf9PYfodn5J5OaopqFbaK0w6AFlvpj5GVpJJAqaZWf0lPN/+5275Polv1+q5lOqpyakbule9M799wnr9/AQAAAAAAACDTotGoWlpa1NLSomg0StAOgK9ZlqVQKKSqqipVVVUpFAr19pIyzl/JAAAAfC5ubLbzV1uV21GMyYJpIWPoa29Ka8q0Qmu2k6SoQ0Ap7mWMrNJvttsbb9PvP/pp0qBdsVWi7w27MatBO+nTkGsm2u0y2aY2reY0BQ1/n+WZ5vn8T5DPRPvo+xcAAAAAAAAAMqW9vV2NjY1as2aNmpqaFIlE+H/MAHzPtm1FIhE1NTVpzZo1amxsVHu7PyanZQphOwAAPLBtQ9jOZ812btrdwlZx0grfZONM/fDLXNTQZuY2aOhXppCj5DzCN5fNdm2xVs3d+BO93/q28ZiSQJm+P3y2xpSNT+tebtWHh6V9jeIMBryqi/rrnyqPd9y3of0Dvd/294zdK5+Z2gjz/f0LAAAAAAAAAJkQjUbV2NioPXv29PZSACAte/bsUWNjo6LRaG8vJWP8lQwAAMDnzM12/vqRallWj6GVcCD56EzT+XHFM9KQli5Ts13IMP42XyRr9nL6mmO2++fCy7H7a43t1v/ZOFtr2941HlMWKNcVw3+i0aVjU76PV5lotgtnaIzsPif0P9O4b1Hz/IzeK1/11WZKAAAAAAAAAEhXLBbThg0b1NHR+5/FAEAmdHR0aMOGDYrF0isG8QvnGVcAAMBR3NAMFrD8NUZW+jRMF4mZK3nDPbTf9RT6KgqGUl5bJkQcRqpK+d+M5XWMbC6a7XbHdur/bJitDe0fGI8pD1bqB8Nu1rCSUSndI1X1xcNdHWfJki3nRsZMB7yGFI/Q+H5H6p09K7vte2fPa/q4fb2GFH8ho/fMNzTbAQAAAAAAAICzTZs2dRu5GAgEVFlZqcrKSoVCIQUC/iqBAABJisfjikaj2rlzp3bu3Kl4/PMim/b2dm3atEnDhqU/taq3EbYDAMCDfGm2k9IL0316frJxphGVpbSqzIn20WasZM+bc7Odh7CdvIftdnXs0G833KSPI+uNx1QGq/WD4T/RkOIRnq+frnqXzXZhq1jt9l7HfZkcI7vPzP5nOYbtJGlR82O6YPAPMn7PfEKzHQAAAAAAAAB0F4vFtGvXroTHwuGwvvCFL6ioiHgHAP8Lh8Pq16+f6urqtH79ekUin5eJ7Nq1S7FYTMGg/4psvPBfMgAAAB+L24awneW/H6nphOl6Ot8UlMmlvtqM5XmMrIeRvl7HyLZ0NGvOhh8nDdpVFfXXVSN+1itBO0mqCw2R5eI/aYuTjE3O9BhZSTqw9IsaUTLGcd+KnS9oR/STjN8zn5jev6E8f/8CAAAAAAAAQDr27NmTsG1ZloYPH07QDkDeKSoq0vDhw2VZVsLj+/85l4/8lwwAAMDH4oZmMDdhn1xLJ0zX0/m+CNsZ1hDqodHP74IqMjYlOgWUvDTbmcYgO9ke3aY5jT/W5shG4zH9i+p09fCfaZDLdrlsCAVCqgvV93hcstd7NtrULMvSzJqzHPfF1KHFO/6S8XvmE5rtAAAAAAAAAKC7/VvtysrKFA7n9+ceAApXOBxWWVnivLTdu3f30moyx3/JAAAAfMzUbBe0/Fd122OYLknTV0/nRw2tVLlkbLbL87COZVnGr8F5jGzmm+0+iW7RrzfcoK3Rj43H1IYG6aoRP1NdeLDr+2eLm7Bfsva6bLUhTqg4RgNCAx33vbjjKbXFWrNy33wQtSOOj/c0/hoAAAAAAAAA+rL9G58qKip6aSUAkBnl5eUJ24TtAAAoMHE5h+3ystmuh1BLkRUy7vNzs12+h+0k83MXsfd2e8xLs13M0MzY1dbIJs1p/LE+iW4xHjMwNERXDf+ZMUiWa/XFw3o8JtkY2WT70hG0gppRc4bjvr3xVi1reSYr980Hffn9CwAAAAAAAACpsG1bsVji/8cvLS3tpdUAQGbs32wXi8Vk23YvrSYz/JcMAADAx0xjOAOW/36khnpstku+P2AFjCNZTa1yuWRuxsr/sI7puYvEu3/NMWWu2W5z+0bN2XCDmjuajMcMDg/XVSN+qppQrev7Zlt9uOewXa7HyO4zpepElQXKHfc9t32Bp2bCvsTYTNkH3r8AAAAAAAAAkIp4vHvhQzDov8lKAOCF059jTn/e5RP/JQMAAPAxU7NdUP77ZafnZrueQy1expnmWl9uxjI32zmNkfXQbJfk2I/b1+s3G36slo5m4zFDi0fqyuE/VVVRf9f3zAU3YTtTcFTKbsCrOFCi46q/5Lhve8c2rdz1Utbu7Wd9+f0LAAAAAAAAAKlwanqyLKsXVgIAmeP051i+N9sV9fYCAADIJ3HbMEbWh812xWk220mfhpD2aFe3x5/f8Ve92/qGwlaxDig9RBMqJitoZf8/K+J2XG/tXq41be+o3WGkqtQ3mrFMz83ync/ro/Z1CY+9s2el6+v+cfNvtbr1Tcd9b+1ert2xncZzhxeP1veHz1Z5sNL1/XJlUHhoj8cka5/M1hjZfabVnKZF2x9Vhx3ttm9R83xNqjgurf9hYtu23tmzUu+1vq22+B7P55cFyjWu3xEa2+/wlNfglbGZkrAdAAAAAAAAAAAAfIywHQAAHtiGZruAD8tiewqthK2eA0ama6xpe0dr2t6RJC3Z8YQO33W0LhpyjYqskPeFuhS343pw8516eedzSY9L1mCWL8KGr2H93n9o/d5/pHzdDrtDy1oWeT5vZMlB+t6wG1UWdB6H2tvKguWqDNZoZ2x7SudnOyhaWVStoyun6aWWZ7rt29i+Tqtb39Qh/SakdG3btvWnrfdpyY6/pLXGRdsf1ZcGnKsv1/5zWtdxy9RsF+oDYVkAAAAAAAAAAAD0Xf5LBgAA4GOmMZwBy39jZHsKrYQDPYfS3LbEvbn7Fb27x7kxLVPW7/1Hj0E7qW80Y/npazig9BD9YPjNvg3a7eOm3c7EUvZr+E/sf5Zx3zPN81O+7ubIxrSDdvv89ZP/0o4kY4QzxbZtx5HIkjloCgAAAAAAAAAAAPgBYTsAADyI51GzXWmgLOn+kh72f3pMqev7vd/6tutjU/Gey+t7WbNfuXlucuHgskP1vWE35cX3tL54WNL9ycJ4/YIVmV6O4/0PK/8nx32rW9/Uxr0fpnTdf7T+PZ1lZf16TkwjZCUp5CIEDAAAAAAAAAAAAPQW/yUDAADwMds2hO0s//1IPbDsi0n3H1R2aI/XcHPMPnvjra6PTYWb69cU1ao2VJ/VdeRCT89dLowrO0KXDv2xigM9jxv2g/H9JibdP73my6oq6t/t8cHhEeofqsvWshKcWGNut1u0/dGUrtmW4ffd3nhbRq/nxNQQKklFWR7pCwAAAAAAAAAAAKTDf8kAAAB8LCbDGFn5b4zsF0rG6J8qj3fcd2zVTA0OD+/xGg3VJ6s+nLwxbJ9I3HksZKb0dP2AAvpq3bdlWdkfCZptkyqmamTJQb12/8PLj9YlQ6/31Tjbnnyx35EaV3aE476T+5+j6qL+OrvuwoQWyiIrpK/UXZCrJeqA0kM0quRgx32v7lyq5miT52uaxrGmKtvvY0mKqcO4LyDCdgAAAAAAAAAAAPAvPs0CAMCDfGq2C1gBXVD/Ax3ab5Leb/u79sbaVBbsp4PKDtWE8smuQmlVRTW6esStWrlzqdbv/YdidlyN7Wu0JfJRt2MzHfrxcv1T+n9Nh1ccrS+UjMnqGnKlNNhPPxh+s1buXKoP9q5WRzwxnLQrtkOrW99M+fpBFWlixbHdHi8JlOqgsi9qYsWxeRdaDFhBXTrsx1q+c4k+aFutSDyi8qIKjSs7QuM+a707qnKqakOD9Obu5QpaQU0on6xhJaNytkbLsnRi/zN178e/6LYvrpgWb/+Lzh54oadrmsJxVUX9dVCpuZny3dY3tDvW0v16WX4fS8mb7YKW/4LLAAAAAAAAAAAAwD6E7QAA8CAuQ9jOp2WxASuoIysbdGRlQ8rXKA9W6viaUzu35zfN0zPN87sd11vNdsdWzdQZdedn9d69oSRQqmOrZ+pYzey274O21VrdmHrYrjxYoQuHXJXO8nwpaAV1TNUJOqbqBOMxI0sP0sjS3m0NrAsNVlN0U7d9L7U8rVMHnKvSYD/X1zOF40aXHJz0Of7thhv1Xutb3a+Xi2Y729xsF2SMLAAAAAAAAAAAAHzMn8kAAAB8Kp5HzXbZEracR4v2VrNdyLCevixslaR3fh6Nh+1rAlZQJ9Sc4bhvb7xNL+54ytP1ooZwXKiH59j0Po7aEU/3T0WcZjsAAAAAAAAAAADkqcJJBgAAkAFxOYdEAiqcgIgpqNVbzXaFGBwrTvNrLsSAop9Mrpqh8mCl477FO/6iDjvq+lqmEKopTLdPKBB2vl4umu0Mf45KNNsBAAAAAAAAAODWyJEjZVlW5z9Llizp7SUBBYGwHQAAHtBsl6zZLruNWKbGrbDlHBrqy8IBmu3yWThQrOOqv+S4r6WjWa/ufNH1tSJxw/vCEKbr3N9LDZVSD2NkCyi4DAAAAAAAAAAAgPxTOMkAAAAyIC7nsJ1VQD9STUEt0zjLTKHZ7nM9tZb1eH4Bfs/85vjqUxUyBEUXNT8q27ZdXSea4njl3nofS1KMMbIAAAAAAAAAAADIU4WTDAAAIANMzXbBAmq2M4V4st2Ileq4zL4o3TGyhfg985uKoipNrprhuO/jSKNW7XnN1XXMzXY9hO382mzHGFkAAAAAAAAAAAD4WOEkAwAAyACa7czjKU3Nc5lCs93nAlZQRVYo5fN7GjGK3Dih5gxZshz3Ldr+qKtrpBpCDRnfx9kdBy3RbAcAAAAAAAAAAID8VTjJAAAAMiBuCIkECiggkqwRy+3oy1QYQ0UFGLaTpGKrJOVzabbzh4HhITq8/GjHfe+1vq3GvWt7vEaqIVTTa8A0ljaTYkrSbCea7QAAAAAAAAAAAOBfhO0AAPDA1GxXSGNkk4V4onb2WrFMoSLTWNu+ztRM5u7cwvye+dHM/l8x7lvU3HO7nbnZLvnrw/Q+znZDpWRutgsoIMtybvoDAAAAAAAAAAAA/IDqCAAAPIjbjJFN1ooWsdsVVuaDXHE7bgzyFWyzXYBmu75gVOnBOqD0EK1te7fbvtd2vaQzo9/UgNAg4/lRw9jXngKVyRoqsy1mOzfbBS1+NQEAAAAAAAAAwG9s29Zrr72m1atXa+vWrWpvb1ddXZ2GDh2qhoYGlZeX9/YSU7ZhwwatWLFCGzduVFtbm2pra3XooYfqqKOOUiCQ3ue/W7du1YsvvqiPP/5YbW1tGjJkiEaPHq3JkyenfW0nq1at0ttvv62mpibt3LlT/fv31+DBg9XQ0KABAwZk/H6FjE+0AADwwDY02wUKKWyXJMQTibdLWZio22FHzesp0OBYOl93oQYU/erEmrMcw3ZxxfXc9gX62sD/ZTw39WY75/2m8F4mmZrtggU0jhsAAAAAAAAAAL/btm2bbr31Vj344INqampyPCYcDmvGjBmaPXu2jj76aFfX/fa3v6158+Z1bn/44YcaOXKkq3OXLFmi6dOnd27fdNNNmj17tvH4rhN1jj/+eC1ZskSStGzZMt1000167rnnFI93//x30KBBuuGGG3T55Zd7Dsa9/vrruvbaa7V48WLHaw8bNkyXXHKJrrvuOhUVFWn27Nm6+eabO/cvXrxY06ZNc3WvTz75RHfccYcefPBBffTRR47HBAIBTZkyRTfddJNOPPFET18LnBVOMgAAgAwwjj8soJBIspBXtsbIJhttaQoN9XU02/Udh5ZP0qDwUMd9y3YsUmtst+O+uB0zBlF7ClSaxi/npNlOhrAdfw8IAAAAAAAAAABfePTRRzV69GjNmTPHGLSTpEgkooULF2ry5Mm65JJL1NHhPN3GT2699VYdd9xxWrRokWMYTpK2bNmiH/zgBzrnnHMUibj//PPXv/61Jk2apGeffdZ47Y0bN2rWrFk6/vjjtWXLlpS+Bkn64x//qNGjR+v22283Bu0kKR6Pa+nSpZo5c6a+9a1vefp64IxPtAAA8CBOs13PzXZZkCwAVKjBMZrt+o6AFdAJNWfqP7f8vtu+dnuvXtjxV50y4Gvd9kWShFt7en2YXgORnDTbmcbIFk5oGQAAAAAAAAAyze7okJo29vYy+r66YbKK+nbU5v7779fFF1/cLSx2wAEHaNy4cSorK1NjY6OWL1+uWOzzv2B/zz33qLGxUQsWLFCRT79Hv/zlL3XDDTd0bh988ME6+OCD1a9fP23atEkvv/yy9u7d27l//vz5mjVrlm6//fYer/2rX/1K11xzTbfHx40bpwMPPFDFxcVqbGzUihUrFIvFtGzZMp177rk67rjjPH8dN954o2655ZaExyzL0sEHH6wDDzxQFRUV2r59u1599dWEsOSDDz6oTZs2aeHChb59jvIB3zkAADywbUPYziqcsJ2pEUvKYtguabNdYQbH0vm6CzWg6GdHV07Tgm0PaVespdu+Jduf0Ak1Zyq0X4tjNI33hWnMbEwditkdClrZ+zWBhlAAAAAAAAAAyIKmjbLPPbi3V9HnWf/1njR4ZG8vI2veeOMNXXrppQlBuwkTJmju3LmaMmVKwrFNTU2aNWuW7r777s7HFi5cqBtvvFG33nprztbs1ttvv60XX3xRknTWWWfptttu09ixYxOO2b59u66++mo98MADnY/96le/0qWXXpp01O3KlSt13XXXJTw2bdo03XnnnRo/fnzC401NTbrxxht111136YUXXtCqVas8fR3z5s1LCNoFAgFdfvnluuaaazRixIiEY23b1mOPPaYrrrhCjY2NkqRnn31Ws2bN0m233ebpvvhc4SQDAADIAGNIpIB+pBZZRbIMX2+2RlDSbNddOJ0xsgU6etfPQoGwptWc5rhvZ2yHlu98vtvj2Wi2k7LfbmdutuPvAQEAAAAAAAAA0JsuuuiihDGjDQ0Neumll7oF7SSprq5Od911l+64446Ex2+//Xa9/fbbWV+rV83NzYrH4/rhD3+o+fPndwvaSVJNTY3+8Ic/6Mwzz+x8LBaL6b777kt67csvvzxhhO5Xv/pVPfPMM92CdtKn37d///d/1y9+8QtJ0rZt21x/DevXr9ell17auV1cXKwnnnhCv/vd77oF7aRP2+7OOussrVixQmPGjOl8/I477tCHH37o+r5IVDjJAAAAMsA2jZEtoEYmy7KMrVg02+VOsZV62C5ZOyF6z9TqU4whuUXbH1N8v2bNZO+L/Vvwuu1P8hqIJgnxZUJMzqHloArnz1EAAAAAAAAAAPxm8eLFeu211zq3Kysr9cgjj6isrCzpeddcc41OP/30zu14PK45c+ZkbZ3paGhocNXo9rOf/Sxh+7nnnjMeu2LFCr3yyiud24MHD9b999/f45jWa6+9VieddFKPa+nqjjvuUFtbW+f2nDlzdMopp/R43sCBA/Wf//mfnduxWMy3z1E+IGwHpzTaMAAAIABJREFUAIAHcVPYrsB+pJoCbrlutgsoWLBtWOm00xVqQNHvyoOVOqbqBMd9WyIb9fc9ryY8Fk2j8THZ6ydbodl9aLYDAAAAAAAAAMB/5s2bl7B9+eWXa8iQIa7O/fnPf56w/fDDD6u9PbufN6TihhtuUCDQ8+e648ePTxgb+8YbbxiPffjhhxO2v/e976mqqsrVembNmuXqOEnas2eP7r///s7t0aNH65JLLnF9/qRJkzR16tTO7ccff9z1uUhUWMkAAADSFDeNkbUK60eqMWyX42a7Qg6NpTVGlmY73zqh5kzjmOZFzY8lbKfT+JjsNZCt0Ow+pj9HgwXUEAoAAAAAAAAAgN8sXbo0Yfub3/ym63PHjx+viRMndm7v3btXK1euzNjaMqG0tFQzZsxwffwhhxzS+e+tra3avXu343HLli1L2D733HNd36OhocF1oHHp0qUJrXbnnHOOq+BgV9OnT+/89/Xr16uxsdHT+fgU9REAAHhgbLYrsJCIKaiTrZCOqcGrkENj6YyRLeSQot/VhgfpiIpj9Nqul7rtW9P2jta1va+RpQdJkiKGca9uGh9DSV4D2W+2M4Xt+NUEAAAAAAAAAIDesH37dq1du7Zzu7q6OiFs5saUKVMSxtCuWLFCU6ZMydga03XAAQcoHHY/OaqmpiZhu6WlReXl5d2Oe/PNNzv/vbq6WmPGjPG0rqOOOspVy9z+YcghQ4Zo3bp1nu61/9f/wQcfaMSIEZ6uAcJ2AAB4ErcZIyuZgzrRuHP4J10Rw3XTGaWa70LpjJEt4JBiPpjZ/yuOYTtJeqb5UV089IeS0mt8DFvm10/UEOLLlJgMY2RVWKFlAAAAAAAAAMioumGy/uu93l5F31c3rLdXkBVNTU0J2wceeKAsy/J0jbFjxyZsb926Ne11ZdL+4bmehEKhhO1oNNrtmD179mjv3r2d26kE19yes2HDhoTtK6+8UldeeaXn+3XV3Nyc1vmFirAdAAAemJrtTGMf+6pcN9uZrlvIobHidMbI0mzna18oGaMDS8frH23vdNv3xu6X1RTZpLrw4CSNjz0HMQNWUEVWkTrs7sG3bI+RNTfbEbYDAAAAAAAAgFRZRUXS4JG9vQzkqe3btydsV1VVeb7G/uf4LcjldeSqGzt27EjYrqio8HyNyspKV8d98sknnq/dk127dmX8moWgsJIBAACkKU5IRJI5rJWt8ZPpNHj1VeF0xsgWcEgxX5zY/yuOj9uK67ntCySZGx+TjYhNOM4Ums36GFlDsx1jZAEAAAAAAAAA6BW2bSdse221c5KJa/hdcXHiZy2RiPfpQW7PSeXaPdn/eYc7hO0AAPDA1GwXsArrR6qpOSvXzXamsFAhKE4jaFjIIcV8Mb7fRA0OD3fct6xlkXZ37Ey78THXodl9aLYDAAAAAAAAAMBf+vfvn7Dd0tLi+Rr7n+N1bKsbsZjzZwy9Zf+vcf+GQDfcNgDW1tYmbC9btky2baf1z7e//W3P6wVhOwAAPInbjJGVaLbzg3Ta6YqsUAZXgmwIWAGd0P9Mx31RO6IXdvw17feF6TUUtTP/N6O6iolmOwAAAAAAAAAA/KSuri5h+/333/d8jffeey9he+DAgY7HFRUlfh7Q0eH8uYGTVMJs2RQMBjV06NDO7Q8++ECtra2ervH222+7Om7QoEEJ26k8R8iMwkoGAACQJtMY2UCB/Ug1hXRy3WxXyONQw4HUxsiGrHDBNTHmq0kVx6sq6Py3vpbseFJ7Yrsc95maJ7sdZwrNZul9vI+x2U402wEAAAAAAAAA0Btqamp0wAEHdG7v2LFD7777rqdrLFu2LGF70qRJjsdVVlYmbO/YscP1Pd555x1Pa8qFyZMnd/57PB7X888/7/rc5uZmvfnmm66OnTJlSsL2008/7fo+yCw+aQUAwAPzGNnCConkutkuSrNdN6mOkS3k71m+CQVCmlZzuuO+3bEWvbJzseM+t89xyDQOOutjZGm2AwAAAAAAAADAbxoaGhK2H3roIdfnvvvuu1q5cmXndklJiY488kjHY/dvvFu1apXr+zz55JOuj82VE088MWH73nvvdX3uvHnzFIm4mzh0wgknKBj8/DPpxx9/XFu3bnV9L2QOYTsAADywjWG7wvqRGjKOn8xOSKfdFLYr5GY7K/VmO+SPqdUnq9jwXO+KtTg+7vY5NoXysvU+3sfUbFdooWUAAAAAAAAAAPzkggsuSNi+8847tXnzZlfnXn/99Qnb3/jGN1Rc7Pw5xMSJExO2FyxY4OoeTz31lJYvX+7q2Fw6//zzVVFR0bk9f/58PfXUUz2e99FHH+knP/mJ6/vU1NTo/PPP79zevXu3rrnmGm+LRUYUVjIAAIA0xWxD2K7AfqSam+3c/c0Lr4xjZAOFGxxLtaGO9rD8UhYs17HVMz2d4/a1YRwHnfVmO8MYWcJ2AAAAAAAAAAD0mhkzZmjChAmd2y0tLTrvvPPU1taW9Lw5c+boscce69y2LEtXXXWV8fhjjjlGZWVlndvz58/Xq6++mvQe//jHP/Qv//IvPX0JvaKiokJXXHFFwmPnnnuuFi92nlAkSevWrdPMmTM9jdCVpNmzZyeEGP/jP/5DP/rRjxSLOX/2YrJq1Sq98MILns7B5worGQAAQBps207SbFdYIRFjSCdLjVim8E8hj0RNOWynwnqt9gXTa77sKdDrtvHRFFaN2NkJze4Tk2GMrAiCAgAAAAAAAACQqs2bN2vdunUp/bPPfffdp3D4888PlixZoqlTp+qVV17pdr9t27bp8ssv19VXX53w+A9/+EMddthhxnVWVFTo61//eud2LBbTaaedpqeffrrbsZFIRPfee68mT56sLVu2qKamxsu3JGdmzZqlQw89tHN7586dOuGEE3Tuuefqv//7v/XWW29p9erVevrpp3XllVdq/Pjxevfdd1VSUqIzzzzT9X1GjRqle+65J+GxX/ziF2poaNCCBQvU0eH8GYz0acBv7ty5mjFjhsaPH6/nnnvO+xcKSeITLQAA3DIF7SSa7fbJViOWaaylaZxtIUh1hC7NdvlnQGigjqxo0Ipd7v6GkdsgpnEcNM12AAAAAAAAAADknfPOOy/lc23blvTpiNc777xT3/3udxWPf/rZ6MqVKzV58mSNGTNG48ePV0lJiTZs2KDly5d3C3fNnDlTt9xyS4/3u+WWWzR//vzOZretW7fq5JNP1pgxY3TYYYepuLhYW7Zs0SuvvKI9e/ZIkurr63X77bf7suEuHA7riSee0IwZM7RmzRpJn35P//SnP+lPf/qT4zmWZWnu3LlqbGzs1gyYzAUXXKDNmzfr+uuv73yOXn75ZZ1xxhkqKyvTEUccoUGDBqm0tFS7du3Stm3btGrVKs8tejDj01YAAFyKE7brFLZMjVg02+VKwErtNUegKT+d2P8s12E7tyHUXDdU7hOzDc12vDYBAAAAAAAAAOh1F198sWpqanThhRdq9+7dnY+vWbOmM0jm5Dvf+Y7uuusuhUKhHu8xdOhQ/fnPf9ZZZ52lXbt29XiPUaNG6YknntCWLVs8fjW5M3z4cL344ou67LLLNH/+/KTHDhgwQPPmzdNpp52mH/3oRwn7KioqerzXvvbACy+8UJs3b+58vLW1VS+99JKr9fq1JTAfFFYyAACANMTtJGG7AguJ5LrZzhT+SbXdrZDRbJefhpeM1sFl5sr1rtyGUI1jZOPZHSMbNzTbBRhxDAAAAAAAAACAL5xzzjlau3atrrjiCtXW1hqPC4VCOumkk/TSSy/pvvvucxW022fGjBlavny5zjzzTGObW11dna699lq98cYbOuSQQzx/HblWX1+v//mf/+kM3Y0bN07V1dUqKSnR6NGjdeKJJ+ruu+/W2rVrddppp0lSt8a5qqoqV/c65ZRT9OGHH2ru3LmaMGFCj414oVBIU6ZM0ezZs/X+++/riiuuSO2LBM12AAC4lbTZLsWWsXxlCrmZxr2myxT+KeRmu1QFCTTlrZn9v6L3Wt/q8ThT82S34wzvn2y9j/eJydRsx68mAAAAAAAAAAC4tW7duqxef+DAgfrNb36jX//611q5cqVWr16tpqYmtbe3q7a2VsOGDVNDQ4OrJjaTsWPH6tFHH9W2bdv0/PPPa+PGjWptbdWgQYM0atQoTZ06VUVFn39+MG3atM6Rt254OXZ/DzzwgB544IGUzm1oaFBDQ4OrY1etWtX575ZlaeDAga7vU1JSossuu0yXXXaZmpub9fLLL2vTpk1qbm5WNBpVeXm5Bg4cqIMOOkhjx45VWVmZ568F3fGJFgAALpnamKTCGyMbMoR0OuwOxexYxsdB0myXOYzqzF+HlE3QkPAX9HFkfdLjTO/PbseZxshmudkuZvizlNcmAAAAAAAAAAD+EwgENGnSJE2aNClr96itrdXZZ5+dtev71Z49e/Taa691bh900EEphxf79++vU089NVNLQxKFlQwAACANycfIFtaP1GQht6id+aCOaTwtzXbe0R6WvyzL0on9z+rxOLchVFMDnincminmsB2vTQAAAAAAAAAAUDjmzZun1tbWzu1jjjmmF1cDt/hECwAAg9bYbn3cvl52l22TQIGN5kwWcntvz1sqC5Z3bg8KD1VlUbWkT6uam6Kb1NKxXUVWSMOKRykUCCW9V8zuUFzO4Ry34zLxOdrD8ttRlQ16fNuD2tHxifEYtyFU03Efta/T1sjHqgsNlmVZKa0zmZhtGCNbYH+OAgAAAAAAAACAwrVx40bNmjUr4bELLrigl1YDLwjbAQCwn5gd00Ob5+qVnUtky9xm1xXNdp+7++Pbuj32xX5H6Yzab+q+TXdoS+SjzsdDVlhfrfu2jq9xrjS2bVsPb7nLvA6a7TyjPSy/FVkhTa/5suY3PWA8xm0I1TRGVpJmf3iZBoWH6rKhP1ZdeLDXZSZlCs/y2gQAAAAAAAAAAPnqz3/+s1auXKmrrrpKdXV1SY99/fXXdfbZZ6u5ubnzscMPP1zTp0/P9jKRAXyiBQDAfp765L/18s7nPJ1jFdhkdq8ht7/veVV/3/Nqt8ejdkSPbL1H9cXDdXDZod32v9TytJa1LDJeN1lYCM5oD8t/DVUz9ddPHtHeeJvj/nSb7fbZEvlIczfeoptGzc1ow515jCyvTQAAAAAAAAAAkJ927dql2267Tb/85S91yimn6IQTTtDhhx+ugQMHqqioSM3NzXr77bf1l7/8RQsWLJBt253nhsNhzZs3rxdXDy8I2wEAsJ83dr/s+ZwAYbu0vLX7Fcew3Ru7kj8XNNt5V/HZSF/kr9JgPzVUnaxF2x913O82hOqmAW9r9GNtjmzU4OLhntaYjDlsx68mAAAAAAAAAAAgv0WjUS1YsEALFixwdXxpaan++Mc/6vDDD8/yypAphZUMAADAhe0d2zwdXxIoVU1oQJZW40/FVon6FyWvP/ZiR7TZ8fFkz0VpoJ+qi/pnbA356Ct1/+L4+OkDztPA0BDHfRMrjs3mkpAj02tOV8ChpTCgoAaFnZ/7/Q0uHuHquJYO5/dnqmLqcHycZjsAAAAAAAAAAJCvqqurFQx6+6zj2GOP1QsvvKBzzjknS6tCNhC2AwBgP5F4u6fj/6lyWsE1MlmWpSlVJ2bseqbwTcQ2PxeTq6YX3Pd9f0eUT1FJoCzhsWKrRBMrjnV8fgaFh+qA0kNytTxkUU2oVqcM6P6L18SKKSoLlru6Rv9QncaW5f5vSRmb7RhxDAAAAAAAAAAA8tRZZ52lLVu26MEHH9Sll16qhoYGDR8+XP369VMwGFR5eblGjBihqVOn6t/+7d+0dOlSLV26VEcddVRvLx0eFfYn1AAA7CduxxW1I66O7V9UpyMrG3Rm7TezvCp/+tKAc2VZAb3Sslhbox+ndS1T+MYUfBwQGqiz6y5M6559QW14kK4cfov+p+kBNe5dq+HFo3RG7TdVXzxMg8JDJUl/2/msdnZs19iyw/X1QZfQHtaHnDrg6woooL/tfFaS9MV+R+nsgd7eF/869Dr9acv/1d/3vKpdsRbHY2zZaa+1q5htarbjVxMAAAAAAAAAAJC/BgwYoPPPP1/nn39+by8FWcQnWgAAdNFhR437/veIn2tUyUGd25YsWZaVi2X5kmVZ+tKAr+lLA76muB3vfHxnx3b92wcXebqWKXxjCtudU3eRAoTGJEkjSg7QlcNvkW3bCa9Hy7J00oCv6qQBX+22D31DwAro1Nqv69Tar6d8jZJAqb41+PuybVvfe/9s2Yp3OybzYTtDsx3vaQAAAAAAAAAAAPgcYTsAALpINkK22CpRwGICu5Ou35fiQInn853CdrZtK2JoGQwHij3fo69LFqYjaIeeWJalgAKKOYTtMo1mOwAAAAAAAAAAAOQrEgMAAHQRsc1hOwJe7qTyfXJquuqwOxxbtiQpbPFcAJlmymRmvNlOhmY70WwHAAAAAAAAAAAAfyNsBwBAF0mb7QjbuRK0ihTwGJpxCt9ECT4COWZK2+VqjCzNdgAAAAAAAAAAAPA3wnYAAHSRtNmONjXXvIbhnMZKJgs+ErYDMs8yhO0y2WwXt+PGxsqARbMdAAAAAAAAAAAA/I2wHQAAXRDwygyvwUSnpqtkwceQFfa8JgC9z9RqJ9FsBwAAAAAAAAAAAP8jbAcAQBemgFdAQYIgHoQD3sJwNNsB/pXJIbIxdX+v7xP0OH4aAAAAAAAAAAAAyDXCdgAAdGEKeBHu8sZzs528Ndsx0hfIPNMY2UzG7eJJm+0I2wEAAAAAAAAAAMDfCNsBANBF1BDwItzljddwotdmO8bIAplnCtvZGQzbOb3X96E9FAAAAAAAAAAAAH5H2A4AgC4i8Yjj417Hoha6kMdwolPblanZLmwVy7JMDVwA/CxGsx0AAAAAAAAAAADyGGE7AAC6SBbwgnvem+0cwnbG4CPPBZANphCrbWew2U5Jmu1Esx0AAAAAAAAAAAD8jbAdAABdmEaXEvDyxms40SmAw0hfINdyMUaWZjsAAAAAAAAAAADkL8J2AAB0YWq28zoWtdBlptnO8FwQfASyIhfDmZOH7Wi2AwAAAAAAAAAAgL8RtgMAoAua7TLDe9iue7OdeaRvOKU1AehJ9uN2Tu/1fWi2AwAAAAAAAAAAgN8RtgMAoAtj2I5mO0+8fr/iisu2E0dVEnwE/CGjY2RFsx0AAAAAAAAAAADyF2E7AAC6MLapEfDyJJXvV0yJjVfmZjueCyAbLGOzXQbDdsma7USzHQAAAAAAAAAAAPyNsB0AAF3QbJcZqXy/YnZi4xXNdkBumcJ2mYvadX+fd8UYWQAAAAAAAAAAAPgdYTsAALowN9uFc7yS/JZSs51Nsx3Qq0zFdjlotrNkKUDYDgAAAAAAAAAAAD5H2A4AgC5oU8uMTDTbReMR52vzXABZYWy2szMYtpNzsx2tdgAAAAAAAAAAAMgHhO0AAOgiamhTC9Gm5kkqTYD7h3BMzXY8F0C25GKMrHOzXVBFGbwLAAAAAAAAAAAAkB2E7QAA6IJmu8xIJRDXbYwszwWQU8Ypshm0f4PlPoyQBQAAAAAAAACgMDU2NurHP/6xpk6dqkGDBikcDsuyrM5/Hnjggd5eIpCACgkAALowtamlMha1kKUSiOs2RtY2jJG1vLfmAeiZaYxsJrvtTGE7xsgCAAAAAAAAAODNyJEjtX79+s7txYsXa9q0ab23oBTce++9+v73v6/2dufPaAE/otkOAIAuInFDwIs2NU9SCSfSbAf4k53RsJ1pjCxhOwAAAAAAAAAACsmTTz6pSy65xHXQbsmSJQmNd7Nnz87uAgEDmu0AAOiCZrvMyESzHc8FkGvZb7aLy9Rsx68lAAAAAAAAAAAUkuuvv162/flnEP/8z/+siy66SMOHD1coFOp8vLa2tjeWBxjxqRYAAF3QppYZqQTi4qLZDuhN2Y/aJWm2Y4wsAAAAAAAAAAAF47333tNbb73VuX3qqafqoYce6sUVAe4xRhYAgM/E7A5j61LYCud4Nfktq812hO2A7LCc43Zd/1ZZuvZ/n+8ToNkOAAAAAAAAAICC8eqrryZsn3POOb20EsA7wnYAAHzG1KQmEfDyKpXvV4ftrtkuxBhZICusHHTbGZvtRLMdAAAAAAAAAACFYsuWLQnbw4YN66WVAN4RtgMA4DOmJjWJgJdXqYyR7RrCidtxRe2I87UJPgJ5K2ZoD2WMLAAAAAAAAAAAhWP37t0J26FQqJdWAnjHvCYAAD5Ds13mhFIYu9s1hNNhR43HpRLkA9AzU7Nd5nrtkjTbMUYWAAAAAAAAAABfsm1br732mlavXq2tW7eqvb1ddXV1Gjp0qBoaGlReXu75mvF4PAsrBXKDT7UAAPhMsmY7Al7eWJalsFWc9Hu6v64hnOTBR+9BPgA9y80YWZrtAAAAAAAAAADIB9u2bdOtt96qBx98UE1NTY7HhMNhzZgxQ7Nnz9bRRx9tvNa6des0atQo4/7p06c7Pv6HP/xBF154oeO+m2++WTfffLPxmosXL9a0adOM+4FUMUYWAIDPROLOY0slmu1S4fV71jWEQ/AR8A87J2E7/g4QAAAAAAAAAAB+8eijj2r06NGaM2eOMWgnSZFIRAsXLtTkyZN1ySWXqKPDecIN0JfwqRYAAJ9JFvBKZSxqofMaiksI2zHSF+iTYjKMkRXNdgAAAAAAAACQlniH1Lqxt1fR95UNkwJ9O2pz//336+KLL+426vWAAw7QuHHjVFZWpsbGRi1fvlyx2Oef791zzz1qbGzUggULVFTUt79HKGy8ugEA+Iwp4BWywgpYlMF6FfLcbNdljCzNdkDOWZbzGFma7QAAAAAAAAAgD7RulB43j+lEhpzxoVQ+srdXkTVvvPGGLr300oSg3YQJEzR37lxNmTIl4dimpibNmjVLd999d+djCxcu1I033qhbb7014dhhw4bpww8/7Nz+zW9+o9/+9red2w8//LAmT57cbT21tbWdo2BffvllnXfeeZ37rrjiCl155ZXGr6W+vr6HrxZIDZ9qAQDwmagh4EWTWmrCHtsA46LZDuhdhrCdncmwnaHZzqLZDgAAAAAAAACA3nbRRRcpEol0bjc0NOipp55SWVlZt2Pr6up01113acyYMbr22ms7H7/99tt13nnn6dBDD+18rKioSCNHjuzcrq6uTrhWfX19wv6uysvLJUnr1q1LeLy6utp4DpBN1PQAAPAZU8CLJrXUeA3FuWm2CyhIAxaQJc5Ru8wyN9sRtgMAAAAAAAAAoDctXrxYr732Wud2ZWWlHnnkEcegXVfXXHONTj/99M7teDyuOXPmZG2dQG8jbAcAwGeMYTua1FLiNaTYNYTDcwHknpWDuF1MhmY7CrcBAAAAAAAAAOhV8+bNS9i+/PLLNWTIEFfn/vznP0/Yfvjhh9Xebp5kBeQzPtUCABSMJ7c9omUti4z798bbHB+n2S41qTTbrWl9R4u3/0Wv7/6b8zV5LoAscg7bPdr0R/31k/9KemZ9eJiOrpqmSZXHG4+JxNv1t5ZnHffRbAcAAAAAAAAAQO9aunRpwvY3v/lN1+eOHz9eEydO7GzG27t3r1auXKkpU6ZkdI2AHxC2AwAUjNb4bjV3NHk+jza11IStEk/Hv9/2dz267T/UYUfN1wyE010WAANTs92e+C7tie9Kem5zR5NWtb6u9vheNVSf3G2/bdv6949+Zjyf8dAAAAAAAAAAAPSe7du3a+3atZ3b1dXVOuSQQzxdY8qUKQljaFesWEHYDn0Sn2oBANCDkEXAKxVeg3Fv7V7e8zVptgN87bntCxzDdh+1r9d7rW8ZzwvQbAcAAAAAAAAA6SkbJp3xYW+vou8rG9bbK8iKpqbEwpIDDzxQluX8l/RNxo4dm7C9devWtNcF+BFhOwAAelARrO7tJeSlyqLMf98qiqoyfk0An+oXrJDMxZKubI5sVCTe3q0RtLF9TdLzKoK8twEAAAAAAAAgLYEiqXxkb68CeWr79u0J21VV3v+//f7nNDc3p7UmwK8Cvb0AAAD87ovlE3t7CXlpfL8j8+KaAD51SL8JGblOXPFuj0Xi7UnPGdfviIzcGwAAAAAAAAAAeGfbdsK211Y7J5m4BuBHhO0AAEhiavUpOrJiam8vIy+NLh2rM2u/lbHrHVE+RdNqTsvY9QAkOrn/2RrfL/1wcdyOdXssWdjuzNpvaXTpWON+AAAAAAAAAACQXf3790/Ybmlp8XyN/c+pqalJa02AXzFGFgBQMI6qmKqhxSNdHVtkFWlUycGqDddnd1F93MkDztbRVdO1tnWVIna7yoNVeqZ5vta0veP6GkdWNOi0Ad/QoPBQ/gYMkEWhQFiXDZ2lTZENaty7VrZDQ90+OzqatWDbQ477Yk5hO9s5bFcXGqyTB5yd2oIBAAAAAAAAAEBG1NXVJWy///77nq/x3nvvJWwPHDgwrTUBfkXYDgBQMEaWHqSRpQf19jIKTnVRfx1Z2dC5vaxlkafzG6pPVn3xsEwvC4ADy7I0pHiEhhSPSHrcpvYNxrCdlzGydeHB3hcJAAAAAAAAAAAyqqamRgcccIDWrl0rSdqxY4feffddHXLIIa6vsWzZsoTtSZMmZXSNlHLALxgjCwAAcipoBT0dH7aKs7QSAKlK9j52GiMbtSOOx4atcMbWBAAAAAAAAAAAUtfQ0JCw/dBDzn/p3sm7776rlStXdm6XlJToyCOPzNjaJKm4OPEzw/Z257/oD2QbYTsAAJBTQY/FuuEAYRzAbwJKErbz0GwXDhCmBQAAAAAAAADADy644IKE7TvvvFObN292de7111+fsP2Nb3yjWzguXdXV1QnbmzZtyuj1AbcI2wEAgJyi2Q7IfwHL/GuEU7NdxDaE7Xh/AwAAAAAAAADgCzNmzNCECRM6t1taWnTeeeepra0t6Xlz5szRY4891rltWZauuuqqjK9v9OhI9A+jAAAgAElEQVTRCoc/L+lYvHixotFoxu8D9MRbtQwAAECaPIftaL4CfCeQbIwszXYAAAAAAAAAAOTc5s2btW7dupTOHTlypCTpvvvu0zHHHKNIJCJJWrJkiaZOnaq5c+fq6KOPTjhn27Ztuummm/T73/8+4fEf/vCHOuyww1JaRzLhcFjHHnusFi9eLElqbGzUGWecoe9+97s68MADVVZWlnB8fX29SkpKMr4OgLAdAADIqaDlcYwszVeA7wSSFGTHbYewnb3X8dgQ728AAAAAAAAAADLivPPOS/lc27YlSRMnTtSdd96p7373u4rHP/3//StXrtTkyZM1ZswYjR8/XiUlJdqwYYOWL1+ujo6OhOvMnDlTt9xyS+pfRA+uvvrqzrCdJC1cuFALFy50PHbx4sWaNm1a1taCwkXYDgAA5BTNdkD+SzZGNuY0RjYecTyW9zcAAAAAAAAAAP5y8cUXq6amRhdeeKF2797d+fiaNWu0Zs0a43nf+c53dNdddykUCmVtbaeffrp++tOf6qabblIs1v3zCCAXzJ+SAQAAZEHQQ9Y/oKDnJjwA2ReUOTRrO42RtQ1jZGm2AwAAAAAAAADAd8455xytXbtWV1xxhWpra43HhUIhnXTSSXrppZd03333ZTVot88NN9ygt956S9ddd52OO+441dfXq7S0NOv3Bfbh02sAAJBTXprtaL0C/Mny3GxnCNvxHgcAAAAAAAAAICXr1q3L6vUHDhyo3/zmN/r1r3+tlStXavXq1WpqalJ7e7tqa2s1bNgwNTQ0qKKiwvO1Z8+erdmzZ6e8tnHjxum2225L+XwgHYTtAABATnlpqqP1CvCnZM12cTmE7YzNduGMrQkAAAAAAAAAAGReIBDQpEmTNGnSpN5eCuALjJEFAAA55a3ZjiAO4EeBJM12cdthjCzNdgAAAAAAAAAAAOgDCNsBAICcCnoo1qXZDvAnK8mvEU7NdlFjsx3vcQAAAAAAAAAAAOQPwnYAACCnvDTbhWi9AnwpYAWMgbv9m+1idkwddofjsbzHAQAAAAAAAAAAkE8I2wEAgJwKeBkjazFGFvCrgClsp8SwXdSOGK9Bsx0AAAAAAAAAAADyCWE7AACQU0HLwxhZWq8A3wpYzr9KxOzEMbKRuPMIWYn3OAAAAAAAAAAAAPILYTsAAJBTQXlptiOIA/iVaSS0vV+zXdKwHe9xAAAAAAAAAAAA5BHCdgAAIKe8NNuFaL0CfMsy/CrRrdnOptkOAAAAAAAAAAAAfQNhOwAAkFOmNiwntF4B/mV6L8cZIwsAAAAAAAAAAIA+irAdAADIKS/NdgRxAP8KGH6ViO8/RjZJs13ICmd0TQAAAAAAAAAAAEA2EbYDAAA5FRTNdkBfEHDZbBc1NNsVWUWemi4BAAAAAAAAAACA3kbYDgAA5JSnMbIBWq8Av0q32S5EmBYAAAAAAAAAAAB5hrAdAADIKU9jZAnjAL4VsAxhO3u/sJ2h2a44UJLxNQEAAAAAAAAAAADZRNgOAADklLdmO8J2gF8FDCOhY0ocIxuxI47HEaYFAAAAAAAAAABAvnFfLYM+wbKsUZImSBoiqVzSJknrJS2zbTvam2sDABSGoBVyfSxjJgH/MjXb2S6b7RgTDQAAAAAAAAAAgHxD2K5AWJZ1jqSrJR1jOKTZsqxHJN1o2/a23K0MAFBogoY2LCc02wH+5b7ZzjlsR5gWAAAAAAAA/5+9O4+yqyzzxf/dVUkqhCRkDkiIAUOahEHARAQZG5qppaUBZXIp2K1eUZRuEBsnRllwwV4dQbuV9gavP1RaQKZWWxxCiwjcgDSQoCTKEKYYQkIGyFj790dCmVOp6VSdqkpVPh/WXuR9z36Hvc85u2qf89TzAgD0NZaR7eeKohhaFMX3kvwgrQfaJcmoJB9P8kRRFMf0yOQA2CZZRhb6h9bey41ls2C7VjPbeX8DAAAAAADQtwi268eKoqhPcnOS05o9tDjJT7MxAO+RJOVmj41PckdRFAf3yCQB2ObUFx1PrDtI5ivYahWtLCPb2GwZ2XWtZLbz/gYAAAAAAKCvEWzXv12V5PjNyuuSnJtkQlmWx5Rl+f6yLN+RZK8kv9lsv4YktxdFsVPPTRWAbYXMdtA/tLYkdGPzZWRltgMAAAAAAKCfEGzXTxVFsVuSTzerfl9ZlteXZbl288qyLOclOTKVAXejk1zcvbMEYFtUH5ntoD+o62Bmu7Uy2wEAAAAAANBPCLbrvy5OMnCz8o1lWd7R2s5lWb6R5Kwkmwfi/d2moD0AqJnqMtsN6saZAF1R18qtRGOaBdvJbAcAAAAAAEA/IdiuHyqKYrskpzSrvrq9dmVZPpXk9s2qBiQ5o4ZTA4DUFzLbQX9Q10rg7Iay2TKylUmVmwwsBNMCAAAAAADQtwi265+OSTJks/JvyrL8XQfbzmpWPqk2UwKAjarJbDdQ5ivYarWW2a6U2Q4AAAAAAIB+SrBd/3Rss/LsKtr+Ksn6zcr7FUUxvsszAoBNqstsJ/MVbK06ntmulWA7mSsBAAAAAADoYwTb9U97NSv/pqMNy7JcleTxZtV7dnlGALBJfTqW2W5AMbDVYB6g97WWpbJ5Zrt1MtsBAAAAAADQTwi265+mNisvqLL9H5qVp3VhLgBQoaPLyMp6BVu3opVbiQ5nthNsBwAAAAAAQB8j2K6fKYpiVJJRzaqfq7Kb5vvv3vkZAUCluqI+RYp29xOIA1u3+qLlW4nG8s+Z7dY0rs6SdX9qcT8BtQAAAAAAAPQ1gu36nxHNyq9vWhq2Gs2/Ed2hC/MBgC10JLudQBzYutW1siR0YzZmtlu5YXn++bnPtdpeQC0AAAAAAAB9zYDengA1N7RZ+Y1O9NG8zbBOzqVJURTjkoytstnbujouAFun+gzI+qxvc59BdYN6aDZAZ9S1k9nuv5bcmoVr/thqewG1AAAAAAAA9DWC7fqf5sF2qzvRR/Ngu+Z9dsY5SS6uQT8A9AMD6wZlzYa2f0QNKgb30GyAzmg9s93GYLunXn+8zfYNdd7jAAAAAADQXV5//fU88sgjmT9/fl555ZWsXr062223XcaPH58pU6Zkv/32y6BBkl901uGHH5577723qVyWZbeMM3v27BxxxBFN5YsvvjiXXHJJt4xFxwi26/86827unisAAGyy6+C/yOOr/l+b+7xtyNQemg3QGa1nttu4jOzrjatabTuoaMiEhl27ZV4AAAAAALCt2rBhQ/7jP/4js2bNyi9/+cusX9/6SlODBw/OMccck7//+7/Pe97znh6cJfRtLX9DRl+2sll5u0700bxN8z4BoEuOHnVSGtrIXLfDgFE5eIeje3BGQLVay2y3IRuD7TaUrd/AHzP6lAy0VDQAAAAAANTML37xi0ybNi1nnHFG7rnnnjYD7ZJk9erVueOOO3LCCSdkxowZeeSRR3poptWZNGlSiqJIURSZNGlSb08HZLbrh7bWYLuvJ/lBlW3eluSOGowNwFbmbUOm5h8nXpkHl/8yz695pimtcn1Rn7cOnpx373B0xgwa38uzBNrSWma7sty4jOybGe6a23fou3Lc6Pd127wAAAAAAGBbc+mll+bSSy/dYinToigyderUTJgwIaNHj87ixYvz3HPP5amnnqrYb86cOTnwwANz/fXX5yMf+UhPTh36HMF2/c9rzcpDiqLYvizL1tfx2tK4ZuVlXZxTyrL8U5I/VdOmKIquDgvAVmyXwbtll8G79fY0gE5qP7Ndy8F204cf2m1zAgAAAACAbc15552XmTNnVtQNGzYsF110Uc4888xMnDhxizYLFizIjTfemGuvvTZr1qxJkqxduzYf/ehHs2rVqpx33nk9Mnfoiywj28+UZbkkydJm1VteOdv21mbl+Z2fEQAA/VF9K5ntGjdlttuQltPT17cSpAcAAAAAAFTn29/+9haBdgcffHDmzZuXiy66qMVAuySZPHlyrrjiijz22GPZa6+9Kh47//zzM3v27O6acr8xe/bslGXZtLHtEGzXPz3ZrDy5yvbN0ww17w8AgG1c0cqtRGM2Bdu1ktmuvhBsBwAAAAAAXfXUU0/lk5/8ZEXdQQcdlB//+MeZMGFCh/qYMmVKfv7zn2fq1KlNdY2NjfnABz6QV155pabzhf5CsF3/9ESz8oEdbVgUxfZJ9mmnPwAAtnGtBc01lm8uI9tKZrtiQLfNCQAAAAAAthUXXHBBVq5c2VQeMWJEbr311gwdOrSqfsaNG5dbbrklgwYNaqp74YUXcvnll9dsrtCf+Karf/pJko9uVj68iraHpPJ18duyLBfVYlIAAPQfda0F26UxZVk2ZbhrTmY7AAAAAADomt/97ne5++67K+quuuqq7Ljjjp3qb9q0abngggty5ZVXNtV961vfyiWXXJKRI0d2aa5bmwULFuSxxx7LCy+8kBUrVqQoigwZMiTjx4/Prrvumr333jtDhgzp9nmsWbMm9957b55++um8+uqrGTduXCZMmJBDDjmkW8Z/6aWX8uCDD+ZPf/pTlixZkqFDh2bcuHGZMWNGdtut+QKYtEWwXf/0X0neSLLdpvKBRVHsUZbl7zrQ9qxm5R/WcmIAAPQPda0tI1tuyIa0nNUuSerdggAAAAAAQJfMnDkzZVk2lceMGZOzzz67S32ed955ueaaa7Ju3bokyapVq3LDDTfkwgsv3GLfs846K9/+9rebyk8//XQmTZrUoXFmz56dI444oql88cUX55JLLmmz/zc9++yzKYqi1b4/9KEP5cYbb9yifs2aNfnqV7+aG264IfPnz29zfvX19dl3331z4okn5h//8R9bDXw7/PDDc++99zaVN38+2vLaa6/lS1/6Um688cYsX758i8eHDRuWU089NZdeemne8pa3dKjP1qxbty7f+ta38vWvfz2PP/54q/vtvvvuueCCC/LhD384Awb4Hqc9lpHth8qyfD3JLc2qP9teu6IopiT5282q1if5bg2nBgBAP9FaZrsN5YZs2LSUbEtktgMAAAAAgK75yU9+UlH+4Ac/WLEMbGeMHTs2J5xwQpvj9EULFy7MfvvtlwsvvLDdQLsk2bBhQx5++OF88YtfzIsvvljTufzP//xPpk2blq9+9astBtolyYoVK/Lv//7v2XvvvfPrX/+602M9/PDD2WOPPfLxj3+8zUC7JJk/f34+9rGPZcaMGXnhhRc6Pea2Qjhi/3VJktOSDNxUPqsoih+WZXlnSzsXRTE4yawkm199v1WW5R+6dZYAAPRJrWW2K9OYDWUbme0KtyAAAAAAALW2odyQZetf6e1p9HsjBozp9T8qf/755/PMM89U1B199NE16fvoo4/Obbfd1lR+4IEHsm7dugwcOLCNVluvtWvX5thjj82TTz5ZUT9q1KjsvffeGT9+fAYOHJgVK1bkpZdeyrx587Jq1apumcu8efNy5JFHZsmSJRX148ePz3777ZcRI0Zk0aJFeeCBB/LGG2/k1VdfzXve855cc801VY91991359RTT83rr79eUb/TTjvl7W9/e0aNGpVVq1Zl3rx5FQGIjz76aA444IA88MADmTBhQucOdBvgm65+qizLPxZFMTPJBZtV31IUxT8m+WZZlmvfrCyKYmqSf09y0Gb7LklyaY9MFgCAPkdmOwAAAACArcey9a/ki3/8WG9Po9+7fLdvZPTA8b06h5aynU2fPr0mfb/jHe+oKL/xxht59NFHM2PGjJr031HXXntt09KyBx98cFO2tZ133jn33Xdfq+2GDh1aUZ41a1bmzZvXVJ40aVK+9rWv5dhjj01d3ZZJBcqyzMMPP5y777473/rWt2pwJButW7cuZ555ZkWg3U477ZSZM2fm5JNPrpjLypUr85WvfCVf/vKXs2zZshaX8W3LvHnzctppp1UE2h177LG59NJL8853vnOL/X/729/m05/+dH71q18lSV544YWcfvrpmT17durrfafTEsF2/ds/JdkzyXGbygOTXJfki0VRPJJkRZLdkuyfZPNFrdcm+duyLF/qwbkCANCH1LeV2S5tBdu5BQEAAAAAgM56/vnnK8rjx4/P6NGja9L3Xnvt1eJ4PR1sN2bMmIwZMyZJMmDAn79XGDBgQCZNmtThfu64446Ktvfcc08mT57c6v5FUWT69OmZPn16vvjFL6axsbH6ybfguuuuy6OPPtpU3mmnnXLfffdlt91222LfoUOH5uKLL85ee+2V97///Vm6dGmHx2lsbMypp55akZ3vkksuycUXX9xqm/322y+/+MUvcuqppzZlNbzvvvty00035YMf/GCHx96WtPwNGf1CWZYbkrw/yc3NHhqX5Ngk70vyjlQG2v0pyXvLsvxVj0wSAIA+qShavpXYULazjGz8FRQAAAAAAHTWq6++WlEeOXJkzfoePHhwGhoa2hyvL3n22Web/v32t7+9zUC75urr62uyfG5jY2Ouu+66irpvfvObLQbabe7kk0/OOeecU9VYt912W5544omm8vvf//42A+3eNGDAgHz729/OuHHjmuquvfbaqsbelgi26+fKslxZluVp2RhY90Abu76a5F+T7FWW5U96ZHIAAPRZrQXNNabtZWRbW34WAAAAAABoX/PgtxEjRtS0/+b9bb70aV/2pz/9qVfG/e///u8888wzTeUZM2bkPe95T4fafulLX6oq4O+rX/1q07+LoshVV13V4bZDhw7Nxz7256WoH3/88Yp582eC7bYRZVneUpblgdm4bOwpST6V5KIkZyf5yyQ7lWV5TlmWi3txmgAA9BF1rWS2a2wvs51lZAEAAAAAYKtVFEX7O/URe+yxR9O/Fy5c2CvZ2u67776K8umnn97htmPHjs3RRx/doX1XrVqVBx74cw6uGTNmZNddd+3wWElyxBFHVJR/9SuLYrbEN13bmLIsn07ydG/PAwCAvq21DHXtZbarl9kOAAAAAAA6bdSoURXl1157rab9L1u2rM3x+pIzzjgjt912W1P5M5/5TG6//facffbZOf7447PTTjt1+xzmzJlTUT7ggAOqan/AAQfkP//zP9vd74EHHsi6deuayrvttlvVmekaGxsryn/4wx+qar+tEGwHAABUra61ZWTLxjSmjcx2bkEAAAAAAGpuxIAxuXy3b/T2NPq9EQPG9PYUtgh+W7p0ac36Xr16dVavXl1RN3r06Jr139NOOumknHTSSRUBd7/+9a/z61//OkkyefLkHHTQQXn3u9+dQw45JFOnTq35HBYtWlRR3n333atqP2XKlA7tt3Dhwory97///Xz/+9+vaqzmmi9ZzEa+6QIAAKrW+jKyMtsBAAAAAPS0+qI+oweO7+1p0AN23nnnivLLL7+cJUuW1CQobu7cue2O15cURZGbb745F198cf75n/95i0DCBQsWZMGCBfm///f/JtkYfPeBD3wg5557bs0y+jUPhhw+fHhV7XfYYYcO7bdkyZKq+u2IFStW1LzP/qDlb8gAAADa0Fpmuw1pzIayjcx2hb/3AQAAAACAzjrooIO2qGu+VGlnNe9nu+22y7777luTvnvLgAED8uUvfznPPPNMrr322hxyyCFpaGhocd8FCxbkkksuyW677Zabb765h2faNWvXrq15n2VZ1rzP/kCwHQAAULXWMtuVZWObme3q3IIAAAAAAECnTZw4MRMnTqyo++lPf1qTvu+5556K8gEHHJBBgwbVpO83bdjQ+ncI3Wn8+PE5//zz89///d957bXXcv/99+faa6/Ne9/73gwdOrRi39deey2nn356br/99i6PO3LkyIry8uXLq2r/2muvdWi/MWMqlzi+8sorU5Zll7Ybb7yxqrluK3zTBQAAVK21oLkNm/5rSX0GpCiK7pwWAAAAAAD0e8cee2xF+Tvf+U7WrVvXpT4XL16cO++8s81x3jRgQOUqNuvXt77iTXPNl1XtDQ0NDTnwwANz/vnn5/bbb8+SJUvy/e9/P1OmTGnapyzLfOpTn0pjY2OXxho/vnJ55/nz51fV/qmnnurUOB1tR/UE2wEAAFWrL1peRrax3NDqMrKttQEAAAAAADru05/+dMUfty9evDizZs3qUp8zZ86sCNjbfvvt85GPfKTFfYcPH15RXrZsWYfHmTt3blXz6ok/4h80aFBOPfXUPPjgg9l5552b6hcuXJiHH364S31Pnz69ovzAAw9U1f7BBx/s0H4HHnhgxbm65557LAPbTQTbAQAAVWsts11jWl9GVrAdAAAAAAB03bRp03LcccdV1H32s5/NokWLOtXfvHnzcs0111TUnX322Rk1alSL+48bN26L9h31ox/9qKq5NTQ0NP17zZo1VbWt1ogRI3LSSSdV1D399NNd6vPggw+uKH/ve9/rcNvFixd3eIngsWPHZr/99msqv/DCC/nxj3/c4bHoOMF2AABA1eo6ldluQIv1AAAAAABAdb7yla9kyJAhTeVly5blpJNOysqVK6vqZ/HixTnllFOydu3aprqddtopX/rSl1pts//++1eU77rrrg6N9V//9V956KGHqprfiBEjmv79yiuvdHm53PY0XyJ382C/zjj00EMzadKkpvKcOXNy9913d6jtZZddVtXxfvKTn6woX3DBBVW/HmifYDsAAKBqrQbbpTEb0kpmu8hsBwAAAAAAtbDHHnvkuuuuq6i7//77c9xxx+X555/vUB/z58/PkUcemSeffLKprq6uLt/5zncyduzYVtsdeOCBFYF+P/zhDzNnzpx2x/rQhz7UoXltburUqU3/Xr9+fX75y192qN3rr7+e6667LitWrOjwWCtXrsxtt93W6vidUVdXt0UQ3Mc+9rF2M+bddttt+frXv17VWB/84Aezxx57NJWffPLJ/O3f/m2WLl1aVT+LFy/e4jzwZ4LtAACAqrW2jGySrGtc22K9zHYAAAAAAFA7H/7wh/OJT3yiou6+++7LtGnTctVVV2XhwoUttluwYEG+8IUvZO+9987jjz9e8djVV1+dI488ss1xhw0bllNPPbWpvGHDhvz1X/91i0uerl27NjfccEPe9a53ZdGiRRk5cmRHDy9JcsQRR1SUzz777Hz961/Pww8/nD/+8Y955plnmrZXXnmlYtxPfepTmTBhQj784Q/nrrvuajPw7qGHHsqRRx6ZZ599tqnuXe96V6ZMmVLVfFvyqU99Km9/+9ubyi+++GLe/e5355ZbbkljY2PFvqtWrcpll12W0047LY2NjVWdr/r6+txyyy0ZPnx4U93Pfvaz7LPPPvnXf/3XNo//1Vdfzc0335zTTz89u+yyS7761a9WcYTbFt92AQAAVWsts12SrC9bTmle30YbAAAAAACgetdff31GjhyZL3/5yynLMkmyYsWKXHTRRfnc5z6XadOmZZdddsnIkSOzZMmSPPvss/n973+/RT8DBw7MzJkz8/GPf7xD415++eX54Q9/mGXLliVJ/vSnP+WYY47J5MmTs88++6ShoSGLFi3Kgw8+mFWrViVJdtxxx1x99dVVZbh73/vel89//vNN2fpefPHFLQIM3/ShD30oN954Y0Xd8uXLM2vWrMyaNStFUWTy5MnZbbfdMmLEiAwYMCBLlizJE088sUU2wCFDhuSb3/xmh+fZloEDB+amm27KYYcdliVLliRJXnrppbzvfe/L+PHj8453vCM77LBDFi1alN/85jd54403kiQ77LBDrr766nz0ox/t8Fh77rlnbr311pxyyil57bXXkiTPP/98zjnnnJx77rnZe++9M3HixAwfPjyvv/56li1blqeeeqrD2RARbAcAAHRCW5nt1pYtZ7ark9kOAAAAAABq7vLLL89hhx2Wc845J/Pnz2+qL8syc+fOzdy5c9tsv//+++cb3/hGpk+f3uExd95559x666058cQTKzKmLViwIAsWLNhi/1133TX/+Z//mUWLFnV4jCTZbrvt8sMf/jAnnnhiXnjhharaNleWZebPn19xjlqy884757bbbsvee+/dpfE2t+eee+ZnP/tZjj/++Lz00ktN9YsWLcqPfvSjLfYfMWJE7rzzzmzYsKHqsY466qjMmTMnp59+esXyvhs2bMijjz6aRx99tN0+qs1AuC2xjCwAAFC1+qL1W4n1rQTb1UdmOwAAAAAA6A5HHXVU5s2bl5tuuilHHnlkBgxo+w/gGxoacsIJJ+SOO+7InDlzqgq0e9Nf/uVf5qGHHsp73/veFEXR4j5jx47NZz7zmTz66KOZOnVq1WMkyfTp0zNv3rz827/9W0488cRMnjw5w4cPT31969877LDDDrn33ntz4YUX5h3veEe75yNJ/uIv/iJXXnllnnrqqbzzne/s1Fzbsu++++bJJ5/Mueeem2HDhrW4z9ChQ3PWWWflscceyyGHHNLpsSZPnpyHHnood911V4466qg0NDS022bq1Kk599xz86tf/Sq33XZbp8fu74o3U0jC1qYoij2TPPFm+Yknnsiee+7ZizMCAOBNz69+Olc++w8tPnbMqFPyX6/eskX9Lg275aJJ/9zdUwMAAAAA6HPWr1+/Rbat3XffvUMBQtCSVatW5eGHH86CBQuyePHirF27Ng0NDRk/fnymTJmS/fffv0MBWB31yiuv5N57783zzz+f119/PePHj8+uu+6aQw45ZKt4Hb/xxhuZO3du/vCHP+Tll1/OqlWrUhRFhg8fnokTJ2afffbJW9/61h6bz5o1azJ79uw8/fTTWbp0acaOHZsJEybkkEMOyfbbb1/z8VavXp0HH3wwzz77bJYsWZJVq1Zl++23z8iRIzN58uRMnTo1o0ePrvm43XVtmzt3bvbaa6/Nq/Yqy7LtFI410vuvZgAAoM+payOz3brWMttZRhYAAAAAAHrE9ttvn0MPPTSHHnpoj4w3ZsyYnHzyyT0yVmdst912mT59eqcy+HWHhoaGHHPMMT023uDBg3PYYYf12Hj9mWVkAQCAqtW1sSRs69rj1N4AACAASURBVMF2lpEFAAAAAACg7xJsBwAAVK3NzHaNMtsBAAAAAADQ/wi2AwAAqtapzHZttAEAAAAAAICtnWA7AACgam1mtmt1GVmZ7QAAAAAAAOi7BNsBAABVqyvayGzX6jKyMtsBAAAAAADQdwm2AwAAqlbfxq3EunJdy20E2wEAAAAAANCHCbYDAACq1mZmu9aWkY1lZAEAAAAAAOi7BNsBAABVq2srs13jmhbrZbYDAAAAAACgLxNsBwAAVK3tzHatLSMrsx0AAAAAAAB9l2A7AACgam1mtmtlGdm2AvQAAAAAAABgayfYDgAAqFrbme1aDrarj8x2AAAAAAAA9F2C7QAAgKq1mdmusZVgO5ntAAAAAAAA6MME2wEAAFUriiJFK7cTrWa2K2S2AwAAAAAAoO8SbAcAAHRKfdHy7USZspX9ZbYDAAAAAACg7xJsBwAAdEprme1aUx/BdgAAAAAAAPRdgu0AAIBOqTZTnWVkAQAAAAAA6MsE2wEAAJ1SV2WmOsvIAgAAAAAA0JcJtgMAADqlrqhyGVmZ7QAAAAAAAOjDBNsBAACdUnVmuyr3BwAAAAAAgK2JYDsAAKBTZLYDAAAAAABgWyLYDgAA6JS6Km8n6guZ7QAAAAAAAOi7BNsBAACdUm3wnGA7AAAAAAAA+jLBdgAAQKcUVWe2s4wsAAAAAAAAfZdgOwAAoFOqzVRXF5ntAAAAAAAA6LsE2wEAAJ1SV/UysjLbAQAAAAAA0HcJtgMAADqlruplZGW2AwAAAAAAoO8SbAcAAHSKzHYAAAAAAABsSwTbAQAAnVJ1ZrvIbAcAAAAAAEDfJbUEAADQKXVFtcvIuv0AAAAAAICe8Prrr+eRRx7J/Pnz88orr2T16tXZbrvtMn78+EyZMiX77bdfBg0aVJOxnnvuuXzzm9/Mvffem6eeeipLly7NunXrmh6fNWtWzjrrrBbbPvTQQ5k1a1buv//+LFy4MK+99loaGxubHn/66aczadKkJMnhhx+ee++9t+mxsixrMn+ohm+7AACATqmrMlNdfZXLzgIAAAAAAB23YcOG/Md//EdmzZqVX/7yl1m/fn2r+w4ePDjHHHNM/v7v/z7vec97Oj3mDTfckHPPPTdr1qypqt369etzzjnn5IYbbuj02NAbLCMLAAB0SvWZ7QTbAQAAAABAd/jFL36RadOm5Ywzzsg999zTZqBdkqxevTp33HFHTjjhhMyYMSOPPPJI1WP+6Ec/ysc+9rGqA+2S5POf/7xAO/okme0AAIBOqa82s53bDwAAAAAAqLlLL700l1566RbLqhZFkalTp2bChAkZPXp0Fi9enOeeey5PPfVUxX5z5szJgQcemOuvvz4f+chHOjzuRRddVDHmGWeckb/7u7/LLrvskoEDBzbVjxkzpqLdokWL8i//8i9N5UGDBuWf/umfcvzxx2fs2LGpq/vzH/tPmDChw/OBnuDbLgAAoFMKme0AAAAAAKBXnXfeeZk5c2ZF3bBhw3LRRRflzDPPzMSJE7dos2DBgtx444259tprm7LSrV27Nh/96EezatWqnHfeee2O+/vf/z6PPfZYU/n444/PTTfd1KE533777Vm7dm1T+YorrshnPvOZDrWF3mYZWQAAoFOqDZ6rL/ytDwAAAAAA1Mq3v/3tLQLtDj744MybNy8XXXRRi4F2STJ58uRcccUVeeyxx7LXXntVPHb++edn9uzZ7Y49Z86civIpp5zS4Xl3tu3s2bNTlmXTBr1BsB0AANApdVXeTshsBwAAAAAAtfHUU0/lk5/8ZEXdQQcdlB//+McdXnp1ypQp+fnPf56pU6c21TU2NuYDH/hAXnnllTbbLlq0qKJczXKvXWkLvU2wHQAA0Cl11S4jG5ntAAAAAACgFi644IKsXLmyqTxixIjceuutGTp0aFX9jBs3LrfccksGDRrUVPfCCy/k8ssvb7Pd5mMnycCBAzs8ZlfaQm/zbRcAANApdal2GVmZ7QAAAAAAoKt+97vf5e67766ou+qqq7Ljjjt2qr9p06blggsuyJVXXtlU961vfSuXXHJJRo4c2WKbxsbGTo3V1ba1MG/evDz++ONZsmRJli5dmsGDB2fs2LGZOnVq9tlnnzQ0NHSq3/Xr1+ehhx7KH//4xyxevDhr1qzJ2LFjM2nSpLz73e/O4MGDa3wk9AbBdgAAQKdUndmucPsBAAAAAABdNXPmzJRl2VQeM2ZMzj777C71ed555+Waa67JunXrkiSrVq3KDTfckAsvvDBJ8swzz2TXXXdttf0RRxzRYv2sWbOSpM35FUXRYv3TTz+dSZMmNZUPP/zw3HvvvU3lzc9BexYuXJj//b//d37wgx9ssYzt5rbbbrscccQR+dCHPpSTTz459fXtJxJ48sknc8UVV+Tuu+/O8uXLW+33b/7mb3LZZZdlypQpHZ43Wx/LyAIAAJ0isx0AAAAAAPS8n/zkJxXlD37wgxXLwHbG2LFjc8IJJ7Q5Tl9UlmWuuOKKTJ48Oddff32bgXZJ8sYbb+RHP/pRTj311CxcuLDNfTds2JB/+Id/yF577ZXvfve7rQbavdnvzTffnD333DMzZ87s1LGwdZBaAgAA6JRqg+eqDc4DAAAAAKBj1m8o8/zS3p5F/zdhZDKgvuUsbD3l+eefzzPPPFNRd/TRR9ek76OPPjq33XZbU/mBBx7IunXrMnDgwJr039PWr1+f0047LbfeeusWj+24447Ze++9M2bMmKxZsyaLFi3K//zP/2TlypUd6vuNN97IiSeemJ/+9KcV9QMHDsy+++6bCRMmpKGhIS+//HIeeuihvP76601zOu+887J06dJccsklXT5Gep5gOwAAoFOKKhJl16W+1TTwAAAAAAB0zfNLk90+19jb0+j3/nhlXSaN6d05/PrXv96ibvr06TXp+x3veEdF+Y033sijjz6aGTNmZMKECXn66aebHvuXf/mXigxt3/ve9/Kud71riz7HjNl4wg4//PCmutNOOy0PPvhgU3nzfjc3YcKETh3Hm84///wtAu2OP/74XHLJJZkxY8YW+zc2NuaBBx7I97///dx4441t9v2JT3yiItBuhx12yCWXXJK/+7u/y7Bhwyr2feONN/L1r389X/jCF7J69eokyWWXXZYDDjggxx13XCePjt4i2A4AAOiUajLbWUIWAAAAAAC67vnnn68ojx8/PqNHj65J33vttVeL482YMSMDBgzIpEmTmupHjBhRsd+OO+5Y8XhzQ4cObfr34MGDKx5rq11n/fSnP81Xv/rVirqrrroqn/3sZ1ttU1dXl4MOOigHHXRQLrvssi3m+aYf/OAHmTVrVlP5rW99a2bPnt3qcWy33XY5//zzc+CBB+bII4/M6tWrU5ZlPvWpT+X3v/996uo6ntyA3ufZAgAAOqWu6PjtRH3h73wAAAAAAKCrXn311YryyJEja9b34MGD09DQ0OZ4fcVll11WUf5f/+t/tRlo19yIESNaDLYry7Ki7wEDBuTOO+/sUMDgm0F8b1qwYEFuv/32Ds+JrYNgOwAAoFPqqridkNkOAAAAAAC6rnnwW/MMc13VvL8lS5bUtP+e8Nhjj1Ustzts2LBcffXVNen7l7/8ZZ544omm8plnnpl99tmnw+0/8YlPVATx3XnnnTWZFz1HsB0AANApddUsIxuZ7QAAAAAAYGtXFEVvT6HLfv7zn1eUzzjjjAwfPrwmfd9zzz0V5VNPPbWq9kOGDMk73/nOpvKvfvWrmsyLnuMbLwAAoFNktgMAAAAAgJ41atSoivJrr71W0/6XLVvW5nh9wf33319RPvzww2vW93333VdRHjVqVJ555pmq+tg88O+ZZ55JY2Nj6urkS+srBNsBAACdUlVmO8F2AAAAAADdZsLI5I9XCtbpbhNG9vYMtgx+W7p0ac36Xr16dVavXl1RN3r06Jr131NeeumlivKee+5Zs74XLlxYUX7Xu97Vpf4aGxuzbNmyPhnUuK0SbAcAAHRKfaoJtnPrAQAAAADQXQbUF5k0prdnQU/YeeedK8ovv/xylixZUpOguLlz57Y7Xl+wZMmSivLIkbWLkmzedy2sWLFCsF0fIqwZAADolKKoYhnZKgLzAAAAAACAlh100EFb1M2ZM6cmfTfvZ7vttsu+++5bk757U1EUNetr7dq1NevrTWVZ1rxPuo9gOwAAoFNktgMAAAAAgJ41ceLETJw4saLupz/9aU36vueeeyrKBxxwQAYNGlSTvnvSmDGVaR5fffXVbul78ODBaWxsTFmWXdomTZpUs/nR/QTbAQAAnVJVZrtCZjsAAAAAAKiFY489tqL8ne98J+vWretSn4sXL86dd97Z5jh9xU477VRRnjdvXs36Hj9+fNO/V69eneeee65mfdM3CLYDAAA6pb6K2wmZ7QAAAAAAoDY+/elPVyyNunjx4syaNatLfc6cObMiYG/77bfPRz7ykS712Vve/e53V5Rnz55ds76bL+Nbq6yC9B2C7QAAgE7Zrn77ju9b1/F9AQAAAACA1k2bNi3HHXdcRd1nP/vZLFq0qFP9zZs3L9dcc01F3dlnn51Ro0Z1eo696aijjqoof/e7382KFStq0vcxxxxTUf73f//3mvRL3yHYDgAA6JS/GLJPh/fdo4p9AQAAAACAtn3lK1/JkCFDmsrLli3LSSedlJUrV1bVz+LFi3PKKadk7dq1TXU77bRTvvSlL9Vsrj1tzz33zGGHHdZUXr58eS666KKa9H3cccflbW97W1P5oYceyv/5P/+nJn3TNwi2AwAAOmXUwLF537i/b3e/aUP2y8Ejjml3PwAAAAAAoGP22GOPXHfddRV1999/f4477rg8//zzHepj/vz5OfLII/Pkk0821dXV1eU73/lOxo4dW9P59rTmwYJf+9rX8pWvfKXD7V977bWsXr16i/oBAwbksssuq6j7+Mc/nttuu63qOf7sZz/LH//4x6rb0bsE2wEAAJ12xMj35EuTrs+p4z6aE8acWbGdOOaDOW+Xy/PxCZ/PoLqG3p4qAAAAAAD0Kx/+8IfziU98oqLuvvvuy7Rp03LVVVdl4cKFLbZbsGBBvvCFL2TvvffO448/XvHY1VdfnSOPPLLb5txT/vIv/zLnn39+Rd0FF1yQv/mbv8nDDz/cYpvGxsb85je/yac//enssssuefnll1vc74wzzsiHP/zhpvLatWtz8skn58wzz2y17yTZsGFDfvvb3+bSSy/NtGnT8ld/9Vd57rnnOnF09KYBvT0BAACgb9uxYUJ2bJjQ29MAAAAAAIBtzvXXX5+RI0fmy1/+csqyTJKsWLEiF110UT73uc9l2rRp2WWXXTJy5MgsWbIkzz77bH7/+99v0c/AgQMzc+bMfPzjH+/pQ+g2V199dZ577rn84Ac/aKq76667ctddd+Utb3lL9t5774wePTpr1qzJyy+/nMceeywrVqzoUN//9m//lqVLl+aHP/xhU913v/vdfPe7383YsWPz9re/PaNHj05dXV2WL1+eF198MU8++WSL2fLoWwTbAQAAAAAAAABAH3X55ZfnsMMOyznnnJP58+c31Zdlmblz52bu3Llttt9///3zjW98I9OnT+/uqfao+vr63Hzzzdlzzz3z5S9/OevWrWt67MUXX8yLL77Y6b4HDhyYW2+9Nddcc00uvvjiiiC6xYsX52c/+1mH+th+++07PQd6h2VkAQAAAAAAAACgDzvqqKMyb9683HTTTTnyyCMzYEDb+bcaGhpywgkn5I477sicOXP6XaDdm4qiyMUXX5zf//73+chHPpJRo0a1uf/QoUNz4okn5vbbb8/EiRPb7fvCCy/M008/nX/6p3/KW9/61nbnM2zYsBx//PH52te+lpdeeikzZsyo6njofcWbKSRha1MUxZ5Jnniz/MQTT2TPPffsxRkBAAAAAAAAQO2tX7++IiNZkuy+++7tBkxBa1atWpWHH344CxYsyOLFi7N27do0NDRk/PjxmTJlSvbff/80NDT09jR7XGNjYx555JH87ne/yyuvvJKVK1dm++23z7hx47LHHntkn332ycCBAzvd/9NPP51HHnkkixcvztKlS1NXV5dhw4blLW95S/bYY4/svvvuqa+vr+ERbd2669o2d+7c7LXXXptX7VWWZdspHGvEVRkAAAAAAAAAAPqR7bffPoceemgOPfTQ3p7KVqWuri7Tp0/vtkx+u+66a3bddddu6Zutg2VkAQAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAHpRURRb1JVl2QszAaidxsbGLepaut71JYLtAAAAAAAAAAB6UV3dluEb69at64WZANTO+vXrt6hr6XrXl/Tt2QMAAAAAAAAA9HFFUWTQoEEVdStXruyl2QDURvPr2KBBg2S2AwAAAAAAAACga4YNG1ZRXr58uaVkgT6rLMssX768oq75da4vEmwHAAAAAAAAANDLmgehrFu3Li+88IKAO6DPKcsyL7zwwhbLYQ8fPryXZlQ7A3p7AgAAAAAAAAAA27rBgwdn4MCBFcEpK1asyB/+8IcMHz48Q4cOzYABA1JXJ68SsPVpbGzM+vXrs3LlyixfvnyLQLuBAwemoaGhl2ZXO4LtAAAAAAAAAAB6WVEUectb3pLnnnuuIpvdunXrsmTJkixZsqQXZwfQeW9e34qi6O2pdJlwZwAAAAAAAACArcCQIUMyceLEfhGQApBsDLSbOHFihgwZ0ttTqQnBdgAAAAAAAAAAW4k3A+4GDhzY21MB6JKBAwf2q0C7xDKyAAAAAAAAAABblSFDhuRtb3tb1qxZk+XLl2fFihVZu3Ztb08LoF2DBg3KsGHDMnz48DQ0NPS7TJ2C7QAAAAAAAAAAtjJFUWTw4MEZPHhwxo0bl7Is09jYmLIse3tqAFsoiiJ1dXX9LriuOcF2AAAAAAAAAABbuaIoUl9f39vTANim1fX2BAAAAAAAAAAAAGBrJ9gOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoxoLcnAG0YtHlhwYIFvTUPAAAAAAAAAABgK9BCDNGglvbrDkVZlj01FlSlKIq/SXJHb88DAAAAAAAAAADYar23LMs7e2Igy8gCAAAAAAAAAABAOwTbAQAAAAAAAAAAQDssI8tWqyiKHZIctlnVwiRre2k60Be8LZVLL783yR96aS5A/+Q6A3Q31xkAusrPEqC7uc4A3c11BuhurjNAfzAoyS6ble8ty/K1nhh4QE8MAp2x6U3QI+spQ39QFEXzqj+UZTm3N+YC9E+uM0B3c50BoKv8LAG6m+sM0N1cZ4Du5joD9CO/7Y1BLSMLAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0QbAcAAAAAAAAAAADtEGwHAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0QbAcAAAAAAAAAAADtEGwHAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0QbAcAAAAAAAAAAADtEGwHAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0Y0NsTAKBmFie5tFkZoJZcZ4Du5joDQFf5WQJ0N9cZoLu5zgDdzXUGoAuKsix7ew4AAAAAAAAAAACwVbOMLAAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtEOwHQAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtEOwHQAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtEOwHQAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtGNAb08A2HoURVGfZHKSaUnekmSHJGuSLE3yhyRzyrJcVeMxByZ5d5KJSXZKsjLJi0l+W5blM7Ucq6cURbFnkn2TjE3SkOTlJM8n+XVZlqt7c249qSiKkUn2TLJ7klFJBidZlmRxkofLsvxDL05vC0VR7JqNz9tbkgxN8lKSZ5PcX5bluhqO89Yk78jG1/sOSdZl43mZn43nZUWtxtoauc7UhuvMRn3tOkPPcJ2pDdeZjfrCdaYnX/N94XxALfTHnyX98ZhqpafuBfsK56Nn9Mf3ZH88plrxvqrkM7ie0R/fk/3xmGrFdYbe0B/fk/3xmGrFdcZncEAzZVnabLZteMvGX97OS3J3kteSlG1s65P8OMlf12DcsUm+nmRJG+P9OsnJXRxntySnJrkmyewky5uN8UyNzuOwJJ9P8kIbx7M8yXeSvK0Xn+9uOx9JBiY5Jsn1SZ5o57VUbjpXlyXZsZffA6ckub+NeS7Z9Fod04UxhiS5MMlT7ZyTDUn+M8nRvXlOuuEcu87U5jy6zvTB60x3vz46cA7a2yb11rmp8Xl2nanNeXSd6SPXmZ56zfeV82Gz1WLrjz9L+uMx1fg574l7we2THJzkH5LclI33hI3Nxjmrt1//zkePneN+957sj8dU4+fc+6rnz4fP4PrZe7I/HlONn3PXmT/P02dwPXOe+917sj8eU42f8236OtNTr4/4DM5m63Nbr0/AZrP13pbku124MbgryfhOjntckkVVjPX/Jdm+iv4PT/Jf7fyCWpMbrE3jHZCNf2XS0eNZleTjPfg8d/v52HQOXu3ka2lpkg/0wut/aJLvVTHPl5Mc04lxDkzyx06cl+8mGdLT56UbzrPrjOvMNned6cnXRxfeX29uk3rqvHTj+XadcZ3Zpq4zPfWa7yvnw2arxdZT76sWxu22nyX98Zhq+Hx3+71gNn7Z9Hg2ftnSXv9n9fLr3/nomfPc796T/fGYvK/67vnYNI7P4PrZe7I/HlNfel/1hetMfAbX0+e7370n++Mx1fD53uavMz31+ojP4Gy2PrlZRha2bVNaqX8hG9PpL8rG5aZ3S/L2JHWb7fOeJP9dFMVhZVm+3NEBi6I4PMntSQZtVl0meSQbPwwZkWS/JGM2e/zMJMOLojixLMvGDgyzb5KjOzqnriiK4qhs/GuGhmYPPZvksWz8InpCNv6iNHDTY0OSfL0oirqyLL/WA9PsifMxNsnIFurXZuMvyi9n4198jE4yfdP/3zQiyXeKohhXluU/d/M8kzSler45yfHNHlqc5Leb5vq2bHwtFpseG5/kjqIojirL8r4OjnNgkp9m403J5lYk+X/Z+B5ryMa003ul8j12epJxRVEcX5bl2g4e2tbIdaaLXGea9KXrTI+9PkjiOtNlrjNN+sp1pqde833lfEAt9MefJf3xmLqsp+4Fk5yRjUsKbdWcjx7VH9+T/fGYusz7qpLP4HpUf3xP9sdj6jLXmQo+g+tZ/fE92R+PqctcZ5r4DA5oXW9H+9lstt7bkszJnyPfH0nyybSyJFiSnZN8I1tGzP8qSdHB8SZky8j8+5JMbbZfQ5JPZeMvEZvve2UHxzmvhXmWSVYnWdCs7pkunL9J2fIvphYk+asW9h2Z5Lpm+25oad9ueJ67/Xxk4y+Nb/axIsm3khyZZLsW9i2S/G02foHffE7dfj42zeGaZuOu3fT6H9Rsv2nZMj32K0l26sAYg1s4v69vem0PbmH/tyW5s4VzclFPnJNuPNeuM64z29x1pqdeH5vG2ryvBza9ZqrZBnT3+eiB8+064zqzTV1neuo131fOh81Wi60//izpj8dUo+e62+8FN7Vf1sL5LJM838JjZ/Xia9/56Llz3e/ek/3xmGr0XHtf9fD5iM/g3jyufvee7I/HVKPn2nXmz3P0GVzPnu9+957sj8dUo+fadaYHXx/xGZzN1ie3Xp+AzWbrvS0b/6rv7iTTq2hzTgs/vE/rYNtvNWv367Twgcdm+5/YbP/VSd7agXHO2/SL32+T3JDko0n2z8ZMLIc36/OZLpy/5umT5ycZ106bC5u1mZukvpuf524/H5t+EVyU5Px0PD336CTzmo3/ZHu/dNbgfOyWLW9Q3tvG/ttly5uFf+vAOGc1a9OYdlJob/ol+Qf/f3v3HjVJUd5x/PfICstNFkFYQGFZXbyhBKIJKEkWAwT0eAGJGhKzK94SjEeNehK8nKgxahIkehKDGhVJvESjYsBFMCiLBC8ILsrNW2RRiCC7LIRF9gZP/uh52Z56Z6a7Z3q6u2q+n3P6j+q3q7uqpurp6Xq7e4J8dyu4gIlpIc4QZ2Y0zjTSP3rHyu9r9TTr1dWFOEOcmbU401Sfj6U9WFjqWFI8l6RYpxo+50auBXt571L29oFVkt7ei6n79v62Otjnypb6Pe3RbHsnNyZTrFMNnzPjqoX2EHNwc3VKbkymWKcaPmfiTH8ZmYNrtr2TG5Mp1qmGz5k403D/EHNwLCxRLq0XgIWFpb1F0pIx830uOHmvKpFnmaRtuTybJS0rke/jwbE+ViLPnsO+nKq+f8YuVfYml/y+ji6Z92tBvtOm/Dk30R6PKPsFMMh32IB2fOqU2+Pc4HjnlMhzSK/PzuXZKmlpQZ7PB8c5r2T5Fmv+hcyx02yTKbf3kjHzEWeIM+F+YoozU2+P3P7y+1o9zXp1dSHOEGdmLc401edjaQ8WljqWFM8lKdaphs+5kWvBXr6hjyZEhAAAGD9JREFUb3JQB/5pRHu00t5LxszX2TGZYp1q+JwZVy20h5iDm6vPkjHzdXZMplinGj5n4kx/OZiDa7a9l4yZr7NjMsU61fA5E2ca7h9iDo6FJcol/7vRAGaMu68dM+sHgvQxJfKcKmmHXPoL7v7jEvn+Nki/wMwWjsrg7hvcfVOJfU/iWVJfDP2Wu/93ybxnBumX1FOkwZpoD3e/w93vHSPf95S9IjuvTH8ai5ntLOmUYHXYx+Zx9x9J+mJu1QJlfXqUpUH6gsICZse6TdKVweplZfJ2EXFmIsSZ/mNEEWd6x2yif6CHODMR4kz/MaKIM031+VjaA6hDiueSFOs0iYavBeXuv6hUwIbRHs1LcUymWKdJMK76MQfXvBTHZIp1mgRxZj7m4JqV4phMsU6TIM70Yw4OwCjcbAdgHGuC9M5mtqggz0lB+pwyB3L3GyV9O7dqV0nHl8k7Zb8dpC+ukPeryp6anPM0M9tv8iJFK+xP+0/xWL8naZdc+pvu/oOSecM+e3LB9rsG6VtKHkeSfh6k96yQNxXEGeJMnZqMM4gHcYY4U6cY4sw4fb6uY3WxPYA6pHguSbFOUrPXgjGgPeKR4phMsU4S4yrEHFw8UhyTKdZJIs4gXimOyRTrJBFn6sIcHDADuNkOwDi2DVi347CNzWyxslfZ5vNfUeF4q4P0iRXyTssjg/R1ZTO6+2ZJP8mteoi6Uae2hP1paF+qwQlBenWFvJerv6yHm9m+I7a/LUhXedIo3PbOCnlTQZwhztSpyTiDeBBniDN1iiHOVOrzNR+ri+0B1CHFc0mKdZKavRaMAe0RjxTHZIp1khhXIebg4pHimEyxThJxBvFKcUymWCeJOFMX5uCAGcDNdgDG8ZggvU3SuhHbHxqkv1/xdbjfCNJPrJB3Wh4epO+qmD/c/kkTlCV2YX+a5mujw774zbIZe3322mD1qL54eZA+ouyxBmz7nQp5U0GcIc7Uqck4g3gQZ4gzdYohzlTt83Ueq4vtAdQhxXNJinWSmr0WjAHtEY8Ux2SKdZIYVyHm4OKR4phMsU4ScQbxSnFMplgniThTF+bggBnAzXYAxnFKkL7K3R8Ysf0TgvRPBm413P8U7K8NW4L0ThXzh9t3oU6NM7OHSTouWH3lFA/5+CA9zb74EfX3k9PMbOeiA5jZSZIOzK263t2vLl/EZBBniDO1aCHOtOlAMzvHzK43sw1mtsXMbu+lP2FmrzCz8OaqWUacIc7UIqI4U7XPjyWi9gDqkOK5JMU6Sc1eC8aA9ohHimMyxTpJjKsQc3DxSHFMplgniTjTJczBVZPimEyxThJxpi7MwQEzgJvtAFRiZrtJemmw+ryCbOFd9T+reNibg/ReZrZnxX3UbX2Q3q9i/nD7x05Qlpi9UtIuufTdki6dxoF6F7fhBW7Vvhhuv2zYhu5+k6QzcqseJenTZrbLkCwys6cqmyCc84CkV1csY/SIMw8iztSjsTjTAQdLWqlsEmORpIdK2qeX/kNJH5L0MzP7h944m1nEmQcRZ+rR+TgzZp8fV+fbA6hDiueSFOskNX8t2HW0RzxSHJMp1kliXIWYg4tHimMyxTpJxJkOYg6upBTHZIp1kogzdWEODpgd3GwHoKp3S1qcS9+l/omJQRYF6V9WOaC7b5S0KVi9R5V9TMGNQfrIshnN7EBJ+wer265P48xsiaS3Bqvf7+7hW3bqEvbDX1V8Tbc0v++O/Nzc/SxJb5S0tbfquZJuMLO/NLOjzWyZmT3RzJ5nZudIukLbL2a2SjrN3WfxizFxJkOcmVALcSYGu0p6raSrzWxWX+MvEWfmEGcmFFGcGafPVxZRewB1SPFckmKdpBauBTuO9ohHimMyxTpJjKsQc3DxSHFMplgniTgTI+bgMimOyRTrJBFn6sIcHDAjuNkOQGm9V+v/WbD6ze5+Z0HW8Mmd+8Y4fJhn9zH2UafLgvTzRz0tGfjjAevark+jzGxHSZ9Rf73XSvq7KR62lX7o7mdKOkzSxyRtkHSQsi/bl0v6kaTrlD3VslLZE3CSdImkI9393DHKGDXiTB/izARaijNt2SZptaS3SHqOpCOUPTV4uLJ/MJyp+RMdh0i6xMwOaq6Y3UCc6UOcmUAscWaCPl/1OFG0B1CHFM8lKdYpJ4YyNon2iECKYzLFOuXEUMYmMQcXgRTHZIp1yomhjLOAObgKUhyTKdYpJ4YydhpzcMBs4WY7AKWY2WGS/jVY/RVJZ5fIHn5BC5++KCP8gtb2q7dXKXsaYc4iSW8rymRmj5L0hgF/2sHMdq6naFH4iKTfyKXvl7RijKdkqmizHy5Q9nMUW4s2lHSupNe5+3erFCwFxJl5iDOTaSPOtOEtkg5w92Pc/W/c/QJ3X+PuP3H3a9z9fHd/o7J/MrxHkufyLpb0BTOzNgreBuLMPMSZyXQ+zkzY56vqfHsAdUjxXJJinQr218UyNon26LgUx2SKdSrYXxfL2CTm4DouxTGZYp0K9tfFMqaOObgKUhyTKdapYH9dLGNnMQcHzB5utgNQqPczYavU/6XoZkl/5O4+ONdITeWZGne/R9L7g9VvMLPXDMtjZo+UdJGGvza5U3WcFjP7a0kvDlaf4e5fb7goU++HZraTmf2jpO9JepmkfUpkWyHpWjM7v9dnZgJxZj7izPg6FGemrje5V/izA+6+yd3PkPTq4E9HSPqDqRSuY4gz8xFnxhdDnJlCnx91rM63B1CHFM8lKdZpSsdL+fxGe3RIimMyxTpN6Xgpjyvm4DokxTGZYp2mdLyU48zUMQdXXopjMsU6Tel4MxlnmIMDZtOCtgsAoNvMbB9J/yXpgNzq2yQd5+53lNzNxiA9zhtPwjzhPtvwLkknavvTAybpfWZ2iqSPSrpG2VMc+/e2+1Nt/6J1i6T8JM4md5/3lIiZLSlbGHdfW6n0LTCz1yp7AizvLHf/+5L5l5Q91oD2aLQfmtkCSV+UdEK+WMp+ruJcSVdJWidpJ0kHSnqGsgvwZb1tny3pKDM7zt2vGaOs0SDOjEScqajlONN57v4BMzte2U9dzDld0qdaKlIjiDMjEWcqiiHO1NTnyx5rovYAYpHiuSSmOsV0LdgE2iNNMY3JsmKqE+OqX0ztwRxceTGNybJiqlNM46oJqc0VhJiD6/6YLCumOhFn+jEHB2CauNkOwFBm9nBJl0g6JLd6naRj3f3HFXaV3Bc0SXL3LWZ2sqQLJT0596eje8sw6yW9VNLFuXV3Ddn2pgpF6vQryM3s5ZLOClaf7e6vr7CbSdqj6X74VvVP8t0n6RR3vzDYbouk6yVdb2YflvTPkk7r/W1vSV8ys8Pcff0Y5e084sxoxJlqOhBnYvFu9U/0HWlmi9x9WB+JGnFmNOJMNTHEmRr7fJlj1dEeQOeleC6JsE4xXQs2gfZITIRjslCEdWJc9YupPZiDKyHCMVkowjrFNK6akMxcwQjMwXV7TBaKsE7EmX7MwQGYGn5GFsBAZraHst+Sf1Ju9QZld+JfX3F3dwfpR1Qsy26a/wWtExcj7n6rpKdJ+pCkrSWyXCrpKZLuDdbfVnPROsXMXizpg+r/snqOpFc1WIywH+5iZrtW3Ef4ExQD+2HvC3b4Bff0AZN8fdx9s6SXS7ost/oASW+qWM4oEGfKIc6U05E4E4srlY21OTtIekJLZZkq4kw5xJlyYogzNff5omN1vj2AOqR4LkmxTgUauxaMBO3RMSmOyRTrVIBx1Y85uI5JcUymWKcCxJk4MQcX8ZhMsU4FiDMVMAcHgJvtAMxjZrtLukjSr+dW/5+kE8Z8lX549/5BFfOH29/p7hsGbtkCd7/X3f9E0mMlvVnZP6BvUfYU5T2SblT2kwXHSfrd3quIHx/s5qrGCtwwM3uRsi99+XPOJyW9zN29qXL0nkoN+82BFXcT9sVhT6Y8U1L+IuQmZX2gkLs/IOkdweoVZhbr03sDEWeqIc6M1pU4E4tenPlZsLrSBE8MiDPVEGdGiyHOTKHPjzpW59sDqEOK55IU61Sk4WvBzqM9uiXFMZlinYowrvoxB9ctKY7JFOtUhDgTJ+bg4h2TKdapCHGmPObgAEj8jCyAQO8phQslHZlbvVHSie5+5Zi7vTFIP6Zi/qVB+oYxyzFV7n6TpHf1liJHBelvD9ln1JM7ZvZ8Sf+m7ImtOf8haUXvQrOSGtrjRmVv7pnzGM3vn6OEfXFY3sOC9KUVv/R+XdlPW+zYS++lrKxJXJgQZ8ZHnJmvg3EmFvcF6XF+FqCziDPjI87MF0OcmVKfH3asWtsD6KoUzyUx1ymia8FG0B5piHlMDhNznRhX/SJqD+bgRoh5TA4Tc50iGleNiH2uoALm4KojzsxHnBkDc3AApok32wF4kJntLOlLko7Orf6VpGe5+zcm2PV1QfrJZrZLhfxPL9hfVHpPRz4jWH3ZoG1jZmbPkfRp9d/Y/UVJp7r7/e2Ual7fCW8SGKr3BfrJBfubsyhIV/pZPXffJml9sHrvKvvoKuJMM4gzrcaZWIQxZV0rpZgC4kwziDPdiTNT7PODjtX59gDqkOK5JMU6VdTUtWAsaI+WpTgmU6xTRYyrfszBtSzFMZlinSoizsSJObjqiDPzEWc6gDk4AHncbAdAkmRmCyWdL2l5bvUmSc9x969Psm93/4Wk7+dWLVD/F5Eiy4P0lycpTwc8Q9KSXPoyd0/iack5ZvZMZU9XPDS3epWkF/YmsdpyUZBeXiHvb6n/S+0ad799yLZ3BeldB2412m5BeuMY++gU4kyjiDMYysz21vynDP+3jbLUjTjTKOJMB0yzzw84VufbA6hDiueSFOs0hqauBWNBe7QoxTGZYp3GwLjqxxxci1IckynWaQzEmcgwBzce4sxAy4M0caZhzMEBCHGzHQCZ2Y6SviDp2NzqzZKe5+5frekw5wXpl5Qs2+Mk/WZu1b2SvlJTmdryF0H6Q62UYkrM7DhJn9f2n1+Qss/s+e6+pZ1SPehi9b+2/aheHytjZZAO+3ReeMF8eMljSJLMbJmk3YPVlZ7M7RriTOOIMxjlReq/DrhdCfz0F3GmccSZljXU5+eO1fn2AOqQ4rkkxTqNqalrwVjQHi1JcUymWKcxMa76MQfXkhTHZIp1GhNxJj7MwY2POLO9bMSZljEHB2AQbrYDZpyZLZD0WUkn5lZvlXSKu19c46E+KSn/WtuTe5MZRcJ/5H7W3TfVV6xmmdkKScflVl2j7OmEJJjZ70j6T0kLc6u/puwL5+Z2SrWdu/9K0ueC1WEfm8fMDpF0Um7VNkmfGpFldZB+upk9oUwZe14ZpH/o7ndUyN8pxJlmEWcwipntK+ktweoL3N3bKE9diDPNIs60r8E+H0V7AHVI8VySYp3G1eC1YBRoj3akOCZTrNO4GFf9mINrR4pjMsU6jYs4Exfm4CZGnNmOONMi5uAADOXuLCwsM7pI2kHSZyR5btkq6aQpHe+jwbGukLRwxPbPDbbfLOmgCcuwPNjn2gn3t6DCtidL2hK09eEt94Ha2kPSUZLuCfZ3maRd2qzjgHIuDT4HV/aa52HbL+z11fz2Hyw4hkn6YZDnakm7lyjfCQPK9862222C9ibOEGdmLs400R6SHivp2RXzLJb0nQF9fmnb7TJhmxJniDMzFWea7PMxtAcLSx1LiueSFOtUQxmnfi1Yshyrg32unGa9aY9uLCmOyRTrVEMZGVcNt4eYg8vXJ7kxmWKdaigjcaZ8GZcHZVw75n6Yg9ter+TGZIp1qqGMxJkW+oeYg2NhiW7J/242gNnzMUkvCNa9SdIaM1tScV+3efGTFH+l7MmGPXvpp0m6xMxe5u4/mNvIzHaS9ApJ7w3yv9fdby5TGDN7pDQwxi0O0gtG1HWju68rONS1ZrZK2St9v+3uDwwoy6GSzpB0avCnN7n7moL912La7WFmh0v6sqTdcqt/KOlVkvYxsyrF3eTuU/u5Bnf/qZm9X9Ibcqs/Z2Z/LunDnnsNs5k9XtJHlPXVOeslvb3gGG5mZyjrF3OOkHR17zir3N3zecxsL0mvUdZX8p/Veklnlq1fBxFniDMzF2ekRvrHfpLON7NrJX1C0nnu/uMhZdld0gplT9PuG/z5ne7+0yHHiAVxhjgza3GmkT4fUXsAdUjxXJJinSbSxLVgLv9ukvYe8ueFQXrvEZ/JLe6+rcwxq6I9GpfimEyxThNhXPVjDq5xKY7JFOs0EeLMfMzBNSrFMZlinSZCnOnDHByAoSy4zgAwQ8yszgBwjLuvLnHM5ZIuVv9vzc89cfhTSXsomxB5RJD1S8pek3u/SjCztZIOKrPtCOe6+8qC46yTtFcvuVHStZJ+IWmTsjocMqQc73T3t05YvtKm3R5m9jZlFwl1uMzdl9e0r4HMbAdJF6j/tc+S9EtJ31X29MhSZX0x/y12i6Rj3f3yksc5S9LrBvxpvbI+v07ZWFgi6dc0f1Jgs6RnuvvXyhyvi4gzhYgz/VKKM2s13fZYLunSYPXdkq5TFlvuUXZx/ihJh2nwpOOH3T38yZzoEGcKEWf6RR9nmurzsbQHUIcUzyUp1qkODV4LrpR0zqTllXSwu6+tYT8D0R7NSXFMplinOjCu+jEH15wUx2SKdaoDcaYfc3DNSXFMplinOhBnMszBARiFN9sBaJS7rzazkyR9XNu/KJqkp/SWQT4t6eVNfIGc0G7KXvM7ygZJp7v7vzdQHgzh7veb2QuUPXHzwtyf9lH2ExKD/FLSirIXCT2v7+V7u/ovnPaSdHxB3puVvRZ7dYXjQcQZEWdm2R6Snl5iu3slvc7d/2XK5UkWcYY4AwCTSvFcEkOdGrwWjALtkbYYxmRVMdSJcdWPObi0xTAmq4qhTsSZTmAOriExjMmqYqgTcQYAij2k7QIAmD3ufqGkQyV9UNk/a4f5lqRT3P1Ud7+3kcJV9z5JayTN+7m1wM8lvUPSo/nHdDe4+0Z3f5Gk31fW14a5U9LZkg5194sqHsPd/T2SniTpnzS6v8+5QdkE4aFM8o2POEOcmQE3SnqXpCsk3Vcyz4+UveZ+CZN8kyPOEGcAYFKJnUskxVGnJq4FY0J7pC2GMVlVDHViXPVjDi5tMYzJqmKoE3GmUczBtSyGMVlVDHUizgDAaPyMLIBWmdmOyp4AOkjSYmVP+twqaY2739Rm2aows4dJOlzSwcqeRFmo7MLrVknfc/cbWiweSjCzg5W98np/SbtKuk3Zk61XuPuWmo5hkh6n7HXye0t6mKRtku5S1leucvfb6zgWtiPOIHVm9hBJyyQ9WtIBkhZpe//YoOznQL/j7ne0VsjEEWcAAJNK5VySF0udmrgWjAntka5YxmQVsdSJcdWPObh0xTImq4ilTsSZZjAH175YxmQVsdSJOAMA/bjZDgAAAAAAAAAAAAAAAACAAvyMLAAAAAAAAAAAAAAAAAAABbjZDgAAAAAAAAAAAAAAAACAAtxsBwAAAAAAAAAAAAAAAABAAW62AwAAAAAAAAAAAAAAAACgADfbAQAAAAAAAAAAAAAAAABQgJvtAAAAAAAAAAAAAAAAAAAowM12AAAAAAAAAAAAAAAAAAAU4GY7AAAAAAAAAAAAAAAAAAAKcLMdAAAAAAAAAAAAAAAAAAAFuNkOAAAAAAAAAAAAAAAAAIAC3GwHAAAAAAAAAAAAAAAAAEABbrYDAAAAAAAAAAAAAAAAAKAAN9sBAAAAAAAAAAAAAAAAAFCAm+0AAAAAAAAAAAAAAAAAACjAzXYAAAAAAAAAAAAAAAAAABTgZjsAAAAAAAAAAAAAAAAAAApwsx0AAAAAAAAAAAAAAAAAAAW42Q4AAAAAAAAAAAAAAAAAgALcbAcAAAAAAAAAAAAAAAAAQAFutgMAAAAAAAAAAAAAAAAAoAA32wEAAAAAAAAAAAAAAAAAUICb7QAAAAAAAAAAAAAAAAAAKMDNdgAAAAAAAAAAAAAAAAAAFOBmOwAAAAAAAAAAAAAAAAAACnCzHQAAAAAAAAAAAAAAAAAABbjZDgAAAAAAAAAAAAAAAACAAtxsBwAAAAAAAAAAAAAAAABAAW62AwAAAAAAAAAAAAAAAACgADfbAQAAAAAAAAAAAAAAAABQgJvtAAAAAAAAAAAAAAAAAAAowM12AAAAAAAAAAAAAAAAAAAU4GY7AAAAAAAAAAAAAAAAAAAKcLMdAAAAAAAAAAAAAAAAAAAFuNkOAAAAAAAAAAAAAAAAAIAC3GwHAAAAAAAAAAAAAAAAAEABbrYDAAAAAAAAAAAAAAAAAKAAN9sBAAAAAAAAAAAAAAAAAFDg/wFRlxEKZVemhQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import yappi\n", + "\n", + "from apd.aggregation.analysis import interactable_plot_multiple_charts, Config\n", + "from apd.aggregation.analysis import clean_temperature_fluctuations, get_one_sensor_by_deployment\n", + "from apd.aggregation.utils import profile_with_yappi\n", + "\n", + "yappi.set_clock_type(\"wall\")\n", + "\n", + "filter_in_db = Config(\n", + " clean=clean_temperature_fluctuations,\n", + " title=\"Ambient temperature\",\n", + " ylabel=\"Degrees C\",\n", + " get_data=get_one_sensor_by_deployment(\"Temperature\"),\n", + ")\n", + "\n", + "with profile_with_yappi():\n", + " plot = interactable_plot_multiple_charts(configs=[filter_in_db])\n", + " plot()\n", + "\n", + "yappi.get_func_stats().print_all()" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r\n", + "Clock type: CPU\r\n", + "Ordered by: totaltime, desc\r\n", + "\r\n", + "name ncall tsub ttot tavg \r\n", + "..futures\\thread.py:52 _WorkItem.run 7 0.000000 9.515625 1.359375\r\n", + "..lchemy\\orm\\query.py:3232 Query.all 6 0.187500 6.390625 1.065104\r\n", + "..lchemy\\orm\\loading.py:35 instances 67353 0.046875 6.140625 0.000091\r\n", + "..esult.py:1257 ResultProxy.fetchall 6 0.000000 5.109375 0.851562\r\n", + "..py:1217 ResultProxy._fetchall_impl 6 0.000000 5.078125 0.846354\r\n", + "..38\\Lib\\threading.py:859 Thread.run 2/1 0.000000 3.125000 1.562500\r\n", + "..rrent\\futures\\thread.py:66 _worker 2/1 0.000000 3.125000 1.562500\r\n", + "..b\\asyncio\\events.py:79 Handle._run 29 0.000000 3.125000 0.107759\r\n", + "..WindowsSelectorEventLoop._run_once 17 0.000000 3.125000 0.183824\r\n", + "..lectorEventLoop.run_until_complete 1 0.000000 3.125000 3.125000\r\n", + "..ndowsSelectorEventLoop.run_forever 1 0.000000 3.125000 3.125000\r\n", + "..gation\\analysis.py:291 plot_sensor 1 0.031250 3.046875 3.046875\r\n", + "..egation\\analysis.py:313 4 0.015625 2.703125 0.675781\r\n", + "..and_clean_temperature_fluctuations 4 0.046875 2.687500 0.671875\r\n", + "..184 clean_temperature_fluctuations 4 0.062500 2.640625 0.660156\r\n", + "..sycopg2\\_json.py:164 typecast_json 67339 0.312500 2.562500 0.000038\r\n", + "..-input-1-879b7ebf06b8>:7 4 0.234375 2.515625 0.628906\r\n", + "..gregation\\query.py:116 subiterator 4 0.390625 2.281250 0.570312\r\n", + "..n38\\Lib\\json\\__init__.py:299 loads 67339 0.515625 2.250000 0.000033\r\n", + "..es\\psycopg2\\extras.py:686 67347 0.156250 1.796875 0.000027\r\n", + "..on38\\Lib\\uuid.py:130 UUID.__init__ 67347 1.000000 1.640625 0.000024\r\n", + "..\\decoder.py:332 JSONDecoder.decode 67339 0.718750 1.546875 0.000023\r\n", + "..d\\aggregation\\query.py:41 get_data 1 0.312500 1.531250 1.531250\r\n", + "..ion\\database.py:77 from_sql_result 67339 0.468750 1.218750 0.000018\r\n", + "..chemy\\orm\\loading.py:83 6 0.328125 0.984375 0.164062\r\n", + ".._collections.py:121 result._asdict 67343 0.375000 0.515625 0.000008\r\n", + "..thon38\\Lib\\uuid.py:231 UUID.__eq__ 67351 0.281250 0.359375 0.000005\r\n", + "..chemy\\orm\\loading.py:84 67347 0.343750 0.343750 0.000005\r\n", + "..y\\util\\_collections.py:112 __new__ 67347 0.234375 0.312500 0.000005\r\n", + "..\\matplotlib\\__init__.py:1535 inner 4 0.000000 0.296875 0.074219\r\n", + "..axes.py:1651 AxesSubplot.plot_date 4 0.000000 0.296875 0.074219\r\n", + "..xes\\_axes.py:1412 AxesSubplot.plot 4 0.000000 0.296875 0.074219\r\n", + "..gregation\\analysis.py:63 draw_date 4 0.000000 0.296875 0.074219\r\n", + ".._base.py:1842 AxesSubplot.add_line 4 0.000000 0.281250 0.070312\r\n", + "..oder.py:343 JSONDecoder.raw_decode 67339 0.265625 0.265625 0.000004\r\n", + "..s\\matplotlib\\dates.py:1911 convert 6 0.000000 0.265625 0.044271\r\n", + "..on_base.py:2063 vectorize.__call__ 4 0.000000 0.265625 0.066406\r\n", + "..b\\axis.py:1562 XAxis.convert_units 12 0.000000 0.265625 0.022135\r\n", + "...py:168 AxesSubplot.convert_xunits 48 0.000000 0.265625 0.005534\r\n", + "..lotlib\\lines.py:664 Line2D.recache 10 0.000000 0.265625 0.026562\r\n", + "..s\\matplotlib\\dates.py:401 date2num 6 0.000000 0.265625 0.044271\r\n", + "..tlib\\lines.py:1018 Line2D.get_path 10 0.000000 0.265625 0.026562\r\n", + "..68 AxesSubplot._update_line_limits 4 0.000000 0.265625 0.066406\r\n", + "...py:2154 vectorize._vectorize_call 4 0.046875 0.265625 0.066406\r\n", + ":1 DataPoint.__init__ 67339 0.234375 0.234375 0.000003\r\n", + "..tplotlib\\dates.py:210 _to_ordinalf 8467 0.140625 0.218750 0.000026\r\n", + "..alysis.py:327 plot_multiple_charts 1 0.000000 0.078125 0.078125\r\n", + "..ine\\base.py:916 Connection.execute 9 0.000000 0.062500 0.006944\r\n", + "..:291 Select._execute_on_connection 6 0.000000 0.062500 0.010417\r\n", + "..y\\orm\\query.py:3400 Query.__iter__ 6 0.000000 0.062500 0.010417\r\n", + ".. Connection._execute_clauseelement 6 0.000000 0.062500 0.010417\r\n", + "..:3425 Query._execute_and_instances 6 0.000000 0.062500 0.010417\r\n", + "..y:1159 Connection._execute_context 9 0.000000 0.046875 0.005208\r\n", + "..:589 PGDialect_psycopg2.do_execute 11 0.000000 0.046875 0.004261\r\n", + "..t.py:1240 ResultProxy.process_rows 9 0.000000 0.031250 0.003472\r\n", + "..y\\engine\\result.py:1253 9 0.031250 0.031250 0.003472\r\n", + "..\\_base.py:378 AxesSubplot.__init__ 1 0.000000 0.031250 0.031250\r\n", + "..ubplots.py:18 AxesSubplot.__init__ 1 0.000000 0.031250 0.031250\r\n", + "..ation\\analysis.py:191 datapoint_ok 10826 0.031250 0.031250 0.000003\r\n", + "..s.py:52 PlainEngineStrategy.create 1 0.000000 0.031250 0.031250\r\n", + "..regation\\query.py:24 with_database 2 0.000000 0.031250 0.015625\r\n", + ".._GeneratorContextManager.__enter__ 141 0.000000 0.031250 0.000222\r\n", + "..\\figure.py:1259 Figure.add_subplot 1 0.000000 0.031250 0.031250\r\n", + "..ngine\\__init__.py:85 create_engine 1 0.000000 0.031250 0.031250\r\n", + "..lib\\sre_parse.py:254 Tokenizer.get 1519 0.000000 0.015625 0.000010\r\n", + "..y:527 PGCompiler_psycopg2.__init__ 8 0.000000 0.015625 0.001953\r\n", + "..my\\util\\langhelpers.py:963 oneshot 21 0.000000 0.015625 0.000744\r\n", + "..rs.py:86 Select._compiler_dispatch 94/8 0.000000 0.015625 0.000166\r\n", + "..Preparer_psycopg2._requires_quotes 22 0.000000 0.015625 0.000710\r\n", + "..\\sre_parse.py:233 Tokenizer.__next 1696 0.015625 0.015625 0.000009\r\n", + "..on-68gteq6k\\lib\\re.py:287 _compile 84 0.000000 0.015625 0.000186\r\n", + ":1 Select. 8 0.000000 0.015625 0.001953\r\n", + "..iler_psycopg2._label_select_column 29 0.000000 0.015625 0.000539\r\n", + "..y:274 PGCompiler_psycopg2.__init__ 8 0.000000 0.015625 0.001953\r\n", + "..fierPreparer_psycopg2.format_label 29 0.000000 0.015625 0.000539\r\n", + "..my\\sql\\compiler.py:2127 8 0.000000 0.015625 0.001953\r\n", + "..gteq6k\\lib\\sre_parse.py:493 _parse 75/14 0.000000 0.015625 0.000208\r\n", + "..GIdentifierPreparer_psycopg2.quote 103 0.000000 0.015625 0.000152\r\n", + "..10 PGCompiler_psycopg2.visit_label 29 0.000000 0.015625 0.000539\r\n", + "..py:349 PGCompiler_psycopg2.process 8 0.000000 0.015625 0.001953\r\n", + "..8gteq6k\\lib\\sre_parse.py:937 parse 12 0.000000 0.015625 0.001302\r\n", + "..5 PGCompiler_psycopg2.visit_select 8 0.000000 0.015625 0.001953\r\n", + "..quoted_name._memoized_method_lower 21 0.000000 0.015625 0.000744\r\n", + "..q6k\\lib\\sre_compile.py:759 compile 12 0.000000 0.015625 0.001302\r\n", + "..sql\\elements.py:405 Select.compile 8 0.000000 0.015625 0.001953\r\n", + "..6k\\lib\\sre_parse.py:435 _parse_sub 59/12 0.000000 0.015625 0.000265\r\n", + "..._bootstrap>:1017 _handle_fromlist 20/18 0.000000 0.015625 0.000781\r\n", + "..l\\elements.py:470 Select._compiler 8 0.000000 0.015625 0.001953\r\n", + "..rrent\\futures\\thread.py:158 submit 7 0.000000 0.015625 0.002232\r\n", + "..dPoolExecutor._adjust_thread_count 7 0.000000 0.015625 0.002232\r\n", + "..\\Lib\\threading.py:834 Thread.start 2 0.000000 0.015625 0.007812\r\n", + "..>:777 SourceFileLoader.exec_module 9/2 0.000000 0.015625 0.001736\r\n", + "..\\artist.py:731 XAxis.set_clip_path 26 0.000000 0.015625 0.000601\r\n", + "..s\\postgresql\\psycopg2.py:735 dbapi 1 0.000000 0.015625 0.015625\r\n", + ".. _process_plot_var_args._plot_args 4 0.000000 0.015625 0.003906\r\n", + "..icker.py:2848 AutoLocator.__init__ 16 0.000000 0.015625 0.000977\r\n", + "..es\\_axes.py:299 AxesSubplot.legend 1 0.000000 0.015625 0.015625\r\n", + "..b\\cbook\\__init__.py:1320 _check_1d 8 0.000000 0.015625 0.001953\r\n", + "..53 _process_plot_var_args.__call__ 8 0.000000 0.015625 0.001953\r\n", + "..lib._bootstrap>:650 _load_unlocked 10/2 0.000000 0.015625 0.001563\r\n", + "..plotlib\\axis.py:744 XAxis.__init__ 2 0.000000 0.015625 0.007812\r\n", + "..ib\\axis.py:967 XAxis.set_clip_path 2 0.000000 0.015625 0.007812\r\n", + "..tlib\\artist.py:217 Rectangle.stale 171.. 0.015625 0.015625 0.000009\r\n", + "..__init__.py:2073 _check_isinstance 94 0.000000 0.015625 0.000166\r\n", + "..sSelectorEventLoop.run_in_executor 6 0.000000 0.015625 0.002604\r\n", + "..y\\core\\shape_base.py:24 atleast_1d 24 0.000000 0.015625 0.000651\r\n", + "..et_default_locators_and_formatters 16 0.000000 0.015625 0.000977\r\n", + "..ine\\url.py:234 _parse_rfc1738_args 1 0.000000 0.015625 0.015625\r\n", + "..end.py:727 Legend._init_legend_box 1 0.000000 0.015625 0.015625\r\n", + "..otlib\\axis.py:825 XAxis._set_scale 16 0.000000 0.015625 0.000977\r\n", + "..alchemy\\engine\\url.py:221 make_url 1 0.000000 0.015625 0.015625\r\n", + "..\\psycopg2\\extensions.py:1 1 0.000000 0.015625 0.015625\r\n", + "..mpy\\core\\_asarray.py:88 asanyarray 72 0.000000 0.015625 0.000217\r\n", + "..otlib\\axis.py:2231 YAxis._get_tick 3 0.000000 0.015625 0.005208\r\n", + "...py:89 HandlerLine2D.legend_artist 4 0.000000 0.015625 0.003906\r\n", + "..icker.py:2051 AutoLocator.__init__ 16 0.015625 0.015625 0.000977\r\n", + "..tplotlib\\axis.py:56 XTick.__init__ 6 0.000000 0.015625 0.002604\r\n", + "..b\\axis.py:589 YTick._get_tick2line 3 0.000000 0.015625 0.005208\r\n", + "..\\axis.py:687 _LazyTickList.__get__ 6/4 0.000000 0.015625 0.002604\r\n", + "..ines.py:1268 Line2D.set_markersize 30 0.000000 0.015625 0.000521\r\n", + "..ages\\psycopg2\\_range.py:1 1 0.000000 0.015625 0.015625\r\n", + "..y:229 HandlerLine2D.create_artists 4 0.000000 0.015625 0.003906\r\n", + "..otlib\\lines.py:269 Line2D.__init__ 30 0.000000 0.015625 0.000521\r\n", + "..tlib\\legend.py:306 Legend.__init__ 1 0.000000 0.015625 0.015625\r\n", + "..ms.py:986 TransformedBbox.__init__ 21 0.000000 0.015625 0.000744\r\n", + "..function__ internals>:2 atleast_1d 24 0.000000 0.015625 0.000651\r\n", + ".._function__ internals>:2 full_like 4 0.015625 0.015625 0.003906\r\n", + "..strap>:956 _find_and_load_unlocked 10/2 0.000000 0.015625 0.001563\r\n", + "..\\axes\\_base.py:948 AxesSubplot.cla 1 0.000000 0.015625 0.015625\r\n", + "..base.py:553 AxesSubplot._init_axis 1 0.000000 0.015625 0.015625\r\n", + "..rap>:211 _call_with_frames_removed 14/2 0.000000 0.015625 0.001116\r\n", + "..lib._bootstrap>:986 _find_and_load 10/2 0.000000 0.015625 0.001563\r\n", + "..ion-68gteq6k\\lib\\re.py:248 compile 10 0.000000 0.015625 0.001563\r\n", + "..es\\psycopg2\\__init__.py:1 1 0.000000 0.015625 0.015625\r\n", + "...py:343 WeakKeyDictionary.__init__ 13 0.000000 0.000000 0.000000\r\n", + "..pool\\impl.py:112 QueuePool._do_get 1 0.000000 0.000000 0.000000\r\n", + "..6k\\lib\\abc.py:96 __instancecheck__ 141 0.000000 0.000000 0.000000\r\n", + "..py:3730 Select._columns_plus_names 8 0.000000 0.000000 0.000000\r\n", + "..y:330 _ListenerCollection.__bool__ 1 0.000000 0.000000 0.000000\r\n", + "..yncio\\events.py:32 Handle.__init__ 24 0.000000 0.000000 0.000000\r\n", + "..py:4065 ColumnClause._from_objects 2 0.000000 0.000000 0.000000\r\n", + "..ions.py:145 immutabledict.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..ections.py:396 OrderedSet.__iter__ 8 0.000000 0.000000 0.000000\r\n", + "..qltypes.py:2793 TIMESTAMP.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..ib\\sre_parse.py:286 Tokenizer.tell 171 0.000000 0.000000 0.000000\r\n", + "..q6k\\lib\\sre_parse.py:921 fix_flags 12 0.000000 0.000000 0.000000\r\n", + "..\\sql\\selectable.py:3079 8 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\result.py:496 3 0.000000 0.000000 0.000000\r\n", + "..opg2.py:548 _PGUUID.bind_processor 1 0.000000 0.000000 0.000000\r\n", + "..es\\psycopg2\\__init__.py:82 connect 1 0.000000 0.000000 0.000000\r\n", + "..ib\\sre_parse.py:84 State.opengroup 27 0.000000 0.000000 0.000000\r\n", + "..gging\\__init__.py:223 _releaseLock 7 0.000000 0.000000 0.000000\r\n", + "..ql\\elements.py:2428 literal_column 2 0.000000 0.000000 0.000000\r\n", + "..dConnectionEventsDispatch.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..y\\engine\\strategies.py:106 connect 1 0.000000 0.000000 0.000000\r\n", + "..tras.py:657 UUID_adapter.getquoted 4 0.000000 0.000000 0.000000\r\n", + "..hemy\\sql\\compiler.py:652 10 0.000000 0.000000 0.000000\r\n", + "..query.py:3440 Query._get_bind_args 6 0.000000 0.000000 0.000000\r\n", + "..b\\sre_parse.py:96 State.closegroup 27 0.000000 0.000000 0.000000\r\n", + "..ctions.py:933 LRUCache.__setitem__ 3 0.000000 0.000000 0.000000\r\n", + "..eq6k\\lib\\sre_parse.py:978 addgroup 1 0.000000 0.000000 0.000000\r\n", + "..yEventsDispatch._event_descriptors 46 0.000000 0.000000 0.000000\r\n", + "..tgresql\\psycopg2.py:815 on_connect 2 0.000000 0.000000 0.000000\r\n", + "..ne\\strategies.py:194 first_connect 1 0.000000 0.000000 0.000000\r\n", + "..sult.py:700 ResultMetaData._getter 27 0.000000 0.000000 0.000000\r\n", + "..ry.py:4056 Query._simple_statement 6 0.000000 0.000000 0.000000\r\n", + "..elements.py:4692 _literal_as_binds 2 0.000000 0.000000 0.000000\r\n", + "...py:56 QueuePool._should_log_debug 1 0.000000 0.000000 0.000000\r\n", + "..session.py:1057 Session.connection 6 0.000000 0.000000 0.000000\r\n", + "..xecutionContext_psycopg2.post_exec 6 0.000000 0.000000 0.000000\r\n", + "..y:3229 BinaryExpression.self_group 4 0.000000 0.000000 0.000000\r\n", + "..py:4335 _truncated_label.apply_map 27 0.000000 0.000000 0.000000\r\n", + "..68gteq6k\\lib\\weakref.py:345 remove 2 0.000000 0.000000 0.000000\r\n", + "..123 ConnectionEventsDispatch._join 1 0.000000 0.000000 0.000000\r\n", + "..lalchemy\\pool\\base.py:490 checkout 1 0.000000 0.000000 0.000000\r\n", + "..y\\engine\\default.py:796 6 0.000000 0.000000 0.000000\r\n", + "..ctable.py:1982 Table._from_objects 6 0.000000 0.000000 0.000000\r\n", + "..emy\\sql\\compiler.py:1000 4 0.000000 0.000000 0.000000\r\n", + "..\\encodings\\utf_8.py:33 getregentry 1 0.000000 0.000000 0.000000\r\n", + "..ery._adjust_for_single_inheritance 6 0.000000 0.000000 0.000000\r\n", + "..ler_psycopg2.get_select_precolumns 8 0.000000 0.000000 0.000000\r\n", + "..ycopg2\\extras.py:664 register_uuid 2 0.000000 0.000000 0.000000\r\n", + "..:3418 PGTypeCompiler.visit_unicode 1 0.000000 0.000000 0.000000\r\n", + "..on._memoized_attr__exec_once_mutex 1 0.000000 0.000000 0.000000\r\n", + "..ngs\\__init__.py:70 search_function 1 0.000000 0.000000 0.000000\r\n", + "..uture.set_running_or_notify_cancel 7 0.000000 0.000000 0.000000\r\n", + "..lalchemy\\sql\\base.py:39 20 0.000000 0.000000 0.000000\r\n", + "..422 WeakKeyDictionary.__contains__ 386 0.000000 0.000000 0.000000\r\n", + "..4 PGCompiler_psycopg2.visit_column 36 0.000000 0.000000 0.000000\r\n", + "..py:536 PGDialect_psycopg2.do_begin 1 0.000000 0.000000 0.000000\r\n", + ".. _ClsLevelDispatch.update_subclass 77 0.000000 0.000000 0.000000\r\n", + ":1 VARCHAR.__init__ 9 0.000000 0.000000 0.000000\r\n", + "..tions.py:946 LRUCache._manage_size 3 0.000000 0.000000 0.000000\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..g2\\extensions.py:180 _param_escape 3 0.000000 0.000000 0.000000\r\n", + "..\\elements.py:232 Table._cloned_set 2 0.000000 0.000000 0.000000\r\n", + "..419 Query._connection_from_session 6 0.000000 0.000000 0.000000\r\n", + "..my\\sql\\type_api.py:1475 adapt_type 13 0.000000 0.000000 0.000000\r\n", + "..y\\sql\\elements.py:4594 _literal_as 14 0.000000 0.000000 0.000000\r\n", + "..94 QueryEventsDispatch.__getattr__ 8 0.000000 0.000000 0.000000\r\n", + ".._.py:1663 Logger.getEffectiveLevel 3 0.000000 0.000000 0.000000\r\n", + "..ngine\\strategies.py:183 on_connect 2 0.000000 0.000000 0.000000\r\n", + "..e.py:737 _ConnectionFairy.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..lalchemy\\util\\compat.py:148 raise_ 12 0.000000 0.000000 0.000000\r\n", + "..sre_parse.py:172 SubPattern.append 182 0.000000 0.000000 0.000000\r\n", + ":1 cast 2 0.000000 0.000000 0.000000\r\n", + "..\\langhelpers.py:301 get_cls_kwargs 35/16 0.000000 0.000000 0.000000\r\n", + "..ler_psycopg2._truncated_identifier 33 0.000000 0.000000 0.000000\r\n", + "..ler_psycopg2.escape_literal_column 2 0.000000 0.000000 0.000000\r\n", + "..s.py:880 memoized_property.__get__ 97/87 0.000000 0.000000 0.000000\r\n", + "..nts.py:709 ColumnClause.comparator 4 0.000000 0.000000 0.000000\r\n", + "..\\orm\\session.py:2462 Session.flush 9 0.000000 0.000000 0.000000\r\n", + "..gine\\default.py:753 _init_compiled 6 0.000000 0.000000 0.000000\r\n", + "..n-68gteq6k\\lib\\enum.py:557 __new__ 26 0.000000 0.000000 0.000000\r\n", + "..y\\util\\_collections.py:140 __new__ 1 0.000000 0.000000 0.000000\r\n", + "..WindowsSelectorEventLoop.get_debug 33 0.000000 0.000000 0.000000\r\n", + "..indowsSelectorEventLoop._call_soon 23 0.000000 0.000000 0.000000\r\n", + "..:715 PGDialect_psycopg2.initialize 1 0.000000 0.000000 0.000000\r\n", + "..t_psycopg2._use_server_side_cursor 9 0.000000 0.000000 0.000000\r\n", + "..lection.exec_once_unless_exception 1 0.000000 0.000000 0.000000\r\n", + "..iler_psycopg2._compose_select_body 8 0.000000 0.000000 0.000000\r\n", + "..sqltypes.py:2182 _PGJSONB.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..ements.py:1315 TypeClause.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..tionContext_psycopg2.no_parameters 5 0.000000 0.000000 0.000000\r\n", + "..:395 WeakKeyDictionary.__setitem__ 97 0.000000 0.000000 0.000000\r\n", + "..xt_psycopg2.should_autocommit_text 3 0.000000 0.000000 0.000000\r\n", + "..ts.py:724 ColumnClause.__getattr__ 9 0.000000 0.000000 0.000000\r\n", + "..qlalchemy\\inspection.py:38 inspect 16 0.000000 0.000000 0.000000\r\n", + "..ons.py:971 lightweight_named_tuple 6 0.000000 0.000000 0.000000\r\n", + "..m\\query.py:3551 Query._select_args 6 0.000000 0.000000 0.000000\r\n", + "..sycopg2\\extensions.py:146 make_dsn 1 0.000000 0.000000 0.000000\r\n", + "..chemy\\sql\\base.py:38 _from_objects 20 0.000000 0.000000 0.000000\r\n", + "..er_psycopg2._get_operator_dispatch 4 0.000000 0.000000 0.000000\r\n", + "..ine\\base.py:69 Connection.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..l\\psycopg2.py:747 _psycopg2_extras 2 0.000000 0.000000 0.000000\r\n", + "..tionContext_psycopg2.create_cursor 9 0.000000 0.000000 0.000000\r\n", + "..til\\_collections.py:779 41 0.000000 0.000000 0.000000\r\n", + "..\\base.py:364 Connection.connection 11 0.000000 0.000000 0.000000\r\n", + "..my\\sql\\compiler.py:2252 6 0.000000 0.000000 0.000000\r\n", + "..033 PGCompiler_psycopg2.visit_cast 2 0.000000 0.000000 0.000000\r\n", + "..ngine\\default.py:378 check_unicode 2 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\result.py:319 9 0.000000 0.000000 0.000000\r\n", + "..chemy\\sql\\elements.py:4327 __new__ 16 0.000000 0.000000 0.000000\r\n", + "..mpiler_psycopg2._add_to_result_map 29 0.000000 0.000000 0.000000\r\n", + ":1 Select.__init__ 8 0.000000 0.000000 0.000000\r\n", + "..py:4442 _anonymous_label.apply_map 6 0.000000 0.000000 0.000000\r\n", + "..py:2248 Engine._contextual_connect 1 0.000000 0.000000 0.000000\r\n", + "..:307 PGDialect_psycopg2.initialize 1 0.000000 0.000000 0.000000\r\n", + "..\\log.py:59 Engine._should_log_info 2 0.000000 0.000000 0.000000\r\n", + "..pg2\\extras.py:790 _solve_conn_curs 1 0.000000 0.000000 0.000000\r\n", + "..k\\lib\\encodings\\utf_8.py:15 decode 48 0.000000 0.000000 0.000000\r\n", + "..tions.py:906 LRUCache._inc_counter 6 0.000000 0.000000 0.000000\r\n", + "..ctorEventLoop.call_soon_threadsafe 6 0.000000 0.000000 0.000000\r\n", + "..y\\sql\\selectable.py:2987 6 0.000000 0.000000 0.000000\r\n", + ".._psycopg2._get_default_schema_name 1 0.000000 0.000000 0.000000\r\n", + "..ns.py:738 PopulateDict.__missing__ 5 0.000000 0.000000 0.000000\r\n", + "..tgresql\\psycopg2.py:847 on_connect 2 0.000000 0.000000 0.000000\r\n", + "..e\\result.py:1335 ResultProxy.first 3 0.000000 0.000000 0.000000\r\n", + ".._psycopg2._generate_generic_binary 4 0.000000 0.000000 0.000000\r\n", + "..se.py:325 Future._invoke_callbacks 7 0.000000 0.000000 0.000000\r\n", + "..\\sql\\selectable.py:3751 2 0.000000 0.000000 0.000000\r\n", + "..:4707 _interpret_as_column_or_from 29 0.000000 0.000000 0.000000\r\n", + "..compile.py:461 _get_literal_prefix 19/12 0.000000 0.000000 0.000000\r\n", + "..ts.py:4059 ColumnClause._set_table 2 0.000000 0.000000 0.000000\r\n", + "..317 VARCHAR._has_column_expression 12 0.000000 0.000000 0.000000\r\n", + "..my\\sql\\elements.py:4488 8 0.000000 0.000000 0.000000\r\n", + "..emy\\util\\queue.py:191 Queue._empty 1 0.000000 0.000000 0.000000\r\n", + "..tgresql\\psycopg2.py:800 on_connect 2 0.000000 0.000000 0.000000\r\n", + "..9 PGCompiler_psycopg2.visit_binary 4 0.000000 0.000000 0.000000\r\n", + "..ery.py:3929 Query._compile_context 6 0.000000 0.000000 0.000000\r\n", + "..til\\_collections.py:981 3 0.000000 0.000000 0.000000\r\n", + "..i.py:279 NullType.result_processor 4 0.000000 0.000000 0.000000\r\n", + "..1333 Connection._safe_close_cursor 9 0.000000 0.000000 0.000000\r\n", + "..ation-68gteq6k\\lib\\re.py:186 match 70 0.000000 0.000000 0.000000\r\n", + "..my\\sql\\elements.py:1955 1 0.000000 0.000000 0.000000\r\n", + "..276 PGDialect_psycopg2._type_memos 1 0.000000 0.000000 0.000000\r\n", + "..mn._render_label_in_columns_clause 10 0.000000 0.000000 0.000000\r\n", + "..sqltypes.py:786 TIMESTAMP.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..ments.py:765 Cast._select_iterable 29 0.000000 0.000000 0.000000\r\n", + "..200 BinaryExpression._from_objects 4 0.000000 0.000000 0.000000\r\n", + "..extensions.py:103 register_adapter 12 0.000000 0.000000 0.000000\r\n", + "..y\\util\\_collections.py:822 to_list 14 0.000000 0.000000 0.000000\r\n", + "..res\\_base.py:517 Future.set_result 7 0.000000 0.000000 0.000000\r\n", + "..ngine\\base.py:590 Connection.begin 1 0.000000 0.000000 0.000000\r\n", + "..eading.py:364 Condition.notify_all 7 0.000000 0.000000 0.000000\r\n", + "..ase.py:971 _ConnectionFairy.cursor 6 0.000000 0.000000 0.000000\r\n", + "..gine\\base.py:908 Connection.scalar 2 0.000000 0.000000 0.000000\r\n", + "..rm\\query.py:418 Query._bind_mapper 6 0.000000 0.000000 0.000000\r\n", + "..result.py:767 ResultProxy.__init__ 9 0.000000 0.000000 0.000000\r\n", + "..:3361 PGTypeCompiler.visit_VARCHAR 2 0.000000 0.000000 0.000000\r\n", + "..l\\sqltypes.py:141 VARCHAR.__init__ 9 0.000000 0.000000 0.000000\r\n", + "..my\\sql\\elements.py:4480 6 0.000000 0.000000 0.000000\r\n", + "..e_parse.py:174 SubPattern.getwidth 138.. 0.000000 0.000000 0.000000\r\n", + "..ResultMetaData._merge_cols_by_none 6 0.000000 0.000000 0.000000\r\n", + "...py:488 PGDialect_psycopg2.connect 1 0.000000 0.000000 0.000000\r\n", + "...py:2282 Engine._wrap_pool_connect 1 0.000000 0.000000 0.000000\r\n", + "..session.py:1588 Session._autoflush 6 0.000000 0.000000 0.000000\r\n", + "..\\threading.py:341 Condition.notify 15 0.000000 0.000000 0.000000\r\n", + "..ections.py:361 OrderedSet.__init__ 8 0.000000 0.000000 0.000000\r\n", + "..ql\\operators.py:1386 is_comparison 5 0.000000 0.000000 0.000000\r\n", + "..6 PGCompiler_psycopg2.default_from 2 0.000000 0.000000 0.000000\r\n", + "..58 PGCompiler_psycopg2.visit_table 6 0.000000 0.000000 0.000000\r\n", + "..elements.py:4483 _select_iterables 8 0.000000 0.000000 0.000000\r\n", + "..b\\sre_compile.py:65 _combine_flags 39 0.000000 0.000000 0.000000\r\n", + "..lchemy\\util\\langhelpers.py:1506 go 1 0.000000 0.000000 0.000000\r\n", + "..utionContext_psycopg2._log_notices 9 0.000000 0.000000 0.000000\r\n", + "..ation-68gteq6k\\lib\\re.py:323 _subx 3 0.000000 0.000000 0.000000\r\n", + "..py:486 UUID._cached_bind_processor 4 0.000000 0.000000 0.000000\r\n", + "..ttr.py:227 _EmptyListener.__init__ 77 0.000000 0.000000 0.000000\r\n", + "..ghelpers.py:281 _inspect_func_args 18 0.000000 0.000000 0.000000\r\n", + "..re_compile.py:249 _compile_charset 34 0.000000 0.000000 0.000000\r\n", + "..nContext_psycopg2.get_result_proxy 9 0.000000 0.000000 0.000000\r\n", + "..uery.py:4762 QueryContext.__init__ 6 0.000000 0.000000 0.000000\r\n", + "..gging\\__init__.py:214 _acquireLock 7 0.000000 0.000000 0.000000\r\n", + "..type_api.py:60 Comparator.__init__ 8 0.000000 0.000000 0.000000\r\n", + "..hon38\\Lib\\uuid.py:271 UUID.__str__ 4 0.000000 0.000000 0.000000\r\n", + "..velDispatch._assign_cls_collection 77 0.000000 0.000000 0.000000\r\n", + "..e_parse.py:111 SubPattern.__init__ 135 0.000000 0.000000 0.000000\r\n", + "..compile.py:492 _get_charset_prefix 10 0.000000 0.000000 0.000000\r\n", + "..arse.py:164 SubPattern.__getitem__ 707 0.000000 0.000000 0.000000\r\n", + "..2456 PGDialect_psycopg2.initialize 1 0.000000 0.000000 0.000000\r\n", + "..hreading.py:249 Condition.__exit__ 61 0.000000 0.000000 0.000000\r\n", + ".. NullType._cached_result_processor 30 0.000000 0.000000 0.000000\r\n", + "..116 QueryEventsDispatch._for_class 8 0.000000 0.000000 0.000000\r\n", + "..compiler.py:419 _CompileLabel.type 29 0.000000 0.000000 0.000000\r\n", + "..m\\session.py:1429 Session.get_bind 6 0.000000 0.000000 0.000000\r\n", + "..\\elements.py:4610 _literal_as_text 14 0.000000 0.000000 0.000000\r\n", + "..Compiler_psycopg2.bindparam_string 4 0.000000 0.000000 0.000000\r\n", + "..53 _ListenerCollection.__getattr__ 45/24 0.000000 0.000000 0.000000\r\n", + ".._psycopg2._get_server_version_info 1 0.000000 0.000000 0.000000\r\n", + "..teq6k\\lib\\sre_compile.py:598 _code 12 0.000000 0.000000 0.000000\r\n", + "..sql\\operators.py:1497 is_precedent 4 0.000000 0.000000 0.000000\r\n", + "..\\sql\\selectable.py:3746 6 0.000000 0.000000 0.000000\r\n", + "..Compiler_psycopg2.visit_clauselist 1 0.000000 0.000000 0.000000\r\n", + "..ExecutionContext_psycopg2.pre_exec 6 0.000000 0.000000 0.000000\r\n", + "..\\elements.py:688 Column.self_group 11 0.000000 0.000000 0.000000\r\n", + "..init__.py:1677 Logger.isEnabledFor 5 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\default.py:415 1 0.000000 0.000000 0.000000\r\n", + "..ql\\base.py:1142 TIMESTAMP.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..l\\_collections.py:910 LRUCache.get 6 0.000000 0.000000 0.000000\r\n", + "..ttr.py:269 _EmptyListener.__bool__ 17 0.000000 0.000000 0.000000\r\n", + "..pes.py:295 String.result_processor 5 0.000000 0.000000 0.000000\r\n", + "..b\\sre_parse.py:249 Tokenizer.match 311 0.000000 0.000000 0.000000\r\n", + "..copg2._check_max_identifier_length 1 0.000000 0.000000 0.000000\r\n", + "..gteq6k\\lib\\re.py:313 _compile_repl 1 0.000000 0.000000 0.000000\r\n", + "..lchemy\\orm\\query.py:4795 6 0.000000 0.000000 0.000000\r\n", + "..ult.py:269 ResultMetaData.__init__ 9 0.000000 0.000000 0.000000\r\n", + "..iler.py:399 PGTypeCompiler.process 2 0.000000 0.000000 0.000000\r\n", + "..GCompiler_psycopg2.order_by_clause 1 0.000000 0.000000 0.000000\r\n", + "..y:305 QueuePool._create_connection 1 0.000000 0.000000 0.000000\r\n", + "..sql\\type_api.py:546 NullType.adapt 13 0.000000 0.000000 0.000000\r\n", + "..rm\\query.py:398 Query._entity_zero 6 0.000000 0.000000 0.000000\r\n", + "..py:1202 ResultProxy._fetchone_impl 3 0.000000 0.000000 0.000000\r\n", + ".._psycopg2._setup_crud_result_proxy 3 0.000000 0.000000 0.000000\r\n", + "..esql\\base.py:1226 _PGUUID.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..nghelpers.py:1167 constructor_copy 13 0.000000 0.000000 0.000000\r\n", + "..piler_psycopg2._setup_select_stack 8 0.000000 0.000000 0.000000\r\n", + "..MetaData._merge_cursor_description 9 0.000000 0.000000 0.000000\r\n", + "..ttr.py:257 _EmptyListener.__call__ 8 0.000000 0.000000 0.000000\r\n", + "..wsSelectorEventLoop._write_to_self 6 0.000000 0.000000 0.000000\r\n", + "..q6k\\lib\\sre_compile.py:423 _simple 45 0.000000 0.000000 0.000000\r\n", + "..\\result.py:777 ResultProxy._getter 27 0.000000 0.000000 0.000000\r\n", + "..ycopg2\\extras.py:909 type.get_oids 1 0.000000 0.000000 0.000000\r\n", + "..arse.py:168 SubPattern.__setitem__ 48 0.000000 0.000000 0.000000\r\n", + "..text_psycopg2.get_result_processor 30 0.000000 0.000000 0.000000\r\n", + "..k\\lib\\sre_parse.py:81 State.groups 80 0.000000 0.000000 0.000000\r\n", + "..l\\sqltypes.py:412 Unicode.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..alchemy\\pool\\base.py:770 _checkout 1 0.000000 0.000000 0.000000\r\n", + ".. SessionTransaction._assert_active 8 0.000000 0.000000 0.000000\r\n", + ":1 select 8 0.000000 0.000000 0.000000\r\n", + ".. QueryEventsDispatch._for_instance 8 0.000000 0.000000 0.000000\r\n", + "..elements.py:4080 Column._key_label 10 0.000000 0.000000 0.000000\r\n", + "..ine\\default.py:981 _init_statement 3 0.000000 0.000000 0.000000\r\n", + "..\\lib\\enum.py:828 RegexFlag.__and__ 12 0.000000 0.000000 0.000000\r\n", + "..py:644 _ConnectionRecord.__connect 1 0.000000 0.000000 0.000000\r\n", + "..GCompiler_psycopg2.visit_bindparam 4 0.000000 0.000000 0.000000\r\n", + "..emy\\util\\langhelpers.py:1188 _next 7 0.000000 0.000000 0.000000\r\n", + "..py:77 QueryEventsDispatch.__init__ 8 0.000000 0.000000 0.000000\r\n", + "..\\__init__.py:43 normalize_encoding 1 0.000000 0.000000 0.000000\r\n", + "..util\\langhelpers.py:1175 46 0.000000 0.000000 0.000000\r\n", + "..ql\\elements.py:895 Cast.anon_label 2 0.000000 0.000000 0.000000\r\n", + "..y\\sql\\operators.py:1409 is_boolean 5 0.000000 0.000000 0.000000\r\n", + "..-68gteq6k\\lib\\codecs.py:94 __new__ 1 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\result.py:460 6 0.000000 0.000000 0.000000\r\n", + "..selectable.py:2169 Select.__init__ 8 0.000000 0.000000 0.000000\r\n", + "..ry.py:390 Query._query_entity_zero 6 0.000000 0.000000 0.000000\r\n", + "..re_parse.py:224 Tokenizer.__init__ 13 0.000000 0.000000 0.000000\r\n", + "..teq6k\\lib\\sre_parse.py:355 _escape 30 0.000000 0.000000 0.000000\r\n", + "..uery.py:698 Query.is_single_entity 6 0.000000 0.000000 0.000000\r\n", + "..19 ResultProxy._cursor_description 9 0.000000 0.000000 0.000000\r\n", + "..y:4696 _ColumnEntity.row_processor 27 0.000000 0.000000 0.000000\r\n", + "..ents.py:3947 ColumnClause.__init__ 2 0.000000 0.000000 0.000000\r\n", + "...py:543 NullType._gen_dialect_impl 13 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\default.py:855 10 0.000000 0.000000 0.000000\r\n", + "..lements.py:2553 Cast._from_objects 2 0.000000 0.000000 0.000000\r\n", + "..til\\_collections.py:991 3 0.000000 0.000000 0.000000\r\n", + "..PGTypeCompiler._render_string_type 2 0.000000 0.000000 0.000000\r\n", + "..reading.py:261 Condition._is_owned 11 0.000000 0.000000 0.000000\r\n", + "..ult.py:924 ResultProxy._soft_close 9 0.000000 0.000000 0.000000\r\n", + "..Compiler_psycopg2.construct_params 6 0.000000 0.000000 0.000000\r\n", + "..l\\selectable.py:3036 Select._froms 8 0.000000 0.000000 0.000000\r\n", + "..ging\\__init__.py:1412 Logger.debug 2 0.000000 0.000000 0.000000\r\n", + "..9 _ConnectionRecord.get_connection 1 0.000000 0.000000 0.000000\r\n", + "..Compiler_psycopg2.visit_typeclause 2 0.000000 0.000000 0.000000\r\n", + "..etaData._colnames_from_description 6 0.000000 0.000000 0.000000\r\n", + "..postgresql\\base.py:2708 1 0.000000 0.000000 0.000000\r\n", + "..ct_psycopg2._check_unicode_returns 1 0.000000 0.000000 0.000000\r\n", + "...py:434 _ConnectionRecord.__init__ 1 0.000000 0.000000 0.000000\r\n", + ".._api.py:527 NullType._dialect_info 25 0.000000 0.000000 0.000000\r\n", + "..lib\\sre_parse.py:76 State.__init__ 12 0.000000 0.000000 0.000000\r\n", + "..lchemy\\util\\queue.py:135 Queue.get 1 0.000000 0.000000 0.000000\r\n", + "..py:352 PGCompiler_psycopg2.__str__ 8 0.000000 0.000000 0.000000\r\n", + "..alect_psycopg2.get_isolation_level 1 0.000000 0.000000 0.000000\r\n", + "..owsSelectorEventLoop._check_closed 34 0.000000 0.000000 0.000000\r\n", + "..\\session.py:2508 Session._is_clean 10 0.000000 0.000000 0.000000\r\n", + "..q6k\\lib\\sre_compile.py:71 _compile 111.. 0.000000 0.000000 0.000000\r\n", + "..e.py:1694 RootTransaction.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..eral_and_labels_as_label_reference 3 0.000000 0.000000 0.000000\r\n", + "...py:903 PGDialect_psycopg2.oneshot 1 0.000000 0.000000 0.000000\r\n", + "..ql\\selectable.py:3735 name_for_col 27 0.000000 0.000000 0.000000\r\n", + "...py:3065 Select._get_display_froms 8 0.000000 0.000000 0.000000\r\n", + "..e.py:1134 Connection._execute_text 3 0.000000 0.000000 0.000000\r\n", + "..tgresql\\psycopg2.py:807 on_connect 2 0.000000 0.000000 0.000000\r\n", + "..chemy\\sql\\elements.py:4279 __new__ 16 0.000000 0.000000 0.000000\r\n", + "..copg2\\extensions.py:171 1 0.000000 0.000000 0.000000\r\n", + "..2.py:540 _PGJSONB.result_processor 1 0.000000 0.000000 0.000000\r\n", + "...py:793 ResultProxy._init_metadata 9 0.000000 0.000000 0.000000\r\n", + "..ts.py:4056 ColumnClause._get_table 48 0.000000 0.000000 0.000000\r\n", + "..\\util\\_collections.py:771 5 0.000000 0.000000 0.000000\r\n", + "..hemy\\sql\\compiler.py:650 6 0.000000 0.000000 0.000000\r\n", + "..pool\\base.py:354 QueuePool.connect 1 0.000000 0.000000 0.000000\r\n", + "..cio\\futures.py:364 _call_set_state 6 0.000000 0.000000 0.000000\r\n", + "..365 _ListenerCollection.for_modify 2 0.000000 0.000000 0.000000\r\n", + "..Context_psycopg2.should_autocommit 9 0.000000 0.000000 0.000000\r\n", + "..xtras.py:650 UUID_adapter.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..ne\\result.py:956 ResultProxy.close 3 0.000000 0.000000 0.000000\r\n", + "..y\\sql\\type_api.py:1465 to_instance 8 0.000000 0.000000 0.000000\r\n", + "..threading.py:441 Semaphore.release 7 0.000000 0.000000 0.000000\r\n", + "..ib\\sre_parse.py:969 parse_template 1 0.000000 0.000000 0.000000\r\n", + "..il\\_collections.py:775 unique_list 41 0.000000 0.000000 0.000000\r\n", + "..56 WeakInstanceDict.check_modified 10 0.000000 0.000000 0.000000\r\n", + "..m\\query.py:345 Query._adapt_clause 34 0.000000 0.000000 0.000000\r\n", + "..my\\util\\deprecations.py:115 warned 21/20 0.000000 0.000000 0.000000\r\n", + "..-68gteq6k\\lib\\enum.py:278 __call__ 26 0.000000 0.000000 0.000000\r\n", + "..:1136 Session._connection_for_bind 6 0.000000 0.000000 0.000000\r\n", + "..b\\sre_compile.py:536 _compile_info 12 0.000000 0.000000 0.000000\r\n", + "..539 PGDialect_psycopg2.do_rollback 2 0.000000 0.000000 0.000000\r\n", + ".._memoized_property.expire_instance 2 0.000000 0.000000 0.000000\r\n", + "..ections.py:151 immutabledict.union 6 0.000000 0.000000 0.000000\r\n", + "..ListenerCollection._exec_once_impl 1 0.000000 0.000000 0.000000\r\n", + "..reading.py:246 Condition.__enter__ 61 0.000000 0.000000 0.000000\r\n", + "..chemy\\util\\langhelpers.py:906 memo 2 0.000000 0.000000 0.000000\r\n", + "..g2.py:558 _PGUUID.result_processor 2 0.000000 0.000000 0.000000\r\n", + "..piler_psycopg2._truncate_bindparam 4 0.000000 0.000000 0.000000\r\n", + "..ql\\elements.py:4475 _expand_cloned 6 0.000000 0.000000 0.000000\r\n", + "..02 PGDialect_psycopg2._hstore_oids 1 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\result.py:463 6 0.000000 0.000000 0.000000\r\n", + "..ements.py:1946 ClauseList.__init__ 1 0.000000 0.000000 0.000000\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..copg2\\extensions.py:164 1 0.000000 0.000000 0.000000\r\n", + "..ent\\base.py:295 dispatcher.__get__ 10 0.000000 0.000000 0.000000\r\n", + "..6k\\lib\\sre_compile.py:595 isstring 24 0.000000 0.000000 0.000000\r\n", + "..:382 WeakKeyDictionary.__getitem__ 245 0.000000 0.000000 0.000000\r\n", + "..py:1293 Connection._cursor_execute 2 0.000000 0.000000 0.000000\r\n", + "..onTransaction._connection_for_bind 6 0.000000 0.000000 0.000000\r\n", + "..e_compile.py:276 _optimize_charset 34 0.000000 0.000000 0.000000\r\n", + "..pe_api.py:450 VARCHAR.dialect_impl 33 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\result.py:322 9 0.000000 0.000000 0.000000\r\n", + "..selectable.py:2760 Select.__init__ 8 0.000000 0.000000 0.000000\r\n", + "..my\\sql\\compiler.py:2125 8 0.000000 0.000000 0.000000\r\n", + "..sql\\elements.py:2489 Cast.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..PGDialect_psycopg2.type_descriptor 13 0.000000 0.000000 0.000000\r\n", + "..Compiler_psycopg2._bind_processors 6 0.000000 0.000000 0.000000\r\n", + "..\\result.py:1362 ResultProxy.scalar 3 0.000000 0.000000 0.000000\r\n", + "..mpl.py:143 QueuePool._inc_overflow 1 0.000000 0.000000 0.000000\r\n", + "..e.py:1757 RootTransaction.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..emy\\sql\\compiler.py:1002 4 0.000000 0.000000 0.000000\r\n", + "..y:357 _PGUUID._has_bind_expression 1 0.000000 0.000000 0.000000\r\n", + "..esql\\json.py:177 _PGJSONB.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..lchemy\\event\\base.py:87 5 0.000000 0.000000 0.000000\r\n", + "..base.py:707 Connection._begin_impl 1 0.000000 0.000000 0.000000\r\n", + "..ib\\sre_compile.py:453 _get_iscased 29 0.000000 0.000000 0.000000\r\n", + "..iler.py:410 _CompileLabel.__init__ 29 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\result.py:372 6 0.000000 0.000000 0.000000\r\n", + "..re_parse.py:160 SubPattern.__len__ 261 0.000000 0.000000 0.000000\r\n", + "..y:4713 _ColumnEntity.setup_context 27 0.000000 0.000000 0.000000\r\n", + "..chemy\\orm\\loading.py:59 6 0.000000 0.000000 0.000000\r\n", + "..py:436 prefix_anon_map.__missing__ 6 0.000000 0.000000 0.000000\r\n", + "..y:316 _ListenerCollection.__call__ 2 0.000000 0.000000 0.000000\r\n", + "..py:635 ThreadPoolExecutor.__exit__ 1 0.000000 0.000000 0.000000\r\n", + "..rs.py:63 _SelectorMapping.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..reading.py:1095 _MainThread.daemon 2 0.000000 0.000000 0.000000\r\n", + "..b\\threading.py:1306 current_thread 3 0.000000 0.000000 0.000000\r\n", + "..tors.py:180 SelectSelector.get_key 1 0.000000 0.000000 0.000000\r\n", + "..\\lib\\_weakrefset.py:81 WeakSet.add 22 0.000000 0.000000 0.000000\r\n", + "..n-68gteq6k\\lib\\os.py:732 check_str 1 0.000000 0.000000 0.000000\r\n", + "..hreading.py:222 Condition.__init__ 13 0.000000 0.000000 0.000000\r\n", + "..ctorEventLoopPolicy.new_event_loop 1 0.000000 0.000000 0.000000\r\n", + "..8\\Lib\\threading.py:979 Thread.join 1 0.000000 0.000000 0.000000\r\n", + "..y:632 ThreadPoolExecutor.__enter__ 1 0.000000 0.000000 0.000000\r\n", + "..ion\\analysis.py:367 wrap_coroutine 1 0.000000 0.000000 0.000000\r\n", + "..ib\\threading.py:1110 Thread.daemon 2 0.000000 0.000000 0.000000\r\n", + "..tures\\_base.py:316 Future.__init__ 7 0.000000 0.000000 0.000000\r\n", + "..ors.py:209 SelectSelector.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..y:102 WeakValueDictionary.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..futures\\_base.py:412 Future.result 7 0.000000 0.000000 0.000000\r\n", + "..b\\threading.py:761 Thread.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..\\Lib\\socket.py:219 socket.__init__ 3 0.000000 0.000000 0.000000\r\n", + "..lib\\os.py:668 _Environ.__getitem__ 1 0.000000 0.000000 0.000000\r\n", + "..b\\socket.py:492 socket._real_close 1 0.000000 0.000000 0.000000\r\n", + "..\\Lib\\threading.py:513 Event.is_set 5 0.000000 0.000000 0.000000\r\n", + "..ib\\threading.py:270 Condition.wait 4 0.000000 0.000000 0.000000\r\n", + "..n38\\Lib\\socket.py:496 socket.close 1 0.000000 0.000000 0.000000\r\n", + "...py:284 WeakValueDictionary.update 1 0.000000 0.000000 0.000000\r\n", + "..hreading.py:388 Semaphore.__init__ 2 0.000000 0.000000 0.000000\r\n", + ".._weakrefset.py:36 WeakSet.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..38\\Lib\\socket.py:285 socket.accept 1 0.000000 0.000000 0.000000\r\n", + "..215 SelectSelector._fileobj_lookup 2 0.000000 0.000000 0.000000\r\n", + ":1 __new__ 91 0.000000 0.000000 0.000000\r\n", + "..tion\\analysis.py:373 run_in_thread 1 0.000000 0.000000 0.000000\r\n", + ".. interactable_plot_multiple_charts 1 0.000000 0.000000 0.000000\r\n", + "..ib\\socket.py:97 _intenum_converter 2 0.000000 0.000000 0.000000\r\n", + "..indowsSelectorEventLoop.is_running 2 0.000000 0.000000 0.000000\r\n", + "..WindowsSelectorEventLoop.set_debug 1 0.000000 0.000000 0.000000\r\n", + "..ing.py:255 Condition._release_save 4 0.000000 0.000000 0.000000\r\n", + "..\\Lib\\threading.py:944 Thread._stop 1 0.000000 0.000000 0.000000\r\n", + "..ors.py:298 SelectSelector.register 1 0.000000 0.000000 0.000000\r\n", + "..lib\\functools.py:33 update_wrapper 2 0.000000 0.000000 0.000000\r\n", + "..ng.py:1177 _make_invoke_excepthook 2 0.000000 0.000000 0.000000\r\n", + "..Lib\\selectors.py:21 _fileobj_to_fd 2 0.000000 0.000000 0.000000\r\n", + "..on38\\Lib\\socket.py:518 socket.type 1 0.000000 0.000000 0.000000\r\n", + "..n\\Python38\\Lib\\typing.py:1146 cast 1 0.000000 0.000000 0.000000\r\n", + "..ion\\utils.py:58 profile_with_yappi 1 0.000000 0.000000 0.000000\r\n", + "..68gteq6k\\lib\\functools.py:63 wraps 1 0.000000 0.000000 0.000000\r\n", + "..ollections_abc.py:657 _Environ.get 1 0.000000 0.000000 0.000000\r\n", + "..38\\Lib\\threading.py:540 Event.wait 2 0.000000 0.000000 0.000000\r\n", + "..py:230 ThreadPoolExecutor.shutdown 1 0.000000 0.000000 0.000000\r\n", + "..:1017 Thread._wait_for_tstate_lock 1 0.000000 0.000000 0.000000\r\n", + "..ndowsSelectorEventLoop._add_reader 1 0.000000 0.000000 0.000000\r\n", + "...py:258 Condition._acquire_restore 4 0.000000 0.000000 0.000000\r\n", + ".._WindowsSelectorEventLoop.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..ors.py:293 SelectSelector.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..eq6k\\lib\\_weakrefset.py:38 _remove 19 0.000000 0.000000 0.000000\r\n", + "..38\\Lib\\socket.py:512 socket.family 1 0.000000 0.000000 0.000000\r\n", + "..vents.py:719 get_event_loop_policy 1 0.000000 0.000000 0.000000\r\n", + "..n-68gteq6k\\lib\\os.py:738 encodekey 1 0.000000 0.000000 0.000000\r\n", + ".._WindowsSelectorEventLoop.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..py:120 ThreadPoolExecutor.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..yncio\\events.py:756 new_event_loop 1 0.000000 0.000000 0.000000\r\n", + "..io\\coroutines.py:18 _is_debug_mode 1 0.000000 0.000000 0.000000\r\n", + "..threading.py:394 Semaphore.acquire 7 0.000000 0.000000 0.000000\r\n", + "..py:69 _SelectorMapping.__getitem__ 1 0.000000 0.000000 0.000000\r\n", + "..es\\thread.py:46 _WorkItem.__init__ 7 0.000000 0.000000 0.000000\r\n", + "..ib\\threading.py:505 Event.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..ors.py:234 SelectSelector.register 1 0.000000 0.000000 0.000000\r\n", + "..hon38\\Lib\\socket.py:579 socketpair 1 0.000000 0.000000 0.000000\r\n", + "..sSelectorEventLoop._make_self_pipe 1 0.000000 0.000000 0.000000\r\n", + "..s\\_base.py:386 Future.__get_result 7 0.000000 0.000000 0.000000\r\n", + "..tors.py:272 SelectSelector.get_map 1 0.000000 0.000000 0.000000\r\n", + "..Python38\\Lib\\threading.py:81 RLock 8 0.000000 0.000000 0.000000\r\n", + ".. _GeneratorContextManager.__exit__ 142.. 0.000000 0.000000 0.000000\r\n", + "..1254 Line2D.set_markerfacecoloralt 30 0.000000 0.000000 0.000000\r\n", + "..HandlerLine2D._default_update_prop 8 0.000000 0.000000 0.000000\r\n", + "..y:980 _ConnectionFairy.__getattr__ 2 0.000000 0.000000 0.000000\r\n", + "..\\axis.py:618 YTick.update_position 3 0.000000 0.000000 0.000000\r\n", + "..y:583 AxesSubplot._unstale_viewLim 2 0.000000 0.000000 0.000000\r\n", + "..py:133 GridSpec.get_grid_positions 1 0.000000 0.000000 0.000000\r\n", + "..lib\\transforms.py:782 from_extents 20 0.000000 0.000000 0.000000\r\n", + "..istry.py:246 _EventKey.base_listen 3 0.000000 0.000000 0.000000\r\n", + "..copg2\\tz.py:36 FixedOffsetTimezone 1 0.000000 0.000000 0.000000\r\n", + "..y\\orm\\session.py:893 Session.begin 3 0.000000 0.000000 0.000000\r\n", + "..ok\\__init__.py:2108 _check_in_list 449 0.000000 0.000000 0.000000\r\n", + "...py:556 UUID.coerce_compared_value 4 0.000000 0.000000 0.000000\r\n", + "..:1088 ExtensionFileLoader.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\colors.py:225 4 0.000000 0.000000 0.000000\r\n", + "..otlib\\axes\\_base.py:363 4 0.000000 0.000000 0.000000\r\n", + "..__.py:185 CallbackRegistry.process 26 0.000000 0.000000 0.000000\r\n", + "..array_function__ internals>:2 tile 1 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:229 XTick.set_clip_path 6 0.000000 0.000000 0.000000\r\n", + "..xesSubplot._set_title_offset_trans 5 0.000000 0.000000 0.000000\r\n", + "..plotlib\\spines.py:517 linear_spine 4 0.000000 0.000000 0.000000\r\n", + "..:776 Rectangle.get_patch_transform 18 0.000000 0.000000 0.000000\r\n", + "..rtist.py:350 Text.is_transform_set 15 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\figure.py:76 2 0.000000 0.000000 0.000000\r\n", + "..gistry.py:67 _stored_in_collection 3 0.000000 0.000000 0.000000\r\n", + "..set.py:16 _IterationGuard.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..nits.py:197 Registry.get_converter 24/14 0.000000 0.000000 0.000000\r\n", + "..tenerCollection._memoized_attr_ref 2 0.000000 0.000000 0.000000\r\n", + "..ler.py:396 PGTypeCompiler.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..lotlib\\dates.py:1921 default_units 8 0.000000 0.000000 0.000000\r\n", + "..base.py:563 AxesSubplot.set_figure 1 0.000000 0.000000 0.000000\r\n", + "..k\\lib\\abc.py:100 __subclasscheck__ 85/14 0.000000 0.000000 0.000000\r\n", + "..lib\\axis.py:922 _translate_tick_kw 8 0.000000 0.000000 0.000000\r\n", + "..manager.py:855 FontProperties.copy 3 0.000000 0.000000 0.000000\r\n", + "..pool\\impl.py:35 QueuePool.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..y:2462 composite_transform_factory 78 0.000000 0.000000 0.000000\r\n", + "..ctions_abc.py:252 __subclasshook__ 1 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:334 XTick._apply_params 14 0.000000 0.000000 0.000000\r\n", + "..t_manager.py:1043 get_default_size 22 0.000000 0.000000 0.000000\r\n", + "...py:1624 FigureCanvasBase.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..owsSelectorEventLoop.create_future 6 0.000000 0.000000 0.000000\r\n", + "..b\\_pylab_helpers.py:109 set_active 1 0.000000 0.000000 0.000000\r\n", + "..y:930 AxesSubplot._gen_axes_spines 1 0.000000 0.000000 0.000000\r\n", + "..es.py:375 FancyBboxPatch.set_alpha 1 0.000000 0.000000 0.000000\r\n", + "..x.py:690 DrawingArea.get_transform 4 0.000000 0.000000 0.000000\r\n", + "..ase.py:867 _ConnectionFairy._reset 1 0.000000 0.000000 0.000000\r\n", + "..ycopg2\\extras.py:805 HstoreAdapter 1 0.000000 0.000000 0.000000\r\n", + "..:536 ScalarFormatter.set_useOffset 16 0.000000 0.000000 0.000000\r\n", + "..emy\\orm\\query.py:1790 Query.filter 4 0.000000 0.000000 0.000000\r\n", + "..text.py:240 Text.set_rotation_mode 24 0.000000 0.000000 0.000000\r\n", + "..ages\\psycopg2\\errors.py:1 1 0.000000 0.000000 0.000000\r\n", + "..lEventsDispatch._event_descriptors 36 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\text.py:170 Text.update 65 0.000000 0.000000 0.000000\r\n", + "..py:913 AxesSubplot._gen_axes_patch 1 0.000000 0.000000 0.000000\r\n", + "..set.py:26 _IterationGuard.__exit__ 1 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:544 YTick._get_text1 3 0.000000 0.000000 0.000000\r\n", + "..rms.py:1632 TransformWrapper._init 2 0.000000 0.000000 0.000000\r\n", + "..:221 Query._set_entity_selectables 6 0.000000 0.000000 0.000000\r\n", + "..\\__init__.py:631 _AxesStack.bubble 1 0.000000 0.000000 0.000000\r\n", + "..6k\\lib\\enum.py:659 RegexFlag.value 4 0.000000 0.000000 0.000000\r\n", + "..CompositeGenericTransform.__init__ 69 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:603 YTick._get_gridline 3 0.000000 0.000000 0.000000\r\n", + "..stry.py:169 _EventKey.with_wrapper 5 0.000000 0.000000 0.000000\r\n", + "..langhelpers.py:344 get_func_kwargs 1 0.000000 0.000000 0.000000\r\n", + "..lib\\patches.py:2146 Round.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..b\\path.py:251 Path.should_simplify 4 0.000000 0.000000 0.000000\r\n", + "..ges\\numpy\\core\\_methods.py:44 _any 4 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:559 YTick._get_text2 3 0.000000 0.000000 0.000000\r\n", + "..xis.py:1969 XAxis._get_offset_text 1 0.000000 0.000000 0.000000\r\n", + "..base.py:375 QueuePool._return_conn 1 0.000000 0.000000 0.000000\r\n", + "..qlalchemy\\orm\\base.py:222 generate 5 0.000000 0.000000 0.000000\r\n", + "..orm._iter_break_from_left_to_right 8 0.000000 0.000000 0.000000\r\n", + "..ngine\\base.py:863 Connection.close 1 0.000000 0.000000 0.000000\r\n", + "..py:1240 Line2D.set_markerfacecolor 30 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:662 Ticker.formatter 65 0.000000 0.000000 0.000000\r\n", + "..7 BlendedGenericTransform.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..lchemy\\orm\\query.py:330 1 0.000000 0.000000 0.000000\r\n", + "..legend.py:1169 _get_legend_handles 5 0.000000 0.000000 0.000000\r\n", + "..tlib\\figure.py:275 Figure.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..t.py:49 Spine._stale_axes_callback 302 0.000000 0.000000 0.000000\r\n", + "..py:834 XAxis.limit_range_for_scale 2 0.000000 0.000000 0.000000\r\n", + "..otlib\\artist.py:74 Figure.__init__ 88 0.000000 0.000000 0.000000\r\n", + ".._base.py:3093 AxesSubplot.set_xlim 1 0.000000 0.000000 0.000000\r\n", + "..774 SourceFileLoader.create_module 9 0.000000 0.000000 0.000000\r\n", + "..34 new_figure_manager_given_figure 1 0.000000 0.000000 0.000000\r\n", + "..xis.py:1525 XAxis._update_axisinfo 13 0.000000 0.000000 0.000000\r\n", + "..ngine\\url.py:299 _rfc_1738_unquote 1 0.000000 0.000000 0.000000\r\n", + "..lotlib\\axis.py:645 Ticker.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..sSubplot.get_xaxis_text1_transform 3 0.000000 0.000000 0.000000\r\n", + "..y:2463 FancyBboxPatch.set_boxstyle 2 0.000000 0.000000 0.000000\r\n", + "..24 AxesSubplot.get_yaxis_transform 29/15 0.000000 0.000000 0.000000\r\n", + "..psycopg2\\_range.py:290 RangeCaster 1 0.000000 0.000000 0.000000\r\n", + "..owsSelectorEventLoop._add_callback 6 0.000000 0.000000 0.000000\r\n", + "..l.py:103 QueuePool._do_return_conn 1 0.000000 0.000000 0.000000\r\n", + "..e-packages\\cycler.py:227 110 0.000000 0.000000 0.000000\r\n", + "..ure.py:487 Figure.set_tight_layout 1 0.000000 0.000000 0.000000\r\n", + "..nal>:1520 path_hook_for_FileFinder 1 0.000000 0.000000 0.000000\r\n", + "..ib\\transforms.py:727 Bbox.__init__ 41 0.000000 0.000000 0.000000\r\n", + "..s.py:1247 AutoDateLocator.__init__ 2 0.000000 0.000000 0.000000\r\n", + "...py:1640 XAxis.set_minor_formatter 16 0.000000 0.000000 0.000000\r\n", + "..:171 DynamicClassAttribute.__get__ 4 0.000000 0.000000 0.000000\r\n", + "..nal>:939 SourceFileLoader.__init__ 9 0.000000 0.000000 0.000000\r\n", + "..610 _WindowsSelectorEventLoop.stop 1 0.000000 0.000000 0.000000\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..b\\function_base.py:2120 4 0.000000 0.000000 0.000000\r\n", + "...py:1423 Figure._add_axes_internal 1 0.000000 0.000000 0.000000\r\n", + "..mportlib._bootstrap>:800 find_spec 10 0.000000 0.000000 0.000000\r\n", + "..:94 PoolEventsDispatch.__getattr__ 12 0.000000 0.000000 0.000000\r\n", + "..axes.py:256 AxesSubplot.set_ylabel 4 0.000000 0.000000 0.000000\r\n", + "..lines.py:1058 Line2D.set_drawstyle 34 0.000000 0.000000 0.000000\r\n", + "..sforms.py:1940 Affine2D.rotate_deg 18 0.000000 0.000000 0.000000\r\n", + "..>:1010 SourceFileLoader.path_stats 9 0.000000 0.000000 0.000000\r\n", + "..b\\cbook\\__init__.py:836 8 0.000000 0.000000 0.000000\r\n", + "..lib\\lines.py:743 Line2D._is_sorted 3 0.000000 0.000000 0.000000\r\n", + "..\\elements.py:709 Column.comparator 4 0.000000 0.000000 0.000000\r\n", + "..tlib\\axis.py:1951 XAxis._get_label 1 0.000000 0.000000 0.000000\r\n", + "..ore\\numerictypes.py:365 issubdtype 4 0.000000 0.000000 0.000000\r\n", + "..\\axis.py:1605 YAxis.set_label_text 5 0.000000 0.000000 0.000000\r\n", + "..copg2\\extras.py:125 DictConnection 1 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\transforms.py:768 null 1 0.000000 0.000000 0.000000\r\n", + "..lib\\offsetbox.py:199 TextArea.axes 16 0.000000 0.000000 0.000000\r\n", + "..nction__ internals>:2 column_stack 12 0.000000 0.000000 0.000000\r\n", + "..ap_external>:90 _path_is_mode_type 13 0.000000 0.000000 0.000000\r\n", + ".._base.py:20 _atleast_1d_dispatcher 24 0.000000 0.000000 0.000000\r\n", + "..py:193 PGDialect_psycopg2.__init__ 1 0.000000 0.000000 0.000000\r\n", + "...py:765 FontProperties.set_variant 23 0.000000 0.000000 0.000000\r\n", + "...py:523 YTick._get_text1_transform 3 0.000000 0.000000 0.000000\r\n", + "..ath.py:230 Path.simplify_threshold 4 0.000000 0.000000 0.000000\r\n", + "..sql\\operators.py:358 Column.__eq__ 8/4 0.000000 0.000000 0.000000\r\n", + "..\\core\\fromnumeric.py:74 85 0.000000 0.000000 0.000000\r\n", + "..sql\\elements.py:4087 Column._label 10 0.000000 0.000000 0.000000\r\n", + "..WeakKeyDictionary._commit_removals 1 0.000000 0.000000 0.000000\r\n", + "..elements.py:724 Column.__getattr__ 3 0.000000 0.000000 0.000000\r\n", + "..k\\__init__.py:626 _AxesStack.clear 3 0.000000 0.000000 0.000000\r\n", + "..ool\\base.py:235 QueuePool._creator 1 0.000000 0.000000 0.000000\r\n", + "..s.py:302 Rectangle.set_antialiased 8 0.000000 0.000000 0.000000\r\n", + "..tlib\\transforms.py:773 from_bounds 1 0.000000 0.000000 0.000000\r\n", + "..68gteq6k\\lib\\weakref.py:44 __new__ 33 0.000000 0.000000 0.000000\r\n", + "..ction__ internals>:2 unravel_index 1 0.000000 0.000000 0.000000\r\n", + "..ycopg2\\_range.py:471 DateTimeRange 1 0.000000 0.000000 0.000000\r\n", + "..asyncio\\futures.py:377 wrap_future 6 0.000000 0.000000 0.000000\r\n", + "..sion.py:3188 sessionmaker.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..07 ExtensionFileLoader.exec_module 1 0.000000 0.000000 0.000000\r\n", + "..\\interfaces.py:856 get_dialect_cls 1 0.000000 0.000000 0.000000\r\n", + "..es.py:341 Rectangle._set_facecolor 20 0.000000 0.000000 0.000000\r\n", + ":1 Session.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..nsaction._iterate_self_and_parents 1 0.000000 0.000000 0.000000\r\n", + "..e\\fromnumeric.py:73 _wrapreduction 85 0.000000 0.000000 0.000000\r\n", + "..\\legend.py:1215 _parse_legend_args 1 0.000000 0.000000 0.000000\r\n", + "..2\\extras.py:226 RealDictConnection 1 0.000000 0.000000 0.000000\r\n", + "..ches.py:458 Rectangle.set_capstyle 11 0.000000 0.000000 0.000000\r\n", + "..chemy\\util\\queue.py:199 Queue._put 1 0.000000 0.000000 0.000000\r\n", + "..as.py:472 MinTimeLoggingConnection 1 0.000000 0.000000 0.000000\r\n", + "..y\\dialects\\__init__.py:52 1 0.000000 0.000000 0.000000\r\n", + "..idspec.py:200 GridSpec.__getitem__ 1 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\text.py:121 Text.__init__ 24 0.000000 0.000000 0.000000\r\n", + "..lotlib\\axes\\_base.py:586 4 0.000000 0.000000 0.000000\r\n", + "..n\\Python38\\Lib\\typing.py:255 inner 1 0.000000 0.000000 0.000000\r\n", + "..extras.py:296 NamedTupleConnection 1 0.000000 0.000000 0.000000\r\n", + "..tion_base.py:1143 _diff_dispatcher 16 0.000000 0.000000 0.000000\r\n", + "..s\\psycopg2\\_range.py:466 DateRange 1 0.000000 0.000000 0.000000\r\n", + "..plotlib\\transforms.py:177 39 0.000000 0.000000 0.000000\r\n", + "..ger.py:835 FontProperties.set_file 23 0.000000 0.000000 0.000000\r\n", + "..py:210 WeakInstanceDict.all_states 2 0.000000 0.000000 0.000000\r\n", + "..8gteq6k\\lib\\sre_parse.py:432 _uniq 22 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\figure.py:74 2 0.000000 0.000000 0.000000\r\n", + "..b\\spines.py:381 Spine.set_position 4 0.000000 0.000000 0.000000\r\n", + "..ib\\function_base.py:2116 8 0.000000 0.000000 0.000000\r\n", + "..mportlib._bootstrap>:725 find_spec 10 0.000000 0.000000 0.000000\r\n", + "..ernal>:629 spec_from_file_location 10 0.000000 0.000000 0.000000\r\n", + ":1 QueuePool.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..:519 PhysicalReplicationConnection 1 0.000000 0.000000 0.000000\r\n", + "..ures\\_base.py:371 Future.cancelled 6 0.000000 0.000000 0.000000\r\n", + ".._init__.py:1610 safe_first_element 24 0.000000 0.000000 0.000000\r\n", + "..cbook\\__init__.py:1933 _setattr_cm 280 0.000000 0.000000 0.000000\r\n", + "..ool\\base.py:231 QueuePool._creator 1 0.000000 0.000000 0.000000\r\n", + "..ker.py:2126 AutoLocator.set_params 16 0.000000 0.000000 0.000000\r\n", + "..\\offsetbox.py:410 VPacker.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..se.py:1699 RootTransaction._parent 1 0.000000 0.000000 0.000000\r\n", + "..__init__.py:60 _StrongRef.__hash__ 6 0.000000 0.000000 0.000000\r\n", + "..lors.py:193 _to_rgba_no_colorcycle 8 0.000000 0.000000 0.000000\r\n", + "..es\\matplotlib\\pyplot.py:427 figure 1 0.000000 0.000000 0.000000\r\n", + "..s.py:1355 AutoDateLocator.set_axis 1 0.000000 0.000000 0.000000\r\n", + "..s.py:263 MarkerStyle.get_fillstyle 8 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\axis.py:1456 XAxis.grid 4 0.000000 0.000000 0.000000\r\n", + "..hes.py:330 Rectangle.set_edgecolor 12 0.000000 0.000000 0.000000\r\n", + "..portlib._bootstrap>:35 _new_module 9 0.000000 0.000000 0.000000\r\n", + "..tlib\\transforms.py:274 Bbox.frozen 1 0.000000 0.000000 0.000000\r\n", + "..plotlib\\text.py:933 Text.set_color 24 0.000000 0.000000 0.000000\r\n", + "..s.py:2221 BlendedAffine2D.__init__ 6 0.000000 0.000000 0.000000\r\n", + ".. HandlerLine2D.adjust_drawing_area 4 0.000000 0.000000 0.000000\r\n", + "..b\\lines.py:1327 Line2D.update_from 8 0.000000 0.000000 0.000000\r\n", + "..ocess_plot_var_args.set_prop_cycle 2 0.000000 0.000000 0.000000\r\n", + "..alchemy\\log.py:174 instance_logger 3 0.000000 0.000000 0.000000\r\n", + "..pe_base.py:219 _vhstack_dispatcher 16 0.000000 0.000000 0.000000\r\n", + "..s\\psycopg2\\tz.py:108 LocalTimezone 1 0.000000 0.000000 0.000000\r\n", + "..mpy\\lib\\function_base.py:1147 diff 16 0.000000 0.000000 0.000000\r\n", + "..lib\\transforms.py:82 Bbox.__init__ 306 0.000000 0.000000 0.000000\r\n", + "..nctools.py:524 decorating_function 1 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\axis.py:1486 4 0.000000 0.000000 0.000000\r\n", + "..emy\\engine\\url.py:129 URL.password 1 0.000000 0.000000 0.000000\r\n", + "..sSelectorEventLoop._process_events 17 0.000000 0.000000 0.000000\r\n", + "..lib\\lines.py:1294 Line2D.set_ydata 39 0.000000 0.000000 0.000000\r\n", + ".._.py:1309 _to_unmasked_float_array 34 0.000000 0.000000 0.000000\r\n", + "..>:147 _ModuleLockManager.__enter__ 10 0.000000 0.000000 0.000000\r\n", + "..\\sqlalchemy\\event\\api.py:34 listen 3 0.000000 0.000000 0.000000\r\n", + "..gure.py:2059 Figure.add_axobserver 1 0.000000 0.000000 0.000000\r\n", + "..teq6k\\lib\\copy.py:257 _reconstruct 1 0.000000 0.000000 0.000000\r\n", + "..artist.py:827 Line2D.get_clip_path 4 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\legend.py:1253 1 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\figure.py:1073 fixitems 1 0.000000 0.000000 0.000000\r\n", + "..r.py:742 FontProperties.set_family 23 0.000000 0.000000 0.000000\r\n", + "..ap_external>:294 cache_from_source 18 0.000000 0.000000 0.000000\r\n", + "..forms.py:1669 TransformWrapper.set 2 0.000000 0.000000 0.000000\r\n", + "..tlib\\units.py:81 AxisInfo.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..ncio\\coroutines.py:177 iscoroutine 2 0.000000 0.000000 0.000000\r\n", + "..\\psycopg2\\extensions.py:109 SQL_IN 1 0.000000 0.000000 0.000000\r\n", + "..plotlib\\gridspec.py:382 1 0.000000 0.000000 0.000000\r\n", + "..xternal>:1265 _path_importer_cache 19 0.000000 0.000000 0.000000\r\n", + "..kages\\psycopg2\\_json.py:1 1 0.000000 0.000000 0.000000\r\n", + "..process_plot_var_args._setdefaults 4 0.000000 0.000000 0.000000\r\n", + "..b\\axis.py:459 XTick._get_tick1line 3 0.000000 0.000000 0.000000\r\n", + "..y\\lib\\shape_base.py:1227 2 0.000000 0.000000 0.000000\r\n", + "..ages\\psycopg2\\extras.py:1 1 0.000000 0.000000 0.000000\r\n", + "..\\transforms.py:939 Bbox.get_points 3 0.000000 0.000000 0.000000\r\n", + "..tlib\\legend.py:569 Legend._set_loc 1 0.000000 0.000000 0.000000\r\n", + "..tlib\\axis.py:2466 YAxis.get_minpos 1 0.000000 0.000000 0.000000\r\n", + "..s.py:1398 Line2D.set_dash_capstyle 30 0.000000 0.000000 0.000000\r\n", + "..on38\\Lib\\uuid.py:259 UUID.__hash__ 4 0.000000 0.000000 0.000000\r\n", + "..otlib\\artist.py:197 Rectangle.axes 117 0.000000 0.000000 0.000000\r\n", + "..py:2459 AxesSubplot._get_axis_list 1 0.000000 0.000000 0.000000\r\n", + "..\\orm\\session.py:1288 Session.close 1 0.000000 0.000000 0.000000\r\n", + "..\\offsetbox.py:356 HPacker.__init__ 7 0.000000 0.000000 0.000000\r\n", + "..ion-68gteq6k\\lib\\weakref.py:51 _cb 2 0.000000 0.000000 0.000000\r\n", + "..opg2\\_range.py:476 DateTimeTZRange 1 0.000000 0.000000 0.000000\r\n", + "..ycopg2\\extras.py:65 DictCursorBase 1 0.000000 0.000000 0.000000\r\n", + "..lectorEventLoop._process_self_data 6 0.000000 0.000000 0.000000\r\n", + "..y:154 to_unicode_processor_factory 1 0.000000 0.000000 0.000000\r\n", + "..:116 PoolEventsDispatch._for_class 2 0.000000 0.000000 0.000000\r\n", + "..hemy\\engine\\url.py:56 URL.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..otlib\\rcsetup.py:123 validate_bool 1 0.000000 0.000000 0.000000\r\n", + "..b\\scale.py:97 LinearScale.__init__ 16 0.000000 0.000000 0.000000\r\n", + "..b._bootstrap>:157 _get_module_lock 18 0.000000 0.000000 0.000000\r\n", + "..ping.py:717 _GenericAlias.__hash__ 1 0.000000 0.000000 0.000000\r\n", + "..y:512 LogicalReplicationConnection 1 0.000000 0.000000 0.000000\r\n", + "..r.py:774 FontProperties.set_weight 27 0.000000 0.000000 0.000000\r\n", + "..er.py:72 HandlerLine2D.update_prop 8 0.000000 0.000000 0.000000\r\n", + "..til\\_collections.py:317 5 0.000000 0.000000 0.000000\r\n", + "..ig\\configurable.py:426 initialized 2 0.000000 0.000000 0.000000\r\n", + "..t\\registry.py:193 _EventKey.listen 4/3 0.000000 0.000000 0.000000\r\n", + "..otlib\\transforms.py:394 Bbox.width 1 0.000000 0.000000 0.000000\r\n", + "..s\\matplotlib\\axis.py:841 XAxis.cla 12 0.000000 0.000000 0.000000\r\n", + "..ootstrap_external>:99 _path_isfile 12 0.000000 0.000000 0.000000\r\n", + "..d_bases.py:3325 new_figure_manager 1 0.000000 0.000000 0.000000\r\n", + "..sSubplot.get_yaxis_text2_transform 3 0.000000 0.000000 0.000000\r\n", + "..nit__.py:1974 _OrderedSet.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..lotlib\\axis.py:822 XAxis.get_scale 5 0.000000 0.000000 0.000000\r\n", + "..s\\_base.py:597 AxesSubplot.viewLim 2 0.000000 0.000000 0.000000\r\n", + "..f.py:385 WeakKeyDictionary.__len__ 2 0.000000 0.000000 0.000000\r\n", + "...py:526 YTick._get_text2_transform 3 0.000000 0.000000 0.000000\r\n", + "..bootstrap_external>:1508 1 0.000000 0.000000 0.000000\r\n", + "..plotlib\\axis.py:649 Ticker.locator 3 0.000000 0.000000 0.000000\r\n", + "..y:528 Text._update_clip_properties 15 0.000000 0.000000 0.000000\r\n", + "..lotlib\\axes\\_base.py:232 8 0.000000 0.000000 0.000000\r\n", + "..ing>:1 PGDialect_psycopg2.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..hes.py:260 Rectangle.get_transform 18 0.000000 0.000000 0.000000\r\n", + "..bootstrap>:103 _ModuleLock.release 18 0.000000 0.000000 0.000000\r\n", + "..lib\\artist.py:974 Rectangle.update 140 0.000000 0.000000 0.000000\r\n", + "..py:2249 BlendedAffine2D.get_matrix 4 0.000000 0.000000 0.000000\r\n", + "..tlib\\dates.py:174 _get_rc_timezone 6 0.000000 0.000000 0.000000\r\n", + "..e.py:117 LinearScale.get_transform 4 0.000000 0.000000 0.000000\r\n", + "..ase.py:746 Connection._commit_impl 1 0.000000 0.000000 0.000000\r\n", + "..ges\\numpy\\core\\_methods.py:47 _all 1 0.000000 0.000000 0.000000\r\n", + "..sSubplot.get_xaxis_text2_transform 3 0.000000 0.000000 0.000000\r\n", + "..ib\\axes\\_subplots.py:229 2 0.000000 0.000000 0.000000\r\n", + "..egation\\analysis.py:212 8613 0.000000 0.000000 0.000000\r\n", + "..mpy\\core\\fromnumeric.py:42 _wrapit 3 0.000000 0.000000 0.000000\r\n", + "..lib\\transforms.py:935 Bbox.minposy 1 0.000000 0.000000 0.000000\r\n", + "...py:2266 blended_transform_factory 8 0.000000 0.000000 0.000000\r\n", + "..93 vectorize._get_ufunc_and_otypes 4 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\artist.py:1006 140 0.000000 0.000000 0.000000\r\n", + "..py:2538 FigureManagerBase.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..json.py:146 register_default_jsonb 1 0.000000 0.000000 0.000000\r\n", + "..chemy\\engine\\url.py:156 1 0.000000 0.000000 0.000000\r\n", + ":1 Comparator. 4 0.000000 0.000000 0.000000\r\n", + "..ib\\stride_tricks.py:262 10 0.000000 0.000000 0.000000\r\n", + "..b\\sre_parse.py:98 State.checkgroup 1 0.000000 0.000000 0.000000\r\n", + "..extras.py:500 MinTimeLoggingCursor 1 0.000000 0.000000 0.000000\r\n", + "..syncio\\base_futures.py:13 isfuture 37 0.000000 0.000000 0.000000\r\n", + "..lalchemy\\event\\base.py:243 _listen 3 0.000000 0.000000 0.000000\r\n", + "..ok\\__init__.py:601 _AxesStack.push 2 0.000000 0.000000 0.000000\r\n", + "..s.py:2544 BboxTransformTo.__init__ 20 0.000000 0.000000 0.000000\r\n", + "..ist.py:961 Rectangle.set_in_layout 1 0.000000 0.000000 0.000000\r\n", + "..opg2\\extras.py:526 StopReplication 1 0.000000 0.000000 0.000000\r\n", + "..nghelpers.py:248 PluginLoader.load 1 0.000000 0.000000 0.000000\r\n", + "..1 _process_plot_var_args._makeline 4 0.000000 0.000000 0.000000\r\n", + "..ation-68gteq6k\\lib\\copy.py:66 copy 1 0.000000 0.000000 0.000000\r\n", + "..entifierPreparer_psycopg2.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..asyncio\\tasks.py:653 ensure_future 2 0.000000 0.000000 0.000000\r\n", + "..yncio\\futures.py:335 _chain_future 6 0.000000 0.000000 0.000000\r\n", + "..alchemy\\util\\queue.py:92 Queue.put 1 0.000000 0.000000 0.000000\r\n", + "..48 AxesSubplot.get_xaxis_transform 29/15 0.000000 0.000000 0.000000\r\n", + "..romnumeric.py:2185 _any_dispatcher 76 0.000000 0.000000 0.000000\r\n", + "...py:77 PoolEventsDispatch.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..b._bootstrap>:222 _verbose_message 90 0.000000 0.000000 0.000000\r\n", + "..mpy\\core\\multiarray.py:1043 copyto 4 0.000000 0.000000 0.000000\r\n", + "..\\lib\\sre_compile.py:411 _mk_bitmap 5 0.000000 0.000000 0.000000\r\n", + "..ctors.py:319 SelectSelector.select 17 0.000000 0.000000 0.000000\r\n", + "..ffsetbox.py:240 VPacker.set_offset 1 0.000000 0.000000 0.000000\r\n", + ".._comparator.py:41 _boolean_compare 4 0.000000 0.000000 0.000000\r\n", + "...py:1352 Line2D.set_dash_joinstyle 30 0.000000 0.000000 0.000000\r\n", + "..ase.py:3767 AxesSubplot.xaxis_date 4 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:485 XTick._get_gridline 3 0.000000 0.000000 0.000000\r\n", + "..\\numpy\\lib\\shape_base.py:1155 tile 1 0.000000 0.000000 0.000000\r\n", + "..s\\matplotlib\\dates.py:225 2 0.000000 0.000000 0.000000\r\n", + "..y:2175 XAxis.set_default_intervals 1 0.000000 0.000000 0.000000\r\n", + "..tstrap_external>:493 _classify_pyc 9 0.000000 0.000000 0.000000\r\n", + "..external>:1394 FileFinder.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..py:140 _AxesStack.current_key_axes 2 0.000000 0.000000 0.000000\r\n", + "..y:355 _ListenerCollection.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:444 XTick._get_text2 3 0.000000 0.000000 0.000000\r\n", + "..copg2\\extras.py:233 RealDictCursor 1 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\path.py:197 Path.vertices 16 0.000000 0.000000 0.000000\r\n", + "..t_comparator.py:359 _check_literal 4 0.000000 0.000000 0.000000\r\n", + "..ctions_abc.py:271 __subclasshook__ 5 0.000000 0.000000 0.000000\r\n", + "..es\\numpy\\core\\_methods.py:28 _amax 2 0.000000 0.000000 0.000000\r\n", + "..nal>:969 SourceFileLoader.get_data 9 0.000000 0.000000 0.000000\r\n", + "..ib\\weakref.py:73 WeakMethod.__eq__ 1 0.000000 0.000000 0.000000\r\n", + "..e.py:853 _ConnectionFairy._checkin 1 0.000000 0.000000 0.000000\r\n", + "..artist.py:841 TextArea.set_clip_on 16 0.000000 0.000000 0.000000\r\n", + "..e\\interfaces.py:901 engine_created 1 0.000000 0.000000 0.000000\r\n", + "..b\\weakref.py:328 KeyedRef.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..\\lines.py:730 Line2D.set_transform 38 0.000000 0.000000 0.000000\r\n", + "..s.py:1709 IdentityTransform.__eq__ 9/8 0.000000 0.000000 0.000000\r\n", + "..\\cbook\\__init__.py:1737 74 0.000000 0.000000 0.000000\r\n", + "..\\spines.py:226 Spine.register_axis 4 0.000000 0.000000 0.000000\r\n", + "..ng\\__init__.py:772 Logger.__init__ 3 0.000000 0.000000 0.000000\r\n", + "..Figure.set_constrained_layout_pads 1 0.000000 0.000000 0.000000\r\n", + "..nal>:849 SourceFileLoader.get_code 9 0.000000 0.000000 0.000000\r\n", + "...py:235 SubplotParams._update_this 12 0.000000 0.000000 0.000000\r\n", + "..y\\log.py:221 echo_property.__set__ 1 0.000000 0.000000 0.000000\r\n", + "..s\\matplotlib\\axis.py:342 70 0.000000 0.000000 0.000000\r\n", + "..:136 Affine2D._invalidate_internal 90/76 0.000000 0.000000 0.000000\r\n", + "..n.py:500 SessionTransaction.commit 1 0.000000 0.000000 0.000000\r\n", + "..b\\transforms.py:914 Bbox.intervaly 1 0.000000 0.000000 0.000000\r\n", + "...py:311 RangeCaster._create_ranges 6 0.000000 0.000000 0.000000\r\n", + "...py:1689 TransformWrapper. 6 0.000000 0.000000 0.000000\r\n", + "..ents.py:942 BindParameter.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..ib\\artist.py:800 XAxis.get_visible 2 0.000000 0.000000 0.000000\r\n", + "..ib\\threading.py:1095 Thread.daemon 1 0.000000 0.000000 0.000000\r\n", + "..e._process_projection_requirements 1 0.000000 0.000000 0.000000\r\n", + "..b._bootstrap>:549 module_from_spec 10/9 0.000000 0.000000 0.000000\r\n", + ".. Rectangle._update_patch_transform 18 0.000000 0.000000 0.000000\r\n", + "..\\cbook\\__init__.py:1742 74 0.000000 0.000000 0.000000\r\n", + "..book\\__init__.py:1296 is_math_text 30 0.000000 0.000000 0.000000\r\n", + "..ray_function__ internals>:2 copyto 4 0.000000 0.000000 0.000000\r\n", + "..is.py:1048 XAxis._set_artist_props 4 0.000000 0.000000 0.000000\r\n", + "..59 WeakValueDictionary.__setitem__ 1 0.000000 0.000000 0.000000\r\n", + "..hes.py:402 Rectangle.set_linestyle 7 0.000000 0.000000 0.000000\r\n", + "..y\\pool\\base.py:667 _finalize_fairy 1 0.000000 0.000000 0.000000\r\n", + ".._bootstrap>:477 _init_module_attrs 10 0.000000 0.000000 0.000000\r\n", + ".._bootstrap_external>:80 _path_stat 40 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\dates.py:1893 axisinfo 2 0.000000 0.000000 0.000000\r\n", + "..tbox.py:739 DrawingArea.add_artist 8 0.000000 0.000000 0.000000\r\n", + "..lib\\lines.py:1047 Line2D.set_color 30 0.000000 0.000000 0.000000\r\n", + "..py:2606 BboxTransformFrom.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..\\offsetbox.py:489 HPacker.__init__ 5 0.000000 0.000000 0.000000\r\n", + "..bootstrap_external>:68 _path_split 18 0.000000 0.000000 0.000000\r\n", + "..teGenericTransform.contains_branch 4 0.000000 0.000000 0.000000\r\n", + "..elements.py:4056 Column._get_table 20 0.000000 0.000000 0.000000\r\n", + "..y\\core\\multiarray.py:77 empty_like 4 0.000000 0.000000 0.000000\r\n", + "..offsetbox.py:175 TextArea.__init__ 16 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:529 YTick.apply_tickdir 3 0.000000 0.000000 0.000000\r\n", + "..nsforms.py:126 Affine2D.invalidate 76 0.000000 0.000000 0.000000\r\n", + "...py:792 FontProperties.set_stretch 23 0.000000 0.000000 0.000000\r\n", + "..ib\\__init__.py:1285 is_interactive 2 0.000000 0.000000 0.000000\r\n", + "..it__.py:1323 Manager._fixupParents 3 0.000000 0.000000 0.000000\r\n", + "..sycopg2\\_range.py:457 NumericRange 1 0.000000 0.000000 0.000000\r\n", + "..ib\\artist.py:1037 Spine.set_zorder 18 0.000000 0.000000 0.000000\r\n", + "...py:399 _ListenerCollection.append 3 0.000000 0.000000 0.000000\r\n", + "..lements.py:4145 Column._bind_param 4 0.000000 0.000000 0.000000\r\n", + ".._axes.py:147 AxesSubplot.set_title 4 0.000000 0.000000 0.000000\r\n", + "..tlib\\transforms.py:400 Bbox.height 1 0.000000 0.000000 0.000000\r\n", + "..ler.py:161 HandlerLine2D.get_xdata 4 0.000000 0.000000 0.000000\r\n", + "..e.py:3867 AxesSubplot.set_navigate 1 0.000000 0.000000 0.000000\r\n", + "..bootstrap_external>:36 _relax_case 17 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\axis.py:361 14 0.000000 0.000000 0.000000\r\n", + "..\\axis.py:884 XAxis.set_tick_params 8 0.000000 0.000000 0.000000\r\n", + "..800 AxesSubplot._update_transScale 2 0.000000 0.000000 0.000000\r\n", + "..b\\patches.py:42 Rectangle.__init__ 7 0.000000 0.000000 0.000000\r\n", + "..ib\\path.py:188 Path._update_values 14 0.000000 0.000000 0.000000\r\n", + "..ages\\cycler.py:225 Cycler.__iter__ 12 0.000000 0.000000 0.000000\r\n", + "..er.py:512 ScalarFormatter.__init__ 16 0.000000 0.000000 0.000000\r\n", + "..:220 Spine._ensure_position_is_set 28/24 0.000000 0.000000 0.000000\r\n", + "..function__ internals>:2 empty_like 4 0.000000 0.000000 0.000000\r\n", + "..lib\\legend.py:918 Legend.get_frame 1 0.000000 0.000000 0.000000\r\n", + "..ide_tricks.py:185 _broadcast_shape 10 0.000000 0.000000 0.000000\r\n", + "..tlib\\artist.py:1201 Text.mouseover 7 0.000000 0.000000 0.000000\r\n", + "..y:202 _broadcast_arrays_dispatcher 10 0.000000 0.000000 0.000000\r\n", + "..lib\\shape_base.py:597 column_stack 12 0.000000 0.000000 0.000000\r\n", + "..init__.py:882 Grouper.get_siblings 6 0.000000 0.000000 0.000000\r\n", + "..045 AxesSubplot._process_unit_info 6 0.000000 0.000000 0.000000\r\n", + "..ap_external>:578 _compile_bytecode 9 0.000000 0.000000 0.000000\r\n", + "..y:542 PGDialect_psycopg2.do_commit 1 0.000000 0.000000 0.000000\r\n", + "..ile.py:432 _generate_overlap_table 2 0.000000 0.000000 0.000000\r\n", + "<__array_function__ internals>:2 all 9 0.000000 0.000000 0.000000\r\n", + "..alchemy\\event\\api.py:23 _event_key 3 0.000000 0.000000 0.000000\r\n", + "..._bootstrap>:376 ModuleSpec.cached 19 0.000000 0.000000 0.000000\r\n", + "...py:1247 BboxTransformFrom.__add__ 78 0.000000 0.000000 0.000000\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..plotlib\\gridspec.py:204 _normalize 1 0.000000 0.000000 0.000000\r\n", + "..figure.py:199 SubplotParams.update 2 0.000000 0.000000 0.000000\r\n", + ".._json.py:133 register_default_json 1 0.000000 0.000000 0.000000\r\n", + "..p>:143 _ModuleLockManager.__init__ 10 0.000000 0.000000 0.000000\r\n", + "..:513 Figure.set_constrained_layout 1 0.000000 0.000000 0.000000\r\n", + ".. FontProperties.get_size_in_points 1 0.000000 0.000000 0.000000\r\n", + "..60 ScalarFormatter.set_useMathText 16 0.000000 0.000000 0.000000\r\n", + "..er.py:755 FontProperties.set_style 23 0.000000 0.000000 0.000000\r\n", + "...py:900 AutoDateFormatter.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..ok\\__init__.py:2125 _check_getitem 4 0.000000 0.000000 0.000000\r\n", + "..py:1210 Line2D.set_markeredgecolor 30 0.000000 0.000000 0.000000\r\n", + "..psycopg2\\extras.py:261 RealDictRow 1 0.000000 0.000000 0.000000\r\n", + "...py:978 Rectangle._update_property 42 0.000000 0.000000 0.000000\r\n", + "..rm\\session.py:655 Session.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..per._iter_break_from_left_to_right 8 0.000000 0.000000 0.000000\r\n", + "..stgresql\\psycopg2.py:711 4 0.000000 0.000000 0.000000\r\n", + "..lotlib\\spines.py:36 Spine.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..b\\asyncio\\futures.py:269 _get_loop 8 0.000000 0.000000 0.000000\r\n", + "..dates.py:1496 YearLocator.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..\\type_api.py:64 Comparator.operate 4 0.000000 0.000000 0.000000\r\n", + "..b\\figure.py:66 _AxesStack.__init__ 1 0.000000 0.000000 0.000000\r\n", + "...py:299 NullFormatter._set_locator 31 0.000000 0.000000 0.000000\r\n", + "..\\axis.py:501 XTick.update_position 3 0.000000 0.000000 0.000000\r\n", + "..re\\numerictypes.py:293 issubclass_ 8 0.000000 0.000000 0.000000\r\n", + "..init__.py:791 RcParams.__getitem__ 1343 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\axis.py:383 14 0.000000 0.000000 0.000000\r\n", + "..b\\transforms.py:909 Bbox.intervalx 3 0.000000 0.000000 0.000000\r\n", + "..ase.py:1731 RootTransaction.commit 1 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:1579 XAxis.set_units 12 0.000000 0.000000 0.000000\r\n", + "..sql\\elements.py:740 Column.operate 4 0.000000 0.000000 0.000000\r\n", + "..se.py:593 _column_stack_dispatcher 12 0.000000 0.000000 0.000000\r\n", + "..tlib\\axis.py:864 XAxis.reset_ticks 16 0.000000 0.000000 0.000000\r\n", + "..bootstrap_external>:1334 find_spec 10 0.000000 0.000000 0.000000\r\n", + "..\\gridspec.py:246 GridSpec.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..is.py:197 XTick._set_labelrotation 6 0.000000 0.000000 0.000000\r\n", + "..__.py:138 CallbackRegistry.connect 33 0.000000 0.000000 0.000000\r\n", + "..ib\\figure.py:70 _AxesStack.as_list 2 0.000000 0.000000 0.000000\r\n", + "..b\\artist.py:819 Line2D.get_clip_on 3 0.000000 0.000000 0.000000\r\n", + "..\\rcsetup.py:163 validate_axisbelow 1 0.000000 0.000000 0.000000\r\n", + "..ession.py:1333 Session._close_impl 1 0.000000 0.000000 0.000000\r\n", + "..ib\\figure.py:778 Figure.set_canvas 2 0.000000 0.000000 0.000000\r\n", + "...py:1623 TransformWrapper.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..otlib\\lines.py:645 Line2D.set_data 30 0.000000 0.000000 0.000000\r\n", + "..er.py:1712 AutoLocator.nonsingular 2 0.000000 0.000000 0.000000\r\n", + "..is.py:1654 XAxis.set_major_locator 17 0.000000 0.000000 0.000000\r\n", + "..y\\dialects\\__init__.py:24 _auto_fn 1 0.000000 0.000000 0.000000\r\n", + "..240 QueuePool._should_wrap_creator 1 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\text.py:1115 Text.set_y 6 0.000000 0.000000 0.000000\r\n", + "..plotlib\\scale.py:718 scale_factory 16 0.000000 0.000000 0.000000\r\n", + "..\\__init__.py:1837 _str_lower_equal 4 0.000000 0.000000 0.000000\r\n", + "..se.py:392 Future.add_done_callback 6 0.000000 0.000000 0.000000\r\n", + "..hemy\\util\\queue.py:195 Queue._full 1 0.000000 0.000000 0.000000\r\n", + "..on\\database.py:107 from_sql_result 4 0.000000 0.000000 0.000000\r\n", + ".. _GeneratorContextManager.__init__ 141 0.000000 0.000000 0.000000\r\n", + "..\\lib\\function_base.py:257 iterable 97 0.000000 0.000000 0.000000\r\n", + "..tion-68gteq6k\\lib\\re.py:268 escape 1 0.000000 0.000000 0.000000\r\n", + "..ger.py:619 FontProperties.__init__ 23 0.000000 0.000000 0.000000\r\n", + "..ments.py:4065 Column._from_objects 10 0.000000 0.000000 0.000000\r\n", + "..xis.py:325 XTick._set_artist_props 30 0.000000 0.000000 0.000000\r\n", + "..xternal>:1426 FileFinder._get_spec 10 0.000000 0.000000 0.000000\r\n", + "..py:1137 Text.set_verticalalignment 33 0.000000 0.000000 0.000000\r\n", + ".._bootstrap_external>:64 82 0.000000 0.000000 0.000000\r\n", + "..hes.py:475 Rectangle.set_joinstyle 7 0.000000 0.000000 0.000000\r\n", + "..py:843 TextArea.set_minimumdescent 1 0.000000 0.000000 0.000000\r\n", + "..s.py:1059 AutoDateLocator.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..ges\\psycopg2\\extras.py:157 DictRow 1 0.000000 0.000000 0.000000\r\n", + "..til.py:368 surface_column_elements 54 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\pyplot.py:612 get_fignums 1 0.000000 0.000000 0.000000\r\n", + "..teq6k\\lib\\copyreg.py:90 __newobj__ 1 0.000000 0.000000 0.000000\r\n", + ".. LinearScale.limit_range_for_scale 2 0.000000 0.000000 0.000000\r\n", + "..b\\scale.py:43 LinearScale.__init__ 16 0.000000 0.000000 0.000000\r\n", + "..umpy\\core\\getlimits.py:365 __new__ 2 0.000000 0.000000 0.000000\r\n", + "..psycopg2\\_json.py:94 register_json 2 0.000000 0.000000 0.000000\r\n", + "..hes.py:348 Rectangle.set_facecolor 12 0.000000 0.000000 0.000000\r\n", + ".. Line2D._split_drawstyle_linestyle 64 0.000000 0.000000 0.000000\r\n", + "..\\orm\\session.py:1554 Session.query 6 0.000000 0.000000 0.000000\r\n", + "..\\__init__.py:1640 normalize_kwargs 74 0.000000 0.000000 0.000000\r\n", + "..\\core\\getlimits.py:398 finfo._init 1 0.000000 0.000000 0.000000\r\n", + "..lib\\sre_parse.py:295 _class_escape 30 0.000000 0.000000 0.000000\r\n", + "..xesSubplot._set_lim_and_transforms 1 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\figure.py:97 1 0.000000 0.000000 0.000000\r\n", + "..q6k\\lib\\functools.py:486 lru_cache 1 0.000000 0.000000 0.000000\r\n", + "..y:4564 _literal_as_label_reference 3 0.000000 0.000000 0.000000\r\n", + "..\\figure.py:152 _AxesStack.__call__ 2 0.000000 0.000000 0.000000\r\n", + "..\\core\\getipython.py:17 get_ipython 2 0.000000 0.000000 0.000000\r\n", + "..on__ internals>:2 broadcast_arrays 10 0.000000 0.000000 0.000000\r\n", + "..:779 PGDialect_psycopg2.on_connect 1 0.000000 0.000000 0.000000\r\n", + "..ec.py:549 SubplotSpec.get_gridspec 1 0.000000 0.000000 0.000000\r\n", + "..ages\\psycopg2\\compat.py:1 1 0.000000 0.000000 0.000000\r\n", + "..s.py:129 AxesSubplot.update_params 1 0.000000 0.000000 0.000000\r\n", + "..tableColumnCollection.__contains__ 10 0.000000 0.000000 0.000000\r\n", + "..chemy\\orm\\query.py:4634 27 0.000000 0.000000 0.000000\r\n", + "..lib\\legend.py:938 Legend.set_title 1 0.000000 0.000000 0.000000\r\n", + "..essionTransaction._remove_snapshot 1 0.000000 0.000000 0.000000\r\n", + "..\\asyncio\\futures.py:351 _set_state 6 0.000000 0.000000 0.000000\r\n", + "..units.py:58 _is_natively_supported 12 0.000000 0.000000 0.000000\r\n", + "..my\\orm\\query.py:164 Query.__init__ 6 0.000000 0.000000 0.000000\r\n", + "..ray_function__ internals>:2 hstack 16 0.000000 0.000000 0.000000\r\n", + "..b\\gridspec.py:31 GridSpec.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..ython38\\Lib\\inspect.py:80 ismethod 2 0.000000 0.000000 0.000000\r\n", + "..tist.py:804 Rectangle.get_animated 1714 0.000000 0.000000 0.000000\r\n", + "..ericTransform._invalidate_internal 4/3 0.000000 0.000000 0.000000\r\n", + "..plotlib\\axis.py:653 Ticker.locator 33 0.000000 0.000000 0.000000\r\n", + "..query.py:88 get_data_by_deployment 1 0.000000 0.000000 0.000000\r\n", + "..otlib\\__init__.py:1267 get_backend 1 0.000000 0.000000 0.000000\r\n", + "...py:407 XTick._get_text1_transform 3 0.000000 0.000000 0.000000\r\n", + "..bootstrap>:58 _ModuleLock.__init__ 10 0.000000 0.000000 0.000000\r\n", + "...py:635 Legend._approx_text_height 2 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:1812 XAxis.axis_date 4 0.000000 0.000000 0.000000\r\n", + "..on.py:579 SessionTransaction.close 2 0.000000 0.000000 0.000000\r\n", + "..ures\\_base.py:443 Future.exception 6 0.000000 0.000000 0.000000\r\n", + "..ompat.py:61 inspect_getfullargspec 2 0.000000 0.000000 0.000000\r\n", + "..aggregation\\query.py:82 4 0.000000 0.000000 0.000000\r\n", + "..patches.py:491 Rectangle.set_hatch 7 0.000000 0.000000 0.000000\r\n", + "...py:410 XTick._get_text2_transform 3 0.000000 0.000000 0.000000\r\n", + "..zipimport>:63 zipimporter.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..__init__.py:1632 sanitize_sequence 8 0.000000 0.000000 0.000000\r\n", + "..es.py:768 Rectangle._convert_units 18 0.000000 0.000000 0.000000\r\n", + "..numpy\\core\\fromnumeric.py:2189 any 76 0.000000 0.000000 0.000000\r\n", + "..base.py:321 _inspect_mapped_object 4 0.000000 0.000000 0.000000\r\n", + "..re\\multiarray.py:990 unravel_index 1 0.000000 0.000000 0.000000\r\n", + "<__array_function__ internals>:2 any 76 0.000000 0.000000 0.000000\r\n", + "..registry.py:154 _EventKey.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..ist.py:605 FancyBboxPatch.set_snap 1 0.000000 0.000000 0.000000\r\n", + "..s.py:697 _GatheringFuture.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..38\\Lib\\asyncio\\tasks.py:717 gather 1 0.000000 0.000000 0.000000\r\n", + "..elpers.py:1381 parse_user_argument 2 0.000000 0.000000 0.000000\r\n", + "..kers.py:289 MarkerStyle.set_marker 42 0.000000 0.000000 0.000000\r\n", + "..s.py:424 Spine.get_spine_transform 28/24 0.000000 0.000000 0.000000\r\n", + "..chemy\\orm\\query.py:4642 27 0.000000 0.000000 0.000000\r\n", + "..ib\\lines.py:1196 Line2D.set_marker 4 0.000000 0.000000 0.000000\r\n", + "..sSubplot.get_yaxis_text1_transform 3 0.000000 0.000000 0.000000\r\n", + "..portlib._bootstrap>:890 _find_spec 10 0.000000 0.000000 0.000000\r\n", + "..__init__.py:51 _StrongRef.__init__ 3 0.000000 0.000000 0.000000\r\n", + "..b\\legend.py:701 get_legend_handler 8 0.000000 0.000000 0.000000\r\n", + "..py:155 HandlerLine2D.get_numpoints 4 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\axis.py:372 14 0.000000 0.000000 0.000000\r\n", + "..orms.py:1652 TransformWrapper._set 4 0.000000 0.000000 0.000000\r\n", + "..opg2\\extensions.py:133 NoneAdapter 1 0.000000 0.000000 0.000000\r\n", + "..kers.py:286 MarkerStyle.get_marker 8 0.000000 0.000000 0.000000\r\n", + ".._bootstrap>:78 _ModuleLock.acquire 18 0.000000 0.000000 0.000000\r\n", + "..nsforms.py:1972 Affine2D.translate 36 0.000000 0.000000 0.000000\r\n", + "..hape_base.py:1151 _tile_dispatcher 1 0.000000 0.000000 0.000000\r\n", + "..r.py:63 HandlerLine2D._update_prop 8 0.000000 0.000000 0.000000\r\n", + "..arkers.py:244 MarkerStyle._recache 80 0.000000 0.000000 0.000000\r\n", + "..y:163 TransformedBbox.set_children 149 0.000000 0.000000 0.000000\r\n", + "..EventLoop._asyncgen_firstiter_hook 18 0.000000 0.000000 0.000000\r\n", + "..packages\\psycopg2\\tz.py:1 1 0.000000 0.000000 0.000000\r\n", + "..b\\function_base.py:2144 4 0.000000 0.000000 0.000000\r\n", + "..b\\cbook\\__init__.py:886 6 0.000000 0.000000 0.000000\r\n", + "..syncio\\tasks.py:751 _done_callback 1 0.000000 0.000000 0.000000\r\n", + "...py:2680 AxesSubplot.set_axisbelow 1 0.000000 0.000000 0.000000\r\n", + "..plotlib\\patches.py:1832 2 0.000000 0.000000 0.000000\r\n", + "..ib\\figure.py:104 _AxesStack.bubble 1 0.000000 0.000000 0.000000\r\n", + "..lotlib\\axes\\_base.py:321 12 0.000000 0.000000 0.000000\r\n", + "..Subplot._validate_converted_limits 4 0.000000 0.000000 0.000000\r\n", + "..romnumeric.py:2273 _all_dispatcher 9 0.000000 0.000000 0.000000\r\n", + "..ates.py:593 DateFormatter.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..CompositeGenericTransform. 3 0.000000 0.000000 0.000000\r\n", + "..hemy\\orm\\query.py:537 Query._clone 5 0.000000 0.000000 0.000000\r\n", + "..ase.py:3227 AxesSubplot.get_xscale 4 0.000000 0.000000 0.000000\r\n", + "...py:735 MarkerStyle._set_tickright 3 0.000000 0.000000 0.000000\r\n", + "..is.py:1670 XAxis.set_minor_locator 16 0.000000 0.000000 0.000000\r\n", + "..>:863 _ImportLockContext.__enter__ 30 0.000000 0.000000 0.000000\r\n", + "..etbox.py:303 TextArea.get_children 33 0.000000 0.000000 0.000000\r\n", + "...py:113 GridSpec.set_height_ratios 1 0.000000 0.000000 0.000000\r\n", + "..ry.py:267 _EventKey.append_to_list 3 0.000000 0.000000 0.000000\r\n", + "..umpy\\core\\numeric.py:341 full_like 4 0.000000 0.000000 0.000000\r\n", + "..alect_psycopg2.create_connect_args 1 0.000000 0.000000 0.000000\r\n", + "..lib\\lines.py:1282 Line2D.set_xdata 39 0.000000 0.000000 0.000000\r\n", + "..atplotlib\\artist.py:192 Spine.axes 831 0.000000 0.000000 0.000000\r\n", + "..py:275 SelectSelector._key_from_fd 6 0.000000 0.000000 0.000000\r\n", + "..lotlib\\figure.py:78 _AxesStack.get 2 0.000000 0.000000 0.000000\r\n", + "..._bootstrap>:389 ModuleSpec.parent 14 0.000000 0.000000 0.000000\r\n", + "..sion.py:3236 sessionmaker.__call__ 1 0.000000 0.000000 0.000000\r\n", + "..util\\langhelpers.py:1500 only_once 1 0.000000 0.000000 0.000000\r\n", + "..book\\__init__.py:833 Grouper.clean 8 0.000000 0.000000 0.000000\r\n", + "..ib\\cbook\\__init__.py:1575 10 0.000000 0.000000 0.000000\r\n", + "..s\\numpy\\core\\multiarray.py:707 dot 67 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:819 XAxis.get_transform 4 0.000000 0.000000 0.000000\r\n", + "..g\\__init__.py:1392 Logger.__init__ 3 0.000000 0.000000 0.000000\r\n", + "..5 CompositeGenericTransform.__eq__ 12/8 0.000000 0.000000 0.000000\r\n", + "..otlib\\text.py:1227 Text.set_usetex 24 0.000000 0.000000 0.000000\r\n", + "..ents.py:180 _run_until_complete_cb 1 0.000000 0.000000 0.000000\r\n", + "..\\lines.py:547 Line2D.set_markevery 30 0.000000 0.000000 0.000000\r\n", + ".. _ClsLevelDispatch._adjust_fn_spec 4 0.000000 0.000000 0.000000\r\n", + "..se.py:2873 AxesSubplot.tick_params 2 0.000000 0.000000 0.000000\r\n", + "..b\\function_base.py:2164 4 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:427 XTick._get_text1 3 0.000000 0.000000 0.000000\r\n", + "..ist.py:358 Rectangle.set_transform 85 0.000000 0.000000 0.000000\r\n", + "..core\\multiarray.py:145 concatenate 29 0.000000 0.000000 0.000000\r\n", + "..re_parse.py:267 Tokenizer.getuntil 7 0.000000 0.000000 0.000000\r\n", + "..ms.py:1639 TransformWrapper.__eq__ 4 0.000000 0.000000 0.000000\r\n", + "..tableColumnCollection.__contains__ 10 0.000000 0.000000 0.000000\r\n", + "..b\\function_base.py:2115 4 0.000000 0.000000 0.000000\r\n", + "..ide_tricks.py:206 broadcast_arrays 10 0.000000 0.000000 0.000000\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + ":176 cb 10 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\artist.py:1095 Line2D.set 70 0.000000 0.000000 0.000000\r\n", + "..ogging\\__init__.py:189 _checkLevel 3 0.000000 0.000000 0.000000\r\n", + "..k\\__init__.py:827 Grouper.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..tlib\\axis.py:2166 XAxis.get_minpos 1 0.000000 0.000000 0.000000\r\n", + "..lalchemy\\orm\\query.py:4148 __new__ 32 0.000000 0.000000 0.000000\r\n", + "..abc.py:816 WeakKeyDictionary.clear 1 0.000000 0.000000 0.000000\r\n", + "..lections.py:316 OrderedDict.values 5 0.000000 0.000000 0.000000\r\n", + "..lements.py:365 Column.get_children 27 0.000000 0.000000 0.000000\r\n", + ".. ExtensionFileLoader.create_module 1 0.000000 0.000000 0.000000\r\n", + "..d_inline.py:59 draw_if_interactive 1 0.000000 0.000000 0.000000\r\n", + "..157 CallbackRegistry._remove_proxy 2 0.000000 0.000000 0.000000\r\n", + "..768 IdentityTransform.is_separable 8 0.000000 0.000000 0.000000\r\n", + "..hon38\\Lib\\contextlib.py:238 helper 141 0.000000 0.000000 0.000000\r\n", + "..29 _process_plot_var_args.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..ession.py:1339 Session.expunge_all 1 0.000000 0.000000 0.000000\r\n", + "..ent\\registry.py:165 _EventKey._key 3 0.000000 0.000000 0.000000\r\n", + "..lib\\stride_tricks.py:266 30 0.000000 0.000000 0.000000\r\n", + "..ib\\transforms.py:969 Bbox.mutatedx 2 0.000000 0.000000 0.000000\r\n", + "..ist.py:371 Rectangle.get_transform 31 0.000000 0.000000 0.000000\r\n", + "..end.py:666 get_default_handler_map 2 0.000000 0.000000 0.000000\r\n", + "..tlib\\axis.py:2238 YAxis._get_label 1 0.000000 0.000000 0.000000\r\n", + "..Python38\\Lib\\inspect.py:260 iscode 2 0.000000 0.000000 0.000000\r\n", + "..egation-68gteq6k\\lib\\re.py:201 sub 4 0.000000 0.000000 0.000000\r\n", + "..ers.py:743 MarkerStyle._set_tickup 3 0.000000 0.000000 0.000000\r\n", + ".._bootstrap_external>:62 _path_join 82 0.000000 0.000000 0.000000\r\n", + "..teq6k\\lib\\copyreg.py:99 _slotnames 1 0.000000 0.000000 0.000000\r\n", + "..py:663 PGDialect_psycopg2.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\text.py:554 Text.set_wrap 24 0.000000 0.000000 0.000000\r\n", + "..onfig\\configurable.py:381 instance 2 0.000000 0.000000 0.000000\r\n", + "..ctions_abc.py:367 __subclasshook__ 4 0.000000 0.000000 0.000000\r\n", + "..ansforms.py:1831 Affine2D.__init__ 49 0.000000 0.000000 0.000000\r\n", + "..ycopg2\\extras.py:456 LoggingCursor 1 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\figure.py:1959 Figure.sca 1 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\patches.py:1818 __new__ 2 0.000000 0.000000 0.000000\r\n", + "..ImmutableColumnCollection.__iter__ 5 0.000000 0.000000 0.000000\r\n", + "..ckages\\psycopg2\\extras.py:698 Inet 1 0.000000 0.000000 0.000000\r\n", + "..py:1367 Line2D.set_solid_joinstyle 30 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:413 XTick.apply_tickdir 3 0.000000 0.000000 0.000000\r\n", + "..offsetbox.py:783 TextArea.__init__ 5 0.000000 0.000000 0.000000\r\n", + "..orm\\session.py:1002 Session.commit 1 0.000000 0.000000 0.000000\r\n", + "..ker.py:2004 _Edge_integer.__init__ 2 0.000000 0.000000 0.000000\r\n", + ".._range.py:297 RangeCaster.__init__ 6 0.000000 0.000000 0.000000\r\n", + "..urceFileLoader._check_name_wrapper 9 0.000000 0.000000 0.000000\r\n", + ".._base.py:3484 AxesSubplot.set_ylim 1 0.000000 0.000000 0.000000\r\n", + "..p>:867 _ImportLockContext.__exit__ 30 0.000000 0.000000 0.000000\r\n", + "..es.py:315 Rectangle._set_edgecolor 20 0.000000 0.000000 0.000000\r\n", + "..8 SessionTransaction._prepare_impl 1 0.000000 0.000000 0.000000\r\n", + ".. SessionTransaction._take_snapshot 3 0.000000 0.000000 0.000000\r\n", + "..pool\\base.py:63 QueuePool.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..b\\cbook\\__init__.py:2088 188 0.000000 0.000000 0.000000\r\n", + "..y:886 AxesSubplot.set_axes_locator 1 0.000000 0.000000 0.000000\r\n", + "..ckages\\cycler.py:349 Cycler.by_key 10 0.000000 0.000000 0.000000\r\n", + "..kages\\numpy\\ma\\core.py:666 getdata 8 0.000000 0.000000 0.000000\r\n", + "..rl.py:152 URL._instantiate_plugins 1 0.000000 0.000000 0.000000\r\n", + "..es.py:2396 FancyBboxPatch.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..utableColumnCollection.__getattr__ 9 0.000000 0.000000 0.000000\r\n", + "..plotlib\\patches.py:1833 2 0.000000 0.000000 0.000000\r\n", + "..y\\orm\\query.py:1856 Query.order_by 1 0.000000 0.000000 0.000000\r\n", + "..ngine\\base.py:1869 Engine.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..\\psycopg2\\_ipaddress.py:1 1 0.000000 0.000000 0.000000\r\n", + "..\\psycopg2\\extras.py:132 DictCursor 1 0.000000 0.000000 0.000000\r\n", + "..p>:151 _ModuleLockManager.__exit__ 10 0.000000 0.000000 0.000000\r\n", + ":1 Deployment.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..is.py:1412 XAxis.get_major_locator 2 0.000000 0.000000 0.000000\r\n", + "..axis.py:215 XTick.get_tick_padding 6 0.000000 0.000000 0.000000\r\n", + "..b\\axis.py:574 YTick._get_tick1line 3 0.000000 0.000000 0.000000\r\n", + "..bootstrap>:194 _lock_unlock_module 8 0.000000 0.000000 0.000000\r\n", + "..lib\\transforms.py:931 Bbox.minposx 1 0.000000 0.000000 0.000000\r\n", + "..setbox.py:661 DrawingArea.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..ootstrap_external>:424 _get_cached 10 0.000000 0.000000 0.000000\r\n", + "..\\core\\getlimits.py:239 _get_machar 1 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:1504 XAxis.update_units 14 0.000000 0.000000 0.000000\r\n", + "..elpers.py:1079 _importlater.module 1 0.000000 0.000000 0.000000\r\n", + "..gine\\default.py:295 get_pool_class 1 0.000000 0.000000 0.000000\r\n", + "..xt.py:1214 Text.set_fontproperties 1 0.000000 0.000000 0.000000\r\n", + "..ec.py:586 SubplotSpec.get_position 1 0.000000 0.000000 0.000000\r\n", + "..\\numpy\\core\\_asarray.py:16 asarray 176 0.000000 0.000000 0.000000\r\n", + "..ndowsSelectorEventLoop.create_task 2 0.000000 0.000000 0.000000\r\n", + ".._init__.py:573 _AxesStack.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..lib\\figure.py:453 Figure._get_axes 1 0.000000 0.000000 0.000000\r\n", + "..s\\_base.py:31 _process_plot_format 4 0.000000 0.000000 0.000000\r\n", + "..packages\\cycler.py:138 Cycler.keys 12 0.000000 0.000000 0.000000\r\n", + "..numeric.py:2354 _cumsum_dispatcher 3 0.000000 0.000000 0.000000\r\n", + "..atplotlib\\lines.py:632 Line2D.axes 42 0.000000 0.000000 0.000000\r\n", + "..logging\\__init__.py:2003 getLogger 4 0.000000 0.000000 0.000000\r\n", + "..\\_internal.py:830 npy_ctypes_check 4 0.000000 0.000000 0.000000\r\n", + "..ckages\\psycopg2\\_range.py:36 Range 1 0.000000 0.000000 0.000000\r\n", + "..:687 Legend.get_legend_handler_map 1 0.000000 0.000000 0.000000\r\n", + "..ger.py:810 FontProperties.set_size 27 0.000000 0.000000 0.000000\r\n", + "..lib\\transforms.py:2779 nonsingular 2 0.000000 0.000000 0.000000\r\n", + "..unction__ internals>:2 concatenate 29 0.000000 0.000000 0.000000\r\n", + "..b\\_pylab_helpers.py:115 1 0.000000 0.000000 0.000000\r\n", + "..m\\state.py:328 type._detach_states 2 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\lines.py:59 _scale_dashes 83 0.000000 0.000000 0.000000\r\n", + "..\\futures.py:357 _call_check_cancel 6 0.000000 0.000000 0.000000\r\n", + "..b\\cbook\\__init__.py:2090 type_name 94 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\path.py:211 Path.codes 4 0.000000 0.000000 0.000000\r\n", + "..py:1765 RootTransaction._do_commit 1 0.000000 0.000000 0.000000\r\n", + "..s.py:749 MarkerStyle._set_tickdown 3 0.000000 0.000000 0.000000\r\n", + "..ffsetbox.py:187 VPacker.set_figure 16/1 0.000000 0.000000 0.000000\r\n", + "..pes.py:2997 _resolve_value_to_type 4 0.000000 0.000000 0.000000\r\n", + "..cbook\\__init__.py:1868 Text.method 5 0.000000 0.000000 0.000000\r\n", + "..rtist.py:937 Rectangle.set_visible 69 0.000000 0.000000 0.000000\r\n", + "..artist.py:1052 Line2D.sticky_edges 32 0.000000 0.000000 0.000000\r\n", + "..xesSubplot._request_autoscale_view 8 0.000000 0.000000 0.000000\r\n", + "..b\\axis.py:470 XTick._get_tick2line 3 0.000000 0.000000 0.000000\r\n", + "..e-packages\\cycler.py:371 20 0.000000 0.000000 0.000000\r\n", + "..ore\\numerictypes.py:239 obj2sctype 1 0.000000 0.000000 0.000000\r\n", + "..t\\futures\\_base.py:381 Future.done 6 0.000000 0.000000 0.000000\r\n", + "..ase.py:3618 AxesSubplot.get_yscale 1 0.000000 0.000000 0.000000\r\n", + "..bootstrap_external>:1400 8 0.000000 0.000000 0.000000\r\n", + "..elpers.py:355 get_callable_argspec 1 0.000000 0.000000 0.000000\r\n", + "..nit__.py:1220 PlaceHolder.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..lotlib\\colors.py:123 _is_nth_color 51 0.000000 0.000000 0.000000\r\n", + "..rms.py:1284 TransformWrapper.depth 24 0.000000 0.000000 0.000000\r\n", + "..py\\core\\fromnumeric.py:2358 cumsum 3 0.000000 0.000000 0.000000\r\n", + "..xis.py:2258 YAxis._get_offset_text 1 0.000000 0.000000 0.000000\r\n", + "..uery.py:505 Query._no_limit_offset 5 0.000000 0.000000 0.000000\r\n", + "..strap>:397 ModuleSpec.has_location 10 0.000000 0.000000 0.000000\r\n", + "..py:2644 ScaledTranslation.__init__ 17 0.000000 0.000000 0.000000\r\n", + "..sycopg2\\extras.py:643 UUID_adapter 1 0.000000 0.000000 0.000000\r\n", + "..hon38\\Lib\\inspect.py:285 isbuiltin 1 0.000000 0.000000 0.000000\r\n", + "..b\\cbook\\__init__.py:828 2 0.000000 0.000000 0.000000\r\n", + "..ycopg2.py:741 _psycopg2_extensions 1 0.000000 0.000000 0.000000\r\n", + "..s.py:1096 _importlater.__getattr__ 1 0.000000 0.000000 0.000000\r\n", + "..lib\\artist.py:923 Line2D.set_alpha 7 0.000000 0.000000 0.000000\r\n", + "..654 _WindowsSelectorEventLoop.time 17 0.000000 0.000000 0.000000\r\n", + "...py:3168 BinaryExpression.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..e.py:1907 Figure._set_artist_props 1 0.000000 0.000000 0.000000\r\n", + "..9 PoolEventsDispatch._for_instance 2 0.000000 0.000000 0.000000\r\n", + "..packages\\psycopg2\\_json.py:47 Json 1 0.000000 0.000000 0.000000\r\n", + "..py:117 AxesSubplot.get_subplotspec 1 0.000000 0.000000 0.000000\r\n", + ":1 Query.order_by 1 0.000000 0.000000 0.000000\r\n", + "..tlib\\lines.py:31 _get_dash_pattern 41 0.000000 0.000000 0.000000\r\n", + "..b\\text.py:1059 Text.set_fontweight 4 0.000000 0.000000 0.000000\r\n", + "<__array_function__ internals>:2 dot 67 0.000000 0.000000 0.000000\r\n", + "..se.py:2960 AxesSubplot.set_axis_on 1 0.000000 0.000000 0.000000\r\n", + "..py:1960 Affine2D.rotate_deg_around 18 0.000000 0.000000 0.000000\r\n", + ".._base.py:2048 _process_single_axis 12 0.000000 0.000000 0.000000\r\n", + "..pg2\\extras.py:303 NamedTupleCursor 1 0.000000 0.000000 0.000000\r\n", + ":1 Query.filter 4 0.000000 0.000000 0.000000\r\n", + "..m\\query.py:193 Query._set_entities 6 0.000000 0.000000 0.000000\r\n", + "..nd.py:558 Legend._set_artist_props 9 0.000000 0.000000 0.000000\r\n", + "..hemy\\util\\queue.py:183 Queue._init 1 0.000000 0.000000 0.000000\r\n", + "..idspec.py:508 SubplotSpec.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:666 Ticker.formatter 33 0.000000 0.000000 0.000000\r\n", + "...py:112 PoolEventsDispatch._listen 3 0.000000 0.000000 0.000000\r\n", + "..\\patches.py:704 Rectangle.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..s.py:266 MarkerStyle.set_fillstyle 38 0.000000 0.000000 0.000000\r\n", + ".._init__.py:44 get_projection_class 1 0.000000 0.000000 0.000000\r\n", + "...py:101 State.checklookbehindgroup 1 0.000000 0.000000 0.000000\r\n", + "..llections_abc.py:72 _check_methods 14 0.000000 0.000000 0.000000\r\n", + "..\\futures.py:315 _copy_future_state 6 0.000000 0.000000 0.000000\r\n", + "..nes.py:1035 Line2D.set_antialiased 30 0.000000 0.000000 0.000000\r\n", + "..kref.py:436 WeakKeyDictionary.keys 1 0.000000 0.000000 0.000000\r\n", + "..elements.py:4099 Column._gen_label 10 0.000000 0.000000 0.000000\r\n", + "..atplotlib\\path.py:96 Path.__init__ 14 0.000000 0.000000 0.000000\r\n", + "..b\\artist.py:336 Rectangle.pchanged 373 0.000000 0.000000 0.000000\r\n", + "..y\\core\\fromnumeric.py:55 _wrapfunc 3 0.000000 0.000000 0.000000\r\n", + "..5 Rectangle._stale_figure_callback 134 0.000000 0.000000 0.000000\r\n", + "..process_plot_var_args._getdefaults 4 0.000000 0.000000 0.000000\r\n", + "..ansaction._is_transaction_boundary 4 0.000000 0.000000 0.000000\r\n", + "..gure.py:168 SubplotParams.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..ure.py:155 _AxesStack.__contains__ 1 0.000000 0.000000 0.000000\r\n", + "..ib\\widgets.py:34 LockDraw.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..atplotlib\\legend.py:813 1 0.000000 0.000000 0.000000\r\n", + "..ansforms.py:1701 Affine2D.__init__ 165 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:1944 XAxis._get_tick 3 0.000000 0.000000 0.000000\r\n", + "...py:1626 XAxis.set_major_formatter 17 0.000000 0.000000 0.000000\r\n", + "..plots.py:214 subplot_class_factory 1 0.000000 0.000000 0.000000\r\n", + "..xes\\_base.py:2716 AxesSubplot.grid 2 0.000000 0.000000 0.000000\r\n", + "..:903 AxesSubplot._set_artist_props 7 0.000000 0.000000 0.000000\r\n", + "..8gteq6k\\lib\\weakref.py:323 __new__ 1 0.000000 0.000000 0.000000\r\n", + "...py:1412 Line2D.set_solid_capstyle 30 0.000000 0.000000 0.000000\r\n", + "..gistry.py:263 _EventKey._listen_fn 16 0.000000 0.000000 0.000000\r\n", + "..es\\numpy\\core\\_methods.py:32 _amin 2 0.000000 0.000000 0.000000\r\n", + "..xternal>:1431 FileFinder.find_spec 17 0.000000 0.000000 0.000000\r\n", + "..s\\matplotlib\\colors.py:157 to_rgba 51 0.000000 0.000000 0.000000\r\n", + "..lotlib\\axes\\_base.py:588 4 0.000000 0.000000 0.000000\r\n", + "..otlib\\figure.py:111 _AxesStack.add 1 0.000000 0.000000 0.000000\r\n", + "..2\\_range.py:486 NumberRangeAdapter 1 0.000000 0.000000 0.000000\r\n", + "..:505 Figure.get_constrained_layout 2 0.000000 0.000000 0.000000\r\n", + "..my\\util\\queue.py:43 Queue.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..on.py:159 _create_json_typecasters 2 0.000000 0.000000 0.000000\r\n", + "..bootstrap>:342 ModuleSpec.__init__ 10 0.000000 0.000000 0.000000\r\n", + "..tlib\\axis.py:1559 XAxis.have_units 2 0.000000 0.000000 0.000000\r\n", + "..ctions_abc.py:302 __subclasshook__ 6 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\figure.py:1651 Figure.clf 1 0.000000 0.000000 0.000000\r\n", + "..array_function__ internals>:2 diff 16 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\transforms.py:763 unit 19 0.000000 0.000000 0.000000\r\n", + "..schema.py:1640 Column.get_children 27 0.000000 0.000000 0.000000\r\n", + "..ib\\artist.py:719 Text.set_clip_box 23 0.000000 0.000000 0.000000\r\n", + "..umpy\\core\\shape_base.py:285 hstack 16 0.000000 0.000000 0.000000\r\n", + "..pg2\\extras.py:1007 CompositeCaster 1 0.000000 0.000000 0.000000\r\n", + "..on38\\Lib\\inspect.py:158 isfunction 3 0.000000 0.000000 0.000000\r\n", + "..rs.py:330 MarkerStyle._set_nothing 30 0.000000 0.000000 0.000000\r\n", + "..y\\orm\\base.py:353 _is_mapped_class 7 0.000000 0.000000 0.000000\r\n", + "..et.py:20 _IterationGuard.__enter__ 1 0.000000 0.000000 0.000000\r\n", + "..f.py:463 WeakKeyDictionary.popitem 1 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\axis.py:153 6 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\spines.py:238 Spine.cla 4 0.000000 0.000000 0.000000\r\n", + "..ray_function__ internals>:2 cumsum 3 0.000000 0.000000 0.000000\r\n", + "...py:1006 Legend.set_bbox_to_anchor 1 0.000000 0.000000 0.000000\r\n", + "..lotlib\\axes\\_base.py:945 5 0.000000 0.000000 0.000000\r\n", + "...py:96 _AxesStack._entry_from_axes 1 0.000000 0.000000 0.000000\r\n", + "..tstrap_external>:51 _unpack_uint32 27 0.000000 0.000000 0.000000\r\n", + "..ernal>:526 _validate_timestamp_pyc 9 0.000000 0.000000 0.000000\r\n", + "..\\cbook\\__init__.py:1938 140 0.000000 0.000000 0.000000\r\n", + "..g2\\extras.py:405 LoggingConnection 1 0.000000 0.000000 0.000000\r\n", + "..__init__.py:1272 Manager.getLogger 4 0.000000 0.000000 0.000000\r\n", + "..bootstrap_external>:1302 _get_spec 10 0.000000 0.000000 0.000000\r\n", + ".._.py:118 CallbackRegistry.__init__ 19 0.000000 0.000000 0.000000\r\n", + "..numpy\\core\\fromnumeric.py:2277 all 9 0.000000 0.000000 0.000000\r\n", + "..CompositeGenericTransform. 16/8 0.000000 0.000000 0.000000\r\n", + "..lines.py:1092 Line2D.set_linewidth 30 0.000000 0.000000 0.000000\r\n", + "..ib\\_pylab_helpers.py:99 get_active 1 0.000000 0.000000 0.000000\r\n", + "..38\\Lib\\urllib\\parse.py:624 unquote 1 0.000000 0.000000 0.000000\r\n", + "..ty.py:17 WeakInstanceDict.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..tist.py:1017 AxesSubplot.set_label 5 0.000000 0.000000 0.000000\r\n", + "..ansform.contains_branch_seperately 4 0.000000 0.000000 0.000000\r\n", + "..\\patches.py:436 Rectangle.set_fill 7 0.000000 0.000000 0.000000\r\n", + "..ticker.py:224 AutoLocator.set_axis 67 0.000000 0.000000 0.000000\r\n", + "..sycopg2\\_range.py:242 RangeAdapter 1 0.000000 0.000000 0.000000\r\n", + "..s.py:729 MarkerStyle._set_tickleft 3 0.000000 0.000000 0.000000\r\n", + "..s.py:1642 _fix_ipython_backend2gui 2 0.000000 0.000000 0.000000\r\n", + "..b\\gridspec.py:528 SubplotSpec.num2 1 0.000000 0.000000 0.000000\r\n", + "..py:1225 Line2D.set_markeredgewidth 30 0.000000 0.000000 0.000000\r\n", + "..ager.py:936 _normalize_font_family 46 0.000000 0.000000 0.000000\r\n", + "..oop._set_coroutine_origin_tracking 2 0.000000 0.000000 0.000000\r\n", + "..arkers.py:222 MarkerStyle.__init__ 38 0.000000 0.000000 0.000000\r\n", + "..ylab_helpers.py:29 get_fig_manager 1 0.000000 0.000000 0.000000\r\n", + "..alchemy\\events.py:328 _accept_with 3 0.000000 0.000000 0.000000\r\n", + "..:2053 IdentityTransform.get_matrix 23 0.000000 0.000000 0.000000\r\n", + "..n\\query.py:76 get_deployment_by_id 4 0.000000 0.000000 0.000000\r\n", + "..query.py:329 Query._adapt_col_list 1 0.000000 0.000000 0.000000\r\n", + "..py:2408 CompositeAffine2D.__init__ 9 0.000000 0.000000 0.000000\r\n", + "..meric.py:337 _full_like_dispatcher 4 0.000000 0.000000 0.000000\r\n", + "..ine\\url.py:161 URL._get_entrypoint 1 0.000000 0.000000 0.000000\r\n", + "..d_bases.py:2556 notify_axes_change 1 0.000000 0.000000 0.000000\r\n", + "..ctions_abc.py:392 __subclasshook__ 40 0.000000 0.000000 0.000000\r\n", + "..otstrap_external>:1252 _path_hooks 1 0.000000 0.000000 0.000000\r\n", + "...py:180 AxesSubplot.convert_yunits 48 0.000000 0.000000 0.000000\r\n", + "..g2\\extras.py:538 ReplicationCursor 1 0.000000 0.000000 0.000000\r\n", + "..sql\\elements.py:4451 _as_truncated 10 0.000000 0.000000 0.000000\r\n", + "..y:4590 _expression_literal_as_text 4 0.000000 0.000000 0.000000\r\n", + "..idspec.py:67 GridSpec.get_geometry 3 0.000000 0.000000 0.000000\r\n", + "..y:949 Text.set_horizontalalignment 28 0.000000 0.000000 0.000000\r\n", + "..ernal>:1479 FileFinder._fill_cache 1 0.000000 0.000000 0.000000\r\n", + "..ootstrap_external>:104 _path_isdir 1 0.000000 0.000000 0.000000\r\n", + "..:964 SourceFileLoader.get_filename 9 0.000000 0.000000 0.000000\r\n", + "..py:366 GridSpec.get_subplot_params 1 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\ticker.py:2118 _staircase 16 0.000000 0.000000 0.000000\r\n", + "..forms.py:817 Bbox.update_from_path 4 0.000000 0.000000 0.000000\r\n", + "..lines.py:1143 Line2D.set_linestyle 34 0.000000 0.000000 0.000000\r\n", + "..ctionRegistry.get_projection_class 1 0.000000 0.000000 0.000000\r\n", + "..b\\gridspec.py:532 SubplotSpec.num2 1 0.000000 0.000000 0.000000\r\n", + "..:2165 FigureCanvasBase.mpl_connect 7 0.000000 0.000000 0.000000\r\n", + "..e.py:516 _ConnectionRecord.checkin 1 0.000000 0.000000 0.000000\r\n", + "..rms.py:2093 BlendedAffine2D.__eq__ 4 0.000000 0.000000 0.000000\r\n", + "..artist.py:695 Rectangle.set_figure 95 0.000000 0.000000 0.000000\r\n", + "..:493 Query._no_statement_condition 5 0.000000 0.000000 0.000000\r\n", + "..y:208 _arrays_for_stack_dispatcher 28 0.000000 0.000000 0.000000\r\n", + "..lib\\ticker.py:2103 _validate_steps 16 0.000000 0.000000 0.000000\r\n", + "..WindowsSelectorEventLoop.call_soon 17 0.000000 0.000000 0.000000\r\n", + "..tors.py:313 SelectSelector._select 17 0.000000 0.000000 0.000000\r\n", + "..ase.py:1009 _ConnectionFairy.close 1 0.000000 0.000000 0.000000\r\n", + "..range.py:449 RangeCaster._register 6 0.000000 0.000000 0.000000\r\n", + "..3883 AxesSubplot.set_navigate_mode 1 0.000000 0.000000 0.000000\r\n", + "..ib\\figure.py:1070 Figure._make_key 1 0.000000 0.000000 0.000000\r\n", + "..\\artist.py:1074 Line2D.update_from 8 0.000000 0.000000 0.000000\r\n", + "...py:193 URL.translate_connect_args 1 0.000000 0.000000 0.000000\r\n", + "..chemy\\orm\\query.py:4625 27 0.000000 0.000000 0.000000\r\n", + "..r.py:234 _EmptyListener.for_modify 2 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\figure.py:1089 fixlist 1 0.000000 0.000000 0.000000\r\n", + "..teq6k\\lib\\codecs.py:952 getencoder 1 0.000000 0.000000 0.000000\r\n", + "..plotlib\\text.py:1151 Text.set_text 46 0.000000 0.000000 0.000000\r\n", + "..ib\\artist.py:1013 Line2D.get_label 8 0.000000 0.000000 0.000000\r\n", + "..transforms.py:1924 Affine2D.rotate 18 0.000000 0.000000 0.000000\r\n", + "..py:220 SessionTransaction.__init__ 3 0.000000 0.000000 0.000000\r\n", + "..hes.py:382 Rectangle.set_linewidth 12 0.000000 0.000000 0.000000\r\n", + "..208 _EmptyListener._adjust_fn_spec 4 0.000000 0.000000 0.000000\r\n", + "..tlib\\text.py:535 Text.set_clip_box 15 0.000000 0.000000 0.000000\r\n", + "..y:2444 PGDialect_psycopg2.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..lib\\text.py:1042 Text.set_fontsize 4 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\text.py:1104 Text.set_x 6 0.000000 0.000000 0.000000\r\n", + "..ec.py:93 GridSpec.set_width_ratios 1 0.000000 0.000000 0.000000\r\n", + "..\\transforms.py:1986 Affine2D.scale 13 0.000000 0.000000 0.000000\r\n", + "..sSelectorEventLoop._read_from_self 6 0.000000 0.000000 0.000000\r\n", + "..ctions_abc.py:349 __subclasshook__ 5 0.000000 0.000000 0.000000\r\n", + "..ery.py:4539 _ColumnEntity.__init__ 32/7 0.000000 0.000000 0.000000\r\n", + "..\\lib\\sre_compile.py:413 5 0.000000 0.000000 0.000000\r\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACdsAAAUsCAYAAADFYdzDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdeZhkVX0//vcZhhmQRVDBDRQV0a8YURGMkQhGTdyCRBOXaCIuWYxmMcZoXNFo8jOJ+s3XJXvcSUjcFZfEfUHAFTdQZFdAZWeG2fv8/rjVTnd1VdfaXTU1r9fz9NNd5957zumqe6qYmTefU2qtAQAAAAAAAAAAALpbM+kJAAAAAAAAAAAAwLQTtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAACYMaWUU0opdeHX7jQ+AAAAAMBKELYDAAAAAAAAAACAHoTtAAAAgF1GaVzcXjWtlLK9lHL7Sc8PAAAAAIDZJWwHAAAA7EoemuSOHdr3SHLy6k4FxqOUckKHAOkJE5zPW9vmcvGk5gKzwJoCAACA2SFsBwAAAOxKnrHMsaeXUsqqzQQAAAAAgN2KsB0AAACwSyil3CLJScuccuckJ6zObAAAAAAA2N0I2wEAAAC7iqckWd/WVtseL1f5jlVSaz2l1loWfk16TgAAAAAAoxK2AwAAAHYVT297fH6S97a1PbaUcvNVmg8AAAAAALsRYTsAAABg6pVS7pfkqLbmtyd5W1vb3kl+c1UmBQAAAADAbkXYDgAAANgVtG8PW5O8I8lHk/ykx7kAAAAAADCytZOeAAAAAMBySil7J3lSW/Pnaq2XtI6fmuRPFhw7upRyVK31nBWe155Jjk1yjyS3bDX/OMnXBhm7lLJ/kmOS3C3JAUk2JrkyyRdrrT8c66SXjn3LJPdPcpck+ye5PsnlSc6ptV6wkmMPo5RySJoKhwe1vmqSnya5IsmZtdYbVmEOd01ydJLbJ1mf5Oo0z9kXaq3XrvT4s6iUcs8khyc5OM1auinN63pxki/XWret8PjW8vDjTsuaPCrJIUn2TbI1yRW11nf0ef3tk9w9yWFJbp6mQuoNSa5Jcmmae3Dz+Gc+20op65LcL816uFWa98sbkpxVaz1rgH4OT7M25++xLUmuSvLDNPfYpjFPHQAAAJYlbAcAAABMu19PE4BY6G1tP/9J2/GnJ/njYQYrpZyQ5NNtzQ+utX6mdfx2SV6c5LeS7Nelj+8nedVyYY9Syr2SvCTJiWlCCJ3O+VKS59davzjYb7G8UsrxSV6U5CFJ9uhyzteS/EOSf6u11gH7PyXJyxe21VrLkHM9OMlzk/xqkiOXOXV7KeWsJG9KclqtdW7Acdp/x1fUWk9pHVuT5KlJ/jTJPbt0saOU8pkkL6m1ntnHeKek7Tlq8+lSej5lb6u1ntzrpH6UUi5Ocscuh+/Y4fnp5GfrpI/x7pVm3f5Kktstc+qGUsonkrymn+e1bYwTsouv5V5raaXXcpf+pmFN7pPkD5P8TpI7d+mi42tWSrlVkl9L8tAkxye5dY+pbC2lnJnkjUne0+/vsVJrqtd9PYgOc+z5nlJKOTnJW9qa71Rrvbh1/Mgkf57kcUn26dDF25IsG7YrpdwpzfvtI9P99U2SzaWUzyd5fa31o8v1CQAAAONiG1kAAABg2rVvC3tTknfPP6i1fiPJN9vOeUoppWPoZRSllMcm+W6SP0iXcE7LEUneXkr5r/Z5lMbLknwtyW+kSzin5QFJPl9KedFoM//Z2HuUUt6Y5DNJfjldwjkt903yL0k+1wo+rKpSyrpSyiuTXJjkhVk+1JM0/1PpA5OcmuScVgBqHPM4JMkXkvx7ugftkua5fEiSL5VSXj2OsWdRKeW2pZR3JflGkqdl+aBd0lQqOynN8/r+UsotxjQPa3nwMadlTd4/zWv311k+iNXp2lPTVN375ySPT++gXZKsS/KgJP+V5NutMBkdlFJekmZt/3Y6B+16Xb9/677+XpLnpPfru1eShyX5SCnl86WUOww6JgAAAAxK2A4AAACYWq3t4x7U1vz+WuuNbW1va3t8izQBnXHO5SlpQn7tVfaW8xtpQlrzfZQ0oZdXZPlwzKKhk7y6lPKcAcZd2kkz9juTPHvAS49L8tlSykChllG0AlX/k+SlGSKwkSYU98VSyq+OOI87JzkzTVBqEC8qpbxqlLFnUSnlqCRnJ/nNNPf1oB6T5MxSyhEjzsNaHnzMaVmTD0oTMBw2VPULGW23l/+T5h586Ah9zKRWSO4vM+TzW0q5Y5Ivprmv9xyii+OSnF1K+flhxgcAAIB+2UYWAAAAmGZPz9JQTnuwLkneleRvsjj08owkp41pHvdL8lcL5nJdko+kCWL9JMneaUIYj09yWNu1v1lKeX+t9b/TbPe4sFLfJUk+nOTbSa5OckCSY1v97N/Wz2tKKR+e36pvCM9L8sQFj29M8oEkX07y49bYd0+z9d+hbdcemuRTpZR711qvG3L8vpRSDkgTuLh7h8PfTvLZJN9J8xokycFpwnCPzOIKZfsm+e9SygNrrV8dYir7Jfloktu3HtckZyT5RJJLk2xIclCayl2/lqbC0kJ/UUr5UK2123aJVyY5Z8Fc79J2/ILWGMu5tMfxQXw3O5/TOyQ5cMGxba3jvXSdbynlfmm2vty37dBcks+neW4vas1h7ySHpNnis3171LumqWJ1dK31+j7m1M5aHnAtT9GavE2S92bxWjs7TQjwkjTPw22T3CNNOLKXHWmqEn4nyXlpXrcb0twb+6e5134+zRpf+D+t75vkP0sp96m1XrZM/yu6pqbM72Rx+HNDkv9Nc9/8OM3zd0iSB6d53hdpBe3OSudKg2e3+vlekmvTVBq8bZrg5COyuKLkrZOcXkq5b631ktF+JQAAAOis1FonPQcAAACAJUope6QJEy3cZvLyJIfWWuc6nH96mnDHvLkkdx70H9xLKSekCQUttCU7/0H/DUle1imo0tpm8rVZWnHqe2m21ftSmtDBTWkCM/9Sa+0UPLhNkvekCRMs9M+11t/r43c4JcnL25o3Z2dI5S1J/rTL77AmyXOTvCpLA2RvrbU+bZjxa619VTIrpbwvS6sSntGab7fg2nwg6KVp5r5wrIuT3KtDNcT269v/kmzh83VWkj+otX6ty7WHpXm97tt26OO11ocvN27r+hOy9J57cK31M72uXQmllLcmeeqCpktqrYeN0N+BaUJN7X28JckptdauocFSyl2SvCnJr7Qdem+t9XE9xj0h1vJIa7nVz7SsyR3ZGbz8ZpLfr7V+qcu1e9VaN3do/36Sb6WpDPipfgKbrSDYXyd5Utuh02utj+51fauPt2ZMa2qc7xellIuT3HFB09tqrSf3uObkNPfdQgtfm39M8pJa69Vdrl/02pRS1qXZqvuYtlM/nOTPa63nLjOX2yT52yRPaTv05SQP6LQmAQAAYFS2kQUAAACm1SOyOGiXJO/sFLRraa94tybJyWOay3w4549rrX/UrSJUrXVLrfU5ST7eduhuST7UmtOGJL9Ua/3HbkGAWuuVSR6d5Kdth55YStl7yN9hPmzz/9Van77M7zBXa31tmspQ29sOn9zaxnFFlFJ+N0tDPW9OctxyoZ4kqbVeV2t9XhZXG0uagNcfDDGd+efrw0lO6Ba0a419cZKHpangtNDDSinDbnc5S96UxUG7HUme0roPl63OV2u9IM17QXu457GllPsPMRdrudHXWp6yNTkf5vpikl/sFrRrjb0kaNdyTK31cbXW9/VbGbHWekmt9TeTnNJ26JGllE7V/nZH86/N82qtz+oWtEs6vjanZGnQ7oW11l9dLmjX6uvKWutvpdnOeaFjkvx672kDAADA4ITtAAAAgGnVHtBIkrcvc/4HsnPLvnlPa1V3GodTa63/r89zX9qh7eDW9z/uFVJJklrrtWkqay20f5ZWyBrEZ2qtf9HPibXWD6epiNXuj0YYv6tSyto0W3Mu9LFa67PrAFsz1FrfkuRf25qf26pUNqiL04TCugV3Fo57TZYGPtakCeHttkopd0vyhLbmF9da39VvH63X//eStAdvXjjktKzlxrJreUrX5PVJnlBrvWGIazPk1sPzXpmmYtq8kmarcxrvqbW+bpALWlUv/7Ct+R9rra8ZpJ9a6ylptq1daNj3BwAAAFiWsB0AAAAwdUopByd5VFvz12qt3+l2Ta11S5LT2prvmOQhY5jSjiwNnXRVa/1ymi1w230vSyt0LefdHdratyodxKBBudck+WFb22NKKbcdYQ7dPDGLtzOsWRrC6NcrW9fPu3WSBwzRzysGDOf8Z5p7ZaGjhxh3ljw/i/8O8qIkfzdoJ7XWbUn+qq35EaWU9u1Re7GWd+q1lqdxTb6u1vqjIecwklbA8B1tzcdNYi5TaC7Jnw1x3bOT7Lvg8YYkLxhyDq9se3zv1hbfAAAAMFbCdgAAAMA0emqSPdva2reJ7aRT5btOFfIG9Yla6yUDXvONDm1vGbAi1AVJ2is43W3Aecw7s9b6rUEuaFV0aw+XrE3y0CHnsJz2Lf8+U2v9wTAd1VovS9L+ux4/YDcbk5w64LjXJjm/rXnY12uXV0opSR7b1vzWbluu9uEjbY/XJxl0K1lreadea3na1mRN8u/DjD9G7ev7vqWU9s+q3dGnWttpD6r9HvvvYasWJjkjS6vbDnqPAQAAQE/CdgAAAMA0at+ab3uS/+h1Ua31jCwNQ5xUSrnFiPP53BDXdAr0fH4M/RwwRB9J8v4hr3tvh7afH7KvjlqhrF9saz5jxG4vant8nwGvP7PWunWIcS9oe3zzIfqYFfdKcmBb29Cva2ur3vZKg4O+rtbyYh3X8pSuyR/UWtur842klLJvKeWRpZQXllLeXko5vZTy+VLK10op32j/SvLGti7Wp6nSt7v79KAXtLaQ/bm25lHeH+aydI0Neo8BAABAT2snPQEAAACAhUopD0xy97bmj9Zaf9pnF29P8pcLHq9P8uQkbxhhWsNUc7pxhfoZNrz11SGv+1aSbVlcaXDcW6P+nyTtgcinllIePUKfd2h7fKsBr28PbfarPQy2O4ftHtih7Q2llC0j9HmztseDvq7Wcn9reRrX5NdGGHuRUsrRabY4PjHJ3iN2d0CWbtG7uxnmtXlAlhYD+ItSynNGmMfhbY8HvccAAACgJ2E7AAAAYNp02va1ny1k570jySuTlLY+RwnbXTvENdtWqJ9htyz83jAX1Vq3lFIuTnLXBc0HDzmHbg7p0tapfVi3HPD8a4YcZ1yv1yzo9Pq1B2lHNejrai33t5ancU3+ZNQBW1u+vj7JszK+XV9250DtvGFem0730p1HnUibQe8xAAAA6Mk2sgAAAMDUKKXsm+Txbc3XJvlwv33UWi9J8pm25qNalYyG1SlsM7Ba61j6GVJ7xbVRrh12+8tuViMQMWj1qkm+VrNiZl/X3WAtT+Nrd8Mog7WCdv+d5NkZ79+L786B2nnDvDbTeI8BAABAT8J2AAAAwDR5YpJ92tpOq7UOuu1kp0p4nSrm7U42jvHa/UaZSAcHjrk/poPXdWWsxlqextdu+4jXvyDJYzq0/yjJm5M8Jc3WpoemCSHuVWstC7+SPHjEOcyqYV6babzHAAAAoCfbyAIAAADTpFMg7vdLKb8/hr6fVEp5Xq110xj62hXtk+ErQ7UHIG8ccS7tOr0mJ9VaPzDmcVhdnV7XA2ut1636TGbLaqzlmVqTpZSDk/xFW/P2JM9P8sZaa79hMZXSxqfTPXbvWus5qz4TAAAAGIDKdgAAAMBUKKXcI8nPr+AQByR57Ar2P+1uPsZrxx2WuqpD253GPAarr9PrethqT2IGrcZanrU1eWKSm7W1vaDW+n8HCNolyS3GOKdpMMktcGftHgMAAGA3IWwHAAAATIvV2OZ1d95K9ohhLiqlrMvSgNRPRp7NYj/u0HavMY/B6vO6rozVWMuz9to9rO3xtUneOEQ/dx7DXEa1rUPbsKG5SYYHZ+0eAwAAYDdhG1kAAABg4kopeyb5rbbmrUnOHbHrQ7M4THBCKeXOtdYLR+x3V3R0kk8Ocd29sjTI8dXRp7PIN5NsTrLXgraHj3kMVt/ZHdoekeTtqz2RGbMaa3nW1uShbY/PqrVuHaKfB4xjMiPqtIXw/oN2Uko5JItf39V2Voe2RyR55WpPBAAAAAahsh0AAAAwDU5MclBb2/tqrfce5SvJS9r6LEmetiq/0fQ5acjrOm29e+YoE2lXa92c5AttzbctpTxknONMsU7bWO6x6rPYqX0+w87ljCQb29oeVUo5cMj+aKz4Wp7BNXmrtsfXDNpBKeVWSR485PjjWlNJ561/h6m4d/wIcxhZrfWSJD9oaz62lDJU5UYAAABYLcJ2AAAAwDTotL3rO8fQ72lpKuQtdHIpZXf8O5EHlFKOHOSCUsr6LK04uD3JJ8Y2q50+0KHtlBUYZxrd2KFt31WfxU7t8xlqLq3KYR9ra94vyfOG6Y+fWa21PEtrsj302R6+68ezM3wluLGsqZYfJdnQ1nbsEP387ghzGJf2e2xNkpdNYiIAAADQr93xL5YBAACAKVJKuX2SX25r/mmWhnQGVmu9JslH25oPSfIro/a9i/r7Ac//8zTP10IfqLVeMab5LPRvSa5sazuulPKCFRhr2lzboW2YSlXj0j6fA0aoRvfqDm1/Xko5bsj+aKzGWp6lNdn+e/5CKWWffi9uhRv/YoTxx7amaq1zSb7R1vyoUsrN++2jlHJikgcNM/6YvTbNdsULPbmU8oRJTAYAAAD6IWwHAAAATNrTsnRLvdNqrZ221hxGpwp5nSrp7Q4eUkp5VT8nllIekeSlHQ79v/FOqVFr3ZTOway/KqU8Z9h+SykPL6W8efiZrYrLklzf1vbISUyk5Vsd2oaaT63160ne09a8Z5L3lVKGCvuUUtaXUn63lPLcYa6fESu+lmdsTX6+7fG+SV7ez4WllMOSfDDJ+hHGH9uaamkPke+dpN/74V5J3jLC2GPTCnu+qcOhfy+lPG6YPkspe5RSnlBK6XTvAgAAwMiE7QAAAICJKaWUNGG7duPYQnbeh7I0yHRiKeWgMY6xK5ivHvTiUsq/dKuCVEpZU0r5kyTvTROKWuittdbPreAc35TO2wq+oZTyvlLKUf10Ukq5UynlBaWUb6YJpUxDBaeuaq01yZfamh9aSvnrUsrBE5jSmUnm2tpeW0p5TCml/Z7ox+8luait7VZJPllK+dtSym366aSUcv9SymuTXJzkn5LcZYi5zILVXMuzsibfk6X39PNLKX9ZSlnb7aJSypPSrM35SpM3DDn+uNfUW5PsaGt7TinlFd1+n1YI7RlJvpDkFklqlm6zPgkvSXJ2W9vNkry7lPKvpZS+1nkp5Z6llFcm+X6S/0zS170JAAAAg+r6FwkAAAAAq+DBWbpd5vm11rPGNUCtdUsp5b+TPHNB855JnpLk9eMaZxfwsiR/0/r5mUkeX0p5f5IvJ/lJkgOS3D3J45LcocP1lyRZ0UpitdZaSnlKmjBIe1DipCQnlVLOSfKZJOcnubp17IA04a17JTk6k92CdVj/nuThbW0vTPLCUsoVSa5J0l7t8YO11peNeyK11itKKR/L4spbt07y/iRbSymXJdmYJqyz0DNrrV/p0N/VrW0rv5BkYTBsbZI/S/JHpZQvJflckh+m2XJzfZrX9bZJ7pPkfkl2t4BsN6u2lmdlTdZav19KeWeS32479JIkJ5dS3p3km0k2pAmi3S3JiVkc6LwpyQuS/MMQ4497TV1eSnlDkj9pO/SyNNuwvifJua053zLJzyV5VBbfD69J8qQkdxz09xmnWuvmUsqvpQkkHtp2+BlpXp+vJPlsmqDtNWmq4R6Q5OAk907z/nD71ZozAAAAuzdhOwAAAGCSOm3nOs6qdgv7fGZb2zOye4Xt/i5NIOHxrcf7pwmetIdPOvlhkl+qtV63QnP7mVrrhlLKL6bZ5rDTNoJHZTYrFr0nySeTPKTDsdu2vtp9YwXn8/wkxyfZp619XbpXlNu3W2e11m+XUo5JU2Xtnh36PL71RW+rupZnaE3+UZJj0wQRFzokS0Nr7bYl+Y004bVhjXVNJXlxkodm6Xq6S5I/7zGX01rXP6nHeauiFR48Ns282qse7pHk/q0vAAAAmDjbyAIAAAATUUo5IMljOxx61woM97kkl7a1HVlK2W3+8b61VemTk/zjgJd+McnxtdYLxz+rzmqtN9Zafz3Js5L8aMTuLk0TEppqtda5JL+e5NRJzyVJaq3fTfKwJD8YY5/npwnMvC5NFa9RfCXJR0ae1C5oEmt5FtZkrfX6NOG0Mwe89PIkD621jnS/jXtN1VpvSnJClm7BuuxlacKav9l6z5katdYr04SNX5Kmet0ozk3yXyNPCgAAADoQtgMAAAAm5clJ9mpr+1Kt9YJxD9QKp3QK8XWqrDezaq3ba63PShM4+VSS5cIWX0/yO0l+cTWDdgvVWv8xzfaTv5PkE+mvqtRcmrn/bZptig+rtb52xSY5RrXW62qtT05TeeuUJB9OckGabVW3TWA+X2rN5ZFJ3pxmK9HL02y1OVRQp9Z6U631eUkOS/M7fiXJjj4u3Zzmnn1RkiNrrceMGn7alU1qLe/qa7LW+qM0ldOek6TXc3FJkpcmuXut9XNjGn+sa6rWenWSB6YJQS732bkjyUeTPLDW+vxpC9rNa93Xr06zte3z0jw/W/u4dHuSM5K8MsmxtdZ71FrfvnIzBQAAYHdWmr9rBgAAAGB3U0q5VZKfT7Pt4L5JbkhyRZKvr0TocVSllHVJjk6z7eOtkhyYJmRxY5Krknw/yfdrrZsmNkkGVkq5eZJjkhyc5JZJbp5kU5rX9fIk30tyYa21n1DeTCmlnJLk5Qvbaq2lw3kTWcu7+pospRyRZmvZg9Js77oxzVa736y1fm+ScxtG6/c5Os1a2i/N63BBkjNqraNWi5uIUsrN0mybfLs07w8HJNmS5nf7SZr3hx/UWvsJ5QEAAMDIhO0AAAAAAKZQv2E7AAAAAFaHbWQBAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAeSq110nMAAAAAAAAAAACAqaayHQAAAAAAAAAAAPQgbAcAAAAAAAAAAAA9CNsBAAAAAAAAAABAD8J2AAAAAAAAAAAA0IOwHQAAAAAAAAAAAPQgbAcAAAAAAAAAAAA9CNsBAAAAAAAAAABAD8J2AAAAAAAAAAAA0IOwHQAAAAAAAAAAAPQgbAcAAAAAAAAAAAA9CNsBAAAAAAAAAABAD2snPQHoppRy8yTHL2i6LMnWCU0HAAAAAAAAAACYvHVJDl3w+LO11utXY2BhO6bZ8Uk+MOlJAAAAAAAAAAAAU+sxST64GgPZRhYAAAAAAAAAAAB6ELYDAAAAAAAAAACAHmwjyzS7bOGD97///Tn88MMnNRcAAAAAAAAAAGDCfvCDH+Skk05a2HRZt3PHTdiOabZ14YPDDz88Rx555KTmAgAAAAAAAAAATJ+tvU8ZD9vIAgAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAbDbqFs2pZ7zhdSf/mjSUwEAAAAAAAAAdjHCdgDsFuoXT0991G1Tn/OQ1MfeOXOvenrq9u2TnhYAAAAAAAAAsIsQtgNg5tVrf5r6kickWzbtbPz4u5J3v2FykwIAAAAAAAAAdinCdgDMvk+elmzftqS5nv62CUwGAAAAAAAAANgVCdsBMPPqf/595wMXn7u6EwEAAAAAAAAAdlnCdgDMvg5V7QAAAAAAAAAABiFsB8Ds27510jMAAAAAAAAAAHZxwnYAzL5twnYAAAAAAAAAwGiE7QCYfbaRBWiT9noAACAASURBVAAAAAAAAABGJGwHwOzbIWwHwGIf/VbNmt/d8bOvr15SJz0lAAAAAAAAppywHQCzb8eOSc8AgCny6fNqHvWGuUVtx7x6Lt+7UuAOAAAAAACA7oTtAACA3cpj3jTXsf05p3ZuBwAAAAAAgETYDgAA2M1s2NK5/ZPnre48AAAAAAAA2LWsnfQEAAAAuvnxDTXv/VrNpdckv3T3kofdo0x6SgAAAAAAAOymhO0AAICpdPFVNb/02rlcfHXz+DUfq3nRI0teddLKFejesq1m/Z4CfQAAAAAAACxlG1kAAGAqvebj9WdBu3l/9ZGaS6+uKzbmh7+5Yl0DAAAAAACwixO2AwAAptI/fbZzqO5fv7ByYbtPf2/l+gYAAAAAAGDXJmwHAABM3I65mq9cXPOhc2qu3bh84O0T565cIO6GTSvWNQAAAAAAALu4tZOeAAAAsHu7ekPNr/zfuXzt0ubx2jXJqb8zmf8v6MKrVLYDAAAAAACgM5XtAACAifrT/6o/C9olyfa55PH/NDeRuZxxwUSGBQAAAAAAYBcgbAcAAEzUh765etXkrumxRW2SbN2uuh0AAAAAAABLCdsBAAATs31HzXU3rd54V2/ofc6GLSs/DwAAAAAAAHY9wnYAAMDEbNq2uuNt29H7nE1bV34eAAAAAAAA7HqE7QAAgIm5aYhg25kXDj9eP2G7y64dvn8AAAAAAABml7AdAAAwMd+4bHXH2z7X+5z/+W5d+YkAAAAAAACwyxG2AwAAJmbjlsGvucMthh+vn8p2ZfjuAQAAAAAAmGHCdgDMtFpVJwKYZpu2Df4+vaOP6nTd9BO2e/kHa07/ps8PAAAAAAAAFhO2A2C27egjVQHAxGzaOsQ124Yfb3ufHwu/+sa5fPw7AncAAAAAAADsJGwHwGybE7YDmGbDBOeGCejN66ey3bxXfGiEEnoAAAAAAADMHGE7AGZbFZQAmGbDVrYbdpvwrQOE7c68cKghAAAAAAAAmFHCdgDMNtvIAky1YbeE3bJ9yPFGqIoHAAAAAADA7k3YDoDZZhtZgKl205Dht2FDczdtHa4iHgAAAAAAAAjbATDbhO0Aptqwle1W67pht6sFAAAAAABg9gjbATDbbCMLMNU2DxuaG7Ky3aDjbR1yu1oAAAAAAABmj7AdALNNZTuAqbZtyDDbsJXtBg3PDTsOAAAAAAAAs0fYDoDZJmwHMNW2Dfk2PWwIbsugYbshK+gBAAAAAAAwe4TtAJhtwnYAU23r9jrUdcOG4LYO+LGgsh0AAAAAAADzhO0AmG07hO0Aptmwle0220YWAAAAAACAVbZ20hMAgBVV5yY9AwCWMWiluXnDhuAGDtttTS66qmbbjmRNSQ67ZbJ2j5IbNtVctSG5062SUspwkwEAAAAAAGCXImwHwGxT2Q5gqg1b2W7T1ppk8JDboOG+Y/+qc2h7jzXJjrnk0AOTdzxjTR50hMAdAAAAAADArLONLACzbU7YDmCaDVppbt5qVbbrZkcrg3fZtckj/n4uV15fx9MxAAAAAAAAU0vYDoDZNmcbWYBpNnRluyHDdsOOt5xN25LTvyVsBwAAAAAAMOuE7QCYbSrbAUy1Qbd1nbdp65DjjamyXbtPnrsy/QIAAAAAADA9hO0AmG07hO0AptlqV7Y788KVqUD3kxtVtgMAAAAAAJh1wnYAzDaV7QCm2rCV5s4aIjR30VU1F1893Hi9fOq8pFaBOwAAAAAAgFkmbAfAbBO2A5hqw1a2+/h3Br/m37+4smG4z5+/ot0DAAAAAAAwYcJ2AMy2ubnux9b4GASYtGEr2x1/xODXvPr0lQ3bffp7KtsBAAAAAADMMikDAGbbcpXt1uyxevMAoKNhK9vtWCZLPSmXrNAWtQAAAAAAAEwHYTsAZttyYbtSVm8eAHS0dciw3bAhvW6OuPXofVxxvcp2AAAAAAAAs0zYDoDZtmPMaQwAxmrY0Nz2MVe2WzuGPxldes3ofQAAAAAAADC9hO0AmG3LVbarKhABTNrW7cNdN+6w3eOOHr3a6UVXJdVnCwAAAAAAwMwStgNgtgnbAUy1oSvbDXHdfe/Q/dhjjho9bLd5W3Ll9SN3s8S1G2ve/dWav/7oXN7yxblcdo3PLwAAAAAAgElYO+kJAMCKWnYbWWEFgEnaMVczN+Rb8XlXDn7NjZs7t5/8CyX3WSaIN4gLr0pue8B4+kqS866oecjr5nLFghDfurU17/79NXn0vUYPCAIAAAAAANA/le0AmG3LVbYDYKJ6VbW7y0HJSx7VOVC2ZYjtZ8//SfdxShlPcO2iq8Yb5H7OfywO2iXN1ru/9W9z2bZdaBwAAAAAAGA1CdsBMNuW2yrWNrIAE7V1mcDc2S9ak/NfvUduv0yVuO07xvM+Ps5PgwuvGl9fm7fVfO77nY9dvyn58iXjGwsAAAAAAIDehO0AmG1zc92PCdsBTNTmbd2P7b2u+b7P+u7n3LR1sPH23KNz+3yVvF+7z2D9dfKuM2uuunE8ny83bEq2L/MxdvWGsQwDAAAAAABAn4TtANh9CdsBTNSm5cJ2ezbf73OH7tu7Lnd9ux1zteu2tScc0Yzx3IeO/sej83+SHPy8uTz2zTuyaetonzMnvnGZpF2STdt8jgEAAAAAAKwmYTsAZptAHcDU2rRMZbr5sN3890Gvb/ftH3U/tt9ezffj7lpy1ovG80ek938j+bN3D/8Z9F9fmcvZFy9/zpd7HAcAAAAAAGC8hO0AmHHLBx2qMB7AxCxb2a61jexyYbvltqFt94Fzur/fLxzjmMO6V9Ib1Pu+NvxnzB/+R+9rz7vCZxgAAAAAAMBqErYDYLb1CtMJ2wFMTD/byM6H7ga9vt11N3U/dueDFj9+3H3773c5V96QbNs+3OfMT2/sfc6htxhfMBAAAAAAAIDehO0AmG3CdABTq9s2sKUk69Y2P++13DayA4Ttljt3n/WLQ2tP/YU1KWPKsQ0yx0Ft3bFyfQMAAAAAALCUsB0AuzdhPICJueL6zu/Be++ZlFbabf3adA2+dQvrdfJPn+081hOPWdr5o+9V8q5nlNzn0GYuD75b/+O0W8mw3bbtK9c3AAAAAAAAS62d9AQAYEXZRhZgan3qvM7tC6vZlVKy19rOobVxBNn226tz+xOPXZMnHpvUWlNKyTGv3pGvXjJ4/4MEAued/+P+Ppu2CtsBAAAAAACsKpXtAJhxvQILwnYAk3L7Azu3X7Nx8eO913U+r98gWxOY63xs45blr52vsPfY+w63r+zmIQKB37m8v/O27vAZBgAAAAAAsJqE7QCYbSrbAUyt7Tv6O2/vPTu3b9rW33v4lu3d3+6Pu2t/czjxqNI1sLecbX3+jsNcs2UFt6gFAAAAAABgKWE7AGabsB3A1PrWDzu/Bz/k7osfj1rZbrnz7n+n/hJ0R96u5J3PKNlnfX9jzts6RNiu34p1w/QNAAAAAADA8ITtAACAifjItzu3f7ttG9Xule36G+dH13U/1q3vTp507Jpc/fo1OetFa3LF363J0x7YO6i3dXv//c/rt7LdMH0DAAAAAAAwvLWTngAArCiV7QB2OT++YfHjUcN2F/60+7Fb7NNfH/PWrS055rDm5xs2zfU8fyW3kVXZDgAAAAAAYHWpbAfAbOsZphO2A5h2o24ju1x47eD9+9tGtpN+8trDVJ/r9xqV7QAAAAAAAFaXsB0AM05lO4BpdNWN/b//jlrZbtO2lXmv76fXYarP2UYWAAAAAABgOgnbATDbbCMLMJX+7n8HCNuNWNmuWyjvLgf1PYWO+vkIsY0sAAAAAADA7BC2A2D3JmwHMBGfPHeQynadt3rtt7LdTV1Ced0q5vXrqEN7b0G7ktvIblHZDgAAAAAAYFWtnfQEAGBF9QzTCdsBTMK1G7sfe/0TFofY9upS2W5zv9vIdgvbdem3X888ruQVH1r+c2TrjpqkdyhvoX4r2/Vb2W/jlpqvX5psn0v2XZ/ss37x93VrB5sfAAAAAADA7krYDoDZpnIdwFS68Krux57+wMXhr24V6DZt7e89vlsFvFEr293+wJJnnVDyD5/pPo9hKtv1HbbrI2z4z5+by7NPrdkx1/2cPffYGbxbFMZbl+y7V8k+65c/vm+X40J8AAAAAADArBG2A2DG9QhiCOMBrLovX9z9vfffnlqy3159hu36rGz3li92Hm/UynZJ8sYnldz/TsnJb+k8Rr/BuWGu6VXZ7uyLan7/nb0/57btSK67qflaavgKsWvXJPvutTCYtzikd7Mlba3v61shvy7H161NShHkAwAAAAAAVp+wHQCzrVeYTtgOYNW96L3dy6zdZv+lIapuobh+t1HtFl7bawx/Giql5LcfUPI3H9uR716x9PiWISrbbe0zbLd9Ltm2vWbPLhXkPvzNyX7GbZ9b2RDfzmDezp/3Wd9U4lvueHubEB8AAAAAANAvYTsAdm/CdgCr7pPndT/2c4csbRu1st0Rt05+fMPS9rMu6u/6fqzv8ierzX3OcaFBquFt2pbs2WXsy68ffOxdwUqG+Dpth7swxLfc8e7b6QrxAQAAAADArBC2A2C29QzTCdsBTJNDDhx/Zbtu5z38nuMLQHWb46Bhu+07av7hM/1/Nm3aluy/d+djO4bYwnZ3tn0uuX5T87XU8P89sceabgG9ZN+2EF+3452uF+IDAAAAAIDVJ2wHwGyzjSzAVLl24+Dvu6NWtusWeLv3oQNPpatR5zjvj08b7Pn5+qXJw+/Z+dggFfJYOTtWOMTXOYy3M8S33PFO168X4gMAAAAAgK6E7QCYccJ2ANPk499Z/bBdt/P26tLvMEatvpck27bXnHrWYM/PO86sXSv0bZ/rfM1T7l/y0keXbNiSbNySbGh9bdxSF/y883vzc207d+f3QQOFjMdqhfj2WZfsu9fCn0tutqRt/ueSfffqdI0QHwAAAAAAs0HYDoDZJkwHMFXOu3Lwa/ZeV9IpHNRvkG3r9s7tYw3b7dlljgME0c67sltwqrv/OLvmXc/sfGzbjs6fgQfsk9z11p1CT8MFoXbM1QWhvKVhvA2tEF/78Y3dAn5bkw2bhfgmZfkQX7J8kG/5EN988G6fda1qeot+3hniW3p8cYhv4XEhPgAAAAAAVpOwHQCzzTayu50zLqg57jU7yzm99Wklv/2ANROcEbDQ1mW2Nn3xozoHZrpVtrtxc39jdttOdc89+ru+H90q23XbwraTbpXohrW9y++9dsxviXusKdl/72T/vbudMXyI76ZW8G5hCG/jz9rqgp93tjfX1EVtQnyTt2MuuWFz89XZcCG+NWVpcG/x1ritLXM7Ht+5nW778b32FOIDAAAAAGApYTsAdm/CdjPl7IsWB+2S5OS31GzaOpffO17gDqZBtypzSfLKE7uE7boE2bbPJbXWnoGYbmG7tWvGF6TpViXvE+f2/zlzydVjmkzL/57buX2cIcOVtMeakv32Svbbq9sZo4f4Nm5tVdvbvDDMVxe3bVkc4ltyzRYhvkmaqysb4vvZdrqLAnw7g3qdj5e2c3d+F+IDAAAAANi1CdsBMNt6humE7WbJs0/tXBbqWe+q+b3jV3kyQEfdKtuddO/uAZRule2S5LtXJEfebvkxV6WyXZc5Xn5d/3386+fHW9quW1W9cVe229WsdIhvXNvpzv98U5/bJTNeKxniWxrcW1xt72Zdj5cuwT8hPgAAAACA1SJsB8CMs43s7uSrl3Q/tmVbzfo9/SM0TFq3ynbr1nZfn7fat3t/X7+05sjbDVfZbpxhu+s3dW6/zf799zHubWQPuFly3U1L239843jHobFSIb65+Up8XcJ4G7bUrgG/jV0CfhuE+CZmrjZbYHffBnv0EF/nMF9Zcnyfdc32ufuuLwt+Xnx873VCfAAAAAAACwnbATDbeoXpVihsV2vNJ85NPn9+zRG3Tk48qmT/vf1D5SR97DvJY+496Vkk126s+eA5NRf8NDn+iJJfurt/xGY4l19X84Fv1FyzMfmVI0vud9iucR91DdstE3w7/ODux7pVb1toNcJ2B+032NidnHfleOYyr9suube7+XjHYWWtWVOaENQKhvg6h/U6V9u7aZmAnxDf5KxUiK+U9mDezp+b763tdDseb22nu9fS40J8AAAAAMCuSthuQkopeyQ5PMk9ktwuyc2TbElybZILknyl1rpxzGPumeSBSe6Q5LZJNiS5PMnXa60Xj3MsgKkxgbBdrTV/fFrNGz+1s++jDqn5n+euyUH7+UfFSfm1N8/lxY8q+cvHTG7/xCuvr3no6+by3Suax686veZ5v1zyt7/uvmAw515R8+C/m8tPWhXKXvbBmn94csnvPmj69wftGnxb5k8mywUyru1QuW2hWmvXinHjDNsdd3jJ33586WfK1X3+F/0ZF9Rces1wY++Yq9mjQ7Ku23N99B2957DyIb6NW5MNm1thvIU/z1fbazu+cfPiEN+S41uG/lUZQV0Y4ruh4xnLXd31SCmtAN7CMN76xSG+m3U93rad7oLjQnwAAAAAwEoTtltFpZQ7JHlskocm+cUky20qtaOU8r9J3lhrPX3EcQ9K8ookT0hyiy7nnJHkdbXW94wyFgDJOT/MoqDdfNubPl1zyon+8W+SXn16zTOPq7njLSfzOrz+E/VnQbt5r/2fZk53u417g/696L07g3ZJE4b4k9NqnnL/mputn+57acu2zuGL9T3+ZHL0HTtvFX3qWTXP///Zu/Mwuaoyf+DfU11dXdWdfSUJkJAQVtmRHVlF0BHBDUVRQUZHBweH8aeijsLM6LggboMO4AKKouiALLIkskPYCQGSACEhCQnZ916qqqvr/f1RXd236p5z7rlVt5bu/n6ep59U33PvubfWdN361vu+y7xdzlJZLsqwXarVPCYigeGPE75XeQ/Znqw+MGW67lFeb6Jy3hDfVO073mhCfF3F1rrFy+nSEF9xvCsNdGXFF/zr8lT1o/oTGayGWKsQn2s73cHLSrsNQ3xERERERERERETkxbBdnSil/gDgoyE2aQFwJoAzlVJ3AbhYRDZUsN+zANwAwNJ8CwBwHIDjlFK/B/DZqKvqERE1TGDluugr213zoH7O/7hLcMXZke+OQrp/qeCiExrzYamu6hUA/O/Dgh+dxw9wyd3ti/zL0r3Azc8IPt2gx7errCEAlgh4Z5I3ZNGmj7NvZ2vjGmXorM0StnttA7Dvbubxnmx1/xf19OrDdqbrHm/+AohEPrUM8fX0lgX3vK1x0+Jf5mmnq92GIb6GKQnx6dewbW0cKYb4TGG8YohPP24O+LUzxEdERERERERERDTkMGxXP/sYlq8FsAzABhTuj9kADgHg/QjsHwA8opQ6SUTWu+5QKXUygL8CSHgWC4DnAawAMA7AYQAmecY/BmCMUuocEam8vAYRUdOofxvZPz9rnnNnj+DZVcCWTmDRGsGtzwtaYsBPPxLDyfvywzZXmV7BkysK4ZYjZwLxFvfbbUdPtMciIli+CVj0JnDw7sDeU8Lfj9c+IvjRedEeF41MC5YDnz6h0Udhl83plycCgm8L39Qvb0/olxeZWsgC0Ybt9reE6Xal7dtWG8pZtwOYPLp0Wb3a5xINdbHYYEiqViG+rowujCclwbziv12Z0na6uu2p/rwhPv23IKMJ8emq7bVbAn6mCn4M8REREREREREREdUOw3aNsRDArwHcIyLLyweVUjMAfBPAZzyL9wHwZ6XUO0SCkyFKqd0B3IrSoN3jAP5RRJZ61msD8FkAVwEo1uN4L4D/AvC1MFeKiKgpBb1k1iBs12eZctyl+uTDaVcXlu/6WQwdTd4CstGeWyU488d5bOmvwbrXJGD+v8Ywe7Lb7dbTG92xZHoFH/tlHrcuHFx29iHAHz8TQ7LV/X5M9wKX35rHd85V/GCUqvKbxwVXni3YfXzzPo4qrWz3kbcr/PEZ/wvs8k327WyV7eIRhs7Gpsxjmzvt26YNAUQv0/UHgEP/I48bLlT4xLGD39fps4QMo7zeRKTnDfHpVRfiM4fxRBvQ67IE/IrtdWvwZzEFqGWIr73YTjdRqAhZenkwxOcfLw3xecdTrYXHNhERERERERER0UjGsF39CIC/AbhCRJ61riiyFsBnlVKLAFzjGToBwHkA/uiwvysBjPf8vgDA6SJSUldDRDIAfqqUWg3gNs/QZUqpa0VklcO+iIiaVwPCdtVUKDrpB3k8+w2mIEzyecE51wwG7QDgjc3Ax3+Vx6NfduuLGGXY7qp5UhK0A4A7FgHfvUdwxdnhPoj83r2CY2crnH1odMdHI9Onb8jjvn9t3tcRY2W7gHcme03SL3/BUPGuqF5tZG0Bto9en8e2n5hX2N5tn/sv/xTDKfvCGLYDgAtvEJywtwwEj+tV0Y+I6ssb4puiXaOyIJSIoCdrrqZnqrbXnS202tW10WWIr3FEBislGtawbW2duzyE19Ef6itcVuhImsaVNvjXkSgEAxniIyIiIiIiIiKioYJhu/r5kIisDLOBiPxcKXUqgA94Fl+AgLCdUmougE96FmUBfKo8aFe2r78qpW70bNcG4FsALgpzzEREQ09zffr3/OpGH0FzW/gmsHa7f/mTK4C3NMt1erLRHc9dL+ofP3e9KLji7PDz/e0lwdmH8oNGqs4DrxaqFzVrlUxT2C4oAJZsNY91ZwTthutbr7CdrSplUPvq51eb/y86Zjbw/sMVMr32/69EgD89K7j8rMJxWCv6uWWTiWgEUapQ6ay9hiG+rizQmS4P48ngMs94McRXsk3ZZYb4GqOWIb5iME/XTrcjaRpXnrCfv50uQ3xERERERERERBQ1hu3qJGzQzuMalIbtTnHY5nwA3o8ObxWRZQ7bfQ+lIb0PK6U+bwvpERE1PcuncAJga5eCoVhSxca3A9sCqhRRZV5aa74/12xzm6M7wrDdU2/ol+tCkw5d4HH9o4JrL6jyoGjE68sDW7tsrQsbyxQCSwQE30YnzWNbuwsBkTD7A5qnwpstBnDZOwvJuDaH1tRX3CG4/KzC5bSliqctuEhEFCVviM+wRkXzFkN8XcVqfOnBMF5hmXguDy4vaaerGe/MMMTXKMUQ38ZdutHKQ3zFdrolrXEHwnqD7XT948oQ/GOIj4iIiIiIiIhopGPYrvmVNadDSik1TkRs9XvOLfv9Ny47EpGlSqmnABzdv6gDwBkA7nA6UiKiZqT5tEwAfHfi/8PPJnweG787FXMm9+H7H4zh3MOi+cBkzmTgWTbhrgnbPRTUhrHIFkCppYyhmhdRWC7BzShDpVEzhd+Cgm/vOUjhslv0191WsXIohO1s99e7DnSfx3tduzdtBTBOu16KYTsiGuK8Ib7Jo7VrVDSviCDd62+H6w3xadvlekJ8unGG+BqnO1v4qVWITxfG62hTvmCfN+Cn36ZQmY8hPiIiIiIiIiKi5sewXfPTfTSfMK2slNoNwCFl2z8eYn8PYTBsBwBngWE7IhrS/B+SXDfuYvz7lCsHfl++CfjwtXk8/pUYjtqr+g83bMEOp+1zgtY4P2TRWbnFPHbFnXmnOaJsI2sjIiVtJeu1Xxr+XD6s72lQqNRFzvBUjQcE38a3m8ds17dZwna5PkG8Rf/abjr+yaOB0cnBbT51nMINC9zSGl3fvQTATdqxlPHdBBHRyKaUQipReJ2sVYhPH8aTkuBecbw7Yw74FS/nGeJriGKIDzUI8WnDeAlgVLIQ1NOPK4xK6gOADPEREREREREREUWLYbvmt3fZ7zkAmy3rv63s9xdFpCvE/haU/R6ilgYRURPSpFJ+P/YjvmV9eeBPz0okYTtTkMRVTy/Qyv+htZ5+w/zh1DMr3ebo6a3PJ5KL1gCH7uHdb112SyOAyyO4mcOdlVa2swXEhkJluzc2A3On6sdMrw97TSz93aX965ptghndK9CzYjkwW78OK9sREdVXrUN85jCevtpelyXgV7zMEF9jFEN8myIO8aVaMRjGS5RfVoVKfdrxQojPvw1DfEREREREREQ0cvGj/Ob3wbLfnxURW4zjgLLfXw+5v+UB8xERDXkL2o/TLv/N44Iffqj6+autbNfTC4xJVX8cw9FekxTcokZmUYWQcn3243h9Y2nYjm1kKSp5h0BvM4c7jZXtYvbtbAGxZqlsZ6s8t36nJWxneF0qDxjOmRx8DMs3AtMfvhE9saRxnXZWtiMiGha8Ib5JNQzxdWULrXQ7PUG9kja6/eMl7XS923guM8TXGD29hZ9ahfg6+tvqei8PtNPVjnva6ZaNtyeAFob4iIiIiIiIiKiJMWzXxJRSowB8umzxbQGblVfCWx1yt6vKfp+olBovIttCzkNE1Bxc+i32294dzS5zVYbtpn2pNIkyZzLwrgMVvvVehcmjR/aHDt0RBOWimGPjTsGX/8/+2PrwtXnMmgh851yFjxwVQ9YhbHfUrOqPjYa/kVrZLhZTSMShfS7Zrq+t2mhQwC+sfz7FHLZLWwKBprBgecDwfYcqfOOvYg3vdmcB5PN4PVH+tqBAKSDBd4FERGRRyxBfJtcfzMv2V9NLe8N4Mhjc84x3Z4HOdGmIzzvOEF/jDIT4tKPVhfh07XK9IT79+GCIz9dOt40hPiIiIiIiIiKKBj9maW7/DWA3z+/bAfwyYJtxZb9vDLNDEelUSqUBeEthjAVQVdhOKTUFgEMtjhJzqtknERGAUGG7qFRb2a7c8k3Azx8SPPSq4MnLYxiVHLkfENjCKq4eL6/hGtKutOCUH+axdF3wuiu3AOf/UtCZyeNohxbFT6+s7thoZHD5MLmpK9sZXiNdgm+pVkPYzlbZzhJMi7qy3REzzc/zLZ0CUzjBtbLd3lMU7rwkhs/elMcbm/Xb3LBAcGS+AxdNv14/Z6tAqZH7/wgRETWOUgrJ1kJb9En6NSqaVxfiG2iNmwa6slIa7PO2002LP/jn2b7PoaIwRa8Y4tvcqRuNJsTnUFNSuAAAIABJREFUD+uVhvjKA376bRjiIyIiIiIiIhqJGLZrUkqpcwFcUrb46yKyNWDTUWW/91Sw+x6Uhu2032MO6fMAvhXBPEREVVmc2L/m+4g6bFe0ZB0wfylw7mG1mX8o6M42vmTFvS/DKWjn9eO/C268iB/AUDRcMsQ9WXOwq9HMle2CjzfVCuzQ/HXb02u+vqb9xVShWl7UJo3SfzB872LgI0fptzFXtvMf3+kHKCz/Tgtin9FfsT8/J3jXXub/62zteImIiIaiWof4BoJ73ta5una6mbIgn2GcIb7GqVWIL9lqCvAVQnztloBfeXBvFEN8RERERERERE2PYbsmpJQ6BMBvyxbPA/ALh83Lw3bpCg6hB8B4y5xERENHWSrlheQhxlWjOo+drVHYDgAee11w7mEj94R7VK0x+/JS8QcXz64KH/hbss6tTTGLTZGLIV/ZzvDhctyhylx5pbci22tDpW1rK6X/8BaYNta8jalqZ9JwfQFgTBLYqflLXyng31a/07hdqrXxoWUiIqKhwBvim6g9M1Z5iC+bMwX4+tvpGgJ+XZZxhvgaJ91b+Kl1iK8jAYxKlrbT1Y+rsnUHxzvagLjDl1yIiIiIiIiIyIxhuyajlNoTwN9QGnBbBeDjIhX1QqzXNkRETeumMR/FIx0nog8tuHHcBcb1Zk2sfl9vbhVs7ap+HpNMEwdo6qE7orBdNmcO7dTqGHTVuMqJVBcEpJFhKIftnlgu2GX4KohL+M1Ulc3aRrbOYbuwxwEUKxH62arQHbw78Njr/uUiwI6+pH+gXzvDdkRERA2llEJbK9BWwxCfPqwn2oBe18CPf7wrC+xKM8TXKLUM8RXDeB2J/mp6xcvJ/na62nFVtu7gOEN8RERERERENJIwbNdElFJTAMwHMMOzeD2Ad4rIJsdpyk+/pCo4lPJtDPU5Qvk5gD+H3GYOgNsj2DcRjWQieKz9ePx63KcCV622/esr6wQHfKu2n0K8sXlkhySiChBVE7Z7/PXK7oMHXnHbLt1b+KCCyMTl6xdXzxNcelrtjyWMXz+Wxz/+znzw8VjwHKbn7WsbzNvUO2x3xgHAvCX+5U+/Yb7uphCvLWz3X+fEcPJV4f/PScVH9v8jREREw1WtQ3xdWaAzPRjC60wX/5WSZd7L3QHjporHVFvFEN8W7RcFKw/xtcXLgnve1rhJhfbyYJ+hnS5DfERERERERNTsGLZrEkqpCQD+DmAfz+LNAE4XkWUhpmrKsJ2IbASwMcw2ir30iCgKImiBW4qu2vavX7ut9p8U3PNyzXfR1CIL21VxX7/wZmXb/fwht4BLT5ZhO7JzqWz35rbaH0cYuT7Bl/4i1qCgUxtZQ/jsmgcFP/uofqy3T7/TWoXtJo9W0H0QqatCV2R6bbOFgidpP0QPlnd5ABERERH184b4JnRo16h47myuv5peMbiXKQ3x+ZZlSkN8pnGG+Bojkyv81CrENxDG87bG1bXTHVhPGbYp/MsQHxEREREREVWKYbsmoJQaC2AegIM8i7ehUNFuccjpdpT9PjnksYyCP2y3PeQxEBE1EUGLOIbtctXt6a8vVLe9i5kRtLodyqJsI9usorqONHy5VLYDgOUbBXOmNMcHSC+uAbZ329dxCb+ZqtTZ2oDXu7JdJVVS06awnaWy3dhKvlID4KUNlkmJiIiI6igRV5gQr12IL6p2ugzxNVYtQ3zmMF5/O13LuC4A2JEAWuPN8R6MiIiIiIiIaodhuwZTSo0GcC+AIzyLdwI4U0QqiW2UV8GbGXL78vW3ikiT1UYhIgqhjpXt6iGqcIiI4NX1wEtrgaP3AvacqCAiWPwW8Mp64Lg5wPRx9hPExfWfWSmYOkbhxLnA6GT0J5XzecFLa4HnVglWbYlmzkyFYbucoUJWlKKq3jecpXsFNy4QPP46cNkZCofuMbI+zHAtTLZxFzBnSm2PxdWOnuB1XNrIbjbUW7a9NprCby6V9CoxKmnYn+X6mQLACcu7tenj3I+JiIiIaCSpZYhPF+Dzhvj0AT/z+C6G+BqmGOLbGjrEZx9PxP0BPW9Ir10T4CsJ+SUK7ylKAn4M8RERERERETUVhu0aSCnVAeBuAMd4FncCOEtEnq5w2qVlv+8dcvvZZb8vqfA4iIiaRqxOle3Cmj4OeCtk7dCeCKqe9eUFn71J8OvHBk8Of+u9CovXCv7y/OB615yv8LmT9emQbE7w8V/mPesLxrUD914aw1F7RXcCON0rOO/aPO58MbIpAVR+X3dmoj0OHYbt7F7fKNjnG4OfRt30lODY2cBjX4mNmBb0rpXtmqlZ6HWPBB+NS5j4n09RuOwW/1zLNpq3MX14WavKdh8+QpW8vnqPI9cn2nZVlVTfU0rhohP0+yIiIiKi6CXiCok4ML6GIT5/WE98wb3ieHf/uCkAWEnFZapeNgdsrWGIrySM13+5I6HQkbSPj2orXi4dZ4iPiIiIiIgoPIbtGkQplQJwF4ATPIu7AbxHRBZUMfXLZb8frJRqF5GAxl0Djg+Yj4hoaAlR2a63r1CtrZLATp9DqakrzlZYvRWY2AGceaDC9h7gA78I9xX2KFqM3vy0+MIZV97pP/5//oPg9P0Fc6f6b4//fbg0mAcUWkR++No83vjv6EJPP71fIg/aAZVXMbzmwdqHWlZvAQ7do+a7GbK8QbuiJ1YA85cAZxzYgANqANfKdvkmqZDx1nbBn54NPmiXSnMzximYPoDasLNQZbNcvdvI6j98LXh0GXDKfv7llR7jhwzBPiIiIiIaOmod4uvKFtrglobxPAE/73gW6Erbx+v9RUUqqGWIryOB0jBeW2mIzzZeUqHPM84QHxERERERDWcM2zWAUioJ4A4AJ3sWpwGcLSKPVDO3iKxTSr0I4OD+RXEUAn3zHKc4uez3e6o5HiKihhNBi2NlO6AQeLC17TNxqTh32ekKozxtVu9bHD4gEUXVs1+FCGbc9JTgyrP9J0jveVk/x+qtwNJ1wAHTKz68Ene/VJsQSaUfDvz77bUPtSxeJzj7UJ6U1tnZY779L7oxjzXfr1F6qsm4hu2apTW262udSxvZ9oR5bN5iwQXHNj5sZzvGexcLTtnP/RgTAceYag1xYP1aY3kAI+O5QkRERDSS1SvEVxrGk5Jg3sB4phDis40zxNcY2VzhZ5v2q/rRhPi07XKTAeOGdrsM8RERERERUTNg2K7OlFIJALcCON2zOAPgHBG5P6Ld3IbBsB0AXAiHsJ1Saj8AR3sWdblsR0TU3AQtcC/vlM1VGLZzCMF5g3YAcPiegFLuLSEBIN1befW9oodfc1/3P+8SXPFewdrtwPSxQCymsGGn4L7F5m027gIOqPjoSi1dH9FEZTJNfBK/kvDMSLGjxzwWtiVzJUQEq7YUnoeNtKnTbb0o2k5HYeMut/WSDo/9w/cMv596h+3mTjGPmaqTVnqMlfx/9ZOTVwOYE35DIiIiIiLULsTXm5OB4J03xFdYJqXBPU07XdM4Q3yNUasQX2uLKaBXCOm1awJ63vEOw3iCIT4iIiIiIgqBYbs6UkrFAdwC4CzP4l4AHxSR+yLc1e8BfAODJSver5SaKyLLArb7Stnvt4hIOsLjIiKqOxFBLEzYrsJKUJWEWiaPVvjksQo3LAhXLS3dC6QslZOi1vLZcL0oowj4bNwpOO+6PDY5hnTCquRke961nFiVoqheOFzV6S7Q+utCwSU35+sS6otKszyWXG8zl6DptHHmD0BM17feYTvbhzSvrdc/iE3/9wQdYyXX4QOzNoFhOyIiIiJqNq1xhXFxYFy7bjSaEN9Aa1xNO93y8a6A8Wb+Et9w1ttXCPDVOsRXGsbzh/TKx8uDfcV/GeIjIiIiIhqeGLarE6VUCwohuPd5FucAnCcid0W5LxFZppS6EcBF/YsSAG5QSp1mCs8ppd4H4FOeRVkAV0Z5XEREjRKmjWyl33gOCrXEDOfWrv+Ewr67AX97UfDY62776s5WHraTMGX0KvTqBsFZB1V3MvGcn+fx5IqIDkijklDlD+bVKWzXJNXImlEdHr5ai94UfOjaPPrC5U4bricrqOZDqaj87AG3O86lsh0AnLSPvkLnnYsE33iPf3m9w3YAcOHxCr953H+95y/VVyc1H6P9/nNpves1O7sCk3Kbwm1ERERERDSE1TrEZwrjdWbEV2Wva+BHDNswxNcotQzxDQTwEsCopPdyIcRnGx9lGGeIj4iIiIiosRi2q59fA/hw2bKvAViolJoVcq71DhXnvgXgXADj+38/DsDflVIXi8grxZWUUm0APgPgh2Xb/1BEVoU8LiKi5iOCFrgnqyo9qRkUtpugba8CtMQUvnKmwlfOLPye/8HngTt+hdcSe+OAOS9WtC+bF96sfFtX1YbkVm2RmgbtACBTwW14yzOsbNdojapsd+tCGXJBO8DcsrSeNu1yv9NcWyiPatMvX27IkDUibNduCUS/8CZwWFk7XNMxBrWJDXsd5mSXQ15+EuqE94bbkIiIiIiISthDfEClQb5cn7manq0aX3cW6EzrA34M8TVObx+wvbvw41d5iC8eKw/m9f/bVgjptfuCe6Xj/mBf4d9EHL4vhxERERERkR/DdvXzCc2y7/f/hHUKgIdsK4jIGqXU+wHch0JlOwA4HsASpdRzAFYAGAvgcACTyza/C8C/V3BcRETNRyRUZbt0hUGnoPDW+w93PFF1x68AAKl8j3GVaiqfrahDQaPp46rbvh7HmM6Fr/i1YnNtjqUcK9uZNSpst7JO933UmiG4uXKL+7quFTsXGkLDh+yuX24KsoWtChfGPlPNYys2uYftgsJ08ZBhuy9v+SHU2LPCbURERERERHUTb1EY2w6MrWGIrysLdKbLwnxZGVzmGS+G+Eq28VxmiK8xcvnahvgGg3mDlwfa6ZYs07TT1YwzxEdEREREww3DdsOYiDyklDoXwA0YDNQpAEf2/+jcDOAfRUIkU4iImlq4ynaVhlNyAVWvPvr2cCeU2sUStqsiQNPTW/u0UrUBn3oEhCoJtNmOa9IoYHNn6bKT9wEWrwM27YpuPyOdLWxnqnZWjb684D/vEvzuyQal/KrUDI+lMM811xPvR84E7tjuX761y7+sNyf4wX36+6+Wle3ed4jCpX/U77fwOuzaRta+n7DX4fjuJ4DMKeE2IiIiIiKiIa/WIb6ubH81vfRgGK+wTDyXB5eXtNPVjFf6ZViqTi1DfKXBPO+/pe10deP+YB9DfERERETUWAzbDXMicrdS6m0ArgRwHgbbypZ7EsBVIvJ/dTs4IqJ6CFnZbldQk24DU1ACAP5wscJJ+4Y78WOrbFdNa0hTm8UopauszLZ2e7hg07SxwIadwFF7ubewDRtC6ssLsoZvax+9F/Dol2P44p8ENz8tyOSA9xyk8MtPKqzfAbzjB3ls2Om+L55QNhPLQyNshS8X/3ST4FePDc2gHQDctUhweYOLmJWHUE3OPNB9znfso3DHIv/9smiNf91P3WC+/2oZtttzovk1v7xKZl9ejI/twMp2IarzXbblR0igF/LyExV+jEZERERERFSqliG+7qy/Ha43xGdqt1sM8enGec6lMXJ5YEdP4cev8hBfS8wfwDOF+Ezjuu0Z4iMiIiKiIAzb1YmINOwvcxHZCOBzSqlLUWglOxPAbgC6AKwFsFBE3mjU8RER1VqYynYPvCI4cW74l+ycYRcxBXzkKLc0hKx5feByUsypv2rajN6pCahErZowIADc/aL7Mf7tCzGc+bbCydJUQiH2Gbf7OuxtaDsZ+5OPxBBvUfif8xV+8hFBXx5IxAuPodFJYN1VLehMF070JlsLp5njLcBXbxVc86D/uvZkh264q9Zsle2CWjmHtbNH8Nsn7PfFhccrfPucxp98/cSv8/j7Uv/yJxzDp7V072K3x3NHiMqEqVbz2OsbBXtPKdwnm3YJ/viMLWxX2/vuwOnA4rf8y//2ouCb/zD4uynIC0Rb2e6AzCuFC0/Nc9+IiIiIiIioAeItCmNSwJiUaY3K3s/15aUkmOcL82X0490Zc8CPIb7G6atxiE9bbS8BjEpaqvElFEYl9du3McRHRERENGwwbDeCiEgWwIONPg4ioroSwdTcRufVwwQ+vCptAVhi2aKBizEI2vJpZGJJ32rVtIY8aIbC86trG+aqtlXtrEkKwSfECqaNK5ykSiUKv196msJP7g/eNuxtaDtpmvQEf1piCi2abOWoZOFEm1eq1dRiMtyxjSTWsJ0lsFSJJevsFSuBwjeddxvb+JOkWwzV42ZPqu9x6Ewd47beOYe5347TxppfI55fPRi2e3GNvRpiLSvbAeZKogdOd2shCxQeYzZjjR88+U3NbShcOPh4942IiIiIiIiGkZZYbUN8pjCeqdpelyXg15XhOaJGsYf4APt5S3uIrxDW8wb3SkN87cbxwrlF3fYM8RERERHVH8N2REQ0vIng1K6HEJde5JSlHFK/Sr+JGknYbmNpD8SU9CADf9iuO50DEHxddHb01L5qWjWV9zK9gp8+4HaMe4wHDtm9dNlFx9cmbGerPNVW4V9TxYBguWpuv+HOFpzKC/Dde/JYthE4YibwiWMURiUrP9H45Irgx9EB0yqePlJ7TQIWvulfHlRlcuNOwW+fFPz33YJt3cC5hwHnHqZw/lEKsVg0J2ldH89nHui+v9P2d9tf0PWvddjO9P/J5s7Sx5YtbBd0jKmE++12UvejhQvZCvulExERERERkVa9Qnxd2UIr3U5PUK9TM+5tp6sbZ4ivMfrywM504Uev+hBfR6K/ml7J5cEQn3/c0063bJwhPiIiIiIzhu2IiGh4E8HUvo24Zc3H8NEZv9VWivN6Y3Nlu8nl9cvjjmEO2b4Z8j9fLlnWnu/B9pbxvnW7u3pRSdgumxP89YXQm4VWaRvZbE5wzs/z1kBV0eTRwO2XxHwnfA7aXeG6CxQ+9/tCO1eTsIG2bBWVp0xMrTB5wtPMVtkOAL52W2GF3zwO/PFpwbx/jSHZGv6k4EOvCi67JfiBeNCM5jjh+JGjYrh1of8Bv34nICLaE6PrtgtOvqoQTiy6bSFw20LBA68Av/pkNCdUXR7PN31aYeIo932NtoQor54v+ORxhcvbu+33oevrc6U+d7LCLx7yH8NdLwK70jJwPaoJ2wHA+Ucp/OFp+3X9r43fRLv0fyX/leeCJyUiIiIiIqKGq2WIr9sb3CuG9AaWSemyTOFyYRvxb5NhiK+RahXiiylzO93CZXM7XW+Ir3w82coQHxEREQ19DNsREdEwVzhhcHbnXdj02gwsSB2DpKTx7UlfxfxR7/St/ZvHBb/6ZPi99PbpT0y4Vk6SX13pW5YSfa+Cnp4sgHbXQxvw4KuhN6lIpSfWHngFuG+x27pvfi+GRFx/UubiE2P48JGCZ1YCV9yRx+PLqz9GW2W7RIWBHVa2Cy8obOf12OvArc8Lzj86/Mm7K++0JDU9TIHJerMdx4trgEP28C+//jEpCdp53bBA8KUzFA6YXv2x2R7P/3O+wiePVehoC38fHbx74bqVe2kt0JsTtMYV7lhkf8DUurLdKEtb8tsWCj5xbDRhu1kO7YLP7JxX8rvkclBxvhUkIiIiIiIaiVpiCqOTwGjjd5KrD/EVQ3gDrXHTQFdWPJfL2ummpSS45x2v9Iu9VJ281CfE5w/rlYb4ygN+5cG+4r8M8REREVE98RMWIiIa3jxl0tqlB6d3PwgA6DW0lD16r8p2Y6ps5xzm+Ot1vkWpvD5sl+6xJL8sbnk22hayx8wGnlzhX15pWGz+UrfjO+ttMAbtisakFE7bH7hxgcLjy/3zNnNlu3Rld++IkHfLwA14dhVw/tFh9yF4+DW3dU2ByXobZ8nePrJMcMge/ufLn56xP98eWSY4YHr1JyhNrVQvPlHh8yfHKp7XFmR7aS1w+ExgQoeC7eRurSvb2e8X4BPHFi5XG+a17adobH5H6YI3FgNzDwnekIiIiIiIiMhRrUN8A8E9b2tcTTtdb4hP2063/1+G+BqjliE+c4CvEOJrtwT8TAFAhviIiIhIh2E7IiIakVa37qldHqvwfbOpMlG88iwJkqI/49BTYRrrnpeiDdu95yCFJ1f456z0RNX2brf13nuI+53UavhLx1ZJSqcmle1MbWR5os8o7CPYdr+ZhHlsNEtluyNnmsfe3KpfvnSdfc7OTOXH49Wd1d9r1d52p+6nsEATpAUGjz3oPGitK9uduq857NfleXmvtrLdafvZQ4UzetdiVu+q0oXdu4InJiIiIiIiImoCtQrx5YuV+AxhvM6MaAN+3ZaAH0N8jZMXYFe68KMXXYivIwGMSpa209WPq7J1B8dTCYb4iIiIhjKG7YiIaHgT/RvlT27/Hb415Vu+5ZW2QDWFJaoJc7Tn9emz7p6QSbEauPJshb2n6McqvQ0Nd1WJU/cDLjjG/SSEqepc2BCWNWxXaWW7hD4gU+ntNxKEaSMLhA/nAfYqhuXam6SyXVur+Tlx1TzBBccIDto93Mm7dTuC13FhCo9WWxXw0tMU/utv+nt4xWbBO/ZRxqp6RbUO2719lnnspbWDx15t2O7QPYAvnKrwswf0t8e16z7v/9gho6+cSkRERERERDRSxGKqEIKqYYhPX43PX23PG+LTbcMQX+PUKsSnlCa413+58G9/O13vsrbiZeW5XDrOEB8REVF9MGxHRETDmyHBNSG/Tbu80qpiuRqE7VKmynbbdwCYUfnEAa67QGHlFuCt7cCYFLClE9jZI9hzosLEDuD0/RVOmKtw5yJBlGGxTEAA7oS9gTsvifWH1Ny0GcN24WJYtWgjm2Rlu9DCtpGtRJggZrO0kQUK7ZXveVk/dvFv83jqa+FejH40X/DDD1V/XKbXg2or200cpaCU/iX+0j8KPnVc8HOp1mG7WEzhS2coXDXPf5BLPJUFqw3bKaXw4/OAsw9RuOdlwZ/uXoO1rTPwye2/w1e2/AD7ZF/3b8SwHREREREREVFN1DrE15UFOtP9Ybz+y4V/pWRZ8XJXGujKim+bgfGIuhtQOOIN8e3UrmHb2jiiVHkwr6w1blKh3TiuytZliI+IiMiEYTsiIhrmDC0M8/qgQdSV7VzayIohEGg8xu2drodVIuZwLBM7gItPdOt9awrLdGcL1ynsm+8eQ7vJovOPVqGCdoC5xWuY6mWAOYAVU4VWFpUwtpHtrez2GwmibYSsF6aNbLNUtgMKJ75MnlkJbO0STOgoPKZcwqbVtMD2qlXYDgDGtwNbu/zLi9807um1X8+orqONLYyb7hUkW5X1Meca5lVK4bT9gVNnZ/D9n84N3oBhOyIiIiIiIqIhxRvimzpGt0blIb6e3v4KesXgXqY0xOdblikN8WnHGeJrCJHBaoi1CvENhPG8rXE17XS9IT7dNgzxERHRUMawHRERDW+mIJtEG7bLGSpuOVVO6tWXXzIeo2pzPKpSc6cUqtXZhAkzmap6iRTCaW0hwzRBFcUqCefUuo1spVXtJJ9Hcu0rAPbVjmdy5sp3I1noNrIVpPNcHxuzJgJJS/vWejt6tsJfnjdf4a1dwISOwuXFbwXPN3l0NMdlqi4XRVDRFoIVkcDKdsfNqf39N77dPLYrXXie28K/oavvde9yWk2WPgvMPQSItQAt8f6f/sveZQOXW3jik4iIiIiIiGgYisX625W21S7EF2U7XYb4GqMkxKdfw7a1caQY4tMH+AaDeqaAny7A19FWOPfIc1lERFRLDNsREdGIlMobWrRW0MIznxd86c/6N4xOQQlDhaF2Q2W7LZnKUlhRv7VMPXs3gDO1Yz294cN2QRXF2kNWtQMsYbuwle0M65sq59nIgrshXzkXybZDgNlPaNfpyTJsV5TpFby0FnhulWD+ktrWttvRLTjlh269ar9zbnOdrDn/KIUr7xTjCa/uLLBsg+Ccn+exdJ1+nfL1o2CaJ4oWvJe/W+Hrt/kfE3kpvJ7YwtPHzwHe4VAArlrvPkjh//1F/7jd0VMINdpe+1rCVt/LOlasu+WnkFt+GmpqicXMYbx48XJZYC/WUhgrC+65hfxajOPKO1eL5nh8x1W+X12gsGxd3XFptlMuZWOJiIiIiIiIRhhviE+vuhCfOYwn2oBeV1mIT7c91Z83xLdBv4Zta+OIUhhsl2uottduqLbXUd5O13OZIT4iIipi2I6IiIY3Q2mrZISV7X58v/lNXdwljLXhTe1iU2W7O7bpq6EFqbRqn44seQbJX14OzNaH7bqzwDhLRSedoLBdJeEcYxvZkJXtMoa2m2Er28n6VZCvnAvAfP8ChftqfLiph4V0r+DFNcDzqwXPrQKeXyV4+a1wrV29wkbzLv5tHm9sDl7vb1+I4ayDmuukyrRxCs98PYb9v6kPC27YCXz2d3ms3OI2X1Rhu1q2kT3jAH3YDgBufd5c2a6jDbj70hja6lCZcGzKPPalP+fx139uMT6+W1sqOHn3zP3h1g8jnwfyET0wqlSPltKuBLCG8QqXYw4hP0Nw0Bf4M4Qe43GoksBhzOG4HPZrDCwa5mU1RCIiIiIiIqohb4hvinaNaEJ8/jCelFXm8wb5/FX6Bv7NVtZ9g6ojMhiyrFWIryNRaOtcenkwxOcfV4ZtCudKYzGeRyEiGkoYtiMiouHN1EbWUDWuLw/05gStcfc3Nv/3nPnNl1Nlu6fnaRdvbplo3KQvL2gJ+eYr0rDdI7cj1ddt3lcFeYzAsF2EbWQzjWoju+DugYumxyBQ2e031PRkC8G65zzBusVvmVsy11q6V/C3l4LX++hRqumCdkVz9WcYAQC/eMg9aAcUno9hXwt1TI/lVAWVKn1zWF4T/vycGF/zvvcBhdHJ+tyHtmO888XCv7awXVjieY2hOurLFX4arNnO3Ys38GcM8VkqCIYO+ZkrFwZWQwwTLgyqhuhbzmqIREREREREza5WIT6RwhdCTWG8kmp7WaAz3d8jHaF4AAAgAElEQVRONwt0psUX3CuOM8TXGN4Qn2EN29bWuTuKAby2Qgiv9LJCh29Z8fJgiK98vD3BEB8RUa0wbEdERMOcIWwn+jayAJDOAa0h/od8YoV5bIlDu0bk9ImQv3ecatxka1eh/WAYLgEu57ddzz+IpJhr64dt0woEh+322y38nFFVtksbQjttYSvbPXHvwGXbYzDKYGQz6MkKFq0ptIJ9blWhct3itwrh1mbx6nrz/exVSevgerGdOHl+dfj5urPA2CrfLdSyst0scx4Zu9KWFrZ1bNFsq2zX0n93mV77Qod5gUI1M6JmUayG2Nv4BHkzff4gSjm0NNZUJgzRallbDVHT4lmVBwOdWi0H7DeuWddxXlZDJCIiIiKi4UapQqWz9hqG+IohvNIwnpQE84rjXZlCiK88uDewfYYhvkYphvg27tKNRhPi07XT9Yb4dO10R2nGGeIjImLYjoiIhruQle2AQihtdDKa3b/7bcFvOCSjPxZbmK2StprLNgavY33Lls1AfnE58PhdwLpVSMTGGdcNG2YD7NfpnfsDM8a7vXkTEchX3w8suBuJcRcC067xH1/I288Uwgod2ukdvE+D2sgOVd2ZwWDd86sL/y5Z15hgXZgTQ04tn1FhAKoJrN4afpvuLDA2ZDtor1yfGJ/X7RW0hfbN0WZ+TXjgFSBpeH7WM2wXiykcNwdYsNw/lssXbyP9A7WSynbo6apgIyKqKxFWQzQIrIboDQRaqx06VEMMCBeqksBgQDXEMPt1qbJYFlJkNUQiIiIiIirnDfEZ1qho3mKIrxi884b4CsukJJinbaerGWeIr3FqFeJrNwb4ytrpagJ+3uXecYb4iGgoGaIfFxIREVUnGVFVMQl4h/jOAxwmef5h7eIo24yu3Vb9O1n5z08BD9068HurmG+oqCvb/eVz7h8yyhUfH2jXmhD9DRU2DPjiWv1yU5jH6LkHBy4Ohzay3RnBC8Vg3arCv0vX1y9YN74duORUhVfWFdqGViPu+BBr9rDdyfsAD70WzVymynCubK+lqQjCdgDw7XMVvn6b/77Pi6WyXQQtbMP44YdiOPa7+ifFMyvNVQcrCts9Pb+CjYiImgSrIWqVVkM0VRXUVEMM0Wo5sBpi/3bmaoghqjBqqiyaqyHa52U1RCIiIiKiaHlDfPrOOpWH+NK9bu10vcu7+8fKg3ve7fPN9AZuBOnO9p9/rXGIr7zaXvlyb8BPF/wrVvZjiI+IotbkHxcSERFVyVTZzhK2e+FNYKalPaHX4rfs406hjpef0G8bYeWz2xZW945Ttm0CHr6tZJkpyAZUVnnPtM015yuMTjpWtcvngQf+MvB7VGG7+UsMj6MqKmTF0Ye49CKn/JM0Y2W7rozghTdLK9YtXVe/kxmpVuDQPYDDZyocMRM4Yk+F/acB8RaFj16nDzKF+bak6/VYv6O5z95EFWIDIgjbWbaPqrrcmAqqkNazsh1QOKFj8qvHBQ+9Ek1lO8mZX9jUZ/4T+PC/AH29hWpauRyQ7ytcLv7blyskZYuXvcsHLnuXedbt08xVsk3hsvSZ9tvnn8M3rtlvvq/0ugxs1xd8XPkm6mNNRGTDaohGYqp2qKuGaG1p7NLy2B4uVKZwYYStlgOrIfYvZzVEIiIiImo2SimkEoVzl7UK8enDeOJb5g3xmQJ8nQzxNUwtQ3wDAbxEoT3u4OVCUE8/rgYvl40zxEc0sjFsR0REw5shbTOhz9xTsTsrcH1z9/Ja+x/wTqGOtx0DvPykb/GXt/wQH59xo3YTU1tTk5cDQoFF3/wHw/VeucR3W7bCUtkuwjayoQIna0t7NbYZwnbpkMf39pnAqi3+5a9uCDcPdp8DrBk8xlS+B7ta/A+S7p4+NPLPtM50f7Bu9WDFulfW1+8EQ3vCE6zbEzhipsJ+uxWCdTpRFDVxDYi+ur76fdVSRdXQDGpa2S6iwNvu4xXCfvQ/Y3w0+3Y1bax5bN12wb67ASs2+8d0rzlWW9aZx1paoNqSACLqkV6hZjr1JCJlIT7HkF8x4OcQLtSPe0OA+dIQonHePv2xVrTfvuDjIiIaKoqva6yGWMJYDbGkqmBANcSSdWwhQIdqiKFaPDvstySk6NJamtUQiYiIiIarWof4zGE8fbW9LkvAjyG+xiqG+DZFHOJLtZYH9/r/bSuE+Np9wb7iuBq8XDbengBaGOIjanoM2xER0TCn/0M4KRnjFmGCbEGhLVugRDJpyC+/pQ3aAcCZnfOM24atHOeyfiIOfPAIwx/wGX+VPQUYK7M1LGxX9kFb0tCqNWyb1kdf1y9vCVs0oq/0SqakB7swxrdaT08W9fozTUTw+6cE37m7EKgDCuG1MFXhqtGeAA7zVqzrD9bV+81kzvE51dfkJ0P23U0Bi6I5yJpWtouoAt9p+4Xf5oBp0ezb1cRR5sfy6xuB3Q3hv9CvL5rX6QFHnhZysuFPKVWoLhRv/FviZjp1JiL9rTzLgnvaCoIu1RD94UJ/kLE8JGiohhgqXBhQDdG3X9125dUWWQ2RiIYIVkM0ElO1w8BqiCFCfkHVEIsVCOvQahnx8sAhqyESERERufCG+CZFHOLL5IDOdH8AL+u5XKy2l/WPe0N8unGG+Bqnp7fwU6sQ32Bwb/DyQDtd7binnW7ZOEN8RNFq/CcLREREtWRJDE3JbcDG+FTf8jABk6DQlilQIrleyKePBla9Ytx29NEnAtv1Y2HDdkFBotFJ4OZ/jGH6OFPYTt92t9UQtouyjWyosF3ZB+GmVryZHJDPi1OJ7wdeEWzYqR+76PiQb0zKbsdUXn+79tSxj+z/+4vg6vmlz5NaBe062jzBuv6KdfvWMFgX5mq4PmZdQ3mN8i+nKvzgvuYI2+mqtRW1RxS2G+XYYtqrERVNPneywi8e8t8vyzYWfnT+3VRp1OStFeax3fYMNxeNWEqpwVaFrRH2pa70eBp9AB7GaohhWi0HhAuDqywWKhNKYAtnh1bKzvt1aPFMRDRUsBqilijl0NK4JWDcUDFRF16MG1pA66ohOrVa7t+vU7gw5lYNsX9dVkMkIiKiKCmlkGwFkq21C/F1Zfur6aW9YbzBEJ93vDtb6HLj2ybDEF+jDYT4tKPVhfgGwnje1rhtg0E9/bjyLSte7mhjiI9GJobtiIhoxJqRW6cN24XJOQWta6xst+gxa9AOAFo6OhDb1oe88qfNoqps98HDgS+fGcMhuwOtccsfw4aKSQnJogftvuXZSMN2If5IX/Fyya+mMBsAbOsGJo4KnvLrt5kr2YQODGVLb0dTGDAdts9thbZ0Cn7899q8Wx7VBhy2J3D4noMV6/aZWps3XVF8/pFzLFjU7CcXbC1Lw6o2bHfdI+YbNao2smEdOL0x+917cvhtRreFW19uv9482JYKfwBEVILVEPV81RC9FQSrbbVc0vbYFnR0qYboqcSoG/ceb1A1xJJ1LMfFaohENFSIALleAPX70pfxUBp9AGWM1RAHQnoO1RCdQ34O1RBr3Gq5JLBoCTqyGiIREVFzKQnx6deoaN5iiE/XDrcQzDO30/WG+HTb9/Etc0MUQ3ybO3WjlYf4kq3+gJ43xNeuCfB5Q3ymACBDfNTMGn+WmIiIqJYsJbpS+W7t8jABk6CWs+M7DAMvPh48uVJolV5kNGG7sG1ac4bel5PHKBw5y+GPVUvYTqe3TxD2DVwkle06S0sBjssbSgMCWLIOOHFu8JRPvWEeM96/JpnysJ2psl19wna/e1IiCY+NTpa1gt2zEKxzqRxYS2Eq9Lk+p857e3O/uYvyNu/Khn8el2xv7taNRIPeheywdFqtpQlhXytQKPgRSrf2DElBIhn+AIiIHLAaopkMhBAdw4VB1RA14cLgKouGaoiVtFJ23q9Di2cioqGC1RC1/NUQQ7RSDqqG6AsBllVDLJtDhW7xbKiGaAwXxgLGWQ2RiIiGL2+IT1+4IJoQnz+MVxri6yoP8mVEHwBkiK9h0r2Fn1qF+EzV9josAb+ORKF9rm6cIT6KAsN2REQ0vFnDdvrURVBrWC9bhbn9dgN2H6//g012mUNgRWrOQWhd1YsM/CGJbMgwW9VBtow+mNgq+g/LwoYBgdq0kd0nu8y4aiaCL+2/c3/3+0A0J+iTpsdguj69SpeuC7/N6CRw+J6lrWDnTql/sE5WLgWefQCycyuw/GwAb6tqPteKlhceN3LehFVb2c4W5IzyA4j3HQLcvsht3TXbItttKKftrxD247FjZ4e8jSz/3/EDHyKi+lOxWOED+niDyrl6j6XRB+BhrYYYUatlf5DR3GpZrPPmzfvNlR1j4H41YUpWQySioYrVEI2kPNynq4ZoHQ8T8rO3WvZVQ4y01XJ/ANIYWCwNOrIaIhERedUyxJfNmavpeUN62mp8hnGG+BqnliG+kjBeSTCvv51uovB52LGzFU7dD2hrbaazK9QMGLYjIqJhzvwHVbuhhWeYNrK2sN21F+hPJEm6G/jzz4InnzzDWDkum80DcD9RZTrOuOsUnTu1i43H16CwnWxaW/K77U9fl06t+YCyb3OnhvjjWlMd0NRGdtW2+pyEdKlqd8q+wGGeVrB7T26CinV3/BJy1SWD4aLps4Gx/rCdhCht5xIs+/a5CnOmjJw3VNWG7V5co1/+iWOjvQ1/c2EME77odrbj40c35v7bfbzC9HHAW8E56wGzJobcyYrF+uVnXhByIiIiotphNUQzXzXEUOHCoGqItvChNzzoUA3RtZWyUzVET6jRVv2RiGioKL72NYFmCiJaqyE6tlL2V0w0VRhscauGGCZcGFgN0Rsu1AUlzVUW+eU4IqLoKKXQ1gq01SHE15UttNItLBNfsK843mUZ35VmiK9RiiG+LV260fK/ogQnzgXu+kIMo5P8f5sGMWxHRETDWwWV7cIETEwBsQOnAyfONfzRdeev3CZvH4VW6BNhvb19CPPfeM7wB7trkE3u+o1+e9EnE20hRO38IlUfIwDgDz/0LZqQ24KtcX9qxaWCoemYKtLtDyym8vo2sr9eMhm/jHDXJvMW20+9PvP1GI6Y2VxvHmTnVsjV/+LWI3bTWgB7Os07f4l9vjMOAC4/a/h9E/s/Nl6Bb065QjtWbdhO/0YVOHj36uYtN65d4WvvVvjO3cGPid3GRrvvML7+boV//oP7xx2hXvsAYMdm7WI19+CQExEREVEjsBqinnM1xDAhv7JwobWFc1A1xJLLmmqI3uMNqoZYst+A1tKshkhEQwmrIRr5qiH6qhUGjduqIZaH/Oytlq3VEKtuteyphhhU3ZHVEImoydQ6xFcS3CuG9LJAZ1r8yzKFy90B45F+tkV4dBnw84cEXzmzmd4tU6MxbEdERCNWSvRBp56Me9U4U6jMVpFInrnfaW50jDFXjtu0EcAebvPAUtnONcwxYSqwYbVvsfH4Qobtcpb1QwVORo0DOktLRxnv597gVrxhQ4NWy1/yLWqBfgetsTyAsEmb8Eb7OxSXaG98sRG/5x/2fUtcmU6VblkP17BdUDXGt+81dN5EnbA38NjrwetdtP0GfG3L9/FI+wn4+6jTfePVhO1sVQVrURhx8mi39VINfEyPagu3vvPrc5Bc4z/MICIiIqoUqyGaWash+toxV9ZqObiVcuF3Cayy6NBK2aUKY1CLZ1ZDJKKhhtUQtZyrIbqG/FyqIRpCgNpqiGHChUHVEL3H6FBlkdUQiYYPb4hvQod2jYrnzuZkIHhXDOENtMZNS0kwzzveZRkf6SG+eYsFXzmz0UdBzYRhOyIiGt5MgY9YDO35bu1QT9q9apxr61NZ/Rrw0gLglA8Cu7YFTzz3UGCfw9AqG/T7TWecji/scRqN0peDShi+kRo2pGZbP1zYbqwmbKevYJh2yJ/YQoD7TwtxXADQ608ubW7RpzLHtfYCqH1Fi8P2VFiyznwqLdn4ohp+O7c6ryo5937GY9vt46lmvC0M3neowmOvB58iPa77CQBAh+hfC6sJ29meX+3xPOSVhcCY8VDTZ1e+E4/j5ii4nBaO8n6UTA/w6kJg8nSoabMC13c9xqLQle1MUtozNUREREQ0xLEaot5ANURTC+ZqWy1rg4zmVsvWaoi5Pn1g0Fe90aEaoktraZcK8UREzYDVEI3s1RDjQIumPXIlLY8dWi2rmrZaNlRD1AUdWQ2RyCcRV5gQr12IbyC4522Nq2mX6w3xadvpZgrtdIdCiG/TrkYfATUbhu2IiGh4M70bnnMQkjv0Iaw1W93fQptCYol44Y9V2bUN8u7dBge++9ngSVtaoD55OdA+Gq2yRr/frPuJhk27xFjlyiXMISLAM3/XjsUNbWSDqoSV+8kD5ts8VOBk/SrfIlO74B6Hm9AWAgxdLjrjr7D3qe2/w4L243zLe/rqc3KgM21/rDdlwCzrvz+Nle1CCAqINuVtYfDxYxSufUTw+kbzOgenX8Q5u+4AAGPwuJqwne35deTVZ0C2PQ4AkP2PhPreX6HGT658ZwCOcCtgGFm1Rrn9eshP/w3IFoLPcuDRUN+7DWqsuazpnCnhXjPiIV4GbJUEMWv/UPslIiIiIhrKSqohNoGmCiK6VkOsotVycCvl8mqIpqCjQytll/0GtXhmNUQiGmpYDVFroBqiteqgvX2xr9KgKTyoq4bouRxcDTFEuDCoGmJQlUVWQ6SI1TLEpw/wAZ0Zc8CvO2A8yu5Vho+UaQRj2I6IiIY3UwChrd3YXvTpNe6pmqCKcXLR0c5zAQDecyHUu86HOuwdAIAE9Km13oz7X4gX/sb8lRCnMMejdxiHomgj+9gywddviyhsp9Em+iqAdy4SXHqafVvbH+JHzQr3xkHm3+xbtntOH6bs6avPhwK3L7KPN2PATBbc7b5uiHltVQyBQin3oWLqGIWHvxTDtY8InlslOHh3hfEdwMLVwLYuwXETN+Ofrj8L4/I7AADtpkBqNWE7y7btXZ6KnUufhXz7Iqir7qx8ZwBiMYWj9wKeesO+XhRtZGXxU5CrLilduPgpyH//I9R3b7Vuu/80YOm64H3EVOE6OXvlOcsgT6gRERERERGrIZoEVkMME/ILrIYYHC4Ua5XFPv1yXTXEwCqMDq2lWQ2RiIaKYjXEHKshlnOuhhgm5BdUDdEQAlS6cGFkrZZdqiEObscQYnNJxBUScWB8DUN8/jCePuD3yjrB/KX+uRi2o3IM2xER0TBneGuTTBmrOQGFcsYdbcF/wJkCOq0tgPRmtZXWTNTl10O9+xOl8yj9Dnodv46xKy24+2XnQ9CSx+4yjrUaKtuF+bbI7Yvsbz9dw3bSuUO73FTZbuPO4DltpatDhwBXvepbZDq2PomhNydojTf2DV8UwaTIbfG3VlYRnPwNesxG1tKzTqaNU7jibP3jR+67H5IfbGfdbmgj25Wp/Ha1VbbzPe6ffQDSvQuqfXTF+wOAMcngdaIIkIopgPz0fEi6Gypp7knc4ficiod8vMkjt4fbgIiIiIiIiACwGqLNYDXESsOFQa2WLS2cc6Xraqshhm2l7GnxHFjt0BZ6bJKqYkRETlgNUUtfDTFcK+WSkF9gK2Vzi2cVusWza7gwoBqi93iHaTXESkJ8f18imL/U/+HgzjTQlxe0hPmSPA1rDNsREdHwZgrhJDswOt9p3GzTLqCjLXh6U0An3gKgc3vwBF5z3uZbZArbZR1Lxy15yz6+3Zw3HLTxTeNQIoI2sg++Ek3YDlv9ISwAeLTjRO3yuVODp7QFsMKEYUQEmDwDWFPaz7ddzF+F6ekFWmv8l9qEDmBrl3k80eCwn9aM2cAKxwRpiHfvQZXtjpzZhLdFpcreLKdq0EY2Y3kNSJZXm+zLAds2AlWG7d62u8L8pfY7/aAZEdyPix7TL+/NAju2AJawnWuANeg1VHK9hf/fiv/H/fU688rD6OQIERERERER1Q+rIeqFqoboGvJzqYZYEnTUVEPUBiEN1RB9QUeX/Tq0lmY1RCIaKlgN0Ui0LYkDqiGGCfmFaLWsrYYYWavlsuX9643NtwHQf1axKw2MM5/+pxGGYTsiIhrejGG7dpzVeS8uxdXaYVtVJq9sTj9/awuATMiawvsc5p9H6UuruVa2C/ojPebSRva5B41DUVS2ywccpHPYzvDtrBO6H8Nj7Sf4lrsEAqutbCddOyFXXwo8cQ+wa5tv3FTZDigEncakgvdRqZfXijVo9+1zm+k0pkeI51WYN6k3PWVe+4iZwKF7hJisycmyF0p+N4U+Kw3bdaYF519vfvJo209n9G29w/j40Qo/mm+/1w/everdFE4eG8gXTgd+fA/U9Nna8c+8Q+HRZcGPzNmTDPM//FfIr//TPXBKRERERERERJFiNUSzwGqIYcKFQdUQja2U+6shRtFK2aUKY3k1RF3osUmqihERORmohpgJXLXWGhFEHNM6B9j7Je3Yjh6G7WgQw3ZERDS8mcJ28VZMgLmPaI9jyMQUKmttARCmrd/7/0lbmrk1pg+sZLZscpo2ExAaDKrmJXf/1jquDc0AmLc4uj+B3cN2+it7fPcTFYftbKFBp7Dd5R8EFj5sHE8FVLarlQ07BQdfaQ5DHTUL+OqZzXSqzuPp+b5Fqsq3XDc9aUlVApj3xeFTOl12bAH++OOSZaaW2pWG7T7wizxeWmse175urHkdmH1gZTvsd9ie9vtozwmI5n5c+qx5bN1KyCWnAzct0rbFPeMABZdTBF883X+c8tyDkG9+tHCiN4xh8tglIiIiIiIioubGaoh6JdUQa9RqObjK4mC4UFsNcWDesv0Z53XZb0Br6SaoKEZEVG5s3vzZ8Y6QNVZoeGPYjoiIhjlTqEEh1Wp+y+0adLKF7eTOG9wmAaAmzdAuTxjCdr3r1znN+9Qb9lBHUAbDGrbbcx8kcvo0zhK3w3PiHrbTp+fayltW9rO1uSyyhRHjAVUB5a03rEE7AEjlzdW8XAOflbhzkf1xcfV5wyNc5hrBu2GBec0vnKowvmPo3xYDnrjHt6jdUGGxkrDd2m2C+Uvt6+jCdvLI7VDveF/4HZZ55/4w7n/6uKqnL3xDO8imtcAz9wMnneMbSjmea27XtJuVe38fPmhHREREREREREQNVVoNsa3Rh9NcQcQw1RC91QhDtFo2zttXuq4YxwOqIYbZb1A1RG9QkYgaYmx+h3GMYTvyYtiOiIiGN1NlO6WQaGuBkjxE+VNTkVS2C2OKvrdha9dWoEOz3/HTnKbVBTa83rl/wFvrRY+ax8ZMxLLOudqho2bZp/WKBRyC822Z06fnTNX3sg7vV6upbCf33hQ4f6Mq233hZnsMbY/xtdt31RJJIFsaUqy2st0Dr1h2N8z+WpY3lviWdYi+n3AlYbsFy+3jLZJDCzSBsWQ0tddtz5uN5i+kudux2W29lUu1Ybug1+SilG69lf77zskwCM4SEREREREREdHww2qIeuZqiNG1Wg6e11sN0VZlMajFsm2/QdUQy/bLaohUB22SRVs+jUws6Rtj2I68htnHh0RERGVMYbtYDKothZT0oFv502xRVLZDJsRfXUefYZ5Ht1+HqmyAPSwGAMfvPXhZFj8FuesGYPlLcKoJNmY89tr2Bp5PHeYbSjseHwCkA27ratvIGsN2VbaRjZ0xFvli1bxYDNj38MLlyTOgTnwf0Lk9cP6UoaIYUF1lu7XbBD+5X/D0G4J9dlO4+ASFo/YaPF0QVNVvjwnNdGqhjKGaYq24ViJrdrJyKeS2a4Fbf+Ebi7KNbF/e/tphej5i1zbIb78HWfgQoBTUEacCH/oCVCLct31P21/hsdf1x3DM7Age146v65Lp0Z6gi8UU4jEgF1CgTlt5tXuX076JiIiIiIiIiIho6GI1RLPSaohBrZb7HEKAusqFAdUQ+9c1VkP0hgdDtHgOrHaY01VJZDXEWhib34GNmrDdti5Bcz0jqJEYtiMiouFNTIkGBbQl0Z7vRndMF7Zz+4PJGrZbu8LpENWX/gdq3CTtWGLaDGCbZr/r1zrNHRToSMQL11EWPgz50tm+imFWYybi1K6H8H9j3u8benGN+zRBwcZq28hWE7az3X6t4jnwfB5Y+mzh8tJnIY/cHjw5gFb0IiZ9yCv/ldwZ4q7w2rBTcNIP8ljRX4DrkWWC3z8puPeLMZw4N/gx/efPBvTHbSDp6wvVRrO6encF2gpjQ4y8sRTyhdOAHVu046bQZyVhu9YWBdstbwzbPfAXyAN/GfhVnrkfeOER4Pu3h2pp/J6DFK68U7//Dx1Zv7Cdbb1rL1D49I32R2f5405EgNWvue3bh2/+iYiIiIiIiIiIaOhjNUQ9ESkN7kUR8itrtRw8r6Eaoq/Koq0aYoj9BlVDLP5UYGzfTmyMT/Ut37m9G8CoKu8tGi4YtiMiouHN0kYWiRRSok80uYZMjGG7MHklQ1U7AGht0U+UVW5vJIIq2xXJH38cLmgHAKPHISVbjcM9WUEqEfx2I6iCW7zqsJ0+zRdU3Q0IqGyna4UZkkKhlWyX8v9xPm+J4N0HhX+7dvPTMhC0K+rpBX7y9zxOnBt8Y86ZEnqX9WOoalfNm9qebEDoqfHv2asmd1xvDNoBQLvoK9ulewuV6lqCej17BOXijGE7nSfvA15bOFg1skqRnPzIOL5OWl5PJ3bYA4mA5nG3ytLrOAjbyBIRERERERERERENW0opIB5HIf7DaohexmqI2lbLfcC2Dfje17+OXhXH2L4dGJvfibH5HRjbtxMTZt0F4JBGXyVqEgzbERHR8GYM2wHo3IZUSl99yLWFpzFs1xPcQrRwHAoYPd44nDCEATMtKafpbZXZLjnV8+fu4qed5isxaizG9b1hHF60BjhmdvA0tsp27Qm4V7XK6SdqK7Z6LZN1CCLmTPevZCN7s9AV038LZrS/QrWTm5/WP+ZvXei2/UR/ocfm0Ruu1JpI8L306gb7+KTh8CWlxU9Zh9sD2hmPCvFYzAW0kW0LE7YDgJefDBW227Yof1sAACAASURBVHOCeeyA6eF2reVc2c4StnN4TPme/5W8RhMRERERERERERERjWBhqyHKnvvg7J73aAt8qM2rwLAdFTVvnzAiIqIo2CrbQRkr2wW1Ni0yhu369AEvnwOPgeoYYxxOjdKH6tJoK5SFDmCrzPae1ucKbTkBIN0VOFc5tc+hOLn7YeN4l+NNYLut3/02/zLZuRVy3x+Qv+6bkEduhxRDLTVoI2u8fw3V8kLb/0jjkCnoF+SZlcHr2IJ8e0xopu8clTGE7VQVDWMzAXfl6fs38e3hqsf+/DZVtgPCt5INetyGqmwHAOluyKsLITf9AHLb/0LWr7KuPmWMwtF7+ZcfMA3Ye0pztJE9albw5geWBwMreI0ewMp2RERERERERERERESBVEsLMGWGfnDDm/U9GGpqDNsREdEwZw7bqY98EUlDRadqK9vFXQIlE6ZCffnn1lXaJ+qr3v294xRjJTcvW9jutB+fCPn2pyG5nHuAxGv0eIzJ7zIOb3XIhvTlxRp6u/q80j9VZMObkM+eAPmvC4HffQ/y9Q9DvnIOpKerUOJZwxTuWbcj+PhMlQHj4pDUC7LXAVCnfABH9egrVr3lWByxEmMNhRE/d3KTh3IMbWSrYXuO/M/5CruNbfLbxMXKpdbh9nx0Ybug1tVhw3Zyy88gFx8DufYbkKsvhXzqSMhLT1i3ue6CGKaMHvx9fDvwmwsjetvj+lqZNa/XGlc4aR/75ol46eNO1q82rzxtltsxERERERERERERERGR3dSZ2sXCsB15sI0sERENb8bqbwoYMwEpMYTtqq1slzcHStTFVwCz9gcOPwnK0kIWAFJt+oBIV2wUkOkEWhPW7U1Vps7qvBcxCDD/ZuDQE61zGCXbgVgME3JbsDU+0Td844I8PnRki3WKtOV2vv+yGHYfXxY4+e1/A2uWl6743IPAvD8Y2/EmLFXoMr2CtlZzmKomle0OPxnq/MuAt78TuP16zOxdjadTR/lW+92Tghsvqnw3Or05QWtcGa/XCXtHu7/IhW0j6zKlJRz2uZOGftBOHEK5tjayoSvbWVpXAxVUttu6vvT3rp2Qn1wG9Utz4O6g3RWW/kcMD74K9PYJTttPYdLoiO7LrLk9bImAUN4HDld4+LUQFRn/+CPjkLrhOWDhQ5CvfsCwwtB/HBMRERERERERERER1cVh7wDGTgCm7AE1dQ9gt5nA1D2AGbMbfWTURBi2IyKi4c0UtovFgESyhm1kDYGMWAz4xFehHMMPK3a1G8fe2pTBjFEVHp8nLCY/+LzTsfiMmWAddrkNbUGeSbrr9uid2nXl0Tug3vUx7VjKUrXrmZXACXPNx5Dr0z9+4qiwxyuA2E/uG7gsbYYScwBmT6p4F0aL1wGH7mFuodva0uShHENlu2rayGYNd2UiDufnaVN77YXAVTrEXIYy6sp2KUuwz9mrz0N2bbOGlcd3KLz/cACI+D5Mm19PSmTsoTxbK2et8VOAbRv9yw86Dqp9FESxYDkRERERERERERERUbViF/17ow+BhgCG7YiIaHgTQ5klpYC2FFL5ndrhatvItuYz+oG2VKgAz5pOc+W6dVuymLGXffuatUGduS/UtFmQfF5b1Q4A2u1F9wDYb+eUbntd2AQAnpoHnPZh7dBR6WeN+9gekPupSWU7r3grlrfO0Q51tFU25R7jgTe36cc6+/M/xuvVvRXy2AIgH1CerFE2WFppahgLW3oYbwt7UcahozO4H7EtABe6sl1A2O6EnsfDTWjStdNYzbKmXNvIBqx34lyFoNqLIlJoAbz8JfNrX3nlP61hEBolIiIiIiIiIiIiIiJqEgzbERHR8GZrI9uWQko2aEd7MnkAwZWCzJXtTGE7c6U6nWTC0uI0Exz4qlVYTF18ZeFC+2i8Z9fd+Nvod/vWcalsZ1sn1RryoPr0AcIx+V3GTTrTAlsQxXT7VRxWPPPjZRO14rydt+D51GG+Vd/YXNkubFnOYnDKeL2+/SlI17zKdtxAVVW2M9yViWEStpP7/xy4Thx9SOQzyMb8Cc8oK9vt2bsan9t2XbgJTVxDb1Fz3e+GN63DsycrfOYdCtc94n/sPvhvMcj2zZAvvRd49XnrPOqcz7odDxEREREREREREREREUWC/YaIiGh4M4Xt+ivbtRsqOvVk3NqEmoIliVUv6wcsbUN1Um3mxM/WTZ2B25uqTMVRRWW7Uz8EdfK5hcuHn4Sjep7RruZSHdAatiurbCdBZcpy5slm9K7VLr96vn1OU2VAX1hxt5nWeYrUgUeXLmiJY0rfJu26nYa8ZhDbbVocM7VOjaxiX5MQh4pevYZWwcOhsp1sWQ/cfaPTuu2ib4/67KpwQUbTcwYAHl55Gmb1hqtOaJRuTNhOHrndbcXt+ue11y8+pvC7Tysk+4PFo5PAU1+L4aR9FeSqSwKDdgCA6QHlTQF7ApeIiIiIiIiIiIiIiIhCYdiOiIiGN1vYLtmOlOgDG93p6sJ28R36inlIhOsN2p40/1f90qvB7SFNYbvWKtrIqqNOH/wlkTLehk6V7WxtZMsr2/UGpPcMle0AIClp7fIVAdXjjPdvWVhRnX+ZfaKiUWPLJopbW3h2ZcJXbLPdpj1ZQV9ejE+LhIQsYzYMGCvbDYf6z0+5VylM5fXPkWWGlzIT03Pm6O6nsEdOH3qtSKMq23WbK2WWk6w9MauUwseOjqH7mhbkr2vBjp+24O2zFCTXCzx1n9tO2pLOx0NERERERERERERERETVY9iOiIiGNNmxpdBur/izbRMk503P2CrbJZE0VrZzCzkZ27S2G9rFvrnMad6iNktlu9FtwcdYkzayR5wyePm1hUgZgmzVVrZLloft0l32ybL64wCA5Yk52uXTxmoXD+7ScHxt5aG0A44CZu5rnwwAjj2r9PeWODry5uu1NeAqlxMRa9vPnl57m89WDM3Kdiqo6qGF8TkyDCrbYct651XXtU7TLp80OtwujdUgyx9b73hfuInLZRsUtnOsYgkA6AwORGt17QTS+kqDPnMOrmwfREREREREREREREREVBGG7YiIaEiT898Gee+MwZ+zd4ec0oH8xw+GZNKWynax/qps+oBWt0PYri8vyBtWa33mHv3A1D0D53WVyVr6NfbLGQ4wXmllu0QSyhs2Oe7dxspsb+0Ins4UDEu1Fqo+AYD09SH/0y9B3qMPAxXJzT8yjn1w5/9ply9dZz8+UxjQF9Lc5zCoc//JPlnHGKiOMaXL4q04KLM49P5NevtgfEwW5zNVcgOAxHBrI+uQwTO21B0GYTtxqcIWK7wdaDNUtnMJzRbduCCPK+5we81R/3IVMNH+nLZqVGW7MPu1BIAj2cdJ50BNquI2JCIiIiIiIiIiIiIiotAYtiMiouFp1auQfz0LyBsCaUoBbSljUOyJtanAXVgrhJlCS8eeGTivq4dWVX6MLhXM1P9n776jJbnKc/8/+3Q4fc7MmZyzRqNRlkYRJZRFkJAsIcAiWbbwxTY22NjGXF/jCzZOF9YPJ0zwta9tAbYMNhhMEkgIAUIBhAIKKI3izGjyzMmhu+v3R/fp06H2rl1d3X3CfD9rsaa6au+q3dXVrfGax+/7yx+q3bFsjczXa3tKmo3HWdvIDnjkTGxBnp7s1HbwqT+QvvC30Sc7uMd66OqBr4XuLwbSeN6eyPr2Y+HHat7z0tUyxshc/y6Z930i/EQbj5X5akiyL5W23j8pXtDJZ/zIeBPP7fxFM/d/J50r8/5PyazbHO9GVbHdj+wcCNvpsx+xH9t4nPSW35H58C2SpDcMfDF0mK26Y72v/zTQL/2z/btU82yl0jIrN8h8/Dbp0jf4XaBO8OAPmpqXWJwAXbOBwL0e7XZveK/M/765ufMDAAAAAAAAAACgaenpXgAAAIm4Wov+9IfStgvDj02G7SyV7aRSS87J6mph3KElS/mw7uiAXDX71aUfj0ZXybOtMeVT2e7t71fXjb/vHpPNqcdSEUuSntkT6OgV9ncxMmEJs5VbyAbFovStf4tcahRXoO17T0qXnxB+7IEXLOerfs9LVlQ2zTXvkLnmHf4LS2XUW7S3i4xb2e7Z/e7jUZXt6sN25sO3yFx8XbxFTIfbvxO626e5rO1+zPbKdoEtaCxJF12nrj8pheyC+++QJPXaWmp7Bj7/9V733U6r6sdo5XpJklm3ReaPPif90ecU7N2h4PUxQpP33ir9+l/4j2+VOAG6seYq2wV3WyqjVumajvcOAAAAAAAAAAAAKtsBAGa58TH38d3PWw4YKZPVSJc9/OYK00nSmCMIlQ0sCZWYYbtfv8QeVDut+8XI+WOWIJFPu1DT5fHXBGO0aeI56+End1sPSfKobDc8IB14OXodEY4af8567Mk99pDQ2UeF73+s+/ipF0891OSqJK3aoJwj8Glrs2tzwJE9laIr2zU8t6s3xVvANHGFUqNYK9vN9v+XlMFD9mNBVRCv/JtkC6QOj/tEFqV/vc897pHuE6de7Hy2cUDM38ZWtuSOJU7Ybqi/uWu4gpKSdPVN8c7nCI0DAAAAAAAAAAAgntn+z4gAALiNWoIRxsgYo3PyD1qnjoy7AzeuKmK2amUmZqDk1HX2Y8PF6P+M28JsrmpqkqRM1n180vFn6OSxR+zXj8j02Y5PVrZrug1jnW1j9kCcq3KX7dgx409NvZi/qMlVSWbFOhlJueKIRkOCn3HbyEYFREcmYrSRXXe0tHVbvAXMQuOW+5F+ebuKN71NWrtZ5qobZc5pXQvodgqGBxXc/BfSt/7VOsa88pqpF+XfpJytsl3M6oo2R41XBeyWrGocEDdsF6edq0XwtX9RcMd/SLuekxavKH3GN7xXJu34bR2N+O2sNnCwuYVF/O6ZS66Pd77ALzAJAAAAAAAAAACAaFS2AwDMbbbKQuVKP0vT9lCDq6rYwaFAr/gze/Uha3vabM5+0hDGGP3yyvCg2J3FUyPnW8NsjraqkmT+792R5y6daL6zqtjOQ+6QR2TYbsczfuuIYCStndgReuz2x+1rvHt7+P4rhm6fenHVjQlWJqm3z/p5PLE7XkjmyYjxIxP2cJkkZVQuhXjs6TIf+7qzjfKMYllm4FHzzlrZbt/z0lMPSt/9ooL3X6fge19OsMDOCPJ5Bb/zOulzH5X2hj/vkqTTLpra7i79Jtl+s257vDVre+3grZVt88bfaBwQ87cxaRA3+MxHFPzFO6V7vyW98KT00A8UfPoDCv4sog10nNawzYbt7vhP6yHzvr+TOevy5s4LAAAAAAAAAACAxAjbAQBmt20Xuo/bqh+VQ0SVUFeIp/faj335IXeoyRpmi1u9SdLxC+ytCPMF9zpsgUFrGHBS7/yoZZXkeiVJm8fDU2lfibhP1sp75cJ6wddv9luHzY2/X9k8dvyJ0CHffDR86kTevvaa+9fEZ1pj+Vr1FMM/j5vvjhe2+6e7ou+3TxvZrn+4W2aWtJCVHG1kPSp6jVtaLWeCqgPFooLP/23sdXXcI3eX/hel+pmdbCNrqWznI/C4zzW/id2NwbrYwc4EYbugUFDw738dfvDbtyhwBRXHY1y3/0C8hU2yXf+KN8tc88vNnRMAAAAAAAAAAAAtQdgOADCrmbf8dpMTS/8JXJKxh8522zNu+pcfRoTtbMGVJoJZuaz9P9fPOAKBUoI2sguWRKyqLFt6P7vSIW0hJW1e7g7QWMOAk11sBw/7rcPC9C2ubB9ILQ0dsyl8t57aYz9vzeebcI3KZLUzsyb00PrFobutHnzRfXx0wh4uk+rayM4BiSrbBXUP50Pfb8GK2uzxH/mN6+2b2u4rfdeHu3qbvuyegegxY6Z76sX4WNPXmjphgsp2u56VDu+zH3/8xy25btDfZGU7W5W/0SH7nNlShRIAAAAAAAAAAGCWI2wHAJjdmm2nVw4mLOi2t4Idd1Q2u/NJ9+lztspxTYTtLlltr45ka8MadTyqipWZtyBqWSXZbskYjViCOq5gl2RfX27PdhX/7v3SnV/yW4dNVWhwWT48mThoyf242ghfPHxnZdus3tjU0ioyWeshVxW6ZuQLgVdlu9nGKF4FwGqHLLnTWRk8HI0I0ZaZ7FTwzZSrWJ4wZu8X66ryKLm/K5NOGqsqIXnUCdETosRp51pvNCIwZ6mIGhQK0kSM78hA/Mp2QRBIE5YfpQ1bY58PAAAAAAAAAAAArUXYDgAwq5l0RuYvv97ExHIVIEf4LSrIZpMrjqjLFv4JaZ8YZeNieyDQVrmuctwWtotqI+vJGCNlc3rz4VtCjz++q7k2sj1P3Svd8ldJlyctmCoNd9Ohfwkdsm9QGp1oXKcrQLR2YufUiy2nNr08SVI6q/fuD3+vd4d35w01FvIe6uWL7ipkmWBCuvad/hed5fpHAv2zpUrlbAweBk8/HDnG3PSHofs3TTxvnTMaFZr1uFXrJqpao67cED0hSpLKdoOHIo5bqlXa2pLbNFPZbmLc2v7YnHdV/PMBAAAAAAAAAACgpQjbAQBmPXPmZfEn9ZcrDnX36HhLRSefAEkYa1W78vXi6u7pth77yQv2gFUQBNb3kAscQZW4Vae6e7SssD/00L3PuqeOWivvtSYMONkiU5LmFwetw74aklG6Z3v4vU0HE8qoKn2Ua779piQpk9XyQnhLy4EYt+ErD0WPmShIf/+98PCmCYpKqSizdLX/RWeM8BaaUfHDm++2jwirbBdYQlAzxve+HD1mw7GN+zaf5Kx2edDRvVSSntwdfdme6t+cXPzfwQZxg29VgoiKmcEd/xl+IG7Arz9+ZTvnNZr47wcAAAAAAAAAAABai7AdAODI9PVylbNszhrsslWFi6ogdii12H6wibCEcQRT9tvzYxrPS0XLUnuLjnaT2ZjV97p7lFc69NCiiBzayHj4AntcYcA4lq6sbC4o9luH3fFE4zr6LVmevMnU7sjNa2ppFemMii34K9mdT3pUtivYn5nAlNfQNfv+ethsG9kvPeAI2ymknFvRXmVyRsjag7kVPSHPayGvvqK95OFju9ynfOFA9P2vqabZ2xc5PtJ4gt+IwxEhuIVLw/fHDdsNRFTQi3uNJiqjAgAAAAAAAAAAoLXC/2UcAIC5bnys9Geu11rlzRa2GxxLcN1mKhM55pQCQdnQY642uM42snHX2J3TaCE8BNId8TeNIVvlPUeVrVjWbK5snjn6E+uw/pDLZVKe19h0fMxF1V8oq0UFS9tKSYVioFRXeOW2akMez+VEQerORAxK+n6mg7FVtnPftzuesB8LrfT28F0Kdr8QZ2WdsXqTdMLZUjo79dsWJpWSTj6vcf+u57Q+b/9NyEdkDD0ez5r7aRaviJ4QpVBQkJ+QSUc90CFSET9MGUtoMW7YrplWt64QYbOV7WZ6RUYAAAAAAAAAAIBZhLAdAODI1t1jbZ84aMmeuEJskbLNhe3mFwY0mGqsBjU4bA/bvWzPbzlbRsaunpTt0av3fkv/tOjGhkO77cXkNDQW6LbwDr7qbVFlO2OMgoXLpMP7lAvsIaTP3RvoM++o3bfHUuhreX5P7TXSCf86lc7q9NEHrIdHxqX5Hh/JeCF6zERBuuuZ8GPX93+xtHHC2dEnmmGarWznEhbCDd5zRcuv0zIr1kvD9up0kmRu+qBM36LGAzf8lszNf2GdNzQWyNaqV/L7TXRW05z02l+QvnFz9LhJYyNSM2G7w+Ftm2vOGyZu69pmWt2OOeYkbVkNAAAAAAAAAACAxGZfnzAAAFqpO2et8vbxO8IDPCOWamy+12tmzvkjd4ce+uRd9qDJez9vL0flbNMat3pSrlfzi45+thZ/8jV7QMoZBpSkVRujL7ByQ+nPV7yqsuu9+//KOvyJl2vX88nvhq/v3JF7p170OVoG+8pk1RvYg0jPRuSCJk3kowNntqCdJF0wfFdpYy4FehJU9LK1l56x9rxoP3bs6TIf+5rML7w/9LBZe7Qkae3EjtDj/3SX+z76hO0yKg/aeJx90Mr10Seq1kzlOEm6+xvNnTd2ZbsmnqG94Z+BpOYr2wEAAAAAAAAAAKBlCNsBAI5s3T3qtlQ8W2TJNUQFSzKBI43XTFgi16ucJRDY12Wv1nbnk/ZT9rrCbHGr72W6reuTpB0Hw4M6X33YEbZzhQHXbpa59p3R65oMNmanAo6u9/2NR/yCWTXPi63dZBzprLPq1+0/81uXT2U7l+7J5zbbRCB02jXXRtbF+QzOMuZ3Py5z1uX2AdnSc2z7Ldx5yH1+nwBy5ZNw/AaaqPau9ZoN20WxVaSLez1XS1ibpx+2H2umMioAAAAAAAAAAABairAdAOCIZD58S2kj26P7c6eHjtmwJHzucESw5F0HPmU/2EzYbvk6/Th3Ruih9fPsYQ5XUa/lhb32g3HX+ND3tXHiBethWzvWR3faT2mrNihJ2rFdOu2i6HUdW75nY1NBtjMc7Vrr17nAkjnbk1o+9eLAy9HriNLd7bx/43m/00wkDNsdO/6EJMlkWxAg7DB7G9nmK9udMfqTpufOOJuOdx/vLbWo3p7dHHp45QL39LGIZ/TCoe9NvXBUTgwO7rEeC79wk2G7hUubO2/ssF0Tle0c37/ELasBAAAAAAAAAACQGGE7AMCR6ZxXS5JMd4+uHfhy6BBbBTtXFaf5hQH90uGb7QOaCNuZri5dZ1nj4bFU6P5iMbAGYF438DV3va+4YasLrtbqvD105tNisp6zjezqTdJxZ0y1iQ2T7Za59n9Iksxlb6zsvnzoduuUQ3XF5Wzrfkv/v0+9aEVbx2yPUrK3/PW9f76hPJtzRu5LdoLpZHmghwL3s7x6of3YRUPfT7CgmcVEtQbefKIk6fLB20IPDw65E8auZ68rKOjdBz85tcPRStucdZnzOg2aadMqSYf3R5zXFraLeb3xMQVF+3e7JdeYZJqv4ggAAAAAAAAAAAB/lEcAABxxzFdemgqfdOe0dfzp0HHWsJ0j/HTbC6/VSWOPhR/s6pLSmRgrnXJsbl/o/kf7w9NC/Y68xv/c9xH3xWIGyMyxp6v7B/9tPe7TYrKes7LdWZfJdHVJNz+g4ENvk+7+Ru3xi66VecNvyJxyfun1ivWVQ73BiC4e+q6+O+/ihtN+6s5An3hrabtQDKyV4rZUPy8XXO3xbiKU7/flg7fptvmNrT4/9u1AH/S4TNLKdtlgXLryxmQnmSa2mNGtoyc75+UtOahP7Hq3svJIOWZz0qLl0eNarZCX9u/yG7v1tOgx5WfwiqHbQ5/Be1/MKggCGUugy9XC+D9fukFXD36t4VqhFljKido0UdkuOLC7+fM+93js62moX+pb5D08uO/b4QdOvSD+tQEAAAAAAAAAANByhO0AAEeW86+SWVwVjsn1qicID1bYQmK2/YsKB3Wmq/Vkd481rBKlN2VPsxSKgVJdtef95iP29pm9lvdbEbdaW3dORlJvcUjDXfMaDoeFE3f3u9t79hSH7QfL6zO982U+8l9e66u2fuIl69CJfKBM2jgDgj3FqiBgCyrbme4eBbJ/LgOeha5cgSevdUjOqmOz1fBYoN5uS0jMUpFtZd6vnan56k6ZnsZnvt2CPS8puP5ov8E+6ys/x86Q67OPVSrg1Zuw3Me3H/psbdBOkrKO70zc79N4E21kHcHgCkt1ueDRe+Nf78e3S5dc7z/eFujLzr3vJgAAAAAAAAAAwGxEG1kAwJFloi5FNTZibVk6Mh4eCBuZCN9fE8IK4wqZRAj229u0Hg5Z/of+2x5mc7ZoVSn8FctkUMdy3uGQ+/jCAfcpjx7fbj8Y9z4uX1fzMi17Km3fYOlPV/XCmnDmi0/FW0uYcsBtR3pt6OFVC/xOk7SynSRpnqOv6gzWa+zpyJ2H7fNsYbtM4FmOMao960zg84yWv1NDxv5+Jv7jk9ZjtqBnNgj5Ij1nqfwpSas2liqA+mqmst3uF5s/7+qNsa+nQ+FVSa22nBK+/8kH418bAAAAAAAAAAAALUfYDgBwRDEXXVe74+TzlLNUczowHF4NyxbEslXIq0hQBe3s4k+tx8KqsE2GxsI4q1dJ8aubRVTFClufq3LcttGHdMzEM9bjccOA9ZXHruu3V8Ob/Gzdle2qPucTzoq1llDl93Pp0Heca4piC475WFeu9mfiVOCaQa6Z97D1mO2zLBYD673Neobtmq1U2VHbXhk5xKTTUiqtc0fusY4Zyaesx8bz4eHe0Pt47Bn2dSxcKp39KvtC61kq0DmNe8wZm6qsGXzlH1X8jctVfP1m6Uufjn+9uIHA8bHw/UefFP/aAAAAAAAAAAAAaDnCdgCAI8vpF9W+nr/QWektCBpDJLbwTq+r9amUqEVn38WvsR7bGxKsOzBkP1fLQ4ERle3uCsnNPb3HXnnv6y9cE3G9Ju5jb19l84zRB6zDdveX/nRXtpsK65hjtsVfS73y/btw+Aehh33Ddkkq231g35+XNjYd3/xJptHJ2Z3WY7b79+5b7M+gV9juihuix8wA5oKr/QZ292hR0V4GcKTgCtuF7w+rEGhOPNu5DPOhz0gX/pyU7S7tmO+otthEZTs9FP49qzFa+i0PbvlLBR99l/TQ96W9O+zjX3eTtcVu8Mwj8db34PdCd5uzLo93HgAAAAAAAAAAALQFYTsAwJGlPkjW3eMMnz30UuO+YUsOx1Yhz3rtGHpyaeuxrzxkDw2FniuijayyMcNs5fG2+/jZexrX92/3ha+5r9CvFYW97us1cx8XLqlsuj7vLz1QWtePn/dswxv3XoWpVAYMX9d4XioUoz/jJJXteovDkjFSJtv8SaZRT5c9kRgWjh0aC/TJ7yYM2/XO91lae8SpqOf7fcn1On8bnhpfZj1mbyMbch8j1mPmLVDXn35e5uu7Zf7jKZmv7pLWbQkf3EzY7vEfew0LBg8r+MLf+Z2zOyctWh5+7Af/7bmwCJPhQwAAAAAAAAAAAEwrwnYAgCNL3+La1909WpXfbR3+dhpawwAAIABJREFU05dCKtvZ2shGhdgShO0W9NjDNWMh61m5wH6ulocCy5XmdqTXhB4+ZW3jvhULwt/PQMqx8Mr1mriPualWsvOK9rJ/k5k2V3Ctrzgw9SJlr/blzZT+OtbreH5GParbJals1x2MSUEwO9qihkiZQNliePvNsO/rNyOKjWXlccMPRoRCZ4rFK/zGZXNaXthnPbw3P896zPZ9Cb2Pnt9f090js3KDTCpln9NM2O6YU/3GPXqPtOdFv7G5Xmn3C+HHTnqF3zkUXkm1YjSicioAAAAAAAAAAAA6grAdAOCIYnK9tTu6e7R54jnr+NGQEImtjWxPGyvbdffYqxqFrfHE8NybJKlLEVXSYle2K72vvmJIP1tJYyHrG52IV42vRjP3sSpwlFLROmwy1OYKt2VU9Ya2nBJ/LfW2llrRuiru2aopVrNVF/ORDhJMngmM/f6F3buDw+7nLxN4hO2WOb5kM8nxZ/mNy2S1oDpIWmes2Bgs3XUo0Me+XdQdT4TPCa1s10yFNtt3fjw8YOk0HvE7Pan/oPcpTXePVLR8h+Ks0bW2o0/2P0+DBL+3AAAAAAAAAAAAqEHYDgBw5Dj29MZ95RCHCcIDWB+9NUZlO0dYSlKylqO5Hp03/MPQQ997snGN3/lZ+GnefcCjLWLsynal8b914G9CD4e14rUFFn/l4P/1vl4sS1fVvLx88LbQYZ8pt7z92cvhp1mVrzvQ2xd/LfXmL5Tkroxou1/VklS2SynfmuDgNLKFXV862Pj9KNjzlpL82siaba/0Wtd0M2l7C+oaES2EDxRqg8ov7A90wUeK+t0vxGzH28z31/LbGdiqybk8b0kG1p/76Yf9z5nNyVz5i+HHfvJd//O4KvWtWOd/HgAAAAAAAAAAALQNYTsAwJFj7dENu0w6I6XSOmP0gdApT+9prMI2HW1kle3RUZYKfPc/73+a9RMebRGbDNvZKttJ0kTe7x4uy9vbWE5dr4nQYl0rzQ35kASgpIHRUivHv/1OeIBo43jdzU4SoJxUvn+uyogvehTZcrW+jZIKCg2BxNnG9v371J2Nn+Xd293n8gnbteSzb5Zvu99ykNNLuhS2O3YsPIz2hZHaCnl/e0egZyO+ruGV7Zr4HbR95//7H+Ofy9e//n/+Y7t7pFyC3/dJB+wtzZv63QMAAAAAAAAAAEDLEbYDABw58pYATXePFhQPW6fVh9lGLafpbWdlO0kTyniNCwJ7pam88ahyFXed5UDPfEfY7uEdta/trXgj7qHUVFjHLFtd89rVJvTFA9LmZeHHxrrq7k2SAOWk8vtZUOy3Dnl2X3QbyGSV7QrNteScKYzRmAlvT7o8pPjggoiPLevTRrYVn327pTyr2kmVyna2+7imqzbxGVZRs17ofWzmvtmeTd8WuWXBIY8wbzOKBalg/wK6fpNrvPCk/di8GMFJAAAAAAAAAAAAtA1hOwDAkcPW8rO7R5cM3WmdNlBXcGx4PDw4EVnZLk7wpd7azVpesAdFisWpNY06ckJrJ3ZGXysbHraxKrc3vHD4B9Yh/XW3punqgFJzYZ2zX1Xz8qyRH1uHDoxJKcvfkPq7ap8hk0rFX0sdk05LqbSzMqBPVmc8QdguHeSll55u/gQzwM7MmtD9qZAicAsi8qQ5R5XBqUG90WOmW5zfnHJlu+eym8JPFdQ+YPW/i2FyxZBBzVRosz2bcX9ThwfiX9vHqo3SsvDnT5J/kNUR2DOzvPIkAAAAAAAAAADAXEHYDgBwxDCXvTH8QHeP3nnI3o6wPlTywoHwcbmoqmxdCf6zu3qjru//ovVwdcDOFmSTpBPHHou+Vtqvgt4kU25p6QoD1q/ppzvCx7laqVY0EbYzR59U8/qaga9ax/aPSE/tCT/2Gwc+EfvaXiLe00uH3NMLxcArkGeTUkG68sbmTzDdjNGvH/hk6KG7nmncly+6T9e20GfLeLaRjfNdzpTGXtf/X6GHf1aoDZO5Qr2TQitVNnPfrvrF8P1jHp9TkvG+1h8jHXWC/fi453WTrM+3tTAAAAAAAAAAAAASIWwHADhy9C0O39+d09LCAc2zVBb7f3fVJnN+8kL4aXrCqjhV60pQBS3bo4WONqPVYbZhS4tWSeoNhqOvVW4nGcvKDZKkxYXwJOI92/2SYF4VxZqpjCVJ2y6sbLpatn7qTvta1+R3Tb04+bzm1hGmHEDaPL499PAffMl9/8bzyS6fCgoyi5YmO8k0s927sPa6US132/ocdlKcyovlynYbJ54PPXx/YUvNa1eod1JoeLaZsOxCy7MZN5y215LyTao7534e7rvN7zy2UN7azfHXBAAAAAAAAAAAgLYgbAcAOHLYQh7lkMlSS1Bsn727Z41s4Ei5SfbepD66e8KrRJVVB19GHMvwqtiVbiJsVw6aZIPwBM6uw1PbQ2P24FjkPZSaryiWmarylVZBJggvb3bX0671Vb2/VoatygHH7dnmQjVR4bEo6SCfLAw6A+QCe6vO5/fXfqZR96tLHuHQaa1s5ylOm9XyM+j6Do5NTN0X1+/MpFzY700z9802J27Y7rnH41/bR7ZHys2zHg4esLcpr2F7P7PhWQMAAAAAAAAAADhCELYDABw5Nh4Xvv+Zn0qSXshsCD28pLf2dcaSSRrqsoctJCULM3X3OINy1cEXV8Wp3qhWt1Jzle3KYZDd6ZWhhxdV3cODjuJ6y/L2VrQVme44K5uyq7ZiV2DC/xo06qgStzZfVRmrlQGYPS8lmu5TZcwlpWLz93VGMDp+zB6kqg/M5hOGEyXNjvvV0+c/tvy9X1AcsA6ZbKmdLwTq9yj+17I2stawncciqjXz2+aju0davtZ+vOj5wNneT9LfmiQ9pgEAAAAAAAAAAFCDsB0A4IhhbEGLk86VJL1q8Nuhhx+t6hxaKAbWqliXDt0RsYAE/9nNZNXraG3p20bWq7JdU2G7UppuSX5/6OGaMKBjfceNPxl9rXQmekwIc9Uv1rx+xfC9oeN2HrKfY+NEVQ/hVobtTr84ckjgCMz4VBlzSakgbd2W7CTT7JyR+6zH6u9P0kqAktoX3PJhjN+4vkX+5yxXtLxq8BvWIZO/M4c8ulFLIa21UymZZr6/tu/agZfjnSduOM9Xrlemy/H77tm+NrBVtstS2Q4AAAAAAAAAAGCmIGwHADgyLFxqP3bi2ZLsYbmdh6RisRR0coWa+ooR/WZTzVe2M8aox5Ht+a8Hp4JYLx20j8s5AnsVCdrIvnooPLD499+bWp+rsp2rVW5FsyGnTbWVDW/o/3zsU/QWqxbfwgCMOePSyDHjjop7SSvbpYO8lGouxDhTZGW/CT+oaw38zz9sQaWv2XC/+hb7jy1/r5YU7D8gT+8p/bl/yO+UDd/nZr8zLWrZHNwX/vuUSFfXVAD4ul8JH3PPrX7nsraRbWHLagAAAAAAAAAAACRC2A4AcGQ4HF5xTVKlalKPI4j2k3JBM1eoKTIolqSNrKRc1l7N6puPTIWH7tkeHiTKFUfUJY+QUYI2srlgLPRwvji1bVuf5Fl5r9mQU111LNfnbVMTVmxlACYb3ZL0qT32Y4kr2wUFKZVOdpLpVK70Nr8Q3gL1zidrn7lCMXRYPE1WWOyoOGG78vtxfQdvfax0Hw/4hu3qz9VsNUjHvODgXv/zvPR0c9d36e6Rmaw06FrnIY8W2dawHZXtAAAAAAAAAAAAZgrCdgCAI54pBxmOHXvCOua5clbPFWqKDIolaSMrqeuwPawxvyqrtbg3fMxol2dgo5nQ1ZMPSpKeyB4TeviE1VPbWcfpIwOLxjRfIXDD1pqXayZ2xpreXRytDSu2MAATDJdCYn+36z3WMfschROTVrZLqZCo8uJMMZjqC92/dF5tUHXbevs5fm/fR/0uNp1hO982sju3+5+zHPhcVLT3Ue4qX9Y7bFcfaPUIlYZastJ+zLNFqyRp0/HNXd+lqlqfWbrKPm7PS9HnsrW5Tfpb4/u8AAAAAAAAAAAAIBJhOwAAsqUKZRcO/8A6ZGS83EbWWdkuolJaC8JM3cXwawxVFZRLFLzKZKeqNMVRbsV7wfBdoYcPVWXoXIHFyCunM82tT5JZuaHm9SXDd8aa3xAEbGHYzpx6gSTp5/u/YB3jum9JK9ulg/zsqNRmE/FM/PCZ2sp2EwX72Df1/2f09VIpma6Z/9don/bEFd2llK6r+uXkc3ZgyK8Nb0MAudnqias22Y/ZqsElHeur+nfgouvs48Y9KmmOt6myXdCCtskAAAAAAAAAAACQRNgOAHCk2Hyi/ViuFDLJakKZIDy1NBlgc4btoirbJWwjq0vfoA/t/XDooburCljZ1vjawW9GXyPdRAtZSebk8yRJJ489Gnp8Z1WxLNv6zhz5cfSFmlxfxcKllc1czDayPXVBR9PK1o4LlkiSFhUPW4c8+JI9MPOpO5P1RS1VtpvFbWTLfnv/X4buf26/9NTuqfuXt4Ttfm7gK9o29nD0hZI+h52yPrzSZJjq5/m6/v8KHfPtyTayw37nbPiONfuMuSrixQnQ/eS7obvNOz4ovfV98dY0KVf1O7Bqo31c/4Hoc1nbyLawZTUAAAAAAAAAAAASIWwHAEBVyOTYsSdDh4xOhu1cbWSjWqAmDdtle5zXGJ0oBWGGLWvsLXokZDJNhojK99BV3W/XIXd1wPlFR5/USUmrrx3eX9k0kub5XLOs4d432xIzTFWYZlX+5dAhn/+RPWz3xQeSXT4VFGZ3Zbuy+kBktVuq7l/ekk187eCtfheaLfcqTkiraqztu/jYrtKf+z2/Ng1huybvmzHGXt2tFdXqcj3q+tU/aa6CXNUcY0ylUmq94P47os9ley/ZFgZ7AQAAAAAAAAAAkAhhOwDAEcG8+XfsB4tTyZtcMBY6xKeyXWSltKRtJ4f71ecIhz2zt/TnqCVsF1l5T2q+Ytey1ZKk1RO7rEMe3lH60xYGjGzDKzUfBrQY6prvPbbh/rWyst3ilZXNl9OrQodsWGKfnk1YlC6tWR62K7eRXZO3P38PvRgdtksHeb/rTXdlO99WynGe0aqxL2TWhw45dV3pzyHPtsUNLWmTVE+0vRef9qySAlcr1ZGh0p/NBPdefsFrPaaqqqbVmOW9tPK3BgAAAAAAAAAAAIkQtgMAzH3Zbun8K+3Hjz2tspmzVI6brGg3agnb5Yojioq/mISV7cwJZ+uyIXt1pMk12gKBXmG2ZtsVnn6JJOnM0futQyrrSxQGnL5AWMP9a2EAxvQtihxje/YKxUDjnhkxm1RQmBOBHler5Or7N2FpI5sJHGnaarMlmNhk2G5dfkfokMnfFlsb3khJ7lu53XcD34DceHiQWpK09TT7sShLVngNC3xCgZb30tKW1QAAAAAAAAAAAEiEsB0AYM4zf/6fMn2L7QPmL6xs2gJff/zVcgtUa1U2j8BH0jayp11kbTEqTVWMGxkPr+DktUZboCWC6S1ViEvJUjJM0oGh0rpsoTGv9SWpjBXissHbvcc2BDHbFID5n/s+Err/24+Hj7fdzzhSKljbX84OpajrhvxLOm7sZ6EjqkOotrBYWr6V7eZ22O6SoTtDhzy5u1QhzlYZMFKS76/t+Tyw22/+uOP3Zfna0p+nXxxrSZJkrv/12h3bLgwfePNfRJ/s8R+F7/cKQXtWOwQAAAAAAAAAAEAihO0AAHOeOfsK94CqkImr+tt4PtDIhCXIVvSoWpS0jWyuV2kVlAnCE3+TYSJrm1afynFJAmSbT5QkbRp/LvTwlx6ICCz63MMWt5FdUjzoPba3/v61Opy27mhJ0qLCoVjTbPczjnQmJZP0+Zwh3nL4ltD91aHExG1kM7MkbJft9h9b9d13tcR+eo9UaDZslySkaPltCm7/gt98VwW8yTDbAkevZpueulbUtnaxQaDAVV3Phcp2AAAAAAAAAAAAM8bc+FdVAACSqAoy7E7ZWwJ+6zFXi1afynYJ/7NbbjVqC80NR7aRbXPYrjx3sGte6OGVC0uVl6yBRZ/1Ja0odvTJNS9NEL6WMA3ra3UAZnhIkjRu4gUKh1oQtktlWxti7LiBqYCi7Tka8Wgjmw48+6Ompjts51nFLM4zWlV1zhX4vOuZaapsNzwQvn/9MZ7zB+3HJit6erRzbtC3sPb1vAX2sU89ZD0UuMKARY/ncvVG+7Hla6LnAwAAAAAAAAAAwAthOwAAslOBFFcbyef3B9YqYjmvynbJ2siacqtDW/W9yfax9spxHmG2JNXayvdxX3q5c5j9HvqE7ZKFwswNv1XzetuYPfxSr+H+tTpsd6DUInh9/iXrkIl8YzjwwFDyS8/6sN341HciF4RXD6t+7qzPoE/gU2p5hcW2ifOMbjq+snn+yN3WYSPjUrHpynYJwna7nmt+rlQTyGxQbjNuzrws/nlPfWXNS3OW4xyjji/riOPY+q2RyzAbjpXWbWk8sPkkmZUbIucDAAAAAAAAAADAD2E7AMARz6TTUqoUhHtT/39axwWBq2qcR9gulSxsN6m3OBy6/0fPlf584MXweV5rnKzw1IxyK8bXDXwt9PCjO8phQMs97O1EZbtTzqt5+fOHPVtQKuT+tTpsd9G1kqTjx35mHRLWIni/o2CXr3R3ghDUDGAuuLqybQuVPrG79Ge+YK/MZvtuNUj6HHZKnGe0qqpbX9H+UO0blPKeBQAbJKls9+q3hu9/8gG/+f37w/en0lOtYF95TeV76MvMr6tsd9F19sGH9tmPuSrbrVzvt5bf+2Ttb3hvn8zvftxrLgAAAAAAAAAAAPzM7n9ZBQCgVbI90sigsoG9J+ePnpOOWhZ+zKsilmlBxn3VRmubzL++PdBf/rx9qldluyQBsnLIY8NEeNrv3mdLf1oDiz7rS1pRLFfb4nZB0dKaMkTbK9utWBd+nSpfeSjQ28+tbSF6YNi/Fa5Nqrs78TmmVc/U55pzhEr3DgTKOXJyXoFUKXGFxcSMZxvZbIxn1HPsn3490OtP87x+vSQhxaWrwve/+JTf/P6D4fsXLJEp30+TyUof+px0/3cU/PRuaXxUZsESBZ/+gPcyTSaroGe+NNIYWAw+91GZy94YPtEVtvP8rTGnXSh95kHp7m+W2paf8xoZz6AeAAAAAAAAAAAA/BC2AwBAqlRcWp3fZR0yNBZoZCI8ZOIVFGtFZbtUSpnA3up2T789eJWSRzmqJG1ky/fQ1Yq3ULS34vWrDpjwry51YbvewLOSmUIClbkWh+3K722+o6rYD56W3n5u7b6DLWgj2zXbw3ZV7UnnOarT3f54oMuOtwfFXEG92uvNgsp2qXSpaqevrN8zMJ6XCh5tZLeNhrRoTvL9dbThDsZGZKICaQO2sN3impcmnZZe8SqZV7xq6vy2sF25tXeDbC40bKfDlup6Uk0r5AYxgr1m1Ubpul/xHg8AAAAAAAAAAIB4aCMLAIAkDR6SJF0xdLt1yFHLTbI2so6wiLcd27Umv9N6+EVLnkSSVuT3RJ8/Tjin3jM/leRuxTkyLo1bMn/dwVj0NRKGnEzv/LprjmtlfrfX3J5i3We8alOitTQ4uFeStCFv6QMsaSLk3oW1lpWkBYXDXpdNBXmZOBXQZqLVR1U2zx75kXXY/qHwezjJVdmyRmYWhO1iVl40vtXyJOWL0dUUP7j3Txp3ppq/b2aRpayoJA17VKi0VY7rmR++v/rav/4X4ft/9U/DJxy2tIudt8B+kRZUtgMAAAAAAAAAAED7EbYDAECSFiyRVApf2ew4KHtVNp/Kdq1oI3vMNv3m/r+1Hj7sWMaW8Weiz59gjebyUg/bawa+ah0zMlGqjBXGK+iUtI1siD/a+8de4+rb95qu1v41ypz72tKfjjEHhhpDTrYA6KaJ572umwoKUneCioYzwbLVlc2VBXuodGTCXZUtFXhUf5QShcY6po0BrXzEbTp75D5dHhZcTlLZrqrSXANXUK0ssI3xuU9XvFlac1Ttvi2nSOdfFT7+yhvD9z/7mP0arveQpOIoAAAAAAAAAAAAWoqwHQAAknTmpZXNNx++JXTILT8KNJqksl0r2siecJa2jT1sPbzb0UbWq3JckgBZuaXiksIB65Dn9ktjScJ2rWjfufW0mpdvsXze9WoClSvWJ19Hvb5Flc3fOPCJ0CFfCenM+YUfh3/miwqHvC6bVl7K9XqNnbHqAlPnDN8TOuzLDwTKu8J2Pq2WpelvI+tTha6ZsN2WU7yG7Xe0Lv7Q3j/WrS+8Lvw3Mcl9m7/QfmwoQWU7jyCbWbpK5uO3S299n3TOq6Vf/AOZv75VxlKpzpx+sfVcwT3fjL2+Vgd7AQAAAAAAAAAA0LwE5SUAAJhDqtpo9jqq1O0dCA82eVW2a0Ub2WzOea0fPO2YGliSgtWSVN8rh3t6A/v6vvVokKyyXSsqitWFa3I+QUnVBSrbUQmuKvDW42jFWywG6uqaClsdsASfeoMRdRdHNdblXmupst0sb1NZ95nOK4bflJf73ZXt0r6V7aY7bOejmWc00+017IeWIpm/t++j+sC+8JarkpJVtnM9oz+7Xzr6JPf8JJXtJJnla2V+NaQ1bsxzBnd+Weac1zQeGE22PgAAAAAAAAAAAHQGZRIAAJCk7Y9UNhcW7RXBntsfvj/nCJhVtCJst3O7egN7EMvFK8yWpIJSORSyMr/bOiRflMYteaaMTxiwFW1kjzq+5mWX7NUAq42YqvBSOwIwVeecMPYwV33b2ONXh4/7fu/5kUE7qVzNzTNkNVOZukpvd/eeEzpu68qINrKzpbKdj2Y+08d/VNm8vv+Lsaen5Li5kpROELabv8h+zKdq6JglVNuO73Ldb0yNPS+G708YBgQAAAAAAAAAAEBnELYDAECSzriksnlD/xesw2xVxLzayLagFaA54xK5Gkj2OzJ/XmG7JJXtsqVwjytwc3BYCSvbJS/Ka1791qbmnTty79SLdgRgqqorvm7w69ZhI3W3acKSD7t46Htel00H+da0OJ5BXjl8V+j+wTG528j6VrZL8j1pBZ82ss0EAk85v7L5vv0fiz09HVi+3JMSBI7rA5U1bEE1nzHt+C5vONZ+7ODe8P3jtvW1oYomAAAAAAAAAAAAmkbYDgAASWbTVCWirWNPWcftGwzf37E2sis3SJLOGPlJ6OG7nrZXaetUZTtJumogPCz2N7cH1nCYX9gu+T00p14gveZtNfveefAfIufVtJttS2W7qVDN2omd1mH1le1s4bEzR+/XJUN3RF42peLsqNQW5bSLKpsXWMJ2338qqo1sRFhs0mwIJ6abqAJ5wtmVzTNHw39jnJeMun9J79vmE0N3B/fcGj23g2E2Y4z0tt8LP/jUg+H7qWwHAAAAAAAAAAAwKxC2AwBAqgk09Pi0hK3jNacVYbvyOnssrWRtbW5NUFRaHkGiRJXtpu7hvKKlBKBreocq20mSufj1Na8HuuZHzqlZX7YN1aZqnkF7pcQH67pQ2sKL6SCvrEdr3lRQaNl9nVZVoSnX93FozH4K7zayrfgut1szAcq64JktNGsTef+S3rfu3vD9P/xa9NwOh9nM0pXWY8GLIYHuTra5BQAAAAAAAAAAQNMI2wEAIEkr1lU2XW1QbXqKnWkjqxXrJUlPZLeGHs5aMlPZYNzZfrYiSeWpZasqmy9k1see3t3BsJ165tW8fC6zMXJKpjq4Nn9ha9ZRbcGSyuaywj7rsJGJ2uqFeUu+KRNMeAUY08rPjcp2+3ZVNuc7wp7P7LVXf5w1bWR9pON/V0xdiHRpwZLetV0yqrJd0vv28vPh+4/ZFj133JKybFeYbYXjN/DZxxp2BbYwYJawHQAAAAAAAAAAwEwyC/6lEACADqhqnyhJS/P2sFMYv8p2LfjP7qbjJEkLi/2hh8ctWRevqnFSsjBMVbhk29jDsad3srKdNp8Ue0r1+uor47WCyUy1/cwF9vJrI3W3yVrZTnmvezpnKtttObWyecXgbdZhA45crFf1R0lKTfNfoY1HdLaZAGW2u+bl6wf+K9b0yPuX9Ddw7ebw/bagmscY064w25mXxluL7T3kCNsBAAAAAAAAAADMJITtAACQZOoquv3N7t+ONb+n2Jk2ssYYaeOxesvhW2LN8w7bJQjDmKoA0HnDd8ee39GwXc7SjtIhU12164KrW7OOeqdeUNlcnt8TOmTn4drXtrBdJvAM26kwJyrbmQuvqWyvLITfO0n6lx+2oLLdrGgjm40eU6+ust1Vg9+INT3y/iW8b+bKG8MPPPd49ORH7w3fXxcwbBXT22c9Ftx/R+PODre5BQAAAAAAAAAAQHMI2wEAMGn52srm4sLBWFNzgUcb2SQtWqsddaJfuK9KtroFqkvSNo8LlzU9taNhu7pQkdeUyfWlMw3hzJZZsrKyuTr/cuiQz/+oro2spetxOsh7fe7pIC8zFyrbVYWSuoMxmSD8xtz3nP0UKfmG7WbBX6GbCVBmaoNnRlKvoyVvwyWj7l/S740jeBYE9hBls+dMbONx4fu/9s+N+8Ys/w0hbAcAAAAAAAAAADCjzIJ/KQQAoEMGpgJ2SwsHYk31Cr8lDbJNGjwUe32dqGwnSRos3cOTxh6NPdUrENiiUJipe59v6P9i5JyMyuvLewYXm1EVrDmYWhw65PjVtS1Eba2DM8FEjDays7+ynRYurWwaSUHM75sJiuqSZ2BrVlS2a+IzXXd0w67hrnne0yMr2yX9DXS1zz1kb/0d5B3tbX1a0DZrxBJUnL+ocd+4ZR3tanMLAAAAAAAAAACAphC2AwBg0uhwZXPb6EOxpvYEHoGNVlVDGxvV5UO3x5ritT5JJmkYplAK25w89kjsqT5rbFcFtjf3fz5yTMa3OmASVWG7FzPrQ4cU6gq2jViW1ROM+LeRbVelvk7acmrNyxNH4wU+vavaSTMgbOcInU1qpo3syefFn1Ml6jtikt63zSfZj406KvDlHd+DDVubX0+URZZKn8WQZ63qvz81uuMrzsapAAAgAElEQVRX4QQAAAAAAAAAAED7ELYDAGDSua+tbKZk6c1pkQvGoge1KKBjLn+TNuRfijWn17ftbNLKdlffJKkUBTp19OFYU72qA7YybPf6X6tsrijsjRxeCRJddG3r1lCvKmz3joP/FDrkid211ddGLDminmBUGY+wXTooNFcFbYapb+37l7t/N9b8yKps1eZoG1mTztR8LyTpzJH7/S8pRwU5KXmos6p6YQNXhbqCY11LVzW/ngjmbe8LPzA80Nj21rZ+2sgCAAAAAAAAAADMKLPgXwoBAOiQ5WtqXl7b/2XvqR1tI9vbJ0k6evwZ7yk5z8p2SddoVm6obN9w+N9jzc0Fo9GDWliBzWw8tub17+z/mH1sUJwKYK5tbLXZMlXBmmWF8LaYD9flLG2V7XJFv8p2XSq0NsQ4nTafWNk8dvypWFMjg2LVpr2ynYd0c5+pueT6mtdHTTzrf8kg4h4mvW+u4NnLz9uPucJ27WyhvGi5/dgzP619PWb5/SNsBwAAAAAAAAAAMKMQtgMAYFJd0MwosAxs1NE2suXASqz1daqyXdU9zMi/7Wp3cVRdPu+nlaGwus87V7RXJwyqxxqPFp7Nqgoj+Xy+xWKgCUtBtlIb2ejPIDVHKtuVTH0284uDsWbGq2w3zWE7n2ew2c+0LtwVGaCrEnkPk353cr32Yy86wpXOsF0bg6a98+3H7vt27evx8LCdIWwHAAAAAAAAAAAwoxC2AwBg0rwFNS+HuxzBjjo+oaaWBXRWrJMkPZ3d4j2lx6dqnJQ8DFMVKDxu7Anvab3BsN/AJqt1haprSXn26I/85llCMa1gVm+sbE+Y8Pfam53aLji6HaeDvFe1wLTyc6ey3fZHKpsLi/2xpqY019rIZqPHhJm/sOblxokX/C/Z5jayJuN4T65nOO/4fW5htcwGm0+yHgqG68KgeUsVStd7BgAAAAAAAAAAQMfNgn8pBACgM8yFP1fz+hcOf9Z7bqaTYbvVmyRJ/+PgP3pP8aq8JyUPEZ18XmXzFSOe4TVJPUXPAFsrQ2FVLUcl6YrB272mmTMva90a6p1xSWXz0qHvhg4ZHpeCoFT1ruAofpcKCl4VDedUZbvzr6p5eenQd7ynxqngNu2V7Xw0+5kuWFLz8q2H/83/klGV7dp434Jdz9kPuirbtfHZd4YDf/Ld2tcTlrDdXPluAgAAAAAAAAAAzBGE7QAAmNS3uObl6old3lOzgSUoUa1V1bDKbQVPHX3Ye4p3G1mTcI1VbR69A35xxrYybFfXnjHr2/a2t691a6jXM9V20tUGtb98u4qOynZdCrwqGs6pynabjq95+dbDt3hPTclxM+uYuRy2m7+o5uWq/G7vqamoynatuG8nnRu+/5a/ss+ZrjaykvTKa8L3//SHCsaqvp+26nuE7QAAAAAAAAAAAGYUwnYAAEyqC195t15VhyvbldcZL8zm+V6SBgK7c1ObwZj3NO8wYBvDdm2f5yM7df9cn9l3yh16nZXtVFBvMbo971yqbGfqv8O+z5XK98HXdLeR9Wj37Kyq5pqXStW0ko3zOxNZHbAV9y3bbT0UDFlaBzvbyLY5bOf6vXjwzqlta9iONrIAAAAAAAAAAAAzCWE7AAAmLVtT8/K48Se8p3qF7ZoMvzQoV487ZfSn/lN8Q0dJwzCrj6psRseBpnT7VAaUWhuMWbS8uXkbj23dGupVVQY8duxJ67CDQ6WUnbOyXVD0CkqlVJwzle2CA7VV2FoaFKs2GyrbJflMBw9XNnMxQrPRYbsW3Le6Nrc1Du4J3z/ueA+O8F4rmKNPth/cV1U9lcp2AAAAAAAAAAAAswJhOwAAykyqNgjS52jjWS/j04K0RRXRjDFSOqNtYw95z/GubJewjaxpMriSmYawnWkyWGja2EbWVFUsmxfYq9KNlB+3qMp2OZ82skFeSs+NsJ056/Ka13FaLac0iyrb+WhhSMs3rJvuQBtZc/VN9oNjlud9zLH+dlaqlKRL32A9FHzqAwqC8pd4wvIb2KqQNgAAAAAAAAAAAFpiFvxLIQAAHbTmqJqX/7jznZFTUkHer4pbC0Md5sb/JSPpssHbvcZ7t9NsRYhoyarK5q8d+LTXFK/KgFLrK7BtPC7e+C2ntPb6YV791srmKZaw2P/5ZnRlu1RQ8PrcUyrMmcp2Wri05mVvjMp2c62NbKKQVl1A7Pf3fcRrWmRlu1QLKtudfJ792P3fCd/vCttVtW5uB7PmKPvzcmiv9NmPlrYLVLYDAAAAAAAAAACYDQjbAQBQrS4Q11cciJziHRRrZQWlXOlcqwq7IwaW9AQj0vpjogcmrGxXuthUK9ScZ9gpOx1tZKWatq1e2ljVrqJ7Kvwz31Jd8aWDpT9dle265NlGNijMnUBP3XfMO2Qqj6ps1WZDG9kkn2m27j56fo/TUYHFVvy+OH5Hg9s+H37AFrbr7qmpJtk2J7zCeij4xs2lDVtlu7ny3QQAAAAAAAAAAJgjCNsBAOaGay0V6N72e/HO88KTNS83TrwQOcUrKLZgidQzP95aHILhUgjrmcxmr/G5YEza+Wz0wFZU7NqxvbK5vLDPa0rWpw2v1JrKWNUO74833uceJvXy1DN3MLU4dEhPOX/jrGynglbnX468XDrIz53KdivX17z0DYlJMSvbtfo5bIckn+nO7TUvN0087zWtI21kXb9RPfPC99vay7a7heykwUP2Yy8+paBYlPJUtgMAAAAAAAAAAJgNCNsBAOYEc8UNja0VUymZy94Y70Qbtta8PG30wcgpXpXtLrxWpoUBHXPi2ZKkE8Z/5jU+G4xLm0/yOHFr/2pwXf+XvcZNWxvZ0y6KN37rttZeP0xVq9rLhu4IHTIyIQVB4K5sFxS9wqKlNrJzI9BjFq+oed2lQD3FYa+5acUI27X4e9IWST7To46veXn5kKU9a52OtJF1GW8M1QWH9yv4698OH9+psN1Zl7mPj49KBcu9I2wHAAAAAAAAAAAwo8yCfykEACCaOeV8mfd/WuorVwJbuEzmg5+RqQoueZ2nrkJelxxpprJMWDWnbLkVaFeXdNF1Mr/1sVjriLSoFCo6b/hur+GZYELmmndEh11a0R7zdTdVNrdMPOM1ZbrayJorfyHe+Mve1NLrh15j62mV7Tf1f8E6bjwfXdnOnHRO5PVSQWHuVLaTpOVra15+4uX3eE2rrmxn/uqb0tU32QdPextZj9an6eY/U3P82TWvF3i005bKwU3niVvzf3qYd344/MAj99S8DIYHFLznVdL+XeHjq1o2t5O57OfdA1yV79LZ1i4GAAAAAAAAAAAAicyhf1kFABzpzFU3Sq95m7T7BWnVRne7QZvu3oZdG8ef1/PZjdYpYVXZzDf2SC88UVrH/IXx1xElV6rI1OtZtSsbjEu53lKoquAIxLSijWxuqlqUkTS/MKDBVJ9zyrRVtss1ft5OnaiEVRUAygVj1mF7BhRZ2U59i7V4/wEdTC2xjkurMLeqZ61cL+3dUXm5qOAIMlXpmgyKGSOdfrF0z632wbOhjWySQGDIc755fLu2Z91tqyMr27Xi90WS5i+wHgryEzKTz/Pd35S2P2I/T7ZDle2ifjd+7KgcOJe+mwAAAAAAAAAAAHMAle0AAHOKSaVk1hzVXNBOkoLGUmHzgiHnlIag2Dmvlsl2y2w5pT1BO0lasFSStLSw32t4JpgoBT6iwmqtqDw1UBtuWuaxxux0he0WLq15eamlXeYvHfqX0kYnKmFVBXOW5fdZhz21Ryo4K9sVpQVLNGrca55zle0O7K552e0ILFarBMWCQMYYd0BqVrSRTfCZ1rfkll+wNzps16KQYm6e/djzT1Q2g09/wH2eTrWRXbTUeTh44Un7wQyV7QAAAAAAAAAAAGaSWfAvhQAAdFBI29krBm9zTqkP25nzrmzpksKYxcslSeeP+LWRzfqG7VpReWrRspqXrxpy3z9p+irbmdWbal6/ZvBboeOuGfjv0kZHKttNXWND/iXrsLEJqeiqbKeitGCxRrrc1ftSKiRqOTrj7NtZ8/KUUUdlsyr1LVCN67Oe9jayHpJU39tycsOuS4fuiJyWDmupXa1Vle1Ov9h+bLQqFLjrOfd5OhS2M8vWSJtPtA8YdQS6qWwHAAAAAAAAAAAwoxC2AwCgWl1QTJL+974/c07JBuNTLy66VnrdTa1eVbiFy5QLxrQkH105Lt3BsJ055fya13+8948i59TcQ5c2V2B718FP68qBb9Ts+9WDf6+rBsv7OtF20jMA9MzewF3ZLijILFiq6/u/6DxPOsjPrcp2r39Xzcu+4oDXtFRQDtttOr70p6uK4XS3kQ2pPNcgyWfat7hh1x/u+/PIaenA0aJaat19W77WfuzZR/3P04lKlWXmD/6f/eAXPm4/RtgOAAAAAAAAAABgRiFsBwBAtZCg08Jiv1KO9oiZyWPrtsj80b/KdKrt3/FnSpLeOOAOU0nlMFun2sjW3cNlhf1aXDjgnJKerjayklQVDswFY/rSS2/U3c++Un+/89f04PYz9bcv/5a6VC4hl3NXiWuJuvu3Kv9y6LA//XrgVdnu6PFnnJcrVbabO4Ge+tbNPcGI17xKC9TJaodHchvZkPe+uHgoZGCtyDayLbpvpqvL2l41+PQf+p+oU21kJZmt26STzo0/cQ59NwEAAAAAAAAAAOaCOVTGBACAFuiZH7o7FRRUMOH/2UyrHBQ79QKZTla8CkplzbqLo5FDM5qQcvM600Y22914/YgwnX9luzbc32JtebiUijpr9H6dNXp/49je8OejpXr7al4WZa9iFlXZTguWaknhOefluoLC3KpsV/d5VoKSEVIqzyt/r5zV4/Ke4dDplChsFx4q7QoKKhr7dzCyjezS1c2vqV7R8vAPHfY/h+V9ts2KdfHnELYDAAAAAAAAAACYUWZBWQ4AADrHWCqXjXc1BsgmVYJkHWxJKEmaKAXUQkNhdbLBuHTUCZ2pbDfZhrPKnvRK55RMVEhnUlcbwnZxAnSrNrb++vXqWmTa7l1PRl6V7eYFw87LpZWfW4GekLCnj0pVtud/VvrTFYwqeD6v7eLTRjbBd8Wkw38nXEE7KaKy3Yr10tZtTa+pQWAJ202MK7AF8ep1sLKdJJltF8SflO5QpVQAAAAAAAAAAAB4IWwHAEC9485o2HXR0J3W4ZWwXbbDwY2rflGSdPXA1yLHZoJ8qepeVOW6VlS261vcsOuMkZ84p3hXtvMJGcVkXv+r/mPbcP3Qa6w/pvL6D/b+eei45/ZHVLZTQVqwRD1FdxvV1FyrbHfC2Q27Lh+8LXJapSrba95e+nPdllauqvOSfqanXdSwa2l+n3PKZNjOvPujtdfv6pL5tT9r6ffHvOND1mPBL5+j4PD+6JN0OiB9+Q3x58ylICwAAAAAAAAAAMAcQNgOAIA65vzXNew7Z+Q+6/gxU66k1eEqSVpSqng2LxiKHJrtLa8tsrJd8jCMSWca2r2eOvawc05Um9mpk7ch7LZyg9+4Fetbf20Lc/27KtvbHPfOWdkuKFW26wkiwnYqzq1AT0h1yp8b/GrktFRQkCSZ8vdKmVleUSxh2M684lUN+84fuds5pxJYvOIGmU98V3rL70g3vFfm49+RufxNidbT4ORz7ceeekjBx94TfY5OV7brWySdcUm8SbP9OQQAAAAAAAAAAJhj5lAZEwAAWiSkDWVv0d6K8+7eUujDZDtcJakcFDGSeotDGu6aZx2ayZbDb1EBnFZUtpOkbE4amQoBuu6fFKOyXavWV3Nxz8+tk1WwqtbUXRy1Dts3YD9FSgWpb4l6HPOlcjWyuVTZLiRAFfX8SVVBsUz5++9q39m3qJmVdZalFay3kPvoVSWxPNeccJbMCWclW4NLVFDuO/+R/BztsMTdUrvBXArCAgAAAAAAAAAAzAFUtgMAoF5IGOK00QcjpwWDh9qxGrvNJ1Y2XUE7ScpmyhXhIivbteivBiO11faWFdztJ70r26kNle3WHOU3rpPBnHVHVzZXFPZah73cby9t15XJSPMXKhdZ2a4wtwI9a49u2OXz/Z1sgVqpJLZkpbR6Y+PAbLd0zmuSrDA5nwqPSQOUIc/7ttGH3JdUuTpgb1+ya/vYdHziU5hpCNuZrdv8B3d1za0gLAAAAAAAAAAAwBxA2A4AgHpnXtaw65LhOyOnmbMa57WTmbegsn3joc84x2YzHa5sV2fL+DPO41nfsF0b1md8g2adDOaceE5lc/P4s9ZhQ2P2U6SyWRlj/KqRzaFAjwmpQHjy2COR8yphu+POKJ3HGJnXv6tx4JU3yvS4w60zQhvCdj/f/wXnlC45+hq3mOmdn7zFaierVU669I3+Y7t7ZNrROhsAAAAAAAAAAABNI2wHAEC9qhDbpJ7A3YqzNG9hGxYTYeNxkqS3Hf6cc1imuxwo61RluwuurnkZFbarVLarqtYXql3Bk2Vrosd0MmxXFSLqcVSm++Yjjsp23aV2qD3rNjgvlTbFuRfo6Vtc89JIes3grc4pKRVLG1Wfs7nht2Te93fSqRdIx50h8z/+WOa9f93q1bZHKpVsfsjzviH/UvS8clixE8z7P53sBNlpqGy3Yl2c0W1bBwAAAAAAAAAAAJozd8qYAADQKs2GqqahJaF650tSZPWybLbDle3q7sUx4087h2eDcen0i2Vu+kMFv+GoENiqMGC9nMdnl+1cFSxjjIKeedLIkHKOoOfXLQXbTFCsVHjryUqTObIwKdO5amQdk+uVBg7W7FqWd7cyrlS2q3t2zTW/LHPNL7d0ecl5hLC6kobtmnzeO/k7mLTCYNLKeM1aulravyt63Mhg+9cCAAAAAAAAAACAWKhsBwBAHdNs4CxWxaIW6T8gSTpq4nnnsEx3OWQXFS5pVZjt0N6alwuL/c7h3cFYKaQTdf02tbn1qnDV6TDlyJAkd6zKVpAupUIpcCZpfbf73meMI4k3W+3d0bDrQGqJc0pa5bDd/EXtWFHnJW0ju/bo5ub97P5k141jzeZk89cf05p1xLWuyXsLAAAAAAAAAACAaUfYDgCAFjF90xDSOfe1kqSVhT3OYdnJNrJR1apaFGYzZzZWpztr5EfW8blgtBy2i6jY1a52pz5BuumoXBghsBSl6wqKlfUuiPjIe8x4i1c1Ayxc2rDr8qHbnVMmK9uZ9Bwp/JwwbGeaDaKtOSrRdWM5+iRp0/HNzV29STr+rJYux5e57I3Tcl0AAAAAAAAAAAAkR9gOAIAwJ50bb3y2uz3riGAue1Nl+5TRh63jMt3linZRgbFWVbY76ZyGXX+094+twythu6iwX7vayHqF7TrXRlaSdN6Vlc0/3fOHsaamVJiq1tfdo5t3/JJ1bE9XvqnlzWTmTe9p2HfmqLviWirIT1+ls3ZIWtlOktKZ+HMu/Lnk1/VkjJH52NfiTzzhbJm/vlUmlbDVbrOu/ZXpuS4AAAAAAAAAAAASI2wHAECYnnnxxi9a0Z51RKkKia3I26vbdU0GxaLapbaqTWtIeC0b2CuopYJCKcwWFaZrW2U7jyBdpyvbldvAStL84lCsqV0qTr2n7l4tK+yzjp2Tle2yjZ9nT3HUOSWlwuxpIevzPWhF2G7VxthTjE9L5hYyy9dKb32f/4TTLlLXp78vs3pT29YUxRgjvfHd03Z9AAAAAAAAAAAANI+wHQAAYQ7vb9h1+sgDoUPfc+Djna96Nmnx8srmGwa+FDpkeX6PtOfF0ouDu93n62pRpacljeHDdRM7rMPX5XdIB/dOX2W7xSujx4Q8E50yZrKxxpfCi5OV7XLqKY5Yx6bn4t8GxxuDdVGtltNBfka2Cm5aK8J2+3Y27PrN/X8TOvSVQ98vbUxDlU8T8ntjH9ymwG5MZonHb86lb2j/QgAAAAAAAAAAABDLXPznVQAAklu2umHXrx38dOjQXzx0c2glrU4wy9ZUtq8a/IZMUGwY89rBW6XF5TDKvIXuE7aosp1ZuaFh39ET27V17MmG/VvGn9Yx40+XAnpRQZg2BWXMOa+OHrRiXVuubWNOOb+yfcroT2PNrQmOdfcoF4zZB7eqmuFMsvnEhl1r8rucU9IqTF9oth1a0SI1CBp2XTX4jdChlf3TEVj0+f5OWrO5feuIw2PN5twrI8cAAAAAAAAAAACgs+bgv64CAJCcufLGhn2/cPizuvHQZ2r2/eXLv6NTxh6Z3opYJ5wtSVqdf1n/svMdSgX5yqHTRx7QR/f8vsxpF0qSzHkR4Y1WVo6ruydG0r/teLuW5fdW9i3L79UtL71NRpI5/ZLo67crGHbJ9ZFDzImvaM+1bS78ucpmVFCsXlq1YTujxtDUpLCA5qwXEvaUpLcc/jfrFCrbNTI3/q+GfZcM36kP7P2zmn3X9n9Z7znwd6UX03APzYZj/cde8vo2rsSf2XKKzLs/ah/wupukV725cwsCAAAAAAAAAACAlxb0lwIAYA7K9TbsSqmof9j1K/r9ff9Hj3afqFeM3KdVhXJb1ukM6WzdJj12nyTpLf3/rlcN3aYf9J6vtRM7dProA0qpKKUzfutsZZjtuDOkh35Qs+vUsZ9q+9PH6a7ecyVJ5w/frd6g3OK0OzdtbWRNV5eCo06Qnn3MPijkmWirqs+qJ7C3gQ2TDqaqtJmIzzw4uC/+2mY6S4W600Yf1L8uDA8w1bTenel8Kjy2oo3s/MZKmEbSh/b9id5x6J90T88rdOLYYzp+/GeqrGi67uFr3iZ987PR4zr9PXYwb3qPdOkbpYfvkoYHpInx0v075Txp7dEyM6TlLQAAAAAAAAAAAKYQtgMAIEy2O3S3kbRlYru2TGyvPTCd7SfrKpMtK+zXtQNfqR0zGbyJWmcrw2zzFoTu7g1GdMXQdxoPpDPR129n+CSkZWaNToeIcvMqmwuKA7GmZoIJKVtab/DS01qZ320du37ixebWN5NZ2iWngoJ1ysvpVdLEU+1aUed1taCNrOOZX5/fofUDX2w8MF0BMcvvTYMZFqg0y1ZLl75hupcBAAAAAAAAAAAAT7SRBQAgzKYT4o2fxgCHWbY2etA0VLabbF3rbdMJ0UGddrWRlaS1m93HO/wZm6rA59LCgVhz08pPBUYP79f6/A6dOPpow7j1Ey9q29hDidY5E5mlq0L3nzb6oHXOuMlKB/daj88qXV0yrfiunHJe/Dkbtia/bhPMaRf5DczOrLAdAAAAAAAAAAAAZhfCdgAAhOlbFG98dhor2513ZfSYSmW7iBaKraxsd+WN8cYvWOJx/fZVzTI3vNc9YJpDOpvHt0cPKksHeZl0tvSiHBL8yJ7fV644UjVmQh/b/XttvKMzz9bxp63HjAKZS6/v4GoSiAqltqKFrCStiQighlmysjXXjuvc1/qNm84qpAAAAAAAAAAAAJj1CNsBABDCpDNSKkYbxukMYs3rix5TCdt1sLLdgiVS32L/Cd09Utc0VrZbvcl9fDpCOsefWdl83cDXvKelg7yUqQ3bvXroNt377AX68J4P6oN7P6x7nn2lrhv4ckuXO6OEVCpMyd5G1iiI97zOZC0K25muLmtLbatcRKC3TUy2W+aDn4keOMPayAIAAAAAAAAAAGB2aVHZCwAA5qBMt1QY9hybae9aXKKq1UlSuvyf/FznwnaSpEXLpIGD0eMyWZmuLgVRFbtaWXmvXlRIaDpCRJmpoFN3MOY9La1CpXWw2bBVQXn/ieOP68T9j7dyhTNXpjEk1hUUrcONgrkTxOqKERSOkumWxv2fvWkNHvctjB4zTWFAAAAAAAAAAAAAzA1UtgMAwGbUM2gnSTuead86oixdFT1mMgCz9mj3uHVbkq+n2p6X/MZNBqOiwnRRYbwkFiyxV7dbsV5avKJ917YZ6q9s7sis9Z5WU9nuyl9o9apmh+caQ4WRle3mSovRVoZmq57BSKm0THoa/395tp7m/o1Yf4zMvAWdWw8AAAAAAAAAAADmHMJ2AADYrFjvPdSc/7o2LiTi2sZ4tEAthe1M2l2BL+p4bNe/y2/c5HWjQkJtbCNrjJF583vDj93wm6X73GHm2ndWtl8z+C3veSlNhe3MsjXuwRdM37PbVpe+oWFXKogI22VnS9gu6lls4bO6Yav/2GmuDGgWr5Be83b78Z//zQ6uBgCA/5+9Ow+z9KrrBP49VdV7d/ZOOk12spBASAiLgbAm7MhiDMIICo4OoojKICMgIIoo4jrOiKKjgDqgoiCLgmwyLBKWsCRsIfva2ZdOr9VV9c4f1Z2u6rrvvbdu3aXq1ufzPPepW+d33vf8qrq6q5L7rXMAAAAAgGEkbAcAdZ50YftzDz+6d320obz4Nc0nDCgEU855YnsT94XtWh4T29vAW/mRl6e86T3JuU9Pjnlgcu7TUt7wrpTnv7Kn69Y69WH3Pz1s8q62LxurJpKxlfsHmu3Kd/zpnXS26JWHnjdnrOnOdlU12CNQu6mbodTHP6/9uYvgGN7yq3+e8vK3Jg89b/rv8DEPTB79jJRf/9uU5/63QbcHAAAAAADAEjfAc54AYJGbT3Bk0MdPtgoJDaq/dj+H+4JhrXaP6+HOdvuUp7ww5Skv7Pk6bZmx09qaamfbl806RjZJ1qxL7q6Z3IfP6UA0+NprubPdIgiLdUUXd2Esq9akanfyIvj8ldHR5EW/kvKiXxl0KwAAAAAAAAyhIX11FQC6oOUuazMMOmRy7CnN66vX3v+0vOqPG8+58OVdbGivY05ub97Y3vx/q+DXfP5MhsGMkOQp41e1fdlYDtjZ7uZr6iePjHbS2eLX4O/ESKaaX7NyZfP6YtEyTNfFHSBb/dsy06BDxwAAAAAAANBjy+wVawBoX3n009ufPOiw3emPaF6f2d9jn52sWT+7PjKScsELut5WOaLN43XbPUa2izt2LQkz/tw2T2xp+7KxanJ2cOy4U+snD+vOdg8+d85Qs2NkRzK1/+twqevmn+kPPbX9uavWtp4DAJMLjsUAACAASURBVAAAAAAAS9iQvroKAF1w5DHtzx1w2K6MjDQPCs04ZrYceUzKH30sOeWs6fDaMSenvPn/pjz0Mb1prp3P4/1hu8EfI7uoHPB1tWnilrYuG6tm72xXnvXS2rllSHcLLGNjybqDZo81m58qGR2SsF03j5Fdf/D0McTtGHToGAAAAAAAAHpsOF9dBYBuWD2PXZpWLoLjE486tr62ctWsd8uDH5WRv/5Kyifvycj7vpPypAt719dhR7Wesy8Y1iL4VZbxznZJsmni1rYuG8tEsmLGznbNvpaHOcDYbEe/A5RUw7OzXTePkU2SU89pb55jZAEAAAAAABhyQ/zqKgAs0JoN7c9dDCGTJ13UePywTbUhtdKPvm+7qfWcfSGnYQ5+deKAEOcNYw9o67IDd7bL+K7audXkREetLQk3Xd321Ofc95GlE7br9w6Q7f47sRhCxwAAAAAAANBDXtEGgBplbKz9yStWtZ7TY+W8ZzUunPfM/jZyoEM3tp5z/zGyfjSZqRwQmjps8u62rhurJmbvinfqw+on7xnvpLWlYee2OUM/ffe75owdNXFrHrfji0snbNdKt3eAbPd42Jm7KQIAAAAAAMAQ8oo2ADTz7P/a3rxFEDIpDzk35RfePjtoc9ZjU17xu4NrKkm58OdaT7o/bLfMjoltx/Nfef/TX7z7T9u6ZCwTs3cjO7TJUb4TQxy2a/C193u3vTaP3fGF+98/fOKOfPiGCzOaKWG7Ou2G7UaH5PMHAAAAAAAANeaxZQ8ALD/lyGNTtTNxbPBhuyQpL/il5Bk/kXzny8nmE5PjTqs9QrZv1qxrPccxsrXKxs33fw2un5q7U1sjc3a2W9Vk58Xx3Z03t9itXjtn6KCp+/If1z01P1h5Su4YPTyP3HlJVmbPdHFYwmLd3iHSznYAAAAAAACQRNgOAJobGW1v3iIKmZSDDkse/YxBt7HfuoNaz3GMbL2JiXlfMpbJZOWMne3WHVw7t2w+sZOulojGQdOS5LTxK3JarphdGG3z7/ugtQrQdjtg2+7nZVh2BgQAAAAAAIAaXtEGgGZOe1h780bl12ud9djWc+xsV++Io+9/etruH7R1yVg1MSsAWg4+PDn5oY0nn/u0BbW3mJW6j7mRsRWD3wWyW7r8YZQHPaK9iWP+HQQAAAAAAGC4eUUbAJo57ZzWc1asHJ6QTg+Uee1s5/M4xwmn3//06IktbV2yotozZ5ex8kt/mKxZP3vii16THHfagltctB78qPbnDtOubN3eIfJxz2lv3iI5ThsAAAAAAAB6xfYTANDMqjWt5wiYtHbokcndt9XX930OHSM714yvwTXVrrYuGa0mktEDwnZnPy5591eT//xYqnvvTDnnicnZjxvuoOjqte3PXUJhu1JKquYTurvg2g3tzVtCn0MAAAAAAADohLAdADTTTthuhbBdSytWNa87RrbejMDY6qn2wnZjmWgYfCqbT0ouekW3TxldvFbNI2w3TEdBdzts1+6/cYLHAAAAAAAADDmvaANAE6Wd8JeASWvHtziqdGxf0GnZxMDat+n4+5+ur7a3dclYNSG4mKSsbBHynGl0iHZl6/IOkW3vfmhnOwAAAAAAAIacV2EBYKEETFoqL35N8wl2tqvVVuDzAGOlGu7jYefj2FPamzdMf4978Wd/0GGtl7XLJwAAAAAAAEPOK9oA0Mo5T2xeXzFEIZ1eOfvxzev7dgfs8o5cw+jNt/9myzljI1UfOlkayjN+sr2JY46Rber8i1rPGabAIgAAAAAAADTgFW0AaGXl6uZ1x8i2VEZGkmZHetrZrm1rpna2nDNWhO3ut6rF3999hiko1ovQ6qo1reeMDlFgEQAAAAAAABrwijYAtHLCg5rXm4XI2G98d31tX9DJ0aeNPe459z990PjlLafb2W6GE05vb95Qhe26//eoHHpk60mOkQUAAAAAAGDICdsBQAvlyS9oPmHV2v40stRtPrG2VPbuDliE7RoqT3/x/c/P3/7ZlvPtbDdDqyOM9xldYmG7Zn9XevH36Ek/2nrOMAUWAQAAAAAAoAFhOwBooZx2TvMJ7R5TucyVH391fVFIp6ny+Ocme3cWW1Ptajnfznb7lZWr2jueeJi+BntxjOym41vPcaQ2AAAAAAAAQ07YDgAWatWaQXewNDT7PI2O9q+PpeqZL2l7qrDdAY45ufWcoQrb9eAY2ZGR1kdmD9PnEAAAAAAAABoQtgOAdpxydn1t4+b+9bGUTU3Vlqqd2/vYyBJ15y33P/2hHV9uOnVMdnG2yYnWc4YpKNar45jHdzevr7CzHQAAAAAAAMNN2A4A2lBe+fb62mOf3cdOlrBmx/FOTfavjyWqnPCg+5+/4Y7faTp3rEdZqyXrEee3njM21vs+uqlZoK4Xx8gmybGnNK8PU2ARAAAAAAAAGhC2A4A2lIc9IXnWS+eO/+xvpZz79P43tBStP6i+Nils19KJZ9z/9BnbP9F0qmNkZysvfFXrSaNDFBTr0c525ZW/13zC6BILLAIAAAAAAMA8eUUMANo08tp3pvrF308++ffJxgckZz8uZe2GQbe1dKxcXV+zs11rB3z+ztj93Xx31RkNpzpG9gCr17WeM0y7svXqGNkNhzavO0YWAAAAAACAISdsNyCllJOSPDLJI/a+PSfJzMTGdVVVndDhvRe6nc2JVVVdu8B7AAylsnZD8tz/Nug2lqYmwcRy6tl9bGSJWjM7MLZ1pH6nwLER58jOsq7Jror7DFXYrkebVx/UImw3TJ9DAAAAAAAAaEDYro9KKU9M8rpMB+wOG2w3ANBfZdWaVGc/Pvnm52YXRkaSRz1lME0tJSc+eNa7N644pnaqne1mK2vWpeVvIiy1oFiz3et6tbPdsac2r69a05t1AQAAAAAAYJHo0bYX1Dg7yVMjaAfAMlV+6Q+TQzbOHnv1/0o5yLfGllavnfXui+59b+1UYbsGfvTnm9dHh+h3UHoUtiulJI98cv2EVWvrawAAAAAAADAEhuhVxSVtd5IbkzywB/f+cpIXzvOaG3vQBwCknHxm8jdfT778yeS+u5JHXJBy4hmDbmtJKCMjs3Zn2zRxS+3cMb9OMUd58A+l+ud31E9YajvbNdOrY2STlEdekOqrn2pcXLW6Z+sCAAAAAADAYiBs1397knwnydeSfHXv28uSnJfkP3qw3q6qqq7twX0BoCPl0COTp79o0G0seaPVZG1tbLRHx4guZWvWNa/fc3t/+uiaARwjmySHbaqvtfocAwAAAAAAwBInbNdf70ny51VV7TqwUHr5oigAMHS2jWyorY2N+blijgf/UPP6zu396aMfevlz5aOeMn3/qpo9fvTxyeFH925dAAAAAAAAWAQcMtZHVVXd3ShoBwDQlp96w/1Pn7z9M7XT7Gw3Vzn0yOT8i+onTNbvFLjk9PIY2UM3Jhe94oDBkvJTb/TLIwAAAAAAAAw9O9sBACwR5REXpHrXbyVJ1lQ76ueNjvarpSWlvOFdqT7zT42LkxP9baaXehx6K6/8/eSUs1Nd/PFkzfqU8y9KedRTeromAAAAAAAALAbCdgAAS8WqNfc/XT1Vv1luNbKiH90sOWXFylR1xakltrNds0Bdr8N2pSTP+ImUZ/xET9cBAAAAAACAxcYxsgAAS8WxJ9//9KG7v52xas+cKaPVRM5au6WfXQ0HO9sBAAAAAAAALQjbDb/jSinvKqV8p5RydyllvJRy6973/66U8rJSymGDbhIAaK2s3ZAcMx24O3hqa16w9f1z5ly09QM5eOUS26VtMRC2AwAAAAAAAFpwjOzwO3HvY6Yj9z7OSPKiJH9YSvnLJG+sqmpbL5oopRyZZOM8L3tgL3oBgKWsvPHdqX72sUmSv7z553LExB350IbnpErJc7d9JG+79deSsZ8bcJdLkGNkAQAAAAAAgBaE7UiSdUl+OckzSykXVlX1nR6s8fNJfr0H9wWA5WXdhvufrsye/MFtr80f3Pba2XPGVvS5qSFgZzsAAAAAAACgBcfIDq+JJJ9N8oYkz0lyTpJTkjwsyXOT/H6S2w645tQknyqlHN+/NgFgtvKytzQuPP3F/W1ksTr86NZzhO3qPfS8hsPlZ36jz430UPEjPgAAAAAAAPSCV+KG0xuSPKCqqidVVfXWqqo+UlXVN6qqurKqqm9WVfXhqqpek+T4JG9LUs24dlOSD5RiSxQABuSJP5KMzt18tzzxwgE0s/iU9Qe3niNsV6s8+QVzB9esTx7+pP430yt+jAMAAAAAAICeELYbQnsDdgfuWtdo3q6qql6X5JUHlM5J8l+63NY7kjxkno/ndrkHAJaAcuwpKW95X7Lh0OmB1WtTXvG2lPOeNdjGFpOTHtK8PipsV+t5L0te+Kr9u/8dfnTKH3w0ZcMhg+1rvpoF6oTtAAAAAAAAoCfmbhvDslNV1Z+WUp6a6eNm9/n5JO/t4hq3Ze6xtU3ZXA9g+SqPe07ymGclN16RHH1iyspVg25pcTnyAcnV366vj/kRr04pJeUVb0v1029KbrsxOfaU4fuZwzGyAAAAAAAA0BNeiWOf3zng/XNLKUtsixcAhkkZHU05/kGCdo0cfETzumNkWyqr16Ycd+rwBe0SO9sBAAAAAABAjwjbsc9Xktw94/3RJGcMqBcAoInyyCc3nyBst7wJ2wEAAAAAAEBPCNuRJKmqairJ9QcMbxxELwBACxc8v3l91DGyw69JoM4xsgAAAAAAANATXoljpp0HvL9mIF0AAE2VsRXJC3+5foKd7ZY3O9sBAAAAAABATwjbMdMRB7x/x0C6AABaW72uvjYqbDf0mgXqhO0AAAAAAACgJ4TtSJKUUo5IctIBwzcPohcAoLWyem19cZXNaYdes90LHSMLAAAAAAAAPeGVOPZ5YWZ/Pdya5HsD6gUAaGXV6s5qDIexlfU1O9sBAAAAAABATwjbkVLKUUnecMDwR6qqqgbRDwDQhpXNwnZ2tht6K4TtAAAAAAAAoN+E7YZIKeW0Usqz53nNpiQfTXLUjOHxJL/Tzd4AgC5rtrOZsN3wW9HsGFlhOwAAAAAAAOiFsUE3sNyUUo5J48/7pgPeHyulnFBzm21VVd3RYPzoJB8upVyW5O+SfLCqqitq+tiQ5CWZ3tHuqAPKv1VV1dU1awMAi8Hpj2g8PrYiOfGM/vZC/zULW476ER8AAAAAAAB6wStx/feFJMe3Me8BSa6pqb0nyUubXHtmkt9N8rullHuTfDvJHUnuS7I+ybFJzkrjP/+/qKrqLW30BwAM0gmnJ2c/Pvnm52aPP+1FKesOGkxP9E+zY2RHm+x6BwAAAAAAAHRM2G74HZzkvDbmbU/yqqqq/rLH/QAAXVBKSX73g6ne+YbkK59IVq5OHvfclJf+2qBbox9WrKqvjY72rw8AAAAAAABYRoTthsv3kvx2kickOSfJmjau+UGSdyf5y5qjaQGARaqsXZ/yqj8edBsMwrZ76muXf71/fQAAAAAAAMAyImzXZ1VVndDDe9+a5NeSpJQykuSUJA/M9JG0hyRZnWRnkruTbEny1aqqbu9VPwAA9MhNV9fXrry0f30AAAAAAADAMiJsN6SqqppKcvneBwAAAAAAAAAAAAswMugGAAAAAAAAAAAAYLETtgMAAAAAAAAAAIAWhO0AAGCpueDH6muPfkb/+gAAAAAAAIBlRNgOAACWmPLEC+trL39rHzsBAAAAAACA5UPYDgAAlprHPzd55AVzx897VspJD+5/PwAAAAAAALAMjA26AQAAYH7KyEjyB/+aXHlpqrf9bLJzW8pb/j7lgQ8ZdGsAAAAAAAAwtITtAABgCSqlJKeclfJXFw+6FQAAAAAAAFgWHCMLAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALYwNugGArtt9Z7LjxmRqT7LhlGTlwYPuCAAAAAAAAACAJU7YDhgeu+9MPn9RcttnZ4+v2Zw8+4pkbO1A2gIAAAAAAAAAYOlzjCwwPL7wgrlBuyTZeXPyxRf2vR0AAAAAAAAAAIaHsB0wHHbdkdz6mfr6TR+ZPlYWAAAAAAAAAAA6IGwHDIcdNySpWsy5sS+tAAAAAAAAAAAwfITtgOEwuXPQHQAAAAAAAAAAMMSE7YDhsPX7redMjfe+DwAAAAAAAAAAhpKwHTAcrvuH1nPu/Frv+wAAAAAAAAAAYCgJ2wHDYfXG1nOqyd73AQAAAAAAAADAUBK2A4bDTR9tPefilyS3/2fvewEAAAAAAAAAYOgI2wFL35X/J9lzb3tzP3lecvPHe9sPAAAAAAAAAABDR9gOWNqqqeTSN87vms8+oze9AAAAAAAAAAAwtITtgKVt29XJrlvmf1011f1eAAAAAAAAAAAYWsJ2wNK2577OrttxY3f7AAAAAAAAAABgqAnbAUvblo93dt11f9/dPgAAAAAAAAAAGGrCdsDSVVXJt17f2bXf/NXu9gIAAAAAAAAAwFATtgOWrq2XL+z6nbd2pw8AAAAAAAAAAIbe2KAbAGhq27XJHf+ZrD0mSdk/PjWeXPkXC7v3+F3JmqMWdg8AAAAAAAAAAJYFYTtgcdqzLXn/hs6vf9jvJZe9OZnYXj9nYlvn9wcAAAAAAAAAYFlxjCywOH1w08KuP/1XkqdenJz4k/VzLvuNha0BAAAAAAAAAMCyIWwHLD7VVPMd6VpZdfj020Mekpz77sw6fnamWz/T+RoAAAAAAAAAACwrwnbA4rNn68KuP/jB+5+XkqRqPG/FAo6pBQAAAAAAAABgWRG2AzpXVcn3/yj56BnJBzcnF//0wnak23fP775tYfc46b/Ofv/IJzSet+u25J+PTLZ8YmHrAQAAAAAAAAAw9ITtgM5d/ifJ1/97svV7yc4tydV/nXzuwgXe838m3/3dzq5dcVDyqHcmJ71k9vgZr6u/ZvftyX88Lbnjy52tCQAAAAAAAADAsiBsB3Tu6r+aO3bLJ5Lt13V+z6v+T+fXPvuK5OSXzR0fW9P62mv/rvN1AQAAAAAAAAAYesJ2QOfuuazx+JV/0dn9qiq59zud97PikMbja49tfe2tn+18XQAAAAAAAAAAhp6wHdB9u+/o7LrJXa3nPPxPGo8f+fhkdGXj2voTk0POWvjaAAAAAAAAAAAsW8J2QPdtu6az6675m+b18z+ZnPoLydFPm1t7/IebX/uEDzWvb7uyeR0AAAAAAAAAgGVtbNANAEPolk92dt2lb6ivPet7ycEPmn7+pI8ne7YmN/1rsvG8ZN1xre+97vhk3QnJ9mvr50yO1++OBwAAAAAAAADAsmZnO6AzU5P1tZWHzv9+E9ubHz+76vDZ7684KDnhv7QXtNtn87Oa1+/9Tvv3AgAAAAAAAABgWbGzHdCZqd31tTI6//vt2VZfG1mRrN44/3se6AHPTq740/r6xPaFrwEALA+7bktu/niy9XvT7x90WnL0M5I1Rw22LwAAAAAAAHpG2A7ozOSu7t2rmkr+9fT6+mP+b3fWOfopyckvT67888b1yZ3dWQcAGG73fjf59PnJrltnj6/amFzw6eSQMwfTFwAAAAAAAD3lGFmgM90M2932+WT87vr6xsd2Z50ykjzyHfX1yR3dWQcAGG6XvGpu0C5Jdt+efO0X+98PAAAAAAAAfSFsB3RmqlnYrprfva55T/P62Lr53a+ZUqZ3nWlkws52AEALU5PJ7Z+rr9/xxWRyvH/9AAAAAAAA0DfCdkBn7vhKfa2aZ9ju6nfV18Y2JCsOmt/9Whld03jcMbIAQCvVRPMdfqf2JFO7+9cPAAAAAAAAfSNsB3Tme79bXxu/q3vrPKzJOp0aE7YDADpUTbUxZ7L3fQAAAAAAANB3wnZAZ5rt6DIfu+9sXj/+x7uzzkx2tgMAOiZsBwAAAAAAsFwJ2wGdWXV48/rE9vbuc8unmtdHV7V3n/kQtgMAOtXWznZtzAEAAAAAAGDJEbYDOnPQg5rXd9/R3n12bmleH13d3n3mQ9iOxWZqcvoBwOBNTSYTO5LJ3cmercme+2bXHSMLAAAAAACwbI0NugFgSE20GVzbc2997YzXdqeXA42ubTx+3xW9WQ/qTOxMvvYLyY0fnA5mPODZySP/PFmxftCdASw/E9uTf6z593f9Sclpr0pO+4U4RhYAAAAAAGD5ErYDOjOysnm93V3iLntzfe3s32m7nXkZq9nZ7vr3J1N7kpEVvVkXDnTxS6a/7va59v8mu+9MnvSxwfUEsFzVBe2SZNvVySWvnA5DP+DZre9173eTtQ/oXm8AAAAAAAAsCo6RBTrzyHckL2gSqGsnbLfrtu71Mx/Njn+7/Qv964Plbfze5IYPzh3f8vFk5y397wdgOWv3Z5Kr39PeMbLX/f3C+gEAAAAAAGBRErYDOjeyKklpXGsnbHfvd7raTttu+VR97Y4v968Plrf7rkiqica1u77e314Alrsb/6W9eVu/194Rsde8e0HtAAAAAAAAsDgJ2wGdKyUZXd24Nrmr9fXbru1qO23bcHJ9bWq8f310w84tySX/PXlvmf349lsH3RmtTO2ur7UT5ACge/Zsa2/erluTfzuz9bxqKvn3RycTbfzyAQAAAAAAAEuGsB2wMKNrGo+3s7Pd9mu72krbDj27vrb9uv71sVC770w+9YTk8j+aW7v0Dcmlb+p/T7Rv+/VNatf2rQ0Aknzj1e3P3X1He/PuvDj5x7XtHTsLAAAAAADAkiBsByzMUgzbNXP9+wfdQftu+Ofpo0jrfPst/euF+bvyz+trV7+rf30ALHe72gzPderOr/T2/gAAAAAAAPSNsB2wMCvWNx7fdWvra5vtInfkEzrrpx2bf7i+tvExvVu329p58b7dY/Hov7qgapKs3tS/PgCWu7su6e39v/v23t4fAAAAAACAvhG2AxZm3QmNx5vtuLbP1u/V105+WUfttGXzM+prO27s3brddvO/tZ7zyfOS95bpx1denmy/ofd90Z77rqyvVXv61wfActfOLwgshJ3tAAAAAAAAhoawHbAwG05pPN4qbDd+T7Lrtsa1VYcnx71gYX01M7oqOfxRjWv3fie576rerd0tl/56snNL63n3XLr/+ZXvTD50XHL3N3vXF+2Z2Jlsa/J11s4xzAAs3K47kotf0ts1dt6UTO7q7RoAAAAAAAD0hbAdsDCdhu2++7v1tfM/k4yMdt5TO5qF+b79lt6uvVDbr0++/ZudX//N13evFzpz1f9pXp8QtgPoiyv+rHn9se9PzvuH5Jw/Tk55Refr3Pihzq8FAAAAAABg0RgbdAPAElcXtttxYzKxIxlb27jeLIy3/oQFt9XSioPqa7d+uvfrL8St/7Gw67d8LKmqpJTu9MP8bbumeX1yR3/6AFjubvpI8/pxF+1/vvOW5Io/7WydWz6dHN/DXXsBAAAAAADoC2E7YGHqwnbJ9DGZh5zZuLbnvvrrmgXhuuXIx9fXxu/t/frt2LMtue59ycT25KDTk/G7p8evfOfC7z01Pn2cLoOxp8XXmGNkAfpj25Xtz12zafrnnla79zZy3XuTR74jGfGfXwAAAAAAAEuZV3uAhVl3QlLGkmpibm3rD+rDdrd8ovH4EY/pWmtNHXRqsu74ZPt1c2sT9w1+57cbP5x87rm9u//kTmG7Qbr7683rjb4uAeiu8bv3B9kbWfOAuWNnvy35wgsa/9zTzMT25O9XJD/8g+SgJr+oAAAAAAAAwKI2MugGgCVuZCxZf2LjWt3OL7d/qf5+xzxn4T2169z31Ndu/GD/+jjQ+D29DdolyS2f6u39ae7ubw66AwC21AT/91l/0tyxYy9MnvLF5IxfTY69aPpxxuuSp301ecGu1mv+64M66xUAAAAAAIBFYaA725VSSpLXJFk9Y/hvqqq6doH3PTHJT8wY2lFV1e8v5J5AE3VHqtWF7W7+aP29Rtd0p6d2jK2rr93wL9MvqA/CTR/p/RpbPpEcd1Hv12Gudnet23V7snpjb3sBWM46OQ42SY541PSjkTN/M7nsTfXXVlPJ9huSdcd2tjYAAAAAAAADNehjZH88yduSVHvf/8BCg3ZJUlXVNaWUM5Pcn5QppVxdVdUHFnpvoIENpyb5t7njdS9i79xSf6/DHt6Vltpy8On1tWbHyvXSrtuTb76us2uPe35y/fvbm1vt6WwNFm7nLe3N23Z1suqIwR5nDDDMJnZ0/56HndN6zl1fFbYDAAAAAABYogZ2jGwpZSTJb+57N8kVSV7SxSVemuSqvfcuSd7axXsDM204pfF4Xdjuhia518PPXXg/7Wq2s92O6/vXR5Jc/e7kvSX5wJHJzpvmf/2Kg5Mzf6P9+RM7578G3THZZrjjE+cmHzouueKdve0HYLnac0/373nU+cnBZzSfs6OD7/MAAAAAAAAsCgML2yV5cpITM72rXZXkdVVVdW17iaqqtid57YyhU0sp53fr/sAMdWG7Xbcke7bOHrvnsmTPvY3nn/iTychod3tr5cw3Nx6/59L+9XDb55KLf2p+16w+Mll9VLL2mOTYi5ILPjO9U98Ldidrj2t9/fX/0FmvLNxlv9l6zj47bky++vLpY40B6K4r/qz79xxbk1zw2eZzLvnF6eNkAQAAAAAAWHIGGbZ78Yznl1RV9cFuL7D32NhLZgy9qNtrAKkPc8IFfwAAIABJREFU2yXJfVfOfv/6f6qfu3pTd/qZj2a72239QX96uPrd85s/ujq58NbkwluS592QPO79+4+tG12ZPO+65Mer6ccZv9r1dlmg2z47/2uEIwG6a3K8d/devTE58onN59x1SfM6AAAAAAAAi9Igw3ZPn/H8r3q4zr57lyTP7OE6sHytPTYZWdm4duBRsnVHyybJhgd2r6d2rW+y5oFBwV65+l3zm9+s5wPt3NJ4fPWR81uT7hldM/9rrvv77vcBsJzturW39z/mec3r/foZAwAAAAAAgK4aSNiulHJ8kiNmDH20h8vNvPeRpZRje7gWLE8jo/UBsAPDdduvrb/P5h/uWktt2/SU+trk9t6vP7l7/tcc/8L25x7x6Mbj43fPf10WrqqSyZ2D7gKAdv4tLqXz+x/z3Ob1+exYOrkr+davJR9/RPKhE/c/PvzA5PMXTR9HDwAAAAAAQF8Mame7s/a+rZJcVVXVTb1aqKqqG5PM3Dri7F6tBcta3VGyl75x//M9W5M7vtR43sbHJms3d7+vVlasr6994cd6v/7nL5rf/NNelTz49e3PX39S4/GpPfNbl+4QtANYHLZ+v7f3X39Ccv6n6+s3fii5/v2t71NVyecuTL7z29NHz26/dv9j29XJDf+cfOapAncAAAAAAAB9MjagdTfOeH5zH9a7OcnJe587OxF6oS5sN9PNH6+vHXVB93qZr1Ubk923N65N7kpGV/dm3a1XJDe32Njz6ZckZTQZW5esOz4ZWTG/NZodWXrvd5ODz5jf/ViY2z4/6A4ASJKr/qr3a2w6Pzn0Ycnd32hcv/xPkuOe3/weWy9Ptnys+Zyp3ckVf5Yc+fjO+gQAAAAAAKBtg9rZ7tAZz2/pw3oz1zikD+vB8tMs1DU1Of32rq/Vz1k9wBxsXdAumQ6k9cpdl7Sec9g5yaFnJRtOnn/QLklWH9Vk/ZoX/+mdbVe2ngNAH1Stp5zwEwtfptnPN3d+tfX1zX52mu+9AAAAAAAAWLBBhe1W9rmHmWus6sN6sPwc8ej62tSu6bc7mpwYvfnp3e2nWyZ39e7e93yreX3zMxe+RrMdB6d6+LHRWC+/ngBo39R48/rIita7zrXj6Gc06WF3sv265tff3uaOqNuuar8nAAAAAAAAOjaosN2OGc831s7qnplr7KidBXRu3bH1tW3XJrtuT657b/2c9Sd1vaW2Hf6o+tonz+vNmndcnHz3bc3nnPvuha9TSpMevrTw+zM/l75p0B0AkCSTO+trIyuSx/5TsvLgha9z6s8na4+rr3/ohOTe7zeuXf/PyZV/0f5a3/jVebUGAAAAAADA/A0qbDfzWNfj+7DezDVu7cN6sPw0O0b28j9OrvrL+voDf6b7/czH6Orm9Z09OO36W29oXn/hnmR1l7LIhz288fhVf9Wd+9Oe8XuSSXlvgEVhoiZst/G85MLbkmOe0511RlYkT/hQ8zn/+aK5Y1WVfOPV81vre29Ppibndw0AAAAAAADzMqiw3b5zjkqS40spJ/dqoVLKA5Oc0GBtoJtWHFRfu+ey5NbPdnZtPxx1fvP65X/c3fWqqeS2/1dfP/KJychY99ab2tO9e9G527846A4A2Gdye+PxY5+frDyku2utaLFD3t1fnzu2/brWR8w2cttn538NAAAAAAAAbRtU2O5bScaTVHvf79LWEQ09b8bzPUm+2cO1YPlafWR9rZpM9mytrx/1pO73Mx8P/Onm9S3/3t31Jncl1UR9vdufj7owY+lioI/Wmv0dAKC/xu9uPL7y0O6vte6E5kfJNtLp94yr/trudgAAAAAAAD00kLBdVVXjSf5fpne2K0n+RyllXbfX2XvP12Q61Fcl+dzetYFe2PzMxuN3fS2588v11216am/6adfaY+qPWk2S3Xd1d72JFkeJnvLy7q532i83Hq8m7HrXT5f9+qA7ACCZPqJ1952Na6sO6/56pSQP/5/N5xz4s8FkzTG3rVz33uRfNid77uvsegAAAAAAAJoa1M52SfK+vW+rJBuTvL0Ha7wtyZGZDvQlyXt7sAawzzE/Mv9rHv6/ktGV3e9lvp7w0frajuu7u9bNTdZ62lea7xLYibXH1teu+ZvurkVjd38zue+KxrW1xw5+d0eA5WRyRzJV8/s3Kw/vzZrHPq95/Yo/n/3+fT+on/uw32t+r123Jd9+S3t9AQAAAAAAMC+DDNu9N8mWvc9LkpeXUl7frZuXUl6b5BXZf1TtrRG2g94aXTP/a1Ye3P0+OjHSx8DfrZ+tr63Z3P31xtbW127+ePfXY66r/qq+trIHuygBUK9uV7ukNzvbteO6981+f+v3G88rY8mGU1rf73stAnkAAAAAAAB0ZGBhu73Hub4u00G7au/bt5RS/r6Ucmin9y2lHFJKeW+St864b5Xk9Y6QhR5rdhRr7TWP7H4fnWj14vpdlyTj93ZnrWqyvtaLsN2GU+trE9u7vx5z/eB/19fu+Vb2b8AKQM+NNzkevpcB6Ic0OU78vitnvz+2rvG8aiLZ9NTu9QQAAAAAAMC8DHJnu1RV9TdJPpTZgbvnJ7milPL2Ukob2zZMK6WcXEp5e5Irkrwg+5MLVZKPVFX17m72DjRw8IPmf81Bp3W/j06taLLL3scfkfzTIcmnnpCM37Owda79u/pa6UHoqtkxvXd8qfvrMT8n/dSgOwBYXnY3C9t1/Ds/rZ38M/W1Pfck3/md6edVlVz2G/Vzx9Ykh5zV3d4AAAAAAABoy0DDdnv9RJKvZXbg7rAkr07y/VLKjaWUD5RS3lpKeU0p5b/tffxKKeW3Sin/XEq5Icnle685/IB7fT3JiwfwcQGtbP7h3oTLOvXIP2s957bPJV98YedrXPu++tppr+r8vq2c9dbG43vuSfbc17t1aW3jeQsPcALQvjv+s/H4ioOTkbHerbv2mOSCz9bXv/X65OaPJdf9QzJVsyH30U+ffvuMbySbn9V8vakmO+kCAAAAAADQkR6+mtSeqqq2lVIuSPLuJD+S6ZBcsn9nus1Jnrv3UWdmWmfm9R9K8pKqqrZ1rWGge1YeMugOZhtd0968Lf8+vStOq6NnG7n+H+prY22u34nRtfW1LZ9IjvvR3q1Nc6Nrkru/PuguAJaPu2r+zV11eO/XPvJx0//uT+5sXL/+H5OdW+qv3/ezSinJEz6SvK/J707defF0oBsAAAAAAICuWQw726WqqvuqqvrRTO9MtzP7d6bb98jesUaPHDC3JNmV5H9UVfUjVVVt7dfHAczThlMH3cFsB82jnx3Xd7bGtqvra738fDS7d7Oe6L31Jw26A4DlZdURjcf78f2wjDQ/Anbb1ck9l9bXZ/6sUsr0bnx1tl83//4AAAAAAABoalGE7fapquqPkhyf5K1J7snsUF1V85g555691x5fVdXv97t/IMkZr21/7nEX9a6PThx0evtzP/aw5NPnJ9e/f35r3HNZfW3zM+d3r/k46kn1tbrddei5Las35C93/7+87syn5jVnPT1vOeNJ+cADzsiesqi+PQMMl7suaTzebBfYbjr5ZfW127/YfGe7435s9vunv6Z+rmPiAQAAAAAAum7RvZpfVdWdVVW9McmmJI9P8sYkH0/y7SQ3J9m997Fl79i/J3lTkickObqqqjdWVXXHIHoHkpz9O0kZbW/uwfMIt/VDKcnpv9L+/Fv/I/nCjyXX/WN78y//3/W1016VrN7Y/trzNbYmWXdC49r3fq9361LrzpVr8oennZdvbPtS7l25JtvHVmXLmoPyqU2n5K9PfMSg2wMYTtuvqz+6+6SX9KeHk16arD22ca2arL/u4f8zOeyc2WMPfn39/K++fN6tAQAAAAAA0NzYoBuoU1XVniRf2PsAlpInfSL5zAWD7qIza4+f/zVXvCM5/sfamNckbLfxMfNfd74OOTPZfu3c8YltvV+bOS459AHZPraqYe1bhx6de1asziF7dvW5K4Ah1ywg36+d7UpJHvKG5Cs/O49rxpJTfr7xvQ57eP1ufTu3JGuO7qxPAAAAAAAA5lh0O9sBQ6CdF3XPfnvv++hEJy9I3/2N1nMmdyVbL6+vr940/3Xna3J3k5pQV7/dsPbgpvUb1xzUp04AlpFm37PX9OF78T6r5/nzRjWRjNT8nlSze91Vs4sfAAAAAAAAHRG2A7rvoAcl609qPuekn+pPL/O16cnJSOPdxmrt2Zrc8MGkqurnTOxofo8jzp3fmp3Y+Nj62uTO3q+/nB0+9893fKT5cctVKb3qBmD5avb9bvOz+tfHpvPnN3/9A+trD/jh+tp9V85vHQAAAAAAAJoStgO6r5Tk8R+q363tEf87WX1Ef3tq18qDk8f/y/yPkvv8hcmlb6ivT2yvr537nvrdarrpuOfX1yaE7XqqQbBuvMWfeRVhO4CuqwvbrdqYHHx6//oYW5cc8tD25z+kyc8YD/yZ+tp3f7v9NQAAAAAAAGipD+kOYFk65CHJ865P7vxactclyR1fSg59aHLKK5IV6wfdXXObn5786B3TPU/cl3zuee1d9923JQ/678mqw+fWbvts/XVHPbGTLudvbE19bcoxsj3VYGfDVjvbTfWqF4DlrC5sd8rP9bePZHonvXsubW/uygY/W+wzMpqc/LLkyr+YW9t12/TOu3ZLBQAAAAAA6AphO6B3RlYkGx89/TjtFwbdzfyMrZk+4m1yHiG0aiq5/T+TY549t3bfFfXXrTh4/v11YmR1fc3Odr01ftfcIcfIAvRf3fe70SaB9F5Zecg85rb4WWH1UfW1nVuStZvbXwsAAAAAAIBajpEFaGZ0dbJmHi9QT9zXeLyarL+m1Qvo3WJnu8GY3JVsv37OcMuwXa/6AVjO6na2G0TY7qjz25s3ti45/FHN52x8XH1tYlv7PQEAAAAAANCUsB1AK0/4cPtzG4SqktTvpLNiHrvaLFSzIMH43f3rY7nZdnUaRefGR5pvLmtnO4AeuPfbjcebBdJ75bCHJ6e22Pm3jCSP+NPp8H/Te51TX7v9C/PvDQAAAAAAgIYcIwvQymEPT553Q/KN1yQ3/1uy6anJDf/UeO63Xpc8+LVzx+t20tn05O712UoZm37RvpqaW/v+H/e3l+Wk5gjh1jvbCdsB9M0gdrYrJXn4nyTHPC+59bNzd8ddvSnZ/PTk0LNb36tZ/1/+6eSB/3VBrQIAAAAAADBN2A6gHWuPSc573/73/+2s5J5L279+MRxbV0pSViTV7rm1bVf3r4/lZvt1DYfHRx0jC9BXe2qOek+mA+mDUEqy6YLpx0K02vlux43TP8sAAAAAAACwII6RBejEnq2Nx8fWNx6f3FEzf213+mnXVIOgXVLfNws3sW3O0GRKJkvzb8FTjpEF6K7xe+pra47uXx+9UEaSDafU13ff2b9eAAAAAAAAhpiwHUAnTvulxuMT25Lxu+eO1+2m0+9j6zY/s/H4tqv628dyMjF3V8NWR8gmjpEF6Lq64HuSbDi5f330ypm/UV+baPKxAwAAAAAA0DZhO4BOHPaI+toX/8vcsS0fbzy332G7Y57beHz8rv72sZxc+7dzhtoK28naAXTX5X9SX+v39+NeOP6F9bVr/qZ/fQAAAAAAAAwxYTuATow1eVF+y78ne+YeHdpQv1/cb7be9hv618dy0uDoPjvbAQzAzR+rrw1D2K6UZHR149pt/9HfXgAAAAAAAIaUsB1AJ9a3OG5u1y2z3x9b13je7tu600+7mvW94/r+9bGcHHLmnKHdo2MtL6t60QvAcja6skltCMJ2STK5q/H4ikP72wcAAAAAAMCQErYD6MTKg5Ojzq+vT+zY/7yqkontjecd9aTu9tXKET9UX5vc2b8+lpM9984dausY2QN2tqumutURwPK09fLG4+uOn94VbhisO7Hx+J0X+z4CAAAAAADQBcJ2AJ167Pvra9//g/3Pp8br560+qnv9tKM0+Wd/QtiuJ+797pyhdo6RnTrwGNm63YoAaG3nlvraWb/Tvz567Yz/UV/7RpMaAAAAAAAAbRm6sF0p5eGllItKKc8upbQ45xFgAVYeUl+75m/2P9/e5HjWQRxbt+rwxuN2tuu+8XsaDu9ua2e7Awa2XdWFhgCWqRv/pb5Wd9T7UtTs54or/0KwHgAAAAAAYIEWbdiulLK6lHLSjEfTZEIp5TmllGuTfCXJPyT5lySXl1K+UEo5ow8tA8tNs13iZtp5U31tzdHd6WU+6l6It3Na9937vYbD7exsVx24s92OJl9HADR3zd/W10ZW9q+PXlt7TH1t4r7kviv61wsAAAAAAMAQGht0A028Oslv7n1+Y5IT6iaWUn4syXuTlL2PmR6T5MullCdWVXVJD/oEaOy9JTn83GRqd/2cxRS2237N9Nvxu5Mr/iy565Lk0IclJ788WX1E//obJlONA4x7Rlp/+50Tthu/qxsdASxP93y7vtb8d3qWlo2PTVYclOzZ2rh++R8l576rvz0BAAAAAAAMkUW7s12S52V/cO6vqqqqGk0qpRya5J3Z/7HMnFftfaxL8oFSyuoe9QrQ2J0XJ3d/Y9BdzDZa80/hZW9Otl6efPr85Fu/ltzwgeTSNyafflKyW9CrIzVhh46Okb33O11oCGAZ2rN1ele3Ou3uVLsUjK5Kzv9Uff3qd08/AAAAAAAA6MiifGWplLImydnZH5z7aJPpr0xy8N65JcnNSf5Xkj9Kcn32B/aOSfKLvegXoCOD2NUuqd/ZLkk+9yPJ3d+cPXbvt5Pr/7G3PQ2rLZ9oODy+Yn3LS+fsbHe1nYgAOnLDB1tMODDdvMQd/shk05Pr6xf/VP96AQAAAAAAGDKLMmyX5Mwko5l+5Wt7VVVfbzL3xdkftLs8yUOqqvqlqqpevfc+X907ryR5ac86BpanQ87s/NqVh3avj3mte1h9bev3Go9//dW96WXYrdjQcHi8Gm956dSB2Y9DzupCQwDL0O1fHHQH/bfh1Ob13Xf2pw8AAAAAAIAhMzboBmqcuPdtleS7dZNKKQ9KcnL2Hxf7pqqq7t1Xr6pqWynllUku3jt0Winl2KqqbuhN28Cy84h3JJ96XGfXbnpKd3tpe90nJ1s+Pr9rJnf0ppdhV001HB5v5xjZA3damtzVjY4Alp+7vtp6zrA55nnJFe+or3/r15K1xyalJBlp8bbsPWq3nbcNrq+bW3efbq5d10u792t37Vm9AwAAAAAAw2yxhu2OmvF8S5N5+xIuJcl9SeacEVVV1VdKKTdm+hjZJHloEmE7oDs2ntf5tQ9+fff6mI+Tfzb5xq8MZu3lZuvlDYfH125ueemcsN2Bx/sC0No1f7s8//3cdEHz+pXv7E8fy1Kr4N8ggoMLCBA2DEEu5TBkN8KlbXwM7X4svfja6PjPZ99bAAAAAACaWaxhu7Uznt/XZN6+lEuV5NNVVU3UzPt29oftjltgbwD7lZKc+ebksjfP77ojHp2sPrIXHbW2Yn1y1lund7Wht276cMPh8ZUHJZlseml14Gude+7pTk8Ay8XURPKlnxx0F4NRRgbdwTJWJVWVZGr6v1JhqVmMQcyFBhIXtMPmIglDzvfPpR9/PvMN/fb8a0NYFAAAAID+WKxhu5n/h2xFk3mPmfH8803m3Tnj+UEddQRQZ+0xreccaPVRref00uja1nPomfE2Xgeas7NdMn0srQAFQHvu+NKgOwBYeqqpvW+b/2IILE49DmJ2uitl13fYnMfHNNAwZJc/lnmFS7v8sfTq8zlrPgAAALBULNaw3czd7BomUkopm5KcPGPoP5vcb+bH6f9eAN21+Znzv2Yhx892w+iawa6/HFRVUkYbvlA5XlpvdTNnZ7skmdyVjAlKArRl2zWD7mCwNpya3PeDQXcBAH1U7f/vL7uLsuS0Cv51KUA43+BguztsDnIH1Hl9TB18LIsxKNvTHWXne799bwEAAJaPxRq2u2nv25LkzJo5M9Mtu5N8vcn9DpnxfPsC+gKYa83RyYkvSa55T3vz15+cnPDi3vbUyuGPGuz6y8HUntodQcbXHJVMbml+eaNs+MQOYTuAdu24YdAdDNZj35987KxBdwEAQFscRc8StxiDmI6ib39uP/98OgqX9vJrQ1gUAID5W6xhu0tnPD+slPK0qqr+/YA5P7X3bZXkK1VV7Wlyv5NmPL+lGw0CzHLuu5JDH5Z8/Zdnjx/28GRs/fTzkZXJEY9OTnl5smZT/3ucqZOd7e79XnLw6d3vZVjtqv92M15GWl7e8BjZq/4iefDrF9IVwPJx6RsG3cFgHfrQ5Bnfmh24G12bHHZOpl/Mndr7gu7e5+28nXVd3dt53K/VfQAAgKXBUfQsaT0OYna6K+Vi3mGzb2HIJR6U7dXnc9Z8AGAQFmXYrqqqq0opV2T6mNiS5B2llCdXVXVNkpRSXp1k5hmMH6q7VyllfWYfN3tVD1oGlrtSkgf90vRjKRjrIGx300eE7eZjyydqS+P5/+zdd5xkVZn/8e+pzmF6ch4mAkPOSJYM4ioIKiAmzO4aWVdXXVcU/RlWMaBiREURQQyYkBwEhjggzMBEYHLOMz2d6/z+qO7p6up7Tt1bdau7wuftq19ddc655zxdXV09Uk8/T/b/8BjYRnbNX0m2A4AwOraFX1vO/2Fy9BHSFSWctGYDEv2yJe/FmjgYJYEw4LpsZ2d+jvPsuJIhoz6eeX8tEb6mqM+NbN+XuL8/AAAAAEqEFa3oUbqyJf7FlAwZNXGwIBU2SzEZssgSZWlFDwCxKcpku14/k/R1pf5pO0vSYmPMc5ImSNqvd9xIapd0k2efM3rXSVK3pBcKFC8AlI6GqdGvqfR2fFF173ZOdSqZ9fLAynb8dTAAhNO2Lvxay39JL1rGSKZquKMAcrMvGW8YkyFDJQzGlAwZNXkx1wqbsT+eMXwtxZgom+1ryroPAAAAgNKQ/v8BhjsWIAexJGLGnTiY575DVmGzgMmQsSbKxvS15JRcGvPjaKp61wPFnWz3XaVaxc5V6p8HNZKOlfZlH/T+10F9y1q72bPPxWnrn7PWdhQmXAAoIYlqqWWutGtJ+GuWfl/a+pR05FekSWcVLrZy0b3XOdXp7XyeYoP+oqenNZ+IAKBybLh3uCMAUOn2/Qc9SSJpFCVmQLJokSRDDnlyaYivIVKFzQhnh/oahisRM+LXEulriuu5xrvMAAAAQMno+4Mvik2gFJz+d2nqa4c7ChSJok22s9Z2GmPOl3SnpL6+hUap/2LS+1+t9QdJV7v26G0h+0b1/1eW+woWMACUmmO/Jz1wXrRrtj4hPfha6fwnpNFHFiaucvH854LHx5+mzhB534H1JHa+mFdIAFARdi6Wnrkq/HraFQAAMNCAZFGgBJV6MuSQVdiMkigbcb+oiZhD+bVEfW6E/Zri+v4AAAAAKE68l4A0RZtsJ0nW2tXGmKMkvVvShZJm9E4tlnSztfaPWba4UlJL2v2/xx4kAJSq6qbcrkt2SCtvIdnOx9OS0NaMUGeyPfsWrne2kj1SguooAOC06tbhjgAAAADDiVb0KGWDkvGKIBmSVvTh9i2HRNm8vz8AAADljBay6FfUyXaSZK3tkvTj3o+obpD067S9dsYVFwCUvKbpuV/74teko74aXyzlpsfdQranp0NJ1WTdwrr+OKJzq1Q/IcfAAKACRK0COvqYwsQBAAAAAFHtqy7KG3koQbSiD/c1Ra2wWRaJmDl+LaG+Lzk+N2hFDwCIisp2SFP0yXb5sNa2SWob7jgAoCg1ThvuCMpXt/tXT+eU8yTNy7qFs7JdD7/WAMBr3R3h105+jVQ7snCxAAAAAABQKWhFj1JXrq3oIyWXxpzYGenxzCERM7ZE2bi/lghfk/e5FeFrAVB4/EEM0pR1sh0AAMOie5dzqnPy2dLGEMl2rr+O8CTyAUDFW/MXqXtPuLUTXi2d/JvCxgMAAAAAAIDSQCt6lLJcWtEXOhmykFUp86qwGXMiZlm2oh/q70+p4C8K0I9kOwAA4rb+HudUZ8i/enD+HRKV7QDA7cWvu+dmXymd8HOpfaMkKzVMHqqoAAAAAAAAAKBwaEWPUjagFX2RJEMGzY06bGgfFxS1kky2M8ZMkzRb0hhJIyQZa+2vhjcqAChBM66QVt483FGUn/aNzqnO6rpQWyRdfx3RvimXiACg/FkrbX3cPT/muNR/dGqYNHQxAQAAAAAAAAAAtwGt6KkwitJQMsl2xpgZkq6SdKGkGQFLBiXbGWNOk3Rm793t1trvFS5CAChB09+Ue7Ld9uek0UfGG0+5SHYNGuoyCb3QMkH3bw3XstC6KhHvWS7p/NxjA4Bylezwl5yfdN7QxQIAAAAAAAAAAICyVPTJdsaYhKQvSfqkUmmsQekHrm57WyR9oW/eGHOHtfalAoQJAKVp6oW5X/uPo6RTbpFmXBZfPOVi1+IBdzsSVfrRnBO0pGW81PZCqC2sq7Ld8h9LB34o3wgBoPzsecU9N/NtUssBQxcLAAAAAAAAAAAAylJRN+02xtRIulPSpxWcGOhKsktNWrtI0gPqT9C7ItYAAaDUJaqkA/JI3Hryg4FV3Cre6t8PuPvUmGmpRLsIrHEk2+1YkGtUAFDeFnzBPXfoZ4csDAAAAAAAAAAAAJSvok62k3SDpHN6b1ulkuYelnSNpM8puMpdpj+k3aZ3FABkGnV47td27ZC2PRtfLOXCVA24u3hEtEQ7KUs2+d61kfcDgLK39Un3XHXz0MUBAAAAAAAAAACAslW0yXbGmLMlvU39SXYvSXqVtfZ0a+0XJP0m5FZ/79tS0vHGmPq4YwWAkjbjskHJYZF07YgvlnKRkdSxt7om8hbONrKS1MljDgCSpGSPtPVpaccL/kqrjdOGLiYAAAAAAAAAAACUraJNtpN0de9nI2mlpJOttU9H3cRau1JSX1ZCjaSD4gkPAMpE7aj82uv98yKppzO+eMpB184BdzsT0ZMZk642spK0/q7I+wG0xh1nAAAgAElEQVRA2dm9XPrrHOmu46U7DpPaHFU/p10s+V5TAQAAAAAAAAAAgJCKMtnOGDNG0slKVbWzkj5mrd2Sx5Yvpt0+MJ/YAKAsHf5F6bQ/SdPfLFU1RLu2p11a/M3CxFWKkj2DhnJJtvO2kX32E6nHHQAq2cNvlFpXZl83592FjwUAAAAAAAAAAAAVoSiT7SSdqlRsRtJma+1f8twvPVFvQp57AUD5MUba7w3Sqb+TLtsb/fo1f40/plK1e+mgoc5EdeDSyyd+UKeMPDdwzmarwrTpn5FDA4Cysfslacfz4dZGTSIHAAAAAAAAAAAAHIo12W5y72crKXLr2AC70243x7AfAJS3w6+Jtn7X4sLEUYo6tg4aclW2qzV1Mo5fxd7KdpLUtj5iYBH0tEtde6TutsBKfQAw7KIkHI86onBxAAAAAAAAAAAAoKIUa7LdmLTb22PYL72cRVcM+wFAeZv5FqlmVPj1XTukvx0krf5T4WIqFT2DKwN2uZLtEnUyjgp2Vlkq2wWck7e2jdLNRrq1QbpthPS7RumWaumJ90vJ7vjPA4ChUD9+uCMAAAAAAAAAAABAmSjWZLtdabdHxLDfxLTb22LYDwDK24j9pXMekKZdLDXNkiZfIE06x3/NriXSI2+WNj82NDEWqz0vDxpyV7arVcJV2S5bG9mFX44cmpe10p8mBc+99FPp2U/Gex4A5CPba2Sfo68tbBwAAAAAAAAAAACoKMWabLc57fYB+WxkjKmSdHTaUAH77gFAGRl9lPTqP0oXvSydeYd01j3SGXf6r7E90srfDk18xWrTQwPuJpWlsp2jgl2y78bYE4PPaVuXW3wuO1/0zy//ES1lARSRkMl2NS2FDQMAAAAAAAAAAAAVpViT7Rb0fjaS5hpjpuWx1wWSGntvW0mP5xMYAFS05tnZ1+xaUvg4ilnjwF9ZrkQ7Sao1njayfeOdjoKsibqcwnNa/hP/fE+71L4x3jMBoNCaZw13BAAAAAAAAAAAACgj1cMdQBBr7SJjzFpJU5VKuPuEpKui7mOMSUj6bN+2kp6z1u6ILVAAqDQtIYqN9rQVPg6fjQ9Kj18pta7sH5vyWmnmW6WZVxT+/K49A+66WshKfZXtHG1k+25MPl/avXTwgmSHZJOSySNvvnNHqh3tpoekbU9nX7/9WalxSu7nlbuND0gPvEZKdvaPjTpcmniWtPWpVLLqgR+SxjmqFQKI3/jThjsCAAAAAAAAAAAAlJFirWwnSb/p/WwkfdgYc24Oe3xFUvo72j/NOyoAqHSHftY/v/nhoYkjyIZ7pfvOHJhoJ0nr7pDmvVVacl3hY1j+owF3vcl2xt1G1vaNz3iL+6z2ze65bHo6pPvPkRZfGy7RTpIeep20Z0XuZ5azDfdK9501MNFOknYskJZ8V9oyT1pxk3Tf2dIWiuwC+QvRRnbaG6Sq2sKHAgAAAAAAAAAAgIpRzMl2/ydpl1LFfaok/dkY8/4wFxpjxhljfinpk+ovDrRB0s8LECcAVJbmOdnXJLsLH0eQbMl0i76RqgZXKG2D26z6ku1qEp5ku742stUN7vPW/DFSeANsfEDaNj/6df/6VO5nlrPF3w23rmevtOyHhY0FQMroo4c7AgAAAAAAAAAAAJSZok22s9Zuk/RRpcpWWEn1kn5ojFlmjPmqpAvT1xtjXmWMebsx5teSXpL09t5rjaQeSe+y1maUmwEARFY/IfuaPS8VPo4g6+/yz+9dI7WtK9z5K349aKgrS2W7hKMN7L42snWex3vXkgjBZdj6ZG7Xrbot9zPL2aYHw6995VcFCwOoGCZEZbv68YWPAwAAAAAAAAAAABWlergD8LHW/soYs7+kzymVd2AkzZGUWVbHSHos475Nu+Yz1tq7Cx8xAFSACWdIiTop2eFe091amLO3PJ5qCVs7JtUesHnmwPnMFp5BOrZJjdMKEp5aVw8a8raRTdQ6K9sl+xJJGqe4z+vxfA+y6dmb+7UYrHvPcEcAVJgQyXaTzy98GAAAAAAAAAAAAKgoRVvZro+19vOS3iWpvW+o93N6Ql1fUp1JW2MkdUp6p7X2m0MWMACUu5pm6dRb/WvmvS3+dq3LfyLdfZK08EvSM1dJdx4jbXs2bf5n4fbZ8Xy8cWXhSrarUrWqTLWM41exTU8kGX1U8Oab/5l7YLm0kO3TviX3a8tR24bhjgBAkObZwx0BAAAAAAAAAAAAykzRJ9tJkrX2RkkHS7peqaS7vgwEo4FJdn1jSUm/knSwtXZwTz8AQH6mXSRdstk9v2uRtO2Z+M7raZfmf2zgWOd26bnP9s53SE9/ONxez38uvrhC6EgEF5GtTdRKkoyjFaJNvzP2hODNd76Ye2Ab7nXPjTjAf+1LP8393HK0+NvDHQGATA2ThzsCAAAAAAAAAAAAlKGibiObzlq7StKHjTGfknRq78d+ksZKqpW0RdJGSfMk3Wet3TFcsQJARagfJ9WMlLp2Bs9vfEAae1w8Z63+YyrhLtP6O1Oftz3tb2ubztTEE1OQgMQ6V2W7WlOXCsfRCtEaI1U3997xVAm0ScnEmDu/35uk026Tbva0aNz4gHToZ+I7s9RtenC4IwCQyfYMdwQAAAAAAAAAAAAoQyWTbNfHWrtX0t29HwCA4TThdGntX4Ln/vUpac3t0kFXSdMulhxJZ6HsWOCf79oVfq/2jbnHkU3duEFDXa5ku0Qq2S7hbCMr6djvpu7UT3Sf2dMhVTdEiTIlURecoFhVn/o8533uCnauBMtK1d0a/ZotT0pjj5cclQ0BZJPlZyfg9RgAAAAAAAAAAADIV0m0kQUAFKnDr/bPb5knPfJm6ZZqqX1L4eLwtUTN1L1bWv6TwsTRvWfQkKuyXU1fZTtXG9makdL0S1N3pl3oPrOnLVqMUqoanqsS4Iy3pD4f9VX39VuflHo6o59bjnrapZ0vRL/u7hOk34+Wkl3xxwRAOuzzwx0BAAAAAAAAAAAAyhDJdgCA3I05Rhp1ZLi1f55emBiS3dLib0W75skPSLuWxB/Lsh8NGnK2kU3428gmRx4i1fS2ka1pcZ/Z10o3ii2Pu+fqxvR+Hisd9TX3uqXfj35uOVr0zdyv7dqZ3/VAJctWFXLUEUMTBwAAAAAAAAAAACoKyXYAgPyMOizculwqsO3jSarY+kRuW677R27X+dSMGDSUPdnO0UY2PZGkqtF95ob7wsfXZ90d7rmqtJa0DVNz26OS5Ps4PPfZeOIAKk6W/xtTlUN7bQAAAAAAAAAAACCL6uEOIApjTI2kkySdJmmOpDGSRkiStfbsYQwNACrXmGOlFb8JtzbZIyWqUq0ze9oDk9MC+SoYtW0It0emvWtyu86ncZrUunLAkDPZzvgr21nZtH09SW+2O1qMktS1yz3XMrf/9phj3et2vRj93OHUtUvqCGhlnOySqkdIjVNy2zfX51+6vWtSiY3ZKnUB6FdV556rGy817jd0sQAAAAAAAAAAAKBilESynTGmSdJVkj4saXzmtJSekTDgurdI+n+9d7dJOt5aG7gWAJCj6ZdKz/xnuLWbHpRW/0l65cZUpbsJp0sn3yw1TMz9/Mff5Z5rmCy1rQ+eW3yt1L1HOu77UiKmX4cBSWzuyna1kiRjHJXtbLL/jmONJGnnC+Hj69O9xz1XVd9/u+Ug97q29dLNRjr/KWnscdFjGCptG6V5b5U2PSClP6ZBzn5Qmnh6+L3X/FlqfSWv8CRJt++XStQ8+pvSjMvy3w+oBJseds/N/WgqsRsAAAAAAAAAAACIWdG3kTXGHCFpvqQvSpogby/BQf4qaaykmZKOlnRu3PEBQMXzVV3LdP850rIfpJK9bI+08X7poX/L7/zu3e65i1b5r13+Y+lfn87v/HQ7Fgwa6nQk8vVVtkuEqWwnSXM/HnzmtvlSMmJ1u5d/ETw++8qB942RXvUT/153HS+1B1SMKxYPXyxtvC97op0k3XeG1JrlOdNn+7+kh9/knj/5t9JJvw63l5SqbjfvCmnL4+GvASrV3rXSkm+75w/9n6GLBQAAAAAAAAAAABWlqJPtjDGHSHpI0gEaWMHOKETSnbV2j6Tb0obeGHeMAIA8bZsv7X4p/n1bDk5VrJv1Tv+6lbdIcRQ9dSRzdTmqK9UksrWRzdivutF99uZHs8cXRlXT4LHaMdmvW3dHPOfHbeciactj0a5Z85dw61b9wd/Ct3akNOtt0nE/CH+2TUorfxd+PVCp1v7VPVc3npbMAAAAAAAAAAAAKJiiTbYzxtRL+pukkWnDCyS9R9JsSQcrXJW7P6fdPju2AAEA/ea8J7/rX/5lLGEM0Lkt9XnE/v51bWulZEf+5wW0kJU8bWR7K9u52sgmMxMAmz1fx54IyYrJLvdcT+vgsWyPnyQ9+4nw5w+lHc9Hv2ZtyGS7Pcv9833fr5YDo50f5XsJVKrdnp+/5jlDFwcAAAAAAAAAAAAqTtEm20n6qFLtX/uyDa6TdIy19hfW2hWS2kPu80DvHkbSLGPMhJjjBAAckmcrVtuTZUEOVYqmvDb1eb8QRU07d0bfP1NPW/DWrmS7rJXtMpLtpnra7ToS/QI54pQkTQk4Y9QR2ffsKNI2shvuzeGae6T2zdnXbX3KPTfmOKnlgNTtCadLjdPCn+/7/gBI2bXYPTfj8qGLAwAAAAAAAAAAABWnmJPtPqL+RLvbrbUft9bRo8+jt5XsirShg2OIreQYY2qMMWcYY95hjPlvY8yHjDEXG2NmDndsAMrAiP2lU24p4AE5JNvt/4HU55EHS+NP9a99+OLo+2eKmmxnIraRrffkij9zVfb4+qy6zT3XEvAr0hjpjBBtYvesCB/DUGjfJL30s9yuve8MqXuve37Py/4KdGf8vf92okY65yFp7Inhzt5wT7h1QKVq3yyt+7t7fu5Hhy4WAAAAAAAAAAAAVJyiTLYzxhwiaar6sys+meeW6e+Iz85zr1gYY2YbYy4zxnzDGPOgMWaXMcamfayI6ZzxxpjrJW1QqsrfjZK+Jun7kv4o6RVjzKPGmBClnwDAY8Zl0hVWuniddNHK8MlFUiqhK241aV3Ip17oX7vlMWnvmvzO2/Zs4HDWynaONrKDKttJ0riT3Oe3rffH12fRN91z1Q3B480hfnWu/G2484fK6j+652rH+K/d+aK04T73/LIfuecOu3pwYmTzbOn8x/xnAghnzZ/dc3PeW5jfJwAAAAAAAAAAAECvoky2k3RU72craaG19uU899uRdnukc1WB9VaWu8sYs1WpBMBbJP2XpNMljSjAeRdIWijp3yX5MgtOlvR7Y8xNxpimuOMAUGEaJktN0/2JYUMSx8S025Oyr9/2TH7n9QRXQstW2S7hqmxnA5Lt6j1fhyPZb5D2Te65unGO8fHZ9902P9z5Q8X3/TzgP7Jfv91z/aJvuOdcj6EkHfW17Oc6ki8B9PL9bPpeIwEAAAAAAAAAAIAYFOs7uunv6i+LYb+OtNuNMeyXq6MknSd/4lssjDFnSLpdUnp5HStpvqTbJN0jaUvGZW+V9FvjKrMEAFFM/bfwa1/4ihSUXJarCWdItaP77086TzLBSW/75J1s1x443JWtsp3jV/GgNrKSNPV1nvOD29gOXhccpySppiV4vG6MNO5k/76r/yBtuDdcDEPBkfwoSZr7sRDXh3w8M/m+R3Pem/16m5SSXbmdDfTp3CktvV6a93bpkcukRy5Pvc7uyffvV4qAr8XzlNcOXRwAAAAAAAAAAACoSMWaVFWfdrvDuSq89Gp2u2PYL24dGtjqNi/GmGlKtYitTRt+VNKh1trjrLWXWmvPkzRN0sckpb+r/3pJX44rFgAVbOJZ0dbfdXw855pq6cRfDBxrmCidcov/uoVflDbPy/3ctg2Bw52J6sDxvsp2xtHyMBnURnbWO93nPxui47q17iS0E27wX3vyTdn3v/9cacl12dcNhRW/CR6vGyfVj5NetzjL9Tm2xW2e6Z6rGysd853se3TuzO1sQJI6t0v3nSU9/SFpxU3Sqt9Jq26Vnvsf6a4TpB0LhjvC/Lxyo3tu/DBXVAUAAAAAAAAAAEDZK9Zku/SKa55+bKHNTru9NYb98tEl6V+SfibpA5KOVaqFbIhyN6F9UVJaSSfNk3SOtXZR+iJrbYe19jpJl2Zc/5/GmBkxxgOgEhkjNe8ffv22+c6EtVDmflw69xHpsrbghKfpb5LetGPweLoFV+d+fkACiJWnjey+ynauNrIBle0SVVLz7MHjktT6itSeWbA0g6/aW8tc/7XNs6TLO6VJ5/rXzf+Y1BNHnnwefM+jvoTFlrnSZR1S7/dhkL2r4q222Oegj0lv2iZNv8y9Zu2f4z8XleOVm9ytVju2SC98dWjjiVPQ62KfMBUrAQAAAAAAAAAAgDwVa7Jd37vkRtLR+WxkjBkr6eC0oeX57JenGyW1WGuPtta+z1r7E2vtM9ba2PrFGWMOkJRe+qhT0pXWWmffQGvt7b2x9amTlEfGCQD0ap4Vbf3SHwSPO6q/7TP2BOnYb0vjT5EcleQkSbUjU2tdNj2Ue4JVQLJajzFKOmLfV9nO2UbWEUfNyOBxSdryqD/GHQvdc9XN/mslKVEjTbso+7r1d2ZfU0ibH3bPpT9+VbXSrHe417aujC+mdLWjpWOudc/n29IYlW3TQ1nm/zk0cRTCbs8/4xO17jkAAAAAAAAAAAAgJsWabDdPUl/pirHGmIi9CAd4t7SvbFCrpKfzCSwf1trtvqS3mFwhKb2M0h+ttctCXPf1jPuXGmPqA1cCQFhT/i3a+vV3OSayJNtVNYQ/Y+KZ7rlkl5TsDL/XAIN/pbqq2kkhKtu5ku188Xdl6ZTe0+aeG3mo/9ow5/fZtSTcXoXiexwmZfyTYuyr3Gv3BCT2JHtyiylT41T3nO2O5wxUpvaN+c0Xs27Pz/b4U4cuDgAAAAAAAAAAAFSsoky2s9Zul/RU2tCXjMlW1mgwY8xUSZ9WqpOflXSPDezLV1Yuzrj/izAX9baYfSJtqEnSeXEFBaBCzb5SGndS+PXbnpK6Pa1OXaIk22VrNdi1K/r5ktS6YtBQp6fKXl+yXcLx68356+qgT7hj2LvKPSf5H1tfRcB0LQdnfwz3rg23V6FsuNc9l/l8nPV299plPxo81rHJvf7k3/rjylQ/MXh819Jo+wB99rwibX7Ev8Z2S61ZXiuKle+1ZTL/bAUAAAAAAAAAAEDhFWWyXa/vpt0+UVLAO95uxpiJkv4iabT6SyJ9K57QipMxZpKkI9OGuiVl6Sk4wIMZ9y/INyYAFa52pHTm3dLJv5FGHRHumkWe9pou1RGS7RomSefOc88v/X708yVp5+AWrb7KdjUm1fIwchvZxilSw5Tguef+xx/jlsccwYzyX5fOGOmYb/vXLL0u/H5xs1Za6Uh6G3WkZDIe76o6aczxwetX/0FKZlSZ8z3GIw8JH6ckTcvMj++16cFo+wB9nvr3cOue/VRh4yiUf/23Y8JIVRRkBgAAAAAAAAAAQOEVbbKdtfYWSf/qvWskvdcY87Ax5jTfdcaYJmPMB3uvPUr9Ve3uttZGSTwrRYdl3H/eWtsa4frM7JOQPQUBwKOmWZp5hfTa56QrrHRJlhaGrkQpn90vRVvva+EZY6JTPm1kk65kO0mqn5RbQG3rgseraqPtE6bYrPXEX0gBSY/7VDcGj/uS5LY+OfD+xvuj7++S8DzucbWrReXo6ZA2PhBu7apbpZ5cW2YPoz2O13oS7QAAAAAAAAAAADBEQvaMGzZvkvS4pLG990+R9KAxZoOk5ekLjTE/lHSgpJMk1SmVoGd7P6+V5OkTVzYyswWWB65yy3wHM2KJHgAIoX6Cf37Xouh77ngu2vrGae45m0OSk7WpimkZrV+7fMl2pjfZLrPSWt+W8nQ9d7W6zZZwUuuoYNfuaY2aq2TH8CTAtG92z409IXh8/KnSKzcGz3VsGXi/p8O9f9Msf2yZfEmOPW1Sojnafqg83W2pJNqaEZKMlIyQQLfsemm/N6ZeF2pGFCzEWFU3S53bB4/3tOW1rbVWm7s2qCMZvE9jVZPGVE+QCZNoDAAAAAAAAAAAgLJW1Ml21tqXjTGvk/QnSZPVnzw3WVJ6WR8j6f1pt5W2do2k11lrM94tL0v7Z9xfFfH6lRn3xxpjRltrA97VBIA8zLhCWnmze/7pj0jHfEfal6yWJcGheXa0800i1Yo1qNLb5hyKoCa7BiXaSWHbyAZ/bdZXGW7uR6X5Hx083tPem/jneLxcCSl149xnuZz8G2neW93zHVv8SY2F4ku62f99weMzLpeedMx1ZxSIde0/9sS052tI0y6RFn0zeK6nLVUVEpXLJqW2DdLe1dLeVVJr78feVamx1lVShye5NJtnrkp9SNL0N0sn/ar4K8QFJdpJ0gEfynnLJXsX6Mb139GO7q3edeNqJuo9Uz6pGfWZ/9wGAAAAAAAAAABAJSnqZDtJstY+aYw5RtLPJV3QN5zxecAlSmVlGEn3SHqntXZDwQMtDpkliyKVKrLW7jHGtEtKf6d1pKS8k+2MMRMkjY942Zx8zwVQpI77nj/Zbun3U8lwh34mdT9bNaGmGdFjOOQz0vyPBM+1bZAaIrRq7QxO0thc1xQ4Xmvq9lVIcibb+SrbjTnOPbf+TmnKBcFzy34YPD7Zsd5n5hXSriXSwmuC5x97p3T2fdH3zdeS69xzrnaxNc1SVaPUs3fw3ItflWa+pf++K9nu8M+Hj7FPvefXYts6/zxKX9fuwclzffdbV0lta1KJvENh1W1S7WjpVT8emvNy0bbePTf9jTltuaNrq65f8yV12ewVAbd0bdR3V39eX5lzg+oTDTmdBwAAAAAAAAAAgNJX9Ml2kmSt3Sjp34wxx0r6mKSzlapuF2SnpPskfc9a+9AQhVgsMkvg5NJTq00Dk+3i6iv2H5KujmkvAKUuTPWkVbf1J9tlUz8x3hjW/V2a857we62/J3B4ZWNw29baRN2+2wlnG1lPZTtf7CtvcSfbuVTnmDgy573uZLuN96cShRI1ue2dq82PBI83TPFf17RfKnkw044F/beTPe42nVWN4eIbcI3ncV9/tzT6yOh7ojgku1MJk+nJc3tXSa1pVeq6dgx3lAOt/oN0/A9TlT+L0Zo/u+d8P0seC1qfDpVo16c9uVeLWp/V0SNOzuk8AAAAAAAAAAAAlL6SSLbrY62dL+kdkmSMmS1pP0ljJdVK2iJpo6QXrA3o5VcZMpPt2nPYo03SaM+eAJC/MIkRrSvC73fwJ6PH0HKQe25PhLMlZ9JMc3dwEseenl37bufURtbXNrfD0zW9ZW5wQlnQWBjZqv91bJMackiEzEfDFGnP8sHjQS2D07U6Oq83pOX2+1rU5pLs40sStd3R98PQsDbVzjQzeS79c9u6wNbSRa1jq9S1M1Xhrhj5foabc2vturUrUhFoSdKWHK4BAAAAAAAAAABA+SjKZDtjzAhJs9KGXrLWtqavsda+LOnlIQ2s9HgyNWK9BgCiMUY67H+lhV9yr+mM0MF69NHRYxh3kntuxW+kIz2xZXIkYXUlsleIciXbJX1tZGtHuud8j5srqW7C6e5rfBI10uTzpfV3Bc8HtWUtpKc+HJxoJ0kTz/ZfO+3i4NbG6a0rfcl2uVQHTHj+Gda9J/p+KKyVt0pLvydte8b/XCg2Iw5MJW/uCfHP5t+PkSaeKR3/I6nlwMLHFkXbBvdc/bictuxMdkS+piuHawAAAAAAAAAAAFA+irRPlN4i6dnejycl1fmXo1fmO/O59NTKvCaud/uvl3RYxI+LYjobQDE6/AvS/h/wr1n+sxAbmVTyXlSJKnfCXesr0tq/hd9r1W2Bw52NwR3Pj0lrQWhyaSMrSYd+Nnh8y2PB475ElZaD/Wf5nOD5Hi25Lvd9o3r2U9KyH7jnD/ig//pZb3PPdfcmVnV62n7m2MZSk84JHn/hK7nth8JYdZv06OXS5kdLK9FOko7+pnT2/dkTTvtsfEC69zSpbWNh44rCJqWXfho8N/n8nLftstET5zpsLoWjAQAAAAAAAAAAUC6KNdlunCTT+/GUtXbbMMdTKoo22c5au8la+0KUD0kvxXE2gCJlEtKrfiSdO8+9Zsl3su/TPCv7GpcRB7jnljsSO4Jsmx843FVVHzheY/pzyHNqIytJtWPcc60rB4+t+ZN7vSPOUGpa3HNLhzDZbtE3/PPZkuF88xvuTX1e/4/c93ep9nRr79qd256I37IfD+/5VQ2pNtCTzpXmvCda62yTkJpmSGffG/6a9k3Smtujx1ko255xz9XlVtVOcle2O37E6Tqs6bhI1wAAAAAAAAAAAKAyFGUbWUk7ez9bSWuGM5ASszPj/vgoFxtjmjU42c5TxgcAYtA41T23r+2pp3JdmNaILg1T3HM7ngu/T9OMwAS3rmS7pKZB47VpyXYJR9679bWRlfyxb38+FdOAsX/ltlc2VYO/vn2sTX3kUnkwbtm+Rt/8zgXStNdL3a3uNb7kR5+6se65XUukscEJPxhiUV4PIjOp51/TdKlxv97P0wd+rh0z8OeofUv2BNM+Y9KeQ2NfJW19Mtx1Bf2aIyrQ61eno7JdY1WT82WrI0llOwAAAAAAAAAAgEpWrMl269Nu1w5bFKVnWcb9GYGr3DLXb7PWbs8jHgDIrmm6e852S8keeZPt8jH1QunFrwXPRakqFlRJTlJnzQgpIGmuJtH/q81Z2S5bG9nJ57nnevYGBJOZj51mzLH+s3wSVamEoL2rAiatlOySqgr8qzzZ5Z9v3E8afaR/ja/KYV8bWV/70OocK9tNu1h66YbguVJrV1rOugN+psKqHpFKft2XPLffwGS6xqlSoibano7204EaJvbfPuQz0sMXh7uumJ5/vlimXpjztl3JzsDxGlOrHtMTONdJG1kAAAAAAAAAAICKVqzJdgvTbufRH7DiLMq4v3/E63EHdDMAACAASURBVGdn3H8xj1gAILyTb5bmXRE8t/UJ/7Wz3pH7ueNPkiaeJW28f/Bc5zbJJrMntbQGJZmldDVMlJLrB43XmLRkO0f5JCsra61z3lsR7Yn3STMu67+f7JJW3Rq8duyJqYS5fJx4g3T/ucFzW5+QJpyW3/7ZZKvUdfrfsn8fjZGaZwdXStzdW2Hxha8EXzv6mOwxukz9N/fczoWFf+yQnbXBCax9mmZkVKLLSKarHRl/TGGT7U769cD70y6S9nujtPoP2a99+ZfSib+IHFpBvORp6z3h1Jy3dVW2q03UOauLdtBGFgAAAAAAAAAAoKJFKIsxdKy1SyU9r1QpoyOMMZ4eg0izMOP+EcaYxgjXn5JlPwAojFGHu+cWftl/bVWOFcX6HPLf7rmtT2W/fvmPnVOdJrg6Xe2AynbuX8VZq9u1zA0e794t7V3Xf3/Tw+49xp/sPyOMBs+v6YVfyn//bLI9R0YfEW6f0UcHj6+6TerplGxwpatBLXujqh4RPL7o2vz2RTy6PFUhz3lYumiFdO4/pZNvko76inTAv6eSKEcdXphEOyl8sl3jfhnXGem030uXbJaODtGGtm1j9NjiZq20Y0Hw3PjcE+0kqdOROFdr6lSbqAuc66SNLAAAAAAAAAAAQEUrymS7Xt/r/WwkXTOcgZQKa+16pZIU+1RLivIu5BkZ9/+Rb0wAEErtaPfcjuelak/ecMtBhTt7sydJbd+aR5xTXY7KSLWmP4nD1UZWCpFsV+OL/ZHg24P2GOU/IwzfY7jzhfz3z8aViCNJs94Zfh8b/P3S6KOknZ4zqpvDnxGke0/weKLA7XcRzk5PoV/fc7+gQv4T3tWmu36cdPB/SZMcFSn7bHk0WliFsHeNe87kV5XTV9mu1tQHznU4rgEAAAAAAAAAAEBlKNpkO2vtDZL+rlSy3ZXGmE8Nc0il4k8Z998V5iJjzEGSTkgbapV0d1xBAYBXo6cyWk+bP6Fl2kX5ne2qZiZJXY4kqHTdrc6pzkRwt/aBbWR9le0cyV99Jp3tiSst9u7dnj3O8Z8RRsMk95yvKlhckp3uucOvDr9Pu6OKV0+H1OV5DCefF/6MQI6kSlclPQytnjb33MiDhy6OdGEr2zXP8s9ne/3sHIKf32xcyaiSNO6kvLZ2VrZLUNkOAAAAAAAAAAAAwYo22a7XW5RKHjOSvmqMucsYc+Ywx1TsfiMp/d35S4wxB4S4LrOP4u+stbybCGDoHPjR4PHObf5Ep2zJJNk4EuIkSetDFPjcNj94fMLp6rLBSWA1aRXLEr7KdjZLZbuDrnLPbXm8//bqP7rXjTvBPRfFXEcs3a1S24Z4znDp2Oyei/L8mPPu4PFdi/xnTH9z+DOCHPb54PHdS6VkV357I3++52/YpLe4hTn3lFuzr5l9pTTxLPf8E+8e/uegL9nxwA/ltXWn4zW61tSpLhFc2c6VoAcAAAAAAAAAAIDKULTJdsaYn0u6TtIuSbuVSrg7R9K9xpgdxpiHjDG3GWN+HuHjhuH8moaCtXaZpBvThmol/dIYRy8sScaYiyRdmTbUKemLBQkQAFymXOCee+mnweNNeSba9XFVd9r6pORLePNVfZr5NmeyXWxtZOvGSiMODJ7re8yS3dKel4PXzLgivmShyee7557/XDxnBPFUFtSZd0Xbq95Toe+5/wker26SqoIrYIXWMtc9t+Lm/PZG/hY6/klUO2Zo4xjA/bqxz4xLs6+pbpLOuMO/Zrifg+s9hZbrxue1dZevsp2zjSx/iwIAAAAAAAAAAFDJPOV8ht2VGthXzar/ncUWSadG3M/07vGevCPLgzFmmoIf98x3+KuNMTMd2+yx1m7xHHO1pIsl9fVdPFmpJMX3WmsXp8VSJ+n9kq7NuP5aa+1Kz/4AEL/qJvfczheCx02IhJMwqhrcc7sWSSMPCZ7b+ID7uuomdXYGJ3KkV7bztZFNZmsjK/lb7HZsk3Yvd8/7HvOofHv5kmXytemf7rmoX58veWr3suDxKmcue3i+ODfcI81+Z/5nIHed24PHfVUxCy1bkmyU535VXaod65bHgufX3z28z8HdS91zaa+lUVlrnZXtakytTCL49wuV7QAAAAAAAAAAACpbMSfbBclS4qckPCJpRoh1UyW94pi7UQMr0Q1grV1jjLlE0l1KVbaTpFMkvWiMmS/pZUkjJR0jKbMkyN8k/W+I+AAgXqOPzuGimJLtxp4grbwleK5jq/u6TvecHXuiutb9LnAudGW7bG1kJalpprT1ieC5ji3eGDX+5Oz7hzXG8/3r3BbfOYP2diRCSdGfU6OPjH6+7/kR1lhPK9849kd+qkekfpYytW8a+lj2yZJsN/ZV0bbzJdv5XkOGQsJTOTKPhOtu2y3rSGiuNXVKmKrAuS7bqaTtcc4DAAAAAAAAAACgvBVtG9leJsaPimKtfVCp6nab04aNpOMkXSrpfA1OtPutpMuttT1DESMADFDTLI05LuJFMb28z3yre65tnXtu7xrnVHfTNGcb2JpE2DayISrbzf2oe+5vc6VnPuGen/aG7PuHVd3kTvDpbpV6CtB60VrpMU/FrerGaPtFXS9Js98d/ZpMDZ72tevvlLr25H8Gctfq+NuHAz8ytHGky1bZ7lBH22OX/T/gntuxINpecds2P3jcV9UzhC7rrlBXm6hTnXEn+bkq4gEAAAAAAAAAAKD8FXOy3awCfMwe0q9gmFlr75B0mKQfSfKU/tHjkt5krb3CWts6JMEBQJBTHNXlXOJqI1ufmXuc5tHL3XMLvhA8PvoofyKHSWsj6/lV7ErWG2DU4f75XYuCxxM1Uu2o7PtHcXRmV/I0vqS/XL38c8l2B8+1HJTbnqOOiLZ+4lm5nZPpyP/nnnv6Q/GcgeisJ+F14hlDFsYg2V77Jp0dbb+WA92Jo23rUomtwyHZI217Knhu+pvz2trXDrY2UafahLtFNK1kAQAAAAAAAAAAKlfRtpG11q4c7hgKwVo7c4jP2yTp340xH1OqlewMSZMktUpaK+lZa62rXS0ADK2m6ZKpkkIX2IyxcGndeKljc/Bc997BVc981caqm7yVj2rSku0SnqSZUG1kqxqyrwnSMC2363x8leFW3Sod/4N4z1txs3su18cl6nXVOZ4z6Nwm99yav6SSjhK0rRxy2591z+X6HCtWvkTTnQuzJ/YWgivRTsr78e/0JETXmFpVG3eiZWeyAJU6AQAAAAAAAAAAUBKKNtkO8bLWdkp6YLjjAACvRI006khp+zPh1u9eGt/Z1c3uZLv2TVLzzIyxDe69akapy1P5qCYRtrJdiDayiWqpZa60a0n2tekaC5BsN2J/91zH1lR1rLiqEUrSxvvdc2mPcSQjD5W2PhFtfRxGefbp2iH17JUSI+I5C+G1rnLPxfW9Lxa+52Dr6uFJttu72j038rC8ts5W2c6X7NxhSbYDAAAAAAAAAACoVMXcRhYAUIkOjNAys8pTSS3yuf/hntv86OCxnjb3+jnv9VZNqjV1+24bT3W+ZJg2sr3nRRblcQ6rpkVqmuWeH8rWi/u/L7frZr0j2vqWubmdk2n8q/3zoas9IhatK6WbjfTwJe41TdOHLp6h4HsOtm8cujjS7XjBPTf19Xlt3eWpPlpr6lRHG1kAAAAAAAAAAAAEINkOAFBc5rxbqp8Ubu2My2M815Ow9tjbpD0ZHbef/1/3+knnqCvpaSObXtnO10Y2bLLdQZ8Ity7d9EujXxPGKb91z218KL5z2rIk/0x5XW77TjxdGndyuLVTL8ztjCBVtdIZd7jnN9wb31nw62mX/jzTv6Zu/JCEkpMxx+d2XZWnGuQT785tz3x07pQWftE93zAxv+191UdN7YB235k6aCMLAAAAAAAAAABQsUi2AwAUn4OuCreuqiG+M7PttfoP/betldb82btXp7dqUsg2sjZEG1kp1Zp19FHh1kpSdVO87VzT1Yx0z730s/jOWf4T/3x1Hs+NsImI9fkl+wzSuJ977uVfxHsW3NbdmX2NqSp8HLmqac792ubZ7rmorarztd7zfYihpa2r+miNqZUxRsaYAVVIw1wLAAAAAAAAAACA8keyHQCg+PiSjtLlk1CVKVEr1U9wz+9Y2H/b10JWkhJVzhaF1aZaibREnYSnjWzoynaSNPHs8GvDPr65aJjsnuvcGt85Cz7vn69qyn3vppCPT9yPoy+Ba52n6h3iFaaKW/uGwseRTfP+weOz35X7nr7n9E5PS9dCSH/NzRTDz56rsl1toi7tdnArWSrbAQAAAAAAAAAAVK7q4Q7AxRjzjhi3s5J2S9opaYOkxdbaCBkMAIAhNfn8cOvirGxnjDTtDe6Kaa/cKB1xjdQ0Xere695n/KmS3Ikcma0J/W1kQ1a2k6T9LpYWXxtu7bSLw+8bVa2nst2OBYU7N93Mt0mJPCqPTTonVf2vu9WzyEjTYmwjKxV3tbRS0NMp/evT0pJv94+d85A04dXR9uncHm9chTLtQmnxtwaOJeqkyRfksefF0iZHu+fuLEnGcbJWeuHL7vn9Lsn7CFd1uvRqdnWJOu3pCbjW04IWAAAAAAAAAAAA5a1ok+0k/VKKUtInklZjzFOSbpR0q7X0ggKAolI3Rpr6emntX/3r4ky2k6Rjvu1vT3rPqdK5j0qbHnSvOe4HkuSsbFeT0ZbQ30Y2wq/B8adIx31fevrDnkVGmnG5dPgXwu+bi0P+W3rx64PHO7ZIu5ZKLQcW9vzjr8/v+poW6cy7Ut9vl5N+JY0+Mr9zMmVLtmtb768cWMlsUrr31dLWJwaO33u6dPb90sQz4z2v5aB498vFkV+RWlf1tri2Uu0Y6dTbpPpxue859yPSMx8PnhvKynbz3uqfnx2i+mAWoSrbGUdlO0tlOwAAAAAAAAAAgEpVzMl2fdwlf3LXLOmM3o+vGmPeZa29uwDnAAByNfk1Q59sV90oHfJp6cWvBc/vXS29/EvplV+596gbI0nqSjqS7RIZle08v+aSUXPOD/yQNOe90vq7pZ0LpXEnal/HeGOkkYdKdWOj7ZmLxunuuWU/ko79lns+jLYsLTxrRuS3v5RKXvSZ9bb8z8iULdnulZukQz4Z/7nlYMfzgxPt+tx3lnRFzH+/UdUY7345xVAnnXab1L5FalsrjTwsv4qOkmQS0shDpJ0vDp5b9kPpqK/kt38YHduklb91z898a+r1LE+uhOjMynZBOmkjCwAAAAAAAAAAULGKPdku/Z006xjPlPluatBamzY3WdI/jDEftdb+IHqIAICCCJMUVohWftnO3TJPalvjnq9JtVEN06JQkozxVLaL0ka2T1WdNO31qY/hUjvGPbdlXv77b3k8/z3CmHyBtP4fg8fHnVSY8zzPBUnxPHblaqieE31mvX1oz/OpH5dfNbtMrja6ha5I2Wfrk/553+tLBKEq2yUcle1oIwsAAAAAAAAAAFCxijnZ7l29n0dI+ryksUolxyUlPS7pKUmrJO2SVCtpjKTDJZ0maVLvtVbSrZLulNQgaZSkQ3rXzNDApLtvG2MWWWvvL+hXBQAIZ+JZ2dcUopXjpPMkeaqHrb/Tf31vVbU4KttFaiNbTCZ5vnfdrfntba2/4uGYY/PbP92BHw5Otpv7sfjOGCDL9zvfx66cJbvi26uqQepp86+Z/c74zis2rudZ+6bhPb/PpHNjOabT2eq7/zU6Mzm6T5cjmRoAAAAAAAAAAADlL0sJleFjrb1R0jxJH1Iq0U6SfipplrX2FGvtx62137LW/sxae7219svW2sskTZP0RkmvKJVE92ZJM6y1P7LWfs1a+w5r7SxJr5P0cu8aq1Ti4bVD+kUCANzqx2df0zQr/nNHHS4ddnVu1x5//b6b7sp2A5PtEr5ku6htZItF/QR30tvOhamEuVxYKz39Yenln7vXnHlXbnsHmfKaVFvedDOukPZ7Y3xnpMv2uGy4pzDnlgObpQrk1qfD75Ut0e7gT0q1o8PvV2oO+XTweOsKac/LhT3bWumZq/xrprw2lqPCVLarc1a2o40sAAAAAAAAAABApSraZDtjTKOk2yXNldQt6S3W2g9Ya1f7rrPWJq21f5J0hKRHlPoarzbGXJmx7g5Jx0h6Nm34CGNMPOUyAACFV9UQ/57GSEd8QZrznujXjjl+301nIkdmG1nPr+Kc2sgWC1/1t03/zG3PHc9Ly653zzfvH679cFgmIb3qx9J5j0vHfV869xHppF9JiUIVBi7h7/ewy5Ko+PRHwm2T7HHPmUTquXD0/4UPqxTVT3DPPfe5wp69c6G01/NP/REHSomqWI5yVadLf41OT7xL53p9BwAAAAAAAAAAQPkr2mQ7SddIOlipd0+/bq39XZSLrbWtki6RtE2p6nXfN8aMz1izW9KblErm63uX9rw84wYAxCVbK9nqpsKdPe6U6NdUN++72eVqUZjZRta4K9slS7WNrDTgsRhkzZ9z23P5j/3zYaohRmUS0rgTpAM/JI0/JbZEn0BVIZ7Pe9cW7vySluVnZevjUtfu7NvsWuSeO+eR1HOh3Pl+djfcW9izs+0//tTYjnIlzKW/RtcZR2U7S2U7AAAAAAAAAACASlWUyXbGmGpJ7+i92yHp67nsY63dIqnvnfkGSVcErHlF0m3Svj5+OWRXAAAK4rDP++cbJhfu7FySOkYcsO+mM9kuo42s8baRLeFKZ+NOds/tXprbnst+6J+PMRFnWDRMlEYe6l/TuX1oYik12drISlLXrvzWjMryvSkX4z3/FO7YXNizsz2/fRUzox4VqrJdcLIdle0AAAAAAAAAAAAqV1Em20k6VdI4pcqUPNlbpS5Xd6fdfoNjzV29n42kaXmcBQCIky/p44QbUi1fC6XlAGn2leHX108cUPWsKxmcbJfZltDfRraEK9s1THTPrfu7tHNx+L16OqS7Tsq+7oB/D79nsTriGv/8poeGJo6SE+JnZd0/sq/p9vyTs3pE+HBKWeM0aeRh7vn5/ykVqurm+rvcc6OOkEYdHttRYV6j6xxtZDuSVLYDAAAAAAAAAACoVMWabDc97fa6PPdan3Z7hmNNes+w0XmeBwCIS6JauqxDmvGWgeNn3CHNeXfhzz/hhvBrD7pqwF1X1aRBle08CYMlnWwnSafc4p77+8Hh91n45VQb0GyaZ4Xfs1jtd4l0jieh7ukPSz3BSUIVLUzy15Pvy95Kdsl3g8erGgqb3FtsfK99S74trfxt/Gd2t0pbn3TPv2Z+rN+DUJXtTHCynetaAAAAAAAAAAAAlL9iTbZL7wvYlOdejb2fjaRJjjXpPauC31UDAAyPqlrplJulK2z/x5QLhuZsE+HXZEa7QVfVpMxku4Svsl2Y1pjFbMT+/vk9K8Lts/R7eYdSUia8WkrUuOe3PDp0sZSMkD8rG+71z29/Nni8KridaNmqbvTPr/lz/GduuN89N+OKVPJ1jFytYNNfo91tZKlsBwAAAAAAAAAAUKmKNdluV9rtQ/Lc69C023sca9LfSWvL8zwAQCUafeSAu502bBvZMq5s13KQf37jA+H26dqZfU1TGVS1SzfqSPfc3nyL/pahsG1N27I8dnVjg8c7twePl6sR+0tVnoS7bI9jLtrWuudGe34ecuSsbJfIXtmuw5GoBwAAAAAAAAAAgPJXrMl2a3o/G0mzjTEn5LHX23s/27R9M01KW7M5j7MAAOXm2JBV1cafMuBumBaFkr+NbLLUk+2qmyRPMqG2P+O/fvdy6eaQbSOP/0HosErCAR90z/XwdwGDhfxZefHr/vkdC4LHJ5wRKZqSV1Uvzb7SPb/5kfAJjmH5ntfTL433LLkr26Un29W5KttZKtsBAAAAAAAAAABUqmJNtntIUpdS75waSdcbY7L0sxrMGHOZpPPU/w7sPY6lx6TdXhH1HABAGZv7YX+FJ0k65+FBbT+dbWQTA9vImnJuIytJx1zrnlv6fWmvo5pV1x7prweEO+PEG4eutfBQmfMe99ya24cujlIR9mdl72rppZ8Hzy35vvu62e+KHlOpO/Y6qXa0e37JdfGet+Ca4PGqeql5ZrxnyVN9NC0hOrMSaZ+OZIds3MmGAAAAAAAAAAAAKAlFmWxnrd0l6W9KJdpZSUdJussYs1/YPYwx75V0o/oT9qykmxzLz0+7/VwuMQMAytiRX/bP148fNNTlqGxXYzKT7cq4jawkmWr//Nq/BI9vcOXHB5j9jvBrS8mYY4PHozw2FSPCz8orNwaPz/+I+5qq4ApnZS1RJR39Dff8y46kxVx17QgeH5tPgWvPcWEq25ng77tVUt22qyBxAQAAAAAAAAAAoLgVZbJdr/+SlN6j6RRJLxpjfmiMOcsY05J5gTHmQGPMB4wxT0n6saRa9Sfa3WCtHdQbrDeB7wz1v0v7cLxfBgCg5E272D/fNGvQUKejsl1mpSR/sl0ZVLab9gb//M7FweO7HOOZjvxqtHhKye7lweMjDxvaOEpBlCpjYZ9b6ZpmRL+mHDTNdM/tWhRfK1nfPl274zljwHE2r8p2krtVOAAAAAAAAAAAAMpblnIzw8da+4ox5t2Sfq1UUqCV1CTp/b0fMsbskrRbqaS6kb2fJe3LXOiraveEpP90HPVp9ScdtsvdahYAUKl8LQyb95eqagcNh65sZ4yMTGAVu7JoU9iUpShtx5aB9/e8Ii3+VqrFbBjTLsotrlIw6nBp8yODx7t2DX0sRS9CYmr7pujbjz0++jXlYPxp7rlkl9T6itQ8O/9zHFXmJEmTz3fPebT17NXd2/6gl9sWa2LtNJ05+nVqrhqhu7f9SUv2Pu9MZq5Jr2yXcFc0vHbVZ1RlqjWqeqyOaj5RJ488Ry+0ztfjux7Qxs7+9tjVpkaz6ufqnDEXaUzN4CqoAAAAAAAAAAAAKC1Fm2wnSdbaW4wxSUk/kdSi/upzfcl0I3s/Bl2atu4uSZdba1sdx/xa0u96b+/xrAMAVLI3rJZuD0gcu+DZwOVtyb2B47VmcGKeM9muHNrIStIb1ki3TwueW3mzdNIvpUSN1Lpauuc0qW1t8NpMp/1BGnlwbGEWndlXBifb7VmeqgRm3FURK07UxNR1d0pTXtN//5Wb/OtNMReDLqCqWum0P0oPXxI8f8cRqZ/v2lH5nbPuDvfcjEsjb9eV7NR1a67WyvZlkqRlbS9o3s57ZHv/55P+Gl3rSbbb0LlGkrS2Y4VeaJ2vu7f9QVu6Ngbuv7J9mZ7f84Q+OePrGlk9JvLXAwAAAAAAAAAAgOJR9O8cWmt/J+kwpRLiejSwal3mRx8jaYWk91prL7DW7vTs/7i19qHej/kF+BIAAOWgcZp0hZUufFk6/a/SG7ek7tc0D1ra6anSVBPQltA4fh0ny6GNrCQ1TpUO+A/3fF9C2YqbwiXaJWqlt/RI+zkSgMpFVYN7bteSoYujJERMtlv4pYH3F/1ffKGUG191u+5Wae3f8j/jBU876KrGyNst2fv8vkS7PkklQyUwp7eOrTPuNrKZNndt8O6/rXuz5u8KSJ4FAAAAAAAAAABASSn6ZDtJstausdZeLmmGpI9JulXSEklblUrA2ytpraRHJV0r6QJJ+1trfz48EQMAylbzLGnq66S6sc4l6S0EM9UHVEoyjgplZVPZTpLqxrnntjyR+rz1yXB7Hf2Nyqg05nvMtj4xdHGUhIg/K1vm9d/ubpN2LHCvbSnj6olh1I6SqtwV3mJ5Lrau9JwfvRLcHVt/l32RQ1NixL7bdYn6Qa2/87EiIwEQAAAAAAAAAAAApaeo28hmstaul/S93g8AAIqSr7Ld5NoZg8aMHMl2tkwq20nS5NdIC68JnnvuM1L7JmnN7eH2mnF5fHEVM19FsZ7gNsUVK5+fle49/vnjr89973KQqE79/Lp+Pjt35L735sekVb+TOja719R7kk4dVrQvzSmc6fX7q7m6Zd/9hKnSQY1HakHrUzntl6kj2R7LPgAAAAAAAAAAABg+FVAWBgCAodVp3cl21WZwnnvC8eu4rCrbjTvRP7/k2+H2OfEXUv2E/OMpBdWeNrLr/jF0cZSEHH5Wts2Xkj3SP452r6kbK004PfewysWx33HPrbhJ6skhiWzxt6V7TpaWePY++pvR981RS9UovWPSRwaNXzrxfRpfMymWM3y/GwAAAAAAAAAAAFAaSqqyHQAApcBV2a4+0RDYMtYYE5grVFbJdsZI0y6W1vwp9z0mny/NvjK2kErC2BOC23Su/evQx1LMbA4/K/M/Lh1xjdTmbvus1zybeu5WuqYZ0ux3Sy//PHh+zV+kGZeG369zu/TsJ7OvG3Nc+D1zlFCV3j/1v3VAw2FqqGocND+2ZoL+Z+Z3tbztRW3oXCNJunfb7drRvTXyWb6qpwAAAAAAAAAAACgNJNsBABAzV/WiWlMXOO5qI5sspzayklTTkn2NT8sh8cRRSkyVe65ja6ryGiTl8LOy+RFpdZbWxTUjcgunHNVPdM9tvC9ast2K30q2J/u6qvrwe+bo/LFv1BHNr/KuqU3U6ZCmo3VIU6oK4oI9T+aUbNdFZTsAAAAAAAAAAICSV3JtZI0xNcaYU4wx7zDGfNwY87/GmM8Pd1wAAPRxVS+qSbiS7SqgjawkTXh1ftdPrMB2niMPds917fRfm+yRtj0jrf1bqpJYOculsp0kLb3OP187Krd9y5Hv57czy3Mx08YHwq1rOTDavjlwJUH7NFeNzOmszmRnTtcBAAAAAAAAAACgeJRMZTtjzKmS/kvSeZKC3hW7JuCa10jqK7OxzVr7X4WLEACAlMiV7RxtKssu2W76m6XlP5W2Ph792knnptrIVpoDPyq9dEPwnC/BqW2j9MC50o4FqfsmIb3qJ9Kc98QfY1Eos5+VYjTxLPfcqlsl+9twLXc7t0urfx/uTFMTbl0eah1J0D7NVblV6XT9bgAAAAAAAAAAAEDpKPrKdsaYJmPMbyQ9JOn1kuolmYwPlxckfoLv6gAAIABJREFUvV3SOyVdZYw5ssDhAgCgLkf1IldSh7OyXdm1kR0hnXV39OsO/Ih0+l+GpKVk0Wme6Z5b+CX33FMf7E+0kySblJ54r7RzcWyhFZVy+1kpRlW10tyr3PNr/xZun2c+Ef7MMMl7eaoxtZGvGZFzZTuS7QAAAAAAAAAAAEpdUSfbGWNaJM2T/j97dx4na17Xh/7zVG9nnX3fGBgGGIYd2RQVQQORmGjQRG80JuqNV3LRJGoSREWNJt5cgyt6oy+D0ShGRWMStgEuhEVWQZB1gGGYfeYwyzlzzszpperJH30O02dO/Z6up6q6uqr7/X69zut017P9urrrqZlXf87nm29P/1BdY41JXdc3J3nDhmO/fawLBIA+ys12/UMdnUJufMc12yXrgbtHfne7Yx7zst0ZtEuSub3lbXe/v//jvdXk9jf133bb60df01Taga+VadQ0VnfQn61BQ3lJmv9NzXgM02y3f+7gUNfSbAcAAAAAADD7pn2M7J8keWIe+g3qSpI/SvL2JL0kvzPAOf4s6414SfINSV4+3iUCwKlK7UXlZrtS2G6HtnU99oeSL/znwfZdOKu53W2n6zSM0SwFEFePJN3j/bfd8ZbkmoZmsd5qcvzOwdc3LVaPbPcKdodznlbedvyOzY9fOZwsH2pxwQmE7QrjvZscnB+u2W6tXk2v7qZTzQ11PAAAAAAAANtvasN2VVV9a5Kvz0NBu/cm+ft1Xd9yYvsjBjzVyWqXKsmTq6o6UNf10bEuFgA2KDfbFcJ2Vf+i2V69Q9u6zn5Kcv5XJ4fetfm+j3lpc+BsN7jga5K73nn640dv6L//J/5t+VzLd/d/vLucfPAHkpv+KFk71n6N7A4XvqC87ZY/T+54W3JRn33u+Ujy/u9J7v2rdtcr3BvHaZhmuwNzZwx9vdV6NUvCdgAAAAAAADNrmsfI/tiGjz+e5BtOBu3aqOv6jiR3nfi0k+SaMawNAIpKzXYLrZvtdmjYrqqS571hveGuZPGc5GmvSp70s5Nb17R6zMvK29YeOPXzG343+fSryvvf86H+j3/wpckNrxG0o9n83uTql5a3v+PFyZHrT31s+e7kbc9vH7RLMplmu/7jvZscmBuu2S4pvz8AAAAAAAAwG6ay2a6qqouTPGXDQy+r6/qB0v4D+HSSC058fHWSD45wLgBo1LrZbreNkU2ShQPJ039p/Q/N5vaWt93xtuSyb3ro8y/+webnO3pDcuBRD33eXUlu+uPh18fusv+K8rbecnLz65JrX/7QY7e9MVm9b7hrVe3Ddt2622r/STfbld4fAAAAAAAAmA3T2mz3nBN/10luruu6z+y0Vu7Z8PG5I54LABqVmotKoY7SGNkd22xHOweuKm87+rlTP7/9zZuf78bXnvr58l3J2v3t18Xu1PTzmCT3P+xn8iM/PMLF2oft2jbHLRRC0E32zx1sfcxJmu0AAAAAAABm27SG7S7a8PFHx3C+oxs+PjCG8wFA0WrLZrtOqdmuFrYjyRmPLW/78L9I2v6cHL/z1M8fPop2pyiEWBnRxX8jWTy7vP2G//TQz9QX/kty/K4RLjZE2K4+3mr/YZrt5qq57O8MF7grvT8AAAAAAAAwG6b1t5Bnbvj4yBjOtzFg1+43cADQ0kpvpe/ji53Fvo9XhbfjHT1GlsFVVXLG48rb3/Hi9b+v//XBznf9r66Pjj3p8789/Nqm1d5Lk+f83navYmdaOCN5wdub9/mj/es/j+/9rtGuNcQY2bbNcaUQ9GYOzA83SlazHQAAAAAAwGyb3+4FFNy74eMzi3sN7pINH99T3AsAxmClZbNdVQiU9IyR5aT9j0yOfLr/ttvfmKw9mHz6VYOf79C7kotesP7xp/59eb+/+dFkft/g550GncVk3+XrQa2/+Af997ns7yTP+I31VsD/cXXS3aHtflvl7Ccn1/xo8qn/t7zPh/7pGC7UPmy33HaMbCEEvZkDc2fkztza+riVun8YGwAAAAAAgNkwrWG7Qxs+vnaUE1VVtZTkKRseumWU8wHAZkrNRaVxhVVxjKxmO05YONC8/eY/SY5+fvDz3fCa9bDdZiNoz3rCzh3HuvfiEx8ItQ5lz4Vbf41hmu3ajpGthg/bDUOzHQAAAAAAwGyb1t+efvjE31WSK6uqapidtqmXJDn5W7S1JO8bZWEAsJlSs91CqdmuOEZWCIgTLn5R8/YHbm53vht/PznymaQp+LPvsp0btGN0l3zjeM6zdO54znNCmzDbfLWQTjU31HWGDtsV3h8AAAAAAACYDVP5G9S6rr+Q5HMbHnr5MOc50Wr3ipOnTfLBuq6Pjbg8AGg0tmY7YTtOeuQ/bN5+0+van/NNz0iuf3V5+7N+u/052T3OvCZ5wk+Odo4rvys5/7njWc8JbcJspdHegzgwd+ZQx2m2AwAAAAAAmG1TGbY74TUn/q6SfGdVVd/d5uCqqjpJfivJNRsebviNMgCMx2oh7FEK23UKoxKNkeXLOvPN2+/9cPP2ftbuTz7yI+Xt+x/R/pzsLtf88GjHP+EVm+/T0nJv8DGypXvyIDTbAQAAAAAA7E7THLb75SR3Zb2Rrkry21VV/duqqvZtdmBVVY9Pcl2Sf3Di+DrrTXl/uHXLBYCkW3ezVq/13bZkjCyzZGG4MBG7yNze0Y5fPHs869igTXPcaM12Q4btNNsBAAAAAADMtKkN29V1/UCS707Sy3pYrpPkXyW5vaqq1yZ56cb9q6r6+1VV/URVVe9K8rEkX5f1kF6VZDnJd9R1LbUAwJZarVeK29qOke0J27HRec+Z7PX2XjzZ622b/q8/BtBZGP7Ys5+a7LlgfGs5Yblu02y3OPR1Ds4PN0a21HwKAAAAAADAbJjasF2S1HX95qyH6k4G7pLkYJK/l2Tj3LMqyR8k+akkX5lTv661JN9b1/UQ89UAoJ2m1qKFUrNdVWi2M0aWjZ75m5O71tUv3XwfSJLnvbH9MXN7k6f+wvjXknbNcaV78iA02wEAAAAAAOxOUx22S5K6rn8ryQuzPlK2Sk6p+ak3/Kke9niV5EtJXljX9Wsns1oAdrumIEXbZjtjZDnFWU9I/uZfTeZal79kMtdh9l3youRFLf5NyxN/OnnRXyYXPX9LltNqjGzhnjyI4cN25fZTAAAAAAAApt/Uh+2SpK7r/z/Jo5P8yyQ356HxsBv/ZMPHdyf5mSRX1XX99okvGIBda6VhROBiqdmuGLbTbMfDnPHYyVxnft9krjMVhFpHds5TB9/32lckZ16zZUtZaTFGdqEafozs0GE7Y2QBAAAAAABm2vx2L2BQdV0fS/ILSX6hqqrHJHluksuTnJtkMestdncm+YskH67r2m9OAZi4YZrtOqUxskJAPNzcnslc58wnTOY67CAPL6Au7ba1/9ZnuTd42G6UZrvFzlKWqj1ZbhHuS4yRBQAAAAAAmHUzE7bbqK7r65Ncv93rAICHa2otKrUoFZvt5MbZDnN7k4UD270KZs1X/2nyrm/ZfL+q//1uXNqMaS21jQ7qwPwZWV5tGbbTbAcAAAAAADDTZmKMLADMitVCa9FCtVhssCuF7XrGyNLPgau29vzP+P+29vzTQJB1/C7/5uSSb9zuVbQaIztKs12SHJg7s/Uxmu0AAAAAAABmm7AdAIxRqbWoqUGpMkaWNhbP3trzz+/d2vNPna1tWttVrvmXQxw03ue/1RjZUZvt5g62PmZVsx0AAAAAAMBME7YDgDEqtRYtdPqPkE2MkaWlJ75yuOMKoc7THHzMcOeHM69NqrltXUKb5jjNdgAAAAAAALQ1v90LaFKtV/08IcmTk1yR5Pwke5PUSR5McleSm5J8NMknaqkEALbZSr3S9/HGZrtS2M4YWfq58PnDHbfnwmTfFcnd7y/vc/Dq5KwnDXd+2HNecvnfTW76421bQqldtJ/Rm+3OaH1Mm/UBAAAAAAAwfaYybFdV1dck+f4kfzPJoJUR91ZV9fokv1XX9bu3bHEA0KDUWtTUoNQpFM0aI0tf8/uSv/WZ5H8+tt1xdZ08/7rkuuckhz95+vYDj06+/l1JZawqI3j2a1qG7cZ7n2vTHNfUODqIg0M12/UPZAMAAAAAADAbpipsV1XV45O8OsnXnHyoxeHnJPnOJN9ZVdXbk7y0ruvrx7xEAGhUai1qbLYrhJt6tWY7Cs4YctTrwhnJiz+RdFeS3vH1x+o66Swm83vHt76ZItQ6VvP7k0u+MbntDdty+eX6+MD7jtpst3/uYOtjNNsBAAAAAADMtv5VOtugqqq/l+QDWQ/aVSf+1H3+nNRv28njnp/kL6uqesmk1g8AyXDNdpVmOybhmh956OO5xfXg3cIZyeKZOzhoV/h3G4/8zskug4lZ6bUI243abDc/TLOdsB0AAAAAAMAsm4qwXVVV35bkD5Lsy6khu5PhuSQ5lOT6JO/Leijvs0m+tGGfjcclyf4kr62q6lsm81UAQLJSaFVqDtv1DwQJ29HojMcNvm81nzzi27duLdNqY8DwpPkDySV/a8MDxuZur/E+/23GtC6M2Gx3YO6M1sf00k23XhvpugAAAAAAAGyfbQ/bVVX12CSvObGWjSG7I0l+KcmLk5xX1/VFdV1fU9f1V9Z1/ey6rh9X1/WFSc5P8k1JfiXJ/Tk1dDef5D9XVXX1pL8uAHanYrPdEGNk6xgjS4MXfnCw/TpLyXP/a7Lv0q1dzzR64k+vjzQ9aeGM5Hmv38FNfrtbt15LN4MH2ZpC0IM4MNe+2S7RbgcAAAAAADDL5rd7AUl+LeuNdidDdr0kP5PkP9R1fXSzg+u6vjvJ65O8vqqqn0jyI0lekYdqMg4k+dUkLxr/0gHgVKVWpYWGcYXFMbK1ZjsaLBxIrvyu5MbfK+/zvDckF3xNMr9/cuuaJvN718N1R29IHrglOfdZydxoASsGsE33ruUWI2ST5hD0IA7MHRzquJV6OXuzS1+TAAAAAAAAM25bm+2qqvqqJC/IQ0G7+5O8sK7rnx4kaPdwdV3fX9f1K7MerDuWh0bKfkNVVV85pmUDQNFK3b7ZrmOMLMNaPKu8rbOYXPzC3Ru02+jAo9ZDh/2Cdpd98+TXs9Nd+LzB9z3/uWO7bNvGuFGb7fZ2hnttabYDAAAAAACYXds9RvalJ/4+Ofr1++u6ftuoJ63r+q1Jvn/DeZPkB0Y9LwBsZrU0RrYh1FEaI9szRpbNXPj8hm0vSKrt/k+9GXDND/d//En/ZrLr2Eke9T1JvxDxVd/bZ99/3H/fR373QJc6unYkHzry7rz1nv+Wd9z3hlbLHLXZrnTv3szb7v3vuX35Zu2lAAAAAAAAM2jbfgNbVdVSkm/KehiuTvK6uq7/cFznr+v6tUlel/Xf3lVJ/nZVVeUZfgAwBsM02xkjy9AufXFy+bee/vjS+clTfn7y65lFZz81eewPnfrYOV+RPOb/3p717AR7zkue9h9OfezAo5In/OTp+y6dkzz9l059bP+VyRN/atPLfP7BT+cnbvgn+U+3/0L+9NDv5Lp7XtdqmaM22w3rnfe9Mf/mxpflv3/p993nAQAAAAAAZsz8Nl772UkOnPi4TvKqLbjGf0jykhMfH0jynCT/awuuAwBJyuMBG5vtimNkNduxic5C8lWvTW7/R8mhdyfdB5MzH59c8uJk36XbvbrZUFXJ034xuezvJHe9Kznjcckl35gsHNj8WMoe98+T874qufOtyd7L1oOhS+f23/exP5ic95zkjrckey9d//ndc17j6eu6zn+67ReyXB8feomjNtuN6s33/EmesP/puWrfNdu6DgAAAAAAAAa3nWG755z4u07yqbqu3zfuC9R1/b6qqj6Z5PEbrilsB8CWKTXbLTSUqxab7aLxiAF05teDTJe+eLtXMruqKrnw69b/MD7nPXP9zyDOfcb6nwEdWr0j9659aciFrRtHs12Vqu+9+uz583Kse3/xPeGkzzzwMWE7AAAAAACAGbJtY2STXLvh4/ds4XXeXbgmAIxdt17r+/h8tVA8pqoKzXbGCwL09UD36EjHX7p05VjCdt92wff1ffyF57wkj9z7mE2Pf6B3bOQ1AAAAAAAAMDnbGba7asPH79/C62w891XFvQBgDLp1t+/jc9Vc8ZiOMbIAE1Olyt845++O5VxfcfCrc/7CRac8dsHCJXnawa/K15/zLZnb1iJxAAAAAAAAxm07f/tz4YaPv7iF19l47ouKewHAGJSa7eaq8ltuaYxszxhZgILy/fGypStTpZOLl67IZUtX5q6V23LT8g2p614uXLw0zzrjebn2wNPHsooD82fkh6/4+bzlnj/NLctfyBV7Hp2vO/ubcmD+jFw7/7T84OU/nfcefmved+Ttrb8OAAAAAAAAps92hu3O3fDxfVt4nZPnrpKcs4XXAYB0U2i2S7nZzhhZgHaa7o4/csX/M5YRsYM6Y/6svOSC7+m77ep91+bqfdfmgd6xfOzoB07bXgvbAQAAAAAAzJTtHCO78TdgWxm2O7zh4z1beB0AGLLZzhhZgHZ2RkhNphoAAAAAAGC2TEvYbnULr7Mx9bCwhdcBgHTrQrNd1dBsV3g71ngE0N+s3R9LoeqdEhoEAAAAAADYLbYzbAcAO045bNfQbFcaI6vZDqCvpohaOdi2nUr3eWE7AAAAAACAWSJsBwBjUtd1uimMkU252a5TarYzXxCgv8b74/SF7aZvRQAAAAAAAAxD2A4AxqTX0ETXPEa2fwyjp/EIoLVCWei2ms62PQAAAAAAANoqz7SbjJMpgmdXVXXlFl3joi06LwCcolv3b7VLjJEFGKem8auzFGwzRhYAAAAAAGC2bHfYLlmfqvTaLb5GHdObANhi3bpb3NbcbGeMLEA7szVGtrQmYTsAAAAAAIDZMg1hu0kE4fwWC4At10252a7T8JZbamESwgDob+aidqVFuc0DAAAAAADMlGkI2yV+zQTADjB8s50xsgBtzF4YWagaAAAAAABgJ9jOsN1NEbIDYAfp1uVmu7mq/JbbqYyRBWhntrrtSqFq/zsEAAAAAAAwW7YtbFfX9ZXbdW0A2Aq9MTfb9TTbAfTVHLWbnbCdZjsAAAAAAIDZ0r9KBwBorZumsF05314V3o6FMADaq6rpC9sBAAAAAACwMwjbAcCYNI6RTUOzXSEYImwHUGDMNgAAAAAAANtA2A4AxqQ75jGydW2MLEA/pTDyNI6QTYyRBQAAAAAA2CmE7QBgTBqb7RrGyHaMkQUYk+kM25XW5T4PAAAAAAAwW4TtAGBM1hrDdsbIAoxLudluOhVu83GbBwAAAAAAmC3CdgAwJt00jJFNudmuNF6wZ4wsQF+zF0YWqgYAAAAAANgJhO0AYExKY2Q7mSu21yVJZYwswJhMZ7ddKVQNAAAAAADAbBG2A4Ax6db9m+2aRsgm5RCGsB1AO7MXanOfBwAAAAAAmCXCdgAwJqVmu7mqPEI2Saqq0GxnjCxAX6UwckOJ6LYqLUvUDgAAAAAAYLYI2wHAmPQyXLNdR7MdQDt16f44pWk793kAAAAAAIAdQdgOAMak2GyXTZrtiiEMzXYA/RSb7aY0bFdel7AdAAAAAADALBG2A4Ax6dbDNduVxsj2is1NALvbzN0dC1k7t3kAAAAAAIDZImwHAGMydNjOeEGAlmbr/qjZDgAAAAAAYGcQtgOAMSmOka2MkQWYhNkbIwsAAAAAAMAsEbYDgDHpptBsl+HGyGq2A+ivdH+ctVCb+zwAAAAAAMBsEbYDgDEZttmuU2q2q4UwAAAAAAAAAGBaCNsBwJh060KzXbVJs13h7dgYWYD+SmHkqprOZrvyuHChagAAAAAAgFkibAcAYzJss10pHNITwgDoqxxSm86wXWldwnYAAAAAAACzRdgOAMakm/7Ndp1s1mxXGiOr2Q6gjemN2pVWJmwHAAAAAAAwS4TtAGBMxj9GVggDoJ+Za7YrLKswDRcAAAAAAIApJWwHAGMy9BhZ4wUBdrRysx0AAAAAAACzRNgOAMZk2Ga7TmWMLEA7/cPIsxdqE6oGAAAAAACYJcJ2ADAm3RSa7bJZs50xsgBtlIfITmfYToMpAAAAAADAziBsBwBj0huy2a4UwugJYQAUFO6P05m1Kxr2Lr/aWx3rOgAAAAAAABhMc9UOADCwtbrQbFdt0mxX9c++H+0ezqeO/VWu2f+UkdcGsFP06l7+/NDv9d02a812Hz36vhxeuzdnzp890Hned/jtecPdf5i7Vw/lEXsene+86J/mkqVHjHOpAAAAAAAANNBsBwBj0i2G7YZrtkuS37j153Lb8hdHWhfATvKmu/84h1bvKGydzrBd07p+5eZXpq4377j7xNG/zO/e8cv50uqdqdPLjcevzy/e/ON5oHt0nAsFAAAAAACggbAdAIxJtzRGdpMi2aaw3Vq9mo/c/96R1gWwk7z/yDuK26Y2atewsNtXbsrNyzdseo4PHPlfpz12rHt/PnHsw6MsDQAAAAAAgBaE7QBgTLoZrtnu3IULGrfftXLb0GsC2El6dS+HVm8vbj9nk/vpdjlnfvT7/Afvf2ffx//bod8dak0AAAAAAAC0J2wHAGNSbLbbJGx36dKVOX/h4vJ5CyE+gN1mtV5p3P7UA8+Z0EraecKBp2e+WihuX6mXhz73se79Qx8LAAAAAABAO8J2ADAm3brUbFcOWCRJp+rkBy//qYbz9g/xAew2K71yKO2afU/J15/zzRNczeAuXLw033/py4vbm74uAAAAAAAApoewHQCMybDNdkly7sKFef7Zf7vVeQF2m6YGuO+48P9Kp5re/725dv/TcsWeR/fdNkrYrk499LEAAAAAAAC0M72/jQKAGdNLIWyXzcN2STmUV2rMA9htmkJpC52lCa5kOEtV/zWOMkYWAAAAAACAyRG2A4AxKY+RnR/o+Ln0369bCPEB7Dar9Upx22IhyDZNSoHAzZrt6lp7HQAAAAAAwDQQtgOAMRlljGzTfprtANY1hdIWO4sTXMlwFqv+a2wKESbJWr26FcsBAAAAAACgJWE7ABiTkZvtimE7zXYASXnc6lzmB77XbqfFIZvtmsbMVqlGWhMAAAAAAACDE7YDgDEpjXudy6DNdoUxsprtAJKUQ2kLM9Bql5RH3TaF6ZLNw3gAAAAAAABMhrAdAIzJyM12hVCeZjuAdauFUFopxDZttqLZDgAAAAAAgMkRtgOAMSmF4krjYU/fr9BsV2jMA9htVnorfR9fnJFmuwXNdgAAAAAAADNN2A4AxmSrwnY9Y2QBkpRDaTu/2a5/yBAAAAAAAIDJErYDgDHpZsQxsoVQnjGyAOtWi812MxK2K4QCS+Nxv7y9IYzX034KAAAAAAAwMcJ2ADAmpVBcJyOOkdVsB5Ck3GxXGs86bcrNds3Ndcu948Vta/VaekLZAAAAAAAAEyFsBwBjUgrFDdxsVwjldbUWASQpj1udnWa7xb6Pl0KEg283ZhYAAAAAAGAShO0AYExKzXal8bCn76fZDqBJKXRWCrFNm3Kz3SZhuk22N42ZBQAAAAAAYHyE7QBgDOq6Tq/QQDdws10hlFcK8QHsNqXQ2cLMNNsVwnYjN9sJ2wEAAAAAAEyCsB0AjEE35fa50njY0/YrNtsJ2wEkTc12sxG2K4UC1+rV9Bru9au95jGxK5tsBwAAAAAAYDyE7QBgDJoCcQM32xVCed2spa7rodYFsJOUQmel8azTpikUuFKXA3Oa7QAAAAAAAKaDsB0AjEG3bmi2K4yHbbNfL73WawLYaWa92a4pFNjUXlcanzvodgAAAAAAAMZD2A4AxqC52W60MbLr5y+H+QB2i1KobLGzOOGVDKe52a4cmNu02a53fOg1AQAAAAAAMDhhOwAYg24awnYZcIxsQyivKcwHsFusFkJnCzPSbLfQEApsaqfbtNnOGFkAAAAAAICJELYDgDEYxxjZTkMorxvNdgArhVGrTeNZp0lTs10pSJgM0mwnbAcAAAAAADAJwnYAMAbNY2Q12wGMQyl0tljNyBjZLWu26x9CBAAAAAAAYLyE7QBgDMbRbNcUyms6P8BusTrjzXZz1XxxtHhTYK6p9S7RbAcAAAAAADApwnYAMAaNzXYN42FP2a+x2U7YDqDcbDcbYbuk3G7XFJhb3rTZTtgOAAAAAABgEoTtAGAMemlqths0bNfUbGeMLLC79epeVgvtbwsz0myXlIOBTYG5TcfIarYDAAAAAACYCGE7ABiDxma7QcfIpqHZriHMB7AblIJ2SbJY9W+Lm0alkbdNgbnNxshuth0AAAAAAIDxELYDgDFoGvM6eLNd0xhZzXbA7tYURisF2KbRgmY7AAAAAACAmSVsBwBj0BSG6wz4dmuMLEBZUxitNJp1Gg3TbNf0tQ+yHQAAAAAAgPEQtgOAMeimfxhuLvOpqmqgc8w3hu2MkQV2t6Yw2sIMNduVwnZNo2BXeuURuuvbhe0AAAAAAAAmQdgOAMagFIZrGg37cJ00jJEthPkAdovVuhw4m6lmu9IY2UJgrluvpZvmwPVKw3MDAAAAAADA+AjbAcAYlMa8tgnbVVVVDNxptgN2u6b2tsXO4gRXMprSWkvtdZu12q3vo9kOAAAAAABgEoTtAGAMys125dGw/fcvhe002wG720phzOpc5lvfa7dTsdmu8PWVHm+7DwAAAAAAAKMTtgOAMSiNeZ1rGA3bd/9CYESzHbDbldrbFmao1S5JFjrtxsiuDtBaN8g+AAAAAAAAjE7YDgDGYKub7XqFMB/AbrFaaG8rNcVNK812AAAAAAAAs0vYDgDGoDTmtRSeK5mLZjuAflZ6K30fX5yxZrvFls12pcc3WtZsBwAAAAAAMBHCdgAwBqUwXGdMzXalMB/AblFqb5u1ZruFqn84sNTctzxAa50xsgAAAAAAAJMhbAcAY1AcI5uWzXbCdgB9rRab7WYrbLcVzXYr9XLquh5pXQAAAAAAAGwQFdyCAAAgAElEQVSuXd0OAHCKL63cmfceeVveePcf9d3eeoxsoQnv9+98df762AfzqD2Py3PP+hvZN3eg9Vp3sy88eH0+dP87c+fKbUmSSxavyDPP+NpctueRI597pbecdx++Ljc+eH0uXroiX3XmN2Tf3P6857635PMPfioXLV6W55z5gpy9cN7I14Ldqlf38r/ue0PfbQsz1mxXauI7tHpHfu2Wnznt8SNr9256zjp1fu2Wn05Vlf8t1TMOfnWedebXDb5QAAAAAAAATiNsBwBDunPl1vziTa/Ike59xX1K4bni/g1NeB87+oF87OgH8qH735l/dvnPCtwN6K+Pfii/eevPp5uH2gc/eezDedd9b8o/vewn8+h9jx/63Ku9lbz6lp/JZx/8xPoD9yfvPfzW7O3sz83LN3x5v784/Nb88yt+LucuXDD0tWA3+/07X517177Ud9tip/9Y1mlVarZbrVfyyWMfHvq8n3rgrxq3X7nn6qHPDQAAAAAAwDpjZAFgSO+49/WNQbtkfM12G92yfGM+fP97Wp13N3vD3f/1lKDdScv18bz5nteNdO5PPfBXDwXtTvjS6p2nBO2S5J61Q3n3fdeNdC3Yre5auS3vPfy24vZSU9y0mrX1AgAAAAAA8BBhOwAY0ucf/OSm++zp7Gt1zkHDeZ8b4Nqsj3j94vHPFrd/7oFPFLcN4o13//HA+775nj8Z6VqwW33+wU81bp+1ls99c/u3ewkAAAAAAAAMSdgOAIZ0vPfgpvs8dt8TW51z0LGzy73jrc67W630lhu3L9fHU9f10OdvCvIB47HZvfax+548oZWMxyP3PDZL1Z7tXgYAAAAAAABDELYDgCGt9FYatz967+Pz3LNe2OqcnQzWbLdZiIx1K/Xmz9NavTqBlQDDWm241z75wLPzlIPPmuBqRrfQWcx3XPQD6fhfMQAAAAAAgJkzWH0OAHCaUpDr4sXL83fO/648bt+Ts9hZanXOQcfIDhIiY7BQ4kq9nIUsTmA1wDCa7nffd8mPDnzfnCbPPONrc/nSo/LJYx/Jke69Ax/XSSdX7Hl0Llq8LJ9/8JM5tHrHwMc+au/jhlkqAAAAAAAAGwjbAcCQSkGul1zwPXn8/qcOdc5Bx8hqthvMIKHEld5y9s8dnMBqgGGU7nfX7n/aTAbtTrp46fJcvHT5SMcDAAAAAAAwWWYXAcAQuvVaeun23bZU7Rn6vIM32zWPsGXdoM12wPQqvUYXKo2UAAAAAAAATJawHQAMoSnE1XZ07EZzA5bOrmq2G8igzXaT0qt7E7sW7BSl1+go91oAAAAAAAAYhrAdAAyhKcQ1SgBkftAxstrYBjJYs93kWgLX6tWJXQt2itL9brEStgMAAAAAAGCyhO0AYAjLDSGuUUYbDjpGdrVnjOwgVgcIJU6yJXCSLXqwU2i2AwAAAAAAYFoI2wHAELZsjGyLZru6roe+zm6xMkAocZItgRoJob1SaHZBsx0AAAAAAAATJmwHAENoakwbZbRhZ8Bmuzq1kaQDGCTcNsm2udUJjqyFnaIUmtVsBwAAAAAAwKQJ2wHAEJoCWiONkc1gzXaJlrRBDBKkm2iznTGy0Fop3DxKsBkAAAAAAACGIWwHAEMoBbQWq6VUVTX0eecGbLZLBLcGMUiQbnWAUbP9dOu11sf4nkF7mu0AAAAAAACYFsJ2ADCEUmhq1PDHXKXZbpy2stmuFADaimvBblZ63YzSIgoAAAAAAADDELYDgCE0NduNQrPdeA0Sbhv2eRwmOOd7Bu1tVbgZAAAAAAAA2hK2A4AhlMIfC6M226VF2K4ebvzpbrK6hc12g5x7XNeC3awcbtZsBwAAAAAAwGQJ2wHAEErhj6WRm+0GHyM7TNhrt1keJGw3wWa7VQFJaKVXd7NWr/bdptkOAAAAAACASRO2A4AhbNVYw1ZjZLWkbWqgMbJDPo/DhPSMkYV2mho8Rx3bDQAAAAAAAG0J2wHAEMpjDSfXbCe4tblBnqPV3nBtc8OM8fU9g3aaGjw12wEAAAAAADBpwnYAMIRSaGph1Ga7aLYbp9UtbLYbZoyv7xm0o9kOAAAAAACAaSJsBwBD0Gw3GwZ5joZ9HocJzvmeQTtNr5mFzuIEVwIAAAAAAADCdgAwlNLo0cURwx9zVYtmO8GtTQ0SiFsdYhxsMtzzP+y1YLdqaqfUbAcAAAAAAMCkCdsBwBCKzXajjpFtE7YzknRTK4VQ5Kn7DNts1z44JyAJ7TS9Zka93wIAAAAAAEBbwnYAMIRSAMQY2ekySCBx2NCiZjvYeqVQaydzre6XAAAAAAAAMA7CdgAwhGLYbsSmpU4Gb7YT3NrcIIG44Zvt2h+njRDa2ap7LQAAAAAAAAxD2A4AhrBSH+/7uGa76dGt19JLd9P9Jtls53sG7RRHdo94rwUAAAAAAIBhCNsBwBBWev1b5RZGbFuaqwZvttOS1mzQYNuwAbjVYZrthO2glXKz3eKEVwIAAAAAAADCdgAwlK1qW5rXbDc2g4YRV+uV9Ope+/MP02wnIAmtlMZla7YDAAAAAABgOwjbAcAQSkGrpVGb7dIibCe41ahNGG6tXm1/fs12sOVKr5lRW0QBAAAAAABgGMJ2O1BVVT9VVVU9wp/f2e6vAWDabVWzXasxsoJbjdqE4YZqqdNsB1uufK81RhYAAAAAAIDJE7YDgJZ6dbfYhDZq29JcizGyq4JbjVZ6/cdP9t13mJa6wnjLJqWRmEB/pVDromY7AAAAAAAAtoGwHQC01BSymmyzneBWkzYBumFCcJNqw4PdbKtaRAEAAAAAAGAYg9fnMMu+I8n7Wux/dKsWArATrDYEpkZtW2rTbGckabM2wbZJjYRdrVfSq3vpVP69AwyidL8dtUUUAAAAAAAAhiFstzvcUdf1jdu9CICdYrkpbDdqs13aNNsJ2zVpM2Z3mOeyKXTZZK1e1coFA9JsBwAAAAAAwDRRqwIALTU1mo3abNdpM0ZWs12j5d7xgfcd5rlsGifceJyQJAysNC571HstAAAAAAAADEPYDgBaagpLTXKM7Fq9ml7dHel6O9lWj5EdttlOSBIGV3q9LFSLE14JAAAAAAAACNsBQGtNYalRAyBzLZrt1tcyXLvabtDmuRmu2W640Nyq7xkMbFWzHQAAAAAAAFNE2A4AWio1ms1X863Dcg83l8Gb7ZrWQrvnpm2zXV3XQ4+DNUYWBlcKtS5WwnYAAAAAAABMnrAdALRUHms4evijfbOd4FZJm+em7fPYzVp66bVd0vq1hO1gYKXXi2Y7AAAAAAAAtkO7+hxm1fdXVfXjSa5Jcm6S1SR3J/likncneVNd1+/axvUBzJRS+GOps2fkc89V7d6aP3z/e3PW/DlJkipVLll6RC5evDxVVQ10/JdW7sgXj38uvfRy/sJFuWLPVemM2M43Le7vHh5439KoypLl3vG2y/myjx/7UO5ZO/Tlz3fa8z5r7lk9lBuPfzbdei3nzJ+fK/de3fp1yPj06m5uOv75HFq9I0lyrHt/3/0WRxzZDQAAAAAAAMPwm8Td4dsf9vlSkgNJHpHka5L8WFVVH0ry8rqu3zrpxQHMmpW6fzBrHGMNOy1LZ//s0O+c9tij916bl17249nT2Vs8rluv5Xdv/5V88P53nvL4BQuX5Acv/+mcs3B+q3VMm08f+2jee/htA+/fptnuge7R/Lsb/8Uwy0qSvPme15322IWLl+UHL/upnL1w3tDnpZ1e3c0f3vkf8+7D153y+Nnz5+WHLv+ZXLB4yTatbPe6Z/VQfuXmV+au1ds23VezHQAAAAAAANvBGFlO+ook11VV9XPVoHVILVRVdUFVVde2+ZPkqnGvA2AcymMNR29aGsct+HMPfiL/7dDvNu7zzvvedFrQLknuWr0tv3fHr468hu200lvOf7z137U+ZlCvu+s1pzTTjcOdK7fkv9zxa2M9J83ed+TtpwXtkuTetS/lt2/7hW1YEf/ljl8bKGiXjCfcDAAAAAAAAG1pttvZbk3yhiQfSPKpJPck6WV9lOzTkvytJC/csH+V5MeyHsJ8+ZjX8tIkrxzzOQG2RakFbWGKwh+fPPbhxu1/ffSDxW2ffeATOd57sLEZb5p99oGPZ7luN+Z1tdBW2M/Hj32o7ZIGcv0DH89y7/hYxhGzub8+Wv4+3rx8Qw6v3ZMzT4xoZust947n+gc+PvD+C2MINwMAAAAAAEBbwnY70weyHqJ7S13XdWGfv0jya1VVfUWSP0hy9YZt/7qqqvfVdf3nW7xOgJnUrdf6Pj5Xjedt9aq91+TzD35qpHMc7R5p3H5k7b7itl66Oda9f2bDdoe797Y+ZtBmu17dzf3dw63PP4hu1nKse7+w3YQcWWv+OTmydp+w3QQd696fXroD7dtJJ5cuXbm1CwIAAAAAAIA+jJHdgeq6fkNd19c1BO027vuhJM9Ocv3DNv18VVVzW7JAgBnXq3t9H5+rxvO2+rVnvThVRhsnu9lbwGqhne+kNmNVp81yr12rXVJuKzx9v8Eb8IYxy8/7rNn0NbDF32tO1eZn/5lnPC/75w5u4WoAAAAAAACgP812pK7re6qq+o4kH0q+nO54XJKvS/LWMV3m15P8cctjrkqiXQ+YOr30D9tVY8qwf8UZz81c1cm777su93cP5/H7n5oXn/sd+djR9+c9h9+S25Zv+vK+q/VKHuwda32NzYItmwWRplnT1/bUA8/JR46+t9UxG6027HfuwoW5cPHS3Hr8C6mTnLtwQfbN7U+VTm5evmFDALLOkW7/ZsFBQ3+MbqXXHKZr+l4zfk0/+wfnzkyVTs6cPztPOvDMvOjcb5vgygAAAAAAAOAhwnYkSeq6/nBVVddlffzsSS/KmMJ2dV3fleSuNsdU1WitTgBbpVf3H3XYGWMh6FMPfmWeevArT3ns6Wc8N08/47mnPPbXRz+Y37j151qff7NQ1yw3rK3U/Zvtrt57bS5YvLRwzKDNduX9fuiyn8l5ixdueo5uvZaXXf+t/c8/RCsfw9n0NSD4OFFN95x/e9Vvj21MNwAAAAAAAIzCGFk2etPDPn/StqwCYMqVmu062/K22j+YXKd5jOxmrV6zPEKzFNpZ7OzJYmex1TGn71d+XhY7SwOdY66az1zh3zssC3hNzGbf81kOnM6iUrhxLvOCdgAAAAAAAEwNYTs2uvFhn5+/HYsAmHa9uhC2q6bnbbUpbNet19LNWuPxsxw0Wi6sfamzlMWqfyBu0LG5TfsNGrZr2neWn/dZo9luupRDsv0DsgAAAAAAALAdpicVwDR48GGf792WVQBMuXqKmu2GGbg9SKBrloNGpTGyi9VSFooht8Ga/Jqeu4Vq8FDQUmdP4fzGyE5Cr+5mrV5t3EfwcbJK95xSQBYAAAAAAAC2g7AdG533sM+/tC2rAJhy3brb9/HtaLarhhgjO0iQbnXA8Nk0KjXbLXb2FIM7g4YLS+N156v5zFVzgy0w5QCRMbKTMciYZGG7ySo32wnbAQAAAAAAMD2E7djoWQ/7/LZtWQXAlCs32w0ethqbqtRt1xC22+nNdoV2uMVqqRjcGTRcWHruFlq2b5XXMbvP+ywZ5Hme5dfALCo9321fWwAAAAAAALCVhO1IklRVtSfJ333Yw+/YhqUATL1eXQjbTVOzXTlrN1CIaJZbvUpf31JnTxYLo14Hb7YrjbocfITsybX0s2yM7ETs9NfALNJsBwAAAAAAwCwQtuOkf5Xk0g2fd5O8fpvWAjDVuimMkZ2it9XGMbIDtLjNcqtXObSzp9woV68UQ5SDnbtdIGhhxNAfoxnkNbA6wKhZxme1FGQVtgMAAAAAAGCKTE8qgLGoquq7qqq6sOUx/2eSVz7s4d+p6/qL41sZwM5RF5vtJj9GttRs1zhGdoe3epXa4ZaqpSw2jKQcJFw1rlGXmu22105/DcyiYpDVGFkAAAAAAACmiLDdzvO9Sb5QVdV/rqrqxVVV7S/tWFXVV1RV9adJfjM5Ja1xa5If3+J1AsysXgphu214Wy2OkW04ZpAQ0Sw3rBVHvXaWGluyBnpextRst1j1D9vN8vM+S1Z3+GtgFpXaBhc77UY0AwAAAAAAwFaa3+4FsCX2JvmHJ/70qqr6bJIbkxzO+njYc5M8OUm/Brx7kryorus7JrNUgNlTGjdaVdOUYS/H7UrjGk/ZZ4ZbvUrtcIudPY0tWYOEq8Y16rIUINKmNhkrg7QY+l5MVDEkq9kOAAAAAACAKSJst/N1kjz2xJ/NvC3JP6rr+patXRLAbOul2/fxuUzTGNmynd5sVwrELVVLWdiqZjtjZGfKTn8NzKLS96TpNQsAAAAAAACTJmy38/xy1sfAflWSRwyw/7Ek1yV5dV3Xb9vKhQHsFKVmu852NNtVpTGy5Wa7wUJlmzd/TaNu3c1avdZ323qzXXkk5SCNf6VGtLajLktjZAdZA6MbJEin2W6yNNsBAAAAAAAwC4Ttdpi6rv8syZ8lSVVVZyW5NsnlWR8Zuy/rTXf3Jbk3yaeSfKyu6/4VTQD01UthjGwmH7Zr32s3YNBoRkNfKw3NcEudpcZxr4OEq0rjddsGgkrrWBbwmoiBvtcz+hqYVcXWSM12AAAAAAAATBFhux2sruv7krxnu9cBsNP0ChnlbWm2a1DXdao+zXejjEuddssNAanFak/mqvl0Mtd3FHCpte7UfcYz6rIUIGoKCzI+gzXbzWa746wqhRs12wEAAAAAADBNpisVAAAzoNRs18nchFeSNHXblUbJDhQqm9GwXVNY7WTArRx0Gz6A1TSetp+lwhjZWW0UnDUDfa99LyZKsx0AAAAAAACzQNgOAFrq1YWw3TY021WNg2QLYbsB2tNmdYTm8iBhu0JT1iBfcymA1TYQNErgj9EN9L32vZioUiulZjsAAAAAAACmibAdALTUbwRpknS24W21fdRu0BGasxk0amrtO9kmt9jp30I3yNjQ0vOy0DIQVAoQNYUFGR/NdtNntdhs1641EgAAAAAAALaSsB0AtFRutpuuMbLlZrtBgkabB8+mUam1r0on89VCknLQbZQQYttmu6VOaYzsSuq6FJNkXAYJVq7Vq+nV/YO1jF+xNbIwchkAAAAAAAC2g7AdALRUpxC225Zmu3LYri6F7QYIle20MbJLnaVU1fpzNcoI19Lz0nbUZWkNdXpZq1dbnYv2Bm2tm9XQ6ayp63psQVYAAAAAAADYSsJ2ANBSt9B21am24W21agjbFQrSBgmVrdVrxa9zmg3SjlUa+TrJZrumcN5ybZTsVht0THJptCnj1c1aeoUQc9sgKwAAAAAAAGwlYTsAaKncbDf5MbJNQ2RLY2RXB2zrGnS/aVIaI7vYWdzw8fDNduUwX9tmu/JozEGDYAxv8GY734tJaPqZ12wHAAAAAADANBG2A4CWenUhbLcNzXZDjZEdMMw1i6GvYvPchma7xWqx7z6DNdv1DyC2DQQtNew/i8/7rBn8NTB7gdNZ1DSuV9gOAAAAAACAaSJsBwAtlcYddrblbbW5266fgVu9ZjD0tVz42pY2NMktFMI7m40M7dbddLPWd1spwFfS1IS3YozsllvVbDdVmu41Cy1fWwAAAAAAALCVhO0AoKVys920jZHtb+BWrxkMGpXHyD4UbisF3ZratZLmsbqlAF9J0xjZ5RkMOc6andzuOIuMkQUAAAAAAGBWCNsBQEu9dPs+Pm3NdsUxsju52a6w5o3NdqXwzmZfb2MgqKGprp+5ai7z1Xz/68xgyHHWDPwa8L2YiKamwbavLQAAAAAAANhKwnYA0FK52W663laLYbud3GxXGMG6MbBTCu9sNlq0uX2r/ajLxap/u12pnY/xWek1txg+tN/svQZmkTGyAAAAAAAAzIrpSgUAwAzopX/YrtqGt9WqajdItlf3GsehbrQ6g0GjUmjnlDGyhWDcZgGspvDhMO1bpYY9Y2S33k5ud5xFpe/HYrXU+h4HAAAAAAAAW0nYDgBaKjXbzW1Ds11TDKWuT2+2W6tXBz73bDbblUI7G8bIFoJxm329je1bheBck2HXwegGDdFt1nbIeAwSkgUAAAAAAIBpIGwHAC2Vm+3mJryS9auWnR62W24xonQWW71KX9/SKc12hZDbJl9vc7Nd+1GXSx1jZLdDt15LL92B9p3F18Asamq2AwAAAAAAgGkibAcALfXq/kGdzrY025XDdnWfsF2b1rSVAcfNTpNyQ9ZDwbaFIRvlSmN156uFdKr2QcthQ3+Mps3zq2VwMkrfk2EaIwEAAAAAAGArCdsBQEulZrvODLyttgoazWDoq9hsV21ds92w7VvGyG6PVoHT3uwFTmdR+bXVvjESAAAAAAAAttL0pwIAYMrUdSFsNwPNdqutmu1mL/RV+vo2NtuVAjybPTfl1rwhw3aFMbJtRv3Snma76TPu1xYAAAAAAABsFWE7AGhpuprtWo6RbRE0Wp3BVq/lAUI7pdGUa/VacURwUh6ruzBk+1ax2W4GGwVnSbtmO9+LSRh3ayQAAAAAAABsFWE7AGipWwhkdaq5Ca8kqcpZu/TJ2hUDY/3MYqvXSt2/FW5jaKcpwNP0/KyOuX1rqXDccuFrYDzahEhn8TUwizTbAQAAAAAAMCuE7QCgpXqKmu2axsj202qE5oy1etV1XWy2W9o4RrYhwFMK1CXjb98qjZGdted91rQJ0DX9PDA+5ddW/9cIAAAAAAAAbJf57V4AAMySXt3rO541STrVdI2R/def/8epUuW8xQvzjINfkxee+6153aHXDHzm9xy+Lu89/LZUVZXLlx6VbzjnW/KUg88ex6LH6t7VL+VP7vrtfPLYR4pByI3BtqZw3Ms//73FAGNpfPBiZ7xjZD9+7EN52We+NVWVXLL4iHzt2d+Y55z5gk3P96773px33/fm3LZ805cfW+gs5qq9j8s3n/8Pc+nSlUOtc9o80D2aN9/zuvzlkXdnqbMnzz/7b+crz/z6VBtqHj997KN50z1/ki88+Jn06lO/b92sDXytjxx9b172mW/98ufz1XwesffqvOT8f5zL9zxq9C+GHF07kvceflvfbcO+tgAAAAAAAGCrCNsBQAulMFcyfc12vayPu71z5db8z7tfm/9592tbnbtOvR5MqpMvHP9Mfuu2f5+XXvbjuXb/00Za8zgt947nVTe/Inev3tm439LGMbINzXYnn7M2FoZutisfd/J5v2n58/m9O341VTp59plfV9z/3fe9Oa+98zdOP09vLZ849uHcePyzefkjXpVzFs4faq3T4vDavfmVm1+Z21ceChT+/p2vzmq9kued/eIkyRcevD6/fuvPZq1eHcs1N4bzuvVarn/gr/PLN/9kfvzKX85ZC+eO5Rq7Va/u5pdu/onidmNkAQAAAAAAmDbGyAJACw9vydqoU81NcCWTV6eXv7jvLdu9jFN8+thHNw3aJQ9rthtzgGfY8y0Vxsj2857D1zVuf/fh5u/Lse79+ejR9w98vWl03+rd+cWbXnFK0O6kt93756nr9cbJDxx5x9iCdiUP9Nbb9RjNFx68PretfLG4fdgRzQAAAAAAALBVhO0AoIXSKNFke5rtDs6f2dhuN263LpeDMdvh1uUbN92nk7kcnDvzy58vVkvZ29k/tjWcNT9cu1mb4zZ73m8b4PsyyD7T6p7VQ/nFm1+Ru1Zv67v97tW7cqR7X5Lk9pWbJ7Kmvzj81hztHpnItXaqWxuCdsnwry0AAAAAAADYKsJ2ANBCry6PGe1Uk39bPTB3Rh6193ETu95KvTyxaw1ipV7ZdJ/H7XtS9s7t+/LnnaqTJx54xtjW8OQDzxrquMfte/LAzV2rveavs9vwc9lmn2n0pZU78qqbfiyHVu9o3O/OlVuSJHVD++Q4rdYreee9b5zItXaq1V75ftJJJ0848PQJrgYAAAAAAAA2J2wHAC00N9ttzxjZ773kR3PJ4iOGPv6rzvyGfN8lPzpQ8Guz0NekrTSEdZLkiqWr8t0X/9Bpj//9C/5JHrPviSNdey7z+bYLvi9X77t2qOP3zu3LSy/7iezvHNx0327W0q3X+m7r1b3UDT+XXz7HDIbt7ly5Na+6+RW5Z+3QpvvesXwibDfC9fZ29m2+0wbvuO8Nm/4MUtYU3v2+S/5lzl24cIKrAQAAAAAAgM3Nb/cCAGCW9Bpas7aj2S5Jzpo/J6+48pdy1+ptuXv1rvTqbn791p8d+Pj/48KXpqqqPHH/M3PT8uez3HswXzz+ufyPL/3+aftOW7PdamE9+zsH86OP+Pc5f+GiVNXpY3b3zu3LP7v83+Se1UO540QjWhsL1WKu2HNVljp7Wh+70WP2PSE//+jfyc3Hb8gDvaM5tHJ7/utdv9l335XeSvbOnf6fboOG6LrpH9abVrcv35xfvvknc6R770D737Fy64mPhovbPX7fU/MDl73ixPfi2CnbPn70Q3nHfa8/7Zij3cP5wJF35LlnvXCoa+52paDio/dem6ccfPaEVwMAAAAAAACbE7YDgBZ6KQebqm0sjK2qKhcuXpoLFy9NXdfppNPYwnfSUrXny2G0hc5Crjoxkna+6v+fCKv1Snp1b9uChQ9XCus86eAzc8HixZsef87C+Tln4fxxL6uVuWouV+69Okly+/x5xf1W6uXszenNa4OG6Gap2e6W4zfmV255ZY52Dw98zB0rNydJ6iHDdgudpcxV87ly72NO23bl/2bv3sOjqu99j3/WTGZyIVdIIFwLiIpQFVG2iEEBRa1atdXaum3dtR63Vdt6OdrqtijWVmttS9sj3V6OVrp1e9zd3ahUi4qCilRBvFZECwoB5RIMhEtCZjKzzh9KzJD1m6w1t6zJvF/P4/O4Zt1+ycwQ43z4fEsO1N9anlW7vbfbvkXNj2lK1UzfvCfyiSm8Wxbsl+OVAAAAAAAAAAAAAO7wqSAAAB4ka7YLWr0zRnZ/lmUpHOh5JKwk43HJRlWNPk4AACAASURBVMpGbf+Mko0Y1uJmJK4fJXveooZgYdxts51hDK3fNO5dq99umOUpaCcppYbCroqTfO/LguU6tnqm476t0Y/11u7lad27UJnCsiErnOOVAAAAAAAAAAAAAO4QtgMAwINkbXEBH/1YdRs2M4btkgSPTAGZ3mAKoLkNG/pNsufNqVVNch+icxvK600ftr2v326YpT3xXcZjKoM1jo/v6PhEe+Ntsu3Umu3CVvKRwNNrvmx8jy9qfjSlexa6SLxvhWUBAAAAAAAAAADQ9/knFQAAQB6wkzTbWT4aIxly22xnCLUkC7uYRj/2BtNa8jWskzzk6BxMcjse1u242d6ypnWVfrfhRrXFW43HHFj6Rf1g+Gzj/i2Rj1IeI9tTQHNAaKAmVhzruO+Dvau1tm11SvctZMb3b56GZQEAAAAAAAAAAND3+ScVAABAHojJHGwKyh9jZCX3YTNTKC9ZWM9PzXZ9bQxlsnWbgkluQ3RuQ3m94b09b+nOjTcb2/skaWzZ4bp82CzVh4cbv0+b21MfJZtsjOw+M/t/xbiPdjvvTM2U+fr+BQAAAAAAAAAAQN9H2A4AAA/iedJs5yY4JKXWbBfNh2a7PG3GClgBY9DIFCx03Wzn07Ddqj2v6/cf/TRpY+L4fkfq0qE3KBwoVsAKaFB4iONxmyOph+16GiMrScNLRuvgssMc9721+xVtiXyU8v0LUV97/wIAAAAAAAAAAKDv808qAACAPGDLHLYL+OjHashls50plBcOJGlYy4Nmu3wO65iCjqaQo/uwnf/GyL69e4Xu+uhnitrOI3Il6fDyo3XJ0OsU6vKarA8Pdzx2S2Rj1sbI7mNqt7Nl67nmBSndu1AZ3795OgYaAAAAAAAAAAAAfZ9/UgEAAOSBZMGmgI+a7dwGh0yhlqBVpKCKHPdFkgSjcs0U0srnsE7IEHQ0N9u5HCObZARyb3h91990z0e3qyPJ+idWHKv/NeRaFVmhhMcHhYc6Hv9ps12KYTuXr5lDyiZoSPgLjvte3vmcdnXsSOn+hcj4/s3jsCwAAAAAAAAAAAD6Nv+kAgAAyAPJm+2COVxJcm6DQ6EkoRZTux3Ndtlleu6MYTuXITo/Ndu9uvNF3ffxHYrJvKZ/qjxeFw6+WkGre+izPjzM8ZymyOaUx+UWB3oeIytJlmXpxP5nOe6L2hE9v+OvKd2/EDFGFgAAAAAAAAAAAPmGsB0AAB7E7SRhuz7UbJdsnykgk2u2bRtb9vK52c703Jm+766b7VIMoWXayy2L9YdNcxRPElw9puoEXVD/AwUt5wDrIEPYLqYONUU3p7QuLwGvoyobVF00wHHf8zue9FUg1c8YIwsAAAAAAAAAAIB8459UAAAAeSCWtNnOPz9W3YZVkgWMjKEvnwSJOuwOY9NgssY+v/PcbOcyROeHZruXdjyj/9j8u6QNkVOrT9H5gy5XwBC0k6RB4SGyZDnu2xtvTWltXgJeRVZI02tOd9y3J7ZLf2t5NqU1FJq+2EwJAAAAAAAAAACAvs0/qQAAAPKAnSTYlCwclGumEbD7K04Sagn5vNkummQdYcvd1+9H5mY75xY/1812LsfNZsvz25/UQ1vmypZtPGZGzZf1jYGX9NgSGQqENSA0MKPrcztGdp+GqpNUEih13Pfc9scV90mToF/11WZKAAAAAAAAAAAA9G2E7QAA8CDZ6EtfNdu5bIYyBeqSXcMvzXbJ1pHPzVhev+9uQ3S9OUb22ebH9cjWe5Iec1L/r+rsuu/Ispwb6/ZXHx6eiaV1SvZecFIa7KeGqpMd9zVFN+uN3a9kYll9Vl9tpgQAAAAAAAAAAEDf5p9UAAAAeSBuO4dDLFmuQ0K5ELbctXSlMkY2WaNcLiVr2Avlc7OdIfRl+r67brbrpTGyCz/5b/256f6kx5w64Os6s/Zbnt5Dg8JD011agmQtjybTa05XQM6Nloua58u2zS1+ha6vNlMCAAAAAAAAAACgbyNsBwCAB6ZmO1Pgpre4bXZLNq7RtM8/zXbOIyil/G62CxlGABub7Vw21uV6rKlt2/rLtof1+LYHkx53Ru35Or32PM9h1frwsHSW103Y4xhZSaoJ1eqoyqmO+9bt/YfWtq1Kd1l9Vl9tpgQAAAAAAAAAAEDfRtgOAAAPTIGlgOWvH6nJQnQJxyVttjOFvswht1xK3oyVv2EdY8jR2GzncoysctdsZ9u2Htv2oJ785JGkx3217ts6ZcDXUrpHfXFmx8im+po5seYs475nmh9NdTl9XrJmynx+/wIAAAAAAAAAAKBv81cyAAAAnzM32/nrR6opKNftuFSa7fwyRjZJM1Zej5E1BCDNzXZux8jmptnOtm39uekPerr5z0mPO3fgxTqxvzmo1pN6H4yRlaRhJSM1ruwIx31v71mhTe0b0llWn0WzHQAAAAAAAAAAAPKRv5IBAAD4XNw2hO181mwXykCzXchj6CvXTKG/kBX2PJLUT7yGHONyF6KzZWd9lGzcjuuRrffoue2PG4+xZOmfB12qaTWnpXWvfsEKVQSr0rrGPkVWSAEr9VHQyUKDyb4XhYxmOwAAAAAAAAAAAOQjfyUDAADwOXOzXepBnWxw2wzVF5vt8r0VK1vNdp8em72wXdyO6+Et/64XdvzVeIylgL5V/301VJ+ckXsOCg/LyHXSDXcdXHaYhhWPctz3ys7FaunYntb1+yLT69mSpSIrlOPVAAAAAAAAAAAAAO4QtgMAwANTs53ls2Y7t+GhZME0r6GvXDOF/vK9Fcsccow4Pu4lQBdz2YLnVcyO6Y+bf6eXWp4xHhNQQN8efKUmV83I2H3rMxW2SzOgaVmWZhra7TrsDi3Z/kRa1++L+mozJQAAAAAAAAAAAPo2fyUDAADwOdPIzoDPfqQWB0pcHZdKs13UJ8120bhz+KyvNttFM9Js5/5YL9d8YNMcLd+5xHhMQEFdNOQaTao8LqP3rg8Pzch13L5fkplYcaz6F9U57ntxx0LtjbelfY++JNJH378AAAAAAAAAAADo2/yVDAAAwOdMzXYBvzXbuR0jS7Od73gd3+ulrS7TY2Q77Kj+78e/1MpdS43HFFlF+tehP9IRFVMyem9Jqi8enpHrZOI1E7SKNL3my477WuO79beWZ9O+R19iCu3m+/sXAAAAAAAAAAAAfVtRby8AAIB8YssQtvNZfj1khV0dlzRs5zH0lWum0F++N2N5DTn2VrNdNB7RvR//Qn/f86rxmJAV1r8OvU7j+03M2H27GpShZrtMvWaOrZ6pJz/5f2qLt3bb99z2x3Vc9ZcUtIIZuVe+M72eQ3n+/gUAAAAAAACAbLJtW/F4XLZt9/ZSAKAby7IUCARkWVZvLyWrCNsBAOCBqRksb5vtko2RDTgH9kzjH3MtYjuvw23Q0K+ShRxt2+72H6de2uoy1WwXibfr7o9u07utbxiPCVvF+u7Qf9PYfodn5J5OaopqFbaK0w6AFlvpj5GVpJJAqaZWf0lPN/+5275Polv1+q5lOqpyakbule9M799wnr9/AQAAAAAAACDTotGoWlpa1NLSomg0StAOgK9ZlqVQKKSqqipVVVUpFAr19pIyzl/JAAAAfC5ubLbzV1uV21GMyYJpIWPoa29Ka8q0Qmu2k6SoQ0Ap7mWMrNJvttsbb9PvP/pp0qBdsVWi7w27MatBO+nTkGsm2u0y2aY2reY0BQ1/n+WZ5vn8T5DPRPvo+xcAAAAAAAAAMqW9vV2NjY1as2aNmpqaFIlE+H/MAHzPtm1FIhE1NTVpzZo1amxsVHu7PyanZQphOwAAPLBtQ9jOZ812btrdwlZx0grfZONM/fDLXNTQZuY2aOhXppCj5DzCN5fNdm2xVs3d+BO93/q28ZiSQJm+P3y2xpSNT+tebtWHh6V9jeIMBryqi/rrnyqPd9y3of0Dvd/294zdK5+Z2gjz/f0LAAAAAAAAAJkQjUbV2NioPXv29PZSACAte/bsUWNjo6LRaG8vJWP8lQwAAMDnzM12/vqRallWj6GVcCD56EzT+XHFM9KQli5Ts13IMP42XyRr9nL6mmO2++fCy7H7a43t1v/ZOFtr2941HlMWKNcVw3+i0aVjU76PV5lotgtnaIzsPif0P9O4b1Hz/IzeK1/11WZKAAAAAAAAAEhXLBbThg0b1NHR+5/FAEAmdHR0aMOGDYrF0isG8QvnGVcAAMBR3NAMFrD8NUZW+jRMF4mZK3nDPbTf9RT6KgqGUl5bJkQcRqpK+d+M5XWMbC6a7XbHdur/bJitDe0fGI8pD1bqB8Nu1rCSUSndI1X1xcNdHWfJki3nRsZMB7yGFI/Q+H5H6p09K7vte2fPa/q4fb2GFH8ho/fMNzTbAQAAAAAAAICzTZs2dRu5GAgEVFlZqcrKSoVCIQUC/iqBAABJisfjikaj2rlzp3bu3Kl4/PMim/b2dm3atEnDhqU/taq3EbYDAMCDfGm2k9IL0316frJxphGVpbSqzIn20WasZM+bc7Odh7CdvIftdnXs0G833KSPI+uNx1QGq/WD4T/RkOIRnq+frnqXzXZhq1jt9l7HfZkcI7vPzP5nOYbtJGlR82O6YPAPMn7PfEKzHQAAAAAAAAB0F4vFtGvXroTHwuGwvvCFL6ioiHgHAP8Lh8Pq16+f6urqtH79ekUin5eJ7Nq1S7FYTMGg/4psvPBfMgAAAB+L24awneW/H6nphOl6Ot8UlMmlvtqM5XmMrIeRvl7HyLZ0NGvOhh8nDdpVFfXXVSN+1itBO0mqCw2R5eI/aYuTjE3O9BhZSTqw9IsaUTLGcd+KnS9oR/STjN8zn5jev6E8f/8CAAAAAAAAQDr27NmTsG1ZloYPH07QDkDeKSoq0vDhw2VZVsLj+/85l4/8lwwAAMDH4oZmMDdhn1xLJ0zX0/m+CNsZ1hDqodHP74IqMjYlOgWUvDTbmcYgO9ke3aY5jT/W5shG4zH9i+p09fCfaZDLdrlsCAVCqgvV93hcstd7NtrULMvSzJqzHPfF1KHFO/6S8XvmE5rtAAAAAAAAAKC7/VvtysrKFA7n9+ceAApXOBxWWVnivLTdu3f30moyx3/JAAAAfMzUbBe0/Fd122OYLknTV0/nRw2tVLlkbLbL87COZVnGr8F5jGzmm+0+iW7RrzfcoK3Rj43H1IYG6aoRP1NdeLDr+2eLm7Bfsva6bLUhTqg4RgNCAx33vbjjKbXFWrNy33wQtSOOj/c0/hoAAAAAAAAA+rL9G58qKip6aSUAkBnl5eUJ24TtAAAoMHE5h+3ystmuh1BLkRUy7vNzs12+h+0k83MXsfd2e8xLs13M0MzY1dbIJs1p/LE+iW4xHjMwNERXDf+ZMUiWa/XFw3o8JtkY2WT70hG0gppRc4bjvr3xVi1reSYr980Hffn9CwAAAAAAAACpsG1bsVji/8cvLS3tpdUAQGbs32wXi8Vk23YvrSYz/JcMAADAx0xjOAOW/36khnpstku+P2AFjCNZTa1yuWRuxsr/sI7puYvEu3/NMWWu2W5z+0bN2XCDmjuajMcMDg/XVSN+qppQrev7Zlt9uOewXa7HyO4zpepElQXKHfc9t32Bp2bCvsTYTNkH3r8AAAAAAAAAkIp4vHvhQzDov8lKAOCF059jTn/e5RP/JQMAAPAxU7NdUP77ZafnZrueQy1expnmWl9uxjI32zmNkfXQbJfk2I/b1+s3G36slo5m4zFDi0fqyuE/VVVRf9f3zAU3YTtTcFTKbsCrOFCi46q/5Lhve8c2rdz1Utbu7Wd9+f0LAAAAAAAAAKlwanqyLKsXVgIAmeP051i+N9sV9fYCAADIJ3HbMEbWh812xWk220mfhpD2aFe3x5/f8Ve92/qGwlaxDig9RBMqJitoZf8/K+J2XG/tXq41be+o3WGkqtQ3mrFMz83ync/ro/Z1CY+9s2el6+v+cfNvtbr1Tcd9b+1ert2xncZzhxeP1veHz1Z5sNL1/XJlUHhoj8cka5/M1hjZfabVnKZF2x9Vhx3ttm9R83xNqjgurf9hYtu23tmzUu+1vq22+B7P55cFyjWu3xEa2+/wlNfglbGZkrAdAAAAAAAAAAAAfIywHQAAHtiGZruAD8tiewqthK2eA0ama6xpe0dr2t6RJC3Z8YQO33W0LhpyjYqskPeFuhS343pw8516eedzSY9L1mCWL8KGr2H93n9o/d5/pHzdDrtDy1oWeT5vZMlB+t6wG1UWdB6H2tvKguWqDNZoZ2x7SudnOyhaWVStoyun6aWWZ7rt29i+Tqtb39Qh/SakdG3btvWnrfdpyY6/pLXGRdsf1ZcGnKsv1/5zWtdxy9RsF+oDYVkAAAAAAAAAAAD0Xf5LBgAA4GOmMZwBy39jZHsKrYQDPYfS3LbEvbn7Fb27x7kxLVPW7/1Hj0E7qW80Y/npazig9BD9YPjNvg3a7eOm3c7EUvZr+E/sf5Zx3zPN81O+7ubIxrSDdvv89ZP/0o4kY4QzxbZtx5HIkjloCgAAAAAAAAAAAPgBYTsAADyI51GzXWmgLOn+kh72f3pMqev7vd/6tutjU/Gey+t7WbNfuXlucuHgskP1vWE35cX3tL54WNL9ycJ4/YIVmV6O4/0PK/8nx32rW9/Uxr0fpnTdf7T+PZ1lZf16TkwjZCUp5CIEDAAAAAAAAAAAAPQW/yUDAADwMds2hO0s//1IPbDsi0n3H1R2aI/XcHPMPnvjra6PTYWb69cU1ao2VJ/VdeRCT89dLowrO0KXDv2xigM9jxv2g/H9JibdP73my6oq6t/t8cHhEeofqsvWshKcWGNut1u0/dGUrtmW4ffd3nhbRq/nxNQQKklFWR7pCwAAAAAAAAAAAKTDf8kAAAB8LCbDGFn5b4zsF0rG6J8qj3fcd2zVTA0OD+/xGg3VJ6s+nLwxbJ9I3HksZKb0dP2AAvpq3bdlWdkfCZptkyqmamTJQb12/8PLj9YlQ6/31Tjbnnyx35EaV3aE476T+5+j6qL+OrvuwoQWyiIrpK/UXZCrJeqA0kM0quRgx32v7lyq5miT52uaxrGmKtvvY0mKqcO4LyDCdgAAAAAAAAAAAPAvPs0CAMCDfGq2C1gBXVD/Ax3ab5Leb/u79sbaVBbsp4PKDtWE8smuQmlVRTW6esStWrlzqdbv/YdidlyN7Wu0JfJRt2MzHfrxcv1T+n9Nh1ccrS+UjMnqGnKlNNhPPxh+s1buXKoP9q5WRzwxnLQrtkOrW99M+fpBFWlixbHdHi8JlOqgsi9qYsWxeRdaDFhBXTrsx1q+c4k+aFutSDyi8qIKjSs7QuM+a707qnKqakOD9Obu5QpaQU0on6xhJaNytkbLsnRi/zN178e/6LYvrpgWb/+Lzh54oadrmsJxVUX9dVCpuZny3dY3tDvW0v16WX4fS8mb7YKW/4LLAAAAAAAAAAAAwD6E7QAA8CAuQ9jOp2WxASuoIysbdGRlQ8rXKA9W6viaUzu35zfN0zPN87sd11vNdsdWzdQZdedn9d69oSRQqmOrZ+pYzey274O21VrdmHrYrjxYoQuHXJXO8nwpaAV1TNUJOqbqBOMxI0sP0sjS3m0NrAsNVlN0U7d9L7U8rVMHnKvSYD/X1zOF40aXHJz0Of7thhv1Xutb3a+Xi2Y729xsF2SMLAAAAAAAAAAAAHzMn8kAAAB8Kp5HzXbZEracR4v2VrNdyLCevixslaR3fh6Nh+1rAlZQJ9Sc4bhvb7xNL+54ytP1ooZwXKiH59j0Po7aEU/3T0WcZjsAAAAAAAAAAADkqcJJBgAAkAFxOYdEAiqcgIgpqNVbzXaFGBwrTvNrLsSAop9Mrpqh8mCl477FO/6iDjvq+lqmEKopTLdPKBB2vl4umu0Mf45KNNsBAAAAAAAAAODWyJEjZVlW5z9Llizp7SUBBYGwHQAAHtBsl6zZLruNWKbGrbDlHBrqy8IBmu3yWThQrOOqv+S4r6WjWa/ufNH1tSJxw/vCEKbr3N9LDZVSD2NkCyi4DAAAAAAAAAAAgPxTOMkAAAAyIC7nsJ1VQD9STUEt0zjLTKHZ7nM9tZb1eH4Bfs/85vjqUxUyBEUXNT8q27ZdXSea4njl3nofS1KMMbIAAAAAAAAAAADIU4WTDAAAIANMzXbBAmq2M4V4st2Ileq4zL4o3TGyhfg985uKoipNrprhuO/jSKNW7XnN1XXMzXY9hO382mzHGFkAAAAAAAAAAAD4WOEkAwAAyACa7czjKU3Nc5lCs93nAlZQRVYo5fN7GjGK3Dih5gxZshz3Ldr+qKtrpBpCDRnfx9kdBy3RbAcAAAAAAAAAAID8VTjJAAAAMiBuCIkECiggkqwRy+3oy1QYQ0UFGLaTpGKrJOVzabbzh4HhITq8/GjHfe+1vq3GvWt7vEaqIVTTa8A0ljaTYkrSbCea7QAAAAAAAAAAAOBfhO0AAPDA1GxXSGNkk4V4onb2WrFMoSLTWNu+ztRM5u7cwvye+dHM/l8x7lvU3HO7nbnZLvnrw/Q+znZDpWRutgsoIMtybvoDAAAAAAAAAAAA/IDqCAAAPIjbjJFN1ooWsdsVVuaDXHE7bgzyFWyzXYBmu75gVOnBOqD0EK1te7fbvtd2vaQzo9/UgNAg4/lRw9jXngKVyRoqsy1mOzfbBS1+NQEAAAAAAAAAwG9s29Zrr72m1atXa+vWrWpvb1ddXZ2GDh2qhoYGlZeX9/YSU7ZhwwatWLFCGzduVFtbm2pra3XooYfqqKOOUiCQ3ue/W7du1YsvvqiPP/5YbW1tGjJkiEaPHq3JkyenfW0nq1at0ttvv62mpibt3LlT/fv31+DBg9XQ0KABAwZk/H6FjE+0AADwwDY02wUKKWyXJMQTibdLWZio22FHzesp0OBYOl93oQYU/erEmrMcw3ZxxfXc9gX62sD/ZTw39WY75/2m8F4mmZrtggU0jhsAAAAAAAAAAL/btm2bbr31Vj344INqampyPCYcDmvGjBmaPXu2jj76aFfX/fa3v6158+Z1bn/44YcaOXKkq3OXLFmi6dOnd27fdNNNmj17tvH4rhN1jj/+eC1ZskSStGzZMt1000167rnnFI93//x30KBBuuGGG3T55Zd7Dsa9/vrruvbaa7V48WLHaw8bNkyXXHKJrrvuOhUVFWn27Nm6+eabO/cvXrxY06ZNc3WvTz75RHfccYcefPBBffTRR47HBAIBTZkyRTfddJNOPPFET18LnBVOMgAAgAwwjj8soJBIspBXtsbIJhttaQoN9XU02/Udh5ZP0qDwUMd9y3YsUmtst+O+uB0zBlF7ClSaxi/npNlOhrAdfw8IAAAAAAAAAABfePTRRzV69GjNmTPHGLSTpEgkooULF2ry5Mm65JJL1NHhPN3GT2699VYdd9xxWrRokWMYTpK2bNmiH/zgBzrnnHMUibj//PPXv/61Jk2apGeffdZ47Y0bN2rWrFk6/vjjtWXLlpS+Bkn64x//qNGjR+v22283Bu0kKR6Pa+nSpZo5c6a+9a1vefp64IxPtAAA8CBOs13PzXZZkCwAVKjBMZrt+o6AFdAJNWfqP7f8vtu+dnuvXtjxV50y4Gvd9kWShFt7en2YXgORnDTbmcbIFk5oGQAAAAAAAAAyze7okJo29vYy+r66YbKK+nbU5v7779fFF1/cLSx2wAEHaNy4cSorK1NjY6OWL1+uWOzzv2B/zz33qLGxUQsWLFCRT79Hv/zlL3XDDTd0bh988ME6+OCD1a9fP23atEkvv/yy9u7d27l//vz5mjVrlm6//fYer/2rX/1K11xzTbfHx40bpwMPPFDFxcVqbGzUihUrFIvFtGzZMp177rk67rjjPH8dN954o2655ZaExyzL0sEHH6wDDzxQFRUV2r59u1599dWEsOSDDz6oTZs2aeHChb59jvIB3zkAADywbUPYziqcsJ2pEUvKYtguabNdYQbH0vm6CzWg6GdHV07Tgm0PaVespdu+Jduf0Ak1Zyq0X4tjNI33hWnMbEwditkdClrZ+zWBhlAAAAAAAAAAyIKmjbLPPbi3V9HnWf/1njR4ZG8vI2veeOMNXXrppQlBuwkTJmju3LmaMmVKwrFNTU2aNWuW7r777s7HFi5cqBtvvFG33nprztbs1ttvv60XX3xRknTWWWfptttu09ixYxOO2b59u66++mo98MADnY/96le/0qWXXpp01O3KlSt13XXXJTw2bdo03XnnnRo/fnzC401NTbrxxht111136YUXXtCqVas8fR3z5s1LCNoFAgFdfvnluuaaazRixIiEY23b1mOPPaYrrrhCjY2NkqRnn31Ws2bN0m233ebpvvhc4SQDAADIAGNIpIB+pBZZRbIMX2+2RlDSbNddOJ0xsgU6etfPQoGwptWc5rhvZ2yHlu98vtvj2Wi2k7LfbmdutuPvAQEAAAAAAAAA0JsuuuiihDGjDQ0Neumll7oF7SSprq5Od911l+64446Ex2+//Xa9/fbbWV+rV83NzYrH4/rhD3+o+fPndwvaSVJNTY3+8Ic/6Mwzz+x8LBaL6b777kt67csvvzxhhO5Xv/pVPfPMM92CdtKn37d///d/1y9+8QtJ0rZt21x/DevXr9ell17auV1cXKwnnnhCv/vd77oF7aRP2+7OOussrVixQmPGjOl8/I477tCHH37o+r5IVDjJAAAAMsA2jZEtoEYmy7KMrVg02+VOsZV62C5ZOyF6z9TqU4whuUXbH1N8v2bNZO+L/Vvwuu1P8hqIJgnxZUJMzqHloArnz1EAAAAAAAAAAPxm8eLFeu211zq3Kysr9cgjj6isrCzpeddcc41OP/30zu14PK45c+ZkbZ3paGhocNXo9rOf/Sxh+7nnnjMeu2LFCr3yyiud24MHD9b999/f45jWa6+9VieddFKPa+nqjjvuUFtbW+f2nDlzdMopp/R43sCBA/Wf//mfnduxWMy3z1E+IGwHpzTaMAAAIABJREFUAIAHcVPYrsB+pJoCbrlutgsoWLBtWOm00xVqQNHvyoOVOqbqBMd9WyIb9fc9ryY8Fk2j8THZ6ydbodl9aLYDAAAAAAAAAMB/5s2bl7B9+eWXa8iQIa7O/fnPf56w/fDDD6u9PbufN6TihhtuUCDQ8+e648ePTxgb+8YbbxiPffjhhxO2v/e976mqqsrVembNmuXqOEnas2eP7r///s7t0aNH65JLLnF9/qRJkzR16tTO7ccff9z1uUhUWMkAAADSFDeNkbUK60eqMWyX42a7Qg6NpTVGlmY73zqh5kzjmOZFzY8lbKfT+JjsNZCt0Ow+pj9HgwXUEAoAAAAAAAAAgN8sXbo0Yfub3/ym63PHjx+viRMndm7v3btXK1euzNjaMqG0tFQzZsxwffwhhxzS+e+tra3avXu343HLli1L2D733HNd36OhocF1oHHp0qUJrXbnnHOOq+BgV9OnT+/89/Xr16uxsdHT+fgU9REAAHhgbLYrsJCIKaiTrZCOqcGrkENj6YyRLeSQot/VhgfpiIpj9Nqul7rtW9P2jta1va+RpQdJkiKGca9uGh9DSV4D2W+2M4Xt+NUEAAAAAAAAAIDesH37dq1du7Zzu7q6OiFs5saUKVMSxtCuWLFCU6ZMydga03XAAQcoHHY/OaqmpiZhu6WlReXl5d2Oe/PNNzv/vbq6WmPGjPG0rqOOOspVy9z+YcghQ4Zo3bp1nu61/9f/wQcfaMSIEZ6uAcJ2AAB4ErcZIyuZgzrRuHP4J10Rw3XTGaWa70LpjJEt4JBiPpjZ/yuOYTtJeqb5UV089IeS0mt8DFvm10/UEOLLlJgMY2RVWKFlAAAAAAAAAMioumGy/uu93l5F31c3rLdXkBVNTU0J2wceeKAsy/J0jbFjxyZsb926Ne11ZdL+4bmehEKhhO1oNNrtmD179mjv3r2d26kE19yes2HDhoTtK6+8UldeeaXn+3XV3Nyc1vmFirAdAAAemJrtTGMf+6pcN9uZrlvIobHidMbI0mzna18oGaMDS8frH23vdNv3xu6X1RTZpLrw4CSNjz0HMQNWUEVWkTrs7sG3bI+RNTfbEbYDAAAAAAAAgFRZRUXS4JG9vQzkqe3btydsV1VVeb7G/uf4LcjldeSqGzt27EjYrqio8HyNyspKV8d98sknnq/dk127dmX8moWgsJIBAACkKU5IRJI5rJWt8ZPpNHj1VeF0xsgWcEgxX5zY/yuOj9uK67ntCySZGx+TjYhNOM4Ums36GFlDsx1jZAEAAAAAAAAA6BW2bSdse221c5KJa/hdcXHiZy2RiPfpQW7PSeXaPdn/eYc7hO0AAPDA1GwXsArrR6qpOSvXzXamsFAhKE4jaFjIIcV8Mb7fRA0OD3fct6xlkXZ37Ey78THXodl9aLYDAAAAAAAAAMBf+vfvn7Dd0tLi+Rr7n+N1bKsbsZjzZwy9Zf+vcf+GQDfcNgDW1tYmbC9btky2baf1z7e//W3P6wVhOwAAPInbjJGVaLbzg3Ta6YqsUAZXgmwIWAGd0P9Mx31RO6IXdvw17feF6TUUtTP/N6O6iolmOwAAAAAAAAAA/KSuri5h+/333/d8jffeey9he+DAgY7HFRUlfh7Q0eH8uYGTVMJs2RQMBjV06NDO7Q8++ECtra2ervH222+7Om7QoEEJ26k8R8iMwkoGAACQJtMY2UCB/Ug1hXRy3WxXyONQw4HUxsiGrHDBNTHmq0kVx6sq6Py3vpbseFJ7Yrsc95maJ7sdZwrNZul9vI+x2U402wEAAAAAAAAA0Btqamp0wAEHdG7v2LFD7777rqdrLFu2LGF70qRJjsdVVlYmbO/YscP1Pd555x1Pa8qFyZMnd/57PB7X888/7/rc5uZmvfnmm66OnTJlSsL2008/7fo+yCw+aQUAwAPzGNnCConkutkuSrNdN6mOkS3k71m+CQVCmlZzuuO+3bEWvbJzseM+t89xyDQOOutjZGm2AwAAAAAAAADAbxoaGhK2H3roIdfnvvvuu1q5cmXndklJiY488kjHY/dvvFu1apXr+zz55JOuj82VE088MWH73nvvdX3uvHnzFIm4mzh0wgknKBj8/DPpxx9/XFu3bnV9L2QOYTsAADywjWG7wvqRGjKOn8xOSKfdFLYr5GY7K/VmO+SPqdUnq9jwXO+KtTg+7vY5NoXysvU+3sfUbFdooWUAAAAAAAAAAPzkggsuSNi+8847tXnzZlfnXn/99Qnb3/jGN1Rc7Pw5xMSJExO2FyxY4OoeTz31lJYvX+7q2Fw6//zzVVFR0bk9f/58PfXUUz2e99FHH+knP/mJ6/vU1NTo/PPP79zevXu3rrnmGm+LRUYUVjIAAIA0xWxD2K7AfqSam+3c/c0Lr4xjZAOFGxxLtaGO9rD8UhYs17HVMz2d4/a1YRwHnfVmO8MYWcJ2AAAAAAAAAAD0mhkzZmjChAmd2y0tLTrvvPPU1taW9Lw5c+boscce69y2LEtXXXWV8fhjjjlGZWVlndvz58/Xq6++mvQe//jHP/Qv//IvPX0JvaKiokJXXHFFwmPnnnuuFi92nlAkSevWrdPMmTM9jdCVpNmzZyeEGP/jP/5DP/rRjxSLOX/2YrJq1Sq98MILns7B5worGQAAQBps207SbFdYIRFjSCdLjVim8E8hj0RNOWynwnqt9gXTa77sKdDrtvHRFFaN2NkJze4Tk2GMrAiCAgAAAAAAAACQqs2bN2vdunUp/bPPfffdp3D4888PlixZoqlTp+qVV17pdr9t27bp8ssv19VXX53w+A9/+EMddthhxnVWVFTo61//eud2LBbTaaedpqeffrrbsZFIRPfee68mT56sLVu2qKamxsu3JGdmzZqlQw89tHN7586dOuGEE3Tuuefqv//7v/XWW29p9erVevrpp3XllVdq/Pjxevfdd1VSUqIzzzzT9X1GjRqle+65J+GxX/ziF2poaNCCBQvU0eH8GYz0acBv7ty5mjFjhsaPH6/nnnvO+xcKSeITLQAA3DIF7SSa7fbJViOWaaylaZxtIUh1hC7NdvlnQGigjqxo0Ipd7v6GkdsgpnEcNM12AAAAAAAAAADknfPOOy/lc23blvTpiNc777xT3/3udxWPf/rZ6MqVKzV58mSNGTNG48ePV0lJiTZs2KDly5d3C3fNnDlTt9xyS4/3u+WWWzR//vzOZretW7fq5JNP1pgxY3TYYYepuLhYW7Zs0SuvvKI9e/ZIkurr63X77bf7suEuHA7riSee0IwZM7RmzRpJn35P//SnP+lPf/qT4zmWZWnu3LlqbGzs1gyYzAUXXKDNmzfr+uuv73yOXn75ZZ1xxhkqKyvTEUccoUGDBqm0tFS7du3Stm3btGrVKs8tejDj01YAAFyKE7brFLZMjVg02+VKwErtNUegKT+d2P8s12E7tyHUXDdU7hOzDc12vDYBAAAAAAAAAOh1F198sWpqanThhRdq9+7dnY+vWbOmM0jm5Dvf+Y7uuusuhUKhHu8xdOhQ/fnPf9ZZZ52lXbt29XiPUaNG6YknntCWLVs8fjW5M3z4cL344ou67LLLNH/+/KTHDhgwQPPmzdNpp52mH/3oRwn7KioqerzXvvbACy+8UJs3b+58vLW1VS+99JKr9fq1JTAfFFYyAACANMTtJGG7AguJ5LrZzhT+SbXdrZDRbJefhpeM1sFl5sr1rtyGUI1jZOPZHSMbNzTbBRhxDAAAAAAAAACAL5xzzjlau3atrrjiCtXW1hqPC4VCOumkk/TSSy/pvvvucxW022fGjBlavny5zjzzTGObW11dna699lq98cYbOuSQQzx/HblWX1+v//mf/+kM3Y0bN07V1dUqKSnR6NGjdeKJJ+ruu+/W2rVrddppp0lSt8a5qqoqV/c65ZRT9OGHH2ru3LmaMGFCj414oVBIU6ZM0ezZs/X+++/riiuuSO2LBM12AAC4lbTZLsWWsXxlCrmZxr2myxT+KeRmu1QFCTTlrZn9v6L3Wt/q8ThT82S34wzvn2y9j/eJydRsx68mAAAAAAAAAAC4tW7duqxef+DAgfrNb36jX//611q5cqVWr16tpqYmtbe3q7a2VsOGDVNDQ4OrJjaTsWPH6tFHH9W2bdv0/PPPa+PGjWptbdWgQYM0atQoTZ06VUVFn39+MG3atM6Rt254OXZ/DzzwgB544IGUzm1oaFBDQ4OrY1etWtX575ZlaeDAga7vU1JSossuu0yXXXaZmpub9fLLL2vTpk1qbm5WNBpVeXm5Bg4cqIMOOkhjx45VWVmZ568F3fGJFgAALpnamKTCGyMbMoR0OuwOxexYxsdB0myXOYzqzF+HlE3QkPAX9HFkfdLjTO/PbseZxshmudkuZvizlNcmAAAAAAAAAAD+EwgENGnSJE2aNClr96itrdXZZ5+dtev71Z49e/Taa691bh900EEphxf79++vU089NVNLQxKFlQwAACANycfIFtaP1GQht6id+aCOaTwtzXbe0R6WvyzL0on9z+rxOLchVFMDnincminmsB2vTQAAAAAAAAAAUDjmzZun1tbWzu1jjjmmF1cDt/hECwAAg9bYbn3cvl52l22TQIGN5kwWcntvz1sqC5Z3bg8KD1VlUbWkT6uam6Kb1NKxXUVWSMOKRykUCCW9V8zuUFzO4Ry34zLxOdrD8ttRlQ16fNuD2tHxifEYtyFU03Efta/T1sjHqgsNlmVZKa0zmZhtGCNbYH+OAgAAAAAAAACAwrVx40bNmjUr4bELLrigl1YDLwjbAQCwn5gd00Ob5+qVnUtky9xm1xXNdp+7++Pbuj32xX5H6Yzab+q+TXdoS+SjzsdDVlhfrfu2jq9xrjS2bVsPb7nLvA6a7TyjPSy/FVkhTa/5suY3PWA8xm0I1TRGVpJmf3iZBoWH6rKhP1ZdeLDXZSZlCs/y2gQAAAAAAAAAAPnqz3/+s1auXKmrrrpKdXV1SY99/fXXdfbZZ6u5ubnzscMPP1zTp0/P9jKRAXyiBQDAfp765L/18s7nPJ1jFdhkdq8ht7/veVV/3/Nqt8ejdkSPbL1H9cXDdXDZod32v9TytJa1LDJeN1lYCM5oD8t/DVUz9ddPHtHeeJvj/nSb7fbZEvlIczfeoptGzc1ow515jCyvTQAAAAAAAAAAkJ927dql2267Tb/85S91yimn6IQTTtDhhx+ugQMHqqioSM3NzXr77bf1l7/8RQsWLJBt253nhsNhzZs3rxdXDy8I2wEAsJ83dr/s+ZwAYbu0vLX7Fcew3Ru7kj8XNNt5V/HZSF/kr9JgPzVUnaxF2x913O82hOqmAW9r9GNtjmzU4OLhntaYjDlsx68mAAAAAAAAAAAgv0WjUS1YsEALFixwdXxpaan++Mc/6vDDD8/yypAphZUMAADAhe0d2zwdXxIoVU1oQJZW40/FVon6FyWvP/ZiR7TZ8fFkz0VpoJ+qi/pnbA356Ct1/+L4+OkDztPA0BDHfRMrjs3mkpAj02tOV8ChpTCgoAaFnZ/7/Q0uHuHquJYO5/dnqmLqcHycZjsAAAAAAAAAAJCvqqurFQx6+6zj2GOP1QsvvKBzzjknS6tCNhC2AwBgP5F4u6fj/6lyWsE1MlmWpSlVJ2bseqbwTcQ2PxeTq6YX3Pd9f0eUT1FJoCzhsWKrRBMrjnV8fgaFh+qA0kNytTxkUU2oVqcM6P6L18SKKSoLlru6Rv9QncaW5f5vSRmb7RhxDAAAAAAAAAAA8tRZZ52lLVu26MEHH9Sll16qhoYGDR8+XP369VMwGFR5eblGjBihqVOn6t/+7d+0dOlSLV26VEcddVRvLx0eFfYn1AAA7CduxxW1I66O7V9UpyMrG3Rm7TezvCp/+tKAc2VZAb3Sslhbox+ndS1T+MYUfBwQGqiz6y5M6559QW14kK4cfov+p+kBNe5dq+HFo3RG7TdVXzxMg8JDJUl/2/msdnZs19iyw/X1QZfQHtaHnDrg6woooL/tfFaS9MV+R+nsgd7eF/869Dr9acv/1d/3vKpdsRbHY2zZaa+1q5htarbjVxMAAAAAAAAAAJC/BgwYoPPPP1/nn39+by8FWcQnWgAAdNFhR437/veIn2tUyUGd25YsWZaVi2X5kmVZ+tKAr+lLA76muB3vfHxnx3b92wcXebqWKXxjCtudU3eRAoTGJEkjSg7QlcNvkW3bCa9Hy7J00oCv6qQBX+22D31DwAro1Nqv69Tar6d8jZJAqb41+PuybVvfe/9s2Yp3OybzYTtDsx3vaQAAAAAAAAAAAPgcYTsAALpINkK22CpRwGICu5Ou35fiQInn853CdrZtK2JoGQwHij3fo69LFqYjaIeeWJalgAKKOYTtMo1mOwAAAAAAAAAAAOQrEgMAAHQRsc1hOwJe7qTyfXJquuqwOxxbtiQpbPFcAJlmymRmvNlOhmY70WwHAAAAAAAAAAAAfyNsBwBAF0mb7QjbuRK0ihTwGJpxCt9ECT4COWZK2+VqjCzNdgAAAAAAAAAAAPA3wnYAAHSRtNmONjXXvIbhnMZKJgs+ErYDMs8yhO0y2WwXt+PGxsqARbMdAAAAAAAAAAAA/I2wHQAAXRDwygyvwUSnpqtkwceQFfa8JgC9z9RqJ9FsBwAAAAAAAAAAAP8jbAcAQBemgFdAQYIgHoQD3sJwNNsB/pXJIbIxdX+v7xP0OH4aAAAAAAAAAAAAyDXCdgAAdGEKeBHu8sZzs528Ndsx0hfIPNMY2UzG7eJJm+0I2wEAAAAAAAAAAMDfCNsBANBF1BDwItzljddwotdmO8bIAplnCtvZGQzbOb3X96E9FAAAAAAAAAAAAH5H2A4AgC4i8Yjj417Hoha6kMdwolPblanZLmwVy7JMDVwA/CxGsx0AAAAAAAAAAADyGGE7AAC6SBbwgnvem+0cwnbG4CPPBZANphCrbWew2U5Jmu1Esx0AAAAAAAAAAAD8jbAdAABdmEaXEvDyxms40SmAw0hfINdyMUaWZjsAAAAAAAAAAADkL8J2AAB0YWq28zoWtdBlptnO8FwQfASyIhfDmZOH7Wi2AwAAAAAAAAAAgL8RtgMAoAua7TLDe9iue7OdeaRvOKU1AehJ9uN2Tu/1fWi2AwAAAAAAAAAAgN8RtgMAoAtj2I5mO0+8fr/iisu2E0dVEnwE/CGjY2RFsx0AAAAAAAAAAADyF2E7AAC6MLapEfDyJJXvV0yJjVfmZjueCyAbLGOzXQbDdsma7USzHQAAAAAAAAAAAPyNsB0AAF3QbJcZqXy/YnZi4xXNdkBumcJ2mYvadX+fd8UYWQAAAAAAAAAAAPgdYTsAALowN9uFc7yS/JZSs51Nsx3Qq0zFdjlotrNkKUDYDgAAAAAAAAAAAD5H2A4AgC5oU8uMTDTbReMR52vzXABZYWy2szMYtpNzsx2tdgAAAAAAAAAAAMgHhO0AAOgiamhTC9Gm5kkqTYD7h3BMzXY8F0C25GKMrHOzXVBFGbwLAAAAAAAAAAAAkB2E7QAA6IJmu8xIJRDXbYwszwWQU8Ypshm0f4PlPoyQBQAAAAAAAACgMDU2NurHP/6xpk6dqkGDBikcDsuyrM5/Hnjggd5eIpCACgkAALowtamlMha1kKUSiOs2RtY2jJG1vLfmAeiZaYxsJrvtTGE7xsgCAAAAAAAAAODNyJEjtX79+s7txYsXa9q0ab23oBTce++9+v73v6/2dufPaAE/otkOAIAuInFDwIs2NU9SCSfSbAf4k53RsJ1pjCxhOwAAAAAAAAAACsmTTz6pSy65xHXQbsmSJQmNd7Nnz87uAgEDmu0AAOiCZrvMyESzHc8FkGvZb7aLy9Rsx68lAAAAAAAAAAAUkuuvv162/flnEP/8z/+siy66SMOHD1coFOp8vLa2tjeWBxjxqRYAAF3QppYZqQTi4qLZDuhN2Y/aJWm2Y4wsAAAAAAAAAAAF47333tNbb73VuX3qqafqoYce6sUVAe4xRhYAgM/E7A5j61LYCud4Nfktq812hO2A7LCc43Zd/1ZZuvZ/n+8ToNkOAAAAAAAAAICC8eqrryZsn3POOb20EsA7wnYAAHzG1KQmEfDyKpXvV4ftrtkuxBhZICusHHTbGZvtRLMdAAAAAAAAAACFYsuWLQnbw4YN66WVAN4RtgMA4DOmJjWJgJdXqYyR7RrCidtxRe2I87UJPgJ5K2ZoD2WMLAAAAAAAAAAAhWP37t0J26FQqJdWAnjHvCYAAD5Ds13mhFIYu9s1hNNhR43HpRLkA9AzU7Nd5nrtkjTbMUYWAAAAAAAAAABfsm1br732mlavXq2tW7eqvb1ddXV1Gjp0qBoaGlReXu75mvF4PAsrBXKDT7UAAPhMsmY7Al7eWJalsFWc9Hu6v64hnOTBR+9BPgA9y80YWZrtAAAAAAAAAADIB9u2bdOtt96qBx98UE1NTY7HhMNhzZgxQ7Nnz9bRRx9tvNa6des0atQo4/7p06c7Pv6HP/xBF154oeO+m2++WTfffLPxmosXL9a0adOM+4FUMUYWAIDPROLOY0slmu1S4fV71jWEQ/AR8A87J2E7/g4QAAAAAAAAAAB+8eijj2r06NGaM2eOMWgnSZFIRAsXLtTkyZN1ySWXqKPDecIN0JfwqRYAAJ9JFvBKZSxqofMaiksI2zHSF+iTYjKMkRXNdgAAAAAAAACQlniH1Lqxt1fR95UNkwJ9O2pz//336+KLL+426vWAAw7QuHHjVFZWpsbGRi1fvlyx2Oef791zzz1qbGzUggULVFTUt79HKGy8ugEA+Iwp4BWywgpYlMF6FfLcbNdljCzNdkDOWZbzGFma7QAAAAAAAAAgD7RulB43j+lEhpzxoVQ+srdXkTVvvPGGLr300oSg3YQJEzR37lxNmTIl4dimpibNmjVLd999d+djCxcu1I033qhbb7014dhhw4bpww8/7Nz+zW9+o9/+9red2w8//LAmT57cbT21tbWdo2BffvllnXfeeZ37rrjiCl155ZXGr6W+vr6HrxZIDZ9qAQDwmagh4EWTWmrCHtsA46LZDuhdhrCdncmwnaHZzqLZDgAAAAAAAACA3nbRRRcpEol0bjc0NOipp55SWVlZt2Pr6up01113acyYMbr22ms7H7/99tt13nnn6dBDD+18rKioSCNHjuzcrq6uTrhWfX19wv6uysvLJUnr1q1LeLy6utp4DpBN1PQAAPAZU8CLJrXUeA3FuWm2CyhIAxaQJc5Ru8wyN9sRtgMAAAAAAAAAoDctXrxYr732Wud2ZWWlHnnkEcegXVfXXHONTj/99M7teDyuOXPmZG2dQG8jbAcAwGeMYTua1FLiNaTYNYTDcwHknpWDuF1MhmY7CrcBAAAAAAAAAOhV8+bNS9i+/PLLNWTIEFfn/vznP0/Yfvjhh9Xebp5kBeQzPtUCABSMJ7c9omUti4z798bbHB+n2S41qTTbrWl9R4u3/0Wv7/6b8zV5LoAscg7bPdr0R/31k/9KemZ9eJiOrpqmSZXHG4+JxNv1t5ZnHffRbAcAAAAAAAAAQO9aunRpwvY3v/lN1+eOHz9eEydO7GzG27t3r1auXKkpU6ZkdI2AHxC2AwAUjNb4bjV3NHk+jza11IStEk/Hv9/2dz267T/UYUfN1wyE010WAANTs92e+C7tie9Kem5zR5NWtb6u9vheNVSf3G2/bdv6949+Zjyf8dAAAAAAAAAAAPSe7du3a+3atZ3b1dXVOuSQQzxdY8qUKQljaFesWEHYDn0Sn2oBANCDkEXAKxVeg3Fv7V7e8zVptgN87bntCxzDdh+1r9d7rW8ZzwvQbAcAAAAAAAAA6SkbJp3xYW+vou8rG9bbK8iKpqbEwpIDDzxQluX8l/RNxo4dm7C9devWtNcF+BFhOwAAelARrO7tJeSlyqLMf98qiqoyfk0An+oXrJDMxZKubI5sVCTe3q0RtLF9TdLzKoK8twEAAAAAAAAgLYEiqXxkb68CeWr79u0J21VV3v+//f7nNDc3p7UmwK8Cvb0AAAD87ovlE3t7CXlpfL8j8+KaAD51SL8JGblOXPFuj0Xi7UnPGdfviIzcGwAAAAAAAAAAeGfbdsK211Y7J5m4BuBHhO0AAEhiavUpOrJiam8vIy+NLh2rM2u/lbHrHVE+RdNqTsvY9QAkOrn/2RrfL/1wcdyOdXssWdjuzNpvaXTpWON+AAAAAAAAAACQXf3790/Ybmlp8XyN/c+pqalJa02AXzFGFgBQMI6qmKqhxSNdHVtkFWlUycGqDddnd1F93MkDztbRVdO1tnWVIna7yoNVeqZ5vta0veP6GkdWNOi0Ad/QoPBQ/gYMkEWhQFiXDZ2lTZENaty7VrZDQ90+OzqatWDbQ477Yk5hO9s5bFcXGqyTB5yd2oIBAAAAAAAAAEBG1NXVJWy///77nq/x3nvvJWwPHDgwrTUBfkXYDgBQMEaWHqSRpQf19jIKTnVRfx1Z2dC5vaxlkafzG6pPVn3xsEwvC4ADy7I0pHiEhhSPSHrcpvYNxrCdlzGydeHB3hcJAAAAAAAAAAAyqqamRgcccIDWrl0rSdqxY4feffddHXLIIa6vsWzZsoTtSZMmZXSNlHLALxgjCwAAcipoBT0dH7aKs7QSAKlK9j52GiMbtSOOx4atcMbWBAAAAAAAAAAAUtfQ0JCw/dBDzn/p3sm7776rlStXdm6XlJToyCOPzNjaJKm4OPEzw/Z257/oD2QbYTsAAJBTQY/FuuEAYRzAbwJKErbz0GwXDhCmBQAAAAAAAADADy644IKE7TvvvFObN292de7111+fsP2Nb3yjWzguXdXV1QnbmzZtyuj1AbcI2wEAgJyi2Q7IfwHL/GuEU7NdxDaE7Xh/AwAAAAAAAADgCzNmzNCECRM6t1taWnTeeeepra0t6Xlz5szRY4891rltWZauuuqqjK9v9OhI9A+jAAAgAElEQVTRCoc/L+lYvHixotFoxu8D9MRbtQwAAECaPIftaL4CfCeQbIwszXYAAAAAAAAAAOTc5s2btW7dupTOHTlypCTpvvvu0zHHHKNIJCJJWrJkiaZOnaq5c+fq6KOPTjhn27Ztuummm/T73/8+4fEf/vCHOuyww1JaRzLhcFjHHnusFi9eLElqbGzUGWecoe9+97s68MADVVZWlnB8fX29SkpKMr4OgLAdAADIqaDlcYwszVeA7wSSFGTHbYewnb3X8dgQ728AAAAAAAAAADLivPPOS/lc27YlSRMnTtSdd96p7373u4rHP/3//StXrtTkyZM1ZswYjR8/XiUlJdqwYYOWL1+ujo6OhOvMnDlTt9xyS+pfRA+uvvrqzrCdJC1cuFALFy50PHbx4sWaNm1a1taCwkXYDgAA5BTNdkD+SzZGNuY0RjYecTyW9zcAAAAAAAAAAP5y8cUXq6amRhdeeKF2797d+fiaNWu0Zs0a43nf+c53dNdddykUCmVtbaeffrp++tOf6qabblIs1v3zCCAXzJ+SAQAAZEHQQ9Y/oKDnJjwA2ReUOTRrO42RtQ1jZGm2AwAAAAAAAADAd8455xytXbtWV1xxhWpra43HhUIhnXTSSXrppZd03333ZTVot88NN9ygt956S9ddd52OO+441dfXq7S0NOv3Bfbh02sAAJBTXprtaL0C/Mny3GxnCNvxHgcAAAAAAAAAICXr1q3L6vUHDhyo3/zmN/r1r3+tlStXavXq1WpqalJ7e7tqa2s1bNgwNTQ0qKKiwvO1Z8+erdmzZ6e8tnHjxum2225L+XwgHYTtAABATnlpqqP1CvCnZM12cTmE7YzNduGMrQkAAAAAAAAAAGReIBDQpEmTNGnSpN5eCuALjJEFAAA55a3ZjiAO4EeBJM12cdthjCzNdgAAAAAAAAAAAOgDCNsBAICcCnoo1qXZDvAnK8mvEU7NdlFjsx3vcQAAAAAAAAAAAOQPwnYAACCnvDTbhWi9AnwpYAWMgbv9m+1idkwddofjsbzHAQAAAAAAAAAAkE8I2wEAgJwKeBkjazFGFvCrgClsp8SwXdSOGK9Bsx0AAAAAAAAAAADyCWE7AACQU0HLwxhZWq8A3wpYzr9KxOzEMbKRuPMIWYn3OAAAAAAAAAAAAPILYTsAAJBTQXlptiOIA/iVaSS0vV+zXdKwHe9xAAAAAAAAAAAA5BHCdgAAIKe8NNuFaL0CfMsy/CrRrdnOptkOAAAAAAAAAAAAfQNhOwAAkFOmNiwntF4B/mV6L8cZIwsAAAAAAAAAAIA+irAdAADIKS/NdgRxAP8KGH6ViO8/RjZJs13ICmd0TQAAAAAAAAAAAEA2EbYDAAA5FRTNdkBfEHDZbBc1NNsVWUWemi4BAAAAAAAAAACA3kbYDgAA5JSnMbIBWq8Av0q32S5EmBYAAAAAAAAAAAB5hrAdAADIKU9jZAnjAL4VsAxhO3u/sJ2h2a44UJLxNQEAAAAAAAAAAADZRNgOAADklLdmO8J2gF8FDCOhY0ocIxuxI47HEaYFAAAAAAAAAABAvnFfLYM+wbKsUZImSBoiqVzSJknrJS2zbTvam2sDABSGoBVyfSxjJgH/MjXb2S6b7RgTDQAAAAAAAAAAgHxD2K5AWJZ1jqSrJR1jOKTZsqxHJN1o2/a23K0MAFBogoY2LCc02wH+5b7ZzjlsR5gWAAAAAAAA/5+9O4+yqyzzxf/dVUkqhCRkDkiIAUOahEHARAQZG5qppaUBZXIp2K1eUZRuEBsnRllwwV4dQbuV9gavP1RaQKZWWxxCiwjcgDSQoCTKEKYYQkIGyFj790dCmVOp6VSdqkpVPh/WXuR9z36Hvc85u2qf89TzAgD0NZaR7eeKohhaFMX3kvwgrQfaJcmoJB9P8kRRFMf0yOQA2CZZRhb6h9bey41ls2C7VjPbeX8DAAAAAADQtwi268eKoqhPcnOS05o9tDjJT7MxAO+RJOVmj41PckdRFAf3yCQB2ObUFx1PrDtI5ivYahWtLCPb2GwZ2XWtZLbz/gYAAAAAAKCvEWzXv12V5PjNyuuSnJtkQlmWx5Rl+f6yLN+RZK8kv9lsv4YktxdFsVPPTRWAbYXMdtA/tLYkdGPzZWRltgMAAAAAAKCfEGzXTxVFsVuSTzerfl9ZlteXZbl288qyLOclOTKVAXejk1zcvbMEYFtUH5ntoD+o62Bmu7Uy2wEAAAAAANBPCLbrvy5OMnCz8o1lWd7R2s5lWb6R5Kwkmwfi/d2moD0AqJnqMtsN6saZAF1R18qtRGOaBdvJbAcAAAAAAEA/IdiuHyqKYrskpzSrvrq9dmVZPpXk9s2qBiQ5o4ZTA4DUFzLbQX9Q10rg7Iay2TKylUmVmwwsBNMCAAAAAADQtwi265+OSTJks/JvyrL8XQfbzmpWPqk2UwKAjarJbDdQ5ivYarWW2a6U2Q4AAAAAAIB+SrBd/3Rss/LsKtr+Ksn6zcr7FUUxvsszAoBNqstsJ/MVbK06ntmulWA7mSsBAAAAAADoYwTb9U97NSv/pqMNy7JcleTxZtV7dnlGALBJfTqW2W5AMbDVYB6g97WWpbJ5Zrt1MtsBAAAAAADQTwi265+mNisvqLL9H5qVp3VhLgBQoaPLyMp6BVu3opVbiQ5nthNsBwAAAAAAQB8j2K6fKYpiVJJRzaqfq7Kb5vvv3vkZAUCluqI+RYp29xOIA1u3+qLlW4nG8s+Z7dY0rs6SdX9qcT8BtQAAAAAAAPQ1gu36nxHNyq9vWhq2Gs2/Ed2hC/MBgC10JLudQBzYutW1siR0YzZmtlu5YXn++bnPtdpeQC0AAAAAAAB9zYDengA1N7RZ+Y1O9NG8zbBOzqVJURTjkoytstnbujouAFun+gzI+qxvc59BdYN6aDZAZ9S1k9nuv5bcmoVr/thqewG1AAAAAAAA9DWC7fqf5sF2qzvRR/Ngu+Z9dsY5SS6uQT8A9AMD6wZlzYa2f0QNKgb30GyAzmg9s93GYLunXn+8zfYNdd7jAAAAAADQXV5//fU88sgjmT9/fl555ZWsXr062223XcaPH58pU6Zkv/32y6BBkl901uGHH5577723qVyWZbeMM3v27BxxxBFN5YsvvjiXXHJJt4xFxwi26/86827unisAAGyy6+C/yOOr/l+b+7xtyNQemg3QGa1nttu4jOzrjatabTuoaMiEhl27ZV4AAAAAALCt2rBhQ/7jP/4js2bNyi9/+cusX9/6SlODBw/OMccck7//+7/Pe97znh6cJfRtLX9DRl+2sll5u0700bxN8z4BoEuOHnVSGtrIXLfDgFE5eIeje3BGQLVay2y3IRuD7TaUrd/AHzP6lAy0VDQAAAAAANTML37xi0ybNi1nnHFG7rnnnjYD7ZJk9erVueOOO3LCCSdkxowZeeSRR3poptWZNGlSiqJIURSZNGlSb08HZLbrh7bWYLuvJ/lBlW3eluSOGowNwFbmbUOm5h8nXpkHl/8yz695pimtcn1Rn7cOnpx373B0xgwa38uzBNrSWma7sty4jOybGe6a23fou3Lc6Pd127wAAAAAAGBbc+mll+bSSy/dYinToigyderUTJgwIaNHj87ixYvz3HPP5amnnqrYb86cOTnwwANz/fXX5yMf+UhPTh36HMF2/c9rzcpDiqLYvizL1tfx2tK4ZuVlXZxTyrL8U5I/VdOmKIquDgvAVmyXwbtll8G79fY0gE5qP7Ndy8F204cf2m1zAgAAAACAbc15552XmTNnVtQNGzYsF110Uc4888xMnDhxizYLFizIjTfemGuvvTZr1qxJkqxduzYf/ehHs2rVqpx33nk9Mnfoiywj28+UZbkkydJm1VteOdv21mbl+Z2fEQAA/VF9K5ntGjdlttuQltPT17cSpAcAAAAAAFTn29/+9haBdgcffHDmzZuXiy66qMVAuySZPHlyrrjiijz22GPZa6+9Kh47//zzM3v27O6acr8xe/bslGXZtLHtEGzXPz3ZrDy5yvbN0ww17w8AgG1c0cqtRGM2Bdu1ktmuvhBsBwAAAAAAXfXUU0/lk5/8ZEXdQQcdlB//+MeZMGFCh/qYMmVKfv7zn2fq1KlNdY2NjfnABz6QV155pabzhf5CsF3/9ESz8oEdbVgUxfZJ9mmnPwAAtnGtBc01lm8uI9tKZrtiQLfNCQAAAAAAthUXXHBBVq5c2VQeMWJEbr311gwdOrSqfsaNG5dbbrklgwYNaqp74YUXcvnll9dsrtCf+Karf/pJko9uVj68iraHpPJ18duyLBfVYlIAAPQfda0F26UxZVk2ZbhrTmY7AAAAAADomt/97ne5++67K+quuuqq7Ljjjp3qb9q0abngggty5ZVXNtV961vfyiWXXJKRI0d2aa5bmwULFuSxxx7LCy+8kBUrVqQoigwZMiTjx4/Prrvumr333jtDhgzp9nmsWbMm9957b55++um8+uqrGTduXCZMmJBDDjmkW8Z/6aWX8uCDD+ZPf/pTlixZkqFDh2bcuHGZMWNGdtut+QKYtEWwXf/0X0neSLLdpvKBRVHsUZbl7zrQ9qxm5R/WcmIAAPQPda0tI1tuyIa0nNUuSerdggAAAAAAQJfMnDkzZVk2lceMGZOzzz67S32ed955ueaaa7Ju3bokyapVq3LDDTfkwgsv3GLfs846K9/+9rebyk8//XQmTZrUoXFmz56dI444oql88cUX55JLLmmz/zc9++yzKYqi1b4/9KEP5cYbb9yifs2aNfnqV7+aG264IfPnz29zfvX19dl3331z4okn5h//8R9bDXw7/PDDc++99zaVN38+2vLaa6/lS1/6Um688cYsX758i8eHDRuWU089NZdeemne8pa3dKjP1qxbty7f+ta38vWvfz2PP/54q/vtvvvuueCCC/LhD384Awb4Hqc9lpHth8qyfD3JLc2qP9teu6IopiT5282q1if5bg2nBgBAP9FaZrsN5YZs2LSUbEtktgMAAAAAgK75yU9+UlH+4Ac/WLEMbGeMHTs2J5xwQpvj9EULFy7MfvvtlwsvvLDdQLsk2bBhQx5++OF88YtfzIsvvljTufzP//xPpk2blq9+9astBtolyYoVK/Lv//7v2XvvvfPrX/+602M9/PDD2WOPPfLxj3+8zUC7JJk/f34+9rGPZcaMGXnhhRc6Pea2Qjhi/3VJktOSDNxUPqsoih+WZXlnSzsXRTE4yawkm199v1WW5R+6dZYAAPRJrWW2K9OYDWUbme0KtyAAAAAAALW2odyQZetf6e1p9HsjBozp9T8qf/755/PMM89U1B199NE16fvoo4/Obbfd1lR+4IEHsm7dugwcOLCNVluvtWvX5thjj82TTz5ZUT9q1KjsvffeGT9+fAYOHJgVK1bkpZdeyrx587Jq1apumcu8efNy5JFHZsmSJRX148ePz3777ZcRI0Zk0aJFeeCBB/LGG2/k1VdfzXve855cc801VY91991359RTT83rr79eUb/TTjvl7W9/e0aNGpVVq1Zl3rx5FQGIjz76aA444IA88MADmTBhQucOdBvgm65+qizLPxZFMTPJBZtV31IUxT8m+WZZlmvfrCyKYmqSf09y0Gb7LklyaY9MFgCAPkdmOwAAAACArcey9a/ki3/8WG9Po9+7fLdvZPTA8b06h5aynU2fPr0mfb/jHe+oKL/xxht59NFHM2PGjJr031HXXntt09KyBx98cFO2tZ133jn33Xdfq+2GDh1aUZ41a1bmzZvXVJ40aVK+9rWv5dhjj01d3ZZJBcqyzMMPP5y777473/rWt2pwJButW7cuZ555ZkWg3U477ZSZM2fm5JNPrpjLypUr85WvfCVf/vKXs2zZshaX8W3LvHnzctppp1UE2h177LG59NJL8853vnOL/X/729/m05/+dH71q18lSV544YWcfvrpmT17durrfafTEsF2/ds/JdkzyXGbygOTXJfki0VRPJJkRZLdkuyfZPNFrdcm+duyLF/qwbkCANCH1LeV2S5tBdu5BQEAAAAAgM56/vnnK8rjx4/P6NGja9L3Xnvt1eJ4PR1sN2bMmIwZMyZJMmDAn79XGDBgQCZNmtThfu64446Ktvfcc08mT57c6v5FUWT69OmZPn16vvjFL6axsbH6ybfguuuuy6OPPtpU3mmnnXLfffdlt91222LfoUOH5uKLL85ee+2V97///Vm6dGmHx2lsbMypp55akZ3vkksuycUXX9xqm/322y+/+MUvcuqppzZlNbzvvvty00035YMf/GCHx96WtPwNGf1CWZYbkrw/yc3NHhqX5Ngk70vyjlQG2v0pyXvLsvxVj0wSAIA+qShavpXYULazjGz8FRQAAAAAAHTWq6++WlEeOXJkzfoePHhwGhoa2hyvL3n22Web/v32t7+9zUC75urr62uyfG5jY2Ouu+66irpvfvObLQbabe7kk0/OOeecU9VYt912W5544omm8vvf//42A+3eNGDAgHz729/OuHHjmuquvfbaqsbelgi26+fKslxZluVp2RhY90Abu76a5F+T7FWW5U96ZHIAAPRZrQXNNabtZWRbW34WAAAAAABoX/PgtxEjRtS0/+b9bb70aV/2pz/9qVfG/e///u8888wzTeUZM2bkPe95T4fafulLX6oq4O+rX/1q07+LoshVV13V4bZDhw7Nxz7256WoH3/88Yp582eC7bYRZVneUpblgdm4bOwpST6V5KIkZyf5yyQ7lWV5TlmWi3txmgAA9BF1rWS2a2wvs51lZAEAAAAAYKtVFEX7O/URe+yxR9O/Fy5c2CvZ2u67776K8umnn97htmPHjs3RRx/doX1XrVqVBx74cw6uGTNmZNddd+3wWElyxBFHVJR/9SuLYrbEN13bmLIsn07ydG/PAwCAvq21DHXtZbarl9kOAAAAAAA6bdSoURXl1157rab9L1u2rM3x+pIzzjgjt912W1P5M5/5TG6//facffbZOf7447PTTjt1+xzmzJlTUT7ggAOqan/AAQfkP//zP9vd74EHHsi6deuayrvttlvVmekaGxsryn/4wx+qar+tEGwHAABUra61ZWTLxjSmjcx2bkEAAAAAAGpuxIAxuXy3b/T2NPq9EQPG9PYUtgh+W7p0ac36Xr16dVavXl1RN3r06Jr139NOOumknHTSSRUBd7/+9a/z61//OkkyefLkHHTQQXn3u9+dQw45JFOnTq35HBYtWlRR3n333atqP2XKlA7tt3Dhwory97///Xz/+9+vaqzmmi9ZzEa+6QIAAKrW+jKyMtsBAAAAAPS0+qI+oweO7+1p0AN23nnnivLLL7+cJUuW1CQobu7cue2O15cURZGbb745F198cf75n/95i0DCBQsWZMGCBfm///f/JtkYfPeBD3wg5557bs0y+jUPhhw+fHhV7XfYYYcO7bdkyZKq+u2IFStW1LzP/qDlb8gAAADa0Fpmuw1pzIayjcx2hb/3AQAAAACAzjrooIO2qGu+VGlnNe9nu+22y7777luTvnvLgAED8uUvfznPPPNMrr322hxyyCFpaGhocd8FCxbkkksuyW677Zabb765h2faNWvXrq15n2VZ1rzP/kCwHQAAULXWMtuVZWObme3q3IIAAAAAAECnTZw4MRMnTqyo++lPf1qTvu+5556K8gEHHJBBgwbVpO83bdjQ+ncI3Wn8+PE5//zz89///d957bXXcv/99+faa6/Ne9/73gwdOrRi39deey2nn356br/99i6PO3LkyIry8uXLq2r/2muvdWi/MWMqlzi+8sorU5Zll7Ybb7yxqrluK3zTBQAAVK21oLkNm/5rSX0GpCiK7pwWAAAAAAD0e8cee2xF+Tvf+U7WrVvXpT4XL16cO++8s81x3jRgQOUqNuvXt77iTXPNl1XtDQ0NDTnwwANz/vnn5/bbb8+SJUvy/e9/P1OmTGnapyzLfOpTn0pjY2OXxho/vnJ55/nz51fV/qmnnurUOB1tR/UE2wEAAFWrL1peRrax3NDqMrKttQEAAAAAADru05/+dMUfty9evDizZs3qUp8zZ86sCNjbfvvt85GPfKTFfYcPH15RXrZsWYfHmTt3blXz6ok/4h80aFBOPfXUPPjgg9l5552b6hcuXJiHH364S31Pnz69ovzAAw9U1f7BBx/s0H4HHnhgxbm65557LAPbTQTbAQAAVWsts11jWl9GVrAdAAAAAAB03bRp03LcccdV1H32s5/NokWLOtXfvHnzcs0111TUnX322Rk1alSL+48bN26L9h31ox/9qKq5NTQ0NP17zZo1VbWt1ogRI3LSSSdV1D399NNd6vPggw+uKH/ve9/rcNvFixd3eIngsWPHZr/99msqv/DCC/nxj3/c4bHoOMF2AABA1eo6ldluQIv1AAAAAABAdb7yla9kyJAhTeVly5blpJNOysqVK6vqZ/HixTnllFOydu3aprqddtopX/rSl1pts//++1eU77rrrg6N9V//9V956KGHqprfiBEjmv79yiuvdHm53PY0XyJ382C/zjj00EMzadKkpvKcOXNy9913d6jtZZddVtXxfvKTn6woX3DBBVW/HmifYDsAAKBqrQbbpTEb0kpmu8hsBwAAAAAAtbDHHnvkuuuuq6i7//77c9xxx+X555/vUB/z58/PkUcemSeffLKprq6uLt/5zncyduzYVtsdeOCBFYF+P/zhDzNnzpx2x/rQhz7UoXltburUqU3/Xr9+fX75y192qN3rr7+e6667LitWrOjwWCtXrsxtt93W6vidUVdXt0UQ3Mc+9rF2M+bddttt+frXv17VWB/84Aezxx57NJWffPLJ/O3f/m2WLl1aVT+LFy/e4jzwZ4LtAACAqrW2jGySrGtc22K9zHYAAAAAAFA7H/7wh/OJT3yiou6+++7LtGnTctVVV2XhwoUttluwYEG+8IUvZO+9987jjz9e8djVV1+dI488ss1xhw0bllNPPbWpvGHDhvz1X/91i0uerl27NjfccEPe9a53ZdGiRRk5cmRHDy9JcsQRR1SUzz777Hz961/Pww8/nD/+8Y955plnmrZXXnmlYtxPfepTmTBhQj784Q/nrrvuajPw7qGHHsqRRx6ZZ599tqnuXe96V6ZMmVLVfFvyqU99Km9/+9ubyi+++GLe/e5355ZbbkljY2PFvqtWrcpll12W0047LY2NjVWdr/r6+txyyy0ZPnx4U93Pfvaz7LPPPvnXf/3XNo//1Vdfzc0335zTTz89u+yyS7761a9WcYTbFt92AQAAVWsts12SrC9bTmle30YbAAAAAACgetdff31GjhyZL3/5yynLMkmyYsWKXHTRRfnc5z6XadOmZZdddsnIkSOzZMmSPPvss/n973+/RT8DBw7MzJkz8/GPf7xD415++eX54Q9/mGXLliVJ/vSnP+WYY47J5MmTs88++6ShoSGLFi3Kgw8+mFWrViVJdtxxx1x99dVVZbh73/vel89//vNN2fpefPHFLQIM3/ShD30oN954Y0Xd8uXLM2vWrMyaNStFUWTy5MnZbbfdMmLEiAwYMCBLlizJE088sUU2wCFDhuSb3/xmh+fZloEDB+amm27KYYcdliVLliRJXnrppbzvfe/L+PHj8453vCM77LBDFi1alN/85jd54403kiQ77LBDrr766nz0ox/t8Fh77rlnbr311pxyyil57bXXkiTPP/98zjnnnJx77rnZe++9M3HixAwfPjyvv/56li1blqeeeqrD2RARbAcAAHRCW5nt1pYtZ7ark9kOAAAAAABq7vLLL89hhx2Wc845J/Pnz2+qL8syc+fOzdy5c9tsv//+++cb3/hGpk+f3uExd95559x666058cQTKzKmLViwIAsWLNhi/1133TX/+Z//mUWLFnV4jCTZbrvt8sMf/jAnnnhiXnjhharaNleWZebPn19xjlqy884757bbbsvee+/dpfE2t+eee+ZnP/tZjj/++Lz00ktN9YsWLcqPfvSjLfYfMWJE7rzzzmzYsKHqsY466qjMmTMnp59+esXyvhs2bMijjz6aRx99tN0+qs1AuC2xjCwAAFC1+qL1W4n1rQTb1UdmOwAAAAAA6A5HHXVU5s2bl5tuuilHHnlkBgxo+w/gGxoacsIJJ+SOO+7InDlzqgq0e9Nf/uVf5qGHHsp73/veFEXR4j5jx47NZz7zmTz66KOZOnVq1WMkyfTp0zNv3rz827/9W0488cRMnjw5w4cPT31969877LDDDrn33ntz4YUX5h3veEe75yNJ/uIv/iJXXnllnnrqqbzzne/s1Fzbsu++++bJJ5/Mueeem2HDhrW4z9ChQ3PWWWflscceyyGHHNLpsSZPnpyHHnood911V4466qg0NDS022bq1Kk599xz86tf/Sq33XZbp8fu74o3U0jC1qYoij2TPPFm+Yknnsiee+7ZizMCAOBNz69+Olc++w8tPnbMqFPyX6/eskX9Lg275aJJ/9zdUwMAAAAA6HPWr1+/Rbat3XffvUMBQtCSVatW5eGHH86CBQuyePHirF27Ng0NDRk/fnymTJmS/fffv0MBWB31yiuv5N57783zzz+f119/PePHj8+uu+6aQw45ZKt4Hb/xxhuZO3du/vCHP+Tll1/OqlWrUhRFhg8fnokTJ2afffbJW9/61h6bz5o1azJ79uw8/fTTWbp0acaOHZsJEybkkEMOyfbbb1/z8VavXp0HH3wwzz77bJYsWZJVq1Zl++23z8iRIzN58uRMnTo1o0ePrvm43XVtmzt3bvbaa6/Nq/Yqy7LtFI410vuvZgAAoM+payOz3brWMttZRhYAAAAAAHrE9ttvn0MPPTSHHnpoj4w3ZsyYnHzyyT0yVmdst912mT59eqcy+HWHhoaGHHPMMT023uDBg3PYYYf12Hj9mWVkAQCAqtW1sSRs69rj1N4AACAASURBVMF2lpEFAAAAAACg7xJsBwAAVK3NzHaNMtsBAAAAAADQ/wi2AwAAqtapzHZttAEAAAAAAICtnWA7AACgam1mtmt1GVmZ7QAAAAAAAOi7BNsBAABVqyvayGzX6jKyMtsBAAAAAADQdwm2AwAAqlbfxq3EunJdy20E2wEAAAAAANCHCbYDAACq1mZmu9aWkY1lZAEAAAAAAOi7BNsBAABVq2srs13jmhbrZbYDAAAAAACgLxNsBwAAVK3tzHatLSMrsx0AAAAAAAB9l2A7AACgam1mtmtlGdm2AvQAAAAAAABgayfYDgAAqFrbme1aDrarj8x2AAAAAAAA9F2C7QAAgKq1mdmusZVgO5ntAAAAAAAA6MME2wEAAFUriiJFK7cTrWa2K2S2AwAAAAAAoO8SbAcAAHRKfdHy7USZspX9ZbYDAAAAAACg7xJsBwAAdEprme1aUx/BdgAAAAAAAPRdgu0AAIBOqTZTnWVkAQAAAAAA6MsE2wEAAJ1SV2WmOsvIAgAAAAAA0JcJtgMAADqlrqhyGVmZ7QAAAAAAAOjDBNsBAACdUnVmuyr3BwAAAAAAgK2JYDsAAKBTZLYDAAAAAABgWyLYDgAA6JS6Km8n6guZ7QAAAAAAAOi7BNsBAACdUm3wnGA7AAAAAAAA+jLBdgAAQKcUVWe2s4wsAAAAAAAAfZdgOwAAoFOqzVRXF5ntAAAAAAAA6LsE2wEAAJ1SV/UysjLbAQAAAAAA0HcJtgMAADqlruplZGW2AwAAAAAAoO8SbAcAAHSKzHYAAAAAAABsSwTbAQAAnVJ1ZrvIbAcAAAAAAEDfJbUEAADQKXVFtcvIuv0AAAAAAICe8Prrr+eRRx7J/Pnz88orr2T16tXZbrvtMn78+EyZMiX77bdfBg0aVJOxnnvuuXzzm9/Mvffem6eeeipLly7NunXrmh6fNWtWzjrrrBbbPvTQQ5k1a1buv//+LFy4MK+99loaGxubHn/66aczadKkJMnhhx+ee++9t+mxsixrMn+ohm+7AACATqmrMlNdfZXLzgIAAAAAAB23YcOG/Md//EdmzZqVX/7yl1m/fn2r+w4ePDjHHHNM/v7v/z7vec97Oj3mDTfckHPPPTdr1qypqt369etzzjnn5IYbbuj02NAbLCMLAAB0SvWZ7QTbAQAAAABAd/jFL36RadOm5Ywzzsg999zTZqBdkqxevTp33HFHTjjhhMyYMSOPPPJI1WP+6Ec/ysc+9rGqA+2S5POf/7xAO/okme0AAIBOqa82s53bDwAAAAAAqLlLL700l1566RbLqhZFkalTp2bChAkZPXp0Fi9enOeeey5PPfVUxX5z5szJgQcemOuvvz4f+chHOjzuRRddVDHmGWeckb/7u7/LLrvskoEDBzbVjxkzpqLdokWL8i//8i9N5UGDBuWf/umfcvzxx2fs2LGpq/vzH/tPmDChw/OBnuDbLgAAoFMKme0AAAAAAKBXnXfeeZk5c2ZF3bBhw3LRRRflzDPPzMSJE7dos2DBgtx444259tprm7LSrV27Nh/96EezatWqnHfeee2O+/vf/z6PPfZYU/n444/PTTfd1KE533777Vm7dm1T+YorrshnPvOZDrWF3mYZWQAAoFOqDZ6rL/ytDwAAAAAA1Mq3v/3tLQLtDj744MybNy8XXXRRi4F2STJ58uRcccUVeeyxx7LXXntVPHb++edn9uzZ7Y49Z86civIpp5zS4Xl3tu3s2bNTlmXTBr1BsB0AANApdVXeTshsBwAAAAAAtfHUU0/lk5/8ZEXdQQcdlB//+McdXnp1ypQp+fnPf56pU6c21TU2NuYDH/hAXnnllTbbLlq0qKJczXKvXWkLvU2wHQAA0Cl11S4jG5ntAAAAAACgFi644IKsXLmyqTxixIjceuutGTp0aFX9jBs3LrfccksGDRrUVPfCCy/k8ssvb7Pd5mMnycCBAzs8ZlfaQm/zbRcAANApdal2GVmZ7QAAAAAAoKt+97vf5e67766ou+qqq7Ljjjt2qr9p06blggsuyJVXXtlU961vfSuXXHJJRo4c2WKbxsbGTo3V1ba1MG/evDz++ONZsmRJli5dmsGDB2fs2LGZOnVq9tlnnzQ0NHSq3/Xr1+ehhx7KH//4xyxevDhr1qzJ2LFjM2nSpLz73e/O4MGDa3wk9AbBdgAAQKdUndmucPsBAAAAAABdNXPmzJRl2VQeM2ZMzj777C71ed555+Waa67JunXrkiSrVq3KDTfckAsvvDBJ8swzz2TXXXdttf0RRxzRYv2sWbOSpM35FUXRYv3TTz+dSZMmNZUPP/zw3HvvvU3lzc9BexYuXJj//b//d37wgx9ssYzt5rbbbrscccQR+dCHPpSTTz459fXtJxJ48sknc8UVV+Tuu+/O8uXLW+33b/7mb3LZZZdlypQpHZ43Wx/LyAIAAJ0isx0AAAAAAPS8n/zkJxXlD37wgxXLwHbG2LFjc8IJJ7Q5Tl9UlmWuuOKKTJ48Oddff32bgXZJ8sYbb+RHP/pRTj311CxcuLDNfTds2JB/+Id/yF577ZXvfve7rQbavdnvzTffnD333DMzZ87s1LGwdZBaAgAA6JRqg+eqDc4DAAAAAKBj1m8o8/zS3p5F/zdhZDKgvuUsbD3l+eefzzPPPFNRd/TRR9ek76OPPjq33XZbU/mBBx7IunXrMnDgwJr039PWr1+f0047LbfeeusWj+24447Ze++9M2bMmKxZsyaLFi3K//zP/2TlypUd6vuNN97IiSeemJ/+9KcV9QMHDsy+++6bCRMmpKGhIS+//HIeeuihvP76601zOu+887J06dJccsklXT5Gep5gOwAAoFOKKhJl16W+1TTwAAAAAAB0zfNLk90+19jb0+j3/nhlXSaN6d05/PrXv96ibvr06TXp+x3veEdF+Y033sijjz6aGTNmZMKECXn66aebHvuXf/mXigxt3/ve9/Kud71riz7HjNl4wg4//PCmutNOOy0PPvhgU3nzfjc3YcKETh3Hm84///wtAu2OP/74XHLJJZkxY8YW+zc2NuaBBx7I97///dx4441t9v2JT3yiItBuhx12yCWXXJK/+7u/y7Bhwyr2feONN/L1r389X/jCF7J69eokyWWXXZYDDjggxx13XCePjt4i2A4AAOiUajLbWUIWAAAAAAC67vnnn68ojx8/PqNHj65J33vttVeL482YMSMDBgzIpEmTmupHjBhRsd+OO+5Y8XhzQ4cObfr34MGDKx5rq11n/fSnP81Xv/rVirqrrroqn/3sZ1ttU1dXl4MOOigHHXRQLrvssi3m+aYf/OAHmTVrVlP5rW99a2bPnt3qcWy33XY5//zzc+CBB+bII4/M6tWrU5ZlPvWpT+X3v/996uo6ntyA3ufZAgAAOqWu6PjtRH3h73wAAAAAAKCrXn311YryyJEja9b34MGD09DQ0OZ4fcVll11WUf5f/+t/tRlo19yIESNaDLYry7Ki7wEDBuTOO+/sUMDgm0F8b1qwYEFuv/32Ds+JrYNgOwAAoFPqqridkNkOAAAAAAC6rnnwW/MMc13VvL8lS5bUtP+e8Nhjj1Ustzts2LBcffXVNen7l7/8ZZ544omm8plnnpl99tmnw+0/8YlPVATx3XnnnTWZFz1HsB0AANApddUsIxuZ7QAAAAAAYGtXFEVvT6HLfv7zn1eUzzjjjAwfPrwmfd9zzz0V5VNPPbWq9kOGDMk73/nOpvKvfvWrmsyLnuMbLwAAoFNktgMAAAAAgJ41atSoivJrr71W0/6XLVvW5nh9wf33319RPvzww2vW93333VdRHjVqVJ555pmq+tg88O+ZZ55JY2Nj6urkS+srBNsBAACdUlVmO8F2AAAAAADdZsLI5I9XCtbpbhNG9vYMtgx+W7p0ac36Xr16dVavXl1RN3r06Jr131NeeumlivKee+5Zs74XLlxYUX7Xu97Vpf4aGxuzbNmyPhnUuK0SbAcAAHRKfaoJtnPrAQAAAADQXQbUF5k0prdnQU/YeeedK8ovv/xylixZUpOguLlz57Y7Xl+wZMmSivLIkbWLkmzedy2sWLFCsF0fIqwZAADolKKoYhnZKgLzAAAAAACAlh100EFb1M2ZM6cmfTfvZ7vttsu+++5bk757U1EUNetr7dq1NevrTWVZ1rxPuo9gOwAAoFNktgMAAAAAgJ41ceLETJw4saLupz/9aU36vueeeyrKBxxwQAYNGlSTvnvSmDGVaR5fffXVbul78ODBaWxsTFmWXdomTZpUs/nR/QTbAQAAnVJVZrtCZjsAAAAAAKiFY489tqL8ne98J+vWretSn4sXL86dd97Z5jh9xU477VRRnjdvXs36Hj9+fNO/V69eneeee65mfdM3CLYDAAA6pb6K2wmZ7QAAAAAAoDY+/elPVyyNunjx4syaNatLfc6cObMiYG/77bfPRz7ykS712Vve/e53V5Rnz55ds76bL+Nbq6yC9B2C7QAAgE7Zrn77ju9b1/F9AQAAAACA1k2bNi3HHXdcRd1nP/vZLFq0qFP9zZs3L9dcc01F3dlnn51Ro0Z1eo696aijjqoof/e7382KFStq0vcxxxxTUf73f//3mvRL3yHYDgAA6JS/GLJPh/fdo4p9AQAAAACAtn3lK1/JkCFDmsrLli3LSSedlJUrV1bVz+LFi3PKKadk7dq1TXU77bRTvvSlL9Vsrj1tzz33zGGHHdZUXr58eS666KKa9H3cccflbW97W1P5oYceyv/5P/+nJn3TNwi2AwAAOmXUwLF537i/b3e/aUP2y8Ejjml3PwAAAAAAoGP22GOPXHfddRV1999/f4477rg8//zzHepj/vz5OfLII/Pkk0821dXV1eU73/lOxo4dW9P59rTmwYJf+9rX8pWvfKXD7V977bWsXr16i/oBAwbksssuq6j7+Mc/nttuu63qOf7sZz/LH//4x6rb0bsE2wEAAJ12xMj35EuTrs+p4z6aE8acWbGdOOaDOW+Xy/PxCZ/PoLqG3p4qAAAAAAD0Kx/+8IfziU98oqLuvvvuy7Rp03LVVVdl4cKFLbZbsGBBvvCFL2TvvffO448/XvHY1VdfnSOPPLLb5txT/vIv/zLnn39+Rd0FF1yQv/mbv8nDDz/cYpvGxsb85je/yac//enssssuefnll1vc74wzzsiHP/zhpvLatWtz8skn58wzz2y17yTZsGFDfvvb3+bSSy/NtGnT8ld/9Vd57rnnOnF09KYBvT0BAACgb9uxYUJ2bJjQ29MAAAAAAIBtzvXXX5+RI0fmy1/+csqyTJKsWLEiF110UT73uc9l2rRp2WWXXTJy5MgsWbIkzz77bH7/+99v0c/AgQMzc+bMfPzjH+/pQ+g2V199dZ577rn84Ac/aKq76667ctddd+Utb3lL9t5774wePTpr1qzJyy+/nMceeywrVqzoUN//9m//lqVLl+aHP/xhU913v/vdfPe7383YsWPz9re/PaNHj05dXV2WL1+eF198MU8++WSL2fLoWwTbAQAAAAAAAABAH3X55ZfnsMMOyznnnJP58+c31Zdlmblz52bu3Llttt9///3zjW98I9OnT+/uqfao+vr63Hzzzdlzzz3z5S9/OevWrWt67MUXX8yLL77Y6b4HDhyYW2+9Nddcc00uvvjiiiC6xYsX52c/+1mH+th+++07PQd6h2VkAQAAAAAAAACgDzvqqKMyb9683HTTTTnyyCMzYEDb+bcaGhpywgkn5I477sicOXP6XaDdm4qiyMUXX5zf//73+chHPpJRo0a1uf/QoUNz4okn5vbbb8/EiRPb7fvCCy/M008/nX/6p3/KW9/61nbnM2zYsBx//PH52te+lpdeeikzZsyo6njofcWbKSRha1MUxZ5Jnniz/MQTT2TPPffsxRkBAAAAAAAAQO2tX7++IiNZkuy+++7tBkxBa1atWpWHH344CxYsyOLFi7N27do0NDRk/PjxmTJlSvbff/80NDT09jR7XGNjYx555JH87ne/yyuvvJKVK1dm++23z7hx47LHHntkn332ycCBAzvd/9NPP51HHnkkixcvztKlS1NXV5dhw4blLW95S/bYY4/svvvuqa+vr+ERbd2669o2d+7c7LXXXptX7VWWZdspHGvEVRkAAAAAAAAAAPqR7bffPoceemgOPfTQ3p7KVqWuri7Tp0/vtkx+u+66a3bddddu6Zutg2VkAQAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAHpRURRb1JVl2QszAaidxsbGLepaut71JYLtAAAAAAAAAAB6UV3dluEb69at64WZANTO+vXrt6hr6XrXl/Tt2QMAAAAAAAAA9HFFUWTQoEEVdStXruyl2QDURvPr2KBBg2S2AwAAAAAAAACga4YNG1ZRXr58uaVkgT6rLMssX768oq75da4vEmwHAAAAAAAAANDLmgehrFu3Li+88IKAO6DPKcsyL7zwwhbLYQ8fPryXZlQ7A3p7AgAAAAAAAAAA27rBgwdn4MCBFcEpK1asyB/+8IcMHz48Q4cOzYABA1JXJ68SsPVpbGzM+vXrs3LlyixfvnyLQLuBAwemoaGhl2ZXO4LtAAAAAAAAAAB6WVEUectb3pLnnnuuIpvdunXrsmTJkixZsqQXZwfQeW9e34qi6O2pdJlwZwAAAAAAAACArcCQIUMyceLEfhGQApBsDLSbOHFihgwZ0ttTqQnBdgAAAAAAAAAAW4k3A+4GDhzY21MB6JKBAwf2q0C7xDKyAAAAAAAAAABblSFDhuRtb3tb1qxZk+XLl2fFihVZu3Ztb08LoF2DBg3KsGHDMnz48DQ0NPS7TJ2C7QAAAAAAAAAAtjJFUWTw4MEZPHhwxo0bl7Is09jYmLIse3tqAFsoiiJ1dXX9LriuOcF2AAAAAAAAAABbuaIoUl9f39vTANim1fX2BAAAAAAAAAAAAGBrJ9gOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoxoLcnAG0YtHlhwYIFvTUPAAAAAAAAAABgK9BCDNGglvbrDkVZlj01FlSlKIq/SXJHb88DAAAAAAAAAADYar23LMs7e2Igy8gCAAAAAAAAAABAOwTbAQAAAAAAAAAAQDssI8tWqyiKHZIctlnVwiRre2k60Be8LZVLL783yR96aS5A/+Q6A3Q31xkAusrPEqC7uc4A3c11BuhurjNAfzAoyS6ble8ty/K1nhh4QE8MAp2x6U3QI+spQ39QFEXzqj+UZTm3N+YC9E+uM0B3c50BoKv8LAG6m+sM0N1cZ4Du5joD9CO/7Y1BLSMLAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0QbAcAAAAAAAAAAADtEGwHAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0QbAcAAAAAAAAAAADtEGwHAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0QbAcAAAAAAAAAAADtEGwHAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0Y0NsTAKBmFie5tFkZoJZcZ4Du5joDQFf5WQJ0N9cZoLu5zgDdzXUGoAuKsix7ew4AAAAAAAAAAACwVbOMLAAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtEOwHQAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtEOwHQAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtEOwHQAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtGNAb08A2HoURVGfZHKSaUnekmSHJGuSLE3yhyRzyrJcVeMxByZ5d5KJSXZKsjLJi0l+W5blM7Ucq6cURbFnkn2TjE3SkOTlJM8n+XVZlqt7c249qSiKkUn2TLJ7klFJBidZlmRxkofLsvxDL05vC0VR7JqNz9tbkgxN8lKSZ5PcX5bluhqO89Yk78jG1/sOSdZl43mZn43nZUWtxtoauc7UhuvMRn3tOkPPcJ2pDdeZjfrCdaYnX/N94XxALfTHnyX98ZhqpafuBfsK56Nn9Mf3ZH88plrxvqrkM7ie0R/fk/3xmGrFdYbe0B/fk/3xmGrFdcZncEAzZVnabLZteMvGX97OS3J3kteSlG1s65P8OMlf12DcsUm+nmRJG+P9OsnJXRxntySnJrkmyewky5uN8UyNzuOwJJ9P8kIbx7M8yXeSvK0Xn+9uOx9JBiY5Jsn1SZ5o57VUbjpXlyXZsZffA6ckub+NeS7Z9Fod04UxhiS5MMlT7ZyTDUn+M8nRvXlOuuEcu87U5jy6zvTB60x3vz46cA7a2yb11rmp8Xl2nanNeXSd6SPXmZ56zfeV82Gz1WLrjz9L+uMx1fg574l7we2THJzkH5LclI33hI3Nxjmrt1//zkePneN+957sj8dU4+fc+6rnz4fP4PrZe7I/HlONn3PXmT/P02dwPXOe+917sj8eU42f8236OtNTr4/4DM5m63Nbr0/AZrP13pbku124MbgryfhOjntckkVVjPX/Jdm+iv4PT/Jf7fyCWpMbrE3jHZCNf2XS0eNZleTjPfg8d/v52HQOXu3ka2lpkg/0wut/aJLvVTHPl5Mc04lxDkzyx06cl+8mGdLT56UbzrPrjOvMNned6cnXRxfeX29uk3rqvHTj+XadcZ3Zpq4zPfWa7yvnw2arxdZT76sWxu22nyX98Zhq+Hx3+71gNn7Z9Hg2ftnSXv9n9fLr3/nomfPc796T/fGYvK/67vnYNI7P4PrZe7I/HlNfel/1hetMfAbX0+e7370n++Mx1fD53uavMz31+ojP4Gy2PrlZRha2bVNaqX8hG9PpL8rG5aZ3S/L2JHWb7fOeJP9dFMVhZVm+3NEBi6I4PMntSQZtVl0meSQbPwwZkWS/JGM2e/zMJMOLojixLMvGDgyzb5KjOzqnriiK4qhs/GuGhmYPPZvksWz8InpCNv6iNHDTY0OSfL0oirqyLL/WA9PsifMxNsnIFurXZuMvyi9n4198jE4yfdP/3zQiyXeKohhXluU/d/M8kzSler45yfHNHlqc5Leb5vq2bHwtFpseG5/kjqIojirL8r4OjnNgkp9m403J5lYk+X/Z+B5ryMa003ul8j12epJxRVEcX5bl2g4e2tbIdaaLXGea9KXrTI+9PkjiOtNlrjNN+sp1pqde833lfEAt9MefJf3xmLqsp+4Fk5yRjUsKbdWcjx7VH9+T/fGYusz7qpLP4HpUf3xP9sdj6jLXmQo+g+tZ/fE92R+PqctcZ5r4DA5oXW9H+9lstt7bkszJnyPfH0nyybSyJFiSnZN8I1tGzP8qSdHB8SZky8j8+5JMbbZfQ5JPZeMvEZvve2UHxzmvhXmWSVYnWdCs7pkunL9J2fIvphYk+asW9h2Z5Lpm+25oad9ueJ67/Xxk4y+Nb/axIsm3khyZZLsW9i2S/G02foHffE7dfj42zeGaZuOu3fT6H9Rsv2nZMj32K0l26sAYg1s4v69vem0PbmH/tyW5s4VzclFPnJNuPNeuM64z29x1pqdeH5vG2ryvBza9ZqrZBnT3+eiB8+064zqzTV1neuo131fOh81Wi60//izpj8dUo+e62+8FN7Vf1sL5LJM838JjZ/Xia9/56Llz3e/ek/3xmGr0XHtf9fD5iM/g3jyufvee7I/HVKPn2nXmz3P0GVzPnu9+957sj8dUo+fadaYHXx/xGZzN1ie3Xp+AzWbrvS0b/6rv7iTTq2hzTgs/vE/rYNtvNWv367Twgcdm+5/YbP/VSd7agXHO2/SL32+T3JDko0n2z8ZMLIc36/OZLpy/5umT5ycZ106bC5u1mZukvpuf524/H5t+EVyU5Px0PD336CTzmo3/ZHu/dNbgfOyWLW9Q3tvG/ttly5uFf+vAOGc1a9OYdlJob/ol+Qf/f3v3HjVJUd5x/PfICstNFkFYQGFZXbyhBKIJKEkWAwT0eAGJGhKzK94SjEeNehK8nKgxahIkehKDGhVJvESjYsBFMCiLBC8ILsrNW2RRiCC7LIRF9gZP/uh52Z56Z6a7Z3q6u2q+n3P6j+q3q7uqpurp6Xq7e4J8dyu4gIlpIc4QZ2Y0zjTSP3rHyu9r9TTr1dWFOEOcmbU401Sfj6U9WFjqWFI8l6RYpxo+50auBXt571L29oFVkt7ei6n79v62Otjnypb6Pe3RbHsnNyZTrFMNnzPjqoX2EHNwc3VKbkymWKcaPmfiTH8ZmYNrtr2TG5Mp1qmGz5k403D/EHNwLCxRLq0XgIWFpb1F0pIx830uOHmvKpFnmaRtuTybJS0rke/jwbE+ViLPnsO+nKq+f8YuVfYml/y+ji6Z92tBvtOm/Dk30R6PKPsFMMh32IB2fOqU2+Pc4HjnlMhzSK/PzuXZKmlpQZ7PB8c5r2T5Fmv+hcyx02yTKbf3kjHzEWeIM+F+YoozU2+P3P7y+1o9zXp1dSHOEGdmLc401edjaQ8WljqWFM8lKdaphs+5kWvBXr6hjyZEhAAAGD9JREFUb3JQB/5pRHu00t5LxszX2TGZYp1q+JwZVy20h5iDm6vPkjHzdXZMplinGj5n4kx/OZiDa7a9l4yZr7NjMsU61fA5E2ca7h9iDo6FJcol/7vRAGaMu68dM+sHgvQxJfKcKmmHXPoL7v7jEvn+Nki/wMwWjsrg7hvcfVOJfU/iWVJfDP2Wu/93ybxnBumX1FOkwZpoD3e/w93vHSPf95S9IjuvTH8ai5ntLOmUYHXYx+Zx9x9J+mJu1QJlfXqUpUH6gsICZse6TdKVweplZfJ2EXFmIsSZ/mNEEWd6x2yif6CHODMR4kz/MaKIM031+VjaA6hDiueSFOs0iYavBeXuv6hUwIbRHs1LcUymWKdJMK76MQfXvBTHZIp1mgRxZj7m4JqV4phMsU6TIM70Yw4OwCjcbAdgHGuC9M5mtqggz0lB+pwyB3L3GyV9O7dqV0nHl8k7Zb8dpC+ukPeryp6anPM0M9tv8iJFK+xP+0/xWL8naZdc+pvu/oOSecM+e3LB9rsG6VtKHkeSfh6k96yQNxXEGeJMnZqMM4gHcYY4U6cY4sw4fb6uY3WxPYA6pHguSbFOUrPXgjGgPeKR4phMsU4S4yrEHFw8UhyTKdZJIs4gXimOyRTrJBFn6sIcHDADuNkOwDi2DVi347CNzWyxslfZ5vNfUeF4q4P0iRXyTssjg/R1ZTO6+2ZJP8mteoi6Uae2hP1paF+qwQlBenWFvJerv6yHm9m+I7a/LUhXedIo3PbOCnlTQZwhztSpyTiDeBBniDN1iiHOVOrzNR+ri+0B1CHFc0mKdZKavRaMAe0RjxTHZIp1khhXIebg4pHimEyxThJxBvFKcUymWCeJOFMX5uCAGcDNdgDG8ZggvU3SuhHbHxqkv1/xdbjfCNJPrJB3Wh4epO+qmD/c/kkTlCV2YX+a5mujw774zbIZe3322mD1qL54eZA+ouyxBmz7nQp5U0GcIc7Uqck4g3gQZ4gzdYohzlTt83Ueq4vtAdQhxXNJinWSmr0WjAHtEY8Ux2SKdZIYVyHm4OKR4phMsU4ScQbxSnFMplgniThTF+bggBnAzXYAxnFKkL7K3R8Ysf0TgvRPBm413P8U7K8NW4L0ThXzh9t3oU6NM7OHSTouWH3lFA/5+CA9zb74EfX3k9PMbOeiA5jZSZIOzK263t2vLl/EZBBniDO1aCHOtOlAMzvHzK43sw1mtsXMbu+lP2FmrzCz8OaqWUacIc7UIqI4U7XPjyWi9gDqkOK5JMU6Sc1eC8aA9ohHimMyxTpJjKsQc3DxSHFMplgniTjTJczBVZPimEyxThJxpi7MwQEzgJvtAFRiZrtJemmw+ryCbOFd9T+reNibg/ReZrZnxX3UbX2Q3q9i/nD7x05Qlpi9UtIuufTdki6dxoF6F7fhBW7Vvhhuv2zYhu5+k6QzcqseJenTZrbLkCwys6cqmyCc84CkV1csY/SIMw8iztSjsTjTAQdLWqlsEmORpIdK2qeX/kNJH5L0MzP7h944m1nEmQcRZ+rR+TgzZp8fV+fbA6hDiueSFOskNX8t2HW0RzxSHJMp1kliXIWYg4tHimMyxTpJxJkOYg6upBTHZIp1kogzdWEODpgd3GwHoKp3S1qcS9+l/omJQRYF6V9WOaC7b5S0KVi9R5V9TMGNQfrIshnN7EBJ+wer265P48xsiaS3Bqvf7+7hW3bqEvbDX1V8Tbc0v++O/Nzc/SxJb5S0tbfquZJuMLO/NLOjzWyZmT3RzJ5nZudIukLbL2a2SjrN3WfxizFxJkOcmVALcSYGu0p6raSrzWxWX+MvEWfmEGcmFFGcGafPVxZRewB1SPFckmKdpBauBTuO9ohHimMyxTpJjKsQc3DxSHFMplgniTgTI+bgMimOyRTrJBFn6sIcHDAjuNkOQGm9V+v/WbD6ze5+Z0HW8Mmd+8Y4fJhn9zH2UafLgvTzRz0tGfjjAevark+jzGxHSZ9Rf73XSvq7KR62lX7o7mdKOkzSxyRtkHSQsi/bl0v6kaTrlD3VslLZE3CSdImkI9393DHKGDXiTB/izARaijNt2SZptaS3SHqOpCOUPTV4uLJ/MJyp+RMdh0i6xMwOaq6Y3UCc6UOcmUAscWaCPl/1OFG0B1CHFM8lKdYpJ4YyNon2iECKYzLFOuXEUMYmMQcXgRTHZIp1yomhjLOAObgKUhyTKdYpJ4YydhpzcMBs4WY7AKWY2WGS/jVY/RVJZ5fIHn5BC5++KCP8gtb2q7dXKXsaYc4iSW8rymRmj5L0hgF/2sHMdq6naFH4iKTfyKXvl7RijKdkqmizHy5Q9nMUW4s2lHSupNe5+3erFCwFxJl5iDOTaSPOtOEtkg5w92Pc/W/c/QJ3X+PuP3H3a9z9fHd/o7J/MrxHkufyLpb0BTOzNgreBuLMPMSZyXQ+zkzY56vqfHsAdUjxXJJinQr218UyNon26LgUx2SKdSrYXxfL2CTm4DouxTGZYp0K9tfFMqaOObgKUhyTKdapYH9dLGNnMQcHzB5utgNQqPczYavU/6XoZkl/5O4+ONdITeWZGne/R9L7g9VvMLPXDMtjZo+UdJGGvza5U3WcFjP7a0kvDlaf4e5fb7goU++HZraTmf2jpO9JepmkfUpkWyHpWjM7v9dnZgJxZj7izPg6FGemrje5V/izA+6+yd3PkPTq4E9HSPqDqRSuY4gz8xFnxhdDnJlCnx91rM63B1CHFM8lKdZpSsdL+fxGe3RIimMyxTpN6Xgpjyvm4DokxTGZYp2mdLyU48zUMQdXXopjMsU6Tel4MxlnmIMDZtOCtgsAoNvMbB9J/yXpgNzq2yQd5+53lNzNxiA9zhtPwjzhPtvwLkknavvTAybpfWZ2iqSPSrpG2VMc+/e2+1Nt/6J1i6T8JM4md5/3lIiZLSlbGHdfW6n0LTCz1yp7AizvLHf/+5L5l5Q91oD2aLQfmtkCSV+UdEK+WMp+ruJcSVdJWidpJ0kHSnqGsgvwZb1tny3pKDM7zt2vGaOs0SDOjEScqajlONN57v4BMzte2U9dzDld0qdaKlIjiDMjEWcqiiHO1NTnyx5rovYAYpHiuSSmOsV0LdgE2iNNMY3JsmKqE+OqX0ztwRxceTGNybJiqlNM46oJqc0VhJiD6/6YLCumOhFn+jEHB2CauNkOwFBm9nBJl0g6JLd6naRj3f3HFXaV3Bc0SXL3LWZ2sqQLJT0596eje8sw6yW9VNLFuXV3Ddn2pgpF6vQryM3s5ZLOClaf7e6vr7CbSdqj6X74VvVP8t0n6RR3vzDYbouk6yVdb2YflvTPkk7r/W1vSV8ys8Pcff0Y5e084sxoxJlqOhBnYvFu9U/0HWlmi9x9WB+JGnFmNOJMNTHEmRr7fJlj1dEeQOeleC6JsE4xXQs2gfZITIRjslCEdWJc9YupPZiDKyHCMVkowjrFNK6akMxcwQjMwXV7TBaKsE7EmX7MwQGYGn5GFsBAZraHst+Sf1Ju9QZld+JfX3F3dwfpR1Qsy26a/wWtExcj7n6rpKdJ+pCkrSWyXCrpKZLuDdbfVnPROsXMXizpg+r/snqOpFc1WIywH+5iZrtW3Ef4ExQD+2HvC3b4Bff0AZN8fdx9s6SXS7ost/oASW+qWM4oEGfKIc6U05E4E4srlY21OTtIekJLZZkq4kw5xJlyYogzNff5omN1vj2AOqR4LkmxTgUauxaMBO3RMSmOyRTrVIBx1Y85uI5JcUymWKcCxJk4MQcX8ZhMsU4FiDMVMAcHgJvtAMxjZrtLukjSr+dW/5+kE8Z8lX549/5BFfOH29/p7hsGbtkCd7/X3f9E0mMlvVnZP6BvUfYU5T2SblT2kwXHSfrd3quIHx/s5qrGCtwwM3uRsi99+XPOJyW9zN29qXL0nkoN+82BFXcT9sVhT6Y8U1L+IuQmZX2gkLs/IOkdweoVZhbr03sDEWeqIc6M1pU4E4tenPlZsLrSBE8MiDPVEGdGiyHOTKHPjzpW59sDqEOK55IU61Sk4WvBzqM9uiXFMZlinYowrvoxB9ctKY7JFOtUhDgTJ+bg4h2TKdapCHGmPObgAEj8jCyAQO8phQslHZlbvVHSie5+5Zi7vTFIP6Zi/qVB+oYxyzFV7n6TpHf1liJHBelvD9ln1JM7ZvZ8Sf+m7ImtOf8haUXvQrOSGtrjRmVv7pnzGM3vn6OEfXFY3sOC9KUVv/R+XdlPW+zYS++lrKxJXJgQZ8ZHnJmvg3EmFvcF6XF+FqCziDPjI87MF0OcmVKfH3asWtsD6KoUzyUx1ymia8FG0B5piHlMDhNznRhX/SJqD+bgRoh5TA4Tc50iGleNiH2uoALm4KojzsxHnBkDc3AApok32wF4kJntLOlLko7Orf6VpGe5+zcm2PV1QfrJZrZLhfxPL9hfVHpPRz4jWH3ZoG1jZmbPkfRp9d/Y/UVJp7r7/e2Ual7fCW8SGKr3BfrJBfubsyhIV/pZPXffJml9sHrvKvvoKuJMM4gzrcaZWIQxZV0rpZgC4kwziDPdiTNT7PODjtX59gDqkOK5JMU6VdTUtWAsaI+WpTgmU6xTRYyrfszBtSzFMZlinSoizsSJObjqiDPzEWc6gDk4AHncbAdAkmRmCyWdL2l5bvUmSc9x969Psm93/4Wk7+dWLVD/F5Eiy4P0lycpTwc8Q9KSXPoyd0/iack5ZvZMZU9XPDS3epWkF/YmsdpyUZBeXiHvb6n/S+0ad799yLZ3BeldB2412m5BeuMY++gU4kyjiDMYysz21vynDP+3jbLUjTjTKOJMB0yzzw84VufbA6hDiueSFOs0hqauBWNBe7QoxTGZYp3GwLjqxxxci1IckynWaQzEmcgwBzce4sxAy4M0caZhzMEBCHGzHQCZ2Y6SviDp2NzqzZKe5+5frekw5wXpl5Qs2+Mk/WZu1b2SvlJTmdryF0H6Q62UYkrM7DhJn9f2n1+Qss/s+e6+pZ1SPehi9b+2/aheHytjZZAO+3ReeMF8eMljSJLMbJmk3YPVlZ7M7RriTOOIMxjlReq/DrhdCfz0F3GmccSZljXU5+eO1fn2AOqQ4rkkxTqNqalrwVjQHi1JcUymWKcxMa76MQfXkhTHZIp1GhNxJj7MwY2POLO9bMSZljEHB2AQbrYDZpyZLZD0WUkn5lZvlXSKu19c46E+KSn/WtuTe5MZRcJ/5H7W3TfVV6xmmdkKScflVl2j7OmEJJjZ70j6T0kLc6u/puwL5+Z2SrWdu/9K0ueC1WEfm8fMDpF0Um7VNkmfGpFldZB+upk9oUwZe14ZpH/o7ndUyN8pxJlmEWcwipntK+ktweoL3N3bKE9diDPNIs60r8E+H0V7AHVI8VySYp3G1eC1YBRoj3akOCZTrNO4GFf9mINrR4pjMsU6jYs4Exfm4CZGnNmOONMi5uAADOXuLCwsM7pI2kHSZyR5btkq6aQpHe+jwbGukLRwxPbPDbbfLOmgCcuwPNjn2gn3t6DCtidL2hK09eEt94Ha2kPSUZLuCfZ3maRd2qzjgHIuDT4HV/aa52HbL+z11fz2Hyw4hkn6YZDnakm7lyjfCQPK9862222C9ibOEGdmLs400R6SHivp2RXzLJb0nQF9fmnb7TJhmxJniDMzFWea7PMxtAcLSx1LiueSFOtUQxmnfi1Yshyrg32unGa9aY9uLCmOyRTrVEMZGVcNt4eYg8vXJ7kxmWKdaigjcaZ8GZcHZVw75n6Yg9ter+TGZIp1qqGMxJkW+oeYg2NhiW7J/242gNnzMUkvCNa9SdIaM1tScV+3efGTFH+l7MmGPXvpp0m6xMxe5u4/mNvIzHaS9ApJ7w3yv9fdby5TGDN7pDQwxi0O0gtG1HWju68rONS1ZrZK2St9v+3uDwwoy6GSzpB0avCnN7n7moL912La7WFmh0v6sqTdcqt/KOlVkvYxsyrF3eTuU/u5Bnf/qZm9X9Ibcqs/Z2Z/LunDnnsNs5k9XtJHlPXVOeslvb3gGG5mZyjrF3OOkHR17zir3N3zecxsL0mvUdZX8p/Veklnlq1fBxFniDMzF2ekRvrHfpLON7NrJX1C0nnu/uMhZdld0gplT9PuG/z5ne7+0yHHiAVxhjgza3GmkT4fUXsAdUjxXJJinSbSxLVgLv9ukvYe8ueFQXrvEZ/JLe6+rcwxq6I9GpfimEyxThNhXPVjDq5xKY7JFOs0EeLMfMzBNSrFMZlinSZCnOnDHByAoSy4zgAwQ8yszgBwjLuvLnHM5ZIuVv9vzc89cfhTSXsomxB5RJD1S8pek3u/SjCztZIOKrPtCOe6+8qC46yTtFcvuVHStZJ+IWmTsjocMqQc73T3t05YvtKm3R5m9jZlFwl1uMzdl9e0r4HMbAdJF6j/tc+S9EtJ31X29MhSZX0x/y12i6Rj3f3yksc5S9LrBvxpvbI+v07ZWFgi6dc0f1Jgs6RnuvvXyhyvi4gzhYgz/VKKM2s13fZYLunSYPXdkq5TFlvuUXZx/ihJh2nwpOOH3T38yZzoEGcKEWf6RR9nmurzsbQHUIcUzyUp1qkODV4LrpR0zqTllXSwu6+tYT8D0R7NSXFMplinOjCu+jEH15wUx2SKdaoDcaYfc3DNSXFMplinOhBnMszBARiFN9sBaJS7rzazkyR9XNu/KJqkp/SWQT4t6eVNfIGc0G7KXvM7ygZJp7v7vzdQHgzh7veb2QuUPXHzwtyf9lH2ExKD/FLSirIXCT2v7+V7u/ovnPaSdHxB3puVvRZ7dYXjQcQZEWdm2R6Snl5iu3slvc7d/2XK5UkWcYY4AwCTSvFcEkOdGrwWjALtkbYYxmRVMdSJcdWPObi0xTAmq4qhTsSZTmAOriExjMmqYqgTcQYAij2k7QIAmD3ufqGkQyV9UNk/a4f5lqRT3P1Ud7+3kcJV9z5JayTN+7m1wM8lvUPSo/nHdDe4+0Z3f5Gk31fW14a5U9LZkg5194sqHsPd/T2SniTpnzS6v8+5QdkE4aFM8o2POEOcmQE3SnqXpCsk3Vcyz4+UveZ+CZN8kyPOEGcAYFKJnUskxVGnJq4FY0J7pC2GMVlVDHViXPVjDi5tMYzJqmKoE3GmUczBtSyGMVlVDHUizgDAaPyMLIBWmdmOyp4AOkjSYmVP+twqaY2739Rm2aows4dJOlzSwcqeRFmo7MLrVknfc/cbWiweSjCzg5W98np/SbtKuk3Zk61XuPuWmo5hkh6n7HXye0t6mKRtku5S1leucvfb6zgWtiPOIHVm9hBJyyQ9WtIBkhZpe//YoOznQL/j7ne0VsjEEWcAAJNK5VySF0udmrgWjAntka5YxmQVsdSJcdWPObh0xTImq4ilTsSZZjAH175YxmQVsdSJOAMA/bjZDgAAAAAAAAAAAAAAAACAAvyMLAAAAAAAAAAAAAAAAAAABbjZDgAAAAAAAAAAAAAAAACAAtxsBwAAAAAAAAAAAAAAAABAAW62AwAAAAAAAAAAAAAAAACgADfbAQAAAAAAAAAAAAAAAABQgJvtAAAAAAAAAAAAAAAAAAAowM12AAAAAAAAAAAAAAAAAAAU4GY7AAAAAAAAAAAAAAAAAAAKcLMdAAAAAAAAAAAAAAAAAAAFuNkOAAAAAAAAAAAAAAAAAIAC3GwHAAAAAAAAAAAAAAAAAEABbrYDAAAAAAAAAAAAAAAAAKAAN9sBAAAAAAAAAAAAAAAAAFCAm+0AAAAAAAAAAAAAAAAAACjAzXYAAAAAAAAAAAAAAAAAABTgZjsAAAAAAAAAAAAAAAAAAApwsx0AAAAAAAAAAAAAAAAAAAW42Q4AAAAAAAAAAAAAAAAAgALcbAcAAAAAAAAAAAAAAAAAQAFutgMAAAAAAAAAAAAAAAAAoAA32wEAAAAAAAAAAAAAAAAAUICb7QAAAAAAAAAAAAAAAAAAKMDNdgAAAAAAAAAAAAAAAAAAFOBmOwAAAAAAAAAAAAAAAAAACnCzHQAAAAAAAAAAAAAAAAAABbjZDgAAAAAAAAAAAAAAAACAAtxsBwAAAAAAAAAAAAAAAABAAW62AwAAAAAAAAAAAAAAAACgADfbAQAAAAAAAAAAAAAAAABQgJvtAAAAAAAAAAAAAAAAAAAowM12AAAAAAAAAAAAAAAAAAAU4GY7AAAAAAAAAAAAAAAAAAAKcLMdAAAAAAAAAAAAAAAAAAAFuNkOAAAAAAAAAAAAAAAAAIAC3GwHAAAAAAAAAAAAAAAAAEABbrYDAAAAAAAAAAAAAAAAAKAAN9sBAAAAAAAAAAAAAAAAAFDg/wFRlxEKZVemhQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import yappi\n", + "\n", + "from apd.aggregation.analysis import interactable_plot_multiple_charts, Config, clean_temperature_fluctuations, get_data_by_deployment\n", + "from apd.aggregation.utils import profile_with_yappi\n", + "\n", + "async def filter_and_clean_temperature_fluctuations(datapoints):\n", + " filtered = (item async for item in datapoints if item.sensor_name==\"Temperature\")\n", + " cleaned = clean_temperature_fluctuations(filtered)\n", + " async for item in cleaned:\n", + " yield item\n", + "\n", + "filter_in_python = Config(\n", + " clean=filter_and_clean_temperature_fluctuations,\n", + " title=\"Ambient temperature\",\n", + " ylabel=\"Degrees C\",\n", + " get_data=get_data_by_deployment,\n", + ")\n", + "\n", + "with profile_with_yappi():\n", + " plot = interactable_plot_multiple_charts(configs=[filter_in_python])\n", + " plot()\n", + "\n", + "yappi.get_func_stats().print_all()" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from apd.aggregation.utils import yappi_package_matches\n", + "import yappi\n", + "\n", + "yappi.get_func_stats().save(\"callgrind.filter_in_python\", \"callgrind\") " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "apd.aggregation", + "language": "python", + "name": "apd.aggregation" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Ch10/listing10-01-profiling_wrapper.py b/Ch10/listing10-01-profiling_wrapper.py new file mode 100644 index 0000000..8c416c2 --- /dev/null +++ b/Ch10/listing10-01-profiling_wrapper.py @@ -0,0 +1,48 @@ +_Coroutine_Result = t.TypeVar("_Coroutine_Result") + +def wrap_coroutine( + f: t.Callable[..., t.Coroutine[t.Any, t.Any, _Coroutine_Result]], debug: bool=False, +) -> t.Callable[..., _Coroutine_Result]: + """Given a coroutine, return a function that runs that coroutine + in a new event loop in an isolated thread""" + + @functools.wraps(f) + def run_in_thread(*args: t.Any, **kwargs: t.Any) -> _Coroutine_Result: + loop = asyncio.new_event_loop() + wrapped = f(*args, **kwargs) + + if debug: + # Create a new function that runs the loop inside a cProfile + # session, so it can be profiled transparently + + def fn(): + import cProfile + + return cProfile.runctx( + "loop.run_until_complete(wrapped)", + {}, + {"loop": loop, "wrapped": wrapped}, + sort="cumulative", + ) + + task_callable = fn + else: + # If not debugging just submit the loop run function with the desired + # coroutine + task_callable = functools.partial(loop.run_until_complete, wrapped) + with ThreadPoolExecutor(max_workers=1) as pool: + task = pool.submit(task_callable) + # Mypy can get confused when nesting generic functions, like we do here + # The fact that Task is generic means we lose the association with + # _CoroutineResult. Adding an explicit cast restores this. + return t.cast(_Coroutine_Result, task.result()) + + return run_in_thread + + +def interactable_plot_multiple_charts( + *args: t.Any, debug: bool=False, **kwargs: t.Any +) -> t.Callable[..., Figure]: + with_config = functools.partial(plot_multiple_charts, *args, **kwargs) + return wrap_coroutine(with_config, debug=debug) + diff --git a/Ch10/listing10-02-profile_with_yappi.py b/Ch10/listing10-02-profile_with_yappi.py new file mode 100644 index 0000000..b06fcfb --- /dev/null +++ b/Ch10/listing10-02-profile_with_yappi.py @@ -0,0 +1,13 @@ +from apd.aggregation.analysis import interactable_plot_multiple_charts, configs +from apd.aggregation.utils import jupyter_page_file, profile_with_yappi, yappi_package_matches +import yappi + +with profile_with_yappi(): + plot = interactable_plot_multiple_charts() + plot() + +with jupyter_page_file() as output: + yappi.get_func_stats(filter_callback=lambda stat: + yappi_package_matches(stat, ["apd.aggregation"]) + ).print_all(output) + diff --git a/Ch10/listing10-03-memory_profiler.py b/Ch10/listing10-03-memory_profiler.py new file mode 100644 index 0000000..3261a22 --- /dev/null +++ b/Ch10/listing10-03-memory_profiler.py @@ -0,0 +1,12 @@ +import tracemalloc + +from apd.aggregation.analysis import interactable_plot_multiple_charts + + +tracemalloc.start() +plot = interactable_plot_multiple_charts()() +snapshot = tracemalloc.take_snapshot() +tracemalloc.stop() +for line in snapshot.statistics("lineno", cumulative=True): + print(line) + diff --git a/Ch10/listing10-04-sql_filtering.py b/Ch10/listing10-04-sql_filtering.py new file mode 100644 index 0000000..f8fafa1 --- /dev/null +++ b/Ch10/listing10-04-sql_filtering.py @@ -0,0 +1,21 @@ +import yappi + +from apd.aggregation.analysis import interactable_plot_multiple_charts, Config +from apd.aggregation.analysis import clean_temperature_fluctuations, get_one_sensor_by_deployment +from apd.aggregation.utils import profile_with_yappi + +yappi.set_clock_type("wall") + +filter_in_db = Config( + clean=clean_temperature_fluctuations, + title="Ambient temperature", + ylabel="Degrees C", + get_data=get_one_sensor_by_deployment("Temperature"), +) + +with profile_with_yappi(): + plot = interactable_plot_multiple_charts(configs=[filter_in_db]) + plot() + +yappi.get_func_stats().print_all() + diff --git a/Ch10/listing10-05-python_filtering.py b/Ch10/listing10-05-python_filtering.py new file mode 100644 index 0000000..1f04818 --- /dev/null +++ b/Ch10/listing10-05-python_filtering.py @@ -0,0 +1,24 @@ +import yappi + +from apd.aggregation.analysis import interactable_plot_multiple_charts, Config, clean_temperature_fluctuations, get_data_by_deployment +from apd.aggregation.utils import jupyter_page_file, profile_with_yappi, YappiPackageFilter + +async def filter_and_clean_temperature_fluctuations(datapoints): + filtered = (item async for item in datapoints if item.sensor_name=="Temperature") + cleaned = clean_temperature_fluctuations(filtered) + async for item in cleaned: + yield item + +filter_in_python = Config( + clean=filter_and_clean_temperature_fluctuations, + title="Ambient temperature", + ylabel="Degrees C", + get_data=get_data_by_deployment, +) + +with profile_with_yappi(): + plot = interactable_plot_multiple_charts(configs=[filter_in_python]) + plot() + +yappi.get_func_stats().print_all() + diff --git a/Ch10/listing10-06-consume_iterators.py b/Ch10/listing10-06-consume_iterators.py new file mode 100644 index 0000000..1051b69 --- /dev/null +++ b/Ch10/listing10-06-consume_iterators.py @@ -0,0 +1,14 @@ +def consume(input_iterator): + items = [item for item in input_iterator] + def inner_iterator(): + for item in items: + yield item + return inner_iterator() + +async def consume_async(input_iterator): + items = [item async for item in input_iterator] + async def inner_iterator(): + for item in items: + yield item + return inner_iterator() + diff --git a/Ch10/listing10-07-consume_iterators_singledispatch.py b/Ch10/listing10-07-consume_iterators_singledispatch.py new file mode 100644 index 0000000..e55a28a --- /dev/null +++ b/Ch10/listing10-07-consume_iterators_singledispatch.py @@ -0,0 +1,18 @@ +import functools + +@functools.singledispatch +def consume(input_iterator): + items = [item for item in input_iterator] + def inner_iterator(): + for item in items: + yield item + return inner_iterator() + +@consume.register +async def consume_async(input_iterator: collections.abc.AsyncIterator): + items = [item async for item in input_iterator] + async def inner_iterator(): + for item in items: + yield item + return inner_iterator() + diff --git a/Ch10/listing10-08-typed_conversion.py b/Ch10/listing10-08-typed_conversion.py new file mode 100644 index 0000000..8f154a7 --- /dev/null +++ b/Ch10/listing10-08-typed_conversion.py @@ -0,0 +1,24 @@ +CLEANED_DT_FLOAT = t.AsyncIterator[t.Tuple[datetime.datetime, float]] +CLEANED_COORD_FLOAT = t.AsyncIterator[t.Tuple[t.Tuple[float, float], float]] + +DT_FLOAT_CLEANER = t.Callable[[t.AsyncIterator[DataPoint]], CLEANED_DT_FLOAT] +COORD_FLOAT_CLEANER = t.Callable[[t.AsyncIterator[DataPoint]], CLEANED_COORD_FLOAT] + + +def convert_temperature(magnitude: float, origin_unit: str, target_unit: str) -> float: + temp = ureg.Quantity(magnitude, origin_unit) + return temp.to(target_unit).magnitude + + +def convert_temperature_system( + cleaner: DT_FLOAT_CLEANER, temperature_unit: str, +) -> DT_FLOAT_CLEANER: + async def converter(datapoints: t.AsyncIterator[DataPoint],) -> CLEANED_DT_FLOAT: + results = cleaner(datapoints) + reveal_type(temperature_unit) + reveal_type(convert_temperature) + async for date, temp_c in results: + yield date, convert_temperature(temp_c, "degC", temperature_unit) + + return converter + diff --git a/Ch10/listing10-09-fahrenheit_chart.py b/Ch10/listing10-09-fahrenheit_chart.py new file mode 100644 index 0000000..a54a81c --- /dev/null +++ b/Ch10/listing10-09-fahrenheit_chart.py @@ -0,0 +1,13 @@ +import yappi +from apd.aggregation.analysis import interactable_plot_multiple_charts, Config +from apd.aggregation.analysis import convert_temperature_system, clean_temperature_fluctuations +from apd.aggregation.analysis import get_one_sensor_by_deployment + +filter_in_db = Config( + clean=convert_temperature_system(clean_temperature_fluctuations, "degF"), + title="Ambient temperature", + ylabel="Degrees F", + get_data=get_one_sensor_by_deployment("Temperature"), +) +display(interactable_plot_multiple_charts(configs=[filter_in_db])()) + diff --git a/Ch10/listing10-10-minimal_cache.py b/Ch10/listing10-10-minimal_cache.py new file mode 100644 index 0000000..c5b1680 --- /dev/null +++ b/Ch10/listing10-10-minimal_cache.py @@ -0,0 +1,16 @@ +def convert_temperature_system( + cleaner: DT_FLOAT_CLEANER, temperature_unit: str, +) -> DT_FLOAT_CLEANER: + async def converter(datapoints: t.AsyncIterator[DataPoint],) -> CLEANED_DT_FLOAT: + temperatures = {} + results = cleaner(datapoints) + async for date, temp_c in results: + if temp_c in temperatures: + temp_f = temperatures[temp_c] + else: + temp_f = temperatures[temp_c] = convert_temperature(temp_c, "degC", temperature_unit) + yield date, temp_f + + return converter + + diff --git a/Ch11/apd.aggregation-chapter11/.coveragerc b/Ch11/apd.aggregation-chapter11/.coveragerc new file mode 100644 index 0000000..e766c69 --- /dev/null +++ b/Ch11/apd.aggregation-chapter11/.coveragerc @@ -0,0 +1,3 @@ +[run] +branch = True +omit = tests/* diff --git a/Ch11/apd.aggregation-chapter11/.pre-commit-config.yaml b/Ch11/apd.aggregation-chapter11/.pre-commit-config.yaml new file mode 100644 index 0000000..d3b6ec7 --- /dev/null +++ b/Ch11/apd.aggregation-chapter11/.pre-commit-config.yaml @@ -0,0 +1,26 @@ +repos: + +- repo: local + hooks: + - id: black + name: black + entry: pipenv run black + args: [--quiet] + language: system + types: [python] + + - id: mypy + name: mypy + exclude: (?x)^( + (.*)/setup.py + )$ + entry: pipenv run mypy + args: ["--follow-imports=skip"] + language: system + types: [python] + + - id: flake8 + name: flake8 + entry: pipenv run flake8 + language: system + types: [python] diff --git a/Ch11/apd.aggregation-chapter11/CHANGES.md b/Ch11/apd.aggregation-chapter11/CHANGES.md new file mode 100644 index 0000000..8e424e5 --- /dev/null +++ b/Ch11/apd.aggregation-chapter11/CHANGES.md @@ -0,0 +1,5 @@ +## Changes + +### 1.0.0 (Unreleased) + +* Generated from skeleton diff --git a/Ch11/apd.aggregation-chapter11/Connect to database.ipynb b/Ch11/apd.aggregation-chapter11/Connect to database.ipynb new file mode 100644 index 0000000..98a74f0 --- /dev/null +++ b/Ch11/apd.aggregation-chapter11/Connect to database.ipynb @@ -0,0 +1,577 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "53635\n" + ] + } + ], + "source": [ + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.database import datapoint_table\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " print(session.query(datapoint_table).count())" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "53635\n" + ] + } + ], + "source": [ + "from apd.aggregation.query import with_database, get_data\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " count = 0\n", + " async for datapoint in get_data():\n", + " count += 1\n", + " print(count)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nO2df5RV5Xnvv88czuAZIhnGAMWJk1FK8cYMMOmk4KXXaiwlkahHIyFW1vKu5uptb1dbSjvtULnFZEEgkhC6bu+695L+olcWRQ0dTTASitqueoUuzIDERIpGRUcKNDhRYYRheO4fZ+9hz56999m/z95zvp+1Zp05++wfz373u9/nfd/neZ9HVBWEEEKIGw21FoAQQki2oaIghBDiCRUFIYQQT6goCCGEeEJFQQghxJMJtRYAAD7ykY9oe3t7rcUghJBc8cILL/y7qk5N+jqZUBTt7e04cOBArcUghJBcISJvpHEdTj0RQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+qej2JyF8B+ByAk6r6CWNbC4AdANoBvA7gC6r6jvHbKgBfAjAM4HdVdXcikhOSIr19/XjwiZcwMDgU6TxNxUrf7OzQRQDAlKYi1tx6HcqdrSPX2bj7CN4eGMSVzSV0L5498htJjiDlbq8LU5qKWDJnBp55+RTeHhjEh0tFnL8wPPKM/WCvB1lDqkWPFZEbALwP4G8tiuIhAKdVdYOI9ACYoqp/LCIfB7AdwC8BuBLAPwD4BVUd9rpGV1eX0j2WZJXevn50P3oIQxeTibRcLAg23jUXALBq52EMDl16XUrFAtbf2ZHZBmQ80NvX77vck6wLZj0I8qxF5AVV7YpdGBtVp55U9Z8AnLZtvh3AVuP/rQDKlu1/p6rnVPU1AK+gojQIyS0bdx9JTEkAwNCwYuPuI9i4+8ioxgoABoeGsXH3kcSuTRCo3JOsC2Y9yCJhF9xNV9XjAKCqx0VkmrG9FcA+y35vGdvGICL3A7gfANra2kKKQUjyvD0wWNNrpHH9esatfJ22J/0ssvqs4zZmi8M2R/WrqltUtUtVu6ZOTXwFOiGhubK5lMo13K6TxvXrmSDlnvSzyOqzDqsoTojIDAAwPk8a298CcJVlv48CeDu8eITUnu7Fs1FscOoDxUOxIOhePBvdi2ejVCyM+q1ULKB78ezErk0QqNyTrAtmPcgiYRXFEwDuNf6/F8Djlu1fFJGJInI1gFkA/iWaiITUlnJnKzYunYvmUjHyuZqKDSOeT0DF28U0YJY7W7H+zg60NpcgAFqbSzRkp0CQcneqC1Oaili+oG3k+OZScdQz9oO1HmQRP15P2wHcCOAjAE4AWAOgF8AjANoAHAOwVFVPG/s/AOA3AFwAsEJVv1dNCHo9EUJIcNLyeqpqzFbVu11+utll/3UA1kURihBCSHbgymxCCCGeUFEQQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhCRUEIIcQTKgpCCCGeUFEQQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhSNR8FIWHp7evHg0+8hIHBoTG/TWosYN0d/rO39fb1Y+PuI3h7YBBXNpfQvXh2bNnAvOQ0mdJUxJpbr0O5szWwLOb+/QODKIhgWBXNpSLOXxjG2aGLsdwDUElYXywIzg9fSkY2pamIJXNm4JmXT43I235FCft+8g6GVVEQwd3zr8LackdscvjFXu7WMq4FTvXA/tyr1RMrbveTZF1OiqoZ7tKAGe7GH719/eh+9BCGLrrXr0KD4BtLq6d/7O3rx6qdhzE4NDyyrVQsxJIm1I+cJsWCYNmnrsK3X+j3LYuT7Flk+YK2VJWFW7kXC1KTlKBe9cB87jv+5U1f9cR+rPV+4q7LaWW449QTSYSNu49UfamGLyo27j7i61z2hnZwaNjXsX7O7fflHxpWbN//ZiBZnGTPItv3v5nq9dzKfWjYX51ISx7g0nMPqiTMY633k2RdThIqCpIIbw8Mxraf2z5+rxH1+laGXUbgScqYBm73lRRe5VKLMqt2zSjlYz13XusJFQVJhCubS7Ht57aP32tEvb6Vgkig88QhYxq43VdSeJVLLcqs2jWjlI/13HmtJ1QUJBG6F89GscH75So0CLoXz/Z1rlKxMGpbqVjwdayfc1eT06RYqBh+g8jiJHsWuXv+Valez63ciwV/dSIteYBLz91vPbEfa72fJOtyklBRkEQod7Zi49K5aC4VHX+f1FjwZcg2z7X+zg60NpcgAFqbS7EYsv3IaTKlqYiNd83F2nJHIFmssgOXeqbNpSKaivG+fgKgsTC6MZvSVMTyBW2j5F04s2VEjoJI6oZswLnczTKuhQeQWz2wPnc/9cTpWOv9JFmXk4ReT4QQklPo9UQIISQTUFEQQgjxJJKiEJHfE5EfishLIrLC2NYiIntE5KjxOSUeUQkhhNSC0IpCRD4B4D4AvwRgLoDPicgsAD0A9qrqLAB7je+EEEJySpQRxX8AsE9Vz6rqBQD/COAOALcD2GrssxVAOZqIhBBCakkURfFDADeIyBUi0gTgFgBXAZiuqscBwPic5nSwiNwvIgdE5MCpU6ciiEEIISRJQisKVf0xgK8B2APgKQCHAFwIcPwWVe1S1a6pU6eGFYMQQkjCRDJmq+pfquonVfUGAKcBHAVwQkRmAIDxeTK6mIQQQmpFVK+nacZnG4A7AWwH8ASAe41d7gXweJRrEEIIqS1RExd9W0SuADAE4LdV9R0R2QDgERH5EoBjAJZGFZLUH1lLakNIPRNJUajqf3LY9lMAN0c5L6lvnJLIvHN2CN2PHQIAKgtCUoYrs0nmyFpSG0LqHebMJqlizR8tAOzqwGmblf6BQXz8v38vUK7pKU1FfHzG5Xju1dO+9rVOccU1Bba69zC2739zTJ5qr/zJ1t8+XCpCBBg4O+S436qdL2LQKJMGAa6/pgUvvf3emPzPZv5st/JvEODX56cfTdYtX/WSOTPw3UPHazIFubr3MLbtO+ZYH1tzkus6Lhg9lqRGXvJHm3mOAcSS13l172E8vO/YmO0LZ7bgB8d+5pg/GYBnWVn3W7njIPyrTX+kGXo8SN5yIJ282m7PzEpcedujkFb0WCoKkhoLNzyN/oynfDQx80e4ydvaXMJzPZ/2da6Zq54MlEqz2rWD7heGggheXX9L7Od1Iky9CFL+YfD7zJKWoxppKQpOPZFYqPQKD8JpRmhSYwHr7ujIfF5gK9VkDXIvQfMtx5lvPCxp5tAOcx9J1yW/95+nOh0FGrNJZHr7+rFih7OSAIAz54fxB48eQnOT/+xgtebK5lJseZ2D5luudu2g+4UhzRzaYe4h6RzTfu8/67mu44KKgkTGjyfS8EWFKnKRP9rMcxxXXme3fNQLZ7a45k+ulmvbul8SL3GaObSD5C0H0smr7ef+85DrOi6oKEhk/A6/fzY4NCp/tFPTYM/73FRsGJVb2v7dD1Oailg4s8X3vqahNK68zmvLHVi+oG1Mnupt913vmj/Znlu5uVTElKai436bls1DyVImDVJRQk75n8382YBz+TdIuoZswDtf9fIFbTXJq20+Mzf1lZdc13FBYzaJjF9jZK0Nf4SMN5gzm+QGP8PvQkPy0wWEkGSgoiCRKXe2YvOyeXCbEZrUWMA3liY/XUAISQa6x5JYMOfLCSHjD44oCCGEeEJFQQghxBMqCkIIIZ5QURBCCPGEioIQQognVBSEEEI8oXssyQT2JDFmxFm63BJSe6goSM1xShJjRpwFmCObkFrDqSdSc7bvf9Nx+/BF5sgmJAtwREFSx54L2itJjDUyrT3v9IJrpozKC91UbMDEYmEkr/RN104dlW8ZSDfncpbwys1t/h5HbvCgctifkVOebDNasD1Per0+y1rA6LEkVYLmzTYjzvrJYeyXNHIuZwmnMrfme3bLWR13OSWRM73enqUdRo8l45KNu4/4biisEWfdpqfCMDRcX1NaTmU+ODQ8UgYbdx8ZoySA+MspyLP3S709y1oRSVGIyO+LyEsi8kMR2S4il4lIi4jsEZGjxueUuIQl+cdvkiN7xNm4czjXS65jwP1eze1eZRFnOSVV5vX0LGtFaEUhIq0AfhdAl6p+AkABwBcB9ADYq6qzAOw1vhMCwF+O4dbmEl76ymdGTSfEncO5XnIdA+73am6PKzd4WDmyel5yiahTTxMAlERkAoAmAG8DuB3AVuP3rQDKEa9BxhF+c0HbiTOHcxo5l7OEU5lbyzmu3OBh5IhKvT3LWhFaUahqP4CvAzgG4DiAn6nq9wFMV9Xjxj7HAUyLQ1AyPvCbC9qOU95pe17opmLDqHPZ8y0D6eVczhL2MreXc1y5wcPI4ZQT277NLU96PT7LWhHa68mwPXwbwDIAAwAeBfAYgD9X1WbLfu+o6hg7hYjcD+B+AGhra/vFN954I5QchBBSr+TB6+lXAbymqqdUdQjATgD/EcAJEZkBAMbnSaeDVXWLqnapatfUqVMjiEEIISRJoiiKYwAWiEiTiAiAmwH8GMATAO419rkXwOPRRCSEEFJLQq/MVtX9IvIYgB8AuACgD8AWAB8C8IiIfAkVZbI0DkEJIYTUhkghPFR1DYA1ts3nUBldEEIIGQdwZTYhhBBPqCgIIYR4QkVBCCHEEyoKQgghnlBREEII8YSKghBCiCdUFIQQQjyhoiCEEOIJc2YTUidUy5udNfIm73iGioKQOsCer7p/YBCrdh4GgEw2vnmTd7zDqSdC6oBqebOzRt7kHe9QURBSB1TLm5018ibveIeKgpA6oFre7KyRN3nHO1QUhNQB1fJmZ428yTveoTGbkDrANADnxYsob/KOd0LnzI6Trq4uPXDgQK3FIISQXJGHnNmEEELqACoKQgghntBGYeGebz2P5149PfJ94cwWbLvv+hpKRAghtYcjCgO7kgCA5149jUWbnq2NQIQQkhHqZkRxdc8uWM32AuC1DUtGvtuVhMnRk2fQ29dPbwtCSN1SFyOKdpuSAAA1tvth1c4XY5eJEELywrhXFPd863nP3+ev21P1HINDF+MShxBCcse4VhS9ff2uU0omJ947n5I0hBCST8a1ovjjb/ubMpqz5qmEJSGEkPwSWlGIyGwROWj5e1dEVohIi4jsEZGjxueUOAUOwrkL/qaM3j03XH0nQgipU0IrClU9oqrzVHUegF8EcBbA3wPoAbBXVWcB2Gt8J4QQklPimnq6GcCrqvoGgNsBbDW2bwVQjukaNaW3r7/WItQVvX39WLjhaVzdswsLNzzN8iekhsSlKL4IYLvx/3RVPQ4Axuc0pwNE5H4ROSAiB06dOhWTGKOZNW1SbOdiZq30WLTpWazYcRD9A4NQVNJgrthxkMqCkBoRecGdiDQCuA3AqiDHqeoWAFuASvTYqHI4cfZ8fG6tWcisVQ/J5u/51vM4evKM428rHzmYi/uth+dEorO69zC2738Tw6ooiODu+Vdhbbmj1mI5EsfK7M8C+IGqnjC+nxCRGap6XERmADgZwzVCEWfj/uFSMbZzhWHOmqdGGd3Ha7J5L3fmi7WPiF+VRZueHaXozNEQML6eE4mGvZ4Mq+LhfccAIJPKIo6pp7txadoJAJ4AcK/x/70AHo/hGqFonBCf9++7g0OxnSso89ftcfTMGm/J5q994MlaixAJr9HQih0Hcc2qXZw+I1jde9i1npjKImtEGlGISBOARQD+q2XzBgCPiMiXABwDsDTKNcLS29fv2z3WD0mvzXaKXLu0qw0bdx/xXBTYn4EpsThY3XsYHwznYMjgQbXFnRcVHF2QzCoDLyIpClU9C+AK27afouIFVVO6Hz1YaxEccZq/fvTAMcfItdUaHqAS3DCvWMsi3yoiGH/02CEqijplde/hWosQinEbPbZaeKZJjQWcOZ/uQrvevn78/o6DI41i/8DgqO9hyGsD29vXj1U7D2NwqP4WO57P+ciJBKe3r39kNOlFVjt+uVYUUbxL1t3RMaahKhULng1Xe8+uSN4Jf/TYIccotvXIxt1HAiuJgmT1NQrO6t7DmTRaEm/CeCr5VRIAcM+CtjjEjJ3cKorevn50P3oIQ4YrTP/AILofPQQAOPCG95RNqdgwolDsiqbaA3XyTvCrsNiTvEQY28qwjp/ye3jfMSqKnBHWU+nBJ17yfY2s1oncKooHn3hpREmYDF1UPPjESxio4qG0/s45ACoGRXuD7lfzbzNedHtvge6Q/hAEH021NpeSEIWQqlTzVPJq4Ku1RyaTJxZCyZYGuVUUboXv56F4NeClYoOv/BNmI+emWFbsGL04jG6RowkzNmi/Il5FYe8hzpo2CXtW3hjqXEk8X7sn3MQJDfja5yudHC7oS5ft+98MdVy1fDhWXvzyZ0JdIw1yqyiSYv2dc3yPKqphTaGa5HqHepnvfu7V07GlpbUrCaCS9nbRpmerKguneeowLo/tPbuwfEGb47NzyuF+7sLFMXXTHMH+ae/hTDc0Tlz7wJNjXKInTyxk8j6qTXs6vYNOdcyNUjHbGR9EMzDv29XVpQcOHAh0jN80pnYmNAhe+eotnvvMXv09X2swFs5s8eXCmgavW/J/54Gwz880Z1frSVezG3ld36ssV/ceTsQP3q4wwpTPZQXBy+u863ZWcFISVtKsz15u2hMEeGX9Esxc9WRVZWGVOYgBGwA2L5sXqgMkIi+oalfgAwOSbTWWAF9fOrfqPubwvhppKYnNy+alcp08oMafGcLEacrHdL21BhX8/R0HY/FhT2qx1MP7jkWW74NhzY2ffrXFlVeH7EgExV5X7FzQitJecE2wtDpf/o5/A/bCmS2ZnzqsK0WxfEGbrweSlYfW2lwK3dPIMkHmbb1wC2Hi5HqrqDTGfmwJ7T27atLgxqGE8rjq1wlF+FFnEPy6afvpFFqV2ztn/Rmwly9ow7b7rve1by3JraJoLAT3qc/TPP5lBcFzPZ8eURILZ7bUWKJ4WN17uOpL1xDg0Tq52XoFg/TrqhhHDz8M7T27Umkg80LSSjvOwKGK4Cuv89Im5VZRTJoYzA4fdPomzlwWYbDPNVfrdeQl0Y+fHu+mLwR7VvZ79YoF6ddVEYindz5r2iQsz+giqlpyWYCOXpJK+8qYXa7NOtPsI9q0n32yQm4Vhd+hnUnQ6Zs9K2+sibKYPLEQypC38pHRiX7c5u+TIG4lFfRZ2UcJ1bybg8j386su9e4XbXo2iFgAKvVobbmDdiYbG+6qbiu08vC+Y7i6J/7ou92LZ8d6PqAyCvLTIXnwtutiv3ZS5NY9tiCS+ErdPStvxMINTyceoTUODw97rgZz/j5p+0aQBYdJ9QqDjBKAimJpbS75eq4XtGJTeeXk+55RfJ2YfnnjyP9mWcTlep13wriLKyrl94ePHsLXl87Nte1u1rRJuZI/tyOKtMI5JNHjsBIkflFTQF9r+/xrEtNTKz0WHNrZ5mMqx2xcJ8aYS8TOwOBQoOf63KunAysJANj/wKJR38udramMLPLg+RTFNnDhomLFjoNo79mF2au/F6ke1yKfS5SFnbUit4oiCFHmiMudrYnOMd89/yrf+371Tn9uuybWrHxOLqNxTE95zfK0WxRSb19/1dXY0y9vHGlc/booO+FnyjDpnr3bKLHc2Zr4GoGwtpVrH3hyxJje3rMr0URScdkGzl24iJWPhM+nXot8LnlTEkCdKIqongXmHHPcsYYWzmwJJFvQoap1sOLkBjg4NDzSM3P6i6Nnak5FVWuYly9oG9UDjzIs//f3g/f+42LWtEmZWPw4f92eQPtf3bNrzNqGD4Y1MWVx07VTYzvXRQ0/MhhPEYmTJLeKIu0HXO5sxXM9n8brG5Zg+YK2Mdf3WoK/edm8EUUjuLQ+Imn/aavBP0zPKU0X0ajK3JRzde/hwI4OcbF52TzfvcVJjcEDwF1WkJH6V40T750fZYj3YnXvYdfRXlJZB595+ZTj9rChLMJOZXlNYdMB4RK5NWb7ja+TxLTR2nKHY8O2uvcwtu07NvLSTWosYN0dHSO947SNV0HWI7hRLTLm9MsbQ83f24kaw+nhfcfQ9bGWmi04a7KErvfDujs6Ak9/mS7Ta8sdvu7zglZGCq9VGeHUoszcGvYPfATkdCLsVJabU0Nrc2kkuvScNU855qw3FUk9OCjkVlGsLXfgtVPvV128leaCFjcFUivsnlBh8WrEJxTiCY0ch4dWrV5YQXD7URAvKKvtxqSp2ICzPqMcz1+3Z+R4p4CGteBKlwb6yuYSbrp2amDlFdbppHvxbMcEZtbzVQtSeOCN0+NmRbwbuVUUQGURGlexJs+qnS+6NuJxrWx1Ok+YnBVpM6WpiDW3XhdKyZk91jCZGr8aIMqxOeL7+VW7cMFSoNbEO2nj1UCb924qND+E7WS4JTALcj6zc+inLPM6nZVrRQEAxQb3BVb1viI2rsjFg0MXMWfNU449K7eeYVCcpg7uWdCWekM2QTCqMfVi8sQC+v701yJf0ymBlp9j/vDRQ7jgc9gYtkOVVMNWrYE2R+dpdATDlL+dteUOPPPyKdd3oTXneUNya8w22bjUuSIH9SjKC1Oa/C/7H7oYX0Kdd88NY86ap8Zs7148G6VitOkn+1DfZG25I1VlP3liAa+sX+I7wX2t8yZ8fencWOxQXiTZsJkOIq9tWDIqrpkVPz4rWekQOr0LpWIBm5fNc72/vJB7RWEuYkrbo6hWrLn1OhQDxMl58ImXsHDD07Fc+91zw2MUT7mzFXoxuAFyQoOMPK/1d3a4vkRryx2hAkAGZfrljSMN/2sbloxaVW0nbJiVuCl3tmLTF+J3284S98yvrgSy0iEsd7Zi/Z0do9oir7qdJ3KbuKie6e3r95UbPAlam0t4rufTgbJ3AZWeVdiX5uqeXZFtFW6Z5LywZ5lbOLMl0x2QuKdpzGdda7ySHGU1I15apJW4iIoixzilywzLpMYCzpyvHpcf8O8S29pciiWvc9R4W+Mxp4cTQbOqVSNL5TZ/3Z4xda7elQSQE0UhIs0A/gLAJ1BxUPkNAEcA7ADQDuB1AF9Q1Xe8zkNFEZ6oqTmtaz06v/L9WBerxTU909vXj+5HD2EohL+vmcqyXohrVJH10ROpkJdUqH8G4ClVvRbAXAA/BtADYK+qzgKw1/hOEiLq/GxzU+NIr3HNrdclbhwNQ7mzFR+6LJyDXj0piTihkiBWQisKEZkM4AYAfwkAqnpeVQcA3A5gq7HbVgDlqEISb6I07tb1C6ZxNA4mT4xnIZ7JQIiRTpDkOOOFOAzbWfEiItkhyojiGgCnAPy1iPSJyF+IyCQA01X1OAAYn9OcDhaR+0XkgIgcOHXKOe4L8UeUFdj29QtxhcKOe+74wwGzgV1WkDFZAuuB7sWzfbv3OiHIjhcRyQ5RFtxNAPBJAL+jqvtF5M8QYJpJVbcA2AJUbBQR5Kh7/CbhccJp/UK5szWSUTQJ19GhYW8X3Cy4q2aBcmdr6JAS9apcSXWiKIq3ALylqvuN74+hoihOiMgMVT0uIjMAnIwqJPGme/Hs0A173F4tSTXYfj2ySGVE0PWxFnQ/etA1akHeVwrXgjChVsYLoRWFqv6biLwpIrNV9QiAmwH8yPi7F8AG4/PxWCQlrmQlzWaW4tg4Bb+rpymVOMJSkEuYib/M2FRm4i8g/ajQtSCq19PvANgmIi8CmAfgq6goiEUichTAIuM7SZhyZ6uvcAdW4ooFBSTvc98cwEZhugybAeXM4Hd5SBFKsolb4q9apFKtBZGaClU9qKpdqjpHVcuq+o6q/lRVb1bVWcZnPCvCSFX8hDuw4hYnKyiTJxYS71U9eNt1rr/ZkwBt3/+m435u2wmphluU5FqkUq0FuY/1RC6xttzhK180UHGB9Grcg3iWprE61ktWu/3CLTS135DVhNhp9gjGGVfgzSxDRTHO2LPyRixf0DbKRbKxIJjSVBwVNLHafP03fK6nSNPn3k131d9qCZI2Xn2Meph+yn0+CjKWODLtmT14a/DBYgMwrJV1G7UwELu9q2HHCfbAhrOmTfKd85rUFz/zCMBZD9NPVBTEFb+eM1nzMCqIOE4zWUceTtFvj548g0WbnqWyIGPwStBVCOpFkkM49UQikUUPIzdbhOLSfLJbiPQgodNJ/eCVk7sebF9UFCQS21xWALttTwOveEf1MJ9M4qfc2eoaU40jCkKqELfdICxWzxOv3p+bmyMh1XCLqcYRBSEJ0tvXj4UbnsbVPbuwcMPTVd0MvaLkWkcK5c5W19zi9iCIhJDq0JhNakJvXz9WPnJwpJfWPzCIlY9UQpC4GdC9ouTaDY1L5sxwDIx307VTfckWdgFh3tKnEuIHjihIYniNEP5k54tjGv6LWtnuhpftwT7YeOZl59D15na3EQdQcQkOg1Nq2udePY17vvV8qPMRkhU4oiCRcHNFBSrTQW4987MuYU3dtgPeUXLtEri5Mprb19x6neu5Bjx85r1wy18eNq951tyOawnLorZQUZBI3D3/KtfcB2EXIkWZ+jFpEOepKtNDJWrOjaAEvSd7LnTT7RgAuj7WUlfhrr3KIk1lIXB20nAznY0n5capJxKJteUOzxAafozUdpymn8wwz37o7etP1ENlde9hzFz1JNp7dmHmqid9rRkJ6pbrpnwf3ncMq3YeRv/AIBSXwl2P53hDXmWRJkE8/LK4vigKVBQkMl5Nr1tDZo/4asVp+skpzLMbXo1ykHDlToRtAOIM81DP4a7zwniLYExFQSJTrfF1asjW3RFsCB5k/YPXvlHXRnk1ACWPBB9JL8mqh3hDeWK8RTCmoiCROX+hek/f2pDNWfNUVfuAvYfuZ/3Dok3PVt134GzFUB12qsarAfjAwxCfRvMwnqef8obXau08PicqChIZL08lK6t7D6O9ZxfePVddsdhDgHQvno1S0X26CqjEabrnW8979q4/bIx+kpiqiWsxX9h57LBuvVlngstKS7ftWeDu+Ve5/pbHaUJ6PZHUCGJ8VADtPbtGvi+c2YL1d3ZUHYlUc0U1O3pJhPLwct8NQlgjbVi33jQJ4wl0wcUzwW17Flhb7nB9jnkMI0NFQXKBqQAmNRbGZLQLwjGz98wAAA/USURBVDvG1JNX2Og06e3rH+PqOl7JiptrEji5PzeXio7K+8MRHSpqAaeeSG547tXTgY3gdsy542oNcnvPrsBTQEGnFHr7+rFyx8FRrq4rU1zbkTZJeAKlOd8fdDW/m5liYHAolNt4LaGiIJFIu7JHndoxjdF+FqgF9XsPOqWwaueLsFt3/Fl78omXI0B7zy7MX7fH8fckwq2EYc2t17n+5jRyMEevTuRt/QsVBYlE3gxzQc2fQewFQY3Zgz6dAIJijco778vfR+dXvu87Qm8tOfHeeUdlEbSBToqgq9+r5akYHBrOjQMCbRQkMFaDZN6IKrFXmlU/xuw5a57y5fUVFqsDADC6Ie0fGET3o4cABG/00uLEe+fHbEs73EoUrDYnP3VtYHAolpA1SUNFQQLhFCE1r7jFg7Jz7QNP4orLL/N8+f00CkkrCT8MXVSs2vliphsmJwO/27PKkoesGWbGbwQBkxU7DuLAG6czbdCPNPUkIq+LyGEROSgiB4xtLSKyR0SOGp9T4hGV1Jrevv5xoyQA4Nfnt/na74NhHTE4e1FtGqHWSsJkcOhipqegVtgM/Ct2HHRV6HF5yAZNouVEkDAzdrIeByoOG8VNqjpPVbuM7z0A9qrqLAB7je9kHJCX4b9f4u7B5WEdg8kfPJL+s5w4IX6TaBz5qs2RQNRAi1HdrbMcByoJY/btALYa/28FUE7gGiRlstwDDYo1kdDyBf5GFX7x8tDJEsM1MC997fNzYp8qisNO5jQSCBNoMeq9ZdnmF9VGoQC+LyIK4P+o6hYA01X1OACo6nERmRZVSFJ78ubd5IU5fbZo07M4evJMrOf2conMGnbDt5VJjQWsu6MjVluGea6Nu4/EttgxajRgoHqSK79keKF4ZKKOKBaq6icBfBbAb4vIDX4PFJH7ReSAiBw4dco5bSXJDmmHHZg80TuuU1Tae3bFriTGE2fOD2PFjoOZH0nGMPMUCK/w+HGQ1fKOpChU9W3j8ySAvwfwSwBOiMgMADA+T7ocu0VVu1S1a+rU6gnvSW2JK+BdNVqbS3h9wxK8+OXPpHI94k2cdimrLSAukh7B2RvuqJEBqpHVdRWhFYWITBKRy83/AfwagB8CeALAvcZu9wJ4PKqQpPakEYOoVCyMuk7c9gNSW6J4BbkRhzHbi1WWbIs/v2pX4g4dWXWIiDKimA7gn0XkEIB/AbBLVZ8CsAHAIhE5CmCR8Z3knHJnKxbObIntfJuXzcPmZfPQ2lyCoDKSWH/n6DnxLPuVk+AkMX2ZtAHYXD3f3rMLF8axDaIaoY3ZqvoTAHMdtv8UwM1RhCLZZNt918eyKnvhzJYRhVDNWOqW0J7kj8YJDTh3If6wJUmvbM7y+oa0YKwnEoi15Q68uv4WvL5hSajjZ02bhG33Xe97/3sCTj8tX9CG1zcswfTLG4OKVhM2L5tXaxE8mRDjzE4SSgJIfk1I2PwgYfBKp1tLsikVyQVBlYUA2LPyxkDH+J1+EkMec/9F1/1coOvUiiyH0sgLUdaEZM3L6LIqWRxrBRUFSY3XQo5CqjF5YmHMudPsBY5n8jIvH7bBz5qX0UBG1+FQUZDQBHk5Gwvh5zCqhX5I2pV28sRCrIZ8k1nTJgHI/vRTHvjyd8I1+FnzMspq9jsqChKaIKu1H7prjN+Db772+TmuvyXtQrtwZgte/PJnsO2+62NVFtMvbxyZhit3tkZSpOMJQfCcIUC+VsR7kfYCQr9QUZDQ+HV3XL6gLdJcfLmzFZuXzRtl6GuQynnDuNCWig2jXHObS0XHF2H5grZRhvcwysLJDXjzsnnY/8CiUfs9dNdc11hB5jFhlGJrc2lk5JIHrmwu4Zt1PMLK6tQT81GQ0FzZXPJcZdtq5BKIw2Bb7mz1fZ5qU2Lr75wT6HxWtt13vWeMJDt+3YCtcZCseRisx5U7W0cUox8ZrM4GQWS2Eue02PIFbZ62I3PBZZiYUHHEfMoCaUVACAoVBQnNTddO9Xzxn+v5dIrSXKLalFhankZBG9kgymtSYwFnzruvcraPfESAoEtfNi+bF2tZmUrOXIcjAJoaCzh7fniMYjTLwm+irAdvc0+Xmiduujab4YyoKEhonnnZPZhjaw17RmkHMLQzpamINbdel6hCWndHh2c4CftalXvme/fmnUhC/rXljkDThX5GcFEUmt8sh2mxff+xTEYkoI2ChMarQa5lz8hr+J50bCAA6PvTX0t81OJ1fqc7XFvuCGTjSDp6b5xEKessKQmgNnlC/EBFQULj1SB7jTaSxiuAYdKxgdI0HLuN2tyey9pyh6/psMkTC3UTvbeWI988QUVBQuM1aqj19I8bcTQMXpnMgq48j0L34tko2Vby2iPw2jE9yOxeWK9vWDLyVy9KAog3KvKUpuK4jXhMGwUJjdeooZbeG27GbEE8DUNWpiv8eEq5HcfQIRXKna2xhA4vFmTELrVt/7HAjgMmWXVlpqIgofFyXUwjf4UbbqMZxfiLrVTvjX4aUyJOMc16+/pdFXQYxwFg9CLMrEFFQUJTEHGd869l4+W2viOu+Wi30OcZXVSbe7zq2aaEF+e5TSV5Kei15Y5AimJCg+DrS+dmWuFTUZDQeBmGk84R4EX34tlYtfPwqGxq1ebug+B21xmZkRp33D3/KseG15rXJCnCuqq6LS4MG02g1tCYTULj1UMPEgcqbsqdrVh/Z4dn9rwouLnYpuF6W4+Yrr1m+RZExoRXyRpuMudRSQAcUZAIdC+e7WoI9Bt6ISmSnLt3G0kl7XpbzwRdqBeEhTNbHFd/Rw0CmaTMacMRBQlNludUk8RtJEWf/HziFOxx4cyWTI9Y0oYjCkICkrQNhKQPlYI3VBQkEvXoARR2/QIheYWKgkSicUIDzl246Lh9PFPv6xdIdbzWWuQNKgoSCScl4bWdkHqgt69/1PRk/8AgVu08DCCftr3x3e0jhJAasHH3kVE2LAAYHBquqdt4FKgoSCTcMouNl4xjhITBLYxMVoNlViOyohCRgoj0ich3je8tIrJHRI4an1Oii0myyoO3XYeiLZxqsUHGTcYxQsLgFhQzq6lOqxHHiOL3APzY8r0HwF5VnQVgr/GdjFPKna3YuHTuqFXQGzMet4aQpAkTAj7LRDJmi8hHASwBsA7ASmPz7QBuNP7fCuBZAH8c5Tok29ADiJDRjDcX6qheT5sB/BGAyy3bpqvqcQBQ1eMiMs3pQBG5H8D9ANDWNj6TfRBC6pfx1IEKPfUkIp8DcFJVXwhzvKpuUdUuVe2aOrV2+ZUJIYR4E2VEsRDAbSJyC4DLAEwWkYcBnBCRGcZoYgaAk3EISgghpDaEHlGo6ipV/aiqtgP4IoCnVXU5gCcA3Gvsdi+AxyNLSQghpGYksY5iA4BFInIUwCLjOyGEkJwSSwgPVX0WFe8mqOpPAdwcx3kJIYTUHtEMJFsRkVMA3jC+fgTAv9dQnLBQ7nSh3OlCudPFr9wfU9XEvYEyoSisiMgBVe2qtRxBodzpQrnThXKnS9bkZqwnQgghnlBREEII8SSLimJLrQUICeVOF8qdLpQ7XTIld+ZsFIQQQrJFFkcUhBBCMgQVBSGEEG9U1fMPwFUAnkEl58RLAH7P2N4CYA+Ao8bnFGP7Fcb+7wP4c9u5lgF40TjPQx7XXAfgTQDv27avBPAj4xx7UfEhdjp+IiqhRM4CGATwrxa5hwG8B+AcKnGoMi83gJsAHLbIPQzgnqzLbfz2Z4Zs54zzZKm8bzDK9SKAtzC6fu8FMATgDLJXvx3lBvAxAAct9eTHeZA7B++lW3ln/b28AcAPAFwAcJftt68B+KHxt8xNhpH9q+4AzADwSeP/y1FpBD4O4CEAPcb2HgBfM/6fBOCXAfymtYCMgjsGYKrxfSuAm12uucC4rr2AbgLQZPz/WwB2uBz/3wD8LYBPohKH6tsWuc/nVO6HDHlbUGmQv5EDuX8TwOsA/sSQ8y0A38yQ3O0APg3guwDuwuj6/XcA/sb4LWv1xE3uuQC+Ycj7IQDvAPifOZA76++ll9xZfi/bAcxB5d28y7J9CSqdnwmGnAcATHY6h/lXdepJVY+r6g+M/99DpZfSikqCoq3GblsBlI19zqjqPwP4wHaqawD8q6qeMr7/A4DPu1xznxo5LWzbn1HVs8bXfQA+6iL27QD+lyH3YwB+xSL3hJzKbZb3XQC+B+BzOZD7k6hUxL9W1TMA/gmV3lQm5FbV11X1aRgrYG31uxOVURKQsXriIfc0VOrFVlRGeWcALM6B3Jl+L6vIndn30pD7RVRGQlY+DuAfVfWC8V4eAvAZp3OYBLJRiEg7Ki/QftgSFKFSSb14BcC1ItIuIhNQqQhXBbm+jS+h8mCcaEVlyAZVvYDKC/OLhtwC4Dsisg/A/BzJbZb3FwH8dU7kfhLAFAA/E5GPoNJDas6Q3KOw128Ap4FM1u9R2OT+OQC7UXke61HpwXqRFbmz/F6OwqUdzOJ76cYhAJ8VkSbjvbypmgy+gwKKyIdQmVJYoarvikggyVT1HRH5LQA7UNFw/w8V7RoYEVkOoAuVnqvjLja5fw7AfYbc76pql4hcA+BpVFGWGZIbRn6PDlQaAk8yIneviAwZ1z4F4HkAd2RIbiuXIT/124pdblXVOSJyJYBeWJ5NxuXO8nvpJXeW30s3Gb4vIp/C6PfygtcxvkYUIlJEpXC2qepOY/MJo4DMgqqaoEhVv6Oq81X1egBHABwVkYKIHDT+vuJDll8F8ACA21T1nLFtnXkOY7e3AFxlyL0TFaPk/zV++zcjsdJPUOkRvJ8TuU8A+C8A/h6VgGF5Ke9jAD6rqosAlGD00jMi98juAP4QtvqNyrxzFuu3p9xG/X4bwE9QGd3lQe4sv5decmf5vfSSYZ2qzjPeS0HFKcnzAM8/4yR/C2CzbftGjDY+PWT7/T9jrLV/mvE5BRXvjF+ocm27EacTwKsAZlU57rcB/G9D7icBPGK57iZDXjM6419mXW5LeR9DZZiYl/IuAPgfhrxzAPwbgI1ZkdtSv18B8F2H+r0Fl4zZmSlvN7lRmav+piHvFFR6i3+VA7kz/V76qCeZfC8t+/8NRhuzCwCuMP6fg4rn0wTPc/i4yC8DUFRcsQ4af7egMve5FxVNtBdAi+WY11HpOb6PSm/z48b27ai4df0IwBc9rvmQcZzpjvagsf0fUNHgphxPuBx/GSrDV0XFE+FHxv5/YPxvurP9KCdy3wJgHiqGsTyV9+2o9JjOoOI2uz9jcn8KlR6gojL0HrSU9/OoeOJcNMr9rhzI/QAqLpdW99g8lHfW30uvepLl9/JTxnFnAPwUwEuW99W8/j4A87x0gKoyhAchhBBvuDKbEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhCRUEIIcQTKgpCCCGe/H9DmsqiQBIg1AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from apd.aggregation.query import with_database, get_data\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "async def plot():\n", + " points = [(dp.collected_at, dp.data) async for dp in get_data() if dp.sensor_name==\"RelativeHumidity\"]\n", + " x, y = zip(*points)\n", + " plt.plot_date(x, y, \"o\", xdate=True)\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " await plot()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nO2df5RV5Xnvv88czuAZIhnGAMWJk1FK8cYMMOmk4KXXaiwlkahHIyFW1vKu5uptb1dbSjvtULnFZEEgkhC6bu+695L+olcWRQ0dTTASitqueoUuzIDERIpGRUcKNDhRYYRheO4fZ+9hz56999m/z95zvp+1Zp05++wfz373u9/nfd/neZ9HVBWEEEKIGw21FoAQQki2oaIghBDiCRUFIYQQT6goCCGEeEJFQQghxJMJtRYAAD7ykY9oe3t7rcUghJBc8cILL/y7qk5N+jqZUBTt7e04cOBArcUghJBcISJvpHEdTj0RQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+qej2JyF8B+ByAk6r6CWNbC4AdANoBvA7gC6r6jvHbKgBfAjAM4HdVdXcikhOSIr19/XjwiZcwMDgU6TxNxUrf7OzQRQDAlKYi1tx6HcqdrSPX2bj7CN4eGMSVzSV0L5498htJjiDlbq8LU5qKWDJnBp55+RTeHhjEh0tFnL8wPPKM/WCvB1lDqkWPFZEbALwP4G8tiuIhAKdVdYOI9ACYoqp/LCIfB7AdwC8BuBLAPwD4BVUd9rpGV1eX0j2WZJXevn50P3oIQxeTibRcLAg23jUXALBq52EMDl16XUrFAtbf2ZHZBmQ80NvX77vck6wLZj0I8qxF5AVV7YpdGBtVp55U9Z8AnLZtvh3AVuP/rQDKlu1/p6rnVPU1AK+gojQIyS0bdx9JTEkAwNCwYuPuI9i4+8ioxgoABoeGsXH3kcSuTRCo3JOsC2Y9yCJhF9xNV9XjAKCqx0VkmrG9FcA+y35vGdvGICL3A7gfANra2kKKQUjyvD0wWNNrpHH9esatfJ22J/0ssvqs4zZmi8M2R/WrqltUtUtVu6ZOTXwFOiGhubK5lMo13K6TxvXrmSDlnvSzyOqzDqsoTojIDAAwPk8a298CcJVlv48CeDu8eITUnu7Fs1FscOoDxUOxIOhePBvdi2ejVCyM+q1ULKB78ezErk0QqNyTrAtmPcgiYRXFEwDuNf6/F8Djlu1fFJGJInI1gFkA/iWaiITUlnJnKzYunYvmUjHyuZqKDSOeT0DF28U0YJY7W7H+zg60NpcgAFqbSzRkp0CQcneqC1Oaili+oG3k+OZScdQz9oO1HmQRP15P2wHcCOAjAE4AWAOgF8AjANoAHAOwVFVPG/s/AOA3AFwAsEJVv1dNCHo9EUJIcNLyeqpqzFbVu11+utll/3UA1kURihBCSHbgymxCCCGeUFEQQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhCRUEIIcQTKgpCCCGeUFEQQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhSNR8FIWHp7evHg0+8hIHBoTG/TWosYN0d/rO39fb1Y+PuI3h7YBBXNpfQvXh2bNnAvOQ0mdJUxJpbr0O5szWwLOb+/QODKIhgWBXNpSLOXxjG2aGLsdwDUElYXywIzg9fSkY2pamIJXNm4JmXT43I235FCft+8g6GVVEQwd3zr8LackdscvjFXu7WMq4FTvXA/tyr1RMrbveTZF1OiqoZ7tKAGe7GH719/eh+9BCGLrrXr0KD4BtLq6d/7O3rx6qdhzE4NDyyrVQsxJIm1I+cJsWCYNmnrsK3X+j3LYuT7Flk+YK2VJWFW7kXC1KTlKBe9cB87jv+5U1f9cR+rPV+4q7LaWW449QTSYSNu49UfamGLyo27j7i61z2hnZwaNjXsX7O7fflHxpWbN//ZiBZnGTPItv3v5nq9dzKfWjYX51ISx7g0nMPqiTMY633k2RdThIqCpIIbw8Mxraf2z5+rxH1+laGXUbgScqYBm73lRRe5VKLMqt2zSjlYz13XusJFQVJhCubS7Ht57aP32tEvb6Vgkig88QhYxq43VdSeJVLLcqs2jWjlI/13HmtJ1QUJBG6F89GscH75So0CLoXz/Z1rlKxMGpbqVjwdayfc1eT06RYqBh+g8jiJHsWuXv+Valez63ciwV/dSIteYBLz91vPbEfa72fJOtyklBRkEQod7Zi49K5aC4VHX+f1FjwZcg2z7X+zg60NpcgAFqbS7EYsv3IaTKlqYiNd83F2nJHIFmssgOXeqbNpSKaivG+fgKgsTC6MZvSVMTyBW2j5F04s2VEjoJI6oZswLnczTKuhQeQWz2wPnc/9cTpWOv9JFmXk4ReT4QQklPo9UQIISQTUFEQQgjxJJKiEJHfE5EfishLIrLC2NYiIntE5KjxOSUeUQkhhNSC0IpCRD4B4D4AvwRgLoDPicgsAD0A9qrqLAB7je+EEEJySpQRxX8AsE9Vz6rqBQD/COAOALcD2GrssxVAOZqIhBBCakkURfFDADeIyBUi0gTgFgBXAZiuqscBwPic5nSwiNwvIgdE5MCpU6ciiEEIISRJQisKVf0xgK8B2APgKQCHAFwIcPwWVe1S1a6pU6eGFYMQQkjCRDJmq+pfquonVfUGAKcBHAVwQkRmAIDxeTK6mIQQQmpFVK+nacZnG4A7AWwH8ASAe41d7gXweJRrEEIIqS1RExd9W0SuADAE4LdV9R0R2QDgERH5EoBjAJZGFZLUH1lLakNIPRNJUajqf3LY9lMAN0c5L6lvnJLIvHN2CN2PHQIAKgtCUoYrs0nmyFpSG0LqHebMJqlizR8tAOzqwGmblf6BQXz8v38vUK7pKU1FfHzG5Xju1dO+9rVOccU1Bba69zC2739zTJ5qr/zJ1t8+XCpCBBg4O+S436qdL2LQKJMGAa6/pgUvvf3emPzPZv5st/JvEODX56cfTdYtX/WSOTPw3UPHazIFubr3MLbtO+ZYH1tzkus6Lhg9lqRGXvJHm3mOAcSS13l172E8vO/YmO0LZ7bgB8d+5pg/GYBnWVn3W7njIPyrTX+kGXo8SN5yIJ282m7PzEpcedujkFb0WCoKkhoLNzyN/oynfDQx80e4ydvaXMJzPZ/2da6Zq54MlEqz2rWD7heGggheXX9L7Od1Iky9CFL+YfD7zJKWoxppKQpOPZFYqPQKD8JpRmhSYwHr7ujIfF5gK9VkDXIvQfMtx5lvPCxp5tAOcx9J1yW/95+nOh0FGrNJZHr7+rFih7OSAIAz54fxB48eQnOT/+xgtebK5lJseZ2D5luudu2g+4UhzRzaYe4h6RzTfu8/67mu44KKgkTGjyfS8EWFKnKRP9rMcxxXXme3fNQLZ7a45k+ulmvbul8SL3GaObSD5C0H0smr7ef+85DrOi6oKEhk/A6/fzY4NCp/tFPTYM/73FRsGJVb2v7dD1Oailg4s8X3vqahNK68zmvLHVi+oG1Mnupt913vmj/Znlu5uVTElKai436bls1DyVImDVJRQk75n8382YBz+TdIuoZswDtf9fIFbTXJq20+Mzf1lZdc13FBYzaJjF9jZK0Nf4SMN5gzm+QGP8PvQkPy0wWEkGSgoiCRKXe2YvOyeXCbEZrUWMA3liY/XUAISQa6x5JYMOfLCSHjD44oCCGEeEJFQQghxBMqCkIIIZ5QURBCCPGEioIQQognVBSEEEI8oXssyQT2JDFmxFm63BJSe6goSM1xShJjRpwFmCObkFrDqSdSc7bvf9Nx+/BF5sgmJAtwREFSx54L2itJjDUyrT3v9IJrpozKC91UbMDEYmEkr/RN104dlW8ZSDfncpbwys1t/h5HbvCgctifkVOebDNasD1Per0+y1rA6LEkVYLmzTYjzvrJYeyXNHIuZwmnMrfme3bLWR13OSWRM73enqUdRo8l45KNu4/4biisEWfdpqfCMDRcX1NaTmU+ODQ8UgYbdx8ZoySA+MspyLP3S709y1oRSVGIyO+LyEsi8kMR2S4il4lIi4jsEZGjxueUuIQl+cdvkiN7xNm4czjXS65jwP1eze1eZRFnOSVV5vX0LGtFaEUhIq0AfhdAl6p+AkABwBcB9ADYq6qzAOw1vhMCwF+O4dbmEl76ymdGTSfEncO5XnIdA+73am6PKzd4WDmyel5yiahTTxMAlERkAoAmAG8DuB3AVuP3rQDKEa9BxhF+c0HbiTOHcxo5l7OEU5lbyzmu3OBh5IhKvT3LWhFaUahqP4CvAzgG4DiAn6nq9wFMV9Xjxj7HAUyLQ1AyPvCbC9qOU95pe17opmLDqHPZ8y0D6eVczhL2MreXc1y5wcPI4ZQT277NLU96PT7LWhHa68mwPXwbwDIAAwAeBfAYgD9X1WbLfu+o6hg7hYjcD+B+AGhra/vFN954I5QchBBSr+TB6+lXAbymqqdUdQjATgD/EcAJEZkBAMbnSaeDVXWLqnapatfUqVMjiEEIISRJoiiKYwAWiEiTiAiAmwH8GMATAO419rkXwOPRRCSEEFJLQq/MVtX9IvIYgB8AuACgD8AWAB8C8IiIfAkVZbI0DkEJIYTUhkghPFR1DYA1ts3nUBldEEIIGQdwZTYhhBBPqCgIIYR4QkVBCCHEEyoKQgghnlBREEII8YSKghBCiCdUFIQQQjyhoiCEEOIJc2YTUidUy5udNfIm73iGioKQOsCer7p/YBCrdh4GgEw2vnmTd7zDqSdC6oBqebOzRt7kHe9QURBSB1TLm5018ibveIeKgpA6oFre7KyRN3nHO1QUhNQB1fJmZ428yTveoTGbkDrANADnxYsob/KOd0LnzI6Trq4uPXDgQK3FIISQXJGHnNmEEELqACoKQgghntBGYeGebz2P5149PfJ94cwWbLvv+hpKRAghtYcjCgO7kgCA5149jUWbnq2NQIQQkhHqZkRxdc8uWM32AuC1DUtGvtuVhMnRk2fQ29dPbwtCSN1SFyOKdpuSAAA1tvth1c4XY5eJEELywrhXFPd863nP3+ev21P1HINDF+MShxBCcse4VhS9ff2uU0omJ947n5I0hBCST8a1ovjjb/ubMpqz5qmEJSGEkPwSWlGIyGwROWj5e1dEVohIi4jsEZGjxueUOAUOwrkL/qaM3j03XH0nQgipU0IrClU9oqrzVHUegF8EcBbA3wPoAbBXVWcB2Gt8J4QQklPimnq6GcCrqvoGgNsBbDW2bwVQjukaNaW3r7/WItQVvX39WLjhaVzdswsLNzzN8iekhsSlKL4IYLvx/3RVPQ4Axuc0pwNE5H4ROSAiB06dOhWTGKOZNW1SbOdiZq30WLTpWazYcRD9A4NQVNJgrthxkMqCkBoRecGdiDQCuA3AqiDHqeoWAFuASvTYqHI4cfZ8fG6tWcisVQ/J5u/51vM4evKM428rHzmYi/uth+dEorO69zC2738Tw6ooiODu+Vdhbbmj1mI5EsfK7M8C+IGqnjC+nxCRGap6XERmADgZwzVCEWfj/uFSMbZzhWHOmqdGGd3Ha7J5L3fmi7WPiF+VRZueHaXozNEQML6eE4mGvZ4Mq+LhfccAIJPKIo6pp7txadoJAJ4AcK/x/70AHo/hGqFonBCf9++7g0OxnSso89ftcfTMGm/J5q994MlaixAJr9HQih0Hcc2qXZw+I1jde9i1npjKImtEGlGISBOARQD+q2XzBgCPiMiXABwDsDTKNcLS29fv2z3WD0mvzXaKXLu0qw0bdx/xXBTYn4EpsThY3XsYHwznYMjgQbXFnRcVHF2QzCoDLyIpClU9C+AK27afouIFVVO6Hz1YaxEccZq/fvTAMcfItdUaHqAS3DCvWMsi3yoiGH/02CEqijplde/hWosQinEbPbZaeKZJjQWcOZ/uQrvevn78/o6DI41i/8DgqO9hyGsD29vXj1U7D2NwqP4WO57P+ciJBKe3r39kNOlFVjt+uVYUUbxL1t3RMaahKhULng1Xe8+uSN4Jf/TYIccotvXIxt1HAiuJgmT1NQrO6t7DmTRaEm/CeCr5VRIAcM+CtjjEjJ3cKorevn50P3oIQ4YrTP/AILofPQQAOPCG95RNqdgwolDsiqbaA3XyTvCrsNiTvEQY28qwjp/ye3jfMSqKnBHWU+nBJ17yfY2s1oncKooHn3hpREmYDF1UPPjESxio4qG0/s45ACoGRXuD7lfzbzNedHtvge6Q/hAEH021NpeSEIWQqlTzVPJq4Ku1RyaTJxZCyZYGuVUUboXv56F4NeClYoOv/BNmI+emWFbsGL04jG6RowkzNmi/Il5FYe8hzpo2CXtW3hjqXEk8X7sn3MQJDfja5yudHC7oS5ft+98MdVy1fDhWXvzyZ0JdIw1yqyiSYv2dc3yPKqphTaGa5HqHepnvfu7V07GlpbUrCaCS9nbRpmerKguneeowLo/tPbuwfEGb47NzyuF+7sLFMXXTHMH+ae/hTDc0Tlz7wJNjXKInTyxk8j6qTXs6vYNOdcyNUjHbGR9EMzDv29XVpQcOHAh0jN80pnYmNAhe+eotnvvMXv09X2swFs5s8eXCmgavW/J/54Gwz880Z1frSVezG3ld36ssV/ceTsQP3q4wwpTPZQXBy+u863ZWcFISVtKsz15u2hMEeGX9Esxc9WRVZWGVOYgBGwA2L5sXqgMkIi+oalfgAwOSbTWWAF9fOrfqPubwvhppKYnNy+alcp08oMafGcLEacrHdL21BhX8/R0HY/FhT2qx1MP7jkWW74NhzY2ffrXFlVeH7EgExV5X7FzQitJecE2wtDpf/o5/A/bCmS2ZnzqsK0WxfEGbrweSlYfW2lwK3dPIMkHmbb1wC2Hi5HqrqDTGfmwJ7T27atLgxqGE8rjq1wlF+FFnEPy6afvpFFqV2ztn/Rmwly9ow7b7rve1by3JraJoLAT3qc/TPP5lBcFzPZ8eURILZ7bUWKJ4WN17uOpL1xDg0Tq52XoFg/TrqhhHDz8M7T27Umkg80LSSjvOwKGK4Cuv89Im5VZRTJoYzA4fdPomzlwWYbDPNVfrdeQl0Y+fHu+mLwR7VvZ79YoF6ddVEYindz5r2iQsz+giqlpyWYCOXpJK+8qYXa7NOtPsI9q0n32yQm4Vhd+hnUnQ6Zs9K2+sibKYPLEQypC38pHRiX7c5u+TIG4lFfRZ2UcJ1bybg8j386su9e4XbXo2iFgAKvVobbmDdiYbG+6qbiu08vC+Y7i6J/7ou92LZ8d6PqAyCvLTIXnwtutiv3ZS5NY9tiCS+ErdPStvxMINTyceoTUODw97rgZz/j5p+0aQBYdJ9QqDjBKAimJpbS75eq4XtGJTeeXk+55RfJ2YfnnjyP9mWcTlep13wriLKyrl94ePHsLXl87Nte1u1rRJuZI/tyOKtMI5JNHjsBIkflFTQF9r+/xrEtNTKz0WHNrZ5mMqx2xcJ8aYS8TOwOBQoOf63KunAysJANj/wKJR38udramMLPLg+RTFNnDhomLFjoNo79mF2au/F6ke1yKfS5SFnbUit4oiCFHmiMudrYnOMd89/yrf+371Tn9uuybWrHxOLqNxTE95zfK0WxRSb19/1dXY0y9vHGlc/booO+FnyjDpnr3bKLHc2Zr4GoGwtpVrH3hyxJje3rMr0URScdkGzl24iJWPhM+nXot8LnlTEkCdKIqongXmHHPcsYYWzmwJJFvQoap1sOLkBjg4NDzSM3P6i6Nnak5FVWuYly9oG9UDjzIs//f3g/f+42LWtEmZWPw4f92eQPtf3bNrzNqGD4Y1MWVx07VTYzvXRQ0/MhhPEYmTJLeKIu0HXO5sxXM9n8brG5Zg+YK2Mdf3WoK/edm8EUUjuLQ+Imn/aavBP0zPKU0X0ajK3JRzde/hwI4OcbF52TzfvcVJjcEDwF1WkJH6V40T750fZYj3YnXvYdfRXlJZB595+ZTj9rChLMJOZXlNYdMB4RK5NWb7ja+TxLTR2nKHY8O2uvcwtu07NvLSTWosYN0dHSO947SNV0HWI7hRLTLm9MsbQ83f24kaw+nhfcfQ9bGWmi04a7KErvfDujs6Ak9/mS7Ta8sdvu7zglZGCq9VGeHUoszcGvYPfATkdCLsVJabU0Nrc2kkuvScNU855qw3FUk9OCjkVlGsLXfgtVPvV128leaCFjcFUivsnlBh8WrEJxTiCY0ch4dWrV5YQXD7URAvKKvtxqSp2ICzPqMcz1+3Z+R4p4CGteBKlwb6yuYSbrp2amDlFdbppHvxbMcEZtbzVQtSeOCN0+NmRbwbuVUUQGURGlexJs+qnS+6NuJxrWx1Ok+YnBVpM6WpiDW3XhdKyZk91jCZGr8aIMqxOeL7+VW7cMFSoNbEO2nj1UCb924qND+E7WS4JTALcj6zc+inLPM6nZVrRQEAxQb3BVb1viI2rsjFg0MXMWfNU449K7eeYVCcpg7uWdCWekM2QTCqMfVi8sQC+v701yJf0ymBlp9j/vDRQ7jgc9gYtkOVVMNWrYE2R+dpdATDlL+dteUOPPPyKdd3oTXneUNya8w22bjUuSIH9SjKC1Oa/C/7H7oYX0Kdd88NY86ap8Zs7148G6VitOkn+1DfZG25I1VlP3liAa+sX+I7wX2t8yZ8fencWOxQXiTZsJkOIq9tWDIqrpkVPz4rWekQOr0LpWIBm5fNc72/vJB7RWEuYkrbo6hWrLn1OhQDxMl58ImXsHDD07Fc+91zw2MUT7mzFXoxuAFyQoOMPK/1d3a4vkRryx2hAkAGZfrljSMN/2sbloxaVW0nbJiVuCl3tmLTF+J3284S98yvrgSy0iEsd7Zi/Z0do9oir7qdJ3KbuKie6e3r95UbPAlam0t4rufTgbJ3AZWeVdiX5uqeXZFtFW6Z5LywZ5lbOLMl0x2QuKdpzGdda7ySHGU1I15apJW4iIoixzilywzLpMYCzpyvHpcf8O8S29pciiWvc9R4W+Mxp4cTQbOqVSNL5TZ/3Z4xda7elQSQE0UhIs0A/gLAJ1BxUPkNAEcA7ADQDuB1AF9Q1Xe8zkNFEZ6oqTmtaz06v/L9WBerxTU909vXj+5HD2EohL+vmcqyXohrVJH10ROpkJdUqH8G4ClVvRbAXAA/BtADYK+qzgKw1/hOEiLq/GxzU+NIr3HNrdclbhwNQ7mzFR+6LJyDXj0piTihkiBWQisKEZkM4AYAfwkAqnpeVQcA3A5gq7HbVgDlqEISb6I07tb1C6ZxNA4mT4xnIZ7JQIiRTpDkOOOFOAzbWfEiItkhyojiGgCnAPy1iPSJyF+IyCQA01X1OAAYn9OcDhaR+0XkgIgcOHXKOe4L8UeUFdj29QtxhcKOe+74wwGzgV1WkDFZAuuB7sWzfbv3OiHIjhcRyQ5RFtxNAPBJAL+jqvtF5M8QYJpJVbcA2AJUbBQR5Kh7/CbhccJp/UK5szWSUTQJ19GhYW8X3Cy4q2aBcmdr6JAS9apcSXWiKIq3ALylqvuN74+hoihOiMgMVT0uIjMAnIwqJPGme/Hs0A173F4tSTXYfj2ySGVE0PWxFnQ/etA1akHeVwrXgjChVsYLoRWFqv6biLwpIrNV9QiAmwH8yPi7F8AG4/PxWCQlrmQlzWaW4tg4Bb+rpymVOMJSkEuYib/M2FRm4i8g/ajQtSCq19PvANgmIi8CmAfgq6goiEUichTAIuM7SZhyZ6uvcAdW4ooFBSTvc98cwEZhugybAeXM4Hd5SBFKsolb4q9apFKtBZGaClU9qKpdqjpHVcuq+o6q/lRVb1bVWcZnPCvCSFX8hDuw4hYnKyiTJxYS71U9eNt1rr/ZkwBt3/+m435u2wmphluU5FqkUq0FuY/1RC6xttzhK180UHGB9Grcg3iWprE61ktWu/3CLTS135DVhNhp9gjGGVfgzSxDRTHO2LPyRixf0DbKRbKxIJjSVBwVNLHafP03fK6nSNPn3k131d9qCZI2Xn2Meph+yn0+CjKWODLtmT14a/DBYgMwrJV1G7UwELu9q2HHCfbAhrOmTfKd85rUFz/zCMBZD9NPVBTEFb+eM1nzMCqIOE4zWUceTtFvj548g0WbnqWyIGPwStBVCOpFkkM49UQikUUPIzdbhOLSfLJbiPQgodNJ/eCVk7sebF9UFCQS21xWALttTwOveEf1MJ9M4qfc2eoaU40jCkKqELfdICxWzxOv3p+bmyMh1XCLqcYRBSEJ0tvXj4UbnsbVPbuwcMPTVd0MvaLkWkcK5c5W19zi9iCIhJDq0JhNakJvXz9WPnJwpJfWPzCIlY9UQpC4GdC9ouTaDY1L5sxwDIx307VTfckWdgFh3tKnEuIHjihIYniNEP5k54tjGv6LWtnuhpftwT7YeOZl59D15na3EQdQcQkOg1Nq2udePY17vvV8qPMRkhU4oiCRcHNFBSrTQW4987MuYU3dtgPeUXLtEri5Mprb19x6neu5Bjx85r1wy18eNq951tyOawnLorZQUZBI3D3/KtfcB2EXIkWZ+jFpEOepKtNDJWrOjaAEvSd7LnTT7RgAuj7WUlfhrr3KIk1lIXB20nAznY0n5capJxKJteUOzxAafozUdpymn8wwz37o7etP1ENlde9hzFz1JNp7dmHmqid9rRkJ6pbrpnwf3ncMq3YeRv/AIBSXwl2P53hDXmWRJkE8/LK4vigKVBQkMl5Nr1tDZo/4asVp+skpzLMbXo1ykHDlToRtAOIM81DP4a7zwniLYExFQSJTrfF1asjW3RFsCB5k/YPXvlHXRnk1ACWPBB9JL8mqh3hDeWK8RTCmoiCROX+hek/f2pDNWfNUVfuAvYfuZ/3Dok3PVt134GzFUB12qsarAfjAwxCfRvMwnqef8obXau08PicqChIZL08lK6t7D6O9ZxfePVddsdhDgHQvno1S0X26CqjEabrnW8979q4/bIx+kpiqiWsxX9h57LBuvVlngstKS7ftWeDu+Ve5/pbHaUJ6PZHUCGJ8VADtPbtGvi+c2YL1d3ZUHYlUc0U1O3pJhPLwct8NQlgjbVi33jQJ4wl0wcUzwW17Flhb7nB9jnkMI0NFQXKBqQAmNRbGZLQLwjGz98wAAA/USURBVDvG1JNX2Og06e3rH+PqOl7JiptrEji5PzeXio7K+8MRHSpqAaeeSG547tXTgY3gdsy542oNcnvPrsBTQEGnFHr7+rFyx8FRrq4rU1zbkTZJeAKlOd8fdDW/m5liYHAolNt4LaGiIJFIu7JHndoxjdF+FqgF9XsPOqWwaueLsFt3/Fl78omXI0B7zy7MX7fH8fckwq2EYc2t17n+5jRyMEevTuRt/QsVBYlE3gxzQc2fQewFQY3Zgz6dAIJijco778vfR+dXvu87Qm8tOfHeeUdlEbSBToqgq9+r5akYHBrOjQMCbRQkMFaDZN6IKrFXmlU/xuw5a57y5fUVFqsDADC6Ie0fGET3o4cABG/00uLEe+fHbEs73EoUrDYnP3VtYHAolpA1SUNFQQLhFCE1r7jFg7Jz7QNP4orLL/N8+f00CkkrCT8MXVSs2vliphsmJwO/27PKkoesGWbGbwQBkxU7DuLAG6czbdCPNPUkIq+LyGEROSgiB4xtLSKyR0SOGp9T4hGV1Jrevv5xoyQA4Nfnt/na74NhHTE4e1FtGqHWSsJkcOhipqegVtgM/Ct2HHRV6HF5yAZNouVEkDAzdrIeByoOG8VNqjpPVbuM7z0A9qrqLAB7je9kHJCX4b9f4u7B5WEdg8kfPJL+s5w4IX6TaBz5qs2RQNRAi1HdrbMcByoJY/btALYa/28FUE7gGiRlstwDDYo1kdDyBf5GFX7x8tDJEsM1MC997fNzYp8qisNO5jQSCBNoMeq9ZdnmF9VGoQC+LyIK4P+o6hYA01X1OACo6nERmRZVSFJ78ubd5IU5fbZo07M4evJMrOf2conMGnbDt5VJjQWsu6MjVluGea6Nu4/EttgxajRgoHqSK79keKF4ZKKOKBaq6icBfBbAb4vIDX4PFJH7ReSAiBw4dco5bSXJDmmHHZg80TuuU1Tae3bFriTGE2fOD2PFjoOZH0nGMPMUCK/w+HGQ1fKOpChU9W3j8ySAvwfwSwBOiMgMADA+T7ocu0VVu1S1a+rU6gnvSW2JK+BdNVqbS3h9wxK8+OXPpHI94k2cdimrLSAukh7B2RvuqJEBqpHVdRWhFYWITBKRy83/AfwagB8CeALAvcZu9wJ4PKqQpPakEYOoVCyMuk7c9gNSW6J4BbkRhzHbi1WWbIs/v2pX4g4dWXWIiDKimA7gn0XkEIB/AbBLVZ8CsAHAIhE5CmCR8Z3knHJnKxbObIntfJuXzcPmZfPQ2lyCoDKSWH/n6DnxLPuVk+AkMX2ZtAHYXD3f3rMLF8axDaIaoY3ZqvoTAHMdtv8UwM1RhCLZZNt918eyKnvhzJYRhVDNWOqW0J7kj8YJDTh3If6wJUmvbM7y+oa0YKwnEoi15Q68uv4WvL5hSajjZ02bhG33Xe97/3sCTj8tX9CG1zcswfTLG4OKVhM2L5tXaxE8mRDjzE4SSgJIfk1I2PwgYfBKp1tLsikVyQVBlYUA2LPyxkDH+J1+EkMec/9F1/1coOvUiiyH0sgLUdaEZM3L6LIqWRxrBRUFSY3XQo5CqjF5YmHMudPsBY5n8jIvH7bBz5qX0UBG1+FQUZDQBHk5Gwvh5zCqhX5I2pV28sRCrIZ8k1nTJgHI/vRTHvjyd8I1+FnzMspq9jsqChKaIKu1H7prjN+Db772+TmuvyXtQrtwZgte/PJnsO2+62NVFtMvbxyZhit3tkZSpOMJQfCcIUC+VsR7kfYCQr9QUZDQ+HV3XL6gLdJcfLmzFZuXzRtl6GuQynnDuNCWig2jXHObS0XHF2H5grZRhvcwysLJDXjzsnnY/8CiUfs9dNdc11hB5jFhlGJrc2lk5JIHrmwu4Zt1PMLK6tQT81GQ0FzZXPJcZdtq5BKIw2Bb7mz1fZ5qU2Lr75wT6HxWtt13vWeMJDt+3YCtcZCseRisx5U7W0cUox8ZrM4GQWS2Eue02PIFbZ62I3PBZZiYUHHEfMoCaUVACAoVBQnNTddO9Xzxn+v5dIrSXKLalFhankZBG9kgymtSYwFnzruvcraPfESAoEtfNi+bF2tZmUrOXIcjAJoaCzh7fniMYjTLwm+irAdvc0+Xmiduujab4YyoKEhonnnZPZhjaw17RmkHMLQzpamINbdel6hCWndHh2c4CftalXvme/fmnUhC/rXljkDThX5GcFEUmt8sh2mxff+xTEYkoI2ChMarQa5lz8hr+J50bCAA6PvTX0t81OJ1fqc7XFvuCGTjSDp6b5xEKessKQmgNnlC/EBFQULj1SB7jTaSxiuAYdKxgdI0HLuN2tyey9pyh6/psMkTC3UTvbeWI988QUVBQuM1aqj19I8bcTQMXpnMgq48j0L34tko2Vby2iPw2jE9yOxeWK9vWDLyVy9KAog3KvKUpuK4jXhMGwUJjdeooZbeG27GbEE8DUNWpiv8eEq5HcfQIRXKna2xhA4vFmTELrVt/7HAjgMmWXVlpqIgofFyXUwjf4UbbqMZxfiLrVTvjX4aUyJOMc16+/pdFXQYxwFg9CLMrEFFQUJTEHGd869l4+W2viOu+Wi30OcZXVSbe7zq2aaEF+e5TSV5Kei15Y5AimJCg+DrS+dmWuFTUZDQeBmGk84R4EX34tlYtfPwqGxq1ebug+B21xmZkRp33D3/KseG15rXJCnCuqq6LS4MG02g1tCYTULj1UMPEgcqbsqdrVh/Z4dn9rwouLnYpuF6W4+Yrr1m+RZExoRXyRpuMudRSQAcUZAIdC+e7WoI9Bt6ISmSnLt3G0kl7XpbzwRdqBeEhTNbHFd/Rw0CmaTMacMRBQlNludUk8RtJEWf/HziFOxx4cyWTI9Y0oYjCkICkrQNhKQPlYI3VBQkEvXoARR2/QIheYWKgkSicUIDzl246Lh9PFPv6xdIdbzWWuQNKgoSCScl4bWdkHqgt69/1PRk/8AgVu08DCCftr3x3e0jhJAasHH3kVE2LAAYHBquqdt4FKgoSCTcMouNl4xjhITBLYxMVoNlViOyohCRgoj0ich3je8tIrJHRI4an1Oii0myyoO3XYeiLZxqsUHGTcYxQsLgFhQzq6lOqxHHiOL3APzY8r0HwF5VnQVgr/GdjFPKna3YuHTuqFXQGzMet4aQpAkTAj7LRDJmi8hHASwBsA7ASmPz7QBuNP7fCuBZAH8c5Tok29ADiJDRjDcX6qheT5sB/BGAyy3bpqvqcQBQ1eMiMs3pQBG5H8D9ANDWNj6TfRBC6pfx1IEKPfUkIp8DcFJVXwhzvKpuUdUuVe2aOrV2+ZUJIYR4E2VEsRDAbSJyC4DLAEwWkYcBnBCRGcZoYgaAk3EISgghpDaEHlGo6ipV/aiqtgP4IoCnVXU5gCcA3Gvsdi+AxyNLSQghpGYksY5iA4BFInIUwCLjOyGEkJwSSwgPVX0WFe8mqOpPAdwcx3kJIYTUHtEMJFsRkVMA3jC+fgTAv9dQnLBQ7nSh3OlCudPFr9wfU9XEvYEyoSisiMgBVe2qtRxBodzpQrnThXKnS9bkZqwnQgghnlBREEII8SSLimJLrQUICeVOF8qdLpQ7XTIld+ZsFIQQQrJFFkcUhBBCMgQVBSGEEG9U1fMPwFUAnkEl58RLAH7P2N4CYA+Ao8bnFGP7Fcb+7wP4c9u5lgF40TjPQx7XXAfgTQDv27avBPAj4xx7UfEhdjp+IiqhRM4CGATwrxa5hwG8B+AcKnGoMi83gJsAHLbIPQzgnqzLbfz2Z4Zs54zzZKm8bzDK9SKAtzC6fu8FMATgDLJXvx3lBvAxAAct9eTHeZA7B++lW3ln/b28AcAPAFwAcJftt68B+KHxt8xNhpH9q+4AzADwSeP/y1FpBD4O4CEAPcb2HgBfM/6fBOCXAfymtYCMgjsGYKrxfSuAm12uucC4rr2AbgLQZPz/WwB2uBz/3wD8LYBPohKH6tsWuc/nVO6HDHlbUGmQv5EDuX8TwOsA/sSQ8y0A38yQ3O0APg3guwDuwuj6/XcA/sb4LWv1xE3uuQC+Ycj7IQDvAPifOZA76++ll9xZfi/bAcxB5d28y7J9CSqdnwmGnAcATHY6h/lXdepJVY+r6g+M/99DpZfSikqCoq3GblsBlI19zqjqPwP4wHaqawD8q6qeMr7/A4DPu1xznxo5LWzbn1HVs8bXfQA+6iL27QD+lyH3YwB+xSL3hJzKbZb3XQC+B+BzOZD7k6hUxL9W1TMA/gmV3lQm5FbV11X1aRgrYG31uxOVURKQsXriIfc0VOrFVlRGeWcALM6B3Jl+L6vIndn30pD7RVRGQlY+DuAfVfWC8V4eAvAZp3OYBLJRiEg7Ki/QftgSFKFSSb14BcC1ItIuIhNQqQhXBbm+jS+h8mCcaEVlyAZVvYDKC/OLhtwC4Dsisg/A/BzJbZb3FwH8dU7kfhLAFAA/E5GPoNJDas6Q3KOw128Ap4FM1u9R2OT+OQC7UXke61HpwXqRFbmz/F6OwqUdzOJ76cYhAJ8VkSbjvbypmgy+gwKKyIdQmVJYoarvikggyVT1HRH5LQA7UNFw/w8V7RoYEVkOoAuVnqvjLja5fw7AfYbc76pql4hcA+BpVFGWGZIbRn6PDlQaAk8yIneviAwZ1z4F4HkAd2RIbiuXIT/124pdblXVOSJyJYBeWJ5NxuXO8nvpJXeW30s3Gb4vIp/C6PfygtcxvkYUIlJEpXC2qepOY/MJo4DMgqqaoEhVv6Oq81X1egBHABwVkYKIHDT+vuJDll8F8ACA21T1nLFtnXkOY7e3AFxlyL0TFaPk/zV++zcjsdJPUOkRvJ8TuU8A+C8A/h6VgGF5Ke9jAD6rqosAlGD00jMi98juAP4QtvqNyrxzFuu3p9xG/X4bwE9QGd3lQe4sv5decmf5vfSSYZ2qzjPeS0HFKcnzAM8/4yR/C2CzbftGjDY+PWT7/T9jrLV/mvE5BRXvjF+ocm27EacTwKsAZlU57rcB/G9D7icBPGK57iZDXjM6419mXW5LeR9DZZiYl/IuAPgfhrxzAPwbgI1ZkdtSv18B8F2H+r0Fl4zZmSlvN7lRmav+piHvFFR6i3+VA7kz/V76qCeZfC8t+/8NRhuzCwCuMP6fg4rn0wTPc/i4yC8DUFRcsQ4af7egMve5FxVNtBdAi+WY11HpOb6PSm/z48b27ai4df0IwBc9rvmQcZzpjvagsf0fUNHgphxPuBx/GSrDV0XFE+FHxv5/YPxvurP9KCdy3wJgHiqGsTyV9+2o9JjOoOI2uz9jcn8KlR6gojL0HrSU9/OoeOJcNMr9rhzI/QAqLpdW99g8lHfW30uvepLl9/JTxnFnAPwUwEuW99W8/j4A87x0gKoyhAchhBBvuDKbEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhCRUEIIcQTKgpCCCGe/H9DmsqiQBIg1AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from apd.aggregation.query import with_database, get_data\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "async def plot():\n", + " points = [(dp.collected_at, dp.data) async for dp in get_data(sensor_name=\"RelativeHumidity\")]\n", + " x, y = zip(*points)\n", + " plt.plot_date(x, y, \"o\", xdate=True)\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " await plot()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nO2de5wU1ZX4v3eaAQbUGZHXgOBoQsQX8pgoRFeTEDUKyMQH6C/+Vo0/XROzwbg+cEUZIsTnGtk1a1Y3UbLJqmgMChOTuGRN1kTMAhpMJEZFfM3wiDqjwgDzuL8/qmqmu6equp7dVdPn+/n0p7tv1+P0rap77j333HOU1hpBEARBcKKi1AIIgiAIyUYUhSAIguCKKApBEATBFVEUgiAIgiuiKARBEARXBpRaAIDhw4frurq6UoshCIKQKjZs2PBXrfWIuM+TCEVRV1fH+vXrSy2GIAhCqlBKvVmM84jpSRAEQXBFFIUgCILgiigKQRAEwRVRFIIgCIIroigEQRAEVwp6PSmlfgDMBnZorY82y4YBjwB1wFZgntb6A/O364FLgC7gG1rrX8QiuSAUkaYtTdzy/C207WsLdZyqTBUA7V3tANQMqmHhcQuZddisnvMs37icbbu2MXroaBZMXdDzmxAffuo9/16oGVTDaXWn8Zt3fsO2Xds4YOAB7Ova13ONvZB/HyQNVSh6rFLqJOBj4IdZiuJ24H2t9a1KqYXAgVrr65RSRwIPAccBY4D/Aj6lte5yO0d9fb0W91ghqTRtaWLRs4vo1J2xHL+yopKbT7gZgMbfNbKna0/Pb4Mzg2n8TGNiG5D+QNOWJs/1Hue9YN0Hfq61UmqD1ro+cmHyKGh60lr/Bng/r3gusML8vAJoyCp/WGu9V2v9BvAahtIQhNSyfOPy2JQEQEd3B8s3Lmf5xuU5jRXAnq49LN+4PLZzC/iq9zjvBes+SCJBF9yN0lq3AGitW5RSI83yscC6rO3eMcv6oJS6DLgMYPz48QHFEIT42bZrW0nPUYzzlzNO9WtXHve1SOq1jnoyW9mU2dq2tNb3aa3rtdb1I0bEvgJdEAIzeujoopzD6TzFOH8546fe474WSb3WQRXFdqVULYD5vsMsfwcYl7XdwUBzcPEEofQsmLqAASq+aDeVFZUsmLqABVMXMDgzOOe3wZnBLJi6ILZzC/iq9zjvBes+SCJB//GTwIXAreb7E1nl/6mUugtjMnsC8PuwQgpCKbEmF4vh9QSI11ORserXS73b3Qvi9QQopR4CPgsMB7YDi4FVwEpgPPAWcK7W+n1z+xuArwCdwJVa66cKCSFeT4IgCP4pltdTwRGF1vp8h59mOmy/DFgWRihBEAQhOcjKbEEQBMEVURSCIAiCK6IoBEEQBFdEUQiCIAiuiKIQBEEQXBFFIQiCILgiikIQBEFwRRSFIAiC4IooCkEQBMEVURSCIAiCK6IoBEEQBFdEUQiCIAiuiKIQBEEQXBFFIQiCILgiikIQBEFwJb78jkLZ07SlyTEr3JABQ7hpxk2eM3o1bWmKLfObm5wW2RnI/Mpibd+yq4UKVUG37qZ6YLXvLGheqFSVdOiOHLmzs6+NHjqaQ/Y/hN9v/z3dupsKVcG5nzqXRdMXRSqHF/LrvdRZ3uzug/zr7ifLodP/ifNejouCGe6KgWS46380bWli0bOL6NSdjttkVIZlJy4r+JA0bWmi8XeN7Ona01M2ODOYxs80hn7AvMhpUVlRyVkTzuKJ157wLIud7Elk/uHzi6osnOq9sqKSm0+4uegNp9t9YF33n/zlJ57uk/x9s/9P1PdysTLciaIQYuHUx06lZVdLwe1qh9byy3N+GehYXvYthFc5LawRgVdZ/B6/VFSoCv7wt38o2vnc6iWK6xqlPOB83b2Q/X+ivpeLpShkjkKIhW27tkW2ndM2Xs8R9vzZODUWccpYDII2gkFxq5dS1Fmhc4apn+xjp/U+EUUhxMLooaMj285pG6/nCHv+bCqU/SMTp4zFwOl/xYVbvZSizgqdM0z9ZB87rfeJKAohFhZMXcAA5e4rkVEZFkxd4OlYgzODc8oGZwZ72tfLsQvJaVFZUcm5nzrXlyx2sieRcz91blHP51TvlRWVkVzXqOSB3uvu9T7J3zf7/8R5L8eJeD0JsWBNzEXh9WRtE4enSCE5LbI9WKaMnOJZlmzZxeupF7t6L6XXk9N9kH/dw3o9xXkvx4lMZguCIKQUmcwWBEEQEoEoCkEQBMGVUIpCKbVAKfVHpdSflFJXmmXDlFJPK6VeNd8PjEZUQRAEoRQEVhRKqaOBS4HjgGOB2UqpCcBCYK3WegKw1vwuCIIgpJQwI4ojgHVa691a607g18CXgLnACnObFUBDOBEFQRCEUhJGUfwROEkpdZBSaghwBjAOGKW1bgEw30fa7ayUukwptV4ptX7nzp0hxBAEQRDiJLCi0FpvBm4DngZ+DvwB8BwxS2t9n9a6XmtdP2LEiKBiCIIgCDETajJba/19rfVUrfVJwPvAq8B2pVQtgPm+I7yYgiAIQqkI6/U00nwfD5wFPAQ8CVxobnIh8ESYcwiCIAilJWwIj58opQ4COoArtNYfKKVuBVYqpS4B3gKKG0RG6BckLamNIJQzoRSF1vpvbMreA2aGOa5Q3tglkWnd28qNv70RQJSFIBQZWZktJI7lG5fbZhLr6O5g+cblJZBIEMobiR4rFJXs/NFBaNnVwnE/Os5X1NWaQTVMPHAi67at87RttokrKhPY0nVLefQvj/aJ2OqWPzn7twMGHoBSira9bbbbLfndkp46USiOH308m9/f3CcSqhVJ1qn+FYp5h88rejRZp3zVp9Wdxs/f+HlJTJBL1y3lkVcesf2tdmhtKqK+RoVEjxWKRlryR1t5joFI8jo7NTjTR0/nxZ0v2uZPBlzrKnu76//nejTRPsfFzKHtJ285FCevtpuSsIgqb3sYJGe20O9IS/5oMHqMQCR5nY/94bG+UmkWOrff7YJQzBzaQe6LuPNqe71mpcjvnU2xFIWYnoRIaNrSxI3P3piTNMfCSlKU9LzA2RSS1c9/8ZtvOcp840EpZg7tIP8j7nvJ6/9P0z0dBpnMFkLTtKWJhf+z0FZJAOzu3M0Nz95A9aDqIksWnNFDR0eW19lvvuVC5/a7XRCKmUM7yH+IO8e01/+f9FzXUSGKQgiNF0+kLt2F1joV+aOtPMdR5XV2ykc9ffR0x/zJhXJtZ2+nUJ5l8Uoxc2j7yVsOxcmr7eX/pyHXdVSIohBC43X4/eG+D2n8TGOPbd2JSlXZ87kqU0VVpsrxuxdqBtUwffR0z9taE6WzDpvF0hOXUj2w2vZ3ryyavoj5h8/v6aVWqArmHz6f+0+7v6c+FIraobU9k6OzDpuV81v1wGpqBtXYbnfL39ySUycKxfTR03PktmSff/h81/pXqKJOZAO29Qy98oat/yBY18yJ7GtQDshkthAar5ORpZ74E4T+huTMFlKDl+F3RmXKZpguCP0NURRCaGYdNotb/+bWHJNRNkMGDGHZicvKZpguCP0NcY8VIsGylwuC0P+QEYUgCILgiigKQRAEwRVRFIIgCIIroigEQRAEV0RRCIIgCK6IohAEQRBcEfdYIRHkx/+3Is6Ky60glB4ZUQglxy5JjBVxtmlLU4mkEgTBQhSFUHIe/cujtuVduktyZAtCAhDTk1B08nNBuyWJyY5Mm593+rhRx+Xkha7KVDFowKCevNInHXxSTr5lKG7O5SThlpvb+j2K3OB+5ci/RnZ5sq3IuPl50sv1WpYCiR4rFBW/ebOtiLNechh7pRg5l5OEXZ1n53t2ylkddT3FkTO93K5lPhI9VuiXLN+43HNDkR1x1sk8FYSO7o6yMmnZ1fmerj09dbB84/I+SgKiryc/194r5XYtS0UoRaGU+qZS6k9KqT8qpR5SSg1WSg1TSj2tlHrVfD8wKmGF9OM1yVF+xNmocziXS65jcP6vVrlbXURZT3HVeTldy1IRWFEopcYC3wDqtdZHAxngPGAhsFZrPQFYa34XBMBbjuHaobU8/+Xnc8wJUedwLpdcx+D8X63yqHKDB5UjqccVegn79A0AqpRSA4AhQDMwF1hh/r4CaAh5DqEf4TUXdD5R5nAuRs7lJGFX59n1HFVu8CByhKXcrmWpCKwotNbvAncCbwEtQJvW+pfAKK11i7lNCzAyCkGF/oHXXND52OWdzs8LXZWpyjlWfr5lKF7O5SSRX+f59RxVbvAgctjlxM4vc8qTXo7XslQE9noy5x5+AswHWoFHgceAe7TWNVnbfaC17jNPoZS6DLgMYPz48dPefPPNQHIIgiCUK2nwevoC8IbWeqfWugN4HPgMsF0pVQtgvu+w21lrfZ/Wul5rXT9ixIgQYgiCIAhxEkZRvAVMV0oNUUopYCawGXgSuNDc5kLgiXAiCoIgCKUk8MpsrfXzSqnHgI1AJ/ACcB+wH7BSKXUJhjKJbhZSEARBKDqhQnhorRcDi/OK92KMLgRBEIR+gKzMFgRBEFwRRSEIgiC4IopCEARBcEUUhSAIguCKKApBEATBFVEUgiAIgiuiKARBEARXRFEIgiAIroiiEIQyoWlLE6c+diqTVkzi1MdOpWlLU6lFciVt8vZnQq3MFgQhHeTnq27Z1ULj7xoBEhmmO23y9ndkRCEIZUChvNlJI23y9ndEUQhCGVAob3bSSJu8/R1RFIJQBhTKm5000iZvf0cUhSCUAYXyZieNtMnb35HJbEEoA6wJ4OUbl7Nt1zZGDx3NgqkLEjsxnDZ5+zuBc2ZHSX19vV6/fn2pxRAEQUgVaciZLQiCIJQBoigEQRAEV2SOIpsVZ8Ibv+79fujJcOGTpZNHEAQhAciIwiJfSYDx/Z7jSyOPIAhCQiifEUXjgUB3VkEFNH7Q+zVfSVj89c+waSVMmhendIIgCImlPEYUjdXkKgmM743V3vZffWXUEgmCIKSG/q8oVpzp/vudEwsfo2NXNLIIgiCkkP6tKDatdDYpWXzcUhxZBEEQUkr/VhRPfN3bdreMj1cOQRCEFBNYUSilDldKvZj1+lApdaVSaphS6mml1Kvm+4FRCuyLrr3ettvbFq8cgiAIKSawotBav6K1nqy1ngxMA3YDPwUWAmu11hOAteZ3QRAEIaVEZXqaCbyutX4TmAusMMtXAA0RnaO0bFpZagnKi00r4TtHQ2ON8S71LwglIypFcR7wkPl5lNa6BcB8H2m3g1LqMqXUeqXU+p07d0YkRh7DPXg0eWXtt6I7luDOPcfD45dC29uANt4fv1SUhSCUiNCKQik1EDgTeNTPflrr+7TW9Vrr+hEjRoQVw54o3Vrb3onuWEEph172ijONRY52/PTviitLUMrhOgnhWXMVLBlmrOdaMsz4nlCiWJl9OrBRa73d/L5dKVWrtW5RStUCOyI4RzCibNyrSjcnDxieWdmT7m1vw+pvGJ/706pxN3dmnb9oMoHcc3yuorNGQ9C/rpMQjvz7RHfB+u8bn2ffVRqZXIjC9HQ+vWYngCeBC83PFwJPRHCOYGQGRnes9hJ6Rt050d4zq6O9f5nEbk55mku30dDjl8KSA2V0IRgjB6f7xFIWCSPUiEIpNQQ4Bci2CdwKrFRKXQK8BZwb5hyB2bTSu3usJ7oiPJYNdpFrp1xgKAK3RYFtb8crV7FYcxV0tZdainAUWtypu2V0ISRWGbgRSlForXcDB+WVvYfhBVVaVl1Ragns2bTSaPzb3oHqg2HmTfDCj+wj1xZqeABQsYhZFLLrgtJnWiwaT1whiqJcSfA8hBv9N3ps9z733wcOhX1FjuG0aSU8fhk9jWLb27nfA5HSBnbTSmOOpSPlo4ggdBW4N4X+R/6z70gyO37pDuERxrtk9t1QWZVblv89n7DeCU9cQd8bJaUNfVjWfsu/klCZeGQpBSntWZY9QTyVNq00TY4envX6r4QWMQ7Sqyg2rYRVX8v1tV/1NaO80MWrHGoM/ef8M1SPA5TxPuefC5/X8k7IPodXhSU9yV6CzK3omOeJikkK7dRlzz3HG9fNug/t2gI7nrrO+zkS6PEEaTY9PXUddHfklnV3GOXt77vvO+du433SvL62YmuysRDrf2Bc1J7egom4Q3pE4Xs0VT0uFkkEoSCFPJXcGvhC7ZHFII/5cUpAehWFU+V7uShuDXjlUI8L9cxGzkmxPH5p7nnELTKPACa3YYdFK0K+L/vwifD154MdK47rm+8JlxkEc+8xPuc7REinJF42PBhsv0L5cLK5/q1g5ygC6TU9xYU12oiC7MYjzvUO5WLvfuPX0TXI+UoCjO9ecqTb2am9jkSzaax2vnZ2Ody79hrnsQtvksZQ+TePNuog+5XU/1HI7Gl3He853qPnIkYHNcEorUs/mVpfX6/Xr1/vbyevaUzzqRgAN73nvs3NI72twTj0ZO83Qtw0pixUetDrZ3mFFOpJ27khZ2/rdn63ulxzVTzzC/WX5JovgtRPpgpu3BadTHFy82j3dTPFvJ/d3LRVJSz+q9EhKKQssmXON0kX4qz7A40KlVIbtNb1vnf0SfmNKBruLbyNNbwvRLGUxFn3F+c8qUDT05Ne/Q37EYblepvT674smpFXXJPQXiZFC9HVnp7RZaHFlY1FCpmTf6/kozsMpV13or/j+pnAPvTkxJsOy0tR1F/i7YIk5aJVjwvc00g0fuy2bjiFMLF1vdVGY+zFdOVmEoqTKJRQv/Gm6g4x6vSBVzdtL53CbOXmdQK7/hK48Elv25aQ9CqKIHGcEup6ZkumCr75x14lcejJpZUnKtZcVfih87News7N1i0YpNeeXhQ9/CBYtnrBIG6lHWlU6G7/sqakTUqvohi4n7/t/ZpvosxlEYR8W3OhXkdaQlt76fF+6Xv+jpn/Xysqnbf12tODaHrnwycavUYhl0yBxa3ZxKm0qw+O9njWPVM1rPC2XrZJCOlVFH4eePBvvvn686VRFoOqg03k/fTvcm3yTvb7OIhaSfm9VvmjhELhW/zIt2R472cvHlH5fP15o9co80y5zPWwuDWb9d837q+o7+mZN0V7PDBGQV7ap9Nvi/7cMZHedRQqE/9K3a8/bzR8cUdojcLDIz9Xg2W/j3t+w8+Cw7h6hX47DU9dZ8z/eLmuusOYU9n5F/covnbsV9v72aqLIG60/ZFA7uLaqL9VXzWcUtI8dzd8YqrkT++IoljhHOLocWTjxx7v19c63/4ah3nq8csdym0axPU/KHw8q3HNDAouUyHa3/d3Xd/4tX8lAXB13jqNSfOKM7JIg+dTmLmB7k7j/mqsNlzZw9zHpcjnEmZhZ4lIr6LwQxgb8aR58dqYp13kfVu/iwGzs/LZuYxGYp5yUdiN1b0KadNKCq7G3q+2t3H16qJshxeTYdw9e6dR4qR58a8RCDq3kr8ALs5EUlHNDXTtNcyuQe/jUuRzSZmSgHJRFGE9Cywbc9Sxhg492Z9sYYaqdm6AHe29PTO7VxQ9U8sUVahhrr8ktwce5r/uKl32XYZPTMbixzt9zq81Hth3bUNXe3zKYsKp0R1LdwcfGfSniMQxkl5FUewLPGme4a7a2GY0avnndzMLnXV/lqJRvesj4vafzrbdB+k5FdNFNKwyt+Rcc5X/OYuoOOt+773FgQFCNmSqeu+/QnzckjsR78aaqwCHfORxZR189Zf25UFDWQQ1ZbmZsMUBoYf0TmZPu8jbEDsOs9Hsu+wbtjVXmXZ408QycKiR98LqHRd78kpF0A8oFBlzv9pg9vt8Nq0sWD9tW6vYsWl/OndnGDCki5GTPqK6rr1XzvHTS7fgzApd75XZd/s3f1ku07Pv8vY/dYcxUmj8wH27UtSZU8PesTvY8YKaspycGqrH9UaXvmW8fc56S5GUgYNCehXF7LvgvdcKL94q5oIWJwVSKvI9oYLi1ohnIrqFCnhotW2touX3NehuI9ZT5+4BtPy+BqBXWZTsgVX+54/8eEFlz91YeI5y3G2Yoaz911xlRELVXcao2M8cWZRUH+zQQB9smKX8Kq+gTiczb+qbabGyKvd4haK6vrWuH62Itye9pidIxdL3fsHqK51/i2plq+1xetNCbt94QI+SsNDdiu0bD4jm/EGpGgZn3RdstGhNbNuZJRvbel/5SgL8KSZrxLdkuH3inVIw8yb7DJMzbzI6W3bmXTeCjtadEpj5Gh3e5d1ykVJzVnpHFBYVA50XWJX7itiKAGFO7OjYZQy/7XpWTj1Dv9iZDuq/0tOQde2z79M4lQdGVRomGy8Mqobr3gh/TrsEWl72WfVVw1XUC0HDgsTVsFn/1ynCrzU6L0Y4kyD1n8/su4x5F6dnoXpcqvOGpHtEAdDwXWwTkvv1KEoLfpb9d++LbiXr3jb7XAF2PUO/5A/1Lfz01KJgULURUtrrY1HqRDMN90YzD+VGnA1bj4NIa25cs2y8/L+kdAidRkln3e/8/1JC+hXFpHnG0L/YHkWl4vTb/AVEfOo6Yy1DFOxt66t4Js1zdJhxpWIAnob6s++CzEBUpf1JnMp9s19tb8Pf+EHuqup8goZZiZpJ8+BL/9a/U8ROu7jwNknpEEZhxkoo6U1cVM5sWuktN3gcVI8zekd2GeLcqKwK/tA01tC2dTDNz1eDzurbqG7GHN/WO5ntRn5iIC/kZ5k79ORkd0CiNtNY17rUuCU5GlRd+pFdCSlW4iJRFGnGLl1mUAYOhX1evGjw7hJbPS6avM5mvK2W/z2A1i1DDe9jBTWH7aL20x8W3r8/5vSww29WtUIkqd7unNj3nitzJQEpURRKqRrg34GjMR7frwCvAI8AdcBWYJ7W2tWRWxRFCMKm5sxe63HbodGOUqIyz2xaSdvyf6Bl3RB0V7a1VFPziQLKwkplWS5ENapI+uhJANKTCnU58HOt9UTgWGAzsBBYq7WeAKw1vwtxEdY+WzWst9d4+m3JDGkwaR47XhmbpyQAFK2vD6Vtq8tkejkpiSgRJSFkEVhRKKUOAE4Cvg+gtd6ntW4F5gIrzM1WAA1hhRQKEMbzJXv9wqR5/pMGOTEoWnt553tOowZFywaHtRR+kuP0F6KY2E6KF5GQGMKMKA4DdgIPKKVeUEr9u1JqKDBKa90CYL6PtNtZKXWZUmq9Umr9zp07Q4ghhFqBnb9+IapQ2BHbjlW1s+LRHTa3caaqb5bAcmDmTdi6i3umIjleREJiCLPgbgAwFfh7rfXzSqnl+DAzaa3vA+4DY44ihByC1yQ8dtitX5g0L9ykaByuo/vcstapZLirJoFJ84KHlChX5SoUJMyI4h3gHa21FS7zMQzFsV0pVQtgvpcw5nOZECa5UtReLTE12Hp3wGBx5YgVFt9tZb5dqBBREq60rV7Nq5+fyeYjjuTVz8+kbfXqUotUNAKPKLTW25RSbyulDtdavwLMBF42XxcCt5rvT0QiqeBMUtJsJiiOTcuSJbSufBS6uiCToWbeudQuXlxqsYpHFGEphB7aVq+m5cab0Hv2ANDZ3EzLjUYHrXrOnFKKVhTCej39PfBjpdQmYDLwbQwFcYpS6lXgFPO7EDeT5vmf1I4qFhTE7nOvamo8b9uyZAmtDz1sKAmAri5aH3qYliVLYpJO6O/s+M7dPUrCQu/Zw47v+IwanFJCKQqt9Yta63qt9SStdYPW+gOt9Xta65la6wnme4myyJQhXsIdZNPw3WjOO6g69t5r7Q3/6PibGjIk53vrykdtt3MqF4RCdLbYLzDtbG4usiSlIf2xnoReZt/lLV80GC6Qbo27n/UURVgd6za87zN/YY0k8nEqF4QCZFy87sphrkIURX/j68+bfvBZLpKZgWbU2aygiYVcIL2upyimz71ycPt0KheEiHBzQC8H81P681EIfYki05412sgOPlgxEHSnsW7Dyo5WTJ97p3AzAcPQvDZ7Nh2vvd7zvfKTn+CTa9YEOpbQv9Ftzt585WB+EkUhOOPRcyZxHkaZjL2ZKWvkka8kADpee53XZs8WZSH0YUBtrbNCyCQw7E3EiOlJCEUiPYyc5iK07rEn5ysJC6dyobwZ+U2XdMBlMPclikIIRevDj/gqLwYDxoxx/K0c7MlC9FTPmeM8FyYjCkEoQMTzBkHJ9jxx6/05uTkKQkGc7mkZUQhCfPgOieDi3ZQ9UqieM4eMwwK9AbUuKU4FQbBFFIVQEtpWr6b5uoXGBKHWdDY303zdQndl4TJKyZ9o3P/0L9put9/JJ3mSLShbL76YzROP6HltvdjnIkhBSCCiKITYcGtwW25aDN153und3Ua5A25zD/mjjY9//RvbzaxypxEHQMuybzufx4WtF19M+3Prcsran1snykJIPaIohHC4TOS5TRzr9nZf5VDA8yRvtOHkymiVj3IJCaJbW53P40K+kihUXoiWJUvYfNTRxujkqKPLOlaV1EVpEUUhhKJm3rmOvwVZiKSJKCRCAQ+VYkf89Puf3NyOyy3cdWJcsH1GBuhPyk0UhRCK2sWLXSeZ/TZkCnhryc19yq0wz15oW706Vg+VIA2AX7fc1ocedixvufGmnLmdlhtv6tfKwq0uiooPD7/EKLeIEEUhhKfAJLNdQ5Yf8TWbzMcf9SmzC/PshFuj7CdcuR1BG4AowzyUc7jrtNDfIhiLohBCU6jxtWvIapc04melhZ/1D27bhr3hXRuAqirnHWMOXFgO8YZSRT+LYCyKQgjP3r0FN8luyDZ/+jiar7nWdftFq17K+e5l/cNrs2cX3LbLDO4W2FTj1gC4jXiKsACxP5ufUoeLk0car5MoCiE0bp5K2bQsWcLmiUfAR4ZpyamPrYEfr8vNcTHym1eiBg92PX7Ha6+z9eKLXXvXyswrEIepJqrFfEHt2EHdehPPAIfYpU7lCcDNySONZkJRFELR8Dr5qDCURd3Cpp7X17YNp/bmbxXct5ArqnXDxxHKw9V91wdBJ2mDuvUWk0CeQJ2d/soTgFv05DSGkRFFISSSplVX8+AvlvLZtzcA8NvX3+dr24a7ToJ7octsTJMSyqOcXF37mydQNnbXzWnuTrlky0sqoiiExKEwbsxR7a1cu+EhfrbqappWXU3lM09Tu6Qx3MFN23Gh3v/miUf4bsD8mhTaVq+m+drrchv9cwIAABT/SURBVMOYXHudr2OkiTg8gYqpWP2u5ndqXHVra+o6BaIohFDEfbMrehXHtRseKjgJXhCzN+tlwZ3f3q5fk0LzTYv7TnIXOepuUXFxBNg88QheOelk25/jCLcSBL+r+btcTIFpW/8iikIIRTEn5iJxMPXppupnvsC3OcujE4Bfss1Zf54+g79Mn5EK01b3jh22yiKOcCtB8L2av0CeCr1nT2ocEJLrNiAklkWrXuKh59+mS2uampvT1dsI22N3SbM68ptXFhzxbP70cT1eX3GweeIROd91ayuWtJ3NzTRfbzS6xQ5h4pXuHTv6lFXPmRN+JFkk2lavZsd37jZGlx7uNd3aStvq1Ym9HhaiKARffPn+5/jt6+/3fN9ZVcOo9uR729iilKeHefOxkxlw0EHuD7+X48SsJDzR2UnzTYsT3TBlN7YDamuN+SSnaxXzQkY/WGFmvEYQsGi+5lp2b9xY2jzzBQjVGVRKbVVKvaSUelEptd4sG6aUelop9ar5fmA0ogqlZtUL7+YoCYAHjzydPZlK1/20+YqSKI5Xc958b+fau7dnwtmNgmaEUisJi/b2RJug3r3m2pwJ/reuvT72TIqrXniXE279FYcubOKEW3/Fqhfe9X0MP2Fm8km691cUVoPPaa0na63rze8LgbVa6wnAWvO70A+48pEX+5Q9M24ayyef49hwa+CMhjtpzwyMVBYFdONfYWRv77UH57XPmoZ1DBbN1xX/sVQDvd0D+fU9QHc5X+cI8lWveuFdrn/8Jd5tbUcD77a2c/3jL/lWFmHDqCQ5DlQc5uW5wArz8wqgIYZzCEXG7aH5wpv/W3D/f5l8duSjigrgw8oq3wrj/sX/2vO55vzzIpNH4+6hkyjyk0YVgdplS6EiWJPjqKwjiJ10xy9eob0j9zjtHV3c8YtX/B0orBkswXGgwioKDfxSKbVBKXWZWTZKa90CYL6PDHkOIQE4PTRLn/0eU//6WsFe9zPjpvk6n1dz1QEd7cxquNPzcRUw4cn/AODbV93FK6t+3qNowioyDXQWaVQRhdLNTtma//rz1GmRm6eq58xhzG23umcq9EnYaMBgjCD8lDvSj12bwyqKE7TWU4HTgSuUUoUTEpsopS5TSq1XSq3fuXNnSDGEuGl2eGjclIQGNg7/ZM53N3TWq+PAg7h92vmBzEuFGNneyssTj6DhZ/czqr2VCnrDhoQ5l7XmIw0UvBa7d9N8zbWJnsuA4vv3h40MUIik1neoetZaN5vvO4CfAscB25VStQDme19/N2Of+7TW9Vrr+hEjRoQRQygCY2pcQmjbYCmJRSde3lO2pm6G61zGh5lBXHrRdznyz5s59rlneWbcNM+jhR2D9vfcyCvsG/WwjU4QJRFUMRU6V6HjepU1SrdUyyso25YfthPgtqgtCvJNrqEjAxQgqesqAj8bSqmhSqn9rc/AqcAfgSeBC83NLgSeCCukUHquOe1w3/tkKwmAeyefzeq6GXQplTN6sJTKxWfdmnOeC6aP93yui05f3KMssl9+icNDy+1caTpuWOy8gqyRXGAimMx24/rHN/V83nzU0bGv50iqQ0SYdRSjgJ8qYwJnAPCfWuufK6X+F1iplLoEeAtwjrcrpIaGKWN5dP1bfdxj39hvJId+vCOnh6rNcjvunXw2904+m7vnTwaMuY/m1nbG1FRxy2mH0zBlbM+2SxuO4Ud54cbzyW5kLjo914vpZ6uuLvi/8tlZVcODR57ONRseSpUpKZ8uIEOy5HcKcWJdw0CyxjwB3N5hTPrnL2QsNwIrCq31FuBYm/L3gJlhhBKSyY8vnZGzKhtgaNe+Pg+4MsudOOETw3oUQrZisENhr4zAaGDW1M3w9R/c0BjrQp4ZN41nxk3rmai35IgSaxT1yQ+bqd63u+C2fs7/YWUV5826mTWrru6Zf0kCrfsNo+aj9/qU76yqYf89H1GljUbfr7xxr2xO8vqGYpGq6AtC6VnacAyv33IGW2+dBcAIh1XZTuUTRg7lx5d6b9y/PH08V3zhWt7Yb2Qfs9LquhncO/nsnO0vmD6erbfOYtT+/tdtaHK9sxadeDln+PCo8suiEy/niGWNBWXyQzfwvUmGR/rskLJriNS082+fOrXP4sw9mUoePPJ0zp57W+C6jntNSND8IIFwS6dbQiSEhxCYrbfO4plfLLUN4bGzqq/bogKevuqzvs5hmZ+u+IK7bVgBb5jKC+CUo0azY9D+jNz7kaceqgbumHa+L9miwEsco43DP1nQBVkDnaqCu6bOz1F2Hw4cUnDE4sacM2/jtcB752LJddHLTzGivbXHzJctr0ah/KrHEGtCVr3wLp99e4OjTEuf/V7gYwchM2hQUc/nFRlRCKGwC+Fh9RLzyW7Io+SAQZk+x/7RurccJ7jzmyFrdOK01mPj8E9GOjHuNodjx6ITL3edZLeOd+bc2/v8h+8dMzfwZHG3UnRGPDP+zLhpXHTaImY13MlFpy3qI++auumBVtsHdSv9zb/+BwtefKzHTXpUeyvXmDlQfrbq6h7TY7GwcronDVEUQmBWvfBuTwiP7VU1dAPbq2pYPvmcPg3AwExwS/mgAe636aYlX3T87aLTF3NGw505r9unnZ8j7+3Tzu9jwsrm9plXMGTG9ECyf5gZ1EdJvbHfSK74wrVMGDkUgDF33F7wOLMa7rRdU2K5FTuNuPwudMw+btMhwf5zGO6dfLbvOQoFvHlbMLPVmeufYHBXR06ZNa9TyJkhDg+5pGa/E9OTEBhrtbY1+evG7ef08XvwzG1nT7KNMwX+XGgtvMhrccInhplzKl9k68UXs/u5db4asvPmLLMtH7X/wB4zXPWcOTT/4w3Q0dFnu/as0drshjv56os/Ydab66jQmm6laDpkuquSC0Ncx3VDgeeovtkM+Kvtcq2COM2lecUyb4K/SXgnB4Wk9tyTKpeQApxWa+dzwfTxBb2b3GiYMpa750+mqrL3dq1QxnGXNhzj+3hVlRXcPX8yY2uqUEBNVaXtg3DB9PE5E+91DzzAkBn+TCN3z5+cc66xNVXcPX8yz99wSs52Y769rE8cpE4U90w+p2efC6aP597JZzN77h2c0XAns+feUbAxH1tTxa6jpzqawJLGmJoqxtx+m+/9dtjMiXnho8rgk8ea3hGr3/2cSKrpSUYUQmDG1FS5xsMZW1PFNXlrI4LSMGWs5+MUivp5y1mTfB0vm7oHHuBlDz71GvjroP09uwFb7p3ZeRjGfPNKHshy+2yYMrZHMdYtbCoow9aeeZvP86MT5+TY2/dVDGBgd2fBY1jrXaLggunjXdfFVFVmuOa0w6k262rHd+5mX3NzQRNQF4on6+fy2SBCBQzkl++a7XUS3jI9Du3aZ+sE4jtLYpEQRSEE5nMTR7g++L9d+PkiStNLoaifUSguJ6ymYseg/Wl98Ke+9q2eM8fzeoChAzPs2ue82OyETwzL+X7j31zex5pTaEHi3fMnR1pXlpKz1uEoYMjADLv3dTEmr1Nh1cWX73+Oa/7pEgai+yzqBEPh3T3lXBq+9n8DybR/CI+w7NHcmrrpzNn6nCfz0xVfuJbPvr2BBS8+ljM/sidTyftfupAJgSWKD1EUQmD++8/OwRzH+owNFSVeTWJx8eX/s5zFc46KVSEt+9IxjvM2QJ+1Kl8+vm9v3sl92PICuy4G+Zc2HOPLXPjjS2dQ9/odrnMzYRSaqqjw7V6rMeoum3snn82crc952hecXYX/p/kgXvclTXEQRSEExq1B/tzE0gV6dDOJZSJIndmtFBmHyVYFvHDTqaHPUYiGKWMdFYXdP7Qa52xlcdHpi3nwqSU9k7EWq+tm8OPj53FdZNKGxwr9YkcYhawKKAm7q7xj0P59wsVY2xbykspeq2PrVJHEiSNEUQghcGuQ3UYbcXPNaYc7NqJdEeQMaDrE3syggYGf/ETo43tlrEP9O0X6XdpwDPWHDMupG7sG74BBGVeX4/7EgDFjCmam8zpZvaZuhqP5qdBanaQjikIIjNscRanNP05EYRL7tylGz3Z2XqPwxn4jmbVmTejje+Wa0w7n+sdfysnOZk0IO2H1vrODMUblcJBGRn7zysgiwj78mfP42xmH8N7Dj1CR1SHZYbMCPW2IohAC4zZq8Ju/IkqcJrMVwcKl59OtnU0h8aw9tydoox/U46s/4iWEihcqM4rFc46idsqpfGZPfeBkd9YizKQhikIIjJtrbBQNclCcRjOaeD2eSkG5N/pxLwRTZLsZ97LqhXcdFbSd44AXshdhJg1RFEJgMko52vxL2Xg5zZ1E5YnllGwnKeG8+xtu99ldEa7zsKPm/PNsy90UtJc8KtkMqFDcee6xiVb4oiiEwLhNDK964d2S3fhBbPd+cAvOJ0TP+cePs214s/OaxEXt4r6T/V5wWlwYNJpAqZEQHkJg3HrohRa9xUnDlLHcctYxOWEzbjnrmMgaFScX2yhcb4W+LG04hgumj++p34xSfcKrJA0nmdOoJACUjsBdMCz19fV6/fr1pRZD8MmqF951XfRlZ9vtD7iFz+iv/7k/s/Xii2l/bl2f8qoZ06l74IESSOQdpdQGrXV93OeREYUQmCTbVOPEaSRVytXoQnDqHniAqrww8mlQEsVE5igEwSdxz4EIxUeUgjuiKIRQlKMHkCxaE8oNURRCKAYOqGBvZ994OQMLZKVLO+W+fkEojNtai7QhikIIhZ2ScCsXhHJg1Qvv5pgn321t5/rHXwLSObfXv7t9giAIJeCOX7ySM4cF0N7RVVK38TCIohBCUVNV6atcEMoBpzAySQ2WWYjQikIplVFKvaCUWmN+H6aUelop9ar5fmB4MYWk0njmUVRW5E5dV1YoGs88qkQSCULpcQqKWcpgmWGIYkSxANic9X0hsFZrPQFYa34X+ikNU8Zyx7nH5qyCviPhcWsEIW6uOe1wqiozOWVpdqEONZmtlDoYI7LyMuAqs3gu9OQ5XwE8A4lKliVEjHgACUIu/c2FOqzX093AtUB2AtlRWusWAK11i1JqpN2OSqnLgMsAxo8fH1IMQRCEZNGfOlCBTU9KqdnADq31hiD7a63v01rXa63rR4woXX5lQRAEwZ0wI4oTgDOVUmcAg4EDlFI/ArYrpWrN0UQtsCMKQQVBEITSEHhEobW+Xmt9sNa6DjgP+JXW+gLgSeBCc7MLgSdCSykIgiCUjDjWUdwKnKKUehU4xfwuCIIgpJRIQnhorZ/B8G5Ca/0eMDOK4wqCIAilJxGJi5RSO4E3za/Dgb+WUJygiNzFReQuLiJ3cfEq9yFa69i9gRKhKLJRSq0vRsamqBG5i4vIXVxE7uKSNLkl1pMgCILgiigKQRAEwZUkKor7Si1AQETu4iJyFxeRu7gkSu7EzVEIgiAIySKJIwpBEAQhQYiiEARBENzRWru+gHHAf2PknPgTsMAsHwY8Dbxqvh9olh9kbv8xcE/eseYDm8zj3O5yzmXA28DHeeVXAS+bx1iL4UNst/8gjFAiu4F24C9ZcncBHwF7MeJQJV5u4HPAS1lydwFfTrrc5m/LTdn2msdJUn2fZNZrN/AOuff3WqAD2EXy7m9buYFDgBez7pPNaZA7Bc+lU30n/bk8CdgIdALn5P12G/BH8zXfSYae7QtuALXAVPPz/hiNwJHA7cBCs3whcJv5eShwInB5dgWZFfcWMML8vgKY6XDO6eZ58yvoc8AQ8/NXgUcc9v8a8ENgKkYcqp9kyb0vpXLfbso7DKNB/qcUyH05sBX4R1POd4DvJEjuOuDzwBrgHHLv74eBB83fknafOMl9LPBPprz7AR8A302B3El/Lt3kTvJzWQdMwng2z8kqn4XR+RlgyrkeOMDuGNaroOlJa92itd5ofv4Io5cyFiNB0QpzsxVAg7nNLq31s8CevEMdBvxFa73T/P5fwNkO51ynzZwWeeX/rbXebX5dBxzsIPZc4F5T7seAk7PkHpBSua36Pgd4CpidArmnYtyID2itdwG/wehNJUJurfVWrfWvMFfA5t3fUzBGSZCw+8RF7pEY98UKjFHeLuC0FMid6OeygNyJfS5NuTdhjISyORL4tda603wu/wB80e4YFr7mKJRSdRgP0PPkJSjCuEndeA2YqJSqU0oNwLgRxvk5fx6XYFwYO8ZiDNnQWndiPDDTTLkVsFoptQ44PkVyW/V9HvBASuT+GXAg0KaUGo7RQ6pJkNw55N/fwPuQyPs7hzy5RwO/wLget2D0YN1IitxJfi5zcGgHk/hcOvEH4HSl1BDzufxcIRk8BwVUSu2HYVK4Umv9oVLKl2Ra6w+UUl8FHsHQcL/D0K6+UUpdANRj9FxtN8mTezRwqSn3h1rreqXUYcCvKKAsEyQ3Zn6PYzAaAlcSIvcqpVSHee6dwHPAlxIkdzaDSc/9nU2+3FprPUkpNQZYRda1SbjcSX4u3eRO8nPpJMMvlVKfJve57HTbx9OIQilViVE5P9ZaP24WbzcryKqoggmKtNartdbHa61nAK8AryqlMkqpF83XtzzI8gXgBuBMrfVes2yZdQxzs3eAcabcj2NMSv6H+ds2M7HSFowewccpkXs78P+An2IEDEtLfb8FnK61PgWowuylJ0Tuns2Bq8m7vzHszkm8v13lNu/vZmALxuguDXIn+bl0kzvJz6WbDMu01pPN51JhOCW57uD6Mg/yQ+DuvPI7yJ18uj3v94voO9s/0nw/EMM741MFzp0/iTMFeB2YUGC/K4DvmXL/DFiZdd67THmt6IzfT7rcWfX9FsYwMS31nQH+xZR3ErANuCMpcmfd368Ba2zu7/voncxOTH07yY1hq/6OKe+BGL3FH6RA7kQ/lx7uk0Q+l1nbP0juZHYGOMj8PAnD82mA6zE8nOREQGO4Yr1ovs7AsH2uxdBEa4FhWftsxeg5fozR2zzSLH8Iw63rZeA8l3Pebu5nuaM1muX/haHBLTmedNh/MMbwVWN4Irxsbv8P5mfLne3llMh9BjAZY2IsTfU9F6PHtAvDbfb5hMn9aYweoMYYerdn1fdzGJ443Wa9n5MCuW/AcLnMdo9NQ30n/bl0u0+S/Fx+2txvF/Ae8Kes59U6/zpgspsO0FpLCA9BEATBHVmZLQiCILgiikIQBEFwRRSFIAiC4IooCkEQBMEVURSCIAiCK6IoBEEQBFdEUQiCIAiu/H8KgxuCBe2ajgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import collections\n", + "\n", + "from apd.aggregation.query import with_database, get_data\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "async def plot():\n", + " legends = collections.defaultdict(list)\n", + " async for dp in get_data(sensor_name=\"RelativeHumidity\"):\n", + " legends[dp.deployment_id].append((dp.collected_at, dp.data))\n", + "\n", + " for deployment_id, points in legends.items():\n", + " x, y = zip(*points)\n", + " plt.plot_date(x, y, \"o\", xdate=True)\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " await plot()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nO2de5hU1ZXof6u7C+juIA3ysJuHRHQQFVDTRtQEJ2HUSQAlGRW8yTfEyeBkXtHkXhJUFFBUlEnUezPf3Gsmk5A7+QxqDLEhGXVIJsmMaXPxBWpLUIOK3QpRQYVG+rHvH+dUU1V9zqnzrDrVtX7f11917TqPVfucOmvvtdZeS4wxKIqiKIobNeUWQFEURUk3qigURVEUT1RRKIqiKJ6oolAURVE8UUWhKIqieFJXbgEAxo4da6ZOnVpuMRRFUSqKJ5544g/GmHFJnycVimLq1Kls27at3GIoiqJUFCLySinOo6YnRVEUxRNVFIqiKIonqigURVEUT1RRKIqiKJ6oolAURVE8KRr1JCL/AiwA9hpjTrPbxgAbganAbuByY8w79mfXAl8E+oAvG2MeTkRyRSkhm556ndUPPcf+7p5Ix2nIWGOzQz39AIxuyLBq4aksOmPiwHnWP7yTzv3dtDTVs/yi6QOfKckRpN8L74XRDRnmz2rmFy/so3N/N6PqMxzp7Ru4xn4ovA/ShhTLHisic4H3ge/nKIo7gLeNMetEZAUw2hjzdRE5BbgX+CjQAvw78EfGmD6vc7S2thoNj1XSyqanXmf5/c/Q059MpuVMrbD+0tkAXPvgDrp7jv5c6jO13PbZmal9gAwFNj31uu9+T/JeyN4HQa61iDxhjGmNXZgCipqejDG/At4uaL4E2GD/vwFYlNP+Q2PMB8aY3wMvYikNRalY1j+8MzElAdDTZ1j/8E7WP7wz72EF0N3Tx/qHdyZ2boVA/Z7kvZC9D9JI2AV3E4wxXQDGmC4RGW+3TwTac7bbY7cNQkSuAq4CmDJlSkgxFCV5Ovd3l/UcpTh/NePWv07tSV+LtF7ruJ3Z4tDmqH6NMfcYY1qNMa3jxiW+Al1RQtPSVF+Sc7idpxTnr2aC9HvS1yKt1zqsonhTRJoB7Ne9dvseYHLOdpOAzvDiKUr5WX7RdDI1TmOgeMjUCssvms7yi6ZTn6nN+6w+U8vyi6Yndm6FQP2e5L2QvQ/SSFhF8RCw1P5/KfCTnPYlIjJcRD4MnAT8NpqIilJeFp0xkfWXzaapPhP5WA2ZmoHIJ7CiXbIOzEVnTOS2z85kYlM9AkxsqldHdgkI0u9O98LohgyfnzNlYP+m+kzeNfZD7n2QRvxEPd0L/DEwFngTWAVsAu4DpgCvApcZY962t78e+AugF7jGGPOzYkJo1JOiKEpwShX1VNSZbYy5wuWjeS7b3wLcEkUoRVEUJT3oymxFURTFE1UUiqIoiieqKBRFURRPVFEoiqIonqiiUBRFUTxRRaEoiqJ4oopCURRF8UQVhaIoiuKJKgpFURTFE1UUiqIoiieqKBRFURRPVFEoiqIonqiiUBRFUTxRRaEoiqJ4oopCURRF8aRoPQpFCcump15n9UPPsb+7Z9BnjcNqueUz/qu3bXrqddY/vJPO/d20NNWz/KLpsVUD85Izy+iGDKsWnsqiMyYGliW7/ev7u6kVoc8YmuozHOnt41BPfyzfAayC9Zla4Ujf0WJkoxsyzJ/VzC9e2Dcg79Rj62l/+R36jKFWhCvOnszaRTNjk8Mvhf2e28flwOk+KLzuxe6TXNy+T5L3clIUrXBXCrTC3dBj01Ovs/z+Z+jpd7+/amuEb1xWvPzjpqde59oHd9Dd0zfQVp+pjaVMqB85s2RqhcVnTeZHT7zuWxYn2dPI5+dMKamycOv3TK2UpSSo132Qve4bf/uar/ukcN/c7xP3vVyqCndqelISYf3DO4v+qPr6Desf3unrWIUP2u6ePl/7+jm23x9/T5/h3sdfCySLk+xp5N7HXyvp+dz6vafP3z1RKnng6HUPqiSy++Z+nyTv5SRRRaEkQuf+7ti2c9vG7zminj+XPpcZeJIylgK375UUXv1Sjj4rds4o/ZN77Eq9T1RRKInQ0lQf23Zu2/g9R9Tz51IrEug4cchYCty+V1J49Us5+qzYOaP0T+6xK/U+UUWhJMLyi6aTqfH+cdXWCMsvmu7rWPWZ2ry2+kytr339HLuYnFkytZbjN4gsTrKnkSvOnlzS87n1e6bW3z1RKnng6HX3e58U7pv7fZK8l5NEFYWSCIvOmMj6y2bTVJ9x/LxxWK0vR3b2WLd9diYTm+oRYGJTfSyObD9yZhndkGH9pbNZu2hmIFlyZYejI9Om+gwNmXh/fgIMq81/mI1uyPD5OVPy5D1v2pgBOWpFSu7IBud+z/ZxOSKA3O6D3Ovu5z5x2jf3+yR5LyeJRj0piqJUKBr1pCiKoqQCVRSKoiiKJ5EUhYhcLSLPishzInKN3TZGRB4VkV326+h4RFUURVHKQWhFISKnAcuAjwKzgQUichKwAthqjDkJ2Gq/VxRFUSqUKDOKGUC7MeaQMaYX+CXwGeASYIO9zQZgUTQRFUVRlHISRVE8C8wVkWNFpAH4NDAZmGCM6QKwX8c77SwiV4nINhHZtm/fvghiKIqiKEkSWlEYYzqA24FHgX8DngF6A+x/jzGm1RjTOm7cuLBiKIqiKAkTyZltjPmOMeZMY8xc4G1gF/CmiDQD2K97o4upKIqilIuoUU/j7dcpwGeBe4GHgKX2JkuBn0Q5h6IoilJeohYu+pGIHAv0AH9rjHlHRNYB94nIF4FXgcuiCqlUH2kraqMo1UwkRWGM+bhD21vAvCjHVaobpyIy7xzqYfkDzwCoslCUEqMrs5XUkbaiNopS7WjNbKWk5NaPFqBQHTi15fL6/m5OueFngWpNj27IcErzSP7rpbd9bZtr4orLBLZy0w7uffy1QXWqveon5342qj6DCOw/1OO43bUPbqfb7pMagXNOGMNzne8Nqv+crZ/t1v81Av/t7NJnk3WrVz1/VjObn+kqiwly5aYd/KD9Vcf7cWKF1LqOC80eq5SMSqkfna1zDMRS13nlph38a/urg9rPmzaGJ1894Fg/GfDsq9ztvrrxafyrTX+UMvV4kLrlUJq62m7XLJe46rZHoVTZY1VRKCXjvHU/5/WUl3zMkq0f4SbvxKZ6/mvFJ30da9q1Pw1USrPYuYNuF4ZaEV667dOxH9eJMPdFkP4Pg99rlrQcxSiVolDTkxIL1qjwaZwsQo3DarnlMzNTXxc4l2KyBvkuQestx1lvPCylrKEd5nskfS/5/f6VdE9HQZ3ZSmQ2PfU612x0VhIAB4/08d/vf4amBv/VwcpNS1N9bHWdg9ZbLnbuoNuFoZQ1tMN8h6RrTPv9/mmvdR0XqiiUyPiJROrrNxhDRdSPztY5jquus1s96vOmjXGtn1ys1nbudkn8iEtZQztI3XIoTV1tP9+/Empdx4UqCiUyfqffB7p78upHOz0aCus+N2Rq8mpLF773w+iGDOdNG+N726yjNK66zmsXzeTzc6YMqlP9g2XnuNZPLqyt3FSfYXRDxnG7by4+nfqcPqkRSwk51X/O1s8G5/6vkdI6ssG7XvXn50wpS13t7DVzU1+VUus6LtSZrUTGrzOy3I4/RRlqaM1spWLwM/2urUneXKAoSjKoolAis+iMidy1+HTcLEKNw2r5xmXJmwsURUkGDY9VYiFrL1cUZeihMwpFURTFE1UUiqIoiieqKBRFURRPVFEoiqIonqiiUBRFUTxRRaEoiqJ4ouGxSiooLBKTzTirIbeKUn5UUShlx6lITDbjLGiNbEUpN2p6UsrOvY+/5tje1681shUlDeiMQik5hbWgvYrE5GamLaw7PeeE0Xl1oRsyNQzP1A7Ulf7EyePy6i1DaWsupwmv2tzZz+OoDR5UjsJr5FQnO5stuLBOerVey3Kg2WOVkhK0bnY246yfGsZ+KUXN5TTh1Oe59Z7dalbH3U9J1EyvtmtZiGaPVYYk6x/e6ftBkZtx1s08FYaevuoyaTn1eXdP30AfrH945yAlAfH3U5Br75dqu5blIpKiEJGviMhzIvKsiNwrIiNEZIyIPCoiu+zX0XEJq1Q+foscFWacjbuGc7XUOgb375pt9+qLOPspqT6vpmtZLkIrChGZCHwZaDXGnAbUAkuAFcBWY8xJwFb7vaIA/moMT2yq57mb/jTPnBB3DedqqXUM7t812x5XbfCwcqT1uMpRopqe6oB6EakDGoBO4BJgg/35BmBRxHMoQwi/taALibOGcylqLqcJpz7P7ee4aoOHkSMq1XYty0VoRWGMeR34B+BVoAs4YIx5BJhgjOmyt+kCxschqDI08FsLuhCnutOFdaEbMjV5xyqstwylq7mcJgr7vLCf46oNHkYOp5rYhW1uddKr8VqWi9BRT7bv4UfAYmA/cD/wAPAtY0xTznbvGGMG+SlE5CrgKoApU6Z85JVXXgklh6IoSrVSCVFPfwL83hizzxjTAzwInAu8KSLNAPbrXqedjTH3GGNajTGt48aNiyCGoiiKkiRRFMWrwBwRaRARAeYBHcBDwFJ7m6XAT6KJqCiKopST0CuzjTGPi8gDwJNAL/AUcA/wIeA+EfkiljK5LA5BFUVRlPIQKYWHMWYVsKqg+QOs2YWiKIoyBNCV2YqiKIonqigURVEUT1RRKIqiKJ6oolAURVE8UUWhKIqieKKKQlEURfFEFYWiKIriiSoKRVEUxROtma0oVUKxutlpo9LkHcqoolCUKqCwXvXr+7u59sEdAKl8+FaavEMdNT0pShVQrG522qg0eYc6qigUpQooVjc7bVSavEMdVRSKUgUUq5udNipN3qGOKgpFqQKK1c1OG5Um71BHndmKUgVkHcCVEkVUafIOdULXzI6T1tZWs23btnKLoSiKUlFUQs1sRVEUpQpQRaEoiqJ4oj6KHHZfeSXdv2kfeF9/zhymfve7ZZRIURSl/OiMwqZQSQB0/6adFxcsKJNEiqIo6aBqZhQdM06BXMe9CDM6nh94W6gksvS8+BIH2toYtXBh0iIqiqKkkqqYUXScPCNfSQAYY7X7oPPGVQlIpSiKUhkMeUWx+8orPT/fOff84gfp1rQBiqJUL0NaURxoa3M1KWXp37u3RNIoiqJUJkNaUXRdv9LXdh1nfTRhSRRFUSqX0IpCRKaLyNM5f++KyDUiMkZEHhWRXfbr6DgFDoI5csTfhu+9l6wgiqIoFUxoRWGM2WmMOd0YczrwEeAQ8GNgBbDVGHMSsNV+ryiKolQocZme5gEvGWNeAS4BNtjtG4BFMZ2jrBxoayu3CFXFgbY2dn1yHh0zTmHXJ+dp/ytKGYlLUSwB7rX/n2CM6QKwX8c77SAiV4nINhHZtm/fvpjEyCdz4rTYjrX3zrtiO5bizYsLFtC5/Gv0dnaCMfR2dtK5/GuqLBSlTERWFCIyDLgYuD/IfsaYe4wxrcaY1nHjxkUVw/kch+ILa+3t6ortWGGphlH27iuvpOfFlxw/6/x6ZVgxq+E6KdHpWrOGjlNPo+PkGXScehpda9aUWyRX4liZ/SngSWPMm/b7N0Wk2RjTJSLNQNniT+N8uMuoUbEdKwwdZ300z+ne29lJ1w03AgypVeOe4cz9/aUTJCQvLliQp+iysyEYWtdJiUbhfUJfH/vv/SEAzavSt8A3DtPTFRw1OwE8BCy1/18K/CSGc4RCMpnYjmXefTe2YwVl59zzHSOzzOHDQ8ok1jH79HKLEAnP2dDyr9Fxyqk6u1DoWrPG9T7JKou0EWlGISINwAXAX+U0rwPuE5EvAq8Cl0U5R1gOtLX5D4/1Q8KjWafMtaM/+1n23nmX56LA3s7OROUqFV1r1sAHH5RbjEgUW9xJf7/OLpTUKgMvIikKY8wh4NiCtrewoqDKSud115dbBEcOtLWx98676O3qoq65mfFfuYZ3HnzQMXNt0QcPgEhCkiZPbl8MysU1hOm87npVFFVKmv0QXgzd7LE9PZ4fS0MD5tChEgljcaCtjc6vfX3godjb2Zn3PhQV+oA90NZG1w03Yg4fLrcopafIvakMPQ60tQ3MJj1J6cCvolN4RIkuaV6zGhkxIq+t8H0hUaMTOq+73jGLbTWy9867giuJ2tpkhCkDlTqyrHbCRCr5VhJA05LFUUVMhIpVFAfa2ui89rr8WPtrr7NGqsUuXn09oxYupPnmm6hraQER6lpaaL75puIntqMTcs/hW2HpSHKAUL6Vvr74BSkTlWinrnZeXLDAum7Z+9DhWeBE1y23+j5HGiOeoIIVRdctt0Jvb35jby9dt9xa9EfYcpN1YUctXMhJP9/KjI7nOennWwPZjff/cCNwdLSgi8MCEmKKXdfSkoAgilKcKJFKZv9+fycZOTKoWCWjYn0Ubp3v56J4KoT6en/1J2yTkduUsnP51/LOo4qjgBAmt8zxU2IVoTCWPXPiNE7cvDnUsZK4voWRcDJsGM23rAUYFBChzvFk2X9foPXEAxSrh5PLjP/321DnKAUVO6NIiuxsIw5yHx5JrneoFnt392/aY3sgD1rwhFX21k+NdCc7tV8bdC4dJ89wvXZONdzNkSN0Lv+a4wy2ElPld8w+3erD3L+0fo8iZk+n6/jiggX+IhfBGqCmGDEpcKa2traabdu2BdrHbxnTQdTVMePZHZ6bvDBrtq81GPXnzPF/IyTMjBc6yi1CIEJfP9tkVWwk7RSGnLut1/m9+rJrzZpE/AtNVyzJs0+H6p/hw5nxzNMxSpUcHbNP91w3U8r72TNMu7aWGc89S8eppxVVFrkyB3FgA7SsvyPUrFBEnjDGtAbeMSBVN6Noua24Yyk7vS9GqZREy/o7SnKeisCYgZF01w03Os4wsqG3haPuOGZeSTmh/ThFi/LBB5UzuyyyuLJjxiklEaPwXhlEXx8dJ8+g/qNnBTrumwEc2PXnzEm96bCqFEXTFUt8XZC0XLS6lpbQI400E8Ru64VbChO30Nv99/7Ql+nKyySUJHEooSETTWVM+FlnAPyGafsZFOYqtz6fDuymK5Yw9bvf9bVtOalcRREij1NaQ88cGT48LxKr/pw5ZRYoHrrWrCn+o6vxf1s6hdl6JYP0G6oYywg/BFlbvWKRtNKONSu0MYFlrZRnUsUqitrGxkDbBzXfxFnLIgyFtuZio45KSW3tZ8Tbcvu6QMcc9F3r3IP5fIcqEs/oPHPiNJquWBL5OEOO4cN9b5qk0q5rbo71eNl7Rpqaim7rZ5u0ULGKwu/ULktQ882JmzeXR1mMHBnKkdf59RV5Nnk3+30SxK2kgl6rQbOEIgsbg8jXceppA//7iYgq5MTNm2letUr9TAW0rL050Pb77/0hHTNOif2eHv+Va2I9HlizID8Dkubrr4v93ElRsYqiFOkcTty8uSSLvGa80HH0L2wsdUF221KlIA+y4DCpUWGQWQJYisX3de3rY/eVV7Jz7vmuC67cqBl/tLjjqIULVVnkEOreNMYKBT5tZmpnzH7JnDitonyPlasoSpTOIYkRRx4BFJ4EjLUutL8mYZ5yqzrnFBqYXc3uRfbhKsOGRRPMA7N/f6Dr2v2bds9U725M/9Uv896XSllUQuRTJN9Ab6+lME6ewQuzZke6j8tRzyXKws5yUbmKIgBRbMSjFi5M1MbcdLn/ch3NARcD5lblcwoZjcU85VGno+PkGQMK6UBbW9HV2DXjxw88XP2GKDvhx2QYZoFcENzMh6MWLkx8jUBY38qgBXAJFpKKyzdgjhyh8+srQt/H5ajnUmlKAqpEUUSNLMjamOM2Q9WfMyeQbEGnqrkX1ykM0Bw+PDAyc/qLY2SaNUUVezA3XbEkbwQeZVre/4e3Qu8blcyJ01Kx+HHn3PMDbd8x45TBaxs++CAxZfGh8+fGd7D+/vAzgyGUkThJKldRlPgCDyQQfKHDmmEUnt/DLNSy/o6jisbOVNuy/o7E46dzHf5hRk6lDBGNqsyzcnatWRM40CEuWtbf4Xu0KA0NwU8wfPjR+68I/Xv35jnivehas8Z9tpdQ1cH3f/kr5w9CprIIbcryMGGrT+koFaso/JpskjAbNa9axYznns13Qj/1pHWunKyo0tAwsGAuSqba0MRQBKWYGSPXYRuFqCaw7GK6ci04Ezt1vV+a16wOfI5syLRvpdrX52uFczn6zPXBHrKQVVhTlpuVoK6l5aiZ0CWra3YAWA1UbPbY5lWr+GD37qKLt0q5oKV51ap0LaCJKY/XgbY214dgTV0dcVQT33vnXZGVZ9J+B1dEAvuPst/Vj8y5vpuBU9bXY3xmOd459/yB/bvWrLEyofb1QW1tIB9ZnNQ1NzvOcuuam/nQ+XMDK6+wQSfjv3LNoEqLMmJE3vGKRSIeevLJobMi3oWKnVFA8UVoSjx03uiu/OJa2ep4nJSWhcyltqmJljtuD6XksiNWJ7Nk7my1UElAsMCGbMRWx6mnORbeKQfjv3KNY4XJ8V+5huZVq5zNux6EHWS4FTALNDvMyuuDSp2BVGz22CwdM2e5LrAqzMg5FAiU3iGTYcaO7cH3c2LkSMeR1a5PzoslcqSupYWTfr41ry2pTK2e1Nb6D7126ZNS0XHazMHFu2ImyVxjxTL8gv/7Ng0BBF6/hbqWlkTqhmj2WJ+03HqLY3vQiKJKoTbIsv+envgWJr33nmOtAKeRYVAKp/pZgozUYmHkSGY896zvmUy5C8203HZroLxYYUjSl+bLb+fjWqQlRYrbLKll/R2l80smRMUriuwiplJHFJWLCddfhwRIiNh1y63s+uS8eE7+3nuDFM+ohQsJNSutq/M11W9etSpUAsig1IwfP/Dgn9HxvLeTPmSalbgZtXAhLbevG9IlYpuWLC66TVoGhHGYsdJKxZueqpEDbW103XJr4NQVcZA1ETlViPNCRowI/aPpmHFKZMd8GDNkYZW5+nPmpHoAEnfWWSdzYDnwLHJUZvNfuSmV6UkVRQXjVC4zLNLQgDl0yNe2NePH+0ppUdfSEktd56h+kKFY08OJoFXVipGmfts59/zB91yVKwmoEEUhIk3APwOnAQb4C2AnsBGYCuwGLjfGvON1HFUU4Ynq8JWGBprXrGbUwoX8bs45sS5Wi8s8c6Ctja7rr8ccyQ1aMIAPX4JdyrJaiGtWkfbZk2JRKc7su4F/M8acDMwGOoAVwFZjzEnAVvu9khBR7bO1TU0Do8YJ11+XuHM0DKMWLqT5Y73UNfQCZuDV+vOmmpREnKiSUHIJveBORI4B5gJfADDGHAGOiMglwB/bm20A/gP4ehQhlSKIhLbh565fCLIIrCguq1nDMmp8J6Muzv+OHT88zv7PZWYRoDjOUKGupSVyuHJaooiU9BBl+HgCsA/4rog8JSL/LCKNwARjTBeA/eoYPiIiV4nINhHZtm/fvghiKFEcvYWpD+JKhR277bh+9OBzLHmDpmkHcZxZDB8+qEpgNRA5Lb5IaqKIlPQQRVHUAWcC/2SMOQM4SAAzkzHmHmNMqzGmddy4cRHEUKKERzo9WKI6MBMJHe1zjnppPutdZizpys+79UJHVSoJiJgWf/hwZnQ8H69AypAgiqLYA+wxxjxuv38AS3G8KSLNAPZr8IovSiCijCLjjmpJbH3BkYPJHHcIMlB61WP9iVOqkGpVrr7Zfh/ceRqsbrJet99XbolKRmgfhTHmDRF5TUSmG2N2AvOA5+2/pcA6+/UnsUiquBKrbyECqcpjs/mr8MT3wPSB1MJHvgALvlluqUpGNmOxEhPb74O2L0OPnYjxwGvWe4BZl5dPrhIRNcTl74EfiMh24HTgViwFcYGI7AIusN8rCTNq4cLgSfRiXPGceMx9/Rj/227+Kmz7jqUkwHrd9h2rXVHCsPWmo0oiS0+31V4FRFIUxpinbT/DLGPMImPMO8aYt4wx84wxJ9mvb8clrOKNn3QHubjlyQrMyJHJj14/dbv7Z8Ma898/8T3n7dzaFaUYB/a4tL9WWjnKRPqC5pXQNK9a5ateNFghkJ4P9wApnkuyOtZrel/ovzAu2V/d2hWlGA5RdwNUga9CFcUQ48TNmwdV2iOTsbLO5iRNLBYC2bLuNl/nK23MvZtpLf11K5QhTBWYnyq2wp3iThyV9rKzjbzkg5mMVf/AmIHqaKWNuXdbLxJyHcm3zoY/vHD0/diT4e8ed99eqV66PbIQVYH5SRWF4orvyJm0RRhJrYuZKWfmUagkwHr/rbNVWSiDGTXJXSGIfzNtpaKmJyUaaYwwcvVFmKP25EIlkcWtXalu5t3o/lkV+L5UUSjR2PYvwdpLwajJ7p9VgT1ZSYBZl4O4PC51RqEoxYjZbxCW3MgTr9GfW5ijohTD9Lu064xCUZIjaEoEtxEd5M8UZl3uvkBv1KTgcipKlaOKQikP2++DH3/JdhAa6/XHX/JWFm4jOhjsaDz1M87bnXShP9nCsuFiWD3q6N+Gi8MfS1FSgioKJTm8Hrht1wyesps+q90NL99D4VqKXY84b5Zt90oJ8rOQ5VM2XAy//2V+2+9/qcpCqXhUUSjR8HLkeTmOe1yywbq1g7fvodAn4hbKmG33SgnSHTLrTKGSKNZejM1fhTVjrJnJmjHVnatK+6KsqKJQovGRL7h/5mMh0pbGBi6c1MKsqZO5cFILWxob4kmJUCxCpdQZP4N+J6+w42pLd52aEOyAmQGGkHJTRaFEY8E38Uyh4fEg29LYwLXjjqUrU4cRoStTx7XjjmXLL64fvHE2zbMftt+XbIRKmAdA0LDcbd9xb2/7cr5vp+3LQ1tZePVFSQkQ4Zca5RYPqiiUGPAIhXV7kA1r5IaxYzAFqdGNCDccM2zwcZzSPLvh9VAOkq7cibAPgDjTPFRxuuuKYYhlMFZFoUSn2MPX6UG24C56XOpnOLYHWf+Q5FoJrwdAptH5MyDxxIVVkG+oohhiGYxVUSjR6XWuZ51H7oPstinw4DLPzde2r81v8LP+4VtnF982m9wtrKnG6wHQc8hrx3DnC8JQNj9VGl5BHhV4nVRRKNHxilTKZfNXLbv+Bwe8txNh486N+W3zboRMvfd+f3jBCkX1Gl1n6wokYaqJazFfWDt22HXEKREAABUoSURBVLDetFPjkrvUrT0NeAV5VKCZUBWFUjoCOh9nbpg58Les61FY+D+L7+Q3FDUJ85Rn+G4Awjppw4b1lpIwgQD9vcHa04BX9uQKTCOjikJJJybfVNP+RrulLArLngYl+zBNSyqPagp1HWKRQHk4XTc3351XtbyUoopCSScODu32N9phwV0Rj2vbjouN/lePCv4AC2pS2H4fPPhX+aGuD/5VsGNUEklEApVSsca1mr/77YobFKiiUKIR4GY/d3ILM6dOHvgLjDFFneDFj2GPZv0suAs62g1qUmi7Bihc7+GRz6rS8QoEWD0K/uFk58+TSLcShqCr+b1MgRW2/kUVhRINn6Pocye38F5trTVTyP0LyOnHO5uMHFd4OxLwnEH8BUHNWX6DAIKSa866/cPWXyWYtt7vclYWSaRbCUPQ1fzF6lT0dFdMAIIqCiUwa9vXMvv7s5m5YSazR8PaMU1F9xlQElEQoU+ERS0T8pq3NDawomCF94pxxzJz6mSWTRhbcJCIYaquP37x58y+bcrRzLJJsHqUNevKmrO637YfprZpa9PfpF9ZFFLqdCtRyFXSftZMdL+d7uthk+L4MiWNLHt4meUrsOkXYeMxI/lpYwOPvdbpuI/76D4EIrw0LH/l9oqxYwYrIft9e3098yY1s3WPwwNIarxTl2e5+Tj40FjbtBShUNNtU4qHBidNf49l8krzw3f7fdZM9cAea5Y270b3a+VVo6TUZNPM+M0gkOXBZfBqe3nrzBchUi+LyG4R2SEiT4vINrttjIg8KiK77NfKc/Erjmx5eUuekhhAhPdqaweN9LOsGHds9NlEoSy5ysfr2CLsratznvV85Epf51o7ajizR8PMqZOYPXWy+wyqmBkhR0kU+muyf26mtVjpOZjqUeyi9pXMtPt75mhY1H6DR+6ueHw6W17ewoUPXMisDbO48IEL2fLyluAHCZJmppCUR3/FoY4/YYw53RjTar9fAWw1xpwEbLXfK0OAFb/2uJQOI32AeZOaY1cSiLBi3LFcOKnFl9kLe9Yz6CHvYwS3dkwTG48ZSb/tU8nOoOZNah68sQ97+bxJzcycOtnZX2Ob1maWQln8+EvJn6OQ2uFFN5l5/CTrPsrpk5eGZVwHIXHUq97y8hZWP7aaroNdGAxdB7tY/djq4MoiahqVFOeBSmLedgmwwf5/A7AogXMoJcbvj+bs4yflOZT31kWwbhoPc47ti9h4zEh/iijnIb928xeOtrd+0XM3x+Pbs5R5k5qZbc8EBpSQR4TOzOMnWf3h5ci3P0tcWZQj59Al3/I0Fc08fpJz37gMQoBYvsfdT97N4b7DeW2H+w5z95N3BztQVDNYivNARfVRGOARETHA/zHG3ANMMMZ0ARhjukRkfFQhlfLj60cjwiH7R551KIfGS0kUnDMQImz8wzZWAsseWEj7+7+HnFDdpv5+Vrz1DvMPHnJwhOcfZ+ChjxXUuvGYkcB7rHSwPpw7ucV/pJe9zazjJ7H9FeeQ27Vjmrj/mJH0Y432Lnv3PVa+vX/QdssmjKW9Pj/1ybQjR9jU+aa3Q31Yo7VmJU5fRvZYW28aNPp2VRI5bGlsYP7BgnxaUbMBA10HHfxXHu2uxGQGSyNRZxTnGWPOBD4F/K2IzPW7o4hcJSLbRGTbvn37IoqhJM0bB98IvlOYEFhjaO7pZd17ffGbrHKY988nW0qiwPSzv7aW68cdy8zjJ1kP2CL+j8L3G48ZyZbGBs48flKe7yFw1JcIRsRRWbmZwwrNcOdObjn6HfJMOcPcTTlZjhy0nKwJ+zK2NDb4UhKIcMPY6EohMlEzAxQjpb6jSIrCGNNpv+4Ffgx8FHhTRJoB7Ne9LvveY4xpNca0jhs3LooYSgk4rvG4eA/oMmNo/lALj/xlB/P/viPe8+VSMBsopC/COg+wnPc9NTWR14wgQnt9PWvHNOWZuNzMYdaMxmLZhLHuysnLlFNI1AWOuWSjguzZRDasmWxfFcEx/XzC6ygGmVyjZgYoRkrXVYRWFCLSKCIjs/8DFwLPAg8BS+3NlgI/iSqkUn6uPvPqeA9oDCP686fqI2pH5J1n8fTF8Z4zl2IPpiizmZhnQoWzh2K0TplYfDZEzGHLfiiICoolGi4GZ7YXax5bk/NmrKfiXNQyIW8WWXTW5kRKEztGmVFMAP5TRJ4BfgtsMcb8G7AOuEBEdgEX2O+VCmf+CfOZc9yc2I637vw7WH3+HTQ3NiMIzY3NrD53NfNPmD+wzco5K2M7X8Xi4tx1Y+bxk/jAzwhdhBVjx0R/sAXhwB6WTRgbPoULDivzE3YAd/fZim31KDA9rtvNm9TsEK3lw8RXIYR2ZhtjXgZmO7S/BcyLIpSSTr590bdZ276W+393P/0RHHdzjpszoBByFYMTgmBKUfQnLkL4ZELv63Z+v8cp2PalYcMGHuAj+/pcF1CGZdnESbRnCP89RejDGrlv6nzzaPv2+5JdQFhkfcNAdF+QaK0KI0XLGpVKYOWclTzz58+wY+kOq8FvdJLNtGOm8e2Lvu17+8unB3sALJ6+mB1LdzB+xHhLtoDylZodZ97Ijt0xlTEN6gtxmqnYf+/V1tpO5kw8sgHtw8L7fQawH755+bySXhNSJN9XMRNaIBOfZznd8qGKQgnNgLLwiSBs+symQPv4NT8Jwo6lOwa2/8Txn7A/iMlfkJTSsUfC6/a9lS6lZiuM06eWoW5Hsb7Oyee1bMLYSOanUCuwcyi63sVeHJo1t3mGXAPUFV+UWA5UUSjRCPAg3r50eyIijKwbOejYG3dujNWpXGsMtYnNUIT5Bw8xsq8vdcqijzIsAguwhqa9vt56+IYMK727/baisjitws86rn3N4nJmagPyupGt6Z4yVFEooQkyGstEMGEMq/G28z72ucdCH9sPI+tG8nTNNJ5+ZU/wB7nH9tOOmWb989l7ACyfQAWYy5Jmxyt7GN7f768f7Ifvll+Hq0PddWTwIsXC4++tq2PW8ZPY0tjAbHt9TJ7jOgi2vK6ktPqdKgolNEFSHNz8sZtDn+em89wfAomG0GI53h/73GOw9CH48Pms+8PbwR7kLg+S8SPGHzXDzbocai1luCOrjOJUFhWkfAQBhG2vvh5gJ+Hu4eFmPr4e8/bixxXjjqU/d31MBD5SkOom7aiiUELjd7X24umLi0Y3eTH/hPms+/g66muPjsQEYfH0xaFCaOtr61n38XUDobmjho2ixuGnsHj64nzH+9KHmD/+LBr8PnSNYd3H1+Wdq7mxmXUfX8fWxVvzt73kHwfWBOx4ZQ/r9r1Fc28vAgP7hFGKzY3NrJPKWdB6XONxAzOsOd3dvhXcG3Xh1lP4Vp8xKIfcYx2pqRmonbJ67JijyiKlpietR6GE5rjG4zzz4TQ3NnP1mVdHUhJZ5p8w3/dxipnEVp27KtDx8lj6EIe+d5qvTTMG32HA+XmQ9jC/7ljmn3VjXtjn/BPmDyjGmRtmFj1/brDBCh/bO7Hu4/Etg1o8fbHlO3JhYMGl3Vff3noTMz2sNLkcN8xHFuGUcrimhuvsvGjz6yLkR0sQVRRKaOZOmuv5w3/k0kdKKM1RipnE4lBcxagxhpvP9yjh6cSsy32vB2ioa+BQ7yHXzwsXRwZej2IM6+beHmtfZZVc7jqchroGunu7Oa7xuPxBhd0Xcx5eRnvXb4qO5q+ec20omZr6+9lfG+PqbmNCzTz6bdMWUz9D8ndncNT0pITmV3t+5fpZc6NDvYYSESqBYRzYvoCm4U3cGvNDtpAbz/Euu1q4ViXoehREEpE/dx3OjqU7ePxzj7N96XYeufQRx/N9+6JvF33wrvv4utCyrnj7AJm4/DdRjyPCda88FI8sMaOKQgmN1wN57iTfiYRjxyuBYU3CpTN37H6NXy/5deKzFq/ji4OLduWclYF8HCPrRhbfKCVE8n+9/z4373uL5p5exBjwG22VEP2kM1W5KgolNF4PZK/ZRtJ4JTCMknpkAK8R7tiTox/fJ26zNrfrsnLOSl8+h5F1IxMPOU4NoyYz/+AhHtnTyfbdr7HjlT1MO3IkXKSYCIvffa9iIsyCoIpCCY3XrKFs5p8ixGEScxqxD7T/3eORj++Xq8+8mhG1I/LaCjPwFpKNICuMwsqagnYs3VE9SgJg3mAT3qbON9mx+zXG9/YGeug3DW9i5Ql/Fqd0qUGd2UpovGYNsdevCICXMzuOdOluTmGTXJ0lR7Iml7ufvJs3Dr4x2CHssV8pHPoVwazLXVOHb93TxaKWCbw0vHhajUxNhhUfXQEnzEc2zAqdyHJgEWbKUEWhhMYrNDb2+hUB8JrNDLUHZLU/9J3Wv8SJVTL2wKD2LS9vcVXQl0+/3DMa0I28RZgpQxWFEpoaqXG1+Zfz4eW2vqOckVhKeLzus1s/fmuyJ2/9omOzl4JeOWdlIEVRJ3Ws/djaVCt89VEoofFyDEfNyhmFMLZ7Jb1c9keXObbn1jVJjAXfDLWbW4RZNg1+7t9Tf/5UqpUEqKJQIuA1Qg+SBypu5p8wn9XnrvasnhcFtxDbpENvq5VsaG+2f2ukZnB6lZThJnOlVm0Uk4JQrtbWVrNt27Zyi6EEZMvLW1jx6xWunwetV1EpeKXPGKrfeUiz4WL4/S8Ht3/4fCsZZIoRkSeMMa1Jn0eHQEpo0j5dTgq3mZT6QCoUOzNwHhWgJEqJOrMVJSBXn3k1qx9bzeG+wwNt6gOpcFQpeKKKQlECEnb9gqJUKqoolEgMqxnGkf4jju1DmWpfv6AUx2utRaWhikKJhJOS8GpXlGpgy8tb8syTXQe7WP3YaqAyfXvqzFYURYmZu5+8O8+HBXC473BZw8ajoIpCicSoYaMCtStKNeCWRiatyTKLEVlRiEitiDwlIpvt92NE5FER2WW/jo4uppJWrj37Wuok34JZJ3Vce3a4imOKMhRwS4pZzmSZUYhjRnE10JHzfgWw1RhzErDVfq8MUeafMJ+1H1ubtwo67XlrFCVphloamUjObBGZBMwHbgG+ajdfAvyx/f8G4D+Ar0c5j5JuNAJIUfIZaiHUUaOe7gK+BuTWTZxgjOkCMMZ0ich4px1F5CrgKoApU6ZEFENRFCVdDKUBVGjTk4gsAPYaY54Is78x5h5jTKsxpnXcuHFhxVAURVESJsqM4jzgYhH5NDACOEZE/hV4U0Sa7dlEM7A3DkEVRVGU8hB6RmGMudYYM8kYMxVYAvzcGPN54CFgqb3ZUuAnkaVUFEVRykYS6yjWAReIyC7gAvu9oiiKUqHEksLDGPMfWNFNGGPeAubFcVxFURSl/KSicJGI7ANesd+OBf5QRnHConKXFpW7tKjcpcWv3McbYxKPBkqFoshFRLaVomJT3KjcpUXlLi0qd2lJm9ya60lRFEXxRBWFoiiK4kkaFcU95RYgJCp3aVG5S4vKXVpSJXfqfBSKoihKukjjjEJRFEVJEaooFEVRFG+MMZ5/wGTgF1g1J54DrrbbxwCPArvs19F2+7H29u8D3yo41mJgu32cOzzOeQvwGvB+QftXgeftY2zFiiF22n84ViqRQ0A38LscufuA94APsPJQpV5u4BPAjhy5+4DPpV1u+7O7bdk+sI+Tpv6ea/drP7CH/Pt7K9ADHCR997ej3MDxwNM590lHJchdAb9Lt/5O++9yLvAk0AtcWvDZ7cCz9t9iNxkGti+6ATQDZ9r/j8R6CJwC3AGssNtXALfb/zcCHwO+lNtBdse9Coyz328A5rmcc4593sIO+gTQYP//18BGl/3/Bvg+cCZWHqof5ch9pELlvsOWdwzWA/kbFSD3l4DdwHW2nHuAO1Mk91Tgk8Bm4FLy7+8fAt+zP0vbfeIm92zgG7a8HwLeAf6xAuRO++/SS+40/y6nArOwfpuX5rTPxxr81NlybgOOcTpG9q+o6ckY02WMedL+/z2sUcpErAJFG+zNNgCL7G0OGmP+EzhccKgTgN8ZY/bZ7/8d+DOXc7Ybu6ZFQfsvjDGH7LftwCQXsS8B/smW+wHg/By56ypU7mx/Xwr8DFhQAXKfiXUjftcYcxD4FdZoKhVyG2N2G2N+jr0CtuD+PgNrlgQpu0885B6PdV9swJrlHQQuqgC5U/27LCJ3an+XttzbsWZCuZwC/NIY02v/Lp8B/tTpGFkC+ShEZCrWD+hxCgoUYd2kXrwInCwiU0WkDutGmBzk/AV8EevCODERa8qGMaYX6wfzEVtuAdpEpB04u4Lkzvb3EuC7FSL3T4HRwAERGYs1QmpKkdx5FN7fwNuQyvs7jwK5jwMexroet2GNYL1Ii9xp/l3m4fIcTOPv0o1ngE+JSIP9u/xEMRl8JwUUkQ9hmRSuMca8KyKBJDPGvCMifw1sxNJwj2Fp18CIyOeBVqyRq+MmBXIfByyz5X7XGNMqIicAP6eIskyR3Nj1PWZiPQg8SYncm0Skxz73PuA3wGdSJHcuI6ic+zuXQrmNMWaWiLQAm8i5NimXO82/Sy+50/y7dJPhERE5i/zfZa/XPr5mFCKSweqcHxhjHrSb37Q7KNtRRQsUGWPajDFnG2POAXYCu0SkVkSetv9u8iHLnwDXAxcbYz6w227JHsPebA8w2Zb7QSyn5P+1P3vDLqz0MtaI4P0KkftN4C+BH2MlDKuU/n4V+JQx5gKgHnuUnhK5BzYH/gcF9zeW3TmN97en3Pb93Qm8jDW7qwS50/y79JI7zb9LLxluMcacbv8uBSsoyXMHzz/7IN8H7ipoX0++8+mOgs+/wGBv/3j7dTRWdMYfFTl3oRPnDOAl4KQi+/0t8L9tuX8K3Jdz3m/a8mazM34n7XLn9PerWNPESunvWuB/2fLOAt4A1qdF7pz7+0Vgs8P9fQ9Hndmp6W83ubFs1Xfa8o7GGi3+SwXInerfpY/7JJW/y5ztv0e+M7sWONb+fxZW5FOd5zF8nORjgMEKxXra/vs0lu1zK5Ym2gqMydlnN9bI8X2s0eYpdvu9WGFdzwNLPM55h71fNhxttd3+71gaPCvHQy77j8CavhqsSITn7e3/u/1/Npzt+QqR+9PA6ViOsUrq70uwRkwHscJmH0+Z3GdhjQAN1tS7O6e/f4MVidNv9/ulFSD39Vghl7nhsZXQ32n/XXrdJ2n+XZ5l73cQeAt4Luf3mj1/O3C6lw4wxmgKD0VRFMUbXZmtKIqieKKKQlEURfFEFYWiKIriiSoKRVEUxRNVFIqiKIonqigURVEUT1RRKIqiKJ78f6S57F/6hNcgAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import collections\n", + "\n", + "from apd.aggregation.query import with_database, get_data, get_deployment_ids\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "async def plot(deployment_id):\n", + " points = []\n", + " async for dp in get_data(sensor_name=\"RelativeHumidity\", deployment_id=deployment_id):\n", + " points.append((dp.collected_at, dp.data))\n", + "\n", + " if points:\n", + " x, y = zip(*points)\n", + " plt.plot_date(x, y, \"o\", xdate=True)\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " deployment_ids = await get_deployment_ids()\n", + " for deployment in deployment_ids:\n", + " await plot(deployment)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAE0YAAAUsCAYAAAC9bUPVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdd7x0Z1Uv8N9KBwIJEAJSQ+9NihSBBJAqIL2HkCCCXq5cURD13ovYr6BwQakGCKFKByHIRQOitCAogjSBCKEESEIPIWTdP/a8Zt79zilzzpwzb/l+P5/5kL32fp5nzZk5w+eds/Z6qrsDAAAAAAAAAAAAAAAAAAAAAAAAsEz7LTsBAAAAAAAAAAAAAAAAAAAAAAAAAI3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAEaq6qiq6tHjuGXntZ2q6tTR8z912Tntjfyc92xV9bTxZ8WesL73HQAAAAAAAAAAwO5jE7VgS61hm9ey63OXvT4AAACwfhqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMRoAAAAw0wq7oq32OLeqzqyqz1bVKVX1R1V1n6o6aNnPBQAAAAAAAAAAANiYPaWesKruuEI+pyxwjaPXeO5HL2idY9dY56hFrAMAAAAAuyON0QAAAIBFOTjJZZJcI8ldk/xmkjclOaOq/qSqDl1mcnu7qnrpqOjpi8vOCdi7VNUXR58zL112TgAAAAAAAAAA7JaWVU94wgrxn6uqK2/RmmPH72bzAAAAAMAeR2M0AAAAYKsdkeTJSf6tqm697GQAAAAAAAAAAACApdiyesKqOjzJ/VY4vV+S4xa53iruX1WX2MwEVXW1JLdfUD4AAAAAsMc5YNkJAAAAAHuU7yf53ArnLprkUkkuvcL5qyQ5paru0N0f24rkAAAAAAAAAAAAgG2xu9UTPjzJIaucf3RV/V5394LWW8lFkzw4yYs2McfxSWox6QAAAADAnkdjNAAAAGAep3X30atdUFVXTHKvJE9KcvXR6UskeV1VXbe7f7w1KbIIa73OQNLdT0vytCWnMTe/3wAAAAAAAAAALMDuVk94wui4s3NzsaOS3CnJ/1vAWmNnJ7nk1PHx2WBjtKraL8mjRuGzMjSaYy+1p9aiAQAAAGyV/ZadAAAAALB36e4vd/fzktw4yRtmXHL1JL+0vVkBAAAAAAAAAAAA22m76gmr6iZJbjoK/3mS80ax4ze71gpeneQnU8e3qqrrbnCuuya54tTxOUnesdHEAAAAAGBPpDEaAAAAsCW6+/tJHp7k32ecfuQ2pwMAAAAAAAAAAAAswTbUEz5mvGSSZyd52yh+v6q65ALWG/tKkr8dxTbahG087pVJzt3gXAAAAACwR9IYDQAAANgy3X1ukj+acermVXWp7c4HAAAAAAAAAAAA2H5bVU9YVYckedgofGp3/2eSl43iB2do0LYVThwdP7KqDphngqq6dJJ7rzEvAAAAAOz15vpiDQAAAGADTpkR2y/JtZO8f6OTVtV+SW6a5Kgkl0lyqSTfSfKNJJ9L8tHuvmCj8y9SVV0hyXUy5HpYkotkyPWsJP+Z5MOToi+2QFVdJMktk/xUkiOTHJrkWxneK//S3f+xxPTWpaouk+RWSa6WIf9vJzkzyQe7+/Rl5rbVquqwDM/9mhl+f85NckaS98/z3Kvq8klukeH38NAMv39fTvKe7v7OgtPekKo6OMltk1w5yeWS/CTJ15N8PMnHuruXmB4AAAAAAAAAAGzWVtQT3i/JJUexkyb/+/YMdWKXmTp3QpLnbnCt1bwlyTeTHDE5vmySe0zi6/WIJAdNHf9rd3+kqhaT4QJU1f4Z6tiuk+QKSS6RZP8kZ08en0ry8d2lfnMR9pUa0Ko6KMk1MjzXy2V4bZPheZ6V4XX99DblckCSmye5fobfqQuSfDXJF5J8oLt/sh15rNfeUKcKAAAAuxuN0QAAAIAt1d3fqKrv5MICiR2OmHX9Wqrqdkl+JcnPZWiGtpKzqurtSf6ouz+5kbU2qqqOSHLfJHdOcocMBU6rOa+qPpCh2Or16y0IqqovJrnKCqevUlXraaJ0THefOmPuUzPkvsN7uvvoFfL4eJIbTIW+keQK3f3jdaw/U1U9NMkrR+Ff6e6/XOf4/TLs7PmIJLdPcsgq134hyWuTPKO7v7mxjLdGVR2d5LeS3ClDAeCsaz6Z5A+TvHKexllVdVySl4zCV+3uL24gz/G6v9vdT1tjzNOS/O/pWHfX1PlbJPmdDMWBM7/HrKr3JPnN7v7AKuvcK8lTktwmyawKwfOq6o1JnjzZJXbd1noOc8xzVJKnZfjcGH9W7vC1qnp+kmd29/fmXWO03qlZx+/3JK8vrDLVo6rqUWutt+NnUlWXyNDU7tCp06d29zFrJr2Kqnp2kv8+Ct+ku/9lM/MCAAAAAAAAALBYi64nnDhhdPyDJK+brHd+Vb0yya9Onb9JVd20uz+6iTV30d3nVdUrRmsdn/kaox0/Oj5x04ktQFVdM0MDujtm2PjxYmsM+XZVvStDTd4H51hnt6hF3K4a0NGaT8sCatE2sO5NkvxCkmOS/EySg9e4/htJ3pbhtV14bW5VXTbJbyY5LsnhK1x2ZlW9NsnTu/sbi85hvfaWOlUAAADYXc28mRIAAABgwWY18Vmp+c9MVXWtSaOz9yZ5cFZvipbJ+Uck+XhVvbiqViw4WKRJEdVXk7wwyYOydkFMMuzwePsMRQ//VlXX37oMt8S4udZlktxzk3MeNzr+UZJXrWdgVd0tyccz7Pp5l6xSbDJx1QyNsz5fVb+6xrXboqoOrqoXJfn7DE0AV/se73pJTk5ySlWtVXC226vB7yX5QJJ7Z/XNHe6Q5J+q6tdnzHNYVb0+Q2HhbTO7KVoy/P49OMknq+rOm0p+AybvuU8keVRW/1y8XIbmaZ+oqpttQ2oL193fyfBenXZ0VV13o3NOdto8dhR+v6ZoAAAAAAAAAAC7rU3XE+5QVVfN0NBp2htGGw++bMbQcTO1Rfmr0fE9q+rI9QysqpsnudFU6LzsWmuzrarq0lX1z0k+k+SPM9TjradG7bAkD0jygap6c1Wt1OBqbOm1iPtKDWhVXaeqPp3koxkast0+azRFm7hMkkdneJ4vqqr1jFlvTvdI8skkT8zKTdGS5Mgk/y3Jv1fVQxa1/jz2hjpVAAAA2N1pjAYAAABsh1kFCt9Z7+CqulOSDya5+wbW3i9DEdN7JjvJbbXbZPVGTmu5boZioG1v0LQJJycZ78j46I1OVlVXzLDT4rQ3dffZ6xj760n+JkOzsHldPMmzJo30NvMabsqkid87kjxmzqF3SfL2qtp/8Vltq+cn+Z2s/7vLSvKnVfXY/woMhXTvzrBL6XpdLMlbquoWc4zZlKr6gyTPSnLROYZdOcPn2R7ZHC3Drqhjj9vEfA/Nrv8f87xNzAcAAAAAAAAAwNbaVD3hyPHZdcPEk6YPuvujGRoYTXv4Vmy22t0fT/KRqdABSR65zuHHj47f0t3fWkhiG3fxJDfd5Bz3TvKhSV3gWnaHWsR9pQb0ckmutYnxlaHG8b1VtaHGhjtNVnWvJG/O2psmT7t0kldO1w5uh72hThUAAAD2BP7hDAAAAGypqrp6Zjf9+fw6x98ryeuTHDg6dV6Sv8vQMO1LSb6d5NAkRyW5Y5Lbja6/ZZI3VdXtu3tcOLNVfpLkn5N8IsmnknwrQwFXZdjh8ppJbpXkttm5CdShSV5dVTft7i+tMv8nk5wz+e8rJ7nk1LkfT86vZdbum3Pp7jOr6u1J7jMVvkdVHdndZ25gymOza1OsE9caVFV/nGFHvbGzkrwrQ8HZmUl+kKG47vpJ7pbk2qPrT8jwc/31ubJenBOz8y6mn87QKO1TGZ7LYRmKze6fXXejvH2S/5HkGVuf5uJNdkKcLlI6Pclbk/xbhud+eJKfSfLA7LpL7LOq6p0ZPg9enWS6cdhHkpyS5AtJvpvh53bHDEV30++1iyR5UVXdvLvPX9DTmqmqfi3Jb8049aNJru9N8pUMDduumuH36waTay6W5E1JXreVOWb4nP2XqePrZefP4rOT/Oc8E3b3J6rq1CRHT4WPraqndvcPNpDj40fH30ry1xuYBwAAAAAAAACALbbZesLRXPslOW4UPiPDhopjJyX506njwzNsuvjKedddhxOzc+3S8UmeudqASZO2h86YZ3fzvSQfTvLvST6boW7zu0kOylC/eL0MtW/XHY27ZpLXVNUdVqvL2l1qEadsdQ3o7uTsXPja/keG5/m9DDV1R2Sot7xLhlrVabdM8uIkD9rE2ldN8pxceL9zJ/mnJG9P8uXJ8ZUybK582+zcDLGSPL+qvtXdr99EDuuyF9WpAgAAwG5PYzQAAABgq91/RuzsDMUTq6qqq2YoSJpuxHN+kj9P8qfd/Y0Vhj6tqm6SodhiusDoVkn+OMmT1pH3Rp2X5A0Zdi78u+7+9loDquoqSf4oOxc2XTrJ85L8/ErjuvseU3O8NMmjpk5/pbtvMlfmm3Nidi5GOiDJI5L82QbmOm50/OUk/2+1AVV13+xabHJ2kt9MclJ3n7vCuEryC0men+TIqVNPqqr3dvdb5sh7EX4myY6dSL+W5AndPbP5VVU9JclfZCjemvbbVfUX3f3DrUtzy/zJ5H9/kOH39EXd/ZPRNS+qqt/O0DDxtlPxi2RoNPbpJHedxD6f5LHdPavY8TlVdfMMOzdOv/Y3ztB47VWbeSKrqaprJ/mDGafekSHfL8849zuT9/nzMjR2u2KSX9qqHJOku7+S5L8+R6rqi0muMnXJW7r7uA1M/dzs3Bjt8CQPyZzFnFV1syQ3H4VfstLvOwAAAAAAAAAAS7fhesIZ7pqhhmbayd19wYxrT85QO7j/VOyEbE1jtFdmaIS2ow7selX1M939wVXG3C9DDc0OZyT52y3IbSPOyfDze12Sf1rPxrRVdZskz87OtT23SfLErL3p51JrEbONNaC7ga8leWmSNyY5bYXfnf8yqbe8e5JnZWgKt8MDq+oBK9U6rsOTc+Hvy6eSHLfC78sfVtUtJzlPN9+rJM+rqvd09zc3mMOa9qI6VQAAANgjjLvdAwAAACxMVf1UZu9m9qq1CigmXpGdi31+kOSu3f3kVZqiJUm6+2MZCmneNTr1hKq60jrW3qhbdPf9u/uN6ymISZLuPr27H5bkaaNT96iq6yw8w63x9iRfH8WOm3eSqrptdi6YSZKXrfZ+qaojk7xkFP5skht19wtXa5LUgzdmKMAaN6P6o0lBynbaUdzz+SS3Wq1QqLu/l+Fn/M7RqcMzu4BwT3Bwht/zO3f382c0RUuSdPfXMxSMjXcBfUSSp0/++xNJbr1CU7Qd85yW2T+rR8+b+Jyelwtf6x1em+TnV2iKliSZvFfvkAuf90W2Jr0t96bs+vv2+A3MMx7TSV6woYwAAAAAAAAAANhSC6gnHDthRuykWRd299eya6OxYyabty5Ud5+TodHUtLXqkcbP5WUr1U5ts68kuXx3P6G737OepmhJ0t3/lOR2SU4ZnfrvVXXAGsOXVos4sa/UgH4oyZW6+6nd/aH1/A5O6i3fnmED2I+OTv/aJnLZUUv3iSQ/u1oTwe7+UIb31idGpy6TCzdmXbi9rE4VAAAA9ggaowEAAABboqqunqGo5TKjUz/IsDPeWuN/LsmtR+Hju/vv1ptDd5+X5IFJpneAOzCbK8BYa811FcKs4OlJPjx1XEmO31xG26O7z8+wQ+K0G1bVzeacalYB2LiYZOxXkxw2dfyDJHdbrcHUWHd/KclDRuHrJbn3eudYoB8neVB3n77Whd3dmf1+vuvCs9o+T+zu96910aSAcLx76EWTXCzJuRl+huPGabPmeV92LcA7pqrGjcsWoqpumOSYUfhzSY5dZ3HZp5McuxW5bZdJ0ea4gdnNq+rms66fpaoOy847rCbJu7r7c5vNDwAAAAAAAACAxdpsPeGM+Y5Icq9R+LTu/uQqw142niZbt4HiiaPjh1TVzE0Qq+qo7FpPtFbN3Lbo7vO6+4cbHHtukkdleI13uFKSu6wxbpm1iPtMDWh3/2Dys97I2LOzaw3bravqeptI6bwk9+vub61j/W8lud9kzLSHTz4btsLeVqcKAAAAuz2N0QAAAICFqKpDquoKVXXPqnphkn9NcqMZl/7iOgsBnjI6/ofufs28eU2KVJ49Ct933nm2w6TJ1ctH4Z9dRi4bNC7mSubYqbGqLprkQaPwe7v7P1YZc2iSXx6Fn9ndn1/vujt09z8mefcovIz3yiu7+yPrvXhSzPfPo/C8RWC7i88kefEc179+hfjL1yhyHHvd6PiAJDecY/w8Hjcj9qTu/tF6J+judyZ56+JSWooXZtfCtMfPMf5RGRrhTXv+pjICAAAAAAAAAGAhtqCecOzYJAeNYietMebNScZNr46rqq24x/LdSaY3xjwsyf1XuPbRGRpo7fDevWVzwMnGluNNK9dTE7nttYiLsBfUgK5bd/9bdq1b3MxzfU53f2aO9T+T5Dmj8MGZ432yXntpnSoAAADs9jRGAwAAAOZxh6rqWY8kP0zy5SRvS/KL2bVhzQ+SPLy7X7nWIlV1qSR3HIXnaZY09jej46tU1VU2Md9W+uzo+Ker6sClZDKnSSOqD43CD6uqg9c5xf2TXHwUW2uHxjsnOXwU+6t1rjfL+L1yh03MtVEv2sCY8c/9WotIZAleMikOW5dJYdGsHTrnfQ98dEbs2nPOsV53Hx1/Nbu+79bjBQvIZWkmRY9/PQo/pKrGv88r+aXR8RnZ85vFAQAAAAB7kUkTgDtV1QlV9ZSq+tWqemBV3XjZuQEAACzIttQTruD40fGPk7xqtQHdfW6S147CV0pylw3msNpaneSlo/A450yasj1qFJ7VFGxPNq6JvNVaA5ZUi7goe2wN6AbM/dquYiN1ky+cERvX5y3C3linCgAAALu9A5adAAAAALDX+26S1yR5end/aZ1jbpedd0BMkn/aRA5fmBG7aXbekXFLTHaKu32G3S6vl+TSSS6R5GKZ3bT+0NHxwUkum6FIbE/wkiS3nDq+VJJ7Z9cGSLM8enT8vXWMGxeEnNHdm3ldx++Vo6rq8O4+ZxNzzuOH2bWgaz3GO1nuX1WHdvf3FpDTdnrvBsb8Z5IbTh3/IMlH5pzjizNi623QtW5VdWSSq47Cb+7un2xguncm+X6Gz5I91XOTPHzq+KIZdvP9v6sNqqo7ZPg8nfai7j5/sekBAAAAANulqq6W5BZJbj7535/Ozjcwn97dRy0htblV1Q2S/K8k90pyyArXfDbD31Se2d3nbWN6AAAAy7aResKdVNWtklx/FH57d39zHcNflqFR27Tjk5yykVzW8JIM/z7cUQt5dFVdtbuna9TunGR6k9fvJnndFuSyMFV1hSS3yVATea0kh2WoibxIdq37TJLLjY6vvM6ltrsWcaZ9qQa0qq6eobnZjZJcPcPzvESG5zDrtR2/lut9bcc+1d2fnndQd3+mqj6RnT8PblFV+3X3BRvMZZa9rU4VAAAA9ggaowEAAABb7bQkz5mziOm2M2Kvn+wkuShHLHCuXVTVzZL8RoZCnItscrrDswcUxUy8KsmfZefnfFzWKCqqqqskOXoUfm13f3+N9cbvlUtW1cfWTnNF46KkZHivbFfByend/eMNjPv2jNhhGQq69iSf28CY746OT99Ag6zxHMnw81u0m82IzdvELUnS3edX1b8mufXmUlqe7v5AVX0kO/9cHpc1GqMlefzo+PwkL15kbgAAAADA1quqo5M8NUMztEstN5vNq6pK8j+TPC2zbxaeds0kf5jkoVX1sO7+ty1ODwAAYHexkXrCsRNmxE5az8Du/seq+lySa0yF71NVR6yzsdq6dffpVfV3Se40CVWGWrr/PXXZ8aNhr1lHzdxSVNUDkvxyhiZRsxqCrdd6N6zc7lrE8Tz7RA1oVe2X4XfqFzM0q9+MjW5GuqEauol/zs6N0S6eoWHfpzYx59jeVqcKAAAAewSN0QAAAIB5fD+zGxcdmOSSSX5qxrljkny4qo7r7letc50rzojdaJ1j1+vSC54vSVJVByb58wyNezZT/DNtKxo0bYnu/nZVvTHJw6bCd62qn+rur64y9LjsepPQS9ax5Pi9ctEkN17HuHlcOhtr2LURZ21w3KxmagduJpElOXsDY8bPfe45uvvHw/1qO9mKn9+RM2Jz73Q55VPZgxujTTw3O/+uX7eqju7uU2ddXFVHJrnvKPyW7j5ji/IDAAAAALbOTZLcZdlJLNCLsuvN+RdkuOn/i0kOSnK9DDfn7nDDJO+uqlt39+e3I0kAAIAF2q56wv9SVRdL8uBR+Kwkb5tjmpOSPH3q+KAkj0jyrHnzWYcTc2FjtCQ5rqp+t7svqKpLJvmFGdfvVqrq8klenuSOC5pyXfWQS6hFTLJv1YBW1XWTvCLJTRc05Uaf52Zr6MaOXCG+UXtbnSoAAADsERb1xQwAAACwbzitu28y43H97r58hj/MH5ddCwoOSvLyqrrXOtfZkqZlI5vdwW8Xk4KYv07yK1ns9y57WoOrcRHR/kkeudLFNXSkOnYU/mx3v28da11qztw2YuHvlVXManC2z+juRTz/3flnOGtHzG9vYr7NjN1dvDrJt0axx61y/QkZ/j9l2vMWmhEAAAAAsGw/SvIfy05iHlX1hOzaFO3VSa7c3T/T3Q/u7vt297WT3DLJR6euOzLJO6rqkG1KFwAAYFG2q55w2oOSXHwUe3V3nzfHHCcl6VFs/G+6RXlDknOmjq+cCxulPTzJwVPnPtXd79+iPDakqq6Q5NQsrilakhwwx7XbWYu4T9WAVtUNkrwni2uKlmz8eS66hm5Wnd5m7G11qgAAALBH0BgNAAAAWJjuPqu7X5bkJhlu9pi2f5KTq+qodUx1yQWntl2ekuQ+M+JnJPnLDLtK3jrJlTIUXhzS3TX9yLAj5p7u3UlOH8Uevcr1d0hytVFszR0aq+qi2bkwDHZ346LMZNg5d6M2M3a30N3nJvmrUfh+VXXZ8bVVtV+Sx47Cn83wmQMAAAAA7Jl+nORjSV6c5JeS3CzDd6mPWWZS86iqSyf5w1H4Od390O4+Y3x9d384ye2TfGgqfK0kT9y6LAEAALbfAusJp81qYHbSnHmdnqEh1LQbVNUt58xlPWudm+RVo/COWrrjR/ETF73+Arw0yTVnxD+W5I+S3DfJTye5XJJLJDloRk3k725i/W2pRZyyT9SAThrAvTbJZWac/sckT0vy80lunKGh+8WTHDDjub5sQSktuoZuVp3ehqhTBQAAgOWZp7s+AAAAwLp094+q6pFJLpudizwukaEBzp1mDrzQD0fH53T3bt0sraqOTPLUUfj8JL+R5Lndff46p9rjd33r7q6qlyX5X1Ph61TVrbr7AzOGjAuVfpL1Faudm+SC7Nz8/03dfd+5Eobt890ZsYttYr7NjN2d/GWSX8+Fv8sHZihiHd9IePckR41iL+ju8Q6+AAAAAMCe4WVJnj+5SXwnVbWEdDbsCUkOnTr+9yRPWm1Ad3+vqh6e5JMZvhNNkqdW1Qu6++ytSRMAAGA5FlBPmCSpqmsnue2MUx9Y0L8jj8/OTawX5SVJHj91fN+qOibJTadi5yd5+RasvWFVdc8kdx6Fz0xybHe/c46pNlwTuY21iPtaDehjk1x3FPuPJA/p7tPmmGdRz3XRNXSz6vQ2Sp0qAAAALMl+a18CAAAAML9JEcixSb4zOnXHqnrwGsO/OTo+vKoOX1hyW+PeSS46ij2lu581R0FMklxqgTkt00uTjJsVHTe+qKoOTXL/Ufhvu/uMtRbo7guSnDMKX3X9KbIIk90jWZ/x+zVJDtvEfJsZu9uY7ML7tlH4sVU1/v768aPjczN81gAAAAAAe6DuPntWU7Q90L1Gx8/u7h+vNai7P5fkTVOhSyS53yITAwAA2F1ssp5whxMWm9UuHlpV4xrATevuDyf5+FTokCQnjy57e3d/bdFrb9JDR8c/SXKvOZuiJZuviXxptrgWcWJfqgEdv7bfTXLnOZuiJYt7rouuoZtVp7ch6lQBAABgeTRGAwAAALZMd385O+/Ut8MfrtFM6eszYjdaTFZb5udGx2cnee4G5rnaAnJZuu7+QpJTR+GHVNUho9iDsuuOfS+ZY6nxe+VaVXXwHOP3ZbNuytpIk7NLbzaRfciZM2LX3sR819nE2N3N+PPyKknuvuOgqnY6nnhtd39rqxMDAAAAAPY+VXVoVd21qh5dVU+uqidV1SOr6uYzNm1YbZ6LJ2JdggYAACAASURBVLnJKDzPDeKnjI4fMMdYAACAPcom6glTVQdkaKy2lS6Rrft32bgm7vKj4xO3aN3NGNdEntLdH9rAPJuqidzGWsR9ogZ00kDu1qPwSd39xQ1Mt6jneq1NjJ1VfzerTm8z1KkCAADAEmiMBgAAAGy15yX5/Ch2tay+e+Os4plxQ5zdzZVGxx/s7vM2MM+44GRPNi4qOizJfUex40bHZyV5yxxrjN8rF0ly9Bzj92Xj3VeTobhvXtfYbCL7kI/MiN1sIxNNij1394aR8/h/ST49ij1+6r8fm12/z37elmYEAAAAAOx1Js3Q/i7D3yNOyXDj+Z8keUaSk5J8OMnXq+qPq+qS65jy8tn5u8vvz3kj8cdHx3dyYy0AALCX20g9YZL8fJLLjmJfS/Ivm3yMrZXHRr08yUr1hGcm+ZstWndDquqgJEeOwv+wgXn2T3LLBaS0HbWI+0oN6Pi7jGRjr+2RWVxjtA3V0K0w9rtJPrOJ+WZRpwoAAABLoDEaAAAAsKUmhSFPn3Hqt1e5seNdM2IPnjQC2l0dMTo+a94JquqIJMdscP3zR8f7b3CeRXp9dm2+9egd/1FVV09yu9H5V3T3j+ZYY9Z75RFzjN+XnTMjtpFCpTtsNpF9RXefmeQLo/C9q2oj39PeNbvucLrVtuxzprs7yV+OwnevqqtMdgQeF51+rLs/sKj1AQAAAIC9W1UdUVXvytAM7ZgkB65y+RFJnpLks1V1+zWmvtToeNZ376sZX39gkuvMOQcAAMAeY4P1hMnshmWP7u6bbOaRXRse3b6qFr5RZHd/M8nbVjj98u4e1+Us27geMtlATWSSeyQ5dJO5JNtTi7jsGtDtsqjX9sGbTWTKdavq2vMOqqprJbn+KPzh7r5gMWn9F3WqAAAAsAQaowEAAADb4eTsugPbFZP84qyLu/uMJB8Zha+aXXf02518f3Q8q3hkLb+S5JANrv/d0fEiiok2pbt/kOQ1o/CdqmrHzorHzRg23tlxLe9Mcu4o9tCNFMnsgz49IzbX7pyTHT2PX0w6+4x3jI4vn+SeG5hn5ufnFtvqz5mXJvne1PF+SR6bYXfX8Y6/z1vw2gAAAADAXmpyQ/sHk9x5dOq7SU7N8LeM1yU5Lcn0jbOXTvKuqrrrKtOfNzpe7Sb+WWZdf7055wAAANjTzFVPWFU/leTuo/DXM7tZ0UZyGduqeqgT54wv07geMtlYTeSvbTaRZNtqEZddA7pdNv3aTja6fMJi0vkvj9nAmFmfGeP6vEVQpwoAAABLoDEaAAAAsOW6+ydJfm/GqadW1UpFIH8wI/aMyQ5vu6Ovjo5vU1UXW+/gqrp+kqduYv2zR8eHV9UlNzHfooyLi/ZLcmxV7Zfk2NG5f+nuj84z+WQnzReOwvsneWVVXWSuTPcx3X1mki+Pwg+aNDtbr19JcrXFZbVPeP6M2DOq6qD1TlBVd05yn8WltG7jz5mFvvbd/Z0kLx+FT8iuRXTfSfLKRa4NAAAAAOydquqiSd6Ynb/P/HSSByS5ZHcf090P6e4HdvctMtyI/6Kpaw9KcnJVXWGFJb41Or7kKn/7muWnZsTcVAsAAOzVNlBPeFyGmrBpr5rMs1mvTnL+KPaoOWuo1uvtGf4dOP24bHd/cgvW2pTu/naSH4zCd5lnjqp6TJKjF5VTtrgWMcuvAd0u4+eZzPnaJvnfSa65gFymPWHS3H5dJteO68p+lGFzzoVSpwoAAADLoTEaAAAAsF1emeRTo9jlkzxu1sXd/cYkp43ChyV5x6SAZG5VdfGq+o2qesRGxq/hH0bHh2Yo/lhTVR2V5C1JDt7E+h+fEbvHJuZbiO5+f3Z93Y9LcqckVx7FN7rz5R9l110MfzrJGzfaHK6qrlJVz6mqG2wwpz3FeHfEKyd54noGVtWdkvyfhWe0l+vujyf5+1H4WkleMinSW1VVXTO7Ng/bLuPPmRtM7bq6KM8dHV82yc+OYid39/cWvC4AAAAAsHf60yTT3/W/I8lNu/v1s26g7+6vdvdjkzxpKnxEZt+wnwwbkEx/X7l/kpvPkd+tZ8QOm2M8AADAnmqeesJHz4idvIgkuvsbSd45I4+7L2L+0Vrd3V8bPc5c9DoL9L7R8dFVta6axKq6W5L/u8hktqEWcdk1oNti8p77zCj88Kq68XrGV9WjszUN4A5O8ob11HxOrnlDdv15v3LSxGwrqFMFAACAbaYxGgAAALAtuvuCJL8749RvVtVFVxj20CRnjWJXS/LBqvrtqlrzxpCq2q+qjqmq5yf5zwyNnC43R+rr9fokF4xiv1FVv1dVB6yS30OTvD/D80qS72xw/Q/MWP+ZVXWfqjpwg3MuyninxmskefYodl6SV2xk8u7+WpJHJenRqbsm+UhVPWK112CHqrpYVT24qt6Q5HNJ/luSWTuQ7k1ePCP2J1X1S1VVswZU1SFV9ZQMN48dnOTcrUxwL/XL2fXn9rAkb6mqK6w0qKp+Icl7c+Fn2A+3Jr0V/dPoeL8kf11V89zkt6rJDrjjxnFjz1/UegAAAADA3quqLp/kMVOhLyZ5QHev+d1qd/9ZkrdPhR5eVbv8fam7z0/yj6PwI9eZXyWZtZnPxdczHgAAYE+23nrCqrpDkmuOrvlUd39kgenMarJ2wgLn31O9dkbsNVX1gJUGTGrL/leSNye5yCS80ZrIWbayFnHZNaDbafzaHpjklKo6eqUBVXV4VT07yV/lwvuSF/Vcd9TS3TDJ+6rqlqvkcYsMTexuODr1jSRPWVA+u1CnCgAAANtvzX9oAwAAACzQa5P8TpLrT8Uum6FJ0DPGF3f356rqQRluPDlo6tTFkvx+kqdW1fsy3HDy1STnJLloksOTXCnDbmw/PTneUt39mao6Ocmxo1O/k+S4qnpdkn9N8r0kl0py7ST3TnL1qWt/kKEw43kbWP+rVXVKkukdGS+b5E1JzquqL2XYrW5clPGY7j5t3vXm9PIkf5hk/6nYdUfXvLW7v7XRBbr79ZOCqt8bnbrqZP1nVNWpSU7LUADz/SSXyPDeuEaSmye5UfaAHRsXqbs/VFVvTnKfqfD+GRpP/UpVvTFD8c15SS6T5GYZ3mNHTl3/xGhUNZfu/lRV/XaSZ45O3TPJ56rqHRmKt76aoUDwahleo+lirjOS/HWGn/92eXOGZpWXmor9TJIPV9V3k3wlMxrldfdN5lznL5Ics8K593X3x+ecDwAAAADYNz0uO/996Xe7+wdzjH9mLvy7y0FJ7pbkpTOuOznDTbA7PLqqntfdH1tj/idk15v7E43RAACAfcd66glnNSh7+YLzeHOGBk+XmIrds6qO7O4zF7zWnuSkJE/NzjWOh2bYSPGfk7w1Q23ZjzPUk90syc8nufTU9Z+cXLeohlVbVou47BrQbfbnGRpyTdfWXi7J31fVe5O8M0OD+Qsm8dskuXuG13+Hd2eoYRv/vDbi/yT5tcn810vygUlt8DuSfGlyzZUyfDdzuyTjTV87yeO7+xsLyGVF6lQBAABge2mMBgAAAGyb7r6gqn43u+429+TJDSLfnzHm3VV1uySvy1DYMO1iGW40uet43JL89yS3THKdUfyKWbt50Y+TPDBDYcxG/UaSO2T4uUw7KDsX30w7dIX4wkw1bbvnKpeduIB1fr+qvpKhqdJ4B73LJnnw5MHOHpfkFkkuP4rfMLvuqjj2p939gqrSGG1O3f1nVXVEhuLBaYckue/ksZLvJ/mFDIWE26a7z62q/5HkZTNOXzxDsd8ivClDQdv4Mz/Z/YsGAQAAAIDdx89N/fdPMvytaR7vS3J+Lqy1vV1mN0Z7dZKn5cK/xRyY5K1Vdbfu/sSsiavqwZmxadDEBXPmCQAAsEdaq54wQ/Or+4+HJXnFgvP4YVW9IclxU+EDMzR8Wunfbnu97v5xVT0ww7+PLzo6vWPT2tWckaFm8LgF5rTVtYjLrgHdFt19VlU9PMlbsnOTuSS5/eSxmn/L8Fz/fEEpfSHJw5O8YZJPZfge5nbrGNtJHtfdr19QLqsvpk4VAAAAts1+y04AAAAA2Ofs2DVv2mWSPGGlAd39oQxFNC/JUDyyUZ3k1CT/sIk5Vp68+9tJ7pzkA3MO/UqSO3f32ze5/icz3OTzuc3Ms0VWKzb6aoYdBjetu09Mcuskf7fJqc7NcCPTf246qd1cd38tyc9mvvfNeUl+vbufvDVZ7Ru6+7eS/I/MVwz35STHdPdpW5PV6rr7pCSPSfLdLVzjJ0leMOPUN5JsSwEbAAAAALBnq6pDktxsKvSlJEdU1VHrfWTYUOScqTlmbkLT3ednuHn3vKnwFZP8c1X9ZVXdtaquU1U3rKoHV9XbMvwN4sDJtV8eTXlOAAAA9h2r1RM+LLs25Hpfd5++BXmcPCN2whass0fp7o9m2Lj2q3MO/UCSW3X3Fxee1BbWIi67BnQ7TXJ9YJLvzDn0bUlu191nLzift2TYLHSe70XOSvLw7n7hInNZizpVAAAA2B4aowEAAADbqrs7ydNmnPr1qrr4KuO+2d3HJ7lGhl0YP5Gh0dlavpvkbzI0H7pqdx/T3R+cO/F16u4zMuyW99+SfH6Ny09P8j+TXKe737ug9d+fYbfCeyT5ywy7NX4lyfeSXLCINTborUm+ucK5kyaNkBaiuz/W3XdKcqskJ2XXG4pW8tUMBW6PSnK57n5od5+5qLx2Z939hSQ3SvJbWb2I7bwkr0ly0+5+5nbktrfr7mcluX6Sl2X1IrMzk/x+kut394e3I7eVdPdfJblCkkcneXmSj2bI74cLXGZW47cTu/tHC1wDAAAAANh7XS4XNh5LkqOSfGEDjyOm5rjUSotN/vb0iAw3tO5wUJLHJzklyb9nuNH/1UnuOXXNm5K8dDSdxmgAAMA+Y7V6wiS/NCM+q4HZIvx9kjNGsetU1W22aL09Rne/L8mNk/yfrP1v1tMy1N/dtrvXW7c3ry2tRVx2Deh26u43ZqgbfEFWr/26IMOmxPfp7nt195Z8d9Hdb0tyvSR/kdVr6b6R5LkZfu6v2opc1qJOFQAAALZeDd8dAgAAAOx5quoySW6WYYfISyc5NMn3MzRD+3KSTyU5vZf4BUhVXSvJLSc5XmyS35eT/Gt3f3pZee1rquoaGQpmLj15HJShWdy3M9zY9CnFJReqqhtlKGY7IsOuq99O8ukk7+/u7y0zt71ZVR2c5GeTXDnDTXsXJPl6hpvlPtbdy2xuuK2q6pVJHjoV6iTX6O61ig0BAAAAgL1AVR2d4ab0HU7v7qPmGH+zzN6AYTO+2N1XXWPdm2fYuOYWa8z14yR/mOQPJtc/ZurcE7v72ZtJFAAAALZCVe2f5OYZNoI8IskBGeo1v5DktO7+2hLT2xL7Sg3opHbtZ5JcO0ON5X4ZGuH9R5IPd/dZ25zPgRm+X7n+JJ8LMjQV+0KGOsaFbca7KOpUAQAAYLE0RgMAAAAAYLcxaXr5pSQHT4VP6e67LyklAAAAAGCbLaAx2q2T/NOC01p3DlX1c0nuneR2SS6f5PAkZyU5PcnfJHl5d39hcu37ktx2avjPdvc/LjBvAAAAAAAAAIA9ygHLTgAAAAAAAKb8YnZuipYkf7GMRAAAAACAPdY3R8d/29133a7Fu/tdSd611nVVdWCSm02Fzk/yz1uVFwAAAAAAAADAnmC/ZScAAAAAAABJUlUXS/Kro/Dnkrx9CekAAAAAAHuur4+Or7WULNZ22ySHTB1/sLt/uKxkAAAAAAAAAAB2BxqjAQAAAACwu3h6kiNHsWd19wXLSAYAAAAA2DN193eSfGIqdFRVXXNZ+azihNHxi5eSBQAAAAAAAADAbkRjNAAAAAAAlqqqLlVVz0jya6NTpyd50RJSAgAAAAD2fO8cHf/iUrJYQVVdPckDpkLnJHnNktIBAAAAAAAAANhtaIwGAAAAAMC2qqoXV9XHJo8vJ/lmkifNuPQ3uvu8bU4PAAAAANg7PC/J+VPHT6iq6y8rmWlVtX+S5yc5ZCr8+939wyWlBAAAAAAAAACw29AYDQAAAACA7XaNJDeePK6QpGZcc1J3//W2ZgUAAAAA7DW6+3NJXjIVOiTJ26vqevPMU1UHV9Vxa1xzwBzzHZjk5UnuPBX+UJJnzZMXAAAAAAAAAMDeSmM0AAAAAAB2NycnecyykwAAAAAAtlZVXbGqjho/klxudOkBs66bPI5YZYlfS/KvU8dXTnJaVf1BVV1plbwuUlV3rqr/m+RL2bnB2ix3q6rTquqXV5p30mDtvpN8Hjp16uwkx3b3T9ZYAwAAAAAAAABgn1DdvewcAAAAAADYh1TVqUnuMBX6YZIzkrw/yYndfeoS0gIAAAAAtllVfTHJVTY5zcu6+7hV1rhSkr9Ncp0Zpz+f5FNJzklyQJLDkhyV5BpJ9p++sLtrlTV+Pslbp0JfTvLJJGclOTDJZZPcNMnFRkO/leSe3f3BleYGAAAAAAAAANjXHLDsBAAAAAAA2Ld099HLzgEAAAAA2Dd095eq6hZJnp/k4aPTV5s81nLOnMtecfJYzT8mOba7Pz/n3AAAAAAAAAAAe7X9lp0AAAAAAAAAAAAAAGyV7v5edz8iyY2TnJzk7HUM+0qSVyR5YJLLrXHtJ5K8LMnX1kolyXsnc95OUzQAAAAAAAAAgF1Vdy87BwAAAAAAAAAAAADYFlW1X5IbJblekkslOTzJuUm+k+SLSf69u7+0wbmPSnLDJFdKcliGTYy/k+Q/knywu7+1uewBAAAAAAAAAPZuGqMBAAAAAAAAAAAAAAAAAAAAAAAAS7ffshMAAAAAAAAAAAAAAAAAAAAAAAAA0BgNAAAAAAAAAAAAAAAAAAAAAAAAWDqN0QAAAAAAAAAAAAAAAAAAAAAAAICl0xgNAAAAAAAAAAAAAAAAAAAAAAAAWDqN0QAAAAAAAAAAAAAAAAAAAAAAAICl0xgNAAAAAAAAAAAAAAAAAAAAAAAAWDqN0QAAAAAAAAAAAAAAAPj/7N15fFT1vf/x93cykw0SCJCwIzsoihtUQVzAurfWqkWtrbWLWpeuV722FtFqtdaqvfdqa7Uu1K3WqiAu2F8VFMUFQZQWUVH2NZAEsicz8/39cSBkJufMQiaZYfJ6Ph55JN/v+S6fcxLwjMx5BwAAAAAAAAAAAEg7gtEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApJ0/3QUA6WaM6SHp+FZd6yU1pakcAAAAAAAAAAAAAACA9siVNLhV+3Vr7c50FQMAAO/RAwAAAAAAAAAAAAAAWYL353USgtEA5w1Xc9JdBAAAAAAAAAAAAAAAQAf4mqTn010EAKBL4z16AAAAAAAAAAAAAAAgG/H+vA7iS3cBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAwGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIC086e7ACADrG/dmD17tkaOHJmuWgAAAAAAAAAAAAAAAPbZqlWrdNZZZ7XuWu81FgCATsJ79AAAAAAAAAAAAAAAwH6P9+d1HoLRAKmpdWPkyJEaN25cumoBAAAAAAAAAAAAAABIpab4QwAA6FC8Rw8AAAAAAAAAAAAAAGQj3p/XQXzpLgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACEYDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkHYEowEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIO4LRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKQdwWgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0o5gNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABpRzAaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgLQjGA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA2hGMBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACDtCEYDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkHYEowEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIO4LRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKQdwWgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0o5gNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABp5093AUBXZK1VOByWtTbdpQBAG8YY+Xw+GWPSXQoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACALoRgNKATWGvV0NCg6upqVVdXq6mpKd0lAUBcubm5KioqUlFRkfLz8wlKAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANChCEYDOlhdXZ02bdqk5ubmdJcCAElpamrSjh07tGPHDgUCAQ0YMECFhYXpLgsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAlvKluwAgm9XV1WndunWEogHY7zU3N2vdunWqq6tLdykAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAshTBaEAH2ROKZq1NdykAkBLWWsLRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHQYf7oLALKRtVabNm1qE4oWCARUXFys7t27KxAIyBiTpgoBwJu1Vs3NzaqpqdGuXbvU3NwccWzTpk0aMWIEf4cBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASCmC0YAO0NDQEBEkJElFRUUaOHAgQUIA9guBQECFhYUqLS3Vxo0bVV1d3XKsublZjY2Nys/PT2OFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALKNL90FANmodYCQ5AQMEYoGYH9kjNHAgQMVCAQi+nft2pWmigAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkK4LRgA4QHYxWXFxMKBqA/ZYxRsXFxRF90X/PAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEB7EYwGpJi1Vk1NTRF93bt3T1M1AJAa0X+PNTU1yVqbpmoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZCOC0YAUC4fDbfoCgUAaKgGA1PH7/W363P6+AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB9RTAakGLW2jZ9xpg0VAIAqePztb1lcPv7DgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2FcFoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANKOYDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaUcwGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIC0IxgNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQNoRjAYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg7QhGAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJB2/nQXgM5hjAlIOkbSEEn9JdVI2iTpA2vtmhTvNUzSYZIGSOouabOktZIWWWubU7kXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsgPBaGlijBkuaaKkCbs/HyGpqNWQtdbaoSnYp1TSTZLOk9TLY8wiSXdZa59p517nSvq5pEkeQyqMMU9JusFau709ewEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACC7EIzWiYwxJ0j6hZwwNNeQshTvd5qkRySVxRk6WdJkY8zjki6z1tYmuU93SQ9IOj/O0F6SLpd0tjHmO9baV5LZBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANnLl+4CupjDJJ2szglFO0HSbEWGollJSyQ9Len/SdoeNe1CSU8aYxL+uTDG5Eh6Sm1D0col/XP3Xkt3771HX0lzjDFTEt0HyGZDhw6VMablY8GCBekuCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACATkcwWmZolPR5qhYzxgyS9Kyk3Fbdb0kaZ62dYK2dbq09WdIgST+R1Nxq3Fcl3ZLEdr+VdHqrdrOkH0kaZK09ZfdeR0o6WNLbrcblSZptjOmfxF4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIUgSjdb5mScsk/UXSZZKOlFQk6Qcp3OMmSSWt2oskfdla+3HrQdbaRmvt/0qaHjX/58aYA+JtYowZLidYrbVvWGvvsdY2Re21QtKJigxH6y1pZrx9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkP0IRutcsyQVW2sPt9ZeYq2931q71FrbnKoNjDGjJH2nVVeTpIuttQ1ec6y1s3fXtkeeEgssmykp0Kr9iLV2Tox96iVdvLumPb6/O2ANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXRjBaJ3IWlsZK6AsRb4pKadV+1lr7WcJzLs9qj3dGJPvNdgYUyDp3DhrtGGt/VTS7FZdfjk1AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoAsjGC37fD2q/XAik6y1H0t6t1VXN0knx5hyiqTCVu23rbUrE6qwbU1nJzgPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWYpgtCxijOkn6dBWXUFJbyWxxIKo9mkxxp4aZ24sC+XUtsfhxpi+ScwHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAlvGnuwCk1MFR7Y+stbVJzF8U1R6XxF5vJ7qJtbbWGLNc0uFRe21NdA0AybPWaunSpVq5cqW2bdumxsZGlZaWauDAgZoyZYq6d++e7hL32fr167V48WJt2LBB9fX16tOnjw455BBNmDBBPl/7MkC3bdumhQsXatOmTaqvr9eAAQM0fPhwHX300e1e282KFSu0fPlylZeXa9euXerVq5f69++vKVOmqHfv3infDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyBcFo01ZDSQAAIABJREFU2eWgqPaqJOd/Hme91g5MwV6tg9EOkvRakmsASMD27dt166236rHHHlN5ebnrmNzcXE2bNk033nijjjrqqITWvfjiizVr1qyW9urVqzV06NCE5i5YsEBTp05tac+cOVM33nij53hjTMvXxx9/vBYsWCBJWrRokWbOnKnXXntN4XC4zby+ffvq+uuv15VXXpl0iNkHH3yga665RvPnz3dde9CgQbrssst03XXXye/368Ybb9RNN93Ucnz+/Pk64YQTEtprx44duuOOO/TYY49p48aNrmN8Pp8mT56smTNn6stf/nJS5wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+wOC0bLLyKj2uiTnr41q9zbGlFhrK1t3GmN6SerVzr2ix49Kcj6ABMyePVsXXXSRqqurY45ramrSvHnzNG/ePF166aW699575fdn9n8ibr31Vt1www0KhUKeY7Zu3aof//jHmj9/vv72t78pNzc3obXvuusuXXvttTHX3rBhg2bMmKGXX35Zzz77bNL17/HXv/5VP/rRj7Rr166Y48LhsN58802ddNJJ+ta3vqUHH3ww4fMBAAAAkN3qQ3Va3fCJmsKNSc3rE+inAXlD5DOxg6RDNqT1DZ+rKljRnjKzRq4vT8PyR6sgp1vK164J7dLa+s/UbJvbHMvz5WtYwRjl+wpSvm+qNIebtbbhM5UEeqt3oG+6ywEAANgv1IR2aUvjevXLG6zuOcXpLicjVTSXa0PjaoVt219kU5TTQwcUjJTfBFK+785gpbY2bdSQ/BHtug9vCNdrTf2nagjXp7C6jtM3d6D65Q6K+MVFbpz7/09VE4r975CFOd01uvDgVJYIAACAfRUOSrtWSsFaqfdEKc6/DwAAAAAAAAAAAAAAAKRLZqfeIFk9o9rbkplsra0xxjRIym/V3UNSZdTQ6H3qrLW1yezlUluPJOcDiOOhhx7SJZdconA48iGRESNG6KCDDlJhYaHWrVun9957LyIA7P7779e6des0d+7cjA1H+/3vf6/rr7++pT1mzBiNGTNG3bp10+bNm/XOO++ooaGh5fhzzz2nGTNm6Pbbb4+79p133qmrr766Tf9BBx2kUaNGKS8vT+vWrdPixYsVCoW0aNEiTZ8+Xccdd1zS53HDDTfo5ptvjugzxmjMmDEaNWqUioqKVFlZqffff1/l5eUtYx577DFt3rxZ8+bNy9jvEQAAAIDO8XrlS3p6218UVtuAgEQMyB2iqwbfqJ7+6Ax8x+bG9fq/DTeqKrijHVVmH598ml52iY4rOS0l61lr9fKOv+vFHX+TlY2xb44u7HeFJvU4MSX7ptKndct138bb1BCukySN7/4lfb//1Qr4CPUGAADw8tL2pzSv4mkFbVBGRueWfV9TS76S7rIyRsgG9fDmu7W0+q2Y47r5inTFoF9pWMGYlOwbtmE9te1+LayaJ0nKkV8X9f+xJhYn/29B7+5coMe23KOQgimprbMckD9KVw6a4RnW90ndcv15460Jhb0NzR+law+4I9UlAgAAIBnBOum9S6U1j7sfP/Q30kHXEZQGAAAAAAAAAAAAAAAyBmkq2aV7VHtffuV0vSKD0Yo6cJ/W3PZJmjGmTFJpktNGpGLvVLHBoFS+Id1lZL/SQTJZHCi1bNkyXX755RGhaIcddpjuvfdeTZ48OWJseXm5ZsyYoT//+c8tffPmzdMNN9ygW2+9tdNqTtTy5cu1cOFCSdJZZ52l2267TWPHjo0YU1lZqZ///Od65JFHWvruvPNOXX755Ro6dKjn2kuWLNF1110X0XfCCSfonnvu0bhx4yL6y8vLdcMNN+i+++7TG2+8oRUrViR1HrNmzYoIRfP5fLryyit19dVXa8iQIRFjrbWaM2eOfvKTn2jdunWSpFdffVUzZszQbbfdltS+AAAAALLHuoZVemrb/e1aY1PTOj26+X/1o8E3tjlmrdWfN95GKJqLsML627Y/a1jBGA3OH97u9VbUfaAXdjyZwL4hPbrl/zQ0f7T65w1u976p0hRu1J82/EaNdm9I+Uc17+nlHU/rzNIL01gZAABA5lpeszjiHtDK6ultf9HQ/FEpC/ja3/2z4tm4oWiSVBuu1h833qLfjnhYOab9//739s5XW0LRJCmkoB7ZfLeG5Y9Rn9y+Ca+zrWmTZm35Q7vrSYe1DZ/pqa336/sD2v4yocZwg+6Luv8HAABABmuqlF47Wap433vMh9dLDdulI+/qvLoAAAAAAAAAAAAAAABiyN5UoK4pOrBsX96JXC+pJMaaqdwn1pr76gpJM1O0VnqUb5CdzsMOHc38/ROp/9B0l9Fhvv/976upqamlPWXKFL3yyisqLCxsM7a0tFT33XefRo4cqWuuuaal//bbb9cFF1ygQw45pFNqTlRFRYUk6dprr9Xtt9/uOqakpEQPP/ywKisrNWfOHElSKBTSgw8+GBFGFu3KK69UMBhsaZ999tl66qmn5HcJ0SstLdWf/vQnDR8+XNdee622b9+e8DmsXbtWl19+eUs7Ly9Ps2fP1qmnnuo63hijs846S5MnT9YxxxyjVatWSZLuuOMOXXrppRo2bFjCewMAAADIHv+uWZKSdT6pW66GcL3yfQUR/duaN2lb86aU7JGtPqp5LyXBaB9Vv5fU+OU1izMqGO2TuuWuoQgf1bxLMBoAAICHl3c87dq/rOYdgtF2S+Y1T22oWp/Xr9TowoPbve/y2sVt+qysltcu1tTcryS+Tk3bdfYn/655XyEbUo7Jiej/1OP+HwAAABnIWmnRRbFD0fZY9Wdp/K+lQKreygkAAAAAAAAAAAAAALDvfOkuAB3KZtkcAAmYP3++li5d2tIuLi7WU0895RqK1trVV1+tr3xl78Mc4XBYd999d4fV2R5TpkzRbbfdFnfcb37zm4j2a6+95jl28eLFevfdd1va/fv310MPPeQaitbaNddco5NPPjluLa3dcccdqq/fmw959913e4aitVZWVqYnnniipR0KhTL2ewQAAACg4+0MVqZknbBCqgnuatNf1bwjJetns53BipSsUxVM7lrvDKVm31TZ6VF/qn5GAQAAss26hlVa0/Cp67Gq5sy610un6lBVUuNTdn/u8Voo2fvbZO/zM02jbVBjOPr3nUlVKbrOAAAA6ARrnpA2vZDY2FCdtHNFx9YDAAAAAAAAAAAAAACQIILRsktNVLtgH9aInhO9ZmfuA2AfzJo1K6J95ZVXasCAAQnN/e1vfxvRfvLJJ9XY2Jiy2lLl+uuvl88X/z9h48aN09ChQ1vay5Yt8xz75JNPRrSvuuoq9ejRI6F6ZsyYkdA4SaqtrdVDDz3U0h4+fLguu+yyhOdPnDhRxx57bEv7+eefT3guAAAAgOwStM0pW6vRtn3YvcHlAXhEStU1arQNadk3VRrD7vW7/VwBAABAer3qZc9j3EPtlexv2vK6L02W1/25W0hYLJl2374v3M4h2esAAACANKnfKi35cXJzPr6jbZ8NSxVLndA0G05NbQAAAAAAAAAAAAAAAHH4010AUopgNOmPkp5Ocs4ISXNStD+Qdm+++WZE+1vf+lbCc8eNG6cjjjhCS5culSQ1NDRoyZIlmjx5ckprbI+CggJNmzYt4fEHHnig1qxZI0mqq6tTTU2Nunfv3mbcokWLItrTp09PeI8pU6ZowIAB2rRpU9yxb775purr9z4wcu655yYU8tba1KlTtXDhQknS2rVrtW7dOg0ZMiSpNQAAAADs/7yC0XLkV64vt02/ldQQrnOd0+ASIBArrKvAV5hYkVmi2TYpaINt+lMWvJDkOqnaN1W86gnaoIK2WX4T6OSKAAAAMldtqFrv71roeTzT7vXSK7lotFQFdnkFmqUqGM3rNVu6WNkY59z259FrrE8+5fny2/S79QEAAKAT7NqHILP1/5Cq/i31PHj3Gp9Kb3xN2rXSaZceKx3zpFQ4MLW1AgAAAAAAAAAAAAAARCEYLbvsjGqXJjPZGNNdbQPLqhLYp9AY081aW5vEdmUJ7JM0a+02SduSmWOMScXWQEaorKzU559/3tLu2bOnDjzwwKTWmDx5ckswmiQtXrw4o4LRRowYodzcxB8WKSkpiWjv3LnTNRjtww8/bPm6Z8+eGjlyZFJ1TZgwQc8//3zccdHBdQMGDGgJbktU9Pl/8cUXBKMBAAAAXZBbUJckTe75ZV3Q94dt+q21+tGn5yistg9CuT3g7/Wwe2mgv24a/qckq92/PV/+uOZVtM3i97pGyfIKWPAbf4cGsqVKrOvQGG6QP4dgNAAAgD3e3vmqmm2T5/FUhXtlA2uTDUbr2ODiZNf3CqY+oeR0nVP2vaTr6igN4Xr9/LMLXI+5/Tx6XYcDux2mKwfdkNLaAAAA0A59p0pfWSEtvkLaMDvxeS8d4nzuNkyqXR15rHyhNHuQNPa/pG5DpZ6HSH0mSbLSJ3+Qts6XcntLPcdJRWMkhSVfrlT+llS/WSo5TBp6oVTQz1nPWon3bwIAAAAAAAAAAAAAABcEo2WXz6LaByQ5P3p8hbW2MnqQtXaHMaZSUuu0oSGSPm7HXtG1A9gH5eXlEe1Ro0YlHf43duzYiPa2bUllDXa46KCzeAKByIevm5ub24ypra1VQ8Pehzj2JWQs0Tnr16+PaP/0pz/VT3/606T3a62ioqJd8wEAAADsn4K27esbSQoY9xAqY4zyfAWqD7fNtk/mYfd8X3SufvbzOudGm5rgBa9gseKcElUEy9v0Z1pYRqyAiMZwg7rlFHViNQAAAJkrbMNaWDUv5phMC8Hdn6QiuNham8JgNPd68jLsNVWuyZORkVXbIDq3c/Z6PZJp5wUAAABJBf2lY5+V1j0tvX+V1FguHTxTskHpP7+JPTc6FK21lXfGnrvWo3/NY9IHV7sf8+VJg8+RAt2ljXOdIDVJ6n+qNPhsKbdE6neSlNvD6d/+rrTxBcnkSMMvds5110opv0wyfim/VKr8SFr9V0nWCWTrdUTsuqPVbZCaq6XiMZLxeY+zVqr+VNr8T8mGnPPoNji5vQAAAAAAAAAAAAAAQASC0bJLdDDZyCTnD49qr4iz1+SovZIJRoveK5m52a10kMzfP0l3FdmvdFC6K+gQlZWRWYY9evRIeo3oOZkWuuXzxXiT2T6qqqqKaBcVJf/AdnFxcULjduzYkfTa8VRXV6d8TQAAAACZzysYLcd4/y+/PF++RzBaMg+75ydYYfbwOudUBZR5BSz08PfyCEbLrLCMRut9HTKtVgAAgHT6uPYDlTdviTmG+6e93IK6YknFtWu2TbIKux5LNnjNa3yBrzDpujqSz/iUa/Jcg5/dzsHrOnfF14oAAAD7BWOkA6ZLfadJK38vjfultGtF/GC0zhZulNY+0bZ/8zznI5Z/3xR//ZV3OZ8Hny2FGpwws8IB0ohLpD5HSTYsrX1KWnadVLfOfY0BX5E2vRB/r6U/k3IKpeHfkXIKpKYKKdBDGvZtqaFcqt8obX/bOdZ9pFQ2xelv3imVHSfteN/5uvQYqfuw+PsBAAAAAAAAAAAAAJCFCEbLLv+Oao83xhRaa+sSnH9MnPWij7UORpskaW4imxhjukkan8ReXYrx+6X+Q9NdBvZT1kY+IGKMafeaqVgj0+Xl5UW0m5qakl4j0Tn7snY80d93AAAAAF2DVzCa3wQ85+T5Clz7kwtGc18jmyVz3ZJlrfVcp9hf4tqfbCBDR4t1HTKtVgAAgHR6verluGMIRtvLKxjNJ5/CLuFlsQJ7ExUr/NgtOCwWr3vhTHxNlecrUGPI5XWhyzl7XYc8k3nnBQAAgFby+0iH/db5uuQwaeCZ0sbn01tTOqx/NrL9xcPS5CekiqXSx7+LPTeRULQ9QnXSZ3+K7PvkfxKfv0fJ4dLYn0sDv+q0a1ZJ9ZulDXOkHYudALXaNXvH9zhIKj1WChRLvlyp21Cp71SpaETyewMAAAAAAAAAAAAAkEYEo2URa+1mY8xH2hs65pc0RdI/E1zihKh2rHfmz5N0aYy5sRyryJ+9D6y1W5OYD8BDr169Ito7d+5Meo3oOSUl7g9ht0coFEr5mu0RfY6VlZVJr1FRUZHQuD59+kS0Fy1apEmTJiW9HwAAAAAEbdC1P1YwWr7HA/huD+x7P8Sfn0B12cXrnFMR+hW0QYXl/jq52N/TtT/TwjJi1RMrWAIAAKAr2d60Vf+pXRJ3XCrCvbJdnq9A9eHaNv2puE9O5b1tQ9j995fl+wqTWqcz5PsKtCvU9t/Hknmt6PV6EwAAABlq8qPS0z3SXUX62bD01vnprsJb5QfS299OfPzOFc6Hm27DpCPulAZ/PTW1AQAAAAAAAAAAAADQgXzpLgAp91xU+7uJTDLGjJV0VKuuWsUOVHtFUut3PE/avUYiLo5qR9cMYB+VlpZGtD/99NOk1/jkk08i2mVlZa7j/P7IbM1g0P2BfDf7EjzWkXJycjRw4MCW9hdffKG6OveHVbwsX748oXF9+/aNaO/L9wgAAAAAJClom137YwWjeQV8uT387xUI0BUfdvc658Zwg6y17Vo7VvBFjxz3sPJMCxuLFRCXaSFuAAAA6fJG1cuyin/vGLRBz3v9rsbreiUT+JysWGs0JHlv63Xfnp+BYdOpeK3YFUO0AQAA9muBYumbVjr2WalodLqrQWeoXS0tPFvaMDfdlQAAAAAAAAAAAAAAEBfBaNnncUmhVu2zjTGjEpj331Htv1trPd/Zba2tk/SPOGu0YYwZLan1r5sLSnoigfoAJKCkpEQjRoxoaVdVVenjjz9Oao1FixZFtCdOnOg6rri4OKJdVVWV8B7/+c9/kqqpMxx99NEtX4fDYb3++usJz62oqNCHH36Y0NjJkydHtP/5z1gZlAAAAADgLWjdA6r9xu/aLyUXIOAVCNAVH3b3OmersJptU7vWjhVy1sPfy32ObVDYhtu1byrFCj9LRTgFAADA/q4p3Ki3d76a8HjCZXfzCCGOFVzcXrHWSCaguDnc7PmaLd9XmHRdHc07GK3tOXtdh674WhEAACArDP669NVPpNOWSQPPlHwByd8t3VWhI33yh3RXAAAAAAAAAAAAAABAXN5PSWK/ZK39zBgzS9L3dnflSnrEGHOiV9CZMeZrki5u1dUk6aYEtrtR0vmSArvbFxtjnrPWPu+xT76kh3fXtMeD1trPE9gLQIKmTJmizz/f+8fq8ccf1y233JLQ3I8//lhLlixpaefn5+vII490HVtWVhbRXrFihSZMmJDQPi+99FJC4zrTl7/8ZT3zzDMt7QceeECnnXZaQnNnzZqlpqbEHoQ/8cQTlZOTo1DIybB8/vnntW3btjbXEwAAAADiCXkGowVc+yUpz3g87G7dHnZ3DwTwCiHIZrHOuSFcr1xf3j6vHSt4odjf0/NYk21UvsmM70WsgIhG79+9AAAA0GUsrX5LteHqhMc3hhvULaeoAyvaP7jHonkHi6UkGC3G/WuzbVLYhuQzOfHXiXGPnImvqfI8w+YSD9HOxPMCAABAEkoOlY6fE9lnw1K4WcrJk2rXS3OGxF6j/ylSbolUu06yIWnIuVLP8dL8UzqubiRv62vSwnOl5l1SToFU0E/K7S11Gyw1bJdkpQGnS4Fi5+uCAc7nQHGchQEAAAAAAAAAAAAASB1fugvoaowxg4wxQ6M/JPWLGup3G7f7o0+cbWZKqmzVnizpX8aYsVG15BljfiTp6aj5d1pr18Y7F2vtF5L+J6r7H8aYq4wxrcPPZIw5UNKru2vZY4cSC2ADkISLLrooon3PPfdoy5YtCc39xS9+EdE+//zzlZfn/nD3EUccEdGeO3duQnu88soreu+99xIa25kuvPBCFRXtfcjoueee0yuvvBJ33saNG/XrX/864X1KSkp04YUXtrRramp09dVXJ1csAAAAAEgK2mbXfr/x/l0IeT6PYDSXAAGvB/nzMiSMqzN5XTcpduBBImKFN/Twl3TYvqkUKzwiFeEUAAAA+7vXq15Oajz3UA6rsGu/9+ua9t8je4V+7d0jse9NrHW8gt3SKbnXiu7XINbrJgAAAOynjM8JRZOc0Cwv3YZJ37TS1HnSMU9KJ78lnfKOdODVUv+TY+/xTa9I5ASUneB9zN9NGnzOvq+d7dY/I235f9LG56VV90srbpMWXyEtv0FaPlN6ZaL0whjphbHS08XS0z2kJ4zzsegi6dUT97bfvlja+IIU3v0LfUKNUuMOKdQg1a6Vdn4shWL80tEQr4EBAAAAAAAAAAAAAG15PyWJjvKmpAMSGDdQ0mqPY7MkXew10Vq7wRhztqRXJO0JKDtG0gpjzBJJX0jqIekISaVR01+QNCOB+va4TtI4Saftbgck/Z+kGcaYpZKqJQ3fvZdpNa9J0tettZuT2AtAAqZNm6bDDjtMy5YtkyTt3LlTF1xwgV566SUVFHg/vH733Xdrzpy9v/XTGKOf/exnnuMnTZqkwsJC1dXVSXKCxN5//31NmDDBc85nn32m73znO8meUqcoKirST37yE91yyy0tfdOnT9fs2bM1depU1zlr1qzR6aefrqqqqqT2uvHGG/XUU0+psbFRkvToo4+qf//+uvXWW5WTk5PwOitWrND27dt13HHHJbU/AAAAgOzgHYwW8JyT53N/XegWIOAVdtUVH3b3um5S/OCEeLxCBYyMuuf0SHpeOsSqJZMC3AAAANJhTf1nWtvwWVJz2nuPmS284hHyPV/XtP8eOd79a2O4QQU53eKu0xCu8zzmVX86JRqMZq31DtHOwPMCAABAipVOkcrfbNs/7rrY83ofLe14p23/2J+3r55jnpSe6+9+7KS3pJJDpeZq6fO/OHXnlUr5/aR/t/P3+V4Qkj78pbTidvfjx78g9TxYKhwsrXpA2jBbatwulRwmjbhEUlj68FfS1lfbV0e6rHk0sr16lvMRS6Cnc/6VyyRfQCo7Xlr/j8gxg8+RRv3QGRusltY/J1UskYyRhl4ojbzMCetrzVop3LQ3wC8clHy8NR4AAAAAAAAAAAAAsgH/+pulrLULjDFfl/SI9oafGUkTdn+4eVLSJdbaUBL7hIwx0yX9RdJ5rQ6VSTrVY9o2Sd+x1i5MdB+gK9myZYvWrFmzT3OHDh0qSXrwwQc1adIkNTU5v2lxwYIFOvbYY3XvvffqqKOOipizfft2zZw5U3/84x8j+q+99lqNHz/ec6+ioiKdd955evjhhyVJoVBIZ5xxhh599FGdfHLkb/psamrSrFmzdN1116miokIlJSWqrKzcp3PsSDNmzNCcOXO0fPlySdKuXbt04okn6txzz9X06dM1evRo5ebmat26dXrppZf0wAMPqK6uTvn5+TrllFMiguViGTZsmO6///6IkLjf/e53euONN/TLX/5Sp512mvx+9/9Er1mzRi+++KKeeeYZzZ8/XzNnziQYDQAAAOiimj2D0bz/l1+iD7tL3mEMXfFh9zzjfc7tDV/wvs75MQMTMiUsI2SDniF9EsFoAAAAb1S9lPQc7qH2cI9Gy/cVuvY32vZft3j32V4B0smsk4mvqbxee0SfR9A2K6yw69hMPC8AAACk2OBz2gajGb806Oux5w35hnsw2gEXxJ6XUygN+5a06v62x0b+UCroJ/WaKFUsjjzW7QCp5yHO14EiaezPnA9Jql3bvmC0HuOccK6BX3UPRsvvKw08Y2971GXOR7TRV3kHo522zDmHf5R41zHkPGndU+7Heh8lfel+qXCg9Ewf7zU6U3OVtG3B3nZ0KJokrX/G+XBT/pa0+IrE9ys7Xhr/a+f7tXW+1LBVsmGp15FSQX/n5za/zAlUa65xAtv8hVK3oVJuiRPGVr5IWvJTyeQ434+Rl0h9pznHWmuscMYEitse26Opyvl5zsl1Pw4AAAAAAAAAAAAAaINgtCxmrX3JGHOwpJvkhJZ5vUviHUm/t9Z6vKMg7j41ks43xvxD0n9JOtpjaIWkpyTNtNaW78teQFdwwQVx3vAVg7XOAyJHHHGE7rnnHv3whz9UOOw8nLBkyRIdffTRGjlypMaNG6f8/HytX79e7733noLBYMQ6J510km6++ea4+91888167rnnVFVVJUnatm2bTjnlFI0cOVLjx49XXl6etm7dqnfffVe1tbWSpH79+un222+PCAXLFLm5uXrxxRc1bdo0rVq1SpJzTZ9++mk9/fTTrnOMMbr33nu1bt26iGA04/Ump90uuugibdmyRb/4xS9avkfvvPOOzjzzTBUWFurwww9X3759VVBQoOrqam3fvl0rVqxoudYAAAAAELJB136/CXjOSfRhd8k78CtWWFe2CvgCypFfIbW95u0NrfCan+cr8Ayyc+a1L5AtVeLVkSl1AgAApENNcJfer37T9djYwkO1uv4T16At7qEcNslgtODu0N5Yr4niiX9/m9j9f0O4zrXfb/wK+Pa9vo7iFQYd/fMZ6/rkGe/XLwAAAMgSo6+UKpZKax512jkF0uQnpPzS2PNG/kDa+Ly07fW9fWN+4oRUSdJBv5BW3NZ23vibpR4HuQejDTnH+Xzk3dKCrzjBW5KUky9NuMcJL3PT7QD3MLVEHXC+87nPJCdEq3ZN5PGh30psndLJTo02Kng4p0AqGuWEdBUOkuo2tJ2bWyId9YATIub2b0VT/i51G+J8PeIH0ud/SaymbLLtdelfx6duvR3veAfRtTb0207gmr9Qat4lrX9WqlsfOabvNOfntP9p0ojvSatnSQ3bpb5TpdJjnHC1UINU/ZnzvS4YIMl4h64BAAAAAAAAAAAAQJYiGK2TWWuHdvJ+2yRdboz5iaRjJB0gqZ+kWkkbJX1grV2dor3+Iekfxphhko6QNEBSN0lbJK2V9Ja1tikVewGI75JLLlFJSYm++93vqqampqV/1apVLaFfbr73ve/pvvvuUyAQ/6GMgQMH6plnntFZZ52l6urquHsMGzZML76U+kb1AAAgAElEQVT4orZu3Zrk2XSewYMHa+HChbriiiv03HPPxRzbu3dvzZo1S2eccYb++7//O+JYUVFR3L2uvfZajR8/Xt/97ne1ZcuWlv66ujq99dZbCdVbUhLjN4MCAAAAyGpB2+zaHysEIM8j1Cz64XZrrecD77HCurJZvq9AteHqNv1uQRbJ8LzOJl85xi+/Cbh+r93C7NIhXh2EegAAgK5s0c5/ed63H9fzNG1qXKfGkEswWjvvMbOGey5azLDmxnCD/DkdF4yW6H14g+frqcwMmva6ptHXI9b5d8UQbQAAgC7HF5Am/1U69DdS7Won2MzfLf68QLE09RVpy7+kXSudULHSyXuPD/u29On/SsHavX25JdLQC6T8ftKB10gf37H32EHXSX1PdL4uPUY6/SNp04tSuMkJmyoeFbueCf8nvfE1qSHOe9iOnyu99U0puPvfBgafK439L+dr45NOeMlZp/ozp2/IeU6YWyLyy6T+p0ubXojsP+A8J1RLkkZfJS27ru3cA6+RAkXSwDOkDXMij5UeszcUbc/YjXPjnytSY09oYCxbX3M+b3pJWvKjvf3L48zrNVE67llp+7tS5QdS4WAnNC1Q7PxZDHR3xlUslWq+kHp/KfJnAQAAAAAAAAAAAAD2MwSjdRG7A8nmd9JeqyWlJGwNQPuce+65Ou6443Trrbfq8ccf1/bt213HBQIBTZ06VTNnztTkyZNdx3iZNm2a3nvvPV133XV6/vnnZW3bp1RKS0t18cUX61e/+pWKi4szOhhNkvr166dnn31Wb775pp588kktWLBAmzZtUkNDgwYMGKDhw4frG9/4hs477zz16NFDklRVVRWxxp7+eE499VStXr1aDz30kB544AF9+OGHrtdwj0AgoIkTJ+rkk0/WN7/5TY0aFeeNfAAAAACyUtiGFFbY9VjsYDT3ULPoh92bbZOsx/pd9WH3PF++azBaewPKvEIv9nyv8n0Fqgm1DdPIlMCxVAVHAAAAZJuwDWnhznmux0r8fXRI94l6rnyWFGp7PFPu9dLNeiSjxQtG65YT/5fXeM9PTfBvQ7jOtT/fV5h0TZ3B67Vi9P18o/W+Pl01RBsAAKBL6jbY+UhGTp4T5DXwjLbHehwoTfuX9OGvpKoPnZCnI+6SCvo7xw//nTTqcqlymVRyqNR9eNt6Rv0w8Vr6HCWdtkx653vS5pfdxxSPlQZ+RTpnm7Tj/d3nfEDbur/yiVS9SsrrLeX1SrwGSZr8mPTOxU6om3zS4HOkCX/ce3zot6WP75Qay/f25fWRhl/sfP2lB6T6rdKOd5x2z0OkyU9Encdo6ZTF0vtXSRufT64+ZJaKxdLsJP/cSc7PUW5P589P+cK2x7uPdAL56jdKhQc4P8s9D94dtla8d5y1kg1Ltlmq3+z8+cxp9Tow1CD58iRjkq8RAAAAAAAAAAAAAFwQjAYAabZmzZoOXb+srEx/+MMfdNddd2nJkiVauXKlysvL1djYqD59+mjQoEGaMmWKior2/SGRsWPHavbs2dq+fbtef/11bdiwQXV1derbt6+GDRumY489Vn7/3v/knHDCCTHDv6IlMzbaI488okceeWSf5k6ZMkVTpkxJaOyKFStavjbGqKysLOF98vPzdcUVV+iKK65QRUWF3nnnHW3evFkVFRVqbm5W9+7dVVZWptGjR2vs2LEqLMzMh2YAAAAAdJ6gDXoe8xvv/+XnFSAQ/fB/rDCrrvqwe57ntWtfaIXX/D375fnyVRPa5TIvMwLH4p2/V/AbAABAtvtP7VLtaN7memxKz1OUY3ISDqPqqvY1GK094t7fJri+1/16pgZNe4doRwWjxTj/rvpaEQAAACnS52jpxH95H+8+zPlIlYJ+0uRHpWf6uB/P3R1ylpMvlcV4/5gxUvE+/mLL3B7Scc9JwTrJ+CJDpiSpcIB08iLpo5lS1TKp56HS+Jv3Bsbll0qnvC3VrJbCzVLRKPdQqm6DpePnOMFWf/M74VboOtY8Gvt4zSrpP7+JPab7SKn2i7Y/O7m9nJ/DXZ/sbpdIQ86Txv1Cyu8r7fyPVP6mFKqXBn5VKj5QsiHJl+TjC6EGKRyUAt2TmwcAAAAAAAAAAABgv0YwGgB0ET6fTxMnTtTEiRM7bI8+ffronHPO6bD1M1Vtba2WLl3a0h49evQ+B8316tVLp59+eqpKAwAAAJClgrbZ85jfBDyP5RmPh91tg8I2LJ/xOe2YwWiZ+SB/R+uo0Aqva71nvzyTWJhdusSro73BFAAAAPur16tedu3PkV/H9DhJUuLBxV2XezBarNck7b4/t7HnJ7p+fbjOtT9zg9ESC4L2On+ffAqY3JTXBQAAAHSoPeFnbnoc1Hl1+GP8ksyikdIxj8een2hgnDHSuOulf9+ceG3tMeQ8qe/xUvMuadl1nbMnOkbNKvf+pgrno6VdKa26z/mI5vYz0PdEJzQtv0ySdUL+6tY763jp/SVp0NelwoFS+VtSU5VU+YHU6wgnmK3yQ+fP9shLpV6HS43bpZovpK0LpGC1tOU1qfcEadjF0sAznD2DtVLxWCmH17UAAAAAAAAAAABAJiEYDQCAdpo1a5bq6vY+4DJp0qQ0VgMAAACgKwjaoOexmMFoMR7Cb7KNyt8dwhXrYX+vgLBs5x1a0b7gL69rvWc/r+vdaDMjcCxeHe0NpgAAANgflTdt1orapa7HjiiarGJ/T0kx7vUIl5XkFYvmXDcjI+syor2hcg1xrn2i3xuvOjI3GM3rZ7Fe1loZY3a33c8/z5ffMgYAAADYbxgj9ZooVSxue2zYtzu/ns4w8Ez3YLS83lLjjtTtU3KYNOVve9sjL5PW/k3auULqfZR0wPmSL0cKNUn/uUXa+KITVlU2Veo5TnppfOpqQeba+mryc3a853xEq/40sr3pBe816tZJ65+Ns5GRDrpWql7lhPvZkFR2nBQOOu1ug6URP3BC1XJ7OWvuXOEEuxUOkvpMkkyOZPxSTn7sAEQAAAAAAAAAAAAArghGAwCgHTZs2KAZM2ZE9F100UVpqgYAAABAVxG0zZ7Hcoz3//KLFWrWGK5veUg/1sP+mfogf0eLFRTQHrGCBWLtmymBY/HOv73XBwAAYH/0RtU8z2PHlZze8jXBaPG4R6MZGeX58l3vidt77VJ1f+sdgJyZD0J7hWiHFVbQNitgciXFev3SNV8nAgAAIAuM/IH0XlQwWvGBUumU9NTT0XodKQ3/nvTFQ3v7ig+Ujn5E+ufRcn0dNvbn0sq72vb3Ptr5vOOdtsfG/DSyndtTGvXDtuNycqXxv3Y+Itb+knv4VY+DpTOWS5XLpHXPSKE6acg3pD5HS6+fKW2c23aOJA38qjThXql8obToQvcx8XQfKdWs2re52A9ZacXtkV1bX4tsf3DNvi/vy5XCTVJ+mTTgDCmnUPL5ndC1vic6IWzGSPVbnIC1hi1SyRFS7Rpp10qpaLQTQGiDzkduyb7XAgAAAAAAAAAAAGQogtEAAGjlmWee0ZIlS/Szn/1MpaWlMcd+8MEHOuecc1RRUdHSd+ihh2rq1KkdXSYAAACALi5WMJp/n4PRGlp97f4Qf4788ptAAhVmH68H/Ts6GM0riC5TwjLi1ZEpdQIAAHSWpnCj3t75quuxQXnDNDx/TEs7z2T2vV66WesRjGaM8ky+GtT2Xry9AcLxrn2i63sHo2VmgFh+nNeKAd+eYDT38yIYDQAAAPutEZdIwVpp5R+kxnKp71TpqAcl40t3ZR3DGOmov0iDviaVvykVjZSGTN8bXPbZnyLHFwyUxt8irf2bVL8p8tiI7znXLjoYzZcnDTqzfXUO/ZZ7MNqYHzufSw5zPiJq7e+93uirpG6DpYJveAejTfyT9O9fS/Wb2x47+mFp+MXO1407pGCNlN9Pyslz+p4wMU/H1Zf+LIWbpfevSn4u9n/hJudzwzbpi4cjj0W3E+XLlWSlkiOlgn7ShtlOf06B1Hea1HO8ZJulpkopWO8EvTVskfqfJo28ROp/irR1vlS7VtrxrtTjIKnHOGnA6W3/TmyqlIxfChTtW60AAAAAAAAAAABAAghGAwCglerqat122236/e9/r1NPPVUnnniiDj30UJWVlcnv96uiokLLly/XCy+8oLlz50Y8lJObm6tZs2alsXoAAAAAXUXQBj2PBWIEl8V6CL/1g/uN1j0MIFMf4u8MXqFy7Q5e8LjWe0IyvAIG2rtvqsSrozHcIGutjNmHh4IAAAD2Q+9XL1RduMb12PE9T4+4L/IM37WZca+XyfJ8BVKosk2/1/11ouIFHye6/v4WjOYV0ic559JdxZLiBzsDAAAA+x1jpLE/k8b8VLIhydcF3lZtjBNcFh1eduT/OEFnax53rkX34dJxcyR/gfTl16VFu8PKckukA6+WRvxAskFp57+lzx901ggUS8f83RnTHkO/KX32R2nXyr19PQ6WDrjAe06fY6RV97sfKz7Q+ewLSH0mSdvfjjxucqSBZ0qVH0qr7os65neCo/bI6+18RKw/NrLWPcbf7JxHdNjaAedLIy91vo4VjHZB2Kn1oxukyqVSqEE6/PfS+1d6z0HXtSdsLTqsMFQvbXrR+XCz+WXnI5Z+Jzl/rk2OtPbJvf09xjmhgf1Pcf6MGiOFQ87Pa7BG+vwhqWGrVDRKOvC/nL9XJCkcdNbi3w8BAAAAAAAAAAAQQxf4F3wAAJLX3NysuXPnau7cuQmNLygo0F//+lcdeuihHVwZAAAAAEhB2+x5zB8jGM0reEGKfMDd6yH+rvywu1eAgVcwQKLiXeuO2jdV4tURVkhB26yAye2kigAAANLHWqvXK19yPVbgK9TE4uMi+rzur+OFc3UVYYVd+41MjGvX3mC02PMTXb8hXOfaH+s1WTrFeq3XOqjP8/WL6bqvFQEAAJAljHECsLoyX0D6/+zdd3wc5YH/8c9s0aoXq1hWsS33btwwNrYxxWBMTSCUQAIJBFIuR5IjdwdJCKRwyd3lF3IJKZBASMhBOpcQSiAB23SI6QkYjLtxl9ykXWm18/vjsZBWO88WWbJW0vf9es1rd59nnjKzK2lmV/PdBXfB7G9DWxMUNHSGFhWNg9OegbYDECgAx2fKnSDM/zHMvBkOboCyY8DfC58HhMrhlNUmVKzxJdPvpM9AsNDepv598I9vwr6/x5dXnwoF9Z2Pp34BVp1rQt06jP8E5NfA1Oth5+PxIWez/gvyhiefb/158PrXE8tHXgCVi2DVOdC235SVTodjvtG5Ts0Z3oFVkz5n9n/lQjj50fi6wjHw+OmJbQCmfRleu8m7rvw4WLbKPFfrfgzh7dCy3QTRlU6Hoglm+1eeZd/WslnQ+GLn41AlRHbZ15fBYfsj3uX7XocXP2+WVO3f+n7qcQIFJmhw5IVwcB3sfcEEshVNhBGngi8H8kbAgbehYJRZcGDnY9C6D8rnmt8XAM1bYcdj4A+Z3wM5Jd5jxtqg6VXzO7Bkaufvt65cd+iEZ4qIiIiIiIiIiIiIiGQRfTojIiLSRWlpKX6/n/b29rTbHH/88dxyyy3MnTu3D2cmIiIiIiLSKVkwmj/JhTt+x0/QyaHNbU2o63qBu+1i/2y9iP9osF3obwsGSJdtX3cEomV7WEY6wRCRWJigT8FoIiIiMvhtCK9lc+Qdz7oFJSeT4wvFlfVVuNfg51jPTY70ODl1MFp6/dvWy/PlZzyno8EWyAzx+6RrSFq67UVEREREZIAJDTOLl2CRd3lulVl6U24FTL8h/fWDRXDKKvjbZ2DrHyHWCjWnw/w74terPQNO/iu8cye0NkLNChh7pakrqIfTnoVtD0LLNhh+YmfIUjITr4FtD8QHhk29HoonmOWcjbBzJQRLoWI++Lu8H1B3rncwWv159vFyyux1hWNMwFPM47PEmV8zdcXjYdY3vdtXLbX3DXD6GnPb3mqCojq25R6PMCmRTEUPwd6/maWr7Y/CW7ceWd8l06BiAQQKYc8zsPvpxHVC5VBzJpROg2izCf1b+73O+rpzYe53ze+XgtEmRC3aYgIFw7tgxDIT3JZM2wE48JYJnAwWH9k2iYiIiIiIiIiIiIiIDHIKRhMREeni3HPPZceOHTz00EM8+eSTvPrqq2zcuJG9e/cSDofJy8tj2LBhjBo1isWLF7NixQqOP/74/p62iIiIiIgMMcmC0QJOMGnbkC+XtvbEYLSuF7vbwr5swQ1Dge1C/yMNrbAFJnTsa3vgQ3aEZaQVjOa2UIj+sV9EREQGv5VND1jrlpSenlCmYLTkXFzPch9OnwQIx9wYETdVMFp6z02L9Tg/OwPEAk4QHz5ixBLq0gvRHrrniiIiIiIikkVC5bDw5xCLghsDv+VLW6oWm8VLsBhGXZjZuLmVsGy1CVQ7+A5ULobKBZ31OaVQd45324ZLTZDb1j90lk38jAlwsgmW2Ovy62DE6fH9AYQqoHJR6m0JFpoAt7amxLqyWZ33bfu2u7FXQKgK/v4f3vVnHQ6I+l/H3scHXdixEv6y1Lt+8e+h/lxzv+VdE1K390UonmRCqtpbTIBVfp3Zd2/fZgKvgsWwczWUTIUtv09ve2Tg2veaWZKJ7IH1d9nrt9xnlmQqFpqgxncfTm9e026AwrFQs9wETLZHYMv/Qds+GH6SCWHDgZJJ4Lrw7p/Na9xtN+GN9e8zr2+xa3kX9rwApdNNmONL/wbrf2bqSqbAsqcgJ8nvVRERERERERERERER6TcKRhMREemmvLycSy65hEsuuaS/pyIiIiIiIuIp6kY9y3348aX4x+eQL5eD7fsTyiNpXOxuCwcbCqwBZW7PgxcgdbBAXwQ+9KZ0tt8WtCciIiIymByINrHmwJOedZPzj6Eqpyah3HZ8reOnDt7BaDjJgtF6HirX6kZSrpNu/7bj9Ww9p3IO79OWWHNCnUK0RURERERkwPH1w7/HBwpg5PmZt/PnwuLfwq4nYd/rUH4slM9N3qZovAlQCu/sNociqDgO8muh8UVo3mzKfSGY90Pwh9KbU+0ZsOEXieWjk/w/5egPwYafJ5Y3XGa2yyZvhLmtXAS7nvDuF0x4EQ6e7xVUzI/vb+wVMNY+JPNu9S53XRMIt/o82PGY9zonPQJls+HBWdC8yXudJfdBtNmEL3U8B12N/AD4crz3sQx8u5/KbP3XvtLzsd46/FquXmYC1JpegdZGUzbmcvM7Ia/G/F7w50L0IOx/E8K7gJgJcYtF4NBmKBgJtWeaELEdj0GgEIonwLqfwObfmfJjf2h+Jve/AXueMeGC1ctM+GM22v8WvHwdbP6tfZ19f4fflMKKV0xwmoiIiIiIiIiIiIiIZBUFo4mIiIiIiIiIiAwwUbfNszzoBFO2DTmWgK+4YDRd7N6dNRjtCIIXXNdNEoxmxgs53vs8W8Iy0pnHkewjERERkYHiyX2PWgOMTyhb4VneF8eYg4lry0XD6ZNQuXTCh9PtP+wRMAbZG4wG5vXoHYymEG0REREREZE+5QvA8BPMktb6fph4Dbz8hfjyCZ+EQD4UT4QVL8O7f4a2/VB9MhSOSX8+026Anavjg7/GfMSMaTPpGtjyO4ge6iyrOsEEnhWOgec/SUKoWdEEEygHMPJC72C0hkvNbW6l2Y7tj8bXDz+pM1ztSDkO5JTBmCu8g9EKx0H1KeZ++bH2YLSaM8xzOvpiaA+b7coZBiXTwJ/Tud6Cn0PTyyYUz58L/nzAgUAehKqgZRs4Ptj9DLz7sAmpKptl9ltbkwnA2vaACZ7rGpLnFZrXXd4IE3Qlg8P2RxLL3vlp74/zzEfM0t38O6D+/RA9APv+AWXHmJ/ZTLQ2waGNUDw5/uekJ8K7TeDcWz8Ay/u1CVaeBedsOLJxRURERERERERERESk1ykYTUREREREREREZICxBS74ndRv99nCzSJu5wXu9mC0oXuxu22/HUnwQtRtI0a7ZTyzr20BA12fr/6UTmiHgj1ERERksIu57TzR9LBn3bBAJdMK5njWWY/NdfwEgNv9guku+mLfpRf6m3qdtlib9ZwtmwPE0gnqSxXsLCIiIiIiIkfJlOtM2NaG/wViUH9+fHBZThmMurBnfRdPgOUvwNb7IbzdhIGVz0veZtgcOGU1rP0eHFoPlUtg6r+bsLH8Wqg/Dzb/Jr5N1/mO+TBsuteEhHUYeQEMP7nz8XE/hZVnQuNL5nHpDDjuzp5tYzK1Z5igsvZu58Bd92fDhxO3B0x4mq/L57X+3M4wte4cxwRIlR2TfD7174NZ3/Sum3ytuW3eCsEiCBabx02vwwPTvNvM/DpMvR7cGLz2Vdj0K2g7CJXHmyC7muWw6v0mtE0kHc9+1Cw2TiA+oMyfBxULoGQKHNwA2+6PXz9UDgWjoe0AlM+H9hY4tAGKxsG4q6DieHDbYPtfIbIbgoWw/S+w7zXY8xzEvL9kLqlDG6FlB+QNz7ytiIiIiIiIiIiIiIj0GQWjiYiIiIiIiIiIDDBR1/ufeQNOMGVb24X4XUMAbIEAtvCBocC236JuG+1uNK1Quu6ShTaEHLOv7YEPPQ9k603pBE8cSXiciIiIyEDw2qG/sTe6y7NucelyfI7fs67jmK+7dqJE3ba0ju8HN+9gNAeHkNP7AcJphf6m0X+yY/VcX35Gczqa0gmbs4doD91zRRERERERkX7hODD+42bpC7mVMPYjmbUZNguO+4l33cK74ZXRsPWPECyFsVfAuI911geL4cRHYMv/wb7XoXwu1J4Fjq9znfxaWL4G9r9hyosmmP3Q23JKYcHd8NQlEIuYsuplMOVfO9cZscxsR1tTfNtRF/T+fNKRX5v8cVdlhwP8HR9M/7JZulvxUuf9/Wvh6Q+ZwKlgqQljm3o9vPh5eONb9nFGXQzbH4WI93tmMoR0/wKB9hbY8VezeInsMQvAgbWd5XtfgI339s0cAVq2KBhNRERERERERERERCTLKBhNRERERERERERkgGnv/s/DhwXSCOdK72J374v9beFgQ0GyC/0jsTD5/sKM+4y4yQITcg/f2gLZsiMsI63wiDTWERERERnIVjY+4FkecAIsLDnF2i7VMWbAP7SD0bxj0UwwWjqBz5lK79g2df/J5pDN51Tp7FPbPgpl8XaJiIiIiIhIFvCHYNZ/mcUmkAejL0rej+NAyeTenZuXkefB8KWw6ynIr4PSGeDrEnzvz4UT/gCrzoXWvaas7n0w9Yt9P7d05JTCsLkmSKqrYCkMPyGzvoonwGnPQtt+CBR2htXlVdvbzPpvmPwvnY9dF5o3wY7HTWhb5SKzDwHeuQueudy7n1NWQ9lMaN4Mr9wAm39rykPlMOV68AXBnwfEYOv9sO8fcPDtzLZPpEPLu/09AxERERERERERERER6UbBaCIiIiIiIiIiIgNMm9vmWZ5OSJbtgvWuF7jbLuQPOfbghsEuWYBBONbSs2C0JMELHSEZyQIGWmORfg/LSCcYIp11RERERAaqHa1b+UfzS551s4sWURQosbZNdYxZ4C864vkNbLZotPQCnzOVTqhaOgHF4ViztS7Xl9+juR0NtvO9roHOOlcUERERERGRISNUDnVn2eurFsP7t8PeNZBXAwX1R29u6Zj5dVh1DrSH48v8PTyHDxbHP85Psr1lM+MfOw4UjIIxlyWuO2yOvZ+icRAsgpIpsPg30NpkgtD8ocR1x12VWLb3RXhotnff026AGTfBr8ugrcl7nfMb4Tdl9vmN/hA0roF9r9vXkYHjiQvgQvv7eiIiIiIiIiIiIiIicvQpGE1ERERERERERGSAiVqD0VK/3WcLX+h6gbstTCBZcMNgZwtegJ6HLyQPRstLOW5PA9l6UzrbfiThFCIiIiLZbnXTQ9a6E0pXJG2bLARXx1DgWoLRHJwkwWg9D+VNd5+nCihOFrCW7Dnvb7bzva77xbZ/h/K5ooiIiIiIiAxhviBUzO/vWXgbcSqc+ixs+hVEm6HubBi+tPf6r15mtj/W7XPr8uOg6sT0+ymZAgUNcGh9fPmweZBXHV+WU5rZHLu3j6sbcbjPEnswWrLxpl5vguZcF+7xea/jC8FFYWjeCut+AgfXmSC40ZdAeAf8aaq9/1AlRHbZ66X3tbdA20EI9u/n7yIiIiIiIiIiIiIi0snyKYyIiIiIiIiIiIhkq3Y36lkecOwX53dIJ0Ag4npf7J7NF/H3teShFT0LX7AFJjj4CDo5aYzb/2EZttdKpuuIiIiIDESRWJin9/3Fs64+NIbRueOTtu+L8N0hwXGsx8lHFoyWXttkwWemvtmzPOAECPpSn7P1F9vrsWN7Y26MVjeSUVsRERERERER6UdlM2Dm12DO/+vdUDSA0DCY/xNwulyOMmweLP4N+Pzp9+P4YN73wZ/fWZZTBnNu6YU5VkGo3LtuxHJzO+la7/qqpfHrdTfqInPrOPbxqxab2/xamH4DLLgLJv6zmVPJFHu7QAHMv91ef8pKWPaEvb5gNHzQ+wsH3rPileT1ACMvSL3OYNP0an/PQEREREREREREREREulAwmoiIiIiIiIiIyAATdds8y9MLRrMFCIQ976fTdijIcULWulTBCDb2/ZyLc/if6JMFDPR03N4SdduIWkL6ulKoh4iIiAxWz+9fRYslBOuEshXvHdPZBJ0cHLzXOZKAr8HAde0XbzokC3wOJ22bTLr7PNXxbXiAnk8l26cArW4EF+99m+3bJiIiIiIiIiJ9oOFDcPYGOO6ncOKfYdlqEwKWqZrlcMZrMPdWOPZ2E9pVufDI5+fzw+gPJZYPPwkKR5v79efGh7t1GHWhuZ38L9A96L7mTCid3mXdi7zHH/+J5PMbfYl3+fSboGy2pZEDJVMhL8l+Lhpnbid9zrt++Mlm/uOutvcRqkgezlZ+rJlHtprwaXj/DsgbkVm79kN9Mx8REREREREREREREekRBaOJiIiIiIiIiIgMMNZgtO7/lO3BfrF7ZwiALXArWUjXYDn/xKEAACAASURBVOdzfIQc7+3veTBa6v2c44SyNiyjNRZJaz0Fo4mIiMhg5Louq5oe8KzL9xUyt2hxyj58js8awNvfIbj9zRbAZTjWIK4YMev5UioRN73j1lTH4bb6XF9+xnM6mlKFaCc7rs9VMJqIiIiIiIjI0FRQD2MugxHLwG//oqmUChtgwidh3JWQX9d785v1nyagLFAEvhyoPRsW/6azPr8OFt4Dvi5zH/sxGHuluV99Cpz4CIy8ACoXm9Cyxb+NH2Pcx8Hxd9ueMSZALZmGDyeW+XJg1MVmvw6bl1g/4lQIlUPBKCgc591v+bHmttYy/qgLzG1ejX1uBaPMPrMpGt85jpeL2uCCZnj/Lvs6ODD7Fnv1pM/BnP8xz0cyoy6CqqVQdgwc+yM4ZxPM/R/IrYLxn/QYNsklVFEFo4mIiIiIiIiIiIiIZJNAf09AREREREREREREMtMWswSjpfF2ny3cqyMEoN2NWoMEhvrF7iFfHpH2xDCAngZ/2dp1fY46wjK8Qhr6Oywj3fH7e54iIiIifeGdljfYEtngWbeg5GRyfOldCJrby8eYg0WyYDQfDrlJQpvDsRaCvpyMx0x3n6c6vg3Hmj3Ls/18yh6M1nL41r5/hnKItoiIiIiIiIhkMV8Q5n0f5nwH3Hbwe7yHMeoCqD0D9rwAReMgvza+fvgJZrEZfgKccD/8/T/gwDqoPB7m3AL+FO9PjTjVBHm9fD1E9kD+SFhwF+QfDixbeDc8dhoc2mAel0yBeT809x0HZnwVnr7UbFeHYDE0XG7uV51gAt7W/bizvvpUGH3p4fGXw6tf9p5bzZlmjNIZ0PRKYv3YK8GNwjt3JtaVTANfwCyBJO+Hjb4EiifZ66dcB7kVsOFeWHe79zqnrIaqRfY+pn7BPOfv/BTaW6D2HJhxI/y6xHt9BaOJiIiIiIiIiIiIiGQVBaOJiIiIiIiIiIgMMO1EPcsDvmDKtraL8cO62D2lXF8e+9sbE8ojPQz+8go7g8T9nK1hGemO39/zFBEREekLq5oe9Cx3cFhSujztfkK+PPA6xrQcKw4d9mA0cAg59osqI7EwRVgubkwi3UDfVMe3tn6yPxjNEqJ9eHuTnfcM9XNFEREREREREclyviCQ5LP0QEHy8LNUapabJVPjrjIhY+FdkDc8vq54Apz1Fux9AXw5JqTM1+Xyn9EXmRC3f/yXCS8rnQHTb4Ti8abe8cGxt5kgtL3PQ/FkGHFaZx/l82DM5SY0rKthc2Hip839hg/Bi5+Pry8cB1VLwI1Bfj00b46vH3NZ/OOJ18Cb30nc9rFXmDn486G92xcNlM6AUPnh/TAxsW2HgpH2OjDhbpOvNUtXeTXQsi1x/Ve+BMPmQdFYs/96gxvrvb66a9kO+16Hg+9A234TSld2jKl75yemvvoUs5+aXjP7snwetOyAyE4oGA3BosR+Y20mrC+nDPyHvwCk7QDseBxatoAThOhBs7SHoWAUFI4xQXfdgwVFRERERERERERERI6AgtFEREREREREREQGmGjMEozmpH67L9XF7snCALL9Qv6+Zt13PQytSDcwIVvDMtINhOtpcJyIiIhIttofbWLNgac866YUzKIyZ0TafaU6Ph+q3CTBaA5O0iCuiNvD4OJ0g39THIeHY82e5dl+PmWbX+S9EG0Fo4mIiIiIiIiI9DrHlxiK1sEXgIrj7G2rFpvF2rdjAt+8Qt8cB+bfAbXnwD/+0wRrTfosjLoYAvlmnUn/ApG98Nb3IXoAKhbAwl+YOTs+OOkv8OSF0PiiCTib8CmY9Ln4ccZ/CjbeC+EdnWXVp5hwNccH074AL3+hy7wCJuDNcczjspmQVwstW+P7LZ1ugtl6ImeYdzDawXfg/gmdcxx5oQn/Wv8z2P8G1J5p9lfN6bDhbnjjFvDnmHalx0DJZBMq1vIu7Hw8vu+RH4C8Oqg9A4afmF5YmhuDt38EW/4Ptj9iHo+7Gvx58OYt6W3r2u+mtx5A7dmw9Q+J5cPmwN6/pd9PXg2MWA5T/s0E/LVHYNuDsP8f0NoEB9aaELXqU6B0JjS9DIUNsOcFE/SWVw117zc/F+2t5uegr8LlRERERERERERERCSrKRhNRERERERERERkgIm6bZ7lASfJt1wfZrvYPeq20e5Gk4YBDPWL3UOWfZcsTC4Z277uPo49LKN/A8fSDo4Y4qEeIiIiMvg8ue8R2vEOK15SuiKjvrL1WK+/ufZcNHCcpCFj4R4ef6Z7XJ9qPVu97XwiW4Qc79di+L1gNO/9GnACaZ2LioiIiIiIiIhIlnEcqD/XLLb6Y26GGV+B9jAEC+Pri8fD6WsgvBtySsDn8R5R8Xg49Wl4+3YTiFV5vAlL6wi6mnq9Ccna/HsIFsHoS8w6783BB3O+DU9+ENzD78n68+CY/+oMT8tUoCD1OtsfNUtXm35tFi97nzeLTUe7N79tbstmQ+UiGHEaVC2CYHFimxf+Cd76QXzZ2z9KPfee8gpFg8xC0cCEzr1zh1mS+fs37HXPfzL+ccEoOPFhaG+Bkqner7Wu2iNwaBP4/JA/EnBN6F5PXzMiIiIiIiIiIiIi0i8UjCYiIiIiIiIiIjLA2ILR/E7qt/uSXYwfiYWTBjBk+4X8fc0WvtDT4C/bvu4ejmHb7/0dOBZx0xu/p8FxIiIiItmo3W1nddNDnnXlweFMLZiVUX/2Y72hfgxlT0ZzMKHQPnzEiCXU93Tfpdsu1XG47fg3z5ef8ZyOJltIX6sbIebG7IFvztA+TxQRERERERERGfR8AfAV2utzK5K3L2wwAWs29e83i83ID0DReNjyB/DlQN05UDI5+ZjJBJJsy9HSuMYsa/+nv2cyMBzaCPdP6nxcPBH2v9n52J8HbjvEWlP3lVsF4Z3J1ymbBSXTTFBf8QTY9zps/KW5bXwRChpMYF/NitQhbSIiIiIiIiIiIiLSYwpGExERERERERERGWCiHd+E3E3ASf0Pl7aL3cFcwJ8sxCrHCaWe3CBm23c9D17wDlRIDEbzHre/A8fSHT/dADURERGRgeDVg8/TFN3jWbekdDk+x59Rf/ZjzKF9DOUmDUZzcByHkC+XllhzQn3Pg4vTa5fq+N8aIJblQdO2IGgXlza31Xpcn+wcU0REREREREREpFeUHWOW3pA3onf6kf7TNRQNoD2D/51IFYoGJvys8UXY8HPv+kPrYdW5nY8X3A1lMyBYDE4QcsrgnTth2wPQsg0mfRaqToCCkenPU0REREREREREREQUjCYiIiIiIiIiIjLQRN02z/JgWsFo9ovxI7GwPazLycXn+NKb4CBlCwro7eCF7sEC9nH7Nxgt/eCIoR3qISIiIoPLyqYHPMsDTpAFJSdn3J+C0XrCAcy5Te8Go6UZ/Jui/7DHnMB+XJ8tkp0rJgvRzvbANxERERERERERkTijLoQNd/f3LGQwefrSFPUf7rxfOh1CFRA9BIEiCL8L+CBYBKUzoO59MOJUcJz0xj60GZo3mwC2QxuheBLUrDDtY+3gtoH/8OcQrfsgUAA+XUooIiIiIiIiIiIiA4PezRQRERERERERERlgbMFofif123224AUwQQC62N3Otu9s+ywVW7vugQnZGpaRSXCE67o46f7jroiIiEiW2h7ZwpvNr3jWzS1aRKG/OOM+Q44lBNcd2sFoLq61ruOo0naO0tMA4XT3ear+bfXZH4yW7FwxSYh2knYiIiIiIiIiIiJZp+YMmPBPsPZ7/T0TGYqaXrXX7X4a3v6Rue/PhfbD78nm15vwMwBfEEJVMGw2bP1j5uMHCqByCdScDi1bIX8kFI6F4olQONqEqfn8qftxXdj/pumvoD7zeYiIiIiIiIiIiIikQcFoIiIiIiIiIiIiA4wtGC3gBFO2zXFCODieQQORWNgaBpDtF/EfDUcreKF7OIZt3/c0kK23pBvM5hKjzW0lxwn18YxERERE+taqpgetdUtKV/Soz94O3x0skgWjdUSj9XaAcLrtUq3XYg1Gy894TkdTsnO+SKzFut06VxQRERERERERkQHFcWDud6FiAWz+vQmH2v10f88qfTnDIFQBgXwoPxbevi2z9mWzoXiC6UPhcNmrvcv7sR2haACxNvOa3bq1Z/1GD8G7D5ollfyRMGwOVC6C3U+BP88sW/8I4e3x6467Gnb81cw1VGmC1/LqoGAUDJsF4Z0Q3gFFE0zZwXfg4DoIlpoQuGGzzLZFdpvAtZxh5n7Ty2ZflEyFkilQdowJhxMREREREREREZEhQcFoIiIiIiIiIiIiA0zUjXqWpxOM5nN85Dghz1CucKzFGvJlCx0YSkJO74ZW2IIFuu/r3g586C2ZjB+JtZDjUzCaiIiIDFzhWAvP7H/Ms25U7nhG543vUb+2UKn+PtbLZo5zOBjNcnwecXt2fJ7ucb0t4Pi9emswWnYHiCU754voXFFERERERERERAab0R80C0DLDvh9tfd6+XUw6Vpw26HxRWjeBDtXmZCm6tPgzW97tysYBedsgFgUNv4Snv0oxFp7Pt+8WtOfr9tlYMmC0U5/CUpnQNt+EyYV6PblDXO/C64LTa/Cuh9D9CDUrIB37oJt93v3Oe+H8PzHvesuOAS/KrDP58y1sP5n8Nat0NoIReOhcCyEymHDL+ztpH80bzLLlt+nXvftH3VptznzwL6eqFgIs79tXkst20xoWm4V4Jjb6AETvLbjL3BwPQyba15zzVuAGOQOh8heyBsOweLOft0YOL6+n7+IiIiIiIiIiIikpGA0ERERERERERGRASbqtnmWpxOMBhDy5RFpT7yYP+KGk4R1ZfdF/EdDb4dWpBssEHJs4/Ys8KG3ZBIIF461UERpH85GREREpG89t38l4VizZ90Jpaf3uF97CG7/Huv1N9d1rXXO4Vvb8XlPgovb3aj1PCvT/m2vk2wPRvM7AQJO0HM/RGLhJOcv2b1dIiIiIiIiIiIiKeVW2utqz4JJ19jrbcFo+fXm1heAhkvMEovCX5fBzsczm1/1Mljw88RQNICp18PrNyeW170Pymaa+zkl9r4dB8pmwNz/iS/3CkarXgYjTvPuZ+SFicFrXQVLoHg8zPwqzPjK4dCqLmFUde+DJ863txfpbvdT8Of5vdtnoACih8z9ykWQVwP7/m7Ky2aCEzBhiWXHQMk0EwIX3mley4ECwAF/jglr84XAHzLhg3k1JojN5+8cy3Wh5V0TWrj/H6a+eGLvbUtrE7Rsh6Jx3r87REREREREREREBgC9syUiIiIiIiIiIjLARN2oZ3nASe/tvlxfHvvbGxPKw7EW60X+tsCGoaS3QyvSDaGzjuv2LJCtt2QSCNfT8DgRERGRbOC6LqsaH/SsK/AXMadoUY/7th9jDvXjJ3swWkc0Wm/uu946to26bdbztWwPRgOzT6PticFo4VhLkvMXnSuKiIiIiIiIiMgA5/igbBY0vphYN+qi5G2rlsDOVYnlEz3C1HwBWPQruK8WYim+qOHi2OG5OcnXq3ufdzBa/XnJ2yVTe6YJaQrviC8fdzUUjoYJ/wxruwSphcpNQBtA+bGw57nEPqff2HnfceJD0QCGLzUBUd33S/5IOGc93OMnYyc9Cn89JfN2oUqI7Mq8nQx8HaFoALueiK/b8+zRmUPVEhM02NoIhzZCy1bw55twtWAh5NVC8SSIRWDz700428R/horjoHUfvHw9bLynsz9fCKbfAFOu6/x94rqw7U+w+bfQvAVqzjB9OD7zM7hztSkvm2FC4LpqbQTHb36GY+1AzPzsioiIiIiIiIiI9AEFo4mISK/YtGkTt912GytXrmTt2rU0NjbS1tb5weSdd97J5Zdf3n8TFBERERERGUSirvc/yAac9P7RLFmAgC3kayBcxN/XugeWdehJQJnrutZ93f35sY1rC7E7WiJu+uMr2ENEREQGsnUtf2db60bPuoUlpxD05fS4b+sx5hA/fnKTBKM5fRCMlsmxdbJg5GT95PryM5pTfwg5uRziQEJ5xA3bQ7QdBaOJiIiIiIiIiMggMPZKeOFT8WVF46EyxRdjjL40MRgtpwxqVnivn1sJx94Oz14Jli9ZACd1IFqHYXNgxtfglS92lo35CIy6IL32Xvy5cMpqePajsPtpE8Q07Qsw8nDY2pxbTHjT9j+buoYPQWGDqas71yMYzYH69yUfM1QODZfDutvjyyd9zoQ1+UImCCpdEz4NxRPTX78rpwchbEsfhIPrTJhU44sQKITqk+HVGyG8s2fzkKFp5yrvsMVk3n3IXheLwMtfMIvN9kdhzWfN767WxC/aTClQCBM/A9O+BP4caDtofg7y66DpFdj6J/NzPP6TUFBvgtdClVA+14SquW7877zuj0VEREREREREZMhSMJqISD8bPXo0Gzd2Xkzz2GOPsXTp0v6bUA/cfvvtfPrTnyYSyeDDRhEREREREemxdss/xwac9N7uswcItFhDBGxthhJbOFwkFsZ1XZwM/ikv6rYRI+ZZ1z0cI9m4/SmT8XsSHiciIiKSLVY2PehZ7uCwuGT5EfVtO84Ox1oyPsYcTNIJRrMdJ/ckQDiTY9tk/YfbkwWjZX/YdLJzD9s+GgjbJSIiIiIiIiIiktL4T0DbPnjzOxDZY4K/FtxlwnySGXulCcN641sQPWTCuI7/JQSSfFHCmMtMaNYfxkKsNbF+5s3pz9txTGjZ6Etg7/NQMhWKJx95qFDxeFi2GtpbTdBR9zFHntcZlNbVhE/Djsdg+yMdK8Oc70DBqNRjzvuBWW/LfWb/NXwYxl5h6qZ9EV75UmKbmjNMKJTbHl/e8GHIHW4Cm6IHE9vl15nnrbv680wY3prPpp5vh8pFUGP5rKDpdXjr1vT7EulPPQlFA/Mz9vrXzJLM2z9K3VegCIJFULHA/D5t3moCJX05Zn7tERPe2HAZVBxr76e10fTV+BJED0DJNNOPiIiIiIiIiIgMKApGExGRI/LAAw9w9dVX47r2C1S6evzxxznxxBPfe/zlL3+ZG2+8sY9mJyIiIiIiMjhF3TbP8oATTKt99+CtDpFYi/Uif13sbt9vLi6tboSQk354XLLghe792IPsMg9k6029FR4hIiIiks32Rffy4oGnPeumFsyhImf4EfWf63gfY8ZoJ+pGCaZ5jD/YJAtG43Awmv28JvNQ3oxCf5Osm+y4N9eX5ELILGHbp+Ek54q2NiIiIiIiIiIiIgOK48DU62DKv0PscPBOuu1m3GSCuyJ7IK86vXb5dbDk/+Dx07v154fRF2c2d4DC0Wbpbd1D0VIJFsLSB2DP83BwHVQuhMIx6bX1+U3I27QvJNY1fAhe/w9ob+6yfg7M+k8YdxU8/3FoeRdyq2DOd6F8rlmn/jxYf1d8X/l1cMpqeGgOtO6Nrxt7JRRP8A5Gm/pF2PQrOLA2vnzc1fZtKpthrwuWQltTYnnNGbD4N3BwPYTKzTZ1aHzFbE97BEZdBFWLOutcF8I7IVRh5vinKd7jTv0izPwq7H8TGl+G3c+YAMBD62Hz7+zzFTkaogfMsvm3ydd76/sw4nTzM/Duw7BzFebzoySfL+UMg1n/DcNPhO2Pwr7XoOk1aNkG+/9h6qtPgeplUDrd/B3Iq4Xcit7cQhERERERERERyYCC0URE5Ihcd911caFoH/zgB7niiiuor68nGOy8WKeiQh8GiIiIiIiI9JY2azBaem/3JQvailgvdk8/9GuwSrYPwrGWjPZRxE0WmJBeMJpLjDa3lRwnlPa4vcn2WjnSdUVERESyyZNNjxCj3bPuhLIVR9x/smPIiNtCkKEZjJbsupWOXGD7eU3mx56ZHdvaA4rDsWaPFsZACBBLeq7oegfC6VxRREREREREREQGFcdJPxStK18w/VC0DjXLYc534OUvQPSgCbRa8DMoGJX5+NnEF4DKBWbpLQWj4OTH4G//DI0vmdCiWf8NJVPMUnuWCQXLrep8Exlg3q0mfGzLHwAXyo+D439hQuSWrYZnr4Q9z5n+p99onhOAmf8BL1/X2U/5cTDpszDhk/DsVbDjr5BfC5M+Bw2X2uddcyaeYU3D5sGI0+D1ryW2GXe1eQ2WTE6sK5sBZd/yHstxIO/wl7nk19nnNHypuS2eaJZRF3TWRZvh7dth52OQOwImX2uC7e6rM+FRXurfb9rl15twurzhUNAA5cfCc1ebwDWRvvDug2Z5T7Iv3cEEIT770eT1m35lllTKZpvfAfkjTUhjyxbYvxaCxeZn5uA6KDvG/K6qOgECRbDtftjzgqkrbIDKxSb00fEl9u+6cGij+bnOr/deR0RERERERERkCFAwmoiI9Nibb77JK6+88t7jFStW8Itf/KIfZyQiIiIiIjI0tLtRz/KAk15oQq7lgvxwrIVIzHKxu5P9F/H3Ndt+A6z7rSfrdw9MSD5uCzm+/gpGS3+bM90/IiIiItmg3Y2yet/DnnWVwWom5x9zxGMkDUaLhSn0Fx/xGAORm+TiFQdzUZstaKwnx5620C8vMdqJum0EnRyPsb0D1vwECPqyP+TOvk/t54rJzldEREREREREREQkhYn/DOM/Ac1bTDiXwm/sKo6F054BN5a4n7qGgnUVKIAl95nQNBwTPtcRnFYyBU59Ctpbwd/t/d6p/w41K2DnKhNyNPxECBx+L3TpH73n4CW/BsZcDu/c2WWuPpjyr1A+H9b/DJo3ddZVLoKa01P3m0qwCCqPh11PxpeHys0YNoF8mHSNWbqqXGQPi1r8W3t/x/wHPHmRd90FB83zAxBrh1ir2cfrfwFPW8LmVrwCudXw4udh/V2mLFgKE/4Jqk+G7Y/C2u9B277ONgUNJrytcIwZr3weRA/Bw8fa5y2SSuMas3jZtfrw7RP29juAdT+BZy5Pb7z682HYHDjwJuAzr+WcUvP3I2+EWWfnE7DzcROMWHs2hIaZ8i1/MIGSuVUw6iLTrruOn8FDG2D3UxAsMeGNwaL05iciIiIiIiIi0kcUjCYiIj32wgsvxD0+//zz+2kmIiIiIiIiQ0vUbfMsTzcYzRa+EImFCVsu5E8W2DBUJA+t8N5vNrb97DVOsnHDsRaK8PiHtaMgk8CJZNsrIiIikq1ePvgc+6J7PesWly7H1wsXqNmCqCDzY8zBxR6MRkcwmmM7r8l8v2XaJhILE/QlBqO1WPrJ9Q+M8DD7uWKLdR/pXFFEREREREREROQI+YJQ2NDfsxg4evLefG6Vva57KFqHshlmOdI5HHu7CWHb+icTTDb2is7ws1Ofgrd/BPv+ARXzTcCXr5cu9Zv5DVh5BrTtPzxnP8z6Fvh78OV7Yz7iHYxWfUrydiNOBV8IYpH48vJjO0PRAHx+6Pi8pPJ47758QRNyFiyEBT81S3fDl8L0L0PLdrOvA/lJJueQ/LOIo2T0pbDh7sTyQIEJcBMB2Pwbs3T32lcz6+f5T2Q+dv355vfHvteheAJE9prgyNY9EG2GfX83v+NireDPM7e5VRCq7Lxta4I9z0P0IFQtgRHLzXoH10PpNGhtAlyzbkd4pYiIiIiIiIgICkYTEZEjsGPHjrjHdXV1/TQTERERERGRoSPmthMj5lmXdjCa431RfsQNE3G9w65ykwQ2DBW9GYxmCxVz8BF04v/pNnlYRvrhZL0t4qa/zf05TxEREZGeWtn4gGd50MlhQcnJvTJGsuPsoXwMlTwW7XAwmi3Ey3JOk0w4w30dcVsopDix3BaMNkDOp2z7tDl2iDa3NaM2IiIiIiIiIiIiIoIJ/Zp8rVm6y6+FGV/pm3GrFsHyNbDlPhOwVXsGDJvTs76qTzahZIfWx5ePuzp5u5wys92vf72zzBeEaV+ytykcDcPmwt4X4strVphQtFR8QSioT73e1Ovg9ZsTy3OrILwzdft0lEw1YVI252yEgpGw8OfmcdsBaN4CeSMgpxTW3QHPXuHd1uv56HDMN6F0Jjy+3D72yAth0y/t9Sf80Yy/5ff2dWRo6BrItu81c7vz8fh1dvwl/f7e/I69LlAE0QPmfv5IqFgAw2YDDrjtEGszgWrRQ3DwbTjwlglZG3UxVBwLbQdNefMWaNkGG+81ZXtfMKGU9edBjeXnwnUPh7tlEB4Zi/ZemKWIiIiIiIiIeNKZt4iI9NjBgwfjHgeD6V2ALyIiIiIiIj0XdaPWuoCT3tt9tovyw7EW64X8ycK5hoqAEyTgBDyfg3AvBaOFfLk43b750hZk15Nxe0vUbUv6WuxuKId6iIiIyMC0LbKJt1pe86ybW7yYAn9Rr4wTdHJwcHA9osCG8jGU1/7oznZeE4mFcV034bg6mUyDjm3H4eFYs2d5ri8/o/77i22fHojuy7iNiIiIiIiIiIiIiPSzorEw+V+OvB9fEJatgueuhh2PmzCvyZ+Hkeenbjvjq1AyDbb+EXJKYPSHoHJB8jbH3wuPn25Cj8AEpc370RFvRpzas7yD0cb/E2y4Gw6sTawLlkJbU/pjjLwQNt0L+/7uUemYALS4/ougZHLn48Kx9r6X/A4ePtYERcV1G4CxV0LLu/a2s75lgvJswWjjroLaM03g1L2Wa4TGfRxm3ASvfsWEp0X2QNE4qDwe9rwAjWvs44vYdISiATRvgk2bkgf4Aex/A968JXXf635sllRyq81teHt8efUy8zM57ipYfxds+AVEdpu6k/4CFfPNz+PB9eA4sHMVtIehaglUHJd6XBERERERERHxpGA0EZEhwnVd1qxZwxtvvMHOnTuJRCJUVlZSW1vLokWLKCxM49tzuonFYn0wUxEREREREUkm6rZZ6wJOeoHVIV+uZ3kk1mINX9DF7kbIl0e0/UBCeaahFfYAusTnJugL4idAO4lBZBG3f8Iyemt7RURERLLV6qaHrHUnlK7otXEcxyHky/UM2uqvENzsYA9GczCBZ7bwZheXVjdCyPE+7/GS+fGt9/q252ygnE/Z9tm+6F57mwGybSIiIiIiIiIiIiJyBPLrYOmf2bgopgAAIABJREFUwI2B40u/nePA6IvMkq6isXDmG9D0GvhDUDTB9NObyudDw2Um4KhD6QwY/3Fz/9Ub4tcvGAXH3QWPLzdhRx1qz4a8anj7tsQxRn8QfAF4+frEusrjTeBcMhXzvcPYChrMXOvPg433xtfVnQuhYcn7HTYbcofb632hw7cBKJ0OTa8mrjPqQsitgnnfM4uXlneheYvpw58L/5vkORx3NbxtCb+rOgF2rrS3FelN3QPROmx/BHgE3v5hYt1fT07db+ViyK+H4klQNvPwz7/PBEYWTYCcMmjZZoLV/LnmZzyyG1obIb8G2iMmPHHbA4f7W2TCFWNR87N6aBPgQttB2Pu8uR15vvn9JCIiIiIiIjKAKRhNRGSQ2717NzfffDN33303u3bt8lwnJyeHk046iRtvvJH58+db+9qwYQMNDQ3W+hNPPNGz/M477+QjH/mIZ91NN93ETTfdZO3zscceY+nSpdZ6ERERERGRoSbqJoZjdUg/GM37wvUD0X24lgACW5jaUBNycjlEYjBapqEVmQbQhXy5NMcOevTTP2EZGQdHuEM51ENEREQGmnCshWf3P+ZZ15A7kZG5Y3t1vJCTS5jE46VMj7kGE3ssmgmTg+TnKJFYOKNzmN46ng/Hmj3LB0wwmmWe+9sb7W0yCKATERERERERERERkQEuk1C0Ix2nbEYf9u/AcXeYcLHdT5lgopHnm+ChqddBeAes+zHEIlA6Exb9GorHw8mPw1s/gJatMPwkmHwtHNpowoqat3T2P/EaE/A2/uOw7UHYtbqzzpcDU7+Yeo7+XJh6Pbz0r10nDtNvMPvn2NvBdWHL701V3Tkw/w5zPzQMhs2FvS/E9xmqNKFsTgCCJdC2L3HckR/ovD/mCljzmfj6wnFQtST1/PNGmKVD5eL4/dBh+k0mZM1m3g/hT5NTj9fdol+b53TnE/DCJ03AW6jChFMNmwsH3oSK46G92Tx3oXLzOBYx+/fZKzMfU8TG67Xf1/72afN7pOEywDGv//J50NpkAtOiB83vgmFzTfhaV64bH0gZPQSO3/QnIiIiIiIichQpGE1EZBC77777+PCHP8yBA4kXbHfV2trKQw89xEMPPcRVV13FrbfeSiCgPxEiIiIiIiLZKOq2WesCTnrncraAAK/grc42A+NC/r5mCzSIuJmFVtiCF2yhAvZgtP4Jy8g4GG0Ih3qIiIjIwPPsvsesx2tLSk/v9fFCvjzwCJ7qrxDcrOAmi0YzkgWfhWMtFFOa9nCZHq/aXh/W4/wBcj5lO99JFtA9ULZNRERERERERERERCSO44O6s8zSlS8A874Hs/8bWvdB3vDOuor5ZumqaByc+ixs+pUJSRt+ItQe7jOnDE56BN65E3auMmFkYy6DiuPSm+OUz0NhA2z+nQlUG3Ux1Jxm6oKFsOheaA+bz1UC3d6vP+YbsPJsE/zVsb2z/hN8h794s+5cWH9XfJu8EVCxoPPxxH+G1kZY+10TolZ5PCz4ec8C8mrP8g6HGnkBuO3ebXw5ZvtrzoRt9yfWVy2B3c9ArDW+3PGZIDaAqkWw4hWIHR7D509vvhUL4I1bzPbXnA6jLzX77h7Ltte9D5b8zozz9o9gz3OQO9wEseWNgMaX4PWvpTe2SG9pD5vXY28ac7l5ne9/w/xeyBthAtZ2PWF+VvJHmqA1X44JWswph433mt83FcdBw+VQMikxfM11TQBboCC+XERERERERIY0pd6IZJtYNP5bQqRv5NeZDysGsTvuuIOPfexjxGKxuPKxY8cyZcoU8vPz2bRpE8899xzt7Z0fItx2221s2rSJP/7xjwpHExERERERyULJgtH8RxiM1tttBiPbRf+ZhlbYgtRs+9kWUGALXuhrGW+vgtFERERkgHBdl1VND3rWFfpLmF10fK+PaTsGzDR8dzBxsQejOZh/hLcdI0PfH6/a1rcdn+f58jPqv7/07Fwx1AczERERERERERERERHpZ/5cyEvzffP8Gpj0GUs/IRj/cbP0xMjzzWLjt8yx+mRY/gJs+g3EwiaYrGsg26z/gn2vw94XzOOcMlj06/hrrRwHZtwI028wAUuBI/i8Y/wn4N2HYcdfOstmfLUzIKl4kgla6qr+/Wb/jfyAdzDaxM9A3m9g4//Gl49YHh9oB+kHonUomQLzb0ssL5sNjWsSy8d+tHOcCZ8EPhlfP/I8eOv70Lo3s3l4Of0l+Ns1sHNlZ1mwBGpWwMZ7Mu/P8ZtwupKp5rb789ATBQ0Q2Q3RA0fel2SXd34a//jA2s77W+6Lr1vzufjHO1fC37/Zs3Fzh0N4Bww/CUZdCIFCE4pY0AD5taa+PWJec74cwIG86p4FOYqIiIiIiEjWUOKNSLZp3gJ/aOjvWQx+Z6+HwtH9PYs+89JLL/GJT3wiLhTtmGOO4dZbb2XhwoVx6+7atYsvfelL/OhHnd8A8dBDD3HDDTdw8803x61bV1fH+vXr33t8yy238J3vfOe9x/fccw/HHZf4zTUVFRUsXboUgGeeeYaLL774vbprrrmGz3zG8gEQUF1dnWJrRUREREREhpaoG7XWBZ1gWn0kCxDozTaDkS0oINOAMluQgi14zRqW0U/BaJlub38FuImIiIhk6q2W13i3dbNn3fElpxD0pXfMnQl7+K6C0bx0BKMlC/HKOOjMzfR43nt923Gv7TnONpkGowWdHHxOhhcSiYiIiIiIiIiIiIjI0VEyGaZ/ybsutxJOfQaaXoLWRig/DoKF3us6viMLRQPT94kPwq4nTZBSxQIonX64fwcW/xYeWw7Nhz+nK58Ps28x90d+ADb8Arb/ubO/unOg9kyoXmaC37b8H+BC9Wmw8O4jm2syDR9ODEbLq4ERp6VuO+ZyeOP/Hdn4/lwomwmnPG4etzZCsNTsQ4BNvzLhZl4+aP/8LUHbAfh1sb2+ZKoJ1vNyfiPklJr70RYTkObPhUABrH6/CcjriWFz4cDb0NbUs/YysIV3mNsdfzVLJsZeATNvhtyq3p+XiIiIiIiI9CkFo4mIDEJXXHEFra2t7z1etGgRDz/8MPn5iR9EVFZW8sMf/pBx48bx+c9//r3yb37zm1x88cVMnz79vbJAIMDo0aPfe1xaWhrXV3V1dVx9V4WF5gOSDRs2xJWXlpZa24iIiIiIiEiiqNtmrQukGYyW6cXuPW0zGPVWaIUtSMEWQJdtYRmZb+/QDfUQERGRgWVl44Oe5Q4+FpWmcUFDD2RbCG626whGCzhB/ARoJzE8OtN9l/n63se3mR7nZ5tMA9wGynaJiIiIiIiIiIiIiIgHnx+GzTmK4wVh+FKzdFcyBc5+B/augWARFE80gWwAgTw44Q+w7QFofAnKZkHtWWb+vqAJVYseglgUckr6dhsmftoENK39HzNm6Qw4/pdmHqlM+BRsvAda3u0sG34i1KyAFz9vb9fV9JviH+eUxT+e9iV49cbEdmM+ml7/HYJF5jnZ93fv+pxS73KAYJfnIJAHgfrOxyNOtwejTbsBXvuKd92pT0PFcfFl79wFL3waogc6yyZfC2M+YuYe3mnGanwZdj4Oe//WuZ4vxwTIdQ+Ry683z2+sFRlE1v0Edq42gYJ5I/p7NiIiIiIiIpIBBaOJiAwyjz32GGvWdH77SHFxMb/85S89Q9G6uvbaa1m5ciX3338/ALFYjG9/+9vccccdfTpfERERERERyUxvBKNlevF6wAmk3fdgZ9t34V4KUrCFYtjKMx23t0RcBaOJiIjI4NPUtoeXDz7jWTe9cC7lwb75BulsO9bLBi6xJLXOe/dyfXkcih1IWKOvj1cjrvdzE441e5YPlACx3AwDsRWgLSIiIiIiIiIiIiIivcYXgIpjvev8Iah/n1m8BAr6bl5dOT445maYcRO07oPcivTbFo4xAV9v3wYH3oKKBTD+UybY652fwr7XO9f150N7t8+d/Pkw+oPJxxh1sQkXc7t91tbw4fTn2WHyv8IzlyeWVyw08971ZGJdyTRwnMTyDjWnw5rPJJbn10PJVHu7glGJZWMuM9t7aKOp9+fE1+dWQcOHzGLjutC8CXDMHBwH2iPwS8tnYKFyOOF+eOajsP8f9n4l+xxYC2/fDtNv6O+ZiIiIiIiISAYUjCYiMsjcddddcY8/9alPUVNTk1bbb3zjG+8FowHcc889/OAHPyAUCvXqHEVERERERKTnkgWj+Z303u4LOZldlJ/p+oOZ7cL/TIMUbCEXtv5tQQr9FTiWcXDEEA71EBERkYHjiX1/JmYJ5FpSenqfjZttx3rZwHXtdV2vpQj5cr2D0Xrp+NzG1r+tn1xf8i8wyhahDAPcBkrgm4iIiIiIiIiIiIiISK/yBTMLRetQMApmfj2+zF8Oy1bDujth32swbC6M/ShsfxRe+jfY/waUzoR5P4T8uuT9F0+Axb+HZ6+EyC4IFsOsb8HwEzKfa93Z4M+F9m6fi428AGpWgC8EsUh8Xf15qedXdQLsXBlfPu4qGH4iOH5w2+Pr8usht9q7P38OFI9PvS02jpMYuuYPQV4NtGxLXH/u96HiOCieaA9Guzhm+o3sgT3PwY7HIVQBvhzIKYNDGyBQCLEwvPyFxPb158Pm30DZbGhc0/Ntk0Q7HlMwmoiIiIiIyACjYDQRkUHmiSeeiHt86aWXpt126tSpzJ49mzVrzBun4XCYv/3tbyxcuLBX5ygiIiIiIiI9F3WjnuU+/PgcX1p92MK3emv9wcweWtE7QQq2fW0Lp+uvwLGMt9cNE3Njab9GRURERI62qNvGE01/9qyrCtYwKX9mn43dW+G7g0uSZDQ6k9Fs+663gs5sbP3bg9EGRoBYpsFoma4vIiIiIiIiIiIiIiIiHnLKYPLn4stqzzRLrM0EsaWr7myo3Q7NmyGvDnz+ns9pyR/giQ9A2z5TNu5qmPBPps9Fv4YnL+gMTqs5E6b8a+p+l9wHz10N2x4wwW1jPwZTrwfHB6MvgfU/i19/0mfjvznpaKg7B976QXyZPw9GnGbuj70CttyX2K5sdudcQ+VQc7pZbKZcB1vvh0PrTSBeZbfr9/43yXZ/0E1ef2GLeW62PwprPmdeDx1GXwIb700MoRvsWhv7ewYiIiIiIiKSIQWjiYgMIo2Njaxbt+69x6WlpUyePDmjPhYuXPheMBrA888/r2A0ERERERGRLBJ12zzLg076//wUcIL48BMjvX9s0cXunWz7ItMghYhrCUazBKBlW1iGLfAh4AStr9FWN0KuZftERERE+tvLB55lf7v3P0IvKV3epwGv1hBcyzHjUOAmCUZz4oLR+ja4uMBXxKHYgbTXtx0nD5RzqpCTYYh2huuLiIiIiIiIiIiIiIhIhjIJRevg+KBg1JGPPWIZnLcLml6B/FGQW9FZV3cWvH8n7H4GCkZC0YT0AsxySmHRLyHWbubZtc38n0D+SBM6FiyChstg/NVHvh2ZmnYD7H4aGl8yj31BOPY2yCkxj6uXQagCIrvj2zVcmtk4jmP2o03DZbD+rsTyydea27FXwLqfJNZXnwr+XLOMPB9qz4bILhPW5j/8+d6Mr8IfxniPO/ULMOMr8Ms8iLV6r3Pac7BzlQkbe/3r9m1IV+5wCO848n6SaWvq2/5FRERERESk1ykYTSTb5NfB2ev7exaDX35df8+gT+zatSvu8fjx43Ey/FaMSZMmxT3euXPnEc9LREREREREek/UjXqW+5303+pzHIeQL5eW2KG01s8dIBfxHw22gDJbAIKNLUjB1r/tOeivsAzb/EsCZexp834vIRIL67UkIiIiWWtl04Oe5TlOiONKTurTsbMtBDcb2GPR4vXGvnNd13o8Xxwo5VBresFoUbfNGhKcN0COg0O+UIbrD4ztEhERERERERERERERkR7yBWHYHO+6YJEJT+tRv36PsgDM/KpZ+lNeNSx7CnathpbtULUECkd31vtDcNJf4Inz4cBb4MuB8Z+Cidf07jxGnu8djDbyAnNbc6Z3MNqYy+Mf+3Mgvza+LK/GPm71ySa0bs534PlPJNZXHg/l88ziuvZgtJIpZj8+dxVs+pX3OufvhZyyzsdt+8GfB4c2mr4LG8zrItYOe56Dtd+FPc9C82aItZlrRCd+1gTVOQ7seQHW/9T0013rPvs2i4iIiIiISFZSMJpItvEF4t8oE8lAY2Nj3OOSkpKM++jeZu/evUc0JxEREREREeldtgvtA05m3wyZ68tLOxjNFjYwFFkDyjIORvNe3xYs0FuBbL3FFjRR7E8WjNYClHnWiYiIiPSnrZENvN3yumfdvOIl5PsL+3T8bDvWyw72aDSHzi8F6o1gtKgbJUa7Z11xoIx3Wzd79J/43CR7vgZKgJjP8ZPjhGh1I2mtr3NFERERERERERERERERGZQCeTDiVHt92Qw4ay0c2mxCuQJ98HlgzRkw9Yvw+tfMY8cHs79tAsmA/8/encfHUR72H//O7C3r9CFfMsjGF+bwgc0NxpyOCwRCEiAHOZq7JKGE8kubNnZ+ISRpaBNISEgoDTQl9JcmpKQOkNJgm9MhmBsbbIMNvvAtWedqj/n9MdjSaueZ3ZVWK630eb9e85LmeeZ55pnZtfyMtPMdTf4LNyStZ+jY5EukKe/L3XcgIk1cKu16OLM8MkYae4b7fcN7pWf/SnLSmdtM+UD395Ylo4bLpHCNNP2z3sFo4dFSqDazLFTtfq2anlluB6Rxp7mLn6kflSZfLK3yeO0Sze6xWLZ/HwAAAACAIYMrOAAYRhwn8yYRy++Xi3kqRh8AAAAAgOJJOUnP8qBV2DMQCrmBvVxu4i+FiNX/4AV3e1Mwmnf/pteg0EC2YjEGowVrPcv92gAAAAy2xw4+bKxbXLtswPdfrPDd4cTJMxjNdO4KCZXzO881Qe9gX6/+O1PmfmJ2Rd7jGWyFXSsSjAYAAAAAAAAAAIARbNSUgQlFk9zQsbnflN63RzrvUemKfdKsL3XX2yHp9F9KS/4gzfuOtPj30lm/dUPP8jHvu1J0QmZ/C38sBcLuemyidPp9kh3u3qbxo9KMz2f2M+2T3v03ftT9Wn+WFBmXXX/UB/2D1foqbPoMoyO9tFzavabvfae6pMShvrcHAAAAABSksLslAQBD2ujRozPWm5ubC+6jd5u6Ou8bPgAAAAAAgyPhJDzLg1aooH4KCTvjZvduxtAKJ//gBcdxjCFh5mA07/LOQQobMx1vtSE4QhrZwR4AAGDo6ki16ZlDqz3rjokdq4bo1AEfg2muR7CsQY8Px0csU6hc/ufOby5fHfCe33r17xfGVk5h01E7ppZUfn9jNF0fAQAAAAAAAAAAACiS6DgpusS7zg5IEy90l0LVnSi95wVp10Nu2NfEi6TqWZnbHP1BadJ7pP3PSFXTpVFHZ/dz7FeknSulzj3dZdM+KdXMfneMIems+6U1l0iJJrds3FnS3G8VPuZ8hMwPd9WrN7lLxvY10ugFkh11g+5qTpAsW5pwgRQZLXXulcJ10ssrpC13S6m4G/Z22r+5561lszTmZKlicu6xpbqk9relQ6+721fNcvfVsVMa1ej+Lbz5NSnVJlVOl0JVbj0AAAAAjFAEowHAMDJuXObTEzZu3FhwH6+//nrGen19fb/GBAAAAAAorqQxGK2wX/VFCwg7Ixitm+lcJJ2kkk4ir4C6pJNQWmlD/97BAuawjMEJGzPtt8KuVNAKeb5P/YIiAAAABsvaQ6sUd7xDtM6uXVqSMZjmgPF0pxzHkTUQT8ke4hzHMdb1PBvGebLhNfXc1idErcYQ/OvVf2e63dhP1K7IezyDrZDrP64VAQAAAAAAAAAAgDIWGy9N+7j/NqEqacJ55vqaOdKFa6Utv3BDv+qXSI0fytym/kzp8p3S/rVSZJzbZqACv8I1hW2faJZ2ryqszZ7HpAcazfUVDVKqQ4rvdwPOWjcX1n9P486S5nzVfQ3ssJTukgIRKdEqBSskWZKTlKyg5KSk1jek2EQ3qK51izT6JDfgzUuixW0fqsx/PJ173Nc61SE1XC7VHtf3YwMAAACAHAhGA4BhpK6uTsccc4zeeOMNSVJTU5M2bNigY489Nu8+nnrqqYz1RYsWFXWMI/HmHQAAAAAopmTaFIyWO5CrJ1P4gpdoAdsOd37nLZ7uVDCQ+3XwC14wBdaZXoOE06WUk1LACuTcbzGZjiFiRxWxo0qmst+nfscNAAAwGBzH0WNND3vWVQVqNK/y9JKMI2J5zwHTSinpJBSywiUZx1DiyC8YrfsD8qZ5ciEBwn4BvtWmYDSPNqZ9BhRUyC7sem0wFXKtWMi2AAAAAAAAAAAAAIapyqnSCV/33yYYk8YvGfixhAoMRhsI7du7v+9PKJok7X1cWvN4//robfwSqe0td3FSbtnML0pdTVK03g0/2/oLqW6eNOkvpMkXSzv+W3r15sx+XvoHaeaXpOpZUstGKZ2UGi5120XrJceRvO4ldRwp1S5ZASnAw7gAAAAAmBGMBgDDzJlnnnkkGE2S7r33Xt100015td2wYYPWrVt3ZD0ajeqkk04q6vgikUjGejweL2r/AAAAADDcpZT0LC84GM0q4GZ3Q1DDSOR3439nukOjAlU5+4g75uAF0+vit9+udKdigVE591tMfsFoUTumtlRLdhuHYDQAADC0vN7+knZ3bfesO6PmwpKFWeUK3w3ZIy8YzU/Pj01HDMHChQSjmea2lmxVBqqNbRzHyXggUIdhn9FAeYWHEaINAAAAAAAAAAAAoGwFIlLFUVL724M9kqFr96rsso0/zC47+IK7vPotc18bb8tc33R7YWMZc7I0+VLJDrqBaWMWSvWLpTJ6+BgAAACAgUMwGgAMM9dcc43uueeeI+s/+tGPdO2112rChAk52/7t3/5txvpVV12VFWTWX7W1tRnru3btKmr/AAAAADDcJZ2EZ3mwwA8BmAIEvHCzeze/c2EKVOit0yekwfS65NrvUAlGi9oxY5Ce33EDAAAMhjVND3mWW7J1Zu2FJRtH1GduHnc6VCnvcK7hzJHjU9sdRmYORss/lDdX6K9pfAmnS2Gr++9opjC2crueKiQYu5DrSgAAAAAAAAAAAAAoiakfkV69ebBHgXzsf8Zdept8qRSulWqOk0LV0oFn3UC39m3SpL+QImOlQExqeK9Uf45kWZJll3z4AAAAAAYWwWgAMMyce+65mjdvnl544QVJUnNzs66++mo9+OCDisXMN158//vf1wMPPHBk3bIs/fVf/3XRxzdt2jSFw2F1dXVJklatWqVEIqFQiBR/AAAAAMhHIm0IRivwV32F3MAeKbMb+QeS33kzBSFkb2cOaTD17xdOMBiBY6Z9Ruyo8f1SSDgFAADAQDuY2KeXWj0+XCvpxMqTNTo0rmRj8Z9jjtQ5lDkYzcojGK2QObJp26gd870W6kx3KGxHMta9+6nIeyxDQUHXigWEqAEAAAAAAAAAAABASZzwf6VEq7TxtsEeCfpqx+/Mddv/q/v7jT/s/j5UK4XrpMho92vG0rusx3qo2g1WAwAAADDkEIwGAEPMO++8o61bt/apbWNjoyTprrvu0mmnnXYkfGz16tU666yzdPvtt+uUU07JaLNv3z4tX75cP/7xjzPKb7zxRp144ol9GoefcDisM844Q6tWrZIkvf3227r00kv1uc99TjNmzFBFRebNIRMmTFA0yk0VAAAAAHBYSknP8qBdWOB0tICwM4LRuoWtiCxZcjyCGvINrTBtZ8lWyAp71vm9BnGn9GEZpmOI2DFjkMLIDfUAAABD0RPNf5CjtGfd4tr3lHQsvnO9ETqHSjvmYLQeuWhFCeU1BRy7ob+5gpFrj6x3pts9tyvk2mso4FoRAAAAAAAAAAAAQFmzA9LCW6UFt0g7Vkr7nnbDtFo2DfbIMJASTe7StqWwdpb9bqiaR6BaVshar/VgJaFqAAAAwAAiGA0Ahpirr766z22dd28SWbBggX70ox/pc5/7nNJp96aedevW6dRTT9X06dN13HHHKRqNatu2bXrmmWeUTGbeVH/BBRfom9/8Zt8PIofrr7/+SDCaJD388MN6+OGHPbddtWqVzjnnnAEbCwAAAACUm2TaEIxmFfarPr8b/Puz7XBnWZYidlSdHuEJXmVeTCENUTsqy/ABiYgdMfaX736LJekkjAF9ESvqE05R2nECAACYJJ2Enmx6xLNufLhBsyqK/+AYPyErLEu2Z1Bbqed6Q4c5GM3qkYxmmnt2OXGlnZRsK5BzT8bQXytXMFpmO9NrVW7BaFwrAgAAAAAAAAAAABgW7JA05XJ3OeZT0spZ3tud9ENp+mek302TOnZ4bzN+idS6RWrbOmDDxSBx0lLXAXcplBXMDlPLK2CtTgpUEKoGAAAA5EAwGgAMU5/+9KdVV1enT3ziE2ptbT1SvnnzZm3evNnY7pOf/KTuuOMOhUKhARvbxRdfrJtuuknLly9XKpUasP0AAAAAwHCUdBKe5UGrsOu4Qm7OL7cb+QdaxI55hh7kG/xl2s4U6iBJthVQyAor4XT1eb/FYgqOkNxgBFM4AsFoAABgqHi+5WkdSjV51p1du9QYVjtQusN327Pq/OZew5mTbzCa5RdcFlcsUJFzX3HHPD/3uxbqfU3g9fod7qecFBaMVl7HBgAAAAAAAAAAAGCEGnWUZEekdDy7bsJ5UiAszfyC9OLXvNuf96jkONILX5U23ialOqW6+dIp/yKNXtC93S8NnzeITZQu39m9vv4fpRf+j/e2l213A7feus/dX88xh+uksadJHTul8BgpEJV2/t7d3unxwNvq2W5Z8yvZ/QdiUorPcxaFk5Tie92lUHY4d6CaKWQtwEPMAAAAMDIQjAYAw9j73/9+nX322br55pt17733at++fZ7bhUIhLVmyRMuXL9fpp59ekrF97Wtf0+WXX65f/OIXeuqpp7Rx40Y1Nzero4NfqgEAAACAH1MwWsAq7Fd9hd3szh+o44m2AAAgAElEQVTQezKFL3iFpRWyXa7zHLVjSqSGejBazCcYbWSGegAAgKHnsaaHPMsjVlSnVi8p8Wje3bcxGI2/m/jxCy6LO52KKY9gNMM8NWJHFbRCCiiolJJZ9XEns52pn5idewxDSSFhZ4RoAwAAAAAAAAAAACgLgag05X1u2FhPdfPcEDFJmnSxdzDajM+7Xy1Lmv9d6YSvS+kuKVQjWXbmtpGxUtzjHs5jPpO5PuECSR7BaMEqN0TNsqXZ17lLPtIp96sdyK7r3CPteUyqminVHi81b5AePN67n+rZ0qHXvOtq5kjLXpGeu156/Qf5jQtm6S6pc7e7FCoQLTBQrcd6IFz8YwEAAAAGCMFoADDItm7dOqD919fX6wc/+IH++Z//WevWrdNrr72mvXv3Kh6Pa+zYsWpoaNCZZ56pqqqqgvtesWKFVqxY0eexzZkzR9/+9rf73B4AAAAARqKkk31DviQFrVBB/XCze9+Zzke+wV/G4AVD4NqRejuqllRzn/dbLH4BcBE72u/zAwAAMJC2d27RGx0bPOtOrj5HscCoEo/IZZoLjtQ5lCPHWGep+wnbfuHC+YbKmc7x4XltxI6qPd2as12HR7Cd2768rqcKuf4jRBsAAAAAAAAAAABA2Vj4I6ljp7RnjbtePUs68z/dwDNJqjtRmvYJ6c2fd7eJTZZmfyWzn+AoSYbPFjR+xDs0rPHqzPW6eVLVDKllU2b50Vdlh63lwysQ7bBovXTU+7vXYxPM2055n/Tqzd51jR91z9VJ33eD3faskZykNOtL0qijpWc+L22+w9z3pW9KO/5bWvdl7/rj/s4Nldv8M3MfcKU6pY5d7lKoQIUbkBbpFZ4W8ijLCFirlezCPqsOAAAA9BfBaAAwQti2rUWLFmnRokWDPRQAAAAAQD8knYRneWgAg9G42T2T6XzEnTyDFxxDMFqO12SoBI757S9qx4yhHn6BagAAAKWypulBY93ZdUtLOJJM5jnmyAxGk08wmoocjGaapx7uO2rHDMFoHb7rh5Vb0HS+14qWLIWtyACPBgAAAAAAAAAAAACKJDJaOn+11LpVSnVI1bO7Q9EOO+UuaeJF0u7VUmWjGwZWMSn/fcy+XtqxUmrd3F026zo3hK0ny5LO/p205mKp9Q23bOJSacEthR9XocJ1UqhGSmQ/qFdT3iftXiXtezq7rme42uRl7tLT1I/4B6ONapQmnO9dV3GUNPdb7vdjT5fWftx7u6kfk7bc41034QJ3jPEDUtfBXkuPMq/jHklS7VJHu9Sxo/C2wcpeYWl5BqyFav3D+wAAAAADgtEAAAAAAACAMmIKRgsWGoxmCK/y3LbMbuQfaKbzkW9AmWm7XAF0pv2WOnDMFPhgyVLICpvPz4gN9QAAAENFe6pVfz70mGfd9NgcTY40lnZAPZjCs0ZquKxvLJrVMxjNfK3S2e/5eezdr/kF/3am2z23K79gtPyuFSN2NOO1AAAAAAAAAAAAAICyUNlorrMs6egr3aUvRk2RLlorbfuN1LpFql/sBq15qZktXbJJOrTBDSqrmNy3fRbKst0AsTfuyiyvminVLZBmf0V64gPK+Mv9lCukqun+/Y49XQpWScmW7Lrx57nntmaONO4sae/jmfUzr+3+flSjeR+1J5jrZn9FmmQ41z2lU1KiyT887fDSO2TN69hGkmSru7S/XXjbUE1mWFrvgDWvkLXwaClU7b5nAQAAMCIRjAYAAAAAAACUEVMwWsAq7Fd9hdycH7YiBfU93PU3tMIULJbrNelvIFuxmPYXtiKyLdt4HKbjBgAAKJW1zY+qy4l71p1du8yzvFSGylxvqHAcv2i0bgEroJAVVsLpyqrLP7jYf35uCgrr3b/peqDsgtHyDNEuJGwbAAAAAAAAAAAAAEaMyBhp+mfy2/ZwWFipLfi+1LZNeud/3PXKadLZD7jjOeoK9/vNP5Xie6WJS6Xj/z53n5YlvXeL9JuxmeV2SDr2b7rXF/9O+vPnpR2/d4Owpn9WOvaG7vqxp7ghWonmzH4qjpKqZpj3H6rKPUZJsgPuaxQZk9/2PaUTUlfvUDWPQLXeZfEDUsr7YWsjRqLZXdq2FtjQksK1PoFqPgFrwSr3fQkAAICyRTAaAAAAAAAAUEaSTtKzPGiFCurHdHN/1nZWVDZP2sqQbzCCiWm7XK+JKXgg30C2Yok7pvEXFhwBAABQSmknrceaHvasqw7UaV7VKSUeUSbzHGqkhsuag9FsZV6fROyoEimvYLT8zp1pPn34NTGH1mW2MwejVeQ1jqEi3yA303kBAAAAAAAAAAAAAAxxoSrp3D+44WiJQ1LNsVLPzwo3XOIuhYqMka5KSK/9k7TrD1J0ohsSN35x9zbhWumM+yQnnbnPwwJRac6N0otfyyw//mvSmJO992sFpJrjCh9voeyQFB3nLoVKdeUIVPMJWEuN5M/fOt3no1BWwH2/hXqEpfkFqvUsC44iVA0AAGAIIBgNAAAAAAAAKCNJJ+FZPmDBaNzsnsV0TvINKMsVvGDe79AIHMsdHDE0AtwAAAB6er39Je1J7PSsO7P2woLn08U2VOZ6Q4U5Fi1bxI6pNXUoq7zfwcWW//y2dzvzPLm8rqnyv1bMbzsAAAAAAAAAAAAAwBA1akrx+7SD0pz/4y5+/B7afNzfSaMapbd/LQUi0tFXSw2XunXjzpL2Pp65/cSLpHBNv4Y94AJhKTbeXQqV6nSDweI+4WmmsnT2g+ZGDCclxfe7S2uBbe2QFKp1A9VCdVLNbGn656WxhnC+QqTi0r6npMhYN9CPB5gDAAAYEYwGAAAAAAAAlJGkk/QsD1qF/aov35vzo2V2E38pmM5JPM/gL2PwQo5zbdyvU9rAMdP4D4/PFJCQcLqUdlKyrcCAjQ0AAMBkTdODnuW2bJ1Zc2GJR5ONcNnezNFoljKfyHs4wKy3vOfnjv/8PGKZ5v/d7ZJOwhhiHSuza6p8rxXLLfANAAAAAAAAAAAAAFBGGj/kLr2d8Utp9TKp6WV3ffQi6ZR/Le3YSi0QlWIT3aUQjiOlOrzD07JC1jy2MXxmfURIJ6T4XneRpP1rpTfvdt9v486QxpwiVc+UAjEpOEoKVrpf7bBkWeZ+3/qV9Nx1Useu7rKTbpUmXCDVHJvf2BIt0p7H3PC2qunS3qeldFxqfUOKTpQmLXXLAQAAhgGC0QAAAAAAAIAyYrrZPmiFCuonYAUUssJKOP5PAjMFNIxkpnNiCgzL2s4UvGAIdMi931IHo3nv7/D4/ML04um4YoGKARkXAACAyYHEXr3c+qxn3dzKU1UbGlPiEWUzh+/mN8ccbhyfYDT1DkbrZ6hcX+e3Pfv321e5BYjlG45NiDYAAAAAAAAAAAAAoOQqGqT3vCgdet0Nhqqc5h9ENZJZlhSscJeKhsLaOo6UbM0OS+sdoNY7YC1xOFQtPTDHNNgO/NldTKxgZlDaka+jpP3PuOevt3VfNvcXGSPFGqT4HindJcX35x7jOkkTzpfmfls6sE5q3ybVnihN/gt3HJL7+qbj0rb/csPfxp4qjVmU2U/63XsW7MLuUQAAACgmgtEAAAAAAACAMpIyPH0raBX+q76IHVMilSsYjZvdezOdk/yDFwzBaDlC6Ez7LXVYRq7x+71n4ukOgtEAAEDJPd70sBx5f+Bycd17SjwabxHLMNczhOoOd45jDkbr/XlmY6hcHufOcRzj/PZwv8aA4h79d6bM1wIxu7zmvyErLEtWjnA6QrQBAAAAAAAAAAAAAIPEsqSa2YM9iuHNsqRQlbuMOqqwtk5aSrSYw9RMZfEDUqJZyvF5hSHNSbrHkGguTn/x/fmFofX2zv+6S2+BmBQZJ7W/7d3uwrXS/j9Lr39fan3TLas5Tjr2b6SjPuAGEsqRaua43zdvkNKdUuUxbvjaroelZJtUv1iqOqbwcQMAAPRCMBoAAAAAAABQRpJOwrM8aBX+NKaIHVVryv8Pr9zsni1iGYIR8gwoixsC1HKF0Jlei3wD2YrFPP53g9EM50caucEeAABg8CTSCT3Z7PFBP0kTw1M0I3Z8iUfkzRi+VeIQ3KHCL5TLUmYyWn/OXcLpMu4rkisYrce82G9OXm5h05ZlKWJHc15ncK0IAAAAAAAAAAAAAACyWLYUrnEXNRbW1km7oWKHg9JyBqr1WE8cGoijGV5SHeZQNEn6n1Ozy5pfldZ+3F0KMXqhVDFZsoLue6JqphSuk2Z8QerYKb34Nent/+duG6yUjvs7KTrBfS2j46TJl0qpTskKSJExUvN6qe0tafQCKdUubf6Z+5pH6qX6s6Sxp0nBCslxsp+6CAAAyhbBaAAAAAAAAEAZSRiD0Qr/VZ9fgNVh0TK7ib8UTOfEFBiW73a5ggXM+y1tWIZpf93BEeb3TL7nCAAAoFiea3nSGAZ8du17ZA2RD8LlE741svg9/bd3MJr3/DOfAGH/QDP3Ncln/u/3OkXtipzjGGoidizn+eNaEQAAAAAAAAAAAAAAFJVlu+FZ4TqpclphbdNJN1Std6Bawitkrdd6snVgjmckO/Csu/T2/A3ZZclW6cW/K96+Q7Xueygy+t33U6+vkdHeZYEKQtUAABhiCEYDAAAAAAAAykjSGIwWKrivfG5kzxXWNRIZgxGcTqWdtGzLNrZ1HMcYLJbr9ehP4EMxxR1DMJp1OBgtYmxb6rECAAA81vSQZ3nEiurk6nNKOxgfBKNlyj8Wze/c5Q4Q9ju/h/vNp//OdLvnNgEFFbILv1YbbPmEaHOtCAAAAAAAAAAAAAAAhgw7KEXGuEuh0olewWkHpd2rpA3fK/44MfASTe7StqWwdnaoV2Da6DwD1mrdtgAAoOgIRgMAAAAAAADKSMpJepb3JRgtnxvZ8wlPG2n8zluXE1fUMp+zpJNQWumC+/Wrj6c75TiOrBI9ocoUHnF4fLYVUMgKK+F0ebTNHU4BAABQLG93vqEtna971p1Ss0SxQEWJR2RmCsEt9VxvqHAKiEYzBhfnESrnNz893G9+wWje+4oGyvN6Kp9rxYjPdQ8AAAAAAAAAAAAAAEDZsENStN5dDpv0HqnhMmndddKBPw/e2FA66YTUudtdChWsMoeo+QWrBaukEfa5MAAACkEwGgAAAAAAAFAm0k7KGKrVl2C0fELP8rkhfqQxhVZIbviC33n1C17Ida5NgWtppZR0EgpZYd/2xWI6hp7jj9oxJVIEowEAgMG1pulBY93Zte8p4UhyM80x00qXdK43dJiD0axewWj5BJeZmALNevbrF1qXq59yDZrmWhEAAAAAAAAAAAAAAIx4406Xlj4jtWyW9r/71Q5LkbFSxRSp7kQp2SYlW92viVYp1eZdlmiVNt8x2EeEgZJscZf2twtrZwXMoWm5AtYCkYE5luEgnZT2PSUdeF6qmSONPVUKVkrxvVKoJvvcOWnJst1/px27pIpJUnCUuW/73ZiedEpS2g1XBAAMCILRAAAAAAAAgDKRdJLGuqBV+K/68rmRPWII4xrJ/M5bZ7pDNT5tfYMXcpxrv/3G050K2aUJyzAdQ8/xReyoWlLNWdsQjAYAAEqlPdWqZw897lk3I3a8JkWOKvGI/EWsoTHXGyrMsWiS1espqaZzF/eZex/ZxvGenwYUPBI+bQxGczqVdtKyLds8Ry7T6ym/MOhCtgEAAAAAAAAAAAAAACh7VdPdpb+6Dkpv/7/s8tN/KbVskl5e7t1u4e3SqKPcMKxHzvTeZuJF0mm/kLY/ID3z6ez6iilS7Vxp58q+jx/F56Sk+D53KVSgwiNEzSdY7XB5qMYNARuuWt6QnvigdPA573orIMUmSe3b/PupniUd8xk3IK1jl/TO/0iHXpe6DnhvHxkjTVwqVU6T9j/rBihOeZ/UcGn3+U51Sa98Q9rzuBSulWZ8Xpr07gNe0ynJSbj76Njlth+9wG3rOFLbFrcuFZcOrXdfz4bLpNjEvp0nACgTBKMBAAAAAAAAZSLpJIx1h2/aL0R+N7vnDk8baaI+5y1X8Ffc8QlGy3GufffrdKhS1b7ti8V0jD3HZ3pv+QXDAQAAFNPTzX9UwunyrFtct6zEo8ktmiN8t1RzvSHD8Y5Gs2RllfkFl+ViCk/LmNv6hNZ1OXFFrZg60+2e9bFARc4xDEV+1x6FbAMAAAAAAAAAAAAAAIB3Tf+MtO0/JSfdXRabLE25XNq92txu2selYIXbLjbRDU3qrfZEKTpOmv4p6ZhPukFrbW9LdXOlaH33do4jHXjWDeSqOV4KVUrxA9LeJ92wpdp50thTpa33SnvWuPvc9uvMfY09TQpWuWFxiWZp1x+kZJuU4nPiJZVqlzrapY4dBTa03FAur9C0XAFrgZhkZX9+a8hItEqrlkqtm83bOKncoWiSG0L2/Ffy33d8v/vvpqetv3C/BiulUFX2v90d/52739gkqWOnd91LX5fOfkByklKyQxp3hiTH3ZfjSJ17pJaNUvVs9+dDvnY+JL349264XN0CaeFt7/YtN3iu/W0pOkGKTXDfFyZdze5YTEF8Tto9z21vuT9XwjX5jxHAiEEwGgAAAAAAAFAmkk7SWDdQwWjc7J7N77zlCv7yC07Lda79gtNKGThmOoZIHuERpuAJAACAYko7aT3W9JBnXU1wtOZWnlziEeXmN8f0C9cdrhx5B6OpkGC0HKHFftv0nHv7ByN3KGrHjPPxfK65hqJ8ArIJ0QYAAAAAAAAAAAAAACjAhHOls34rvfotqWWzGzS08EdSICrVL3bDxpItmW3GneWGokluuNCiO6THL88MV7PD0tSPda9btlQ9y116syxpzKLMsshoqeESSZd0l838grscluqS7KA54OiwfWul3Y9KrVul2uOlUVOldFx64gPmNstelg6+KMX3SVv+zQ1j6qtQrXTsV6TIOKnrgNR1sPtrvOf6ATfMbURy3j0PBwtvakd6BKb1Ck3zC1gL17rvn4H29q/8Q9EGS7LVXfrCFIomuf9mHjnDu86yM39OTL7E/fkRqpLsd+89CkSldEra+4S072k38Gzbb6XOd7rbHXxOeuTMvo29p+pjpeh4ac9q8zbRCdLs66TwGCkQkYKjpPadUmSMNP5cN4Rx/5/c91X92W7g3Fv3Sa1bpNEnSXP+xm0DYFghGA0AAAAAAAAoE0knYawLWoX/qi+/m93L80b+gRSwAgpZYSWcrqy6XOELpnpbds5wO9+wjDxCH4qlP+ERcad04wQAACPXhvYXtDfxjmfdWTUXKdCHufNA85ubl3KuN9R5PW/UdO7yCQ82B5pFPb/3al8jqTPd7llfrkHTBKMBAAAAAAAAAAAAAAAMgIZL3aW3YEya/13pzz3CyIKV0tybstsv+YP07JekQ6+54WPzvifVHjew4w6E89tu7Knukq/Ri9xjqD3eXZ/9ZTcIqWWjG6QUGy/9Z62UaM5uO+YU6aK17ved+6R0l1QxKf99p7q6A8Jyhaj1rvN54P2wlo67oVmd3p/N8xWqNoSo+QWr1bn/DiyvT415OPh84eMarnqGoknSjv92l8FyaIO7+Ol8R3rhq/n192qv9Z0rpTf/VTr3Ee9QSABla+h94hsAAAAAAACAJ79gtL6EO+RzI3u53sg/0CJ2VImUVzCaf/iCX6iYleMPdiErLEu2HKWz6vIJfSiGpJNQSt5/yI1YucMjSjVOAAAwsq05+KBnua2Azqi9oMSjyY/fXG8kBqM5cgw12XNm0zVL0kko5SR9r5VM8/eeocT5hNaZXqNyvZ7KJyC7XI8NAAAAAAAAAAAAAABgSJrxeanmeDe8KFQtHfUB74CfCedLF6+X0knJLpO4kPHnSrsfzS6f9cXssopJmQFnM6+VXv1W9nYzPt/9fXRs4WMKhN3gtdj4wto5jpRsywxMix/IL2AtcajwcQ4XiUPu0ra1sHZWMDsszRSm1vTSgAwdZaJ9m7RytjT1Y1JwlBsON+4MafRJUrhWik7IP2QPwJBRJjMdAAAAAAAAAEmfJwuFrFDB/eVzI3s+4WkjUcSOqTWV/YfJXKEVpmCwfIIHLMtSxI6qM91e8H6LxS/YrOd7xfS+GYmhHgAAoLT2de3Wq23rPOvmVZ2qmuDoEo8oP0NhrjeUmILRLI9gtFzBZRWBSt96L5lzW/Nc/XD7Do/XTZKidoWx7VDWM/TYuA3XigAAAAAAAAAAAAAAAMVVf5a75KNcQtEkN6iodzBaqEZquDx322M+Jb1xp9S5p7usepYbHDcYLEsKVbrLqKMKa5tOSl1NPiFqPgFr6fjAHM9Q5yTd177n6w/42XJP9/eb78isO+dBaeJSAtKAMlJGsx0AAAAAAABgZEs6CWNdsA/BaPnd7J47sGskMp07v+AwSYr3IxhNcsPsvMMy/PdbLH6hHD2D9kzHMxJDPQAAQGk93vywMVRrce2yEo+mMKZgtFxzzJHE6/NIfgFdnemOfgejBayAQlZYCafLs3+3H+/XKJ8w6qEon9CziFWexwYAAAAAAAAAAAAAAIASm/pRqWO7tP67UuKQG2x2+i/dcLFcKhulC56UNtwiNb8qjV4kHf/3UrAMH1hoB6XoWHcpVLIjMzAt7hOidmT9gBvEZvg8HTDirF4mHfOX0sIfS4HwYI8GQB4IRgMAAAAAAADKRLGD0fK5ST+fG+JHItO5yxVQlk/wgh/TdqUKHPPbTySvYDRCPQAAwMBJpLv0VPP/etZNCh+l6bE5JR5RYaJ2TM0e5SNxDuU4aUNNdjKa33VNrnmyKXSud58RO6pEKjsY7XD/XoF2ucY2lOV3rViexwYAAAAAAAAAAAAAAIASsyzpuL+Tjr3RDe2KjiusfdV06eQ7BmZs5SIYk4KTpYrJhbVz0lKi2SM0LY+AtZT3Z6LKzqKfSH/+vHdd9SzpL9ZLlu2upxPSyyuk12+VUh1S/RJp3nekPyzybj/3ZmnOV6WWTdKh16Snr3HPd19M/ZjUcJm0c6W080E3RDDZJgWiUt0CKVwrJVqkvY/3rX+43rjLfV2nfniwRwIgDwSjAQAAAAAAAGXCLxgtYBX+q758wrjK9Ub+gWY6d6ZghcPijiEYzco3GM0UODYUgtGint/n2x4AAKC/1rU8obZUi2fd2XXLZFnZoVpDiWlOOBLnUI7hKaWWRzCaX0BXrnNnDC62egejxdSaOuTR3p3/5xuwVi5yhZ7ZCijYh2tQAAAAAAAAAAAAAAAAjGB2sPBQNPSPZUvhOnepnFZY21Q8OyzNFKLWu8xJDczx9MXEC6VgpZRsza6bfEl3KJok2SFp7rekE2+SUp1uIJ0k1S+W9qzJbj/l/W7wX/VMdxmzSHrH++GuOuUu6U9/6V13ZYcbgCZJUy7zP57OPdJz10tb73XXq2dLoVp37O3bpcar3fJEq7TxNv++vDRcLm3/rbl+yvukjl3SvqcL7/sw0/ksle33E4wGlAk+qQoAAAAAAACUiaST9Cy3FZDd848xecp1s7u7TX6BXSONKeDAFHx2pN4QmJDveTaFZeQKZCsW0/gtWQpbkSPr5mC00owTAACMTI81PeRZHrUrdHL14hKPpnDGOVSOOeZw5B2L5q3nPLS3XPNPY3Bxr9fCHFp3OBjNu5+oXeG7/6Eq1/VJxI4O+aBBAAAAAAAAAAAAAAAAAP0QiEixCe5SCMeRki3mMDW/gLWk94NR+2z8uW4g3NSPSpt+klkXqJBm/JV3O8vqDkWTpGNvkPY+kRn4NuX9UvWMzHaTLzUHo02+WLIC2aFx9Wd3h6LlI1ovnf7v7uI47lhN5n9X2ni7G2LWsVMK1UgtG6XWN723P365dOIK6eGF0oF13tuc9Rsp2SH9yuezcSfdJq37kmH8E6TzVkn3+dwDFaqREs3edXULpOmfkbb9RnrnEXMffkzHD2DIIRgNAAAAAAAAKBNJJ+FZHrJCfeovVzBa0Aoq2Me+h7u+Bn/FjYEJuUPqfPfrlCZwzBTA1jsYoa/BcQAAAH31Vudmbe3c5Fl3avWSvOdbg8k0Px+Z4bLe0WiWsj/EZVu2IlbUc67Z1+Di3u+XXKF1nel2z/p8wqiHolz/Xsrh3xMAAAAAAAAAAAAAAACAQWBZUqjaXUYdXVjbdELqasoMSzOFqGWUHXDb9jT2dOn0e93vF/xActLS1n+X0klp3BnSop9IlY35jWvyxdKSh6VNP5U6d0sTL5Lm3Ji9XcNl0rovK+vzb0d/yA00m329tOF73eWBqBtG1le5Hm4ZiErHfiWzrH2n9F+TvbcfNcX9OvNaae0nsusnLnW/Bn0+Pzbjr6RZXzQHox31fv9xW7Z00q3S2o9715+zUopNdI+tr8Fo8X19aweg5AhGAwAAAAAAAMpE0kl6lvc1vMx0c/+Reoub3U3MoRW5ghe863O9FoeZAghMgWXFZhy/FfVdP6xU4wQAACPPmoMPGuvOrn1PCUfSd8Zw2RxzzOHIKSAYTXLn0/GURzBazuBic/BvT36vTdJJGEOsY2UaIJbzWjHP6xcAAAAAAAAAAAAAAAAAyJsdkqLj3KUQjiOl2rtD02ITM/sIhKWT75BOuk2yg274VqEmnO8ufkZNcYPINtzSXRatl477qvv9vO9KdfOlnb+XIuOkqddIo+cXPpb+iI6XImOk+P7susPH13CZFLxWSrZl1k/9WPf345dIu1dl9zH1o+7XY/5SeuMuj/pr/McXHi1NOE+SpayAuegEd/yHtzM5+U7pmU+b63uH6AEYsvrw0xoAAAAAAADAYDDdbB+w+vb8A9PN/Ydxs7uZKRgtV/CXqd7UX/Z23q9JqcIy4o4p2C3Wa31wxwkAAEaW1tQhrWt5wrNuVsWJmhBpKPGI+oY5VN+Zzl1nn4OL85vfdqY7fK8B8p3nDzW5g9HK87gAAAAAAAAAAAAAAAAADEOWJQVHSRUNUt2J5mC1QLhvoWiFmPeP0tkPSDOvleZ+W7roGan2hO5xNl4tnf7v0knfL30omkVmrdIAACAASURBVCTZgcyAs8PGnyuNOtr9PlwrnfuoVDndXQ9Vu8d19JXd28+8NruPMadKY052v591XXZ42eRLpdEL3e8b3us9vhO/6b6Oky/Orpvxue7XL1jh3V5yg/GqZ5vru5rMdQCGlL7dMQkAAAAAAACg5FJO0rM82MdgtJAVliVLTu+nqLyLm93Non0MrTAHL+QXQmcKs4vnCGQrlnzHbxpn0kko5ST7HOYHAADg5enmPyrhdHnWLa5dVuLR9J1f+NZI4zje1yiW4UNp5lC5vgYXR3utm+bhnb77yBVGPVTluhY0XQ8BAAAAAAAAAAAAAAAAwIhmWVLDpe4yVM37rpTukrb8m5SKS5PeI53688xtxp4sXbpJ6tgtRca6gWo9TXmfdOavpNdvk9p3SBPOlxbc4h6/JNUeL134tPTGnVLrFql+sTTj8931R10pbX8gs087JDVc5n5/xn9I677kbhOqlqZ+XDr+a93bBqvMxxetl475tPT8V7zr03GpdavU9LK0f60UHiNNvUaKjpWctOQ42ccLYFBw9xkAAAAAAABQJhJOwrM8aIX61J9t2QpbEcUd77Crcr2JvxTMwQj+wQum+oiVX7CAXyBDKRjHn2dwhNtHpyoClUUdFwAAGLnSTkqPNT3sWVcbHKMTKheVeER9Zw73Ks1cbygxhTdbhu37Ok/ub/BvPN2hjpRfMJrPUymHsIjlfy1IiDYAAAAAAAAAAAAAAAAAlCk7KC38obTgB5KTlAIR87ax8ea6oz7gLibVM6X53/OuO/oqqWWT9OrNblBZZKx0xn1SbIJbH6yQTvkX6eQ7u8PUeqqb6wamJQ5llodHS7VzpYoGczCaJP1uauZ6723Do6WKKVL92e6+Nv5Yan7FDZSb9WVpwffdcXXuk+L7pMho6dBGN5Qt1S4l26TRC/3PLYCcCEYDAAAAAAAAykTSGIzW91/zRe2Y4qn8wgDQzRyMkCN4wRBCl++5HuywDHMwWqzXuvl4OtMdBKMBAICiebXtee1P7PasO6v2IgWs8nlqnymMKlf47sjiHY1mCurq9Dl3aSelLifuWdd7vm+a33amO3xfn3INmw5aQdkKKK2UZ32+wc4AAAAAAAAAAAAAAAAAgCHKDkgapM9YWpZ0wtelOTdKbW9JVTMky/bezksgIs34grT+O5nlM6+VAmEpNlE69xHp0Qv6Nr6uA+7S9GJ23eu3uku+Kqa4gWqxiVKkXho1RWr8iNS6xQ2Fa3ivW1eIdEJ69ovSsX8jVR1TWFugjBCMBgBDXHt7u5577jlt2rRJ+/btU2dnp2KxmMaPH6+ZM2dq/vz5CofDgz3MsnXOOedozZo1R9YdxxmQ/axevVpLliw5sr58+XKtWLFiQPYFAAAAYPhKpk3BaKE+9xmxY1LqoLkOnvyCEfyYAszyDUzoS+BDMZnG3/t8+L13ShXiBgAARobHmh70LA8oqDNqLizxaPrHGIJrCNcdzhx5/73GMgWjGYK6/Oae8bR3KJqUf/BvPN2pznS7Z11AwX5dqw0my7IUtWNqT7d61nOtCAAAAAAAAAAAAAAAAADot0BUqp7Vt7Zzb5Yi46S3/kOyQ9LRV0ozv9hdP/a04oyxv9q3uV87ezwE+I27ur//8+f73vfmn0on3SbN/CvvYDmgzBGMBgBDUCqV0q9+9Sv9/Oc/16pVq5RMJo3bRqNRXXTRRfrUpz6liy++uISjBAAAAACUWkre14f9C0bzvsE/V91I5xdQ5jiOLMNTaeKGALN8gwX6EvhQTPkHo5nfOwSjAQCAYtnbtUvr2573rJtfdZqqg7UlHlH/mOaEI3P+VFgwmilo2DcYzSdwrve8228ebgopjtox43VBOYjYUZ9gNK4VAQAAAAAAAAAAAAAAAACDyLKkY693Fy+BCqlymtT6ZmnHVWrrviRt+4106r+6xwsMI8T9AcAQ8+ijj2rOnDn60Ic+pEceecQ3FE2SOjs79cADD+iSSy7RokWL9Nxzz5VopIVpbGyUZVmyLEuNjY2DPRwAAAAAKEtJJ+FZHrT7E4xmDuQyhQvAHIyQVkpJx/ta3nGcvIPFTMyBD95hDMVmCo+IWJnjClsRcx8lGisAABj+Hm/6gxxDgNbi2mUlHk3/meaEI3H+5P2qSoZcNPO5c8znzu+89p53G0PrnA5zMFqgvK+n/K4HuVYEAAAAAAAAAAAAAAAAAAxpliU1fmSwR1Eae9ZIvz9B2vHgYI8EKCqC0QBgCPnGN76h888/Xxs3bswotyxLc+bM0YUXXqirr75a559/vmbOnJnV/tlnn9Vpp52mO++8s1RDBgAAAACUUCJtCEZTsM99+gVy5RvWNRL5BQGYAhYSTpfSSnvW5XuuzYEPnUo73n0Xkyn0ofe4bMs2hseZwtUAAAAK0ZWO6+nmP3rWNUQaNS02u8Qj6j/TXK8z3SnHMUaFDVPex2sZktH6EirnV9e7P2MwWrrTPEe2yjs8jGtFAAAAAAAAAAAAAAAAAEBZm3OjVLdgsEdRGoGINHr+YI8CKKq+3zEJACiq6667TrfeemtGWVVVlf72b/9WH/7wh3XUUUdltdm8ebPuvvtu3XLLLYrH45Kkrq4ufeYzn1FbW5uuu+66kowdAAAAAFAaSSfpWR60Q33u0y/gy69upPMLAog7HapUdXZ52hwIlm+wgN9r0uXEFR3g8AXTMXiNK2LHFE9lb+8XQAEAAJCvdS1PqC3d4ll3du0yWZZ3gNZQZprrOUor4XQpbEVKPKLBkzYGwZmC0czBZSadPnXhrGA0U/BapzrT7Z51sUCFsf9y4B+MxrUiAAAAAAAAAAAAAAAAAGCIC46SzntUWv9tac/jUmySVL9YClVL8X1S1wGp9U0pXCvtXi2lu6TWNwZ71H1z0g+l2MTBHgVQVASjAcAQcM8992SFop155pm677771NDQYGw3ffp03XTTTbrmmmt0xRVX6JVXXjlS95WvfEXz5s3TOeecM1DDHhZWr1492EMAAAAAgLylTMFoVt9/zed7s7uVX1jXSOQXUNZpCP7yC2XIN4TOL4Agnu4Y8DA7U6iZ1/soYkelVPa2fgEUAAAA+XAcR2sOPuhZF7MrtKj67BKPqDh8w3fTnQrbIycYTfIORjPF3ZnOnWluLpnn5yErrIAVyCgzzbMTTpfa062GMZV3eJjf+KN5BjsDAAAAAAAAAAAAAAAAADCowjXSvO8U3s5xpPZt0tpPSodekyJjpOh46Z1Hij/G/mp4r9T4ocEeBVB09mAPAABGuo0bN+raa6/NKDv99NP10EMP+Yai9TRz5kz98Y9/1LHHHnukLJ1O6yMf+Yj27dtX1PECAAAAAAZP0kl4lgetUJ/79AvSKvcb+QeSf0CZd8BC3DGHMkSsfIPR/MMyBpppH8ZgNM8+zOcBAAAgH1s7N+ntuPcT+U6rOc93zjSU+c0JSzHXG0ocYzCadzSa6brG77yZQ3+z+/J7TzUnDxY0pnLh937kWhEAAAAAAAAAAAAAAAAAMKxZljTqKOm8/5Uu3y4te1E669d96+uiP0tzvy1V9MgPmfVl6dxHpOP+XrIjUqg6u11kTO6+Ry+STvlXd7zAMBMc7AEAwEh3ww03qLW1+0nytbW1+s1vfqPKysqC+qmvr9evf/1rzZ8/X11dXZKkHTt26Jvf/KZuvfXWoo4ZAAAAADA4TMFoAavvv+bzu8Gfm93NQlZYlmw5SmfVdRoCFvxCGfIN7/ALVzDtt5jMwWjZ4+pLOAUAAEA+1jQ9aKw7q3ZpCUdSXL4huD4hu8OTdzCaDMFopmsX/2C0/of+SlJz8oBnedkHo/ldK1rlGT4IAAAAAAAAAAAAAAAAAECfBavMdWNPl/Y9lV1eO1cas9Bdjvtqdv2E86W53zT3+0ufwLPFv5cmnCcFIuZtgDJGMBoADKLXXntNK1euzCj7zne+owkTJvSpvzlz5uiGG27QzTfffKTsrrvu0ooVK1RXV9evsQ41mzdv1ksvvaQdO3aopaVFlmWpoqJC48eP19SpU3XCCSeooqJiwMcRj8e1Zs0abdmyRQcOHFB9fb0aGhp01llnDcj+d+3apT/96U/as2eP9u/fr8rKStXX12vRokWaNm1a0fcHAAAAYGgxBaMFrVCf+4xY5pv1o3mGdY1ElmUpakfVkW7PqjMFLJiCy2zZeb+GvmEZAxw45jiO8RgKCY8oRYAbAAAYvlqSzXqu5QnPutkVczU+PLnEIyoev7le5wgLlzXGohmeaOg393Qcx7Nd3DAv9Qo08ws5MwejDfzfqQaS3zETog0AAAAAAAAAAAAAAAAAGHEsSxp/nrT7j9l1J/9MWnWh1LEzs3zaJ/q3z/Boqcvjc4oTl0qTl/Wvb2CIIxgNAAbRrbfeKsfpvrVj7Nix+sQn+jexue666/S9731PiYR7s3xbW5vuvPNO3XjjjVnbfvzjH9c999xzZH3Lli1qbGzMaz+rV6/WkiVLjqwvX75cK1as8O3/sLfeest444okfexjH9Pdd9+dVR6Px3Xbbbfpzjvv1KZNm3zHFwgENG/ePF122WW6/vrrjSFl55xzjtasWXNkvefr4ae5uVlf//rXdffdd+vQoUNZ9VVVVbryyiv1jW98Q5MmTcqrT5NEIqG77rpLP/7xj/Xyyy8bt5sxY4ZuuOEGffKTn1QwyH/xAAAAwHCUdJKe5aH+BKP5hC9ws7u/iB0zBKN5ByyYgssidsz3OrmngBVU0Ap5huQNdOBY0kkqrZRnXdQjYM/03hroADcAADC8PdX8v8Z58eLa8v6AR8gKy5attNJZdaY55nBl+nuNJUMwmuU990wrpaST9LxmMob+evTld23UnDzoWe4XLFYO/K8VCdEGAAAAAAAAAAAAAAAAAIxAs6+X9qyWnB731zRcLtUeJ537R+nJq6SmF6VAhTTrS9KsL/Zzf38tvfQP2eXTP9O/foEyQGoKAAyihx9+OGP9mmuuUTgc7lef48aN0yWXXKL7778/Yz9ewWjlZNu2bbrooou0YcOGvLZPpVJat26d1q1bp6uuukrTp08v2lhefPFFLVu2TDt37jRu09LSon/5l3/R/fffr9/97nd93te6dev0wQ9+UG+++WbObTdt2qTPfvaz+slPfqKVK1dq8uTJfd4vAADlpjl5UK+2rdM78e0Dup+QHda02GzNrpirgBUY0H2NVK3JQ3q1bZ0OpZo1Z9Q8TY40DvaQMEy0JJv0Sts67YpvG+yhZAhYQTVGZ2jOqPkK2bmvB73CsCQp2K9gNPPN+uV+I/9AM507U/CXORitsFCBiB1VMpX9Xniy+X+0qf0VSZJlWZoUPkrHVZ6kykC1sS/HcfR6+0t6o2NDzsAy0/vv8Jiyy7zPzxsd63X/nruPrNcER2vOqPmaGJniu//dXTv0aus6NSU9nnQj9/06veI4zYgd5xs0V6p5Q6HCduTIPMO27D71sb1zqza0P6+WZHPebYJWSFNjszRn1DwFrOL+yeBgYp/Wtz2vuNOp40ctVH14YlH73xHfqvVtLyiRjmt6xRzNiB2fd8gggNxy/R8RtEKaFpulWRVzFbL7PhcBCpF2Unq86WHPutHBcTqhcmGJR1RclmUpYkc9w3cfb3pYr7W96NvetmxNjhyt40ctVCwwaqCG2S97unbp1bZ1OpjY57vdrq7Crt38rl1+u/duz2umzR3rPbf3mtuGrYix/4TTZeinvK+nCEYDAAAAAAAAAAAAAAAAAKCXycukJQ9Lm34qdb4jTbhQOu6rbl3NbGnZC1LnXilcJ9lFuEfjmL+U3vy51Nojb2Ls6dKk8n6YMJAPgtGAISblpNSU9L8RAP1XGxw76EEW27dv19atWzPKLrzwwqL0feGFF2YEo61du1aJREKhUHnenNbV1aWlS5dmhaKNHj1aJ5xwgsaPH69QKKSWlhbt2rVL69evV1tb24CMZf369TrvvPO0f//+jPLx48dr/vz5qq2t1e7du7V27Vp1dHTowIEDuvjii/W9732v4H2tXLlSV155pdrbM2+AmjhxoubOnavRo0erra1N69ev16ZNm47Uv/DCCzrllFO0du1aNTQ09O1AAQAoIzvjb+m2bct1KNVUsn0uqDpdn5h4fdHDQ0a6PV07ddu25TqQ3CtJ+q+9lj484a90es35gzwylLt34tt12/blakruz73xIJlVcYI+N/lrOW8uNwVT9efnkV+AADe7+zOdn850h2d53FBeaGBC1I6pLdWSVf5S6zNZZaOD4/TlKf9X4zwCqdJOWr/c/WM91fy/Be3fi2cwmuV9XLu6tmUFXfx2b0CfnHS9FlSd4dnmhZa1umvnLUop6T+Q/dKSuov1/nF/6RmQNRjzhkItqlqsayZ+qeDfXT3Z9Ih+ufvHcuT0ab/Hj1qoT0+6Ma+Qxnxs7dio27d/U21p9736X9Y9+sykr+r4IgXWPN38R/37O7fLUdot2C8trl2mD9Z/mnA0oAgcx9F9u+/QE81/yLntnFEL9NlJXy3azw/Azytt645cM/Z2Zu1FsodBiHnEjnkGo73Y+qe8+5gQbtCXGr6h2tCYYg6t315pfVZ37vxHY5BYPix5/z/vd+2yuun3Be3D6xrJtmxFrKjijn+YcE+xMg9G87tWJEQbAAAAAAAAAAAAAAAAADBiTTjfXUyi44q3r9hE6YKnpM0/lZpflcacLM34ghQwP/AVGC64gxsYYpqS+/QPb352sIcx7H1z2k81JjR+UMfw5JNPZpUtXFicG0NPOumkjPWOjg698MILWrRoUVH6z9ctt9yiFStWSJLOPPNM7dixQ5I0efJkPfHEE8Z2lZWVGes///nPtX79+iPrjY2Nuv3227V06VLZtp3V3nEcrVu3TitXrtRdd91VhCNxJRIJffjDH84IRZs4caJuvfVWXXHFFRljaW1t1T/90z/pW9/6lpqamnTjjTcWtK/169frqquuyghFW7p0qb7xjW/o5JNPztr++eef15e//GU9/vjjkqQdO3bo6quv1urVqxUIlP+NYAAA+Pnt3ntKHm7yXMtTWlh1tuZVnVrS/Q53K/fdl3GDuyNH/7H7Di2oOoMbbtEvv9v370M6FE2SXm9/WX9qXqWz697ju13S8Q6FClp9D8L2CxAoNLBrpDH9bIqnvcMSTOWFBtBFrPy3P5Dcq5X7/kOfmPTXWXWbO9YXJRRN8n6vFHJcaaV03zt3aG7lqVmBYGknpV/u/knuULR3rTq4UqdWn6sp0WlZdb/d+29DOhRNkv7cskYn1yzWcaMW5N2mM92hX+25s8+haJL0StuzWtfypE6tWdLnPnr6zd6fHwlFk9yfX/e+c7tuPuZf+x1c1pWO6z92/7Q7FO1da5oe1CnVS9QYm9Gv/gFIWzpfzysUTZLWtz2nZw6t0Rm1FwzwqADpsYMPeZYHraDOqBke78FihBO/07Vdjxz8rT5Q/6kijKg4HMfRL3f/pF+haJJfMFrxrl1Mr0HEjiqeyj8Yrdyvp/yvFQnRBgAAAAAAAAAAAAAAAACgJGLjpRO+PtijAEouO00GAFAS27dvz1gfP368xowZU5S+jz/++Jz7K4WxY8eqsbFRjY2NCga7sziDweCRcq9l7NixGf088MADGW0feeQRLVu2zDMUTZIsy9LChQu1YsUKbd26VUcffXRRjueHP/yhXnjhhSPrEydO1BNPPKEPfOADWWOprKzU8uXLdd9998m2bR08eDDv/aTTaV155ZVqa2s7UrZixQo99NBDnqFokjR//nw9+uijet/73nek7IknntC9996b934BAChHaSel19tfGpR9b2h7IfdGKMiG9uxzmnSSerPjtUEYDYaTcvn3ur79+ZzbJJ2EZ3l/gtFidoWxjlBCf6aAss50h2d53PEuLyToTJJigVEFbe/181WSXmt7saB+/Hi9V/zeW17a0i16u/ONrPId8bfUmmouqK/1bdn/ntx5Q/GOeSBt8Bi/nzc6NvQ7ZKQv+zXpTHfojY4NWeXNqYPa3bWj3/37He+GPH6WAsjt5dZnC9p+U8crAzQSoNuerp3GOfOCqjNUFawp8YgGRqFzKJNXCvx3PNDe6dpelMDqgOX97LdiXrtEDa+BqdykWK/lYIna3tcdIStsfB0AAAAAAAAAAAAAAAAAAACAYiAYDQAGyYEDBzLW6+rqitZ3NBpVJBLx3V85eeutt458P3fuXE2fPj3vtoFAQKFQ3wMCDkun0/rhD3+YUfazn/1M06ZN8213xRVX6Atf+EJB+7r//vv1yivdNxJ+8IMf1PLly3O2CwaDuueee1RfX3+k7JZbbilo3wDw/9m79zA56/r+/6/PHHZmctzNgUAJMWCMBAQRQQUMAaFgUBRRi1C/IlrlVxWlFbXW1hNopdJ+C/qzVdofWmurVRBPUMEDQUSI0SIIKIST4RSSzW4OuzOzc/j8/lg22Z293/fe95x39/m4Lq4rc99z3/dnDvchS+7nAtNNsVpU2Zc7su2h6q6ObHemqvqKhiq7A+cVqsNtHg1mklJ1REVf6PQwIrH2gfGsY16qgZvSD8wcHBgRWJF5rjKJeMGu2cYKIxSNMFq+Ejw9l4wXTFiVOyzW84cqu+W9nzQ9bmzMsiK7Sj2JzKTpq+bEG6ckDVUmn1/3BEybej2T96ditdCx64a49kQ4Hkx4frk5n2U973WQoM9xTL4J5/Ww726zXgMw2+0obYv1/GK12KKRAPvcOvg/5rx1vWe0cSSt9dyY13qWgfJ2VX21KetqhrDrgzgOyR0aOL0nkdFzss9ryjZWzTncmB79s0koaY51ujgk93wlAv5JyfPmTP4FTQAAAAAAAAAAAAAAAAAAAEAzEUYDgA6pDZX19vY2df216+vv72/q+jvlmWee6ch2b731Vj366KN7Hx977LF69atfHWnZj370o7HibFddddXePzvn9JnPfCbysvPmzdOFF1649/E999wzYdwAAMw0VnimHfIVYl3NVKza4apStdTGkWCmmU5hvSjHlbIP3h9Srv4gdDqR1qsWv6lmfSm9asm5da9ztsgmJwflJPt7V6gOBa/HCKxZXt57uhallkZ+vldVI35ysKbQhPNoyqUmfX/GrMyu1pHzXhJrfUHRrHpCWvmA97oZQa52iXvsasZnKTXvPRquBH/XJfs4Fkc+5PUWjAAhgHgGyvHCaNLkACfQTCPVon6x88eB8w7KHKKV2dVtHlHrrOtdr97U4obXU/blpsXImiHs/B3V3OR8nbroteb8Vy0+p6FotCQ9N7dGL5j74sB5r+h7jeYlF0Raz2mLztac5LyGxtJpc5Pz9ceLXjdhWsZl9cpFr+/QiAAAAAAAAAAAAAAAAAAAADBbNPavggEAXcs51+khNM2hhx6q++67T5K0ZcsWXXHFFbrkkkvaOobbbrttwuNzz40eCFi6dKlOO+00/eAHP5jyuUNDQ7rjjjv2Pj722GN18MEHRx+opJNPPlmXXnrp3sc/+9nPtHLlyljrAABguih6O6b1/DlHNBQKGrNt5Gk9U3py0vRmBUgwKizE0oyACmavsO/W6jlHKN2E40Rcg+UdeqL46KTpUUJIFV8OnN7ozf+nLHqt9us5UHfvuVOZRFYvnr9WB+dmTlyiVXJG0Mz63lkxCGs9lsXp/fT+FX+nX+z8sR4rbFZVFUlSsVrU5vy9gcsUqsPKJLI14wmOVy1OL9P+PQdOOY5lPQeGflcSLqF3/NEHdfvOH+uB4XsmfMc3D98XeB4POr9a+0ba9WhecoEGytsbWo8kPX/OkQ3vR/V4ZuQpbSs9NWl63ACr9VnmEnN1SO75k6bvKG3XUyN/iLyeuMKOvSU/0vD6CyHvT7NeAzDbBR1bJckpIa/qpOmeMBpa7Je7bjWP8ev6zphR/09kSc/+umTFZ3THzp/o0cKDgfvceBVf0e+GfxM4b6Dcr/mp5v5innpZ12Ipl9Lz5xwZuqxTQgdlD9FLFqzTspDr1BfMO0Z/edCntWn3bdo68nis8fW4jJ6bW6MTek9TTyIT+Jw/yqzQJSsu1527fqothYcDP5v5yV69YN4xetG842Jtv1u9ZsmbdVD2EN2759eam5yvlyw4ScuzKzs9LAAAAAAAAAAAAAAAAAAAAMxwhNEAoEMWLVo04fHOnTubuv7BwcHQ7U0n5513nq677rq9jz/wgQ/o+uuv1wUXXKAzzjhDBxxwQMvHsGnTpgmPX/rSl8Za/qUvfWmkMNodd9yhUmlf+OOQQw7Ro48+Gmtb1erEG3EeeuihWMsDADCdFEPiZO/8o79SLjm34W38dOD7+uYz/zppepSAEaILi5gQRkMjwvbVd/7RhzQnOa+Noxn1692361+f/PtJ08NCQmOs/aEZIcgj5h2jI+Yd0/B6ZpNMIhc43YpnFoxjXTZmGE2S+tJLdMaScyZMGyzv0F8/9DZzTAsjjvO4Ba+YtO56JV1Ka3tP19re0ydM/7tH/1Jbig9Pen6+Mvk9siJYS9MHaM3cF+rHA9+dvEzA/mSF6STpzw/8iBnAaKWbd3xb3972lUnT415nWJ/lc7Kr9O7lH500/c6dP9VXnr5y0vS4QTZL0Oc4phnn9bDjJfFaoHFVX9FgaUfgvL7UYu0ob2vziDDbee+1YfCGwHlzEvN0zPy1bR5R6y1KL418PVb1Vb3vgT9RRZMjygOl7VqRfW6zh1cX6/zdl1oaeL1Sr5W51VrZwsjzfj0H6Mwl57Vs/d3GOaej55+go+ef0OmhAAAAAAAAAAAAAAAAAAAAYBYhjAZ0md7UEl16yBc7PYwZrze1pNNDmBQqGxgYaNq6C4WCCoXChGmLFy9u2vrb7eyzz9bZZ589IY7285//XD//+c8lSatWrdLxxx+vE044QWvXrtWaNWuaPoatW7dOePy85z0v1vKrV0e7CWfLli0THn/961/X17/+9VjbqrVjR/BNjAAAzARh4YtMItuUbeSMWE2U/1AGSQAAIABJREFUgBGiK1Tsz5IwGhoRFvnJGlGrVrO2W6jm5b2Xc85cttTCMBrisz/L4O+dFeayzjXNGo8UHKqy4lXt2DesGFzQud063+eSc2KuJ/hzSSiptOuxhtpS9vjjXWdYxzrrs7TisWGh0ljjCRl/2U+OtsQV9v5wjQY0bldlZ2BgSRqNNRFGQ7s9XPi9Hi8+EjjvuIWv6EjctJskXEK96UXqLz0zad5gub8DIwpmxW479fcyAAAAAAAAAAAAAAAAAAAAAN2LMBrQZZIuqcXpZZ0eBtrgwAMPnPD46aefVn9/f1MCZvfee++U25tOnHP6xje+oY997GP6x3/8x0nRt82bN2vz5s3693//d0mjobQ3v/nNuuiiiyYF6OpVG65bsGBBrOUXLlwY6Xn9/c2/SWn37t1NXycAAN2iWC0ETk+7HiVcsinbaFawBOHCQiwlP9LGkWCmsQI5GZdt2nEirlwiOEjkVVXRF5R1dhjACgWmHD/m6wQraGaFvFodg8i4rJycvHykMdnBseDvaDPlktHPr9Y5IpvImefp4BBc8PufS8wJDRK2kvXZWxE9i3VdYh1vrOklP6KyLzUcWww7rzcjeBoWP+MaDWjcQGm7OW9ReqkUcIjyfvK5B2iWWwduMOet7V3fxpF0r97U4sAw2kA3hdGM6xvreg4AAAAAAAAAAAAAAAAAAADA7JXo9AAAYLY6/vjjJ03btGlTU9Zdu55cLqejjjqqKevulFQqpU996lN69NFHdcUVV2jt2rXKZDKBz928ebM+/vGP65BDDtE3vvGNNo+0MSMjzY9+cFMiAGAms2+qbU5gRgqP3lR9pWnbme3CAidlX27jSDDTWIGcrBFlaoewY5QVzhpTMfaHRiNGqI8dzzTCaFa8qknfR+dcSGgrXnCs1cygWcA4zYBbYm5IYC0oBNd9xwP7OsMOiwWxzqPZZPBnaYXRJDsgF2s8AWG6Mc0Io4XFz5oxfmC2GyhvC5yedj2al4z3CyOARu0qD+rXu28PnHfY3KO1X88BbR5Rd+pLLQmcHhY6bLdWXwsDAAAAAAAAAAAAAAAAAAAAmDkIowFAh6xYsUIrVqyYMO2mm25qyrpvvvnmCY9f+tKXqqenpynrHlOpdCYCsmzZMr3//e/Xrbfeqp07d+r222/XFVdcode+9rWaN2/ehOfu3LlT5557rq6//vqGt9vX1zfh8a5du2Itv3PnzkjPW7Jk4s1Ln/70p+W9b+i/L3/5y7HGCgDAdFKsFgKnZxLZpm0jLJZibR/xWdEbqTkBFcxeVizIihG1Qy4ZEiQKif1UfUVVVQPnEUbrDCsgVqzmVfWTPyszXtXE76Mda5u4be99aHCs1ewgWFDAzXrfcjEDa9bxoPUhOIs1/rIvq1SNfv6zX1vwZxkWILGCeXGEraNUbTwKHxY/C4umAYjGCimNhpdc4DwvfjkDWuP2nTerouA48Lre9W0eTffqTS0OnD5Y7v4wWjuivAAAADOVcy7lnHuJc+4C59wHnXN/45y72Dn3RufcC51zqU6PEQAAAAAAAAAAAAAAAKgHYTQA6KBXvvKVEx5/9atfVanUWPRh27Zt+u53vxu6nTGp1MR//1guB99cFGRgYCD+4Josk8nouOOO0/vf/35df/316u/v19e//nWtXr1673O893rve9+rajU4HhDVsmXLJjx+8MEHYy3/wAMP1LWdqMsBADBbFY2gS6aJN9WGxZPCAkaIJ18JCaj4xgMqmL3sm+87GEYL2XZY0Kfs7b+zpbi/rSOs75GX14gvTphW9iXzeNbMUJ8dRpt4ziz6ghmxaUecIlbQzIhgZRNzzLEWqnl5P/H1tSNMF1dYoKwQI1AWFo8LMickfteM65vhkLGHHcuiCjtWjviiKk3YBjCbDRghpb70YiOLBrRGxVf0s8EfBs5bnN5Ph889us0j6l596SWB0639uRPyxs9wOnktBgAAEMQ5d4hz7hzn3Gedc7c453Y55/y4/x7tgjE+zzn3JUn9ku6U9P9JulzSpZL+r6T/lnSXpF3OuZucc6/r2GABAAAAAAAAAAAAAACAOhBGA4AOet/73ifn9t1Ktm3bNl1zzTUNrfPKK6+cEFebO3eu3vGOdwQ+d8GCBRMeDw4ORt7OvffeG2tc419nq/T09Oicc87RnXfeqQMPPHDv9C1btuhXv/pVQ+s+5phjJjy+4447Yi1/5513RnrecccdN+G9uvnmmyfdyA0AAPYpVguB05sZdAm7QTcsyoF4aoM945WrxE1Qv7wRVGpmiCquHpdRwvixXFiQqOztkHbKpRseF+ILO9/UxrwKFfs418wYhB0Kqx2P/V3LJe1oVrNY+2DQuMKiXzkj8OVVVdFPvE7oxlBi2LateEjgc43AqPX+ZBI5OSNvFBYrjSrs+xV2LIu8/imuwcKuKwBMbUdpW+D0vtRSiTQa2uiePb80w15rF75SCZds84i6V18qOIw2WO7vmv/HYEVfO/l3MwAAgDHOuZOccz90zvVLekjS1yVdImmdpPkdHdw4zrmUc+6Tku6T9A5JC6ZYJCfpjyWd0+qxAQAAAAAAAAAAAAAAAM1EGA0AOuiwww7T+vXrJ0z70Ic+pK1bt9a1vvvuu0+f/exnJ0y74IILtGjRosDn77fffpOWj+qGG26INbZMJrP3z8ViMdaycfX29urss8+eMO2RRx5paJ0vf/nLJzz+r//6r8jLbtu2TTfddFOk5y5dulQvetGL9j5+4okndOONN0beFgAAs40Vvci4bNO2ERa9iRMsQbi8cYO01JyACmavbgwhOefM7YfFfsrejgQSRuuMbDIsalUTIgv5bHMh64nLiprVRgLDInzNDIya2zBec9C4rPN9Ljk3PE5Xs5wVp+tkjCNs23ECrNZ7ZL0/CZdQxpgXdk6OarjF5/WprsGsKCaAaAbK/YHT+9LB4SVJ8uqO8BJmllsHg382nnJpHb/w1DaPprv1phYHTi/7svZUdrV5NMGs83cn/24GAAAwzlGSTpMU/A9suoBzLifpO5L+VlJq3Cwv6beSbpD0n5K+++xjfusMAAAAAAAAAAAAAAAApi3CaADQYf/wD/+gOXP23fQxODios88+W3v27Im1nm3btukNb3iDRkZG9k474IAD9NGPftRc5uijj57w+Hvf+16kbf3whz/Uxo0bY42vt7d375+3b9+uUqm1cYtUKjXh8fgwWz1OPPFErVy5cu/jTZs26fvf/36kZT/5yU/Ger3vec97Jjy+5JJLYn8fAACYLYrVQuB0K/RRj7TrUVKpwHlxgiUIFxboKfkRcx4wFTuo1Nmb761YUVjMJywmlHLBxym0VpwoV3iIrHnfR2tMtees0FBbIjiu1ky5iOO0pkmjrzU0LDYpBhcc6+pkjCM8wBrtOsN7b75HVihPkuYYn/NwpfEwWtjYmxFGK0wRb+MaDWjMQGl74PRFqaVycsZShNHQXFtHntDvhn8TOO+Y+S/XvNSCNo+ou4WFCwfKwft0u9Vem41pR5QXAACgAUVJD3V6EM45J+nrks4YN7kg6ZOSDvLeH+G9f5X3/k+996/13h8haaGks55drrW/wRAAAAAAAAAAAAAAAABoMsJoANBhhx56qD73uc9NmHb77bdr/fr1evzxxyOt48EHH9Qpp5yi+++/f++0RCKhr371q1q6dKm53HHHHTchyvbtb39bmzZtmnJb559/fqRxjbdmzZq9fy6Xy/rpT38aabnh4WF97nOf0+7duyNva8+ePbruuuvM7dcjkUhMCpZdeOGFeuSRR0KXu+666/SFL3wh1rbe8pa36NBDD937+P7779frXvc6DQwMxFrPtm3bJr0PAADMNFbwKJPINm0bzjllk/EDRognLGDSjIAKZq9uDCFJdqzIGq8Uvi8kCaN1RMZlzUBMsUNhNCsUFjXUllBCadfTtPFYrNccdG63xppNzFE2JHJYu5x13WCd59sh4ZLKuODrFiseUmvEF1VVNXBeWDjO/gwav77Jh8TVSg2e10vVksq+HL59wmhA3UrVknZVgn8OGRZeApptw8CN5rwTe9e3cSTTw/zkQjPqPljub/NogpnXYh3+uxkAAMA4JUl3SfpXSRdKerGk+ZL+rJODeta7JL1m3OOnJB3tvf+Y9/6JoAW898Pe++9478+V9PZ2DBIAAAAAAAAAAAAAAABoFsJoANAF3va2t+nd7373hGm33XabDjvsMH3mM5/Rli1bApfbvHmz/uZv/kZHHHGE7rnnngnzLr/8cp1yyimh250/f77OOeecvY8rlYpe9apX6aabbpr03JGREV199dV62ctepq1bt6qvry/qy5MknXzyyRMeX3DBBfrCF76gX/3qV3r44Yf16KOP7v1v+/btE7b73ve+V8uXL9fb3vY2fe973wuNpG3cuFGnnHKKHnvssb3TXvayl2n16tWxxhvkve99r174whfuffzkk0/qhBNO0Le+9S1VqxNvQB4aGtInP/lJvelNb1K1Wo31fiWTSX3rW9/SggUL9k770Y9+pCOPPFL//M//HPr6d+zYoW984xs699xzddBBB+mqq66K8QoBAJh+it66qba5gZNWhkMwKiwyN1X8BAhj3XwfFgtqB+s4ZY1XCg+jpV264TEhPuec+VlOjnIFH+d6XEZJl2zamBodTy4xV84Fx96aydoHS35kwne96quTInPj1xEWp6t9jfZr7vDxwIi7Rb3OqDe6N8cMNDYhjNbC4GmU94VrNKB+O0MCSn0pO4zmWzEYzFqFal537PpJ4LwV2VVamWv85/0zTcIl1JteFDhvoLQ9cHq7mddiIaFbAACANvqKpAXe+xd579/hvf+S9/7X3nf+N7c451ZI+sy4SQVJp3rv7zcWmcR7/kcLAAAAAAAAAAAAAAAAppfgXxsNAGi7z3/+8+rr69OnPvUpeT96G9nu3bv14Q9/WH/913+tww47TAcddJD6+vrU39+vxx57TL///e8nrSedTuvKK6/Un//5n0fa7qWXXqpvf/vbGhwclCQ988wzOv3007Vq1SodeeSRymQy2rp1q+68804NDQ1Jkvbff39dfvnlOv/88yO/vje+8Y36yEc+oscff1zSaFSsNgY35vzzz9eXv/zlCdN27dqla665Rtdcc42cc1q1apUOOeQQ9fb2KpVKqb+/X7/97W/3rn/MnDlz9KUvfSnyOMOk02l97Wtf07p169TfP3qD4FNPPaU3vvGNWrZsmV784hdr4cKF2rp1q37xi18onx+9cXvhwoW6/PLL9c53vjPytg4//HBde+21esMb3qCdO3dKkh5//HG9613v0kUXXaQjjjhCK1as0IIFCzQ8PKzBwUE98MADk14/AAAznRVKySSyTd2OFUxpRjgEo8ICJo0GVDC75StDgdPDYkHtkEtYQaLg8UrhkcAUYbSOySbmBJ4Pao9rVgCy2VGuqDFPazzZZHPjopawfbBQyWteavQ7PeKL8kZuJ5uYszdOF+kzMM41nT4eZBNztFM7Jk2Pep1RCImLhn2/rNc9bBw3o/Lem8deqfHzepT3hWs0oH47ytvMeX3pJXY805NGQ/P8ctet5t8R1/Wub/Nopo/e1GL1l56ZNH0gJHjYLhVf1ogvBs7r9LUYAACAJHnvBzo9hhAfkTRv3ONPee/v69RgAAAAAAAAAAAAAAAAgHYgjAYAXeTSSy/VunXr9K53vUsPPvjg3unee91777269957Q5c/+uij9cUvflHHHHNM5G0eeOCBuvbaa3XWWWdp9+7de6dv3rxZmzdvnvT8gw8+WD/4wQ+0devWyNuQpFwup29/+9s666yz9MQTT8Ratpb3Xg8++OCE9yjIgQceqOuuu05HHHFEQ9sb7/DDD9ePfvQjnXHGGXrqqaf2Tt+6datuuOGGSc/v7e3Vd7/7XVUqldjbOvXUU7Vp0yade+652rRp097plUpFd911l+66664p19HX1xd7uwAATCfFaiFweibR3KhL1MgM6hf2Xpb8SBtHgpmmYAQUc8lOh9GM40oleLxSeEyIMFrnZI1zTu13zzrOZZv8XbTPWdHG0+xQmyVsH8xXhzRPC0b/HBLYGluHFaernWYFxDod48iZ36Fo1xlhEbCw75cVaCyEBBqjKPkRVWSHHBsNo0V5X8JicQDCDZS2B07PJeYqm8jJyQijAU3ivdeGgck/a5ekuYn5evH8l7d5RNNHX2pJ4PTBcvB+3U7W38uk9l1/AgAATEfOufmSzhs3aUjSlR0aDgAAAAAAAAAAAAAAANA2iU4PAAAw0amnnqr77rtPX/va13TKKacolQpvWGYyGZ155pn6zne+o02bNsWKoo15xSteoY0bN+q1r32tnAu+sW3p0qX6wAc+oLvuuktr1qyJvQ1JOuaYY3TffffpX/7lX3TWWWdp1apVWrBggZLJpLnMwoULtWHDBn3wgx/Ui1/84infD0l6/vOfr09/+tN64IEH9JKXvKSusYY56qijdP/99+uiiy7S/PnzA58zb948vfWtb9Xdd9+ttWvX1r2tVatWaePGjfre976nU089VZlMZspl1qxZo4suukg/+9nPdN1119W9bQAApgPrxtpMItvU7djRG6IbzRIWdSl7O64CTCVvBH46HUKytm+NVwqPCSUdv/+gU6LGM63jXLNDEFHPWdZ42rVvhG1n/Pk9LKIx9lrt0GBNGM0KJXbt8SDadYZ1PeLklHH2NdGcZHAYbbjBMFrYcUySStXGwmhR3peo7x2AyQaMgNKi9NLQ5bx8K4aDWeih/P16cuSxwHnHLTxFPYmpf0Y+W/WmFgdOt4KH7RT28xPr+hUAAACSpHMkzRv3+Frv/W7ryQAAAAAAAAAAAAAAAMBMwR2TANCFUqmUzjvvPJ133nkaGhrSr371K23evFnbtm3TyMiIMpmMli1bptWrV+voo4+OFMuayqGHHqrrr79e27dv14YNG/T4449reHhYy5Yt08EHH6y1a9dOiJKddNJJ8j7+zW4LFizQhRdeqAsvvDDS851zOvHEE3XiiSdKkvL5vO6991499NBDevrppzU0NCTnnBYsWKAVK1boyCOP1HOe85zI47nllltivwZpNNh21VVX6bOf/axuueUWPfLIIxoYGNDSpUu1fPlyrV27VnPn7rvBuN73Sxp9D1796lfr1a9+tQqFgu6880499thj6u/v19DQkObOnau+vj6tWrVKa9as0eLFwTc/AQAwExWrhcDpzb6pNpcIDofkK0Q3miXsJumwGBQQxnvftSGkXNKKadkRKCsSmFBSCcfvP+gU65xTe46wPttmh8hyRuxq8ni6N4w2PmoVdn4YOz/bcbp973nFV1T0xnWDsT+2ix12s48H49mRu5wZwB+dbwTZGry+Ga6Eh9EaPa/XBu8Cn0MYDajbDiOg1Jda8uyfgo8rhNHQLLcO3hg43cnpxN71bR7N9NKXXhI4fbDc3+aRTJYPua7pdLQaAACgy51c8/jmjowCAAAAAAAAAAAAAAAAaDPCaADQ5ebOnTshDNZqS5Ys0etf//q2bKseuVxOxxxzjI455phOD0WSlMlkdPrpp7dte9lsVuvWrWvb9gAA6HZWZCbT5DBaNhm8PqIbzVGqjpjBp7H5QD2KvmBGOjp9870Z06ojEph26aaMCfWxvku18c58NTgW1eyYp7W+QnVY3vu9oSwrftWuaGDSJdXjMhrxxUnzxp9frX0ioYTSrkeSHTYbv2wxJDqYa/JnEJc1/qjXGdbzrLDrmDlGRK/R65uplm80jBZ2nIzzHADBBsrhYTQ7twg0bmd5QP+7+xeB8w6f+2It6VnW5hFNL72p4F+aMlDun3Ad2Alh1wed/rsZAABAl3tJzeNfSJJzLifpdZLeJOlwSX8kqShpu6T/1WhA7b+897vbN1QAAAAAAAAAAAAAAACgeRKdHgAAAAAAAPXw3k+KzoxpdmTGCotYYTbEM1W8pNGACmavghF+ktoXf7K3Hz9IZAUEU4TROipqPLNQCT5nTBWvisv6bldVVcnvC01a3zUr0tUKVgRjfLTNHGdizt64h/WaowTWRtfV3M8gLmv8UeNeVuRuqusha7vDRsQvqqmWb/S8HiXcRrwWqN9AaVvg9L70kjaPBLPRzwdvUkXB17zrete3eTTTz1jAsFbZl7SnsqvNo5nIOjenXErpBH+fAQAACOKc65W0atykEUkPO+fWSbpX0tcknSnpEElZSQslPVfSGyR9UdIjzrn3tnXQAAAAAAAAAAAAAAAAQJMQRgMAAAAATEtlX1ZVlcB5GZdt6rassEjUYAnCTRUvsWJQwFRCQ0htjD8Fbj9CEKqWFRNKulRTxoT6RI1a5Y1YlBVWq5f13aodk7V/tDMamDP2wwlBM2OfGL9slPN02Lkm1+SgalzWZxY17mU9L5cMD76ZgcaQ41AU+cpUYbTGzutRrr/CjqUAwg2UtwdO3xdccoHzvXyLRoTZouIrum3nTYHzlqSXac3cF7V5RNNPX3qxOW+w3N/GkUxmnb87HagFAADocvvXPH5S0tmSfiLp4AjLL5Z0pXPuq87xQ2QAAAAAAAAAAAAAAABML/yDFwAAAADAtFSs5s15mSYHTqxITNRgCcJNFTgp+ZE2jQQzTXgIqbNhNCsIZcWzJKlixIRS3NPWUdY5p1Bznqp9PMaKU9XLioSNjmFYC9W398/By7dv3zADgROCZsHv2/hl7bDYvmXDQlntfM1Bosb1LHZoJPx6yAqn5atD8t7LueD4Ub3jGdPoeT3K9RfxWqA++cqwuf/0pUfDaM4IowGNunvPnWa8a23veiUcv+9rKvOTvUooGRiRHyhv10E6pAOjGmVfC3c2UAsAANDlemsez5P0H9r3y3Afk/T/SrpNUr+kRZJeLundklaOW+7NkrZKuqRZA3PO7SdpaczFntus7QMAAAAAAAAAAAAAAGDm465JAAAAAMC0VPR2GC2byDZ1W2ZwJSSygujyFTsEJUllX2rTSDDTWGGPhBLqcZk2j2Yi67hS8iOq+LKSAbGzkrEvpFy6qWNDPHaUa7jmcfCxbqp4VbPGMzqGcaEwY/9oZzQwSnjUigWOf9/MsNi484sV00q5lNKJninH2kpRv0MW63lTRfes962qqoq+oKyr77vZ6vN6WORuDPFaoD4D5e3mvEWpqe53980dDGadDYM3Bk5Pux4dv/CUNo9mekq4hHpTi7SjvG3SvIGSvX+3QzdEeQEAAKah2jDaknF//qak872f9D/L7nDOfV7Sv0t647jp73fOfcd7/7Mmje1dkj7WpHUBAAAAAAAAAAAAAAAAk/CrtQEAAAAA09L4uEutTJMjM7mkEVwhutEUYZ+lJJV9Wd4TWkB8YTffO+faPJqJwuJT1rHFigkRRuusnHHOqf3+5Y1j3VTxqrgyIXHQ8UFPK+7ZzjiFFYUbvw9Y54jx71vWOE+PX9ZaTzfEOKz3oVAJPz+OsUJhU0X3wr57U8XNQsdjxOzGNBpGixI94xoNqI8VRnNy6k0vGv2zcQnF1Toa8VRxix4Yvidw3jHz12pucn6bRzR99aWXBE4fKPe3eSQT2X83a+7PbwAAAGYY6992/lLSeQFRNEmS974g6bxnnzfe3zRxbAAAAAAAAAAAAAAAAEBLEUYDAAAAAExLxWrBnBcWhamHdaPuiC+q4itN3dZsNFVAxauqqnifEV+9saB2CAujWTGkctUKo6WaMibUxwprFWrOU+2KQSRcIlJwzApHWTHQVjDfu8r4oNnU75u1PxUivN6uOB4kgwNl+epQpDCodR6dKvoW9lk3EhYbnjKMVq573dLUQdXR5xBGA+oxUNoWOH1BsndciLWzcVnMTLcO3mjOW9e3vo0jmf76UsFhtEEjfNgueePvON0QqQUAAOhie4zpl3gf/gOWZ+f/Zc3k05xz+zVlZAAAAAAAAAAAAAAAAECLcdckAAAAAGBasqIYTgmlXU9Tt5VLBAdLRscxrLnJ+U3d3mwTJXBS8iUliT8hJiuMY0WI2iksAGBFjioKvtdtX6gEnWCFtcZ//7z3ZqivFd/HbGJO4LF1bEwVX9GIL5rLtosV5hq/D9iBwzmBfx5v/GdgHg9CzvHtYn2Hqqqq5EfU4zKhy1vn0am+W2GvvZEwWsH4zMaUfXDkMaqpgqrS6PfGey/nCDgBcQwY4aS+dHBoabwoIUcgSKGa1527fho4b2V2tVZkV7V5RNNbb2px4PSBUn+bRzKRHbsljAYAABAiKIz2mPf+1igLe+9vc849LOmQcZPXSfpmE8b2hTrW81xJ32nCtgEAAAAAAAAAAAAAADALcEcxAAAAAGBaKlYLgdOziWzTIxhWsEQijNYM+crUgZPRiIr9OQBBrLBP2D7dLlYQSrIjR1ZMKJUgjNZJVsyh7EsqVUtKJ9Iq+RFVVTGWb/73MZeYo0FNjl+M7RNWmGJs2Xaxg2b5cX+eej+2xlyo5lX1VSVcItJ6OiU8UDaknkR4GK3eY13a9SipVGB0MV8Juu82muEpwmWl6kjd65aiBVWrqkSKygGYaKBkhNFS+8JoTtbftQijoT4bd95iHtvX9a5v82imPytkOGiED9vFul4J+3sRAAAANBgw7Y6Y67hTE8Noa+ofzj7e+2ckPRNnGQL2AAAAAAAAAAAAAAAAiCPR6QEAAAAAAFCPonHjdKYlgZmQYEll6jgHwlk3SI9XrgYHoYAwVggpbJ9ul6RLKe16AufljahQydgPUo4wWieFxafGzlVhx7lWfB+nCo51SxjNDpoNjftz8Hk2l9z3vlmfgZfXiC9KkvIVKx7W+RhHeIB16uuMeo91zrkJ7+N4Uc7NlqmCp2U/OcTWzPXvfV4DrwGYrXYY4aS+9NI2jwSzhfdeGwZvDJw3L7lAR88/oc0jmv56U4sDpw+U++V95wKGdqS289diAAAAXewxScWaaU/FXMeTNY+DLxgBAAAAAADVtCxFAAAgAElEQVQAAAAAAACALkMYDQAAAAAwLRWrhcDprQijha2zYASMEF1YoGdM2RNGQ3x2CKn5x4l6WFEoa9xWTCjlUk0bE+ILizmMHd/CjnOt+D5a6xwbh/UdG122fXEKa1v5cTEwO6KRG/fnkM+gEv4ZdEOMI2wMYZ/VmEIDxzr7OFT/9c1UQbKKyqr6at3rjxKLG30eYTQgroGSEUZLLZly2c7lljCdPZi/V0+N/CFw3vEL/1jpRHBIGLY+I4xW9iXtqexq82j2sc7f3fJ3MwAAgG7kva9I+n3N5NpQ2lRqn5+tf0QAAAAAAAAAAAAAAABA+xBGAwAAAABMS9ZNtZlE8+/pSCfSSrl04Lx8xDgHbFMFVCSpRBgNdbCiOLnE3DaPJJgVQ7LGXSGM1pWyybB45ug5IixulUs2//tofrcqz44nLNQW8nqazYpyjd8HrLGOXzaXDAmLjcXgjPN12LLtkklk5eQC500V96r6ioo+OBYb5btlhtEaiIrlI0RjrePZVLz3kYNnUaJyAPbx3mugHBxGW5TeF0azjlek0VCPWwdvCJzulNDa3tPbPJqZoS9thwwHy/1tHMlE9t/NOn8tBgAA0OXurnncG3P52ud37qIQAAAAAAAAAAAAAAAAiIEwGgAAAABgWipWgyMg2URrgi5R4i2oTyFCuKRMGA11sMI+7Qw/hckaQSZr3NZ+YIUb0R5h552xc4R1rnBy6nGZ5o/J+I6PBaus8aRdT1u/T+Y+UBmW96OBHWus4+NvVghu/PIFI9YVtmy7JFxCGeN7NFWgzArFSlIuwjWRFU+LEjez5CtTL1vyI3Wte8QXVVU10nO5RgPi2VPZaV5r9KWihNGAeAbLO3TX7jsD5x0x7xgtTu/X5hHNDPOTC5VQMnCeFT9sB+vv/a36GQ4AAMAMUlsTPjzm8i+oefx4A2MBAAAAAAAAAAAAAAAA2oYwGgAAAABgWrJCIBmXbcn2rHDKVMESTC3Ke0gYDfWwojhW6LDd7OBi8PHN2g+SLtW0MSG+lEsr7XoC5+Wf/Syt41wmkVPCNf9HtFN9t6zxtHvfsM6tVVVU8iOq+qq5P4wfa4/LKGH8qHvsteaN9XRLjKPeAGvYOTSbCI6eRdluPkK0NEjFV1T0wfHa8cq+XNf641x3cY0GxBMWTOpLLzHnjfHyzRwOZoHbBn+oqiqB807sXd/m0cwcCZdUb2pR4LyBUgfDaNY1nRFpBQAAwF7fl1Qc9/hY51zwBV8N51yfpJfUTP5ZswYGAAAAAAAAAAAAAAAAtBJhNAAAAADAtFT07Q2cWOst1BkOwT5TRV8kqUQYDXWwojhWjKnd7ODiUOB0K4yWcummjQn1Mc8Rz34H2x3ps75be8djnLvavW+Evf58dVhFI6AhSdnkvmWdcyGveXQd1mvullBivQHWsIBZLsI1kRUjsY5DU4m6XL3B0zjXXVGuLwDss8MIJiWV0vxkb5tHg5mu4sv6+eBNgfOWpg/QoXNe2OYRzSxWzHCw3N/mkYwKC6d2S6QWAACgW3nvd0v61rhJGUnvibj4eySN/21Cj0n6bZOGBgAAAAAAAAAAAAAAALQUYTQAAAAAwLRkxVIyiWzg9EbZ4RCiG42K8h7WG1DB7NbtISRrHIVK8PGt7MuB09OE0TrODqONfpbtjvSZ361nx2GOJ9nefSMshFGoDoeeH2qXtdaVrww9uz4rqNodx4N6A6xh8a9sIvjaZbyc8Zx6w2hRw2X1ntfjXHdxjQbEM1AODqP1phcr4fb970TnXLuGhBnsrt13aGdlIHDeib3rJ3znEF9vanHg9IEOhdFCY7ddci0GAADQLs45X/PfSREW+1tJI+Me/7Vz7rgptnOcpL+pmfx33nsfb8QAAAAAAAAAAAAAAABAZ6Q6PQAAAAAAAOpRrBYCp2dCIiuNsKM3RDcaFeU9JIyGerQ7RhVXzohQWUEiaz9IEUbrOOs7NXZ8a3ekzxpP/tkohXXczbXoHGqxolzSaMis4iqRl7U/g7E4XfB+Ze2H7VZvgNWan3IppRNTHxvmWGG0iIGzWsMRg2r1ntfjXHdFjbQBGDVQCg6jLUotibQ899Yjjg2DNwZOT7seHbfwFW0ezczTZ+y31n7eauGx2+64FgMAAJAk59xyBf97yv1rHqeccyuN1ezx3jf1wst7/4hz7u+1L3SWkXSTc+6Dkv7V+30/aHHOpSS9XdIVknrGrWajpGuaOS4AAAAAAAAAAAAAAACglQijAQAAAACmpbHQSa1MItuS7VnxFmsciKbqK5HeQ8JoiKviKxrxxcB53RJCmiqmVcvaD5KOH/F1mh3PHItyGZG+Fn0Xp4p52tFAO1TWCplEVk5OXpNjOvnKkCqJsrls7Wu09utCdVgVX1bJjxjr6ZbjQX0BVmt+1M/S+g5aIbmpTBVyG1Oq87wedf1xnwtA2lHeFji9L10bWHKBzws6lgNBniw+ps35ewPnvWTBOs1JzmvziGae3vTiwOmD5f42j2RU2PVMu8O8AAAAU7hN0nMiPO9ASY8Y874i6a3NGtA4H5X0fElvfPbxPElfkPRp59wdknZIWiTpZZJ6a5Z9QtLrvTd+QAYAAAAAAAAAAAAAAAB0Ie6aBAAAAABMS8VqIXC6FRZplLXeesMhGGV9jrVKVcJoiCfs5vtuCSHlYofRgiNRKZdu2phQn6kid9Znan0HGh6PFQmr5OW9DxlPe8MUCZdQJpELHE+hmldFleDllFTa9UyYZn0G+epwaICzVZ9BXPbxIDweasW/on6W1nbrjYrlK9Gui8p1ntenCsXV+1wA0kBpe+D0vlRtGA1ozIbBG815J/aub+NIZq6+lB1G897LueDAYasUKvb1TLf83QwAAKDbee+9c+7/aDSAduG4Wb2SXhmy6EZJr/PeP9nK8QEAAAAAAAAAAAAAAADNRhhtFnHOzZf0cknLJS2RtFvSk5J+671/oInbSUs6QdIKSQdI2vPsdv7Xe/9os7YDAAAAYHazglqZloXR6guWIFzU8ErZE0ZDPGFBnG4JIYWFnIJY+wFhtM4zzxHPRiCsz7R1Mc/g8VRUVsmPKF+xxjO3JeMJkzXCaPnqkCpGDDCXnDMp6BEWGrRe79j2u0Hc48GYgvlZRjvO5YzPPGrgbNJyEYOx9Z7XrdcbPBbCaEAcA2UjjJZeOuFxe3NKmGnylWFt3HlL4LxDsofqoOwh7R3QDGUFDUt+REOV3ZqXWtDW8VjXBymXUjrREzgPAAAAk3nvi5L+H+fcNyV9SNIrJCWNp/9W0hWS/sN7H/zbBwAAAAAAAAAAAAAAAIAuRhhtFnDOnSDpbyWdIuMzd879RtK/SPqi997XuZ2lkj4h6RxJi4zn3C7pH73319azDQAAAAAYUzSCZNlEtiXbM4MrMQIdmKzVARXMXuEhpO4Io9nHleDjW9mIRKUcP+LrtGwyOK41FvyyIppWlKpRuZDYV6GaN8OBOeN1tFIuMUeD6p80vVDNq+qqgcsE7cN2wHR4ilBi+2NwQeq9zrDiX7lktNdlPa/oC6r4ipLOurfWGE/EoFq95/U4sTPitUB0FV/RzvJA4LzJgaXgNJpXXf9rCbPMnbt+qqIPjpyv61vf5tHMXL3p4DCaNBpBbHcYzTond8vfywAAAMZ471e2YRsN96a99z+W9ONn/63eyzT6i0vHfknqVkm3e+8fb3Q7AAAAAAAAAAAAAAAAQCdx1+QM5pxLS/qcpAsjPP2Fkv5Z0rnOuTd777fE3NZ6SV+WtN8UTz1e0vHOua9JutB7H+1OOQAAAACoUawG30ydCYnBNCKbDL5hN06gA5NZAahahNEQV1gIqVtuwLePK0Py3su5iffIWftByqWbPjbEkzXOPWPnCCtuZS3X+Hjs73ihOmyeu7IdiIRZY81XhlRJBMcAg8Jv5mdQCQ+jteq6Ia56rzOs1xb1uzUn5DMvVIc1Nzk/0nrGDEcMnpbqPK+HfZa1okbaAEg7yzvkFRyjXBQSWALi8N7r1sEbA+fNTy7UUfOOb/OIZq4FyYVKKKmqKpPmDZS36yAd0tbxNHq9AgAAgGDe+22SvtfpcQAAAAAAAAAAAAAAAACtQBhthnLOpTT6D59Or5lVknSnpMclzdVoEG3FuPknSrrZOXeC974/4rZOknS9pJ5xk72kX0t6WFKvpBdp9DdTjvlTSQucc2d574PvtgEAAAAAQ9VXVfTtDaMFRVikeIEOTJaPHFAZafFIMNNYMaGUSyud6I6QWM4IQlVVVcmPqMdlJkyv+OBIVMrxI75Os+Jehepo/NH6PuaSrQmRWd+t0THZobCw5VrF2mahmlfViPQEBdxyRlisUM1P6+PBVNcZ5ncrYuQu7DPPV4Zih9GiXhfVGzyNE6Qd2/8ATG1HaZs5ry81MYzm5Ixn+iaOCDPRA8P36OmRxwPnHb/wj7vmnDwTJFxSvalF2lGevG8PliL979+myhvn5G4JVgMAAAAAAAAAAAAAAAAAAADoPolODwAtc7kmR9GukrTMe7/We3+u9/413vvnPPu8h8c97/mSrnPOWXe37OWcWy7pOk2Mov1c0uHe+2O893/ivT9N0nJJ79NomG3MmZIui/vCAAAAAGDEF815GZdtyTaDIiwS0Y1GRX3/ykYQCrB0U/jJEhYuCooGWiGhlCMi0WlZI55ZfPYYZ30freUalUnY58J8SCisE3GKrBk0swNuQe+bHafrrhCcJWz8YRr9boXF+eJEyMYMV6IFT+sNo8UJ0kaNrwKQBsrbA6dnXHbS9YoVRiOLhqlsGLwhcLpTQmt7a/+XJhrVm1ocON3a31vJvl7pnmsxAAAAAAAAAAAAAAAAAAAAAN2FMNoM5JxbI+nimsnv996/z3s/UPt87/1Nkk7QxDjaiZLOibC5T0jqG/f4dkmneu/vr9lG0Xt/laQ/qVn+L51zz4mwHQAAAADYKyymFRaDaUTOCIyU/EjdcQ9Ej67wHiOufKX7b74PCxcFjb9EGK1rWYGtsWOcdawLi+M1IuGSZig0XxlSoRJ8Hs0ZkbJWCnvvrP04aJnQ9RjXDd10PLDGX6jmVfVVczn7PYr23Qp7D4brCIu1+rxuvd4gxGuB6AZKwaGkRemlivA7dIApDZS26+49GwPnHTnvWC1KL23ziGa+vvSSwOkD5f42j6T9kWAAAAAAAAAAAAAAAAAAAAAA0x9htJnpQ5r42f7Ie/+PYQt475+W9LaayZ92ziWtZZxzz5N0/rhJI5Le6r0vhGzneklfGTcpI+ljYWMDAAAAgFrFkNBFq26szYYERqzADKaWr0SLrhBGQ1xWEMeKD3VCLhlyXAmIB1j7QcqlmjYm1MeKS41FrazzVitjEFkjcranslMVlY3xtH//sN6DQnU4JKIxeZz2ZzCsghlK7J4YhzUWL68RXzSXazQ0kpwiohdXPmJMzQo9TiVO7Kw4RVQOwD4D5eAwWl8qOKwUxMs3aziYgW7b+UNVFXxMXtd7RptHMzv0phYHTh/sQBit0ZArAAAAAAAAAAAAAAAAAAAAgNmHMNoM45xzkl5VM/mKKMt67zdI+uW4SQdLOilkkfMkjQ+nXee9fzDCpi6vefwnzhl33wEAAABAgLAwWibRmr9e5JJ2YCRqBASTRQ2clKqE0RCPtV9asahO6HEZObnAefmA2FHFB8esUi7d1HEhPitCVazmVazmzVhMK0Nk1rqt+I3UmXCgFcTIV4YD9wNJygXsx3ZgLa9h63gwTUKJYYEyK4wWtr6oz63n+qbVwdM4Y/LyKlbN3+EBYBwzjJaeHEYb/d9QATxhNAQr+5J+Pnhz4LxlPQfq+XOObPOIZoc+I4w2ULKvBVvFDLmG/JwFAAAAAAAAAAAAAAAAAAAAwOxGGG3mOUzS+DtVRiTdEmP5/6l5/IaQ576u5vE1UTbgvb9f0p3jJs2VdFqUZQEAAABAkgohkYuMEUZpVFg8JWrcC5NFDZzUG1DB7GXtl50IP1kSLhESc5oYD6j6iqqqBj6XMFrnWZ+jl9dgeYe5XFDgq1lyxpjCYhjW62ilsH3A2o+DlgkLge00PoNWvv9xhb33YdcZVjwuzmdpHRetdYdp9Xk97jUX8Vogmh2lbYHT+1KTw2hAXHftvkO7KoOB807sXW/H9tCQoLChJA2W++XbHDKcDn83AwAAAAAAAAAAAAAAAAAAANBdUp0eAJpuec3jB733xRjL31Pz+FVBT3LO7S/pheMmlSX9PMZ2bpH00nGP10v6bozlgVljeHhYv/71r/Xggw9q+/btKhQKyuVyWrZsmVavXq0XvehF6unpacq2/vCHP+hLX/qSNmzYoAceeEADAwMqlfbdqHrNNdforW99a+CyGzdu1DXXXKPbb79dW7Zs0c6dO1Wt7rtp/5FHHtHKlSslSSeddJI2bNiwd167b8IBAADTX9G4qTbtepR0yZZsMyyMVk84BKOivneE0RCXFcMJ25c7IZeYG7gf1E4r+7K5DsJonRf2vRos99e1XKOsdQ+EjCeXsONirWIFzQrVvCpGDDDotYWFwAbKwTG4bjoehAdY7XOlNS9OaMT63AuVOsJoEZep97yer8QLnRGvBaKxjpPBYaXgiJUXP+NFsA2DNwROz7isXrbg5DaPZvboNcKGJT+iocpuzUstaNtYrOuVTkR5AQAAAAAAAAAAAAAAAAAAAEwPhNFmnkU1j4N/Bbut9vkHOecWeu931kx/Qc3ju733ce5Ku73m8eExlgVmvEqlov/+7//WNddco5/+9Kcql+0b4LPZrE4//XT92Z/9mV796lfXvc2rr75aF110kYrFOC1FqVwu613vepeuvvrqurcNAAAQV7FaCJyeaeFNtUmXVI/LaCSgPR0WLEG4qO9dyY+0eCSYaawYTpxYUDtYMYDaIFFYRCjl+BFfp2WT9YXRWvl9tNY9UAqO3zg5ZRLZlo3HYu0D+eqQKqoEzgt6bWFhMes1d9PxoMdllFBC1YAYnBURLVVHzGhinOhbzvj+DhuBSYv33oxS1ipV44fRqr6iog++BrQQrwWmNlItaqiyO3DeotTSSdOCs2hAsMcLj+qh/P2B845dsM4MpKJxwWHDUQPl7W0No+WNv5t1U6QWAAAAAAAAAAAAAAAAAAAAQHdJdHoAaLraO8UzMZcPev5hEaZtjrmdhyJsA5iVfvKTn+iwww7Teeedp5tvvjk0iiZJhUJB3/nOd3TmmWfq2GOP1a9//evY27zhhht04YUXxo6iSdJHPvIRomgAAKDtrOBRq4Mu1k27+QrRjXpFfe+s8AtgyVeC4zzddvO9FYOojfmE7QMpl27qmBCfFfeS7ChXQkmlXU+rhmR+1wfKwePJJHJKuPb/uDiXCN4HCtX8pEDgmKDXFhY5s+J03XQ8cM6Z47EiomFxUSt2Fvhc4zOIGjkbU/SFwLBbkHrO61YYNwzxWmBq1nlBCg8rAVHcOniDOe/E3vVtHMnssyC5UAnjnwKEhXtbwTofd1OkFgAAAAAAAAAAAAAAAAAAAEB3SXV6AGi62n/JfkDM5YOe/3xJv6iZtqrm8R9ibuexmseLnXN93vuBmOsBZpRPfOIT+sQnPiHv/YTpzjmtWbNGy5cv1+LFi7Vt2zb94Q9/0AMPPDDheZs2bdJxxx2nz3/+83rHO94Rebsf/vCHJ2zzvPPO09vf/nYddNBBSqf33WC/ZMnEG+G2bt2qf/qnf9r7uKenR3/1V3+lM844Q0uXLlUise+mm+XLl0ceDwAAwFSsMEZYmKYZcsk52lWZ/NcWohv1i/relX2pxSPBTGMFFOPEgtrBOm7V7hth+0DK8SO+Tsu4rJycvPykeVZwJpecI+dcy8aUTQZ/t0q+9vcqPPv8Fp9DLdZ2vbyK3jjfB+zHadejhJKqqjJpnvWauy3GkUvO0XB1z6TpVkS0NqA4XpzomxlGMwKTFitkF6RsfCZhwl6vuQzxWmBKVsBTknpTiydNcwo+dwWdAzG7DVf2aOOuDYHznptbo+XZle0d0CyTcEktTC0KvBYN2+9bIU7sFgAAAAAAAAAAAAAAAAAAAAAkwmgz0e9qHh/onFvuvX884vLHBUxbGDCtt+bxMxHXL0ny3u9xzhUkZWu201AYzTm3n6SlMRd7biPbBJrl4osv1pVXXjlh2vz58/XhD39Yf/qnf6oVK1ZMWmbz5s368pe/rCuuuELFYlGSNDIyone+850aGhrSxRdfPOV2f//73+vuu+/e+/iMM87Q1772tUhjvv766zUysu9G1ssuu0wf+MAHIi0LAADQiKIRPMq4bOD0ZrFu2q0n1IFRUcNoVtQGsOSrwUGfbrv53gwSxQqjpc15aA/nnLKJXOD5YKBc+3sMRrX6uxh3/dZ3sdXqeR9yATE155xyiTkaqu6Ose3OxOAs1nthnSvDrj/iRN+sYGTc65th47gbpJ7gadg1Q4/LaMQXA5aJF3cDZqMd5W2B0+clF6onkQmY07qoJ2aWO3b9NPDYLEnres9o82hmp77UkuAwmnF92gpVX4kVuwUAAAAAAAAAAAAAAAAAAAAASUp0egBoLu/905J+XzP5/0RZ1jk3V9LZAbPmB0ybV/M4uEoQrnaZoO3E9S5Jv43533easF2gIV/5ylcmRdFe/vKX67777tOHP/zhwCiaJK1atUqXXXaZ7r77br3gBS+YMO/973+/brnllim3vWnTpgmP3/CGN0Qed73L3nLLLfLe7/0PAAAgroIRRmt14MRavzUeTC1qdKXsyy0eCWYaa7+MEwtqB+u4kq/ECaPxuw+6Qcb4LAdLk2MUUuu/i3GDY52KhFlRrjBZI+IWN65Rz7ZbyTweGOfKQsU+h8b5PM1AYyVeVCzO8+s5r9ceF8frSwf/row812jAlAaM81RfanHMNfFzXuxT9VXdOnBj4LwFyV4dNf9lbR7R7NSbDt6Pg2JprRL285Kg2C0AAAAAAAAAAAAAAAAAAAAASITRZqr/qHn8QefcgRGWu1TSwoDpUcJowb/qO1ztv4SvXScwKzzwwAN6z3veM2Ha8ccfrxtvvFHLly+PtI7Vq1frxz/+sdasWbN3WrVa1Zvf/GZt3x5+g8vWrVsnPI66zUaXBQAAaESxGvxXkEwi29LtWhGbfDVeOAT7FCKH0ewoFFDLe28GdDoVf7JY8arafSMsIpRy6aaOCfWxzhED5f7A6XHDZXHFDU3kksFxrFar532wXlvc19zqzyAuK1BmnSutYFrGZZVwyRjbta5vop2j9z0/+vVQqY7zuvU+JJXS/GTQj7WlAtdowJSsQNIiIzjojPWQRcN4vx++W8+Ungycd0LvaVy/tklfakng9EHj+rQVwsJo3XYtBgAAAAAAAAAAAAAAAAAAAKB7EEabmT4vaee4x72SbgyLoznn/lLSxcbsaoRt1nPPC/fJAJIuueQS7dmzZ+/j3t5eXXvttZo3L14rcL/99tO3vvUt9fT07J32xBNP6NJLLw1dbvy2JSmdjn5DUiPLAgAANKLog2+szbQ4eGQGjCr2jb6wlaojobGn2ucCUZV9SRUFf7es8FCnWDGq2iBRWByQsER3sM4RVizKilE1S9zQRKeigT0uo0TMH1Nbry3+a+6uGIf1GViBMisUFjdyF/U4NJU4YbR6gqfWeLLJnB134xoNmNKO0rbA6VZQSc5KowH73Dp4Y+D0hBJau/D0No9m9upLLQ6cPlhqZxjNvp7otmsxAAAAAAAAAAAAAAAAAAAAAN0j1ekBoPm894POubdJunbc5CMk3e+c+xdJN0p6UlJO0lGS3i7p5eOe+7ik5eMeDwZsZk/N43runKxdpnad9fiCpG/GXOa5kr7ThG0Dsf3ud7/T97///QnTPvOZz2j//feva32HHXaYLrnkEn3605/eO+3f/u3f9PGPf1x9fX2By1SrUdqHwRpZthnuu+8+3XPPPerv79fAwICy2ayWLl2qNWvW6Mgjj1Qmk6lrveVyWRs3btTDDz+sbdu2qVgsaunSpVq5cqVOOOEEZbPZJr8SAAAQV7FaCJyeSbT2PJ1LGmG0mOEQjIoTXKknoILZK+y7lU12Jv5ksUJItceVsH0g6fgRXzeIGxZrdQgibnit1aE2i3NO2cQcDVej/Wgw5VJKJ3oC58V9Tzv1mi1WuLFQCT6mmaGwmN9FOyo2JO+9XMQIUt4YZ5Cyjx88NUNwiTkh12jRY23AbDVQDg4k9aWNMJrBe34XDkbtKG3T3Xt+GTjvhfNeqt50cKwLzddr7McD5e2xzvGNCLs+6LZrMQAAAAAAAAAAAAAAAAAAAADdg7smZyjv/XXOufdJ+r+SEs9Oni/pA8/+Z7lK0kJJ54+bNm3CaN77ZyQ9E2eZdvyjf8By5ZVXTrhhbMmSJbrgggsaWufFF1+sz372syqVRm+aHxoa0tVXX60PfvCDkqRHH31UBx98sLn8ySefHDj9mmuukaTQ8Vn70yOPPKKVK1fufXzSSSdpw4YNex/HuWluy5Yt+vu//3t985vf1NatW83n5XI5nXzyyTr//PP1+te/Xslkcsp133///brsssv0/e9/X7t27TLX+5rXvEaf/OQntXr16sjjBgAAzVWo5gOnxw2BxGUFV+IEvrBPnKBc2ZdbOBLMNGHfLSs81CnWeGqPK9Y+kFBSCZcInIf2ih3lMkJOzRJ3PK0OtYXJJaOH0cLGGTeu0cnXHMQKN1rXGXYoLN5xLpecFzi9orJKfkQ9Llp4fjhGhKye87odgpsTco0WfM0IYJT3XgOlbYHz+lJLA6c7Wf9PhTAaRv1s8IfyCv6lKif2ndHm0cxufangMFrJj2ioulvzkgtaPgbreiWplFIu3fLtAwAAAAAAAAAAAAAAAAAAAJieuGtyBvPeXyVpvaTfR3j6HknvlnSxpANr5j0d8PydNY+D75AxOOfmaXIYLSjABsxo//M//zPh8Vve8hb19PQ0tM6lS5fqzDPPDN3OdOS915tUPcUAACAASURBVGWXXaZVq1bp85//fGgUTZLy+bxuuOEGnXPOOdqyZUvocyuViv7iL/5CL3jBC/Sf//mfZhRtbL3f+MY3dPjhh+vKK6+s67UAAIDGFauFwOmZRLal27WiG3ECX9gnTlCu7EstHAlmmrDvVqsDinFZ4ylUasNowftAmphA17CiVubzWxzlijueuFGxZorzXoTtw7FjcDHfo1azrzOC4175ihUKa95nn48RO4tzPVSq47xuh+DmmK+hEGP8wGw0XN2jEV8MnNeXDg4qAWFK1ZJ+vvPmwHkH9Byk1bkXtHlEs1tfarE5b7DU35YxWJHSbDLHL68CAAAAAAAAAAAAAAAAAAAAYEp1egBoLe/9Tc65wyW9VtIZko6XtEzSfEnPSHpE0vWSvua9f1qSnHOH1qxmU8CqH6x5/JyYQ6t9/g7v/UDMdQDT2uOPP65HH310wrTTTjutKes+7bTTdN111+19fMcdd6hUKimdnp43zJfLZb3pTW/StddeO2ne/vvvryOOOEJLlixRsVjU1q1b9Zvf/EZ79uyJtO58Pq+zzjpLN91004Tp6XRaRx11lJYvX65MJqOnn35aGzdu1PDw8N4xXXzxxRoYGNDHP/7xhl8jAACIp2jcWJtpcfDIjm4QRqtHbfgpTMmPtHAkmGnCvlvdFkbLJecGTi/6gqq+ooRLSpLKvhz4vBRhtK4R97vV6u9i/EhYJ8No0d+LXCJ4n5GkXMzX0MkYXBBrPFbs0QyFNfF9yFeGtTC1KNJ6hivRI2Tlavwwmh2Cm2N+360YC4BRA6Xt5rxFqXhhNN/oYDAj/O+e27WnUvu7lUad2LueEFabLUj1KqGEqqpOmjdQ3q7lOrjlY7CuV1odCQYAAAAAAAAAAAAAAAAAAAAwvRFGmwW89xX9/+zdfZQkdX34+09VVz/OzM70zC4Py7LsCioBAYVFYIHFCIjL+cXEh9zk4rm/E0n8/WLIifeGXP3pzxuQHHz4eTw3JOolud5o4g1Jfh4fovcnETHyrCgPigIiyOOygLOzPTtP3T3dXd/7xzLLTPf3U13VD9XVM+/XORy3q7qrvtVdXVUza71X5Ksv/xfIcZzjRWTbqknPG2Oetzz10abHJ0Uc1quaHj8S8fXrVr1hZB+JuL7bVhTxUoO9Aefuu+9umbZr166eLPuss85a87hcLsuPf/xjOfvss2Xbtm3y1FNPHZn3l3/5l3LDDTccefxP//RPcu6557Ysc/PmwzfCvelNbzoy7Xd/93fl3nvvPfJ49XJX27Ztm3V6WFdffXVLFO3yyy+Xa6+9Vs4+++yW5/u+Lz/4wQ/kn//5n+WLX/xi4LKvuuqqNVG08fFxufbaa+X3f//3ZWxsbM1zy+WyfO5zn5OPfOQjUqlURETkuuuuk3POOUf27t3b4dYBAIBOVP2KdfqgIjNasATBorxvWhQKsNH2rayTOxIaS4p8wHGr4pelkBoVEZG6sUeEUg6/3kuKqHGHfke5oi5/kJGwoNhZs6BzfZTrgLSTSdz3R9uHtKCIdqyLvC8qgcagddifGyGMphzTggSF4NR4bYQIK7ARHaxPW6e74sq4V7TOc0T7vTppNIjcXvqWdXrWyckbN70p3sFAXCcl496klOqtEcRSfSaWMajn74QFqwEAAAAAAAAAAAAAAAAAAAAkS7Lu/EISXNz0+DbleT9reny64zgFY0zYO83Ob7O8DWtfSeRVH279l9vRW09+zJUdmwc7hn379q15fPTRR8vU1FRPlv26173Our6zzz5bPM+THTt2HJk+MTGx5nnHHHPMmvnNRkdHj/w5l8utmRf0uk7dcsst8ld/9Vdrpn3iE5+QD37wg+prXNeV3bt3y+7du+W6665rGeeKL3/5y/KFL3zhyOMTTjhBbrvtNnU78vm8XH311XLeeefJxRdfLJVKRYwx8id/8ify2GOPieu60TcQAAB0pOKXrdOzrv283yvajbuVRlmMMeI4g43vDpsoARUjvjRMQ1IJi1ohmfR4Tvj4UlxyAUGosr/UNozmJSzstJFFjVFFfX5U2YixiX6PJ3jd4ccaNM4o2zDIEJwmatxLD41E27askxNXXPGl9XeSUc7V0YKn0cNoZeX6L+cWJJeKFpUDcFip1hpLEhEZ9ybVmKweRsNG91zlSXmq8ph13hvH3yR55ViN/prwpuxhNOX732va728Gee0JAAAAAAAAAAAAAAAAAAAAIPkouKDZ7zc9/rztScaYF0TkoVWTPBG5IMJ63tT0+OYIrwXWhYMHD655XCwWe7bsXC4n2Ww2cH3D4rrrrlvz+A//8A8Do2jNJiYmrGE0Y8yaZXueJ9/4xjdCxd1WgmsrnnjiCfn6178eekwAAKB7Vb9inR41AhNVTokqNaTeUeBjo9NukNbUzHKfRoL1RovzRIkvxSUoYFReFUOqm7r1OZ6T7vmY0Bktnqk+v89xkJSTkoyTbf/Elw0yFJYPCAQ2C4poRNmGJMY4tLhX1VTEN42W6WUlmBZ12xzHUT+DciNCGC3Cczu5bqookba8W1A/+yixNmAjssWSREQm01siL8uI6XY4GHK3z35LnXfRxOUxjgSrFdP2fyVotj4Ty/q1yGoSr8UAAAAAAAAAAAAAAAAAAAAAJAdhNBzhOM4FsjZu9pgx5raAl3yt6fF7Qq7nZBE5Z9WkRRG5JcxrgfWkOVQ2MTHR0+U3L29mJp6bXHrpoYcekrvvvvvI47GxMfnkJz/Zk2V/73vfk5/97GdHHr/73e+W008/PfTrr7rqqjXBtW984xs9GRcAAGiv5tekIfZAUNZpDaL2UlD0hvBGdFECKiKdRVSwMVWU72OU+FJcgoIAq7dD2/8JoyVH1LhDHDGIYQmF5VLho3JBQbko26BFyAYp6DrDFhPVj3XRt017P7SYSbfPrXVwTi8rQdWcW1A/+5pZ5voBCFCq2cNoRc8eUgpCFm1jW2osyI/m7rDOe3X+VNma3R7ziLCi6E1Zp88qYcReqzTs5+9BRnkBAAAAAAAAAAAAAAAAAAAAJB9hNIiIiOM4BRG5sWnyf23zsn8Ukcaqx+9wHOfVIVb3wabH/90YUwnxOgAROI4z6CF07bvf/e6ax1dccYVs2rSpJ8v+zne+s+bx7/zO70R6faFQkDe+8Y1HHt955509GRcAAGivauw31YqI5AKCIr0QNmCEcKLG5OrGHsQDmpUb9n2r38eITqTdtBo3W/0dqftaGM3ry7gQXdT9K44YRJT4V1BwrN8iBc0CnhtpexN4PMgFxBtt50ztPNpJ9K2grDvKuTpK8LSTWFkl4Nge9H3SgiwAREpKGKmY1sNojgz/753Re98/9F2pmWXrvIuKl8c8Gqw2oYQOS7V4/jEd7Xclg4zyAgAAAAAAAAAAAAAAAAAAAEg+7pxcpxzH8YwJd8e44zijIvJNETl11eSvGGO+EvQ6Y8zjjuP8vYhc+fKkjIh80XGci7XQmeM4vykiv7dq0rKIfDTMOIH1ZnJycs3jQ4cO9XT5s7OzgesbBvfcc8+ax29605t6tuy77rprzePJyUl5+umnIy1jdaTt6aefFt/3xXVpjgIA0G9VX49bZN1cX9cdFN2IGvlC9Jhc3bffaA800/atQYafguTcgiw0Wn8mXL0dDbH/mkeLqiF+iQyj9Sg41m9R3oug9zlK7CyJMY6g8duOa9q1Ryf7lvZ+LEWInS350cJoxphIYX/92D7SNl47Kr0J7QPrzcHatHV6UQkpBTPdDQZDyze+3DH7b9Z5496knDF6Tswjwmpa6LBUPxD5XNwJPeSavEgtAAAAAAAAAAAAAAAAAAAAgOQgjLZ+/WfHcd4pIv8gIv/DGNNyd8vLQbR3isj1InLcqllPi8gfhVzPNSLydhEpvvx4t4jc6jjOHxhjfr5qXVkR+U8i8umm13/aGPNMyHUB60pzqKxUKvVs2ZVKRSqVtX3Cqampni0/Li+88MKax6eeeqryzOiee+65NY/PPffcrpbn+77Mzs4OZYAOAIBhU/WtHWYRiR6liSoovFZpEEaLKmpMrmZqfRoJ1puKElBMYghJ5HDEyBZGW/0dqSv7v+cSRkuKqPtXLoZQX5TzYhyhNk2U9y5onDl3pCfLGZSg8Vcaa49rvvHVWGw+wvtw5DXK/hg2Ylo3NamZ8AFTI0Z8aUgqwl9RqGEVNx8YviReC9j5piGz9YPWeYFhNCWiZAxhtI3q50s/kenaC9Z5F4y/RVIOfx09SEXP/ndDNbMsi/68jKb6Gw8dtp/NAAAAAAAAAAAAAAAAAAAAACQD/0/09csRkV9/+T/jOM5TIvKYiJREpCAix4jImSKSaXrdUyLyFmPMr8KsxBizz3Gcd4jIt1ct63wRecRxnPtF5EkRGX95XVuaXv7/icj/EXG71r1tRZEnP+YOehjr3rZi++f023HHHbfm8YsvvigzMzM9CZg9/PDDbdc3DGZmZtY8LhZ798E1L7sX5ufnCaMBABAD7aZaEZFsn8NorpOSnJu3joHoRnRBn6WNFoYCmpX9Rev0JIaQRPR41ergYs1XwmgOYbSkiBp3iGN/DDsmV1KSdpp/TRifKO9F0DblI1wHJDHGkXbT4jme1E29ZV7zca3qV8SIPULUSSi2oMTUtONpy/M6CMTWTC10LCcovJZ3RwK3mWs0wG6ucUh8aVjnTaab/zrnFY7Yw2jYuG4vfcs63ZWUXDDxlphHg2YTShhNRGS2NhNDGM1+Hk7qz2YAAAAAAAAAAAAAAAAAAAAAkoEw2sbgiMirXv4vyDdE5A+MMdNRFm6Muc1xnLeLyBfllfiZIyK7Xv7P5p9E5L3GGPtdNxuYl3Jkx+ZBjwJx2L17d8u0++67Ty677LKul33fffeteZzP5+X1r39918sdNMfp3U13y8v2m2m7YYz9hmQAANBbVb9ine6IG0vUJecWrEEv7WZf6MqNcLGVFYTREJYW3UtiCElEJJ/SgkSvHFdsoSQRES9kVAj9l0uFj1GlnUzoIFQ3wobC8qlCT3/mjiqXCv/dzAc8N8p3PKnHg5xbkIXGXMv05uNa0HWHdkwJXq/9NUshz9WdxMcOn9fD7aOVhh5Tzbl5STmeZJysLJtq62u5RgOsSjX9r4KKHn9JgXBmai/Jzxbvs857/di5Mu7xD4kM2rhXFFdc8cVvmVeqz8g22dnX9WvXCEm9FgMAAAAAAAAAAAAAAAAAAACQDO6gB4C+uUtEviwipTbPq4vIzSJyqTHmN6NG0VYYY74lIq8TkRvbrPMHIvIuY8wVxphod8AD68z27dtl+/bta6bdcsstPVn2d77znTWPzznnHMlk+h8J6bXNm9fegHfw4MG+LDuXy4nv+2KM6eq/HTt29Gx8AABApwWPsm4ulqhLTonMdBIE2eiihkpqhNEQkhbdyyf05nttXKu/Iw3CaImnnR9s4toXwwYnBh2miPJ+BL3PaTcT+jsRFFgbJO29aL7OCLruiLIvrigoMbWw5+qyH/1XvVrwMeo48i9H3bT9uNzgGg2wKdUPWKennYyMpMbU12k/cRnhH43YiO6c/bb62V80cXnMo4GN66Rkk1e0ztOOA71UUc7DnVyvAAAAAAAAAAAAAAAAAAAAANg4CKOtU8aYHxtj/icRmRKRk0XkHSLyJyLyERH5ryJylYhcKiKTxpjLjTG39mCdvzLGvE9EjhGRN4vIe0TkQy+v950i8ipjzHnGmK90uy5gvXjrW9+65vGXvvQlqdW6iz1MT0/LN77xjcD1DItjjz12zeNHHnmkZ8s++uijj/y5UqnIs88+27NlAwCA/qr6Fev0uG6qXYlvNNOCbdBFjcnVCaMhJO37mEtoCEmN+az6jmj7v+ek+zImROc5aUk74aLkcYXIwsa/Bh0NjPJ+aOfhqMsadAxOo42rOQwWJhQWhbYPLCmhyWZakDJI3V8O/dzAEFzq8DWgtr9HDbECG8XBmv3fySl6m9sEp/sfo8ZwqPnLcveh71jnHZvZLiflT4l5RNAUvc3W6bO1mb6u1zcNqRr773AGff0JAAAAAAAAAAAAAAAAAAAAINkIo61z5rDHjDFfM8b8tTHmemPMx4wxnzPG3GqMme/DOpeNMd8zxnzRGPOJl9f7VWPMU71eFzDs3v/+96+5yWx6elq+8IUvdLXMG264YU1cbWRkRN773vd2tcxBOf/889c8vu2223q27N27d695fMstt/Rs2QAAoL+qSvAo6+ZiWb8WYOskCLLRRQ2VEEZDWGXf/n1M6s332rgqhNGGTjZkpDOuSN+wRMLyEeKm7UKoYUOpcQVVo9LG1XzO1EJhrrihA31r19tdVEw77gapRTivB4XRVo6hYSKTAF5Rqh+wTi+m7QGl9kzng8FQun/+blls2P+a8aKJvW0Ce4hTMT1lna4dB3pFC9uLJDdaDQAAAAAAAAAAAAAAAAAAACAZCKMBwACdcsopsnfv3jXTPvjBD8pLL73U0fIeeeQR+dSnPrVm2nve8x6ZnJzseIyDdMkll6x5fNNNN8n8fG96jpdddtmax5///Od7slwAANB/2o21YWM03corN+9WlGAb7HzTiPyeEUZDGMYYdd8adPxJo8Z8Gu3DaCnH68uY0Jmwga8oIbBuhN3nBx0NzLkjEZ4bPNZ8yGUNeps1+ZR9/KuPByIilYY99pV3RzoK0RSU9S6FDJ4tKYHYoM8rynldC7SlncyR42CYyCSAV5Rq9iDSpLcl8HWO2I8xhjDahnPH7Les03NuXt44/qZ4B4NAE549eDjb5zBaUJw0qZFaAAAAAAAAAAAAAAAAAAAAAMlAGA0ABuzTn/60FAqv3Lg5Ozsr73jHO2RhYSHScqanp+Vd73qXLC8vH5l27LHHyp//+Z/3bKxxO/XUU+Wiiy468nhubk4+9KEP9WTZe/fulRNPPPHI4x/+8Ifyd3/3dz1ZNgAA6K+qsQePsk4ulvVrgQ+iG9FogbsgNZ8wGtqrmooa5khuCKn9caVu6tbnpJ10X8aEzoQNkUUJgXUjbHBi0NHAtJsWL2Tkr91Yh2WbNdr4m68ztNBILtVZZEQLylX9svjGb/t67TpoLDWuvkY7rtk0h+FWrB639t4FRVmAjeygEkQqpu0BJWC1ZypPyNOVx63zztn060SvEqaohNFKtZm+rjfo9yRhY7YAAAAAAAAAAAAAAAAAAAAANibCaAAwYCeffLL89V//9Zpp99xzj+zdu1f27dsXahmPP/64XHzxxfLoo48emea6rnzpS1+SLVu29HS8cWsOu332s5+VT3/606Fff+jQIalUWqMbnufJddddt2ba+973PvnqV78aeYy33nqrPPnkk5FfBwAAOlPx7WG0uG681kIqRDei6eT9qhvCaGivosRzRJIbQtKCbWV/8ciftf3fI4yWKGHPRfkBn7OaaXG+OIWJxXlOWtJu8D4fPk43+G220SIhzedNLTTSaQAyn7Kv14iRqnLttdrSquPVapu8CfU1NbOszmumbe/q75z23gWdF4CNbLamhNGUgFI79iwt1qs7Sjer8/ZM7I1xJAijmJ6yTi/VD4gx/fv2lgOuIYjnAQAAAAAAAAAAAAAAAAAAAAhCGA0AEuDKK6+Uq666as20u+66S0455RT5xCc+Ic8995z1dU888YR85CMfkdNOO01++tOfrpn3yU9+Ui6++OK+jTkub37zm+Xqq69eM+3P/uzP5G1ve5vcf//91tf4vi/f//735f3vf78cf/zx8uKLL1qfd8UVV8iVV1555PHy8rK8853vlHe/+93qskVEGo2GPPjgg/LRj35UTjnlFLn00kvl2Wef7WDrAABAJ6p+a/RURCTr5mJZvxYc0YIdsAt6v0bcMet0wmgIIyi6l4T4k40WaFodgiSMNhzCR7naR8B6IWyALQmRsDBjDTPOsN/z5B4P7O9D83lTO9Z1+lkGBdW06Nma8SjxsYI7Kq7y1xBRzuva9q4OuuVS9veOeC3QqubXZK4xa51XTAeH0RzHUeaQRtsoFhpzct/8ndZ5ry2cJsdmj495RGhHCx7WzLIs+Qt9W6/2c78rKUk7mb6tFwAAAAAAAAAAAAAAAAAAAMDw8wY9AADAYZ/5zGekWCzK9ddfL8Ycvolsfn5ePvShD8mHP/xhOeWUU+T444+XYrEoMzMz8swzz8hjjz3Wspx0Oi033HCDvO9974t7E/rmk5/8pDz77LPy5S9/+ci0b37zm/LNb35Ttm7dKqeddppMTU1JtVqVF198UR566CGZn58Ptewbb7xRSqWSfO1rXzsy7aabbpKbbrpJtmzZImeccYZMTU2J67oyNzcn+/fvl0cffVQqFXuQBQAA9N/qUNBqWkik17TgiBYEgV3Q+zXqjcvicuv1HGE0hBEU3UtC/MlGCxKVG0tijBHHcaRu6tbnpBx+vZckYfexvBJw6rXQ40nAdyNU9CzEc4Zpm23U64ym6x/tWNd5GE2P9ZUbSyJtGoxlJZ6WT41I2slI1bT+HiXKeT3M9Z+2DcRrgVaz9QPqPC2gtMIRLYyGjeL7h/5dambZOm/PxOUxjwZhTHhT6rxS7YCMpOxx8m5VlJ/7824hILIIAAAAAAAAAAAAAAAAAAAAAITRACBR/uIv/kIuuugi+aM/+iN5/PHHj0w3xsjDDz8sDz/8cODrzzzzTPmbv/kb2bVrV7+HGqtUKiX/8i//Iqeeeqpcf/31Uqu9cuPs/v37Zf/+/R0vO51Oy1e+8hX51Kc+Jddcc82a4Nn09LTceuutoZYxMqLfQAwAAHqr6tsDpVk3F8v6tQAb0Y1otIBKSjw1VlMjjIYQysp30RVXMk425tGEo4WMGlKXuqlJ2smoASHPaVMrQqzCRjpzARGqXgobyYorLho8hjDRs/bjDLvN2QRss412DmwOi2iB0U6Db/mU/jrtnB3mOXm3IJ6TVsJo9uBjlOWv/ry5RgPCKwWF0dLBYTTNyj/2gfXNN77cOXuzdd6ENyWnj74x5hEhjE1eURxxxYjfMq9Un5FtsrMv61XDpjFFggEAAAAAAAAAAAAAAAAAAAAML3fQAwAArHXJJZfII488Iv/4j/8oF198sXhecMMym83Kb/zGb8i//uu/yn333bfuomgrHMeRa665Rh577DF573vfK5OTk4HPHx0dld/6rd+Sr3/967J9+/a2y/7ABz4gTz31lPyX//Jf5IQTTmg7nrGxMbn88svls5/9rLzwwgty9tlnR9oeAADQuapyY21cgZN8yh6z0W74hZ32fuVTBUkroSctDAWspgVwcm5BHMeJeTThBAeJDm+PFhDyHP7dgyQJG3nIx3bOChfJ0s5tcQoz1jDRszBhsKyTk5STCjWuuOWU96H52KYe60J+5s08Jy1pJ2OdFyqM1rA/p5AaUY9TUc7rlYZy3bDq884rwUEtmAlsZAdr9jBawR1NRCwTyfXI4gNyoPaSdd6FE5cl9vy60aWclIx7Reu82fpM39Yb9LMZAAAAAAAAAAAAAAAAAAAAAAThzkkASCDP8+SKK66QK664QhYXF+X++++XJ554Qqanp2V5eVmy2awcffTR8prXvEbOPPNMyWazHa/r2muvlWuvvbaj1952222xvk5EZOfOnfK3f/u3cuONN8oDDzwgP//5z+XAgQOysLAgIyMjctRRR8nJJ58sp59+uqTT9qCG5phjjpGPf/zj8vGPf1yeeuopeeCBB2R6elpKpZK4ritjY2OydetWOfnkk+XVr361pFLc5AUAwCBU/Yp1elxhNC0UUPGXxBiT2PBS0miRkrxbEI8wGrpQbij7VoexoDgEhQEq/pJskgl1/9e+LxiMsJGHnBJw6rWwcZskRHBCRc9CxdPab0sStlejhd2az5tB59HO1z0itcZy67qV6Nna8difk3dHxHPTIo3WeTW/dV1Rl796v1Gv0ZSoGrCRler2MNpkenPb1zrCzzsb2e2zN1unp8ST3eOXxjwaRFH0NlsjaCUllNgL/bheAQAAAAAAAAAAAAAAAAAAALAxEEYDgIQbGRmRPXv2yJ49ewY9lERxXVd27dolu3bt6svyd+7cKTt37uzLsgEAQHcqvj1ukXVzsaw/r8RsfPFl2VQl68QzjmGnRVZyhNHQpYpy833YYNUgBIUBVmICehiNX+8lSdjgVj6mMFfK8STtZKRmggNU2rktTmECGWG+x6GeM4ShxJpZloapS+rl77wWGunmWJdPFWSuUWqZrq0rzHPy7oh4TsY6L8p5Xbv+Wx3Ly6fs+3HZXyReCzQp1aat0ye89mE0jRHT8WsxHA4svyiPLD5gnfeGsfNk3CvGPCJEMeFNWafPKqHEXhjGn80AAAAAAAAAAAAAAAAAAAAAJIM76AEAAAAAABBF1a9Yp4eN0XQraD3aTb9opQVOgsJoNZ8wGtrT4zzJvfk+G3RcaRzenoapW+dr3xcMRtj9LKcEnPohXHAsnnNo8BjajzPMtuRDRM+SHOMI+ixWH99Wjg3NujnWaYG8MGG0JSV4mk+NSFoJONaV45pNxdeDqq/82f7ercRrAbyipISQiukwYTR7ZJAw2vp3x+y/qZ/znom9MY8GUWnfb+140At6yHXw154AAAAAAAAAAAAAAAAAAAAAko0wGgAAAABgqFSVoFbWycWy/qDgSFmJlKBVWQmc5FMFSbv20FPdEEZDe1qgMMkhJNdx1TjASkygpuz/hNGSJex+lo8xBhEuOBZfqE0fQ28Cbr0KrA1K0GexOobWj2Od9r6UlejZCt/4avA0HxA8jXJeLwcs/5U/B7x3xGuBNUo1ewhp0tvS9rX2LBrWu2W/Kt8/9F3rvOOyO+TE/K/FPCJEVfSmrNNLtZm+rbPS0IPoAAAAAAAAAAAAAAAAAAAAABCEMBoAAAAAYGj4xpeqqVjnhYml9EIupd/AS3QjPC2gkutRQAUblxYoTHIISUSPA6xEBLX933O8vo0J0YU9F8UZgwgVE0vFvHdLFwAAIABJREFUF2pTxxBinGECbr0KrA1K0GdRXnWdUVauOfIB1ynt5FP291eLma6o+hUx4tuX6Y705LxeUY7tq79LQZ8r8VpgrYN1exitmN4c80gwLO6fv0sW/XnrvIsm9orjkMxLOu37PVufEWNMX9aph1yTey0GAAAAAAAAAAAAAAAAAAAAIBkIowEAAAAAhsayqarzsm4uljFknZw4Yr/pW4uUoJUWWckTRkOX9Jvvkx1G02JOKxHBuqlb52vfFwxG2MhDnKG+oKDniiSEA8MEvUJF3kI9Z/Dbqwn6LFaOBw1Tl5pZtj6nm23T1t0ujBY0P5/Sz+u1kOd1Y0yoEJwWdhMhXgusVm4sqd+JohcmjGb/WchIf8JKSIbbZ2+2Ts+7BTl700UxjwadmPCmrNOXTVWW/IW+rFMLogedswEAAAAAAAAAAAAAAAAAAABAhDAaAAAAAGCIVJWbakVEsiFjNN1yHEeNrhDdCK/cUAIn7oikuwyoYGMLE89JIi1mVG4sim8aYsS3zieMlixho1RxxTxF2kfP0k5GUo4X02h0Yd67cJG39qGNJB8PUo4naSdjnbcSIAsKsXYTudPeO+2c3Twum4I70nXwtGaWxZeGdd7q/SbjZInXAiGU6gfUeZPp9mE0x7F/z7B+PV3+hTxbecI679zxN8d6XYPOaWE0EZFSbaYv69SuEcLGhAEAAAAAAAAAAAAAAAAAAABsXIO/4w0AAAAAgJAqgWG0OCMzI9bARtD41osfzd0h3z/0XTWoMJraJKePvlHeXHybpJyUuhwtIpdz82J8ewAqbEAFG1vQvpVkWsyo4pelburq6wijJUuYcFfOzYsbcHzstXbBsTAhsTiECXqF+R6HCaWGDdgNSt4tSK2x3DJ95TqjEhAq6yqMllLCaAHhM5HDAUdNLiB4Gva8HjYE5zqu5Ny8co1GGA1YUapNW6c74gSGk9oypvPXItFun71ZnbdnYm+MI0E3xr1JccS1Bpdn6wdkm+zo+Tq135F0c70CAAAAAAAAAAAAAAAAAAAAYGMgjAYAAAAAGBpVv6LOizN6pK0rKAyyHtxRuln++Vd/E/icl+R5+WX5UfnV8n559zFXqc/TAiX51IjUTGsMRoQwGsLRAjpJiT9ptKBW2V8M3Pc9h1/vJUmYc1HcUa52Y0pKNDDM+xLme5x20+I56cDvTdLDaDm3IHON2ZbpK9cZQaGwMHE+jRYpCVpf0Py0kznyediEPa8HRc2a99+cW7COp902ABuJFjje5BUlFeK6wlGmk0Vbnxbqc3L//F3WeScXzpCjM8fFPCJ0KuWkZNwrymx9pmVeyTKtF/RodbKvxQAAAAAAAAAAAAAAAAAAAAAMnjvoAQAAAAAAEFbFL6vzsrGG0ew38QaNb9jV/Jp888BNoZ9/96HvyEvLz6vztUBJzs1L2snYx0AYDSFUGvq+lWRakKjil6Vu6urrtOAQBiPr5MRRkzGHaZ91v7QLT+RTyYgG5kMEvcJ+j9u9x3F/BlFpcbOV64ygyFc326aF58rKcXXFkhKGXVmedpyq+eHO60Hrb95e9VjaZhuAjeRgzR5GK3qbQy4h+DyH9eWeQ7eqIcs9E3tjHg26pX3PZ5VgYjd846u/I0n6z2YAAAAAAAAAAAAAAAAAAAAABo8wGgAAAABgaFT9inV62slIyknFNg4t3hIUKhl2jyw+IIv+fKTX3D93lzqvorxXebcgnuNZ52k35AOrad/DpMSfNFq8quwvBe772vcFg+E4TttQZ7tQWa+1C2UlJUwR5n0JG/1qt6y4P4Oo9FDi0pr/bXb4eqjzY4J+fWMPn7Wbv7I8z7WH0cKe17XtFWkN4wYdSwEcVlICSOHDaBrT5euRNL5pyB2zN1vnFb3Nctro2TGPCN2a8Kas00tKMLEb2u9vRJJ/LQYAAAAAAAAAAAAAAAAAAABg8AijAQAAAACGhnZjbdbNxToO7SbeoHDHsPvR/B2RX3P/vD2MVvOXpW7q1nl5d0Q8p7uACjauhmnIsqla5yUl/qTRQkjlxmKbMJr9+4LBabevhY179UrSxqMJ8x3NKeGuqMvKJ/x40C7uVW7ocdFuFFx7QLJmlqXm68chNUj58vLSXZ7XteXn3Ly4ztq/4tDibuv5Gg2ISgujTabDhdEccazTDWG0dedni/fLwfq0dd6FE5fFGidHbxTTShitPtPzdQWFVbXzNQAAAAAAAAAAAAAAAAAAAACsIIwGAAAAABgaVb9snZ6NOXCiBozWaXSj4pflpws/ivy6F5afk/3VZyzL09+nXCovaTdjnVfzlyOPARtL0L6VV4I/SaEFnyp+uU0YzevXkNChdnGqXCrec1a7mJgW4YpbyvEk42QDnxM2cJhPBX/fc23mD5oWbls5xmnHum4/y1zAcbISEDcpN+zzVkJr3QZPo2xvu6gcAJFSzR66KnrhwmiihNGw/txRutk63XM8OX/80phHg17QvuezfQijVZTf34gk5/oTAAAAAAAAAAAAAAAAAAAAQHIRRgMAAAAADA01jObkYh2HdhNvpbE+oxs/mb9XasYeJbts8p3y20f9gThKIOG+ubtapgXFSfLuiBp6qpt6iNFiIwuM7sUcUIxKDy4uBu77WnAIg9Mu9BB3pK9dqC3fJpwWp6D3Lu1kQu/v7b7vWngsKbRAWfnl6wztPNougtdO0L4QdO4uK9G0lfF0G0bT1m3bt7X9Pej8AGwkvvGlpASQiuktXS3bdPVqJM2vlvfLI0sPWue9YfR8GfMmYh4RemHCm7JOL9UOiDG9/RYHR6uTc/0JAAAAAAAAAAAAAAAAAAAAIJkIowEAAAAAhkZFCaPFHTzS1hcUDRlm983faZ2+KTUhv7H5Cvn14n+QE/OnWJ9z//xdLTdYB4fRCl0HVLBxlQPihHHHqKJSg4t+OXDfJ4yWPO3OSfGfs4LDE+3mxykozBXlfRumbbbJp+zbuhIY0UIj3UZGCgHHyaWGPX4moofRVpanBU9rIc/rWnjW9jlqn23Q+QHYSBYac+p1RdHbHGoZ9hyyCGm09eXO2X9T511U3BvjSNBLE2n793zZVNXzeae039+44krayfR0XQAAAAAAAAAAAAAAAAAAAADWH8JoAAAAAIChUTUV6/Ssm4t1HPmUPRyi3fg7zObrh+TRxQet884cu0BcJyUiIrvGLrA+Z7r2gjxXfXLNNC1wInL4s9RCTzWzHGbI2MC0WJCISE4JDSWFFjSq+mWp+fq+n1KCQxicdtGtuCN97YJi3ca0einovYvyvrXbpiRts01QKFFED4x2u11ZNy+OkjwKOr5q0bGV7dDiJ2GDp1G2V4vrrcdrNKATpfoBdV5RCSZh41n2q3LPoe9a5x2ffZXszL025hGhV4relDrvYE0/PnRCu3bIuQVxHD2xCAAAAAAAAAAAAAAAAAAAAAAihNEAAAAAAENEi1rEHUbTIjNlfzHWccThwfl7xBffOu/sTXuO/PkNY+eJo/ya4f75u9Y81gInOTcvrpMKCKjUwwwZG5i2b6WdjBrcSwotuGjEyKI/b53nSkpch1/vJU27EFm7+b3WLpbVLuQWp6CxRnnf2m1T3NcNUWnvw8p1hhYY7fazdB23o2scbV7h5eOadvwNG0ZTwyqWCJr2HqzHazSgEyUlfOQ5noylxkMtQwsaGTEdjwvJ8qO5O9Tj5p6JvUSthti4N6n+3D4bEE7shB5OTXawGgAAAAAAAAAAAAAAAAAAAEAycOck0GO2G0KM4YYgAMPN91tjKNwABwAYhKpfsU6P+8ZaLbqhhduG2X3zd1qnb04fLTtyrz7yeMybkNcWTrM+9/65u9b8XKTdZL/yvnqOZ51vxJeGaYQaNzYmNZ4zBDffB41xvn7IOj2d8NjbRpVLtQmjWWJO/dQultUunBanoO9BlPctaJuyTk5cJxVpXHFrd52hRSDzPdi38q490rjU0MNi2ryVZXUfRrNfX9k+Z+2zX4/XaEAnDtanrdMnvKkIsVXld4L8Nci6YIyRO2Zvts7LuyNr4tgYPiknJeNe0Tpvtj7T03VpP5tpQWgAAAAAAAAAAAAAAAAAAAAAWI0wGtBjrtv6tarVwt3kBwBJVa/XW6bZjncAAPRbVYlaZGOOHmnRjapfFt+0BkWH1cHatDxRfsQ6b9fYnpZQ6lljF9iXU5+Wpyu/OPK4XeBEC6iIhI+oYGMqN5Sb75XQT5IEjXGhMWedHvRdweAkLUTW7hwZd6gtSNB7F+V961VgbVC0bS03lsQYExCB7EEYTYmVaOsMmreyLC14Wjetv2uw0UJwtu3V3oNyQNgN2EhKtQPW6UVvS8wjQVI9VXlMnqs+aZ133vjFknGzMY8IvTbhTVmnl+r240On9PN38qPVAAAAAAAAAAAAAAAAAAAAAAaPognQY47jSCaTWTNtYWFhQKMBgN5oPo5lMpmWEAoAAHGo+hXr9LjDaFp0w4hRxziM7p+/S523a9OFLdNeP3auuJJquywtTpI7EkbLWOeLiNTMsjoP0KJ7w3DzfdAY5xuHrNO12BAGq12cqhfxqijSbjowohd3qC1IPiBaFuV9C1pOkrZXo21rQ+pSNzU9RNaLMJqyjCVfD4tp81aCj9r+F/acXlGjl61jVeO1piK+aYRaH7CeaeGjYnpz6GVovxE0YjoYEZLm9tLN6rw9E2+NcSTol6IWRqvN9HQ9+s9myb8WAwAAAAAAAAAAAAAAAAAAADB4hNGAPhgbG1vzeG5uTozhpiAAw8kYI3Nzc2umNR/nAACIi3ZjbdbNxTqOoOCKFisZRj+au8M6/bjsDtma3d4yfSQ1Jr828nrrax6Yv0d844uI/jmuxEzSrh7wqZt64JixsZW1OE/AdzYp0k5GUmIPnS0oYbQUYbREyrcJ8Q0izBW0ziTFKYLGEiVwGLyc5GyvJpfSt7XiL0lZudboxbZpyygrcbKavyx1U7POe+W8bg+e1n3761rWrW2v5dhum7ZCu/4ANpJSTQmjeeHDaFoajTDa8Juvz8qDC3db551SeIMcldka84jQD1oIUQsndqqfIVcAAAAAAAAAAAAAAAAAAAAA6x9hNKAPmoNBtVpNnn/+eeJoAIaOMUaef/55qdXW3qy8adOmAY0IALDRVf2KdXqUWEovBIVH1kt044Xqc7Kv+pR13tlje9TXnTV2gXX6bH1Gniw/KiJ6vGolZuIFxJ7CRlSwMWnfv2EIITmOowbc5utz1umeo0cEMTjt9rdB7I9B60xSnCJoLHl3JPRyehVYG5SgbS37S1JpBAdGu1FI2dddUc7dWrRs9bK0Y1XY2GmUsErQe7BertGAbmjho8n0lphHgiS6+9B31GPznuLemEeDfpnwpqzTZ+szPV2Pdv4ehmsxAAAAAAAAAAAAAAAAAAAAAIOn32kMoGO5XE7S6fSakND8/Lz88pe/lE2bNsno6Kh4nieuS5sQQPL4vi/1el0WFhZkbm6uJYqWTqclm80OaHQAgI2uqgQtsm4u1nEERTe06NewuW/+TnXeWZvs8TMRkTNG3yie41lvqL9//m45qXCqGlFZeV89J6Muv2aW1XmA9v1LUvgpSM7Ny0KjNYJmmyZCGC2psm1iD1oAr5+CAhR5JYQ1CL0KmvUqsDYoQdta9pfaBka7ob0/S2oYTb/uybnBwdOG1MU3vrhO8O9ItesG2/sUtA8dHivxJ2xcDVOXQ/WD1nlFJZRk44ijzOEfhhlmDdOQO2e/bZ036W2R142cFfOI0C9Fb7N1+mxtRowx4jjadzwaLeQ6DNFqAAAAAAAAAAAAAAAAAAAAAINHGA3oA8dxZOvWrfLss8+KMa/cDFSr1WRmZkZmZnr7r64DQFxWjm+9ujkKAICoqn7FOj1KLKUX0k5GXEmJL42WeRUl3jZMjDFy39wd1nkn5n9NptJHqa/Np0bklJEz5aGFH7bMe2D+bnnXUb+vvkcrN0inA2JPdVNT5wHt9q2k04JE841D1ulabAiDlW9zThrE/qit0xFHMk5ywteBYbQI0a/g5cR7zdCJoOuaufqs+OJb5/UiAqkdh8oNe5ys3NDDaIXUqIgERxzrpha4D/rGV8O4trEGvQdaoAXYKGbrB8Uo8bLJdPfRQLJow+1nC/dJqX7AOm/PxF5xnVTMI0K/TKTtYbSqqUjZXzxy/u6WGkQfQCQYAAAAAAAAAAAAAAAAAAAAwPDh7kmgTwqFgmzfvr0ljgYAw8pxHNm+fbsUCty4BAAYHC16lHVysY7DcRzJuwVZ9Odb5gUFQkREDtUPyrOVJ8VYoiY5Ny87cq+RjNs+UjNbPyjPVZ6UozPHyZb0MR2HS33TkH3Vp2S2fvDItFLtgEzXXrQ+f9fYhW2XuWvsQmsYbb5xSP699E05WPuV9XUrMZPggEq97fpFDsfdpmsvyIvL+0I9f8Wm1IQcnztRUiFu/F/2q/J05ReRYniuuLI9d5Js8ibaPrfmL8vTlcel7AfvU82Oy+4IjNd1quKX5enyL2TZVHu+7F45sPySdfqw3HyvxZAWG63HGpHg7woGp134bBAhMu07kHPz4jpuzKPRBX1X2wXnVguKn/UiHtZvrpOSrJOTqmkNwj6y+ID6ul5E97TPoFSftp7b91Wesj7fEffI9Vnayajrq5uaZET/TlT9ihpysh0z025GPMezXi88uvRj67VbGCnHkxNyJ8loalNHrweSoFSzR69ERIqePZTUSw3TkOcqv5S5xmyk123NnCCbM0f3fDzGGHlh+Vk5ULNfPx6V3ipHZ47bMP9AxO2z37JO95y07B6/JObRoJ+K3pQ670dzd0hRCadFdWjV7xhWG5ZoNQAAAAAAAAAAAAAAAAAAAIDBIowG9NFKHG3//v1Sq9UGPRwA6Fg6nZatW7cSRQMADFTd1KQh9ihWNkIspVdyqbw1rqFFshqmITe99Dn5/qHvBi437WTkPcf+qbx+7Fx9OS9+Tr4/98pyXls4Tf7zcR9Wo0qal5afl8/s+6jMKKGyZq64cubY7rbPe93oLkk7GamZ5ZZ5X5v+ovq6fGpEREQ8R/91hW2ZzcqNRbnx+Y/J4+WH2z7XZjxVlKu2XSPbcjvU5zw4f4988YW/DDUemwsn3iq/c9R/UoNEDy/cL5/f/ylrFCeMM0bPkSuPvVrSrh6jieIHh/5d/vHFz6nfwaQblpvvV74DzWwhRRERzyWMlkTt9rdBBFa080PSvhtB48m59u+HTVD8LGnbrMmlClKtt54DtHCNSG+ib3nlfT5Qe0lufP5jEZZTOLKvdxM8rfhL+jqUY2bOLchCY65l+rdm/iVwXWG8dfK35Tc2X7FhQklYX0r1aev0nJtXv082jmj7v/4PxOyrPCWf2XedzDVKodez2qkjZ8ofbP2AZN3eBLEP1Q/KXz/3Udm//Ezg87ZnT5Q/3naNjHrrO4r40vLz8vOln1jnnTV2wbrf/o1m3CuKI671Z4x/+dXf9n39UX9vAQAAAAAAAAAAAAAAAAAAAGBjst99C6BnCoWCnHjiibJz506ZmpqSTKY3N6UDQL9lMhmZmpqSnTt3yoknnkgUDQAwcFpwTER6doN8FFp8RAt43DF7c9somsjh8Nfn9/83OVQ/qC9nbu1yHlv6qXz1V19su+xm//fz/y10FE1E5OSR18uYN9H2eTk3L6eN7oo8npUbpF0nJa6krM+pm/bR6a9Of7HjKJqIyKFGSW58/noxxh53OFiblv9n/6c7jqKJiNw5+29yz6FbrfOWGgvyN/s/3nEUTUTkJwv3ys0zX+749au9WN0n//DiXw1tFE2kN7GgOESNBATFhjA4uVTyYg9aDCxp342g8eQjfD9Sjidpx/47uKRts6aTcfYi+tar92d1ZCkoeNruvF4OCKNpx8x+fsb/dvDL8pOFe/u2fKCfSrUZ6/SityXScqKGAX3jy//1/PUdR9FERB5efEC+eeCmjl/f7O9fuKFtFE1E5NnqL+X/fekzPVtvUt0xe7M676KJvTGOBHFIOZ5sCvFzfb8MS6QWAAAAAAAAAAAAAAAAAAAAwGDpdyQB6BnHcSSXy0kul5OjjjpKjDHi+756kz0ADJLjOOK6buSbHAEA6Leqr0eiosaEekG7mVcLeDwUIaLhiy8/W7hfzp+4tGWeFuN4aOFeuULeF3od08svhIoBrLZr7MLQzz1r7AJ5YP6eSMvPu69EVNJOWqqm0fKcMGG0XgRLDtanZV/1KTk+96qWeY8u/lh8aR1bVA8t/FAumHhLy/SHFx+Quuk+QvaThXvlbVve3fVyHlr4YdfLGLRhufl+9XcgjKDYEAYn6Jw0qCiX9h1I2ncj6L2LOta8W5BaozVgmbRt1kQdpyNOT0Kxq4NmXS1n1fiDIo7tzutacFZkcPv1Qws/lNePndvXdQD9cLA+bZ1eTG/uyfK1v+/YV31SSvUDXS//Jws/kHcddWXXy6n4ZfnF0s9CP//niz+RhqlLap1ed1X9ivzg0L9b523PnSQ78q+JeUSIQ9GbUmPs/TYskVoAAAAAAAAAAAAAAAAAAAAAg7U+/1/8QMI5jiOpVGrQwwAAAACGSlAYLZugMJoW8CjVZiItX4sH/GLpp9bpc41ZqZtaYHwkzPI1aScjZ4yeE/r5p46cJTk3LxW/HPo127I7j/zZc9JSNa2febuASs2vyUJjLvQ6g8zWZ+R4aQ2jzTVme7R8+2cwW4+2r0RdfvTl9GY8g7R630qyqOMclu3aaDwnLcdmjpcXlp9rmXd6hONoL2n7yrZcsvahCW9SRlPjstA4tGZ62snIUZmtkZa1LbtTHll6sHV6wrZZsy27U56u/CLS813H7Xq9x2V3iCOOGOnuH3RoPqdraqY1Xrdmvq/PzzhZdd3PVZ9sM8LOrYfzIjamUs1+bTjp9SaMpq+3N9+ZUm1GjDFd/2MOi435SJHjZVOVql+RQmq0q/Um1Y/mblfj3hdN7I15NIjL9txJ8nTl8djX64gjW7MnxL5eAAAAAAAAAAAAAAAAAAAAAMOn+zulAAAAAACIQTUgsJUbQBgtr4TRyg37TeVRAmGHn29fThBt3TaLjYVIy7508u2ST9m32SbjZuWyyXeFfv4pI2fK5szRRx57rj2iUvODw2gVfzH0OtvRAgHSZSym3fKjfI5BKn5ZfOP3YDm9Gc+gvLZwmhyT3TboYYRyxug5Mu5Nhnpuzi3IrrEL+zwidGqPJSSSEk/OH79kAKMRed3oWTKVPmrNtLSTkfPGLx7IeDSuk5ILJy5rmb57/BLJuPYIlubCibeKI2vjOTtyr5Ht2RO7GmNcdo9fHDp2KmLf5zox7hXl9aPndbUMz/Hk/PFLjzxOuxn1uXVTD1yWFkT1HE+NI+2euFQ8p3//JsywnxexcWlh5GI6Whit+djaTq++M740ZNlUu15Ou9CyTbexyKQyxsjtszdb5424Y3LW2AUxjwhxuWD8LZJ29PNzv7xhbLds8iZiXy8AAAAAAAAAAAAAAAAAAACA4dO/u4MAAAAAAOihql+xTnfEHcgNvTklElZWwlzadE0ncayyvyhjMh7quUtKGM0RR7Ju7sjjordFzh3/dbm4+LbI47l08u2SdtJyz6HvysH6r6zPGUuNy6kju+S3tvwva6ZrMZh2IYNyQIAu6+SsEZWqX7HGDirKZ2CMPYzgiCtZS7inYRpSM8utY1WWr+0rrrjWMJBvfGskwoiRql+JFLSzj8c+zpR4klYCdkkwmtokp46cJb+15T8OeiihjXqb5OrjPyZfm/4H+WX5EevnmnI8eVXuZLl88+8MTfBtI7qoeLmknJTcc+i78qvl/bI9d6JcOvl2Oalw6kDGk3Pz8qfHf0y+Nv338mT553JM9nh56+Q75YTcSQMZT5D/MPU/S87Ny31zd0rd1OXMsd2yd+q3Iy/njLFz5A+2/u9yW+l/SKl+QF5bOF3eseU9akwraXbkXyN/vO0auWXmK/J05XHxpWF93rGZ7XLBxFt6Grl7z9b/Taamj5KHFn4oc41S6Nc54soJuZPkLZPvkBMLv3ZkelCkrN4meFpTw2j6td+J+ZPlquP+XL598CvyTOUJMdJZJLRu6tbrDj2cCiRbqaaE0bxoYTSNFg/TvjPNP3ccWY4xUjX2n/3K/pL1NVG0Cy3brNcw2i/Lj8rz1aet884bvzhylBTDY1tup/zJto/KzTP/XZ6pPCENCQ6Vdmvcm5TTRs6Wt215d1/XAwAAAAAAAAAAAAAAAAAAAGD9IIwGAAAAABgKFSV4lXXtsat+y7v22JRtnA1Tt4axRESOyWyTF5f3WZbTGhBoFwVbaoSPry359jDacdkd8uEd/2fo5QRxHVfePPk2efNk9Khap2E02/u24voTPy+F1GjL9E8882fybOWJlulaxEELI5yYP1n+dPvHWqY/svigfGbfR61jNca07L/avr5r0x75vWP/15bpLy0/Lx996irrayr+UtdhNO09vWTyN+U3m4J26N7mzDHy3uM+MOhhoAcumLhMLpi4bNDDOKKY3ixXbr160MNoy3EcuXTy7XLp5Nu7XtYbxnbLG8Z292BUg/GawuvkNYXXxb5ez0nLO476PXnHUb/Xk+WlAv4aot15vW7soRbtOmHFa0dOl9eOnN5+cAHuPfQ9+fsXb2iZroVTgSSr+hVZ9Oet84rpLRGXZv/ZS7tG1q4lT8idJB844VMt02frB+XDv7zS+ppyY1EmvMmQ47Rrd9yx0cLIw+6O2Zut0x1xZM/EW2MeDeJ2YuHX5I8L1wx6GAAAAAAAAAAAAAAAAAAAAABg5Q56AAAAAAAAhFENCKMNQk4Jo9liWlpgS0Sk6G0OvZxKw/4evPKa8GG0xYY9jDZiCYcNQrrDMFrQe51z89bpWuQuahhNi0Roy/fFl2VTtazX/jlqy9H2xcPL6j7eUlYCMHl3pOtlAwDWP8dxOg6e1pWwrOf0/998yafs57lenFuBuJVqB9R52s+qBbXHAAAgAElEQVQjmqhJai36q13Date8ItF+3tF0EkYT9fp/eB2ql+TB+e9b550ycqZszhwT84gAAAAAAAAAAAAAAAAAAAAAAHgFYTQAAAAAwFDQbqjPOoMJo6kxrUbrzfpBQbNiOnwYrV0IYEmJndmfO2+dXnCTEUbTAiq1NiGDihLxyjo5cZ2UdZ4WZahEDJ84SiYiargsaogsOB7RfbxFj1nYQ3MAADTTgqftzutawEhbXi9p57llU5WGafR9/UAvlepBYbSpvq5bv7a1X8NmnKy4Yr9ut/2sFVUnYbT1l0UTuefQd6Qhdeu8iyb2xjwaAAAAAAAAAAAAAAAAAAAAAADWIowGAAAAABgKVb9inT6oOJMe02qNSAUFtoqePYxme40WqFrRLpy22pJvj6gVUskOo7ULGWghsFxKj4fpkTv7soz41umOYw+jBYbLbCE9bRuUfT3tZNR4RNS4m422X+UD3lMAAFbr9LyuhdO05fVSUNi02uaaDEgaLYw2lhqXtJuJtCwtBmyUfJh+bWv/jjmOo15n9iL62y7IaKNt27BqmIbcOftt67zN6aPllJEzYx4RAAAAAAAAAAAAAAAAAAAAAABrEUYDAAAAAAyFqrEHKLJuLuaRHKbfrN8akQq6gb+YtofRbFGuduGzJUtkS7PYsIfRRlJjoZfRT+kOAypRwwtB87RlGaWLYE9EBEfZooT08qkR+3qD4hFK3C0KLcgX9J4CALBap2G0uqlHWl4vBYZNI8RogSQ4WJu2TtcizYGUGLBG+1koKLJbcO3XvUs9+O61O+7YrLcw2kMLP5TZ+ox13oUTe8V1+OtjAAAAAAAAAAAAAAAAAAAAAMBg8f9sBwAAAAAMhapfsU7PuvmYR3JYXrlZv2aWpdEU8dBCV2knI6OpTdZ5ttdogaoVUSIdS0oYreCOhl5GP3UaUFHDCwFxEz1yp4TRlDCCo/yaJevk1HlRQnqB26DG3bqLR9RNTWpm2TqPMBoAIKzOw2j2c1AcYbSg81y5EXxNBiRNqX7AOr2Y3tLDtdivkXsaLu5B9Fc7rgTSyshD6o7Zb1mnp52MnDf+5phHAwAAAAAAAAAAAAAAAAAAAABAK8JoAAAAAIChoEXBcgMKowWttzlspcUA8m5BXc6yqbYE1sqN4MjVUpQwmq+E0VLJDqPV2gRU9PCC/nnpUbFoYTSN4zjq+pvXYYyRshJ8CNoGLR5RbhPTa6cSEH4JCrUBALBap+d1LZw26DBat+FRIG6lmhJG8zZHXpYjjnW61g7r5Pq8kLJHqKP8vKOpN/2MFUbU6/8ke6H6nDy29FPrvLPGLlDD3QAAAAAAAAAAAAAAAAAAAAAAxIkwGgAAAABgKFT9inV61s3FPJLD8q79Zn0RkUpT2EoPXRUCl9McWGt+3PL8NuG01RYbyQ6jpV178KTuBwdUtPc66H3Wo2La+20PI2iRiMPrV9bRNN66qUlD7LGGoG3Q427dxSO0kIVIcDAGAIDV0krITAufragp531teb2UdtNqgK3b8CgQt1JdCaOlo4fRotK+L8HX5/Z55R6E0bQgoxvwV6brKYx2x+zN6ryLipfHOBIAAAAAAAAAAAAAAAAAAAAAAHSE0QAAAAAAQ6Gi3FCfdfMxj+SwfEqPQjUHtbSx59y85ALGX2msfV1QpEpEZClkKKBhGuqyRtxkhNG0EEm7gIq2XbmU/j7rUTH7snzjW6c7jv5rlnzKHndoXkdQ/C5on9OWr4Xiwup0PAAArNbpeb1u7LFQTwmo9poWAW13TQYkiTFGSjV7GG3S610YTYuHNUejVwT9HFTQwmgRQtAa7biTdjLqa9ZLGK3il+Xeue9Z5+3IvVpOyJ0U84gAAAAAAAAAAAAAAAAAAAAAALAjjAYAAAAAGApVv2KdHnRDfT8Frbc5JlVWgmX5VEHyyk3/ttcFRapEwocCgp5XSA13GE17j4Le55wS+Co3lsSY8BEEJ2Cetr+E3VcOL0MPkWnL7zbcErTPDeq7BwAYPlrIrH0YzT5fu07oNS2e2u6aDEiSRX9elk3VOq+Yjh5Gc9Sr3tbrZmOM+n3RrsFF9ABvL757dV8Jo7l6GM22bcPoh4duU6PdeyYuj3k0AAAAAAAAAAAAAAAAAAAAAADoCKMBAAAAAIZCVbmBO+vmYh7JYSnHk4yTtc5rjlFpN5/n3ILkUuEDa5WGfTkrlgKiWqst+vPqvKSH0WptAipaCCwo4qVFT3xpSM0st0w3ahhBT6NpYbaw+8rhZQTEI5TldxuP0N7PtJORlON1tWwAwMahnteVQNGKuuU8HLS8XlPDow3CaBgepdoBdd6ktyXy8vQwWquaWRZfGtZ5HV3bhgxBB+kkuBihlZxYxhi5Y/Zm67zR1CY5a+z8mEcEAAAAAAAAAAAAAAAAAAAAAICOO1gBAAAAAJH9wws3yHTtxVjX+eLyPuv0bEDwqt/ybkGWG9WW6eWmWIYWp8q5BfGctKSdjDXA1RylKrcJn4UNBSwFPG8kNRZqGf2WVsIEWshgRfN7vyIovJALmFf2lyTjrg3gaWG0oEiEtv6WfUX5bBxxAvd1bRu6DaPp76c9VgEAgI2nxDTbndfrpm6drl0n9Fo+pYVNg2O1QJKU6vYwmisp2eRN9Gw9tivkoGvRoGtw9dq5y2tbET20rEWvDxv+MtoT5Udk//Kz1nm7xy+RtJuJeUQAAAAAAAAAAAAAAAAAAAAAAOgIowEAAAAAIttXfUr2VZ8e9DBERCTr5Aa27lyqIIcapZbpzUGz5scrVm74z7sFqTVaw2jNUap2EY524bQVS41563RXUgN9P1fzOgyjae91J+GFleWNS7FpavQwmh4uW2x6bB9/1s2L67jq8rVtqChhs7D093NwQUIAwPBJO/bgTrvzuhYw0q4Tek0734W95gKSoFSzh9EmvElxnVQP19R6jaxdS4oEX09qUcJefPe0405QGMxfB2G022e/ZZ3uiCMXTlwW82gAAAAAAAAAAAAAAAAAAAAAAAim31ELAAAAAMAQGGSgSYtRtcSulDjVSixLi2Y1hwTahQBqZllqfmtgrdmSv2CdXkiNiuPoca84dR5Gs8fj8ik9fhYUTbN9dkYLowW8d9r6m8fbaYgspyxfC62Fpb1ei1UAAGDT6Xldmx9fGC3c+RtIslLdHkYrpjd3tLygGHCzoO9K3tWvJ7V55UYfw2iBx5XhDqMdqh+UH8//wDrvdSO7ZCp9dMwjAgAAAAAAAAAAAAAAAAAAAAAgGGE0AAAAAMBQG0mNDWzdYWMZWuxqJZYVNmoVJsKx1CaeJiKy2LCH0UZSo21fGxctTFALCKgYYwLCYnr8LOvm1MCDbXnGKGG0gEiEtv7mz1gNkQWEIw7P708YTdvnBhkkBAAMH8/xrNPrph74ukGH0cJGcIEkO1ibtk4vep2F0TS2eHBQyCzr5tR5WoS3airSMI3og1tFP65k1NdoYeRhcdfsLeKL/X27qHh5zKMBAAAAAAAAAAAAAAAAAAAAAKA9wmgAAAAAgKGVdwuyM/+aga7fptxoDpoFx7q05TS/LigsEOU5S0oYreAmJ4ymBU+0kIGIyLKpii++dZ72HouIuI6rhr5sYTE9jKCH0fR9Ze3nVWloYTR9/CJBkb7uwmha+KXdeAAAWE07rwcFT0X0874WUO21sBFcIMlK9QPW6ZPpLZ0t0NGveZsFRXZdR/8ryqBrzW6vb7XjTiYgjDbMGqYud81+2zpvS/pYOblwRswjAgAAAAAAAAAAAAAAAAAAAACgPcJoAAAAAICh5Dme/Mdj3i8pxxvYGHIpJXbVFJMqBwQBRAKiWX5zYK19hEMLWa225CthtFSCwmhu9DCaLWK2QgubtJsfJbwQlIgIG1bRtkHb11Zo+1Dd1KTmB0dnglQa2r5LGA0AEF5aCQ7VzXLg67SAkRZa6zU1XquETIEkKtXsYbSit7mj5YXPorUPRGsK7og6rzlCHZUaXHT1MJpv7PHlYfCThXvlUKNknbdn4q2BgToAAAAAAAAAAAAAAAAAAAAAAAZlcHePAwAAAACG1p6Jy2W+MTuw9W9KFeXkkTNkKn3UwMYgEhDLaIpdVZRY2crr1WjWqpv+jTGhIl1LIcJoiw17GG0kQWG0tBI8CYp8BUVKtM9q9XxbLsAWKvPFHkZwAvrz+ZARPe0zbjv+gHBaxV+UtDsR+Hr9tZ3FLAAAWE0LmQUFT0VE6sp534spjKtHcAmjYTj4piGz9RnrvGK6szBaEGOMOM4r6TTtu9Lu2jYoChwmBB1EDaMpAcdhd3vpW9bpaScj541fHPNoAAAAAAAAAAAAAAAAAAAAAAAIhzAaAAAAACCyCybeMughJIIWh1p9s37Nr0nd1ANfr0ezXgkJLJuqGuRa85pG+1DAkhJGK7jJCaN1ElAJipQExRVEwsXpjjD2ZaxqQIRefs0sS8PUJfVy4EULPbSNRwTML/tlGZPOwmhqzKLN+wkAwGpayEy7RnplvhJGc+MJGOXdvHV6mFgtkARz9Vn1Z4ii12kYTb/oNWLEWTW/08hu3h1R53UdRlODi/afP0QOb9cw2l99Rh4vP2ydd/amPVJIUBgbAAAAAAAAAAAAAAAAAAAAAIDV3EEPAAAAAACAYaXdsP//s3evQZKlaWHfn5OXqszq7umunu7dZXeBXeEFA+Ky2l2WhWUGDCzM2FgXK5AEtqyLwxC6IFsKhxwmwjYKO8L2B4fsT3bYDiFHOPzFJqQIxw7Cus0uC5JASIAkECIwIUBcZnaqZ3q6srrzcvyhJ6ezqt/n5MlLZVX3/H5ftuu855aXOufNGvLPyWy08O88nDGPS+X7ebRtU/Rr0XGLUMDxLAmjXaIvxq8TRsue6yo6sV8NGo+Xx+kefz7zMEIeiWgKmy2+tifTUXGd5fGIfPxkg3jEujELAFiU3dfHDff1iPy+328IGG3TIJmjtZ2XwUV7bfJKOnbYXy+MVjXMec8alSLDsTz626266fz9uEUIukl23ek3BhefzDDay3deSseev/HiDs8EAAAAAAAAAAAAAABWI4wGAAAAaxp0hsXlo4Uv6zeFM+ZxqXQ/p4JZ7QIcoxahgHvTu8XlV7rXWh1jF/pVOUzQFFDJnutBZxhV1RxwyEJfi5G7uTpmxXU7DX9myeJ3Eadf2+wxZOG2uew9FJEHKdpIz0cYDYAV9DpJ8HT2oHG7LIzWq3obn1Mbw+T+OqnHMZ41R93gMjgav1pcvlftx5XOecz9TwfE0shuN5+7zg27y+PR68iuK3vJ54+IiFn95IXRRtPj+Aev/93i2AcHXxZfOPhduz0hAAAAAAAAAAAAAABYgTAaAAAArCn7sv6poFnDF/fncaksmrW4bVNgbdHx7M3l6yTxtIOGeNeuZcGTOmYxrafFsey5bhPxytYZzZaH5tpoij+MTr3O5eNl4ba5TtWN/WqwdP+rSmMWwmgArCALnk7qSeN2WRC1V5VDa9s2aJgb3S/EU+GyOZqUw2iH/VtLw8GZpq3O5sNKkeGIdnPJbH5+vOH8PA8u5mG0xx/Z5fcP3vi7cb8+KY49f/jijs8GAAAAAAAAAAAAAABWI4wGAAAAa8q+rH8yG0VdP/zyfFOUatAZnvrfs0bTdoG109s0hwLquo7j2d3i2EH3Wqtj7EJT8CSLGSw+X4vahBeydU6mj8cc6iSMUDVkIpribKdDeuV4RKu4WxLqa/veOauu6/Q5HXaF0QBoLwueZvf0ZePNAaPtGTaGTbcTT4Xz9No4CaP1bm2w1/ZBteyzUJu5bT4/Xz/6G5FfV/Y6+XUlm/9fVnVdx8t3Pl0cu9q9Hh+++g07PiMAAAAAAAAAAAAAAFiNMBoAAACsKfuyfh2zuF+fRET+xf39ahCdqhsRzUGrNoG1RcdLIh0P6vsxqSfFsYPu1VbH2IWmMNq4flBcngXA2kS8snVKz/v8NTmrqvJIRLfqxV61XxxbPO8sbNcm7pYFJtq+d84a1w9iFtO1zwcA5rL7elMYra7rdM7Sb5gnbFPT/S6LmcJlcjRJwmj9TcJoTU7Pk7P5eZu55EHyGWnZ551lLjq4uAu/NPon8VsPfr049o3Xvz36nd1cQwEAAAAAAAAAAAAAYF3CaAAAALCmLEQV8SiIlscAhkv3M4tZPKjvR0QezDpr2XrH0zfTsSudyxNG63fyMEEWSckCYG3CC9k6pdevjnIYLSIPozUdY/6azerp20G9s7J4Xpv9Z+/BZZqCL8OF9y8ALJOF0cYNYbRZTKOOWbK/3lbOa5mmOcRowzgT7EIaRuutH0arGua8Z+fJoyQS3fQ56tE65fnvpr972XVnryGMll2LLqvPHH26uLyKTnzTje/Y8dkAAAAAAAAAAAAAAMDqhNEAAABgTcNuUyzj+NT/njVYCF01RzfmgbU8UnV6/eZQwL2mMFr38oTRmoInk1k5ZpAFwNqFF5JoWXGf5TBaUyQiIn+/tHmN24TI0seQBCmWaXovtYnNAcBcPwmjTRrCaE3RtCy0tm3dqht71X5xrO3cDC7S0fiV4vKb/dvr77RqnvMuSiPRDZ+j5tIwWstgdCa77jRdV7Is8mV0NH41fvbNv18c+6qrH93stQcAAAAAAAAAAAAAgB0RRgMAAIA1NcWhTt6OXWWxruHCvxvCaG998X9Z8GzueEko4HiWh9EOLlUYLQ8TjOsHxeVpeKFFVCx7LUv7nK0bRltyjCyi9/D8ymGIU+uk4bX14hHNoTZhNADay+7rk3ocdV2+rzZF03YVRovI5wjrhkdhV8azB3F3+npx7LB361yOefbXOY1EtwkXL4kKryu7tux19tJtsuvUZfTjr/9YzGJWHHv+xos7PhsAAAAAAAAAAAAAAFiPMBoAAACsaa/aj07y0Xr0dhitHJdajAFkQavF7ZsiVYuOl0SwjqflMNp+NYhu1Wt1jF3oV3mYIIsZZIGSVuGFNFo2ilk9PbN0vTBaGlaZh9EaAittQmRNj2Edo4bI3n6L2BwAzGUhszrqmMXZ++xDk3qS7q/fEDDatizOlAVZ4bI4mnw+HdskjNY84300T67rOp2HtpvblsPATXPUNrLPEr2Gzx/Z/P+ymdTj+NydHyuOvav/3viyg6/e8RkBAAAAAAAAAAAAAMB6hNEAAABgTVVVpV/YP1kSu1qMAexXg6jSwNq9U/+7zGh6L+o6/+L+vend4vKD7tVW+9+VLKASkYdS0vBCQ3iuzTpn95s+vc2ViDQAMX+PnDS8xm3ibsvCa6vKo37D6FT+pARAe0339XESKZrMHjTsb3cx123fX2FXjiavpmOH/U3CaEsmvW+5X59EHbPi2Cbh4k1+92b1LP0ssdcQRqufkDDaP7779+KN6Z3i2HOHL5jDAwAAAAAAAAAAAADwxPB/AQ8AAAAbGHSHxeWPYlflL+4vxgCqqopBp7yf+fYn03Kk6qxpTGJc5yGR4yS+deXShdHy4MkkCahk8bhNomIRhTBaEnjoLPkzyyCJr70d0UtCZL2qH/1OHpSZy8Nr7aJ6j223wfMJAIuag6fl+3oWTFu2v23L7q/ZHA8ui6NxOYx2pXMt9juDcznmYkAsi+xGRPrZZ9GwWw5Qtw1Gl0yTKFpERK/z5IfRPnPnpeLyvWo/vv6Zb9nx2QAAAAAAAAAAAAAAwPqE0QAAAGADaYzqrS/sj5JoxvBMJCuPWs2jWe0DAFn8LCLieHq3uPyge631/nehU3WjE93iWBZ+y+IL2XPbdp1N4gunj5HFHeYRvfJx2px/RFN4rV1Ur+12bc8HAOaaAp+TWTmAlgXTInYbRssCTtkcDy6Lo8krxeWH/Vsb7rlqtdbJNP8dyaJnp9Zp+HxU1+uFypquK3tVUxjt8vuN+78avzz6Z8Wxr3vm+Ti4ZCFsAAAAAAAAAAAAAABoIowGAAAAGxgkX9ifR6VOkmjG2e3y/cyjWe3jVqNpHvK6N32zuPwgiXZdpH4SPcmCBtnjzp7btuucTE8/93WSRqiW/JklC6vMX+NREo/IgmqPr9cc6VtV2/cuACzTFDLL7uuTepJu028IGG1bOkebrhcehV05Gr9aXH7Y2yyM1i6L1hwPzObFi4ZJyGsakzSUvMzawcU1Q2y79PLRS+nYczde3OGZAAAAAAAAAAAAAADA5oTRAAAAYANZLGMeo8rjUqdjAMNutp/jU//bxnFDCOt4Vg6jXelea73/XcniBKVQyqyexv36pLh+Fgxb1O/sRa/qFcfOhsXqmBXXq5ZkIrLA2TyIlsXv2oQjmvafvQeXyUNtwmgArKYpODROw2hNAaPyPfs85HO09cKjsCuvTZIwWn+zMFqTxYBwNgetohP71WDpvprmnOv+/mXXm4iIvc5+OpbN/y+L0fRe/NQbLxfHvmT45fH+wQd2e0IAAAAAAAAAAAAAALAhYTQAAADYQBqjmj6MXGVBs7PbLYtarRK3Op6W42dNYwfdq633vyu9TjmiMp49eGxZFhWLyIMmZ2WRu7P7ruviarGki5aex8nb8bty4KH9+ZcDaiezUczq1WMOadSv2y7UBgBz/YYwWhZAG9eP3+8jIjrRiU7V3cp5tdF2fgCXzdG4HEa72bu94Z7zSW+bMNqgM4yqWjJxjoiD5PNRRMTxdL0wWnNwMb9OZdP/y+LvvfF30kj08zde3PHZAAAAAAAAAAAAAADA5oTRAAAAYANZJGoeuZoH0h7b7kzEKotajaZvhdGm7cNoWWAroiGM1rmEYbQkTlAKGjTFSbKgyVnDZL3H43blNEJnyZ9ZsvOYv15ZRG/QEIVYNOzm691fI97SNuoHAMs0BYeyUFG2vGlf5yGbH6wSrYWLcDQph9EO+89utN82UbOIprlky+hvQxx43d+/pjDaXrWXjtWXOI1W13V85s5LxbFnujfia699/Y7PCAAAAAAAAAAAAAAANieMBgAAABvIIlGj2XHUdZ1Gys5GrLL9nMyOY1ZP43590vqcRtM8jHZvVg6jXek+2WG0phhc6/hCy/DJbM0wQh5WGUVd12ngYZhE89ruPyIPUzTJzieL+AFApilmNk7DaJOV93Ue8rCpMBqX12h6L53LHfZu7eQcsrBz27nkfjVIw8PHDXP/Jk1htF5DGC0LI18G//z45+K3H/xGcewbb3z7zq+ZAAAAAAAAAAAAAACwDcJoAAAAsIGm2NW4fhCzmBXHzwYBht08unEyG610Tk2hgOPp3eLyg0sYRutXveLyUtDgZJo/R1nQpO16o8eiDuUwQhVV4/6z90odddyvTwrHmZ9XOZr3+Hr548zCGE2y913b5xMA5jpVJzrRLY5loaJsef+ShNHWubfCrhxNXk3HDvu3N9p304y3rh/Nk7O55NlAdHqcqsoj1Mm8eZnxrCmMll9bFh/XZfPynU8Xl3eiE5+8/h07PhsAAAAAAAAAAAAAANgOYTQAAADYwNnA2dxoei9GDcGMs5GNdD+z48b9ZMcumdXTdF8HncsXRutVe8Xl41IYLXlcvaoX/U55P2flcbrTz2edhdGq5jBaU1Cs6f2Snddj6zXuf/V4RPY+ajoOAGSyoFkWQBvPHhSX9zq7DaOl84Pp8aWOJfHO9tr4leLyKqq40bu54d6b57xzZ+fQc9nnnpK28/O2sutNxMPPDVnoOJv/X7TXxq/Ez735U8Wxr776dXHYv7XjMwIAAAAAAAAAAAAAgO0QRgMAAIANDLtXistPZsdprCvi8bjUsJPvZ9WoVRYKOG4ICFzpXlvpGLvQWyGgkkXFmmJkbdc9mY1O/ZxFULKQwlxT4OxkNkrfL20fQ7+zF72qVxxbJx5x9nG/fT4tQ20AsCi/r0+S5eWAUbaf85Ldh2cxjXFdjrfBRTuafL64/HrvZnST+eJ2PJonp3PJFebn2WekLOC7TNN15WHkuF307bL48Ts/FnXMimPP33hxx2cDAAAAAAAAAAAAAADbI4wGAAAAGzgbOJsbLQmanQ0CDDrD8n6mzYG1kuPpmystj4g4SAJvFymLfJWCBtlzlL0+q6x7NipWRzmMtiykkIUd5sfI4m6rPIa2cbc2spjaKucDAHO9TjloNp6V42JZMG3XYbSm+94691fYhaPxq8Xlh71bG++7KQa8OE/extw2i1CvE/2NiBgvCS5mjy2f/1+c8Wwcn3v9x4pj79l7f3zpwVft+IwAAAAAAAAAAAAAAGB7hNEAAABgA1mIalw/iHuzu8WxKqrY7wxOLcu+9H8yO06jApnjJBTQGEbrXFvpGLvQr/aKy0thtOw5yl6fVdZtGz1pikREPHw8neRPMaPZcZwkIb3txN1Wew/VdZ0+7lWeUwCYy4Jmpft60/Jdh9GyeG3E+nEmOG+vTV4pLj/sP7uzc8jmtqvMJbc1t51bdl15ksJo//jNn4i709eLY8/deCGqqvmzCQAAAAAAAAAAAAAAXGbCaAAAALCBpmjV0fjV4vL9zjA61emP5Fkg4EF9P+5Ny4G1zGhajnTcm5XDaJ3oNEY/LkoWPhkXggYnWwijpeGFM89nHbPiesvCaFVVxbBTDuCNpnkAb9DdPO6WvScy9+uTNACxSqgNAOa2FUbr7ziM1nTfaxtPhV3LPocc9m7v7BzycHH7zx353Hm9KOGy60rWEruMYbSXj14qLt+vBvHxZ75lx2cDAAAAAAAAAAAAAADbJYwGAAAAGxg2RKuOJuUgQSkG0BhYS/aTGc3KoYDjaTmMdtC9GlVWAbhAqwRURtNyeKHp9TkrC5CdjZ5skkXIjnF3eidmMS2OrRIiy8Joq4ZbTpLns+kYANCkX/WKyyf1pLi8FEKNyOcH52W/IeK0bpwJztud5PPDYf/WxvtuigEvBsSy+eewW46dlddNor9JdG2ZLIz26LqSldEuVxjt105+JX7l5BeLY193/ZtX+gwEAAAAAAAAAAAAAACXkTAaAAAAbKApEnU0LgcJhp3HYwCNYbRkP5njVcNonasr7X9X+jPjmQsAACAASURBVJ0kjDZ7PGhwksQRShG6TPYaPBZeSMIInWr5n1mGyfm8Nn6lYZttxCNWC7c0xSayuBsANFkleNq0fNdhtE7VSecTq4ZHYRdm9SwNK9/s3d7ZeWTzz9Xm5+V58Kpz27llwcUs+lZvlEbevs/ceSkde/7GCzs8EwAAAAAAAAAAAAAAOB/CaAAAALCBxjDapBy7KsUAmmJTWdggM5rei7oQ77o3vVtc/6B7OcNoqwRUspDXKlGx7LU8G12bxSzZQzmkcPoY5fNpeo23E4/IQ2clWWju4TGE0QBYXa/aKy4f1w+Ky/MwWm9r59RW2zkCXAZvTt+IST0pjh32b23hCPmcdzEgloUDmz4/nZXObafrhdGWXVeehDDa8fTN+AdvvFwc+9eGXxnv3f/iHZ8RAAAAAAAAAAAAAABsnzAaAAAAbKBbdWOv2i+OHY0/X1xeCks1xaaOxuVo1vXuYXH5LGZxvz55bPnxrBwQuPKEhdHGhaBBFiZZLSpWfg0m9TjGs3JEYdHyLFp+jOw1jogYdleJu5Uf76rhliyk1olO+n4HgCZZ0CwLOGUBo34SWDtP2f171fAo7MJr43KcOSLisLd5GK1qmvS+1Q+b1bO4n4TRVonsHiTz4HV/95ZdV56EMNpPvv6306Dk8zde2PHZAAAAAAAAAAAAAADA+RBGAwAAgA2lsatJOXY16D6+frfqpaGPbD+H/dvpOR1P3ywsu1tc96BzLd3PReonYbRS0GA0LccRhp1VomJ5pOFkISqXhRGqFn9myY6RvcZVVLFfDZbudy57vNnzk8lDcwdRNdYwAKAsC55moaJsebaf85Tdv1cNj8IuZPPKXtWPq91ndnIO92cn6Zy5ac7ddt1REnxeJr2udHZ/XVnHrJ7FZ+68VBy73j2Mr7329Ts+IwAAAAAAAAAAAAAAOB/CaAAAALChQbccoxrXD4rLs5BaGrVKvvh/syGMVtrmXiGWFhFxkJz/RVsloHIyGxXXHXSGrY83LATr5kYL+0/DaC16YdkxXp+8Vlw+6AxXCpFl+1813JKF1FZ5PgFg0SrB04iI8ezyhNGyuduq4VHYhTSq3Hs2OtXm/1mwinxuOp8nN809m+bcZx0kn49OZqOY1dPW+5lbdl2pkuenrsvz/137xeOfjVfGv1kc+8Ybn4pu1dvxGQEAAAAAAAAAAAAAwPkQRgMAAIANDVeMRQ2SuMaq0ambvYYw2vTxMNrxrBxGu9K9ttJxd2WVMFoWj1slvJBFTyIiThb2n4cRlgfMsmNksbUslpfJ3lurhtHy0Fz75xMAFvWqveLyLCSbBdN6nd2Hfwbd8hxt1fsr7MLR+JXi8sOGqPJqmua88zBaeS4Zsdp8smku33SMTHpdeSsolj2ybK6+a5+581JxeSe68ckb37HjswEAAAAAAAAAAAAAgPMjjAYAAAAbWjUWlcWxht3VIljXetejn0RGjguhsONpOYx20L260nF3JQujjQtBg22EvJrCdKOF/WdhhKpFGG3V98q23lujFcMt2wjNAcCiLGg2mU3Ky9OAUXl+cJ7y8OjqYSY4b0eTV4vLD3u3dnYO2VwyojlG/Pi6+eejpmNksuvKo89U5fn8ZQijfX78O/Hzb/50cexrr308bvRu7viMAAAAAAAAAAAAAADg/AijAQAAwIaavrBfkgW4VokEPNzPQRwkxx5NVwijdS5nGK2fhE/OBg0m9TjG9YPiuqs8p52qG/vVoDh2+vlcP4y26mu8aogsDaNNj6Ou2wcdthGaA4BFWdAsCxUtDxjtTh4eXT3MBOfttfH5htGa5rzz2WY2l+xEZ6Xf4abPWceFzzvLLAsu5o/t4sNon73zN6KOWXHsuRsv7vhsAAAAAAAAAAAAAADgfAmjAQAAwIYG3XLoLDPslr/gnwXT0v10DtJ9HZ8JddR1Hfdm5TDale7lDKP1Ou0CKifTcnghYvWQ1yAJkS3GHepNwmgrhs5WPv9k/WlM0hBESRZ6WTXsBgBzbYOnc+M0YNTb2jm1ld1fs/gTXKSjSTmMdrO/nTBaGyez4+LyYedKVNXyOfPb6zfMnUfJMZosu65k53bRWbTx7EH8xOv/b3HsC/a+KD40/ModnxEAAAAAAAAAAAAAAJwvYTQAAADY0LBTjpNlsgDaOvvJthlNT4etxvWDNDxy0LmkYbQkoDKenQmjNUQRVg2RZeGvxVBYXSdhtBaRh1VDZ6uGyLYVj8hic6uePwDMZff1bH6SLc/2c57S+cG0HBKFizKtJ/HG5Kg4dtg7/zDaPCA8mpbnnasGpbtVL/aq/eLYOr9/y64rWei4rmcrH2ubfubu5+LN6RvFsedufOdKsTkAAAAAAAAAAAAAAHgSCKMBAADAhlaNV2VxqdUjXlfioFsOox3PTocCjqdvpvs56F7OMFq/ZUClKfi1asgrW/9k9igUNg8+PG55kGDl0NnKsbymMFr7eES27qrvUQCYS4OnT0AYbZDc/xbnB3AZ3Jl8Pp2rHvZvb+UYWTzsoYfHzsLF60R2h8nnnVWiv3PZdaVf7b31rySMtvKRtuvlOy8Vlw86w/j49W/Z8dkAAAAAAAAAAAAAAMD5E0YDAACADa36Bf8sjrVyxKs7TMNZo+npsNW92d10P1e611Y67q5k4ZPzDKNlr83Z57NkeRYtYrBq6Kw7XGn9pvDaKvGWbN11YhYAENH+vr5s+aOA0e5k9791wkxwno7Gr6Zjh71bWzlGVS2f9Wa/G6tGgpu2WSX6O7csuNhJZ/QXl0b7lye/HL968kvFsY8/8y0x6Kz2eQEAAAAAAAAAAAAAAJ4EwmgAAACwoWF3xaBZ8uX+VUMBw86VGHbLoa3jM6GA44aw10Gyj4vWNqBykoQX9qr96FbdlY6ZvTaLx6hjVlynavFnluEWQ2cl+51hVEnQoU3cbS57ToUXAFhXf+Uw2qS4vFf1tnZObWX345PZKOr64oJJcNbRpBxGG3QOVv7Mso75b0M+l1wnjNYuBN3GeJaF0ebXlfI8ur7AMNrLRy+lY8/deGGHZwIAAAAAAAAAAAAAALsjjAYAAAAbWjlolkQJVg0FDDrDOOhcLY6NzoTR7k3vFtfbrwZpgOyiZQGVWcxiWk/f/nk0LYcXVn1dIvLX5mQ2evvfWRYhC5KdPqfVInSrrt+pOrGfxMtGSaBilXVXPR8AmGsbPJ0b1w9W2s95yuZodczifn2y47OB3GvjchjtZu/Wbk7grVBgNpdcJ7KbhaDPft5pI7vezK8r2Wz+osJob07fiJ+++9ni2JcefFV8wf4X7viMAAAAAAAAAAAAAABgN4TRAAAAYEOrB83K62dRrnw/wzjIQgHT06GA49mbyTEvb+iqKXyyGDU4ycILKz6fEXlMbTG8sEkYYdUYxDrxiGyb7HkqrpvE5tY5HwCIWD2MNpk1B4x2qSm2uhhPhYt2NCmH0Q772wujtYkBn0zLvxfrRHbz+Xn7ue1cdr3pd/Ye/qMqP7a6vpgw2t97/W+nkcjnb7yw47MBAAAAAAAAAAAAAIDdEUYDAACADTXFMs7qRCf2qv3i2CqBtf1qEJ2qm8YFzobQjqflMNqV7rXWx9y1tmG0LIqwyusyl70Gi9GTup4V16mq5X9m6VTd2K8Grc9nnXBd9p5oG4+Y1dO4X59s7XwAICK/r4+zMFo9Ke+ns/swWlNs9WyMFi7Sa+NXissPe7d3cvx5QHgxKrxo0F09spvObdf43UuvK29dn/Lo2+7DaLN6Fp+986PFsRu9Z+Orr358x2cEAAAAAAAAAAAAAAC7I4wGAAAAG1olaDboHERVlb9wv0rIax6oOkhCVcdnQgH3kjDaQedq62PuWr+zl44tRlROkuDXKq/LXPYatAkvZBmFs5riKo+tu8XHcDJtF0ZbjMA9vu/VYxYAEBHRT4Jmk0IYbVbPYhrlgFG/IZx6XgYN97+m+ybs2p3Jq8Xlh/1bWzxKPuudh9Gy34t1wsXDZO7cNvq7aFw/KC7vVb2IyMNou8+iRfzCvX8Ur4x/qzj2yeufim7V3fEZAQAAAAAAAAAAAADA7gijAQAAwIayL+uXNIU1VgusPdzPsFMOo53MjmNWz97++TgLo3UvbxhtHigomcweRVSyKELTc53JomWLcYc6SSNkIYWzVgrgrRGPyB5D23hE03qD5P0GAMv0kqDZ4j397WWFWNqy/Zyn/WoQVfKfU0az5fFU2JWj8eeLyw972wujtZnx5vPzdaK/SQh6jd+97Noyv67kYbRZcfl5evnOS8XlnejGN9741I7PBgAAAAAAAAAAAAAAdksYDQAAADaUfVm/uG43X7dpLDtmduw66ri/EPM6npXDaFcudRgtD58sRg1OpuXwwiqvy6NtsqjYo/DCpmG0VYIQ64TRsm1OWobRmtYbrhGbA4CIhjBaPSksu1xhtKqq0uDqYjwVLtL92Uncm90tjt3sby+M1kY2n1wvjJbMbZPPAE2ya0u/2lt5X+fp1Qe/Hf/03j8sjn342ifieu9wx2cEAAAAAAAAAAAAAAC7JYwGAAAAG+pXe9Fp+RE7i2osG8vWPWgImx0vxLzuTcuRhIPOkxlGG9cP3v73KAsvdFePeGWxhpPZKOr6YRBt/r+PqdqF0VaJnQ2624tHLMbdmpxM88DLOjELAIjI7+vTmMSsnp1aVoqlLdvPeds0PArn7Wj8ajp22NteGK0pBjwPCOfh4tXnkgdJPPq45dx2UXZt6VW9iIioqvJnuiyMfF4+c+el9JjP33hhp+cCAAAAAAAAAAAAAAAXQRgNAAAANlRVVQw75S/sn9UUltqvBq0Da8O3glkHDccdTR/FArJwQFNY7aL1q710bDFqcDIrh7zaviantym/PnXUcb8+efunkqZIxKljrBA7WycekcbdGoJni7KAWq/qRb+TvyYA0KTfEDSb1OPGn9vu5zxl99dREoCCXXtt8ko6dmOLYbRYMued1dOFefNp60R/B8mc/mR2Lw8WF9R1fSquvGgeXMwe2SrH2dSD2f34ydf/VnHsvXtfHF8y/IqdnQsAAAAAAAAAAAAAAFwUYTQAAADYgrZf8m8KXVVV1RhOO3W8t9Zrimwdz9589O/p3eI6V7rXWh3vIvSqXjq2GEw5SUJeg85w5WM2Pf/z0Fy9YRit7Wvcr/ai2/AcZLL3xGjWLtyShebanjcAlPS2FEZr2s95yu6vJy3vr3DejsavFpc/070R/c6ufm/qdC4ZETFcY36ehaAn9SQNnZVMY5KOzYPM2Xw+m/+fh39498fj3qz82e35wxejqtp95gAAAAAAAAAAAAAAgCeZMBoAAABsQdsv+S+LS7WNec0Da92qF/vVoLjO8fRRMOze9M3iOllo4DLoVN3oJH+6WIwgjJL4wnCNx9YUmptHHjYNozXF8U6vt95rk73HRklA7vH1yoGXtucNACXNYbTTwaKm2NFFhdHy+6swGpfD0aQcRrvRv7XV4zR1ueo6j+xGRAy2PD9f5ffv7HVmUe/tcFz24HYXRnv5zkvF5YPOQXzsmed2dh4AAAAAAAAAAAAAAHCRhNEAAABgC9p+yX9Z+GzYbbufR4GAbJt5CGtWT+MkiQZc6V5rdbyL0q/2issn9fjtf59My4+tbWTu9DZN4YWHz+emWYS2wbN1zv/h/suPoSlScXq97PkURgNgff3GMNr4zM8NAaMLCqPl91dhNC6Ho3E5jHazt90wWh4Pe6gpxts2Jn16m3zuPJq2C/9GRExm43SsV/UiIg8d7yqL9qujfxH/8uSXi2Nf/8y/sfbnAwAAAAAAAAAAAAAAeNIIowEAAMAWZLGMx9ZbEj5rvZ/FMFoSC5iHAkaz46iTr/MfdK+2Ot5FyeIn82BKXdcxSoIkbSNzi/aq/egkfy6Zh8XqelYcr6p2f2YZdLfzXkn3n7yH2oYj8jCaEAMA62sKmo3rB6d+bg4YXUwYLbsPCqNxWRxNymG0w/62w2hN6jiZ5jHedUK7TXPi7HNAydnrzKL5daWqsjDabtJon7nz6XTs+cMXdnIOAAAAAAAAAAAAAABwGQijAQAAwBa0/ZL/srhU6/0sxLUOkljA8exhCOve9M10Pwedyx5G6xWXT+qHwZRx/SBmMS2us07Iq6qqpaG5dNsohxTOWid+t4osHnG/PolZXX6uFo2m2wvNAcBcU9Bsfl/Pfj69n/Lc4Lzl4VFhNC6H18avFJcf9rYbRmua89ZRp7HAXtWLfmdv5ePtV4Ookv+cOZq1C/9GNF9X+tX8vJIwWhJG3qY3J2/ET9/98eLYv37wNfHuvfed+zkAAAAAAAAAAAAAAMBlIYwGAAAAWzDsto1dNcel1olmpSGvt0IBxw1htCvdSx5GS+IJ49mDiIgYJeGFiOXPdWbQLQfVTmajiHgYfChpl0XbXkQvM2zYbv4YmmQxi3XPBwAiInqdpjDa5NTP4/pBeR9VP6qq7R13u7K5Xpt7K5y3uq7jaPJqcexm//ZOzyWbn7edA5/1MFychQlXCaNN0rF5uPFiri4P/cTrfzONtz1344Udnw0AAAAAAAAAAAAAAFwsYTQAAADYgrZBs2VxqbbBgMXo10G3HAA7fisUcDwrh9E60Vk7ULAr80jBWfNoQBbxitgkLJaEF94KzdUxK45XLf/M0j5+t2bYrWG7ppDcsnXWPR8AiIjoVb10bDI7HQPKAkbZvGAXsjnTfH4AF+ne7G4aFDzs3drZedRxPpHdYfJ5Z5Xfvyw6FvHo+pTN57Mw8rbM6ml89vUfLY4d9m7FV1392LkeHwAAAAAAAAAAAAAALhthNAAAANiC9kGz5vWG3dUDa1mwah4KOJ6Ww2jD7pWoqqrV8S5KP4mozIMpo2ke+soCCstkr+XJbBQRsXEWofV7peV74bHtGvbf9HzNnUfMAgC60YsqyvOOs8GiLGB0kWG07P46nx/ARToav5qOHfZvb/VY2e/xQ3WMkt+JTSK7ebh4+dx2LgvHRTy6tmSP7LzDaP/03s/E58e/Uxz75I3viG7VPdfjAwAAAAAAAAAAAADAZSOMBgAAAFuwLHj29npLYlfto1mPwgIHSQDsePowjHZverc4fqVzrdWxLlKv2isun4cNsohXFVXsVftrHTN7DeahuSyN1qna/ZmlffxuvTBa03bZ87Uoi6dtErMAgKqq0rDZ2WBRHkYrB1N3IQ+ntg8zwXk5mpTDaJ3oxjPd61s9VnMYLeLk7TnzaZtEdrN56PzzThvZdSViMbpYfmznHUZ7+c5LxeXd6MU3Xv/2cz02AAAAAAAAAAAAAABcRsJoAAAAsAWDLcWu2gbWFsMCWShgHvI6nr1ZHM+CapdJFlCZhw1GSYxk0Bm2DpWdlb0G82BYXW8WRmgbGGv7Xjir3+mnz1v2fC06mY2KyzeJWQBARB42m9STMz+XA0b9JJi6C9l9+WQ2ilk93fHZwGlH43IY7UbvZnSq7s7Oo446RtNsLrne3DYiDwuvEiY8e52Z60bv7c8NVZVE3zac/zf5nQe/Gf/s3s8Ux37PtW+IZ3o3zu3YAAAAAAAAAAAAAABwWQmjAQAAwBa0jVgtW69tMGAxrpWG0aZvhdGmWRjtWqtjXaRlAZUshrBJeCGL3M2PVUc5jFBFElI4u/+WgbGN4hFpvOXe0m3T57Rl/A8AMsuCp3PjJIyWbb8LTffB+7OTHZ4JPO61ySvF5Tf7t7d/sCwe9pZsLpnFzdo4WBKCbmM8e1Bcvvh5I5vPn18WLeKzd15Kx547fPEcjwwAAAAAAAAAAAAAAJeXMBoAAABsQdsw2rLYVZtgQCc60a/23v75oHu1uN7xW6GAe0kY7UqnvN1lkgdUHoYNRucQRstey9GWwmj9ai+6UQ6+nTqPbjkA0Ub2+Eez0dJts+e07XscADJtw2hnf360/fL753lpug9m907YlaPxq8Xlh71bWz/WshnveczPB0kY7XjaPoyWXlc6j65LeRht1vo4q3gwux8/+frfLo69f/+D8bsGX3YuxwUAAAAAAAAAAAAAgMtOGA0AAAC2oM0X/bvRS4Mgq+xn2LkSVfXoS/sHSSjgZHYcs3oax7NyGC0Lql0miwG4ReO3wgYn0+1HvLLX4OStqFgWRlueiXhrrapqFcAbdIat9leSPf7s+Zqb1OMYvxWde/x8hNEA2Myy+/pcHkZrnkedp6b74IkwGhfsaJKE0fq3d3oedV2nvw+bzCUPkmDwKr972XUluy4tymb/m/rpu59NP6s9f+PFU5/5AAAAAAAAAAAAAADgnUQYDQAAALagTehq2D1Y+uX2NkGvQfd0MGuYhAIiIkaz4ziePrlhtCyAMg8bjLLwQovXI5O9BqPpvYf/qMtphFXCBW2iZ8MkeNdq/8njH83uNW53Mh01nI8wGgCb6VW94vKzwaI0YNRZHjA6L0337tEsv3/CLhyNkzBa79lzOFo+562jfjsmfNYmc8ls2+Np89x20aSeFJcvXpeq9LFtP41W13W8fPTp4tiwcyU+9sxzWz8mAAAAAAAAAAAAAAA8KYTRAAAAYAvaRKy2FcM6GwY4aNhmNL0X95Iw2pXOExBG6yQBldnDYMpJEkbbJLwwSLadRx6yLEIeUnjcOq/zKrJts1DFo/Hy8xmRPy8A0Nay4OnceFYOo2Xb70K/2otulOclJyvEmWDbZvU07kw+Xxw77N/a+vGWzXlHye9Dm89CmSwE3TR3PWtcPyguX7yuVFX5P5vWSRh5E7968kvxa/d/pTj2ievfGnud/a0fEwAAAAAAAAAAAAAAnhTCaAAAALAF+y2+6N8mLDXorr6fLBQQEXE8uxfHs3IY7aB7+cNo/WqvuHweUBklMYTNwgvl12k0exh5qGNWHF8ljNbuvbD9MNr8MWSy5zMif14AoK22YbSzPz/avhwm24WqqtJ52mhJeBTO0+uTo5gl89Obvds7Pps8xLtJZDeb2x4vmdsuyq8rC2G0ZNs6TSOv7+U7n07HnrvxnVs/HgAAAAAAAAAAAAAAPEmE0QAAAGALulU39qtB4zrZF/pXXeexMFrDNqPpvTiePrlhtCygMn4rbJCFF4adPBa3TBZtGNcPYlpPGrII7cNobSJjbd4LmewxjKZ5+CyiOYy2SWwOACIi+p1Nw2jl7XcluzefNNw/4bwdTV5Nxw77t7Z+vKYZbx11+vuwSWQ3m9vfn41iVpejcGdl15XTIebyo9t2GO3u5E78zN3PFce+/OBr4117793q8QAAAAAAAAAAAAAA4EkjjAYAAABbMljyZf8sVrWoW/Vir9pvXOdslKNTddN9/+hr/1eM6wfFsYPOkxtGm4cNRtN7xfFNIl6NobnZcUQSRuhU7cNoy94LnegsfR80ycITy8It2Xi/2otu1Vv7fAAgoiF4OnsywmhpeFQYjQv02rgcRtuvBuc038/nvNN6Eg/q+8WxNp+FMsNuOYzWFGI7a1JPist7C3PcKn1s2w2jfe71v5mez/OHL271WAAAAAAAAAAAAAAA8CQSRgMAAIAtWfZl/yxWtep+SgG2g045FvDPj38u3c+V7rVW53OR+kvCaCezUXE8iye00RRGO5keR11nYYT2YbSmY0Q8fA9UK4TWHt++/PiXhVtG0/L4MNkfAKxiWfD00c/lYFA2L9iVbI7WNswE5+FoUg6j3ejf2mg+uY5sbh6xfP7bpGku2jZMmMWiF69LWRhtm1m0WT2NH7/zN4pjN3u343df+cgWjwYAAAAAAAAAAAAAAE8mYTQAAADYkjaxq1b7WRJQKx1nnRDYQffqytvs2rKAymh2rzg+6AzXPmYpPDc3mh1HnaQRVslObCuil26fPP5l4Ygs7LLJ8wkAc23DaG0CRhchm+tlYVHYhaNxOYx22Hv2XI6XxcMi8rl5xKZhtIb5+TQ/5qKz15m5U2G0JCRX17NWx2jj59/86Xht8kpx7JtufGd0qu7WjgUAAAAAAAAAAAAAAE8qYTQAAADYkq2F0dbYz5XutVb7nquiioPOkx9GO5mNiuPDzuqhuEfbrhtGa/9nlmWv8SbhiIiIQfL4s/DZXBZOWye8BwBntQ2jtQkYXYRsLrfs/grn6SiJbN3s3z6fAzbUgJsigW0/C5U0RYOXhX/nJrNJcXm/s9vryst3Pl1c3qt68Q3Xv22n5wIAAAAAAAAAAAAAAJeVMBoAAABsybIv+7eNXa2zny87+OpW+577kuFX7DwCsI5+EkAZ1+OY1bO4n4TRBp3h2sfsVr3oV3vFsZOGMNoqloXGNglHPNx/efvR9DjqOj//LDS3yfMJAHPZfX1ST878fDnDaNn9VRiNi3Q0frW4/LB3a8dn0vy7MOiuP5/sVf10fj6a3Wu1jzbXlSqpvm1j/h8R8dsPfiN+8fhni2O/59on41rv+laOAwAAAAAAAAAAAAAATzphNAAAANiSLJYx1zYutSygVopmffL6t8cX7H1Rq/3vV4P4rlvf02rdi9ZL4m2Tehz3ZydppGBZeGyZ7DUYTY8jkmNmIYWSZe+FTcNo2fazmMa4fpBul8UsNj0fAIjIw2Zn701nQ2lzWVhtV7L74UgYjQv02qQcRrvZv30ux2ua82aRsn61t3HYcNgpz+9H03ZhtGwOvMsw2mfv/Gg69vyNF7dyDAAAAAAAAAAAAAAAeBr0LvoEAAAA4GmxLB7VNi61bL1SgO1a70b8+S/6r+MfvvHj8asnvxTTelbc9j3774sPX/2GeM/++1udy0XLAgqT2TiNeEW0j9Dl2x/EG9M7jy0/mR1HXSdhtKp9GG1Z/C4LP2xj/6PZcex19stj0/Jzuux8AaCN9L5ej0/9PD7z87LtdyWbX5zMRjs+E3hoPHsQb05fL44d9m6dyzGbw2hZZHezuXnEw/DxG9Ojx5YfJzG2s85eZ+ZOX1fOL4x2f3YSP/n63yqOfdH+l8QHBh/a+BgAAAAAAAAAAAAAAPC0EEYDAACALVkauyoEzdZZLwunXeleorFgUAAAIABJREFUi+cOX4jn4oVWx3kSZAGUcT1OwwsRm4fFBt2DiEI7YTQ7TsMITZGIs5ad36C7WTyi6b14MjuO63GYjhXPRxgNgC1oG0abzB6Ut+9cbBgtu7+Opu3CTLBtR5PPp2OH/fMJozXJIrvbmEtmv39NseRFk3pSXN5fuC7loePNw2g/9cZn0s8vzx++uFJkGQAAAAAAAAAAAAAAnnadiz4BAAAAeFosC6O1DQIsW2/ZcZ4m/YaASlMEYdA5n7DYSUMYLVYIoy0Ln20cdmt4jzTFW7JYQ9uoHwA06Sdhs7PBoixglIXVdiW7v57MRjs+E3joaPxKOnbY230YLZufb+Pzy0EyPz5uGSY8G2CcW7yupFm0DbtodV3HZ+58ujh20LkaH7n2yc0OAAAAAAAAAAAAAAAATxlhNAAAANiSwZJ4VNsgwLL13klhtCyAMqnHacSrG73oV3sbHTd7jkcNYbTOCmG0ZeGzTV/j/c4gquR8muItWcyibdQPAJpk9/XxmWBRFjDKgqm7koVCm2KtcJ6OJq8Wl1/pXou9zv65HDObY0ZEjGblSNmyz0ltZPto+/s3rh8Ul58Oo5X/s2keRm7nV0a/GL9+/1eLY5+4/q3n9loBAAAAAAAAAAAAAMCTShgNAAAAtmRbQbNlEap3UqQqC6jMYhbH07vFsUF3GFXVPlJW3EfyHJ9MjyOyMMIKxzzv+F2n6sSgMyyOZcGKh2PlsMQ7KcYHwPlJg6ez08GiLIyWbb8r2fzgQX0/pvVkx2cDeRjtZu/2js/kodE0i+yW56WrOEjCwsfTfG67aJL8jra5rmwaRnv5zqeLy6uo4rkb37nRvgEAAAAAAAAAAAAA4GkkjAYAAABbMky+rD/XNmg27C7ZT3fzsMCTot8QKrg7faO4fBvhuGG3vI/R7DjqrIsW7cNo+51B4/ggOf4qsuchi59FRJwkY++kGB8A5ycNo50JFo3rB8X1LjqM1hQKPZmNdngm8NBr41eKyw/7t87xqPmcN4/sNn++aSOf27YNo5WDi4ufN/L5/PphtDcmd+If3f3J4thXXPlw3N77grX3DQAAAAAAAAAAAAAATythNAAAANiSQac5WNY2aNa0n361d+FRkF1qeqx3J68XlzdFS9rKwgsns+OoY1YcWyWM1qm6ja/zNh5Dto+TaTlYUdd1nEzLUZfhkvc2ALTRq3rF5WeDRWdDaY+2v7xhtFFyf4XzdDT5fHH5Ye/8wmhV1RRGK0fKln1OauMgiUc3RX8XZWG0XoswWr1BGO1zr/9YTKN8TXvuxotr7xcAAAAAAAAAAAAAAJ5mwmgAAACwJcPky/oRqwXNhp18P9sIZj1Jmp6zN6flMFoWNVtFGhWbHadZhFXCaBHN57mVMNqK8Yhx/SCNNgwa3tsA0Fa/2isuXwwW1XWdBoz6FxxGa7p3n7SMM8E2HY1fKS4/zzBak+z3oOnzTVvZPkbTcoztrPHsQXF5r7MQRkuib3W9XhhtWk/js3f+RnHs2f674yuvfHit/QIAAAAAAAAAAAAAwNNOGA0AAAC2ZFuhq6Z1txH9epL0O3kA5W4SRttGVCx7nh9GxdYLI5x13q/zoDMsLs/CaCezUbqvYbIvAFhFFjwd14+CRbOYRp3ca9tGZs/LoJvfD4XRuAhHk1eLyw/7FxVGK88ns3npKvLob7sw2qQuB4BPX1eSMNqa8/+ff/On4s7k88Wx5258Z3Sq7lr7BQAAAAAAAAAAAACAp50wGgAAAGzJtkJXg27DfhrGnkZNAZS7k3IYbRtRsey1PJmO0jBCVa32Z5bGkN4WXudhpxyPyMItTVGJd1qQD4Dz0at6xeWLwaJxPW7Y/mLDaL2qH/1qrziWhUfhvIym99IQ2WHvYsJomW18hsnm521/9ybJtaW/cF2pkjDaumHkl+98OjnmXnzi+reutU8AAAAAAAAAAAAAAHgnEEYDAACALelXe9GJbnFs0Bm23k9TYK1p7GnUFEB5c1oOo20jKpbFG5riYVlGITPslsNlEXnUbBVZzGw0LccjsrDGw/N5Z73vADgf2X19Uo+jrh+GhyazyxtGi8jndFl4FM7La5NX0rGb/dvndtw8Hpbbxlwymx9P6nGMZw+Wbj+uy+u0ua6sk0X7rfu/Hv/8+OeKYx+59sm42n1mjb0CAAAAAAAAAAAAAMA7Q++iTwAAAACeFlVVxbB7EPemdx8bWyXWtVftRyc6MYvZY2NZ7Opp1a/20rE3JneKy7fxHGXxhtJr8shqkYimWN7+CiG9Vfd/b3a3+B69M/58w/kMNj4fAMgCRHXUMYtpdKMXkzoPo/U7Fx9GG3auxN1CnPX1yVHx/grn5bfu/3pxeRWduN67eW7HXSeMtpX5ecPnqdcmr7wdGht0htGtHv/Pn5N6Utx28brUqcr//6TGswcr/37/nTv/Tzr23I0XVtoXAAAAAAAAAAAAAAC80wijAQAAwBYNOuUw2ioxgKqqYtA5iOPZm4+NZcGup1WvEDWYu1+fFJdv4zkadq6svE1nxUhEdp771SC6VXfl4z+2/275MfzS8c/Hf/LL/17r/Qw6w+hs4XwAoN/Jg6fjehzdqjmM1jQv2JUsPPojr/xw/MgrP7zbk4GC673Drcwlt2m4hehv0/z8h/6/P/32v/erQXzFlQ/H977nT8dB92pEREzradRJ4DgLNi767Os/Gp99/UdXPOOyLx58KD4w/NBW9gUAAAAAAAAAAAAAAE+r8v/rcwAAAGAtWexqlTBaRMSwu539POk6VTc6K/75IguWnP8+Vg2jleMOg+S1X9W2InrvtPccAOenKWw2mT0Moo0bw2h5WG1XtnWfhvNy2Lt10afwmMEa0eGz2oaL79cn8Y/e/Mn4n3/jv3l7WVNwsb8QRqtWnM+v4/kbL5z7MQAAAAAAAAAAAAAA4EknjAYAAABblEWkVo1Upft5B8Y4eguxgjaG3S2EF9bYx6ohhSy+tq0Q2bb2s63AGgA03dPn4aK2AaOL4r7IZXfYP98w2jrxsGF383DxfmcQ1Qr/WfNfjP5JfH78OxERMa4fpOudvi6dbxjtSvdafOTaJ8/1GAAAAAAAAAAAAAAA8DQQRgMAAIAtut1/T3H5s/13r7SfW8l+bq24n6fBqs/dquuX7FeDuNq9vtI2N/u3V1r/9t75vsbZe3FV23g+ASAiYq/aT8fu1ycR0RxGWzWWeh7eiXMxnizv2Xv/ue6/V/Xj2grz5H61F9e6NzY+bqfqrPz799sPfiMiIib1JF1n8bry7Irz+VV9w/Vvi35n71yPAQAAAAAAAAAAAAAATwNhNAAAANiijzzzyceW9apefO21j6+2n2uP72ev2o/ffeWja5/bk+rD1z7Ret2bvdvxwcGXbnzMqqriI9e+sfX6Hxh8KA77t1Y6xlde+UjsV4PHlpde+3V8cPilcbO3edzho8980xbOBgAiBp2DdGw0PY6IiHFjGK239XNa1e+59o1RRXXRpwFFVXTiY888d77HqKr42qvt5+dfc/XjsdfJo4irWHWefDJ7eF2ZzNoFF7/m6tef2+/3oHMQ33Lj3zqXfQMAAAAAAAAAAAAAwNNGGO0dpKqqYVVVn6iq6k9UVfUXqqr6waqq/mxVVX+oqqoPVVW1lW97VFXVr6rqm6uq+qNVVf3Fqqr+dFVVv7+qqg9sY/8AAACX2Vdc+XD84Xd9Xww7VyIi4nr3ML7/fT8Yz/bfvdJ+PvrMJ+P33fqjMegMI+Jh8OvPvv+/jGu961s/58vuxWe/O77pxneeihaUvG//A/EDX/iXolNt588df+D2H4+PXXs+OtFtXO9Lhl8e3/++H1x5/wfdq/EDX/iX3n5v7FeD+K5b3xMff+ab1zndx3SqbvzAF/5QvG//A2ttv18N4t++9b3xsWvnG9cA4J1jvzNIo0NvB4ySMFonOtGpmu/Ju/DB4ZfFH33Pn4sr3WsXfSpwytXu9fi+9/2n8e699537sf7gu/5kfPTaN0U38lhhFZ346qtfF9/znj+1teP+m7f+cHzy+qdaRxLnwcXsuhIR0e88+ozxoYOvjH/3PX8mrnaf2exEz7jRezb+w/f+xbjRf3ar+wUAAAAAAAAAAAAAgKdVu28O8ESrquoTEfEfRcTvi4i9hlV/o6qq/y0i/oe6rl9b4zi3I+KHIuIPRcTNZJ2fiIj/vq7r/3vV/QMAADwpnjt8IT5541NxZ/JaHPZuxbod6k89+wfiW2/+3nhjchQ3es+uvZ8nXafqxh959/fHv3P7j8cr49+Mun58nau9Z+JGr/hRdG39Tj/++Hv/4/gjs++PVx/8dnGd673DjWJ1Hxx+afylD/5PcWfy+XimdyO6LSMPbb1r773xgx/4y3Fn8lq8OXmj9XadqhPv3nvv1s8HgHe2TtWJ/c7w7QjaotGSMFq/avrT9m59/Po3x8eeeS5eGf9mjGd5cAl2Za+zF7f7X7Czzwv9Tj/+xHv/QpzMRuk8+dn+7Rh2r2z1uN2qG9/znj8Vf/Bdf/LU54L/9V/9d/E743/12Prza824fpDu82x8+RPXvzU+/sy3bO33e7+zH8/23721eDMAAAAAAAAAAAAAALwT+HbrU6yqql5E/OWI+FMR0ebbMO+LiP88Ir6vqqo/Vtf1j65wrBci4ocj4l1LVv2GiPiGqqr+j4j4vrqu77U9BgAAwJOkU3XjZv/2xvvpVt047N/awhk9+fY6+/G+/Q/s/LiDzjDePzi/41ZVde6v8Y3eza2H4wBgHcPOQTGMdrIkjHY2XnTRHkZE33fRpwEX6rznyZmznwuu9a4Xw2iPgouTdF+la4vfbwAAAAAAAAAAAAAAuFjCaE+pqqqqiPg/I+IPFoZ/MSJ+ISJGEXE7Ij4aEYcL4++OiL9eVdXvbRNHq6rqmyPir0XE3sLiOiJ+JiJ+JSJuRMSHI2LxW97fGxHPVFX1++q6nrV8WAAAAAAAPMEGnYPi8nnAaDzLwmj+cwZQNuxcKS5fFlyMuHzRRQAAAAAAAAAAAAAAIKJz0SfAufkP4vEo2mci4qvquv7yuq7/QF3X31vX9aci4l0R8Sci4vWFdfci4q9WVXW96SBVVb0/In4kTkfRPhcRX1nX9Ufruv7ut47x/oj4cxGx+O2T74qI/2qNxwYAAAAAwBNomITRTqbNAaNeR7wIKBt0hsXloyVhtE50olt1z+28AAAAAAAAAAAAAACA9QijPb3+szM/fyYivq2u639ydsW6rid1Xf+ViPi2iLi/MPSuiPj+Jcf5oYg4XPj5J946zi+cOcb9uq7/x4j47jPb//mqqr54yTEAAAAAAHgKDLrlMNqygFGv2isuBxh2rhSXz4OL4/pBcbxXCS4CAAAAAAAAAAAAAMBlJIz2FKqq6qsi4gNnFv9AXSffKHtLXdc/HRH/y5nF39VwnA9FxL+/sOhBRPyxuq5PGo7x1yLiry4s2o+I/6LpvAAAAAAAeDoMO+Uw2snbYbRJcbxf9c7tnIAn26A7LC4fLbmuCKMBAAAAAAAAAAAAAMDlJIz2dPpdZ37+tbquf7bltn/9zM8falj3eyKiu/Dzj9R1/S9aHOO/PfPzd1dVNWhzcgAAAAAAPLkGneaA0bh+UBwXMAIyeXBxFBERk+T/b1DfdQUAAAAAAAAAAAAAAC4lYbSn05UzP//6Ctv+2pmfDxvW/f1nfv4rbQ5Q1/UvRMTfX1h0JSI+1WZbAAAAAACeXMPO2T9fP7QsYCSMBmQGSRhtHlxMrysd1xUAAAAAAAAAAAAAALiMhNGeTr915ufBCtueXfe10kpVVb0nIr5mYdEkIj63wnH+7pmfX1hhWwAAAAAAnkCDzrC4fDS9FxERk3pSHBdGAzJZGO3krTDaePagOO66AgAAAAAAAAAAAAAAl5Mw2tPppyLi/sLPX15VVfnbZo/7SGFfJb/7zM8/V9f1vZbHiIj4iTM/f+UK2wIAAAAA8AQadq8Ul5/MRhERManHxXEBIyAzzMJo04dhNMFFAAAAAAAAAAAAAAB4sgijPYXqur4bEf/7wqJBRPzJZdtVVdWNiD/z/7N370G2ZXV9wL+/3af7njN3YAaZGWAQGRkUmBJ5WoIgD8dIElO+5ZEyajQ+sICglq8KAYZoKkS0EsoiRKPySAoJQQQJhDg8FA1ItBBmBJIBh3dgiscwj3vvzNzbK390X+6hp0/3OX37nN2n7+dT1XX2Xnvtdb63qFpVQ+/+7i3DL58w/Yot5x+eOuCGj+yyHgAAAAAAh8yw2/4dHsfXN967cUe7fdvrqwqMgAmGK9sXo93WTmS9nZpYuGhfAQAAAAAAAAAAAACAg0kx2uH1y0k+Onb+b6vq2ydNrqrVJL+d5GFjw29L8toJt9x/y/nHZ8z3sS3nd6+qu824BgAAAAAAS2TUHd12/MT68SSZWGA0UGAETDDqti9GSzb2FvsKAAAAAAAAAAAAAAAsF8Voh1Rr7QtJnpjkvZtDoyRvqapXV9UPVtWDq+r+VfWoqvrZJNck+bGxJd6T5Adaa23CV1y45fyGGfPdkuTEluELZlkDAAAAAIDlMuxG247ftn486209J9dPbntdgREwyXCHYrTj68dyh2I0AABgBlV1v6p6SlX9elW9o6puqqo29vPRvjNuVVXnVdVHtuRsVfWyvrMBAAAAAAAAAMBeDPoOwPy01j5aVd+c5EeT/GSSRyR58ubPJJ9P8ptJfr21CX8psuH8LefH9xDxeJLh2Pld9rDGV6iqS5JcPONtl5/t9wIAAAAAsLvRytFtx1tabls/kZOTCow6BUbA9kY7FKOdWD82eV9RjAYAAGyqqick+ZUkj0zyVf2m2ZNfS3K/vkMAAAAAAAAAAMB+UYx2+K1s/tyWpCWpHeZ+Islzk/zBLqVoyZ2L0U7sIdvxJHfbYc29+Jkkz9uHdQAAAAAA2GfDbjTx2vH1WycWGK0qMAImGO5QjHb81ORiNPsKAAAw5qFJvqPvEHtRVY9K8qy+cwAAAAAAAAAAwH7q+g7A/FTVY5J8MMl/SPKY7P6/932S/H6Sj1fVP5vx69rsCfd0DwAAAAAAS2rUHZ147cT68dzRbt/22kCBETDBarc6cY84sX7MvgIAAJyN25J8pO8Qk1TVWpLfzZnnAm/uMQ4AAAAAAAAAAOwbxWiHVFVdmeTqJJeNDX8qyS8neViSC5OsJblnkr+f5OVJTm7OuzjJ71TVb1dVTfiKW7acj/YQc+s9W9cEAAAAAOAQGXaT/6/k4+vHcrKd3PaaAiNgJ8PuvG3Hj68fy8l1+woAADCVO5L8TZL/lOSnkjwiyV2SzPqC0UV6bpIrNo8/luQ/9pgFAAAAAAAAAAD2zaDvAOy/qro4yauSDMeG/zjJD7XWbtoy/bNJ3pLkLVX10iRvTHL3zWs/kY03Xr5wm685qMVoL0nymhnvuTzJ6/fhuwEAAAAA2MFqrWUlg5zKnYuKTqwfy8l2x7b3DcqvM4DJRt0ot5z60p3GT6wf32FfUYwGAAB82cuTvLS1dmLrhcnvFe1XVT0kyS+NDT09yTf3FAcAAAAAAAAAAPaVvyQ6nH4uycVj5x9K8uTtHtwa11p7d1U9JcnVY8PPq6rfb63dsGX61r8uuTgzqKrzc+ditBtnWWM7mzm3Zt0ty9l+LQAAAAAAU6iqDFdGufXUzXe6dvzU5GK01VqbdzRgiQ2787YdP37q1sn7SqcYDQAA2NBa+2LfGWZRVYMkv5czz3++qrX25qpSjAYAAAAAAAAAwKHQ9R2AufjBLecv3K0U7bTW2luTvHNsaJTkqdtMvW7L+X2nj7ft/C8s2wNmAAAAAADMbjShwOjE+rHcMaHAaFAKjIDJJhWjnVg/njva7dtes68AAABL7BeSPHzz+AtJnt1jFgAAAAAAAAAA2HeK0Q6Zqjqa5PItw2+dcZmrt5xv9ybJD245v/+M33G/LecfmPF+AAAAAACW0KQCo+Prx3JSMRqwB6OVyYWLJ9vJba/ZVwAAgGVUVQ9I8ryxoZ9vrd3QVx4AAAAAAAAAAJgHxWiHz4XbjH1mxjW2zr9omznXbjn/xqra/q9OtveYXdYDAAAAAOAQGk0oRjuxYzHaYJ6RgCW3t8JF+woAALBcqqpL8rtJjmwOva219rL+EgEAAAAAAAAAwHwoRjt8btxm7OiMa5y/5fyWrRNaa/8vyfvHhgZJHjvDdzxhy/mbZ7gXAAAAAIAlNbHA6NTkAqPVbm2ekYAlt5fCxdWyrwAAAEvnGTnzQtLjSX6qxywAAAAAAAAAADA3itEOmdbarUlu2jL8sBmXecSW889MmPe6Lef/dJrFq+qBSb55bOjWJP9zumgAAAAAACyz0coOBUbr2xcYDWp1npGAJTexcHH9WO6YUIxmXwEAAJZJVV2W5F+PDV3VWvtwP2kAAAAAAAAAAGC+Bn0HYC7ekeS7xs5/Msnbp7mxqu655d4keeeE6f8lyXOSrGyef19VfV1r7bpdvuaXtpz/19baiWnyAQAAAACw3BQYAfttNGFfOXHqWE7aVwAAgMPhd5Ic3Tx+X5Lf6CtIVV2S5OIZb7t8HlkAAAAAAAAAADicFKMdTq/OV5abPaWq/ntr7T/vdFNVHUnyyiTnjw3fkuQt281vrV1XVS9P8mObQ2tJXlZVV04qOquq707yo2NDtye5aqdcAAAAAAAcHpMKjI6v35r1nNr22qD8OgOYbLgyuXBxcjGafQUAAFgOVfXjSb5983Q9yU+01k72GOlnkjyvx+8HAAAAAAAAAOCQ6/oOwFz8QTbeCnlaJXlFVf37qrrXdjdU1ROTvDtnHqA67YWttS/u8F3PSzJ+/VuSXF1VD9yy/pGqemaS12y5/zdaax/bYX0AAAAAAA6R4YRitFtOfmniPYNanVcc4BAYdaNtx0/sUIy22q3NMxIAAMC+qKpLk7xobOjFrbX/3VceAAAAAAAAAABYBK9CP4Raa+tV9QNJ/iLJJZvDleRZSZ5RVe9P8ndJjif5qiQPS3LPbZZ6U5IX7vJdn6yq70vyliSn/4LkMUk+UFV/vfk9FyR5eJKLt9z+xiT/crZ/HQAAAAAAy2w0oRjt5lOTi9FWS4ERMNmwO7rt+In14+kmvCdK4SIAALAkXpLkws3jjyV5To9ZAAAAAAAAAABgIRSjHVKttQ9X1eOTvDLJI8cudUkeuvkz8fYkv5Pk2a21O6b4rndU1fcmeVnOlJ/V5vc+csJtr0ryE621U7utDwAAAADA4TFc2b4Y7ZZTN0+8R4ERsJNRN9p2/I52eyq17TX7CgAAcNBV1VOTfPfY0NNba7f2lWfMS5K8ZsZ7Lk/y+jlkAQAAAAAAAADgEFKMdoi11j5UVY9O8o+T/HSSRyUT/vpjw/Ekf5jkt1pr757xu95UVd+Q5KokT0lytwlT353kRa21186yPgAAAAAAh8Oo274YrWV94j2D8usMYLJhd3TitZa27bh9BQAAOMiq6qIkLx4belVr7c195RnXWrshyQ2z3FO102OLAAAAAAAAAADwlTzxf8i11k4meUWSV1TVBUkemeRrk1yY5EiSm5N8Mcm1Sa7ZnL/X77ohydOr6p8neUyS+ya5Z5Jbk3wqyXtba9efxT8HAAAAAIAlN5xQjLaTQa3OIQlwWIxWRjPfs1prc0gCAACwb16c5OLN4y8keXaPWQAAAAAAAAAAYKEUo51DWmtfSvLWBXzP7UnePu/vAQAAAABg+YwUowH7bNQdnfke+woAAHBQVdUDkjxtbOjfJTmvqi7b5dYLt5yfv+We9dbax882HwAAAAAAAAAAzJtiNAAAAAAAYGGGeyhGW+3W5pAEOCyOdKOZ71GMBgAAHGBb/yPnBZs/s/r+zZ/TvpQ7l6cBAAAAAAAAAMCB0/UdAAAAAAAAOHeMVmYvRhuU97wAk63UStbqyEz32FcAAAAAAAAAAAAAAOBgUowGAAAAAAAszLAbzXzPShQYATsbdbOVLq7W2pySAAAAAAAAAAAAAAAAZ0MxGgAAAAAAsDArNchaHZl6/qBWU1VzTAQcBsOV2YrRBrU6pyQAAABnp7X2N621mvUnyVVblnr5ljkX9vHvAQAAAAAAAACAWSlGAwAAAAAAFmrYTV9gtKq8CJjCaIZ9JUkGnb0FAAAAAAAAAAAAAAAOIsVoAAAAAADAQo1Wpi8wGihGA6YwS+FikgxqMKckAAAA26uqtuXnCX1nAgAAAAAAAACAg8gT/wAAAAAAwELNUmCkGA2YxmiGfaVSWfFrUgAAYExVfXW2f57ynlvOB1V12YRlbmmtfW4/cwEAAAAAAAAAwLnIE/8AAAAAAMBCzVJgpBgNmMashYtVNcc0AADAEvrzJPedYt69k1w/4drLk/zofgUCAAAAAAAAAIBzVdd3AAAAAAAA4Nwy7EZTz1WMBkxjtDJLMZp3RwEAAAAAAAAAAAAAwEGlGA0AAAAAAFioUXd06rmritGAKQy7WYrR7CsAAAAAAAAAAAAAAHBQeR06AAAAAACwUMOV0dRzFRgB0xh20+8rq7U2xyQAAMAyaq1dtoDvqDmv//wkz5/ndwAAAAAAAAAAwCJ0fQcAAAAAAADOLaPu6NRzB51iNGB3M+0rChcBAAAAAAAAAAAAAODAUowGAAAAAAAs1LAbTT1XgREwjdn2lcEckwAAAAAAAAAAAAAAAGdDMRoAAAAAALBQo+7o1HNXFaMBUxitTL+vKFwEAAAAAAAAAAAAAICDSzEaAAAAAACwUMNuNPVcBUbANGbZV1a7tTkmAQAAAAAAAAAAAAAAzoZiNAAAAAAAYKFGK0ennqsYDZjGqJtlXxnMMQkAAAAAAAAAAAAAAHA2FKMBAAAAAAALNexGU89VYARMY7Z9ReEiAAAAAAAAAAAAAAAcVIrRAAAAAACAhRp1R6eeq8AImMawO2/qufYVAAAAAAAAAAAAAAA4uBSjAQAAAAAACzXsRlPPXa21OSYBDosYiZDCAAAgAElEQVQj3TCVmmqufQUAAAAAAAAAAAAAAA4uxWgAAAAAAMBCjVaOTj13UKtzTAIcFl11OTJl6eKgBnNOAwAAAAAAAAAAAAAA7JViNAAAAAAAYKHW6kgqNdVcBUbAtEbdeVPNU7gIAAAAAAAAAAAAAAAHl2I0AAAAAABgobrqMuxGU81VYARMazh1MdranJMAAAAAAAAAAAAAAAB7pRgNAAAAAABYuGkLjFY7BUbAdEZTF6MN5pwEAAAAAAAAAAAAAADYK8VoAAAAAADAwk1bjDao1TknAQ6L4cq0hYv2FQAAAAAAAAAAAAAAOKgUowEAAAAAAAs3mroYbTDnJMBhMf2+ohgNAAAAAAAAAAAAAAAOKsVoAAAAAADAwg1XFBgB+2vYjaaaN6i1OScBAAAAAAAAAAAAAAD2SjEaAAAAAACwcKNOMRqwv4ZT7yuDOScBAAAAAAAAAAAAAAD2SjEaAAAAAACwcMNuNNW8VcVowJSmLVy0rwAAAAAAAAAAAAAAwMGlGA0AAAAAAFi4UXd0qnkDBUbAlIYr0xWj2VcAAAAAAAAAAAAAAODgUowGAAAAAAAs3LAbTTVPgREwrVE3bTHa2pyTAAAAAAAAAAAAAAAAe6UYDQAAAAAAWLjRytGp5ilGA6Y1nLoYbTDnJAAAAAAAAAAAAAAAwF4pRgMAAAAAABZu2I2mmqcYDZjWaMpitFX7CgAAAAAAAAAAAAAAHFiK0QAAAAAAgIUbdUenmrfaKTACpjOcshhN4SIAAAAAAAAAAAAAABxcitEAAAAAAICFG3ajqeYpMAKmNVqZshitW5tzEgAAAAAAAAAAAAAAYK8UowEAAAAAAAs3Wjk61TzFaMC0ht10xWirNZhzEgAAAAAAAAAAAAAAYK8UowEAAAAAAAs37EZTzVtVjAZMaTRlMZrCRQAAAAAAAAAAAAAAOLgUowEAAAAAAAs36o5ONU+BETCt1VpLl5Vd59lXAAAAAAAAAAAAAADg4FKMBgAAAAAALNywG001T4ERMK2qyqg7b9d59hUAAAAAAAAAAAAAADi4FKMBAAAAAAALt1prWclgxzldVtKVX2UA0xuu7F6MtqoYDQAAAAAAAAAAAAAADix/TQQAAAAAACxcVWW4MtpxjvIiYFajbud9JUkG9hYAAAAAAAAAAAAAADiwFKMBAAAAAAC9GHXn7XhdeREwq2F3dNc59hYAAAAAAAAAAAAAADi4FKMBAAAAAAC9GO5WjNYpLwJmM+xGu85RjAYAAAAAAAAAAAAAAAeXYjQAAAAAAKAXo92K0ZQXATPafV8ZpKoWlAYAAAAAAAAAAAAAAJiVYjQAAAAAAKAXQ8VowD4brthXAAAAAAAAAAAAAABgmSlGAwAAAAAAejHapcBotQYLSgIcFiOFiwAAAAAAAAAAAAAAsNQUowEAAAAAAL0Y7lpgtLagJMBhsfu+ohgNAAAAAAAAAAAAAAAOMsVoAAAAAABAL0YKjIB9ttu+smpfAQAAAAAAAAAAAACAA00xGgAAAAAA0IvhrsVogwUlAQ6L3fcVxWgAAAAAAAAAAAAAAHCQKUYDAAAAAAB6MVJgBOyz0Yp9BQAAAAAAAAAAAAAAlpliNAAAAAAAoBfDXQqMVhUYATMaKlwEAAAAAAAAAAAAAIClphgNAAAAAADoxWjXAqO1BSUBDovd9xXFaAAAAAAAAAAAAAAAcJApRgMAAAAAAHox3K3AqBssKAlwWAy70Y7XVxWjAQAAAAAAAAAAAADAgaYYDQAAAAAA6MVot2I0BUbAjEbd0R2vDzr7CgAAAAAAAAAAAAAAHGSK0QAAAAAAgF4MdylGW1WMBsxouDLa8brCRQAAAAAAAAAAAAAAONgUowEAAAAAAL0YrexcjDaotQUlAQ6LQa1mdYe9QzEaAAAAAAAAAAAAAAAcbIrRAAAAAACAXgy70Y7XBzVYUBLgMNlpb1lVjAYAAAAAAAAAAAAAAAeaYjQAAAAAAKAXKzXIWh2ZeH2gwAjYg1F3dOI1+woAAAAAAAAAAAAAABxsitEAAAAAAIDeDLvzJl5bVWAE7MGwG028phgNAAAAAAAAAAAAAAAONsVoAAAAAABAb0Yrk4vRFBgBe2FfAQAAAAAAAAAAAACA5aUYDQAAAAAA6M2wU2AE7K+d9pVV+woAAAAAAAAAAAAAABxoitEAAAAAAIDejBSjAftM4SIAAAAAAAAAAAAAACwvxWgAAAAAAEBvht1o4rXVToERMLsdCxftKwAAAAAAAAAAAAAAcKApRgMAAAAAAHoz6o5OvDYoBUbA7IY7FaPZVwAAAAAAAAAAAAAA4EBTjAYAAAAAAPRmuDKaeE2BEbAXo5XJxWir9hUAAAAAAAAAAAAAADjQFKMBAAAAAAC9GXVHJ15TjAbsxbCbXIxmXwEAAAAAAAAAAAAAgINNMRoAAAAAANCbYTeaeG1VgRGwByPFaAAAAAAAAAAAAAAAsLQUowEAAAAAAL0ZdUcnXlNgBOzFToWL9hUAAAAAAAAAAAAAADjYFKMBAAAAAAC9UWAE7Ldhd97Ea6v2FQAAAAAAAAAAAAAAONAUowEAAAAAAL0ZrRydeE2BEbAXo5XJxWgKFwEAAAAAAAAAAAAA4GBTjAYAAAAAAPRm2I0mXlNgBOzFsFOMBgAAAAAAAAAAAAAAy0oxGgAAAAAA0JsLBnfbdrxLl+HK5HIjgEnOX7lrugm/Bj1/5a4LTgMAAAAAAAAAAAAAAMxCMRoAAAAAANCbu6/eI/dau8+dxi8fPSjDbtRDImDZHemG+frzHnyn8UtWL81Fa/foIREAAAAAAAAAAAAAADAtxWgAAAAAAECvfuRez875Kxd8+fxug4vyQ/d8Ro+JgGX31Hv8dO6+esmXz8/rzs+PXfrzPSYCAAAAAAAAAAAAAACmMeg7AAAAAAAAcG77muHlueprX5KPHP9gulrJ/UdXZK070ncsYIldsnavPOeyF+f64/8nt7fb8vXnPTjDbtR3LAAAAAAAAAAAAAAAYBeK0QAAAAAAgN6NVo7mG85/ZN8xgEPkSDfMA48+pO8YAAAAAAAAAAAAAADADLq+AwAAAAAAAAAAAAAAAAAAAAAAAAAM+g4wi6p62+ZhS/K01toNe1znHkledXqt1tqV+5EPAAAAAAAAAAAAAAAAAAAAAAAA2JulKkZL8oRslKIlyfAs1hlurpWx9QAAAAAAAAAAAAAAAAAAAAAAAICedH0H2IPqOwAAAAAAAAAAAAAAAAAAAAAAAACwv5axGA0AAAAAAAAAAAAAAAAAAAAAAAA4ZM7VYrTB2PHJ3lIAAAAAAAAAAAAAAAAAAAAAAAAASc7dYrSLxo5v7S0FAAAAAAAAAAAAAAAAAAAAAAAAkOTcLUZ73OZnS/LpPoMAAAAAAAAAAAAAAAAAAAAAAAAAyaDvAGehzTK5qlaT3CvJdyT5F2OXrtnPUAAAAAAAAAAAAAAAAAAAAAAAAMDsDlwxWlWdmmZako9W1Z6/Zuz4DXtdBAAAAAAAAAAAAAAAAAAAAAAAANgfB64YLV9ZWrYf87bTNu//UJL/dhbrAAAAAAAAAAAAAAAAAAAAAAAAAPug6zvABG3O61eSv0ryj1prd8z5uwAAAAAAAAAAAAAAAAAAAAAAAIBdDPoOsI0/y+RitMdvfrYk70lyYso1W5LbktyY5INJ3t5ae+fZhAQAAAAAAAAAAAAAAAAAAAAAAAD2z4ErRmutPWHStapaz5nStKe01j6+kFAAAAAAAAAAAAAAAAAAAAAAAADAXHV9B9iD6jsAAAAAAAAAAAAAAAAAAAAAAAAAsL8GfQeY0VVjxzf2lgIAAAAAAAAAAAAAAAAAAAAAAADYV0tVjNZau2r3WQAAAAAAAAAAAAAAAAAAAAAAAMCy6foOAAAAAAAAAAAAAAAAAAAAAAAAAKAYDQAAAAAAAAAAAAAAAAAAAAAAAOidYjQAAAAAAAAAAAAAAAAAAAAAAACgd4O+A5yNqnpikm9L8rAklyS5IMnqjMu01trl+50NAAAAAAAAAAAAAAAAAAAAAAAAmN5SFqNV1ZOSvDjJ/ceH97hcO/tEAAAAAAAAAAAAwLSq6qIkt7XWbu47CwAAAAAAAAAAcHB0fQeYVVX9QpI3ZaMUbbwMre3hBwAAAAAAAAAAAFiAqrpvVb2iqm5M8tkkN1bVJ6vqV6tq1Hc+AAAAAAAAAACgf4O+A8yiqp6U5IWbp6fLzU6Xox1LcmOSO3qIBgAAAAAAAAAAAOeUqvqRJP9q8/TmJA9vrd02Ye43Jrk6yd3zlS9FvTTJryT5nqp6Qmvtc3OMDAAAAAAAAAAAHHBLVYyW5N9sfp4uRPtENorS3tha+3hvqQAAAAAAAAAAAODc87QkX52NZ/peukMp2iDJq5NctDnUtk5JckWS1yZ5/HyiAgAAAAAAAAAAy2BpitGq6vIkD8mZB6L+Msl3tNZu7i8VAAAAAAAAAAAAnHuqqkvy2LGh1+0w/YeTPCBfWYh2bZKT2XguMNkoR3tsVT2ltfbq/cwKAAAAAAAAAAAsj67vADN49OZnZePhqB9WigYAAAAAAAAAAAC9uCLJeZvHdyT50x3m/vjmZyX5UpJHt9Ye0lp7RJKHJ/lszpSmPX0OWQEAAAAAAAAAgCWxTMVol2x+tiTvba1d12cYAAAAAAAAAAAAOIddvvnZklzXWrtju0lVdc8kj9qc15L8amvtPaevt9ben+RZ2ShNqySPraq7zTM4AAAAAAAAAABwcC1TMVqNHX+4txQAAAAAAAAAAADAvceOr99h3uNypvTsZJLf22bO65J8afO4kjx0PwICAAAAAAAAAADLZ5mK0T41drzSWwoAAAAAAAAAAADg/LHjm3aY99jNz5bkXa21G7dOaK2dSvLesaH7n308AAAAAAAAAABgGS1TMdrfjh3fp7cUAAAAAAAAAAAAwOqU8x49dvyOHeZ9Zuz4rjOnAQAAAAAAAAAADoWlKUZrrV2T5NokleQRVXW3niMBAAAAAAAAAADAueqWseNtn+erqqNJHjo29Bc7rHdq7PjIWeQCAAAAAAAAAACW2NIUo236jc3PlSQ/32cQAAAAAAAAAAAAOId9buz4QRPmfHs2nvdLkpbkL3dY78Kx42NnkQsAAAAAAAAAAFhiS1WM1lp7eZLXJqkkv1hV/6DnSAAAAAAAAAAAAHAuunbzs5Lct6q+YZs5T938bEmuba3dtMN69x47/vw+5AMAAAAAAAAAAJbQUhWjbfqRJG9IMkjy+qp6QVVduMs9AAAAAAAAAAAAwP65NhsFZm3z/DeravX0xap6bJIfGLv+5kkLVdUgyRVjQ9fvb1QAAAAAAAAAAGBZDPoOMIuqeu7m4fuSfEuSi5L8iyQ/V1XvSvKBJF9Msj7Luq21F+xnTgAAAAAAAAAAADjMWmunqupVSZ6RjfKzK5O8v6r+OMkl2ShF65LU5vVX7rDcNyVZGzv/27mEBgAAAAAAAAAADrylKkZL8vyceXtkNo8ryXlJvm3zZy8UowEAAAAAAAAAAMBsfjXJP0ly183zByT5+s3j04VoLclrW2sf2GGd79n8bEk+3Fr74hyyAgAAAAAAAAAAS6DrO8A+OP3g1F7UfgYBAAAAAAAAAACAc0Vr7YYk35/kRM4UoX358ubYR5I8fdIaVdUlefLYve+YR1YAAAAAAAAAAGA5LGMxWu3jDwAAAAAAAAAAALBHrbW3JXlIklcnOZYzz+d9PslvJXlUa+3zOyzxXUnumzPP9L1pfmkBAAAAAAAAAICDbtB3gBk9se8AAAAAAAAAAAAAwBmttQ8neVqSVNVFm2Ofm/L265N879j5W/Y3HQAAAAAAAAAAsEyWqhittfanfWcAAAAAAAAAAAAAtjdDIdrp+e9L8r45xQEAAAAAAAAAAJbMUhWjAXCI3XhN8n9/Kzl1IvmaH0wu/c6kqu9UAAAAAAAAAAAAAAAAAAAAAAAsiGI0APr3mauTtz8paesb59e/InnwVcmDn9tvLgAAAAAAAAAAAAAAAAAAAAAAFqbrOwAA57jWkr965plStNP+9teSY5/sJxMAAAAAAAAAAPuiqi6sqvtU1df0nQUAAAAAAAAAADj4FKMB0K8b35fc9KE7j6/fnnziDxefBwAAAAAAAACAPauq76mq36uq66rqjiSfT/LRJH83Yf5lVfW4zZ9HLDIrAAAAAAAAAABw8Az6DnC2qmo1yaOTfGuSy5N8VZK7JElr7coeowEwjU//j8nXPv6a5AHPWlwWAAAAAAAAAAD2pKqelOTFSe5/emjKWy9P8idJWpLbq+rS1toX5xARAAAAAAAAAABYAktbjFZVR5P8bJJnJLl46+VsPCS13X1PS/Jrm6dfSPJNrbVt5wKwADdeM/na596V3Pb55MjdF5cHAAAAAAAAAICZVNVzkzw3G8/ubX1+r2WHkrTW2lur6oNJHpRkLclTkrx0fmkBAAAAAAAAAICDrOs7wF5U1Tcm+eskVyW5JNO/WTJJ/jjJ3ZNcluRhSf7efucDYAY3fWjytXYq+dQbF5cFAAAAAAAAAICZVNWzkjw/X/k84m1J/izJGzPd832vHjv+zn0LBwAAAAAAAAAALJ2lK0arqiuS/GmSr8tXvlny9Jsmd9RauyXJa8aGvn+/MwIwpba+czFaknzyjxaTBQAAAAAAAACAmVTV1yV5UTae42vZKET7xSR3b609Ickzp1zqDaeXTPKtVTXLy1IBAAAAAAAAAIBDZKmK0apqmI03SF4wNnxNkh9Pcr8kD8p0b5d8/djxlfsWEIDZHP9McurYznM+978WkwUAAAAAAAAAgFm9IMkgG8/tnUhyZWvtRa214zOu8/7N+5PkLtl4cSoAAAAAAAAAAHAOWqpitCTPSnJZNt4smSQvTvLw1trvt9Y+mjMPRu3m7ZtrVJKvrapL9jknwN7d+onkz5+cvO7eydWPTz7ztr4Tzc/xT+0+58QNye03zj8LAAAAAAAAAABTq6ojSb4rG8/itSTPaa29ay9rtdbWk3xwbOiBZ58QAAAAAAAAAABYRstWjPbMnClF+6PW2rM3H4iaSWvtliQfHRt60D5kAzh7J48lf/LY5OOvSY5/Ornhz5K3XZlc/8qktd3vXzbHpihGS5Kbr5tvDgAAAAAAAAAAZvWYJKNsvKD0WJKXnOV6nx47vvQs1wIAAAAAAAAAAJbU0hSjVdUVSe6djYeokuQXznLJj4wd3+8s1wLYH598Q3Ls43cef9cPJ3/01ckN71x8pnk6PmUx2o3XzDcHAAAAAAAAAACzumzzsyV5T2vttrNc76ax47uc5VoAAAAAAAAAAMCSWppitCQP3fxsSa5trf3dWa5349jxBWe5FsD++NirJl87/unk6scl17wg+ezbk7a+uFzzcmzKYrRPvXG+OQAAAAAAAAAAmNXFY8ef2Yf1ugnHAAAAAAAAAADAOWTQd4AZjD9Edd0+rDf+dsrz9mE9gLP3mT/Zfc41z9v4vPQfJt/6umRlbb6Z5un4/2fvvsPsLOv8j7/vaUlIIYUSCL1X6cIKCAKCggIWUHRXEVzLFt1V17KuhdV1159tXde2gmVVRBGkCdKb9F4iUhISkgAJ6ckkmUz5/v44MztnJqefM+fMmbxf13Wu8zz3/b3v5zuUk0nyzOd5sbS6xbdABKQ0sv1IkiRJkiRJkiRJkiSpVNn34I2rwX4zso5X1GA/SZIkSZIkSZIkSZIkSU2omZ6qOD7ruCtvVem2zDpeU4P9JKl67VNKr33xWnjuhyPXSz30lPjx270K1r80sr1IkiRJkiRJkiRJkiSpHK9kHe9Qg/0OyrO3JEmSJEmSJEmSJEmSpM1IMwWjLc063qoG++2WdbysBvtJUvVaxxevyTb3JyPTR730rC+9dvWfR64PSZIkSZIkSZIkSZIklWtu/3sCDk4pTax0o5TSocDWWUMPV9OYJEmSJEmSJEmSJEmSpObVTMFoL/e/J+CQajZKKc0A9s0aeq6a/SSpJiKga2nxumwrHoEVj41MP/XQazCaJEmSJEmSJEmSJElSk7ofWA0E0A6cV8VeH8s6nh8R86tpTJIkSZIkSZIkSZIkSVLzaqZgtLuBvv7jGSmlE6rY6zwyAWsAncCD1TQmSTXRtQx6Ostfd93BmVC1ZtS7ofRag9EkSZIkSZIkSZIkSZJGjYjoBX5P5l68BFyQUtqx3H1SSm8B3kUmYC2AX9WyT0mSJEmSJEmSJEmSJEnNpWmC0SJiBfBA1tCXUkopX30+KaVZwKcZvInqxojoK7xKkupgzTOVr33igtr1UU+960uvfeY7I9eHJEmSJEmSJEmSJEmSKvElMg88DWAqcFtKaf9SF6eUzgUu7l+fgA3At2vfpiRJkiRJkiRJkiRJkqRm0TTBaP2yb3g6CvhBOYtTStsCVwHTyNxEBfDN2rQmSVVa82zla5+8ALpX166XeiknGA1g2YMj04ckSZIkSZIkSZIkSZLKFhF/Br5D5n68AHYFHk4pXZRSOgXYZvialNKOKaXzU0r3ABcB47LWfyEiltTtC5AkSZIkSZIkSZIkSZI06jRVMFpEXAI82n+agPenlO5MKR1baF1KaWJK6UP9aw8mcwNVADdExF0j2bMklWzNM9Wtf+Gy2vRRT+UGoz39nyPThyRJkiRJkiRJkiRJkir1ceBGBsPN2oFzgWuBe/vHAEgpdQLzgP8BXp21BuB3EfH1ejUtSZIkSZIkSZIkSZIkaXRqa3QDFXg7mZulZvSfHw3cllJ6GXguuzCl9H1gL+AvGPpUyQQsAv6qTj1L0qZWPwPP/y9sWALbnZw5z2XaIdC9CtbOLbzffefDLu+C1nG173WklBuMtuj30NcNLe0j048kSZIkSZIkSZIkSZLKEhF9KaUzgO+RCUQbCDpLAyVZYxOyl2bV/Rj40Mh2KkmSJEmSJEmSJEmSJKkZtDS6gXJFxFzgTcDLDA062w44Jqs0AR8AjgfGD6tdCJwWEUvr1rgkZVv2IFz/apj9bzDnR/DHs2DBb3PXznozvOlpeP1dRTYNuOl46Oupdbcjp9xgtO6VsOSOkelFkiRJkiRJkiRJkiRJFYmIDRFxHvAOYDaDoWiblDI0EG0O8O6IeH9ENNFNL5IkSZIkSZIkSZIkSZJGStMFowFExP3AocB1DH2q5MB79s1T2XMJuBF4dUQ8XodWJSm3J78E3atKq528F7S0wdavgTc/W7h22b3w/M+r769eejfkHj/6kvxrFl09Mr1IkiRJkiRJkiRJkiSpKhFxaUS8CjgR+A/gj8ALQCfQDbwEPAp8Fzgd2CciftWgdiVJkiRJkiRJkiRJkiSNQm2NbqBSEbEYOC2ldBjwUTI3Um2Xp3wVcDPwnYi4vU4tSlJu0QeLriq9fvKeWcd7wHFXw+1vzl8//xLY/X2V91cvfd0QvbnnJsyCnc6GF36z6dyq2SPblyRJkiRJkiRJkiRJkqoSEbcCtza6D0mSJEmSJEmSJEmSJEnNp2mD0QZExEPAewBSSrsBOwIzgA5gKbAYmB0RfQ1rUpKydb5Qeu24rWD6IUPHtjkO2iZBz9rcaxbfAhtXQsfUynush971+efaJsC0Q3IHo21cMXI9SZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIapumD0bJFxFxgbqP7kKSCFt9Seu0+H4eW9qFj7ZPh0G/A/R/MvSZ64MXrYJdzKu+xHnoKBKO1jM8f7LZx5cj0I0mSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJElqqDEVjKbRIaXUDhwN7ARsB6wFXgQeiYh5DWxNarzVz8B955dWu+V+sM/Hcs/t8QGYfhj84fDc8y/fNPqD0XoLBKO1TYD2PMFo3QajSZIkSZIkSZIkSZIkjQYppYEnBAZwTkQsqXCfbYFfDewVESfWoj9JkiRJkiRJkiRJkiRJzcdgtDEopfRT4L012m5+ROxS4nW3Bi4A3gFMz1NzN/DNiLisRv1JzeX+D5Ree/j3oLUj//z0w2DPD8Oz3990bu6PoXs1zHoz7PJuaGktv9daWf8yPPc/MOciWPcCzDodDv0m9G3Mv6Z1AnTkCUbbuBIiIKWR6VeSJEmSJEmSJEmSJEmlOp5MKBrA+Cr2Gd+/F1n7SZIkSZIkSZIkSZIkSdoMGYymYtaXUpRSeiPwU2CbIqWvAV6TUvol8MGI6KyuPamJdK+BV+4srXbGq2Hb44rXTTsk/9yC32Zei66CYy5tTJDY2nlww5GwIethwIuuyrwO/Vb+da0ToGNa7rnohZ5OaJ9U01YlSZIkSZIkSZIkSZJUkYRhZpIkSZIkSZIkSZIkSZJqpKXRDZQjpXRASumW/tfNKaViIVy59ti2f+3APnuNRK9jyGXFClJKxwNXMDQULYCHgEuBG4Glw5a9G/hVSqmp/huUqtK1DKKvtNoZR5ZWN2Wf4jULLoOl95S2X6098cWhoWjZHv7H/OvaJkHH1Pzz6xZW1ZYkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkafRptlCqDwLHA8cBGyMiT9pOfhGxGOjO2ueva9jfaPEJYNcKXmcN2yeAHxe6UEppB+ByoCNr+C5g/4g4PCLOjoiTgR2Aj5L5Zz/gzcCXK/j6pObUs6b02hlHlFY3ucRsx+d/Xvq1a6W3KxPKVq62ydDSBu0FgtFuOArCBw1LkiRJkiRJkiRJkiSNEW1Zxz0N60KSJEmSJEmSJEmSJElSwzVbMNoZWcc/q2KfgbUJeEsV+4xKEbE0IuaV+wJOGrbVrRExt8jlLgCmZZ3fDZwUEU8N66krIv4LOHvY+o+llHau4MuUmk93GcFo00sMRuuYVrwGYG7BjMORsfgW6Flb/rqO/kC0ji3z13SvghWPVNaXJEmSJEmSJEmSJEmSRputso47G9aFJEmSJEmSJEmSJEmSpIZrmmC0lNJuwA79p33ANVVsdxzVuxAAACAASURBVDXQ23+8a0ppp2p6GwtSShOAdw4bvqjImj2B92YNbQTOjYgN+dZExBUMDbUbB3yhvG6lJlVqMFr7FJiyV2m1Le1kMh6LKaWmxhZeUdm6gWC01vEwbqv8dcsfrmx/SZIkSZIkSZIkSZIkjTav7X8P4MVGNiJJkiRJkiRJkiRJkiSpsZomGA04oP89gKcjYm2lG/WvfTpr6MBqGhsj3g5smXW+Ari8yJp3Aa1Z55dHxLMlXOurw87PTimNL2Gd1Nx6SgxG2/VcSCV+PKeUCRArpq+rtP1qJfpg4VWVre2YNng86/T8dT0+HFiSJEmSJEmSJEmSJGkUiXKKU0rtKaWdUkrvBz6bNfVEbduSJEmSJEmSJEmSJEmS1EyaKRht56zjOTXYL3uPnWqwX7M7f9j5LyNiQ5E1bxl2/pNSLhQRTwH3ZQ1NBE4uZa3U1LpLCEbb9gQ48PPl7VtKMBrAytnl7VuNZffDhpcrW9s+dfD40K/nr+upOB9TkiRJkiRJkiRJkiRJJUop9eZ7ZZcB8wrV5li7AXge+CEwJWuvCp/GJ0mSJEmSJEmSJEmSJGksaKZgtMlZx6tqsN/qrOMpeas2Ayml3YHXDhu+qMiamcBBWUM9wF1lXPa2YedvLGOt1Jx68gSjTdwVTrgJTn0cXncDjJtR3r6lBqMtvKK8favxSjkfB8Ok1sHjjmmZsLhcejorv4YkSZIkSZIkSZIkSZJKlQq8Sq0r9or+Pf4M/HbkvhRJkiRJkiRJkiRJkiRJo10zBaOtzzquRZBZdtBab96qzcN5DL1J7eGIeLTImgOGnT8eEeWkFN097Hz/MtZKzak7TzDa+G1g5okw9UBoac1dU0hLicFonfPK37tSa57JPb7tiXDmosJrezcMPW+fnLuuZ235fUmSJEmSJEmSJEmSJKkSUbykKgl4EHhTRHSP8LUkSZIkSZIkSZIkSZIkjWJtjW6gDEuzjneuwX47ZR0vq8F+TSml1Aq8d9jwRSUs3W/Y+XNlXnpOkf2ksacnTzBavuCvUrWWGIy2rkggWS2tfjr3+Jb7ZYLgCtnqL4aet07MXddTThajJEmSJEmSJEmSJEmSKnQH+YPRjut/D+B+YEOeuuEC6AJWAk8Bt0bEndU0KUmSJEmSJEmSJEmSJGlsaKZgtBf63xNwYEppRkRUFGiWUpoBvCprqI5pQaPOG4BZWefrgYtLWLfHsPMXclblN3/Y+YyU0rSIWFHmPlLz6M4TjNZWp2C0l66r7jqlWng1LLk999zkvaClyC89s04det4+KXddz9rye5MkSZIkSZIkSZIkSVJZIuL4fHMppT4GQ9PeERHl3kcmSZIkSZIkSZIkSZIkSUM0UzDavWSeENlBJhztb4F/rXCvvwFa+o97gLuq7q55nTfs/LKIWFnCuqnDzpeUc9GIWJtS2gBkJzptCVQVjJZS2gbYusxlu1dzTalk+YLR2qsMRmsZV3rt6mdgyl7VXa+QlbPhjtPzz0/ZO/M+9VWw8vEcBQmmHTp0qHVi7r16OitqUZIkSZIkSZIkSZIkSTWVGAxHkyRJkiRJkiRJkiRJkqSqNE0wWkR0pZTuBE7qH/pESul3EfFEOfuklA4A/onBG7HuiojNMl0npbQ18OZhwxeVuHzSsPP1FbSwnqHBaFWmQwGZ0Lsv1GAfqfZ68gSjtVX5n370ll57zd5wTh+kVN0185l/cf65lnaY8erM8azTcwejvX3Zpr21D/+46deztrIeJUmSJEmSJEmSJEmSVCsXZB2X8kBOSZIkSZIkSZIkSZIkSSqopdENlOnr/e9BJpjrupTSUaUuTim9GrgWmEjmKZXZe26O3gO0Z53PAW4vce3wpKINFVx/eJhanvQjaYzozhOM1l5lMFpfmf/73XQcbFhS3TXzWfFo/rltjoeOLTPH+38GtnvD4FzrFnDsZdAxbdN1bRNz72cwmiRJkiRJkiRJkiRJUkNFxAVZr9WN7keSJEmSJEmSJEmSJElS82uqYLSIuAG4jUyoWQDbA3eklC5KKb06pZSGr0kZR6SULgTuBHYY2A64MyKurU/3o9L7hp3/OCKiwr0qWVfptaTm1DNCwWi9ZQajvXInXH8kdM6v7rrDda+BFwt8pO73ycHjti3g+Gvh1CfhddfDmQtgx7fmXteWJzNx+UNQ8UeWJEmSJEmSJEmSJEmSqpVSaqp7ECVJkiRJkiRJkiRJkiSNfm2NbqAC7wQeBrYjE6zVBpzb/+pMKT0NrOifmw7sBQyk6gwEqiVgAXB2HfseVVJKRwH7Zw31Aj8tY4u1w84nVNDG8DXD96zE94BLy1yzO3BlDa4tFdadJxitrc7BaACd8+COt8AbH67u2tk9XL5t/vnpR8DMk4aOpQRT98+8CmmbmH9u1ZMw9cDS+5QkSZIkSZIkSZIkSVItvZBS+hFwYUQsanQzkiRJkiRJkiRJkiRJkppf0wWjRcSSlNIbgKuAXcgEnUEm7GwScNiwsf9bymAo2nPAGRGxpB49j1LnDzu/LiJeLGP9qAxG6/93Wta/15RS8SKpFnryBKO1NyAYDWDFI/DyLTDzhNzzfb0QPbBxOfT1wLitgIDoha5lmZqWdpiwPdx+OvSuz3+tAz9fWY8A7VPzzy2+zWA0SZKkRupeDa0ToaW10Z1IkiRJkiRJkqTG2B74PPDZlNI1wA8i4oYG9yRJkiRJkiRJkiRJkiSpiTVdMBpARDyZUjoM+C5wNtDCYBjakNKs4wT0Ar8EPhoRq0a80VEqpTQReMew4YvK3Gb4P7+ty+xhEpsGo60sswepuXTnCUZra1AwGsAtJ8Lu74fD/xtaxw2OL7gC7nxLdX1lm7B95Wu3OTb/XE/VeYqSJEmqxJo5cPe7YNkD0DEN9v4oHPA5MHhakiRJkiRJkqTNVRtwBnBGSul54IfATyJiaWPbkiRJkiRJkiRJkiRJktRsWhrdQKUiYkVEvAvYD/gW8ET/VBr2AngM+Dqwd0ScuzmHovU7C8hOYloMXFPmHs8OO9+5zPXD65dHxIoy95CaRwT05AlGa68yGK2vimA0gDkXwsP/OHi+6s+1DUUDmFjuR0SWcTPyz1UTCidJkqTK9HXDzcfDsvuBgI3L4YkvwLPfb3RnkiRJkiRJkiSp/jaSuU9v4CGmCdgN+A9gQUrpFymlYxrVnCRJkiRJkiRJkiRJkqTm07TBaAMi4pmI+HhEHAxsCewJHNX/2gOYEhGHRsQnI2JuI3sdRc4fdv6/EdFT5h5PDTvfo8z1uw07/1OZ66Xm0rseoi/3XFuVwWgd0/LPvelp2Oms4ns8+31Y8Vjm+KmvVdfPcFP2LRxuVoqZJ+ce7+uqbl9JkiSVb8kdsG7hpuPzL65/L5IkSZIkSZIkqdG2Bz4JPMfgg0yj/3gccA5we0rpiZTS36SUqrxRRpIkSZIkSZIkSZIkSdJY1zTBaCmlmSml07Ne04fXRMTaiJgTEff3v+ZGRGcj+h2tUkp7AcOfwHlRBVs9Oez8VSmlLcpYf3SR/aSxpXtN/rn2Ku/3POgrucd3+SuYshcc8xuYelDxfa47GC5OMPfH1fUz3LGXV79H6/jc470bqt9bkiRJ5Xnq67nHX7mrvn1IkiRJkiRJkqSGi4jlEfH1iNgbeD1wOdA7MN3/noD9ge8AL6aUfphSOrT+3UqSJEmSJEmSJEmSJElqBk0TjAa8Ffhd/+uXQFdj22la5w07/2NEPF3uJhHxEvB41lAbmwauFXL8sPPryu1Baio9IxiMtv2p0JZjj13ePXi8199Wd41K7fMx2HKf6vfJG4zmLwWSJEl1t3F5ozuQJEmSJEmSJEmjUETcHBFvB3YEPg8sIBOKBpmQtARMBN4PPJBSui+ldG5KKc+NIZIkSZIkSZIkSZIkSZI2R80UjDaVzI1RCXggIjob3E/TSSm1Au8ZNnxRFVv+btj5+0rsYx/gyKyhTuCGKvqQRr+edfnnWidWt/eE7eCEG2DL/QfPj7wItj9lsGa38+Cgr1R3nXJtc3ztrtkyLvd434ba7C9JkqTC+nrgyS/D9X8By+7PXxdRv54kSZIkSZIkSdKoFBGLI+LLwK7A6cC1ZILRyHpPwBFk7l97MaX0rf77yiRJkiRJkiRJkiRJkiRt5popGG15/3sALzWykSZ2KrBd1vka4NIq9vsl0Jt1/taU0p4lrPvUsPPfRITpRhrbetfnn2ubUP3+Wx0Fpz0Jb18BZy6C3c8bOt/SCvt/Bt4VsM1x1V+vmJmvh5NuhdY8gWblas3zYOBePzokSZLq4t73weOfg2X3Fq4r9H2vJEmSJEmSJEnarETGNRHxJjIhaV8BXiYTigaZewETmYemfgSYnVK6NaV0VkqprSFNS5IkSZIkSZIkSZIkSWq4ZgpGyw5Dm9iwLprb+cPOL4mIzko3i4hngZ9lDXUAP00p5UkwgpTSGcC5WUMbgQsq7UFqGoUCIlprEIw2oGMqpFS4Zud31u56+Rx3VW33yxew1ttV2+tIkiRpU53zYd4vS6vtqfi3mJIkSZIkSZIkaQyLiAUR8S/ATsDZwM3DSlL/67XAJcCClNKXU0o717dTSZIkSZIkSZIkSZIkSY3WTMFoj5B5QiTAXo1spBmllLYFThs2fGENtv4CsCLr/DXATSmlfYZdf1xK6e+BS4et/0ZEzK9BH9Loli8YraUDUp0/ind9D0x9Ven1bWVkUU7aDc5cAK158xErk2+/3g21vY4kSZKGWjsPHvkUg78dL8JgNEmSJEmSJEmSVEBE9EbEbyPi9WTuA/wGsIzMX0YEgwFp2wKfAZ5LKV2eUjqmUT1LkiRJkiRJkiRJkiRJqq+mCUaLiBeAe8nc9LR3SslwtPK8F2jLOn8yIu6vdtOIWAi8FdiYNXw08KeU0gMppV+nlP4ALAD+C2jPqrsG+Fy1PUhNIV8wWuuE+vYB0LYFnPIAHPqfhet2OhuO+gmcMPwBvVm23A+Ovw72/Sc45Bvwxkdgix1q2y9Ay7jc431dtb+WJEmSIAKe+BJcvTu88OvS1xmMJkmSJEmSJEmSSjcF2BLIfmJeZL0AWoEzgNtTStellHavb4uSJEmSJEmSJEmSJEmS6q2teMmo8jXg8qzjMxrYS7N537Dzi2q1cUTcllJ6C/BTYOv+4QQc3v/K5VfAX0dEb636kEa1nlEUjAbQ2gH7fBR2OgtuPBo65w2df+2VsMPpmeOVs/PvEwHbvyHzGkmt43OP924Y2etKqo3u1TD/N7DmGdj6WJh1GqSmyeeVpM3T0nvgic+Xv65nbe17kSRJkiRJkiRJY0ZKaQJwDvBBct9bloDu/tcWDAakJeAU4LGU0jsi4vd1aFeSJEmSJEmSJEmSJElSAzRVIkVEXAH8mMxNTm9KKX03pdRs4W51l1I6Gtgna2gj8ItaXiMirgUOAH4ArChQei/w9oh4V0R01rIHaVTrHWXBaAO22B7e/ByccDPs9xk4+tfwtmWDoWgAbYV6jAJzNWQwmtS8NiyBG4+B+/8anvoa3HE63Pd+iL5GdyZJKmTexZWt6/G3eZIkSZIkSZIkaVMppf1SSv8FvAj8iEwoWhqY7n+9BHwR2BnYHvg7YHb/XPS/tgB+k1LavZ79S5IkSZIkSZIkSZIkSaqfZgwV+yCwBvgo8CHguJTSN4CrImJZQzsbpSLiLgZvIhvJ6ywBPpxS+ihwNJkb1GYCncAi4JGIeH6k+5BGpXzBaAVDx+qkpRVmnpB55VIwvK1OwWgt43KP93XV5/qSKvfsD2HlE0PH5v4E9vgAbHVUY3qSJBX34rWVrTMYTZIkSZIkSSseh9lfga6lMP0QOPCL0Dax0V1JkhogpdQBnEXmPr/XDAz3v0fW+W3A94DfRURv1hbfA76XUnoj8DVgv/7x8cA/kglOkyRJkiRJkiRJkiRJkjTGNFUwWkrplqzTNcBkMjc7Xdg/vxBY0j9XqoiIE2vWpIiIjcCtje5DGlXyBaMVDB0bJUZDj63jc4/3bqhvH5LK98Tnc4+/8FuD0SRpNOusMNPaYDRJo0FfL0QPtOYJ2ZYkSZIkjZzVz8INRw7+Pd7im2HxrXDK/ZBaGtubJKluUkp7knkA6nuB6QPDZMLQov94LfBz4LsR8VSh/SLiupTSrcAfgUP7179+ZLqXJEmSJEmSJEmSJEmS1GhNFYwGHM/gkyJh8CapgadI7tj/CkozcLOVJI2ssRqMFnX6CG3J88PsfV31ub6k2ptzERz69UZ3IUkaLgKe/3nl63sNRpPUQH3d8PAn4PmfZn4Af7tT4KifwLgZje5MkiRJkjYfj35q04cbLX8IXroetn9jY3qSJNVFSqkVeAvwIeB1A8P975F1Phv4PvC/EbG21P0jYkNK6d+BS/uHdqy6aUmSJEmSJEmSJEmSJEmjUrMFo+VisJmk0a+Zg9FaOgpM1ukjuHV87vF1C+tzfUmVib78cx1T69eHJKl0L90A97638vXdJf/8kiTVRgSsnQOrn4FHPwmrZg/OLboa7nwbnHRbw9qTJEmSpM3KxlWw8He55xbfZjCaJI1RKaWdgQ8A5wHbDAyTualk4MGnvcAVwHcj4vYqLvenrOM8T9mTJEmSJEmSJEmSJEmS1OyaMRgtFS+RpFGmp4mD0VKBj91CoUe1lC8YDeCJL8EB/1K4T0mN8dz/5J8zGE2SRqdnvlPd+t7O2vQhSaXo7YL73g/zfpG/ZsntmdC0KXvVry9JkiRJ2lw9/vn8cwsuh0O+Wr9eJEn1NIfMPX0DN24MPGUvAS8B/wP8T0S8VINrrRt2DUmSJEmSJEmSJEmSJEljUFMFo0VES6N7kKSK9DZxMFpBdbrPdNzW+eee+Dxs93rY6qj69CKpNF3L4YEP559v37J+vUiSCls5GxZeARuWwIu/L23N9MNg+UObjvcYjCapjuZcWDgUbcBLNxiMJkmSJEkjbc1z8Ox/Fyio0wOXJEmN0ELmBpJgMCDtDuC7wO8iomcErpkwHE2SJEmSJEmSJEmSJEkas5oqGE2SmtacH+Ueb9uivn3UWtTpHtPph0DbxPxBG8//wmA0abRZeGXh+baJ9elDklTYgivgrrOhr7v0Ncf/AZ79LmAwmqQGm3dxaXWd80a0DUmSJEkSmd+jRYHws8550NsFrePq1pIkqa4SsBb4OfC9iJg9EheJiPlkgtgkSZIkSZIkSZIkSZIkjWHeJCRJI617bf651gn162NE1CkYrXU8bH1s/vlnv1ufPiSV7tnvFZ7v3VCfPiRJ+UUfPPT3ZYSiJTji+7D9KfkDLg1Gk1RPS+8urW79opHtQ5IkSZJU/IEp0Qdrnq1PL5KkensK+HtgVkT87UiFokmSJEmSJEmSJEmSJEnafLQ1ugFJGvNeuTP/XPvk+vUxEmaeVL9rTZhZv2tJqs7838DyBwvXGJwjSY23+mlYt7C02ld9Gfb/DKT+fPW2SbnregqEAktSLXUtK7121VP55/p6YeOKzHH7pEwwtyRJkiSpPJ0LYMXDxetWPwVTDxj5fiRJdRUR+ze6B0mSJEmSJEmSJEmSJEljS0ujG5CkMW/xLfnntn5t/fqoxt4fzTP+kfr10DGj8HznC/XpQ1Jxs79SvMZgNElqvGX3lV67/z8PhqIBtE3MXefnu6R6Wf1M6bUrH4NLp8Kjn4bejZmx3o1w/4fhsulw+daZ16VT4OYTMz/QL0mSJEkq3cIr88+1tMOs02HfT8LkPevXkyRJkiRJkiRJkiRJkiRJkppWW6MbkKQxLfrgqa/nn595Uv16qcbeH4UFv4N1WeFju50LW9bxie7jtio8f/2R8NaX6tOLpPw2rsgETxTTu27ke5EkbaqvN/M53dcN976veH3HdDjhJkhp6LjBaJIabf2i8uq7V8GfvpoJRDvsm/DwP8BzPxha09edCTe//nA480XoWQPLH4It94cJM2vXuyRJkiSNNYvyBKNN2Rve9Of69iJJkiRJkiRJkiRJkiRJkqSm1/TBaCmlg4HTgWOB3YHpwGQgImKTry+lNBWY0n/aFRGL69WrpM3Q0nvzz+3+19DaUb9eqjFpVzj5Hpj/K1jzHGxzHOx89qYBGSMpX/jGgA0vw7qFsMUO9elHUm6rny6tzuAcSaq/zvlw22mwanZp9ft8DPb6W5i026ZzbZNyr/HzXVK9dC2rbN3T34Ldz4e5P8tfs2EJXNKe+T1v9GXG9vk4HPK1+v4+WJIkSZKawcaVsPi23HM7nV3XViRJo1tKaQZwFnAksC2wHlgI3ARcHxEbG9ieJEmSJEmSJEmSJEmSpFGkaYPRUkoHAt8CXpc9XMLS1wG/7T/uTCnNjIh1te5PkoiAP38r//yMI+rXSy1ssT3s+/EGNlDCR/yL18Eefz3yrUjK78U/lFZncI4k1d99Hyg9FG2398Gh38g/ny+0tmdt+X1JUiU2VhiMBnDtASUUReb39QP+/A3Y6kjY6azKrytJkiRJY82qp+CPZ0P05J7f4cz69iNJqpuU0lbAq4CtgS5gLvBkxMCTBobUJuAzwD8DE3Js93fA/JTS30REiX/hLEmSJEmSJEmSJEmSJGksa2l0A5VIKZ0L3Esm5Gx4Uk5ssmCoK4EX+tdNBN5W6/4kiQi473xY8Nv8NT4hvTwTti1e0+fDg6WGWngVPHlBabU9nUODJiRJI6trObx8Y+n1+/5T4fm8wWgGX0qqk64qgtEqtfDK+l9TkiRJkkarZ38Iv98fVj2Ze36LHWHaIfXtSZI04lJKB6eUbgReAm4ELgYuAx4BFqWUPpVSas2qT8DPgC8BW5C5Zy/7fr+B812Aq1NK767H1yFJkiRJkiRJkiRJkiRpdGu6YLSU0tuAixj69MgELAAeZdOgtCH6n0r566yh02vdoySx9B6Y+5P88y3t0LFl/foZC2aelPnnVkjrFvXpRaq13g3w+Bfg5hPg3vfB8oca3VH5etbBHWeUsSCge9WItSNJGmbVnyieI55ly30Lz7cajCapwTYur/815/2y/teUJEmSpNFo/cvwyCco+OdNs06HVPD2DUlSk0kpvRO4HzgBaGUw1GzgtS3wFeCqlNLAfYkfBf6y/zgY/MVjYE1kvVqBH6eU9hvxL0aSJEmSJEmSJEmSJEnSqNZUwWgppe3IPEESBm+S+h6we0TsAry1xK2uHNgSOK5mDUrSgBevKzy/3Rvr08dY0jENdn1P4ZpiwWnSaBQBt54CT/4rLL4V5v4UbjoOlj3Y6M7Kc80+5a/pWlb7PiRJuW14qfTaPT5YvKZ9Uu7xnjWlX0eSquH3kpIkSZLUOAsuh561hWt2KOdhKpKk0S6ldATwc6CNoYFmAwbOE/AG4OMppcnAFxkahvYScA1wMfAHYAVDH4TaDnx7pL4OSZIkSZIkSZIkSZIkSc2hqYLRgM8DW5C5GaoPODsi/i4inu+fL/A44iEeALr7j2eklHatbZuSNnuzv1x4vmNqffoYa474QeH5znl1aUOqqSW3w5I7ho71dMIz/92YfiqxZg6sW1D+OsMsJKl+1j5fvGbA9qcVr2nfMvd47wbo7Sr9WpJUKb+XlCRJkqTGmf2VwvPtU2Abn1EnSWPM94FWhgagrSRzH96D/ccpa+4fgXOAKf3rlwFnRMQOEXF6RPxlRJwKbAN8ENjA4L1/J6SUdq/LVyVJkiRJkiRJkiRJkiRpVGqaYLSUUiuZm6UGbq76akRcVsleEdED/DlraJ/qO5SkLK3jC8+3G4xWkZa2wvOPfw6i1IxMaZR45ju5x5//WX37GNC7AZbeDyufKPz/U/TB8kdg+cPwxBcru1bX0srWSZLKV06A7HYnF68pFPTbvar0a0lSpbpXNua6i65pzHUlSZIkabToXgvrFxWu2f5UaO2oTz+SpBGXUjoSOJTB0LOlwFuBrSLiyIh4NbAV8BZgSX/dtsDH+rfoBk6KiKuH7x0RfRHxIzL3BQ4EqwGcNXJfkSRJkiRJkiRJkiRJkqTRrmmC0YCjyDxBMpG5Wer/VbnfwqzjHavcS5KGaptceL5QkISqs+yBRncglWfB5Y3uYNArd8E1+8INR8K1r4JbT4aNKzatW7coM/+HQ+EPh8G8X1R2vY3LqutXklS6tfNKqzt9DrSOK17XMS3/XK5fOySp1no6i9cc+K+1v+4z36v9npIkSZLUTB75p+I1O5w58n1Ikurpbf3vA/ftnRwRV0QMPmkrMq4ETgF6+of3IhN09ouIeLzQBSLiKuDW/msAHF7D/iVJkiRJkiRJkiRJkiQ1mWYKRtuj/z2AByJidZX7Za+fUuVekjRUX3fh+egpPK/8Dvr3wvNzLqxPH1ItrH6m8Hz0jXwP616EZ38A938YbjwGOucNzr18Ezz6z5uuuee9sGp2afuPm5F/rstgNEmqi1fugpeuK153+H/DpN1K27O9QNDvxpWl7SFJ1ehZV7zmwM/Bdm+o7XVL+TyVJEmSpLGkrxfm/wae+kbm/bkfFK5vaa/978UkSY12aP97AL+JiMfyFfYHoF3CYMAZwGUlXie7bv+yOpQkSZIkSZIkSZIkSZI0pjRTMNrWWccLarBfdtJIWw32k6SM7rXQXSQMYtIeheeV345vLTy//sX69CHVwqJrCs8//ImRvf7yR+C6g+GBD+f/Qaa5P4buNYPnG1fCkltL2//Af4U3PQ3bvDb3fNfS8vqVJJXviQsywZfFpDbY629L37dtIqTW3HMGo0mqh57O0urGbVX7a/s5J0mSJGlz0bsx82dLd70DHvlE5r2Y3c6Dji1HvjdJUj3tlXVc5C+5Abh22PnjJV5nIHAtAQWewCVJkiRJkiRJkiRJkiRprGumYLTIOs7z09dlmZ517E8zSqqdNc8Ur5lx+Mj3MVZN2avwfPTUpw81r+7V8Nhn4eYT4YG/gzXPNa6X9YsKzz/9LVhXpGa46IOnvwPX7AMXp8zr0U/DxlWb1j72z9D1SuH9+jbCpVMyU3VtCgAAIABJREFU+9z3flh4VeYaxUzeCw74Fxg3Azry3LPetaz4PpKkys25CJ74Ymm1O59T3t4pQcfU3HMbV5S3lySVK/qgd11ptTNeXfvrryz15zglSZIkqck9/Z+w7N7S63d8Oxz81ZHrR5LUKNmJl0+XUD+8ptS/GM5+staUEtdIkiRJkiRJkiRJkiRJGoPaGt1AGbJTO7avwX4HZB2byiGpdlYXuQd062Nh6oH16WWsmn44LH8w91xfd317UXPp7YKbjocVj2TOF98CL/wGTr4HJu9e/3561havWXQN7PGBTADNgL5eaMmTE3v/h2DOj4aO/emr8MKlcNpsaB0PfT2ZIImXri+v3zkXZV6lOPCLgz2P2yp3zUa/BZOkvCKGfvaX6/lfZAItS5HaYM8Pln+N9mm5Qy67zR6XNMJ615deu/M5mZDIjcsL142fCa/5BdxyUvE9bzoOzumr7nNakiRJkkar7L+DmPuT0te9bRmMm168TpLUjCZlHed4ItcmVmefRMSGEq+TXdde4prNSkppArAvsA+wNZl/N2uB5cCTwBMRPlFQkiRJkiRJkiRJkiRJza+ZgtFe6H9PwCEppfaIqCj9JqW0FzAra+jxapuTpP+z+s/55/b8Gzjka/XrZazq68o/t2p2/fpQ83nx2sFQtAFdr8BzP4RD/l/9++npLF7zwIcyL4CdzoJlD8KGxTDzRDjyQhi/TWau8wW47dT8/w+snQu/nlCbvov5i1/ALucMno+bkbuua2nucUnanEUfPP65zK9NvRth1pvhsP+E8VuXsUdkQjFLsc3xcNCXYeujy++1Y2ru8Y0Go0kaYaV8Hz1g/Fbwhofg3vfCkjvy1237usz32G94EB77bPEQ4aV3V/bZKUmSJEmj1ZI74eGPwcrHYOrBsNffFf57z2w7vMVQNEka27KfENBbQn0pNaNWSmk34Ajg8P73Q4HJWSXzI2KXOvZzKHAmcALwagqHxnWmlH4NfDsivCdSkiRJkiRJkiRJkiRJTaul0Q2U4R5gPRDABOCcwuUFfSTreHFEPF1NY5I0ROe83OM7vg2O+C60bVHXdsak3gLBaBsWwyv3ZEJFpOGe+2Hu8acaFFhYTqADwAuXQufz0LsOFl0NNx6bCb/p64HrDh4dwYDH/BZ2fffQsbzBaMtGvh9JajZPXACzv5L5jOxZA/Mvhnvek/m8L9XGFbDqydJqT7q18mCf9im5x7tXV7afJJWqZ1159ZN2gZNuhzc8DLu/H1qHBQZ3TIP9Pp05nn4YvO4PcMJNhfec+9PyepAkSZKk0ahnHbx8Czz1TbjptbD8QejrhuUPZAKmS7Xl/iPXoyRJdZBSOj6ldH1KaRkwB7gE+ARwHEND0erZ0/iU0hzgIeBzwNEUDkUDmAicBzycUvqPlFKxekmSJEmSJEmSJEmSJGlUamt0A6WKiK6U0s3Am/qH/i2ldFVErCxnn5TS0cAHyQSsAVxewzYlCdYtyj0+cef69jGW9RUIRgO48TUwZW847vcweff69KTm8NL1je5gqJ611a1f80wmPGfFw5kQnEYbvy1s/4ZNx8dtlbveYDRJGioC5v540/GX/pD5odQZR5S2T9fS2vaVT8u43OPRXZ/rS9p8lRswPGD6IXDkj+CQr8H8X8GyBzPfw+72Ppiy59DamSfChO1h/Yu595pzYWYvSZIkSWpWz/8S7vnL2uw1Ybva7CNJUuMcDJzc6CaGaQN2yzEewNPAC8BSYBJwwLDaVuBTwJ4ppXdERM8I9ypJkiRJkiRJkiRJkiTVVEujGyjTv/W/BzALuCGltE2pi1NKrwOuIvN1J6AX+Hqtm5S0mVtyW+7xCdvXtY0xrbdIMBrA6qfLe5K9FH31v2algQ7ZHv8XWDBKcl6PvBDaJm463jEjd33X0kwIkCQpo3cDrFuYe272v+Uez6VewWitHbnHezfW5/qSNl/Vfh/dMRX2/DAcdREc/JVNQ9EGTD2o8D6r/lRdH5IkSZLUKGueq10oGsDkPL+vkiSp+XUBcxrdBJn7HK8D3glsExH7RsQpEfHuiDgjInYHDgfuGLburcAX69uqJEmSJEmSJEmSJEmSVL2mCkaLiPuAS8iEmgWZm3n+nFL6XEppb3J8PSml1pTSiSmlS4CbgGlZ678dEfPq1b+kzcDCqyF6c89NmFXfXsayUn+44pW7YO28EW1FY0jXsvpfsxbBaLW23SmVrdvmeJj1ptxz4/IEo/V15Q8AkqTNUc/a/HMLryx9n1KD0aYfUfqeubTkCUbrMxhN0gjrrdP30X1FQrl/vz/0ddenF0mSJEmqpQW/q91e42fCtq+r3X6SJDVON/AocCHwQeAwYDLw/gb21AV8F9glIk6NiF9HRM6/CIqIh4ATgF8Nm/qnlNLOI9ynJEmSJEmSJEmSJEmSVFNtjW6gAucDewOHkAk3m0rmqYZfBIb89HVK6SlgV6B9YKh/TQLuBj5dj4YlbSb6euG+8/LPb7F9/XoZ6/b7JNx+Z2m1y+6HSbuMaDtqEp3zC8+vXwTjt65PLwMKBeA0wgFfgAO/AE9/Gx7+x/LWzjot/9ykXfPPvXgN7Pnh8q4lSWNVscDMNXNg8u7F9yk1GG3vj5RWl0++YLQwJEjSCOtZV5/r9G4oXvPUN2B//4hRkiRJ0ii28EqY9yugD3Z8O0w/DB79ZG32Hr8tnHATtDTjrSeSpDJF//tRKaVditTOzD5JKR1L5n69YmYWLxkxPwN+EBGb/KFgSqW0PiI2AHtERMlPG4uI3pTS+cAxwI79wx3A2cDXat+iJEmSJEmSJEmSJEmSNDKa7u7UiFifUjoFuITMEw4HbrpKwDgGg88SmQC1/1uaNXcDcHZE9Narb0mbgVf+WDiEYoLBaDWz7QkweU9Y82zx2rveATufPfI9aXRb/xJce1DhmnULYdrB9elnQLEAnHra6+/hVV/MHO/6VzD7y9C1rLS1HdNh53fmn5+wHUw9EFY+sencikfLblWSxqxivy4svBL2/VjxfbpeKV4zYRbscGZpfeXT0p57vHdj7nFJqpXeOgWjbXcyLL27cM2T/wq7vAsm7lSfniRJkiSpHM/+EB740OD5C5fWbu8dzoRjL4fGhcVIkuovAb+qYM1tZdQP3N9XVxGxot7XLCYieoCSQ9Gy1q1PKf0E+HzW8OswGE2SJEmSJEmSJEmSJElNpKXRDVQiIpYCrwc+BSxl8GaoyHrPftFfswr4LHBaRKyuW8OSxr71L8PNxxeu6ZhWl1Y2C21bwIm3wc7nlFa/fvGItqMmMPen0L2qcM3tb4Ybj4XlD9elJQB61tbvWvlM2RsOvAAO/ebg2LgZ8Pp7YNbpxddv90Z4/Z2wxQ6F62YcmXt848rSe5Wksa7YrwsLryhhj3Xw6Kfzz0+YBTu+DU6+B9onldffcC0ducf7DEaTNMJ6N9TnOju9o3hN73p4+r9GvhdJkiRpLFnxGFx/FFw6DW54DSy+tdEdjU0RMPvfRmbvg/4djvmtoWiStPnJfmBpsVf2vXulrvEXltp5ZNi5T3OUJEmSJEmSJEmSJElSU2lrdAOViogAvpZS+g5wDpmgtGPI3MSTHfi2ArgbuB74eUQUSUWRpDJFH9xyYvG61i1GvpfNyRbbw9EXwy7vygRaFTL/Ytj7H/zhjM3ZsgdKq3vlj3DzCXDqEzBxx5HtKSITXjNS9vs0HPzvla+fsiccdyVcsTOse2HT+SMvhN3PL32/9im5x7vXVNafJI1FPZ2F51+5EzYsgfHb5J5fOxduOy3/+l3eDa/5ReX9DWcwmqRG6e2qz3W23Ad2OzcTtFzIgsvgkK/5e05JkiSpFOsWwQ1/kQkZBlh6T+bveU59Eibt0tDWxpw1z8K6BbXf99BvwT7/UPt9JUnNIoqX1GSNqtMz7DzPX+pIkiRJkiRJkiRJkiRJo1PTBqMNiIgNwE/6X6SUEjCNzM08yyKiu4HtSdocLLkdVv2peF3r+JHvZXM08ySYMAvWL8pf8/DHYMHlcNzV0DG1fr1p9Fj4u9Jru1dl6vf+yMj1A/0/9JXn/u9tjoONK2HlY5XtvddHqgtFy7bjW+Dpbw8da2mHHc4sb5+2ybnHe1ZX1pckjUU9a4vXXL4tnLkQtpg1ONa7Ae7+K1jw28Jrpx9eXX/DGYwmqVH66hSMBnDkRZnvz1++GeblCZfsnAcrH4dpB9WvL0mSJKlZzfvlYCjagJ5OmP3lzAM5VDul/FlTJWYcMTL7SpJGsxcw3KzZ7DHs/KWGdCFJkiRJkiRJkiRJkiRVaNQHo6WUDgJOBvYDtuofXgo8BdwYEY9k10dEAMvr2qSk8kXAK3dlwqzWLcw8HX59/+uw78D0QxrdYemWPVhaXUoj28fmqnU8HPkj+OPZhX/A45U/wqOfhlf/oPieq/4EL/4h84M5Wx8D27zWf3/Nrn0KdJcRwFVK2GG1etblnzvsv2DKPnDZ9MwPhJVr/09X3tcme30WltwJKx7OnKdWOOL7/H/27js8ivNe+/h3dlWQRG+miI7pxQ2DjSvYuANuiUuKE6cnTk+cN8mJneqT3k5OihM7iePesA1umGLjgjumY3rvIARqSLvz/jHmSEgzszO7M7O70v25Ll1in/pDoN3ZlZ57Ke7mb53Cjvbt9Yczq09EpDXxep//1pfgnCahn8t/nDoUDaB8enp1OYkV2rcnlU8uIiFLRBiMZsRg8E3Wx6m/h8d6gploOW7r4wpGExERERHx4uAS+/b1/4AJf4VYPNp6WjO75y6ZKu4O3SYFv66IiOQ00zQHZrsG8e2aZrffyEoVIiIiIiIiIiIiIiIiIiIiIiJpytlgNMMwTgF+C5zlMuwOwzBeAb5umqbHZCIRyRkLprV8R3iAI+vzKxhtybezXYH0uQQuXwXPnAR1+53HbboXJvyvdbDdyYZ/w+s3g9nQ2Db0M1YQlNs8yW0lff0Fo6UTRuZX0iXMIV4M8SIovwo23eN/7Xa90q+rxVo9YNorsPtFqNkGPc+FDs3fXNqDwg727QpGExFptPNZb+O2zbKChUv7WuFAa/7obV7ZoPRrsxMrsm9PHg12HxGR5tyupcNU3NW6Ht49v2XfnoWRlyMiIiIikpc23+/cd3gtdBoRXS2tXRg/6xjxDYXXiYiI5DjDMCYAk5s1P243VkREREREREREREREREREREQkV+VkMJphGDOA+4B2gNGkyzw2pEnbWcBLhmHcYJrmrIhKFJFMGYYVVHRkXcu+6u3R15Ou5T/NdgVyTGm5FV728oecxzQcgaot0H6gfX/tPlj88Zbt6/4GA26AE84NpNRImSZsvAe2PwmFHWHQR+GE87NdVfSaBt150XAknDqacg1Ga2d9nvAnOLofdjztb23DSD3Gj3g76HNRZmsUOASjNSgYTUTk/2z8t/exs8qtYDI/IWRBPz4oGE1EsiWRpWA0gL6X2wejVa6KvhYRERERkXxTtcW9v3aXgtGCFPTPOnqeByO+HuyaIiIiEijDMAqBvzZrXmSa5hsB79MT6OFz2pAgaxARERERERERERERERERERGR1i3ngtEMwxgB3I8VigbHh6HZhaTxwdj7DMM41TRNnUIUyRelDsFoNXkSjLbhX7D0+9muQprqOz31mMrVzsFoj7n8zubO5/IzGO2978HKOxpvb/w3TH4Q+l+dvZqyoaHK5/iQg9FM0z3MIVZsfS7sAOfNgdq9VpDavtfh5Wvc1x5wQ3B1BqnQIRitXsFoIiIAVO/wP8dPAFn5TP/rp6JgNBHJFreQ4WM6DAtn787j7Ntr90DdASjuGs6+IiIiIiL5rmYnzD3bfUzdvmhqaSv8/mzETdcJcMGC4NYTERGRsPwSOLnJ7XrgyyHs8wXgthDWFREREREREREREREREREREREBIJbtAmz8BSvozPzgwwAagNeAh4CHP/hzPY1BaeYHc5q/26GI5LLScvv26jwIRtu9EBbflO0qpLl4MczY7D7m0Ar79n0p3hy3bm96NWXT0QpY/Zvj28wErPhJdurJpoZqf+N3vQCvfgzqK4OtY92dMGc0PNIVXrzceVy8+Pjb7XpY95ll/VPv0fuizGoMi1MwWrIOEgrQERGheku46/f/UPBrxgrt25P1we8lItKUW8jwMeN/Fs7eHUc49x1aGc6eIiIiIiKtwfq7Ur/+4fQzHElPUG8CU9QVLlgYzFoiIiISGsMwPgl8pVnz7aZpLslGPSIiIiIiIiIiIiIiIiIiIiIimcipYDTDMMYA59AYiAbwa6CXaZqTTdO8zjTND5umORnohfUOh01NNgxjXHQVi0hGSvrat9fkeDDaoVUw7/xsVyFOyvpDpzHO/bvm2bdvech93aMV6deULTuft0Knmju4BOoPR19PNiWq/M/ZdA8svCy4Gjb+B974jBWWUF8BRzY4j40V27e7hTAAdBwJA65Lv8YwFXZ07tu7KLo6RERyVc2OcNfvd1Xwa8aK7NuTCrwUkZDZPc9pqsdk6HNJOHuX9IECh9Dfnc+Fs6eIiIiISGtw4O3UY5bdDqYZeiltRn1AwWgXvgIFpcGsJSIiIqEwDONirDekbWo2cEcWyhERERERERERERERERERERERyVhOBaMBV3/w2cAKR/uyaZrfMk3zYPOBpmlWmKZ5K/DFJuMBQjjtLSKhKHUIRqvaHG0dfphJmDMq21VIKm7BH7vnQ0OzkCzThG2z3Nesz8NgtEPLnfvCDl/JJcl66yMde1+GtX8Npo71//A+1ikYrdAhgOGYS96BuENITbY5hUcArP97dHWIiOSq6hDDgftOh7jDY0smFIwmItniFox28q/gvGfCO7RvGND9DPu+VM8rRURERETasm2Pexu358Vw62grTBPe+Wrm63QeC51SvGmLiIiIZJVhGJOBR4HCJs0vAx82zdBSZ/8XGOPzY0ZItYiIiIiIiIiIiIiIiIiIiIhIK5RrwWgTPvhsAotN0/xTqgmmaf4FeAUrHA3g9JBqE5Gglfa3b6/aBDW7Ii3Fs5euzHYF4sXwr4Dh8BCXrINdLxzfdmgFHFnvvubRFhmduc/t91sPvBNdHdnWPAjPrzc/B/WHM69jz0Jv44wCiMWd+/tcZt9+0n9DvJ3vsiJT0su5b9/i6OoQEclVNSEGo/WaGs66TsFoiZpw9hMROSbhEMA4+CYY+Y3UgcKZKnc4v3doORxeF+7eIiIiIiL5ql1Pb+O2PRFuHW3FlocyXyNeAhP+kvk6IiIiEhrDME4F5gBN3yniDeAy0zSrw9rXNM09pmmu8PMBpPjFHBERERERERERERERERERERGRRrkWjDayyZ//5WPev5v8WW9XLJIvuk1w7tu7KLo6vHrzi7D9yWxXIV4Ud4VrXYKs9r12/O09L6Ve88DbkExkVlfUjh5w7nv1BtjxXHS1ZFNDAL/rOzvDyws/b8IcL3bvH/zxlm1GHAbc4K+mqBWUOfdVbYL1d0dWiohITqreYd/u9dCwEyMO/T+U2RpOYoX27TU7INkQzp4iImAFXtuJpbiWDkr5dOc+hTiIiIiIiNjrPM7buM0P+HtNXextfTz1mME3WW825GT6BuhxZmAliYiISLAMwxgHPA90atL8LnCRaZqV2alKRERERERERERERERERERERCQYuRaM1rnJn9/xMe/YWKPZGiKSy0r7Qvsh9n07no62llTW/A+s/d/U44bdYt9+yu+CrUdSKyiFftfY99XtP/521WZva27PswPuO59173/jM5CojaaWbGqoynyNmh1w8L305/v5OqcKc+h3DYy9HYwC63ZhJzj7USjrl3Z5kRnzX859b34e6l0CDUVEWru6vfbtncamv2ZRFzh3NpT0Sn8NN7Ei575ts8LZU0TapqrN8M434MUZsPIXUH/IflxUwWil5dDVIez93W9GU4OIiIiISL4xPb75TO0uOLQi3Fragj0LUo8Zcxuc+AX7vs7jw3tNSURERDJmGMYo4AWga5Pm5cA00zQrslOViIiIiIiIiIiIiIiIiIiIiEhwci0Yrem7F+53HNXSwSZ/7hBQLSIShZ7n2rdvvAcOrYq2FidbHoa3HQLPmjrxC9ZHQdnx7UVdod9V4dQm7oo62bc3D8qq2eFtvc0PZFZPlPYthiMb3MdUb4Fd86KpJ5sS1cGss+k/6c91Cm6wE08R5mAYMPY2uLYCLl0GV++D8hnp1xal0v7Ofck62PZkdLWIiOSaun327Z1G+V9r7A9hxma4ajf0uTizuty4BqPpPl1EAnJ4PTw7AVb/BrY/CUtuhZ3P2Y9NdS0dpH4znfvW/CG6OkRERERE8oXXYDSwrv0lM7V73Pv7XAbtB0LHYXDClJb9J342lLJEREQkc4ZhDAfmAT2aNK8GLjBN0+EHTiIiIiIiIiIiIiIiIiIiIiIi+SXXgtGa1uPjN6OPG5trfycRcdN7mn27mYBN90Vbi51EHbz8IW9jT/kNdBoBU16AE6ZCcTfofRFMXQBl/cKtU+zFy+zbN98PidrG2zuf9bbeloczrykqS2/zNm777HDryAWJmmDWWfUreOFcOPC2/7l+gtFi7byNKyiDzmMgVuC/nmwp7Ojev2NONHWIiOQip2C0zmOg/VB/a5WWQ1l/iBVmXpcbt2C0TfeEu7eItB1rfg91e72NjUUYjFbuEoy29DYwzehqERERERHJB76C0drAzy7CVuDyfnKFneCsJj/zOucJGHIzlPSBzmPhtD/BiZ8Pv0YRERHxzTCMocB8oFeT5rXAFNM0d2enKhERERERERERERERERERERGR4OVRkoaItErlM6G4h/0h5/1vRF9Pc2/dknqMUQDnzIL4Bwewu0+CqS+EW5d4U+AQjAbw2sfhrAehdp9zEImdZEPuB1GZJux/3dvYw++HW0suaBqC19zMrTDLR3Dhnpfg2dOsA0MdhkGn0RCLp55X6zHIARrvS1qjQpeDWCIibZ3T9UhxDxj3Q3j1I4DHkB23a6AguQWjiYgE5f0/eh8b5bV0x5FQNhCqNrXsq6+Amh1Q2je6ekREREREcl2ywfvY/W+AmQRD74mWNrfA/JlboaCk8XZhe5j49/BrEhERkYwYhjEIKxStT5PmDVihaDuzU5WIiIiIiIiIiIiIiIiIiIiISDj0m8Qikl3xYuh7mX1f8mi0tTR39CCsv9N9TL+r4eI3nf8Okl1uoSBbH4GanbD2T/7WPLIhs5qiULsb6g95G7t7PiQT4daTbYka+/ZYMZSWQ8fh/td8+Vp4ZjzMKoe9r7mP3XgPvHC297VjrTgYrUDBaCIithK10HDEvq+4Gwy8AabMhUEfs9pSHQqOLBjN5YCtiEgQ/AQnQLTX0oZhvSbgpC2EUIuIiIiI+GH6+FmEmYBVvwqvltbONKG+0r7vzPv1JiYiIiJ5yDCM/lihaE3f+W0zVijatuxUJSIiIiIiIiIiIiIiIiIiIiISHgWjiUj2lQ106EhGWUVL2+e490/6F5z9CHQ5KZp6xD+3UBAzCQfehTW/97dm7Z7MaopC5Sp/49f+OZw6ckWi1r493s76PPFuiJc2tvsJ76rdBS9eDg0O4WsVy+C1j3lfD6zAyNYq5WErI5IyRERyTt1+577i7tbnXlPhjH/BDSZcn4Bzn3KeU9A+2PqcOIWPiogEpWKpv/FRX0uP+5Fz37wpsPVxSGQ59D0f1eyG9f+A9XfB6t/Cxnvh8LpsVyUiIiIimfITjAaw5FZdB4IVcLblYVh6O7z9det5Rv1h9znJOjAdgqbL+tm3i4iISM4yDKMPMA8Y2KR5O1Yo2uasFCUiIiIiIiIiIiIiIiIiIiIiErKCbBdgw/zg8yTDMAZ6nNOr6Q3DMM7GR7KGaZoveR0rImFwyGjck+VvzT0LnfsKOsBgn2FHEj23YDSAd74KRw/6W7PhSPr1RMXvQaGtD8PwL4VTSy5wCm05FozW4wyYsQm2zYJYEfS+CJ6bCNVbvK1/9ADsfAb6XdWyb8vD/uuNteFgtM33weR7o6lFRCSX1O1z7jsWjNaCS855ZI8lLk+7DeWwi0iGDq2GZ0/1Nyfqa+mCUuh2Oux/w75/0VXQ9TSYMheKOkdbW77a+yosuKjlc+94iRUQ2v/a7NQlIiIiIpnzG4wGsOleGHtb8LXki6rNMG8qHFnf2Lbmt9BpFJw7G9oPcpjn8vONwo7B1igiIiK+GIZhNms63zTNhS7je2KFog1t0rzzg3kbgq9QRERERERERERERERERERERCQ35GIwGlinq+/PYO5CH+NNcvfrINI2xOLOfQffgy7jo6vlGNOE9f9w7h/00ehqkfSlCkY7vNb/mg2H06slSvWV/sZnO4QwbIla+/Z4SeOf2/WAoZ9uvN3zHNj0H+97LLoaupwEB5ekV+NxdbXLfI1cVZAiGA2gaiuU9Qu/FhGRXNJQ5dyXzmFVw3NOeGa6T3LuM5NQ+T50HBZNLdK6HdlgPT/b/6Z1kL5sIAy4DnpfmO3KJExL/8v/nE6jg68jla6nOgejARx4Cx7pAsNugZHfhLL+0dWWj16/2T6QPFEDb34e+s6AeFFj+5GNsOrXUF8BJ5wPg25yf50pSGYS1t0Ju+dDSW8YcjN0HhvN3iIiIiL5KJ1gtD2Lgq8jnyz57vGhaMccWgnLfwKTHH6WufLnzmt6eZ1eRESkjTIMoxz73yPs1ex2gcsbvh4xTdPlHXF81dMZmAuMaNJcBdwM1Pt401kATNPcFERdIiIiIiIiIiIiIiIiIiIiIiJRyNVAMBMr4MzvnGMiOgUuIoFINjj3bX0sO8FoS2517x/2xWjqkMykCkZz0uVkqNsP1Vta9tXnQTBasi7bFeQWx2A0lwCy4V/2F4wGwYSiAcdf0rQyXsJ9nugP19VDLFcvU0VEQuD0WAUQK7Zvb9fDeU5h58zq8aowxUHauWfC1IXQeUwk5UgrVbkWXjgHancd377hbph0Fwy+KStlSci9gnImAAAgAElEQVQStbDtcX9zOo1yD2wMy5BPwbq/pQ55eP+PVsDfpe9Bh6HR1JZvqrdD5Wrn/rr9sPdl6DXFun1oFTxzcuNz4E33wu6FcOY9oZcKwOJPwMZ/N95efxdMeQG6nx7N/iIiIiL5xumauXwmbJtl37d7HtQfgcL24dWVy3Y+49y3/Unnvg13OfelE8IvIiLSdrwMDPAwri+w0aHvX8BNAdVzEjCuWVsZ8HSa6+l3KkVEREREREREREREREREREQkb8SyXYAL0+dHOnNFJBeYSee+Qyuiq+OYimWw6pfO/ePvsA5cS+5LNxit/4ecgz7yIRjNLVzFSUN18HXkikSNfXu8xHlOtwkwZV449aRS2Ck7+0Yh7hDu09zeV8KtQ0Qk17iFeBoOZ1S6nALterZsL+0PHYcHV1sqZ97n3Fe3H9b8IbpapHVa+78tQ9EAMGHpDyCZIoxK/Nn7Ksy7AGb1h/kXQuX72amjck3qoLFjjALofy1MXZCdcN2up8CEv3gbm6iGp06E+wvgiYHw7rchWR9qeXmlelvqMUfWwXvfh/sMmDOqZTD4pv9YffOmBBhebePQquND0QAaDru/niQiIiLS1jld4/e+GPpd4zxv0VXh1JPrErVw9KBzf90+++fEqZ4npwq6FxERERERERERERERERERERERERERyQFZOC3oagsKLBNpe0r7OPfV7IyuDgDThKebv9lqM4M/EU0tEoA08z+HfQm2zbLvaziSfjlRSdSlHtNc3T4o6B98LbnALWzGTa8pcIMJtfvgsR7B1+WkqHN0e2VD/w/Blofcx2y6B044N5p6RERyQdLhsSrm8lgVi8OYH8BbXzq+fewPnMPUwlDUxb1//Z0w8W/R1CKtk1tgavVWOLIeOg6Lrp7WrGoLLLio8TlP9VZ49jSYvh7aRXg9DLBvceoxZz0C/a+2nsdHeb9nZ+inoL4C3v2Wt/FmAqo2WyFa1Vth8v3h1pcv3ILzj3njs97W2r0A5p4Fl62Csn6Z1WVn07327VsfgcRRiBcFv6eISNSObICa3VDSC8oGZv/xVkTyX7LBvt2Iw+jvWtdSdnbNtUJvu5wUXm25qG5/6jENlS1fm6na5D4nVph2SSIiIiIiIiIiIiIiIiIiIiIiIiIiIlHJqWA00zQHZrsGEcmCXhc490UdQrVrrnt/9zOg5IRoapHMJev9zzlhKhS2h8IO9v0NhzOrKQrJNIPRylprMFqNfXu8xNv8dt2hx2T3UI4gnTA1mn2yZeS3Ugejrf8HjL8j+gAOEZFsSTfEc9gXobQfbHnECkrrdy30vTT4+twUlEa7n7Q9Ttdyx1SuVjBaUJb/pOVz8IbDsOk/MOJr0dRgJq1wsdW/cR939uPQb6b151wJaRn5Teg8HhZM8zdv8wNQ0AFO/wsYaYZ7txZBvwbUUAUb7oKxtwW7LsDWR537HiqF0++EIQrWF5E8VbML5p4NR9Y1tpUNhClzocPQrJUlIq2AmbBvjxVAl/Huc9f+xbpmbku8BKMdPdQyGK1ytfP4XhdmVpOIiEgrF8XvLpqm6fkFTdM0FwI58gKoiIiIiIiIiIiIiIiIiIiIiEi02vhpOxHJCe0HQ8eR9n01O6KtZeN/3PtP+V00dUgwup6K798R7THZ+lzgEIxWnwfBaIk0gtG2zwHTDL6WXJBu2ExTp/wWirsHUw9AcTe45gAM/Ojx7f2vhf7XBLdPLup2Goz+bupxb381/FpERHJFJo9V5dPhzH/DpLujD0UDiHsIRks2hF+HtF7Jo+79bge+xbtkAtbfad934O3o6lh3Z+pQtFP/0BiKlmt6XwhXrEs9rrn1d8KSW4OvJ980VAW/pluAWSbcXhswE/D6J+HlD8O2J9N7ji4ikk2vXHd8KBpA1SZ46kRYcAm8ciOs+Bls+CfU7MxGhSKSr5yC0Yy4FRJ8+l+d5+5/M5yaclndvtRj6g+1bKva7Dy+rYXLiYiIiIiIiIiIiIiIiIiIiIiIiIhI3lIwmojkhtP+YN9ety+6A6TV22DTPc79Az8C3U+PphYJRrvu0OMsf3MG3mh9LszjYLSkQ7iKm2U/gLe+CGYy+HqyzTFspsT7Gt0mwKXLrNCZCX/OvKaZ26GoC5zxT5i6EE7+NUydD2feB7HCzNfPdeN/Ct0muY/Z8gDU7o2mHhGRbAvisSpbCjwEox09GH4d0nolUzwfVDBaMA6/79y36d7o6th8n3t//2th+C3R1JKuDkPgqjSuY1f9yvpoy8IIRqtYBttnB7+ul1q3PAQvzYC5k6HuQPA1iIiEoe4A7HnRuX/ns9bj9Xvfg8WfgNmjYLfLeBGRptyC0QCGfsZ57uE1rffNXZx4CUY7WtGyrWa7/djOY603qxIREREREREREREREREREREREREREckDCkYTkdxQ0se5r3ZXNDW8+QX3/vKZ0dQhwZr8AJQN8Db2jHug4zDrzwXt7cdsugcWXg6vfwpeuQGenQD3GfDC+fD+nyDZEEzdmUg3THDtn2H3wkBLyQmJGvv2eDt/65T0gsE3wYmfg37XpF/PkE9DvNj6sxGDE86FkV+HE86HWEH66+abY99rTsxkOAEGIiK5yDEYzedjVTbEPQSjeTnIK+IkedS9f8PdUBPRc8bWrGaHc19pv+jq2POSe/+A66OpI1PtusM1FVA+w9+8d78Fc8bAyl9Ag8PzmNas4Ug46y6+Kfivp59A8gNvw4qfBbu/iEhYanb6G19fAW98GpIOYUciIk2lCkYDOOsR+zENVdYbHLUlXl5Pafoz1K2zYPEnna89O44Kpi4REREREREREREREREREREREREREZEIKBhNRHKDWzBaze5oajjwlnNfURf/B5olN5T2gekbU4+7fDUM+kjj7cIOzmN3zIH1/4DN9zf+v9mzEN76Eiy6Ckwzo5IzlkwzGA1g+1PB1ZErwgibOfHzgOF/nlEAI7+Z/r6tSddTU4/Z92r4dYiI5AKncJV8CEYr8BCMtuOZ8OuQ1itVMBrA02Ogcm34tbRmRw8499UfiqaGnc+nHtNpdPh1BKWoE5z9OMzcBuc/B+c/D6XlqecdWgFLboV550PCw///1qShKpx16/bD7nnBrddQ7fw808mme6zwZxGRXGfW+59zeC3sfz34WkSk9fESjNZrqvP8vYuCrSfXHVqeeswr11lvlrPiDlh0pRUe7qS0b3C1iYiIiIiIiIiIiIiIiIiIiIiIiIiIhEzBaCKSGwo7OvclQjoY21QyAbUuAWyXLoVYQfh1SDgMA3qe69zfbSJ0HH58W3HP9Pba/hTsmpve3KA4HdAe8fXUc9f8LthacsGWh+zb4yXpr9lrCpz9KLQfat8/6ONw9mPQ5SQwYtbBri6nwJQXoOOw9PdtTfpdlXpM5Zrw6xARyQVhhHhGpahb6jFLvx9+HdJ6eQmGqtsPq38Tfi2tWd1+5776Sqg/En4Ni1JcH5b0hvZDwq8jSIZhhQ/0nga9L4STfu597v7XYdkPGm8nG2D17+Cp4fDkEFj6g/CCxLIlzL9PkCGddfv8z6ndAweXBFeDiEhYkmkEowHMnQwPlsAzJ8OmB4KtSaQ1OloBi2+Gx8vhuYmw8V5/87c8as17sBQeaAcPd4b5F0KFhyCtbPISjFbUGcoG2Y979Uao3Rt8Xblqx7Pexr3xWXjvu6nHlSgYTURERERERERERERERERERERERERE8odSfkQkNxgxK6QoUdOyr6E6/P3rK8BM2vdN/DuUlodfg4Rr1Hdg36stD/cZMTjtjy3Hl2ZwQOSdr8FlK9Kfn6lEnX17rBj6ToftT7rPP7weOgQcONBQBZWrrQNOnUZDrDD1HNOEqs0QK4K6Pdbfy4hDxxFQ2N7bvrsXgNlg31fgcQ0n/a60Pkzzg3o/uA8xYlYAwrExyQbAgFjcdpk2y8v9auXq8OsQEckFTsFosTwIRvPy+FbYIbz9kwk4sg7KBkK8OLx98k3VFuvrXtQl25VkLulwbdvcTo8HxsWeWzAaWEFQXq/B01H5fupQrGG35P81df9rYcUdcMhjYMXKn8Pwr0BBB1h8E2x9tLFv+Y+tsK3T/xJKqVnREGIAX5ChZOkEowEcWgVdTwmuDhGRMCQ9hNI6SdRa97evXm+FPPebGVxdIq2JacLCS2Hfa9btmu3w2kes174HXpd6/rYn4eVrjm9L1sGuF6yQwivWQrs03/glbE6v1RvNrvP7Xgbv/4/92HnnwSVL8/+5QSrJBqja6G3sxn95G6efdYqIiIiIiIiIiIiIiIiIiIiIiIiISB6JZbsAEZH/U1Bq357qcHQQ3A619poW/v4Svj4Xw9QFMOTmxrZBH4dLlkC3CS3Hl2QQjHZoJay/O/35mXIKj4i38xZMsum+4GoxTVj2I3i4Ezx7GjxzMjzSBTakOKhzeD08PQ6eHASz+lrznp8Ez02ARzrBe99zDjM8JlEL86Y493ce5//vY8cwrI9Y3Po4Fop2TKyg9R/SStcpv3Pvr9sLdQeiqUVEJJucgtHieRCMBlbAsZuwgo63z4bHesDsEfBIV1j163D2ySdVm+Hpk+CJAfBIN1h0DTTYhE/nC9P0Hs5RtSm//67ZlioYLRFyYPnO5937O46EEd8It4YoxArhotdhzH95n/N4H3i4w/GhaMes+ysc2RBcfdkW5us/h9cEt1aq7xcnr30EEhkEDomIRKH5m0qka9GVUB9i4KVIPju0vDEUram1/5t67rYn4KUZzv31lbDG5o1gcoWZsG83mr2XW7lLsOKhlbBjTnA15SqnELlMdDst+DVFRERERERERERERERERERERERERERCUpB6iIhIROKlgM3h0rAPYIN7MFpxt/D3l2j0mGx9TPx76rGl5Znt9fonYdfz0OFEqN4KBe1h0Meg62ktg7OClnAKRiuGAg/BaLueh7E+Durbqa+0wg1W/Qr2v358X0MVLL4JijpDuc0hLtOEl2ZaB8TsmElY8TOoWA5nP2YfOnb0oBXE5sQogD6XeP7rSEi8fC9UroEeZ4Rfi4hINuV7MNqoW2HZ7c79DVXW43uQ10BHNlrXC8cOVSeq4d1vQodhUH5FcPvkE9OEhZc3uYYyrSCldj1hgocD9rnI70Hwg0t03ZCuoymCnsIKrDJN2D0flnzbfdzZj0G8KJwaolZQCuN+BKO+Aw+VZb7egovh7Eeh89jM18q2hMP/s4Efsf4Pbnu8Zd+wL0O3063nmG73GXX7Ye9rwdxHuL2GlMrKn2f+fFtEJExuobSxQn/BaQ93gEl3Q68LMn+tVaQ12XiPffveRdbnhmrYvQCqt4ERs15rNxNQtQXW/in1+it+Ah2GQlEX6D0tt15bcAxGa/Yaf89zoLAz1FfYj3/rFqjZCV1OtsK+jFb4XnDJgIPROo2B9oODXVNERERERERERERERERERERERERERCRErfC3hEUkbxWU2rc3RBCMtvcV+/Z4iXNd0rqV9Ml8jc0PwPIfw4Z/wvv/A8+dDm98FpIOh3+CknQIV4kVQ2HH1PP3vgzb56S//+F18PRJ8PK1LUPRmnppJmx9rGX7wXecQ9Ga2v4kzCq3Drg3VbEMnhoORzY4z+15thXMJtnldBCuqcNrwq9DRCTb8j0YbeCNKQaYzn/HdG191P5xZJvNtUVbcXit/TXUlkes8Kl85BT462TumVC1OZxaWrtUQU9hPC9vqIYXr4D5F0Cixnnc+J9BpxHB759tBaXBBLEfXgtPj4cVd2S+VrY5BfAVlMGQT7ZsjxXDsC/CoBvh0qVwyu/gpP92Xn/umbD2r5nXmUkw2sZ/Zb6/iEiYnILP4iVw2Uo49Q/+1lv8CZg9ErY/nXltIq2F27XEkU3w/CR48XJ483PwxmesEPAlt3oLRTtm8U3w0gzrZxJHNmVYcICcXg9u/uYnsUIY+hnndaq3WF+f5yda9zNBh4jlAr9B4amM+Fqw64mIiIiIiIiIiIiIiIiIiIiIiIiIiIRMwWgikjviDgFkiQiC0Zbcat9e3D38vSU3xYuCOaTe3Po7Yeczwa/blFOARLwYDI8P/S9/CKq2+tt36yxYfDM8dSJUbfQ2Z9HVUF95fNuOZ73vWbsLFl5+fNsbn4O6ve7zJj/ofQ8Jj5cDa5Wrw69DRCTbnEJN8yUYrcNQOOMe9zFOYTfpevdb9u0b/hnsPvlky8P27XV7gw+mi0ryqP85Cy4Jvo624Mh69/5558GCi+HQysz2aaiGlb+E+wx4qAx2eAhkHvGNzPbMZT3OCWghE5Z+Hyo8BEznMseg0BLocymMvR2MD0IzirrC6X+BjsOs251GwoivwMhvQ0F75z3e/Bwsvd3//WLVVlj2Q3j1I7D61/7mNnVkffCPiSIiQXIKRosVWtf9w2+BGVug6wTvazYcgRcvgwaXIFSRtsTtzUve/or1xh9BqVgGK34S3HqZME0wk/Z9Rrxl25jve1t3479h2xPp15WrnO6P0zX4pmDXExERERERERERERERERERERERERERCZmC0UQkdxSU2bc3hByM5ra+gtHatqIQgtEA1v0tnHWPSToEo8XaQf1hb2skqp0DR+ws+zEsuhI23OV9zjGP9z3+9lKPB56O2b+4MUztaAXse819/Cm/hXY9/O0h4Sjrn3rMkQ3h1yEikm1O4SyxPAlGAxj0Ebh0qXN/QiEwWZWvITzpBKNVrmqdh+LDlGyAwymC0QB2PgdzRsPuF9PbJ1EL8y+EJd/2Pue8Z6zQ6tZq+C3BrWUmYWOKkMpclyrke+xtcOUOuOQ9mLHRPtzBMKDjcPd9lv8QXrzCe9jEkY0w90xYdjtsuheqNnub56Ty/czmi4iEyen6K1bY+OeyfnDRYrhspfVYPejj3tZ+fmLm9Ym0BoWdnPu2Pxn8fpvudw4ki5JbDXbBaIUd4FqPP8/Y8XR6NeUy08Obinh1yRLvb5ojIiIiIiIiIiIiIiIiIiIiIiIiIiKSI/QbsCKSO+Kl9u2JkIPRKtc497UfEu7ekttiBeGsu/0peOOz3kPKjknUwrvfhgdL4D7D+nhxOhx4p+U4O/FiaPCx55YHoWZ36nH1lbDip97Xba7hCDzaEyrXetvPzsJLrINVdfsB033s8K+kt4cEr89lEEsRdHH0YDS1iIhEYetj8PxkmDUAXvs41B2w2hM19uPjeRSMBlDsEjxasSK6Otoqu4Pkx7z1Je8BQLkknWA0gDc+F2wdrV3VJn+H7t/5Wnr7bJ8N+171Pj5WCN0mpLdXvjjhfDjnCSvIK9V1sRerfpEboRfpcgz5Lm78c7ue0GUcFHZ0XqfDsNR77XoBHiiCF86HJd+BuWfB7JHwyo1Qu/f4se//Caq3pV7Tq8rVwa0lIhI0p2vG5o9TRgw6jYQ+F8Oku72tXbEs83BJkdbA7TomDIlquD9u/TzhqeEwfxrsez3aGgDMhHOf0/PZwvbQeVzqtTfcBfVH0qsrVyUDDEbrMj64tURERERERERERERERERERERERERERCKiYDQRyR0FDsFoDSEHo70007lv7A/C3VvarnV/gxcvB9MlxKuhCmp2QaLOChOZMxpW/fL44LPtT8H8C44PFEu4HCbvc5m/Or0EF+xb7HyA3au6vTB7GGx/Mv013v5K6uC3S5eDYaS/hwSrsD2MSBGscbQimlpERMK27SlYdI312Fq9BTb+G+adbwXYNA9gOSZeEm2NmSooc+578TL/obDij1sw2pYHYfHN0dUSFKfrWoBupzv31e6CyveDr6e1qtnhb/zBd/1/fU0T1v7F35yBN0JxN39z8lH5dLh8NVxXBx+uzTwg7dUbg6krG5zCEP1+TToO9z52z0JY+XPY+4oVWLb5Ppg7GZJNgjtW/9rf/qnUbA92PRGRIDndFxuFznMMA6avh4IOqdd/73vW65xBBv6IiHeH34ddc2H+1OiDCt3CmA2XN6mZ4PF5xCvX+asn1/kJr3bT5/Jg1hEREREREREREREREREREREREREREYmYgtFEJHfEHYLREiEGozXUWMEUdow4dB4b3t4ie16CimX2fWv+CLP6w+O94cF28PQYOLLBfuzRg7DiZ423nULK4u2g9zT3Q0bNpQpJ2PsKLLjI+3qpvPGZ9Oeu+yvU7XPuv2QJdB6d/voSjvF3wMS7nPsVjCYircXaPwHNAlErlsKuF+DwGvs57QeGXVWwnK7nj9l8fzR1tFVuwWhgff2dQvhylVMwB8DZj7vP3fFMsLW0Zsl6/3N2Pu997KGV8FhP2D3P3x4n/cLf+NYgXgxX7XIf0/0M6Hqqc/+Wh8MPmA+LUxhivNjfOt0mZlbH4bWZhXan0lAT3toiIpkyHa4LUoVUth8Ml7wLQz7tPm7TvdbrnI92g033pVejSL5L5/r7mLKBx//cqvsZ6a3TUAXLbk+/jnSYCec+t+ezPTz+HXfMgQPv+KsplwUVIHni54JZR0REREREREREREREREREREREREREJGIKRhOR3FHgEKQQ5oHeytXOfX31LuoSgbdvafw/3lBjBQwsuhre/jIcPeB9nff/AKYJdQcg4XDIuqA9FHWG0/7gfd3qrdbn+iNWuMTGe6Dmg4P6Rytg/jTva2Wq9yXW38FJsh62PWXfFyuGLuPDqUsyYxgw5BNwpsNh2PpD0dYjIhKGhirY+Zx934KLIFFr39dxZHg1hSEWt4JYnWz4Z2SltEmG4d5vNsDWR6KpJShuwWgFpXC1SyjuoeXB19NapRPM8O43YOfc4++/qrbAhn/Bqt/Ae/8FS38Ai66FOaPdA4ztDP4ktOvhv67WoKgLTN8Ipf2bNBpw8q/hBhOmvQoXvwXdJtnPNxOwe0EkpQbO6Xs+VRhPcyec7/7c0Yt9r0HFcnj32+nNL+7m3Of0nF1EJBc4XRfEClPP7TAEJv4Nrk+mHltfCa/eCK9/yrp2WPtXqFjhr1aRfJVuMFpxd5i+AS5dal0X3mDCBS9CvCS99Tb8M7jwLS/SDUYD6HWBtz1W3OG9nlxnBvBv0/9a6H1x5uuIiIiIiIiIiIiIiIiIiIiIiIiIiIhkQUG2CxAR+T9xh2C0RIjBaIffd+4bdFN4+0p+KBsEh1aGu8eel+C502HS3dZBwIql6a/1/p+sQBInHYZan0/8PHQ/A1b+EjY7hFEds/LnMOB6eOW6xiDBWBGc/TjU7fX+/dn7Ihj6OTi8BpZ8x9ucpkp6w/lPW8ELz57q/O+y/Un79sIO/veUaBV1tm+vr7BC/1KFvYiI5KojG2G+xwO8zXUcEWwtUYiXOAe97XstmD0aFChjyy1E7JgjG8KvI0huf6dYkRWONuRTsP7vLfvdQrDleOkEMySPwoJp0HUCnDcbdr0Ar308mMP7RgyGfSnzdfJZ+4Fw6RLY+pgVSN3zHOg24fgxJ34e9i+2n//i5XB9wvpa5pNknX17rNjfOvFi6+uz6pfp17Lql5nNv/hd67lr3d6WfQpGE5FcFkRIpWFYwU1Pj0s9dv0/mk6E8T+B0d/1vpdIPjLTDEYbcEPL10hjhdbr9xvuSm/Nfa9Bz7PTm+tXJsFoA2+0nnOksvURWPVrGPkNf7XlonSeW53yWyjqar3hTZeToc8lel1dRERERERERERERERERERERERERETyVp6djhORVq3AIRitIcxgtLXOfeXTw9tX8kNUh/EPrbDC0TIJRQN4+xZ48wv2fQUdoKRP4+0uJ8G4H3lb95mTjg+WSB6FV2+AQ8u91zbx79BvJoy6Fdr18j7vmP7XWZ/j7eCS95zHVW2yby/s6H9PiVahQzBasl7BASKS3+ZNSS+MqmwQFLYPvp6wHT3o3m+ame/RcCTzNVojL4FxtTYBPbnMKSQJGoOSup5i37/3Zag7APWHYdWv4OUPwRufg13zYevjsPhmeOUGWPsXSLjs0xZkEmZ24E1477uw+BPBhKIBnPJ76HpyMGvls6IuMORmK9SheSgawKCPuM/f8nA4dYXJ6Xsx7jMYDWDsbZnVkq54KZz1EJT1g57n2o9J9VgpIpJNToGpsUJ/63QaA+2H+tzchPe+DwczfI1UJNelE0zc+yIY/2P7vpN/kX4tL5wDb38VDryT/hpeZRSM9lHvP69595tQ4eNnF7kqmcbzqxFfhcEfgzHfg76XKhRNRERERERERERERERERERERERERETymoLRRCR3FJTZtzdUhbfn3pft28tngqG7yDbvhClQNiDbVQSj44iWh2Ccvue8qD8EWx/zNrbTKCgtb7w9/qf+9yvp3fjnWAGM/La/+QUd/O8p0SpyCEYDeCuikEIRkaBtvNc5tDOVPpcEWkpkOpzo3h9EGEyi1r0/ncPDrUEyxdcFoHZP+HUEKXnUvt2IQeyDg/MdRzjPf7QbzBkF737LCola91eYPxUWXQUb7oLN98Obn4cXp0PCYa+2IJ1ghqbW/8P538qvS5fDcF37eWLE4Mz7nPvX3xVdLUFx+n8UK/K/VkEZnPY/mdXjV69pcOUO6H+tdTteYj9u478UyCgiucvxvthnMJphwOjvpFGAad1PirRmfq+/p6+H855xfvOP4m4w+nvp17Pm9/D8JNjxTPpreJFJMFosDqf9ES72GOD29Fgwk95ry0V+g6ebvjGOiIiIiIiIiIiIiIiIiIiIiIiIiIhIK6DUHxHJHfFS+/ZEdTj7NVTB7vn2fZ3HhbOn5Jd4EVzwknW4Od/1PKdlW7sToP2Q9Nc8ssHbuH7XHn+79zT/wYM9zjr+dmlff/MLFYyW89yC0TbcHUyQjohI1N79evpzB3w4uDqi1ONs9/66fZnvkahx72+rQQoNKb4uAHV7w68jSE5hZU1DkjqPAwz7cQDV21Lvs+t55+eGbUGmwWhBOWEKdB6d7SryS5+Lnfv2LICjh6KrJQhJh7CwWHF660UdMtp9IhR1arxd4BCMBrBrXvj1iIikw+m6IJ2QysGfhFN+AyU+X8db/Ru4z0BjXxoAACAASURBVGj8mD0SNj/kf3+RXOXn+nvoZ6H94JZvetLcwBsyr2nhpZB0CS/LlFuIeapgtGO6nARlA72N3b3A27hc5Tf0fcwPwqlDREREREREREREREREREREREREREQkSxSMJiK5o8AhGK0hpGC0ihXOB1D6Xh7OnpJ/yvrDlOfguobUQR+5bNgXW7YZBoz+f+HuW1oOI7/Rsm3Ip7yvccIU6D7p+Da/ByoLO/obL9ErdAlGA9j9YjR1iIgEpXob1O5Jf36+XncM+5L7gebqrZnvkSoY7fVPtc3ghGRt6jH5FjSadAhGMwob/1zcreW1Yjp2Pp/5GvnKzIFgNCMOJ/8q21Xkn6Iu0PcK+75kPex8Ntp6MuX0PR9PMxit/WAYcH369fgVb9fstksw2prfh1uLiEi6nO6LY4X27W4MA0Z8Da7cBtcehlFpvg5ZuRpe+TBs+Gd680VyjZ/r7+Ff9jau0ygovzK9epp6+RrnvoZqqN6e/tqmS+harMDbGoYBo7/nbeyuud7G5SrTJRittP/xt9sPhf4u/3YiIiIiIiIiIiIiIiIiIiIiIiIiIiJ5SMFoIpI74g7BaImQgtH2OLxbfEEZdD01nD0lf8XicOLns11FegZ/EtoPsu8bcjOcMwv6XR38vn0uh4vfhsIOLfsm/BlO/SP0vhgG3ADDv2Id3OpycuPHCefDuB/DeXOsA09NlfTxV0uBTQ2SWwpKoKirc3/VpshKERHJiGnCsh/BrH7przF9fcvHvnzR9WTr8d/J/Avgve9bX6d0pQpGA1j7p/TXz1cNHr4uTsHQucrpIHjzYI5BH818rzW/haW3g5nMfK18k3Q5cB+WE6ZCt0nQ5zLr+cDF71j3H+LfOU84921z6ctFiTr79lhR+mue8W/ockr68/2I+QhG29WGwxhFJLc5XS9mcl8MUNgexv8UzviP9Zphl5OtN0/wY5VCVKWV8Pq8bPBNVuCZV2c9CCf9HHpdaM2d9hrM3A7DbrGuvb3YNguObGxWbwO89WV4pDPMKofZI6Fiufe6jnELRnMLWG9u6Kfg7Meh31WAy2snK3/ufc1c5Pb/ZNprMPxr1s9QRn4TLlxkhYaLiIiIiIiIiIiIiIiIiIiIiIiIiIi0Ih7ffllEJAIFDsFoDSEFoy35jn17hxPBUG6k2Oh3FfS9ArY/lb0aSvpCzXZ/c4bf4t5fPsP6qN6WWYhLU6NuhZP+27nfiMHwL1kf6Sjr7298Uef09pFoDfmk8yHXRG20tYiIpGvzA7DstvTnn/wraD84uHqyoct4K+Sgept9/4qfQtlA6zBzOrwEox14N72181nSw2Nl9RY4vB46DAm/niA4BXbFmr2cNeRT8OYXMt9v+Q+tQOHBH898rXxiRhyYd119y39DSZ9hWCHea//csm/HHEgchXiGYTZujlbA7gVQvRWMAivoptvpVri4H2bSJQyxOP36YgVw5r0wZ2T6a3gVbx6M1s5+nIhILnMMRiu0b/fDMGDQjdbHMXPPgb2LvM0/tALW3Wm9jtmuZ+b1iGSLl2C0bqfDKb/1t26sEEZ92/po6rQ/WJ9X3AHvfTf1Ok8OhusaGq/nVv8a3v9jY3/lanh6LFx31N99Q1DBaAD9ZlofAI/1gtrd9uMOr4MOQ/2tnSucro2NAijtA6f+Jtp6REREREREREREREREREREREREREREIqbkHxHJHXGHYLRECMFoK3/h3NdhWPD7SesQL4azHoFzn4KR33YY4/D/OCiT7/c3vvsZ0Hm8t7Gl5TB9o/+amps63z0ULQglfaxAFa/0fZ0fhn7Wua9uX3R1iIhkYrWHg8sT74IPHYFzZ8MJU63HqbG3w7TFMPIboZcYieLu7v1bHkp/7QYPwWgNh60woLbEy9cFYPZwWP7TcGsJitPBeaNZqFasEKavD2bPxTdB3YFg1soXXoIZgqRQtOCVz7Rvr6+EA2+Ht+/BJTBnNCy6Ct7+Crz1RZh7Jrw003/IfdLlPjuWYbBbx+HRPCdsEYxW4jw2iIAhEZEwON0fGyHdb534eX/j3/gMzB4Bu+aHU49IFJyuv0v6wtgfwuQHrNfYg36zj0Efh4IO3sZu/Ffjnzf8037Mwsv97R9kMFpTbgFyT50Ippn+2tnkNShcRERERERERERERERERERERERERESklVIwmojkjgKnYLRaMJPB7ZOogyW3Ovd3OTm4vaT1iRdB38vh5J/D1AVQ2LGxr/xKuOYA9PF5IMir8XdAj7P8zZn4DzAM7+NL+/pbvykjBhe/Ayecn/4anvcynA//2+k4IrxaJDgdhjr3KRhNRPLBrhfgwJvuYwZ/EoZ8AgrKoO9lMPUFuGINjL0Nuk+Mps4opApG2zU3/bUTHgPAju5Pf498lKz1Ns5MwLIfwP63wq0nCKbDQfDmwWhgheYW9whm30VXBrNOvogyGK3XtOj2akt6nmc9rtipXBXOnqYJr38Gana07NsxGx7vA5Xve18vUefcFy/2X19ThgHnPG6FjYTJTzCaW5+ISDaZDtcFmYZUOhnwYRj2ZX9zjh6E+VPbXhCytB5O32fl02HsD6zvC6dru0yU9oFJd0Fxt9RjX78ZXpwBCy6FytX2Y3Y9DxUrvO8fVjBaqp/p3R+DRVfDax+HdX+HpEsducTx+bACdkVEREREREREREREREREREREREREpG1QMJqI5I64QzAaeA8/8GL3Avf+QR8Lbi9p3U44D67aAxe+DDM2wTmPWQe2h9xsP37KPJixBU78vLf1J90NF78N5z0DV++D0d/xF3I2czt0Gul9PECsEAo6+JsDUNofPlwLXSMMFvQTjOb36yDZ43QYVsFoIpLr9r0O8y9MPa7PxeHXkguCCqiy4/W5QV0bC0ZLeAxGAyt4ev3fw6slKI4HwW0OzRsxOPFzwey75yXY83Iwa+UDp69zGIZ+Krq92pJ4EXQcZd/3usPz00wdWuEeBlp/CJ473XsIY9Il3CaWYTAaQKdRMGMzTFsMA67LfD07zYPRXMcqGE1EcpRT2FgspCAeIwan/d56zfTc2f7ecOHFK8KpSSRsTsHEUQRe9b8GrlgH0163fu7gZvuTsDPFmKfHeH9jo7CC0Tp5eFOUrY/Bxn/DG5+Gl6+xQn5zndPztJhNULiIiIiIiIiIiIiIiIiIiIiIiIiIiEgrpGA0EckdBWXOfQ3Vwe1zaKV7f2mf4PaS1i9eDD0mQ9mAxrZ+M2HiXdB+CBgF0PNcuPx96DUFyvpZt70YfBN0PcUKUCnu5r2mrqdagWrp/l8u7up/zoUvh3dA0kmPydDuhNTjSvsd/+8jua24u317lMFo22fD/GkwewS8+QWor4xubxHJX8t+mHpMQXvo3UaC0coGhre2gtHsuYUK2Vn3V+8H2LMl6fMg+JjbYNStwez9zteDWScfOAUzZOqcWdDzPOt5QtkgOP2v0P/acPYS6OgSCFGxIti99r8FT49NPa7+EKz4qX3fkU2w6Gp4ehwsugYOvOO8TqworTJbrhOH7hPhzHth9Pes55MFZdDvauf7jo7Drf/HntZvFozmFlipYDQRyVWmw3VBUPfFTsr6Qd/L4JTfeZ+z63l4ajhseyK8ukTC4HT9HdXr60Wdofvp1s8dTr8z8/Xuj0Pl2tTjjh5w7sskGA3gCg/7H7NtFtwfg/kXeQ/xzQan58OGgtFERERERERERERERERERERERERERKRt0G/OikjuKCh17ksEGIx29KBz36j/F9w+0rYN+YT1kaxveaDJS0hXpzHOfQM/Cpvuse+b9hp0n+S9TjtFXaBqs/fx3SZahxejFiuA8T+D1292Hzfm+2AoCzZvtHMIRqveGs3+O56Fl2aCmbBuV66Bg0us8D/9PxIRN3tfTj1m3I+hsEP4teSCbqeFt7Zb0ExTR9taMJrDoWk3+9+yDsTnKtPnQfBYHE76bxh/BzQchlhx43PJwk7WY/nq38E7X0u994E3oaHKPcC7tQgjGK3PZdB3OpTPsH9OJMHr5BKMtuUh6OwhwNOLw+vguQnex2+b1bKt7gA8OajxdsUy2Pqo8xrxYu/7eWHEYPxPrMdlM2E9t6w7ABv+CbW7G8e1HwoXvwsFJdbfe+5Zx/c3V9jx+NvJOuexCkYTkVzlFLYb1WN5l3HWNcT2J72NP/y+9TrOuU9B38vDrU0kKNkORmtq6Kfg0HJY8/vM1pk9DGZsafw5Qd0B6+9T2AFME6q3wLwpzvOdwq+96jDUCqLf+az3Obuehz0L4JKl7tfS2eL0fDjTr5WIiIiIiIiIiIiIiIiIiIiIiIiIiEieULqDiOSOuEswWkNVcPtsf8K5r//Vwe0jAvaHmbqeBiW93ecNcQn7Gvpp+/aBH808FA2gqKu/8Z1dQtzCNuST7v2TH4Chn4mmFglG2SD79podsOO58Pdf95fGULRj9r0GB98Nf28RyW9uQb5lA+Dsx2D4V6KrJ9u6eghGW/yJ9AKZEjXextW1sWA0M42v5fMToXp78LUEpflj8jGpDoIbhhVQFC+2Qn+LujQGnLoFcjf3UHvY8C/v4/NVkMFoPc+BcT+x7vMMw2pTKFo0+riEwSz/UXD/zsvSCFjb8Uzjn2v3wqPd/M2PFfnf0wvDaLw/Ke4Kly6FoZ+zQjVGfAOmvWqFooEVtnHhK1Babr9WQRl0axYY5xQuBApGE5HclXAKRgs4pNLN2Y9aQbcdh3ufs+z20MoRCZzTc7dsXTeP/n7LgNd0bLgLanbDvKnW9d4jXeDRHvBod3hioPtcI575/ufN8T8nWQ8rfpb53mFwCj93CgoXERERERERERERERERERERERERERFpZRSMJiK5w+2AeoNL0IQf9YehYplzf9dTg9lHxE2sAE7+tfOBwm6T3AO/ekyGwTcd39b9DDjtD8HU5zcYreOIYPZN16S77ds7joQBH462Fsmc2/+nhRdD7b5w99/mEJ658hfh7isi+c00nQOcup8BMzZBvysbQ4LagtJ+qcds+Ce8e6v/tb0Go9VX+l87nzkdmk5l0VXB1hGkMA6CuwVy21l8Exx4O/39ckn1dtj6OOxeYN1vHWM6fJ27nAQF7b2tXX4lXJ+EC16EMd+DeEhBVuKsy7jGAEA7b34x8z2SDbD9Kf/zFl5qBaIBvHK9//nxiMJ42vWE0/8M5z8Dp/wK2vU4vr/DEJixBfpfe3y7EYPT/tSyzvIrnfdy+7cSEcmmZJ19e5SP7bECGP0duHw13GBa1xipHHgbqrfZ9x1aaV0DHXgn2DpF0uUUWGtkKRitXXcYlcZz8+b2vgqzymH3fOu2mYC6fXD0QOq5QQThGjGY8oIVWOvHpntg6W3w5hdg84OQqM28FgAzCQffg3V3wvbZ1s8nfc1XMJqIiIiIiIiIiIiIiIiIiIiIiIiIiLRt+s1ZEckd8RLnvoaqYPZ49jTnvvF3BLOHiBcDr4fOY61DQsmjUNwTDq+FjsOh/zUQb+c814jBxH9A/w/Bvteg4ygov8L/gR8nRV38je9xTjD7pqt8JsS/0DIkZeAN2alHMlPW3/r/73QAbddc6/snajU7o99TRPKHUygawEltNFjRMKxriqMH3cdteQhO/Y2/tb0GoyWP+ls33zkdrk9l/xtQsRw6jwm2niA4HgSPp79mOtfMK38OZz2U/p65YP3d8NYXG79/ekyG856FwvbO/3dK+8HU+fCITXByn0thwA1QvQU6jYK+09tW+GOumr4Jnuhv37fzuczXr1gK9YfSm7vlYeh7Geye53+uU6h4NhgGTH4QBlxvPR8v6mx9P3Q5qeXYLuOd13EKHhIRyTan+6ds3hcbBly2CuaMdB839xyYseH4tiXf+SDs/oNQ2ME3wcS7dN0i2eV0/R3LUjAawPCvwrLbnWsrv9K69ncLjd71fHp7d5sUXGhsr6lwyXuw9TGr3kQtrP976nnLf2R9Xvtn6/MVa6HD0PTrSDbAqx+BLQ82tpUNgHPnQOfR3tZwej4c0693iIiIiIiIiIiIiIiIiIiIiIiIiIhI26DfnBWR3BErsMLR7IIO6isyX79yDRx+37m/k8fDCCJB6Twm/QAKIwZ9LrE+glZsE3zgpKQvdHMJHIxCUWeY/AC8cj0kqq228pkw4mvZrUvSY8SgXW+o2mjfX7EUyEIwmg7MiliqtsKm/0D1Vuh5HvS/Vt8f4B5I1ZYPrI74Biz9vvuYmu2w7QnYOReKu8HAG6HjMPc5DR6D0dwObLdGToemvdj8YJ4Fo2XwfeUWyO1ky8PweDmc8msrnDif7veSCVj6X7CyWRD43lfgtY/COY+7BzMUdYHLV8P8C637foDO4+D0O6G0T7i1i39l/aBdL6jd1bKvegscPQRFnVr2JROw6V44+C6U9IITv2iF5jV3aGX6tVWuscL20pHO922YDAP6XWl9uI6LwdDPwLq/texLKBhNRHJUwiFcOJ7lkMpOI+D0v8FbX3IOQK7aCAeXQpdx1u3dC6yA26b+P3v3HSdXXe9//DWzfdN7L6SSBEJCIPTeI12QoldRwAJX9HcB9VqxYMGuV7nqtcBVUBSkd6T3ngBJCCSk9142m+zM/P445GY3O2f6zM7uvp6Pxzyy862f3cycPWfgvDP/T8Fjn68Hx+j6IcWsWkquHIPRKuvhgF/DC5e27qsdAEfcGpwDLX8QHj2psHsPO7uw63UbDROv3v181EXw5DnJz5HD3DU2uPYbdVFu/w3mqXOCzzqa27oQ7t0HJn0FJn4p+fl2c/EiXA9LkiRJkiRJkiRJkiRJkiRJ7UiB/vllSSqQmj7J2xvX5r/2on+k7h9U4Js5pPaqOotgtH2/Edzs3daGng5nr4BjH4HT5sERt0Fll7auSrkafm5437YlpaujhXYUgCIVy6a58MB0eP3LMO96ePo8ePHTbV1VeVh6V3hfZ75hdWyGr48nzoR5v4I3vgUPHAhrnks9Pr49s3UX3wrLHshsbEeQTzDa1oWFq6OQwm4EzytwMJHbtIal8PT58OxH89i7xOIx+NdxrUPRdllyexCQlggJZoi8H8zQfTycPh9OfBZOeR1OfsVQtHI24arwvs3zWrclEvDkWfDcx2Duz+C1L8E9k2BHkoD6TXNyr6thCWyem/28cVe0rzDCPfU5OHl73GA0SWUq7PgUrS5tHcmMuRTOXAK9poaPmf/H3V/P+034uDe+BffuC+teKVx9UqbCzr/bMhgNghCwZOcuYz69+3xs0InQZa/C7VndKwgpLKZ+h8Hp78Bxj2U3b9Et8NgMmPXt7ObNvKZ1KFpzb14Ltw9Nfr7dXGiAXif+nEmSJEmSJEmSJEmSJEmSJEmdShkkmUhSM9VFDEZLFVhx2F+hogxu7pLKQXWvzMbt9z0YfXFxa8lGVTcYeCx0G9O+b5xX6mC02v6lq6MFX1MSs38E21e0bHvnt7BxdtvUUy4S8dQBcW19Y3NbqukTnGdnY+cmmHVN6jHxHZmvN/Mr2e3fnoXdNJ2JxjWFq6OQErHk7fkEDoaFrWXqvT/DqifyW6NUlt4Jqx5PPeb5SzILoItWQt+DoddkiFYUrkYV3vjPh/dtej+YrGkbvHIl3BSBm6OtPy/Ztgj+0ev9/gq4uTL4+s1rw9c++eXUdS2+DV69OrPvobn9f5z9nHJSUZO8PWYwmqQyFRqMFnI8K7XafjD9t+H9c38WXKPFm2DR31KvtWM9vPGd4OsVj8Ajx8J9+8PL/wGN6wpXs7Sn0MCrNv78IFoJR98NQ88KwhBr+sDE/4R9vtZy3OFp3luZqu4Nxz4E1T0Ks14qlV1gwFFw6M3Zz5319eD4sH1V+rHb16Q+Z95l58bgfHvJneFjwsLPO3MAvyRJkiRJkiRJkiRJkiRJkjoVg9EklZeakGC0HXkGozWuhbXPh/ePOC+/9aWOpLp3+jEnvQiTvgQRTyVUBH0OCO9r2rb76+2rgkcsi4CcVBKJ8D7D9iRYGHLj63t/Lm0d5WbVk8EN9WE6+w2rA47Jfs7yB1KHfGUTALbu5cxuXu4Iwm6azkTj6sLVUUhh31M0j/dV15HhfWMvy2yNhVkG/rWVpSlust9l0xzY8m7yvrYOZlBuohXQY5/kfSsfga0L4d59Yc5PMlsvEQ8PKdxln69B7/3hlNezqzWdvf8jv/d7OQgLEoo3Bp9VFepaRpIKJey4FBb02BZSfW4E8MSZsHleZmst+WcQ+P2v42Hlo7D+VZj7U3jyrNSfE0n5CLumjZTB+XdNHzjyNjh3M5y9GqZ8t3Uwcvfxua9f1QM+tBUuTMA5a6H3tPzqzdbwc6HX/tnPW/koPHoKxNOcF69+Irtr8yfOgCUh/6iTwWiSJEmSJEmSJEmSJEmSJEnq5EwzkVRewoLRGvMMRpv7y/C+g36f39pSR1OTJhitblBw07tUTCPOT97etBXWz4Sbq+C2AcHjbzXw6tVBaEM+UgY+eNqsTi6RgKbNyfvm31DaWsrNsrtT93f2YKGKutzmbZkf3hfPMgBs09u51dDeZBMYt6fGNYWro5DC/q4jFcnbM9FjH+gyonV7z33hgP+CYR9Mv8a863Pfv1Te/T3M/1NmY1c9nry9HIIZlJs+05O3z/8j3DEy9TE2n/16TYbJ3y7cuiMvLNxabSUsSGjHeri1L9zWD2Z90/AdSeUj3pi8PSzosa2ctTy8b+ld8NwnMl/rhU+1blv1BCxNc60n5Srs2q2cPj+oqA7/hyKquucWgg5B8G1lfe515StaAcc/CntfCb0PzG7u+ldgUcg/GrDLtiXZ1/TE6clDKcOuh8vpdSJJkiRJkiRJkiRJkiRJkiQVkQkPkspLdRGC0RJxeOOb4f29puS+ttQR1Q1N3T/tlxDxFEJFVt0reXvjGnj4CEjscWPY7B/BnJ/mt2eqQJmwGwGlzmLH+vC+sMC0zmLjnNT90crS1FGuKmpzm7cpxc81kWUAWKq1OpJsA+OaK9dgtD1/3+8SyeN9FYkE57PR6t1tFfWw/0+CvoP/2LIvzM4yPfZtWwKvfQmevyT/tTr78as9G3JaafdrHowx9IzCrDn+/0HvaYVZqy2lCxLauQlmXROEGUpSOQgNRsvg/KiU6gZC/6PC+9c+l/8eS25r+TyRgA1vwsJbYOvC/NdX5xXbmry93AIIU8klDLf73jDh6sLXkq2q7rD/j+DkF+C87dBrauZzF9+Wur9hWW41vXBp67aw62Gv0yRJkiRJkiRJkiRJkiRJktRJmGoiqbzU9E7enuuN+k0NcM8+qcdkc9OD1Bl0GwPdJyTvO/DXMPyDpa1HnVNFffL25fcF4QHJLPjf/PaM78hvvtSRNSwP79u5KQii7ay2zEvdH6kqTR3lKprj97/2pfC+VEGWyXSWYLRsA+Oaa9oCse2Fq6VQwsLe8r0RfOhpcMqrsN/3YOoP4ZRXYODxQV9VNxj54fRrbH47vxqKYcH/wp1j4K0fFGa9zn78as/6HlS6vQYeD5Vddj/vkeYzmGQmfhEmfAH2+mgQsnHswzDtJ4WrsS1lGhC68K/FrUOSMhUL+WykogwDm8Z8qrjrL7hx99fxpiB49t594Onz4I6R8Ma1xd1fHVM8Bo3rkvfV9i1tLfnodxicsSi8P1IJXUYGj65j4MDrYcZMqKwrVYWZqaiBk54PArIzsfjW1NfO23IMRlt2XxC+2FzY9XA+QeGSJEmSJEmSJEmSJEmSJElSO+L/OSupvNQOTN6+5d3c1nvkaNg0O7z/yNshEsltbamjikTg8Fvg0ZOgodmNPPt9D8Z+pu3qUufSPFwhUxteD24gy/W4njIYzTxhdXINaW7sXPM89DukNLWUk/hO2JzmPDXfAKfOaumdsN+3k/cZjJZc2E3TmWpcA/VDC1NLoSRiydsLcSN4j4nBI5kp34dNc2HNM+HzN86B3tPyr6NQGtfCC5+CeGPh1sw12FBtr3YgVHYNQg+LbcgZLZ9HIjDhKpj9o8zmV/UMrjU76mcz0QyDhFY+Utw6JClTYecSmR7PSmnE+fDMhcVbPxEPAqxqegcBlvP/0LJ/5ldh4AnQd3rxalDHs2MdkEjeV9OOgtEAugyDczbAk2fDyn8FbbUD4OAbYPBJbVtbNqJVMOoiGHBc8L2sSxHUDnD3BOgyArqOglgjJJpg0S3BP/QR25ZbDY2rYfsKqBu0uy1hMJokSZIkSZIkSZIkSZIkSZI6NxMeJJWXbuOStzcsg52bs1vrxctg7Qvh/T0mwtAzwvulzqznPnD6Ajj+ySBA8OxVMOlLbV2VOpPK+tzm7Vif+56pgtE6alCDlKntK1P3L72zNHWUm60Lw29U3cUbVnOzYSZsmZ+8L93PfE+dIRgtHiP05vpMNa4pSCkFFXojeEVx963tD8c/DienuCF+9VPFrSFbi2+DWENh1zQYrf2KRKDb2OLvUz80CJHY0/DzMl9j0Akd+1y7ogyDhCQpldBgtOrS1pGJSAROnVvcPe4eHwQz7xmKtsvSO4q7vzqeVNdd7S0YDaC6Bxz7MJz8cnANddq89hWK1lyXYXDS88F/E0ll63uw6nGY/0dYeFMQiga5h6LtsmmP41nYZ9XFvh6WJEmSJEmSJEmSJEmSJEmSyoR3aEsqL93Hh/dtnge9psDmd2Ddy8Fj/StBCE6XkTD5O9BzUjB20zyYd33qvUZcWLCypQ6pohr6H97WVaizqsgxGK1hKdT0zm1uqmA0OnBYg5SJdGE7S+6AKd8rTS3lZPvq9GMMFoJBJ8Py+7Oft/RuGH9F6/b4zuzW2boAYtuhojb7GtqLTMPijnsMHjk6ed99U2HkR2C/7wY3hJeD0GC0EnycFa2E3tNgr4/Cghtb97/z38H7e/8fl8f7fPFt6cd0GwfHPAB37pXZmgY7tm/9DoP1r+Y+P1IZvAe7joa6wbDupZbnA30PgQN+BVVdW8/tMQmqesLODen3GfbB3GtsD2r7Zz72latg4hehtl/x6pGkipK2bwAAIABJREFUVOIxSMST95Vr0GP3cTD6Ynj398VZv3ENLH8AVj6avP/N78J+1xZnbxVXIg6xxiAMcNef8R2t25L1terfkXxOsrk7UpwfVfcp3fdfSJEI9N6/rasojEg0+G8ip86Bu/cu/PoH/xGe+3jyvkeOgRkzoee+wfOwfwCkukfh65IkSZIkSZIkSZIkSZIkSZLKkHc4Siov9cMgWhPcILKnZy6EhuWwc1PrvvWvwfIH4dTZ0GU4LLs39T7RKhj374WpWZJUeJU5BqNtW7b75rFspQraiURzW1PqKGJJzs2a2zQ7CKbtPrY09ZSLxjXpxxgsBOM/Dysezjy8a5cNbyRvzzYYLRGHrYs79usz05/JgKOgujfsWJe8/70/w8pH4ANvQnWvwtWXq3jIayZawvfV4A8kD0YDePuX0LQ5uLm9LcUaMwsfPPnlIMRqxiy4N4Pzpcq6/GtT2xl7efDaTfYZCsDoS+Dd/wmff+6m4LOZ6p7Z711ZBxOuhJlfSz2u11QYdk7267cntQMzHzvnx7D6aTjhKYhWFK8mSQqT7DP5XaJlGowGQbhvJsFoIy6EQ/8cXB/sWAuvfgEW3JB+3tv/lX+NuzSuDc6zO9vnTPGm9IFh+fZlG1KW7fVpsVV28fy7nHQfD4f/A54q8LlqtDoIMF79dPL+eyfDic8G55ANy5KPqelb2JokSZIkSZIkSZIkSZIkSZKkMuUd2pLKS7QCuo2FjUlCEDbNTT03tg3e+A4c9FtY82zqsacv8F9Vl6RyVtElt3kNS3PfM74jvG/9q7mvK3UEqW6Q32XpHdD9quLXUk4yCUaLVhW/jnI3+CQ45j741wnZzduxPnl7tsFoEAQf0IGD0bK5qb+mb3gwGgRh1Av+DOM/m39d+UrEkreXMnBw8ClQ2RWatiTvn/8nIAIH/U/bBVwsuT39mIEnBqFoAD0mQddRsGV+6jndJ+Zfm9pOj73hhKfhretg3Uu7jxN1Q2DE+TDmk6mD0SrrgDzCOSZ9JQh0WPhX2L4CmrZCVbcgiKSyC/Q/Cva9puMHgEUi2Y1f+xws+juMPL849UhSKimD0apLV0e2Mg0JGnlhcFyOVEBtfxj7mcyC0ZY/kF99AOtegWc+EoSKV/WESV+GCVdl/3sinUQiuF5KGhjWCLEdSdqKGVL2fn8iXtjvsyMy7Kr8DDqp8GtGq6D39PBgNIAHD0m9hq8VSZIkSZIkSZIkSZIkSZIkdRIGo0kqP93HJw9Gy8TSOyDx3xDfHj5m6o+hfkhu60uSSqOyPrd5Dcty3zNVMFrDctixAap75r5+udqyIAh+630AdBne1tWoXKV6f+zy3l+CG7s7ungTrHocYtth4c3px5cywKmcDTweqnunDuTa084NyduzCQHbZfvq7Oe0J5mExQ09M/izth9sfjv12AU3lEkwWsjfdbSE76uqbjDhapj1jfAx8/8I/Q6D0ReXrq7mVj+Tfszkb+3+OhIJXg9zfhI+PloTvG/VvvXcBw69Mbx//Odh7s9at4/6RP57RyIw5pLg0dmNuCCzc4Zd3v6FwWiS2kYsxXVfRU3p6shWJiFBwz4Ig2e0bOt7EOz1sczC0fKxfTXcP233850b4LUvwOJbYdjZ4WFiuYaUqX2qH9rWFWhPVV1h7ythzo8Lt2akCoaeDnN/mvsaBqNJkiRJkiRJkiRJkiRJkiSpk/AObUnlp/v43OduXwXLH4Ald4SPGfnh3NeXJJVGuQWjASy5E0Z9NPf1y00iEdyIO/tHu9smfQUmfzsIspCaizWmH7P+NVh2Hww+pfj1tJUt8+Hx02Hjm5nPiVYUr572Jlqd3fgdIcFomYSA7alxTfZz2pNMwuJ2BR1lchP1upfzq6dQ4iHfV6TE76uJXwxCjTbNCR/z/CUw5AyobYOb1FMF3Y35NOz7dagb1LI9XTDaXv8WBAGoYxt+TvJgtKFnlL6Wjmz0J7ILRlvzbPFqkaRU4imu+6LlHIzWJ3X/gdfDmE8m/6zj4D8G50VPnpXb3pFo6v5Nb8PdIf+9Y+3zwUOC4FpC5WfqD4MQs0S8MOtFq6Df4dB9AmyandsaBqNJkiRJkiRJkiRJkiRJkiSpkzAYTVL56bV/fvMfmxHe1+9wqBuQ3/qSpOKr6JLbvG1Lc98zXTDaq1d1rGC0Zfe2DEUDePNa6H8UDDqhbWpS+Up1g3xzj82AC+IdM1wvth3uHN3WVbRvFVmGKax7KXl7wmC0VsICxHaZ8AUYcmrwdXWa4IhdXroChp0FA47Jva5Nb8N7N8Ha54KwtX6HQd3QYM1hZ6c/VoQFvkVK/HFWRQ0cfR/cuVfqcY+dAie/WJqamgsLRht4Iky/Pnlf30Ohph80rk7SGYH9vluw8lTG+h4Kk78DM7+6u23CVTDktLarqSMacFz2c9a+BH0OKHwtKr1ty2DBDbBpLpBo62qk1HZuDu/L9ly+lKJVqfvHfCr8vDMSgWFnwr7XwKxrctg7TfjzC5dmv6Y6n2EfhPFXtHUVSiYSgVNeC0Lyt76X/3rRKohWwiE3wKMnwY712a9hMJokSZIkSZIkSZIkSZIkSZI6CYPRJJWfoadD/VDYtiR8TCSa27/Q7s0lktQ+VNbnNq9hWe57xtME7SQNDmnH5oUEpcz/k8Foai1dcGBz8/8Eoz9etFLaRKwR7hjR1lW0f9EcwhTe/jWMu6xlW7rjdTIdPRgtVVjcCU9Dv0N3P8/05/f2L4PH1B8GQUnZWvUEPHoKxLbtbltyR/DnvF/B6EvhoN+mXiMs8K3UwWgAXUfCmUvh9iHhY9a9BCv+BQOPLVlZxJvCb9Df873TXLQC9vk6vPzZ1n3n7wz61fFFIrDPV2DURbD+Veg5GboMb+uqOp5IBOoGQcPyzOc8cCAcejOMPL94dan4Ns6Bh4/o+Och6hzSBYC1tV5Tg99le+qyV3GDu1P9XLavDs6J1b5FKoJr2YqaJH9WJ++L1kBFdbOvQ+ZW1EGfA6HbuI4ZMN9R9NwXPvAmPHoirH66df+hf4G3fgAbZqZfa1eQY58D4YxF8PCRyY9dqdRkGHYuSZIkSZIkSZIkSZIkSZIktXMGo0kqP9EqOPZhePYiWPcCEIEeE6HX/tB7WvDotR/cfyBsmp3d2n2mF6NiSVKhVbRFMFoWwU8dwbJ7krcvvAkO+0tpa1H5izVmPvb5T2QXjBZvCm4gXfFQEHY04UoYfEr2NRbTO7+F7avauor2L5cwhde+AMPPgdr+u9vCwrJS6eiBJKl+Jl32CPXbsS67tV+9GrqNh6Gntd5zwY3w5rWwZX7QVjcEGpZmtu67vwseu+qr6gEDjoPJ34KqrkFbIpZ8brSNPs6qHxwEzT10WPiY5y6CMxeVrCR2rA8PDa9PE3A19jPQuArm/CwIsBtwDBz0B0PROqP6IcFDxZPL767XvxT8DmyrY56yl4jDnJ/A4tuCa9OtC9u6Iqlwcgk5LqV9vgpPfrB1e78U522FkOr47jEge/8XNJYiVCxaHRI0lkVfxgFn1Z4bK1BZD8c9Bq9eBe/+AZo2Q1VP2PfrMOICGHoWvHolzP8jxLaHrxOp2v11Vdfg+vLVK8P/AYtWdXSD7nvn9a1IkiRJkiRJkiRJkiRJkiRJ7YV3VUkqT93Hw0nPBjcUxpuCG2H2VNM3uzWHn9c6FECSVJ4qcwxG274SEgmIRLKf29mC0TqCxnXQtAWqe+2+cVbFEc8iGA1g6yLokiaQZ5dnPwoLb979fOUjcNRdMOTU7PYspoV/besKOoaKHMIUmrbCkjtgzKW72xI7s19n+8rs57Qn8RQ/k2hVy+fDPhgejhnmidPh+Meh/5HB79n4Tph9Hcz8WstxmYaiNdc8MGLDTFj3UrBXJAKJkKCJSBt+nNXvUDjyzuBnksy2xbBxNlR2CR6x7VDTBypqC1dDvCm4Vq6ohsa14eNq+qReJ1oRBNHt87XgZ5rL+ZOkzAw9MwiDzMbWhcFxsduYIAQRgjCNyvogTNL3bPl5+fPw9i/bugqp8CJRqKhr6ypSG3pWEPK68tHdbdEaGPfZzOb3PiC3fWPbIB5LHp6VT3h/0UVSB4MVIogsVeBY0j2r/d2m8hathGk/g6k/CsLz6wYGx0eAyjo48Ncw7efwwidh/p9C1tjj+rz5vPumwMa3Utcw7t8Le20pSZIkSZIkSZIkSZIkSZIklTGD0SSVt0g0POQk22C0Q/83/3okSaVR2SW3eYlYEHCWS/iOwWjtx7pX4LmLYMOslu3jPwdTf5z8hmTlJ9v3x5I7YHwGN6AvubNlKNouj58GR94BQ0OCh0pp+xpY82xbV9ExRHM4NgMsub1lMFqqELAwZR1KUABhAWLQOkRs0Am57THz67D/T+DFz8DaF3JbIxOrn4TlD8Dgk1MEo7XxcX7oaVA/LAhBS+aeia3b9vooHPBfUNUt931jjfD6l4PQnfhOGHwqjLwgfHy6YLRd9rw5X1LhDZ6RfTAawP3TgAiQaN037edB4I8hMuVhw5uGoqnj6nto+QeRRyJwxK0w5+ew/H6oGwz7fh16Tcls/sDjoKo77NyU/d5NW6C6R+v2Wdekn1vVE3pMTB04lk/YWFifobhS7qKVUD84pK8quFYMnRty7RWtghOfh1evhHd+m3zMtF/CuMuzq1WSJEmSJEmSJEmSJEmSJElqxwxGk9R+ZROMdvyT3uwtSe1JRX3uc5u25haMFjMY7f8suRP6HZZ5oEo+Eokg4KxhGVT3hqZN0HVU8NjT5ndh/Svw1IeSrzX358FNxZOvKWrJnVKsMbvxyYLRdmyA1U9B47rgtdVrCjxxRvgaT5wBp86B7uOzr3f9a7DyseA1NeBo6DI8s3k7N8Ga56BhRXCja+0AmPsLkoaRKHu5no8vuxe2LYH6ocHzXILR1r8KO9ZDda/caih3qX4me/7c64fCxP+Et76X3R6rHn8/oKcEFv09CEaLhwSjRcvg46wTn4Pbh2Q+fsGNUFEL03+T+55v/QDm/GT382V3B49kojX5nU9JKqzBM2DgibDiwRwmh5yHvPw5qBsCwz+YV2kqkHv3aesKpOKo7AZTvt/WVWSmulfweUAunwlU1MKU6+DFT2c/N1kw2tJ7g2uQVPa7FiZ9Ofv9JJW5FKGDqT4XqeoaXC/22AdevmJ3e2WX4L9x9p5auBIlSZIkSZIkSZIkSZIkSZKkdqAM7iSVpBxlGoxW2RX6HlLcWiRJhRWtgkgFJGLZz23aCjW9s5+XyCBoJ5GASIqb2zqKJ84AInD432D4ucXbp2krPHcxLPpby/ZIZXBz8ORvBs8TcXj9q5mF+Cy40WC0YohnGYy26nGIbQ9uLocgKO2JM7Pf9+694YIYRKKZjY83wdPnw+JbW7ZP/RFMuDL13DXPw5NnQcPyzOsbcQH0PgBeTbO23pciYK6iNnjNhLl9WHCD8JhPQiIkLCudW/vCEbfB0BSBfO1Vqp9JJMlHP/tdC/2PgqV3wrxfF6+uXM3/Q/A7YPWTyfuTfU+lVj8YJlwNs3+Y+Zx3fw/7fTe34NGmBph9Xebja/p0jnMWqb2oqIaj74X3/gLPfaxw68673mC0crBhVnbjR11UlDKkguu+Nww9C7qPa+tKSmPsp6DnvvDQYdnNa9rauu3d/0k958Rnoe/B2e0jqf2LZBAYP/6zwX/TXPJPiNbCmEuhbmDxa5MkSZIkSZIkSZIkSZIkSZLKTBncSSpJOartl9m44R+CaEVxa5EkFVYkApVdYOem7OcmuyF1l3gMlj8AK/8F9UNg9MVQ1T39vF0STZndwNYhJODZj8HA46G6V2GX3jIf3rsZZn41ZOsmeONbsHNzEIi16O+wbVFma29dAPGdQbieCie+I3n7gGNg5aOt2xNNQQDQuMuD9/HT5+e+980V0H1C8HXfg6HLSBh2VnDD+i5bF8GsbwZhSsm8ehW8dxP0mtKsMQ6rn4Eek2DQiUG4UTahaOOugAN+/v76BqNlpMe+sOqJ1u3R6iAY4L6pqee/8KngmBTPIMgymUQcnjoPzl4J1T1yW6PcrHkBltwOy+4OH5PseBiJwOCTgkfD8uCG63Jz+7DwvmiZfJw16uPZBaMlYvDSv8NhN2e/18pHMjtX2SWX8DVJxRWtgFEfDQIp1z5fmDVXPhL8fss0RFbFsf71zMd+aEtwrSupPPU7FMZ9Ft7+ZeZzYttat6U6vx7//wxFkzqrTD+v7HNA8JAkSZIkSZIkSZIkSZIkSZI6sTK5k1SSclA3JLNxE79Q3DokScVRUZ9bMFosJDQkkYCXLod3frO7bc5P4KQXoW5gEMKVTnxH5wrcijXAkjth1McKt+bqZ+DRk6BpS/qxc3+a2x4Lb4G9PpzbXCUXa0ze3nsarHoyCELb00v/HoT4dBkJse357b9pdss/3/wuHH4LDD0dVj4Ojxydfo31rwSPPW1+O4dQqAiMuSTLOWLEh4IwGBIt24efF4TWfWgr3JImKGTRreHBaEfeEbzmnrkwfH68EVY8CMPPzar0sjT/T/D8xUEgTiqRNCHRmQZO52P674LwtiV3FGa9dN9zqXTfG7qNhc3zMp+z8K/Qa2r216lLbs9ufLXBaFLZGnFB4YLRADa/C93HFm49ZW/b4szGHfeooWhSe1A7ILvxe4bXNiUJSmuu+/js1pfUzkTCuzrT58qSJEmSJEmSJEmSJEmSJElSnqJtXYAk5axucPoxR/zTG40kqb2qqMtt3v0HwFPnw4ZZLdtf+0LLUDSAbUtg1jeCrxfelH7tsDCejmzjW/mvEdsB8/4bHjoCHjoss1C0fLxgYFXBxXckb6/sCt1Gh8977Yvw9HlFqKcRXr0K1r+eWShaoY29DHruW/p927v+R8Ih/wv1Q4Pn0eogHGb69cHzyvogaCqVNc/SKlhtl+qeMOJ86DYu9RrblmRVdllqXAvPfTyDULRKiKS4KRugpn/h6kpm/OeCIMEDfhXUUwgNywuzTr4iERh2TvbzZl0D21elH7f6GXjsVPhHb3j399nt0efA7OuSVBrjr4B9vla49e6fCg8dGfxe2LqwcOsqMzs2wutfTj2mpl8QEjrg6JKUJClPVd2zG79nMNrmt1OP7zEhu/UldRwGo0mSJEmSJEmSJEmSJEmSJEkZMxhNUvtVPyS8b9RFcH4TDDuzZOVIkgqsojr3uYv+Bg8cBFsWBM/n/gJm/yj52Hd+C/NvaB2klkxnDEbL5Oeyp9j2lj+r1/8TXvwMrH6qcHWl279hZWn26izijcnbozXpg6yKZfM8uG9K6fftsQ/sd23p9+0o9vownLEIzlwC526Ew26Cyi67+7uMSD1/e4r39q4QsAlXpl6jYUXm9ZaT2PYgEC3eBLf2zWxONIMgstoiB6PVvX/dVj8E9vpoYdbsMakw6xTCxKuDwJtsxBpg4V+Dv0sIAu4ScUgkIB4LfoeteiIIE112D+xYn31doz6R/RxJpRGJwORvBZ9bjb44//WatsLqJ2H+n+D+A3M7Zig38SZ45NjUY87dDGctC0JCJbUPVd2yG79nMNrGOanHt9U1tKTSSBVOHjEYTZIkSZIkSZIkSZIkSZIkScpUBnfISlKZqhuUuj9aUZo6JEnFEcnzVDXWAHeOgklfhXd+k3rscxdltmZnDEZbfj9sXwO1GYTw7NwCz18MS+6ASBSGnwsjPwJzflL8Ovf0xjfhwF+Xft+OKhYWjFYNg04O/s47g0EnwaF/geoebV1J+xaJhIccpwtGq6gL74u+f4PxmE9CZVd45sPJx82+DhbeHBwjhpyavt62tmM9PPcJWHJ79nMzuem6JsOQtVwNOnH319N/C93Hw7J7g+fjPwfrXoY3swwb7Htw4erLV3UvOOk5mPkNeO/Pmc97+XPwyn9AIhac8ySaClfT6Iuhh4EbUtmLVkC3sYVds3E13DsFzlxY2HWV3Mp/wfpXwvvHfAqqupauHkmFUZltMNq2ls+X/DN8bO9p2YfqSuo4ogajSZIkSZIkSZIkSZIkSZIkSZmKtnUBkpSzilqoqE/eN/z80tYiSSq8Qt0o9uZ3goCAQojvKMw6bS2eTfhKAmZ+LbOhz30MFt0C8cYgmG7BjfDoiennFcO862HNC22zd0cU9tqvqAnC7/oclP8e9cPg4D9BpEzDbSd9BY65H2r6tHUlHVu6YLRUx/PmvzdGXghjPh0+dttiePw02PBGdvW1hacvzC0UDTJ7vVaGXFMVwqiPQ6/9dj+PVsDEL8DxjwWPYWfBuM9mt+aYT0HPyYWsMn9dR8Gh/wsXJlo+zgsJldwlEXv/zwKGovWeBgf8qnDrSSquwTNS99cPg3PWw/FPZr7mtkWw8rG8ylKGFt+aur/HPqWpQ1JhVWUZjBbb2uzr7cHnImGmfD8IipbUORmMJkmSJEmSJEmSJEmSJEmSJGXMYDRJ7duoj7duq+wKA44qfS2SpMKq7NrWFbQW39nWFRRGbHt24xfcAE3bUo9pXAdL7si9pmKY86O2rqDjiIeE+0RroKorHPcoTLgq9/WHngGnvAajPganvJ77Osn0PyoIb9v1qKjLfO7Ij8C4K+Coe2C/7xS2LiXXZWTq/g0zw/silS2f1/RNv9+8X6cf05a2LoTl9+c+f9BJ6cdUZhn8kE7X0TD2cjj873DQ79OPrxsQhP6kUzsQjrwjCP1qL2ESFdVw8svFW3/az2H/n8Koi2DUJ+DAX8MJTwehlZLahx77QI9Jyfv2/wl84C2o7gn9D4dpv8h83Xd+V5j6FG7rQnjnt6nH1A8uTS2SCivb8+OmZsFoS+8KHzfsbBh4fG41SWo/9vxsojmD0SRJkiRJkiRJkiRJkiRJkqSMpfg/cyWpHdj3Glj/Cqx5NnheURvcgF9R26ZlSZIKoNBBLYWQ6CjBaA3Zj3/7lzDxi+Fj1r8GiVh+dWWjsmsQ+LP41vAxi/4OjWuhpk/p6uqoYmHBaNXBn5V1MPWH0GUveOny7Nbe5xsw+Zrdz3tOgt4HwroXcyoVCMLQjvsXRJJkgSduhBcvg3f+O/UaZy6G+qGZ7Tf9d/DCpa3bR12U2Xzt1mVEVsMXNIzkjjWns6GpJ6ct68q0ns06MwpGuz4IkypXKx7Ob/6U76cf0+fA4L0c35HfXgDjPw/7/zj5ey+V6p5wwlPwxFnQuHqPvt7BNd7AY/Ovry303j8IWXzvz4Vfe8QFUNuv8OtKKp1IBA7+IzxxBjQsD9q6jAzOY7ru1XLs0NPh5SsyW3fhTTDiPBhyWvsJk2xvXrws/Zi6IcWvQ1LhVWX5eVTjut1fr3s1fNyIC3OrR1L7MvLDMPOrrdvrh6YOTZMkSZIkSZIkSZIkSZIkSZLUgv/3raT2rbYvHP94cMPR9uXQ/0io7tXWVUmSCqGqa3jfgdfDi58pXS27FCI0phxkG4wG8NqXoOtoGH5O8v7Z1+VXU7ZGnAdDz04djAZwa184aznUDSxNXR1V2Gt/VzDaLuMuC8I3MgmKABh9cctQtF2yDVVqrtdUOP6x8P5IBKZfH7yGHjkm+ZizV0Jt/8z3HDwDKrtA09aW7cPOzXwNBbIIRntu40HMmHU3G5qC8/9v/zzBHy+K89FD3n/9ZBKMBjDr27Dv17KttPi2vAfPX5L7/LNXBoFj6VR1g6FnwqJbct8L4NS50H1c7vP7HQanzYXVT0PDiqCttj/0OxxqeudXW1ub+kNYeifs3FS4NcdeZiia1FH0ORBOnQNrng/OgfodDhU1rcfVD4OKuszP5Z84A0ZfCgf9trD1Cja/C8vuTT+ubnDxa5FUeNkGo735HZj0peCacNOc8HFDTs2vLkntQ9eR0Gc6rH2hZfvw8wyslSRJkiRJkiRJkiRJkiRJkrKQx93mklQmolXQdzoMPcNQNEnqSCpTBKMN+yCMu6J0tewS31n6PYth41u5zXv1CxCPtWzbuQlevByWP5BfTZXdoH54+nHRahj5YZj2SxgyIwjJS+e1L+VXm8Jf+xXVrdvGfgb2/xlU9Ui95t5XwvSQoI5cg9H2+igc90hmYwccDcc/AV1H7doU+hwEZ7yXXSgaQP1gOOZB6PZ+KFTtAJj+m+A1quzUDsp46FcWfOf/QtEAEokIn705wc6mRNDQ54DMFpr1ddgyP5sqi6thBTz/Sbhzr/zWyeZ1fNDvg9+t0argMfRMGHF+5vMHnZJfKNou1b2CwIgxlwSPoae3/1A0CMI5J3+ngAtGYMr3CriepDZX1R0GnQADj0seigbB+VHfQ7Jb993fwd/qYf4NkEjkX6cCS+/KbJzhzFL7VJllMBrAg4fATRFY8s/k/cPPCz++S+p4jroLBhwbnL9V1AdhtVO+39ZVSZIkSZIkSZIkSZIkSZIkSe1KZVsXIEmSJCWV6kbUaDWMvhjm/wGatpSupo4SjDb3Z7nN27oA1r+6O2wokYAnzoKV/8ptvaoecNrbEKmEqm4Qb4Jb6sPHz5gZhFhVdtndNvbTMOaT8OgpsOLB5PMW3RIEqFXW5VanIBHy2o9UJW/f+3NBQFp8R3Dzd3wHNK4N/u4iFVBRl+am8EjmtfXaH054Aohm/3fc/wg47R1oWA4VtfkFMPU7FE6bC9vXQE0fiGTxPWi3aEVGwxrj1Ty64ZhW7Zu3w2NvwwkTge7jM9934S0wqQxCFHduhvsPgIal+a3T+8Dsxld1hSP+AU3bIBEPnq97FRb+Nf3cSAWMb4Ow0vZm7Kfh9a9A0+b81uk6Gk6dHQTYSep89r4SVj0WHKszFWuA5y6C7atg4tXFqqxz2fhG+jG1AzxWS+1VVQ7BaBtmpe4f/sHcapHUPtX2D4L7d2wMPm8yGFGSJEmSJEmSJEmSJEmSJEnKWrStC5AkSZKSquoa3hetgl6T4diHS1cPdIxgtMZ1sOKh3Oc/cCDM+WkQirb0rtxC0bqMhGEfhJNeDG4UrOkd/J2mC7WqG9IyFG2XSBTGXBI+L9YAKx/Jvk7tFm87yJnlAAAgAElEQVRK3h5NkbVdUR28j6NVwd9bl+FBYFh1z/Q3hKYKFZv+W+h/JPTYByZ+EU54Klg/1+C7SATqB+cXitZcbV9D0fI19jNph2xs6hHaN2dFYveTkf+W2Z5Lbs9sXDHt2Ah/755dKFq/w5O3Dz0jtxoq63f//u09FU58Drrvvbt/4Akw4w0Y//ngPTjoFDjqHhh8cm77dSbRKtjrI9nNqR8a/J6sHQC9pwVBoCc8bdCO1JkNmQFH3gWDToK6wVA3KPO5r30Bti4uXm2dybu/Tz9m8AeKX4ek4ohWQb8jCrtmtyxCmyV1HNU9DEWTJEmSJEmSJEmSJEmSJEmScpTiLnZJkiSpDQ06Cd78bvK+itrgz74HwYSrYfYPS1NTfEdp9imm9a9AIp7fGq/8B2xfCeteyW7ePl+Dyd9KPSZaHf5zruoePm/QyRCpgEQsef+S22HIqZnVqdYSIaGARQvnSREsNvIjMObSIu2rsrD3f8CSO1MGhG1qCj8edG1+z3HdwMz2XPs8vP3rIFCsfkiGhRbYMx/Ofs6oTwTBgMsf2N3WfQKM+VRhaup7EJw6u3X7tJ8WZv3OZvJ3YP6fgsDO5iKVcNjNMPycNilLUjszZEbw2GXVU/DYDGjanH7u3XvDeVuLV1sxNTXAhplAAvoc1HZBtOtfTz+mbhBMuLL4tUgqnv2uhYePLNx63cYWbi1JkiRJkiRJkiRJkiRJkiRJkjqBaFsXIEmSJCXV73CoH9q6feiZEGl2GlvKsKt4SDhUe1Ko7+GtH8CKhzIbO/YyOOru9KFoEITDhImm6KvqBnt9NLx/xSPp91ZyiXh4mF6qv6+8pAi62BWMqI6r2xg46YWUr6+NsR6hfV2aB6NV98x835cuh9uHwutfhUQi83mFsG0JLLsn+3lV3YLj60F/gDGfhv1/Bic+A7V9C1+j8lfTG85eAZO+GhzLolVBwOtJzxmKJil3/Q+Hk1+ECVelHxvbBhuTBF6Wu3WvwH37wYMHw4OHwAPTYVt4gGpRzfpm6v6uY+CU16DHxNLUI6k4+h8BtRmGLKdT1RMq6wqzliRJkiRJkiRJkiRJkiRJkiRJnYTBaJIkSSpPkSgcenNwA+ku3cbBAb9qOa7fETDpyy3bRl9SnJoSHSEYral0e03+NlyYgAN/BUM+kNmcVOFn6Uy5Lrxv63ulDzrqKBKx8L5iBaNFUlyqRlKEpqnjqB8M+3w1tHtjU3gwWn11s9dIVRbBaLu8eS2seDj7efnY8EaOEyPBcXP0x2H69bD357ILg1PpVXWH/b4N5zXA+Ttg6nXQe1pbVyWpves+Hqb+EI66JzjOpDLz66WpqVASCXj+Utg8b3fbupfgpc+WvpblD8KSf6Yec9rbUNu/NPVIKq6+hxRmnQHHFGYdSZIkSZIkSZIkSZIkSZIkSZI6EYPRJEmSVL76Hw5nzIej7oLjHoUZs4KwnOYiEdjvWjjtnSBI7ZTXYfpvi1NPfEdx1i2lVCFXhTT4AylDjUL1PiD3PWv7wonPhvcvfyD3tTuzeIpAwGhVcfbsOro466p9iVaHdm1IEYzWIgMxVcheKgtvym1erhqW5zbPEDRJUnNDZsBp82Cfr4WPWfwPmP3j0tWUr3Uvw/pXWrcv+SdsXVy6OmZ9Gx49KfWYg35viK/UkRTqXHvcZYVZR5IkSZIkSZIkSZIkSZIkSZKkTsRgNEmSJJW36l4w5FQYcDRUhIfk0G00jDwfek0Obkaf+KXC15IqIKq9SDSVZp9cf/4TrkrevtfHMptf2z+874VLs69HqV8z0cri7Dnu35O3D55RnP1UnqI1oV0bUwSjNcWbPUnEQ8eltOjW3OblatuS7OdUdoG+hxa+FklS+1bbHyZ/C3pNDR/z6lWw+Z3S1ZSPtc+H9y27uzQ1LPgLzPp6+nFV3Ypfi6TSqSpAMNr038CA4/JfR5IkSZIkSZIkSZIkSZIkSZKkTsZgNEmSJHVMoy4q/JodIRgtnkEw2oBj8tujz8HQ77Dc5g48HnpMatkWrYExn8xsfk3f8L5tS2Dn5tzq6sxSve4jVcXZs9cU6HfEHntFYexnirOfylNFbsFoseZZaN3H57Z30+bSBsZkErayp9GfhMq6wtciSeoYDvtr6v67xpamjnytezm8b/1rxd9/8e3w7EcyG1tpMJrUoVTnGYw2+NTgs4xIpDD1SJIkSZIkSZIkSZIkSZIkSZLUiRiMJkmSpI4p1zCcVDpCMFoilrq/y0g45iGY8gOo6p79+v2PgmMfzP3G32gVHP84jL4k+Dsc/AE45n7od2hm89OFEWyel1tdnVmqML1oZXH2jETg6Hth3Gehx0QYeCIceQcMObU4+6k8RatDuzbGwoPRmmKJ3U/6HQFVOQYa3DUWEon04/K14Y3U/X2mw4QvwJTrguDJ3gfAlO/D/j8qfm2SpPar+7j058ZrXypNLflY+2J4X+Oa4u0ba4QXPgVPnpX5nCqD0aQOJd9gtNEXF6YOSZIkSZIkSZIkSZIkSZIkSZI6oSLdxS5JkiR1QPEdbV1B/hIpQq4ilbDf9yBaARO/AGM+Cf/old36R9yWfyBATR846He5zU0XyLb4Vti5CbqOhi7Dctujs0mkCASMVBVv36qucMAvire+yl+0JrRra6xLaF/zXDQqqmHK9+DFz7Rct/f+sObZ9DXMux7GXZZBsXlY9I/wvn2/Cft+fffziVcXtxZJUscy7jJ46wfh/cvvhz4HlK6eTDWshK0LoKYfbHorfFwxg9Fe+iy8m+U1SWXX4tQiqW3UDsx97oBjYfCMwtUiSZIkSZIkSZIkSZIkSZIkSVInYzCaJEmSlKl4ioCo9iIRC+874Unoe/Du51U9sl+/OssgtVJ787vBA2D0JXDgfwdBcAoXTxGmF/WSUkVUER6MFk9EQ/ua9jzMjf00dN8bltwBlfUw/FzoNQWW3Q+vfQk2vB5ew0uXQ91gGHZmlsVnYcVD4X1Di7ivJKnjG/Xx1MFoM78W/I4cfk7pakolkYC3fwWv/L/Ugc67FCsYbecWeO9/s58X8dxY6lAGnRC8r/c8HtUNgpEfgZ0b4Z3ftp4XqYSj7w1CmiVJkiRJkiRJkiRJkiRJkiRJUk7C7ySWJEmS2rsJVxd2vQ0zC7teWwgLGOg6pmUoGkAkAt3HZ7d+JJJbXYWUaZDQu/8ThC689QOY+wvYurC4dbVXqUIpDH9QMUXDgwRiVT3D++JJGgccDdN+CvtdG4SiAQw+GWa8Bqe8lrqOJ8+ChpXp683VlvnJ22v6Qa/JxdtXktTxdR8P036ResxT58JLV8DG2aWpKZUFN8DLn80sFA2KF4y2aQ7Etmc3p6IOuo4qTj2S2kZ1LzjkxpbXvX0PhQ/MhqnXwfTfwGF/g2izQOfeB8CZS1KGPEuSJEmSJEmSJEmSJEmSJEmSpPQMRpMkSVLHNewcoIBBXfP/AItvL9x6bSERS94eDQm4GnFh8WoplhEXZD727V/Ca1+Clz8H906B1U8Xr672Kr4zvC9aVbo61PlEw8MEYtGuoX1NyYLRUum1Hww/L/WY5fdnuWiG4jthe0jo2iE3FmdPSVLnMv6zMO6K1GPe/iXcNxUW/7M0NSUz/0Z47uPZzWlcC4lsf/FnYNOc7OcMOR0q6wpfi6S2NfICOGMhHPZXOOFpOP4xqO6xu3/Eh+D0d+HQm+G4R+GEp6BuQJuVK0mSJEmSJEmSJEmSJEmSJElSR2EwmiRJkjquvtPh0L9ATd+W7ZVdcg90eumy4tx8XyrxpuTtkZBgtElfgbGX7Q4o6rlf0JbM2Mvzr68QRnwIBhyb/bydG+DVqwtfT3uXCHnNQPjrRiqEivBgtHi0S2hfLJdD9MF/SN3fsCyHRVPY8h48fjr8tRpIJB9TP6Swe0qSOq8RaQJAAeKN8OTZEGssfj172rkpCCrOViIGT5wJa1/Mv4Y1z8EzH4F/nQTP/lv28w/6n/xrkFSe6gcHx9F+hyb/LKl+CIw8HwYcnfIaRpIkSZIkSZIkSZIkSZIkSZIkZc5gNEmSJHVsIy+As1fCmYvhgljw5zkbYcabUFHXcmzdEDjldeh/ZPh6DcthwxvFrbmYwkKuIhXJ26MVcOCv4NwNcNZymPEaTPrP4GfVXEUdjLm0sLXm4/Bbcpu35tkgsKi59hyEVwjxneF9uQYMSpmIVod2xaJ14X25vGUr6+Ho+8L7m7bksGiIhuVw1xhYelfqcXseZyVJylXfQ4JHJh4+qri1JLP0niCkOKe5dwU1r3429/2X3QcPHwnv/QVWPJj9/HFXQFXX3PeXJEmSJEmSJEmSJEmSJEmSJEmS1ILBaJIkSer4IlGoH7r7z2gFdB8LJz4Dg06GLnvBiAvg+Meg1+TWgWl7um8/eORY2PxuScovqEQseXu0MvW8ilqoGxh8XdkFTnoeRpwf/OwGfwCOfQR67VfYWvNR0yf3uXfuBbd0gyfPhbsnwl+r4b5psOKRwtXXnsRDwvQg/etGyke0JrQrFqkN7WvKNctw8MlAJHlfId//s74ZfizepaIWqnsVbk9JUucWicAxD2Q2du3zsHNTcevZ07J785sfa4C5P819/pyfpA4DTqeqW+5zJUmSJEmSJEmSJEmSJEmSJEmSJLViMJokSZI6r15T4Jj74Iz5cNhN0G1M0J4ijOf/rHwUHj4KmrYVt8ZCCwu5ilRkt079EDjs5uBnd/Td0O+Q/GsrtOHn5T63aQss/gdsmh0EGK1/BR4/HTbOKVx97UUiRUhEpKp0dajzqUgVjJaiL9dgNAgCH5NZ+zw0rs1j4ffFm+C9P6cfVzswCLGRJKlQqrrB6EsyG7vulcLvn0jAlgWw+mmIbW/Zt/nt/Ndf9Pfc61r1RH571/bPb74kSZIkSZIkSZIkSZIkSZIkSZKkFgxGkyRJkvZU0yezcQ1LYcUjxa2l0BKx5O2RytLWUQqjPlbY9WLbgrC0ziYsTA8g2gFfNyof0erQrkSKYLSmfILRKruG9839eR4Lv2/WNdC0Nf24vmUYNilJav8qu2U2blOBw4CbtsKTZ8Odo+Chw+G2gbDi4d39jWsKs08uIaZNWyC+I/24ab+Eqh7J+wadkv2+kiRJkiRJkiRJkiRJkiRJkiRJkkIZjCZJkiTtKdNgNIA3v1u8OoohERJy1REDrgadDL2mFnbNjW8Wdr32IOw1QwQiXlKqiKJVoV0xwoPRYnkFo3UJ73vj27DuVXjz+/DKlTD3v2DrwszX3rkF3rw2s7Ejzs98XUmSMlWVaTDa3MLu+9Z1sOT23c93boR/nQDLHgieFyoY7ZUrs5+T6d6jPgqH3AgVtS3b9/8pdB+b/b6SJEmSJEmSJEmSJEmSJEmSJEmSQnXA9ANJkiQpTzV9Mx+7Y23x6iiGRCx5e6SitHWUQiQCh94E90wo3JqL/g6H3Vy49dqD+M7k7SlCq6Rii0XrQ/ua8gpG65q6//79Wz6f+VU46m7of3j6te/dJ7Maeu4Lg0/JbKwkSdnINBht87zC7vveX5K3P3Yy7PUx2LmpMPssuAEO+VN2czIJRqvsBlXdYejpcPp8WPkoxLZD/6Og2+icSpUkSZIkSZIkSZIkSZIkSZIkSZIUzmA0SZIkaU/ZBKO1t3CoeFPy9kgHvTSo7lHY9RIxSCSC0LXOItHJXjMqH11HBcfjPQNLKuqJ1w4MnRbLKxitS3bjd26Eh4+A0+ZBtzHh4zbNha0L069XOxAOvbn9/W6RJLUPVd0zG7f+FXjuYpj/h+B5RT0c/ncYMiP5+KYGeOsHsOpxaNoctFV2gwFHw9jLYcu74XstuCHj8jPSuBZq+gTn7Av/Cgvf/7069jIYeFyS8RkEozUPlKsbBCMvLFy9kiRJkiRJkiRJkiRJkiRJkiRJklqJtnUBkiRJUtmp7p352Eg7C68JDbmqKG0dpVLVs/Brzvxq4dcsZ/GdydsNblKxRaIw5tOt20d/glgiPJivKZbHnpX1uc27ayxsfie8f/FtqefPeAPOWg5nLYOek3KrQZKkdKI1mY1rWL47FA0gtg0e/wAs+EvrsYkEPHoSvPFNWPUYrHs5eKx6DGZdA3eOKkDhWXjr+0FNs66BZy6EpXcFv4f/dTy8d3Pr8Y1r06/ZPBhNkiRJkiRJkiRJkiRJkiRJkiRJUtEZjCZJkiTtKRHPfGy0unh1FEMiJDEoEh4y1K5V1kHvA5L3jb08tzXn/ASaGnKvqb0JC9OLdtDXjMrL5G/BlOug5+Tgse83YdrPicUToVNi4V3pxUNe75m4ayw8cixsmd+6b9m94fNGXBCEodUNhEgk9/0lSUpn5+b85r/5ndZtS++G1U+Gz2nKc8/m6galHzP7R/C3GnjjW637nrkQmra1bGtck37NSoPRJEmSJEmSJEmSJEmSJEmSJEmSpFIyGE2SJEnaU++pmY+taGfBaGGhPx055Gryt1sH2E35ARz4X7mtF9sOKx/Nv672Yvvq5O2RqtLWoc4pEoGJV8OM14PHvl+HSJQUuWg0heQ/ZiSWZ+jhykfhocMh1tiyfcf68DlDz8xvT0mSMtVnen7zN81pGSy2fRXM/Gp+a2ZjwPGZjYvvDO+7b0rL51sXpl+vymA0SZIkSZIkSZIkSZIkSZIkSZIkqZQMRpMkSZL21GUv6D4hs7HtLRwqEZIYFKkobR2lNPhkOOFpGHcFjP0MHHUPTPxCfms2rilMbeUskYC3roOXLk/e35HD9FT2YvHc+tKKFOBjkoblsPjW3c8TCdi2OHz84Bn57ylJUiZ67w81ffJbY1cw2qxvwe1DYcPM/OvKVEU1jL44vzU2z4N1L+9+vmlu+jlh11CSJEmSJEmSJEmSJEmSJEmSJEmSisJgNEmSJGlPkQgc/MfMxkbbWzBaU/L2SAcPuepzABzwczjw1zCkWQjRpC/ntl5Vt8LUVc5WPQ6vfTG8v72FAqpDSRV+1pRPMNrQM/KY3MwzH4YXL4d7JsF9+8HOTcnHjb0cqroWZk9JktKJVsKhN0G0Jvc1Yg2w/EGY9Q2I7yxcbZmIVsO+10DPffNb5/4DYO2Lwdeb5qQfv3NzfvtJkiRJkiRJkiRJkiRJkiRJkiRJyorBaJIkSVIyfQ+Cg29IP669BYolYsnbIxWlraNcDD8XiGQ/L58wifbivb+k7o+2s9e+OpR4IrwvVWhaWt0nQI+JeSzQzLxfw8a3YMOs8DGTv1mYvSRJytSgE+HMRXDIjTD+89nPjzXAnJ8Uvq5MRKuhfiic+BwcfV9+az0wHWZ9C7a+l35sWMCpJEmSJEmSJEmSJEmSJEmSJEmSpKIwGE2SJEkK031c+jGJncWvo7mdW2D2j+DxM+DFy2DbkuzmJ5qSt3fWkKteU+DQm6CqR3bz4juKU085efd/Uve3t1BAdSipws+a8glGi0Tg6HuDY0Ox1fSDmj7F30eSpD3V9oe9/g2Gn5P93LvHw/IHCl9TJqJVwZ+V9TD4ZOi+d37rzfoGkCJtdZemLfntI0mSJEn/n737jo/sru+F/zmSthfvet3WvdtUY7BxsE1wgiFwSR5aKAkhIaSQkEuAkHvTHi6hPJc0SCMJISEO3HATjAOEJJRQQzHFlBgwLtjGhV23NdtXqzbn+UO7rHZ2yhlpRpqR3u/XSy/p/OpXs6NBZ/DvIwAAAAAAAAAAAKAjTrIDAEAzK45pP2Zqf+/rOKisJf/5o8n9/3mo7c53J0+5Lll7ZrU1ak2C0ZZyyNXpz09OfU7yzdcn33xttTmLPRitrBAQcTCYAhbAVIunaKvQtErWnJY89WvJ3ruT5Ucly9YnYw8me++cDpIZWp6MrEtu+N/JDW+Y/T5zDXMBgLkaXr3QFXRmaPnh16tOTHbd1Pt9T3567/cAAAAAAAAAAAAAAAAAvm8Jpx8sbUVRnJ/kgiQnJ1mVZH+S+5PcmuT6siz3zmHtZUkuS3Jqks1J9iTZmuRrZVneMbfKAQDmUb8Fo9159eGhaEky/r3klr9IHv2mamuUU43bi+G51TbohoaTs168OIPRtnww+fqrk313Jkc9LHns3ybrz2k959a/br/uUg7TY8G1Cj+bczDaQWtOOfT1ik3THzNd8Ppk5fHJV142u/VPeOLsawOAbhgZ8GC0NafNz76n/9T87AMAAAAAAAAAAAAAAAAkEYy2pBRFsSHJy5O8ONOhZc1MFUXxX0muKcvy9zpY/9gkr03yvCRHNxlzbZI3l2X5z5ULBwBYKMuOmj583yoEaz6D0W76o8bt932i+hrlZOP2IbcGWXNqcvYvJbe+tf3YQQlG23FD8plnJLWJ6ev7P5185LHJ0+9Ilh/VeM5d1yTX/XL7tZdv7FqZ0Kla2byva8FoVZz335PxB5Nv/G7nc89+SdfLAYCODC9wMNrQiung0dGtFccvO/z6tJ9Ibr+q+3XNdOLTkmMu7e0eAAAAAAAAAAAAAAAAwGGkHywRRVE8J8lfJdlUYfhwksckOTlJpWC0oiiemuTvkxzXZuilSS4tiuJdSV5SluXeKusDACyIokiOvijZdm3zMfMVjFaWyfe+0rhv+391sM5U4/ZiuPOaFqOL/zI59tLk1rclD3y2+bhBCUb7xv86FIp20MSO5O5rkrN+7vD22kTyhRcnd/xDtbVPeGJ3aoRZaBV+NtnkZa5nHvGaZMMjky0fSEbvTfbekey6qfWci96SrDphXsoDgKZGFjAY7bxXJme8INl4YXL7O5L7Pp6sPnX6d/AHPtN4ztDyw6+PvyJZd26y+5bu13faTyTHPT458+eSIfdKAAAAAAAAAAAAAAAAMJ8Eoy0BRVG8JsnvNui6K8ktSR5IsjLJ5iSPSLKmw/WvSPL+JDNPppVJvprk9iQbklyY5JgZ/S9Isr4oimeUZdniSDsAwAI78amtg9Fq8xSMNrGrdf/4zmT5Ue3XqU02bi/cGiSZDsM744XJKc9OrtlwZKjYQYMQjDa5L7n7vY37vvjzyfE/lKw9M9lze7L1w8mXf6X62sc/MTnv5d2pE2ahVTDaVK2cv0IOOuWZ0x8H3fKXyVdf0fg15PQXJOe8dP5qA4BmhhcoGO2kH0se8+ZD12f97PRHknzpl5sHoxXLDr8eWpZc8vbkY4/vbn2P+r3kob/R3TUBAAAAAAAAAAAAAACAyqQfLHJFUbwqR4ai/WOSN5Zl+Y0G44eSPC7Js5P8SIX1T07y3hweiva5JL9QluWNM8atSPKSJH+U5OAJth9L8oYkv13x2wEAmH8rT2jdPzUPwWhTY8kn2/xqtvfOZPkj269VNglGG3JrcJiR1cnmpyZbPtC4fxCC0T799Nb9HzgrOfNFyZ1XJ1P7qq/7xE8lx146HUQBC6RV9tnUAuSiHeHclyabn5w8cG0ytTcZWj4dcHn0Rcmxl0+HMALAQhteuTD7nvEzzfuGV7ToW35k23GXJz++I7n9quSrr5x7bUmy6sTurAMAAAAAAAAAAAAAAADMivSDRawoiguS/N6MpokkP1mW5TXN5pRlWct0sNnniqKo8vx4bZKNM66vTXJlWZaHJYSUZTmW5M+KorgryftmdP1aURR/XZblnRX2AgCYfyOrW/ePbUsm9iTL1vauhruuTh78Yusxe+9INlYJRptq3F4Md1zWovcDVyX/vKlx33wE4s3F/geSez/Wftztf9/Zuhe/NTn+CbMqCbppqta8b7LJy9y8W3f29AcA9KuiSDY8ItlxxN/PSIqhpGzxP7j1hpYnx12R3Psf7cee8szW63Tat/yo5PxXJJsuST56afv921m1ee5rAAAAAAAAAAAAAAAAALM2tNAF0BsHQs3+LoeH372kVShavbIsJ9vscU6Sn5nRNJ7kRfWhaHVrvj/JO2Y0rUjymqo1AQDMu+E2wWhJ8h+XJJOjSVn2poab/qT9mL0Vc2ZrTX7Fq5SJu8SsODo5rkkI2NdfPb+1dKpKKFqnVhybnPHC7q8Ls9AqGK1VHwBQ56xfPLJt81Or3QfN9OM7kkf8r/bjHvI/p0PXmhle2byvWNZ67WMuSTY+qn0N7aw6ae5rAAAAAAAAAAAAAAAAALMmGG3xek6SR8+4/nhZlld1eY+fTDI84/q9ZVl+u8K836+7fm5RFC1OvAEALKCRCoEAO7+VXL06uWZD8pnnJPvv724N27/afsyDX2w/Zu9dyX0fb9xXDDduX+qGljfv6/a/czftv7e76534o8lTrqv28wDzoNYih3JSMBoAVHfef08uekuy4YJk9anJ2b+UPP6aZHJP9TVWn5qMrEo2Xth+7KrNbfpPbN7X6nfzZDpw7Yc/lpz+wmTlCcnRFyWX/mPyzK3Jyc9IVh7fvr7Vpybrzm0/DgAAAAAAAAAAAAAAAOiZkYUugJ55Sd31/+7BHs+su64UvFaW5Y1FUXwxySUHmtYkeXKSD3SxNgCA7hheVX3sxK7k7muSB7+UPP070wfz56o2UW3cHe9KfuAdyVCTgLOpseSjlzWfX7g1aKhV+MKd707Oe1nr+VNjyc4bkvXnz2+o2Ni2ua9x/quSR//R3NeBHphqEX7Wqg8AaODcX5n+mKuR1cmKY5OxB5qPaReMtv785n2Tu9vXsGJTcuk7j2z/wfcd2faddyWf/6kZDUXyiP/V/J4KAAAAAAAAAAAAAAAAmBddSGqg3xRFcXaSJ8xouiPJJ7u8xwlJLpjRNJnkcx0s8am666fOtSYAgJ6YTZjVvruS9x6XTI3Pff89d1Qf+8Bnmvdt+UCy77vN+x3+b6Js3rX71tZTb39ncs2G5MOPSa7ZmNz4pu6W1spcg9Eu/b/JhX/YnVqgB1qFn00KRgOAhfO4BqFkM7UNRjuved/UaOf1tHLGC5InfyE582eTc34leeInkrN+rrt7AAAAAAAAAAAAAAAAAB0bWegC6Ikfqrv+eFmWLRIdZuXhdddfL8tybwfzr627ftgc6wEA6I3hWQSjJcnYg8k3X59c8Pq57T92fz91sfoAACAASURBVPWxD3wuOf6Kxn0PXtd67u7bqu+zlLQKX2gVmrf9+uQLP3PoujaefO3Xkw2PSDY/uXv1zbTzW8k9H03Gv5fc+rbZr/OI1yWn/0T36oIemGpxh9sqNA0AqOiclybf/svO522of9u4ztqzWvevPCFZtiGZ2HFk37GXd15PO8dcMv0BAAAAAAAAAAAAAAAA9I2hhS6Annhs3fXnk6SYdmVRFFcVRfGtoih2FkWxtyiKO4ui+FhRFL9ZFMXpFfd4aN31rR3WWJ+8Ub8eAEB/aBV+1c7d75n7/hO7q4/9+v+b7Pr2ke1lmdz4h63nHuXXsYYm9zXvG17VvO+772/cfvf75lZPM7f+bfLBRyZffUXyzdfNYaEiOeOnulYW9EqtRfjZxNT81QEAi9bJz6g+dt3Zh75efXJy/A83Hnfs45PVJ7VeqyiSs3/+yPY1pyUbH1W9JgAAAAAAAAAAAAAAAGBgCUZbnC6qu77xQODZx5J8NMmLkjwkyfokq5OcmuSJSd6Y5JaiKP6iKIp2CSBn113f1WGNd9ZdbyqKYmOHawAA9N7wHILR9twxHUrWiS3/nnz+RckXXpxs/Ugysauz+f92bvLZ5yYfvzL52v9Mdt+WbPtC+3nrz+9sn6ViapbBaN/43cbtt751TuU0tG9r8qVfSMoupEFdfnWy9oy5rwM9NtXipXX/xPzVAQCL1uYnJY9+c7X7oYf8+uHXj3tncvTFh7cd/Zjksn+qtvfDX5Oc+pxD1+vOSa74cFL4vzMAAAAAAAAAAAAAAABgKRhZ6ALoic1116uTXJfkmApzlyV5aZLHFUXxtLIs72kybkPd9f2dFFiW5Z6iKPYnWTmj+agk2ztZp15RFMclObbDaWfNZU8AYJEbmUMwWm0smdybLFtbbfy335pc98uHrm+/Kjn2ss73ves905/v+3jynXckx/5g6/HrzkmOe0Ln+ywFky2C0YaWzV8drbz/pO6s89y9c3u+wzyaqjXv2zs+f3UAwKJ2/iuTs38p2XNbsuvm5LM/fuSYtWclxz/x8LbVJyVP+dJ0UPS+u5PVpyRrT6++77K104G9Yw8mY9uSdecmRTGX7wQAAAAAAAAAAAAAAAAYIILRFqf60LKrcigUbW+Styb5UJLvJlmT5IIkL05y+Yw5Fyb556IonlCW5USDPerTPUZnUedoDg9GWzeLNeq9NMlrurAOAMC04VVzmz/+YLVgtLKWfOO1R7Y/8Lm57b///uTua5r3H/v45HF/Xz28bamZahGMdvOfJee/osGc/b2rp96DX57dvGIkSS0ZWZcc/0PJRW8RisZAqZXN+27tKLYbAGhpZFWy4eHTH497Z/L5nz7Ud8KVyQ+8Ixle3nju2tM7C0Srt2LT9AcAAAAAAAAAAAAAAACwpAhGW2SKoliRZEVd88kHPn8ryVPKsry7rv+rSa4qiuJVSf5oRvvjkvxGkjc02Ko+OWM26Q+jSTa2WBMAYOEVQ3ObP7YtWXNa+3EPfjnZf+/c9pqNJ316/vccJJMtgtH2fie57e+Ss158ePu1L+xtTTPd94nOxj/rvmTlcb2pBebRVK11/7uvq+V5F8/x9RsAONwZL5z+AAAAAAAAAAAAAAAAAOghp4QXn+Em7TvTOBTt+8qyfFOSP65rfmVRFFUCy8qK9c11DgDAYNm/rdq4sft7W0cjF75p/vccNGWb9KXb/vbw6/3bku++t/WcqfG51TTTDW+sPnb5xmTFsd3bGxZQu2C0t3/W7SYAAAAAAAAAAAAAAAAAAAwiwWiLTFmW+5I0OiL+5lahaDO8OtMhagcdneSpDcbtqbteVa3ClnPq15yNv0zy8A4/nt6FfQGAxWz9ebOfu++uauPKBQjxWX3S/O85aC78g9b92z5/+PWuG9uHqX38h5LRe+ZWV5LsvTuZ2FF9/KrNSVHMfV/oA7U2L5kfu3F+6gAAAAAAAAAAAAAAAAAAALpLMNritLdB2zurTCzLcm+S99Y1X9FgaF8Go5VleX9Zljd08pHktrnuCwAscqc+/8i25Ucnz96WXPL25NJ3JcvWN577pV9Mtn+9/R7l1NxqnI1VgtHaOrFRRnALE7vbj9l2bfLhxyQPXDu7mg667e2djT/uirntB31kqk3+IAAAAAAAAAAAAAAAAAAAMJhGFroAemJHknUzru8ry/KODuZ/IcnPzrh+SIMxO+uuj+1g/RRFsTZHBqPt6GQNAIB58/DfSfbcntzxD0nKZNWJyRM+kKzYlJz14ukxt7wl2fb5xvO/+PPJeS9Ptv57suKY5IyfTjZddPiYhQhGW3vm/O85aNaclgyvTKb2Nx9TlklRTH89WSEYLUlG70k+fkVy7suSYjjZe2dy/BXJWb+YDA1XW+Obr6027qCzfq6z8dDHBKMBAAAAAAAAAAAAAAAAAMDiJBhtcbolySkzru/pcP7WuutNDcZ8u+76tA73qB//vbIst3e4BgDA/Bhallz6zuQxfzwdaHXUQ5Ni6PAxI+saz02S712XfP6nDl3f9jfJE/41OeHKQ21To92tuZ2jHp6sPnF+9xxUpzw7ueNdzfvLyaRYNv31RMVgtCSpTSQ3vfnQ9V1XJ/d9Mrns3YeC1pr5+muq75Mkpz43OfrRnc2BPlYr24/5yA1lfuRhbX6WAAAAAAAAAAAAAAAAAACAvjLUfggD6Ia667EO59ePX9lgzI1112d3uMeZddff6nA+AMD8W7Ep2fDwI0PRkmRZi2C0elP7k088KXnfycmXXzZ9Pbm3e3VWsfnJ87vfIBta0bq/Nn7o68kOgtEaues9yc5vNu67+/3JBx+V/N8i+ebrmq/x1P9KHvNnydqzkpXHJee9Irn4r+ZWF/SZqVr7Ma9+f4VBAAAAAAAAAAAAAAAAAABAXxlZ6ALoia/XXW/ocH79+AcbjKlPa3hkURSry7LcV3GPy9qsBwAwWDoJRjtodEtyy1uSXTdPh1h14gfekdz8p8n2r3a+b5Ic9bDZzVuKhpa37p8aS0bWTH89sWvu+9329uQxf3J42z0fTT777KRsE/S04YJk44GP814291qgT1UJRvvynUmtVmZoqOh9QQAAAAAAAAAAAAAAAAAAQFcMLXQB9MSHkpQzrs8simJlB/MfXnf93foBZVnek8MD2EaSXN7BHlfUXX+og7kAAP1nZBbBaAfd+9Hk1rd2NmfFMclZL579nuvPm/3cpaacaN1fGzv09cTuue9370ePbLv1be1D0ZLkjJ+e+/4wAKbK9mOSZNue3tYBAAAAAAAAAAAAAAAAAAB0l2C0Ragsy61JPj+jaVmSJ3awxFPqrj/TZNz76q5/tsriRVGcn+SSGU17k/xHtdIAAPrUsjkEo83GimOSM180y8lFsv4h3axmcZscbd0/NSMYbbILwWg7v5WUdalPd19Tbe65L537/tDnyrI84kekmXt29rYWAAAAAAAAAAAAAAAAAACguwSjLV5X1V3/WpVJRVE8PsljZzTVknywyfB3JZmacf2soijOqbDNb9RdX12W5f4q9QEA9K1l6+d3v5XHJCNrkif8W+dzT3xasuLo7te0WE21CUarzQhGm2gTjHb0Y5Infbb9nl/8+aQ21X7cTFd+Jhle2dkcGEC1iqFoSbJ1R+/qAAAAAAAAAAAAAAAAAAAAuk8w2uJ1VZIbZ1z/cFEULcPRiqI4LkcGql1dluVtjcaXZfntJO+Y0bQ8yd8XRdE0jaEoiqcnedGMpvEkr21VFwDAQBhZN7/7Ld904POGzude8rbu1rLYtQtGm6oYjLb+/OTyq5NjL0tWbW695u1/l9z+9uTrr0k+/az2NT76T5LjLm8/DhaBqVr1sffs7CBFDQAAAAAAAAAAAAAAAAAAWHCC0Rapsiynkrw8ycwj428qiuJPi6LYWD++KIork3wuyVkzmrcn+e02W73mwLiDLk3ysaIozq9bf0VRFC9L8p66+W8qy/LONnsAAPS/opjf/Zatn/48vKqzeatPbh/KxeHaBaPVxg99Pf5g4zGnPjd52reStWdOXxfL2u/7pZck33xd8t33tR535ouT81/efj1YJGodZJ1t3dm7OgAAAAAAAAAAAAAAAAAAgO4bWegC6J2yLD9aFMXLk/z5jOZfTfLLRVF8IcmWJKuSPCrJaXXTx5P8RFmW32mzx3eLonhWko8kWX6g+bIk3yqK4itJbk9yVJJHJzm2bvq/JXl1x98YAEA/GmsSiNUrB4PYhld3Nq9dyBdHahuMNpbc9KfJ7X+X7Ph64zHH//Dh4XlDyxuPm43jfrB7a8EAmKq1H3PQPYLRAAAAAAAAAAAAAAAAAABgoAhGW+TKsnxLURRTSf4oycHUjGVJHt9i2n1JnlWW5bUV9/hUURTPTPL3ORR+ViS56MBHI/+Y5BfKspyqsgcAQN9bqHCqkQ6D0c791d7UsZid8uPJg19q3n/DG5Ot/956jfXnH3599i8k//Ubc68tSTb/SHfWgQHRSTDavTvL3hUCAAAAAAAAAAAAAAAAAAB03dBCF0DvlWX5V0kemeQfkuxuMfTeJL+b5LyqoWgz9vhgkocneWuS7S2GfiHJj5dl+ZNlWe7tZA8AgL626ZJkZN387LVs/aGvVx7X2dxTntXdWpaC057Xur9dKFqSrD+vbs3nz76emTY/NVl1QnfWggFR6yDrbOuO3tUBAAAAAAAAAAAAAAAAAAB038hCF8D8KMvytiQvLIpiVZLLkpyc5IQk40keSHJ9WZZfn+Me9yf55aIoXn5gj9MO7LE3yZYkXyvL8jtz2QMAoG8Nr0gu+Zvk2hck5VRv97rwTTP2XVl93kP+R3LUw7pfz2K35tTkgjcm1//W7OYv25CsPL7Bmv9fcv3vzK22i98yt/kwgKZq1cfes7N3dQAAAAAAAAAAAAAAAAAAAN0nGG2JKctyNMnHerzHeJJP9nIPAIC+dNrzko2PSr70S8n9n+rNHsOrk1OfXX384/852f3t5NjLk2MuTYqiN3Utdg/7zdkHox3/hMaP+8N+OznhSdPPl+1f7XzdTY9N1p45u5pggHUajFaWZQqvfQAAAAAAAAAAAAAAAAAAMBCGFroAAABYVNafl1zwht6svWx9cvl7kuUbq8855VnJQ38jOfYyoWhztfrk2c3b/NTmfZsuTp706WRoeefrPnSWQW0w4Gpl9bETU8n4ZO9qAQAAAAAAAAAAAAAAAAAAumtkoQsAAIBFZ/mmuc0fXp1c8W/JxguT5RuS0XuTfXcnRz08GVl15PgVxyZjDxzZvvqUudXB4WoTs5u37qzW/SNrkrVnJbturL7mpkuSk35sdvXAgCs7CEZLktGJZMWy3tQCAAAAAAAAAAAAAAAAAAB019BCFwAAAIvOimPaj9lwQfO+/3Z9cvwPTYeiJcmqE5JNFzcORUuSR76+cftDfr19HVQ3tm1281ad2H7MU75ScbEiOe0nk8vfnQwNz64eGHC1ToPRxntTBwAAAAAAAAAAAAAAAAAA0H2C0QAAoNuWb2w/5ke+lGx+yuFtw6un29ed3dl+pz03WXfO4W1rz0xOe35n69DapsfObt6qk9qPGVmVnPHTrccMrUh+Yiq57F3JmtNmVwssAh3momV0oidlAAAAAAAAAAAAAAAAAAAAPSAYDQAAum1oODnxv7UeM7w8+cF/SS54Y3Li05IzX5Q86TPJpos732/5xuRJ1yYP+R/JCVdOf77yM8nK42ZVPk0c/8Ozm7dsfbVxJz+jdf+KTUlRzK4GWERqtc7GC0YDAAAAAAAAAAAAAAAAAIDBMbLQBQAAwKL0qN9Ltn6wcd9RD5/+PLw8edhvdme/lcckF/5Bd9aisfNfOf1vuv1r1edseGT1MLPNT05SJCkb9y/fWH1fWMRqTX5Emhkd700dAAAAAAAAAAAAAAAAAABA9w0tdAEAALAobXhE8v/c1rjvlGfNby10x4pNyZX/2dmc03+q+tiRNcnGC5v3Lzuqs71hkeowFy2jEz0pAwAAAAAAAAAAAAAAAAAA6AHBaAAA0Ctrz0ye+KnDA61OeXbysN9asJKYo2Xrqo8982eTc3+ls/Wf8IHmfa1C02AJqdU6G79fMBoAAAD0jU/cVOZX/6mWX39PLV+8vdP4cwAAAAAAAAAAAABgKRhZ6AIAAGBRO/4JybPuT773lWT1ycmaUxa6IuZqeHUyta9x3+YfSR7x2mTVCcma0zpfe/VJybkvS27588Pbi+HkjJ/ufD1YhDo9Mj063pMyAAAAgA79zWdqecn/OXRn/+efKPPuXxzKMy4sFrAqAAAAAAAAAAAAAKDfDC10AQAAsOgNL0+OfZxQtMXiob/ZuH3FpuTyq5NjLpldKNpBj35Tct4rptdLkg2PSH7w/ckxj539mrCI1DpMRhud6DRKDQAAAOi2qVqZ33nf4ffoE1PJq/+ltkAVAQAAAAAAAAAAAAD9amShCwAAABgoZ/5McutfJaP3HGpb/5DkKdclI2vmvv7QsuQxf5w8+s3J1Ggysnrua8IiUuvwvPToRG/q6Gej42W270uOW5eMDBcLXQ4AAADkc7cm2/Yc2X7D1mTrjjInbnD/CgAAAAAAAAAAAABME4wGAADQiTWnJk/6XHLTHyc7vpFsujh56G92JxRtpqIQigYNlB2OHx3vSRl9648/Wsvr/q3MztFk81HJX79wKD/6SIfLAQAAWFh3Ptj8jn7XaHLihnksBgAAAAAAAAAAAADoa4LRAAAAOrX2jOSiP1voKmBJqnWYjDY60Zs6+tG/Xl/mVe859ADdszN53l/XcuPrhnLqJuFoAAAA9KepTlPQAQAAAAAAAAAAAIBFbWihCwAAAACoquw0GG28N3X0o2u+cuSDMzqR/OV/OmEOAADAwmp1Z7pvCd27AwAAAAAAAAAAAADtCUYDAAAABkat02C0id7U0Y+uu6Pxg/MHHxaMBgAAwMJqFXS+d2z+6gAAAAAAAAAAAAAA+p9gNAAAAGBgdBqMtm+8N3X0o5vubd63e79wNAAAABbO/hbB5YLRAAAAAAAAAAAAAICZBKMBAAAAA6PsMN9r+97e1NGP1qxo3reUHgcAAAD6z54W4WdLKdQcAAAAAAAAAAAAAGhPMBoAAAAwMGodBqNt29PhhAG2alnzvt0tDqADAABAr+1tEX62d3zp3LsDAAAAAAAAAAAAAO0JRgMAAAAGRtlxMFpv6uhHy0ea9+0anb86AAAAoN7eFoHdrfoAAAAAAAAAAAAAgKVHMBoAAAAwMGqC0ZoaLpr37d4/f3UAAABAvVbhZ/vG568OAAAAAAAAAAAAAKD/CUYDAAAABoZgtObGJpv37RKMBgAAwAJqFYzWqg8AAAAAAAAAAAAAWHoEowEAAAADo+wwGG3naDI+2eGkAdUqGG33/qXxGAAAANCf9o41vy/dOz6PhQAAAAAAAAAAAAAAfU8wGgAAADAwarPI93pwT/fr6Eetg9Hmrw4AAACot69F+FmrPgAAAAAAAAAAAABg6RGMBgAAAAyMchbBaDtGu19HvynLsmUw2i7BaAAAACygyVrzvomp+asDAAAAAAAAAAAAAOh/gtEAAACAgVGbTTDavu7X0W8mp1qHxu0WjAYAAMACanXPOikYDQAAAAAAAAAAAACYQTAaAAAAMDBaBaONNHmXYykEo41Ntu7fJRgNAACAPjVVW+gKAAAAAAAAAAAAAIB+IhgNAAAAGBhli2C0jWsat+8YbTFpkWgXjLZXMBoAAAALqNWd+aRgNAAAAAAAAAAAAABgBsFoAAAAwMCoNTlJXRTJhlWN+3bs6109/aJdMFq7fgAAAOilVkHnk1PzVwcAAAAAAAAAAAAA0P8EowEAAAADo9lB6qEi2bC6cd+O0d7V0y/aBZ/tn2hxAh0AAAB6rNVd6WSzFHQAAAAAAAAAAAAAYEkSjAYAAAAMjGZnpYskG1Y17tuxr2fl9I3xtsFo81MHAAAANNIs6DxJJqfmrw4AAAAAAAAAAAAAoP8JRgMAAAAGRrNgtKGhZMPqomHfUghGG2sXjNamHwAAAHqpVTDaLffNXx0AAAAAAAAAAAAAQP8TjAYAAAAMjGYHqYeK5KjVjft2jvaunn7RNhhtYn7qAAAAgE7dfF+ydUeL5DQAAAAAAAAAAAAAYEkRjAYAAAAMjFqTc9JFknUrG/ft3r/4D1ePtQk+E4wGAADAQmp3Z37NVxb/vTsAAAAAAAAAAAAAUI1gNAAAAGBgNDsmPTSUrG8ajNazcvrG+FTrfsFoAAAALKSyTe7ZK94tGA0AAAAAAAAAAAAAmCYYDQAAABgYtVrj9iLJuibBaLuWQDBas8flIMFoAAAALCSxZwAAAAAAAAAAAABAVYLRAAAAgIFRa3KSeqhoHoy2ewkEo021OWE+KhgNAACABVRKRgMAAAAAAAAAAAAAKhKMBgAAAAyMZueoh4aS9Us4GK1Wa92/XzAaAAAAC0gwGgAAAAAAAAAAAABQ1chCFwAAAABQVbMAsCLJupVFGkWn7VoCwWhTbQ6YD3ow2te/W+aNHyzzlbvKDBfJRacXef3Ti5x+TLHQpQEAAFCBXDQAAAAAAAAAAAAAoCrBaAAAAMDAaHaQeqhI1q1s3Dc+mYxPllk+snhDtJoFxh00WUsmp8qMDA/eY3DjPWUu//1a9owdarv5vjIfuaHMja8byqa1g/c9AQAAAAAAAAAAAAAAAADQ2NBCFwAAAABQVa1sHI1WFMn6JsFoSbJ7f48K6hNTzRLjZhib7H0dvfAXnywPC0U7aNue5E8/XuEbBwAAYME1uZ0HAAAAAAAAAAAAADiCYDQAAABgYNRqjduHimRdi2C0XYs9GK3J4zLT/one19EL197W/PT8e7/qZD0AAMAgcPcGAAAAAAAAAAAAAFQlGA0AAAAYGM0OUrcNRhvtSTl9o1a2P2I+iMFotVqZm+9t3v+te5Jv3+d4PQAAQL+rcNsKAAAAAAAAAAAAAJBEMBoAAAAVPbC7zJs/WsvvvK+WD33DaVYWRq3JU68okg2rms+7b1dv6ukXU7X2YwYxGO3u7clom7r/5XqvRwAAAP1OMBoAAAAAAAAAAAAAUNXIQhcAAABA/7vzwTKX/34tW3YcbCnziiuLvPm58raZX80OUg8VybKRIsetS+7ffWT/1p1lkqKntS2kZoFxM7ULGOtHtz/Qfsxnbinz60/ufS0AAADMXpVctInJMstGFu+9OwAAAAAAAAAAAABQjRPsAAAAtPWGfy9nhKJN+9OPl7n+7irHWqF7mgWAFQfOTZ+4oXH/lu29qadfTNXajxmf7H0d3bZvvP2Ym+7tfR0AAAD03iAGegMAAAAAAAAAAAAA3ScYDQAAgLY+d+uRaVRlmbzxQ4LRmF/NgtGGDgSjndQsGG1H4/bFotnjMtP4VO/r6LbJCoFvt29Lxie9FgEAAPSzssJtW5VwbAAAAAAAAAAAAABg8ROMBgAAQFs33du4/eovCyNifjU7SH0wGO3EDUXD/q07FvdzdapCgNj4ZO/r6LaJCmFuU7Xktgd6XwsAAACzV+WufHSi52UAAAAAAAAAAAAAAANAMBoAAAAwMGpNTlIXB/LQNh/VuH/bnt7U0y8WbzBatUC7Ox/scSEAAADMSbOg85l27+99HQAAAAAAAAAAAABA/xOMBgAAwJzs3l8tuAi6odlB6qEDwWhHrWrcv2esN/X0i2aBcTONT/W+jm6bqFjzlh1ehwAAAPqZYDQAAAAAAAAAAAAAoCrBaAAAALRUtjm5es/OeSoE0jwArDgQjLZ2ZeP+xX64eqrWfsz4ZO/r6LbJisFoW3f0tg4AAADmpkqc9a7RnpcBAAAAAAAAAAAAAAwAwWgAAAC0NNYmTOkegUTMo2Y5fUMHgtHWrWjcv9iD0ZoFxs00NlnlGHp/magYjLbF6xAAAEBfa5O7nyTZOTp4960AAAAAAAAAAAAAQPcJRgMAAKCl0fHW/ffsdGiV+dMsAOz7wWgri4b9e8Z6VFCfmKq1HzPeJuSwH1UNRrtnh9chAACAQbdrkYeaAwAAAAAAAAAAAADVCEYDAACgpdGJ1v337Z6fOiBpHoxWHMhDW7uicf/+iWRyavGGZ1UKRqsYMtZPqgajbdnR2zoAAACYmyp35ILRAAAAAAAAAAAAAIBEMBoAAABtjI637t81Oj91QJKUTU5SDx0IRlu3svnc3Yv4gHWzwLiZxid7X0e3TVYIfEuSrYLRAAAA+lqz+/mZvMcEAAAAAAAAAAAAACSC0QAAAGhjf5swpV2LOGyK/tMsAOxALlrLYLQ9Y10vp29MVQgQG5/qfR3dNlGx5vt2JxOTFU7ZAwAAsCAqBaN5jwkAAAAAAAAAAAAAiGA0AAAA2hgdb92/a3R+6oAkaXaOeujAOxxrVzSfu31f18vpG80C42YabxNy2I+qBqOV5XQ4GgAAAP2pSpS195gAAAAAAAAAAAAAgEQwGgAAAG2MTrTu371/fuqAJKnVGrcPFdOf161sPvcPP1LlGPZgmmryuMw0iMFokxW+r4O2bO9dHQAAAMxNWeGWfNfo4r1vBwAAAAAAAAAAAACqE4wGAABAS6PjrfsdWmU+1Zo83Q7komXNiqQoGo/5/G2L97na7HGZaWwAg9EmpqqP3bqzd3UAAAAwN1XuyHcJ3wcAAAAAAAAAAAAAIhgNAACANkYnWvc7tMp8anaQeujAOxxFUaRsMmjZcE9K6gtTtfZjxjsIGesXnQSjbduzeIPvAAAAloJdowtdAQAAAAAAAAAAAADQDwSjAQAA0NLoeOuwIcFozKdakwCwYsbXTzy/8Zgdi/iAdaVgtMne19FtnQWj9a4OAAAA5qZZiPlM3mMCAAAAAAAAAAAAABLBaAAAALSxv02Y0q5FHDZF/2l2jnpoRjLaK65s/HbHjn3dr6df1CocMB/EYLRJwWgAAACLQpVgtJ3eYwIAAAAAAAAAAAAAkowsdAEAAAD05I0k1wAAIABJREFUt7GJ1v279s9PHZA0DwAbmpGFtmF14zFjk8n+iTIrlxWNBwywqVr7MeMdhIz1i4kOan5QMBoAAEDfqpCL5j0mAIAOFEXx6CTnJDnpQNOWJLeUZfm1hasKAAAAAAAAAAC6QzAaAAAALTULojpo12hSlmWKYvGFTdF/ak0CwGY++5oFoyXJ9r3J5g1dLakvtPs5TZKJyd7X0W2THQWjVTlmDwAAwEIoK9yy7R1Lpmplhoe8xwQALJyiKM5McnGSiw58fnSSdTOG3FmW5ekLUFqKoliW5FVJfj7JWU3G3Jrkb5O8uSzLNn/+CAAAAAAAAAAA+pNgNAAAAFpqF7g0WUv2TySrls9PPSxtzZ6OM89Mb1jVfP6O0cUZjDbVJDBuprEBDEab6CAYbdue3tUBAADA3FSNst69v3XgOQBALxRFcUWS38p0GNrRC1tNY0VRnJPknzId1NbK2Ul+L8lziqJ4flmWt/a8OAAAAAAAAAAA6DLBaAAAALTULhgtSXaOCkZjfjR7PhYzg9FaHKDesa+79fSLKj+n45NVj6H3j8kKgW8HCUYDAAAYfLtGBaMBAAviUUmevNBFNFMUxQlJPprktLquW5PckKRI8rAkZ83oe0yS/yiK4gfKsrx/XgoFAAAAAAAAAIAuEYwGAABAS1MVgol27U9OOKr3tSx27/piLVdfV2aoSJ7/2CLPu3hooUvqO2WTbK+hGcFoq5cnI0ONQ7UWazBalZ/T8ane19FtE1PVw9wEowEAAPSvZvfz9XaO9rYOAIAOjSX5bg4PHJtXRVEMJXl/Dg9FuyfJi8qy/I+6sU9JclWSEw40nZHkfUVRXF6WVX8jAwAAAAAAAACAhScYDQAAgJZqFY5J7HJodc5+/8O1/NZ7Dz3Y/3J9ma07annlk4SjzdTs+TgzGK0oimxY3Tgo695dZZLiyI4BVyU/bP9E7+votokOwtx2jiYTk2WWjSy+f18AAIBBVzWGY9f+3tYBANDCRJIbknw5yXUHPn8jyWVJPrmAdb0gySUzrr+X5NKyLO+oH1iW5YeLorg0yVeSbDzQfGmS5yX5px7XCQAAAAAAAAAAXeN0NQAAAC1VCkZzaHVO9k+U+YMPH/lAv/FDZcYnK54cXiKaPR+Luiys0zc1Hnfzfd2tp1/Uau3H7BzAAMNOgtGS5Hv7elMHAAAAc1P13Q3h+wDAAnlHkvVlWV5YluUvlGX5trIsv1qW5YL+yZGiKIaTvLau+dcahaIdVJbld5L8Wl3zG4qi8N+KAgAAAAAAAAAwMPzHLgAAALRUJXDJodW5+dpdyfYGgU7b9iTf3DL/9fSzsslJ6qG6YLTzTygajrv5nsUZNDdV4dvaMYChYZMdBqNt29ObOuhvd2wrc/3dZXbsW5w/3wAAsBg0u5+vt2u/3+sBgPlXluX2siz78c8AXZ7kjBnXW5L8Q4V5/+fA2IPOSnJpF+sCAAAAAAAAAICeEowGAABAS7UK51EdWp2bm+9r/vjd0qJvKWr2fCzqctDOPaHxuJvu7W49/aJKgOGOAQwwnOg0GG13b+qgP9VqZX7pH2o5+3dqufD1tZz527X881e8ZgIAQD+q+pv6rn6MIwEAWDjPrLt+Z1mWbd85PzCmPkDtWV2rCgAAAAAAAAAAekwwGgAAAC1VCkYbwMClfnLr/c37bmnRtxSVTZ6PQ/XBaMc3Hnf39qRstsgAq/JzumPf4H3vHQej7elNHfSnq64t87ZPl99//u/Ylzznr2vZtnuwnucAALAUVL0d3ek9JgCAmZ5Sd/2pDubWj33qnCoBAAAAAAAAAIB5JBgNAACAlqoELjm0Oje3tQg/u/ne+atjEDR7PtYHo52ysWg4bt/44ny+1mrtx0xMJaPjva+lmzoPRhOItZT8ycca/3sf96rawIUAAgAA04TvAwBMK4piRZKz65q/0MES19Zdn1MUxfK5VQUAAAAAAAAAAPNDMBoAAAAtVQlG2ztgYUv9Zu948wf5pnuE+8zU7PlY1OWgnbih+RpbdnSvnn4xVfFpsmPADphPVgh8m2n7vt7UQf+588EyN2xt3v+l78xfLQAAQHtVs4t37e9tHQAAA+S8JMMzru8vy3JX1ckHxm6b0TSc5Nwu1QYAAAAAAAAAAD0lGA0AAICWahWCifaM9b6OxWxyqnnfzfcltSrpdEtEs4PUQ3XBaJuPar7Glu3dq6dfTFUMENsxYMFhEy1+NhoRjLZ0fHNL6/73/ZfXTQAA6CdVf0PfNWCB3gAAPXR23fVds1ijfs45s6wFAAAAAAAAAADm1chCFwAAAEB/m6pwcnWvYLQ5aRX+tG88uXt7ctqm+aunnzXLiCvqgtGWjxQ5bl1y/+4jx27ZUSYpjuwYYFXD83YO2AFzwWg0s2+8df/HvlUmz5qfWgAAgPaaBZ3X271fyDEAwAEb6q7vn8Ua9XNa/FmZ6oqiOC7JsR1OO6sbewMAAAAAAAAAsDQIRgMAAKClWq39GMFoczPZ5jG+Y5tgtIOaHaQeapBzdtKGxsFotz3Q3Zr6QZUAwyTZtb+3dXRbs2C04aFkqsHPzY69DtAvFeNtnvSjE/NUCAAAUEnVu7VBC/QGAOihtXXXs/lNqX7OulnWUu+lSV7TpbUAAAAAAAAAAOAIQwtdAAAAAP2tVuHk6t4xYURzMdkk/OmgLTs8vgc1ez42CkY75/gGjUluumfxPZ5VAgyTZGzAwqKa/WwcW38c7IAdDtAvGeOTrfvbva4CAADzq1nQeT3BaAAA31f/Tvhs/vRJ/W9XTd5dBwAAAAAAAACA/jKy0AUAAADQ36oFo/W+jsVsom0w2vzUMQiaPR+LBhlo55/QeOxN93avnn4xVfGA+f7JMknjwLh+1Oxn47j1yb27jmzfvq+39dA/xtoEo23ZkZRlmaLRiwMAwCzcen+Zj9xQZvlI8rRHFDlxg98zoBce2L3QFQAA9K3Z/NWXxfeXYgAAAAAAAAAAWBIEowEAANBSlWC0PYLR5mSy1rp/q2C07yubPB+HGmQSPGRz47Hfvj+ZnCozMrx4ggxqbZ5DB41N9LaObmsajLaucfv2vb2rhf4y3iYYbd/4dFDe0Wvmpx4AYHH71+vLPO9ttew/8Pv0xtVlPvKKoVx0+uK5p/j/2bvzODnqOv/j7+qZyT2TmyQT7isBRBQvZFlF8b5W8WQFj3VX/Hlf6wEKKKIoiAouIMqxIIeCgghyiBwLBJCbJCSTkJPMlbmnp+fsru/vj84wPTP1ra7q6e6p7n49Hw8e6a5vVfWn6/h2VZHvO0Ch2e7nJ2ruIeQYAABgj74J72fnsI6Jy0xcZ64ulnRjyGUOkvSXPH0+AAAAAAAAAAAAAAAAyhzBaAAAAAAAX0GC0RLDha+jnBGMFpztePQaLn3YCkfS5AVGUtKWNmnV8ryWNq1SAQeYD2UJk4oa27mxtNZ733b1F7YeRMewJTQv06ZW6ZgDC18LCuOxrUYX3WtkJL3jCOnkYxzCMQAA08J1jb5w3VgompS+7nztj125l1VNX2FAiQl426qhJCHHAAAAe0Q2GM0Ys1vS7jDL8GwPAAAAAAAAAAAAAAAAYcSmuwAAAAAAQLS5WUK7JKlvsPB1lLORLAE/Td1Bhw+XP9uWiMUmD6g5dJnkMVmStKE5fzVFQSrAeSppXJhDKbCdG0vmeU/vHkgHV6D8DQU4lhtaOBZK1V3rjV5/rqvr/ml0/T+NPnml0Xf+zP4EAEyPR7dJu7q8235yR8ALcQAyIS7nCIgHAACQJPVMeL80h3XsNeE9V1oAAAAAAAAAAAAAAAAoCQSjAQAAAAB8BckYSgwXvo5ylswSjNaRKE4dpcAW1OcVgDarxtEBS7zn31BmgUlBs8CGkoWtI99swWh71XpPN0bqJaixIgxn6TclaWNL4etA/hlj9KXrJ3f2F91r1B4vr74bAFAaHttq//05/WajFMG8QCBhzhSC0QAAACRJmye83y+HdUxcZuI6AQAAAAAAAAAAAAAAgEgiGA0AAAAA4CtlCaLK1DdU+DrKWTLLNm7vK04dpcCWOeB4BKNJ0mErvKfv7MxPPVER5DyVpMGRwtaRT8YYezBanX25rv7C1INoGQ4Q8tfYVfg6kH9P7ZRe2D15+uCI9PCW4tcDAEB/liDwtY3FqQModSZEMlpTD4GDo7a2GTW0EMIIAECFapCU+ZR8L8dxLP9syGSO49RJyvznY1IiGA0AAAAAAAAAAAAAAAAlgmA0AAAAAICvIOMuh5NSMsUAzVzZwp9GdSbEANg9bFshZglGW1bn3dBZZmFzQQ+PoQBhUlHh952WzrPscEndBKNVhOEs/aYkxQfpN0vRX56x77e1jexTAEDxZQsCb48Xpw6g1IUKRusuXB2lIj5o9JYLUjr4dFeHneHq8DNcPd/E9TAAAJXEGDMkaeI/FfD6EKs4dsL7zXvWCQAAAAAAAAAAAAAAAEQewWgAAAAAAF9BA5cSDKXIWTJLwI9rpK7mTpm7rpO56dcyL24uTmER5Lre020xWYvneU/vSJTXYOKUZbtMVErBaH6Bgbb9KkldBKNVhKGR7PPE+V0qSbc+a++ft7YVsRAAAPZoyxKqXErX2ECpaO6Z7gqm3xevM7p349j7zbulj13myoRJmAMAAOXgzgnvjw+x7MR575hSJQAAAAAAAAAAAAAAAEAREYwGAAAAAPAVNBitjwCanCUDhFq1f/WjMj/6tMyvviFzylEy/7ix8IWVkJjlCcfiud7TO7KEG5SaoOfpYIAwqajwC0abXSPVzvJu60oUph5Ey3CWQElJ6h0ofB3Ir94Bo+d22dsf304IBACg+Fq6/X9/yi10GSiUMGdKc5bzrtwZY3T72snbYF2T9OjWaSgIAABMp5snvD/FcZyqbAvtmefkLOsCAAAAAAAAAAAAAAAAIotgNAAAAACAr6CBS4nhwtZRzvwCoEa192Rs4FRK5rzPywxXXhqd7Xh0LPPbgtEaWvNSTmSkAoTrSdJQsrB15JPfeVFTJS2c493W1V/ZA+grxUiAYzk+WPg6kF8vdvm3r2+SGlqicY4/vt3o89e6+vClKf32QVfGRKMuAED+9We51y230GWgUMJcLjX1FK6OUjCSkjotod9XP8p1JwAAFeZBSdsy3u+tyYFnXk6WtDLj/RZJD+exLgAAAAAAAAAAAAAAAKCgCEYDAAAAAPhyAwYu9RFAk7NkgG3cVrXX+AmJXmn9Y4UpKMJsx6NjSUZbPM+7YXBE6imjAK2gAYbDJRSMlvQJRqv2DUYrTD2IluEAgZLxysuOLHmNWYLRJOmwMwJemBTQAw1GbzzP1aUPGP3pKenUa4w+f135/KYAAMbLdt3RYQkvAjBemKulHR0FK6Mk+IXIbdnNdScAAKXMcRwz4b/j/eY3xqQknTlh8gWO4+zv8xn7S/rFhMnfM8ZM/4M1AAAAAAAAAAAAAAAAICCC0QAAAAAAvvwGY2ZKDBe2jnLmFwA1qqlmxeSJax/JfzERZzscY5YnHIvm2td17p3lM5g4aIDh4Ehh68inEZ/zoqbKvm8JpqgMQyPZz984gZ0lp6knWL/81I7p7b9/dpc7qT+97P+MmrvL53cFADAmW7gw159AMEGfL0lSc4/UO1C511Z+4eebdxevDgAAKo3jOHs7jrP/xP8kLZ8wa7XXfHv+W1KA0q6VlPkv5SyStMZxnLd5fIe3S3pE0sKMyWsk/aEAdQEAAAAAAAAAAAAAAAAFQzAaAAAAAMCX32DMTImhwtZRzvwCoEY1VtdPnjhrdv6LiTjb8RhzvKevmG9f11+eKZ9B1qmAX2UoWTrfOVsw2mJbMFpfYeqpBMYYbWw2aukxMmFSC6bBcIB+Mz4ouUF/xBAJjV3B5rt/0/Tu1zvWTZ5mjHTZgxxvAFCOsl13dBOMBgQS9hajobUwdZQCv9uYlp7i1QEAQAV6SNI2j/+unzDfSst82ySdn++ijDGupA9I2pkxeYWkuxzH2eQ4zs2O49ziOM5mSXdqfJDbdkknmqg/8AUAAAAAAAAAAAAAAAAmIBgNAAAAAOAraKZMH8FoOXFdE2gbN1WvmDwx0Zv/giIu5XpPtwWjHbTUvq6NLVJjV3mMBXIt22WioZHC1pFP2YLRFs3z3uldifLYp8W2qdXo2HNdHX6mq/r/dvW+X7uR3pbDyWDzJYYLWwfyq7E72HwbWwpbR66eb5ruCgAAhZDtuiM+GN1rJiBKwp4pDS2Ve275xZYMBbwXAgAA5cUY0yzprZKentB0iKT3S/o3SQdPaHtK0luNMRUcOQsAAAAAAAAAAAAAAIBSRTAaAAAAAMCXLYhqosRQ+AGrfYNGtzxtdNG9rtbuqswBr0G3b2N1/aRpprstz9VEn2tJkbMFozmOo+v+09IoaUdnPqqafkEDDAdLaAB10ufcqI5Ji+d6t3UkClNPOXNdo89c5eqxbWPTbl8rfePG6PbLQYPR4oOFrQP5tWV3sGNuU0RDMoaT0awLADA1foG9khQnJBwoiLb4dFcwfYLe4wMAgMpijNkk6XWSvitpq8+sW/bMc4wx5oVi1AYAAAAAAAAAAAAAAADkW/V0FwAAAAAAiLaggzH7Qg4Gb+01escvXT27a3SK0S8+6ugrJ1RWhne2QfajmmtWTJ7Y3ZHfYkqA7Xi0BaNJ0kdf4+jff+e9YHuZDLQOep4OjRS2jnzyOzdqqqTF87zbOvoKU085e2Sr9PCWydNvetLo0pONZlT7nGDTZChgMFrvgFS/oLC1IH8aWoPNtyngfIVgC+iUgh+XAIDSki2QtY8gViAQEzLsKzFcmDpKQdhtBQAA8sMYs38RPmNKD1uNMSOSzpV0ruM4r5J0qKTRf1mnSdImY8yTU6sSAAAAAAAAAAAAAAAAmH4EowEAAAAAfPkFgGRKhAxG++mdJiMULe0bfzT66KuNls+PXghPoSTdYPN1xzySfXra81tMCbAdjlU+eXqO42jvhdKurslt7X1GUukfb4GD0UootCdrMNpc77aORGHqKWcX/sP7AOobktr7ohksNhwwVLKlV1rtkSuJ6EkMGe3sDDZva1waSRrVTENon1/fFPS4BACUlmz9ezzkvTBQqcJmfYV9zlROgt7jAwCAyrYnAI0QNAAAAAAAAAAAAAAAAJQln2HDAAAAAAAEH4zZF3LA6m8emLxi10i3PFNZoz/9AlYyxWPzJk/sastvMSXAdjzGsmTjLPHYfFI69KkcBD1PB0cKW0c+ZQ1Gm+e909v7JGMqqx+Zqq3t9u3VEdFzZDhgyF9TN8dCqdi8O/i8xqRD76aDXzjOUAn1sQCA4LJdd8QHi1MHUOpst2nVlr+xEPY5UzkhGA0AAAAAAAAAAAAAAAAAAACVjmA0AAAAAICvoIMxE8Ph1jtgCQ+56uHKGv2ZdIPNF6+qk6sJQVAdzfkvKOKswWhZnnAstQSjbQoRxBNlbsDjyHbeRVHSJ3yoOibtVevdNpKSOhOFqalc1VTZ26IaHjgUMBitsbuwdSB/NjaH+/2frn3rF47jF5oGAChd2fp3gtGAYGzBaPNmeU9PVHAwWras72Sqsp6dAQAAAAAAAAAAAAAAAAAAoPIQjAYAAAAA8BU0GK1nIPg6E0P2lWYLuCo3fuFPEyVic8dP6OmQGa6skcK2ALCY4z191JJa7xmueMjIZBtxXAKCnqf9IQMMp9OIXzBalbRivr29uSf/9ZSzlE+wXkdEQ+b8wqkyNRGMVjIaWsPNP1371q9vCnpcAgBKi1/fL6WvsVNBL8iBCmY7S+bN9J5eSvev+ZatS6nk0DgAAAAAAAAAAAAAAAAAAABUhgobbg4AAAAACCvo+O7OvuADwVt77W1VWQKuyk22QfaZemN1kye2N+WvmBJgOx6zBaMtnmdve3Bz7vVERdDztJQGT9vOjeqY5DiOlnmcDqMIRgtnwCdwoD1E315MwwH7ToLRSsemkMFojd3Tc2z6hZ8NEYwGAGXHGBMo+LKUrrOBqKmd5T29bzCa9yLFkO2bV3JoHAAAAAAAAAAAAAAAAAAAACoDwWgAAAAAAF+uG2y+tnjwdfoGo1XYnWoy4PaVpHjMI92rvTl/xZSAXIPRDlhsbzvr1hA7IaKCBqOV0uBp27lRXZX+c0a1oyWWwLvmnsodQJ+LQZ+wj/a+4tURRpCAEklqi3MslIqOkCF8nYkCFZKFXygfwWgAUH6SAcNY44OFrQMoB8ZyuTdvpvf0RAndv+ZbtmdxlbxtAAAAAAAAAAAAAAAAAAAAUBkqbLg5AAAAACCsoIFLYcJzdvuEqFVaqEjQgfaSFI/VTp64e1f+iikBuQajfeCV9hnu3ySdWeLhaEHP06QrjSRLIyhqxHJu1FSNvV4x33ue5p7811POBnwG1XdENBgt6G9FxzSFZyG8sL//0xVAY+ubpOCBfQCA0uEXiJmJYDQgO9udqDUYbahgpURetnv8St42AAAAAAAAAAAAAAAAAAAAqAwEowEAAAAAfKUC5kW1hQjPae21j/CstBAbv4CViXq9gtEat+SvmBJgDUbL8oRj/yWO3neUvf3s24ye3lkagWFe3BC5bv0+IVhRYut7qjP29fI673nCBDVCGhyxt0U1GC1oAFWl/aaUMr/j0Mt0BdD4HXuN3dLQSOn+lgAAJgt6zVEq19jAdDKWyyRbMFpfBYd/ZbuiTNDnAAAAAAAAAAAAAAAAAAAAoMwRjAYAAAAA8GULopqoq19KpoLN3Nprb9veLnX3V06oSDJEoFWfRzCaeXFzHquJPlsAWMzJvuxZ7/N/DPK/j5TucRf0PJVKJ7TB9p2cjH29pNZ7x0c1zCuqBn0CPzoS0TsvjDEaDhgq2dGXnh/RNxQweGbUtAWjZTn2TrzE5ZgDgDISNMh6IGTAJ1CJrMFos7zv6xIVHIyWLfy8krcNAAAAAAAAAAAAAAAAAAAAKgPBaAAAAAAAX0EDl4xJh6MFsTtub0u60h3rSj9Q5KkdRm8+P6W6L6W077dT+uofXA0MT/5eYYLReqsmB6Op0oLRLIdGkGC0Q/fyb7/k/tI97lIhjqPSCUbz3h+Z+3rxPO9l2/tKd18WmzFGAz7HRHsEQ+ZSrj1UYaKhZOkc85XOFoxWU+U9PT44Ped5toCcO9ZJtzxTnFoAAIUXNIyV6w0gO9vV29yZ3tMTFXxeZbvS9buHAwAAAAAAAAAAAAAAAAAAAMoBwWgAAAAAAF9Bg9EkqTMRbL7dvf7tv7zHyARNvYmghhajV5/j6v5NUt+QtKtLuvAfRp+9ZvJ3yhawkqmjatHkic3bc66zFE0lGG3OTEf7Lba3j6SkxFBpHndhztNSCW2wdQGZ+3qJJRitI4JhXlGVTPkfP1EMRrMFaNlwPJSGoRHv6Us9MkElKT5YuFr8DAc4/s66NURaJQAg0oL0+xIhRUAQtnu82lne03sGpFSYm90yku1r93sE7wMAAAAAAAAAAAAAAAAAAADlhGA0AAAAAICvMGNQE0PB5rvxSf+VPr5detlZrja3ltZAT9c1+tZNrg47wzsQ5drHjLbsHv+dkiGC0Zqrl0+e2N0mkwyZElTCphKMJkn/9gr/GZ/cEbKgiCjHYLQg+9oWjBbFMK+oGrCEUY2KYqhY0ICSUS1ZwjgRDbbAO9t5HuVgtLWNKumAVwDAmKDXHYQUAblbMd97esqV2uLFrSUq3Cw5u6VyXw8AAAAAAAAAAAAAAAAAAADkimA0AAAAAICvbIMxMyWyDMw0xui6x4KtcEOztOr7rjY0l84A8yseNjr/bv96b3lmQjBaiO3bXL1i8kRjpK7W4CspcSnL9ooFfMLxrbc7OsxjM456z0UhdkiEVFQwWsa+XjzXex6C0YIbzBKM1jsoDSej1Q8PhwiUlKT7GqJVP8Zbu8vo8odcNXZ7t1uD0QKGsebbSMDjL4qhggCA8IJed2QLmwUg2a7K915gX6bJco1Y7rLdwZTKfT0AAAAAAAAAAAAAAAAAAACQK4LRAAAAAAC+wgQuJXxCSgaGjT7yG1cnXx4uoOaIM11dfH9phFVd/Uj273bfxvHzBA1YkaQmr2A0SWpvDr6SEmcNy3KCLV+/wNGj37U/DukbkoZGSi9EqSyD0WwheBn7esk87x3f1R+9MK+oyhaMJkmdicLXEcZwMtz8D23mWIiqs29zddQPXf3X1fZ9tNRynvcOFKoqf0EDcpp6ClsHAKA4gt6vlco1NjCdjOWSb2mto2rLbbotPLfcZbvHp88BAAAAAAAAAAAAAAAAAABAuSMYDQAAAADgK0zg0ieucPWPDd4L/PEJoz89lVsNX7zOTAoUixpjjNY2Zp9vQ8v498lQwWj13g0dBKMFDUaTpNpZjt59pL39hbZwNRWKMUa/f9TVKZe7+u+bXD3fZD8HbCFiXkplAHWQfb1ivn35LRHZj1E3ECAYrb2v8HWEMRQyGK0tXpg6MDVP7zT6wV+z/7Yvnuc9PT6Y54ICChq62NhV4EIAAEURNJA1yDUVAG9VMfu9XVN3tJ8FFYotRG4UfQ4AAAAAAAAAAAAAAAAAAADKHcFoAAAAAABfqRCBS+190tt+6eqKhyYvdNOTUxvMesIFrh7fHt0Bsa29Us9A9vm2d0iDI2PfIxli+zZVr/Bu6Gjxnl6GbAFgYYLRJOnrb7U/EtkQkZy5L11v9IkrjK59zOjndxsd8xNXj271PgfCBBgmhqN7HmUKEox20FL7vt9YOafFlAyWYDBa0ICSUfGhwtSBqblyjQnUdy2t9Z4+MCL1DhS/PxsJGGjaWKEhHgBQboJed5RK+DAwXUyWpK+VC72nN/cUoJgSkO06mT4HAAAAAAAAAAAAAAAAAAAA5Y5gNAAAAACArzCBS5JkjHTGrUbJ1PgFb1879Vq+9ocQKWJ50Dtg9L1bXB10WkqvPSflGfg2KmgIkzHSptax90EDViSpr6pW8di8yetsj0iSVxEECcsK4k2r7Qtc7rN+Ln3tAAAgAElEQVSfi+XFTqOL7x//ZfuGpGPPdT0HlIc5T+ODU62uOGzfycnYdTNrHB241Hu+jS2EEgUxECAYrSNqwWgh+k2pdI75SvO7B4Odo4cus7c9uytPxYQQNCCnqUJDPACg3AS9zh4gpAjw5ZeL5khaOvlRhySpO0AAfTkiGA0AAAAAAAAAAAAAAAAAAACVjmA0AAAAAICvsMFoktTULW0ImdV1w2ezJ1ut2ZIOjCqWL11v9OO/GW1rl57YIf3n1Ub/c593aNa29uB1vdg59npigFw2TdUrJk/sIBitKocnHO9/hff0u9ZLm1unN1Tr7uftn//zv1d2MNrEELxVltCkrW35radcDQUIRmvvi1bIXJCaM/VWaJhClCWGjAYD7sdDlzlaMMe77amdxT82gwbzbaMPAoCyEPQ6m5AiwJ/fqeQ40oI53s+EevoLU0/U+QXJSfQ5AAAAAAAAAAAAAAAAAAAAKH8EowEAAAAAfOUSjCZJG1rGFhwY9l/J8jrpA69w9LbDs693v++42t1b+CCUZ180uubRyZ9z8f3en93YHXzdPQNj60h656xZNVbXT57YTjDaxLCsIFavsC+06vuu3FwP/jy453l722l/NjITRkmHKbW3VILRLOfGxH2972Lv/djcHa0wr6gKcux0JApfRxhBg6lG9Q1p0jmD6dUU4jdzdo109L7ebU/vzE89YYwEPP4apjlgEwCQH0EvIQZCBrcCGOM4Ut1s77bu/sq8psp2nzZAMBoAAAAAAAAAAAAAAAAAAADKHMFoAAAAAABftnCibDZkZHWdfbv/iM6LToqpptrRrz4W01612dd9xJljoVWPbTW67jFX/9yW38Gyv7jHe30bmqX+ocltYUJeegbGXgcNWBnVXL1i8sSOlnArKWHWYLQcnnActty//bIHp28A9rxZ9rakK8Uzws2MMYEDG6Txy0aZ7StNDEZbucB7vjBhhZUsSDBae1/h6whjOBluftdI/QQHREqY38yZ1dIr9/UOQHxqR/H76aDHX0MLgXwAiqO7P30/dMvTRh199Dv5FnSLElIE+PO7LHIkLZjj3dY94D293GW7jMz2DxAAAAAAAAAAAAAAAAAAAAAApa56ugsAAAAAAERbkNAcL5tax17f9qx9JU+cHtPR+6UDT1Ytd7T5nJhe/SNXm3fb192RkI7+kasj6h1d/8/RdRt95jhHl53iyHG8A1TCuHu9veaOhDRn5vhpTd3BN1TmwN5kyOC5Jq9gtKatMsmknOryv823BfVNDMsK4rAVjvyiDq591Ohzbwy/3nzoyxJe1pmQ6manX4fN3YmXyMDyoCF4tmC0pp781lOughw/HSUejCalAwHnzsw+H4qjqSd4xzWzRjp6X++2DS3ScNJoRvXUf/eDGg4YaNrVL7XFpb3qClsPgMr2xHajEy5w9wTfGtUvkG79wtj9FaYu6P1wPyFFgC/fYDRHWjDbu627vzD1RF22vofgZwAAAAAAAAAAAAAAAAAAAJS7WPZZAAAAAACVLNdgtBc7xxYc9AmxmThov3aWo3VnxfThV/kP5n9ulzJC0dIuf8io6lRXH/+dq9884CqVa/GShnxqbvcICWrqDr7unoxgqpGAASujmms8gtH6eqS1a8KtaAqM68rc9ye5554q99LvyXS0FO2zrWFZOWQ/HL5CmuGTJffwFsmETR3Lk2yhQV0Zg8PDHubxwdIIbQgagle/wHvnt8WloZHS+K7TKcjx0zMQre3o1z/b9GYJG0RxNYb4zZxZLR250vs8T7lSS5FDEFMhAk0bWrPPAwBTccrlo6FoaU3d0lduCJm8DF9BbwfiXGsAvrKdSgvmeE/vLpFg73wjGA0AAAAAAAAAAAAAAAAAAACVjmA0AAAAAICvXLPFMkNPeiwDWV9W7z29ptrRH06N6Ten5JB2pXRg2v+71ujDl7o5B1v5BZ94BaPt7Ay+7sztkQwZjNY0Y2/P6WbN7eFWNAXmZ/9P5ox/l26/Srr2PJlPHi2zY2NRPjufwWhzZjr6/PH+C976bPj15kO242lKwWhD4euZDkH39coF9nW09OavnnIV5PjpjVgYwXDKu+hqnyedhJVES5gw0ZnV/ud5c5GD0cL0uRtbohUqCKC8NHUbzwDGh7dIW3bT/+RL0H6/uz/7PEAl83s04zjSgtne9+aVem5le5RFMBoAAAAAAAAAAAAAAAAAAADKHcFoAAAAAABftoHgPznR0YeOti/X1K2XQslswWg/PtH/tvS//jWm1+wfoEiLW56Rqk51dcjpKX3rJleDI8FGtSdTRr0+ITodfePX05Uw2h0PXldmyFDSJ4DNy721J3g3PPTXnEPgwjD3/CEdiJapp0Pm+l8U/LOl/AajSdK5Jzr6zHH2hT9wsavz73bl5poQmIP+IZM9GC0x9tovxM9L1EKubILu63qfwKTGEOFLlSpQMFrEQsVsx/yCOfZlSuW4rxTNIc7NWTXpfTurxru9qdjBaCH63IaWwtUBAH7XOY9uIxgtX4LeYnVzrQH48juVHNmv5XsHVdT78ajI9pUJRgMAAAAAAAAAAAAAAAAAAEC5IxgNAAAAAODLFkCzZJ70x89V6eFve99aDiWljj5pcMRoOOm9jgWzs3/+3V+d+q3rljbp/LuN/uVcV+ubjJ7bZfR8k1Ey5T3StDPhOfkl7X3j3ze0hqunp3/sc0dS4ZbtNLVqq1oyuWHXFmlnQ7iVBWTiXTKbnpF59iGZH3zCe6ZH7izIZ09kDcvK8TCZUe3ot5+IaWmtfZ5v3WR09u3FG4i9eXf2AIaujGMo7BjxeMRCrmyCBqPNny3NmeE9bxPBaFmVYjCareYZ1dK8md5t/9xeeWEKUdbYHXx/1FRJjuOofr53e1OIdeVDmE97MUvIJQBMxWxLYKQkbQ55fwK7oNfa3f2FrQMoZ45jD0YzJvszmnKU7ZnAwEhx6gAAAAAAAAAAAAAAAAAAAACmC8FoAAAAAABf2cKJ9l1kX7axW+oZsLfPDxCMNn+Oo+bz83P7+vSL0pFnuXrFD1297CxXS77m6ppHJie/7Y77r6dtQjDac7vChbJ0Z2yTZMhgNEm6cNEXvBseuzv8ynyYRK/cM0+Weddymc+8TuaLJ9hn7myRiRc+hcq1BPVNDMsK6/hD/Vfwg78avbC7OOE7G1uyf05XRvBC2GC0qIVc2di+l+NMfO+ofoH3vGHClyqV7ZzK1OvTj08HW81VjnTU3t5td6zlWIiSoKGFc2emz3FJWmEJRmvuyVNRAYXpc+ODHHcACsevP3phd/HqKHfZwolGdfVLJujMQAXyOz0cScvr7O1NRb7ei4Js15z9w8WpAwAAAAAAAAAAAAAAAAAAAJguBKMBAAAAAHxlC6JaVmcPpcoWjLZgTrAaltU5evr7+b+F7R2UPnml0X9c5eo7f3Z18u9c/eQOVy//gX9S0I6O8e//FjJwpy0jeC1p+aiFqU7r8n9ecpLndLN1fag6bIwxMs88KPOOpdK9NwZfcOemvHy+n2xBfbk694PZV/CqHwVIkMqDiceXl87E2OsgwVaZSiW0IUwI3kpLMFrQ8KVKFiTkKWphetZ+ICa99yjvc3ltY2kc94XSO2B04xNGtz5j1JmY3u1gjAkcbjF3xtjr+gXe+7bY53mYPjcesXMHQHnx+w1v6a3c37x8CxqImXKlxFBhawFKmW8wmuP/bKkS7+sIRgMAAAAAAAAAAAAAAAAAAEClIxgNAAAAAODLNhizas8dZXWVo+XzvefZ1WV8Q57mzw5ex1H7ONrww8Lcxl61xuhndxpd90+j02/OPvK9oWVsHmOM7m/wnm+/xd7TG7vHAnpGUt7zvGLwWfvna1+1VC2b3LDDUkgIZmRY5jsnynzpLeEX3rFxyp+fTaGC0Q5Y4ui0d/mvJD4obWwufMhEY4BB3139Y6+DhjWMGhwpjdCGMPs6KoFJpSjI4TM4Ig0noxOwkvIJzTvmQO9joatfau8rYFER9vROowO+6+qjl7l6/8Xp8M+ndkzf/uxMpI+pIObNHHu9whKA2NxT3O8Sps+NWqgggPJi+z2UxofoYmrC/Mp0+4SCA5Uu27lUXeVoWZ13W2N3dO5FiiVbpnP/cGUHPwMAAAAAAAAAAAAAAAAAAKD8EYwGAAAAAPAVJJxob0tYSWO3dPrN3iP2HWd84EkQq5Y7uuurMS2eG265fGtoHRuAmhiyB5985jjvgJ7+Yal3z6D5pCXQoMYk9bed77XW0FhTP3nijo2hB8Y+ttXoC9e5+tZlzXr2Z+fLvLlWWvO3UOsYZXZOPZgtG79ApKn6/rsdffx1/is6/ExXL+wOt40f2mz0lRtcffkGVw9uzr5sU4BB391TCEaTpLYSCIiyfa2Yx9OseksfdO1jhsHiWbg+oSqZeiMU9OH3u7R6uX25jS2FqSfqPnmFOy5Msalb+vINAXd8AWxqDT7v3IzrhHpLCGtzz9TqCStMnxsnGA1AAfn1R5n9PqYm6LWSNP4aHcB4frdlzp7bcNt9XSUGXge55gwaNgwAAAAAAAAAAAAAAAAAAACUIoLRAAAAAAC+ggSjrVzoPU9jt7SlzbutbpYUyyHN6q2HO9p+bkz3fzOmWz4f07qzYhq+JKa1Z6Xf//zDeUjIyqK7X2qLp1+3+wRMHXOAvZbGPQN7kynv9mqT1FsS91qXb6taMnlivEvavsFe0AS/fdDV6891dcn9Ruc/sZeO2fT/dNu8dwZefpIdG3NfNiDr8ZiHJxwzaxxd/R+Obv+S/8pe9SNXT+8Mloxz7WOujj/f1UX3Gv36XqM3ne/q6kf80xUaAwz67kqMfX4uwWi7e8MvU2y2EAqvbmOlZQC9JH3rTwSj+Ql6/NgCIKeDreaqmLS0Vlowx7t9S1vlHQvN3UbrmiZPX7NF2tY+PdujoTX452ae7ysswWjFDsogGA1AVPgFdnUlildHuQvza9nJdges/M6l0Us+231dU5GDcKMgSL73AMFoAAAAAAAAAAAAAAAAAAAAKGMEowEAAAAAfAUJoqpf4B0A1tRl5FiywXoGcq9p7kxHbzjU0fte4ejwekfVVY6OqE+//9pbY7r1izGtWpb7+oNoaE3/6ReMduTe9rbRIJcRWzCakorJaK9kq2d7e81S7wUfus3+oRkau4xOvWb8zh2KzdKZS88MNfh/nBChbLmyB/XlJxDPcRy980hHbz3MPk98MB2O1hb331LJlNFpfzbjanaNdPrNRsmU97LGGD26NXudXf3j1xlWm89xGxVBQhlH1fsEo/38bqMlX0vpw5emtL5p/Ep39xp94TpXR5yZ0nE/TenOdZUXnOUGGXGv0ghGiznpc3gfS1hnJYbE7Oy0tz26dXqO940twedNZoT+2K412vuk4WTxvkuoYLShwtUBAJbLSUnp320T8Dce/sJsxuYetjlg43cujd7Or/B5tlRpglxz9g8Xvg4AAAAAAAAAAAAAAAAAAABguhCMBgAAAADw5bre0zODqFZaQole7Bof4JTpW+/IT5CVl/e83NGGs6vkXlalR79bmFvfhpb0KFVbMFpVTFo6T1pa692+rSO9fNKyfWvMiCRpabLds71t79d4TjcNT1kqHm+fb3t/8LOzXq7m6hXeCzmOnGuekfOd32jAmaX1Mw7TgDNrrH3XFpmmbYE+P1dhwrKm4n8+nv24WfYNV/FB+2jlDc3pc2Cixm5pfZP3Mv95dbAB350ZAU+2c9RPtlC3KAizr1daBtCP6kxIf3pKetP5rjr60it2XaMPXOzqkvuNNjRLa7ZI77rQ1QMN0d82+RQ05Kl3CmGW+Zbt2Fg4x7vd9ntUzvz274s+oWmFtN37Z81Talwwmn2+HR251xNWmD53OCkNjVRWnwKgeLL1R1MJosaYoCGyUvo6H0B4o3dztmdLTT1FKyUyCEYDAAAAAAAAAAAAAAAAAABApSMYDQAAAADgK0g4kW3w6vomyTaO/KOvLlwwWqbXHuDoye/F9KGjx0+vnSUdtbf/sm89zN7W0Jr+0xYwtWSeFIs5Omip9/Kb9yyfTHm3V5tkej0p7wSZ9mUv815wZ4P39Az/c59/ikLDjEMmT3z3p+X8YaOSe6/W5xpP1OJDm3XUQU9q4apWfWuvc5RUVXq+h2/L+vlTYQ/qy+/nHLyXo6oAT03mf9nVbx/0Lmp9k30k8zqPtmTK6MYnggUvZAY8+Q2YnjvTe3pbPNDHTKswwWh+gUmZ2vukn92VXvHX/mj0yNbJ87zp564GKyjIKHAw2mBh6wgjlaUfWGAJRuuuwICYxJC9bXsRw8QyNfcEP78yw0P3Xyw5lr5+9De5GML2DvEInTsAyku23/Bv3GhkQoR6wVuYTUgwGmDndy6NXuPVz/dub/QIHC93QfoegtEAAAAAAAAAAAAAAAAAAABQzghGAwAAAAD4yhZAI0krF4ZPpVoyL8eCcvDKfR398XNVci8b+6/nwio9fUaVei+M6Yj68fN/9g2O3MuqdNfXqnTKMd7fbVdn+s/2Pu/PHP1+h+zlvfzm1vQo1xFbMJpGg9G8k2vaZ9Z7Tte252WSSe82SfFBoy9d7z/CdtOMQ8e9d367RrHvXCpnxf764e1Gv31iroZj6cStpFOjCxZ/TbMOi+v3dSep78G/+657qsKEZU1V0FWeeo3R2be5Gk6OL25Lm32ZrR5tW9qkPp8Qo0zdA5K7Z2P4hWIsq/We3mY5bqPE9r28gpFsA+i9nHeXUWuv0UX32jfct/5UOSEitrDBiXoHorNNrP3AniedC+Z4n73diQIVFGF+YQmbWqdnnzb3BJ83Mzx09gxH+y3ynm9jS/G+S9AwwVHxgP06AISVrT+68mGjm58uTi3lLEy/30wwGmDldyq9FIy2wPs6vjWeDhKvJEH6nqkEo7mu0VM7jK59zNXWtsratgAAAAAAAAAAAAAAAAAAACgNBKMBAAAAAHwFCaJauSD8ehfPza2efJs3y9FT34vpik85+smJju7+akyXnjx2u1xv+W5NPekNszvu3f5SMNoy7/bNu9N/2oLnakw63Gxpqt2zfVtqqfeCknTNudam6399t325PRpmHDL25u0fl7P6VS+9/f2j9gGzn1p5ueYP3qzH14dIvQnJdjxWFeAJxxsPzT7PqDNvNXrDz1x19I0VOLqPvTyxffIX2dAc/POMkXoH0699g9HqvKe3W47bKLEFdnmF4M2scTRnRvB1/+QO/4Hf1z9mKmbgfdBv2TNQ0DJCsR0bVXuOjQVzvNu7IxTuViyJYft33thSxEL2MMaoKURoTHLCvl613Hu+hiJ+l6BhgqOidO4AKC+2+4hM594RstPCJGGuHhq7K+9aAwjKBDg9bM+WjAkXrlsOgvQm/TkG8A4njU76rdGrz3F1yuVGB5/u8nsBAAAAAAAAAAAAAAAAAACAyCEYDQAAAADgyzbgPjOIKmww2pwZ0pyZHulG06Sm2tGnjo3p2++I6S2Hj69rxXzvZUYH5W7Z7T1cdXldej37L/ZeviOR/nNi6Muo6j3BaPuO7PRsf7BxrnpqFnm2mSvOlhmanMRitqzTrU8lvT8wwyWLTk2/eP075Xz9Vy9N7+k32tGRdXH911UjSvmldU1BkKC+fPnE68Ot9J/bpaVfd18KPWuL27fB3zdI/UPj2ze2hNtmXf3pP3MJRvOrLSrC7usz3hN8f134D//v35GQ1mwJvLqSFvRUHQ3iiwLrsbHnd2nBbO/2rkRh6omyhE9YQlO31FvksLj4oNQ/HHz+idcgB+/lfZ43dhXve4T9edvaVpg6ACBIf/TEDqmJsK4pCROIWYnXGkBQfj3R6BXePt6POCT5B4+XoyB9z8BIbuu+8mGjG58cv0dOu9nomRf5vQAAAAAAAAAAAAAAAAAAAEB0EIwGAAAAAPBlDe6qGns9b5aj+ZYgGi9L5k2tpmJasfUBz+nN3UbGGG1s8V5u1fL0n/O7t3u298TTyTAjSe+Bp9VKB5idkLjPs30k5eifh3/SUrWkJ+6dNMn96xVaM/t19mVG1+3M0IVf2i7npzfLmVP7Up37fzdYKsBzPQv16NZAs4aWLRApnz54tJPTsfraH7u6+Wmj7n77PIMj0lMTMu8aLMeSTeee4AVbeKEk7VXnHSLU1hfus6ZD2H196hvym453yzOVMSg8aNhH7+SsxWljO+ZHQ/MWzvVu747QdyiWRJYQsi1FDu1a1xRu/tfsP/69LYi1qSencnISNhgtbOglAAQVtD+6fS390FSE2XpdPtf/QKUzPieTs+c6fsEcR0trvec59ZoQKYVlIEgfnxjKrX//n/u8l/v9o/xeAAAAAAAAAAAAAAAAAAAAIDoIRgMAAAAA+LIF0FRPuKO0hZV4KZVgNDMyrOV3XejZlhh21BVPatNu72VX7wlGq7vvas/2QTNDg2v+bg2eqzEjkqSjB5/W0qT3hzx1wAfsxW/fMO6teeE5td5yk7qrFtqXyfDd+/dS31D6dWLIaM4XXfWECBX6+h/Hf7G71xu9+fyU6r+Z0ht+ltK1j+U2qNkW4hTLbyaWJGnOTEf/998xvf7A8Mt+8BJXj2QJh5sYlnPD4+EGIXftCUbzGzC9rM57+u54qI+aFraB87Z9PX+Oox+9P38Hwi/vMXLDJiCVoKBfsXewsHWEYQ3NGw1UsAR1VmJYSX+WYLS2IvcFd6wLd0599S3jLzbqLdcajV25VhRe2G5hU2th6gAAv3DcTH97rvyvZwopTL9fiSGsQD5k3sWNPkuZaEub1BavnP4syDcN8oxmzRajt/8i/Sxm2TdSOvrslDWs+IK/V872BQAAAAAAAAAAAAAAAAAAQPQRjAYAAAAAsHJdYx0IXgnBaNqyVvWd663ND/z0NxpOeretWu7IGKP56++1Lt992qc1kvTewFUmvWJH0uFDGzznOb3h1TJKD5iNx+Zp0Jn5UpvZ0TD2unm7zKdfo4/tfY21lomGktI1jxo932R05Flu4OCFUY9vTw/ANf1x3ft0n97xK1f3b5JaeqWHXpBOudzoqjXple7uNdrVFWwAbrZApHxbvcLRw9+p0uDFMX3lhPx+yMaWsdebWo2GLMeSzWjIky0sTpKWW4LRih2GlItc9vXHXpPfffSBi3ML8CslQcM+4iUQjFa153dp0Vzv42B3r6x9brlKDPm3t/cVd3us2+X9eXsvlOpmjZ927EHScQePn7Zygfe+7UhIQyPF+S5hg9F2dFTWMQegeIL2R0/uDL/uzoTRhmajrW1GxpZWWyHCfP3EUOVdawBB+Z1LTsYl3qHL7Pd0f322cs4vv/v8UdmCn5950eiN57n6+4b0s5i2uPTMi/mpDwAAAAAAAAAAAAAAAAAAACg0gtEAAAAAAFZ+YVhVE4PRFgYPJFo8r0ApVvm2o0F7jzSq2ox4Nt+62Z7wdugySR3Nmp9oss7TE6vTyBbv0LNqM5aStXp4k3UdFx57lQ4+aIMWrtqt/Q/epIsXnppu2LJWkmSM0baPv1Wv3/8BPTTnOOt6vHzxOqOXneVqe0eoxV5y3E9dDb1rb73lktme7Z/7vdGrzk5p+Tdd7fttVwefltKjW/0HOhc7GG3UjGpHF3zE0UUnOZpZnZ91NrSMfZmL7g0/wLurP72MXyjGsjrvDdM/LPUPRXtQeS77er/F+a3hr89JPf3R3k5TFTRUpXcgOtsh27Gxv+U4SLrSthz7s1K0vd3ox3/z32/tfUUqZo/Gbu/pnznO0f3/HdOn/8XRvx4infYuR3d+JabqqvEnfL1PCOuNTxYpGC1kXmJHkbcxgMoRtD/a1SX1DQbrIxu7jI4/L6UlX3N1xJmuDj7d1fJvuvpTkfrYKAobiNkzUJg6gFLndyplBqO95+X2G74711VOXxTkm3Zn6W/OuT18yD0AAAAAAAAAAAAAAAAAAAAQFXkaygsAAAAAKEdJnwGU1VXj3/uFlUy02J4nFilmZ4NqlNTBw1u0cebqSe1/qX2P53L7LpLmznRk1jVovttrXX9P1Xwl21ukuYdPaqvRWDDaEUPPW9fxja6PSDPSr9url+rLy3+h1UMb9eZND8jc/r9yXVdv3/d2bZlxkHUdhTT3kHZr23BSevrFsfdb26W3XOBq509jWjR38mBoY+xDgwsdjCZJjuPoC29y9IU3Sade4+q3D05tUPbGlozXzfZ17b9YnuF0Xf3pP/2D0extbX3SfjOzFDmNcglGq4o5elm9tM6eRxja3zdIH3pV/tYXNYGD0QYLW0cYtsH9o8fGIcvS4QpeXcbG5j3BlWXOGKN3X5Q9BaHYwWhNPd7TVy6QXrGPo8s/6d+Z77MwHczqdQycfZvRx19n5DiF/UHw+Sny1JEoTB0AECaw6+s3Gh29r/8CxkhfuG7yPG1x6cO/cfXsGTEduXeJBFznUdh+v3tAWlJbmFqAUhb0XHr3kfa2zbvzU0spCNLHd/fb2wZHjO5YF+4zi/FcBQAAAAAAAAAAAAAAAAAAAAgqNt0FAAAAAACiyxY+I0nVE+4oV4YIRltSIsFo2tEgSVo1vMmzubtqoef0VfPSYWjmzI+rzu2VY7w3ZE+sTiOq8WyrNmPBaCf23hK4ZEn68ZJvpz//3M/qtCt3T1somiQZJ9yjh/5h6eanvUcA+w0MjhX5CcdvTonpzq/E9I235T5yeFt7erCyZA8LkqSDlnpP79wTtpNzMFo8S4HTzBqMlmVff+y1+R3Nfe/GqQXgRZ2bPTtLktQ7UNg6wsgWmjerxtEBi73naWgt7/056vRbjDY0Z5+vmMFoKdeoxRqMFuy8nTfL0VsO827bvFt6YkeOxYVgO4Js1zadCf9gTwDIld+92kS/e9Do89f6/+cVipbpqkcqsy8LE0An+QcVAZXM71TKvBKsrrKH5frdN5ebIPdpfv3N49vTz1fCqOJvjgAAAAAAAAAAAAAAAAAAACBC+OutAAAAAACrpF8wWtX490FDTaPm5OkAACAASURBVKQSCkbbmQ5GO3xoQ6jF9t9xn8yWdVJPh2IyqnW9E6h6q+Yr6VR7ttWYkZdeL0+1hvr8++cer46qRdo441Cdt+SbWef/9b/nHiT12cX/1LWNn8h5eS8bW7yn+w0MjuU3CyuQtx3h6LwPxeReVpVTQJprpBd2p183WwZ4n/MBRwvneLd19Y+tx2bRXPvg5sgHo1n2d7Yt/dUTHJ34yvzV8djW8g4BCfrtekogGC3zWD/QEijY2pv/eqKmd8Do3DuC7dmOIgajtfba9119iHDVs95rf6T93K7Cn6+2vmlprff0oWT4UAoACCJsYNdUPbipvK+JbMJmWxKMBnjzO5ecCTd5+yz0vutri0tDI5XRFwX5lt399rnWN4XfTpnPVZ550ej7f3H17T+5WrOlMrY5AAAAAAAAAAAAAAAAAAAAooVgNAAAAACAVTJlb6uecEe5cmHw9ZZCMJpJpaRdL0iS3py4L9SydZ1bZK4656X3813vJJ6u2AKNODWebdVKjnv/kZeFSyVaM/sYfX75hVnn++dpMZ38uvChXld+ytH2n8R0yVf31msHHg+9vJ+mbu/pKZ+xuNMRjJbpvA/F9Kljwxfx0AtGA8PGGqDw+gMdLZjrvd6uRHqD+AXGVcfs51tbX7QHN9vCPrLt6zkzHd34uZgazo7pxlNj+peDgn3em1Z5T3/6xbFtXY6Chqr0Dha2jjBsx3zmsbFknveB0pkoQEER88qzfTqFCXIJTMiVrW+XwgWjve5AR4ev8G5rsARr5pPtnFnqc21TzAA6AJXDDZvYNUVP7JA6In79WAhhv3F3hMJkgSjxDUab8N7v+VJLBQQdS8H6eL8gRlvgvJ/RfwDhjrVGx/zE1Tm3G513l9Ebfubq948Gv8cAAAAAAAAAAAAAAAAAAAAA8oFgNAAAAACAVdJn3GPVhDvKvUMEo61cMM0pVkG0bJdGhiVJx/Wv0Uw3eCpQrdsn3f/nl94vTbZ7f0T1MiVicz3b5rrjR7gurg13C/+BfW7S/819g+88f/hsTK/e31HdbEcXfCT7PnEc6V8Okjb8MKZPHhvTvosdOcv2Uf3b3h6qtmwau7wHAPsFgE13MJokXXqyo2+8zVHtrODL3PqMUXOPvX3FfHuw2WjQjl+wVcyxh/XsjgercbpYg9EC7GzHcXTIMkcffJWjTwYMrPvSm+3n2PHnl+8gcL/zKlNvhEI+7MfG2OtF3l1r2Qa67Ogw+vffuop9NqVt3j85np5vlra2FWeb2ILRaqqkxZb9ZfPq/b3P64aWwn8X2/HnF/ra6RNaMd2MMfrD466O+2lKrzknpXPvcDU4Em47/v5RV286P738mbe6SvolmQLIm6Dhpvn0q39U3vkddjv3DVXeNgKmyplwaVc/3z6vX9huOQmSfdnlc42Zy3Vx1Z798J0/uxrOyOp3jfTfNxm50/HDAwAAAAAAAAAAAAAAAAAAgIpVPd0FAAAAAACiyy8YrXpChtDSeelwk5FU9vWuXj61uopiR8NLL2uU1MHDW7R+1hGBFq1L9Y57vzzZ4jlfS/Vy9cbqvNfhjl/H4vn5u4V3ZDR0SZWqq8ZGH3/lBEd/W2t0z4bJ81/wEUcnvdbRvJnS3JmTw2hmfeGHWvqVNrVVL81LfY2Wgc6+AWARiH6fUe3ovA85+umJRv+3WXrzz7MnTt3bIK1ttLf7BaO1Bw1Gq/VuayvVYLSQIXjvOtKR5D+A+/PHO3rVfvb2tY3SI1uMXn9QBBL48izo2PaBEWkkaVRTPf3bIGU5tTKPjcWW86Yzkf96pltPv9ExP3HV2pt9Xi9P7DA6cGnh92tjt/fBVr8gWOBhpkOXeU9vaA1bVXi2c2bRPEeOYzxDLBq7pFfsU9i6ghoYNoo56fNlJCX98Umj/7hqrOgndxhtaZN+/mGpdlY6aNLP7x509dlrxi+/rU26+jPT31cA5c72e1hID22uvFCcIOFEmRJDhakDKHV+p9LEy4262dLcmd7n0/aO8rwvmyjIfVq3T3j1hubwn1kVk1p6jOczitZeac0W6bhDwq8XAAAAAAAAAAAAAAAAAAAAyAXBaAAAAAAAK7/B9tVV49/HYo5WzJd2dvqvc2mttHheCQxi3dkw7u0hwy8EDkardfvGvV9hCUZrrl6u3ph3alVdanxq1eK6amULdwqq7SubVF11+LhpjuPoL1+I6Zy/Gd3zvFHPgHTQUunUN8b03qP895dTu1Bvn3GXfu++JS/1NXZ7BzBlCwCLiljM0fGrpGfOiOmc212tf3yLulJz1FyzYtK8w0npl/d4n2hLa6W62Y6WzPP+4oGC0WLS0lrvYLCoB6PZQijC7uv6BY5WLfMPTLropPRK62ZJvYPe83z/L67u+XqVd2MJCxqMJknxIWlRBJ4m2mquyghIXDzXe56OMgxG+5/7Tc6haJLU4P0TlXdNPd7T6+eHX9fq5d792pY2aThpNKOAAX6u5QCsqZL2Weh9HdTQavRuTe8PlTFG5/zN6Iy/ZD/pL3/I6PKHjF69n3TRSTG97kB77Rf+Y/L6rvun0U8/aLRiQYR+nIEyZPs93KtWOvWNjv7+vFFXDr97RtImy3XT5t3h11fqwlwrSVIfwWiAJ7+QwYlXDI7j6MAl3iHitv6p3AQJZezuT1/jTQyyTQyZrM/mvFTFpB6fsLUdnUbHTfM1LQAAAAAAAAAAAAAAAAAAACpHBIYyAgAAAACiKpmyt1XHJk9buSB7MNrq5VOrqVjM1ufHvT90eFPgZWvd8YlTyy3BaI019YpX1VnWkZFyM2uO9lnkHQITxkx3UE8ffokWHfFNz/bZMxz96P2OfvT+8Os+7bMH6/eXTqm8lwyOSA++IL159fjppRKMNurlezu64aQemd8fKVeO9j94s5pq6ifN94Dl0Bo9V5bM89737X3pQdDZtsuSed5t7X35CdorFNv3ymVff+JYR6ff7L3Cx06LvTSQ/LJPOPrYZd7z3btRuuVpo9kzpDev0qTgvlIVJuyjd0BaZAkcK6Ygx8Ziy3Ef1WC0jj6j53ZJ65uMDljiaN9FUmdC2rzbqG62dOxBjvZeOPmY60wYfe+WYDvxA6+Ubn568vRiBaM1dnlPr18Qfl2rLNcSKVfa2iatnpxDmTd+x9/q5d7XQRuLtI39/PzvwULRMj2xQ/rwb1ytOyumutmTj7+RpNG6psnLuUb645NGXzmhPPpJIKps/dHsGdIP3hfTD96X+7q//kdXv7xn8gc0dkt9g0bzZlXO+R0knChTgmA0wFPYu89Dl3kHo20ukWC0+KDRA5ukBbOl1+wvzawJ128GuU8bSUn9w9LcmeOn5xoe194n3fSk/YNdn388AQAAAAAAAAAAAAAAAAAAAMg3j2HsAAAAAACkJX0GPVZZgtGy+ddDoj+I3vR0SHdcPW7acf1rAi8/MRhthSUYbdOMQ6zrqMtcx8w5euvhgT/e6qup67T6696haFO1+uiDtGvV2frB7h/kZX1/f37yYNxSC0aTJLWlE2NiMnpv3+2hFl21PP2lbMFmSTcdVOU3ODnmSEtrLaXFvadHhS2EIpbD06xPHONo3szJ0z9znKPX7D928Hzk1THtZdleknTiJa7e+StXq89w9XxTtIPlggoVjDZYuDrCCBSMNte7U+hMSG6YL10EDzQYHXGmqxMucPXlG4ze+2tXR/3Q1Zt+7uqz1xh97DKjg093ddWa8Sf7/Q1GS74WLJ3gxZ/GdOgy723S0Fqc7dHc4/059QvCd+AHL7X3+w0FDsvwO/4OXe5d1KaW6T3mrnzY1bduyq2GXV3SlWu8l437hP/kGsgBILiU5ScgH9fFX3yTfSXPeQQVlbOwlw2J4cLUAZQ6v5BBx6PLOcRy7bqpSNeuU/HwC0b7fMvV+37t6g3nuXrtj101dYerO2jf090/eVrDFK49v+8TpBux2ygAAAAAAAAAAAAAAAAAAACUOYLRkFeO49Q4jnO84zifcBzn247jfMFxnA84jrP/dNcGAAAAlCvT0yFz9blyf/k1ud85Ue7F35W581qZVGrK6/YLRqv2uKOsX5h9FP67j4xqglWacV2ZEw+cNP3N/fdrjpsItI6JwWgrk97pAd1VC63rqHN7x97MmqPaWY5OfePUtt0pb5w9peWzWfHl03T6ERt1Us8NU17XhmaPYLQsAWCR1N700sv3xf8aatEDnXSgni3YTJIeekH6xBX2DVMVkzXoK+rBaEHCr4JaudDRZac4mp9xCrzvKOnXJ01e2VPfz/64bFu79F9XuzJ+o/tLRJiv0DNQuDrCCBIEYztvUq7U3pf/mnLlukafvsrV7izn43BS+o+rjGKfTekVP0zp33/r6s0/zx6KNmeGdO1/Olq50NHq5d7zNLSoKMdyh2W7L6sLv66ZNY72WeTd1tpb2O/i1zfZtvFG73zUvNnYbPTD21x9+kpX59/tqisxVuTd640+879T2yY//Kv38n0+YYnxiPQXQDnL57XSRPstlmbXeLfdsa70r3/CCPsT6dc3ApXMNxjNY9qhy7znbWgtzrVrrlzX6MOXuuNCpdc2St+8MVzNQb9it8c1V6HudwhGAwAAAAAAAAAAAAAAAAAAQDFVT3cByD/Hcc6SdOYUVvG/xphPhfzMpZJ+IOmjkjyHJTqOs0bSBcaYP02hNgAAAAAZTNM2mf98vRTvGpv48O0yknTPDdJ5t8pxch8ZbwufkaTqqsnTVi7Ivs5D9sq5nIIzxsiccZI0PHk0+ywzpLf13aNb6v4t63pq3fGjUFcPNYSupS6VkZIzK53mdNHHHP3mgdxGoh46tEmrD7OMLM4Tp2aGnHP+qO88sknXXzm1dXmFyPgNwo1FNfo9Ixjt+P7/U22qV/GqYClAC2/6icwB79CSV73LOs97f+0fjOQ4zp6AqMkbry1C4VBe/ILwcvGx18b0lsOM1jZKC+dKr9jHu2+sX+Do7UdId633X98jW6VnXpReuW9+6yy2MIPbu/sLV0cYQYJg6ufbl2/slvbKIYyrEB7bJm3vCLfMc7uk53Zl33G3fjGmYw6QltSmN8yq5Y68+oK+IampW1ppz+rMiy7L8bNwTm7rWzpP2uGx7QodfGcLqYjFpFXLvLfx7rjUlTBaODf/KZ73Nxi999euEkNj0359r9Gj342poUV6x6+m3pl29aevkSZeU8aHLAtI6h0kOQMoNNu1UlUerourYo6OXyXdsW5y25oXKuv8DhsE1D9cmDqAUud3Knk9tjrUcl0VH5Rae6XlPtf70+npF6WW3snTb3jc6PefMYoFTK8M2vd0eeT39xYooJFgNAAAUIqMMXLd8vhHTgCUFsdxFIvFpvR3NQAAAAAAAAAAAACg0hGMhilzHOedkq6SlC3e4FhJxzqOc62kU40xHn9VGwAAAEAY5uLvjg9Fy/TY3dK9N0knfDjn9SdT9rZqjwH32YLRZlRLi+flXE5BmVRK5vwvSg/cYp3nfTMe1y0KEowWH/f+gJHtqjHDGnFmBK6nzs0YSTsznRpTXeXols/H9P6Lw4ecfHDgr3Je9rnQy+XiyNcfqptmGn3o0tzDWDa1Sv1DRnNmjv1lcb9BuFVR/TvlbWPBaDPNsE5I3BcoXE+SFg63yVxymuZe/U4tq0sP/g5jdLz1Uss5Fx+UBkeMZtVEc+NZw6+mEPaxpNbRm1Znn+9lKx3dtT77QKmbnjR65b7R3H5BhRnc3txjJE3/97XVXJURMrBXXToYxivgs6k7OoF2Da2FGZB35nsdvefl4/fVKp9szI0tpReMtsTStxU6GM0vmG/1cvtyDa3SMQfmv57Tbx4fiiZJOzul4893tak1f5/T1S8tmjt+Wp9P6EbvQP4+G4C3IEGhU/GWwxzdsW7yh9zXIPUOGNXNLu41wTWPuLpqjdHgiPSeoxx9++1O4IChqQj7S91HMCQQmmcwms//dd7UGt1gNK9+c1RnQlpSG2w9QXM7uj2uuQhGAwAAlcwYo8HBQcXjccXjcQ0Pk14NYHrNmDFDtbW1qq2t1axZswhKAwAAAAAAAAAAAIAQ8vDvxqOSOY5zvKRbND4UzUh6UtKNkv4uqX3CYh+XdL3jOBx/AAAAwBSYvh7p4dv857n7uil9RtIn16rK44p+74X+f5G3fr6i+5d9b7xQuu0K31neffK/BgoaqHXHp7JUK6VDhl8IVc5s8//Zu+/wKKr9DeDvmU0DQgoJhA7Su14EVEQFARuKyvXaC9ixYa8/FRuK2JVrV7Bju4IdUVAQEZEi0ovUhISE9J6d7++PJZBk58zObDbJAu/nefIkO6fM2dnZKZucN1Vmt8bsT40ZfYTCBYOsBxHfCNj4mIE4T/WElJYVu3DbcSVQTeJcjaE2xvRX8L5qoPy0t7BrfTvkr22GMXn/c9VH34eq74B2k3BrE5ZVlyQztdrj3qWrHbeNN3OBrWuhdm3ByZ3dZ4vvC0azmXidVccBQrVR12EfduzCjapyEp4W7kwX+YWpOXU3Djd0Y656HPAYCq00YQk7c8LnddtTB/82oEVT4KYT/d8oiU0UWmiOB3UV0FbJNAU5umC0JsG9qZNjrdvVxTatyu7Y1DoBiI22Lt+8O7TbuMIryMgT/LbZujyUoWgAkJbrvyzfJnQjI983EXVPoUCcJnsQkStW4Z9A6K6V+rTRd9TiNhOFpfX33n7lZxOXvS2Yuw74bTNw3/8E49+vn/W7uVYCgELOuSeyZHc5YHW0SW6q/EJZK62v42vX2oi2+bd0u13cfzsNIcsp8q+YW0cBtU6Ph6Xlgp3ZvAYkIiKi+ldUVIRNmzZhy5YtyMrKYigaEYWFsrIyZGVlYcuWLdi0aROKijS/LCEiIiIiIiIiIiIiIiIiIj9hOm2YQuwCAIe5+LrdSadKqbYAPgcQVWXxrwB6i8gAETlXRE4C0BbABADlVeqdAeDRWjwnIiIiIiJa/ANQUW5fZ+E3kKL8oFdhF4wWYXFH2beN/UT8NglBD6VOybZ1kKl321dKaoXmJ52Gw9vaVzPEiwSvf3rQgOI/XY2p2maMblStbNpYhYfPVGhZJefs9H7AmocNdGqusOLRRhjbYTOGGH9jrPE9Fp74IxJvuN/V+kNBKQWjzWFI9mahkZRgdL59kF9N/2QC/2Tun0hrG4wWpnl7qBGM1qNsneOmCV5fCo2c1xNnfHml61VXhkTFN9LXsQu1aWgNGYx2cm9lGf5Y09JtwC/rD+zJ3k4n3APAzjAJRvM63Dd055xweR6AddhUbaTEAX/cZ2jDxnShf2t3hXYcNeWX6Pe1xMbWywNJirVenplfxyFvmu6V8p332jezLg/Va71ul+CYx72IGm+i5e0u03pqIc3ifVNQ6r+s0uo0oM0dJpJvMdHhbhNf/XVgHyuJwpHueOTkGsYJu6DYsgqg6Y0mLnjNREFJ3b+/n5vjv45pCwVZBXW/brdrsDs2Eh3Kgnm3dkuxXh7qANhQionUl2XkOe/H6X1atsV8+nxNMNqxnZ2v34ruPqxSSbngsrdMNLvZRLu7TLS/y8QHv9ff9SoREREd2oqKirBt2zaUlwf4vSkRUQMqLy/Htm3bGI5GREREREREREREREREROQQg9EODbtEZIuLr0yH/T4EILHK44UARojImqqVRKRURF4AcG6N9rcqpToE/7SIiIiIiA4NYpqQVYshi76rFnImCxyGTM35OOh1V3j1ZREe/2WJTRSO76pv0zYx/NKrRARyUb+A9dQrPwMAerayfw7NvHvggf/Ez9EFXzseU8/SNdUXxFRPjYmMUPi/UQZSn/LAfM33NesGD1rG+8bWIUnhrfu64pdXDsdbr5yGjhdfCqUaaNu3777vx3PzPsXgooWumn+xrEowms182nAMRhMR4I851Zb1KHUTjLY/hWZkwRxEm+5SzCq3SZxNMFpeGAejSQMGo7VNVLjnVGcrGvqUCa+bdLEgFJcJvlkpmLdOUFYR2nW5GXpqTngEG+mOBTX3jbaJ1vW2OP3kqx7sCnEwWuoUA+2a6ffdbi2ty9bvqtvX1iqwoVKwwWjJmmC0P7cF159Tgfa/lvHW5YGC0QpLBT+sFrz/u4nVqdavR0m5oOcDJn7/x+FgXYj0AEfafFKblus/pvwAYUi79oZ/7MgGzpqqf15EFJy6DpFtkwA0jbGvM2OJ4Nr36va9XVAiliFI5V7gf8vq/rji9jKvkMFoRJZ093eAL2DWSrcUzbVrevheU5RV6Mt2Fzjvx257VevT4n8h5Gmu0Y7sqHDT8OBPEqUBMkZu+FDw7iJB8d56O3OAS94SzN8Qvq8XERERHRwqQ9HE6UUUEVEDEhGGoxERERERERERERERERERORTR0AOgA5NSqiuAy6osKgMwVkS0U6pF5Aul1PQq7aIBPAjg8jobKBERERHRAU6yd0MmXgwsnedbEJ8E3PsG1ODTgGU/O+tjynVAcitfG5e8QQRRnfUvhXnrrScfHNPZ9RDqnLz5UMA66pbnoFr60kK6tbSvm+zNslw+smAOYjxelHgtEuVqOKXg++oLYoJMjQkHLdoCjZoAxYWIQjnmbj0J0+MvwaTku5DricO4nOloYhbhkeb3WTafs0Zwy0jfz3ahBOEWjCalJZDHrwLKqicj9CldhQRvNnI8msSmKhLM/Sk6sVKIC/I+xrSESx2PoXKbNInS18kP42A0UzOJqb5e64fPNDDoMMHol2wOhHtd977g1UvqZmB/bBGc8py5L1iqT2tg5g0GDksOzfrchH3szAlcpz7o5rd5avwLiE7NFQD/yuEUpLB5d+jG8s/jRsAQzB6ac9iy7YBpCow6eoPVRTBakiYYLT0PeOYHE7eOrJv/CRIoiKhVvPV+ZxeCt2K74MypJrbtqVwiuOo4hVcuVvte04w8QcvbAx+PnDi6E3DUYQptEn3nAQXgkqMVOrdQMK62TsXdbBEoWOAi/McU4O2FginnhNkJm+gAprtXC9Wh3DAUzh2g8OYC+3PVJ38KXrpQkNC4bt7fhWX6sg0ZdbLKatzOq3dzbCQ6lNgGo2mWd21hvXz5dt9E8gYLgLdhd4+dkS/QP9vqnN6npVpcY+YVW9eNbwRMPEPhpF4Kp7/o/rqy1Cb0rbxC8OkS/0GLADP+EBzXNfxeKyIiIjo4iAhSU1P9QtEiIyMRFxeH2NhYREZGhuW1IxEd3EQE5eXlKCgoQF5eHsrLy6uVpaamonPnzjw+ERERERERERERERERERHZYDAaBetCAFVn838uIhsctJuM6oFq5yqlrrMLVCMiIiIiOpTJczfvD0UDgNwsyF1nA7e/BGSmOu/nrrOBb9Khmia4Wn+FZp5khAHtH+meeYTCzTOsZ3CeeUR4/WGvbFgBTH88cMUBJ+77sXcr68CTSkmaYLQm/x6HER4PvvrLflXHFv2Kibsfrb4w+sANRlNKQdp3B9YtBQB4YOLy3Om4PHd6tXq6YLTVaft/PpCC0fDNdODHj/0WR6ICpxTMxkfx5wXsIt5bfYbzYxkPYFV0T/zRaKCjIVRuE8NQaBpjPUE7L4zvxrXhQ3WTdWTp9H4KP99h4JxXTOzO19d7fb7g0bMEzZuGdkcUEfznFbNaqNTfqcBNH5r48sbAIYvO1uG87p7CkKyy1nT7Rs3TUrcU63rr0sMjSCG7UPDbZvs6bROBj642MHO54OnZYvncYyKBVy5W6JAU+Pn00pzDducDi7f4ArPqgl0wWkKQp7iWcfrz8e2fCIZ2E/TvEPrXOFAwWst46/K03OoNswsFb/4q2J0PTPnev9PX5wteny+4daTCfacpPDArdCF6C+/WHz9O7wfLa5XZqwQPnlF9mdtwzadnC6ac464NEenVx7XSo2cFDkYr9wLHPG7i9MMVTu6lMKJXaI+9RTbBaHl5pQAahXR9NbkNRrMbL9GhzO6tpLss76m5dt22B1iVCvRpE5KhhVS+TTii3T1lTU4PPWk5/jVzNcFocTG+z2hO6wv89yKF6953d4ArKdeXZRboP1/4cU34BFMTERHRwaekpKRa2BAANG3aFG3atGnwz3+JiCIjI9G4cWM0b94cO3fuRH7+/hvD8vJylJaWIiYmpgFHSEREREREREREREREREQU3upxKikdZM6u8fhtJ41EZA2A36ssagLgpFANioiIiIjoYCJ//Qr89Kl12VM3uO9vzGGu21R4rZd7bO4mOyQpXHaM/2SDS49xFtpSX2Ttn5DLBwWuePgQqPbd9z0c2t3++SdHWcyCHTUWxoRncKSDgJZ5W0eiidRIkIk+wP8gukOPgFVmbh9juXxrFlBY6ptEaxuMFmafcIhFKFql/iXLArZvbBYiCtUn86R4M/DLluGYv2Uo3k69Em+fss22j6phcU01u1B+SfhOUDY1wYz1HYJ3XFeF9Y8YeONS+xWn3KYZcC2sTvNN+q/p65XA9j2hee3s3lc15diEW9WnQMFUlbqlWL9mOUXAxowQDyoIgybp95mXLlSYfbOBtQ8bGNxZYfK/Dax52MDsm33ff7vbwPRxCp+PN7B5koFLj3F2EBzSBYjW/KuMmcvr7niQrQnVaxoDRHiCe1N3b2lfPuAxE+UVoX9Ogfa/VppgtB3Z+3/emCE44mETd34qlqFoVT3zgyDpFhOv/RKa55ISZ19+Qjfr12PRP0BmfvUxFNgEfxBR3dMdj4I8rFpKiVMomhr4HLMu3Rd+eNJzJh75KrTXRIU2x5rcn2dDMtP0FULAzbUSABQzGI3INV1ehd3nL7NWhOe9bJ4mlAwAMlwEo+nuh2tKzbEYgyagLK5KjmRCEJmSpRX6MrtQyEIeF4mIiKgOVQ0ZAnwhRAxFI6Jwo5RCmzZtEBkZWW15Xl5eA42IiIiIiIiIiIiIiIiIiOjAEGbThulAoJRqCeDwKosqAPzqoot5NR6fWtsxEREREREdjGTK9aHtsKQIsmWNqyYVmomYER77ds+cqzB2sIJSvgmuYwcreNMYbgAAIABJREFUPHNueExCkIwdMB8ZB7lqcODKR50E9chH1RYlxSoc31XfJPmoQcCxo3wPIqOA8yZA3foCAKB7iv3qLsz9EJZbKTI68FjDmOrQPWCdHqXrtGXr033fbYPRwmP32m/FAm1Rd2NnwObNKzItl0eiAscUL8YluR/gkj3TcctI/ROvGhYXpw1GCziUBuM0/Ko+xDdWuHyIgfFD7Vd+3fsmREI3Qd9qknslJ0EAO7IF49420ftBLwY/4cXTs014a2xYN2EfBaVAhbfhAwi8DkPzerfW9/HGgvp9HhVeweTvTLS90wvjat/Xpt3WddslAuNPUBjRS6Fx9P4n1TXFt6zbznkYOPUMXPTucJy5cjJSom3SF2qIjVEYrsmqrNNgtCLrvhMbB99n5+aB68xaEXz/Otpj095jbvtm1seJfzL3v3+mfC/Ynm1Zrc5dfqz9cWxUX+tyEeD71dWffHG5ZVVb4RzISXSgCXQ8CpWYSIUNjxoY0sVZ/Ue+EqTnhe69bhuMVhYBefeJkK3LittnUmITHER0KLO7TdJdnTRronBsZ+uyb1aG5zVFgc099ortzsfs9D4tLdd/mS6cLb5KGFpiE/c31iU21352wWghvEUmIiIi8lMzGC0uLo6haEQUlpRSiIur/p9Lah7DiIiIiIiIiIiIiIiIiIioOgajUTD61Hj8l4gUumi/sMbj3rUcDxERERHRQUcKcgGXIWaOLPreVXVd+ExEgLvJxCYKb401UDLV9/XWWAPNgph0GWqSkwkZNxCY/UHAuurrNBhPfQmV6J+8cuYR+ufSvEVTGE98DjW3AGp2NowbnoSK8gWb9WgVIIyk4FvrAk+AJLpw1z5wMFrH8q2INq1nEK/d5ZtFq9sfgfAKRpO5n9mW9xxxdMA+WlekBl7R/FloHqsvNqtsr6aaYLS8AzAYrSHnNL1wvv3KX/lZcM//JGThaHaTy5dssW+bWyToO9HE9N8Ea9KARZuBOz4V3PJx8MFoQHjsM7oxe2qcm5o1URjU0bruc3MEa9Lqb4b++PcF93wutmF3lU7rp7ST92TxD5CbTwEW/wCsXAh5/UHIY1f41zNNSJFvQo2U+3YkKS2GpG/HGZ2sB7F2F7A+vW62SY4mnKE2wWhREQpdW9jX+ebv0D8f3du78jzUTROCWmECW7J8P3/pINiwLiQ2DhyM1r0l0CnZuuzPrdUf24Vj6Pyy3n0bIrLmNCg0FDq3UPjlTg/O6Be4boUJ/LgmdMc5u+uhHCMe+OkziGlzo1BLbrsuq4BfEC2RU1JRASl1Hnp7IAn2XXHG4dYHtZWB88YbhF0I7MJNQIHDkFin2ysjHyiv2F9bRJCr2YXiYvZvy4RG1nXslNoEP9oGo7lfFREREZEjIoKysuoXIrGxNr80ISJqYDWPUWVlZSH9h0tERERERERERERERERERAcbBqMdGq5RSs1RSu1USpUopfKVUluUUj8rpR5TSh3nsr9eNR5vdNl+U4D+iIiIiIhoW92kRsjX01zVrwgyGK1SZIRCZEQYJVbNegPI2xOwmnr6K6i4ZtryMf0VoiKsy0b09D1fFREJFVG9Up/WQNtE63bx0V6cUjDbutCjWdmBoueRAat4YKJb2QbLsrW7fN/t8gXCKhjt+dv0hWPvw2HX3oDkAHNz2jgJRtu8Cn2LlmuLqwZYxWmC0fLDIORKR/d6N+Rr7TEUfrnD/gD45HeChAkmXvm59gEddpPq1/6+BrLbPw1gd77g6EleJN5sWk6If+knwZIt+/t1G/aRU+Sufl0wNTuH1b4xpr/1DlPuBW74wKzzCSemKbj6XRNvLnC+nvMG+I9ZigthPnYF5LbT/RvM+xwy83VfPRHI+09BRreFnJwM87hoyIlNfd9HJEDO6YLTn+6vXffM5XWzPbI1/1KhNsFoADDaJqgUAN7+NfTPJ9CxqYt/nuo+G9KBvGLBrryQDwsAEBsNtNNcZ1w4SOGXOw10bmG/zZRSOL6bdZ1Xfq7+5IMJRvt+NSd5EYWK06DQUBrWw9mF2MVvSrWgntootAnbSY9IAXJ2Axv018S1pXsWjaP0bYI5PtKhTbxemC/cBjmjNeSU5jBvOx2Sk9nQwwopu8tuu/Dr/u2tC/NLgApv+F1X5Jfal78419mY3dynVb22LCnXf5YXVyUMLSGI63C7Y5tdMJpdyD0RERFRbZgWF02RkZENMBIiImciIvx/5291LCMiIiIiIiIiIiIiIiIiIh8Gox0azgcwHEBrANEAYgF0AHA8gHsB/KKU+kMpNcJhf11qPN7mcjxbazxOUkpppuwRERERER2itq0Lrl3zNsCJ/9GXb1kDyc5w3J1ukmldTravS7J8fuBKY66FGjTStkrbRIWJZ/hPzv13f+CEbvp2ER6FJ/+t/ILllAImn5iJeFOTlHKAB6OplPZAl34B63Uvsw4EnL3Ktx/a/V14uASjSWYqkJVmXdg0Eery++HxGDi9n/2AW5dXCUaLTdDWG/b8UEfjaqoJRsuzCM4KF+EYjAYAQ7oqJDWxr5NfAlz3vmDc2yZScwJPfDdNwapUwYeLTSzavD9IpMBmUv268hSYF/XzC/b6zysmFm+xX9+gSfsDwewCB62ERTCabt+wODddc7xCSpx1/bnrgA8X122YwtsLBW/Md7eOod2r7+RSXAi54ijgu/e0beSpGyDFhcA370BeuQ/IzdLWbVWxC4OKF1uWBbM9TFMwf4Ng4SZBYal1+2zNfpMY4L0UyM3DFTol29epGgQYCrr9rzLQo3G00oagrs8QbHB+GebKqL5A7gsGtk72wHzN/+u9Kw30bu3sANo1xXp5STmwLUuqPXZrQ3r4BZgQHah018Z1ea10Wl/nnR92r4lXfzaxOrV273vduQUAUiNa+YLLNv1dq3XY0R33m0Tr2xTbBAQRWZE3JgKfvAQU5AIV5cDiHyB3j2noYYWUbTCaTTu7AK+8MAz6tgqnrurzpc6OiW6OnKk5+3+22yZVA9ObN3Wxgr3KKvRldsFoPCYSERFRXbH6pxfKLnWXiKiBGRa/yKrrf+BDRERERERERERERERERHQgO0CnslMdGABgtlLqMRX4L4Rqzsh2NZ1PRAoA1Pyz7Hg3fRARERERHexk/fLgGsY1g5r4LtB/qL7OrDcdd1ehmWwf4XE3rLDxxxz78q6HQ938nKOu7j7VwA+3GLh5hML4oQofXKnw0dUGPAGSCM4fZGDh3QbuPU3h0mMUbj9JYf6dBq4aqE8bUgd4MBoA4LjRAat0L7UORvv9H+Dhr0zbACerQKSGIA+P1RcOHL5vUs5ZR9jvJ21HDgcuvA1qwjNQX2wFeg60rBcjNslZVcQ1sl5ffhhOJK/UEGEfTm2a5GyHm/6boO2dJl6ep0/1KywVjHnZRN+JJi56QzD4CRNDnjSRliO2r0+OJxH/VCRDzuoIKfSFKm5IF/yywdlzWLI3tt51MFoYhOl5Xewb8Y0Vppyj32lu/0SQW1Q3k05yigRXveOu751PVt+3ZNkvkLM7AtsdvLA/fAj56i1H6xmd/5Xl8uXbgW9XOh/z1ixB/0dNnDDFxJDJJo542MTSrf7tdYF6CY1r94Zuk6iw7AEDZ9hkb776S4iD0Rzsf900wWIb0oGNGaEdzzUnKEwfp/DF9UbIJn52a6Hv56W5VYPR3D+XqsEdRFQ7mgzrOr1W6pai0Eaf2VtNag4w/n1Bn4kmrnzHDHqSZ2HGbm1ZidEIuUY8JNhgcQd0w24cpW9THERwJB3ifpzhv2zV75AdG+t/LHXE7ghgdwljF4wWDqHNNe0ptC//c6vvPiEQN/dpqbn7f7YLZotvtP/nZk0UurRwvg4AKLa59rMLRiss40R/IiIiIiIiIiIiIiIiIiIiIiIiIiJyL0ymDVMd2QngdQBXARgCoBeAHgCOBXAjgO9r1FcA7gUwKUC/sTUeBzMltmabIP4vtT+lVAulVG83XwA6h2LdREREREShIiLAr9aBJQE1bw2lFNSVE/X9L/jScXfaYLQD8G5SSgMnQKl7XncVKjK8p8Iz5xqYeqGB8wcFDkWrNKCjwqNnGZg2zsCT5xgY3FkBkTYz6w+CYDTlIBjt8NK/tGUTZwlW7NBPpI0Jg00kqZuBZT9ry9XNz+77eWQv+zCFHoP7wBg/Ceqc66GiY6COP1Nb992dYy2XD+q4/2fdZPKM/PCdnKwbWTgEo8U1UvjqRucHwus/EPSd6EXENV6cMMWLXzfuf3Yv/iSYtaJ6/T+2AG3uNHHXZ/avz5exo4A9u4DPXgYArNjheEhYvt3Xt9v56eEQPqALCdDtGxcdpXBCN+uyXXnAA7Pq5n1w68fO+20UCbx72lakfPYIzGcnQN5/CuYbEyE3jQT2Bt8FIlOuB/5e5KiuLhgNAEa9aMLrMIlhxDMm/qqy323aDVzznn/4TbYm/CHRJujCqaYxCm9epn8/rkoNcTCag/2viyZYbEO6IN3Zy+lI0VQDL19k4JJjnF+DOHF4O33ZrBVVg9Hc952WG7gOETnTUCGy/xngfgVvLRBMnev8eCy/z4Y59S6U3n42XpyRals3NaIVsM06YDkUdMd9BqNRqIjXC6RttS777r16Hk3dsbvvsA1Ga6QvC4d7k5qyHYxpp4OgWN0x3kpqzv6Nm2fzW/u4mOqPzwwQ2F5Tgc3HakVl+hfYawKlFa5WRURERERERERERERERERERERERERExGC0g9RiACcDaCciV4vIGyLyq4isEZF1IrJQRF4SkVMADASwoUb7u5VS+hnX/sFogdMF/NX8s+yafQbrOgB/u/yaGaJ1ExERERGFxuZVQOo/QTVV/Yf6fuhztL7S2j8hu3c66s97MAWjPXKZfYUjhwFd+tXPYKxERuvLjANwg9fUpR/QsoNtlVMKZiPRu0dbPn2h9UTbRpFA4+iGT8uSr6frC4eOgUpsse9hoyiF64Zaj7llHHBSrxoLTx+n7XpM/hfo2sh/ZvV5A/f33zreuu3ObP2QG5o2fChM3g6n9VX4doLzwaxK9T2n+RuA45408fBXvgPsjD+CD22a33gIAEC+9e17O3Oc97V2l++7w/yrfXI0AVf1STdmj+blUEph6oWG9tw1da5g2bbQP68fVjvr85NrDGwc+QUueK4PMO0x4PNXIK/cB0x/PORjqtSzbC26lG3Uli/cFLiPV342sWm3//I/t/r296qyC637CEUwGgAkN9WfA9btgl9QW204CUbrlmJdZ+NuIEuzLSrFRgPbJwc+tvx+r4GYyLo59+mC3QBgfTqwNs23EYIJRsssAErLG/44QnQwcHs+DJWbhwd37LnpI0FGXuD3v/nyvZDbz0DpjP/imIz7sSLG/h5te2RbYNu6oMbkhO4UYhuMVlY3Y6GDVIXNCbXg0EgUtTuqxNkFowXzr7vqUFmFoLA0cL3M/MB13FwtpVb5OCDP5rf2sTWC0W4YphDtImTebnsXBTjuOdkuREREREREREREREREREREREREREREVYXJVFIKJRH5RkRmi4MZfyKyBMDRANbXKHpCKeVxukq3YwyyDRERERHRoWH+rODbHjcagC8ERr0wW1/v168ddVfhtV4e4fRuIUzInI+Bn7/QV+g/FOr/3oZSDRiu5bGZjWpXdoBQSgHHnWFbp7EU49GMidryv3ZYL09WuTDHD4X5wIWQZT/XYpS19NU0fVnzNn6LHhqtcOVxCpFV3k//agfMvd1AVET1fVElJAP/ucGy62gpwyfld2JQR9/j2GjgrlMUbh6xv482idbD2plWAPPifjDvPAvyS3jlhpuaYEaj4TPw9jm5t8L7VyokBxH3PnGWwLjaixWa/dqJddHdfD/s2IT8vBLcMsP5xy3r9gYbuQ1GKwiDCe1Ogqlq6tVa4daTrCuYArz4U2g+qsotEtz1mYn+j3ix0z+vsJpLjlbYPcXE2cseRsrTFwJezUm3DigAZ+Xp3/OzVthvDxHB9R/o6/y9s3pZdpF1vcQmtqtx5csbrD/qzi4CdjsIn3DKyf53WLL1vpaaA2QV6PvulAzMusFAm0SF2TfrP7p/41KFgR3r9mC4cqJ+/ZX7R3EQwWgAsCsvuHZEVF0w58NQaJ+k8PWNwf16seXtJvJL/AcuInhzgYkTb9+EfosuQKcua9GkRw6WxxwesM9NUZ2Bresge8OlKryC+2eaMK72wrjaixa3evHVX8Gf53Xb2TYYLcjjIx2ivDY7TEmYJX/Vgt270O6jGI+h0DTGuixHc43ZUHTXvDXttrkerOTmPi2tSn5enmaXaRrj25ZVdUhS+N91Btrt/bwg0PnDbnszGI2IiIiIiIiIiIiIiIiIiIiIiIiIiEKNwWgEEdkD4AJU/5v0HgCGaZrU/HNtm//VrVWzjYM/ASciIiIiOjRIsMFox42Gattl30P1rxOAw3pZr2PBl/ZjKPHNdqzQBBN5griblNJiOMhvDjlZ8iPkoUv0FfoPhfH891DJrepvUFaiNDN9AaB9t/obRx1Se4P77FyZ85a2LKvQenly3j/A378Bcz+D3HY65M+5wQ4xKFJcCEn9B9izS1tH9TjSb1mjKIXXLjGQ94KBDY8a2P2MgT/v96B7S+vZyOr6J7X991n1AX4bn4WCFw2kP23g8TFGtaC/1vHWfWZLLIq3bQV++xZy37mQ7z/QrqO+NVTYh1sXDPJt8yfG1P/ANkZ1RjkiYELhpIkZrtpu2u37fiAGo3mDDM27f5TaN+m/pp/W1v78ZJqCk58zMeV7wfLt+nrPnqdQNNXA9MsNJD53BTB9Uq3XHYxb9ryoLVuyxX57bMkC7E7p62vsjtpgtMa2q3FlYEd92ebM0K1He2yqcm3UJsG6TmkFsDHDuoNT+wAbJ3kwtLtvRx7RS+HGE/136hcvULh8SN1/rN+7tcLgztZllftHSZDBP6kBQgOJyJlgz4ehcGpfhfJXDBS8aCD7OQN/3Of8uDTiGRNZBdWPhY9/K7jqHcG8vI5YHd0L2yLbO+5vY9Teg9WnLwEA/vOKice+3t9/ZgEw+iUT0xeaKC5zf77Xne9sg9ECBAQRVVNus8OUhlnyVy3U5uOgBM1vonOKwuv/cO3RfGZR07hpmgN4FW62V1ru/sq5xdYN4zQfOZ3SR2HLEwZ2PGkg61n7Y3mOTU5foGC0cLiPJCIiIiIiIiIiIiIiIiIiIiIiIiKiAwuD0QgAICJLAcyusfgUTfVwDkb7L4A+Lr/ODNG6iYiIiIhqTdK3AeuXBdVWTXjaf+GQM6wrL50HKcr3X/8Xr8E8+zDISc1gXns8KnanWzaPcHE3KTs3wbxuGOTkJMiYTpAZzztvHALy+kTbcjX6yvoZSACqUROg91H+BU0TgYEj6n9AdaHvsUCLtrZVPDBxccHHrrpNqqiSeFNeBvl0ajCjc03StsC8YTjk1OaQ83rYV7Z5DaMjFTq3UEiKtU+xUB4P1FRN6JtpQp67BY2jFRpF+ffTRhMGBQCpEftDAeXdybZjqE+68CEVZsFoAKCUwp2nGJj87/odXLmKwj9RHfFjk2H4vaCNq7Y79wYTuQ1GKwyDCe3BhuY1iVZ46EzrSrvyUOvwzts/FSzeErjejcMUYiIVZNPfwJwZtVpnbaR4M3DjHuvj5bo0+7CGtWn2fa9O3f+ziNgEo4XuPdO8KRATaV2Wlhuy1cB0EETUWhOMBgArd1ov79Xaf1tMOUfh2fMUBnUEju0MvH+lwvgT6u84M6yH9bo+Xer7rgtGu2KIwn+O1I8zlK8H0aFMdz4MJsQ6GB5DoXG0QnxjhSM7KPx6l4GTewdu98cWoPmtJtre6cWXKwQv/mTi/74I/hy8PqorAECmTcK6XYKZK6zrjZsmSJhg4rTnvcjIc74+XU2PAqIjrMuKgwyOpENUhc0OU3JoBKMFurpJ0ITpfrkivILRdNe8NRWWwi8gsiY392lVQ2fzSqzrxNn8Nl8phdYJvuO5nZwi/T1ToGC0QgZGEhERERERERERERERERERERERERGRSwxGo6q+q/G4n6Zezalrzd2sRCkVC/9gtByrum6JSIaIrHLzBWBTKNZNRERERBQS6duBVh1dN1N3vwaV0t5/uS4YrbwM+L16NrLM/Rzy9I1AZqpvxuqq31Hxv9ctmzsNRpOyUsiNI4GVCwGvF8hMhbx0J+S795x1EAQpKYIsnw9ZswTy9yJg9WL7BsP+XWdjcUtd8wgQU2XGr1JQ4ydBRWiSXg4wKiICasIzgEeTILBXi1JNaoxGsjer+oIFX7odmiuSuhky9zPIud2BFQt8+7ady+6FSnR166zX9xigbRfrsp8+haRutixqHa/vMj2ixf4HW9dCcrP0letRsOFXDemOkw08NLp+B7guqjt+bTTYdbuCUiC/RLQhTzoNPaG9wiv4/R/rMidBMD1bWr8+ZRVAbnHw40rNETw3J3B6Qf/2gGEoiAjk9QeCX2HbzsG1O+ZUqE837ns4Kv8by2q78g3kFOmfz9pd9s/1h9WCCq+vTkEp4NXsZ4makItgKKXQSnOsS8sNXWiGrqeqx6aWcfoQR10oWLMm/suiIhQmDDew6F4P5t/lwQWDDBj1eBDsnqIve/VnUxuAcdRhwIxrDHTWnPpSc8IrxIToQBVu10rHdFb4doIH301wdrOYmgOcOdXEhI9qd0zYF/JbUoQF6yts65Z7ge9WAWe85PwCyC6st1GUdVkxA4DIDbtgtNJaXKCGGbt3eqDw6+RY6+UzVwAfLzFRVhEe1xZ7Cp3XXbLVvjzoYDTNLhMX47w/nXKv/vgWKBgt5+DJ+CMiIiIiIiIiIiIiIiIiIiIiIiIionrCYDSqakuNx7pZ2xtqPO7gcj016+8RkWyXfRARERERHZRUv2OhZqyFmvYn1BUPAt3+FbhRoyZQoy6zLutxJJDUyrJI/vyp+uNvpvnVeTZmnGXbCE/gYQEA/loA7PYPuZIfPnLYgTuyfD7kwj6QG0dArj4WMv4E2/rqvRVQRvjcGqt/nQD12q9Qlz8AXHgb1Es/Qp1xeUMPK6TU8WdCvboAuOh24PgzLeskeDWpMRp+wWh1yJx6N+S8npAHLnTcxrjywZCtXykFHDdaWy7n9YSI/wzqJtFAjCZfL8uTXH3BtvW1GWLIhFvYh1P3n27gp9sMDNj76UenZPv6tbU2qhvWRXcLqu3ObF8OphsFpUGtKiR2ZAsGPGYiv8S63Mm+kRKnL0vPC25cADDjD2cb8tguCpKbBblxBPDr1+5XNHA41B1ToaYthZrwtKum6ooHoZ74HCqlHdTVjwAAupfp3+/rdun7Wr7dfl3ZRcD8vZ8gZtsERCRahIHVhi4Ybdby0IVl2AXkVIrwKKQ0dddvUoi3RSh0baF/U41/X7BFc/qtPN/oXo9Ud6d5ItLQXis18O3NSb0V1j9af4PI8iT5fvBWYPVGZyfzP7YAf+90dm7QXSsZCmikub4uLg+PkCY6QFTYJEr9Maf+xlHH7O47AgWjHdlBX+H81wTd7zfx++aGf9/tKXQ+hnd+s6/r5j4tqxAoLvM10IU9x9f8l2VBSs+3Xh4oGC2roOFfHyIiIiIiIiIiIiIiIiIiIiIiIiIiOrCEz+xvCgc1/1Ra9yfSa2o87uJyPZ1qPF7tsj0RERER0UFNKQXVuQ/U2HthvLkI6pbn7Ou/tVhfZhjA0adYF37/AczXHoD50p2Qn78AFn1frXhJTH+kRra2bOpxeDcpbz5sXbD4B2cduCAlRZDHrrAMYrOibn0eqkOPkI+jttRhvaDG3Qdj/CSofsc29HDqhOr+LxjXPgbjsY+Bwaf5lSeaOa76a12R6rdMvN6gx6djvnwv8NGz7hqdeE7Ix6E0gXL7fPmmfxulkBxrXT2zMkxiL1n4TbBDCynTtF4e7sFoADC0u8Li+zwwX/Ng4yQPXruk7ga9Lro71kXpg9GePU+/7tRcwO309MKCUsjnL8Mc0wnmdcMgv31rGcZXFyZ8ZOKvHfpyJ0EwLWzCqmoTjLYqzVm90W13QU5vDaxY4Hod6p7XYTzzDdToK6GiY4Ax1zlve+vzUGPv3R8GesGtwPBz0aYiFU3MAss2a6dMhnn5UTCfuh7y9qOQDSsAAF5T8M3KwK/5zBW+OtlF+jqJjR0/BUd0QVyzVwOmLkHIJafHpraJ7vptkxB+B7ceLYFIp2G4VcRE+p5La81zSnN3miciDW8YXyt1aaHw5mX1M5BMT9K+65nSHOcn8zlrnJ0X7AIx9cFojodBBFTY7zBSHiBx6iAQ6Ghxej/7GluzgLFvmyiraNjwLbvr3po+XCy216duL103Z/q+52lCpONinPUzcbT9tn70a+uBFQfYTTOtbzmIiIiIiIiIiIiIiIiIiIiIiIiIiIi0GIxGVSXXeJypqfd3jcf9lFJupjHWnNlfsz8iIiIiIqpq9FVAp97WZWdeCdXWPqtYtdOUlxQB704GZjwP+b/z/Iq/iz1J22eE07vJEhezQmvrt2+BXVud1R15PtTZ19bteMiZlh38FsV7c111MazwZ/+FxaGddSsfPQd88LTrdmrU2JCOAwDQ+yjbYplyPSQ7w2+502A0vPck5Nevgx1dyOgmgodD2IdbVx5nYNtkAy9fpHDTcIW7T9U/iZcuVPhugoHnz1d4bUw+Xkm7HlPS70JKRbpl/b+je2FjVGfLssfPNDFhuIFmTazXtW2PaEOedAp+nw959mZfCOXKhZA7z4JMvLjOw9EKSwWzVtjXcbJvNI5WiI22LsvIdz+uSqnZgZ9/35KVOOGemv8vwBn16Qao0y6tvswwoKb9Gbjx6Cv8znkqIgLqwXfgmfA0upVttGy2Nh3AhuXAzDcgbz0CueoYyPcfYH06kFUYeLULNgQORkvQ/VuGIKXE6XeCJQ4vEQJxemzq3tL5wSrCAI51+68n6kF8Y4WOSYHr1VQZFKQLqkvLbdjQEqKDhe545AmTi6XzBii0jAt23je8AAAgAElEQVRdf31LVlouLzViULT3V1Rp6c7vP52e93WXOIYCYnTBaAd/jhWFUkWFffkyi/vdA5Dd2V8FOGwNcXCdtC4d+KGB/xXXHgfXyFXZXZ+6vb1at8v3PV8TjNa0kbNzwzn97et9skQs7/0KS+0HzGA0IiIiImpoHTt29P1zsr1f8+bNa+ghERERERERERERERERERERUQAMRqOqas6sTrWqJCJpAP6qsigCwBAX6xla4/G3LtoSERERER1yVEQE1CMfAq06Vi849VKoCc8G7qB5m6DWm+FpoS37V3uHk+1tZnLKb6G9FZCnb3JcV51zQ0jXTcFTCTUzuoFSpUkt0hhQYhEMVBQ46UBS/4H5yDiYx0X7vq44GuZlR8KccDLMe86BrPrdV++XmZCpd7kaE2IToG5/CWrQSHftHFBKQb29xLaOjG4HqbENdMFouyP8XwP5790Qt4lZIaY7ehgH6KdZbRMVrjnBwHPnGZh0toGvbjTQOmF/eaNI4NGzFK49XuGk3go3nmjgip67cGXO27hlz4t4JGOiZb9LGg1AkWGdfDY4bgcAoEMz6zGtT9eHqugUVnj8F/70KfDrV+46cmlDBuANsEt6HO4bKZqQlvS84MOaUgPkOTYyi/Bm2jUwbCMhLBxxvC8ULaW9ZbHq3AfqwXeAFu20XajzJlgvVwo4+1p0F+tEhvVRXasv8Hohj47D9uXrHA196TbgkjdNjHnZ+oWLjQYiI0Ib3jOwo77snd9CE8blNBitW4rzPgcdBiQ0Do8go5oW3eP+oFsZFKR7r4VDMMY/mYLL3jJx7BNe3DzDRGoOw9rowKO7VAuTXDQ0jlb4+qbaXbhFG17cVvAyStY0xYydF2vrVQb9pu0pd9x3WYAsqkq6475SQBPNbUsRg9HIjYoAO8zWtfUzjjpWmxxlw1CYd3vg40morveCZRcIbGX7Hn2Z2/u0dem+BrlF1g3jYpz106u1wpc36Ld1QanvPrKmQMe9cLj+IyIiIiIiIiIiIiIiIiIiIiIiIiKiA8sBOpWUQk0pFQNgTI3F82ya/K/G43EO19MD1QPYCgHMdtKWiIiIiOhQptp3h/HxOqjvdkN9uhHqxzwY974OFRkVuHFyq6DWWab0fY8d7DQYTZ9iI3ePgcz9zO2wrPta8CWQm+ms8jGnQvUaGJL1UgjEJ/kt6la23nHzm7JehOXeGCAYTVL/gYwbCMz+YP/C9cuAzX8DS+cBC76EXHs85N0nIfed62gs6s6Xod7/C2rGGqiv06DOvMrx83BLdekLHDvKto7cMBzi9e57nBxr/b7N8vgHo2HbemCbs/CjuuIm7EPKSrX92JU1pNP6KmyfbGDL4wbWPWIg53kD955mwKj6BPdk7PvxyJKlrteR+M9iAECPVtav/bpd4nrCfYFhnbAn377rriOXrn03cFCf0yCYFk2tl6fnuRhQDf/YnII8UoE3U69B/5LlgTs65WKoX0qgPlkP9XUajBd/0IaiVVIjzoP6aDXU3a/5Fx59ClT77vq2Hg+6tbYIuwOwLrqb5fK0qZNtx1PV+78LcjQBEYmNHXfj2Jj++p3gv/MEi/+pfViGNiCnRuhdj5bOk4k6JoVJipGFxCYKL5zvbnyVwWhJmkDOrMJaDipI+SWCknLB3zsFRzxs4t1Fgt82Ay/8KBj+tIkcTZBIICIC0+3BlCgEvA6DGhvSv9orrJzo7leRL+y6BasHvI21jxjIfSkST753HSJnrELyhwu1bbIiklCqorBSDnO8nrQAoaaVdGFOCkATzS1zQXheflK4qrAP9JPtG+ppIHXLLhjNyWHr+G4K/9JnAQMAfl7fsOfkbJfXOFmF+rG6fRrrd/m+55VYl8c3ct7XqH4KD43WvyrLtvkPrjBAMFoWg9GIiIiIiIiIiIiIiIiIiIiIiIiIiMglBqNRpbsAtKny2Avga5v67++tU2mMUqqrw/VU9bGIaP5Em4iIiIiIalJN4qBS2kFFRTtvlNw6qHWVqUjL5d1SfBPcHdElG+0tkxnPBzGy/aSoAObk8ZB7znHW4D83QD3yYa3WSSEW7x/KNcBFANSjuydaFxQGCEb7dGrA8DQAkNfudzaQgcOhzrgcqn13qNadoIy6/8hFTfrUvsKGFZDXH9j3UBdQs9sqGG1v+4akmwheNexDvp4G89xukJEJMMefANmyZn/Z3M98ZSPiYV41GLL2zzoesXtKKbRPUuiaohAZ4X9clZfv3fdz79LVaGRqEqY0EpZ+BQDonmJdvnaX+wn3RYYmzeqXmZAAoQ7B2pUrWLwlcD2nQTApcdbLgwlGy8gTnPKcF/maT7c8UoGftwzHufnOgkDVeROglIJq2QEqrpnjcajIKKhRl0E98hFw5DCgUx/g/FugHp0RsG2P/tYhMhsjO6MC/qFpaREtHY/LTpcWIemmmqYxCsfbfEL54KzAAXuBaI9NU8bDPL0NzFfvh3i9GNDReZ9tEms9rDp1/TCFNy51nrQUHeH7ntREE8hZz8EYizYL+k30Iv4mE42vN9HvIdPvPbsuHZi53H2Qyp9bBcOeMhE13kS7O72Y8Uft9zEip9yEyDak3q0VFl6fi5YVu/zKUirS930NLlqIdzKvw/XjeqP7VVegW4pCVISCMgyo1ochMbmp9rllepLwW6OjUKgJcLWSmuPsPW93TRobY11WyGA0ciPQNfTBEoxmU6YcHreG97SvmJEPR/cNdSXbJujMil1YrF2QnJV16b4GumC0OBfBaABw/+n6zzR25vgvC3TcyyxgiCwREREREREREREREREREREREREREbkT0dADoNBSSl0CYLaIpLtocxWAB2ssniYiW3VtRGSDUmo6gMv3LooCME0pNVwXdKaUOhPA2CqLygA85HScREREREQUpBZtg2pWpqIslx/X1cVMewkQDrHqdxcjqtKtCLB9PeS6YUBuVuAGHg/UA+9AnegwQI3qT3yS36JoKcNxhfMxv8lxtk07lm1BYym2Lty5Ceg9yG+x7EkH1i0FPnkxqOFaatfVUfhQqCnDAJ74DHL3v/WV3n8K8p8boZJaonlT6yrbI62PEfLwZVAjzw/BSIOjC6FQq3+HRGUA2RmQp27YX/D3IshNJwEfrvKFwj1w4f6ytX9CbjkVeO8vqKTQhDqFgmTt8u2Ppf4fpcjiH4A1f+x7HAEvjihZgd8aH+O4/8SlsyAFueiasRKAf7ud2YLerazbRkcApRX+ywvsAke2bwQO6+l4fE61v8tZ0JDjYLR4Batohm173E3WFxFc8LqJuev0dVZu7o9uZRuddXjW1VBd+rkaQ01q6NlQQ8921ab7MX2AH/2fe5kRjS2RHdClfHO15btCFIw2oGPdJPcM7a7wywbr1/L7VUBOkSChcfDr1gYRmeVAbibw3pMQpXDY1Q+jVytgdVrgPtskBD2ceqGUwuVDFI7rKjh2sonMAMFmSXmbIX/tQrPNAHC0X3lBKVBaLoiOrLv0psJSwYodwKpUwTXvOntv/7EFuGyw83XkFgnOnGoidW84yM4c4ILXBS2aCob1UNhTKFi6FejeEmjXLMySquigoAvN8YTZv0SSjX9h0Cs3YseGRfYVz70Jxo2vaos9hkJiY+sgoT2eZihW7lJ/duU6q6c7giil0CTKukYBg9HIjfIy+/LtDq8lw5xd0JfTYLQeDi5DZy4XHN2pYc67e9zlWGOPTTCa2wDr9Xv/MiBP8xFJnCbI0c6InsCcNf7LV6UCc1YL+rYFUuJ827oowG6c7XLbEBERERERERERERERERERERERERERMRjt4HMFgFeVUp8A+BjAPBGx/LNqpdQAAPcCqDlbcieA/3Owrgf3tk3c+3gwgDlKqStFZG2V9UQDuBrA0zXaP20XvkZERERERKGhYhpDOvcFNq101a5cRVouj/S46MRu5mtlFa8XyuO8UykrhUy6EvjxY2cNzr8Zatg5UL0GOl4H1aOE5paL78l6MmAw2jl5n2nL5JGxQGEe1NnX7F/2+cuQF+8AKsqDGakldd3jwJlXQTXWpI7VMXXs6ZA+RwN/2wRNLPoeGHUZulhvaqyP6govDHjgn/YjmWlQyZrkrDrm1YQPqTkfQT55xbowOwNYPAfyyxf+ZQW5wK9fAaOvDN0ga0E+fgHy33sAr0X6mMbAkj8dB6NFmyVoJCWQSVcieVssYNEuv0RQYVqHBsQ1Anbn+y8vVI31K926NuTBaDuzBRXOctEcB8F01rwX1u1y1r7Skq2wDUVLqshE57LN+gpVqIfeB4bZhBzWoe4p1kFxALAuuptfMFpaqILROtRNYMV/Big8/JX++uOSN018eaObi5nqdD0bVcNgv30XcuVE/Ku9wuq0wNdCbRIOjNCsrikKy+438OavgrVpwEd/+D+3LmUb0f76fhAAzaJ7AZ2WWPaVVQi0rqNAuDmrBZe+ZWJXnrt2ny0VvHRh4HqVXpsv+0LRqpo618SGDIXrP5B957LxQxWeP08hwnNgvNZ0YNCGyIbJbiZFBZA7zwJWzA9ceeBwqBueDFgtKdY6GC3T4x+2HIhVP1a0gZgKaKIJGgoUEERUjTfA/Wn6NkhpMVS0u/C/cGN3ReT0sNW9pf66tdKsFYLHxzgdVWhlOzyuVMqyCZvVfZzWJBootAhf3FMIZOYLcjXBaPGN3J8cWidYb+9pCwXTFvqW3zdK4eHRCoUBjnvFofsYhoiIiIiIiIiIiIiIiIiIiIiIiIiIDhEMRjs4NQJw6d4vUym1AcAWALkAvACSABwOIMWi7R4Ap4hIwKmgIrJDKTUGwPcAovYuPhbAaqXUnwA2A4gH0B9AzSmnXwG4393TIiIiIiKioA053XUwWpmKslwe5eZO0vQGrlNRBnicT/CVaY85DkVTX+6ESkh23Dc1gOatLRfHee3TTI4t+hV37HnWto48cxNw5FCo9t0hG/+CPHtz0MP0k9QK6vPNUIbDJKY6pCZ9AhndTlsuOzZCAeihmUReasRga2R7dCrf4t9400qgnoLRSssFny8TLNnqmwS+Os26XqxpP9tcPnoWWL3Yuuy796EaOBhNVv8BefcJYMFXrtseWbzUcd1Ec29az/xZSIj5F3CYxVhgICe7GL6PkqqLjbYORisyAgSjhdjUeYFDpSoZDuf6d2th/V7YugcoLhM0inLW0RfL7Md2esG3loGD1StdDnXnf6EaMMWmcbRC+2bAtj3+ZeuiumEUvqu2LMOjSZZzaWDHkHTjp3drhUlnK9z7P+vX5+uVwLYsQfuk4La5Noio6j6VmQoU5qJVfLyjPusqIKwutElUeOB037a7b5TgjEfSscXr2ycSvNl4f+dl+8JNkiuytP1kFQR+3hl5gpkrfOFjJ/VSOKZz4Ncsv0Qwdpr7UDQA6G71abmNh7603hk+XwZ8XuP48PI8Qf/2wBVDwiSxivYxTV+AnVd8AVhe8YWzVvsKsMx03Ub827rswxRgyVbrfTAMLk8BADL5GmehaADUk7McnQuTY4H16f7LszxJiJESV+PbU+h7LTwBLiB0Z3ulgCbWt8woLHV+/ULkKLh7xyagc5+6H0sDcXop3Ls1EGHANjh5TRqwPl3QLaX+z7m68K/YaKDAMsxMf6zQXXP2bOkLaLayLh3I0xwK44LI1Wvl4FL2sa8FRx+mAgZCMjCSiIiIiIiIiIiIiIiIiIiIiIiIiIjcYjDawc8A0H3vVyA/AhgrIjucdi4i85RSZwOYhv3hZwrAgL1fVj4EcJWIOEhIICIiIiKiUFBnXgWZ/rirNtpgNI+LTswAgTCAbxJwtLMZmrJzE/DuZEd11d2vMRTtAKDikyCdegObV1VbHiv68Kv7B6Xi3umnIhIVAfuX2R8BY++DjBtY67FWpS6+PSxC0QBAJbYA5uRCRmhmLYvvfdjNJvBlfVRX62C07RuAo06q/SADKCgRnPaCiQUbA9ftUhagUobNxxqb/3Y3sBCTz/4Lef5WX/JbEHqWOQ8eS/Rm7/s5wZujrZedkQurYDRd0Eex0RgCwCpmQP7+zXJ5sMa/b+LVn0MfjNa9pfVyEWDTbqBPG2f9zFyuH5uC4KY9L9m2V09+AXXMqc5WVsd6tNQEo8X28/0bhSoyPbU/tyY1ATok1bobrbtPNTB/gxffat7y7y4S3DcqyGA0zaWNUTMELycTbRKdBaM1bxrUUBpcr1bAii1HYR6OQJmKxkkFP6CJFO0rb+a12Kn2yrLPuMSGdMHIZ819++VDXwqmnKNw20n2597PlvqC1Opaep64Dvi46h3BOf0F8Y3d7XsiYhm8VZtALb8yyzZiH/7lcL124/QfiyDgWB0sq9YuQP2DkScM8vdk1e/AT586qqum/QkV4ezXlUlNrJdneZKqXfs4YQqQUwQkxQauZ8VQQJNo6zKrACQirYrA97XYsfGAD0azuwVyethKaKwwpr/Cx0vs7xFmLhfccXL9Hwx155UWTa2PCxkWQdSVdMeeVvFA0xgg3yIAbdk20Y6haYx+XTptHIb3TltoojDAcY/BaERERER0qBARLF26FGvXrkVGRgZKS0vRvHlztGnTBkOGDEFsbIAPIsLY9u3b8ccff2DHjh0oLi5GcnIy+vbtiwEDBsCo5e9MMzIyMH/+fKSmpqK4uBitW7dGp06dcPTRR9e6byurV6/GypUrsXv3buTl5aFZs2Zo1aoVhgwZgqSkOvzlBRERERERERERERERERERucJgtIPP8wB2AjgWQAcH9QsBzAYwVUR+DGaFIvKNUqoPgIcAnAcgUVN1EYCnROSzYNZDRERERETBU83bQEaNA75+23GbMhVpuTzKzZ2kOEgbKA88O1IyUyHvTgY+f8XRatXlDwCnXuKoLoWBY071C0brVroB8d4c5Hqqz8RtGgPc0XO9o1A0AMCKBcB374ZqpD5HnwKcdW1o+6wlFR0Dad8N2Lbev9DryyWPjVFoFQ+k5fpX2RnpnwQlAF7/qxm+Tfe1v/FEA8N7Wk8uX7RZ8NT3JgrLgFP6KIw/QSEqwlf3l/WC134R/J0qEAG6tgCuH2ZgWI/9fb27SByFogFAjzKL51hVZqq+LEmTiBVi4vUC370HeeLq/QsTWwDZGbXqt1vpBsd14737X+gE0+JF32tPESyTCHRBHwBQqqIRIxYz3xd9DynKh2pc+5Snjxa7C0UDAKdzYzolAx7DOrhg3S5nwWjr0wWr0/Tl73SeicPXrLQubN4G6p7XoAaOcDbgetCtpcLs1f7be32/84H8e6vtu7sjah+MNqw7oFTdhlXcfpKBb/+2vg75coXgvlHO+yqvEEz/TfDJEsGuPOs6Rs1rntwstIrv7Kh/XdBPuJLtGyCTxwMr5qMJgFH4zrJeFMrR1JuHfE+cX1lmgf06HvtG/ML67v5cMHawIClWv+98tDi44EkAyC12Xvfrv4JbT+LNJjoluwv+0gWjEOk0dHavpG6GXHu8o7rq/96GchH25Hv/+78psjzNEGV1bRJAZkHgYDRdmJNSQKzmeilQQBBRNQ4+E8HunXU/jjoWZDa0n1cvViguE3y9Un+OvOszwR0nh2Z9bujG064ZsDnTf/mGdH1fuu1lKKB7CrBkq3/ZcpuMcN3xys6AjtbH3Jo+Wxq4LwajEREREdHBLjMzE5MmTcJ7772H3bt3W9aJiorCiSeeiIkTJ+Koo45y1O/YsWMxffr0fY//+ecfdOzY0VHbefPmYdiwYfseP/jgg5g4caK2ftXP7E844QTMmzcPALBw4UI8+OCD+Omnn2Ba/OeQlJQU3Hfffbj++utdh5gtW7YMd9xxB+bOnWvZd9u2bXHNNdfg7rvvRkREBCZOnIiHHnpoX/ncuXMxdOhQR+vKysrClClT8N5772HnTuv7bMMwMHjwYDz44IMYMSJ8fodDRERERERERERERERERHSoauDpERRqIvI/EblIRDrCF1A2BMAFAG4GcC+A/wNwA4CLAPQHEC8iY4INRauy3gwRGQ+gJYATAYwDcA+AmwD8G0AnETmGoWhERERERA1H3TEV6DnAcf3yUASjOUlyqLCfHSm5WZBrjnMeivbpRqhx90E1dCIAOaY6+YchRKEcV2e/4bd8/FCFJmU5zjvfsgYy+8PaDK+6Y06FMWUmVEQYZs2362q93PTu+7FNgnWVnRGt4YWBArU/nee2FpMxfte5mLUCmLUCGPmsiWkLTZRVCPKKBbJ3pvbXfwkGP2Hi82XA96uAW2YIrnrHV/bDasHIZ018sFjw1w5g5U7g82XAiGdNfLty//HhK4cBM80qspDszXJU11JC8+DbuiCv3V89FA2odSgaAMRKIdo1KnRUN9Hc/z6pGpJW0x6xTgOxC0YrVo20ZXLjyMCDC2BPoeDCN9wnJxiarKTKfVUqygEAkREKnRpZb5N16eLXzsrM5fqybZMNXBDzq3Vhp95Qn20Kq1A0AOihyQxcm2FAzVi777EJhSxPkmXdRzMegAdey7KqlALuOa3uz9FDu+vLFm8BduU638du+1Rw9buCH9bo6xioGYyWiXaJgcPfPAYQr39LhR1J2wK5sA+wYr6j+knePZbLswrst/87v/mXe03gC5v3XnGZYF6A7Ew7boLRZq0IPt1lcyawNQvYkQ2k5gDpeb5wpuwiIK/EF6hUUg6UexmKRsGJacDLVMnPgZzX01FdddNTUCdf6Kp/XYhZlqcZio3GlmWDOur7y3JwWWUXTqS7XipgMBq5sfca1Y7YhT8fIOxOaW7ycuMbK8y8wYPMZw3ceYq+4Ys/OQjqDzGr4GUA6NHKepxZhUBmvvWW0V0DKAV0b2nd35pU/VaOsf6Iz9ZRh7lvo1NUZn9/RURERER0IPviiy/QqVMnPPvss9pQNAAoKyvDd999h6OPPhrXXHMNKioc/hOoBjRp0iQcf/zxmDNnjmVwGQCkp6fjpptuwjnnnIOyMuepyM888wwGDhyIH3/8Udv3jh07cP/99+OEE05AerpNunQA77zzDjp16oTJkydrQ9EAwDRNLFiwACNHjsQll1zi6vkQEREREREREREREREREVHocZb4QUxEckTkVxH5SESeF5HHReQxEZkqIh+IyDIRCTxb0d06y0RkrohME5EnRORFEflcRP4J5XqIiIiIiMg95fFATf4COOtqoFMf4IjjoZ79FjjJejJ6mYqyXB7lcbFSJ5MeywP8QfG37wAZOwL3c+woqPdWQKW0czY2Ch/tu1kunrT7ATwR+yGOaAcM7Ag8eY7C42croEAf8uTHMByHtwAA+g8FDj/Of3mH7sBFt0M98pHzvuqb0nzMI/snE+iC0R5u/n+I7lmAhB670aHLBrwTfxFeTbzKr97l0wQx15lImGDCc83/s3ff8U3V+x/HX9+ke9CWtoyydwGZiiKCIkNRZAiK4p4o4h7g1qu/K6I4roqgXlCc14kILtyKqCiKomyQPbso3W3y/f0ROtKeb3LSpgP8PB8PHuSc70yanJyc9vuOG8ckF6OeqbpY4ZUfNSu2ah5b4qbY4sqD1nDX++Xt1ttcy9C34Dd7FU3y7YWK1YTeux1ef6x6jUPDIC6x/F9YhFexuu9lurSNNjT2luDKLLsdgosY10HLerkO64SRKOu3AADyHT5SnNb/hrZzzPbhuIeqF2LgrPAS0Hu3475nIu5B4egTIzz/nxyDe1A47ufvpfMe6+Cy9Zuy+Gy1xjHJVfYcd0xy8eVa7/czUzDace2gZYKP41THXqhAkh/qSJem1nPafxDSSqLghJEAZDoTcCnrxJ1huV/yqftGhqRCjxaefa0SyoMuHAqGpMKyaQ76tK79x0ApxYq7zZe/7QYyrt2tmfWV/7pVgtGy0jm6DcT4CBkESIwGhynVrwHSL9wfUH1jMJqPw7HbRxrY56vN7T5fA0U1WEtoNxituETzmY95CFHfTuhY+8cU/cf3uK8ahHtoHO7zjkL/8gU6cx/69Ka22qvbn4Ozrg143CRTMFpIErnKOhgttbki0hAIlGZ9euTF9JFWKfMxPleC0UQgXP6D0UjbXfvzqGW+Lg9V5/Q4PkpxUX9zw0c+qfsQLlMwWrfm5jZr91jvN83eoaCNdU4xm8z5C9UKzVRKccmA4LynaA2FDT/zQQghhBBCiIDNmzeP8ePHc/Cg90WGDh06MGrUKM455xyOP/54nE7vX7A///zzjBo1qkGHo82cOZO77roLl8vzi74uXbowevRoJk6cyODBg4mI8P4d1oIFC7jnnnts9f3YY49xyy23lPVdqlu3bowZM4YJEybQv3//ssdt2bJlTJgwoUp9O+69914uvvhisrOzy/YppUhNTWXUqFGcd955nHbaaSQne3+50quvvsrpp5/eoH9GQgghhBBCCCGEEEIIIYQQQghxpKvH740XQgghhBBCCFHXVEIy6panvXcefTK6uBC+etdrd7EhGC00oGA0G+E2Jb4XAeuV/kOt1H9/QHXpa3dWoqExBKMp4Nb9M5n6+AVe+3VuAMFoGTYTt0JCUR/uRkXF2u+7oXEaXpwVFgmkJCjMS6w9doa24LKUF2o8nXsXulniIzhm5XbYvF/TMgG2pNvr8/ScT2o2qZysmrW347uF1Wqmbn0GNaZqGF1lqWluPl/jf5F/gsv7vsa7D5DjtP/8jg4zP1cKlJ+kp+8+gPHX2B6rom/WaZ8L+n0pzZbSbjf6XxfBqmXWFV+ZQecmD/Ehp1cp+uS3Al5eVfW9a9jjblb/y0Fqc8XebM0Pm627HtP70CRMwWgxcf7uRr1IbWYuu/JlNwsGjUZ//yFpTkMKA5Bcsp9jNs7n5BdmNZjwtz6tFanNrAMnFv+hucIiB7Oy+T9oWzmvjsqvlwNphIUoZoxXTHnd3IEp5Kch0kWF8NkbAbVp7LI+wPsKRsvyEVAWYQg3Aljwm/lxdjpg8XUOTu2u+PQvzWn/qfo6zy4ArbXf5++OLMi3kWEjRH04uQuM7FG7Y+iMvXqme70AACAASURBVOgpQ8p3bN+Avqnqe6qJ+t9qVIsO1Ro70ZAPm+5sTJ7DOhgtKgwSY2BHZtWytByN51OHma9womhDkGyOBKOJQPgLiwfYv7P251HLfJ1OVffMsWtzaN0YtlnksO7Mgqw8TXxU3Z2XmrJdU+IUjSI02QVVy7ZmaAZaPAKmkDWlzIHn+3yEPfo6h/Kli4/PCYGa9ZXmllMaxucEIYQQQghdUgL7a/YFH8Km5JaokCPzz5RXrlzJ5MmTcbvLT+B79+7NrFmzGDBggFfd/fv3c8899/Dcc8+V7fvkk0+49957eeihh+psznatWrWK777z/I5+7NixTJ8+ndTUVK86mZmZ3Hzzzbz00ktl+x577DEmT55M27ZtjX2vWLGC22+/3Wvf4MGDeeaZZ+jevbvX/v3793PvvfcyZ84cvv32W1avDuwbK+bPn8+DDz5Ytu1wOJgyZQq33norrVu39qqrtWbhwoXccMMNbNu2DYAvvviCe+65h+nTpwc0rhBCCCGEEEIIIYQQQgghhBBCiOA4Mv/iQAghhBBCCCGEbUopuP9VdKVgtCKsV02GBfJJ0l3zYDS2rfdd3newhKId5lRUrHmR9JY16LyDXoFlOt1m2FkgBo87vEPRAJTDen+FgELTAura8PGf/uss+kMzorsyLvquKNKdx9kH36vZpExhVUGiC/LQ/7klsEb9hqIumIrqO9hW9S5N7XUbXykYLc51gB2hLW1PK8pH9lm+ivTZVq/6AVXNYLRHPrXxZDDIK82U+OULcyjaIV2KNlju3xdifoBnfa15eqLiizXmoKyx/oLRYuvwRRiAlHiICbcOcvngdyg5fwzOmGnsdyUZ+0h2pYEugW8Xwklja3G2gRnVS7F2T9Uf2GerIb9IExnmO5zhrV9spKIBjkphsDorDQVMHuzgh01uXv3Jup/EwykYbd4DAbdJMgSjpf29C7A+Jq3Zbe4v3BDqsStL89Iy88/ql7sc9Grl+VnHGQ5hLrfnNRAbYR4fIC3Hd7kQpZyOQ/9UhduH/jmUuczXPoehLDpccWJnOP845fe4VlN6TGv/lawMHoe66UlUY5snMxYSY6yDW9OcieQ6rFPTosM9IZTWwWj+x/T1kTY63Ho+uRKMJgLh75oIwM7NtsI7GzJfQbPVvVtKKUb1Usz6yrrzL9bA+KOr13d1mD7XOh3QqjH8tatq2U6LY5PvvhQt4v0HnldW3WC0lCDmOs/5RnPLKcHrTwghhBCiRvbvQE/oUt+z+EdQb62D5m3rexq14vLLL6eoqDzseuDAgXz66adERVUNb09OTmbOnDl07NiR2267rWz/jBkzmDhxIj161HLSfYAyMjwJ1FOnTmXGjBmWdRISEnjxxRfJzMxk4ULPlwa5XC7mzp3rFUZW2ZQpUygpKSnbHjduHG+++SYhFgF6ycnJzJ49m/bt2zN16lTS0tJs34etW7cyefLksu3w8HDef/99RowYYVlfKcXYsWMZMGAAJ5xwAhs3bgTg0UcfZdKkSbRr18722EIIIYQQQgghhBBCCCGEEEIIIYJDgtGEEEIIIYQQQqAcDvSQs+HLt8v2Fakwy7phzgA61jYCboqLjEX6YBZstw6vKaXOuzmACYmGSj3wOvre8yzL9BM3oe76b/mO5UuCO3j77qir/x3cPuuDw/DidLvKbtZlMJodN72paTPZ/yr4MHchz+y5keYle2o2YO4BtNuNchhC5GpA79uBPu8o+w0cDtSUGagJ1wc0Tmoze4vgE9zeK+wbuzICGifaVzCaw3cwGvnVSw06WKD5Ym21mgKw6e8DuGc/Cq8/5rduJ0Mwmi9LN3ged6tAA4BOTSC1eWkwWpZlHRUTxGSBIFJK0bMlLNtkXf793nhOmjqbtCfetSyPcucSpfMB0HefA1/noZyBnDDUnlE9FY9+WvU1k18MS1bDmN7BGUdVfl3u+rvs5sPjlTEYrUPy4RFwovNy4LWZAbdLNBx70n9bic6JtXxNTHndfP4YaQj1GDvL3ObdyeWhaOAJSDLZkgY9/GRIph30XX44Ucp/MFeVIK4AgrwclmXKO+grgPAvf/u82inzmJbzrEZIma/Hx+E4PF7bgdK/fFmtdurfb6FOHFPj8U2v3zxHNOnOxpZlUWHmdum5/sc0nXU5HJ5QUSv5xeBya5xH6PNABJmdYLS922DLGmjXrfbnUw9q8kqZMc4cjHb2c27cz9fdOanbcMBwOjyfxa0+R+wy5Cn7CllrmRD43KobjNYiIfAQNpNN+4PSjRBCCCGEEA3CV199xa+//lq23ahRI958803LULSKbr31Vr755hsWL14MgNvt5oknnmDevHm1Ot/qGDhwINOnT/db79///ndZMBrAl19+aQxG+/nnn/npp5/Ktps3b868efMsQ9Equu222/j8889ZssT+74gfffRR8vPzy7afeOIJYyhaRU2aNOH111/n2GOPBTxhb0888QRPPfWU7bGFEEIIIYQQQgghhBBCCCGEEEIEhwSjCSGEEEIIIYTwqBRgUqysV02GBfJJUttYPPnr19C5aiqJPpCOPiPFd9sufeGYYQFMSDRYx59mLvv1q7KbOjcbNv9V8/Hik1GX3AktO0DvE1HhfoKeDgemsC93+YrqlLjgLGgOpnGzzWE2T+y5hXj3AQblLaVt8baaD+Z2ewKrGlkHZ1SXXv0z+paRUJjvu+KZV6Fad4bIWOhxvOd2gFKb2asX7/JeYZ9SsjugcaKsszEByFcRvhunVy/AbslfUFRSraYANFv0CKQ/bqtul8LAg9F+3wFaa9btsX4dHdO2QqRDjiHhIKaBpRNWcN5ximWbrO/bwpWaweeMY3/eSbCwanlySZrXtn7oCtQ9L9bGNAN2fAdIjLYOvznzWTdFsx2EOM1xHBk2QnMAFJWOZdvWld1MiVdMOEbx1i9VH9+Jxx4moTnfWvzgbTCFMqY7G8M3C2DkJV773W7NHzvM/Vk9QwuKNb8b2kSEwimVMmTaNIZQJxS7qtZfu8dGMFpOYO+lY3t7jg/xUf6Cv5StUC5z+FfgIWVKHSbPP9Eg6MIC9E0+ztlNjhkSlFA08BzPTXaEWr94o1Z+RlLz4VgdQdJsZLmago4UvoNk84og1s8pkxCAvWA0gJXfHtbBaHYuD1VHVLjiqBT40xBePOcbN1efFPxgbCu+wsxS4q0DxnZlWj8wxr4UtAgwGE0pz7lPdaQ0zFxnIYQQQggh6t38+fO9tqdMmUJKip/fax/y8MMPlwWjAbzxxhvMnj2b8HAfFxrqwV133YXDxhcNde/enbZt27JlyxYAVq5caaz7xhtveG1fe+21xMXZ++Bxzz332A5Gy83N9Qqba9++PVdddZWttgD9+vVj0KBBfPfddwB88MEHEowmhBBCCCGEEEIIIYQQQgghhBD1QILRhBBCCCGEEEJ4OLxXSRYp61ScysFoWmtY9iF60TwIj0INPbt84bvbHHhU1n7WNNS5N3puf78Y/fGrkHcQfv7cd8Ou/VB3z0U5q7m6UzQoKiIKHRYBRQVVC/ftQBcVosLCIXNfcMa7aBpq/DVB6avBcBheCxVehy0auYDD4zUzPOczrsucHfyOl38Gw86pcTfa5YJ3Z6F/+Bh++dJvffWv11BDzqrxuCnxEBMOOYW+6yW4sry2mwcYjBYe4lnAb7UgP9/hJ0hw23q01gEH7iz6w39aQqsE2J5pXXZqzme2x2rq2kuboq1sDWtjuw3AvoOwxpD71uVQaJ3WGg4aJhndcJMFrj5Rce3r1j+DRb9rnjgH0kjAKtAh2eUdjMaS19FDxqNOOKMWZmpNp+1CP30bfPmOZ8ewc1DXP4YzIZmRPRUv/2B938ImuxnZA07prmgUAQt+0+w7CEe3Udw+QnHAT95hKYeu9GLZsRHtcpWdpzwzUZFToPnoT09xowiYPk4xvFvDDqbSBzPRL/4fvP1MtdqbgtEOOOPQSxejKgWjWQXYVZRrcezbsNc65Azg6NYQHe79GIeGKDoke0LQKlu3V+OJOzLzN8eKXrtCMfHYugljEaLWLZhTrWbq3peDNoWkGHPZnhDr9NioXz6i8elHA1WThNJtBB2awpyU8pyTmeQWSjCasEfv2Wqv3vYNft6hGjZfr7aa5nQe117x5y7rEa55TXPZCZqwkNp/9ExBig7l+RxnZZchT9l07HE6IDkG4iKxfZ4aEVL9MNRAQ9iEEEIIIYT4p1i6dKnX9gUXXGC7bffu3enbty+//vorAAUFBaxYsYIBAwYEdY41ERkZyZAhQ2zX79q1a1kwWl5eHjk5OcTEVL2Qs2zZMq/tCRMm2B5j4MCBpKSksGuXIRm7gqVLl5KfX/6h6ayzzrIV8lbRySefXBaMtnXrVrZt20br1q0D6kMIIYQQQgghhBBCCCGEEEIIIUTNSDCaEEIIIYQQQggP5f3HwEUq1LJamLPSYsr3n0c/fn3Zpv7ybbh+Jurs68BtSKmoRGfugx8+QU+/0t5cux2LmvNttRd2igZqwvXw6iPWZe/NhnNv9ITeBMMp5wWnn4bE9Af9FYPRYko4XILROhdtrJV+9b8ugl4DUcktatbPvy+Dz/5nq6669pGghKKBZ0F7ajP4xU9+QrzbO5irRYn/hSJe42hNZKh1AFuB8hOMlp8D6bshKSWgMZdtsl79f8UgxayJit0HoFVjWLgSxs32DqEakLeMHoV/2h5LAddkzmFa0+kBzfH1nzRrDBlzqaV5LKt/htxs60qxhkSEBsDhULx4ieLSl6r+HDanQdpBzf4c67aJrvQq+/Tt4+GpJag+JwV7qt7jFBdB+m702Z29Cz5/E/3jp/DmGkb1TDAGowF8uAo+XOVd/uNmzXPf+A/MKeWgUjBacRHs2QItOgCQFKtYfL2T9BzN3mxPkJ7T0bDPY3ReDvrSY2HvtsAaxiV5zgEPZhLvsk77yHLGe14rlezMsqhcQV5R1X3r9prrP3q29XtjajPrYLTN+32PD5BmeB1U1iYRzuzTsH/GQgRCfzQ/sAYxcaj3t6HCg5cO1jg68DbR7lwS9/wBVH0/svN69hV0FO0jGM1fiK0QcOhayMIX7FXevqF2J1PLTEFfUPNgtCknK+YuNQ/wzXoY3q1mY9hhFSoNnjAzUzDaHkMwmqkvh8Nz3n5qd8Vbv9g7V42wvrxnS2xEcM9lqhOgLYQQQgghREOTmZnJpk2byrbj4+Pp2rVrQH0MGDCgLBgN4Oeff25QwWgdOnQgLMz6S9SsJCR4pyofOHDAMhjt999/L7sdHx9Px44dA5rXMcccwwcffOC3XuXgupSUlLLgNrsq3//NmzdLMJoQQgghhBBCCCGEEEIIIYQQQtSxwL4CSwghhBBCCCHEkcvpHZZUpKz/2Dm0QjWdm42ec1eVOvq1x9AlJaANKzkry0pHvzLD9lTVuMmykPIIpC6921imZ01D5+XAso9qPs6tz6DiEmvcT4PjMASeVQgobBRWQozrYNCGjIuEHi3gkbMU718T3MtMvQt+91+puj55rdpN9bZ1uM9oYTsUDUCdc0O1x7PSp7X/419SiXdQVUqJIc3LQL0xk8gS6+dKvsNGwMnfqwMa72CBZuM+67JTuylCQxStExVKKcb2USy4xsGgTtA+CSYn/8wH28fjwH6IFUPO5hb9BvGuTP91K7jlbfMYR7dWaK3RVw+yrqAUdDgqoPHq2vBu5udWk1vczDMETiSXWKdJ6etPQW/8Iyhzq9L3ljW4rx2KHp5QNRStVE4WLPwvp3Sv3hglNk9jwCIYDWDruiq7EmMU3VJUgw9FA+DjlwMPRQPU+MmoZ76AgaOIi7M+nzzgaAQZe9A53mkgu/wEo+UWVn0Ort1jfl32b2/9OKfEW+/PyPV/HPEVpNQuCVrEw8RjFcumOYgIPQx+zkL4obdvwH1u18De29t3R72yMqihaAAhTkV8VGBtotx5JG1bbllmJxjNFOakFET7WB+cK8Fowo4lb9ivu2197c2jDvgMRqth371bKUb2MJef+3wAJ3U26MUv4j67M+7TmuK+eST60PmSy0eQYmPDsetAvvV+U1/OQx+7B3exP9+aBKMFW7G9708QQgghhBCiQdu/3/t6eKdOnQL+vXVqaqrX9r59hl+Q1JPKQWf+hIZ6f/AoLi6uUic3N5eCgoKy7eqEjNlts337dq/tG2+8kXbt2gX07+67vX9vnZGREfB8hRBCCCGEEEIIIYQQQgghhBBC1ExIfU9ACCGEEEIIIUQD4fAONTIFo4VV/CT57ULIswjOSd8NOzb4Xvla0YE02LHRXt0OPWDYOfbqisOKCgtHt+oE2zdYlutz/Xzb+plXwYLnfNcZPA415spqzrCBU4ZgMneFReCuEtoU7+AvZ2ApQZdlvcTzu69BTXoQkltAi/bQqRcqwnt19xc3Oxj6eM0XnSvt5vScT2rcj4l+/h5o3w2at4O2XVEOc6ibLimGdb9B1n7ISkM/PMn+QDHxqDnfBGHG3kb1Urzwne/ja6LLe4FGSvGugMZwFOQSWZAJobFVyvJVpN/2+qclqH7DbI+3aqe5rI/FOpfRqfmMDvkDMveh7zzb9jg4Q1D3vYI6eRxaa1YNaUuHDmsocoTb78NC1+bQoYlCvzbTXKnfMFRCkxqNU9uax0GjCMgusC7PMYS8JLnSjH3qS/vBR3tRsfEBz0cX5sPqn2HvdgiPhLDyn5O+fZy9Pj59ldgLpzJ5sGL21wGE5wXIYRUGu209DDi91sasCV1cBDs2eUJs23WrsnBPFxag33oq8I5btIdRl6OSmqOmv0PjDRoerfrY5DuiKFRhuDZt5PfovnRuCsmxip1Zvn9GVs/B9Xus647pZe4nMcZ6f0auz+EBSM+xnuMVgxTPXyjfRSOOHLqkBNb9ag78NGnSCvXSiloLsm4SC1l59utH6TwS9/4JLaqWpdsIRnMbPtM6FMT4yH3LLbI5QfGPpt/8j/3Ku/5G52ajohvV3oRqQV6h5uct8P0m83t8MA4Xb1zpoNH11p9FM/PgnoVupp6qiI2o2WB62UfoGVeX7/j5c/R1w9GvrzZeAnM6IC5SgUWQc3YBaK2rHDNdho/VpcFoLROs+7NS02C0/u3hx80166NUQXGl64pCCCGEEPUluSXqrapfaiBqQXLL+p5B0GVmen/hSlxcXMB9VG7T0EK3HD5+b1ZdWVne34oRG1v190/+NGpk7zNxenq6/0oBOngweF88JYQQQgghhBBCCCGEEEIIIYQQwh75s1MhhBBCCCGEEB4Op9dmsbJeORlWoZr+frG5v7RdkJtta2j946e26gGoF5ahnE7/FcXh6fjTjMFoZPr+tnQ1cBTaRzCauu1ZGHlJDSbXwDlNwWiu8tuuEkblfMhfEdbBaO2T4IyCz/h7tyd5Js51gGG5X3J+9hvAoUCxip74CHXM0LLNQZ2gQzJs2l+1767N4bUrHPR90H9w2mk5n9LU5fvnXVP69vGeGx17wsPvoZq2qlpn9c/oO86CDEPqji9xiaj//oBq1qaGM61qaCpEh0OuIaQKINHlvegjpWR3QGM4cBPpzrcsK1A+UkBKLf8soPFW7bBe1B8bAW0Tvffpbxei/+9SyLeRYFTqpDOhSUvUkLNQR/UHQClF8zHjuGLpizzb+Go/Hfg2upcnyEB//LKxzuEQyqiUIrUZLN8SWLtkH8FoACyeBxNvDqhP/e1C9F0TApuIla3rcD9+PU9f/wSzv655dyYOqh7b9LZ11E4sUM3ov1ej778QNv/p2dFrEPzrVVRiM0/5+pXoy4+z1Zea+xP89SN6zQpUmy4w4oKyfgDifOQoPh9/ObfP7kHhoQDP64cq4v3kLlod99busT5+dGlufvQbR1vvT7cVjGa9P8kQtibE4Ujv3uI5Bm/4PfDGp11Qa6FoAP3aKtbvtR90Ge3OJUSXWJYdyLcOJKrIFHSkgPAQT0Ca26LO5v2aAR0a4ruAaFD2+0gHtrLhd+gdYFhhPXrrFzcXz9MUWr8EywTjmBEToZh9vmLya9Yv2n9/qHnqC828ix2MP7r64+kX7qu6c/cW3Ms+AqwDcR0KGhnOcYpdUFhSNbzMZXVgAZyHpt4igMzhyBoGo13QX/Hj5uAEDBcUmx8LIYQQQoi6pEJCoHnb+p6GOEzpShcLgvGZpjavpTQU4eHeX1BTVBR4qrzdNtXp25/KP3chhBBCCCGEEEIIIYQQQgghhBC1L/hf6yWEEEIIIYQQ4vBUIWzMhQOXss7SDju0WxcXwS9fGrvTH79qf+zXHrVVTb2zARUaZr9fcdhRF99R/cbHDIVxFuFGkdGo6e+gRl9+ZIfqKcNlHl0hrKekmFvSn+SEvO+rVOuYUMSnNzp44p6+LNgxgQU7JvDS7iu5IPsNY7CPvul03LPvRKd7gsNCnIoXhm8lIaTAq975od/wx5Zj6fXLc6y4aCPNwwypMoc8vvc2n+Xqtlk4viuEo473Wc+WjX+gH72mym5dUoK++5zqhaIB6v1ttRKKBhAZphhhnW0HQKMICD3tPK99KaeeGtAYDtxE6gLLsnyHjWC03VsCWiSyLcN6/1Ep4HCUPwN15n70/RcEForWYwCO//sfjutnloWilVIXTOXhfXdxXN5PZftCdDGXZJkDzqyMPrgYvXc7bF1nXSEkFAaMDKjP+tKjZeALsJIHneizXD97B9rl8lnHq376nuCEopVa8Byc15Wvx6wKXp+VWAWjsW19rY1XHbqwAP3Jq+iL+pSHogH8/h16bBvcs25HvzbTdigaSkGbVNSZV+O48wXU+bd6haIBPoPObmr2GIXu8vflp77QPLDY93GjcjCa1pp1e63rdmlq7ifRFIzm++0JgDQJRhP/AHrmtdULRet5AirAIMxAndEzsPpR7nzi3Acsy0rckO9nnazpqORweBYtR4dbl180TxbLilqw/rf6noFtW9M1E1/wH4oWTOf0U4T4+OuHgwVw9nNulv9dvdene+fffL0rjocSp/JW7HjyVPmJjmut+WfjdHg+o5kcsMijdhnyxEvz0FMCCEarHLoWqEsHBC+goaA4aF0JIYQQQghRbxo3buy1feCA9XUHXyq3SUhIqNGcrLgCuCZfFyrfx8zMzID7yMgw/DKpkqSkJK/tZcuWobWu0b9LLrkk4PkKIYQQQgghhBBCCCGEEEIIIYSoGetV7kIIIYQQQggh/nkc5cEUxcq8arI0GI3Nf0Jutrm/Ja8HaWIe6p2NqKatgtqnaHhUo8Zw83/Qj98QeFuHA258Es64DNb8jN6zDZV6NHQ9BpXcohZm28CYQt8qLnxwlZDgzuKzrafzQ9RxrAzvhVs56Fy0gZPueJJGTdoBTdAXToNXZtgb9/XH0K8/BrO+gl1/c+LDk/iLBL6MHky6M5G+Bb/SP385CtCP30Av4A9HPGe0WsBPUVXDd3avb02yK808XngknDweAHXezeg7z7Y3T1+Wf4bOSkPFV1go8ft3sH9ntbpTc39ChdTuZbfRvRTv/mq9oD+7ABx3voAeOwl2/Q0tOxCdejQJN7rIzLPXv0IT4bZYoQ/kVwgAICwcigqrVirIg7yDEN3I1ni7DeuGWiZUWoT/zQIo9pNgUom6wBy0p5KaE33N/Xw3awhfRJ9MujORPgUraVW8g/lxF6BNgYMVNCvZQ7//TkD/10fAwugrav05ESyXDFDMXRpYWESToadC+A3w5n+MdfSkE+C5pbYeBz22FkIFd29l4MPHcd6AZbye2Tvo3Sur6JwGFIym03ahbzkDNv9lrvS/J4wBQJaatUGF+w5KjI8KpEP/DlY63OzN9oScWEltZg7xSIxWWMUdZeR6wtaUMrc1BaOZwtaEONzoXZth+We26qr7XoHIKM/5Rtuu0Gdwrb/f9W1t/fo1ida5ON3mhcBZ+RBlCDcDcBvCiUqPEqZjEEBeoSYqPHiBQuLIok1PLl9t1v1mDK1uaBau1ASQkxwU8VGKAR3g2w2+6/Wf7mbpNAcDOgT2aN40L4un23xatn10/q98tH00ia4MXCu+Ae6ybOdQEOcjLDY7H5pW+tjkLxgtOQZCnVBsI+egpsFokWGKt69ycPZzgT9nKyuow6A8IYQQQgghaktycrLX9vr1gV8HXrfO+0tWmjRpYlkvpNJ1lpIS+yfV1Qkeq01Op5MWLVqwc6fnd2+bN28mLy+PqCj7F5FXrbL35SdNm3p/a8b69es5/vggfNmSEEIIIYQQQgghhBBCCCGEEEKIOuV/ZZ8QQgghhBBCiH+GCuEvRSrMWC3k67dx3zYafUUd/vFwn5MkFO2fZOxV1W6qlEJ16oUafQWOSQ+gThzzzwhFA6/XsBddYfGyy7NgIoxiTspbyg2Zs7gp42lG5nxCbFR5sJoadk7Aw+spJ6P/fRm4Smji2s+52W8zJXMOxx8KRasowZ3F11uHc23Gszi1Z069Cv7gx78H+g5FA9TMRajYQ98qP3BUwPO0nryG377B/eRNuO8Yj/u5e9DvzAq8n6hY1J3/RXUOfuhSZSN7+l/Er7r1Qw2b4AkIBFrE2+8/0ZVBlLZOUct1VEj/adLS3EnaLtvj7T5gnZrQvMKcdV4O+rHrbPdZSg043XeFCdfjQDM890vOzX6bLkUbiNL5dCraaKv/Mw5+hMNPQIu69hG70613J3RUPH+hCihAITkW1OTp4OuxXv8bfPwyOn0P7gcuwT0o3PNvxmT0gfSyavrHT2owe/+e+fFUzuqY7r9igNxWl9oz9+G+9zz0ht+DPl6g9FtP+w5Fq45ux/qtEhPuCQMJln3ZnuCyUjuzzHU7JJvLEmOs95e4fYccaa2NwWhJMYdLVI0QZlpr9N3n2m/QuTfqhDNQZ1+H6jesTkJA2yaWBwPZEeXOI95tSGDFE8765OduRj/j4sqX3fyd5v2ebnqHt3NsMx0vhAAgc1/gbdb/Fvx51JKtGfUz7oJr7B0gBs5w45jkYshMJflFWQAAIABJREFUF2t3+09w+22b5untPb32rYjsy7MJnusX7gLrUGnwHLMa+QhGO2DR1F8wmsOhaJXgc8plahqMBhBlvkwYkILi4PQjhBBCCCFEfUpISKBDhw5l21lZWaxZsyagPpYtW+a13a9fP8t6jRp5pyhnZfm4IFrJX38F+XpwEPTv37/sttvt5ptvvrHdNiMjg99/t3etfcCAAV7bS5YssT2OEEIIIYQQQgghhBBCCCGEEEKIhkOC0YQQQgghhBBCeDjLQ5GKlXnVZOjrD8OPn9bFjMqoSQ/U6XiifimloN+wwBod1d9/nSOdw2m93+0qv+3y8U3yzvIgC9W+O5w0NkgTsxZKCU/uvZW961uxbUMHlv89gGMKfjU3aNYG9U0+qveg8nkqhXr9z6DMR997Hrz7LCxdDK8+AksX2W6r3l6Pmv8r6sPdqNMuDMp8/GkcrWjayLpsZA/r/SkBBKN1KVxHjDvXsizPEVW+0cRHaGX6Htvj7TKs5UmJ8/yvi4vQkwZYV/JBvfiL/zoOB+rWZ6rsn5I5x9YYo3IW+67QujMqNEhJAnXkikEOsp9y0NtmJmlSDCinE/Xwe9C4qbGefuNx9Pj28Nkb5TsXz0Of3wNd4Ani0x+9XL1JN24KJ53pt1oj90H+t6gV+2fC8ts1v0wtpmcQ8jOj3IYwjK/eRU8Zgl7j/7lYG3RxEbq4CL54K7gdO0NQ46/xW83hUMT5CAIJVH4xZFd4qE3HjlCn53lp0jjaXLbbnJ/EwQJPeJoVX+MJcbjQ/70fAglzTGlXa3MxCQ1RtEuyXz/anUe8y7xoeOhjLm5+S7P4D5i7VNPrX25W7yoPSXIb8pKUjWC0Ah+n3kLw10+Bt9m2Dl1UGPy51IJ0m8GA4UHOU0yIVsy92H5Y6dfrodt9bn7Zoskv8v7nqnAAeHuF9cHgg1hPWLdr51bjGE4HxEaY55BtEcrqMhx7KgZDdm1u7rOiiCA8xmFB+jlJMJoQQgghhDhSDBw40Gv7tddes912zZo1rFixomw7IiKCo48+2rJukyZNvLZXr15te5yPPvrIdt26MmyY9+9/X3jhBdtt58+fT1FRka26Q4cOxVnhbx8++OAD9u2rRkC5EEIIIYQQQgghhBBCCCGEEEKIeiXBaEIIIYQQQgghPCqEKhUpc4BLmLb3B8fBomYuQkno1T9P5z4BVVejLq+liRxGHIbLPO4KCS4ul3Ud8ApGA1B3vwhnTQnCxHyLdx8gpWQ3TgxJMwAjLkQ9vxRlcR9Vq06o57+vxRn6cfZ1qGZtUO27o0LMoZK14f/GWi/4H97Nen9KvP2AgC5FG4g2BKPlOCqk/0REQaPG1p3s22l7PFMQUfNDwWh88TZsXWe7PwB1+X2ojoaUuMpOOKPKLjvBaIklaQzN/cp3pXbd7M2hgQlxKm4cZu85kxzr+V8pBb7CAbdvsD4OHUhHD09AvzMLvno38MmOuQL1vzWoB99AXfeorSYJI6Poe3E0vS+NY9nSFG6JWEjbhOol2IS5C+lZuMpcIT8H/fbT1eq7uvSKr3Bfcgx6SCx6SCzs2xG8zvuchJr5AarH8baqm0IcqyvhRjd3LnCTX6TZmWWdGtI8zhPKZtIi3hxqtNHH+rg0HyEvEowm6ov+43vcU4bgPq0J7sv7o1f/XL1+CvLgf0/ab3DMkDo/9ynVt7X9c5oonUeELiDU8Dk2u8C7r5xCmLmk/NiiDeFEPg4xZfLq9qOzOMzoHz4JvJHbDTs3B38ytSA9x/DiqeT49sEf+5IBnnC0+Cj/dUsd+5Cb6Gu9/8Vd7yZ6iovkm1w8/LH1/fktojcacBWbE78cCpwORUy4dXm2Rb6uy/Dx2Fnh2NOlmb1jYUQQDtWhhhz2QOXLcVEIIYQQQhwhLrroIq/tZ555hj177H1ZzB133OG1fe655xIebv2BoW/fvl7bixbZ+1KfTz/9lOXLl9uqW5fOP/98YmNjy7YXLFjAp5/6/0K2nTt38sAD9r9ILSEhgfPPP79sOycnh1tvvTWwyQohhBBCCCGEEEIIIYQQQgghhKh3EowmhBBCCCGEEMKjYjAa5lWTdRmMpp5bijrulDobTzQcamDVkCKfThpbOxM5nDgMK5XdFUKIXD5CfyoFW6iIKBw3PI56dKE5dK2OqDtfQCU0MZd3PQbOv60OZ3RIYnPUpXfV/biHXDJAcUIH732pzeC8Y03BaPb6beQ6QJIrjWh3nmV5rqqQMOAMgaQUy3r696W2xssp0MawoZR4hS7MR7883VZfXkbbD0xUSc1Rkx6ssv/XzccS68o2tnt4391E6ELffQ8aY3seDU3X5v7DFsJCIC6yfFtNvLna4+n/BNhWKdRd83DcOgsVGY1SCjXherhwWkDdRBRkMeO3iWzc1ofHzvJd96zeLpzKOxjjX/sfIFIX+G74e90FOOrNf6FvHAGbfIS1VUf341Bf5+F4agnqmKG2m9k99gTi4Y81932g2bzfuryFnzEjwxSt4q0TR9bvNQe5bMsw9ynBaKI+6P070VPHwh/fQ84BWP8b+qqB6F3VCE7atAqK/BzLSkVGoy69O/AxguSMnvbrRrnzUEC8K8t2my/Xlh8H3IZDQmm44oju5n7yimBftmbVDk1Grr2QKPEPsmGlsUjd8Lj5M9j29bU0oZorLNYs/1vz7XrN32n+60eEwr2jgv9ZUynFpSc4yHjSya2n2A9SrCyvCPKLId06L7rMzpAWuH382YXzUFGjSOvyA/lVjw/GYLQKw3Rt7ntepSJCq/8YlOpo/jgekILq5RALIYQQQgjR4AwZMoTevXuXbR84cICJEyeSn2+RfFzBE088wcKFC8u2lVLcdNNNxvrHH388UVHlv5NZsGABv/zyi88xNmzYwMUXX+zvLtSL2NhYbrjhBq99EyZM4KuvzF9As2XLFoYPH05Wlv1rOwD333+/V+DcK6+8wrRp03D5+hIpC6tXr+bbb78NqI0QQgghhBBCCCGEEEIIIYQQQojgkGA0IYQQQgghhBAezvJQpQhdyLkH3mRc9gLOcPzIqd3h5Mh1nJD3vTEoJ+g69oTUo+tmLNHwdDvWdlX15Ceo6Ea1OJnDhGnhvLvCimpfwWjOEMvdqv8I1LyfYcwVNZhczSjlfyG3uqAOg9E69IBL7kK98hsqNqHuxq3E6VB8drOD2ecrLhmgeGCM4qc7HSTFWj9e/oKCSrUt3ooCot3WaWW5jugKkwiBrsdYd/TLF7bGW7/XXNZ+57foce1h+wZbfZXpNRDVuGlATdSFU1GPLYbWncv29Sz8k5//HsDN6U9w+sGPOS3nE07L+YQrM+fy2dYRXHrgZd+dxsTDCSMDm3sD0sXGQ9i1mfdrVMUlohbvqp0Jjb4cddm9MGg0jLkC9Z8lqBHnV6mmRlxQJezRlh2buOG3a2kUYV0c5i7k2cXdWd7paa7JmMPFWa+wcPs4bs14wn/fGXvQuvZDcfS639AX9w1+x6MuQz31GcppCOH0oUV8zcM4rMxcopm5xPox9RXGprVGv/hvOm23XmznKxht7R7rssRoiIuqnfsphC/6tZmQWzXAU5/TNfBjjq9QtA49UPe9AiMuhIk3o+Z8h+p5QoCzDZ5Bney93iLc+TjxnAvHuw7Y7n9bBqQd9Dx+poexdAYje5rncvu7btre4abXA25aT3Mzd6kh6Uj842itYds668LhE1FnTYHmba3LtzXMYLSlGzTt73TTf7qbwTPdrN5trjs0FW49RfH9NAeDu9Tu++eM8YrTjqrVIVgb1hmXMp8jOQ7dxThDMFq2xeHXTjBa68b2HruocP91/EmJVxzbtub9FBTXvA8hhBBCCCGCYc+ePWzZsqVa/0rNnTuXsLCwsu2vv/6aQYMG8dNPP1UZLy0tjSlTpnDzzd5fDjJ16lR69jQnwMfGxnLOOeeUbbtcLkaOHMmSJUuq1C0qKuKFF16gf//+7N27l4SE+vv9lS/33HMPPXr0KNvOzs5m6NChTJgwgXfeeYc//viDtWvXsmTJEm688Ua6d+/OmjVriIiIYMwY+19E065dO55//nmvfY888ggDBw5k0aJFlJSYf2e6ZcsWZs2axZAhQ+jevTtffvll4HdUCCGEEEIIIYQQQgghhBBCCCFEjVmveBVCCCGEEEII8c/jKF/E2dS1j1d3XerZSBqE44bPcT81D359us6mo6bNQZmCnsQRTzkc6IvvhPkP+a/cd3Ctz+ew4DAsxHZX+OZzH3/kbwpGA1AdjkLdOgtunYUuKUafHFPNSdYeFROHbtYG9mytvTEmP4Q675Za6786IkIVV52kuOok/3VT4hXgPyRl/q7LAYjW1kGYOZWC0VT/EegPX6pace82dEkxyk9AlSmEKDxE0/LxiXAww++cvSQ2R13/WGBtDlHHDke9tgoAveA59OPX07F4M4/su6t6/U2bg4qJq1bbhqBRpKJJLOw7aK7Tp3XVQAYVl4iecD289VRQ56POnIzq2AN/ERCqdWeY/BD62Tt8B0JaWTyPn09N4qitd1KswryKXtp1BY0PbqPxwtsJ+J6VFMOBdIhPCrSlTzptN/zwsSfQ6LhT0Ff0D2r/ADRvg2Pq7Oo3txnKGEytE308S75fjJ73AB2aPYVVfOOe7elAE8um6/ZYd9klIR/95lxIbAaDxqDCDel6QgSR1hrefdZc4aOXYeTF9jssLjIWqdueRXU/FjVsQgAzrD2tEiAyFPL9BOxEVQj1TnBnBjTG5fPdLLzWidtw6lT6UfWKgYrr3rCutHRj+e28Ipj0imZQJ03nphKk+I+3fyfk51oWqfGTPTdadYadm6uU623r/Z4L1bX8Is3EF9zstpE/+MaVinP61d21HqUUH1zr4NQn3Xy5tnbGWBfehR6FfxnLS8PMTOG72flV95mC0RwVfvh2g69jghCMBjDnQs/juP/QZ4OEKFhyk4NeLWHsLDcf/em/j4JiDQ3uGSyEEEIIIf6JJk6cWO22pWH0ffv25ZlnnuHqq6/GfehLilasWEH//v3p2LEj3bt3JyIigu3bt7N8+fIqQVzDhw/nwQcf9Dvegw8+yIIFC8jKygJg3759nHrqqXTs2JGePXsSHh7O3r17+emnn8jN9XzWbNasGTNmzODiiwO4NlRHwsLC+PDDDxkyZAgbN3ounmitefvtt3n77bct2yilmDVrFtu2bWPhwoVe+3256KKL2LNnD3fccUfZz+jHH39k9OjRREVF0adPH5o2bUpkZCQHDx4kLS2N1atXlz3WQgghhBBCCCGEEEIIIYQQQggh6pcEowkhhBBCCCGEAEAph3Vcjj60GjM7wGCamjjqeFTq0XU3nmiQ1BmXoP0Fo/Ub6veP3v8xTEGC7gorqn0FBPkIRqtIhYTCiz+jL+3nu96jCyEvBz3zWjhoCKJo1sYTNJafg559p63xfRpxAbz075r3Y2Xc1Q0uFC1QdhbOR7tzyhb1R7utwxpyKwWj0aqTdWdaQ8ZeaNLS55gb91vv7xiRifNgut85lwmPRN39IvQ5ERWXaL+dybBzYNY0KLRIKrBBTX8HNXBUzedRz/wFo/Vtbb1fjZ2EfvfZwIPJTNp2hQ5H2a6uJlwP/UfAqh/QD08KaKgOnz5CpvoPC2LH8F7sWAbk/8CE7HdpUbIr0Fl7S98T1GA0vfI79N3neALXapGa93ON2tsN7QimEzuZzw30d4sASHKlWZan787EFIy2wRDk2OXPt9CfTfVsdOoFj7yPSkqxP2EhqmPvNp/F+uFJcOJoVGyCvf58BaN1PzaQmdU6h0PRpRms3O67XsWQ15Ti3RBpf4zSUDNtCEYrPcqEhyoSoyHd+rTJi9Yw73vNw+Pk88s/3vYN5rLWncv///ETi7bra2dONbDoD81Om2vGk2Lq/vnvdCg+u8lBj/vdrN4d/P7Xh3XCpQxB5ZSHmZmC0Q5YBaMZjj3OCh/77Z5jRQcpGK13K8Xqfzn4eh2UuDXDuioSD/08F13n4Kt1sGm/pn87xRlPu9lucRmgwE+gpRBCCCGEEIebK6+8koSEBC699FJycnLK9m/cuLEs9MvKZZddxpw5cwgN9f3FMgAtWrTg3XffZezYsRw8WH6x3jRGu3bt+PDDD9m7d2+A96butGrViu+++45rrrmGBQsW+KybmJjI/PnzGTlyJNOmTfMqi42N9TvW1KlT6dmzJ5deeil79pR/80VeXh7ff/+9rfkmJNi8viaEEEIIIYQQQgghhBBCCCGEECKo6u7rmIUQQgghhBBCNGxOwyJOt8vzf3otrB41iYyqu7FEw9Wklf86ccELmDnsOUyv4QrBaKaAMl/tLaiOPVF3/te6sEV71H9/QPUfgRpyFmrRTnM/F92OOvOqoAWOqQunwekXQ2lYnum4Vp2+r388aH3Vly7Nyhflm/Qu+L3sdozdYLRkH+E/+/0HSWUYgkRa7QksjEn951PU4DODE4oGqNh41MxF/isOGg09BpRvh0eibnv2iAhFA0iK8V3et431k0q16oS6dz7ExNV8Eu2PQs1YEHAQpmrdGTXyYjjlvICHjNCFTMx+i7d3nsdNGU/bD0Xz9fwL4rmU1hp93bCghaKp+16Bxk29dzZuhnr6c1QNf4atG9d9AMrwrj4K164AIKnEEIyWZ/61iSn0pX3R5vKNDb+j35nlb4pC1Ny+Hf7rvPOs/f5MQZYx9ZBuaEOXpv6PLVHO8vuUUhLYMTgzD3ILNW5DOFHFc6pYQ9iRlc9XGzoU/yyZhmTgmPiyMENVGpBW2bb1aFNiXz355E/7dRP9nFvWFqUUS6c5GNUz+H2vDeuM28efXZSGmcUZwhmzC6ruc7mr7qvYF0CjSIgK8z+/mCAFowEkxijGH604p5+jLBQNPI/vkFTFlYMc9GipiDBkO0gwmhBCCCGEOBKdddZZbNq0iRtuuIGkJPPvLUNDQznllFP4/vvvmTt3rq1QtFJDhgxh+fLljBkzxnidPDk5mdtuu42VK1fStauvC6QNQ7NmzXjvvffKAtK6detGfHw8ERERtG/fnmHDhvHcc8+xadMmRo4cCUBWlvcF2rg4e9euR4wYwd9//82sWbPo3bu33981hIaGMmDAAO6//37Wr1/PDTfcUL07KYQQQgghhBBCCCGEEEIIIYQQokZC6nsCQgghhBBCCCEaCFMokutQMJqdhffBkrGv7sYSDZZyONAde8LGP8yVghSAdCRQyoHl8njtWVGtiwrRt4+zbuxwoByB5eer0y6EIWd5gn4y9wMKGiVAy45eCwqU0wlzvkNfPci7gzapMOKCgMb0O6ewcNQdz6OvexR2bITWndGjW0Fhfs36ffEXz/04zMVGKLqnwCpzVh2phevLbkfbDUaLTYCwCCiyWNGf5j9MKivPen+Cy0eQX2Vd+kK3Y+3Xt0n1HgTPfIG+dqi5zhmXogacjk7bDZn7oE0qKiyI6QP1zFcwmlLQs4WP8iFnwYljYMvaqq/DkFD0Z2/Am//xOb6a+xOqc+8AZmzRxyV3ope8XqM+bI1z+X1w/q3oIbHWFYJwLqVdLtAa/WSQF2INHuf5eW1bB7kHIToWWncJ+L3BSpem/usE05heEBXuY2HboeN5kss6VC5NN0Jrbbk4zhSM1rKk0oH1m/fh6n/bmq8Q1Za+x28V/eXbqEvvstdfcZH1/lAbqTv1oEsz/3WiW7eGnXGQc4AUuwGXFazfi/X5NeU5vGAvmKjUr9sCnoY4Eh2wDuckvsICelMwWnYG/L0a2ncP/ryq6fft9oPa/IXu1qb4KMXCa53szdbsyoIQB+RVOvS5NAycYUglM1gf3hmXjWC02EiF1VEl2+Ljqp1gNKUULeJhg59LaMEMRrPLGIxmyOAUQgghhBCitm3ZsqVW+2/SpAlPPvkkjz/+OCtWrGDt2rXs37+fwsJCkpKSaNmyJQMHDiQ21nDt2IbU1FTef/990tLS+Oabb9ixYwd5eXk0bdqUdu3aMWjQIEJCyv8kfPDgwQEFa9ckhPull17ipZdeqlbbgQMHMnDgQFt1V69eXXZbKUWTJk1sjxMREcE111zDNddcQ0ZGBj/++CO7d+8mIyOD4uJiYmJiaNKkCZ07dyY1NZWoKPkiNyGEEEIIIYQQQgghhBBCCCGEqG8SjCaEEEIIIYQQwsMUfOF2oUtKYNff5rbtu0OPAbDwheDMpcA6jEf886hL70bfNcFcHmf+5vV/HFNwV2m44YovfbSt3iUiFR4JKe09/3zV634szFyEnvsAZO2H7sehrnoQVUtBGyomDlKPBkD7+dZ3n47qj5r0AKpjjyDNrP4tv9NB5BTzQv8uRevKbhuD0VSFxSBOB0opdHIK7NxctfJ+Hylsh2TlWS+2iXcd8NsWgBEXoK5/zDLEKBhUr4HwwBvoeydWLYxLhKOHeOolNYek5rUyh/rUOMY6wAGgSSzERPh+3FVIKJheQ517Q/uj0NOvtG577SM1DkUDUK06wayv0LeOgvycGvdn1G8oKjQM3fUYWPNLlWL98+eoMy4NqEtdmI9+ZQbMn16zuTVrA8cMhcXzqpb1OQlVumCubdeajWOhfbInxMMU8BFs5/TzcywoKQYg0RCMlu5IwJ2+D2eSd6JbYbEmzfD0aV6823vHjo3GcLV/Iq2153zEXeGfy3Dba9t96F+AbUpva3fAbXTZuAGMU7FMuw1z9XM/vOZq6sNi258ta+z/oA6zYLRUG8FoyXFO1PPfo5++jZTN2QGP8dcujdtw7HJUeHmbAoCsKAW5hZpoXwGO4siXnWG9v2IwWseenus0Vk/C7z9sUMFoWQHkUCdG+69T25o2UjRtZC7fPdPBTXMz+XJVAQcccQC0Ld5K85LdfB09uEr97aGtyHaaOyw9XsRFWpdn51c91zYGo1U6dLRL8h+MFt2QgtGK63YeQgghhBBC1DWHw0G/fv3o169frY2RlJTE+PHja63/hio3N5dff/21bLtz587VDppr3Lgxp59+erCmJoQQQgghhBBCCCGEEEIIIYQQopZIMJoQQgghhBBCCA+HIVTJ7YK9W8tCJCpTL/6C6tgD7Xajv/sAMvbWeCpq7FU17kMcIQaN9l2eaCMR4Z9CGcINtRutNfq1mea21QxGC4Q67hTUcafU+jhVxj3/NvTcfwXebtKDqAun1sKM6ld4qOKSAYqXllkHXXUpWl922xSMluOIKd8ofe4kWQej6S2r8Rf7kZVnvT/ObQ5GUzMWoAbU3aIVdfI4uP159MOTvPdf+wgqPKLO5lEfkmLMZfGGcAe7lFJw+kXQbyj6oj6QU+FnPuB0mHB9zQaoOFbPAaglVYOw3E/fBm89FZxB2qR6/m/Z0TIYjS/fQd85N6DnjH7hPnjzP9WfU7djUbO/QR0KwHXHNYaK7wdhEaiL76h+/zaEhSg6JMP6mp8i2jLhGD9HnTxPulmSIRjNrZxkbdxMYqVgtN0+shpblOyqunP1cnTnPrDhd8jJsgj8MgRgGQOxyutqY/hWxW1TuJeP/f7m4TWujbmXbovDQ4khGC0kgNSvOpTa3BzcWSolXqFadUI98j5t1mp4PLCExs9Wm0eomHvo6/hQmdaefsf2CWgq4gijs9KsC+ISy26q2AR0jxPg9++qtl//m99z7Lp0sMBevagwiAxrSDP3pnOzYeMfNCkq4NX3RlYp3xzals4dV1u2XRfW2div89BH9UaGU8Bsi8fPGIxW6WN/p6aKJat9Hwtj6iGIUYLRhBBCCCGEEME2f/588vLKf6F0/PHH1+NshBBCCCGEEEIIIYQQQgghhBBC1AUJRhNCCCGEEEII4eE0BKO5XLBjo7ldyw4AKIcDfdqF3mEb1VUP4UmiYVJKwXub0ePaW1fof2rdTqghcxiC0bZvQJ93lO/XsSlU7Ugw4HSwCkYbNxnem21u161f7c2pnl18vHUwWrzKZcilI1HR49APTyJaWwejFToiKMFJCK7yYLT4ZOvBFv4X3aQVXDjN83quRO/dTtbag+DoUnU+rizLLtW85ahOvQz3rvaokRdDq07oj+YDCjXyYlSPI3/hjc9gtKjgjKGSW8Brq9D/exKy0lDd+sEZl1k+Z4JNXfsIeuMf8OvXNesooQkqJs7TZ6tO5qieL97yhMHZoDP3wTvP1Gha6unPy0LRANRV/wedeqN/+BgaNUadej6qS+2n86Q2q5tgtDUPOHA4/Dxv9m4DINEQjAawf/N2Evt7v753Wh+SAEgp2V1ln776RN/zEKKhKTYEo4WG1e08bOrW3H+dlPjy2yd0DHyMD1dpUg05zI5qBqMBfPynZmyfhhsOJerAAcN7UFyS93bvQZbBaHz9HnrvdlTTVsGfWzXkFNqrlxhdu/OoCf3us+hnphq/FACgTfE2wt0FFDqqJpytDu9qbFd6vGhkCBU+kF91n8twMlk5GK1LU+t6FUXXw2E8wvBXKBKMJoQQQgghhKiOHTt2cM8993jtu+gie9fZhRBCCCGEEEIIIYQQQgghhBBCHL6O4FWvQgghhBBCCCECYgpG0m5I22NdltgcFVGeiqIumApdj6nZNC67F9WuW436EEcWldwCdeszUCkgR133KKpJy3qaVQNkCkbLzvAdigaQnxP8+QTqkrus94+/pmb9duoFF0z13tdvqCccqEtf6zYx8dBrYM3GbcBO6qK4Yaj36yksBGZfEUP0hEkQFg5AI9dBYx9ZzkNJI2XBaInGuvqF++Dnz6vu37IGfVZHskrCLdvFu6umjKhP0+slFK1s/J4DcNz+HI7b5/wjQtEAkmPNZcEKRgNQjZviuGY6jjtfQI2dhAqpm+/0UEqhHv8IBp5RtTA2AfX05zBotP+OOvYov92uu7Ga/u4D23PTbz/jCaitjvZHoRZuQ4V5v76UUqihZ+O4ex6O62fWSSgaQOem1Q8AWrexO2dmv++33kNnKro08z2OXrqo7HaTkv3Gepu3VD3+bN5vnVAS7c6hkTvn4DNdAAAgAElEQVTb7/yEqC963W9oO8eSEkMwmjM0uBMKkrAQxYRjfL/mkyuEe4aFKO44LbBjUUYuLNtkXVaT7M6/dhnjM8U/xYE06/1x3ufUqk3V8OBS+v4LgjmjaitxadthV74Cd+uT/vNH9JM3+QxFA3DipkPxZsuynSEtzO0OfVSPMwSjZRdU3edy++6rVNfm/g9GMVVz3GpdpCGMTYLRhBBCCCGEEADvvvsud955J/v3m6/Rlvrtt9848cQTycjIKNvXq1cvTj755NqcohBCCCGEEEIIIYQQQgghhBBCiAagblaXCSGEEEIIIYRo+JxO6/1uF2SnW5fFJ3ltqpg4mPUVLF8CW9ZC01awYxN67r8sm6tpc+CU82Dlt7BzM/Q8AdXhqJrcC3GEUmOuhD4nwa9fe8L6+pyEatu1vqfVsDgMr+HDhDpxDHr+Q6C9gyLUSWNr1q9SqKseRJ88Hv76EVp2hD6DPaFLs75ED4uv2mbCdaiQhhkCEixPnOPg3H6aHzZrosNhWFdFu6RDi+oPJX0kuQyBDcA+ZzJJrvTyYLS4JGNdAP3BXNSxw8u3P3oZPf1KALKccZZt4l1ZXtvqmumoqAaapnAES4lTgHWAS/gRcnVZOZ3w0Duw4ivYsBKKiyE5BY4djkpsBgW5fgPN1KkVwkmOH2GuuPJbtNYoP4k6+qOX4ZUZgdwNjxEXoAaNhuNOQYUb0jfqQWqz6rftUPw3/9t5AW8fHM8FLeZXKe/ZEl6+zEHPlv6DQfQrj5TdjtL5tCjeyc7QqkEm67YVcHqlfRv2WffZqWgTNchHEqLW6Sv6Q1Qs+qj+qF4DoecJ0LUfKrxSUk6xIRgt1JBu0wDcPFzx1i/mkLG2id6vzv8bq/jfz5q/K53ixLmyKFah5DmibY9dsedOTczHCCtrdmPrvUAcwTKsnzCqUjAarc3BaPz5I3rfjnoPC88ptF83sQGeyuviIvTkk2zXTy7ZDxa5zvtCko1tHIde6o0irM+rD+RXbWM3GK1/e885eWGJcXii6+EwHhFqfV8LfMxTCCGEEEII8c9x8OBBpk+fzsyZMxkxYgRDhw6lV69eNGnShJCQEDIyMli1ahWLFy9m0aJF6Aq/OwwLC2P+/KrXiYUQQgghhBBCCCGEEEIIIYQQQhx5jpCla0IIIYT4f/buOzyqKv/j+OfMTHoggSSU0HuVJoiAIIK42FgLKthWdC3outZ117ViXV3Xsquua8Gy9rVXXAvqCvpDsaBrwUWaSi+hhbQ5vz8Gkgxz78ydSSb1/XoeHnLP+Z5zv0kmk5lJ7icAANSYW6hSRYVs0UbnuT0v2pVkUlKlMYeF/kmy3y6UnILROvaQDj0ldDF4tbAcwI3p3Fvq3Lu+22i4fL7YNQ2Y6TVYuvxB2Vt+IxVvkzKyZGbeKDPU+0XqUffvPUTqPSR8LC1D+scHsjf8Wlr+bSgQbPJJ0gm/q5VzNnQjuxuN7O4QyGFCt6WCKMFo6wL5Uqkqg9FMy9Yu0Vm7vPe8Xp/1Nz2de5xKUlvo1y88ovGSgjIq8jkHo+UEi8IHeuwV7QxIksLI7MBKO1wydBojY4w0fELo355G/kJm5g2y910llZeFz/n90vEXS5OmVe2VliGddb3sPZdF7rWtSNqwWspv79qL3bC6Mjgwrvfh0vtkDjk57nV1oU8794C9aJ5beawkya+gpm35lzKDxZpReK+K/LkK2DJd0f0TXf6HMZ7Chezm9dLXC8L7Kv3OMRht8cZU2c3rZaqFAC/+qVRSZGhmz9L/xfleAfVgx1ZpwZuyC94MHaekyvYdLg0aLTNojLTX6Mj7t90acDDaPt2M7phmdN6TkfcvxkhDOu05ZvTmBT6d8mBQH+z60j1062u6b9VMndX+Tr3U4nDP506vdncwY4zRH5/3fh+3aYe0dqvUtqXnJWhCbDAo/bTEeTJvj8cHXfqEvgbdggt/XirVczDa1p3eawtzG04YoK2okF68V/a28+Nal1/h/IcD1vrdg9F2h5m1ynSeLyqWyiusAv6qj49rMNoeH8KsNKMJfaXXv3I9vbLT3eeSJd0lZ7zE5VsNAAAAgOaprKxML7/8sl5++WVP9RkZGXrkkUc0ePDgJHcGAAAAAAAAAAAAAGgICEYDAAAAAIS4BaMFK6Qtzhd+qmXrmNuavnvLDhojLZoXPn7WDZ5CLAB45PY13IiYg6ZLE6ZKK7+XOvYMBS0m+5z9R0gPLZTWrpTSMmTy2iX9nA3erpC9dFuiFhVbtNUfmdqx3r8rLGhXMJpy8iNqqvt7qzN07k9nSz+Fjp/s8oZm/3y6Jm/7t6xxDvXLrdgjGK1rP+/vA2pNtGC07SV110d9MsZIx18kHXGGtHmdlFcobd0orflR6tZfJjM7ctGhp0hOwWiStOK76MFoR3SJv8fTr2mwoWiS1DfBu9b9d7wfdjxl2ytas7iTvkvtrW5ly5RZeJiM2c/bZt9+EtlXyWK9kxUZhvdDoEsoRG30IZVjy5YXSYq8r+tZ6hJug7rh94ceA/n8oe9fvmrH1ef80eb8oVDQsPE9j/d4O2KdL3qdzy9Tfc6Y2HtHvO0Lfx+r1dh/XCF99aH3j1tZqfTlfOnL+bKP3RLqJ8slpSvQcIPRJOncCT6VlAd1yTPhwWRTBkmd8yKfb3YvMHrvdz4t3yD5X39QHe6dKUkaWPLfuILRstKq3j6m/zb98fmsuPp+9zur40bwfLhZWrtSKil2nuvSJ+zQpGfKHjVTeuoO5/oNq2u5ufhti+PxYO+2yesjHtbaUDj2vx/3vqh9V5l/fq78+7dKX0ROrw20cV3q2/Wlnt/CrZ9QYGJBtXnXYDSHp06HDzZ6/Sv3cMbsNNeppElz+S2UnQSjAQAAAJCUm5srv9+viooKz2vGjBmj22+/XcOHD09iZwAAAAAAAAAAAACAhoRgNAAAAABAiGswWlDastF5rmUrT1ubm56XvfP30hfvS4FUmRMulsb9MsFGATjyOYdLNTYmkCJ161/H5wxIhd3q9JwNWrWgsoKK9Y7BaOv8BaHSXcFoL2/po8u7LdCaQBtN2P6url13tbqXLZMklZhUXZ//h4g9Ti28L2obnctWVh106iUVdIj3PUEtaJHuHtqyo7QOG2kATGYLKXNXYkVaoZRf6F6bmy+bkycVOYTLLvtGGjbecZ39vzfib+zQU6STLol/XR3KyzbKy5I2bPe+Zu/iT5UT3BIxHlCFBpR+EzpY/7P3DZd/FzHUsfxHx9IN/nxpxQdhwWg/r90ppUTWdi1b7r0HKXQb2jPEq3rwVayArLAAL5cwLsc99gjVclljItZEOY/jHj6XXj2u8e1a5yE0zDSRxz614ubnZQ+pQbirtdK2Iue5FIcbfgNz4YFGmanSX9+2MpIOGmB009Hu37+MMeqaL9kTZ8gu/0B64zH1Lvk+rnNmVcuL6/7xP3V8UY4ez5nuef30+6xOebBCfl8o6Ciw5/9+yW/C3w74w2sc11XOmbB1Ps/rInvYfd7IHkz0PV3Xxeil2vvu8zXB8DiH70eVOveOGDIzb5R1C0ZbsbiWmkrc1p3ea/u0rd/Pp138uewdF0YE90fVopU0bH+Z826VSctQfsc06YvIELI1UYLRdoeZ5Ttk6e62flt4MFrQJefM94/LZEuGyxxwdOXYYYOMzn7MPRitnUvuZTKlu3zr2Fnm3icAAACA5uOII47QmjVrNGfOHM2bN09ffvmlli9fro0bN2rnzp3KyMhQ69at1aVLF40dO1aHHHKIxowZU99tAwAAAAAAAAAAAADqGMFoAAAAAIAQt2CBYIVU5BaMludpa5OdI/OHexJsDIAnbuGGXvQaUnt9oPEzVYEF+RXr9YO6R5SsC+SH3vD59ebXVke8NVRKDw09lXOsvk7rpwVLxyhF5foqbYBWB+ILa2lVsVFtKtbuOodP5tdXy5gmGIzRSKQFpJLyyPEzxvE5iapzH+nL+RHD9uO3ZI6aGTleXiZ78ZT4znHUWfJd4BKW0sD0bSfNWxI53raldMxwozvfqQrKSLGlumL99bE3jSMYza6MDI/JL3cIrpO0PpAnu+I7lZRZfb5Syv3qTa0K7O9Y2758lXTkmdLz/4jZgzn9GpmTf++5Z8CzjBaxaxIVSI1dU898PqOzxxudPT6+dcYYmctnKyip/3v/jWttdlrV90D7zjM6oSgzrmA0yfl7a+2pi/Ch5J/DmERC4eIJd5MCPlNZ66tRGF2085qqt/8r+bImKC1YoiEli9QyuDX0zrZuJ5MVmWBl/H7ZoftLn70XMWdnXyMz47Ja/7gX7bD6abPUvUBKT4n+eG9bifd9+7WvYWM1YDeslj1tpPcF086X75ybIobdws12+LJct/LZoCS/8txLtH5b+HFF0LnOv36l7JW3Sre+KjPiQElSx1ZGQztJn62MrD9uuKmXgEH3YLS67QMAAABAw5WXl6cTTjhBJ5xwQn23AgAAAAAAAAAAAABooAhGAwAAAACEuIUqBYPSFufQCJPTOokNAYiLcQk39GKYc9gLmqlqAWQF5esdS9b5C0Jv+P26463Iq/a/TN9LT+Qcp5OLHtN3qb3jbqFPyWIZSTrkVzKTT5QZOi7uPVB7Lphk9KfXI8NPDhtEMFpUA/d1DEbTJ+/IlpfLBPZ4ef6dZ2JuaS57QPabT6QtG2XG/VLa/8haajb5jhpmNG9J5O3o1mONpo0wGt1devmNpWq56E2dWPSYRhUviL3p+p9lrY0ZnGhLiqUX748Yz69wCUbz5+nB/3XSuecHdwV4TJRcTtFh5kUyh4+VBu0ne/2pUnmUxI/0jKh9AokygUDyIqoCLuk2TYj54/0a2vsu6S3va7LSqh18OV99UjrXel+QrJXKrVTuEhJVS2dJ5uYO55godZ4oSQrYMv124526ae1l0V9fyXdPFLNLvpLpMbBWugwGrW56w+qKF6yCVmqfI912nNGxw92fa27Y5joVZlDHeg5GO7pHXPVOoWiSooabue41/xVp4i+VkWqUlSZtdwiTiwhGc7lZ+m2FJMnOvq4yGE2STt3P6NwnIhedul/9PF53C0YrJhgNAAAAAAAAAAAAAAAAAAAAHtXgilkAAAAAQJPidwtGq5A2rnWey8lPXj8A4uP2NRxLarrMry6t3V7QuPmqXjJ0Cw3a5M8NveEP6O1vnbc5tfA+HdHxX7ox/5K4WxhY8rXMqVfKd+m9hKI1ABceaDSia/jYLccYdWpNMFo0ZsyhzhM7d0hrlkcM2/dfiL7h8RfJTD5Rvgtul++qR2QOOFrG13he4v/1WKMJfcPHLpkcCkUzxmjaPj49ut/numv1ed5C0SSptETauil23bN3Ow63drmP2+HL0un6/a5QtOgKR4+UMUbmwGPlm7tN5t0dUka2c/FQgkiRRB17us/1GiLtO1nKzol/39ZtE++pkTA+n/zHnqvZLf7ueU32rmA0uysMsXPZSrWsKEpGe2jCyk2Kbs27QA/lnCylR0nc6uAe6mUfubHW+nl5kXTZ86FQNElaVSRNu9dq6Xr38Li3vokdLJefLd1+nC9mkGlts+Vlsm89reCMEVJFubdFuQUy9zkE2+5S0CL+98H3zxsq33YLVlu/LfzjWOESBuhXKBhNX30ou3FN5fiZ44x+MSC8duZ4o0n9G1YwmpfHVgAAAAAAAAAAAAAAAAAAAIAkBeq7AQAAAABAA+FzCVUqKZa2b3Gey2+fvH4AxMckFo5jXl0lk55Zy82gUasWWJBb4Rw4tMnfSpL0xY62KomSMfBKC5dgqBhOLHpMyvhlQmtR+/JbGL17sU/vfCstXW81vo/RwA6EosXUe6j73IrFYSEntmSn9F6UYLQDj5Nv5g3u841Ai3Sj13/r01vfSN+vtRrT02hYZ4WHpKSkxr/xsm+kQWOiltgnb3ccdwt/9Mpvy9WmdXjPxu+XPWia9OL94cVd+kg9B9XofEBU+x8pPfbnyPGMbJm/vyeTli5bUSEt/a/0xQeyi+ZJX8yTNqyKuq0Ze3iSGm54fjWxpc57dou2+lvGrM3aFYymNSskST5Z7b/jP3q5xWFJ7BBN1YstDteMjBWu82bCVNmHrneefOcZ2X4jZKadX+M+/vmhcxpXjz8GVfGPyGCzYNDqlUXOwWi/HCxNGWKUGpAm9jVql1PHoWib18uec0DoMZdH5re3SAceJ9OqjWtNYQL5kr4liyrfzs+WVmyMrFm/LfzYNRjNVpuY96p0+KmSpIDf6LXf+vTvr6WVG60GFBqN6lF/j9fTXX4LhWA0AAAAAAAAAAAAAAAAAAAAeEUwGgAAAAAgxC0YzS0UTZLyOySnFwDxc/sajubwUwlFQ6RqIXu5wSLHks2+UCLAtEWTav30bcrXaL/iD6X042t9byQuI9Xo0EGSRCCaVyYjS7ZNJ2ntysjJld/L7jtZev2fsnMelT57L/peR56VpC7rVkrA6OC9pIPdbkcpac7jUdj5r8lECUaz81+TNq11nKtpMFq77Ar5fJHvi5l5o+zan6QPXw8NdOolc+OzEYEyQG0yp10p+/MP0txnw8dveUkmLT30tt8fCujrOUjm6LNlrZVWLZW+mCf7xTxp0QfSyu9DC9MyZGZcLjPyF3X9rtSfUQfrzAfu1y15F8Yszd59d7Wt6vnyIz+fqlZ9nO9vOpWt1MqUTrXRJZqgn1I6SBlZrvOmW3/ZXkOk7z93nLd3/V4aNVmmS9+w8Y3brW75t9VD86xWb5H26Sp1yzc6clgooOrVRdL6baFgs06tjZ77zL1H/5lBnTLaaHwf6aR9jYwxWrhCWuX8dEEn7OvT1L3r5/ueLS2RPTy+16vMba/LDJ8Qs65Dq/j78Skoa62MMcrPdq7xGozmU9WEnfeKzK5gNCkUNvuLAVJDeLyenuI8TjAaAAAAAAAAAAAAAAAAAAAAvCIYDQAAAAAQ4vPFrtlTfvva7wNAYuL9Gs7IlvnVpcnpBY1btdtSq4pNjiVF/hztMBlauqNFrZ46PVisL3/YO3QQcLmaHmhMOvdyDEazKxZLd1woPXt37D16DZb2GpWE5hqg1PiD0fTV/7lO2X8/IXvtKa7zrSo2yRjJ2vhPK0mFrZ1DSU1WS5mbX5DdsFratlnq3IdQNCSdSUmVueZx2XU/ST/9ILVuK7XrIhPl68oYIxV2lwq7yxx8kiTJblorbV4v5bWTadm6rtpvEEyrAk1ps1y3VMSuzdr9YS0prhxrEdymx388Scd3/GdY7eCdi7Rg6WitDbTR9yk9VDH5JAUnn6KKoFQeDAUglVdIFdZWe3vX/9VqwuqDUeb2WB8M28s61tbWectdwpwQXbFJl9Ldg9EkyVz9iOwJg1zn7YmDpfd3Vn6/KdphNXhWUD9trqpZsExasMzqqU8cd4jZ50PzrR6aL/3fUumu441e+sJ5TWpAuwK66p61Vva8+AIdzT3vywwY6am2VaaUFpBKyj3ubYOhmLIdW6WslsrPNnL6WG/wHIxW7Q7q47dli7fLRAnVqy+uwWgeP24AAAAAAAAAAAAAAAAAAAAAwWgAAAAAgJB4Q5XSM6XsnOT0AiB+PudwFkeDx8qcMUumbefk9YPGq1p4T25FkWPJJn8rvZs5TmU2jttdFOnBYo0sXqA71lykvIqNtbIn0CB06iV98k7k+Iv3ed7C3D6n+YRqpabHv2blYsdhW14ue3f0AFD/6MnqkyZ9uzr+00pSu9bRf8Ri8tpJee0S2xxIkCnoIBV0SHx9qzZSqza12FHjMmpCX3V6baVWpnSKWpeVuuuN0uKw8WO2PqvinzN0U97FWhfI10Hb3tJf1vxefgXVvny12pevlp6fJz1/VmLh5I1AUEYV8qvC+FWuwB7/h8Yr5Fe5CVT9b3wRtVU1vsraisr/q/aqXLd7Tn6VG+fzO+0VeY7IfsP3ruo3GNGvw/smf2V9iUlTqS8yrLDYZEgZ2dE/sJ16S936S0u/dq95/C/SCRdLkm543YaFotWme9+3uuQXVi997hyMNqGP1CK99h+72OLtsg/Mkt57QZJkDj1FOvkPMtW+luzsa6WvPvS2YadeMr+52XMomhQKlCzMlZau91bv3x1kVrRBymqpPJdP84Zt4R/LCpecOr+tFoxWulP6+C1p3C+9NVOHXIPRyuq2DwAAAAAAAAAAAAAAAAAAADReBKMBAAAAAELiCVWSpNZtm09IB9AYeAxWMKddJXPKH5PcDBo1U3Vbygk6B6Nt9uXo8/TBCZ/ijtUX6pxN90gTj5XefjrhfYCGznTuLZdcC2/rr3tKpmXrWuunwUuJDIuJaeMa2a2bZFq0Ch//cr60YVXUpebkS3Xw10bfrk7ss1SYy2NhoKnxTfm1bn5whqZ3fDRqXdbuu6uS8GA0I+lXRY/qV0XR10uSgsHEmmzgfJJ8qpBLLlKz9mTLY3Rih4cjxot96VJGZtS1xhhp5g2ylxzhWmPvuUw6bIY+29xaf36jJo9AoqsISne/a/XlT87zhw9OzvdHe+0p0n9eqjp+YJZUViJz+izZYFD6eoH00PWe9jJXPCRz0PSE+ugQTzCarRaMVthN+S7BaOu3hR9XuNw9VAat7WLnvSrTIIPRjOTwKJhgNAAAAAAAAAAAAAAAAAAAAHjVNP8UOQAAAAAgfv44g9GyWianDwCJ8RpuOHRccvtA41ctZC+3YrNjyU5fhhal75XQ9nsXf6qzNt0rc+XDMmdck9AeQKPRqXfN1o84sHb6aCwSCUaTpBWLI4bsBy9HX3PA0TID9tE+XRM7pSQV5iS+FkDDZNLSdezlJ+nN5ZOj1gX8u4KfSnbWQVdoKjKCzreXYpMhpWfFXG9GHSxzzROu8xXy6eJbF2v49ckP3YsWvFbbwWg2GFTw8mlhoWiVXnpAdslXsoe0lZ25v6f9zG9vSTgUTZJ6tvH+/vm063OxeoUk1TwYzYYHo2n+a7IVFc7F9Sjd5c/zEYwGAAAAAAAAAAAAAAAAAAAArwhGAwAAAACE+F2uWnSTlpmcPgAkxufxZZ4ufZPbB5qAqgv9c4NFrlULMkY4jh+zt3tQQPfSH/TUT8cr8M9PZSZNkwo6SOku30+aWyAUmqYufRJfO/oQmUyX9IymKjU1sXXLv5Mk2fIy2bnPyr75pPT0X93r+wyTueAOSVKH3MTDW3oUJLwUQANmRh+iA3a8r72LP3Wc7+lfU3VQUlxHXaEpSLfOt5diX4ZMhrfv+eaAo6R9I4P7PksbrPFd3tRtq/apUY81Nayz1LFV7QWj2fJy2cuPk9573rlg8zrZU/aWtm/xtuGMy2WOObdGPfVu6712d5CZveE0SVJ+tvPHpnowWjDoHjrn1x4haJvXSf/9yHtDdSQ9xXm8pFyy1v39AwAAAAAAAAAAAAAAAAAAAHaL86p3AAAAAECTFYgziCI9Izl9AEiMl2C0nDyZ3Pzk94LGrdptqVXFZteyFSmdHcd/MUB68BSfZt/1np7+1Khr6XJ1LVuugSX/1YHb31GrZz6TKeggSTIpqbKjD5HeeSZ8kz7DZNp2qvn7AtS3tp2ldl2k1cvjXmqO/W0SGmrgUtISWmZXLJY2rpGdub/089LoxWOnyFz5sMyuUMbC3IROKUk6bFDtBb8AaFjMSz/q6Bm3amHGsIi5X256RrbsLJmUVILREJeMoPPtpdykqFw+uWRJRTA3/Et2QovK42vzL9WsgitqocOaO3xwLYaiFW2Q/c1Eadk3tbKf+dtbMkPG1nifvu2MJG/hXj4FQ2/s3CEbDLoGoxUVSzvLrNJTjF7/yn2/3UFrYT57Xxo0xlM/dcUtGE0KhaNFmwcAAAAAAAAAAAAAAAAAAAAkycMVswAAAACAZiEl3mC0zOT0ASAxxsPLPN0GJL8PNH7Vbkt5FRviXt63vVFmmtE5543Vu0Of0UOrz9DV66/TVL2rVrc+VRmKVnm6i++SBlcLKOjaT+a6JxNuH2hIjDHS6IPjX3jQ8TJ7H1D7DTV0qemJrVv+rexfL44diibJXPjXylA0SWqfk9gp92mxWi0zCEYDmirTqkAXHlChUzY/EjZ+9JbndM3Pl0mfvRcacAtG67GXzNPfSQNHJblTNCbptsR1bsfa9Z73MSmpMjf8S5J0R6tzaiUU7aXf+DR5gGRq+K3tl0OqNrClJbLP3KngVScoeP8s2TUrQuOb1yt45yUKjk0L/bvnMtnvv1Dw7ksVvOoE2RfulS0vk73vytoLRbvn/VoJRZOkoc750I78qhZktmVj1McdS9ZJO0qsTn046G2/Xey/7vTeUB3JiPIS486yuusDAAAAAAAAAAAAAAAAAAAAjVegvhsAAAAAADQQgTiD0dIIRgMaFL8/ZokZeVAdNIJGr1oaQobdqdblG7QxkOd5eZ+2u7bx+2Uu+pvsGddIq5ZL3QfKBCJfjjQtcmXufCsUlFCyU+rUKxQmBTQRZvShss/dE9+a8/6SpG4auNS0xNZ9+JpUERkUEsHvl1q3DRvKSDVqnWm1cUd89ztn9FkhqUPMOgCNV8rZ1+n+l/J109o/6su0AepX8p3aVqwNTf5vkbTPJKnUJegqLUOmfVfp7rnSysWhupKdUvG2OusfDU/m+nTpOee5km6D49rLjJ2iO3pfr4v8F3iq/2Dp/rqr9Uw9kTMtYi7bFOvQvbJ02CC/Nm63WvRj6DH94wusfveM9dzTwQOlIZ1C309tebnsH46SPn6rct6+/oh0w79kLzlS2ri6auFjt8g+dktV3TvPSB++Ln36rudzu0rPlHl9rUwgpeZ77dIlz2hiX+ntb2PX+my1kLMNq9W9S578PqnCIfvs21XS92ukdVvd9/Nbh4VF62VfekBmymmxG6ojXfOkJ88wSg8Ypaco7F92gg/3AAAAAAAAAAAAAAAAAAAA0LwQjAYAAAAACEmJMxgtnWA0oEExvtg1e41Kfh9o/Hzht6UO5T97DkbLz5byssPDhUyLVlKLVjHXmqpv4mMAACAASURBVLadvfcINCZD94+vvms/T18zTVJK9KQMc9pVsg/MipzwEoomSS3zZHyR3y+HdTF66xtvW+w2rhcBjkBTZ1JSZfuNUN4XH2j8jv+Ezdm//1EadbBsSbHz4rSM0B7GSJ37JLtVNBKZa630nEOwlaTiAePi2mtLsdWVqedIHr4FFn/TUikqlzbKMRjtwKJ/S990kvqPUOsso/G7brLnTQz97yUc7djhRv84sdr3xi/+ExaKJkla+6Ps2QdIpTtjNz3/tdg1HphTr6jVULTdbp7q097XOX8uq/NX/wRtWKWU/Pbq7ivR98G2EbXH/CPO/aqx914pHTbD8XFOfcjNNDp2OI+VAAAAAAAAAAAAAAAAAAAAkLiG8ZuxAAAAAID6F++Forsu9AbQQPj9sWuycpLfBxq/PUL2CstXeV7at11tNwM0fiY1TTrp997rf/XHUJBOcxTt8Wh2rjTt/Jo9Bs1xDnm84rD4flRyyuZH1KNH68T7ANB4+N3/xpQ9+wDpx/85T6alJ6khNGYZUb7N7cwpjGuv17+y2lYRO+D++ZXHhELRJO2782OdtPnRsPnM4HZdsuEv0oI3I9YG/EYXHeTTwsujf5+cOd7oyTN8ysmsevxin7zdudhLKFpt6dBdOurspGw9tLNRew9Pr32qFiq3YbXstaeo96aFCZ/Xb12S8IrWSz//kPC+AAAAAAAAAAAAAAAAAAAAQENDMBoAAAAAICQl9gW1YdIzk9MHgMQYDy/zZLVIfh9o/Hzht6UO5T97Xtq7XTMNcwJi8J1xjac6c9trMgcem+RuGi5jjLTvZOe555fKpGdK/fdJ/AQ5+Y7DY3sZjUv52nFu9I75mrV2liZte1OHb31Fd646T/euminlxxdgA6CRihY+vG2z9PbTznMEicNBRpSXXYrLvO9TEbSafp+NWde/5Gsdvu3VsLF7V52t+34+S0dseVG/3jRbnywdpX12fiL7wCzXfYZ2NjpqqPt57jre4bnoR3Ni9pdUx5wrc/9HMkkMKezXPnZN9SAz+84z0v/9W13KViR8Tr9cgtEkaevmhPcFAAAAAAAAAAAAAAAAAAAAGhr3P3MOAAAAAGhe4gxGMwSjAQ2LL0pow26ZBKPBi/Bws8Iy78FofdvVdi9A02Hu/1D216Pc5295WWb4xDrsqGEy594su/hzaePq0EBKqswfH6h67Nm5l/TZe4ltnpvnOvWvAa9o4kdBfZU+sHKsXflq3b36txpY8rW0oVpxVkuZzOzEegDQuHh5jO0klWA0RMpIcZ8rLvW2x6fLrU6eHfRUO2fF4RFjKSrXjKJHNKPokYg5u/J7mU69HPeafYpPyzcGtXB51Vh+tvTqbxvW32EzVzwkc9D0OjlX77ZG73wbPaAuLMhsV1hc+/JVCZ+zetBahO1FCe8LAAAAAAAAAAAAAAAAAAAANDQEowEAAAAAQgLxBaMpjQu9gQbF5+GCdILR4MUet6WCivWel/Zpa2IXAc2U6TNMUaMz8gvrqpUGzXTuIz28MBQesmOrtPcBMl36Vs136h394xhNjnswWn73TvrwyXF6scXh+jqtn7qWLtfh2151vg/Mb59oBwAaG3+CP0rl+TIcpEcLRiuLvf4PzwV18xxv3wUf+PkMFcYZwGWPHyi9v1PGRD6mb5lhNO/3Pr3wudVXP0mdWkuHDzJql9PAHv+PnVJnp+rdNnaNz0aG2HUo9x48vaewoLU9bduS8L4AAAAAAAAAAAAAAAAAAABAQ0MwGgAAAAAgJCXOYLT0zOT0ASAxJkYwWmqaTLxf52ie9ghGy48jGG0AuU5AdDl5UtEG5znuoyuZ3Hxp8onOk90HJL5vt/7uk90GKMPu1LQt/4q9UbfEewDQyCQcjJZeu32gSTDGKD1F2ukQglZcGn3th0us51A0Y4OatP3tBDqU7Lh02YnHygzbXzp0hozfXzmXGjA6drjRscMT2jrpzNk3ymRk1dn5QqHQ0T8nTkFm7eMMrKvOKkoQ3fai8Nr1P8v+/TLp34+HBg4/VWbyiTKDxiR+/s/el333WSkYlBl/lMzeByS8FwAAAAAAAAAAAAAAAAAAABBNjCtmAQAAAADNRiDOMI40gtGABqXaBeuOMlrUTR9oAsIvts8v9xaM1rut1C0/Gf0ATYgvyn01wWje7DVaSstIbO34o9zneg6Scgs8bWMOPzWx8wNofKLdb0eTSjAanGWkOI8XO4SlVffwh95C0STpsG2vqbAG4Vt6+2nZP58je9UJie9RHyafVKen6902do3PBiPGOpT9nPA5U2yUG8q2qmA0+/NS2SO7VYWiSdLLs2XPPVD2nWcSOrd980nZ838hPXeP9MK9shccLPvqwwntBQAAAAAAAAAAAAAAAAAAAMRCMBoAAAAAICTgcnWum3SC0YAGxcR4mSczu276QOPnC78t5Vds8LTsoAFGxpjYhUBzRjBajZn0TGn0IfGv+9NzMvmF7vN+v7T/EbE3atNRZp9JcZ8fQCPlDyS2jmA0uMh0+Xa/vcQ9+CwYtLr3/djBaC3TpVO6LdOj5jr3ouxcmQc/ibmXJOm95xUcmyb74HWy5eUxy+1n7yn4mwMVnN7f2/61KZAi5eTV6Sm75oc+5tH4VREx1r1sqVKDJXGfr035GnUrW+Y6bzdXBVrbv//RuSgYlL3qBNnS+M5vrZW97yopGKw+KHv/1bLWe2gfAAAAAAAAAAAAAAAAAAAA4BXBaAAAAAAASbvCIPxRwjr2lMaF3kCDEuvrN7NF3fSBxs8kFow20D1vCMBu0QJ2AgSjeWVmXBH/olEHx9735D9I2bnuBbkFMrMXxH9uAI1XPM+RqzGEXcJFdprz+PZS9zWH3xl0n5QU8ElvXuDTxtt9mn1pD7V4/GOZd7bKnH1jRK054xqZnntJIw703LOdfa3sPS5BW7trfviv7AWHSF/8R/pxiee941LQwX0ur72Mr25/9cHvMzooRgZcuo0MIEu3JZq4Y27Udf3bR45dtv4m+RQlhOzRmyVJdsdW6T8vRd3fHtNLdueOqDVhVn4vrVoWOb7+Z2nxZ973AQAAAAAAAAAAAAAAAAAAADwiGA0AAAAAUCWeQI60jOT1ASB+JsbLPFkt66YPNH7GhB3mV6z3tKxfexO7CGju/FHuq1NdklIQwXTrJ/Pwp94XTJrmKSzFtOko8+AC6YgzpIGjpH0mST0HSWOnSEefLfPgxzI5eTXoHECjEy3QMppASu32gSYjy+Xb/badzuNl5VbvLXbf74gh0vuX+DSxn5HPV/V43KSkStMukLn5BWn/I6T9j5S55SWZI88Mzd/ycnyNP3u37JaNrtP2vqukivL49oxHZgupZWv3+XyHJLE6MHV49OdAA3d+5Tg+ZesrUde9fZFPz870aZpvro7c8oL+9eN0nbPpnpj92PU/Sx/Oif252LhGdlIrBe/6g2wwevCeJCnK516b1sZeDwAAAKBWrFixQpdffrnGjh2rtm3bKjU1VcaYyn8PPfRQfbcIAAAAAAAAAAAAAECtSfC3+QEAAAAATVJKqlRS7K02NT25vQCIT6zQhszsuukDjd8e4UFptlStyzdoYyB6GFD/+skiABoXn999Lp6AWsh0HyCdfo3sfVdGL2zXReaUy7zv266LzEV/q2F3AJqMRIPRUrhPh7Nsl2C07aXO4ys3STtc5kZ2k5472/2xhTFGGnWwzKiDI+d8PumON2QvnSrt2Bqrbam8TPbP54RC1vqPkCnsXjllt26WPogzaK26vQ+QFs6NXpPfPnqIbOu2iZ+/Bo4aajSoo9WiH53nD9v2muv4TJc9jx1u1Lal0ZFDpV/6rpd+mu+9oS8/lH3/Re/1T94mW7xVGrK/VNhNpv8I5zpr3fcwBGQDAACg4evatauWL19eeTx37lyNHz++/hpKwH333adzzz1XJSUl9d0KAAAAAAAAAAAAAAB1whe7BAAAAADQbMQTyEEwGtCwBGIFo7Womz7Q+Dlc2D66+KOoSwYWSnnZXBAPxBQ1GC2l7vpoKk66ROrQPXK8dTuZs66XuewBmfs/lOncu+57A9A0+BL8UWpKlAAnNGtZbsFoLte1rypy3+vs8TV7/G2GjZd5eKHMebdKLVrFXvDuc7KzTpY9YZDsc3+XJNlNa2UPqVkomRn3S6lNx+hF+YXRv66ycmrUQ6ICfqO7jvfJ5/Cp6NiiTIedNNZxXfvy1Tqu6OmIcaOgHj2t2mYV5XH1Y688Xnr32bjW6MX7ZWedJHvmfgpePk02GIxvPQAAAICke+2113TmmWd6DkV79913ZYyp/Hf11Vcnt0EAAAAAAAAAAAAAAJKAYDQAAAAAQJUUgtGARivW129my7rpA42fQzDakVtfjLrkiKGEogGeRAlGM4mG7zRjxhiZ2+dI/fepGuw3XObud2ROuFhm8okyOXn11yCAxs8fI3zYTTzPrdGsZLncNLYlEIx24r41fwxu2nWRmXqOzF/f9L6ovEz2tvMVHJsmO6VTjXtQQQeZPz0XvabHQCk1SjBaZnbN+0jQmJ5Gj59ulF4t47Z9jvTEzDRlTj9H5qUfpaH7R6z7y5rfa9z29yuPB+z8rxam/UYBf+LBaJKkmgSbvfe89MrsyPGoffBcEAAAAEi2Sy+9VNbayuPjjz9eb7/9thYvXqylS5dW/ps6dWo9dgkAAAAAAAAAAAAAQO1K8Lf5AQAAAABNUiAlds1u0S5IBVD3/DG+fuvxQnE0MiYynOmwba/Jb8tVYZxfTjySYDTAm0QDduDKtOsi3fO+tOQrKTVVKuwuE89jWgCIJkqgZVQBgtHgLDvdSLIR4ztcg9EiayWpR0EoILS2mJ57yQ4eK33xn1rb07P8Qpleg6W3imR/O0n6ekH4vD8gM/kk2fuvdt8js0VSW4zl2OE+HT7I6uNlUmpAGtJJSk8JfX5MqwLp9jnSj99Lq5ZL3fpLc59Vuzsv0dsrJuvr1H4qMykaWPJfBTr3CN/YLZDM56tZAFoU9um/yUz5dfhgmcsNVEosvA0AAACAZ999950WLVpUeXzIIYfoscceq8eOAAAAAAAAAAAAAACoG5FXOQIAAAAAmq+UOC7eTk1PXh8A4hcrBKaeLxRHI+KLfMkwr2KjJm6f61jes03own8AHvgTDNhBVMYYmZ57yXTuQygagNqVaKBlPM+t0axkutw0tpc6B6CtLnKub59TSw1VY254WjrwOCknv/Y3j6agMHT+tHSZO96QjjxTys6VjJF6DZa5+QWZ3kOiBvSbBvB8NyPVaFxvo327m8pQtN2Mzxd6nDLyIJk2HaWCDqFxSQNKv9GQkkUKqEJasTh8U7fQsb0nJOE92GX5t7KrloWPle50ry+NEpoGAAAAoMY++eSTsOOpU6fWUycAAAAAAAAAAAAAANQtgtEAAAAAAFUCBKMBjVaM8AWTmV1HjaDRM8Zx+Jp1s5QaLIkovelon4zLGgB78BGMBgCNCsFoqGXZLi+lbHPJnVrlEozWrmXt9FOdadlavqseke+Vn2Se+rb2T+DEH5Bata3qIT1Tvgv/KvPqKpk3N8s3e4HMPpNCk6kZ7vs0tue7+e1dp+xn71cduASjmf0Ocwy0rjXffRZ+HC38rMx5zlZUyG5aK7t9Sy02BgAAADQ/a9asCTvu2LFjPXUCAAAAAAAAAAAAAEDdIhgNAAAAAFAlnou30whGAxqUQEr0+awkXDmPpsk4v2Q4fOenmr9sf524+TEN3/mpjtnb6N/n+3TkUELRAM8IRgOAxsWf4P12rMfmaLayXF522V7qPL66yDqOt8tN7mNwU9hNatOpdjbrOUgaMNJ5buRBMg5fZ8bnk9nzdadWBe7naGzPd/MLXafs3y+tOnAJRlNKmszjX9VyU9Us3yMYr8QluU+SSiPn7DefyJ42UnZKJ9nDChW88xLZiopabhIAAABoHrZt2xZ2nJLCaw4AAAAAAAAAAAAAgOYhwT9zDgAAAABoklLSvNemEowGNCj+GBdCZLaomz7Q+Pnc/5bCkJJFemjV6VJOnnxn/lyHTQFNgznmN7LX/CpyolOvum8GABCbP8EfpcYTOo5mJdvlZZdtJc7jq4qcx9vn1E4/0ZirHpY9Z0LNNsnOkTnnT1KPQbLnTpSWf1c117qtzOnXeO+noFDOMXFqfM938wul1DSp1OET/8N/ZXfukEnPlNzCxPwBqV3XUHhjEgLH7PLvFBa95xB+VjVXIrt1s/TxW1JmtjRgpOwZY6rmy8ukp+6Q/eBlaeo5MlN/U+v9AgAAAA2FtVaffvqpvv32W61du1YlJSUqKChQhw4dtN9++yk7OzvuPYPBYBI6BQAAAAAAAAAAAACg4SMYDQAAAABQxevF2z5f4heIA0iOQIxgtIz4L7ZAM2Xcg9EqpWclvw+gKRpzqJSWIZUUhw2bSdPrqSEAQFQ+f2Lr4gkdR7OS5RaM5pA7VV5h9cWPzvV1Eow2aIzsxGOlt5+Ob93jX0nzXpXS0qXRh8i07RyauO9D6Z1nZJd9I9OpV2guv733jfOi1GY2rue7JjVNtnMf6X+LIidLiqVvPpGGjpMqyp038Adk/H7ZvPbSWpcbSU2sXBx+HCUYzf7nJeneK6Vtm6Pv+dMPsndcRDAaAAAAmqT169frhhtu0KOPPqp169Y51qSmpmrChAm6+uqrNXLkSNe9li1bpm7durnOH3DAAY7jDz74oGbMmOE4N2vWLM2aNct1z7lz52r8+PGu8wAAAAAAAAAAAAAA1AeuYgcAAAAAVIkVrLRbarqMMcntBUBcjN8vG60gs0VdtYLGzsv9ewbBaEAiTGYL6abnZf94jLRja2jwgKOlE39Xv40BABwZfyD6Y2w3XkPH0ezkZDiPb9oROfb8Z+77tGtZN6/JmEv+Llu8TZr/mrcF+0wKhZ5NOz9yr4ws6dBfKeHOs6OkwXkJd25gzJ9fkj2yq/PkhlWh/6MEo0mSug9ITjBa0fqwQzvvFffaj9+q/fMDAAAAjcgLL7ygk08+WVu3bo1aV1paqjlz5mjOnDk644wzdNdddykQ4Fe4AQAAAAAAAAAAAABww0/VAQAAAABVvF68nZqe3D4A1D6C0eCVz0OoAMFoQMLM3gdIL/8kffep1KajTNtO9d0SAMCNP8EfpQYIRoOz/GwjOcTtbdohlVdYBfxVsWFPfRx03ad9lIyw2mQys2Vuel526TfSzu2hIK6iDdJn78teN2OPYiMz4/LkNZNf6D6X1TJ5500Sk99etmNP6cf/RU4WbQj9HyMYzRx2quxHb0Q/0fQLpSduja+5rUWVb9oHr5M+eSe+9W68PNcEAACoC8FyaUcSAmYRKbOj5Gu6v6Y8e/ZsnX766QoGw5+/9ejRQ/3791dmZqZWrFihBQsWqKKionL+3nvv1YoVK/Tyyy8TjgYAAAAAAAAAAAAAgAt+og4AAAAAqEIwGtB0ZWTWdwdoLIyXYLTs5PcBNGEmNU3aa1R9twEAiCXREB+vz63R7ORHeRi9cbvUplq+13Ofudf2bVd7PXlhuvWrOmjTUfrF8VLXvrK3Xyh9/7nUuq3MWdfLDNw3eU10HyjltZc2rAofb9FK6jk4eedNppw8x2A0u/ZHGSlKMJpfkmT2P0L2qLOk5+5xPYXJzZftPlD64SvvfW3brOCvR4WCfAEAAJqiHT9KL3Wr7y6ahylLpeyu9d1FUnz++eeaOXNmWCjakCFDdNddd2n06NFhtevWrdMVV1yhf/zjH5Vjc+bM0ZVXXqkbbrghrLZjx45aunRp5fHtt9+uO+64o/L4iSee0L77Rj73ys/P1/jx4yVJH330kaZPn145d9555+n88893fV/atavjJ5kAAAAAAAAAAAAAAHhAMBoAAAAAoErAazBaWnL7AFD70jLquwM0FsbErkknaA8AADQD/gR/lBpIqd0+0GREC0Zbv60qGO2zFda1rn97KS3Fw2P2JDN9hsn8/d26O5/fL514sewdF4WPH3+RTKCR/tpDy9bO44//Rfbgk6RtRc7z1e6bzIwrZKMEoykjW+bE38lee4pk3W9XEQhFAwAAAKI67bTTVFpaWnm833776Y033lBmZuTPTwoKCnTPPfeoZ8+e+t3vflc5ftNNN2n69Onaa6+9KscCgYC6du1aeZybmxu2V7t27cLmq8vODj3pXLZsWdh4bm6u6xoAAAAAAAAAAAAAABqqRvobwgAAAACApEjxGoyWntw+ANS+VILR4JHxxa7JiJLoAAAA0FT4/Ymt8/rcGs1OXoxgtN0ufS7oWvfQDA+P15soM/U3Uqu2su/8SyorlZlwjMzkE+q7rcTl5LlO2ZOGuK+rHgSXkxe6zykrda7NyJKZNE3Kain72sPSey8k2GwNtG4rtWoj+ZrvbRcAAABNy9y5c/Xpp1Vhwi1bttRTTz3lGIpW3cUXX6z33ntPr7zyiiQpGAzqtttu0+zZs5PaLwAAAAAAAAAAAAAAjRG/eQoAAAAAqBIgGA1ostIIRoNHXi5WzyQYDQAANAP+BP/GFMFocJGeYpSd5jy3OxittNzqwx+ca3xG6tMuOb01FmbiMfJd/7R8N7/QuEPRJGlbUWLrqoVZG2Ok/PbutbtCrc3oQ+S77imZ659O7JyJOnSGfC+ukO+hT+SbvaBuzw0AAAAkycMPPxx2fM4556iwsNDT2j/96U9hx0888YRKSkpqrTcAAAAAAAAAAAAAAJoKgtEAAAAAAFVSUrzVEYwGND4Eo8ErY2LX5BYkvw8AAID6lnAwmkvyFSAp3yVjeN1WK0n6z/fS1p3ONT0KpBbpHh6vo1EwvYcmttDnDz/O7+Bem54Zfpzo/VqCzCV31+n5AAAAgLrwwQcfhB2feOKJntcOGDBAw4YNqzzeuXOnFi5cWGu9AQAAAAAAAAAAAADQVBCMBgAAAACoEkj1VpfisQ5Ag2H8/thFgCSZ2C8Zmtz8OmgEAACgnu0ZPuQVz5kRRZ5LMNrm4tD/ryyyrmvfOJ8f7zcpPfdKbJ1vj9tB6zbutRl73OD6DfcWhl1T7bvKPPixzJ69AgAAAI3cpk2btGTJksrj3Nxc9evXL649Ro8eHXb88ccf10pvAAAAAAAAAAAAAAA0JXX754ABAAAAAA2b14u3AzydBIAmy8uF67kFye8DAACgvvkTfO7rNXQczVJuhvP45h2h/z9c4hyMdvQwqWt+HQRaoe7sOzmxdXuGWecXutdmZIUvbd1WduRB0kdvJHbuaG3NekzauUPq1EvqPVQmLb3WzwEAAFArMjtKU5bWdxfNQ2bH+u6g1q1bty7suFevXjJxhg/37ds37Hjt2rU17gsAAAAAAAAAAAAAgKaGK9kBAAAAAFW8BqP5U5LbBwCg/ni5gCc3P/l9AAAA1DefP7F1AZ4zw12OWzBasWSt1WKX6+En9ScUrakxKanSdU/JXn5cfAv3CLM2bTrKOU5PUmpa5HmvflT25rOlea9IJcXxndtJ594yt74q07ZzzfcCAACoC76AlN21vrtAI7Vp06aw45ycnLj32HPNxo0ba9QTAAAAAAAAAAAAAABNEcFoAAAAAIBKJpDqfiFldQGeTgJAk2V8sWtatUl+HwAAAPUtwee+xufh8RSarZxMIzm8+lK0Q1q/Tdq8w3ld//YEozVFZv8jZPedLH00J45Fe9wWBo5yr82JDLU2WS1lZj0qW1YqPf1X2Xsui33O7gPle3ihbHmZVLpTKi2RMrJl0tK99w0AAAA0AdaGP58zXv7YTAy1sQcAAAAAAAAAAAAAAE0Nv5UPAAAAAKiSkuqtzp+S3D4AAPXHS5BHbuTF9QAAAE2OP4FgtBETa78PNCm5mc7jm3dYLV7jvq532+T0g/pnbnwmzgV7PGcbMFJq3yWyrvsAmSjP3UxKqjRhqhSI/TqfmXJa6P9AikxmC5ncfELRAAAA0Cy1bt067LioqCjuPfZc06pVqxr1BAAAAAAAAAAAAABAU0QwGgAAAACgiocLIeOqAwA0QiZ2SQ7BaAAAoBnw+eNeYs65OQmNoCnJzXAeLyqWFq+xjnM5GVJBiyQ2hXplAikyLyyXuvbztmCPMGvj98v85s9SalrVYGq6zG//Evvc7bvKnHpl9KLeQ6WDT/LWGwAAANDEFRQUhB0vXrw47j2+++67sOM2bdrUqCcAAAAAAAAAAAAAAJqiBP7MOQAAAACgyUpJ9VZHMBoANF2+GH9LISdfpvoF9wAAAE2VP85gtBETZXoMTE4vaDJyM53HNxdLi9c4z/VuKxnjIcAYjZbJayfd/6Hs5AKpvCxGceRzNjPul9L9H0kfvi4Fg9L+R8h06uXt3CddIg0aLfvRG9Ibj0nrfgpNtOkk8+urpInH8hwQAAAA2KVVq1bq0aOHlixZIknavHmzvvnmG/Xr5zHoWNL8+fPDjkeMGFGrPfL8EQAAAAAAAAAAAADQFBCMBgAAAACoEvAYjObn6SQANFkOF9mHyW9fN30AAADUN198wWjmpN8nqRE0JbkZzuObd0jfr7GOc73bclF7c2DSMmRP+r304HXRC13CrE23/lK3/omde/B+MoP3k868NqH1AAAAQHOy3377VQajSdJjjz2m666L8Th+l2+++UYLFy6sPE5PT9fee+9dq/2lpYUHG5eUlNTq/gAAAAAAAAAAAAAA1IUYVzkCAAAAAJqVFI/BaAGC0QCgyTIxQhcKCuumDwAAgPoWTyh4597S4LHJ6wVNRm6m8+PtdVuleUscp9SrbRIbQoNicvI8FPFrHgAAAEB9Ovnkk8OO77zzTq1evdrT2ksvvTTseNq0aRFBZjWVm5sbdrxq1apa3R8AAAAAAAAAAAAAgLrAb8wCAAAAAKp4DkZLSW4fAID644vxkmEewWgAAKCZiBWMlpMfqhk2Xua212ViPY4CJBXmOo+XB6U1W5zn9uoQI7wYTUdOfuwa7msAAACAejVhwgQNGTKk8rioqEjTp09XFVSUYwAAIABJREFUcXFx1HW33XabXnzxxcpjY4wuuOCCWu+ve/fuSk2t+rn/3LlzVVZWVuvnAQAAtcdaq29XWd3xdlB/fiNY3+0AAAAAAAAAANAgxPFnzgEAAAAATV7AYzBarIvDAdSPbv2lpV9HjnfoXve9oNEyxshGK8hvX1etAAAA1K/UNPe5fSbJ/PklqaxUJi297npCo9enbXz1qQFpYt/k9IIGKKd17BpDMBoAAABQE6tXr9ayZcsSWtu1a1dJ0gMPPKBRo0aptLRUkvTuu+9q7NixuuuuuzRy5MiwNevXr9dVV12lu+++O2z8kksu0aBBgxLqI5rU1FSNGTNGc+fOlSStWLFCU6ZM0VlnnaVevXopMzMzrL5du3ZKT+e1DQAA6tqWYqs3v5be+Nrq3/+1WrExNJ6XJV04ycrv4w9mAAAAAAAAAACaN65kBwAAAABUSUnxVuf3WAegTpkTL5G99pTI8V9fXcedoNHz+aSg818hNtkt67gZAACAetK5j/tcRpaMzycRioY4ZacbdWwl/bjJW/3EvlLLDC6AazZy8mPX+AhGAwAAAGpi+vTpCa+1NvSnZYYNG6Y777xTZ511loK7fp6ycOFC7bvvvurZs6cGDBig9PR0rVy5UgsWLFB5eXnYPpMmTdK1116b+DsRw4UXXlgZjCZJc+bM0Zw5cxxr586dq/HjxyetFwAA4Gz+EumYf0T+XsaG7dKnK6QRXeu+JwAAAAAAAAAAGhJ+YxYAAAAAUCWQ6rGOYDSgQdr/SGnEgeFjIw6Uxk6pn37QeJkowQtpmXXXBwAAQD0yuflSx57Oc/1G1HE3aEr6tvNeO2UwoWjNSkGH6M/HpNjzAAAAAOrE6aefrqeeekrZ2dlh4//73//04osv6qmnntL8+fMjQtFOPfVUvfrqq0rx+kfLEnDYYYfpuuuuk9/vT9o5AABAzYzrJaUFnOfOeMT5D9kBAAAAAAAAANCcEIwGAAAAAKiS4jEYze/yW1kA6pVJS5e58VmZWY9Jx18kc/WjMn96TiYto75bQ2NjorxsmE4wGgAAaD7Mib9znhh5UN02gialTzvvwVajehCC1ZyYVgXSsPExirhNAAAAAA3F1KlTtWTJEp133nnKz893rUtJSdFBBx2kefPm6YEHHkhqKNpul112mRYtWqQ//OEPGjdunNq1a6eMDH5mCABAQ5GZZjSul/PcFz9KvjMqNPKGCp37RFAfLrGy1tZtgwAAAAAAAAAA1DOuZAcAAAAAVEnzFnZjAsn/RW0AiTFp6dKEqTITptZ3K2jMfASjAQAASJImnyQtmi+99nDo2B+Q+c1NMj0H1W9faNT6tvNe27MgeX2gYTIX/U32+IHuBdGerwEAAACIsGzZsqTu36ZNG91+++269dZbtXDhQn377bdat26dSkpKlJ+fr44dO2q//fZTixYt4t776quv1tVXX51wb/3799eNN96Y8HoAAJBcBw0wevMb98Czj5dJHy+z/8/enUfLddV32n92zXcepCvJlmTLxgg8QGyMwRiS2C95ISFkaKATArwMTQIhhMQdIAkdXmKMkyYJazUm6SyGJoZOdwhTAoSX0A6TAYMbTAPG4NmWZE1X0p2nqlvDfv/YV7rz1ZV0Bw3PZ61aVWefffb5nVOnbg23zrf4r1+NvP0XAzf/ij+aIEmSJEmSJEk6dxiMJkmSJEma1tG9vH4Go0nSWW6JL9MWm9auDEmSpHUWslnC2z5I/I3/CAd2wZOvJnRtWu+ydIZ78pYALH6y21Hbu6C56Ilu55qw/YlLHx3BYDRJkiTpdJTJZLjmmmu45ppr1rsUSZJ0hvj5KwJv/dTxPysGuOX/i7zqWZEnbPIzY0mSJEmSJEnSucFvzEqSJEmSpnVsWF6/bHZ165Aknb5KzetdgSRJ0poLOy4lPOsXDEXTinjaBRCWce7azs2rX4vOQBm/5iFJkiRJkiSdDS4/P/DkLcvv/7UHlxeiJkmSJEmSJEnS2cBvzEqSJEmSprV0LO/kylx+9WuRJK2f2uTi84oGo0mSJEmnoqslcOPPHT8Z7Ymbl5GepnNP8GsekiRJkiRJ0tnia29Z/ud9R0ZXsRBJkiRJkiRJkk4zfmNWkiRJknRMyGSgrev4HQ1Gk6SzW6Ox+LySwWiSJEnSqXrPS44ferZz8xoUojPPcn7UQJIkSZIkSdIZYVN74P53ZXhCz/H7Dk2sfj2SJEmSJEmSJJ0u/MasJEmSJGm29u7j98kajCZJ56xS03pXIEmSJJ3xQgg8//Kl++zcfPzwNJ2Dgl/zkCRJkiRJks4mOzcHfvLODN/9kwyf+93FP/8zGE2SJEmSJEmSdC7xG7OSJEmSpNk6Nhy/Tza3+nVIkk5Pxeb1rkCSJEk6K5zXsXjwWSbAtRevYTE6c2T8mockSZIkSZJ0tsnnAldfGHjhUwOvvm7hz46HDUaTJEmSJEmSJJ1D/MasJEmSJGm25rbj98nlV78OSdLpqWQwmiRJkrQSLtq4+LxrdkB3y+LBaTqHBb/mIUmSJEmSJJ3N2psWbh+aiGtbiCRJkiRJkiRJ68hvzEqSJEmSZisUj9/HYDRJOncZjCZJkiStiOdeunjw2b+7ylA0LSJ4bEiSJEmSJElns45Fg9HWtg5JkiRJkiRJktaTwWiSJEmSpNnyywhGy+ZWvw5J0mkpGI4pSZIkrYhrL4KtnQvP++WfMvxKi8j4NQ9JkiRJkiTpbGYwmiRJkiRJkiRJBqNJkiRJkuZaTjBazmA0SZIkSZKkU5HJBP7yJfMD0P7DcwJPPs9gNC0i+DUPSZIkSZIk6Wy2WDDa4Pja1iFJkiRJkiRJ0nryTHZJkiRJ0mzLCkbLr34dkiRJkiRJZ7mXXhNoLgRu/VKDcg1e9LTAm24wFE1LyBiMJkmSJEmSJJ3NOpoCEOe1949BjJEQ/AxZkiRJkiRJknT2MxhNkiRJkjRboXD8PlnfTkqSJEmSJJ2qEAK/ciX8ypXZ9S5FZ4pgMJokSZIkSZJ0NtvSvnD7aAUOj8CmReZLkiRJkiRJknQ28RuzkiRJkqTZ8sXj98nlV78OSZIkSZIkSbNl/JqHJEmSJEmSdDbbuXnxeQ/0rl0dkiRJkiRJkiStJ78xK0mSJEmaLV84fp+swWiSJEmSJEnSmgt+zUOSJEmSJEk6m/W0QWfzwvMe7I1rW4wkSZIkSZIkSevEb8xKkiRJkmbLF4/fJ5tb/TokSaeflvb1rkCSJEmSzm0Zv+YhSZIkSZIknc1CCOzctPC8Pf1rW4skSZIkSZIkSevFb8xKkiRJkmYJywlGy+VXvxBJ0umnvWu9K5AkSZKkc1vwax6SJEmSJEnS2a6jaeH2an1t65AkSZIkSZIkab34jVlJkiRJ0myFwvH7GIwmSeema35uvSuQJEmSpHNbxq95SJIkSZIkSWe7XHbh9prBaJIkSZIkSZKkc4TfmJUkSZIkzZYvHr9PLrf6dUiS1s8v/YcFm8PL3rzGhUiSJEmSZglhvSuQJEmSJEmStMpyi5ztVWusbR2SJEmSJEmSJK0Xg9EkSZIkSbMtJxgtazCaJJ3NwiveCj1bZze++HcIW5+wPgVJkiRJkpLg1zwkSZIkSZKks10uu3C7wWiSJEmSJEmSpHOFZ7JLkiRJkmYrLCMYLZdf/TokSesmnH8xfOAb8OVPEHsfJ1z1s/DTv7zeZUmSJEmSMgajSZIkSZIkSWe7XCYAcV57rb72tUiSJEmSJEmStB4MRpMkSZIkzZY3GE2SBKFnK7z0PxLWuxBJkiRJ0jEh+C5NkiRJkiRJOtvlsgu31xprW4ckSZIkSZIkSevFYDRJkiRJ0mz5wvH7ZH07KUmSJEmSJEmSpLNXCOEi4ErgfKAVOADsBr4VY6yuY13dwNOBi4BOIABDwF7guzHGg+tVmyRJkqSVkV3k9xFq9bWtQ5IkSZIkSZKk9eKZ7JIkSZKk2ZYTjJbLr34dkiRJkiRJkiRJ0hoLIbwE+APgWYt06Q8hfBx4R4zxyBrVFIBfB94IPOc4fb8PvB/4uxhjbQ3KkyRJkrTCctmF2+uNta1DkiRJkiRJkqT1klnvAiRJkiRJp5l88fh9sgajSZIkSZIkSZIk6ewRQmgNIXwM+CSLh6IBdANvAO4NITx/DeraAnwZ+BjHCUWbchXwAeCuEMIlq1mbJEmSpNWRXeRsr5rBaJIkSZIkSZKkc0RuvQuQJEmSJJ1mCssJRvPtpCRJkiRJkiRJks4OIYQs8HHgBXNmHQa+DwwBTyCFjoWpeZuBz4YQfi7G+M1VqqsH+Crw5DmzqlN17QYawDbgaqA0o8/VwFdDCM+JMe5ejfokSZIkrY5cduH2usFokiRJkiRJkqRzxCK/ISJJkiRJOmc1tx+/Ty6/+nVIkiRJkiRJkiRJa+PdzA5FqwJvArbFGJ8fY/y1GOPVwBXAt2f0KwKfCSGct0p1vZf5oWjvn6rrmVN1vTTG+BzgvKntmBmVsA34wCrVJkmSJGmV5BY526tWj2tbiCRJkiRJkiRJ68RgNEmSJEnSbBfshKaWxeeHQMgu8pOUkiRJkiRJkiRJ0hkkhHAx8Ptzmv99jPFvYoyTMxtjjD8BnsvscLQNwJ+uQl07gJfNaf7PMcY3xBgPze0fYxyMMb6N+dvy/BDCM1e6PkmSJEmrZ9FgtMbC7ZIkSZIkSZIknW0MRpMkSZIkzRIKRbjyZxbvkMuvXTGSJEmSJEmSJEnS6vpTYOY/wD4SY/zsYp1jjBPAq4GZoWmvnQpYW0m/NGe6F3jnMpb7r8A9xxlLkiRJ0mkst8jvltbqa1uHJEmSJEmSJEnrxWA0SZIkSdJ87d2Lz8vm1q4OSZIkSZIkSZIkaZWEEJqAl8xp/ovjLRdjfBD4zIymHPCyFSwNYG7Q2u0xxsrxFooxRuBf5jQ/ccWqkiRJkrTqcouc7fWFe+H7eyKTtbi2BUmSJEmSJEmStMY8m12SJEmSNF++uPi8XH7t6pAkSZIkSZIkSZJWz/OB5hnT344x3r/MZW8Dfm3G9IuAW1aqMKBlzvTeE1j28TnTXadYi3TWGh8f5//8n//DQw89xJEjRyiXyzQ1NbF582Z27tzJVVddRaFQWJF17dmzhw9+8IPccccdPPjggwwMDFCtVo/Nv+2223j1q1+94LLf+c53uO222/jWt77F448/ztDQEI1G49j8xx57jB07dgBw/fXXc8cddxybl/ISJUnSmSSXXXze1bc0aC3C+34j8OrrFklQkyRJkiRJkiTpDGcwmiRJkiRpvqW+2J01GE2SJEmSJEmSJElnhZ+fM/21E1j2G0CN6e9hXhVC2Bxj7F2JwoCDc6ZLJ7Ds3L79p1iLdFap1+t84hOf4LbbbuOrX/0qtVpt0b6lUonnP//5/OZv/iYvfOELT3qdH/rQh3jTm95EpVI5oeVqtRq/8zu/w4c+9KGTXrckSTrzZMPS80cr8NqPRn5qW+SqC47TWZIkSZIkSZKkM5DBaJIkSZKk+XJLBaP5VlKSJEmSJEmSJElnhSvmTH97uQvGGMdCCD8CrprRfDmwUsFo35gz/bQTWPbqOdPfPcVapLPGV77yFd7whjfw4IMPLqt/uVzms5/9LJ/97Gd5+tOfzgc+8AGe9rQTeTjCF77wBV7/+tcTYzzhev/kT/7EUDRJks5Btcbx+8QIV9/S4JZfDRRz0NUMEcgEKOagszkQIxwcjtQbsL0r0D+ebk/WoJBLbddeDE0Fw9UkSZIkSZIkSacXz2aXJEmSJM2XLy4+L5dfuzokSZIkSZIkSZKk1XPpnOmHT3D5R5gdjHYZ8JVTqmjal4EHgCdNTf90COGpMcZ7lloohLAVePGMpirwsRWqSTqjvfOd7+Sd73znvICyEAKXXnop27ZtY8OGDRw+fJg9e/bMC0+7++67edaznsXf/M3f8Fu/9VvLXu/b3va2Wet82ctexmtf+1q2b99OPj/9//eNGzfOWq63t5f3vve9x6YLhQJ//Md/zAte8AJ6enrIZDLH5m3btm3Z9UiSpNPfPXuXH6j69s8s1ndu+0L9Ils74V/elOHK7YajSZIkSZIkSZJOHwajSZIkSZLmyxcWn5fzraQkSZIkSZIkSZLObCGEbqB7TvOeExxmbv8nnnxFs8UYGyGE/0AKWisCGeBTIYTnxRh3LbRMCGEz8BmgeUbzLTHG/StVl3SmuvHGG7n11ltntbW1tfG2t72Nl7/85VxwwQXzlnn44Yf5yEc+wnve8x4qlQoAk5OTvO51r2NsbIwbb7zxuOt94IEHuOee6TzDF7zgBfzP//k/l1XzZz7zGSYnJ49N33LLLbz1rW9d1rKSJOnMdtUFgc/fs/xwtFOxbxBe9XcNfvCODCEYjiZJktZHoxEJAV+PSJIkSZKO8Wx2SZIkSdI8IV9c8PchAcj6VlKSJEmSJEmSJElnvM450+MxxrETHOPQnOmOU6hnnhjjt0IILwT+AeghBa/dE0L4MPBFYDcQgW3Ac4HXARtmDPEB4F0rWVMIYdNULSfiCStZg3SiPvrRj84LRXvOc57Dxz72MbZt27bocpdccgm33HILr3zlK3nxi1/Mvffee2zem9/8Zq688kquv/76Jdd99913z5p+yUtesuy6T3bZr33ta8tehyRJOj096+IAi3+Db8X9aB9c+58b/PwVgQDs6Yf//u1II8LPXw5HRqGrGbpaAs0FyGQgTpXXXoLmAkxUodaAfBZKORguw8GhyCWbApkAlRq0N8HeARiZgJ1b0vJjFSjkoKUAoxUo5uDaiwPPv9xgFEnS4sYrkb+/K/IvP4zs6YfJOjQi1BvpuqMJrtoeeO6lUMwFclnIBMhmYKwSOTAEh0dgfBLqESpVGByHliIcHonUG9BahHwuPTcCNBVgSwf0tKZxchkIIT1PDo6n9Y5PQu9w5JkXBTIZ6G6G7d2BzmZoNKB/DA4MRXb3Ty/fPPUcmMvA/sE0VqmQnhsv3AAHh2BgPG1bSzE93w6OwWQ98r3dabt+7rJwrKamPAxOpOfY0XJk7wA8eiQ9V+/YkPpM1tPz9fmdacx6A3b1wcRk2sZGAx45DDs3wyWbAyMTUK2n/ZL2RWCkHDk0AvsGoJSHC7rTfm/E9DqhMXUZKad1V2pQrUMg1ZfLpNcAlWqaPzSRXlc8ZSu0lVLb3oG0f7e0w9hk2qYQ0n4EuOJ8uPz8wK9cCT+1PTA8AZ3N0+NO1tN6K1Prz4R0P5anphsNGC5H7juQXv/0jUbK1VTno0fSvu5qTnU9chgOjaTbF26A8zrgkk2B8ztTrfsGoFaHwYnIdx5L+2THhvSaqDH1uqlWnz6W6o10HI2W0zFwxda0T/vH0vHQ1Qyb2gOXbErb31pM6+tpg/sPpnEu6UmvvfYPpX0yPhmPratcTcdOrQH3H0jHy2Xnh2P3TT6baizmUl2tpbRtMcKOjYHLz0/HY0dT6lPKw4GhtP8na+n20ERa57auwAXdaTvy2VT/WCWtZ3N76jtSTvf9ldtTv/sPphqbCulYyGamH1czr7OZtD0HprYFOPaYDGH6diaTbmdCas+E2bfnXs9qm7P8QmMZ2idJkiStD89mlyRJkiTNVygsPi+XX7s6JEmSJEmSJEmSpNXROmd64iTGmLtM20nWsqgY45dCCJcCNwIvBy6aun3jEovdD7wjxvjJla4H+B3gT1dhXGlVPPjgg/zu7/7urLbrrruOf/3Xf6W1de6fgYXt3LmTL3/5y1x//fXcd999ADQaDV7xilfwgx/8gI0bNy66bG9v76zppYLYVnJZSZJ0ZvvZnSno4979a7fO7+6C7+6aH8b2xR/PnDqZsLaTW6a9BC97ZqBcTSEzh0ciE1XY1AYXbgiMT6bwksMjKTylEVMISimXgk4KuRTusq070FZKAR6TdXjscDwW9HI0rCUToG8sBeRctDEF0mQzKXwjE1IQSXMBeochl03LDE2koI8t7bChJYW1DIxPh+7EqXCeo0EihVwad6Kawkc6m6dDP0r5dD1amQ4O6WhKASl/9ZLA1i5DOCRppsla5Pr3NLh799L97tkb+ei34dTCRk9u2X/+/szlVj/s9L99Y3nreHD2Rw0LvtZ4aMZPQRwchq8/tNDY89t29S2rhCUNl+HOR+a3Dy3yye29++He/ZGP371wTSth/+Ds6eFyCpX90T64/SdLr3NP//LX8/3Hl7OfT20bZx+XSznR9axdoO96WzBsjRSmdiIha4sGty0x1moFvmVCWHLMcFJjrmR9J7uvlt6uZdUyZ8yhien3JfksdDUHWoopZLE+9fr/aEDn9O04r32yDud3BJ53OZTygUYjjZnLQDGfXvvHGBmtpHUXsun4OzQV6NmIqR5I8za2pvcUY5XU1tEcODwSuXffVOhkU3ovUmtEelrT+6NsZvq9S72R3qd0NsElm9J7o3v3pfU8/cIUkD1TvRHZP5jq7WiCfYPpr8CevvQ3MpuBkXIkn4XWYmC4HGkrBdpLs0NMq3X40b5ItZ7e041Pwq4jaTuO1relI91+5BBUaik88pkXp/DGGFPAYrmW3vsdvR1jGq+9lLa9rRjS9ay2FAiZzfheS5Kk053BaJIkSZKk+XIGo0mSJEmSJEmSJOmsNjcRqXwSY8w9JW95KUsn7uh3PSvL6Pst4CbgS6tUi3RGectb3sLo6Oix6c7OTj796U8vOxTtqE2bNvGpT32Kq666isnJSQD27dvHu971Lm699dZFl5u5boB8fvn/bz+VZSVJ0pmtqRD419/P8I7PRb5yf2R7F7z9FzP83Z2RT9x9bgRPDJfh/Xcstq0nsg8W7vvI4YV7HxlduH0hI2V4+NDx+52MxwdS0MsdD0buvSkzL4xAks5l/+VL8bihaJK0GhoRiFBf70JW1Nn6/mIttmvlgzfbSymgeXzyFIY+ifUuJZ9NIWalPDTlUyD0ia9v5e6PhQM7l1PDfC3FqbC00lRw2lRoWntTCpCb3QbtpbBAWxonBN+zSZK0GgxGkyRJkiTNVyguPi/rW0lJkiRJkiRJkiSddU7mrIxVP7MmhPBbwH8BWpa5yHXA7cC9IYTfjjHeuWrFSae5+++/n89//vOz2t797nezZcuWkxrvsssu4y1veQt//ud/fqztwx/+MDfddBNdXV0LLtNoNE5qXae67Er4yU9+wo9+9CP6+voYGBigVCrR09PDpZdeylOf+lSKxSW+V7CEWq3Gd77zHR599FEOHz5MpVKhp6eHHTt28OxnP5tSqbTCWyJJ0plpa1fgw6+afWL1cy+FG54En/lB5Mf7oTZ1cvrYJLQWU1DD4ZF0En0+CyHAZG2dNkAr4sAQ/N2dkd+9AfrG0kn3gxOwuQ3yucBkLXJgKB0LG1vTm9QHDqa+h0ciTQV48pbAkdEUZpDLQDGXjpn+schoJbXHqWPnyChcfSF0NAXqDWjESLmajqULuwOVWjq+6g0Ymojcsy8da8MT8Hh/ZGAculugqzlQKkDfSCQCm9oDuQxkM9DRlLZttAIXbYRrLwp8b0/k8X44PAqDY+mt9iOHoVKD518eaMQURHdeBzQVIJDmPXYkHeMb21INh4bTNm1shV+5MvArVwYOjUD/1L5rRHiwFwo5ODIaGZqAickUZJDPpkC+GNM21hpQyqWxmgppfZO12dfDZegfhSduTmMf3TdHL0f75rKwbyBtVyEH3S2B8UqkuzVtW62e+hVyUMxDcyHtpyOjabsyIe3vah02tAQ2tMJEFXqHIk2FQDaT7sdyNVLMBc7vTPs6E9L9PVqByTp0N8P/fVng2ZcY2nCmiDEeC9mo1SMTVdh1JB1z5WoK6wikY3F8Mh2HMU5fl6spsGNwPIWYhJDaW4vp+Mpm0jFeb6TH10g5PQ7z2dSn3kiPhVo9HWMHhqBSi/S0pcd0vZHGmKimxxikdUCq6+h0tQ5jlVRPT1tapphLj830tyb9/ao30vPa8AR0Nqf2C7pTzRHYsSHV9uFvnq0hPpKkc93wyfyEzyqrTiUBlqvpcjYZq6TLgaG5c04spDuEFJR2NDTtWNBaCdpKgbZ5bSlkrb1pbtvU+x1D1iRJOsaz2SVJkiRJ8+WX+AJzzl+hliRJkiRJkiRJ0hlvdM5000mMMXeZuWOekhDCnwC3zGm+G/hb4BvAfqABbAGuBV4H3DDV7wrgjhDCa2OMH13Bsv4W+OQJLvME4LMrWIO0LLfeeisxTp+otHHjRl7zmtec0pg33ngjf/VXf0W1ms4AGxsb40Mf+hB/+Id/CMCuXbu46KKLFl3+hhtuWLD9tttuA1iyvsVOhnrsscfYsWPHsenrr7+eO+6449j0zH1wPI8//jh/+Zd/ySc/+Ul6e3sX7dfU1MQNN9zAq171Kl784heTzWaPO/Z9993HLbfcwuc//3mGh4cXHfeXf/mXufnmm9m5c+ey65Yk6WTFx34CBMJFl653KcuSzQRe/7OB1//s0v2qtUg+N/u1w8RkCtT54r2RV3zYQJkzyVs/FXnrp+bfZz1tKezoaFDB4lYqB/xExpnbd6lllx73/oMnd7z+yz2R3/zvp+uxHudcn8yyy52e7ebPp/ndLSkEAqZD00pToWwT1RSy1VKA5zwxheS1FNO8o8v0j8VjYVn7BlOIVXdLCngbraS2egMKWajH6bC4Yg62dEyHdzUiNBrTt+uNFM5VjynYraNpOpwL0nQuk8InxiqpfbSctnqylsYYLqfbT9qcQr8mqtPLj0/CoeEUONFegs3tsKktzZuoptoHxuD8Tnji5sBl58GmtsBIJdI7PB0Qdng07a9aPQXfNeXTOsu1FBgyOXU9PpkC+OpT69/cDtmQgg3HKpHzOgMTkzBaTqF+I2XYPwR9U2GGldM23PJ0fWxJkiStvTj1GnS4nF4Hz5m72FILtmYz88PS2pumgteawry2FK4WFmhLr70NWZMknekMRpMkSZIkzZcvLD4vazCaJEmSJEmSJEnrOTk3AAAgAElEQVSSznindTBaCOH/At41p/km4OY4P+Vo19TlH0MIrwPeDwQgC3w4hPBwjPHOlagrxngIOHQiy3jShdbLF7/4xVnTr3zlKykUlvhf+DL09PTwS7/0S/zTP/3TrPUcDUY7U8UY+bM/+zPe9a53MTk5edz+ExMTfOELX+ALX/jCvGC2uer1Om95y1t43/veR6PROO64H//4x/n0pz/Ne97zHn7/93//RDdFkqTjiof2wpc+TvzwzTBZhpZ2+MxuQql5vUtbMXND0QCaCoGmAvza0+F9X458Z9fa16WVdXhkvSvQmax/bPZ039jCfT72nZUPwNrVt/y+ewdOfj0P9KbLQobL0DsMDy3yCce9++H2n5xKgN3xrObYkiRJOlPVGykAe3B8obknFrKWz84IWJsRmtZeCrTOazsaxBam+88IaCss8DmDJElrwWA0SZIkSdJ8+eLi83K+lZQkSZIkSZIkSdIZb2jOdHMIoSXGuMCpwIvaNGd63u/An4I/I4WbHfXRGOM7j7dQjPGDIYTtwNunmrLArcDTV7C2M1atHk/ppGot37YuyGXX70SZvXv3smvXrlltz3ve81Zk7Oc973mzgtHuuusuqtUq+fyZ+SNjtVqNl770pXz605+eN2/Lli085SlPYePGjVQqFXp7e/nhD3/I6OjyciAnJib41V/9VW6//fZZ7fl8niuvvJJt27ZRLBY5ePAg3/nOdxgfHz9W04033sjAwAA33XTTKW+jJEkA8ftfJ952C/zg6zAza3hsmPjaZ8LffIXQ1bN+Ba6yODoEfQfIdm3iK2/u5NZ/a3DXrsDYZDpZenwSJmtQqcEPHp+97JM2w4ZW2NQGzYX0Gi8EKFcjvcNQyEEpBxNVKFehlIf9g2nMXDZNdzfD/qEU5rW9G2p1aCmm60aEnxxYh50iSTqrvP8VgU99L/Kl+2a3ZzPQWkxP//WYAkfyWbigO1329EPfaHpeuuw8uGBDIJ+FoQkYLUPvcKRSg7FKGqvemB6n3kiBIT1taf6djyyv1p426GlNz5sT1fS8el4HDIzBo0dm1z00kaafug22tKfn2KGJFIFSzKXn51oDmvLQVIBGAzqaoL05bUcpB90tabyxCoxW4J69keYC7NwcqMdUx8GhSC4DI2XIBOgdgc1tsKE1BaQU85AN6Xl7oppCUoq59FyeyaTXEZCWzYS0TZmQXge0ldIHnYdG0jYV89NhLYUcFHOB/rHInv70WqGtlO6P5gK0FKBcg919cGg4tT9yOPKNh07teAkBcplU4xN6YOdmaC0GNrWnfdtSSLX2jaX901RI+68RU11DE/B4f6RvNL3e2daZQmN29UWyGdjSHjivM61rU1va/7lM6lupputHDsMPH49pPzbggu5AMZ/uw/sOpM8x+8fS/p5bO8x+SduUT6/jGnF6+gk9qdbeEajW0/HT2QwTkzA4AcMT0NWc7oOBcXjsyIntw6OPB0nS6alaT89j80OQlwrnXXheMbdIkFpToHVeuBq0lcICbemynv87kiSdeTybXZIkSZI0X26JL2xnfSspSZIkSZIkSZKkM1uMsS+EMAB0zWi+ALhvkUUWcuGc6VM8HS8JIWwFrp3TfNxQtBneDbwZaJqavjqE8NQY4z0rUd+ZbO8AXPyfPFtvLTz65xl2bFy/9d95553z2p7+9JXJB7z66qtnTU9MTPCDH/yAa665hm3btvHYY48dm/fe976XW2+99dj0xz72Ma69du7DGzZuTDvr+uuvP9b20pe+lP/9v//3semZ4860bdu2k9qOo9785jfPC0V7wQtewE033cQ111wzr3+j0eCuu+7iH//xH/nIRz6y5NhvfOMbZ4WidXR0cNNNN/Ha176Wtra2WX0nJib427/9W97+9rdTLpcBuPnmm3nmM5/JL/zCL5zk1kmSNEO1At+/Y+F5ex4k/vI24q++DiYrMNwH9To0tcLAoZQ+0bWJ8LP/jnDDi1aspBgj3P89uPfbxEN74fB+woVPJpbHoNhEyOag1AytnTAyAK0d0LUJJkZhZBAGj0BXT0rFaGpJP4gaGzA6BCODxN7dcHAPPHYfHJpOOysBfwTQvQWe91LCb91MKCzxY6prZHdf5K/+V+SbD6cgkPM7UkjJ4AR88+EU0Lap7WhQSqC5yLHAl3ItBXMEUkjH4/2RpnxqbzRS4Ee9AQeGUrjIBd3Q1ZxO1K41oG80hbFsboNrLgqEkMJpKlMhL22lFDLTWkwBL8PlFCoyPpmCRNpKKVgEUttENQWq5LJToTeTKXTnyGhk55bAhpa03rEKHJkK47ntzki5uujukSQt4ZOvz/DiqwOv+5n0/HpgKD1HbGyFENY2fCPGeGydk7X0t/1oWFg2MxWQdZxAkEYjEoFs5lwKDjnxbe0djjzUm56HxyZT2FyY2s/F3OxLLguD4ynQbEsHlPJnzr6NMfJg7/Rrjgu60/F0eGR6W3vaTv1YjzHyo31w775IPhtoKqQgm3w2vY7a3D79+uVJW1LoTaMR2TeYgvFqjbSPJ6pw0cbUb/8gnNcJl/TAwWF49HAK6qnU0njbuqZCCxtp+ZnXR2/X6inQrbtlOgwuMuN2TNONmG7PvF6oLZJeH868PXf5BZc7qTHjiY85p6aF6lup5ZfalrjAWMeWm/obtS77fIWXnzvWyZj5933m7WxIwZFH/+QfHD658c9UIaR9Wsilx/3R/Xs0OPPofVLMpfDsXCb1a8rDvftT32IuhZbuH4Le4enlN7SkfqWpy8zbMcJIJQV9Dk+k924j5engSJ2cSi097xwemTtnsR27+A5vLswOS2svTYWulcKx8LTpNmifap/dlt6fZ86p10qSdG7ybHZJkiRJ0nxLfclpqdA0SZIkSZIkSZIk6cxxH3DdjOlLOLFgtIsXGG8lXDln+tEY42PLXTjGOBZCuAu4YUbzM4FzPhhN5469e/fOmt68eTMbNmxYkbGvuOKKBdd3zTXXkMvl2LFjx7H2zs7OWf22bNkya/5cra2tx26XSqVZ85Za7mTdfvvtvO9975vV9u53v5s/+qM/WnSZTCbDddddx3XXXcfNN988r86jPvnJT3Lbbbcdm77wwgv52te+tuh2NDU18eY3v5lnPetZPPe5z6VcLhNj5Pd+7/d44IEHyGQyJ76BkiTN9LQbUhBY/8HF+3zmg0sOEb/8CXj9LYRXvPWUy4nVSeI7Xwl3/PPs9kVur4r+g/CP7yX2HyL8v7cdv/8MsV6HRj19n3DwcApqO/9iGOmfDm4b7odiE2zeDhvOB6bSBvoPpvnjIzAxli7DfVzQd5C/zmThsrZ0f1102ZqH2aynZ17U4NW3eba+JJ2oi7O9vOAbt9L43L4UbprJsqXUDLkCcXyYODYCLe0wNgy1agoTLRThwG5o64Tx0XR99Lktm4Mj+4EI2TxUJ6HUlAJTi1MpmF09afrwXii1pOe7fAE6U/B5HBsm9Gwlf9kzyG/YAn0HoFKGoT4Y7p/9fD86lFJe6jVCezexPA7jI4Rsjgakeob70nNnow5NbSnwdbg/BaI2tabrfY/CxvOgrzfVkc1CrQZbnwAP/xAKpbR8rZqCVtu709gToylcNV+E8WHY+0ja9tzU9ux/DHbfn7bvBa9Mz+UT43B4H9RrKbi1tSPt4wO7UnBrvZa2iZCuj14KpdQvNqBjYwqALTal+6AynvZv34F0X1UraazKRKq5Vk1hsY36VOppkZ62LnrqNSiWpu+/Rn327UYd6g1iSxsdnT10bN4OIUPj6GuMRj3V25j6MYWRgVRnvQb33gXdm+Dya9P+nrr/UqpPBtq6p7ZzSiaT9sXYcNpf+WLax7XJdN1oTK+vfvS6loJsx4Zgw5a0b4+Oc8GTCBddBlsuYGf35rS/hmqwvwa1KheWJ2B0EM7bARvPIx7ck+prNGbs90xa/8Ah4lB6fFCZSP36DsL2S9J2VCZg4BBXVCa4oqkVymPp2C41pWVCSPfHwKH0+q86SWPqvt5ar6Vw4WolbUeukI7LEHjyxGjaHx0b2N7cyvZIegxOltNjIpOZPk4yIa1r41YolgjXvwg6NqT7vjqZjpsYob+XeGgvYdO2tM+6NqVxZqZaHbsdZ0/PvV5O37m3T3acuMAr/VOp61jKFBDmtGVOcp3H7bNAfae6nccbbznrnNEnHq/PQvt4xvWxQDgCjRiIMdIgEDM5stlAMZ+l0dSajslalWwum/7eZnPpsZHNTV9mTWfJ/v0vzt/uKR961j10jB+g0dJJpWUDBWpsyo/TnJmkQoFGtQqZDDtaxskXcsRaDRp1+icL9B4uM1ZpkG9ro5Zvolxop1TI8JSWw5yfH2GYZpoH99EysIdKI0ulPEnjyEHquSKN5g4aA0fIDRzksZYn0t9opVQe4MLKboY6L+CBrmugtYPYtZl97U+iXM9Ao0FbY4Se7AitXe3Q1Eq2VqaVca7oGCJfK1MsD5KrjlOu5yiWB2mQIVz0ZEJlgpDJQHsX5PLEzs3EiTEyI33pPjq8P/1tqlVhdJD4wPfTc9BkBZ74U4TLnwlbL05/b6qTMDZC3DX1r7lMBqoVQltX+tswI3Azxsh4PcdILcdwLc9wNc/IsescI7UCw7X81PwCI9Xc1PRUv1nXhUXvRy3P+FTIeO+8sMATD1lrzU7Snp2kLTtJey5dt2UnyYbIUK3IcL1AyOXpLlXZ1p3h4s4qV5b2siE7znjrFvbX2jk8UOWi2m66myOPNzYyXoXNrQ1am3I82lvl4GQrFErkMpFaI1Cv16k1MtTzTdQi1Kt1apk89RhoCxM0F+BArZ09IwU68jV+6RnNvOTqsO6fb8RGIz1PZ7LQ3JZei4wPp+fgkQHo2EhoaSdWJ9PrgnoNHn8ovSaA9JlPeze0tK/ptsRGI4X9T4ylv6f5ArR2Eto6j7+wpLOCwWiSJEmSpPnySwSjFZsWnydJkiRJkiRJkiSdOe5ldjDas4B/Wc6CIYQW4KkLjLcS5n6Te4nkhkXNXWbjSdYinZH6+/tnTXd1da3Y2KVSiWKxSKVSWXR9Z4qbb7551vRv//ZvLxmKNtfc4LejYoyzxs7lcnzuc59bVrjb0cC1P/zDPwTg4Ycf5jOf+QwvetGLll2XJEkLCbkc8bn/Hj7516c0TvzA24n9vYTOHigUoLk9BXlUJ1Nww8bz0wmmPefDob2pPZNNoSOH9hJ7H08nbH/lU7D34RXaulN0+z/QuP0fYMuFKVhi68WEHZcSa1VCNkccOpJqHTicTlQfPDQdHrJcISwcgHAc8eIr4NF7ob2b8Kq3QaNOHB8lNE+F0wz1pZNis7l00m6tmgJAzrsQrvxpQs/WE17nvBqG++HIAThvB6GpZeE+MaZ15/KzThCOjUYK/qhOpoCTo4b60v4MwKZthOY2uppPudQl5bORan3+ycuZAI0Zd01TPlLKQ4ZIvQFj1UCtDpFAJkSa85FcJjJYzh5bZmtnpCnXYFtH5NKtWcargdHhcfpG4fAIPLF1hGypyGQo8OhQkR8fzM6rA2BDC/S0waGhOhtKNTaWakyUazRqNbL1KiOhmdFajiJVag0gZNhSnGBLW51iU4GvP97Mkcnlf8d1e3uVbIBGJksx06CzNUuDQFMe7j8II2XY2AqFHBRz6bqQTbfzWegfh4ExqNRgSwec3wG5LGQDZDOQywYKWegfi0xUodZID51sBs7rCNQbMfXJpUOhfzxSyKZ91jeW9kc+CxtbA81FGC3DaCUei3hobwrks9P3X60OtUbkwBBU69BWgskafPM0+VOjs0Muk47llZTPQr0x+2/Rcm2u9XLbrt+geO9dK1vUCjiZqMtTjsd87Cfz275/x6mOmlQn4bP/bWXGOlnjI7OnD+5e/XWODMDuB1Z/PQCjQ7OnH75n9YNyv/ullR9zsjL/vhrqS5fl2PcoAPE7/7ZkN+NktRqmIh1Z6icaZs47kePwxk3/mfdu+P157ZdW7uM1f3ftCYw07Xxg/s94zHb0n0MRKExdFtK9QNtTTqqq6fUdPTNt0X2WyRAajeXtx4d+QPzCR5e13oU0T102L2ddS2gQGMu0MJxpZyTTynCmneFMG6PZNoYzbYxk0vVwpo3RTBvD2em2kaPLZNP1WKb1+CvUkkbrBUbrywyrO3D0xkKfE+xYmYLm/Ys3z//4QQQiT2I3bYzTzjhtjFNikjIF2sIEO3mcPHXy5WGuOng7143fRZ5aCmtt7YShIxwLrs0Xpl8zZDLTn8+EkM75bOuCXC71naykz6NGB2d/jpPLp88w5ohHx1nq85t8gdi1eToouDIBHd0paO2H30yfgeQL6fOxo0Gw2akQyfYNad7R0Nujl0Y9fUYyMZrW0dqRPp+arMCRfWmchWp92vWE17ydcOVPL+vekXRmMhhNkiRJkjRffokPBZvb1q4OSZIkSZIkSZIkafV8EXjdjOnrT2DZn2b2dzC/H2PsXYmigME50wufeb+0uWdTjJ5kLdIZaW5Q2WIBXiers7OT3t7ph3xf3zJP7DyN3HPPPdx5553Hptva2viLv/iLFRn7q1/9KvfeO50V+fKXv5ynPnVuluTi3vjGN/KOd7yDcrkMwOc+9zmD0SRJKyI87zeIpxiMBsAn//rsDGI4uDtd7vvuse1bse08iVA0IIWiAQz3E//6rdPDLXe1MB2clsunE3O7p06Fr9emw9TqtXQy78RYCrIbH0lBKAuNB+lE4YsuTyf8jgxMB320dhCLzVAemw5Em2mxk487e+huPBm2/q9Ft+WLu38RgH35reRjGiMQGcp0sLl+iAaBQpzkssp9bK/uJRCphjyD2U5aGmN0NIYhm6XcyBGIFPKBsdhES32Y0GikE65rkwuG3kWgRo4cNWZGqw1l2mlvDDM/bu349uXOZ3d+O531IXZUd9McJ9JJ3JWJkxhtWo0s95SewlCmndZslc1Pv4ruOExvpUh9cpLOyX56hh8h7HtkwfuCfCHti+zUieRtnel+e84LCa0dUK8T9z8Kux6E3j1pmUwG9k+d6J3NpeM9l0/HQK6QThZvbk3XE6NpvYeK6Vgrj0N/L4wMwuDhdCxCGmvTNqiU0zEbYzrxPGQgTiWsNRrpNgE2bEnL1Krp+JysQF85Hcu9u3hspMi3mp7FUOtWWijTUumnVBvhcNsT2M8Gzht5hCx1vld6Gn/f8TI21PvJ0CBPnQsyhxjPt1PMNBgPTWRqFY40WtnQGODi7GGqjUA15OkplOmoHKZ54ggtjXFaKaddUhkjW6+SaW7mUKabMiUyIZIZGyTT1UP2p64jU2oiMzpIGB2gqTIAITARC9TLZTK1KvlGhTFK9MZOamQphiq5WCOWJzhSbaapMU42l6VYyHA3TybbqLGxvI/O8YN05yboLNQglyOTzdCaq1PMRfZmtnB/ZTMxBFor/TTFCfLUOBK6uCt3JY9mtlOJOVoKkVIOMtlAUy6SpUFXrkxrZpKxWpZ8pkExGylm6hRr45RyDYotzZSydUpU6Qhj5GsTlAcGuH34idxduXDWIdccKjw99yjPiPfSGifozFdoClWKpRwjjRIj9QKhMk5LuZ8L9n+b3p4riG3dDOa72XzhZrqf/TNsKZVpG+slOzZAKBQI+QIBGKtliUB26DDnVQ/Qn+0m09YB+Tzn9TRRHR5i93gro9lW6mTY1Ohj71CGA+NFtrdN8qS2YXLNLeRCg3y9QmFigGyIVIutxI4ectsuZiQ0U29AcyEdepAO16N/9iu1yOBYpFgdZWOhTN+BAeoxUGnupqm7ky1dOTKZQLUW6RtLYY2lPNRrDe49GBgvR0Ym6jy4r8Zgvcjw0AQtP/w3Cnsf4JLJR3jJyD/R1vBjL0nS6e8vD/2nBYPRXjt42zpUc5o40cDt00CGSFtjdEVef9TIMpppPRawNh2aNiNgbSpEbWTRILbUVs4sPyBa6+MBLlx4xswPOIrAhW8B4Nnjd3J55T5GMy1szB2hFMucVzvIwdwWHuq4hEoo0tYYoRryfLo9/f/kZ8a+zrbaPrKxTrE6SQyBkdZWNjb10dYYmfp8YJRqKNCX7SYfa+RijR3VXWyop/+r1UKOC6p7yMUak6HIWKaZ/mw3dTKUMyWOZDcwmO2iMZyhZXCMWshR6J+kQYbHNr2BQKS1MUopVviZyjfYk99Oo5Gh0cgwOtBCjhqbaoe5oPo4hVilszFAV32QOu1Mlgo8WriIkUwb2ZE6IUa6mgeZCCVGM60MZDupkSOGQFt9hI5Hhhl/5z9x5AUXMNC2nVw2hVv2DsMjhyPDEzA+CQeGoLMZJiahuwU2t8P+wbTrWwop6HxrZyCbSWHNh4YjD/RCSxGa8ikcvZibfs/TiLC7D34yFbaXz8KmNtjWBWMVqE+9H2oupLDyYh62d6WQ6UMjsG8QJqrQVoQjoyk8/TXPDrQWU9h6/xgcnAo839ye+sYIwxPQNHXK7/gkPPdS2NAS2DcYeegQHBqGf3zdUtGe0pnJYDRJkiRJ0nz54uLzmv1FCkmSJEmSJEmSJJ0V/hcwARw9W+BZIYQnxxjvX8ayr54z/c8rWNf+OdNPCiE0xxjHT2CMp82ZPniKNUmaIYSTiX44vXz5y1+eNf2yl72M9vb2FRn73/7t32ZN//qv//oJLd/c3MwznvEMvv71rwPwjW98Y0XqkiSJJz0Nrr4BvvfV9a5Ea6k6OR1QNjoEu+479TFjnA5tm2l0KF0Ws1AQF8DgYc7LL34i+7PH7+Tnxk/8uM3HGs21GUFj9Tol6un2JLRSmZ43WV50nADkqc1r72gMn3BNR22t7Wdrbc7b31MMRQPIUedp5R9MN3z128D89PBFzTxeAPqn3k4/8qO1DUSs1+HA7qkaTj2H/SLgoupumHuXzTlcXzX0P3hf7x+c8vqW7RDwwNqt7kTUSSeUZ1m5wI6bp8b9cfEy+rNdPHHykfmPg+MZ/dfp298D/mn5i86NDC8Cl89pu+Q4Y0Rmn5TcDtDZkyYmy9PBfTFCbFBq1Omo14/13zyvqB4am7aRrUywqVpJy1cqMNDLs082VFOSpNNQhsijD+3kVed/mDubr6O9Mcwb+9/P7/X/1/UuTeskR53OxhCdjSFg3ymNVSWXwtSyM0LVMu2MHgtbmxGqNjV/5Fi42uwgtmoorMwG6pTc2fxs7mx+9gkt8/WWn1mlak7ORzv/n7VZ0XfheBH6vVPvhYfLsGvObx090Hv85ZdSraews31zf/pshu/tXnqMv/jiia//E3fD3Lo/8IpIR/OZ/z9MaSaD0SRJkiRJ8y0VjNZkMJokSZIkSZIkSZLOfDHG8RDCp4CZ38r+I+A1Sy0XQtgJ/LsZTTXgH1awtHuAAaBraro0VeMHlrNwCOGFwNY5zd9cseqkM0B3d/es6aGhJcIpTsLg4OyzG+au70zwrW99a9b09ddfv2Jjf/Obs//kdHd3s2vXrhMaY2ZI265du2g0GmQy/tK9JOnUhBDg7bcRX//TcOjx9S5HmmVHdQ9PLd/DPaWnzpu3c/LhdahIOretZCDa3HGfWlkgWPFMNnj41JY9leUlSTqDXFDby1f3PJ+x0ExTnCCzttG7OovlqdHdGKC7MXDKY1VCgeHMdJjayLFwtekAtWPX2dn9RqbC1Y621YNxNtJaeugQPH3HelchrSyfSSRJkiRJ8+Xzi84KzW1rWIgkSZIkSZIkSZK0qm4CXgoc/QfZq0MI/xxj/NxCnUMIJeA2YObPpX84xvjIUisJIcw9u+WGGOPXFuobY6xPBbb91ozmd4cQ7owxLnnmbAjhAuD9c5rvjDEeWGq5c8W2Lnj0zw1WWgvbuo7fZzXNDSobGDj1k4GOKpfLlMvlWW0bNmxYsfHXyoEDs/8sXH755Ss29uOPzw6aufbaa09pvEajweDg4BkZQCdJOv2EjecRPv0w8ch+4if/Bnofh0Z9ukO1ArsfgO7N8MN1yBfeeRXECBOjMDYM5fFUU74AxWYYHYRadbp/vgDVyXS71AzN7ZDNQjYHLe2w8yrCRZfCjkthw3lwz53EW/9g7bdLy/LHR/6Kl237+3ntLxn+9DpUI0mSJGk1tMTx9S5BWlQxTtJTP0JP/cgpjROBcigxnGmfClGbDlVLwWrToWujU0Fqaf5CbW3E4P/3pON5+FDk6TvCepchrSiD0SRJkiRJ8+ULi89ralm7OiRJkiRJkiRJkqRVFGN8NIRwK/CWGc2fCiH8AfDBGOPk0cYQwqXAfwOum9G3D3jnKpR2M/AKoGlquhP4VgjhPwF/F+Pss2ZCCAXgN4D3ABvnjPW2VajvjJTLBnbM3Ts6K23dunXW9MGDB+nr61uRALMf//jHx13fmaCvr2/WdFfXyqXZzR17JYyMjBiMJklaUWHj+YQ3/PmSfWJ1kvjqq2HPg2tT0++9h/Dv33TcfrFWhWyOENKJjnFkAAiEts7jr2TnlVCZIH7oT6FeO8WKV0A2l76TWGqBI/vXu5p192sjn6b/QDc3bnkPtZAnE+vcdPhdPG/sS+tdmiSd/i6+HPJF2HpxChONEWIjPdeUmiBXILR2EIf6YGwEQkjhqI06dPZMPy+2dqTn1EYDcvkUNFqZgLERYnkstQ8cgslyGhugUITxUTi8H+77bpo3UwiQyabrrk0pgDWTTfMq49B3MLXHmPr0bE31TIxCUyu0dUJ7d1rf+Ggav3tzClAd7oORIRgbSsvmCjB0JN3e9+hUfaXpmi57Blx2DQwPpPVVxtO8GKGlIwWstnWlgNbxEfjG59K6N22DzdvTvh0fhpHB1DY09RlAsQk6NqRlW9oJLe1AnLof0iX296Z9P3QkjX20tuZWGDyStrm9Gy6+nJArQPcmqNeIvY+n/Z4vpNdApea0bL2e2mpVyGTSPs1m0/XM20cOEI/uJ6Z+vyJOXTcaMHh4uv6WdqhNwoHdcHhfuk+fcAWcf3H68fkDu9Jx0dYNXT1puaPK42m/1ibTsh0b0kyITZMAACAASURBVDE5MpD2VS6f7sPMVIjtVH0hk0mv55paCe3d0NRCPLgH7r8bHvg+DPfPPp6y2VR/ozH/cVBqhtbO6f3OVL9MFto60ryBQ6nWYgk2X5iOs0IpLVsopuX6DqZjqrkdOrrT/Z7NQlMbtLan4N6Bw/8/e3ceZ9ld1wn/86u1u6v39JI0WToJwZAQNuMy4AMqKEYeZH1kBpwRQVScBR/hUXFhURllEJ8HBQcHWRwEZHBhGR1FeAgOZJAJwQlZYJIQkgnZOp2kt3R39fKbP051ddWt6u6quvfWrbr1fr9e59V9zj3n9/vdc3/3c6tOnfpWsnFLytk7m1N6163Na79xS7JlR/OaDI8277GHdyXjh1MPH0yOjKeMrErWb2rm3IkxHjua+oG3NOd4Nus3N18zpiZloJm3hx6Z/n6b+Pp48t9p/y/d3Wfqvp3a54x9Tmlu0cY1y/gWsk+n25vTPpm5fqp2pu5z8EDzfjh4oHlfP/xA817ZsKWZ30ePNPl1Yjl6pMmnaestj8/FwMDs7/NTWb22eT/PZt2mic+WI01+H9jbfLat3ZisWdfk1Oq1yWVXNu/3kVXJHV9LbvrS3PvvhpHRZPzwzO3DI02+DI80Yx1dlaQkd38j2Xx2k9cznKJQUOv8ON32U+27VNqeT3+nanu+bZym7ZLmh5yrk2yf3Hf/xDLlD7fMoe2a5EBdnX1lLHuzJnszln1ZM7nszdiMbUeO1mw5dE8GjhzMAwObc8Po5bl+1eNPMd4ze+Kh/5GRejhD9WgG67EM5cS/x1JSs2twS/YMbMhQjubm0ccuuB9oxy3393oE0HkKowEAADA/m7b3egQAAAAAAADQSb+U5PIkV02sDyf5/SS/Vkq5Lsm+JBcleXKm/5bAeJLn11qn3L3fGbXWu0opL03y0SQTvyWZdRPj+nellC8nuTvJ8SRnJ7kyydpZmvqVWut/7fT4YKl7ylOeMmPbtddem2c961ltt33ttddOW1+9enWe+MQntt1ur5VT/gLT/I2Pj595p3mqJ35hGQAWURkeSd7196nv+83kxi81v8S+Zl3zy+lHx5tfJN+zO9m/p/ll7D0PLLyvn3xj8vyfmdu+Q9N/ybusm1+B0/LS1ybf94Lk5i+n3vSllHMfnaQmD+9OPfxIcvO1yT23N4VLtpzTFPLYuC1lx87meW7ZkWx7VFPQ48h4UzxjYKI4xcatTdGKo0eaogHHjzeFNR6892RhjPWbm1/KX7MuZWR02tjqF/4q9Qv/ObnvfzV93fSlpqjAngeac3/2BU3BkgN7ThbBGBxufiF+aLh5LR5+INn/8LzOyVLyMw+/Oy/d++HcMHpZHnv469l4fE+vh9R7o6ub13j/nmaObd3RvPcOHmiKOAAr22XfmfIHV6cMDp5535yyvEhHj60HDzRFyY4fa4p7bdjSfF2xwi303HfiikXnrnp0R+v4pq7Xwweb/wwOTSuOmyT1wN5k9z3JkSPJ5m0pm7Z1faynMpdzfKZ9ynNe3lwD2r+nKZ47ONR8bTe2fsbXjbBc1WPHknu/2RQrW702ueV/NN9PXfS45nPjvjuT9WelbNqa+si+5PCh5v0wurr53mpgIGXz9tSjR5vvi8bWT36PWMcPJ1/7clNQ7MLLJnosKaOrFjbWWpMbvph867bm+7nVY82YR0ab7wUHBpvvk4eGJ4tXZmAwWbsh2bil+V5u9Vhy/11NQcXR1c2+j+xrCrQ9eF9TnG3jlpPFFA8fbL7OP/v8lA3NHzqpD9yTfPWa5nvJx313ytSilKwY6yeWhfyZmhPvl/27bsuRkbUZ2rw1I8cPZfTYoTxy4HDuGl+XgbF1Gd+zN2vGH865Zw2l1GMZGD+Ysmlrc/1h7DHNfB9Zlex7sCnat2pNM6dPFEfdd19zvePwzfnmdV/Pn9y0IffWTdkxciAbBg9n37Hh7Ds2kvvH1+Ta/dvz1QNbU5f8VyksJ7ft6vUIoPMURgMAAGCmrec2f3XqoZYy8SOjyXc+szdjAgAAAAAAgC6otR4rpfxokj9K8uIpD21L8kOnOOz+JD/ezaJjtda/LKU8N8l7MvHH1CesTvI9Zzj8QJJfqrW+o1vjg6Xs/PPPz/nnn58777xzctunPvWpjhRG+7u/+7tp69/1Xd+VkZHl98vNW7Zsmbb+4IMP5lGPWsivFM3e9t13350kWbVqVR555JGOFl4DgMVU1m1K+Tdvm9O+9fjx5hfZ9+9piqHU48l5lzS/rP7IgWTHhSlr1qbee0fyxb9tfoH2in+S8qiLu/wsZio7Lkp2XJTyjP9r+vZudLZpa5Ir5rRreeqzU5767La7rPffldx9e1Og7djRZnloV+rtNzav0eq1TfGAiQIjGRpullVjzes2uropxnbsWHLsaOo3v5Zy7qNTDx2YLIhXLrys+YX/E0XgNpyVPHBPUkpTxG10dfML08MjzS/873uoKRQ3PJqctb0pOHf0aFMU4f5vNfufe3FyYG/WHxnPU8YPNX0NDjW/WL1hSzK2bqLgwEThgYHBpnDCoUeacSRN20fGmzGMH0oOHZwoXHe4KVB38ECz35q1zfEDA0lKcnB/MydH1zRtD48mIyPJ0Ehz7+iJIgV7H0q+dm2yZ3fqoUeaQj/nPSZZt7E5H+OHmuWBe5rCBY9+fPLQrua81tqcgxNFD46ON30myV23Jvv3Jhs2N8dt3JKUgaYQ2qo1KQMDp3699+9p2l491jyXq/889SufS47Xpo/hkeb8jq5uiiisWpNsO68psLZmfVNI78jhk3Pl2LHk4IHUv/9Y89o9sr8Z84nzVQaStetTrnhqsv28Zk4dO3ry34OPpD50f8rGrc25O3igKWpxcH9z/k+0c2BP8vDu5jW74NLknjua12jz9qbAxYYtyeBQ6pHDzfMbP3Ty2InxlDKQ+sje5nU5fqyZZ+s2J2vXN/NvZFXK6rHmvA8ONoUskmbfgcFm3h/cn+zfk/rVa5JHXZxy0eMmCg0+3BTaSW2KbBx+pNn3kf1NkZodO1PO3pkMjzSFefbvaR7b9qiU9Zua99PAYPMaHDvWjCc19b9/JvnMf5r+Ig4OJWdNFGLctLUplHFw/8TrurbZtv28iRd8omjy+KFmXp91dsrY+tQ9u5tjJopFlo0T3/McGU/GD6c+eG8zF1KasRzc37x3Vq1O2X5+6u57k6/+t+Tm/z6/wJl4XkmasR4Zb4p9JM28WzXWzM39Dzf9DQ6dfD3H1ic7H9sUobzthuY9tPOxzRw7fqzZ98H7ki/+zcT7dt3Jtudr89nNa3hg78KOX4oGB5MnPi3l1z8056Joi6WsHksePbfPPjiT0xUAKmPrmyzpI6WU5uuKEzZt7d1goAvK4GAy9XvAy75j+g4XXHpy3zXrms//E7acc/KxoaHme5CpbY+MJo+f+UdDFjzWUpIr/kmztOPE13EnzLOIY9lyTvJ9L2xvDKxoJ94v66a9Z4aTrMvYpuTbTmzavjHJxhnHzzC6Y/r6+s3N9zJTXHjx4/JrZ2jm0JGakcFkYKDkjt01f/blmr+7qebevcna0eSsseT+fcmBw8ldDzfrG9ckj9lesnFN8tW7aj5/68n2HrM9+fYLSr56V80Nd0/v6zt3JoMDyQP7k90HktXDyc6zktHh5KEDyb7DybHjyaEjTZ8DJVk13Cyb1jT/JsnYSNPGbbuSi7YmOzYkR48nDz/S7HPdyR/LpZTk3I3Nv0eONf2OH03GRpM1I8neg8nho9PHOTyYnL85+ebuZjwnnLMh2bH2SEZuuTY1JfsG1mXf4LoczVBG6+FsOfZABurxjNUD2XZ0Vw4MjOXhgQ3ZeeSOlNQMpObSw19LTcn9Q1tTUrPu+P7sHViXvQMbcqQMZSA1ZWI5UNbkWBnMjiN3Z8ux3TlcRrNvYG2OlaEcK4O5ZvV3Z9vR+3PloetysKzKhuN7M1SPZuz4gQznaPYOrMv9g1tTy0BGjx/K/omxHi8D2Xx0d/YNrs8fbnrl5PMbrEez5djubBg4mNF6OAP1eIaPH87WI/fn9qHzc7CsTi0l/2vo3Kyqh3K4jGZ1PZiakk3HHs6jx2/NJUduy9Mf/WNpbiWA/qEwGgAAADOUgYHU57w8+Y+/Pf2BH3hJ88MzAAAAAAAA6CO11v1J/mkp5c+SvCbJd59i1weTfCTJG2qtXf+by7XWvyqlXJbkp5O8IsmZKibcl+QDSd5Ra72j2+ODpeyHfuiH8h/+w3+YXP/ABz6Q3/7t387w8PCC29y1a1c+8YlPzOhnOTrnnHOmrd9000254orO/NL29u3bJwujHTp0KHfeeWcuuOCCjrQNAEtZOVGsaOOWZjmh9ZfVz74ged5PLfLoVpay7dwZv5ScLLzwW2n5t6Muflx7x194WWfGMVfbzp0s9jPn8zHLazHDzscueEhl7YbpG5754pRnvnj2nefT7rNesvBjz7DeTlvzfbwT/XRyDOXZL0ve+IHUR/YnI6NNkcIOaHeMUx+v44eTe25vCrolTbGzA3tOFiYZP5xs3ZFyzs4Z7dRam0KFQ8MzCkTXWlNKafYZP9w8/wUUka4P3JNc89fJ+MHmj2FvP695nw0MNsXChkdPFpBLmrEMNwW967FjTVG4h+5vCjgceqQpvjY41LQzNlHg8PDBZp99DyUXXZ6sWZ8yONgcf/3nU//mg815WbU6Zdt5E8eub/ovAyeLCKY2+20+uykcNzTUFIzb+2DT7923p+76VlP4adO25jmU0hSTGxqeKCK4rykId9bZTZHILec0Bfe27GgKxgAAwDK0avjk9wIXnFXymh8sec0Pdqbtg+NNcbR1o8m3nZ1F/eM1d+6uTVG0TTP7PXqsZnCg2X7seM2ufU2xtGM12bwmWbsqGRxojnnoQM0D+5tCaaPDJfXo8dTve8aiPY9ue+e9r87+MpZDA6ty1rHdc/6++sR3erPtX7ZdmeRJnRkgLBEKowEAADCr8pNvTEbXpH7qg81finvac1N+8k29HhYAAAAAAAB0Ta31z5L8WSnlwiRPTrIjyViSe5PckeQLtdbxBbS74LvNa60PJvmtJL9VSjk3ybcnOSfNnywvSfYk2ZXkK7XWW0/ZEKwwr371q/Pud7+7+YXzNEXN3ve+9+WnfmrhRUje/va358iRI5PrY2NjeeUrX3maI5aupz71qfnoRz86uX711VfnxS9uv3hEkjzlKU/JV77ylcn1T33qU8v2PAEAAN1R1qzt9RBOqYyMJhdcurBjS0kmipDN+tiJf0dXLXx8W85JfuQVCzt2cDBZu6FZkqZ45/bzpu80tDZZszbZtHX245/09JQnPX1B/U+aUjBx8Uo0AADAyrB6pOQ7dvam7/PPOvVX+EODJx8bHCg5e8Mpd82msZJNYyfXy9Bw6tqNyf6HOzHMJWFtPZC1xw7M65jTfv/0zZuTb1MYjf4y0OsBAAAAsDSVUlL+xS9m4E+uz8CHbsjAz7w5ZUh9bQAAAADoqme/bPbtq8dm3w4AdEWt9fZa65/XWn+/1vrbtdb311o/u5CiaB0e11211o/XWt81Ma7fqrX+Qa31o4qiwXSXXXZZrrrqqmnbfvEXfzH33Xffgtq76aab8ta3vnXatp/4iZ/I5s2bFzzGXnrmM585bf1DH/pQ9u3b15G2n/WsZ01b/6M/+qOOtAsAAAAAAMAKtXNhBaxXinr7Tb0eAnScwmgAAAAAAAAAAEtEecGrZt/+8tcv8kgAAGD5e9vb3pY1a9ZMrj/88MN5wQtekP3798+rnV27duVFL3pRxsdP1kY855xz8vrXL9+v0y+//PI8/elPn1zfu3dvXve613Wk7auuuioXX3zx5PqXvvSlvPe97+1I2wAAAAAAAKw85ap/3ushLG133NzrEUDHDfV6AAAAAAAAAAAANMpjnpj6E7+avO83T278zh9Inv/TvRsUAAAsU5deeml+//d/P694xSsmt11zzTW56qqr8uEPfzjnnnvuGdu45ZZb8sIXvjA333zylwkGBgbygQ98IFu3bu3KuBfL61//+jzjGc+YXH/nO9+ZCy+8MK95zWvmdPyePXsyOjqaVatWTds+NDSUX//1X89LX/rSyW2vetWrsnHjxrzgBS+Y1xg//elP56KLLspFF100r+MAAAAAAADoI895Rcq+h1P/0+8lD96XlJJsPz85+4Lk7m8kA4PJhrOSoeHkyHjz+DdvTradm5z/mGTtxmTN2uSBe5KH7k+OH09WjyXrNycH9iaP7E/2PJAcPtg8tn5zctb25K7bknu+2YzhrHOafY4emT62gYHmmNkMDjaP1dq5czE0nIytb577zsem7Hxs8tgrO9c+LBEKowEAAAAAAAAALCEDL/+11Kc9L/nqNcnOxyZX/JOUoeFeDwsAAJall7/85bnuuuvyzne+c3Lb5z//+Vx22WX55V/+5bz0pS/NeeedN+O4W2+9Ne9///vzO7/zOzl8+PC0x97ylrdMKyi2XH3/939/XvOa1+Rtb3vb5LbXvva1+dznPpc3vOEN+fZv//YZxxw/fjz/8A//kD/90z/N+973vlx//fXZuXPnjP1e8pKX5DOf+Uze+973JknGx8fzwhe+MC95yUvy8z//87O2nSTHjh3L9ddfn0984hP5yEc+kptvvjmf/exnFUYDAAAAAABYwUopyUtfm7zkNcme3cn6zSkDA13vt9aa1DprX/X48eT4saYo25HDTYG1gcGmGNrAYDI8mjIymnr4ULLvwWTjtpShptRT3b8n+fwnm0JtQ8PJ8EgyPJqMjCZDI8mq1U3xsxNF1dZvbgq/bdqWMjLa9ecNS4HCaAAAAAAAAAAAS0x59BXJo6/o9TAAAKAvvOMd78imTZvy5je/ufnlhST79u3L6173uvzyL/9yLrvsspx33nnZtGlTdu/enTvuuCNf//rXZ7QzPDyct7/97XnVq1612E+ha97ylrfkzjvvzEc/+tHJbZ/85CfzyU9+Mjt27MgVV1yRs846K4cPH869996b66+/Pvv27ZtT2+9617vy0EMP5S//8i8nt33oQx/Khz70oWzdujVPeMITctZZZ2VgYCB79+7N3XffnZtvvjmHDh3q+PMEAAAAAABg+SulJBu3LG5/pcz+2MBAcqJg2ujqZpltv9FVyeiO6dvWbkh+6Mc6OlboNwqjAQAAAAAAAAAAAAB97Td+4zfy9Kc/PT/7sz+bW265ZXJ7rTU33nhjbrzxxtMe/+QnPzl/+Id/mCuvvLLbQ11Ug4OD+chHPpLLL788b37zm3PkyJHJx+6+++7cfffdC257eHg4f/7nf563vvWtecMb3jCt4NmuXbvy6U9/ek5tjI2NLXgMAAAAAAAAACw/A70eAAAAAAAAAAAAAABAtz3zmc/MTTfdlA9+8IN5xjOekaGh0/+N6dHR0TznOc/Jxz/+8Vx77bV9VxTthFJK3vCGN+TrX/96XvnKV2bz5s2n3X/t2rV53vOel4997GM5//zzz9j2L/zCL+T222/PL/3SL+WCCy4443jWrVuXH/7hH8473/nO3HPPPfmO7/iOeT0fAAAAAAAAAJa3Umvt9Rigp0oplye54cT6DTfckMsvv7yHIwIAAAAAAAAAWJgbb7wxj3vc46Zuelyt9cZejQcAOn2P3tGjR3PLLbdM23bJJZecscAVzObAgQP58pe/nFtvvTW7du3K+Ph4RkdHs3379jzmMY/Jk5/85IyOjvZ6mIvu+PHjue666/K1r30tDzzwQPbv35+xsbFs27Ytl156aR7/+MdneHh4we3ffvvtue6667Jr16489NBDGRgYyLp167Jjx45ceumlueSSSzI4ONjBZ9RbcgsAAAAAAAD6g/vzFo+fptJRpZThJE9Ncn6Sc5LsT3J3kq/UWr/Zw6EBAAAAAAAAAAAAwKSxsbE87WlPy9Oe9rReD2VJGRgYyJVXXpkrr7yyK+1feOGFufDCC7vSNgAAAAAAAADLn8JoK1gp5U+TvLhl8x211p0LaGtrkjdNtLf5FPtck+R3a61/Pt/2AQAAAAAAAAAAAAAAAAAAAAAA6G8DvR4AvVFK+ZHMLIq20LauSnJDklflFEXRJjwlyZ+VUv6klDLWib4BAAAAAAAAAAAAAAAAAAAAAADoD0O9HgCLr5SyMcm/71Bb35vkY0lGpmyuSa5L8o0kG5M8KcmWKY+/NMn6Usrzaq3HOzEOAAAAAAAAAAAAAAAAAAAAAAAAlreBXg+Annhbkh0T/9+30EZKKecm+YtML4r2hSSX11qvrLX+aK31B5Ocm+TVSY5M2e85SX5zoX0DAAAAAAAAAAAAAAAAAAAAAADQXxRGW2FKKc9M8vKJ1aNJXt9Gc29KsmnK+jVJnllrvXnqTrXWw7XW30vyoy3H/3wp5YI2+gcAAAAAAAAAAAAAAAAAAAAAAKBPKIy2gpRSxpK8e8qm303yjwts65IkPz5l03iSl9VaD53qmFrrx5L88ZRNo0nesJD+AQAAAAAAAAAAAAAAAAAAAAAA6C8Ko60sv5Vk58T/v5HkjW209ZIkg1PW/6LWesscjntLy/qPllJWtTEOAAAAAAAAAAAAAAAAAAAAAAAA+oDCaCtEKeUpSf7llE0/XWs92EaTz29Zf99cDqq13pzkH6ZsGkvyg22MAwAAAAAAAAAAAAAAAAAAAAAAgD6gMNoKUEoZTfLenHy9/7jW+uk22js7yROmbDqa5AvzaOLqlvWrFjoWAAAAAAAAAAAAAAAAAAAAAAAA+oPCaCvDG5N828T/dyV5TZvtPa5l/fpa64F5HH9Ny/rlbY4HAAAAAAAAAAAAAAAAAAAAAACAZU5htD5XSnlyktdO2fRztdbdbTZ7Wcv6rfM8/rYztAcAAAAAAAAAAAAAAAAAAAAAAMAKozBaHyulDCV5b5KhiU1/U2v9UAeafnTL+p3zPP6OlvWzSimb2hgPAAAAAAAAAAAAAAAAAAAAAAAAy9zQmXdhGfulJE+Y+P+BJK/qULsbW9bvn8/Btdb9pZRDSVZN2bwhyUPtDqyUsi3J1nkednG7/QIAAAAAAAAAAAAAAAAAAAAAANAehdH6VCnlsiS/OmXTr9Vav9mh5te2rB9cQBsHM70w2rqFD2ean03yhg61BQAAAAAAAAAAAAAAAAAAAAAAwCIZ6PUA6LxSykCS9yQZndj05SS/18EuWgujHVpAG63F1FrbBAAAAAAAAAAAAJimlDJjW621ByMBmJvjx4/P2DZblgEAAAAAAADQUBitP706yXdP/P9okp+stR7rYn8LuaPIXUgAAAAAAAAAAADAvAwMzLz19ciRIz0YCcDcHD16dMa22bIMAAAAAAAAgMZQrwdAZ5VSLkrym1M2/W6t9R873M3+lvXVC2ij9ZjWNhfqD5J8dJ7HXJzk4x3qHwAAAAAAAAAAAOiSUkpGRkYyPj4+uW3//v1Zs2ZND0cFcGr790+/TXpkZCSllB6NBgAAAAAAAGDpUxitj5TmJ+TvTnLi7p5vJHljF7pasoXRaq33J7l/Pse4sQAAAAAAAAAAAACWj3Xr1mX37t2T63v37s3WrVvdDwgsObXW7N27d9q2devW9Wg0AAAAAAAAAMvDQK8HQEe9Msn3T1n/6VrrwS70s6dlfet8Di6lrM3MwmgPtzUiAAAAAAAAAAAAYEVoLSp05MiRfOtb30qttUcjApip1ppvfetbOXLkyLTt69ev79GIAAAAAAAAAJaHoV4PgI5605T//3WSW0spO89wzNkt60OzHHN3rXV8yvotLY9fMMfxnWr/B2utD82zDQAAAAAAAAAAAGAFWrVqVYaHh6cVG9q3b19uu+22rF+/PmvXrs3Q0FAGBvz9YGBxHT9+PEePHs3+/fuzd+/eGUXRhoeHMzo62qPRAQAAAAAAACwPCqP1l9VT/v/DSW5fQBuPmuW4JyX5xynrN7c8/uh59nFRy/pN8zweAAAAAAAAAAAAWKFKKdmxY0fuvPPO1Fontx85ciS7d+/O7t27ezg6gNmdyK5SSq+HAgAAAAAAALCk+VN4LMQNLeuPL6WsmcfxTz1DewAAAAAAAAAAAACntGbNmpx//vkKDAHLQikl559/ftasmc8t1wAAAAAAAAArk8JozFut9Z4k10/ZNJTke+bRxPe2rP+XdscEAAAAAAAAAAAArCwniqMNDw/3eigApzQ8PKwoGgAAAAAAAMA8DPV6AHROrXXjfI8ppXxvks9O2XRHrXXnHA79yySPn7L+E0k+NYf+Lk3yXVM2HZjLcQAAAAAAAAAAAACt1qxZk4svvjiHDx/O3r17s2/fvoyPj/d6WMAKNzIyknXr1mX9+vUZHR1NKaXXQwIAAAAAAABYNhRGY6E+mORXkwxOrL+glHJJrfWWMxz3iy3r/6nWeqjjowMAAAAAAAAAAABWhFJKVq1alVWrVmXbtm2pteb48eOptfZ6aMAKU0rJwMCAQmgAAAAAAAAAbVAYjQWptd5SSvnjJC+f2DSS5P2llGecqtBZKeW5SV42ZdN4kjd1daAAAAAAAAAAAADAilJKyeDg4Jl3BAAAAAAAAABgyRno9QBY1t6Q5KEp609J8ulSyqVTdyqljJZS/nWSj7Yc/7Za6x1dHiMAAAAAAAAAAAAAAAAAAAAAAADLwFCvB8DyVWu9q5TygiR/m2RkYvNTk9xUSvlykm8k2ZDkyUm2thz+n5P82mKNFQAAAAAAAAAAAAAAAAAAAAAAgKVNYTTaUmu9upTy/CTvz8niZyXJlRPLbD6c5JW11mPdHyEAAAAAAAAAAAAAAAAAAAAAAADLwUCvB8DyV2v96ySPS/KuJA+dZtcvJnlRrfUltdYDizI4AAAAAAAAAAAAAAAAAAAAAAAAloWhXg+A3qq1Xp2kdKCd+5O8qpTy6iRPTXJBkrOTHEjyrSRfqbXe3m4/AAAAAAAAAAAAAAAAAAAAAAAA9CeF0eioWut4ks/2ehwAAAAANQ/O7gAAIABJREFUAAAAAAAAAAAAAAAAAAAsLwO9HgAAAAAAAAAAAAAAAAAAAAAAAACAwmgAAAAAAAAAAAAAAAAAAAAAAABAzymMBgAAAAAAAAAAAAAAAAAAAAAAAPScwmgAAAAAAAAAAAAAAAAAAAAAAABAzymMBgAAAAAAAAAAAAAAAAAAAAAAAPScwmgAAAAAAAAAAAAAAAAAAAAAAABAzymMBgAAAAAAAAAAAAAAAAAAAAAAAPScwmgAAAAAAAAAAAAAAAAAAAAAAABAzymMBgAAAAAAAAAAAAAAAAAAAAAAAPTcUK8HAEvAyNSVW2+9tVfjAAAAAAAAAABoyyz3PYzMth8ALCL36AEAAAAAAAAAy5778xZPqbX2egzQU6WUH0ny8V6PAwAAAAAAAACgC55ba/1ErwcBwMrlHj0AAAAAAAAAoE+5P69LBno9AAAAAAAAAAAAAAAAAAAAAAAAAACF0QAAAAAAAAAAAAAAAAAAAAAAAICeK7XWXo8BeqqUsiHJ06ds+l9Jxtto8uIkH5+y/twkt7XRHsB8ySFgKZBFQK/JIaDX5BDQa3IIWApkEdBrKzWHRpKcN2X9c7XWPb0aDAC4Rw/oQ3II6DU5BPSaHAJ6TQ4BS4EsAnpNDgG9tlJzyP15i2So1wOAXpsIl090qr1SSuum22qtN3aqfYAzkUPAUiCLgF6TQ0CvySGg1+QQsBTIIqDXVngOfaXXAwCAE9yjB/QbOQT0mhwCek0OAb0mh4ClQBYBvSaHgF5b4Tnk/rxFMNDrAQAAAAAAAAAAAAAAAAAAAAAAAAAojAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8pjAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8pjAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8pjAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8pjAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8N9XoA0Id2JXlTyzrAYpJDwFIgi4Bek0NAr8khoNfkELAUyCKg1+QQAPQnn/FAr8khoNfkENBrcgjoNTkELAWyCOg1OQT0mhyiq0qttddjAAAAAAAAAAAAAAAAAAAAAAAAAFa4gV4PAAAAAAAAAAAAAAAAAAAAAAAAAEBhNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnhno9AGYqpQwmeXSSy5LsSLIhyeEkDyW5Lcm1tdYDHe5zOMlTk5yf5Jwk+5PcneQrtdZvdrKvxVJKuTzJE5NsTTKa5N4kdyX5Qq31UC/HtphKKZuSXJ7kkiSbk6xK8nCSXUm+XGu9rYfDm6GUcmGa121HkrVJ7klyR5Jraq1Hejm2lUQOdYYcasghFkoWdYYsasiiU/ZjfpyGHOoM86yx3HKIpUEOdYYcasih6Uop56U5F+cm2ZJkdZLxJHuS3JnmnOzq3QiXBjnUGXKoIYdYKFnUGbKoIYtYCDnUGXKoIYdmZ34AveAzvjNkeGO5fca7N2ZpkEOdIYcacoiFkEOdIYcacuiU/ZgfpyGHOsM8ayy3HGJpkEOdIYcacmg69+fNnSzqDFnUkEUshBzqDDnUkEMshBzqDDnUkEOzW9bzo9ZqWQJLmsD8uST/Oc039/U0y9Ek/yXJszvQ79Ykf5Bk92n6+0KSF7bZz0VJXpzkrUmuTrK3pY9vdug8rkvyK0m+dZrnszfJB5Jc3MPXu2vnI8lwkmcleUeSG84wl+rEufr1JGf3+D3woiTXnGacuyfm6pYFtH2mc3CmZWcvz80ivgZyqDPnUQ7Joalt7uxABk1dXtbLc7RIr4Ms6sx5lEWyaNnPjx6+BnKoM+dxWcwzOdSz+TGW5HuS/N9JPpjkfyY53tLXy3p1Hnq9yCE5JIe6dj4uSfJvk3w2zQ81znQ+apLrkvzLJKO9Oic9eh3kUGfOoxySQ7O1P5fsOd2ys1fnpgevhSzqzHmURbJoars7O5BDU5eX9eocLdLrIIc6cx7lkBxa9vPDYrH01+IzfmVluM/4WcftHr0eL3JIDskh9+j1epFDckgOuT+v14sckkMrOYcWcX64P+/050cOdeY8yiE51Nq2+/Pmd75kUWfOoyySRbO1P5f8Od2ys1fnZpFfBznUmfMoh+TQ1HZ3diCDpi4v69U5WqTXQQ515jzKITm07OfHGZ9HrwdgqUnyoTY+0D6ZZPsC+70qyX3z6OtPkozNo/3vTfK3Z/hQ6NgbM8l3panCOdfncyDJqxbxde76+Zg4Bw8ucC49lOTHejD/1yb58DzGeW+SZ82zj4W+v04sOxf7vPTgdZBDckgOdSGH0vlvZF+82OdnkV8LWSSLZFEXsmg5zY9eL3JIDq3EHFrM+ZHmwvFX01yQPlNfL1usc7CUFjkkh+RQ9+ZHkp9s4/319STftVjnpJeLHJJDcqi786ON99eJZedinZdeLrJIFsmirp2PnR3IoalL316vjhySQ3Joxc8Pi8XSn4vP+JWR4T7jTzlm9+gtgUUOySE55B69Xi+RQ3JIDrk/r8eLHJJDKzGHFnN+xP15czlHckgOyaEuzY+4P28+50oWySJZ1MX50cb768Syc7HOS68WOSSH5FDXzsfODmTQ1MW1ajk0l/egHJJDy3J+zGcZCkvBY06x/VtJbkkTrkNpqv49IcnAlH3+zyR/X0p5eq313rl2WEr53iQfSzIyZXNNU2X9G0k2JnlSki1THn9pkvWllOfVWo/PoZsnJvnBuY6pHaWUZ6apBjra8tAdSa5P8yY8N82bd3jisTVJ/qCUMlBrfeciDHMxzsfWJJtm2T6e5uL2vWkqpp6V5MqJf0/YmOQDpZRttdbf7fI4kySllMEkH0nywy0P7UrylYmxXpxmLpaJx7Yn+Xgp5Zm11s8vxjhXCDnUJjk0SQ51zyNpKlr3M1nUJlk0SRbN3s9ymB+9JofatEzmmRyabtHmR5KXJNmwSH0tV3KoTXJokhw6s5rmIv+taX6w8Eiav5h7YZLLc3J+JM178zOllGfXWj+32ANdZHKoTXJokhyiHbKoTbJokizqnn6/Xi2H2iSHJsmhWSyT+QH0J5/xbVomGe4zvsUyuzem38mhNsmhSXKoe1zzkEOnJYcmyaHZ+1kO86PX5FCblsk8k0PTuT9vaZFDbZJDk+TQmbk/79RkUZtk0SRZxELJoTbJoUlyqHtcq5ZDpyWHJsmhWSyT+TF3va7MZqlJcm1OVtG7Lsm/SnLxKfZ9VJI/zMzqe/81SZljf+dmZtXDzyd5bMt+o0n+TZo3/dR9/+0c+/m5WcZZkxxKc0GjIxUL01RPba2KeGuSH5hl301Jfr9l32Oz7duF17nr5yPNB/mJNvYleU+SZyRZPcu+Jcnz04RX65i6fj4mxvDWln7HJ+b/SMt+lyW5pmXfB5KcM8d+ph73xYk5M59laDHORy+XyCE5JIe6kkNpvvE6U8acavl8S3/vX4xz0sslskgWyaKufU20XOZHrxc5JIdWYg4t1vyY6OvhU/R11yyPvazbz30pLnJIDsmhrs6PVyT5WpqvvZ6dZNNp9t2Y5OfT/ABkav/fSrKh2+ekl4sckkNyqOtfD01ty7XqU58nWSSLZFF3zofr1XM/V3JIDsmhFT4/LBZLfy4+41dGhvuMn3W87tFbIkvkkBySQ13JobjmMZ/XQg7JITnUpa+Hlsv86PUih+TQSsyhxZofE325P+/M50gOySE51L354f68uZ8rWSSLZFF3vyaa2pZr1bOfIzkkh+RQd86Ha9VzP1dySA7JoRU+P+b1nHo9AEtNkv+eptrelfM45mdnmfD/dI7HvqfluC8kWXWa/Z83yxvrgjn083MTof+VJO9O8lNJnpymYuD3dvCN+eGWtm5Jsu0Mx/xCyzE3Jhns8uvc9fMxEdz3JXlNkrE5HnNWkpta+r85c/xCoI3zcVFmflHw3NPsvzozf9D4rjn2NfWYq7v5vJbrIofkkBzqbg4tYGyPSnK0pa//o5vnYyksskgWyaLuZdFymR+9XuSQHFqhObQo82Oir4fT/KWFv0ryponztH3isatb+npZN5/3Ul3kkBySQ12dH8MLOOaJSfa3jOEXu3k+er3IITkkh7r+9dDUtq7u5vNazosskkWyqLtZtICxrbjr1XJIDskh88NisfTn4jN+ZWS4z/gZ/bpHbwktckgOyaHu5tACxuaax9yOkUMn+5FDJ/uQQ8t0fvR6kUNyaIXmkPvzltAih+SQHHJ/3lJYZJEskkXu0ev1IofkkBxyf16vFzkkh+SQ+TGv59TrAVhqkuxc4HF/1jK5/moOx1zS8sF4OMklczju/S19vXcOx2w61QdCB4PqojQVB6e29T1zPPb/bznu5V1+nRfjfGyda2C3HPeEWc7jd3T5fPxxS3/vm8Mxj5mYsyeOOZLkojkcN7Wfq7v5vJbrIofkkBzqbg4tYGy/0jK2/9nNc7FUFlkki2RRd7JoOc2PXi9ySA6t0Bzq+vmY0t4p/4Ju3Hh14jzsXOBxckgOtbYjhzo3vl9vGcMXF3sMi/x8dy7wODkkh1rbkUOztze1rau7+byW8yKLZJEs6s75aGNsK+56tRySQ3LI/LBYLP25+IxfGRnuM35Gn+7RW0KLHJJDcqi7ObSAsbnmMffj5JAcam1HDi3T+dHrRQ7JoRWaQ+7PW0KLHJJDcqg756PN8a2o+/MmnvPOBR4ni2RRazuyaPb2prZ1dTef13Jd5JAckkPdOR9tjM216rkfJ4fkUGs7cmiZzo/5LAOh52qt31zgoe9sWf++ORzzkiSDU9b/otZ6yxyOe0vL+o+WUlad7oBa60O11kNzaLsdz06mzeMv1lo/P8djf6dl/Sc6M6TZLcb5qLXuqrUeWMBx/yNJ63mby3xakFLK6iQvatncOsdmqLX+zyQfm7JpKM2cpk1yqC1yaHofcqhNpZSSmXPhPZ3sY6mSRW2RRdP7kEXTLZv50WtyqC3LZp7JoRl9Lsb8ONHXPYvRz3Imh9oih6b3IYc6569b1h/dk1EsEjnUFjk0vQ85xILJorbIoul9yKI2rdTr1XKoLXJoeh9yaLplMz+A/uQzvi3LJsN9xp+0lO+NWankUFvk0PQ+5FCbXPOYNzkkh1r7kEPTLZv50WtyqC3LZp7JoRl9uj9vCZFDbZFD0/uQQ52zou7PS2RRm2TR9D5kEQsih9oih6b3IYfa5Fr1vMkhOdTahxyabtnMj/lQGG15+0rL+upSysYzHPP8lvX3zaWjWuvNSf5hyqaxJD84l2O77Gkt6387j2M/k2R8yvpTSinntD+kZat1Pu3oYl/PSrJmyvp/q7V+bY7Hts7ZF3RmSCyQHJJDnSSHGk9PcvGU9aNp/mIdpyaLZFEn9WMWmR/dJ4fMs05azByif8ghOdRJcmi6B1vW1/VkFEufHJJDnSSHWChZJIs6SRY1XK+eHzkkhzqpH3PI/ACWK5/xMryT+vHn0XSfHJJDnSSHGq55zI8ckkOd1I85ZH50nxwyzzqpH6+90n1ySA51khyazv15cyeLZFEnySIWQg7JoU6SQw3XqudHDsmhTurHHOrL+aEw2vJ2dJZtI6fauZRydpIntBz/hXn0d3XL+lXzOLZbzm1Zv2GuB9ZaDye5dcqmgSyN59QrrfPplHOpA36oZf3qeRz7XzN9rE8qpWxve0QslBySQ50khxqvaFn/q1rrvR1svx/JIlnUSf2YReZH98kh86yTFjOH6B9ySA51khya7oKW9bt7MoqlTw7JoU6SQyyULJJFnSSLGq5Xz48ckkOd1I85ZH4Ay5XPeBneSf3482i6Tw7JoU6SQw3XPOZHDsmhTurHHDI/uk8OmWed1I/XXuk+OSSHOkkOTef+vLmTRbKok2QRCyGH5FAnyaGGa9XzI4fkUCf1Yw715fxQGG15e3TL+tEkD5xm/8e1rF9faz0wj/6uaVm/fB7HdsvmlvWH53l86/5XtDGW5a51Pt3Txb5a5+J/m+uBE3P2qy2bl8JcXKnkkBzqpBWfQ6WUDUle2LL5PZ1ou8/JIlnUSf2YReZH98kh86yTFjOH6B9ySA51khya7l+0rH+2J6NY+uSQHOokOcRCySJZ1EkrPotcr14QOSSHOqkfc8j8AJYrn/EyvJP68efRdJ8ckkOdtOJzyDWPBZFDcqiT+jGHzI/uk0PmWSf147VXuk8OyaFOkkPTuT9v7mSRLOokWcRCyCE51EkrPodcq14QOSSHOqkfc6gv54fCaMvbi1rWr621Hj/N/pe1rN86616ndtsZ2uuF8Zb10Xke37r/UnhOi66Usj7JD7Rs/lIXu3xsy/pizsXzSynvK6XcWEp5qJQyXkq5b2L9T0opP1VKaQ18Tk0OyaGOWGE5dDr/LMnqKev3JPkvHWq7n8kiWdQRfZxF5kf3ySHzrCN6kEP0DzkkhzpCDk1XSvmXSX5syqajSf6/Hg1nqZNDcqgjVlgOuVbdebJIFnXECsui03G9ev7kkBzqiD7OIfMDWK58xsvwjujjn0fPxnWPzpJDcqgjVlgOnY5rHvMnh+RQR/RxDpkf3SeHzLOO6ONrr3SfHJJDHSGHpnN/3rzJIlnUESssi1yr7iw5JIc6YoXl0Om4Vj1/ckgOdUQf51Bfzg+F0ZapUsraJK9o2fyXZzistWLhnfPs9o6W9bNKKZvm2Uan7W5ZP2eex7fu/21tjGU5++kka6as70mXqutPfJPY+o3ifOdi6/6XzOPYC5O8LE0Ib0wynGTbxPpLk/xhkjtLKf/vxPuMU5BDk+RQZ6ykHDqd1vfUH9daj3ao7b4kiybJos7o1ywyP7pIDk0yzzpj0XKI/iGHJsmhzljROVRKGSulfFsp5cdLKZ9L8o6WXV5Xa72+F2NbyuTQJDnUGSsph1yr7iBZNEkWdcZKyqLTcb16HuTQJDnUGf2aQ+YHsOz4jJ8kwzujX38ePRvXPTpEDk2SQ52xknLodFzzmAc5NEkOdUa/5pD50UVyaJJ51hn9eu2VLpJDk+RQZ6zoHHJ/3sLJokmyqDNWUha5Vt0hcmiSHOqMlZRDp+Na9TzIoUlyqDP6NYf6cn4ojLZ8/VaSs6esP5zkj85wzMaW9fvn02GtdX+SQy2bN8ynjS64uWX9u+d6YCnl/CQ7Wjb3+vksulLKziS/1rL57bXW1mqQndI6Dx+ptR6YZxutc7fTr9tYkp9L8uVSyuUdbrufyKGGHGqTHGqUUq5IcmXL5ve02+4KIIsasqhNfZ5F5kd3yaGGedamHuQQ/UMONeRQm1ZaDpVSNpZS6tQlyf4kX0vy/iRPm7L7/iQ/VWv9nR4MdTmQQw051KaVlkNz5Fr13MmihixqkyxquF69IHKoIYfa1Oc5ZH4Ay5HP+IYMb1Of/zx6oVz3mBs51JBDbZJDDdc8FkQONeRQm/o8h8yP7pJDDfOsTX1+7ZXukkMNOdSmlZZD7s/rOFnUkEVtWmlZNEeuVc+NHGrIoTbJoYZr1QsihxpyqE19nkN9OT8URluGSinPT/KvWjb/Sq31wTMc2lqt+OACum89Zt0C2uikz7Wsv7CUsmbWPWf6F7Ns6/XzWVSllJEkH8n05/3NJP+ui932ah4eTXJ1kl9N8iNJnpzmrzY9Kclzk/xOZn4x85gkny6lXLCAMfY1OTSNHGrDCsuhM2mtVP25WuutHWi3b8miaWRRG1ZAFpkfXSKHpjHP2tCjHKIPyKFp5FAb5NAp3ZfkV5JcWGt9d68HsxTJoWnkUBtWWA65Vt1hsmgaWdSGFZZFZ+J69TzIoWnkUBtWQA6ZH8Cy4jN+GhnehhXw8+ipXPfoIDk0jRxqwwrLoTNxzWMe5NA0cqgNKyCHzI8ukUPTmGdtWAHXXukSOTSNHGqDHDol9+fNgSyaRha1YYVlkWvVHSSHppFDbVhhOXQmrlXPgxyaRg61YQXkUF/OD4XRlplSyhOS/MeWzZ9K8u/ncHhrcLdWp5yL1uBubXOx/VWaap4nbEzyxjMdVEo5L8lrZ3losJSyujNDWxb+KMl3Tlk/luTHF/DXkOajF/PwV5M8qtb6fbXWN9daP1lr/Uqt9dZa6z/WWj9Ra/1/klyQ5LeT1CnHnp3kL0opZQHj7EtyaAY51J6VkkOnNfGF9I+1bFbd+zRk0QyyqD39nkXmRxfIoRnMs/b0IodY5uTQDHKoPXJodtuT/EySV5VS1vd6MEuNHJpBDrVnpeSQa9UdJotmkEXtWSlZdFquV8+PHJpBDrWn33PI/ACWDZ/xM8jw9vT7z6NPcN2jg+TQDHKoPSslh07LNY/5kUMzyKH29HsOmR9dIIdmMM/a0+/XXukCOTSDHGqPHJqd+/POQBbNIIvas1KyyLXqDpJDM8ih9qyUHDot16rnRw7NIIfa0+851JfzQ2G0ZaSUcn6aiTg1LO9I8mO11jr7Uae1WMd0Ta11X5K3t2x+bSnl1ac6ppRybpK/SbLhVM12aHhLWinlN5L885bNr6u1/v0iD6Xr83Dim9fW6t2z7Xeo1vq6JP+65aEnJ/ln8+mzX8mhmeTQwq2kHJqD5yY5a8r6nv/d3v3HWpMX9B3/fJctIIJSi0AVdSn+wlBSFFMBTTcUDNSAsqAQmoYVtLbYJrVt0pSadGsbTNNo7R+NUotiKdBSBEREQMSVVuOvZlGoW0oqawVd5JdF9vey3/5x7tN77px75sycHzNzzrxeyflj5p4zZ57zfJ/33Od7J9+b5A17fo+ToUWrtGh7c2iR8bF/OrTKONvehDrEEdGhVTq0vRl36NNJHr30eEwWc0DXJfnXST529rwvSfIDSd5XSvn6Ec5zknRolQ5tb04dMle9X1q0Sou2N6cWdWC+uiMdWqVD25tDh4wP4Fi4xq/S8O1N6BrvHr0jokOrdGh7c+pQB+Y8OtKhVTq0vTl0yPjYPx1aZZxtb0Id4ojo0Cod2t6MO+T+vB1p0Sot2t6cWmSuen90aJUObW9OHerAXHVHOrRKh7Y3hw6d6vi4euwToJtSysOT/EKSL17afWuSp9daP3b5q1Z8prG9zcp8zdc0jzmGlyd5Zs5XZixJfqSU8rwsVkd9bxYrcX7R2fP+ds4vfh9O8qilY91Za11Z6bOUck3Xk6m13tLr7EdQSvl7Wax6veyHa63/quPrr+n6Xpd8HpMfh7XWf1tK+eYkz17a/dIkr93n+xwbHWqlQz3p0IqXNLZfW2ttriJNtGgDLeppZi06+PiYCx1qpUM9jdwhjpQOtdKhnubcoVrrfUluueRLNyV5Uynl+5P8yyR/52z/lyZ5VynlKbXW9w9zltOkQ610qKc5d6gLc9XraVErLepJi1aYr+5Ah1rpUE8z65C5amDSXONbucb3NLOfR/dm3uNyOtRKh3rSoRXmPDrQoVY61NPMOmTOY090qJUO9TSzuVf2RIda6VBPc+6Q+/N2o0WttKinObeoC3PVl9OhVjrUkw6tMFfdgQ610qGeZtahk5urtjDaESilfEGSdyX5yqXdH0/ytFrrB3sc6iTDXWu9u5RyXZK3JXn80pe+8eyxziey+MbhHUv7/mTNcz/U45RKj+cOrpTy3Ul+uLH7R2ut/6DHYXb5PI5lHP5gLv5H9htKKQ+tta4bIydNh9rpUD86dFEp5UuSPL2x+5XbHu+UaVE7Lepnbi0aaHycPB1qp0P9TKBDHCEdaqdD/ehQu1rr7Un+binlniTfd7b785L8h1LK1235G4aOng6106F+dKgzc9UNWtROi/rRoovMV3ejQ+10qJ+5dchcNTBlrvHtXOP7mcA1/ljGoXmPJTrUTof60aGLzHl0o0PtdKifuXXInMd+6FA7HepnAh3iCOlQOx3qR4fauT9vPS1qp0X9aFFn5qqX6FA7HepHhy4yV92NDrXToX7m1qFTnKu+auwToF0p5fOTvDPJX1za/aksVrL8Hz0P938b21/Y81wenNVwT2Ig11o/kuTJSV6R5J4OL/mlJE9Mcltj/617PrVJKaX8jSQ/losx/ckk3zvgaTTH4YNKKZ/b8xgPb2wfYhz+Rhb/1q64X5KvOcD7TJ4OdaND3ejQpa7Pxe/JfrvW+t93ON5J0qJutKibubbI+NiNDnVjnHUzkQ5xZHSoGx3qRod6+SdJ/nBp+wlJnjbSuYxKh7rRoW50qBdz1Uu0qBst6kaLLnV9zFe30qFudKibuXbI+ACmyDW+Gw3vZiLX+KndG7OOeY8zOtSNDnWjQ5e6PuY8WulQNzrUzVw7ZHzsRoe6Mc66mUiHODI61I0OdaNDvbg/b4kWdaNF3WhRL+aqz+hQNzrUjQ5d6vqYq26lQ93oUDdz7dCpjQ8Lo01YKeUhSd6e5OuWdn86yTNqre/d4pDN1S+/rOfrm8//ZK31U5c+cwS11ttqrX8ryVdlMSHyS0k+nOSOJH+a5OYkP5XFKqp/tdZ6S5LHNg7zW4Od8MBKKS/IItLL/+5fk+S7hlxBv9b6iVz8D2KSfGnPwzTHYp+VXTuptd6X5P80dvf6ZucU6FA/OtROh1aVUkqS72zstrp3gxb1o0Xt5t4i42M7OtSPcdY3m3gKAAARjElEQVRuKh3iuOhQPzrUTof6qbXekeTNjd3PGONcxqRD/ehQOx3qx1z1OS3qR4vaadEq89Wb6VA/OtRu7h0yPoApcY3vR8PbTeUaP6V7Y9qY91jQoX50qJ0OrTLnsZkO9aND7ebeIeNjOzrUj3HWbiod4rjoUD861E6H+nF/3jkt6keL2mlRP+aqF3SoHx1qp0OrzFVvpkP96FC7uXfolMbH1WOfAJc7+200b0vyDUu7P5PkmbXW39jysDc3tr+85+v/QmP7d7c8j4OqtX4oycvPHps8qbH962uOWS7bfyxKKc9N8uosVqm+4r8kedHZf9h62cPncXMWK0xe8eVZHZ9tmmOxz2v7uKOx3VzR9aTp0PZ0aJUOrfXUJI9e2r4ri2+qOaNF29OiVVp07hDj41Tp0PZ0aNUEO8QR0KHt6dAqHdraBxrbff/NHDUd2p4OrdKhrc16rjrRol1o0SotWst8dQsd2p4OrdKhc+aqgbG5xm/PNX7VBK/xU7k3ZpNZz3vo0PZ0aJUOrWXOo4UObU+HVunQOXMe3enQ9nRo1QQ7xBHQoe3p0Cod2tqs789LtGgXWrRKi7ZmrlqHtqJDq3RoLXPVLXRoezq0SofOncJc9VWbn8LQSimfk+StSb5xafftSb6l1vqrOxz6/Y3tx5dSHtTj9U/ZcLyjcraq6lMbu395jHM5pFLKs5O8LhcXQnxzkhfWWj87zlmtjJ1mINc6+6bm8RuOty8Pa2x//EDvMzk6NAwd0qEkL25sv7HW+sktj3VytGgYWqRFG95nFuNjHR0axlzG2UQ7xMTp0DB0SIc6uKex/YBRzmIEOjQMHdKhDmY7V51o0VC0SItivnotHRqGDulQm7mMD2BYrvHDmEvDJ3qNn/zPo8/Mdt5Dh4ahQzoUcx5r6dAwdEiHNrzPLMbHOjo0jLmMs4l2iInToWHokA51MNv78xItGooWaVEH5qp16KB0SIdirnotHRqGDulQmymPDwujTUwp5YFJ3pLk2qXddyZ5dq31Pbscu9b6R0l+Z2nX1bl4cdjk2sb2z+9yPhPw1CTXLG3/cq31gyOdy0GUUv5aFitX/pml3T+X5Pm11nvHOaskydsb29f2eO035eJF6KZa60d3PqOGUsrDsrqK6x/u+32mSIcGpUPjGb1DpZSHJrmusfuVfY9zqrRoUFo0ntFb1MHJj491dGhQJz/OJtwhJkyHBqVDbPKoxvYhvu+aHB0alA6x1pznqhMtGpgWzZj56vV0aFA6RJuTHx/AsFzjB3XyDZ/wNX7yP4+e87yHDg1Kh8YzeofMeaynQ4PSofGM3qEOTn58rKNDgzr5cTbhDjFhOjQoHWKTWd6fl2jRwLSItcxV69BAdGjGzFWvp0OD0iHaTHZ8WBhtQkop90/yxiRPW9p9V5Jvq7X+4p7e5k2N7e/seG5fneQvL+26Lck793ROY/lHje1XjHIWB1JKeXqSn05y/6Xd70zy3Frr3eOc1f/3jiR3LG0/6WyMdXF9Y7s5pvflBbnYyI8muflA7zUZOjQ4HRrPFDr015M8cGn7liTv3vJYJ0WLBqdF45lCizY56fGxjg4N7qTH2cQ7xETp0OB0iE2+ubE9icn9Q9KhwekQbWY5V51o0Qi0aN7MV19ChwanQ7Q56fEBDMs1fnAn3fCJX+OP4efRs5z30KHB6dB4ptAhcx6X0KHB6dB4ptChTU56fKyjQ4M76XE28Q4xUTo0OB1ik9ndn5do0Qi0iDbmqs/p0OHo0LyZq76EDg1Oh2gz2fFhYbSJKKVcneT1SZ65tPueJM+rtb5jj2/1miSfXdq+rpTyFR1e1xzEr6+13rm/0xpWKeVFSZ6+tOu9Waz8eBJKKX8lyc/k4jdI787im4C7xjmrc7XW25O8obG7OcZWlFK+Mslzlnbdm+S1ezy1K+/ziCTf39j9s7XWuu/3mhIdGpYOjWsiHXpxY/snTr0zXWjRsLRoXBNpUdv7nPT4WEeHhnXq42zqHWKadGhYOsQmpZRvSfLExu6fGeNchqJDw9Ih2sx1rjrRoqFpETFfvUKHhqVDtDn18QEMyzV+WKfe8Klf44/g59GznPfQoWHp0Lgm0iFzHg06NCwdGtdEOtT2Pic9PtbRoWGd+jibeoeYJh0alg6xyRzvz0u0aGhaRBtz1To0BB0i5qpX6NCwdIg2Ux8fFkabgFLK/bII6rcu7b43yfNrrW/d53vVWj+Y5KeWdt0/yatKKQ9c85KUUr41F3/jzd1J/tk+z2tXZxe+rs+9LsmPL+26N8mLa6337v3ERlBKeVKStyb5nKXd70nyrFrrHZe/ahQ3ZPHNyRXXl1Keve7JZ2P0J3Nxhc5X1lr/d8trvqqU8qw+J1VKeWQWn98jlnbfneQH+xzn2OjQ7nTonA5tVkr5S0m+dmnXfUle1fc4p0aLdqdF57To0tcaHxvo0O6Ms3NH1CEmRId2p0PndOhcKeWJpZTnbH7myuu+PsmrG7vfU2t9337ObHp0aHc6dE6Hzpmr7keLdqdF57RoM/PVq3Rodzp0TodWGR/AWFzjd6fh547oGn9D3KM3GTq0Ox06p0ObmfNYpUO706FzOnTpa42PDXRod8bZuSPqEBOiQ7vToXM6dM79ef1o0e606JwWnTNX3Z0O7U6HzunQZuaqV+nQ7nTonA6tOrXx0fkPw0H9RJLvaOx7WZKbSinX9DzWrR1WmvynWfwGmz97tv3kJO8qpXxXrfV/XnlSKeUBSf5mkh9qvP6Haq2/3+VkSimPyuXj7JGN7atb/qyfqbV+fMNbva+U8nNJfjrJr9da77vkXB6X5B8neWHjSy+rtd604fh7cejPo5TyhCQ/n+TBS7s/kOR7kzy8lNLndO+std7a5wV91Fp/r5Tyb5L8w6Xdbyil/P0k/67WeveVnaWUxyb591mM1Ss+kc3fQPz5JG8ppbwvyX9M8qazb15WlFIekuRFWazs/YjGl/9FrfX3OvyxjpkO6ZAOLey7Q+u8pLH9jlrrH2x5rFOiRVqkRQuHatFRjI+R6ZAOza5DyXDjo5Ty4CQPW/Pl5oTyw1re68NTmlzbMx3SIR26aF/j41FJ3lhKeX8WP0B7c5IP1Hr5b1kqpXxNku9J8tLGed15tu+U6ZAO6dBF+xof5qr70SIt0qKL9j0+msxXr9IhHdKhi2Y5PoCT5Bo/k4a7xp9zj97k6JAO6dCCe/TGo0M6pEML7s8bjw7p0Ow6lLg/b2J0SId06CL3541Di7RIiy5yj97wdEiHdOgi9+cNT4d0SIcumuX46KzW6jHyI0nd4+Paju95bZK7Gq+9L8lvJvnPSd6e5I8vOf7PJrlfjz/bLXv4M72qw/t8fOn5f5rkV7P4R/qaJO9sOY9/PvDf9UE/jyx+o9G+xtKNA3we90vytkve+6NZXIBen+S3zsbm8tfvSvJNHcd589h/kuS/ZTHB9uokbzp7j3vWfA6vGLsRA41NHdIhHTpAh9a85wOyuFFi+XjPHbMBU3nscexokRbdsMexdOMAn8cgLTqW8THmY4/jRocmPs4O/Xnk+Do01Pi4fk+fyTVj9+KAfxc6pEM6dJjP49suef6nz8bHW7K4AeL1Sd6V5NY1x789ydPG7sQAfxc6pEM6dJjP49pLnm+uev3npUVapEUHHB+N9zRfffnnokM6pEPGh4eHxwk+9thk1/iJN/zQn0eO7xrvHr2JPPY4bnRIh27Y41i6cYDPwz16E3nscdzokA7dsMexdOMAn4f78yby2OO40aGJj7NDfx45vg4NNT6u39Nncs3YvTjg34UO6ZAOHebzcH9ev78PLdIiLTrM53HtJc83V335Z6VDOqRDBxwfjfc0V33556JDOqRDxkfnx2UryTEDtdYbSynPSfKqJF94trskeeLZ4zKvS/LdtdbPHv4Md/LgJE/a8JxPJXlprfU/DXA+rFFr/Wwp5Tuy+M1Kz1/60sOTPGPNy/44yYtqrf91y7f9/CRP6fC825J8X631x7d8HzbQIR2agpE69JwkX7C0/bEsJvoZgRZp0RSM1CLjYyJ0yDiDsemQDs3YQ7J5fFzxa0m+p9b6Owc8n9nSIR2aMXPVE6JFWjRj5qsnQod0aMaMD+CkucZr+BS4R2/edEiHpsA9evOmQzo0Be7PmzcdMs5gbDqkQzPm/rwJ0SItmjFz1ROhQzo0Y+aqJ0KHdGjGjn58XDX2CTCeWuvbkjwuyY9lMVDX+bUkz6u1vrDWetsgJ9ffjyS5KYtVOdv8QZIfSPKYqf6jnJta62dqrS9I8u1ZjLV1PpnkR5M8rtb69o6HvznJy5P8SpI7Or7mfyV5WRa/4cR/Yg9Mh3RoCg7cocu8pLH96lrrPTscjx1pkRZNwUAtMj4mSoeMMxibDunQDLw7i9+K+7okH+74mtuTvCHJs5I82U1Xh6VDOjQD5qqPgBZp0UyZr54QHdKhGTE+gFlxjdfwKXCP3rzpkA5NgXv05k2HdGgK3J83bzpknMHYdEiHZsD9eUdAi7RoBsxVT5wO6dBMmaueEB3SoRk5qfFRaq1jnwMTUEq5fxarHn9ZkkdmsbrxR5LcVGv90Jjn1kcp5fOSPCHJo7NYqfOBWfwH5iNJfrvW+rsjnh4dlFIeneRrk3xRks9NcmuS30/yK7XWu3c47lVJviLJY5J8cZKH5nx8fCrJHyX5zVrrx3b6A7A1HWIqDtUhjoMWMRWHbJHxMW06BIxNh5iDUsojkjw2i3H+55I8KMk9ST6d5BNJ3p/kA0fwm31Okg5x6sxVHwctAsamQ8yB8QHMkWs8U+EevfnSIabCPXrzpUNMhfvz5kuHgLHpEHPg/rzp0yJOnbnq6dMhYGw6xBycyviwMBoAAAAAAAAAAAAAAAAAAAAAAAAwuqvGPgEAAAAAAAAAAAAAAAAAAAAAAAAAC6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADC6/wfh0VgquWOTFwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 5), dpi=300)\n", + " configs = get_known_configs()\n", + " to_display = configs[\"Relative humidity\"], configs[\"RAM available\"]\n", + " for i, config in enumerate(to_display, start=1):\n", + " plot = figure.add_subplot(1, 2, i)\n", + " coros.append(plot_sensor(config, plot, {}))\n", + " await asyncio.gather(*coros)\n", + "\n", + "display(figure)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAE0YAAAUsCAYAAAC9bUPVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdd5h1Z1kv/u8dAqEEEnoRSIBIVUA6AiYRPDSlKr0EIgiCla6IAVEPR1DPQQRF6aKIQEDqT8HQu1IUBUKJEECQloSSEHL//lj7lXnX7Cl7z57Z8877+VzXXGQ9az1l773WzsXMN/dT3R0AAAAAAAAAAAAAAAAAAAAAAACAZTpk2QsAAAAAAAAAAAAAAAAAAAAAAAAAUBgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAYKSqjq6qHv2csOx17aSqOmX0+k9Z9pr2Iu/zga2qThp/VxwI87vvAAAAAAAAAAAObgdq7gUAAAAAODgojAYAAAAAAAAAAAAAAAAAAAAAAAAs3aHLXgAAAACwO1XV0Uk+M0OXs5OckeSbST6V5F+SvCfJG7r7nEWvDwAAAAAAAAAAAFaqqsqQeztqdOr7SY7q7tN3flUAAAAAAMzikGUvAAAAANgzDkty6STHJLltkscnOTnJ6VX1tKo6fJmL2+uq6gVV1St+PrvsNQF7S1V9dvQ984JlrwkAAAAAAAAAYOQ2WV0ULUnOl+SEnV0KLEZVHTfK7XRVHbfE9cgrwgJ5pgAAAGA1hdEAAACA7XapJI9N8q9VdfNlLwYAAAAAAAAAAIA968R1zj24qmrHVgIAAAAAwFwOXfYCAAAAgAPKt5Kcusa5Cye5RJJLrnH+qCRvrKpju/tD27E4AAAAAAAAAAAADk5VdYkkd1nnkqsmOS7JP+3IggAAAAAAmIvCaAAAAMAsPtDdx613QVVdMcnPJHlUkquNTl8syd9V1bW6+3vbs0QWYaPPGUi6+6QkJy15GTPzfAMAAAAAAAAAe9T9khw2auskteL4xCiMtnQHau4GAAAAANgZhyx7AQAAAMDe0t2f7+5nJ7lekldOueRqSX5hZ1cFAAAAAAAAAADAHvfg0fEnszrDdreqOmKH1gMAAAAAwBwURgMAAAC2RXd/K8l9k/z7lNP33+HlAAAAAAAAAAAAsEdV1Y0ybOa50ouSvHDUdqEk99mRRQEAAAAAMBeF0QAAAIBt093fTfL7U07dqKousdPrAQAAAAAAAAAAYE86cXTcSV6c5A1JvrzBtQAAAAAA7CKHLnsBAAAAwJ73xilthyS5RpJ3zztoVR2S5MeSHJ3k0kkukeSMJF9JcmqSf+nu8+Ydf5Gq6oeSXDPDWo/IsOvoGUm+luQ/k7x/UkSObVBVF0pykySXT3KZJIcn+WqGe+XD3f2pJS5vU6rq0kluluSqGdb/zQyBzfd292nLXNt2q6ojMrz2H87w/Hw3yelJ3j3La6+qKyS5cYbn8PAMz9/nk7y1u89Y8LLnUlWHJblFkisnuVyS7yf5ryQfTfKh7u4lLg8AAAAAAAAAYFea5IPuPWp+275sSVW9NMmvrjh3w6q6Xnd/eJvXdf4MuaVrJ7nkpPm/kvzzLHNX1cUy5F6ukeTIJN9K8qUk7+zuzy900avnvmSSmya5WpKLZcgtfSG7NHdVVVdMcr0MmcJLZyiQ95UkX0zynp3ICVXVDye5YZIfSnJYhqzaF5K8o7u/vt3z70VV9SNJjsmQ/7tkkm9n+Fw/myF/+b1tnt+zPP+8u+WZvF6SK2bIDp6T5Ivd/eJN9pcB3gZVdYEkN8rwPFwqw/flGRlyse+dYZxjMjyb++6xs5P8d4Z86Hu6+zsLXjoAAAA7RGE0AAAAYFt191eq6owMQYqVLjXPeFV1qySPSPJTGYqhreVrVfX6JL/f3R+bZ655VdWlktw1yW2SHJvksht0Oaeq3pPkT5K8YrMF3arqs0mOWuP0UVW1mSJKx3f3KVPGPiXD2vd5a3cft8Y6PprkR1Y0fSXJD20lbFRV907y0lHzI7r7TzfZ/5Ak901yvyQ/keSC61z7mSR/m+Tp3f3f8614e1TVcUl+I8mtMxQUnHbNx5L8XpKXzlI4q6pOSPL8UfNVuvuzc6xzPO+Tu/ukDfqclOS3V7Z1d604f+MkT0xyh6zxe8yqemuSx3f3e9aZ52eSPC7JjyepKZecU1WvSvLY7v7P9dY862uYYZyjk5yU4Xtj/F25z5eq6jlJntHdZ806x2i+U7KJ53uyrs+sM9QDq+qBG8237z2ZBPtOzxAu2+eU7j5+w0Wvo6r+b5JfHjVff7vDywAAAAAAAADArvGzGYrVrPTC0T//6uj8g5P8yjyTTTI9/zRq/p8c1mQDv99Mcv8kF11jjE8keep6hXmq6roZ8jN3ylAwZto1707ymO5+52yvYn1VdWx+kFs63xrX/HOSZyf5y1k3/FtU7mYy1mWS/FqSn0lynXUuPbeq3pvkWUleNuvGq+tlpCZ5tQcm+fXsn6Vb6fuT3M4T18s7rZjvpIzeo5F/qtrwLXthd5+w0UWbsZ15xTXmu26G5/a2Sa6wzqVnVdU/JnnaZt7X0RzH5QB/ljeRw9vWZ3mN8XbDM3mRJL+U5CEZNqSdZupndqBngDe6r2cxZY0bfqdslE2tquskeWySuye5yJQhXphk3cJoVXWVDN+3d8jan2+SfLeq3p7kj7r7DeuNCQAAwO4z9T+mBAAAAFiwaUV81ir+M1VVXX1S6OxtSe6Z9YuiZXL+fkk+WlV/UVVrFsZapMnuol9M8udJ7pGNAxFJcoEMxbv+Nsm/Tv7ofyAZBxguneSOWxzzhNHx2Un+ejMdq+p2ST6a5EVJ/lfWKYo2cZUMhbM+XVVzhR0XraoOq6rnZgin/FTW/z3etZO8JMkbJ2GeA1oNfifJezIEwdbb3OHYJO+qqkdPGeeIqnpFktckuUWmF0VLhufvnkk+VlW32dLi5zC55/4tQzByve/Fy2UonvZvVXXDHVjawk1293zJqPm4qrrWvGNOdnx+wKj53YqiAQAAAAAAAMBB5cTR8beT/N2+g+7+UJKPjK65X1VNLVC0FVV1tyQfS/KLWaOQ0sTVk7yoqv52vI5JfuZJSf45yc9ljUJKEzdP8vaq+o2trfx/5j5fVf1JklMyZK+mFlKauEGS5yZ526RIzY6qqgtU1VOSfDrJ47N+AaZkyCHdIsOGnR+eFKtaxDqumOQdSZ6XtYuiJcN7eesk766q313E3HtRVV2+qv4qyYeSPCjrF0VLhk0a75LhfT25qjbKlm52HZ7l2efcLc/kTTN8dr+f9YtmTet7MGaAd0xVPTHDs/2ATC+KtlH/i03u648neWQ2/nwvmCGD+/qqentVXXnWOQEAAFgehdEAAACAnXDklLYzNtu5qm6dYfev288x9yEZgm9vrarNBBS26sezfiGnjVwryXuWUaBpC16S5HujtgfNO9gkKDZ+/Sd399c30ffRSV6XoVjYrC6a5I8nhfS28hluyaSI3xuS/PyMXf9XhvDGegGmA8FzMuyOudnfXVaSP6iqh/5PQ9WRSd6c5G4zzHuRJK+pqhvP0GdLJgHHP05y4Rm6XTnD99kBWRwtw66YYw/bwnj3zup/xzx7C+MBAAAAAAAAAAeQqjomQ0GalU7u7jNHbS8cHV8iQzGlRa7lfhkKsh0xQ7efy1BQa98YlaFA0ZOzfiGj/aZO8rtV9cgZ5l09yDD3S5I8Ysaut8yQZ5mpANFWTIpf/X9JfitzFNfJUMDsnVX1M1tcx1UzbAB58xm7/kZVPXUrc+9FVXW9JO9Lcp+svRHmeu6cIX959S2uw7M8+5y75Zn8iQzF4OYtgHUwZoB3xKSg2e9kzve3qo5K8s4M9/X55xjilkneV1U3m2d+AAAAdt7S/gNPAAAA4OBQVVfL9KI/n95k/59J8oqs/iP2OUnekqFg2ueSfDPDzn9HJ/nJJLcaXX+TJCdX1U9097iI13b5foad/v4tyX8k+WqGgnCV5GJJfjjJzTLseLeyCNThSf6mqn6suz+3zvgfS/KNyT9fOcnFV5z73uT8Rs7axDXr6u4vV9XrM4SK9rlDVV2mu788x5APyOqiWM+bduFKVfW/kzxuyqmvJfmHJB9M8uUMO8IemWE3wtslucbo+hMzvK+PnmnVi/O8JMevOP54hkJp/5HhtRyR5MeS3D2rdyP8iSS/luTp27/MxauqX0ny0BVNpyX5+yT/muG1H5nkphlCZBcbdf/jqnpThu+Dv0mysnDYB5O8MclnkpyZ4X37ySR3yv732oWSPLeqbtTd5y7oZU1VVb+eZNrunmdP1vq2JF/IEBK7Sobna9+OshdJcnJW7Gy8Tc5J8uEVx9fO/t/FX0/yn7MM2N3/VlWnJDluRfMDquoJ3f3tOdb48NHxV5O8fI5xAAAAAAAAAIAD04OzuoDSuAhakvxVkv+T/QsUnZjkZQtax42S/N6KtXwjyeszFM36coZcyrWS3CNDxm2l+1TVyd398gx5khNXnDstyWsz5Ge+miE/c5PJOOP8zNOq6rXd/dk5X8OjktxrxfGZSV6d5P1J/msy9zUz5JauNOp7pSRvqarrd/c3so0mmya+c7KWsX9N8tYMmb1967hMhsJld8iweeY+hyd5eVXdors/OMdSLpoh1/VDk+NO8q4k/5ghU3NWkktnyAfeNckFR/2fUFV/393vXWP8L+UH2Z3Dk1xtdP5T2Tj/N1O2ZwPbmlesqhsl+acMr3Wl85K8PcN7+5nJGi6U5IpJjk1y6+z/XP9whg1Gb9jd39zEmsY8yzM+y7vombxckldm/2ftfRkKtp2W4X24fIYc3M9tYryDIgO8Qx6S/Qv1nZUh1/vODPfkIRme6eMzvO/7mRRFe29WZ2aT4TN+Z4as7deTXCDD5/zjGTbkPmzFtZdN8rqqukF3n7a1lwQAAMB2q+5e9hoAAACAXaiqjs4QIlnprd193IzjPDbJ00bNX09yqe4+b4O+V8kQKjhyRfO5Sf4oyR9091fW6Xv9JH+R/YsjJckfdvejNpj36Kx+7Q/q7hes12/S9xNJPppht723bCZYM/mD/e8nuffo1Ou6+6c36j8Z4wVJHrii6bTuPnozfdcY75QMoaF91v3sq+pOGYIzKz2qu/9wjrk/kSEwss/nkxy13v1SVXfNEGhZ6etJHp/kRd393TX6VYadX5+TIWyz0p27+zUzLn8mU97n7+YHoZwvJfml7p5a/KqqDk/yrAyF5Fb6RpIrdPd3Npj7hCTPHzVfZZ4wVVWNf8n45O4+aYM+JyX57VHz2RlCKN/OEM56bndPC7lcNkPBxFuMTv15hnDLMybHn07y0O5+8xpruFGS12X1Z3+f7v7r9da/1mvo7g13Kq2qayT5UFaHHd8wWe/n1+h31yTPzg/CPd/JELSbdf5TMsPzvaLfZ5MctaLphd19wkb9poxz96wu6nZid29YAHE0zg2TfGDU/PTufsysawIAAAAAAAAADjxVdb4MhZ+usKL5C0muNC1rVFWvy1CIZ5/zklx11uIoVXVchgJOK+3LvSTJM5M8aVpRoao6LEO25RGjUx/PkAN6d4YCMRvlZy6XIT/z46NTf97dv7CJ13BSVmd3VmaXnp/k19d4DYdk2LzxqVmdf3lBdz9onvk3k3uZ9H1VhszXSu+arHetImP7ijf9Voa1r5zrs0mu291nbjDvOCO18v16b5Jf7O5/XqPv0Rk+rxuMTr2pu2+33ryT/sdl9T13fHefslHf7bANecWLZ8iKjsd4fpKTunvNAm+TzXufleS2o1Ov7O67bzDvcfEsb+lZnoyzW57J7+cHRfI+kuRh3f3uNfpecFqudC9kgBf5fTFPZnCNbOrKz+Y5SZ7Y3V9do/9+n01VXSDJO5LceHTpa5M8trv/fZ21XC7JHyS53+jU+5PcfNozCQAAwO5xyMaXAAAAAMynqi6f5NFTTv31RkXRJv4q+xdF+3aS23b3Y9cripYk3f2hDEGRfxid+qWqGu9wt0g37u67d/erNrvbYHef1t33SXLS6NQdqmraDnq70esz7Nq20gmzDlJVt8j+RdGSIUixXlG0y2R1iOKTGYIxf75WUbQk6cGrMuzyOC5G9fuTwmk7aV+46NNJbrZWUbQk6e6zMrzHbxqdOjLDTo4Hon1F0W7T3c9ZK3TS3f+V5Kcz7MC50v2SPGXyz/+WIbgytSjaZJwPZPp7talA1xY8O6uDZH+b5KfXKoqWJJN79dj84HVfaK1rd7mTs/p5e/gc44z7dJI/m2tFAAAAAAAAAMCB6PbZvyhakrxknazRC0fHh2SOjNMa9hVS+pXu/uVpRYiSpLvP7u5HZnXm5xpJ/n6yprOS/OQG+ZkvZcjPjHN096qqeTMl+/Is/7u7H7zOazivu5+R5OcybHS60glV9RNzzr+hqnpoVhdg+tMkt1yvAFOSdPc3Jpuqnjg6dXSSX5xjOfver9cmOW6tomiTuT+b5KeyOmP3U1V15Tnm3muelf2Lon0/yf0m9+GaRdGSpLs/leG7YJwhvFtV3XSOtXiWB5t6lnfZM7mv8NY7k9xqraJok7nXypUerBng7bbvs3lUdz98raJoydTP5qSsLor2+O7+mfWKok3G+lJ33z/Jk0enbpzkZzdeNgAAAMukMBoAAACwLSa78L0xyaVHp76dYWe0jfr/VJKbj5of3N1v2ewauvucDIGN/17RfP4kv77ZMWa12SDEGp6SYReyfSrJg7e2op3R3edm2CFvpR+tqhvOONS0glTjwNLYryQ5YsXxt5Pcbr0CU2Pd/bkk9xo1XzvJnTY7xgJ9L8k9NrMTbXd3pt/P490vDyS/ul4gaZ9JWOvpo+YLJ7lIhh0v79Hd48Jp08Z5R4bvqpWOr6px4bKFqKofTXL8qPnUJA/YTMHI7t63o+gBaxLyGxcwu1FV3WizY1TVEVm9w+Y/dPepW10fAAAAAAAAAHDAGBfTSZIXrXP9q5OMCwQ9qKoW9d/YvbS7/98mr/2tKW2Xmfzvr2xUUChJuvvrSZ4xar5Yhg1F53VKdz9hMxd292uTPHXKqV/ewvxrqqpDk/zGqPmN3f2ISY5qU7r7+Un+YtT8a1V12LTrN/DZDAW81ty8c8W8X8vq4jyHZCiYdtCqqmskueeo+Te7+682O8bk8/+FJOMiSY+fc1me5cG6z/IufSa/meSe3X3GHH0P2gzwDnlFd//hLB2q6uJJfmnU/Jzuftos43T3SVm90fa83w8AAADsEIXRAAAAgIWoqgtW1Q9V1R2r6s+TfCTJdadc+pBNFqx63Oj47d39slnXNQkp/N9R811nHWcnTIIgLx4133IZa5nT86a0nbDZzlV14ST3GDW/bbKj41p9Ds/qnQGf0d2f3uy8+3T3O5O8edS8jHvlpd39wc1e3N0fSzLebXTWgnS7xSeyOuC0nles0f7iyfuyWX83Oj40yY/O0H8WD5vS9qjuPnuzA3T3mzLsKnog+/Mk54zaHj5D/wdmKIS30nO2tCIAAAAAAAAA4IBRVZdJcsdR8z9397+t1WeSzxhn0I5KcusFLOn7WV0gaE3d/f4k/znl1Mez8UaSK41zL0lygxn6j81a1OxpScZ5wDtX1eW3sIa13CvD57VPZ3XBnM16yqT/PpfN6o1cN+PJMxZS+psM98pKB2rWa1Eek/3/O9fPZPWGmRvq7u8l+b1R8+3n2CDTs/wDGz3Lu/GZ/MPuPn3ONWzJHsgAb6fzkjx6jn6PSHL4iuOzsjpfvllPGR1fv6qOnnMsAAAAdoDCaAAAAMAsjq2qnvaT5DsZQhGvTfKQrC5Y8+0k9+3ul240SVVdIslPjppnKZY09rrR8VFVddTUK5fvk6PjG1TV+ZeykhlNClG9b9R8nxl27bt7kouO2jYKBt0myZGjtr/c5HzTjO+VY7cw1ryeO0ef8ft+9UUsZAmeP+NOkZ/OsMPj2Kz3wL9MabvGjGNs1u1Hx1/M6vtuM/5sAWtZmu7+cpKXj5rvVVXj53ktvzA6Pj0HfrE4AAAAAAAAAGDzHphknKt64Sb6vWhK24lbX07+sbtPm7HPh6a0zZqf+VSSM0bN8+Ze3tPdH52lQ3d/N6sLAR2aIde1aD87Oj6lu0+dZ6Du/lyS8WudNSv2rSQb5iFH8349qzOC25VT2vWqqpLcbdT8gu4eF4/brNePjg9LctMZx/As/8BGz/JueyY70zf43UkHbAZ4m72luz87R7/xPfby7h4/J5v1riTfGLUtIyMMAADAJimMBgAAAGy3MzMUNbvmZoqiTdwqSY3a3rWFNXxmStuPbWG8Tauqw6vqDlX1+Kp6UVW9rqreXlX/XFUfGv8k+ZPREIdl2PnuQDEuZHaJJHfaZN8HjY7PyurCSWPjUMLpc4SSVhrfK0fPUKhpEb6T1UXONuNTo+PzVdXhU6/c3d42R5/xbpvfTvLBGcf47JS2hX/uk52KrzJqfvWcQb43ZQhXHsjG33cXTvKAjTpV1bFJrj1qfm53n7uohQEAAAAAAAAAu96DR8fnJvnrjTp197uyunDNXSabeW7FPLmXaTmnty9gnHlzLyfP2e+VU9puNudYU00KaN1q1LyVTGGyOis2a6bwPd19zhzzjrNeR8wxxl5x3SQXH7XN/bl299eyeqPNWT9Xz/L+pj7Lu/SZPLW7P7/FNeznIMwAb5d/mrVDVV08yY+Omrfy/XBeVj9jO5IlBwAAYD6HLnsBAAAAwJ73gSTPnOzmtlm3mNL2iqra9O55m3CpBY61SlXdMMljMhQFu9AWhzsyyULDGtvor5P8YfZ/zSdkgwJnVXVUkuNGzX/b3RsVfhrfKxefhEvmNa2Y2KWyepe47XJad39vjn7jMFcyBObO2uJ6dto8u0WeOTo+bY4CWeMxku0JHN5wStusRdySJN19blV9JMnNt7ak5enu91TVB7P/+/KwJP9vg64PHx2fm6EAJwAAAAAAAABwEKiqWyS55qj5Dd39lU0O8aIkv7Pi+LAk903yzC0saxG5l0WNM2/uZa4cS5KPJvlekvOvaJuWk9mKa2XYpHOlB1bVT29hzCuPjmfNFI4L7G3WOOt1MBdGm5YVfWZVnb2FMS88Op71c/Usb+5Z3o3P5D9vYe79HMQZ4O0yz2dz8ySHjNqeUFWP3MI6jhkdb2uWHAAAgK1RGA0AAACYxbcyPaxx/gy79l1+yrnjk7y/qk7o7g135Jy44pS2626y72ZdcsHjJUmq6vxJ/ihD4Z7xH+TndcAEn7r7m1X1qiT3WdF826q6fHd/cZ2uJySpUdvzNzHl+F65cJLrbaLfLC6Z+UJK8/janP2mFVM7/5S23e7rc/QZv/aZx+ju7w0bWO5nO96/y0xp+/gWxvuPHMCF0Sb+JPs/69eqquO6+5RpF1fVZZLcddT8mu4+fZvWBwAAAAAAAADsPidOaXvhDP1fnOQp2T+vdGK2VhhtEbmXRY0zb+5lrhxLd59dVZ9N8sMrmqflZLZiWqbwimu0z2vWTOGisl4HYs5rUaZ9fuOih1s16+fqWd7cs7wbn8kvb3XCgz0DvI3m+Wym3UtX3epCRrYlSw4AAMBiLOr/mAMAAAAHhw909/Wn/Fynu6+Q4Q/EJ2Qo1rPSBZK8uKp+ZpPz7MQfmre6g9sqk0DEy5M8Iov9vcuBFnwaFzQ7X5L7r3VxDRWpHjBq/mR3v2MTc413HNwOC79X1jEtIHXQ6O5FvP7d/B4eOaVtvAPsLLbSd7f4myRfHbU9bJ3rT8zw75SVnr3QFQEAAAAAAAAAu1ZVHZ7kHqPmryd57WbH6O7Tkpwyar5eVd1wC0tbSGZlQfmZeS0yxzItJ7MVuzFTuJtzSgeKPfu5HgTP8m787M7YymQywNtqns9mN95jAAAA7CCF0QAAAICF6e6vdfcLk1w/Q7Gblc6X5CVVdfQmhrr4gpe2Ux6X5M5T2k9P8qdJ7pfk5kmulCEscsHurpU/SY7fsdVunzcnOW3U9qB1rj82q3dxGxdXW6WqLpzksNmWBkt10Slt39rCeFvpuyt093eT/OWo+W5VddnxtVV1SJKHjpo/meE7BwAAAAAAAAA4ONwryUVGbS/r7rNnHOeFU9pOnG9Je8YicyzTcjJbcaBmClmfz3V77MSzvBs/u3O32F8GePvM89nsxnsMAACAHXToshcAAAAA7D3dfXZV3T/JZbP/H/kvlqEAzq03GOI7o+NvdPeu/gN3VV0myRNGzecmeUySP+nuzf5R/4Dffay7u6pemORJK5qvWVU36+73TOkyLpr2/SQv2sRU301yXvYv/ioagZ8AACAASURBVH9yd991pgXDzjlzSts4qDuLrfTdTf40yaPzg2f5/BmCxr83uu72SY4etf1Zd/e2rg4AAAAAAAAA2E2mFS97WFU9bAFj37uqHtXd4/zaweIiSc7YQt+VpuVktmLaZ3KX7n71gudhZ037XC/e3d/Y8ZXsLTvxLO+pZ1IGeFeado9dv7s/vOMrAQAAYCkO2fgSAAAAgNlNQgAPyOpwxU9W1T036P7fo+Mjq+rIhS1ue9wpyYVHbY/r7j+eIRCRJJdY4JqW6QVJxsWKThhfVFWHJ7n7qPn/6+7TN5qgu89LMg5AXWXzS2QRqur8y17DAWRaYO+ILYy3lb67RnefluS1o+aHVtX499cPHx1/N8N3DQAAAAAAAABwEKiqaye52TZOcWSSu23j+LvdInMsiy5sNc4UJrJie8G0z/XonV7EHrQTz/JeeyZlgKdbZj50r91jAAAAzEhhNAAAAGDbdPfnkzxpyqnf26CY0n9NabvuYla1bX5qdPz1JH8yxzhXXcBalq67P5PklFHzvarqgqO2e2T1DoPPn2Gq8b1y9ao6bIb+B7PvTWmbJ8Ryya0u5CDy5Slt19jCeNfcQt/dZvx9eVSS2+87qKr9jif+tru/ut0LAwAAAAAAAAB2jRP3yBy71dXn6VRVF8jqYlbTcjJbcSBmCtmYz3V77MSzvNc+u72UAV5UNjRZbqG3vXaPAQAAMCOF0QAAAIDt9uwknx61XTXrB8jeN6VtXBBnt7nS6Pi93X3OHOPcfBGL2SXGBc6OSHLXUdsJo+OvJXnNDHOM75ULJTluhv4HszOmtF1sjnGO2epCDiIfnNJ2w3kGqqpDs7dCPv+Y5OOjtoev+OeHZvXvs5+9rSsCAAAAAAAAAHaNyUac9x81n5Pkw1v8+dpozOOqajcUtlmGuXIsGTIs46I703IyW/GRJN8dtd1uwXOw8w7ErOiBYCee5b32TO6lDPBCsqFVdcUk482Qd9J7p7T5fgAAADiIKIwGAAAAbKtJMOApU079ZlUdtka3f5jSds9JIaDd6lKj43FgbkNVdakkx885/7mj4/PNOc4ivSKrAxYP2vcPVXW1JLcanf+r7j57hjmm3Sv3m6H/wewbU9rmCXUeu9WFHCy6+8tJPjNqvlNVzfN72tsmucjWVzWTbfue6e5O8qej5ttX1VGTYPO4mOaHuvs9i5ofAAAAAAAAANj17pTk0qO2V3X39bfyk+SJozErKzJOB5m7zNnvblPaFprr6O7vJnnHqPnyVXXrRc6zi41zO8lyM4KLyhG9K8m3Rm13rKqLzzkeg21/lvfgM7mXMsB7Ihva3aclOXXUfJOquvoy1gMAAMDOUxgNAAAA2AkvSfKJUdsVkzxk2sXdfXpW7zJ3lSQnLHxlizMO54xDEpvxiMy/u9qZo+PD5xxnYbr720leNmq+dVXt21nvhCndnj/jNG/K6l0H711V15hxnIPRx6e03WSWAarqfEkevJjlHDTeMDq+QpI7zjHO1O/Pbbbd3zMvSHLWiuNDkjw0yV2TXHZ07bMXPDcAAAAAAAAAsLuNN1VLhlzaVr0syTmjthPm3OjuQHfzqrrOLB0mm6Pef9R8bpJ/XNiqfuDVU9pO2oZ5dqNxbidZbkZwITmiyca7bxw1XzTJo+YZj/+xU8/yXnom91IG+PTsn8NLZsyGTjx0C2tYlPE9dkiSJy1jIQAAAOy8g/EXtAAAAMAO6+7vJ/mdKaeeUFVrhQB+d0rb03fxTl9fHB3/eFVdZLOdJyGUJ2xh/q+Pjo/cJbsmjgudHZLkAZPg4ANG5z7c3f8yy+Dd/d9J/nzUfL4kL62qC8200oNMd385yedHzfeYFDvbrEdkvp0ED2bPmdL29Kq6wGYHqKrbJLnz4pa0aePvmYV+9t19RpIXj5pPTPJLo7Yzkrx0kXMDAAAAAAAAALtXVf1Qkv81av5KVhdUmll3fy2rN7q7YpLbbnXsA9T/nfH6x2Z4v1Z6dXeP83SL8JdJvjRqu2VVPW4b5tptxrmdZLm5rUXmFadlRR9bVbecczwGO/Es76Vncs9kgLv7vCQfGjXfsaqO2OwYVXWnJD8xz/wL9oys3jz5vlV1z2UsBgAAgJ2lMBoAAACwU16a5D9GbVdI8rBpF3f3q5J8YNR8RJI3zLqT3T5VddGqekxV3W+e/ht4++j48CS/vZmOVXV0ktckOWwL8390StsdtjDeQnT3u7P6cz8hya2TXHnU/rw5p/n9rN6t7wZJXjVvMKSqjqqqZ1bVj8y5pgPFONR55SS/upmOVXXrJP9n4Sva47r7o0n+adR89STP38xOw1X1w1ldPGynjL9nfqSqrrTgOf5kdHzZJOOQ40u6e7yjJQAAAAAAAACwdz0ow2aJK72su89d0PgvmdJ24oLGPtDcuqqeupkLq+r2SX5ryqn/t9glDbr7O5leROv3quqR845bVberqj+df2U74nNJvjlqW2Y+cGF5xclmqq8YNZ8/Q/5vrsJMVXVYVT20qn5tnv57xLY/y3vsmdxrGeBxNvRCSTZ7P1w3qzdFXopJYb5nTTn1vKq6+zxjVtX5quqeVTXt3gUAAGAXURgNAAAA2BGTHciePOXU46vqwmt0u3eSr43arprkvVX1m5vZvayqDqmq46vqOUn+M0Mhp8vNsPTNekWS80Ztj6mq36mqQ9dZ372TvDs/2L3xjDnnf8+U+Z9RVXeuqvPPOeaijAMSx2T1boTnJPmreQbv7i8leWCSHp26bZIPVtX91vsM9qmqi0zCDq9McmqSRya54DxrOoD8xZS2p1XVL1RVTetQVRec7Oj4hgxBnvFufGzsF7P6fbtPktdMdjieqqrukuRt+cF32He2Z3lretfo+JAkL6+qGy1qgu7+WFYXjht7zqLmAwAAAAAAAAB2t0mG5UFTTk0rZjavv8/qolN3qqpLL3COA8G+PMtvVtVz18rnTTJ5v5rklRkKWK30gu5+2zau8VlJXj1qOyTJM6vqVVV1vc0MUlVXqarHVdVHMuSg5irAtVO6uzPkDFe6TVX9flVdZglLWnRe8ReSfGbUdqkkb66qP6iqTWU+q+qmVfWMJJ9N8mdJrjbHWvaCnXyW98ozudcywC9I8v1R2yOr6slrvZ5JwbATk7wjySUyZHLPmWPuRXtikveN2i6c5O+q6i+qalPPeVX9SFU9JcknkvxNkk3dmwAAACzPhv9BKAAAAMAC/W2GP1BfZ0XbZTMUCXr6+OLuPrWq7pHk9UkusOLURTLsXPaEqnpHkncm+WKSb2T4Y/eRSa6U5AaTnyMX/kpWr/UTVfWSJA8YnXpikhOq6u+SfCTJWRkCA9dIcqfsH7z5dpLHJXn2HPN/saremP13iLtskpOTnFNVn0vyrawuHvbz3f2BWeeb0YuT/F7237X1WqNr/r67vzrvBN39iqp6UpLfGZ26ymT+p1fVKUk+kOQrGd6Li2W4N45JcqMk183Wduw74HT3+6rq1UnuvKL5fBkKTz2iql6VoUjcOUkuneSGGe6xlWG6X41CVTPp7v+oqt9M8ozRqTsmObWq3pBhB8ovZtip8aoZPqMfXXHt6UlenuH93ymvzlCs8hIr2m6a5P1VdWaSL2RKobzuvv6M8zwryfFrnHtHd0/bHRMAAAAAAAAA2JuOzw8Kzuzzye5+76Im6O6zq+rlSX5+RfP5k9wvyR8tap4DwJMybDyaDO/FParq5CTvT/LlDFmraya5e5IrT+l/WpJf284FdndX1f0yFO4ZF7W5S5K7VNWHk5yS5JNJ9mXSjsxQaOu6GTJQ43vqQPC8JLcbtT0+w+a0X8yQ6zl3dP413f2kRS9k0XnF7v5qVd0pw+e6sojXoUkeneSXq+rdGTaV/HySr2fI+h2Z5PJJfixDBvBgK2a4lh17lvfKM7nXMsDd/YWqemZW5wuflOS+VfWKJP8+WfMlM2QT75j974enZdjg+qhZX88idfd3q+quGYrHXWl0+sQMn88Hkrw1Q1HEr2XIwR6ZIet6/QzfD2tuWgsAAMDupDAaAAAAsGO6+7yqenKGAmkrPbaqnt3d35rS581Vdaskf5fVf9C+SJLbTn52g19OcpMMgZGVrpiNixd9L8nPZQgZzOsxSY7N8L6sdIGsvfPh4VuYb1NWBDbuuM5lz1vAPE+tqi9kKKp0wdHpyya55+SH/T0syY2TXGHU/qPZvxDXNH/Q3X9WVQqjzai7/7CqLpXkCaNTF0xy18nPWr6VITT209u0vKkmAaNfS/LCKacvmiHstQgnJ/lcVn/nJ3OExgAAAAAAAACAA9qJU9pesg3zvCT7F0bbN/fBVBjt6RmKx9xjcnyxDEWCxoWCpvl8kp/s7m9s09r+R3efNckUPj9DYaex62V1gaa94BVJ3pzk1lPOXX7yM/ahbVzPQvOK3f2vVXXjJK9M8iNTxjx28sPGdvRZ3kPP5F7LAP9mkttk9fN0tSSP3WAtL5v0v/cG1+2ISaG3m2RY10+MTp8vwwavN93xhQEAALCtDln2AgAAAICDzr5d01a6dJJfWqtDd78vyQ0yhCa+t4W5O8Ouc2/fwhhrD979zQwhgvfM2PULSW7T3a/f4vwfS/JTSU7dyjjbZL3CZ19M8qZFTNLdz0ty8yRv2eJQ303yN0n+c8uL2uW6+0tJbpnZ7ptzkjy6uzcKx7CO7v6NDDtrzhKG+nyS46ft8rgTuvtFGULAZ27jHN9P8mdTTn0lQ8ATAAAAAAAAADgIVNWRSe425dRfbcN0b8vqrNB1quqgKbTS3Z3kvklm3STxnUmO7e5PL35V03X3md39s0kenuT0LQ73nxmyibtad5+X5GeTvHTZa0m2J6/Y3Z/MUNzoDzNsHrkVH0iypUzmgWoZz/JeeCb3Wga4u7+d5Lgk75ulW4bCeveZfOfsGpOs662TPDHJ17Y43L9n9SbfAAAA7DIKowEAAAA7ahK4OGnKqUdX1UXX6fff3f3gJMdk+KP7v2X4A/xGzkzyugzFh67S3cd393tnXvgmdffpGXYje2SSjcIhpyX5rSTX7O63LWj+d2fYre4OSf40yTsyhC7OSrLMkMLfJ/nvNc69aFIIaSG6+0PdfeskN0vyogyFpDbjixl2fn1gkst19727+8uLWtdu1t2fSXLdJL+R4X1YyzkZdtz7se5+xk6sba/r7j9Ocp0kL0xyxjqXfjnJU5Ncp7vfvxNrW0t3/2WSH0ryoCQvTvIvGdb3nQVOM63w2/O6++wFzgEAAAAAAAAA7G73TXLBUdu7u/tTi55okmubVnDtxEXPtZt197nd/fAMxYHekvUzZ/+S5CFJbrWTRdFW6u7nJLnqZB3/mM1tUHhehrX/QZLjkxx9oGShuvsb3X3fDBnBk5K8Nsmnknw9W9t0dt71LDyv2N3f7u5HJTk6w2v8QJLN5Au/m+Ge/Y0MGasbb7VQ1YFsWc/ygf5M7rUMcHd/NcktMhSsW+/fnd9P8oYkt+jux+y2omj7TO7r301yVJJHZXh/ztlE13OTvCvJU5LcpLuvPdkkFgAAgF2sht/ZAgAAABx4qurSSW6Y5NJJLpnk8Ay7BJ6ZoRjWfyQ5rZf4C5CqunqSm0zWeJHJ+j6f5CPd/fFlretgU1XHJLl2hvvkkkkukCEo8s0kn0nyHwdLEbTNqKrrJrlekksluXCG9+njGYKlZy1zbXtZVR2W5JZJrpzkchmCTP+V5CNJPrRbw0bboapemuTeK5o6yTHLCtECAAAAAAAAAByMqupSGTaovFqGfN4ZGTZe/JftKFC3VVV1gQyZwitmyD5dPENBnDMzbOz5iSSf6O5FbgDINquqI5LcOMllMuT/jsiwieOZGYpGfTzJpxe5QeuBoqpOSvLbK9u6u6Zct5Rn+UB/JvdaBnjyem6Y4Vm6aIbP4VNJ3tXdX1vm2uZVVRdOcqMkV8jw/XBkkrMzvLYvZ/h+OLW7N1NADQAAgF1EYTQAAAAAAHaNSdHLzyU5bEXzG7v79ktaEgAAAAAAAAAAwK6z2cJoAAAAAAeaQ5a9AAAAAAAAWOEh2b8oWpI8axkLAQAAAAAAAAAAAAAAAGBnKYwGAAAAAMCuUFUXSfIro+ZTk7x+CcsBAAAAAAAAAAAAAAAAYIcpjAYAAAAAwG7xlCSXGbX9cXeft4zFAAAAAAAAAAAAAAAAALCzFEYDAAAAAGCpquoSVfX0JL8+OnVakucuYUkAAAAAAAAAAAAAAAAALMGhy14AAAAAAAAHl6r6iyQ3mhxeKskVktSUSx/T3efs2MIAAAAAAAAAAAAAAAAAWCqF0QAAAAAA2GnHJLneBte8qLtfvhOLAQAAAAAAAAAAAAAAAGB3OGTZCwAAAAAAgJGXJPn5ZS8CAAAAAAAAAAAAAAAAgJ116LIXAAAAAADAQe87SU5P8u4kz+vuU5a7HAAAAAAAAAAAAAAAAACWobp72WsAAAAAAAAAAAAAAAAAAAAAAAAADnKHLHsBAAAAAAAAAAAAAAAAAAAAAAAAAAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdIcuewGwbFV1RJJjVzR9Lsk5S1oOAAAAAAAAAMBWXCDJlVYcv7W7v7msxQCAjB4AAAAAAAAAsEfI5+0QhdFgCFy9etmLAAAAAAAAAADYBndO8pplLwKAg5qMHgAAAAAAAACwF8nnbZNDlr0AAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgKU7dNkLgF3gcysPTj755BxzzDHLWgsAAAAAAAAAwNxOPfXU3OUud1nZ9Lm1ruX/Z+/Owyyr6nvh//bpmrrpEehmVJtJQKIiyhtoGkRARcwbjfGS+JKHaHzVKDF4fRH1GgbjjUOccm/kxuGiYDSGoIISofFGmVFB0NgJIIJAM3dDz0ONZ71/dHdRw9nn7FN1qs6pU5/P8/RD77X3GvbuemBteq3vBmCaWKMHAAAAAAAAAMx41udNH8FoENE/8uDQQw+No446qlljAQAAAAAAAABopP7alwDAlLJGDwAAAAAAAABoR9bnTZFSswcAAAAAAAAAAAAAAAAAAAAAAAAAIBgNAAAAAAAAAAAAAAAAAAAAAAAAaDrBaAAAAAAAAAAAAAAAAAAAAAAAAEDTCUYDAAAAAAAAAAAAAAAAAAAAAAAAmk4wGgAAAAAAAAAAAAAAAAAAAAAAANB0gtEAAAAAAAAAAAAAAAAAAAAAAACAphOMBgAAAAAAAAAAAAAAAAAAAAAAADSdYDQAAAAAAAAAAAAAAAAAAAAAAACg6QSjAQAAAAAAAAAAAAAAAAAAAAAAAE0nGA0AAAAAAAAAAAAAAAAAAAAAAABoOsFoAAAAAAAAAAAAAAAAAAAAAAAAQNMJRgMAAAAAAAAAAAAAAAAAAAAAAACaTjAaAAAAAAAAAAAAAAAAAAAAAAAA0HSC0QAAAAAAAAAAAAAAAAAAAAAAAICm62j2AGA2SilFuVyOlFKzhwIwTpZlUSqVIsuyZg8FAAAAAAAAAADqZo0e0KqszwMAAAAAAACoTTAaTIOUUvT29saWLVtiy5Yt0d/f3+whAdTU1dUVCxYsiAULFkRPT4+FWAAAAAAAAAAAtCRr9ICZxvo8AAAAAAAAgHyC0WCKbd++PZ544okYGBho9lAA6tLf3x/PPvtsPPvss9HZ2Rn7779/zJs3r9nDAgAAAAAAAACAYdboATOR9XkAAAAAAAAA+UrNHgC0s+3bt8eaNWssuAJmvIGBgVizZk1s37692UMBAAAAAAAAAICIsEYPaA/W5wEAAAAAAACMJhgNpsjuBVcppWYPBaAhUkoWXwEAAAAAAAAA0BKs0QPaifV5AAAAAAAAAM/paPYAoB2llOKJJ54Yt+Cqs7MzFi5cGPPnz4/Ozs7IsqxJIwTIl1KKgYGB2Lp1a2zevHnUF3V3//vtkEMO8e8wAAAAAAAAAACawho9YKayPg8AAAAAAACgNsFoMAV6e3tHLVSIiFiwYEEccMABFioAM0JnZ2fMmzcvli5dGo8//nhs2bJl+NzAwED09fVFT09PE0cIAAAAAAAAAMBsZY0eMJNZnwcAAAAAAABQXanZA4B2NHKBQsTOBQwWXAEzUZZlccABB0RnZ+eo8s2bNzdpRAAAAAAAAAAAzHbW6AHtwPo8AAAAAAAAgMoEo8EUGLvoauHChRZcATNWlmWxcOHCUWVj/z0HAAAAAAAAAADTxRo9oF1YnwcAAAAAAAAwnmA0aLCUUvT3948qmz9/fpNGA9AYY/891t/fHymlJo0GAAAAAAAAAIDZyho9oN1YnwcAAAAAAAAwmmA0aLByuTyurLOzswkjAWicjo6OcWWV/n0HAAAAAAAAAABTyRo9oN1YnwcAAAAAAAAwmmA0aLBKX2jLsqwJIwFonFJp/JTBFykBAAAAAAAAAJhu1ugB7cb6PAAAAAAAAIDRBKMBAAAAAAAAAAAAAAAAAAAAAAAATScYDQAAAAAAAAAAAAAAAAAAAAAAAGg6wWgAAAAAAAAAAAAAAAAAAAAAAABA0wlGAwAAAAAAAAAAAAAAAAAAAAAAAJpOMBoAAAAAAAAAAAAAAAAAAAAAAADQdILRAAAAAAAAAAAAAAAAAAAAAAAAgKbraPYAmB5ZlnVGxAkR8fyI2C8itkbEExHxi5TSww3u66CIODoi9o+I+RHxZEQ8EhG3p5QGGtkXAAAAAAAAAAAAAAAAAAAAAAAA7UEwWpNkWXZwRBwbEa/Y9c9jImLBiEseSSktb0A/SyPioxHxRxGxZ841t0fE51JK35lkX2+OiPdHxPE5l6zPsuyKiLgwpfTMZPoCAAAAAAAAAAAAAAAAAAAAAACgvQhGm0ZZlp0cER+OnWFoFUPKGtzf6yLisohYVuPSFRGxIsuyb0bEu1JK2+rsZ35EfCUi/rjGpXtGxLsj4k1Zlv1pSun6evoBAAAAAAAAAAAAAAAAAAAAAACgfZWaPYBZ5uiIeE1MTyjayRFxdYwORUsRcVdEXBkR/ycinhlT7ayI+FaWZYV/LrIsmxMRV8T4ULR1EfHDXX3dvavv3faJiO9lWbayaD/QzpYvXx5Zlg3/uvHGG5s9JAAAAAAAAAAAAJjxrM8DAAAAAAAAgJlHMFpr6IuIBxvVWJZlB0bEdyOia0TxbRFxVErpFSmlM1NKr4mIAyPi3IgYGHHd/x0R/72O7j4ZEWeMOB6IiPdGxIEppdfu6uvlEfE7EfGTEdd1R8TVWZbtV0dfAAAAAAAAAAAAAAAAAAAAAAAAtCnBaNNvICJ+GRH/OyLeFREvj4gFEfH/NrCPj0bEkhHHt0fEaSmle0delFLqSyn9z4g4c0z992dZ9oJanWRZdnDsDFYb6b+klL6QUuof09c9EXFqjA5H2ysiLqrVDwAAAAAAAAAAAAAAAAAAAAAAAO1PMNr0ujwiFqaUXpZSekdK6csppbtTSgON6iDLssMi4k9HFPVHxFtTSr15dVJKV+8a227dUSyw7KKI6BxxfFlK6XtV+tkREW/dNabd3r4rYA0AAAAAAAAAAAAAAAAAAAAAAIBZTDDaNEopbagWUNYg/09EzBlx/N2U0m8K1PvUmOMzsyzrybs4y7K5EfHmGm2Mk1K6PyKuHlHUETvHDAAAAAAAAAAAAAAAAAAAAAAAwCwmGK39/MGY468VqZRSujcifjaiaI+IeE2VKq+NiHkjjn+SUrqv0AjHj+lNBesBAAAAAAAAAAAAAAAAAAAAAADQpgSjtZEsy/aNiJeOKBqMiNvqaOLGMcevq3Lt6TXqVnNL7Bzbbi/LsmyfOuoDAAAAAAAAAAAAAAAAAAAAAADQZjqaPQAa6nfGHP8qpbStjvq3jzk+qo6+flK0k5TStizLVkfEy8b09XTRNoD6pZTi7rvvjvvuuy/Wrl0bfX19sXTp0jjggANi5cqVMX/+/GYPccIeffTRuPPOO+Oxxx6LHTt2xN577x0vfvGL4xWveEWUSpPLAF27dm3ccsst8cQTT8SOHTti//33j4MPPjiOO+64SbddyT333BOrV6+OdevWxebNm2PPPfeM/fbbL1auXBl77bVXw/sDAAAAAAAAAABgcqzPmxjr8wAAAAAAAACoRDBae3nRmOMH6qz/YI32RjqyAX2NDEZ7UUT8uM42gAKeeeaZ+PjHPx7f+MY3Yt26dRWv6erqilNOOSUuvvji+N3f/d1C7b71rW+Nyy+/fPj4oYceiuXLlxeqe+ONN8arXvWq4eOLLrooLr744tzrsywb/v0rX/nKuPHGGyMi4vbbb4+LLroofvzjH0e5XB5Xb5999omPfOQjcc4559S9SOoXv/hFfOADH4gbbrihYtsHHnhgvOtd74oPfehD0dHRERdffHF89KMfHT5/ww03xMknn1yor2effTY+/elPxze+8Y14/PHHK15TKpVixYoVcdFFF8Vpp51W170AAAAAAAAAAADQeNbnWZ8HAAAAAAAAQOMJRmsvh445XlNn/UfGHO+VZdmSlNKGkYVZlu0ZEXtOsq+x1x9WZ32ggKuvvjrOPvvs2LJlS9Xr+vv7Y9WqVbFq1ap45zvfGZdcckl0dLT2fyI+/vGPx4UXXhhDQ0O51zz99NPxl3/5l3HDDTfEP//zP0dXV1ehtj/3uc/F+eefX7Xtxx57LC644IK47rrr4rvf/W7d49/t61//erz3ve+NzZs3V72uXv0wVQAAIABJREFUXC7HrbfeGq9+9avjT/7kT+LSSy8tfD8AAEB72zG0PR7q/XX0l/vqqrd3576xf/fzo5RV36gylIbi0d4HY+Pg+skMs210lbrjoJ4Xxtw5ezS87a1Dm+ORHb+JgTQw7lx3qScOmnt49JTmNrzfRhkoD8Qjvb+JJZ17xV6d+zR7OAAAM8LWoc3xVN+jsW/382L+nIXNHk5LWj+wLh7reyjKafxG+QVzFsUL5h4aHVlnw/vdNLghnu5/PJ7fc8ik5uG95R3x8I77o7e8o4Gjmzr7dB0Q+3YdOCoYoZKd8//7Y+tQ9b+HnDdnfrxw3u80cogAANAyrM+zPg8AAAAAAICJGxxKcfeaiMXzIg5bFjXXrQGzS2v/rTr1WjzmeG09lVNKW7Ms642InhHFiyJiw5hLx/azPaW0rZ6+KoxtUZ31gRq++tWvxjve8Y5xX1M85JBD4kUvelHMmzcv1qxZE3fccceoBUZf/vKXY82aNXHNNde07OKrz3zmM/GRj3xk+Pjwww+Pww8/PPbYY4948skn46c//Wn09vYOn7/qqqviggsuiE996lM12/7sZz8b55133rjyF73oRXHYYYdFd3d3rFmzJu68884YGhqK22+/Pc4888w46aST6r6PCy+8MD72sY+NKsuyLA4//PA47LDDYsGCBbFhw4b4+c9/Puprot/4xjfiySefjFWrVrXsnxEAADA9btpwbVy59n9HOcYHBBSxf9fz4y+ed3Es7hibgb/Tk32Pxt8/dnFsHHx2EqNsP6UoxZnL3hEnLXldQ9pLKcV1z/5L/ODZf44UqUq/c+Ksfd8Txy86tSH9NtL921fHFx//RPSWt0dExEvm/1/x9v3Oi86STUMAAHmufeaKWLX+yhhMg5FFFm9e9vZ41ZLfa/awWsZQGoyvPfn5uHvLbVWv26O0IN5z4F/FQXMPb0i/5VSOK9Z+OW7ZuCoiIuZER5y931/GsQvr/7ugn226Mb7x1BdiKAYbMrbp8oKew+KcAy/IDev79fbV8aXHP14o7G15z2Fx/gs+3eghAgBA01mfZ30eAAAAAAAAE/cfj6d47d+V48lNO49XHhpxzV+UYtE84WjATv62tr3MH3M8kU9O74jRwWgLprCfkSr1U7csy5ZFxNI6qx3SiL4bJQ0ORqx7rNnDaH9LD4ysjRes/PKXv4x3v/vdoxZdHX300XHJJZfEihUrRl27bt26uOCCC+JLX/rScNmqVaviwgsvjI9//OPTNuaiVq9eHbfccktERLzxjW+MT3ziE3HEEUeMumbDhg3x/ve/Py677LLhss9+9rPx7ne/O5YvX57b9l133RUf+tCHRpWdfPLJ8YUvfCGOOuqoUeXr1q2LCy+8ML74xS/GzTffHPfcc09d93H55ZePWnRVKpXinHPOifPOOy+e//znj7o2pRTf+9734txzz401a9ZERMSPfvSjuOCCC+ITn/hEXf0CAADtY03vA3HF2i9Pqo0n+tfEPz75P+O9z7t43LmUUnzp8U8IRaugHOX457VfioPmHh7P6zl40u3ds/0X8a/PfqtAv0Pxj0/9fSzveWHs1/28SffbKP3lvviHx/4m+tJzm6B+tfWOuO7ZK+P3l57VxJEBALSu1VvvHDUHTJHiyrX/O5b3HNawgK+Z7ofrv1szFC0iYlt5S/yvx/97fPKQr8WcbPJ///eTTT8aDkWLiBiKwbjsyc/HQT2Hx95d+xRuZ23/E3H5U3836fE0wyO9v4krnv5yvH3/8WEFfeXe+OKY+T8AwExifd40auM1etbnWZ8HAAAAAADAxKWU4vf+/rlQtIiIWx+IOPeKFJe9TTAasFN7rjiYvcYGlk1kJfKOiFhSpc1G9lOtzYl6T0Rc1KC2mmPdY5HOtNlhqmX/8uuI/ZY3exhT5u1vf3v09/cPH69cuTKuv/76mDdv3rhrly5dGl/84hfj0EMPjQ984APD5Z/61KfiLW95S7z4xS+eljEXtX79+oiIOP/883O/MLlkyZL42te+Fhs2bIjvfe97ERExNDQUl1566bgvQI50zjnnxODg4PDxm970prjiiisqfvVx6dKl8Q//8A9x8MEHx/nnnx/PPPNM4Xt45JFH4t3vfvfwcXd3d1x99dVx+umnV7w+y7J44xvfGCtWrIgTTjghHnjggYiI+PSnPx3vfOc746CDDircNwAA0D7+Y+tdDWnn19tXR295R/SU5o4qXzvwRKwdeKIhfbSrX229oyHBaL/ackdd16/eemdLBaP9evvqiqEIv9r6M8FoAAA5rnv2yorlv9z6U8Fou9TzzrNtaEs8uOO+eOG835l0v6u33TmuLEWK1dvujFd1/V7xdraOb2cm+Y+tP4+hNBRzsjmjyu/Pmf8DAMwY1udNm3Zeo2d9nvV5AAAAAAAATNydD0esWT++/Os/SXHZ26Z9OECLKjV7AEyp1GZ1gAJuuOGGuPvuu4ePFy5cGFdccUXFRVcjnXfeefF7v/fcZo5yuRyf//znp2yck7Fy5cpCX2L8m7/5m1HHP/7xj3OvvfPOO+NnP/vZ8PF+++0XX/3qVysuuhrpAx/4QLzmNa+pOZaRPv3pT8eOHc/lQ37+85/PXXQ10rJly+Kf/umfho+HhoZa9s8IAACYepsGNzSknXIMxdbBzePKNw4825D229mmwQp/CzMBGwfre9abhhrTb6Nsyhl/o35GAQDazZreB+Lh3vsrnts40FpzvWbaMrSxrusbNj/PeReqd35b7zy/1fSl3ugrj/3eWcTGBj1nAACYqazPe471eQAwC6QUUR5o9igAAAAAaDM/WC1yBqhNMFp72TrmeO4E2hhbZ2yb09kPMAGXX375qONzzjkn9t9//0J1P/nJT446/ta3vhV9fX0NG1ujfOQjH4lSqfZ/wo466qhYvnz58PEvf/nL3Gu/9a1vjTr+i7/4i1i0aFGh8VxwwQWFrouI2LZtW3z1q18dPj744IPjXe96V+H6xx57bJx44onDx9///vcL1wUAANrLYGrcwtO+NH6ze2+FDfCM1qhn1Jd6m9Jvo/SVK4+/0s8VAAARN228LvecOdRz6l32lDcvrVfe/LxSSFg1rTZvn4hK91DvcwAAgHZjfd5zrM8DgDZ33/+I+P5BEf+yIOLHr43Y/lizRwQAAAAAwCxS/TNbzDSC0SL+V0RcWWedQyLiew3qH5ru1ltvHXX8J3/yJ4XrHnXUUXHMMccMf9Gyt7c37rrrrlixYkVDxzgZc+fOjVNOOaXw9UceeWQ8/PDDERGxffv22Lp1a8yfP3/cdbfffvuo4zPPPLNwHytXroz9998/nnjiiZrX3nrrraO+RvnmN7+50CKykV71qlfFLbfcEhERjzzySKxZsyae//zn19UGAAAw8+UFo82JjugqdY0rTxHRW95esU5vhQCBamFdc0vzig2yTQyk/hhMg+PKGxa8UGc7jeq3UfLGM5gGYzANREfWOc0jAgBoXduGtsTPN9+Se77V5nrNVV80WqMCu/ICzRoVjJb3ztYsKVKVex7/85h3bSlK0V3qGVdeqQwAAGYy6/NGsz4PANrUg1+LuPt9zx0/9cOIf3tVxO/dG1GyFQ0AAAAAgKnn/0a3l01jjpfWUznLsvkxPrBsY4F+5mVZtkdKaVsd3S0r0E/dUkprI2JtPXWyLGtE19ASNmzYEA8++ODw8eLFi+PII4+sq40VK1YML7yKiLjzzjtbauHVIYccEl1dxTeLLFmyZNTxpk2bKi68+vd///fh3y9evDgOPfTQusb1ile8otDXIccujNt///2HF4YVNfb+f/vb31p4BQAAs1CloK6IiBWLT4u37PPn48pTSvHe+/8wylEed67SBv+8ze5LO/eLjx78D3WOdmb7/rpvxqr147P4855RvfICFjqyjikNZGuUas+hr9wbHXMEowEA7PaTTT+KgdSfe75R4V7tIKV6g9GmNri43vbzgqlPXnJG/OGyP6t7XFOlt7wj3v+bt1Q8V+nnMe85HLnH0XHOgRc2dGwAANBqrM8bz/o8AGhTD39zfNnWByKevTNi6fHTPx4AAAAAAGYdwWjt5Tdjjl9QZ/2x169PKW0Ye1FK6dksyzZExMjVDM+PiHsn0dfYsQMTsG7dulHHhx12WN3hf0ccccSo47Vr68oanHJjF1LV0tk5evP1wMDAuGu2bdsWvb3PbeKYyCKmonUeffTRUcfve9/74n3ve1/O1cWsX79+UvUBAICZaTCNf7+JiOjMKodQZVkW3aW5saM8Ptu+ns3uPaWxufrtL++e+1JjghfygsUWzlkS6wfXjStvtbCMagERfeXe2GPOgmkcDQBA6yqnctyycVXVa1otBHcmaURwcUqpgcFolcfT3WLvVF1Zd2SRRYrxQXSV7jnvfaTV7gsAAKaC9XnjWZ8HAG3q6R9VLl99ccQp10/rUAAAAAAAmJ0Eo7WXscFk9X1OLeLgMcf31Ohr5CfqDq3Qfz191VO3vS09MLJ/+XWzR9H+lh7Y7BFMiQ0bRmcZLlq0qO42xtZptUU9pVKp4W1u3Lhx1PGCBfVv2F64cGGh65599tm6265ly5YtDW8TAABofXnBaHOy/P/l113qyQlGq2eze0/BEbaPvHtuVEBZXsDCoo49c4LRWissoy/lP4dWGysAQDPdu+0XsW7gqarXmD89p1JQVzWNeHYDqT9SlCueqzd4Le/6uaV5dY9rKpWyUnRl3RWDnyvdQ95zno3vigDADGV93vRpwzV61udNjPV5ANBG0mCzRwAAAAAAwCwhGK29/MeY45dkWTYvpbS9YP0TarQ39tzIYLTjI+KaIp1kWbZHRLykjr5mlayjI2K/5c0eBjNUSqM3iNT7NcpKGtFGq+vu7h513N/fX3cbRetMpO1axv65AwAAs0NeMFpH1plbp7s0t2J5fcFoldtoZ/U8t3qllHLbWdixpGJ5vYEMU63ac2i1sQIANNNNG6+reY1gtOfkBaOVohTlCuFl1QJ7i6oWflwpOKyavLlwK75TdZfmRt9QhffCCvec9xy6s9a7LwCASqzPYzKsz5sY6/MAAAAAAAAAqJdgtDaSUnoyy7JfxXOhYx0RsTIifliwiZPHHFdbmb8qIt5ZpW41J8bon71fpJSerqM+kGPPPfccdbxp06a62xhbZ8mSypuwJ2NoaKjhbU7G2Hsc+2XPIop+uXPvvfcedXz77bfH8ccfX3d/AAAAgzlf4a0WjNaTswG/0ob9/E38PQVG117y7rkRoV+DaTDKUfk9eWHH4orlrRaWUW081YIlAABmk2f6n47/3HZXzesaEe7V7rpLc2NHedu48kbMkxs5t+0tV/5+WU9pXl3tTIee0tzYPDT+78fqeVfMe98EAIB2Yn3exFifBwAAAAAAQFEppVnxcSGgtlKzB0DDXTXm+G1FKmVZdkRE/O6Iom1RPVDt+ogYueL5+F1tFPHWMcdjxwxM0NKlS0cd33///XW38etf/3rU8bJlyype19ExOltzcLDyhvxKJrKwaSrNmTMnDjjggOHj3/72t7F9e+XNKnlWr15d6Lp99tln1PFE/owAAAAiIgbTQMXyasFoeQFflTb/5wUCzMbN7nn33FfujZTSpNquFnyxaE7lzVCtFjZWLSCu1ULcAACa5eaN10WK2nPHwTSYO9efbfKeVz2Bz/Wq1kZvnXPbvHl7TwuGTTfiXXE2hmgDADD7WJ83MdbnAQAAAAAAAFAvwWjt55sRMfJTb2/KsuywAvU+OOb4X1JKuSu7U0rbI+LbNdoYJ8uyF0bEH4woGoyIfyowPqCAJUuWxCGHHDJ8vHHjxrj33nvrauP2228fdXzsscdWvG7hwoWjjjdu3Fi4j//8z/+sa0zT4bjjjhv+fblcjptuuqlw3fXr18e///u/F7p2xYoVo45/+MNqGZQAAAD5BlPlDTAdWUfF8oj6AgTyAgFm42b3vHtOUY6B1D+ptquFnC3q2LNyndQb5VSeVL+NVC38rBHhFAAAM11/uS9+sulHha8XLrtLTghxteDiyarWRj0BxQPlgdx3tp7SvLrHNdXyg9HG33Pec5iN74oAAMw+1udNnPV5AAAAAAAAANRDMFqbSSn9JiIuH1HUFRGXZVmWuwo5y7I3RMRbRxT1R8RHC3R3cUSM/Fz5W7Ms+/0q/fRExNd2jWm3S1NKDxboCyho5cqVo46/+c1vFq577733xl133TV83NPTEy9/+csrXjv2S5X33HNP4X6uvfbawtdOl9NOO23U8Ve+8pXCdS+//PLo7y+2Ef7UU0+NOXPmDB9///vfj7Vr1xbuCwAAYLeh3GC0ztw63Tn/i6gvVdrsXjkQIC+EoJ1Vu+fJBn9VC15Y2LE491x/6ptUv41ULSCiL//bCwAAs8bdW26LbeUtha8XjLZT5Vi0/GCxhgSjVZm/DqT+KKeh3POjx5I/R27Fd6ru3LC54iHarXhfAAAwFazPmxjr8wAAAAAAAACoh2C0aZZl2YFZli0f+ysi9h1zaUel63b92rtGNxdFxIYRxysi4t+yLDtizFi6syx7b0RcOab+Z1NKj9S6l5TSbyPif4wp/naWZX+RZdnI8LPIsuzIiPjRrrHs9mwUC2AD6nD22WePOv7CF74QTz31VKG6H/7wh0cd//Ef/3F0d3dXvPaYY44ZdXzNNdcU6uP666+PO+64o9C10+mss86KBQsWDB9fddVVcf3119es9/jjj8df//VfF+5nyZIlcdZZZw0fb926Nc4777z6BgsAABARg2mgYnlH1pFbp7uUE4xWIUAgbyN/dzb7NrvnPbeI6oEHRVQLb1jUsWTK+m2kauERQj0AACJu2nhdXdebQ+2UolyxPP+9ZvJz5FrBx0X/bKq1kxfs1kz1vStWfgbV3psAAKCdWJ83MdbnAQAAAAAAAFAPwWjT79aIeKjCr2+Nue6AnOseiojPVOsgpfRYRLwpIkZ+Hu2EiLgny7I7syy7IsuyVRHxaET8z4joHHHdv0bEBXXcz4ciYuRK/s6I+PuIeDTLsuuyLPuXLMt+HhH/GaND0foj4g9SSk/W0RdQwCmnnBJHH3308PGmTZviLW95S+zYUX0jx+c///n43ve+N3ycZVn81//6X3OvP/7442PevOc2blx11VXx85//vGofv/nNb+JP//RPa91CUyxYsCDOPffcUWVnnnlm3HDDDbl1Hn744Xj1q18dGzdurKuviy++eNSCtn/8x3+MD37wgzE0NFRXO/fcc0/cfPPNddUBAADaR34wWmfF8oiI7lLlULNKAQJ5YVezcbN73nOLqB2cUEteqEAWWcyfs6jues1QbSytFOAGANAMD+/4TTzS+5u66kx2jtkuUk55T+57zeTnyLXmr8WD0bbnnssbfzMVDUZLKeWHaLfgfQEAwFSwPm9irM8DAAAAAAAAoB6C0dpUSunGiPiDiFg3ojiLiFdExJkR8dqIWDqm2rci4o9TSoX/5n/XtWdGxBVjTi2LiNMj4r9ExMt39b3b2oh4Q0rplqL9wGzy1FNPxcMPPzyhX7tdeuml0dXVNXx84403xoknnhg/+9nPxvX3zDPPxDnnnBPvf//7R5Wff/758ZKXvCR3nAsWLIg/+qM/Gj4eGhqK17/+9fHDH/5w3LX9/f3xla98JY477rh4+umnY8mSJfU8kmlzwQUXxItf/OLh482bN8epp54aZ555Znz729+OX/3qV3HffffFD3/4w3jf+94XRx11VNx7773R09MTb3jDGwr3c9BBB8WXv/zlUWV/+7d/GytXroxrrrkmBgcHc+s+/PDDcckll8Qpp5wSRx11VPz4xz+u/0YBAIC2MJAbjNaRW6foZveI/DCG2bjZvTvLv+fJhi/kP+eeqoEJrRKWMZQGc0P6IgSjAQDcvPHauuuYQ+1WORqtpzSvYnlfmvxzqzXPzguQrqedVnynynv3GHsfg2kgylGueG0r3hcAAFRifV7zWJ8HAAAAAAAAQFH5uySZ8VJK12ZZ9jsR8dGI+KOIyFvp8NOI+ExK6TsT7GdrRPxxlmXfjoj/LyKOy7l0fewMULsopbQu5xqY9d7ylrdMuG5KOzeIHHPMMfGFL3wh/vzP/zzK5Z2bE+6666447rjj4tBDD42jjjoqenp64tFHH4077rhj3EKfV7/61fGxj32sZn8f+9jH4qqrrhr+IuPatWvjta99bRx66KHxkpe8JLq7u+Ppp5+On/3sZ7Ft27aIiNh3333jU5/6VEt+mbKrqyt+8IMfxCmnnBIPPPBAROx8pldeeWVceeWVFetkWRaXXHJJrFmzZtwXPas5++yz46mnnooPf/jDw39GP/3pT+P3f//3Y968efGyl70s9tlnn5g7d25s2bIlnnnmmbjnnnvq/volAADQvoZS5U0bHVlnbp2im90j8gO/qoV1tavOUmfMiY4YivHPfLKhFXn1u0tzc4PsdtabXCBbo9QaR6uMEwCgGbYObo6fb7m14rkj5r00Htrx64pBW+ZQO6U6g9EGd4X2VnsnqqX2/LbY/L+3vL1ieUfWEZ2liY9vquSFQY/9+az2fLqz/PcXAABoJdbnNY/1eQAAAAAAAAAUJRhtmqWUlk9zf2sj4t1Zlp0bESdExAsiYt+I2BYRj0fEL1JKDzWor29HxLezLDsoIo6JiP0jYo+IeCoiHomI21JK/Y3oC6jtHe94RyxZsiTe9ra3xdatW4fLH3jggeFFRZX82Z/9WXzxi1+Mzs7amzIOOOCA+M53vhNvfOMbY8uWLTX7OOigg+IHP/hBPP3003XezfR53vOeF7fccku85z3viauuuqrqtXvttVdcfvnl8frXvz4++MEPjjq3YMGCmn3t/urn2972tnjqqaeGy7dv3x633XZbofG26tc9AQCAqTeYBiqWVwsB6M4JNRu7uT2llLvhvVpYVzvrKc2NbeUt48orBVnUI/c5Zz0xJ+uIjqyz4p91pTC7Zqg1DqEeAMBsdvumf8udt5+0+HXxRN+a6BuqEIw2yTlm26ici1Y1rLmv3Bsdc6YuGK3oPLw3932qNYOm857p2OdR7f5nY4g2AACzm/V5E2N9HgAAAAAAANWkFFHjGznALFFq9gCYHiml/pTSDSmly1JKn0wp/X1K6buNCkUb09dDKaXv7Orjk7v6vEEoGky/N7/5zfHggw/GueeeG3vvvXfudZ2dnfGa17wmbrvttrj00ksLLbra7ZRTTok77rgj3vCGN+R+hXHp0qXxgQ98IH75y1/GkUceWfd9TLd99903vvvd7w4vwHrRi14Uixcvjp6enjj44IPjtNNOiy996Uvx4IMPxutf//qIiHFfily0aFGhvk4//fR46KGH4pJLLomjjz665pcsOzs7Y8WKFXHxxRfH/fffH+eee+7EbhIAAJjRymkoylGueK56MFrlULOxm90HUn+knPZn62b3vGc32YCyvNCL3f0VDSholkYFRwAAtJtyGopbNq2qeG5Jx97x4vnHFp6fz1YpJxmtVjDaZPQ1KPi3t7y9YnlPaV7dY5oORd93+lL+85mtIdoAAMxu1udNjPV5AAAAAAAAANTS0ewBAMx2Dz/88JS2v2zZsvi7v/u7+NznPhd33XVX3HfffbFu3bro6+uLvffeOw488MBYuXJloS8o5jniiCPi6quvjmeeeSZuuummeOyxx2L79u2xzz77xEEHHRQnnnhidHQ895+ck08+OVKqvJmlknquHeuyyy6Lyy67bEJ1V65cGStXrix07T333DP8+yzLYtmyZYX76enpife85z3xnve8J9avXx8//elP48knn4z169fHwMBAzJ8/P5YtWxYvfOEL44gjjoh581pz0wwAADB9BtNg7rmOLP9/+eWHbI3e3F4tzGq2bnbvnqKAsrz6u/vrLvXE1qHNFeq1RuBYrfvPC34DAGh3/7nt7nh2YG3FcysXvzbmZHOmLHy3XTQnGK3G/LZg+3nz9VYNms4P6RsTjFbl/mfruyIAAK3P+rzarM+zPg8AAAAAAACg1QhGA5glSqVSHHvssXHsscdOWR977713/OEf/uGUtd+qtm3bFnfffffw8Qtf+MIJL2Tbc88944wzzmjU0AAAgDY1mAZyz3VknbnnurOcze6pN8qpHKWstPO4ajBaa27kn2pTFVqR96x399edFQuza5Za45hsMAUAwEx108brKpbPiY44YdGrI6J4cPHsVXljfrV3kknPz1P1+kXb31HeXrG8dYPRigVB591/KUrRmXU1fFwAADCTWJ83dazPAwAAAAAAAJh9Ss0eAADMdJdffnls3/7cBpfjjz++iaMBAABmg8E0mHuuajBalU34/alv+PfVNvvnBYS1u/zQiskFf+U969395T3vvtQagWO1xjHZYAoAgJloXf+Tcc+2uyueO2bBiljYsTgiqsz1hMtGRF4s2s7nlkVW8dxkQ+V6azz7on82eeNo3WC0vJ/FHZFSGnFc+f67Sz2RZZX/TAAAACbL+jwAAAAAAACA2UcwGgBMwmOPPRYXXHDBqLKzzz67SaMBAABmi8E0kHtuTtaRe65aqNnIjfvVNvu36kb+qVYtKGAyqgULVOu3VQLHat3/ZJ8PAMBMdPPGVbnnTlpyxvDvBaPVUjkaLYtsyp5do+a3+QHI8+oe03TIC9EuR3nU+2f++8vsfE8EAACmnvV5AAAAAAAAALOTYDQAGOE73/lO/Lf/9t9i3bp1Na/9xS9+ESeddFKsX79+uOylL31pvOpVr5rKIQIAAFQNRuuYcDBa74jfV97EPyc6oiPrLDDC9pO30X+qg9HyguhaJSyj1jhaZZwAANOlv9wXP9n0o4rnDuw+KA7uOXz4uDtr7bles6WUE4yWZdGdTU2AcK1nX7T9/GC01gwQ65nku6JgNAAAoCjr8wAAAAAAAAAoIn+XJADMQlu2bIlPfOIT8ZnPfCZOP/30OPXUU+OlL31pLFu2LDolexdaAAAgAElEQVQ6OmL9+vWxevXq+Nd//de45pprRm3K6erqissvv7yJowcAAGaLwTSYe66zSnBZtU34Izfu96XKYQCtuol/OuSFyk06eCHnWe8OycgLGJhsv41Saxx95d5IKUWWZdM0IgCA5vr5lltie3lrxXOvXHzGqHlRbvhuao25XivrLs2NGNowrjxvfl1UreDjou3PtGC0vJC+iJ33Mj8WRkTtYGcAAIBarM8DAAAAAACgmsqfVAVmI8FoAFDBwMBAXHPNNXHNNdcUun7u3Lnx9a9/PV760pdO8cgAAAAiBtNA7rmOKsFoecELEaM3uOdt4p/Nm93zAgzyggGKqvWsp6rfRqk1jnIMxWAaiM6sa5pGBADQPCmluGnDtRXPzS3Ni2MXnjSqLG9+XSuca7YoR7lieRZZlWc32WC06vWLtt9b3l6xvNo7WTNVe9cbGdSX+/6Szd53RQAAYGKszwMAAAAAAACgmlKzBwAArWTx4sUxZ86cuuqccMIJcfPNN8eb3/zmKRoVAADAaNWC0eZk+d9CmJPNyQ2oGrnBPW+zf6tu4p8OeRv984IBisp71rsD0Vo9LKNIMESrhLgBAEy1h3vvj0f7flvx3PGLTo2uUveosqkK92p/We67yWTnybWD0Yq1n3fd3NK8usc0HfICmSNGP5ORIWlF6wMAAIxkfR4AAAAAAAAAReTvkgSAWeiNb3xjPP3007Fq1aq47bbbYvXq1fHII4/E+vXro7e3N+bOnRt77rlnvOAFL4gTTzwxzjjjjDjhhBOaPWwAAGCWqRaM1pF1Vq3bXeqJgaH+ceUjN7vnhX3lBTfMBnkb/ScbWpEXmLD7WecHPrRGWEahYLS0I+bHwmkYDQBAc9208drccyctft24MsFo1aVIFctLkU1JgHA5laMv1QpGK/ZnsyN3nt+aAWIdWWeUohTlKI87VyxEe/a+KwIAAPWxPg8AAAAAAACAIgSjAcAYe+21V5x11llx1llnNXsoAAAAFQ2mwYrlpZgTpaxUtW53qSe2Dm0eV95XYLN7XjjYbJAbUJYmHrwQUTtYYCoCHxqpyP3nBe0BALSTLYMb4+4tt1U8d+S8o2NZ1/7jyvPm1+ZPu1UORousWjDaxEPl+lNfzWuKtp83X2/Vd6ps1zPdUd4+7pwQbQAAoNGszwMAAAAAAACgluq7JAEAAACAljOYBiqWd2adNet2ZzkBX6OC0Wx2Hys3GG0SwQsppSrBaDv7684qP/NWCcsoMo7JPCMAgJnitk3/lhtg/MolZ1Qsn4o5ZjtJeblokU1JqFyR8OGi7fdWCBiLaN1gtIhqP49CtAEAAAAAAAAAAACYXoLRAAAAAGCGyQtcmJN11KybF27Wl57b4J4fjDZ7N7vnPbfJBC8MpoEox1BOfzufdV7AwMg/r2YqEtoh2AMAaHflNBS3bry+4rk9O5bG7+zx8orncufm5k8REZEiJxktpubZFQv9rX3NQHkg952tlQPEigT11Qp2BgAAAAAAAAAAAIBGEIwGAAAAADPMYBqoWN6Rddasm7cRf2QIQF4gQF74wGyQ99wG00AM5YQe1FIttKE72/ms8wMfJh7I1khFgicmEx4HADAT/Me2u2L94LqK505cfHqUsjkVz+2e8401FIO5c/7ZpXIwWhZZdGeNDxAuFPpboP1qc/We0ry6xjSdioTN5Ydoz953RQAAAAAAAAAAAAAaTzAaAAAAAMwweUFcHVlHzbrFNrtX3uyfFw42G1Tb6F8kQKFivVQtMKFn1z/zAtlaIyyjUHjEBJ8PAMBMcdOGayuWd2QdsWLRabn1pmKO2U4qx6LtDEYrEvhcr2Jz29rtVxtDK79TFXmmec+ou4XvCwAAAAAAAAAAgJkj5S0eBGYdwWgAAAAAMMMM5ARidWSdNevmbVgfucE9byN/d5Yf3NDuqgUYTDR8oVrwwu6QjGoBA/3lvgn120hFgiGKXAMAMFM93f943Lv9lxXPHbNgZSzoWJRbdyrmmO0lf3VTkcDnehV55kUCinvL23PP9ZTm1T2u6ZL3vjcy0Nm7IgAAAAAAAAAAAADTQTAaAAAAAMwweRvxO7KOmnXzwhdGbnDPCxOoFtzQ7vKCFyImHr5QPRhtbs1+WyEso8i9TyacAgCg1d2ycVXuuVcuPqNq3WohuOZQESknGC2LrEow2sTnyEWfea2A4mrz9Gp/5s2W97438rnkPd/Z/K4IAAAAAAAAAAAAQOMJRgMAAACAGWYoDVYs78g6a9YtEiDQlypvdm/lTfxTrXpoxcTCF/ICE7IoRWfWVaDf5odl5P2s1HsNAMBM1FfujZ9s+lHFc8/rPjiW9xxWtf5UhO/OClmWO0+eXDBasbq1Aop7y9srlndkHdFZqv3O1ix5P4+777ecytGfKofCVftZBgAAAAAAAAAAAIB6CUYDAAAAgBlmMA1ULC8WjJYXINBb8fdF6s4GXVl37rlawQh58p9zT2RZNvz7RvfbKINpIAZzQvpGEuoBALSrOzffHDtyQrBeueSM4Tldns6sK7KofM1kAr7aQUop91wW1QKfe6vWraboM681v+2doe9T1Z5pRER/6osUlZ9tq98bAAAAAAAAAAAAADOLYDQAAAAAmGFyg9FKRYLR8ja7PxcCkBe4VS2kq92VslJ0Z5Xvf+LBaLWfc1fW3bJhGf3lvkLXCUYDANpRSilu3nhtxXPzSvPjFQtOrNlGKSvlBvA2OwS32fICuHbKcoO4ylHOfV+qpS8Vm7fWmofnne8pzat7TNOpVoh2tXl9j2A0AAAAAAAAAAAAABpIMBoAAAAAzDAD5ZxgtOioWTcv3Gt3CMBQGswNEpjtm91rBQXUK6/eyD+jVg7LKNp/s8cJADAVfrvjvnis7+GK545fdGp0lSrP4cbKm2PP9nDZasFopciip0po88SDi4s981rt95a3Vyxv9fep/PedHbv+mf98ZnOINgAAAAAAAAAAAACNJxgNAAAAAGaYoRisWN5R6qxZN28zfq/N7jXlh1ZMMHgh5QSjjXnOrRqWUbT/Zo8TAGAq3LzxuorlWWRx0uLTC7eTG0aVM1ecPfKD0SKy6M7yQ8YmOv8sGqhWq/28dlo/GC0nRHvX/VZ775nt74oAAAAAAAAAAAA0Rqq2fBCYVQSjAQAAAMAMM1jOCUbLOmrWrbXZvVoYQKtv5J9quc9ugqEVRQMTWjUso2gg3ESD4wAAWtXmwY1x95bbK5570R4vi6Vd+xVuq9b8fLZKVYLRssiqBnH1pQkGFxcN/q0xD+8tb69Y3urvU7WCoAWjAQAAAAAAAAAAADBdBKMBAAAAwAwzmAYqlndknTXr5m12H0wDMZQGq4YBzPbN7nkBZdXC5KrJe9Zj+8kPy2hu4Fjh4IhZHuoBALSf2zb9nxiKymHFJy0+o662WnWu12xVv/iYZVVDxnonOP8sOq+vdV3e+bz3iVbRnVX+WewdDkar/Fw7so5C76IAAAAAAAAAAAAAUJRgNAAAAACYYfKC0eZkHTXrVtuM31furRrA0Oob+adaXvjCRIO/8p712HCMvOfe7MCxvlSs/4kGxwEAtKKhNBS3bFxV8dxenfvEUXu8rK728ud6s30OlZ+MlsXOUOhSznKHiT67ovVqzcPz5r9zS/PqHtN0ygvp6099UU7l/MC3bHa/JwIAAAAAAAAAAADQeILRAAAAAGCGGUyDFcs7ss6adfM2u0fs3MBfLcSqK+uuPbg2lvfsJh68UDlQYXwwWuV+mx04VrT/ogFqAAAzweqtd8bGwWcrnjtp8elRyubU1V7+HHN2z6FS1WC0LLIsa/izK1qv1vw/N0CsxYOm84KgU6QYSP258/pq75gAAAAAAAAAAAAAMBGC0QAAAABghhlMAxXLOwsFo+Vvxu8r9+aHdWU9Ucpm9/9OzAsKaHTwwthggfx+mxuMVjw4YnaHegAA7eWmjddWLO/IOuP4RafW3Z5gtInIIiL/3Wbi8/OCwb812u8tb69YnjevbxXV3hWrhWi3euAbAAAAAAAAAAAAADPP7N7JCAAAAAAzUF4w2pyso2bdvOCFiJ1BADa758t7dnnPrJa8emMDE1o1LKOe4IiU0hSPBgBg6j3V91j8evuvKp57xYKVMX/Owrrb7M5ywr3S7A5GS5E/f8x2/TM/GG1i8/Oiz7xW+3nnWz8Yrdq7YpUQ7Sr1AAAAAAAAAAAAAGAiBKMBAAAAwAyTF4zWkXXWrNuVdUc2HCUwWl+5NzcMoNU38U+H6QpeGBuOkffsJxrI1ihFg9lSlGMg9U/xaAAApt7NG6/LPXfS4jMm1Gajw3fbRbVgtN3RaI0OEC5ar9Z1O3KD0ebVPabpVO2dr6+8I/e+vSsCAAAAAAAAAAAA0GiC0QAAAABghhlMgxXLiwSjlbJSdGXdFc/1lnfkhnzlhQ7MJt1ZY0Mr8oIFxj7rRgc+NEo9/U80PA4AoFX0lnfETzffUPHcC3oOi+VzD5tQu3mhUs2e67WyLNsVjJYzP+9LE5t7Fp3X5wUcD5/PDUZr7QCxau98fd4VAQAAAAAAAAAAmAbVPqsKzC6C0QAAAABghhlMAxXLiwSjRUR054UvpN4qYV2tvYl/OjQ6tKJosEB3ltdvc8PG6gmEm2h4HABAq7hj803RW95e8dwrF79uwu3mh+DO7vlTSvlLm7Jd/8ybn09k7jmUBnPfs+ptP+/npNWD0eZkHbnvlH3l3irvL619XwAAAAAAAAAAAADMPILRAAAAAGCGGUyDFcs7so5C9asFCORt8s8LbJhNGh1aUTSELrffNLFAtkapJxBuouFxAACtIKUUN2+4ruK5PeYsiJcvWDnhtvPnmLN9/lTtm487o9Ea+ewaNbcdTAO572utHowWkf9Me8s7qry/eFcEAAAAAAAAAAAAoLEEowHQEGvWrIm/+qu/ihNPPDH22Wef6OrqiizLhn9ddtllzR4iAABA2xhMAxXLO7LOQvWrBQjkhXzNhE38U21sYNluEwkoSynlPuuxfz55/eaF2E2XvlS8f8EeAMBM9uCOe+KJ/kcqnlux6LToLHVNuO3cOeYsnz+lKsFo2RQEo9Uzt64WjFytnZ7SvLrG1AzdWX4oc26Idk4dAACgsazPAwAAAAAAAGA26Wj2AABmu+XLl8cjjzy3meaGG26Ik08+uXkDmoCvfOUr8d73vjf6+vqaPRQAAIBZYSgNVizvyIr97778AIEduSECeXVmk7xwuL5yb6SUIsuywm0NpoEoR7niubHhGNX6baZ6+p9IeBwAQKu4aeN1FcuzyOLERadPqu28eXZveUfdc8x2UiQYLW+ePJEA4XrmttXa7x2qFozW+mHT1d498p7RTLgvAABmN+vzAAAAAAAAAGDmKTV7AADMbNdee228613vKrzo6sYbbxz1pcqLL754agcIAADQhgbTQMXyjqyzUP2xwVu79ZV35G7yt9k9/7mlSNGf6tuMVC14oTsbHY6RH2S3M5CtWRoVHgEA0Mo2Da6PX2z5ScVzR+3x8ti7a59Jtd+TVZ5jlmMoBnMCkWeDasFosSsYLf+9pv5Q3rpCf6tcW23e21OaV9eYmiHvmfZWeVfMqwMAADSG9XkAAP8/e3ceJldx2Hv/V71M94xG0khoAwQIIbFjFiMQIDYvAhTsxEsMxH68hmAnuRdCiK95c21JFwfj1yQ2tnFsEwK8jzEh18bGwSDHxpJAYMAIsACJ1QgQCC1IM0gz0z291PuHNKPpnlOnz+npvb+f5+FBp+qcqurTrVGdmarfAAAAAAAAAADaUazeAwAANLerr766YBP2X/zFX+hzn/ucDjroIMXj+zbkT5s2rR7DAwAAAICWlHEGowX7dp9f0Fbaudnd+5p24ncPUvnBUPcobf0CE4IFo1nllbFD6jCJwP1WkuuzMt5zAQAAGslDvb9WXjnPurOnLBl3+35zyLQdVFzBwo9bjk8umtmTi+bzXBN+7hlubrsnoNgMD2SUVH7AeV0zBIj5Pita70A4nhUBAACA6mJ9HgAAAAAAAAAAAACgHRGMBgAo2/PPP69169aNHC9ZskS33357HUcEAAAAAO0hZ7Oe5TETLDQh6diQn8oPKp13bHY3jb+Jv9pc902S876Vc35xYIJ/v4PqiNQrGC34aw57fwAAABpBzmb1YN+vPOumx2fpqK4Txt2HbzBaPqXu6KRx99GMrE8ymtGeQDJX0Fg5c09X6JeXvHLK2ozipsOjb++AtahiikcaP+TOfU/dz4p+zysAAAAAxof1eQAAAAAAAAAAAACAdhWp9wAAAM3r8ccfLzj+6Ec/WqeRAAAAAEB7ydqMZ3nQYDRX+EI6n1LKsZHfL7ChXfiHVnjfNxfXffbqx69fv3aqLUzgRD3HCQAAUK4/7H5MfdkdnnVn9pyviBn/j9tdQVRS+Dlma3EHo2k4GM24nmvC37ew17jmwoOOdpLR5ggPcz8rDjrvEc+KAAAAQPWwPg8AAAAAAAAAAADtxvotHwTQVghGAwCUbcuWLQXHs2fPrtNIAAAAAKB95G1OeeU96wIHoxnvTflpm1Laem/wT/oENrSLSgajuYIUjCKKm46ifv3CMoKHk1Va2gZ/zfUcJwAAQLlW77zXszxuOnTa5PdWpA+/eXY7z6H8Y9H2BqO5QrwczzR+UiHvtWsu7HouaJbnKdc9Hcj3K2OHQl0DAAAAYPxYnwcAAAAAAAAAAAAAaFcEowEAyrZ79+6C43g82AZ8AAAAAED5sjbrrIuZWKA2XJvyU/lB50Z+v3CudhEzcec9TlUoGC0RScoYU1jmCLIrp99KydqM72exWDuHegAAgOb0Zvo1vTj4jGfdyZPO1IToxIr0EzcdI0Ffxdp5DmV9o9H2cD3XpPMp2ZC/MjJs0LFrHp7KD3iWJyNdodqvF9c93ZXtC30NAAAAgPFjfR4AAAAAAAAAAAAAoF0F2ykJAGh61lo98cQTeu6557R161al02lNnz5dBx54oBYtWqTu7u7Qbebz+SqMFAAAAADgJ2szzrqYCbYhJhFJepan84PO8AU2u++RiHQqm9s1pjxsaIU7gG7sexOPxBVVTDmNDSJL2/qEZVTq9QIAADSqB3tXOOvO7llSsX6MMUpEkp5BW/UKwW0M7mCz4SA5V3izldWQTSthvJ97vISf33qf73rPmuV5ynXP+rI73Nc0yWsDAAAAqo31eQAAAAAAAAAAAAAAVA7BaADQ4rZv365rr71WP/rRj7Rt2zbPczo6OvSe97xHy5Yt06mnnupsa+PGjTr00EOd9eeee65n+S233KLPfOYznnXLly/X8uXLnW2uXLlS55xzjrMeAAAAANpN1o4NxxoWPBjNe+P6rmyfrCOAwBWm1m4SJql+jQ1GCxtaETaALhFJaiC/26Od+oRlhA6OsO0c6gEAAJpNKj+oR99Z6Vl3aPIIHZw8rKL9JUxSKY2dL4Wdc7USdyzanjA5yf8ZJZ1PhXqGqdR8PpUf8CxvmmA0xzjfye10XxMigA4AAABoRazPAwAAAAAAAAAAAACg8iL1HgAAoHp+/vOfa+7cufrmN7/pXHQlSUNDQ1qxYoUWLlyoyy67TNmse5M9AAAAAKC+sjbjrIuZYL8HwRUQ4BW8te+a5tjIX22uQIO0DRda4QpecIUKuN6zeoVlhA5Ga+NQDwAA0Hwe7VvpnK+d1XNBxftzzbXrFYLbEKxfNNoefsFnlQo6C9u+c57fJM9Trucdv4DuZnltAAAAQDWwPg8AAAAAAAAAAAAAgOoItlMSQO3ks9LApnqPovV1zZYirf0l8N///d916aWXKp/PF5QfdthhOvroo9XV1aXXXntNjz32mHK53Ej9D3/4Q7322mv6r//6L8VirX2PAAAAAKAZ+QWjRccZjFbpa1pRpUIrXEFqrvvsCigIG/hQKaFfL8FoAACgSVhr9UDvfZ513dHJOmniGRXv0xmCGzJ8t5VYuYPRjIwk9xxZqv581XW+a37eGekK1X69lPesmKjCSAAAAKqI9Xm10+Jr9FifBwAAAAAAAAAAAABA9fATdaDRDGySfnFovUfR+j74itQ9p96jqJqnnnpKX/jCFwoWXZ1wwgm68cYbdfrppxecu23bNn35y1/WD37wg5GyFStW6Ctf+YquvfbagnNnz56tV155ZeT4W9/6lm644YaR4zvuuEMLFy4cM55p06bpnHPOkSQ98sgjuuSSS0bqLr/8cl1xxRXO1zJr1qwSrxYAAAAA2kvWZp11cRMP1IZfgEAlr2lFrqCAsAFlriAFV/CaMyyjTsFoYV9vvQLcAAAAwnpx8BltHnrds+6Mye9TPBJszh2GO3yXYDQvw8FofiFeoYPObNj5vPf5rnmv6z1uNGGD0eKmQxETrdJoAAAAqoT1ebXTwmv0WJ8HAAAAAAAAAAAAVId79SCAdkMwGgC0oM997nMaGhoaOV60aJF+9atfqatr7G+jnz59ur7//e9r3rx5+od/+IeR8q9//eu65JJLdNxxx42UxWIxzZkzZ+S4p6enoK1Zs2YV1I/W3d0tSdq4cWNBeU9Pj/MaAAAAAMBYWZtx1sUCBqOF3exe7jWtqFKhFa4gBVcAXaOFZYR/ve0b6gEAAJrL6p33eZYbRbSo57yq9NloIbiNbjgYLWbiiiqmnMaGR4e9d+HP957fhp3nN5qwAW7N8roAAACASmN9HgAAAAAAAAAAAAAA1RWp9wAAAJW1cuVKPfHEEyPHkyZN0p133um56Gq0q666ShdeeOHIcT6f1ze/+c2qjRMAAAAAUJ5KBKOF3bweM7HAbbc6171LVShIwRWK4SoP22+lpC3BaAAAoPX0Zt7WH3Y/4ll3XPfJ2i8+oyr9NtpcrxFY5X1qzcifXPPzas9X09b7vUnlBzzLmyVALBkyEJsAbQAAALQj1ucBAAAAAAAAAAAAAFB9BKMBQIu57bbbCo7/5m/+RgcccECga6+77rqC4zvuuEPpdLpiYwMAAAAAjJ9fMFrUxAK1kTDhNuWHPb+VuTb+hw1ScIVcuNp3Bj7UKXAsdHBEG4d6AACA5rGm77+VdwRyndVzQdX6bbS5XiOw1l1n9uWiVX1+7uJq39VOMuIfkNAoEiED3Jol8A0AAACoJNbnAQAAAAAAAAAAAABQfQSjAUCLWbNmTcHxJz7xicDXHnPMMTrppJNGjlOplNauXVuxsQEAAAAAxi9rs57lEUUVMcG+3ecKD6jU+a3MHVpRmSAF1712hdPVK3As9Ou1KeWtd8gIAABAI8jajNb0/rdn3Yz4ATqy6/iq9V2pcK/W4pOMpn3JaK57V6mgMxdX++5gtOYIEAsbjBb2fAAAAKAVsD4PAAAAAAAAAAAAAIDqIxgNAFrIzp079fLLL48c9/T06KijjgrVxumnn15w/Pvf/74iYwMAAAAAVEbWZjzL4yYeuI2YiSuiaODz2ey+j+tehA1SSFtHMJojAK3RwjJcgQ8xn8/hkE1XazgAAADj9oddj+qd3E7PurN6zg8cQlwOZwiuY87YDqxPMJopCEarbnDxhMjEUOe75snN8kyVMCFDtEOeDwAAADQ71ucBAAAAAAAAAAAAAFAbsXoPAECRrtnSB1+p9yhaX9fseo+gKrZt21ZwPH/+fBljHGd7O/LIIwuOt27dOu5xAQAAAAAqJ2uznuVRE/xbfcYYJSJJDeb7A52fbJJN/LXgCihzBSC4uIIUXO273oN6hWW4xj85NkVvZ7y/l5DOp/gsAQCAhrW69z7P8g6T0MLJ76lq340WgtsI3LFohSpx76y1zvn8pFiP+od2BWo/azPOIOvOJpkHJyKJkOc3x+sCAAAowPq82mnBNXqszwMAAAAAAAAAAAAAoDYIRgMaTSQmdc+p9yjQpHbu3FlwPHny5NBtFF+zY8eOcY0JAAAAAFBZro32MRMP1U4y0hk4GM0VNtCOnAFloYPRvM93BQtUKpCtUlxBE5OifsFog5KmVHFUAAAA5XkjvVEvDT7rWbdg0lnqinZXtf9Gm+s1Bnc0mtG+0IFKBKNlbVZ55TzrJsWmaPPQ6x7tj31v/N6vZgkQi5ioOkxCQzYd6HyeFQEAQFNifR7GgfV5AAAAAAAAAAAAAADURqTeAwAAVI61hZtEwv42Si+VaAMAAAAAUDk5m/Usj5lwvwMhzAb2ZtnEXwsJM/7ghT3nu4LRvNt3vQdhA9kqxRmMFusJfQ0AAEC9PbBzhbPu7J4lVe+/UuG7rcQGDEZz3bswoXJ+93lyzDvY16v9VM7dTmekK/B46i3csyLBaAAAAGgvrM8DAAAAAAAAAAAAqsu6lw8CaDMEowFAC5k6dWrBcV9fX+g2iq+ZMsV7wwcAAAAAoD4yNuNZHjPxUO2ECTtjs/s+ztAKGzx4wVrrDAlzB6N5l6fqFDbmer2THMERUnsHewAAgMY1mOvXY++s8qw7rPMozU4eWvUxuOZ6BMs6jAoNSBhXqFzwe+c3l58U9Z7ferXvF8bWTGHTrmee8Z4LAAAAtALW5wEAAAAAAAAAAAAAUBsEowFAC5k+fXrB8QsvvBC6jeeff77geMaMGeMaEwAAAACgsrLOYLRYqHaSIcLOCEbbx3UvsjbrfG/GnptRXnlH+97BAu6wjPqEjbn67Yp0O0P6/IIiAAAA6uWRd1Yqbb1DtM7qOb8mY3DNAdP5lGyb/upDv9dtRv3ZOU92vKee5/qEqE12BP96tZ/KDzjbSUa6Ao+n3sI8//GsCAAAgHbD+jwAAAAAAAAAAAAAAGqDYDQAaCFTpkzRYYcdNnLc29urDRs2hGrj4YcfLjhesGBBRcY2zBhT+iQAAAAAgFM27wpG8w6jcnGFL3hJhji31fndN79AhaDnuQLrXO9Bxg4pZ3OB+q0k12tIRJI+IW7BwykAAABqwVqrB3pXeNZNjE7WCd2n12QcCeM9f8orFzh8t9VY+QWj7Vvm4JonhwkQ9gvwneQKRvO4xtVnVDHFI65Z5bAAACAASURBVOGe1+opzLNimHMBAACAVsD6PAAAAAAAAAAAAAAAaoNgNABoMYsWLSo4vv322wNfu2HDBq1du3bkOJlM6t3vfnfFxiZJiUSi4DidTle0fQAAAABodTllPctDB6OZEJvdHUEN7chv479foMJoaes+z/W++PU7VIfAMb9gNGc4hSUYDQAANJbnB9Zpy9Amz7ozJi+uWZhVJcJ328noLf7uUN7gwWiue2wUUXd0kvMaawvD2wYdfSajzRUeRog2AAAA4I/1eQAAAAAAAAAAAAAAVB/BaADQYj75yU8WHH/3u9/VW2+9Fejaq6++uuD44osvHrNQarx6enoKjjdv3lzR9gEAAACg1WVtxrM8FjK0wRUg4IXN7vv43YugoRV+AWqu96US/VaSq89kpNMZpBc0OA4AAKBWVvfe51luFNGinsU1G0fSZ27uF6rbyqysT+2+aDR3MFrwOXI5ob9WVhk7VNSOIxityZ6nwgRjh3muBAAAAFoF6/MAAAAAAAAAAAAAAKg+gtEAoMW85z3v0QknnDBy3NfXp0suuUSDg/4bZ775zW/q7rvvHjk2xujv/u7vKj6+uXPnqqOjY+R45cqVymS8N/UDAAAAAMbK5B3BaIqFaifMBvZEk23krya/++YKQhh7njukwdW+XzhBPQLHXH0mIknn56UeAW4AAAAuOzPbtW73Y5517+o+RVPj02s2Fv85ZrvOodzBaCZAMFqYObLr3GSk0/dZqPg6dztdgcfSCEI9K4YIUQMAAABaBevzAAAAAAAAAAAAAACovnC7JQEAVffWW29p48aNZV07Z84cSdLNN9+s0047TUNDe35T/apVq3TmmWfqxhtv1Kmnnlpwzfbt27V06VJ973vfKyj/4he/qHe9611ljcNPR0eHzjjjDK1cuVKS9Nprr+mDH/ygPv/5z2v+/Pnq6ircHDJr1iwlk2yqAAAAAIBhOWU9y2OReKh2kiHCzghG26fDJGRkZD2CGoKGVrjOM4oobjo86/zeg7StfViG6zUkIp3OIIX2DfUAAACNaE3fr2SV96w7u+eCmo7Fd67XpnOovHUHo43KRatIKK8r4HhP6G+pYOSekeNUfsDzvDDPXo2AZ0UAAAC0OtbnsT4PAAAAAAAAAAAAAND4CEYDgAZzySWXlH2t3btJ5KSTTtJ3v/tdff7zn1c+v2dTz9q1a7Vw4ULNmzdPxxxzjJLJpF5//XU99thjymYLN9W///3v1zXXXFP+iyjhyiuvHFl4JUkrVqzQihUrPM9duXKlzjnnnKqNBQAAAACaTTbvCEYz4b7V57fBfzzntjpjjBKRpFIe4QleZV5cIQ3JSFLGGM+6RCThbC9ov5WStRlnQF/CJH3CKWo7TgAAAJeszeih3l971s3smK0juiq/Md1P3HTIKOIZ1FbruV7jcAejmVHJaK6555BNK29ziphoyZ6cob+mVDBa4XWu96rZgtF4VgQAAECrY31eIdbnAQAAAAAAAAAAoJH4/V5VAO0lUu8BAACq49JLL9Wdd96p7u7ugvKXXnpJd999t+688049/PDDYxZdffazn9Uvf/lLxePxqo3twgsv1Fe/+lVFo6U3owAAAAAACmVtxrM8ZsI9x4XZnN9sG/mrbbzBX67zXO1KUsREFTcd4+q3UlzBEdKeYARXOALBaAAAoFE8uet3eifX61l3Vs/5zrDaahkO3/XiN/dqZTZoMJrxCy5LB+orbd3zc79noeIgtFR+wNlOMwkXjNZcrw0AAACoJNbnAQAAAAAAAAAAAABQPQSjAUAL++hHP6qXX35Zl19+uaZNm+Y8Lx6Pa/HixXrooYd08803V3XR1bB//Md/1Lp16/SlL31JZ511lmbNmqXOTjZPAAAAAEAprmC0qImFaifcZvfg57YDV/hCcTCCi+u8UvfZFcrQWMFonYR6AACAhvdA732e5QmT1MJJ59Z4NHv7Jly2LH7BZWkbbP7pmqcmIknFTFxReT9rFbfvaqcz0hVoHI0iTNgZIdoAAABod6zPAwAAAAAAAAAAAACgOsLtlgQAVNzGjRur2v6MGTP0rW99S//yL/+itWvX6rnnntO2bduUTqc1bdo0zZ49W4sWLdLEiRNDt71s2TItW7as7LEdffTR+trXvlb29QAAAADQjrI261keM+E20bDZvXzugLJxBi84AtdG6iNJ7cr1ld1vpfgFwCUiyXHfHwAAgGralHpFLw9u8Kw7ZdI56oxOqPGI9nDNBdt1DmVlnXVGZuTPfuHCQUPlXPd4eF6biCQ1kN9d8rrB/IBnO2GevRpBmOc/QrQBAADQDFifx/o8AAAAAAAAAAAAAEDzIRgNANpEJBLRggULtGDBgnoPBQAAAAAwDlmb8SyPVzEYjc3uhVz3I20DBi9YRzBaifekUQLH/PpLRjqdoR5+gWoAAAC1srr3XmfdWVPOr+FICrnnmO0ZjCafYDRVOBjNNU8dbjsZ6XQEow36Hg9rtqDpoM+KRkYdJlHl0QAA0FyMMYdKOkHSAZK6JW2W9Kqkh611fGO3vH7iks6QdLCk/SXtlvSmpCettRsr1Q+AcFifBwAAAAAAAAAAAABA5RCMBgAAAAAAADQRVzBaLGwwmiO8yvPcJtvIX22u+xE0oMx1XqkAOle/tQ4ccwU+GBnFTYf7/rRtqAcAAGgUA7nd+v07D3jWzes8Wgcm5tR2QKO4wrPaNVzWNxbNjA5Gcz+rpMY9P+/c+/9gwb+p/IDnec0XjBbsWTERSRa8FwAABGWMmStpgaST9/7/JEkTR53yqrV2Tplt+00jgji0nGAxY8xHJV0p6TTHKTuMMXdK+oq1dnu5gzPGTJe0XNJFkqY6znlY0r9Ya39abj8AAAAAAAAAAAAAAABAvRGMBgAAAAAAADQRVzBa1IT7Vl+YzfkdJhGq7VY33tAKV7BYqfdkvIFsleLqr8MkFDER5+twvW4AAIBaeaTvtxqyac+6s3qW1Hg0hRplrtcorA2WaRI1UcVNhzJ2aExd8OBi//m5KyisuH3X80DTBaMFDNEOE7YNAIAx5hxJV2tPGJpnoFczMsZ0S7pJ0sUlTp0q6QuSPmyM+ZS19ldl9HWBpFslzShx6umSTjfG3C7pMmttf9i+AAAAAAAAAAAAAAAAgHojGA0AAAAAAABoIlmb9SyPmXiodlyb+8ecZ5KKmEiotltd0GAEF9d5pd4TV/BA0EC2Sklb1/jDBUcAAADUUt7m9UDvCs+6SdEpOmHiqTUeUSH3HKpdw2XdwWgRFT6fJCJJZXJewWjB7p1rPj38nrhD6wqvcwejdQUaR6MIGuTmui8AADicIGlxvQdRScaYqKQ7JRUn7G6T9KSkPkmHSTpRktlbN1PS3caY91lr14To6xxJP5fUMarYSnpC0h8l9eztZ9qo+o9LmmSM+TNrbT5oXwAAAAAAAAAAAAAA1FOwX6sKoB0QjAYAAAAAAAA0kazNeJZXLRiNze5juO5J0ICyUsEL7n4bI3CsdHBEYwS4AQAAjPb8wDptzbzpWbeoZ3Ho+XSlNcpcr1GEWdiUiHRqd+6dMeXjDi42/vPb4uvc8+TmeqYK/qwY7DwAAEpIS9qkPQFilfaopItDXrMpxLnXqTAULSPpSkk/tNaOpLYaY46W9G+STttblJD0c2PMcdbazaU6McbMlnSXCkPRHpJ0qbV2w6jzEpIuk3S9pOHJ7QckfVXS/xPidQEAAAAAAAAAAAAAAAB1RzAaAAAAAAAA0ESyNutZHjPhvtUXdHN+ssk28deC656kAwZ/OYMXStxrZ7+2toFjrvEPj88VkJCxQ8rbnCImWrWxAQAAuKzuvdezPKKIFk1eXOPRjEW4bDF3NJqRKTgeDjArFnh+bv3n5wnjmv/vuy5rM84Q684me6YK+qzYbIFvAICGkJH0rKTHJf1+7/+flnSGpJVV6C9lrd1YhXZljJkr6fKi4j+31t5dfK61dr0x5r2S7te+cLT9JC2V9PkA3S2XNGXU8cOS3mdt4STGWpuW9G1jzGuSfjaq6kpjzA+sta8G6AsAAAAAAAAAAAAAAABoCJF6DwAAAAAAAABAcK7N9jETD9VO1EQVNx0lz3MFNLQz1z1xBYaNOc8VvOAIdCjdb62D0bz7Gx6fX5heOp+uypgAAAD87Mhs09O7H/esO757oXri+9V4RGO5w3eDzTFbjfUJRlNxMNo4Q+XKnd+Obt+vr2YLEAsajk2INgAgpNskTbLWnmitvdRa+0Nr7RPWOr7Z2fiWShr9DdlbvULRhllrByV9WtLQqOLP7Q1YczLGzJf0qVFFQ5I+XRyKVtTXz7Xnfg9L7B0vAAAAAAAAAAAAAAAA0DQIRgMAAAAAAACaSM5mPctjJha6rSAb9JttE38tuO5J8OAFRzBaiRA6V7+1DssoNX6/z0ytQ9wAAAAk6cHeFbLKe9adPeWCGo/GW8I45nruzIuWZq07GM0U5qK5Q+UC3DtrrXN+O9yuM6B4VPupnHue2xnpKjmORhI3HTJF4XNeCNEGAIRhrd3pF+bVTIwxnZI+WlT89VLXWWtfkPTzUUUxSX9R4rK/kBQddXyXtfbFAMMsHs/HjCnxWxkAAAAAAAAAAAAAAACABkIwGgAAAAAAANBEsjbjWR4z8dBtBdnIzmb3sRKOPYRBA8pc4WClQuhc70XQQLZKcY9/bzCazx7Ldg32AAAA9ZPJZ/RQ32886/bvOEjzO4+t8Yi8OcO3ahyC2yisfILRikK7xnPvMnbI2VeiVDDaqHmx35y82cKmjTE8KwIA4O88SaOTT39nrX0u4LW3FB1/uMT5HypxvSdr7QZJj44qmiBpcZBrAQAAAAAAAAAAAAAAgEZAMBoAAAAAAADQRDLOYLRY6Lb8AqyGJZtsE38tuO6JKzAs6HmlggXc/dY2LMPV377gCPdnJug9AgAAqJQndj2k3bk+z7qzei6QMcazrtaChG+1F3cwmsYEo3nPP4MECPsHmu15T4LM//3ep2Sky1nXqIKEufGsCABoY+cXHa8Kce2DkrKjjk80xsz0OtEYM0vS8aOKspIeCtFX8bguCHEtAAAAAAAAAAAAAAAAUFcEowEAAAAAAABNJOsMRouHbivIRvZSYV3tyBmMYFPK27zvtdZaZ7BYqfdjPIEPlZS2jmA0MxyMlnBeW+uxAgAAPNB7n2d5wiR1yqRzajsYHwSjFQoei+Z370oHCPvd3+F2g7Sfyg94nhNVTPFI+Ge1egsSos2zIgCgjR1bdPy7oBdaa/slPV1UfEzAftbtvT6ohwP2AwAAAAAhNMYvGwEAAAAAAAAAtD6C0QAAAAAAAIAmkrNZz/JygtGCbGQPEp7Wbvzu25BN+16btRnl5R2eVur98AtksNYvOqKyXOERw+OLmKjipsNxbelwCgAAgEp5LfWyXkk971l36uRz1RntqvGI3FwhuLWe6zUKGyIazRlcHCBUzm9+OtxusGA0776S0eZ8ngryrDgcjAwAQAM72BhzizHmWWPMTmPMkDFmy97jHxlj/soYM7WMdo8qOn4p5PUvFx0f7TivuLxa/QAAAABACO33/WoAAAAAAADUVhsumQTgQDAaAAAAAAAA0CTyNucM1SonGC1I6FmQDfHtxhVaIZUOX/ALXih1r5OO4IG8csrajO+1leR6DaPH7w6nIBgNAADUzuree511Z/VcUMORlOaaY+aVr+lcr3G4VzaZomC0IMFlLq5As9Ht+oXWlWqnWYOmeVYEALSIQyV9WnsCwXokxSXN2Hv8cUk/kPSaMeabxpjuIA3uDVIrDlN7LeS4is+f7zhv3jj7ebXoeD9jzJSQbQAAAAAAAAAAAAAAAAB1Eav3AAAAAAAAAAAEk7VZZ13MhP9WX5CN7AlHGFc787tvqfygJvtc6xu8UOJe+/WbzqcUj3T4Xl8prtcwenyJSFK7cn1jziEYDQAA1MpAbrcef+dBz7r5ncfqgMTBNR6Rv4RpjLleo/D7hY/GFAWjOe5dqdBiSUpb7/lpVLGR8GlnMJpNKW/zipiIe47cpM9TfmHQYc4BAKAJTJB0haQlxpgPW2ufLXF+T9HxgLW2P2SfW4uOXd9OLO6r+Dpf1trdxpiUpNGTpcmSdoZpx4sxZoak6SEvO2y8/QIAAAAAAAAAAAAAAKB9EIwGAAAAAAAANImszTjrhjfthxFss3vp8LR2k/S5b6WCv9LWJxitxL327dcOqluTfK+vFNdrHD0+12fLLxgOAACgkn7Xd78ydsiz7uwpS2o8mtKSJcJ3azXXaxjWOxrNyIwp8wsuK8UVnlYwt/UJrRuyaSVNp1L5Ac/6zmhXyTE0Ir9njzDnAABQJ1lJayT9RtI6SZsk7ZLULelgSWdK+qSkGaOuOVzSb4wxC621r/q03V10XM43u4qvmVjlvkZPZlx9hfXXkpZWqC0AAAAAAAAAAAAAAABgDILRAAAAAAAAgCaRtVlnXbWC0djsPpbffSsV/OUXnFbqXvsFp9UycMz1GhIBwiNcwRMAAACVlLd5PdB7n2fd5NhUHd99So1HVJrfHNMvXLdVWXkHoylMMFqJ0GK/c0bPvf2DkQeVjHQ65+NBnrkaUZCAbEK0AQAN6n9Luslau9VR/5SkXxhjvqw9wV7/S/smGLMk3WWMOdlaR0rr2LCy0hOOsYonDsVtVrqvKQH6AgAAAAAAAAAAAAAAABpKpN4DAAAAAAAAABBM1macdTET/ncgBNvs3pwb+aspaqKKmw7PulLhC676iCIlw+18wzIChD5UynjCI9K2duMEAADta8PAU9qWecuz7szJ5ylaxty52vzm5rWc6zW6sbFo7nsXJDzYHWiW9Pyz6/pUfsCzvlmDpglGAwA0K2vtP/mEoo0+L2WtvVrS/yiqOknSJWG6DDO+cVxT674AAAAAAAAAAAAAAACAumq8Fd8AAAAAAAAAPPkFo5UT7hBkI3uzbuSvtkQkqUxuaEx5ukT4gl+omDFeMQ/7xE2HjCKyyo+pCxL6UAlZm1FOWc+6hCkdHlGrcQIAgPa2eue9nuURRXVGz/trPJpg/OZ67RiMZp0ZHmPnzK5nlqzNKGezvs9Krvn76FDiIKF1rveoWZ+nggRkN+trAwBgNGvtjcaYxZI+OKr4ryX92HHJ7qLjcv5BLL6muM169BXW9yT935DXHCbp7gr1DwAAAKBu/Nc1AAAAAAAAAABQKQSjAQAAAAAAAE0ia70DqSQpbuKh2wuykT1IeFo7SkQ6tTv3zpjyUqEVrmCwIMEDxhglIkml8gOh+60Uv2Cz0Z8V1+emHUM9AABAbW0f2qJn+9d61p0wcaEmx6bWeETBNMJcr5G4gtGMx6a7UsFlXdFu33ovhXNb91x9+PpBj/dNkpKRLue1jWx06LHzHJ4VAQCt42sqDEZbaIzpsdb2epxLMJoka+1WSVvDXFPql0IAAAAAaBauX2oBAAAAAAAAAEBlReo9AAAAAAAAAADBZG3GWRcrIxgt2Gb3cvbbtT7XvfMLDpOk9DiC0SR3mJ2r3UrzC+UYPTbX62nHUA8AAFBbD/atcIZqnd2zpMajCccVNFVqjtlOvPI0/AK6Ss/PSwejRU1UcdPh275rPh4kjLoRBQk9S5jmfG0AAHh4TNLOUcdRSUc7zu0rOu4yxkwI2d+MomOvADavvqaH6cQY062xwWiuvgAAAAAAAAAAAAAAaAhE8wMYRjAaAAAAAAAA0CQqHYwWZJN+kA3x7ajcgLIgwQt+XOfVKnDMr59EoGA0Qj0AAED1ZPJDerjvN551B3QcrHmdrnyLxlDvENxGYm3eUTM2Gc3vuabUPNkVnFbcZql5eCo/EKidZhHsWbE5XxsAAMXsnonHa0XFniFk1tq3VRiiJkkHh+zykKLjFx3nFZcXXxe2nx3W2uKxAwAAAAAAAAAAAAAAAA2JYDQAAAAAAACgSfgFo0VNLHR7QcK4mnUjf7W57p0rWGFY2jqC0UzQYDRXWEYjBKMlPf8c9HoAAIDxWrtrjfpzuzzrzpqyRMaMDdVqJK45YTvOoazjdz4aj2A0v4CuUvfOGVxsioPR/EPrggasNYtSoWcRRRUr4xkUAIAGVvyPud8/hhuKjueF7Gtuifaq1c/6kNcDAAAAAAAAAAAAAAAAdUMwGgAAAAAAANAksjbrWR5RVBET/lt9pTa77zknWGBXu3EFHLiCz0bqHYEJQe+zKyyjVCBbpbjGb2TUYRIjx+5gtNqMEwAAtKcHeu/zLE9GunTKpLNrPJrwnHOoEnPMVuQdi+Zt9Dy0WKn5pzO4uOi9cIfWDQejebeTjHT59t+oSj2fJCLJhg8aBAAgpGlFx9t9zn2m6Pi0oJ0YYyZIeleJ9lzl7zLGhJlcnBGwHwAAAAAAAAAAAAAAAKDhEIwGAAAAAAAANImszXiWx028rPZKBaPFTEyxMttudeUGf6WdgQmlQ+p8+7W1CRxzBbAVByOUGxwHAABQrldTL2lj6kXPuoWTzg0836on1/y8PcNlvaPRjMaGcUVMxB1cVmZwcfHnpVRoXSo/4FkfJIy6EZX6+9IMf58AAAjKGDNN0tyi4jd9LllRdHxOiO7OlBQbdfyktXaL14nW2s2S1o0qiklaFKKv4nF5pwgDAAAAAAAAAAAAAAAADYhgNAAAAAAAAKBJZG3Ws7zc8DLX5v6ResNmdxd3aEWp4AXv+lLvxTBXAIErsKzSnOMvCqJwBVPUapwAAKD9rN55r7PurJ4LajiS8jnDZUvMMVuRDRGMJo0nuNgd/Dua33uTtRlniHVnkwaIlXxWDPj8AgBAk7hYhesot0ja4HP+rySNnkScZow5MmBfny46/lmJ84vrPxOkk73jOXVUUb+k/w5yLQAAAAAAAAAAAAAAANAICEYDAAAAAAAAmoRrs33UxMpqz7W5fxib3d1cwWilgr9c9a72xp7nCnyoTVhG2rqC3TqLjus7TgAA0F52597R2l1rPOuO6HqXZiVm13hE5WEOVT7XvUuVHVwcbH6byg/6PgMEnec3mtLBaM35ugAAKGaMmSnpfxcV/5e11julVZK1dkDST4qK/1eAvg6X9KFRRVlJPy5x2e2ScqOOP2yMmV+qL4/x/Ke1jm/sAQAAAAAAAAAAAAAAAA2IYDQAAAAAAACgSeRs1rM8VmYwWtx0yMg469ns7pYsM7TCHbwQLITOFWaXLhHIVilBx+8aZ9ZmnJ9jAACAcv2u735l7JBn3dk9S2o8mvL5hW+1G1cWiTHeSxzcoXLlBhcni45d8/CUbx+lwqgbValnQdfzEAAA9WKMOcIY84GQ18ySdI+kmaOKhyR9LcDlyySN/i0WnzbGfNCnr6SkWyR1jCq+2Vr7sl8n1toXJd02qqhD0q1723P19aeSPj2qaEjScr9+AAAAAAAAAAAAAABoFO5fZQag3RCMBgAAAAAAADSJjM14lsdMvKz2IiaiDpNw1jfrJv5acAcj+AcvuOoT7r2MAfv1D2SrFOf4AwZH7GmjNmMFAADtIW9zeqB3hWddT2w/Hde9oMYjKp873Kv95k9WjmA0x/nlzpPHG/ybzg9qMOcXjNbl23+jShj/Z0FCtAEA5TDGzDbGzCn+T9KsolNjXuft/W+ao/n9Jf3CGLPOGPNFY8x8n3FMNMb8raSnJJ1cVP1Va+0fS72WvefcUFT8E2PM3xpjRoefyRhzlKT7JZ0+qvhtBQ8rWypp56jj0yX9xhhzZFE/CWPM/5D0f4uu/2dr7asB+wIAAAAAAAAAAAAAAAAaQqzeAwAAAAAAAAAQTNYZjFb+t/mSkU6lc8HCALCPOxihRPCCHd+9rndYhjsYrbPo2P16UvlBdUW7KzouAADQvp7tf1JvZ7Z41p3Zc56iJlrjEZXPFUZVKny3vXhHo7mCulI+9y5vcxqyac+64vm+a36byg/6vj/NGjYdMzFFFFVeOc/6oMHOAAAUWSPpkADnHSjpFUfdbZI+7XPtcZK+Lunrxpg+Sc9I2i5pl6RuSQdJOl7e6yZ/aK29JsD4hn1J0jGSLth7HJf0HUlfNsY8sbfPuZJOUuEkZkjSh6y1m4N0Yq3dZIz5sKRfSRoOXTtD0npjzFpJf5Q0eW8/04suv0fSl0O8JgAAAAAAAAAAAAAAAKAhEIwGAA1uYGBATzzxhF588UVt375dqVRKnZ2dmjlzpg4//HCdeOKJ6ujoKN0QPJ1zzjlavXr1yLG1tir9rFq1Sueee+7I8dKlS7Vs2bKq9AUAAACgdWXzrmC0eNltJiKdUm6nuw6e/IIR/LgCzIIGJpQT+FBJrvEX3w+/z06tQtwAAEB7eKD3Xs/yqGI6Y/LiGo9mfJwhuI5w3VZm5f3zGuMKRnMEdfnNPdN571A0KXjwbzqfUio/4FkXVWxcz2r1ZIxRMtKpgfxuz3qeFQEATWKy9gSIldIv6e+stTeFadxamzPGfEzSv0m6aFTVDEnnOy7bKulT1toHQ/a1yhjzIUm3al/4mZF08t7/vNwh6VJrrXfSKYARrM+rLtbnAQAAAAAAAAAAAADKQTAaADSgXC6n//zP/9Qtt9yilStXKpvNOs9NJpM677zz9Jd/+Ze68MILazhKAAAAAECt5eT9fDi+YDTvDf6l6tqdX0CZtVbGeAc2pB0BZkGDBcoJfKik4MFo7s8OwWgAAKBStg1t1vr+Jz3rTpx4mibFemo8ovFxzQnbc/4ULhjNFTTsG4zmEzhXPO/2m4e7QoqTkU7nc0EzSESSPsFoPCsCABrOBknXSjpb0kmSgnyz7QXtCRq7yVq7vZxOrbW7JV1sjPmJpL+XtNBx6g5Jd0paaq3dVmZf9xpjjpW0XHuC2KY4Tn1E0vXW2p+W0w/QLlifBwAAAAAAAAAAAABAYyMYDQAazG9/+1t94Qtf0AsvvBDo/FQqpbvvvlt33323Tj75ZP3gBz/QSSedVOVRhjdnzhy9+uqrkqRDDjlEGzdurO+AAAAAAKAJZW3GWIaAlgAAIABJREFUszwWGU8wmnuPoCtcAO5ghLxyytqs4h5hddbawMFiLu7AB+8whkpzhUckTOG4OkzC3UaNxgoAAFrfg72/knUEaJ3ds6TGoxk/15ywHedP3u+q5MhFc9876753fve1eN7tDK2zg+5gtGhzP0/5PQ/yrAgAKIe1dk4V294i6R8lyRgTkTRf0mGSDpTUIykpaVDSTkmbJf2+3IAyR/8/kfQTY8yh2hPMdoCkCZLekvSqpIestUMV6GerpC8YYy6XdIakQyTNktQv6Q1JT1prXxlvP0CrY30eAAAAAAAAAAAAAACNj2A0AGggy5cv1/Lly2Vt4XYPY4yOOuoozZ49W/vtt5+2bdum1157bczirMcff1ynnXaavvvd7+rSSy+t5dABAAAAADWQyTuC0cbxbT6/QK6gYV3tyC8IIJ0fVNwjrC5jh5RX3vOaoPfaHfiQUt7mFTGRQO2UyxX6UDyuiIkoYZKeQWqucDUAAIAwhvJp/a7vfs+62Yk5mtt5ZI1HNH6uuV4qn5K1VsY4UsFaknc0mnEko5UTKudXV9yeMxgtn3LPkU1zh4fxrAgAaFbW2ryk5/f+V+u+X5FU9WCyvSFrK6vdD9CKWJ8HAAAAAAAAAAAAAEBzIBgNABrEFVdcoRtuuKGgbOLEibr66qv18Y9/XAcffPCYa1566SXdeuutuv7665VOpyVJQ0ND+qu/+iv19/friiuuqMnYAQAAAAC1kbVZz/KYRwhXUH4BX3517c4vCCBtB9WtSWPL8+5AsKDBAn7vyZBNK1nl8AXXa/AaVyLSqXTOIxjNJ4ACAAAgqLW71qg/v8uz7qyeJU0ZIuaa61nllbFD6jCJGo+ofvLWOxhNzmA0d3CZS8qnrmNMMJoreC2lVH7As64z2uVsvxn4B6PxrAgAAIDmw/o8AAAAAAAAAAAAAACaR6TeAwAASLfddtuYRVeLFi3S+vXrdfXVV3suupKkefPm6atf/arWrVunY489tqDu7//+77Vq1apqDbllrFq1Stbakf8AAAAAoJHlXMFopvzff+C72d0EC+tqR34BZSlH8JdfKEPQEDq/AIJaBI65+vD6HLk+W34BFAAAAEFYa7V6572edZ2RLi2YdFaNR1QZvuG7bTeH8v6ZjSvuzj33dM+RXfc0bjoUNdGCMtd8PWOHNJDf7RhTc4eH+Y0/GTDYGQAAAGgUrM+rH9bnAQAAAAAAAAAAIAx+pARgGMFoAFBnL7zwgv72b/+2oOz000/Xfffdp9mzZwdq4/DDD9f999+vo446aqQsn8/rE5/4hLZv317R8QIAAAAA6idrM57lMRMvu02/QK5m38hfTf4BZd4BC2nrDmVImKDBaPUNy3D1ESYYrRYBbgAAoLVtTL2o19Ive9adNvm9vnOmRuY3J2y3YDTrDEbzjkZzPdf43Td36O/Ytvw+U33ZnaHG1Cz8Po88KwIAAKCZsD4PAAAAAAAAAAAAAIDmQzAaANTZVVddpd279/0m+Z6eHv30pz9Vd3d3qHZmzJihn/zkJ+ro6Bgpe+ONN3TNNddUbKwAAAAAgPpyBaNFTazsNv02+LPZ3S1uOmQc315NOQIW/EIZgoZ3+IUruPqtJHcw2thxlRNOAQAAEMTq3nuddWf2nF/DkVSWbwiuT8hua3L9ykfvYDTXs4t/MNr4Q38lqS+7w7O86YPR/J4VTXOGDwIAAKA9sT4PAAAAAAAAAAAAAIDmU/6OSQDAuD333HO65557Csquu+46zZo1q6z2jj76aF111VW69tprR8puvvlmLVu2TFOmTBnXWBvNSy+9pHXr1umNN97Qrl27ZIxRV1eXZs6cqUMPPVTHHXecurq6qj6OdDqt1atX65VXXtGOHTs0Y8YMzZ49W2eeeWZV+t+8ebMeffRRbd26VW+//ba6u7s1Y8YMLViwQHPnzq14fwAAAAAaiysYLWbiZbeZMO7N+smAYV3tyBijZCSpwfzAmDpXwIIruCyiSOD30Dcso8qBY9Za52sIEx5RiwA3AADQunZl+/TErjWedUd2Ha+ZHQfWeESV4zfXS7VZuKwzFs24gtHcc09rred1ace81CvQzC/kzB2MVv2fU1WT32smRBsAAADNgvV55WN9HuvzAAAAAAAAAAAAAKCeCEYDgDq64YYbZO2+rR3Tpk3TZz7zmXG1ecUVV+gb3/iGMpk9m+X7+/t100036Ytf/OKYcz/96U/rtttuGzl+5ZVXNGfOnED9rFq1Sueee+7I8dKlS7Vs2TLf9oe9+uqrzo0rkvSpT31Kt95665jydDqtb3/727rpppv04osv+o4vGo3qhBNO0J/92Z/pyiuvdC6COuecc7R69eqR49Hvh5++vj595Stf0a233qp33nlnTP3EiRN10UUXafny5TrggAMCtemSyWR0880363vf+56efvpp53nz58/XVVddpc9+9rOKxfgnHgAAAGhFWZv1LI+PJxjNJ3yBze7+EpFORzCad8CCK7gsEen0fU4eLWpiipm4Z0hetQPHsjarvHKedUmPgD3XZ6vaAW4AAKC1Pdz3G+e8+OyeJTUeTWXFTYciiiiv/Jg61xyzVbl+XmPkCEYz3nPPvHLK2qznM5Mz9NejLb9no77sTs9yv2CxZuD/rEiINgAAAJoD6/O8sT6vEOvzAAAAAAAAAAAAAKDx8FNZAKijFStWFBx/8pOfVEdHx7janD59uj7wgQ/orrvuKujHa+FVM3n99dd13nnnacOGDYHOz+VyWrt2rdauXauLL75Y8+bNq9hY/vCHP2jJkiV68803nefs2rVL//Zv/6a77rpLv/jFL8rua+3atfrYxz6mP/7xjyXPffHFF3XZZZfpX//1X3XPPffowAMPLLtfAACaTV92p57tX6u30puq2k880qG5nUfqyK7jFTXRqvbVrnZn39Gz/Wv1Tq5PR084QQcm5tR7SGgRu7K9eqZ/rTanX6/3UApETUxzkvN19IQTFY+Ufh70CsOSpNi4gtHcm/WbfSN/tbnunSv4yx2MFi5UIBFJKpsb+1l4qO+/9eLAM5IkY4wO6DhYx3S/W93RSc62rLV6fmCdXh7cUDKwzPX5Gx7T2DLv+/Py4HrdtfXWkePJsak6esKJ2j9xkG//W4be0LO716o3u8OzPhnp1LyuYzS/8xjfDV+1mjeE1RFJjMwzIiZSVhubUhu1YeBJ7cr2Bb4mZuI6tPMIHT3hBEVNZX9ksDOzXev7n1TapnTshJM1o2P/irb/Rnqj1vc/pUw+rXldR2t+57GBQwYBlFbq34iYiWtu5xE6out4xSPlz0WAMPI2pwd7V3jWTY1N13HdJ9d4RJVljFEikvQM332wd4We6/+D7/URE9GBiUN07IST1RmdUK1hjsvWoc16tn+tdma2+563eSjcs5vfs8vPtt3q+cz00uB6z/O95rYdJuFsP2OHHO009/MUwWgAAABoBazPC471eazPAwAgGH4eCwAAAAAAAACoDYLRgAaTszn1Zv03AmD8emLT6h5ksWnTJm3cuLGgbPHixRVpe/HixQULrx555BFlMhnF4825OW1oaEjnn3/+mEVXU6dO1XHHHaeZM2cqHo9r165d2rx5s9avX6/+/v6qjGX9+vV673vfq7fffrugfObMmTrxxBPV09OjLVu26JFHHtHg4KB27NihCy+8UN/4xjdC93XPPffooosu0sBA4Qao/fffX8cff7ymTp2q/v5+rV+/vuA3dD711FM69dRT9cgjj2j27NnlvVAAAJrIm+lX9e3Xl+qdXG/N+jxp4un6zP5XVjw8pN1tHXpT3359qXZkt0mSfr7N6OOz/kanT35fnUeGZvdWepO+vWmperNvlz65To7oOk6fP/AfS24udwVTjefrkV+AAJvd/bnuTyo/6FmedpSHDUxIRjrVn9s1pnzd7sfGlE2NTdflB/0fTfcIpMrbvH685Xt6uO83ofr34hmMZrxf1+ah18cEXfxsW1SfPeBKnTTxDM9rntr1iG5+83rllPUfyNvSuVMu1Eenf84zIKse84awFkw8W5/c/3+G/t7VQ72/1o+3fE9Wtqx+j51wsi494IuBQhqD2Dj4gm7cdI3683s+qz83t+mvDviSjq1QYM3v+u7Xj966UVb5PQVvS2f3LNHHZlxKOBpQAdZa3bHl+1rT96uS5x494SRddsCXKvb1A/DzTP/akWfGYot6zlOkBULME5FOz2C0P+x+NHAbszpm63/OXq6e+H6VHNq4PbP7cd305v/rDBILwjg23fk9u6zq/WWoPryekSImooRJKm39w4RH62zyYDS/Z0VCtAEAQDNjfV7t1HuNHuvzgmN9HuvzAAAIrryfRwMAAAAAAAAAEBY7uIEG05vdri//8bJ6D6PlXTP3B9ovPrOuY3jooYfGlJ18cmU2hr773e8uOB4cHNRTTz2lBQsWVKT9oK6//notW7ZMkrRo0SK98cYbkqQDDzxQa9ascV7X3d1dcHzLLbdo/fr1I8dz5szRjTfeqPPPP1+RSGTM9dZarV27Vvfcc49uvvnmCrySPTKZjD7+8Y8XLLraf//9dcMNN+gjH/lIwVh2796tf/7nf9Y//dM/qbe3N/RvBF2/fr0uvvjigkVX559/vpYvX65TTjllzPlPPvmkLr/8cj344IOSpDfeeEOXXHKJVq1apWi0+TeCAQDg52fbbqt5uMkTux7WyRPP0gkTF9a031Z3z/Y7Cja4W1n9x5bv66SJZ7DhFuPyi+0/auhQNEl6fuBpPdq3UmdNucD3vKz1DoWKmfI32vgFCIQN7Go3rq9N6bx3WIKrPGwAXcIEP39Hdpvu2f4f+swBfzem7qXB9RUJRZO8PythXldeOd3x1vd1fPfCMRvl8janH2/519KhaHut3HmPFk56jw5Kzh1T97Nt/19Dh6JJ0u93rdYpk8/WMRNOCnxNKj+o/9x6U9mhaJL0TP/jWrvrIS2cfG7ZbYz20223jISiSXu+ft3+1o269rB/H3dw2VA+rf/Y8oN9oWh7re69V6dOOldzOuePq30A0iup5wOFoknS+v4n9Ng7q3VGz/urPCpAemDnfZ7lMRPTGZNb4zNYiXDit4Y26dc7f6Y/n/GXFRhRZVhr9eMt/zquUDTJLxitcs8urvcgEUkqnQsejNbsz1P+z4qEaAMAgObF+rzaqfcaPdbnsT7PD+vzAAAAAAAAAAAAGhPR/ACGjf1pNQCgJjZt2lRwPHPmTO23334VafvYY48t2V8tTJs2TXPmzNGcOXMUi+3L4ozFYiPlXv9NmzatoJ2777674Npf//rXWrJkieeiK0kyxujkk0/WsmXLtHHjRh1yyCEVeT3f+c539NRTT40c77///lqzZo3+/M//fMxYuru7tXTpUt1xxx2KRCLauXNn4H7y+bwuuuiigt+quWzZMt13332ei64k6cQTT9Rvf/tbffjDHx4pW7NmjW6//fbA/QIA0IzyNqfnB9bVpe8N/U+VPgmhbBgYe0+zNqs/Dj5Xh9GglTTL39f1A0+WPCdrM57l4wlG64x0OesIJfTnCihL5Qc9y9PWuzxM0JkkdUYnhDrf6+urJD3X/4dQ7fjx+qz4fba89Od36bXUy2PK30i/qt25vlBtre8f+/dpz7yhcq+5mjZ4jN/Py4Mbxh0yUk6/Lqn8oF4e3DCmvC+3U1uG3hh3+36vd0OAr6UASnt69+Ohzn9x8JkqjQTYZ+vQm84580kTz9DE2OQaj6g6ws6hXJ4J+fe42t4a2lSRwOqo8f7db5V8dkk63gNXuUul3st6SUa8nzvipsP5PgAAAACNhPV5rM9zYX0eAAAAAAAAAAAAADQ+gtEAoE527NhRcDxlypSKtZ1MJpVIJHz7ayavvvrqyJ+PP/54zZs3L/C10WhU8Xj5AQHD8vm8vvOd7xSU/fCHP9TcuXN9r/vIRz6iv/7rvw7V11133aVnntm3kfBjH/uYli5dWvK6WCym2267TTNmzBgpu/7660P1DQBAs0nn08rabF367s+/U5d+W1Xe5tSf2+VZl8oPeJYDQWTyQ0rbVL2HEYjr78Borq95sXFsSj8wcahniMDBicOUiIQL7Go3rmCEtCMYbTDnXd4ZDReYMK/z6FDn9+d2ydqxvzMnbNiYy8HJeeqIJMaUz+sKN05J6s+N/fd1t0dZ6XbG/n1K51N1mzeEtTvA14OC87OVeS/LuddevN7HYYMV+Hfd77NbqdcAtLsdmW2hzk/n01UaCbDPA70rnHVn9yyp4Uiq67CQcz2Xndntytt8RdqqBL/5QRhzO4/0LO+IJHRIcn5F+pjXdYyjPPh7E1HUOdZmMbfzCEU8lpTM7xobAAEAAAA0ItbnBcf6PNbnAQAAAAAAAAAAAECjIRgNAOqkeCFUT09PRdsvbu/tt9+uaPv1snXr1rr0+8ADD2jjxo0jxwsWLNCFF14Y6NqvfOUroRZ/ffvb3x75szFG1113XeBru7u7ddlll40cP/300wXjBgCg1biCZ2phMEdYVyWl8+7gqkw+U8ORoNU0U7BekK8rWev99yFmyt9wEo/E9Sf7XVzUXkx/Mu2SsttsF8no2EA5yf25S+X7vdtxBKy5LOo5T1Nj0wOfb5XXkB0bWJOqwL+jMRMb8/kZNid5uN7VfUqo9rxCs8oJ0hr0uNeVCOSqlbBfuyrxXkqVu0cDOe/PuuT+OhbGoM/rTTkCCAGEszMbLhhNGhvACVTSUD6t3/Xd71l3UGKu5iQPr/GIqufsngvUE9tv3O1kbbZiYWSV4Pfvd1ATohP1vql/6qz/k/0uGldotCQd1nmUjp3wbs+690z5oLqjkwK1s3jqh9UV7R7XWOptQnSi3j/1QwVlCZPU+VM/UqcRAQAAAOGwPq88rM/zx/o8AAAAAAAAAAAAAKiN8a0KBgA0LGNMvYdQMUceeaTWr18vSXr99dd1/fXX66qrrqrpGNasWVNwfMklwQMCpk+frsWLF+uXv/xlyXP7+/v1yCOPjBwvWLBAhx56aPCBSjr33HN1zTXXjBw/+OCDmjNnTqg2AABoFmnrDtM6ouu4cQUFDds29Ja2Zt4cU16pABLs4RfEUokAFbQvv8/W4V3HKV6BrxNh9WZ36I30xjHlQYKQcjbrWT7ezf/vnfqnmtFxoNbtflSJSFLvnnimDu1snXCJaul0BJq5PneuMAhXOy77xWfo7w/+mn7Xd79eTb2kvHKSpHQ+rZcGn/W8JpUfUCKSLBqPd3jVfvGZmtVxYMlxzOw40PezEjERXXrAF/Vw3/16YeDpgs/4SwPrPf8d9/r31fV3I2461B2dpJ3Z7eNqR5KO6HrXuP8elWPr0GZty2weUx42gNX1XnZGJmhu5xFjyndktmvz0GuB2wnL72tvxg6Nu/2Uz/2p1GsA2p3X11ZJMorIKj+m3BKMhir7/TsPOL/Gnz1lSUv9TGRaxyxddfB1eqTvt9qYetHz79xoOZvTcwN/8KzbmX1bE2OV3fhfLtdcLGZiOqLrXb7XGkV0UHKuTpl0tmb6zFOP7T5ZVx50rR7ftUZbhjaFGl+HSeiwzqN0Rs9idUQSnucckDhYVx38df3/7N17mCRlfff/z92H6e49zuzBhbAgkg1hQVAR5LiAwUeyRCNBExT9RdFEEg1KHjzEmCdBRH8STX6BeBkTkwtMHhONgogGImhgUQiQ1RAUEFg5CArr7uzMsrvTPdOH+/fH7MxO99zf6qqePs3M+3VdXBdd1VV197FqZqvec+/zt+vp0uPB12Z5elAvXnaCXrbslETb71e/vuYtOjR/hB7c+30tTS/XK1acpfX5w3s9LAAAAKAvLKSfRTk/j/PzAAAAAAAAAAAAAKDfEEYDgB5ZtWpV3e3du3e3df2jo6OR25tPLrzwQt1www3Tt9///vfrxhtv1EUXXaRzzz1XBx98cMfHsHXr1rrbJ510UqLlTzrppFgnXt1zzz0qlw+EP4444ojEf1GyVqu/EOfHP/5xouUBAJhPxiPiZO/8hT9SIb10ztu4feQb+vLP/37W9DgBI8QXFTEhjIa5iPqsvvMXPqgl6WVdHM2k7++5W3//sz+fNT0qJDTF+jy0IwR57LITdOyyE+a8nsUklyoEp1vxzJLxXZdPGEaTpKHsGp275oK6aaOVXfrjH7/dHNPKmOM8ZcWvzFp3q9Iuo02D52jT4Dl10//fJ/+3nh5/fNb9i9XZz5EVwVqbPVgbl75E3x65afYygc+TFaaTpN8/5MNmAKOTbtv1VX11x+dnTU96nGG9li/Mb9C71//prOn37r5dn3/u6lnTkwbZLKHXcUo79utR35fEa4G5q/mqRsu7gvOGMqu1q7KjyyPCYue915bRm4PzlqSW6YTlm7o8os5blV0b+3is5mt676O/papmR5RHyjt1WP4X2z28llj776HM2uDxSqsOLxypwzsYeX7BwMF67ZoLO7b+fuOc0/HLT9Pxy0/r9VAAAACAxDg/Lz7Oz3sy0bY4Pw8AsLgtnDgsAAAAAAAAAKC/EUYD+sxgZo0+esTf9noYC95gZk2vhzDrRKiRkZG2rbtUKqlUKtVNW716ddvW323nn3++zj///LqTr+666y7dddddkqQNGzbo1FNP1WmnnaZNmzZp48aNbR/D9u3b627/0i/9UqLljzwy3kU4Tz/9dN3tL37xi/riF7+YaFuNdu0KX8QIAMBCEBW+yKXybdlGwYjVxAkYIb5S1X4tCaNhLqIiP3kjatVp1nZLtaK893LOPom03MEwGpKzX8vw+84Kc1n7mnaNRwqHqqx4VTc+G1YMLrRvt/b3hfSShOsJvy4ppZV1A9ZQO8oef7LjDOu7znotrXhsVKg00Xgixl/xs6MtSUU9PxyjAXP3fHV3MLAkTcaaCKOh2x4vPaJnxp8Izjtl5a/0JG7aT1IupcHsKg2Xfz5r3mhluAcjCrNit736uQwAAACLF+fndU+vz9Hj/Lz4OD+P8/MAAIjP93oAAAAAAAAAAIBFgjAa0GfSLq3V2XW9Hga64JBDDqm7/dxzz2l4eLgtJ0g9+OCDTbc3nzjn9KUvfUl/9md/pr/8y7+cdVLZtm3btG3bNv3jP/6jpMkTsd7ylrfokksuadtf4mw8MW7FihWJll+5cmWs+w0Pt/8ipT179rR9nQAA9IvxWik4PesGlHLptmyjXcESRIsKsZT9RBdHgoXGCuTkXL5t3xNJFVLhIJFXTeO+pLyzwwBWKDDj+DVfL1hBMyvk1ekYRM7l5eTkAyciJwuOhd+j7VRIx9+/WvuIfKpg7qfDIbjw819ILYkMEnaS9dpbET2LdVxifd9Y08t+QhVfnnNsMWq/3o7gaVT8jGM0YO5GyjvNeauya6XAV5T3XASDzrlz5GZz3qbBzV0cSf8azKwOhtFG+imMZhzfWMdzAAAAQKdwft7iwfl58XF+3txwfh4AAAAAAAAAAAAAtF+q1wMAgMXq1FNPnTVt69atbVl343oKhYJe+tKXtmXdvZLJZPSxj31MTz75pD71qU9p06ZNyuVywftu27ZNl19+uY444gh96Utf6vJI52Ziov3RDy5KBAAsZPZFte0JzEjR0Zuar7ZtO4tdVOCk4itdHAkWGiuQkzeiTN0Q9R1lhbOmVI3Pw1wjRmiNHc80wmhWvKpN70fnXERoK1lwrNPMoFlgnGbALbU0IrAWCsH13/eBfZxhh8VCrP1oPh1+La0wmmQH5BKNJxCmm9KOMFpU/Kwd4wcWu5HKjuD0rBvQsnSyC1KBuXq+Mqrv77k7OO/opcfrBQMHd3lE/WkosyY4PSp02G2dPhYGAAAAgEacn5cM5+e1jvPzAAAAAAAAAAAA2od/egEwhTAaAPTIYYcdpsMOO6xu2q233tqWdd922211t0866SQNDAy0Zd1TqtXeREDWrVunyy67THfeead2796tu+++W5/61Kf0ute9TsuWLau77+7du/WmN71JN95445y3OzQ0VHf7+eefT7T87t27Y91vzZr6i5c+/vGPy3s/p/+uu+66RGMFAGA+Ga+VgtNzqXzbthEVS7G2j+Ss6I3UnoAKFi8rFmTFiLqhkI4IEkXEfmq+qppqwXmE0XrDCoiN14qq+dmvlRmvauP70Y611W/bex8ZHOs0OwgWCrhZz1shYWDN+j7ofAjOYo2/4isq1+Lv/+zHFn4towIkVjAviah1lGtzv+gsKn4WFU0DEI8VUpoML7ngPC/OQEBn3L37NlUVjgOfObi5y6PpX4OZ1cHpo5X+D6N1I8oLAAAAYHHi/LzWcH4e5+cBAAAAAAAAAAAAQD8gjAYAPfSrv/qrdbf/6Z/+SeXy3KIPO3bs0E033RS5nSmZTKbudqUSvrgoZGRkJPng2iyXy+mUU07RZZddphtvvFHDw8P64he/qCOPPHL6Pt57vec971GtFo4HxLVu3bq624899lii5R999NGWthN3OQAAFqtxI+iSa+NFtVHxpKiAEZIpViMCKr79f7Ubi4d98X0Pw2gR244K+lS8/TNbxmXMeegc633k5TXhx+umVXzZ/D5rZ6jPDqPV7zPHfcmM2HQjTpEoaGZEsPKpJeZYS7WifMOfCepGmC6pqEBZKUGgLCoeF7IkIn7XjuObsYixR32XxRX1XTnhx1VtwzaAxWzECCkNZVcbWTSgM6q+qu+MfjM4b3X2BTpm6fFdHlH/GsquCU63Ps+9UDR+h9PLYzEAAAAACx/n580N5+cBAAAAAAAAAAAAAHqFMBoA9NB73/teOXfgUrIdO3bo2muvndM6r7766rqTt5YuXarf/d3fDd53xYoVdbdHR0djb+fBBx9MNK6Zj7NTBgYGdMEFF+jee+/VIYccMj396aef1ve+9705rfuEE06ou33PPfckWv7ee++Ndb9TTjml7rm67bbbZl3IDQAADhivlYLT2xl0ibpANyrKgWQagz0zVWrETdC6ohFUameIKqkBl1PK+LXBplxvAAAgAElEQVRcVJCo4u0LdTIuO+dxIbmo/U1jzKtUtb/n2hmDsENhjeOx32uFtB3NahfrMxgaV1T0q2AEvrxqGvf1xwn9GEqM2rYVDwne1wiMWs9PLlWQM/JGUbHSuKLeX1HfZbHX3+QYLOq4AkBzu8o7gtOHMmsl0mjooh/s/S8z7LVp5a8q5dJdHlH/GsqEw2ijleG++TcGK/ray5/NAAAAACx8nJ/XXpyfBwAAAAAAAAAAAADoFsJoANBDRx99tDZv3lw37YMf/KC2b9/e0voeeughffKTn6ybdtFFF2nVqlXB+7/gBS+YtXxcN998c6Kx5XK56f8fHx9PtGxSg4ODOv/88+umPfHEE3Na5+mnn153+1/+5V9iL7tjxw7deuutse67du1avexlL5u+/dOf/lS33HJL7G0BALDYWNGLnMu3bRtR0ZskwRJEKxoXSEvtCahg8erHEJJzztx+VOyn4u1IIGG03sino6JWDSGyiNe2ELGepKyoWWMkMCrC187AqLkN4zGHxmXt7wvppdFxuoblrDhdL2McUdtOEmC1niPr+Um5lHLGvKh9clxjHd6vNzsGs6KYAOIZqQwHpw9lw+ElSfLi4lG0352j4d+NZ1xWp658VZdH098GM6uD0yu+or3V57s8mjBr/93Ln80AAAAALHycn9cZnJ8HAMBixh/RAQAAAAAAAAB0B2E0AOixv/iLv9CSJQcu+hgdHdX555+vvXv3JlrPjh079IY3vEETExPT0w4++GD96Z/+qbnM8ccfX3f761//eqxtffOb39R9992XaHyDg4PT/79z5866v5rZCZlMpu72zBO/WnHGGWfo8MMPn769detWfeMb34i17BVXXJHo8f7BH/xB3e33ve99id8PAAAsFuO1UnC6FfpoRdYNKK1McF6SYAmiRQV6yn7CnAc0YweVenvxvRUrior5RMWEMi78PYXOShLlig6Rte/9aI2pcZ8VGWpLheNq7VSIOU5rmjT5WCPDYrNicOFYVy9jHNEB1njHGd578zmyQnmStMR4nceqcw+jRY29HWG0UpN4G8dowNyMlHcGp6/KrJUzL3YhjIb22j7xU/1o7H+C805YfrqWZVZ0eUT9LSpcOFIJf6a7rfHYbEo3orwAAAAAFjfOz+sMzs8DAGCx4t+EAAAAAAAAAADdQRgNAHrsqKOO0l//9V/XTbv77ru1efNmPfPMM7HW8dhjj+nss8/Www8/PD0tlUrpn/7pn7R27VpzuVNOOaXupK+vfvWr2rp1a9NtvfWtb401rpk2btw4/f+VSkW33357rOXGxsb013/919qzZ0/sbe3du1c33HCDuf1WpFKpWSdEXXzxxU3/0uUNN9ygz3zmM4m29du//ds66qijpm8//PDD+o3f+A2NjIwkWs+OHTtmPQ8AACw0VvAol8q3bRvOOeXTyQNGSCYqYNKOgAoWr34MIUl2rMgarxT9WUgTRuuJnMubgZjxHoXRrFBY3FBbSill3UDbxmOxHnNo326NNZ9aonxE5LBxOeu4wdrPd0PKpZVz4eMWKx7SaMKPq6ZacF5UOM5+DeZ+fFOMiKuV57hfL9fKqvhK9PYJowEtK9fKer4a/j1kVHgJaLctI7eY884Y3NzFkcwPy9Mrzaj7aGW4y6MJM4/FevyzGQAAAICFj/PzonF+HufnAQAAAAAAAAAAAEA/IowGAH3g7W9/u9797nfXTfvud7+ro48+Wp/4xCf09NNPB5fbtm2b/uRP/kTHHnusfvCDH9TNu+qqq3T22WdHbnf58uW64IILpm9Xq1X92q/9mm699dZZ952YmNDnPvc5nXzyydq+fbuGhobiPjxJ0itf+cq62xdddJE+85nP6Hvf+54ef/xxPfnkk9P/7dy5s26773nPe7R+/Xq9/e1v19e//vXIk7Duu+8+nX322Xrqqaemp5188sk68sgjE4035D3veY9e8pKXTN/+2c9+ptNOO01f+cpXVKvVX4C8b98+XXHFFXrjG9+oWq2W6PlKp9P6yle+ohUrVkxP+9a3vqXjjjtOf/M3fxP5+Hft2qUvfelLetOb3qRDDz1U11xzTYJHCADA/DPurYtq2xs46WQ4BJOiInPN4idAFOvi+6hYUDdY31PWeKXoMFrWZec8JiTnnDNfy9lRrvD33IDLKe3SbRvTXMdTSC2Vc+HYWztZn8Gyn6h7r9d8bVZkbuY6ouJ0jY/Rfsw9/j4w4m5xjzNaje4tMQONbQijdTB4Gud54RgNaN3uiIDSUMYOo/lODAaLVqlW1D3P/0dw3mH5DTq8MPff9y80KZfSYHZVcN5IeWdwereZx2IRoVsAAAAAaBfOz+P8vJk4Pw8AAAAAAAAAAAAA+l/4z0YDALru05/+tIaGhvSxj31M3k9eRrZnzx596EMf0h//8R/r6KOP1qGHHqqhoSENDw/rqaee0iOPPDJrPdlsVldffbV+//d/P9Z2P/rRj+qrX/2qRkdHJUk///nPdc4552jDhg067rjjlMvltH37dt17773at2+fJOmggw7SVVddlegvU/7mb/6mPvzhD0//lc2f/exns042m/LWt75V1113Xd20559/Xtdee62uvfZaOee0YcMGHXHEERocHFQmk9Hw8LB++MMfzvornkuWLNHf/d3fxR5nlGw2qy984Qs688wzNTw8eYHgs88+q9/8zd/UunXr9PKXv1wrV67U9u3b9Z//+Z8qFicv3F65cqWuuuoqvfOd74y9rWOOOUbXX3+93vCGN2j37t2SpGeeeUbvete7dMkll+jYY4/VYYcdphUrVmhsbEyjo6N69NFHY/8VUwAAFgorlJJL5du6HSuY0o5wCCZFBUzmGlDB4las7gtOj4oFdUMhZQWJwuOVoiOBGcJoPZNPLQnuDxq/16wAZLujXHFjntZ48un2xkUtUZ/BUrWoZZnJ9/SEH5c3cjv51JLpOF2s18DY1/T6+yCfWqLd2jVretzjjFJEXDTq/WU97jHjezMu77353SvNfb8e53nhGA1o3a7KDnPeUHaNHc/0pNHQPv/1/J3mz4hnDm7u8mjmj8HMag2Xfz5r+khE8LBbqr6iCT8enNfrYzEAAAAAiwfn5x3A+XmcnwcAAAAAAAAAANCvOCsZwBTCaADQRz760Y/qzDPP1Lve9S499thj09O993rwwQf14IMPRi5//PHH62//9m91wgknxN7mIYccouuvv17nnXde3V863LZtm7Zt2zbr/i960Yv0b//2b9q+fXvsbUhSoVDQV7/6VZ133nn66U9/mmjZRt57PfbYY3XPUcghhxyiG264Qccee+yctjfTMccco29961s699xz9eyzz05P3759u26++eZZ9x8cHNRNN92karWaeFuvetWrtHXrVr3pTW/S1q1bp6dXq1Xdf//9uv/++5uuI+lfDgUAYL4Zr5WC03Op9kZd4kZm0Lqo57LsJ7o4Eiw0JSOgWEj3OoxmfK9Uw+OVomNChNF6J2/scxrfe9b3XL7N70V7nxVvPO0OtVmiPoPF2j4t04rJ/48IbE2tw4rTNU6zAmK9jnEUzPdQvOOMqAhY1PvLCjSWIgKNcZT9hKqyQ45zDaPFeV6iYnEAoo2UdwanF1JLlU8V5GSE0YA28d5ry8js37VL0tLUcr18+eldHtH8MZRZE5w+Wgl/rrvJ+rlM6t7xJwAAAABInJ8XF+fncX4eAAAAAAAAAAAAAPRaqtcDAADUe9WrXqWHHnpIX/jCF3T22Wcrk4luWOZyOb32ta/V1772NW3dujXRSVdTfuVXfkX33XefXve618m58IVta9eu1fvf/37df//92rhxY+JtSNIJJ5yghx56SJ/97Gd13nnnacOGDVqxYoXS6bS5zMqVK7VlyxZ94AMf0Mtf/vKmz4ck/fIv/7I+/vGP69FHH9UrXvGKlsYa5aUvfakefvhhXXLJJVq+fHnwPsuWLdPb3vY2PfDAA9q0aVPL29qwYYPuu+8+ff3rX9erXvUq5XK5psts3LhRl1xyib7zne/ohhtuaHnbAADMB9aFtblUvq3bsaM3RDfaJSrqUvF2XAVopmgEfnodQrK2b41Xio4JpR1//6BX4sYzre+5docg4u6zrPF067MRtZ2Z+/eoiMbUY7VDgw1hNCuU2LffB/GOM6zjESennLOPiZakw2G0sTmG0aK+xySpXJtbGC3O8xL3uQMw24gRUFqVXRu5nOdvs6FNflx8WD+beCo475SVZ2sg1fx35IvVYGZ1cLoVPOymqN+fWMevAAAAANApnJ9Xj/PzOD8PAAAAAAAAAAAAAPoRV0wCQB/KZDK68MILdeGFF2rfvn363ve+p23btmnHjh2amJhQLpfTunXrdOSRR+r444+PdTJOM0cddZRuvPFG7dy5U1u2bNEzzzyjsbExrVu3Ti960Yu0adOmupOezjrrLHmf/GK3FStW6OKLL9bFF18c6/7OOZ1xxhk644wzJEnFYlEPPvigfvzjH+u5557Tvn375JzTihUrdNhhh+m4447TC1/4wtjjueOOOxI/BmnyhLBrrrlGn/zkJ3XHHXfoiSee0MjIiNauXav169dr06ZNWrr0wAXGrT5f0uRz8JrXvEavec1rVCqVdO+99+qpp57S8PCw9u3bp6VLl2poaEgbNmzQxo0btXp1+OInAAAWovFaKTi93RfVFlLhcEixSnSjXaIuko6KQQFRvPd9G0IqpK2Ylh2BsiKBKaWVcvz9g16x9jmN+wjrtW13iKxgxK5mj6d/w2gzo1ZR+4ep/bMdpzvwnFd9VePeOG4wPo/dYofd7O+DmezIXcG8wG5yvhFkm+PxzVg1Oow21/16Y/AueB/CaEDLdhkBpaHMmv3/F/5eIYyGdrlz9JbgdCenMwY3d3k088tQdk1w+mhluMsjma0YcVzT62g1AAAAgMWJ8/MO4Pw8zs8DACAZ+9+gAQAAAAAAAABoJ8JoANDnli5dWnfiUaetWbNGr3/967uyrVYUCgWdcMIJLf3lzU7I5XI655xzura9fD6vM888s2vbAwCg31mRmVybw2j5dHh9RDfao1ybMINPU/OBVoz7khnp6PXF92ZMq4VIYNZl2zImtMZ6LzXGO4u1cCyq3TFPa32l2pi899OhLCt+1a1oYNqlNeBymvDjs+bN3L9an4mUUsq6AUl22GzmsuMR0cFCm1+DpKzxxz3OsO5nhV2nLDEienM9vmm2/FzDaFHfk0nuAyBspBIdRuNSF3TS7sqI/nvPfwbnHbP05VozsK7LI5pfBjPhi7JHKsN1x4G9EHV80OufzQAAAACA8/PqcX4e5+cBABCNP5YDAAAAAAAAAOiOVK8HAAAAAABAK7z3s6IzU9odmbHCIlaYDck0i5fMNaCCxatkhJ+k7sWf7O0nDxJZAcEMYbSeihvPLFXD+4xm8aqkrPd2TTWV/YHQpPVesyJdnWBFMGZG28xxppZMxz2sxxwnsDa5rva+BklZ448b97Iid82Oh6ztjhkRv7iaLT/X/XqccBvxWqB1I+UdwelD2TVdHgkWo7tGb1VV4WPeMwc3d3k0889UwLBRxZe1t/p8l0dTz9o3Z1xG2RQ/zwAAAAAAAAAAAAAAAAAAAACoRxgNAAAAADAvVXxFNVWD83Iu39ZtWWGRuMESRGsWL7FiUEAzkSGkLsafgtuPEYRqZMWE0i7TljGhNXGjVkUjFmWF1Vplvbcax2R9ProZDSwYn8O6oJnxmZi5bJz9dNS+ptDmoGpS1msWN+5l3a+Qjg6+mYHGiO+hOIrVZmG0ue3X4xx/RX2XAog2UtkZnH4guOSC8718h0aExaLqq/ru7luD89Zk12nj0pd1eUTzz1B2tTlvtDLcxZHMZu2/ex2oBQAAAAAAAAAAAAAAAAAAANCfCKMBAAAAAOal8VrRnJdrc+DEisTEDZYgWrPASdlPdGkkWGiiQ0i9DaNZQSgrniVJVSMmlCGM1lPWPqfUsJ9qvD3FilO1yoqETY6heSgsKqzWbmYgsG6c4edt5rJ2WOzAslGhrG4+5pC4cT2LHRqJPh6ywmnF2j5533rgqNP79TjHX8RrgdYUq2Pm52coOxlGc0YYDZirB/bea8a7Ng1uVsrxz9rNLE8PKqV0cJ4VPewW+1i4t4FaAAAAAAAAAAAAAAAAAADQX+ZwOQOABYYzyAEAAAAA89K4t8No+VS+rdsygysRkRXEV6zaIShJqvhyl0aChcYKe6SU0oDLdXk09azvlbKfMANoZeOzkHHZto0LydlRrrGG2+HvumbxqnaNZ3IMM0Jhxuejm9HAOOFRKxY483kzw2Iz9i9WTCvjMsqmBpqOtZPivocs1v2aRfes562mmsZ9Kda2Qzq9X4+K3E0hXgu0JiqctCqztsnSnIGAudkyektwetYN6NSVZ3d5NPNTyqU0mFkVnDdS7nUYrfdRXgAAAAAAAAAAAAAAAAAAAADzB2E0AAAAAMC8NDPu0ijX5shMIW0EV4hutEXUaylJFV+R5089oAVRF98757o8mnpR8Snru8WKCRFG662Csc9pfP8Vje+6ZvGqpHIRcdCZQU8r7tnNOIUVhZv5GbD2ETOft7yxn565rLWefohxWM9DqRq9f5xihcKaRfei3nvN4maR4zFidlPmGkaLEz3jGA1ojRVGc3IazE7GlqxDKI7WMRfPjj+tR8d+EJx3wvJNWppe3uURzV9D2TXB6SOV4S6PpJ79s1l7f38DAAAAAAAAAAAAAAAAAAAAYGEgjAYAAAAAmJfGayVzXlQUphXWhboTflxVX23rthajZgEVr5pq4nlGcq3GgrohKoxmxZAqNSuMlmnLmNAaK6xVathPdSsGkXKpWMExKxxlxUA7wXzuqjODZs2fN+vzVIrxePvi+yAdDpQVa/tihUGt/Wiz6FvUaz2XsNhY0zBapeV1S82DqpP3IYwGtGKkvCM4fUV6cEaItbdxWSxMd47eYs47c2hzF0cy/w1lwmG0USN82C1F42ecfojUAgAAAAAAAACS4N+KAAAAAAAAAADdQRgNAAAAADAvWVEMp5SybqCt2yqkwsGSyXEQ3pirOIGTsg8HoYAo1ufTihB1U1QAwIocVRWOCR0IlaAXrLDWzPef994M9XXi/WjH2ibHUPVVTfjxRMt2ghXmmvkZsAOHS4L/P9PM18D8PojYx3eL9R6qqaayn2i6vLUfbfbeinrscwmjlYzXbEpljvv0ZkFVafJ9EycqB6DeiBFOGsqGQ0sz8ZlDq0q1ou59/vbgvMPzR+qw/IYuj2h+G8ysDk4fKQ93eST17NgtYTQAAAAAAAAAAAAAAAAAAAAAsxFGAwAAAADMS+O1UnB6PpWXc+39y5RWsEQijNYOxWrzwMlcIypYnKywT9RnulusIJRkR46sz0EmRRitl6yYQ8WXVa5NvmZlP6Gaqsby7X8/FowxTX0movZd1rKdYAfNijP+v/nn2BpzqVZUzddir6dXogNlMSJgLT62rBtQWpnwOqt7m27XMtZkzOVa89hblDhB1ZqqsaJyAOqNlI0wWuZAGM3J+lmLMBpac9/uO8zv9jMHN3d5NPOfFTIcNcKH3WIdr0T9XAQAAAAAAAAA6Ef8mxAAAAAAAAAAoDsIowEAAAAA5qVx48LpXEcCMxHBkmrzOAeiWRdIz1SpEUZDclYIKeoz3S1pl1HWDQTnWSGksvE5yDjCaL0UFZ+a2ldFfc914v3YLDjWL2E0O2i2b8b/h/ezhfSB5816Dby8Jvy4JKlYteJhvY9xRAdYmx9ntPpd55yrex5nirNvtjQLnlZ8peV1x1n/9P2I1wKJ7TLCSUPZtV0eCRYL7722jN4SnLcsvULHLz+tyyOa/wYzq4PTRyrD8r53F6vZkdreH4sBAAAAAAAAAAAAAAAAAAAA6D+E0QAAAAAA89J4rRSc3okwWtQ6S0bACPFFBXqmVDxhNCRnh5Da/z3RCisKZY3bigllXKZtY0JyUTGHqe+3qO+5TrwfrXVOjcN6j00u2704hbWt4owYmB3RKMz4/4jXoBr9GvRDjCNqDFGv1ZTSHL7r7O+h1o9vmgXJqqqo5mstrz9OLG7yfoTRgKRGykYYLbOm6bK9yy1hPnus+KCenfhJcN6pK/+XsqlwSBi2ISOMVvFl7a0+3+XRHGDtv/vlZzMAAAAAAAAAAAAAAAAAAAAA/YUwGgAAAABgXrIuqs2l8m3fVjaVVcZlg/OKMeMcsDULqEhSmTAaWmBFcQqppV0eSZgVQ7LGXSWM1pfy6ah45uQ+IipuVUi3//1ovreq+8cTFWqLeDztZkW5Zn4GrLHOXLaQjgiLTcXgjP111LLdkkvl5eSC85rFvWq+qnEfjsXGeW+ZYbQ5RMWKMaKx1vdZM9772MGzOFE5AAd47zVSCYfRVmUPhNGs7yvSaGjFnaM3B6c7pbRp8Jwuj2ZhGMraIcPRynAXR1LP/tms98diAAAAAAAAAAAAAAAAAACgf3hOSwawH2E0AAAAAMC8NF4LR0Dyqc4EXeLEW9CaUoxwSYUwGlpghX26GX6KkjeCTNa4rc+BFW5Ed0Ttd6b2Eda+wslpwOXaPybjPT4VrLLGk3UDXX0/mZ+B6pj8/n/JssY6M/5mheBmLl8yYl1Ry3ZLyqWUM95HzQJlVihWkgoxjomseFqcuJmlWG2+bNlPtLTuCT+ummqx7ssxGpDM3upu81hjKBMnjAYkM1rZpfv33Bucd+yyE7Q6+4Iuj2hhWJ5eqZTSwXlW/LAbrJ/7O/U7HAAAAAAAAAAAAAAAAAAAAADzG2E0AAAAAMC8ZIVAci7fke1Z4ZRmwRI0F+c5JIyGVlhRHCt02G12cDH8/WZ9DtIu07YxIbmMyyrrBoLzivtfS+t7LpcqKOXa/yvaZu8tazzd/mxY+9aaqir7CdV8zfw8zBzrgMspZfyqe+qxFo319EuMo9UAa9Q+NJ8KR8/ibLcYI1oaUvVVjftwvHamiq+0tP4kx10cowHJRAWThrJrzHlTvPjTbEjmu6PfVE3V4LwzBjd3eTQLR8qlNZhZFZw3Uu5hGM06pjMirQAAAAAAAAAAAAAAAAAAAAAWN8JoAAAAAIB5adx3N3BirbfUYjgEBzSLvkhSmTAaWmBFcawYU7fZwcV9welWGC3jsm0bE1pj7iP2vwe7Hemz3lvT4zH2Xd3+bEQ9/mJtTONGQEOS8ukDyzrnIh7z5Dqsx9wvocRWA6xRAbNCjGMiK0ZifQ81E3e5VoOnSY674hxfADhglxFMSiuj5enBLo8GC13VV3TX6K3BeWuzB+uoJS/p8ogWFitmOFoZ7vJIJkWFU/slUgsAAAAAAAAAiMv1egAAAAAAAAAAgEWCMBoAAAAAYF6yYim5VL4j27PDIUQ35irOc9hqQAWLW7+HkKxxlKrh77eKrwSnZwmj9ZwdRpt8Lbsd6TPfW/vHYY4n3d3PRlQIo1Qbi9w/NC5rratY3bd/fVZQtT++D1oNsEbFv/Kp8LHLTAXjPq2G0eKGy1rdryc57uIYDUhmpBIOow1mVyvlDvxzonNc7IK5u3/PPdpdHQnOO2Nwc917DskNZlYHp4/0KIwWGbvtk2MxAAAAAAAAAEBcvtcDAAAAAAAAAAAsEpleDwAAAAAAgFaM10rB6bmIyMpc2NEbohtzFec5JIyGVnQ7RpVUwYhQWUEi63OQIYzWc9Z7aur7rduRPms8xf1RCut7t9ChfajFinJJkyGzqqvGXtZ+DabidOHPlfU57LZWA6zW/IzLKJtq/t2wxAqjxQycNRqLGVRrdb+e5LgrbqQNwKSRcjiMtiqzJtby3nMRDOLbMnpLcHrWDeiUlb/S5dEsPEPG59b6nHdadOy2P47FAAAAAAAAAAAAAAAAAAAAAPQXwmgAAAAAgHlpKnTSKJfKd2R7VrzFGgfiqflqrOeQMBqSqvqqJvx4cF6/hJCaxbQaWZ+DtONXfL1mxzOnolxGpK9D78VmMU87GmiHyjohl8rLyckH/qJ0sbpP1VTFXLbxMVqf61JtTFVfUdlPGOvpl++D1gKs1vy4r6X1HrRCcs00C7lNKbe4X4+7/qT3BSDtquwITh/KNgaWXPB+oe9yIORn409pW/HB4LxXrDhTS9LLujyihWcwuzo4fbQy3OWRTIo6nul2mBcAAAAAAAAAAAAAAAAAAADA/JDq9QAAAAAAAGjFeK0UnG6FRebKWm+r4RBMsl7HRuUaYTQkE3Xxfb+EkAqJw2jhSFTGZds2JrSmWeTOek2t98Ccx2NFwqpFee8jxtPdMEXKpZSLiMpZYauU0sq6gbpp1mtQrI1FBjg79RokZX8fRMdDreco7mtpbbfVqFixGu+4qNLifr1ZKK7V+wKQRso7g9OHMo1hNGButozeYs47Y3BzF0eycA1l7DCa992PGJaq9vFMv/xsBgAAAAAAAAAAAAAAAAAAAKC/ZHo9AHSPc265pNMlrZe0RtIeST+T9EPv/aNt3E5W0mmSDpN0sKS9+7fz3977J9u1HQAAAACLmxXUsgIrc2VHb6KDJYgWN7xS8YTRkExUEKdfQkhRIacQ63NAGK33zH3E/giE9Zp2LuYZHk9VFZX9hIpVazxLOzKeKPlUIfh5Ldb2qWrEAAvpJXLO1U+LiNNZj3dq+/0g6ffBlJL5Wsb7nisYr3ncwNms5WIGY1vdr1uPNzwWwmhAEiMVI4yWXVt32wXvBcRTrI7pvt13BOcdkT9Kh+aP6O6AFigraFj2E9pX3aNlmRVdHY91fJBxGWVTA8F5AAAAAAAAAAAAAAAAAABgcer+n4AF0K8Ioy0CzrnTJP0fSWfLeM2dc/8j6bOS/ta3+KfCnXNrJX1E0gWSVhn3uVvSX3rvr29lGwAAAAAwZdwIkuVT+Y5szwyuJAh0YLZOB1SweEWHkPojjGZ/r4S/3ypGJCrj+BVfr+XT4bjWVPDLimhaUaq5KkTEvkq1ohkOLBiPo5MKqUEmqwYAACAASURBVCUa1fCs6aVaUTVXCy4T+gzbAdOxJqHE7sfgQlo9zrDiX4V0vMdl3W/cl1T1VaVdOtZ6pscTM6jW6n49SeyMeC0QX9VXtbsyEpw3O7AUTqN5TkFADPc+f7vGfThyfubQ5i6PZuEazIbDaNJkBLHbYTRrn9wvP5cBAAAAAAAAAAAAAAAAAAAA6D+pXg8AneOcyzrnPivpu5LOUXQI7yWS/kbSHc65Q1vY1mZJP5T0+zKiaPudKukrzrn/65zrj6sOAQAAAMxL47XwxdS5iBjMXOTT4Qt2kwQ6MJsVgGpEGA1JRYWQ+uUCfPt7ZZ9C3Xrrc5Bx2baOC8nljX3P1D7CiltZy819PPZ7vFQbM/dd+R5EwqyxFqv7zHhmKPxmvgbV6DBap44bkmr1OMN6bHHfW0siXvOo580yFjN4Wm5xv55kTHEjbQCk3ZVd8grHKFdFBJaAJLz3unP0luC85emVeumyU7s8ooVrRXqlUgrHTUcqO7s8mrkfrwAAAAAAAAAA+kn4j+gAAAAAAAAAANBuUaEszGPOuYykr2syiDZTWdK9kp6RtFSTQbTDZsw/Q9JtzrnTvPfDMbd1lqQbJQ3MmOwlfV/S45IGJb1M0syrZ94saYVz7jzvffhqGwAAAAAw1HxN4767YbRQhEVqLRqCA6zoTaOyn+jwSLDQWDGhjMsqm+qPkFjBCELVVFPZT2jA5eqmV30leP+M41d8vWbFvUq1yfij9X4spDsTIrPeW5NjskNhUct1irXNUq2omhHpCQXcCkZYrFQrzuvvg2bHGeZ7K2bkLuo1L1b3aWl6eaz1TIl7XNRq8DRJkHbq8weguV3lHea8oUx9GM2ZF7vMjroCMz069gM9N/FMcN6pK/9X3+yTF4KUS2sws0q7KrM/26PlWP/821ZFY5/cL8FqAAAAAAAAAEAS/JsQAAAAAAAAAKA7Ur0eADrmKs2Ool0jaZ33fpP3/k3e+1/33r9w//0en3G/X5Z0g3Ou6Z9ycc6tl3SD6qNod0k6xnt/gvf+t7z3r5a0XtJ7NRlmm/JaSVcmfWAAAAAAMOHHzXk5l+/INkMRFonoxlzFff4qRhAKsPRT+MkSFS4KRQOtkFDGEZHotbwRzxzf/x1nvR+t5eYql7L3hcWIUFgv4hR5M2hmB9xCz5sdp+uvEJwlavxR5vreiorzJYmQTRmrxguethpGSxKkjRtfBSCNVHYGp+dcftbxihVG4xIYNLNl9ObgdKeUNg02/pMm5mowszo43fq8d5J9vNI/x2IAAAAAAAAAAAAAAAAAAAAA+gthtAXIObdR0qUNky/z3r/Xez/SeH/v/a2STlN9HO0MSRfE2NxHJA3NuH23pFd57x9u2Ma49/4aSb/VsPz/ds69MMZ2AAAAAGBaVEwrKgYzFwUjMFL2Ey3HPRA/usJzjKSK1f6/+D4qXBQaf5kwWt+yAltT33HWd11UHG8uUi5thkKL1X0qVcP70YIRKeukqOfO+hyHlolcj3Hc0E/fB9b4S7Wiar5mLmc/R/HeW1HPwVgLYbFO79etxxtCvBaIb6QcDiWtyq5VjL+hAzQ1Ut6pB/beF5x33LITtSq7tssjWviGsmuC00cqw10eSfcjwQAAAAAAAAAAAAAAAAAAAADmP8JoC9MHVf/afst7/5dRC3jvn5P09obJH3fOpa1lnHO/JOmtMyZNSHqb974UsZ0bJX1+xqScpD+LGhsAAAAANBqPCF106sLafERgxArMoLliNV50hTAakrKCOFZ8qBcK6YjvlUA8wPocZFymbWNCa6y41FTUytpvdTIGkTciZ3uru1VVxRhP9z8f1nNQqo1FRDRmj9N+DcZUMkOJ/RPjsMbi5TXhx83l5hoaSTeJ6CVVjBlTs0KPzSSJnY03icoBOGCkEg6jDWXCYaUQL9+u4WAB+u7ub6qm8HfymYPndnk0i8NgZnVw+mgPwmhzDbkCAAAAAAAAAAAAAAAAAAAAWHwIoy0wzjkn6dcaJn8qzrLe+y2S/mvGpBdJOitikQslzQyn3eC9fyzGpq5quP1bzhlX3wEAAABAQFQYLZfqzI8XhbQdGIkbAcFscQMn5RphNCRjfS6tWFQvDLicnFxwXjEQO6r6cMwq47JtHReSsyJU47WixmtFMxbTyRCZtW4rfiP1JhxoBTGK1bHg50CSCoHPsR1YK2rM+j6YJ6HEqECZFUaLWl/c+7ZyfNPp4GmSMXl5jdfMv+EBYAYzjJadHUab/GeoAE8YDWEVX9Zdo7cF560bOES/vOS4Lo9ocRgywmgjZftYsFPMkGvE71kAAAAAAAAAAAAAAAAAAMDixGnJAKYQRlt4jpY080qVCUl3JFj+3xtuvyHivr/RcPvaOBvw3j8s6d4Zk5ZKenWcZQEAAABAkkoRkYucEUaZq6h4Sty4F2aLGzhpNaCCxcv6XPYi/GRJuVREzKk+HlDzVdVUC96XMFrvWa+jl9doZZe5XCjw1S4FY0xRMQzrcXRS1GfA+hyHlokKge02XoNOPv9JRT33UccZVjwuyWtpfS9a647S6f160mMu4rVAPLvKO4LThzKzw2hAUvfvuUfPV0eD884Y3GzH9jAnobChJI1WhuW7fMbQfPjZDAAAAAAAAAAAAAAAAAAAAEB/yfR6AGi79Q23H/PejydY/gcNt38tdCfn3EGSXjJjUkXSXQm2c4ekk2bc3izppgTLA4vG2NiYvv/97+uxxx7Tzp07VSqVVCgUtG7dOh155JF62ctepoGBgbZs6yc/+Yn+7u/+Tlu2bNGjjz6qkZERlcsHLlS99tpr9ba3vS247H333adrr71Wd999t55++mnt3r1btdqBi/afeOIJHX744ZKks846S1u2bJme1+2LcAAAwPw3blxUm3UDSrt0R7YZFUZrJRyCSXGfO8JoSMqK4UR9lnuhkFoa/Bw0Tqv4irkOwmi9F/W+Gq0Mt7TcXFnrHokYTyFlx8U6xQqalWpFVY0YYOixRYXARirhGFw/fR9EB1jtfaU1L0loxHrdS9UWwmgxl2l1v16sJgudEa8F4rG+J8NhpXDEyovf8SJsy+jNwek5l9fJK17Z5dEsHoNG2LDsJ7SvukfLMiu6NhbreKUXUV4AAAAACOH8PAAAgCT4gycAAAAAAAAAgO4gjLbwrGq4Hf4T7LbG+x/qnFvpvd/dMP3FDbcf8N4nuSrt7obbxyRYFljwqtWq/vVf/1XXXnutbr/9dlUq9gXw+Xxe55xzjn7nd35Hr3nNa1re5uc+9zldcsklGh9P0lKUKpWK3vWud+lzn/tcy9sGAABIarxWCk7PdfCi2rRLa8DlNBFoT0cFSxAt7nNX9hMdHgkWGiuGkyQW1A1WDKAxSBQVEco4fsXXa/l0a2G0Tr4frXWPlMPxGyenXCrfsfFYrM9AsbZPVVWD80KPLSosZj3mfvo+GHA5pZRSLRCDsyKi5dqEGU1MEn0rGO/fMSMwafHem1HKRuVa8jBazVc17sPHgBbitUBzE7Vx7avuCc5blVk7axqXuiCJZ0pP6sfFh4PzTlxxphlIxdyFw4aTRio7uxpGKxo/m/VTpBYAAADA4sP5eQAAAK0iuAoAAAAAAAAA6I5UrweAtmu8UjyXcPnQ/Y+OMW1bwu38OMY2gEXpP/7jP3T00Ufrwgsv1G233RZ50pUklUolfe1rX9NrX/tanXjiifr+97+feJs333yzLr744sQnXUnShz/8YU66AgAAXWcFjzoddLEu2i1WiW60Ku5zZ4VfAEuxGo7z9NvF91YMojHmE/UZyLhsW8eE5Ky4l2RHuVJKK+sGOjUk870+UgmPJ5cqKOW6/+viQir8GSjVirMCgVNCjy0qcmbF6frp+8A5Z47HiohGxUWt2FnwvsZrEDdyNmXcl4Jht5BW9utWGDcK8VqgOWu/IEWHlYA47hy92Zx3xuDmLo5k8VmRXqmUcSpAVLi3E6z9cT9FagEAAAAsLpyfBwAAAAAAAAAAAABA/8v0egBou8Yz2Q9OuHzo/r8s6T8bpm1ouP2ThNt5quH2aufckPd+JOF6gAXlIx/5iD7ykY/I+/q/pOSc08aNG7V+/XqtXr1aO3bs0E9+8hM9+uijdffbunWrTjnlFH3605/W7/7u78be7oc+9KG6bV544YV6xzveoUMPPVTZ7IEL7Nesqb8Qbvv27fqrv/qr6dsDAwP6oz/6I5177rlau3atUqkDF92sX78+9ngAAACascIYUWGadiikl+j56uwfW4hutC7uc1fx5Q6PBAuNFVBMEgvqBut7q/GzEfUZyDh+xddrOZeXk5MP/GVkKzhTSC+Rc65jY8qnw++tsm/8uwr779/hfajF2q6X17g39veBz3HWDSiltGqqzppnPeZ+i3EU0ks0Vts7a7oVEW0MKM6UJPpmhtGMwKTFCtmFVIzXJErU4zWXIV4LNGUFPCVpMLN61jSn8L4rtA/E4jZW3av7nt8SnPeLhY1anz+8uwNaZFIurZWZVcFj0ajPfSckid0CAAAAQKdxfh4AAAAAAAAAAAAAAPMDV00uPD9quH2Ic2699/6ZmMufEpi2MjBtsOH2z2OuX5Lkvd/rnCtJyjdsZ05hNOfcCyStTbjYL85lm0C7XHrppbr66qvrpi1fvlwf+tCH9OY3v1mHHXbYrGW2bdum6667Tp/61Kem/5rkxMSE3vnOd2rfvn269NJLm273kUce0QMPPDB9+9xzz9UXvvCFWGO+8cYbNTFx4ELWK6+8Uu9///tjLQsAADAX40bwKOfywentYl2020qoA5PihtGsqA1gKdbCQZ9+u/jeDBIlCqNlzXnoDuec8qlCcH8wUmn8OwaTOv1eTLp+673Yaa08D4VATM05p0JqifbV9iTYdm9icBbrubD2lVHHH0mib1YwMunxzZjxvRvSSvA06phhwOU04ccDyySLuwGL0a7KjuD0ZemVGkjlAnM6F/XEwnLP87cHv5sl6czBc7s8msVpKLMmHEYzjk87oeariWK3AAAAANBJnJ8HAAAAAAAAAAAAAMD8kWp+F8wn3vvnJD3SMPn/ibOsc26ppPMDs5YHpi1ruB2uEkRrXCa0naTeJemHCf/7Whu2C8zJ5z//+VknXZ1++ul66KGH9KEPfSh40pUkbdiwQVdeeaUeeOABvfjFL66bd9lll+mOO+5ouu2tW7fW3X7DG94Qe9ytLnvHHXfIez/9HwAAQFIlI4zW6cCJtX5rPGgubnSl4isdHgkWGutzmSQW1A3W90qxmiSMxt8+6Ac547UcLc+OUUidfy8mDY71KhJmRbmi5I2IW9K4Rivb7iTz+8DYV5aq9j40yetpBhqryaJiSe7fyn698XtxpqFs+G9lFDlGA5oaMfZTQ5nVCdfE73lxQM3XdOfILcF5K9KDeunyk7s8osVpMBv+HIdiaZ0S9fuSUOwWAAAAADqF8/MAAAAAAAAAAAAAAJhfCKMtTP+34fYHnHOHxFjuo5JWBqbHCaOF/9R3tMYz4RvXCSwKjz76qP7gD/6gbtqpp56qW265RevXr4+1jiOPPFLf/va3tXHjxulptVpNb3nLW7RzZ/QFLtu3b6+7HXebc10WAABgLsZr4R9Bcql8R7drRWyKtWThEBxQih1Gs6NQQCPvvRnQ6VX8yWLFqxo/G1ERoYzLtnVMaI21jxipDAenJw2XJZU0NFFIh+NYndbK82A9tqSPudOvQVJWoMzaV1rBtJzLK+XSCbZrHd/E20cfuH/846FyC/t163lIK6Pl6dCvtaUSx2hAU1YgaZURHHTGeri8FjM9MvaAfl7+WXDeaYOv5vi1S4Yya4LTR43j006ICqP127EYAAAAgIWL8/MAAAAAAAAAAACA+YPzkgFMIYy2MH1a0u4Ztwcl3RIVR3PO/W9JlxqzazG22cq+hf0RIOl973uf9u7dO317cHBQ119/vZYtS9YKfMELXqCvfOUrGhgYmJ7205/+VB/96Ecjl5u5bUnKZuNfkDSXZQEAAOZi3IcvrM11OHhkBoyq9oW+sJVrE5Gxp8b7AnFVfFlVhd9bVnioV6wYVWOQKCoOSFiiP1j7CCsWZcWo2iVpaKJX0cABl1Mq4a+prceW/DH3V4zDeg2sQJkVCksauYv7PdRMkjBaK8FTazz5dMGOu3GMBjS1q7wjON0KKslZaTTggDtHbwlOTymlTSvP6fJoFq+hzOrg9NFyN8No9vFEvx2LAQAAAFi4OD8PAACgnfi3IgAAAAAAAABAd2R6PQC0n/d+1Dn3dknXz5h8rKSHnXOflXSLpJ9JKkh6qaR3SDp9xn2fkTTzz8qNBjazt+F2K1dONi7TuM5WfEbSlxMu84uSvtaGbQOJ/ehHP9I3vvGNummf+MQndNBBB7W0vqOPPlrve9/79PGPf3x62j/8wz/o8ssv19DQUHCZWi1O+zBsLsu2w0MPPaQf/OAHGh4e1sjIiPL5vNauXauNGzfquOOOUy6Xa2m9lUpF9913nx5//HHt2LFD4+PjWrt2rQ4//HCddtppyufzbX4kAAAgqfFaKTg9l+rsfrqQNsJoCcMhmJQkuNJKQAWLV9R7K5/uTfzJYoWQGr9Xoj4Dacev+PpB0rBYp0MQScNrnQ61WZxzyqeWaKwW71eDGZdRNjUQnJf0Oe3VY7ZY4cZSNfydZobCEr4X7ajYPnnv5WJGkIrGOEMqPnnw1AzBpZZEHKPFj7UBi9VIJRxIGsoaYTSD9/wtHEzaVd6hB/b+V3DeS5adpMFsONaF9hs0PscjlZ2J9vFzEXV80G/HYgAAAAAWJs7PmxvOzwMAAAAAAAAAAAAA9ApXTS5Q3vsbnHPvlfT/SUrtn7xc0vv3/2e5RtJKSW+dMW3ehNG89z+X9PMky3TjpH/AcvXVV9ddMLZmzRpddNFFc1rnpZdeqk9+8pMqlycvmt+3b58+97nP6QMf+IAk6cknn9SLXvQic/lXvvKVwenXXnutJEWOz/o8PfHEEzr88MOnb5911lnasmXL9O0kF809/fTT+vM//3N9+ctf1vbt2837FQoFvfKVr9Rb3/pWvf71r1c6nW667ocfflhXXnmlvvGNb+j555831/vrv/7ruuKKK3TkkUfGHjcAAGivUq0YnJ40BJKUFVxJEvjCAUmCchVf6eBIsNBEvbes8FCvWONp/F6xPgMppZVyqeA8dFfiKJcRcmqXpOPpdKgtSiEdP4wWNc6kcY1ePuYQK9xoHWfYobBk33OF9LLg9KoqKvsJDbh4F7aNJYiQtbJft0NwSyKO0cLHjAAmee81Ut4RnDeUWRuc7mT9mwphNEz6zug35RW+aPuMoXO7PJrFbSgTDqOV/YT21fZoWXpFx8dgHa+klVHGZTu+fQAAAADg/LxJnJ8HAADah38TAgAAAAAAAAB0B1dNLmDe+2skbZb0SIy775X0bkmXSjqkYd5zgfvvbrgdvkLG4JxbptlhtFCADVjQ/v3f/73u9m//9m9rYGBgTutcu3atXvva10ZuZz7y3uvKK6/Uhg0b9OlPfzrypCtJKhaLuvnmm3XBBRfo6aefjrxvtVrVH/7hH+rFL36x/vmf/9k86WpqvV/60pd0zDHH6Oqrr27psQAAgLkbr5WC03Opzv7laCu6kSTwhQOSBOUqvtzBkWChiXpvdTqgmJQ1nlK1MYwW/gxkiQn0DStqZd6/w1GupONJGhVrpyTPRdRnOHEMLuFz1Gn2cUY47lWsWqGw9r32xQSxsyTHQ+UW9ut2CG6J+RhKCcYPLEZjtb2a8OPBeUPZcFAJiFKulXXX7tuC8w4eOFRHFl7c5REtbkOZ1ea80fJwV8ZgRUrz6QJ/vAoAAABAV3B+XnycnwcAAAAAAAAAAAAA6CeZXg8AneW9v9U5d4yk10k6V9KpktZJWi7p55KekHSjpC9475+TJOfcUQ2r2RpY9WMNt1+YcGiN99/lvR9JuA5gXnvmmWf05JNP1k179atf3ZZ1v/rVr9YNN9wwffuee+5RuVxWNjs/L5ivVCp64xvfqOuvv37WvIMOOkjHHnus1qxZo/HxcW3fvl3/8z//o71798Zad7FY1Hnnnadbb721bno2m9VLX/pSrV+/XrlcTs8995zuu+8+jY2NTY/p0ksv1cjIiC6//PI5P0YAAJDMuHFhba7DwSM7ukEYrRWN4acoZT/RwZFgoYl6b/VbGK2QXhqcPu5LqvmqUi4tSar4SvB+GcJofSPpe6vT78XkkbBehtHiPxeFVPgzI0mFhI+hlzG4EGs8VuzRDIW18XkoVse0MrMq1nrGqvEjZJVa8jCaHYJbYr7frRgLgEkj5Z3mvFWZZGE0P9fBYEH47713a2+18W8rTTpjcDMhrC5bkRlUSinVVJs1b6SyU+v1oo6PwTpe6XQkGAAAAAAkzs9LgvPzAAAAAAAAAAAAAAD9hjDaIuC9r0q6Yf9/kZxzh0paP2PST733Pw3c9eGG2xsSDuuIhtsPJVx+wapUvZ4hEddx64ekTLq3F+Dcdddds6adcMIJbVn3y1/+8rrbxWJR999/v0488UStX79eTzzxxPS8v/qrv6r7y4r/8i//opNPPnnWOtesmbwQ7qyzzpqe9sY3vlH33nvv9O2Z651p/fr1welxXXbZZbNOujr33HN1+eWX68QTT5x1/1qtpnvuuUdf/OIXdd1110Wu+93vfnfdSVcrV67U5Zdfrne84x1avnx53X2LxaI+85nP6E/+5E9UKpUkSVdccYVOOukkbd68ucVHBwAAWjFeKwWn9yoyYwVLEC3J82ZFoYAQ672Vc/np0Fi/KER8b5VqRS1JL5MkVXw4IpR2/HqvXySNO3Q6ypV0/b2MhEXFzhpF7euTHAdk3UDffX6s95AVFLG+6xK/F41AY9Q2wvdNEEYzvtOiRIXgzHhtgggrsBjtquwITk8ppZWZoeA8J+v36qTRIG0ZuTk4PefyesWKs7o7GCjl0lqZWaWRyuwI4khluCtjMPfffRasBgAAwOLC+Xnd0+tz9Dg/Lz7OzwMAAAAAAAAAAAAA9Jv+uvIL/eDshtt3GPf7YcPt45xzS7z3ca80O63J+hatZ0akI/549l9uR3s9/vGUDl/T2zE888wzdbfXrVun1atXt2XdL37xi4PbO/HEE5XJZHT44YdPTx8cHKy730EHHVQ3v9GyZcum/z+fz9fNi1quVbfeequuueaaummf+MQn9MEPftBcJpVK6dRTT9Wpp56qK664YtY4p3z5y1/WtddeO337hS98oe644w7zcRQKBV122WU65ZRTdPbZZ6tUKsl7r/e85z165JFHlEqlkj9AAADQklKtGJyeS4X3++1iXbhbqhblvZdzvY3vzjdJAipeNVV9Vek+i1qhP9nxnPjxpW7JRwShirWxpmG0TJ+FnRazpDGqpPdPKpcwNtHp8URvO/5Yo8aZ5DH0MgRnSRr3skMjyR5bzuWVUko1zf6dZJJ9dbLgafIwWtE4/sunliifThaVAzBppDw7liRJKzOrzJisHUbDYvd06XE9UXokOO8VK89SwfiuRmcNZlaHw2jG57/drN/f9PLYEwAAAOD8vO7p9Tl6nJ8XD+fnAQAAAAAAAAAAAAD6Ef9CjEbvaLj996E7ee+flfTAjEkZSacn2M5ZDbdvSbAssCDs2rWr7vbQ0FDb1p3P55XL5SK3N19cccUVdbd/7/d+L/Kkq0aDg4PBE6+893XrzmQyuummm2KdPDZ1QteUbdu26cYbb4w9JgAAMHfjtVJwetIITFJ5I6pUVaWlwMdiZ10gbSn7iQ6NBAuNFedJEl/qlqiAUXFGDKniK8H7ZFy27WNCa6x4pnn/DsdB0i6tAZdrfsf9ehkKK0QEAhtFRTSSPIZ+jHFYca9xX1LNV2dNLxrBtKSPzTlnvgbFaoIwWoL7tnLcVDIibYXUEvO1TxJrAxajUCxJklZl1yZel5ef63Awz20Zvdmcd+bguV0cCWYayoYLBKOV4a5s34qs9uOxGAAAAICFh/Pz4uH8PAAAkAx/RAcAAAAAAACd5TktGcB+hNEwzTl3uurjZo947++IWOSrDbcvirmdoySdNGPSPkm3xlkWWEgaT4Rq/MuQc9W4vuHh7lzk0k4PPPCA7rrrrunby5cv11VXXdWWdd9+++364Q9/OH37zW9+s4477rjYy7/73e+uO6Hrpptuasu4AABAc+VaWVWFA0E5F/5L1O0SFb0hvJFckoCK1FpEBYtTyfg8JokvdUtUEGDm47De/4TR+kfSuEM3YhDzJRSWT8ePykUF5ZI8BitC1ktRxxmhmKj9XZf8sVnPhxUzmet9yy3s04tGUDWfWmK+9mU/wfEDEGGkHA6jDWXCIaUonH+wuI1V9+q/nr8zOO+XCsfoF3KHdXlEmDKUWR2cPmqEEdutVA3vv3sZ5QUAAACweHB+XnOcnwcAAAAAAAAAAAAA6FeE0SBJcs4tkfTZhskfbrLYFyRVZ9w+3zn3SzE21/in5P7Ve1+KsRyABJyb/3+N6dvf/nbd7QsvvFArVqxoy7pvu+22utsXXHBBouWXLFmiV7ziFdO3v/Od77RlXAAAoLlxH76oVpLyEUGRdogbMEI8SWNyFR8O4gGNitXwe6vT3xGtyKayZtxs5mekUrPCaJmOjAvJJX1/dSMGkST+FRUc67REQbOI+yZ6vH34fZCPiDeG9pnWfrSV6NsSY9tJ9tVJgqetxMpKEd/tUZ8nK8gCQBoxwkhDWTuM5jT/f++M9vvP3d9W2U8E5505dG6XR4OZBo3Q4Ui5OxfrW78r6WWUFwAAAADahfPzonF+HgAACxV/LgcAAAAAAAAA0B1cOblAOecy3se7Ytw5t0zS1yUdM2Py9d7766OW894/5pz7vKS37580IOk659zZVujMOfc6SW+bMWlC0kfijBNYaFatWlV3e/fu3W1d/+joaOT25oO777677vZZZ53VtnV/97vfrbu9atUqPfnkCQR+aQAAIABJREFUk4nWMfMksCeffFK1Wk2pFM1RAAA6bbxmxy1yqbw5rx2iohtJI19IHpOr1MIX2gONrPdWL8NPUfKpJdpbnf0z4czHUVX41zxWVA3d15dhtDYFxzotyXMR9TwniZ31Y4wjavyh7zXr2KOV95b1fIwliJ2N1ZKF0bz3iS4ctL/blzaN1y5Tey7kAxaaXeUdwelDRkgpGhfBLFY1X9Odo/8enLcys0ovWXZSl0eEmazQ4UhlZ+J9cSvskGv/RWoBAAAALDycn9cc5+cBAAAAAAAAAAAAAPoVYbSF62Ln3Osl/aOkf/Pez7q6ZX8Q7fWSPibpkBmznpT0rpjb+TNJvyFpaP/tUyV9yzn3O977H83YVk7SOyX9RcPyf+G9fyrmtoAFpfFEqJGRkbatu1QqqVSq7xOuXr26bevvlmeffbbu9jHHHGPcM7mnn3667vbJJ588p/XVajWNjo7OyxPcAACYb8ZrwQ6zpORRmqSiwmulKmG0pJLG5Mq+3KGRYKEpGQHFfgwhSZMRo1AYbeZnpGK8/zMpwmj9Iun7K9+FUF+S/WI3Qm2WJM9d1DjzqaVtWU+vRI2/VK3/Xqv5mhmLLSR4HqaXMd6PcSOmFV9W2ccPmHp51VRVOsE/UZhhlVQhMnxJvBYIq/mqRiu7gvMiw2hGRMl7wmiL1Y/G/kc7ys8G552+8tVKO/45upeGMuF/Gyr7Ce2r7dGydGfjofPtZzMAAAAACwvn5zXH+XkAAAAAAAAAAAAAgH7FmegLl5P0yv3/eefcE5IekTQiaYmkgyQdL2mgYbknJL3ae//zOBvx3j/jnDtf0jdnrOs0SQ85574n6XFJK/dva23D4t+Q9H8SPq4Fb/2Q9PjH+Yt2nbZ+qPl9Ou2QQw6pu/3cc89peHi4LSdIPfjgg023Nx8MDw/X3R4aat8L17judtizZw8nXgEA0AXWRbWSlOtwGC3l0sqnCsExEN1ILuq1DLHCUECjYm1fcHo/hpAkO141M7hYrhlhNEcYrV8kjTt04/0Yd0wppZV1jb8m7J4kz0XUYyokOA7oxxhHNpVVxmVU8ZVZ8xq/18ZrJXmFI0T/P3t3HibJXd95/vOLzKzKrOrqrupDRyO1JCRAlhCHEAaE1LKRhGg9BnN5PBaPx4Y16wfjGWaN1zasxwJ7AWMW7zDGDHgZG5tBuwwPYJtdZAO2dSFA6DBgJIMEultHH1Xd1VWZWZkZv/2jVa2srN83MvKKzKx6v55HjzojMiN+eUZkVcS7ugnFThkxNevzdN31ugjE1nwtdSwnKbxWiqYT7zP7aEDY0cYRxWoE520vtP4652lO4TAaNq8b578cnB4pp0tmX5nxaNBq1gijSdJC7VAGYbTwdnhUv5sBAABgc+D4vOwM+xg9js9rj+PzAAAAAAAAAAAAAACjijDa5uAkPfOp/5L8raRf8d4f6GTh3vsbnHOvk/QpPR0/c5Iueuq/kP9b0lu99+GzbjaxfM7pzJ3DHgWycPHFF6+bdvvtt+uqq67qedm33377msulUkkveMELel7usDnXv5PuVlbCJ9P2wvvwCckAAKC/qnElON0pyiTqUoymgkEv62Rf2MqNdLGVVYTRkJYV3RvFEJIklXJWkOjpz5VQKEmS8imjQhi8Yi59jKrgJlIHoXqRNhRWyk319Tt3p4q59O/NUsJ1O3mPj+rnQTGa0rHG0XXTWz/XkvY7rM+U5PWGb7OcclvdTXzs+HY93Wu00rBjqsWopJzLa8JNasVX19+WfTQgaL5m/ypoLs8vKZDOodoT+pel24PzXjDzUm3Lc6LysG3LzylSpFjxunnz9UM6TWcNdP3WPsKo7osBAABgc+D4vM2D4/M6x/F5AAAAAAAAAAAAAIBRwZ+927hukfQ5SfNtrleXdL2kK733P9tpFG2V9/7Lkp4r6eNt1vlNSW/03l/jve/sDHhgg9mzZ4/27NmzZtpXvvKVviz7q1/96prLL3nJSzQxMfhISL/t3Ln2KMTDhw8PZNnFYlFxHMt739N/Z555Zt/GBwAAbFbwaDIqZhJ1KRqRmW6CIJtdp6GSGmE0pGRF90ojevK9Na7m90iDMNrIs7YPIVm9FtMGJ4Ydpujk8Uh6nAvRROr3RFJgbZisx6J1PyNpv6OT1+KqKSOmlnZbXY47/1GvFXzsdBylp6Ju1uu43GAfDQiZrx8MTi+4CU3nZszbWd+4vDgpdTO6eeHvzef+stmrMx4NQiKX09b8XHCe9TnQTxVjO9zN/goAAAAAdIrj89rj+DwAANC54f3RNQAAAAAAAGwO/K0cAKsIo21Q3vt/9t7/G0k7JJ0r6fWS/oOk35X0v0l6u6QrJW333l/tvf9aH9b5pPf+bZJOkfQKSW+W9K6n1vsGSc/03r/Me//5XtcFbBSvetWr1lz+9Kc/rVqtt9jDgQMH9Ld/+7eJ6xkXp5566prLd999d9+WffLJJ5/4d6VS0UMPPdS3ZQMAgMGqxpXg9KxOql2Nb7Sygm2wdRqTqxNGQ0rW+7E4oiEkM+bT9B6xXv95VxjImNC5vCuo4NKd9JRViCxt/GvY0cBOHg9rO9zpsoYdg7NY42oNg6UJhXXCeg0sG6HJVlaQMkk9Xkl93cQQXO74PqD1eu80xApsFodr4b+TM5ff2SY4zckuOK4Wr+jrR74anHfqxB6dUzov4xHBMpffGZy+UDs00PXGvqGqD/8MZ9j7nwAAAAA2D47PS8bxeQAAAAAAAAAAAACAUUUYbYPzx/3Ae/9F7/2feO/f571/v/f+Y977r3nvFwewzhXv/T957z/lvf/Dp9b7Be/9/f1eFzDu3vGOd6w5yezAgQP6i7/4i56W+ZGPfGTNwVvT09N661vf2tMyh+XlL3/5mss33HBD35Z98cUXr7ncr78GCgAABq9qBI8mo2Im67cCbN0EQTa7TkMlhNGQVjkOvx9H9eR7a1wVwmhjZzJlpDOrSN+4RMJKHcRN24VQ04ZSswqqdsoaV+s20wqFRYpSB/rWrre3qJj1uZuk1sF2PSmMtvoZmiYyCeBp8/WDwelzhXBAqT3+NNtmc8fi17XUCP+a8bLZfW0Ce8jSXGFHcLr1OdAvVtheGt1oNQAAAICNh+PzknF8HgAA6By/EwIAAAAAAAAAZIMwGgAM0Xnnnad9+/atmfbbv/3beuKJJ7pa3t13360PfehDa6a9+c1v1vbt27se4zBdccUVay5fd911WlzsT8/xqquuWnP5k5/8ZF+WCwAABs86sTZtjKZXJePk3YoRbENY7BsdP2aE0ZCG9958bQ07/mQxYz6N9mG0nMsPZEzoTtrAVychsF6kfc0POxpYjKY7uG7yWEsplzXs+2wp5cLjb/48kKRKIxz7KkXTXYVopoz1LqcMni0bgdik56uT7boVaCu4iROfg2kikwCeNl8LB5G253cl3s4p/BnjOQlm07lp4cvB6cWopJ/c9lPZDgaJZvPh4OHCgMNoSXHSUY3UAgAAANh4OD4vGcfnAQAAAAAAAAAAAABGFWE0ABiyD3/4w5qaevrEzYWFBb3+9a/XsWPHOlrOgQMH9MY3vlErKysnpp166qn6vd/7vb6NNWvnn3++LrvsshOXjx49qne96119Wfa+fft09tlnn7h822236c///M/7smwAADBYVR8OHk26YibrtwIfRDc6YwXuktRiwmhor+orZphjdENI7T9X6r4evE7BFQYyJnQnbYiskxBYL9IGJ4YdDSxEBeVTRv7ajXVc7rPFGn/rfoYVGinmuouMWEG5alxW7OO2t7f2g2Zy28zbWJ9rIa1huFXN47Yeu6QoC7CZHTaCSHOFcEAJaPZg5T49ULk3OO8lW3+a6NWImTPCaPO1QwNdb9LPSdLGbAEAAACgHzg+z8bxeQAAAAAAAAAAAACAUUUYDQCG7Nxzz9Wf/MmfrJl26623at++fXrkkUdSLePee+/V5ZdfrnvuuefEtCiK9OlPf1q7du3q63iz1nrg2J/+6Z/qwx/+cOrbHzlyRJXK+uhGPp/X7//+76+Z9ra3vU1f+MIXOh7j1772Nf34xz/u+HYAAKA7lTgcRsvqxGsrpEJ0ozPdPF51TxgN7VWMeI40uiEkK9hWjpdO/Nt6/ecJo42UtNui0pC3Wa2sOF+W0sTi8q6gQpT8mk8fpxv+fQ6xIiGt200rNNJtALKUC6/Xy6tq7Hs1W276vGq2NT9r3qbmV8x5raz72/yesx67pO0CsJkt1IwwmhFQaiecpcVGddP89ea8vbP7MhwJ0pgr7AhOn68flPeDe/eWE/YhiOcBAAAAyBLH5yXj+DwAAAAAAAAAAAAAwCgijAYAI+Atb3mL3v72t6+Zdsstt+i8887TH/7hH+rhhx8O3u6+++7T7/7u7+qCCy7Q9773vTXzPvjBD+ryyy8f2Jiz8opXvELvfOc710z7zd/8Tb3mNa/RHXfcEbxNHMf6xje+oXe84x06/fTT9fjjjwevd8011+gtb3nLicsrKyt6wxveoDe96U3msiWp0Wjorrvu0nvf+16dd955uvLKK/XQQw91ce8AAEA3qvH6g6olaTIqZrJ+KzhiBTsQlvR4TUczwemE0ZBGUnRvFOJPIVagqTkESRhtPKSPcrWPgPVD2gDbKETC0ow1zTjTvs9H9/Mg/Di0bjetz7pun8ukoJoVPVszHiM+NhVtUWT8GqKT7bp1f5uDbsVc+LEjXgusV4trOtpYCM6bKySH0ZxzxhzSaJvFscZR3b54c3Dec6Yu0KmTp2c8IrRjBQ9rfkXL8bGBrdf63h8pp4KbGNh6AQAAACCE4/NsHJ8HAAAAAAAAAAAAABhF+WEPAABw3Ec/+lHNzc3pfe97n7w/fhLZ4uKi3vWud+nd7363zjvvPJ1++umam5vToUOH9OCDD+oHP/jBuuUUCgV95CMf0dve9ras78LAfPCDH9RDDz2kz33ucyemfelLX9KXvvQl7d69WxdccIF27NiharWqxx9/XN/97ne1uLiYatkf//jHNT8/ry9+8Ysnpl133XW67rrrtGvXLj3/+c/Xjh07FEWRjh49qv379+uee+4J/pVLAACQjeZQUDMrJNJvVnDECoIgLOnx2pLfpqWV9ftzhNGQRlJ0bxTiTyFWkKjcWJb3Xs451X09eJ2c48d7oyTta6xkBJz6LfV4RuC9kSp6luI643SfQ8z9jJb9H+uzrvswmh3rKzeWpTYNxrIRTyvlplVwE6r69T9H6WS7nmb/z7oPxGuB9RbqB815VkBplZMVRsNm8Y0j/6iaXwnO2zt7dcajQRqz+R3mvPnaQU3nwnHyXlWM7/2laCohsggAAAAAg8PxeTaOzwMAAAAAAAAAAAAAjBrOnASAEfIHf/AHuuyyy/Rrv/Zruvfee09M997r+9//vr7//e8n3v7CCy/UJz7xCV100UWDHmqmcrmcPvvZz+r888/X+973PtVqT584u3//fu3fv7/rZRcKBX3+85/Xhz70IV177bVrDqg6cOCAvva1r6VaxvS0fQIxAADor2ocPgB6Mipmsn4rwEZ0ozNWQCWnvBmrqRFGQwpl470YKdKEm8x4NOlYIaOG6qr7mgpuwgwI5V2bWhEylTbSWUyIUPVT2khWVnHR5DGkiZ61H2fa+zw5Avc5xNoGtoZFrMBot8G3Us6+nbXNTnOdUjSlvCsYYbRw8LGT5Tc/3+yjAenNJ4XRCslhNMvqycTY2GIf6+aF64PzZvM79LwtP5nxiJDG1vycnCJ5xevmzdcP6TSdNZD1mmHTjCLBAAAAABDC8XlhHJ8HAADS4w9fAAAAAAAAYLA4KhnAqmjYAwAArHXFFVfo7rvv1mc+8xldfvnlyueTG5aTk5N69atfrb/5m7/R7bffvuEOulrlnNO1116rH/zgB3rrW9+q7du3J15/y5Yteu1rX6u//uu/1p49e9ou+7d+67d0//3363d+53d0xhlntB3PzMyMrr76av3pn/6pHnvsMb34xS/u6P4AAIDuVY0Ta7MKnJRy4QOurRN+EWY9XqXclApG6MkKQwHNrABOMZqSc6N5cGZykOj4/bECQnnH3z0YJWkjD6XMtlnpIlnWti1LacaaJnqWJgw26YrKuVyqcWWtaDwOrZ9t5mddyue8Vd4VVHATwXmpwmiN8HWmctPm51Qn2/VKw9hvaHq+S0Zw0ApmApvZ4Vo4jDYVbRmJWCZG191Ld+pg7YngvEtnrxrZ7etml3M5bcvPBect1A8NbL1J380AAAAAYJg4Pi+M4/MAAEA6nJYKAAAAAAAAAMgGZ04CwAjK5/O65pprdM0112hpaUl33HGH7rvvPh04cEArKyuanJzUySefrGc/+9m68MILNTk52fW63vOe9+g973lPV7e94YYbMr2dJJ111ln6sz/7M3384x/XnXfeqX/913/VwYMHdezYMU1PT+ukk07Sueeeq+c973kqFMJBDcspp5yiD3zgA/rABz6g+++/X3feeacOHDig+fl5RVGkmZkZ7d69W+eee66e9axnKZfjJC8AAIahGleC07MKo1mhgEq8LO/9yIaXRo0VKSlFU8oTRkMPyg3jtdVlLCgLSWGASrysrZo1X//W+wXDkTbyUDQCTv2WNm4zChGcVNGzVPG09vdlFO6vxQq7tW43k7aj3a97WrXGyvp1G9GzteMJX6cUTSsfFaTG+nm1eP26Ol1+8+vG3EczomrAZjZfD4fRthd2tr2tE993NrMbF64PTs8pr4u3XZnxaNCJufzOYARt3ggl9sMg9lcAAAAAoF84Ps/G8XkAAAAAAAAAAAAAgFFAGA0ARtz09LT27t2rvXv3DnsoIyWKIl100UUD+wucZ511ls4666yBLBsAAPSmEofjFpNRMZP1l4yYTaxYK76qSZfNOMadFVkpEkZDjyrGyfdpg1XDkBQGWI0J2GE0frw3StIGt0oZhblyLq+Cm1DNJweorG1bltIEMtK8j1NdZwxDiTW/ooavK/fUe94KjfTyWVfKTeloY37ddGtdaa5TiqaVdxPBeZ1s1639v+ZYXikXfh2X4yXitUCL+dqB4PTZfPswmsXLd31bjIeDK4/r7qU7g/NeOPMybcvPZTwidGI2vyM4fcEIJfbDOH43AwAAALA5cXxeGMfnAQAAAAAAAAAAAACGKRr2AAAAAAAA6EQ1rgSnp43R9CppPdZJv1jPCpwkhdFqMWE0tGfHeUb35PvJpM+VxvH70/D14Hzr/YLhSPs6KxoBp0FIFxzLZhuaPIb240xzX0opomejHONIei6aP99WPxta9fJZZwXy0oTRlo3gaSk3rYIRcKwbn2shldgOqj797/BjtxqvBfC0eSOENFdIE0YLRwYJo218Ny38nfk8753dl/Fo0Cnr/W19HvSDHXId/r4nAAAAAAAAAAAAAAAAAAAAgNFGGA0AAAAAMFaqRlBr0hUzWX9ScKRsREqwXtkInJRyUypE4dBT3RNGQ3tWoHCUQ0iRi8w4wGpMoGa8/gmjjZa0r7NShjGIdMGx7EJt9hj6E3DrV2BtWJKei+YY2iA+66zHpWxEz1bFPjaDp6WE4Gkn2/VywvKf/nfCY0e8FlhjvhYOIW3P72p723AWDRvdSlzVN478Q3DeMybP1Nmln8h4ROjUXH5HcPp87dDA1llp2EF0AAAAAAAAAAAAAAAAAAAAAEhCGA0AAAAAMDZiH6vqK8F5aWIp/VDM2SfwEt1IzwqoFPsUUMHmZQUKRzmEJNlxgNWIoPX6z7v8wMaEzqXdFmUZg0gVE8tlF2ozx5BinGkCbv0KrA1L0nNRbtrPKBv7HKWE/ZR2Srnw42vFTFdV44q84vAyo+m+bNcrxmd783sp6XklXgusdbgeDqPNFXZmPBKMizsWb9FSvBicd9nsPjlHMm/UWe/vhfohee8Hsk475Dq6+2IAAAAAAAAAAAAAAAAAAAAARgNhNAAAAADA2FjxVXPeZFTMZAyTriin8EnfVqQE61mRlRJhNPTIPvl+tMNoVsxpNSJY9/XgfOv9guFIG3nIMtSXFPRcNQrhwDRBr1SRt1TXGf79tSQ9F6ufBw1fV82vBK/Ty32z1t0ujJY0v5Szt+u1lNt1732qEJwVdpOI1wLNyo1l8z0xl08TRgt/F/IaTFgJo+HGheuD00vRlF689bKMR4NuzOZ3BKev+KqW42MDWacVRE/aZgMAAAAAAAAARh1/LAUAAAAAAACDNaC/9wpgDBFGAwAAAACMjapxUq0kTaaM0fTKOWdGV4hupFduGIGTaFqFHgMq2NzSxHNGkRUzKjeWFPuGvOLgfMJooyVtlCqrmKfUPnpWcBPKuXxGo7GleezSRd7ahzZG+fMg5/IquIngvNUAWVKItZfInfXYWdvs1nGFTEXTPQdPa35FsRrBec2vmwk3SbwWSGG+ftCct73QPozmHCe7bDYPlH+ohyr3Bee9dNsrMt2vQfesMJokzdcODWSd1j5C2pgwAAAAAAAAAAAAAAAAAAAAgM1r+Ge8AQAAAACQUiUxjJZlZGY6GNhIGt9G8e2jN+kbR/7BDCpsyW3V87b8pF4x9xrlXM5cjhWRK0Yl+TgcgEobUMHmlvTaGmVWzKgSl1X3dfN2hNFGS5pwVzEqKUr4fOy3dsGxNCGxLKQJeqV5H6cJpaYN2A1LKZpSrbGybvrqfkYlIVTWUxgtZ4TREsJn0vGAo6WYEDxNu11PG4KLXKRiVDL20QijAavmaweC051cYjipLf4024Z148L15ry9s/syHAl6sS2/XU5RMLi8UD+o03Rm39dp/Yykl/0VAAAAAAAAAMCw8TshAAAAAAAAAEA2CKMBAAAAAMZGNa6Y87KMHlnrSgqDbAQ3zV+v/+fJTyRe5wk9qh+V79GTK/v1plPebl7PCpSUctOq+fUxGIkwGtKxAjqjEn+yWEGtcryU+NrPO368N0rSbIuyjnK1G9OoRAPTPC5p3seFqKC8KyS+b0Y9jFaMpnS0sbBu+up+RlIoLE2cz2JFSpLWlzS/4CZOPB8habfrSVGz1tdvMZoKjqfdfQA2EytwvDU/p1yK/QpnTOcUmI3pWP2o7li8JTjv3Knn6+SJZ2Q8InQr53Lalp/TQv3QunnzgWn9YEerR3tfDAAAAAAAAAAAAAAAAAAAAMDwRcMeAAAAAAAAaVXisjlvMtMwWvgk3qTxjbtaXNOXDl6X+vpfP/JVPbHyqDnfCpQUo5IKbiI8BsJoSKHSsF9bo8wKElXisuq+bt7OCg5hOCZdUc5MxhxnPdeD0i48UcqNRjSwlCLolfZ93O4xzvo56JQVN1vdz0iKfPVy36zwXNn4XF21bIRhV5dnfU7V4nTb9aT1t95f87O0zX0ANpPDtXAYbS6/M+USkrdz2FhuPfI1M2S5d3ZfxqNBr6z3+YIRTOxF7GPzZySj/t0MAAAAAAAAAAAAAAAAAAAAwPARRgMAAAAAjI1qXAlOL7gJ5Vwus3FY8ZakUMm4u3vpTi3Fix3d5o6jt5jzKsZjVYqmlHf54DzrhHygmfU+HJX4k8WKV5Xj5cTXvvV+wXA459qGOtuFyvqtXShrVMIUaR6XtNGvdsvK+jnolB1KXF7z/1bH94e6/0yw92/C4bN281eXl4/CYbS023Xr/krrw7hJn6UAjps3Akjpw2gW3+PtMWpi39BNC9cH583ld+qCLS/OeETo1Wx+R3D6vBFM7IX18xtp9PfFAAAAAAAAAAAAAAAAAAAAAAwfYTQAAAAAwNiwTqydjIqZjsM6iTcp3DHuvr14U8e3uWMxHEarxSuq+3pwXimaVt71FlDB5tXwDa34anDeqMSfLFYIqdxYahNGC79fMDztXmtp4179MmrjsaR5jxaNcFenyyqN+OdBu7hXuWHHRXsxFYUDkjW/olpsfw6ZQcqnllfocbtuLb8YlRS5tb/isOJuG3kfDeiUFUbbXkgXRnNywemeMNqG8y9Ld+hw/UBw3qWzV2UaJ0d/zBWMMFr9UN/XlRRWtbbXAAAAAAAAAAAAAAAAAAAAALCKMBoAAAAAYGxU43Jw+mTGgRMzYLRBoxuVuKzvHft2x7d7bOVh7a8+GFie/TgVcyUVoongvFq80vEYsLkkvbZKRvBnVFjBp0pcbhNGyw9qSOhSuzhVMZftNqtdTMyKcGUt5/KacJOJ10kbOCzlkt/vxTbzh80Kt61+xlmfdb0+l8WEz8lKQtyk3AjPWw2t9Ro87eT+tovKAZDma+HQ1Vw+XRhNRhgNG89N89cHp+ddXi/fdmXGo0E/WO/zhQGE0SrGz2+k0dn/BAAAAAAAAAB0g98VAQAAAAAAAACyQRgNAAAAADA2zDCaK2Y6Dusk3kpjY0Y3vrP4LdV8OEp21fY36OdO+hU546C324/esm5aUpykFE2boae6r6cYLTazxOhexgHFTtnBxaXE174VHMLwtAs9ZB3paxdqK7UJp2Up6bEruInUr/d273crPDYqrEBZ+an9DGs72i6C107SayFp2102ommr4+k1jGatO/Tatl7vSdsHYDOJfax5I4A0V9jV07J9T7fGqHlyZb/uXr4rOO+FW16umfxsxiNCP8zmdwSnz9cOyvv+vouTo9Wjs/8JAAAAAAAAAAAAAAAAAABGC8clA1hFGA0AAAAAMDYqRhgt6+CRtb6kaMg4u33x5uD0rblZvXrnNfrpuZ/R2aXzgte5Y/GWdSdYJ4fRpnoOqGDzKifECbOOUXXKDC7G5cTXPmG00dNum5T9Nis5PNFufpaSwlydPG7jdJ9DSrnwfV0NjFihkV4jI1MJn5PLjXD8TLLDaKvLs4KntZTbdSs8G3oerec2afsAbCbHGkfN/Yq5/M5UywjnkCUOQdhYbl74O3PeZXP7MhwJ+mm2EH6fr/iquT3vlvXzm0iRCm6ir+sCAAAAAAAAAGSJ3wkBAAAAAAAAALJBGA0AAAAAMDaqvhKcPhkVMx1HKRcOh1g5YW0NAAAgAElEQVQn/o6zxfoR3bN0V3DehTOXKHI5SdJFM5cEr3Og9pgerv54zTQrcCIdfy6t0FPNr6QZMjYxKxYkSUUjNDQqrKBRNS6rFtuv/ZwRHMLwtItuZR3paxcU6zWm1U9Jj10nj1u7+zRK9zkkKZQo2YHRXu/XZFSSM5JHSZ+vVnRs9X5Y8ZO0wdNO7q8V19uI+2hAN+brB815c0YwCZvPSlzVrUf+ITjv9Mln6qziczIeEfplLr/DnHe4Zn8+dMPadyhGU3LOTiwCAAAAAAAAAAAAAAAAAAAAgEQYDQAAAAAwRqyoRdZhNCsyU46XMh1HFu5avFWx4uC8F2/de+LfL5x5mZzxY4Y7Fm9Zc9kKnBSjkiKXSwio1NMMGZuY9doquAkzuDcqrOCil9dSvBicFymnyPHjvVHTLkTWbn6/tYtltQu5ZSlprJ08bu3uU9b7DZ2yHofV/QwrMNrrcxm5qKt9HGve1FOfa9bnb9owmhlWCUTQrMdgI+6jAd2YN8JHeZfXTG5bqmVYQSMv3/W4MFq+ffQm83Nz7+w+olZjbFt+u/m9fSEhnNgNO5w62sFqAAAAAAAAAAAAAAAAAAAAAKOBMyeBPgudEOI9JwQBGG9xvD6GwglwAIBhqMaV4PSsT6y1ohtWuG2c3b54c3D6zsLJOrP4rBOXZ/Kzes7UBcHr3nH0ljXfi6yT7Fcf17zLB+d7xWr4RqpxY3My4zljcPJ90hgX60eC0wsjHnvbrIq5NmG0QMxpkNrFstqF07KU9D7o5HFLuk+TrqjI5ToaV9ba7WdYEchSH15bpSgcaVxu2GExa97qsnoPo4X3r0LPs/Xcb8R9NKAbh+sHgtNn8zs6iK0aPxPk1yAbgvdeNy1cH5xXiqbXxLExfnIup235ueC8hfqhvq7L+m5mBaEBAACATnGMHoCNhuPzAAAAAAAAAAAAAGAtwmhAn0XR+rdVrZbuJD8AGFX1en3dtNDnHQAAg1Y1ohaTGUePrOhGNS4r9usPWB5Xh2sHdF/57uC8i2b2rjsQ+0Uzl4SXUz+gByo/PHG5XeDECqhI6SMq2JzKDePkeyP0M0qSxniscTQ4Pem9guEZtRBZu21k1qG2JEmPXSePW78Ca8Ni3ddyY1ne+4QIZB/CaEasxFpn0rzVZVnB07pf/7OGECsEF7q/1mNQTgi7AZvJfO1gcPpcflfGI8Gour/yAz1c/XFw3su2Xa6JaDLjEaHfZvM7gtPn6+HPh27Z2+/Rj1YDAABgPHCMHoCNhuPzAAAAAAAAAAAAAGAtfmMK9JlzThMTE2umHTt2bEijAYD+aP0cm5iY4C9SAgCGohpXgtOzDqNZ0Q0vb45xHN2xeIs576Ktl66b9oKZlypSru2yrDhJ8UQYbSI4X5JqfsWcB1jRvXE4+T5pjIuNI8HpVmwIw9UuTtWPeFUnClEhMaKXdagtSSkhWtbJ45a0nFG6vxbrvjZUV93X7BBZP8JoxjKWYzssZs1bDT5ar7+02/SKGb1cP1YzXusrin0j1fqAjcwKH80VdqZehvUTQS/fxYgwam6cv96ct3f2VRmOBIMyZ4XRaof6uh77u9no74sBAABgPHCMHoCNhuPzAADjg+0TAAAAAAAAACAbhNGAAZiZmVlz+ejRo/Kek4IAjCfvvY4ePbpmWuvnHAAAWbFOrJ2MipmOIym4YsVKxtG3j94UnP6MyTO1e3LPuunTuRn9xPQLgre5c/FWxT6WZD+PqzGTQmQHfOp+/V/KBlaVrThPwnt2VBTchHIKh86OGWG0HGG0kVRqE+IbRpgraZ2jFKdIGksngcPk5YzO/bUUc/Z9rcTLKhv7Gv24b9YyykacrBavqO5rwXlPb9fDwdN6HL7dunVb9zfw2R6atsra/wA2k/maEUbLpw+jWSe7EEYbf4v1Bd117OvBeedNvVAnTezOeEQYBCuEaIUTuzXIkCsAAACwimP0AGwUHJ8HAAAAAAAAAAAAAOsRRgMGoPWAhFqtpkcffZQDrwCMHe+9Hn30UdVqa09W3rp165BGBADY7KpxJTi9k1hKPySFRzZKdOOx6sN6pHp/cN6LZ/aat3vRzCXB6Qv1Q/px+R5JdrxqNWaST4g9pY2oYHOy3n/jEEJyzpkBt8X60eD0vLMjghiedq+3Ybwek9Y5SnGKpLGUounUy+lXYG1Yku5rOV5WpZEcGO3FVC687oqx7baiZc3Lsj6r0sZOOwmrJD0GG2UfDeiFFT7aXtiV8Ugwir5+5KvmZ/PeuX0ZjwaDMpvfEZy+UD/U1/VY2+9x2BcDAADA+OAYPQAbAcfnAQDGD/vbAAAAAAAAGCx+5QtglX2mMYCuFYtFFQqFNQcqLC4u6kc/+pG2bt2qLVu2KJ/PK4poEwIYPXEcq16v69ixYzp69Oi6g64KhYImJyeHNDoAwGZXNYIWk1Ex03EkRTes6Ne4uX3xZnPei7aG42eS9PwtP6m8ywdPqL9j8es6Z+p8M6Ky+rjm3YS5/JpfMecB1vtvlMJPSYpRScca6yNooWkSYbRRNdkm9mAF8AYpKUBRMkJYw9CvoFm/AmvDknRfy/Fy28BoL6zHZ9kMo9n7PcUoOXjaUF2xjxW55J+RWvsNoccp6TV0fKzEn7B5NXxdR+qHg/PmjFBSiJMz5nAEwjhr+IZuXvj74Lzt+V167vSLMh4RBmUuvzM4faF2SN57OWe9xztjhVzHIVoNAACA8cExegDGFcfnAQAAAAAAAAAAAEB7hNGAAXDOaffu3XrooYfW/AXKWq2mQ4cO6dCh/v7VdQDIyurnW79OjgIAoFPVuBKc3kkspR8KbkKRcorVWDevYsTbxon3XrcfvSk47+zST2hH4STztqXctM6bvlDfPXbbunl3Ln5dbzzpfzIfo9UTpAsJsae6r5nzgHavrVFnBYkWG0eC063YEIar1GabNIzXo7VOJ6cJNzon1iSG0TqIfiUvJ9t9hm4k7dccrS8oVhyc148IpPU5VG6E42Tlhh1Gm8ptkZQccaz7WuJrMPaxGcYNjTXpMbACLcBmsVA/LG/Ey7YXeo8GkkUbb/9y7HbN1w8G5+2d3afI5TIeEQZlthAOo1V9ReV46cT2u1dmEH0IkWAAAABsXByjB2Aj4vg8AAAAAAAAAAAAADiOsyeBAZmamtKePXvWHXgFAOPKOac9e/ZoaooTlwAAw2NFjyZdMdNxOOdUiqa0FC+um5cUCJGkI/XDeqjyY/lA1KQYlXRm8dmaiNpHahbqh/Vw5cc6eeIZ2lU4pesDo2Pf0CPV+7VQP3xi2nztoA7UHg9e/6KZS9su86KZS4NhtMXGEf3j/Jd0uPZk8HarMZPkgEq97fql43G3A7XH9PjKI6muv2prblanF89WLsWJ/ytxVQ9UfthRDC9SpD3Fc7Q1P9v2urV4RQ9U7lU5Tn5NtXrG5JmJ8bpuVeKyHij/UCu+2vdl98vBlSeC08fl5HsrhrTUWP9ZIyW/VzA87cJnwwiRWe+BYlRS5KKMR2NLeq+2C841S4qf9SMeNmiRy2nSFVX164Owdy/dad6uH9E96zmYrx8IbtsfqdwfvL5TdGL/rOAmzPXVfU0Tst8T1bhihpxCn5mFaEJ5lw/uL9yz/M/Bfbc0ci6vM4rnaEtua1e3B0bBfC0cvZKkuXw4lNRPDd/Qw5Uf6WhjoaPb7Z44QzsnTu77eLz3emzlIR2shfcfTyrs1skTz9g0J6DeuPDl4PS8K+jibVdkPBoM0lx+hznv20dv0pwRTuvUkaafMTQbl2g1AAAAxgfH6AHYSDg+DwAAAAAAAAAAAACeRhgNGKDVA6/279+vWq027OEAQNcKhYJ2797NQVcAgKGq+5oaCkexJjuIpfRLMVcKxjWsSFbDN3TdEx/TN478Q+JyC25Cbz71N/SCmZfay3n8Y/rG0aeX85ypC/Srz3i3GVWyPLHyqD76yHt1yAiVtYoU6cKZi9te77lbLlLBTajmV9bN++KBT5m3K+WmJUl5Z/+4IrTMVuXGkj7+6Pt1b/n7ba8bsi03p7efdq1OK55pXueuxVv1qcf+c6rxhFw6+yr9/En/sxkk+v6xO/TJ/R8KRnHSeP6Wl+gtp75ThciO0XTim0f+UZ95/GPme3DUjcvJ96vvgVahkKIk5SPCaKOo3ettGIEVa/swau+NpPEUo/D7IyQpfjZq99lSzE2pWl+/DbDCNVJ/om8l43E+WHtCH3/0/R0sZ+rEa72X4GklXrbXYXxmFqMpHWscXTf9y4c+m7iuNF61/ef06p3XbJpQEjaW+fqB4PRiVDLfTyFO1uvfPvn8kcr9+ugjv6+jjfnU62l2/vSF+pXdv6XJqD9B7CP1w/qTh9+r/SsPJl5vz+TZ+vXTrtWW/MaOIj6x8qj+dfk7wXkvmrlkw9//zWZbfk5OUfA7xmef/LOBr7/Tn1sAAAAAaXCMHoCNgOPzAAAjhegwAAAAAAAAAGAEhM++BdA3U1NTOvvss3XWWWdpx44dmpjoz0npADBoExMT2rFjh8466yydffbZHHQFABg6KzgmqW8nyHfCio9YAY+bFq5vG0WTjoe/Prn/j3SkftheztG1y/nB8vf0hSc/1XbZrf6vR/8odRRNks6dfoFm8rNtr1eMSrpgy0Udj2f1BOnI5RQpF7xO3bc/oeULBz7VdRRNko405vXxR98nbxzkd7h2QP9t/4e7jqJJ0s0Lf6dbj3wtOG+5cUyf2P+BrqNokvSdY9/S9Yc+1/Xtmz1efUR/9fh/GdsomtSfWFAWOo0EJMWGMDzF3OjFHqwY2Ki9N5LGU+rg/ZFzeRVc+Gdwo3afLd2Msx/Rt349Ps2RpaTgabvtejkhjGZ9Zg7yOf67w5/Td459a2DLBwZpvnYoOH0uv6uj5XQaBox9rP/66Pu6jqJJ0veX7tSXDl7X9e1b/eVjH2kbRZOkh6o/0n9/4qN9W++oumnhenPeZbP7MhwJspBzeW1N8b1+UMYlUgsAAIDxwzF6AMYRx+cBAMYTf0QKAAAAAAAAAJAN+4wkAH3jnFOxWFSxWNRJJ50k773iODZPsgeAYXLOKYqijk9yBABg0KqxHYnqNCbUD9bJvFbA47sdRDRixfqXY3fo5bNXrptnxTi+e+xbukZvS72OAyuPpYoBNLto5tLU133RzCW6c/HWjpZfip6OqBRcQVXfWHedNGG0fgRLDtcP6JHq/Tq9+Mx18+5Z+mfFWj+2Tn332G26ZPaV66Z/f+lO1X3vEbLvHPuWXrPrTT0v57vHbut5GcM2LiffN78H0kiKDWF4krZJw4pyWe+BUXtvJD12nY61FE2p1lgfsBy1+2zpdJxOri+h2OagWU/LaRp/UsSx3XbdCs5Kw3tdf/fYbXrBzEsHug5gEA7XDwSnzxV29mX51u87Hqn+WPP1gz0v/zvHvqk3nvSWnpdTicv64fK/pL7+vy59Rw1fV26D7ndV44q+eeQfg/P2FM/RmaVnZzwiZGEuv8OMsQ/auERqAQAAMJ44Rg/AuOD4PAAAAAAAAAAAAABob2MexQ+MOOeccrncsIcBAAAAjJWkMNrkCIXRrIDHfO1QR8u34gE/XP5ecPrRxoLqvpYYH0mzfEvBTej5W16S+vrnT79IxaikSlxOfZvTJs868e+8K6jq1z/n7QIqtbimY42jqdeZZKF+SKdrfRjtaGOhT8sPPwcL9c5eK50uv/Pl9Gc8w9T82hplnY5zXO7XZpN3BZ06cboeW3l43bzndfA52k/Wa+W04mi9hmbz27Ult03HGkfWTC+4CZ00sbujZZ02eZbuXr5r/fQRu8+W0ybP0gOVH3Z0/chFPa/3GZNnysnJq7eTRVu36ZaaXx+vWzM/tudPuElz3Q9Xf9xmhN3bCNtFbE7ztfC+4fZ8f8Jo9nr7856Zrx2S977nk0WXGosdRY5XfFXVuKKp3Jae1juqvn30RjPufdnsvoxHg6zsKZ6jByr3Zr5eJ6fdk2dkvl4AAABsXhyjBwAAAAwC4WEAAAAAAAAMFn/7CsCq3s+UAgAAAAAgA9WEwFZxCGG0khFGKzfCJ5V3Egg7fv3wcpJY6w5ZahzraNlXbn+dSrnwfQ6ZiCZ11fY3pr7+edMXaufEyScu56NwRKUWJ4fRKvFS6nW2YwUC+nWAn7X8Tp7HJJW4rNjHfVhOf8YzLM+ZukCnTJ427GGk8vwtL9G2/PZU1y1GU7po5tIBjwjd2hsIieSU18u3XTGE0UjP3fIi7SictGZawU3oZdsuH8p4LJHL6dLZq9ZNv3jbFZqIwhEsy6Wzr5LT2njOmcVna8/k2T2NMSsXb7s8dexUCr/murEtP6cXbHlZT8vIu7xevu3KE5cL0YR53bqvJy7LCqLmXd6MI108e6XybnB/E2bct4vYvKww8lyhszBa62drO/16z8RqaMVXe15Ou9BySK+xyFHlvdeNC9cH501HM3rRzCUZjwhZuWTbK1Vw9vZ5UF44c7G25mczXy8AAAAAAAAAAAAAAAAAAACA8TO4s4MAAAAAAOijalwJTneKhnJCb9GIhJWNMJc13dJNHKscL2lG21Jdd9kIozk5TUbFE5fn8rv00m0/rcvnXtPxeK7c/joVXEG3HvkHHa4/GbzOTG6bzp++SK/d9YtrplsxmHYhg3JCgG7SFYMRlWpcCcYOKsZz4I0/O+EUaTIQ7mn4hmp+Zf1YjeVbr5VIUTAMFPs4GInw8qrGlY6CduHxhMeZU14FI2A3Crbktur86Rfptbv+3bCHktqW/Fa98/T364sH/ko/Kt8dfF5zLq9nFs/V1Tt/fmyCb5vRZXNXK+dyuvXIP+jJlf3aUzxbV25/nc6ZOn8o4ylGJf3G6e/XFw/8pX5c/ledMnm6XrX9DTqjeM5QxpPkZ3b8gopRSbcfvVl1X9eFMxdr346f63g5z595iX5l9/+qG+b/P83XD+o5U8/T63e92YxpjZozS8/Wr592rb5y6PN6oHKvYjWC1zt1Yo8umX1lXyN3b979v2jHgZP03WO36WhjPvXtnCKdUTxHr9z+ep099RMnpidFyuptgqc1M4xm7/udXTpXb3/G7+nvD39eD1buk1d3kdC6rwf3O+xwKjDa5mtGGC3fWRjNYsXDrPdM6/eOE8vxXlUf/u5XjpeDt+lEu9ByyEYNo/2ofI8erT4QnPeybZd3HCXF+DiteJb+w2nv1fWH/ocerNynhpJDpb3alt+uC6ZfrNfsetNA1wMAAAAAAAAAAAAAAAAAAABg4yCMBgAAAAAYCxUjeDUZhWNXg1aKwrGp0Dgbvh4MY0nSKROn6fGVRwLLWR8QaBcFW26kj68tx+Ew2jMmz9S7z/w/Uy8nSeQivWL7a/SK7Z1H1boNo4Uet1XvO/uTmsptWTf9Dx/8TT1UuW/ddCviYIURzi6dq9/Y8/510+9euksffeS9wbF679e9fq3X+kVb9+qXT/2P66Y/sfKo3nv/24O3qcTLPYfRrMf0iu0/q59tCdqhdzsnTtFbn/Fbwx4G+uCS2at0yexVwx7GCXOFnXrL7ncOexhtOed05fbX6crtr+t5WS+cuVgvnLm4D6MajmdPPVfPnnpu5uvNu4Jef9Iv6/Un/XJflpdL+DVEu+163YdDLdZ+wqrnTD9Pz5l+XvvBJfjWkX/SXz7+kXXTrXAqMMqqcUVL8WJw3lxhV4dLC3/3svaRrX3JM4rn6LfO+NC66Qv1w3r3j94SvE25saTZ/PaU4wxr97kTYoWRx91NC9cHpzs57Z19VcajQdbOnvoJ/frUtcMeBgAAAAAAAAAAAAAAAAAAAAAERcMeAAAAAAAAaVQTwmjDUDTCaKGYlhXYkqS5/M7Uy6k0wo/B07dJH0ZbaoTDaNOBcNgwFLoMoyU91sWoFJxuRe46DaNZkQhr+bFirfhqYL3h59FajvVaPL6s3uMtZSMAU4qme142AGDjc851HTytG2HZvBv833wp5cLbuX5sW4GszdcOmvOs7yOWTpPUVvTX2oe19nmlzr7vWLoJo8nc/x9fR+rzumvxG8F5501fqJ0Tp2Q8IgAAAAAAAAAAMDo23u9GAAAAAAAAAADjZ/BnDwEAAAAA0AfWCfWTbjhhNDOm1Vh/sn5S0GyukD6M1i4EsGzEzsLXXQxOn4pGI4xmBVRqbUIGFSPiNemKilwuOM+KMlQ6DJ84IxPRLlzWGvfrNESWHI/oPd5ixyzCoTkAAFoVXCEYI2q3XbcCRlZAtZ+s7dyKr6rhG8oZ+xXAKJqvJ4XRdgx03fa+bXgfdsJNKlJOsRqBZQ0njLYRT/259chX1VA9OO+y2X0ZjwYAAAAYDOfcnKTzJT1L0nZJRUkLkg5IusN7/6MhDq8nzrmCpJdL2iPpVEnHJO2XdJf3/oEhDg0AAADAhtfpn9EBAAAAAAAAAKA7hNEAAAAAAGOhGleC04cVZ7JjWusjUkmBrbl8OIwWuo0VqFrVLpzWbDkOR9SmcqMdRmsXMrBCYMWcHQ+zI3fhZXnFwenOhQ/8SwyXNZY0m9++Zpr1erFe6wU3YcYjOo27BcdovK5KCY8pAADNut2uW+E0a3n9lBQ2rcblkdlnAtKwwmgzuW0qRBMdLcuKAXsjH2bv24bfY845lXJTWgqEnPsR/W0XZAyx7tu4aviGbl74++C8nYWTdd70hRmPCAAAAJuNc+6Zkl4s6aKn/n+hpJmmqzzovT+zi+UWJL1C0qsl/ZSOR9GSrr9f0n+T9DHv/eMdrus9kq7tdIxN/tJ7/8ud3sg5t0vSeyX9vI7H3kLXuVXSH3vvP9/D+AAAAAAAAAAAAAAAAIChIowGAAAAABgLVR+Ogk1GxYxHcpwVhQpFpJJO4J8rhMNooShXu/DZciN9GG2pEQ6jTedmgtOzVugyoNJpeCFpnrUsb3QRrL+HmhRl6ySkV8pNh9ebFI8w4m6dsIJ8SY8pAADNug2j1X29o+X1U2LYNF4ijIaxcrh2IDjdijQnMmLAFuu7UFJkdyqaDu7bLncQgra0+9wJ2WhhtO8eu00L9UPBeZfO7lPkooxHBAAAgM3AOfdTkt6l4zG0YNCrx+W/RNL1kuY6uNluSf9J0r93zv177/1/7/e4+sk5t0/SpySd1OaqF0u62Dn3GUm/6r3v/csUAAAAAAAAAAAAAAAAkDHCaAAAAACAsVCNK8Hpk1Ep45EcV4rCkaqaX1HD15VzT3/ltkJXBTehLbmtwXmh21iBqlXtwmnNlo0w2lQ0GpGPbgMqZnghIW5iR+6MMJoRRnAKBwQmXVFOkbziwDrSh/QS70MUDqNVeoxH1H1NNb8SnEcYDQCQVvdhtPA2KIswWtJ2rtwoS4MfAtA38/WDwelzhV19XEt4H7mv4eI+RH+tz5VEVhl5TN208OXg9IKb0Mu2vSLj0QAAAGATeYGkVw5w+bsUjqKtSPqepMclHZG0Q8fjbDuarjMr6dPOuZO89388wDF27amw3F9Lmmia7CXdKenHOn4fXiipuYD9JklbnXOv9d6v/wUFAAAAAHRlY/3eBAAAAAAAAKOHn0ABWEUYDQAAAAAwFqwoWHFIYbSk9Zbj5TXBMysGUIqmzOWs+Oq6wFq5kRy5Wu4kjBYbYbTcaIfRam0CKnZ4wX6+rOCYtSwrjGZxzqkYlYIRtNZ1eO9VNoIPSffBikeU28T02qk07NsnhdoAAGjW7XbdCqcNO4zWa3gUyNp8zQij5XcGpydxcsHpVjusm/3zqVw4Qt3J9x1L3dc7vk2n+/+j7LHqw/rB8veC8140c4kZ7gYAAAAGqCrpEUln93GZxyT9D0nXSbrVe7/mB93OOSfptZL+s6Q9TbM+7Jz7nvf+q12s8xckfbPDMabinDtN0he0Nor2dUlv9d7f03S9SUm/Kun/0NNJ91dL+t8lvbuDsQEAAAAAAAAAAAAAAABDRxgNAAAAADAWqnElOH0yKmY8kuNKUfhkfUmqNNaG0ezQ1VTicloDa2UjKvD0etKHApYaox1GK0Th4Ek9Tg6oWI910uNsR8WsxzscRrAiEcfXPxUMo7WOt+5raigca0i6D3bcrbd4hBWykJKDMQAANCsYITMrfLaqZmz3reX1UyEqKO8KwTH2Gh4FsjZfN8Johc7DaJ2y3i/J++fheaH96U5ZQcZIkWLFwXkbKYx208L15rzL5q7OcCQAAADYpGqSvi/pdknffur/35P0ckn/1IflPynpjyR93HtvfoHw3ntJX3TO3STpZkk/0TT7vzjnznvqOp143Hv/QKcDTum9kuaaLt8q6Qrv/ZpfnHnvqzo+/ockfbFp1m845z7hvX9wQOMDAAAAAAAAAAAAAAAA+i4a9gAAAAAAAEijYpxQPxmVMh7JcaWcHYVqDWpZYy9GJRUTxl9prL1dUqRKkpZThgIavmEuazoajTBavsuAinW/ijn7cbajYuFlxT4cTHDO/jFLKReOO7SuIyl+l/Sas5ZvheLS6nY8AAA063a7XvfhWGjeCKj2mxUBbbdPBowS773ma+Ew2vZ8/8JoVjysYkai7f3zKSuM1kEI2mJ97hTchHmbjRJGq8RlfetouDVxZvFZOqN4TsYjAgAAwCbzl5K2eu9f6L1/q/f+z7z3d3rf5ocD6X1L0jO99x9OiqI1894fkvQL0ppK8rmSLurTmHrmnHuWpF9qmrQi6Zdbo2jNvPd/reOP96pJSdcOZoQAAAAANqSOW9EAAAAAAAAAAPQfYTQAAAAAwFioxuFzPJJOqB+kpPW2xqTKRrCslJtSyTjpP3S7pEiVlD4UkHS9qdx4h9GsxyjpcS4aga9yY1m+gwP9XMI86/WS9rVyfBl2iMxafq/hlqTX3LDeewCA8WOFzNqH0cLzrf2EfrPiqe32yYBRshQvasVXg/PmCp2H0Zy517t+v9l7b75frH1wyQ7w9uO9V4+NMFpkh9FC920c3XbkBjPavXf26oxHAwAAgM3Gez+fFPPqw/IPpA2itdzuO5JuadWc6psAACAASURBVJn80/0ZVV9cIynXdPkL3vt7U9zugy2X/41zrti/YQEAAADYvJKOkAIAAAAAAAAAoH8IowEAAAAAxkLVOIF7MhrOeRw5l9eEmwzOa41RWSefF6MpFXPpA2uVRng5q5YTolrNluJFc96oh9FqbQIqVggsKeJlRU9iNVTzK+umezOMYB/4Z4XZ0r5Wji8jIR5hLL/XeIT1eBbchHIu39OyAQCbh7ldNwJFq+qB7XDS8vrNDI82CKNhfMzXDprztud3dbw8O4y2Xs2vKFYjOK+rfduUIegk3QQXO2gljyzvvW5auD44b0tuq1408/KMRwQAAACMlLtaLu8eyijCXtdy+S/S3Mh7f4+kbzVNmpb0yn4NCgAAAAAAAAAAAAAAABg0zmAFAAAAAHTsrx77iA7UHs90nY+vPBKcPpkQvBq0UjSllUZ13fRySyzDilMVoynlXUEFNxEMcLVGqcptwmdpQwHLCdebzs2kWsagFYwwgRUyWNX62K9KCi8UE+aV42VNRGsDeFYYLSkSYa1/3WvFeG6cXOJr3boPvYbR7MczHKsAACAkb8Q0223X674enG7tJ/RbKWeFTZNjtcAoma+Hw2iRctqan+3bekJ7yEn7okn74Oa+c4/7tpIdWrai18eNfxntvvLd2r/yUHDexduuUCGayHhEAAAAwEhp/QHESOwgO+dOkfT8pkl1SV/vYBE3SHpJ0+V9kv6295EBAAAAAAAAAAAAAAAAg0cYDQAAAADQsUeq9+uR6gPDHoYkadIVh7buYm5KRxrz66a3Bs1aL69aPeG/FE2p1lgfRmuNUrWLcLQLp61abiwGp0fKDfXxbJbvMoxmPdbdhBdWl7dNcy1TOw+j2eGypZbL4fFPRiVFLjKXb92HihE2S8t+PIcXJAQAjJ+CC59P3G67bgWMrP2EfrO2d2n3uYBRMF8Lh9Fm89sVuVwf17R+H9nal5SS9yetKGE/3nvW505SGCzeAGG0Gxe+HJzu5HTp7FUZjwYAAAAYOee0XH5sKKNY77ktl7/rve/ki9GtLZfP73E8AAAAAKCN8AdlAAAAAAAAAADjwT6jFgAAAACAMTDMQJMVo1oXuzLiVKuxLCua1RoSaBcCqPkV1eL1gbVWy/Gx4PSp3BY5Z8e9stR9GC0cjyvl7PhZUjQt9Nx5K4yW8NhZ628db7chsqKxfCu0lpZ1eytWAQBASLfbdWt+dmG0dNtvYJTN18NhtLnCzq6WlxQDbpX0XilF9v6kNa/cGGAYLfFzZbxP8DlSP6x/XvxmcN5zpy/SjsLJGY8IAAAAGB3Oua2SrmyZfFsXi/pV59zXnHOPOucqzrlF59wDzrkbnXPvc85d2sUyz2u5fF+Ht/9Rm+UBAAAAAAAAAAAAADBy/HgfugugjwijAQAAAADG2nRuZmjrThvLsGJXq7GstFGrNBGO5TbxNElaaoTDaNO5LW1vmxUrTFBLCKh47xPCYnb8bDIqmoGH0PK88dPVpEiEtf7W59gMkSWEI47PH0wYzXrNDTNICAAYP3mXD06v+3ri7YYdRksbwQVG2eHageD0uXx3YTRLKB6cFDKbjIrmPCvCW/UVNXyj88E1sT9XJszbWGHkcXHLwlcUK/y4XTZ3dcajAQAAAEbOr0pq/gHAEUn/1MVy/q2kyyXtljQpaYukMyTtlfRuSTc5577tnLuig2We03L5oQ7H9GDL5R3OubkOlwEAAAAAAAAAAAAAAAAMBWE0AAAAAMDYKkVTOqv07KGuP6TcaA2aJce6rOW03i4pLNDJdZaNMNpUNDphNCt4YoUMJGnFVxUrDs6zHmNJilxkhr5CYTE7jGCH0ezXytrnq9Kwwmj2+KWkSF9vYTQr/NJuPAAANLO260nBU8ne7lsB1X5LG8EFRtl8/WBw+vbCru4W6Ox93lZJkd3I2b+iTNrX7HX/1vrcmUgIo42zhq/rloW/D87bVThV5049P+MRAQAAAKPDOXempP/UMvkj3vuVAa3yIklfcc69z7lUX65mWy4/2cnKvPfHJFVaJm/rZBkAAAAAAAAAAAAAAADAsOSHPQAAAAAAALqRd3n9u1PeoZwb3lfbYs6IXbXEpMoJQQApIZoVtwbW2kc4rJBVs+XYCKPlRiiMFnUeRgtFzFZZYZPm+aHbdxJeSDqLKW1YxboP1mttlfUaqvuaanFNBePxbKfSsF67hNEAAOkVjOBQvc15xlbAyAqt9ZsZrzVCpsAomq+Fw2hz+Z1dLS99Fq19INoyFU2b88qNZU3nZjoYxVpmcDGyw2ixD8eXx8F3jn1LRxrzwXl7Z1+VGKgDAAAANjLn3ISkz0pq/oLxgKQ/6nBRj0r6sqTbJN0j6bCkWNIOSRdK+hlJVzWvWtK7dfwP2r6rzbJbf2nTTam9LKnYdLn7L1RNnHMnSeq0uH12P9YNAAAAIAvWH40EAAAAAAAAACA7hNEAAAAAAB3bO3u1FhsLQ1v/1tyczp1+vnYUThraGKSEWEZL7KpixMpWb29Gs5qiG977VJGu5RRhtKVGOIw2PUJhtIIRPKnFdhgtKVJiPVfN80O5gFCoLFY4jOBkRwVKKSN61nPcdvwJ4bRKvKRCNJt4e/u23cUsAABoZoXMkoKnklQ3tvv5jMK4dgSXMBrGQ+wbWqgfCs6bK3QXRkvivZdzT6fTrPdKu33bpChwmhB0EjOMZgQcx92N818OTi+4Cb1s2+UZjwYAAAAYKZ+U9JNNlxuSfsl7n/ZLx206Hjz7qvfeKgbcKumjzrmLJF0n6VlN837HOfdN7/3fJKyj9Zc2lZRja1aWNJewzG79mqRr+7QsAAAAAGOlkz+jAwAAAAAAAABA9wijAQAAAAA6dsnsK4c9hJFgxaGaT9avxTXVfT3x9nY06+mQwIqvmkGuNbdptD9nZ9kIo01FoxNG6yagkhQpSYorSOnidCcYpzi5hOP+rOXX/Ioavq7cU4EXK/TQNh6RML8clzWj7sJoZsyizeMJAEAzK2Rm7SM9Pd8Io0XZBIxKUSk4PU2sFhgFR+sL5neIuXy3YTR7p9fLyzXN7zayW4qmzXk9h9HM4GL4+4d0/H6No/3VB3Vv+fvBeS/euldTIxTGBgAAALLknPsDSb/YMvld3vub0i7Dex+uEIeve7tz7qWSviHp2U2z/tA59/967xtpF5V2nT3eBgAAAAAAAAAAAAAAABi6aNgDAAAAAABgXFkn7FfictO/7XDGalzKXs7Tt02KfjVbThEKWI6NMNoInRjfTRjNeqydIk26YuL67Djd+sfTDiPYkYiksFnzc1tplIPXaR+PsOdXeohHdBuzAACgmbVdryVs1yV7u19ICBj1U9HYR0u7XwYM2+H6AXPeXKG7MJpL2OdtVQ5FhtU++ptzOXP/fTlFCDqJ9blTSAwujmdH4MaF6815l81eneFIAAAAgNHhnPuPkn63ZfIfe+8/NMj1eu8PS/oFrf2Cca6kn064Wesvc8IF92Sttwn/gggAAAAAUhvP35sAAAAAAAAAAMZPftgDAAAAAABgXBWj8Dko5aaT9ZPCGatxKXM5a4JZ6QIc5RShgKXGYnD6dG4m1TqyUHDhMEFSQMV6rItRSc4lBxys0Fdz5G6VVxy8bpTQn7fid9Lx53ZLbqsk+z5Y4bZV1mtIsoMUaZjjIYwGAOhAPjKCp/FK4u2sMFreZfOrjZKxfa37mmpxTQXjfgGjYr52MDh9wk1qOhrEvv/aE2HMyG6u/bn8pdy0qvXKuulJ4ek0rM+VCeP7hyTFfvxO8Ck3lnXbkRuC884qPkenF5+Z7YAAAACAEeCce6ukP26Z/F+99+/MYv3e+zudc1+RdFXT5FdJ+ppxk1EOo31M0uc6vM3Zkv6mT+sHAAAAAAAAAAAAAGxQ43fkLoBBIYwGAAAAAECXSrlw7GpN0CzhxP3VuJQVzWq+bVJgrdly3P6clmUjnjaVEO/KmhU88YrV8A3lXG7dPOuxThPxsq5TjtuH5tJIij+U1zzP4fVZ4bZVkctp0hVV9evjEWlfOyFmzIIwGgCgA1bwtO7ribezgqh5l02QrJiwb1SNy4TRMPLm6+Ew2lxhZ9twsCXpVq0HIYQiw1K6fclSNKUFHVo3fbnH/XM7uGiH0cbx8Irbjt4Q/G4gSZfNXZ3xaAAAAIDhc879oqSPa+3Xmr+Q9PaMh/J3WhtGe17CdY+0XN7VyYqcc1u0Poy20MkyLN77JyU92eF4+rFqAAAAAAAAAAAAAAAAbBLRsAcAAAAAAMC4smJalbgs74+fPJ8UpSpGpTX/b1VupAusrb1NcijAe6/leDE4byo3k2odWUgKnlgxg+bHq1ma8IJ1nUpjfczBG2EEl5CJSIqzrQ3pheMRqeJuRqgv7WunlffefExLOcJoAID0rOCptU1vNz85YNQ/pcSwaX/iqcAgHa4ZYbT8zh6Wmv5Eduu7UJp9W3v/vPvor2R/rkxE9ueKtf8/qrz3unHhy8F5W3Lb9MItF2c8IgAAAGC4nHP/VscjaM3HSn5G0q/41V/mZOeBlstJsbN7Wy6f0eG6Wq9/2Hs/3+EyAAAAAAAAAAAAAAAAgKEgjAYAAAAAQJesk/W9YlV9RZJ94v6kKypyOUnJQas0gbVmy20iHSu+qrqvB+dN5bakWkcWksJoNb8SnG4FwNJEvKzrhB536zwp5+xIRM7lNeEmg/Oax22F7dLE3azARNrXTquaX1GsRtfjAQBglbVdTwqjee/NfZZCwn5CPyVt76yYKTBK5utGGK3QSxgtydr9ZGv/PM2+5JTxHand9512hh1czMIPy/+ix1ceCc57+bYrVYiy+QwFAAAARoFz7g2SPi0p1zT5c5J+yXsfD2FIrT9QsKvs0j0tl8/pcF3PbLl8d4e3B/D/s3enQZLmeWHff08eVZnV09NdPd27y+4Ci/CCYLmWXViWXWbAwMKsjThEIAksDEISWEjIlsIhh7EtobAjbEfIIfmVFLZD4AhZEZKFpAhpZ8ESYvYAZC4BkjiNkGDFMbNTPdPdldWdx+MX1dmdnf38nnzyrOruzydiYjqfO68n/1lV+U0AgCfWo/WlMQAAAAAAPJ6E0QAAAGBFWYgq4n4QLY8B3P+sS7adSUziTnk7IvJg1rxFyx2Pb6bzLrTOTxit28rDBFkkJQuANQkvZMtU3X9l+sd/eRitbh/T+2xSju8F9eZl8bwm288eg4vUBV/6rbrPagHAg7Iw2rAmjDaJcZRR/fnkTtHZyHEtUjeGGKwZZ4JdSMNondXDaEXNmHd+nDxIItF176PuL1M9/l33uZedd/ZqwmjZuei8+tDRByqnF9GKL7n8VTs+GgAAODtFUfyBiPjbETH7g4R/EBHfXJZl9beCbN/8G7LqN26n/uXc5c8pimKZby15z4LtAQAArKD+76MAAAAAAGBThNEAAABgRf12XSzj+IH/z+vNhK7qoxvTwFoeqXpw+fpQwK26MFr7/ITR6oIno0l1zCALgDULLyTRssptVofR6iIREfnjpcl93CREll6HJEixSN1jqUlsDgCmukkYbVQTRquLpmWhtU1rF+3YK/Yr5zUdm8FZOhq+VDn9Svfa6hstmn/YJY1E17yPmkrDaA2D0ZnsvFN3XsmyyOfR0fDl+Lmb/7xy3mc/9c717nsAAHiEFEXx/oj4uxExO9j/xxHxh8oy+faV3XjX3OV/ny1YluVvR8TPz0zqRMR7l9jXl85dfmGJdQEAAAAAAAAA4EwJowEAAMCK6uJQJ/diV1msqz/z75ow2t0P/i8Knk0dLwgFHE/yMNrBuQqj5WGCYXmncnoaXmgQFcvuy6ptTlYNoy3YRxbROz2+6jDEA8uk4bXV4hH1oTZhNACay17XR+UwyrL6dbUumrarMFpEPkZYNTwKuzKc3Ikb41cr5x12rm5ln/NP5zQS3SRcvCAqvKrs3LLX2kvXyc5T59FHXv3hmMSkct5zl9+/46MBAICzURTFV0bE34uI2YH+D0fEHyzL5BcMO1AURS8ivmFu8o8uWO3vz13+9ob7+v3xYITtVpzeBgAAAGt6dH5vAgAAAADAo00YDQAAAFa0V+xHK3lrPbgXRquOS83GALKg1ez6dZGqWccLIljH4+ow2n7Ri3bRabSPXegWeZggixlkgZJG4YU0WjaISTmem7paGC0Nq0zDaDWBlSYhsrrrsIpBTWRvv0FsDgCmspBZGWVMYv519tSoHKXb69YEjDYtizNlQVY4L45GH0/nrRNGqx/x3h8nl2WZjkObjW2rw8B1Y9QmsvcSnZr3H4/KB3xG5TA+er26c/C67hvj0w8+Z8dHBAAAu1cUxXMR8Q8jojcz+Uci4uvKsrx9Nkd1z1+IiDfNXB5HxD9esM7furvc1DcURfHWhvua9XfKsjxpsB4AAAAAAAAAAJwLwmgAAACwoqIo0g/snyyIXc3GAPaLXhRpYO3WA/9fZDC+FWWZf3D/1vhG5fSD9lONtr8rWUAlIg+lpOGFmvBck2Xmt5vevPWViDQAMX2MnNTcx03ibovCa8vKo379aBV+pARAc3Wv68MkUjSa3KnZ3u5irpt+fYVdORq9nM477K4TRlsw6L3rdnkSZUwq560TLl7nuTcpJ+l7ib2aMFr5iITR/sWNn4jXxtcr5z17+LwxPAAAj72iKN4dEf8oIma/2eNDEfE1ZVmu9g0i1fv5o0VRvH7Jdf5ERPzFucnfX5blv61bryzLX42IH5iZtBcR318URS9ZJYqi+NqI+LaZSXci4vuWOV4AAAAAAAAAOCs1H40EnjC7+/QQAAAAPIZ67X7cmjwcG7sfu6r+4P5sDKAoiui1+pXxs+n6J+Nmn9kZxyiG5Z3YK/Yr5x8n8a0L5y6Mlv/IYpQEVLJ43DpRsYjTQNhsOC4LPLQW9Od7SXztXkQvCZF1im50W3lQZioPrzWL6j203hq3JwDMqg+eDuPBzyufyoJpi7a3adnrazbGg/PiaFgdRrvQuhj7rfTz82uZDYhlkd2I09DuIv12dYC6aTC6yjiJokVEdFqPfhjtQ9dfqJy+V+zHFz39ZTs+GgAAeFhRFG+O6r9XfMPc5U5RFG9JNnOzLMuH3vAURfH2iHghImZ/2fHLEfHdEfG6omgWeb7rpCzL36mZ/x0R8TeKovi7EfF3IuJHy7KsfLNSFMU7I+K/joivn5v1sYj4bxoez1+8u/7h3ctfHBH/pCiKP16W5S/N7Gs/Iv5kRPyVufX/yqIAGwAAAAAAAAAAnDfCaAAAALCGNEZ19wP7gySa0Z+LZPVbB5Uf8p8G1pYJABxPbsVeKwmjjR+OuEVEHLQvNt7+LrSKdrSiHZMYPzRvWN6pXCeLL2T3UdNlTm/7awu3sXgfWdxhGtGrvo+bHH9EXXitWVSv6XpNjwcApuoCn6PJMKJdMf2chNGygFM2xoPz4mj0UuX0w+7VNbfcLCZwMs6fI1n07IFl0ujvcZRlGUtGDSKi/ryyV9SF0c6/j93+jfi1wb+unPeFTz/3QOgZAADO0Eci4pMbLPemiPg3ybwfiIhvq5j+tRFxaW7ap0fELzQ9uBkvRsSXLlimHxHfeve/SVEUvxoRvxERr0bEOCKeiYjPjYjXV6z7SkR89YL42j1lWf5WURTfEBE/FBHTNy/viYh/XRTFT0fEr8fpdf/8ePiXGf8oIv7bJvsBAAC4p3wUfjsCAAAAAMDjThgNAAAA1tBLPrA/jUqdJNGM+fXy7UyjWc3jVoPxrbjcuVI579b4ZuX0gyTadZa6RTdulw+H0bKgwWBcHRbLbtumy5yMH7ztyySNUERrwT6qwyrT+3iQxCOyoNrDy9VH+pbV9LELAIvUhcyy1/VROUrX6dYEjDYtHaONVwuPwq4cDV+unH7YWS+M1jRHVhcPzMbFs/pJyGscoxiWd2KvqA5B11k5uPgIfPjnxaMX0nnPXn7/Do8EAACeSK04jbB9eoNl/2lEfFtZlr+1zA7KsvzRoii+PiK+P+7Hz4qIeOfd/6r87Yj4E2VZ8YsWAACAlS3/5TUAAAAAALCK+k/sAgAAALWyWMY0RpXHpR6MAfTb2XaOH/h/E8c1IazjSXUY7UL7YuPt70oWJ6gKpUzKcdwuTyqXz4Jhs7qtvegU1f34+bBYGZPK5YoFf/iXBc6mQbQsftckHFG3/ewxuEgeahNGA2A5dcGhYRpGqwsY7e47X/Ix2mrhUdiVV0ZJGK27XhitzmxAOBuDFtGK/aK3cFt1Y85Vn3/Z+SYiYq+Vh9ay8f95MRjfip987cXKeZ/a/4x4c+8tuz0gAAB4/P21iPi/IuLfNlz+VkT8/Yj4irIsv2LZKNpUWZYfiIjPioi/HhFHNYv+RER8Y1mW31yWpR9gAAAAAAAAAADwSNrdp4cAAADgMZTGqMankassaDa/3qKo1TJxq+Nxdfysbt5B+6nG29+VTqsbVQ2C4eTOQ9OyqFhEHjSZ12sdxM3xawu3XZYPLXJqwReiZsdxci9+V/35pObHXx1QO5kMYlJOolUs18dPo37tZqE2AJjq1oTRsgDasHz49T4iohWtaBXtjRxXE1kEt27sAefB0bA6jHalc23NLeeD3iZhtF6rH0WxYOAcEQfJ+6OIiOPxrbjUubJwG/Pqg4v5eSob/p8XP/HaP0sj0c9dfv+OjwYAAHJlWb5li9v+SxHxl7a1/bl9/f04DZ1FURSXI+JtEfGJEfH6iDiI0y+rvR6n8bJfjIifL8tyvKF9/15E/GdFUfzZiHhPRHxyRLwhTuNrH4uIny3L8t9sYl8AAAAAAAAAAHCWhNEAAABgDVkkahq5mgbSHlpvLmKVRa0G47thtHHzMFoW2IqoCaO1zmEYLYkTVAUN6uIkWdBkXj8Joz0ct6tOI7SiPjyWHcf0/soier2aKMSsfjtf7vZkUDu/+riaRf0AYJG64FAWKsqm121rG/ppGK352AzOwtGoOox22H1mre02iZpF1I0lG0Z/a+LAqz7/6sJoe8VeOq88x2m0sizjQ9dfqJz3dPtyfN7FL9rxEQEAwJOlLMvrEfHRM9jvnYj4Z7veLwAAwPn/ShkAAAAAAB4X9Z/YBQAAAGplkajB5DjKskwjZfORqmw7J5PjmJTjuF2eND6mwTgPo92aVIfRLrQf7TBaXQyucXyhYfhksuIf+OVhlUGUZZkGHvpJNK/p9iPyMEWd7HiyiB8AZOpiZsM0jDZaelvbkIdNhdE4vwbjW+lY7rBzdSfHkIWdm44l94teGh4+rhn716kLo3Vqwmjn+QM+v3z88/G7dz5WOe89l79y5+dMAAAAAAAAAAAAAFikPL9/ngucI8JoAAAAsIa62NWwvBOTmFTOnw8C9Nt5dONkMljqmOpCAcfjG5XTD85hGK1bdCqnVwUNTsb5bZQFTZouN3go6lD9k9ciitrtZ4+VMsq4XZ5U7Gd6XNXRvIeXy69nFsaokz3umt6eADDVKlrRinblvCxUlE3vnpMw2iqvrbArR6OX03mH3WtrbbtuxFvO/IVCNpacD0Sn+ymKPEKdjJsXGU7qwmj5uaU8x3958eL1D1ROb0Ur3nvpq3Z8NAAAAAAAAAAAAACwnnP8p7vAjgmjAQAAwBrmA2dTg/GtGNQEM+YjG+l2Jse128n2XWVSjtNtHbTOXxitU+xVTh9WhdGS69UpOtFtVW9nXh6ne/D2LLMwWlEfRqsLitU9XrLjemi52u0vH4/IHkd1+wGATBY0ywJow8mdyumd1m7DaOn4YHx8rmNJPNleGb5UOb2IIi53rqy59fox79T8GHoqe99Tpen4vKnsfBNx+r4hCx1n4/+z9srwpfj5mz9ZOe9znvrCOOxe3fERAQAAAAAAj4fz+bsRAAAAAB4fCz6GBxARwmgAAACwln77QuX0k8lxGuuKeDgu1W/l21k2apWFAo5rAgIX2heX2scudJYIqGRRsboYWdNlTyaDBy5nEZQspDBVFzg7mQzSx0vT69Bt7UWn6FTOWyUeMX+97x1Pw1AbAMzKX9dHyfTqgFG2nW3JXocnMY5hWR1vg7N2NPp45fRLnSvRTsaLm3F/nJyOJZcYn2fvkbKA7yJ155XTyPGj9RcWH7n+w1HGpHLec5ffv+OjAQAAAAAAngyP1u9TAAAAAAB4dAmjAQAAwBrmA2dTgwVBs/kgQK/Vr97OuD6wVuV4fHOp6RERB0ng7Sxlka+qoEF2G2X3zzLLzkfFyvRbUReE0ZKww3QfWdxtmevQNO7WRBZTW+Z4AGCq06oOmg0n1XGxLJi26zBa3eveKq+vsAtHw5crpx92rq697boY8Ow4eRNj2yxCvUr0NyJiuCC4mF23fPx/doaTYXz01R+unPeGvTfHpx189o6PCAAAAAAAAAAAAAAANkcYDQAAANaQhaiG5Z24NblROa+IIvZbvQemZR/6P5kcp1GBzHESCqgNo7UuLrWPXegWe5XTq8Jo2W2U3T/LLNs0elIXiYg4vT6t5Ecxg8lxnCQhvc3E3ZZ7DJVlmV7vZW5TAJjKgmZVr+t103cdRsvitRGrx5lg214ZvVQ5/bD7zM6OIRvbLjOW3NTYdmrReeVRCqP9i5s/FjfGr1bOe/by81EU9e9NAAAAAAAAAAAAAADgPBNGAwAAgDXURauOhi9XTt9v9aNVPPiWPAsE3Clvx61xdWAtMxhXRzpuTarDaK1o1UY/zkoWPhlWBA1ONhBGS8MLc7dnGZPK5RaF0YqiiH6rOoA3GOcBvF57/bhb9pjI3C5P0gDEMqE2AJjaVBitu+MwWt3rXtN4Kuxa9j7ksHNtZ8eQh4ubv+/Ix86rRQkXnVeylth5DKO9ePRC5fT9ohfvevrLdnw0AAAAAADAk+P8/d4EAAAAAIDHkzAaAAAArKFfE606GlUHCapiALWBtWQ7mcGkOhRwPK4Oox20n4oiqwCcoWUCKoNxdXih7v6ZlwXI5qMn6/x5X7aPG+PrMYlx5bxlQmRZGG3Z+5MAfQAAIABJREFUcMtJcnvW7QMA6nSLTuX0UTmqnF4VQo3Ixwfbsl8TcVo1zgTbdj15/3DYvbr2tutiwLMBsWz82W9Xx86ql02iv0l0bZEsjHb/vJKV0c7XB3x+8+TX49dPfqly3hde+tKl3gMBAAAAAAAAAAAAAMB5JIwGAAAAa6iLRB0Nq4ME/dbDMYDaMFqynczxsmG01lNLbX9Xuq0kjDZ5OGhwksQRqiJ0mew+eCi8kIQRWsXiH7P0k+N5ZfhSzTqbiEcsF26pi01kcTcAqLNM8LRu+q7DaK2ilY4nlg2Pwi5MykkaVr7Subaz48jGn8uNz6vHwcuObacWBRez6Fu5Vhp58z50/YV03nOXn9/hkQAAAAAAAAAAAADAZp2vv9wFzpIwGgAAAKyhNow2qo5dVcUA6mJTWdggMxjfirIi3nVrfKNy+YP2+QyjLRNQyUJey0TFsvtyPro2iUmyheqQwoP7qD6euvt4M/GIPHRWJQvNne5DGA2A5XWKvcrpw/JO5fQ8jNbZ2DE11XSMAOfBzfFrMSpHlfMOu1c3sId8zDsbEMvCgXXvn+alY9vxamG0ReeVRyGMdjy+Gf/vay9WzvsP+m+LN+5/8o6PCAAAAAAAePycn9+NAAAAAADw5BJGAwAAgDW0i3bsFfuV846GH6+cXhWWqotNHQ2ro1mX2oeV0ycxidvlyUPTjyfVAYELj1gYbVgRNMjCJMtFxarvg1E5jOGkOqIwa3EWLd9Hdh9HRPTby8Tdqq/vsuGWLKTWilb6eAeAOlnQLAs4ZQGjbhJY26bs9XvZ8CjswivD6jhzRMRhZ/0wWlE36L37GZlJOYnbSRhtmcjuQTIOXvW5t+i88iiE0X781R9Jg5LPXX5+x0cDAAAAAAA8eZr8hRQAAAAAAKxPGA0AAADWlMauRtWxq1774eXbRScNfWTbOexeS4/peHyzYtqNymUPWhfT7ZylbhJGqwoaDMbVcYR+a5moWB5pOJmJymVhhKLBj1myfWT3cRFF7Be9hdudyq5vdvtk8tDcQRS1NQwAqJYFT7NQUTY92842Za/fy4ZHYReycWWn6MZT7ad3cgy3JyfpmLluzN102UESfF4kPa+0dn9eWcWknMSHrr9QOe9S+zA+7+IX7fiIAAAAAAAAAAAAAABgO4TRAAAAYE29dnWMaljeqZyehdTSqFXywf8rNWG0qnVuVcTSIiIOkuM/a8sEVE4mg8ple61+4/31K4J1U4OZ7adhtAa9sGwfr45eqZzea/WXCpFl21823JKF1Ja5PQFg1jLB04iI4eT8hNGysduy4VHYhTSq3HkmWsX6vxYsIh+bTsfJdWPPujH3vIPk/dHJZBCTctx4O1OLzitFcvuUZfX4f9d+6fjn4qXhb1fOe8/l90W76Oz4iAAAAAAAAAAAAAAAYDuE0QAAAGBN/SVjUb0krrFsdOpKpyaMNn44jHY8qQ6jXWhfXGq/u7JMGC2Lxy0TXsiiJxERJzPbz8MIiwNm2T6y2FoWy8tkj61lw2h5aK757QkAszrFXuX0LCSbBdM6rd2Hf3rt6jHasq+vsAtHw5cqpx/WRJWXUzfmnYbRqseSEcuNJ+vG8nX7yKTnlbtBseyaZWP1XfvQ9Rcqp7eiHe+9/FU7PhoAAAAAAODJdD5+bwIAAAAAwONPGA0AAADWtGwsKotj9dvLRbAudi5FN4mMHFeEwo7H1WG0g/ZTS+13V7Iw2rAiaLCJkFddmG4ws/0sjFA0CKMt+1jZ1GNrsGS4ZROhOQCYlQXNRpNR9fQ0YFQ9PtimPDy6fJgJtu1o9HLl9MPO1Z0dQzaWjKiPET+8bP7+qG4fmey8cv89VfV4/jyE0T4+/L34hZs/VTnv8y6+Ky53ruz4iAAAAAAAAAAAAAAAYHuE0QAAAGBNdR/Yr5IFuJaJBJxu5yAOkn0PxkuE0VrnM4zWTcIn80GDUTmMYXmnctllbtNW0Y79olc578Hbc/Uw2rL38bIhsjSMNj6OsmwedNhEaA4AZmVBsyxUtDhgtDt5eHT5MBNs2yvD7YbR6sa809FmNpZsRWup53Dd+6zjivc7iywKLubX7ezDaB++/kNRxqRy3rOX37/jowEAAAAAAAAAAAAAgO0SRgMAAIA19drVobNMv139Af8smJZup3WQbut4LtRRlmXcmlSH0S60z2cYrdNqFlA5GVeHFyKWD3n1khDZbNyhXCeMtmTobOnjT5YfxygNQVTJQi/Lht0AYKpp8HRqmAaMOhs7pqay19cs/gRn6WhUHUa70t1MGK2Jk8lx5fR+60IUxeIx873la8bOg2QfdRadV7JjO+ss2nByJ37s1f+nct4n7H1SvLX/th0fEQAAAAAA8Fhb4ssXAQAAAGDT/HgKmBJGAwAAgDX1W9VxskwWQFtlO9k6g/GDYatheScNjxy0zmkYLQmoDCdzYbSaKMKyIbIs/DUbCiuTn642iTwsGzpbNkS2qXhEFptb9vgBYCp7Xc/GJ9n0bDvblI4PxtUhUTgr43IUr42OKucddrYfRpsGhAfj6nHnskHpdtGJvWK/ct4qz79F55UsdFyWk6X3tUk/c+OjcXP8WuW8Zy9/9VKxOQAAAAAAgPX4vQQAAAAAALshjAYAAABrWjZelcWllo94XYiDdnUY7XjyYCjgeHwz3c5B+3yG0boNAyp1wa9lQ17Z8ieT+6GwafDhYYv/8G/p0NnSsby6MFrzeES27LKPUQCYSoOnj0AYrZe8/s2OD+A8uD76eDpWPexe28g+snjYqdN9Z+HiVSK7/eT9zjLR36nsvNIt9u7+KwmjLb2nzXrx+guV03utfrzr0pft+GgAAAAAAAAAAAAAAGD7hNEAAABgTct+wD+LYy0d8Wr303DWYPxg2OrW5Ea6nQvti0vtd1ey8Mk2w2jZfTN/e1Zp8n2ovWVDZ+3+UsvXhdeWibdky64SswCAiOav64um3w8Y7U72+rdKmAm26Wj4cjrvsHN1I/soisWj3uy5sWwkuG6dZaK/U4uCi610RH92abR/d/Jr8Rsnv1I5711Pf1n0Wsu9XwAAAAAAAAAAAAAAgEeBMBoAAACsqd9eMmiWfLh/2VBAv3Uh+u3q0NbxXCjguCbsdZBs46w1DaicJOGFvWI/2kV7qX1m983sPsqYVC5TNPgxS3+DobMq+61+FEnQoUncbSq7TYUXAFhVd+kw2qhyeqfobOyYmspej08mgyjLswsmwbyjUXUYrdc6WPo9yyqmz4Z8LLlKGK1ZCLqJ4SQLo03PK9Xj6PIMw2gvHr2Qznv28vM7PBIAAAAAAICIs/xCGQAAAAAAnizCaAAAALCmpYNmSZRg2VBAr9WPg9ZTlfMGc2G0W+MblcvtF700QHbWsoDKJCYxLsf3Lg/G1eGFZe+XiPy+OZkM7v07+/O+LEj24DEtF6FbdvlW0Yr9JF42SAIVyyy77PEAwFTT4OnUsLyz1Ha2KRujlTGJ2+XJjo8Gcq8Mq8NoVzpXd3MAd0OB2VhylchuFoKef7/TRHa+mZ5XstH8WYXRbo5fi5+68eHKeZ928NnxCfufuOMjAgAAAAAAAAAAAACA3RBGAwAAgDUtHzSrXj6LcuXb6cdBFgoYPxgKOJ7cTPZ5fkNXdeGT2ajBSRZeWPL2jMhjarPhhXXCCMvGIFaJR2TrZLdT5bJJbG6V4wGAiOXDaKNJfcBol+piq7PxVDhrR6PqMNphd3NhtCYx4JNx9fNilchuPj5vPradys433dbe6T+K6utWlmcTRvuJV38kjUQ+d/n5HR8NAAAAAAAAAAAAAADsjjAaAAAArKkuljGvFa3YK/Yr5y0TWNsvetEq2mlcYD6EdjyuDqNdaF9svM9daxpGy6IIy9wvU9l9MBs9KctJ5TJFsfjHLK2iHftFr/HxrBKuyx4TTeMRk3Ict8uTjR0PAETkr+vDLIxWjqq309p9GK0utjofo4Wz9Mrwpcrph51rO9n/NCA8GxWe1WsvH9lNx7YrPPfS88rd81Mefdt9GG1STuLD1z9YOe9y55n4nKfeteMjAgAAAAAAnhxn86UxAAAAABDhp1PAfcJoAAAAsKZlgma91kEURfUH7pcJeU0DVQdJqOp4LhRwKwmjHbSearzPXeu29tJ5sxGVkyT4tcz9MpXdB03CC1lGYV5dXOWhZTd4HU7GzcJosxG4h7e9fMwCACIiuknQbFQRRpuUkxhHdcCoWxNO3ZZezetf3esm7Nr10cuV0w+7Vze4l3zUOw2jZc+LVcLF/WTs3DT6O2tY3qmc3ik6EZGH0c7ijyt+8dbPxkvD36mc995L74t20d7xEQEAAAAAAEQ0/wspAAAAAABYjzAaAAAArCn7sH6VurDGcoG10+30W9VhtJPJcUzKyb3Lx1kYrX1+w2jTQEGV0eR+RCWLItTd1pksWjYbdyiTNEIWUpi3VABvhXhEdh2axiPqlusljzcAWKSTBM1mX9PvTauIpS3azjbtF70okl+nDCaL46mwK0fDj1dOP+xsLozWZMSbj89Xif4mIegVnnvZuWV6XsnDaJPK6dv04vUXKqe3oh3vufy+HR8NAAAAAAAAAAAAAADsljAaAAAArCn7sH7lsu182bp52T6zfZdRxu2ZmNfxpDqMduFch9Hy8Mls1OBkXB1eWOZ+ub9OFhW7H15YN4y2TBBilTBats5JwzBa3XL9FWJzABBRE0YrRxXTzlcYrSiKNLg6G0+Fs3R7chK3Jjcq513pbi6M1kQ2nlwtjJaMbZP3AHWyc0u32Ft6W9v08p3fjX9166cr57394rvjUudwx0cEAAAAAAAAAAAAAAC7JYwGAAAAa+oWe9Fq+BY7i2osmpcte1ATNjueiXndGldHEg5aj2YYbVjeuffvQRZeaC8f8cpiDSeTQZTlaRBt+v+HFM3CaMvEznrtzcUjZuNudU7GeeBllZgFAETkr+vjGMWknDwwrSqWtmg727ZueBS27Wj4cjrvsLO5MFpdDHgaEM7DxcuPJQ+SePRxw7HtrOzc0ik6ERFRFNXv6bIw8rZ86PoL6T6fu/z8To8FAAAAAAAAAAAAAADOgjAaAAAArKkoiui3qj+wP68uLLVf9BoH1vp3g1kHNfsdjO/HArJwQF1Y7ax1i7103mzU4GRSHfJqep88uE71/VNGGbfLk3uXqtRFIh7YxxKxs1XiEWncrSZ4NisLqHWKTnRb+X0CAHW6NUGzUTmsvdx0O9uUvb4OkgAU7Noro5fSeZc3GEaLBWPeSTmeGTc/aJXoby8Z059MbuXB4gplWT4QV541DS5m12yZ/azrzuR2/Pir/7Ry3hv3Pjk+tf+ZOzsWAAAAAACAh+32C2UAAAAAAHhyCaMBAADABjT9kH9d6Kooitpw2gP7u7tcXWTreHLz/r/HNyqXudC+2Gh/Z6FTdNJ5s8GUkyTk1Wv1l95n3e0/Dc2Va4bRmt7H3WIv2jW3QSZ7TAwmzcItWWiu6XEDQJXOhsJoddvZpuz19aTh6yts29Hw5crpT7cvR7e1q+dNmY4lIyL6K4zPsxD0qBylobMq4xil86ZB5mw8n43/t+Gnb3wkbk2q37s9d/j+KIpm7zkAAAAAAAAAAAAAAOBRJowGAAAAG9D0Q/6L4lJNY17TwFq76MR+0atc5nh8Pxh2a3yzcpksNHAetIp2tJIfXcxGEAZJfKG/wnWrC81NIw/rhtHq4ngPLrfafZM9xgZJQO7h5aoDL02PGwCq1IfRHgwW1cWOziqMlr++CqNxPhyNqsNol7tXN7qfui5XWeaR3YiI3obH58s8/+bPM7M698Jx2ZXbXRjtxesvVE7vtQ7iC55+dmfHAQAAAAAAAAAAAAAAZ0kYDQAAADag6Yf8F4XP+u2m27kfCMjWmYawJuU4TpJowIX2xUb7OyvdYq9y+qgc3vv3ybj6ujWNzD24Tl144fT2XDeL0DR4tsrxn26/+jrURSoeXC67PYXRAFhdtzaMNpy7XBMwOqMwWv76KozG+XA0rA6jXelsNoyWx8NO1cV4m8akH1wnHzsPxs3CvxERo8kwndcpOhGRh453lUX7jcGvxr87+bXKeV/09H+48vsDAAAAAACA5ezuS2MAAAAAYF7px1PAXcJoAAAAsAFZLOOh5RaEzxpvZzaMlsQCpqGAweQ4yuQP1g7aTzXa31nJ4ifTYEpZljFIgiRNI3Oz9or9aCU/LpmGxcpyUjm/KJr9mKXX3sxjJd1+8hhqGo7Iw2hCDACsri5oNizvPHC5PmB0NmG07HVQGI3z4mhUHUY77G46jFanjJNxHuNdJbRbNybO3gdUmT/PzJqeV4oiC6Pt5q8rPnT9A+m85w6f38kxAAAAAAAA1Kv/Eh0AAAAAANgUYTQAAADYgKYf8l8Ul2q8nZm41kESCzienIawbo1vpts5aJ33MFqncvqoPA2mDMs7MYlx5TKrhLyKolgYmkvXbfiHf6vE75aRxSNulycxKatvq1mD8eZCcwAwVRc0m76uZ5cf3E712GDb8vCoMBrnwyvDlyqnH3Y2G0arG/OWUaaxwE7RiW5rb+n97Re9KJJfZw4mzcK/EfXnlW4xPa4kjJaEkTfp5ui1+KkbH6mc9/sPPjdev/emrR8DAAAAAAAAAAAAAACcF8JoAAAAsAH9dtPYVX1capVoVhryuhsKOK4Jo11on/MwWhJPGE7uRETEIAkvRCy+rTO9dnVQ7WQyiIjT4EOVpt+HuqmIXqZfs970OtTJYharHg8ARER0WnVhtNEDl4flneptFN0oirP5BvJsrNfktRW2rSzLOBq9XDnvSvfaTo8lG583HQPPOw0XZ2HCZcJoo3TeNNx4NmeXUz/26j9J423PXn5+x0cDAAAAAAAAAAAAAABnSxgNAAAANqBp0GxRXKppMGA2+nXQrg6AHd8NBRxPqsNorWitHCjYlWmkYN40GpBFvCLWCYsl4YW7obkyJpXzi4Y/Zmkev1sx7FazXl1IbtEyqx4PAEREdIpOOm80eTAGlAWMsnHBLmRjpun4AM7SrcmNNCh42Lm6s+MoYzuR3X7yfmeZ518WHYu4f37KxvNZGHlTJuU4PvzqByvnHXauxmc/9QVb3T8AAAAAAEBz2/29CQAAAAAATAmjAQAAwAY0D5rVL9dvLx9Yy4JV01DA8bg6jNZvX4iiKBrt76x0k4jKNJgyGOehryygsEh2X55MBhGx/p/3NX6sNHwsPLRezfbrbq+pbcQsAKAdnSiietwxHyzKAkZnGUbLXl+n4wM4S0fDl9N5h91rG91X9jw+VcYgeU6sE9nNw8WLx7ZTWTgu4v65Jbtm2w6j/atbPxMfH/5e5bz3Xv6qaBftre4fAAAAAAAAAAAAAADOG2E0AAAA2IBFwbN7yy2IXTWPZt0PCxwkAbDj8WkY7db4RuX8C62LjfZ1ljrFXuX0adggi3gVUcResb/SPrP7YBqay9JoraLZj1max+9WC6PVrZfdXrOyeNo6MQsAKIoiDZvNB4vyMFp1MHUX8nBq8zATbMvRqDqM1op2PN2+tNF91YfRIk7ujZkftE5kNxuHTt/vNJGdVyJmo4vV123bYbQXr79QOb0dnXjPpa/c6r4BAAAAAAAAAAAAAOA8EkYDAACADehtKHbVNLA2GxbIQgHTkNfx5Gbl/Cyodp5kAZVp2GCQxEh6rX7jUNm87D6YBsPKcr0wQtPAWNPHwrxuq5vebtntNetkMqicvk7MAgAi8rDZqBzNXa4OGHWTYOouZK/LJ5NBTMrxjo8GHnQ0rA6jXe5ciVbR3tlxlFHGYJyNJVcb20bkYeFlwoTz55mpdnTuvW8oiiT6tub4v87v3fnt+Ne3fqZy3udf/OJ4unN5a/sGAAAAAACotMXfjQAAAAAAQFPCaAAAALABTSNWi5ZrGgyYjWulYbTx3TDaOAujXWy0r7O0KKCSxRDWCS9kkbvpvsqo/uO/IpKQwvz2GwbG1opHpPGWWwvXTW/ThvE/AMgsCp5ODZMwWrb+LtS9Dt6enOzwSOBhr4xeqpx+pXtt8zvL4mF3ZWPJLG7WxMGCEHQTw8mdyumz7zey8fw2P/rz4esvpPOePXz/FvcMAAAAAACwimZ/HwUAAAAAq9LtB6aE0QAAAGADmobRFsWumgQDWtGKbrF37/JB+6nK5Y7vhgJuJWG0C63q9c6TPKByGjYYbCGMlt2Xgw2F0brFXrSjOvj2wHG0qwMQTWTXfzAZLFw3u02bPsYBINM0jDZ/+f76i18/t6XudTB77YRdORq+XDn9sHN14/taNOLdxvi8l4TRjsfNw2jpeaV1/7yUh9EmjfezjDuT2/Hjr/5I5bw3739K/L7ep29lvwAAAAAAAAAAAAAAcN4JowEAAMAGNPmgfzs6aRBkme30WxeiKO5/aP8gCQWcTI5jUo7jeFIdRsuCaufJbABu1vBu2OBkvPmIV3YfnNyNimVhtKbfiFoURaMAXq/Vb7S9Ktn1z26vqVE5jOHd6NzDxyOMBsB6Fr2uT+VhtPpx1DbVvQ6eCKNxxo5GSRite22nx1GWZfp8WGcseZAEg5d57mXnley8NGtbXzr3Uzc+nL5Xe+7y+x94zwcAAAAAAAAAAAAAAE8SYTQAAADYgCahq377YOGH25sEvXrtB4NZ/SQUEBExmBzH8fjRDaNlAZRp2GCQhRca3B+Z7D4YjG+d/qOsTiMsEy5oEj3rJ8G7RttPrv9gcqt2vZPxoOZ4hNEAWE+n6FROnw8WpQGj1uKA0bbUvXYPJvnrJ+zC0TAJo3We2cLe8jFvGeW9mPC8dcaS2brH4/qx7axROaqcPnteKtLrtvk0WlmW8eLRByrn9VsX4guefnbj+wQAAAAAAFjftr5SBgAAAAAAHiSMBgAAABvQJGK1qRjWfBjgoGadwfhW3ErCaBdaj0AYrZUEVCanwZSTJIy2Tnihl6w7jTxkf96XhxQetsr9vIxs3SxUcX9+9e0Zkd8uANDUouDp1HBSHUbL1t+FbrEX7agel5wsEWeCTZuU47g++njlvMPu1Y3vb9GYd5A8H5q8F8pkIei6seu8YXmncvrseaUoqn9tWiZh5HX8xsmvxG/e/vXKee++9OWx19rf+D4BAAAAAAAAAAAAAOBRIYwGAAAAG7Df4IP+TcJSvfby28lCARERx5NbcTypDqMdtM9/GK1b7FVOnwZUBkkMYb3wQvX9NJicRh7KmFTOXyaM1uyxsPkw2vQ6ZLLbMyK/XQCgqaZhtPnL99evDpPtQlEU6ThtsCA8Ctv06ugoJsn49Ern2o6PJg/xrhPZzca2xwvGtrPy88pMGC1Zt0zTyKt78foH0nnPXv7qje8PAAAAAAAAAAAAAAAeJcJoAAAAsAHtoh37Ra92mewD/csu81AYrWadwfhWHI8f3TBaFlAZ3g0bZOGFfiuPxS2SRRuG5Z0Yl6OaLELzMFqTyFiTx0Imuw6DcR4+i6gPo60TmwOAiIhua90wWvX6u5K9Np/UvH7Cth2NXk7nHXavbnx/dSPeMsr0+bBOZDcb29+eDGJSVkfh5mXnlQdDzNXXbtNhtBuj6/EzNz5aOe8zDj4vXrf3xo3uDwAAAAAAYDmb/9IYAAAAAABYljAaAAAAbEhvwYf9s1jVrHbRib1iv3aZ+ShHq2in2/7gK/93DMs7lfMOWo9uGG0aNhiMb1XOXyfiVRuamxxH9sd/raJ5GG3RY6EVrYWPgzpZeGJRuCWb3y32ol10Vj4eAIioCZ5OHo0wWhoeFUbjDL0yrA6j7Re9LY338zHvuBzFnfJ25bwm74Uy/XZ1GK0uxDZvVI4qp3dmxrhFet02++Gfj776T9Ljee7w/RvdFwAAAAAAwGY1//soAAAAAFiFbD8wJYwGAAAAG7Low/5ZrGrZ7VQF2A5a1bGAXz7++XQ7F9oXGx3PWeouCKOdTAaV87N4QhN1YbST8XGUZfbj1eZ/+Fe3j4jTx0CxRGjt4fWrr/+icMtgXD2/n2wPAJaxKHh6/3J1MCgbF+xKNkZrGmaCbTgaVYfRLnevrjWeXEU2No9YPP6tUzcWbRomzGLRs+elLIy2yT+umJTj+Mj1H6qcd6VzLT7rwjs2uDcAAAAAAAAAAAAAAHg0CaMBAADAhjSJXTXazoKAWtV+VgmBHbSfWnqdXVsUUBlMblXO77X6K++zKjw3NZgcR5mkEZbJTmwqopeun1z/ReGILOyyzu0JAFNNw2hNAkZnIRvrZWFR2IWjYXUY7bDzzFb2l8XDIvKxecS6YbSa8fk43+es+fPM1ANhtCQkV5aTRvto4hdu/lS8Mnqpct6XXP7qaBXtje0LAAAAAAAAAAAAAAAeVcJoAAAAsCEbC6OtsJ0L7YuNtj1VRBEHrUc/jHYyGVTO77eWD8XdX3fVMFrzH7Msuo/XCUdERPSS65+Fz6aycNoq4T0AmNc0jNYkYHQWsrHcotdX2KajJLJ1pXttOzusqQHXRQKbvheqUhcNXhT+nRpNRpXTu63dnldevP6ByumdohNffOkrdnosAAAAAAAAy6v+uykAAAAAANg0YTQAAADYkEUf9m8au1plO59+8DmNtj31qf3P3HkEYBXdJIAyLIcxKSdxOwmj9Vr9lffZLjrRLfYq553UhNGWsSg0tk444nT71esPxsdRlvnxZ6G5dW5PAJjKXtdH5Wju8vkMo2Wvr8JonKWj4cuV0w87V3d8JPXPhV579fFkp+im4/PB5FajbTQ5rxRJ9W0T4/+IiN+987H4peOfq5z3+RffGxc7lzayHwAAAAAAAAAAAAAAeNQJowEAAMCGZLGMqaZxqUUBtapo1nsvfWV8wt4nNdr+ftGLr7n6zY2WPWudJN42Kodxe3KSRgoWhccWye6Dwfg4sm8+zUIKVRY9FtYNo2XrT2Icw/JOul4Ws1j3eAAgIg+bzb82zYfSprKw2q5kr4cDYTTO0Cuj6jDale61reyvbsybRcq6xd7aYcN+q3p8Pxj094j4AAAgAElEQVQ3C6NlY+BdhtE+fP2D6bznLr9/I/sAAAAAAAAAAAAAAIDHQeesDwAAAAAeF4viUU3jUouWqwqwXexcjj/3Sf9D/PRrH4nfOPmVGJeTynXfsP+mePtTXxxv2H9zo2M5a1lAYTQZphGviOYRunz9g3htfP2h6SeT4yjLJIxWNA+jLYrfZeGHTWx/MDmOvdZ+9bxx9W266HgBoIn0db0cPnB5OHd50fq7ko0vTiaDHR8JnBpO7sTN8auV8w47V7eyz/owWhbZXW9sHnEaPn5tfPTQ9OMkxjZv/jwz9eB5ZXthtNuTk/jxV/9p5bxP2v/UeEvvrWvvAwAAAAAAYDM286UxAAAAAACwDmE0AAAA2JCFsauKoNkqy2XhtAvti/Hs4fPxbDzfaD+PgiyAMiyHaXghYv2wWK99EFHRThhMjtMwQl0kYt6i4+u114tH1D0WTybHcSkO03mVxyOMBsAGNA2jjSZ3qtdvnW0YLXt9HYybhZlg045GH0/nHXa3E0ark0V2NzGWzJ5/dbHkWaNyVDm9O3NeykPH63/45ydf+1D6/uW5w/cvFVkGAAAAAAA4O36nAQAAAADAbrTO+gAAAADgcbEojNY0CLBouUX7eZx0awIqdRGEXms7YbGTmjDaMn/4tyh8tnbYreYxUhdvyWINTaN+AFCnm4TN5oNFWcAoC6vtSvb6ejIZ7PhI4NTR8KV03mFn92G0bHy+ifcvB8n4+LhhmHA+wDg1e15Js2hrdtHKsowPXf9A5byD1lPxjovvXW8HAAAAAAAAAAAAAPCYWPdvd4HHhzAaAAAAbEhvQTyqaRBg0XJPUhgtC6CMymEa8WpHJ7rF3lr7zW7jQU0YrbVEGG1R+Gzd+3i/1YsiOZ66eEsWs2ga9QOAOtnr+nAuWJQFjLJg6q5kodC6WCts09Ho5crpF9oXY6+1v5V9ZmPMiIjBpDpStuh9UhPZNpo+/4blncrpD4bRqn9tmoeRm/n1wS/Fb93+jcp577705Vu7rwAAAAAAAAAAAAAA4FEljAYAAAAbsqmg2aII1ZMUqcoCKpOYxPH4RuW8XrsfRdE8Ula5jeQ2PhkfR2RhhCX2ue34XatoRa/Vr5yXBStO51WHJZ6kGB8A25MGTycPBouyMFq2/q5k44M75e0Yl6MdHw3kYbQrnWs7PpJTg3EW2a0ely7jIAkLH4/zse2sUfIcbXJeWTeM9uL1D1ROL6KIZy9/9VrbBgAAAAAAAAAAAACAx5EwGgAAAGxIP/mw/lTToFm/vWA77fXDAo+Kbk2o4Mb4tcrpmwjH9dvV2xhMjqPMumjRPIy23+rVzu8l+19Gdjtk8bOIiJNk3pMU4wNge9Iw2lywaFjeqVzurMNodaHQk8lgh0cCp14ZvlQ5/bB7dYt7zce8eWS3/v1NE/nYtmkYrTq4OPt+Ix/Prx5Ge210PX72xo9XzvvMC2+Pa3ufsPK2AQAAAAAAdm+9L5QBAAAAAICmhNEAAABgQ3qt+mBZ06BZ3Xa6xd6ZR0F2qe663hi9Wjm9LlrSVBZeOJkcRxmTynnLhNFaRbv2ft7Edci2cTKuDlaUZRkn4+qoS3/BYxsAmugUncrp88Gi+VDa/fXPbxhtkLy+wjYdjT5eOf2ws70wWlHUhdGqI2WL3ic1cZDEo+uiv7OyMFqnQRitXOMDPh999YdjHNXntGcvv3/l7QIAAAAAAAAAAAAAwONMGA0AAAA2pJ98WD9iuaBZv5VvZxPBrEdJ3W12c1wdRsuiZstIo2KT4zSLsEwYLaL+ODcSRlsyHjEs76TRhl7NYxsAmuoWe5XTZ4NFZVmmAaPuGYfR6l67TxrGmWCTjoYvVU7fZhitTvY8qHt/01S2jcG4OsY2bzi5Uzm905oJoyXRt7JcLYw2Lsfx4es/VDnvme7r420X3r7SdgEAAAAAALZqxd+NAAAAAADAJgmjAQAAwIZsKnRVt+wmol+Pkm4rD6DcSMJom4iKZbfzaVRsM3/8t+37udfqV07Pwmgnk0G6rX6yLQBYRhY8HZb3g0WTGEeZvNY2jcxuS6+dvx4Ko3EWjkYvV04/7J5VGK16PJmNS5eRR3+bhdFGZXUA+MHzShJGW3H8/ws3fzKujz5eOe/Zy18draK90nYBAAAAAADOznJfHAkAAAAAAKsSRgMAAIAN2VToqteu2U7NvMdRXQDlxqg6jLaJqFh2X56MB2kYoSiW+zFLbUhvA/dzv1Udj8jCLXVRiSctyAfAdnSKTuX02WDRsBzWrH+2YbRO0Y1usVc5LwuPwrYMxrfSENlh52zCaJlNvIfJxudNn3uj5NzSnTmvFOkHeVYLo714/QPJPvfi3Ze+fKVtAgAAAAAAAAAAAADAk0AYDQAAADakW+xFK9qV83qtfuPt1AXW6uY9juoCKDfH1WG0TUTFsnhDXTxs2e9D7berw2URedRsGVnMbDCujkdkYY3T43myHncAbEf2uj4qh1GWp+Gh0eT8htEi8jFdFh6FbXll9FI670r32tb2m8fDcpsYS2bj41E5jOHkzsL1h2X1Mk3OK6tk0X7n9m/FLx//fOW8d1x8bzzVfnqFrQIAAAAAAAAAAADA4221rzQGHkedsz4AAAAAeFwURRH99kHcGt94aN4ysa69Yj9a0YpJTB6al8WuHlfdYi+d99roeuX0TdxGWbyh6j65b7lIRF0sb3+JkN6y2781uVH5GL0+/HjN8fTWPh4AyAJEZZQxiXG0oxOjMg+jdVtnH0brty7EjYo466ujo8rXV9iW37n9W5XTi2jFpc6Vre13lTDaRsbnNe+nXhm9dC801mv1o108/OvPUTmqXHf2vNQqqr9Paji5s/Tz+59d/0fpvGcvP7/UtgAAAAAAAAAAAAAA4EkjjAYAAAAb1GtVh9GWiQEURRG91kEcT24+NC8Ldj2uOhVRg6nb5Unl9E3cRv3WhaXXaS0ZiciOc7/oRbtoL73/h7bfrr4Ov3L8C/Ff/tofbbydXqsfrQ0cDwB0W3nwdFgOo13Uh9HqxgW7koVHf/Cl748ffOn7d3swUOFS53AjY8lN6m8g+ls3Pv++f/Pd9/69X/TiMy+8Pb7lDd8dB+2nIiJiXI6jTALHWbBx1odf/WB8+NUPLnnE1T6599Z4S/+tG9kWAAAAAADA7pVnfQAAAAAAADwhqr/6HAAAAFhJFrtaJowWEdFvb2Y7j7pW0Y7Wkj++yIIl29/GsmG06rhDL7nvl7WpiN6T9pgDYHvqwmajyWkQbVgbRsvDaruyqddp2JbDztWzPoSH9FaIDs9rGi6+XZ7Ez9788fgbH/sf702rCy52Z8JoxZLj+VU8d/n5re8DAAAAAAAAAAAAAAAedcJoAAAAsEFZRGrZSFW6nScwxtGZiRU00W9vILywwjaWDSlk8bVNhcg2tZ1NBdYAoO41fRouahowOiteFznvDrvbDaOtEg/rt9cPF++3elEs8WvNXx38y/j48PciImJY3kmXe/C8tN0w2oX2xXjHxfdudR8AAAAAAADrK8/6AAAAAAAAQBgNAAAANula9w2V05/pvn6p7VxNtnN1ye08Dpa97ZZdvsp+0Yun2peWWudK99pSy1/b2+59nD0Wl7WJ2xMAIiL2iv103u3yJCLqw2jLxlK34Ukci/FoecPem7e6/U7RjYtLjJO7xV5cbF9ee7+torX08+9373wsIiJG5ShdZva88syS4/llffGlr4hua2+r+wAAAAAAANiu7X7RDAAAAAAATAmjAQAAwAa94+n3PjStU3Ti8y6+a7ntXHx4O3vFfnzWhXeufGyPqrdffHfjZa90rsWn9D5t7X0WRRHvuPiexsu/pffWOOxeXWofb7vwjtgveg9Nr7rvV/Ep/U+LK5314w7vfPpLNnA0ABDRax2k8wbj44iIGNaG0TobP6Zlff7F90Thj/05p4poxRc8/ex291EU8XlPNR+ff+5T74q9Vh5FXMay4+STyel5ZTRpFlz83Ke+aGvP717rIL7s8n+8lW0DAAAAAAAAAAAAAMDjRhjtCVIURb8oincXRfHHiqL480VRfG9RFH+mKIo/VBTFW4ui2MinPYqi6BZF8aVFUXxrURR/oSiK7y6K4uuLonjLJrYPAABwnn3mhbfHH37dd0a/dSEiIi61D+O73vS98Uz39Utt551Pvze+7uq3Rq/Vj4jT4NefefNfioudSxs/5vPu/c98U3zJ5a9+IFpQ5U37b4nv+cS/HK1iMz/u+IZr3x5fcPG5aEW7drlP7X9GfNebvnfp7R+0n4rv+cS/fO+xsV/04muufnO86+kvXeVwH9Iq2vE9n/h98ab9t6y0/n7Riz9w9VviCy5uN64BwJNjv9VLo0P3AkZJGK0VrWgV9a/Ju/Ap/U+Pb33Dn40L7YtnfSjwgKfal+I73/Rfxev33rT1fX3j674j3nnxS6IdeaywiFZ8zlNfGN/8hj+1sf3+R1f/cLz30vsaRxKnwcXsvBIR0W3df4/x1oO3xX/yhj8dT7WfXu9A51zuPBN/8o1/IS53n9nodgEAAAAAAAAAAADgcVOWZ30EwHnR7JMDPNKKonh3RPznEfF1EbFXs+jHiqL4PyLir5Vl+coK+7kWEd8XEX8oIq4ky/xYRPwvZVn+vWW3DwAA8Kh49vD5eO/l98X10Stx2Lkaq3ao3/fMN8SXX/naeG10FJc7z6y8nUddq2jHH3n9d8UfvPbt8dLwtyt/uPlU5+m43Kl8K7qybqsb3/7G/yL+yOS74uU7v1u5zKXO4Vqxuk/pf1r85U/563F99PF4unM52g0jD029bu+N8b1v+atxffRK3By91ni9VtGK1++9cePHA8CTrVW0Yr/VvxdBmzVYEEbrFnU/2t6td1360viCp5+Nl4a/HcNJHlyCXdlr7cW17ifs7P1Ct9WNP/bGPx8nk0E6Tn6mey367Qsb3W+7aMc3v+FPxTe+7jseeF/wv//7/zl+b/jvH1p+eq4ZlnfSbc7Hl9996cvjXU9/2cae3/ut/Xim+/qNxZsBAAAAAAAAAAAAAOBJ4NOtj7GiKDoR8Vcj4k9FRJNPw7wpIv67iPjOoii+rSzLDy6xr+cj4vsj4nULFv3iiPjioij+VkR8Z1mWt5ruAwAA4FHSKtpxpXtt7e20i3Ycdq9u4IgefXut/XjT/lt2vt9eqx9v7m1vv0VRbP0+vty5svFwHACsot86qAyjnSwIo83Hi87aaUT0TWd9GHCmtj1Ozsy/L7jYuVQZRrsfXByl26o6t3h+AwAAAAAAZCq+0RIAAAAAALZAGO0xVRRFERF/OyK+sWL2L0XEL0bEICKuRcQ7I+JwZv7rI+IfFkXxtU3iaEVRfGlE/IOI2JuZXEbEz0TEr0fE5Yh4e0TMfsr7WyLi6aIovq4sy0nDqwUAAAAAwCOs1zqonD4NGA0nWRjNrzOAav3Whcrpi4KLEecvuggAAAAAAAAAAAAAAES0zvoA2Jo/Hg9H0T4UEZ9dluVnlGX5DWVZfktZlu+LiNdFxB+LiFdnlt2LiB8oiuJS3U6KonhzRPxgPBhF+2hEvK0sy3eWZflNd/fx5oj4sxEx++mTr4mI/36F6wYAAAAAwCOon4TRTsb1AaNOS7wIqNZr9SunDxaE0VrRinbR3tpxAQAAAAAAPJrKsz4AAAAAAAAQRnuM/ddzlz8UEV9RluW/nF+wLMtRWZZ/MyK+IiJuz8x6XUR814L9fF9EHM5c/rG7+/nFuX3cLsvyf42Ib5pb/88VRfHJC/YBAAAAAMBjoNeuDqMtChh1ir3K6QD91oXK6dPg4rC8Uzm/UwguAgAAAAAALKc46wMAAAAAAOAJIYz2GCqK4rMj4i1zk7+nLJNPlN1VluVPRcT/Njf5a2r289aI+E9nJt2JiG8ry/KkZh//ICJ+YGbSfkT8xbrjAgAAAADg8dBvVYfRTu6F0UaV87tFZ2vHBDzaeu1+5fTBgvOKMBoAAAAAAAAAAAAAAJxPwmiPp983d/k3y7L8uYbr/sO5y2+tWfabI6I9c/kHy7L81Qb7+J/mLn9TURS9JgcHAAAAAMCjq9eqDxgNyzuV8wWMgEweXBxERMQo+d6grvMKAAAAAAAAAAAAAACcS8Joj6cLc5d/a4l1f3Pu8mHNsl8/d/lvNtlBWZa/GBH/fGbShYh4X5N1AQAAAAB4dPVb8z++PrUoYCSMBmR6SRhtGlxMzyst5xUAAAAAAAAAAAAAOE/K8qyPADgvhNEeT78zd7m3xLrzy75StVBRFG+IiM+dmTSKiI8usZ8fnbv8/BLrAgAAAADwCOq1+pXTB+NbERExKkeV84XRgEwWRju5G0YbTu5UzndeAQAAAAAAWJZPpQIAAAAAsBvCaI+nn4yI2zOXP6MoiupPmz3sHRXbqvJZc5d/vizLWw33ERHxY3OX37bEugAAAAAAPIL67QuV008mg4iIGJXDyvkCRkCmn4XRxqdhNMFFAAAAAAAAAAAAAAB4tAijPYbKsrwREf/nzKReRHzHovWKomhHxJ+em/wDyeKfOXf51xof4Kn/b8H2AAAAAAB4zPRa1d/hMZicfu/GsLxTOf//Z+/uo2W/6/rQvz+z9z6ZyQnkgSQECoaQgFBBwdDLIqlXEBaoqxcFEbiUXmJv1dorpVeWFttqROtawq3epe2yVsviwStoxSAtRdMFQos8yC1QkCb0hgBBeTAKCSYn5yTn4Xv/2HM8k8mevWf2mZnf7L1fr7Vmze/h+/t+Pr/FWt9wZs+8fxsCjIAJ+mtbB6Pd247lVDs5MXDRugIAAAAAAAAAAAAAAKtJMNr+9aoknxvZf21VPWvS4KraSPKrSZ48cvgPkvzOhEuuGtv//Iz93Ta2/5CqunDGOQAAAAAA2EMGvcNbHj926miSTAwwWhdgBEww6G0djJZsri3WFQAAAAAAgBm01nUHAAAAAACQ9a4bYDFaa1+tqmckuSGbYWeDJDdW1VuTvDXJp5IcTXJxkqcl+cEkXz8yxYeTvKC1iX/RuGBs//YZ+7u7qo4l6Y8cPj/JHbPMAwAAAADA3tHvDbY8fu+poznVTuXEqRNbnhdgBEzS3yYY7eipe3JcMBoAAAAAAMCcVNcNAAAAAABwQAhG28daa5+rqqcmuS7JDyS5OskLh69JvpLkF5L8X61N+KXIpvPG9o/uosWjuX8w2oN2Mcf9VNWlSS6Z8bIrz7YuAAAAAAA7G6wd3vJ4S8u9p47lxKQAo54AI2Brg22C0Y6dumfyuiIYDQAAAAAAAAAAAAAAVpJgtP1vbfi6N0nL9o9n+ZMkP5nkN3cIRUseGIx2bBe9HU1y4TZz7sY/SHL9HOYBAAAAAGDO+r3BxHNHTx2ZGGC0IcAImKC/TTDa0ZOTg9GsKwAAAAAAAAAAAACwWlrXDQAro9d1AyxOVV2b5OYk/zrJtdn5f+9HJnl9ks9X1d+bsdxu/tviv0cAAAAAAAfIoHd44rljp47meLtvy3PrAoyACTZ6GxPXiGOn7rGuAAAAAAAAAAAAAADAHiMYbZ+qqmcmeVeSR40c/kKSVyV5cpILkhxKclmSb0/yxiQnhuMuSfJrVfWrVVUTStw9tj/YRZvj14zPCQAAAADAPtLvTf4o+eipe3KindjynAAjYDv93rlbHj966p6cOGVdAQAAAAAAmI/WdQMAAAAAABwQ6103wPxV1SVJ3pKkP3L4PyR5aWvtL8eG/1mSG5PcWFW/kuQdSR4yPPf9SW5N8potyqxqMNovJ/ntGa+5Msnb51AbAAAAAIBtbNShrGU9J/PAoKJjp+7JiXZ8y+vWy58zgMkGvUHuPvm1Bxw/duroNuuKYDQAAAAAAAAAAAAAAFhFfkm0P/1IkktG9j+V5IWttWPbXdRa+1BVvSjJu0YOX19Vr2+t3T42fPzXJZdkBlV1Xh4YjHbnLHNsZdjneK879XK2ZQEAAAAAmEJVpb82yJGTdz3g3NGTk4PRNurQolsD9rB+79wtjx89eWTyutITjAYAAAAAAPBAresGAAAAAAAgva4bYCG+d2z/NTuFop3WWnt3kveNHBokefEWQ28Z2798+va2HP/V1todM84BAAAAAMAeM5gQYHTs1D05PiHAaL0EGAGTTQpGO3bqaI63+7Y8Z10BAAAAAACYVXXdAAAAAAAAB4RgtH2mqg4nuXLs8LtnnOZdY/tP3WLMzWP7V81Y49Fj+zfNeD0AAAAAAHvQpACjo6fuyQnBaMAuDNYmBy6eaCe2PGddAQAAAAAAAAAAAACA1SQYbf+5YItjX55xjvHxF28x5pNj+99YVVv/6mRr1+4wHwAAAAAA+9BgQjDasW2D0dYX2RKwx+0ucNG6AgAAAAAAAAAAAAAAq0gw2v5z5xbHDs84x3lj+3ePD2itfSnJJ0YOrSf5mzPUePrY/u/NcC0AAAAAAHvUxACjk5MDjDZ6hxbZErDH7SZwcaOsKwAAAAAAAAAAAACwSlrrugNgVQhG22daa0eS/OXY4SfPOM3VY/tfnjDubWP73zfN5FX1uCRPHTl0JMl/mq41AAAAAAD2ssHaNgFGp7YOMFqvjUW2BOxxEwMXT92T4xOC0awrAAAAAAAAs/KrVAAAAAAAlkMw2v703rH9H5j2wqq6LMlzxw6/b8Lw30hycmT/+VX1mCnK/OOx/X/XWjs2ZYsAAAAAAOxhAoyAeRtMWFeOnbwnJ6wrAAAAAAAAAAAAAACwpwhG259+a2z/RVX10p0uqqpzkvx6kvNGDt+d5MatxrfWbknyxpFDh5K8oar629T4riTXjRy6L8mrd+oNAAAAAID9YVKA0dFTR3Lqfs/iOGO91hfZErDH9dcmBy5ODkazrgAAAAAAADxAa113AAAAAAAAgtH2qd9M8vGR/Urypqr6xap62FYXVNUzknwoybPGTr2mtXbHNrWuTzJ6/pok76qqx43Nf05VvTzJb49d//Ottdu2mR8AAAAAgH2kPyEY7e4TX5t4zXptLKodYB8Y9AZbHj+2TTDaRu/QIlsCAAAAAADYh6rrBgAAAAAAOCA8Cn0faq2dqqoXJHl/kkuHhyvJP0zyw1X1iSSfSXI0yUVJnpzksi2memeS1+xQ60+r6vlJbkxy+hck1ya5qao+MqxzfpJvTnLJ2OXvSPITs90dAAAAAAB72WBCMNpdJycHo22UACNgsn7v8JbHj506mt6E50QJXAQAAAAAAAAAAAAAgNUkGG2faq19uqq+NcmvJ3nKyKlekicNXxMvT/JrSf5Ra+34FLXeW1XPS/KGnAk/q2Hdp0y47C1Jvr+1dnKn+QEAAAAA2D/6a1sHo9198q6J1wgwArYz6A22PH683ZdKbXnOugIAAAAAAAAAAAAAAKtp60eksy+01j6V5GlJXpbkg9kMPNvO0SS/keSa1toPttaOzlDrnUmekORXktyxzdAPJXlBa+0lrbUj084PAAAAAMD+MOhtHYzWcmriNevlOS/AZP3e4Ynn2oQ/j1lXAAAAAAAAAAAAAABgNfnG/z7XWjuR5E1J3lRV5yd5SpIrklyQ5Jwkd2UzyOyTSf54OH63tW5P8kNV9Yok1ya5PMllSY4k+UKSj7XWPnsWtwMAAAAAwB7XnxCMtp312lhAJ8B+MVgbzHzNRh1aQCcAAAAAAAD72dYPpAEAAACAefEJFHCaYLQDpLX2tSTvXkKd+5K8Z9F1AAAAAADYewaC0YA5G/QOz3yNdQUAAAAAAAAAAAAAAFZTr+sGAAAAAACAg6O/i2C0jd6hBXQC7Bfn9AYzXyMYDQAAAAAAYCut6wYAAAAAAEAwGgAAAAAAsDyDtdmD0dZrfQGdAPvFWq3lUJ0z0zXWFQAAAAAAgFlV1w0AAAAAAHBACEYDAAAAAACWpt8bzHzNWgQYAdsb9GYLXdyoQwvqBAAAAAAAAAAAAAAAOBuC0QAAAAAAgKVZq/UcqnOmHr9eG6ny5HFge/212YLR1mtjQZ0AAAAAAAAAAAAAAABnQzAaAAAAAACwVP3e9AFGG8KLgCkMZlhXkmS9Z20BAAAAAAAAAAAAAIBVJBgNAAAAAABYqsHa9AFG64LRgCnMEriYJOu1vqBOAAAAAAAA9qvWdQMAAAAA7HPNR1DAkGA0AAAAAABgqWYJMBKMBkxjMMO6UqmsRTAaAAAAAAAAAAAAAACsIsFoAAAAAADAUs0SYCQYDZjGrIGLVbXAbgAAAAAAAPaq1nUDAAAAAAAgGA0AAAAAAFiufm8w9VjBaMA0BmuzBKOtL7ATAAAAAACA/cqDZwAAAAAAWA7BaAAAAAAAwFINeoenHrshGA2YQr83SzCadQUAAAAAAAAAAAAAAFaVYDQAAAAAAGCp+muDqccKMAKm0e9Nv65s1KEFdgIAAAAAAAAAAAAAAJwNwWgAAAAAAMBSDXqHpx673hOMBuxspnVF4CIAAAAAAAAAAAAAAKwswWgAAAAAAMBS9XuDqccKMAKmMdu6sr7ATgAAAAAAAAAAAAAAgLMhGA0AAAAAAFiqQe/w1GM3BKMBUxisTb+uCFwEAAAAAADYjdZ1AwAAAADsc81HUMCQYDQAAAAAAGCp+r3B1GMFGAHTmGVd2egdWmAnAAAAAAAAe5hfngIAAAAAsAIEowEAAAAAAEs1WDs89VjBaMA0Br1Z1pX1BXYCAAAAAACwX1XXDQAAAAAAcEAIRgMAAAAAAJaq3xtMPVaAETCN2dYVgYsAAAAAAAAAAAAAALCqBKMBAAAAAABLNegdnnqsACNgGv3euVOPta4AAAAAAAAAAAAAAMDqEowGAAAAAAAsVb83mHrsRh1aYCfAfnFOr59KTTXWugIAAAAAAAAAAAAAAKtrvesGAAAAAACAg2Wwdnjqseu1scBOgP2iV72c0xvk2Kl7dhy7Xv5ECgAAB0VVbSS5NsnXJXlYkruTfDHJx1prn5tzrSuSPCnJw5Ocl+RLSW5L8oHW2vE51lnaPQEAAAAAAAAAQBd86yO3vQAAACAASURBVB8AAAAAAFiqQ3VOKpWWtuNYAUbAtAa9c6cMRhO4CAAAXamqRyf5G0meMnz/5iQPGhlyW2vtUXOoc0mSVyd5UZKLJoz5QJJfaK39zlnWekGSH0nytAlDvlpVv5XkJ1trf3EWdZZ2TwAAAFvb+e+7AAAAAAAwD35NBAAAAAAALFWveun3BjkqwAiYo37v3KnGrdehBXcCAACMqqqnJ/nxbIahbRnoNed635HkDUku3WHoNUmuqarfSPKDrbUjM9Y5L8mvJXnxDkMvSvJDSZ5fVS9rrd04S51hraXcEwAAgPAzAAAAALrk0yngNMFoAAAAAADA0vV7504VjLbRE2AETGcwdTCaP5ECAMCSPSnJs5dRaBjC9rtJRj9QaEk+muQzSS5I8uQkF4+c/9tJHlxV391aOzVlnbUkv5XkO8dO/XmSjyX5WpIrh7VqeO6hSd5eVc9qrf3hqt0TAADAzmrnIQAAAAAAMAe9rhsAAAAAAAAOnv7UAUYbC+4E2C/6a9OtKxs96woAAKyIe5PcOq/JquoRSW7I/QPE3p/kG1prT2mtvbC19uwkj0jyiiTHR8b9L0n++Qzlfi73D0U7nuTlSR7RWnvOsNbVSZ6Q5IMj485J8rtV9bAVvCcAAAAAAAAAAFgJgtEAAAAAAIClG0wdjLa+4E6A/WL6dUUwGgAAdOB4kv+W5N8m+cEkVyd5UJK/N8car05y4cj+B5I8q7V28+ig1tq9rbVfSvLCset/pKou36lIVT06myFko763tfavWmv3jdW6Kckzc/9wtIckuX6nOkNLuScAAAAAAAAAAFglgtEAAAAAAICl668JMALmq98bTDVuvQ4tuBMAAGDMG5M8uLX25Nba97fWfrW19tHW2vF5FaiqxyR52cih+5Jc11o7Numa1trvDns77ZxMF1h2fZLRDyze0Fp7+zZ1jia5btjTaf/7MGBtoiXfEwAAAAAAAAAArAzBaAAAAAAAwNINeoLRgPnqT72urC+4EwAAYFRr7Y7twrzm5CVJ1kb2b2it3TLFda8Z239hVfUnDa6qQZIX7DDHA7TW/r8kvztyaD2bPW9nKfcEAAAAAAAAAACrRjAaAAAAAACwdP3eYKpxG4LRgClNG7hoXQEAgH3peWP7r5/motbazUn+aOTQ4STP3uaS5yQZ/cfHB1trn5qqwwf29Pwdxi/rngAAAKbUum4AAAAAAIADQjAaAAAAAACwdIPe4anGrQswAqbUX5suGM26AgAA+0tVXZbkm0YOnUjy/hmmeO/Y/ndsM/bbd7h2O+/LZm+nPbmqHrrVwCXfEwAAAAAAAACshCabHxgSjAYAAAAAACxdvzeYapwAI2Bag960wWiHFtwJAACwZE8Y2/9Ea+3IDNd/YGz/G2ao9cFpiwx7+uMpay3zngAAAEb45SkAAAAAAN0TjAYAAAAAACzdYO3wVOMEowHT6k8djLa+4E4AAIAl++tj+5+e8fpbd5hv1OOXVGuZ9wQAADCl6roBAAAAAAAOCMFoAAAAAADA0vV7g6nGCUYDpjWYMhhtw7oCAAD7zVVj+5+f8frbxvYfUlUXjg+qqouSXHSWtcbHP2bCuKXcEwAAAAAAAAAArCKPQwcAAAAAAJZu0Ds81biNngAjYDr9KYPRBC4CAMC+c8HY/u2zXNxau7uqjiXpjxw+P8kdO9S5p7V2ZJZaW/R2/oRxy7qnmVXVpUkumfGyK8+2LgAAAAAAAAAAB4dgNAAAAAAAYOn6vcFU4wQYAdMarE0ZjNY7tOBOAACAJTtvbP/oLuY4mvuHiD1ogXVGbVVnnrV2uqfd+AdJrp/TXAAAAAAAAAAA8AC9rhsAAAAAAAAOnsHa4anGCUYDptXvTReMtlGeHQUAAPvMeIjYsV3MMR48Nj7nMussuxYAAMCUWtcNAAAAAABwQAhGAwAAAAAAlq7fG0w1bkMwGjClwZTBaAIXAQBg39vNL/VX+Zpl1wIAAAAAAAAAgE55HDoAAAAAALB0g97hqcYJMAKmtVGH0staTuXktuOsKwAAsO/cPbY/XRr79teMz7nMOsuuNatfTvLbM15zZZK3z6k+AACwSE3GMgAAAADd8ekUcJpgNAAAAAAAYOn6vel+zyvACJhWVWXQOzdHTt217TjrCgAA7DuC0c6u1kxaa7cnuX2Wa6pqHqUBAIDO+f/2AAAAAAAsR6/rBgAAAAAAgINnow5lbYfnt/Syll75UwYwvf7auTuO2RCMBgAA+83XxvYvmeXiqjovDwwRu3OKOudW1eFZaiW5dIo6W9Va1D0BAAAAAAAAAMDK8WsiAAAAAABg6aoq/bXx3+fen/AiYFaD3vbrSpKsW1sAAGC/uWVs//IZrx8f/9XW2h3jg1prX0kyfvzrzrLWeO+Tji/kngAAAAAAAAAAYBUJRgMAAAAAADox6J277XnhRcCs+r3DO46xtgAAwL5z89j+VTNe/+ix/ZuWWGt8vkXV2e6eAAAAAAAAAABgpQhGAwAAAAAAOtHfKRitJ7wImE2/N9hxjGA0AADYdz45tv+NVbX9hw73d+0O82137mnTFqmqw0m+ccpay7wnAAAAAAAAAABYKetdNwAAAAAAABxMg52C0YQXATPaeV1ZT1UtqRsAANhabf6f0h9N0h85/KbW2ufOct4rkvydkUP3tNb+xdnMuRe01r5UVZ/ImdCx9SR/M8l/mnKKp4/t/942Y38/yQ9sc+12viX3/87mx1prf7bVwCXfEwAAwJRa1w0AAAAAAHBACEYDAAAAAAA60ReMBsxZf826AgDAnvCSJD+XM78ov+FsQ9GSpLX22ap6YpLnnz5WVZ9prd1wtnPvAW/LmRCxJPm+TBEiVlWPS/LUkUNHdrjuxiRHkwyG+0+rqse11j41RY/Xje2/bYfxy7onAACAEcLPAAAAAADoXq/rBgAAAAAAgINpsEOA0UZ5vgswm4HARQAAVlxV9ZL89OndJLckedkcS1yX5Nbh3JXkZ+c49yr7jSQnR/afX1WPmeK6fzy2/+9aa8cmDW6t3ZPkrTvM8QBV9dgkzxs5dCLJm3e4bCn3BAAAML3qugEAAAAA9rkmtx8YEowGAAAAAAB0or9jgNGhJXUC7Bc7ryuC0QAA6NyzklyRpA1fPz4M25qL1tqRJK8aOfTYqvq2ec2/qlprtyR548ihQ0neUFX9SddU1XdlM0jutPuSvHqKcj+V5PjI/nVV9dxt6vSTvH7Y02mva63dul2RJd8TAAAAAAAAAACsDMFoAAAAAABAJwYCjIA522ld2bCuAADQvZeObH+ktfa2eRdord2Q5CMjh/72vGvMqqoeUVWPGn8luWxs6PpW44avi3coc32SO0b2r0nyrqp63Fgv51TVy5P89tj1P99au22ne2mtfSbJL44dfmtV/XDV/VPeq+rxSd497OW0r2T6sLKl3BMAAAAAAAAAAKyS9a4bAAAAAAAADqb+jsFo/owBzGbndUUwGgAAnfv2ke3XLbDO65JcnaSSfOcC60zrD5NcPsW4v5bksxPOvTHJdZMubK39aVU9P8mNSU4HlF2b5Kaq+kiSzyQ5P8k3J7lk7PJ3JPmJKfo77VVJviHJdwz3N5L8yyQ/UVUfTXJXkkcPa9XIdfcleV5r7UvTFFnyPQEAAAAAAAAAwErodd0AAAAAAABwMA0EGAFzNlizrgAAsLqq6vIkF48cescCy43OfWlVPXKBtVZGa+29SZ6X5M9HDleSpyR5YZLn5IEBYm9J8uLW2skZ6pwczvdbY6cuzWb43ffmTDDdabcn+a7W2vumrTOs9d4s4Z4AAAAAAAAAAGBVCEYDAAAAAAA60d8hwGhDgBEwo77ARQAAVts3Dd9bkltba19YVKHW2p8m+fTIoSctqtaqaa29M8kTkvxKkju2GfqhJC9orb2ktXZkF3Xubq29OJshaB/aZuhXk/zrJE9orf3+rHWGtZZyTwAAANtrXTcAAAAAAMABsd51AwAAAAAAwME02DHA6NCSOgH2i53XFcFoAAB06pKR7S8uod4Xk1w13L50CfUmaq09asn1bk/yQ1X1iiTXJrk8yWVJjiT5QpKPtdY+O6dab03y1qq6Isk3J3l4ksNJvpzktiTvb63dN4c6S7snAADgIBN+BgAAAABA9wSjAQAAAAAAnejvFGDU82cMYDb93mDb8xuC0QAA6NaFI9tfXkK90RoXLKHeyhkGkr1nSbU+m2ThwWTLvCcAAID7q64bAAAAAGCfa3L7gaFe1w0AAAAAAAAH02CnYDQBRsCMBr3D255f71lXAADo1KGR7WV8d2+0xjlLqAcAAAAAAAAAAHDWBKMBAAAAAACd6O8QjLYhGA2YUX9tsO15gYsAAHTsnpHtS5ZQb7TGPRNHAQAAAAAAAAAArBDBaAAAAAAAQCcGa9sHo63XoSV1AuwX67WRjW3WDsFoAAB07Msj25cvod5ojT9bQj0AAAAAAAAAAICzJhgNAAAAAADoRL832Pb8eq0vqRNgP9lubdkQjAYAQLduHb5Xksur6qpFFaqqK5M8aovaAAAAAAAAAAAAK00wGgAAAAAA0Im1Ws+hOmfi+XUBRsAuDHqHJ56zrgAA0LGPJ7kvSRvuP3eBtb57ZPt4kv+2wFoAAAAcCG3nIQAAAAAAMAeC0QAAAAAAgM70e+dOPLchwAjYhX5vMPGcYDQAALrUWrsvyX9OUsPXj1XV5GTfXRrO+aPZ/MV6S/JfhrUBAABge034GQAAAAAA3ROMBgAAAAAAdGawNjkYTYARsBvWFQAAVtxbhu8tySVJXruAGj+X5NJshq8lyZsXUAMAAIADp3YeAgAAAAAAcyAYDQAAAAAA6Ey/J8AImK/t1pUN6woAAN17c5IvDbcryd+vqn8yr8mr6lVJ/o9sBq8lyZ9FMBoAAAAAAAAAsAe0nYcAB4RgNAAAAAAAoDMDwWjAnAlcBABglbXW7kvy49kMRWvD95+pqt+sqgt3O29VXVBVb07ysyPztiT/ZFgTAAAAAAAAAABgTxCMBgAAAAAAdKbfG0w8t9ETYATMbtvAResKAAAroLX2piRvz/3D0b43yS1V9dqqesy0c1XVVVX12iS3JHnRcK4M5/0PrbU3zLN3AAAAAAAAAACARVvvugEAAAAAAODgGvQOTzy3XgKMgNn1twtGs64AALA6/k6SP0jylJwJR7soySuTvLKqvpTkw0luTnLn8JUk5ye5IMnjk/xPSR4+PD4aiFZJPpLkpQu/CwAAAAAAAAAAgDkTjAYAAAAAAHSmvzaYeE6AEbAbg7XJwWgb1hUAAFZEa+3uqnpmkjckeV42A82SMwFnD0/yXcPXJDWyPXr925O8rLV299waBgAAgL/6pycAAAAAACxWr+sGAAAAAACAg2vQOzzxnGA0YDf6vcnBaNYVAABWSWvtrtba9yR5ZZKj2Qw1ayOvDI9t9crY2EpyLMmPtdae11r7y2XdBwAAAPuJ8DMAAAAAALonGA0AAAAAAOhMvzeYeG5DgBGwCwPBaAAA7DGttf87yeVJfjbJnbl/AFqb8Bodc+fw2stba/9i2f0DAABwUNTOQwAAAAAAYA7Wu24AAAAAAAA4uAa9wxPPCTACdmO7wEXrCgAAq6q19pUkP1FVP53kqUm+Ncm1Sf5akouSPGQ49KtJvpLki0nen+Q/J/mj1tp9S28aAAAAAAAAAGCOWuu6A2BVCEYDAAAAAAA6I8AImLd+79yJ5zasKwAArLjW2vEkfzh8AQAAAAAAAAAAHDi9rhsAAAAAAAAOrsHa4YnnBBgBuzFYmxyMJnARAAAAAAAAAAAAAABWm2A0AAAAAACgM/3eYOI5AUbAbvR7gtEAAAAAAAAAAAAAAGCvEowGAAAAAAB05vz1C7c83ksv/bXJ4UYAk5y39uD0JvwZ9Ly1By+5GwAAAAAAAAAAAAAAYBaC0QAAAAAAgM48ZOOhedihRz7g+JWDx6ffG3TQEbDXndPr57HnPvEBxy/deHguPvTQDjoCAAAAAADYK1rXDQAAAAAAgGA0AAAAAACgWy972D/KeWvn/9X+hesX56WX/XCHHQF73Ysf+vfzkI1L/2r/3N55+bsPf2WHHQEAAAAAAAAAAAAAANNY77oBAAAAAADgYPu6/pV59RW/nFuP3pxereWqwV/Pod45XbcF7GGXHnpY/tmjfimfPfo/cl+7N48994np9wZdtwUAAAAAAAAAAAAAAOxAMBoAAAAAANC5wdrhPOG8p3TdBrCPnNPr53GHv6nrNgAAAAAAAAAAAACAKbSuGwBWRq/rBgAAAAAAAAAAAAAAAAAAAAAAAADWu25gFlX1B8PNluR/ba3dvst5HprkLafnaq09cx79AQAAAAAAAAAAAAAAAAAAAAAAALuzp4LRkjw9m6FoSdI/i3n6w7kyMh8AAAAAAAAAAAAAAAAAAAAAAADQkV7XDexCdd0AAAAAAAAAAAAAAAAAwMHRum4AAAAAAIADYi8GowEAAAAAAAAAAAAAAAAwT034GQAAAAAA3TuowWjrI9snOusCAAAAAAAAAAAAAAAAYOVV1w0AAAAAAHBAHNRgtItHto901gUAAAAAAAAAAAAAAAAAAAAAAACQ5OAGo/3Pw/eW5ItdNgIAAAAAAAAAAAAAAAAAAAAAAAdZa113AKyK9a4bOAszLWVVtZHkYUmeneSfjpz643k2BQAAAAAAAAAAAAAAAAAAAAAAAMxu5YLRqurkNMOSfK6qdl1mZPvf73YSAAAAAAAAAAAA6FpVXZ3kiiT3Jrm5tfbpjlsCAAAAAAAAAADYlZULRsv9Q8vmMW4rbXj9p5K89SzmAQAAAAAAAAAAgLmoqn6Sh48cuq21NvFho1X13CS/lOSRY8c/mOQHWms3LaRRAAAADqDWdQMAAAAAABwQva4bmGDRn5RXkv+a5G+11o4vuBYAAAAAAAAAAABM45VJbhm+3pPk1KSBVfXCJDdkMxStxl7XJPmjqrp60Q0DAACwnwg/AwAAAACge+tdN7CF/5LJn6J/6/C9JflwkmNTztmS3JvkziQ3J3lPa+19Z9MkAAAAAAAAAAAAzNl3ZzPYrCV5XWtty+/SVdWFSf5NNh+O2oavGp4+fc3hJDdU1de31qb9rh0AAABMUDsPAQAAAACAOVi5YLTW2tMnnauqUznzpa0XtdY+v5SmAAAAAAAAAAAAYIGqapDkSTnzHbl3bDP85UnOz5lAtC8kuSHJiSTPT3L5cNwjkvzDJK9dQMsAAAAAAAAAAABz1+u6gV3weBEAAAAAAAAAAAD2mycmWcvmd+SOtNY+us3Yl+ZMKNr/SPKE1torWmuvHM7z/w7HVZLrFtYxAAAAAAAAAMCctLbzGOBgWO+6gRm9emT7zs66AAAAAAAAAAAAgPm6Yvjektw0aVBVPS7JVcNxLclPtta+dvp8a+3uqnp5kg8ND319VT2ytfYni2kbAAAAAAAAAABgfvZUMFpr7dU7jwIAAAAAAAAAAIA956Ej21/aZty3DN8ryV1J3jY+oLX24ar60ySPGB76xiSC0QAAAAAAAAAAgJXX67oBAAAAAAAAAAAAIOeObN+1zbhrh+8tybtbaycmjPvkyPbXnU1jAAAAsPnPUAAAAAAAWDzBaAAAAAAAAAAAANC9Gtne2GbcNSPb79tm3FdGth+8q44AAAA4YISfAQAAAADQPcFoAAAAAAAAAAAA0L27RrYfutWAqrosyVUjhz6wzXzro5eeRV8AAAAQ/7QEAAAAAGBZ1ncesrqq6hlJvi3Jk5NcmuT8bP+kzK201tqV8+4NAAAAAAAAAAAAZvCF4XsleeKEMd85sn1vko9uM98FI9tHzqIvAAAAAAAAAACApdmTwWhV9Zwkv5T7P/lyt48daWffEQAAAAAAAAAAAJyVT4xsX1RVz2mt3Tg25vuG7y3Jh1trx7eZ79Ej21+eR4MAAAAAAAAAAACL1uu6gVlV1Y8meWc2Q9FGw9DaLl4AAAAAAAAAAADQudbarUluyeZ32yrJL1fVFafPV9Urk1w7csnbJ81VVefl/g8evXW+3QIAAAAAAAAAzJcwIOC09a4bmEVVPSfJa4a7p8PNToej3ZPkziTbPQETAAAAAAAAAAAAVtW/zeZ35FqSK5J8qqo+nuTSJI/Mme/MHUvy/2wzz9Nz5rt1J5L89wX1CwAAAAAAAAAAMFd7Khgtyc8N309/uetPsvklsHe01j7fWVcAAAAAAAAAAABw9n4xyfcl+fpsfk9uI8nVORNydvqBor/QWvvzbeZ53sj4j7fW7l1MuwAAAAAAAAAAAPO1Z4LRqurKJN+UzS9qJckfJXl2a+2u7roCAAAAAAAAAACA+Wit3VdVz0ny+0kePzxcOfMw0UryO0munzRHVZ2X5Hty5rt2715YwwAAAOwvre08BgAAAAAAFmzPBKMledrwvZKcSvK/CUUDAAAAAAAAAABgP2mt/UlVPSnJ303y3CSXD099KsmbW2s37DDFdUkePLL/H+feJAAAAAAAAAAAwILspWC0S4fvLcnHWmu3dNkMAAAAAAAAAAAALEJr7XiSfzN8zep1SX59ZK6vzasvAAAAAAAAAACARdtLwWg1sv3pzroAAAAAAAAAAACAFdVaO5rkaNd9AAAAAAAAAAAA7Eav6wZm8IWR7bXOugAAAAAAAAAAAAAAAAAAAAAAAADmbi8Fo/33ke1HdtYFAAAAAAAAAAAAAAAAAAAAAAAwN6113QGwKta7bmBarbU/rqpPJnlCkqur6sLW2h1d9wUAAAAAAAAAAACLVlWPSPLoJBcleVCSaq29qduuAAAAAAAAAAAA5mvPBKMN/XyS1ydZS/LKJP+s23YAAAAAAAAAAABgMarq8iT/Z5LnJrl8iyEPCEarqm9J8ozh7h2ttX+5uA4BAADYX1rXDQAAAAAAwN4KRmutvbGq/laS70nyY1X1/tba73XdFwAAAAAAAAAAAMxLVfWS/EySH83mg0Rri2GTfq3+F0l+6vT5qnpna+3WBbQJAAAAAAAAAAAwd72uG9iFlyX599kMdXt7Vf10VV3QcU8AAAAAAAAAAABw1qpqI8nvJ3lVtn746aRAtM2Trd2c5D05E6b2krk2CAAAAAAAAAAAsEBbfWlqZVXVTw43P57kmiQXJ/mnSX6kqj6Y5KYkdyQ5Ncu8rbWfnmefAAAAAAAAAAAAsEuvS/KsbAagtWwGnL0vm2Fn9yX551PM8TtJnjHcfnaSn5l/mwAAAAAAAAAAAPO3p4LRkvxU7v+0y9Nf+jo3ybcNX7shGA0AAAAAAAAAAIBOVdUzk7w0Z74b9+kkL2mt/dfh+cszXTDaf0zyr4Zz/I2q6rfWji2mawAAAAAAAAAAgPnpdd3AHJx+KuZu1DwbAQAAAAAAAAAAgLNw/fC9ktyW5JrToWizaK3dluTO4e5GksfNpz0AAAAAAAAAgMVou00QAvadvRiMVnN8AQAAAAAAAAAAQOeq6qIk1+TMw0Jf0Vr7i7OY8qaR7ceeTW8AAAAAAADA/8/enYfZWdd3H39/ZyYLBAgh7Ci7yC7ghkUKCIorWhdcerkA1qV1aa1a21oRa/WxdXnaurUa3K2KIiAF2UFEWWSRgAghEEgCSci+LzPzff44Z545OZlz5pw525zJ+3Vd93Xu33p/x+BJZuY+n1uSJEnt0tfpAup0WqcLkCRJkiRJkiRJkiRJkiSpBV7I8MNOl2TmZQ3uVxqqtmeDe0mSJEmStgeZna5AkiRJkiRJkqTuCkbLzJs6XYMkSZIkSZIkSZIkSZIkSS2wT/E1gd81Yb81Jec7NWE/SZIkSZIkSZIkSZIkSWq5rgpGkyRNYCtnw0NfhoGNsP8bYN9XQESnq5IkSZIkSZIkSZIkSWqX3UrOVzRhvx1Kzrc0YT9JkiRJkiRJkiRJkiRJajmD0SRJnbfoWrjhTMjBQvvR78IxF8Axn+hsXZIkSZIkSZIkSZIkSe2zuuR85ybst1fJ+fIm7CdJkiRJkiRJkiRJkiRJLdfT6QIkSdu5TPjd+4dD0Ybc/y+wfkFnapIkSZIkSZIkSZIkSWq/p0rOn9HIRhHRCxxf0vVkI/tJkiRJkiRJkiRJkiRJUrsYjCZJ6qyVv4fVf9y2f3AzzL+4/fVIkiRJkiRJkiRJkiR1xuziawDPjIinNbDXy4Adi+cJ3NpIYZIkSZIkSZIkSZIkSZLULl0fjBYRkyLiTyPiHyPiwoi4JCKui4jrOl2bJKkGT/yy8tjjF7WvDkmSJEmSJEmSJEmSpA7KzAeAhcVmAH87ln0iogf4h6Ftgd9n5srGK5QkSZIkSZIkSZIkSWqd7HQBksaNvk4XMFYRMQ34G+B9wB7lw1R4r4uINwP/UmwuB56bmb4vSlKnrJxdeWzpb2HTMpgys331SJIkSZIkSZIkSZIkdc4PgI9SuAfufRFxRWZeU+cenwFOLGl/o1nFSZIkSZK2Z378SpIkSZIkSZLUHj2dLmAsIuJY4E7gAmBPCjeB1eoXwEzgQOB44MXNrk+SVIfVf6w8lgOw8PL21SJJkiRJkiRJkiRJktRZ/wqspvBp817g0oh4Vy0LI2L3iPg28BGGP62+CLiwBXVKkiRJkiYkw88kSZIkSZIkSZ3XdcFoEXEkcBPwDAqBaEM/cQ9qCEjLzLXARSVdr2t2jZKkGuVg9WA0gAWXtKcWSZIkSZIkSZIkSZKkDsvM5cAHGL43birwtYiYExGfBc4qnR8Rz4uIt0bE94C5wFsZvpduADgnMze382uQJEmSJE1Uo35sS5IkSZIkSZKkpujrdAH1iIipwOXAdIYD0WYD/w7cAEwBHqhhq0uBc4vnpze5TElSrTYsgoH11ecs/U17apEkSZIkSZIkSZIkSRoHMvO7EXEo8HEK98kFcAjw0bKpAfy2rJ0la/4+M69ufcWSJEmSJEmSJEmSJEmS1Dw9nS6gTh8ADmQ4FO0/gBMy81uZOQ/Yipk/qAAAIABJREFUWOM+NzB889dBEbFnk+uUpLFbNx9+fTb8fD+49hRYdH2nK2qdDQtHn7NxCWxe2fpaJEmSJEmSJEmSJEmSxonM/ARwDsP3xA3dM1cafjZ0D1yUzAlgM/D2zPx82wqWJEmSJEmSJEmSJEmSpCbptmC09zN8g9clmfnXmTlY7yaZuRaYV9J1RBNqk6TG9a+Ha14Ij18EG56AJb+C60+HR78HmaOv7zbrawhGA1gzp7V1SJIkSZIkSZIkSZIkjTOZ+R0K97Z9lUJA2lAAWrB1INpQ3yDwXeCIzPxeG0uVJEmSJEmSJEmSJEmSpKbp63QBtYqII4H9is0EPtLglnOBg4rnBwM3NbifJDVuwWWw/vFt+3/7NrjnY3DSj2DPk9tfV6tsqDEYbeVsmPnc1tYiSZIkSZIkSZIkSZI0zmTm48D7IuKjwAuLx9OBmcBkYCmwGPgNcF1mruxUrZIkSZIkSZIkSZIkSaPJ7HQFkrpB1wSjAccVXxO4LzMfaXC/0hvApje4lyQ1x2P/U3lswxNw7Z/CMRcUwtH2PAWip321tcL6GoPRFl4Oh5zb2lokSZIkSZIkSZIkSZLGqcxcD1xdPCRJkiRJkiRJkiRJkiYcQ9MkDemmYLQ9Ss7nNGG/TSXnOzZhP0lq3KJrRp8z+/zC674vh5N/Dr2TW1tTK214orZ5i68v/As2orX1SJIkSZIkSZIkSZIkSZIkSZK03fKTp5IkSZIkSZKkzuvpdAF1mFpyvqnirNpNLzlf04T9JKlxk3apfe4TV8DD/9W6Wtqhv8a33y2rYMOTra1FkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJktRR3RSMtrTkfPcm7HdwyfmyJuwnSY3rnTr6nFKPfKs1dbRL/4ba567+Y+vqkCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiR1XF+nC6jDouJrAMc3slFEzASOKOl6uJH9JKkpMmHT0tHnlVpxN6z4Pcx4VmtqarWBOoPR9n5R62qRJEmSJEmSJEmSJEkahyJiEvAC4GTgEGA3YGeAzDy9g6VJkiRJkiRJkiRJkiRJUtN1UzDab4BBoAeYGREvyszrx7jXuRQC1gDWAb9rQn2S1JhNy6B/Xf3rrjwO3jwIEaPPHW8GNtY+d/UfW1eHJEmSJEmSJEmSJEnSOBMR04C/Ad4H7FE+DGSFdW8G/qXYXA48NzNHnCtJkiRJkiRJkiRJkiRJ401PpwuoVWauAO4o6frniPpTgCJiP+BjFG4KS+CazBxsTpWS1IA1D4197ewLmldHOw1sqH3uQ//ZujokSZIkSZIkSZIkSZLGkYg4FrgTuADYk+EHgdbiF8BM4EDgeODFza5PkiRJkiRJkiRJkiRJklqla4LRiv695PxE4Ov1LI6IvYDLgBkM3yj2xeaUJkkNWjNn7GvvuwC2rG5eLe1STzAawLLftaYOSZIkSZIkSZIkSZKkcSIijgRuAp5B4T63HBqihoC0zFwLXFTS9bpm1yhJkiRJksaBNQ/DrefBlcfDbX8Bax/tdEWSJEmSJEmjyjGOSdq+dFUwWmb+CLin2AzgnRFxc0ScXG1dREyLiPcU1x5H4X0wgasz85ZW1ixJNVvzUGPrH/9Zc+pop3qD0R78v62pQ5IkSZIkSZIkSZIkaRyIiKnA5cD0ku7ZwHnAwcAR1BCOBlxacn560wqUJEmSJI0sE+7/LFzxLPjfo2H2pyAHO11V/dKPnnaN9Qvh2lPhkQthxT0w95tw7Smw4clOVyZJ0taW3Aw3v67w76TffQA2ryz0b1wCt78X/vcY+PUbYdkdna1TkiRJkjSu9HW6gDF4PXArMLPYPgm4MSIWAQ+XToyIrwGHAS8ApjD89MwAFgJvbVPNkrSt1Q/Bo98t/ABvn5cU2iOZcTxsWQVrH6m+323nwYFvgd4pza+1VeoNRlv4vzC4BXomtaYeSZIkSZIkSZIkSZKkzvoAcCDDD0H+D+BDmYVP00fEATXucwPD98odFBF7ZuaSJtcqSZIkSRry+3+EP3x2uD37fNi8Ap79pc7VpInt8Ytgw8Kt+9bPh/k/h8P+sjM1SZJUbumtcMOZw58jXHkvLP0tnHYVXHcarPpDoX/VffDElfDiX8OMYztXryRJkjSerX0E7v4IPPUb2PVoOOofYa9TO12V1DI9nS6gXpn5CPBKYBFbB53tA7ywZGoA7wJOBaaWzV0AvCIzl7atcEkqtex3cNXz4P5/gbnfgF+/Aeb/dOS5+70KXvkgvPiWUTbNwtN+BvubXW3r1BuMtmUlLPlVa2qRJEmSJEmSJEmSJEnqvPczHIp2SWb+9VAoWj0ycy0wr6TriCbUJkmSJEkaSQ7C3P/etn/urMKDwaVWuOtvRu7/3V+1tw5Jkqp5+BvbfoZw+e/gvk8Ph6IN6V8Dj36nfbVJkiRJ3WTT8kKeyPyLYeMiWHQt3PhyWH5npyuTWqbrgtEAMvN24ATgSgpBZzB8M1iWHJSNBXAN8LzMvLcNpUrSyO77Z9iyqra5Ox8GPX2wx5/Aq+ZUn7vsVnj0e43X1y4DG0fuP+lHldcs/EVrapEkSZIkSZIkSZIkSeqgiDgS2I/he+I+0uCWc0vOD25wL0mSJElSJSt+D5uWbdvfv8YHg0uSpO3bIxeO3P/gl0bu/+MXW1eLJEmS1M2evArWz9+6b2ADPPqDztQjtUFXBqMBZObizHwF8Fzg+8AiCjeEjXSsBi4GTsvMMzNzUWeqliQKT4NaeFnt83d+Rsn5oXDKKMFgj1UJFRtPBrdADow8tsN+sP/ZI4+tur91NUmSJEmSJEmSJEmSJHXOccXXBO7LzEca3G9lyfn0BveSJEmSJFUyuHlsY5IkSZIkSZJUi9veOXJ/pdBhaQLo63QBjcrMO4G3AUTEwcDTgZnAZGApsBi4PzMHO1akJJVa93jtc6fsDrsdv3XfnqdA307Qv3bkNYuvh80rYfKuY6+xHQY2VB7r2wFmHA+P/2Tbsc0rWleTJEmSJEmSJEmSJElS5+xRcj6nCfttKjnfsQn7SZIkSZIkSZIkSZIkqd0G1ne6Aqntuj4YrVTxCZmNPiVTklpr8fW1zz38b6Fn0tZ9k3aGE74At7975DXZD09cCQe+eew1tkN/lWC0nqmVg902rxy5X5IkSZIkSZIkSZIkqbtNLTnfVHFW7aaXnK9pwn6SJEmSJEmSJEmSJEmS1HITKhhN40NETAJOAvYH9gHWAk8Ad2fmvA6WJnXe6ofgtvNqmzv9SDj8QyOPHfou2O3Z8MvnjDy+6NrxH4w2UCUYrW8HmFQhGG2LwWiSJEmSJEmSJEmSJGlCWlpyvnsT9ju45HxZE/aTJEmSJE142ekCJEmSJEmSNMFllR9BVRuTtH0xGG0CiohvA29v0naPZeaBNV53D+AC4I3AbhXm/Ab4Ymb+rEn1Sd3l9nfVPvc5X4XeyZXHd3s2POO9MOdr2449ciFsWQ37vQoO/HPo6a2/1mbZsAge/m+YOwvWPw77nQUnfBEGN1de07sDTK4QjLZ5ZeFfsxGtqVeSJEmSJEmSJEmSJKkzFhVfAzi+kY0iYiZwREnXw43sJ0mSJEmSJEmSJEmSJEnt0tPpAjTubahlUkS8DLgPeC8VQtGK/gT4aUR8PyKmNaE+qXtsWQNP3Vzb3JnPg71OGX3ejCr3wM7/Kdz6drjljZ2LxV07D658Fsw+vxCKBrDwMvjFofDkVZXX9e4Ak2eMPJYD0L+u6aVKkiRJkiRJkiRJkiR12G+AweL5zIh4UQN7nUshYA1gHfC7RgqTJEmSJEmSJEmSJEmSpHbpqmC0iDg6Iq4vHtdFxJ5j2GOv4tqhfQ5rRa0TyM9GmxARpwKXAKV/HgncCVwEXAMsLVv258D/RERX/TcoNWTTMsjB0ecBzHx+bfN2OXz0OfN/Bkt/W9t+zTb7k7Bxychjd/1N5XV9O8HkXSuPr1/QUFmSJEmSJEmSJEmSJEnjTWauAO4o6frniIhK8yuJiP2Aj1G4hyuBazJrvWlFkiRJkiRJkiRJkiRJkjqr20Kp3g2cCpwCbM7MCmk7lWXmYmBLyT5/0cT6xosPAweN4XhD2T4JXFjtQhHxNOBiYHJJ9y3AUZn5nMw8OzNfAjwN+CCF/+2HvAr49Bi+Pqk79a+pfe7M59Y2b+casx0f/V7t126WgU2FULZ69e0MPX0wqUow2tUnQubYa5MkSZIkSZIkSZIkSRqf/r3k/ETg6/Usjoi9gMuAGcBQqNoXm1OaJEmSJEmSJEmSJEmSJLVetwWjvbrk/DsN7DO0NoA/a2CfcSkzl2bmvHoP4IyyrW7IzEdGudwFFG6iG/Ib4IzMfKCspk2Z+R/A2WXrPxQRB4zhy5S6z5Y6gtF2qzEYbfKM0ecAPFI147A1Fl8P/WvrXze5GIg2eXrlOVtWwYq7x1aXJEmSJEmSJEmSJEnSOJWZPwLuKTYDeGdE3BwRJ1dbFxHTIuI9xbXHUXgoZgJXZ+YtraxZkiRJkiRJkiRJkiRJkpqpa4LRIuJg4GnF5iBweQPb/QIYKJ4fFBH7N1LbRBAROwBvKuueNcqaZwBvL+naDLwjMzdWWpOZl7B1qN0U4Pz6qpW6VK3BaJN2gV0Oq21uzySGH+5bTS1zmmzBJWNbNxSM1jsVpuxeed7yu8a2vyRJkiRJkiRJkiRJ0vj2emAZhWAzgJOAGyNiIfDd0okR8bWIuA54CvgKsNfQEPAE8Na2VCxJkiRJ27UcfYokSZIkSZIkSapZ1wSjAUcXXxN4MDPXjnWj4toHS7qOaaSwCeL1wPSS9grg4lHWvAXoLWlfnJlzarjW58raZ0fE1BrWSd2tv8ZgtIPeAVHj23NEIUBsNIObatuvWXIQFlw2trWTZwyf73dW5Xn968a2vyRJkiRJkiRJkiRJ0jiWmY8ArwQWUQg4y+LrPsALS6YG8C7gVGBq2dwFwCsyc2nbCpckSZIkTQCGvEmSJEmSJKm1ssqPoKqNSdq+dFMw2gEl53ObsF/pHvs3Yb9ud15Z+weZuXGUNX9W1v5WLRfKzAeA20q6pgEvqWWt1NW21BCMtteL4JhP1LdvLcFoACvvr2/fRiy7HTYuGtvaSbsOn5/w+crz+secjylJkiRJkiRJkiRJkjSuZebtwAnAlRSCzmD40+lZclA2FsA1wPMy8942lCpJkiRJ+v/ftkmSJEmSJEmSpGbopmC0nUvOVzVhv9Ul57s0Yb+uFRGHAH9a1j1rlDV7A88q6eoHbqnjsjeWtV9Wx1qpO/VXCEabdhC86Fp4+b1w2tUwZWZ9+9YajLbgkvr2bcRT9bwdlIne4fPJMwphcSPpXzf2a0iSJEmSJEmSJEmSJI1zmbk4M18BPBf4PrCIwqftRzpWAxcDp2XmmZk5xifaSZIkSZIkSZIkSZIkSVJn9XW6gDpsKDlvRpBZadDaQBP262bnsvXjae7KzHtGWXN0WfvezKwnpeg3Ze2j6lgrdactFYLRpu4Je58+9n17agxGWzdv7Neo15qHRu7f63R4wXfhkv0qrx3YuHV70s4jz+tfO7baJEmSJEmSJEmSJEmSukhm3gm8DSAiDgaeDswEJgNLgcXA/Zk52LEiJUmSJEmSJEmSJEmSJKlJuikYbWnJ+QFN2G//kvNlTdivK0VEL/D2su5ZNSw9sqz9cJ2XnjvKftLE018hGK1S8FetemsMRlu/sLHr1GP1gyP3Tz+yEARXze4v2LrdO23kef31ZDFKkiRJkiRJkiRJkiSNbxGxM3BQSdfc8odVZuYjwCNtLUySJEmSJEmSJEmSJEmS2qin0wXU4fHiawDHRMTMsW5UXHtsSVcb04LGnZcC+5W0NwA/rGHdoWXtx0ecVdljZe2ZETGjzj2k7rKlQjBaX5uC0Z68srHr1GrBL2DJTSOP7XwY9IySybnfy7duT9pp5Hn9a+uvTZIkSZIkSZIkSZIkafx6M3B38bgdmNLZciRJkiRJkiRJkiRJkiSp/UZJpxlXbgU2AZMphKP9FfCpMe71lwyHwvUDtzRcXfc6t6z9s8xcWcO6XcvaS+q5aGaujYiNQGmi03RgRT37lIuIPYE96lx2SCPXlGpWKRhtUoPBaD113AO7+iHY5bDGrlfNyvvhV2dVHt/lmYXXXY+FlfeOMCFgxglbd/VOG3mv/nUj90uSJEmSJEmSJEmSJHWn3SncGwdwR2Yu72QxkiRJkiRJkiRJkiRJktQJXROMlpmbIuJm4Ixi14cj4ueZObuefSLiaOAjQBa7bsnM7TJdJyL2AF5V1j2rxuU7lbU3jKGEDWwdjNZgOhRQCL07vwn7SM3XXyEYra/B//RzoPa5lz8T3jwIEaPPHYvHflh5rGcSzHxe4Xy/s0YORnv9sm1rm1T+dlPUv3ZsNUqSJEmSJEmSJEmSJI1Pq4qvCSzoZCGSJEmSpO1U5uhzJEmSJEmSJElqsZ5OF1Cnzxdfk0Iw15URcWKtiyPiecAVwDSGn6z5+corJry3AZNK2nOBm2pcW55UtHEM1y8PU6uQfiRNEFsqBKNNajAYbbDO//tdewpsXNLYNStZcU/lsT1PhcnTC+dH/T3s89Lhsd4d4eSfweQZ267rmzbyfgajSZIkSZIkSZIkSZKkieXJkvPJHatCkiRJkiRJkiRJkiSpRapF8xvbL2lIVwWjZebVwI0UQs0S2Bf4VUTMiojnRUSUr4mC50bEN4GbgacNbQfcnJlXtKf6cemcsvaFmWN+tMtY1vn3kbYv/S0KRhuoMxjtqZvhqufDuscau265LWvgiSpvqUd+dPi8b0c49Qp4+X1w2lXwmvnw9NeOvK6vQmbi8jt9GpUkSZIkSZIkSZIkSZpI7is5P6hjVUiSJEmSJEmSJEmSJElSB/V1uoAxeBNwF7APhWCtPuAdxWNdRDwIrCiO7QYcBgyl6gwFqgUwHzi7jXWPKxFxInBUSdcA8O06tlhb1t5hDGWUrynfcyy+ClxU55pDgEubcG2pui0VgtH62hyMBrBuHvzqz+BldzV27dIaLt6r8vhuz4W9z9i6LwJ2PapwVNM3rfLYqvtg12Nqr1OSJEmSJEmSJEmSJGmcysyHIuJe4Fjg2IjYLzMXdrouSZIkSdJofOC3JEmSJEmSJEnN1HXBaJm5JCJeClwGHMjwbw+CQgDas8v6/v9ShkPRHgZenZlL2lHzOHVeWfvKzHyijvXjMhit+Gda159rRIw+SWqG/grBaJM6EIwGsOJuWHQ97P2ikccHByD7YfNyGOyHKbsDCTkAm5YV5vRMgh32hZvOgoENla91zCfGViPApF0rjy2+0WA0SZKkTtqyGnqnQU9vpyuRJEmSJEmSJGmi+E/gGxTuc/sU297nJUmSJEmSJEmSJEmSJEkTWtcFowFk5n0R8WzgK8DZQA8jP16ltC+AAeAHwAczc1XLCx2nImIa8May7ll1blP+v98eddawE9sGo62sswapu2ypEIzW16FgNIDrT4dD3gnP+TL0Thnun38J3PxnjdVVaod9x752z5Mrj/U3nKcoSZKksVgzF37zFlh2B0yeAc/8IBz9T2DwtCRJkiRJkiRJDcnMWRHxGuAVwDsi4sHM/NdO1yVJkiRJqsb7piRJkiRJkiRJaqaeThcwVpm5IjPfAhwJfAmYXRyKsgPg98DngWdm5ju251C0ojcApUlMi4HL69xjTln7gDrXl89fnpkr6txD6h6Z0F8hGG1Sg8Fogw0EowHM/Sbc9TfD7VV/bG4oGsC0et8iSkyZWXmskVA4SZIkjc3gFrjuVFh2O5CweTnMPh/mfK3TlUmSJEmSJEmSNFG8Gfg5hfvfPhsRV0XEaR2uSZIkSZIkSZIkSZIkSZLaoq/TBTQqMx8C/hYgInYC9gKGUnSWAoszc12Hyhuvzitrfzcz++vc44Gy9qF1rj+4rP2HOtdL3WVgA+TgyGN9DQajTZ4BG5eMPPbKB+Hej8PjF1XfY87X4NB3w4xnwQP/1lg95XY5onq4WS32fgksunrb/sFNje0rSZKk+i35FaxfsG3/Yz+Ew/6y/fVIkiRJkiRJkjSBRMSFxdPVwBoKD8A8AzgjItZQeEjokuJYrTIzy+8ZkyRJkiRpBNnpAiRJkiRJkiRJ6p5gtIjYG3heSdevM3N56ZzMXAusBea2s7ZuEhGHAS8s6541hq3uK2sfGxE7Zub6GtefNMp+0sSypcq9qJMaDEZ71mfgtndu23/gW2GXw+CFP4ErjoOVv6++z5XHNVZHJSdf3PgevVNH7h/Y2PjekiRJqs8Dnx+5/6lb2luHJEmSJEmSJEkT0zvY+lPoCUTxfBe2vfdrNFHcw2A0SZIkSZIkSZIkSZIkSV2hp9MF1OG1wM+Lxw+ATZ0tp2udW9b+dWY+WO8mmfkkcG9JVx/13XR3aln7ynprkLpKfwuD0fZ9OfSNsMeBfz58fthfNXaNsTr8QzD98Mb3qRiM5l8FkiRJbbd5+ehzJEmSJEmSJElSM2XJIUmSJEmSJEmSJEmS1LWyyt0P1cYkbV+6KRhtVwpPrwzgjsxc1+F6uk5E9AJvK+ue1cCWPy9rn1NjHYcDzy/pWgdc3UAd0vjXv77yWO+0xvbeYR940dUw/ajh9vNnwb5nDs85+Fx41mcau0699jy1edfsmTJy/+DG5uwvSZKk6gb74b5Pw1UvgGW3V57nTx0lSZIkSZIkSWqGaOIhSZIkSWo575uSJEmSJEmSJKmZ+jpdQB2WF18TeLKThXSxlwP7lLTXABc1sN8PgI8DvcX2ayPiGZk5Z5R1f1fW/klmmm6kiW1gQ+Wxvh0a33/3E+EV98HmlTBpOkTZfa09vXDU3xeOa0+FJTc1fs1q9n5xIaytWXqnjtw/4FuHJElSW9x6Dsz7/ujzBjZA346tr0eSJEmSJEmSpInroE4XIEmSJEmSJEmSJEmSJEmd1E3BaKVhaNM6VkV3O6+s/aPMXDfWzTJzTkR8Bzi32DUZ+HZEnF4p6CwiXg28o6RrM3DBWGuQuka1YLTeJgSjDZm86+hzDnhT64PRTrmsufv1Thm5f2BTc68jSZKkba17DOb9oLa5/esMRpMkSZIkSZIkqQGZ+Vina5AkSZIk1StGnyJJkiRJkiRJkmrW0+kC6nA3kMXzwzpZSDeKiL2AV5R1f7MJW58PrChp/wlwbUQcXnb9KRHxfuCisvVf8GY+bRcqBaP1TIZo81vxQW+DXY+tfX5fHVmUOx0Mr5kPvVPrr6uaSvsNjJjBKEmSpGZZOw/u/juGvx0fRf+Ys7clSZIkSZIkSZIkSZIkSZIkSZIkSZIkib5OF1CrzHw8Im4FXgA8MyIOy8yHOl1XF3k7W/9535eZtze6aWYuiIjXAlcBk4vdJwF/iIg7gUeA6cAJwB5lyy8H/qnRGqSuUCkYrXeH9tYB0LcjnHkHzPka3PXXleftfzbs+zLY5Qi4+sSR50w/Eo7/Aiy+HqbuDYe+Eybt0vyae6aM3D+4qfnXkiRJEmTCfZ+G+z4JOVj7OoPRJEmSJEmSJEmSJEmSJG13anzwpCRJkiRJkiRJqknXBKMV/Rtwccn5qztYS7c5p6w9q1kbZ+aNEfFnwLcZDj8L4DnFYyT/A/xFZg40qw5pXOsfR8FoAL2T4fAPwv5vgGtOgnXzth7/00vhaWcVzlfeX3mfTNj3pYWjlXqnjtw/sLG115XUHFtWw2M/gTUPwR4nw36vgOjpdFWSpGqW/hZmf6L+df1rm1+LJEmSJEmSJEmSJEmSJKlNDHmTJEmSJEmSJHVeVwWjZeYlEXEhcC7wyoj4CvDBzOzvcGnjWkScBBxe0rUZ+H4zr5GZV0TE0cAFwBuBGRWm3gp8PjN/1szrS+PewDgLRhuy477wqodhyU2w6FqYcRzsfQZM2W14Tl+1Gtv0S0+D0aTutXEJXH8GrJxdaD/wb3DwOfD8bxqOJknj2bwfjm1d/7rm1iFJkiRJkiRJkqStRMRBwHHAvsBOwJPAY8BvMnNLJ2uTJEmStl/R6QIkSZIkSZKkrlEtpcLYfklDuioYrejdwBrgg8B7gFMi4gvAZZm5rKOVjVOZeQtt+C1LZi4B3hsRHwROAg4A9gbWAQuBuzPz0VbXIY1LlYLRqoaOtUlPL+z9osIxkqrhbW36Z2XPlJH7Bze15/qSxm7Ofw2Hog155Ftw6Ltg9xM7U5MkaXRPXDG2dQajSZIkSZIkacW9cP9nYNNS2O14OOaT0Det01VJkia4iPg28PYmbfdYZh5Y5VqN3jBzUGbOq3dRRLwe+BDwggpTlkfEj4FPZObSBuqTJEmSJEmSJEmSJEmSOqqrgtEi4vqS5hpgZ+BI4JvF8QXAkuJYrTIzT29akSIzNwM3dLoOaVypFIxWNXRsnBgPNfZOHbl/YGN765BUv9mfGLn/8Z8ajCZJ49m6MWZaG4wmaTwYHIDsh94KIduSJEmSpNZZPQeufv7w7/EWXweLb4Azb4fo6WxtktQlIuJtTdwuKdxLtwpYBPwxM3248ugq3OjTGRGxE/AN4E2jTN0NeC/w2oh4e2Ze1fLiJEmSJEmSJEmSJEmSpBboqmA04FQKN2sNSSCKB8DTi0etN29FHXMlaewmajBau+6V7anwYfbBTe25vqTmmzsLTvh8p6uQJJXLhEe/N/b1AwajSeqgwS1w14fh0W8XPoC/z5lw4rdgysxOVyZJkiRJ2497/m7bhxstvxOevAr2fVlnapKk7vNtWndP27qIuAP4DvDjzPTGi5H9rNMFDImIXuDHwMvLhp4C7qYQencIcDzD91HuBVwaEWdk5q/bVaskSZIkSZIkSZIkSZLULN0WjDYSg80kjX/dHIzWM7nKYJvegnunjty/fkF7ri9pbHKw8tjkXdtXhySpdk9eDbe+fezrt6xtXi2SVItMWDsXVj8E93wUVt0/PLbwF3Dz6+CMGztWniRJkiRtVzavggU/H3ls8Y0Go0lS/WL5V3KCAAAgAElEQVT0KXXbicLDSU8FPhsR52Tm1S24Tid8GPjkGNY9B7iopJ3AhXWsvw14U53XrOeGl//D1qFoW4APAf+dmZuHOiPiSOCbwAuKXVOASyLimMx8ss76JEmSJEmSJEmSJEmSpI7qxmC0VtzwJUmt1d/FwWhR5W23WuhRM1UKRgOY/c9w9Mer1ympMx7+78pjBqNJ0vj00H82tn5gXXPqkKRaDGyC294J875fec6Smwqhabsc1r66JEmSJGl7de8nKo/NvxiO/1z7apGk7ld6E0RW6C9X/nS7keZmydg+wJUR8YHM/Er9JY4vmbkUWFrvuoj4WFnXDZn5SB1bbMzMefVetxYRcTDwwbLuN2TmpeVzM/MPEXE6cB3D4WgzgfOB97SiPkmSJEml2vTAcUmSJEmSJEmSthNdFYyWmT2drkGSxmSgi4PRqmrTL3Cn7FF5bPYnYJ8Xw+4ntqcWSbXZtBzueG/l8UnT21eLJKm6lffDgktg4xJ44n9rW7Pbs2H5ndv29xuMJqmN5n6zeijakCevNhhNkiRJklptzcMw58tVJrTpgUuSNDGcU3zdGfgEhXCroPBmeitwB/A4sBqYDOwGHAOcDOxdXJvAj4FfAjsAuwJHFuccwNYBaV+KiAcy8/qWflXjUETsALyprHtWJ2qp4HxgUkn72yOFog3JzA0R8Q5gNoX/NgDOi4h/rTPsTZIkSdL2LA15kyRJkiRJkiR1XlcFo0lS15r7jZH7+3Zsbx3N1q5feu52PPRNqxy08ej3DUaTxpsFFe/FLuib1p46JEnVzb8EbjkbBrfUvubUX8KcrwAGo0nqsHk/rG3eunktLUOSJEmSROF7tKwSfrZuHgxsgt4pbStJkrpVZn4nIp4BXEYhFA3gG8CnM3N+pXUR0QO8Gvg8cBDwBuCBzPxU2byXA/8OHEIhIK0P+AJwfJO/lG7weqD0qV4rgIs7VMtWiqFtry/r/txo6zLzoYi4BDi72NUHvAX4dHMrlCRJkrS16HQBkiRJkiRJkiRNKD2dLkCSJrwtayuP9e7Qvjpaok3BaL1TYY+TK4/P+Up76pBUuzlfrT4+sLE9dUiSKstBuPP9dYSiBTz3a7DvmZUDLg1Gk9ROS39T27wNC1tbhyRJkiRp9Aem5CCsmdOeWiSpy0XEjsAlwDOBfuDNmfnuaqFoAJk5mJk/B44Ffk3h3sDzI+IdZfOuAE4A7i7pPjYiXty8r6JrnFfW/kFmjpdfZp8JlD5x8beZ+cca136rrP3a5pQkSZIkSZIkSZIkSVLjskpMRbUxSdsXg9EkqdWeurny2KSd21dHK+x9RvuutcPe7buWpMY89hNY/rvqcwzOkaTOW/0grF9Q29xjPw1v7odnvKfQ7ttp5Hn9VUKBJamZNi2rfe6qByqPDQ7AxqWFw/BeSZIkSRqbdfNhxV2jz1td5fszSVKpTwFHUHha3ecy8yf1LM7MdRSCsJYDAXw5IvYom7MGeD2F4LWhW4pf0mDdXSUiDgH+tKx7VidqqeClZe0b61h7M4U/2yHHR8ReDVckSZIkSZIkSZIkSZIktYnBaJLUaouvrzy2R/n9lePUMz9Yof8D7ath8szq4+seb08dkkZ3/2dGn2MwmiR13rLbap971D9AlPwIoW/ayPN8f5fULqsfqn3uyt/DRbvCPR+Dgc2FvoHNcPt74We7wcV7FI6LdoHrTi98oF+SJEmSVLsFl1Ye65kE+50FR3wUdn5G+2qSpC4VEX3A24rNTcDnxrJPZi4F/qvY3AF4ywhzHgUuohCeBnDSWK7Vxc5l+GsHuCsz7+lUMSM4uqz921oXFsPxZpd1H9VwRZIkSZIkSZIkSZIkSVKbGIwmSa2Ug/DA5yuP731G+2ppxDM/CDvuv3Xfwe+A6eX3YLbQlN2rj1/1/PbUIam6zSsKwROjGVjf+lokSdsaHIDld8HS2+DWc0afP3k3eOldELF1v8Fokjptw8L65m9ZBX/4XCEcDeCuv4aHvw5bVg/PGdxSCDe/6jmF98vNK2HRdbBhUfPqliRJkqSJaGGFYLRdnglv2gynXArHfw5mHNfeuiSpO70Q2B1I4PZiwNVYXV1y/poKc64qvgbwtAau1VUiohd4e1n3rDFut39EfCsi7o+IFRGxOSIWF9vfj4h3RcRuY9j3iLL2w3Wun1vWPnIMNUiSJEmSJEmSJEmSJEkd0dfpAhoVEccBZwEnA4cAuwE7A5mZ23x9EbErsEuxuSkzF7erVknboaW3Vh475C+gd3L7amnETgfBS34Lj/0PrHkY9jwFDjh724CMVqoUvjFk4yJYvwB23G7u05XGp9UP1jbP4BxJar91j8GNr4BV99c2//APwWF/BTsdvO1Y304jr/H9XVK7bFo2tnUPfgkOOQ8e+U7lORuXwI8mFb7nzcFC3+F/C8f/W3u/D5YkSZKkbrB5JSy+ceSx/c9uaymSNEGUPrXuiQb3erLk/IAKcx4oOZ/R4PW6yUuB/UraG4AfjnGvg4pHqT2Lx5HAnwNfjIhvAP+UmWtH27AYpFYepvZ4nXWVz39GneslSZIk1SU7XYAkSZIkSZIkSRNK1wajRcQxwJeA00q7a1h6GvDT4vm6iNg7M9c3uz5JIhP++KXK4zOf275ammHHfeGIv+1gATW8xT9xJRz6F60vRVJlT/yytnkG50hS+932rtpD0Q4+B074QuXxSqG1/aN+lkeSmmPzGIPRAK44uoZJWfi+fsgfvwC7Px/2f8PYrytJkiRJE82qB+DXZ0P2jzz+tNe0tx5Jmhj2KTkf5Qlyo9qx+BrA3hXmrCg5n9Lg9brJuWXtn2XmyhZebxrw18DLI+K1mTnaL2x2LWuvz8x6f8m+pKw9vc71FUXEnsAedS47pFnXlyRJktRqhrxJkiRJkiRJkjqvK4PRIuIdwFeAqRRu3Cr9qXtSPT3nUgpPQzyAwg1HrwO+15JCJW2/MuG282D+TyvP8Qnp9dlhr9HnDG5ufR2SKltwGdx3QW1z+9cV3iujllxbSVLDNi2HRdfUPv+Ij1QfrxiMZvClpDbZ1EAw2lgtuNRgNEmSJEkaMue/4I73UvFDkjs+HWYc39aSJGmCWF1yfmSDex1Vcl7pySZTS843NHi9rhARewCvKuueNYat+oFfA9cC9wILgDXATsD+wMnA24A9S9YcBlwbESdm5mNV9t6prD2WP5vyNTuPYY9K/hI4v4n7SZIkSROA98NKkiRJkiRJktRMPZ0uoF4R8ToKNyLtUNoNzAfuYZTfJmTmIPDjkq6zml2jJLH0t/DItyqP90yCyU17EOv2Ye8zCv+7VdO7Y/Vxabwa2Aj3ng/XvQhuPQeW39npiurXvx5+9eo6FiRsWdWyciRJZVb9gbqe5Dn9iOrjvQajSeqwzcvbf815P2j/NSVJkiRpPNqwCO7+MFV/3rTfWT4cRZLGZkHxNYCDI+L5Dez11uJrluxbbu+SOU81cK1u8jag9AaUucBNde7xcWC/zDwtM/8lM3+RmXdn5sOZeU9mXpaZH6Hw8Nb/w9Z/ae4NXBxR9S/K8mC0jXXWB9sGo5XvKUmSJEmSJEmSJEmSJI1bXRWMFhH7AN8pNoduFvoqcEhmHgi8tsatLh3aEjilaQVK0pAnrqw+vs/L2lPHRDJ5Bhz0tupzRgtOk8ajTLjhTLjvU7D4Bnjk23DtKbDsd52urD6XH17/mk3Lml+HJGlkG5+sfe6h7x59zqQKn53pX1P7dSSpEf5bUpIkSZI6Z/7F0L+2+pyn1fMwFUlSiZuALRTujQvgqxFR91PiIuKNwEsYvsfumgpTTyg5n1fvdbrUOWXtCzOzjqfLQDEMbUkN8zZm5t8D7y8bOgF4cz2XrKe+BtZIkiRJGjP/CS5JkiRJkiTVqtpv6ev7Db6kiayrgtGATwA7UrjpaxA4OzPfl5mPFsdrfXu7g8INZAAzI+Kg5pYpabt3/6erj0/etT11TDTP/Xr18XXz2lKG1FRLboIlv9q6r38dPPTlztQzFmvmwvr59a8zzEKS2mfto6PPGbLvK0afM2n6yP0DG2FgU+3XkqSx8t+SkiRJktQ593+m+vikXWBPn1EnSWORmauByyncH5fAccBVEfH0WveIiHdSePjoULhaAt+vMP3MkvPfj6XmbhIRJwJHlXQNAN9u9XUz8yvAZWXdf1llSXkC6Q5juGz5mlFSTevyVeDoOg9TUyVJkiRJkiRJkiRJklSzrglGi4heCk9JzOLxucz82Vj2ysx+4I8lXYc3XqEkleidWn18ksFoY9LTV3383n8yAljd56H/HLn/0e+0t44hAxth6e2wcvYocduDsPxuWH4XzP7k2K61aenY1kmS6ldPgOw+Lxl9TrWg3y2rar+WJI3VlpWdue7CyztzXUmSJEkaL7ashQ0Lq8/Z9+XQO7k99UjSxPRhYGNJ+yTgDxHxtYh4UUTsUr4gIg6LiHdHxB3AfwGTGQ5Fm5WZs0dY83TgVIYfRnpzc7+Mcem8svaVmflEm6792bL2iRFR6Rcu4zoYLTOXZOb99RzA3GZdX5IkSRqfotMFSJIkSZIkSZI0oXRNMBpwIrALhd8WbAH+tcH9FpSc1/xETUmqSd/O1cerBUmoMcvu6HQFUn3mX9zpCoY9dQtcfgRc/Xy44li44SWwecW289YvLIz/8gT45bNhXqWHi49i87LG6pUk1W7tvNrmnTUXeqeMPm/yjMpjI/3dIUnN1r9u9DnHfKr5133oq83fU5IkSZK6yd0fGX3O017T+jokaQLLzEeBc4HBoS5gGvAu4BpgRUSsiIjHI2JRRGwAHgC+Cjyb4UA0gNuAD1W41Mco3D8YwKbi3hNWREwD3ljWPauNJdwOlP4SpRc4ssLc8qfQ7Fisvx57lrU79LQJSZIkSZIkSZIkSZIkqX7dFIx2aPE1gTsyc3WD+5Wu3+YpmpLUkMEt1cezvz11TETPKn+Abpm532xPHVIzrH6o+ngOVh9vhvVPwJyvw+3vhWteCOvmDY8tuhbu+Ydt1/z27bDq/tr2nzKz8tgmg9EkqS2eugWevHL0ec/5Mux0cG17TqoS9LvZz9VIaoP+9aPPOeafYJ+XNve6tbyfSpIkSdJEMjgAj/0EHvhC4fXhr1ef3zOp+d+LSdJ2KDN/BPw5sIatg86ieEwHnkYh/GpKSX8WjwCuAl6WmZWeMvA94LTicXKVeRPFG4DSJx0uBi5v18UzcxB4vKx7jwpzl7F1iBrA/nVe8oCy9pw610uSJEnabuXoUyRJkiRJkiRJarFuCkYrvQlofhP2K00a6WvCfpJUsGUtbBklDGKnQ6uPq7Knv7b6+IYn2lOH1AwLR7nH+q4Pt/b6y++GK4+DO95b+YNMj1wIW9YMtzevhCU31Lb/MZ+CVz4Ie/7pyOObltZXrySpfrMvKARfjib64LC/qn3fvmkQvSOPGYwmqR36a/yM5pTdm39t3+ckSZIkbS8GNhd+tnTLG+HuDxdeR3PwuTB5eutrk6TtQGb+BDga+AkwQCHsDIbDz0qPIQHMA96ZmS/LzFVV9r81M28qHne24EsYb84ra383s+1PNtxQ1t6hytwHytr13mxU/jSc8v0kSZIkSZIkSZIkSZKkcaubgtFKb+Cq8OnruuxWcu6nGSU1z5qHRp8z8zmtr2Oi2uWw6uNtv2dVXWfLavj9P8J1p8Md74M1D3eulg0Lq48/+CVYP8qccjkID/4nXH44/DAKxz0fg80j3O/++3+ATU9V329wM1y0S2Gf294JCy4rXGM0Ox8GR38cpsyEyTNHnrNp2ej7SJLGbu4smP3J2uYe8Ob69o6AybuOPLZ5RX17SVK9chAG1tc2d+bzmn/9lfc2f09JkiRJGo8e/L+w7Nba5z/99XDc51pXjyRthzJzQWa+CTgA+CDwY+BBYBmFsLT1wELgFuALwMuAQzPzws5UPD5FxGFA+ZNkZnWglPInOVR7mth9Ze0X1HqRiJgGHDvKfpIkSZIkSZIkSZIkSdK41U3BaKWpHfs2Yb+jS85N5ZDUPKsfrD6+x8mw6zHtqWWi2q1KsNzglvbVoe4zsAmuPRXu/wwsvh7mfAWu/hNYM7cz9fSvHX3Owsshc+u+wYHK829/D9z5ga3fi/7wOfjlCTCwsbi+vxAQ9+RV9dU7dxb8P/buOzyO8l77+PdRtST33jEYXDBgmunV9N4J7QQSckIaSU4K5KSQHt4USM9JQghJCL33YmxjbIPpxtjYYNx7r2qWtM/7x1jRSp6Znd2dmS26P9elS7tP/UkYbZu5Z9a1wcYe+AMnNAegsuOx3bvt0lMwERFPHf/2p2vJv51AyyBMGex3Q/p7lPdyb29S9riIRKylPvjYva6Eit6px3UZCBNfCrbmSydm/3daREREREQkXyV/BrH4ruDzLtkExz8EFT3Cr0lERLDWrrHW/t5ae6W1dn9rbX9rbYW1tpu1dri19nhr7TettS9YqzevXHy6w/0Z1toUB/iEyxjTF9inQ/NqnynPd7h/UhrbHQ+UJd1/11q7Lo35IiIiIiKSNr0UExERERERERERCcrv3TS90yYirQopGG357u8GOMQYU57pQruvADkkqWlONoWJiLSzfYF3335fgJM7HrcoaUs0evdtmxdfHVJ4Vj8LW95t39a4AT7+S27qaa5NPebNz8F9JXCvgRmXwxP7wEPdYdr50LC+bVztcnjmAFh0h/s6OxfDA1XOOveXw0M9iOyl4dH/hhFXtt2v7OM+rtHv4tciIp2UTcB734FH+8GD3WHm1dCwIfW8dmtYJxQziP4nwakvQ79j060UKnq6t+9SMJqIRCzI8+hWXfrCmW9D/xP8xw04GQaeAme+BYPOSL3uxleD1yAiIiIiIlII1k+H5yfAg1Xw/BGw+F/+n3smG3oRVAYIpRYREckBY0wp8MkOzXfmoJQraH+85jpgvs/4F4Dkq0QcbYwZE3Cv6zrcfyzgPBERERERERERERERERERERGRvFBIwWiv4RzoY4Eq4Er/4b6+nHR7XdxXfxSRIle71L192CUw4Y9QVh1rOUWpxScYrWEdbHjNCRUR6cgrAG3+L+Oto1U6gQ4Ayx+C2iXQUgernoJJxzvhN4lmeO7g/AgGPO5h2Pvq9m2ewWiboq9HRKTQvP9DmPcz529k8w5Ydi+89knn731Qu7bAtrnBxp46NbNQNIDy7u7tTdszW09EJKjmuvTGdx0Bp06DM9+BkZ+B0qr2/RW9YP9vObd7H+YEmk98yX/Nxf9IrwYREREREZF81FwHa6fA/NvhpRNg81uQaILNb8Ksa4Ov02NcdDWKiIhk72xgUNL9HcBDcRZgjBkAfLdD81PWen8AZK2tAx7u0HxzgL1GARclNTUD9wYsVUREREREMmZyXYCIiIiIiIiIiIiISFEpmGA0a20jMBnn0wID/NQY0zPddYwxxwI34ASsWeDRMOsUEaFulXt7zV7x1lHMEj7BaACTjoFn9ocdi+KpRwrHmhdyXUF7zTuzm7/jIyc8Z+YnnBCcXOsyAAafuWd7ZV/38QpGExFpz1pY/Pc929c875yUGlTjxvBq8lNS6d5um+LZX0Q6r3QDhlv1PgSOvAMuWg0T/gT7fBr2/184/XXodVD7sQNPgarB3mst+ltmNYiIiIiIiOSLJffAgzUw5RR49+vZrVU1KPUYERGR3Lm+w/37rbUZvclojBltjDkvzTkDgaeBAUnNu4BbA0z/AZD8wct1xpjzffbqAtwFVCQ132mt1QE0IiIiIiIiIiIiIiIiIiIiIlJQCiYYbbef7v5ugSHAi8aY/kEnG2NOBp7E+bkN0AL8KuwiRaSTW/+ye7vfCdWSnpYUwWgA2z9M70r2IjYR/56ZBjokm/NdWJEnOa9H/g3KavZsr+jjPr5xoxMCJCIijpYGqFvp3jfvp+7tbuIKRiutcG9v2RXP/iLSeWX7PLqiJ+z3eTjqTjj4Z9B9P/dxPcf7r7Ptg+zqEBERERERyZUdH8Nr14S3XjeP11UiIhIqY0y5MeZYY8wnjTFfNcZ8zxhzS67rymfGmAHAOR2as7nqwSDgSWPMHGPMTcYYzwdBY0w3Y8yXgNnA4R26f2KtXZxqs91jftuh+WFjzJeMMe0+qDHGjMW58OwxSc2bgB+m2kdERERERMJQRMfD6theEREREREREREREckDZbkuIB3W2teNMfcDV+B8anA4sMAY82vgQZwrKbZjjCkFTgL+G7gMJxCN3fN/a61dGn3lItJprHwKbIt7X9WQeGspZt32g4a1qcdtmAk7l0LXEVFXJMWgcRN06RfvnmEEo4Vt0Bmw5oX05/U/CYac695X6RGMlmh0AoBqhqW/n4hIMWre6d238ong6wQNRus9Ifiabko8gtESCkYTkYi1xPQ8OpEilPuZcXDFLigpj6ceERERERGRsKx4LLy1ugyEASeHt56IiOzBGHMc8A3gdKDSZciPXOacCVy+++5ma+03oqswr11L+2Mk51pr3whh3QOBnwM/N8ZsA+YCG4EdQFdgGDAe9+Mz/2qt/XEae30LGAectft+OfB74HvGmHd277kPcChtx0aCcyzlRdbaNWnsJSIiIiIiIiIiIiIiIiIiIiKSF0pyXUAGrgfexTmIxwI9gR8AH+z++g9jzHygFniRtlC01kuXvIpz0JCISDgSLfD6p737qwfHV0ux2/+m4GM3hXE8qxSF2mX+/fWr4qkjmV8ATi4c8H046Tk49Nfpzx3S8SLbSbru7d23+un09xIRKVapAjN3LAq2TtBgtNFfDjbOi1cwmm3Kbl0RkVSa6+LZp6Uh9Zj5t0Vfh4iIiIiISDZWPgEzroAZl8OyB533mGan8Vmbny4DYOJLUFJQ1+QTESkYxpgaY8w9wDTgPKALzvFvyV9e5gH/hRMM9j/GmPERl5uvPtXh/p0R7NEDOBa4ALgGuBA4jD1D0WqBz1prb0hncWttC07I3QMduvoDZ+IcF3kY7f89rAcusNZOT2cvERERERHJht9LNBERERERERERERERSVfBBaNZa+uBM4AptA86MzhXxEy+PxqooO0TBrv79ovAObsPGhIRCceGGf4hFFUKRgvNgInQbb9gY2d+ItpapDDUr4FnUxznXbcynlqSpQrAidOoG+GgH4AxsPd/QWWf4HMresNeV3j3Vw2Cnge6922ZnVaZIiJFLdXjwsongq3TuCH1mKohMPTCYOt5KSl3b2/Zld26IiKptMQUjDbo9NRj5v4IapdHX4uIiIiIiEgmFv4FXrkQlj8Ayx9yPjd7at9w1h56IVy0BnqOC2c9ERFpxxjTHefCn1fgfna9dWlr67R2BfBs0lyfD3SLkzHmWGBMUtMu4N9ZLjsf+BkwE6gPOOcj4NvACGvtHZlsaq3daa29AicEbZbP0M3A/wEHWGufz2QvERERERHJlO/LNBERERERERERERERSVPBBaMBWGs3AqcBNwMbaR981vo9+YvdY7YB38EJRdseW8EiUvzq18Lkk/zHVPSKpZROoawaTnkZ9roy2Pj6dZGWIwVg8T+gaZv/mGnnwaTjYfM7sZQEQPPO+Pby0n00HPhDOPT2trbKPnDaazDk/NTzB50Fp02H6qH+4/oc6d6+a2vwWkVEil2qx4WVjwdYow5mf8u7v2oIDLsETn8NyrumV19HJRXu7QkFo4lIxFoa4tlneICg7ZZ6+PB30dciIiIiIlJMtrwHLxwFD/WCF4+BdVNzXVFxshbm/TSatcffCsc97FxsRUREovIwkHz1qV3A3cCngetwD0vr6LGk26eFVlmBsNbOtNaapK/K3ccdZrPmOmvtd6y1xwFdcYLXzgE+C9wE3AJ8E/jM7vb+1trR1tpbs9179/4PW2uPBvYBLgW+DPwv8ClgIjDIWvsFa22Aq+iIiIiIiIiIiIiIiIiIiIjkhvW5zoBfn4h0LmW5LiBT1loL/NIY83vgSpyDt44DBtM+8G0LztUzXwDuttamSEUREUmTTcCUU1KPK62OvpbOpHowHHsvjLjKCbTys+xeGP1VnZzRmW16M9i4DTNg8kQ4+32oGRZtTdY64TVR2f9bcPCtmc/vvh+c+AQ8vhfULd+z/8i/wcjrg69X3t29vWlHZvWJiBSj5lr//g3ToWE9dOnv3r9zMbx8jvf8EVfDMf/OvL6OFIwmIrnS0hjPPj3GwD7XOUHLflY8Aof8Uq85RURERESCqFsFLx7thAwDbHzN+Zzn7LnQdUROSys6OxZC3Yrw1z301zDmq+GvKyIi/2GMuRQ4lbYLgr4GfMJau3J3/14Bl3q+dUlgvDGmq7U2D67eVRystQngw91fce+9BFgS974iIiIiIuJHxwyIiIiIiIiIiIiIiISpJPWQ/GatbbDW3mWtvcpaOxwoB/riBKRVWmv7WGvPs9b+QaFoIhKJ9dNg2wepx5V2ib6WzmjgqVA1xH/MO1+Dl06AXVvjqUnyz8rHUo9p1bQtvfGZaqmn7Tj2DvqfCD3HZ772qC9nF4qWbNhFe7aVlMPQC9Nbp6ybe3vz9vRrEhEpVs0BzkV6dIBzAnGylgaYfhk8ORK2L/Ce2/vw7OrrSMFoIpIriZiC0QCOvBOOugtGXOM9pnYpbJ0TW0kiIiIiIgVt6T1toWitmmth3k9yU08xC/JeUyb6TIhmXRERSfbtpNtzgdNaQ9HSYa1dC6zffbcEGBtCbSIiIiIiIiIiIiIiIiIiIiIiIpHL+2A0Y8x4Y8w3jTF3GWOe2v11lzHmJmPMIR3HW8dma+1aa21TLmoWkQCshfUzYNkDMP82ePtrMOMTMOk42PxurqtLz6a3go0zugpUJEq7wJF3QFlX/3EbZsDsbwVbc9sHMP92mPtTWDfN+fcqha28e3rjg4QdZqu5zrvvsN/BGW9AWU1ma48L+G890FrfgV6Htt03pTDh/6CyT3rreP03aNqReW0iIsWmuTbYuLe+1P7+3KxeMQcAACAASURBVB/DiodTzxt6fvo1+Skpd29P6KW4iESsJcZgNFMC+1wHx9wNl2xyng+7WRFDuLKIiIiISDHYMtu9fdGdkGiJt5ZiZyP4fVb2hT5Hhb+uiIj8hzFmEHBwUtON1lqfD5dTSr6iyn5ZrCMiIiIiIiK+iul482L6WURERERERERERESkUJXlugAvxphDgV8Dx/kMu9UYMxP4mrU2YDKRiOSNqafveUV4gJ2LoPceuYf5a/ZNua5ABp8F586H5w6Gxk3e45beAxP+5JzY7mXxv+D168E2t7Xt+1knCMpvnuS3qiHQtD34+KDBNNlI+IQ5lFZCaQUMvRiW3p3+2l0GZl7XHmv1g9NnOiGB9Suh/4nQbd/01ynv5t6uYDQRkTZrng82buXjULcKqoc44UAf/j7YvJq9M6/NTUmFe3tiV7j7iIh05PdcOkqVvZ3nw+um7Nm3/uXYyxERERERKUjL7vPu27EQeoyJr5ZiF8VnHWO+DiUegdEiIhKWo3d/t8AKa+0rWa63Oel2mle/EhERERERERERERERERERERERyY28THgxxlwATMcJRTNJX/8ZkvR1HPCKMebCuOsUkSwY4wQVualbFW8t2Zj701xXIK2qhzrhZX6ad0Ltcu/+ho0w69r2oWgAH/8V1k/PvsZcsNYJe5t+Kcz6NKybmuuKcqPjf9NUmndGU0cy32C0Ls73CX+EwWenv7Yxqceko7QLDD4DRl6fWSgaQJlHMFqzgtFERP5jyb+Cj318KNxfCQ90Cf63NOzHBwWjiUiutOQoGA1gyLnu7dvnx1uHiIiIiEgh8vuMBqBhbTx1dBZhf9bR/yQY87Vw1xQRETfJV8F6L4T1kh8QuoawnoiIiIiIiLgK+dgsEREREREREREREZFOLu+C0YwxY4D7gCqcTwbs7i9oH5Bmk766APcaY8bGW62IZKXaIxitvkCC0Rb/E+Z8N9dVSLIh56ces32Bd9+j/bz71ryQfj354L3vOGFvKx6BxXfBlNNg+SO5rip+zbVpjo84GM1a/zCHkkrne3k3OOkZuHg9XLgCjns49dp7XRVOjWEr9whGa1IwmogIAHWr05+TTgDZ0AiyxBWMJiK54hcy3KrbqGj27nmQe3vDemjcHM2eIiIiIiLFoH4NTDref0zjxnhq6SzS/WzET+8JcOpUKPV4P0hERMLUI+n29hDWSw5DawhhPRERERERERERERERERERERERkcjlXTAa8GecoLPW0DMDNAOvAQ8CD+2+3UT7kLQuwF/iLlZEslA91L29rgCC0da9DLOuy3UV0lFpJVywzH/Mtnnu7Rvf8J/XuCGzmnJp11ZYcHv7NtsC836Sm3pyqbkuvfFrX4JXPwlNYRxnnuTjO+CZcfBwb5h2rve40sr297v0c/5m1gxPvcegM7KrMSpewWiJRmhRgI6ICHXLo11/+OXhr1lS7t6eaAp/LxGRZH4hw63G/yyavbuP8e7b9kE0e4qIiIiIFINFf0/9/ofXZziSmbAuAlPRG059OZy1REQkiC1Jt3t4jgpucNJtJfuLiIiIiIhExua6ABERERERERERkYKhd9NEJIi8CkYzxhwAnEBbIBrAbcBAa+2x1torrLWfsNYeCwwEftlhiWONMQfFV7GIZKVqiHt7fZ4Ho22bD5NPznUV4qVmOPQ4wLt/7WT39uUP+q+7a2vmNeXKmhed0KmOtsyGph3x15NLLbXpz1l6N7x8Tng1LPk3vPFZJyyhaSvsXOw9tqTSvd0vhAGg+1jY64rMa4xSeXfvvg3T46tDRCRf1a+Odv1hF4e/ZkmFe3tCgZciEjG31znJ+h0Lg8+KZu+qwVDmEfq75oVo9hQRERERKQab30495v0fgNXhTqFpCikY7bSZUFYdzloiIhJE8lXbxmWzkDGmEjg4qWllNuuJiIiIiIiIiIiIiIiIiIiIRE1HEYpIq7wKRgMu2f3d4Pyt+rK19pvW2i0dB1prt1prbwa+mDQeIIKzvUUkEtUewWi1y+KtIx02Ac/sn+sqJBW/4I91U6C5Q0iWtbDycf81mwowGG3bXO++qMNX8kmiyfnKxIYZsPAv4dSx6M7gY72C0co9AhhanfUOlHqE1OSaV3gEwKK/xVeHiEi+qoswHHjI+VDq8diSDQWjiUiu+AWjHfIrOOm56E7aNwb6Hu3el+p1pYiIiIhIZ7bysWDj1k+Lto7Owlp456vZr9PzQOiR4qItIiIStnd2fzfACGNMNn+ILwFa38xvBmZlU5iIiIiIiIj4MbkuQERERERERERERESkqORbMNqE3d8tMMta+8dUE6y1fwZm0vYpwhER1SYiYase7t5euxTq18ZaSmCvXJTrCiSI0V8B4/EQl2iEtS+1b9s2D3Yu8l9z1x4ZnfnP+uQhb37Hu6/YdAzCS9ebn4OmHdnXsf7lYONMGZSUevcPPse9/eD/B6Vd0i4rNlUDvfs26vh7ERHqIwxGG3hKNOt6BaO11Eezn4hIqxaPAMZ9roOxX08dKJytoRe4t2+bCzs+jnZvEREREZFC1aV/sHErn4i2js5i+YPZr1FaBRP+nP06IiKSFmvtEiD5Tab/zWQdY0wl8J3WZYE3rbVZfnguIiIiIiIi3nyO2y44xfSziIiIiIiIiIiIiEihyrdgtLFJt/+Zxrx/Jd3W5YpFCkWfCd59G6bHV0dQb34RVj2Z6yokiMrecJlPkNXG19rfX/9K6jU3vw2Jluzqituuzd59r14Fq1+Ir5Zcaq7Lfo2ns3x64RdS11FppX//Ptfu2WZKYa+r0qspbmU13n21S2HRXbGVIiKSl+pWu7cHPWnYiymF4Zdnt4aXknL39vrVkGiOZk8REXACr92UpHguHZah53v3KcRBRERERMRdz4OCjVt2f3rvqYu7FY+lHrPPdc7Fhrycvxj6HRNaSSIikpbWD08NcI0xxuVDYm/GmBLgDtofi5fyAqUiIiIiIiIiIiIiIiIiIiIiIiL5It+C0Xom3X4njXmtY02HNUQkn1UPga4j3ftWPxtvLal8+AdY+KfU40bd6N5+6G/CrUdSK6uGYZe69zVuan+/dlmwNVcV2Anua57373/js9DSEE8tudQcwkWv61fDlvcyn5/O7zlVmMOwS+HAH4Apc+6X94DjH4GaYRmXF5sDvufd9+bnockn0FBEpNg1bnBv73Fg5mtW9IITn4aqgZmv4aekwrtv5ePR7CkinVPtMnjn6zDtAvjgF9C0zX1cXMFo1UOht0fY+7vfiKcGEREREZFCYwNefKZhLWybF20tncH6qanHHPB92O8L7n09x0f3npKIiATxW2A9YHGOh7vTGPMzY0x1qonGmP2BF4Grd8+3wMfA/dGVKyIiIiIiIs7LNxERERERERERERERCUu+BaP1SLq9yXPUnrYk3e4WUi0iEof+J7q3L7kbts2PtxYvyx+Ctz0Cz5Lt9wXnq6ymfXtFbxh2cTS1ib+KHu7tHYOy6lcHW29ZAR0nvHEW7FzsP6ZuOaydHE89udRSF846S/+d+Vyv4AY3pSnCHIyBA78Pl22Fs9+HSzbC0Asyry1O1cO9+xKNsPLJ+GoREck3jRvd23vsn/5aB/4QLlgGF6+DwWdmV5cf32A0/U0XkZDsWATPT4AFt8OqJ2H2zbDmBfexqZ5Lh2nYhd59H/4uvjpERERERApF0GA0cJ77S3Ya1vv3Dz4Huo6A7qNgwMQ9+/e7IZKyREQkGGttHXAtkMAJNisBbgbWGGPuA9olWxpjPmGM+Z4xZjowBzgZ54x8AzQCV1prbYw/goiIiIiIiIiIiIiIiIiIiIiISFbyLRgtuZ40joxuNzbffiYR8TPodPd22wJL7423FjctjTDj8mBjD70deoyBiS/BgFOgsg8MOgNOmQo1w6KtU9yV1ri3L7sPWhra7q95Pth6yx/Kvqa4zPl+sHGrno62jnzQUh/OOvN/BS+dCJvfTn9uOsFoJV2CjSurgZ4HQElZ+vXkSnl3//7Vz8RTh4hIPvIKRut5AHTdN721qodCzXAoKc++Lj9+wWhL7452bxHpPD78LTRuCDa2JMZgtKE+wWhzvg86z1REREREpL20gtE6wWcXUSvzuZ5ceQ84LukzrxOegJHXQ9Vg6HkgHP5H2O/z0dcoIiK+rLUv4ASgtYajgXPB0MuBbyQNNcC9wA+AY2h/7FwzcL219p2o6xUREREREREdJyAiIiIiIiIiIiIiEqYCStIQkaI09EKo7Od+kvOmN+Kvp6O3bkw9xpTBCY9D6e4TsPseBae8FG1dEkyZRzAawGvXwnEPQMNG7yASN4nm/A+ishY2vR5s7I6Poq0lHySH4HV04Qp4PI3gwvWvwPOHOycMdRsFPcZBSWnqeQ0Bgxyg7W9JMSr3ORFLRKSz83o+UtkPDvohvHoNgQ+e83sOFCa/YDQRkbB89PvgY+N8Lt19LNSMgNqle/Y1bYX61VA9JL56RERERETyXaI5+NhNb4BNgNE10TLmF5h/4Qooq2q7X94Vjvxb9DWJiEjarLV3GGMWAfcAA2j/QUHybZN03+6+vxH4hLV2ahy1ioiIiIiIiIiIiIiIiIiIiARlfU6V9OsTkc5FRxKLSG6VVsKQc9z7ErviraWjXVtg0R3+Y4ZdAme+6f0zSG75hYKseBjq18DCP6a35s7F2dUUh4Z10LQt2Nh1UyDREm09udZS795eUgnVQ6H76PTXnHEZPDceHh8KG17zH7vkbnjp+OBrlxRxMFqZgtFERFy1NEDzTve+yj4w4iqYOAn2/qTTluqk4NiC0XxOsBURCUM6wQkQ73NpY5z3BLx0hhBqEREREZF02DQ+i7AtMP9X0dVS7KyFpu3ufcfcp4uYiIgUGGvtFGBf4CZgBU7oWccvkm5vAn4EjFQomoiIiIiISJxM6iEiIiIiIiIiIiIiIhJYWa4LEBGhZoRHRyLOKva06hn//qP+Cft8Mp5aJDN+oSA2AZvfhQ9/m96aDeuh+6js6ora9vnpjV/4fzD6S9HUkg9aGtzbS7s434+8C6acCi11zv2ybtC8I9jaDWth2rlw4Uooq9qzf+v78FqafydKizgYLeXJVjooREQ6qcZN3n2VfZ3vA09xvo7+p3N/1dMw7Tz3OWVdw63Pi1f4qIhIWLbOSW983M+lD/oRLLjNvW/yRDj+URh8DpRWxFtXoatfB6ufBowT+l3ZH/oeCd32zXVlIiIiIpKNdILRAGbfDMMu1vPApu2w5gXYOs+53f94GHiq//vtiUawHkHTNcOiqVNERCJlra0FfgX8yhgzCjgOGAb0ASqAjcA64FXgHWt17WQREREREZH46aWYiIiIiIiIiIiIiEiY8jEYrfXTgKOMMSMCzhmYfMcYczxpJGtYa18JOlZEolDi3rw+x/9rrn/Zu6+sm0LRCoFfMBrAO1+FXVvSW7N5Z+b1xGXHx+mNX/FQkQejeYS2tAaj9TsaLlgKKx+HkgoYdAa8cCTULQ+2/q7NsOY55wStjpY/lH69JZ04GG3ZvXDsPfHUIiKSTxo3eve1BqPtweM5NMT4WOLzstv41CciEsS2BfD8YenNifu5dFk19DkCNr3h3j/9Yuh9OEycBBU9462tUG14Faaesedr79IqJxx0+GW5qUtEREREspduMBrA0nvgwO+HX0uhqF0Gk0+BnYva2j78NfTYH058Grru7THP5/ON8u7h1igiIrGz1n4EfJTrOkRERERERCQdBXbhYOVti4iIiIiIiIiIiEgeyMdgNHDe9b8vi7kvpzHekr+/B5HOoaTUu2/Le9BrfHy1tLIWFt3p3b/3f8VXi2QuVTDajoXpr9m8I7Na4tS0Pb3xuQ4hjFpLg3t7aVXb7S79YN//brvf/wRY+u/ge0y/BHodDFtmZ1Zju7q6ZL9GvipLEYwGULsCaoZFX4uISD5prvXuy+RkVRPTgXR9j/LuswnY/hF0HxVPLVLcdi52Xp9tetM5kb5mBOx1BQw6LdeVSZTmfC/9OT3GhV9HKr0P8w5GA9j8FjzcC0bdCGO/ATXD46utEL1+vXsgeUs9vPl5GHIBlFa0te9cAvNvg6atMOBk2Ps6//eZwmQT8PEdsG4KVA2CkddDzwPj2VtERESkEGUSjLZ+evh1FJLZ324fitZq2wcw9ydwlMdnmR/83HvNIO/Ti4iIiIiIiIiISMgUNCYiIiIiIiIiIiIikq6SXBfgweIEnKXzZZO+0p0rIrmUaPbuW/FofHUkm32zf/+oL8ZTh2QnVTCal16HQLXHyepNBRCMlmjMdQX5xTMYzSeAbPSX098njFA0oKgPfggS7vPEcP/HBRGRYuT1WAVQUune3qWf95zyntnVE1R5ihNpJx0DW+fGU4sUr+0L4cVjYd7PYO0kJ4Bo8d9h6hmw+B+5rk6i0tIAKx9Lb06P/f0DG6My8jNgAgRxffR7eHos7Pg4+poKVd0q2L7Au79xE2yY0XZ/23znd7rwj7D0Hnj9MzDrusjL/I9Zn4I3PwfLH4QPf+v8rdroE5InIiIi0tl5BaMNvdB7zrrJ0OQSnNtZrHnOu2/Vk959i//u3ZdJCL+IiIiIiIiIiIgEoFOTRERERERERERERETClK/BaNA+6CzIVyZzRSQf2IR337Z58dXRauv7MP+X3v3jb3VOuJb8l2kw2vDLvYM+CiEYzS9cxUtzXfh15IuWevf20irvOX0mwMTJ0dSTSnmP3Owbh1KPcJ+ONsyMtg4RkXzjF+JpPA6Y63UodOm/Z3v1cOg+OrzaUjnmXu++xk3w4e/iq0WK08I/QcNalw4Lc26BhMeJ9ZKZDa/C5FPh8eEw5TTY/lFu6tj+oXdoQkemDIZfBqdMhZKyaOty0/tQmPDnYGNb6uCp/eC+MnhiBLx7EySaIi2voNStTD1m58fw3nfhXgPP7L9nMPjSfzt9kyeGGF7tYtt8WPKv9m3NO/zfTxIRERHp7Lye4w86E4Zd6j1v+sXR1JPvWhpg1xbv/saN7q+JU71OThV0LyIiIiIiIiIiIhnSKUoiIiIiIiIiIiIiImHKwdmCvpajTwNEOp/qwd599WviqwPAWnj2IP8x+3wqnlokBBnmf476Eqx83L2veWfm5cSlpTH1mI4aN0LZ8PBryQd+YTN+Bk6Eqyw0bIRH+4Vfl5eKnvHtlQvDL4flD/qPWXo3DDgxnnpERPJBwuOxqsTnsaqkFA64Bd76Uvv2A2/xDlOLQkUv//5Fd8CRf42nFilOfoGpdStg5yLoPiq+eopZ7XKYekbba566FfD84XD+IugS4/NhgI2zUo857mEYfonzOj7Ov3tu9v0MNG2Fd78ZbLxtgdplTohW3Qo49r5o6ysUfsH5rd64Idha66bCpOPgnPlQMyy7utwsvce9fcXD0LILSivC31NEJG47F0P9OqgaCDUjcv94KyKFL9Hs3m5KYdy3nedSbtZOckJvex0cXW35qHFT6jHN2/d8b6Z2qf+ckvKMSxIRkXgZY0qAA4DxwHCgH1CFc2xdPbAe51i794B51lodcyciIiIiIiIiIiIiIiIiIiIiIkUjr4LRrLUjcl2DiOTAwFO9++IOoVo7yb+/79FQNSCeWiR7iab05ww4Bcq7Qnk39/7mHdnVFIdEhsFoNcUajFbv3l5aFWx+l77Q71j/UI4wDTglnn1yZew3UwejLboTxt8afwCHiEiuZBriOeqLUD0Mlj/sBKUNuwyGnB1+fX7KquPdTzofr+dyrbYvUDBaWOb+ZM/X4M07YOm/Ycz/xFODTTjhYgtu9x93/GMw7ELndr6EtIz9BvQcD1NPT2/esvuhrBsc8WcwGYZ7F4uw3wNqroXFf4cDvx/uugArHvHue7AajrgDRipYX0QKVP1amHQ87Py4ra1mBEycBN32zVlZIlIEbIt7e0kZ9BrvP3fhn53nzJ1JkGC0Xdv2DEbbvsB7/MDTsqtJRERiYYw5AbgBOAvoEXDaFmPMM8Ad1toZkRUnIiIiIiIiPvLk+AUREREREREREZEC4Hf5N10aTkRadfKz7UQkL3TdB7qPde+rXx1vLUv+7d9/6G/iqUPC0fsw0v6Qud+xzvcyj2C0pgIIRmvJIBht1TPF+yoh07CZZIf+Gir7hlMPQGUfuHQzjPiv9u3DL4Phl4a3Tz7qcziM+3bqcW9/NfpaRETyRTaPVUPPh2P+BUfdFX8oGkBpgGC0RHP0dUjxSuzy7/c74VuCS7TAojvc+za/HV8dH9+ROhTtsN+1haLlm0GnwXkfpx7X0aI7YPbN4ddTaJprw1/TL8AsG37vDdgWeP3TMOMTsPLJzF6ji4jk0swr2oeiAdQuhaf2g6lnwcyrYd7PYPE/oH5NLioUkULlFYxmSp2Q4CP+4j1305vR1JTPGjemHtO0bc+22mXe4ztbuJyISIExxuxvjJkKTAWuAHriHPAQ5Ks3cA0wzRjzkjFGV5MQEREREREREREREREREREREZGCpmA0EckPh//Ovb1xY3wnkNathKV3e/ePuAb6HhFPLRKOLn2h33HpzRlxtfO9vICD0RIe4Sp+3r8F3voi2ET49eSaZ9hMVfA1+kyAs993Qmcm/F/2NV24Cip6wdH/gFNehkNug1OmwDH3Qkl59uvnu/E/hT5H+Y9Zfj80bIinHhGRXAvjsSpXygIEo+3aEn0dUrwSKV4PKhgtHDs+8u5bek98dSy7179/+GUw+sZ4aslUt5FwcQbPY+f/yvnqzKIIRtv6Pqx6Ovx1g9S6/EF45QKYdCw0bg6/BhGRKDRuhvXTvPvXPO88Xr/3HZj1KXh6f1jnM15EJJlfMBrAvp/1nrvjw+K9uIuXIMFou7bu2Va/yn1szwOdi1WJiEheMsZcDrwBnEBb2Jl1+Wrl1tc6byLwtjHmkrjqFxEREREREWj/sq3QFdPPIiIiIiIiIiIiIiKFSsFoIpIfqgZ79zWsjaeGN7/g3z/0wnjqkHAdez/U7BVs7NF3Q/fdF04u6+o+Zund8PK58PpnYOZV8PwEuNfASyfDR3+ERHM4dWcj0zDBhf8H614OtZS80FLv3l7aJb11qgbCPtfBfp+DYZdmXs/I/4bSSue2KYEBJ8LYr8GAk6GkLPN1C033FBcpt4loAgxERPKRZzBamo9VuVAaIBgtyIm8Il4Su/z7F98F9TG9Zixm9au9+6qHxVfH+lf8+/e6Mp46stWlL1y6FYZekN68d78JzxwAH/wCmj1exxSz5p3RrDvruvB/n+kEkm9+G+b9LNz9RUSiUr8mvfFNW+GN/4aER9iRiEiyVMFoAMc97D6muda5wFFnEuT9lOTPUFc8DrM+7f3cs/v+4dQlIiKhM8ZcBtwLVNM+EK016AxgA/ARMAsnQG0hsDFpTPI8gBrgPmPMRfH8FCIiIiIiIiIiIiIiIiIiIiIiIuFSMJqI5Ae/YLT6dfHUsPkt776KXumf0Cz5oXownL8k9bhzF8De17TdL+/mPXb1M7DoTlh2X9u/m/Uvw1tfgukXg83xVbISGQajAax6Krw68kUUYTP7fZ62Y9DTYMpg7Dcy37eY9D4s9ZiNr0Zfh4hIPvAKVymEYLSyAMFoq5+Lvg4pXqmC0QCePQC2L4y+lmK2a7N3X9O2eGpY82LqMT3GRV9HWCp6wPGPwYUr4eQX4OQXoXpo6nnb5sHsm2HyydAS4N9/MWmujWbdxk2wbnJ46zXXeb/O9LL0bif8WUQk39mm9OfsWAibXg+/FhEpPkGC0Qae4j1/w/Rw68l32+amHjPzCudiOfNuhekXOeHhXqqHhFebiIiExhgzGrgL5xi+5EC07cBvgHOAvtbagdbasdbaY6y1R1lrx1hrBwD9gPOA3wE7aB+QVgb80xizX9w/l4iIiIiISOeUwXHFIiIiIiIiIiIiIiLiScFoIpIfyrt797VEdGJsskQLNPgEsJ09B0rKoq9DomEM9D/Ru7/PkdB9dPu2yv6Z7bXqKVg7KbO5YfE6QXvM11LP/fA34daSD5Y/6N5eWpX5mgMnwvGPQNd93fv3vhaOfxR6HQymxDmxq9ehMPEl6D4q832LybCLU4/Z/mH0dYiI5IMoQjzjUtEn9Zg5342+DileQYKhGjfBgtujr6WYNW7y7mvaDk07o69heornh1WDoOvI6OsIkzFO+MCg02HQaXDwz4PP3fQ6vH9L2/1EMyz4DTw1Gp4cCXNuiS5ILFei/HnCDOls3Jj+nIb1sGV2eDWIiEQlkUEwGsCkY+GBKnjuEFh6f7g1iRSjXVth1vXw2FB44UhYck9685c/4sx7oBru7wIP9YQpp8HWAEFauRQkGK2iJ9Ts7T7u1auhYUP4deWr1c8HG/fGDfDet1OPq1IwmohInvoDUE1bIJoFfggMs9Z+zVr7nLV2i9dka+0ma+0z1tqvAsOAH+9eo1VX4PeRVS8iIiIiIiJJcnxhbRERERERERERERGRIqOUHxHJD6bECSlqqd+zr7ku+v2btoJNuPcd+TeoHhp9DRKt/b8FG1/d8+Q+UwKHuxwHXJ3FCSLv/A+cMy/z+dlqaXRvL6mEIefDqif95+9YBN1CDhxoroXtC5wTnHqMg5Ly1HOshdplUFIBjeudn8uUQvcxUN412L7rpoJtdu8rC7iGl2EXOV9294EMrX9DTIkTgNA6JtEMGCgpdV2m0wryd3X7gujrEBHJB17BaCUFEIwW5PGtvFt0+ydaYOfHUDMCSiuj26fQ1C53fu8VvXJdSfYSHs9tO1oT8IRxcecXjAZOEFTQ5+CZ2P5R6lCsUTcW/nPq4ZfBvFthW8DAig9+DqO/AmXdYNZ1sOKRtr65P3bCto74cySl5kRzhAF8YYaSZRKMBrBtPvQ+NLw6RESikAgQSuulpcH5e/vqlU7I87ALw6tLpJhYCy+fDRtfc+7Xr4LXrnHe+x5xRer5K5+EGZe2b0s0wtqXnJDC8xZClwwv/BI1r/fqTYfn+UPOgY/+iyAqkQAAIABJREFU4D528klw1pzCf22QSqIZapcEG7vkn8HG6bNOEZG8Y4w5FjiFtlC0HcDF1trJmaxnrd0BfN8YMx14FKjZve5pxphjrLWvhlO5iIiIiIiIpM/kugARERERERERERERkYJTkusCRET+o6zavT3VydFh8DupdeDp0e8v0Rt8JpwyFUZe39a297Vw1mzoM2HP8VVZBKNt+wAW3ZX5/Gx5hUeUdgkWTLL03vBqsRbe/xE81AOePxyeOwQe7gWLU5yos2MRPHsQPLk3PD7EmffiUfDCBHi4B7z3He8ww1YtDTB5ond/z4PS/3ncGON8lZQ6X6bDwQslZcV/klamDv2Nf3/jBmjcHE8tIiK55BWMVloAwWjgBBz7iSroeNXT8Gg/eHoMPNwb5t8WzT6FpHYZPHswPLEXPNwHpl8KzS7h04XC2uDhHLVLC/tnzbVUwWgtEQeWr3nRv7/7WBjz9WhriENJOZzxOhzwveBzHhsMD3VrH4rW6uO/wM7F4dWXa1G+/7Pjw/DWSvX/i5fXroGWLAKHRETi0PGiEpmafhE0RRh4KVLIts1tC0VLtvBPqeeufAJeucC7v2k7fOhyIZh8YVvc202Ha7kN9QlW3PYBrH4mvJrylVeIXDb6HB7+miIikq0v7P5ucMLRbsg0FC2ZtfYl4IakdQE+n+26IiIiIiIikg2beoiIiIiIiIiIiEgn4veOmd5NE5FWCkYTkfxR6hGMFvUJ2OAfjFbZJ/r9JR79joUj/wZXWefr6H9AzwPdx1YPzW6v1z8NM6+EObfArE/BWzfCpjedcIeotXgFo1VCWYBgtLUpQgmCaNoOyx+GF4+G97/f/oSn5lqYdZ1zEpcba+GVC50TxFz7EzDvZ/DKRZDwOJFq1xZ4Zpx3faYMBp8V6EeRCHUMkXOzPcQAAxGRfFXowWj73+zf31wb/nOgnUuc5wu7tjj3W+rg3W/AyqfC3aeQWAsvnwtb32ttcIKU3i3gMKl0TwTfMjuaOjqDXSmCnqIKrLIW1k6G2Tf5jzv+USitiKaGuJVVw0E/gstD+p1OPRO2vh/OWrnW4vE7GXENDL3IvW/Ul+Hof+8ZptFR4ybY4BJAkgm/95BS+eDn4dQgIhIVv1DakvL01nqoGyz+B9StzKokkaKz5G739g3Tne/NdbDqGVj4F/j4DicE/INfwJtfcl4HpzLvJ86FSVY+6f1+Q654BqN1uLBI/xOgvKf3Om/d6Px+Nr6R+gIqhSoRcjBajwOg6z7hrikiIlkxxlQC5+Ecy2uBR6y194e1vrX2PuARnHA0A5xvjCmSN9hERERERETyVYBjYkVEREREREREREREJDAFo4lI/ijzCEZrjiEYbcNM9/bSKu+6pLhVDc5+jWX3w9wfOycAfvQHeOEIeOMG7zCvsCQ8TnYqqYTy7qnnb5jhnHiVqR0fw7MHw4zLYNPr3uNeuRBWPLpn+5Z3vEPRkq16Eh4f6pzgnmzr+/DUaNi52Htu/+OhwufEKomH14lwyXYoGE1EOoFCD0YbcXWKATb8k7FXPOL+OLLS5blFZ7FjoftzqOUPxxPOGwWvwF8vk46B2mXR1FLsUgU9RfG6vLkOpp0HU06FlnrvceN/Bj3GhL9/rpVVhxPEvmMhPDse5t2a/Vq55hXAV1YDIz+9Z3tJJYz6Iux9NZw9Bw79DRz8/7zXn3SME6CRrWyC0Zb8M/v9RUSilGhyby+tgnM+gMN+l956sz4FT4+FVc9mX5tIsfB7LrFzKbx4FEw7F978HLzxWScEfPbNsPCPwfeYdR28coHzmcTOpVkWHCKv94NLOgSjlZTDvp/1XqduufP7efFI5+9M2CFi+SDdoPBUxvxPuOuJiEgYjgK60nbW/O0R7HFb0u2uwNER7CEiIiIiIiL/UaDH57gp1GONRERERERERERERKSoKBhNRPJHqUcAWUsMwWizb3Zvr+wb/d6Sn0orwjlJvaNFd8Ca58JfN5lXgERpJZiAD/0zLofaFentu+JxmHU9PLUf1C4JNmf6JdC0vX3b6ueD79mwFl4+t33bG5+Dxg3+8459IPgeEp0gJ6xtXxB9HSIiueYValoowWjd9oWj7/Yf4xV2k6l3v+nevvgf4e5TSJY/5N7euCH8YLq4JHalP2fqWeHX0RnsXOTfP/kkmHombPsgu32a6+CDX8K9Bh6sgdUBApnHfD27PfNZvxNCWsjCnO/C1gAB0/nMMyi0CgafDQf+AMzu0IyK3nDEn6H7KOd+j7Ew5isw9iYo6+q9x5ufgzk/SP/vYu0KeP+H8Oo1sOC21OO97FwU/mOiiEiYvILRSsqd5/2jb4QLlkPvCcHXbN4J086BZp8gVJHOxO/iJW9/xbnwR1i2vg/zfhLeetmwFmzCvc+U7tl2wHeDrbvkX7Dyiczryldef48ztc914a4nIiJhaA0ps8B8a+2ssDfYvWbyG3oKRhMRERERERERERERERERERERkYKhYDQRyR9lNe7tzREHo/mtr2C0zq0igmA0gI//Gs26rRIewWglXaBpR7A1Wuq8A0fcvP9jmH4RLP578DmtHhvS/v6cgCc8tdo0qy1MbddW2Pia//hDfw1d+qW3h0SjZnjqMTsXR1+HiEiueYWzlBRIMBrA3tfA2XO8+1sUApNThRrCk0kw2vb5xXlSfJQSzbAjRTAawJoX4JlxsG5aZvu0NMCU02D2TcHnnPScE1pdrEbfGN5aNgFLUoRU5rtUId8Hfh8uWg1nvQcXLHEPdzAGuo/232fuD2HaecHDJnYugUnHwPs/gKX3QO2yYPO8bP8ou/kiIlHyev5VUt52u2YYnDELzvnAeaze+9pga794ZPb1iRSD8h7efaueDH+/pfd5B5LFya8Gt2C08m5wWcDPM1Y/m1lN+cwGuKhIUGfNDn7RHBERidO4pNszI9xnhseeIiIiIiIiEjqT6wJERERERERERERERIqKjoAVkfxRWu3e3hJxMNr2D737uo6Mdm/JbyVl0ay76il444bgIWWtWhrg3ZvggSq41zhf086Hze/sOc5NaSU0p7Hn8gegfl3qcU3bYd5Pg6/bUfNOeKQ/bF8YbD83L5/lnFjVuAnnoto+Rn8lsz0kfIPPgZIUQRe7tsRTi4hIHFY8Ci8eC4/vBa9dC42bnfaWevfxpQUUjAZQ6RM8unVefHV0Vm4nkrd660vBA4DySSbBaABvfC7cOopd7dL0Trp/538y22fV07Dx1eDjS8qhz4TM9ioUA06GE55wgrxSPS8OYv4v8iP0IlOeId+Vbbe79IdeB0F5d+91uo1Kvdfal+D+CnjpZJj9LZh0HDw9FmZeDQ0b2o/96I9QtzL1mkFtXxDeWiIiYfN6ztjxccqUQI+xMPhMOOquYGtvfT/7cEmRYuD3PCYKLXVwX6nzecJTo2HK6bDx9XhrALAt3n1er2fLu0LPg1Kvvfjv0LQzs7ryVSLEYLRe48NbS0REwpR8MEqUD87Ja+sAGBERERERkUilOH5ZRERERERERERERETSomA0EckfZR7BaM0RB6O9cqF334G3RLu3dF4f/xWmnQvW50Pw5lqoXwstjU6YyDPjYP4v2wefrXoKppzaPlCsxedk8sHnpFdnkOCCjbO8T2APqnEDPD0KVj2Z+RpvfyV18NvZc8Hoimx5o7wrjEkRrLFrazy1iIhEbeVTMP1S57G1bjks+RdMPtkJsOkYwNKqtCreGrNVVuPdN+2c9ENhJT1+wWjLH4BZ18dXS1i8ntcC9DnCu69hLWz/KPx6ilX96vTGb3k3/d+vtbDwz+nNGXE1VPZJb04hGno+nLsArmiETzRkH5D26tXh1JULXmGI6f5Ouo8OPnb9y/DBz2HDTCewbNm9MOlYSCQFdyy4Lb39U6lfFe56IiJh8vpbbMq95xgD5y+Csm6p13/vO877nGEG/ohIcDs+grWTYMop8QcV+oUxG5+L1EwI+Dpi5hXp1ZPv0gmv9jP43HDWERGRKAxIuh3lA3Py2gMj3EdERERERER86dhlEREREREREREREZF0KRhNRPJHqUcwWkuEwWjN9U4whRtTCj0PjG5vkfWvwNb33fs+/D08PhweGwQPdIFnD4Cdi93H7toC837Wdt8rpKy0Cww63f8ko45ShSRsmAlTzwi+XipvfDbzuR//BRo3evefNRt6jst8fYnG+FvhyL979ysYTUSKxcI/ssdVQbfOgbUvwY4P3ed0HRF1VeHyej7fatl98dTRWfkFo4Hz+/cK4ctXXsEcAMc/5j939XPh1lLMEk3pz1nzYvCx2z6AR/vDusnp7XHwL9IbXwxKK+Hitf5j+h4NvQ/z7l/+UPQB81HxCkMsrUxvnT5HZlfHjoXZhXan0lwf3doiItmyHs8LUoVUdt0HznoXRv63/7il9zjvcz7SB5bem1mNIoUuk+ffrWpGtP/cqu/Rma3TXAvv/yDzOjJhW7z7/F7P9gv4M65+Bja/k15N+SysAMn9PhfOOiIiEoXkKwJE+YFo69oG6B3hPiIiIiIiIuLL50LaIiIiIiIiIiIiIiLiSsFoIpI/yjyCFKI8oXf7Au++IbqKusTg7Rvb/o031zsBA9Mvgbe/DLs2B1/no9+BtdC4GVo8TrIu6woVPeHw3wVft26F871ppxMuseRuqN99ov6urTDl9OBrZWvQWc7P4CXRBCufcu8rqYRe46OpS7JjDIz8FBzjcTJs07Z46xERiUJzLax5wb1v6hnQ0uDe131sdDVFoaTUCWL1svgfsZXSKZkUV5a1zbDi4XhqCYtfMFpZNVziE4q7bW749RSrTIIZ3v06rJnU/u9X7XJY/E+Yfzu89z2YcwtMvwyeGecfYOxmn09Dl37p11UMKnrB+UugenhSo4FDboOrLJz+Kpz5FvQ5yn2+bYF1U2MpNXRe/8+nCuPpaMDJ/q8dg9j4GmydC+/elNn8yj7efV6v2UVE8oHX84KS8tRzu42EI/8KVyZSj23aDq9eDa9/xnnusPAvsHVeerWKFKpMg9Eq+8L5i+HsOc7zwqssnDoNSqsyW2/xP8IL3woi02A0gIGnBttj3q3B68l3NoT/NsMvg0FnZr+OiIhEJTkJPspgtOQPW33ewBcRERERERERERERERERERGJj/W5loBfn4h0LmW5LkBE5D9KPYLRWiIMRtvxkXff3tdFt68Uhpq9YdsH0e6x/hV44Qg46i7nRMCtczJf66M/OoEkXrrt63zf7/PQ92j44JewzCOMqtUHP4e9roSZV7QFCZZUwPGPQeOG4P9/DjoD9v0c7PgQZn8r2JxkVYPg5Ged4IXnD/P+77LqSff28m7p7ynxqujp3t601XkFmyrsRUQkX+1cAlMCnsDbUfcx4dYSh9Iq76C3ja+Fs0ezAmVc+YWItdq5OPo6wuT3M5VUOOFoIz8Di/62Z79fCLa0l0kwQ2IXTD0dek+Ak56GtS/Ba9eGc/K+KYFRX8p+nULWdQScPRtWPOoEUvc/AfpMaD9mv8/Dplnu86edC1e2OL/LQpJodG8vqXRv91Ja6fx+5v8y81rm/zK7+We+67x2bdywZ5+C0UQkn4URUmmME9z07EGpxy66M3kijP8JjPt28L1ECpHNMBhtr6v2fI+0pNx5/37x3zNbc+Nr0P/4zOamK5tgtBFXO685UlnxMMy/DcZ+Pb3a8lEmr60O/TVU9HYueNPrEBh8lt5XFxHJb8lveGT4BCGQ5AeVAInHIiIiIiIikrGiOluzmH4WERERERERERERESlUBXZ2nIgUtTKPYLTmKIPRFnr3DT0/un2lMMR1Mv62eU44WjahaABv3whvfsG9r6wbVA1uu9/rYDjoR8HWfe7g9sESiV3w6lWwbW7w2o78Gwy7EPa/GboMDD6v1fArnO+lXeCs97zH1S51by/vnv6eEq9yj2C0RJOCA0SksE2emFkYVc3eUN41/HqitmuLf38YBwA278x+jWIUJDCuwSWgJ595hSRBW1BS70Pd+zfMgMbN0LQD5v8KZlwOb3wO1k6BFY/BrOth5lWw8M/Q4rNPZ5BNmNnmN+G9b8OsT4UTigZw6G+h9yHhrFXIKnrByOudUIeOoWgAe1/jP3/5Q9HUFSWv/xdL0wxGAzjw+9nVkqnSajjuQagZBv1PdB+T6rFSRCSXvAJTS9LMT+hxAHTdN83NLbz3XdiS5XukIvkuk2DiQWfA+B+79x3yi8xreekEePursPmdzNcIKqtgtP8K/nnNu9+ArWl8dpGvEhm8vhrzVdjnk3DAd2DI2QpFExERERERERERySt6v05EREREREREREREJF0KRhOR/FFW497eXBvdnhtmuLcPvRCM/kR2egMmQs1eua4iHN3H7HkSjNf/c0E0bYMVjwYb22N/qB7adn/8T9Pfr2pQ2+2SMhh7U3rzy7qlv6fEq8IjGA3grZhCCkVEwrbkHu/QzlQGnxVqKbHptp9/fxhhMC0N/v2ZnDxcDBIpfi8ADeujryNMiV3u7aYESnafON99jPf8R/rAM/vDu990QqI+/gtMOQWmXwyL/w7L7oM3Pw/TzocWj706g0yCGZItutP7v1W6zp4Lo/XcLxBTAsfc692/6O/x1RIWr39HJRXpr1VWA4f/Ibt60jXwdLhoNQy/zLlfWuU+bsk/FcgoIvnL829xmsFoxsC4b2VQgHX+TooUs3Sff5+/CE56zvviH5V9YNx3Mq/nw9/Ci0fB6ucyXyOIbILRSkrh8N/DmQED3J49EGwieG35KN3g6eQL44iIiIiIiIiIiEgeCuFikiIiIiIiIiIiIiIinYxSf0Qkf5RWu7e31EWzX3MtrJvi3tfzoGj2lMJSWgGnvuKc3Fzo+p+wZ1uXAdB1ZOZr7lwcbNywy9rfH3R6+sGD/Y5rf796SHrzyxWMlvf8gtEW3xVOkI6ISNze/Vrmc/f6RHh1xKnf8f79jRuz36Ol3r+/swYpNKf4vQA0boi+jjB5hZUlhyT1PAjfq+rWrUy9z9oXvV8bdgbZBqOFZcBE6Dku11UUlsFnevetnwq7tsVXSxgSHmFhJZWZrRd3yGjfI6GiR9v9Mo9gNIC1k6OvR0QkE17PCzIJqdzn03Do7VCV5vt4C26He03b19NjYdmD6e8vkq/Sef697w3QdZ89L3rS0Yirsq/p5bMh4RNeli2/EPNUwWiteh0MNSOCjV03Ndi4fJVu6PsBt0RTh4iIiIiIiIiIiIiIiIiIiIiIiIiISI4oGE1E8keZRzBac0TBaFvneZ+AMuTcaPaUwlMzHCa+AFc0pw76yGejvrhnmzEw7n+j3bd6KIz9+p5tIz8TfI0BE6HvUe3b0j2hsrx7euMlfuU+wWgA66bFU4eISFjqVkLD+sznF+rzjlFf8j+huW5F9nukCkZ7/TOdMzgh0ZB6TKEFjSY8gtFMedvtyj57PlfMxJoXs1+jUNk8CEYzpXDIr3JdReGp6AVDznPvSzTBmufjrSdbXv/Pl2YYjNZ1H9jryszrSVdplw73fYLRPvxttLWIiGTK629xSfn/Z+++49uq7/2PvyR5z9jZibP3TsgCwl6BkJCEUUZ7KWW1hZb2Fkq5LaW0QCfQ9Wtp6aXQCaVlBMIegbASRgIJIZNMZyfO9oot/f744uulc3SOdDT9fj4eesQ63/WxI8lHsr5vhT9ux+eD4f8NcyvhokMwMsrXIQ+ugrcuhvUPRTdeJNW4Of8edoOzfqUjoWJudPW09OaF1m0N1VC9Nfq5Qzaha/4sZ3P4fDDqe8767njJWb9UFbIJRivo2/p60WDoa/N/JyIiqSz02b/H+ny+k+JxAaYm8xsUERERERHpWEKRu4iIiIiIiIiIiIiIiGMO32UsIpIAAYtgtMY4BaPtsvi0+KxCKJ8YnzUlffkDMOSrsPuNZFfi3sAroWhA+LZBV0FuF9jwN9jymLfr9poJxz4A2cXt2ybfB6VjYNszkFMOeV3hyGY4srG5T04nE4o24iaz4aml/F7uaskKU4Oklqx8c1uorwrf3vK2ISKSykIh+PgOWP6D6Oc479P2v/vSRfkEOPsDeG58+PZXzzCbmMfeEf33GCkYDWDt76Df56KbP101OPi5WAVDpyqrjeBtgzkG/BfseSe2tVb/0oTpjrkNfB3scwSCNhvu46X76dBwxATbZZfCyO9A2djE15EJTpoHD1vcZivnQb+LE1tPLBrrwh/350Q/53F/hYOrYd+S6Odwyu8iGG1HBw5jFJHUZnW+GMtjMUB2EYy7C0pHwaZHoGYr1O02gdJOrbwbBl4RWx0iqcDp87KBV5jAM6dO+Bes+iXseBkKesPgL5sArU9+Cnvfg72LIs9R+SQc3tD67wnBBljyLVj3B1N7yXA44d/QabTz2sA+GM0uYL2twVebv2ls/BtseQLLjYaf/AzG/9RViSnF7nZy1jvmMXH/h+bvmcNvNM+tREQkXfmAh+O8RuizdURERERERERERERERERERERERNKGgtFEJHVkWQSjNcQpGO3DW8IfLx7S8TbCizN9zofes2Dr08mrIb+32TjoxrCv27dXzDaX6kp4sk/0tbU08jv2m458fhj2NXOJRmFfd/1zOkW3jiTWoCvNhq5wGmsTW4uISLQ2PRJbKNqEu6FooHf1JEPZOCiosA45WHEXFPY3m5mj4SQYrWppdHOns6CD35XVm+HQp1A8KP71eMEqsMvf5uWsQVfDe9fFvt7HPzQBAAO/GPtc6SSU4MC8S462/z+U6Pl8JsR77X3t27Y9A431EIgxzMZO/X7YuQCqt4AvC8omQOcpJlzcjVDQJgwxN/r6/Flw/D/gmRHRz+FUoG0wWl74fiIiqcwyGC07/HE3fD4Y8HlzafLSSc4/iOLAClj3J/M6Zl632OsRSRYnwWidp8Axv3Q3rz8bRt5sLi1N+o35d8VP4KPvRp7nqYFwSUPz+dyqe2DNb5vbD66CZ8fAJfXuHhu8CkYD6DPHXAAe7wG1O8P3O7QOige7mztVWJ0b+7KgoBdMvDex9YiISDwlIrTMIklUREREREREREREREREREREREQkdSn5R0RSR8AiGK0xDsFon/zcuq14qPfrSWYI5MIJ/4GTn4YRN1v0sbgde2Wayw+L7nIcdBrnrG9BBZy3wX1NbZ3+qn0omhfye5lAFad0v04Pg79s3Va3J3F1iIjEYpWDjctT/wyfOwwnz4fup5vfU2Nuh7MWwYgb415iQuR2sW/f/Gj0czc4CEZrOGTCgDoSJz8XgPnD4OO74luLV6w2zvvahGr5s+G8T71Zc9EVUFflzVzpwkkwg5cUiua9ijnhjx89CFUfxG/dfR/CM6PgjfPhg2/A+9fDS8fDwjnuQ+6DNo/Z/hiD3UqGJeY5YbtgtHzrvl4EDImIxIPV47EvTo9bQ77qrv+718L84bDj1fjUI5IIVuff+b1hzA9h2iPmNXavP+xjwBchq9hZ3w1/af56/UPh+7w20936XgajtWQXIPf0EAilaQ6M06BwERHJFKE4X0RERERERCQhMukpWCZ9LyIiIiIiIiIikorsXoHSq1Mi0kTvnBWR1JFlFYxWC6Eg+DzKcmysgw+/Y91eNsGbdSQzBXKg90xz6XUOLJxtNpsDVMw1wWVvXAjb5nu/9rifQNcT3I2Z+gD4XHzAdEFvd/O35PPD9PehPAH3IZ/PbP5f/Stn/UuGx7ce8UbxYOs2BaOJSDrY8TJUvWffZ+CVMOhL5uve55pLJooUjLbjpejnbnQYAFa/F/J7Rr9OugnWOusXaoTlt0HP6dB5UnxrilXIYiN422A0MKG5uV2hbnfs674xF854PfZ50kUig9F6nJW4tTqSbqdAViE0HGnfdnAldD3O+zVDIVh8LdRsa9+2bT480QumvwslDgPJGuus2wK50dXYxOeDk56AV8+Cmq2xzWXHTTCaXZuISDKFLM4LYg2ptNLvYtizCNb8xvmY+n3w6ulwcZ15rVYk3VjdzyrOgzG3xW/dgl5w7J/hva9A3V77vouvgsp55rnCwVXh++x4EfavgE6jnK0fr2C0SH/Te9gPfc6HrCLoeiIM/BL4Y1gvUSyfDytgV0Qkg2xG7+MVERERERHpQFy8lzvVuXlfuoiIiIiIiIiIiIhIDBSMJiKpI2ARjAYm/CCr0Jt1di6wbx9wuTfrSObrfgqcvwuq3oeCCijsZ44Puip8MNppr0DxEPjkJ7D2vsjzH/sgdBoLtbug82TI7eyuvjlbzWYnN/zZkFUMDYfcjSvoC+etM+MTxU0wWumI+NYi3hl6Q/jNsApGE5FUt2cxvHpm5H69zo5/Lakgt2v85nYajFbXwYLRGh0Go4EJnv70f9M4GC3MJnafH4Z8BT6+I/Z1dy2EXW9CN5ehxOnK6uccD4OvTtxaHUkgB0pGhg/nXHwVDLrS+zUPrLAPAz16AF6YAqe97OyxJlhv3eaPMRgNoHQkzN5knr+v/hVseiT2OdtqG4xm21fBaCKSohotHo/j9Zqfzw+Tfg0jboL9y2DVPZFfv2/y+iw47YX41CUST1bBxIkIvOp7IfQ4Aw6ugfoqeO0c675bn4o837Oj4dJGZx9sFK9gtFIHH4qy5XHz74a/wrZn4MTHU3/jntXzNL/e3iEikilCoVD/ZNcgIiIiIiIiiZRB2dihDPpeRERERERERERERCSlOXiXsohIgtgFnzVUe7fOgU/s290GSUnHFsiFrtOaQ9EA+syBqX+GokHgy4JuJ8PMNdDjNCjsY647MfAKKD/GBKi4CUUrnwhnfxD9bTm33P2YM99MbCgamJ97XvfI/Qr6tP7/kdSW2yX88UQGo22dD6+eBfOHw3vXwdGDiVtbRNLX8h9G7pNVBD07SDBaYf/4ze0mGK0jsQsVCmfdH01AWioLutwIPvoHMPI73qy95FvezJMOrIIZYnXSk9DtFPM8oXAATPkj9L0oPmsJlNgEQuxf4e1ae9+HZ8dE7ndnMFE6AAAgAElEQVT0AKy4K3zb4Y3wxgXw7Fh440KoWmI9jz8nqjLbzxOALlPh+H/AqO+Z55NZhdDnAuvHjpJh5nbsaP42wWh2gZUKRhORVBWyOC/w6rHYSmEf6H0uHOPwQxAAdrwITw+Dynnxq0skHqzOvxP1+npOJ+gyxfzdYcqfYp/v4QAcXBu5X32VdVsswWgAsxys36TySXjYD69ON+e1qcrq+bBPwWgiIiIiIiIiIiIiIiIiIiIiIiIiItIx6J2zIpI6sgqs2xo9DEar32fdNvJ/vFtHOrZBXzKX4NH2G5qchHSVjrZu6/9fsPFv4dvOege6HOu8znByyuDIJuf9O081mxcTzZ8F434Mi6+y7zf6VvApCzZt5FkEo1VvScz6256HhXMg1GiuH1wN+z404X+6HYmInd1vRu4z9g7ILo5/Lamg86T4zW0XNNNSfUcLRrPYNG1n7/tmQ3yqCrncCO4PwPifwrifQMMh8Oc2P5fMLjW/y1f9Cpb8d+S1q96DhiP2Ad6ZIh7BaL3Ohd7nQcXs8M+JxHulNsFomx+FTg4CPJ04tA5emOy8f+WT7Y/VVcFTA5qv718OWx6zniOQ63w9J3x+GHen+b0cajTPLeuqYP1DULuzuV/RYDh7KWTlm+/7pRNat7eVXdL6erDOuq+C0UQkVVmF7Sbqd3nZWHMOsfUpZ/0PrTGv45z8NPSeGd/aRLyS7GC0lgZfDQc+htW/jm2e+UNh9ubmvxPUVZnvJ7sYQiGo3gyvnGY93ir82qniwSaIfvvzzsfseBF2LYBzltmfSyeL1fPhWH9WIiIiIiIiIiIiEj+hULIrEBERERERERERERHJKEp3EJHUEbAJRms44t06W+dZt/W9wLt1RCD8ZqbySZDf037cIJuwr8HXhD/e/79iD0UDyCl317+TTYhbvA260r592iMw+NrE1CLeKBwQ/njNNtj2QvzXX/eH5lC0JnvegX1L47+2iKQ3uyDfwn5w4uMw7BuJqyfZyh0Eoy36UnSBTI01zvrVdbBgtFAUP8sXp0L1Vu9r8Urb38lNIm0E9/lMQFEg14T+5pQ1B5zaBXK39WgRrP+L8/7pystgtG4nwdg7zWOez2eOKRQtMXrZhMF8/CPv/p+XRxGwtu255q9rd8Njnd2N9+e4X9MJn6/58SS3HGYsg8FfMaEaw2+Es942oWhgwjbOfAsKKsLPlVUIndsExlmFC4GC0UQkdTVaBaN5HFJp58THTNBtyTDnY5bfHrdyRDxn9dwtWefNo25tH/AajfV/hpqd8Mrp5nzvP2XwWFd4rAvM628/1heIff1TnnE/JngUVvw49rXjwSr83CooXERERERERERERFKcL9kFiIiIiIiIiIiIiIikHQWjiUjqsNug3mATNOHG0UOwf7l1e/lEb9YRsePPggn3WG8o7HysfeBX12kw8IrWx7ocB5N+4019boPRSoZ7s260jn0w/PGSEdDv4sTWIrGzuz29djbU7onv+pUW4Zmf/Dy+64pIeguFrAOcuhwHszdCn7nNIUEdQUGfyH3WPwRLv+N+bqfBaEcPup87nVltmo7kjfO9rcNL8dgIbhfIHc6iK6Dqg+jXSyXVW2HLE7BzQetPKQ5Z/JzLxkNWkbO5K+bCpUE443UY/T0IxCnISqyVjW0OAAznvetjXyPYAFufdj/utRkmEA3grUvdjw8kKIwnrxtMuQ9OfQ6OuRvyurZuLx4EszdD34taH/f5YdLv2tdZMdd6Lbv/KxGRZArWhT+eyN/t/iwYdQvMXAWXhcw5RiRVH0B1Zfi2A5+Yc6CqJd7WKRItq8BaX5KC0fK6wMgonpu3tftteLICdr5qrocaoW4P1FdFHutFEK7PD6e9bAJr3dj4N1j2A3jvOtj0L2isjb0WgFAQ9n0E6/4EW+ebv0+6Gq9gNBERERERERERkcwSitxFRERERERERERERERa0TtnRSR1BPKt2xqOeLPG85Os28b9xJs1RJzofyl0GmM2CQXrIbcbHFoLJcOg74UQyLMe6/PD1Aeg7+dgzztQMhIqZrnf8GMlp8xd/64nebNutCrmQOC69iEp/S9LTj0Sm8K+5vZvtQFtx0vm/pNoNdsTv6aIpA+rUDSA8R00WNHnM+cU9fvs+21+FCbe625up8FowXp386Y7q831kex9F/Z/DJ1Ge1uPFyw3ggeinzOac+ZPfgYnPBr9mqng0wfh/eub7z9dp8Epz0N2kfVtp6APnP4q/CdMcHKvGdDvMqjeDKUjofd5HSv8MVWdtxHm9Q3ftv2F2OffvwyOHohu7OZ/Q+9zYecr7sdahYong88H0/4F/S41z8dzOpn7Q9n49n3LxlnPYxU8JCKSbFaPT8l8LPb54NyV8MwI+34vnQSz17c+9uEtn4Xdf7bZaOAVMPXPOm+R5LI6//YnKRgNYNg3Yfnt1rVVzDXn/nah0TtejG7tzsd6Fxrb43Q45yPY8ript7EWPv3fyOM+/pH5d+195t9Za6F4cPR1BBvg7S/A5n81HyvsByc/A51GOZvD6vmwX2/vEBERERERERERSV0ZFH4WyqDvRUREREREREREUpLdS1B6eUpEmuidsyKSOvxZJhwtXNDB0f2xz39wNRxaY91e6nAzgohXOo2OPoDC54de55iL13LDBB9Yye8NnW0CBxMhpxNMewTeuhQaq82xijkw/L+TW5dEx+eHvJ5wZEP49v3LgCQEo2nDrIhxZAts/DtUb4Fup0Dfi3T/APtAqo68YXX4jbDsVvs+NVuhch5sfwlyO0P/z0PJUPsxDQ6D0ew2bGciq03TTmz6V5oFo8Vwv7IL5Lay+d/wRAUcc48JJ06nx71gIyz7PnzSJgh891vwzn/BSU/YBzPklMHMVfDqmeaxH6DTWJjyJyjoFd/axb3CPpDXA2p3tG+r3gz1ByCntH1bsBE2/gP2LYX8HjDkehOa19aBT6Kv7eBqE7YXjWjut/Hk80GfueZi288Pg6+Fdfe3b2tUMJqIpKhGi3DhQJJDKkuHw5T74f2vWQcgH9kA+5ZB2VhzfecCE3Db0vqHzGX0beYxuqB3PKsWCS8Vg9GyCmDS7+Hda9q35XWHEx8z50DbX4QF071du8/53s5XPAhGfrv5+sAr4I0Lw58jW3l6iHnuN/CK6P4G8+aF5rWOlo5sgmdHw6jvwchbwp9vtxSMw/NhERERERERERERSaI0eq9JJOn0vhkRERERERERERERSWseffyyiIhHcjuHP163N/a5N//Hvr2nx5s5RNJVjotgtDE/MJu9k63iPDh/B5z2CsxaCyc+DlmFya5KotX3Iuu26srE1dGK3sghwsHV8MIU+Oi7sPY+eOtieO8rya4qNWx92rqtI29YHeLw9rFwDqz9HXz8I3hhMuxZZN8/WOts3i2PwbYXnPXNBLEEox3Z5F0dXrLaCB5T4GCUHxlSsxXeugTeuTyGtRMs2Aivnt4+FK1J5ZMmIC1kEczg+yyYoWQYnLceznoHzvkIzl6iULRUNuIm67ZDa9sfC4Xgjbmw6Iuw+lfw4S3wzCioDxNQf3BV9HXVVMKh1e7HDb0hvd9U3fnY8MeDCkYTkRRl9fjkz0lsHeEMvgbmVELZBOs+6x9s/nrtH637ffwjeHYMVC3xrj4Rp6zOv5MZjAYmBCzcucvgrzSfj/U8CwoHeLdmTpkJKYynrtPgvHVw+mvuxm1+FF6bAcvvcDdu2e3tQ9FaWnEXPFkR/ny7JcsAvQ78OpOIiIiIiIiIiEhai/L9KqkolEHfi4iIiIiIiIiIiIiktBRIMhERaSEnjsFodoEV0x6BQAps7hJJBTllzvqN+wkMuiq+tbiRXQw9ToPiwem9cV7sg9HyuiWujlZ0mxJh5d1Qu6P1sXX3w4GVyaknVYSC9gFxyd7YnEy5nc15thtHD8Ly2+37BOudz7fse+7WT2dWm6adqNvjXR1eCjWGPx5L4KBV2JpTG/8OuxbGNkeibH0Kdr1u32fx1c4C6PxZ0OVYKBsL/oB3NYr3hn3Tuu3gZ8FkDdWw5Eb4pw8e9rd/vaR6M/yn7LP2ADycZb5ecZf13Gd/YF/Xlsdh6bedfQ8tHXOP+zGpJJAb/nijgtFEJEVZBqNZPJ4lWl5XmHK/dfvqX5nnaMEG2Pwv+7nq98HHd5qvd7wCr5wGzx0DH3wL6qq8q1mkLcvAqyS/fuDPglPmQ8VcE4aY2xlG/g+M/n7rfidEuG85lVMOp70EOaXezGcnqxC6nwzHP+x+7PLbzOND7a7IfWv32J8zNzl6wJxvVz5l3ccq/LwjB/CLiIiIiIiIiIiIiIiIiIiIiIiIiEiHomA0EUktuRbBaPUxBqPV7YW9i63b+10c2/wimSSnPHKf6e/BqFvAp1MJiYPOk6zbGqqbv67dZS6NLgJy7Nh9ip3C9kRgk8XG141/T2wdqWbXG2ZDvZWOvmG1+6nux2x/wT7ky00AWNUHzjYvZwKrTdNO1O32rg4vWX1P/hjuV0X9rduGXOdsjk0uA/+SZavNJvsmB1fB4U/DtyU7mEGi4w9A6ejwbTtfgSOb4NkxsOpeZ/OFgtYhhU1Gfx/Kj4FzPnJXayTDvxXb/T0VWAUJBevMa1VePZcREfGK1eOSVdBjMti9bgSwcA4cWutsrsonTOD3q2fAzgWwbyms/iW8Mdf+dSKRWFg9p/WlwPl3bmc46XG46BCcvxvG/7h9MHLJsOjnzy6Fzx2By0Jw4V4onxhbvW71vQjKjnE/bucCWHAOBCOcF+9e6O65+cLZUGnxoU4KRhMREREREREREUlD+tuCiIiIiIiIiIiIiIiXlGYiIqnFKhitLsZgtNW/tW6b+kBsc4tkmtwIwWj5Pc2md5F46ndJ+OMNR2DfMng4Gx7vbi7/yoWl3zahDbGwDXzQabN0cKEQNBwK37b+L4mtJdVsm2/f3tGDhQL50Y07vN66LegyAOzgmuhqSDduAuPaqtvjXR1esvq/9gXCH3eidDQU9mt/vNMYmPT/oM8FkedYe1/06yfKpw/A+oec9d31evjjqRDMINHpPCX88fUPwrz+9o+xsaxXNhbG3uHdvP0v826uZLEKEqrfB491gce7wvIfKnxHRFJHsC78caugx2SZu926bevTsOhK53O9++X2x3YthK0RnuuJRMvquVsqvX4QyLH+oIjskuhC0MEE32YVRF9XrPwBOGMBDL8Ryie7G7tvCWy2+NCAJtWV7mtaeF74UEqr58OpdDsRERERERERERERF/ThvCIiIiIiIiIiIiIibinhQURSS04cgtFCQfj4h9btZeOjn1skE+VX2LdP/C34dAohcZZTFv543R54+UQItdkYtvJuWPXL2Na0C5Sx2ggo0lHU77NuswpM6ygOrLJv92clpo5UFciLbtxBm59ryGUAmN1cmcRtYFxLqRqM1vb3fRNfDPcrn8+cz/pzmo8FCuCYe03bsQ+2brNyNEUf+6or4cNbYPHVsc/V0R+/0lnvWYldr2UwRsVsb+Yc9t9QPtGbuZIpUpDQ0YOw/HYTZigikgosg9EcnB8lUn4P6HaydfveRbGvUfl46+uhEOxfAZsehSObYp9fOq7GI+GPp1oAoZ1ownBLhsOIb3tfi1vZJXDM3XD2u3BxLZRNcD52y+P27TXboqvp3WvaH7N6PqznaSIiIiIiIiIiImlKH5YlIiIiIiIiIiIiIuKWUk1EJLXkloc/Hu1G/YYaeGa0fR83mx5EOoLiwVAyInzb5N9D3wsSW490TIGC8Me3P2fCA8LZ8LfY1gzWxzZeJJPVbLduO3rQBNF2VIfX2rf7shNTR6ryR/n9733fus0uyDKcjhKM5jYwrqWGw9BY610tXrEKe4t1I3jFLDhnKYz7CUz4BZyzBHqcYdqyi6H/5yPPcWhNbDXEw4a/wVOD4ZOfeTNfR3/8SmddpiZurR5nQFZh8/XSCK/BhDPyOzDiZhhwuQnZOO1lmHivdzUmk9OA0E2PxLcOERGnGi1eGwmkYGDT4C/Hd/4Nf23+OthggmefHQ1vXQzz+sPHd8V3fclMwUaoqwrfltclsbXEous0mL3Zut2XBYX9zaVoMEy+D2Ysg6z8RFXoTCAXpi82AdlObHnM/rlzdZTBaNueM+GLLVk9H44lKFxERERERERERETEMQW5iYiIiIiIiIiIiEjy6Z2zIpJa8nqEP3740+jme+UUOLjSuv2kJ8Hni25ukUzl88EJj8KC6VDTYiPPuJ/AkK8mry7pWFqGKzi1/yOzgSzax3XbYDTlCUsHVxNhY+eexdD1uMTUkkqCR+FQhPPUWAOcOqqtT8G4O8K3KRgtPKtN007V7YGCCm9q8UqoMfxxLzaCl440l3DG/xQOroY9b1uPP7AKyifGXodX6vbCu1+GYJ13c0YbbCjJl9cDsopM6GG89Z7d+rrPByNugpV3Oxuf3ck818zU12b8DoOEdr4S3zpERJyyOpdw+niWSP0ugbcvi9/8oaAJsMotNwGW6//cun3ZrdDjTOgyJX41SOapr8JyM1luGgWjART2gQv3wxvnw85XzbG87nDsX6DX9OTW5oY/GwZeAd1PN99LlU1QO8D8EVDYD4oGQmMdhBpg86Pmgz4aq6OroW431O6A/J7Nx0IKRhMREREREREREUk7bT8AIVNl6t/3RUREREREREQkoexeTusoL7WJSGRKeBCR1FI8NPzxmm1w9JC7ud67Dva+a91eOhIqZlu3i3RknUbDeRvgjDdMgOD5u2DULcmuSjqSrILoxtXvi35Nu2A0vZFDOrranfbtW59KTB2p5sgm642qTbRhNTr7l8Hh9eHbIv3M2+oIwWjBRmL+pNa6PZ6U4inLjeCB+K6b1w3OeB3OttkQv/vN+Nbg1pbHobHG2zkVjJa+fD4oHhL/dQoqTIhEW30vdj5HzzMz+1w7kIJBQiIidiyD0XISW4cTPh/MXB3fNeYPM8HMbUPRmmydF9/1JfPYPe9Kt2A0gJxSOO1lOPsD8xxq1tr0CkVrqbAPTF9s/iZi58hG2PU6rH8QNv3ThKJB9KFoTQ62eTyzeq063s+HRUREREREREREJE4y6O/i2pUqIiIiIiIiIiIiIgmiHdoiklpKhlm3HVoLZePh0Dqo+sBc9i0xITiF/WHsndBplOl7cC2svc9+rX6XeVa2SEYK5EC3E5JdhXRUgSiD0Wq2Qm55dGPtgtEy6U0pItGIFLZTOQ/G/yQxtaSS2t2R+yhYCHqeDdufdz9u63wYdkP748Gj7uY5sgEaayGQ576GdOE0LO701+CVU8K3PTcB+n8Bxv3YbAhPBZbBaAl4OcufBeUTYcDlsOGv7dvX/cHcv4+5JzXu51sej9yneCic+gI8NcDZnAp2TG9dp8G+pdGP92WZ+2DRIMjvBVXvtz4f6HIcTPodZBe1H1s6CrI7wdH9kdfpc0H0NaaDvG7O+y65CUZ+B/K6xq8eERE7wUYIBcO3pWrQY8lQGHQVfPpAfOav2wPbX4CdC8K3r/gxjLsrPmtLfIWC0FhnwgCb/g3Wtz8Wrq1de334MeHG1tucH+V0Ttz37yWfD8qPSXYV3vD5zd9EZq6C+cO9n//YB2HRl8K3vXIqzFgGncaY61YfAJJT6n1dIiIiIiIiIiIikgAKExMRERERERERERERcUs7HEUktRT0AX+u2SDS1tuXQc12OHqwfdu+D2H7izBzJRT2hW3P2q/jz4ahX/OmZhER8V5WlMFo1duaN4+5ZRe04/NHN6dIpmgMc27W0sGVJpi2ZEhi6kkVdXsi91GwEAz7Jux42Xl4V5P9H4c/7jYYLRSEI1sy+/bp9GfS/WTIKYf6qvDtG/8OO1+Bc1dATpl39UUraHGb8SfwftXr3PDBaABrfgsNh8zm9mRqrHMWPnj2BybEasZyeNbB+VJWfuy1SfIMud7cdsO9hgIw6Gr49H+tx1900Lw2k9PJ/dpZ+TDiRlj2fft+ZROgz4Xu508neT2c9111D+x+C858E/yB+NUkImIl3GvyTfwpGowGJtzXSTBav8vg+L+b5wf1e2HpzbDhL5HHrfl/sdfYpG6vOc/uaK8zBRsiB4bF2uY2pMzt89N4yyrU+XcqKRkGJ/wH3vT4XNWfYwKMd78Vvv3ZsXDWO+YcsmZb+D65XbytSURERERERERERDyk8DMRERERERERERERES9ph7aIpBZ/AIqHwIEwIQgHV9uPbayGj++EqffDnnfs+563QZ+qLiKSygKF0Y2r2Rr9msF667Z9S6OfVyQT2G2Qb7J1HpTcFP9aUomTYDR/dvzrSHW9psOpz8GrZ7obV78v/HG3wWhggg/I4GA0N5v6c7tYB6OBCaPe8HcY9vXY64pVqDH88UQGDvY6B7KKoOFw+Pb1DwE+mPq/yQu4qHwycp8eZ5lQNIDSUVA0EA6vtx9TMjL22iR5SofDmW/BJz+HqvebHyfye0O/S2DwtfbBaFn5QAzhHKO+ZwIdNj0CtTug4QhkF5sgkqxC6HYyjLk98wPAfD53/fcugs3/hv6XxKceERE7tsFoOYmrwy2nIUH9LzOPy74A5HWDIV91Foy2/YXY6gOoWgJvf8GEimd3glHfhRE3uf89EUkoZJ4vhQ0Mq4PG+jDH4hlS9ll7KOjt95mJFHaVenpO935OfzaUT7EORgN48Tj7OXRbERERERERERERSVMe/01ARERERERERERERKQDUDCaiKSekmHhg9Gc2DoPQn+AYK11nwn3QEHv6OYXEZHEyCqIblzNtujXtAtGq9kO9fshp1P086eqwxtM8Fv5JCjsm+xqJFXZ3T+abPyH2did6YINsOt1aKyFTQ9H7p/IAKdU1uMMyCm3D+Rq6+j+8MfdhIA1qd3tfkw6cRIWVzHH/JvXFQ6tse+74S8pEoxm8X/tT+D9KrsYRnwblv/Aus/6B6HrNBh0VeLqamn325H7jP1R89c+n7k9rLrXur8/19xvJb11Gg3H/9W6fdg3YfWv2h8feGXsa/t8MPhqc+no+l3q7JyhyZrfKBhNRJKj0eZ5XyA3cXW45SQkqM8F0GtG62NdpsKALzoLR4tF7W54fmLz9aP74cObYctj0Od86zCxaEPKJD0VVCS7AmkruwiG3wir7vFuTl82VJwHq38Z/RwKRhMREREREREREUlToWQXICIiIiIiIiIiIiKSdrRDW0RST8mw6MfW7oLtL0DlPOs+/T8f/fwiIpIYqRaMBlD5FAy8PPr5U00oZDbirry7+dio78HYO0yQhUhLjXWR++z7ELY9B73OiX89yXJ4Pbx+HhxY4XyMPxC/etKNP8dd/3qLYDQnIWBt1e1xPyadOAmLawo6crKJuuqD2OrxStDi+/Il+H418jsm1OjgKus+i6+G3rMhLwmb1O2C7gZ/BcbcBvk9Wx+PFIw24L9MEIBktr4Xhg9Gq5id+Foy2aAr3QWj7XknfrWIiNgJ2jzv86dyMFpn+/bJ98Hga8O/1nHsg+a86I250a3t89u3H1wD8y3+3rF3sbmIgHkuIalnwi9MiFko6M18/mzoegKUjICDK6ObQ8FoIiIiIiIiIiIiIiIiIiIiIiIiIiLSQSgYTURST9kxsY1/bYZ1W9cTIL97bPOLiEj8BQqjG1e9Nfo1IwWjLb0ps4LRtj3bOhQNYMVd0O1k6HlmcmqS1GW3Qb6l12bApcHMDNdrrIWnBiW7ivQWcBmmUPV++OMhBaO1YxUg1mTEzdB7pvk6J0JwRJP3b4A+c6H7qdHXdXANbPwn7F1kwta6ToP8CjNnn/MjP1ZYBb75EvxyViAXTnkOnhpg3++1c+Ds9xJTU0tWwWg9zoIp94Vv63I85HaFut1hGn0w7seelScprMvxMPZOWHZr87ERN0HvWcmrKRN1P939mL3vQ+dJ3tciiVe9DTb8BQ6uRp8CLynv6CHrNrfn8onkz7ZvH/xl6/NOnw/6zIExt8Py26NYO0L487vXuJ9TOp4+F8CwG5JdhYTj88E5H5qQ/CMbY5/Pnw3+LDjuL7BgOtTvcz+HgtFERERERERERERSWCb9PTCTvhcRERERERERERERSVcKRhOR1FNxHhRUQHWldR+fP7pPaNfmEhGR9JBVEN24mm3RrxmMELQTNjgkja21CEpZ/5CC0aS9SMGBLa1/CAZ9KW6lJEVjHczrl+wq0p8/ijCFNb+Hode1Phbp8TqcTA9GswuLO/Mt6Hp883WnP781vzWXCb8wQUlu7VoIC86BxurmY5XzzL9rfweDroGp99vPYRX4luhgNICi/jBnKzzZ27pP1fuw41XocVrCyiLYYL1Bv+19pyV/AEbfBh98vX3bJUdNu2Q+nw9Gfw8GXgH7lkKnsVDYN9lVZR6fD/J7Qs1252NemAzHPwz9L4lfXRJ/B1bByydm/nmIdAyRAsCSrWyC+V3WVuGA+AZ32/1canebc2JJb76AeS4byA3zb074Nn8uBHJafG0xNpAPnSdD8dDMDJjPFJ3GwLkrYMFZsPut9u3H/wM++RnsXxZ5rqYgx86TYfZmePmk8I9ddnIdhp2LiIiIiIiIiIiIiIiIiIiIiIiIpDC7aH7F9otIEwWjiUjq8WfDaS/DO1dA1buAD0pHQtkxUD7RXMrGwfOT4eBKd3N3nhKPikVExGuBZASjuQh+ygTbngl/fNM/Ydo/EluLpL7GOud9F1/pLhgt2GA2kO54yYQdjbgRep3jvsZ4Wnc/1O5KdhXpL5owhQ9vhr4XQl635mNWYVl2Mj2QxO5nUtgm1K++yt3cS78NxcOgYlb7NTf8FVbcBYfXm2P5vaFmq7N5P/2TuTTVl10K3U+HsT+C7CJzLNQYfqw/SS9nFfQyQXMvTbPus+gKmLM5YSVRv886NLwgQsDVkK9C3S5Y9SsTYNf9VJj6Z4WidUQFvc1F4iea310f3WJ+BybrMU/cCwVh1b2w5XHz3PTIpmRXJOKdaEKOE2n0rfDGBYn/YfoAACAASURBVO2Pd7U5b/OC3eO7HgPc+7+gMZtQMX+ORdCYizbHAWc5OjcWI6sATn8Nlt4En/4ZGg5BdicYcxv0uxQq5sLSG2H9g9BYaz2PL7v56+wi8/xy6Y3WH2DRro5iKBke07ciIiIiIiIiIiIiSRLSVk4REREREREREREREbe0q0pEUlPJMJj+jtlQGGwwG2Hayu3ibs6+F7cPBRARkdSUFWUwWu1O8wYSn8/92I4WjJYJ6qqg4TDklDVvnJX4CLoIRgM4shkKIwTyNHnnctj0cPP1na/AyU9D75nu1oynTY8ku4LMEIgiTKHhCFTOg8HXNB8LHXU/T+1O92PSSdDmZ+LPbn29zwXW4ZhWFp4HZ7wO3U4yv2eDR2Hlz2HZ91v3cxqK1lLLwIj9y6DqfbOWzwchi6AJXxJfzup6PJz0lPmZhFO9BQ6shKxCc2mshdzOEMjzroZgg3muHMiBur3W/XI728/jD5ggutHfNz/TaM6fRMSZijkmDNKNI5vM42LxYBOCCCZMI6vAhEnqPpt6PvgmrPltsqsQ8Z7PD4H8ZFdhr2KuCXnduaD5mD8Xhn7d2fjySdGt21gNwcbw4VmxhPfHnc8+GMyLIDK7wLGwa+bod5ukNn8WTPwVTLjbhOfn9zCPjwBZ+TD59zDx1/DutbD+IYs52jw/bznuufFw4BP7GoZ+zdvnliIiIiIiIiIiIuIthZ+JiIiIiIiIiIiIiHhKwWgiktp8fuuQE7fBaMf/LfZ6REQkMbIKoxsXajQBZ9GE7ygYLX1ULYFFV8D+5a2PD/sGTLgn/IZkiY3b+0flPBjmYAN65VOtQ9GavD4LTpoHFRbBQ4lUuwf2vJPsKjKDP4rHZoDKJ1sHo9mFgFlJ6VACD1gFiEH7ELGeZ0a3xrLb4Jh74b2vwt53o5vDid1vwPYXoNfZNsFoSX6cr5gFBX1MCFo4z4xsf2zA5TDp/0F2cfTrNtbBR981oTvBo9BrJvS/1Lp/pGC0Jm0354uI93rNcB+MBvD8RMAHhHkD/cRfm8Afhcikhv0rFIommavL8akfRO7zwYmPwapfw/bnIb8XjLkNysY7G9/jdMgugaMH3a/dcBhyStsfX3575LHZnaB0pH3gWCxhY1ZtCsUViZ4/Cwp6WbRlm+eKlmMtnnv5s+GsxbD0Rlh3f/g+E38LQ693V6uIiIiIiIiIiIiIiIiIiIiIiIiIiEgaUzCaiKQvN8FoZ7yhzd4iIukkUBD92IYj0QWjNSoY7f9UPgVdpzkPVIlFKGQCzmq2QU45NByEooHm0tahT2HfEnjzc+HnWv1rs6l47O1xLblDaqxz1z9cMFr9ftj9JtRVmdtW2XhYONt6joWzYeYqKBnmvt59H8LO18xtqvspUNjX2bijB2HPIqjZYTa65nWH1b8hbBiJuBft+fi2Z6G6EgoqzPVogtH2LYX6fZBTFl0Nqc7uZ9L2515QASP/Bz75ibs1dr3+WUBPAmz+twlGC1oEo/lT4OWssxbBk72d99/wVwjkwZQ/Rr/mJz+DVfc2X98231zC8efGdj4lIt7qNQN6nAU7XoxisMV5yAffgPze0PeCmEoTjzw7OtkViMRHVjGM/2myq3Amp8y8HhDNawKBPBj/c3jvK+7HhgtG2/qseQ5iZ9xdMOq77tcTkRRnEzpo97pIdpF5vlg6Gj64ofl4VqH5G2f5BO9KFBERERERERERERERERERERERERERSQMpsJNURCRKToPRsoqgy3HxrUVERLzlzwZfAEKN7sc2HIHccvfjQg6CdkIh8NlsbssUC2cDPjjhX9D3ovit03AEFl0Fm//V+rgvy2wOHvtDcz0UhI9udRbis+GvCkaLh6DLYLRdr0NjrdlcDiYobeEc9+vOHw6XNoLP76x/sAHeugS2PNb6+IS7YcSN9mP3LIY35kLNduf19bsUyifB0ghzy2dsAuYCeeY2Y+XJPmaD8OBrIWQRlhXJY13gxMehwiaQL13Z/Ux8YV76GXcXdDsZtj4Fa38fv7qitf7P5nfA7jfCt4f7nhKtoBeM+Das/IXzMZ8+AON+HF3waEMNrPy58/65nTvGOYtIugjkwCnPwsZ/wKIvejfv2vsUjJYK9i9313/gFXEpQ8RzJcOhYi6UDE12JYkx5MvQaQy8NM3duIYj7Y99+r/2Y856B7oc624dEUl/PgeB8cO+bv6mWfkE+PNg8DWQ3yP+tYmIiIiIiIiIiEic6YM5RURERERERERERETcSoGdpCIiUcrr6qxf38+BPxDfWkRExFs+H2QVwtGD7seG25DaJNgI21+Ana9CQW8YdBVkl0Qe1yTU4GwDW0YIwTtfhB5nQE6Zt1MfXg8bH4Zlt1os3QAf/wiOHjKBWJv/DdWbnc19ZAMEj5pwPfFOsD788e6nws4F7Y+HGkwA0NDrzf34rUuiX/vhAJSMMF93ORYK+0OfuWbDepMjm2H5D02YUjhLb4KN/4Sy8S0OBmH321A6CnqeZcKN3ISiDb0BJv36s/kVjOZI6RjYtbD9cX+OCQZ4boL9+He/bB6Tgg6CLMMJBeHNi+H8nZBTGt0cqWbPu1D5JGybb90n3OOhzwe9pptLzXaz4TrVPNnHus2fIi9nDfySu2C0UCO8/zWY9rD7tXa+4uxcpUk04WsiEl/+AAy83ARS7l3szZw7XzG/35yGyEp87PvIed/PHTbPdUUkNXU9HoZ+Hdb81vmYxur2x+zOr4f9t0LRRDoqp69Xdp5kLiIiIiIiIiIiIpJmMij8LJRB34uIiIiIiIiIiIiIpK0U2UkqIhKF/N7O+o28Ob51iIhIfAQKogtGa7QIDQmF4P3rYd0fm4+tuhemvwf5PUwIVyTB+o4VuNVYA5VPwcAvejfn7rdhwXRoOBy57+pfRrfGpkdhwOejGyvhNdaFP14+EXa9YYLQ2nr/aybEp7A/NNbGtv7Bla3/XfFjOOFRqDgPdr4Or5wSeY59S8ylrUNrogiF8sHgq12OEfp9zoTBtH0TYN+LTWjd547AoxGCQjY/Zh2MdtI8c5t7+zLr8cE62PEi9L3IVekpaf1DsPgqE4hjxxchJNpp4HQspvzJhLdVzvNmvkjfc6KUDIfiIXBorfMxmx6Bsgnun6dWPumuf46C0URSVr9LvQtGAzj0KZQM8W4+ca96i7N+py9QKJpIOsjr7q5/2/DahjBBaS2VDHM3v4ikGZ91U0d6XVlEREREREREREQyl8/mdVARERERERERERGH7LL5ldsvIk38yS5ARCRq+b0i9znxCW00EhFJV4H86MY9PwnevAT2L299/MObW4eiAVRXwvIfmK83/TPy3FZhPJnswCexz9FYD2v/AC+dCC9NcxaKFot3FVjluWB9+ONZRVA8yHrch9+Bty6OQz11sPQm2PeRs1A0rw25DjqNSfy66a7bSXDc36Cgwlz355hwmCn3metZBSZoys6ed7D8dNWcTtDvEigeaj9HdaWrslNS3V5Y9CUHoWhZkd+MmNvNu7rCGfYNEyQ46XemHi/UbPdmnlj5fNDnQvfjlt8Otbsi99v9Nrw2E/5TDp8+4G6NzpPd1yUiiTHsBhj9fe/me34CvHSS+b1wZJN384oz9Qfgo+/a98ntakJCu5+SkJJEJEbZJe76tw1GO7TGvn/pCHfzi0jmUDCaiIiIiIiIiIhIB5ZBOzm1K1VEREREREREREREEkTBaCKSvgp6W7cNvAIuaYA+cxJWjoiIeCyQE/3Yzf+CF6bC4Q3m+urfwMq7w/dddz+s/0v7ILVwOmIwmpOfS1uNta1/Vh/9D7z3Vdj9pnd1RVq/Zmdi1uoognXhj/tzIwdZxcuhtfDc+MSvWzoaxt2V+HUzxYDPw+zNMKcSLjoA0/4JWYXN7YX97MfX2ty3m0LARtxoP0fNDuf1ppLGWhOIFmyAx7o4G+N3EESWF+dgtPzPnrcV9IYBl3szZ+kob+bxwshvm8AbNxprYNMj5v8STMBdKGjeOBpsNL/Ddi00YaLbnoH6fe7rGnil+zEikhg+H4z9kXndatBVsc/XcAR2vwHrH4LnJ0f3mCHRCTbAK6fZ97noEMzdZkJCRSQ9ZBe76982GO3AKvv+yXoOLSKJYRdO7lMwmoiIiIiIiIiIiIiIiIiIiIiIiIiIiFMOdsiKiKSo/J727f5AYuoQEZH48MV4qtpYA08NhFG3wro/2vdddIWzOTtiMNr256F2D+Q5COE5ehgWXwWV88Dnh74XQf8vwKp7419nWx//ECb/PvHrZqpGq2C0HOh5tvk/7wh6Tofj/wE5pcmuJL35fNYhx5GC0QL51m3+zzYYD74Wsorg7c+H77fy57DpYfMY0Xtm5HqTrX4fLLoSKp90P9bJputchyFr0ep5VvPXU+6HkmGw7Vlzfdg3oOoDWOEybLDLsd7VF6ucMpi+CJb9ADb+3fm4D74BS74FoUZzzhNq8K6mQVdBqQI3RFKePwDFQ7yds243PDse5mzydl4Jb+ersG+JdfvgL0N2UeLqERFvZLkNRqtufb3yCeu+5RPdh+qKSObwKxhNREREREREREQks4WSXYCIiIiIiIiIiIiISEbxJ7sAEZGoBfIgUBC+re8lia1FRES859VGsRV3moAALwTrvZkn2YJuwldCsOz7zrou+iJsfhSCdSaYbsNfYcFZkcfFw9r7YM+7yVk7E1nd9gO5Jvyu89TY1yjoA8c+BL4UDbcd9T049XnI7ZzsSjJbpGA0u8fzlr83+l8Gg79i3bd6C7w+C/Z/7K6+ZHjrsuhC0cDZ7TXL4jmVFwZ+CcrGNV/3B2DkzXDGa+bSZy4M/bq7OQd/GTqN9bLK2BUNhOP/BpeFWl8utgiVbBJq/OxfD0PRyifCpN95N5+IxFevGfbtBX3gwn1wxhvO56zeDDtfi6kscWjLY/btpaMTU4eIeCvbZTBa45EWX9ea10WsjP+pCYoWkY5JwWgiIiIiIiIiIiIiIiIiIiIiIiIiIiKOKRhNRNLbwC+1P5ZVBN1PTnwtIiLirayiZFfQXvBosivwRmOtu/4b/gIN1fZ96qqgcl70NcXDqruTXUHmCFqE+/hzIbsITl8AI26Kfv6K2XDOhzDwi3DOR9HPE063k014W9MlkO98bP8vwNAb4ORnYNyd3tYl4RX2t2/fv8y6zZfV+npul8jrrf195D7JdGQTbH8++vE9p0fuk+Uy+CGSokEw5Ho44d8w9YHI/fO7m9CfSPJ6wEnzTOhXuoRJBHLg7A/iN//EX8Mxv4SBV8DAK2Hy7+HMt0xopYikh9LRUDoqfNsx98K5n0BOJ+h2Akz8jfN51/3Jm/rE2pFNsO5++z4FvRJTi4h4y+35cUOLYLStT1v363M+9DgjuppEJH20fW2iJQWjiYiIiIiIiIiIdFyhULIrEBERERERERERERFJOzbvzBURSQNjbod9S2DPO+Z6IM9swA/kJbUsERHxgNdBLV4IZUowWo37/mt+CyO/Y91n34cQaoytLjeyikzgz5bHrPts/jfU7YXczomrK1M1WgWj5Zh/s/Jhwi+gcAC8f727uUf/AMbe3ny90ygonwxV70VVKmDC0E5/FXxhssBDf4X3roN1f7CfY84WKKhwtt6UP8G717Q/PvAKZ+OlWWE/V9031PRn3p7z2N/QiVnbipjYqUWjo2C0+0yYVKra8XJs48f/NHKfzpPNfTlYH9taAMO+CcfcE/6+ZyenE5z5JiycC3W727SVm+d4PU6Lvb5kKD/GhCxu/Lv3c/e7FPK6ej+viCSOzwfHPggLZ0PNdnOssL85jyka0LpvxXnwwQ3O5t30T+h3MfSelT5hkunmvesi98nvHf86RMR72S5fj6qrav66aql1v36XRVePiKSX/p+HZbe2P15QYR+aJiIiIiIiIiIiIukvo8LPMul7EREREREREREREZF0pXffikh6y+sCZ7xuNhzVboduJ0FOWbKrEhERL2QXWbdNvg/e+2riamniRWhMKnAbjAbw4S1QNAj6Xhi+feXPY6vJrX4XQ8X59sFoAI91gbnbIb9HYurKVFa3/aZgtCZDrzPhG06CIgAGXdU6FK2J21CllsomwBmvWbf7fDDlPnMbeuXU8H3O3wl53Zyv2WsGZBVCw5HWx/tc5HwOMVwEoy06MJUZy+ezv8Gc/9/x6xAPXhHk8uM+u/04CUYDWH4HjPm+20rj7/BGWHx19OPP32kCxyLJLoaKObD50ejXApi5GkqGRj++6zSYtRp2vwU1O8yxvG7Q9QTILY+ttmSb8AvY+hQcPejdnEOuUyiaSKboPBlmroI9i805UNcTIJDbvl9BHwjkOz+XXzgbBl0DU+/3tl6BQ5/Ctmcj98vvFf9aRMR7boPRVtwJo24xzwkPrrLu13tmbHWJSHoo6g+dp8Ded1sf73uxAmtFREREREREREQkM+i1ThERERERERERERFJkBh2m4uIpAh/NnSZAhWzFYomIpJJsmyC0fpcAENvSFwtTYJHE79mPBz4JLpxS2+GYGPrY0cPwnvXw/YXYqspqxgK+kbu58+B/p+Hib+F3jNMSF4kH94SW21ifdsP5LQ/NuSrcMyvILvUfs7hN8IUi6COaIPRBlwOp7/irG/3U+CMhVA0sGlR6DwVZm90F4oGUNALTn0Rij8LhcrrDlP+aG6j4k5eT8ddv7fhzv8LRQMIhXx8/eEQRxs++8TSzpOcTbT8Nji83k2V8VWzAxZfC08NiG0eN7fjqQ+Y363+bHOpmAP9LnE+vuc5sYWiNckpM4ERg682l4rz0j8UDUw459g7PZzQB+N/4uF8IpJ02SXQ80zocXr4UDQw50ddjnM376d/gn8VwPq/ZNinkyfZ1qed9VM4s0h6ynIZjAbw4nHwTx9UPhG+ve/F1o/vIpJ5Tn4aup9mzt8CBSasdvxPk12ViIiIiIiIiIiIiDf0t2cREREREREREfGA3atMIdtWEelIspJdgIiIiIhIWHYbUf05MOgqWP9naDicuJoyJRht9a+iG3dkA+xb2hw2FArBwrmw89Xo5ssuhVlrwJcF2cUQbIBHC6z7z1hmQqyyCpuPDfkKDL4WFpwDO14MP27zoyZALSs/ujoFQha3fV92+OPDv2EC0oL1ZvN3sB7q9pr/O18AAvkRNoW7+FTJsmPgzIWA3/3/cbcTYdY6qNkOgbzYApi6Hg+zVkPtHsjtrE/GjJY/4KhbXTCHBftPbXf8UC28tgbOHAmUDHO+7qZHYVQKhCgePQTPT4KarbHNUz7ZXf/sIjjxP9BQDaGguV61FDY9EnmsLwDDkhBWmm6GfAU++h40HIptnqJBMHOlCbATkY5n+I2w6zXzWO1UYw0sugJqd8HIb8erso7lwMeR++R112O1SLrKjiIYbf9y+/a+F0RXi4ikp7xuJri//oB5vUnBiCIiIiIiIiIiIqKNnCIiIiIiIiIiIiIirvmTXYCIiIiISFjZRdZt/mwoGwunvZy4eiAzgtHqqmDHS9GPf2EyrPqlCUXb+nR0oWiF/aHPBTD9PbNRMLfc/J9GCrXK7906FK2Jzw+Dr7Ye11gDO19xX6c0CzaEP+63ydoO5Jj7sT/b/L8V9jWBYTmdIm8ItQsVm3I/dDsJSkfDyO/AmW+a+aMNvvP5oKBXbKFoLeV1USharIZ8NWKXAw2llm2rdrR4I2H//3K2ZuWTzvrFU/0B+HeJu1C0rieEP14xO7oasgqaf/+WT4CzFkHJ8Ob2HmfCjI9h2DfNfbDnOXDyM9Dr7OjW60j82TDgC+7GFFSY35N53aF8ogkCPfMtBe2IdGS9Z8BJT0PP6ZDfC/J7Oh/74c1wZEv8autIPn0gcp9e58a/DhGJD382dD3R2zmLXYQ2i0jmyClVKJqIiIiIiIiIiEiHovAzEREREREREREREREv2exiFxERERFJop7TYcWPw7cF8sy/XabCiG/Dyl8kpqZgfWLWiad9SyAUjG2OJd+C2p1QtcTduNHfh7E/su/jz7H+OWeXWI/reTb4AhBqDN9e+ST0numsTmkvZBEKGLdwHptgsf5fgMHXxGldSQnDvwWVT9kGhB1ssH48KGq55zi/h7M19y6GNb83gWIFvR0W6rG3P+9+zMArTTDg9heaj5WMgMFf9qamLlNh5sr2xyf+0pv5O5qxd8L6h0xgZ0u+LJj2MPS9MClliUia6T3DXJrsehNemwENhyKPnT8cLj4Sv9riqaEG9i8DQtB5avKCaPd9FLlPfk8YcWP8axGR+Bl3F7x8knfzFQ/xbi4RERERERERERERERERERERERERERERkQ7An+wCRERERETC6noCFFS0P14xB3wtTmMTGXYVtAiHSidefQ+f/Ax2vOSs75Dr4OT5kUPRwITDWPHbtGUXw4DLrdt3vBJ5bQkvFLQO07P7/4qJTdBFUzCiZK7iwTD9Xdvb14HGUsu2wpbBaDmdnK/7/vXwZAV8dCuEEvwJrtWVsO0Z9+Oyi83j69Q/w+CvwDG/grPehrwu3tcoscsth/N3wKhbzWOZP9sEvE5fpFA0EYletxPg7PdgxE2R+zZWw4EwgZeprmoJPDcOXjwWXjwOXpgC1dYBqnG1/If27UWD4ZwPoXRkYuoRkfjodiLkOQxZjiS7E2TlezOXiIiIiIiIiIiIiIikqQS/F0lEREREREREREREJAMoGE1EREREUpPPD8c/bDaQNikeCpN+17pf1xNh1HdbHxt0dXxqCmVCMFpD4tYaewdcFoLJv4Pe5zobYxd+Fsn4n1u3HdmY+KCjTBFqtG6LVzCaz+apqs8mNE0yR0EvGH2rZfOBButgtIKcFreRbBfBaE1W3AU7XnY/Lhb7P45yoM88bg76Eky5D4Z/w10YnCRedgmMuwMuroFL6mHCz6F8YrKrEpF0VzIMJvwCTn7GPM7YWXZbYmrySigEi6+BQ2ubj1W9D+9/PfG1bH8RKp+w7zNrDeR1S0w9IhJfXY7zZp7up3ozj4iIiIiIiIiIiIiIpLaMen9iJn0vIiIiIiIiIiIiIpKuFIwmIiIiIqmr2wkwez2c/DScvgBmLDdhOS35fDDuLpi1zgSpnfMRTLk/PvUE6+MzbyLZhVx5qde5tqFGlsonRb9mXhc46x3r9u0vRD93Rxa0CQT0Z8dnzaJB8ZlX0os/x7Jpv00wWqv3GNqF7NnZ9M/oxkWrZnt04xSCJiIiLfWeAbPWwujvW/fZ8h9YeU/iaopV1Qewb0n745VPwJEtiatj+R2wYLp9n6kPKMRXJJN4da499Dpv5hEREREREREREREREUkF+puoiIiIiIiIiIiIiCSIgtFEREREJLXllEHvmdD9FAhYh+RQPAj6XwJlY80bL0be4n0tdgFR6SLUkJh1ov35j7gp/PEBX3Q2Pq+bddu717ivR+xvM/6s+Kw59Gvhj/eaEZ/1JDX5cy2bDtgEozUEW1wJBS372dr8WHTjolVd6X5MViF0Od77WkREJL3ldYOxP4KyCdZ9lt4Eh9YlrqZY7F1s3bZtfmJq2PAPWH5b5H7ZxfGvRUQSJ9uDYLQpf4Tup8c+j4iIiIiIiIiIiIiISKpo9amVIiIiIiIiIiIi0bF7mUkvQYlIEwWjiYiIiEhmGniF93NmQjBa0EEwWvdTY1uj87HQdVp0Y3ucAaWjWh/z58Lga52Nz+1i3VZdCUcPRVdXR2Z3u/dlx2fNsvHQ9cQ2a/lhyFfjs56kpkB0wWiNLbPQSoZFt3bDocQGxjgJW2lr0LWQle99LSIikhmmPWLf/vSQxNQRq6oPrNv2fRj/9bc8Ce98wVnfLAWjiWSUnBiD0XrNNK9l+Hze1CMiIiIiIiIiIv+fvfuOl7Os8///uk5NTnovhAQSQu9VAghSpLgrRVDBhthx7bvquiqiu2v5Ka5lbasifBcLIGADpCiKFKlK7ySUBEJCek6Sc2au3x+TbOZMZu65p50y5/V8POaRXP2TcHKYOXPP+5Ykaejyk5ySJEmSJEmSJFXMYDRJkiQ1p2rDcJI0QzBazCSPj9oBXnU97PtlaB9b+f5Tj4Sjr6v+g78t7XDsn2DeO3P/DWe+Bl51LUxZkG59uTCCNY9XV9dwlhSm19LWmDNDgKOuhp0/AON2h+mvhlf+Crb7h8acp8GppaPk0KpM6WC03kzehYRTjoD2KgMNfjO/fy5KXPlA8vikg2G3j8O+X8kFT048EPb9Euz/1cbXJkkausbuXP658fK7+qeWWiy/s/TYxmWNOzezEe54D9x8avo17QajSU2l1mC0ee+oTx2SJEmSJEmSJGmIMPxMkiRJkiRJkqR6atCn2CVJkqQmlN000BXULiaEXIU22OeL0NIKu38cdno3XD6hsv2PuKL2QIDOSXDI/1S3tlwg27O/hJ7VMHoejNq+ujOGm5gQCBjaG3du+2g48JuN21+DX0tnyaF1mVElx/Jz0WjtgH2/CHe+r+++E/eHZbeVr+Hx78LO56YotgbPXF56bK/zYa/Pbm3v/i+NrUWS1Fx2Phce+nLp8SXXwqQD+6+etLpfhHVPQ+cUWP1Q6XmNDEa76wPwZIWvSdpGN6YWSQNjxPTq1047GmaeVL9aJEmSJEmSJEmSJEmSJEmSJEkaZgxGkyRJktLKJgREDRUxU3rsuJth8iu2ttvHVb5/R4VBav3twf/MPQDmvRMO+l4uCE6lZRPC9Fp8SakGai0djJaNLSXHegu/zc1/L4zdFZ77FbR1wewzYMK+sPha+NsnYeXfS9dw1/th5EzY/pQKi6/AC9eXHpvVwHMlSc1v7tuTg9Hu+0zu/5GzT++/mpLECI/9N9zzkeRA5y0aFYzWsxYW/r/K1wWfG0tNZcZxuX/Xhd+PRs6AHd4MPavgiR9suy60wVFX50KaJUmSJEmSJEmSAIjlp0iSJEmSJEmSpD5Kf5JYkiRJGup2+5f67rfyvvruNxBKBQyM3qlvKBpACDB2l8r2D6G6uuophHMn4gAAIABJREFUbZDQkz/MhS489GV49JuwblFj6xqqkkIpDH9QI7WUDhLItI8vPZYt0jntKDjg67DPf+RC0QBmngAn/Q1O/FtyHTefCt0vlq+3WmufKt7fOQUm7N24cyVJzW/sLnDAN5Pn/OUMuOuDsOrh/qkpydMXwd0fSBeKBo0LRlv9CGQ2VLamdSSMntuYeiQNjI4JcOjFfV/3Tl4Ar3kY9vsKHPx9OOwX0JIX6DzxQDjlucSQZ0mSJEmSJEmSpEEvGuQmSZIkSZIkSRp4BqNJkiSpeW1/OlDHoK6nfgzPXlW//QZCzBTvbykRcDXnrMbV0ihzzkw/97Fvwd8+CXd/CK7eF166pXF1DVXZntJjLe39V4eGn5bSYQKZltElx3qLBaMlmbAPzH5D8pwl11a4aUrZHthQInTt0Isbc6YkaXjZ5QOw8weT5zz2LbhmP3j2yv6pqZinLobb317Zmo3LIVb6P/4UVj9S+ZrtXgttI+tfi6SBtcOZcPIiOOzncNwtcOxN0DFu6/ic18Nrn4QFP4Nj/gjH/QVGThuwciVJkiRJkiRJ0kAaJmFig+HmuZIkSZIkSZKkYcFgNEmSJDWvyQfDgkugc3Lf/rZR1Qc63XVuYz5831+yvcX7Q4lgtD3+DeafuzWgaPw+ub5i5r+/9vrqYc7rYdrRla/rWQn3/kv96xnqYomvGSj9dSPVQ2vpYLRsy6iSY5lqvkW/4sfJ492Lq9g0wdqF8KfXws87KHlRZNd29T1TkjR8zSkTAAqQ3Qg3nwaZjY2vp1DP6lxQcaViBv58Ciy/s/Yalt0Ot74Z/nA83PaWytcf8sPaa5A0OHXNzH0fnbKg+M+SuraDHd4I045KfA0jSZIkSZIkSZLUFOIwCYCTJEmSJEmSJA04g9EkSZLU3HY4E057EU55Fs7M5H49fRWc9CC0juw7d+R2cOLfYeorS+/XvQRWPtDYmhupVMhVaC3e39IKB/03nLESTl0CJ/0N9vjX3N9VvtaRsNO76ltrLQ6/tLp1y27LBRblG8pBePWQ7Sk9Vm3AoJRGS0fJoUzLyNJj1fyTbeuCo64pPd67topNS+heAr/ZCZ7/TfK8wu+zkiRVa/KhuUcaNxzZ2FqKef53uZDiqtb+JlfzS7dVf/7ia+CGV8LCS+CF6ypfv/MHoX109edLkiRJkiRJkiRJanKGiUmSJEmSJEn5kvL3zeaXtIXBaJIkSWp+oQW6Zm39taUVxs6HV98KM06AUTvCnDPh2Jtgwt7bBqYVumYfuPFoWPNkv5RfVzFTvL+lLXld6wgYOT33+7ZRcPxfYc4bc393M18DR98IE/apb6216JxU/dpf7wiXjoGbz4Df7g4/74BrDoAXbqxffUNJtkSYHpT/upFq0dJZcigTRpQc6602y3DmCUAoPlbPf//3n1/6e/EWrSOgY0L9zpQkDW8hwKt+n27u8r9Cz+rG1lNo8dW1rc90w6Nfr379IxckhwGX0z6m+rWSJEmSJEmSJEmSmoOf1pQkSZIkSZIkqa4MRpMkSdLwNWFfeNU1cPJTcNhPYcxOuf6EMJ7/8+If4YYjoXd9Y2ust1IhV6G1sn26toPDfpb7uzvqtzDl0Nprq7fZb6h+be9aePZyWP1wLsBoxT3wp9fCqkfqV99QERNCIkJ7/9Wh4ac1KRgtYazaYDTIBT4Ws/yvsHF5DRtvlu2Fhf9bft6I6bkQG0mS6qV9DMx7Z7q5L99T//NjhLVPw0u3QGZD37E1j9W+/zOXVV/X0j/XdvaIqbWtlyRJkiRJkiRJkiRJkiRJkiRJktSHwWiSJElSoc5J6eZ1Pw8v3NjYWuotZor3h7b+raM/zH1bfffLrM+FpQ03pcL0AFqa8OtGg0dLR8mhmBCM1ltLMFrb6NJjj36jho03u/9z0Luu/LzJgzBsUpI09LWNSTdvdZ3DgHvXwc2nwa/nwvWHwxXT4YUbto5vXFafc6oJMe1dC9lN5ecd8C1oH1d8bMaJlZ8rSZIkSZIkSZIkSZIkSZIkSZIkqSSD0SRJkqRCaYPRAB78z8bV0QixRMhVMwZczTgBJuxX3z1XPVjf/YaCUl8zBAi+pFQDtbSXHMpQOhgtU1Mw2qjSYw98AV6+Fx78EtzzMXj027BuUfq9e9bCg/+Rbu6cN6bfV5KktNrTBqM9Wt9zH/oKPHfV1nbPKvjDcbD497l2vYLR7vlY5WvSnj33rXDoxdA6om///l+HsfMrP1eSJEmSJEmSJEnS8BHjQFdQoaFWryRJkiRJkiSpGTVh+oEkSZJUo87J6eduWt64OhohZor3h9b+raM/hAALfgq/261+ez5zGRz2s/rtNxRke4r3J4RWSY2WaekqOdZbUzDa6OTxa/fv277v03Dkb2Hq4eX3vnrPdDWM3wtmnphuriRJlUgbjLbm8fqeu/CS4v03nQA7vg16VtfnnKcvgkN/UtmaNMFobWOgfSzMei289il48Y+Q2QBTj4Qx86oqVZIkSZIkSZIkSVKzGSZhYiEMdAWSJEmSJEmSpGHCYDRJkiSpUCXBaEMtHCrbW7w/NOlLg45x9d0vZnJ3bxxOF/fEYfY1o8Fj9Nzc9+PCwJLWLrIjppdclqkpGG1UZfN7VsENR8A/Pg5jdio9b/WjsG5R+f1GTIcFPxt6/2+RJA0N7WPTzVtxD9z+Dnjqx7l2axccfhlsd1Lx+b3d8NCXYemfoHdNrq9tDEw7Cua/H9Y+Wfqspy9KXX4qG5dD56Tcc/ZFP4dFm/+/Ov9cmH5MkfkpgtHyA+VGzoAdzqpfvZIkSZIkSZIkSZIkSZIkSZIkSZK20TLQBUiSJEmDTsfE9HPDEAuvKRly1dq/dfSX9vH13/O+T9d/z8Es21O83+AmNVpogZ3eu23/vHPIxNLBfL2ZGs5s66pu3W/mw5onSo8/e0Xy+pMegFOXwKmLYfwe1dUgSVI5LZ3p5nUv2RqKBpBZD396DTx9ybZzY4Q/Hg8PnA9Lb4KX7849lt4E938Ofj23DoVX4KEv5Wq6/3Nw61nw/G9y/x/+w7Gw8Gfbzt+4vPye+cFokiRJkiRJkiRJklSxONAF1E9soj+LJEmSJEmSJGlQMxhNkiRJKhSz6ee2dDSujkaIJRKDQumQoSGtbSRMPLD42Pz3V7fnIxdAb3f1NQ01pcL0Wpr0a0aDy96fh32/AuP3zj32Oh8O+AaZbOkL7DK1XHuXLfH1nsZv5sONR8Pap7YdW3x16XVzzsyFoY2cDiFUf74kSeX0rKlt/YP/vm3f87+Fl24uvaa3xjPzjZxRfs7DX4VfdMIDn9927NazoHd9376Ny8rv2WYwmiRJkiRJkiRJkqRyDAyTJEmSJEmS0kr6aZo/aZO0hcFokiRJUqGJ+6Wf2zrEgtFKhf40c8jV3l/YNsBu3y/DQd+ubr/MBnjxj7XXNVRseKl4f2jv3zo0PIUAu/8LnPT33GOvz0JoISEXjd4S+Y+pZGoMPXzxj3D94ZDZ2Ld/04rSa2adUtuZkiSlNeng2tavfqRvsNiGpXDfp2vbsxLTjk03L9tTeuyaffu21y0qv1+7wWiSJEmSJEmSJEmSJEmSJEmSJElSfzIYTZIkSSo0akcYu1u6uUMtHCqWSAwKrf1bR3+aeQIcdwvs/EGY/z448new+8dr23PjsvrUNpjFCA99Be56f/HxZg7T06CXyVY3Vlaow49JupfAs7/c2o4R1j9bev7Mk2o/U5KkNCbuD52TattjSzDa/Z+Hq2bByvtqryut1g6Y947a9ljzOLx899b26kfLryn1GkqSJEmSJEmSJEmSJEmSJEmSJElSQxiMJkmSJBUKAV5xYbq5LUMtGK23eH9o8pCrSQfCgd+Ag74D2+WFEO3xqer2ax9Tn7oGs6V/gr99ovT4UAsFVFNJCj/rrSUYbdbJNSzOc+ub4M73w+/2gGv2gZ7VxefNfz+0j67PmZIkldPSBgt+Ci2d1e+R6YYl18H950G2p361pdHSAXt9DsbvVds+1x4Iy+/M/X71I+Xn96yp7TxJkiRJkiRJkiRJw1wc6AIqNNTqlSRJkiRJkiQ1I4PRJEmSpGImHwKvuKj8vKEWKBYzxftDa//WMVjMPgMIla+rJUxiqFh4SfJ4yxD72ldTySZce5cUmlbW2N1g3O41bJDn8e/Aqodg5f2l5+x9fn3OkiQprRmvhlOegUMvhl0+XPn6TDc8ckH960qjpQO6ZsGrb4ejrqltr98fDPd/HtYtLD+3VMCpJEmSJEmSJEmSJG0RDROTJEmSJEmSJKmeDEaTJEmSShm7c/k5safxdeTrWQsPfxX+dDLceS6sf66y9bG3eP9wDbmasC8s+Cm0j6tsXXZTY+oZTJ78YfL4UAsFVFNJCj/rrSUYLQQ46urc94ZG65wCnZMaf44kSYVGTIUd3wKzT6987W93gSW/r39NabS0535t64KZJ8DYXWvb7/7zSHWn8961tZ0jSZIkSZIkSZIkSZIkSZIkSZIkqSJ+kl2SJEkqpXNy+TmZDY2vY4uYhT/9Ayz909a+Rb+AE+6E0XPT7ZEtEYw2nEOudngjzD4DHvgCPHB+ujXNHoyW5u6VW4IppAGQSfgSTQpNS2XUHDjxXlj3LHSMg/axsHE5rFuUC5Jp6YC2MfDgf8KD/179ObWGuUiSVKvWroGuoDItHX3bI2fC6kcaf+6skxt/hiRJkiRJkiRJkiQNCSmuLZQkSZIkSZIkqQ6GcfrB8BZC2BXYB5gFjAQ2AEuBJ4C/xxjX1bB3O3AYMBuYAawFFgP3xhgX1la5JElSPxpswWiLLu0bigaw6WV47L9h/6+l2yNmiveH1tpqG+paWmHeOc0ZjPb81XDfZ2D9Ihi3Bxz8Qxg7P3nNE98vv+9wDtPTgEsKP6s5GG2LUdtv/X3npNwj3z5fgBHT4O4PVLf/9GOqr02SpHpoG+LBaKPm9M+5O7y5f86RJEmSJEmSJEmS1JzS3KhUkiSpGfk8SJIkSSUkPVX0aaSkLfwk+zASQhgPfAg4h1xoWSmZEMLfgMtjjF+qYP8pwPnAG4CJJebcClwQY/xl6sIlSZIGSvu43Ifvk0Kw+jMY7ZGvFu9/8Q/p94i9xftbfGnAqNmw03vhie+VnztUgtFWPgg3nwLZnlx76Z/h9wfDyQuhY1zxNc9cDne+r/zeHRPqVqZUqWzCDzfrFoyWxi7/BJuWw/2fq3ztTu+pezmSJFWkdYCD0Vo6c8Gj3YtTzm/v255zJjx1Yf3ryjfzNTB5QWPPkCRJkiRJkiRJktQE/LSmJEmSJEmSJEn1ZPrBMBFCOAP4LjApxfRW4ABgFpAqGC2EcCLwE2BqmakLgAUhhEuA98QY16XZX5IkaUCEABMPhGW3lp7TX8FoMcLLdxcfW/G3CvbJFO8PrZXX1IwO+g5MWQBP/ABe+kvpeUMlGO3+z24NRduiZyU8eznMe0ff/mwP3H4OLPzfdHtPP6Y+NUpVSAo/6y3xba5h9joPxu8Nz/8aul+AdQth9SPJaw78Noyc3i/lSZJUUtsABqPt8hHY8U0wYT946iJ48Ubomp17Dv7SzcXXtHT0bU87CsbsDGseq399c86EqUfA3HdAi6+VJEmSJEmSJEmSJEmSJEmSJEmSpP5kMNowEEI4D/hckaFngMeAl4ARwAxgL2BUhfsfBVwF5H8yLQL3AE8B44H9gMl5428CxoYQTokxJnykXZIkaYDNPDE5GC3bT8FoPauTxzetgo5x5ffJ9hbvD740AHJheDu+BbZ/HVw+fttQsS2GQjBa73p49oriY399J0x7FYyeC2ufgsXXwl3vT7/3tGNglw/Vp06pCknBaJnsANx9dftTc48tHvsO3PPh4t9DdngTzD+3/2qTJKmU1gEKRtvuH+GAC7a257099wC4432lg9FCe992Szsc8iO44Yj61rfvl2D3T9R3T0mSJEmSJEmSJEnD2ABczyRJkjQo+DxIkiRJklQ90w+aXAjhY2wbivYz4IsxxvuLzG8BDgVeBxyfYv9ZwBX0DUW7BXhXjPHhvHmdwHuArwJbPsH2j8C/A59K+ceRJEnqfyOmJ49n+iEYLbMR/ljmqdm6RdCxd/m9YolgtBZfGvTR1gUzToTnf118fCgEo/355OTxX8+DuWfDokshsz79vsfcBFMW5IIopAGSlH2WGQzvn+98Lsx4Nbx0K2TWQUtHLuBy4oEw5fBcCKMkSQOtdcTAnLvj20qPtXYmjHVs2zf1cDh9JTx1IdzzkdprAxg5sz77SJIkSZIkSZIkSRpGBsNFS3USm+jPIkmSJEmSJEkaskw/aGIhhH2AL+V19QBnxRgvL7UmxpglF2x2SwghzdfH+cCEvPatwLExxj4JITHGjcA3QwjPAFfmDX00hPD9GOOiFGdJkiT1v7au5PGNy6BnLbSPblwNz1wKy/+aPGfdQpiQJhgtU7w/tFZcVtN7xYXwy0nFx/ojEK8WG16CF24oP++pn1S270Hfg2lHVlWSVE+ZbOmx3hLf5vrdmJ1yD0mSBqsQYPxesHKb+2dAaIGY8D/cQi0dMPUoeOG68nO3PzV5n0rHOsbBrh+GSYfA9QvKn1/OyBm17yFJkiRJkiRJkiRJkiRJkiRJkiSpai0DXYAaY3Oo2Y/pG373nqRQtEIxxt4yZ8wH3pbXtQk4uzAUrWDPq4CL8ro6gfPS1iRJktTvWssEowFcdwj0djfuLnmP/Ff5OetS5sxmSzzFS5WJO8x0ToSpJULA7vtM/9ZSqTShaJXqnAI7vqX++0pVSApGSxqTJEkF5r17274ZJ6Z7HZTv9JWw12fLz9vt47nQtVJaR5QeC+3Je08+BCbsW76GckZuV/sekiRJkiRJkiRJktSUGnSdrCRJkiRJkiRJBQxGa15nAPvntW+MMV5Y5zPOAlrz2lfEGB9Pse7LBe3XhxASPvEmSZI0gNpSBAKseggu7YLLx8PNZ8CGpfWtYcU95ecs/2v5OeuegRdvLD4WWov3D3ctHaXH6v3fuZ42vFDf/Wb+A5xwZ7p/D1I/yCZcX9drMJokSent8k9w4Ldh/D7QNRt2ei8ccTn0rk2/R9dsaBsJE/YrP3fkjDLjM0uPJT03h1zg2tE3wA5vgRHTYeKBsOBncOpimHUKjJhWvr6u2TBm5/LzJEmSJEmSJEmSJCmtRt10V5IkabDzeZAkSZIkqQZtA12AGuY9Be3/bMAZpxa0UwWvxRgfDiH8FThkc9co4NXAr+tYmyRJUn20jkw/t2c1PHs5LL8DTn4698H8WmV70s1beAm84iJoKRFwltkI1x9Wen3wpUFRSeELi34Bu3wgeX1mI6x6EMbu2r+hYhuX1b7Hrh+D/b9a+z5SA2QSws+SxiRJUhE7vz/3qFVbF3ROgY0vlZ5TLhht7K6lx3rXlK+hcxIsuHjb/ldeuW3f05fAbW/O6wiw12dLv6aSJEmSJEmSJEmSpFIM/ZAkSZIkSZJSS/ppmj9pk7SF6QdNKISwE3BkXtdC4I91PmM6sE9eVy9wSwVb3MTWYDSAEzEYTZIkDUbVhFmtfwaumAqnLIbWhGCtNNYuTD/3pZth2lHFx57/Nax/rvRaP/xfQsKPUNY8kbz0qYvhzvdAZkMuYG2f/4TdPlbf8kqpNRhtwU9hzhvrU4vUAEnhZ70Go0mSNHAOvRhuOrH0eNlgtF1Kj2W6q6uplB3fBGN2gie+D61dMPv00q+nJEmSJEmSygghtAOHAbOBGcBaYDFwb4xxYZ3P2hHYF5gJjAaWAIuAW2OMKe+8JUmSJEmSJEmSJEmSJA1eBqM1p1cVtG+Mse63n9mzoH1fjHFdBetvLWjvUWM9kiRJjdFaRTAawMbl8MAXYJ8v1Hb+xqXp5750S+kP8i+/M3ntmifTnzOcJIUvJIXmrfg73P62re3sJrj3n2H8XjDj1fWrL9+qh2DJ9bDpZXjiB9Xvs9fnYYcz61eX1ACZhFe4SaFpkiQppfnnwuPfqXzd+MIfGxcYPS95fMR0aB8PPSu3HZtyeOX1lDP5kNxDkiRJkiQ1hRDC54Dzatjiohjj2RWeOQU4H3gDMLHEnFuBC2KMv6yhNkIIpwMfBQ4tMeXlEMIvgM/GGGu8k5IkSZIkSZIkSZIkSZI0cFoGugA1xMEF7dsAQs6xIYQLQwgPhRBWhRDWhRAWhRBuCCF8MoSwQ8ozdi9oP1FhjYXJG4X7SZIkDQ5J4VflPHtZ7ef3rEk/975Pw+rHt+2PER7+/5LXjvPpWFG960uPtY4sPfbcVcX7n72ytnpKeeKHcPXecM+H4YHP17BRgB3fXLeypEbJJoSf9WT6rw5JkprWrFPSzx2z09bfd82CaUcXnzflCOjaLnmvEGCnd27bP2oOTNg3fU2SJEmSJEn9IIRwIvAA8D5KhKJttgC4PITwvyGEUVWcMzqE8DPgMkqHorG5hvcBD4QQjq/0HEmSJEm1SLjTY+LYYDTU6pUkSYOXzyskSZIkSdUzGK05HVjQfnhz4NkNwPXA2cBuwFigC5gNHAN8EXgshPDfIYRyCSA7FbSfqbDGRQXtSSGECRXuIUmS1HitNQSjrV2YCyWrxPO/g9vOhtvPgcW/h57Vla3/7c7wl9fDjcfCvR+HNU/CstvLrxu7a2XnDBeZKoPR7v9c8f4nvldTOUWtXwx3vAtiHdKgDr8URu9Y+z5Sg2USvrVu6Om/OiRJalozjoP9L0j3emi3f+7bPvRimHhQ376JB8BhP0939p7nwewztrbHzIejroXg2xmSJEmSJGnwCCEcBVwFTM3rjsDd5ALMrgeWFSx7E/CzENL/oCOE0Ar8AnhjwdBLwHWbz7qHvp8wnAb8KoRweNpzJEmSJEmSJEmSJEmSpMGkbaALUEPMKGh3AXcCk1OsbQfOBQ4NIbwmxrikxLzxBe2llRQYY1wbQtgAjMjrHgesqGSfQiGEqcCUCpfNq+VMSZLU5NpqCEbLboTeddA+Ot38x78Hd75va/upC2HKYZWf+8xluV9fvBGevgimvDJ5/pj5MPXIys8ZDnoTgtFa2vuvjiRXbVeffV6/rravd6kfZbKlx9Zt6r86JElqart+BHZ6L6x9ElY/Cn85fds5o+fBtGP69nVtByfckQuKXv8sdG0Po3dIf2776Fxg78blsHEZjNkZQqjlTyJJkiRJkoavM4EUd5H6P2vTTAohzAKuADryum8B3hVjfDhvXifwHuCr5K7LA/hH4N+BT6Ws6UvASXntHuCjwA9ijP/3rkgIYXfgh8Chm7s6gatCCHslXAMoSZIkSZWp9GbBkiRJkiRJkiRVyWC05lQYWnYhW0PR1gHfA64BngNGAfsA5wD5d4jcD/hlCOHIGGNPkTMK0z26q6izm77BaGOq2KPQucB5ddhHkiQpp3Vkbes3LU8XjBazcP/52/a/dEtt529YCs9eXnp8yhFw6E/Sh7cNN5mEYLRHvwm7frjImg2Nq6fQ8ruqWxfagCy0jYFpr4IDv20omoaUbML1dU9UFNstSZIStY2E8XvmHodeDLe9devY9GPhFRdBa0fxtaN3qCwQrVDnpNxDkiRJkiSpei/EGBc2YN/zgQl57VuBY2OMfd4ojDFuBL4ZQngGuDJv6KMhhO/HGBclHRJCmAt8qKD7jBjjrwrnxhgfCiEcA9zI1nC0SeSupXtvij+TJEmSpIYxTEySJA1XPg+SJEmSJFXPYLQms/kuk50F3bM2//oQcEKM8dmC8XuAC0MIHyN3d8otDgU+Qe4OlYUKkzOqSX/opu8FYqZxSJKkwSe01LZ+4zIYNaf8vOV3wYYXajurGsf9uf/PHEp6E4LR1j0NT/4Y5p3Tt//WtzS2pnwv/qGy+ae9CCOmNqYWqR9lssnjv7gzyxsOqvH7tyRJ6mvHt+QekiRJkiRJw1gIYT7wtryuTcDZhaFo+WKMV4UQLspb10kusOycUms2Ow9oz2v/pFgoWt453SGEs4H7gS1p9u8IIXwlxvhUmbMkSZIk1cTQD0mSJEmSJEmS6slPCTef1hL9qygeivZ/YoxfA75e0P2REEKawLJq3sXxnR9JktT8NixLN2/j0sbWUcx+X+v/M4eaWCZ96ckf9m1vWAbPXZG8JrOptpryPfjF9HM7JkDnlPqdLQ2gcsFoP/qLLzclSZIkSZIkSVJDnEXfa/SuiDE+nmLdlwvarw8hjCg1OYQwEji9zB7biDE+BlyV19VGrmZJkiRJkiRJkiRJkgaFmPDxv6QxScOLwWhNJsa4Hij2EfELkkLR8nyGXIjaFhOBE4vMW1vQHpmuwsQ1hXtW4zvAnhU+Tq7DuZIkqZmN3aX6teufSTdvIF6pd23X/2cONft9JXl82W1926sfLh+mduOroHtJbXUBrHsWelamnz9yBoRQ+7nSIJAt8y3zhof7pw5JkiRJkiRJkjTsnFrQvjDNohjjw8Bf87pGAa9OWHI80JXXvi3G+EiqCret6bSU6yRJkiRJkiRJkiRJkqRBwWC05rSuSN/FaRbGGNcBVxR0H1Vk6qAMRosxLo0xPljJA3iy1nMlSVKTm/3Gbfs6JsLrlsEhP4IFl0D72OJr73g3rLiv/BkxU1uN1RhpMFpZM4tlBCfoWVN+zrJb4doD4KVbq6tpiyd/VNn8qUfVdp40iGTK5A9KkiRJkiRJkiTVWwhhOrBPXlcvcEsFW9xU0E56M/KEMmuT3Eyuti32CyFMq2C9JEmSpHoaiBvn1mSo1StJkgatIfc8SJIkSZI0mBiM1pxWFrRfjDEurGD97QXt3YrMWVXQnlLB/oQQRrNtMFph3ZIkSYPDnv8GO7wFCLn2yJlw9HXQOQnmnQM7nAXj9ii9/q/vhKcvgVvOgrs+CMvv2nbOQASjjZ7b/2cONaPmQOuI5Dn5b9b1pghGA+heAjceBfd8DO79OPzlDfD4dyFbwdfBA+ennwsw7x2VzZcGMYPRJEmSJEmSJEnSANizoH3f5huRplV456Sk2cPnAAAgAElEQVSEN5m3Oeu2tIdsrun+Cs6SJEmSVCtDPyRJkiRJkiRJqqu2gS5ADfEYsH1ee0mF6xcXtCcVmfN4QXtOhWcUzn85xriiwj0kSZL6R0s7LLgYDvh6LtBq3O4QCjKG28aUXv/ynXDbm7e2n/wfOPI3MP3YrX2Z7vrWXM64PaFrZv+eOVRt/zpYeEnp8dgLoT33+56UwWgA2R545IKt7WcuhRf/CIf9AkJIXnvfeenPAZj9epi4f2VrpEEsm+I6wt8/GDl+jzL/liRJkiRJkiRJUjN7Twjh0+RuDDoJ6AGWA4uAvwDXxhhvrmC/3QvaT1RYz5Nl9stXeDPTas7ar+CsP1S4hyRJkiRJkiRJkiRJkjQgWspP0RD0YEF7Y4XrC+ePKDLn4YL2ThWeMbeg/VCF6yVJkvpf5yQYv+e2oWgA7QnBaIUyG+APx8GVs+CuD+TavZXcSLwOZry6f88bylo6k8ezm7b+vreCYLRinrkMVj1QfOzZq+DqfeGnAR74fOk9TvwbHPBNGD0PRkyFXT4MB323trqkQSaTLT/nM1elmCRJkiRJkiRJkprZG4FjgJlAJzCa3A09Xwl8CvhzCOHOEMKxpbfoo/AauWcqrGdRQXtSCGFC4aQQwkRgYo1nFc6fX+F6SZIkSSoixR0tJUmSJEmSJEmqg7aBLkANcV9Be3yF6wvnLy8ypzCtYe8QQleMcX3KMw4rs58kSdLQUkkw2hbdz8Nj34bVj+ZCrCrxiovg0W/AinsqPxdg3B7VrRuOWjqSxzMboW1U7vc9q2s/78kfwQH/1bdvyfXwl9dBLBP0NH4fmLD5scsHaq9FGqTSBKPdtQiy2UhLS2h8QZIkSZIkSZIkaag6ELguhPBF4NMxxqRP+RdeV7e0koNijGtDCBvoe6PSccCKMuesjzFWeqetwtrGVbi+pBDCVGBKhcsqfENckiRJGmqSXkoYJiZJkoYrnwdJkiRJkqpnMFpzuobcTwy2fPp7bghhRIxxQ8r1exa0nyucEGNcEkK4D9h7c1cbcDhwXcozjipoX5NynSRJ0uDUVkUw2hYvXA9cX9mazskw7xy4q8pgtLG7VLduOIo9yePZjVt/37Om9vNeKPK18MQPyoeiAez41trPl4aATMr3yJethaljG1uLJEmSJEmSJEkadJ4HrgbuAB4GXgaywCRgf+AfgOPz5gfgU0AL8K8J+44uaHdXUVs3fYPRir3RXK9z8tXwhvY2zgXOq+N+kiRJkiRJkiRJkqRhJOmWZYm3M5M0rLQMdAGqvxjjYuC2vK524JgKtjihoH1ziXlXFrTfnmbzEMKuwCF5XetIH6gmSZI0OLXX8zryFDonw9yzq1wcYOxu9aymufWW+ZxBJi8YrbcOwWirHtr2JzfPXp5u7c7n1n6+NMjFGFP/cHPJqsbWIkmSJEmSJEmSBpU7yAWebR9jfHeM8YcxxltijA/HGB+NMd4aY/x2jPEE4CDg8YL1nwwhnJywf2FgWdobleYrfPOxcM/+PEeSJEmSJEmSJEmSJEkalAxGa14XFrQ/mmZRCOEI4OC8riy5u2cWcwmQyWufFkKYn+KYTxS0L40xVnPxliRJ0uDRPrZ/zxsxGdpGwZG/rXztzNdA58T619SsMmWC0bJ5wWg9ZYLRJh4Ax/2l/Jl/fSdkM+Xn5Tv2ZmgdUX6eNMRlK7jjw+KVjatDkiRJkiRJkiQNLjHGq2OM18VY/hYrMca7gFcAjxUMfSmE0Jr2yEprHORrJEmSJDXEEHt6nvaulZIkSWX5vEKSJEmSVL22gS5ADXMhuTC03Ta3jw4hfDTGeEGpBSGEqWwbqHZpjPHJYvNjjI+HEC4Cztnc1QH8JIRwTKmgs8131Dw7r2sTcH65P4wkSdKg1zamf8/rmLT51/GVrz3kB/WtpdmVC0bLpAxGG7srHH4pjJ4LI2dA95LSc5/6MUw+BNY/DyvvL1/j/v8FUw8vP09qApls+rlLVkUgNKwWSZIkSZIkSZI0dMUYXw4hnAncxdY3FHYFXgXcUGTJ2oL2yCqOLVxTuGd/nlOt7wCXVbhmHvCrOtYgSZIkDTKGfkiSJEmSJEmSVE8GozWpGGMmhPAh4FqgZXP310IIc4DPxRhX5M8PIRwLfJfcBUhbrAA+Veao84BTgQmb2wuAG0II74wxPpK3fyfwbuBrBeu/FmNclP5PJkmSNEiFfg7eaR+b+7W1wmvgu2blQrmUXrlgtOymrb/ftLz4nNmvh8N+vvXrJLSXP/eO96Srb+45sOuH0s2VmkC2gmsIF69qXB2SJEmSJEmSJGnoizHeE0K4Djg+r/sEDEYrKca4FFhayZrQ3++nS5IkSZIkSZIkSZIkaUgzGK2JxRiv3xyO9q287g8C7wsh3A48T+4CqH2BOQXLNwFnxhifLnPGcyGE04DfAx2buw8DHgoh3A08BYwD9gemFCz/LfCZiv9gkiRJg9HGEoFYjbLlwvHWrsrWlQv50rbKBqNthEe+AU/9GFbeV3zOtKP7hue1dBSfV42pr6zfXtIQkMmmn7vEYDRJkiRJkiRJklTetfQNRtu7xLzCdx4Kr4dLFEIYzbaBZStTnNMVQhgVY1xXwXFTU5wjSZIkSRWq4K6WkiRJkiRJkiTVwGC0Jhdj/HYIIQN8FdiSmtEOHJGw7EXgtBjjrSnPuCmEcCrwE7Ze7BWAAzc/ivkZ8K4YYybNGZIkSYPeQIVTtVUYjLbzBxtTRzPb/nRYfkfp8Qe/CIt/l7zH2F37tnd6F/ztE7XXBjDj+PJzpCZSSTDaC6u8EE+SJEmSJEmSJJW1sKBdKvDs8YJ24c1Iyymc/3KMcUXhpBjj8hDCCmBCXvds4OEaziqsXZIkSVI9xYTrlJLGJEmSmpnPgyRJkiRJNWgZ6ALUeDHG75K7i+X/AmsSpr4AfA7YJW0oWt4ZVwN7At8DtrlYK8/twOkxxrMqvIOlJEnS4DbpEGgb0z9ntY/d+vsRhTf6LmP70+pby3Aw5w3J4+VC0QDG7lKw5xurryffjBNh5PT67CUNEdkK3h9fvLJxdUiSJEmSJEmSpKbRXdAeWWJeYTDZThWeM7eg/VDC3HqfVUmomiRJkiRJkiRJkiRJkjSg2ga6APWPGOOTwFtCCCOBw4BZwHRgE/AS8PcY4301nrEUeF8I4UObz5iz+Yx1wPPAvTHGp2s5Q5IkadBq7YRD/gdufRPETGPP2u9reeeOSL9ut3+BcXvUv55mN2o27PNF+Pu/Vre+fTyMmFZkz/+Av/9bbbUd9O3a1ktDUCabfu6SVY2rQ5IkSZIkSZIkNY3JBe1lJeY9UNDeO4TQFWNcn/Kcw8rsVzi2IK99KPCbNIeEEEaRu5Fq2rMkSZIkSZIkSZIkSRoU4kAXIGnQMBhtmIkxdgM3NPiMTcAfG3mGJEnSoDTnDTBhX7jjvbD0psac0doFs1+Xfv4Rv4Q1j8OUw2HyAgihMXU1uz0+WX0w2rQji/+97/EpmH5c7utlxT2V7zvpYBhdeKN3qflVGowWYyT4vU+SJEmSJEmSJJV2SEF7cbFJMcYlIYT72Bo61gYcDlyX8pyjCtrXJMy9Fnh3wtokR9D32tB7Y4wvVrBekiRJ0rDmR08lSVK9+LxCkiRJklS9loEuQJIkSWoqY3eBff69MXu3j4XDL4OOCenXbH8a7P4JmHKYoWi16ppV3boZJ5Yem3QQHPdnaOmofN/dqwxqk4a4bAXvj/dkYFNv42qRJEmSJEmSJElDWwhhBHBaQfdNCUuuLGi/PeU5u9I3gG0dyYFqvwe689qHbt4jjbML2oU1S5IkSaq7pIuaDASRJEmSJEmSJKlSBqNJkiRJ9dYxqbb1rV1wzB/g9BVwVoRTl8Dxd8CpL8B2J207v3NK8X26tq+tDvWV7alu3Zh5yeNto2B0mTmFJh0C2/1jdfVIQ1ys8DrB7ir/6UqSJEmSJEmSpGHhE8B2ee0M8LuE+ZdsnrPFaSGE+SnPyXdpjHFDqckxxvXA5WX22EYIYWfg1LyuXuCnKeqTJEmSJEmSJEmSJEmSBg2D0SRJkqR665xcfs74fUqPnfR3mPYq6Bifa4+cDpMOgraRxefv/YXi/bv9c/k6lN7GZdWtGzmz/JwT7k65WYA5Z8Hhv4CW1urqkYa4bKXBaJsaU4ckSZIkSZIkSRo8QghvCSFMq3DNu4DzCrp/EmNcVGpNjPFx4KK8rg7gJyGEEQnnnAycnde1CTg/RYmfA/JvAXN2COG1CeeMAC7cXNMWP4oxPpniLEmSJEkqr9K7WkqSJEmSJEmSVCWD0SRJkqR665hQfs7xd8CME/r2tXbl+sfsVNl5c14PYwpuQj56Lsx5Y2X7KNmkg6tbN3K78nPaRsKOb02e09IJZ2bgsEtg1JzqapGaQKWX1nX3lJ8jSZIkSZIkSZKGvHcAT4cQLgohvCaEMKrUxBDCgSGEK4AfACFv6Hng0ynOOg9YkddeANwQQti14JzOEMIHgMsK1n8tKXxtixjjU8A3CrovDyH8UwghP/yMEMJuwI2ba9liOekC2CRJkiQ1lGFikiRpuPJ5kCRJkiSpem0DXYAkSZLUdFpaYeZJsPjq0nNaO+CVv4JHLoCX/gIjpsDOH4CJ+1d+XscEOO5WePgrsOJemLAf7PJhGDG1+j+DtjXtaFh2W+Xr2semmzfrFHj64tLjnZMghNLj0jCRzVY232A0SZIkSZIkSZKGjZHAWzc/siGEx4GFwCogA0wC9gGmFVn7MnBCjPGFcofEGJ8LIZwG/B7YElB2GPBQCOFu4ClgHLA/MKVg+W+Bz1TwZ/oksAdw4uZ2O/At4DMhhHuANcDczWflv5m4CTg1xrikgrMkSZIkVSsa+iFJkiRJkiRJUj0ZjCZJkiQ1wr5fKh2MNm7P3K+tHbDHJ+tz3ojJsN9X6rOXitv1I7n/pivuTb9m/N7pw8xmvJrcZxVKXCDVMSH9uVITy1Z4DWH3psbUIUmSJEmSJEmSBrUWYJfNj3JuBM6OMT6XdvMY400hhFOBn7A1/CwAB25+FPMz4F0xxkwF52RCCK8Hfgi8IW9oKnBCiWVLgbfFGG9Oe44kSZIkSZIkSZIkSZI0mLQMdAGSJElSUxq/F7z2yeJj25/Wv7WoPjonwbF/qmzNDm9OP7dtFEzYr/R4+7jKzpaaVKX3Vu3uaUgZkiRJkiRJkiRpcPkG8FNgUcr564ArgWNjjMdWEoq2RYzxamBP4HvAioSptwOnxxjPijGuq+KctTHGNwJnbN6rlJeB7wJ7xhivrfQcSZIkSQIgVnqFliRJkiRJklSZpB9B+eMpSVu0DXQBkiRJUtMaPReOuQn+fDL0rMr1bf862ONfB7Qs1aB9TPq5c98OO7+/sv2P/DVcNav4WFJomjSMZLOVzd9gMJokSZIkSYPGHx6JXPW3SEcrnHFA4JC5YaBLkiRJTSLGeCW5oDNCCOOBPYDtgWlAF7mbyK4kF2D2MHBfjDFTh3OXAu8LIXwIOAyYA0wnF7z2PHBvjPHpWs/ZfNblwOUhhB2B/YGZwCjgBXKBcLfEGDfV4yxJkiRJlfKTnJIkSdvweZAkSZIkqQYGo0mSJEmNNO1IOG0pvHw3dM2CUdsPdEWqVWsXZNYXH5txPOx1PoycDqPmVL5313aw8wfgsW/17Q+tsONbK99PakKVvj3e7cd/JEmSJEkaFP7n5izv+X9bX9l/6w+RX7y7hVP2MxxNkiTVV4xxJXBLP5+5CfhjP531NFCXsDVJkiRJkiRJkiRJkiRpMGoZ6AIkSZKkptfaAVMONRStWez+yeL9nZPg8Eth8iHVhaJtsf/XYJcP5/YDGL8XvPIqmHxw9XtKTSRbYTJad493GpMkSZIkaaBlspF/u7Lva/SeDHzmV9kBqkiSJEmSJEmSVDmvxZIkSZIkSZIk9Y+2gS5AkiRJkoaUuW+DJ74L3Uu29o3dDU64E9pG1b5/Szsc8HXY/wLIdENbV+17Sk0kW+Hnpbt7GlPHYNa9KbJiPUwdA22tYaDLkSRJkiSJW56AZWu37X9wMSxeGZk53tevkiRJkiRJkiRJktRcDFWVJEmSJFXPYDRJkiRJqsSo2XDcLfDI12Hl/TDpINj9k/UJRcsXgqFoUhGVvj3evakhZQxaX78+y+d/G1nVDTPGwfff0sI/7O2HyyVJkiRJA2vR8tKv6Fd3w8zx/ViMJEmSJEmSJNVd0lVNBoJIkiRJkiRJklQpg9EkSZIkqVKjd4QDvznQVUjDUrbC6wS7expTx2D0m79HPnbZ1r+gJavgDd/P8vDnW5g9yXA0SZIkSdLglPEzgZIkSZIkSZIkSZIkSZIkSZLytAx0AZIkSZIkSWnFSoPRNjWmjsHo8ru3/cvp7oHv/MlPmEuSJEmSBlbSK9P1w+i1uyRJkiRJkiQNfl5rJEmSJEmSpMZK+gmUP52StIXBaJIkSZIkacjIVhqM1tOYOgajOxcW/8v5yrX+OFiSJEmSNLCSgs7Xbey/OiRJkiRJkiSpIRLv9ui1O5IkabjyeZAkSZIkqXoGo0mSJEmSpCGj0mC09ZsaU8dg9MgLpcfWbPDCAkmSJEnSwNmQEFxuMJokSZIkSZIkSZIkSZIkSZKkfAajSZIkSZKkISPx5qpFrFjXmDoGo1GdpceG09+DJEmSJGnwWZsQfjacQs0lSZIkSZIkSZIkSZIkSZIklWcwmiRJkiRJGjKyFQajLVtb4YIhbGR76bE1CR9AlyRJkiSp0dYlhJ+t2zR8XrtLkiRJkiRJ0tDmz3MlSZIkSZIkSf3DYDRJkiRJkjRkxIqD0RpTx2DU0VZ6bHV3/9UhSZIkSVKhdQmB3UljkiRJkiRJkjQ0JFzUVOkFT5IkSc3C50GSJEmSpBoYjCZJkiRJkoaMrMFoJbWG0mNrNvRfHZIkSZIkFUoKP1u/qf/qkCRJkiRJkiRJkiRJkiRJkjT4GYwmSZIkSZKGDIPRStvYW3pstcFokiRJkqQBlBSMljQmSZIkSZIkSZIkSZIkSZIkafgxGE2SJEmSJA0ZscJgtFXdsKm3wkVDVFIw2poNw+PvQJIkSZI0OK3bWPp16bpN/ViIJEmSJEmSJKkMrzOSJEn14vMKSZIkFZf0GcFKPz8oqXkZjCZJkiRJkoaMbBU/2Fy+tv51DEbJwWj9V4ckSZIkSYXWJ4SfJY1JkiRJkiRJ0tCQdFGTn+SUJEmSJEmSJKlSBqNJkiRJkqQho5o7Pqzsrn8dg02MMTEYbbXBaJIkSZKkAdSbLT3Wk+m/OiRJkiRJkiRJkiRJkiRJkiQNfgajSZIkSZKkISNbTTDa+vrXMdj0ZpJD49YYjCZJkiRJGkBJr1l7DUaTJEmSJEmSpKGhmrtaSpIkSZIkSZJUBYPRJEmSJEnSkJEUjNZW4qccwyEYbWNv8vhqg9EkSZIkSYNUJjvQFUiSJEmSJElSjRIDwwwTkyRJw5XPgyRJkiRJ1TMYTZIkSZIkDRlJ1xBOGFW8f2V387+pXi4YbZ3BaJIkSZKkAZT0yrzXYDRJkiRJkiRJkiRJkiRJkiRJeQxGkyRJkiRJQ0a2xCepQ4DxI4uPrVzfuHoGi3LBaOXGJUmSJElqpKSg895M/9UhSZIkSZIkSZIkSRrkkt5gliRJkqT/n707j5MkrevE/42q6pmenu6Zhjm7BxFW5VLExWN11/VC3V113RWXdf0puL91d3FFXFAXDxRQVA7RVTxAEGRBhlNADmFGLndgmIFhDmaG6Z6h566qvrvuMytj/6iu6equiMiIqsysyMz3+/Wa11THE5n5zbgy4sl4PsnAEIwGAAAA9Iy877mHkoi9u7LbJuY7V09dtAo+W1h2gwAAAADbp+iqtJGXgg4AAAAAQPcJIgEAAACgw4q6oHRPAWsEowEAAAA9I2+sdBIRey/IbpuY61g5tbHUMhitO3UAAABAlqIblRor3asDAAAAAKAzjOQEANjAeRAAAABbIBgNAAAA6Bl5wWhDQxF7dyWZbYMQjLbYKhitRTsAAAB0UtH97ncf6V4dAAAAAAAAAAAAAED9CUYDAAAAekbeQOqhJOLiXdltk/Odq6cuWgajLXenDgAAAKjq4JGIsQm/FA4AAAAAUH/6cgGAbnDOAQAAgGA0AAAAoIc0c77nTiJiz87stumF/v9yfLFF8JlgNAAAALZTqyvz936x/6/dAQAAAIB+po8TAGAj50gAAGxNs5nGTfen8abPNOOO0TTS1DkmDJKR7S4AAAAAoKy8rsuhoYiLcoPROlZObSytFLcLRgMAAGA7tboX6QXvSuMXn9GdWgAAAAAAustgTQAAAAB6S/rRt0X6sb+JmJuO5F/8SMSzfzWS4eGu1rDSTONn3pzG1Z9f619L41d+MIlX/XhEkiRdrQXYHoLRAAAAgJ7RbGZPTyJiT04w2tQABKPlLZc1gtEAAADYTob9AQAAAAAAAFBKmq7eHA4AwLZIP/CGSP/w+Wf+feCLEUcfiuRFr+tqHVffuD4UbdVrrk3jh56axPc8saulANtkaLsLAAAAACirmTOSeijJD0abHoBgtJUWI8znBaMBAACwjVLJaAAAAAAAPUKHLgAAAMAgS9/75xsn/v1bI52b7modr/hodj/V//6HZlfrALaPYDQAAACgZ+Tddjc0FHHRAAejNVv05y4IRgMAAGAbCUYDAAAAAPpaYSeoDlIAYED5ohgAoOekczMRDxzY2LDSiPjke9v3OiXaDhzObv/Ql9pWBlBzI9tdAAAAAEBZeQFgSUTs2ZlEVrfo1AAEo620uG+g14PRvvRwGq/4+zS++GAaw0nEtzwuiZf/uyQed2my3aUBAABQgtvdAQAAAAAAAABggKTNiEgiEuM+oKc0V/LbZqe6VwdACEYDAAAAekjeQOqhJGLPzuy2pUbEUiON80b698uUvMC4NY1mRGMljZHh3lsGd42n8Z2vasbM4plpB4+kcc2dadz1O0Nxye7ee08AAAAAAAAAANBzUj+DAQB0g3MOgJ7WmIu46XkRD38wYmRXxOOfE/GNL49Ihra7MgCgxzh7AAAAAHpGM+fmuiSJuCgnGC0iYnqhQwXVxEqJ7/8XG52voxP+/FPpWaFoa47PRPzJJ9z4AAAA0AuMlQMAAAAAAAAAgAHw2Z+MuPctEUsnI+Yejrjz9yO+9NLtrgoA6EGC0QAAAICe0WxmTx9KIvYUBKNN9XswWs5yWW9hufN1dML1h/JHz7/vZiPrAQAAeoGrNwAAAACgvxX0gvrlCABgYDkPAhg4iyciRj+0cfp9b3V9DABUJhgNAAAA6Bl5X4O0DEab70g5tdEs8QVRLwajNZtpHDyc3/7l8Yh7jvhyDAAAoO7c1wgAAAAAAAAAAH3ugXdF5sifuQcjlie6Xg7AwHCTJn1KMBoAAAClHJtO44/+oRkvfn8zPnq7jhK2RzNn00uSiL0X5D/uyFRn6qmLlWbreXoxGO2hUxHzLer+u9scjwAAAOrOPTcAAAAAAL1Chy4AsN2cjwD0rGbBABA3EAEAFY1sdwEAAADU3wMn0vjOVzVj9JEf50jjBd+fxB/9R3nbdFfe9yBDScSOkSQu3xNxdHpj+9hkGhFJR2vbTnmBceu1Chiro3uPtZ7nurvT+JUf7HwtAAAAbF6Z2xqXG2nsGOnfa3cAAAAAoJ8Z3A0AsJFzJAAAADbPCHYAAABa+t2PpOtC0Vb9ySfSuO0hX1bSXXkBYMnpcdP792a3j57qTD11sdJsPc9So/N1tNvcUut5DhzufB0AAAB0Xi8GegMAAAAAtOYeOwAAAHhk4A9ARKQFXWZFbeSx0OhPgtEAAABo6bNf2dgxkqYRr/ioDhO6Ky8Ybej09yNX5QWjTWRP7xd5y2W9pZXO19FujRKBb/cej1hqOBYBAADUWZkblcqEYwMAAAAAAADQ5yRhAAAAEILRAAAAKOHA4ezp777Jl450V9733GvBaPv3Zv+CzNhEf2+rKyUCxJYana+j3ZZLhLmtNCMOHet8LQAAAGxemavy+eWOlwEAAAAAwJb09z1YAAAAAADUh2A0AAAAoGc0c+6tS07noe27OLv9+Exn6qmL/g1GK3cz5QMnOlwIAAAAW1LmB72nFzpfBwAAAABARxR1gpbpIAUA6EfOgwAAANgCwWgAAABsyfSCLyzpnrzvx4dOB6NdfEF2+8xiZ+qpi7zAuPWWVjpfR7stl6x5dMJxCAAAoM4EowEAAAAAAAAAAAB0gFBi+pRgNAAAAAqlLTpFxie7VAhEfgBYcjoYbffO7PZ+H1y90mw9z1Kj83W0W6NkMNrYRGfrAAAAYGvK3HIzNd/xMgAAAAAAaMUgSgBg2zkfAQAAQDAaAAAALSy2CFMaF0hEF+Xddzd0Ohhtz/nZ7f0ejJYXGLfeYqP3bhJYLhmMNuo4BAAAUGtlxtFNzvfedSsAAAAAwCr9mwAAAAD0AaH5QI0IRgMAAKDQ/FJx+/ikzi66Jy8A7JFgtJ1JZvvMYocKqomVZut5llqEHNZR2WC08QnHIQAAgF431eeh5gAAAADAoHJfCwAwqJwHAbCOsCVgnaIjgqPFZlhq9CfBaAAAABSaXy5uPzLdnTogIj8YLTmdh7b7/Oz2heWIxkr/dvCVCkYrGTJWJ2WD0UYnOlsHAAAAW1PmilwwGgAAAAAAAABCHQAAtpNzMaA+BKMBAABQaH6puH1qvjt1QET+D8QMnQ5G27Mz/7HTfTzAOi8wbr2lRufraLdGicC3iIgxwWgAAAC1VuYHX/UxAQAAAADUnYGxAAAAAAB0h2A0AAAACi20CFOa6uOwKeonLwDsdC5aYTDazGLby6mNlRIBYksrna+j3ZZL1nxkOmK54cZLAACAuioVjKaPCQAAAADoWUWdoO5pAQAGlfMgAICeU+ZmP4AuEYwGAABAofml4vap+e7UARH5X48Pne7h2H1+/mNPzbW9nNrIC4xbb6lFyGEdlQ1GS9PVcL8/ECEAACAASURBVDQAAADqqcytUvqYAAAAAAAAAAAAAKoSaEd/EowGAABAofnl4vbphe7UARERzWb29KFk9f97duY/9g+u6d8OvpWc5bJeLwajNUq8rzWjpzpXBwAAAFtT5kckp+b797odAAAAAKB36KsFALZZmS+YAQDoDOdiQI0IRgMAAKDQ/FJxu0GrdFMzZ3M7nYsWF54fkSTZ83zuUP9uq3nLZb3FHgxGW14pP+/YZOfqAAAAYGvKXJFPCd8HAAAAAAAAAACA7SMYDagRwWgAAAAUml8ubjdolW7K61odOt3DkSRJbv/rjuGOlFQLK83W8yxVCBmriyrBaMdndLwDAAD0sqn57a4AAAAAAGCTigaMGkwKAAwq50EAAABsgWA0AAAACs0vFX8hKRiNbmrmBIAl6/5+xpOy55no4wHWpYLRGp2vo92qBaN1rg4AAAC2psz97vqYAAAAAAAAAACgXwnMhJ7QpXBbvzPQZhYafUowGgAAAIUWWoQpTfVx2BT1k9dFN7QuGe0F35/d3TEx1/566qJZou+yF4PRGoLRAAAA+kKZe24m9TEBAAAAANSbAZYAQFc45wDoWUmS3+aaEgCoSDAaAAAAhRaXi9unFrpTB0TkB4ANrevh2Lsre57FRsTCcn9+kbLSbD3PUoWQsbpYrlDzCcFoAAAAtVXmalwfEwAAAADQu/rzniQAAAAABo1+LqA+BKMBAABQKC+Ias3UfETqVzvokmZOANj635TJC0aLiDg129ZyaqPVfhoRsdzofB3t1qgUjOY4BAAAUFdluo5mFyNWylzgAgAAAAD0FP2eAMCgch4EwHo+FwA6xzGW/iQYDQAAgEKtxqM2mhELy92pBfI2x6F1yWh7L8h//MR8W8upjZWcwLj1FnswGG25QjDa8ZnO1QEAAMDWlL3lZnqho2UAAAAAAAAAUHtCHQAAtk2ZX0EF6BLBaAAAABRqFYwWETHZp2FT1E/e9pisD0bblf/4ibn21lMXZfbTpUbvdUw3SgS+rRGMBgAA0Pum9DEBAAAAAGyz3rvHCAAAgF7gehMAqGZkuwsAAACg3lZKBBNNLURceXHna+l3b7+xGe/+QhpDScR/+rYkfuJb5ZmfK+9HJ4bWBaPtOi9iZCg7VKtfg9HK7KdLK52vo92WV8p/8SUYDQAAoL7K/oik8H0AAAAAoDcVdYIa+A0ADCrnQQAAPafszX4AXSAYDQAAgELNEn1ZUwatbtmrPtaMX3/fmYX9d7elMTbRjBf+gHC09fK2x/XBaEmSxN5d2UFZh6fSiEg2NvS4MvlhC8udr6PdliuEuU3ORyw30tgx0n/rFwAAoNeVvVdqaqGzdQAAAAAAAAAAANtA2BJABznG0p+MrgYAAKBQqWA0g1a3ZGE5jVd/bOOCfsVH01hq6JRaL297TM7JwnrcJdnzHTzS3nrqotlsPc9kDwYYVglGi4g4OdeZOgAAANiasr0bwvcBAAAAAOrMvWwAQBcIzgEA2D5dOhcrehmng8AawWgAAAAUKhO4ZNDq1tzyYMSpjECn4zMRd4x2v546y+vYHDonGO1JVyaZ8x0c78+e0ZUSb2uiB0PDGhWD0Y7PdKYO6u3+42nc9lAaE3P9uX8DAEA/KHuj0tSC83oAAAAAoAcZrQkAAAAtuHaG3mBfBepjZLsLAAAAoN6aJfqyVgetZgdR0drBI/kL+e4jaTz9qy3bNXnbY3LOInrCldnzHTjc3nrqokyA4UQPBhguVw1Gm+5MHdRTs5nGz1+dxl9dl0Yzjdi7K+KNzx6KH/9mx0wAAKibsrdKTS10tAwAAAAAgO4TmgYADCrnQQCcxecCQMc496ZPDW13AQAAANRbqWC0HgxcqpOvHM1vu7ugbRDl9dENnRuMdkX2fA+dikj7sKOvzH46Mdd7771yMNpMZ+qgnv76+jTe8H/TR7b/ibmIZ/1lM45P99Z2DgAAg6Ds5eikPiYAAAAAAAAAAADYHj029gzob4LRAAAAKFQmcMmg1a05VBB+dvBw9+roBXnb47nBaF/1qCRzvrml/txem83W8yyvRMwvdb6WdqoejKbzfZD88cez1/flv9zsuRBAAABglfB9AAAAAIBt5p4LAGDbOR8B6EuuNwGAigSjAQAAUKhMMNpsj4Ut1c3sUv5CPjCu43+9vO0xOScHbf/e/OcYnWhfPXWxUnIzmeixAeaNEoFv652a60wd1M8DJ9K4cyy//fP3da8WAACgtbL3NU4tdLYOAAAAAIDOcI8XAAAAAH1AiCFQI4LRAAAAKNQsEUw0s9j5OvpZYyW/7eCRiGaZdLoBkde3OnROMNq+i/OfY/RU++qpi5WSAWITPRYctlywb2QRjDY47hgtbn//rY6bAABQJ2XP0Kd6LNAbAAAAAKA19zAAAIPKeRAA6/lcAOgcx1j6k2A0AAAACq2U6BOZFYy2JUXhT3NLEQ/1YZDXZuVlxCXnBKOdN5LE5Xuy5x2d6L+OvrLheZM9NsBcMBp55paK2z/+5f7bzwEAoJeV/RHJ6QXn8gAAAAAAAACDzffGAADbpuzNflt9mU22AYNFMBoAAACFms3W8whG25pGi2V8//Hu1NEL8vpWh5KN067amz3voWPtq6cuygQYRkRMLXS2jnbLC0YbzunRmpjV9T0ollps9PPLXSoEAAAopezVWq8FegMAAAAADBb35gAAALBZrikBgGoEowEAAFCoWaLfeXZR5/RWNHLCn9aMTli+a/K2x6xgtK+7ImNiRBwY77/lWSbAMCJiscfCovL2jct2Z0+fMIB+YCw1ittbHVcBAIDuKvsjkoLRAAAAAICeVNgJ2n/3KgEAlOM8CACg9ziHA+pjZLsLAAAAoN7KBaN1vo5+ttwyGK07dfSCvO0xychAe9KV2fMeONy+eupipWSf80IjjYjswLg6yts3Lr8o4vDUxumn5jpbD/Wx2CIYbXQiIk3TSLIODgAAm/CVo2lcc2ca541E/PBTk9i/13kGdMKx6e2uAAAAAAAAAAAAaLuyv6wIbC/7ao+y3uhPgtEAAAAoVCYYbUYw2pY0msXtY4LRHpHXtzqUkUnw5H3Z895zNKKxksbIcP8EGTRbbENrFpc7W0e75Qaj7cmefmq2c7VQL0stgtHmllaD8h59YXfqAQD624duS+Mn3tCMhdPn04/alcY1LxiKb3lc/1xTQKeVvVdqfFLIMQAAAADA9jKIEgDYZsI4APqU4zsAUM3QdhcAAABAvZUJRptd6nwd/UwwWnl522PWcOkn78seRL28EnHoWPtqqoOVkt8PLbYIk6qbvH3jsj3Z6/bUXAeLoVaWckLz1rv7SOfroHNuvDeNn/6rZvzUXzXjbZ9rRupGJwC2SbOZxvOuPhOKFrF63vltv18ynRiIiPK3NS42XNsBAAAAAL3Id9oAAAAA9AFjN4AaEYwGAABAoWaJsd4zC52vo58ttwj4GZvQobgmb0kMDW0MynrCFREZkyMi4q7x9tVUByslMxnWhzn0grx949Ld2dMn5leDK+h/iyW25YOHbQu96po70/iOVzbj6s+n8Y7Pp/Ezf53Gr73P+gRge9xwX8TDp7LbXvFR4WhQVpV7pQTEAwAAAAB9xWBSAGBQOQ8C4Cw+FwA6xrk3fUowGgAAAIXKZAzNLnW+jn7WaBGMdmK2O3X0grygvqwAtJ07knj8pdnz39VngUlls8AWG52to93ygtEu35M9PU0jpgQ1DoSlFsfNiIgDhztfB+2Xpmk8/x0bD/Z/+sk0jk/317EbgN5w4735nz8vfn8aK4J5oZQqe4pgNAAAAAAAAIBB5l4MAIBtI2ALqBHBaAAAABRayQmiWm9msfN19LNGi2V8fKY7dfSCvMyBJCMYLSLiyfuypz94sj311EWZ/TQiYmG5s3W0U5qm+cFoF+U/7tRcZ+qhXpZKhPyNnup8HbTfzQ9GfOXoxukLyxGfPdT9egBgrkUQ+O2j3akDel2Ve6XGJt1YtebeY2kcPCyEEQAAAACoCQNjAQAA2CzXlMA6RYcEhwtgjWA0AAAACpUZd7nUiGis6HHarLzwpzUnZ8MA2NPylsJQTjDaFRdlN5zss7C5spvHYokwqbooek+X7c5Z4RExIRhtICy1OG5GREwvOG72or+7NX+93T5qnQLQfa2CwI9Pd6cO6HWVgtEmOldHr5heSOP7/2glvvbFzXjyS5rxlJc048tjzocBAAAAoL703wEAbOQcCQCg9ziHA+pDMBoAAACFygYuzbYYLE6+RouAn2YacWr8ZKTXXB3pe/8s0ofu6U5hNdRsZk/Pi8m6ZHf29BOz/dVJu5KzXM7VS8FoRYGBees1IuKUYLSBsLjcep5pn0s96YO35R+f7z3WxUIA4LRjLUKVe+kcG3rF+OR2V7D9fuHqND554My/7zka8Z/e0IzUT2ECAAAAQA/SrwcAAACujwE6yTGW/jSy3QUAAABQb2WD0WYWIy7e1dla+lWjRKjV8Rf8RDz68HWr/xh+UcRv/Z9InvGszhbWQ4Zyot8vuTB7+okW4Qa9pux+ulAiTKouioLRLtgRsWdnxPTCxrZTs52rifpYahEoGRExNd/5Omivqfk0vvRwfvsX7vdFDQDdd3ii+PNnNXQ5L6oZWFPlTG68xX7X79I0jY/cvnEZ3DEWccO9Ed/xNdtQFAAAAAAwQAa7jxYAqAPnIwAA28aPdwI1kjNsGAAAAFaVDVyaXepsHf2sKABqzfHJdQt4ZSXSP/j5SJcWO1dUTeVtj3kxBHnBaAePtKWc2lgpEa4XEbHY6Gwd7VS0X+wYjnhUThDjqTkd8INgucS2nBWcR709dKq4/c6xiIOH67GPf+H+NH7+7c141utX4o3XNSP15R9A35prca3bb6HL0ClVTpfGJjtXRy9YXok4mRP6/dYbnHcCAAAAQC35zhgAAABacO0MPUE/F1AjgtEAAAAo1CwZuDQjgGbTGiWW8bHhy8+eMDsVceeNnSmoxvK2xyQnGe2S3dkNC8sRk30UoFU2wHCph4LRGgXBaCOFwWidqYd6WSoRKDk9eNmRPW+0RTBaRMSTX1LyxKSD/vFgGt/9B814/T+m8bc3Rzz3bWn8/NX985kCwNlanXecyAkvAs5W5WzpgRMdK6MnFN1Xduio804AAAAA6D369QCAQeU8CGDw5AzuiRC2BNBRjrH0J8FoAAAAFCrb7zy71Nk6+llRANSasR37Nk68/XPtL6bm8jbHoZwejkdfmP9cr/xY/3T4lQ0wXFjubB3ttFywX+wYzl+3gikGw+Jy6/13WmBnzxmbLHdcvvmB7T1+v/qa5obj6Rv+bxrjE/3zuQLAGa3ChZ1/QjlV7mscn4yYmh/cc6ui8PN7jnavDgAAAAAAAAAAAAaMEEOgRgSjAQAAUKhoMOZ6s4udraOfFQVArRkd2b9x4s4L2l9MzeVtj0M5Pyqz7+L85/q7W/uno3al5FtZbPTOe24VjHZJXjDaTGfqGQRpmsaB8TQOT6aR1vyLjKUSx83phYhm2Q8xamH0VLn5Pn339q7Xj96xcVqaRrzhOtsbQD9qdd4xIRgNSql6iXHwSGfq6AVFlzGHJ7tXBwAAAADARr4XBwC6oOb3sAKwWY7vwBl1H7cE1INgNAAAAAqVzZSZEYy2Kc1mWmoZj43s2zhxdqr9BdXcSjN7el4w2tdclv9cBw5HjJ7qj07UZs5yOdficmfraKdWwWiP3p290k/N9sc67ba7j6Txz1/ZjKe8tBn7/1czfvTPmrVelkuNcvPNLnW2DtprdKLcfAcOd7aOzfry2HZXAEAntDrvmF6o7zkT1EnVPeXg4cHdt4ru91oseS0EAAAAAHTb4PZpAgAAANBHahBYtv0VAHUhGA0AAIBCeUFU55pdrN7lNLOQxgduSeNPP9mM2x8ezC6rsst3dGT/hmnpxLE2V1N/zZwUubxgtCRJ4ur/mtMYEQ+cbEdV269sgOFCDw2gbhTsGyNDEZdcmN12YrYz9fSzZjONn31LM26878y0j9we8cvvqe9xuWww2vRCZ+ugvQ4dLbfN3V3TkIylRj3rAmBrigJ7IyKmhYRDRxyb3u4Ktk/Za3wAAAAAoEfUYDApAMC2cB4EwHo+FwA6xzGWPiUYDQAAgEJlB2POVBwMfmQqjX/56mY883XN+J/vTONpv9OMP/lEyZSwPtJqkP2a8R37Nk6cONHeYnpA3vaYF4wWEfET35rfeLxPBlqX3U8XlztbRzsV7Rs7hiMu2Z3ddmKmM/X0s8/dG/HZQxunv/eLaW2DnhZLBqNNzXe2Dtrr4JFy891dcr5OyAvojCi/XQLQW1oFss4IYoVSqt5zM7vUmTp6gfuTAAAAAIBtpZMSANh2zkcAALaPczGgPgSjAQAAUKgoAGS92YrBaK/6WBq3PXz2tF9+dxqHJwer86xRMgtuYmjvxomTx9tbTA/I2xyHC3o4kiSJxzwqu+34TH9sb6WD0XootKdlMNqF2W0nZjtTTz977SeyN6CZxYjjNQ2aWyoZKnl4qrN10D6zi2k8eLLcvEemI5a3KbSv6NhUdrsEoLe0Or5PV7wWhkFV9eytaj9TPyl7jQ8AAAAAAAAAAL3DTTEAQDWC0QAAAChUdjDmTMUBq3/5jxufuJlGfODWweroLgpYWW96aPfGiaeOtbeYHpC3PQ4lxY+7NGPxRdQ39KmqsvvpwnJn62inlsFou7NX+vGZiNQv11Zy7/H85XWipvvIUsmQv7EJ20KvuOdo+XnTdPtC74rCcRZ76BgLQHmtzjumF7pTB/S6vMu0kZw7Fqr2M/UTwWgAAAAA0It07AEAbOQcCWDwOPZDzzMmC6gRwWgAAAAUKjsYc3ap2vPO54SHvOWzg9V51miWm296+KJoxjlBUCfG219QzeUGo7Xo4bgsJxjt7gpBPHXWLLkd5e13ddQoCB8aGYq4fE922/JKxMnZztTUr3YM57fVNTxwsWQw2uhEZ+ugfQ6MV/v83651WxSOUxSaBkDvanV8F4wG5eTdK7V7Z/b02QEORmt1X1ljZbD6zgAAAACg9+nTAwAAANfHAJ3kGEt/EowGAABAobLBaJPz5Z9zdjH/SVsFXPWbovCnc80OXXj2hMkTkS4N1kjhvACwoSR7+ppL92TP8ObPpJH2wS9ZlN1P5yoGGG6n5aJgtOGIfRfnt49Ptr+efrZSEKx3oqYhc0XhVOuNCUbrGQePVJt/u9Zt0bGp7HYJQG8pOvZHrJ5jr5Q9IYcBlreX7D4/e3ovXb+2W6tDyiCHxgEAAAAA2813IgBAF/TBvd0Ag6tgcI/jO/QG+ypQIwM23BwAAICqyo7vPjlTvtPryFR+23CLgKt+02qQ/XpTQxdtnHh8rH3F9IC87bFVMNolu/Pbrrtn8/XURdn9tJcGT+ftGyNDEUmSxBUZu8MawWjVzBcEDhyvcGzvpqWSx07BaL3j7orBaKMT27NtFoWfLQpGA+g7aZqWCr7spfNsqJs9O7OnzyzU81qkG1q980EOjQMAAACA2jJgFAAAAIB+0KVurqKX0dUGrBGMBgAAQKFms9x8x6bLP2dhMNqAXak2Si7fiIjpoYx0r+Pj7SumB2w2GO3xl+S3veyDFVZCTZUNRuulwdN5+8bI8Or/zxtJ4tKcwLvxST3gVSwUhH0cn+leHVWUCSiJiDg2bVvoFScqhvCdnO1QIS0UhfIJRgPoP42SYazTC52tA/pB3o1Ku8/Pnj7bQ9ev7daqL26Qlw0AAAAA9Cb3LgAAA0qiBQBn8bkA0DmOsfSnARtuDgAAQFVlA5eqhOccLQhRG7RQkbID7SMipof2bJx49OH2FdMDNhuM9mP/NH+GT98d8dIeD0cru582mhHLjd7o6FzO2Td2DJ/5e9/F2fOMT7a/nn42XzCo/kRNg9HKflac2KbwLKqr+vm/XQE0ecemiPKBfQD0jqJAzPUEo0FreVeiucFoix0rpfZaXeMP8rIBAAAAALqhN+4tAgAAAKAT9A0B9SEYDQAAgEIrJfOijlUIzzkyld9BNmghNkUBK+eaygpGGz3UvmJ6QG4wWosejsddmsSPPi2//eUfTuOWB3u347ZZIddtriAEq07yjj0j69b1lRdlz1MlqJGIheX8troGo5UNoBq0z5ReVrQdZtmuAJqibW90ImJxuXc/SwDYqOw5R6+cY8N2yvsh8LxgtJkBDv9qdUY565gDAAAAAAAA9DX34QH0J8d3AKAawWgAAAAUyguiOtepuYjGSrmZj0zlt91/PGJibnA6uxsVAq1mMoLR0ofuaWM19ZcXADaUtH7sy360uBvk/3yud7e7svtpRO+ENuS9p2Tdur50T/aKr2uYV10tFAR+nJit336RpmkslQyVPDGzOj/1t1gyeGbNtgWjtdj2nvm6pm0OoI+UDbKerxjwCYMoNxhtZ/Z13ewAB6O1Cj8f5GUDAAAAAPXle2IAAAAA+oDxEECNCEYDAACgUNnApTRdDUcr4+h0flujGfHRO3q/A+3mB9L4vtesxEXPX4nH/upKvOBdzZhf2vi+qgSjTQ1vDEaLQQtGy9k0ygSjPeHy4vbXfbp3t7uVCttR7wSjZa+P9ev6kt3Zjz0+07vrstvSNI35gm3ieA1D5laa5b9nWWz0zjY/6PKC0XYMZ0+fXtie/bxVQM5H74j4wK3dqQWAzisbxup8A1rLO3u78Pzs6bMDvF+1OtMtuoYDAAAAAGrIYFIAYGA5DwJgHdfHAJ3jGEufEowGAABAobLBaBERJ2fLzXd0qrj9jz+eRtrDnTEHD6fxLb/XjE/fHTGzGPHwqYjXfiKN//62je+pVcDKeieGH71x4vj9m66zF20lGG3X+Ul89SX57csrEbOLvbndVdlPeyW0Ie8QsH5dX5oTjHaihmFeddVYKd5+6hiMlheglcf20BsWl7OnX5aRCRoRMb3QuVqKLJXY/l72wQpplQDUWpnjfoSQIigj7xpvz87s6ZPzEStVLnb7SKu3PZcRvA8AAAAAAADQP3wnCgCwbXp4TCfQfwSjAQAAUKjKGNTZxXLzveeLxU/6hfsjvuFlzbjnSG91pDWbabzovc148kuyA1HefmMah46e/Z4aFYLRxkeu3Dhx4likjYopQT1sK8FoERH/7puKZ/ziAxULqol+DEYrs67zgtHqGOZVV/M5YVRr6hgqVjagZM3hFmGc1ENe4F3efl7nYLTbR6OnA14BOKPseYeQIti8fRdnT19pRhyb7m4tddFskbPbK9f1AAAAADBYBuS7At+FAwAAsGmuKQGAagSjAQAAUKjVYMz1ZlsMzEzTNK6+sdwT3jUe8cTfasZd473T8f3mz6bxmmuL6/3ArecEo1VYvuMj+zZOTNOIU0fKP0mPW8lZXkMlezhe9K+SeHLGYlzzI39aYYXUyEAFo61b15dcmD2PYLTyFloEo00tRCw16nUcXqoQKBkR8amD9aqfs93+cBpv+kwzRiey23OD0UqGsbbbcsntr46hggBUV/a8o1XYLJB/W+Nj9uY/ZiznHLHftbqC6ZXregAAAAAAAGDQuX8TgPV8LkBP6FIwftHLyObfDAuN/iQYDQAAgEJVApdmC0JK5pfS+I9/2YyfflO1Tpavf2kz/uLTvRFW9dbPtX5vnzpw9jxlA1YiIsaygtEiIo6Pl3+SHpcblpWUe/z+vUnc8Ov53SEzixGLy73XEdiXwWh5IXjr1vWlu7NX/Km5+oV51VWrYLSIiJOzna+jiqVGtfk/c49toa5e/uFmPO13mvHf3pq/ji7L2c+n5jtVVbGyATljk52tA4DuKHu91ivn2LCd8m5UumxPEiM5l+l54bn9rtU1vmMOAAAAAPSaXrtvodfqBQAAAKB99A0B9SEYDQAAgEJVApee8+ZmfOKu7Ae8+6Y0/vbmzdXwC1enGwLF6iZN07h9tPV8dx0++9+NSsFo+7MbTghGKxuMFhGxZ2cSP/zU/PavHKtWU6ekaRp/c0Mznv2mZvyv9zbjy2P5+0BeiFiWXhlAXWZd77s4//GHarIe626+RDDa8ZnO11HFYsVgtGPTnamDrbnlwTR++0OtP9sv2Z09fXqhzQWVVDZ0cfRUhwsBoCvKBrKWOacCsg0P5V/bjU3Uuy+oU1r92qVjDgAAAAAAANDXWn1pCkBvcnwHACoSjAYAAEChlQqBS8dnIn7wj5vx5s9sfNB7v7i1Duxn/FEzvnB/fTvBj0xFTM63nu/+ExELy2feR6PC8h0b2ZfdcOJw9vQ+lBcAViUYLSLil34gv0vkrprkzD3/HWk8581pvP3GNP7w2jS+/RXNuOHe7H2gSoDh7FJ996P1ygSjfc1l+ev+wODsFluy0IPBaGUDStZML3amDrbmr69PSx27LtuTPX1+OWJqvvvHs+WSgaajAxriAdBvyp539Er4MGyXtMVNjVc9Knv6+GQHiukBrc6THXMAAAAAoIYM7gYAAACgH+jnAmpEMBoAAACFqgQuRaz2fb3kg2k0Vs5+4Edu33otL3xXhRSxNpiaT+M3P9CMr/mNlfi231vJDHxbUzaEKU0j7j5y5t9lA1YiImaG98T00O6Nz3m8JkleXVAmLKuM731S/gPeVLCeu+Whk2n8xafPfrMzixH//JXNzAHlVfbT6YWtVtcdee8pWbfqzt+RxD+5LHu+A4d1xJcxXyIY7UTdgtEqHDcjemebHzR/dV25ffQJV+S33fZwm4qpoGxAztiAhngA9Juy59nzQoqgUNF9UklEXLaxqyMiIiZKBND3I8FoAAAAANBnDCYFAAaV8yAAzuJzAaBjnHvTpwSjAQAAUKhqMFpExNhExF0Vs7re+d9bJ1tdf2g1MKpbnv+ONH7/79O473jETQ9E/Ne3pvHnn8oOzbrvePm6Hjp55u9zA+RaGRvZt3HiCcFow5vo4fj335Q9/Zo7I+45sr2dgdd+Of/1//AfBjsY7dwQvCfmhCbde6y99fSrxRLBlfGueQAAIABJREFUaMdn6tU5Xqbm9aYGNEyhzmYX01gouR6fcEUSe3dlt938YPe3zbLBfPc5BgH0hbLn2UKKoFjRrpQkEXt3ZfcJTc51pp66a3V/kmMOAAAAAAAA0N/qdd8qAMBAEbAF1IhgNAAAAAptJhgtIuKuw2ceOL9U/CRXXhTxY9+UxA8+pfXzfvWvNePoVOc72G57KI233bDxdf7i09mvPTpR/rkn5888RyM7Zy3X6Mj+jROPC0Y7NyyrjCfty3/QE3+rGc3Nbvxt8PEv57f9xvvSSM/pZK5S6lSvBKPl7BvnruvHXpK9HscndMSXUWbbOTHb+TqqKBtMtWZmMTbsM2yvsQqfmRfsiHj6Y7PbbnmwPfVUsVxy+zu4zQGbALRH2VOI+YrBrcAZSRJx0QXZbRNzg3lO1eo6bV4wGgAAAACwbQaz3xYAAIB2cE0JAFQjGA0AAIBCeeFErdy1Lqvr5R8p7rz+058cih0jSfzJfxqKy/e0fu6vf+mZ0Kob703j6hub8fn72ttB/r8/nv18d41HzC1ubKsS8jI5f+bvsgEra8ZH9m2ceOJwtSfpYbnBaJvo4XjylcXtb7hu+7502b0zv63RjJheF26WpmmlH+OY7pFgtLy3dG4w2lV7s+erElY4yMoEox2f6XwdVSw1qs3fTCPmBAfUSpXPzPNHIv7pY7MDEG9+oPvH6bLb38HDAvmA7piYW70e+sAtaZyYcdxpt7JLVEgRFCs6LUoiYu+u7LaJ+ezp/a7VaWSrHyAAAAAAALaDfjsAAAAA+kCXxkEUvYqeNmDNyHYXAAAAQL2VCc3JcveRM39/+Lb8J7npxUPx9K9eDTx54pVJ3PN7Q/Etv9uMe47mP/eJ2Yin/24zvn5/Eu/4/Npzp/Gz35nEG56dRJJkB6hUce2d+TWfmI3Ydf7Z08Ymyi+o9QN7GxWD58aygtHG7o200YhkpP8v8/OC+s4NyyrjyfuSKOoqffsNafzcd1d/3naYaRFednI24qILVv+u2t883SMDy8uG4OUFo41NtreeflVm+znR48FoEauBgBee33o+umNssvyB6/wdEU9/bHbbXYcjlhppnDey9c/9spZKBpqemos4Nh1x+UWdrQcYbDfdn8Yz/qh5Ovg2jf17Iz74vDPXV2xd2evhOSFFUKgwGC2J2HtBdtvEXGfqqbtWxx7BzwAAAADQa3yPAAAMKudBAKzjR6cBOsgxlv401HoWAAAABtlmg9EeOnnmgQsFITbnDtrfszOJO142FM/65uLB/F96ONaFoq1602fSGH5uM37qr5rxl//YjJXNFh8RiwU1H88ICRqbKP/ck+uCqZZLBqysGd+REYw2Mxlx+/XVnmgL0mYz0k/9bTRf+dxovv43Iz1xuGuvnRuWtYnsh6fsizivIEvus4ci0m364qVVaNCpdYPDq27m0wu90dFZNgRv/97slX9sOmJxuTfe63Yqs/1MztdrORYdn/NMtQgbpLtGK3xmnj8S8dSrsvfzlWbE4S6HIK5UCDQ9eKT1PABb8ew3rYWirRqbiPif76yYvEyhspcD0841oFCrXWnvruzpEz0S7N1ugtEAAAAAgG1loDoAsO2cjwD0rqLBPY7v0Bvsq0B9CEYDAACg0GazxdaHnkzmDGT9hv3Z03eMJPGu5w7FXz57E2lXsRqY9j/ensazXt/cdLBVUfBJVjDagyfLP/f65dGoGIw2dt5jMqen13+k2hNtQfrq/xHpS/6/iI+8JeLtfxDpzzw90gcOdOW12xmMtuv8JH7+e4of+MHbqj9vO7TanrYUjLZYvZ7tUHZdX7U3/zkOT7Wvnn5VZvuZqlkYwdJKdtEjBT2dwkrqpUqY6Pkjxfv5eJeD0aoccw8c9oUg0DljE2lmAONnD0UcOur40y5lj/sTc63ngUFW1DWTJBF7L8i+Nh/UfatVV5ZgNAAAAACoI9/PAAAAANAHhOYDNSIYDQAAgEJ5A8Ff8cwk/sPT8x83NhGPhJLlBaP9/jOLL0v/278cim99XIkic3zg1ojh5zbj6168Ei96bzMWlst1zDVW0pgqCNE5MXP285yaTePodPm61ocMNQoC2LJ8cs8zshs+86FNh8BVkX78XauBaOtNnoj0Hf+7468d0d5gtIiIVz4ziZ/9zvwH/9hfNOM11zajudmEwE2YW0xbB6PNnvm7KMQvS91CrvKUXdf7CwKTRiuELw2qUsFoNQsVy9vm9+7Kf0yvbPeDYrzCvrlzx+q63bkju32s28FoFY65Bw93rg6AovOcG+5zQ0K7lL3EmnCuAYWKdqUk8s/lpxaiq9fjddHqLQtGAwAAAAAAAHrD4H3fC0ARnwsAneMYS38SjAYAAEChvACaS3dHvPvnhuOzv5p9abnYiDgxE7GwnMZSI/s59l7Q+vWvfcHWL10PHYt4zbVp/ItXNuPOsTS+9HAaXx5Lo7GS3eFzcjZz8iOOz5z974NHqtUzOXfmdZdXqj32ZLonjg1furHh4UMRDx6s9mQlpdOnIr371khv+0ykv/2c7Jk+97GOvPa5csOyNrmZnDeSxBufMxSX7cmf50XvTePlH+le5+A9R1sHMJxatw1VHSM+XbOQqzxlg9EuviBi13nZ844JRmupF4PR8mo+byRi9/nZbZ+/Xwd/nYxOlF8fO4YjkiSJ/Rdnt49VeK52qPJqD7UIuQTYigtyAiMjIu6peH1CvrLn2hNzna0D+lmS5AejpWnrPpp+1KpPYH65O3UAAAAAAO3ingUAAAAAekTZXxUG6ALBaAAAABRqFU702EfnP3Z0ImJyPr/94hLBaBfvSmL8Ne25fL3loYinvqwZ3/Q7zfiGlzXj0hc2422f25j8dnS6+HmOnROM9qWHq3X4TaxbJo2KwWgREa999POyG268tvqTFUhnp6L50p+O9IeujPRn/1mkv/CM/JlPHo50uvMpVM2coL5zw7Kq+p4nFD/Bb38oja8c7U7H7oHDrV/n1LrgharBaHULucqT976S5Nx/J7F/b/a8VcKXBlXePrXeVMFxfDvk1TycRDztMdltH73dtlAnZUMLLzx/dR+PiNiXE4w2PtmmokqqcsydXrDdAZ1TdDz6ytHu1dHvyt7bcWouInUjCOQq2j2SiLjyovz2sS6f79VBq3POuaXu1AEAAAAAsJHvQwCALnAPBkB/cnwHACoSjAYAAEChVkFUV1yUH0rVKhht765yNVxxURK3/Fb7L2GnFiJ+5q/T+C9vacavva8ZP/1XzXjFR5vxjb9dnBT0wImz//33FQN3jq0LXmvkvNSjVk7mPv59l/5k5vT03jsr1ZEnTdNIb70u0n99WcQn31P+gQ/e3ZbXL9IqqG+zXvnjrZ/gm3+3RIJUG5y7fWU5OXvm7zLBVuv1SmhDlRC8q3KC0cqGLw2yMiFPdQvTyz0ODEX826dl78u3j/bGdt8pU/NpvOemND54axonZ7d3OaRpWjrc4sLzzvy9f2/2uu32fl7lmDtds30H6C9Fn+GHpwb3M6/dygZirjQjZhc7Wwv0ssJgtKS4b2kQr+sEowEAAABADxrgexIAAADgDNfH0PP0cwE1IhgNAACAQnmDMYdPX1GODCdx5cXZ8zx8Ki0Mebr4gvJ1PO2rkrjrdzpzGfuW69N49cfSuPrzabz4/a077w4ePjNPmqbx6YPZ8331JdnTRyfOBPQsr2TP800Lt+W/fjw2Dg9fsbHhgZxCKkiXlyL9tWdG+vzvr/7gBw5s+fVb6VQw2uMvTeI3fqj4SaYXIg6Md75zd7TEoO9Tc2f+LhvWsGZhuTdCG6qs67oEJvWiMpvPwnLEUqM+X2ysFITmffs/yd4WTs1FHJ/pYFE1dsuDaTz+15vxE29oxr//i9Xwz5sf2L71eXJ2dZsqY/f5Z/7elxOAOD7Z3fdS5Zhbt1BBoL/kfR5GnB2iy9ZU+ZSZKAgFh0HXal8aGU7iiouy20Yn6nMt0i2t7iubWxrs4GcAAAAA6Dn68+gE2xUAvcDnFQBn8bkAnFF0qug0chMsNPqUYDQAAAAKlQknekxOWMnoRMSL3589Yj9Jzg48KeOJVyZxzQuG4pILqz2u3Q4eOTMAdXYxP/jkZ78zO6Bnbili6vSg+UZOoMGOtBF//+C/za1hdMf+jRMfOFB5YOyN96bxvKub8aI3jMdtr35NpN+3J+L6v6/0HGvSB7cezNZKUSDSVv3WDyfxU/+s+Ime8tJmfOVotWX8mXvS+J/vbMYvvrMZ193T+rFjJQZ9T2whGC0i4lgPBETlva2hjN6s/TnHoLffmBos3kKzIFRlvakaBX0UfS496cr8xx043Jl66u5n3tw8K0xxbCLiF99ZcsV3wN1Hys974brzhP05Iazjk1urp6oqx9xpwWhABxUdj9Yf99masudKEWefowNnK7osS05fhudd1w1i4HWZc86yYcMAAAAAANW51wYA2G7ORwAAto1xWECNCEYDAACgUJlgtKselT3P6ETEoWPZbRftjBjaRJrVDzwliftfORSf/pWh+MDPD8UdLxuKpdcNxe0vW/33Hz6rDQlZLUzMRRybXv37eEHA1Lc/Pr+W0dMDexsr2e0jaSO+f/aTuY8/NnzpxonTpyLuvyu/oHO88bpmfMcrm/G6T6fxmpsuj2+/+3/Eh3f/m9KP3+CBA5t/bEm522MbejjO35HEW/9LEh95fvGTffPvNuOWB8t18r79xmZ8z2ua8aefTOPPPpnG976mGW/9XHG6wmiJQd+nZs+8/maC0Y5OVX9Mt+WFUGQdNq7KGUAfEfGiv9UhX6Ts9pMXALkd8moeHoq4bE/E3l3Z7YeODd62MD6Rxh1jG6dffyjivuPbszwOHin/uuv39305wWjdDsoQjAbURVFg16nZ7tXR76p8Wp603CFX0b60dsqXd1031uUg3Dooc1/ZvGA0AAAAAKiZwbsnAQAAACoRtgQAVCQYDQAAgEJlgqj2780OABs7lUaSkw02Ob/5mi48P4nvekISP/pNSTxlfxIjw0l8/f7Vf7/wB4big78wFE+8YvPPX8bBI6v/LwpGe+pj8tvWglyW84LRohFDkcbljSOZ7cd3XJb9wM98OP9F1xk9lcZz33b2yl0c2hkvveylm79Nr0Io22blB/W1JxAvSZL4N09N4geenD/P9MJqONqx6eIl1VhJ4zfel55VczONePH702isZD82TdO44d7WdZ6aO/s5qzpWsN3WRZlQxjX7C4LR/vDaNC594Uo86/UrcefY2U96dCqN513djK9/6Up856tW4mN3DN4Xbc2SXy72QjDaULK6D39VTljnIIbEPHgyv+2Ge7dnez9wuPy8jXWhP3nnGsdnIpYa3XsvlYLRFjtXB0DO6WRErH5up24gaosqi3F80jKHPEX70trl/L6CvqVBU+acc26p83UAAAAAAAAAAEA1RWN7Bu8+IOhN9tXeZL3RnwSjAQAAUKjZzJ6+PojqqpxQoodOnR3gtN6L/nV7gqyy/Mg3JnHXy4ej+YbhuOHXO3Ppe/DwamdRXjDa8FDEZbsjLtuT3X7fidXHN3KW7450OSIiLmscz2w/9phvzZyeHrw5p+KzfdWvZr/wbTu/McZH9mU/KEkiedutkfzaX8Z8sjPuPO/JMZ/sPNP+8KFIx+4r9fqbVSUsayv+/KdabzdX/HIzphfyOw3vGl/dB841OhFx51j2Y/7rW8t1Qp5cF/CUt48WaRXqVgdV1vVVOQPo15ycjfjbmyO+9zXNODGz+sTNZho/9hfNeN2n07hrPOL6QxE/9Npm/OPB+i+bdiob8jS1hTDLdmu1bTxqV3Z73udRPytavw8VhKZ10v3ZH2uZVs4KRsuf74ETm6+nqirH3KVGxOLyYB1TgO5pdTzaShA1Z5QNkY1YPc8Hqlu7msvrWxqb7FoptSEYDQAAAAD6je+N6QTbFQC9wOcVAAAAmycYDQAAgEJlwonyBq/eORaRN478J76lc8Fo633b45P44m8OxX94+tnT9+yMeNpjih/7A0/Obzt4ZPX/eQFTl+6OGBpK4msuy378Pacf31jJbh9JG6vPs5KdIHP8im/IfuCDB7Onr/PnnypOUTh43tdtnPjD/38k7zoQjcc8KX5u9JlxyRPG42lf88V41BOPxIsu/71oxPDqfJ/9cMvX34r8oL72vs7XXp7EcIlek4t/sRlvvC67qDvH8r/MvyOjrbGSxntuKncDwPqAp6IB0xeenz392HSpl9lWVYLRigKT1js+E/Hqa1af+IXvTuNz926c53v/sBkLAxRkVDoYbaGzdVSx0uI4sDcnGG1iAANiZhfz2+7vYpjYeuOT5fev9eGhj7skIsk51q99JndD1aPDdI32HaC/tPoM/+X3pJFWCPUiW5VFKBgN8hXtS2vnePsvzm4fzQgc73dljj2C0QAAAACAbeH7JwCgK5xzAPQnx3foCfp/gBoRjAYAAEChVgE0ERFXPap6KtWluzdZ0Cb808cm8e6fG47mG878N/na4bjlJcMx9dqh+Pr9Z8//378rieYbhuOaFw7Hs789+709fHL1/8dnsl9z7f193eXZj7/nyGon4XJeMFqsBaNlJ9ccP39/5vS478uRNhrZbRExvZDG899R3EF593lPOOvfyRuvj6Ffe30k+x4Xv/ORNN5404WxNLSauNVIdsQfXfLC2Pnk6fibi34yZq77h8Ln3qoqYVlbVfYpn/u2NF7+4WYsNc4u7tCx/Mfcm9F26FjETEGI0XoT8xHN0wujKBTjij3Z04/lbLd1kve+soKR8gbQZ/mDa9I4MpXGn34yf8G96G8HpxM/L2zwXFPz9VkmuceB0z2de3dl770Tsx0qqMaKwhLuPrI963R8svy868NDLzgvia9+dPZ8Bw53772UDRNcM13yuA5QVavj0V9/No3339KdWvpZleP+uGA0yFW0Kz0SjLY3+zz+yPRqkPggKXPs2UowWrOZxs0PpPH2G5tx77HBWrYAAAAA0Dn62gAAAADoA4LRgBoRjAYAAEChMkFUV+2t/ryXXLi5etpt984kbv7NoXjzf07iFc9M4toXDMXrf/rM5fL+nPc2Nrm6YI5OZ7c/Eox2RXb7PUdX/58XPLcjXQ03u2zleGb7fSuXZT8wIuJtr8xtesefXZv/uNMOnvd1Z/7xr34qkid98yP//Jsb8js3//NVb4qLF94fX7izQupNRXnb43AHeji++wmt51nz0g+m8V2vbsaJmTMFrq3jLDfdv/GN3DVe/vXSNGJqYfXvwmC0i7KnH8/ZbuskL7ArKwTv/B1J7Dqv/HO/4qPFnfTvuDEdmIH3Zd/l5HxHy6gkb9sYPr1t7N2V3T5Ro3C3bpldyn/PBw53sZDT0jSNsQqhMY1z1vUTr8ye72AX30vZMME1ddp3gP6Sdx2x3is/WvGgxQZVzh5GJwbvXAPKKnOfVF7fUppWC9ftB2WOJnObDOBdaqTxk29M41t+rxnPflMaX/vips8LAAAAAIBeZJAyAD3B5xUA67iOAeggx1j6k2A0AAAACuUNuF8fRFU1GG3XeRG7zs9IN9omO0aS+M//fCh+9V8Pxfc/5ey69l2c/Zi1QbmHjmZ3Gl150erzPO6S7MefmF39/7mhL2tGTgejPXb5wcz260YvjMkdj85sS9/88kgXNyaxpIfuiA/e3Mh+wXVe9+jnrv7xHf8mkl/6k0emT86l8cCJlg+P//aW5VgpSuvagjJBfe3ynO+o9qSfvz/isl9qPhJ6dmw6fxn8w10Rc4tntx84XG2ZnZpb/f9mgtGKaquLquv6JT9Sfn299hPF7//EbMT1h0o/XU8ru6uuBfHVQe62cfpzae8F2e2nZjtTT53NFoQljE1ETHU5LG56IWJuqfz8556DfO3l2fv56KnuvY+qH2/3HutMHQBljkc3PRAxJqxrS6oEYg7iuQaUVXQkWjvD+6rsLo6IKA4e70dljj3zy5t77r/+bBrv+eLZa+Q33p/GrQ/5vAAAAACAzumx/jcD1fuD9QgAAABsRpf6FIpeRq8GsEYwGgAAAIVyg7uGz/y9e2cSF+cE0WS5dPfWauqmfff+Y+b08Yk00jSNA4ezH/fEK1f/f/HE/Zntk9OryTDLjeyuupFYDTB7xuynMtuXV5L4/FN+JqfqiLjpkxsmNT/05rj+gn+W/5i1507Oi9c+//5IXvX+SHbteaTOx/16uVSAL00+Km64t9SslbUKRGqnH396sqlt9dt+vxnvvyWNibn8eRaWI24+J/PuYM62lOfk6eCFvPDCiIjLL8oOETo2U+21tkPVdf3c72pvOt4Hbh2MbvSyYR9TG7MWt03eNr8WmveoC7PbJ2r0HrpltkUI2aEuh3bdMVZt/m993Nn/zgtiHZvcVDmbUjUYrWroJUBZZY9HH7ndcWgrqiy9UwXn/zDoim5gSk6fx+/dlcRle7Lnee7bKqQU9oEyx/jZxc0d3//8U9mP+5sbfF4A0H+SJBlOkuSJSZL8WJIkz0uS5DeSJPnlJEn+S5Ik350kSU5PYm9IkuTx697bryZJ8pzT72vHdtcGAAAAALAlAj4B+pTjOwBQjWA0AAAACuUF0Iycc0WZF1aSpVeC0dLlpbjymtdmts0uJXFquhF3H81+7JNOB6Nd9Km3ZrYvpOfFwvX/kBs8tyNdjoiIpy/cEpc1sl/k5sf/WH7x99911j/Tr3wpjnzgvTEx/Kj8x6zz65++PGYWV/+eXUxj1y80Y7JCqNAvvfvsN3btnWl832tWYv+vrMR3vXol3n7j5gY154U4DbU3EysiInadn8T//V9D8R3/pPpjf/x1zfhci3C4c8Ny3vmFal/ynDodjFY0YPqKi7KnH52u9FLbIu+ehrx1ffGuJH7337dvQ/jjj6fRrJqA9P/Yu+/wKKr9DeDvmU2DkEAgkFAEpEvRaxdFRcEuqFy71+5Pr+1i16tXxYINe+/itVwLKmJBEQuCqKACSgu9hkAI6SFt5/v7YwnZ7M6ZndnsbjbJ+3keHjIzZ86cnZ2+e95thpy+xJLK6LbDDW1oXl2ggiaoszWGlVSECEbLj/GxYPpid/vUdaMbXmx001xrbC4Mt0XuuT0srNganXYQEdmF4/r78s+Wfz0TTW6O+60xhJUoEvzv4uqepQRanQ/kl7ae45mTV+rkGc3c1YLjnvA9i8m60Yv97vNqw4of/6b1rF8iImrZlFI9lVLXKaU+B7ADwHIAHwN4FsBEAI8CeA3ADwCKlVLTlVInhbksaeS/3mEu93Sl1FwAa/xe20MA3tz1uvKUUs8rpTLDqZ+IiIiIiMLE8A4iIiIiIiIiImoR+JyLiOIHg9GIiIiIiIhIyzRF2xG8NQSjYfVf6LZjiXbyrIdfQnWt9bSB2QoigvZLvtPOX3T7xaiptV7BHvFVrAAMrlpmWeaOnAMg8D1uLDXaoVIl754m63Pq/96yDnLxgTi7x1vatgSqqgXe+kWwNFcwbILpOHihzvx1vg64UlGK7xaU4finTPywAsgrAeasAs5/TTB5rq/SbSWCTYXOHpqGCkSKtEFdFX66zYPK5w2MHxXZhSzPq/97xVZBlWZb0qkLedKFxQFAtiYYLdZhSOEI570++8DIvkenPR9egF9z4jTso7QZBKN5dp2XOqZabwfbSqA95rZU5VX207eXxXZ9LN5kvbweGUB6SsNxh/YFRvRrOK57B+v3tqAcqKqJzWtxG4y2vqB1bXNEFDtOj0e/b3Bf945ywbItgjX5AmnlnXjcvPzyqtZ3rUHklN2+pPwu8QZk6e/pPlvUevYvu/v8OqGCnxduFBw5ycQ3y3zPYvJLgYUbI9M+IiKieKWUehfAegBPADgJgOYJ+W4eAMcD+Fwp9ZlSKivKTWwUpVQ7pdT/AHwIYLhN0Y4ArgSwWCl1XEwaR0RERERE9lr55y0ULdyuiIioGeB1EBERNcDzAhFR1PDam1ooBqMRERERERGRll0YlicwGC3DeSBRp3ZRSrGKtPU56FGzGQlSYzl52kp9wtuALAAFW9C+PFdbpthIR81q69CzBKlPyRpUvUJbx9OHTka/vsuQMXAbevdbgeczrvBNWP0XAEBEsPa8YzC89yzMaTtCW4+Va94VDJ1gYl2Bq9l2G/GwiaoTe2D0C20sp//zbcH+93mRfZOJnrea6He7F7+ssX8IF+tgtDpJCQqPn6nwzDkKyQmRqTMnr/7FPPOd+4ePhRW+eexCMbLSrVdMRTVQURXfDzzDea97dYpsGz77EyiuiO/11FhOQ1VKdsbPegi1bfTWbAe1JrA2zONZc7Ruu+CBL+3ft+1lMWrMLpuLrMdfOkLhh5sNXHyYwuH9gdtPVPhqvIEET8MdvptNCOuHv8coGM1lXmJBjNcxEbUeTo9HmwqBskpnx8jNhYKRk7zIvN7EkLtN9LvDRPZNJj6K0TE2HrkNxCzeGZ12EDV3druSfzDayXvrb/i+Wtx6jkVOXmlRiOPNxC/ch9wTERG1AAM04zcD+AHA+wA+ArAAQOCZ8mQAPyqlsqPWukZQSnnga//ZAZPyAcyALyztDzS8lMgC8KlSyt2HQ0RERERERNRCtJ7n6kRE1BLxPEZE1CIxtIeoeeC+SkRxJEJdeYmIiIiIiKglqrXpQJngaThsF1YSqJM+TyyuyIYcJKIW/apXY3nyoKDpn6adbDlfz45AarKCLM5Be7NEW3+xpz1qt+cBqYODpiWiPhhtSNVSbR03Fp4JJPn+3p7QGf/KfgKDqpbj6BWzIF+8CdM0cVzPL7A6qa+2jmhK7b9dO626FliwsX54zXZg9OMmNjxsoGNqcGdosXmwGu1gNABQSuHqoxSuPgq44i0Tr8xu3IPe5Xl+f2/R19W7EyzD6QorfP/bB6Ppp+WXAb2SQzSyCYUTjOYxFIZ2Axbr8whd+2YZcPr+kasv3jgORquMbjvc0HXur9s2+mf5whWsDhnLt+wKrmzhRAQnPRM6BSHh++xxAAAgAElEQVTWwWi5xdbju3cA/raHwmsX2h/M98jwBbNabQP3fS4472CBUtE9Ibj9jK+gPDrtICJyE9h1w4eC/XrazyACXP1ucJn8UuCMl0wsusvAsB7NJOA6gtwe94t2Aplp0WkLUXPmdF86aZh+2sptkWlLc+DkGF9UoZ9WWSOYvtjdMmPxXIWIiCjGFgB4HcB0EVkdOFEp1R3AXQAu9xs9AMCHSqkjxO4DCWu/Iji0LJRNLso+BOBEv+EaADcAeFlEqutGKqUGA3gVwPBdo5IBTFVKDRORLS7bR0RERERErrSWDqOt5XUSERERERERERERUVNjMBoRERERERFp6cJnACDBaDjc3UUwWmYzCUbD+hwAwMDqFZbBaEWeDMvZBrYrAZABufs8pJslUGJClBFUrthIRw0SLetIkPpgtHElU/Gv7CccN/uBzFtx9IZZkIcux+2d78XqzKYJRQNg+brtVFQDnywQXDoiuEeuXcdgw91iGu2l8w38fT/BN8sEj80I7wt/a7f7OiunJCptWBAA9O1sHYy2Y1fYTtjBaKVAr07O2toUtMFoId7rsw9S+M/UyH0J87vlgtP3b7k9xM3Q2VkAgJKd0W2HG6FC81ISFfbs5AtbDJSzVQC03Pezzh1TBcscdHOMZTCa1xTkaYPRnL0n7VIURu8FfL0keNrKbcBv64EDe4ffRid0R5fMdtbrc0e5L6gu2oFtRNT62N2rBXq1kYG+ADD5Z8FjZ7S+Y5mbADrAPqiIqDWz25X8jywJHl9Y7qVvBs9hd9/c0ji5T7M73sxf53u+4oYnxs9ViIiIokQAfAFggoj8ZltQZDOAK5RSiwA85zdpBICzALznctmVIrLO5TyOKKX6ABgfMPoMEfk0sKyILFVKjQLwLerD0ToBuBvAP6PRPiIiIiIiImoqDKkjIiIiIqLmhvcxRM2C698Ro/jA941aJn69lYiIiIiIiLRq7YLRPA2HnYaaAM0oGG2DLxhtcNUyV7P1Xv89ZPVioLgABgRpZqlluRJPe9Qq68zyRKnZ/Xe2d6ur5f+QOhIFno5YnjQAkzJvCln+2XPDDzi4vNM8vLP5grDnt7I8z3q8XcdgowkyGo4dojDpdAPmyx7ceKz7BpgCrNrm+3uLpoP3xNMUMtpaTyusqK9Hp2OqvnNzvvVmGTd073eoNX3dKIVx+0auHb+uadkPhp2+uuJmEIzmv6336WxdZmtJ5NsTb0p2Ch6a7uydLYhhMNrWEv17181FuOqEMfpH2n9uiv7+qjs2dU6zHl9V6z6UgojICbeBXY01e0XLvibScfvdDgajEVmz25cC82P3yLC+68svBapqWsexyMmrLKrQl1qS6349+T9XWbhRcOenJm79yMTc1a1jnRMRUYtxhoicHCoUzZ+IPA/go4DR50e2WY12N9DgV3YmW4Wi1RGRnQAuAuD/VOrSXQFrRERERETUJJrbc7bm1l6yxE7MREQUF3g+IiIiImp2YvRMwW4pfKxBRHUYjEZERERERERatV79tISAO8ruGc7rbQ7BaOL1AptWAQCOLv/e1bzpO1ZDJk/cPdzetE7iKTQ6oEYlWk5LQG2D4TOHukslmtvmEFyV/XTIcvNuN/CPg92Her1xkcK6Bw28cF0PHLRzvuv57eQWWY/32jzUbIpgNH+TTjdw0aHuGzFnlWBntWgDFIb3UeiQal1vYblvhdgFxiUY+v0tvyy+nxLrwj5CvddtkxU+/KeBnPsMfHiFgcP6OlveUQOtxy/YWL+uWyKnoSolldFthxu6bd5/28hsZ72h7CiPQoPizL732RwUAoQTmBAu3bEdcBeMdnAfhcFdraflaII1I0m3z3S2ubaJZQAdEbUeZow/8f9tPVAQ59eP0eD2FRfFUZgsUTyxDUYLGLZ7vpTXCoKOAWfHeLsgRl3gvJ26H0CY/pfgkAdNTPxCMOlrwRGPmHj7F+f3GERERE1JRNaFOetzAcNHNbIpEaOUagPg9IDRD4eaT0RWAJjqNyoBwLkRbBoRERERERERERFRFLW+76gQEbUOPL4TERGROwxGIyIiIiIiIq1am36PnoA7yh4ugtG6d2jiFCsn8tYBNdUAgBEVc5FsOk8FSjPLgB8+3j3cuXa79SISslBupFpOSzUb9nDtlObuFv60Pabgx9QjbMu8f7mBA3orpLdRePzM0O+JUsBhfYFl9xq48FADPTspqKw90O3Y41y1LZTNhdYfdtgFgDV1MBoAvPgPhRuPVUhLcT7PtIWCLcX66V3b64PN6oJ27IKtDKUP69lW6qyNTUUbjObgzVZKoX+Wwt/3V7jQYWDdtUfr97GRj7bcTuB2+5W/kjgK+dBvG/V/d7Q+tLbYQJf1BYJzXzFhXO7FWutTjqWlW4A1+bFZJ7pgtEQP0Enzfukc0Nt6v87Ji/5r0W1/dqGvO2xCK5qaiOD9+SZGPOzFgRO9eGi6icoad+vx7V9MHPWob/67p5motUsyJaKIcRpuGklPfdv69m+367msqvWtI6LGUgGXdt3a68vahe22JE6yLwttrjHDuS727HofbvvYRLVfVr8pwM1TBGZTnHiIiIhiZ0HAcBullIso/6g6DkBbv+GfRWS5w3nfCBgeF5kmERERERGRpRj/qA0REREREREREVF08DkXEcWPhKZuABEREREREcUvu2C0hIAMoc7tfOEmNd7Q9Q7Kbly7YmJ9zu4/E1GLftWrsSRliKNZ070lDYaza/Msy+UlZKPESLeuw2xYR6f2kbuFVxBUveBBgqe+9/H4UQpf/iWYuSy4/ONnKpxzkEK7ZCA1OTiMJuXqe9F5fD7yEzpHpH2bNR2dbQPA4iD6PSlBYdLpCg+PE/y4Ejj6sdCJU9/lAH9t1k+3C0bb7jQYLc16Wn5zDUZzGYJ34jCFUA/lrxqpsH8v/fS/NgM/rxYM7xsHCXwR5rRv+84aoKZWkJjQ9OvAq9m1/LeNTpr9Zkd55NvT1IorBIc8aGJrSeiyVn5bL+jTOfrv6+Yi642tWwdngYf+BmRZj8/Z6rZV7un2mY7tFJQSy++6by4E/rZHdNvl1M5qgaF8+0uNF/jgd8Elk+sb/ft6wep84LEzgLQUX9CknVdnm7j8rYbzr80H/ntp0x8riFo63fkwmuasbH1fdHDbh6m8KjrtIGru7HalwMuN9DZAarL1/rSuoGXelwVycp9WZBNevWyL+2V6DCCvWCyfUWwtAeauBkb0d18vERFRM1FrMS4p5q2wdnzA8A8u5p0N32ur+4BpX6VUlojE4CkaERERERERRR3D+IiIqFng+YqIiPzwPoaIKIp4jKWWicFoREREREREpGXX2T7B03DYMBS6tgc27LCvs3Ma0KldM+jEuiGnwWD/6lWOg9HSzLIGw101wWhbErJRYlinVqV7G6ZWdUpPQKQeUOWPX4EEz+AG45RS+PRqAxO/FMxcKijeCfTtDFxxpIEx+9i/XyotA8clfY23zdERad/mIusAplABYPHCMBRGDgQW3mVg4hcmlsxfjUJvW2xJ7BpUtroWeHKm9Y7WOQ1Ib6OQ2c76hTsKRjOAzmnWwWDxHoym+8zL7XvdrYPCwCz7wKRnzvFVmp4ClFRal7nzUxMzb/BYT2zGnAajAUBpFdAxDp4m6trs8QtI7JRqXaagBQajPfeDhB2KBgA51qeoiMstth7frb37ugZlWx/XVucD1bWCpCgG+JmaDTDRA+yRYX0dlLNVcBKa9kQlIpj4peCuT0Pv9K/NEbw2R3BAL+CZcwwc3Eff9qe/Da7v3XmCh/8u6Nohjk7ORC2Q7nzYJQ244kiFb5YKCsM47wmAFZrrppXb3NfX3Lm5VgKAMgajEVmy+05j4BWDUgp9Mq1DxHXHp5bGyXdAiyp813iBQbblVRLy2ZwVjwEU24Strd8hGNHE17RERERR1C9guBbA9qZoiIWhAcM/O51RRMqVUn8B2Ndv9BAAreSqioiIiIgonrBTIjUFbndERNSMMTiHiIiIqOnYXYvxOo2IYiwOujISERERERFRvKr16qclGMHjuncIHYw2KLtxbYoVWbO0wfCA6hWO500zGyZOZWuC0TYndkOpJ11Th1/KTUpb7NHROgTGjWSzEgsGv4COQ26ynN4mSeH+UxXuP9V93bdf3g9vv9io5u1WWQPMXgUcPajh+OYSjFZn7x4K751TDHl7GEwo9O63ErmJ3YLKzdJsWnX7SmY76/d+e5mvE3So9ZLZznra9rL4fhite13hvNcXHKpwxyfWFf56u7G7I/nLFyic/bJ1ue+WA1MXCNokAUcPRFBwX3PlJuyjZCfQURM4FktOto1Omu0+XoPRCsoEf24CluQK9sxU6NkR2FEOrNwmSG8DHNpXoUdG8Da3o1zwn6nO3sTT9gU+WRA8PlbBaJsLrcd36+C+roGaawmvCazJBwYF51BGjN32Nyjb+jpoeYzWsZ3HvnEWiubvt/XAGS+ZWDzBQHqb4O2vplawODd4PlOAD34XjB/VMo6TRPFKdzxqkwTcM9bAPWPDr/uGD0w8OTN4AZuLgLJKQbuU1rN/u/3+RjmD0Ygsub37HJBlHYy2splEeJRWCmatADq0AQ7sDSQnujtuOrlPq/ECFdVAanLD8eGGx20vA6b8rl+wafPjCURERC3A6QHDv4mI27NfT6XUGwAOAtANQCqAQvgC1hYA+BHAFBFxG2G6V8DwKpfzr0bDYLTBAL5zWQcRERERETkS39/DiZzW8jqJiIiIiIgo8nhPSURERO5YdGMnIiIiIiIi8qm16fbh0QSjhXJ4//jvRC/FBcD0/zYYN6JiruP5A4PRumqC0VYk9dfWke5fR3JbHDPY8eK1rvO+i0E3WIeiNdag/fpi08D7cM+2eyJS3zdLgz/waG7BaACAfF9ijAHBmLIvXM06MNv3onTBZrWmL6jKrnOyoYDOaZqmlVqPjxe6EAojjKdZFxyi0C45ePylIxQO7F2/8Zx5gIEumvUFAONeMHHCUyYG3WViaW7L+FDOVTBaZfTa4YajYLRU64PCjnLAdPOiY2BWjmDI3SZGPW7iX+8JxjxrYp97TRz1mInL3xKc/bKg3x0mJs9tuLP/kCPIvN5Z/8yNDxsYkGW9TnK2xmZ9bCm2Xk63Du4P4P0664/7OVEOy7Db/gZkWzdqRV7TbnNv/GTilinhtWFTIfDGXOt5S23Cf8IN5CAi57yaU0AkrouvOUpfyZ8WQUUtmdvLhvLq6LSDqLmzCxlUFoec/ppr1xUxunZtjJ9WCfa4xcTYZ00cMcnEQQ+YyC1y126nx56iiuBxOY249rzTJkg3zm6jiIiIIkYp1Q7ApQGjPwmjqj0BXARf8FgHAIkAuuwaPg/ASwA2KKWe2LVMJ23rCKBjwOgNLtsVWF7/wRQRERERERERERERERFRVPELKETNgu2vCnM/jltufw2aqJlgMBpFlFIqUSk1Uil1gVLqVqXU1Uqp05RSvZu6bURERERELZUUF0D++xDMJ6+Heds4mM//G/LVOxCvt9F12wWjJVjcUXbLCN0L/6Rh8Zpg5SOmCRnXJ2j80RU/oK1Z7qiOwGC07rXW6QFFngxtHelmSf1ASlukpShccWTj1t35R7Zp1PyhdP3X7bhjyHKcU/xeo+tatsUiGC1EAFhc2p67+8+xpZ+5mrWP8gXq6YLNAGDOKuCC1/UrxmNAG/QV78FoTsKvnOqeofDy+Qrt/XaBsfsAz54TXNkfd4Z+XLZ2O/B//zUhLeChsZuXULwzeu1ww0kQjG6/8ZrA9rLItylcpim4eLKJbSH2x+pa4JLJAuNyL/52rxfnvmLi6MdCh6K1TQLeuUyhe4bCoGzrMjl5iMm2XKBZ71np7utKTlTYI7BL6C5bS6L7WuyOTbp1vNw6HzVilm8R3Pu5iYvfMPHoDBOF5fWNnLFEcOmbjVsn935mPX+ZTVhiaZwcL4haskheKwXq1Qlok2g9bfri5n/944bbU6TdsZGoNbMNRrMYNyDLumzO1thcu4bLNAVnvGg2CJX+azNw04fu2uz0JRZZXHNF636HwWhERNSCPQjA/6lOEYBXo7SsVADXAfhdKTXEQfnAnyOqEBFnH1TV2xYw3N7l/EREREREFAlx/FzTWnNrb2sV6n3i+0hERHGg2V0HERERERERUTxJaOoGUOQppSYAuLsRVbwpIhe5XGZnAPcAOAvBv1RZV2YugMdF5KNGtI2IiIiIiPxI7lrIZcOB0sL6kT994ftKy8z3gEnToFT4PeN14TMAkOAJHtc9sIuGhf5dwm5O1IkI5K5zgOrg3uwpUoVjy2ZiavopIetJMxv2Qh1UleO6Lelev5ScFF+a0zNnK7w0K7wPiAdUrcCgvTQ9iyNEJSZBTfwAt/28Av97o3F1WYXI2HXCNeI1+t0vGG1kxY9I85ag1OMsBShjyoOQPY9H5v4nasuMedY+GEkptSsgKnjl5cdROJQVuyC8cJx9kIHRewn+2gxkpAJ/28P62Nitg8JxQ4Cvl9jX9/MaYOFGYN+ekW1nrLnp3F5UEb12uOEkCKabTfe+zUVAlzDCuKLh17XAugJ38/y5CfhzU+g3bto1Bg7ZE8hM862YgdkKVseCsiogtwjors/qjIhCzfaT0Ta8+jq3A9ZbrLtoB9/pvqdlGMDALOt1vK0UKCwXZKRGPsXzhxzBmGdNlFfVj3v2O8Ev/zaQkwcc/1TjD6aFFb5rpMBrytIqzQwASir5hTaiaNNdK3kicF3sMRRGDgSmLw6eNndV69q/3QYBVVRHpx1EzZ3drmT12GqA5rqqtBLYWgJkx2mcx4KNQF5J8Pj35gvevlRgOEyvdHrsKbSIRSmJUkAjg9GIiKglUkqdBuCagNF3iMgOF9XUApgDYCaAPwFsAlAKoB2AngAOB3ABAP9PxwYAmKmUOkRE1tvU3S5gOJwo+sB5bH6KxTmlVBcAnV3O1jcSyyYiIiIiIiIiIqLWgB9QEhE1XzbHcAZmEjUPdvtqBPfjGC2GiJq5eO02TM2IUuoEAIsBXAlNKNouhwKYopR6WymVGpPGERERERG1cPL8vxuGovn7dQbw3ZRG1V/r1U9LsLijDBWMlpQAdArsxhEnxOuFPHIVMGuqtszYpPmO6kozSxsM71mzDonirod8uunXkzbZlxqT4FGYelV4t/J/3/kZ1NCDw5rXrWHDB2DKPxv3yGHFVqCiquFTTLtOuJ7IZ81ERn59MFqyVGNU+feOZ82ozoe8cDtSkwRZYYQ41fW37qzZ50orgcqa+H1SrA2/asSmlZmmcNQgpQ1FqzO0u7MNasrv8bv+nHLTuX1LcXy8Xl2bPX4hA13S9cEwuUVRaFSYcrZGZ53ePUbh5L3V7lA0ABhok41pFUYZaZEORsvUHNuiHYxmF8w3KFs/X87W6LTnjk8ahqIBwIYdwMhHTRz1WOQSJq3evzKb0I2ScLrpEpErToJCG2P0XtYVfZ8DlOyM/TXBWz+bGPWYF4c95MWD002YMUrocbuUMgZDErlmGYxmE6q/IkrXVZEwfbH+GLDDIsRMx+mXuoosrrkYjEZEROSMUmofAP8NGD0DwAsuqvkPgO4icpSITBSRz0RkgYisEpGFIjJNRG4G0AvAQ2h4i5EN4GNl/+tGgU/AwjnTB14xROpTuqvg+76gm3+fRmjZRERERERxig/RiIiIiIiIiHh/TNQSMLGMiOIHg9GoUZRSIwFMRcNftRQAvwP4EMA3ALYHzHYegP8ppbj9ERERERE1gpQVAz99bl9mxruNWkatTZ6GVeBMjwz7Xvjd2gP2fTya0IdPA5+/blvkpH8c7ihoIM1smMqSAC/6V69y1Zw24tdXJaU+NWbs3xTOOci6Ee3bAKsmGkj3NExIya7Nw42HV0KlhpGuFaZx+yl4XzJQc+LryFuxB0qXd8S4kk9c1THsnoYboF0n3MaEZUWTbM9tMDykaqnjedubxcD65VB563BcXxc9qHfZHYyWpi9TEOUAocaIdtiHHbtwI39fL2n+D/RNF7lJ8RIopmuz/3HAYyh0bW9dbnNR/LxvbsIRnOqSBvzr6OAdJSNVoYvmeBCtgLY6piko0gWjpYa3U2e2s54vGuvUn92xqVsHoF2y9fQ1+ZFdx7VewbYSwc9rrKdHOjBkS3HwuFKbrrjbSgERwY5ygfDDT6Ko8OrOhxG6VrILiu1yo4nyqtjt2y/OMnHhG4Lvc4Cf1wB3fCK48p3YLN/NtRIAlLvLwyZqNewuB6yONplpCh01P7O1IsrXro2RnKCflu/i/ttpCFlRRXDB4igF1Do9HlbVCDYX8hqQiIjim1KqJ4Av0DAkbD2Af4iLk9iuMLRtDspVisi/AVwbMGk/AOc4XR7C60XCkzIREREREVGLxVs+IiIiIiJqbngfQ0QUPTzGUssUp92GKcLOAbCni383OalUKdUDwMcAkvxG/wRgiIgcICJnisixAHoAGA+gxq/cGAD3N+I1ERERERHRvG+A2hr7MnO/hFSUhr0Iu2C0BIs7ymHd7Tvid+8QdlOiSjbkQJ67zb5Qp67ofOyJ2KeHfTFDvOjgDU4POmDn767a1GA1JrdpMG3yRQr3nqKQ7ZdzdvLewLJ7DfTprLDo/ja4qNcajDAW4yLja8w9+ltkXHOnq+VHglIKRvc9kektQBupxNhS+yC/QGu3A2u31z+Usw1Gi9O8PQQEow2qznE8awevL4VGztoLYz67zPWi60Ki2rfRl7ELtWlqTRmMdtwQZRn+GOiPDcCPK5r3g2OnHe4BYHOcBKN5HW4bunNOvLwOwDpsqjGy0oH5dxjasDFd6N/yvMi2I1BppX5by2hrPT6UTu2sx28vjXLIm6Z6pXznvZ4dradH6r3OyRMMf9CLpCtNZN/kMq2nEbZY7DdlVcHj6izdAnS/2UTm9SZ63Wbi8z+b97GSKB7pjkdOrmGcsAuKra4F0q41cc7LJsoqo79/PzkzeBmT5woKyqK/bLdLsDs2ErVm4eytA7Ksx0c6ADaSUhL107aVOK/H6X1aoUX4cKkmGO2wvs6Xb0V3H1anskZw4esmOl5nYo9bTfS81cS7v8buepWIiMgppVQX+H7os7vf6DwAx4hIfjSXLSLPAZgWMPoqm1kCo1VtnvZrBc4Txz+XQkRERETUkvHzUmoC/AELIiKKCzwfERG1OrwXIWr+7PZj7uNEFGMMRmsd8kRknYt/2x3Wew+ADL/huQBGi8gy/0IiUiUiTwM4M2D+G5RSvcJ/WURERERErYOYJmTJPMgvXzUIOZM5DkOmZn4Q9rJrvfppCZ7gcRmpCkf018/TIyP+0qtEBHLe3iHLqRdnAQD26mr/Gjp6d8CD4I6fY8u+cNymvaqWNRyR0jA1JjFB4T8nGch91APzZd+/add4kN3e17ZenRRev6M/fnxxH7z+4ono/Y8LoFQTrfueA3f/eWbJFBxaMdfV7FMX+AWj2fSnjcdgNBEB5s9sMG5QlZtgtPoUmmPKZiLZdJdiVrdO0m26SpXEcTCa7ll5LN7rHhkK/z7B2YJGPmrC6yZdLAw7qwVf/iX4IUdQXRvZZblpem5RfHyAoTsWBG4bPTKsy61z+uQrBvIiHIyWO8nAHh312+6AbOtpK/Ki+95aBTbUCTcYLVMTjPb7hvDqcyrU9pfd3np6qGC08irBN0sF7/xqYmmu9ftRWSPY6y4Tv6512FgXEj3A/jZParcUB7epNEQYUt6u8I9NhcCpz+lfFxGFJ9ohst07AGkp9mXe/03wz7eju2+XVYplCFKNF/hkQfSPK24v88oZjEZkye67ULrHFQOyNNeuW+P3mqK6Vj8t30UEidPvjuVb/BZCieYabf/eCv8aFf5JoirEbzNc8z/BW78Idu4qt7kIOP91weyV8ft+ERFR66OU6ghgJoABfqO3w/d9t5UxasaDAcOHKKV0PysUz8FozwMY6vLfKRFaNhERERERNSV2fiUiIqKY4DUHEVHLxOM7ERERucNgNAqLUqo/gAv9RlUDuEhEtF2qRWQqgDf9RiUDuDs6LSQiIiIiahmkMB9y/QmQfx4OufkUyJkDIXO/9E1cMMtZHZOuqp/HJW8YQVSn7qvvZDm8b1jNiCp57Z6QZdT1T0Jl+9JCBmTbl830FliOP6ZsJlI8Nklzfo4v+7rhiJQwU2PiQZceQJtUAEASavD9+mPxcu6V6F29DhneHbih4AncmT9RO/vMZX7BaDafgcRbMJpUVULuuQCobpiMMLRqCTp4Cx3V0cGsT9FpJ+U4p8RdyGHdOklN0pcpjeNgNFPzRcpYvdf3nmJg2jXOHp1d9U70PqCbv07Q4xYTJz9j4ujHTBxwv4m12yO3PDdhH5uLQpeJBd13bD0Bb1efzvEfpLAmP3JtWfugETIEc5DmHLZgI2BGMeAvGsFonTTBaFtLgMe/sbmAaaRQQURd21u/B3YheIs2CobcbeK4J02c/5pg6AQTV7xl+gI2d9lWImh7dWRe1yF9gPGjFB45XeHOkxXuOllh6T0G5t9hkXq7yxqLQMEyF+E/pgBvzI2ffY+oJdDdq0XqWskwFM48IHRlH/4uKKqI3v5dXq2ftnJb1Ba7m9u+PW6OjUStiW0wmmZ8/y7W4xduRIPrpHhid4+9rdR5m51emudaXGOW7LQu274N8MSZCp9fG95XRKpsQt9qagVTfgtutAjw/vz4fK+IiKj1UUq1BzADwDC/0YUAjhGRJTFsyrxdy63jATBYUzbwbN9WKZXqcnmBV1URecorIttEZImbfwBWR2LZRERERERxK06fWxIRERERERHFFu+PiZo9PuciojjCYDQK17nwfTGrzscOfznz4YDhM5VSKZFrFhERERFRyyJPXgf88UP9iOICyK2nQT59Bdie67yeW0+DlLrv61Cr6WyfYEAbvnLK3/Sd5+2mNQVZuQh488HQBQ84evefQ7rav4ZOmmC01L9fjNFD9IEjdfrzLNQAACAASURBVA6r+AkT8u9vODK5+QajKaWAngN3D3tg4pLiN7Fq9WDkr+iBR7bdgbu364PRlm6p/7s5BaPhyzeBb4ODzBJRi+PLZjiqor23YZ+nidvuwoE75ztuQt06MQyFNM2dd0lcB6NZjzdi+DTr5L0VZt1soHOafblXZgvyXXRyd0pEcMaLZoNQqcW5wL/+F7nQJzefV+woj9hiG0W3bQSelgZkWZfL2RofQQqF5YKf19iX6ZEBzLnVwM3HKe1xLiURmHyxQq9OoQ+EgzXnsPxSYN66kLOHzS4YrUOYp7jsdP3rvelDwR/ro/MehwpGy25vPX1LccMZC8sFj84wcetHJva9z8SGHQ3LvzJb4LnCxE0fmigsF9w1LXKvZ+5tHjxxloGbjjVwz1gDE8Ya6NvF9wJO3tt6nhlLgpfvNlzzsRlNv98RtSSxuFa6/9TQ55YaLzD8QRM3TzExc2nk9/MKm2C0kpLop5C5vWSway9Ra2a3K+myfffSXLtu2AEscf5ILKZKbQ5L+aXO63F66NlSFFyyWBOMlp7ie0Zz4jCF589z/xClskY/bXuZ/vnCt8t4DUhERE1PKZUG4CsA+/uNLgFwvIgsjGVbRMQEsCFgdGdN2QI0DFEDgJ4uF9krYNjJ9/uIiIiIiKi1i4PvVJADId8nvo9ERBQPeD4iIiI/vN8kIooiHmOpZWIwGoXrtIDhN5zMJCLLAPzqNyoVwLGRahQRERERUUsif/4EfDfFetqj17ivb9yeruep9VqP99jcTfbqpHDh8OAOlhcMdxbaEiuy/HfIJQeFLrjPCCi/YK+RA+1ff2aSRS/Yky6CMf5x7N8r9Ov/Yf0xSJWABJnkZp4n3WtQyCKfbhxnOX59AVBe5XswZxuMFmdPOMQiFK3OfpULQs7f1ixHEhr2Os7ybsOP60Zh9rqReCP3MrxxfGDfqYb8Q5R0wWillfH70NPUZH/FOgTv8P4KK+4z8OoF9gvOujFyYWV1lm5BUFgSAHzxF7BxR2TeO7v9KlCRTbhVLIUKpqozIMv6PSuqAFZti3CjwnDQA/pt5tlzFWZcZ2D5vQYO7avw8N8NLLvXwIzrfP//fJuBNy9W+PhKA2seMHDBcGcHwRH9gOQE62mfLoze8aBQE6qXlgIkeMLbqQdm208/YKKJmtrIv6ZQ219XTTDaJr8urKu2Cf52r4lbpggmfW3fxse/EXS63sTLP0bmtWSl208/coD1+/HLWmB7QABkWfTziIjIhu54FOZh1VJWukLFc6HPMTlbfeGHxz5p4r7PI3tNVG5zrCmeNQOyfYu+QAS4uVYCgJ0MRiNyTReMZvf8Zdqi+LyXLdGEkgHANhfBaLr74UC5Fr+BoAsoS29T/3eHNtZl7FTV6qfZhUKW87hIRERNTCmVCuBLAIf4jS4DcIKIzGuaViHwqsHu7LwsYLify2X1CVEfERERERHFRHw+0yQiIiKKWwzOISJqxuyO4Ty+EzULdtdivE4johiLs27D1BwopbIB7OM3qhbATy6q+CFg+ITGtomIiIiIqCWSSVdHtsLKCsg6d/0dajUdMRM89vM9fqbCRYcqKOXr4HrRoQqPnxkfoWiybRPM+y6G/N+hoQsffCzUfe81GNWpncIR/fWzZB58EHDYSb6BxCTgrPFQNzwNABiYZb+4c4v/B8u1lJgcuq1xTPUaGLLMoKoc7bQVW33/2wajxcfmVW/RHO2kgcbmkLN3rt1uOT4RtRi+cx7OL34X5+94E9cfo3/h/mFx6dpgtJBNaTJOw69ioX1bhUtGGLhypP3Cr3rHhETwIb9VJ/c6ToIANhUKLn7DxJC7vTj0IS8em2HCG7Bi3YR9lFUBtd6m/xDD6zA0b0g3fR2vzont66j1Ch7+ykSPW7wwLvf9W51vXXaPDODKIxVGD1Zom1z/ovpn+cYN2PwDDnxuDM57axRO+ethZCXbpC8EaJeiMEqTVRnVYLQK67oz2oZfZ9/OoctMWxR+/TraY9OuY27PjtbHibXb6/efSV8LNhZaFou6Sw6zP46dNMx6ugjw9dKGL35njWVRW/EcyEnU3IQ6HkVKSqLCyvsNjHDY9f6+zwVbSyK3r9sGo1UnQN56KGLLsuL2lVTaBAcRtWZ2t0m6q5OOqQqH9bWe9uVf8XlNUWZzj71oo/M2O71P21IcPE4XztbeL24lI9X9jXWlzbWfXTAavwdHRERNSSnVBsDnAEb4ja4AcJKIzG2aVgEAMgOGrT8Q8FkcMDzc6UJ2hcLtHaI+IiIiIiKKGD4MIyIiIiIiIiIicooxikTkBIPRKBxDA4b/FJFyF/MHfrFsSCPbQ0RERETU4khZMeAyxMyRX752VVwXPpMQ4m4yI1Xh9YsMVD7n+/f6RQY6htHpMtKkaDvk4gOBGe+GLKu+2ALj0c+gMoKTV075m/61dO6SBuOhj6G+L4OaUQjjmkegknzBZoO6hggjKZtuPcETIoku3vUMHYzWu2Y9kk3rHsTL83yPM3XbIxBfwWjy/Ue20/cafUjIOrrV5oZe0Oxp6NxOP9n0W19pmmC0kmYYjKaa8L1++mz7hb84S/DvTyRi4Wh2nct/W2c/b3GFYNgEE2/+LFi2BfhlDXDzFMH1H4QfjAbExzaja7Mn4NzUMVXhoN7WZZ+cKVi2JXYflVz5juDfH4tt2F2dE/dWUJoNXeZ9A7nueGDeN8BfcyGv3A2ZeGlwOdOEVJT6/q7xbUhStROydSPG9LFuxPI8YMXW6KyTIk04Q2OC0ZISFPp3sS/z5eLIvx7d7l13HhqgCUGtNYF1Bb6/P3MQbBgNGW1DB6MNzAb6BHbN3eX39Q2H7cIxdH5c4X4eIrLmNCg0Evp2UfjxFg/GBHant1BrAt8ui9xxzu56qMhoD3z3EcS0uVFoJLdVV9ciKIiWyCmprYVUOQ+9bU7C3SvG7GN9UPsrdN54k7ALgZ27GihzGBLrdH1tKwVqautLiwiKNZtQekr9uuzQxrqMnSqb4EfbYDT3iyIiIooIpVQKgGkARvqNrgQwVkR+bJJGAVBKZQLoEzDa7gOBrwKGR7pY3OEAEvyGF4jIVhfzExERERERUVzjE1giIiIiIopDdn0p+At7RM0E9+Nmie8NtVAMRmsdrlBKzVRKbVZKVSqlSpVS65RSs5RSE5VSh7usb3DA8CqX868OUR8REREREW2ITmqEfDHZVfnaMIPR6iQmKCQmxFFi1bRXgZIdIYupxz6HSu+onT5uP4WkBOtpo/fyvV6VkAiV0LDQ0G5Ajwzr+done3F82QzriR7NwpqLvfYPWcQDEwOqV1pOW57n+98uXyCugtGeulE/8aI7sOc/r0GmTaAZAHR3Eoy2ZgmGVSzUTvYPsErXBKOVxkHIlY7u/W7K99pjKPx4s/0B8JGvBB3Gm3hxVuMDOuw61S//dRkkPzgNIL9UcMgDXmRcZ1p2iH/2O8Fv6+rrdRv2UVThrnw0mJqNw2rbGLef9QZT4wWuedeMWIidjmkKLn/LxGtznC/nrAOC2yw7y2FOvBRy48nBM/zwMeTTV3zlRCDvPAoZ2wNyXCbMw5MhR6f5/h/dAXJ6P5z82H7aZX+6MDrro1DzkwqNCUYDgLE2QaUA8MZPkX89oY5N/YLzVHdbuRUo2SnIK4l4swAA7ZKBPTTXGecepPDjLQb6drFfZ0opHDHAusyLsxq++HCC0b5eyg/biCLFaVBoJB01yNmF2D9ekwZBPY1RbhO2szUhCyjKB1bqr4kbS/cq2ibp5wnn+Eitm3i9MJ++ETKmG+T4zjBvPBlStL2pmxVRdpfdduHX+/W0nlhaCdR64++6orTKfvoz3ztrs5v7NP9ry8oa/bO8dL8wtA5hXIfbHdvsgtHsQu6JiIiiRSmVBOBjAKP9RlcBOFVEvm2aVu12Nhp+Z3MrALtfSvoagP+T3uFKqUEOl3VRwPAnDucjIiIiIqJIY6dEahLc7oiIKA7wOoiIiIiIiIgagcForcPZAEYB6AYgGUA7AL0AHAHgdgA/KqXmK6VG66tooF/A8AaX7VkfMNxJKaXpskdERERE1EptyAlvvs7dgaPP0E9ftwxSuM1xdbpOptHsbB9NsnB26ELj/gl10DG2RXpkKEwYE9w59+/7AUcO0M+X4FF45O8qKFhOKeDho7ejvalJSmnmwWgqqyfQb++Q5QZWWwcCzlji2w7tOgbHSzCabM8FCrZYT0zLgLrkTng8Bk7e277B3Wr8gtHaddCWO+qpkY7alaYJRiuxCM6KF/EYjAYAI/ordEq1L1NaCVz1juDiN0zkFoX+UodpCpbkCv43z8Qva+qDRMpsOtXn1GTBPG/voGCvM140MW+d/fIOeqA+EMwucNBKXASj6bYNi3PTFUcoZKVbl/8+B/jfvOh+6eaNuYJXZ7tbxsiBDTdy2VkOufRg4Ku3tfPIo9dAdpYDX/4X8uIdQHGBtmzX2jwctHOe5bRw1odpCmavFMxdLSivsp6/ULPdZITYl0K5bpRCn0z7Mv5BgJGg2/7qAj3aJittCOqKbYKVzi/DXDlpGFD8tIH1D3tgvhz87+3LDAzp5uwA2j/LenxlDbChQBoMu7VyK7/oRhQpumvjaF4rnTjMeeV73m7ipVkmluY2br/XnVsAIDehq687x+rFjVqGHd1xPzVZP89Om4AgIivy6gTgw2eBsmKgtgaY9w3ktnFN3ayIsg1Gs5nPLsCrJA6Dvq3Cqf19/IezY6KbI2duUf3fduvEPzC9c5qLBexSXaufZheMxmMiERHFmlIqAcAHAE7wG10D4HQR+bppWuWjlMoC8J+A0Z+Jza83iEgFgCkBo291sKwBAE7zG1UL4F2HTSUiIiIiIrLBz3yJiIgoFnjNQUTUfNkdw3l8J2oW7L7wx+BbIoqxZtqVnaLgAAAzlFITlbL7XW4AQGCPbFfd+USkDEDg17Lbu6mDiIiIiKilkxULw5sxvSPUhLeA/Ubqy0x7zXF1tZrO9gked82KG/Nn2k/vvw/UdU86quq2Ewx8c72B60YrXDlS4d3LFN673IAnRBLB2QcZmHubgdtPVLhguMJNxyrMvsXA/x2oTxtSzTwYDQBw+NiQRQZWWQej/boWuPdz0zbAySoQqSnIvRfpJx44CnW33Kf+zX476XHMKODcG6HGPw41dT2w14GW5VLEJjnLT3ob6+WVxmFH8jpNEfbh1OoHnG1wb/4s6HGLiRd+0Kf6lVcJxr1gYtgEE+e9Kjj0IRMjHjGxpUhs358iTwbW1mZCTu0NKfeFKq7cKvhxpbPX8Nuu2HrXwWhxEKbndbFttG+rMOl0/UZz04eC4orofDBTVCH4v/+6q3vzIw23LVnwI+S03sBGB2/sN/+DfP66o+WMLf3ccvzCjcD0v5y3eX2BYL/7TRw5ycSIh0387V4Tf6wPnl8XqNehbeN26O4ZCgvuMjDGJnvzpR8jHIzmYPsboAkWW7kVWLUtsu254kiFNy9WmHq1gdCPdZ0Z0EVfz7Pf+wejuX8t/sEdRNQ4mgzrqF4rDchS6K7P7G0gtwi48h3B0AkmLvuvGRTm6lT5tnzttEqjDYqN9pBwg8Ud0DW7bZJ+np1hBEdSK/ft+8HjlvwK2bQq9m2JErsjgN0ljF0wWjyENgfaUW4//ff1vvuEUNzcp+UW1/9tF8zWvk393x1TFfp1cb4MANhpc+1nF4xWXo2wzwFERERuKaU8AN4BcIrf6FoAZ4mI9QOx8JYzUCk1xuU82QA+B+D/5KgawIMOZp8AX7hbnYuUUtoPXZRSKQDeAOB/5/KaiKx23GAiIiIiIgoDn4MREREREREREVELYPt9Lz4DI6LYipNuwxQlmwG8AuD/AIwAMBjAIACHAbgWQOCvYCoAtwN4IES97QKGw+kSGzhPGL9LHUwp1UUpNcTNPwB9I7FsIiIiIqJIERHgpzD7Z3TuBqUU1GUT9PXP+cxxddpgtGZ4NylVoROg1L9fcRUqMmovhcfPNPDcuQbOPih0KFqdA3or3H+qgckXG3jkdAOH9lVAok3P+hYQjKYcBKPtU/WndtqEaYJFm/QPT1PiYBVJ7hpgwSztdHXdE7v/PmawfZjCoEOHwrjyAajTr4ZKToE64hRt2bc2X2Q5/qDe9X/rOpNvK43fB9K6lsVDMFp6G4XPr3V+ILz6XcGwCV4kXOHFkZO8+GlV/at75jvBtEUNy89fB3S/xcStH9m/P5+1OwnYkQd89AIAYNEmx03Cwo2+ut32T4+H8AFdSIBu2zjvYIUjB1hPyysB7poWnf3ghg+c19smEXjrxPXI+ug+mE+Mh7zzKMxXJ0D+dQywK/guFJl0NbD4F0dldcFoAHDSMya8DpMYRj9u4k+/7W51PnDF28HhN4Wa8IcMm6ALp9JSFF67UL8/LsmNcDCag+2vnyZYbOVWwVZnb6cjFc8ZeOE8A+cPd34N4sQ+e+inTVvkH4zmvu4txaHLEJEzTRUie8YB7hfw+hzBc987Px7LrzNgPncrqm46Dc+8n2tbNjehK7DBOmA5EnTHfQajUaSI1wtsWW897au3Y9ya6LG777ANRmujnxYP9yaBCh20abODoFjdMd5KblH9yi2x+dQ+PaXh8CkhAtsDldk8Vquo1r/BXhOoqnW1KCIiosZ4HcCZAeNuB7BAKdXb5b8Ui/rrdAUwTSn1p1LqFqVUf11BpVSaUuoaAAvh++FSf/eLyJpQL2pXmacCRk9RSl2jlGpwd6KU2gvAtwAO9RtdAOCeUMshIiIiIiKqF7/fJyJ/Id4n/mgFERHFBZ6PiIhaHwYqERE1DR5jqWVqhl3ZyYF5AI4DsIeIXC4ir4rITyKyTERyRGSuiDwrIscDOBDAyoD5b1NK6XtcBwejhU4XCBb4tezAOsN1FYDFLv99GqFlExERERFFxpolQO7asGZV+430/TH0EH2h5b9D8jc7qs/bkoLR7rvQvsD+RwH99o5NY6wkJuunGc1whQfqtzeQ3cu2yPFlM5Dh3aGd/uZc6wd0bRKBtslNn5YlX7ypnzhyHFRGl92DbZIUrhpp3ebsdODYwQEjT75YW/W40qno3ya4Z/VZB9bX36299bybC/VNbmra8KE42R1OHKYwfbzzxizJ9b2m2SuBwx8xce/nvgPs+/PDf/A8u+0IAIBM9217m4uc17U8z/e/w/yr3Yo0AVexpGuzR/N2KKXw3LmG9tz13PeCBRsi/7q+Weqszg+vMLDqmKk458mhwOSJwMcvQl68A3jzwYi3qc5e1cvRr3qVdvrc1aHreHGWidX5weN/X+/b3v0VllvXEYlgNADITNOfA3LyEBTU1hhOgtEGZFmXWZUPFGjWRZ12ycDGh0MfW3693UBKYnTOfbpgNwBYsRVYvsW3EsIJRtteBlTVNP1xhKglcHs+jJTrRoV37PnXe4JtJaH3f/OF2yE3jUHV+89j+LY7sSjF/h5tY2IPYENOWG1yQncKsQ1Gq45OW6iFqrU5oZa1jkRRu6NKul0wWjg/3RVF1bWC8qrQ5baXhi7j5mop1+9xQInNp/btAqJdrjlKIdlFyLzd+q4Icdxzsl6IiIgi5AKLcY8AWBvGP5sP2nYbBuBhACuUUkVKqTlKqalKqbeUUp8opX4DsAPAMwACnxi9LCL3uXhttwGY7jecuKvejUqp6UqpD3YtbwkahqJVAzhNRLa4WBYREREREUUcPyMlIiIiIiIiIqJmwq7/BYPYiSjG4qQrKUWSiHwpIjPEQY8/EfkNvi9yrQiY9JBSyuN0kW7bGOY8REREREStw+xp4c97+FgAvhAY9fQMfbmfvnBUXa3XenyC07uFOCEzPwBmTdUX2G8k1H/egFJNGK7lsemNajetmVBKAYePsS3TVnbi/m0TtNP/3GQ9PlMVw7xyJMy7zoUsmNWIVjbS55P10zp3Dxp1z1iFyw5XSPTbn/bdA/j+JgNJCQ23RdUhEzjjGsuqk6UaH9bcgoN6+4bbJQO3Hq9w3ej6OrpnWDdr85YymP/YG+Ytp0J+jK/ccFMTzGg0fQbebscNUXjnMoXMMOLeJ0wTGJd7sUizXTuRkzzA98em1SgtqcT17zt/3JKzK9jIbTBaWRx0aHcSTBVocDeFG461LmAK8Mx3kXlUVVwhuPUjE/vd58Xm4LzCBs4/RCF/konTFtyLrMfOBbyak24UKACnluj3+WmL7NeHiODqd/VlFm9uOK2wwrpcRqrtYlz57BrrR92FFUC+g/AJp5xsf3tmWm9ruUVAQZm+7j6ZwLRrDHTPUJhxnf7R/asXKBzYO7oHw78m6Jdft33sDCMYDQDySsKbj4gaCud8GAk9Oyl8cW14Hy9m32SitDK44SKC1+aYOPqm1dj7l3PQp99ypA4qwsKUfULWuTqpL7A+B7IrXKrWK7jzUxPG5V4Yl3vR5QYvPv8z/PO8bj3bBqOFeXykVsprs8FUxlnyVyPY7YV2j2I8hkJaivW0Is01ZlPRXfMGyre5Hqzj5j5ti19+Xolmk0lL8a1Lf706KXxylYE9dj0vCHX+sFvfDEYjIiICALQHcBiAUwD8A8CpAPYHEPgBTzmAy0XkCjeVi4gXwJkA3g+Y1AXA8QDO2LU8/7P6NgCniMhsN8siIiIiIqIwsVMoERERUeTw2oqIqPlioBIROcTDBRE5wWA0gojsAHAOGn4nfRCAozSzBH5d2+a3urUC53HwFXAiIiIiotZBwg1GO3wsVI9+uwfVvkcCew62Xsacz+zbUOnr7VirCSbyhHE3KVU74SC/OeLkt28h95yvL7DfSBhPfQ2V2TV2jbKSpOnpCwA9B8SuHVGkdgX32bms6HXttIJy6/GZJWuBxT8D338EufFkyO/fh9vEsMjOckjuWmBHnraMGrR/0Lg2SQovn2+g5GkDK+83kP+4gd/v9GBgtnVvZHX1I9r6hy55Fz9fWYCyZwxsfczAg+OMBkF/3dpb11ko7bBzw3rg5+mQO86EfP2udhmx1lRhH26dc5BvnT80LvYNW5XUFzVIgAmFYydsczXv6nzf/80xGM0bZmjenSep3Z3+A323vPHnJ9MUHPekiUlfCxZu1Jd74iyFiucMvHmJgYwnLwXefKDRyw7H9Tue0U77bZ39+lhXYP9B04qAzVEbjNbWdjGuHNhbP23N9sgtR3ts8rs26t7BukxVLbBqm3UFJwwFVj3gwciBvg159GCFa48O3qifOUfhkhHRf6w/pJvCoX2tp9VtH5VhBv/khggNJCJnwj0fRsIJwxRqXjRQ9oyBwicNzL/D+XFp9OMmCsoaHgsfnC74v/8KfijpjaXJg7Ehsafj+lYl7TpYTXkWAHDGiyYmflFf//YyYOyzJt6ca2Jntfvzve58ZxuMFiIgiKiBGpsNpirOkr8aoTGPgzpoPokuqoivbz7t0DyzCHTxZM0B3I+b9bWluL5w8U7rGdM1j5yOH6qw7iEDmx4xUPCE/bG8yCanL1QwWjzcRxIREUXYMgAPAPgJgNM02xUAbgfQW0ReCWehIlImImfDF4L2i03RHQBeADBURL4KZ1lERERERETUDIR8mBxfz9GJiIiIiIh4n0LUTDCxrJnie0MtE4PRCAAgIn8AmBEw+nhN8XgORnsewFCX/06J0LKJiIiIiBpNtm4AViwIa141/rHgkSPGWBf+4wdIRWnw8qe+DPO0PSHHdoT5zyNQm7/VcvYEF3eTsnk1zKuOghzXCTKuD+T9p5zPHAHyygTb6WrsZbFpSAiqTSow5ODgCWkZwIGjY9+gaBh2GNClh20RD0z8o+wDV9V2qvVLvKmphkx5LpzWuSZb1sG8ZhTkhM6QswbZF7Z5D5MTFfp2UejUzj7FQnk8UM9pQt9ME/Lk9WibrNAmKbie7powKADITagPBZS3HrZtQyzpwodUnAWjAYBSCrccb+Dhv8e2cTUqCWuTeuPb1KPwa1l3V/Nu3hVM5DYYrTwOOrSHG5qXmqxwzynWhfJK0OjwzpumCOatC13u2qMUUhIVZPViYOb7jVpmY2R5t+HaHdbHy5wt9mENy7fY1700t/5vEbEJRovcPtM5DUhJtJ62pThii4HpIIiomyYYDQD+2mw9fnC34HUx6XSFJ85SOKg3cFhf4J3LFK48MnbHmaMGWS9ryh++/3XBaJeOUDhjf307I/l+ELVmuvNhOCHW4fAYCm2TFdq3Vdi/l8JPtxo4bkjo+eavAzrfYKLHLV58tkjwzHcm/jM1/HPwiqT+AACZ/ABy8gSfLrIud/FkQYfxJk58yottJc6XpyvpUUBygvW0nWEGR1IrVWuzwVS2jmC0UFc3HTRhup8tiq8v8eiueQOVVyEoIDKQm/s0/9DZkkrrMuk2n+YrpdCtg+94bqeoQn/PFCoYrZyBkUREFCMioiL47web5WwVkTtEZASAdvD9AOlJAC4HcAuAuwDcDOCyXeO7iMhAEXlQRBod4S8iU0RkOIA+AE4H8C8A/wZwMYCjAXQVkatEJL+xyyIiIiIiokiJr+eZRERERDHD4AwiolaIx34iIiKKHAajkb/AX4jcW1MusOtaZzcLUUq1Q3AwWpFVWbdEZJuILHHzD8DqSCybiIiIiCgitm4EuvZ2PZu67WWorJ7B43XBaDXVwK8Ns5Hl+48hj10LbM/1fQi55FfUfmL9o/VOg9Gkugpy7THAX3MBrxfYngt59hbIV287qyAMUlkBWTgbsuw3yOJfgKXz7Gc46u9Ra4tb6or7gBS/Hr9KQV35AFSCJumlmVEJCVDjHwc8mgSBXbpUaVJjNDK9BQ1HzPnMbdNckdw1kO8/gpw5EFg0x7dt27nwdqgMV7fOesOGAz36WU/7bgokd43lpG7t9VVuTehSP7B+OaS4QF84hsINv2pKNx9n4J6xsW1gTtJA/NTmUNfzlVUBpZWiDXnSaeoO7bVewa9rrac5CYLZK9v6/amuBYp3ht+u3CLBkzNDf4i7X0/AMBREBPLKXeEvsEffri6bOgAAIABJREFU8OYbfgLUlFW7B08q/dKyWF6pgaIK/etZnmf/Wr9ZKqj1+sqUVQFezXaWoQm5CIdSCl01x7otxZH7gF1Xk/+xKTtdH+KoCwXrmBo8LilBYfwoA7/c7sHsWz045yADRgwPggOz9NNemmVqAzAO3hN4/woDfTWnvtwifuGBKBLi7VppeF+F6eM9+Gq8s5vF3CLglOdMjH+vcceE3SG/lRWYs6LWtmyNF/hqCTDmWecXQHZhvW2SrKftZAAQuWEXjFbViAvUOGO3p4cKv85sZz3+00XAB7+ZqK6Nj2uLHeXOy/623n562MFomk0mPcV5fTo1Xv3xLVQwWlHLyfgjIiIKIiKmiOSIyJci8oqITBKR+0TkURF5bdf4qASUichaEflIRJ4RkYdEZLKIfC8ivCshIiIiIiIiIiKiZi4+PgcmIqJI4/GdqHmw2VcZfEtEMcZgNPK3LmBY12t7ZcBwL5fLCSy/Q0QKXdZBRERERNQiqb0Pg3p/OdTk36EuvRsYsG/omdqkQp10ofW0QfsDnbpaTpLfv2s4/OXkoDJPpFxsOW+CJ3SzAAB/zgHyg0Ou5Jv3HFbgjiycDTl3KOTa0ZDLD4NceaRtefX2Iigjfm6N1b5HQr38E9QldwHn3gj17LdQYy5p6mZFlDriFKiX5gDn3QQccYplmQ5eTWqMRlAwWhSZz90GOWsvyF3nOp7HuOzuiC1fKQUcPlY7Xc7aC2LxkDk1GUjR5OsVeDIbjtiwojFNjJh4C/tw6s6TDXx3o4EDdj396JNpX76xlicNQE7ygLDm3Vzo/jOJsqqwFhURmwoFB0w0UVppPd3JtpGVrp+2tSS8dgHA+/OdrcjD+ilIcQHk2tHAT1+4X9CBo6Bufg5q8h9Q4x9zNau69G6ohz6GytoD6vL7AAADq/X7e06evq6FG+2XVVgBzN71BLHQJiAiwyIMrDF0wWjTFkbuwze7gJw6CR6FrDR39XaK8LqIhP5d9DvVle8I1mlOv3XnG937kevuNE9EGtprpSa+vTl2iMKK+2PXiAJPJ98f3losXeXsZD5/HbB4s7Nzg+5ayVBAG8319c4afumDXKi1yayYPzN27Ygyu/uOUMFo+/fSFzj7ZcHAO038uqbp97sd5c7b8N+f7cu6uU8rKAd2Vvtm0IU9tw/8ybIwbS21Hh8qGK2grOnfHyIiIiIiIiIiouhrLc/BWsvrJIoR0wvUlDV1K4iIiIiIIoj3jURERBQ58dP7m+JB4FeldV+RXhYw3M/lcvoEDC91OT8RERERUYumlILqOxTqotthvPYL1PVP2pd/fZ5+mmEAhxxvPfHrd2G+fBfMZ2+BzJoK/PJ1g8m/peyH3MRulrN6HN5Nymv3Wk+Y942zClyQygrIxEstg9isqBueguo1KOLtaCy152Coi++AceUDUHsf1tTNiQo1cF8Y/5wIY+IHwKEnBk3PMItc1detNjdonHi9YbdPx3zhduC9J9zNdPTpEW+H0gTK7fbZa8HzKIXMdtbFt9eFSewic78Mt2kRZZrW4+M9GA0ARg5UmHeHB+bLHqx6wIOXz49eo3OSByInSR+M9sRZ+mXnFrv/2LG8rAry8Qswx/WBedVRkJ+nW4bxRcP4/2fvvqOjqP42gD93Nj2BJIQapAjSBQTBgqIodqzYey9YsPdeXhV7w94rVn4o2LuIiCi9hd7SSEIS0pOd7/vHElJ27uzMZjdswvM5h0N25rYtc3dmd+bZKSYWbtKvdxIE09EmrKopwWhLspyVO363bMix6cCCma77ULe/BuOpr6GOvwQqNg4Yf6Xzujc8C3XBHXVhoGfeAIw9DV1rMpFoWp9cufzxSTAv2hfmE1dB3noIsnIBAMBrCr5eFPg5n7bAV2Zrmb5MaoLju+CILojr+6WAqUsQcsnp3LRbqrt2u6ZE3uTWvzMQ7TQMt564aN99Sdfcpyx3b/NEpOGN4H2lPToqvHF+8wwkz5O2Y3+mstD5m/mPy5y9L9gFYuqD0RwPgwiosX/BSHWAxKlWINBscewQ+xLr84EL3jJRVbNzT6q02+9t7KM5Yrt/6nbXdU2e7/9iTYh02zhn7dx3vP1j/dAM64GVB3iZ5vF6LiIiIiIiIiIiIqIwCPRhMsMImkVlATB3IvDNMODPM4E8/fm8DYgA824FPm8PfJYC/DgGKPM/D5KItsv+EfjlKN82893+wKpXd/aIiIiIKBjNdN0BETWR7bbK7ThicY6lVorBaFRf+0a38zTlFje6PUQp5eYyxsZX9jduj4iIiIiI6jv+UqDXIOt1J1wCtZt9VrHqpllfUQa8Nwn4+FnIXaf7rf426Qhtm1FOjyYrXFwV2lR/fQNkr3dW9vAzoE66IrzjIWc69/BblOwtctXEIaW/+S8sD+1VtzLlGeDDJ13XU+MuCOk4AACD9rVdLY9fBdma67fcaTAa3n8M8ueMYEcXMroLwSMh7MOtS0Yb2DDJwEtnK0wcq3Db0fo78cJZCt9ea+DZMxReHb8NL2ddhcdzbkWnmhzL8otjB2JVTG/LdY+cYOLasQbaJVr3taFAtCFPOiV//wF5+jpfCOWiWZBbToTcd07Yw9FKKwVfLrAv4+S1kRCrkBRrvS53m/tx1crcGvj+D65YhINvb/x7Ac6oz1ZCHXNew2WGAfX2v4ErH3+x33ueioqCuvddeK59En2rVllWW54DYOV8YNrrkDcfhFy6P+S7D5GRA+SXBu525srAwWgpup9lCFKntvoXwVyHuwiBOJ2b+nV2PllFGcABbn96ohkkJyj0TAtcrrHaoCBdUF1WEb9wIwoF3XzkiZCdpdNHKHRuG7r2BlcsslxeacShbPtXVFk5zo8/nb7v63ZxDAXE6YLRWn+OFYVSTY39+nkWx7stkN27vwowbR3oYD9pRQ7ww07+Ka4CB/vI9dntn7o9vFqR7ft/myYYrU28s/eGU4bbl/t0rlge+5VW2g+YwWhERERERERERLTLa3EXJba08RLtJDXlwM9jgYznga3zgfVTfLe3zg9cd+kkYNljQHUhIF4g9zfg58Na4HxB1AxyZwK/jgOyvgMq84H82cCcy4GMyTt7ZOQI5zUiol0O92mJWj6b7Tjc1w4RETXGYDSqr/GV1ZY/NSEiWQAW1lsUBeBAF/2MaXT7Gxd1iYiIiIh2OSoqCurBj4AuPRuuOPo8qGufDtxAh65B9Zvr6ahdN6y7w4vt7T4I+yu0hwLy5ETHZdUpV4e0bwqeSmmc0Q1UKk1qkcaICotgoLLASQeSuRbmgxfCHB3r+3fxfjDP3xvmtUfCvP0UyJK/feV+nwaZfKurMSEpBeqmF6D2OdxdPQeUUlBvzbUtI8d3gzR6DHTBaFui/J8DefE2iNvErBDTzR5GC/00a7dUhcsPNvDM6QYePsnA9GsMpKfUrY+PBh46UeGKgxSOGKRwzaEGLh6QjUsK38L1Bc/jwdz7LNudGz8CZYZ18tmotpsAAD3aWY8pI0cfqqJTWuPxX/jzZ8Cf09015NLKXMAb4CXpcfja6KQJackpDv4LmswAeY7xZhneyLochtuTfPY6yBeK1qm75WrVe0+oe98FOnbTNqFOv9Z6uVLASVegn1gnMmTE9Gm4wOuFPHQhNs5f4Wjo/20Azn3DxPiXrJ+4pFggOiq04T0je+rXvftXaL6AcxqM1reT8zb32R1ISYiMIKPGZt/uftKtDQrSbWuREIyxNk9w/psmDnjUi+s+NpFZyC9oqeXR7apFSC4aEmIVZkxs2o5brOHFjSUvoWJZG3y8+Rxtudqg36yCasdtVwXIoqqlm/eVAhI1hy1lDEYjN2oCvGDWL2+ecYRZU86FMgyFX28KPJ+Ean8vWHaBwFY2FujXuT1OW5Hjq1BUZl2xbZyzdgamK3x1tf6xLqn0HUc2Fmjei4T9PyIiIiIiIiIiIiKikMv9zT8EraYEWP1m4LobPvZfVrwMKFocmrERtSZr3gJMiy+kVr7c/GOhZsTzuYiIWifO70REROROC72UlEJNKRUHYHyjxb/aVJna6PaFDvvpj4YBbKUAvndSl4iIiIhoV6a694PxyQqob7dAfbYK6qdiGHe8BhUdE7hy+y5B9Vml9G1fMMppMJo+xUZuGw/55XO3w7Jua+ZXQFGes8L7Hw01cGRI+qUQSE7zW9S3KsNx9Yn5z8Py1RggGE0y10IuHAl8/2Hdwox5wJrFwH+/AjO/glxxEOS9xyB3nuZoLOqWl6A+WAj18TKoGVlQJ1zq+H64pfYYDBwwzraMXD0W4vXuuN0+yXq7zff4B6NhQwawwVn4Ubi4CfuQqkptO3brdqZjBitsnGRg3SMGVjxooPBZA3ccY8CofwcLcnf8uXfFf677SF07BwDQv4v1c78iW1xfcF9iWCfsyTfvuWvIpSveCxzU5zQIpmMb6+U5xS4G1Mham7cgj9TgjczLMbzCwa/BHnUO1O8VUJ9mQM3IgvH8D9pQtFrqsNOhpiyFuu1V/5X7HQXVvZ++rseDvukWYXcAVsT2tVyeNXmS7Xjq++BvQaEmICI1wXEzjo0frn8RvPirYM7apn+Zrg3IafRFff/OzpOJeqZFSIqRhdREhefOcDe+2mC0NE0gZ35pEwcVpG0VgopqweLNgr0eMPHebMFfa4DnfhKMfdJEoSZIJBARgel2MiUKAa/DoMadaVh3hUX3ufsq8rns67F0xFtY/qCBohei8dj7VyL64yVo/9EsbZ38qDRUqhgskt0d95MVINS0li7MSQFI1Bwyl0Tm7idFqhr7QD/ZuLKZBhJedsFoTqatg/oqDNNnAQMAfsvYue/JW13u4+SX6sfq9m5kZPv+L66wXp8c77ytcUMU7j9e/6zM2+A/uNIAwWj5DEYjIiIiIiIiIqJdAr8zpOYW4DXXlF8tIWfm3Wy9POP5wHUbB6rVWv5M8OMhaq3WT7FeXrTY9jx1IiIi2ll4LELU4tl9phDCzxtsuwlZL0TU0jEYjWrdCqBrvdteADNsyn+wvUyt8UqpPg77qe8TEdGcok1ERERERI2pxLZQnbpBxcQ6r9Q+Pai+qlS05fK+nXwXuDuiSzbavk4+fjaIkdWRshKYkyZAbj/FWYVTr4Z68KMm9UkhluwfyjXCRQDUQ1vus15RGiAY7bPJAcPTAEBevdvZQEaOhTruIqju/aDSe0EZ4f/IRT38mX2BlQsgr92z46YuoGaLVTDa9vo7k+5C8PphHzLjbZin9YUcngJzwsGQdcvq1v3yuW/dYckwLx0FWf5vmEfsnlIK3dMU+nRSiI7yn1flpTt2/D2ociniTU3ClEbKf9MBAP06Wa9fnu3+gvsyQ5Nm9fs0SIBQh2BlFwnmrAtczmkQTKe21suDCUbLLRYc9YwX2zSfbnmkBr+tG4vTtjkLAlWnXwulFFTnHlBt2zkeh4qOgRp3PtSDU4C9DwF67QmccT3UQxa/LttI/+HWITKronujBv6haVlRnR2Py84eHUPSTANt4hQOsvmE8t4vm34inHZuenwCzGO7wnzlbojXixE9nbfZNbXJwwqrqw5ReP0850lLsVG+/9MSNYGczRyMMXuNYMh9XiRPNJFwlYkh95t+2+yKHGDafPdfn/67XnDIEyZiJpjodosXH//Dky2p+bgJkd2ZBqUrzLqqCJ1rsv3WdarJ2fFvVNksvJt3Ja66cBD6XXox+nZSiIlSUIYBlb47Utu30d63PE8a/orfF6WaAFcrmYXOtnm7fdKkOOt1pQxGIzcC7UO3lmA0m3XK4bw1doB9wdxtcHTcEC5bbYLOrNiFxbo9d2xFjq+CLhitrYtgNAC4+1j9ZxqbC/2XBZr38kp4mhoRERERERERERERtUIla3b2CIh2DV6b8yYZAtkC8DkiIqL6+L5ARBQ+nGOpdYra2QOg0FJKnQvgexHJcVHnUgD3Nlr8tois19URkZVKqXcAXLR9UQyAt5VSY3VBZ0qpEwBcUG9RFYD7nY6TiIiIiIiC1HG3oKpVqRjL5aP7uLjSPtAvcS3528WI6jUrAmzMgFx5CFCUH7iCxwN1z7tQhzoMUKPmk5zmtyhWqjC69A/8kTjatmrPqnVIkHLrlZtXA4P28VssBTnAiv+ATx38KqNT3fo4Ch8KNWUYwKOfQ247WV/ogycgp14DldYZHdpYF9kYbT1HyAPnQx1+RghGGhxdCIVa+jckJhfYmgt54uq6FYtnQyYeAXy0xBcKd89ZdeuW/wu5/mjg/YVQaaEJdQoFyc/2vR4r/T9KkTk/AMv+2XE7Cl7sVbEAfyXs77j91P++hJQUoU/uIgD+9TZvFQzqYl03NgqorPFfXmIXOLJxFbD7AMfjc6r7rc6ChhwHoyUrWH3gv6HA3ZcAIoIzXzPxywp9mUVrhqNv1SpnDZ54GdQeQ1yNoTE15iSoMSe5qtNv/z2Bn/zve5URi3XRPbBHdcOTOLNDFIw2omd4knvG9FP4faX1c/ndEqCwTJCSEHzf2iAisxooygPefwyiFHa/7AEM7AIszQrcZteUoIfTLJRSuOhAhdF9BAdMMpEXINgsrXgNZGE22q0BgP381pdUApXVgtjo8KU3lVYKFmwClmQKLn/P2bb9zzrg/FHO+ygqE5ww2UTm9nCQzYXAma8JOrYRHNJfoaBU8N96oF9noFu7CEuqolZBd26vJ8J+EklWLcQ+L1+DTStn2xc8bSKMa17RrvYYCqkJ1kFCBZ52KFfuUn+yi5yV080gSikkxliXKGEwGrlRXWW/fqPDfckIZ3c9gtNgtP4OdkOnzRfs12vnvO8WuMuxRoFNMJrbAOuM7WcGFGs+ImmrCXK0c9gA4Mdl/suXZAI/LhUM3g3o1Nb3WJcFeBlvdfnYEBERERERERERtT68KJGIiCg8TMDixz+pFWDoHRFRC2Yzh3N+J2r5uB0TUTNjMFrrczGAV5RSnwL4BMCvImJ5WrVSagSAOwA0vlpyM4C7HPR17/a6qdtvjwLwo1LqEhFZXq+fWACXAXiyUf0n7cLXiIiIiIgoNFRcAqT3YGD1Ilf1qlW05fJoN98fO/iwS7xeKI/zRqWqEvLwJcBPnzircMZ1UIecAjVwpOM+qBmldLBcfHv+YwGD0U4p/ly7Th68ACgthjrp8rplX7wEef5moKY6mJFaUlc+ApxwKVSCJnUszNQBx0L23A9YbBM0Mfs7YNz52MP6oUZGTB94YcAD/7QfycuCaq9JzgozryZ8SP04BfLpy9Yrt+YCc36E/P4//3UlRcCf04HjLwndIJtAPnkO8uLtgNcifUxjZMW/joPRYs0KxEsF5OFL0H5DEmBRb1uFoMa0Dg1oGw9s2ea/vFQl6DtdvzzkwWibtwpqnOWiOQ6C6a3ZFlZkO6tfa+562IaipdXkoXeVs1+GVfd/ABxiE3IYRv06WQfFAcCK2L5+wWhZoQpG6xGewIpTRyg8MF2//3HuGya+uib4k+F0LRv1w2C/eQ9yyX0Y1l1haVbgfaGuKS0jNKtPJ4V5dxt440/B8ixgyj/+922PqlXoftUQCIB2sQOBXnMt28ovBdLDFAj341LBeW+ayC52V+/z/wQvnBW4XK1X/5AdoWj1Tf7FxMpchas+lB3vZRPGKDx7ukKUp2U819QyaENkI+RlJmUlkFtOBBb8EbjwyLFQVz8WsFhaknUwWp7HP2w5EKt2rGgDMRWQqAkaChQQRNSAN8Dxac4GSGU5VKy78L9IY7dH5HTa6tdZv99a68sFgkfGOx1VaG11OK/UyrcJm9V9nJYYC5RahC8WlAJ52wRFmmC05Hj3bw7pKdaP99uzBG/P8i2/c5zCA8crlAaY98pD9zEMERERERERERFR5NpVLgrdVe4nERG1DHxfIiIiijx8fyYiIqIQYjBa6xQP4Lzt/0yl1EoA6wAUAfACSAMwFEAni7oFAI4SkYCXgorIJqXUeADfAYjZvvgAAEuVUv8CWAMgGcBwAI0vOZ0O4G53d4uIiIiIiIJ24LGug9GqVIzl8hg3R5KmN3CZmirA4/wCX3n7/xyHoqmvNkOltHfcNu0EHdItF7f12qeZHFD2J24ueNq2jDw1Edh7DFT3fpBVCyFPXxf0MP2kdYH6Yg2U4TCJKYzUw59Cju+mXS+bVkEB6K+5iLzSiMP66O7oVb3Ov/LqRUAzBaNVVgu+mCeYu973XdjSLOtySab91eYy5Wlg6Rzrdd9+ALWTg9Fk6T+Q9x4FZk53XXfv8v8cl001t6f1/PElUuKGAbtbjAUGCreWw/dRUkNJsdbBaGVGgGC0EJv8q/MvRg2H1/r37Wi9LawvAMqrBPExzhr63zz7sR1b8o1l4GDDQhdB3fIi1E5MsUmIVejeDthQ4L9uRUxfjMO3DZblejTJci6N7BmSZvwMSld4+CSFO6ZaPz8zFgEb8gXd04J7zLVBRPVfU3mZQGkRuiQnO2ozXAFh4dA1VeGeY32P3Z3jBMc9mIN1Xt9rIsW7FR9sPn9HuEn7mnxtO/klge93brFg2gJf+NgRAxX27x34OdtWIbjgbfehaADQz+rTchv3f2X9YvhiHvBFo/nhpV8Fw7sDFx8YIYlVtINp+gLsvOILwPKKL5y1wb8Ay0zXdcS/rss2TAHmrrd+DUbA7ikAQCZd7iwUDYB67EtH74Xtk4CMHP/l+Z40xEmFq/EVlPqeC0+AHQjdu71SQKL1ITNKK3liF7ngJLh702qg957hH8tO4nRXeFA6EGXANjh5WRaQkSPo26n533N14V9JsUCJZZiZfq7Q7XMO6OwLaLayIgco1kyFbYPI1eviYFf2/2YI9ttdBQyEZGAkERERERERERERURgEDBvgd1ZEtCvgXEdERNSy8L2bqEWw/cyB23HEYjAltVIMRmv9DAD9tv8L5CcAF4jIJqeNi8ivSqmTALyNuvAzBWDE9n9WPgJwqYg4SEggIiIiIqJQUCdcCnnnEVd1tMFoHheNmAECYQDfRcCxzq7QlM2rgfcmOSqrbnuVoWgtgEpOg/QaBKxZ0mB5kujDr+7eJxN3vHM0olETsH35fgpwwZ2QC0c2eaz1qXNuiohQNABQqR2BH4sgh2muWhbfdtjXJvAlI6aPdTDaxpXAvkc0fZABlFQIjnnOxMxVgcvuURWgUK7NxxprFrsbWIjJ5y9Cnr0h6A+bB1Q5Dx5L9W7d8XeKt1BbbmtuEayC0XRBH+VGAgSAVcyALP7LcnmwJnxg4pXfQh+M1q+z9XIRYPUWYM+uztqZNl8/NgXBxIIXbOurx/4Htf/RzjoLs/6dNcFoSUN8P6NQT56n6e+taYlAj7QmN6N129EG/ljpxTeaTf692YI7xwUZjKbZtTEah+AV5qFrqrNgtA5tghrKTjewC7Bg3b74FXuhSsXiiJIfkChlO9a381q8qLbLt8+4xMocweFPmztel/d/JXj8FIUbj7B/7/38P1+QWrjlFIvrgI9L3xWcMlyQnODutScilsFbTQnU8ltnWUfsw78c9ms3Tv+xCAKO1cGyBvUClG+NPBGQvydL/gZ+/sxRWfX2v1BRzr6uTEu0Xp7vSWuw7+OEKUBhGZCWFLicFUMBibHW66wCkIi0agIf12LTqhYfjGZ3COR02kpJUBg/XOGTufbHCNPmC24+svknQ937Ssc21vNCrkUQdS3d3NMlGWgTB2yzCECbt0G0Y2gTp+9Lp6vD8N63Z5koDTDvMRiNiIiIiIiIiIh2eS3tosSWNl4iItqF8T0r4nG/gohoF8S5n4iIiEKHwWitz7MANgM4AEAPB+VLAXwPYLKI/BRMhyLytVJqTwD3AzgdQKqm6GwAT4jI58H0Q0REREREwVMdukLGXQjMeMtxnSoVbbk8xs2RpDhIG6gOfHWk5GVC3psEfPGyo27VRfcAR5/rqCxFgP2P9gtG61u5EsneQhR5Gl6J2yYOuHlAhqNQNADAgpnAt++FaqQ++x0FnHhFaNtsIhUbB+neF9iQ4b/S68slT4pT6JIMZBX5F9kc7Z8EJQBeW9gO3+T46l9zqIGxA6wvLp+9RvDEdyZKq4Cj9lSYcLBCTJSv7O8Zgld/FyzOFIgAfToCVx1i4JD+dW29N1schaIBQP8qi/tYX16mfl2aJhErxMTrBb59H/LoZXULUzsCW3Ob1G7fypWOyyZ7657oFNPiSd+uoAyWSQS6oA8AqFSxiBOLK99nfwcp2waV0PSUpylz3IWiAYDTrMJe7QGPYR1csCLbWTBaRo5gaZZ+/bu9p2HoskXWKzt0hbr9VaiRhzkbcDPo21nh+6X+j3fGkDOAbXc0eO1uiWp6MNoh/QClwhtWcdMRBr5ZbL0f8tUCwZ3jnLdVXSN45y/Bp3MF2cXWZYzG+zxF+eiS3NtR+7qgn0glG1dCJk0AFvyBRADj8K1luRhUo423GNs8bf3W5ZXY9/F/X4tfWN9tXwguGCVIS9K/dqbMCf5kiqJy52VnLAyun9TrTPRq7y74SxeMQqSzs7N7JXMN5IqDHJVVd70F5SLsybf9+28U+Z52iLHaNwkgryRwMJru/FylgCTN/lKggCCiBhx8JoItm8M/jjAL1bnur5yjUF4lmLFI/x556+eCm48MTX9u6MbTrR2wJs9/+cocfVu6x8tQQL9OwNz1/uvm22SE6+YrOyN6Ws+5jX3+X+C2GIxGREREREREREREREREYcHQrVaMzy0RUevE+Z2oRbDbz+Y+OBE1MwajtTIiMhXAVABQSqUAGASgG4BOABIAGAAKAWwFsAzAQhHxhqDfXAATlFLXoi6UrTN8wWubAcwTkbVN7YeIiIiIiIKnbp4MWbMIWDbXUfnqUASjOUlyqLG/OlKK8iGXjwZyba7wrEd9tgqqUzdHZSkyqF57+n29EYNqXLb1dTze/qYGyyeMUUisKnT+dci6ZZDvPwrFMH32PxrGY/8LXXuh1K2PdTCaWXfY3zVFE4wWlQ4vDJSreCRJKQDgxo6T8Fz2aUDBxMzBAAAgAElEQVS2r8yXC0y8eYHCWfsoVFT7QuqUUpixUHDcC3WBQN8tEfy3HnjnIoUflgqOfd5Edb1PHhZtBqbONzH9agNHD/aF20x3GDDTriYf7b35jspaSukQfF0X5NW7gQ+fbLiwiaFoAJAkpegWX4qN5YFTlFLNwh1/1w9Ja6xAklwHo5WreOtgNAByzeFQb8wOOD47BaWCs153/2WJoclKEhEopSA11VBR0YiOUugVX4SVpcl+ZVfkCGofkNp6VqbN149vwyQD6e/+ab2y1yCot/8NeyiYW/01mYHLcw2oj5dDjmgHADChkO9Jsyz7UO49uLfjvfDCY9uXUsDtx4Q/tWdMP/26OeuA7CJB52Rnz8ONnwle+Nn+NWmgcTBaHrp1Dhwm4TGA5HhHw4gIkrUOcpaLECNvgWUwWn5J3bZm5d2//B83rwn8b77g4gOt65VXCX4NkJ1px00w2pcLgv9C1yoYhSiU4nbiN3+yrRBy+gBHZdXEJ6COPMtV+7oQs3xPO20Q7D49ffO+Zb3SwH3ahRPp9pdKGIxGbtRUBywieZk275otg907p5td4+QEhWlXe1BYJnj0W8Fj31q3/PzPJq45tHmTIq2ClwGgfxeF3zIsQh1LgbxtgvZt/B8A3cdpSgH9OivMXe9fYFmm/lGOs/6Iz9a+u7uvo1NWZX98RURERERERERE1DrwolCKNHxNEtGugHMdERFRxGFoElHL10zBaJwtiMiJnfy78RROIlIoIn+KyBQReVZEHhGR/xORySLyoYjMC0UoWqM+q0TkFxF5W0QeFZHnReQLhqIREREREe18yuOBmvQ/4MTLgF57AnsdBPX0N8AR1hejV6kYy+Ux9nknDTn5sKvaPhgN37zrLBTtgHFQ7y9gKFpL1L2v5eKHt9yDR5M+wl7dgJE9gcdOUXjkJAWU6EOe/BgGsOAP5+WHjwGGjvZf3qMfcPZNUA9Ocd5Wc1Oaj3mk7ursrinWRR7ocBdiB5Qgpf8W9NhjJd5NPhuvpF7qV+6itwVxV5pIudaE53ITxmXeBqFotd6bLfh3veDJ7xuGou0YkgB3/q+uXkaO/V2rNbxinrOCOuUO0i+aSHI2+oeiORUdAySn1f2LiWuwWt37Lvr1DByKBgCp3q07/o6CF0nebZblSg3rhJEE67cAAEC5YZPilDEP4jDIUmffhzWJAgF46m0CkrMR5t1nwhwdCzkozvf/IUkwR8fCfPUe9M22Di7LWF2IH5YKjMu8O17jxmVe/Ly84fuZLhht392B3VJt5qk9hkZkGEC/TtZj2rINyKtJAA4YBwDY6kmFV1kn7hxW+jO+M6/Dof2BwV19y7ql1gVdGAo4tD8w61YDw7qH/zFQSuHfu/QffzsNZFyeJZj8S+CyfsFohfnYuweQZBMyCABpiYChS/WLQPLafa7Kp3kLLJfbhRGZNsG6Py7V1/txGVBV43Rk/pwGo1XXCH6wGQfRznbAHuGfU2ThnzAvHw1zbDLMs/aEzP0JsjUXckwnR/XVba8Ap1ztut/2umC0qPYoVQmW6/p3UYjXBALlWe8eNaA7pFVKP8eXMhiN3PAGDkZDXlb4xxFmdh8PBbN7nJKgcN5++oq6wLRw0gWjDeyir7M823q5bvSGAnpY5xRj9RZ9P8GEZiqlcMGo0LyniACVTdhPIyIiIiIiIiIiIiIrvHy4deLzSuQOtxkiIqIWhaFpROQQp4tg8EGj1mkn/m48ERERERERNTeV2gHqxucbLtz7EEh1JfDL5w0WV2uC0aJdBaM5CLepsb8IWOYHDrVSr/8F1W+401FRpNEEoykAN215Arc8dU6D5VLqIhitwGHiVlQ01IwsqIQ2ztuONB7NxumtSyZLT1UI9EHn5uiuuCj9tSYP555pJr63CY6ZvxFYs0WwWyqwLt9Zm8eUfNu0QZUUNq2+E39MC6qauukFqBP8w+ga659n4sdlgT+sTvU2vK8pZhFKPM5f34kx+tdKhQqQ9PTHl8DJVzruq77fVojtBf12arOlxDQh958HLJplXfC9Sejb8WHMwDF+q76dV4F3F/m/dx32lIml9xvo30Uhp1jw1xrrpk/Ya/sgdMFoScmB7sZO0b+zft2l75qYOvp4yJ8zkOfRpDAA6FCzBSNWvYNDXpscMeFvw7or9O9sHTgxfaHgEosczMbe+UscfalmNN5eivIQE6Uw6WSFqz7UN6AL+YlEUlUJ/PCRqzrtvNYTvF0wWqFNQFmcJtwIAKbO0z/OHgOYfo2BIwcpfLdEcPSz/tt5cQUgIgFfv5sKgXIHGTZEO8Mh/YBxg8PbhxTkQK46tG7BxpWQ6/3fU3XUlKVQXXsH1XeaJh8239MOZYZ1MFpCDJCWBGza6r8ur0TgO+rQswsnStQEyZYwGI3cCBQWDwBbNod/HGFmtzsV7J7jgC5A93bABosc1s2FQGGZICWh+fZLddmu6ckKbeMExRX+69YXCA60eAR0IWtK6QPPc23CHu32oez0szlOcGvyL4Ibj4iM4wQiIiIiIiIiIqLmx4sSiVonbttEOx3TEloAPkdERLsezv1ELZ/Ndsx9cCJqZgxGIyIiIiIi2sUppYD73oc0CkargvVVkzFujiTNpgejYUOG/frhYxiK1sKphDb6j0zXLYOUbWsQWCb5DsPO3BgzvmWHogGAMqyX1wso1F1AHQ7fLA5c5quFgqMGKe1F3/XFm2U4ddsXTRuULqwqRKSiDPLsje4qjRwLdc4tUMPHOCrer5OzZlMaBaMle4uwKXo3x8NKsMk+K1fxtnVl0V9QQQajPfadgxeDRlltpsTcn/ShaNv1q1ppuTw3Sv8AT/5V8PyZCj8t0wdlnRgoGK1NM26ELqSnAEmx1kEuXy4Aas4+AZ6kW7HF217bRgdvHiA1wO/TgINPDONo3TluqMLybP8n7IelQHmVID7GPpzhk7nOvrgzGoXBSmEeFIAJYwz8tdrE+39bt5PWkoLR3nzAdZ32mmC0vLWZAKznpGVZ+vZiNaEemYWCt2fpn6u5dxoY2s33XCdrpjCv6dsG2sTp+weAvBL79US1PMb2f6re39v/GUq/zm6ZoVmXGKtwUF/g7H1VwHmtqeSE7sFVHDMe6vpnoNo53JmxkJZkHdya50lDqWGdmpYY6wuhtA5GC9yn3SFtYqz1eEoZjEZuBPpMBAA2r3EU3hnJ7M6FCvZuKaVw3FCFyb9YN/7TMuDkvYNrOxi641qPAXRrByzJ9F+32WJusm9LoWtK4MDzxoINRksPYa7zy78JbjwidO0RERERERERERFFnl3lotBd5X4S7Swt9/sgop2D70utF59bIqLWifM7ERERucNgNCIiIiIiIoIyDMihpwI/f7pjWZWKsSwb43HRsDgIuKmu0q6SbYXARuvwmlrqrBtcDIgilXrgQ8g9Z1muk6evh7rz9boFc74Pbee9BkFd8X+hbXNnMDQbp+nd8WdzBqM5cf3Hgh4TAp/MFWNW4oXs69ClJrtpHZYWQUwTytCEyDWB5G6CnLWn8wqGAXXVJKjTJrrqp39nZxfBp5oNr7Bv5y1w1U+iXTCaYR+MhvLgUoO2VQh+Wh5UVQDA6rVFMF96HPjwyYBl+2iC0ezMXOl73K0CDQCgT0egf5faYLRCyzIqKYTJAiGklMKQ3YBZq63X/5mTgoNveQl5T39uuT7BLEWClAMA5K7TgV/LoDxudhjC57ghCo9/57/NlFcD3y8FTtgrNP2oxttl5todfz56stIGo/Xu0DJOaJWyEuCDJ1zXS9PMPfnz5kNK2lhuE1d9qN9/jNeEepw4WV/n8wl1oWiALyBJZ10eMDhAhmTeNvv1LYlSgYO5/IK4XAR5GZbrVMOgLxfhX4GWNain9H1ajjOIkDK7x8cwWsa27ZbM/Tmoeur/PoE66IQm96/bfsuMROR72lmuS4jR18svDdynbq/LMHyholbKqwGvKfC00tcBhZiTYLScDcC6ZcDuA8M/np2gKVvKpPH6YLRTXzFhvtp8+6SmZsLwGL5jcavjiExNnrJdyNpuqe7HFmwwWtdU9yFsOqu3hKQZIiIiIiIiIiIiItohwOe3dr9aQiHC7wOJdjon56kTERFRM7M7FuFxClGLYPeZAj9viGB8bqh1YjAaERERERER+TQKMKlW1ldNxrg5knTyYdd/vwJ9/VNJpCgfcmy6fd1+w4ERh7kYEEWs/Y/Wr/vvlx1/SmkxsGZJ0/tL6QB1wR3Abr2BvQ6Cig0Q9NQS6MK+zLoTP9KTI+9DzvEv6U9MeTr7RqSYRRhdNhM9qzc0vTPT9AVWtbUOzgiWLP0HcuM4oLLcvuBJl0N17wvEtwEG7+/726X+nZ2VS/E2vMI+vSbLVT8J1tmYAIByFWdfOT+4ALvvlwBVNUFVBQB0/uoxIP8pR2X7VboPRluwCRARrMi23o5G9Kx3smOJJuEgKcLSCes5a1+FWaut79u0+YIxp4/HlrKDgWn+6zvU5DW4LQ9fAnX3W+EYpmv79wbSEq3Db0560UTVSwaiPPoTVQschOYAgEKjuWzDih1/pqconDZC4ZO5/o/vmfu0kJNkf7d44h3QhTLme9oBv00Fxl3QYLlpChZu0rdn9QqtqBYs0NSJiwaOaJQh06MdEO0Bqr3+5ZdnOwhGK3H3XnriXr75ISUhUPCXchTKpQ//ch9SplQLef1RRJDKCsj1NvvsOiMODUkoGuCbz3U2RVtvvAnzf0D7LofDagbJc5Dlqgs6UrAPki2rAtoE2GUiAuAsGA0A5v/eooPRwnUuVEKswp7pwGJNePHLv5m44uDQB2NbsQszS0+xDhjL3Gr9wGjbUkBXl8FoSvn2fYKRHpm5zkRERERERERERBR2kXd+ERERkTW+Z0U+PkdEREREREQUPAajERERERERkY/R8CrJKmWditM4GE1EgFkzIF+9CcQmQI09te7CdzPwL3HJ5FuhzrjO9/ef0yHfvA+UbQP++dG+4oCRUHe9AeUJ8upOiigqLgESEwdUVfivzN0EqaqEiokFtuaGpr/zboU6+cqQtBUxDM22UG877NrWC6BlbDOHl/yAa7a+FPqG5/wAHHZ6k5sRrxf4fDLkr2+AuT8HLK/u/wDq0FOa3G96CpAUC5RU2pdL9RY2uN3FZTBabJTvAn6rC/LLjQBBghsyICKuA3e+Whj4BJhuqcDGrdbrjiz5wXFfnbw56FG1HutjejiuAwC524Blmty3fttD60QE2KYZZGLkJgtccZDC1R9aPwdfLRA8fTqQh1RYnajUwdswGA3ffwg59GSoA44Nw0itSV4m5PmbgZ8/8y047HSoiU/Ck9oB44YovPuX9X2LmWBi3GDgiEEKbeOAqfMEuduAvXso3HaUQlGAvMNaRuNfH920CuL17thPeeFMhZIKwdeLfavbxgGPjFc4fGBkB1PJtq2Qtx4CPn0hqPq6YLQiTzJk5nSoRsFoVgF29ZVazH0rc6xDzgBg7+5AYmzDxzg6SqF3B18IWmMrcgSBftE50Bjr++AShTP3aZ4wFqKwm/pyUNXUPe+GbAjtk/TrsqOs02MT5n6NdsfsDcA/SSjfQdChLsxJKd8+mU5pJYPRyBnJXu+s3MaVAd6hIpvd1tbUnM59eykszrTu4coPBBcdIIiJCv+jpwtSNJTvOM5KpiZPWTf3eAygQxKQHA/H+6lxUcGHoboNYSMiIiIiIiIiIiIdBoIQUT3h+kUZol0St6dWi3MlEVHLZTeHc34nahlst1Vux0TUvHhFDhEREREREfmohoeIVSrasliMp9HFlP97FXLbycCfM4CfP4XceRrk0+d960xNSkUjsjUX8vW7vnZ+mxo4FG3gPlCv/AHVvZ+j9qmFOG2ift0XvoAsef7m0PR1xFmhaSeSGJqPeeoHoyXVNNNgmq5v1aqwtCv3nwfZsrnp7fzfRb7Xo5NQtKsfC0koGuC7oL2/de5HAylmw2CurjWZ7voRQbz12wAqVIBgtPISIN9dEBsAzFpt/QXJJaMVKl80sO4RA+seNfDFBP/X+qiyWRhcudhxXwrAlVvdB7x8+Ldgmeau7Xhelv4DlBZbF2qjSUSIAIah8NYF1oEJa/KAvG2CLSXWddO8+X7L5LaTIfN+C+UQLUl1FSR7PeSk3etC0QDgx48hZ+0JKS7AcUPsgyBmLAKunSK48G3BlwuA2WuAyb8Idr89cMBrLQONylZXAdnrdtxs30Zh+kQPtjxlYPF9BvKfMTBhTGR/PC9lJZAL93EfipbcHmjjS9FI8VqnfRR6UnzbSiObCy0K11NW5b9sRY6+/OOnWj/Gunl0zRb7/gEgT7MdNNYjDThpWEuOsCFqSL5+x12FpGSoH4ugUjuEbAztEt3XSTRLkZa90HKdk+3ZLugo0SYYLVCILRHg+ywE015zVnjjyvAOJszszpNqajDaVYfYN/BbRtPad8oqVBrwhZnpgtGyNcFourYMw7fffuQg5w9anOa4zok2caHdlxGe3EpERERERERERK0ZP/+iiMPXZOTic0MUMnz/JSIiIiIiImrVIvvKKyIiIiIiImo+Hk+Dm1UqxrJYdL1iUloMeflOvzLywZOQmhpAHAaKFOZD3pvkeKhq/ASopl45SxFHXXiXdp1MvhVSVgLM+rrp/dz0AlRyWpPbiTiGx3p5vYDCtjE1SPJuC1mXyfHA4K7AY6co/O/K0H7MtFfFgpC218C3HwRdVTasgHlsV+CHKY7rqNOvDbo/K8O6B57/2tc0DKpKr3EXVKY+egLxNdavlXIjLnADa5e66m9bhWBVrvW6IwcqREcpdE9TUErhxGEKU680MLoP0Ks9MKHDP/hy48kw3Jw0eOipuFE+Qop3a+Cy9dz4qb6PvbsriAjkitHWBZQCeu/pqr/mdvhA/Wur440m3pxpff871FinScnEIyCrrMNomkrWLYN59VjI4amQU/taFyopBKa9jiMGBddHjfNcNP9gNABYv8JvUVqSwsB0BY/RAvZjvnkXyNngupo6eQLUCz8BBx6H5GTr/ckioy1QkA0paZgGkhkgGK200v81uDxbv13u18v6cU5PsV5eUBp4HrELUtq9PdA1BThzH4VZtxqIi24BzzNRALJxJcwzBrh7b+81COq9+VCxDvYZXIjyKKQkuKuTYJah/YY5luucBKPpzqFWCki0nuIAAKUMRiMnvv/IedkNzZTuFSa2wWhNbHuvbgrjBuvXn/Gqi506B2T6WzBP7Qvz6E4wbxgH2b6/5LUJUmynmbuKyq2X69rybD/sHuPidwKaEowWatXOfj+BiIiIiIiIiIiIiJxgGFDLxeeOKIS4PREREUUeu/dnvncTtQh2x60hPKZtpm52HXzQqJWK2tkDICIiIiIioghhNAw10gWjxdQ/kvx9GlBmEZyTnwVsWun8A5WiPGDTKmdlew8GDjvdWVlqUVRMLKRbH2DjSsv1csYA+wZOuhyY+op9mTHjoU64NMgRRjilCSYz610E7q1Bj+pNWOJxlxJ0UeHbeDXrSqjLHgQ6dAW69gL6DIWKa3h19083GBj7VNMvOldi4piSb5vcjo68ejfQayDQZXeg5wAoQx/qJjXVwIp5QOEWoDAP8uhlzjtKSoF6+bcQjLih44YqvPaH/fya5i1ocDu9OtNVH0ZFKeIrtgLRbfzWlav4gPXl7++hRh7muL9Fm/XrhnX3X3Z8/3IcH7UQ2JoLueNUx/3AEwV173tQh4yHiGDRoT3Ru/cyVBmxztuwMKAL0LujgnzwhL7QyMOgUjs2qZ9w65IMtI0Diius15doQl7ae/O0bcqFI4Gvc6DapLgej1SWA0v/AXI2ArHxQEzd8yS3jXfWxnfvo825t2DCGIWXfg3fFz2GVRjshgxg1DFh67MppLoK2LTaF2K7+0C/wFmprIB88pz7hrv2Ao67GKp9F6hHPkO7lQI87v/YlBsJqFQx8K5ehQWJw9G3E9ChjcLmQvvnyOo1mJFtXfaEofp20pKslxeU2nYPAMgvsR7jJaMVXj2Xv0VDrYfU1AAr/tMHfup07Ab19r9hC7Lu2AYoLHNePkHKkJazGOjqvy7fQTCaqTmmNRSQZJP7VlrlcIC0S5OPn3VeOHMtpLQYKrFt+AYUBmWVgn/WAX+u1r/Hh2K6+OhSA20nWh+Lbi0D7p5m4pYjFdrENa0zmfU1ZNIVdQv++RFyzeGQD5dqPwLzGEByvILViZ3FFYCI+M2ZXs1hdW0w2m6p1u1ZaWow2n69gNlrmtZGrYrqRp8rEhERERERERER7Sp4USIRNcA5gShk+B4b+fgcERERERERURPwtFMiIiIiIiLyMTwNblYr6ysnY+oVkz+n69vLywRKix11LbO/c1QOANRrs6A8nsAFqWXa/2htMBq25tpWVQceB7EJRlM3vwiMu6AJg4twHl0wmrfub28NjiuZgSVx1sFovdoDx1b8gLVZvuSZZG8RDiv9GWcXfwRge6BYfU9/DTVi7I6bo/sAvTsAq7f4tz2gC/DBJQaGPxg4OO3oku/QyWv/fDeV3Hay7489hgCPfgHVqZt/maX/QG4/BSjQpO7YSU6Dev0vqM49mjhSf2P7A4mxQKkmpAoA0rz5DW6n12S56sOAiXiz3HJdhbJJAak15wdX/S3aZH3yS5s4oGdaw2Xy+zTIQxcC5Q4SjGodfBLQcTeoQ0+B2nM/AIBSCl1OGI9LZr6FF9tdEaABe8cP9QUZyDfvasu0hFBGpRT6dwbmrHNXr4NNMBoAYPqbwJk3uGpTfp8GufM0dwOxsn4FzKcm4vmJT+OlX5venI4B/7lNNqxAeGKBmkbWLoXcdy6wZrFvwdDRwP3vQ6V19q3PmA+5eF9Hbak3/gaWzIYs+xeqRz/gqHN2tAMAyTY5iq+mXIzbXhqMyu0BnhPHKqQEyF20mveWZ1vPH/266B/9donWy/MdBaNZL2+vCVsjaokka51vDl65wH3lo88JWygaAIzsqZCR4/yk2USzFFFSY7muqNw6kKg+3fm5CkBslC8gzbQos2aLYFTvSHwXoIiyxSYd2MrKBcBeLsMKd6JP5po4/01BpfUmuEMo5oykOIWXzlaY8IH1Rvt/MwTP/SR483wDJ+8dfH/y2r3+C7PWwZz1NQDrQFxDAW01+zjVXqCyxj+8zGs1sQDwbB96VxeZw/FNDEY7Zz+F2WtCc7FCRbX+sSAiIiIiIiIiIqIWguEmRPUEuz3Y1eM2RuQOt5nWi88tEVHLZTOH85iSqIXgdkxEkUNzxSwRERERERHtcuqFjXlhwKuss7Rjti+W6ipg7s/a5uSb9533/cHjjoqpz1ZCRcc4b5daHHX+7cFXHjEWGG8RbhSfCPXIZ1DHX9y6Q/WU5mMeqRfWU1ONG/OfwQFlf/oV2yO1Ct9dZ+Dpu4dj6qbTMHXTaXg761KcU/yRNthHrj8G5kt3QPJ9wWFRHoXXDl+P1KiKBuXOjv4NC9ftg6FzX8G/561ClxhNqsx2T+XcbLte3TwZxh+VwJ7725ZzZNVCyONX+i2WmhrIXacHF4oGQP1vQ1hC0QAgPkbhKOtsOwBA2zgg+uizGixLP/JIV30YMBEvFZbryg0HwWhZ6yAuvvDYUGC9fM90wDDqXoGydQvkvnPchaINHgXjoSkwJj6xIxStljrnFjyaeyf2Lft7x7IoqcYFhfqAMyvHb5sOydkIrF9hXSAqGhg1zlWbO8vg3dwHRXQYfZDtennxdojXa1umQfn87NCEotWa+gpw1gD8esKi0LXZiFUwGjZkhK2/YEhlBeTb9yHnDasLRQOABX9ATuwBc/JtkA+ecByKBqWAHv2hTroCxh2vQZ19U4NQNAC2QWfXd34SlWbd+/JzPwkemG4/bzQORhMRrMixLtuvk76dNF0wmv3bEwAgj8FotAuQJ64OLhRtyAFQLoMw3Tp2iLvyCWY5ks0iy3U1JlBeZV9fNysZhi/MKTHWev15b/LEDwqDjHk7ewSOrc8XnPla4FC0UDp9pEKUzdkP2yqAU18xMWdtcNunuXktfs1MxsNpt+CTNiejTNXt6HiX658bj+E7RtMpssij9mryxGvz0NNdBKM1Dl1z68JRoQt5rKgOWVNEREREREREREQRiN8NUHML9JrjazJi8SJyohDi9kREREREFHJ2x608piWiZmZ9lTsRERERERHteoy6YIpqpb9qsjYYDWsWA6XF+va+/zBEA/NRn62C6tQtpG1S5FFt2wE3PAt56lr3dQ0DuO4Z4NiLgGX/QLI3QPXfGxgwAqpD1zCMNsLoQt/qhxF5a5BqFuKH9cfgr4R9MT92KExloG/VShx8+zNo23F3AB0h594KvDfJWb8fPgn58Elg8i9A5loc9OhlWIJU/Jw4BvmeNAyv+A/7lc+BAiBPXYuhABYaKTi221T8neAfvpOV0R0dvHn6/mLjgUNOBgCos26A3HGqs3HamfMDpDAPKqV93bIFfwBbNgfVnHrjb6io8H7sdvxQhc//s/5CobgCMO54DXLiZUDmWmC33kjsvzdSr/Nia5mz9hUEcabFFfoAyusFACAmFqiq9C9UUQaUbQMS2zrqL8s6rwS7pTa6CP+3qUB1gASTRtQ5+qA91b4LEq+8D39MPhQ/JR6CfE8ahlXMR7fqTXgn+RyILnCwns412Rj5+mmQ122+4Dn+krC/JkLlglEKb8x092VVx7FHArHXAh8/qy0jlx0AvDLT0eMgJ4YhVDBrPQ58dF+cNWoWPty6V8ibV1Yn2UVQMJrkZUJuPBZYs0RfaMrT7k4V7NwDKtY+KDElwU2DgW1rNN3kFPtCTqz076wP8UhLVLA6MbKg1Be2ppS+ri4YTRe2RtTSSOYaYM4Pjsqqe98D4hN8+xs9BwDDxoT9/W54d+vtVydRSuEx9eGcheVAgibcDABMTThR7Syhm4MAoKxSkBAbukAhal1E9+Kyq7Ninja0OtJMmy/Nfv5TSoLCqN7A7yvtyze4V0AAACAASURBVO33iImZtxoY1dvdo3n9m4V4vsd3O27vXf4fvt54PNK8BfD++xuAOy3rGQpItgmLLS4HOjU6bAoUjNYhCYj2ANUOsoebGowWH6Pw6eUGTn3F/Wu2sYpmDMojIiIiIiIiIiKipuAFrkThZfeZe0v5NogoQjCUgYiIKPLYvj/zvZuIKHw4x1Lr1DKuxiMiIiIiIqLwqxf+UqVitMWifv0U5kvvA7O/05YJuWEHMxRtV3Li5UAQwWgAfEEmfYYCfYbueqcI6QKcpN6JVF7fVcgxqMbBZTNxcNnMuuoJdcFq6rDTIU6D0Wq7ueqQHX93xBacUfyptmyqWYhf1x+Omzs9ipdSL4NXRWFoxUK8knWlfSgaAPXEV1BtUn03DjzO1Ri1RIB5v8FcMBPI2QD0HAisW+a+nYQ2UNc9DdU39KFLjY0bEjgURA0cCQwcueN21xQ4DkZL8xYgQawLlxr10n867gZsWm3dSF6mi2A06/vSJaXubykrgTx5jaP26lOjjrEvcNpEGJNvxeGlPzdY3KdqFTJi+wZs/9htX8MI9Fxc/VjAdiLFAXsovHquwsQpgopqZ3U6tAHUhEcgG1cCs762LpQxD/jmXcioYyCTbwN++Mi3/NiLoK54CCo5DQAgs78Nwb3Qe2H2kagatxSfrUoLabsmLObgrbkw7zkL6txbofoMDWl/bsknz9uHogVj4D4BiyTF+sJAzBB9x5Zb3DC4bHOhvmzvDvp1aUnWy2tMX8hRW014iYhog9HaJ+1yex7UCokI5K4znFfouxdU98DvlaHUM80XDKQLDWoswSxDvOjTy7KKgE/mmvh5uaBTW4U7jlHYvX3d9qybvgwHm3xeCdDdJnSNdnFbc93XyZgX+nGEyfqCndPv1CsNpF0feII4cJKvzJi+wItnG+jfxX6jnrdB8PzGIQ2W/Rs/HC+mXo678x6BWVEOaLZ3j6HftwCAIos86kDBaIah0C0VWGN/+Ayg6cFoAJCg/5jQFafHF0RERERERERERK0PL0okap2CPE+AQU5EIdT0H/ehcOOcR0RE9fF9gahFYMAhEUUQzRWzREREREREtMvx1IUiVSv9VZPRHz7avKFoANRlDzRrf7RzKaWAkYe5q7TnfuEZTEtieKyXm966v7cHo1ny1OXnq16DgINPDNHArEWjBs/k3IScjG7YsLI35qwdhREV/+krdO4B9Vs51F6j68apFNSHi0MyHrnnLODzF4GZ04H3HwNmfuW4rvo0A+qd/6BmZEEdfW5IxhNIu0SFTprMsXGDrZenp1gvt9KvcgWSzFLLdWVGQt2NjjahlfnZjvvL1IQbpSf7/pfqKshloxy3V0u9NTdwGcOAuukFv+VXbX3ZUR/HlUy3L9C9L1R0iJIEmsklow0UP2dgL4eZpO2TAOXxQD36BdCuk7acfPQU5ORedaFoADD9TcjZgyEVviA++frd4AbdrhNw8EkBi7U1t2HKV92w5Qlgzm2CubdUY0jX4LqsL8G0SLQAgF8+h1x1KGRZ4NdiOEh1FaS6Cvjpk9A27ImCOvnKgMUMQyHZJgjErfJqoLjeQ62bO6I9vtelTrtE/bqsIv26bRW+8DQrdv0RtRTy+n3AygXOK6TvHrax6ERHKeze3nn5RLMMKV59iuLYJ7244RPB9IXAGzMFQ+83sTSz7qQNXbCjcnCNQ4XNrjcRlvztvs6GFZCqytCPJQzyNUGijcWG+GfcUhMV3jjf+UVIv2YAA+81MXedoLyq4T9vvQng03+tJ4Mv2/jCur2b12v78BhAmzj9GIotshu9mrnHU+/sjgFd9G3WFxeCxzgmRM8Tg9GIiIiIiIiIiKh140WhFGEYvhXB+NwQhQznulaMzy0RUcvFOZyIiIhCh8FoRERERERE5FMvVKlK6QNcYqSqOUazg3riKyiGXu16+g5zVVwdd3GYBtKCGJqPecx6CS5er3UZoEEwGgCou94CTrkqBAOzl2IWIb0mCx67X+476lyoV2dCWdxH1a0P1Kt/hnGEAZx6DVTnHlC9BkFF6UMlw+GhE60v+D98oPXy9BTnAQH9qlYiUROMVmLUS/+JSwDatrNuJHez4/50QURdtgej4adPgfUrHLcHAOrie6H20KTENXbAsX6LnASjpdXkYWzpL/aFdh/obAwRJsqjcN1hzl4zHdr4/ldKAXbhgBtXWs9DRfmQw1Mhn00Gfvnc/WBPuARqyjKoBz+CuuZxR1VSxyVg+PmJ2OvCZMyamY4b46ahZ2pwCTYxZiWGVC7SFygvgXz6fFBtB0v+/QXmBSMgh7aBHNoGyN0UusaHHQz1xJdQg/d3VFwX4his1OtM3DHVRHmVYHOh9ckTXZJ9oWw6XVP0oUarcvV959mEvDAYjXYWWfgnzKsOhXl0R5gX7wdZ+k9w7VSUAVOecV5hxKHNvu9Ta3h35/s0CVKGOKlAtOY4triiYVsllcAT39fNLbpzqG2mmB3KmvfQmVoY+etb95VME9i8JvSDCYP8EmcnOO7fK/R9XzDKF46WkhC4bK19HjaReHXDf8kTTSRe5UWH67149Bvr+zMvbi8IAG+1PvHLUIDHUEiKtV5fbJGv69UcHnvqzT39OjubC+NCMFVHa3LY3SrnvEhEREREREREREQUOgwDasH43BGFDrcnIiKiFoXHMUQtg922yu04gvG5odaJwWhERERERETkUz8YDfqrJpszGE29MhNq3yOarT+KHOpA/5AiWwefGJ6BtCSG5kpls14Ikdcm9KdRsIWKS4Bx7VNQj0/Th641E3XHa1CpHfXrB4wAzr65GUe0XVoXqAvvbP5+t7tglMIBvRsu698ZOGsfXTCas3bbeovQ3puHRLPMcn2pqpcw4IkC2qdblpMFMx31V1Ih2rCh9BQFqSyHvPuIo7YaON55YKJq3wXqsgf9lv+3Zh+08RZr6z2aexfipNK+7dEnOB5HpBnQJXDYQkwUkBxfd1udeUPQ/cmzLusqBXXnmzBumgwVnwilFNRpE4Fzb3XVTFxFISbNOxOrNgzDk6fYlz1lLy88quEXRvdveQDxUmFfcUHzBTjKmiWQ644CVtuEtQVj0L5Qv5bBeO57qBFjHVdzOve48eg3gnu/FKzZYr2+a4A+42MUuqVYJ45k5Oi/ENxQoG+TwWi0M8iWzZBbTgQW/gmUFAEZ8yCXHwjJDCI4afUioCrAXFYrPhHqwrvc9xEixw5xXjbBLIMCkOItdFzn5+V184CpmRJqwxWPGqRvp6wKyC0WLNokKCjlyQbUyMr52lXq2qf0x2AbM8I0oKarrBbMWSv4PUOwNi9w+bho4J7jQn+sqZTChQcYKHjGg5uOcB6k2FhZFVBeDeRb50XvsDmqK0yb0y4821e1jbdeX1TuPz9og9HqdTOgi/24asVFB/8Y1NpDfzjuSkVwOcRERERERERERERERK0LLyInCiFuT5GPzxER0a6Hcz8ROWM3W3AmIaJaUTt7AERERERERBQhPHWhSnFSiTOKPkaVikFVShdUD9gPVWtWoCpfH5QTcnsMAfrv3Tx9UeQZuI/jouqZb6ES24ZxMC2E7sJ5s94V1XbBaB7rj4nUfkcBb/4DmfoSMO31JgwweEoFvpBbnXMz5IPHm2E0AHoPBkYfD3XaNVBtUpunTwseQ+GHGwy8M0vw91qgVwfg2rEKbeKsH69AQUG1elavhwKQaFqnlZUaifUGEQUMGAGsWexfcO5PjvrLyNGv67X5d8hNZwDFNmlEVoYeCNWuk6sq6txbgH7DfOFcG3yBE0MqF+OftaPwaurFWB7TH7L9tbhb9WacVvwpDin73b7RpBTggHHuxh5B+jl4CAd0briNquQ0YHom5FjrwLwmOf5iqPZdISvnA+06Qo09HWrYQX7F1FHnQD56Cqipdtf+ptW4dt7VuD/uBRRbZAPFmJV4cfpQ3H7olXhjdgxKjUSM3zYVx5R8G7jtgmyIiKP5rClkxTzIJfuFvuHjLoK67hkojyaE00bXFIVwfDX5xPf6Nu3C2EQEePth9Nk4EhuS/APe7ILRlmdbr0tLBJITwvvcElmRD54ASv0DPOX0AcDvFe7mHLtQtN6Doc65BfL390BqB6ijzoHqZZMIFmaj+zibV+LMcnjg2xdO8RZhS5SzZJ8NBUDeNkH7Nkp7TULtIztuiMK3S6wL3fa5ibnrgYpqICEGePYMhYsP5G9W0fb3og0rrFcefibUKVdBPnsB2GwRcrghMoPRZq4UnP6qiayiwGXH9geGdVc4cx+FYd3D+/456WSFJZmCbywOV0JleUxfDK3UB9Ia2+9icjyQaZHRaLXf6SQYrXs7Z3NhQmzAIgGlpyjs0xOYs65p7VS43D0nIiIiIiIiIiJqPXgpJxHVxzmBKGQYNNh68bklImqlOL8TtQh2+2LcTyOiZsZgNCIiIiIiIvIx6oIuOnlz8X7mhb4b7UfDuPZHmM+9Cfz3fLMNR936MpQu6IlaPWUYkPPvAN55OHDh4WPCPp4WwdCE1Zjeur9r3AejAYDqvSfUTZOBmyZDaqohhyQFOcjwUUnJkM49gOz14etjwsNQZ90YtvaDERetcPnBCpcfHLhsusNwoncyLwYAJIp1EGZJo2A0td9RkBlv+xfM2QCpqYaKirbtTxdCFBsl2O2pM4FtLkPR0rpATXzSXZ3t1D6HQ33gCzWQqa9AnpqIParX4LHcO4Nr79aXoZKSg6obCdrGq/9n777Do6jzP4C/P7ObnpCEJAQCoZPQixQFBRQsqKBiwQYKnqJYz3L208N6ep5n1xPFdnbsXRF7+WEFESlKlR4ggZC6u9/fH5u22ZnZmc3uZnfzfj0PD9n5lvkkszM7u5l5Bx0ygO17jfvohVlIZg7UtIuBl+4LaT0ydQ6k9yAEis+QrkXAnNugHrrGPBBSz9vz8d0RuRi4/lrUSqJP05Obz0b7vRvQ/o2rYfs7c9UCZTuBrFy7I02pki3AN+95A432Pzw8oWidukG78uHgh1sMZQylrjkmz5Kv3oaafxN6dbwPevGNWzfuBKAfnrRyq/6UxdmVUC8+DuR0BMYeC0lKtl0zkV1KKeCVh4w7vPs0cPSZ1iesrTFskr89BBkwCnLoNBsVhk9hNpCSAFQGCNhJbRLqne3ZbWsdf3nKgzcudMBjcOpU/1b17IMEFz2v3+nL3xu/rqgBZj+jMLaPQlE+gxTbvB2bgMp9uk1ywhzvF4VFusFoasOqgOdCkVZZo3DqPGuhaM+fIzh5ZOQ+6xERvHmhhiPu8WDRivCsY2VSMQZV/2rYXh9m1s7g9GBPpf8yo2A0rcnGtxp8nR6CYDQAeGSG9+e4o+69QXYq8OGlGoZ0AY570IN3LYTPVdUqIOqewURERERERERERCHSZm4KbSvfZywItC24rcIv2J+x2ThuNyJ7uM8QERFFnTbz/piIiIgigXeYExEREREREQBAxOAtoqq7G3OPzWCalhg4GtJ3eOTWR1FJJs8M3GnkRIjwploAjekMzXma3FFtFhBkEozWlDgTIE98F7jfv96AzH0WyMg27tSxG+Sy+yBzLATgWTFpemjm0XP8eVEXimaXlRvn0zzlDTf1p3n0wxr2NQtGQ2Ef/cmUAnZtC7jO33foL++dvBuOvTsDjm+QlAK5+QXIUz9AioZaH2fk0JOBpJSgh8vtCyAHT215Ha2sQ4Z5+35d9ZfLcbMtH1cs6d4P6DXQcneZdjHk6Z8gVz9qe1W9PrgTu1fm45lNMzF1z+v417arsH51b0zb+4rtuXzsNEjVCpL6+QuomcOh7pwDdc+lUKcOCOn89WR+4GO+GauhHaE0ro/xuYH64i0AQK67RLd95xbj8KTVBkGOxctegnrgSqi5Z0DNGQdVstlGtURB2rbBtFn9czbUXhthYGbBaANGWZ8nAjRNUNwxcL+mIa8FtVtsraM+1MzoGq36o0xSgiAnTb9Pc0oB87/iRV8EYONq47auRb7/+41dFfp6WuitpQqbSq31zU2P/Pt3hyb46FIN/TuFZ/5ViX3gFoOgcjSGmRkFo5XpBaMZHCocTd72Wz3HSgtRMNrQQsHyuRpePlfD8+cIVt2iYXg3gdMheOsiDQsv0/DfGYIlN2goNPgYoCpAoCURERERERERERFFCd7EThRe3MeIQoj7ExERUWzhazdRbDDZVyP4nlbx/bM9/HlRnGIwGhEREREREXk5DG7i9Li9/++0dyN5i6SkRm5dFL06FAbuk5kb/jpihWa0DzcJRjMLxzAar0N6D4Zc+5h+Y+eekMe+gRwwCTLhRMhbm4znOeNqyNRzQxY4JjOuAo46E6gPyzM6rgUz98V3h2yu1lLcsfGmfCNDq5Y0fJ1uNRgtr8B4wh2Bw4F26a8GhVvthTHJvR9ADp4KycyxNc5wvowsyF1vBe449hhg0JjGx0kpkL89BDloSkjqaG256ebt+3XTf1JJYR/IDU8B6ZktL6LnQMgdr9kOwpSuRZCjzwQOP832KpNVNU7d8xJe3nQaLt11Pzq7LAZdmT3/QngupZSCuuhQoMxGeKAJufEZoH2+78L2HSH3L4S0cBt2bR/5AJTD+pk0rvgBAJDrMghGqzD+tYlR6EvPmjWND1YvgVrwYKASiVpu+5+B+yx4yPp8RgG66a2QbmhBcX7gY0uqo/F7KnDZOwbvrgD2VSt4DK4RaHpOlWEQdqRn4XJedEAAdhskA6dnQeqCpcUoGG3Dqqi72Of9Zdb75gQ4twwXEcGXV2mYMjj0c69ILILH5LKL+jCzTIPM5T1V/svcHv9lTecCgHYpQGpi4PrSQxSMBgA56YIThgtOHqkhp0nInYhgQl/BOWM1DOoiSE7QH89gNCIiIiIiIiIiarOi7HNdImptPCYQhQxfY6MftxERURvEYz9RzDM9h+M+TkSR5WztAoiIiIiIiChKGIUiueuC0azceB8qu7ZHbl0UtUTToHoPBn5fatwpRAFI8UBE0/94WXnvqFY11VBXH68/WNMgmr38fDlyBjDhRG/Qz+4dAARolw106e0TXiQOB/DIF1DnjfWdoFtfYNJ0W+sMWFNiEuSaR6Eu+hfw5+9A1yKoYwqB6sqWzfvE997vI8ZlJAsGFAC/GGfVoW/1qoav06wGo2VkA4nJQI3OHf0lgcOkSiv0l2e7TYL8miveD+g/ynp/i2ToWOCBj6EunGjcZ/IsyJijoEq2ALu3A936QhJDmD7QysyC0USAwZ1N2iecCIw7Fli3wn8/dCZAffQ88OK9puuXx/8PUjTURsU6c8y8FurD51o0h6X1/OVG4PQroCZk6HcIwbmUcrsBpaDuuaTFc/k4+Hjv9tqwEti3F0jLALoW235t0FOcH7hPKB07BEhNMglMqjue57r1Q+VKVDsopXSD+IyC0bq4mh1YP3sdOO9WS/USBW3n1oBd1KKXIbOuszZfbY3+8gQLqTutoLhj4D5pXbsCmzKB8jIUWA24bGLVNuPLN5oeIqwEE9X7cYPtMigelemHcyKrSfC3UTDanl3A2uVAzwGhrytISzZav9ApUOhuOGWlCt640IFtexQ2lwJODahoduhzK+CgOwxSyQysSiqC20IwWkaKQO+oskfn7aqVYDQRQecsYHWAj9BCGYxmlWEwmkEGJxERERERERERUXzgTaEUZRhEEwFB/qE4Zfa7iMj/8Tmi2Gbvd3sUS/g6RkQUu0yO4XyfQkQ28JBBRACD0YiIiIiIiKieUfCFxw3lcgGb1xqP7TkAGDQGeGNeaGqp0g/jobZHZl0Pdd004/bMXMO2NscouKs+3PCHRSZjg/uISJJSgIKe3n9m/QaMAu56C+rxm4DSHcCA/SHn3gwJU9CGpGcCfYcDAJROsI1lAw+AzL4J0ntQiCprfYuv1ZBygfHFQMU1Kxu+NgxGk9TGBw4NIgKVVwBsWuPfeYdJClud0gr931ZkucsCjgUATJoOufjfuiFGoSBDDgJueh7qhlP9GzNzgOETvP1yOwG5ncJSQ2tqn64f4AAAHTKA9GTzn7s4EwCjfahoKNBzINTt5+iPvfDOFoeiAYAU9gEe/ATqiilAZXmL5zM0ciIkIRGq3wjgt+/9mtV3CyGTZ9maUlVXQj1zB/DU7S2rrWM3YMRE4O35/m3DxkOcda8D3fu1bD06euZ5QzyMAj5C7eSRAY4FrloAQI5BMNpOLRuendvhyPVNdKuuVSgxePp0qt3iu+DP3w3D1doipZT3fMTT5J/b4Gufx566fzbH1H+tPLbHqIb12lhP0zblMag1wPfhU6vRHDqPA1n3m/UNFWPBaH0tBKPlZTogj34Fdf/fULBmj+11/LpZwWNw7NKa7N5GAUB6RIB91QppZgGOFP/27NJf3jQYrfdg7+c0ek/Cr96JqmC0Uhs51DlpgfuEW347QX474/Ytd2m49PHdWPRLFcq0TABA99r16OTagk/TDvbrvzGhEHscxhPWHy8yU/Tb91T6n2sbBqM1O3T0yA0cjJYWTcFotZGtg4iIiIiIiIiIiCi+8e7g2MVtRxQyTEogIiKKMXztJooJZufZETwH5xHDLv7EKD4xGI2IiIiIiIi8NINQJY8b2La+IUSiOXnie0jvQVAeD9QXbwK7trW4FDnu3BbPQXFi7DHm7TkWEhHaCjEIN1QeKKWgnr3LeGyQwWh2yP6HQ/Y/POzr8Vvv6X+Denyu/XGzb4bMuDIMFbWupATBzDGCJ7/W/8C7uGZVw9dGwWjlWnrjg/rnTq5+MJpatzzg3zEtrdBfnukxDkaTO16DjDkqwMyhI4ccD1z9KNQ/Z/suv/BOSFJyxOpoDbnpxm1ZBuEOVokIcNQZwMiJUGcMA8qbbPMxRwHTLm7ZCpqua/AYyIf+QVie+/8GvHRfaFbSra/3/y69dYPRsGgB1LWP23rOqHk3Ai/eG3xN/UdBHv4MUheA68lsDzR9PUhMhpx5TfDzW5DoFPTKA1a1/BTRkmkjAhx1KrzpZrkGwWgecaD09zXIaRaMtsUkq7Gza7P/wuWLoYqGAauXAOWlOoFfBgFYhoFYjX2VYfhW08dG4V4mywPV4bNeC7XXP6bY4DIIRnPaSP2KoL6djIM76xVkCaSwD+TO19FthQLutpfQ+NFy4zU0zT00Oz40p5R33uOG2SqF4owqLdFvyMxp+FIysqEGHQgs+cJ//KqfAp5jR9LeKmv9UhOBlMRoqtyX2rcH+H0pOtRU4X+vHu3XviahO4p6L9cduzKxyHBeR91b9XYGp4B7dH5+hsFozd7298kXfLjc/FiY3gpBjAxGIyIiIiIiIiIiIiIywSAnohDi/kRERBR1eL5LRBZFSf4aEUU5BqMRERERERGRl8MgGM3tBv783Xhcl14AANE0qCNn+IZtBKsVwpMoOokI8OoaqON76nc44IjIFhTNNINgtI2roU4baL4fG4WqxYMxRwF6wWjHzwFefdh4XP+R4auplZ05Wj8YLUv2YcKsoyFpx0P9czbSlH4wWrWWDBcccMLdGIyWlae/sjceg+pQCMy4yrs/N6O2bUTpir2AVuxfj7tUd0qZvxjSZ4jBdxc+cvSZQGEfqHefAiCQo8+EDBod8ToizTQYLTU065C8zsCzv0C9cA9QWgLpPxKYfJbucybU5MI7oX5fCvz4acsmyu4ASc/0zlnYx/iSu49f8obBWaB2bwcWPNCisuT+hQ2haAAg594C9BkK9c17QLv2kCNOhxSHP52nb8fIBKP9dpMGTQvwvNm2AQCQYxCMBgA71mxEzgG++/cm/UMSAKDAtcVvmTpvnHkdRNGm1iAYLSExsnVY1L9T4D4FWY1fH9jb/jre+UWhr0EOsxZkMBoAvLdM4bhh0RsORRFQZvAalJnr+3joWN1gNHz6KtS2jZD8wtDXFoTyamv9ctLCW0dLqFcegnrgSsM/CgAA3Wo3IMlThWrNP+FseVI/w3H1x4t2BqHCZZX+y9wGJ5PNg9GK8/X7NZXWCofxZIOrUBiMRkREREREREREbRfv5KTWwOdd9OK2IQoZpiXEgGC3EbctEVF84vGdKCZESWIZT/eJCADi+K5XIiIiIiIissUoGEl5gJKt+m05nSDJjakoMv1KoN+IlpVx1g2QHv1bNAfFF8nrDLniAaBZQI5c9C9Ihy6tVFUUMgpG27PLPBQNACrLQ1+PXTOv019+wvktm7fPEGD6lb7LRk70hgMV76c/Jj0LGHJQy9YbxcYXCy6Z6Ls/JTqBh89OR9q02UBiEgCgnXuv4RyljrqkkYZgtBzDvmrejcB3C/2Xr/sN6sTeKHUl6Y7L8vinjMgHO1slFK1h/YPHQLv6v9CufqRNhKIBQF6GcVuogtEAQNrnQzv/dmjXzoMcNxvijMzf9BARyN3vAgdN9m/MyIbcvxAYe0zgiXoPavy6xwDDbuqLNy3Xpl5+wBtQG4yeAyFvbIAk+u5fIgKZeBK06+dDu/iuiISiAUBRfvABQCt/H4Cpe14P2O+2qYLijubrUV++1fB1B9cOw35r1vkff9bs0P/NapqnHO08ewLWR9Ra1MqfoKwcS1wGwWiOhNAWFCKJTsG0Eeb7fF6TcM9Ep+CaI+0di3btA77+Q7+tJdmdv27mlRptXlmJ/vJM33Nq6eYfHlxP/WN6KCsKmsutLIddmQXutia17Fuoey41DUUDAAc86FW7Rrdtk7Oz8bi6t+qZBsFoe6r8l7k95nPV69cp8MEo3T/HLexSDMLYGIxGRERERERERERxrc3cqdlWvs8Y0Gaec/GI244odLg/ERERRR++PhMREVHoRObuMiIiIiIiIop+Dof+co8b2LNTvy0r1+ehpGcCD34CLP4QWLcCyC8E/vwD6vG5usPlqkeAw08Dfv4c2LQGGHwgpNfAlnwXFKfk2HOAYeOBHz/1hvUNGw/p3q+1y4oumsE+HCNk3LFQT93md9GejD+uZfOKQM69GeqQE4BfvwW69AaGHewNXXpwEdShHzoXrAAAIABJREFUWf5jpl0EcUZnCEio/OdkDaeMVPhmjUJaEnBoP0GP3Lqb6uuSPnLdBoENALY78pDr3tkYjJaZa9gXANSbj0NGHdb4+N2noW4/BwBQ6sjUHZPlLvV5LOffDkmN0jSFOFaQKTD6BXVSnHy6LA4HcNsC4IdPgNU/A7W1QF4BMOowSE5HoGpfwEAzOaJJOMnoScYdf/4cSilIgEQd9e7TwDN32Pk2vCZNh4w9Btj/cEiSQfpGK+jbMfixvWrX4oVN0/Hy3hMwvfNTfu2DuwBPn6VhcJfAwSDqmTsbvk5VlehcuwmbEvyDTFZuqMJRzZat3q4/Z5+aP9CCfCSisFNnHwCkZkANPAAy5CBg8IFAv5GQpGZJObUGwWgJBuk2UeCywwQvfW98EVX3HN+985bjBC98p7C22SlOprsUtZKACi3N8rqbztyng/ExQs9vW2DptYDi2C79J4w0C0ZDV+NgNCz7Fmr7n60eFl5ebb1vThSeyqvaGqg54y33z3PtAHRynbc78wzHaHW7ertk/fPqskr/MVaD0Q7o6T0nr3YZrh5prXAYT07Q/16rTOokIiIiIiIiIiKiaMKb2ImsCXJfYagdUQhxfyIiIoopPBcmihEm+2oE92MeMuziD4ziU5zcukZEREREREQtZhSq5HZDle3Sb2t+0y4ASUgEDpzs/QdArfgB0AtG69ILOHqm92bwJmE5REakaxHQtai1y4hemha4TxSTPkOA65+AuutCoLIcSEmDzLkdMsz6Teqm8xcNBYqG+i5LSgH++yXUbWcD61d4A8EmzQBO/1tI1hnt9u8p2L+nTiCHeJ9LeSbBaDucuUANGoLRpF1784/QP3sN7829Hy9lnYzqxAyc/frTOBiAB4IyTT8YLdNT5rug1yCzNVCYFPhnBzaoMMjQiUUiAoyY4P3X3P5HQObcBjXvRsBV69vmcACnXQEcdkrjXEkpwHm3Qj1ynf9c5WXAzq1AbifDWtTOrQ3Bgba+h2vmQY46w/a4SCjuaBywZ+bVjdMAAA54cMqel5HqqcSsgkdR5siCU9Xi7z2/x/VXH2gpXEiVlgDLF/vWVbNSNxht1a5EqNISSJMQ4FWbagD4h2b2rvnd5ndF1Aoq9gKLP4Ja/JH3cUIiVN8RwOAxkMEHAoPG+B/f6kVxMNqoHoJ7TxFc8oL/8UUEGFrYfJngo0s1zHzCgy/rdt2j976LeVvm4LxOD+DNjCmW153c5HAw60DBta9ZP8btrgC27wXy21keQnFEeTzApj/0G3OanR90K/bug0bBhZvXAq0cjLa3ynrfgqzoCQNUbjfwxqNQ//mrrXG5bv0/HLDdYRyMVh9mlp2q315WCbjcCk5H48/HMBit2Y8wLUkwoS/w3jLD1SM92bgtXJINcsarDV5qiIiIiIiIiIiIiIjaFrPfLfImZiJbmJQQA7iNiIjaHh77iYiIKHQYjEZEREREREReRsFoHjewR//GT7RrH3Ba6TscavCBwNKvfJefd5ulEAsisshoH44hcvipwIQTgY2rgS69vUGL4V5n/5HAkz8A2zcCSSmQnI5hX2fUqwvZS1bVyHDvwV6Hf2pHiaMuLKguGA2ZuX59mno4ezYu2nQ+sMn7+IVuH2D+5nMwqfxDKNEP9ctyNwtG697P+vdAIWMWjLavOnJ1tCYRAU67HDhuNlC6A8gpAPbuArb9CfToD0lN9x909ExALxgNADasNA9GO66b/RrPuSlqQ9EAoG+Qh9bxFZ/7PD6m/G1sW1WIlYlF6FG7DqkFkyFykLXJVnzvX1f1KixK8w/DW+Ps5g1RG3NUw7J168sA+B/retcYhNtQZDgc3nMgzeF9/dKaPG7a5jBrc3hDQX2WN3/c7Gu/cZp5P80BadomEnhuv6813++xSR/1378Dy76x/nOrrQF++Rr45WuoZ+/y1pNmkNLljN5gNAC4aIKGapcHVy7wvZjqmMFA1xz/95s98wSf/U3D+p2A470n0PnROQCAgdW/2gpGS0tq/Pqk/uW49rU0W3V/ulLh5JF8P9wmbd8IVFfqt3Ur9nkoyalQx88BXrxXv//OrSEuzr5yG+eDRfnhq8MOpZQ3HPvD56wP6tQd8szPyH1sL7DEv3m7s4PhUK1uV8/NMKrHG5iY16TdMBhN563TlCGC95YZX1CanmTYFDZJBlehVDEYjYiIiIiIiIiI4hqDjija8HkXvbhtiEKH+1PcYugdEVGc4vGdKCaYnotFbj/mEYOIAAajERERERERUT3DYDQPsGeXflu7bEtTyx2vQT1wFbDkc8CZCDn9CmDcsUEWSkS6NP1wqVgjzgSgR/8Ir9MJFPSI6DqjWpOgsjx3iW4w2g5HnrdrXTDaW3uKcX2Pxdjm7IAJ+z7FzTv+gZ616wAA1ZKIW3Ov9pvjrIJ5pmV0rd3Y+KCwD5DX2e53QiGQkWwc2lJRE8FCooCkZgCpdYkVSQVAboFx36xcqMwcoEwnXHbdb8B+B+uOU//3gf3Cjp4JzLjS/rgIykkX5KQBO/dZHzO88kdkevb4LXfCjQE1v3kflGy2PuH6lX6Lurj+1O2605ELbPjSJxht8/YqIMG/b/fa9dZrALzPoeYhXk2DrwIFZPkEeBmEcenO0SxUy2CM+I0xWY/uHJpBrRbHaHXjLISGSZyc+4TEna9BHdWCcFelgPIy/bYEnSd+lLnsUEFqInDfxwoC4PABgjtOMH79EhF0zwXU9FlQ678EPngWRdWrba0zrUleXM/vnsFpZZl4LvNUy+NPnacw8wk3HJo36MjZ/H8H4BDfr50O3z664xraxGecZnmcfw316/WvQcznNBwXoJYm37umxWF4nM7rUYOuRX6LZM7tUEbBaBtWhaio4O2tst63OL91t6da9TPUvZf5BfebysgG9hsPueRuSFIKcrskAUv8L7faZhKMVh9mlquTpVuvpNw3GM1jcEWX9t/roKpHQA45oWHZ5MGC8581vgSso0HuZTglG7x0VNXyUjUiIiIiIiIiIiKi0OFnrq0vyN99MOyHKIS4PxEREUUdnu8SxT7ux0QURRiMRkRERERERF5GwQIeN1BmFIyWY2lqSc+EXP1IkIURkSVG4YZW9Bkaujoo9knjRXu57hKsQU+/Ljucud4vNAc+Wq5w3MJhQLJ30YuZ07A8qR8Wrz0QCXBhWdIAbHXaC2vJdu9CB/f2unVokLP/AZE4DMaIEUlOoNrlv3z2OG4TU12LgV++9lusvlsIOX6O/3JXLdQVx9hbx/HnQbvUICwlyvTtCHz1h//y/HbASSMEDyxq/AVqgqrB30tuDTypjWA0tdE/PCbXpRNcB6DEmQO1YSWqaxV+3ghkLfsIW5zjdft2cm0Bpp4LvPbfgDXIOTdBzrjKcs1ElqVkBO4TLGdi4D6tTNME5x8sOP9ge+NEBHL9fHgA9P/sV1tj05MaXwPVogU4vSzVVjAaoP/aGjqRuCgl/OsQCSYUzk64G+DUpKGv1qIwOrP1SuPXvwJa2gQkeaoxtHop2nn2er/Z9h0haf4JVuJwQA0bD/z0mV+bmn8TZNZ1If+5l1UobCoFeuYByQnm53vl1dbn7dephYW1gNq5Feov+1sfcMpfoV1wh99io3CzCi3NcCpNeQA4kGPcBSXlvo/dHv1+jpKNUDfcDdz9DmTkoQCALtmCYYXATxv9+588QlolYNA4GC2ydRARERERERERERERRSez37PxWhwiW5TBL9aIiIgoSjFsiSjmRTA0jflsNvEHRnGKwWhERERERETkZRSq5PEAe/RDIySzfRgLIiJbxCDc0Ir99MNeqI1qEkCW5yrR7bLDkef9wuHAvQv9Ly76JXkQns88GWeUPYuViUW2SyiuXuW9zO+oMyGTpkOGjbM9B4XOpYcJ/vme/y9JJg/mxZimBh6gG4yG7xdBuVwQZ7OP5xctCDilXPc41G/fA3t2QcYdC4yfGqJiw+/4/QRf/eH/PLp7muCUkYIxPYG3PliLdks/wvSyZzG6cnHgSUs2QykVMDhRVVcCbzzmtzzXbRCM5sjBE78X4qK/euoCPCYaXnvcec7lkCljgcEHQd16FuAySfxITjGtkyhY4nSG73Ihp0G6TRyRax/DsKIHgYXWx6QlNXnwy9coTuga8rrIe42GSwGusF7LHukQuYlA14kAAKeqxcW7HsAd268z/3wl1zhRTP2xDNJrYEiq9HgU7vhA4e+vK3gU0CkT+M/JgmkjjN9r7iw3bPIxuEsrB6Od0MtWf71QNACm4WaGc339NjDxWKQkCtKSgH06YXJ+wWgGT0uHcgMA1PxbGoLRAOCsgwQXPe8/6KyDWud83SgYrZLBaERERERERERE1FbxpkRqDXzeRS8GORGFEI91UY+vR0REbZDJsZ+vC0SxwWxfDeF+bLqakK2FiGJdC+6YJSIiIiIiorjiMApGcwO7tuu3ZeaGrx4issdoHw4kMRly5jWhrYVim9b4kaFRaNBuR5b3C4cTH6/Qn+asgnk4rsvLuD33StslDKxeDjnrBmjXPMpQtChw2aGCkd19l911kqCwPYPRzMiBR+s3VFUA29b7LVafv24+4WmXQyZNh3bpPdBufBpyyAkQLXY+4j97rGBCX99lV07yhqKJCE4ZpeF/B/2MB7deYi0UDQBqqoG9uwP3e+Uh3cXtDY5xFVoazsFVdaFo5grG7A8RgRw6Ddon5ZBPK4CUdP3OwxhESmHUpbdxW5+hwAGTgPRM+/O2zw++phghmgbHtIswP+Nhy2PS64LRVF0YYtfajWjnLgtHeRTHXJKAu3MuxZOZZwDJJolbnY1DvdTTt4esnreWAte95g1FA4AtZcApjyqsLTG+xGjhb4EvP8pNB+45WQsYZBpqylULtfAleGaNBNwua4Oy8iDzdIJt6+Rl2P8etGdua/jaKFitpNz35+g2uB/KAW8wGpZ9A7VrW8Pyc8cJjhjg23fOwYLD+kdXMJqVcysiIiIiIiIiIqLY1UZu1+RN7FGE2yJ2cdsRhQxfl+IYty0RERFRW8czQiICAGdrF0BERERERERRQjMIVaquBPbt0W/L7RS+eojIHgkuHEfe2QJJTg1xMRTTmgQWZLn1A4d2O7IBAEsq8lFtkjHwdoZBMFQA08ueBVKODWoshV5uhuDTKzQsWgGsLVE4uFgwsDND0QIqGmbctmGVT8iJqq4CPjMJRjv0ZGhzbjNujwEZyYL3Ltaw8Ddg9XaFA3sL9usK35CUhET7E6/7DRh8oGkX9cI9usuNwh+tcigXOrT3rVkcDqjDTwHeeMy3c7dioPfgFq2PyNT4qcCz//JfnpIOefgzSFIylNsNrP0VWPIl1NKvgCVfATu3mE4rY6eEqeDoc+bEdrjklT3Y62gXsG9aXTAatm0AAGhQGF/xBd7KmBzGCilevZExBbNSNhi2y4QToZ68Vb9x0QKofiMhp/y1xXU8841+Glevaz1w/9c/2MzjUXh7qf6lR8cOAY4ZKkh0AhP7CjpmRjgUrbQE6oJDvOdcFsnFdwGHngzJ7mDYpyCIfEntj6UNX+emAxt2+fcpKfd9bBiMppo0fPUOMOUsAIDTIXj3Yg0fLgc27lIYUCAY3av1zteTDa5CYTAaERERERERERFRrOBtp0ThxX2MKHS4PxEREUUd0+BSvnYTxQaTfZXhxFGM24biE4PRiIiIiIiIyMsoGM0oFA0AcjuHpxYiss9oHzYz5SyGopG/JiF7WZ4y3S6lmjcR4JSlh4V89R1c23BQ5TdA8mkhn5uCl5IoOHowADAQzSpJSYPqUAhs3+jfuHE11AGTgPeegXr/f8BPn5nPNfW8MFUZWQlOwZGDgCONnkcJSfrLTaiv34WYBKOpr98Fdm/XbWtpMFrHdDc0zf97kTm3Q23fBHzznndBYR/I7a/4BcoQhZL85QaozWuAT17xXX7Xm5CkZO/XDoc3oK/3YMgJ50MpBWxZCyz5CmrJV8DSL4GNq70Dk1Igs66H7H9EpL+V1jP6SJz7+GO4K+eygF3T6w9X5Y3vl5/efBayi/WPN4W1G7ExoTAUVVIc2pTQGUhJM2yXHv2h+gwFVv+s264evAoYPQnSra/P8l37FO76UOHJrxS27gFGdQd65Aqm7ucNqHpnKVBS7r0QprC94NWfjGt0nOvBzDGCg4uBGQcIRAQ/bAC26L9dwOkHaDhxeOu87qmaaqgp9j6vkv+8BxkxIWC/ztn269HggVIKIoLcdP0+VoPRNDQ2qK/ehtQFowHesNkjBgDRcL6enKC/nMFoRERERERERERERBRfgrzhmDeRE4UQ9yciIiIionjFt89EBDAYjYiIiIiIiOppWuA+zeV2Cn0dRBQcu/twSjrkzGvCUwvFtibPpWz3bt0uZY5MVEgK1lZkhHTVyZ5K/LJmuPeB0+BueqJY0rWPbjCa2rAKuPcy4JWHAs/RZwgwaHQYiotCifaD0bDs/wyb1IfPQ90807A9270bIsH/0rSgvX4oqaS1g9z5OtTOrUB5KdC1mKFoFHaSkAi56TmoHZuATWuA9vlAx24Qk/1KRICCnkBBT8iRMwAAavd2oLQEyOkIadc+UuVHBcnOwzEd1uMud+C+afU/1urKhmUZnnI89+cMnNblGZ++Q6qWYvHaMdju7IDVCb3gnjQDnkkz4fYALo83AMnlBtxKNfm67v8mfXz6e0zamo33+MyldPuGar0ugzAnMlcpyUCycTAaAMg/noY6fbBhu5o+BPi8quH1pqxCYchcDzaVNvZZvA5YvE7hxe91ZwhY55NfKzz5NfB/a4EHTxO8uUR/TKITdQFdkaeUgrrEXqCjPPI5ZMD+lvpmpwJJTqDaZXFu5fHGlFXsBdLaITddoPez3mk5GK3JAeq7j6Eq90FMQvVai2EwmsWfGxERERERERERUfzhXZzUGvi8i17cNkQhw6SEGBDsNuK2JSKKXWbHcB7fiWKC6Xk292MiiiwGoxEREREREZGX3VCl5FQgPTM8tRCRfZp+OIuuIWMhs+dC8ruGrx6KXU3Ce7LcZbpddjuy8WnqONQqG887E8meSuxfuRj3brscOe5dIZmTKCoU9gG+X+S//I15lqeQe95vO6Faicn2x2xcpbtYuVxQD5kHgDrGTEJxErBiq/3VAkDH9ua/YpGcjkBOx+AmJwqS5HUG8joHPz67A5DdIYQVxZbRE/qi8N2N2JhQaNovLbHui5pKn+Un7X0FlZtTcEfOFdjhzMXh5Qvx721XwQEPOrm2opNrK/DaV8Br5wUXTh4DPBC44YBbHHDB2ex/73I3HHCJs/F/0fz6NvbRGvq6G/5vnKthXH0bHHCJ/vr15vJfh3+9vnM31uvxq1fne4OjoX+1JKFG8w8rrJQUICXd/AdbWAT06A+sXW7c57l/A6dfAQC47T3lE4oWSo9+rnDlEQpv/qx/gdOEYiAjOfTnLqpyH9Tjc4HPXgcAyNEzgTOuhjTZl9T8m4Fl31ibsLAP5MI7LYeiAd5AyYIsYG2Jtf6O+iCzsp1AWjvkGGzmneW+P0u3wbVjDtUkGK2mCvhuITDuWGvFRJBhMFptZOsgIiIiIiIiIiKKKAazUKTxORfDeIM5UehwnyEiIiIiilf86IOIAAajERERERERUT07oUoA0D6/7YR0EMUCi8EK8pcbITOvDXMxFNOk8bmU6dEPRivVMvFz8pCgV3Hv1stwwe5HgInTgI9fCnoeomgnXYtadPmd3PIipF37kNUT9RL8w2IC2rUNau9uSEa27/JfvgZ2bjEdKmdcgyOXC1ZsDW4rFWTxXJgo3mjHnI07n5iFU7v8z7RfWv3hqto3GE0AnFn2P5xZZj4eAODxBFdklNMAaHDDIBepTXuh3UmY3vkpv+WVWjKQkmo6VkSAObdBXXmcYR/1yHXA5Fn4qbQ9/vVB+K4IcnuAhz5V+GWTfvuUIeF5fVQ3zwS+eLPx8eNzgdpqyDlzoTweYPli4MlbLc0lf38ScvipQdXR2U4wmmoSjFbQA7kGwWgl5b6P3QaHh4agtTrqq3cgURmMJtC7CYXBaERERERERERERERE4J3dRCHF/YmIiCj6mLw+81yYKDaY7avcj6MYtw3Fp/j8U+RERERERERkn8NmMFpau/DUQUTBsRpuOGxceOug2NckZC/LXarbpUpLwdLkQUFNP7zyR5y3+1HIDU9BZt8U1BxEMaOwqGXjRx4amjpiRTDBaACwYZXfIvXlW+ZjDjkBMmAURnUPbpUAUJAZ/Fgiik6SlIxp18/AR+snmfZzOuqCn6qrIlAVxYsUj/7zpVJSgOS0gONl9JGQm543bHdDwxV3r8KIW8MfumcWvBbqYDTl8cBz/Sk+oWgN3nwc6o9lUEflQ80Zb2k+ufiuoEPRAKB3B+vfn4a6bbF1AwC0PBhN+Qaj4et3odxu/c6tKNngz/MxGI2IiIiIiIiIiIgokngzbPgF+zsRbhuikGEoQwzgNiIiIiKi4PBMkogABqMRERERERFRPYfBXYtGklLDUwcRBUez+DFPt77hrYPiQONFe1meMsNei1NG6i4/abjxRX89a9bgxU2nwfnMj5DDTgHyOgPJBq8nbS0QiuJTt+Lgx445CpJqkJ4RrxITgxu3fiUAQLlqoT55BeqjF4CX7jPuX7wf5NJ7AQCds4IPb+mVF/RQIopiMuYoHFLxOYZX/qjb3tuxrfFBdWWEqqJ4kKz0ny+VWgokxdprvhxyPHCAf3DfT0lDcHC3j/CfLaNaVGNL7dcV6JIdumA05XJBXX8y8Nlr+h1Kd0DNHA7s22NtwlnXQ066qEU1FeVb71sfZKZu+wsAIDdd/2fTNBjN4zG+nMuBZiFopTuAX7+1XlCEJCfoL692AYo3pxARERERERERUdwy++wrnj4Xi6fvhaiVmH5WHto/QEMU91T4/2gUtRL+XpGIKHaZHsN5fCeKCWb7cQjP00yPFjxcEFEdm3e9ExERERERUdxy2gyiSE4JTx1EFBwrwWiZOZCs3PDXQrGtyXMp211q2G1DQlfd5UcMAJ6YqWH+g5/hpR8F3WvWo3vtegys/hWH7luE7AU/QfI6AwAkIRFqzFHAogW+kxTvB8kvbPn3QtTa8rsCHbsBW9fbHirTLg5DQVEuISmoYWrDKmDXNqg544HNa807jz0GcsNTkLpQxoKsoFYJAJg8mBckE8UrefNPnDDrbvyQsp9f27G7F0DVngdJSGQwGtmS4tF/vrgkAS5oMMiS8iO3vQw1IaPh8c2512Bu3t9DUGHLTRkSwlC0sp1QF04E1v0Wkvnk/oWQoWNbPE/fjgKrF2lqqLsRo6oCyuMxDEYrqwSqahWSEwTvLTOerz5ozcdPnwODD7RUT6QYBaMB3nA0s3YiIiIiIiIiIiIisop3CMcuBjkRhQ6PhURERLGFr91EscEsGC2CVfCQYQ9/YBSnLNwxS0RERERERG1Cgt1gtNTw1EFEwRELH/P0GBD+Oij2NXku5bh32h7et5MgNUlwwSVj8emwBXhy62z8o+QWnIhPkX33iw2haA2ru+JBYEiTgILu/SC3vBB0+UTRRESAMUfaH3j4aZDhh4S+oGiXmBzcuPUroO67InAoGgC57L6GUDQA6JQZ3CpHZWxFuxQGoxHFK8nOw2WHuDGz9Gmf5SfseRU3bb4O+Okz7wKjYLRegyAvrQQGjg5zpRRLklW1YVvF9hLL80hCIuS2lwEA92ZfEJJQtDcv1DBpACAtfGk7dmjjBKqmGmrBA/DceDo8j82F2rbBu7y0BJ4HroRnbJL33yPXQa1eAs9D18Bz4+lQrz8K5aqFmndD6ELRHvk8JKFoADBMPx9alwNNgsz27DI97/hjB1BRrXDWU8Y3Q/nMV0e9/ID1giIkxeQjxqrayNVBREREREREREREQeJNlEThxX2MKIS4PxEREUUfvj4TERFR6DhbuwAiIiIiIiKKEk6bwWhJDEYjiioOR8Ausv/hESiEYl6TNIQUVYX2rp3Y5cyxPLw4v24ahwNy+f1Qs28CtqwHeg6EOP0/jpSMLMgDC71BCdVVQGEfb5gUUZyQMUdDvfqIvTGX/DtM1US5xKTgxn3zLuD2Dwrx43AA7fN9FqUkCtqnKuyqsHfcmV28AUDngP2IKHYlnH8LHnszF3dsvxa/JA1Av+qVyHdv9zb+vhQYdRhQYxB0lZQC6dQdeOgTYOMqb7/qKqCyPGL1U/RJLUkGXtVvq+4xxNZcMvYY3Ft0Ky53XGqp/5drx+PB9nPwfOYpfm3pUomjB6Vh8mAHdu1TWPqn95z+ucUKf1tg/ULFIwcCQwu9r6fK5YK6+njgu4UN7eq9p4HbXoa6ciqwa2vjwGfvgnr2rsZ+ixYA37wH/Pip5XUbSk6FvLcd4kxo+Vx1uuUIJvYFPl4RuK+mmoSc7dyKnt1y4NAAt0722YotwOptwI69xvM5lM7AshKoNx+HHPOXwAVFSPcc4IXZgmSnIDkBPv/SgzzdIyIiIiIiIiIiimkMQaLWwOddBAT7M+a2IQoZHuuiH7cRERE1xdcFothgtq9GcD/mEYOIAAajERERERERUb0Em8FoyQxGI4oqogXuM2h0+Oug2Kf5Ppc6uzZbDkbLTQdy0n3DhSQjG8jIDjhW8rtar5Eolgwbb69/936W9pm4lGCelCF/uRHq8bn+DVZC0QCgXQ5E83+93K+bYOFv1qaoN64PAxyJ4p0kJEL1G4mcJV/i4IovfNrUw9cCo4+Eqq7UH5yU4p1DBOhaHO5SKUakblfAqzrBVgAqB4yzNdeeSoUbEi8ALLwEVv7WDglwAbugG4x2aNmHwG+FQP+RaJ8mOLjuKXvJRO//VsLRpo0Q/Hd6k9fGJV/4hKIBALb/CXX+IUBNVeCiv343cB8L5Ky/hzQUrd6dJ2oYfov+tmzK0XQD7dyChNxO6KlVY7Un36/vSf+1OV8T6tEbgMmzdM9zWkNWqmDaCJ4rERERERGML+8QAAAgAElEQVQRERFRW8NbNSnS+JyLXdx2RJYFDF3g/hS/uG2JiGIXj+FEFBrMUiQiAIiOK2OJiIiIiIio9dm9UbTuRm8iihIOR+A+aZnhr4NiX7OQvQLXFstD+3YMdTFEsU8Sk4AZV1nvf+a13iCdtsjsfDQ9Czjlry07B83UD3n8+2R7vyqZWfo0evVqH3wdRBQ7HMZ/Y0qdfwjw5+/6jUnJYSqIYlmKyctcVWaBrbneW6ZQ7g4ccP/axpO8oWgADqj6DjNK/+fTnurZhyt3/htY/JHfWKdDcPnhGn643vx1cs7Bghdma8hMbTx/US/co9/ZSihaqHTuCRx/flimHtZV0MnC22ut6YWeO7dC3TwTRbt/CHq9DmWQhFdWAmxeE/S8REREREREREREREQUQaZ3dvOubyJfDEYjIiKKL3ztJooJfN8ao7htKD4xGI2IiIiIiIi8EgLfUOsjOTU8dRBRcMTCxzxpGeGvg2Kf5vtc6uzabHloUcc2GuZEFIA2+yZL/eQ/70IOnRbmaqKXiAAHTNJve20tJDkV6D8q+BVk5uouHttHMC5huW7bmIqvMXf7XBxW/hGm7H0bD2y5BI9umQPk2guwIaIYZRY+XF4KfPySfhuDxElHisnHLpW11udxexROnRf4Apb+1csxpfwdn2WPbjkf8zafh+P2vIGzd8/H92tHY1TV91CPzzWcZ1hXwfHDjNfz4Gk670W/fT9gfWF10kWQx76FhDGksF+nwH2aBpmpRQuA//sQ3Wo3BL1OBwyC0QBgb2nQ8xIRERERERERERFRPOLNsK2KN5EThYbpvmShnYiIiCKPr89EFCI8nBARABj/mXMiIiIiIiJqW2wGowmD0Yiii2YS2lAvlcFoZIVvuFlBrfVgtL4dQ10LUfyQx76BOnu0cftdb0FGTIxgRdFJLroTatXPwK6t3gUJiZBrH2889+zaB/jps+Amz8oxbHp5wNuY+K0Hy5IHNizr6NqKh7ZejIHVy4GdTTqntYOkpgdXAxHFFivn2HoSGYxG/lISjNsqa6zN8eN6hTPmeyz1fX/DFL9lCXBhVtnTmFX2tF+b2rgaUthHd675MzWs3+XBD+sbl+WmA+9cHF1/h03+/iTk8FMjsq6ifMGiFeZXXvkEmdWFxXVybQl6nU2D1vzsKwt6XiIiIiIiIiIiIgoBhiARtUFmf0BSmbTzmEBkXaD9hftT9AtyGzEFg4gohpkcw3l8J4oNZvtqCPfjCK2GiGIcg9GIiIiIiIjIy2kvGA1JvNGbKKpoFm5IZzAaWdHsuZTnLrE8tDjf7II/orZNivczv8wrtyBSpUQ16VoMPPWDNzykYi8w/BBIt76N7YVFwV/SmGkcjJbbsxDfvDAOb2RMwfKkfuhesx5Tyt/RPwbmdgq2AiKKNY4gf5XK98ukI9ksGK028PirX/XgzvetvQo+vnk2CmwGcKnTBgKfV0HE/5y+XYrgq6s0vP6zwrJNQGF7YMpgQcfMKDv/H3tMxFZVlB+4j6b8Q+w6u6wHTzfnE7TWXPmeoOclIiIiIiIiIiIiso53pUYN3iEc3ZQyyUXjtiOyLsD+ovP7OCIiIiIiig9890xEAIPRiIiIiIiIqF6CzWC05NTw1EFEwZEAwWiJSRC7+zm1Tc2C0XJtBKMNYK4TkbnMHKBsp34bj9ENJCsXmDRdv7HngODn7dHfuLHHAKSoKpyy5+XAE/UIvgYiijFBB6Mlh7YOigsiguQEoEonBK2yxnzsN38oy6Foojw4bN/HQVQIqHHJUBOnQfYbDxw9C+JwNLQlOgXTRgimjQhq6rCT82+HpKRFbH3eUGjzbaIXZNbJZmBdU8rwDioA+8p8+5Zshnr4OuDD57wLppwFmTQdMvjA4Nf/0+dQn74CeDyQg4+HDD8k6LmIiIiIiIiIiIhiidqyDvjqHaC2Ghh9JKR7v1auKNx42ylRy5ntR2ZtUfZHaYhaW8DgM75mERERRZ9gz4WJKHqY7KsM+45i3DYUnxiMRkRERERERF5Om2EcSQxGI4oqTW5Y15WSEZk6KA74XmCX67IWjFaUD/TIDUc9RHFEMzlWMxjNmkFjgKQUoLrS/tiDjzdu6z0YyMoDSncEnEamnGV/3UQUm8yO22YSGYxG+lKMgtF0ljX11DfWL1iZXP4uCloQvoWPX4L6+CVg8ULILS8EP0+kTZoR0dUV5Qfuo+ncqNG5dnPQ60xQJk+U8sZgNLV5LdTJfX3b35oP9c6TwI3PQCacaHvd6qMXoG6ZBXi835N6Yx5w1X8hR59pey4iIiIiIiIiIqJYopZ9C3X5ZKBir3fBozcAt7wAOXBy6xZGFBBvhm1dZjeRBwp6IqJGgY5lPNZFPQZnxL23lii8uUQhMwU4dZRgeDeGfBKRGb4uEMUEs3O4CJ7f8VSSiABAa+0CiIiIiIiIKEo4E+z1T2YwGlFUkQAf86SmR6YOin2a73Mp173T0rDDBwhEeEEDkSkGo7WYJKcCY46yP+6fr0JyC4zbHQ5g/HGBJ+rQBTLqMNvrJ6IY5Qjyb0wxGI0MpBq83O+rNr6Cx+NRePTzwFf4tEsGZvZYh//JLcad0rMgT3wfcC4AwGevwTM2CeqJW6BcroDd1U+fwXPhofCc2t/a/KHkTAAycyK6yu653p+5GQfcfst61q5Foqfa9vo6uLahR+06w3ZV2hhorR6+Vr+TxwN14+lQNfbWr5SCmndjQyha3UKox/4BxavPiIiIiIiIiIgozqn7rmgMRQMAVy3UXRfpfDZm9lkZP0ejcODzqvUFe6M4tx2RZYF+F8XfVcUxbttYcMf7Hhz7oAePf6lw90cKB93hwcLl3HZEbR5fn4mIiCiEGIxGREREREREAOrCIBwmYR3NJfFGb6KoEmj/Tc2ITB0U+yS4YLSBxnlDRFTPLGDHyWA0q2TW3+0PGn1k4HnPuBpIzzLukJUHmb/Y/rqJKHbZeY/chDDskgykJ+kv31djPGbKAx7jRgBODfjoUg277tEw/5peyHjuO8iivZDzb/frK7NvgvQeBIw81HLNav7NUI8YBG3V91nzK9SlRwFLvgD+/MPy3LbkdTZuy+kE0SJ76YNDExweIAMuWfkHkCWrakys+MR0XP9O/suuK7kDmtnF//+7EwCgKvYCX7xpOr86qQ9UVYVpHx8bVwNb1vkvL9kMrPrJ+jxEREREREREREQxRu3ZBfz2nX9DyWbg1/+LfEFEFEMYjEYUGoH2F+5PRK2lskZh7lu++2C1C5j7lvk1DkTUxjE0jSg2REnYN48YNvEYS3GKwWhERERERETUyE4gR1JK+OogIvskwMc8ae0iUwfFPhGfh7nuEkvD+nWSwJ2I2jqHybE60SAphfxIj36Qp360PuCwUyyFpUiHLpAnFgPHzQYGjgZGHQb0HgyMPQY44XzIE99BMnNaUDkRxRyzQEszzoTQ1kFxI83g5b68Sn95rUvhs1XG8x03FPj8Sg0T+wk0rfF8XBISgVMuhdz5OjD+OGD8VMhdb0Kmnuttv+ste4W/8pD3BkADat6NgNtlb047UjOAdu2N23N1ksQi4MQR5u+BBlYt011+zN63Tcd9fLmGV+ZoOEX7BFP3vI6X/zwVF+x+JGA9qmQz8M37gbfFrm1Qh2XD8+DVUB4LF6WbbHvs3h54PBERERERERERUazau9u47c/fG7/2uICa0vDXQ2QHb4ZtZSY/f24bIhsYjEYUrV77SaGq1n/5V38ALjf3TaK2jccAIiIiCp0gr+YnIiIiIiKiuJSQCFRXWuubmBzeWojInkChDanpkamDYl+z8KAkVYP2rp3Y5TQPA+rfOlkERLFFcxi32QmoJUjPAcA5N0HNu8G8Y8dukJnXWZ+3YzfI5fe3sDoiihvBBqMl8JhO+tINgtH21egv37gbqDBo278H8Or5xucWIgKMPhIy+kj/Nk0D7v0A6poTgYq9gcoGXLVQ/7rAG7LWfySkoGdDk9pbCnxpM2itqeGHAD98Yt4nt5N5iGz7/ODX3wLHDxMM7qKw9E/99snl7xoun2Mw57QRgvx2gqnDgGO1W4FNX1sv6JdvoD5/w3r/F/4DVbkXGDoeKOgB6T9Sv5/ZDVrCgGwiIiIiIiIiImqrxPvZ2ZLrgNUPAbVlxl0ZgkTU9pju98G2EbVBgV5DW/s1tnYvsOVDYN86IH8C0H5Y69YTlYLdRjweRru1Jn9z2cPNR0SGeIAgiglm59kRPAdv7dN9IooOWuAuRERERERE1GbYCeRgMBpRdHEGCkbLiEwdFPt0bmwfU/mt6ZCBBUBOOm+IJwrINBgtIXJ1xIsZVwKde/ovb98Rct6tkOsehzz2DaRrUeRrI6L4oAX5q9QEkwAnatPSjILRqvWXbzG5j+78g1t2/i37HQx56gfIJXcDGdmBB3z6KtTcM6BOHwz16sMAALV7O9RRLQslk3HHAh26mHfKLTDfr9IyW1RDsJwOwYOnadB0NkWXjFpMnjFWd1wn11acXPaS33KBB//7S5PJ3C5b9agbTgM+fcXWGLzxGNTcGVDnHgTP9adAeTz2xhMREREREREREbVlK+8Blt9uHooWb3hHahThtohuJp+3cz8isiHQ/tKK+1PVduDD0cCXJwI/XQG8vx+w4j+tVw9RFOFLHVFbx4MAEVnD2HAisoLBaERERERERNQogcFoRDEr0P6b2i4ydVDs0wlGm7r3DdMhxw1jKBqRJSbBaBJs+E4bJiKQe94H+o9qXNhvBOShRZDTr4BMmg7JzGm9Aoko9jkChA8bsfPemtqUNIOnRnkQwWjTD2j5Obh07AY58QLIfR9ZH+SqhfrPX+EZmwR1TGGLa0BeZ8g/XzXv02sgkGgSjJaa3vI6gnRgb8Fz5wiSm2TcdsoEnp+ThNRTL4C8+ScwbLzfuH9vuwrj9n3e8HhA1a/4IelCOB3BB6MBAFoSbPbZa8Db8/2Xm9bB94JERERERERERNSGrff/Awjxgbeexgdux/Az+YzcNBGG24bIugD7S2umLy27FSj71XfZj5cBFZtbpx6iKOLhSx0RGeIBgigmmJ1nR/AcnGGrdvEHRvEpyKv5iYiIiIiIKC45EwL3qWd2QyoRRZ4jwP7bijeKU4wR/3CmyeXvwqFccIv+x4lTGYxGZE2wATtkSDp2Ax75HPhjGZCYCBT0hNg5pyUiMmMSaGnKyWA00peeLNC7+KTCMBhN/0KVXnnegNBQkd6DoIaMBZZ8EbI5LcstgPQZAiwsg7r4MGD5Yt92hxMyaQbUY/8wniM1I6wlBjJthIYpgxW+WwckOoGhhUBygnf7SHYecM/7wJ+rgS3rgR79gU9eQccHrsTHGyZheWI/1EoCBlb/CmfXXr4TGwWSaVrLAtBMqJfuhxxztu/CWoMnKBBceBsREREREREREVFcUMDOb1u7CCKKWsEGo/EaLCIfAZMQwvM7M0tW3ae//I/HgEE3RLYWoijjbsVdk4iiAJOMiIiIKIT873IkIiIiIiKitivBxs3bicnhq4OI7AsUAtPKN4pTDNH8PzLMce/CxH2f6Hbv3cF74z8RWeAIMmCHTIkIpPcgSNdihqIRUWgFG2hp5701tSmpBk+NfTX6FwRuLdPv3ykzRAU1Ibe9BBx6MpCZG/rJzeQVeNeflAy59wNg6rlAehYgAvQZArnzdUjRUNOAfomC97spiYJxRYIDekpDKFo90TTvecr+h0M6dAHyOnuXAxhQ8xuGVi+FE25gwyrfSY1Cx4ZPCMN3UGf9Cqgt63yX1VQZ968xCU0jIiIiIiIiIiKKdSH7AxW8KZzCgGEDUSDI8DNuOyIbAuwv0bg/bX6vtSuIMkFuo2jctmSZh5uPiIzw+E4UI6LjPS2PGEQEMBiNiIiIiIiImnIyGI0oZgUIX5DU9AgVQjHP4MLem3bMRaKn2q/rHSdokJBdDEwU5zQGoxERxRQGo1GIpRt8lFJukDu1xSAYrWO70NTTlLRrD+3Gp6G9vQny4orQr0CPwwlk5zfWkJwK7bL7IO9sgXxUCm3+Ysiow7yNiSnG88Ta+93cToZN6qfPGx8YBKPJQZN1A61DZuVPvo/Nws9q9duU2w21ezvUvj0hLIyIiIiIiIiIiIiIKEaY3ijOW7uJrAu0v0Tj/hSNNRFFFoPRiNo6ngsTxTyGGEanQNuF243iFIPRiIiIiIiIqJGdm7eTGIxGFFWcCebtaWG4c57ik+h/ZDii6kd8vW48ppc+ixFVP+Kk4YIP/6ph6jCGohFZxmA0IqLY4gjyuB3o3JzarDSDj1321egv31qmf6FKx6zwnoNLQQ+gQ2FoJus9GBiwv37b/odDdPYz0TRI88+dsvOM1xFr73dzCwyb1MPXND4wCEZDQhLkuWUhLqqJ9c2C8aoNkvsAoMa/Tf32PdRf9oc6phBqcgE8D1wJ5XaHuEgiIiIiIiIiIqII4M2EFNP4/G1dJj9/5YlcGUSxLuBrMY91RNGIwWhERETxLHIv9PxojogABqMRERERERFRUwlJ1vsmMhiNKKo4AoQvpGZEpg6KfZrxR4ZDq5fiyS3n4Ntdx+LFczVM7MdQNCI75KQL9RsK+0S2ECIissbhDG6cndBxalPSDT52Ka/WX76lTH95p8zQ1GNGbnyq5ZOkZ0Iu+Cfk9leAbsW+be3zIefcZL2ePOMwsZh7v5tbACQaPBnW/ApVVeH92ihMzOEEOnYPPrwxALV+pe8CnfCzxrZqqL2lUIsWQH37PtTe3VCzDwT++MXb7qoFXrwX6vSBUAseCEu9REREREREREREYeNheBERBcvs7m3e2U1kXYD9JSqTEnhNpY+o3EYUCmZb1s3TaKI2jufCRDHP7ByO53dEFGFBXs1PREREREREccnqzduaFvwN4kQUHs4AwWgp6ZGpg2KfWPhbCslp4a+DKB4deDSQlAJUV/oslsNObaWCiIjIlBZk6JCd0HFqU9KMgtF0cqdcboUlf+r3j0gw2uADoSZOAz5+yd6455YBX70DJCUDY46C5Hf1Nsz7Bli0AGrdb5DCPt623E7WJ84x6ZsaW+93JTEJqmsx8PtS/8bqSuC374Fh4wC3S38ChxPicEDldAK2GzxJWmLjKt/HJsFo6os3gUdvAMpLzefctAbq3sshJxoEBRMREREREREREUUjFapEh3i6YTSevpdYx20R1UxvFOe2I7IsYOgC96f4xW0byzzcfERERBQCPKUgIoDBaERERERERNRUoGCleonJEOFftCKKJuJwmH/om5oRqVIo1lk5vqcwGI3o/9m78zhZ9oK++99fbb3NPnPOnDnn7vdyd9Z4lYsQhAsRCUFF8EV4IAoxL01iXPCRPElMhMgrbnGL0fgQn4fogxrQKK5IAsqDyEXhEZDlwt3XM2ebfaanl6r6PX9Uz9Jzuqt7eqaX6f68X68+3V31q6rfdFX9qqpP/b7dCZMfl37y92T/9Ruk4kYy8GXfJr35h/tbMQBAQ8b1Oruxot3QcYycyVzj4SvFq4f93mebz+fMRG++kzHv+C+y25vSJ/+kvQm+9pVJ6Nkbf+DqeeUK0t//js5/H30sJQ2unXDnAWN++g9kv/WGxiOXFpPnlGA0SdJNd3UnGG3tSt1b+5d/1Lzspz9y/MsHAAAAAAAABkV8XMFoJ0zLEBqcCKzHPkv5/AlNAw6BYDRgUKX93/+onkYDqEk73+U6BTgZerQf01wcFtdHGE0EowEAAAAA9rTbeTvIdrceAI4fwWhol9NGqADBaEDHzN95mfSHz0hf/Rvp9DUy89f2u0oAgGbcDv8r1SMYDY3NjRk1uvlkpSiFkZXn7t06/P5PN79TeCElI+w4mfyYzE/+nuxjD0ilrSSIa21J+uzHZd/91gOFjcxbf6R7lZk723xcYaJ7y+0SM7cge80t0tMPXz1ybSl5bhGMZl7zNtlPfTh9Qf/w7dJv/ezhKrextvvSvvfd0mf+7HDTN9POtSYAAAAAAAAwSOiBCSBVSiSMTUuEoW0B2tdif+FYDQykmF0TAAAcg1an+9ZaGdObH5kF0D/ceQoAAAAA2EMwGjC8cvl+1wAnhWknGG2s+/UAhpgJMjLPvpdQNAAYdJ2G+LR7bY2RM5dyGr28Vf/+dz/bvOztZ46nPu0yN94hc8fXyGRyMqevkfnGN8n86v3S3fdKmZy0cIPMO98nc/cLu1eJm+6WZheuHj4+Ld3y3O4tt5smZxsOtpeeTl40DUZzJUnmpd8ive57UhdhpuaSz+4wNlcVf9e9il+Skf2/f+xw0wIAAAAAAADDJE4LNjoEQlvQFWxXgy1t/XQ6DhhBLY+h7DODr9N1xLo9yQhGA0Yd57vAUOvh91x8pQZAIhgNAAAAALCf124wWqa79QBw/DK5ftcAJ0U7v5iSJWgPAACMANfrbDrPP956YGikBaNd2dx7/dknm9/Rc+eClPH7/yuH5rYXyPkvH5PzkVU5H/iqzMtf393lua7Mm//3q4e/6YdkvA731X6bmGk8/Dd/RvbxB6TNtcbj97VN5q3/Nn0ZuTGZN/9we9d5+331bw5XHgAAAAAAABhGNiUYjZ6ZANJCHdLaiE7HASOpRUhp2rEaQFelHbEidk0AANADXEIDo+GE3iEMAAAAAOgKv91gtGx36wHg+AUEo6FNpo3fUsilJDoAAAAMC9ftbLp2r60xcmbbDEb7V7/b/C7h//bW0f3tM/P675Wm52X/7LelakXm5W+QedX/1u9qdW5ytuko+5bnNZ9ufxDc5GzS5lQrjcvmCjKvfKNUmJD9k1+T/t8PdljZI5iZl6ZPS87obrsAAAAAAAA4oWISHXCS0Tu4v9I+/07HASOoZdIB+wwwiGJ2TWDEcb4LnHip5+G9249pMQ7g+ggjimA0AAAAAMAej2A0YGhlCEZDm9rprJ4nGA0AAIwAt8P/SiUYDU1kfaOxjLRZvnrcTjBaJbS6/9HG0ztGuu1M9+p3Epj73iBz3xv6XY3jsbnW2XT7wqyNMbJzC9LiE43L1kKtzYteLfOiV8t+/Pdl/823d7bcTvz9t8r5P36ld8sDAAAAAAAAjlMcNR/XsiMigNHWYSdy2hbgADr+n3yso2FlUsYRjAagKc53ARwjWhRgNPCTvAAAAACAPb7fXjmC0YCTh2A0tMuk3a5QM3Wq+/UAAADot46D0TLHWw8MlbkmGcOXN5LbdP7iIWmj1LjMzaek8Wwb5+s4Ecytz+9sQsetfz93rnnZbL7+faftWofMO365p8sDAAAAAAAAjlUcp4w8TNfLYeqmOUx/ywlHoMBgS1s/9rjaFmAUtNgnaAuHF+v2RCMYDRhxtOHAyZd6Tdu7fZzmBIBEMBoAAAAAYD8vaK+c32Y5AAPDuG7rQoAkmdZfGZqpuR5UBAAAoM8Ohg+1i2tmpJhtEoy2up08/9HfNr+b58M/wH/vD5Vbnt3ZdM6B7WDmdPOyuQMb3B1f014Y9lEt3CDz3k/LHKwrAAAAAAAAcJKkhheljTvp6HU6HFiP/dVpJ3LWG1CnZRIC+wwwiFLzhQGMOI7dwInQo2C01MUccfrhRHA0RlNvfw4YAAAAADDY2u287XE5CQBDq52O61Onul8PAACAfnM7vPZtN3QcI2kq13j4ajF5vv+RxjenfNsLpBvmehBohd554as6m+5gmPXc2eZlc4X6SWfmZb/u70mf+nBny06r1rt+QyoVpWufJd36fJlM9tiXAQAAAAAAAPRUaqIDaQ8A0nQYfkYnZuAAOv4Dgypt74vYNYERRyMA4HjQmgCQJH6eFwAAAACwp91gNNfvbj0AAP1j2ghbmJrrfj0AAAD6zXE7m87jmhnNTTYLRtuWrLV68FLj8a+8k1C0YWP8QObd7z/8hAfCrM3pa5qXDTJXL/ed75Ne/gYp02RjPKzrbpX5nYdkXv56mVf/I5ln30soGgAAAAAAAIaDTQs/o2sm+o1tsP9S/u+m4/aD9QrUa7VPsM8MPMLrRlJqvjCA4Zfa9nNcAE6GkxHoPUBVAdBFHf7MOQAAAABgGBkvaO9rZo/LSQAYWqaN31KYPt39egAAAPRbh9e+xuG3qdDcZN6o0Y1Da0Xpyqa0Wmw83Z0LBKMNI/PSb5F94aukT/3pISY6sC3cfW/zspNXh1qbwoTMu94nW61IH/hPsr/yb1ov86a75fza/ycbVqVKSaqUpdwYAWgAAAAAAAAYbqmJDofoeUkvTWAEddiJPDVQDRhBLY+hHGOHF+t20KXdwRCz+gAAwDFodTnAKQcwGrgrHwAAAACwxw/aK+f63a0HAKB/2gnymLq6cz0AAMDQcTsIRrvnvuOvB4bKVL7x8NWi1YMXm09363x36oP+Mz/+O4ec4MA1211fJy1cf3W5m+6SSbl2M34gvfz1ktf6ez7z2n+cPHu+TH5cZmqOUDQAAAAAAAAMv7SAIsKLMOgI5OuBDsPPUrtus96Aeq2SEPp0PKaNBVIRjAaMuk7PkwEMjI6vadFdBEdjNBGMBgAAAADY00ZHyEOVAwCcQGm/41YzSTAaAAAYAY576EnMP/+pLlQEw2Qq13j42rb04MXGN6ZM5qRT412sFPrKeL7MB5+QbrijvQkOhFkb15X53p+WgszewCAr830/03rZCzfIvO3fpRe69fnSN72lvboBAAAAAAAAwyROC0aLelcPACcQwWjA8RjUjv/sq0AagtEAAMBxaJWlSNYiMBo6+JlzAAAAAMDQ8oP2yhGMBgDDy2nxWwqTczL7O9wDAAAMK/eQwWj33Cdz893dqQuGxlS+8fDVbenBi43H3TovGdNGgDFOLDN7RvrV+2VfdUoKqy0KX33NZv7uN0u/+inp/g8lnTVf+i0y1z6rvWW/5R3Sc14k+6kPSx/+DenyM8mI09fKfNePSvd9O9eAAAAAAAAAGE1xSvhZHB5iRvTSRBfQ+3fApayftHXHegXqDWoSgk0JT8UBna4j2sNBl7aGInYRYMQRBHO2JPEAACAASURBVAyceFy3AhggBKMBAAAAAPZ4bQajuVxOAsDQatDJvs7cQm/qAQAA0G/O4YLRzFv+ZZcqgmEylWs8fLUoPXSx8U1Dt84TijYKTCYn+5Z/Kb333ekFm4RZmxvvlG68s7NlP/fFMs99sfTdP9bR9AAAAAAAAMBQilMSHWxKaNqJR+fX4cC66qvUfYWgCKB9rfYJgtGAQRRzOAPQDNeUAA5hQK8G+qdlGzpynwhGRItejgAAAACAkeK3GYzmEYwGAEPLtAhdOHW2N/UAAADot8OEgl93q/Tcl3SvLhgaU/nG59uXN6S/fKTxNM+a72KFMFDM5GwbhbjNAwAAAAAAAOiJtNCTeJiD0QAcXVrAYFqgEp2YgToD2/GfYDQg7U5jgtGAEUf4GXDype3Hx7iPp8aG05QAqOGOWQAAAADAnraD0fzu1gMA0D9Oi68MZwlGAwAAI6JVMNrkXFLmBd8g83Mfkml1HgVIOjvVeHgYSxfXG4979rkW4cUYHpNzrcvQ1gAAAAAAAAC9EacFo4W9qweAkye1B3dvOpgDw6HFPtGvfcYSkNo+2rVRlHYaDWDUcVwATobBuG5ttSguoYHRcIifOQcAAAAADD2vzWC0Vp3DAfTHjXdKj3356uHnbup9XXBiGWPS/8txbqFXVQEAAOivINN83Ne+Uuan/0CqVmQy2d7VCSfebfOHKx940n23d6cuGECTM63LGILRAAAAAAAAgJ6wacFohwlEoZcmuoHtarClJcJ0GJoGjKRW+0S/gtFIfeo6Ui5OtJjVB4w4GgEAAHB8uGMWAAAAALDH99sr57ZZDkBPmTe/o/Hw73pnT+uBIeA0/9rQjE30sCIAAAB9dN1tzcflCjKOQygaDm0sa3TNdPvl77tdmsiZ7lUIg2VyrnWZlOs1AAAAAAAAAMcoTgk9sWHv6gF0gkCZHkj5/5u0zz91HGFLQJ2WbdkABqMZ/m8XoyFt74s4nAFoiusU4CSwqefhvduPW14NjFyT0uIPHr0PBCOCO2YBAAAAAHu8oM1yBKMBA+ml3yrd84r6Yfe8QnrJa/tTH5xcaTfnZPK9qwcAAEAfmak56ZpbGo+7454e1wbD5PYz7Zd97XO5cX6knDrXurMEnSkAAAAAAACA3kjrTBhHvasHgAHVaUfxwehgDpwMg9rxn9QnIE47VeZwBow4GgEAvUFrA4wGgtEAAAAAAHv8NoPRXK+79QDQEZPJyvz4/5B5129Ib/ohmXe+T+Ynflcmk+t31XDSmJSvDbMEowEAgNFh3vzDjUd83d/rbUUwVG47036w1b03E4I1Ssz0KekF39CiENsEAAAAAAAA0BNRSviZJRAF/Ub338HWYfhZ30KegEHVap/o0/GY84D2ddyu0R4OujhlNyAYDUBTnO8CJ0PavtrD/ZgmA4BEMBoAAAAAYL9Me2E3xvO7XBEAnTKZrMzLXy/nn/4HmfveIBNk+l0lnEQOwWgAAACSpFe9RXr1d+y9dz2Z7/8ZmVue07864cS7/Uz7ZW851b16YDCZH/rF9AJp12sAAAAAAAAAjk9a6EkcHmI+J6wXZ2p9T9jf0ivbF6Snflda+/IAre9BqceI6rgTOesNqNMqgKxfbW5avQbmOAB0V1r4GcFowIjjWAigR2hugNHg9bsCAAAAAIABMjnTXjmC0QBgyJnmozK53lUDAACgz4zryvyr98j+wx+UFh+Xbv87MtOn+10tnHC3nzFqp2PLtdNSPpNybo6hZK59VvrWYQhGAwAAAAAAAHoiTgs9iVJvrcAIefg90l9/9977a18vff1vSg73WI62TsPP6NUN1Gu1TwxgMBowIqK0DGF2EQBNcb6LPrIx9121q+Ow7+NdDMFnBw3o9RHQZbTcAAAAAIA9k7PtlXPd7tYDADC4svl+1wAAAKDnzA13yNz7TYSi4Vi84DrJtNFh7tb57tcFJ5DDbR4AAAAAAABAT6SFnpD2AEnaeLg+FE2Snvod6cFf7k99MEA67EROr2+gXst9ol/7DOcBQJyy+0UczoARRxAwBsz5D0t/eo/0gYL0kZdKK5/vd43QpkG9GgDQW9wxCwAAAADYU5hsr3Olx68ZAsBQCyvNx2UIRgMAAACOYrpg9AOvaJ2M9qz5NtLTMHr45VIAAAAAAACgN9LCz2x0iBnRTXNoPfprjYd/9ee7v2wCtAZb6vohKAJoX4t9ol9tYVp4Kg7odB3RHg66tGA0MoQBAANj6TPSx18rLX9GikrSpY9LH32ZVDzf75oNOAK9AQwO7pgFAAAAAOwyjiONT7cuSDAaAAy3tLsSsgSjAQAAAEf1H1/fOvTs1vkeVAQnTzs/agAAAAAAAADg6NJCTw4VjIah9dWfazx86/GeVqMxOir3V1on8rS0GNYbUK/VPkEwGtAvqcFoHM6AEUegEgbIE/9diiv1wyor0vk/6k99TooB2VdbVWNAqtk7Lf/gUftAMCq4YxYAAAAAUG9ipnUZl2A0ABhZ2Vy/awAAAACceMYYfeNd6WVunW8dnoYRZLjNAwAAAAAAAOiJlB+VszHBaABS/h+n0/CzkevVDbQwqEkIBKQCBKMBAE6Gr/xM4+F//d29rccw4boVQI9xxywAAAAAoN7kbOsyrtf9egAABlMm3+8aAAAAAENhYbJ5hxnHSC+8qYeVwcnhcJsHAAAAAAAA0BNpwUYEoqDv6Ijcf2nroNNxaYFqwChq1db1qy1kX20fx6thFaXsBmnjAIyA1NAkjgvAiTAg+3HLqwGaFGAkcMcsAAAAAKBefrx1Gc/vfj0AAIMpSzAaAAAAcBxunGs+7p4bpJlC8+A0jDDDbR4AAAAAAABAT0Qp4WeHCkYbpl6aw/S3DDl6B/dZyueftm5Yb8ABAxqMlhaeavg/3mNBezjw4pRVFLP+AAAAABwT7pgFAAAAANQLMq3LEIwGAKOLYDQAAADgWNx3R/Ob4r/1+dwwjyboTAEAAAAAAAD0RlroSXyYYLSThiAL4MhSA2E6HQeMoFbhSmnH6m7q13KBARKnnSpzOANGHOe7wIk3IIHeLS8HelONAdLqAxm9TwSjgWA0AAAAAEA9v41gNNfrfj0AAAPJEI4JAAAAHIsX3iidm2o87rXPJfwKTTjc5gEAAAAAAAD0RFragx3mYDQAR0cwGnA8Wu0TfdpnCEYDUsPPCEYDAADtOOrVMTlgwGjgjlkAAAAAQL12gtE8gtEAAAAAAACOwnGMfur1Vwegve3FRrcvEIyGJgy3eQAAAAAAAAA9kRZ6cphAFHppoisGNCwIibT9vtNxwChqtU/0bZ8hGK1tHa8j2sNBlxqMxi4CjDjOd4ETb0CuW2kyAEgSPdkBAAAAAPXaCkbzu18PAAAAAACAIffGe4zygdEvfCRWKZRe9wKjf/EyQtGQwiEYDQAAAAAAAOiJtEQHG/WuHgBOoLTe252OA0bRgIZAHiYgFRhSUcpuEHE4A9AUDQSA4zN6LcqAXh8BXUYwGgAAAACgXhC0LuNyOQkAAAAAAHBUxhh98/Okb36e2++q4KQwBKMBAAAAAAAAPZEWekIwGoBUBKMBx2NAO/6nniOwH2M0xCmbelq+MIARwLEQGAIp+3EP93FaEwCSxB2zAAAAAIB6fqZ1Gc/vfj0AAAAAAAAA1HO4zQMAAAAAAADoibREh7RAFKAXCBsYAKb5qNTQJAKVgLa12if6ts9wHgCk7X5poWkARgFBwAB6g0toYDRwxywAAAAAoJ4ftC7jEowGAAAAAAAA9JzhNg8AAAAAAACgJ1LDi6LDzOjIVRkY9Dg9QVhX3ddp4ANBEUD7Wu0TfdpnCEg9hE7XEe3hoEsLPyMYDQCAEy71+5/eHej5GgqARDAaAAAAAOAgP9O6jOt1vx4AgMFTmOh3DQAAAABgtDnc5gEAAAAAAAD0RJQSfjbMgSj0Om0fnxWaSds2UscNcdsCdGRQg9EOE5AKDKc45ZBFMBow6jo8FwYwODq9pu2xAapKb7T8g0ftA8Go4I5ZAAAAAEAd004wmud3vyIAgMEzMd3vGgAAAADAaDPc5gEAAAAAAAD0RGonUAJR0MLI9c5FvbT13+k4YAS1akv7FSZIiCGgKGX3jNhFAADAMeAKGYBEMBoAAAAA4KAgaF2GYDQAGE33vKLfNQAAAACA0eZwmwcAAAAAAADQE3FKogOBKJAkY5qP6/o20iosiO7D/dVh+BnrDTigVVvap32G84BDoF0bVmmnyjGrHRhtqee0NBDAiZD6YwHHtx8fdTG0KMBo4I5ZAAAAAEA9P9O6jOd1vx4AgP75B29rONi86Yd6XBEAAAAAQJ20jnYAAAAAAAAAjk9a6ImNDjOjI1cFJ5Ct9rsG6KeOe3fTXgB1WqUh9C1MMOUcgf/LOx4ERQ68tPAzgtEAAMBxGNjLAQA9RTAaAAAAAKBeO8FoLsFoADDMzJt/WDp1rn7gt/0zmXM396dCAAAAAICE4TYPAAAAAAAAoCfitGC0lHGAJMVhv2uAvuo0/Ixe3UC9VvtEn/YZzgMAxSlJJGmn0QBGAee7wMnXadg3uoukOIwmerIDAAAAAOoFbQSjeX736wEA6Btz9ibp//wL6aMfkL34lMzzXyq95LX9rhYAAAAAwCEYDQAAAAAAAOgFmxZ6QiAKpPQOp7bbwWh0du2/DgMfUrcb1itQb0A7/nMeAChK2Q1iDmcAmuF8F8AhtGoyaFGA0UAwGgAAAACgnk8wGgBAMqfOSW/8QZl+VwQAAAAAsMsYrtIAAAAAAACAnoiPKRiNjt+jKa72uQJsd13XccBZp+OAEdTyGNqvfSbtHIH9uE7Hnwef46BLCz9LC00DMAI4FgInH/sxgAHCTwkDAAAAAOr5QesyLjnbAAAAAAAAAAAAAAAAAIAhFUdpI3tWjd4jtOlY2LDfNUDXpe0PaW0E+xjQvgENRksNSB3mcwRgT1owWto4AKOOBgI9RLjXidfyamDkVvGAXh8BXUYwGgAAAACgXjvBaJ7f/XoAAAAAAAAAAAAAAAAAANAPcUqwiU0LTQMkxdV+1wDdlhaMlNY7O3U6ApWAei069vcrCYH9GEg9VSYYDRh1NAIYEASWdy71mrZ3+/joBZ8BaIRgNAAAAABAPT/TuoxLMBoAAAAAAAAAAAAAAAAAYEgReoKj6HYH7Ja9g+k93H1pn3E3xgEjaFDbOs4RgNTwM4LRADRFyhF6icDyzvUoGC11MUecHsDw8PpdAQAAAADAgAnaCUbjchIAAAAAAAAAAAAAAAAAMKTi4wo9ad5L05aK0sUnpZXL0ulz0vz1Mq57iHljYNEBewR02FG8Rx3MgeHQYp/oWwhZ2jlC1LtqnAgdtmu0hwMvStkNCEYDRh2NAAZEtwPL0XW0Ju2pxL6WqzNaupTXLbNWGd/0u0rAsaInOwAAAACgXn6idRnP7349AAAAAAAAAAAAAAAAAADoh9SwlaMFsdj7PyT7mz+rX3v8euWiol6z+SfK223pOV8vvfv9MtOnjjR/HI21VltlKfCkwOuwM2m81wHb1sJdjKFj6lBJDe3pxjjgZKqEVhfWpLGsVKpK41lpLFPfJpaqVuXqTrsruU5tXMtwrD7tM6nhZ/0KaxtO1loVK1LW37ddYCCkhZ+lhaYBGHWc76J3SuWq3NiT7xCQdngnI9B7cGrSuTCyurwhXdmUKpEURlIYJ+dTxYpU3rf5bhddPf3k2/VM5Zy+tHWXHtm+SVeqc9qIan2B75e++E7pzrN9+VOAriEYDQAAAABQ77pbpVxB2t5qPN4YfpUSAAAAAAAAAAAA6CNjzI2SnifprKQxSYuSnpD0SWtttZ91AwAAAIZCnJLokBqIkjJZHMv+zPdKf/B/KZKjH7nlvVr0FzQWbej5pc9pZnlF629/UCunjIwx8kwsV1aeiZVxIq1WfW2Fniqxo63IUyUymvCqunlsU+cKZc1kQ02PuZo/ldWZ+YLmZ7MaGws0kXN0ekLK+sMbKBLFVo9clr50XrqyaRXHUmST1RhbqRpJz6xKTy9bXd6U1rYl3036807nJWOSzqYX16Unl5POpzuMkRwjGVk5+1/b8zKyyjolZZ2SYusosq5iOYo+NaVYFYWx0VbFyGrvszeyMkYykhyz93qnlDF7rzNurNlMVVk32p1Wkow9LYWfrpWz9eOMlf4qK8WPSrXxxiYfhjFWMo528ohM7R+z7++c87Z17VhJ1+S3lR0f15lzE7r92oxuvWFM3vikHG847x+11uriurRZrh++XUm2ncsbSThPKZQ2S9Lywz8lx8SKraOVcEqr4bSsNXJNJPfSs2Xyse5/xKoUSi+7zShwpfWSldl8jdy165JyJpJnQmWdbW1HeYX+nKpPRAojq82SVdaXpnLJOt3te24lu6/7985wa+1ur3Bb+7d+GklxLBvV2i/XlY1jqVqRjW0SBmltMj6sJK9lJOPImuRZjpss29pkGlkpilSNjbZjX55j5TpJoODpSUc3zvu64ZqCnnU20JnJJNhoLCPlg+EOCiyWrRbXpNVtyXWStmbn8ZVF6W+fScY7RvIcyXOlTC0QbG1burwhrWwl6891kjAo10nKViOpWLGKk9UgqwPPbQxb207auiubSfu4U7esJ03lkzZxZ9NxjbS0lXTK99ykDq4j5fykztVap/1qlOw7lTApu9P+RnGs1W3nqs8o64SaDqqqxkbFyFMxqu/mPOaHOjse6WzhOTpb/nUtZBZ1Njivs5nzOhss1p7PK9e3YLS0c4TOEqGstXrokvTAorRatJodM6pG0nbFqlRN1teF9WTdrW8n20AYS3EYKYqlami1WZYiaxRb7W4jyevkCLEzfLtqtFxMxvuuFLhJYJ0knV8z8t3kc61GyX5ayEinx7V7DHSM5Dg7x7Fk2/3sU3vt0b03WnkmSgaUv17a+vPDfyBfuUXr4boeXs1oK/RkZDXnb2vGL6tiHW2EgULryDOxPMfKN7Gm/IrmM9tayG7rTLakhWlXZ07ndfrMhKbnp3V60tGp8SOEng65OLZaLyXrNR9IfovPKS0YLW1cM6Wq1fp20obEtv65EknLW8n52cFxca29ObjIRpkt9kCphmUaTtdZuZM0/7brMILzv7AufWXRqrhZlmtDZZ2qZr2STmUr8p1kq0qOs6b+GCxz4Bi8N16SrjuT1Rvum9P1c8N1bm2t1Xo5p+3yfHJdZF1F1lXFBnq6fI0WH3q+VtZizRSk2TEj1ySf0TOrybn40mYyn4mcNJFNjjPFSnIcvLKZfH7ezrmLn5TNeNJ2VVotJsfQAcpsQp9cWJc+84Rk7ZSkkiTJVSjHxHJNJEexPBNq8vORpgvJuW0+kM5MGmX95Jw38JLzI99Nzn8dU/9cCKRckGx/Gc+okEkCrXaCrWztemynHdg9f985T4utbFRVXKnIGkdPr3mKjaNrZoyscevP5WOruLwtWyrKRnHyPo5l41iVSqzl9arCyKrgx5rKxnpiK6/xnKOiNyZXkbxCQUE20KlxozOT0sKk0ZkJaWFSGssO9nlRq/35uPb3jZLVlc3kmsiY2jVN7bomiqX1benSRnJNX6pKG6XauflqrMvrsaphrCiKFYeR4p3zcRmVYk/lSqTxwGo6b3fPnSuR0VLR1cNLrhY3rr5eai4r6adSS1xZqUhnM0f6PIBBQzAaAAAAAKCOCTKyz/u70v0falzA83tbIQAAAAAAAAAAAACSJGPM6yW9XdK9TYosG2PeL+nfWWuv9K5mAAAAwMlgP/J+2Z9/e5Lo4bi1ZA+n9mz23j/9cPOZPPx56do2l/eF+2X/4LVSpSz9zcd2h/95/qVa9BckSZvuuP6i8JK9iVbb/3tWwqyeKI1LqWf/SUjLtNnUvL+lqUykuVxVp8akXD6QF/jyAk9e4CtXep7yV35IgVNRYCqa8NY1460o65QUZAvKPmFVCJLOwTshObkgCTvy3aOFHVlrtVpMQqieWZWeWbG7r8+vWi1v7XV6fexK0glVkm6blx5fSoLNusHapDOstP9vM0oyqqXNaPzqiVLiqndCEqQkwCbNZigtlYMmY0+lTnsk6/tef7Z+1HR8RePaVsZEKrhVzQYljfuR8hlH4zlH2SAJ4ZsaczU5ESiTDRTkA40VAs1MeMoVssoErrK+NDuWbDueIznO8XXILletLqzvbDvJ9nNxXdoqRVqrhSWslR0VK0bVMNbWdqSHrxitlA7T1fIHm4+6Iu2P2fjAZ/b31r6l9mjiGWknKq838t2Z7dOSvrTzpj4oylWkCaekca+qvG81HVQ1nalqMhNrvOArN5ZVNp/R9JiryQlP2cBVLpBmC0YTub0gp7FMEojh7wvH8Nzj+dyKZavza9IzK9L5Nbu7LW2UpHJV2qokQXnhvmCwpU1pcU1aLx1LFfbpbrpHJUweW+UkBO14Ne7kX4o9Labsb5tVTw8ue3pw+bSkNzUtV/jLonyzuRuONeaFyrp2d5vIebFybrR3nHONfE8az+yE0RnlMo7GxgJlMt7uuJmCUeDtBV+4+wLhJnPSVNFVWDkl31RVcLcUOHuNvo1jXVhN2qArm9KFteT10pZUqiZhi8tbVmtFq+1yrPVS8tlf3jLaKO//vNpd70cL1CmHyWNjXyjkTiDajq2y9NiB0Mg09z9mtNd1faH2OKS1+rdWRpereV2uNm+znipJX9hIm2nSFnkKNe6UNReUNeZHKvixxrJSNnCUDRzNTbo6NZ1RYTwj33eVqQWjFIIk9GQnJCXwktCemcLgBD5GcXK8u7QhLa4mYULFShLS+dhiRV96sqIrG1aKQimKJMfRetnR4nZGq9VA8b599oy7plsyS7p9cktnphzNz2Z05kxBC2cnNTOTT23rDuYLP7Fk9cdfsPrbp6wuX95UtL2tqFxRqRSqUol0sVrQQ9VTsk3aDGAwZGqPY/Il6R0flZ43u6pX3mmUy3rKZhwVcp6yWXc3jNRzpHxgNDuWBDFlakGzOX/vemznPOg426HNktXfPiM9uWT11EpyHuQ60qnx5PpocU26sCZd2tgLj96uSg9dki5vvL/F3O2BZ6D7InmKrFTdt9mtr0hPrewv1ek22el0fu3RzvxytcdRXL3vFZyKFrLbmshKhZyjsaxRoXhZk1++Q9Onfkw5W1LWljQeb6oQbykfF1WIr1fuAaup2mnZwe+IxrPJ46ht0lPL0m/9dfpn++MfsnrBdVanJ8zuddrimnR+Odb5K2UtrsRa3HAURlYZJ1beDZUzFYXVWNU4CShbrI5rLe70szVKzsfTzsl7G+m09JlPS3e9uKfLBLqNYDQAAAAAwNUmZpqPc7mUBAAAAAAAAAAAAHrJGDMm6b9KemOLojOS/qmk1xljvsNa++GuVw4AAAA4Scrb0toRM4QP07dzeVH61NWn5b812erU/vit2DGtVMakiqQNSZcalXpR7dHEX8XNx0nyTaSCFynrxfKcvY764zmjwDPyHFsbbjUWJK+LVaP1kvSli65Wyof/4davXjz0JDiCFWdaK5pO3sSSSrVHahjNQVdvR44iZVTVuCkpMJECJ1beqSrvhrvbjO9IWd8q7yfbl2uSzteB76gUSl9cyuvJ7YKuhIUmy20UuOI0GY5uieRqJS5opaKkPWoZxtV+eEbWCZVxIuWcUGNeKN/dCbUycl2jjCflfemjTyWBhm9+7paymSQksxK7euDJsh5a8rRabRZIiEGyFR8IyaocZW62yetGXiVpcfddxpSUd4sadzdUjMd05Q/Tj5WJnRAF9FooTyuxp5VSITl+pWp/uyg4FY25FQWuVeBYTWYiTWcjZfzkHCif8zSWkTImVN63Gg9iZTKOctNTGit4ygdGWV+azu8Fz07lkuOcWzvmuU7yvhDsBYo+sWT1p18I9Rsf39Zfnc+pGjc7pjULX2nsQjSpC8VJfaKo/Zt7W378Q1alxx+Uokh/fvGUPrc2vW/smHbCZQFIn1sa1+f+4uDQg+1N63Mg18TKuLECV8q4tTbGk3zPKBcYGSNN5aWxrCPPd+W7Ru6BoFlrpYcuShfXrT71aKxKxDkyMOy24kAPFwOpuH/omDR9Y/OJQkk/l36+65pYGScJL/aMVeBZjde+A/JcyfMcea7Rp59ufm7y6/e3bvt++WPNrhWNpGzL6YfRUgffqwGDjt7sAAAAAICr+Sm/ZOLxBQkAAAAAAAAAAADQK8YYV9L7Jb36wKjLkj4raU3SzZKer72IhnlJv2+MeYW19hO9qiuAAWZrHUPMYZJcAAAYQlHU7xpo22T1u+Pf3O9qdEXVulqtulL1wIjVvlQHJ0gsV9tytW2zSZ/mdnKFgANKsadS7GlNmbZCst73+YMhevmG5YA0ZZtVOcxqJUz5YXIMva040FYc7J0DFVOLH2DVTvDRDkeRxkxZZeurLF9JwGezUND++LkHbu53FYCREllHxdBRMUzeX2zZBrVqcwhFA9C5yDoqRo608xVcRbpwqHMjdGq5Qsg3hg/BaAAAAACAqwUpX4K4BKMBAAAAAAAAAAAAPfQTqg9Fq0p6u6T3WGt3u/kaY+6U9KuS7q0Nykj6oDHm2dbaxV5VFgNi6dPSY7++995aKSpKlVXJ8SR/UsrOS8G05GQkx5ecIHm4gWT8vdc7w/eXaTTMeNrtyGlt+6/3D4tKycPGko0k1Z5tLMWhFG4kzzaqHx+HUrgpxVVp7UvJ3xluSPlrJK+wN4+d6cJiEhAWVa6el42TR7SdPJIPsP6zbDps//AW0+y8bjhtq/H75x1J4VZ93RXvvd75u6Ni7e+sMY6SLEVTC0tzas9mb5xxJS+fvN75nGwkVVb25pO/LtkOjJs8HE/yxpLtYXc+Kc/GlTKzUvZ0Ml1cldys5I1LXi4Zr1q5nfJuNlmvO9ueV5DiSm3YvroYtzZ+rMHfWwuIIyju6OIwWW/7t5GdbS4q7dvX4/rng8PCrdr6tlJUrs38KPtRl/fRqLzXTpSXOjCgMwAAIABJREFUpNx80nZ2zErVjaRd9sdVv62afdvqwe34wDa98964yT7hZmvteXZv33S82j7q1fYZ9gOMGHsMaUtH7CP+R2Ov1oY7cfR6AAAAYOTEcrVuCXIEAABAvaUywWgYPgSjAQAAAACu5qUFo3EpCQAAAAAAAAAAAPSCMeYmSd9/YPAbrLW/f7CstfbLxpj7JH1Ue+Fos5J+VNL3dLWiGDzrD0oP/ud+1wKDbH8ojG1eTNW19PkUnzyW6vRfs6CpfQFqTpCEZNkwvbxxrh5XulS/uMINtWBBPwmBqwt085JlSUk4nBxdFeaVFvR1VchXs+HtlI2TILzS5b1wvf1Bg3FVisvCCeb4kltIQtT8CcnNJAFvXiEJLXQytSC1fdunP5YM391ePcnNJduD4+9tG9lTSYDcbmDjvgBHW5VKV6TylSSEM5jZW5YTSMGUlDmVhF5KybD9wZhxJQml8ydrgW8H9sVGYYh1w9zk7zDeXpm68QeCHB0/Caxzs5KbT/aHuFoLmHP36i1Hctxer8XREEfH99nGjYLRrORqr+lv9HBrD0kmn3bwPMCRlLG7mZCy0h3VB/Q9K+/Rb4+/TkveXMd/CgAAAAAAAIDh49mqcvG2zL7/0zkzdkELwQXdlHtEdxW+rOsyT2rOX9Ksv6Tpj61p7s6flnRX/yoNdAG92QEAAAAAV/Mzzcd5R/l1WwAAAAAAAAAAAACH8KOS9v8H3X9rFIq2w1q7bYz5TklfkLTza0j/2BjzU9baR7tXTQA46Wx92FijvJuodHyL23r8+OYFHEVcleJVqboqbT/T79oMB8fX1aGJOvB+X+hiXdkD5dys5GT3jWvBWinaSgLb3FwtqHF/yNtOcGPt2c0mgXOytWEHyu9M43i1ADp338NJnt1sEqQnSdsXpa1HpYk7pLEbDyzvwLydIAmZk62F59l9IXq196XL0pd/ItlObZgs48wrk2C8uJqE45UuSXFp7+/fbc93Hqp/b60UVWX+SXXvc9ufh9cF5gYr87Zq3bDn6PP6peif6ef0dv2v9VfpE6sv0lJlWjlTVN4pata9Is9ECq2r0PoqxVmV4qymnFVNOJvKmJKypqzACXW+sqDHSjfoSjij1XBSy+GMLoTzWgwXVFHKfYBDylGka92nlFFFjonlmlCOsXJMLM+t6obs43pW/mFNByuq2EBGVivhtBzFyjhlTXprujbzlBYy57XpZLTh5rTuZrXlZrTpBdp0s9p0M9p0M9pyM9pyMqpGGUWRJ+PEMrLJs4lljJUxsTyvLMdJAvmsTTa45LSj/nUyTpI1srX3YTWjcmlcsXX2NmkZyRpNV4q6c+2y5subu9Na7T3vvm4wbrfMgXHlOKPzlQU9Xb5W58sL2o5zerJ0nSK6IGrGLGnWWVbWKSnnbmsmvyxrjYyxmnTXNO0vyzdVRdZVJFer1WktVha0Fk4o55b0rNxDmvRWJUmRdRXLUWRdVeKMtuOcCu6WfFORZ0J5JlTWKasUZ7QRje92gt7fGdqYBsMavN4pVzfsYDkrGbsX4JgchkzyemeafcHKe/NJyjk2VsHZUhR5qlpPxSirJ6vX6vHKjXq0eqO27NgRP/3hci5+WneWH1BGZYXyFBpPRZNXxQQajzc0Fy9pzl6RZyNFxlUoV5FxVZWvkslqLl5SoFJtL689HCtjrYxN1vnucLPv2bEysVXObmtel3TKXlJgqqoaT1Xjq+jltWqmtGKmku3GSOvOhObskqbMqiK5Co2n0PG05RQUGXd3e/XcUDmnqJy7LVdRrf2N5CqSZ0L9TeUFqiijyPX0TZMf1mo8qY14TBm3oqzZ1nSwrLxXVNV4KjtZXaqe0vnyWZ0vn9ViZUHnK2d1vrygxcqC1qPJfq/Cvrjb/aLOOItacC5oxluW71blulHyMJFcJ9KYtynfrcpYK8fdOxY5iuXsvDaxfKeq2WBFgVNRJQ5UijPajMa0Gk7p+x/+haZ1ePP8+/TiyU/Iyii2jmI5+hcP/WLT8v/2+h+Ta6KO/2bHxrou84RuzD6urbigi9XT2ogmlHVKKrhbCkxFUewpjD2Vo4yuVE7rQnlei9UFXajM60J1XovhGa3FUx3XAYPFtaFcm7QtjmI5NparSEZWjr06/Hj/8a7ZsMZlrtawnO10/kcYZrs3/07/xiPN/xiXeaR12aIeRlZnwgvJcTpa0mV3TkverGI59cfj/Y/aedT+x1PeNfpc9rkNajU6Jpw1FapbqhpfK2Z6d3heRZ3TeU1rWTmVtKgFhcaTr6oyKmtaKzqly/JVVdX4qhpfm2ZMrkJVTKCcU9K4u6EZd1m+qo0X3uZXK313Eup5EuooyQ0i3Tr9oG7JPbJ7nRZZV7F1VLG+lp+a0Xo8qbLJaNWd1OXsKVUqvqoVX2Wb0ZYd25tOyXSRXIXytBkXVLYZlW1yPVeM8wpMRb6pyjXJcWr//u+Y+Ko2oRjntRQ3Dsufcy5r1l3am17xzjcIe++NlatIU86qPlJ6Repn8WL/E7oYz+tCPK8NO9GFT3v4OTbSdLSinC0pF29rLrqiM+FFzUeXlIuLchTLtZEc2dpzLN9WFdiK1t0JLbszsjIK5Sljy8rHW5qM13R3+cu6PnxCp8PLKtgteUrOdzwTykkuyvdkJOcfNWnjJMUFV8Zsdf/DAHqMbyUBAAAAAFfzg+bjPC4lAQAAAAAAAAAAgG4zxuQkvf7A4J9sNZ219kFjzAclfXttkCfpTZLefbw1BAAAwFXi5p3TRsblv+zevC/8ryPPwkgD0ZvKuFJGJb1m+oN6zfQHj33+1kqb0ZiKcV4r1WldqJzRYuWMLldPaSWc1uXKnJaqc6paX5F1FVpPVetrKyqoFGdUsYFKcVYr4bTWwklVbco9hV1gFOu0f0nnMs/oXOa8zmae0Zngot71+I82neZnb367vvvse5RzW4eZWkkrflZPFqZ1PjeuVT+nNT+jNT+nz/oZfdyfVbyblhdJKtYeiVzt0bgLc+9sSprfXNJrn3lAt24udWUZ5TjQA1t36JnKOVViXxUbaDvKqRRntRZNark6o2Kc01Y0ps1oTOU4o2KU13I4rY1oXNU4CfdbDadUttmu1DFNzinqXOYZnQ0WNeWtKu8mHZYnvVVNeBu7ndfng4u6Nf+Qbsw+Jkf14SpZp6RZf6ntnErsiayji5V5bcfJNrMeTmg9mtBaOKFilNdmNKalcFYr1SmtR5N129BSOKONcFxluxPaNN16gV0w5a3obHBe5zLnNesvKeuUlHW2NeZuyTdVeSaUb6oquFtaCBZ1NrOohWBRc/6VpOO79VSuBeDN+kua9Zf78nf00zfrD49tXpthQYuVBT1TPqfNaExV6ym0nio20EY4rooNVLW+qrGvrbig7SiXBFjUjnXlOKutqKBKHKhsk21tK8qran2V44zWokmtVKd3gzOsjpacOudf1kKwqNP+ZeXdojJOWVPeiqa9VRXcLY27Gyq4W/qeB3+l6Tz+53O+Ua+Y+eiR6tEuI6vve/g/NRz36pk/0RvnP1A3LOds67u++qtXlb0z/yW968Z3daWOhxXGrlbCaV2qntZydUZbUUFr0UTt+JXXRjietD020FZU0OXKaV2pzqlifVXiQNtxTuvRhLajnLbikxv0+Lyxz+o2/6u6LfOgAqeinZQNR5HOTTyj08FlzXpLUuxpKZzVI9s364ubd+h8ZUFL1RktVs5osbqgbZvvvA7B5/Q1wWfkmVCBEynvVRSMbSjrlHRz9nHd5l+W70ZyHCvXsbXnWK4Ta9pbVd4tSYolVZScn+0LnG52kG4QstXcYcoe1iDUo0t1ONRnfBiD8Jntm7cxkuPuvm68xbWux+VNV//PxTfrgeLtKsdZFaO8NqJxleOMSnFWG9GYqtZXaD1F1lXV+loPJ1SMC8f1Bx1KwdnUddkndW3maVkZXaqckiSdCS5qIbOo+eDibrBccoxb1d2FL+lscD4JSlUtwNNEmvTWNOmt9+XvABo61e8KSD/xxDv0rx/7D3XDfuT6d+vf3/jOQ83n3Cef1GLlbMNxB88lt6J88h1ROQmTvVQ9ra2ooM1oTBvRuLaivFbD6eQavnYdsx6Oqxgn12/FKN+Xa/v9vmHsY6paX8U4p0fLNymUp8BUFJiKTnuXteCd11lvUWe98zrrnlfO3VY5Ts7lKllPvlcLJS8GmgrPJwH52QuqWl/OTBLy7IRGrvHkulY5r6wZf1WOo9p5R60ipvaPkSQrlUtSaas+zGzntetK2bwUb8vs/ADEMXNeFsleV2xdEDhhBuCrfAAAAADAoDF+pvlX8i6XkgAAAAAAAAAAAEAPfKOk/T3N7rfWfqXNad+rvWA0SXqdCEYDAAAARoYx0ri3qXFtaj64pNsLXz3S/KxV0uk0yms7zimsBdFUra/NaEylOKtKnISpbUaF3c781VqoyEY0vjtsJyRoMyoosq62ojFl3W09u/BFPafwBd2Ue1QLwaJ85+qOon+9fo8+tPzqhnW86Zq/0eMT45LGG44vO66ezk/qyfyUnihMacPvb0fe4/LI2Kx+/rYXa7KyLefAnZ/GSjOVoq4vrur6rVVdV1zVqfJWXR9dK2nLDbQaZLXpBbINYh6yk+f1nPAxTVVLKoSVjmOCynGgShzsBhgthbMqxVlV42TbSALWCrsBRUlQX7Zue9uK8irbzG5YRGS9ZB7W143Zx3R34Yu6LvuUzgbndTZzXhPuOoFmfeSaWGczi8cyr8g6u21NOc5oI6qFYMX+brBjMc6rHCfhRltxobaNJIFYv/D09+nJ8vUN5z3urus1s3+sWf+KnlP4gp6Vf3h3Gyq4dCzvp5LjadXPat3PKNoNrFzTvNY0X3vnx5GmqiVNVkvybdxsVh2xVrvb0FZc0Fo4qZVwWhlTVmg9bUTj2ojGtRpO6lLltPJuUbfkHtFdhS9pxltueCxr5Oef/n59pXhHw3G+c3zBu7GkTS+jNT+rbdfTWFjRVLWkXFSVkTTlrTaddtrfG2clbbu+vvbcn8t/qKxqnKkr++2nf/vY6nxUnhPpVHBFp4IrR57XTju0P/RzJZyuBayNaTvO7YXLVqe1Fk3W2qxAxbiwex61Ewy5E8a2Ewq5FRU6Dhp5TuHzGnO39Mn1F9UNv2f807r/BS+SY44eHGWttB5N6Ep1To9s36xLlVM6Xzmr+9fulTFW096yilFh9zMoxVmdDc7r6yb+Sv9g7o90ffbJo1XgeHdv4PCio8/iVCC9/dqfP/R05Xhvv9oJAj14vZWcZ/vajnPajMbqzrslaaUWcpScR9dCRWvTVa2vxcoZXanO6ebso3rFzEf0mtk/1j3jnz6W9gNAY++47qd1Jrig/7r4T2Rl9NYz79XbFt576Pm4pnkDlQSi7im4Rd2ce1Q35x499HJ2FKOcyrXzv51r9qpNrstWwymthlO16/jkPDoJmC3sXsfvfC+0HM5oK8pruTqrDy2/Sp4J9ZLJT+gPll7bdNmPvfCmo59TdMoqPQPTUf3/7NeJpGjj2Kt0kMl0HmILDCp6swMAAAAArhak/Lqj5/euHgAAAAAAAAAAAMDoetWB9x87xLR/ISnU3n2izzfGzFtrLx5HxQAAAACMFmOkwFQVOGua0lpPlrnqZ/X5qTN6rDCjlSCnNT+rBx4/LS03Lv8/br9FhbHZntRtEK0FuYbDlzN5PTw+t/s+F1Z0zfaaQuNqrRY2FDpu28tx41iTtQCiiWMJISrXHpK0F7rjSpqJYy2UNvT1V56QF3e2nKqSv821sdzUHsytxZJC0/iz2nY9rflZrQVZrflZrfrJc7nJjxF7cayJsKyJ2uc4US1rslrSeFiWFx89fMLIHntAVL+5JlbBLe4GlZ3R4b7iyDol/fOHfqnhuD9/3n16wfhnj1zHYWclVY0jNQhQbKbqOFr3M1r3kvZm3c9qrfYcN0gtjGW06QVarbX7zfahZgphRZPVkqYq28lztaTJSklT1e3d17movbAySbt/qqNQ41rTeLCma9ReEIOVVFF77WujUMrdKjihKrW2xxqp7Hi7n+H+z3PL9WUbfKZV42jdz2q11j7F5up4Sz8ONVUp6TH3JqnJzzJ8/Loz+tLZr0/auCCrqpOsm5fm/rP+7E+/T3GU9DG4+fq/lvPyv9J7dI+8LrdD+bCqid1jUnn3+JSNQx1Hjo+jWJ7dm9FOO5Ss1jWdyRz/V63FKKfIurWwtXFFcndDHiPrqmp9LYcz2o6yCpyqCu6W7sg/oNPBZUnS/1x+pf794/9Wq+GkXjT1l/rRG9+l0Gkv0rTVsdIYadJb16S3fqQwFWBQ7M+32WmHrdn3WtLOgcDIyrPxIY6Ax6NqHFkZGTdSzt1STluaziwdej4H27M0SXCyr3U/q6/4c3XHkC2vcV8zY+1u2ObkvmPvRLUst83ldi5ZY461MrXX5CLjpHCM1Xcu/Lq+c+HXjzQfk3L8Dkyl6bhO5d1t5d3tY5/vju/56i/pPYvf3XDcmeBC15Y7iNK+h9jPs1HHIfbAoCMYDQAAAABwtSZfVifjCEYDAAAAAAAAAAAAeuDuA+/vb3dCa+2WMeYLkp6/b/Bd0iF7DePkKlwrXfu6+mFORgqmJRtK5SWpdFEKN6W4IkUVyVaT1/vfR2Wl//x5Hzi+ZFxJTvJsXKm62nIyLbxKcoKkvJuRbCy52b1hxtk3XycZ7uWT91LS+3PXvte7wxuMbzhNo2lbjW+xbK+QrF/j7NV/5yEnKefmkr9JVrK1bn823vc+3hu+M86GUriVLNO40iffpKae++OSPy7F1WS7slGT+cf1y4/LUulSsj1GpWTdhMVkHlG5Vj7am5+NkjpF3et0gwFgXPVkP2q2X6eNNyZpQ9OM3Zw+fr/NR5qP88Zqn8W+/VY68L7JOBvtGwYAJ4OVdCE7rs9PndHnpxb0RGH6qjKNQnR2ZDJbXazd8Nj2Aj00fqrj6SPH0XImr+VM/hhrle73rrnryPNIwhrKu8FIO+E5hbByVXCClVRy/STcrBYCsRMi1yhQaFDlwqqmqrVwqNrfPB6W5RxDOIXRXgDVzvwDGx290l1078Snmo67Ift47yrSIyXH2wvpC7Iquoe7/zsyjtb8jFaD3G7Q3/4wrEG15QXa8gKdz030uyqHcvHzY1Kx8bhfvPPr9N/nO2+321F1PF3OjulSvtC0zEPTU1rZF7S545bbP6lz131BlxZv1djEZc3MPaXzJq/z6t1xopsahe2NVSupASTHJ649qpIkz8b6/9m783jJ8ro++J9f3bpLr/d2T3fP9Cw9PdMzMMzgDMIExhlAlE0kiqABxW0QlxA1atBgngSRPGqSx0fNo9FHY1BMFMWgAhoVFyQoIxhZwi7MwGzAMFsv0/tdTv6o27fr1l36LlV17vJ+v16nb51T5/zOt06d+lTd6qrv3Tl+OteN3znTVPNcI7MjgyO5Z+tYTl96X1721Nfk3m1jOdEcyk/mlmXtcc+ZE7ni5NFcPj1dcepoRsdPpySZTMnRweEcHdySo0MjOdYcXvS1Wa+ca1ZVlY75ZHpZafsNuX29tmZX082vZjXFKud+y25fr8xtnlU69tm23sw+Z/bRUU/Hesl8jbgy0+Sw6lhv1j47jsF86y12DOZb78LHYP7btvgxmHvbltKM7EK3rX29C92uObd/Fedtc2oyA1WVZjWZ5lTr50BVpTk1mWZ1bn4qg1NTGaim0qym0pya/llNZaDtcvvyUs1ukfmJnXvzkbH9KVW1qnrbbZs4m9Gzp2aal42Nn87g1OT069zWa4Zjg8M5OjiyrMbJa1GZbpLWqDqaplVpWz7dRK2q0phzXfvyKq22sK11zi2bO98xdtt1jY7xZq/bXu+5/XTUNM/2i92mxWqYtd/FrutcPt/tXaimWTV01j+930Vuby+b202mzJznR4a21PZc1k0lydlFHrNDje43Ruu1b7r4zfM2Rrti+N4Mr8Pbs5gqyUPD23Lv1rE8PLx1+ne41mutI8t4H+J1H/2LXHzG+2JsTGv7XQgAAADqMTS88HXL/MtbAAAAAAAAwIo8oWP+zmVuf1dmN0a7Psk7V1UR68e+Z7ambpiaPN80bXK6cVo1fv7y1NlWM6xqPDn3lZVS5l6eb9msy2k192pua2tU1sispmUDW6abfXW4+3eSO75p8dvx5X+YrPEvcK95izVGu+a7k+Hd/avlXOOnyVOtRmoDQ62f1URr+dRk6/LUmVYjtfYmUue2n9NUquO6zuUTJ843zVto+87LD70n+dTPz38bDrw02XNrWyO5tulcQ7qpM20bdDbrKt1dvtB6ze3JyN5kcDQzzQjbp8HtSZluWNhoW94YaTUXbG/Qd+5naX2dcOZnSqtRYTXV2ufAIn/Qby04fnfy9qsWvv5rl/GU/dYrkpP3z3/d8+5Ixr5kWaXNqKpk8uT57J48Of1YOPfYmGxdN/HYdDPCx5Lx4+fzfvxYqwFcNZFMTZw/N6fOTjfVnGgba7w1dqPZug8nT08/Xkpbprc3tJz+OTSWDO9pbX/2yPS+p5tynnm4NTW3thpiVpPT2zbPjzcw3Npu6szcx965xoztj8v2ZVPj083jYG061mx9SbcuE9PNcI52NMM50RyaaTDQC6cGBvPI8MINWZIkZeEKmoP1fjm2JNmW4TTan9/aX/eeW6ltvlEGsiPDGX34AzMNpkbHT2fH+JkMVFXrefa230mSTFYTee+xd+bDx/+u3zdtQ6hKyWODI3lscCT3bYxePRd0qjmYU83BfKFPDaK2TJzN6PiZNHv8HDs4NTXT0GP07OmZ5m9bJ8bnbXJ3ojmUo4MjefTiU9nzyc/n4ROXzlrnyv0fzi/feOPM/NaJ8Vx+6miuPHEkV548kr1nTnSlMcN4aeTo4EhOLbNB2Xij0dbg7Hwun1jgD12PNwZydHAkp5e5H9auRqN/r1svueyT89cwMJ7RXQ8suN2WrY/lykPv71VZtVrLzfZKVWXbxNk0UuVYl147Pjy8LQ8Pb8sHd53Pyu3jZ9JIlceaw11r0ATr1URjIBNJzvSpRUc3H3MzeZbRro25VrUa8JVMiax1aznN7ea/bnbjtiQ50RzOscGN+Vx2ornw++lvPHRT/vSiC7+OGZmcyL4zJ/LMhz672FsvfXFg+KO5ePgL+eKZ/bOWf9Wlb8/9W3Zmz5mTGZmaqKm6CztbBnJkaCRn5vk/ySrJ4aEtuXvbrtyzbSz3bh3LyUXuP0BjNAAAAOYzuEhjtAX+Ix0AAAAAAADojlLK7iSdHYbuXeYwnetfu/KK2NQaA0kGWk2L1up/F1/ynAuvoylabzUv0MSk20ppNUhq7EgGd7SWDe3qbw1LcelXJ3f951ajqHaNoeSpv9JqDMX6M9CnZkWreVyda0qWPj8214uqajV5a2+YNt/PqkoylRz+UPJXz59/rC//o2T4ounH+bmma0tovjjrusxdt7253XKMH281k2sMtWpvvx0zP6enieOtBnNl4Pyymds+dX7dmSaTU9MN8dp+ThxL7n/bwvXsvrljzOp8A72p05ndOLExu3FiabTWO/6Z1lgH/kkyvLeVnWWw9Vgc2ddq4HjBBqznLmeB6xqtx0xjsK2hY1uj1jRa1zW3JZ3tccpAq4nf+GOt+YGRVnPBieOzj2P75clTycSpuefC9DH6u/GP5PfP/q/l3febxA03/lnu/czNc5bvHF24WctqNdLIzuaujDZ3Z7S5KzsHdmWsuXvWstHm7uwY2JlGGVj+Do7fnbxvgYabQ2eT7edv75N23JK7T30qf/jwm/KJkx9a2Q2CHjnVHMqpNf6F7qc+/w35s7f/SCYmWq/nRrYczc3P/m+5f+vs1+Wf2rl35vKWibOtBmmnT6SxjPaQZ6cblJ1raLZYswJItXCDjkajf00ftm47kv2XfyxfuP+GWcsPXPWBDA6eWWAr6lKVkuOLfe+jS/qxDwBop7ld9zy8bUsmti7t/yHu3LEnd+y5sscVLc0z9v10/vSt/yrHH2v9bnbVte9N9YL35KcGvyKNaipXH3801x97MDcc/WIuP3WsK82sO1VJHh3akvu2juX+LTsX/J3u9EAzR8/9YYHBLTnlu7fQVf6HHwAAgLkGF/nPd39BDAAAAAAAAHqt8xPqJ6uqOrHMMR7smB9dRT2wto3sSR7/Q8k//FzdlWxeDV/yn9fg9uTgtyZ3/ers5Vd+k6Zo69nAli4OtshXtgY0NeuZUloNwZbqkucmY1+SHPnI7OX7nplc9sLu1rYevWmR8/irNlFzr+bW85eHVvnS+9Gp5KFNdOyW4bIDH8ng4KmMj8/O4quued+Kx9w7uD/7h69oNTkbmN3sbLS5O9sHdqys4dlSNbcva/WDWx6X77/ix3PnyY/l7Q+/KXee+liPCoON58BVH8rLXvGDue/umzIwMJ4rDn4oW7cdXXSbU82hfHLnvnxyZ5+KhA6Ngf41RkuS57zwZ/Onb/1XeeiL1yRJ9l/28Tzreb/U1xoAAOiOfr+W7JY9++7JN3/Xq3L4kcszsuWxbN12ZOa6qdLInTv25M4de/L2y67PaIZzfS7KNRlLM6XtDxBUrT/4UBrJPW9eeGe7n5zsvC6ZOpvx8SP5fDmV+4YGc3/jTE5lvPc3thu+8i+S5t5kZO+F14V1RmM0AAAA5lrsr/o0/SoJAAAAAAAAPdb5zfhTKxijc5sdK6xlRillX5LlfqL60Gr3C0vy5J/RGK1OZZGmOJvdzf+p1YDpnt9JUiUHXpo82bm6rvWrMdrg8hrl0EOlJE/9L8m7vyY5Pd17dusVyc2/WG9dsAk1B8/meV/7/+Qdb/+XmZhujnb5gQ/nqbe+JY0s3ryspGS0uSsHRg7lypFrc+XINTkwcihbB2rO2xXm/TVbb8gPXfETeXj8gdxz+s5MVHO/7Hxy6njuO/2Z3HP60/ni2ftTLWHcRjWVlIEkjZllVaZSLWlrWPt27HygV20BAAAgAElEQVQo19/4F3WXwQrMn/NVpjLV91q6riycsQON/jaz2Lb9SL7+W16TY0f3ptGYzPYdj/Z1/wAAdE+jz68lu6mUKrv33HfB9Y7mTP42n8/f5vPTG+b8z3NvbVx98wVG+VRr3ZmvzZ5Zbrn12nZFMnRZ3VVAT/g2OwAAAHM1Bxe+bsCvkgAAAAAAANBjnd+MP72CMTobo3Xj2/7/LMnrujAOdJ/GXKxVA0PJzb+QPOXnk1RJaVxwE9a4xiKfq+mmrjZgY9X2PDX5x/+QPPjXSaOZ7H16MrjqvrPAElw6dGWesO2m7B7cl9Hm7owe2J3mrSfy8XuGcmD3YK7f/6SU8qa6y1y5xiJ/yHaxBppJSinZO7Q/e4f2X3A3pz//R7nv72/PPVvHcnhoS4anJjI6fjpjZ0+3fo6fzo7xMxlIldz628nBb5zZdqqazGOTx3J04tEcmXgkRycO58jEIzk+cSxVDxoSHZl4NB898fddH7cfGmlkZ3NXxpoXZbS5O9sHdqR03I9VqpyeOpVjE4dzdOJwjk0eyempkzVVDP2ztbE9O5tj2dncldGBXRlujMxeoaqS05/PyNkTGdv2uIzuvDGjzd3Tj6ddGWwMzTvu6alT0/n0aI6MPzJz+ejEI9M/W/NTmezDrey+xsD8zSxKGtkxMDpzTHcOjKZZ5v6uUtLIjubo9LHcPXNMtzS25bHJI+eP3UTr2J08+0hy+gvJnmay5ZKknP/uwNaB7TPjnMu5HQNjOfnR1+XoXb+UI0MjOTK4JUcHR3J8cChVSrL/q5JtB1Z3EO78z3MWTZaSx5rDOXbxbTk6eTiPTRzZGE3yANaYHQOt55DR5q7sGBhLs8z9Ttl4NZ5jE4dnnndPTh2voVJgPgMLvJYEWC98mx0AAIC5hhb5oM1iTdMAAAAAAACAXqj6tA0AvVJKLtTchHWim40YFxtLE721Z2gsufxr6q4CNrySkqu3XJebtj8tN25/WvYt0PTryif2ubBe6VOD35HmWK49/kiuPf7IhVdubp012ygDGW3uymhzVw7kUI8qnOvI+CM5MrGEei+gSnJq6kSOTjdqONfY7ejEozkzdWbebQbL4HQDiPONhEabu7JtnkZnSTJQmtON0HamsYLn8LNTZ3Js4nCOTz6Wbvw6f7Y6k6MTh9saRLWaHp2cPLHqsZNksprQ0G0d2dbYke3N0TSy9HOzJNneHJ3VAGuseVF2DoxloAwsfZzSyPaBndk5MLZgY7PVGmlsycjQZbl46LIF15mqpnJ8usHjZLWE5hBVlZy4Jzn7SDJ6QzIwcuFtVuHPB/flyALX/eCB12Zs2/mGXwOlmZ3NXdk+sHNZ98V8djf2Zvfg3lWNkSSjAzsyeupoDpw6OvfKa38uufgrVreDd37vwtc97b1JWvfxicljOTpxJBPV2cXHmziV/OWz5r9uZF/y5X+YJDkzdXomQ49OPpoj460sPT3V+fco+qHKqamTOTZxZNEmfxcN7suVI9fkyk/8aq44eSQjk/Oc789/3zyjJ0cnHs39Zz6b+898Nved/kwOTzy84H6a08+TQ2WxBq+LqKaSk/cmE23Nk4Z2J1v2ZynvnZTpf0sp5y+3XUopHUvaLpW29dqvWWCs8+MtbayZf0v7CB3rzbqubdwyd+kFryvz3JZzl0qZ97r2/c+ppMyz/jzXzRq3LDDWYvdFxzYL3xeN1rXz1HXB++GCdS10P8weKUmmMpWJajwT1Xgmq4npy7N/zl2+0HUTmWy7PFGNZ6qav7HjlsbWHNr6hHzp9i+b9/qlas+z9teGE9V4djbHZl7rjg6cf9072tydnc2xDMzTCO1Czk6dydGJR3Ni8rFV1b0UVVr3T1VNpUo163KVKlPVZNvlqVSZXq+aXntm3am2dapU1VRrrOnL58euZi0/f/nc8qk5l+fse7rGqentWkumZi7PqqOjxql51pl7m8/vq1XL5OwaZ7abezvbb8+5ujaqVT+XrQVHP5qJC/z+uVCTXdaWkpKLhy7LRYMXz2pmvFDD9U67mnv6VCn0n8ZoAAAAzDW4yJt6w/4aLQAAAAAAAPTY8Y75lfwnXec2nWMCAADMqzk1mdHx0xk7ezqjO56QsV1Py86BXSv6UvxyjDZ35/Fbn5gdzbGe7mdT6mh2tvi623pXxzKMDV6UscGL6i6jL4Yaw9kzdEn25JK6S1mW01Oncqyt0dxjk8dSVb3s017lZFuTuyMP/VWODo7k+GKfe06yY2B0TqO7LY2t6Wy+M5XJfOHMvbnn9J154Oz9qdZIz/nBMtTWnGz3TKOSRuY2xWqURnYMjE03NNudnc1dGWqs42YPXdIojexsjmXncp5ftj6+dwV1aC7S6Oqa7YeyfWSNN9lerCHHQH+eUxqlkR3NsaW9hqimkpMLtaLbnmx5XFdr66apaionJ4/n2OThHJ04nGMTh3OmOpOLmntzYOSa7GiOtlZ812sWHmSR2/ekHbfMXD4+eSz3n/5sHhp/IANlIGPNi2YyaGtj+0wzqpXfmPHkgXcmxz6e7P5Hyd7b+tYwFuitocZw9g7tz97M3+Sa9WVu87bOBmtzG8bNadDWNn++udu5y53N3dqbwc1u2DZfk7jFmtu1jz3c2DL9PHZRxgZ3Z1tjx+qfy+r2plb9bzx7asH/BH7J5/93Rpqnky/96WSe93Q+d+buvPfYO1PSSLWBG+GtNRcNXtxqZjtyba4cuSYHRg5lpOE7uzAfjdEAAACYa3CRv8i1dUf/6gAAAAAAAIDNaa02RvulJP99mdscSvK2LuwbADagdf7lO0iS0ScmRz86d/nup/S/lg3iy8demNtGn9vfnR75WPLntyVpJdPw1MT5hHrKS5N9r+xvPXTfwDIaoy1nXTa1kcaWjAxtyb6hS+sp4O6PJ/e+OROlZLy0NQm76KnJV/5ZkmSwMZRmGVz20KenTuW+05/JvafvzOfO3J0zU6eXtX0pjewc2DXTROjczx3N0TSySBOpecYZLiPrv2kDKza03r8FvpzGnMs1OLqy7RZr5LbGNUoj25s7s725M5cOX9nTfW0f2Jnrtt2U63JTb3bQGEwufX5rAmDNKqWkZKDVlNdL0rVl3zOTB9+96CrPf/gf0mxMJhe9ZMF1vm3/P8/41NlMVOPdrrDrHhl/KB8/8YF87MQHctepT2RqkQbD3bR3cH8uGbo8zXmayw2UZnY2d2X0+GRGf/EnM3rkTEaPnM7242dTzvXafvZL0/jh/zSzvubVsHTr/VdiAAAAemGxv5y2dXv/6gAAAAAAAIDN6WjH/NZSyraqqk4sY4x9HfNHVllTqqp6MMmDy9nGF3dhAynNpJqouwrYWK78xuTj/77uKmB1nvAjyXu/fe7y6364/7VsEIONwQxm+U18VmV4TzLleX7NOfAN3RtrOY1petnEBrrp0CuTe9+cZlWl2f67yqHvSQa2rWrokcaWXLv1hly79YZVFgmrMzhw4XVqV1ULX9dc3WMxSXLTv0v+97+au/xJ/2H1YwMArFfX/fAFG6MNlMlUD2+5YE+7wcZQBjPUvdp65PKBbbl85GCed9FLcmryZP7h5IfzsRPvz12nPpGTk4v8N/rpLyaZmv+6kf0zF0uSnc1duXz4qlw+clWuGL46lw0fzJYlNJCvpu5J9XffN/+VE400Vvk7KmxWGqMBAAAw12KN0bZojAYAAAAAAAC9VFXVI6WUw0l2tS0+kOQTyxjmyo75T6+6MGBzu/kXkv/1qrnLH/8D/a8FNopDr5y/Mdr1P9r/WmClDnx98plfTx581/llFz87ufxFtZXECgxsqbuCze2G/yv52E/NXX7tPK+9VmoJX+Jd0bpQp4u/Mjn0Xcldv3p+2eUvTq58WX01QZet+z860I3GaAdfnvzDf5xuaDFt25XJFS9Z/dhzrPPjfc7Wy5OT99ddBQDQS/uf13oPbjFTSfXpXRvlFc4sWwa25kk7bsmTdtxy4ZXf/XXJ/W+b/7qXL9Lkdzmaa7+xHKxHjboLAAAAYA0aXPivTZatO/pYCAAAAAAAAGxanU3Qrlnm9ldfYDyA5bn8RcnQrtnLGoPJwW+upx7YCHZckzzxtbOXjd2YXPdD9dQDK9Hcljzrj5NbfqPVLPPL/mvyrD9KmhptrSuDowtft/vJ/atjs3rc9yc7nzB72TXfnYzd1L19NJfR7Kwx0L39Qi81BpKn/kry3L9JnvxzybPfmTz9d5OBRf5ANNB9izU/60azzW0Hkuf8dXL1K5JdX9pqiPicv05G9q5+7E6X/ePuj1mHm/7d/Ms14QaAjWNguPUe3NDuBVep/qiZfHF7H4tao677F/MvP/TK7u1jyO+h0AvNugsAAABgDRpcpEP9li781SYAAAAAAADgQj6a5Na2+S9L8odL2bCUsi3JjfOMB7ByW/Ynz/6r5O+/P3nk75KxJyY3/kRy0T+quzJY3278t8n+r0oe/J/J9kPJpS9IBv3hQtaZ5pbk6m9L8m11V8JKNbcmF39l8sV3zl4+ckmy58vqqWkz2XJJq7HTfb+fPPapZO8zWo1ZSunePgZGlr7u0EXd2y/0WinJ3ttaE1CPK74+ef8/n7t86+WLN01bjp3XJrf8WnfGSpLrXp188mfmLr/2Vd3bR50u+5pk21XJic+eXzY4mlzl9ToAbCgDI0lzcOHrP99I9lf9q2et2nNbsufW5OE7zi9rbu/ua7/mIt/HBVZMYzQAAACWZ9fFdVcAAAAAAAAAm8GfJvnutvlnLWPbZ2T2Z0Q/WFXVF7tRFKxpo09Mjs7TA3DfM/tfy0a166bkue9OqqmkNOquBuqz43GtxjWdDn7Lysbbe2trAqjTU/5j8s7nJKcfbM03hpOnvcFzfr8M706u+c7ejV8aySXPTR7488XX2/uMZGi0d3UAsPFsvTS55DnJA38xe/lV39bdJp/d9PgfSO5/a3L8rvPLDn1n672ljWBoNHnuXycffm3yyPtat+v6H01Gn1B3ZQAA/dcYSL7iHcnHfip56N3J9muSx39/svsp3dvHoMZo0AsaowEAADDX3suTXfuSww/OXj40nDz1OfXUBAAAAAAAAJvLO5KcSrJlev7LSinXVVX1ySVse3vH/B90szBYs65/TfK33zp3+XWv7n8tG50GKWx2T3h18nffM3f5tf+0/7UAdMvYlyRf/ZHkC+9IJk4k+5+XbL+67qropht/Innk75Lxo/NfP7w3ufkX+lsTABvDM34ved93JZ//46S5Nbnq9uTG/7vuqha27YrkeXck9/xucvzOVlP9y1+8dhu5rcTWy5Jbfq3uKgAA1obB7cmTfqp34zcHezc2bGIaowEAADBHaTRSfc13JP/138++4rkvT9m2s56iAAAAAAAAYBOpqupkKeUtSdq7PL0mySsW266U8rgkL25bNJHkTd2vENagA/8kufd3k8/9YduylyWXvqC+moCN6apvTz73P5LPvf38suteney5tb6aALphZF9y1TyNZtkY9jw1+ar3J/f9fnL2cHLZC5OtB5IH/ixpjLSa4Y3srbtKANajwZ3J09+cTE0kZWB9NBgb2Zc8/vvqrgIAoLequgvYHEopixzqdfDaGNYojdEAAACYV/nOH0+Gt6b6s99KpqaSZ74o5TtfX3dZAAAAAAAAsJn8eJJvTHLuT0zfXkr5g6qq3j7fyqWUkSS/nmSobfEbqqq6q6dVwloxMJw84/eSL/x5cviDye6bk0uenTR8ZBrosnN58/AdyZGPJHtuSXY9eX18+R+AzW3HoeT6H5m97NAr66kFgI3HezAAAAB0SaPuAgAAAFibSikp3/aaNH7zw2m86aNp/NOfTGn6j0oAAAAA6KkX3j7/8i3b+loGALA2VFX1mST/X8fit5RSvq+U0t78LKWUJyT5yyS3ti1+JIm/fsTm0hhMLvvq5In/Orn0+b6QC/ROo5nse2byuO9Ndj9FUzQAAGBFXnHb/L9LjAzOuxgAAGZ8yy2Lvy9dvvVf9qkScsmV8y4uX/MdfS4ENg6N0QAAAAAAAAAA1ojyklfNv/w7fqzPlQAAa8iPJvmTtvnBJL+Q5L5Syp+UUn63lPL3ST6W2U3RziZ5cVVVX+hfqQAAAADAcnzrLWXePss/8nzNlwEAWNwrnz7/a8bXPvSTyeBQ8oyv7XNFm9izXzp32Z5Lkxue1v9aYIPQGA0AAAAAAAAAYI0oj3tS8op/M3vhU5+bvPh76ikIAKhdVVWTSV6a5M0dV+1L8lVJ/kmSpyRp/9T7g0leVFXVX/elSAAAAABgRfaPlfzat89ujvbs65LXaIwGAMAFXL235Ke/YfbrxltP3pEfOvlfUn7yd1N27aupss2nvPLHkud+U9KYbuV06VUpP/vHKQMD9RYG61iz7gIAAAAAAAAAADiv8R2vTfXMr0s+ckdy8AnJl3xZSnOw7rIAgBpVVXU8yTeWUt6S5NVJbllg1UfTaqD2uqqqHupXfQAAAADAyn37rY089/oq7/5UlUP7Sp58IBloaIwGAMCFvfp5jbzgiVXe/ekqh7YczTOGhjJ8/adThobrLm1TKYNDKT/2xlQ/9HPJkYeTy69JKV7Tw2pojAYAAAAAAAAAsMaUa74kueZL6i4DAFhjqqp6S5K3lFKuSvLkJJcm2ZbkgST3JHlPVVVnaywRAAAAAFiBS8dKvvGpGicAALB8119acv2lJcmuJE+ru5xNrezYlezYVXcZsCFojAYAAAAAAAAAAACwjlRV9dkkn627DgAAAAAAAAAA6LZG3QUAAAAAAAAAAAAAAAAAAAAAAAAAaIwGAAAAAAAAAAAAAAAAAAAAAAAA1K5ZdwFsLKWUwSS3JTmQZH+S40k+n+SDVVXdXWNpAAAAAAAAAAAAAAAAAAAAAAAArGEao21ipZTfSfKyjsX3VFV1cAVj7U3y+unxdi+wzh1Jfraqqt9b7vgAAAAAAAAAAAAAAAAAAAAAAABsbI26C6AepZSvzdymaCsd6wVJPprkVVmgKdq0W5O8pZTym6WUbd3YNwAAAAAAAAAAAAAAAAAAAAAAABtDs+4C6L9SyliS/79LYz0ryVuTDLUtrpJ8IMlnkowl+dIke9qu/+YkO0spX1dV1VQ36gAAAAAAAAAAAAAAAAAAAAAAAGB9a9RdALX4mSSXTl9+bKWDlFIuT/L7md0U7T1Jbqiq6uaqql5aVdXzklye5AeSjLet9zVJfmKl+wYAAAAAAAAAAAAAAAAAAAAAAGBj0RhtkymlPCfJd0zPTiT5sVUM9/oku9rm70jynKqqPtG+UlVVZ6qq+vkkL+3Y/l+UUq5cxf4BAAAAAAAAAAAAAAAAAAAAAADYIDRG20RKKduS/Grbop9N8qEVjnVtkm9vW3Q2ye1VVZ1eaJuqqt6a5DfaFg0ned1K9g8AAAAAAAAAAAAAAAAAAAAAAMDGojHa5vLvkhycvvyZJD++irFenmSgbf73q6r69BK2+w8d8y8tpYysog4AAAAAAAAAAAAAAAAAAAAAAAA2AI3RNolSyq1Jvrdt0fdUVXVqFUO+uGP+15eyUVVVn0jyvrZF25I8bxV1AAAAAAAAAAAAAAAAAAAAAAAAsAFojLYJlFKGk/xazt/fv1FV1V+sYrxLktzUtmgiyXuWMcS7OuZfsNJaAAAAAAAAAAAAAAAAAAAAAAAA2Bg0RtscfjzJ46cvP5Tk1asc74kd8x+uqurEMra/o2P+hlXWAwAAAAAAAAAAAAAAAAAAAAAAwDqnMdoGV0p5cpIfblv0g1VVPbLKYa/vmL9zmdvfdYHxAAAAAAAAAAAAAAAAAAAAAAAA2GQ0RtvASinNJL+WpDm96E+rqnpTF4a+pmP+3mVuf0/H/EWllF2rqAcAAAAAAAAAAAAAAAAAAAAAAIB1rnnhVVjHfjTJTdOXTyR5VZfGHeuYf3A5G1dVdbyUcjrJSNvi0SSHV1tYKWVfkr3L3OzQavcLAAAAAAAAAAAAAAAAAAAAAADA6miMtkGVUq5P8m/aFr22qqq7uzT89o75UysY41RmN0bbsfJyZvlnSV7XpbEAAAAAAAAAAAAAAAAAAAAAAADok0bdBdB9pZRGkjckGZ5e9P4kP9/FXXQ2Rju9gjE6m6l1jgkAAAAAAAAAAAAAAAAAAAAAAMAmojHaxvQDSW6ZvjyR5Durqprs4f6qPm0DAAAAAAAAAAAAAAAAAAAAAADABtWsuwC6q5RydZKfaFv0s1VVfajLuzneMb9lBWN0btM55kr9UpL/vsxtDiV5W5f2DwAAAAAAAAAAAAAAAAAAAAAAwApojLaBlFJKkl9NsnV60WeS/HgPdrVmG6NVVfVgkgeXs03rsAEAAAAAAAAAAAAAAAAAAAAAAFCnRt0F0FXfleQr2+a/p6qqUz3Yz9GO+b3L2biUsj1zG6MdWVVFAAAAAAAAAAAAAAAAAAAAAAAArGvNugugq17fdvmPk9xZSjl4gW0u6ZhvzrPN56uqOts2/+mO669cYn0Lrf9oVVWHlzkGAAAAAAAAAAAAAAAAAAAAAAAAG4jGaBvLlrbLX53ksysY47J5tvvSJB9qm/9Ex/XXLHMfV3fMf3yZ2wMAAAAAAAAAAAAAAAAAAAAAALDBNOougHXpox3zN5ZSti5j+9suMB4AAAAAAAAAAAAAAAAAAAAAAACbjMZoLFtVVV9I8uG2Rc0kT1/GEM/qmP+T1dYEAAAAAAAAAAAAAAAAAAAAAADA+qYx2gZSVdVYVVVlOVOSr+gY5p551vvQPLv7g475VyylxlLKdUme1rboRJI/W/KNBAAAAAAAAAAAAAAAAAAAAAAAYEPSGI2V+q0kk23zLymlXLuE7V7TMf+7VVWd7l5ZAAAAAAAAAAAAAAAAAAAAAAAArEcao7EiVVV9OslvtC0aSvLGUsrIQtuUUl6U5Pa2RWeTvL4nBQIAAAAAAAAAAAAAAAAAAAAAALCuaIzGarwuyeG2+VuT/EUp5br2lUopw6WU70/y3zu2/5mqqu7pcY0AAAAAAAAAAAAAAAAAAAAAAACsA826C2D9qqrq/lLKS5K8I8nQ9OLbkny8lPL+JJ9JMprkyUn2dmz+R0le269aAQAAAAAAAAAAAAAAAAAAAAAAWNs0RmNVqqp6VynlxUnemPPNz0qSm6en+fx2ku+qqmqy9xUCAAAAAAAAAAAAAAAAAAAAAACwHjTqLoD1r6qqP07yxCS/nOTwIqu+N8k3VFX18qqqTvSlOAAAAAAAAAAAAAAAAAAAAAAAANaFZt0FUK+qqt6VpHRhnAeTvKqU8gNJbktyZZJLkpxI8rkkH6yq6rOr3Q8AAAAAAAAAAAAAAAAAAAAAAAAbk8ZodFVVVWeT/FXddQAAAAAAAAAAAAAAAAAAAAAAALC+NOouAAAAAAAAAAAAAAAAAAAAAAAAAEBjNAAAAAAAAAAAAAAAAAAAAAAAAKB2GqMBAAAAAAAAAAAAAAAAAAAAAAAAtdMYDQAAAAAAAAAAAAAAAAAAAAAAAKidxmgAAAAAAAAAAAAAAAAAAAAAAABA7TRGAwAAAAAAAAAAAAAAAAAAAAAAAGqnMRoAAAAAAAAAAAAAAAAAAAAAAABQO43RAAAAAAAAAAAAAAAAAAAAAAAAgNppjAYAAAAAAAAAAAAAAAAAAAAAAADUrll3AbAGDLXP3HnnnXXVAQAAAAAAAACwKvN87mFovvUAoI98Rg8AAAAAAAAAWPd8Pq9/SlVVddcAtSqlfG2St9VdBwAAAAAAAABAD7yoqqq3110EAJuXz+gBAAAAAAAAABuUz+f1SKPuAgAAAAAAAAAAAAAAAAAAAAAAAAA0RgMAAAAAAAAAAAAAAAAAAAAAAABqV6qqqrsGqFUpZTTJl7ctui/J2VUMeSjJ29rmX5TkrlWMB7BccghYC2QRUDc5BNRNDgF1k0PAWiCLgLpt1hwaSnJF2/z/rKrqaF3FAIDP6AEbkBwC6iaHgLrJIaBucghYC2QRUDc5BNRts+aQz+f1SbPuAqBu0+Hy9m6NV0rpXHRXVVUf69b4ABcih4C1QBYBdZNDQN3kEFA3OQSsBbIIqNsmz6EP1l0AAJzjM3rARiOHgLrJIaBucgiomxwC1gJZBNRNDgF12+Q55PN5fdCouwAAAAAAAAAAAAAAAAAAAAAAAAAAjdEAAAAAAAAAAAAAAAAAAAAAAACA2mmMBgAAAAAAAAAAAAAAAAAAAAAAANROYzQAAAAAAAAAAAAAAAAAAAAAAACgdhqjAQAAAAAAAAAAAAAAAAAAAAAAALXTGA0AAAAAAAAAAAAAAAAAAAAAAAConcZoAAAAAAAAAAAAAAAAAAAAAAAAQO00RgMAAAAAAAAAAAAAAAAAAAAAAABqpzEaAAAAAAAAAAAAAAAAAAAAAAAAUDuN0QAAAAAAAAAAAAAAAAAAAAAAAIDaaYwGAAAAAAAAAAAAAAAAAAAAAAAA1K5ZdwGwAT2U5PUd8wD9JIeAtUAWAXWTQ0Dd5BBQNzkErAWyCKibHAKAjclzPFA3OQTUTQ4BdZNDQN3kELAWyCKgbnIIqJscoqdKVVV11wAAAAAAAAAAAAAAAAAAAAAAAABsco26CwAAAAAAAAAAAAAAAAAAAAAAAADQGA0AAAAAAAAAAAAAAAAAAAAAAAConcZoAAAAAAAAAAAAAAAAAAAAAAAAQO00RgMAAAAAAAAAAAAAAAAAAAAAAABqpzEaAAAAAAAAAAAAAAAAAAAAAAAAUDuN0QAAAAAAAAAAAAAAAAAAAAAAAIDaaYwGAAAAAAAAAAAAAAAAAAAAAAAA1E5jNAAAAAAAAAAAAAAAAAAAAAAAAKB2GqMBAAAAAAAAAAAAAAAAAAAAAAAAtdMYDQAAAAAAAAAAAAAAAAAAAAAAAKidxmgAAAAAAAAAAAAAAAAAAAAAAABA7TRGAwAAAAAAAAAAAAAAAAAAAAAAAGrXrLsA5iqlDCS5Jsn1SS5NMprkTHZQCE0AACAASURBVJLDSe5K8vdVVZ3o8j4Hk9yW5ECS/UmOJ/l8kg9WVXV3N/fVL6WUG5I8KcneJMNJHkhyf5L3VFV1us7a+qmUsivJDUmuTbI7yUiSI0keSvL+qqruqrG8OUopV6V1v12aZHuSLyS5J8kdVVWN11nbZiKHukMOtcghVkoWdYcsapFFC+7H+bEIOdQdzrOW9ZZDrA1yqDvkUIscmq2UckVax+LyJHuSbElyNsnRJPemdUweqq/CtUEOdYccapFDrJQs6g5Z1CKLWAk51B1yqEUOzc/5AdTBc3x3yPCW9fYc77Mxa4Mc6g451CKHWAk51B1yqEUOLbgf58ci5FB3OM9a1lsOsTbIoe6QQy1yaDafz1s6WdQdsqhFFrEScqg75FCLHGIl5FB3yKEWOTS/dX1+VFVlWgNTWoH5g0n+KK1f7qtFpokkf5LkhV3Y794kv5TkkUX2954kX7/K/Vyd5GVJfjrJu5Ic69jH3V06jjuS/Oskn1vk9hxL8t+SHKrx/u7Z8UgymOT5Sf5Tko9e4Fyqpo/Vv01ySc2PgW9IcscidT4yfa7uWcHYFzoGF5oO1nls+ngfyKHuHEc5JIfaxzzYhQxqn26v8xj16X6QRd05jrJIFq3786PG+0AOdec4rovzTA7Vdn5sS/L0JD+U5LeSfCrJVMe+bq/rONQ9ySE5JId6djyuTfJTSf4qrf/UuNDxqJJ8IMn3Jhmu65jUdD/Ioe4cRzkkh+YbfynZs9h0sK5jU8N9IYu6cxxlkSxqH/dgF3Kofbq9rmPUp/tBDnXnOMohObTuzw+TybSxJs/xmyvDPcfPW7fP6NU8ySE5JId8Rq/uSQ7JITnk83l1T3JIDm3mHOrj+eHzeYsfHznUneMoh+RQ59g+n7e84yWLunMcZZEsmm/8peTPYtPBuo5Nn+8HOdSd4yiH5FD7uAe7kEHt0+11HaM+3Q9yqDvHUQ7JoXV/flzwdtRdgKlKkjet4gntD5NcvML9viDJF5exr99Msm0Z4z8ryTsu8KTQtQdmkqel1YVzqbfnRJJX9fF+7vnxmD4Gj67wXDqc5FtqOP+3J/ntZdT5QJLnL3MfK318nZsO9vu41HA/yCE5JId6kEPp/i+yL+v38enzfSGLZJEs6kEWrafzo+5JDsmhzZhD/Tw/0nrj+CNpvSF9oX3d3q9jsJYmOSSH5FDvzo8k37mKx9c/JHlav45JnZMckkNyqLfnxyoeX+emg/06LnVOskgWyaKeHY+DXcih9mnDvl8dOSSH5NCmPz9MJtPGnDzHb44M9xy/YM0+o7cGJjkkh+SQz+jVPUUOySE55PN5NU9ySA5txhzq5/kRn89byjGSQ3JIDvXo/IjP5y3nWMkiWSSLenh+rOLxdW462K/jUtckh+SQHOrZ8TjYhQxqn7xXLYeW8hiUQ3JoXZ4fy5maYS143ALLP5fk02mFazOtrn83JWm0rfOPk7y7lPLlVVU9sNQdllKeleStSYbaFldpdVn/TJKxJF+aZE/b9d+cZGcp5euqqppawm6elOR5S61pNUopz0mrG+hwx1X3JPlwWg/Cy9N68A5OX7c1yS+VUhpVVf1iH8rsx/HYm2TXPMvPpvXm9gNpdUy9KMnN0z/PGUvy30op+6qq+tke15kkKaUMJHlzkq/uuOqhJB+crvVQWudimb7u4iRvK6U8p6qqv+lHnZuEHFolOTRDDvXOybQ6Wm9ksmiVZNEMWTT/ftbD+VE3ObRK6+Q8k0Oz9e38SPLyJKN92td6JYdWSQ7NkEMXVqX1Jv+daf3Hwsm0/mLuVUluyPnzI2k9Nv+ylPLCqqr+Z78L7TM5tEpyaIYcYjVk0SrJohmyqHc2+vvVcmiV5NAMOTSPdXJ+ABuT5/hVWicZ7jm+wzr7bMxGJ4dWSQ7NkEO94z0PObQoOTRDDs2/n/VwftRNDq3SOjnP5NBsPp+3tsihVZJDM+TQhfl83sJk0SrJohmyiJWSQ6skh2bIod7xXrUcWpQcmiGH5rFOzo+lq7szm6lKkr/P+S56H0jyfUkOLbDuZUl+JXO77/11krLE/V2euV0P/ybJEzrWG07yz9N60Lev+1NL3M8PzlNnleR0Wm9odKVjYVrdUzu7It6Z5LnzrLsryS90rDs537o9uJ97fjzSeiI/N8ZjSd6Q5NlJtsyzbkny4rTCq7Omnh+P6Rp+umO/Z6fP/6GO9a5PckfHug8n2b/E/bRv997pc2Y5U7Mfx6POKXJIDsmhnuRQWr94XShjFpr+pmN/b+zHMalziiySRbKoZ6+J1sv5Ufckh+TQZsyhfp0f0/s6ssC+7p/nutt7fdvX4iSH5JAc6un58cokn0zrtdcLk+xaZN2xJP8irf8Aad//55KM9vqY1DnJITkkh3r+eqh9LO9VL3ycZJEskkW9OR7er176sZJDckgObfLzw2QybczJc/zmyHDP8fPW6zN6a2SKHJJDcqgnORTveSznvpBDckgO9ej10Ho5P+qe5JAc2ow51K/zY3pfPp934WMkh+SQHOrd+eHzeUs/VrJIFsmi3r4mah/Le9XzHyM5JIfkUG+Oh/eql36s5JAckkOb/PxY1m2quwBTlST/K61uezcvY5t/Ns8J/41L3PYNHdu9J8nIIut/3TwPrCuXsJ8fnA79Dyb51STfneTJaXUMfFYXH5i/3THWp5Psu8A2/7Jjm48lGejx/dzz4zEd3F9M8uok25a4zUVJPt6x/09kiS8EVnE8rs7cFwUvWmT9LZn7H42/vMR9tW/zrl7ervU6ySE5JId6m0MrqO2yJBMd+3pGL4/HWphkkSySRb3LovVyftQ9ySE5tElzqC/nx/S+jqT1lxb+R5LXTx+ni6eve1fHvm7v5e1eq5MckkNyqKfnx+AKtnlSkuMdNbyml8ej7kkOySE51PPXQ+1jvauXt2s9T7JIFsmi3mbRCmrbdO9XyyE5JIecHyaTaWNOnuM3R4Z7jp+zX5/RW0OTHJJDcqi3ObSC2rznsbRt5ND5/cih8/uQQ+v0/Kh7kkNyaJPmkM/nraFJDskhOeTzeWthkkWySBb5jF7dkxySQ3LI5/PqnuSQHJJDzo9l3aa6CzBVSXJwhdu9pePk+h9L2ObajifGM0muXcJ2b+zY168tYZtdCz0hdDGork6r42D7WE9f4rbv7NjuO3p8P/fjeOxdamB3bHfTPMfxH/X4ePxGx/5+fQnbPG76nD23zXiSq5ewXft+3tXL27VeJzkkh+RQb3NoBbX9647aPtXLY7FWJlkki2RRb7JoPZ0fdU9ySA5t0hzq+fFoG2/Bv6AbH7w6dxwOrnA7OSSHOseRQ92r79921PDeftfQ59t7cIXbySE51DmOHJp/vPax3tXL27WeJ1kki2RRb47HKmrbdO9XyyE5JIecHyaTaWNOnuM3R4Z7jp+zT5/RW0OTHJJDcqi3ObSC2rznsfTt5JAc6hxHDq3T86PuSQ7JoU2aQz6ft4YmOSSH5FBvjscq69tUn8+bvs0HV7idLJJFnePIovnHax/rXb28Xet1kkNySA715nisojbvVS99OzkkhzrHkUPr9PxYztQItauq6u4VbvqLHfNfsYRtXp5koG3+96uq+vQStvsPHfMvLaWMLLZBVVWHq6o6vYSxV+OFyazz+L1VVf3NErf9fzvmX9GdkubXj+NRVdVDVVWdWMF2/ztJ53Fbyvm0IqWULUm+oWNx5zk2R1VVn0ry1rZFzbTOaVZJDq2KHJq9Dzm0SqWUkrnnwhu6uY+1ShatiiyavQ9ZNNu6OT/qJodWZd2cZ3Jozj77cX6c29cX+rGf9UwOrYocmr0POdQ9f9wxf00tVfSJHFoVOTR7H3KIFZNFqyKLZu9DFq3SZn2/Wg6tihyavQ85NNu6OT+Ajclz/Kqsmwz3HH/eWv5szGYlh1ZFDs3ehxxaJe95LJsckkOd+5BDs62b86NucmhV1s15Jofm7NPn89YQObQqcmj2PuRQ92yqz+clsmiVZNHsfcgiVkQOrYocmr0PObRK3qteNjkkhzr3IYdmWzfnx3JojLa+fbBjfkspZewC27y4Y/7Xl7Kjqqo+keR9bYu2JXneUrbtsWd2zL9jGdv+ZZKzbfO3llL2r76kdavzfLq0h/t6fpKtbfN/+3/au/dgafK6vuOfHyD3y6oIiAhLUAmKGhAT8RI3BiyIJcgl3pVVvF8qmphKoaRCNGIuXquSUqIoipdIEBQFgRBdMBqvtQgoElFBUZY74i677C788secfc6cnjNzpmd6unu6X6+q80f3M9PT5zzf5z3n+Z2uPrXWP9nyuc2ZfXw3p8SOdEiHuqRDC5+Z5AFL2zdn8RvrWE+LtKhLU2yR+Tg8HTJnXeqzQ0yHDulQl3TorHc2tu8yyFmMnw7pUJd0iF1pkRZ1SYsWrFe3o0M61KUpdsh8AMfKe7yGd2mKP4/m8HRIh7qkQwvWPNrRIR3q0hQ7ZD4OT4fMWZemuPbK4emQDnVJh85yfd72tEiLuqRF7EKHdKhLOrRgrbodHdKhLk2xQ5OcDzdGO243n7PvtuseXEq5V5JPbDz/N1u83lWN7Ue3eO6h3Kex/Zptn1hrfV+S1y/tulXG8TkNpTlPa2epA49qbF/V4rm/kbPn+pBSyj33PiN2pUM61CUdWnhyY/uFtdZrOjz+FGmRFnVpii0yH4enQ+asS312iOnQIR3qkg6ddb/G9t8Mchbjp0M61CUdYldapEVd0qIF69Xt6JAOdWmKHTIfwLHyHq/hXZriz6M5PB3SoS7p0II1j3Z0SIe6NMUOmY/D0yFz1qUprr1yeDqkQ13SobNcn7c9LdKiLmkRu9AhHeqSDi1Yq25Hh3SoS1Ps0CTnw43RjttHNbZvTvL2DY9/cGP7VbXW61q83m81tj+uxXMP5UMa2+9u+fzm4z9+j3M5ds15evMBX6s5i/932yeezOyrG7vHMItzpUM61KXZd6iUcrckT2jsfmYXx544LdKiLk2xRebj8HTInHWpzw4xHTqkQ13SobO+vLH964OcxfjpkA51SYfYlRZpUZdm3yLr1TvRIR3q0hQ7ZD6AY+U9XsO7NMWfR3N4OqRDXZp9h6x57ESHdKhLU+yQ+Tg8HTJnXZri2iuHp0M61CUdOsv1edvTIi3qkhaxCx3SoS7NvkPWqneiQzrUpSl2aJLz4cZox+2Jje3fr7V+YMPjP7ax/fpzH7Xen11wvCHc2Ni+XcvnNx8/hs+pd6WUuyZ5ZGP37x7wJR/U2O5zFu9bSvmJUsoflVLeVUq5sZTylpPtny6lfE0ppRl81tMhHerEzDq0yRclucPS9puT/GpHx54yLdKiTky4Rebj8HTInHVigA4xHTqkQ53QobNKKd+Y5EuXdt2c5AcHOp2x0yEd6sTMOmStuntapEWdmFmLNrFe3Z4O6VAnJtwh8wEcK+/xGt6JCf88+jzWPbqlQzrUiZl1aBNrHu3pkA51YsIdMh+Hp0PmrBMTXnvl8HRIhzqhQ2e5Pq81LdKiTsysRdaqu6VDOtSJmXVoE2vV7emQDnViwh2a5Hy4MdqRKqXcOcmTG7uff8HTmncs/MuWL/vGxvaHllI+uOUxuvaOxvaHt3x+8/EP3ONcjtnXJrnj0vbf5kB31z/5T2LzP4ptZ7H5+I9u8dz7J7kyiwhfluSDktzjZPtLkjwjyV+WUn7g5N8Za+jQJTrUjTl1aJPmv6mfrLXe3NGxJ0mLLtGibky1RebjgHToEnPWjd46xHTo0CU61I1Zd6iUcqdSygNLKU8qpbw8yX9tPOQptdZXDXFuY6ZDl+hQN+bUIWvVHdKiS7SoG3Nq0SbWq1vQoUt0qBtT7ZD5AI6O9/hLNLwbU/159Hmse3REhy7RoW7MqUObWPNoQYcu0aFuTLVD5uOAdOgSc9aNqa69ckA6dIkOdWPWHXJ93u606BIt6sacWmStuiM6dIkOdWNOHdrEWnULOnSJDnVjqh2a5Hy4Mdrx+p4k91rafneSH7vgOZc1tt/a5gVrrdcmuaGx+25tjnEAr21sf8q2Tyyl3DfJvRu7h/58eldKuTzJv23s/qFaa/NukF1pzuF7a63XtTxGc3a7/nu7U5JvSfIHpZSP6/jYU6JDCzq0Jx1aKKV8fJKHNXY/c9/jzoAWLWjRnibeIvNxWDq0YM72NECHmA4dWtChPc2tQ6WUy0opdfkjybVJ/iTJs5L846WHX5vka2qt3zvAqR4DHVrQoT3NrUNbsla9PS1a0KI9adGC9eqd6NCCDu1p4h0yH8Ax8h6/oOF7mvjPo3dl3WM7OrSgQ3vSoQVrHjvRoQUd2tPEO2Q+DkuHFszZnia+9sph6dCCDu1pbh1yfV7ntGhBi/Y0txZtyVr1dnRoQYf2pEML1qp3okMLOrSniXdokvPhxmhHqJTyuCTf1Nj9HbXWd17w1Obdiq/f4eWbz7nLDsfo0ssb208opdzx3Eeu+vJz9g39+fSqlHLbJD+fs5/3G5L85wO+7FBzeHOSq5I8Ncljkjw0i9/a9JAkj03yvVn9ZuZjkryslHK/Hc5x0nToDB3aw8w6dJHmnapfXmt9fQfHnSwtOkOL9jCDFpmPA9GhM8zZHgbqEBOgQ2fo0B50aK23JPmOJPevtf7o0CczRjp0hg7tYWYdslbdMS06Q4v2MLMWXcR6dQs6dIYO7WEGHTIfwFHxHn+Ghu9hBj+PXmbdo0M6dIYO7WFmHbqINY8WdOgMHdrDDDpkPg5Eh84wZ3uYwdorB6JDZ+jQHnRoLdfnbUGLztCiPcysRdaqO6RDZ+jQHmbWoYtYq25Bh87QoT3MoEOTnA83RjsypZRPTPJTjd0vTfLDWzy9Ge7m3Sm30Qx385h9e2EWd/O8xWVJnnbRk0opH5nk2875o1uXUu7QzakdhR9L8g+Xtt+f5Ek7/DakNoaYw6cm+Yha6z+ptX53rfWXa61X11pfX2t9Za31BbXWf53kfkn+Y5K69Nx7JXleKaXscJ6TpEMrdGg/c+nQRiffSH9pY7e7e2+gRSu0aD9Tb5H5OAAdWmHO9jNEhzhyOrRCh/ajQ+e7Z5KvS/L1pZS7Dn0yY6NDK3RoP3PpkLXqjmnRCi3az1xatJH16nZ0aIUO7WfqHTIfwNHwHr9Cw/cz9Z9H38K6R4d0aIUO7WcuHdrImkc7OrRCh/Yz9Q6ZjwPQoRXmbD9TX3vlAHRohQ7tR4fO5/q8C2jRCi3az1xaZK26Qzq0Qof2M5cObWStuh0dWqFD+5l6hyY5H26MdkRKKffNYhCXY/nGJF9aa63nP2ujvp5zMLXWv0vyQ43d31ZK+RfrnlNKuU+SFye527rDdnR6o1ZK+a4kX9bY/ZRa6yt6PpWDz+HJf16bd+8+73E31FqfkuSbG3/00CRf1OY1p0qHVunQ7ubUoS08NsmHLm3/bZLndvwak6FFq7Rod3Nokfnong6tMme7G1GHOCI6tEqHdjfjDr0nyf2XPh6QxRrQ45P8QJK3nTzuI5N8Z5JXl1I+eYDzHCUdWqVDu5tTh6xVd0uLVmnR7ubUoi1Yr96SDq3Sod3NoUPmAzgW3uNXafjuRvQe7xq9I6JDq3Rod3Pq0BaseWxJh1bp0O7m0CHz0T0dWmXOdjeiDnFEdGiVDu1uxh1yfd6etGiVFu1uTi2yVt0dHVqlQ7ubU4e2YK16Szq0Sod2N4cOTXU+bjP0CbCdUso9kvyvJB+xtPuaJI+stb7t/GetuLaxvcud+ZrPaR5zCE9P8uic3pmxJPnBUsoTs7g76iuzuBPnvU8e9/U5ffN7U5L7LB3rhlrryp0+SymXb3sytdY3tDr7AZRSviWLu14v+/5a63/Z8vmXb/ta53w9Rj+Htdb/Vkr57CSPWdr9DUl+tsvXOTY6tJEOtaRDK57c2P7ZWmvzLtJEiy6gRS3NrEUHn4+50KGNdKilgTvEkdKhjXSopTl3qNb6gSRvOOePrk7y/FLKU5P8pyTfdLL/vkleVkr5tFrra/o5y3HSoY10qKU5d2gb1qrX06KNtKglLVphvXoLOrSRDrU0sw5ZqwZGzXv8Rt7jW5rZz6Nbs+5xPh3aSIda0qEV1jy2oEMb6VBLM+uQNY+O6NBGOtTSzNZe6YgObaRDLc25Q67P248WbaRFLc25RduwVn0+HdpIh1rSoRXWqregQxvpUEsz69Dk1qrdGO0IlFI+JMnLknzM0u63J3lErfVPWxxqkuGutd5YSnl8khcl+YSlP/r0k4913pHFNw4vWdr37jWP/YsWp1RaPLZ3pZSvTvL9jd0/XGv9Vy0Os8/X41jm8Hty9j+yn1JKuazWum5GJk2HNtOhdnTorFLKRyZ5ZGP3M3c93pRp0WZa1M7cWtTTfEyeDm2mQ+2MoEMcIR3aTIfa0aHNaq3vTfLNpZSbknzrye67JvmpUson7fgbho6eDm2mQ+3o0NasVTdo0WZa1I4WnWW9ejs6tJkOtTO3DlmrBsbMe/xm3uPbGcF7/LHMoXWPJTq0mQ61o0NnWfPYjg5tpkPtzK1D1jy6oUOb6VA7I+gQR0iHNtOhdnRoM9fnradFm2lRO1q0NWvVS3RoMx1qR4fOsla9HR3aTIfamVuHprhWfauhT4DNSil3S/LSJB+/tPtdWdzJ8o9aHu5vG9sf1vJc7pzVcI9ikGutf53kU5M8I8lNWzzl15M8LMl1jf3XdHxqo1JK+bIkP5KzMf2JJN/Y42k05/COpZQ7tTzGPRrbh5jD383i39otbp3kYw/wOqOnQ9vRoe3o0LmuzNnvyf6w1voHexxvkrRoO1q0nbm2yHzsR4e2Y862M5IOcWR0aDs6tB0dauU7kvzN0vZDkjxioHMZlA5tR4e2o0OtWKteokXb0aLtaNG5roz16o10aDs6tJ25dsh8AGPkPX47Gr6dkbzHj+3amHWse5zQoe3o0HZ06FxXxprHRjq0HR3azlw7ZD72o0PbMWfbGUmHODI6tB0d2o4OteL6vCVatB0t2o4WtWKt+oQObUeHtqND57oy1qo30qHt6NB25tqhqc2HG6ONWCnlLklenOSTlna/J8mjaq2v3OGQzbtf3q/l85uPf2et9V3nPnIAtdbraq1fl+SBWSyI/HqSNyW5PsnfJXltkp/M4i6q/7TW+oYkD2oc5vd7O+GelVK+MItIL/+7/5kkX9XnHfRrre/I2f8gJsl9Wx6mOYtt7uy6lVrrB5L8ZWN3q292pkCH2tGhzXRoVSmlJPmKxm53927Qona0aLO5t8h87EaH2jFnm42lQxwXHWpHhzbToXZqrdcn+cXG7kcNcS5D0qF2dGgzHWrHWvUpLWpHizbTolXWqy+mQ+3o0GZz75D5AMbEe3w7Gr7ZWN7jx3RtzCbWPRZ0qB0d2kyHVlnzuJgOtaNDm829Q+ZjNzrUjjnbbCwd4rjoUDs6tJkOteP6vFNa1I4WbaZF7VirXtChdnRoMx1aZa36YjrUjg5tNvcOTWk+bjP0CXC+k99G86Ikn7K0+9okj661/u6Oh31tY/ujWj7/7zW2/3jH8zioWutfJHn6ycdFHt7Y/p01xyzn7T8WpZQnJHl2FnepvsX/TPKkk/+wtdLB1+O1Wdxh8hYfldX53KQ5i22e28b1je3mHV0nTYd2p0OrdGitz0py/6Xt92XxTTUntGh3WrRKi04dYj6mSod2p0OrRtghjoAO7U6HVunQzl7X2G77b+ao6dDudGiVDu1s1mvViRbtQ4tWadFa1qs30KHd6dAqHTplrRoYmvf43XmPXzXC9/ixXBtzkVmve+jQ7nRolQ6tZc1jAx3anQ6t0qFT1jy2p0O706FVI+wQR0CHdqdDq3RoZ7O+Pi/Ron1o0Sot2pm1ah3aiQ6t0qG1rFVvoEO706FVOnRqCmvVt7r4IfStlHKHJL+S5NOXdr83yefUWn9rj0O/prH9CaWUO7Z4/qddcLyjcnJX1c9q7H75EOdySKWUxyT5uZy9EeIvJvniWuv7hzmrldlpBnKtk29qPuGC43Xl7o3ttx/odUZHh/qhQzqU5Csb28+rtb5zx2NNjhb1Q4u06ILXmcV8rKND/ZjLnI20Q4ycDvVDh3RoCzc1tm83yFkMQIf6oUM6tIXZrlUnWtQXLdKiWK9eS4f6oUM6tMlc5gPol/f4fsyl4SN9jx/9z6NPzHbdQ4f6oUM6FGsea+lQP3RIhy54nVnMxzo61I+5zNlIO8TI6VA/dEiHtjDb6/MSLeqLFmnRFqxV69BB6ZAOxVr1WjrUDx3SoU3GPB9ujDYypZTbJ3lBkiuWdt+Q5DG11lfsc+xa65uTvGpp121y9s3hIlc0tn91n/MZgc9KcvnS9strrX860LkcRCnln2Vx58oPWtr9wiRfUGu9eZizSpK8uLF9RYvnfkbOvgldXWt9y95n1FBKuXtW7+L6N12/zhjpUK90aDiDd6iUclmSxzd2P7PtcaZKi3qlRcMZvEVbmPx8rKNDvZr8nI24Q4yYDvVKh7jIfRrbh/i+a3R0qFc6xFpzXqtOtKhnWjRj1qvX06Fe6RCbTH4+gH55j+/V5Bs+4vf40f88es7rHjrUKx0azuAdsuaxng71SoeGM3iHtjD5+VhHh3o1+TkbcYcYMR3qlQ5xkVlen5doUc+0iLWsVetQT3RoxqxVr6dDvdIhNhntfLgx2oiUUm6b5HlJHrG0+31JPq/W+r87epnnN7a/Ystz+/tJ/tHSruuSvLSjcxrKv2lsP2OQsziQUsojk/xCktsu7X5pkifUWm8c5qwueUmS65e2H34yY9u4srHdnOmufGHONvItSV57oNcaDR3qnQ4NZwwd+pIkt1/afkOSX9vxWJOiRb3TouGMoUUXmfR8rKNDvZv0nI28Q4yUDvVOh7jIZze2R7G4f0g61DsdYpNZrlUnWjQALZo369Xn0KHe6RCbTHo+gH55j+/dpBs+8vf4Y/h59CzXPXSodzo0nDF0yJrHOXSoxYhGTgAADKBJREFUdzo0nDF06CKTno91dKh3k56zkXeIkdKh3ukQF5nd9XmJFg1Ai9jEWvUpHTocHZo3a9Xn0KHe6RCbjHY+3BhtJEopt0nynCSPXtp9U5In1lpf0uFL/UyS9y9tP76U8tFbPK85xM+ptd7Q3Wn1q5TypCSPXNr1yizu/DgJpZTPTPJLOfsN0q9l8U3A+4Y5q1O11vcmeW5jd3PGVpRSPibJ45Z23ZzkZzs8tVte555JntrY/cu11tr1a42JDvVLh4Y1kg59ZWP7x6femW1oUb+0aFgjadGm15n0fKyjQ/2a+pyNvUOMkw71S4e4SCnlc5I8rLH7l4Y4l77oUL90iE3muladaFHftIhYr16hQ/3SITaZ+nwA/fIe36+pN3zs7/FH8PPoWa576FC/dGhYI+mQNY8GHeqXDg1rJB3a9DqTno91dKhfU5+zsXeIcdKhfukQF5nj9XmJFvVNi9jEWrUO9UGHiLXqFTrULx1ik7HPhxujjUAp5dZZBPWxS7tvTvIFtdZf6fK1aq1/muQnl3bdNsmzSim3X/OUlFIem7O/8ebGJP++y/Pa18kb37aPfXySH13adXOSr6y13tz5iQ2glPLwJL+S5A5Lu1+R5HNrrdef/6xBPC2Lb05ucWUp5THrHnwyoz+Rs3fofGat9c82POeBpZTPbXNSpZR7ZfH1u+fS7huTfE+b4xwbHdqfDp3SoYuVUv5Bkocu7fpAkme1Pc7UaNH+tOiUFp37XPNxAR3anzk7dUQdYkR0aH86dEqHTpVSHlZKedzFj1x53icneXZj9ytqra/u5szGR4f2p0OndOiUtep2tGh/WnRKiy5mvXqVDu1Ph07p0CrzAQzFe/z+NPzUEb3HPy2u0RsNHdqfDp3SoYtZ81ilQ/vToVM6dO5zzccFdGh/5uzUEXWIEdGh/enQKR065fq8drRof1p0SotOWaveng7tT4dO6dDFrFWv0qH96dApHVo1tfnY+pPhoH48yec39n17kqtLKZe3PNY1W9xp8t9l8RtsPvhk+1OTvKyU8lW11j+55UGllNsl+Zok39d4/vfVWt+4zcmUUu6T8+fsXo3t22z4XK+ttb79gpd6dSnlhUl+Icnv1Fo/cM65PDjJU5J8ceOPvr3WevUFx+/Eob8epZSHJPnVJHde2v26JN+Y5B6llDane0Ot9Zo2T2ij1vrnpZQfSvJtS7ufW0r5l0n+e631xlt2llIelOTHspjVW7wjF38D8eFJXlBKeXWSn07y/JNvXlaUUu6S5ElZ3Nn7no0//g+11j/f4tM6ZjqkQzq00HWH1nlyY/sltda/2vFYU6JFWqRFC4dq0VHMx8B0SIdm16Gkv/kopdw5yd3X/HFzQfnuG17rTWNaXOuYDumQDp3V1XzcJ8nzSimvyeIHaL+Y5HW1nv9blkopH5vka5N8Q+O8bjjZN2U6pEM6dFZX82Gtuh0t0iItOqvr+WiyXr1Kh3RIh86a5XwAk+Q9fiYN9x5/yjV6o6NDOqRDC67RG44O6ZAOLbg+bzg6pEOz61Di+ryR0SEd0qGzXJ83DC3SIi06yzV6/dMhHdKhs1yf1z8d0iEdOmuW87G1WquPgT+S1A4/rtjyNa9I8r7Gcz+Q5PeS/HySFyd56znH/+Ukt27xub2hg8/pWVu8ztuXHv93SX4ri3+kP5PkpRvO47t6/rs+6Ncji99o1NUsXdXD1+PWSV50zmu/JYs3oOck+f2T2Vz+8/cl+Ywt57x57Hcn+T9ZLLA9O8nzT17jpjVfh2cM3YieZlOHdEiHDtChNa95uywulFg+3hOGbMBYPjqcHS3Soqd1OEtX9fD16KVFxzIfQ350ODc6NPI5O/TXI8fXob7m48qOviaXD92LA/5d6JAO6dBhvh6fd87j33MyHy/I4gKI5yR5WZJr1hz/vUkeMXQnevi70CEd0qHDfD2uOOfx1qrXf720SIu06IDz0XhN69Xnf110SId0yHz48OFjgh8dNtl7/MgbfuivR47vPd41eiP56HBudEiHntbhLF3Vw9fDNXoj+ehwbnRIh57W4Sxd1cPXw/V5I/nocG50aORzduivR46vQ33Nx5UdfU0uH7oXB/y70CEd0qHDfD1cn9fu70OLtEiLDvP1uOKcx1urPv9rpUM6pEMHnI/Ga1qrPv/rokM6pEPmY+uP8+4kxwzUWq8qpTwuybOSfNjJ7pLkYScf5/m5JF9da33/4c9wL3dO8vALHvOuJN9Qa/0fPZwPa9Ra319K+fwsfrPSFyz90T2SPGrN096a5Em11t/Y8WXvluTTtnjcdUm+tdb6ozu+DhfQIR0ag4E69LgkH7K0/bYsFvoZgBZp0RgM1CLzMRI6ZM5gaDqkQzN2l1w8H7f47SRfW2t91QHPZ7Z0SIdmzFr1iGiRFs2Y9eqR0CEdmjHzAUya93gNHwPX6M2bDunQGLhGb950SIfGwPV586ZD5gyGpkM6NGOuzxsRLdKiGbNWPRI6pEMzZq16JHRIh2bs6OfjVkOfAMOptb4oyYOT/EgWg7rObyd5Yq31i2ut1/Vycu39YJKrs7gr5yZ/leQ7kzxgrP8o56bWem2t9QuT/PMsZm2ddyb54SQPrrW+eMvDvzbJ05P8ZpLrt3zO/0vy7Vn8hhP/iT0wHdKhMThwh87z5Mb2s2utN+1xPPakRVo0Bj21yHyMlA6ZMxiaDunQDPxaFr8V9+eSvGnL57w3yXOTfG6ST3XR1WHpkA7NgLXqI6BFWjRT1qtHRId0aEbMBzAr3uM1fAxcozdvOqRDY+AavXnTIR0aA9fnzZsOmTMYmg7p0Ay4Pu8IaJEWzYC16pHTIR2aKWvVI6JDOjQjk5qPUmsd+hwYgVLKbbO46/H9ktwri7sb/3WSq2utfzHkubVRSrlrkockuX8Wd+q8fRb/gfnrJH9Ya/3jAU+PLZRS7p/koUnuneROSa5J8sYkv1lrvXGP494qyUcneUCSj0hyWU7n411J3pzk92qtb9vrE2BnOsRYHKpDHActYiwO2SLzMW46BAxNh5iDUso9kzwoizn/0CR3THJTkvckeUeS1yR53RH8Zp9J0iGmzlr1cdAiYGg6xByYD2COvMczFq7Rmy8dYixcozdfOsRYuD5vvnQIGJoOMQeuzxs/LWLqrFWPnw4BQ9Mh5mAq8+HGaAAAAAAAAAAAAAAAAAAAAAAAAMDgbjX0CQAAAAAAAAAAAAAAAAAAAAAAAAC4MRoAAAAAAAAAAAAAAAAAAAAAAAAwODdGAwAAAAAAAAAAAAAAAAAAAAAAAAbnxmgAAAAAAAAAAAAAAAAAAAAAAADA4NwYDQAAAAAAAAAAAAAAAAAAAAAAABicG6MBAAAAAAAAAAAAAAAAAAAAAAAAg3NjNAAAAAAAAAAAAAAAAAAAAAAAAGBwbowGAAAAAAAAAAAAAAAAAAAAAAAADM6N0QAAAAAAAAAAAAAAAAAAAAAAAIDBuTEaAAAAAAAAAAAAAAAAAAAAAAAAMDg3RgMAAAAAAAAAAAAAAAAAAAAAAAAG58ZoAAAAAAAAAAAAAAAAAAAAAAAAwODcGA0AAAAAAAAAAAAAAAAAAAAAAAAYnBujAQAAAAAAAAAAAAAAAAAAAAAAAINzYzQAAAAAAAAAAAAAAAAAAAAAAABgcG6MBgAAAAAAAAAAAAAAAAAAAAAAAAzOjdEAAAAAAAAAAAAAAAAAAAAAAACAwbkxGgAAAAAAAAAAAAAAAAAAAAAAADA4N0YDAAAAAAAAAAAAAAAAAAAAAAAABufGaAAAAAAAAAAAAAAAAAAAAAAAAMDg3BgNAAAAAAAAAAAAAAAAAAAAAAAAGJwbowEAAAAAAAAAAAAAAAAAAAAAAACDc2M0AAAAAAAAAAAAAAAAAAAAAAAAYHBujAYAAAAAAAAAAAAAAAAAAAAAAAAMzo3RAAAAAAAAAAAAAAAAAAAAAAAAgMG5MRoAAAAAAAAAAAAAAAAAAAAAAAAwODdGAwAAAAAAAAAAAAAAAAAAAAAAAAbnxmgAAAAAAAAAAAAAAAAAAAAAAADA4NwYDQAAAAAAAAAAAAAAAAAAAAAAABicG6MBAAAAAAAAAAAAAAAAAAAAAAAAg3NjNAAAAAAAAAAAAAAAAAAAAAAAAGBwbowGAAAAAAAAAAAAAAAAAAAAAAAADM6N0QAAAAAAAAAAAAAAAAAAAAAAAIDBuTEaAAAAAAAAAAAAAAAAAAAAAAAAMDg3RgMAAAAAAAAAAAAAAAAAAAAAAAAG58ZoAAAAAAAAAAAAAAAAAAAAAAAAwODcGA0AAAAAAAAAAAAAAAAAAAAAAAAY3P8H9Ry3/pQ2KlkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor, Config\n", + "\n", + "async def clean_magnitude(datapoints):\n", + " async for datapoint in datapoints:\n", + " if datapoint.data is None:\n", + " continue\n", + " yield datapoint.collected_at, datapoint.data[\"magnitude\"]\n", + "\n", + "TemperatureConfig = Config(\n", + " sensor_name=\"Temperature\",\n", + " clean=clean_magnitude,\n", + " title=\"Ambient temperature\",\n", + " ylabel=\"Degrees C\",\n", + ")\n", + " \n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 5), dpi=300)\n", + " configs = get_known_configs()\n", + " to_display = configs[\"Relative humidity\"], TemperatureConfig\n", + " for i, config in enumerate(to_display, start=1):\n", + " plot = figure.add_subplot(1, 2, i)\n", + " coros.append(plot_sensor(config, plot, {}))\n", + " await asyncio.gather(*coros)\n", + "\n", + "display(figure)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAE0YAAAUsCAYAAAC9bUPVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdd5h1Z1kv/u8dAqEEEnoRSIBIVUA6AiYRPDSlKr0EIgiCla6IAVEPR1DPQQRF6aKIQEDqT8HQu1IUBUKJEECQloSSEHL//lj7lXnX7Cl7z57Z8877+VzXXGQ9az1l773WzsXMN/dT3R0AAAAAAAAAAAAAAAAAAAAAAACAZTpk2QsAAAAAAAAAAAAAAAAAAAAAAAAAUBgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAYKSqjq6qHv2csOx17aSqOmX0+k9Z9pr2Iu/zga2qThp/VxwI87vvAAAAAAAAAAAObgdq7gUAAAAAODgojAYAAAAAAAAAAAAAAAAAAAAAAAAs3aHLXgAAAACwO1XV0Uk+M0OXs5OckeSbST6V5F+SvCfJG7r7nEWvDwAAAAAAAAAAAFaqqsqQeztqdOr7SY7q7tN3flUAAAAAAMzikGUvAAAAANgzDkty6STHJLltkscnOTnJ6VX1tKo6fJmL2+uq6gVV1St+PrvsNQF7S1V9dvQ984JlrwkAAAAAAAAAYOQ2WV0ULUnOl+SEnV0KLEZVHTfK7XRVHbfE9cgrwgJ5pgAAAGA1hdEAAACA7XapJI9N8q9VdfNlLwYAAAAAAAAAAIA968R1zj24qmrHVgIAAAAAwFwOXfYCAAAAgAPKt5Kcusa5Cye5RJJLrnH+qCRvrKpju/tD27E4AAAAAAAAAAAADk5VdYkkd1nnkqsmOS7JP+3IggAAAAAAmIvCaAAAAMAsPtDdx613QVVdMcnPJHlUkquNTl8syd9V1bW6+3vbs0QWYaPPGUi6+6QkJy15GTPzfAMAAAAAAAAAe9T9khw2auskteL4xCiMtnQHau4GAAAAANgZhyx7AQAAAMDe0t2f7+5nJ7lekldOueRqSX5hZ1cFAAAAAAAAAADAHvfg0fEnszrDdreqOmKH1gMAAAAAwBwURgMAAAC2RXd/K8l9k/z7lNP33+HlAAAAAAAAAAAAsEdV1Y0ybOa50ouSvHDUdqEk99mRRQEAAAAAMBeF0QAAAIBt093fTfL7U07dqKousdPrAQAAAAAAAAAAYE86cXTcSV6c5A1JvrzBtQAAAAAA7CKHLnsBAAAAwJ73xilthyS5RpJ3zztoVR2S5MeSHJ3k0kkukeSMJF9JcmqSf+nu8+Ydf5Gq6oeSXDPDWo/IsOvoGUm+luQ/k7x/UkSObVBVF0pykySXT3KZJIcn+WqGe+XD3f2pJS5vU6rq0kluluSqGdb/zQyBzfd292nLXNt2q6ojMrz2H87w/Hw3yelJ3j3La6+qKyS5cYbn8PAMz9/nk7y1u89Y8LLnUlWHJblFkisnuVyS7yf5ryQfTfKh7u4lLg8AAAAAAAAAYFea5IPuPWp+275sSVW9NMmvrjh3w6q6Xnd/eJvXdf4MuaVrJ7nkpPm/kvzzLHNX1cUy5F6ukeTIJN9K8qUk7+zuzy900avnvmSSmya5WpKLZcgtfSG7NHdVVVdMcr0MmcJLZyiQ95UkX0zynp3ICVXVDye5YZIfSnJYhqzaF5K8o7u/vt3z70VV9SNJjsmQ/7tkkm9n+Fw/myF/+b1tnt+zPP+8u+WZvF6SK2bIDp6T5Ivd/eJN9pcB3gZVdYEkN8rwPFwqw/flGRlyse+dYZxjMjyb++6xs5P8d4Z86Hu6+zsLXjoAAAA7RGE0AAAAYFt191eq6owMQYqVLjXPeFV1qySPSPJTGYqhreVrVfX6JL/f3R+bZ655VdWlktw1yW2SHJvksht0Oaeq3pPkT5K8YrMF3arqs0mOWuP0UVW1mSJKx3f3KVPGPiXD2vd5a3cft8Y6PprkR1Y0fSXJD20lbFRV907y0lHzI7r7TzfZ/5Ak901yvyQ/keSC61z7mSR/m+Tp3f3f8614e1TVcUl+I8mtMxQUnHbNx5L8XpKXzlI4q6pOSPL8UfNVuvuzc6xzPO+Tu/ukDfqclOS3V7Z1d604f+MkT0xyh6zxe8yqemuSx3f3e9aZ52eSPC7JjyepKZecU1WvSvLY7v7P9dY862uYYZyjk5yU4Xtj/F25z5eq6jlJntHdZ806x2i+U7KJ53uyrs+sM9QDq+qBG8237z2ZBPtOzxAu2+eU7j5+w0Wvo6r+b5JfHjVff7vDywAAAAAAAADArvGzGYrVrPTC0T//6uj8g5P8yjyTTTI9/zRq/p8c1mQDv99Mcv8kF11jjE8keep6hXmq6roZ8jN3ylAwZto1707ymO5+52yvYn1VdWx+kFs63xrX/HOSZyf5y1k3/FtU7mYy1mWS/FqSn0lynXUuPbeq3pvkWUleNuvGq+tlpCZ5tQcm+fXsn6Vb6fuT3M4T18s7rZjvpIzeo5F/qtrwLXthd5+w0UWbsZ15xTXmu26G5/a2Sa6wzqVnVdU/JnnaZt7X0RzH5QB/ljeRw9vWZ3mN8XbDM3mRJL+U5CEZNqSdZupndqBngDe6r2cxZY0bfqdslE2tquskeWySuye5yJQhXphk3cJoVXWVDN+3d8jan2+SfLeq3p7kj7r7DeuNCQAAwO4z9T+mBAAAAFiwaUV81ir+M1VVXX1S6OxtSe6Z9YuiZXL+fkk+WlV/UVVrFsZapMnuol9M8udJ7pGNAxFJcoEMxbv+Nsm/Tv7ofyAZBxguneSOWxzzhNHx2Un+ejMdq+p2ST6a5EVJ/lfWKYo2cZUMhbM+XVVzhR0XraoOq6rnZgin/FTW/z3etZO8JMkbJ2GeA1oNfifJezIEwdbb3OHYJO+qqkdPGeeIqnpFktckuUWmF0VLhufvnkk+VlW32dLi5zC55/4tQzByve/Fy2UonvZvVXXDHVjawk1293zJqPm4qrrWvGNOdnx+wKj53YqiAQAAAAAAAMBB5cTR8beT/N2+g+7+UJKPjK65X1VNLVC0FVV1tyQfS/KLWaOQ0sTVk7yoqv52vI5JfuZJSf45yc9ljUJKEzdP8vaq+o2trfx/5j5fVf1JklMyZK+mFlKauEGS5yZ526RIzY6qqgtU1VOSfDrJ47N+AaZkyCHdIsOGnR+eFKtaxDqumOQdSZ6XtYuiJcN7eesk766q313E3HtRVV2+qv4qyYeSPCjrF0VLhk0a75LhfT25qjbKlm52HZ7l2efcLc/kTTN8dr+f9YtmTet7MGaAd0xVPTHDs/2ATC+KtlH/i03u648neWQ2/nwvmCGD+/qqentVXXnWOQEAAFgehdEAAACAnXDklLYzNtu5qm6dYfev288x9yEZgm9vrarNBBS26sezfiGnjVwryXuWUaBpC16S5HujtgfNO9gkKDZ+/Sd399c30ffRSV6XoVjYrC6a5I8nhfS28hluyaSI3xuS/PyMXf9XhvDGegGmA8FzMuyOudnfXVaSP6iqh/5PQ9WRSd6c5G4zzHuRJK+pqhvP0GdLJgHHP05y4Rm6XTnD99kBWRwtw66YYw/bwnj3zup/xzx7C+MBAAAAAAAAAAeQqjomQ0GalU7u7jNHbS8cHV8iQzGlRa7lfhkKsh0xQ7efy1BQa98YlaFA0ZOzfiGj/aZO8rtV9cgZ5l09yDD3S5I8Ysaut8yQZ5mpANFWTIpf/X9JfitzFNfJUMDsnVX1M1tcx1UzbAB58xm7/kZVPXUrc+9FVXW9JO9Lcp+svRHmeu6cIX959S2uw7M8+5y75Zn8iQzF4OYtgHUwZoB3xKSg2e9kzve3qo5K8s4M9/X55xjilkneV1U3m2d+AAAAdt7S/gNPAAAA4OBQVVfL9KI/n95k/59J8oqs/iP2OUnekqFg2ueSfDPDzn9HJ/nJJLcaXX+TJCdX1U9097iI13b5foad/v4tyX8k+WqGgnCV5GJJfjjJzTLseLeyCNThSf6mqn6suz+3zvgfS/KNyT9fOcnFV5z73uT8Rs7axDXr6u4vV9XrM4SK9rlDVV2mu788x5APyOqiWM+bduFKVfW/kzxuyqmvJfmHJB9M8uUMO8IemWE3wtslucbo+hMzvK+PnmnVi/O8JMevOP54hkJp/5HhtRyR5MeS3D2rdyP8iSS/luTp27/MxauqX0ny0BVNpyX5+yT/muG1H5nkphlCZBcbdf/jqnpThu+Dv0mysnDYB5O8MclnkpyZ4X37ySR3yv732oWSPLeqbtTd5y7oZU1VVb+eZNrunmdP1vq2JF/IEBK7Sobna9+OshdJcnJW7Gy8Tc5J8uEVx9fO/t/FX0/yn7MM2N3/VlWnJDluRfMDquoJ3f3tOdb48NHxV5O8fI5xAAAAAAAAAIAD04OzuoDSuAhakvxVkv+T/QsUnZjkZQtax42S/N6KtXwjyeszFM36coZcyrWS3CNDxm2l+1TVyd398gx5khNXnDstyWsz5Ge+miE/c5PJOOP8zNOq6rXd/dk5X8OjktxrxfGZSV6d5P1J/msy9zUz5JauNOp7pSRvqarrd/c3so0mmya+c7KWsX9N8tYMmb1967hMhsJld8iweeY+hyd5eVXdors/OMdSLpoh1/VDk+NO8q4k/5ghU3NWkktnyAfeNckFR/2fUFV/393vXWP8L+UH2Z3Dk1xtdP5T2Tj/N1O2ZwPbmlesqhsl+acMr3Wl85K8PcN7+5nJGi6U5IpJjk1y6+z/XP9whg1Gb9jd39zEmsY8yzM+y7vombxckldm/2ftfRkKtp2W4X24fIYc3M9tYryDIgO8Qx6S/Qv1nZUh1/vODPfkIRme6eMzvO/7mRRFe29WZ2aT4TN+Z4as7deTXCDD5/zjGTbkPmzFtZdN8rqqukF3n7a1lwQAAMB2q+5e9hoAAACAXaiqjs4QIlnprd193IzjPDbJ00bNX09yqe4+b4O+V8kQKjhyRfO5Sf4oyR9091fW6Xv9JH+R/YsjJckfdvejNpj36Kx+7Q/q7hes12/S9xNJPppht723bCZYM/mD/e8nuffo1Ou6+6c36j8Z4wVJHrii6bTuPnozfdcY75QMoaF91v3sq+pOGYIzKz2qu/9wjrk/kSEwss/nkxy13v1SVXfNEGhZ6etJHp/kRd393TX6VYadX5+TIWyz0p27+zUzLn8mU97n7+YHoZwvJfml7p5a/KqqDk/yrAyF5Fb6RpIrdPd3Npj7hCTPHzVfZZ4wVVWNf8n45O4+aYM+JyX57VHz2RlCKN/OEM56bndPC7lcNkPBxFuMTv15hnDLMybHn07y0O5+8xpruFGS12X1Z3+f7v7r9da/1mvo7g13Kq2qayT5UFaHHd8wWe/n1+h31yTPzg/CPd/JELSbdf5TMsPzvaLfZ5MctaLphd19wkb9poxz96wu6nZid29YAHE0zg2TfGDU/PTufsysawIAAAAAAAAADjxVdb4MhZ+usKL5C0muNC1rVFWvy1CIZ5/zklx11uIoVXVchgJOK+3LvSTJM5M8aVpRoao6LEO25RGjUx/PkAN6d4YCMRvlZy6XIT/z46NTf97dv7CJ13BSVmd3VmaXnp/k19d4DYdk2LzxqVmdf3lBdz9onvk3k3uZ9H1VhszXSu+arHetImP7ijf9Voa1r5zrs0mu291nbjDvOCO18v16b5Jf7O5/XqPv0Rk+rxuMTr2pu2+33ryT/sdl9T13fHefslHf7bANecWLZ8iKjsd4fpKTunvNAm+TzXufleS2o1Ov7O67bzDvcfEsb+lZnoyzW57J7+cHRfI+kuRh3f3uNfpecFqudC9kgBf5fTFPZnCNbOrKz+Y5SZ7Y3V9do/9+n01VXSDJO5LceHTpa5M8trv/fZ21XC7JHyS53+jU+5PcfNozCQAAwO5xyMaXAAAAAMynqi6f5NFTTv31RkXRJv4q+xdF+3aS23b3Y9cripYk3f2hDEGRfxid+qWqGu9wt0g37u67d/erNrvbYHef1t33SXLS6NQdqmraDnq70esz7Nq20gmzDlJVt8j+RdGSIUixXlG0y2R1iOKTGYIxf75WUbQk6cGrMuzyOC5G9fuTwmk7aV+46NNJbrZWUbQk6e6zMrzHbxqdOjLDTo4Hon1F0W7T3c9ZK3TS3f+V5Kcz7MC50v2SPGXyz/+WIbgytSjaZJwPZPp7talA1xY8O6uDZH+b5KfXKoqWJJN79dj84HVfaK1rd7mTs/p5e/gc44z7dJI/m2tFAAAAAAAAAMCB6PbZvyhakrxknazRC0fHh2SOjNMa9hVS+pXu/uVpRYiSpLvP7u5HZnXm5xpJ/n6yprOS/OQG+ZkvZcjPjHN096qqeTMl+/Is/7u7H7zOazivu5+R5OcybHS60glV9RNzzr+hqnpoVhdg+tMkt1yvAFOSdPc3Jpuqnjg6dXSSX5xjOfver9cmOW6tomiTuT+b5KeyOmP3U1V15Tnm3muelf2Lon0/yf0m9+GaRdGSpLs/leG7YJwhvFtV3XSOtXiWB5t6lnfZM7mv8NY7k9xqraJok7nXypUerBng7bbvs3lUdz98raJoydTP5qSsLor2+O7+mfWKok3G+lJ33z/Jk0enbpzkZzdeNgAAAMukMBoAAACwLSa78L0xyaVHp76dYWe0jfr/VJKbj5of3N1v2ewauvucDIGN/17RfP4kv77ZMWa12SDEGp6SYReyfSrJg7e2op3R3edm2CFvpR+tqhvOONS0glTjwNLYryQ5YsXxt5Pcbr0CU2Pd/bkk9xo1XzvJnTY7xgJ9L8k9NrMTbXd3pt/P490vDyS/ul4gaZ9JWOvpo+YLJ7lIhh0v79Hd48Jp08Z5R4bvqpWOr6px4bKFqKofTXL8qPnUJA/YTMHI7t63o+gBaxLyGxcwu1FV3WizY1TVEVm9w+Y/dPepW10fAAAAAAAAAHDAGBfTSZIXrXP9q5OMCwQ9qKoW9d/YvbS7/98mr/2tKW2Xmfzvr2xUUChJuvvrSZ4xar5Yhg1F53VKdz9hMxd292uTPHXKqV/ewvxrqqpDk/zGqPmN3f2ISY5qU7r7+Un+YtT8a1V12LTrN/DZDAW81ty8c8W8X8vq4jyHZCiYdtCqqmskueeo+Te7+682O8bk8/+FJOMiSY+fc1me5cG6z/IufSa/meSe3X3GHH0P2gzwDnlFd//hLB2q6uJJfmnU/Jzuftos43T3SVm90fa83w8AAADsEIXRAAAAgIWoqgtW1Q9V1R2r6s+TfCTJdadc+pBNFqx63Oj47d39slnXNQkp/N9R811nHWcnTIIgLx4133IZa5nT86a0nbDZzlV14ST3GDW/bbKj41p9Ds/qnQGf0d2f3uy8+3T3O5O8edS8jHvlpd39wc1e3N0fSzLebXTWgnS7xSeyOuC0nles0f7iyfuyWX83Oj40yY/O0H8WD5vS9qjuPnuzA3T3mzLsKnog+/Mk54zaHj5D/wdmKIS30nO2tCIAAAAAAAAA4IBRVZdJcsdR8z9397+t1WeSzxhn0I5KcusFLOn7WV0gaE3d/f4k/znl1Mez8UaSK41zL0lygxn6j81a1OxpScZ5wDtX1eW3sIa13CvD57VPZ3XBnM16yqT/PpfN6o1cN+PJMxZS+psM98pKB2rWa1Eek/3/O9fPZPWGmRvq7u8l+b1R8+3n2CDTs/wDGz3Lu/GZ/MPuPn3ONWzJHsgAb6fzkjx6jn6PSHL4iuOzsjpfvllPGR1fv6qOnnMsAAAAdoDCaAAAAMAsjq2qnvaT5DsZQhGvTfKQrC5Y8+0k9+3ul240SVVdIslPjppnKZY09rrR8VFVddTUK5fvk6PjG1TV+ZeykhlNClG9b9R8nxl27bt7kouO2jYKBt0myZGjtr/c5HzTjO+VY7cw1ryeO0ef8ft+9UUsZAmeP+NOkZ/OsMPj2Kz3wL9MabvGjGNs1u1Hx1/M6vtuM/5sAWtZmu7+cpKXj5rvVVXj53ktvzA6Pj0HfrE4AAAAAAAAAGDzHphknKt64Sb6vWhK24lbX07+sbtPm7HPh6a0zZqf+VSSM0bN8+Ze3tPdH52lQ3d/N6sLAR2aIde1aD87Oj6lu0+dZ6Du/lyS8WudNSv2rSQb5iFH8349qzOC25VT2vWqqpLcbdT8gu4eF4/brNePjg9LctMZx/As/8BGz/JueyY70zf43UkHbAZ4m72luz87R7/xPfby7h4/J5v1riTfGLUtIyMMAADAJimMBgAAAGy3MzMUNbvmZoqiTdwqSY3a3rWFNXxmStuPbWG8Tauqw6vqDlX1+Kp6UVW9rqreXlX/XFUfGv8k+ZPREIdl2PnuQDEuZHaJJHfaZN8HjY7PyurCSWPjUMLpc4SSVhrfK0fPUKhpEb6T1UXONuNTo+PzVdXhU6/c3d42R5/xbpvfTvLBGcf47JS2hX/uk52KrzJqfvWcQb43ZQhXHsjG33cXTvKAjTpV1bFJrj1qfm53n7uohQEAAAAAAAAAu96DR8fnJvnrjTp197uyunDNXSabeW7FPLmXaTmnty9gnHlzLyfP2e+VU9puNudYU00KaN1q1LyVTGGyOis2a6bwPd19zhzzjrNeR8wxxl5x3SQXH7XN/bl299eyeqPNWT9Xz/L+pj7Lu/SZPLW7P7/FNeznIMwAb5d/mrVDVV08yY+Omrfy/XBeVj9jO5IlBwAAYD6HLnsBAAAAwJ73gSTPnOzmtlm3mNL2iqra9O55m3CpBY61SlXdMMljMhQFu9AWhzsyyULDGtvor5P8YfZ/zSdkgwJnVXVUkuNGzX/b3RsVfhrfKxefhEvmNa2Y2KWyepe47XJad39vjn7jMFcyBObO2uJ6dto8u0WeOTo+bY4CWeMxku0JHN5wStusRdySJN19blV9JMnNt7ak5enu91TVB7P/+/KwJP9vg64PHx2fm6EAJwAAAAAAAABwEKiqWyS55qj5Dd39lU0O8aIkv7Pi+LAk903yzC0saxG5l0WNM2/uZa4cS5KPJvlekvOvaJuWk9mKa2XYpHOlB1bVT29hzCuPjmfNFI4L7G3WOOt1MBdGm5YVfWZVnb2FMS88Op71c/Usb+5Z3o3P5D9vYe79HMQZ4O0yz2dz8ySHjNqeUFWP3MI6jhkdb2uWHAAAgK1RGA0AAACYxbcyPaxx/gy79l1+yrnjk7y/qk7o7g135Jy44pS2626y72ZdcsHjJUmq6vxJ/ihD4Z7xH+TndcAEn7r7m1X1qiT3WdF826q6fHd/cZ2uJySpUdvzNzHl+F65cJLrbaLfLC6Z+UJK8/janP2mFVM7/5S23e7rc/QZv/aZx+ju7w0bWO5nO96/y0xp+/gWxvuPHMCF0Sb+JPs/69eqquO6+5RpF1fVZZLcddT8mu4+fZvWBwAAAAAAAADsPidOaXvhDP1fnOQp2T+vdGK2VhhtEbmXRY0zb+5lrhxLd59dVZ9N8sMrmqflZLZiWqbwimu0z2vWTOGisl4HYs5rUaZ9fuOih1s16+fqWd7cs7wbn8kvb3XCgz0DvI3m+Wym3UtX3epCRrYlSw4AAMBiLOr/mAMAAAAHhw909/Wn/Fynu6+Q4Q/EJ2Qo1rPSBZK8uKp+ZpPz7MQfmre6g9sqk0DEy5M8Iov9vcuBFnwaFzQ7X5L7r3VxDRWpHjBq/mR3v2MTc413HNwOC79X1jEtIHXQ6O5FvP7d/B4eOaVtvAPsLLbSd7f4myRfHbU9bJ3rT8zw75SVnr3QFQEAAAAAAAAAu1ZVHZ7kHqPmryd57WbH6O7Tkpwyar5eVd1wC0tbSGZlQfmZeS0yxzItJ7MVuzFTuJtzSgeKPfu5HgTP8m787M7YymQywNtqns9mN95jAAAA7CCF0QAAAICF6e6vdfcLk1w/Q7Gblc6X5CVVdfQmhrr4gpe2Ux6X5M5T2k9P8qdJ7pfk5kmulCEscsHurpU/SY7fsdVunzcnOW3U9qB1rj82q3dxGxdXW6WqLpzksNmWBkt10Slt39rCeFvpuyt093eT/OWo+W5VddnxtVV1SJKHjpo/meE7BwAAAAAAAAA4ONwryUVGbS/r7rNnHOeFU9pOnG9Je8YicyzTcjJbcaBmClmfz3V77MSzvBs/u3O32F8GePvM89nsxnsMAACAHXToshcAAAAA7D3dfXZV3T/JZbP/H/kvlqEAzq03GOI7o+NvdPeu/gN3VV0myRNGzecmeUySP+nuzf5R/4Dffay7u6pemORJK5qvWVU36+73TOkyLpr2/SQv2sRU301yXvYv/ioagZ8AACAASURBVH9yd991pgXDzjlzSts4qDuLrfTdTf40yaPzg2f5/BmCxr83uu72SY4etf1Zd/e2rg4AAAAAAAAA2E2mFS97WFU9bAFj37uqHtXd4/zaweIiSc7YQt+VpuVktmLaZ3KX7n71gudhZ037XC/e3d/Y8ZXsLTvxLO+pZ1IGeFeado9dv7s/vOMrAQAAYCkO2fgSAAAAgNlNQgAPyOpwxU9W1T036P7fo+Mjq+rIhS1ue9wpyYVHbY/r7j+eIRCRJJdY4JqW6QVJxsWKThhfVFWHJ7n7qPn/6+7TN5qgu89LMg5AXWXzS2QRqur8y17DAWRaYO+ILYy3lb67RnefluS1o+aHVtX499cPHx1/N8N3DQAAAAAAAABwEKiqaye52TZOcWSSu23j+LvdInMsiy5sNc4UJrJie8G0z/XonV7EHrQTz/JeeyZlgKdbZj50r91jAAAAzEhhNAAAAGDbdPfnkzxpyqnf26CY0n9NabvuYla1bX5qdPz1JH8yxzhXXcBalq67P5PklFHzvarqgqO2e2T1DoPPn2Gq8b1y9ao6bIb+B7PvTWmbJ8Ryya0u5CDy5Slt19jCeNfcQt/dZvx9eVSS2+87qKr9jif+tru/ut0LAwAAAAAAAAB2jRP3yBy71dXn6VRVF8jqYlbTcjJbcSBmCtmYz3V77MSzvNc+u72UAV5UNjRZbqG3vXaPAQAAMCOF0QAAAIDt9uwknx61XTXrB8jeN6VtXBBnt7nS6Pi93X3OHOPcfBGL2SXGBc6OSHLXUdsJo+OvJXnNDHOM75ULJTluhv4HszOmtF1sjnGO2epCDiIfnNJ2w3kGqqpDs7dCPv+Y5OOjtoev+OeHZvXvs5+9rSsCAAAAAAAAAHaNyUac9x81n5Pkw1v8+dpozOOqajcUtlmGuXIsGTIs46I703IyW/GRJN8dtd1uwXOw8w7ErOiBYCee5b32TO6lDPBCsqFVdcUk482Qd9J7p7T5fgAAADiIKIwGAAAAbKtJMOApU079ZlUdtka3f5jSds9JIaDd6lKj43FgbkNVdakkx885/7mj4/PNOc4ivSKrAxYP2vcPVXW1JLcanf+r7j57hjmm3Sv3m6H/wewbU9rmCXUeu9WFHCy6+8tJPjNqvlNVzfN72tsmucjWVzWTbfue6e5O8qej5ttX1VGTYPO4mOaHuvs9i5ofAAAAAAAAANj17pTk0qO2V3X39bfyk+SJozErKzJOB5m7zNnvblPaFprr6O7vJnnHqPnyVXXrRc6zi41zO8lyM4KLyhG9K8m3Rm13rKqLzzkeg21/lvfgM7mXMsB7Ihva3aclOXXUfJOquvoy1gMAAMDOUxgNAAAA2AkvSfKJUdsVkzxk2sXdfXpW7zJ3lSQnLHxlizMO54xDEpvxiMy/u9qZo+PD5xxnYbr720leNmq+dVXt21nvhCndnj/jNG/K6l0H711V15hxnIPRx6e03WSWAarqfEkevJjlHDTeMDq+QpI7zjHO1O/Pbbbd3zMvSHLWiuNDkjw0yV2TXHZ07bMXPDcAAAAAAAAAsLuNN1VLhlzaVr0syTmjthPm3OjuQHfzqrrOLB0mm6Pef9R8bpJ/XNiqfuDVU9pO2oZ5dqNxbidZbkZwITmiyca7bxw1XzTJo+YZj/+xU8/yXnom91IG+PTsn8NLZsyGTjx0C2tYlPE9dkiSJy1jIQAAAOy8g/EXtAAAAMAO6+7vJ/mdKaeeUFVrhQB+d0rb03fxTl9fHB3/eFVdZLOdJyGUJ2xh/q+Pjo/cJbsmjgudHZLkAZPg4ANG5z7c3f8yy+Dd/d9J/nzUfL4kL62qC8200oNMd385yedHzfeYFDvbrEdkvp0ED2bPmdL29Kq6wGYHqKrbJLnz4pa0aePvmYV+9t19RpIXj5pPTPJLo7Yzkrx0kXMDAAAAAAAAALtXVf1Qkv81av5KVhdUmll3fy2rN7q7YpLbbnXsA9T/nfH6x2Z4v1Z6dXeP83SL8JdJvjRqu2VVPW4b5tptxrmdZLm5rUXmFadlRR9bVbecczwGO/Es76Vncs9kgLv7vCQfGjXfsaqO2OwYVXWnJD8xz/wL9oys3jz5vlV1z2UsBgAAgJ2lMBoAAACwU16a5D9GbVdI8rBpF3f3q5J8YNR8RJI3zLqT3T5VddGqekxV3W+e/ht4++j48CS/vZmOVXV0ktckOWwL8390StsdtjDeQnT3u7P6cz8hya2TXHnU/rw5p/n9rN6t7wZJXjVvMKSqjqqqZ1bVj8y5pgPFONR55SS/upmOVXXrJP9n4Sva47r7o0n+adR89STP38xOw1X1w1ldPGynjL9nfqSqrrTgOf5kdHzZJOOQ40u6e7yjJQAAAAAAAACwdz0ow2aJK72su89d0PgvmdJ24oLGPtDcuqqeupkLq+r2SX5ryqn/t9glDbr7O5leROv3quqR845bVberqj+df2U74nNJvjlqW2Y+cGF5xclmqq8YNZ8/Q/5vrsJMVXVYVT20qn5tnv57xLY/y3vsmdxrGeBxNvRCSTZ7P1w3qzdFXopJYb5nTTn1vKq6+zxjVtX5quqeVTXt3gUAAGAXURgNAAAA2BGTHciePOXU46vqwmt0u3eSr43arprkvVX1m5vZvayqDqmq46vqOUn+M0Mhp8vNsPTNekWS80Ztj6mq36mqQ9dZ372TvDs/2L3xjDnnf8+U+Z9RVXeuqvPPOeaijAMSx2T1boTnJPmreQbv7i8leWCSHp26bZIPVtX91vsM9qmqi0zCDq9McmqSRya54DxrOoD8xZS2p1XVL1RVTetQVRec7Oj4hgxBnvFufGzsF7P6fbtPktdMdjieqqrukuRt+cF32He2Z3lretfo+JAkL6+qGy1qgu7+WFYXjht7zqLmAwAAAAAAAAB2t0mG5UFTTk0rZjavv8/qolN3qqpLL3COA8G+PMtvVtVz18rnTTJ5v5rklRkKWK30gu5+2zau8VlJXj1qOyTJM6vqVVV1vc0MUlVXqarHVdVHMuSg5irAtVO6uzPkDFe6TVX9flVdZglLWnRe8ReSfGbUdqkkb66qP6iqTWU+q+qmVfWMJJ9N8mdJrjbHWvaCnXyW98ozudcywC9I8v1R2yOr6slrvZ5JwbATk7wjySUyZHLPmWPuRXtikveN2i6c5O+q6i+qalPPeVX9SFU9JcknkvxNkk3dmwAAACzPhv9BKAAAAMAC/W2GP1BfZ0XbZTMUCXr6+OLuPrWq7pHk9UkusOLURTLsXPaEqnpHkncm+WKSb2T4Y/eRSa6U5AaTnyMX/kpWr/UTVfWSJA8YnXpikhOq6u+SfCTJWRkCA9dIcqfsH7z5dpLHJXn2HPN/saremP13iLtskpOTnFNVn0vyrawuHvbz3f2BWeeb0YuT/F7237X1WqNr/r67vzrvBN39iqp6UpLfGZ26ymT+p1fVKUk+kOQrGd6Li2W4N45JcqMk183Wduw74HT3+6rq1UnuvKL5fBkKTz2iql6VoUjcOUkuneSGGe6xlWG6X41CVTPp7v+oqt9M8ozRqTsmObWq3pBhB8ovZtip8aoZPqMfXXHt6UlenuH93ymvzlCs8hIr2m6a5P1VdWaSL2RKobzuvv6M8zwryfFrnHtHd0/bHRMAAAAAAAAA2JuOzw8Kzuzzye5+76Im6O6zq+rlSX5+RfP5k9wvyR8tap4DwJMybDyaDO/FParq5CTvT/LlDFmraya5e5IrT+l/WpJf284FdndX1f0yFO4ZF7W5S5K7VNWHk5yS5JNJ9mXSjsxQaOu6GTJQ43vqQPC8JLcbtT0+w+a0X8yQ6zl3dP413f2kRS9k0XnF7v5qVd0pw+e6sojXoUkeneSXq+rdGTaV/HySr2fI+h2Z5PJJfixDBvBgK2a4lh17lvfKM7nXMsDd/YWqemZW5wuflOS+VfWKJP8+WfMlM2QT75j974enZdjg+qhZX88idfd3q+quGYrHXWl0+sQMn88Hkrw1Q1HEr2XIwR6ZIet6/QzfD2tuWgsAAMDupDAaAAAAsGO6+7yqenKGAmkrPbaqnt3d35rS581Vdaskf5fVf9C+SJLbTn52g19OcpMMgZGVrpiNixd9L8nPZQgZzOsxSY7N8L6sdIGsvfPh4VuYb1NWBDbuuM5lz1vAPE+tqi9kKKp0wdHpyya55+SH/T0syY2TXGHU/qPZvxDXNH/Q3X9WVQqjzai7/7CqLpXkCaNTF0xy18nPWr6VITT209u0vKkmAaNfS/LCKacvmiHstQgnJ/lcVn/nJ3OExgAAAAAAAACAA9qJU9pesg3zvCT7F0bbN/fBVBjt6RmKx9xjcnyxDEWCxoWCpvl8kp/s7m9s09r+R3efNckUPj9DYaex62V1gaa94BVJ3pzk1lPOXX7yM/ahbVzPQvOK3f2vVXXjJK9M8iNTxjx28sPGdvRZ3kPP5F7LAP9mkttk9fN0tSSP3WAtL5v0v/cG1+2ISaG3m2RY10+MTp8vwwavN93xhQEAALCtDln2AgAAAICDzr5d01a6dJJfWqtDd78vyQ0yhCa+t4W5O8Ouc2/fwhhrD979zQwhgvfM2PULSW7T3a/f4vwfS/JTSU7dyjjbZL3CZ19M8qZFTNLdz0ty8yRv2eJQ303yN0n+c8uL2uW6+0tJbpnZ7ptzkjy6uzcKx7CO7v6NDDtrzhKG+nyS46ft8rgTuvtFGULAZ27jHN9P8mdTTn0lQ8ATAAAAAAAAADgIVNWRSe425dRfbcN0b8vqrNB1quqgKbTS3Z3kvklm3STxnUmO7e5PL35V03X3md39s0kenuT0LQ73nxmyibtad5+X5GeTvHTZa0m2J6/Y3Z/MUNzoDzNsHrkVH0iypUzmgWoZz/JeeCb3Wga4u7+d5Lgk75ulW4bCeveZfOfsGpOs662TPDHJ17Y43L9n9SbfAAAA7DIKowEAAAA7ahK4OGnKqUdX1UXX6fff3f3gJMdk+KP7v2X4A/xGzkzyugzFh67S3cd393tnXvgmdffpGXYje2SSjcIhpyX5rSTX7O63LWj+d2fYre4OSf40yTsyhC7OSrLMkMLfJ/nvNc69aFIIaSG6+0PdfeskN0vyogyFpDbjixl2fn1gkst19727+8uLWtdu1t2fSXLdJL+R4X1YyzkZdtz7se5+xk6sba/r7j9Ocp0kL0xyxjqXfjnJU5Ncp7vfvxNrW0t3/2WSH0ryoCQvTvIvGdb3nQVOM63w2/O6++wFzgEAAAAAAAAA7G73TXLBUdu7u/tTi55okmubVnDtxEXPtZt197nd/fAMxYHekvUzZ/+S5CFJbrWTRdFW6u7nJLnqZB3/mM1tUHhehrX/QZLjkxx9oGShuvsb3X3fDBnBk5K8Nsmnknw9W9t0dt71LDyv2N3f7u5HJTk6w2v8QJLN5Au/m+Ge/Y0MGasbb7VQ1YFsWc/ygf5M7rUMcHd/NcktMhSsW+/fnd9P8oYkt+jux+y2omj7TO7r301yVJJHZXh/ztlE13OTvCvJU5LcpLuvPdkkFgAAgF2sht/ZAgAAABx4qurSSW6Y5NJJLpnk8Ay7BJ6ZoRjWfyQ5rZf4C5CqunqSm0zWeJHJ+j6f5CPd/fFlretgU1XHJLl2hvvkkkkukCEo8s0kn0nyHwdLEbTNqKrrJrlekksluXCG9+njGYKlZy1zbXtZVR2W5JZJrpzkchmCTP+V5CNJPrRbw0bboapemuTeK5o6yTHLCtECAAAAAAAAAByMqupSGTaovFqGfN4ZGTZe/JftKFC3VVV1gQyZwitmyD5dPENBnDMzbOz5iSSf6O5FbgDINquqI5LcOMllMuT/jsiwieOZGYpGfTzJpxe5QeuBoqpOSvLbK9u6u6Zct5Rn+UB/JvdaBnjyem6Y4Vm6aIbP4VNJ3tXdX1vm2uZVVRdOcqMkV8jw/XBkkrMzvLYvZ/h+OLW7N1NADQAAgF1EYTQAAAAAAHaNSdHLzyU5bEXzG7v79ktaEgAAAAAAAAAAwK6z2cJoAAAAAAeaQ5a9AAAAAAAAWOEh2b8oWpI8axkLAQAAAAAAAAAAAAAAAGBnKYwGAAAAAMCuUFUXSfIro+ZTk7x+CcsBAAAAAAAAAAAAAAAAYIcpjAYAAAAAwG7xlCSXGbX9cXeft4zFAAAAAAAAAAAAAAAAALCzFEYDAAAAAGCpquoSVfX0JL8+OnVakucuYUkAAAAAAAAAAAAAAAAALMGhy14AAAAAAAAHl6r6iyQ3mhxeKskVktSUSx/T3efs2MIAAAAAAAAAAAAAAAAAWCqF0QAAAAAA2GnHJLneBte8qLtfvhOLAQAAAAAAAAAAAAAAAGB3OGTZCwAAAAAAgJGXJPn5ZS8CAAAAAAAAAAAAAAAAgJ116LIXAAAAAADAQe87SU5P8u4kz+vuU5a7HAAAAAAAAAAAAAAAAACWobp72WsAAAAAAAAAAAAAAAAAAAAAAAAADnKHLHsBAAAAAAAAAAAAAAAAAAAAAAAAAAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdIcuewGwbFV1RJJjVzR9Lsk5S1oOAAAAAAAAAMBWXCDJlVYcv7W7v7msxQCAjB4AAAAAAAAAsEfI5+0QhdFgCFy9etmLAAAAAAAAAADYBndO8pplLwKAg5qMHgAAAAAAAACwF8nnbZNDlr0AAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgKU7dNkLgF3gcysPTj755BxzzDHLWgsAAAAAAAAAwNxOPfXU3OUud1nZ9Lm1ruX/Z+/Owyyr6nvh//bpmrrpEehmVBkFJCqivIGmQQRUgnkjMV4SL3mIxleNEoPxRdQYBuONQ5zyJnLjcFFITAxBBSUKeq8yo4IMsZNGGQSaubvpeajxrPeP7i5qOPucfapO1Tl16vN5nn7ovfZae62zq55m7aq1vhuAaWKNHgAAAAAAAAAw41mfN30Eo0FE/8iDww47LI4++uhmjQUAAAAAAAAAoJH6a1cBgClljR4AAAAAAAAA0I6sz5sipWYPAAAAAAAAAAAAAAAAAAAAAAAAAEAwGgAAAAAAAAAAAAAAAAAAAAAAANB0gtEAAAAAAAAAAAAAAAAAAAAAAACAphOMBgAAAAAAAAAAAAAAAAAAAAAAADSdYDQAAAAAAAAAAAAAAAAAAAAAAACg6QSjAQAAAAAAAAAAAAAAAAAAAAAAAE0nGA0AAAAAAAAAAAAAAAAAAAAAAABoOsFoAAAAAAAAAAAAAAAAAAAAAAAAQNMJRgMAAAAAAAAAAAAAAAAAAAAAAACaTjAaAAAAAAAAAAAAAAAAAAAAAAAA0HSC0QAAAAAAAAAAAAAAAAAAAAAAAICmE4wGAAAAAAAAAAAAAAAAAAAAAAAANJ1gNAAAAAAAAAAAAAAAAAAAAAAAAKDpBKMBAAAAAAAAAAAAAAAAAAAAAAAATdfR7AHAbJRSinK5HCmlZg8FYJwsy6JUKkWWZc0eCgAAAAAAAAAA1M0aPaBVWZ8HAAAAAAAAUJtgNJgGKaXo7e2NLVu2xJYtW6K/v7/ZQwKoqaurKxYsWBALFiyInp4eC7EAAAAAAAAAAGhJ1ugBM431eQAAAAAAAAD5BKPBFNu+fXs89dRTMTAw0OyhANSlv78/nnvuuXjuueeis7Mz9t9//5g3b16zhwUAAAAAAAAAAMOs0QNmIuvzAAAAAAAAAPKVmj0AaGfbt2+P1atXW3AFzHgDAwOxevXq2L59e7OHAgAAAAAAAAAAEWGNHtAerM8DAAAAAAAAGE0wGkyR3QuuUkrNHgpAQ6SULL4CAAAAAAAAAKAlWKMHtBPr8wAAAAAAAACe19HsAUA7SinFU089NW7BVWdnZyxcuDDmz58fnZ2dkWVZk0YIkC+lFAMDA7F169bYvHnzqDfq7v737dBDD/VvGAAAAAAAAAAATWGNHjBTWZ8HAAAAAAAAUJtgNJgCvb29oxYqREQsWLAgDjjgAAsVgBmhs7Mz5s2bF0uXLo0nn3wytmzZMnxuYGAg+vr6oqenp4kjBAAAAAAAAABgtrJGD5jJrM8DAAAAAAAAqK7U7AFAOxq5QCFi5wIGC66AmSjLsjjggAOis7NzVPnmzZubNCIAAAAAAAAAAGY7a/SAdmB9HgAAAAAAAEBlgtFgCoxddLVw4UILroAZK8uyWLhw4aiysf/OAQAAAAAAAADAdLFGD2gX1ucBAAAAAAAAjCcYDRospRT9/f2jyubPn9+k0QA0xth/x/r7+yOl1KTRAAAAAAAAAAAwW1mjB7Qb6/MAAAAAAAAARhOMBg1WLpfHlXV2djZhJACN09HRMa6s0r93AAAAAAAAAAAwlazRA9qN9XkAAAAAAAAAowlGgwar9Ia2LMuaMBKAximVxk8ZvJESAAAAAAAAAIDpZo0e0G6szwMAAAAAAAAYTTAaAAAAAAAAAAAAAAAAAAAAAAAA0HSC0QAAAAAAAAAAAAAAAAAAAAAAAICmE4wGAAAAAAAAAAAAAAAAAAAAAAAANJ1gNAAAAAAAAAAAAAAAAAAAAAAAAKDpBKMBAAAAAAAAAAAAAAAAAAAAAAAATScYDQAAAAAAAAAAAAAAAAAAAAAAAGi6jmYPgOmRZVlnRJwYES+MiP0iYmtEPBUR96aUHm1wXwdHxDERsX9EzI+IpyPisYi4I6U00Mi+AAAAAAAAAAAAAAAAAAAAAAAAaA+C0Zoky7JDIuK4iHjVrv8eGxELRlR5LKV0UAP6WRoRH42I34+IPXPq3BERn0spfWuSfb05It4fESfkVFmfZdlVEXFxSmndZPoCAAAAAAAAAAAAAAAAAAAAAACgvQhGm0ZZlp0SER+OnWFoFUPKGtzfb0XEFRGxrEbV5RGxPMuyf46Id6WUttXZz/yI+EpE/EGNqntGxLsj4k1Zlv1RSukH9fQDAAAAAAAAAAAAAAAAAAAAAABA+yo1ewCzzDER8bqYnlC0UyLi2hgdipYi4u6IuDoi/ndErBvT7JyI+EaWZYW/L7IsmxMRV8X4ULS1EfHDXX3ds6vv3faJiO9kWbaiaD/Qzg466KDIsmz4z0033dTsIQEAAAAAAAAAAMCMZ30eAAAAAAAAAMw8gtFaQ19EPNyoi2VZdmBEfDsiukYU3x4RR6eUXpVSOjul9LqIODAizo+IgRH1/u+I+B91dPfJiDhzxPFARLw3Ig5MKb1+V1+vjIjfiIifjKjXHRHXZlm2Xx19AQAAAAAAAAAAAAAAAAAAAAAA0KYEo02/gYi4LyL+V0S8KyJeGRELIuL/aWAfH42IJSOO74iI01NK94+slFLqSyn9XUScPab9+7Mse1GtTrIsOyR2BquN9N9SSl9IKfWP6WtVRJwWo8PR9oqIS2r1AwAAAAAAAAAAAAAAAAAAAAAAQPsTjDa9royIhSmlV6SU3pFS+nJK6Z6U0kCjOsiy7PCI+KMRRf0R8daUUm9em5TStbvGtlt3FAssuyQiOkccX5FS+k6VfnZExFt3jWm3t+8KWAMAAAAAAAAAAAAAAAAAAAAAAGAWE4w2jVJKG6oFlDXIf4+IOSOOv51SerBAu0+NOT47y7KevMpZls2NiDfXuMY4KaUHIuLaEUUdsXPMAAAAAAAAAAAAAAAAAAAAAAAAzGKC0drP7445/lqRRiml+yPiZyOK9oiI11Vp8vqImDfi+CcppV8WGuH4Mb2pYDsAAAAAAAAAAAAAAAAAAAAAAADalGC0NpJl2b4R8fIRRYMRcXsdl7hpzPFvVal7Ro221dwaO8e22yuyLNunjvYAAAAAAAAAAAAAAAAAAAAAAAC0mY5mD4CG+o0xx79IKW2ro/0dY46PrqOvnxTtJKW0LcuylRHxijF9PVv0GkD9Ukpxzz33xC9/+ctYs2ZN9PX1xdKlS+OAAw6IFStWxPz585s9xAl7/PHH46677oonnngiduzYEXvvvXe89KUvjVe96lVRKk0uA3TNmjVx6623xlNPPRU7duyI/fffPw455JA4/vjjJ33tSlatWhUrV66MtWvXxubNm2PPPfeM/fbbL1asWBF77bVXw/sDAAAAAAAAAABgcqzPmxjr8wAAAAAAAACoRDBae3nJmOOH6mz/cI3rjXRUA/oaGYz2koj4cZ3XAApYt25dfPzjH4+vf/3rsXbt2op1urq64tRTT41LL700fvM3f7PQdd/61rfGlVdeOXz8yCOPxEEHHVSo7U033RSvec1rho8vueSSuPTSS3PrZ1k2/PdXv/rVcdNNN0VExB133BGXXHJJ/PjHP45yuTyu3T777BMf+chH4rzzzqt7kdS9994bH/jAB+LGG2+seO0DDzww3vWud8WHPvSh6OjoiEsvvTQ++tGPDp+/8cYb45RTTinU13PPPRef/vSn4+tf/3o8+eSTFeuUSqVYvnx5XHLJJXH66afX9VkAAAAAAAAAAABoPOvzrM8DAAAAAAAAoPEEo7WXw8Ycr66z/WNjjvfKsmxJSmnDyMIsy/aMiD0n2dfY+ofX2R4o4Nprr41zzz03tmzZUrVef39/3HDDDXHDDTfEO9/5zrjsssuio6O1/xfx8Y9/PC6++OIYGhrKrfPss8/Gn/3Zn8WNN94Y//qv/xpdXV2Frv25z30uLrzwwqrXfuKJJ+Kiiy6K66+/Pr797W/XPf7d/vEf/zHe+973xubNm6vWfx0p0gAAIABJREFUK5fLcdttt8VrX/va+MM//MO4/PLLC38eAACgve0Y2h6P9P4q+st9dbXbu3Pf2L/7hVHKqm9UGUpD8Xjvw7FxcP1khtk2ukrdcXDPi2PunD0afu2tQ5vjsR0PxkAaGHeuu9QTB889InpKcxveb6MMlAfisd4HY0nnXrFX5z7NHg4AwIywdWhzPNP3eOzb/YKYP2dhs4fTktYPrI0n+h6Jchq/UX7BnEXxormHRUfW2fB+Nw1uiGf7n4wX9hw6qXl4b3lHPLrjgegt72jg6KbOPl0HxL5dB44KRqhk5/z/gdg6VP33kPPmzI8Xz/uNRg4RAABahvV51ucBQCOkgf6IR1ZFlEoRh7605s/mAAAAAABgNmjt36pTr8VjjtfU0ziltDXLst6I6BlRvCgiNoypOraf7SmlbfX0VWFsi+psD9Tw1a9+Nd7xjneMe5vioYceGi95yUti3rx5sXr16rjzzjtHLTD68pe/HKtXr47rrruuZRdffeYzn4mPfOQjw8dHHHFEHHHEEbHHHnvE008/HT/96U+jt7d3+Pw111wTF110UXzqU5+qee3PfvazccEFF4wrf8lLXhKHH354dHd3x+rVq+Ouu+6KoaGhuOOOO+Lss8+Ok08+ue7PcfHFF8fHPvaxUWVZlsURRxwRhx9+eCxYsCA2bNgQP//5z0e9TfTrX/96PP3003HDDTe07NcIAACYHjdv+H5cveZ/RTnGBwQUsX/XC+NPX3BpLO4Ym4G/09N9j8ffP3FpbBx8bhKjbD+lKMXZy94RJy/5rYZcL6UU1z/3b/G95/41UqQq/c6Jc/Z9T5yw6LSG9NtID2xfGV988hPRW94eEREvm/9/xdv3uyA6SzYNAQDk+f66q+KG9VfHYBqMLLJ487K3x2uW/Hazh9UyhtJgfO3pz8c9W26vWm+P0oJ4z4F/GQfPPaIh/ZZTOa5a8+W4deMNERExJzri3P3+LI5bWP/vgn626ab4+jNfiKEYbMjYpsuLeg6P8w68KDes71fbV8aXnvx4obC3g3oOjwtf9OlGDxEAAJrO+jzr8wCgEdIj90f64FkRTz+6s+DwYyI++++RLVnazGEBAAAAAEDT+W1te5k/5ngir5zeEaOD0RZMYT8jVeqnblmWLYuIen8DdGgj+m6UNDgYsfaJZg+j/S09MLI2XrBy3333xbvf/e5Ri66OOeaYuOyyy2L58uWj6q5duzYuuuii+NKXvjRcdsMNN8TFF18cH//4x6dtzEWtXLkybr311oiIOOuss+ITn/hEHHnkkaPqbNiwId7//vfHFVdcMVz22c9+Nt797nfHQQcdlHvtu+++Oz70oQ+NKjvllFPiC1/4Qhx99NGjyteuXRsXX3xxfPGLX4xbbrklVq1aVdfnuPLKK0ctuiqVSnHeeefFBRdcEC984QtH1U0pxXe+8504//zzY/Xq1RER8aMf/Sguuuii+MQnPlFXvwAAQPtY3ftQXLXmy5O6xlP9q+Ofnv67eO8LLh13LqUUX3ryE0LRKihHOf51zZfi4LlHxAt6Dpn09VZtvzf+/blvFOh3KP7pmb+Pg3peHPt1v2DS/TZKf7kv/uGJv46+9PwmqF9svTOuf+7q+J2l5zRxZAAArWvl1rtGzQFTpLh6zf+Kg3oOb1jA10z3w/XfrhmKFhGxrbwl/ueT/yM+eejXYk42+d///WTTj4ZD0SIihmIwrnj683FwzxGxd9c+ha+zpv+puPKZv530eJrhsd4H46pnvxxv3398WEFfuTe+OGb+DwAwk1ifN43aeI2e9XnW5wFAI6SUIv3Vuc+HokVEPHhfpL95d2Sf+GazhgUAAAAAAC2hPVcczF5jA8smshJ5R0QsqXLNRvZT7ZoT9Z6IuKRB12qOtU9EOttmh6mW/duvIvY7qNnDmDJvf/vbo7+/f/h4xYoV8YMf/CDmzZs3ru7SpUvji1/8Yhx22GHxgQ98YLj8U5/6VLzlLW+Jl770pdMy5qLWr18fEREXXnhh7hsmlyxZEl/72tdiw4YN8Z3vfCciIoaGhuLyyy8f9wbIkc4777wYHBwcPn7Tm94UV111VcW3Pi5dujT+4R/+IQ455JC48MILY926dYU/w2OPPRbvfve7h4+7u7vj2muvjTPOOKNi/SzL4qyzzorly5fHiSeeGA899FBERHz605+Od77znXHwwQcX7hsAAGgf/7n17oZc51fbV0ZveUf0lOaOKl8z8FSsGXiqIX20q19svbMhwWi/2HJnXfVXbr2rpYLRfrV9ZcVQhF9s/ZlgNACAHNc/d3XF8vu2/lQw2i71PPNsG9oSD+/4Zbx43m9Mut+V2+4aV5Yixcptd8Vrun67+HW2jr/OTPKfW38eQ2ko5mRzRpU/kDP/BwCYMazPmzbtvEbP+jzr8wCgIR76xc4/Y/38R5EGByLr6Jz+MQEAAAAAQIsoNXsATKnUZm2AAm688ca45557ho8XLlwYV111VcVFVyNdcMEF8du//fxmjnK5HJ///OenbJyTsWLFikJvYvzrv/7rUcc//vGPc+vedddd8bOf/Wz4eL/99ouvfvWrFRddjfSBD3wgXve619Ucy0if/vSnY8eO5/MhP//5z+cuuhpp2bJl8S//8i/Dx0NDQy37NQIAAKbepsENDblOOYZi6+DmceUbB55ryPXb2abB9Q25zsbB+u71pqHG9Nsom3LG36jvUQCAdrO696F4tPeBiuc2DrTWXK+ZtgxtrKt+w+bnOc9C9c5v653nt5q+1Bt95bHvO4vY2KD7DAAAM5X1ec+zPg8AJum26yqX926P2LF1escCAAAAAAAtRjBaexn7m4+5E7jG2DaVfpsyXf0AE3DllVeOOj7vvPNi//33L9T2k5/85Kjjb3zjG9HX19ewsTXKRz7ykSiVav8v7Oijj46DDjpo+Pi+++7LrfuNb3xj1PGf/umfxqJFiwqN56KLLipULyJi27Zt8dWvfnX4+JBDDol3vetdhdsfd9xxcdJJJw0ff/e73y3cFgAAaC+DaaBh1+pL4ze791bYAM9ojbpHfam3Kf02Sl+58vgrfV8BABBx88brc8+ZQz2v3jdt5c1L65U3P68UElZNq83bJ6LSZ6j3PgAAQLuxPu951ucBwOSkZ5+ocrLen5ACAAAAAEB7qf6aLWYawWgR/zMirq6zzaER8Z0G9Q9Nd9ttt406/sM//MPCbY8++ug49thjh99o2dvbG3fffXcsX768oWOcjLlz58app55auP5RRx0Vjz76aEREbN++PbZu3Rrz588fV++OO+4YdXz22WcX7mPFihWx//77x1NPPVWz7m233TbqbZRvfvObCy0iG+k1r3lN3HrrrRER8dhjj8Xq1avjhS98YV3XAAAAZr68YLQ50RFdpa5x5SkiesvbK7bprRAgUC2sa25pXrFBtomB1B+DaXBcecOCF+q8TqP6bZS88QymwRhMA9GRdU7ziAAAWte2oS3x88235p5vtblec9W38a9RgV15gWaNCkbLe2ZrlhSpymce//2YV7cUpegu9Ywrr1QGAAAzmfV5o1mfBwCTsLZKMNrQ0PSNAwAAAAAAWpBgtPayaczx0noaZ1k2P8YHlm0s0M+8LMv2SCltq6O7ZQX6qVtKaU1ErKmnTZZljegaWsKGDRvi4YcfHj5evHhxHHXUUXVdY/ny5cMLryIi7rrrrpZaeHXooYdGV1fxzSJLliwZdbxp06aKC6/+4z/+Y/jvixcvjsMOO6yucb3qVa8q9HbIsQvj9t9//+GFYUWN/fy//vWvLbwCAIBZqFJQV0TE8sWnx1v2+ZNx5SmleO8DvxflKI87V2mDf95m96Wd+8VHD/mHOkc7s3137T/HDevHZ/Hn3aN65QUsdGQdUxrI1ijV7kNfuTc65ghGAwDY7SebfhQDqT/3fKPCvdpBSvUGo01tcHG9188Lpj5lyZnxe8v+uO5xTZXe8o54/4NvqXiu0vdj3n04ao9j4rwDL27o2AAAoNVYnzee9XkAMAlrn8w/l8av7QAAAAAAgNlEMFp7eXDM8YvqbD+2/vqU0oaxlVJKz2VZtiEiRq5meGFE3D+JvsaOHZiAtWvXjjo+/PDD6w7/O/LII0cdr1lTV9bglBu7kKqWzs7Rm68HBgbG1dm2bVv09j6/iWMii5iKtnn88cdHHb/vfe+L973vfXX3N9L69esn1R4AAJiZBtP455uIiM6scghVlmXRXZobO8rjs+3r2ezeUxqbq9/+8j5zX2pM8EJesNjCOUti/eDaceWtFpZRLSCir9wbe8xZMI2jAQBoXeVUjls33lC1TquF4M4kjQguTik1MBit8ni6W+yZqivrjiyySDE+iK7SZ857Hmm1zwUAAFPB+rzxrM8DgEnY9Fz+ufLQ9I0DAAAAAABakGC09jI2mKy+16lFHDLmeFWNvka+ou6wCv3X01c9bdvb0gMj+7dfNXsU7W/pgc0ewZTYsGF0luGiRYvqvsbYNq22qKdUKjX8mhs3bhx1vGBB/Ru2Fy5cWKjec89V+QX2BG3ZsqXh1wQAAFpfXjDanCz/R37dpZ6cYLR6Nrv3FBxh+8j7zI0KKMsLWFjUsWdOMFprhWX0pfz70GpjBQBopvu33RtrB56pWsf86XmVgrqqacS9G0j9kaJc8Vy9wWt59eeW5tU9rqlUykrRlXVXDH6u9Bny7vNsfFYEAGYo6/OmTxuu0bM+b2KszwOAHNs2558bEowGAAAAAMDsJhitvfznmOOXZVk2L6W0vWD7E2tcb+y5kcFoJ0TEdUU6ybJsj4h4WR19zSpZR0fEfgc1exjMUCmN3iBS79soK2nENVpdd3f3qOP+/v66r1G0zUSuXcvYrzsAADA75AWjdWSduW26S3MrltcXjFb5Gu2snvtWr5RS7nUWdiypWF5vIMNUq3YfWm2sAADNdPPG62vWEYz2vLxgtFKUolwhvKxaYG9R1cKPKwWHVZM3F27FZ6ru0tzoG6rwXFjhM+fdh+6s9T4XAEAl1ucxGdbnTYz1eQCQo6/KzzRT5Rc4AAAAAADAbCEYrY2klJ7OsuwX8XzoWEdErIiIHxa8xCljjqutzL8hIt5ZpW01J8Xo7717U0rP1tEeyLHnnnuOOt60aVPd1xjbZsmSypuwJ2Ooxd5gNfYzjn2zZxFF39y59957jzq+44474oQTTqi7PwAAgME0WLG8WjBaT84G/Eob9vM38fcUGF17yfvMjQj9GkyDUY7Kz8kLOxZXLG+1sIxq46kWLAEAMJus6382/mvb3TXrNSLcq911l+bGjvK2ceWNmCc3cm7bW678/rKe0ry6rjMdekpzY/PQ+N+P1fOsmPe8CQAA7cT6vImxPg8AJqDcWv8/BwAAAACA6VZq9gBouGvGHL+tSKMsy46MiN8cUbQtqgeq/SAiRq54PmHXNYp465jjsWMGJmjp0qWjjh944IG6r/GrX/1q1PGyZcsq1uvoGJ2tOThYeUN+JRNZ2DSV5syZEwcccMDw8a9//evYvr3yZpU8K1euLFRvn332GXU8ka8RAABARMRgGqhYXi0YLS/gq9Lm/7xAgNm42T3vM/eVeyOlNKlrVwu+WDSn8maoVgsbqxYQ12ohbgAAzXLLxusjRe2542AazJ3rzzZ596uewOd6VbtGb51z27x5e08Lhk034llxNoZoAwAw+1ifNzHW5wHAeKmvxs8zy+XpGQgAAAAAALQowWjt558jYuSrYd6UZdnhBdp9cMzxv6WUcld2p5S2R8Q3a1xjnCzLXhwRvzuiaDAi/qXA+IAClixZEoceeujw8caNG+P++++v6xp33HHHqOPjjjuuYr2FCxeOOt64cWPhPv7rv/6rrjFNh+OPP3747+VyOW6++ebCbdevXx//8R//Uaju8uXLRx3/8IfVMigBAADyDabKG2A6so6K5RH1BQjkBQLMxs3ueZ85RTkGUv+krl0t5GxRx56V26TeKKfWWQRdLfysEeEUAAAzXX+5L36y6UeF6wuX3SUnhLhacPFkVbtGPQHFA+WB3Ge2ntK8usc11fKD0cZ/5rz7MBufFQEAmH2sz5s46/MAYIwtNYJMy0PVzwMAAAAAQJsTjNZmUkoPRsSVI4q6IuKKLMtyVyFnWfbGiHjriKL+iPhoge4ujYiRryt/a5Zlv1Oln56I+NquMe12eUrp4QJ9AQWtWLFi1PE///M/F257//33x9133z183NPTE6985Ssr1h37pspVq1YV7uf73/9+4brT5fTTTx91/JWvfKVw2yuvvDL6+4tthD/ttNNizpw5w8ff/e53Y82aNYX7AgAA2G0oNxitM7dNd86PiPpSpc3ulQMB8kII2lm1zzzZ4K9qwQsLOxbnnutPfZPqt5GqBUT05b97AQBg1rhny+2xrbylcH3BaDtVjkXLDxZrSDBalfnrQOqPciq2GbHaHLkVn6m6c8Pmiodot+LnAgCAqWB93sRYnwcAY/zq3urnh1rnZWkAAAAAANAMgtGmWZZlB2ZZdtDYPxGx75iqHZXq7fqzd41uLomIka+PWR4R/yfLsiPHjKU7y7L3RsTVY9p/NqX0WK3PklL6dUT8f2OKv5ll2Z9mWTYy/CyyLDsqIn60ayy7PRfFAtiAOpx77rmjjr/whS/EM888U6jthz/84VHHf/AHfxDd3d0V6x577LGjjq+77rpCffzgBz+IO++8s1Dd6XTOOefEggULho+vueaa+MEPflCz3ZNPPhl/9Vd/VbifJUuWxDnnnDN8vHXr1rjgggvqGywAAEBEDKaBiuUdWUdum+5STjBahQCBvI383dns2+yed98iqgceFFEtvGFRx5Ip67eRqoVHCPUAAIi4eeP1ddU3h9opReWNf/nPNZOfI9cKPi76tal2nbxgt2aq71mx8j2o9twEAADtxPq8ibE+DwBGS1+5pEYFwWgAAAAAAMxugtGm320R8UiFP98YU++AnHqPRMRnqnWQUnoiIt4UESNfj3ZiRKzKsuyuLMuuyrLshoh4PCL+LiI6R9T794i4qI7P86GIGLmSvzMi/j4iHs+y7Posy/4ty7KfR8R/xehQtP6I+N2U0tN19AUUcOqpp8YxxxwzfLxp06Z4y1veEjt2VN/I8fnPfz6+853vDB9nWRZ//ud/nlv/hBNOiHnznt+4cc0118TPf/7zqn08+OCD8Ud/9Ee1PkJTLFiwIM4///xRZWeffXbceOONuW0effTReO1rXxsbN26sq69LL7101IK2f/qnf4oPfvCDMTQ0VNd1Vq1aFbfccktdbQAAgPaRH4zWWbE8IqK7VDnUrFKAQF7Y1Wzc7J533yJqByfUkhcqkEUW8+csqrtdM1QbSysFuAEANMOjOx6Mx3ofrKvNZOeY7SLllPfkPtdMfo5ca/5aPBhte+65vPE3U9FgtJRSfoh2C34uAACYCtbnTYz1eQAwxvpnq58v1/f/LQAAAAAAaDeC0dpUSummiPjdiFg7ojiLiFdFxNkR8fqIWDqm2Tci4g9SSoV/g7Kr7tkRcdWYU8si4oyI+G8R8cpdfe+2JiLemFK6tWg/MJs888wz8eijj07oz26XX355dHV1DR/fdNNNcdJJJ8XPfvazcf2tW7cuzjvvvHj/+98/qvzCCy+Ml73sZbnjXLBgQfz+7//+8PHQ0FC84Q1viB/+8Ifj6vb398dXvvKVOP744+PZZ5+NJUuW1HNLps1FF10UL33pS4ePN2/eHKeddlqcffbZ8c1vfjN+8YtfxC9/+cv44Q9/GO973/vi6KOPjvvvvz96enrijW98Y+F+Dj744Pjyl788quxv/uZvYsWKFXHdddfF4OBgbttHH300Lrvssjj11FPj6KOPjh//+Mf1f1AAAKAtDOQGo3Xktim62T0iP4xhNm52787yP/Nkwxfy73NP1cCEVgnLGEqDuSF9EYLRAABu2fj9utuYQ+1WORqtpzSvYnlfmvx9qzXPzguQruc6rfhMlffsMfZzDKaBKEe5Yt1W/FwAAFCJ9XnNY30eAOyUhoYiNq+vXqlc+edwAAAAAAAwW+TvkmTGSyl9P8uy34iIj0bE70dE3kqHn0bEZ1JK35pgP1sj4g+yLPtmRPy/EXF8TtX1sTNA7ZKU0tqcOjDrveUtb5lw25R2bhA59thj4wtf+EL8yZ/8SZR3/VL07rvvjuOPPz4OO+ywOProo6Onpycef/zxuPPOO8ct9Hnta18bH/vYx2r297GPfSyuueaa4TcyrlmzJl7/+tfHYYcdFi972cuiu7s7nn322fjZz34W27Zti4iIfffdNz71qU+15Jspu7q64nvf+16ceuqp8dBDD0XEznt69dVXx9VXX12xTZZlcdlll8Xq1avHvdGzmnPPPTeeeeaZ+PCHPzz8NfrpT38av/M7vxPz5s2LV7ziFbHPPvvE3LlzY8uWLbFu3bpYtWpV3W+/BAAA2tdQqrxpoyPrzG1TdLN7RH7gV7WwrnbVWeqMOdERQzH+nk82tCKvfXdpbm6Q3c52kwtka5Ra42iVcQIANMPWwc3x8y23VTx35LyXxyM7flUxaMscaqdUZzDa4K7Q3mrPRLXUnt8Wm//3lrdXLO/IOqKzNPHxTZW8MOix35/V7k93lv/8AgAArcT6vOaxPg8Adnnu6Yih/KDOiIgoD03PWAAAAAAAoEUJRptmKaWDprm/NRHx7izLzo+IEyPiRRGxb0Rsi4gnI+LelNIjDerrmxHxzSzLDo6IYyNi/4jYIyKeiYjHIuL2lFJ/I/oCanvHO94RS5Ysibe97W2xdevW4fKHHnpoeFFRJX/8x38cX/ziF6Ozs/amjAMOOCC+9a1vxVlnnRVbtmyp2cfBBx8c3/ve9+LZZ5+t89NMnxe84AVx6623xnve85645pprqtbda6+94sorr4w3vOEN8cEPfnDUuQULFtTsa/dbP9/2trfFM888M1y+ffv2uP322wuNt1Xf7gkAAEy9wTRQsbxaCEB3TqjZ2M3tKaXcDe/VwrraWU9pbmwrbxlXXinIoh659znriTlZR3RknRW/1pXC7Jqh1jiEegAAs9kdm/5P7rz95MW/FU/1rY6+oQrBaJOcY7aNyrloVcOa+8q90TFn6oLRis7De3Ofp1ozaDrvno69H9U+/2wM0QYAYHazPm9irM8DgIh45rHadYYEowEAAAAAMLuVmj0ApkdKqT+ldGNK6YqU0idTSn+fUvp2o0LRxvT1SErpW7v6+OSuPm8UigbT781vfnM8/PDDcf7558fee++dW6+zszNe97rXxe233x6XX355oUVXu5166qlx5513xhvf+MbctzAuXbo0PvCBD8R9990XRx11VN2fY7rtu+++8e1vf3t4AdZLXvKSWLx4cfT09MQhhxwSp59+enzpS1+Khx9+ON7whjdERIx7U+SiRYsK9XXGGWfEI488Epdddlkcc8wxNd9k2dnZGcuXL49LL700HnjggTj//PMn9iEBAIAZrZyGohzliueqB6NVDjUbu9l9IPVHyrn+bN3snnfvJhtQlhd6sbu/ogEFzdKo4AgAgHZTTkNx66YbKp5b0rF3vHT+cYXn57NVyklGqxWMNhl9DQr+7S1vr1jeU5pX95imQ9Hnnb6Uf39ma4g2AACzm/V5E2N9HgCz3pona9dJlddsAAAAAADAbNHR7AEAzHaPPvrolF5/2bJl8bd/+7fxuc99Lu6+++745S9/GWvXro2+vr7Ye++948ADD4wVK1YUeoNiniOPPDKuvfbaWLduXdx8883xxBNPxPbt22OfffaJgw8+OE466aTo6Hj+fzmnnHJKpFR5M0sl9dQd64orrogrrrhiQm1XrFgRK1asKFR31apVw3/PsiyWLVtWuJ+enp54z3veE+95z3ti/fr18dOf/jSefvrpWL9+fQwMDMT8+fNj2bJl8eIXvziOPPLImDevNTfNAAAA02cwDeae68jyf+SXH7I1enN7tTCr2brZvXuKAsry2u/ur7vUE1uHNldo1xqBY7U+f17wGwBAu/uvbffEcwNrKp5bsfj1MSebM2Xhu+2iOcFoNea3Ba+fN19v1aDp/JC+McFoVT7/bH1WBACg9VmfV5v1edbnATDNerfVrlMemvpxAAAAAAAz1rotKbb0PX+8dH7E/J7qLwmCmUYwGsAsUSqV4rjjjovjjjtuyvrYe++94/d+7/em7Pqtatu2bXHPPfcMH7/4xS+e8EK2PffcM84888xGDQ0AAGhTg2kg91xH1pl7rjvL2eyeeqOcylHKSjuPqwajteZG/qk2VaEVefd6d3/dWbEwu2apNY7JBlMAAMxUN2+8vmL5nOiIExe9NiKKBxfPXpU35ld7Jpn0/DxVb1/0+jvK2yuWt24wWrEg6LzPX4pSdGZdDR8XAADMJNbnTR3r8wBoO/0Ffo9eLk/9OAAAAACAGeeex1Kc+9VyrHp6dPnX357Ff/9NwWi0F8FoADBJV155ZWzf/vwGlxNOOKGJowEAAGaDwTSYe65qMFqVTfj9qS96doVwVdvsnxcQ1u7yQysmF/yVd69395d3v/tSawSO1RrHZIMpAABmorX9T8eqbfdUPHfsguWxsGNxRFSZ6wmXjYi8WLSd9y2LLFKFGpMNleutce+Lfm3yxtG6wWh534s7IqUUWZbtOq78+btLPcN1AAAAGs36PADaTqFgtKGpHwcAAAAAMKNs3pHi1M+WY7NlpswSpWYPAABmsieeeCIuuuiiUWXnnntuk0YDAADMFoNpIPfcnCz/XQjVQs1Gbtyvttm/VTfyT7VqQQGTUS1YoFq/rRI4VuvzT/b+AADMRLdsvCH33MlLzhz+u2C0WipHo2WRTdm9a9T8Nj8AeV7dY5oOeSHa5SiPev7Mf36Znc+JAADA1LM+D4C21N9fu45gNAAAAABgjG/fm4SiMasIRgOAEb71rW/FX/zFX8TatWtr1r333nvj5JNPjvXr1w+XvfyA4QheAAAgAElEQVTlL4/XvOY1UzlEAACAqsFoHRMORusd8ffKm/jnREd0ZJ0FRth+8jb6T3UwWl4QXauEZdQaR6uMEwBguvSX++Inm35U8dyB3QfHIT1HDB93Z60912u2lHKC0bIsurOpCRCude+LXj8/GK01A8R6JvmsKBgNAAAoyvo8AIhI/QV+BlwuT/1AAAAAAIAZZeWTzR4BTK/8XZIAMAtt2bIlPvGJT8RnPvOZOOOMM+K0006Ll7/85bFs2bLo6OiI9evXx8qVK+Pf//3f47rrrhu1KaerqyuuvPLKJo4eAACYLQbTYO65zirBZdU24Y/cuN+XKi/CbdVN/NMhL1Ru0sELOfd6d0hGXsDAZPttlFrj6Cv3RkopsiybphEBADTXz7fcGtvLWyuee/XiM0fNi3LDd1NrzPVaWXdpbsTQhnHlefPromoFHxe9/kwLRssL6YvY+Vnmx8KIqB3sDAAAUIv1eQAQEYWC0YamfhwAAAAAwIzy6LrKL5yFdiUYDQAqGBgYiOuuuy6uu+66QvXnzp0b//iP/xgvf/nLp3hkAAAAEYNpIPdcR5VgtLzghYjRG9zzNvHP5s3ueQEGecEARdW611PVb6PUGkc5hmIwDURn1jVNIwIAaJ6UUty84fsVz80tzYvjFp48qixvfl0rnGu2KEe5YnkWWZV7N9lgtOrti16/t7y9Ynm1Z7JmqvasNzKoL/f5JZu9z4oAAMDEWJ8HwKxWKBit8s9HAQAAAIDZ65F1zR4BTK9SswcAAK1k8eLFMWfOnLranHjiiXHLLbfEm9/85ikaFQAAwGjVgtHmZPnvQpiTzckNqBq5wT1vs3+rbuKfDnkb/fOCAYrKu9e7A9FaPSyjSDBEq4S4AQBMtUd7H4jH+35d8dwJi06LrlL3qLKpCvdqf1nus8lk58m1g9GKXT+v3tzSvLrHNB3yApkjRt+TkSFpRdsDAACMZH0eAETBYLShqR8HAAAAADCj5AWjffR3snjjMdn0DgamQf4uSQCYhc4666x49tln44Ybbojbb789Vq5cGY899lisX78+ent7Y+7cubHnnnvGi170ojjppJPizDPPjBNPPLHZwwYAAGaZasFoHVln1bbdpZ4YGOofVz5ys3te2FdecMNskLfRf7KhFXmBCbvvdX7gQ2uEZRQKRks7Yn4snIbRAAA0180bv5977uTFvzWuTDBadSlSxfJSZFMSIFxO5ehLtYLRin1tduTO81szQKwj64xSlKIc5XHnioVoz95nRQAAoD7W5wFARAyMX7MxTnn8z+oAAAAAgNlrw7YUm3KWSJ5yRBZ7dAtGo/0IRgOAMfbaa68455xz4pxzzmn2UAAAACoaTIMVy0sxJ0pZqWrb7lJPbB3aPK68r8Bm97xwsNkgN6AsTTx4IaJ2sMBUBD40UpHPnxe0BwDQTrYMbox7ttxe8dxR846JZV37jyvPm1+bP+1WORgtsmrBaBMPletPfTXrFL1+3ny9VZ+psl33dEd5+7hzQrQBAIBGsz4PgFmvv8DPGQWjAQAAAAAjPLIu/9zBe0/fOGA6Vd8lCQAAAAC0nME0ULG8M+us2bY7ywn4GhWMZrP7WLnBaJMIXkgpVQlG29lfd1b5nrdKWEaRcUzmHgEAzBS3b/o/uQHGr15yZsXyqZhjtpOUl4sW2ZSEyhUJHy56/d4KAWMRrRuMFlHt+1GINgAAAAA0VKFgtKGpHwcAAAAAMGP8OicYrasjYv9F0zsWmC6C0QAAAABghskLXJiTddRsmxdu1peeX3ibH4w2eze75923yQQvDKaBKEflxcy773VewMDIr1czFQntEOwBALS7chqK2zb+oOK5PTuWxm/s8cqK53Ln5uZPERGRIicZLabm3hUL/a1dZ6A8kPvM1soBYkWC+moFOwMAAAAABfQVCUYrT/04AAAAAIAZ45F1lddUvmjPiFIpm+bRwPQQjAYAAAAAM8xgGqhY3pF11mybtxF/ZAhAXiBAXvjAbJB33wbTQAzlhB7UUi20oTvbea/zAx8mHsjWSEWCJyYTHgcAMBP857a7Y/3g2ornTlp8RpSyORXP7Z7zjTUUg7lz/tml8iKeLLLozhofIFwo9LfA9avN1XtK8+oa03QqEjaXH6I9e58VAQAAAKBu/X2165Qrv2QNAAAAAJidHllXufzgvad3HDCdBKMBAAAAwAyTF8TVkXXUbFtss3vlzf554WCzQbWN/kUCFCq2S9UCE3p2/TcvkK01wjIKhUdM8P4AAMwUN2/4fsXyjqwjli86PbfdVMwx20nlWLSdwWhFAp/rVWxuW/v61cbQys9URe5p3j3qbuHPBQAAAAAtZ0AwGgAAAABQn0fXVV5VedDe2TSPBKaPYDQAAAAAmGEGcgKxOrLOmm3zNqyP3OCet5G/O8sPbmh31QIMJhq+UC14YXdIRrWAgf5ygcXSU6xIMESROgAAM9Wz/U/G/dvvq3ju2AUrYkHHoty2UzHHbC950WjFAp/rVeSeFwko7i1vzz3XU5pX97imS97z3shAZ8+KAAAAANAA/QV+jlkuT/04AAAAAIAZ45F1lcsP3nt6xwHTSTAaAAAAAMwweRvxO7KOmm3zwhdGbnDPCxOoFtzQ7vKCFyImHr5QPRhtbs1+WyEso8hnn0w4BQBAq7t14w255169+MyqbauF4JpDRaScYLQssirBaBOfIxe957UCiqvN06t9zZst73lv5H3Ju7+z+VkRAAAAAOpWKBhtaOrHAQAAAADMCOVyikefq3xOMBrtTDAaAAAAAMwwQ2mwYnlH1lmzbZEAgb5UebN7K2/in2rVQysmFr6QF5iQRSk6s64C/TY/LCPve6XeOgAAM1FfuTd+sulHFc+9oPuQOKjn8KrtpyJ8d1bIstx58uSC0Yq1rRVQ3FveXrG8I+uIzlLtZ7Zmyft+3P15y6kc/alyKFy172UAAAAAYIz+6i9fiIiIcnnqxwEAAAAAzAhrt0b0Vd5KFgfvnU3vYGAaCUYDAAAAgBlmMA1ULC8WjJYXINBb8e9F2s4GXVl37rlawQh58u9zT2RZNvz3RvfbKINpIAZzQvpGEuoBALSruzbfEjtyQrBeveTM4Tldns6sK7KoXGcyAV/tIKWUey6LaoHPvVXbVlP0ntea3/bO0Oepavc0IqI/9UWKyve21T8bAAAAALSUQsFoQ1M/DgAAAABgRli/Lf/cfoumbxww3QSjAQAAAMAMkxuMVioSjJa32f35EIC8wK1qIV3trpSVojur/PknHoxW+z53Zd0tG5bRXy6wWDsEowEA7SmlFLds/H7Fc/NK8+NVC06qeY1SVsoN4G12CG6z5QVw7ZTlBnGVo5z7vFRLXyo2b601D88731OaV/eYplOtEO1q8/oewWgAAAAAUFx/gZ9FCkYDAAAAAHbZWPkdvhERsaS1lybCpAhGAwAAAIAZZqCcE4wWHTXb5oV77Q4BGEqDuUECs32ze62ggHrltRv5NWrlsIyi/Td7nAAAU+HXO34ZT/Q9WvHcCYtOi65S5TncWHlz7NkeLlstGK0UWfRUCW2eeHBxsXte6/q95corkFr9eSr/eWfHrv/m35/ZHKINAAAAAHUrFIxWnvpxAAAAAAAzwoacYLSOUsS8rukdC0wnwWgAAAAAMMMMxWDF8o5SZ822eZvxe212ryk/tGKCwQspJxhtzH1u1bCMov03e5wAAFPhlo3XVyzPIouTF59R+Dq5YVQ5c8XZIz8YLSKL7iw/ZGyi88+igWq1rp93ndYPRssJ0d71eas998z2Z0UAAAAAKCqlVDAYbWjqBwMAAAAAzAgbt1deU7lkj4gsy6Z5NDB9BKMBAAAAwAwzWM4JRss6arattdm9WhhAq2/kn2q5926CoRVFAxNaNSyjaCDcRIPjAABa1ebBjXHPljsqnnvJHq+IpV37Fb5Wrfn5bJWqBKNlkVUN4upLEwwuLhr8W2Me3luu/GrGVn+eqhUELRgNAAAAABpgoL9YvXJ5ascBAAAAAMwYGyovS4zFrb0sESZNMBoAAAAAzDCDaaBieUfWWbNt3mb3wTQQQ2mwahjAbN/snhdQVi1Mrpq8ez22n/ywjOYGjhUOjpjloR4AQPu5fdP/jqGoHFZ88uIz67pWq871mi3l56JFZFnVkLHeCc4/i87ra9XLO5/3PNEqurPK34u9w8Fole9rR9ZR6FkUAAAAAIiIgb5i9cpDUzsOAAAAAGDG2JgTjLZk3vSOA6abYDQAAAAAmGHygtHmZB0121bbjN9X7q0awNDqG/mnWl74wkSDv/Lu9dhwjLz73uzAsb5UrP+JBscBALSioTQUt268oeK5vTr3iaP3eEVd18uf6832OVR+MloWO0OhSznLHSZ674q2qzUPz5v/zi219gqkvJC+/tQX5VTOD3zLZvdzIgAAAADUpb/g7/nL5akdBwAAAAAwY2zIC0bbY3rHAdNNMBoAAAAAzDCDabBieUfWWbNt3mb3iJ0b+KuFWHVl3bUH18by7t3EgxcqL3geH4xWud9mB44V7b9ogBoAwEywcutdsXHwuYrnTl58RpSyOXVdL3+OObvnUKlqMFoWWZY1/N4VbVdr/p8bINbiQdN5QdApUgyk/tx5fbVnTAAAAABgDMFoAAAAAECdNuYsW1w8N5vegcA0E4wGAAAAADPMYBqoWN5ZKBgtfzN+X7k3P6wr64lSNrt/nJgXFNDo4IWxwQL5/TY3GK14cMTsDvUAANrLzRu/X7G8I+uMExadVvf1BKNNxM6FPHnPNhOfnxcM/q1x/d5y5Vcz5s3rW0W1Z8VqIdqtHvgGAAAAAC2lr2gw2tDUjgMAAAAAmDE2bqv8stnFe0zzQGCaze6djAAAAAAwA+UFo83JOmq2zQteiNgZBGCze768e5d3z2rJazc2MKFVwzLqCY5IqfIvYQAAZpJn+p6IX23/RcVzr1qwIubPWVj3NbuznHCvNLuD0VLkzx93v98wPxhtYvPzove81vXzzrd+MFq1Z8UqIdpV2gEAAAAAYwz0F6uXylM7DgAAAABgxthQ+X2tsbi1lyXCpAlGAwAAAIAZJi8YrSPrrNm2K+uObDhKYLS+cm9uGECrb+KfDtMVvDA2HCPv3k80kK1RigazpSjHQCq4uBsAoIXdsvH63HMnLz5zQtdsdPhuu6gWjLY7Gq3RAcJF29WqtyM3GG1e3WOaTtWe+frKO3I/t2dFAAAAAKhDf8Hfsw8NTfFAAAAAAICZYmNOMNqS1l6WCJMmGA0AAAAAZpjBNFixvEgwWikrRVfWXfFcb3lHbshXXujAbNKdNTa0Ii9YYOy9bnTgQ6PU0/9Ew+MAAFpFb3lH/HTzjRXPvajn8Dho7uETum5eqFSz53qtLMt2BaPlzM/70sTmnkXn9XkBx8Pnc4PRWjtArNozX59nRQAAAABojILBaFEWjAYAAAAA7LQhJxhtsWA02pxgNAAAAACYYQbTQMXyIsFoERHdeeELqbdKWFdrb+KfDo0OrSgaLNCd5fXb3LCxegLhJhoeBwDQKu7cfHP0liuvLHn14t+a8HXzQ3Bn9/wppZR7Ltv137z5+UTmnkNpMPc5q97r532ftHow2pysI/eZsq/cW+X5pbU/FwAAAAC0lMLBaOWpHQcAAAAAMGNszFm2uGReVvkEtAnBaAAAAAAwwwymwYrlHVlHofbVAgTyNvnnBTbMJo0OrSgaQpfbb5pYIFuj1BMIN9HwOACAVpBSils2XF/x3B5zFsQrF6yY8LXz55izff6UH4y2OxqtkfeuUXPbwTSQ+7zW6sFoEfn3tLe8o8rzi2dFAAAAACiscDDa0NSOAwAAAACYEcrlFJtyti0tnje9Y4HpJhgNgIZYvXp1/OVf/mWcdNJJsc8++0RXV1dkWTb854orrmj2EAEAANrGYBqoWN6RdRZqXy1AIC/kayZs4p9qYwPLdptIQFlKKfdej/365PWbF2I3XfpS8f4FewAAM9nDO1bFU/2PVTy3fNHp0VnqmvC1c+eYs3z+lKoEo2VTEIxWz9y6WjBytev0/P/s3XmcHGWB//Hv09Mz3TO5JmQSAkRICDcIGOW+AiIgouuBB14rIovXeqDrrusB7LreirqKJyJe/EBAUYFwbQj3lQDhNiSThDNkkkyume7p7np+f0wmme6pp7qqr+nj8369eJG6nnq6qqf7qern+Vas/nsgJYw7lNkZou3YBgAAAEBl0T8PAIAmMTQUbj3rVbceAAAAAAAAABrCppRkHV0qp9Z/t0SgLPHxrgAAtLrZs2dr1aodg2kWLlyo+fPnj1+FSvDLX/5S//qv/6p0Oj3eVQEAAACAlpCzWd/5cRPudp87QGDQGSLg2qaVuMLh0l5K1loZY0KXlbUZefLvyFwYjhG03/EUZf+lhMcBAADUi0X9N/rONzI6bsppZZXtamenvMHIbcxmEiYYzdVOLiVAOErbNqj8VC4oGK3+w6aDrj1cx6gRXhcAAABaG/3zAABAXRkKeS8yl6tuPQAAAAAAAAA0hA0D7mXdBKOhycXGuwIAgMZ2ww036Lzzzgvd6er222/Pe1LlhRdeWN0KAgAAAEATytqM7/y4aQ+1fWHw1oi0N+gc5M9gd/dxs7IastEGIwUFLyRMfjiGO8huOJBtvFQqPAIAAKCebcyu18Ob7/VdduCE16qnY+eyyk8a/zamp5yyjkDkVhAUjKZtwWju65roobyRQn8D1g1q9yZj9d8DyXVMUwHXiq5tAAAAAFQG/fMAAGgyYYPRPILRAAAAAAAAAEjrtriXddN9D00uPt4VAAA0ti9+8Yt5g7Df+9736pxzztGrXvUqtbfvGJDf09MzHtUDAAAAgKaUcQajhbvdFxS0lXYOdvffppUEHYOUNxjpGKVtUGBCuGA0K08ZO6QOkwi930pyvVfKXRcAAKCe3N1/izz5D0A7YerpZZcf1IZM20G1K1z4cdMJyEUzw7loAdc10due0dq2wwHFZqQio6Q896MZGyFALPBa0foP2ORaEQAAAKgu+ucBANBkciEfiEEwGgAAAAAAAABJq9b5z++ISztNqG1dgFojGA0AULJnnnlGS5cu3T59+umn6w9/+MM41ggAAAAAWkPO+neUjZtwoQlJx4D8lDeotOcY7G7qfxB/tbmOmyTncStl/cLAhOD9DqojNl7BaOFfc9TjAwAAUA9yNqs7N97ku2x6+0zt33Vo2fsIDEbzUprYNrnsfTQiG5CMZjQcSOYKGiul7ekK/fLjKaeszajddPjs2z9grU1xtcfqP+TOfUzd14pB1ysAAAAAykP/PAAAmlDYYLSw6wEAAAAAAABoaivX+fen3GMnKRYb+4BXoJnExrsCAIDG9dBDD+VNn3nmmeNUEwAAAABoLVmb8Z0fNhjNFb6Q9lJKOQbyBwU2tIrg0Ar/4+biOs5++wnab1A51RYlcGI86wkAAFCqR7c8oI3Z9b7Ljus+TTFT/s/triAqKXobs7m4g9E0EoxmXNc10Y9b1G1cbeFBRznJtsYID3NfKw46jxHXigAAAED10D8PAIAmFDoYzatuPQAAAAAAAAA0hJXr/OfP6altPYDxQDAaAKBka9asyZueNWvWONUEAAAAAFqHZ3Py5N8BNnQwmvEflJ+2KaWt/wD/ZEBgQ6uoZDCaK0jBKKZ201Gw36CwjPDhZJWWtuFf83jWEwAAoFSLNtzgO7/ddOioKa+vyD6C2tmt3IYKjkXbFozmCvFyXNMESUU81q62sOu6oFGup1zHdMDbqowdirQNAAAAgPLRPw8AgCYUOhgt5HoAAAAAAAAAmtrKPv8elXtMMzWuCVB7BKMBAEq2ZcuWvOn29nAD8AEAAAAApctad+fXuImHKsM1KD/lDToH8geFc7WKuGl3HuNUhYLRErGkjMn/ccIVZFfKfislazOB78VCrRzqAQAAGtOL6dVaNvi477LXTT5OE9omVWQ/7aZje9BXoVZuQ9nAaLRhruuatJeStcW3z98mWrva1Q5PeQO+85OxrkjljxfXMd2c3Rh5GwAAAADlo38eAABNKJcLuR7BaAAAAAAAAACklev858/uqW09gPEQbqQkAKDhWWu1ZMkSPf3003rllVeUTqc1ffp07bbbbjr22GM1ceLEyGV6nleFmgIAAAAAgmRtxrksbsINiEnEkr7z096gM3yBwe7DErFOZXObx8yPGlrhDqAbe27aY+1qU1w5je34nLbjE5ZRqdcLAABQr+7sX+BcdkL36RXbjzFGiVjSN2hrvEJw64M72GwkSM4V3mxlNWTTShj/6x4/0du3/uu7zlmjXE+5jtnG7Hr3Ng3y2gAAAIBqo38eAAAIJWzgmRcyQA0AAAAAAABA07LW6okX/ZfNnlbbugDjgWA0AGhyfX19+vrXv67f//73Wrt2re86HR0dOumkk3ThhRfqiCOOcJa1cuVKzZkzx7n8xBNP9J1/2WWX6eyzz/ZddtFFF+miiy5ylrlw4ULNnz/fuRwAAAAAWk3WujvJhg9G8x+4vjm7UdYRQOAKU2s1CZPUVo0NRosaWhE1gC4RS2rA2+JTzviEZUQOjrCtHOoBAAAaTcob1P2bFvoum5PcV7sn51Z0fwmTVEpj20tR21zNxB2LNhwmJwVfo6S9VKRrmEq151PegO/8hglGc9RzU26De5sIAXQAAABAM6J/HgAAiCRs4FnYADUAAAAAAAAATev/PejuTTl7mqlhTYDxERvvCgAAqucvf/mL9txzT1188cXOTleSNDQ0pAULFujII4/Ueeedp2yWH1IBAAAAoF5lbca5LG7CPQfBFRDgF7y1Y5vGGMhfba5Ag7SNFlrhCl5whQq4ztl4hWVEDkZr4VAPAADQeO7fuNDZXju++40V35+rrT1eIbh1wQZFow0LCj6rVNBZ1PKd7fwGuZ5yXe8EBXQ3ymsDAAAAqoH+eQAAICobNvCMYDQAAAAAAACg5f1kobsv5ZyeGlYEGCfhRkoCqB0vKw08P961aH5ds6RYc38E/vrXv9a5554rz/Py5s+dO1cHHHCAurq6tHr1aj3wwAPK5XY8eeoXv/iFVq9erb/97W+Kx5v7GAEAAABAIwoKRmsrMxit0ts0o0qFVriC1FzH2RVQEDXwoVIiv16C0QAAQIOw1uqO/ht9l01sm6J5k46p+D6dIbgRw3ebiZW7M4/R8FMOXW1kqfrtVdf6rvZ5Z6wrUvnjpbRrxUQVagIAAFBF9M+rnSbvo0f/PAAAUJKwAakEowEAAAAAAAAtr3/AvWzGpNrVAxgv/KIO1JuB56W/zhnvWjS/t/RKE2ePdy2q5pFHHtHHPvaxvE5Xhx56qH7yk5/o6KOPzlt37dq1+spXvqKf//zn2+ctWLBAX/3qV/X1r389b91Zs2apt7d3+/QPfvAD/fCHP9w+fcUVV+jII48cU5+enh7Nnz9fknTffffprLPO2r7s05/+tD7zmc84X8vMmTOLvFoAAAAAaC1Z6+782m7aQ5URFCBQyW2akSsoIGpAmStIwRW85gzLGKdgtKivd7wC3AAAAKJaNvi4Xhp6znfZMVNOVnssXJs7Cnf4LsFofkaC0YJCvCIHndmo7Xn/9V3tXtc5rjdRg9HaTYdipq1KtQEAAKgS+ufVThP30aN/HgAAKFnYwDMvV3wdAAAAAAAAAE3tyZf8509ISLGYqW1lgHFAMBoANKFzzjlHQ0ND26ePPfZY3XTTTerqGvs0+unTp+tnP/uZ9tprL/3bv/3b9vnf+ta3dNZZZ+nVr3719nnxeFyzZ8/ePt3d3Z1X1syZM/OWjzZx4kRJ0sqVK/Pmd3d3O7cBAAAAAIyVtRnnsnjIYLSog91L3aYZVSq0whWk4Aqgq7ewjOivt3VDPQAAQGNZtOFG3/lGMR3bfWpV9llvIbj1biQYLW7a1aa4cho7kDDqsYu+vn/7Nmo7v95EDXBrlNcFAAAAVBr98wAAQMnCBqOFXQ8AAAAAAABAU7pnufsBsz9/P6FoaA2x8a4AAKCyFi5cqCVLlmyfnjx5sq688krfTlejff7zn9cZZ5yxfdrzPF188cVVqycAAAAAoDSVCEaLOng9buKhy252rmOXqlCQgisUwzU/6n4rJW0JRgMAAM2nP7NOj265z3fZqye+TtPaZ1Rlv/XW1qsHVl7A0h0delzt82q3V9PW/9ykvAHf+Y0SIJaMGIhNgDYAAABaEf3zAABAWUIHo+WqWw8AAAAAAAAAde1rf3f3o3zVTgSjoTUQjAYATebyyy/Pm/7EJz6hXXfdNdS23/zmN/Omr7jiCqXT6YrVDQAAAABQvqBgtDYTD1VGwkQblB91/WbmGvgfNUjBFXLhKt8Z+DBOgWORgyNaONQDAAA0jrs23izPEch1fPcbq7bfemvr1QPrftChzKj+PNVun7u4yneVk4wFByTUi0TEALdGCXwDAAAAKon+eQAAoCwEowEAAAAAAAAIYcET7mVTG6NLIlA2gtEAoMncddddedPvf//7Q2974IEHat68edunU6mUFi9eXLG6AQAAAADKl7X+nWRjalPMhLvd5woPqNT6zcwdWlGZIAXXsXaF041X4Fjk12tT8qz7aTUAAADjLWszuqv/Zt9lM9p31X5dh1Rt35UK92ouAclo2pGM5jp2lQo6c3GV7w5Ga4wAsajBaFHXBwAAAJoB/fMAAEBZwgaehQ1QAwAAAAAAANA0rLW65Umrz/0pePxNN8FoaBEEowFAE9mwYYOWL1++fbq7u1v7779/pDKOPvrovOkHH3ywInUDAAAAAFRG1mZ857eb9tBlxE27YmoLvT6D3XdwHYuoQQpp6whGcwSg1VtYhivwIR7wPhyy6WpVBwAAoGyPbr5fm3IbfJcd331a6BDiUjhDcB1txlZgA4LRTF4wWnWDiyfEJkVa39VObpRrqoSJGKIdcX0AAACg0dE/DwAAlC1s4BnBaAAAAAAAAEBLyXlWH/y11WxCGWAAACAASURBVKk/8HTxLUEPl5WmEoyGFhEf7woAKNA1S3pL73jXovl1zRrvGlTF2rVr86b33ntvGWMca/vbb7/98qZfeeWVsusFAAAAAKicrPXv/Npmwt/qM8YoEUtq0Nsaav1kgwzirwVXQJkrAMHFFaTgKt91DsYrLMNV/ynxqVqX8b+XkPZSvJcAAEDdWtR/o+/8DpPQkVNOquq+6y0Etx4Ed+nZoRLHzlrrbM9Pjndr69DmUOVnbcYZZN3ZIO3gRCwRcf3GeF0AAAB56J9XO03YR4/+eQAAoGxerrLrAQAAAAAAAGgKNz8h/eH+cL0nuzqqXBmgThCMBtSbWFyaOHu8a4EGtWHDhrzpKVOmRC6jcJv169eXVScAAAAAQGW5BtrHTXukcpKxztDBaK6wgVbkDCiLHIzmv74rWKBSgWyV4gqamNwWFIw2KGlqFWsFAABQmhfSK/Xs4BO+yw6bfLy62iZWdf/11tarD+7OPUY7QgcqEYyWtVl58h9kODk+VS8NPedT/thzE3S+GiVALGba1GESGrLpUOtzrQgAABoS/fNQBvrnAQCAsuX8H4ZX8noAAAAAAAAAmsJfl4Z9pKwiP7wJaFSx8a4AAKByrM1v7FSiQUOjCAAAAADqS876d36Nm2jPQIgygL1RBvHXQsKUH7wwvL4rGM2/fNc5iBrIVinOYLR4d+RtAAAAxtsdGxY4l53QfXrV91+p8N1mYkMGo7mOXZRQuaDjPCXuH+zrV34q5y6nM9YVuj7jLdq1IsFoAAAAaC30zwMAAGUjGA0AAAAAAABAgWzO6soHwwWjvWNelSsD1BGC0QCgiey000550xs3boxcRuE2U6f6D/gAAAAAAIyPjM34zo+b9kjlRAk7Y7D7Ds7QChs+eMFa6wwJcwej+c9PjVPYmOv1TnYER0itHewBAADq12Buqx7YdLvvsrmd+2tWck7V6+Bq6xEs6zAqNCBhXKFy4Y9dUFt+cpt/+9av/KAwtkYKm3Zd85S7LgAAANAM6J8HAADKRjAaAAAAAAAAgFEeWmnV8TFP/QPh1v+3U4mKQuvg3Q4ATWT69Ol50//4xz8il/HMM8/kTc+YMaOsOgEAAAAAKivrDEaLRyonGSHsjGC0HVzHImuzznMzdt2MPHmO8v2DBdxhGeMTNubab1dsojOkLygoAgAAYLzct2mh0tY/ROv47tNqUgdXGzDtpWRtuCcANpug121G/dvZTnacU991A0LUpjiCf/3KT3nuXknJWFfo+oy3KNd/XCsCAACg1dA/DwAAlC1s4JmXq249AAAAAAAAAIy7nGf1tkv8xxcVeuuh0mMXxnT4HFN8ZaBJEIwGAE1k6tSpmjt37vbp/v5+PfXUU5HKuOeee/KmDzvssIrUbYQxNLQAAAAAoBxZzxWM5h9G5eIKX/CTjLBusws6bkGBCmHXcwXWuc5Bxg4pZ2vfIdr1GhKxZECIW/hwCgAAgFqw1uqO/gW+yya1TdGhE4+uST0Sxr/95CkXOny32VgFBaPt6ObgaidHCRAOCvCd7ApG89nGtc82xdUei3a9Np6iXCtGWRcAAABoBvTPAwAAZQsbjBZ2PQAAAAAAAAAN665l0gv9wess/nJM3i/adO3H23TgrvwWiNZCMBoANJljjz02b/oPf/hD6G2feuopLV68ePt0MpnUa1/72orVTZISiUTedDqdrmj5AAAAANDscvLv/Bo5GM1EGOzuCGpoRUED/4MCFUZLW/d6rvMStN+hcQgcCwpGc4ZTWILRAABAfXlmYKnWDD3vu+yYKafULMyqEuG7rWR0tx53KG/4YDTXMTaKaWLbZOc21uaHtw069plsa6zwMEK0AQAAgGD0zwMAAGUJHYxW+wekAQAAAAAAAKitKx50P0RWkiYmpH13rlFlgDpEMBoANJkPfvCDedM//vGP9fLLL4fa9otf/GLe9Hve854xHaXK1d3dnTf90ksvVbR8AAAAAGh2WZvxnR+PGNrgChDww2D3HYKORdjQiqAANdd5qcR+K8m1z2Ss0xmkFzY4DgAAoFYW9d/oO98opmO7T6lZPZIBbfOgUN1mZhXU2WdHNJo7GC18G7mU0F8rq4wdKijHEYzWYNdTUYKxo1xXAgAAAM2C/nkAAKAsYQPPCEYDAAAAAAAAmtbiVVZHfD2nX9wRHIx2zrFGXQkTuA7QzAhGA4Amc9JJJ+nQQw/dPr1x40adddZZGhwMHjhz8cUX67rrrts+bYzRZz/72YrXb88991RHR8f26YULFyqT8R/UDwAAAAAYK+M5gtEUj1ROlAHsiQYbyF9NQcfNFYQwdj13SIOr/KBwgvEIHHPtMxFLOt8v4xHgBgAA4LIh06elWx7wXXbwxMO1U/v0mtUluI3Zqm0od2cfEyIYLUob2bVuMtYZeC1UuJ27nK7QdakHka4VI4SoAQAAAM2C/nkAAKAsuWxl1wMAAAAAAADQUF7eaDX/u54eXFl83e++k1A0tLZooyUBAFX38ssva+XKlSVtO3v2bEnSpZdeqqOOOkpDQ8NPqr/99tt13HHH6Sc/+YmOOOKIvG36+vp0wQUX6JJLLsmb/4UvfEEHH3xwSfUI0tHRoWOOOUYLFy6UJK1evVpvectb9NGPflR77723urryB4fMnDlTySSDKgAAAABgRE7+nV/jsfZI5SQjhJ0RjLZDh0nIyMj6BDWEDa1wrWcUU7vp8F0WdA7StvZhGa7XkIh1OoMUWjfUAwAA1KO7Nt4kK8932Qndb6xpXQLbei3ahvJswFMQR/XzqUQoryvgeDj0t1gwcvf26ZQ34LtelGuvesC1IgAAAJod/fPonwcAwLgiGA0AAAAAAABoaX+432pruvh6u3ZLbTGC0dDaCEYDgDpz1llnlbyt3TZIZN68efrxj3+sj370o/K84UE9ixcv1pFHHqm99tpLBx54oJLJpJ577jk98MADymbzfzh9wxveoP/+7/8u/UUUcf7552/veCVJCxYs0IIFC3zXXbhwoebPn1+1ugAAAABAo8l6jmA0E+1WX9AA/3LWbXbGGCViSaV8whP85vlxhTQkY0kZ4/+jRSKWcJYXdr+VkrUZZ0BfwiQDwilqW08AAACXrM3o7v5bfJft3DFL+3ZVfmB6kHbTIaOYb1Bbrdt69cMdjGZGJaO52p5DNi3P5hQzbUX35Az9NcWC0fK3c52rRgtG41oRAAAAzY7+efnonwcAQI3lcuHW80KuBwAAAAAAAKChPPpcuPU+9wZC0YDYeFcAAFAd5557rq688kpNnDgxb/6zzz6r6667TldeeaXuueeeMZ2uPvzhD+v6669Xe3t71ep2xhln6Gtf+5ra2ooPRgEAAAAA5MvajO/8uIl2HRdlcH6jDeSvtnKDv1zrucqVpJhpU7vpKGu/leIKjpCGgxFc4QgEowEAgHrx8OZ7tSnX77vs+O7TnGG11TISvusnqO3VzGzYYDQTFFwW4pGKktLW3T4PuhYqDEJLeQPOchpJtGC0xnptAAAAQCXRPw8AAJQk5/8QspLXAwCgjj2/weqTf/QU+5fc9v/OudzT4y+4fwsEAAAAgGbX2xfumujdhxGMBhCMBgBN7Mwzz9Ty5cv16U9/Wj09Pc712tvbdcopp+juu+/WpZdeWtVOVyO+9KUvaenSpfqP//gPHX/88Zo5c6Y6Oxk8AQAAAADFuILR2kw8UjnRBruHX7cVuMIXCoMRXFzrFTvOrlCG+gpG6yTUAwAA1L07+m/0nZ8wSR05+cQa12bbvgmXLUlQcFnahmt/utqpiVhScdOuNvlfaxWW7yqnM9YVqh71IkrYGSHaAAAAaHX0zwMAAJERjAYAaBFrNlkd9Q1Pl9yeP+D/srutjv2Wp8eeJxwNAAAAQGvqXVd8nQWfjmnXboLRgGijJQEAFbdy5cqqlj9jxgz94Ac/0Pe//30tXrxYTz/9tNauXat0Oq2enh7NmjVLxx57rCZNmhS57AsvvFAXXnhhyXU74IAD9I1vfKPk7QEAAACgFWWtf+fXuIk2iIbB7qVzB5SVGbzgCFzbvjyW1ObcxpL3WylBAXCJWLLs4wMAAFBNz6d6tXzwKd9lh0+er862CTWu0TBXW7BV21BW7oEQRjs6+wSFC4cNlXMd45F2bSKW1IC3peh2g96AbzlRrr3qQZTrP0K0AQAA0Ajon0f/PAAA6grBaACAFvGbe6xe6Pdftikl/ej/rH75QQb5AwAAAGgtqYzVi45rpe+90+gthxjN6ZFiMa6XAIlgNABoGbFYTIcddpgOO+yw8a4KAAAAAKAMWZvxnd9exWA0Brvncx2PtA0ZvGAdwWhFzkm9BI4F7S8Z63SGegQFqgEAANTKov4bnMuOn3paDWuSz93GbM1gNAUEo6nCwWiudupI2clYpyMYbTBwekSjBU2HvVY0MuowiSrXBgAAAGgc9M8DAAChhA088zxZa2UMAyABAI3pxseCfu+T/ni/1S8/WKPKAAAAAECdWLPJvey0g4zmzuB+IDAawWgAAAAAAABAA3EFo8WjBqM5wqt8122wgfzV5joeYQPKXOsVC6Bz7bfWgWOuwAcjo3bT4T4+LRvqAQAA6sVAbose3HSH77K9Og/QbonZta3QKK7wrFYNlw2MRTOjg9Hc1yqpstvnndv+Hy74N+UN+K7XeMFo4a4VE7EkgzIBAAAAAACAqMIGo0lSLifFGfZVa9Za3fi4dM9yq71nSG+fZzQpyb1QAIjq6ZeDlw9mhj9zV6+X/vKI1bI1w/OnTpBev5/R/H357G11fCcDAIBSZHNWNz0h3bvCav9dpDPnGSXaaUOgfvT7dzOUJPVMrF09gEbBHXIAAAAAAACggbiC0dpMtFt9UQbnd5hEpLKbXbmhFa5gsWLnpNxAtkpx7a/DJBQzMefrcL1uAACAWrlv4/9pyKZ9lx3ffXqNa5OvXtp69cLa4CfIj2gzbWo3HcrYoTHLwgcXB7fPXUFhheW7rgcaLhgtZIh2lLBtAACanTGmTdJekg6QtKukKZLSkjZIWi7pIWvt1grvs13SMZJ2l7SLpC2SXpT0sLV2ZSX3BQAAAKCCcrkI62YJRqsxa63O+73Vr+7ccY/6B7da3fzZmKZPYhA1AIRlrdUrm4uv97dHpbN/42lDQTDA/1xv9eU3Gf3XP8WqU0HUPWutzv2d1a/v2vGd/MPbrG7+TEw9fCcDAACHbM7q/ZdaXfXQjjbEzxdZXf+pGAGrqBuF1z+jdTdWV0OgJrhDDgAAAAAAADSQrPV/enDctEcqxzW4f8x6JqmYoYPRaGGDEVxc6xU7J67ggbCBbJWStq76RwuOAAAAqCXPerqjf4HvssltU3XopCNqXKN87jZUq4bLuoPRYsq/PknEksrk/ILRwh07V3t65Jy4Q+vyt3MHo3WFqke9CBvk5jouAAC0CmPM7pLeLulkScdJmhywes4Yc4ukH1trry9zv9MlXSTp3ZJ2cqxzj6TvW2uvKWdfAAAAAKog59/nw5cXIUQNFbF4lfJC0STp0eelS263uuDNDKAGgLDWhghFk6Szfulp0P85sfqfG6zOOdZqj2l8/raiB3qVF4omSY88J/10kdVXzuA9AQAA/N38pPJC0STprmel399n9bH5tCFQH/odwWgTElJ7nPcpUIgRjQAAAAAAAEADyVr/nkBVC0ZjsPsYrmMSNqCsWPCCe7/1EThWPDiiPgLcAAAARntmYKleybzou+zY7lMit6crrV7aevXCHYs2lju4rMzgYhPcvi3czt1ObqxrqvDXiuHWAwCgGRlj/ihplaSLJb1JwaFoktQm6TRJfzfG/M0Ys3OJ+32jpMclfUyOULRtjpZ0tTHm98aYCaXsCwAAAECVRAlGi7IuKuKaJf53p698MMpdawDA8xvCrecKRZMka6UFj/P526r+/Ij/ub96Me8JAADgdvOT/m2Fz/2JNgTqx4YB//fj1MZ6/ipQM/HxrgAAAAAAAACA8LLWv+Nr3ES71Rd2cH6ywQbx14LrmKRDBn85gxeKHGvnfm1tA8dc9R+pnysgIWOH5NmcYqatanUDAABwWdR/g+/8mGI6dsopNa7NWITLFnJ3RjPKfyriSIBZodDtcxvcPk+Y4sFrWZtxhlh3Ntg1VdhrxUYLfAMAoML2ccx/QdIySWs03DdzT0mHKP8BtmdIusMYc4K19uWwOzTGzJf0F0kdo2ZbSUskrZDULek1knpGLX+fpMnGmLdaa72w+wIAAABQRV6EpjnBaDX3rQX+96afLrh625Kyum+FlMlJR82VuruM73aeZ/XkS9KTL1lZK+030+jVu0mxmNHmlNX9K6RpE6Utaekfa6w8KyXi0sCQFDNSsl06aT+jWVP9yweAUm1OWd27XPKsdNSe0hTH51ip+iv0E+eKvsqUgx2stXr2FenR56WcZ7XndKPXvEqKt9XXd823Hd/Jj72w4985z2rp89KKtdK8PaQ5PfX1GgAAQO396Db/NkQqI12z2CrrDS/frdvosNlSop32A2pvw4D/fILRAH8EowEAAAAAAAANxDXYPm7aI5XTZtrUbjqUsUOB67kCGlqZ65i4AsPGrOcKXnAEOhTfb62D0fz3N1K/oDC9tJdWZxu/2AAAgNpan1mrx7Y85LvskIlHqrt9Wo1rNJY7fDdcG7PZ2IBgNBUGo5UZKldq+3Z0+UH7arQAsbDh2IRoAwCw3cOSfi3pRmvt8sKFxpjdJH1V0r+Mmr2PpD8ZY4631hZ9PLkxZpaka5Ufina3pHOttU+NWi8h6TxJ35U0csP4zZK+Juk/o7woAAAAAFUSJbPYy1WvHojsukes/ulQo1uftHrHzzxt3nb7viMu/eZDRu85PJa3fv+A1Tt+6mnhM6PnWh09V/rYfKOP/t5qazrMnq0+f4rRN99uFIsxYBtA+a5favXuX3ga2NZtMBGXfndOTGe+tnKfMf2Ogf5RrSQYraLSGasPXWZ15UOjb0laHbCLdP2nYtpjWmN8z2xNW21JS2f8r6fFq3bM/8CRRpf+s6m7kDcAAFA73V3utug7fz76nozVrKnSDZ+K6aDdaDugtlzv0W6G2QC+YsVXAQAAAAAAAFAvctb/icBxE/0ZCGEG6DfaIP5acB2T8MELjmC0IiF0rv3WOiyjWP2D3jO1DnEDAACQpDv7F8jKf7DZCVPfWOPa+EsYR1vPEarb7ILyQUxBXzRnqFyIY2etdbZvR8p1BhSPKj+Vc7dzO2ON1WOp3XTIqHiHP0K0AQAtzkq6XtJh1tp51tof+4WiSZK19gVr7XmSPlGw6FhJ7w65v4skTR01fY+kk0eHom3bV9pa+yNJ7yrY/nxjzB4h9wUAAACgmqKEneX8+4egOp54MTi3+m2XeNqw1epdv9gRiiZJQ1npg7+2WrMpf/uL/mYLQtGG3bNc+sClYUPRhn33ZqsbHw+/PgC4bBrMD0WTpHRWev+lnvo2F83vD61/oDJl9fZVrk6QfrqoMBRt2JMvSZ/8Y4Tw1nG2cp30uatsXiiaJP3uPqufLeI9AwBAK5vVHX7d5zcMt4NDPMcKqKgNjmC0qY3VzRCoGYLRAAAAAAAAgAaStRnf+XHTHrmsMAPZGew+VsI4ghFCBpS5wsGKhdC5zkXYQLZKcdd/WzCa4/hIrRvsAQAAxk/Gy+jujbf6Ltul41Xau/OgGtfInzN8q8YhuPXCKiAYrSC0q5xjl7FDzn0ligWjjWoXB7XJGy1s2hjDtSIAAMW901p7hrX2obAbWGsvkXRNwewPFNvOGLO3pH8eNWtI0oesdd9os9b+RdLlo2YlJF0Qtq4AAAAAqsiLEDqS9e8fgur466PFB0J/4Rqrfp/Bq1lPunZJ/vZ/WlzZgdVXPshAbQDlu+ExmxeKNmIoK10X4nMwrP4KdWfr7atMORh2lU8o2ogbHx8OzqsHqUxwPZatka592H+dv1XwfQwAABrPblOLrzPa0uelf6ypTl0Alw1b/ed3dxV/mCnQighGAwAAAAAAABpIxhmMFo9cVlCA1Yhkgw3irwXXMXEFhoVdr1iwgHu/tQ3LcO1vR3CE+z0T9hgBAABUypLNd2tLbqPvsuO73yhj6qMzSZjwrdYS1GG9MBjNv/0ZJkA4ONBs+JyEaf8HnadkrPEe5RgmzI1rRQBAK7PWrixx058UTJ8YYpv3SmobNX2ttXZZiO2+VTD9LmNC3BAGAAAAUF22csFoGwesXuy38jwCQCrh+Q3F17nhMfexHj2QekvK6sX+ClRqlN/fz3kGUL5lr7iXPfJc5fbjFyJZinVbpc0pPv8qZVlA6IdnpRV1EkS3en3w8ruXW6UczaS7l1e+PgAAoHFMSkTfJqiNDFTDynX+1zg7T65xRYAGQTAaAAAAAAAA0ECyzmC09shlhRnIXiysqxU5gxFsSl6RTszWWmewWLHzUU7gQyWlrSMYzYwEo7l/Uax1XQEAAO7ov9F3fsIkdfjk+bWtTACC0fKFj0ULOnbFA4SDju9IuWHKT3n+ozvaFFd7LPq12ngLE6LNtSIAACV5uGC60xjTXWSbtxVMXxZmR9bapyTdP2rWBEmnhNkWAAAAQBXlcuHXzfj3D3niRavD/iennT7radYXPPWc7+lLf/YISCtTmBCfl/yfwyJJ+uFtVqnM8DlgUDWAenX9Uvd3xU8WWp3xo5z6Npf/fbKxgj9x9tZJWFej25yyWrc1eJ3v3FQfbYli5/x7N9dHPQEAQP3JRLjtMmJlH20L1JarvTunp7b1ABoFwWgAAAAAAABAA8nZrO/8UoLRwgxkDxOe1mqCjtuQTQdum7UZefIPTyt2PoICGayt3Q9yrvCIkfrFTJvaTYdj2+LhFAAAAJWyOrVcvalnfJcdMeVEdbZ11bhGbq4Q3Fq39eqFjRCN5gwuDhEqF9Q+HSk3XDCa/76SbY15PRXmWnEkGBkAAETid3PX/0aaJGPMTEmHFGx/d4T93V4w/cYI2wIAAACohiIPW8uTGdv/YGvaav53PC1eJY3cOu4fkL5xo9V3CAkpS/9A+cfvk1cMl3HWLyOc5wg2pzjHAEq3JWX1wMrgdW54XHr7T8v/DKtkMNqKtZUrq5WFCZi74gGre5aP/3dNbxnhJOTEAgDQ2oZKCEbrXVf5egAug0PWGbw/p6fwkbEAJILRAAAAAAAAgIbh2ZwzVKuUYLQwoWdhBsS3GldohVQ8fCEoeKHYsU46ggc85ZS1/k+KrgbXaxhdf3c4BcFoAACgdhb13+Bcdnx3fWVCuNqYnryatvXqh7vHuikIRgsTXObiCjQbXW5QaF2xcho1aJprRQAAqmavgumspKAhiQcVTC+11m6NsL97CqYPjLAtAAAAgGrwygtGu+4Rq3WOq4JL7yIJpBwbBsov44r7rbakrP6xpvyy/IQJtQEAlz8/HO574q5npadfKu87ZcPWyn0nlROShR3Cfodcdvf4H+9yvu9SGSmVGf/XAAAAxkemhGC0VbQ3UUOr17uXzempXT2ARkIwGgAAAAAAANAgsjbrXBY38cjlhRnInnCEcbWyoOMWFKxQbHmxYx2031oGjrlew+j6lRNOAQAAUAkDuS16aNOdvsv27jxIuyZ2r3GNgiVMfbT16kVQdzNjCoLRHMeuWGixJKWt/7FtU3x7+LQzGM2m5NnhQYzONnKDXk8FhUFHWQcAAIxxZsH0Q9baoFSEAwqmn424v+VFygMAAABQa16EEbqZoTGzlr7gXv3ZV6TBIQbzlqq/AsFogxnpzmXll+OyYm31ygbQ/IK+Q8auW973yQv9ZW2ep3dd5cpqZWED5h57fvzbEivLDALdWPxnYgAA0KSG3MNtnAghRy2tD3gM2m7dtasH0Eiij5YEAAAAAAAAMC6yNuNcNjJoP4pwg92Lh6e1mmTAcSsWWpG2AcFoRY514H7toCZqcuD2leJ6jaPr53pvFQuOAwAAqJR7N96mjB07aEySTph6eo1rU1yySPhurdp6dcP6d7g3MmPmBQWXFeMKT8tr2waE1g3ZtJKmUynPf8RcZ1tX0TrUo6BrjyjrAACAHYwxEyWdUzD7z0U226tgenXE3a4qmJ5mjJlqrd0QsRwAAAAAFWCtdd779JVJj5n17QXB269cJ+2/S9SaQZI2VCAYTZLe9L9B+dfleWaNlXzukxey1uqHt1n94g6rp18enjenR+rulF6/v9GFbzbqShgtesbqh7d5euwFybPSXtOlDx1jdNbhsaq9BgDjp3dt+O+g5Wul/gGrr/7V6o5/WG0e9bPbvjtLHzkuprfPG/48um+F1fdv9vTI81Ju20fg6vWVq/d9y8c/qKsR+J2vA3aRzjshpi0pq/OvCnccH1gpxf4lp50nS10dw/NGh4XsvpPUtu1rYk6P9L4jjM4+prLfGyvXlXfON2yVdm6xn9cBAMCwTIQ8+hErCeJFDQ34d2mVtKP9DSAfwWgAAAAAAABAg8ha9yNsqhWMxmD3sYKOW7Hgr6DgtGLHOig4rZaBY67XkAgRHuEKngAAAKgkz3q6o/9G32VT4jvpkImH17hGxQW1MYPCdZuVlauze4RgtCKhxUHrjG57BwcjDyoZ63S2x8Ncc9WjMAHZhGgDABDZNyTNHDXdL+lXRbYpfCb0K1F2aK3dYoxJSRr9xT1FUlnBaMaYGZKmR9xsbjn7BAAAAJpClFA0Scrkj5T87s3FA7dWrCUYrRTW2ooFo1XTF6+1+vfTiq/3+autLr4l//02Emrz8HNWD/RaXfiWmE79gZc3aLy3T7rlKauNg54+egLhaECzWdFXfJ0Ry9ZIJ37X06PPj13W2ycteMLT5Wcb7TvT6KTveUq5n/datodWSRsHrKZ0FQ+GbFWZrNUJ3xkOuhytt0+6/rHSAjvXbPKfPzr0rrdP+r+nrdZt9fT5Uyr3vdEb4b3q55olVl96E+8XAABa0VAJwWgbBmhvonZcwWhdHZIxvAcBPwSjAQAAAAAAAA0iLliMLgAAIABJREFUa909iOIm+q2+cIPdG3MgfzW1mTa1mw5l7NhfJYqFL7iWxxQrGm4XGJYRIvShUsoJj0jb2tUTAAC0rqcGHtHazMu+y46bcqraSmg7V1tQ27yWbb1659f1x3XswoQHuwPNkr7/9tt+iqSU5z9irlGDpglGAwCgsowxb5P0yYLZX7LWrvdbf5SJBdOlJOYOKj8YbVIJZRT6uKQLKlAOAAAA0Fq8iKNzRwWjZXNW37u5eLBab5+V/51UBEllpCHHswr//PGYDvAJmzvzZ2MDaIIcMku69uMxZUe9DaZ0SlvSUrJdmtolZb3hgbDv/rmnax/2L+epl6z238V9jjcNWv3s9uD3yh3LpLN+mR+KNtp3brI673jLgFygiVhrtWJt+PV/c0/x75zv3mx1yCxVLBStI+7+LL7uUasPHsVnksuNjyvSd1Klff9mq8+83ireVv452pKy6ttSXhnfuNHqS28quyoAAKABua5zPz7f6NOvN9r3K/6hsSvXSYd0VbFiwDZb0/7XWhMSNa4I0EB4fAMAAAAAAADQIIKC0UoJdwgzkL1RB/JXm+vYpYuELwSFihXrUNpuOmQct3TDhD5UQtZmlJN/D7SEKR4eUat6AgCA1rZoww2+82Nq0zHdb6hxbcIJauu1YjCalWuwxdg2s+uaJWszylnH6IltXO330aHEYULrXOeoUa+nwgRkN+prAwCg1owxh0j6bcHsmyX9NMTmhcFopTQMCxs8hWUCAAAAqBXPf/CtUya9/Z+9fdKaTcU3eTnEOhjrxX73sr1nSHvvbMb8d/Re0cJf5k6X5vTklzFjstGe04127Tbq7DCalDRqixkdOddd9v29wWFF966QBkOEFAW9n8K+3wA0jg0D0qYK/+T42AvSrU8VD1AL67QD3cseXFmx3TSle1dU7jyU4uVN0qp1lSurXMng59MCAIAm5graPWBXaU6PFHek6/T2Va9OwGgDQ/7zuzpqWw+gkdTfo7ABAAAAAAAA+MoGDOpvN9F7c4QZyB4mPK0VJWKd2pIb2wunWGiFKxgsTPCAMUaJWFIpbyDyfislKNhs9HvFHRzXeqEeAACgtvqG1uiJrYt9lx066UhNie9U4xqFUw9tvXriCkYzPsFoxYLLutrc2R9BwcU7/u1uq49sP+hz3iQpGWvMR4mODj12rsO1IgAARRljdpd0vfLDyFZJer+1tpTRirXaBgAAAEA12PxgtP+d+jH1ts/WYKxLA7FObTUTtCU2QT25ddopt0Gb7n2tzGpPbTFpzaZwTft+/1uVGOWuZVZ/W2p1/wqrF/qlNx9iNCWgy8bujp8Vzpxn9PNF4S+5ZveED1J7xzyjL1ztX/btz0gn7GN15YNWT78sjVxdela67hGrLWnfzSLr7ZNmTqlMWQDG34q11Sm3koGc//O2mP76qH+IKN9vwf766PjfAtz7y55uPT+mk/aLFhxaqBLnev1WadOg1eTO8uoCAAAaTybnP7+jTYq3Gb1qJ/8QtHf/wtOKr8e021TaDyiftVY3PCbd/KRV/4C03y7Su183HI6/1RGMNoFgNMCJYDQAAAAAAACgQWSt+5Gu8RKC0cINdi8e2NWKXMcuKDhMktJlBKNJw2F2/mEZwfutlKBQjtFBe67X04qhHgAAoLbu3LjAGap1QvfpNa5NNK5gtGJtzFZifPqeBQV0pbzBsoPR2kyb2k2HMnZsr6SRc+Nqj4cJo65HYULPEqYxXxsAALVijJkh6RZJu42a/bKkN1hrww5F3VIwXcoXcOE2hWWW4hJJf4q4zVxJ11Vg3wAAAEDjyuWPzv39lPdpcec89/rPSXouWtDJRm4nB/rZIk+f+KPV6KjqH9zqPsbTJ0kTk/6Dok/aT/r304y+tSDcOZrTE76ecwJC1H57r9Vv761+AM53b/Z0zcfaqr4fALWxom/8g7NcjJG+906jA3c1OmKOdH/v2HX6B+q3/uPt70utnnqp9O2nTZDWba1MXU7+vqdvvcPo306NlVzGhgqF4K1cJx08qzJlAQCAxjGU9Z/fvu3ydk6PfzBaJie96t89PfVfMe07k3A0lOcL11h97+b8a5jv3mS14DMxDTiC0boIRgOcSr/CBAAAAAAAAFBTlQ5GCzNIP8yA+FbkOnbFAsrCBC8Eca1Xq8CxoP0kQgWj0QsbAABUT8Yb0j0bb/VdtmvH7tqr84Aa1yiaUtuYzcha/6fBS2M7ngVd1xRrJ7tC5wrLLNYO9wu0K1a3ehbuWrExXxsAALVgjNlJ0q2S9hk1u0/SydbaZRGKqstgNGvtK9baJ6L8J2l5ufsFAAAAGl7Bfc9OW6Hkj1E2bCU4xmVwyOqL1+aHohUzZ5p7mTFG33h7TG96dciyAsLO/Hzm5PEdiP3nhyXP4/0ENIsVjpj+2QGfc+X48XuNfvXB4M+xyz5kdMW5Rqu+GdNnTh4e5nzaQf7bVCosq9lYa/WFq12/q4bz/Ldj6ohXqEKSvnitLSvIrr9C59ov8AQAADS/oZz//JH2zh7TgtuoYcPPAZfevrGhaNLwNc1//c3T1rT/dhMSVa4Y0MAIRgMAAAAAAAAaRFAwWpuJ3jslTBhXow7krzbXsXMFK4xIW0cwmgkbjOYKy6iHYLSk77/Dbg8AAFCuxZvv0tbcZt9lx089XcbU99McXW3CVmxDWfl3MjM+wWhBAV3Fjp0zuNgUBqMFh9aFDVhrFMVCz2JqU7yEa1AAAFqBMWaKpJsljR4av0HSG7YFhEWxsWB6esS6TNTYYLT+iHUAAAAAUClefnDJBMcDF8rR33rP2QjtvhXSxojHZ8/pxX9XeP3+4X57mNMTbd/VCiuK4pk1410DAJWywhESdeCu0q7dld3XxIT0sROMPnxs8NDlfz46pncfFtOsqTs+R6d2+a9LMJq/59ZLT79c+vbdXVKi3Wj+PsXXDcuz0i1Plr59/2BlwkhWriPUBACAVpRxBKO1tw23OYtdm//mHtoQKM8tT7rfQzc/KW12dGfs6qhShYAmQE9VAAAAAAAAoEFkbdZ3fkxtipnoz0AoNth9eJ1wgV2txhVw4Ao+277cEZgQ9ji7wjKKBbJViqv+RkYdZsdjatzBaPTCBgAA1XNH/42+85OxLh0++YQa1yY6ZxuqSBuzGUXpYja6HVqoWPvTGVxccC7coXUjwWj+5SRjjtEbda7Y9Ukilqz7oEEAAMaDMWaSpAWSXjtq9iZJp1lrHymhyGUF03tE3L5w/fXW2g0l1AMAAABAJXj5o3O7qhCMRnCMW29f9MHNs0OEmZ12oNH5Re5qz+mR9t052r5PO8hIV47vgOzePmn/Xca1Cg2nf8DqzmXSpKR05J5Ssr20e+nPrbe6b4W0987SwbtJsVj93pPfsHX4Na/ZPPx+7WiTjphjtO9M8VtClVhr9dgL0uJVVtltmZs7TzI6bm9p6oQdx3z1Oqu7l1sl240e7PX/PJkz3WhTyurFCkbpn3Zg6ee+2/HTWj/fb2N4ntWfHynve+Kfj6rO3+jXb/DUPzhcdiIuHT7baOoEadE/rB5eLa3dIu2xkzRzirRnj9Gu3dKS1VYDQ9Kld1bmu6/XEQYIAFFZa/X4C9LCZ6xe2igds5fRSftKXQnaOUA9GvIfbqOOtuH/v/Ego69eF9zeGByy6uzgbxzheZ7V0hekJaus/vPP7vdXJictW+O/fALBaIATwWgAAAAAAABAg8jajO/8dtNeUnnFgtHiJq54iWU3u1KDv9LOwITiIXWB+7W1CRxzBbAVBiOUGhwHAABQqlWpZ7UyVZgbMezIySeGbm+NJ1f7vDXDZf07ABmN7XQWMzElTNK3rVlqcHHh+6VYaF3KMYAxTBh1PSr299IIf08AANSaMWaCpBskHTlq9hZJb7TWPlBisU8VTO8Vcfs9C6afLLEeAAAAACrB8/Imu2zlU14IjnFbUUJAypwQwWj77WL0iRONfrLQ/752e5v07XfEIgdb7bOz0QePMvrtveMXjjYcJsdg8LDu+IfVWy/xtv8d7r+LdMOnYtpjWrRj+KPbPH32Kiu77dS/Y5702w/H6nJg/m1PWb3jp542jfk5xurj841++B6prY5D3RpROmP14cutrnig8LPBanJSuvbjMZ20n9HFt3j6/NUj7yP358iePdLmQaM7l1Xus+bLZ0R/wOuIqV1GfvUl+DPfQNrqrF96+tvS0svYs0f6zMnF/z6PmSvdvXzH9MzJUkdcWr3evc2jz0vn/W70eQx6f5X+3jv9IKlnkv935Y9us/rBu0suGgAkDX/vnvVLT3/Je/SNVVtMeuyCmPbbhXYOUG8yOf/57duC0ebtLh08S1r6vLuMVeuk/QgJR0ipjNX7f+Xp2ofDrf/4i/7zCdwE3AhGAwAAAAAAABpE1vo/wqbU8DLX4P7tyw2D3V3coRXFghf8lxc7FyNcAQSuwLJKc9bfJAOnR9SqngAAoPUs2nCDc9nx3W+sYU1K5wyXLdLGbEY2QjCaNNyeTud8gtGKBhe7g39HCzo3WZtxhlh3NmiAWNFrxZDXLwAAtApjTKekv0s6dtTsAUlvstbeU0bRjxdMH2yM6bI2dHrCMUXKAwAAAFBLXv7o3AmOBy6Ug2A0t5WlBKOFDLT60XuMTjnAaOEzNu8c7L6T9NbXGB36qtIGt172ocoFo33trUb9A1Lflvz5sZj067v899FbwjFrVTnP6gOXennn/6mXpM//ydOfPtoWupxla6w+c2X++bhmiXTCPlafPKm+Bklnslbvv9QvFG3YJbdbnXKA0VsOrW29mt3v7vMLRRu2KSW9/1eebjk/ps/9Kdxnx549RptTlQtFO/sYo4Nnlf5endrlPz+VGQ4cSLbX19/BePnpIltWKJok3ffFmHomFT+ef/hITItXS3c9azV3uvSu1xpNSEgTPukV3baSpnRK5x5n1LdF6uqQjp4rvet1Rt9c4H7/9vZZzenhPQOgdD9eaAtC0YblPOkTf/R02+fCt/MA1MaQIxitY1uqjjFGt342phmfc7dlVvQRjIbwfnmnDR2KJrkDhrs6KlMfoBkRjAYAAAAAAAA0CNdg+zZT2m0+1+D+EQx2d3MFoxUL/nItd5U3dj3/c1KrsIy0dQW7dRZMj289AQBAa9mS26TFm+/yXbZv18GamZhV4xqVhjZU6RKxpOTTsS1VcnBxuPZtyhsMvAYI286vN8WD0RrzdQEAUA3GmKSkv0qaP2p2StJbrLV3lFO2tfYlY8xSSQdvmxXXcPjazSGLmF8wfWM59QEAAABQJps/6LazCsFogxlpIG3VlSAEpFBvX/Tgnzk94dYzxujNh0hvPqSyx90Yo3m7S0tWl1fO2ccY/efpMefyXM7T5T4BbCtLOGat6sGV0nMbxs7/66NSOmOVCBnmdO3D/sf8miVWnzypjApWwd3LpTWbgte5erHVWw7l86iSrl4c/Hf58ibpc1eFD6zac7q0JV1urXY4fu/ytu92BKNJ0rot0m5Tyyu/WVyzpLzP55P3V14omg0obkJCettrjN72mvy/5ZP3l259qqxqRPL2eUbfPnPsd9mcHnflr1li9flT+AwCULqbn3B/xix8RurbbEOFTAKojZxnne2a9lE5htMmBpczfP+Av22Ec02Ra7SwCEYD3AhGAwAAAAAAABpEzmZ958dLDEZrNx0yMrLyvxnPYHe3ZImhFe7ghXAhdK4wu3SRQLZKCVt/Vz2zNqOczZYc5gcAAODn3o23KWOHfJed0H16jWtTuqDwrVZjHb3UjPEfuOUOlSs1uDhZMO1qh6cC91EsjLpeFbsWdF0PAQDQaowxHZKulXTyqNlpSW+11t5Wod38WTuC0STpbIUIRjPG7CfpiFGztobZDgAAAEAVeflBNRNs5YPRJGnVemn/XapSdEPr7Yu+zR7TKl+PqI6aa7RkdXmDbN97+PCAbtvfJ3VNkulI5C2fPWGrpLFpRKUcs1Z1kyM0I5OTVq+X9t55eJB+b5+UHfWgl50nS1Mn7Bhw/7Xr/ctZ9I8d/35hg9XmUd139pgmdXa4B+1vTVu9vHE46C8WKz64f90Wq7Wbd0xP6ZQ2+vwUcvezxd+Xz64lXK9Uo89zZ4e0+07DYYlPvFh825ufDL+fOT3ShISRHP0HozpqbnkBErtMcS9btZ5gtK1pq+fWS/etKK+cw+eEP0+ugIYPH2N061O1+xs/Yo7//CPnuN+/y9dWrz4AWsODq4KXP7NG6plUm7qgOGutVq+XBv27kKEFpP2H2kiSOkYNXTDG6A37S7c4Ql65FkYUdyyrTDnT+T4BnBh9BgAAAAAAADSIjM34zo+b9pLKi5mYOkxCaesfdtWog/hrwR2MEBy84FqeMOGCBYICGWrBWf+QwRHDZaTU1VbkUUsAAAAheTanO/oX+C7rjk/TqyceVuMalc4d7lWbtl49cYU3u7rol9pOLjf4N+0NajAXFIwW8Fj7OpYwwdeChGgDACAZY+KSrpL0xlGzM5LOtNbeVMFd/UHSlyWNPMf87caYva21xbpY/3vB9FXWOm4EAwAAAKgNL5c32eVVJxitt49gtEKDQ1Yvb4q2zev3k+Jt5QX8VMLH5xv97l6rTY4rugkJ6UNHG/1kof999cNnS/MnrZB3zvukfzwsdSRl3/xhmU9+R3pltexX36fZL+8n7fqrMduuYDB4KI8+Z3XR39zhQL190o2Pe7rgr3ZMwJgx0vx9pCvOjamrQ9qadu/n/562Ove33phB+h1x6X1HGP30fUYd8R3v2YG01Ud+a3X1YqusJ03tkr75DqNzj/N/CM3qdVbv/oWn+3uLvuTQ7lsxHFBhzPj/LTWKe5dbfeBSb8zf38zJw3/vL/RXbl87Tx4ORZuTkN5zmNH/e7B4yNWMSdIrm/2XvWOetM/O5Z3rnSZIk5LKC/8bsWKt1dFlBq81qq1pqw//xurPDw//PRdz2/kxvf2nnm+o4bQJ0j8flX8cg/5Ek46uqW99jdFeM6yefaV4fSrhHfP8Kzl3hrvyK/sIZwRQnslJqT/gsu2Ffit3TxbU0k1PWH3kcq+ibSU0l/a2/OnzT4nplqf8G1a0IRDGvcut3vXzEI3zkGbXQTg/UK8IRgMAAAAAAAAaRNYZjFb6bb5krFPpXLgwAOzgDkYoErzgGHsY9liPd1iGOxits2Da/XpS3iDBaAAAoGKe2Pqw1mXW+C47rvtUtZk232X1yBVGVSx8t7X4dyh1BXWlAo6dZ3Masv4jjArb+672bcobDDw/jRo2HTdxxdQmTznf5WGDnQEAaFbGmDYNB5b906jZWUnvttb+vZL7stYuM8ZcLunD22Z1SPqNMeb1rqAzY8w/SfrQqFlDki6qZL0AAAAAlMDLHyw5wdtaclG7dQ+HmDy/Yeyy3j4G5xdauS76Nj98j394VK3tv4vRnV+I6ds3WS1etSMQp81I8/YwOv8NRq/dw+j4va3e9ysvLzDnX08y+tpbrMzZb5Je3JZ2NZSSrrlE6p4ue9PvpeeXa3an/z3fjYPShq1WUyfwfnIZHLJ6/feDB0L/6DZPNzzuv8xaaeEz0pk/87THtODjfLJjP0NZ6bK7raZ2Sd99544yPnWlzQu62jAgnfc7qz17rF6/f/6+rLV60/96euLFwCqU5Pf3WX3gKN5DYazfavWGiz0NDI1dFjXcMYw9e3b8+7cfNjpwV+nGx63uWe7e5u5/j+l/brB6cKVVOjs8b/pE6dSDjL54Wvnn2RijOT3S0ufHLisMBWwln/ij1Z8Whwvo2GOadOJ+2747Flg9tO27o71NOmKO0edPMdp758LPAHd5rmDDZLvRvf8R0+f/ZHX5vTsK2GuGNDhU2RC/Gz4V07SJ7vfX195q9OW/jH0RK1v4PQOgMgqDlAq18ndTPents3rz/3qhwkPRujoK/p5PPdDomLnS3T5tX/62UUzQtVupit0TAFoZwWgAUOcGBga0ZMkSLVu2TH19fUqlUurs7NTOO++sffbZR695zWvU0dEx3tVsWPPnz9eiRYu2T9ugu7lluP3223XiiSdun77gggt04YUXVmVfAAAAAJpX1nMFozkeyxdCItYp5Xx6ysodLoDgYIQgrgCzsIEJpQQ+VJKr/oXHI+i9U6sQNwAA0Bru6L/Bd36b4jpmyik1rk15nCG4jnDdZmbl/3uNcQWjOYK6gtqeac8/FE0KH/yb9lJKef6PB25TvKxrtfFkjFEy1qkBb4vvcq4VAQDQryW9q2Def0p62BgzO2JZL7sCzka5QNLbJE3dNn20pFuNMR+x1j49spIxJiHpXyR9r2D771lrV0WsF9Ay6J9XXfTPAwBgFJs/SrvLlv47/zF7Gb200TqC0UoutmmVckxmT6t8PUr16llGvzsneIDsO19n9M7XjU1usI/cKTsSijZ6/qU78rPnZNyXjL190tQJESrbYv6+VFpfJOPQFYo22l3PSnc9W15b+fJ7rL5zppUxRqmM1f97wL+8y+8ZG4y2eJWqEoomSb+4w+oDR1Wn7Gbzp4dsRQfWF7Pn9B3vg3ib0ZfeZPSlN0ntH80p5wgWmTvD6Ncfqu6A/TnTCEYbbSBtddVD4T8f5u8zfH4O2s3ot0W+O0ZMKfGnv2kTjS472+iys/PnP/6C1cEXVS6d5pi9gpfvPcNIPr8vr1o/fB/CFe4GAMUMZYOXlxLAjMr7w/2WUDQU5Rd0eM5xRncvH9uG6OVvG0Vcvbjy1271dB8KqDcEowFAHcrlcrrqqqt02WWXaeHChcpm3VfQyWRSp556qj7ykY/ojDPOqGEtAQAAAAC1lpP/9WF5wWj+A/yLLWt1QQFlQZ1p0o4As7DBAqUEPlRS+GA093uHYDQAAFApa4de0pNbH/Zd9ppJR2lyvLvGNSqPq03Ymu2naMForqDhwGC0gPyRwnZ3UDvcFVKcjHU2dCf7RCwZEIzGtSIAoOV90Gfet7f9F9WJkm4PWsFa+7wx5u2SbpI0ks50jKQnjTGLJa2QNEXSPEnTCzb/u6SvlFAvoKnRPw8AAIyLXC5vssvx0IXRJielTT63Mt9/pNHVi6U7l429l7qyrzpBpI2sN+Ix2WuG1JVo3Pu7o9nbry26zq7ZF9XhpTUUS4xZ1tsnzdujGjVrDo+/WD9/b+u2Si9vlHbpllb2yTlI2y+ArZqv48WNVSu66TxepXA6l4N285//vXcafebKse+Js4+pzefi7B7/kKtW/X5b0Sel/J+n6+vVs6Lv41Ovj+nqJWMTZY6ZG70sSdqzR+rqcH8ORTF7mjQpGfzem93jPz+V2fG5CAClGMoFL1/Vot9N9ebJGreh0HgScelVO42dP2eaf7uzf0DqH7Dq7mqO+wKovEpfu02fJM2YVNkygWYSG+8KAADy/d//Z+++46Oq8v6Bf86dmcxMGqmEThIpgnRBpCiwKM2yigVRf7ZddW3oKutaHttaVldcF3tZH2Ctu4+AulgRBQUFDE1pQiAJEEJIL5NMvef3x0CSydxzc6e37/v14kXm1jN37tx77txzPvebbzB06FBceeWVWL16tWqjKwCwWq34+OOPccEFF2DcuHHYunVrmErqm/z8fDDGwBhDfn5+pItDCCGEEEIIITHJyZVbuOilQILRxIFconABIg5GkOGCkytfy3PONQeLiYgDH/x/krQvROERRuZZriTm3Vi2bRlhKishhBBC4t/39V+CCwK0pmTMCXNpAieqEyZi/UnYdFTQ3ky47bh426lt1871bmFoHW8VB6PpYvt6Su16kK4VCSGEkPDjnK8FcDGAqg6DGYCxAC4HMBPeoWjvA7iCc95F1x1CEgu1zyOEEEJIxHDPwJEUDcFoT1zk/aNon0xg5lB3UIiSj3f4Vbq4VlLt2/S/nxwfnZ959VFg+StdTieBI99RpjjuIIU9qPpBIWQskt7bzHHbezKGPuIdcHRSaY27DdNr62RM+KsLuX904fb3Qvc+DtUCTld0badotXp3+LaTyQBcPV75WDf/DIbkJM9hjImnD7YCQchVSU1YVh91fDmHmQ3A/HG+f04TTgFO6fzLItxBrP5INjLMPyM4+8sNGs7JBYI6EeA+5hFCiL/s6j8d0zEmTFZu4/jNIhe63+2uu+b+0YU+97pwyasu7K3g+PQXqmsSdReNYkhRCD8X1TsBYH1xCAtEYt6aPcE97lw/iUGS4uO3KEJCgYLRCCEkijz22GM455xzsG/fPo/hjDEMHToUM2bMwPz583HOOedg0KBBXvMXFRVhwoQJePPNN8NVZEIIIYQQQgghYeSQBcFo0Pu9TLVALq1hXYlILQhAFLDg4HbIUG54qHVbiwMfrJC5uFFjsIhCHzqXS2KSMDxOFK5GCCGEEOILu2zDjw1rFMf1Meaj0HxqmEsUOFFdzypbwXmiNeJTfr9MkIzmT6ic2rjOyxMGo8lWcR2ZxXZ4GF0rEkIIIdGHc/4ZgGEAXgNQpzLpRgCXcs6v5JxbwlI4QmIEtc8jhBBCSETJnr97mrl6MFou6nDbNIZnL2XISwd0EjB5ALB2oQSDngk78Lpk4MDxRPtNWV2pSrhXVorn3w+ex7BwRux3RuWtFvA/TNE8vSgYzddQuURisXGs2RvpUnj604ccr67t+vv/m+dk3Poux6YSoMYCtNgDW6/EgCRB8zWXDBxW+xWDAAAqGzn2Vfo+38Duvs8zrBfw9d0SemcqH+ty0xjWLpQwoo87EK0wB3j7BoZpp4YrGE15PYdrAYcz8c5vpTXa3vOwXsCaeyT0zPD9c9JJDN/cI2HaYEAvAT3Sgb/OZbjpbP8/85fmM/xuMkOq+PmqqrJSgD/PYnhgdtdlyE4FUgTr0br9CCFEiU1DMFritecJrxVbOS55VcbafUB1s7vuWmMBjtYDK7cBQx+R0UTN0olAqhH4f2cy/O91yvWJ3pmAQac874UvyWiy0vebeKtq4thToT5NqtEdRq3FvLEMT/w29n+HIiSU/O9LzY9AAAAgAElEQVQxSQghJKjuuusuLF682GNYWloa7r//flx11VXo16+f1zzFxcVYunQpFi1aBJvNBgCw2+246aabYLFYcNddd4Wl7IQQQgghhBBCwsPJle+w6iWNv5orUAv4UhuX6NSCAGy8FalI9x4ui++8ag0WUPtM7NwGU4jDF0TvQalcRskMm8t7erUACkIIIYQQrbY0rYdFblIcd3bGHDAWe41FRHU9DhkObkcS87PVeAyShQ1HRcFo4uAyEavKuCSvYDRR8JoVVlm586JZlyxcfixQD0aja0VCCCGJjXMescom5/w4gFsYY3cCmASgP4AeACwAygFs45yXRKp8hEQzap9HCCGEkIiTXR4vU2T1HON8uRyM5eCeGQx3n8thdQDmpPbLEXdwjPJvqS9+y/GPebH3O3moHBSEez1yAcND5zEcb3KH/+SmApIUJ9tt3Uqg8pDmyQscpYrD1ULlEt3yrbG7bdbt63oakaPPSl7DTgYfpS9QfqjjwSoIwxyJ29sb/duf1i6U8O8ijrv/I55/60MSepxoymY2AN2Suz7Ojc1n2P6wDq127nHuCQfRviJzd8heYW5YixNxooDKU3sA3y6UkG4C7E5tn6uavlkMa+7RwergMOoR8P12o4HhzWsYXr2Ko7rZPSzdBEgSwDlg1LvPubUWDrvTHYSWpGew2DiarED3NO3nZMYY8rOBXUe9x1HAJyEkEPYugtGsDqCyEejRLTzlSUSL1/j/0PD3b2SYMihOru+IX7JTAINevA/oJIZ+WcCBKuXx/1fEccNk2oeIJ7Vrt3d+x3DleAkumcPpAs5/Ue4yUP29G1lMtnUlJJwoGI0QQqLAsmXLvBpdTZ48Ge+//z769OkjnG/AgAF44okncM011+CSSy7Bzp0728bdc889GDVqFKZOnRqqYseFtWvXRroIhBBCCCGEEKKZSxSMxvz/mU+1szvTFtaViNQCyqyC4C+1UAatIXRqAQQ2uTXkYXaiUDOl/cgomQCX97RqARSEEEIIIVpwzrGu7jPFcWYpGePSzw5ziYJDNXxXtiJJSpxgNFFnPlETING2E9XNAXH93MCSoGOejwMV1bMd3I4WuVlQptgOD1Mrv0ljsDMhhBBCQodzbgfwbaTLQUisoPZ5kUPt8wghhJAOuGeH7p7OY6qTD3IeBDASgDvww5zkOX5gd/G8O8tjN7ApFKqVf8ZFvyx36Eo8BhnwPT/5NH2+vVRxOAXKiG1OwFjyKYOAHt3EHba7pwHHFZ5rVFLNIb7LQwDgJz/3p25mYGB3cVBmkh4Y0sMdUuWPQEPR7pzOsHiNd9nOHSKeRy1Er6Q68YLRRAGVZxYy5KW7P5/OdYRAmPzcV0T0OvXzbFaK5/pSjAwpftwWL8hRDkYrrfF9WYQQAgCyzOHUkMlVWkPBaKEiyzygOve4fKZadyUEAAbniYPRfioDbpgc3vKQ6Kd27Ta4h/uYo5MYdBIwqAfDmr3i3+iG9w48kJiQROAd0U8IISSs9u3bh9tvv91j2MSJE/H555+rNrrqaNCgQVizZg2GDGn/ZViWZVx99dWorqY7UYQQQgghhBASL5zcoThczwx+L1MtSCvWO/KHknpAmXLAgo2LQxmMTGswmnpYRqiJ1iEMRlNchng7EEIIIYRoUWrdj0O2A4rjJnSbrlpnimZqdcJw1PWiCRcGoyk3BBJd16htN3Hor/ey1PapBmedT2WKFWr7I10rEkIIIYSQWELt8wghhBASNWTPXvUFjjIMte0WTn655SPVxfXMEHec3HjQt6LFO4tNeXiaKX46n3KnE/yTtyBP7wb5LCOw4jWf5i9wlCoOL61xBxKQdodrOR5fJeOVtYm3XS4bq/6dEQVaHaTLpjbHGjie+kzGZa+5MPcVF+76t4wNxRwHBeFXagw6dyDW9CFAZrLyNBePYn6HogXDNROU1/37s8TdmlOMDN3TlMeV+LGdYp0o2CtfJUAuEfXPVt7XyhJwnyGEBIdd4cHQSkQBlqJpX10r45Z3ZSz4QMaOw3SMOolzjvc3y7hhqYzrl8hY9oOMow2ATfmZ8poU5sbP9R4JncvHifeT19dxNFmj+3u6fj/HXf+WccUbMp77SkZ9C8eROvc168lrjvtWyPjlSHS/j1iidk0ypp/n6ytU9i8AuLyLa2xCiJs+0gUghJBEt3DhQjQ3tz+CKCMjA8uXL0dqaqpPy+nevTs+/PBDjB49Gna7HQBQXl6Oxx9/3Otpl4QQQgghhBBCYpMoGE3H/P+ZT62DP3V2FzOwJDBI4PB+HJhVELCgFsqgNbxDLVxBtN5gEgejeZfLn3AKQgghhBAt1tV/Jhx3VsasMJYkuFRDcFVCduOTqAGRcmMg0bWLejBa4KG/ANDgrFUcHvPBaGrXiiw2wwcJIYQQQkhiovZ5hBBCCIkasnfP+v8cuRIz+32KckNvj+H3Vf8Nc5pXdbnIZy9l+NOH3r+nttjdne7zc6iDJQA0C4LRUo3hLUeocM7BH7oCWP9fv5chCkazOYGKBqB3pt+Ljiv7KzmmLpJR0RDYckb1BbYfDk6ZQsGoB84bDvz3Z8Bx4tB17QSGGyerH1MKcxk2lXgfk0qqQlHK2HOohmPKIhllHkFXHC99w+FP/mCSHmCMwWQAPvyDhLmvymjocEvx9P7A8/Miex4Y3Y/hlasYbn+v/T0unMFw6enq8xXkAMebvIcnYsheieA9F2SHtxzRThTMWCIIliOEkK7YNQZy3f0fjivOEC2D4/v9wOc7OT7fybGnwnP8q2s5Pl8g4ZyhdN1223scr61rrxAt+xHon+1/kNNTF9M2JdpcNZ7huiXifW3qszK+XSgh3Rx9+9Q7G2Vct6S9nv2fIuDhj90vWj26HbmvOT69Q8KUwdH3PmKNqH55y1QGxjy37+QBwJMXMzy40nsfmzsauPtc+jwI0YKC0QghJIL27t2LVas8b1g+/fTT6NGjh1/LGzp0KBYuXIinnnqqbdhbb72FRx99FJmZ8XUnqri4GD///DPKy8vR1NQExhiSk5ORl5eHgoICDB8+HMnJgkeeBJHNZsO6detQUlKC2tpadO/eHX369MFZZ50VkvVXVFRg06ZNOH78OGpqapCamoru3btj3LhxKCwsDPr6CCGEEEIIIdFFFIymZwa/l2lk4s76Jo1hXYmIMQaTZEKr3OI1ThSwIAoukyBp/gxVwzJCHDjGORe+B1/CI8IR4EYIIYSQ+NXkbMDWpvWK405NHom8pN6K42KBWl3PmmDhssJYNCYKRhPXPTnnivPZBPVSpUAztZAzcTBa6O9ThZLae6YQbUIIIYQQEiuofZ7/qH0etc8jhBASArL3g9dOte/DgeJTUWQag3JDbyRxB8Zat6Cn8xjAmPD3zZPOGcIg+kX1oY853v4ddbB0OHlbsFNnKXESjIafN2gPRTtzJtic6zyH1RxFwYtPCGcpqaZgtJOe/5p3GYp2zhDg6z3q03x+p4SeC72PCSe98zuGKYMYPtnBcdt7yt/xu89l+Ptq/8MiOhvQHXjqYgndzMD4AiDdzNDQwlFU5h7XP7vr40m+IKippDp45YxlL6/lnULR3NRC0V65iuHWd5UnsHQIfZx2KsPRZyVsKgGqm4FBecCwXoAkRf488IcpEuaPc+9Lw3oDeeldl6kgRzlkrzTBgtHqLNwj7K6jAgo/9ZCfrVwnKqsBZJlHxXeBEBJbtAajHWsEWu0c5iT3ceZwrTsE7fNfONbsFYc0A4BLBu5dLmPrUF0QShy7Dhz3DEU7SanepNXsYXTcJ9roJIb3fs9w5T+V69zbDgPvb+a4eUp07VMumePBld4By63K3Y3QYgce+6+MbwYn9vEmUM1WjiqFAGcAmDvaex9hjOH+2Qy/m8SxqQQ43sSRZgJO78dQmCtuC0kI8UTBaIQQEkGLFy8G5+21zpycHFx//fUBLfOuu+7Cs88+C4fDXXu1WCx48803ce+993pNe91112HZsmVtr0tKSpCfn69pPWvXrsW0adPaXj/yyCN49NFHVZd/UllZmWpl7dprr8XSpUu9httsNrzwwgt48803sX//ftXy6XQ6jBo1ChdddBHuvvtuYSOoqVOnYt26dW2vO34eahoaGvDwww9j6dKlaGxs9BqflpaGefPm4bHHHkOvXr00LVPE4XDgrbfewiuvvIJffvlFON3AgQOxcOFC3HDDDdDr6RRPCCGEEEJIPHJy5bushkCC0VTCF6izuzqjZBYEoym3RhIFlxkls+abGjqmh54ZFEPyQh045uROyFBuLWxSCNgT7VuhDnAjhBBCSHz7oeFrYb14SsacMJcmuAwsCRIkyPDuCCOqY8Yr0f0aBkEwGlOue8pwwcmditdMwtBfhWWpXRs1OOsUh6sFi8UC9WtFCtEmhBBCCCGxgdrnKaP2eZ6ofR4hhJCw4cohSHq4cKb1J8D6U6fpOWBrBUziMNCCHPHq9lRQEBEAWOzicSlJ4StHKPFv/k/ztOz/3Qc2YqLn/K0WZC6+B+muBjTqunnNU1LNMXkgddYFgC93df29Gtab4es94ukyk93BUFkpQK3Fe/zLVzJcOV4CAMwaBojCD88fEdxgtJF9gEtP9/ycuyUzTB+ifRmFucrDDyZYmJXIGpX9QuRclQDMMztlN5uTGKYO9qNgYeDrvpQvOL+V1yfWua28XjyuvyCIMFGJghkdLqCigQI+CSG+swvClZU8+xVHs5Xji50cO4/6tp4dRwC7kyNJn7j17TV7g39+V7tWJqSz/BxxnRsAvt7DcfOU8JVHi/2VwGHlJmtC6/YDNgeH0ZC4x5tAlahc24quhwGgezrDBSMBCNo+EkLU0V1ZQgiJoC+++MLj9TXXXIOkpMDuruXm5uKCCy7AihUrPNaj1PAqlhw+fBgzZ87Enj1dPDrnBJfLhS1btmDLli244oorMGDAgKCVZceOHZgzZw6OHhX/StHU1IR//vOfWLFiBT755BO/17VlyxZcfvnlOHjwYJfT7t+/HzfffDNeffVVrFq1Cr179/Z7vYQQQkisaXDWYZdlC47ZjoR0PQYpCYXmU3Fq8kjoGD0lIRSanY3YZdmCRlcDhqaMQm9jfqSLROJEk7MeOy1bUGE7HOmieNAxPfJNAzE0ZTQMUtfXg0phWACgDygYTdxZP9Y78oeaaNuJgr/EwWi+hQoYJROcLu99YUPDV9jfshOA++kxvZL64bTU05GqSxcui3OOX1t+xoHWPV0Glon2v5Nl8h6mvH0OtO7GiuNL215302dhaMpo9DT2VV1/pb0cu5q3oN5ZqzjeJJkxIPk0DDSfptrhK1z1Bl8lSca2eobEJL+WccRaij0t29Dk7OLxxB3omQEF5sEYmjIKOhbcWwZ1jmrstmyDjVsxLGUsuif1DOryy22l2G3ZDodsw4DkoRhoHkZPTiIkiLo6R+iZAYXmwRicPBIGyf+6CCG+kLkL39d/oTguS5+L4aljw1yi4GKMwSiZFMN3v6//AnstO1Tnl5iE3sb+GJYyFmZdSqiKGZDj9grssmxBnUO9B0yF3bdrN7Vrl5VVSxWvmYpbdytOr1S3TWJG4fIdXLlXXawHTVMwGiGEEEIIiQfUPk87ap9H7fMIIYSEgcuHnvUntVpUg9HSzeL7o2U1vq8uHlls4nEp4p9+Y8uK17RN1y0HGOJ9L4WZU8Ayu6PAUYYduhFe40toXwIAyDJX7QR90tAumkZcMNL9vb30dIY3vvPsfC+x9vGAO+hnaE9gd4XnMgZ0B6YMAsb2B4rKxOsy6IBZpwH//bnrcp83IvD2FgWCQIHqZqDJypFmSuw2Hb4GxBl07oCwOcOAz3Z6jz93aPxuz9xU5eH13rdR45ra+81NC185YoFaAE5JNQWjEUJ8Z1N+ZqOiRz/xP9iLc8ClnKGdMEqDfL2RnaJ+rUxIZ6f3A7qnAceblMcXlQF/X+3+oibpgLH5DGfkA5IUuf3Mn+8N58ChWmBgXvDLkyhEvwnoJKAv1TcJCRkKRiMkyri4C/VOehRGqGXocyIeZHHkyBGUlpZ6DJsxY0ZQlj1jxgyPhlcbN26Ew+GAwRCbndPsdjtmzZrl1egqKysLw4cPR15eHgwGA5qamlBRUYHdu3fDYlF4dE4Q7N69G9OnT0dNjedVQ15eHkaPHo2MjAxUVlZi48aNaG1tRW1tLc4//3w8++yzPq9r1apVmDdvHlpaPH/J7tmzJ0aOHImsrCxYLBbs3r3b4wmd27dvx/jx47Fx40b06dPHvzdKCCGExJCjtjK8cPgRNLpUHosVZGPSJuL6nncHPTwk0R23H8ULhx9BrbMKAPBRFcNVPW7DxG7nRLhkJNYdsx3BC0ceQb0zelvpDU4ejj/0frDLzuWiYKpAjkdqAQLU2V2daPtY5VbF4TbBcF8DE0ySGRaX9523n5s3ew3L0ufizr5/Qa5CIJXMZbxX+Qp+aPjap/UrUQxGY8rvq8J+2CvoYmWVDjf0uhtj0iYpzrO9aSPeOroILnTR0qAGmJZ5Pi7N/Z1iQFYk6g2+Gpc2Bdf0XODzb1cb6lfjvcpXwFWeWKVmWMpY3NjrXk0hjVqUtu7Dy0ceh0V276sfsWW4qdd9GBakwJofG9bgnWMvg+NEi5AaYErGHFze/UYKRyMkCDjneL/yNaxv+LLLaYemjMHNve4L2vGDEDU7LVvarhk7m5wxE1IchJgbJbNiMNqO5k2al9EjqQ8W9HkMGYboekz4zuYivHn0b8IgMS2Y4KmJatcua+s/9WkdStdIEpNgZCbYuHqYcEfmGA9GU7tWpBBtQgghhMQyap8XPpFuo0ft87Sj9nnUPo8QQkiYcD96u1stAHJVJ3nyYoYHV3rfJ66xUBARADTHeTAa5xrbCOj0YHf9HcwguKfXMx/5jaXYYfIORiulSygAwFENz6hLMwG9MpTDwU56cI77O3nfLIY1ezgOdLj19cgFDH0y27+zjDE8P0/C3FfltpA/swH4xzwJjDEsukzChS/JaBTcvnjiIoZLxjD8Ui6rdpw/Zwhw+emBHysKuwgmGpHA1ec6C/c51Cs/G9BJDE9cLKGoTPYIahjVF7h9Wvwe3zMEmaB1iRaMptzcECYDYDLE7+fvj4xkIN0ExeNhaQ3H5IG0vQghvrH7EIwWKNn/XLW4cCjIXTwK1S+hCfFi0DMsvoJh/pvKX8ayGmDh/3UcxzH/DIYl1wFJ+sjUMd7e6N+BY9ZiGfuekKCLYKhbLCupUd7ufTMBvY62KSGhQj24CYky9c5qPHTw5kgXI+49Xvg6sg2RjbTdsGGD17CxY4PTMfT000/3eN3a2ort27dj3LhxQVm+VosWLcKjjz4KAJg8eTLKy8sBAL1798b69euF86Wmej7aY8mSJdi9e3fb6/z8fLz88suYNWsWJEnymp9zji1btmDVqlV46623gvBO3BwOB6666iqPRlc9e/bE4sWLcckll3iUpbm5Gc899xyefPJJ1NfX+/xE0N27d+OKK67waHQ1a9YsPPbYYzjjjDO8pt+2bRvuvPNOfP/99wCA8vJyzJ8/H2vXroVOF/sdwQghhBA1K6uWhT3cZGvTDxibdjZGpZ0Z1vXGu1XV73t0cOfg+KDyNYxJm0QdbklAPql+J6pD0QDg15ZfsKnhW5ydOVt1OidXvsuqZ/53tFELEPA1sCvRiI5NNlm5taFouK8BdEamffpaZxVWVX+A63v90WtccevuoISiAcr7ii/vS4YL7x97DSNTz/TqKCdzF96rfLXrULQTvq1bhTPTf4O+pkKvcSur/hXVoWgA8FPTOpzRbQpOSxmjeR6r3Ir/HH/T71A0ANhpKcKWpg04s9s0v5fR0fKqJW2haID7+PXusZfx1Cn/G3BwmV224YPK19tD0U5YV/8ZxqdPQ755YEDLJ4QAJdZfNYWiAcBuy1ZsblyHSRnnhrhUhADf1X2uOFzP9JjULT72wWCEEx+zH8HqupW4rPvvg1Ci4OCc473KVwMKRQPUgtGCd+0i+gyMkgk2l/ZgtFi/nlK/VqQQbUIIIYTELmqfFz6RbqNH7fOofZ4aap9HCCEkImR/gtG6ToC5YpxyMBrg7rw7rLfvq40nFrVgtHh47s+urh+swv7wJHDmLLBThokn6lWAguoSxVEHK50A4mFjBUZLQFxBjjuwSGTuaGBgnvteR34Ow8b7JXy8neNIPTD9VIZJA7zvg5w7lGHbQxL+u4ND5sD5IxgG93BPd/Yghm0Pu8d1DFjLTgVmDGU4s9A93eYHJHy8g+OXcqBjlp5RD5xRwHDhyOB06O+TCegkwKVwuEv0YLSDfgQMngz1GNWXYetD7n2luAo4vZ97P0g3x2/H+8xk5YBBX8PlYl2dRfn8nhHbtyFDgjGG/Bzg5yPe49SCIQkhRCScwWhas47jVZkgaMhfBTnxW0cioTNvnIQai4zb39O2P76/meO84cCV48O/v8kyx/ub/fvelFQDX+0CZg8PcqESRInguq5AJSScEBI4CkYjhJAIOXLE85e2vLw8ZGdnB2XZw4Z537A6cuRI2Bte5eTkICfHXZvT69tPOXq9Hvn5+ZqX8/HHH3vMu3r1agwYMEA4PWMMY8eOxdixY/HQQw9B9ucmsoIXX3wR27dvb3vds2dPrF+/HoWF3h2tU1NT8cgjj2DYsGG4/PLLUVdXp3k9sixj3rx5Hk/VfPTRR/HII48I5xk9ejS++eYbzJs3r+1ppOvXr8e7776La665RvO6CSGEkFgjcxd+bfk5IuveY9lOwWhBtqdlu9cwJ3fiYOteDE0ZHYESkXixx+K9b0Wj3S3bNASjORSHBxKMZpYEj1eEOPiLuIkCyqyy8qMabVx5uC9BZwBg1qX4NL3S8RUA9lp2+LQcNUr7itq+pcQiN+GQ9QAKzIM8hpfbytDs0vDY3Q52W7Z5BaO56w3Be8+htMeyzadgtAOtewIOGTm53mAEo1nlVhxo3eM1vMFVh0p7OXoYA2vpqvZ+97Rso2A0QoLgl+Yin6bf37qTgtFIyB23H8Xulm2K48akTUKavluYSxQavtahRHY2F0VVMNox+5GgBFbrmHITh2Beu5gEn4FJSvYpZDdYn2WkmCTl6w4DSxJ+DoQQQgghhEQTap+Xr3k51D6P2ucRQggJE9nl+zwtzV1O0icDkBggK/SJLaVgNFhUbqWnGMNXjlDh6z5SHc9ueQrsynu6XlDPfBRsKVMcVVJhBwWjASXVXXc8L+wiGK17umen+exUhhsmd92RfkB3hj+eqzxdQQ7Dgunqy8hJY/idhvUESq9j6J+lHAJ2sIoDggfgJIJDtb7P0zHUo1cGwy1TE2f7ZQhuszXbAIeTwxCEIL9YUK/c3BCZvjUfTBgF2crBaP58/wghxBbEYLR0EzCyL/D9fuXxStdyieRIkJ93TQFFxF8XjGCag9EAYOU2jivHh7BAAj+XBzb/im0cs4cnRn062EqqlPePfApkJCSkvB/jRQghJCxqaz1/VcvMzAzask0mE4xGz7t0ndcXS8rK2m+wjRw5UrXRVWc6nQ4Gg/8BASfJsowXX3zRY9gbb7yh2Oiqo0suuQS33nqrT+tasWIFdu7c2fb68ssvV210dZJer8eyZcvQvXv3tmGLFi3yad2EEEJIrLHJNjh5GB/F0oFFbozIeuOVzF2wuJoUx1nlBHvEGwkqh2yHjVsjXQxNRN+BjkTHPH0AndJ7GwsUQwT6GU+BUfItsCvRiAITbIJgtFaX8nCzzrfAhAHmoT5Nb3E1gSs8TszXsDGRfqYBSJK8WwsPSPatnABgcXmfX5sVhnW9HO/vk022Rqze4KtmDccDj+mdwfks/dnWSpQ+x5Nag3BeV9t3g/UeCEl0tY6qrifqwCbbQlQSQtp9V/+FcNyUjDlhLEloneJjXU+kzlkNmQenY3owqNUPfFFoPlVxeJJkRH9TcMJRBySfJhiu/bORoBOWNVYUmgdDUmhSMjDZOwCCEEIIIYSQaETt87Sj9nnUPo8QQkiYiH6zZQyQBN27LOJ7o7ylGfzXrdBbG9FHUNUpq0nMHvaccxys4mhs5bAIbmMZdEBSPATrHClWHz/5Ak2LYSMnId9RqjjucIsZdmdi7ksdlWp4/sukAQymBHy2CLdZwX/dBr77JxRkKKcRlgT+/JyYVmfx/TuUyKEemSrN6RoEYWHxqF7QzCojwZ53yzkHP7QPfE8ReMlu8NpK8OKfwXf/5PEvT1Zu6+LP948Qktg4F19HaDWiD3DvLIa1CyVU/V3CP+aJIz0UmnjHrcZWjtJq7tGuvc6iMoMfJg+Ig+s8EhG9M4B8H56vc8C3ZraaNLRwbCnjsNjEB4aDAa73oCDci3StRCEEHHCHpBNCQicBf2ojhJDo0LkhVEZGRlCXn5GRgcrKyrbXNTXxcRfh+PHjEVnvd999h9LS0rbX48aNw/nnn69p3ocffhivv/46HA6HpulfeOGFtr8ZY3j66ac1lzM1NRU333wzHn/8cQDAL7/8gtLSUp+eAEoIIYTEElHwTDi0uiisK5hssji4yiFrq0cRoiSWgvW0HFecXPn7oGf+dzgxSAacl30Fllct6bA8Pc7Lme/3MhOFSafcwki031ll5Tu3ooA1kckZM/FT43eodWq7q8Uhw85tMDLPoDtrEM6jeqbHedlXKI7LNw3CiNQz8HPzZs3LUwrN8idIq1VhWwcjkCtcfD12BeOzBIK3jVpc4lYKouOYL1pV3q9VEEBICPFNncZzTDtqKEFCyy7b8GPDGsVxfY2FyDcNCnOJQmdKxmxsaVqPemdg93Wc3AmLqxFp+uDef/KX2vlbqxRdGs7J+q1w/HnZ8/DG0acDCsM9xTwEw1JOVxz3m8wL8XPzZk1BrDOy5iJZl+p3OaJBii4N52ZdjC9rl7cNMzITZmVdEsFSEUIIIYQQoh21z/MPtc9TR+3zCCGEBEQWBKPp9IA5FWiq8x7X7B2MxqzU87MAACAASURBVF0u8BcXAh+9DrhcgCSh/4itOATv38q1BDnFm1+OcFzymozi44DEAFlwGyvF+/lvMYdXHgLW/1c8wfTLwfppvIcy9hwU2O8Vjn5ljQN3zUzysYTxRdQB+qR+WcA1ExiqVJ6FF293VTnnwDvPgi99ArC700MKerwEZN7gNW1Jgne+r/fjVllhTuKGemSoNKerawFy0sJXlkiqEwWj+dbcMKbxXZvBH54PHD/S5bQZuY8BOX/yGi7ajoSQ+MM5R6sdaLS6/zW0Ao2tJ1638hP/t49rEgxvbAWcPj6LMM0EnDMEmD2MYdYwhj6ZnudxxsR1IdE1SzxxujhufY9j6QYOp+wOEVp+i4SB3d3b3Ren5IoDqc7IB2bR8/6InySJ4cHzGG78l7Yv5fbD7uMOY4HX2+1Ojpvf5nh7I4fMAb0E3DqN4bnLGHSS5/JLAwzB7+ralijjnAsDvxM51JqQcKBgNEIIiVPBqEhHi1NPPRW7d+8GABw+fBiLFi3CwoULw1qG9evXe7yeP197QEBubi5mzJiBTz/9tMtpLRYLNm7c2PZ63LhxKCgo0F5QANOmTWtreAUA33//PTW8IoQQErdsXPwL+ODk4QEFBZ1UZT+G446jXsODFUBC3NSCWIIRoEISl9q+NSh5OAxBOE74qt5Zi3JbqddwLUFILkEHfz0L7Ge+6Vm/Rfek3vi5eROMkgmnp52FAnP8hEuEilkQaCba70RhEKLliGQbuuOefn/Fjw1rUGYthgwXAMAm21DcuktxHqvcAqPkGYymFB7mXn4eeiT17rIceUm9VfcViUm4sde9+KFhDfa1/OKxjxe37FY8jyudX0XfDQNLQqouHXVO77tzviwHAAYnjwj4e+SP4/YKVDkqvIb7GsAq+izNUgoKzYO9htc6qlFhP6R5Ob5SO/Y6uPKTgX1hVdk+wXoPhCQ6pWMrADBI4PBu9cXjrgk/iTY/NX4nPMZPyZwTV/dEcpJ6YGG/p7Gx4RuUWvcrfuc6cnEX9rbsUBxX56yJmmA0UV1Mz/QYnDxCdV4GCX1NhTgjfQryVOqpw1LH4u6+T6GoaT0q7V03jO8oiRlxinkIJmXMQJKk3Buul7EfFvZ7Bpsav8Vh60HFzyZNl4FhqWMxOnWCT+uPVhfmXI2+pkLsat6KFF0azkifij6m/EgXixBCCCGEkKgQT9ei1D6P2ucRQggJE9mlPFySgLQM5WA0pWEfvgQsf6XDcmXkV27G9xne9+7LqhPrHo7TxTH7BRlH692v1QIGUuIg44s/cLl45KDRYA8t1bwsptMhf9okwLspAQDg7uU6XDyWo392/NSDfVWq8n1aMJ3hzzMZctMYmqwJ9L377mPwNx7yGJTvKFWc9GCCd76v9yOYqTA3+OWIFZkqzen8CZmLVaL9JjM5MY7FvNUCfs95gKXrB1cBQKarXnF4HTUnIyTqcc7RYncHkjW0BZmdDDjjXsM9As06BaC5fAw088f9sxnWF3MwAOMKGOYMY5g0AEjSi4/PksqhOxFqj09/wfHP79vf6cFqYPZiGbOH+3ZO654GFD0o4bFVHP/42r28dBMwqi9w1iCG+2Z5h0gR4ovfTZaQm8rx7iaO4uPufazFDvxaqTz9q+s4bp0a+D73l1Ucy35s/444ZeCFNRwFOcCd0zsHowW2rsN17t9P9Dr6rviiuhmw2JTHFSRwqDUh4UDBaIQQEiFZWVkerxsavJ/mFIj6es8f8zqvL5ZceeWVWLFiRdvrP/3pT/joo49w/fXXY86cOejZs2fIy1BUVOTxevz48T7NP378eE0NrzZu3Ojx5MrCwkKPJ2FqIXd6mtiBAwd8mp8QQgiJJTaVcLKbet0Hsy4l4HV8W7cK/3f8n17DtQQYEe3UQkwoGI0EQu27elOvPyNZlxrG0rhtbfoB/zz6N6/hakFCJ4m+D8EIghyeOhbDU8cGvJxEYpTMisNF4ZlWwbHO5GMwGgBkGnIwJ2eex7B6Zy0eOOD9xNWTZeqmsZwT0n/jtWx/6ZgeZ2XMxFkZMz2G/7X0bhy2HfSavtXlvY1EIVi5hp4YkjISa+o+8Z5H4fskCqYDgFt6PygMwAil1bUrsbJqmddwX+sZos+yv2kAbuvzsNfwTQ3fYtmxxV7DfQ1kE1H6HE8Kxnld7XhJ4bWEBE7mLtQ7ahXHZeqzUesUPG6RkBDhnGNd/WeK45KlVIxNOyvMJQq9LEOu5vqYzGXcue9yuOAdolznqEY/0ynBLp5fROfvTH2uYn3FX/nmQcgPYchz96SeuCDnypAtP9owxjAmbRLGpE2KdFEIIYQQQgjxGbXP047a55X6tC5qn0cIIcRvsqCHvqQDUgUPuWj2rsPwL9/zGtbfoZxmFWhn2Vjz7a9oC0XrSkr4mwgEFS/dA+zbJhzP7n4BTKfzaZkpAwYi72AlKvV5iuPf38xx3+zE7ewr+j79Yx7DgulS22tT+J/TGTH8K+/jUaG9RHHa0mr3fb94Cpn2RYMfzVkKc4JfjliRanQHyCgFXNYmUMhVnUU5Kqeb780NY9OGTzWHogFApiwIRqMm/4SEDOcczbYOIWYe/3OvkLOmjsPbgs/cf6uFGkeT5CTgyYulrifsRK0GJLpUjCcfbvH+gI81Aks2+PbBF+QA3ZIZ/n45w99VcqIJCcSFoxguHNX+rT1Sx9Hvz8pf1Hc2ctw6NfB1vrtJ+bvwzkaOO6d7Dgs0BN8lA0fqgPwEvt7wR4lK2HcBbUtCQoqC0QiJMhn6HDxe+HqkixH3MvSRr2F0bghVV6fwNCc/Wa1WWK1Wj2HZ2dlBW364zZ07F3PnzvVofLVhwwZs2LABADBgwABMnDgRkyZNwllnnYUhQ4YEvQyVlZ5xzgMHDvRp/kGDtHXCOXz4sMfrDz74AB988IFP6+qstla5EyMhhBASD9SCL4ySKSjrMAvCarQEGBHtrC7xZ0nBaCQQaiE/JkGoVaiJ1muVW7ts/OUIYTAa8Z34s1Te70TBXKJzTbDKAygHVYnCq8Lx3RCFwSmd20Xne7Mu2cflKH8uEnQwsMg8Clpcft/qGaJjneizFIXHqgWV+lQelfI7uXdoi6/Utg/V0QgJXKOrQTFgCXCHNVEwGgm3g9ZfccSm3IFiQrffRCTcNJpITEKGIQs1juNe4+qd0dPjTRR2G6nrMkIIIYQQkriofV74RLqNHrXP047a51H7PEIIIWHCBb3dmQSkKQej8aY6jw70XJaB/du9pqNgNLcPftLeOXho6LNfQ+vQPvE4QxLQf7Dvyxw4CgWrSoTBaH/9nOO+2b4vNh44XRyHBZcU+dmebb3UgtHiLhKsbK/XoD7OI4qTtjqAVjuQnKC39nwNRsvPdod+JCpJYshNAyoVMrEO1XLE4bdJ0RFB2GdO+J8HHBG8dI9P02e6lA/UFIxGiDdZPhFo1inMrOFEcFnn0LImK9DQyr0D0KwAj5FAs2A5tYd/86llwybCJvxZuYrosz6ZwVkOIb7o1fnp9B1UBOGZPBYbR5ng95stZd4B01p/6zklFzggaO5bUk3BaL4qEQTSmQ1AXnqYC0NIgqFgNEKijI7pkG1QvolA4kvv3r09Xh87dgw1NTVBaSC1a9euLtcXSxhj+Pe//41HHnkEf//7370alRUXF6O4uBj/+te/ALgbYl199dW44447gvYkzs4N49LTfaulduumcuXTQU1N8O8+NzU1BX2ZhBBCSLSwyVbF4QaWBIn59rRDkWAFlhB1akEsDm4PY0lIvBEF5BiZKWjHCV+ZJeVAIg4ZNm6FiYmDAURBgXpGP/NFgijQTBTkFeowCCMzgYGBK9wi9y1wTHkfDSazTvv5VXSOMElm4XlaOQhOefubpeSIPY1W9NmLQvRERPUS0fFGNNzB7XByR8Bhi2rn9WAEnqqFn1EdjZDA1TnEjzXLMuQCCoconmgt3EhYfVf3mXDcWRkJ2vumkwx9tmIwWl00BaMJ6jei+hwhhBBCCCGhQu3zEge1z9OO2ucFhtrnEUII0czlUh4uSUCqcjAamuvBW5rAX/gTsOlLoPqo4mT9HWWKw6ubgWYrR6op/gNkOOdYskH7PatrJ0ohLE0YlOwWjzvnCrBUbfUjD6OnoMDxPjbiTMXRTcrNNeNeUSnHFW/IcAmyDQs6dSY3xXAzLr51Lfj/Pg78uhVwnXiYVlYPYNJ5YLc+DWZsf2AxX7UEKPvVaxmZLkGSE4DalsQNRqtv8e2e+k1nx99xm3/+NviSJ4CKUuUJxkwFu+kvYKeNB+AOh1MKRisRN2mIO1uUT+/oH5xL8ei3Y71Pk2cIjj8NrYBL5tBJ8fe9IonHJXM0Wz1Dy7zCzE7839AKNLVyj2nbgs5siRdoFizXTvTvWKJ2CJLj/LNwuoL3BjMSODiWRI4kMYzooxzwV1YDHKrh6HciMHt/Jccf/y3jh4NAix3ITgFmDGV4fh5T3H+LSjkueElwsXnC1kPA6f3df3PO8Ut512VO0nO8da0Ol7wqo0ahWX9JNce0BAkbDpaDguuQghxErC8KIYkihn9qI4SQ2DZx4kSvYUVFRZg5c2bAyy4qKvJ4bTabMWrUqICXG0l6vR5PPvkkFixYgHfeeQcff/wxNm/eDJvN5jVtcXExHn30UTz//PN4/fXXMW/evAiU2D92e/BDP6hTIiGEkHgm7lQbnIAZQD30RuauiAUrxRu1gBMnd4axJCTeiAJyTIJQpnBQO0ZZXS2q412C70OgIUbEP+LwTEEwmii8Kkj7I2MMJsmseExVHiYOHAs1YaCZQjmFAW5SikrAmlIQXPQdD8T1DHGwmBLRedSkU/4sRcFogDtALk3vRwNpj2WENhhNLfxMFIBHCNGuzqn8iDgDS0Kqjh5rRsKr0VmPrU0/KI4bmjIG3ZN6hrlE0SlTr/z4RrWgw3ALdV2YEEIIIYQQQjqj9nm+ofZ5/qP2eYQQQjQTnTMknTgYrakB/N6LugwGyRcEowHA019wPHFR/HfQfPlb7efksf2B346K7W3C//mocBxb+JJfy2SShJTxZwN7/SxUHCo+zjF1kYwWlWpkfqfbNMYYbcbF924Bv+d8wNmpXUflIWDFq+BV5WBP/Z972s/fBn/mD4rLUQtGq7MAfTKDVuSY0iB4RuJ1ExmONXCs2we0OoC+mcCNZzP8eVZsH6M641++B/7U79Un2roWfMEM4K2NYPlDUJDDsKnE+9heGj23QEPq+/3i81r/7PjaP5Rwawuw/Tuf5smUxcefhlYgK/TPiyVEyCVzNHkEmZ0MKuNeYWaNrUBTx6CzDsObvX+qI2HSPxu4dSrD7dP8OwarZebE+8+LonqQPzKpmRGJkGXXSxj9uHKA2ci/yKh8TkKzDZj0jIzq5vZxFQ3Ash85dldwbLxf8gjQKj7OMe05GZYuju3jnpTR/KKEZCPDqp/Vp2VcxljrFjzQaz3OHrQQBTlQDkaLnuetxgxRQHPnsHRCSPBRMBohhERIv3790K9fPxw6dKht2FdffRWUhlerV6/2eD1+/HgkJSUFvNyOXKInVoVYXl4e7rnnHtxzzz2w2WzYunUrfvjhB3z//fdYs2YNmpvbrxgaGhowf/58GI1GXHTRRQGtNzPT8+5LY2MjcnNzNc/f0NCgabqcHM8a8FNPPYX7779f83oIIYSQRGOTlR9BaJRMisP9oRaWYpOtMOvoLmkwiEJvgOAEqJDEJQoLEoURhYPacaNVbkEGshXHydwFGco3UygYLTJEAWI2uRUylyExz6cLC8Orgrg/mqRkQbiY5zDOuWrgWKiJA8G0hboB7u3vW8Ca6HgQ+iA4EVH5ndwJh+yAQdL23Ra/N+XPUi2ApFW2IA0BBqOpBLs55MA7namFn6mFphFCtBEFKbmDl5RbaHHEeessEjE/NKyGC8rhwFMyZoe5NNErQ698DVHvjJ5eAcKQ2gjWxQghhBBCCCHxjdrn+Yfa5xFCCCEhJCu3+YAkAWmCYLRt64C6410uuo+jHBJ3QVZ4yOfL33I8EdipOia85EMw2sMXSF1PFMV4yR7xyPOuA0sy+r3szOxU1fE2B4fREP+BPCct2cBVQ9GyU4A0k+f20EmxuX34x//0DkXr6PtPwCsPgeX1A1/+inCyTLlOOK4ugZt01Ave+2m9gP+9Tgeni8PuBJKNsbn/dEVtn/Fgt4J/uhTstme8QgdPOliVGO0TFn0pqDfAHc4T99Z9pHlS9vI3QH01Mh/9k3CaOgsFoxH/OF3uQDPPMDOgsZW3B5ZZT4aZtQ/3CECzosvQGxJaaSYg3QSkm93/dzvxf5qZeQ83A+km1jbs5PhuZngEGvlKrYoY78FowawDZtKxnETIKSq3KxpagX/9yGFzwiMUraOfSoHNJcD4wvZhS3/gms8PK7dzXDWe4bmvxHXE0v0DkeuqgpHbgUMSePVVKMjJQ1FZ4oYNB1NptfLBOj8nPq/hCIkmFIxGCCERNGvWLLzxxhttr99++208/fTTMBj879BeVVWFTz75xGs9SvR6z9OA06ncuUhJXZ34ZkW4GI1GTJgwARMmTMA999wDu92OlStX4uGHH8a+ffsAuDt6L1iwABdeeCEkyf8bmHl5eR6v9+/f71PDq5Pl8XU9WucjhBBCEpVNEOhiDGKnWrXwpFa5hYLRgqTVpRKgwoP/1G6SOMSd7yMYjKaybrVAHycXX7PpGf3MFwmi/YiDw85tMLH285GTO4THs2AG9YnK1DkEzcatwhCbcIRT+BRoJgjBMknJwrJa5VZwzj0aIYQjmM5XagFlVtkCgyRo/N6JWnickmSV8DvRsnzRohKMpnYs00rtWGnnNri4Ezo6LhLitzpBkFKmIVsQi0ZIaLi4C9/Xf6k4LtvQHaeljAlziaJXpkG5V4Do+xwJrYLfcCJZFyOEEEIIIYTEP2qfFxhqn0cIIYQEmSwIPmUSWHqW8h18DaFoAJAEB1LlZjTqvB+CZXMCsswhxWhYkxZNVo59ldqnz4/1QJlftwhHsb4DA1r0BSOAZzeIx1c3A70zxePjzRaFDuQdDe6hPDwrBahVaDpx9ZlR/D1U2a/a7NsOnt0LKN4hnMTI7TDLLWhVuAeUyMFoRwVZzpknNpNex6D3zraMC9zlAvb8pH2GD/4B3PYMCgTBaCU1wSlXtDui8rNA3wQ4DvNft2qbUJKA/CFAYy2yXbXCyY42AKd0D1LhSExwOHlbKFmjR6gZdweWdQgta1IafuJ/tYBUElqMAWnG9lCy9gAzhrROAWdeYWYd5kk1IiquhdQy1eQ4D0YTBcT6I4Oev0giJNXE0DsDKK9XHv/05xyTBqgfa4rKOMYXtk/T1fWmx7ylwFXjgeNN4ml6OY9COvnrkiwDB35G/+xzFacVhXwRsRJBU8xCwXULISR4qGcQIYRE0J133ok333wT/ESkd1VVFZYsWYKbbrrJ72UuXrwYDkf7U1pSUlJw4403Kk6bnp7u8bq+XlAjV7Br1y6fyhVIGrpWSUlJmDdvHmbOnIlhw4ahvLwcAHD48GFs2bIF48aN83vZY8eOxccff9z2euPGjZg4caLm+Tdt2qRpugkTJoAx1rZPrF692qsjNyGEEELa2WSr4vBgBrqoddBVC+Ugvukc2NORUw48QIUkrlZBoFIwg6h8lcSMkCBBhvfTWtQCiZxc/EROPfO/Aw/xn9r5xupq8RhvdYmPc8EMgxAHhXnuW6KwMQBhCf0UfQeVyqUW+mUWBHxxyLBxq0c4XTQGJaqtu1VuRRo0BqMJAkZF28comcHAFMPx1MJKtVLbv9SOZZqX30UdzCq3IkWXFvB6CElUtY4qxeGZ+lyAotFIGP3S/JMw2OusbrMgsTjtGeCHTL1y65p6Z03U3GOwCoJTI3ltRgghhBBCCIl/1D4vuKh9HiGEEBIg7t1OBAAg6YC8vgEvfkLrJnyZOsNruNUBHGsEemm7/RyTynwMyYn2YDT+4+fg364AjpYAO753D5xyMdhNj4H1Gwx+5IB45mmXBLTuCYONMMmtsAranzS0JlYwmqjj80lXjFOuR141nuHFbzzbZPTsBowvCFbJQqCirMtJ+D8fBTtlGOASBD2ekOmqFwSjcSTiPecWG0eVIMCgX1YCbI/qcp9nkf/xR+SfdiuAQq9xVU1As5Uj1RRf287h5Hh5Lcemg+6AnG2HxdMaDfH13hVVlGqb7oxzwdKzgPQspMtNyHDVoV7nfaIqreY4a2ACbLc4trWMY8kPHNVNwKxhwDUTGL7ZC7z/E8eB4xzNNs9Qs9bAmykSP0kM7QFlpg5/mxnSToaZeYxn7SFnHYLNUpKiI9AsWNTeSrzHEwUzGC2TmhmRCLriDIbnvlL+xh6sBg52ETb23FccK7e5oGPAqH4MX/pwG+iDnzh+KXehWJCfn+5qaA9FO6miLOHDhoNlSxnHAeWm1SjIiZ9zFSHRioLRCCEkgoYOHYrZs2fjs88+axv25z//Gb/97W+9nkyoxe7du/Hss896DLv++uuRlZWlOH337p6POti9ezfGjh2raV0dy6yF0Whs+9tms/k0r68yMjIwd+5cvPjii23DSkpKAmp4NXnyZI/X77//Pu6++25N81ZVVeGrr77SNG1ubi5Gjx6NrVvdT7YoLy/H559/jjlz5vhWYEIIISRBiMK0jMwUtHWohd60qoR5Ed+0CjpIA8EJUCGJKxqDkBhjMEnJaJGbvcaphf04uTgkkILRIsOkUwu1akEG2lvSqn22ZpXl+EoUatY5JFAthC+YAaPCdQjes1K5ROd7sy5FPZxObtUUThfJMA61dfsSwCraRqLtIzEJRsmsuA61c7JWLSE+r3dVB2t1tVAwGiEBqHMqt3jINOTALiv/tqsUtEhIoL6r/1xxuJ4ZMLHbOWEuTXTL0Cv34HJyJ5pdjUjTdwtzibyJzt+RvDYjhBBCCCGExD9qnxca1D6PEEII8ZMsCkaTgB79A178GxW3ov/AYsVxB6soGO2knFREdZgOX/Eq+PN3eY9YtxJ83UpgSRGw7Cnh/KxXYMlbktmMNYfOwqT8dYrj6xOoyaRL5ihV2bduOpvhD1OU96Wn5zKUVHOs+tn9uncG8OkCCbooDffgTfVAs4Yg54O7wOcN6XKyTFcdjhp6eQ2vDbxJSkw6VCse1z/KgxqDgX/4iu8zLX8F+V98C/Tbojj67Y0ct0yNzu+TP2SZ48KXZU3hGMtvkUJfoGhQUdr1NIPHgP359fbX1/8P8tcewnalYDQK/4hp3+7lOO9FGdYTTQ//XQTc9W+ORivAqclS0EhMKbQM6HYi0KxjaJl7PPMKM0s3ASnG8DzEIdaobRHRpWK8qAtiMFpGMu1bJHIevYBhzR6O7SoBtmpKa9rrJKv3+HYCq2x0/xP5z5ErvYbxY2UoGMCgFL94tB6wOjhMiRC4G6Dv93NMeVZ8oBaFzxFCgoeC0QghJMKee+45rF27Fi0t7qu7+vp6zJ07F19++SVSU1M1L6eqqgqXXnop7HZ727CePXvi4YcfFs4zZswYj9f//e9/cc0113S5ri+//BKbN2/WXDbA3RjqpOrqajgcDhgMoeu4r9d7nuI6Nvzyx9lnn438/HyUlpYCAIqKirBq1Sqcf/75Xc77l7/8xeMpoV25/fbbccMNN7S9XrhwIc4++2yf9gdCCCEkUdhkq+JwYxADXQwsCTro4YJ3IJEvgSVEnVpAj4PbheMI6Yo4UCmyne9NklkxGK1zeFVHamFCekY/80VCV6FcHakHkQVvfxSVqfM5SzWoTVIOVwsms8ZyioYB7veqGizmagH07Z3RRIFfkQzjUA9g1VbP4JwLt5EoKA8AkqUUxflaXIG3QlUrezCC0axdhLdRHY2QwNQ5lB97nqXPRaVd9CRnamVIgqvSXo69LTsUx41Nm4xUfXqYSxTdMg3i1jV1zuqoCEazCq51whHKSwghhBBCCEls1D4vNKh9HiGEEOIH2aU8XJKAHv18W9bAkWC3/hVoagB/eD4AoJfzKLq56tGg805AK6nmmDwwfju7ltVqv1cVzQFx3OkAX/Kk+jRP/U48ct6dAZeBMYYzsAc67oRLoT1SfQLdjj9aDzgEX9sv7pQw4zTxd8qcxPDJ7TqU13FUNwPDewNSlIaiAdAWQOSDTLlOcXgwQzFiSZlKMFpf5Zzt+PLB837N1s+yHxJckKHzGnfvco5bpgZYrijywwFoCkUDgNN9rDLEIs65+Lg062qw6ZcBvQqBvgM9wpfYmKnov7oM200jvWYrPWYDQPemY9VTn7WHop3UkEBhrV3RSScCzdqCzE7+fSLQrENomTvIjHUKOHP/nZxEgWahJKnkWsZ7y7v6Vt/e4Wm9gF1HlcdFc5WaxL8UI8PWh3SY8bwLX++JdGk8jbL97D2wokw1tKusBhjcI3Rlihd//Uw9vZKC0QgJvQSJByeEkOh16qmnejw5EQB++OEHzJ49G0eOHNG0jP3792P69OnYs6e9Ji1JEt5++23k5uYK55swYQKSk9s7/65cuRJFRUVdruvaa6/VVK6OhgxpfyqM0+nEt99+q2m+lpYWvPjii2hqatK8rubmZqxYsUK4fn9IkoTbb7/dY9jNN9+MkpIS1flWrFiBV17x7ekm11xzDU499dS213v27MHFF1+Mujrlm0MiVVVVXtuBEEIIiTeiwCOjZAraOhhjMOmUb4SqBRgR36gFmAQjQIUkrmgMQgLEYUWi8gLq3wUdBaNFhJGZwATP8LJFKBhNFBSmNahNggQDSwpaeURE71np3C4qq0lKhkkl5LDzfKJ6g+g8Hw4S08HIlOstovCQzuzcBhnKN9zUguPEn0Hg9ZtWlXA1R4DndYfsgJN7B9Z6rJ+C0Qjxm0N2oNGl/DukWvASIcG2ru5z4bizM2aHsSSxIU3XDTrBM9HqndHx6GthXSzC12aEEEIIIYSQ+Eft89RR+zxqn0cIISSMZEFHSkkHZPcEkrQHjbKL/IdRgwAAIABJREFUbgIbOx0YP6N9GIACR5ni9AeVn4sTNyoatE87OC+Ke9KX7gHqq9Sn2a/8YBkAYL0KglIMZk5Blks5yam+Jd5jG9qp7Vfj8rUto3cmw8i+LLpD0YCgB6NlCe45H/PhuxpPKhqUvzd56YDJEOX7RoB4i/Zrzc4McCLPeVxxnNMFyHL8HI/W7tP2XpL0QO/MEBcmGjTWAoJ9h13wO7AzZ4H1G+Qd4NQzH/3tynWhsmP0kO5Y5ZI51uyNdClCQy8B2SnuQJVRfYGzBwLnjwCuPIPh5ikMf5rJ8MRFDC9cwbD0eoYVt0j4+m4Jmx+QsPdxCRWLJFhekmB/VUL18zoc/KsO2x/WYd2fdPjvHTq8+3sJr10t4W+XSvif8yQsmC7h2okSLh7NMH0Iw7h8hsE9GHpmMKQYGYWihZja1o2jU5qiykbfpp94inhrDcwLsDCEBMFLV0qIpkNmmqsR2S6FNoKVh9A/WzxfSZz/VhQMnHOs3Scen53iDhwlhIQW9ZgkhJAocMMNN2Dr1q14+eWX24atX78eQ4cOxQMPPICrrroKffv29ZqvuLgYS5cuxaJFi2Cz2TzGPfPMM5g+fbrqetPS0jBv3jwsWbIEAOByuXDeeefh7bffxowZMzymtdvtWLZsGe677z7U1tYiMzPTp4ZA06ZNw9KlS9teX3/99XjwwQcxfvx4ZGZmQuoQeZ6amoqcnJy29S5YsAD/8z//g0suuQQXX3wxpk6dirS0NMX1bN68GXfccQfKytp/yDzzzDMxaNAgzWUVWbBgAd5++23s2OG+mXj06FFMmjQJL7zwAubOnevxHiwWC5577jk88cQTkGXZp+2l0+nw4YcfYuLEiWhsdF/1f/311xgxYgQeeOABXH311cL3X1tbi9WrV+Ojjz7CypUrceaZZ2Lu3LkBvnNCCCEketm4qFNtcANOTFIyLC7vG6zBCA4hbmohc12FnxCiRtT5Xi0sKBxExylReQH1YDQDMwRcJuI7xhhMklkxhMk7lEv5OJfEjNAx76da+ku0b2ktj1lKCUvjBtF30MHtcHIH9Cf2aZnLXiFzHZdxMpyOKzwvrfN7FL/nCB8PdMmwOa1ew7XWM/wN3UsWBjQGIRgthIGnWrYL1dEI8V+DSoBSpl4cjBbnbbNImFnlVmxs/EZxXD/TAOSbA/+9P95ITEKGIQs1Du+OAXWO6GjBJKyLqQTdEkIIIYQQQkiwUPs8ap/XEbXPI4QQEjGyS3k4Y2A6HfiEOcC6lV0vR5KAiXPcsyanetynKbCXYLtppNcs8d7Ztd6HW8QXjgpdOfzBZRnYuhbYUwT+7YeBLWzSeUEpE0zJyHA1oErf3WtUg7hpU9yx2MTjukXuGXyhUaEeSOyrvg7lEOrS6sS8syw6RuWmhrccEVF+MKDZ8+2lqND39BpucwLHm4Ae3QJafNTQGhhzwQhAF+1Bi8FwTDncDADQK188LqcX+svliqO+OZQKm4PDGOdhhPGo3Lcc+7BI0rvrAummE/9O/m1mSDOdGOcxniG983AzYNSDwshiDK+uADavBlc7TonY0gHcrjiKx3kVydfr0ZF9gbH9gaJOm3lgdyBfJeSJkHAZlMcwZSBUA7P8NbovcLTBt0DBC5tXKYcvlu2FycDQs5ty8HdpDYd6bCOpbASsKl0fLhxF24+QcKBgNEIIiRIvvfQSMjMz8eSTT4KfuJJtamrC/fffjwceeABDhw5F3759kZmZiZqaGpSVleHXX3/1Wo7BYMDixYtxyy23aFrv448/jpUrV6K+vh4AcPz4ccycORMDBgzAiBEjYDQaUVlZiU2bNsFisQAAevTogWeeecanJ1NedtllePDBB9uesnn06FHcdtttitNee+21Ho20AKCxsRFLlizBkiVLwBjDgAEDUFhYiIyMDOj1etTU1GDnzp1eT/FMTk7GG2+8obmcagwGA959911MmTIFNTXuDoIVFRW47LLLkJeXh9NPPx3dunVDZWUlfvzxR7S2uu/6devWDc888wxuuukmzes67bTTsHz5clx66aVoaHBfcRw5cgS33nor7rjjDgwfPhz9+vVDeno6WlpaUF9fj3379ml+iikhhBASL0RBKUbJFNT1iAJTghEcQtzUAkwCDVAhia3VZVEcrhYWFA5mSRRIpFxeQD0kUE/BaBFjkpIVzwedj2uiAMhgh3KJ9m2t5THpwtNyU+07aHW1IlXv3qft3KYYenZyGWrhdF7vWXCuifTxwCQlowHeT1rWWs+wqoSLqu1fovfdIjhuasU5Fx57gcDP61q2C9XRCPFfrVP8BPpMQ464MV68t84iYfVT43fCa8QpGbPDXJrYkaHPVg5GUwk8DBcXd8LOlXsPRbouRgghhBBCCEkc1D6vHbXPo/Z5hBBCIkSWlYefCP9kNz0GvqcIOH5YdTHslqfAcnq1v779b+Av3QsAKHAohxsdrIrvezkNGm8R/3YkcOmY6Om0yp0O8L9cC3y7PCjLY3n9grIcmFLQTVboNQ2gPpGC0ezKw80GQIqzYCL+8n2BL6R3YVsIluhYFO8hjSKiYLSMOL9Nxh128BsnBrSMl47dhdMLNymOK6uJn2A0tSDGjp64SOp6ojjAv3xPeUSSEcjqIZyP6XTITxFXCn7znIxPF0jISI6vY3i8+2RH8OqxJkOnILMTf3c7EWjWMbTMPZ55hZmlm0ABewmK79wI/ueLgUbv9r5aMH1vYKByMJocx5drnHMs2eDbG8xMBp6fJ+HCl2TUnTispxiB1/+fRGGCJGoUdmdYuy/4X96XrpRwrBG48k0ZNnH3ofZy2A/i4aonlUc2N4BXlaMgp4diMFqiXp/54tNfxJ9xRjLw0Hl0TCIkHCgYjRBCosjjjz+OKVOm4NZbb8X+/fvbhnPOsWvXLuzatUt1/jFjxuD111/H2LFjNa+zd+/eWL58OS666CI0NTW1DS8uLkZxcbHX9AUFBfj0009RWVmpeR0AYDabsXLlSlx00UUoL1d++oJWnHPs37/fYxsp6d27N1asWIHhw4cHtL6OTjvtNHz99deYM2cOKioq2oZXVlbis88+85o+IyMDn3zyCVwuwRO+VJxzzjkoKirC/PnzUVRU1Dbc5XJh+/bt2L59e5fLyMzM9Hm9hBBCSCyxyVbF4UYpuKEuWkNmiP/UtqWDC1oYEaKBVRCgaNZFOhhNcFxxiVsPqoUJUTBa5JgE55zO+57oOGcK8r4oPmdpK0+wg9pE1L6DrbIFqUh3/60SsHVyGaJwus7DRAFikQ7jMAv3IW31DLUQMLX9SxTQaFUJaNTCwe1wQXwnNtBgNC3bRS0sjhCirs6h3NLBLKXA9P/Zu+8wN6qzbeD3kbRFu+tt7gXvrgGDDRgwpmNDDJjQQkgIJEA+SDAlkISQhIQ3gQQICeQl8AIJPdQQWgqE3rHpNiVgG2NsbK+Ne9tdb9FqJc35/pC36jyjGXVp7991+fJq5syZI2maZs7c4/FD8elwlGZaa8xtij3XDgDlniHYb8hhGW5R/qjxDTMObw5nvweT9LsMyNzxJxEREREREcD+eU6xfx775xERUZpoKRjNCwBQ43cD7p0HzH8ZetWSmGKqogqY+hWoifv0HzH9a8COYLQJXY3GWRT6za4tAfONql/fBzh2L4WN24ED6hWOnAR4cynQ6s2nUxeKdu5VKakHAOAvR9V2IRhtEF2Ob+s0L1flJRluSJrpptgH77g2bAwwaf/eYLSuVcZiq7YB4YiGz5tD62EGSIGChR6MhrlPAhGbNIed9wLKhgC1I4HmLcAnb8YUmRJcKE7euFXjwAmFsSxJ+7G+Vl7rQd3Qwni/drTWwD/+bB45cjyUxz4crq5WA+bbC/DuCuCOuRqXHVv4n2Mh+fGj7kJnHjpHodKvjAFoxT5+95Q4fdMlCYeiAYBHeEg0UNjPJH13hftpqv0Kh+6isOC3Hrz8mUYwBBw/RWFcDddhyh31Q+3H33GmwphqhWUbNbZ1AJ0h4IaX7Ff2IyYCB+8cXc4XXenBi4u1MdAMlgYevBaTuz7DrLZXUGM1i3Xqv/wSDeMfxDvLY+fdWODnilLh3Afl72zFHxi4S5QpDEYjIsoxRx11FBYvXozHH38c9957L+bOnYtwWD4RXFJSglmzZmH27Nk48cQTE0q8njlzJubPn4/LLrsMTz31VM8TMfsaPnw4zj77bFx++eWorKx03fEKAKZNm4bFixfjkUcewQsvvIBFixZh06ZNaG9vFzsmVVVVYe7cuXj22Wfx6quv4pNPPrH9PABgt912w1lnnYWLL74YZWWpv1Kwzz774LPPPsMVV1yB+++/v1+HtW4VFRU45ZRTcPXVV2OnnXbCnDlzEprXLrvsgvnz5+PZZ5/FzTffjDfffBPBoP2jQCZNmoSjjjoKp556Kg499NCE5ktERJQvpBtrSzylKZ2PHHoziHr5pJldqEtYO3jMBZEgIAT8ZDsISZq/1F7APkzIq3iaL1uchmdK27lUB0E43WdJ7cnUumE3n777d7sQje736veUoclUz4BwLDEoMWe3B86OM6TjEQWFEiUfE5V5zcFoHUkGo9ltxwAgZCUXjObkc3H62RFRrCYhQKm2aLjtdNqm4xaRG8sDn2GdcKPEwVVHothTYHeapFC1z9zbSgo8zCS78yfS8SsREREREVG6sH9ef+yfx/55RESUQZYQ5Nkn4ENVDQWO/ra7R9WMGBetw7JQH2o0FlnbDHSGNEqLCvOGTSl0aK9xCudOtw9QySb95lOpq2xMQ+rqKqtAdbM5GG3L1k4AhZ7mFNUuPM+10ILR8O4L8rjakcA2B79N6nbrtww2hFYai0UsYMN2YNwgyxduES6VVfsLc5vcTb/1tDxy6hHw3Pxiv0HWWfsBKxb1G6YATPJvwWeB2IdErdqailbmhnihk7XlGBShaACAjavlcaPr405eP6oUaJTH/+djjcuOdd0qypL2oLv+SN/aT+H0A3P32I/yl968Fvj8o6TqUDb96yLhCAo18uOFRe77FXaHx46tUTj7kEGy/6O8U1crj/v+YQrnzejeH0WXYa01bntdI2DTjb47FA0Adh6hcOEI8/KvP/8IesvvnDX0i09QP9U8auUW9vu10xmSP5/Jo8FQNKIMKsyjJCKiPOfz+XD66afj9NNPR3t7Oz788EN88cUX2Lx5M7q6ulBSUoKRI0di4sSJmDp1KkpKkr+ysvvuu+PJJ5/Eli1bMHfuXKxZswYdHR0YOXIkGhoaMH36dPh8vbuNI444wthBK57Kykqcf/75OP/88x2VV0phxowZmDFjBgAgEAjg008/xfLly7Fhwwa0t7dDKYXKykqMHz8eU6ZMQV1dneP2JNohqqqqCrfccguuv/56zJkzBytXrkRTUxOGDx+OcePGYfr06Sgv773BONHPC4h+BieccAJOOOEEdHZ2Yt68eVi1ahW2bt2K9vZ2lJeXo6amBrvssgsmTZqEoUPjRE0TEREVkKBlfqRTqm+q9XvMwSGBCEM3UsXuJmm7MCgiO1rrnA1C8nulMC05BEoKCfTAC4/ihfxskfY5A/cR0neb6iAyvxB2Fdue3A1G6xtqZbd/6N4/y+F0vZ95REcQ1MJxg7A+Zoq0PeqMyNuDvuSQO7/tDXpiIFuSxzcdEftgtGT36wMD74xlGIxGlLBtQoBSja+7k7HQ0YLBaJQibzQ/bxyuoDCjmr2T7dQUxd4MAADN4ezfERCwOa7Jdmg1ERERERENTuyf14v989g/j4iIMsiyzMOT7POhfEXQO+qeIIQRAUDjFmD30UnNKmdJgTLVaXw2h27ZGg3wiUSAMfXA6AZXIbp66wbg5UdS0xiPB5iSwsDW8bth9OoNxlGrNgZRyMFoWmus2AxENNAu5OVWFFAwmt6wCvrpe8Tx6nuXQ9/wo/gVTT4AanR9z1XjUWE5TG1be+EHo23arrFoHaA1UFYMbNhu/q1SVbirUtS6FeIote/hsQNH18UEowHAeGzEZ4i9FtqY/cugKdMUp6vTzN0y046csFZebjBp/7iT14wbib2XLMAnpVOM41dk/7li5MJKl99XHU/ZULrYbZscsgtG0+EQCjXyY1PsMy/iGlOd+nYQpdqMiQpKaZguS5ywV+y5AaUUDp8IvPCpXOcRuzk8p+Bmm7R5HeqF/aPb/exgYxfE7PaYQ3d2AEs/BiJhYJcpUEO4oSNyozCPkoiICkh5eXm/jkfpNmzYMHzzm9/MyLwS4ff7MW3aNEybNi3bTQEQfSLoMccck7H5lZaW4vDDDRcAiIiIBikpZKYkxcFopV5zfQzdSI2Q1SUGPnWPJ0pEUHeKIR3ZvvleDNNKICSwSBWlpE2UGGlZGhjeGbDMYVGpDvOU6uu0OqC17umEK4VfZSo00Ku8KFYl6NKxvUj77l+ldcIDD4pUMQA52KzvtEGb0EF/ir8Dt6T2Oz3OkMpJwa7dyoQQvWSPb+JNn2wwmt120k0ZIjJrCtsHo/H5ZpROLeEm/Lf1XeO4Pcr3w7DikRluUX6p9pl72zSFt/Y7DswGu+ODbP82IyIiIiIiYv+8/tg/j/3ziIgojbQQjObxJl/39y4H7rsGdaHVUNqCNoStXfh3C6/+zJPV88XpIgajpeEUtA6HoW/5KfDEnf1HNEwGbnoBqtb+eoYOdkJfey7w6uOpa9RJ50KNGJey6tR3LkH96zcbx63cloLlNUdtaNE46VYL7zfalysvzkhz0kpv3wb969OAj9+wL3jSucAHrwJzn7Qtpr55IbBqSc/r6kizWFZaXwtBV1jj3Ac1/vaes9DmdGyjcoXWGvjsA7nACd+LHTa63li0PtQIYI+Y4XfM1bjtjISal3Ps1ouKEuBnswbHg3O1ZUFffZY4Xn3jgviVjKnHFVv+gFPGPWocvbkVaA9qlJcU3vFQIXpnubsQ/Hrz8+SIkvfJW0lX4ZF+D0LO0C4Ebo/9fJ7CD9GlwlA3VGH2YQp3v9l/X3XYLsDX9jZPc9mxHsxdaiFg6Ep/+ETgyN2dzVu/+4Lzhgba0FC6HcCQmFFb24HWTo0hpTwuMrELjvvDyc6Pz/UTd0Df8nMgvOOLVwr69J9DnXc1lGdwHOcTJYvBaERERERERJSXtNYxoTPdUh0yIwWLSMFs5E688JJkA1Ro8OoUgp+AzIU/yfN3H0gkBQj6GIyWVU7DMzsj5n1GvPAqt6Rl24KFkO5CsSoxtq+bFNKVDqWeMnRFYoPR+oa2ie30lPV01pbes5OAtWhdqf0O3JLa7zTcSwq5i3c8JM23Qwjxcyre9Mnu150EtzG8lihxTaHNxuE1Rew5SOn3dvNLiMB8zHt49bEZbk3+6Q4wHCisQ2iLbMcQX1WGW9RL2jf7lA9FHv6eISIiIiIiIiIiokEiEjEPT8FNkOpr50Dfdw1KdBfGhdfiy6KdYsrMWQq88hlw9OSkZ5dzmoVufFX+NNzc+9TdsaFoALByMfT1F0Jd+y/byfXf/ugsFO3AWUBRCbBlHbDkw+iwvacDfYPtqoZCHXQMcPzZztvvgBo5Hg1qo3Hc6nY/whENn7fwbpye/UD8UDQAKC9Je1PSTt90SfxQtFN/HO2bc+XfgSfvhL75p2JRNXQUdFdvf95ihFBmtaPD0CenqYC7dPzpJeehaABQU8DBaHjxYXGUuuJ+qGGjY4ePrjc+Bnd821Kg9HhjXcs2auw6Mv+3R9J6MbYaePEnHkwek//v0ZHX/glsM+9/MHJ83PBRAMCoOny99Sncs+48nDPmLmORxq3AHmOSaCdlzAUPuQxGGzpI1hXKOP3XK80jyiuBXfdxVIfqkAOGdQEnozV3uFuPx9cCXg/XZcoPd5ypsH898OKnGp0h4NBdFH5ylIJHWIZnTFR48xce3Pu2xuJ1GhrAkFJg+q4KP54pT9eX1hp44W+u2lkfXg1T0DAANG4B9kpdznpBWbFF3n7tvZOz7ZT+dD70jRcPGKiBv18P7LIXcNRpyTSRaNBgMBoRERERERHlpbAOw4K5s1iJKk3pvKRgEaeBJWQvXniJFAZFFI9tEFIGw5+M85eCkGzC3KQwIa/iKb5schpqFRDCoqRgtURJy1Z3m4o9JT1/m2QyNNDvLcP2SFPM8H6BZsI64e+zDjvZT9vta/wpDlR1S/rOnIZ7SeX8XvvANzGg0WY75EQgEi8YLbn9upPjL7ttKRHZawqbH3HWG7hkvpivjd2TiZyL6AjeannJOG5Y0UhMKt83wy3KPzVFQ8VxzeGtWQ1Gk/bf2Q6oJSIiIiIiIiIiIsooLdzsrpIPRkPtKKC4BOgKor6r0RiMBgCPzNc4enJh3WQejmi0mp+viuo0dIHQr9iEmr3zHHRbC1SFzTn5Vx6NOw/12GdQYyYk0LrUqZ9QC7TFDo/Ag7XNQJ18WSIvbW3TeOFTZ2XzPRhNBzuBuU/ELafG7RL93+cDTrlIDkYbPnbH/+MArw+IRPuFVEdahGA0Dem6c757ZL676+bV2e2ylFb65UfkkXseZB4+qs44uL5pARCbowYA+M8nGj+fld/Lk2VpbBf2Y/edPYhC0QBou33k5P2dVTK6HgBwesujOHf07bBUbBDRyi0MRssHW1rd90WqL7DjE8oNeuOX8shpM+G55jFH9Xj/+zFwuzCPAu571+yyO28Dn99KeUQphdnTFWZPdz7N1DqFqXVJHN8t/a/rScZ9+Bi8nqsRMZyWWslgNNFKc3dqHLaL8zrsjm/1y49CMRiNyJEUnD0nIiIiIiIiyrygJTzmEUBJigNOpJAYp4ElZC9ewElId2WoJVRo7IOQshuM5heC2aTwLACICGFCPgajZZW0z+kcsJ8a+LqbFE6VKCkkLNqG+EFhdsFqqSYGBPZrp/lz6zutHCzWO61dUFYm37OJ03A9iRw0Yn88JAWnBaz26NOkEpTu/bqT4y+G1xIlJhDpENefmqJojyNVoB3UKfsWtM1Dc3ircdz06mPhScVNYQVuiLcaHpifLiuFHmaKfCxcwHd7EBEREREREREREQ0UMT8EFL7k+30oj6cnUGZqp3yT7OcbCu+G+zWxz2PrMbwiDTNc+I48zrKAVZ8bR+lQF3RHK7BupX39VcOAEeOTaGBqjB0p96XYZv+8tLy0aC1gOVw9yovz95qptizgy2VAVzB+4YkDHlx02sXGYupbP4z+7/MBo3qX3RrDwxIB9+EY+SJiaSzd6G6a6rL8XZbi2rJeHjfCHN6JMQ3Gwft2fChWtcp8iTmvbO8EpK5aNQXynKl4fdG01tDhELBysVhG7TbV2cxqRwLFpShCGOPCa41FVm4pvOOhQqG17lleFq1zN21lKTBheBoaRbTafHwPAGrnvRxXo2z6PlmRwtsuRSyNYEijyeWxX1KBUUQFTofDwBcLXE/ne/I27FRlPie1cmvhbX8SobVGeMC2eOVm82fTMEx4wLRlQXcF+/2zO761278QUX/sQU5ERERERER5KajlYLRST2lK5yUGrtiErJBzgYh9T6mwDmWoJVRopGAPDzwoVtl9dKe0XQnpLjEALSSsCz5VlLJ2kXtyKFfHgNfmbV288KpUtSfahj5BYcL6kcnQQCfBo1JYYN/PTQwW67N/kcK0fMqHIk9x3Lamk9NlSCKVixe6J31uFiwEtfAYUgfSvV+3C7nrxvBaosTYBSfV+uL1HGTnCErO3ObnjcOLVDEOqToyw63JTx7lQbWv1jiuKZTtYLTsh/ISERERERERERERZZ0UjOZN0QPxRtcDAM5pvl8ssjK7p4vTwi4Up25o6uaj13wB6weHxy930VegW5t7X7/wd1hn7g09cwj0McPk9JtuXz8vGjCVZTVjR4jj3IYb5IPlwg3PJmXZ7XaWEN20CdavvgX91eHQ35sWf4JJ04DJ+/cbpE74HlA8oG9uRRUw6/Te1zu2QwBQbTXDZK15cN5b1wyEhM28pLpAL5VprYGNq80jxzTI27gdAZ8DTez6QpxXSwFsj+y2qdV5/pwp/cVCWBfNhD6qGtb3D4Se/3L/8ZEIrNt/BT2jFPorFfbhocecLo/rQykFjIyG79V3NRrLFOLxUL6zLI0rn7JQf5kF7/kWPOdFMPMGy1Uds6crlBYxUInSYPkiedxxZzmuxmOT6JHMw4xzzcbtGt+4LYKaiy34L7KwbJPzaf1FwDmHcT0mGkivWgLrx7OgZ9VAX3e+WE59/wrziM4O1IdWGUcN9uOirrDGxY9aGHNpdJt10B8iePuL6DZZ+mwahvV/rVubYP32TOjjR0EfWdnvHz58XZ75muXQG79M0TshKmwMRiMiIiIiIqK81DfcZaCSFIfM+L1C4ApDN1LC7rsEgLAOF9TFHsocu5vvlcruRTO78Clp2yKFCTEYLbv8wj5n4PIXELZ18cKr3CqxCQftG+gphXtmMpxCCoXruw5I+4i+n1upsJ/uO61UTy6EcUifQ2fEfv/YTQoKixe6Z7fsxQs3s22PEGbXLdlgNCehZzxGI0qMFIymoFBdFA1bkg6heLROyVgf/BJLOxYax00bMh3l3iEZblH+qikaZhzeFM7uo9Ll32Z53pOfiIiIiIiIiIiIyI2IcK00xcFok7uW4PLNfzAW2bAdCHQV1pWdVdvM76e6DKj0p6Z/kO5og77wK8Ci9+IXjoShf3lydLo3n4L+/feBVUviTzdiJ6hzr5JvZM4w39g6DIlsN45r+mJFhluTfrMfdL5elOdZMJq2LOiffBV48ykg0GZfuHo4MOt0qBuejelfp+onQd30ArD3dKCyFtj/SKjb5kANHdVbaExDb1WRFuMsbnipsLZB3RIJFMj30CtRWzPQbt5+qF/9VZxMVVQBQ2qM486pM4ejNXXk//LUbBeMlv2ubQnTTZugfzgTWPA20NUJLPsY+hdfh/78o94yt10GPHxD3LrUr/4KNWyM85mPGg8AaBACQBq35P9yU2iufkbj6mc0vmxyP+3Ow4GbadqDAAAgAElEQVTLj1f44zcZpkTpoW/9pXlEiR9qRxCjE3b3LlhWYWyXLEvjqBstPPkx0Ba0L/vr4xVm7AqUFkX/HT4ReO1nHkwcyXWZqC/d2hw9H/HfuUCoSy5Ytzvw7UuAGnPIecP6d4zDB/tx0YUPa/z5NY2N24GIBcxvBI660cLSjRorhS6XfYPRtNbQl54EvPYPoM38G9iO/s5k6HA4scYTDSLZf4QEERERERERUQKCVqc4zi4UJhHSjbpdOoiIjsCrvCmd32ATL0BFw4KFCLw8jUEuJRoWlAl2wWidkQAqvJUxw8OWFIzGdSObpGCtzgH7qUyFQXiUB6UevzEIrG9YlBQcJYWBpoP42UX6BprF/9yk9anTwfvNie2B1xxQFrDaobWOG+Qo7Ufjhb7ZfdcBqwPmbobxdcQNRkvu4l28QNVoGQajESWiKbTZOLzSW90niJUdjyj13mh+Xhx3eM2xGWxJ/qvxmYPRmoXgw0wJCIGvuRBSS0RERERERERERJQpOiJcK01RMJoaXd/zMJvTtz+Ka4b/yliucSswaXRKZpkTVgk3qtbVpnAmbzwJNG1yXn7hO9DLF0H/525n5YeOhudf5tCfrBlVh2qrBa2GPkxNb70BnLBzFhqVHpu2u7sRvLw4TQ1JlwVvAys+jV9uyqHw3PqabRG118FQf3lFHj+6oWc7VBOR022+3KaxU21hXXtemUCgQD6HXtnasFoeN6rOftrR9UBr7LIzJrwewC4xw+1CxfKF3Xuoyn7XtsS9/GhsQF4kDP3MfVC7TYUOdQHPPeCsrkOPdzfvkdHlrE4KRsvuc8VoAMvSuPMN59vQE6cA//kh792gzNBrl8sjDzvRVV0ej0eeT4EEo731BfDpOmdlj9tT4XcnyZ8JEe3w+j+B7dvil9vvCCh/OXD6T6FvvSxmdH1gOWB4Pm0iAc+FYntA4+/vxW5/g2Hgple0eJw+YXif37LLFwKfzku8EaEu4P2XgYPZT5bIDo8YiIiIiIiIKC9JoRgKHhSp1PY88XvMgSXRdhTAVfUscxJwEtLCE1OJbEjrpxRClEl2AQBSyFEE5g6yvUEllA1SsFbf5U9rLQb1pWN5lMPaom2I6Ai6tPlRXJkMp5CCufquA3LAYZnx7776fgfi9sBmH58p0jJkwUJI2zzZaQdpPxpv2bJ771KQnBOdwnfWLZzkPj1eoCoQXW60LoyOIkSZ1CQEJ9UUmYOW+uI6R4nqtAKYt/1147j60okYXxrbuZ1k1b6hxuFNoez27JbDbgv1bg8iIiIiIiIiIiIig7AUjJaiYIfRDT1/1oVWQ2nLWKyxwG563dxmHj4u0aeBGeil/3U/0bKPgWWfOCtbt5v7+tNt3M5isFVzU2H1mfxsvbvydebLMblr2cfOyo2uT35eY3q3Q/VCIBEALFiT/KxyTSKBAgUbjGYX3DBsjP20I3cyDq4JmT/gQtgcSe9hSCng8+ZvgKD+x1/MI568K/r/+kagrSV+RTUjgCHuduqqbiIAoCHUaBw/mANActGG7cDG7fHLddt9dP6uF5SHli0QR6m63V1VZfeQZKtAgtH++6Xz91Gb/e7bRHlBL3X2e06N33Fe4aTzosdPA9gdFw3W/r+fb4yGoJk89Yn8mYzvG8Tv9LyPHYffMdFglprHihARERERERFlWNDqNA4v9ZTaXjRIhBRYAkRv7i33Gh6bQI4FIvEDTqIhKvn86DPKBinYx26dzhQpEAqQQ46kMCGfh8Fo2SSFOYR1CCErhCJPEUK6CxYiwvSpXx79njI0Izb8onudsAv19GcwnEIONAv0+Tv+eiy1udMKwNIWPMrjqJ5ssQ8oa0exp8R2+kS3dUWqGF74jKGLgYjQc9yBjjjBZSErftibHSeBqhYiCOkuFCv7z46I+msSOhLX+HqD0RSk31qDs2MEJW9+yxxx2354NZ+C55YUZNgsBB9minS8Yve7iIiIiIiIiIiIiKjgRKRgtBT1+xhT3/Nnie7CmPB6rC0aG1Ns5VYNiNd88k+L0AWitjyF73HJR64n0Xf/Fti20VFZNet01/WnmxpSg6qI+Qbfps0OgmzySHP8bgg9in3ACVPSu/7o91+Bfv4hYM0y5xP5ioFJ06C+81OoYaN762prgb7l587qSHEw2jdan8Q1w39lLPb0Ao3j0/w5ZlpjAs8pqsp+t6X0CAj9jvzlUPHCQCtrjYOru8wfsJv1N1c1d5j7W9TEuZSqtQaevgf6+ot6B06aFv2/shbYsBoYXQe0uF04FTBhT6iTZkN11+eCXt8I/djNwAY5HNE671Cgw2H/tFnfcX9fwMxvAbdehvquRuPolgDQ1K5Rk8pjhTz339Uat83RWLRWo7wEmL6rwqWzFMpK0v8ZuQ2qO+NAfm+UQetXyuOOPs1VVR6PPK5QQomWbHBeNu/CholSSFsW8J+7oN95HmjpsyP0FgGT9oP69iVQI8ZFh33u4HyErwg44hsAAOUvhz7gaODFv/crUi8Eo7UFga1twLBBeFuk3YMD1jXL44buuPVDd3ZAX3de0u3Qf70SOOUiqPJKd9N98Br0cw/GnDtQ5/wG6sBjkm4XUS5hMBoRERERERHlpaBw43RJWgJmbAJLIgGAmURJkW6Q7itshYAUPRyVBg8pCMlunc4Ur/KhSBUjpGMDggJCqFDIEoLRFDdC2WQXPhW0AijyFNlu59KxPMYLHMuVYDQ50Ky9z9/m/b3f2/u5Sd+BhkaXDqJU+RGISOFh2Q/jsA9gDaAqzvSJbuuUUvB7y9EWie2w7GTfLIkXeBrWQmf/FNXfU87qiBsqR0T9bROCk2qKhme4JTRYaK0xt/l547gKbyWmDjk0wy3Kf9U+c6/BpvBWaK1THiTvlBxSm/1jMSIiIiIiIiIiIqKMkYLRfCm6tWtAqFF9qNEcjJbdZ2mknBQoU5WiU9C6fTuw8B33E25aE7+M1wd8+xLg2O+6rz8DanadAKyLHd7iqYJe/D7U5P0z36g0aBKWoYEqSoB/XODBuJr0XW/Rr/0T+qrvApblfuKF70C/8R/grregakZABzuhf3ik48lVKoLRxk7o+XNKcJFY7K43NM6drrFfXeGE26zc4j7QxOspnPffT0Do2+OviD9thbmnVE3QHDTZ5KwbUU5rErppVccLRrvlZ8A/b+0/8LMP+r9etSSxRn32PvTLjwA3Pgu192GOJ9MbVkFfMCN+MOjAdkpmfgvq3Kscz7+bGjEOGkBDSA5nu+MNjf85tkDXQZfmrdA48kYLHX26M7+2ROOlTzXe+IUn7duqS//pbJ9XXgLcfobClHH83ihz9PpGcZwat4urupRNMppl5X8wmmVp3DnX2fsYXQWUFnFdpsFL3/BD4Kl7zCMXvQs95wngzjejx89LPrSvrLIW6rcPQg0d1TtsVF1MsfrQarGKW+do/PbEwbdOrtqWyG+46DGJjkSgLzk2sd/uBvqHRwJ3vAlVUuqs/Ov/hr7yDPP8tzelpE1EucQmX5aIiIiIiIgodwWtTuPwdASj2dXZKQQYkXN2AT3dwtocCEVkRw5Cyo1HLUqhUFK7pTAhn+KzD7LJLsyhe/tmt51Lx/Io1dndDmkZi06buXAKaV6BPmFocoiGv8/fNt9BxP47yIUwDrs22H1X3TqT2NbJ26HEj2/ihapFEIalE78IKIXlxZZLPNyNaLBqCgnBaL5hcafN/65ZlA3LAp9ifZe5w80hVUejyFOc4RblvxohGC2sQ2iLbM9wa3pJ++9c+W1GRERERERERERElBFSMJo3Rf0+htQA5ZU9Lxu6Go3FGhMI78llzcIl5JpUdQd45TFxlLroj8C0me7qUwrq1teg7nwL6vlN8FxwjW1IQjZVD680Dm/yVkPfdUWGW5M+ToOVmm/24Jg90nuzuH7g2uRurN6wCnjuwejfbz4FLF/ofNoUBKOpITXRbdEOZzb/XSx70yuFtS0qtNDJpATazMNL42+YVZ/lp6+qzk3mWYWAYCi/l6VE9mO6aVNsKFqqdXVCP3Kjq0n0f/4aPxTNqWP/HzxXPQRVkuA15Un7Y0x4HYoMDy8GgCuezO/lJpVueKl/KFq3d1cALy9O77zDEY33VsQv9+HlHmz7Pw/OPCg3j5mogK1vNA8/abbrquwO+bXO/23SG8ucl22I3x2RqGDpTWuAZ+6zL7R5LfDM/bbnI3DaxVAPfAT11BqoA47uN0qNjg1GGxXegBJtvg/zqqfzfxuUiMYEfsPVlEUfTo8PXgEWvScXPPrbULfP7fcPZ/9aLv/FAuCtpx23Qz+Y5LkDojzDXwFERERERESUl6Sbaks8ztLx3SjyFMGniozjAg7DOUgWL0AFAEIMRqMESKE4fk95hltiJoUhSe2OMBgtJ5V67cIzo/sIu3Arvzf1y6O4bEV2tMcuqM3m/aSaFMrVdx2Q2tp3Wr/XJlisOwxO2F/bTZspJZ5SKJg7zsYL97J0BEHhIqWTZUsMRksiVCzgIDRW2p7Fo7V2HHjmJFSOiHpprdEUNl/lry3q7Ykkba8YjUaJeKP5OeNwBQ+mVx+T4dYUhpoiuedgc3hrBlvSn/zbLPvHYkREREREREREREQZk+ZgNKUUMHbnntf1oVXGcoUW3tMsXBquTlH3B/3JW/LIvQ6BmvF1dxWOHA815VCoyftD+XOjD5Okdqi5fet9o6I3ahcIKZSor5m7Ax5PmkPRWpuBFYuSr2fB29H/P3nT3YRj6pOeNwBg+NiePxtCjWKxN5YWzjVmrTXWt7ibZv/6tDQlNwSEvkP+ivjTVlQZB9e2rxEncfvZ55qE9mPzXk5LW2LY7QNTUd6G+uoZyVVQUQUPNEaHNxhHe1Q0lIvsw4zeXJbez+gLc+ZhP3uOAfYdr1DkS+9+mMhoq3kbokbGhg7Fo2yOJS0r/7dHb7jYXkwYxvWZBrGF7zoKtNIL3ur5bWeijv4O1IQ9oLze2JEjx8cM8kBjTGi9sS6PAkLh/N8OubW51f003eHF+mP74161x4FQex7U/9+UQ2yn0QucHUvr9u3RIDWiQYTBaERERERERJSXgpY5BKTUk55AFyfhLZSYTgfBJWEGo1ECpGCfTAY/2SkVApmkdkvrgRTcSJlht9/p3kdI+woFhWJVkvo2Cct4d2CV1J4iVZzR5UlcByIdPU8/k9raN/xNCoLrO32nENZlN22meJQHJcJyFC+gTAqKBQC/g2MiKTzNSbiZJBCJP21IeBJnPF06CAvOnm7EYzQid9oiLeKxRo3PSTAakTvN4W34uHWecdxeFdMwtGhEhltUGIZ4q+CBobMTIIYfZoL0uz9d53CIiIiIiIiIiIiIclIkYh6eomA0AFAzTur5WwokGjTBaKnqDrBupTxu9/2AQ48HPC5uz+vzHeW68cPM1xzmlB8BbFjd07cj3zU56F5w8r6910n1p/OgH/wj9PN/g96+LXUNWbciNfW88xysM6cAT97lbrphY+OXcWLPA3v+PKn1abHYl01AV4HcfN8WBCJCd5YG4blGx+6Z+WvvOhyGfutpWHdeAeu2/4F++VHojgTSAOJJJhhtSI1x8PjWz8VJPt/opFG5S96PycuI/vzDNLVmgLYW6Aevg96xL9Sf/xfWNd+HdeYU6Pt+D71pDbTW0B/NgfXzE4GF76RmvtXDgb3sgyPiGlINANgjuNg4OmwBa5uTm0UhaA9qbLLZDKT7uNFJ/V/fl32VKIvahPTNqqGuq1LKZrteAMfVjS62FydP5XpNg5de8oGzgh+8Brz8qDx+173lcaPN4Y1TgguNwy0d/X022LQF3W97u4PR8MGrciGlgMNOiB2+93T7/cf8V2D95RfR4+wBgcN6wdvR4Q9eB33v71y3myjfMRiNiIiIiIiI8pIUBFKiStMyPyk4JV5gCcXn5DNkMBolQgrFkYIOM00OXDRv36T1wKtS10GW3POpIhSpYuO4wI7vUtrOlXj88KjUn6KNt2xJ7cn0uiHtWy1EENJdsLQlrg9921qsSuARTnV3v9eAUE+uhHEkGsBqtw8t9cR/srQ034CD0FKTiI4gqM3htX2FtfAk9DjcHHfxGI3IHbvApJoioad2Hxr53zmLMuut5hdhwXwD2IzqYzPcmsLhUV5U+2qN45pCWQxGk47phJBWIiIiIiIiIiIiooIUEa6TpjAYDd/4Qc+fdaFVxiJNHUBLR+Fc22kWnidmFyjjyvpG8/DDT4byeqFGjIP60fXRG1/j2W0q1JmXpqZdGTBhmPye/q/iXKBpUwZbkz7NcZ7/dtyewNmHRD8L/dD10BfMgL77N9B/mA193qHQ6xuTboMOdkLPPjjpenqskkOkJMprDsJzXc/51/T8vU9wAU7e/qRY9uTbnD0cL9dJwVYAcOvpHuw64JlQ03cFLjkqs4EguisIffmp0P9zCvDQ/wKP3Ah99VnQF82ETvG6rANt5hF+B9cGd4RZDVTZugbDhFy1Y2+20J5AqEGuaBb2ybYBn5YQtpoG+u7fQn9vf1i/OR169kHAi38HVn0Ofe/V0N/cGfqHR0JffAww76XUzNDrg/rl7VBF5j6ZjlVUAQBu2XCJWOTxD/J3uUmVxq324x99XyNipe9zWrnVvu5Dd8789pKoHykYTdhf2fF45GXZSuN6limNW5y9h7MOVjhxSpobQ5Sj9JfLgEdvSr6imadA2QW0j9jJeI7ipg0/EycptBB9J9qD7qepKQf0vBeBJXJQsbroj1Ajx8cOLy6B+sXtcuVrvgAeuzl6nP3DI2Hd/VsAgPXXK6O/2+69Gvru3wKP3+K+4UR5jndNEhERERERUV4K6swGnEj1diYYHEK94oW+AECIwWiUACkURwpjyjQ5cNHc204KRvOpopS1iRJT6vEjFOmKGd69fct0SJ+0bPW0R9h3ZXrdsHv/AasDxULgHACUenunVUqh1FOGDiu2U113CIf0nnMlKDHRAFa7ADO/g2MiKYxE2g7F43S6RANP3Rx3OTm+IKJe24TAJC98GOJ135GLyE5Eh/F2s7lT9PCi0di9zOZphhRXTdEwbAtvjhneHI7TozlN7IJTcyWkloiIiIiIiIiIiCgjMhCMpoZUA9c8Bn35aWjoahTLNW4F9s6Ny+VJCUc0WoVnd1Wn4BS0DrQD2zYax6mvn9v79yk/BA44GvjvG+bwBI8HmLAnsM90qJL8OTc+Ybg87tKRf8T3Vn6M2tqRmWtQmjQH5BCHOT/34JCdAZ9XQW9ZB333b/oXWLsC+qH/hbr0tuQa8YYcHobq4VDf/knMYL15LfCvJOebBqqyFnrETsCmLwEAD6w7B09Uft1Y9vlFwMdfauyzU36H3jTZdFGZOh744HIP5nwOLN2oMXW8wqG7AMW+DL/nN58C3n42dvgXC6D/dRvU7CtTN69Oof+Qk2C0CqF/QqgLE4Za2NJmDoB4eL7GudPzczmSlh/bYLRNa93PaPIBUDNOEkfru38DRITAtY5W4PV/mccteDv+vHfdB9jvCKhqYccS6oLu7ICq2w3Y7ytQI8bFrzOeHctSQ2gVyq02tHtik/V++S+NS49Jflb5zEkIyqufAbP2SM/8G23m/9JPPJi+K1BSlJ/rNuU/rTXQLgSjlVe6rs8uxEjr/A9GWyl0S6ofClxwuEJJEXBgg8KBDdF+30SDkb7/DympRx1/tv34omLo4WOBTWv6Dd8pvBaVkRZs91bFTLNyiwYwuNbNtgSC0arLAH3TT+UCp10MddrF4mg14yTggt9D3/Hr+DN78DrofWcAD1zruH3qgt8Du7D/LRUeBqMRERERERFRXgpa5mC0Ek9pWuYnB4cwdCNZTj7DRANUaHDL9SAkqR2dEfP2LazNHWSLGIyWdaUeP1ojsRe/u0O5Mh3SJy5bO9ohtseb2XXDLgij0+pARAmdwg3Tlnr8xmC0QKR9R31SoGpubA8SDWC1C/8q9cTvTOgXyiQajOY0uCzR/bqb4y4eoxG50xQ29zSsLhoKj+rtlMVOSZQKH7e+h5ZIk3HcjOpj+y1z5F61b6hxeFOWgtGk8zdA7hyLEREREREREREREWVEWLhO6vWmdj477QoAGBdeC58OIWzoV7JyC7D3TqmdbTa0yKeg7QNlnFrfKI8b09DvpRq/GzB+txTMNHc0DLMf/9gHGj/YLzNtSacmoYvEFScozJjY5/rouy8AlhVb8PV/A0kGo+l3n5dHNkyGOuPnscM3r4VOVTDarvukpp5udRN7gtHKdAAjwxux0WcO0XtmQQEEo9l0s6kui4agnbg3kM2gAf3Oc/LIt58FZl+Zupl1SMFoscFUMYbID26bUBnAfJj7Oj27QOPc6U4al3uahS5ONXb7sfWNruejDjrGvC3ZQT9xJ7Bxtet6Hc379rlQJfb9+1O9dqiKanTHDO0eXIoP/VON5Vo7NYaU5vc2KBnREBR7Ty/QmLVHej6jNeauIzjzQIWjJg/e74VyRKDNfOwHyEGeNjweeZnWVn4Ho2mtsVZYn286zYOv7cP1mUhrDbxjCCpOxOj6+GVG1cUEowHAxK5l+MA/LWa4k7DUQtOeQDBardUMrPlCHK8OcpC6u9chjuenb/ix47LY7yu2x/tE+YzBaERERERERJSXgpb5UY8lNiEryRADSxi6kTQnnyGD0SgRmQ6jcssvhFBJgUTSeuBjMFrWSctU9/Yt0yF9UnsCO0IppO2uP037UIkUygVEg8wiSngCpWFa+TvoDqczr1fSephpiQawSuN9yociT/xtQ5kUjOYw4GygDoeBaonu190cdzkNaSOiqKaQuVdDrS/O3Q47FMJTKylz5jabb+woUsU4uGpmhltTeGqE9VZaz9PN7ngmV36bEREREREREREREWVERHg4mC/F/T5G1QEAvLAwPvQlVhRPiCkSDcHI/5vTpTAZIEXBaOtWmId7PMCIAkiWi6O8RKGsGOjoMo//9/Ja/CCzTUqLZiFgb2AokX7mPnPB1iboYACqxH2/G93RBix8B3j5UbGMmnakecSwMcD4icDqpa7nGzOPMy9Nuo5+9jgIeP/VnpdHtr+Gh6u+YyxaCDfgS8tQWXE0FC0nrG+Ux61bCa116h6UFoh9uCUAwB//IY8YPlYcNXPoOjyKXY3jPljlpGG5SVp+pP2Y1hpYvtD9jPaLcy1+2kzg2fvd1xvP3ofFDUVLi4qqnj937VomBqM1bgH2GpepRuWeRgfPV2t0EJ6WqOYOc90jKp3XoVubgMXvA0GbxFyiRGzfJo/rs41xym4/m+e5aGgLAmEhQ26U+4+KqKDoriCw5EPgy6VAW0vyFY6qA8buHL/cznsCC96OGdwQajQGo63KzjNXs6pdONdh5/Cy5fJIXxEw+YD4ley2bzRgs605flmbELaBxHMHRAWAwWhERERERESUl7qDTgYq8aTn4qkU3iK1g5yxdMTRZ8hgNHIroiPo0uZHeORKEFK8MK2BpPXAq3iKL9vk8MzuUC4hpC9Ny2K8ME85NNBB57MUKvGUQkFBI/aKfiDSjohH6BSO2PcordedVgciOoyQNl+5ypUwjkQDWKXxTr9LaRmUguTiiRfk1i2U4H7daf1uyxIRsC282Ti8pmhgwJK5g5ZpW05ksi64Cl8EPjWOO6DycJR5HTwlnGxVFw01Dm8OZ6f3kt3xTKaDeYmIiIiIiIiIiIiySgpG86a234cqq4CuHg40b0Z9qNEcjFYgN7xKYTIAUJ2CU9D69X+bR4zcCSrVgXY5yueRx73aXJe5hqRRk3ApIyaUyC40an0jUD/J1Xz1G/+B/vWp8QuecLZxsFIKOPdq6CvPlLcvA1UNBWpGAI2f9Q7b8yDgsBOdTe+Q+uaF0Pf/vuf1pVtvFIPRVm3N/2vNTUKwT0oCGlNlfaM8rqMV2LQGGJmiwEcxGC3+tWBVXgldWWsMozmt/EOcJwSjrWsGrn3ewmVfVakLeMuQJqGbVrU/9n3ojjbonx7nfiaHnQDsdbBtEXXaT6DffhZoNvcfSUiJH+rsX6euPjeGVPf8efXmq/Bo1WnGYnOWauw1Lr+WmVRyEnqWzgBLt8GAA+kn7oC+6RLAEhKZiNIlgWA0eDxQ2oJWsQfYOs+T0dIeWE2Up/Ti96Ev+wbQtCk1FXo8UOdeBeWx+aG+g/p/l0E/cWfM8PquRmP5h+drPDQ72Qbml3bz7Waiw0a14Li7Z4nj1ewrocqGxK1HlfiBc66Avvln7hpgZ6ddgePPTl19RDkm/laPiIiIiIiIKAcFrU7jcClYJFlSvYkGh1CU9D0OFLIYjEbu2N18nytBSH7XwWjmDmw+NTg6WuayeCF30ncqLQNJt0cKCYsEoLW2aU9mgyk8yoMSm1A5KdjKAy+KVHG/YdJ3ELA6bAM40/UduCVvD+zDQ6XPyOl3Kc030VCxQMTZcVE4wf16vKC4RMsSEdAUMvdirPENDEYjSs7c5ufFcTOqj81gSwpXjU8ORtM68x0pOyPy8Uyu/DYjIiIiIiIiIiIiyogMBaMBAEbXAwAaulYZRzsJwcgHdjfgVybZBUJbFvDSw+aRoxuSqzyPxMsXam0SApDyiBRKVFM24M1bEbmS9Y2u5qmbtzgKRVNX3A9VO1Ief8TJUH951fF81a/+CvXnV6AuvBY45gyoH10PddOLUMUljutwNJ/qYcC4nXte7xX8FBdtu91YtjGNgTuZIm2LanLkUpjuCgJb1tmXueFHqZthp/kDUX6HD+3csQ8bqHzzF3j2R/Lt0L9+QuPNZc5mkSuCIY2A0I2qxvBx6QevBT6dJ9anHl0M9et7gGPOAA45Djj621CX3gr1u8fiBsaphklQd74JpDDITN0+F2razJTV50qf0KIJoUaUCP3VL360MI6JEuUk9KxxK9LW10DafjoJuNXLF0HfeDFD0Sg7yhMIRlPRR0mbWFnoz5NKUtAwkJrAaqJ8pCMR6MtPcxSKpv6+MH6F3/gB1M0vQc0yB07H1DlsDFAV28EBIjoAACAASURBVP+3PrRanOb9xvzeFrnVJgSjDS0HTpjS++/UaQo3fTOC5z6cijIt94VUZ/zc8bzVKT+E+tPTwEmzo8ftLoPWY+q7fS5UzfCk6iDKZWk4e065Sik1BMBhAMYBGAagFcA6AIu01ktTOJ8iAIcCGA9gNIC2HfP5r9a6MVXzISIiIiKiwU0K1JICVpIlh97YB5aQPafBK2HNYDRyxy4QJ1eCkOyCnEyk9YDBaNkn7iN2hEBI32n6wjzN7YkgjJDuQiAitcdh57MUKvX4jetrwGpHRAgD9HvLYjpq2QUNSu+3e/65wO32oFun+F062875he/cacBZzHQOA2MT3a9L79fcFgajEbnRFBaC0Yr6XygfvM/IpVQIRDowv2WOcdyE0t2xU+mEzDaoQEmBhiHdhfZIKyp8lRltj3R84FM+FHmKjeOIiIiIiIiIiIiIClKmg9E+ex/1oUbjaCchGPlACtOoLAW8niSvbC2eL49jMFqP5/6zEKedfXBmGpMGtqFEA7tebN0gV7RBvrnc6M2nnJXbbd+4RdSeB0HPPAV47Z/x6xvdEA0t+85P03/td+JUYM3ynpcz2+fg1tofxBRbvQ2IWDr5dTaLtgrdZXImCGSjg+Vz8fupm19ACEx0E4z2+Uexw9c3Yo8x9pM++r7GjIn5syxts+lqZVx+Xv2HPEFxSXQdH7sz1FfPTKg9akwD1Dm/gfXFAuCtpxOqo6eu2VdC7bp3UnUkpaK638uDAvMwt/xwY9GN2zVGVubPcpNKTo4JO7qATa3AyDR0NZCO5aqcBKO9ZrM+EKVTcQlUSan76ZQHHliw4I0Zpa38DiOyC6yuzo3bNogyb+E7wOa18cuN2wUY0wB4PGLYp7rg965Ct3pMmga890K/QdJ5IiB6LL1//eA4JgqFNUJC9vm/fuCJ+U2h334Jevt6ucIEjr/VgbOgDpwVrf/Fh6Gv+Z7rOgAAXzsHqsr8MF2iQsFgtEFAKXUogCsAHAnhO1dKfQLgDgB36gTju5VSwwFcBeA0ALVCmXcA3Ki1/lci8yAiIiIiIuoWFALJSj0JXGRwQAxccRHQQbHSHaBCg5d9EFJuXGGTtyvm7VtYCInyKZ7iy7ZSr7kXRnfglxSiKYVSJctvE/bVaQXE4EC/8D7Sye8pQzO2xgzvtAKwlPninmkdlgNMO+IEJWY+DM4k0eMMKfzL73X2vqRyQd2JiI7Aq2I7YNi2x2GgWqL7dTdhZwyvJXIuoiNoCTcZx8UGLJk7PWjhaZZEfc3b/jqC2hxyfnjNsRluTeGqLjIHowHREMRMB6NJ++Rc+V1GREREREREREREg48OdsaGthSXAFBAVyfgrwA624HSMqiSFF5Hz3QwGoD60Crj6MatgNY65qFk+aY5YL5GVRPnkrlubQbKK6E8HrnQ6qXiKDVpPyfNKwjxlpBla4IZaUe6NNt0Legb4qC7gsCmNXLhoLs+Cvpft8UvVFkLjHH2YCH11TOh4wWjDakBxmbuQUVq0rR+oTXSDfhhC1jXDOxkvBMxP6yO7foEID0hQibasoDt26Iv/OU9+66e4Us+jF9JWzN0JALldddXqF87WpuASARo324u4K9wVtGOfViM9Y0YWwOMrgLWt5iLLNuYX30XVm+Txw1cfnSwE9hg3q8DACZOtd+vuaAm7Q+dZDAaZpyUkrYkrKKq38s9g4vFYLRlGzO3vuaSpnaNFoe7r5Vb0hSMJsy/uqz3CESHQ0CbYaVf8WnqG0TkxK77JDadUlBCHzurQIPRyoqBYl9+/+YkSpjNOYV+Jk2D8hVBT9xXPm7fPcFzEKPrYgbt2/mJWDzfjqWd6gprBMPAkNLe7VF7l1y+osQwMM73qRL9jrolcZ5J7TZ4zlHR4JWaX7qUk5RSRUqpOwC8BeAY2Afh7Q3gdgBzlFI7JTCvYwEsAvADCKFoOxwC4J9KqYeUUrlx1yEREREREeWloGW+mbrEJgwmGaVe8w27bgI6KJYUADUQg9HILbsgpFy5AV/errTDlFsvrQc+VZTSdpF7pcK+p3sfIYVbSdMl3x55Ge+0OsR9V2kWQsKktgYi7WJ4pin4TfwOIvbBaOk6bnAr0eMM6b05XbbKbL5zu89N0uEw8DSU4H7dTZuchrQREdAS3gYNcxhlrU3AEpEbWmu80fy8cdwQbxX2qTgkwy0qXJXeKngMT5cFosFomZbs8QoRERERERERERFRyr34d+gTx/b/d8ww6GOGRv8+qgr6hDHQR1XDumgm9NrlqZlvJGIenoZgNLXj5lcpiKg9CGxuTflsM066Ab9aOAWtX3gI1rcmQh83Evpr42D95RfQwvei7cJnjjzVZUvzV7zsvGdWD81MQ9KkyaZrQc2Orhy6Kwh96dfsK5KCDw30oveA5QvjFzz5fKiiYmeV7n80ULd7/PqKTXd4p8kxp/d7WRdaLRa95638vgG/cau5/fXD0hsEoi0L1p1XQH9tXL/9mfWDw2H98mTo40dHh119VvzKImHg1ccTa8fT98I6ZVfo40ZBnzgWWLfSXNBhMJqSgtEWvgPPk3fgRzPlz/XVJcDf3jX3f8hFC9eal52yYmD4kAED1wuf6w7q1B+lqFUAjj0zGqaYqP2PgmqYnLr2JKKiut/LH26TAymldbjQrXDRfWDlltR/Rp0hjU6hG2F1GaA7WmH99kzoY0fEHrufOBZINryPKEHq5AsSnFDBo837qHzfCjV1CIHVuXHLBlHG6VVLoK+/MH5BX1HPNkV9SziW22UKsK853DUe03H1iMhmsfzKzHctTKvmDo1v3RFBzcUWqn5sYe+rInhneXR71WaT8V4+4Gez1hr6tv+RJ6gZARz97aTaqsbvBhz0VfcTDh0NzDwlqXkT5YM0PFaEcoFSygfgaUQD0foKAZgHYA2AckQD0cb3GT8DwMtKqUO11sLzCmLmdQSAJwH0PduqAXwEYAWAagD7Auh798wZACqVUl/XWjiSJyIiIiIiEljaQlBnNhjNFMICJBYaQr2k0JuBQtrmcQxEBlKYkE8VociTG0FifiEQyoKFkO5Csep/Rj2izR3ofIqn+LJNCvfqtKLhj9Ly6PemJ4hMWraibZKDwuymSxdpnp1WAJYQ0mMKcPMLwWKdViCvtwfxjjPEZcthyJ3ddx6ItKPcO7CHnT2nx0WJBp66CaTtXv+IKL5tIbmjQ42vfzCaEp8Jn+/dsyjdlnYsxIauNcZxh1QdnTP75ELgUV5U+2qxLRy7bjeHHF3+TamAsE/OlcBqIiIiIiIiIiIiIlsL3ob+0dHAY0ucBxRJhOAklYZgNOy4+bWhSw73+unjGg/NTm9oT7o1C5eFqw2noPW8F6F/f07vgJatwGM3Q/uKoC74fewE64XPbvf9oCqq3Dc2T8VbQuZjMrZva0Vlrbv+BblCWoaA3uVI/99PgI/m2FfkMBhNb1oD/ZP4Nzuri64DTvuJozoBQPl8wF9ehf7TRcDcJ/uPHDEO6psXAt/5qeP6UkHVjIAe09ATklVttaA60oRmb2zY0tXPaJy2v8ak0fm5TZICBBrS/RyyB64FHvrf/sMiYWDRewlVp393NrDnQVBjGpxP88Z/oP/3B84Klzq8Pmgzf/1/P8EvflOLV3Y/Ba8tMZc56z6N4UM0vrpn7i9P5/1NCNUbCqgByZT6uvPFetSv74X6yjdT1i41fCxw2+vQd14BLH4f6NrRZ7+tObZwRXX/4V87B+pHf0pZWxI2pH8w2q4hOei20EJAnDr7Pue3dafjM2qx2wf7AX3ld4F3zQ/gs1VaBviSPG4nGkgpYMIeUCedC5Vo+I3yQAl97KxIfve9c/O7jKjQ6UA79EVH2heqGgpM3AfqjEuh9joYAKBmfQdQCvqJO4HGz4CKSmDqTKiLroXyeBJrzGjzcfX9G8/H2SPvjBm+cks0BGzgcWi+OvVOC6981vt64VrgyBssfP47D55eIG93Bwaj4R9/tp2PumMuVGVtEi3dUc81j0aPv997AWga0Pcz0NZ73sFXBFQPB/Y6GOrCawfVOSoavHjXZOH6I2JD0W4BcKXWuqnvQKXULAC3A5iwY9BuAP6tlDpCa217NK2UGgfg3+gfivY2gHO11p/1KVcC4HwAfwLQfWfDiQCuAfArF++LiIiIiIgIXVqO5i9RpWmZpymEBWDoRrKcfn5hIRCKSJJLwU8Su+CigNWOYk//M+pSkJBPMUQi20qF8Mzgjm2ctDxK0yWrxCPvCwM2QWHZCKcoFQPNOmDB/FRm0+cmh9PlVhCcxK79dpJdtuzC+dyEkHXriDgLPE00GM1NIK3T8FUiAprC5t6LJao05nhFCkbL765ZlAlzm58zDlfwYHr1wEualKxq31BjMJq0vqeTfLySO8diRERERERERERERLY2r43elDj9a8nVIwUnpTEYbWRkI/xWBwKGc7KPf6Dx0OzUzzqTmoTLwtWGS+b66XvNhV98GPr8a2Jv/F3faC6/z3SnzSsIteXA1jiX3//9+Cc4+4LDMtOgFJOWIa8HqCiJ3tSOlx+JX5HDYDS8/CgQjNNn8vCTob59ibP6+lDVw6Cuecz1dGk1bSbw1D09L+tDq/GxIRgNAB54V+O6b+TfDfhdYY21hqwoAGgYlr73o7WGfvqe+AXdevFh4Hu/dt4OadtqUlbhrNyOfZjo6Xvwp0tPxdTfyaFO97xl4at7ep23LQs2tMg9LQaG6mmtgU/nmQsPHQ311TNS2LIoVT8J6tp/przejCkuBYqKgVDvg7m/1vo0nhpyYkzRwRiMprXGp+ucl0/HZ9Rs0xWwqmN9YqFoANQfn4CaekRijSJKJ6XgER4YbZ/kkPvc/C4jKnhvPgW02Ow4v/tLeM672jhKHf3txMMXTYTj6p0DnxuHd3QBm1uBEZWpa0K2rNyi+4WidQuGgYfmafzjA5tgtAH5qvqZ+8Sy6oLfQ42ZII53Q5X4oX78J+DHORAyTJRjEoyHpFymlJoEYOBjIX6mtb54YCgaAGitXwJwKIAVfQbPAHCag9ldBaDvGcl3ABzVNxRtxzyCWutbAJw6YPqfKqXqHMyHiIiIiIioh12Yll0YTDL8QsBISHclHO5BzkNX+BmTW4FI7t98bxdcZGp/iMFoOUsK2OrexknbOrtwvGR4lFcMCg1E2tEZMe9H/UJIWTrZfXbSemyaxrYe4bghl7YHUvs7rQAsLXfikz8jZ8uW3WfQkUCwWLr369L7NWF4LZFzTSFzJ4zaouEF8+Q3yq6m0BYsaJtvHDelYn/UFg3PcIsKX02R+fHzTeGtGW5J5kOCiYiIiIiIiIiIiNJi+aLk65CCk3xpCEYbOR5Q0UfeVFnbzc3R0UCffLamydz+2grDNa65T5or2bIOCBiuj29YZSyuRg2uW6B+c2L864ULVufvQ0+/FJahYRWIXitduzx+kBkAHXbWD0IvXxi3TDoCjrJF1U/q93pycLFYduGa/Nwerdoqh5kMDLdKqe3bosGdKeZkGe1nhYv9Y7zAs26j6oBSm35dyxdil+FAsc3uc8Ea583KlkU2X9/uowdse1tsrvNWp3NBy19KKWBASEV9V6OxbOOW/Nz+JCPQFb9MX6u2pv4zsgtGq974aWKVKgXU7Z7YtETpphSU8PhRK8+T0ZqFw+Wa9HSTJ8pp+osFtuNVw+QMtQTAaPP5i4Yu8/kOAGjMfPfCtLD7PbBwDdBp8xO+sk+3Rh3qAhoNCWvdMvl9Eg1iDEYrTL9E/+/2Fa31jXYTaK03APj+gMF/UEqJ0fhKqV0BnNVnUBeAs7XWnTbzeRLAA30GlQD4rV3biIiIiIiIBgraBF2k68baUpuAESlghuILRJyFrjAYjdySAnGk8KFs8HtttiuG8ABpPfCpNHSQJVekcKnuUCtpv5XOMIhSIeSsLdKCCMwdUrMRFCZ9Bp1Wh02IRmw75e+gA51iUGLuhHFIbdHQ6NJBcbpkg0a8cUL03Ao4DFOTgh7jcRN2FowTKkdEvZrC5mC0Gp/zzrNa6LRFBABvtbwIS3ji6eHVx2W4NYNDtW+ocXhzFoLRkg1yJSIiIiIiIiIiIsoFroNiTKTgJG/q+32o4hJg+FgAwMnb/2Mso3U00CefPDzPwnE3RzDlygi+d5+FF4TMjPoBp8l1JGJfcaCtf/lwCNgs3EXrNNinQBy/l0JFiX2Zm7ZMz0xj0mCl+VJpb6DV2hXOKpKCDwf65C378dXDgQNmOasrH8z8Vr+XZ7Y8LBaV1udcZxccMHBblCpaa+jbf5Weyt9/xXk7Ql3Ow9l23w9q7M6OiqriEuDI0+QC27ehPNKKU6bKwY3LNgHtwdzux/DsQrl9Zx084L2tbxTLqlnfSU2DCpA6qv9y1BBqNJabsxSIWLm9vKTaApe5itL+MhlSkJJHAeVvPJ5YpQccDTV0VOKNIkon5YFH6NOq83wb1CIEHVb744cs69ZmWLf8HNbsg2GduTesq8+CXvReiltIlBy9djms686HddZ+sM7YK/rvzL1hXfld6E/nRctoDf3UX4FHbCJdKqqAQ0/IUKsBDKkByitjBo+MbITfa/4Nu2Jzfm+Pui3bJL+Pxz7Q+HyjedzQcsDr6bPt2vSlnIQNAPsflWALicgNBqMVGKWUAnD8gMF/cjKt1nougPf7DGoAcITNJKcD6Buc9m+t9TIHs/rjgNenKiXcfUdERERERGRgF4xW4knPzwu/Vw4YcRoCQrGcBpyELAajkTvSeimFRWVDsSpB9Nm8sQKGsKOINl988KmilLaL3JNCqIJWAEErIIbFpDOITKpbCr8BshMcKAViBCIdxvUAAPyG9VgOWAugQ9oe5ElQol1AmRSMZlef07KJHN+kO/DUTZs0NIKW+AwPIupDDEYrig1Gi16GMsjzp1ZS+oR1CG83v2wcN7J4LHYrm5LhFg0ONUIwWlMoDb2V4xCDXG3OsxARERERERERERHlnDn/hg4mef1RCk5KQzAagJ4Ar+s2/VoscuXT+XON55ZXLZx5j8YLnwKL1gEPvKvRJXykDQMvc738qH3lnQOuRW/6ErCEB3ENsmC06jKFV37qwYQ4z1S67vn8fHCZHIwWvS6qL7cJZ+pLCj7sQ2/dAGwSAvcAoLQM6uYXo6FQBUINHQVU1va8ntX+Kg5vn2ssqzWwbGP+bJO6rdxibvPISsBfHD8MJBH6ziuAZ+9PS93oaIVe3+is7MbVzvoK7HUI1LX/ctUMdfENwOQD5ALrG3H7mQp1NuFzU39nQedoX4bF6zRuflVu255j+y87+i+/kCv79iWpalbh+e4v+72sD60Si85+IDeXlXTYuF3jkOvc7bdXb0t9eFxzh7m+6pIw1AsPuqtMKWD/I6GuuD/5hhGli1JQQn/yPM9FQ5O0PsfpyqxDXdAXfQX4x5+Bzz8CVi0BXn4U+idfhV74bhpaSuSe3vgl9AWHR4+/VywCVi+N/lu1BHj1cegfz4Je9B70PVdDX3+RbV3qphegyioy03Ds6O9rOIehANR3mCNhTv9rnm+QdvjFPxN7H09c2D9+Sd9/rVhW3fU2VFFxQvMhIncYjFZ4JgPoe7q5C8AcF9O/MOD1KTZlTx7w+j4nM9BafwZgXp9B5QAK6HEWRERERESUbp02IRclQjBKsuzCU5yGe1EspwEniQao0OAlrZfZCH6SeJTHJsypf3iApSOwYO6IwGC07JO+Rw2N5vA2cTpTwFeq+IU22YVhSO8jnezWAWk9Nk1jFwTWInwH6fz83bL77O2OM6TwODffpbRdlOq2k+79uttjLobXEjmzLbTZOLzGF+fuBiIHPm59D9sjzcZxM6qPlcP2KCmmYEMAaA5vzXjn/3z4bUZERERERERERESDzBEnQz3wEdSPrnc33YK3kptvloLRynUHRoU3GIs8Ml/nbGhMXxFL439fdN7O7lCrbvreq+0nCAy4Pr5eDk7ByPGO21EoDmhQ+OIPXly7x8dimRtf1ugK5/6yNJAUatUwDNCtTc4rktbvvp59QBylLrsLnpeboCbs4Xye+eK4/9fv5bWbrhCL/tHFep4rGreah8cENKaI7mgF/nVr0vWoG56R5/GPvzirZIO8rVR/fTe6r316LTy3vQ41bLS79vnLoW6bIxdYtxJDShU+uly+PXrZJuC9Fa5mmzG3zZGX9W9O7f9aRyLAgrfNhcdPhPLwFnGJ8nqBY87oeW0XjPbAuxrrm/NvG5SIB991/z5DEWCti92iE81C98TqkNznFoedEN22DPz37Hp4bnwOqsomLZEo2zweMRgtH36T2RHX53hdmd9+Fli5OHZ4MAD9xB1Jt4soFfQz9wHN5j62AICuTui//TEa8GdDXXYX1G5TbcukhRDubndctK09v7dJX2xKvP27jxow4IW/mQtWD4eaNC3h+RCRO2k6e05ZNG7A62Va66CL6RcOeH28qZBSahSAvfsMCgMQzrAYzQFwYJ/XxwJ4ysX0RINGR0cHPvroIyxbtgxbtmxBZ2cn/H4/Ro4ciYkTJ2LfffdFcXFqEmVXr16Nu+66C3PnzsXSpUvR1NSEUKj3RtX77rsPZ599tnHa+fPn47777sM777yDL7/8Ei0tLbD6PCVp5cqVqK+vBwAcccQRmDu39ykv+f7DnYiIiDIvKNxUW6SK4VXetMzTLhgtkeAQinL62TEYjdySwnDs1uVs8HvKjevBwGFhLXeeYzBa9tktV81hofdbnOmSJdXdZNMevyfOo7nSQAo067QCiAhhgKb3ZhcE1hQ2h8Hl0vbAPoBV3ldK49wEjUjfe2ckgWA0h9Mkul8PRNwFnTG8lsgZaTtpDlYyh1hpodMW0dzm54zDS1QpDqr8SoZbM3hUC8GGId2F9kgrKnyVGWuLdLySjVBeIiIiIiIiE/bPIyIiGnxUZS1QWQtdWQv8+VLnEy75CNj/qMRnnKVgNAAYE1qPDb6Bd3dGbWsHhlakpwmpsmorsM78HBajCQNPk7e12E/QOeBatBT2Uz0cqizHP6w0mv7/2Tvv8DiK849/5+5kFVvWqdiW5CbZFOMCprjSTDPYtFBCaIGYEpKQEAjwA0IzpgdIgACBQOi9mF4N2BhjwJhusI2LzlWSbVmy6p3ubuf3hyzpyrxzu6eruvfzPDz4ZmZn506zu7O773xmlAP4SZ23rblDQjSmPLFt6ilrifntlSUAVn5rviJf5DgIuXwJnTluivl9pRmirCLobfJIL22qWlGdfvcuLmKNyoriOC0Qtep7wN3DmOWBQ4ARY+n81T+Yq4eSSBYOjIn0QdjtkOWVwOYqxb5dHbvqK1DcF6gjQooWr5GYMjL1FutavIbu6yMGhLS3ViPrHDA4Ri3qxfQr6PpnZbsLNumHQcw1WOICjh+foHYlEZ2YT0dNIzAsht6xBiK0z+nRyGd2Hd87JaJMhiBgI+KiDSP9xkCB1FNitAihzPLHxXTmz5qxM8MkEl0/7WSxOkYyiCEje96WaBis3u+u7avxLrHJN+uAw0fHr0nxRjfW1mETwc/HtLL0YvUzNoZh4gOL0XofRSGfLTz6V5YfKoQokFKGvgUIffr1g5TSyqy00FEA340yTAB+vx8vvvgiHnvsMcyfPx8+Hz0BPicnB0ceeSTOO+88HHPMMVHv8+GHH8Zf/vIXeDxWXIqAz+fDn/70Jzz88MNR75thGIZhGMYqHsOtTM+O46Rau7Cjj8hGu8I9rROWMHrM/nZe2R7nljC9DUqGY0UWlAgoGUCokEgnEXIIfsSXbHLs0YnR4tkfqbrrvepoPAGBbFtO3NpDQR0DbUYL/PAr81TfTScWo75zKp0P+ohs2GCDoQh6oCSiXqOdlCZakb7lEv23lRBMUkgpSSllKF7DuhjNkH54pHoMSMHyWoaJTLvhQYu/SZlX5BgQlpZ64cJMKrPR7cKatuXKvAn9DyYFqUzPUYsNO6j3bUuoGK2NuDdLJUktwzAMwzAMwzCZB8fnMQzDMAwDAKKkDHLsFGDZ56bKS68nqncl0t0KfPSiWuwCxE2MFigjOrTlY3yTu7eynKsu9cVoP24yXzYnCyjtdqBANjUAusmsQJgYTVa71OXKhptvSC9k4vgSDHqhFrWOQcr8dXXpJUZrcktSpjSiRACrXOYro8SHgVASKQAYuqv5faUbAZJGACj2byeLfq35iVIVV5160n0F/boOACB9XmDBXMhlXwD9iyCmzoQYtW/E/cnXY3BvePAJHddAKv/bT2Dccn7Hv5d+BLQ1A0eeATHtRIjxB3a3pdql3r40hufKsgrl9VN+txDiN38FAJy4j8DDn6q/zeUvSxw1VmJMeWpFO3y3gc47aZ+QtmrOHeKg42PUol5MfmHXP/vJFhzV/AHeyZ+hLNpxPKdWX4klNTskXvpaYh0d0oqB+R2yU5WjqSHGoXjv/qg+bgs8W8htxLQTY9sIhkkkQkAQC1ik47oWtY0SLy2VWLaZvl8rjBQatHE1ndfG8b9MivD1/J7XUVIOjJnc83qiQEw7AfL5f4Wln9D4Gu4t+rNym3Xb03tMVEXIqyMxpBAQIuB7b3bRhfeZFt1OGIaJCluyG8DEnNCZ4tkWt1eVVzk9Q9M0o08la0zsg2Eyko8//hijR4/G6aefjnnz5mmDrgDA7Xbj9ddfx7HHHosJEybgm2++sbzPd955BxdccIHloCsAuPrqqznoimEYhmGYhEMJj+ItdKEm7bb5+aF7tJj97SjxC8NQtPnVUWupNvmekkGEynx0x4BDZMW0TYx1KLkXQEu5bLAjS/SJV5PIvl7vU7cn25YLm0j84+Jcm/oYcBttYYLATlTfTSc5o+R0qXQ+EEKQ7aEkojq5KCU7U5Yl/gZmJWedeKRbKXZTEc11nRLj6mB5LcNEhrouAHqxEsOYYWEDvRLiQU51oDETG/rbC2AjQgF04t54QF2PU0lSyzAMwzAMwzBMZsHxeQzDMAzDBCIuvx8YOMRc4cdu6hDZWEA2j2HnewAAIABJREFU74C86AjI2y6gC8VJjBYoI7p2261kMVeUE0YTxfYWiRMeMPcuGgAqikMmsn70YuSN2kLej1MSmljKftIQ+4AyPFN7Lpn/z3nm/06pgG6ydGWJRvqkIsJ9BQCgdr06/dd/Ce6zvY0QMRoA/LPmMmVRjw9YvSW9zCBUP6rUvG6X3nbIK0+EvOEs4JUHOq4vFxwA+f6z2n0Z918JzHu+B60FMHYyxFlXAgDE+XPocu8+2fHf1k1A8w7glQcg/3I45LN3dZd56nb1toq/edSUVarTF70FubLj/nzO8frjZ8LNBt7+IXX61Xcb6LYcNgqYUBGcFvSbh3IsfU5mOhD9CoI+/6tWff4BgEteSJ1+Emt+qZWYcLOBvz6v/45FfQEn8Sq/vjV2v889HxlYuEqd5/TvUGcceQbEiDExawPDJBxbx/LJKqRMr3H06i0Sk24xcNHzEv9dSJ8bnHn0NVp624HFdGwZPBz/yyQf45HZPa+kb3+Iax6FcMTp2U8kRk9UJh/Qtpjc5OpX03tMdMOb0bX/yXOC4y3ly/eRZcV510e1D4ZhooPFaL2P0Ej2Movbq8rvrkjbJeQz8XSWJPQtQbEQolBZkmEyiBtuuAGHH344fvnll6B0IQRGjx6N6dOn47TTTsPhhx+O3XbbLWz7pUuXYsqUKZYDoa666irIAK346aefjo8++gi//PILqqqquv47+eSTg7arra3F3Xff3fW5T58+uO666/DFF19gzZo1QdsOGWLyhTHDMAzDMIwJKDGGTkwTCyjJCEs3osfsb+eT1oIKGYYSKFqRBSUC6rwVemzojgGHSNJLEqaLbJEDQayKQwlncu15cQ1qzLGr+5ZXhq6rsLN8nK+hFNR+JSQ8krjeK47jLNEHNtiV5anvnGoyDur8RElEQwWKgViRvpFiNEIwSUGJ7FT4iL+JDt33JbdheS3DRIQSeAKA01EclkZd7yS9ljSTobT6m7Gk8RNl3sjcPTAkpyKxDcowbMKOAkeRMk933McDK7JbhmEYhmEYhmGYeMPxeQzDMAzDhCJGjIF46juIO9+A+MdrEM/8oN9AN3FbxbtPAsuX6ss44rQgXoCYpq9sxcj2NcpirrrUfs/z8KfW2hcqI5J3/SXyRu6QZ9k1LEZTIWw2TCvYgD08y5X5H68A/EZq96dA1m5VpztswJBCANUu85X59WI02dTQIZdSIKadYH4/6YhCknVUywdk8UtfTB8xSFu7RG2jOq+iWBMXtvgd4MuQ38AwIO+9FNLvV24iN60Bnv9XlC0FMOMsiPvnQ9w7D8K580R5wDGWq5GPzIZs3A65eS1dqCx250qhkazJR24AAAzqL3D9sfTv7fYCl79sBN2XJ5OLnqP7+GOzbEExhdLvB5bMUxcetS9EVvwWZu015AdPWR7prcLJja+Qxbc2pUY/iTW3vSuxqSFyOZsAnEQoaUOMQvEa2yT+PlcjUjKI6+Xf7o1NAxgmaQgIIsbOSJ/hDwDg9vck1m+PXK5QFxq06C39xu6WlLl2M5mJ3FYNPEFL5s0iXlgBse8hMWhRlPsXAjjqt+HpAE5qnKvcZksT0OpJz+OvJ6LtSQFOZikl8N7T6oJDRkLk5Ue9H4ZhrMOzJnsfK0I+DxZCDJFSbjS5/RRFWoEizRnyeYvJ+gEAUspmIYQbQE7Ifuqt1BOKEGIggAEWNxvZk30yTKy4+OKLcc899wSl5efn46qrrsIZZ5yBYcOGhW2zevVqPP7447jzzju7VpNsb2/H73//e7S0tODiiy+OuN+VK1fihx+6X+DOnDkTzzzzjKk2v/baa2hv757IetNNN+Hyyy83tS3DMAzDMExP8BDCo2yRo0yPFdSk3WhEHUwHZsVolNSGYSjaDLXQJ9Um35NCIktitDgFyDKmEUIgx5arvB7U+0LXMegg3n3Rav1UX4w30fwOuQqZmhACubY8tBhNFvadHBkcBfVbUNdK3fjDivSNFLJZHN+0EuddFdEIT3Vjhj4iG+3So9jGmtyNYTKR7T51tH8/ewH62LIVOb14pXImpnzROF95bgaAg50zE9yazKTQUaKU9FLj03hgSL8l2S3DMAzDMAzDMEw84fg8hmEYhmEoRF4+MOnIrs9yn2nANwuUZeX9V0AcdLzpuuXn70UuZI/T1K6S8g7pmq/j/WxlexXW9AmfPuNK3GPjqHhvmbVJrRUlAUIZj/oZdRhtIe+Wq13KYjpBT8ZQVoHxG7/H8uw9lNnLNgF7DU1wm6Kkapu6bw0rAhx2AWNzlfnKfBHiICjZHtDrhXsiOxeyqBTYXtOVNty7niy/mhDWpSK682eopDEQ+dnb6ozG7cDaZcCue4XnUXKsTnbfB1j5DZktTr0YYsSY4MRozmneduDrBUADPZVUxLJPl1fQeV/Ng/T5IBwO7D5IX82Kmo6/l+7vkigoOZXDBpSFzuKt+pmuiK9J5ugXPjV6D0/oFOxuPloucerE3hcb867J8dTwYpDCx/oYTZdYuApo01w2C/0K25JzAERev9g0gGGShc0GGyFGSzf/1zs/mmuwUxMaJL98X7+x398xxmYJKJMsln7U8zqOOxeiIHyB4kQjyiuUZ59hmvuyxWuAw0fHr03x4v2fojuhDnYC2VkBY8BN6sUFAADlI6LaB8Mw0cNitF6GlLJGCLESwO4Byb8FEFFJKoToC+BERZZKWRl6F6m2EuhpQ7AYLRZqzD8BuD4G9TBMQnniiSfCgq4OOOAAPPfcc9qVHHfZZRfcdNNNOOuss3DSSSdh2bJlXXmXXnopxo8fj2nTpmn3vXRp8ApUoatOxmPbBQsWmN4HwzAMwzCMCjchRou34ISqn2oPExmz0hWf1K+oyDChUMelFVlQIqDOK21+K2I0fsSXCmQTYrQGb7iMAoh/X7QqHEuWJIyScunIISRuOXZrYrRo9h1PyPMBca10++lrqJW/Jylo9FuTilkpH811PfS8GEhh1gDUtoevDdLGYzSGiUg9cZ0qdFgNxkiz6CwmrhjSwML6d5V5/e1OjM+fnOAWZSbOrGJAMd9LJUuLF7rnJSrZLcMwDMMwDMMwTLzg+DyGYRiGYSxhs9F5JkVJ0ucDVn0HfPVh5MJ2u8mGWUPY7ZCDhgKb1gIAKogJry5CDpUqrLUoSQqS3tTSk3yDcHe/75btHmDbZnW5st4tsDJFeSUOWzkfzxWcqsyu2pb6YjQpJVZvAW59V933RwzY+Y+dx44p/BHiIKpd6nRHFlBcZn4/6Up5RZAYLVuzUO66uo6/kRCpKyba2iSxeA3w/BJ1HxICGFqoqWCzpm+1NSuTZYTrj5h1NeSNs4AWhdFo4BBg+KjwbXL7Qu65P/DDZ9q6w9ry6RtAyw66wMTDLdWnZZ9pdJ7fD2zZAJRX4pBRAg6bhM+gi983X+LaowFnXvL6lt+QqNK8rrXbQtqm6Stiv8Ni1KpezoDBYUlHtHyIGwdcrSyeTnJGs7R4JCk7C+XwPQQpPGqIQSje5gaJf7ynOVABHNqyIDxx4hE93znDJBshIIgYO8NI7XuyQNraJao1w4BABjs1mdWuyBW4W0yJ0WRrM/DTF0BdTcSyTIZROhwYMwkiCsGe3LCqx7sXE6f3uI6YMPEI4NEbw5Knt3yIfxWrFwCqqpNIx4WU10YZGlkRGjKtuf8Sex8c3U4YhokanjXZO3kaQODV6f+EEE9KKTdF2O5GAOEKdHNiNJPLqATRBiDwMR8ru5mM5JdffsGf//znoLSpU6fi3XffRb9+5g6L3XbbDR999BGmTZuG5cuXAwAMw8CZZ56J7777DiUl9JIWtbW1QZ91gV6x3JZhGIZhGKYneAz1LUi2LUeZHisoiU2bYU0cwnTjNi1Gi7CiIsMEIKUkBTrJkj9RUPKq0GNDJxFyiKyYtomJjlxbHhoQvgxovU+9NKhVcZn19ljr67l2tRwr3kTzO1Dfzep3jvffwCqUoIy6VlLCtGyRA5swHzhPj2+sLfFoZTzkjeK6Tv0OdjiQby9ALcLFaG4eozFMRChBUlHWAGU6FeaQPqFZTCJY2foDtnjVE4b2d07n8WuCKHSo3w01EOPTeKATo6XaWIxhGIZhGIZhmN4Lx+cxDMMwDGMZoRGjmUDWb4G84gRg+dLIhYEOg068KKsIEKO5lEXe/rFjIr4tVMaSArT7JDY2WNumsjjge3y/yNxG7oD30Vs2AJJ4+1XKYjRRVoFTGm/EeeUPKfOf+sLAr/aOj+wvFvj8En9+TuK/C+k3nBUlAnJ7LbDDwozqSGI0StI3cAhEnOSIKUVZBbDsi6Ck22uvwhWDbg0r2toObNgODLO6lleCePoLA+c+IeH102UGO4HsLM05dcsGOs9HxNQ8fze9zf5HA1NmQlxwI+Q//xqcZ7dD/OFmsp+J82Z3XLMIIZuSec9ps0X5CPN1RUAUDYI89WLy+8vrTgf++xkG9bfh7zMF5rxFH9v/mtdx7L/wextmjkvONU/XvgfOCG+TXDCXruwItaCSCaGsIixpStuXZPHrXpf4/YESA/un3rgoWlwmQwTGDwXOniqweA0hRrMWThjGv+YZuPQlfYTR0U3v4LCW+WHp4szLe7ZzhkkJBGxSLQaU1P1HCmL2nNI3GyghHr9Lvx/4ZkHkStytQL7ONgvIn5Z0jGWsjN2ZzGLAYOCe9yGG7mp6E1m/BXjytp7td99DgKkze1ZHrBg9Edh1fIfAPwCljHQnFzwlcdoEiX456TUmilb+7wwNZdSJqY8/L6p9MAwTPT17Ws+kKvcBCPTtOgG8K4QI15vvRAjxNwBqpSegV3B3EM1VIn1G6gwTRy677DI0N3c/QHY6nXjllVdMB111MnDgQLz88svo06fbXLxp0ybceGO4xTeQwH0DQFaW+QlJPdmWYRiGYRimJ3ikemJtdpyFR6TAyB+DJZAyEK/RrpU9hZZlGLP4pBd+qPsWJR5KFpSMKlRIpJMDslgiNaCuEZQsipJRxQqroolkSQP7iGzYLD6mpr6b9e+cWjIO6m9ACcooUZhVyZ3Z81AkrIjRohGeUu3JsefScjceozFMRLZ71UvdUkKluE7MYXoNCxveVabbYMOBBUcmuDWZS6FDPVukwZtIMRo9nki1sRjDMAzDMAzDML0Xjs9jGIZhGMYyESRF0q+x4QCQD11rXooGAHW1kctES4AMpMK7jiw2b3n8mtAT1m+nHWUUlQGvueQ//mhqG9kW8L672kUXVMhVMo6ySuTJNkxtXazMfvVbwG+k7nSxl77WS9EAYEQJIP9FTbEjoGRWO5HVxPGXKbI9xbFzauNLZPFLXjQzlTHx1OyQmPW4XooGABUaqZv0+YAt4Yv/deENj5WVNfT5G+WVEDe9CGGzQZzwB4h/fwicenGHNOuMyyEe+ARCI9ASex8E8fBnEOdcR+/DCr+7Ojb1BGC78HY6c+U3wFfzAACzj7PhnYv0cWgtHuD0hw20ehJ/nlpfJ3GjRoz2632D4zGklMC859WFx06GyE2tWNiUpaAYyA1+BiQA/KH+v+Qm17yeutexaKiK4Arae2iHmG/+pTYU9RVw5qljg3oiRvtxo4woRbNLH17eeCqyQuO/jzkHonJ09DtnmFTBZoMgtAopPHwOI9I5pZPKYkBQsYafvGquErf+xCMNA3LOWSxFY/Rs3QR5w1mWNpH/vZ7OnDoT4uVVEH+4GTjitI5xd+B/R8+CuPIhiDvegMjqQ9eTQIQQEP9ZEJZuh4FfNb5ObvfPD9Po5LQT6hx19dECN/2Kjn8OXStAUmK0keMgIggbGYaJPY5kN4CJPVLKBiHEOQBeCUgeB2C5EOJBAO8C2AwgF8B4AOcCOCCg7EYAgcvKqdZXCV0GIJqZk6HbWFhagOQBAPSTUTUjAdBXbYaJIytWrMBbb70VlHbbbbehtLQ0qvpGjx6Nyy67DLfccktX2v/+9z/Mnj0bhYXqgZZhRP/CoCfbxoKff/4ZP/74I+rq6lBfX4+cnBwMGDAAe+yxB/bcc09kZ2dHVa/P58OSJUuwdu1abN26FR6PBwMGDEBFRQX2339/5OTkxPibMAzDMAxjFY/hVqZn2+J7nc61E2I0i+IQpgMrwpVoBCpM5qLrWzn25MifKCgRUuh5RXcM2AU/4ksFrIrF4i2CsCpei7eojUIIgRxbHloNc48GHcKBLJv6JaHV3zRZ35mCEje6/epzGikKs9gXaalYC6SUdGBCWHkr13XrwlNSBGfL04zRzMvaGCZTqfepBUmFWYQYjSCdVq1k4st271b80PyVMm+vfpPgzErRpd17IU7iOK73bbN0je8JuvFBqo3FGIZhGIZhGIbpnXB8Xs/g+DyGYRgmYxERFvfaupGUGUkpgfmvKPNI8p3WyltAlFV2Tb0frhGjvfCVxJFjUm+BHLOT7gPpFKMFyc4i4Q4UoxG/U9EgiOzUijtKCuUVAIDRnhVYnDdVWWTxGuDAXRPYJgu8/HXk95qVJQB++tJaxf4IC8RSYqsMke2JsoowDUiZrxpZsh1eER4H9JUrIc2yzGvfSfhN3KZVlmjOp1s2ADrBpkqy98lrZHHxu6shHN3xg2L8gRDjD4zcyMA6ho8CZl0N+f2nwNfzLW0bVle8+vQeE4Dl6vfQcv5ciEkdC3QdNVbglP0EXlxKH+uN7g4h6PHj49JSkrnf0m0qzAMKQmVUq76nKxu+R4xa1fsRQkCWVQBrlwWlj2hfS27z0lKJh85MzDv1RLB+u7rvDS0E1t0eLgR2Eq/yG1qjjw16ycT195ptt4ZL0QCIPdXjDYZJO4SADeqBRDrF3lVtM9fWSk34ofzoRXM7iyBGw6rvAUpexDCBrPwGsmEbhDNyXKyUElhAP9cRk6ZDDBoGnHEZ0mmkILJzIUvKgW2bg9IrvfQx9PJSieuOiXfLYouLWDN214HAGZMErnlNfQ6bWBny16x2qSsaOS7qtjEMEz08a7KXIqWcK4T4K4B/Aeh8K5MP4PKd/1HcC6AAwNkBaWkjRpNSbgGwxco2veUBBZOe3HPPPUE3rSUlJZg1a1aP6rz44otxxx13wOvteBje0tKChx9+GP/3f/8HAHC5XKisrCS3P+SQQ5Tpjz32GABo20cdT1VVVaioqOj6PG3aNHzyySddn63cuG/YsAH/+Mc/8NJLL6G2ll4dKzc3F4cccgjOPvtsnHTSSbBHWLkLAJYvX46bbroJb731FhobG8l6jzvuOMyZMwe77bab6XYzDMMwDBNb3EabMt2qCMQqlHDFiuCL6caKUM4nIwQOMUwAur5FiYeSBdWe0PMKdQzYYIctUkAukxAsS7kIkVOssNqeeIvadOTazYvRdO20KtdI5ndWQYkbqXEGLQqzdp7LtfdTpvvhg1e2o48wN7Gt1YKELJrrOi2Cy9OM0dRjRoZhOpBSot67VZlX6BigTBdkKEf6BGcx8eXThvchiSC+gwpnJrg1mU2hQx3I5ZXtaDGa0M/eP+5toMYrdjjgEFlx3z/DMAzDMAzDMAzH53XA8XkMwzAMYxFbhDiM6nWkGA31W4DWJmv722eatfJWCBDUjPX8TBZbuzU13/WYnXTfyahSoLDvzjFTtcv8hl5P1z8lJbCi/uaZRkWHjGdS2xI8UniOssiqWokDd03NuVq/0EPcLiYMl0CD+j0qSZRiNJEp/WrM5LAkGyQk8f65rhkJW+jHCmb6DwBU6HwL1S79xgoxmty4mi4/ZqKZJpljzKQei9Fi2p7QegkxGjauCfo4qRJ4cam+utVbJJBglcUqzYzXySMUiZvWKBI7EPH6nXsrZcPDxGiT22gB5o62jvNQSX68G5YYthNhfWUF4WnSMOD0N6BjinkwDT2YLrHaxIzvSW1L1BmjJ0S/Y4ZJKQQEEWOX5PUxLLHWpLx68kjNdbZ2g7lKIonRNqwyVw/DAEDjdsCEGA0NW4HmHXT+mEmxa1Oi6V8YJkabTF1/AazZKlPyvoyioVWS45XKEgG7TWDqyA6Zeygn7hPyHSnpYjn9/o9hmPjBsyZ7MVLKewHMALDSRPFmABcCuBjA4JC8GkX50Cu6eoYMgRCiH8LFaCoBG8P0at57772gz2eddRb69Alf7cQKAwYMwLHHHqvdTzoipcRNN92EXXbZBffdd5826AoA2tra8M477+A3v/kNNmzQ3yj7/X5ccsklGDt2LJ599lky6Kqz3hdeeAFjxozBPffcE9V3YRiGYRim53gMtzI92xbflaMp6YYVwRfTjRWhnE8qVsFjGAJd34q3QNEqVHvc/lAxmvoYyGKZQMpASa3I8nGWclltj1WpWCyx8lvojmHLMjiLv1G8occZarlXm58ShcXub99mQXZmZTzkjeK6Tovg8sjv4LbQfobJRFqNZrRLjzKvMMtEAAjDhOA1vPhsxzxlXlmfodgtd2yCW5TZFDqKybwGL7E0YoyhJKU59ty0CZhiGIZhGIZhGCa94fg883B8HsMwDMMEEGmBumqXMlm2NEKeGy7/0TLjLIgC+nlujwkQo+Ubzcgm4u6qTE5uTzRUuyaPAH43Nfw582XTA9KqiUmsKtrbA7ZzqcsE/JaZjMjOBfoV4NeNr5Bl5tEOvqTi2ibx02Z9mVP2E6g0NgLedn3BUCKJ0aop4d4wa/tJU0TlHsr0S+rUY/42L1BL3zYkjWe+NCdrrNCc1uUDV+k3VojRKLEeAIhhu5tqkxnE0b8D8gujr+CAYyCGj4pZewIRx59PZ37/adDHMycLpfApkMtflli2KbFSUJdG9nnx4eFjD7nsC7qyQ0+ORZMyB8U1fErblxgp6IvCQwtTUxobDZQgpDBk/VX5ygOQxw2B85nrleXrezBdIpLsNs9owWEtCjHjfofG7bzCMAnHZoNNqg1oFy2shM+fHucd3fWskwH5wNlTNHFBK78xtzM3HQMspYS85Vxz9TAMALOL/8pXHqAzR4wBdts7Ru1JPOLsv4elHdP8Dlm+zStQ86/ZkH5/PJsVM3TPtjrv0f52hA2hYYvH7AnsURaS+Mu3ynoEi9EYJik4kt0AJr5IKT8QQowBcDyAmQCmAhgEIB/AFgBVAF4D8IyUsgYAhBChd4oqR36oRtfqEhWh5bdLKest1sEwac3GjRvhcrmC0qZPnx6TuqdPn465c+d2ff7iiy/g9XqRlZWeE+Z9Ph9OPfVUvPJK+Muz0tJSjBs3DiUlJfB4PKitrcX333+P5uZmU3W3tbXhV7/6FT744IOg9KysLIwfPx5DhgxBdnY2ampqsGTJErS2tna16eKLL0Z9fT1mz57d4+/IMAzDMIw1PMTE2uw4C49o6QaL0aIhVPykwystBhoxGY2ub6WaGC3X3leZ7pFuGNIPm7ADAHxSHTznYDFaymC1b8W7L1qXhCVTjGb+t8i1qY8ZAMi1+B2SKYNTQbWHkj2SorAY/g5t/lYUOIpM1dPqNy8h8xnWxWi0CC6P7O+UjIVhmA7qvXQUQJHDmhgtPcKymHjzbfNiNPvVqyUe5JzBIqwE09/hhA02GAgPqqz3bcMQxD9IhxqvxFsSzDAMwzAMwzAMA3B8nhU4Po9hGIZhQrDpxWiyZh1UT7zlLecB2yJYlwIQ580GzrjcUtMsU14R9PGFTWfgV0PDr/kbG4B2n0QfR2o9y3cRr7MqSwQeOlNg10HAq99IlPQDzjnAhpP3DRSjuczvyBuwmBAlICq1Om2q9yKu/h/6XXUyDmhdhEV5B4Tlv7BU4qlzJRz21OlPhiGx1xy1iKKTa48RuGamgLzsArrQaX8DnvtneLpKZrUT2bwDaG5QZ2ZQvxLnzYZ8ZHZQ2iXb/407Si5Tlq/aBpRGkFslkpodElubzJWtLFH3ffnpG+QE+y5UUr5ql7KoOFctL4oWUV4JPDAf8olbgeVfAZvWBhcoKgUcivteZwkwaTrErGti2p6gtlXsAZx/A+TD6u8sv18EsVfH+WhAvsDiK224/g2JJz+noxkOudPAuttsyMtOzLmKEjUcvgdwxOjgNkgpgRfvVW8wYgxE3/4xbl3vRpRVhMW1CABfNxwPZ8FXym2ufV3iNxMkdhmYOteyaGkgQuicud3fTS58HfLuSzrS+6uvWVQ9Zogk4V29ejTsitgGcftr0e+UYVINISCIKLsWnx2z35S46Vepf85Zu5XO22UgMKlSYPaxAuVOYjw073nzO3Nr5hu99hAtM87OBQp4YdiMxPDTz2Vk5ChXWfUz8MStZL7472fpHQN5yEnA9WcEJWXLdvywZh/sOVItLLzqi0o8WnAzxLnXJaKFPYIab2TZgXJnx79P3Efg9Qtt+M8CA7WNwPQxAtcfEzIW/+A5eicszWeYpMBitAxASukHMHfnf1qEEEMBDAlI2iSl3KQoujzk8y4WmzUi5HOKrgeSeHx+iY2siIs7QwqR9Jcsn332WVjafvvtF5O6991336DPbW1t+O677zBhwgQMGTIEVVXdqx/dfffdQSsrPvfcc5g8OXylqpKSjhvBadOmdaWdeuqp+PLLL7s+B9YbyJAhQ5TpZrn00kvDgq5mzpyJ2bNnY8KECWHlDcPAF198geeffx6PP/64tu4LL7wwKOiqoKAAs2fPxrnnnov8/Pygsm1tbXjggQdwzTXXwO3uWC1rzpw5mDRpEmbMmBHlt2MYhmEYJho8xMqVyZLMUMISRo+V342SQjGMCqpvZYucLtFYqpCrOW+5jTbk2fsBAHxSHTxnF/x4L1WwKneIt5TLav3JlITpZGeh6K71VsYBWaJPyh0/VB+ihCLUuc5yXyQEjbp9qMtaEKMR5zQdOhEcKa+1IGFlmExku08dpWSDDQUO9SrQQjnNB2A1GgMAn9SrVw/MFjmY2H9aYhvDwCbsKHAUod4XHvFT76tLSBvI63eKCasZhmEYhmGYzILj8xJHsmP0OD7PPByfxzAMwzAhCL0YTSWokTvqgM/eorepHA3bkxFkOPHAOQDIyeuaUD6iXT2ekBIAWK/HAAAgAElEQVRYv71jInsqUbVN/Q6qohjIcghcNUPgKmKYIDe7zO8ocEJ9tVqMJsoyR2AVkbKOxVcmt36pFKMBwIfLgaPGJrJRehatBprUYacAgOo7bRjUv+P+xfh6vrpQvwIIZ4n6zahfE99Ys57Oy6R+NWy3sKQB/q3oazSjxdYvLK9qm8SUkakjHXhuifl34hXF6nT5zpORN/YHx9RIKcnzEobuarpNZhEVe0Bcb6KdyWD/YwBKjPbaf7vEaAAwvFjg8VkCIwcYuP4N9d+urgV460eJU/aLfz+TUsJFvKI970DF/n/5jq5s9KTYNCqTICSU/WpXYtTuwIoa9WZPfSFxw3Gpcx6KloYW9THgDAgblO880Z3uV4vR6ls6+rJVIUyLR2JLBLHkQL8ihmnsZIg+2Zb2xTCpjNCI0QDgsc8kbjze+jGWaKjr2ROzBH47JcK9NAD5+sPmd6YRo2nHVcfMgu3if5nfD9NrkNtrIY8fRmSaEKO9/wydWTkaIju9Y96EEJDDdwfWrQxK36N9BXJsPriN8LkVr+cfC3x4EJAGYjRXnfpvPLwYsNu6z63H7ClwzJ70vDL55qP0TsrjvxgtwzDhpNbMLyYVOCzk8wKi3LKQz3sKIfKklGZnmu0fob6MZWM9MOLv+lVImJ6z9hYbKpIsfN64cWPQ50GDBqG4mHj6bZGxY8PfIG3cuBETJkyAw+FARUVFV7rT6QwqV1paGpQfSr9+3S8ccnJygvJ020XLBx98gHvvDV7l4rbbbsMVV1xBbmOz2TB16lRMnToVc+bMCWtnJy+99BIee+yxrs/Dhw/HggULyO+Rm5uLSy+9FFOmTMFhhx0Gt9sNKSUuuugirFy5ErYIq4MxDMMwDBM73IZ6yaFsm/q6Hyuoibtuf1tUL/oyHSsCFQkDfumHPcWkVkxqQstzzMuXEkWORgjVZrRGFKM5UkzslMlYlVFZLW+VbIuyiXi3R79v823VtdPKd0imCI7CqtyLFo1Y+27ZIgc22GAoVly0cq22Jjy1LkZrI8Z/ObY85NitSeUYhumg3qteHq3AUUTKZGkxGpPpbHCvRZV7pTJvYsE05BLnaia+OB3FajEacfzHGur5TTLHngzDMAzDMAzD8XmJI9kxehyfZw6Oz2MYhmEYBZGuOdWu8LR1KwC/n95mRHIMUUIIyL4FXRPKK7yEXAdA1bYUFKMRk+4rzYwzq9USOCVeDwBAetqAump1GUKqkpHsnAi8p4eeCvbjJomjxqbOu8UXl9KT4LPswMCdzl7Z0khXkl8I2IlYLZ8mDqLGpU63O4Dicnq73obiGBIAKttdWJYTfo6sSszrLNP8uMlcuYLcDlG4krUmpk8GihoBYHst0E5Y/coqzDWqt6CTENRuUCaPHSygW+jtx03AKbFxqGup2QG4idNEZYniXFn1E1mXGDE6Rq3KIKi+4/dhbHErVtSo31//tKl3LBLYoH5tD2dg2GbA+clpqMVoPgNobQf6WnSVrYuwbtv05nnqjBFjrO2IYdKAEd4qrO0zQplXvQPY3gIUh/tiUwavT2IHcU4ZUmhy7E/db6lo9yiTpZTAWt21MoUMzUxi0c3pM3NZ1/SrZD3XiTmlw8PEaAJALjxwK9RDbSIXxsY1EGkwZ3Jbszp9iFOdTrKdsOYCQEkG3cMzTArBb4iZUM4N+fyIqpCUshrADwFJDgDqZT7UTAv5/K6FbRmmV7B9+/agz4WF1JNv6+Tk5CA7O/gpU+j+0oU5c+YEff7DH/6gDboKxel0KgOvpJRBdTscDrzxxhumgsc6A7o6Wb16NV577TXTbWIYhmEYpud4DPVLfqsSGKvkEFIlP3xRCT4yHWqCNIVXtkcuxDCg5TxW5EuJQicwaguQIfmkelVRh8iKeZuY6KDkmWT5OMtB7MKOPsJ8BEoyRWG5GkFgKDqJhpXvkIoyDkru5ZFuGDI8gL6NEKZZ/W5CCPJv0Oa3IEazUDaacZObkLTl2vLIv70VWRvDZCIqWRIAFGUNsFyXNBU1wvRmPml4h8w72DkzgS1hAinMUs8Ma/BFiDyOEZRkNRXHYgzDMAzDMAzD9D44Ps8cHJ/HMAzDMApEJDFauFxMfviCvsqZZ/WkRT3j8FO6/pkn2zDIV6ss9oJGHJUMmt0SW5vUeUqJTCifvW1+ZzvFaKhdT5fJNAGRBpHbFxACxze9SZa56e3U6k/LNHKbLDu6J3hXu8hyYsZvaTGaXx3bBQCoIYSEAwdDODJoUUziGKKEjXPeSp0+JKXE44vNteesKQIOe/g5Svp8wGYTwsZQyR7VfwCgLLOEjSJXE2NGnL9njgUG9ac3uzlB5ypK9AkAFQqHu3StoDc47BQ6j1GjuYbPqlhL5qWaoDFaGogQusKdr+2lzwds6V5gwOnfYbkuHZF+x1kNTyjTxYwkjp8ZJk6c0vSKNj8Vzzten8S1rxvY90Y/Jt5CLzpTaCIUXLY2AxvXWNi5WoyGuhpaHAsAh5xkfh9ML0P3rEA/7pOGAXxO607E0WdH2aYUgxgX/cq+WJnebstGjaNUf8ylCNQ4pUhxfpLtHhgPXgNj1gQYJ1TCOHUPGDefC7l5LVBDPBsaNAyCF/BhmKTARx7ThRDiAATLzVZKKRdoNnk15PMsk/sZBWBSQFILgA/MbMswvYnQQKjQlSF7Smh9dXWJmeQSS3744Qd89tlnXZ/z8/Nx++23x6Tu+fPnY9my7tUMzjjjDOy5556mt7/wwguDArreeOONmLSLYRiGYZjIeA0v/FAHkWQL9UrUsUInvWHxhnWsCFSA6CQqTGbiJo5HK/KlRKETAgR+D6r/sxgtdbAqd0iEDCJdRGE5dvNSOZ1Qzsp3oCRkyUQ3zlDJROlznfXvRv0elMykp2W9UVzT2wihao4tj/zbe2U7jx8YRkO9Vx1JVehQi5R0pE5IOpMMWv3N+KpxoTJv19wxKM8eluAWMZ0UOhRR9AAaCDFirHH71dfvZEp5GYZhGIZhGIbJHDg+LzIcn8cwDMMwBJEmOW7dCOntXuBRrvgaePUhsri48iGIiUfEqnWWEeffEPS5ot2lLPfoIolv16fOWx+dFKAywussuWEVIC18F+/O98oK6V0Xg/h9RyDijjfQV7biwJZPlflNbuDhT2lxQiKRUmLhKjpfBM6d14mrfnsl4CBitUJlVoH7p/pVaQW9r95IQTGgEFtVel3K4l4/cP/81OhD17wW+XyS1wc4/0CBO04mZAzvP21uZ76QBYSrXepyOXmA0/qiZ+mOuPF5dca2zUHX5k6yswTmX6q/rt/9Yfz72QVPqffRNxso6afIeOYOdUVFpRBFg2LXsAxB9O0P9C9S5h351Mk4cFf1djqhXTpRT0xxcHa+tt+6EfB3L9xa6G8g63rrB+tjxapt9Db/rLkMv26aG5YubngGYuxky/timFTnnMancdOW68j8VBSjnfWoxM1vS3y7Afh+I13OGSEUXEoJee5EazsPHRd11vX4TeQm4s43IfJj+y6ASSOERowW4RmB/OdFdOZ+h0JMODzKRqUWghCj3VpPH1c3l1wJtFmb/5cMKDFaQZ5CXH396R1j7tU/ANs2A5vWAu89DXn6OFICJ2Y/FcvmMgxjARajMQAAIUQegAdDkq+OsNkzAPwBn08UQhCPAYIIXUruRSll6mtCGSbNELoBfJrw0UcfBX0+/fTT0b+/ZqkOC8ybNy/o829+8xtL2+fl5WHixO4b8U8/Vb/QYxiGYRgm9nikelItAORohCKxwKzAiDGHVZmcT2pWVWSYANr86r4V73NENGTZski5WeAx4jMoMVoGrRqa4ljtX4mQQViRf+mEY/HGktBMU9bS903B80GORt6oumZS19FopG95xL6tXKutCE+jkZW5Ned23fFECVkYhgHqCTFSYRY9k0RoV9RjMpXPd3wEr1QHoh1cODPBrWECcRKiw3pvYiK4qWclyZTyMgzDMAzDMAzDxAqOz9PD8XkMwzBMWiMiTLWSEtiyofvj3NCpOAEccCzE0b+LTbuiRGTnAsVlXZ8pCREAPLAg9cVoNgEMLdRvK1+819rOvJ6O/9cQAqviMojs+C7amnZU7AEAOK75LbLIXR+kRn9a+Is+vyjwtUW1S12ovBLC4QDsRKyWXxPbWLtenV46XN+wXoYQAlBMwqdkjUBHH5JWJIdxoK1d4r75dBuePlfAdasN9Xfb8NBvbejjUN8ryqcJ0VUovpC+RIn1yip6xX2pZYbvrk43DGDzWmXWqDKB+0+nf6t/zpMwjPj1M69P4qfN6rzK4vDnC3LNMnVhADjC2r01EwB1zq1djzkz1efwhlagoTU1rmU9gZKEdInRql3B6QYtRvvH+1GI0YjwhANaF+Gi+gfCMw79NcShJ1veD8OkBULgyro7satHbe3ViQSTwbo6iRe/Ntemgkhh2Su+BjausdYAhfQUAPD6I+r03H5AEqXkTAoQpRhNtjQCrz9MVzvr2p60KrUoq1QmF9d8j3y7R5n3UOH5gDsdxGjqv3FhSKiiXP8LsIh4lqG7tx+yS5QtYximp/DMyV6KEMIhpbkZ40KIfgDeBDAmIPkVKeUruu2klKuEEE8AOGdnUh8AjwshDqNEZ0KI4wH8LiCpHcANqrIM09spKgpeaWDHjh0xrb+hIfghVOj+0oHFixcHfZ42bVrM6l60aFHQ56KiIrhcLkt1BAaBuVwuGIYBW6QVwhiGYRiG6TEeg5ZbZNviG3ykk25YlXwx1mVyPoN4scEwIVB9K5niJx05tjw0+8PvCQO/hx/qxzyUVI1JPCkpRouRcCzeWPktdL+zFdlZKso4dO1XndeosUc0fYv6PVotyM5aDWtiNCmlpQBN+tzeN6K8th9iM5GPYXob271blemFhEhJT2oFZTGJw5AGFja8p8wrcBRhr36TEtwiJhBKdFjv22b5WhwNtMg19SS1DMMwDMMwDMP0Pjg+LzIcn8cwDMMwBGauN9UuYPDIjn///CVdLlUmTZZVAHXVAIBd21eTxb5cmzrvfKrq1G0ZWgRkEeKh7o2XW9vZzgn3stqlzlfInDKeknLAkaXtT7/UdkxMduYlV970RZW+X19+ZHf75OYqdaHOPuAgYrX8fnoHhNhKlGWWGA1Ah5ho7U9BSbo+5KoDtjYBA5MY9rGiBmhSzpLsYO9hAsOKTfTx1mZzOwwRgMhqok9mmFivC933/uxtYPgoZdZugwSouIaN9UD1DmBwBOlmtFBSKAAYotrnz0vI8iJVxhXpSOkw4JdvlVmVnrUAdlPmueqA8akXamgaw5DYQUy9KOy8Ple7gtJzpFqKAgB+w3obtjSq0yvaCfHjkJHWd8Iw6cLOOJ1KrwursncNy9ZdM5LB2z9KnUsqiP6RQoF+0tw3U3jDF2GWujFV0cDMFMcy3UQpRgu9Rwlj8Ijo2pOKDBqqTBbedgzKakGTP1uZ39bYhrzSeDas5zQQYx5n6Fju56+sV57bFygotr4dwzAxgcVovZcLhBAnAXgSwNtSyrDZLTuFaCcBuBnA4IAsF4A/mdzP9QBOAND5GGYqgA+FEOdJKVcE7CsbwO8B3BWy/V1SSuIOlmF6N6GBUPX19TGr2+12w+0OfvJeXJx+A67q6uqgz2PGjCFKWmfDhg1BnydPntyj+gzDQENDQ1oGuDEMwzBMuuEx6AgDq1Iaq+jEa24/i9GsYlUm55XhLzYYRoWbECimoggJ6JAYqcRogceIj+j/DhuL0VIFq/0rJwGiPivXxUSI2iis/Ha6dubY+saknmSha7/bH3xeM6RBymJzLfwOXdsQ/dGsxNQnvfBK8wJTCQkDftgtvKIgxSq2XK34kuW1DKPGkH40+LYr87RiNCJwJNmrdDPJY0Xr99jqrVbmHVAwHXbBr6OTSaFD/W7IK9vRYjShnz2+s0jS7d6MYRiGYRiGYZjeBcfnRYbj8xiGYRiGwGaPXGazCwAgDQNYt5IsJg49OUaN6iFlFcCyzwEAJzfOxY0DrlYWW7YZuO51A6dNFNijLLkTyqu2qdMrzQy7ql3WdubdKQAhBFbIRIFVBITdDlk6DIdv+lhb7sdNwIHhzoeEsnqLPv/EfQL6+roV6kLllR3/txPvvnya2MYaol8NGqZvWG9EIbU6tHWBdpOfq5MrRnNpBCWjy4BRJuQA0uMGtteY2p/0exF09qX6T4YKG0VuX8hR+wIrvg7Lk//5e4fc9MgzIQoHBOUdtCuQZQe8hMPw0c8krj0mPte9b9fT8RSnTAjfp6xdT1d20PGxaFJGIg47BXLh68q88qZVyLLvpuwfVduA8Wp/SFrQ5AYMogt2SkJUUtAS31ZscwwIS9/UAPj8Eg67+eOloVXdgCK/Om5JHHKS6boZJu0QHRLuSq9Lmf3yUon/nJHA9kTgh43myvXPAew2/XmBFBDrtvG1I6xWamwEAPseYnkfTC9DK8bTxLg2N9B5ex0IUZziRjArFNDvWA7qW4XVbnW+a4sXo9Ue2bhT3yLxxOcS36wLH887+wJH7CFwwt5APbHGuzN0Sk21y3ojSoezeJFhkghHovdeBIBDdv4nhRBVAFYCqAeQB6AUwD4A+oRsVwVgupQywmPfDqSUG4UQJwJ4P6Cu/QH8LIT4GsBaAAU79xV6J/wWgGstfq9ez5BCYO0tvKJdvFGuqJBgBg8eHPS5pqYGdXV1MQmQ+umncDtx6P7Sgbq64DcIhYWx+8OF1h0LmpqaOPCKYRiGYRIANakWALLjLEazCTtybLnKNrB0wzq6v6UKSgzFMKG0Geon2qkoQgJoeVWgcNFrEGI0wWK0VMGq3CER/dFsm2ywI0uEPiZMHFZ+C913yrUwDkhFGUeWLQsO4YBP+sLyQs9rHsMNSbygjUYUm0fI1KjzaVi5KASxXuk1LcvRiddybX2135nHaAyjptG/AwbUEb9FWeGBjZ2I8FAjJsP5pP4dZboNdhzgnJ7g1jChOAkxGgA0eOsSIEZTX4dT9d6MYRiGYRiGyQw4Pi9xJDtGj+PzIsPxeQzDMAxDYIs8XpQ16yAAyKtPoQtNOxEYtW/s2tUTyiu6/jmmfTlO2/E8nis4VVn0prcl7v5Q4q2/2HDQbsl7N+Tapn4nXlESYcK9tx3YSszgrxwNVP0cnt4pRqMm2StkTgyAsgrkbFyDd9Yfi5nD3lQWOfgOAw332NA/Nzl9yTAk/reIngD/xCyBcmdH22S7B/h6vrKcKNspRnMQsVr+8FgPAJAtjUCjWvySicI9UVYRFu2SIz14b93ROGr428ptDr3LQOO9NvTLSU4fos5FAPDMeTZzk+N1oqtQvCHxMdUuZTGRgf2nEzHtREiFGA0A5P1XAq8+BNz3EcSA7vv0LIfAvEtsmHanodzu+jcknHkG/nJobJ8ZbW2SOO1hug/9drKi/zxxK1leFA2KRbMyk4NPILPsW9ZhWBGwZmt43rWvGThhbxPS3BSlQROqX9j52v7J28LyXth0Bg4b/kFYut8ANtQDlZo1F0OpJ8L3Cg21hEbssqf5yhkm3dg5bqhodymz61qAl7+WOHnf1IjR++9Cc4ulFkQIW5ZSAi/9my6w+z7Aym/C09s94WnVtGBN/Cn8fMZkGppjR7f4b0sjXeMV/+lBe1KQfPo90D9KXsWjdernWP/5xol/HxCvRtFsa5KYdqeBn9Vr9wIAHvpE4i+HCnLc4wwJVZSPzrHekAwVUzNMqsBitMxAABix8z8dbwA4T0qpuIWnkVIuEEKcAOBxdMvPBID9dv6n4jkA50spCc9+5uKwC1RYeDDApC9Tp04NS1u6dCmOPPLIHte9dOnSoM+5ubkYP358j+tNNrG06ba3qyfT9gSpuzFiGIZhGCZmeAy3Ml3AlhCpS44tTyn0oib7MjRtfnOylU5YjMaYhZLupaIICQBy7ZSQqPu8ohIlAYDDpFSIiT85dvMyqizRx7QQqieYFYXl2vOSuoJNjt38sZmrKWvlGE/V80GOLQ/N/vCXq6HnNd24gzqn6Per3qbV5LU6GvlYx3XdXB91++kIrRxbLuzCgT4iG+0yPAiCx2gMo6beS78KKnTwSwrGHHXeWixrWarMG58/GQUOnqicbAochbDBBgPhAf71vjoMQWVc90+NEVJ1LMYwDMMwDMNkBhyflzlwfJ51OD6PYRiGYXYiTEhRql2Q61cCi9QyKAAQl92X1HfxgYTKiO6ovYoUowFAsweY/YaBjy9Lngikaps6fQS9xk8HtevpCc9TZhBitJ1xadUu5WaCJ8CqKe94zzC95SOU+mpQ4yhVFnv6S4k/TUvOsbDgFzrvyhkCv50ScLwvfJ0u3NkH7ES8j4+IbazRCLEyUbhHHEuHt85HeU4rNrvV75Ce+0ri/AOT04eqCOfzAbsAew012SYrYrSAviQNg+5DZfF9z5fSHHIS8ODVdP7mKsi5D0JccGNQ8kG7CYwcoJZfAcC1r0mcu79EXnbs+tojGjHjlBGA3Ra8L1ntois79ZLYNCpDEXY75D7TgG8WhOXJahcqS9R94+dqoN0n0ceRGmM6qzRoQuecuYCsWq7M28f9Hbmda5s1MRrVBqdfIUabfrr5ihkmHdkp4a70usgiV75i4MS9bbDZknve2VRv/llsqHQoDJX0rJOz/w788q06z6d4xryZEKMNGgbRN74LRDJpgO4ZjO79QpNa1onS4RBDd+1Zm1KNPPo4cbZUo9y7GZuzysPy7l9WjnulTPhzrkcWSa0UrZN/f0z/fQvzutss12seEujIxPt3hkkheNm73ssiAC8BqI9QzgfgXQBHSCmPtypF60RK+Q6AsQAejLDPLwCcLKU8XUppbQY8w/Qyhg0bhmHDhgWlffBBuEk/GubNmxf0edKkSejTJ/6SkFhTUhL8lGz7dmKlnB7WnZOTA8MwIKXs0X8VFRUxax/DMAzDMDSU8CjblpOQB2w5hGQmGiFIpmNVVOJlMRpjEkq6l5uik++pdgUeI34Wo6U81PVBRaL6olnhRLLFFFZ+D93vnGXrY/qY0AnWkgn1W4SOM3TjDit9sZM8QqZm9lrdZlh/1EsJH622I3en1I3qx21+HqMxjIp6n3omSZbog772fHI76o5Lhq3rzWQCnza8T/7tD3bOTHBrGBU2YUd/h3qVR+o8EEvcxHU4mvEKwzAMwzAMwzCMVTg+LzIcn8cwDMMwBGYmoFe7gK8+ovPz8oH+KbSASIiMaJC/FnkR3vN+sgpwe5PzDkhKSYrRIoo4qInyAMSw3dQZXg+k3w/Ub1Hnlw5Tp2c4IkDMtKf7R7LcBz8l713i+5p97zc8REi0VHNM75TAwUHEpfiJGIiadep0ux0YMITeX29FIxkcY6wh85LZh9ZtU+9791IL8co6QV4ogQKQbZtp6V4GT8wX5ZXAqH31hb76UJk8bjC9SaMbWOKKvl0qdH23skTRh5Z+TJYXZZn7N48Z1Dmo2oXhxfQx/d2GuLQmIdRrQucKcgF8NU+Zl280o5iIKXDVWTsnU21wGjvCE7mfM72ejnONToy2dhstiU4kn/xi/lgviBQGtER9XQYAMXgE0CdbnekNF6OREtHBIyI0gskIohWjNSuuSQDg7H0rLQmHo+OZlYrGOgzz0vcuW5vi1CgNHy7v+b1gkLxRd9+vgcfiDJNcWIzWS5FSfielPAVAMYBRAE4EcBGAawBcDeBCAEcAKJJSzpRS0qNK8/vcIqX8I4BSAIcCmAXgqp37PQnACCnlFCnlKz3dF8P0Fo466qigz0899RS83p7JHrZu3Yo33nhDu590oaysLOjzzz8rVmeKkkGDBnX92+12Y/16Cy8aGIZhGIZJKh7DrUxP1KTaTvlGKJSwjaGxKpPzsRiNMQl1POakqAiJlPkEHCNU/3eIrLi0ibGOQ2QhS5ib9JQoEZlZ+VeypYFWfg/qOmy1rmTL4CiodoWKwcyIwqxA9YFWQjQZCiWk1OEzFCu5UfXrRHD2jjEg1d+tilgZJlPY7lWvk1PoKIkgnE7PFXCZ2OM12vHZDnWAbFmfYdgld3SCW8RQFDrUAVoNXmJ5+xhhSD88Uv0MJ9njT4ZhGIZhGIZhMgeOz9PD8XkMwzAMQyBMTLX66Ut6QjYATJmRkEU+TRMiAhEAjmrWS2OlBNbF91EySV0z0OxR5ylFMoFUu9TpRaVAP6c6z9sOuDXvvantMp3J3ePgGc3vkcWSKXao2kpPoj50VEhCtYuuaLfxHf+3U2I04j6DEqOVDO6YkJ5pjBxHZs1on0/mrVW/3k4Ia6OVNAagle6FEihCo/oPAJRXmK+zFyKOOlNfYOU3yuQZ4/TXkM9Wx1bCt5rwbQLATMXhIHV/80nTe96gDEdQYrSfl2Kmpm98vjZ9FwtsIELn+mUDWQ6hHc9WEGIUq9d1qg1Of0NYmpgyw1rlDJNu7LxH3Mv9AwoUx0Ana5I49umkzkJY8GCn/vqqvXeeeATgIOLvfYo4Y6oujYCXySC0z2Ho67lsJo7HfgU9a0+qkq9eaBU76jCx7Stys2Tc27tisM8hAV9Xez7SUVrR84YwDBM1LEbr5cgOVkopX5VS/ltKebOU8hYp5QNSyg+llDF3c0op26WU86WUj0spb9u537lSSnrZFYbJUP76178GvfDcunUrHnvssR7Vec899wQFb/Xt2xfnn39+j+pMFvvvv3/Q5wULFsSs7qlTpwZ9jtVqoAzDMAzDxB8PITzKtuUkZP+UgC0aIUimY1VUwmI0xixtxIq2qTr5nmqXm8VoaUe2SUlnoiR96SIJy7UgN40kQjUrSk2UUNUqVLtCr5mUKMwGm2lBX/B+eyYVo867OrwWrus6MVrnOdSMZJJhmG7qiVVdC7OiXeEufYNAmej4uukztPjVrxkPdqbYZK8MpzCrWJlOnQdiBSW2B1JXWs0wDMMwDMMwTO+D4/P0cHwewzAMwxDYTE61euEeMkuc/fcYNSZGDBgC2O1BSdduuwWDfHK0aE4AACAASURBVLXazWbea8BvJP490Mcr6X1Wqh97d0FOci2vABxEnI3XA7Rp3nvnWF+gLBMQI8d2/fusHc+Q5aq2AVIm530iJbXKzwGceSHvszYT097GTobo7DtUH/L7lMmk5Kh0uDq9lyPs9g75hYKza/5LbvftBsDjTXwfamuX+GmzOq8iwrmoE/nErcDHL5vfaaDMe7NLXaZfAQQlM8gUjj8fGDdVW0S+9O+wtNMmCBy4K73Nta9LPLfE6GnrAAD1LRKbaOcNTtxH8U69mhajicEjY9CqDIeS5myvwdEeWmB4yQsSLy6NTb9INPWt6nOns/OVfbWL3LbCq86zIs71eCXaiDBBlRgNoyear5xh0pGd95oO+PFg9Z/JYkfdY6DVk9x4vHoLobfDIo2Lqmm9hCguBbKIuGfVIifE+IiUXzIZhiZmUXdP2rJDnd5bJemU8G1HHa6uu53cbNqdBry+xJ2bDENiQ33P6rDbgMGBf8bn746uIj7HMExSYTEawzBMEhk9ejRmzAg22V9xxRWordW/YKT4+eefcccddwSlzZo1C0VFRVG3MZkcfvjhQZ+fffZZNDXFxud45JFHBn1+5JFHYlIvwzAMwzDxh5pYa1ZG01Nyicm7bkLYxqgxpN/yb8ZiNMYMUkqybyVb/kRBynz8kcVodpGBK4emMGYFX1ZEYD3BbJ9PtjQwx2Y+gDjSd8o1WVeyvzNFrl3d/sDzAQC4/eqIg1xb36hENHnEfltNCs9aCUGs7u9l5bpOCdqyRJ+u86AZySTDMN3Ue9UzAIocA7TbCSJwRLIYLeNY2PCOMj3HlouJBdMS2xhGi9OhFh42xFmMppOTpqqklmEYhmEYhmGY3gfH5+nh+DyGYRiGIRA9nGp13LkQlXvEpi0xQjgcwMChQWnjPD9hSdX+uLvmb+R2VduAd5fFu3XhnPpf9bunnCyglJi/20W1S51eVgH0yVbneT2AR/NuOTc1YwxSgjMuBwAUGI14f91MZZFmD1DXnMhGdUOJ0e49Nfi9p/R5gS0blGXFmZd3f7ATsVp+v1r+RkmOyjJTjAYA4jT1Oaegfi3e+r2H3O4/nyT+nfQ/59H7rCiJHJ8jV30P+chsazv1BcTTsFiPRDiyIO79AOLc68ky8t7LIOu3BqX1yxF4/2L9df7cJyR2EDIpK1w5l67jm2ttyMlS9CHqb376pT1uDwOt0MJx5XE4dHf6b3b2oxJN7vSLjWkghjeFJsRow73q/uiqM/87NGimCjiNEAnNzLN5ET4mA+ju479umotcTWzNI4uSe86hzh8qhkcSoxHXN/Hnf3T8w0GJ0YLHhlJK/f0ew+iuIzoxWhMhRusb6QFEmkJJlnfUodi/HUO96ntjjw945ZvEnZuqdwBef8/qGFoIOOwd/YIUl5shg+/hGSYVYDEawzBMkrnrrruQl9f9oqyhoQEnnngimputvfnZunUrTj75ZLS3t3ellZWV4brrrotZWxPNmDFjcPDBB3d9bmxsxFVXXRWTumfMmIGRI7tXy1iyZAkeffTRmNTNMAzDMEx88Uj1G7JskZOQ/VOCD5ZuWIMS3OnwGixGYyLjkW5SzJG6IqTI5xWfVK8qmiWIVUiZpGBWRGZFBNYTzAonki0NzLJlwWFS8heprenynSmo9oeOMyjRSI49OskIJZTzGG0wZOTVLqlxUL6dfiFMnddUhIrhOglsN/Xb6aQsDJPJbCeESIVZaoESwwSyzr0aLvcqZd6k/oew9CrFKCTEaPVeC8s4R4HuOYlZmS3DMAzDMAzDMEws4Pg8Go7PYxiGYRgCW8+mWomxU2LUkBijmCg+2LcZf65/EPtX0O9v5yZw0isAtPs0IqJiRBZmVLvU6WUVQBYhRvP7gVbN+DCHn2tTiPKKrn+Pbl9BlquK72sJJfUtkhQ6jBgQ0o+2bAAMIj6irLL733ZNrJZfcRxt2aguO2gYXU9vJ6DPhDLGrp6ADwDv/Jh4Oci7y/Tno0jIT16zvlNf9z2nrCV+DxZ/AOiQo+G3V9DCQgBY/HZYUk6WwKXT6WuJ26v/25tl8Rq6jl2oNesocQzL8GKDTmjh96PSRov0PT7g/Z/i0KY4U0esi+rMiyAYAlBJiNGqLKzBphMrFfobgj6L8kqiJMP0IkLuZY5reossmuj7sFAsidGK6Ouq9PuBSGOaPpQYrT34c3MD0Ebct/H4iAGiF6NR9235vVSM1o/4Xq0dC+eM9dCDnkSem5Zt7nkdQfdti96MrpK8fFomxzBMQmAxGsMwTJIZNWoU/v3vfwelLV68GDNmzMDGjcRgOoRVq1bhsMMOw/Lly7vSbDYbnnrqKQwYQD0tTQ9CA8fuv/9+3HXXXaa337FjB9zucOmGw+HAnDlzgtL++Mc/Yu7cuZbb+OGHH2Lt2rWWt2MYhmEYJjrchlqMlqiJ15RIhaUb1ojm9/JJFqMxkXET8hwgdUVIlLCtzeiOSKD6v4PFaCmF2WtRbpKvWaFQcr5EYkYW5xBZyLLp+7x5OV3yv7MKShISet2kRCPRCiBz7er9Skh4iLFXIK2GOoKqv8NJbuOV7WReKNT3DTzmqN9Od11gmEymwUuI0QiBUiTSb01cpicsrH+XzDvIOSOBLWHMUJilnpVR79vWEegcJ9o0YwiW5zEMwzAMwzAMk0g4Pk8Px+cxDMMwjALRw6lWYyfHph2xpnI0mbV/MW24+GlzYt8EbdhO5w01Mw91s0uZLMoqgCxiwj0ANNXTebksRiMJEBCU+mqQQ7wfWLs18W8U12rELSNCX4sS/QYAECgk0gmYfIr4riZ1hxbFpXQ9vZ2BQ0kB5ZAW9eJMALCpgcyKG7p9lvY3U8Ea6zsN7EdE/0HRIOv19lKE3a697sqN6r/B/iP1ks3VW3vULADAZk3/6ZcTvn/Z7gG2EfYHjVCQsUBxGaCRb03N0T97eGJx5AVGU411hJi0tL8AGrYCbYQ5DcDwdrUYbVODXmQbSL0mdM8ZIkZL2TE0w8SSkDHQ/m2fk0VjcS3qCQ2t5sfvEyo0mds2qcfJQPe9hIO4T/OFxBk3am4WM3l8zXQThRhNetzAyq/V1fVW4V6x/n5iamtqnJvmr+z5c4SKku4+ITdF+Z6pdHhkST/DMHGFxWgMwzApwDnnnIMLL7wwKG3RokUYPXo0brvtNmzYoDZir169Gtdccw3GjRuHH3/8MSjv9ttvx2GHHRa3NieKQw89FJdeemlQ2mWXXYbjjjsOX3+tvtkwDAOff/45/vrXv2Lo0KGoqalRljv99NNxzjnndH1ub2/HSSedhDPOOIOsGwD8fj++/fZb3HDDDRg9ejSOOOIIrF+/PopvxzAMwzBMNHiM8KBqAMi25SRk/5RwhBJ2MGp0v1dfW74yncVojBl00r1UkD+poARNgSJIFqOlB+alXIkJmDUrYEsFSZiZtpppp9njPHXPB+rfIfS6SZ3rov1b6oRqlPQsqD2EfCzP1g824jWEles69X0DhW45dvVvx/JahgnHa3jRGBpcuJPCLL0YjX65z2q0TKHZ34ilTZ8q83bPG4ey7KEJbhETCUp46JXtaDWIVVRjAHXfb4MdWUIz8YxhGIZhGIZhGCYOcHweDcfnMQzDMIwCQthjFjF01xg1JLaI0y4h884f9B2Z95ULuO51I66LbQTiIgQeAHDD8fq/jWxtBnYQNqyyCiArm964kRCjCQH0SUxsYloSMFFcAKj0upTFTntYJlyy9/ka9f6yHUBZQUhitUtdSeFAiLx+3Z8dmlgtvy88rWmHumw+vdBcb0c4sjrkaKq87xbikN3V2y2vRsLOQ0CH9IcSCh23F2CzmZgY/+EL1nfsDRCANBFmrXwzlsjMQZz2Nzrz6X9AusPfWx49DthrCL3Zda9LeLzR97cdrZIUQv1xGtF3ateTwo4gQSMTNUIIiDP/j8w/qfoJ7fYLaXdjyuLapu5TFc0rII/TxHeUVaDCqxajSakX2QbSQBwHdulDXxkSl7j3weYqZZi0JvgacNoOeqywuQH4Ym3yYvLe/8l82YH96XGRfPoOesPOewlKYO0NEaM1E2NrgMdHzE50Y3TieProxfC+1sm4qT1uUSoiymhRLAD8bsdTZN53G4BVtYk5Ny1Yod6P08J0ieGBa8q+82R0DWFJMcMkHc0yBQzDMEwiue+++1BYWIibb76562F9U1MTrrrqKvz973/H6NGjMXToUBQWFqKurg7r1q3DypUrw+rJysrCPffcgz/+8Y+J/gpx4/bbb8f69evx0ksvdaW9+eabePPNN1FeXo5x48ahuLgYHo8HNTU1+OGHH9DU1GSq7gcffBD19fV49dVXu9KeffZZPPvssxgwYAD22msvFBcXw2azobGxEZs3b8by5cuVq1wyDMMwDJMY3MSKgpRIJNZQwhFKCMKo0f1e/RwFaGkPH8+xGI0xg066lwryJxWUkKjN3wopJYQQ8ElF4BwAu+DHe6mE2T6WSwicYo3p9qTAsWFKemaiTDp9ZxXkOCNk/EOd66IXo9GyvjZ/KxDBwdhGyNNy7X2RJfrAI8Ofo1i5rpsZ/1HfgeW1DBNOg49eGp0SKHUitIEjTCbw+Y6P4ZXqQKCDnDMT3BrGDE5HMZlX7932/+ydeZwcRd3/P9UzszuzV3ZzX2R3E44gZzgEAyRyyX0piKIi8Mij4K2PeAuiiA94iwieqMAjigry45I73EICAQkhQHZyTpJNsvc5M12/Pza7mZ2pb3XP7szs7M7n/XrllZ2qPqpnqquru7/1LlQGzHLy0dIr3PdHnArOoEgIIYQQQggZExifJ8P4PEIIISQNJzDiVdUn/zeHBcktasY86LIw0J95nZ3f8Rp++oFT8Nk/mwedfvdejYYpwCVH5//5bnSHPMD2yPke+49F5bxZDUCfpY/RIYjRwnyubWXGvAF53K4+dmN/FK+X72tc9D0/dhG91kEoWJjv8zNCfW6cmim10rGoeSMp4jcAQMASq5UmRtNaA51CvSphMRqAAcnTFoNw546f4po/fB+Lv2/+7X7+qMZnji9M/fnWP+W26Ltnews09dv/kTOnzQGOPw/4808y85Ip8TRCu6RKvf6koY46DXrfw4HXXzDm6198GeqLPx+WFgoqPPElB7WfdcXtfv0ujR+cN7L6ZpN8fvkkYZumc2IQitFyhjrjEujrLzdK6Koe+xOw783iuh29QEevRnV4/PQLmoS62PD4L+SVysLAfkeg4ZF/ytvdDiyY7r3/1m5zW1qXbBkegXTQMVCjlBMTMi5Iq+d1bisejZ6I4xoeMi6++Psuum5wECkrbLvT2q3R4zPE99cXWqRob70C3PUrc2Z1HVTVLltxUBCjJdIKId2zKQVU1niUlJQEtnt3w7Vfaw197aXm5asmAfP3z1HBioz0+9z07MQW/HHTxbhwzu+N+Ude66L5R44/WfQIaevWeFHoHp99sMItz/iTszXsCp3UO7YA3f7ea2XAvjghYw5HThJCSBHxne98B0uXLsXll1+ON9/cPY2A1hqvvfYaXnvNrtk+5JBDcPPNN+Owww7Ld1ELSiAQwB133IH99tsP11xzDeLx3Te0mzdvxubNm0e87VAohL/97W+4/vrrceWVVw4LqGpubsbDDz/saxuVlfIAYkIIIYTklj7XHJxU7hRmVkZJwEbpRnZIApUAgqKsJk4xGvFBj3AuOnBQpiyzvo4hksgoiQQSOo6QKhMFQkHlYSsiBcWvpDNskVDlEr+SrELJRe1l8CM98y6n32MuL4JjNiFdA9PFIpJgdKTCt0hAXk+6ZvtZJuJUIKhCghjNLHzMZvupvzf7aIT4p8UmRgvZxWgShZyZm4wdrnbxZOv9xrza4BQcWPXOApeI+KEmWAcFBxqZQf0tiR2YC/sMkCNFFJsWSBJMCCGEEEIIISYYn2eG8XmEEEJIGqORMsxdkLty5INDjwWezXzWr2NNOPEEBUB+5/On5zQuOTqPZduFJJN5Z4OPlWNN5vRAAJi+B7AlKq/bvtOcHmY/xIYKlUFPmwts2wAAaIxHxWVjbcAjq4GTCzC2fL1FsDff9Eo0FjUvnI0YLV3c0NMFJJPmZatKXGw1qwF4eZkxq771NQDvMObd+pzGZ47PX7FSufNFuQ41yPMSDaEfuFXMU1/9FfSrz5ozU+7H0NlqXqa6zrsAJYY6/SJoQYyGh/4M/dkfQwWHn781EYUfvV/hC38x/9Z/ek7j+nP1iOSYTUJYRtAB5kg/X0wwP0yeAVXOd6w55bxPA3/5mTFr6ew2PLF5krjq3S9rfPjI8SFG641rbBaakfq4RcQ3qx6Y3YgK3YPpia3YFpyRsciAyNb7e2gRQvdq3bbhCVNneW6LkAmB4Zryzt4Xravc9yrwvkPzVSBpn/5jAWfWWMRoD94mr5jSz1ahMvOdaDxt8s6ONtNSQOUkyhXJAFmK0bBK6D8CwP7vggqMXJxf1HiI0QDgmO6nxLyWbuDpt4Fj9sphmdJ48i3AFZqicxZlI0bbVSceu3PEZVEUoxEy5vAqTwghRcYJJ5yAVatW4bbbbsPxxx+PYNDusCwvL8cZZ5yBu+++Gy+++OKEC7oaRCmFK6+8Em+88QYuvfRSTJ482bp8VVUVzj77bNx1112YN2+e57avuOIKNDU14Stf+Qrq6707qdXV1Tj11FPxi1/8ArFYDIcffnhWx0MIIYSQkdMnDKwtlOAkEjAHOkkDfokZ6fuKBCoQEkRPkhiKkFQkAU7YKd7ZW+1CooHjkQRCQcV5D4oJv5KHSMGuWf4kWdK1rZD4Kasf6ZkfMVi5CiOgivNFZVj4HtLbNrGt8/mbpxNUIYSUecY1X2K0pHmZikCl2E5lc13vTQr9hpTfOyIIByVhJiGlzM64OQK3wqkqClkmKV5Wda3A9vhWY94xtScV7fW11AmoACYFzdH1rQnLVOWjxHZvRgghhBBCCCFjCePzzDA+jxBCCElBjWKo1YIDcleOfCANfo1F0TgVqLbMTfp6LB8FymSdIJNpmOoj7icWNadP32NAiGORnOmd5ncgCPO5tieTpw/9eWDfq9ZFX48VZsKlVZb6esBcQ12KRc0Lp58ztvuHZFp8V0eLvGx1aYvR1F4Hinkztsl1aFtHPkpjZoclXKYq7KM9ir4u5zXuByVJ9lLrUQfFaL5ZINcpdLUD2zcZsw4ytQe7aO4AdnSOrDhN281t3bzJQMAx71NvEURVFDHkHGXpr1061S4osl1fio11lnAAm8gUU2ZB7TlwTtXH1xsXkUS26bQKwytqk2lyoypZRkfIxCLzGhDWfVhY3S6usapA/edU1srzrg4j6ABH2OZjtPWHUtvikDl+GfG+4Z+l/nU12xCyi2zFaJY6qhYtyUGBihQfYrTZiRimJprF/FWb89s2PbravP1ZkzzanTTqd0mtta098sLH90UIyS8cOUkIIUVIMBjEBRdcgAsuuABdXV1Yvnw53nrrLTQ3N6O/vx/l5eWYMWMG9t57bxxyyCEoLy8f8b6uuuoqXHXVVSNa9/HHHy/oegDQ2NiIX/3qV7jpppuwYsUKrF69Gtu3b0dnZycqKysxffp0LFy4EAceeCBCIbNQQ2LmzJm49tprce2116KpqQkrVqxAc3MzWlpa4DgOqqurMXv2bCxcuBB77bUXAhPV9kwIIYQUOX1urzG9UGI0SRTQ63ZD65HNDFaKSJKSiFOBIMVoZBT0JIW6NUJZUCGwiQF63W7UoFas/9L5QsYGv5KHsCBwyjV+5TbFIMHxJT3zJU/zPpZiOF4JSeyWft20XUdHvu9KxJP9GemS9Gx4eczLRJxKBJ0QYJgAOe5m7ivb7afWG7GPJkjVCCllWhLmyKXJIdPU6MNRPmZ7JROXJ1rvN6YHEMTiSScWuDQkG+qCU40StBZBlJgL8tFfIYQQQgghhJBcwfg8GcbnEUIIIQCcEYrRDj8BqsgHS6pZDTAOLX3xUZSHFD66WOGGR82DT7d1AN19GhXl+X1fFN1h3v/gYFYbetUL5ozB38UmE9q+2ZweGfvJ5ood9d7LoL/3MQDAue1/x5enX4PWgPm7/s69Gp8vwGslSUoEABcfZajDm5uMy2ac05LMCgASafFdnW3m5QCgqrTFaDjhfOBn/2POu+ZiLDrhXLy0KfN+YP1OINaqMas2v+1QS5dGmxBucrrFvzWM5x4Qs9TUWdAeYjSdTMp1iAKhTN5xODCrHoiZ5WL6qo8ANzwCFRx+H7t07wEpaIc5NB1NO4Cp1dkXp0mQRjXawjIoRisc7z4HuPZSY9aZrXdhSuXxohzx+/drXHN28Y8XeGy1xvE/csV8SXgGYKDvs/g0AEBjfxQvRDJl9VGfoQYtwvdYm0yTG1H4SEoF4V7z0sa1+OIrBxvzrvynxh0vJPH+wxW+caqCIwg2c0mrz/mI33eIwtRqQfgZ7weee1BcV51+8e4PohgtLc5YEqOVet+apGA7PzLvEXUsKi9+2kWjLEsRM2kKEKkCemQLcAAuLmm9BddN/ZIxf+XGfBVugMffMN/TH7dQYZLPoSABB5hbB2itgbt/M/LCFPmzPkJKAYrRCCGkyKmsrMSSJUuwZMkEtguPAMdxcNhhh+VtBs7GxkY0NmahDSaEEEJIweh1zdEG5Y5lusocEhFkNi5c9Os+lKvClGO8I0lWwhSjkVHSKwy+9yusGgtsYoBBmYAsRuPjvWLCr3ArUiAxV0AFEVJliGu7gEq6thUSP4IMP+exr2XGoSgxrvuR1AkEdp3zkmhkNG1dJFCB9vSAI8u+/CwTcSoRVOaAhWyu61L/L1WWFwmY63GP20V5LSFptMTNs7jVBr3FaBLaPISGTCC292/Bqq4VxrxF1e/CpCCDVIuZ2qB5tFirIErMBePx3owQQgghhBBSmjA+zwzj8wghhJQ0amRiNPWd/8txQfLAbPn6q994CT8892A0NWvc+6p5megO4B2z81S2lH2YaPAQo+lEAnj4DnPmrIHjVuVh6LJyoL8vc5lmQYxWzufanpz8YWCXGG2S247H152Ig+e/aFy0tRu45RkXFy0eoYDQJ02WVyB7zxgeP6B7uoCWbeaFZzcM/xy0yIF3Ca2GkMQNQMnLG1TddOgZ84CtZjHP79Z9FIuCtxrz5n/NRecNDgJ5lIJI7RAA3PBB77qrm1aJeeorNw/8IYmg3V2zD3ZZxHoUCGWglAJuehL6rHnmBV57Hvq6y6G+9uthyY6j8Nq3Hcz7slkg9bE/uFh5ZfbS7nWCnLFhqqXeClI3zKIYLdeoimrohYcCq5dn5FU8+Fs8/ZefY+GV8vrfu0/j66cVbyza82s1Tv6pLEWbFY8hrA19oUHKKwb6TJNnoD5urpeSyDadVkEyWesOb+MUhY+kVBDiWD+7YLUoRgOAVTHgqn9qtHQBPz4//+2PJIgFgLoKIOkC7z1E4YYPymUZFCcbOf79UAcu3v05KIjREsPj37UkjWXfiAxiixXXhmuXJKad3Qg1yYedfZyilIKe1QCs/Y91ue80f1sUo930hMYvLshPfP6OTo2XN5jz3r0PUB5SiISAHo+hCHPrgGBAwf3dd0ZXIIqKCRlz8vsUkRBCCCGEEEIIyTF9rnlaLr8ymtFi24806JdkIglObGK0uEsxGvFGlvMUb5Biua1dSQ4cT1InjPnS+ULGBr/1LCwInPKBP+FYYa6h9jJ4l9PPsUR8SM+KWcZh+y1S27fBtiGd0bR1kiDPjxitWxCeRgKVCAkCx4TQrpnodWWh6u6/zd/doLyWELKbFkGEVBfyI0YTZnikGG3Cs6z1AfF3XlJ7SoFLQ7JFOr+l9iAXyCLXse97EkIIIYQQQgghhBBCiBVnhGK0ypocFyQPzGoQs/TtP0QoqPC3y+Tjt8mCckF/QmNTqzmvYYrHYNvnHxSzVKrcShJSbd9kTo+M/WRzxY5SClhwwNDn/ftW4dvbvi0u/9OH8/9usUmQEn34CEM9kgbDA5nnTMAyiWUiLb5REqOVR6DKyuXtlApLzhKz5r/1gJjXlwAekr1jOUES64UCwBwf3g3955/ImY37DfzvCLKtQcGeTaxXXdpiPQk1eQaw9yJ5gfv/CN2a+ePOrVPYZ4Z5lVc3AYlk9m2WVIcabWEZQlukKGLID0eeLGbtteFR3PwRud9xw2MaSbd442RuekIjnpTzG+JR+wbCu2Ly9jkEjYIYzSYgTaVNCD2sS6Z1+NiukVJBEAgppX0Jz37zlEZXX/7bn7Zu8z7+e4lC848c7PiJg99d5KCiXIgl3LFFllYDUOd/dnhCSBCjxdMmBpf6R5QrkkFyJUZbcnZuylPM+JDvBuDiq9v/V8x/bm0uC7Sbp9+S845bOPAbT/IRgtgwBdCJOPD3m0ZemKpJUOynEDLmUIxGCCGEEEIIIWRc0ScItcpVuCD7twlHegRJCcmkRxCcRAIVCDlm0VNCU4xGvJEEhcUsQnKUI8oBBmUCcaH+U4xWXPitZ5ECyiD8CcfGPog3VwK3XAnWxgrbb5EqQ8tHWyd9Lz2C9GwQV7ui8DRiEZ5mc13vsWx/99+W747yWkKG0RI3RydODk7zXLd457sl+aTf7cOzbY8Y8+aUN2BBZN8Cl4hkS13QPINlSzx/I9h6k7IQnRBCCCGEEEIIIYQQQooZpSxDrcqF99Yf/EJ+CpNr5syX82JNAICyoMIegvgnuiO/g/DX7zSPVQaABo85fvQbK+TMPfbe/bc0oLV5szk9zOfavpi397CPe/e/KS76yiagL57fuiQJW4z1aHOTeWHHAWbMG54WtMRqJdMsNNuFOlUzWd5GCaHS6kwqlbobc8s7xPwXovmuP+bt108BAo6Pt+br18h5cxcM/C9J9gbFaDu2yNtgHZKZOc+ev/IpY7JNeLfB4qgzobVGk/AatsH82ha6v09uM3xIK0j22NogrF6BfWbI5/rWdmBjlvWikHi1kXv3W2wjABDe1d+trkO9fTKEzAAAIABJREFUIEaLtQG9Pq7l7b3mZard9uEJNcLJQchEQ7rX1Nra7gzS1QestnQRckWrOeQHkyKA4yjv/tCbL8t5SmXel0r32T1p8cvStbKafSOyi2zFaDFBTJsqV5+oWMT5qezTJ9/bvLguP/dl63eatzu3DmicOvAbT/Yx/KVhihqQ37WNYvLYaXNGvi4hJGdQjEYIIYQQQgghZNzgahd9uteY50eWkgvCATnQidIN/0gClXCOBCqkdJEEhcUsQgJkOcCgRFCq/0FlmYWUFBy/16JCyiB8ycQChRO1iWXwUU4/ArdcCdbGCttv0ZPSz+gR+hwRSz/Fi0jA/P1KMtNB+txeaLjmbTqVObmu9wpte+q5ZPtdKa8lZDg7E+aX/HUhj9EkpGRZ3vEUulzzwIOltadA2QKKSFEgnd+tiR3Q0gizUSKLXIu3L0YIIYQQQgghhBBCCCEABmRIEid8wJisjn9/ngqTW1RFtZy5Zf3Qn5KE7FO3azz9Vv6ERFHLWNV6r7HuwoBmAMCRJ+3+u0oQoyWEd9jhsZ9sbjygTjh/2OdTOh8Ul9UaiOZv7hYAshhtvmmuqFjUvPC0uVDpIjRJZgVk1CG9WdjuTEqOAABLz7aK5s6reEHMW7M1HwXajVR/Gv16e2JRMUsNSs1EMdouwV5KmzyMyhqoqkk+C1J6qPdcYF9gq/l7ff9h8jvvnz6S3XVve+eAuMbEoMjBb7kAsM3IF4tPFbP0hjU4ak+g2jJnu63PMpZorT2vse9v/6t9gcG+T9UkNMaj4mLrfFzLpXOhMj2ewEtqSMhEQYqxcl0ctxCYZrldG8TPuTda2gQxWq3fEOWtG+S8d564uz80iNS36WwdHtcUixoXU5SIkl3Y4xiH9+l0vB9o3mhetAT6X8qnGO30zvvEvCvu1HmRnrcIYf9zU2TG9T7uzeqnAPrvvxxdYSprRrc+ISQnUIxGCCGEEEIIIWTc0K+Ft2MAyh3L28ccUq7CUDA/LJUkJSQTSbISoRiNjBJ58H1xi9EkmdOgRDChE8Z86XwhY4NfyUMhRX02oecgxSAO9CP08iV587XM2B+vhO23GGwPkjqBuO43LjOaY5P27SVGs+VHAvJ1Pe7zuq619iWCk8RuAOW1hKTSk+wWz4m6oB8xmvleSCO/M3KTseWJ1vuN6RGnAofXLC1wachIqA2aI4H6dR+63c687FMSotuu2YQQQgghhBBCCCGEEFIUKHmolVp8CnDR13cnOA7U538Ctc+iAhQsN6iv/86c0bINum/g2W7DFHkw8THXufjri/l5NxTdYd7ujBqgotxjopZY1Jy+18FQkZRn09kKhSJ8ru2LY84E6vcZ+lilu3D3hveKi69tzl9RWru1OJC60VC3dSxqXtg0UNwi8kIyLb4rm+2WIKpuOtS3bxPzr0z8Ssy77XmNpJtPSaN52w2S1CoF3dcD7IgZ89RXbt79IRAwb2CwHm0RZI8zKA+ysuQsa7ZuM9tkPna0/Nv+7BGN791nnjTShCTWA4BGKSwjFpVXKgExx1igKmuA+oXmzAduhaNdPPIFuU/4zbv914lC0twBdJtDCwEAVzVfjfd0PWzdhgrvismrrsO8uCw3stX1QaSyVKbHHLKek1JBkDbpVc+jLKjwj8sdTPG4/Vgn3DPlklahLz3J51yI+gefEvPUFQZJkSSvjvcD/b0D29Sa/WsyOtInD922ITNtkJkNeS/OmOPzvKl12zA9YTZT9yWAM29wEU/ktl1qleSMKW2Qn3uz+jX3A3+9QcxXn77euzDh4h13QkgpQTEaIYQQQgghhJBxQ58wqBYAyn3KaEaLUkqUrlC64Z+epCA4cSoRGqVAhZQ2fuQ5xYgkM+pJdsHVSWiYgygoRisu/EqpCiXzBLylZyFVhoCyzGZbIPx8d/4kb94BycXcHgRUECFVZswbFJDZRKyjkdxJ3510zU4vl4kKp3LUwtO47oeLpDEvtd6UqXLKawnxQUtCjkqcHPIWo9ln1CMTkWjPGqzvfcuYd+Sk4wraryEjRxKjAUBLPD9TyUp9BL8yYUIIIYQQQgghhBBCCBkzHMtQq0AQzn99C+r/bYa64RGoe7dAvfeywpUtF+z3Tjlvl4inXn6sDAD41t3uwMD0HBMVHlk3eJQHgCgRUqd9dHhCdV12hSrnc20/KKWgrvzTsLTTOh/A1ITZgLZWEE/lgqylRLGoeeHZjZlpAUuMTSItDkLaLsUNQ6glZ0Fd8k1jXtWW1fjx+fL76YdW5atUQJPQFolSq1QkoRkAHLB4999SXdolRtPSdmZSjGbDM6YhZv5eHUfh8AZ5te/dp9He46/dkiSf4dCA6NOI9HtPngnF61DeUGf+l5z54iM4rEHhgDnm7KfeAhLJ4ptE0HYNfLXq0/jG9u8LEXYp7KpzqmoSwroPs+ObhX15H39Xnzm9UqfE80WqgEl+OnuETACk69Q/fwsAWLxAYdP1Dp7+snxPKt0z5ZI2H1IiCd1qaYiOOw9q+tzMdEmMBgAdrQP/t24HeoR4ZVO/nZQu0nmW/gxD6BcCKI0+9yz/582lLYJgH8BDrwNPrMlFgXYjyRnrKnf/tn7uzeqXGUSMg+x1ELC3j0kOwpTlE1IMjP2IN0IIIYQQQgghxCe9VjFaISUzlUbBhq18E4UX2pfh2bZHRKFCVaAGB1a9E8fVnYmAEma0gyyRCzsRaNcsgPIrUCGlja1uFTOSzKjX7UFCJ4x5AMVoxYYfcVfYicCxtI+5xks45kckVgj8CL38nMd+RKl+BXZjRcSpQDyZOVXiYD+j1yIqG5UYLSCI0SziM2BA4CgRtghP/V7X/YrgHOUg7ESEPhrFaIQM0hI3DzxQUFZxkid5GPhCioMnWu8X85bUnlLAkpDRMCk4GQqOUbjcmtiOuWjI+T6lZySj6a8QQgghhBBCCCGEEEJIQbBJVXZJ09SkKcBBRxeoQDlm+h5y3pb1QP1CzJ9m38QbW4ENO4F5OXZYrBPFaHaFh07EgeaN5syZ9cM/V03KrlCR4oirGBcYhAT79q3Gk8HMCrXW4ksYLZIUJhQA5pi8eJubjMsrk8DMJkZLpsV4xaL+t1vKNOxrTt+yDo1T5PfQD7+ucfL+uZ/YS2uNqFCHfInRYlFzulLD2yOpLg3Gz26PmfNnWNpwMsDJHwEe+JM5LxYVV5s/VeGFqLnOdfcDzzcBJ77De/dSG9QwRRa3aUnMMavenE5yw5z5YpZe/hjUEe/BntOBVzeZl3k9Bhxg8PuMJc83metwJAQs3PaUv42Ed73Trx24fjfEo9gcmp2xmE3CNkhXZhgkAKAiNZ5vVgMnaiSlQ5k85klrDaUUyoIK71oAXLRY4ZZnMs/p9YKAM1ckkho7hLDgSREf5+orT8t5Uj+42kOMNnUWsEPoGwGZ93yktFHKHM+aniaJaeumQ5XCc4DZDb4XbYxHrflPvKlxwjtydy1v7Ta3c5NShonMn6oA2NvDhs435Mw5C4Cgj7FYpVAXCBkHWKYxIYQQQgghhBBCios+t1fMK6T0SNqXTQwyEVjWcj9+H/sRVnevxNb+TcZ/b/e8jn80/wF/3nqTdVuSoCQSqBRFTxSjET9IAp1ikT9JSEKtHrfLWveDivMeFBN+rkWFlnJ5lalYpIF+vhc/53HICXkKA4tdjCaVb7CfYROF+ZHzSUiSEtv+bPkhVWb9Pfxe121Ss/T6K353FKMRMoQkOK4J1iHgo18hhS5QizYx6Uy0Y3mHOTB2YcVBmFEmTI1Mio6ACmBS0DTSB2hJ5GcqWVlaXdx9MUIIIYQQQgghhBBCCEHAMtmZM/6HYanyMDBlljlz63oAwMn7eQ9oXbczl6UaILrd/Nap3ktGtG3jbplQOumD76vNz8slVLi4Y46KCVVZk5E2XxhA/eOHtPh7j5YmqR5NAQLO8LqttZZFSQZxg3IcuR1IEaPpzjago8W8nEEgV9JIgoz+Prx72jZxtX8L8p/RsrUd6BFCWhqn+hjsH4ua06fOhior3/3ZEa41g/Woo9WcX+thriRQx5whZ66X5QinH2Tf7idudXHXSxrtPfa6J8mirGK9WNScTtFLflm0VM6LRQEApx0gn/ePrC6+aJnH3zCXadE8QEkCvnQG+z6HHw9AlqH4uY53C2K0ytTJWrMQsxAy7olUyXmtwy8gDcJ14+6VQDyRv/ZnYwuQFG6t9pjsYwOxqJiljjrNnGETo3Xu6hNJfSMAqPVjryUlgyjbHH7e6FjUvFiJ9L9URbXvZU/qegiOTor5b8Ry2ya1CmH/dSlhh8cv9N5OfXy9mKeOOs2fGC3MWEdCioHx/0SeEEIIIYQQQkjJ0Ov2iHnlBRWjmR9s2co33om7cdyz/Xbfyz/d9hC29gtTZEEWlISdCEKqzFwGitGID3qTct0qZiQhUa/bg4ROGPMAeAqgSGEpV2EoURkzgPRb5wsv8UQkUBwBvBEfQi+/57HXd1zo3yBbJLnZYD/DJvkazbFJ4rkeoV0dpFsQww5uT2qn4q6/67pt/+nHK7alHsdASCmxM26OwK0L+g0O4gytpcQzbQ+LIssltacUuDRktEjneasgTBwNrnbFZyTFfm9GCCGEEEIIIYQQQgghUJahVra88cTMecZkfet1A9mTFK460/5e6A/P5n4wflSYy6NhiseKWyyij7RBzapqUnaF4iDYrFCf/P6wz43xJnHZfb/l4s7lua9HX7rTvM1GUz1q3wl0d5g3JAm7pMHTyZT3arGoUDpQAJOO9D0DqF5+H+YKLsOn3gKeW5v7+iNJrQAPsdUu9J+uM2ekCxYCwsRlQ2I0s1hP2cQhZIDFpwIGUSMAoH0n9PbNxqxzD1E4/UB5s03bgff+0sVh17hY2yzXPUkW1SCI9bTWwCN/MW+sRMQcY4WqqJZlsY//Hdp1ccERcn/oC3/RuPU5wR40BiRdjcfXmPPePa8L6JcnqB/Grr6PmjITANDQb+5n3bkCcF17O9zVZ06vSI2BZD0nJYS64kY5c/mjwz7WWyRkZ9zgorM3P3I06Z4M8HFfBkDb7s32P9KcXhYGQuYxREN9Ikk6HKmC8iM3IiWEcO3WaeeMJAydVTrXJXXJN30tNyuxBdds+5aYf+cK4Jm3c9cmSWK02pTHM5Mq1LDP6Vw2/QU52vnIk4Bj3wcEhXYnFcryCSkKJsgTeUIIIYQQQgghpUCfa34hF1JlCCjLTJ05RpK32EQl451VXSvQ5QoBQALL258S83qF7yriVCCozAEf0oB8QlKRzsNikT9JSPKqHrfbWvel84WMDUopT1Gnl6gs13iJsopFTOHne/Er/fLaVqF/g2yRRYndw/5PZ6A/NPI2Qe7fmMVnXvmD2ws65oADv9d16XiBTDGurS0lhAzQIgiQ/IvRJIpvFlwyOlydxLLW+415dcGpOKDq8AKXiIyW2qA5OrFFECaOBun5DVD8fTFCCCGEEEIIIYQQQgiBYxlqZcsbT8wwi9EQWwfdM/AO+Fun24/1d0/pAZlLjuiLa2xuM+c1TPGYvEca0DxpKlRF1fC0qiylQpHijjkqOo5937CP8/tlMVpfAvj4n1z0xnNXj7a2y9sySoliUXljksBMElolUia/3CwcdzAETJ0j77MUqZkMVFQbs/T1l+Pqs+Tz/1O3515I1CRIrSrLgalVxqwhdHcn0CxMKJwugJPqkZsc+L9TaBCrBVMcGUIFQ1A3Pynm659fYUwvDyn8/TIHVeX27b+1Dfjm3RYxmiCUEcV6K+VYa1VCYo6xQl16lZy5/FGEQwpH7ykvctltGh15khNly8oNskjk3bUb/G+ofHdMnvr4d9EQlyVHj66WN5N0NfqEeaEr9O6CKosgk5AJx4IDxCx99UeHfa633AP9axXw+2fy0/ZIfaHJlUBNxMekqrGoOf20i6GUeX2llNzHGewTiX0jSmNJGkI9yxCjSRK/UhJ2Lj3H96Jf2vljHD1TOA8BXH6bm7NnRC1Cf6YuLezws8fLbdJHYY59RXkE6tq/QZVHgKCPcRd8JkRIUTBBnsgTQgghhBBCCCkFpIG15U64oOWQBvHaxB3jnRc6lmW9zvIO88v6uNuPhDa/6Yw4lQiq0QlUSOmS1En0a/P0YsUif5KQREg9yS4PMRpnOCo2vOqaX7lXrii28kj4OUfDgrgr221Firw98JJ79SRluehoqHDML+7iuh9xV26HRCHlru2FRnldl7YfdiJw0mZjl+RuE7mPRki2SGK0ySF/YjQlzKGmKUabcPynazl2JpqNecfUnlRQOTnJDXUhQYyWsEz1OkJsYlXpek0IIYQQQgghhBBCCCFFg7KJ0SbI83GbaGX5o0N/VnuE5a3ekqPyAFi/M3Oc8iAN5kfcQ2hpQLPpOLOVCpXzuXZWTJ0zIP/aRWNcFqMBAwOel63J3e7vfUV+bzl/miExFjUvXFYOTJ5pzpOEVsmUmMjmjeZlZuwBFZgg7UiOUEplSsNSaKg2xwMCwIr1wIaduX1X3STMKdQ4BaLMY4iU9jOD9GOURJuD9aijxZxP+Yc/ZjbIeW++LGYFAwqfOs5b+nLXSxqum1n3XFeLYjRJ8qmX3S3vqJTEHGOFpf0Z/G32nC7Xia4+4OHXc12okbFivbk9LAsCi9Vr/jeUKpWd1YCGeFRc9B8vy21wd7+8i8rUeD6K0UgJoZQC6heaM7WGTiaHPnrdA931Un7i9TYIXRCv8gwRixqTlSQdHqRqkjm9s3Xgf6lvJK1HSpdRitFKStg5U5DmC5wwPSbmvbJRFgRnS1uPOX1SmpzxwLlyH61x+wpzxrmfhBp8ZhH0HoulwhSjEVIMUIxGCCGEEEIIIWTc0Oean26VF1hwIgqMJqh0o9ftwaudL2S9Xqx/Azb3ZT4stslJwoEIQk6ZMS/uWt6QEgJ73YoIwp9iQRI+9bo9HmI0H7OUkILiJacKBwp7zfKSiUkSrkITUEGUKft0m34Fh5GA/XwPe+SPNZK4bbCNk9q60f6WYUs72WuRm/QkzXmDorXRCk+zOV4vqRwhBGiJm0VXdUF/YjQIYjQy8VjWYp4xL6iCOGrSiQUuDckF0nnemgcxWq/w/AYonv4nIYQQQgghhBBCCCGEiNjENzZp2jhCHXS0nLl5t8jq8nfb3w29tS1XJbIPoK33GoQfi5rTZxgG+VZnOXA+UtwxBsWGCgSAxO54gIN6X0VNss26ztrtuZM6vGV+HQoAWLKXoT5vFsRtM+uhJHFVQBg8nSpG6xbiLCb5fS9bYsxuFLMOKVtnbZbftvzmI6FJaIsa/fx0m94Ws9TBae2uRbCn+3qBfvNE0qiiGM0Pqtxi9tweg1751MA/gxBj6d7ecRE9cWBLe2Z6rA3oN88bLdehzWvlHb3jcM+ykFGy8FA5b9PAb7N0b/sm1jYXx2SCawWx48Fzgcg2Sz1LJVQG7HPI7s+zGnBYryAWgf3Yu2SvJSpT4xFLSUBDCABMEeS7ALB909Cf8ybb74Ny3QcapEXoxs6s8V5Xay3fm3md61Ifp2NAjKY7hXuKbMXXZOIj3jzsvmbp/j5g+2bzYjaR/ARDVVRntXyta+gAp/B2jp4RdQp9iJq0IRbH7gOEDbfn+80GJsdeMW5jmPjOhxgNEcY6ElIMTIwn8oQQQgghhBBCSgJRjKY8pqbMMdIg3t7kxJRurOx4HnFtlpKdNPl9OG/6x6AEQcKL7U9lpNnkJBGnUhQ9JbQQLUDILqzSvQILFLNFFi52Weu+JBwiY4eX6KHQkj4vUVvEQ5xWSGzfXUiV+a7vXue7JB4rFiRBWc+ufoZ0HfWS4Hlhqwu2a3ePIE0bLM9oxWjSvk11W6rvtusDIaWEq120CAKkupBpenT/FEeIJ8kV2/o3Y1X3S8a8RVVHoTrIYPvxSG3QHC3ZEt8+EJiYQ+zS6uLpfxJCCCGEEEIIIYQQQkjWSKKk8cbh8iQo+om7hv7++BKFMsucfWf9wsXydbl5xhzdYd7OjBogUuYhqTGIbQCYB99nO3A+zOfa2aI+dtXQ3xW6B1fs+KF1+X++nLv3FFFBCgMAR87PTNOxqHlhm7hBElqlCOF0r2CUYH0yklpn0qluieJbp8ttwEd+6+b0XVdUEPU1TPWWZen7b5UzDzl2+OegJEZLAh0t8nYo//DPh75kTu/phP7U8QP/ztsb7ieWQO/YMpR9wr7AUQu8N3/VPZl1ZeVGeXlRjBaLiuso/t55R1VUy23zrv7FuYcq7Ddb3saX7tSIJ8Y+cubXy8xlmD9NQd/3B38bef9nhktSZtWj2u1ERIgBePA1eVPdlvnQK3TK9ihGIyWG+u+r5cw3dsdrOY7CN0+T+x/rdwK98dy3Pa1CyE9dpY8JVVu3Az1CP9jrXK82x6PpzgExmtg/qspSfE1KAKGupt4zbF0//HMqM0tHjAYAOPO/fC9am2y15r/nJy7e3Dq6dime0IgnzXkVZWnlqVD4/AnDf29HAd84sQ9q5xYYSW2LnIB3gcKU5RNSDEyQJ/KEEEIIIYQQQkqBXkGMVmjhkbQ/mzRkPPNix5PG9JpALc6YegGOrTsdCyLvMC6zvOOpjKATuxitYtQCFVK69FjkhIWWUWWLKFx0e6x1n2K04sPrmlT4a5Y9oNIrv5DYxFzZfG/j6ZhNRALmYx0UjEiikdFKRios7WR3UghUgCxGG9yeJDyN+7yuS+JZ0+8o/ba26wMhpURnsl3sV9QF/c1MLoc3jX2AJ8kdT7Y+IOYtrTulgCUhuaQ2ZD7P+3WfeD0fKdLzGwcOQqrMmEcIIYQQQgghhBBCCCFFg02woybGMCwVDALHv9+c+crT0PEBk0XDVIXVV9uP+bSfuejPgQxEElo1mOf9GE4sakxWsxsyE7MdOB8p7pijouT0i4d9/MqOH+C2TReKiz/wGnImlFnbbN7OF9+joJThbWcsat6QTdwQFOK1kimTX/YKcQoUoxlR8/eTM2NRXHmG3A5tagX+79+5e1/dJLRFotRqF7qzDVj7H3PmKRdCpYs1pUH4yQTQYREOCNIQkok65+P+FnzteehrdgshAo7Cvz7v4OqzFE7cV17tN09qrNwwvO6d/nPXuGxNGKgznP5aayBmlnuqb97iWXSSG9TXfmvO2LIO2nVRWa7w5BX2/tD1/xrbuJmt7Ro7hNf+9dW9wKa18sqHvBtYchbUV38N9fHvDs+rnQaEK/D7zZeKqz+8ynzsXX3yLisHYyBrJkNV1sgLEjIBUfsdIebprw+/R7vkaAf/+z45Yu/rd+VDjGbe5iQ/YdySsBrwlk1VCX2cwX5RZ1t265HSxXTfBwx/1jOaujrBUOd/1veyTp93jOHZN45OXN1lEatWGsIOv3u2wi0XK7x3EXDhuxQe/JyD8575H3kjqff6kvQ8FYrRCCkKJsYTeUIIIYQQQgghJUGf7jWmlzvhgpYjEjA/2JIG/o5nOhJteL3rJWPeIdVHw1EDwRmHVR9tXKY5HsOGvuEvUyXBCTDwW0qip7i2POEkBLIsCADCgmioWJCERn1uD+KuXPcDgnCIjB1e0q1CS/q8hGKjlWnlEtt3l8335nVMxXTMJmyiREAWjI72uMqdCJSgPLK1r5J0bPA4JPmJX+FpNscryfUmYh+NkJHQkpCnR68ThEmk9Oh3+/BM2yPGvD3K56MxvE+BS0RyRV1QHjm2My63DyNB6juEnQrzoCNCCCGEEEIIIYQQQggZL6SLbcYxqn6hnPnvh4b+bJiqcNFi+dnutg7g4ddHX551O8zpjVPtz5V1vB9o3mTONA1oznbgPAfBZk/ddKCsfFjS+e134ivbrxNXeeyN3Ox63U5z+j4zhBU2NxmTlU2MFhCEVomUOIheYcA465PMgUcZk/UuadS5h8ir3v58bqQgrquxQahDXm0RnntQzFKNBruWNAg/mQA6bWK0Ons5yG6mzvYnOwCAFx+Bbtk29DFSpvCN0xw8+PkADpgjr3ZbSt2zSUIbpsL8nrRtB9DTaV7J1g6R3GISqQJAvB/YEQMA1FYofO8cuR24LUft0Ei5Z6Wl/u18WcxTn7oOzk8fhHPNX6BOvTCjniqlgFkNaIjLApnbBTmlVWwyOHkb6zkpVfY6WMzSPcP7kZctldse27k/UlqEcOE6P93YWNScXhYGpsy0rysJrAf7RVL/iNJYko4vMdp68zKTZ0CVF/e4o5wzw78IrqpfuFlK4fUY8JLw9frBKlYtz0xTSuHCdzm487IAbrnYwfH7KvneTClgxrzdn/3cK0SKe9wJIaXCxHkiTwghhBBCCCFkwiNJLQotRpMkMz2u9+wH442XOp6BC/MMZofXLBn6e1H1u6CExwzLO54a9lkSnISdCBwVsAhUEsZ0QgaR6lZIlYnCvWJBEi5qaHS5HcY8BwE4E2Qm4omEl4jMKz/XeMmyvERuhcRW1my+N69jKnS/IVuk72GwnyEJRkf7WzrKGVEfR8qr2NWuSe2vXzGaKFYxSNCk72Ai9tEIGQktgvgoqIKoDgiBRWlIQiONsQ3wJLnjhfZlYru5pPYUSq3GMZOCk8X79laLOHEkyOLUEgscI4QQQgghhBBCCCGETDwcQYg0Htn7IDlv/XBL1aJ5wnK7WL1l9O+KojvM26iX5/0YYNuG4QOcU5nZkJlW6e+92BDlxR1jUIwoxwECmbECi3plMcvrOahDWmtsF/xCc+sy33Fp1wW2CiO2Z8+XdxQU4tCSKfGNvcIEbuHiidMpOkwiQwDYMiDjWVQvv6dcvSU3RWjrARLmcFnM9fKRbZGlQUb5iW0QfrtgigyGgFITNYwCFQgACw7wt7DWwIY3jVmHzJPr3hspbdcOof0BgFrpZ4tF5ZUojCoctu86tvvcXmSpC29uBZLu2MXORIVmAwAW9ayQM/de5L3xWQ1Y2CcbTLe0mY+72yJGC+vegT+mzfbePyETkVkWEVEsOuxjVVhue6S+72hoFbqx4rUslVjUnD5SP1xEAAAgAElEQVSr3jvmTJK/drQO/z+dbMXXZOLjR4zWLgi+pszKfXmKHJXFM4/FyVfg+AgfHc0zIqtY1SBGS0drLf++WkOlStz9iNEqqr2XIYTkHY6cJCTHmDrnWnrJQggh4wTXzXy7wwFwhBBCxoI+t9eYXuiBtZJ0QxK3jWde7HjSmD41NAMN4b2GPlcHa7FPhTmAYHn7U8Pui6RB9oPfa1CZHy5quEjqpK9yk9JElOeMg8H3tjJ2JNqM6aEil72VKuGAhxjNIHPKJ16yLC9xWiGxnQfZfG+2YypXYTiquAPVvfoZkgQykoO6FXHMksbupCwWk/IGtzV6MZq5f2X6naXffiL20QgZCTsTzcb02uCULGSrUtDIyMpEigutNZa13m/MiziVw+TYZPwRUAFMCpqDCFsTlijpESDdm0lCaEIIIYQQQrKFMXqEkIkG4/MIIWQc4UygYVhHnCRm6Ru/OqyP/cHDFWotr6T/568a37/fHVW/XBJ6NHiJ0WJROc8gHFDBYHYDWykhGhmnXpiRdFqn+T0UADzz1uh32dkHJAWpVZ2p/m7fDMSFUdc2SY40eDqREgfRZ35XQjGaBUkQ8tjfAAAfOVLuH6/dDhx8dRJrm0f3bEASgQBCHUpBd7TImYe8OzPNJtpsFSY1qq7jfUKWqHM+7n/h6Gpj8qVL5O/8nleAj/7ORVu3ttafTx+X2X/Qz94P/d9HmVcoCwNTZlqLS3JIdZ3YN9D3/XHo7xP2lTeRcIGNlmYg37QKlx0AOLTtWTnzoKO9Nz6zHlVajh+U6n5Xnzm9wu2CMxhoVOVlnSRkYqLO/5yYpx/5S0baewWHYWs38OrG3L4bkdoT2/3gIHrlU+YMH7JPVSUIrNe8NPB/p1mMpqopRiPpSH233eeKlkR7pVqf3nOBr8Wm9mzEOT6cqh/+rcbPHhnZMyKp/wAAlWU+NtDaDPQKDdnJHxn+2Y8YrXqyj50SQvLNBHoiT0hx4BhedMXj/gb5EUJIsZJIJDLSTO0dIYQQkm/6BKlFeYGlR5J0o8/tgauFyJpxyM54M97qWWXMO6x6SUaAxaHV5pejOxPNiPauGfrsJTiRBCqAf4kKKU16ksLge0H0U0zYytiZbDem284VMnYUm4jM6xpZaFGbDdt3l833livB2lghHWtPshtaa4sEMgdiNEFWIu3Tlje4LUl4mtCZzxpMSCI40/FK30GPRexGSCnREjcHT9cFpxW4JKRYaep9Axv61hrz3jXpeJQ5PqbcI0VNbdA8eqwlIQyuGCHy9ZuDxwghhBBCSG5gjB4hZKLB+DxCCBlH+J5spvhRwRCw+FR5gT//eOjPqdUKT11hP/av/UPje/eNbFB+b1xjszAuuWGqhwQots6cXjcdSpJQVWUx2Lks7H9ZMoT66Ncy0sK6D8d3PmJc/q/LNeKJUUqtLFKYOlM4RCwqrzC7Qc4LCjFbyZQ+XY8Qp0AxmoiaKYjRAOiNb2FuncLvL5Lbg1c2Akde66Kzd+T1yFaHPGUggqwDBx0NZerb2wbhi2K0EhU1jAJ1+sVQX/gZUL+P57L6+suN6YsXKHzoCLnu/ek5jTNucNFiqT+nps07rV95Bvqr75NXmFVPCV4BUUrJ0p57fw/91isAgICj8PrVcn/oi38ZuzEEUvt19sGA2hI1Z575X+b2KQ2167v5wdYrjPktwiWvq8/cHlekxhNUCyIkQiY46sDFcuYfvw+9/o1hST96v3yuHnS1i57+3MnRpOtZXYX9uqT7+4BnBRGyDzEaqgVRYmcbdHcnIImssrm3I6WB1IdKlXR1tZmXKdH+tvrEd/0t2NGKP17i4ONLvfupn7tD48bHcyxG8xO+ujkqZqnLrhme4EuMVpp1gpBiY+I8kSekSFBKoaxsuHK0s7NzjEpDCCG5Ib0dKysr40N2QgghY0Kf22tML7QYTZJuaGixjOOR5R3CjC0ADqs5JiPt4Ooj4cA8i13qtiQ5SXhIjCZP4xDXwgyNhECW7o2Hwfe2MnYkzS9eJNkQGVu85FS5kFdlQ8gJWSV6hRa12YhYpGXZfG+27RTT8UpIx5pEAgkdl0VkuRCjCdvodmWxmJQ3KHyU6p/fa3qvKL3MLKsor9W9cHXS1/4ImchI4qO60FTf25Dn0svtzJNkbHiiRQhOA7Ck9uQCloTkizpJjBbfkdP9yPdmxd8XI4QQQggh4wPG6BFCJhqMzyOEkHHEBBNXqgOPEvP0P24a9vkdsxWuOcd+fbrxcQ2ts39vtH6nnNdgfrQ9hN4iiNEskqWsBrZSjDYyaqcaJWBLuuWYxPv+M7pd2qREtabQrFjUvHDVJChJzADIg6dTxWh95ncloqyPWM9Zfc/vAADnLLK3Qds7gb+tGPm7a1sdmuQVgijJOvbY25xuGYSv24R3d7Z6SUTUOR+Hc+srUI93Qz3eDRxzpris3rbRmH75u+1176m3gGVrzHWvLAiE08Kn9D9/AyQtsUx+BDIkt1i+c33Pb4f+3memQp3QlP/9pRyXKQtau831r2GqEgUhat/D/W18diMAYJoQd9RqvuShWwgPrEyJf7RebwmZ6Njuxe79w7DPc+qAoOVW9J8rcxO7l3Q1OoThUJ6S2GfuE7OULzGa5R5t2V2yhLaKgkWShh8xWqcgRqss0fo0ZZYsAE+lsxWRMoVffshB8mYHnzrO+xlRtnQJ/YegA5QFfbwziUXN6eEKoG768DRfYjT2VQgpBibWE3lCioTq6uphn9vb20f0cocQQooBrTXa29uHpaW3c4QQQkihkAbWljuFDT6yCVckWcl45IX2Zcb0OeUNmF0+LyO9MlCNfSsPNq6zouMZuHpgJizpdxyUmYQc+YFqQmfOlE3IID2SnMdyzhYLIVWGAMwP1jsFMVqAYrSiJOIh4hsLMZdtn8Ukp7CVJRvBoX07xXO8EuGAfKy9bjd6hL5GLo5N2kaPICeLu/1I6Lgxb/d13Sw8Tbjm9TL2LR2voW03pQ0i9T8IKSVa4oIYLehfjCap0ShGG/90JFrxUufTxrx3VCzC9LLZBS4RyQeSCFESJ46UfIpcCSGEEEIIGYQxeoSQiQLj8wghZJzhmCeNHLfU7yPnxdZBd7QMS9p3pn0QaqwN2CKML7YRtTymnjfZY+VY1JxuG3xflYUYrbz4J2QsRpRSRiHUvv2rxXVWrB/dPV2LPOebWWITi5oX9hI3SAPGEymxjT1CYShGk5knCMQA4O1XAQA1EYXZHqfvzctGXo9ahfDfmjAQcDwG4UuyDknyEbBcT1qFRjEbqSPJQAUCUIEAMM9y7XvrFWOyl6QTAB5/w1z3aiPIFF+v8TBo2cpI8oOtT7Tm5WEfp1bJi3b2js3zSUlOVhvsB9qENsWvgG/XcrWuuZ2T2k5JbFKpU66RFBqRUkaSpwIZ14mAo7D3DHnxFetzU6ROQYoGeEtite3aZuvnDTIjc3zS0LZff0HuX1NaRNLxJUajaC8V5TjA9LneC6YI5ZRSWDjTvvjrMaCnP7u+UVefOb2y3OcGYlFz+sz6zD657Z4MGLj3j1T63DEhJJ9QjEZIHkgPSIjH49i0aRMDrwgh4w6tNTZt2oR4fPhg5ZqamjEqESGEkFKnzzU/ac9GlpILbOKRiSLdiPVtwMa+JmPe4dVLxPUOrT7amN6a2IG1Pa8DkOVVgzKToEX25FeiQkoT6fwbDyIkpZQocOtItBvTg8rHrCyk4HjVt7Goj7Z9FpOcwlaWiOP/pVKuBGtjhe1Ye9xu9CbtgtHRUBEw77tXuHZL0rLUbUltlV/ZaTZiFdt3MFH6aISMBkl8NDk0rcAlIcXI020PiW3zkrpTClwaki9qg+aI/daEMOv8CJGu3+OhL0YIIYQQQsYPjNEjhEwEGJ9HCCHjEGeCDcM6/ER7/ubosI8n7y8IplL43v3Z98mjO8zrzKwBImUeMqLYOnP6rHp5Hb9yIaVkCRbxRJ14fkbaKZ0Pist/5/9p7OwahdRKCAuoLAeCSELf8VO4Xz4H7iePg/vJ46B/9x3zCl6imIAQ35hMedfWJ8RTUIwmomwD8Z//19D9/gffaW8Tnls78jK0dAtiKz8/W4dZrqAkEaNUjwBZYpSN1JGIqBM/IObpG78CnUxmpM/04ciQpDTp102dSABNq6zbspWR5Ad1guU7T+sPnXGQ3A5Fc/vq3TctwmWnLrFTXsmvGG3mQJ+qNmlu5/oSZumJJDapSI3jo9CIlDCmvvIQLz4K7brDki44Qm57rn9Q44o7XWxqGd37EUloCACV5jmSdxOLynle950AsPBQOe9Ns7gUAMWxxIDHMwQA6DSPzxH77qXATMszlEHS5PnnHqIQ8nCLZds36uozt2N+xWh6nSBjN/R7lFJ2OVp1XaZMjRAyJlieoBBCRko4HEYoFBoWqNDR0YG3334bNTU1qKqqQjAYhDPRXooRQiYErusikUigs7MT7e3tGUFXoVAI5eV+9cqEEEJIbukThBblTrig5bBJNyTp13jjxY4nxbxDa8zyMwA4qOqdCKqgcUD98o6nsWfFfqJEZfB7DSr5rUlcW962kJJHOv+KSfxkI+xE0JnMfMliSgMoRitWyj1kD5IAL5/YBBQRQYQ1FuRKaJYrwdpYYTvWHrfbUzA6GqTvp1sUo8n9nrBjF54mkYCrXTjK/oxU6jeYvidbHRooK+VPpHRJ6gTahGDHOkGUZEKJQSMcdD6eSeoknmw1D0KZHJyG/SstgWdkXFEXnGpMb43vgNY6Z4E8ksh1PEirCSGEEELI+IExeoSQ8Qrj8wghZJwzwQZEqvIw8MsnoC9baszXv7kK6vq7hz6HQwr3fsbBe290scUczoJfPKYxtcrFlWf474tLA2UbzI+1h7PFLEZTtkG9fgc7l4U5CHY0nPdpYMObwD2/G0qK6F4s7n4Gz1QsNq5y9P+6eO6rDmoi2X/votQqAuhvfgB46h5/G/ISxQiyPJ2I736b2itY2sLFH7cylqhPXQd9wxXGPH3zN6A+cQ2+fYbCD/9lfz/9i8dcfPLY7J8HtEpiIT+vuDrNwiBR1mEbgN8qiNEo/sgJasH+coTDujegr7kE6lt/GL6Oj2vB9k5zerpYT3/ePjGZ+tKNUDY5DMkLas8DoE/8APDQnzMzd26B7u2G2iW3/O7ZCj96yFyLvnefxu2XFr7vILVfk16615zhOIBNSJmCqq6FrqpFXb/Qzu3afyQt/L9bCPmvSI05rPJhHSRkgqIOPRb6oGOAleZxO/q6y6G+ctPQ5/95j8I37pL7QD/4l8YdL2g8+1UHs2tH1g5JQkPAh5QoFjWnH3osVJn3s07lONDHvx945C+ZmW+tlFdkO0LSkfptqRMriX33Eq5PM+Z5L9PXA93fN3ROT69RuPuTDs69yRWv+//7gMYtF/tvkyRBo6ecERgQHD94mzlTus8PBAGDGBkA778IKSIoRiMkDyilMHv2bKxfv37YDJTxeBw7duzAjh1jpH4nhJBRMti+8QUvIYSQsaLP7TWmZyNLyQUhVQYHAbjIfPjVK8jbxhNaa7zYvsyYtyCyL6aEpovrRgKVeEflIXil898ZeSs6nsa50/9L/I4GB0iHLLKnhI6LeYR41a1iRxISdSTbjOmSbIiMLRGPa9JY1EdpnwoKZap4BtZYxWhZSL/s2ylsn2Ek2Po17YlWuHCNebmQQErtUE/SHDnVk5TFaBWBKgB2iWNCx6110NWuKMY1ldX2HUiCFkJKhdbETmghtHdyaPTSQGrRxjf/6XwRLQlzcP2S2lPgKI9p/ci4oTZkHkHWp3vR43YNXb9HiyhEHwNJMCGEEEIImbgwRo8QMhFhfB4hhBQLljcfE1C8q/Y/EnrOfGDT2szM5x6Adl2olOM+cr7CxuscBD9hfncNDAzK/8KJGtVhf9e0dZIYbYp9fd3XC2zfbM60ya38DnYuK+yErRMNFQxBXfFLuK88Dax7Yyj9g+1/EcVoq7cAt/9b4xNLs+8PiVKrYA/wpE8pGgDlJUaThFbJlMlke4V4ijDflVg5SJ60F7f9APqCL6KiZjI+cLjCn1+Q2+rv3qvx38dohILZ1aNWIbQkXWxlpMMc4ycOpncs72DbJDFanY+CEF+c/GHggVvNeQ/9GfqjX4WqX5iTXaXWH/32f4CXzfHZAKD+usYu9iR5RV3yTWiTGA0AYuuAxn0BDIhi66eY+y9/fkHjto/lblIyv4hitJfvM2dM3wNKEH0amdWA2qat8v57gFlpzZ0oNtEphWW7Rkoc9bkfQV98uDnz3t9DX/w1qF2yorKgwq8vVLj0j3IfaEML8JunNL51+sjaIElsBAAVXlKiWNSYrI471/f+1ZEnQZvEaD1yrDLbEZKBLzGa0HevLGEx2kwfYjQA6GoDynaPKTx5f4XWnzoou8z8jOiPz2r8/iL/fSNJ0OgpZwSAFx8Ws8T7/EAQgLBTti+EFA0cPUlInqioqMC8efMyAq8IIWS8opTCvHnzUFHBl3GEEELGDkl6VK4KG4CklELEqUCX25GRZxOEAEBbYifW966FNkhNwk4EDeG9UeZ4P7FrTezEht61mFE2B9NCM0f8AtXVSWzsa0JrYudQWkt8O5rjW4zLH1Z9jOc2D6s+xihG60i24dGWe7Azvs243qDMxC5QSYh5qWit0RyPYUv/Rl/LD1ITqMUe4QUI+Bj43+/2Idq7JisZngMH88J7oiboPXNE3O1HtPdN9Lj2OpXOnPIGq7xupPS6PYj2rEG/tkwFNMZs7ze/dB8vg+8lGVJXMrOtAeznChk7vMRnYyEik86BsBOBo4onaNt2rnoJ51Kxyc9yIQ/LN44KoFyF0aczhbCrulaI6+VCuif9Bi2JZuO1fWNvk3F5BWeofxZScjREQsdRBvmc6HN7RZGTqc0MOWUIqqCxv/B698vGvpsfAiqI+vCeqArUjGh9QoqBlrgQOA2gLmgWJeWSpE5iQ+/baE/Ks8eamF1Wj6llM3JeHq01Yv3rsT1u7j9OD83GjLI5JTMA9YlWcyBsUIWweNIJBS4NySd1wSli3gvty1AniNOypS3lGUMq40VaTQghhBBCxg+M0SOETCQYn0cIIeOEInrHnlNm1pvFaACwJQrMnj8syXEUzjoIuHuleZWuPmDFOmDpPv52H91u7s/Xy4+1B9i6Xs6bJYtlVHWdv4l/yot/8rVxwT6HDhOjze8X6toulq0BPrE0+91saTen18XN7y1E5sy35weEmK14SlxdnxBTyDplZ3ajPf/1F4AjTsL5HmK0re3AG1uB/edkt/stgh+hzqOLruP9QLtgeJTEaAHLsN4287aUtC2SNWr2fPt1YOVTQJoY7ZPHKvziseyfP9VVpMQdWKRoiFQCM3wKKUh+mDFvQKZies4YaxoSowHA3FpZ7Lq1HZhZQK9Ke49GjzDveF2yxZwxLcsGcspM1L21Wsze0gbsO2t4miRYqkidaK2K7RopcbyEvK88A5y4+9qwYJqC1xSmy9aM/F2JJDQE7FIi3dcD7BTkiV7HmEq2clClgEhuJoEkEwgPMZp2XVlEXFW6YjQ1u9Hfc5IdW4G64ePVggGFI+cDzwm3+s0dwHSfIfiiWNVLzghAv/SknCnda9ruy0q4PhBSbFCMRkgeGQy82rx5M+Jx4ekCIYSMA0KhEGbPns2gK0IIIWNKQseRhFmKVZ6FLCVXhAMRo1xDkmQldRK3b70Rz7Y9Yt1uSJXh4llfwMHVR8rb2XIjnm3fvZ19Kg7Ax+d8TZQqSWzt34QbNn4bOwRRWToOHBxSbZ6pMZX9qw5DSJUhrjOfSP6j+RZxvUigEgAQVPLjCtM20+lJduGmTd/Dmz2veS5rYlKgDp+ceyXmhhvEZV7qeAa3xH7iqzwmjqk9GedP/29RSPRa53L8ZvP1RimOHw6qOgKXzPoiQo6Pp78+eK7tUdy25UbxHCx2xsvg+8FzIB2TSBEAgg7FaMWIV30bC8GKdH0otnPDVp6wYz4/TNjkZ8V2zBLhQAX6EpnXAElcA+RG+hYRvuft8a24adP3sthOxVBdH43wtNcVprKE3GaGnQp0JjOjne/bcYd1X344efJ5OGPqBSUjSiITi5ZEszE97ETE88mEglT/5ZCIjb1NuGHj1WiXgi092K/yEHxs9hUod3IjxG5L7MTPN3wbm/vXWZebV74An5p7JaqCE1uKuLV/E1Z3m0ctHVp99IQ//lJjUrAOCo7xHuOObb/K+/6zfW5BCCGEEEKIHxijRwiZCDA+jxBCxhEB78kWxyPqyJOglz9mzly/JkOMBgBnLVK4e6X8jmhVTGPpPv7erUYFsUij13wesaicN8MyqN7v4Naywk9+NxFRS86C/tftQ5+XdD+F2mQLWgN1xuXvfXVkMoeoMLZ9D22eJFZkkYeVLSK8X+1NmQA1Lkw+yjplRdVMhj7oGGClMKB9cxQAcPxCIBwCei2PAdaMQIzWJEga95js0ZZtXW8WKQHAdEF0ZRuA3ykY2igQyh3HnAH87moxW2+OZkRHnHXQyMRoe0xO2W4sKi949BmMSRpjVKgMevoeRvGq/vmXgHe8E6p2oHNy7EKFp98214em7YUVozXJcyViXnyDOePAo7Lah3rXyYg89wCmJpqxPTjNUAaNY9POmm7hUliZOmE4hY+kxFGVNdCHHgtI92Kx6LCPixcAU6uA7Z3yNh9dDby0XmPRvOyvKdJ5qxRQbjOSxKJyXjayM4vc2kioHMqZoPJyMgo8Ylx3xIC4MA5s+h55KdG44IiTBu5Rkh5jxmJNwJ4HZCQv3VvhubXmvtG/Vml8+Eh/bVKX1H/wcysdi8p5hx1nTrfdl1G8SEjRwKs9IXmmoqICCxYsQGNjI6ZMmYKystwMSieEkHxTVlaGKVOmoLGxEQsWLGDQFSGEkDFHEo4ByNkA+WyQ5COSwGNZ6/2eUjRgQPz1m83XoS1hnqVwWev9w6RoAPBG96v4+7ZbPLedzq83XedbigYACysPRnXQ+wVk2InggKrDsi7P4ABpRwXgwBxEmNDeA1r+3nzLiKVoANCWbMFNm66BFgJVdsab8dvNPxyxFA0Anmx9AM+0PWzM60524ubN145YigYAKzufx/07/jri9VPZ0rcRf9zys3ErRQNyIwsqBNlKAmyyITJ2hAPFJ3uQZGDFdm7YyhPJ4vwIqCBCyvwMrtiOWWIk5cyF9C1X30+qZMkmPPW6rvdYxGhSm5nP3/iBnX/Fys7n87Z9QvJJS9w8mqTOEKxoI9sgXFe7+OWma0YsRQOA17pW4J7tt3sv6JM/xH7qKUUDgPV9b+PWrTfkbL/FyrLW+8W8pbWnFLAkpBAEVBA1Pu7r88V4kdQSQgghhJDxB2P0CCHjEcbnEULIOEWYBHHcc/bHxSz9pbOguzMnEP3A4QpnHSRv8pO3a2zv8BbI9PRrxAQHUMMUj3dTW4R3PlNmQZVbYgqrzUKuDMoKH5c4ITnq9GEfI7oXv4x9Wly8oxe47XnzRJI2JKlV/VpznJ4JddWtUOUeMSphQYzWMxDjoJNJwBXKH6IYzQv1mR+IefqXXwMAVIUVfvURe/tw7k0uOnuzk1hJcqFRSRolwYczAtGm37aLeKL2PBD40JfkBW67PiPpuIXAx47JXjLTMCXlwx0/lcv0sSuz3jbJA7MazOkb34I+Yw509HUAwBUnyXXhN0+NTPA5UqS2K6hczElsNuapC7+c3U5OuxgA0BDPlMYBQJMhLKmrz/w9VKbGBFL4SAjUpzKvOYPoXw+/NpQFFW7+iGOXlAE49LsufvJw9v3pLmF4TGWZR9xgLGpOVwqYIUhiTUyZbZcUpRPiuyBiQKqrg+PDtpivZQCAmVnU1wmGqpsG9dkfyd/fILGoMflrp8rrXfg7jX+85K9/lBcx2vQ9oCqqzXm2Nke69yeEFJwsegeEkJGilEI4HEY4HMb06dOhtYbruuIge0IIGUuUUnAchzONEEIIKTr6XFkSla1MKBdIg3klgccrWUg0XLj4T+dyHFV7YkaeJON4pfN5XIDLfO+juT/mSwaQymHVx/he9tDqo7Gi45msth9xdj80DKkQ+nQyYxk/YrRcCEt2Jpqxsa8Je4QzZzt9vetluMgsW7a80vlvHF37noz017pWIKFHLyFb2fk8zpz2oVFv55XOf496G2PNeBl8n3oO+MEmGyJjh+2aNFZSLukcKLZzw/bdZVvWiFOBeDLzDX2xHbNEtuVUUDkRxaYKzUa1nZTy2ySOXtd1STgLjF29fqXz3zi4+si87oOQfLAz0WxMrwt5RXD7Q3rfsbFvLVoSlqlpfbKy8zmcO/2SUW+n1+3Bmu7/+F5+dddKJHUCgQna7+pze/Fc26PGvHnhPdEQ2bvAJSKFoC44RZSx55vxIqklhBBCCCHjE8boEULGC4zPI4SQcY4zMcVoKlwBvdfBwJsvmxe47w/AuZ8alhQOKdx5mYMpn3PRLoT2/fwxjW+fab/mrbc8sm7weJWlY0L8myQiGqRqkj1/EIrRcoIKBqEXnwo8c99Q2nkdf0d77HJ8fNaNxnUu+r3GexdpRMr895lEqVV/1N8GwhVQx5/nvVxEeN/R2zXwf1wYyQ0AQcobvFB7Hwx9xHuA5/+VmdnTCd3RAlVdhw8f6eCIRo19vilLP/70nMZl7/ZXhxJJLbZHjVNHJgfA5BlQYaG+ZCP9GKSaAqFc4nziu3DffBn490PGfL1+DdS83e/MHUfh5g8DFy1WOO6HLvp9hvkO1h/dtEpe6PzPQs3OjFcmY8DsRuDlZWK2/s23ob77Z1SFFRbOBFZvyVzm909r/OZCXbD7fkkMOq+8HQEY2sg582U5iIAqD0NX1qAhHsWLkUMz8qOGa3C3IFiK6F0xgYEAEKFwhBC15wHQJ34QeOj/jPl620ao6XOHPp+zSOH1qx386GGNGx6V3398+W8aHzpCY1q1/7aou9+8vQqvLmwsak6fNgeqzL8YWLQrXUIAACAASURBVAWD0NPn2qWzqVA6TEx4idG2CmK0SBVQMzk/ZRonqHM+DixaAqx4HPrHnzMuo2NRmL7h6rDCntOBt7aZt/3J21yccaCDYMDeJkn9h0o/zwZiUWOyuuhr8jo2YbV0708IKTgTM4qfkCJHKYVAYAQzOxBCCCGEEFLC2MRo5UUkRpMEHi1xw1RIFiR5wJruV43p7clWJHTcKh/xs32JkCrDQVVH+F5+v8pDEXYi6HV7fK8zt7xx6O+gCqFPZ/7mXgKVuBtHZ7Ld9z5ttCZ2YA9kBhq0J1tztH3zb9CayK6uZLv97LeTm/KMJal1q5jJtpzj5bhKjaAKYVbZHoj1b8jIOzCLdjSXSHVlbri46lBtcDKqApPQmRw+FXRIlWF62eystjW3vBGrul/KTC+yY5aYW96IaO+arJZ3cjAz+ZzyBigoaIxusGj6NV0iroW3l4P5rpxfpswBDXPLG7Ghb61HCUfORLguktKkJW7uG04O5kaMJu83N+dMS3wHtB590GhXsiMryXG/7kOf24uKQNWo9lusvND+hCj3Xlp7SoFLQwrFvPCeiPa+WfD9KijMLvcYiEYIIYQQQkgOYYweIYQQQgjJCzl4L1u07LGXKEbTT94DlSZGA4CAo3DRUQo/e8T8jvmelRrfPtO+26jlddI8rzHJsag5fVaDfb0qn3Kh8sLHJU5Y5mTG4R3X9Zi4eNIFnnwTeM9+/jbf2auxvdOc1xCP+tvIYcf5Wy4sSFx6BsVolliILMQQJc3Cw8xiNAB44RHguHMBAHvNULhoscItz5jboH+u1Ljs3f52ubFloN6ZaPSSNG6OmjNsbVFwJGK0uuzXIVbU0nOgBTEanrkXmDd8MjGlFBYvAH54nvr/7N13eBzF/T/w9+zd6Yok6+RuuUm2sXGhGJteDMGGQKhOIAmEGkIKCakkkMYvvZPeviGEkEYgQEJCTQi9JxTTYmywbGNkY2zJRbqTrszvD+ns0918ZndPp9NJfr+ehwdpZ3d2fNrbnbudeS8+8idv46t2HT8P3ya3Y9a+nuqiwacmNdtHzj1yG3QmAxUIYPYEczAaAKx6A5g9YTBaWOw1YVh7s7PJXDB1r9J2NGo0moWwUVM4W6cUbJIbp1IXZ2g8UR81ZyG0EIyGR+8ATn1fv0XNYxW+dhqswWipDHDn8xrnHOr9fdYp5PvWunRhdVurucDtc5nJxOneg9HYtyYTt2C0N14zl0+cxusSANU8F2ieC/3ys8BtvyleYdWz4razLcFoG7cDT7YCh8607186D0VdAhp1106gw/wAaeu5yBZYHWYwGlG1GMHfyBMREREREdFI0m0J2IoMQTBaVAhGS2TMk8r9BIT1rm+ux0bat0lnRhgFJFg2+nREA96/1Ktxwjh+9Ds8rz+v9gCMrdl9BzjomENUUll7MFoy2+l5n26kgAAMMCzGrX4/f0ebZDaBrJafhui9nvK0Z6jMie2DieEp7itWgf3qDkZD0NtTZiJODIvrjxzkFlGpjjIEiQQQxOENS4egNcCCukUYExrfb1lI1eDQhmOHpD0SRwVwZPz4ouWHNSxFjePv5vWR8bdCFTyPqDkyG9PCLnfTqsRhDcd6DjsFzMdcKRqCjdi/7tAB1RFUQRzesGzX7yFHvhOZ1vZHp0qBqEEVFG8+HxZfhqAavGfCDPfrIu25pGDkxpC/YLTCc6ubcr1nssigR1uerO6RW9CyyUDDIquV1hr3d9xhLKt16rGo/ogKt4gq5YiG4xBSbo9yLb+F9YdhVJBPsSciIiIiIiIiIqJhzhm54btq0dFyYdsasegtc+T7R8+sB1a/oaG1fL+l1RCkAQCTGoBIqH/deuc26P/8G/rRO6BXPgVseMVc6USXB3V4DRfiRPuyUQccXbRsemodZvTIDz7790r7sZPPFrDX4jUYzWNwg5KC0ZJ990ZTlvuawcrfoxmOrOej1/ufj96yt7zqSiGwyGSN5Tm0bsFoJYU0lnI9qWvwvw3ZHbBELBJDXgAcY7n2FZowqq++DZYHPe7PsaBVw3C96ifVA2xpAwAcNlM+DmznlHLbKTx7fkyPkExSSlARANTF0ZxaZywyXYfFgKXcWP96jh8g2mXRMWKRdD2qjygsdvnY86rPc1GXEGgYE7qwevMG6MfvBp550LxCqcFoXgW9j7OmPYl0fe79bKl3CImijePNy/dQasY8c8GKh6GT5nHBx+xt7yOv3OT++b6z27yOFNCo33y97zz0gFxpU7NcZnvIVlT47E9EFTd4s4OIiIiIiIiIyqg7a75rp+AMyYTeiBASlhCCuaTlklLCsRLZTtTD28CHLiEYTUEh7ER2/d4YHIdDGo7BsY0uj+40WDb6dIRUCI9suwdb0+abq/WBBsyvXYzTxp3Tb7kUBuMWZJCwBNCFVcQYotKdTRrDDpLC30AabKXgIGwI7snoDFK6+C6R9DeWjhUHjjEYKKuzxpAIDY3ubNJXoJ25PeZ2BhBESAiwqwZ1gVGYX7sIp407d6ib4lldcBQ+OfXruGXzdXgl8aLx7xpQQcyI7I0Tx75z2AS+7YmWNJ6IgArgkW334I2e1zEtMhPLRp+OWTGPj7Ets4gTxSemfh23bP4tXk38DxPDU/HW0W/H9MisIWmPzUlj3o2IE8V/tj+ItE7jgPrDcMKYM3zXs1/9wbio6TLc134b2tNvYk5sXywfd8GweZJTc3Q2PjzlSty95Sa0Jlchi4xxvUk103BE/Liyhtxd0PRxjNk8Hit2PoHtmXbP2yk4mB6ZheNGL8fM2Nxdy20hZWmXwNOUGIwm9/1mRvfGJZO/iLu23oS1ydXQKC0kNK3Txn6HHJxKVN3aU0IwWtBfMJpECg+T3jOFnzt21aM1urX5s18i22Xcxg+3oGWTkRqM9kriJWzobjWWHdpwrO9QUho+pkRacOmUL+GOLTdgbXI1MrAHlQ5UQ3A09qk9EKeMO3tQ90NERERERERERERUEY4z1C0YPMeeCXznEnNZ21ro7gRUuPgBpicsABwFZIVbKrM/n8WS2cBNH3Qwurb4nr0UaNU8ZvfPWmvg+u9D/+JzQNb9HrBym0zvNVyoZmD3pijPIcUPfHOg8aXNX8Y5k681bvLtOzWee03j+osd1Efs4z2kAJqATmNq6jVPTVRNLZ7WQ1QYj5fsG/dnC0arYTCaJ/sfJRbpW34J9Z7Ldv2+fKHCucI93dYtwAMvaxw123280BohpHFMLVyPv5KC0QIlTOv1GupInqkps+QRATf/Avj4D41F85oUzjlE4XeP2ccTKAWMivQGNuAf18jr+QmBocG1z6HAlFnAa6vlddpagfFTcNGRCpffbD4Gzr46i81XORUZrygFGdUmzBdHz9e7QvVxNL/eaix6vQNIpnS/UFsxYEn3jfWvYzAaUY6ata98Pbr++8AHvmYsuvJkB8t/nkXKPMQYP7pH48qTvbejUzqfFHRhdXcS+hvvA+65wV5hCdc3NWm699F6IY5vIwPp2pubB7ZTCEZjYGd/C4UAYa2BG34MnPuZoqLzD1O4+kGNlZvMm154rcZe4zUOnyX3j8TzUMHbXfd0Q3/zYuCf14t1Aej9Hm/8VLnc8rlMRQY2F4+IyofBaERERERERDQsJIXAq7BjDrsabFHH/AWXqZ0ZnTYGYwHAxJop2NhTPPAmaQgQcAsF68p4D1/rypqD0SaHm/HZ5u97rsfGUQ7eMvoUvGW0/1C1UoPRTK9bztdmXo1YoK5o+TfXfgrrksU3sKUQBykYYWZ0b3xi2teLlr/Y+TR+8tqXjG3VWhcdv9KxvnjUUTh/0seKlm/q2YAvrTEPSkxmuwYcjCa9pktHn4pTCwLtaODG1kzE+yZ/eqibQWVwRPx4HBE/fqibsUtjaCwubPrkUDfDlVIKy0afjmWjTx9wXQvrD8PC+sPK0KqhMTu2ALNjCyq+36AKYfn487F8/PllqS9guQ3hdl1Pa3NQi9RPyJlTuy/m1O7r3jiLx7fdi99uLB7cKAWnElWz7mwSndkdxrLG0DiftZk/e0l9ZKkvOT0yC5+e/p2i5R3prfjsKxcat0lkOhEPjvbYTjO3846J16fQDzcPdNxhXK6gcFT8rRVuDVXazNhcfDh25VA3g4iIiIiIiIiIiGj4USM3GE3VjgJ+ei/0JccYy/X/fRHqI8X3d0JBhZe/6mDW5+TAsvtfBj51o8Y15xffa1orBaONzVv32Yegf3aF/R+Qr6nZXu51wjOD0cpGBYPQRy8H7ru53/J3b78Bl4//GjaEJhu3u+N54It/0/j+O92C0cz39KakNiAoPIyuyDiPD6mM1JqXJ3LBaMJMbgAIMhjNC6UU9CnvBW79dXHhG+uhd7RD9YWExcIK91/mYMl3zOego7+bRddPnX5hPSavCuF6LV6eNdbWalysyhmM5jhArN7fNuSJuvgr0P/3BWOZfm011BTzw0d/c77C/S9rrNsq190QBRxHIfvtD8n7v+SbvtpLg0spBfz6cejjx8grtbUC+x2B0bUKcycBL7UVr7K1E7jlaWD5AYPV0t06u83XwNpO80PNMan0YLSW1Ati8dotwJyJ+e0yr1ebe4C416Baoj3F2ZcBfyj+vIVMBnrzBqhxxf3lt+2r8MBlDg79prkf1N4FbN6hMa7e23wrMdCwsAv75x+4h6LBpS8k8ROmVsNgNDJwDUbbZi5nYGd/M/cBRo0Gthd3dvWvvgic9UmoYP/PNGPqFB76jINxn5C/Hzr1p1ls+LaDsPD5TOw/FJ6HbviReygaAIybAhW0zDuwfS5jMBpR1Ri538gTERERERHRiNJtCUYbChEhGM0UpiUFbAFAY9A8asK0TTJjfg12b+M9GK0zYw5GqzUEhw2FUInBaLbXOuIUP7EUkEPu/AajSSERUv1ZZNGji7+1lf6OUj3Ssdhb18DDWxJCAEzUEQZ4ERER5VFKlRx4mhaCZYNq8J/5Eg2Yr3PluLYSVVp7ShjBDfnziMRvJLUU+iv1YaU+L+Dv846klGA0eH8G5bCxLd2Op3c8aiybV3sAxtZMNJYREREREREREREREe0RbA9NcUb4NKxZlgdQPXanWNQ8Bgi73Ma94T8amWzxa7t2i/n1np6XR6I9TLrvx20yfbQOCATc62EwWnlNm21cfN6231k3u/5J9/t1a4Rbos2pVtdtdxnb5G09KRgt2TeewBaMxvAGz9TUveTCB27t9+sClz/dP1903986IaSxZaz9LrnuTgAdm82FtjAQx8M5KF9dHGqkX4OGSpMlJOrffxGLHEfhK6faj4/GGKB3dACP32XZ/wy3FlKFqZjLWPq2tbt+PGCafAxc/4QcClJOUoBILG1+iKL13GRTF8f01DqxuPBa3CkFLOXG3zGAhqgfNdlyPSgIF8538AyFH79bPhfd/JT3sW9iIFFBF1b/68/eKhzsYDSGDpOJWzDajnZzOQM7+1GOAyw8Sl7hmfuNi8fUKVx6rHxO2toJ/PMluVqp/1B0HvL6PZHbecgajMY5c0TVgt+GEBERERER0bAgTagPq6EZfCSGaWWKJ+vbAs0aQ96D0dyCALqEsDPzuuabnTGnOoLRpACVlEuQQVII8QqrCBxlHkgihTIkfQafKCEmwm9wmd8gMnt4xMDDW+QwC3PQHBERUSEp8NTtui4FGEn1lZN0nevR3choj0+TJqoS7WlbMJrlCbdlIPdtzX3YGhWGA3O/3fRZy69SgtFGXiwa8Mi2fyKDtLFsSfyECreGiIiIiIiIiIiIiGgYkSbYjhDWIJBtQmoQesNhFrnMX+/qATYY5h9vEW4BNeXPSV73sr3yfEoB46e6rKKA+Hj3uhpGe98vuVJzDjAuX5x4yrrdpu3Ati77XbvWN83lLam1xuVF6uL2YMB8USkYre9gtgWjMbzBuzmLxCK9vv85obFWYYblmWArN7nf9d3SaV6nqSC3R2sNncy7D245N2KcJbHNb8hZrN7f+uTd3uZzEwBol+vP5EZ7vyAeBfD6q0DWEpA1e39rHTREjjhJLNJtrbt+tvV/Vm4qX3NsxAARLYwhLzUYLT4OEd2NSak2Y/GagmtxlxSMlmtXPYPRiPqZu1gs0utXWTddPF2+Hr1ofssaycFou+vXmQywxkPqLAA0NXvfec4kH8FoDB0mE7dgtJ3bzJsxsLOIOmiZXGjpJy92eRuv3Ch/PhPPQ3kfpbXWwOoV9p3kWPr6AFyC0eS5ekRUWQxGIyIiIiIiomGhO5s0Lh+qcCY5TKs4RMoWsNUYNI/GMG0jBVTluAWn5evKmkPUYoHqDkZzCzKQgsAiAfkLSTnkzlyXhnmAghK+QLcGl5mC9KR/g3Csh1SNGB7hN9zNRDquopbXlIiIKF+p13UpOE2qr5xswabdLn0yomojBaPVBxoQcvwNvJfCgLUQHyb3bc3vMaWU2M8sR+ivWyCjifRvG64yOoMHO8xPox4bmoB5tS4DQYiIiIiIiIiIiIiI9mQjPBgNAHDM283Lt22BXv2cuNlH3uL+2vzqoeL7Lh3CLaDG/Oypp+5zrXuXcZOhvEyQ9xAKokoNDiGzQ08AmlqKFp+w807M6llt3XT1ZnvVrUI2VXOq1VvbTn0fVNjjQ3qlydGJXDCaMJMbYHiDH/sdIZc9fFvRokuPlc9Bn/6LxrPr7fd93c5FOp1G9seXQZ88BXpZI7Lv2Q/6gb+JwQoAgPpGsUgpZZ+EX0gK5KMBU5NnyoV3/QH60TvE4rjLEPbGWkDf+BN5hSNOhproIwCGKkYt/6Bc+K/rd/149sHyuee5DcA1D1lC8cpEDBAxjf+ui0OVGEim+gKOpGvrw3mX8kxWIykM0dnVLgbQEPWjbCG9t/wSOm1+CCYAHFTcxd7lx//WuPDaLBI97mPgElKgYf4Qwyf/6VoPgN5+ztjJ3tbNN3YyEDDPjSkSHPyxxDQcSdfmXDBah7mYgZ3FjjtLLNLPPSqWLV+oMEX+KITL/qLxUpv5nCQHNOb90iE/LLqQOukC+woMRiMaFhiMRkRERERERMNCtzYHUIQdj4NRykyerF98E9E2gb8xZA5GM4VyuQWfdRlCtiSdGXMwWm2gOp4qFyoxQMVv8IKtTKpLC/eEpK/PbaFsfoL0ogHzwBZreIQQ7uaHFMhne02JiIjylRqMltbmgRyVCEazBpv6CKMlqgZbU+ZZAlJIs5XPyT7SZyFbyG7MMfd7u8rw3nM775iMtGC0FTufQEfaPDPkyPgJcBRvHxMRERERERERERER7cnUB74qlukLFkN3mx9w+s4DHfzhIoWDLZPyv3abxvMbdt970VqjXRjeFI/23pfSTz/g3uh8XgNmvISeMRitrFSoBupn9xUtDyGN+1uX4h3bbxK3PetXcrCM1hprhHnRLT2txe348p+A8z4LTN0LmLEA6n1fhrr4y27N300KqMqkoVM9QEpIlACAoL8HV+3JlOMAp11sLmx9CXpHe79Flx5rv8951HeyeHOHfO+3Q3hGXi74Sv/scuCGHwHb+g62tf+D/vw7gUdul3fqFvrjNfQDACIMRhtM6pJvimX6irdDr3zKWNbgEozWkNoK3PUHeb//7/ee2keVpw5cChy41FyY6oFuawUAjKtXuOZ8eSzNRddp3PL04I476ZSCjEzjvw0BpZ719YtahGC0Pz6hkcn2/lulcKX8dikGoxEVO+8KsUj/8vNimVIKn1gmn4uufUTjgmvdz0WdQnhaLhhN79wGfdmprvUAACZMhfLT1+mjgkFg/BRvK4cYOkwG0hjX3ESwHUKwMa9LRVQkBux/lLnwX3+Gzpo/p8fCCo9cbv98duS3s9iRLD7nSP2a2vDuv6u+Vv7eqp93fwJq+t72dRxLOxlOTVQ1OLKdiIiIiIiIhoXurHlAVdhxuas8SKLCZP2U7kGmIMRDCroKqRrUBUYZy0zbSAFVOX5COrqEYLSYU+e5jsFUaoCKGLxgCTeRQ+6EYDQhGEEJX7OEVUQs8xOkZ/03iOFuAwuPSOsUUtr8zTKD0YiIyKvSg9HM16BKBKPZrnOJjL1PRlRt2tPmWQCNoXFl3Iu5j1zW4OIyhP5K5xUrKRl5mHqgwzwwP6RqcGjDWyrcGiIiIiIiIiIiIiIiqjrjptgflmMJAXr3QQ4evSKARZZsst88svveS6IHSGXM6zX2Dc/TN/7Y1tpiXoPRmprd15k0gPAQMlJjJkJd8aui5RMyb+D6DedgZmy7cbtVbwDpjPm+XXsXsN08vBTTU2sNC+fAuehKOH98Hs5v/wt17md6Q7i8sgVUJTuBVLe5LBAoKRxiT6ZmL5QL77mxaNE3lsvnrh1J4E9Pyvd+24Whlo0x9Abe3f7b4kKtof90lXnDcBSqxiWsIxC0l+fjpPzBZQtMyGSgb7vWWBR3GUbb+MZLcuFBy6DCQ/NwcPJGvf2DcuGduwPvjptnf8jgrx6Qwz3LoVO47NSaxpAPJPS1b9vpqXXiKvf0HfJSqEm/dtU3lN4WohFKzVggF952LXTa/LBhANh/qr3um57S2GwJiQWALiloMZfte9/N9p3kG8j5ZqLHbd36WrRncgtG29luLq/jdclo/yPlsmfkIPspjQpfO13uI23t7D0v5ctmNZLC1ILa/Izxu6+X25RHveUd7ivZgs3DnDNHVC0YjEZERERERETDghQKFhmiYDTbfguDraQwgKgTE+vp0d1FAWuJjD3kqstPMFpWCEYLVHcwWsolQEUOXpD/XnKomL9gNIlSStx/4T601kgIgQ+2f4MUHpFwCdNzk7QEv9iC2oiIiPKVel2XgtOGOhhtoMGjRJXWnhKC0YJjfdelYB6oIGWHldI/jwXMA7r9fN6RpLU8OEzit/9fzdq612Nl13PGskX1R4jB3UREREREREREREREe5SjTjUvr4kAtSN/oqwK1QBTZonl+pUVrnXMmyRPfl2xfve9l3bLc3HiudtJGw3BVjYeJ+Cr5rn2FUI1QBOD0QaF5bWfpDeLZa8J89fXmG+HAgBaCoPRasID/7tGLOPmEp3yxOoQgxt8a5knFunVxeci27kHAJ59TS7rEIZKxmMKaGsFOs2hfdi+1by8Lm5tCwAg4GP8i+24o4FzuyasMl/7Rrnkmo3etkYutIWxUXWwHBf5/aGJo3pDFCW2c085SEFGtdrQ0XI71m0mTAMAzO9+UVzlmb5+nhTW1tuuXDBaY+ltIRqpbO/RHe3AG+vFYrd+UCYLvPC6ffdi0GJfN9bU/xIN5HwzfY639YI17uvQnkd6K2gN3Z0EeoQDvd5D/30PpCyfyeByTpjvcl56puCUtkMIPAeAur5+t9ZaDiPPFwgAk2e6r9dt+WIqWh3zK4mIwWhEREREREQ0THRnzd9whZ2heVpW1JGfvpYsCLaSg65i1noKA9YKfy9a3yU4LV9nprqD0UKOecBHOmsPUJFea9vrLIeKSa+3ORhBCono3b+wj4L2pnUKGZjDGmz/BjncbWDhEVKQBWAPjCEiIsoXEoLMpOCznJRw3ZfqK6eQExID2AYaPEpUae1pIRgt5D8YzS/p/WLvn5vLEmUIRpMCGR3LLdORFIz2QMcdYtmSxhMr2BIiIiIiIiIiIiIiouqlJkwD5i4uLjjuLChnz5iGpY4/Wy5c9azr9uccIo+juud/wFm/yuLe/2kxiAjoDRjRqR5P+8unJk33tuLhJwF1lqC7o06DilXHWLoRx/T+6nPBK98Sy5ZelcVzrxXfu5OC0cLZJCal2/ovXLIcaqABU1H5XieSlmA0Bjf4N+8guezFJ4sWHT8fGF8vb3LNQxrHfi+Db92ZRTqz+1hKpjSSwhCWxhh6g9H88hKsUOMjLC9iOe5owNSkZmC/I+QVnn8UOpMpWhwKql1hMSYt256X93n8WT5aSENB2cI07v8r9JregDDHUTjb0vdp2wZ0pwZv7IkUZBQzjLNRy95Z8n5UqAaI1uGkHbeL6zy/off/Ulhbb7v6OoC2fhjRnqplHjDFcu5paxWLFk4D5jfZq//g7/v3gQpJ791Yrhvr47OZOq7065z182g+P30p2oOIyWjAzg55MwZ2mh0mjyvV6162bnr8fGCs5WuVH92j8cE/ZNH6Zu95yRaevyuEdusmoNvDOP7D3gbl5TNZwjIumWF5RFVjz/hGnoiIiIiIiIa9pDChPuxEjcsHWzQgD44pDNSS2h5xoohY2p/M9N/OFlIFAF0egwIyOiPWVetUx2AuKYjELUBF+ndFAvLrLIeKmevK6qxxuVLy1yzRgHlQSuE+bOF3tmNOql8KivOq1PYQERHlK/W6ntbmsNCgEKBablIIqFufjKiaaK3RnjLPBBgdLF8wmhQeVhganWP7HBSTgtF8BEFLpPNOSMmTEEZKMFoym8Dj2+81ljVH9sL0yKwKt4iIiIiIiIiIiIiIqHqpr/8FmH9w7y+BALDkdKiPXTW0jaqksy+Tyx65Hbrb/JDTnKXzFJbOlcuvf1LjuB9k8fvH5Psw8RigP36CW0uLTfQWjKaitVBX3W5e/9AToD71E//7Jk+UUsCpFxnLzt32e3G7V98Ejvx2cTha6xbzcTQ9tQ5Owb0+9ckf+WytgS2gKtElB6MxuME35TjAKe81F656BnpH/2CDmqDCXR+zT5e9dyVwxc0a7/n17mOjwzIMJB4D9Pc+4rnNu9R5mEQf8nFM2AL5qCzU/5PPPwCgrzSHtISD8jbNO140F5x0IdScA7w2jYaQev9XxTL9oaN3haN9a7nCflPkev74xOCMPelJa6TNw9pRawpGm773gPanvvEX1OlOLEo8ZSz//eMamawWw9r6tcvLeZJoD6OUgvrBnWK5/u6Hrdve+mEH+0+V61+5CTj7avl8JL13a8OATnYBKx6WK8+J1UN99mqoeQe6rytQCw4Blr3bfcUQg4fJQAnBaNolGI2BnUYqEgNmLDAX/u1X0Fo+p4RDCnd/3P757Jf3axz6zSzWaYENLgAAIABJREFUb7WH58f7hhzrG3/s1mTgwKVQV/yf+3oA0LVDLmMwGlHVYDAaERERERERDQvdWfNgKtuE+sFk229hmFRCCCyLBmKICpP+TdvZQqoA70EBtvVigeEdjCa9RrbXOSIEfCUyXdYvaQvJz/qSjxevx0pvHXIQmVT/QINbbMfcUL33iIho+JGCzNyD0czlUj+h3KTwVLc+GVE16czuQI82j1hqDPkPRlO2p+kVLtFafL9IfXBADuAtx3svnRWC0RzbIKmREYz2xLb7xNDuo+LyU/2IiIiIiIiIiIiIiPZEauwkOL94AOpv66Bu2wjnq9dDhfecsTIqGIT6pGWy6YO3utbx3TPsU9YyWeBbd5rvw4SDQGTdc8CzD7nup8ikZs+rqrmLoW5YCfXnl6Cufqz3v9va4Hz7r1CcFD2o1KJjzcsBLO5+WtxuexL40b/7HzdrzM+JQnNqbf8F7/woVO0oP800swVUJTuBlJAoEWRwQynU4qVy4b+uL1q031SFWz7kPmX2hv9ovLyp91iyBqOFeoC2Vtf6iniZRO8nLI/BaINOjZ0E9Yfn5BXuvwV6wytFi3vMz30EAMzoWWPe13mX+20eDZUFh8hlO7dB3/RTAEC0RuGhz8jnnitvHZyxJ/YAsoKT2wnnDnyHM+YDAM7Y/hdxlVueBjqFjFAAiOq+sSvsaxEZqQnTgLmLzYWvrYbukd/4LWMVnvpCAAe3yPXf+F+NlRvN56Qu4b0bqwFw3y1ype/6WO9nqeuehrp9E9QJ58jreqTe+wX3lRiMRia2YLQdtmA0hmBJ1NGny4UugYn7T1W47kLbbDtg03bg6oc02i1TIuO5YcV/+K64jrr6Uai/b4Bz1W1Q9Y3Wfe5iCUbbk74HJKp2DEYjIiIiIiKiYaFbmMAddiIVbkmvgAqiRpkHJRSGUUmTzyNODJGA94C1ZMby+AMAXZZQrXydWfmLu2oPRku5BKhIQWC2EC8p9CSLDFK6+O6OFoMR5C9rpWA2r8dKbx2W8Aih/oGGR0ivZ0jVIKAsj7kjIiLKI17XhYCinLThOmyrr9zE4NEMg9Fo+GhPCbMAAIwOjvNdnxyMViyle5BFxlhWUt/WYxC0TSmBiz6ykquW1hoPdNxhLKsLjMKi+sMr3CIiIiIiIiIiIiIiouFBjZ5QniCl4WjKTLFIP/eI6+YtY+X5yG7iMZQWihYMAeOn+NpEKQXVNANqzsLe/0aN9r9f8s9yfM1Kvmzd9OHV/W/gbdxmvqE3PbWu3++qyZIQ4YMKhnqPNZNkJ5ASEiVqGNxQkskzxCL93KPG5bPGe6s6dyy1bZPXadxiPx5FXibih3wEo0UYjFYRE6YBgYBc/txjRYsOEk4tjtKYll5fXBAIAuP8XatoCE2abi//29W7fqwNK9QJb2spbGigbPXGdP8xbspHeKwoPg6IxDAzZQ79A4Dbn9Niu6LZLji5cfgMoCGSTZgml61b6br5UbPtH8Ruedrcf5ZCDWtrFPQK+fOZOvKU3s9SLfOgbNdRPyZMAxyXGBQ/fSnac9iC0XYKwWiBIBCRx7Tu8Zrkz2RY4f790Kzx7l8OPbJao0OYTlcXBoIB1RsMKf19J8+AmnMAVNznA6OzWX/rE9GQ4AxWIiIiIiIi8u26th9ic2pjRfe5sec14/KwJfBqsEWdGHoyxU9cSRSEZUjhVBEnhqAKIaRqjAFchaFUCZfgM69BAV2W9WoD9Z7qGGwhIZhACjLIKXztc2zBCxFLWSLbhRqn/w0TKRjNFhIh7b/oWBH+NgrKeqxL/4aBBqPJrycH2RARkXdBIUzT7bqe1uZHqkr9hHKLBqRgU3tYLVE1aU+bg9EcBDAqWL4BhqYesq0vauuDi33nAfZtATloWQq97jX8k9FWJ17E6z3rjGWHNSxFyOEkDCIiIiIiIiIiIiIiKrDvEXLZzT+H/tA3oMLyeKb6iMJx84C7XvC/68YYoNta/W94+Em9oVVU/WbuAzS1AK8XB6ucvuNvuL7hneKm/9sIrNuiMW1M73i9dmE45JjMlv4LyhEIkxOpNU+qT3QBqeIxpQCAIO/JlWTWvnLZ+lXGxfMmAXMmACs32at+9c3c/833hMfUArEtraXdMZ4w1X2dGu9hHirKMZuVoMIR6ENPAB76h7Fc33o1cPxZUHmBDCcsUPj3/4qPkpPHrkHY9FDICVPLFxpDg2/s5N4wzLQ8zk1rveuYmDYaeLGteJ2tncCK1zT2nVJiaqwgaRl+Fy0c41aG66BSCnpSM5auvUdc596VGsfPN5fV5s+F8BIgSbSHUktOh77vZnPhxrX2/hGA5QsVvnOX3IN54GWNy08oXi6FGsZqAKxfLe9w3sHW9pRCBUPQ46f2/nsl7F+TkXSt1cBOIRG5vrFf/44KHPpWsUj/+QfAWZ+09m8PbAYmx4ENQi4dAKzYALR3ms9bjbkhxRvXyk86nneQXDkRDXsuUalERERERERExV7rXoNXEi9V9D9TcBgAhFWkwv/63SIB84T9wkCzwt9zchP+vYZmuYVwuAWn5XRldhiXOwgM6euZL1hiMJr0WpcSvCDX5z8YTQ4u6yz43dz+sBOFo+SvcaR/Q1IINvNKfj2HLpCQiIiGn5AyDz5wu65LAUZSP6HcpOud1z4XUTVoT5mD0eLB0XBUOQfaFveRpb4kYO9PSqGE5XjvSecdWzBYdgQEo93fcbtxuYLCkfHjK9waIiIiIiIiIiIiIiIaDlRNGNj3cLFcf/R4aGlScZ8fvNNB8xj/+47HALS1yiuMnlC8bMosqA993f/OaEgox4G64lfGslN3/B3nd1xn3b75iiyeWtt7H69DGFbZmGnvv6CcwWhSSFVipxyMFvIegkW7KccBjj3TXPi//0Iniu8jK6Xw6/MdjHbJEvvabb3H0BrzbXW0jAX0H77rp7m72+DleKvxMV43Io9zpfJSH/62XPjcI9A/+Hi/RR86WuHEBf1XmzUe+PajJ5vrmDh9gC2kSlKBgHvQ4cqndv34mwvksd77fzmLR18p7xiUbvNzRwGgOJivqbk8O53UjPrsTpy57UZj8dotwPOvmzetzY0lqglDhatjzgJRVTp6uVik//wj180ParGX32kIr85ktRi2GHO6gWceMBcefBxU0Pzw5AFz60/5CJmlPYgUcKY1sENI5qprGLz2jABq1GigdpS5cNsW6M+dAW0JkQ04Ctde4KDecunfvAN4aaO5LN73UUjf9Qe5jbY+PBENewxGIyIiIiIiomFtKAOaxECzwrArIZwqF5YlhWYVBgm4BQGkdA9SWeExLXm6sjuNy2OBuqp5ykXpwWjmUU5RIcQOsIemmf52WgpGs7x20v4L21tqEJkU0icFrXklbS+FVRAREZmUel2XyisXjObt+k1UzdrT5hHcjaGxJdVnCwMuZHuvRB25PymVJTKDGIxmPa8M72C0bemteGbHY8ayBbWLMSZkmDhEREREREREREREREQEQJ3+AbnwhceBO+zhVXMmKjx7pYO/f9jf9LVGWzDaWZ+EunEV1A/vgvro96Au/S7Ud2+FuuYJqKYZvvZDQ0vtfyQw/+Ci5UFk8Ku2D+D2Wb+1bv/5v2YBAO3CELl4tiC4r5zBaFJIVbITSAljIULyw5rITh1/llwoTI4/bKbCyq84uPH9DmosWR0rN2q0CsFozWM08Lz5XqsrL8ebn2MiwjGblaImzwROvlBe4eafQ7/y/K5fozUKf73EwaOXO/jxuxVu+4iD/17yJmam1pi3n+SSVkPVx+X9rK/66K6fD5hmr+qKm7NlaNBuUogRAER0sv+CcoXy9dXz400fF1e5bYV5rE1M91206+LlaQvRCKWCQWC/I82FzzwAncnYt1fK2v8BgJc39X+fJizTkGLP3iPv65SL7DsaCJfzr2LwMJmUEoxWz+uSG3X+Z+XCh28DHjE/vDfn2LkKq77q4LMnymOQv3e3uf+QC0bDdd80bxgfB2UK0CeiEYPBaERERERERDSs1Qbqh2zfXsMypLCrXFiW11ArLyEcXS7haQDQmTEHo9UG6ly3rRQpmCBlCVDRWluCxeTws7ATEQMeTPVpLQSjWUIipP0X/o3FIDJLcERv+eAEo0nH3FAGEhIR0fATVOYRFmlteWQlhj4YzWsILlE125rabFzeGCwtGE1iCg+2BZmFHfnRb1IIb7dOIqPtg7rcyOcVecC5FIw8XDzUcTeyML9uSxpPrHBriIiIiIiIiIiIiIhoWGmyh7foR+9wraI+ovC2fRUOn+l9t/GYEoPRVMs8qJow1AFHQ73jw1BnfATq4OOhogwNGpb2XmRcrAAse+EnqJdvK+LuF4GetEaHMESuMdO++5fRE6HCZRzzJoVUJTqhU93mMgY3lG5is1ikH79LLBtTp/D2RQo/eKc8tvP25zReazffE25RGz03sUhTs/s6fo4JnuMqSs2Yb1/hsTv7/RoMKBw8Q+GSYxycsI9C3QpLgIyXY4Oqi1vQ4Zbd54qAozDDMiTngVXAjmT5xqEkLcPv+gWjhWqAsU1l2afqez3GZLZi/+SzxnWeWW/etjY3rr2uoSxtIRrRJlnCDNe84Lr5h462PwD19uf6n4s6bcFoz98nF5YzfLiAcqubwcNkYglG0zuFYDRel9y5hPvqR++0lgPA+FEKnz7e+8OZcxpjgN62RV5hio8vnArttb95ebR65lcSEYPRiIiIiIiIaBiLOjG0RGcP6f5NEpnCQDN7WJdUT+F2tmABP+t0CcFoMad6vriTAk+kIAMA6NHdyML8JC3pNQYARzli0JcpWEwORpC/oJWPlf5/r2RGCkaT2w/YQvoGFowmBb+4tYeIiCifdF23BZ4C8nVfClAtN68huETVrD1tfrT16NC40iqUBo0Y2EJ2HSXforT1NQfav5XOOzWWYLThLKPTeKjDPBFgXGgS9o7tV+EWERERERERERERERHRsLLXfkCDJd3jFfcJ+TnL5nu/zxQPdgM7t5kLB3HiPVWeOnCpXPbqC1g6V942q4EHVwHbhFv4DZm8Yyg+psQWCoSQKp3sAlJCqkSoMmMdRqRplnHCG9e5br50rnz+WbMF2CoMu52Q3uRat1EgAIyf6r5e2JL8V6jGx7o0cIuPtRbrtlb79q+vKbluqj62axUA4I310OndCWVL59n7POu2lqNVvZKW4Xc1Ou96NGEalFOmOIG84NzFif/62jSaG/dT31iethCNYGrRMXJhW6vr9mcssp+L/vSERk9697yYTiHbFwBqt7wqF7a4hIkOhNv5d+ykwds3DWPSsa8BKRiN1yV3+x0BBC2fadss/d88o6L+g9Fs4fkAgJkLfNeZo878iHn5R79Xcp1EVH4MRiMiIiIiIqJhKaiCOHfiRxFQwSFrQyQghF0VhEklLIEAgCU0K1sYsOYewiEFWeXrygrBaIEqCkZz/AejmULMcqRgE7dyP8ELtq9nvQarSP8G6VjLkY6htE4hlbWHztgkM9Kxy2A0IiLyLiQEDqW15RFzkAOMpKC1chPDa4UgU6Jq1J4yB6M1Bi0TWCz8DElwC4iWxBz5SdeFIdR+iYGLjhyMltXm8OXh4Nmdj2Nbpt1YdlT8rdaAOiIiIiIiIiIiIiIiIhWqgbr4y/IKWzdCP3anp7ref5SPYLSdr8mFDEYbWQ4+HgibH2oKAJ+t/wfCliGiy74v38trzO6e9K4+elVJzRNFhHueiU4gJaRKhMLlbcMeRAUCcjDG6hXQafsYyVnj5fNP65saHcLQ3PgdP/faxP7GT4GyhQbk+DkmQiPzYV/VSjXPBU66UF7hb7+ybm8NTpu7uJQm0VA6/CRgvyPt69zww10/fnKZwljLkPyHVkkP6PavWzj9hbPJ/mN8ytl/mjh914/NqVZfm9bqvnE/dQ3law/RSHXM28Ui/fBtrpsfMgN4xwFy+ZOtwNwvZrFyY+85qcsynDf28uPmgn0OgwoO4nyueQfay/nZkEykh/9qLQew87rkSsXHQp17ubxCW6vnuq44wV84WjwG4Il/iuXq/M/5qq+fJacD+xzWf9m8g4Cjl5deJxGV3dDNHiciIiIiIqJh66j4idiREZ6UUAGjAo3Yu3Y/jAmNH7I2AJawjIKwq6QQVpbbXgzNypv0r7X2FNLV5SEYrTNjDkarraJgtJAQeGIL+bKFlEh/q/xyU1yAKagsC/NgKmXJn496DNGT/sau7bcEpyWznQg5cev28ralhVkQERHlk4LMbIGnAJAWrvvBCgXjyiG4DEaj4SGrM+hIbzGWNYZKC0az0VpD5Q0qkd4rbn1bWyiwlyBoGzEYTQhwHO7ub7/duDykanBoA59CTURERERERERERERE7tQp7wWSndA/vsxYri87FfhnO5QUFNVnwiiFq89VuOg69zCQ+L+vMReEaoCxTa7b0/ChgkHgd89AnznHWL7wl2dixXWbMOcb9b7rjuePcV24pNQmmkWFhz0lOwEnYC5jsNWAqPOugH7yX+bCP/8QOPtT1u2/eprC5/9afP55ZTPQLgwDiWeF4IRFx0DtdwT0NV8xl09qsbZlFz/BaDUM1qs09emfQf/vP8DqFcZyvX4V1NS9zBu3tZqXn/HhfuMqaHhQNWHgqtuAG38M/Qtz8Ib++WeBE86FahyHvSYoPPUFB9M+Yx5v/sE/aLy/TJelZNq8PKKT/RdMmm5esRR5QUQtfoPRcuN+6kob1060J1HhKPTcA4GXniwuvO1a6M/8wnpNUUrhTxc7ePaLWax6w7zOmjeBC6/N4uHLA+gUsn2BvPdu4T4u/ILtnzBgSinoeQcBLz5hXqHJY5+L9iy2YLQd5ofM8rrkjbrg89BvbAD+YfjOZtN66EymN9TaxfuOVPjGHd6DYuNRQP/kSnNhwxioAXxPpKK1wHdvBf71Z+iX/gs1a5/ePl2seuZXEhGD0YiIiIiIiKgER8SPG+omVAUpHCp/sn4qm0Jam+865raXQ7N2j7bo0d1iIFe/bTLuQQFdQjBazKmeL+5KCVCxhZTYwhUAb+F0uwjfv9rGKkj1p3QPMjqNQF/AixT04BoeYSlPZBOoR2lf1IthFi6vJxERUT4pyEzqI+0uF4LRnMoMFo465qdSewmrJaoG29Md4meIxmCpwWhyp1dDQ+WVlxqyG3WESQQoQzCaGLgoP61bSx8Aqtzr3WuxKvGCsezAUUchVkXB2EREREREREREREREVOVOOBcQgtEAAE/8EzjqVNdqDmxWEAdf5YmntpoLJkyDcuSHV9IwNWFab2hYqsdYPGvlP3Bwy7vx+Bp/1TbmgtGa55Y/iCgi3NPs3AFEzGMNfIVgUbG8IJ5C+sFboVyC0VqEW+QvtcnbxDNCcELzXGDBIfKGlrb24yfsjMdPxSmlgLMvg/7SOeYV7r0JOPdyc9nGteY6m2aUqXVUaaomDJz9KejffxvYKYQmPvg34JSLAABTGhUOnwk8/Ip51R1JjfrIwK9NyZS5XxXR/ROOlNfARg9UfRy6Lg7s7MD0HvOxLonlxhLVNZStPUQj2vS9zcFoAND6EtAyz7p5wFG48mSF9/xa/gz26KvA+q0aXeauOAAgqhPmgkoEk+17uByMFh83+Pun4ccWjCZcwxWD0TxTb/8gtCkYLZMGNr8GTHQPY53SCAQcIOM+RRJAQeh5ob0XeavEQsXqgVMugurrxxFR9eG3wUREREREREQlkibsJ7OJvJ/l4IxcuJRcz+5tbaFf+bo8BAV0ZYVgtCqaGF9KMJr0Wis4CKuIdX9yOF3x6ykHI8g3qG3BZvl/22TGfNPIPTxCLk8OIDyi1DALIiKifNJ1PWW5rgPydT9kCTAqp4jQR/PaLyMaalvTm8WyxlBpwWjK0uctlDCFDMM99DegAmL/vctDELSNdN4JWQMXh2cw2v0dd4hlS+InVrAlREREREREREREREQ03Kn6ODB1L3mF9as81TN7AhD3MOyoUQojGjfZ035oeFGOA+y9WCzX61fh4Bn+w2NGZbf3/uBhYrZvceF+6xvrgZQwFoLBVgMztkkue9OSbtZn4VT/x1CjMAFfzTsI2Gt/IGB+UKCaKx/P/fgJRgtW5iGCVGCuHLSg1682L0+nes8FJpMG4XxElWV5fxceEy1j5fNO65vlaU5SuOSEC4LRPAc2ehXrnXPQkvIXjFar+8YS1TeWtz1EI5SyXIe8fgY7qMW9D7TqDaBTCEaL6gQcafzc+Kme2jAQ6i3vMBcccHT5w49phJCOCw3sFAK26hmM5pnt83Wbt35BMKCw2Ee3OJ7YKBfO2s97RUQ0bDEYjYiIiIiIiKhEEcf8ZL9E3mR9W3BGLlxKrKdfYJa3AI6Eh6CAzswO4/LaQL2nfVRCSJkHcdgCVKTXOuJEXW96SEFf+SF3ORrmx1I4lq9ZpPA7oP/fVvo3SMFtOdIxBMiBFF6I7WEwGhER+RB0hMDTrOURc5CD0YLKPLC03KLC9TWtU0hl7aFuRNWgPWUeRVmjwqh1BqPv338AlBiyG5D7rjnRgHt4dCmk80qN8PkDALJ6+AWjJTJdeGLbfcaylsgcTI3wKdREREREREREREREROSPetfHxTL9xD891REOKVxyjPvk9YbMNnMbzrvC035o+FFnXioXXvdNXDz6CdT6yJBqyHQgkBvn19Q8oLaZKClgpq0VSHWby0KVeQjcSKUcB1h0jLlw0zroNS9Zt997ksLBLf72GReC0bDkNKj4WOCt7ykuG9sEHHumtx34CcvzE6JGZaMmz5QL21rNy99YD2TN44wxyedBSFVHnfERufDem/r9+um3yn2eA7+exfbEwMejdKfNyyPZZP8FZQ5GU2d/CgAwPvMGoj7G8sT6Hvat6hrK2h6iEWvpO8Ui/aNPeapi1niFU11yg678WxZdPeZzUkyanzTnAKhgBcby7r0I2O+I/suUgjrTcj6mPZs0d0xrYIf5uwbUMRjNK1XXIAac6t9+3XM9H1vqPdgwvkUOglSnX+y5HiIavhiMRkRERERERFQiabJ+v0Azy82+XLiUFJqVv60tYC1fV3an+zrCzYmYJbyr0qTAE40sMjpjLJNeay8hXtI6iax70JwXtvCHRL+/s3l/UnBbjqMCCKuIa/1+iWEWDEYjIiIfpMDTtBZGZvWRAlGDqjKDhSOWvlG3ITyVqNq0p83BaI2hsSU/LdG2VeHQKFPIMOCtLyn1z7sG2D+XAxdtT9cefsFoT2y/D906aSxb0nhihVtDREREREREREREREQjgTrlvUC0zlz41H3QPUIYVIEvn6Jw1Zn2e1WNWXMYkZJCkWjYU0efDkyfI5bv/fWluO/cDag3D5Er0pgXaCWGmA1EkxButHkD0GV+cK2vECwyUh+9SizT5+4PnbI/oO/Lp/qbSms6F6nf/Acq3DseVH3qp1AXfhHYa//e0KFl74b6xQPeA39qPB7QABCy3dOmwaQu+Za5oK1VWL5Wrmzi9IE2h4aYOvSE3pAek03roNs37/p1wWS5v9OTBs75tRCg50NSeLZnpHDMyKQyH3unXASgdxxRc8pyzBeI5cYS1TOAhsgLNWo0MHUvc+GmddD/vN5TPddf7FjDGh9+Bbj5KXNZrTbPJ1Gf+omnfQ+UUgrqO7cCZ3wYaJkHHHgs1Ddugjr8pIrsn4YhWzDaznZzWT0DO32RPmP/917o//zbUxXvPNDBje93EPcwNa3hHz8yF0TroCZM87Q/IhreGIxGREREREREVCJpsn4ym4DWvZPnbaFUESfa7/+FEhlvAWv9t7EHBWit0ZU1D7yJBeo97aMSbIEnUphB/uuVz0vwgrROMlMc5qCFYARliYmwhbP1D9Izh0d4CncTgvq8HjuFtNbiaxoNMBiNiIi8kwJPpWu6W7k9wKh8otZg0/KEpxINpq0pIRgtOHYAtXoPVJM+C3np28r989JDfwH5vFLjyOcVqf9frbTWuL/jdmNZXaABC+sOq3CLiIiIiIiIiIiIiIhopFDnf1YufOxOb3UohY8tdTC1UV4nnjEEo8090FP9NHypMy+VC9MpLFxxLf77eW9TIePZbbt/mSSEmA2ENBFca+C11eYyBlsNnFuolMt5aOlcYMlsb7tydAb1hWNtIzFg5oJdv6pgEOqCz8G55nE4N6yE88VroSZM9bYDAMpPWF4Ng/WGzDThoHlzgzmMr63VvH58HFRMCBilYUWd/gG58N839vv1GDnzE/94Dti4bWBjUqRgtLDOC6yNxID4uAHtp5AKhoC+IBI/wWi1uTF3dQxGI/Js/yPFIv2P33iqIhxS+OZyB2csksf+3fAf8/koJs1FGYzwYYGK1sK59HtwrnsazlW3Qx3+tortm4YhKRitayeQyZjLeF3yx/L+17df57maty9S2HyV4xqA3mj6jggADn2r530R0fDGYDQiIiIiIiKiEkmT9TWy6O570pI0cT+sInBUAIA90MpLwFq+LpeQjh7djbROG8tigeq54W4LRktp81P9pAAwLyFe0jqm1z33NymkpC/QAQRUEDXKPDAlv91SsJ2XcDcpYMLrsVMopXuQhfmLfy/tISIiypGu67ZgNK212GcJWfoJ5WS73klhpkTVpD0tBKOFBhKMZtO/nyz1z730JWPCZyS3zztuhjpwsRJeTjyPjT2vGcsOb1iGkFOZcygREREREREREREREY1AM+bLZa++ULbdGCe9VnDiPQ2RFsvxBQCvPo9po4E6D/lQ8Uz77l/cwrRKYTse168yL/cTgkVGKlprf+1dzkNKKXzlVG/Tacdm3ix+bNjE6dZxor7V+LhPzeNn6EjHXDYLvLG+aLFuaxXqGYRzEQ0NS39Iv/p8v9/nT5bPGVoDL7w+sKZ4Ckab1Fzec1devQAwP+m9D7gruLSeATREXqkyfgabP9n//muluSijRvuvjKgizNc83bXDuBwAEBs1SG0ZoWznpTX+zksBR+HQGfZ1xma2GJer5nm+9kUb22FZAAAgAElEQVREwxeD0YiIiIiIiIhKJAVRAbsD0eQwgKhrPVlk0dN3Y1IKzCrktl5XZqdYVutUTzBayJEHfEghKVIAmJfgBWkd099PQ3o6l/2msbSP3N8sqzO7AvUKSeF5XuqXjkE3tsCXaN7xS0RE5EYKRktZgtGyyEAjK9QXLEu73Nj6EIkBhjMRVYIYjBYsPRhNWfq8hf3khBASbfsctXsdc/93oO896bxTYwlGk85F1eqB9tuNyxUcHBk/vsKtISIiIiIiIiIiIiKiEWXxsWKR/uN3y7abUdntRcvUae8rW/1UpRYcAkzdSy5/4G8IvfwfnHWwe7hLPLNt9y9NzQNvWwEVjgJjJvnbKDRyHtY0lNQJ54pl+rpvuG5/xF4K7zrQ/RianlpXvLDcAY01Ee/rMhht6FjCFfW75iH76y9Dp/PGIrz0H/PKDPgcOeYcIJfd+mvodSt3/XreoQq2TLJXNktj0r3pNg+pRySbNx59sI69vnrP2fZHONr8IO5CU1N9YYJ1DEYj8uzYM+Wyjs3QXfL8oELv8dCPLhTVhjGAsxcOTuAiUTlIx2bC8l6Juo9ppd3Uce+WC1evgO7plssN9pogn0/CThoT0xvNhcdb2kFEIwqD0YiIiIiIiIhKFA3YwjK6+v2/UCQv6MoeupELWJNDqvqvbw8K6LQFowWqJxjNFniSzprDDKQAMG/BC0JombFO801oW0gEIB8vXv7GXoLIxH+DEEjhxnYseQmbIyIiygkJwWhpSzCaLTRNClort4AKoEaZB5Z67ZsRDaX21Gbj8tGhcaVX6mNAkxgSbfkclSMGo3kMjJZI5x3beWVgQ1Arqz31Jp7d+bixbJ+6xQP72xMRERERERERERER0R5PBUPAwceZCxOd0Lf+uiz7CRgeXKMWLilL3VS9lFJQ3/uHdR196TJ8f+GzOOcQ+33LxmxH7w91DVD1jeVqYn8+g2YUg63K45zPyGU93dC3/NK1it+cr3DWQfZjqKWntXhhucOF/BwTNTx+hoqK1gKN4+UVrv0a9P87BwCguxPAk/8yr8dgtBFDKQWc8RGxXH/waOjX1wAAFk1XuP598jT+D/x+YKNSksIQu4jOCySxhPsNhOo7puf3vISbXnsXmlKvu26zK3SyrmFQ2kQ0EqnG8VCfu0Ze4eafe65rxjiFr53uL9Cs1jAGUH3+N77qIKooaYxr0jKvKmIer0pmasos6+cy/Ym3+aqvxfKs5+mhDjjSHL6mGb72Q0TDF4PRiIiIiIiIiEpkC4dK7gq7ksK6onk/W4LR+ib+uwWe5XS5BAV0ZeVgtFhVBaPJwQQp3WNcLgYveAgVk/6WpjqzpQajuexDCtHrbZ/7F+1SwITXY6e4XbagNgajERGRd9J1Pa1T0Np8XbWFplUqGA2Q+wilBo8SVUoq24Md+U9Bz9MYtIwiGIDCt7MYEu0luNglVLhU0rmlxpGfzi6dp6rRQ9vuRtYwUQgAlsRPrHBriIiIiIiIiIiIiIhoJFIHLhXL9J++Nzj3VhYdU/46qSqpSc1QP/23vEJ3AuG//hS/vdDBN5bL4/UaMn3BaIMUBgPAf8hRqHJjHUYyFQxCffR7YrmX81A4pPD7ixxccYJ8DLWkWov3PZTBaAzWG1pu55L7b4F+bTXw4K3iKmowz0dUcWq/I+TC7Vuhb//trl/PWKxw5mL5fLOhvfS+UzJtXh7OC0Yr+7krJ6/ek3fehrWrZ+G97fawpGmp9b0/1MUHp01EI9XSMwHHHAmir/umr6ouPtJvMFrBXBSlgMkMI6IqJgWjJSzzqiKcH+WXOuW9cuGzD0KvedFzXc1j5PPSdGw0F7zlDM/1E9Hwx2A0IiIiIiIiohLVqDAc4aN1YlcwmjlcKj8MQAq0yt/eFlKVr8slBKsrYw5GC6sIAiroaR+VEFJyMIEUZiAFlHgKXhBDyxLI6kzB0tKC0cRglVwwmiVgxUsQme3fUIqEJWQv7CFsjoiIKEcKMtPQyKLwOtsrrYVRWwBClgCjcpPCmaRAVqJq0Z7eIpYNJBjN3uPd3U/WWov9UG99W3MwsK2P6oX0WSJo+fwh9f+rTVqn8HDH3cay8aEmzIntW+EWERERERERERERERHRiGSbBP/aK8A2+T5VvsuFQKJ9kyuKF05s9lQnjRCTZ9rLX3gMALDvZPnuZVO6rfeHxvHlalURNXUvfxsw2Kp8psySy9rWAluEyfMF5jfJZbN6XjHs1+XY9Csc8b5ukMF6Q8p2zOW8+CT0848NrA4aPlyvVY/3+3WW5XL0ZGvpzejqNi+P5o/ZaWopfQc2k/qH/SkARyQeFlcfm96MWt035q6ewWhEfqhgCKgfbS5M90BnzQ/SNBldCzT6yIAqCkYb2wRVw34tVTExGM08lw4AEOb8KN/GTgZs54KCvpDNXpZ+0uye1eaCidM8109Ewx+D0YiIiIiIiIhKpJQSJ+wnXcKu8sMAwioCJQasdfb7v5tEptP6tLvOzA7j8ligzlP9lSIFqAByUIoYvGAJnvOyTmG94svr8vAcKQAid4wkLX9jL+FubsFrfsmhflE4il8pERGRd7brekoIKUpneyz1VS7MtdzXV6JKaU+/KZY1hgYSjObtiZHdOgkN84CrgQQXD+S9l9VZ8bNEjSUYTQ+TYLRndjyG7bkn3xc4qvEE9uGJiIiIiIiIiIiIiKg8Fh9rL29r9VTNafsr43zlM7f/pWiZKgjeoJFNjZkI7HeEvML6VdCZDI7ZWw51OGnn7b11LTltEFrY5+jl/tYPVe4hcCPewqOtxfqLZ0E//YBrNW/bRyFiGNJSk+3GyTtvKy44cKnHBnrk9ZioCUNJAQ9UEeoY9/e7/v7HgBVyKBT2P7KMLaIhN3MBYAvIfPWFfr+esUh+D//03qx17L9NR5d5u3h22+5fJjWXVLcrQ73Te9aKqzfmxrREa3tDnojIn9n7mZeneoAtbZ6rUUrhHZZzUqF+5xNg8M4pRGUjHN9JYexpJMa+dglUMAgccYpYrv97r+e6FkwG5kwwl7399V+b989gNKI9CkfAExEREREREQ1AJGB+MsTusCvzl6f5YQBKKUQccz257ZMZc0hVoQzSSGk5SKRLCN+qrbpgNDnwJC0EqEjhcQMJFQMMwWhCwIPj8jVLRAhf2xWiJwSRBVUIIcf9BrAcvOYtVK9ouwG8nkRERPnsgafm67oUmOZWX7lJ11epj0dULdpT5mC0WqceYcfHU6d9yA8Qk0J2AYifffJFA+YAaq+B0SYZIRQNAILO8A9Ge6DjDuPyGhXGIaOOqXBriIiIiIiIiIiIiIhopFKRGNS3bhHL9Q0/8lTPpLjCby9QCOQNuTopcRc+tvXHxStPZDDankZd9lNruf7MaYiEFP74Pgd1od33AZXO4qdtl2J2z+reBSeeN3htbJnrb4NQeHAasgdS4QjUd/8ur/DcI9CXLoO+0XA+ydMQU/jdhQ7CecNVa7LduKbtYozNbOm/8uyFUGH3e92+eD0meOwMvcPeBrzjEvs6OzuAVc+ayw44mkFQI4xSCuoL18orbN0E3bF77M5+U+XAlXv+B3z6ptLGprQLQ9ji+Q/WG6x+1NimooDH5pQcjKZzoTN18cFpD9EIpz5l6R/f/SdfdX3lVIWDmr2t25BhMBoNM1LIWWKneXnEPFaV3KkPf0su/Nefof/3X2/1KIXfvdfB+Pr+yz+3ZAeO7LjHvNEEBqMR7UkYjEZEREREREQ0AGIYVd+E/YQQmhEtCMmSQ61yoVneAwCk8DMA6MrsMC6PBeqNy4eKowJwEDCWScFvUviC9Np6XWcg4Qv99yGFO+RC9Mz78dJ+wBa85i1Uz+t2XttDRESUYwv4TGfNAWhSYBpQ2WA0KcBJ6uMRVYv29Gbj8sbQ2AHW7O3JeMmM/B6RQs/6rWP5fFTqU3Jt55UaZQtGq34buluxOvGiseygUUsQq7IgbCIiIiIiIiIiIiIiGt7UYScCoyeYC//1Z8/3c95ziIPXv+Pglg85eOZTnbi5dTkiurt4xUkMRtvTqOl7Q938qrzC43dDr3oWx89XaD3lbtyy/h24/rWzsX7VTLy/4+redeoaoELyfcCycAtKysdwq7JSBx8HjJtsXUf/6kroLvOY2Zy3L1JY/y0HN3/QwY1L/ovW1bPxru03Fu/v9PcPqL1GNR4fahYc5OOYXKlAAOrS70H98fmSQp3USRcMQqtoqKm5i6F+dLdYrv/wnX6/X3iEPObmqn9qrN3if4RKhxSMlu0LRquLQ9UPThCZcpyiUJKmdJu4vs6NOaprGJT2EI14k5qBiHlMnf7F53xVNX6UwoOfdvBey3kpZ9f5JIeh1VTtxGA0YV6Y8L4id2rcZOCMj4jl+pqveK5rcbPC6q85uOOjDn7/XoVXvu7gS69+XB6xzHMR0R6FwWhEREREREREAxARJuznQqWSQmhG4XZyPbnQLO/hVomMHOTVmTE/5SImhHYNpZAQeiIFGkj/bum19bpOMtP/tddCNIJy+ZpFClbJ/Y0TQniEFKhWvJ49pM8vr8cuERGRG1uQmXRdT+u0cTkAhCwBRuUm9tEypQWPElVKe+pN4/LG4MCC0bzFotnDA6V+cb6oEOSVQVoMSnZTcuBiiUFslXR/+x1i2VHxEyvYEiIiIiIiIiIiIiIi2mPstZ9ctuEVz9WMq1c4dX+FfdQaONIjazjhdc80tskenvJ4bxhNY/cbOHnn7XjHjlswMbNpd/kgBcHkU5Oava882CFte6I5C+3liU7guUdcqxlbr3DaQoXT267D+Iz5IWTw87f2qsZjWJ7X9WhQKaWgpu4Fde5n/G88GMcPVYeW+XLZy8/0+3WGZciO1sDdL5YQjCYMYYtntvX+MNjHXkH9QWQQFcYMXdDx294fony4H1EplFJA0wyxXHf7G9MaCiq860APwWi580muHbymUbVjMFpFqelz5MIn/wWdyXiuqy6icPx8hbMOdtAyVgFr/yevPHGaXEZEIw6D0YiIiIiIiIgGQArLyIVRyeFS/cMAogGpnq5+//eiyxKE1ZU1B6PVBuo9118pUjiBKSglqzPo1knj+lJgWL6QU4OgChrLCoPFNLLG9ZRLTIQUcJYLRJPC77wER9jql45BN3JQG7/4JyIif2yBQykxGM0WYGS+Zg8GuY9WWvAoUaVsTQvBaKGBBaPZ5AcIS31QBQdh5f7Ua1ufs9T3n3S+AYAaRx5ILvX/q0Ui04knt99vLJsZnYspkebKNoiIiIiIiIiIiIiIiPYIauESufD1Nf4rbGs1Lw+GgDGT/NdHw55SCjjoOLFc//X/oLt2ADs7zCvUNQ5Sy/I0tXhfl8FoZacsx0eOfu4x7xXazl0LDvFej1chj4FnPHaqi4fjrghDZEYsFbeMw3nqvn5hIG+dbx9nvnaL//23C0PEGzN918amZv+V+mGo//yO3xlXXb7jr70/JEsb105EAKbuJZdtXOu7ukPlnLVd4tn+wWg4aKnv/RBVlnC9TTIYbVAcaDknpFPAm6+XXrflvKZi1TcHkogGD4PRiIiIiIiIiAZADKPK9IZcSYFmhdu5hVr5CbfqypjDz2xlsUD1PX0p6JhDVFLZnqJlUqgYIAeaFJJC7grr1tIDuVwemCO1I7kr/M78Rbv39psD1JLZBLLaf5iDGOoX8BbURkRElBOyBKNJAWgpXXy9BwAHDhwVKEu7vPDaPyCqNu0pczDa6OC4AdYsd3q9BKNFnGjvBAYXMeHzEQB0ZUoLRrMHLsrnKf/P462sx7bfK4ZEL4mfWOHWEBERERERERERERHRHuPU94lF+pMnQafM93zFbe65wVwwYSpUoHL3iKm6qPOukAs3rYN+9wLop+4zl9fHB6VN/UxiMNqQOv4sYP7B9nV++3Xov1/jrb62VvPyyTOgwoMwbrLGazCax/WoItTMBcCpF3nfoCYCjJ4weA2iobf8g2KRvuwU6K7esfsHTFe44HB5zMzXb/c3QiWV1ujsNpc1ZPuC0SZO91WnX8pwHfz41h9iek//IJOPbP0pZves7v2lc/ugtoloJFMf+oZYpr94NnTW35yRWFjh82+zj+VryPQPIVbjJvvaB1HFSeNTE8I8u4g8VpXcqaYW4JT3iuX6y+dBi5PwZLprB7DNnBqrLvyi7/qIaHhjMBoRERERERHRAEghUbmQq1xAWtF2BSFWUqhVItMXjJbxHowmBWwBlmA0pwqD0YRwAlOggS2cRAo0KRQV1isOtzN/Keu4fM0itSP395JC9CKWUIh80YC8XncJ4S1eQ/2IiIjc2AKHpKAiabmtrsEg9Q/8hNYSDYX2tDkYrTE0ZkD1egk1A2x9SY+hv5Zw4FLff7ZgtBolT0LQVRyNprXGAx13GMtGBeLYv34QnlpOREREREREREREREQEQNU1ADP3kVe4+0+e69LZLPDvv5gLBznQg6qbmjEfOPNSeYWtG4HH7zaXVSQYrdn7ugy3KjsVq4f64V1Ql/+fdT393UugN2+wr5PNApvWmffz/q+V3EYrr8FoXtejilGf/AnUlz1e5yZN9zzWgoYndfKFcuGT/wJu+tmuX68+V2HWeHn1N3d4H6OyzTI0PJ7Z1ts2P9epUoyZWLRoRqoVj7YehR9u/AQ+seX7+Ov6t+OqTZftXqFz2+C2iWgEU00tgBTW+urzwNP3+67zE8vs16jc+QSwB7MRVQ2p3yUFB0YGIQB5D+Nc9jO5cMXDvf/51bZWLnvr2f7rI6JhjcFoRERERERERAMghUQlsl3QWoshZYUhVlI9yWwXsjqDbp303KZERg5G68yag9FqA8M7GM0WBuc5fMFj8Em2xGAEOVglAa21GPAQFULzvNYPyMEUNlJ7pBA/IiIiiS3MLCUGo6V91zUY5GBTBqNR9UpkOsW+XGNwbEXaIAU7e+1LhlVEDB7usvT9bWzBaEFLMJoUjFwNVnatwKYe8wD+w+PLKn7OJCIiIiIiIiIiIiKiPUzLPLFI33ez93pWr5DLJjZ7r4dGJLXv4aVtWDf4wWgqVgc0eLwHy2C0QaHCUai3nQecd4W8UjYLPHirvaI3XwdSPeaypuaS22fl9ZjgsVN1lFJQxywHxk12X3mwg6lo6LmEuOb3iZRSuPQtcgjR31d4H6PSYQtGy3b0/jDYx9+EacbF4zObcUn7L/DtNz6Hk3begX7/4kVvGdw2EY10sxeKRfrem3xXF7MNmwPQkM0LM+RnMxoO/AbShr3NNyMXe+0vFvn6fiinbY15eSAAjJvivz4iGtYYjEZEREREREQ0ALawq5TuQRbmp0oUBgJEA3LoRjJruXNpYAsK6MrsMC6PVWEwWkgFjcv/P3v3HSbJVd9t/3uqu2e6J+zMbNDuKq4kJFACBYQkkHclgoRkko2JIhkcCA8YY4IJNvYLGAfA5sEIv4Bfg7EJxg/2izESIIIQGGwRTJBF1kqAVkLSzmyY6d7t7jrPH7O92zNzftVVHad37s916dJOneqqM6m7uqf6rlDQoFK3v0ZW0CTteuUVUYfwH52dkl9At35WvLwO+EpgP415haN5K9ezP08rjJHE+rlL+/UEAKAhcpEi5YJjVqjIWl5YJWG0dh5bgX6Zrd1rjs0UNnW07aQjXu+PHCdbx5LLA9HmfpyzI9TGcXMr1TgpjGbftzR/XqvNjXOfDC6PFOnSqSv7PBsAAAAAAAAAALDWuHMusQfv/En6Df3cXted9ZAMM8JR6cwLpaiNt0Cu39z9uYScc3G69U45q7fzWOPc2cnfB/+zHydvYNdOe6xXYaGRYrr18lwQa9Vq8XMnSe6slPcRGFpuYioxFrv8mOihp9pn3/z4nvT73X/AHlvXeL/Ahi3pN9iOMx4sjWa74La76hk9mgywRiQ9B/vpDzNvbiSf/B6Y6XpTGG1rcggSWB2yhtGyPY7BkPS8+Jb/yr69XTvDy485Xi4ffq8hgKMXYTQAAAAAADqwPHDWUK7Pq5wQzFge2TC3Ey8kbsfad0js6+a2xqLVF0bLu/DlZ6qhMJrxeeVdXoWoxWVsDrHjdEu/nt4Ko7W4skhSUCzp58Wa14r1ErefPR5h/Rwl7QcAAIsVNLMCaNU4fBXefNTfkz3N44P6wqqOJWFt210NnyXp5DSdX9/h1tOdNLL8GLrBet4Tkvb4PC3r/kZafN5ghY6t4/9B2129R9/ef3Nw7IETD9FMIeWV6QEAAAAAAAAAANr1qKfaY3f8QP7276Xbzl077bGH/1qmKeHo4zYdJ12ZPaLijj25B7MJ7OcpL2290pNeLFdKdxEptOnCR0mnnWuPf/Qd8uWEvzXv2hlePr5OmpzpZGa2wmi69QijrVruSS+WRhK+jzPHSL/87P5NCAPjnv5ye3D/Hvl9c4c/PO9Ee9U/+aTXwVq681TmE8Jo4/7Q/d3kdKpttcsVx6SnpngcbPbgR/ZmMsAa4R73PHvwG1+Q/9Dbunpu67p475EPthBGwxBo8b6uFQrp3m+GZO4Jz7cHb71Z8fO3y9/909Tb87t2hge29ud5PoDVhTAaAAAAAAAdKOXCJ6tU4gUz1iWtjEuVIns7WaNWVihgISEgMJ6bzLSPfshnCKhYUbGkGFnadStxecnH1h+KrJBCQ1LgrBKXzZ+XtJ9DIRpR3oWvfNFOPGL55314PilDbQAANLMf12vG8nDAyNpOr1iPw7HqqvpwvA0YtNnafcHlU/n1yhnHi91x5DjZPJbMcHxuPUeyAr6tJN2vLEaOM54QM2Bfmvu0vOLg2I7pq/s8GwAAAAAAAAAAsBa5yRm5P/moOe6f82D5WvhvwkvWu+v28MBpD5IbX9fu9HAUca/6G7nnvynbjbZu68lclnPn/pLcOz+XvM6L/6Ivc1nLXC4n947PJK7j3/YSe3DXzvDyY09uedHctiUFtZrlevl3fnTCnXOJ3Ns/vRjxPOE06fhTF//bdoZ09bPl/ubGxbgjjnru0dfI/c7b7BWajnWcc3rxw+37lVf/S2dhtJyvaaRxXluvwo5N3PNen37lU86SGy32bjLAGuCOO1Xut95gjvtrXy194WNd219e9cV/lMalqQ1d2y7QM1mP3YkQd4U7+Qzpma+yV7jlP+Vf+fj04cZdO8PL+/Q8H8DqQhgNAAAAAIAOLA+cNZRbBM2WBwGKUSm8nXpyYC1kob4/03JJGjMCb4NkRb5CQQPra2R9f7Ksuzwq5mW9ENsijGaEHRr7sOJuWT6HtHG3NKyYWpb5AADQkI/CfziuxuG4mBVM63cYLelxr53HV6AfZqv3BpfP5Dd2vO2kGHDzcXI3jm2tCHU70V9JqrYILlqfm338PzjVuKov7/l0cGzLyPE6feycPs8IAAAAAAAAAACsWWdfbI/VqtLXk4NRkqRdRhjtzAvbmxOOOi6Xk7vm5dIjnpz+Rn18w7R74MPswYmp3oW1sIQbXyf3ur+zV/jcP8tXwn/L9tb9UC9/jnJ5KUrx9l5iDauaO/tiRX/8j4o++F1FH/qfxf8+8N+KXv1uuWNPGfT00E+/8nz793XXziUfnr7Z3swHvuJTRUPmjWt6jsULR86AGet9YNY5J/3yc9KtvGFrT+cCrBkXXZE47K/7QPf3uXUbx7QYDll/TgsjvZnHGuQufWzyCj+5RfrBN9NtzHh+5gijAWsSYTQAAAAAADpghaiq/qDm433BMSen0Wjp1Y6sN/1X4gUzKmBZMEIBiWG0aDLTPvqh4MIvMIfCaNbXyPr+ZFk3bfQkKRIhLX4+kfFSTDleUMUI6XUn7pbtZ8h7b37eWb6mAAA0WEGz0ON60vJ+h9GseK3UfpwJ6LXdtXuCy2cK/btio3Vsm+VYslvHtg2t7leGKYz23/v/Q/vqe4Jj26ev4iQ0AAAAAAAAAADQP9ObpPUJdY/b/qf1Nu4y3vC6+aQ2J4WjlTvl7HQr5nLSMSf0djLLPf43govd01/e33msdacmXETqYEW687bw2Fz47+zadFznczI456TCaOsVCaMBQ8HlctJm47Fn2bHOOcfZ53Xcu1+6J/wWhCXmD4TPZxn3h86rmZhanFMfuFNTPj6PFluvA6C14+8njST8Pu1M8Rwsqy08N8NRKs3xONI58fTWobnbbm25Ge/9iqjsYYTRgDWJMBoAAAAAAB1IilbNVu8NLh+NSorc0qfkViDgoD+g+XqKv242KdfDkY75OBxGixQlRj8GxQqfVANBg0oXwmhmeGHZ19MrDq7XKozmnFMpCgfwynU7gFfMdR53s34mLAd8xQxAZAm1AQDQ0K0wWqHPYbSkx7208VSg36znITP5TX2bgx0uTv+8wz52bi9K2Op+xWqJrcYw2o2z1wWXj7qiLlp3eZ9nAwAAAAAAAAAA1jLnnPSYXzfH/TtfJb/7bnvcezOMpq28+R7LXPFUaSTFG9ePOV4un+/9fJq4q5+z8o+OI6PSFU/r6zzWOne/c6TTzjXH/ef+OTywP3xhKq1b34VZJSCMBhxdjHCQf8crlhwPXXo/aTrhdOzPfq/1uSrzB8LLxxsX+5yYbrmNrnnkU9KtN7L63q8ADCM3NiE94sn2Crtul6/VurtTwmgYFlkvKtsq5IXU3MSUdPmvJa9kvf7TbO9uacF4HyX3RcCaRBgNAAAAAIAOlBKiVbO1cJAgFANIDKwZ27GU43AoYKEeDqON5SYWT1BbZbIEVMr1cHgh6fuznBUgWx496SSLYO1jX31OserBsSwhMiuMljXcUjG+nkn7AAAgScGFTziu+fDJF6EQqmQfH/TKaELEqd04E9Brc8bzh5nCxo63nRQDbg6IWcefpVw4dhZe14j+GtG1Vqww2pH7FauMtrrCaD+t/EQ/qXwvOPaQqcsyPQcCAAAAAAAAAADoBvfcP0wc9y/YIX+gEh7cc59UNv72yhtesYzbcpLc2z4pTc4kr7j15P5MqIk780K5N35EOu6UxQUnnyn3l9fLbT6h73NZ6/eQ2FsAACAASURBVNxbP2EPvv9P5H/83ZXL982GtzUx1aVZGUaKrdchjAYMjy3bzKHm46EocvrWH9pv77/mvV53700+X2X+YHj5kTBaj++/mriZY+T+4H2tV0xznwcgFfd775DOeLC9wnV/3939Ea3GsMj43jiXJ4zWTe6V10qPfqY57tOE0XbttMeO3ZZ1SgCOAoTRAAAAAADoQFIkarYaDhKUopUxgMQwmrEdy0LWMFo0kWn7/VKIjDBavDJoUDHiCKEIncX6HqwILxhhhMi1fpmlZMxnd/WehNt0Ix6RLdySFJuw4m4AACTJEjxNWt7vMFrkIvN4Imt4FOiH2MdmWHl9flPf5mEdf2Y7Pg8fB2c9tm1oFVy0om++ozRy931x7jpzbMf0VX2cCQAAAAAAAAAAwCKXy8n91hvsFe68TfqyESpKelMsYTQEuAddKveJO5NX2rqtL3NZzm1/vKIP3yp3w5yiv/+m3AMfOpB5rHVuZpN03g5z3H/8PSsX7t8TXrlVhK9TI6Ot18mFL0YIYPVJDActOx46Yb3T6Zvt1T/w1RZhtAPh5WONc8B7ff+13GW/2jpGM5riPg9AKm60KPdXnzLH/Qff2t0dJoQfgVUlYxgt1fE4UnOjJUWvfa/0q88Pr7BrZ+uN7DJeJxoZldZvaXdqAIYYYTQAAAAAADqQGEarhWNXoRhAUmzKChtYyvV5+UC8a76+L7j+WG51htGyBFSskFeWqJj1vVweXYsVG1to/QJ60ZhP0ve4O/EIO3QWYoXmFvdBGA0AkF3eha+oVfXhS1faYbT+n+yZ9hgBWA321/eq5mvBsZnCxi7swT7mbQ6IWeHApOdPy5nHtvX2wmit7leGIYy2UN+v/9p7Y3DsfqWzdOwobw4CAAAAAAAAAAADcuLpicP+1q+FBxLf8JpQC8Ga5qJIOuUse/yE0/o4m8D+R9Of84ceOeF+9titX1+5bN9seN2Jqe7Mx5IqjNbfiwgC6MDxCfc9kvytNy/5+LRj7HVvvi15V/Ph0+403rjg4Lr+htHcyKhUbHHe/kixP5MB1gg3NiHlcuHBhf2pt/PcS8Pnzb149zuPfLD5hCxTAwYoYxgtz7F2LzjrmGjXztY3nr07vPyYExZfCwCw5vCbDwAAAABAB3IupxEXPjFhtnpfcHkoLJUUm5qthqNZU7nwHyxjxTrgKyuWL8ThgMD4kIXRqoGggRUmyRYVC38Par6qahyOKDRL8/K5tQ/reyxJpVyWuFv4880abrFCapEi8+cdAIAkVtDMCjhZAaOCEVjrJevxO2t4FOiH3dVwnFmSZvKdh9ESL6Z3qB8W+1gHjDBalsjumHEc3O7vXqv7lWEIo31lz+fMoOSO6av6PBsAAAAAAAAAAIAmD3mUNL7OHr/hI+Hld+0ML998Im94RSL38CfZg5c/sX8TwaqU+PNx681LLj7sDx6QDoT/xq3JHoeFSinO3833/yKCANp0yaOlUsJ537d/f8mHT3qwfSLOR7/uddce+5yV+QPh5eP+0Hk1m0+059Erp5+XPE4YDei+E4xA9e675CvpzrN73APD90VP3fNPRz7oc2wRaFviSa4Bhf6fl74mbDEu8rtrp/xt/5N8231z4eVTGzqaEoDhxSvEAAAAAAB0yIxd1cKxq2Ju5fo5lzdDH9Z2ZgqbzDkt1Fde4WWhvi+47lg0aW5nkApGGC0UNCjXw3+0KUVZomJ2pKHSFJWzwgguxcss1j6s77GT06hL/0dg6/O1vj4WOzQ3Jpf1DwUAAMgOnlqhImu5tZ1esh6/s4ZHgX6wjivzrqCJXMIbUbroQFwxj5mTjrnTrls2gs+tmPcr0XBc8S/2sb44d11wbCo3o3MnL+7zjAAAAAAAAAAAAI5wpXG5N3zIXuHeO+Vv+KcVi/1dt4fXt95ECzQ85Xek7Y9fuiyXl3vNe+WOPXkwc8Lqcf5l0oMuNYf9215y5IP9xhvvJWliuntzCkkVRhuOv2kDkNzYpNz/80F7ha9cJ187cv7KNRc5jSa0D+//B7HuuC98Do4ZRjt0Xo3b2v9jKffKdyaPj6a/4DmAdNyr32OO+RdetiQGa3nsg6TXXH3kPSLOx3rrXa/QRZWbj6zU62MioFuyvt8pTxitJ7ZuM4f8s86Tv+U/7XHr+dnEVIeTAjCsCKMBAAAAANChYi4co6r6g8HlVkjNjFoZb/xfnxBGC91mPhBLk6QxY/6DliWgUonDV+srRun/gFoKBOsayk3bN8NoKV4/t/axp7Y7uLwYlTKFyKztZw23WCG1LF9PAACaZQmeSlI1Xj1hNOvYLWt4FOgHM6qc36DIdf5nQSf72LRxnJx07Jl0zL3cmPH8qBKXFft66u00tLpfccbXJ83JYf3wvYVv6Z7qruDYw6avUM5xlXAAAAAAAAAAADBY7sJHyr30L81x/+4/kI/jpQt3GWG0AcQ8MFxccUzujR+R+9Ati/9/y8fl/u3nclc9c9BTwyrgnJN75bvsFf713fK/+Nniv5PCaJM9joAUU/wNnTAaMFTcxY+We9nb7RW+ev3hf+Yip39/iX0+z76KdO2N4fNWyuG3KWi8cd5OQpCkZ44/Lfk+ayT9xcIBpHTKWfbYD78l3fq1lptwzumNT4i069lf1aduv1p3/+AE/c7sstDhOEEiDImsYbSR0d7MY61rEbv373+zPbjPCqMRaATWKsJoAAAAAAB0qJQxFlU04hpZo1Pr8wlhtPrKMNpCHA6jjecmM+23X7KE0ax4XJbwghU9kaRK0/btMELrF9CtfVixNSuWZ7F+trKG0ezQXPqvJwAAzfIufEUtKyRrBdPyUf/DP8Vc+Bgt6+Mr0A+z1XuCy2cSosrZJB3zNsJo4WNJKdvxZNKxfNI+LOb9yqGgmPWZWcfq/fbFueuCyyPldOn0lX2eDQAAAAAAAAAAgGHbGfbYrp3SnT9ZuuzeO4Orus2E0dCac07u+PvJ7XiC3EVXyvU6YoXhsvnE5DDCN25c/L/1xnup92G0sYnW6xBGA4bPKWebQ/7mzy5ddWPypv72pvB5K/sPhJePNc5537ItecM94KJI2nyCvcLY6nzPAjDMXHFMmjnGXuFrn0u9rWPq9+oRC1/Q+nh26UBpQi7PRTsxLDKG0fLh89vRGTcxJa1bb6/w9c+tDOc3WOFqnu8DaxZhNAAAAAAAOpQ1FmXFsUq5bBGsyfyUCkZkZCEQCluoh8NoY7kUJ1YMgBVGqwaCBt0IeSWF6cpN27fCCC7FC+hZf1a69bNVzhhu6UZoDgCAZlbQrBbXwsvNgFH/T/a0w6PZw0xAr83W7g0un8m3OIuyi6xjSSk5RrxyXfv5UdI+LNb9ypHnVOHj+dUQRruv+gt9Z3/46p3nTl6k6XzCCSQAAAAAAAAAAAD9dPYl0sioPb5r59KPrTe8Tvfv71sAjk5utChdcLk57q/9ffnvfV3aNxteIZeTSj0+vzbN9gmjAcPnjAvtsY+9S/FfvlTxG58r//G/1YnVOxI3dZ9xisyccWr4dLxn8R9TG1JMtAceerU9lnCfDKADl1xlDvnP/7O8T3n+mxWLJUaEYZIURg4pEEbrmYT7Jh08IO2+Kzxm3RdNcF8ErFWE0QAAAAAA6FDSG/ZDrABXlkjA4nbGNGbsu1zPEEaLVmcYrWCET5YHDWq+qqo/GFw3y9c0cjmNumJwbOnXs/0wWtbvcdYQmRlGqy+k/4OWuhOaAwCgmRU0s0JFrQNG/WOHR7OHmYBe213tbRgt6Zi3cbRpHUtGijL9Dic9z1oIPN9ppVVw0f7cBh9Gu2nuU/IKXx1v+3TCCaUAAAAAAAAAAAB95kaLci9/pznu//39Sxfw5nsAPeSe/yZ7cPYX8r/5UPk/vCY8PjEjlzWskFWx9TmZLhe+GCGA1cuNjErbzrBX+Ni7pE/9o/xfvFB68un6zW0/StzebfeuPHdlzrim53T90LHVgI6l3FN/Vzrx9JUD17xCLrQcQMfcs15lD/7o2/J//kL5er31hqxo9cRUexMDBoEw2qrhnv1qqWSfB+xf8+Tw+9yM14kcrxMBaxZhNAAAAAAAOlTMhUNnllIu/MKeFUwztxONmdtaWBbq8N5rPg6H0cZzqzOMlo/SBVQqdeMvu8oe8ioaIbLmuIPvJIyWMXSWef7G+nXVzBBEiBV6yRp2AwCgIW3wtKFqBoz6f7Kn9fhqxZ+AQZqthcNo6wvdCaOlUYnDl6QtReOZThpPOnYuG/tI0up+xZrboLNo1fig/mPPZ4JjW0dO1Gmls/o8IwAAAAAAAAAAgGTuqmdKo8a5cJ/9J/l48YIwPo6l+b3h9XjDK4AucPc/X3r4ryWvVA6fW6vJPkRASinO382Fz7kBsLq5Z7wy9brPvfE3Esdf/MGVF9ObM06dmY73SPmCNBK+WHivuWOOl/ubm+Re817pSS+WnvNauf/9GbnffsNA5gOsBe64U6Vn/b69wif+P+mr17fcjt+/JzwwwXMzDBHCaKuGO+E0uY98317h1pulb3955XIz0sh9EbBWEUYDAAAAAKBDpci+gkGIFUBrZzvWbcr1pWGrqj9ohkfGolUaRjMCKtV4WRgtIYqQNURmhb+aQ2HBK1LIDik0yxo6yxoi61Y8worNZZ0/AAAN1uO6dXxiLbe200vm8UE9HBIFBqXua9pbmw2OzeR7H0ZrBITL9fBxZ9agdM7lNeJGg2Pt/P61ul+xQsferzy5tJ++se/L2l8PvyFo+/Sje3+FcgAAAAAAAAAAgHb80uPssR9+a/H/83sk41ws3vAKoFvcOQ9t74aTM92dSIBLE0bL9/8iggC6YOtJqVc9+cCPE8e/e+fKZXPGNT2n6nuliemBnk/iJqflrnqmope8RdHz/lDuvO2c3wL0mHvABYnj/sZ/bb2ReSuM1odYLNAtWR9v8oTResnNbJJOOdscX37f5L2X9twXXpmAPrBmEUYDAAAAAKBDWeNVVlwqe8RrXGO5cBhtIV4aClioG1e0kzSWW51htELKgEpS8CtryMtavxIf+etxI/iwUusX0DOHzjLH8pLCaOnjEda6WX9GAQBoMIOnQxBGKxqPf83HB8BqMFe7zzxWnSls6so+rHjYosV9W+HidiK7JeP5Tpbob4N1v1JwjRNbjDBa5j11141z1wWXF6OSLpq6vM+zAQAAAAAAAAAASMc98GHmmL/hw/K33Srd/n17A7zhFUC3POjS9m7XjwhIKcXf0fP9P1cGQBfc70GpV91Qv09njIcvhihJd+yWvn671665xbNYqjWv+QPhdafiOSJGwFp01kVSLiGmetstrbexzwqj8dwMwyRjGK1AGK3nzk14PnbHsteF9s1KC/vC627Y0r05ARgqhNEAAAAAAOhQ1jf4W3GszBGvXMkMZ5XrS8NW87HxwqCk8dxkpv32ixU+6WUYzfreLP96hqR5+byYNXSWK2VaPym8liXeYq3bTswCAAAp/eN6q+VHAkb9Yz3+tRNmAnpptnqvOTaT39iVfaS5eqv1u5E1Epx0myzR34ZWwcXIPKIfXBrtjsqPtLPyg+DYResuVzHK9nwBAAAAAAAAAACgbx71VHvsw38l/6xz5V+ww16HN98D6BJ32oOkSx+T/YaTM92fzHKlFBc2JowGDCU3NiGNpTtH30l6zXFfSlznwjfFOu6Vsbb/eV0//IW93nR9D2E0YA1y6zdLj/8Ne4XvfV3xe/9I3iecC7d/Lryc+xQMkxTnuC5RGO3NPHCY+5Xn24P/+Wn5/3PtkY937bTX3bqtSzMCMGwIowEAAAAA0KFSLmPQzHhzf9ZQQCkaVykXDm0tLAsFLCSEvcaMbQxa2oBKxQgvjLhR5Vwu0z6t703zPrzi4DouxcsspS6GzkJGo5KcEXRIE3drsL6mhBcAAO0qZA6j1YLL8y7hinY9Yj0eV+Jy8kkiQJ/N1sJhtGI0lvk5Szsavw32sWQ7YbR0Ieg0qrEVRmvcr4SPo/0Aw2g3zl5njm2fvqqPMwEAAAAAAAAAAMjGTUxJZzy4/Q2M8+Z7AN3j3vBhud9+Y7Yb9SMCQhgNOKq51/5t6nWfVvqK3v/rrWMuX/qR9Jh3hM9ll6TpeI6IEbBGuZf+lXRJwjll73+zdP0/2OP794SXTxKtxhDJHEbr/wW71xq37Qzpma8yx/1f/a781z67+MGu28MrjYxKG7Z2f3IAhgJhNAAAAAAAOpQ5aGZECbKGAopRSWNR+KSI8rIw2nx9X3C9UVc0A2SDZgVUYsWq+/rhj8v1cHgh6/dFsr83lbh8+N9WFsEKki2dU7YIXdb1Ixdp1IiXlY1ARZZ1s84HAICGtMHThqo/mGk7vWQdo3nFOuArfZ4NYNtdDYfR1uc39mcCh0KB1rFkO5FdKwS9/PlOGtb9TeN+xTqaH1QYbX99r76276bg2Olj52jr6Al9nhEAAAAAAAAAAEBG7YbRxibl8v2/aBaAo5fLF+Se8Qq5v//v9DeanOndhBqKKc5zzXF/CAytjcemX3f/Xj3jYqdSitPjdt5nj03X9xCYBdYo55zcC96cuI7/9Aftwf1z4e0SW8QwyRpGI0LcF+4hj0oc95/60OI/7toZXmHziXIRaSRgreK3HwAAAACADmUPmoXXt6Jc9nZKGrNCAfWloYCFeL+xz9UbukoKnzRHDSpWeCHj11OyY2rN4YVOwghZYxDtxCOs21hfp+C6RmyunfkAACBlD6PV4uSAUT8lxVab46nAoM3WwmG0mUL3wmhpYsCVevj3op3Irn18nv7YtsG6vylEh674Z5wQ4/1gwmhf3fM5MxK5Yzrhyp4AAAAAAAAAAACrhDvt3PZuON2nC/8AWHuOPVkam0y1qpuY7vFkJI2va71OjlgDMLROOStdAFGS9s/JOadzO7hOnvOx1sV7pekN7W8EwHBrdaxz+/ftsf17wsv7cUwEdE3GMFphpDfTwFInn5kcfL79e5Ikv2d3eHzTcT2YFIBhQRgNAAAAAIAOJcUylosUacSNBseyBNZGXVGRy5lxgeUhtIV6OIw2nkt3gscgpA2jWVGELN+XBut70Bw98T4OruNc65dZIpfTqCumnk874TrrZyJtPCL2dR3wla7NBwAAyX5cr1phNF8Lbyfq/8meSbHV5TFaYJB2V+8JLp/Jb+rL/hsB4eaocLNiLntk1zy2beN3z7xfOXT/ZEff+h9Gi32sm+auD45N5zfogRMX9XlGAAAAAAAAAAAAbbj8idK69dlvt3Vb16cCAJLkRovS1c9Kt/JkHyIgkzOt18kTRgOGlSuOSVdek27ln/9YkvTbOzIGXZqsi/cqkpfbenLb2wAw3Foe69zzc8W/9xj5O29bObZ/LnwbwmgYJsYFck1RrjfzwBJuasPia0SWW29W/EfPlH76w/B4P56bAVi1CKMBAAAAANChLEGzYjQmZ7zQmiXk1QhUjRmhqoVloYB5I4w2Fk2k3me/FSL7yhvNEZWKEfzK8n1psL4HacILaV8+T4qrrFi3i59DpZ4ujNYcgVu57ewxCwAAJKlgBM1qgTBa7GPVFQ4YFRLCqb1STHj8S3rcBPptrnZvcPlMYWMX92If9TbCaNbvRTvh4pJx7Jw2+tus6g8Gl+fd4lXorDBa/7No0q3z39Q91buCY5dOXaGc42QcAAAAAAAAAACw+rnxdXLXfl46d7tUsM8FW4GYB4Aeci/6c2n741uv2I8ISJo3+BNGA4aae+lfSk/6X9LMMdJUwjk8P/yWfL2uZ10S6a+f3l4cbbq+Z/EfRGaBNc296M+lS66yV/ivz8i/4DL5hSPvMfJxLM3vDa8/MdXlGQI9lDWMlsv3Zh5Ywf3+u6XjT7VX+Ow/STf+S3hsIkVQGsBRizAaAAAAAAAdst6sH5IU1sgWWFvcTikKh9Eq8YJiHx/+eMEKo+VWbxitESgIqcVHIipWFCHpa22xomXNcQdvpBGskMJymQJ4bcQjrM8hbTwiab2i8fMGAEAreSNo1vyYfnhZIJbWaju9NOqKcsafU8px63gq0C+z1fuCy2fy3QujpTnitY/P24n+GiHoNn73rPuWxv2KHUaLg8t76ca564LLI+X0sOkr+jwbAAAAAAAAAACA9rmTHqDoHZ+R+/Tu9Lch5gGgh1w+L/fH/yhFLd5amyZa1qnJFG/wzxNrAIaZyxcUveStcv//HXIf/6ncy95ur/yNz0uSXnhZpA//VvY42nR8KIy25aR2pgrgKOHyebk3fDh5pd13SV/42JGP5/dK3riEaD+OiYBuIYy2arnRotxbP9HejScJNAJrGWE0AAAAAAA6ZL1ZP7huzl43aczap7VvL68DTTGvhTgcRhtf1WE0O3zSHDWo1MPhhSzflyO3saJiR8ILnYbRsgQh2gmjWbeppAyjJa1XaiM2BwCAlBBG87XAstUVRnPOmcHV5ngqMEgH4orm433BsfWF7oXR0rCOJ9sLoxnHtsZzgCTWfUvBjWTeVi/de/Bu3TL/9eDYeZOXaCrPle8AAAAAAAAAAMDwcfmCdPWz06180v17OxkAa57LF6Rii3NM00TLOlUck/ItzoVpNQ5gKDjn5KJIOuYEe6Uf/Pfhf15ySvYw2lR9bvEfmxP2AWBNcKNFaWtyJNF//xtHPtg/Z684QZAIwyTj4ycR4v465gRpNPv70lw/npsBWLUIowEAAAAA0KGCG1GU8im2FdVoNWatO5YQNltoinnN18ORhLFoOMNoVX/w8L/LVnghl/3FUivWUInL8oeugOOtK+GkvLJIlthZMde9eERz3C1JpW4HXtqJWQAAINmP63XVFPt4ybJQLK3Vdnqt0/Ao0Guz1XvNsZl898JoSTHgRkDYDhdnP5YcM+LRCymPbZtZ9y15t3hii3Ph53RWGLlXvjh3nbnPHdNX9XUuAAAAAAAAAAAA3eQe9ZTWK01MSRdf2fvJAMCZFyaP9yEC4pxrHWAjjAYcXR78cHPI/81r5d//Zvn9e3TCeqdL75dt09PxnsV/EA8BIEkPf3Ly+Mfepfj3HqP49c+Qf9Pz7PUmprs7L6CXUr6v67AcYbR+cvmCdPkTs9+QQCOwphFGAwAAAACgQ845laIWV447JCksNeqKqQNrpUPBrLGE/ZbrR2IBVjggKaw2aAU3Yo41Rw0qcTjklfZ7svQ24e+Pl9cBXzn8UUhSJGLJPjLEztqJR5hxt4TgWTMroJZ3eRUi+3sCAECSQkLQrOariR+n3U4vWY+vZSMABfTb7to95th0F8Nora6mF/t603HzUu1Ef4vGMX0lnreDxQHe+yVx5WaN4KL1mWXZT6cOxgf0lT2fDY4dO3KSTi2d2be5AAAAAAAAAAAAdN0FD5d7/pvs8akNcn/2L3Kj2S+ICQBZuZf/dfIK/QoLTbaIjRBrAI4qbrQknXqOOe7f+0fy/+sR8gv79YHnRTr72PTbnqrvkUZLciOjXZgpgGHnnvMaaccTklf6r89In/uo9K0v2euMEyTCECGMtuq5l7xFOm9HthsRaATWNMJoAAAAAAB0Qdo3+SeFrpxzieG0Jfs7tF5SZGsh3n/k3/V9wXXGc5Op9jcIeWe/wNwcTKkYIa9ilP0EuaSvfyM05zsMo6X9HhfciHIJXwOL9TNRjtOFW6zQXNp5AwAQku9SGC1pO71kPb5WUj6+Ar02W703uHxdblqFqF+/N948lpSkUhvH51YIuuZrZugspK6aOdYIMlvH89bxfy98fd+XNB+Hn7vtmLl68WrhAAAAAAAAAAAAQ8o5J3fNy+Wuv0fu7Z+Se8vH5d7yb4v/vfvLcv96h9wDHzboaQJYK7ZsSx6f6FMEpNWb/HODOVcGQO+4Rz4leYUff0f63Ed10ganb70+0nW/ky4FMB3vIRwC4DBXHFP0xo/IvehP299IaUIuTzgKQ4Qw2qrnJmfk3v4p6VdfkP5GrWLSAI5q3FMDAAAAANAFad/k3youVYxKS4Jm9v4Wt5NzeY26og74yop1FupHgmHz9fA2rdDAahC5nCJFihWvGGuOIJSN+EKpjc8tKTTXiDx0GkZLiuMtXa+97431M1Y2AnIr1wsHXtLOGwCAkOQw2tJgUVLsaFBhNPvxlTAaVofZWjiMNl3Y2NX9JJ0z4r0d2ZWkYpePz8vxgkaidFe4XX4/0yx/OBxnfXL9C6PdOHddcHkxGtOF67b3bR4AAAAAsnHOnSLpQkkPPvT/8yU1X5nmdu/9tja33emTkpO99zs73AYAAAAAdJUbXyedf9mgpwFgjXO5nPyWk6S7bl85ODkjl+/TOSqt3uRfGOnPPAD0z9ZtLVfx131A7jG/LuecHvGAdC8TT9X39C/qCGB4PPDS9m/LfQqGTsYwWpTrzTSQyDknXXC5/Mfele4GhF+BNS1dJhoAAAAAACRK+yb/YouAWimXdjtHAgHWbRohrNjXVTGiHeO5yeDy1aLgwid01Hz18L8r9fDn1uprHb5NUnhh8evZ6TuQ0gbP2pn/4vbDn0NSpGLpetbXkzAaAKB9hcQwWnXZxwkBowGF0ezHV8JoWB1mq+Ew2vp8d8NorU4aSYrxpo1JL72NfexcrqcL/0pSLa6aY3m3eB0pK3TcryzazvIPdUflR8Gxi9c9vO3nBwAAAAB6wzl3mXPuU865+yT9WNKHJb1c0g4tjaIBAAAAAABgtdrxhPDyi6/s3xwmZ5LHi5y7CRx1LnxE63W+/eXD/8zn0kVepuO51rFFAGvP6edJG49t77aE0TBskq7+u1wUyUXkdgbmgsvTP9fZfEJv5wJgVeOeGgAAAACALrBiGSvWaxE+S72d5jCaEQtohALK8YK88Xb+sdxEqv0NihU/aQRTvPcqG0GStJG5ZiNuVJHxckkjLOZ9HBx3Lt3LLMVcd35WzO0bP0NpwxF2GI0QAwCgfUlBs6o/uOTj5IDRYMJo1uMgYTSsFrO1cBhtptDtMFoSr0rdjvG2E9pNOia2ngeELL+fada4iXEGQwAAIABJREFUX3HGCTHWc6lu++LcJ82xHTNX9WUOAAAAADI5V9IVktYPeiIAAAAAAABoj3vay6RTz1m6cOs2ud94ff8m0SpiVGrvXFIAq5dbt14azXZe9t8/t3XoZbq+Rxpf1+60ABylXD4v9/J3SCPF7DeeILaIIZMljJbL924eaMmNr5N76V9JuVzyivlC+3FHAEcF7q0BAAAAAOiCtG/ybxWXSr2dprjWmBELWIgXQ1jz9f3mdsai1R5GC790UfOLwZSqP6hY9eA67YS8nHMqReOaj/etGGsVFnNK9wJ6O/G7LKx4xAFfUezrilzyi8blevdCcwAANCQFzRqP69bHS7czmD9r2OFRwmhYHXZX7wkun8l3N4yWdMzr5c1YYN7lVYhGMu9v1BXlFMlrZZy4HKcL/0rJ9ysF15iXEUYzwsjdtL+2V1/b96Xg2APGHqTNI8f1fA4AAAAAuuaApJ9JOrUH2/5PSU/NeJuf9WAeAAAAAAAARwW3YYt07Rekm2+Q//F35LadIV34CLnJmf5NotW+ipy7CRyN3PPfJP/2lyWu4w9U5EYXQ0ZXn+OkFhf3m473EDECEOQe9hjpA9+Uf8oZ2W44MdWbCQG9QhhtqLhffrZ05kPkr32V9NVPhVdav0Uuivo7MQCrCvfWAAAAAAB0QSmXNnaVfIJCO9Esa5uNUMBCQhhtPLfKw2jRiELds2p8UJJUNsILUuuvtaWYKwXDaJW4LGkx+BCS9uXzbkX0LKWE21XissZafM+tmEW78wEAQJLyUVIYrbbk46o/GN6GK8hl+YN1F1nHeo3jA2CQvPeard0bHFtf2NTXuVjH52mPgZdbDBePaSFe+ZymVbi42fL7mWaNcONg7l0W/ceeG8x42/bpq/o8GwAAAAAZVCXdIulrkm4+9P/vSHqYpM/3YH8V7/3OHmwXAAAAAABgzXJjE9KOJ8jteMJg9j85nZw6KhFGA45KW7e1XufuO6QTT5ckzYxJk0VpX8Vefao+J03cvzvzA3DUcceeIn/NK6R//Iv0NyK2iKFDGG3YuJPPkF78F/JWGO34XlyPDMAwIY0IAAAAAEAXpA2atYpLpQ0GNEe/xnLhkx4WDoUCQhEBSYoUtR0o6JdGpGC5RjTAinhJnYTFwl+TRmjOKw6Ou5Qvs6SP37UZdku4XVJIrtU67c4HAABJyjv7j8e1eGkMyAoYWccF/WAdMzWOD4BBmo/3mUHBmfzGvs3DqzeR3ZLxfCfL758VHZOO3D9Zx/NWGLlbYl/XTXuuD47N5DfqnIkLe7p/AAAAAG17v6R13vvzvPe/6b1/t/f+G94nPAEBAAAAAAAAlpucsceck0aK/ZsLgP45+2KpMJK4iv/E38nfd5ekxYsLjiWvrun6HiJGABK587Znu8HkVG8mAvRKlgtwR7nezQPZHHc/adNxwSF3wcP7PBkAqw1hNAAAAAAAuiB90Cx5vVIue2DNClY1QgEL9XAYrZQbl8vyou8AFIyISiOYUq7boS8roNCK9b2sxGVJ6jiLkPpnJeXPworbJWw/6evV0IuYBQAAOeXljKtwLQ8WWQGjQYbRrMfXxvEBMEiz1XvNsZnCpq7uy/o9XuRVNn4nOons2uHi1se2DVY4Tjpy32J9Zr0Oo90y/w3dV/1FcOzS6SuVc5x8AwAAAKxG3vtZ731l0PMAAAAAAADAkEsKo5UmVv15vgDa46Y2SE/+neSVPvQ2+SecpPj118gfqOjPnph8fzAdz8lNEkYDkODBj5Ae9Evp1ye2iGGT5dg5Z1/0G/3lcjm5X3/dyoGtJ0m//Oz+TwjAqsK9NQAAAAAAXdAqeHZ4vRaxq/TRrCNhgTEjALZQXwyjzdf3BcfHo8lU+xqkvAtf2qoRNrAiXk5OI260rX1a34NGaM5Ko0UuXX8+ffyuvTBa0u2sr1czK57WScwCAADnnPKuEIwTLV9mh9EG9ycNO5yaPswE9MpsLRxGi5TTulx3r9iYHEaTKoePmZfqJLJrHYc2nu+kYd2vSM3RxfDn1usw2o1z1wWX55TXw6Ye1dN9AwAAAAAAAAAAAAAGLCliVGjvPFgAw8H99hukU86Sf8Nzklf83D/Ln3CanvLs1+s5f2efxzJd3yNNdPdcIQBHF5fLSW/9hPR/3in/rS9JP/qO9Iuf2utzn4JhQxhtaLnHPlc65jj5Gz4q3Xen9IAHyz3xhXIbtgx6agAGjHtrAAAAAAC6oNil2FXawFpzWMAKBTRCXgvx/uC4FVRbTY5ECpZqhA3KRoykGJVSh8qWs74HjWCY952FEdIGxtL+LCxXiArKu0Iw/mB9vZpV4nJweScxCwAApMWwWSiMVvO1ZR+HA0YFI5jaD9bjciUuK/Z1RS7X5xkBR8xWw2G06fz6vv5senmV69axZHvHtpIdFs4SJlx+P9OQU/7w8wbzKtsdHv8n+cXBXfqf+W8Ex86ffKjW5bniJgAAAAAAAAAAAAAc1SZn7LHqgf7NA0DfOeekK54m/9Xrpc98OHnlGz6i0d/4o8RV1sV7pQnONQGQzI0Wpaf/ntzTf0+SFL/00dLXPx9emfsUDB3CaMPMXXSl3EVXDnoaAFaZ9t4hDAAAAAAAlkgbsWq1XtpgQHNcywyj1Q+F0epWGG0y1b4GKe/CLzQ3wgZWDKGT8IIVuWvsyyscRnApX0BPGxjrKB5hxlvmW97W/JqmjP8BAGBpFTxtqBphNOv2/ZD0OHggrvRxJsBKu2v3BJevL2zq/s5aXE3POpa04mZpjLUIQadRjVdGGaWlzzes4/neZdGkm+auM8e2z1zdwz0DAAAAAAAAAAAAAFaF6YS/7S/s6988AAyMO/281ivdeZv8wQN63IPCw2dVblFOsTSxrruTA3D023KSPUYYDcOmxTmuS+S4KDYADAPCaAAAAAAAdEHaMFqr2FWaYECkSAU3cvjjsdxEcL2FQ6GAeSOMNh6Fb7ea2AGVxbBBuQdhNOt7We5SGK3gRpRT6yuLlHLhAEQa1udfjsstb2t9TdP+jAMAYEkbRlv+8ZHbD+7KXEmPg9ZjJ9Avs9V7g8tn8hu7vq9WR7y9OD4vGmG0hXr6MJp5vxIduV+yw2hx6v1kcTA+oK/s+Vxw7PjRk3VK8f492S8AAACAoXaic+7vnHO3OOdmnXMHnXN3H/r4H5xzv+WcWz/oSQIAAAAAACCDDVsGPQMAg3bF01rHh7yXvnq9XnBZJOdWnsv+m3N/u/gPIkYAsjrmeHtscqp/8wC6IUMXTbnBnZcOAEiPe2sAAAAAALogzRv9c8qbQZAs2ylF43JNV7EYM0IBlXhBsa9rIQ6H0ayg2mrSHIBrVj0UNqjUux/xsr4HlUNRMSuMlvYVdOecSrkx7a/vbTGPUqrthVifv/X1aqj5qqqHonMr50MYDQDQmVaP6w12GC35OKqXkh4HK4TRMGCzNSOMVki4qnQPeO/N34dOjiXHjGBwlt89637Ful9qZh39d+pr+24yn6vtmL56yXM+AAAAADjk5EP/NTvm0H9nSrpG0tucc++R9Afe+/CTjg45546RlPVJ56m9mAsAAAAAAMCwc8717O/SAIaDW79ZuvYL8u94ufSNz0v1enA9/9on64pP3KmPPi3Wn/3tj/Wt0QfqAQe/r+fNvU8vmv2bxZUmiBgByMatm7GPRYgtYthkOe+SMBoADAXurQEAAAAA6IJSLkXQLDfW8s3taYJexdzSYFbJCAVIUjle0EJ9eMNoVgClETYoW+GFFN8Pi/U9KNfnF//hw3/2yRIuKEallmG0khG8S7V94/Mvx/OJt6vUywnzIYwGAOhM3oX/JLE8WGQGjKLWAaNeSQqWlmP78RPoh9mqEUbLb+jB3uxjXi9/OCa8XCfHktZtF+rJx7bNar4WXN58v+TMz637p6B773Xj7CeDY6VoXBeu2971fQIAAABYM8YlvVTS1c65X/Xe39KDfbxQ0ut7sF0AAAAAAAAAWJPcyWfIve3fJUnx40+Udt8dXvGGj+hXzr9MT9i5IzxOxAhAVusSzjMctc+dBVYlwmgAcNSJBj0BAAAAAACOBmkiVklBjSzbWR4GGEu4Tbk+r3kjjDYeDUEYLTICKvFiMKVihNE6CS8Ujds2Ig9WFsEOKazUzvc5C+u2VqjiyHj46ynZXxcAANJqFTxtqMbhMJp1+34ouBHljGvNVDLEmYBui31dc7X7gmMzhY1d31+rY96y8fuQ5rmQxQpBJx27Llf1B4PLm+9XnAv/2dQbYeRO7Kz8QD898JPg2CVTj9BINNr1fQIAAAAYajVJX5D0OkmPk3S+pNMknSfp8ZLeIukXy25zuqQbnHMn9W+aAAAAAAAAaMvTXhZe/msv6u88AKwO284wh/wPvyXtm7NvSxgNQFbnXxZeXhiRNp/Y16kAnSOMBgBHG8JoAAAAAAB0wWiKN/qnCUsVc9m3Y4UCJGkhntdCHA6jjeVWfxit4EaCyxsBlbIRQ+gsvBD+PpXjxciDVxwczxJGS/ez0P0wWuNzsFhfT8n+ugAAkFbaMNryj4/cfnB/gHbOmcdp5RbhUaCX9tRmFRvHp+vzm/o8GzvE20lk1zq2XWhxbNvMvl9pCqMZt/VmGrl9N8590hzbPv3oru8PAAAAwFB7naTjvPeXe+/f5L3/N+/9N733P/Le/7f3/uPe+1dIOknSn2rp9V22SPqYc1kujQ4AAAAAAIB+c1deE16+41f6PBMAq4G74mn24L+/T/5Fl4fHRkblRou9mRSAo5bbuFW6IHC/ctGVcmOr/z1HwBJZ/iyaJ4wGAMOAMBoAAAAAAF2QczmNuuQ/JFpv6M+6zoowWsJtyvV5LdSHN4xmBVSqh8IGVnihFNmxuFasaEPVH1Td1xKyCOlfQE8TGUvzs2CxPody3Q6fSclhtE5icwAASFIh6jSMFr59v1iPzZWEx0+g12Zr95pjM4WNXd9f0hGvlzd/HzqJ7FrH9gfismIfjsItZ92vLA0xhz+7bofR9tXm9I19Xw6OnTF2ro4ZObar+wMAAAAw3A7F0H6RYr2K9/7Vkl68bOh8SQnvomvLtZLOzvjf47s8BwAAAAAAgKOGO/VsuT98v1Q89Lf1sUm5l/1vuXN/abATAzAYVz1LKrVxLvz4VPfnAmBNcH/wPunsi48sOP8yude8Z2DzAdqWJYyWI4wGAMOAe2sAAAAAALqkmBvTgVrFHk8Rusq5vEbcqA76A+Y6y6MckcupGI0FIwTX7/5nVf3B4HbGouENozXCBuX6fHC8k4hXYmguXpCMMEKU4QX0Vj8LkSKNuNHU21vOCk+0CrdY4wU3opzjZSQAQGfM4Gk8HGE0MzxKGA0DtLsaDqONumKPjvftY966r5nPY9I8F7KUcuETPRshtjTB55qvBZfnm45xnfm5dTeM9uU9N5jz2TFzdVf3BQAAAGDt8d6/0zl3haTHNS1+oaQPdnEfv5DUMtbWzGV5EwIAAAAAAMAa5B71VOnyJ0o/+5F03KlyhZHWNwJwVHJRJP3RP8i/6ley3XCCMBqA9rgNW+TedaP8vXcufryRi3tiSBFGA4CjTjToCQAAAAAAcLRo9WZ/K1aVdTvFwHbGonAs4PsL3za3M56bTDWfQSq0CKNV4nJw3IonpJEURqvUF+S9FUZI/wJ60j6kxZ+BTt4kVDR+HlqFW8r18HjJ2B4AAFm0Cp4e+TgcDLKOC/rFOkZrFR4Femm2Fg6jTRc29v1N59axudT6+DdJ0rFo2jChFYtuvl+ywmjdzKLFvq4vzX0qOLY+v0lnj1/Qxb0BAAAAWMPevOzji51z0wOZCQAAAAAAAFJz+YLctjOIogGQjj81+20meBkYQGfcxmOJomHIZThvNsr1bhoAgK4hjAYAAAAAQJekiV2l2k6LgFpoP+2EwMZyE5lv02+tAirleD44XoxKbe8zFJ5rKMcL8kYaIUt2olsRPfP2xuffKhxhhV06+XoCANCQNoyWJmA0CNaxnhUWBfphthoOo83kN/Rkf1Y8TLKPzaVOw2gJx+d1e5/Nlt/PNCwJoxkhOe/jVPtI4zv7v6bdtXuCY780/WhFjhNtAAAAAHTFf0mabfo4J+nMAc0FAAAAAAAAAJDVCadL287IdpuJqd7MBQCAYZHlgsI5ztcEgGFAGA0AAAAAgC7pWhitje2M5yZTbbvByWksGv4wWiUuB8dLUfZQ3JHbthtGS/8yS6vvcSfhCEkqGp+/FT5rsMJp7YT3AABYLm0YLU3AaBCsY7lWj69AL80aka31hU292WHCOSNJkcC0z4VCkqLBrcK/DbW4FlxeiPp7v3Lj3CeDy/Mur4dOPbKvcwEAAABw9PKLhec7li3u0RNFAAAAAAAAAEC3OefkXnGtNDmT/kaT072bEAAAwyBTGC3fu3kAALqGMBoAAAAAAF3S6s3+aWNX7Wzn/mMPTLXthlNLZ/Y9AtCOghFAqfqqYh/rgBFGK0altveZc3kV3EhwrJIQRsuiVWisk3DE4vbDty/XF+S9PX8rNNfJ1xMAgAbrcb3ma8s+Xp1hNOvxlTAaBmm2em9w+Ux+Y59nkvy7UMy1fzyZdwXz+Lwcz6faRpr7FWdU37px/C9Jdx/8ub638K3g2PmTl2oyz1V7AQAAAHTV8hf8eaEfAAAAAAAAAIaIe+BD5f7x23Kv/4D0jFe2vsEE554AANY4wmgAcNQhjAYAAAAAQJdYsYyGtHGpVgG1UDTr0qlHaevIiam2P+qKeuzGp6dad9DyRryt5qs6EFfMSEGr8Fgr1vegXF+QjH1aIYWQVj8LnYbRrNvHqqvqD5q3s2IWnc4HAADJDpstf2xaHkprsMJq/WI9HpYJo2GAdtfCYbT1hU092V/SMa8VKSu4kY7DhqUofHxfrqcLo1nHwP0Mo900d705tmP66q7sAwAAAACaLC9mh59AAgAAAAAAAABWLTdzjNwjn6zot9/QOnw2ThgNALDGuQz5HMJoADAUuLcGAAAAAKBLWsWj0salWq0XCrBN5qf1shPfpK/v/ZJ2Vn6guo+Dt90yepzOm3iotowen2oug2YFFGpx1Yx4SekjdPbtx7S3PrdieSVekPdGGC3DlUVaxe+s8EM3tl+OFzQSjYbH6uGvaav5AgCQhvm47qtLPq4u+7jV7fvFOr6oxOU+zwRYVI0Pan99T3BsJr/8/e/dkRxGsyK7nR2bS4vh47312RXLF4wY23LL72calt6v9C6MdiCu6Ct7PhscO3H0VG0rntbxPgAAAACgwTm3UdIpyxbfOYi5AAAAAAAAAAC6ZOs26YffMofdpmP7NxcAAFajscn06xJGA4ChwL01AAAAAABd0jJ2FQiatbOeFU4bz01q+8xV2q6rUu1nGFgBlKqvmuEFqfOwWDE3JgXaCeV4wQwjJEUilms1v2Kus3hE0s9iJV7QlGbMseB8CKMBALogbRitFh8M3z4abBjNenwt19OFmYBum63dZ47NFHoTRktiRXa7cSxp/f4lxZKb1XwtuLzQdL9kh447D6PdvPeL5vOXHTNXZ4osAwAAAEAKT5XUfDn0uyXdOqC5AAAAAAAAAAC6oUUYTVu39WsmAACsSm5iKv0Zn4TRAGAoRK1XAQAAAAAAabQKo6UNArRar9V+jiaFhIBKUgShGPUmLFZJCKMpQxitVfis47Bbws9IUrzFijWkjfoBAJCkYITNlgeLrICRFVbrF+vxtRKX+zwTYNFs9R5zbCbf/zCadXzejecvY8bx8ULKMOHyAGND8/2KmUXrsIvmvdcX5z4ZHBuLJnTB5KWd7QAAAAAAmjjnNkt63bLF/+Z9p89uAAAAAAAAAAADteWk5PGtJ/dnHgAArFaTM+nXJYwGAEOBMBoAAAAAAF1SbBGPShsEaLXeWgqjWQGUmq+aEa+c8iq4kY72a32NywlhtChDGK1V+KzT7/FoVJQz5pMUb7FiFmmjfgAAJLEe16vLgkVWwMgKpvaLFQpNirUCvTRbuze4fDw3qZFotCf7tI4xJakchyNlrZ4npWFtI+3vX9UfDC5fGkYL/9nUDiOn85Py9/SzAzuDY5dMPaJn3ysAAAAAw805d3/n3GMz3maLpE9I2ty0+KCkN3dzbgAAAAAAAACA/nNbtyWv0GocAICj3cRU+nWjXO/mAQDoGjKWAAAAAAB0SbeCZq0iVGspUmUFVGLFWqjvC44VcyU5lz5SFtyG8TWu1BckK4yQYZ+9jt9FLlIxKgXjcVawYnEsHJZYSzE+AEDvmMHTeGmwyAqjWbfvF+v44KA/oLqvKef4kwv6ywqjrc9v6vNMFpXrVmS31PG2x4yw8ELdPrZtVvO14PI09yudhtFunPtkcLmT0/bpR3e0bQAAAACD5Zw7XuFzMLcs+zjvnNtmbGa/9z70BG+rpI87574j6R8k/Yv3/ofGPCYlPVvS67Q0iiZJb/Te/8TYNwAAAAAAAABgWJxxoT120gPkxib6NxcAAFajyZn0646Fz0sFAKwuvEsHAAAAAIAuKRlv1m9IGzQr5VpsJ9d5WGBYFBJCBfvqe4PLuxGOK+XC2yjHC/JWF03pw2ijUTFxvGjsP4tiNGaE0cLBCkmqGGNrKcYHAOgdM4y2LFhU9QeD6w06jJYUCq3EZY3nJvs4G0DaXb0nuHymsLGHe7WPee3Ibucnj1jHo0nR32ZWcLH5+YZ9PN9+GG1vbU7f3PeV4NiZ4+dp08jWtrcNAAAAYFX4kqSTUqx3nKTbjLH3S3pOwm3PkfRnkv7MObdH0ncl3Stpn6QJSSdIepDC54K+23v/hhTzAwAAAAAAAACsdmdeKJ19sfTdr64Yck9+8QAmBADAKjM5nX7diQzrAgAGhjAaAAAAAABdUoySg2Vpg2ZJ2ym4kYFHQfop6XPdV9sTXJ4ULUnLCi9U4gV5xcGxLGG0yOVUjEqqxOXgeDc+h1I0ptnA8ko9HKzw3qtSt+azdmJ8AIDeybvwnySWB4uWh9KO3H71htHK9QXCaOi72dp9weUz+d6F0ZxLCqOFI2WtnielMWbEo5Oiv82sMFo+RRjNdxBG+/KeT6uu8H3a9umr294uAAAAgDVrStLDUqw3L+l3vffv6fF8AAAAAAAAAAB94pyT3voJ+WtfLd18g7R3Vtr2ALnHPk/u6mcNenoAAAxehjCayxJRAwAMDGE0AAAAAAC6pGS8WV/KFjQrRfZ2uhHMGiZJX7P99XAYzYqaZWF9nRfDaGFZwmjS4jx7GkbLGI+o+oNmtKGY8LMNAEBaBTcSXN4cLPLemwGjwoDDaEnHGJWUcSagm2ar9wSX9zKMlsT6PUh6fpOWtY1yPRxjW64aHwwuz0dNYTQj+uZ9e2G0uq/rprlPBcc2FDbrrPHz2touAAAAgDXjVkl/ImmHpPMlpalO/0DS+yS9x3t/b++mBgAAAAAAAAAYBDc2Kffyvx70NAAAWJ0mMsTOsqwLABgYwmgAAAAAAHRJUiwjS+gqad1uRL+GSSGyAyj7jDBaN6Ji1td5MSrWXhhhuVI0pjndl2n/WRSj8HukrDCaFWmTpJKxLQAAsrCCp1V/JFgUqy5vPNamjcz2SjFnPx4SRsMgzNbC73GfKQwqjBY+nrSOS7Owo7/pwmg1Hw4AL71fMcJobR7/f2f/zZqrhY/3t08/WpHLtbVdAAAAAKuH935bD7d9t6TXSpJzLpJ0mqRTJR0naVpSUVJZ0qykXZJu9t6HC9oAAAAAAAAAAAAAcLQbm5QKI1I1fDHdJSZnej8fAEDHCKMBAAAAANAl3QqaFXMJ20kYOxolBVD21cJhtG5ExazvZaVeNsMIi+9LSi8xpNeF73MpCscjrHBLUlRirQX5AAC9kXfhP0k0B4uqvppw+8GG0fKuoIIbWRJya7DCo0CvlOvzZohsJj+YMJqlG89hrOPztL97NeO+pdB0v+KMMFq7YeQb5z5p7HNEl0w9oq1tAgAAAFibvPexpO8f+g8AAAAAAAAAAAAAsIxzTn7zidLPftR65cnp3k8IANCxbO/YBQAAAAAApoIbUaRccKwYlVJvJymwljR2NEoKoOyvh8No3YiKWfGGpHiYlVGwlHLhcJlkR82ysGJm5Xo4HmGFNRbns7Z+7gAAvWE9rtd8Vd4vhodq8eoNo0n2MZ0VHgV6ZXftHnNsfWFTz/Zrx8Ns3TiWtI6Pa76qatz6yn6hoKGU7n6lnSzaXQd+pu8vfDs4dsHkpZrIrWtjqwAAAAAAAAAAAAAAAAAAADAde3K69SYIowHAMMgPegIAAAAAABwtnHMq5cY0X9+3YixLrGvEjSpSpFjxijErdnW0KrgRc2xvbS64vBtfIyveEPqeHJEtEpEUyxvNENLLuv35eF/wZ3Suel/CfIodzwcAACtA5OUVq66c8qp5O4xWiAYfRitF49oXiLPuqc0GH1+BXrnrwM+Cy50iTeXX92y/7YTRunJ8nvB8anftnsOhsWJUUs6t/PNnzdeCt22+X4pc+HpS1fhg5t/vz899whzbPn1Vpm0BAAAAAAAAAAAAAAAAAAAgha3b0q03wQVuAWAYEEYDAAAAAKCLilE4jJYlBuCcUzEa00K8f8WYFew6WuUDUYOGA74SXN6Nr1EpGs98myhjJMKa56grKudymfe/Yvu58Ofwg4Xv6BU/embq7RSjkqIuzAcAgEJkB0+rvqqcSw6jJR0X9IsVHv3YPe/Tx+55X38nAwRM5We6cizZTaUuRH+Tjs//+LYXHf73qCvqzPHzdM2WF2ksNyFJqvu6vBE4toKNzW7ac71u2nN9xhmHnVQ8TdtKp3VlWwAAAAAAAAAAAAAAAAAAADjCHX8/+VYrRZE0fUw/pgMA6FD40ucAAAAAAKAtVuwqSxhNkkq57mxn2EUupyjjyxdWsKT328gaRgvHHYrG9z6rbkX01trPHACgd5LCZrV4MYhWTQyj2WG1funW4zTQKzP5jYOewgrFNqLDy6UNFx/wFX1z/1f0//78Tw/Oha74AAAgAElEQVQvSwouFprCaC7j8Xw7dkxf1fN9AAAAAAAAAAAAAAAAAAAArEnbH996nfN2yI1N9H4uAICOEUYDAAAAAKCLrIhU1kiVuZ01GOPIN8UK0ijluhBeaGMbWUMKVnytWyGybm2nW4E1AACSHtMb4aK0AaNB4XERq91MobdhtHbiYaVc5+Hi0agol+HPmj8sf1f3VX8hSar6g+Z6S++XehtGG89N6oLJS3u6DwAAAAAAAAAAAAAAAAAAgLXKHXuy3Ev/UnLGOaG5vNwr3tnfSQEA2pYf9AQAAAAAADiabCps0Y/Kt6xYvqGwOdN2Nha26OcHdgaWZ9vO0WBDYbN2Hbwj0/qdGnVFTeSmtL++J/Vt1hc2ZdrHppEtweXd+h5vKoS3n1U3vp4AAEjSiBs1xw74iqTkMFrWWGovrMVjMQyXLSPH93T7eVfQZG5K+1IeJxfciCZz0x3vN3KRNhY2657qrtS3ufvgz7WhcIxqvmau03y/siHj8XxWD516pArRSE/3AQAAAAAAAAAAAAAAAAAAsJa5J75QetgvS9/+D+muO+Tvvl0qTcid+0vShY+SGy0OeooAgJTSX1odAAAAAAC0dMH/Ze/O4+yu63vxvz5nlpyTCSQBEsImhB0RAUVQca1KXapWtO5XRa9LW5dbrVWrrVWrVm9rl9vFq7+6XrVqRVGLdUMEpSIugCAqsoY1SICQZLJM5vv7Y0IZJuecOTOZcyYz83w+HueR+X4+78/n8w7JfDmTmfM6ez5ip7H+0p8T9jhlavvssfM+g2VRHjB00rR7m6tO3ONhHdfu1b8iq+tH7vKZpZQ8eI9TO64/pH5Elg/sM6Uzjh16cBaVnf8xvdmf/XSsbhyZvfp3PdzhpD0fOQPdAEBSry1uOTe8fVOSZFvbYLTZf6+XB+1xakpavIMYzLKSWh6y56O6e0YpOWFJ58/Pj19ySgZrrUMRp2Kqz5M3j47dV0ZGOwtcPH7JQ7v2+V2vLc5jl/1OV/YGAAAAAAAAAAAA4F5l1cEppz0v5UVvSu2N/5zaq9+f8oinCkUDmGMEoy0gpZRGKeVhpZSXllLeUEp5aynlNaWU55RSjiilzMirPUopA6WUx5RSXlRKeVMp5Q9LKc8opRwyE/sDAADszu4/dGKeu/KVadSGkiRL+5bnVQe8NXsP7DulfU7a8xH53X1elHqtkWQs8Os1B/5F9uhfOuM97+6evPez88hlT7xPaEEzByw6JK896J2plZn5547TV5yRh+zx6NTS17busMYxedUBb53y/ov7luS1B73zv/9uLCr1PHWf5+eUPR8znXZ3Uit9ee1B78gBiw6Z1vpFpZ6n7fOCPGSP7oZrALBwLKrVW4YO/XeAUYtgtFpqqZX2/0/uhdWNo/KiVa/LUN8es90K3MeSvqV55QFvzr6DB3T9rGetfFlO2uOR6UvrsMKSWh645OQ8f9UfzNi5T9nnuXnE0tM6Dkm8J3Cx1X0lSQZq936NccTiY/PCVa/Okr49d63RCZb1751X7P+mLBvYe0b3BQAAAAAAAAAAAACA+aqzVw4wp5VSHpbkfyX53SSDbUpvLKX8a5K/r6pq3TTOWZHkHUmek2SvFjUXJPlAVVVfmOr+AAAAc8Wjlj8pj1h2Wu4cWZfl/ftkujnUp+19eh6319OzfuSOLOvfe9r7zHW10pfn7fuqPHPFGblt282pqp1rlvTvmWX9Tb8UnbaB2kDO2P+P8rzRV+U3W29tWrO0f/kuhdWtbhyZd67+YO4cuT179i9LX4chD51aObh/3nrI3+XOkXXZMLK+43W1Usu+g/vPeD8ALGy1UsuiWuO/Q9DGG54kGG2gtPun7d46Zelj8pA9H5Xbtt2cbaOtA5egVwZrg1kxsF/Pvl4YqA3kpfu/IZtHh1s+T957YEUafUMzem5f6cvzV/1BnrXyZff5uuD/u+n9Wbvtpp3q77nXbKu2ttxzYvjyw5Y+Lqfs+dgZ+/xeVFuUvQf2nbHwZgAAAAAAAAAAAAAAWAi8unUeK6X0J/m7JH+QpJNXwxyQ5M+TvLKU8pKqqv5zCmc9KcnHkqycpPThSR5eSvlUkldWVbWx0zMAAADmklrpy14DK3Z5n77Sl+UD+8xAR3PfYG1RDlh0SM/PrdcaObDevXNLKV3/M17Wv9eMB8cBwHQ0aoubBqNtniQYbWJ40WwbCxE9YLbbgFnV7efJrUz8umCP/qVNg9HuDVwcablXs3uLz28AAAAAAAAAAAAAAJhdgtHmqVJKSfKZJM9qMv2LJFckGU6yIslJSZaPm983yVmllKd3Eo5WSnlMki8lGRw3XCX5SZKrkyxLcmKS8a/yfkGSPUspv1tV1WiHvy0AAAAAAOawem1x0/F7Aoy2jbYKRvPtDKC5Rm2o6fhkgYvJ7he6CAAAAAAAAAAAAAAAJLXZboCu+Z/ZORTtvCTHVVV1TFVVp1dV9YKqqk5LsjLJS5PcNa52MMnHSylL2x1SSjkwyZm5byja95McW1XVSVVVPXvHGQcmeV2S8a8+eWqSv5zG7w0AAAAAgDmo0SIYbfP29gFG/TXhRUBz9Vqj6fjwJMFotdTSV/q61hcAAAAAAAAAAAAAADA9gtHmrz+dcH1eksdXVXXZxMKqqkaqqvpokscn2TJuamWSV01yzjuSLB93fcGOc66YcMaWqqr+IcmzJ6x/fSnl4EnOAAAAAABgHqj3NQ9GmyzAqL8MNh0HaNSGmo7fE7i4rdradL6/CFwEAAAAAAAAAAAAAIDdkWC0eaiUclySQyYMv7aqWryibIeqqn6U5MMThp/a5pwjkrx43NDWJC+pqmpzmzO+lOTj44YWJXl7u74AAAAAAJgfGrXmwWib/zsYbaTp/EDp71pPwNxW72s0HR+e5L4iGA0AAAAAAAAAAAAAAHZPgtHmp0MnXK+pquqSDteeNeH6iDa1z0/SN+76zKqqruzgjPdNuH52KaXeSXMAAAAAAMxd9Vr7AKNt1dam8wKMgFZaBy4OJ0lGWrxv0ID7CgAAAAAAAAAAAAAA7JYEo81PQxOub5jC2jUTrpe3qX3GhOuPdnJAVVVXJLlw3NBQktM6WQsAAAAAwNzVqE385+sxkwUYCUYDWqm3CEa7J3Cx5X2l5r4CAAAAAAAAAAAAAAC7I8Fo89MtE67rU1g7sXZds6JSyqokx48bGkny/Smcc+6E6ydNYS0AAAAAAHNQvdZoOj68fWOSZKQaaTovGA1opVUw2uYdwWjbRrc2nXdfAQAAAAAAAAAAAACA3ZNgtPnpoiRbxl0fU0pp/mqznT24yV7NPGDC9aVVVW3s8IwkuWDC9bFTWAsAAAAAwBzU6BtqOr55dDhJMlJtazovwAhopdEqGG37WDCawEUAAAAAAAAAAAAAAJhbBKPNQ1VV3Z3kE+OG6kleNtm6UkpfkldPGP54i/L7T7j+dccNjrlqkv0AAAAAAJhn6rXm7+ExPDr2vhvbqq1N5wcEGAEt1PuaB6NtqTZntNreMnDRfQUAAAAAAAAAAAAAAHZPgtHmrzcnuXbc9ftLKY9vVVxKGUjyoSQnjhs+J8kXWiw5fML19VPs77oJ13uXUpZPcQ8AAAAAAOaQRm2o6fjm0eEkaRlg1C/ACGihUWsejJaM3VvcVwAAAAAAAAAAAAAAYG7pn+0G6I6qqtaVUh6b5MyMhZ01kny9lPLvSf49yS+SDCfZJ8nDkrwyyVHjtvhhkmdVVVW1OGLZhOu1U+xvQyllc5L6uOGlSe6Yyj4AAAAAAMwd9Vqj6fiW0eGMVqMZGR1pOi/ACGil3iYYbXh0U7YJRgMAAAAAAAAAAAAAgDlFMNo8VlXVtaWUU5K8JMkrkjw4ybN3PFq5PckHkvzvqmrxSpExSyZcD0+jxeHcNxhtj2nscR+llJVJVkxx2WG7ei4AAAAAAJNr9A01Ha9SZcvo5oy0CjCqCTACmmu0CUbbPLqp9X1FMBoAAAAAAAAAAAAAAOyWBKPNf307HluSVElKm9o1Sf48yb9NEoqW7ByMtnkavQ0nWd5mz+n4gyRvn4F9AAAAAACYYfVao+Xc8OjGlgFGAwKMgBbqbYLRhre3DkZzXwEAAAAAAAAAAAAAgN1TbbYboHtKKacmuSLJvyQ5NZP/eR+U5KNJri+l/M8pHldNvcNprQEAAAAAYI5q1IZazm0eHc62amvTuX4BRkALA7WBlveIzaOb3FcAAAAAAAAAAAAAAGCOEYw2T5VSHpfkW0kOGTd8Y5I3JzkxybIkg0lWJXliko8nGdlRtyLJh0spHyqllBZHbJhw3ZhGmxPXTNwTAAAAAIB5pF5r/U/Jw6ObMlKNNJ0TYAS0U68tbjo+PLopI6PuKwAAAAAAAAAAAAAAMJf0z3YDzLxSyookn0lSHzf8lSQvrKpq/YTyW5N8PcnXSykfTPLVJHvvmHt5kquSvK/JMbtrMNo/J/n8FNccluSsGTgbAAAAAIA2Bspg+tKf7dk5qGjz6KaMVNuarusvvp0BtNaoNbJh+107jW8eHW5zXxGMBgAAAAAAAAAAAAAAuyOvJJqfXp9kxbjrXyR5dlVVm9stqqrqB6WU5yT51rjht5dSPlpV1doJ5RNfXbIiU1BKWZKdg9HunMoezezoc2Kvk/Wyq8cCAAAAANCBUkrqfY1s3H73TnPD21sHow2UwW63Bsxh9dripuPD2ze2vq/UBKMBAAAAAAAAAAAAAMDuqDbbDdAVvzfh+n2ThaLdo6qqbyc5f9xQI8lzm5ReOeH64M7ba1q/rqqqO6a4BwAAAAAAc0yjRYDR5tFN2dYiwKi/CDACWmsVjLZ5dDjbqq1N59xXAAAAAAAAAAAAAABg99Q/2w0ws0opQ0kOmzD87Slu860kjxx3fUqTmismXB8+xTMOnXD98ymuBwAAAABgDmoVYDQ8uikjgtGAaWj0tQ5cHKlGms65rwAAAAAL0tY7ko3X7zw+dL+kNphsW5809ut9XwAAAAAAAAAwjmC0+WdZk7FbprjHxPp9mtRcNuH6gaWUxVVVberwjFMn2Q8AAAAAgHmo0SIYbXPbYDTfzgBam17govsKAAAAsIBsvSu54PnJTV9LUrWvXXZ88sgvJHtMfJ9mAAAAAAAAAOiN2mw3wIy7s8nY0BT3WDLhesPEgqqqbk5y6bih/iSPmMIZj5lw/bUprAUAAAAAYI5qGWC0vXWA0UBtsJstAXPcdAIXB4r7CgAAALCA/PDlyU1nZ9JQtCS585Lk3CclVQe1AAAAAAAAANAFgtHmmaqqNiZZP2H4xClu8+AJ17e0qPvihOszOtm8lHJ0klPGDW1M8o3OWgMAAAAAYC5r9LUJMBptHmDUXwa62RIwx7UMXBzdlG0tgtHcVwAAAIAFY9v65IYvTW3N3Vcmt1/YnX4AAAAAAAAAYBKC0eancydcv6LThaWUVUmeNmH4/Bbln0qyfdz16aWUIzo45k0Trj9XVdXmDlsEAAAAAGAOE2AEzLRGi/vK5u2bMuK+AgAAACx0d1+ZtHhTirZu+PLM9wIAAAAAAAAAHRCMNj99dsL1c0opL5xsUSllUZJPJlkybnhDkq83q6+q6sokHx83NJjkY6WUepsznp7kJeOGtiZ5x2S9AQAAAAAwP7QKMBoe3ZjR+7wXx736S383WwLmuHpf68DF1sFo7isAAADAAnHNJ6e3bsNVM9sHAAAAAAAAAHRIMNr89G9JLhl3XZJ8opTy96WU/ZotKKU8NskPkjx+wtT7qqq6o81Zb08yfv7hSb5VSjl6wv6LSimvSfL5Cev/pqqq69rsDwAAAADAPFJvEYy2YeSulmv6y0C32gHmgUat0XR8c5tgtIHaYDdbAgAAANg9rPtJ8su/n97a6z83s70AAAAAAAAAQIe8Ffo8VFXVaCnlWUm+n2TljuGS5LVJXl1KuTTJ1UmGk+yV5MQkq5psdXaS901y1g2llNOTfD3JPa8gOTXJz0spP95xztIkD0qyYsLyryb5s6n97gAAAAAAmMsaLYLR7t7eOhhtoAgwAlqr14aajm8eHU6txftECVwEAAAAFoQrP7hr6++4OFl+wsz0AgAAAAAAAAAdEow2T1VV9etSyqOTfDLJSeOmaklO2PFouTzJh5P8r6qqtnVw1rmllGck+VjuDT8rO849qcWyzyR5eVVV2yfbHwAAAACA+aPe1zwYbcP2u1uuEWAEtNOoNZqOb6u2pqQ0nXNfAQAAABaEdRft2vrbLxKMBgAAAAAAAEDPCUabx6qq+kUp5WFJnp/kVUkemrR49ceY4SRnJvnHqqp+MMWzzi6lPCDJO5I8J8nyFqU/SPLXVVV9YSr7AwAAAAAwPzRqzYPRqoy2XNNffDsDaK1eG2o5V6VqOu6+AgAAAMxLN5yV3PDlZPjmseu7rmhde8L7k4v/pP1+P3xFcvl7kqX3T6oqGdmQ3Hb+2Nzx702OeGUy2OpHhgEAAAAAAABgevzE/zxXVdVIkk8k+UQpZWmSk5KsTrIsyaIkdye5I8llSX62o366Z61N8vullNclOTXJwUlWJdmY5MYkP62q6ppd+O0AAAAAADDH1VsEo7XTXwa60AkwXzT6GlNeM1AGu9AJAAAAwCy6/L3JJX/aWe2Bz0iO+eOk1JKfvjFpES6fJNl47dhjokveklz/ueTx5yUDS6bRMAAAAAAAAAA0JxhtAamq6q4k3+7BOVuTfKfb5wAAAAAAMPc0BKMBM6xRG5ryGvcVAAAAYF7Zdndy+bs7rz/pH5JSkmPekBz20uScJyTrfjz1c+/4aXL5XyYn/NXU1wIAAAAAAABAC7XZbgAAAAAAAFg46tMIRhuoDXahE2C+WFRrTHmNYDQAAABgXrn9wmRkY2e1tUVJY/97rweXJ4e/cvpn//x9yfAt018PAAAAAAAAABMIRgMAAAAAAHqm0Tf1YLT+0t+FToD5oq/0ZbAsmtIa9xUAAABgXth6V3L9F5ILX9H5mgN+JykTfoR8/yfvPDYVX9wvWfOlZNvd098DAAAAAAAAAHYQjAYAAAAAAPRMvdaY8pq+CDAC2mvUpha6OFAGu9QJAAAAQI+s/1XytROS7z0r2XhNZ2saByQPfOfO44sPSI5/z671c/4zkq8/JNl43a7tAwAAAAAAAMCC55VEAAAAAABAz/SV/gyWRdlabemovr8MpJTS5a6Aua7etzh3bb+j4/r+MtDFbgAAAAB64OI3JxuvbV+z9AHJ/k/a8fH9k/2fktRXNK+9/5uSlY9NLv6TZO13p9fT+l8ml749edjHprceAAAAAAAAACIYDQAAAAAA6LF6bXG2bu8sGG1AeBHQgUZt8ZTq+2vuLQAAAMAcNrotufErk9cd8NTkhPd0vu8+Jycnfyj56lHT7+2GLyVVlXjDCwAAAAAAAACmSTAaAAAAAADQU42+xVm//Y6OavsFowEdqE81GK34NikAAAAwTaPbk/VXJNvuSqrRGd68JKUv6R9K+hYlm9c2L9t8a1KNTL7dykdPvYUlhyWNA5LhG6e+Nhn77zJ8c7J4/+mtBwAAAAAAAGDB8xP/AAAAAABAT00lwEgwGtCJxhTuKyUlfb5NCgAAAEzH2vOSb00jbGw2rDg1WfX4qa+r9SUPeFty0e9P/+wvHZA8+P8kR716+nsAAAAAAAAAsGD5iX8AAAAAAKCnphJgJBgN6MRUAxdLKV3sBgAAAJiXtq1Pvv3Y2e5icqtOS1Y+Kjn69WMhZ9NxxKuSxv7JdZ9NNl6T1FclBzw16asna85MUiVb70xu/XbrPX78mmT5A8d6AQAAAAAAAIApEIwGAAAAAAD0VL3W6LhWMBrQiUbfVILRfIsUAAAAmIYbzkqq0dnuor29T05+6+szs9eBTxt7THTI8+79+MuHJxuuar3HtZ8SjAYAAAAAAADAlNVmuwEAAAAAAGBhadSGOq4dEIwGdKBem0owmvsKAAAAMA1X/stsdzC55SfuXuet/0Vv+gAAAAAAAABgXvF26AAAAAAAQE/V+xod1wowAjpRr3V+Xxkog13sBAAAAHZDo9uTn709ueYTSaklB56enPBXSZ+vkZvaeH1y0R8ma7+bjNw92910rvQnh7+it2ce8apkzReSVM3n156XfLq0Xr/02OSo1yWHv7wr7QEAAAAAAAAwN9VmuwEAAAAAAGBhadSGOq7trwlGAyY3pfuKwEUAAAAWmkvenFz+7mTTmmTjdckv/za56JWz3dXuafuW5JuPSG766twJRSt9yd4nJ4/9WrLXg3p79qrHJY/89+mvv+vy5IevSK7++Mz1BAAAAAAAAMCc1z/bDQAAAAAAAAtLvdbouFaAEdCJqd1XfIsUAACABaQaTa76yM7j1/y/5IT3J/UVve9pd3bjl8cC5KbqoNOTUz83vTNHtyafW9y+5og/TB78983nSknKLL5X9kGnJ0+5PPmPY6e/x6/+KTn0xTPXEwAAAAAAAABz2ix+FxwAAAAAAFiIGrWhjmsHBKMBHWj0dX5fEbgIAADAgrJ5bbJ13c7j1Uiy5gu972d3t+4n01u3+iVJrW96j/5GsuTw9vsvPab1+tkMRbvH0Oqktmj66++8OBndPnP9AAAAAAAAADCn7QbfCQcAAAAAABaSeq3Rca0AI6ATU7mvDNQGu9gJAAAA7GaqkdZza8/vXR+7s6pKrvpocv4zk5//1dTXDyxL9jtt13o45AWt52oDyf1+b9f277b+RnLQ6dNfP7otWX/FzPUDAAAAAAAAwJwmGA0AAAAAAOipRt9Qx7WC0YBONGpTua/0d7ETAAAA2M2MtglGu+7TybYNvetld/WTNyQXvjRZc+b01j/260nfol3r4di3JIe8cOfxgaXJo85K6it3bf9eOOkfk30fO/31Zx+XjGycuX4AAAAAAAAAmLP81D8AAAAAANBT9Vqj41oBRkAnpnZfEbgIAADAAlK1CUZLkjX/nhz6kp60slvavDb51f+ZvO6YP0n2f9K916WWDC5Plh479vGu6luUPPyTyYM+kGy+JamqpNqWLDs+qc2RfyNdtFfyuHOSTTckd/96bOw3FySXvLXzPa7//ML++wgAAAAAAABAEsFoAAAAAABAjzVqQx3XCjACOlGvLe641n0FAACABWXb3e3n1353YQdR3XbB5OFxSbLfbyf7Pqbr7aS+Yuwxly0+cOyRjIXHTSUYbaH/fQQAAAAAAAAgiWA0AAAAAACgx+q1Rse1A2Wwi50A88WiWj0lJVWqSWvdVwAAAFhQNq1pP7/h2p60sdsYHUlu/npyw1nJHT9J1v148jWL9k5WnNr93uajZcclQ6uTjdd0Vr+hwzoAAAAAAAAA5jXBaAAAAAAAQE81+oY6ru0vA13sBJgvaqWWRbVGNo9umrS2v/gWKQAAAAvIxusnmb+uN33sDkaGk+89K7np7M7X1BYlJ38o6VvUvb7ms1JLTvlQct4zkpENk9dvvLbrLQEAAAAAAACw+/NT/wAAAAAAQE8NlkUpKalSTVorwAjoVKO2uMNgNIGLAAAALCCb1kw+P7o9qfX1pp/ZdP1npxaKdvKHklWPT5as7l5PC8Gqxye/c0Vy8zeT4RuTxQcm29YnP37dzrWb1iSj25Kaf78BAAAAAAAAWMi8mggAAAAAAOipWqmlXmtkWIARMIPqtcUd1fWXwS53AgAAALuRTde3n69GkuGbkqGDetPPbLrxK53XHv/u5PCXd6+XhWbxgclhZ9x7fedlzeuq0bFwtCWH9qYvAAAAAAAAAHZLtdluAAAAAAAAWHg6DTAaqAkwAjrT6DgYzXtHAQAAsABsujG58ezkun+bvHbjtV1vZ9YN35ysObPz+n1/q3u9kAwd0npuwzU9awMAAAAAAACA3ZNgNAAAAAAAoOc6DUbrLwNd7gSYL+p9nQYuuq8AAACwANx6bvLdp3RWu/a7XW1lVo1uSy54YfLF/Ttfc8DTkr1P6V5PJANLkkUrms8JRgMAAAAAAABY8ASjAQAAAAAAPdfoOBitv8udAPNF5/cVwWgAAABwH5f+2Wx30D1X/E1y7ac6q73f7yUn/VPyyC8kpXS3L5Ilq5uPbxSMBgAAAAAAALDQeTURAAAAAADQc/U+AUbAzKrXGh3V9ZfBLncCAAAAc9Cmm5LF+892FzNvzZmd1z7ic93rg50NrU5u/+HO4xsEowEAAAAAAAAsdLXZbgAAAAAAAFh4GjXBaMDMqnd8X/HeUQAAALCTu3812x10x92/7KzumDd2tw92tmR18/E7f9bbPgAAdldVlYxsnO0uAAAAAABmhWA0AAAAAACg5+q1Rkd1A4LRgA51GrjovgIAAABNbLx2tjuYWWvPT84+Idm2fvLavsXJYS/rfk/c19Ahzcfvuiw565Dkl//Qy24AAHYf1WhyyduSL+6ffG5J8pUjk2s/PdtdAQAAAAD0lGA0AAAAAACg5xq1oY7q+gUYAR2q93UWjOa+AgAAwIJQ+pK+xn0fex7Tun7DtT1rres2XJuc++Tkzksmr131hOTx5yZ7HtXtrphoyerWcxuvS378uuSqj/auHwCA3cXP3plc/u5k8y1j13dfmVzwguSmr89uXwAAAAAAPdQ/2w0AAAAAAAALT73W6KhOgBHQqUat02C0wS53AgAAALuBQ5479pjo/Gcla76w8/jGa7veUs/8/L3JyIb2NU++LFl2bG/6obmhNsFo9/j1/00OO6P7vQAA7C6qKrnqQ83nrvpwsv9v97YfAAAAAIBZUpvtBgAAAAAAgIWn0TfUUZ1gNKBT9Y6D0bx3FAAAAAvY0CHNx+dLMNrm25JrPjF53eDy7vdCe0MHT15z56Vj4SAAAAvF5rXJ8M3N5275dm97AQAAAACYRX7qHwAAAAAA6Ll6rdFRnWA0oFONDoPRBtxXAAAAWMhaBaNtuKanbXTNlf+SbN88ed3gsu73Qnt9g0n/kmRkQ+ua7cPJ5luTxqre9QW74pZvJ7/+cLL+ipDAke0AACAASURBVPuOb7sr2XjdfceWHZ+c/MFkn4f2rj8Adn+3ntN6btudybYNycCS3vUDAAAAADBLarPdAAAAAAAAsPA0akMd1Q3UBBgBnal3GIwmcBEAAIAFbcnq5uPDNySj23rby0zbvjm58p86q+3r7I0b6LJHf2Xymiv+uvt9wEy44cvJd347uf6zyZ2X3vcxMRQtSe68JPnGw5K15/W+VwB2T5tuTC54fvuasx+QVKO96QcAAAAAYBYJRgMAAAAAAHquXuvshYcCjIBONfo6DEarDXa5EwAAANiNDR3SfLwaTdb9pKetzLhrP5VsXttZbSnd7YXOLH3A5DW/+Jvu9wEz4fL3JtX2qa8T/gfAPX76x5PXbLxOqCYAAAAAsCAIRgMAAAAAAHqu0TfUUZ1gNKBT9VpnwWgDpb/LnQAAAMBubMkhSVqEgl32zl52MrOqKvnFBzqrXfbA7vZC5xbtnQwsnbxuZFP3e4FdsX1rcvuF01t741dmthcA5qY7Lk6u+7fOam/7Xnd7AQAAAADYDfipfwAAAAAAoOfqtUZHdQOC0YAONToMRhO4CAAAwILWP5SseHhy2/d3nrvp7GTt95KVj+h9X7ti45rkh69M7vp5Z/X7P6m7/dC5UpKDnplc/ZH2dec+JVn5yGTVaXPv7yfz0y3fTm49J9l659j1yIYk1fT3++Grkr56sufRyfbhZMu6ZNVvJfs+dufakU1jwTmXvyfZeE0yuFey5zHJsuPGPt7vCcnKR02/FwB6b8M1yddOnFo9AAAAAMA8JxgNAAAAAADouUZtqKM6AUZApwbKYGrpy2i2t61zXwEAAGDBO+ZNyW1Paz536VuTx507Flg1F6z7SfKd3062/Kaz+hWnJsf+aXd7Ymoe+M5k3Y+SOy9tXbP23LHHZe9Kjn9PcuxbetUd7OziNyc/f9/M7vnr/7vz2OV/mdz/LckJ77l3bOudybcefd/Ply2/SW47f+xxz7rj3pEc9+cz2yMA3XHb95NvTjH4dcPV3ekFAAAAAGA3UpvtBgAAAAAAgIWnXmt0VCfACOhUKSWN2uJJ69xXAAAAWPAO+J1k74c2n1t7XnLLN3vbz6645G3tQ9EOembytGuSh38qefx5Y6FvA3v2rD06sPiA5LQfJL/1rc7qL/3zZPiW7vYErdx91cyHorXz8/cmG6659/qqj7QPEbzHZe9INt3Yvb4AmDkXv2nqazZeM3kNAAAAAMAcJxgNAAAAAADouYEymL70t62ppS+14lsZQOfqfZMHow0IRgMAAGChKyU54T2t5y/506SqetfPdI1uS275Rvuao1+fLDkkOeT5ycpHJrX2/ybJLOlvJKsel6x89OS11Uhy8yR/7tAtN/9n78+84cv3fnz95ztbU436PAGYC7bemdz2/amv27Rm7LkwAAAAAMA85rv7AAAAAABAz5VSUu9rZOP2u1vWCC8CpqpRa0xa0+/eAgAAAMm+j032fVxy67d3nlv34+SGLyYHnd77vjo1Mpxc95mk2t66Zu+HJise3rue2HWrnpCs/e7kddf9W3LI85Kaf+chyfYtye0XJrXBJCUZ3ZLsfXLSV98xvzVZd1Gycc2un3XLN6dWv+z45M5Ldu3Mn/5xUt937OPbf9D5unU/Sg47Y9fOBqC77rys/fxJ/5T86A93Hq9Gk43XJ3sc1p2+AAAAAAB2A4LRAAAAAACAWdGoLW4bjCa8CJiqem1o0hr3FgAAANjh+Hcn32gSjJYkl7wtOeDpSa2vtz114vYfJd99SrJ5bfu6kz/Ym36YOYe/PLn2k8n6X7avu/lrydnHJY/5WrJkdW96Y/d0x8XJuU9Ohm++73h9VfKYs8fC0c59UrLxut73tuTw5NFfTn5wRnLrOdPfpxpJLnje1Ndd+c/JsuOSI141/bMB6J7f/CD51iNbz9//LcmhL24ejJYkt35HMBoAAAAAMK/VZrsBAAAAAABgYarXFred768JLwKmpl5rTFojGA0AAAB22OeU5MCnN59bf0Vy3ad7208nqtHk+8+ZPBTtaVcly4/vTU/MnPrK5AkXJCf+TXLwJEFQ63+Z/FDg04JWVcn3n7tzKFqSbL5lbO6/XtybULSlxyYHPWvscfBzkxP/d3LaBcnQ/cYC/E7+v8nyB913TW0wOeiZycpHd6+vi35/8qBBAHpvdHvyvWe3rzn+3Un/UFLft/n8D18+830BAAAAAOxG+me7AQAAAAAAYGFqTBaMJrwImKLJ7yv9KaX0qBsAAFg4ytgT7TcmqY8b/kRVVdfu4r6rk/yPcUObqqr6613ZE5jgge9KbvhykmrnuUvfntzvOUnfYM/bamndT5INV7ev2fuUZMmhvemHmbdor+SY1499vM/Dkx+/pnXtLd9MtqwbW8PCc9dl7UO/7v5V73o5+o+Sw17WfK5vMDn8FWOPZrZvST5bbz43E677XHLcn3VvfwCm7vYLk01rWs/v96Tknu9nDa1ONt/avM7zIAAAAABgHhOMBgAAAAAAzIq6YDRghtX73FcAAGCWPD/JX+XeZKUzdzUULUmqqrqmlHJcktPvGSulXF1V1Zm7ujeww7LjkoOfl1z36Z3nNl6TXP2vyRG/3/u+mhndnqw9d/K6vU/peiv0yD4PnaSgSu7+dbLo5J60QxdVVbJ5bbJo72TbXcn2zZOvWfPF7vfVqb134e9g36LkIf+SXNSle+3dV3ZnXwCmb/0v2s/vM+757NKjk9t/0Lxuw1WTB6ONjiTVSNLXxRBOAAAAAIAuEIwGAAAAAADMisYkAUYDxbcxgKlpCFwEAICeK6XUkrzznsskv0ry4hk84iVJjk9y+I7rdycRjAYz6YHvSK7/bFJt33nusnclq1+c9Lf/mrurRkeSn74xufojybb17Wv7h5IjXtmbvui+vR6crHx0sva7rWu+cUpy+q1JfWXv+mJmXfWR5NI/S4Zvmu1OpmfVE8ZCJnfFoS9Nrv1Uctv3Zqan8a79ZPLwT8z8vgBM3ej25OI3Jb/4m9Y1g8uTQ8+49/qYNyZXf6x57c/+InnMf7Q4ayT58euSa/9fsn1Lsv8Tk4d+LBlcNs3mAQAAAAB6qzbbDQAAAAAAAAtTfdIAo8EedQLMF5PfVwSjAQBAFzw+yeok1Y7HW6qq2jRTm1dVtTHJm8cNHVlK+a2Z2h9IssfhyWEvaz43fHNy5T/3tp+JfvYXyS//bvJQtAN/N3n8ecnS+/ekLXqglLGwj6P+V/u67z6tN/0w8276WnLhy3obilYbSOr77vpj6bHJ0a9PHnXWrvfUNzi2z+Gvuu94s3MXrdh5/arT2u+//spd7xGAXXfZu9qHoiXJEy5Ihu5373W757Y3nZ3c/M3mcz/9k7Hn8dvWJ6NbkhvOSs5/5tR7BgAAAACYJf2z3QAAAAAAALAwNQQYATNssvvKgPsKAAB0wwvHffzjqqq+ONMHVFV1Zinlx0kevGPoBUnOmelzYEF7wJ8lV398LDRhosvfmxz+imRgz973VVXJVf86ed2Rr01O+vvu90Pv9Q8lD/7b5O4rk5v+o3nN7Rcmd16WLHtAb3tj13Xy+T3TDvq95NRP9f7cySzaKzn5X8Ye03Hj2cl3n9J87ppPJMe/a/q9ATAzrv5I+/mj/ihZevTO4/s/eSwErdWe+z3hvmNVlVz/bzvX3npOMnxL0ljVWb8AAAAAALOoNtsNAAAAAAAAC1N90mA07+8CTM3k9xXBaAAA0AVPHPdxN9NN7tm7JHlyF8+BhWnxgckRf9B8buu65IoP9Lafe2z5TbL5lsnrBGLNf8uOaz9/58960wcz69bv9P7M+Xq/WHZs67m7fH4AzLqtdySb1rSvaXUvb/c8qNlzoK13JMM3N6+//vPtewAAAAAA2E0IRgMAAAAAAGZFQ4ARMMMafe4rAADQS6WUg5PsM27oq108bvzeK0spB3XxLFiYjn1L0r+k+dxl70juuLh3vYxuTy5/b/LFVZPX9g8l93tW93tidq1+UVLa/Oj7Bc9PfvjKZPPa3vXE1Gy4NvmvlyRfPTo5a/XYY+u63vZQ+pNDnt/bM3tl6ODWczeclVSjvesFgJ3dck77+f4lyUHPbD53yP9ove6uy5Oq6ryPanvntQAAAAAAs0gwGgAAAAAAMCvqkwQYDQgwAqaoLnARAAB67fgdv1ZJrqqq6sZuHVRV1Q1Jfj1u6IRunQULVn1FcvQftZ7/2onJltt708sPX5Fc8qeTB/nscWTyW+ckg8t70xezZ+kxyaPOal/z6w8l33hYMrKxNz3RueFbx/5srvl4sv6XycZrxx69tPh+yWP/s32A2Fz3oL9tPfej1/auDwDua/jm5Httgnz3OCJ53DnJ4LLm88uOTe7/5tbrb/nmhIEpBKUBAAAAAOym+me7AQAAAAAAYGFqTBpgNNijToD5YvL7imA0AACYYSvGfXxTD867KcnhOz5e2YPzYOE5+g3Jr/4x2XpH8/lrP50c9Zru9jB8y1h4UjulP/ndNUljVXd7YfdywO8kR7567O9oKxuuTq7/QnLoi3rXF5O75hPJ5lumvu4Rn0+WHT95Xf/ipBoZ+7j0JyObdp5ffMDUz59r9jqp9dyV/5Q88B3Jor171w8AY65u89x2YM/kqb+afI8jX5P8/K+az132rmS/0+69rrZPrT8AAAAAgN2QYDQAAAAAAGBW1CcLMKr5NgYwNfVao+38gGA0AACYacvHfTyNtJMpG3/Gsh6cBwvP4NLk/m9KLn5z8/nf/Ff3g9Fuv2jyMIf9nyQUbaHa44jJa37zX4LRdje/+a/prVv5qKQuC7Vjexzefn7dT5L9ntCbXgC4V7v/D654RGd7tHvuu+W2+16PjnS2JwAAAADAbqw22w0AAAAAAAALU2OyYDQBRsAUNWpDbef7a+4rAAAwwwbHfdyLn0ccf8aiHpwHC9ORbYLPrvtMctPXZ/7M7VuSqz6SXPiK5LynTV5/v9+b+R6YGw46ffKaX38w+Ux/ctm7k613dL8n7mv85/MFLxp73Pa9qe+z8jFC0aaqsSpZ8cjW87/8h6SqetcPwEK36Ybk5/87ufHLrWs6fV5baklfizcIWv/LZP2v7r2uBKMBAAAAAHOfYDQAAAAAAGBW1CcJRhsQjAZMUb3VC0J2ELgIAAAzbtO4j1f04LzxZ2xqWQXsmv7FyVGvaz1/7hOTS/9i5s7bvjn5zhOTC1+WXPXhyesPPSM5+Lkzdz5zy+IDkwe+a/K6anty6duSrxyZDN/S/b4YM/Hz+dpPjj223Da1fYZWJyd/sDs9zncnf6j13E1fTX7yht71ArCQ3fXz5D8fklz8J61ragPJIS/ofM9HfL713FePSm6/aOxjwWgAAAAAwDwgGA0AAAAAAJgVjb72wWj9ZbBHnQDzRX8ZyECbe4dgNAAAmHHjk2YO7sF548+4tQfnwcJ1wO+0n7/83cnwDH0arjkzWXvu5HW1geQpVySn/OvYxyxcx76189otv0muFLDVM51+Pt/j2Lclp3xk7PGwTyYP/WjyuO8kT7k82fOorrU5ry09OjnwGa3nf/m3yYare9cPwEJ1+XuSzZOEsz7u3Kk9r93nYe3nL3nb2K+j7YLRqs7PAwAAAACYRYLRAAAAAACAWVGvNdrO95f+HnUCzCft7i0DgtEAAGCmXbXj15Lk4FLK4d06qJRyWJJDmpwNdMOSQ9vPVyPJrefMzFk3/Wdndcf+2VjgTykzcy5zVylJfWXn9Vd/tHu9cF83f31q9Ue8MjnsjLHH6hcmh74k2fcxSX/77x8wiaX3bz9/8zd60wfAQnZzB89xJ3vOPdHg8mRgaev5284f+7VqF4wGAAAAADA3CEYDAAAAAABmRV/pz2BZ1HK+X4ARMA2N2lDLOfcVAACYcZck2Zqk2nH9tC6e9bvjPt6W5OIungUMrU72OLJ9zZX/lIxs2rVztqxLrv1kZ7X7P2nXzmJ+OfgFndduur57fXCvajRZ84XO65c+IGkc0L1+FrL9nth+/uqPJSPDPWkFYEHZekdyw5eTm76WbLm9fe3yE5LGqqntX0r758TbN4/9OioYDQAAAACY+wSjAQAAAAAAs6ZeW9xybkCAETAN9Vqj5ZxgNAAAmFlVVW1N8t0kZcfjT0oprdOKp2nHnm/MWABbleS8HWcD3VJKcuJfJ7XWb2yQ276f/PteyfpfTe+Mm7+ZnHVIZ7WrX5zs9eDpncP8dPQfJUsO67z+yg92rxfGQhLPe0YysrGz+r56cuL7x+41zLwVpyYHP7f1/O0XJl87Idlwde96Apjvbvl28qWDkvOenpz75Pa1fYuTE943vXOOfVubySqpqqQSjAYAAAAAzH2C0QAAAAAAgFnT6GsdjCbACJgO9xUAAOi5z+z4tUqyIsn7u3DGXyVZmbHwtST5dBfOACY68KnJEy9qXzO6JfnRq6e+9+i25L9emIzc3bqmvio58rXJI89MHvpRAUrc19BByWk/SE76x2Tfx+be/0W0cNHvJ5tv60lrC9KVH0xu/HLr+f2elBx6xtjjge9KfvtHyf5P6l1/C00pycM/1T488O5fJT/+o971BDCfjW5LvvfszgJCj3tH8sQfJfudNr2zlh2bPLzdl8RVMioYDQAAAACY+/pnuwEAAAAAAGDhqtcEGAEzq919ZcB9BQAAuuHTSd6dZFXGUmleVUq5saqq98zE5qWUNyf5w4wFr5Ukt0YwGvTOsuOSB30g+cnrW9fc8s1k6x3J4PLO9117frJ5bfuax30nWXp053uy8NT3SY78w7HH1juTf5/k7+CNX0kOe2lvelto1nyh/fyDPuDzuddKLTnmDclFf9C65qb/SEY2Jf2t/00VgA6sPT/Zum7yuqHVyXF/vuvnDd2v9Vw1mlSC0QAAAACAuU8wGgAAAAAAMGsagtGAGSZwEQAAequqqq2llLck+VjuDS97VynlgUl+v6qqO6azbyllWZJ/TvKccftWSf60qqqtM9E70KF9Tp285pZvJUsfkCxZnfTV7x0f3ZZsWZc09h0LaRi+JRndOhZQ1U59ZbLHYbvWNwvL4LJkz2OS9Ve0rrn5G8mhZySjW5IN17TeZ+tdGftfTpLFByYDe8x4u/PGtg3JpjXJby5oXePzefbs8/D289X2sc+FZcf2ph+A+WrNmZ3VrZjkvtyxWuspwWgAAAAAwDwhGA0AAAAAAJg19Vqj5dxATYARMHVtAxfdVwAAoCuqqvpEKeUZSZ6ee0PMfi/J40spH0ny4aqqruxkr1LK4UlekeSMJHvl3kC0KslXqqr62Mz/DoC29n5IsvzE5I6ftq753rPHfq0tSg57WfLgv0su+8vkF3+TjGyc+plH/3Hi63im6v5vSn7wktbz13927DEVpS858OnJQz8mIG28bRuSH5yR3PDFsXCtdnw+z57lxyf7PTG5+T9b15z9gOTBf58c9dre9QWwUB31upnZp5TWc+c8LjnyNa3nq9GZ6QEAAAAAoMsEowEAAAAAALOmURtqOddfvFAKmLp6u2A09xUAAOim/5HknCQn5d5wtL2SvCHJG0opNyf5YZIrkty545EkS5MsS3JMkpOT7L9j/J5Xet+z14+TvLDrvwtgZ6UkT/h+8rnWX3P/t9EtyZX/PBaWNHzz9M576EeTQ18yvbUsbIe+eCy87Pxnztye1fZkzZlJrf7/s3ff4XFddf7H32ekkVXcbcklbrHTnR7SExISUigJoZelZhd2YYEsS1nI0kLgt7CFXcrCshD6AqEEUoFU0kmB9B7HvUlx72rn98fISI7vHc2MZkYa+/16nvvo6nzPPeer2BnZ8tzPhZP/r3zr1rr73gdLfzn4vPkXwyEfrXw/Svfi38BjX4BHL02f86eLoGUOzDi/am1J0l5nv7/LBQ6XRSa91HFH7kjT21WmHiRJkiRJkiSpsgxGkyRJkiRJkiRJw6axrim1ZoCRpFI01aXfpJ31dUWSJEmqmBjj5hDCmcD3gVeTCzSD/oCz6cCr+o40YcD5wOuvBN4RY9xctoYlFac+/ed4iUoNRZt/saFoGpqZr4Hj/hfufU951136S+j6FmRHl3fdWtS9BZb8vLC5h36qsr1ocHWj4PDPweo/QMft6fMW/sBgNEmqpNlvKN9aIU8w2mBid/n6kCRJkiRJkqQKGsJPQiVJkiRJkiRJkoamKdOSWjMYTVIpGjPpwWi+rkiSJEmVFWPcFGN8LfBhYBu5ULM44KBvLOngBXMDsB34WIzx1THGjdX6OiSl2Pcdld9j/OGV30N7vvFHlH/N3k7Y/Gz5161FmxZA747B5405AOoaK9+PCjPY6+uGx6rThyTtiXo7B58zbn759htKMFqvwWiSJEmSJEmSakP9cDcgSZIkSZIkSZL2Xo2ZptRa1gAjSSVoMhhNkiRJGnYxxv8MIfwQ+AfgfcCEgeWUy8KA83XAN4CvxBifr0yXkoo270JY+IPKrT+qFfY5v3Lra+8x6VgYfxisf6S86/72qN3HRk3afSzTAJOOg8O/AOPLGIIynLatggc+Bh23wZbFhV0z768r25OKM+9CePabEHuT6xufgmVXw4zzqtuXJO0Jutbnr8+4ABrbClpq2faFXP38T1iy/Vm62T3ELBsamFs3lfNGtTBlx5bie40Go0mSJEmSJEmqDQajSZIkSZIkSZKkYdOUaUmtGWAkqRT5Ahd9XZEkSZKqJ8a4BvhUCOFzwPHAacDJwD7ARGBnksxaYA2wArgTuBW4J8bYWfWmJeXX9mI4+Wdw55vKu27IwMTj4MTvQ3363+ulgoUAL/k93P1OWHV9ZffasSZ5fNmVsPoP8PKHoWVWZXuotJ7tcMPJsPm5wuaPmgz7vxcO/khl+1JxJh4Np/4GbssTQHnb+XD6dTD9ZdXrS5L2BJ3r8tdP/FFBy7R3ruQ/lnyCHXF73nl/7l7DsweewsefuJXxXfnn7sZgNEmSJEmSJEk1wmA0SZIkSZIkSZI0bAwwklRujZnm1FrW1xVJkiSp6mKMXcAdfYekWjf7jbmjexv07oCeHfC7Y2Db8tLWO/abMOetkB1d3j6lpmlwxu+h465cqFea5lnQ2wnbV5W/h64N8Nz34LDPlH/talp2ZWGhaOPmw5k354LRQqbyfal4M86D1z4Pv5qcPueprxiMJknF6lyfv17gn3XvWP/7QUPRdtqYbeTB8dM4vWNhQfP/otdgNEmSJEmSJEm1wX9xlCRJkiRJkiRJw6apriW1ZoCRpFI01aUHoxm4KEmSJElSmdQ3QcN4aJoCYw8sfZ3pLzcUTZU1bn7+kK6xB8L8iyu3/5p7K7d2tTx/T2HzWk+FxjZD0Ua6hom5I82a+6rXiyTtKfKFBB92ScHLLNr+dFHbLm0eV9R8AKLBaJIkSZIkSZJqQ/1wNyBJkiRJkiRJkvZejZmm1JoBRpJK0ZgxGE2SJEmSpKqa/UZYfXPx1006AVpmlb8faaCGcTDtZbDi2uT67Dfm6n/+EMSe8u/fcSfcdsHu443TYMb5MP1l5d+z3Bb9qLB5s99Y2T5UHiHkfq2e+WZyvXMtdG02tFKSCtW9DbatTK/PflPBS7V35lknaetSwkh7DUaTJEmSJEmSVBt8HJMkSZIkSZIkSRo24+onJI5nyNBYlx5uJElpRteNJZPyz6Cj68ZWuRtJkiRJkvYCc98Fcy8s7pq6Zjjxh5XpR3qh4/4Hxh+2+/i8d8O+74Dm6XDijyHTUP69uzbAsit3P579H/jDy+Hxfyv/nuW08Eew4/nB5x3+eWg7rfL9qDyO+AI05wmm3LK4er1IUq3bsii9dvBHYewBBS2zvXcbG3vWFbV1d6auqPkAxK7ir5EkSZIkSZKkYVA/3A1IkiRJkiRJkqS916TsFKY1zGRl59Jdxuc1HUxjpmmYupJUy0ZlGjmg+TCe3PrQLuNt2elMbpgyTF1JkiRJkrQHy2ThhMvgsE/D2gcgdvfXenZA73bIjoXYC91bYNwhMPFFkPFtzKqS5hlw7gOw/mHYvABCPUw8Blpm9s+Z8ybY5+Ww5j4Ysx+0zIbt7XBFAT9POuar0LMdHvxY8b09+jnY/72QHV38tZXW2wMPXZxe3+c82O89MOk4aGyrXl8auoYJcN4zcPmo5PqWxTB+fnV7kqRatf7h9Nrhlxa8TEfnytTa3MaDeG77k7uNd4XkBwXl1ds9+BxJkiRJkiRJGgF8R4EkSZIkSZIkSRpW75j2D3x92efY3LMBgAn1k3nr1PcPc1eSatmbpvwdX1v2GdZ0tQPQnBnNhdM/PMxdSZIkSZK0h2uZnTukkShTBxOPyh1psmNh6pn9nze2wfGXwT1/nX/tue8qPRitezOsuWfXfUeKTU/D1mXp9YM/Bm2nVK8flVddQy40MOnXeOvi6vcjSbUo9sLjX0yuNc+AupQAygTtnSsSx+tDPXObkoPRujMlBKNFg9EkSZIkSZIk1QaD0SRJkiRJkiRJ0rCa1TiPS/b9Bgu2PUEm1LFf0yE0ZAp/k7gkvVBbwzQ+OeerLNz2FJ1xBwc0H0Zjpmm425IkSZIkSVKtmf5yCHUQe5LrU14C2dG5Y9LxuZCzYq28fmQGo21emF7LjoNJx1WvF1VGy+zkYLTl18L+761+P5JUa5b+CtY9mFxrO72opdq7ViaOT85OTf238+5QQjBar8FokiRJkiRJkmpDCT8BlSRJkiRJkiRJKq+muhYOHf0iDmk5ylA0SWUxKtPIQS1HcPjo4wxFkyRJkiRJUmmapsLhn0+uNUyEI77Y//lR/54LDCvWE/8KT329tP4qafNz6bVjvwF1DdXrRZXRPDt5fMW18NCnqtuLJNWa3h54+NPp9YP+oajlOjpXJI63NUynPmQTa92ZuqL2ACAajCZJkiRJkiSpNtQPdwOSJEmSJEmSJEmSJEmSJEmSJI1I8z8ObafB6ptgxxrIZKFlDuxzHrTM7J/Xdgq87EFYfg1sfnb37ZH24AAAIABJREFUdVbdABseT97jzxfBzFdD8z4V+RJKsmVh8njDBJjzlur2ospoSQlGA3js87nfkxOPrl4/klRLll8NG59Mrs18DUw8pqjl2jtXJo63ZqeRTQtGC5mi9gAMRpMkSZIkSZJUM2oqGC2EcHPfaQTeHGNsL3GdKcBPd64VYzyzHP1JkiRJkiRJkiRJkiRJkiRJkvYwrSfmjsGMngMHvj+59uDF6cFosReWXQkHvK/kFstuc0ow2j7nV7cPVU6+YDSApVcYjCZJaVbdkFIIcNjnil6uvWtF4nhbw3R6Y09irauUYLReg9EkSZIkSZIk1YYSfgI6rE4HTuv72DiEdRr71th5SJIkSZIkSZIkSZIkSZIkSZJUGW2n5q8v/ims/TP0bK9OP4PZ/Fzy+Oi51e1DlTPY78nNC6rThyTVorTXyJmvhfHzi1pqa89mNvdsTKy1ZadRH7KJte5MCbcFRoPRJEmSJEmSJNWGWgtGAwjD3YAkSZIkSZIkSZIkSZIkSZIkSQWbejZMOj693nEH/O4Y+MV4eOyLEGP1enuhGGH9Q8m10ftWtxdVzrhDcgE+aRb/DLa3V68fSaolK3+fPD7puKKXau9cmVprbcgTjBbqit6L3q7ir5EkSZIkSZKkYVCLwWiSJEmSJEmSJEmSJEmSJEmSJNWOTB2cedPg83p3wEOfgGVXVr6nNM98M73WYjDaHuXkn8GYA9Lrd721er1IUq1YeUN6rYQA0Y6uFYnj2dDA+PpJZDMpwWiZEm4LjN3FXyNJkiRJkiRJw2BvDUarH3DuT3QlSZIkSZIkSZIkSZIkSZIkSZVV3wInfL+wuYt+XNFWSt67hMAXjWCZejj2v9Prq26Abauq148k1YIFl6XXRs8tern2zpWJ463ZqWRChvqQEowWSrgtsLez+GskSZIkSZIkaRjsrcFokwecbxm2LiRJkiRJkiRJkiRJkiRJkiRJe48JRxU2b8Pjle0jn23JAS0ANE2rXh+qjnGH5a9vfKo6fUhSrdj8XHptzAFFL5cajNYwHSA1GK0rU8JtgVtXFH+NJEmSJEmSJA2DvTUY7cV9HyPgT3QlSZIkSZIkSZIkSZIkSZIkSZU34XCYfOLg8zY+ATeeBluXVb6ngXq7Ycui5Nr4IyDsrbcg7MGapsDM16bXtyyuXi+SNNJ1boC19yXXQgayo4tesqMr+da2toZcGGlaMFpvyNCb2Edd+mZbFua+10uSJEmSJEnSCFfL/yoZi5kcQsiGEGaFEP4G+OcBpUfK25YkSZIkSZIkSZIkSZIkSZIkSSlOvxZmvR7qx+Sf134bXH8S9GyvTl8AT301vXbiD6vXh6or369tWlCeJO1tYoQbT02vn3ZdScu2d65MHG/LTgcgmxKMBtCdFIJ22rX5w9Ge/lpR/UmSJEmSJEnScBhxwWghhJ60Y+A0YFG+uQnXbgcWAt8Cxg5Y66oqfnmSJEmSJEmSJEmSJEmSJGkQIYRjQgivCyGcF0LYb7j7kSSprBomwCk/h9etg1ctyj9361JYVsW3vD/1X+m10XOr14eqq74ZZlyQXDMYTZJy1j0A6x9Jr489oOglN/dsZGvv5sRaW0MuGK0+XzBaJuHWwOnnwOvWp2/66KVF9ShJkiRJkiRJw2HEBaORCz1LOwqdN9gR+9Z4Evhl5b4USZIkSZIkSZIkSZIkSZL2XiGExhDC3AFH3SDzzw8hLALuBS4HfgM8FUK4I4RwSBValiSpejJ10DwLGibmn7fgsur0A9C1MXk81EN2dPX6UPW1zEke37K4qm1I0oi19v70Wl0zNM8sesn2zhWptbaGaUD+YLSukHJrYHY0NO2TXOtcDzvWFtyjJEmSJEmSJA2H+uFuIEVk9yC0cgrA/cAbY4xdFdxHkiRJkiRJkiRJkiRJkqS92YeBz/WdLwPmpE0MIbwB+AnJD1M9CbgnhHB6jPFPFehTkqThEQLMfjM889/pc1ZdDz8J0DABOtf1j9c1Q8/W3PmUM5IWh/GHwry/yX1Ms+L3sORyWPcgdG1InjPxRYN+KapxacFoa+6Bm86E+tHQdioc8H6oaxzaXjHCc9+FlddD41SYdyFMOGJoa0pSpW1emF6b9XrIFH+bXnvnysTxUaGRsXUTAMjmCUbrzqQEowG0ngRLfpFQiLDydzDnLcW0KkmSJEmSJElVNRKD0W4jF4yW5LS+j5Hc0yC3F7hmBHYA64EngFtijLcPpUlJkiRJkiRJkiRJkiRJkjSoC8iFnEXgshhj4vsDQwgTgG8Bmb65Ax+wuvOaFuCKEMKBMcZC3z8oSdLId+S/5A9G22lgKBr0h6IBrL45+ZrVN8GC78IZN8Lk43avP/ttuPc9g+994g8Gn6PaNnpO8nj3lv7fX8uvguVXwxk3Q6au9L3u/VtY8O3+zxd8B864HlpPLn1NSaq0x7+YXjvmP0tasqNrReJ4a8M0Qsj9lbg+XzBayPNafML3UoLRgLv+Cma9oaQwN0mSJEmSJEmqhhH308sY4+lptRBCL/1vcHpjjHFJVZqSJEmSJEmSJEmSJEmSJElFCSE0AUfS/76/a/JM/wAwjv5AtOXAFUA38Bpgdt+8GcAHgX+tQMuSJA2P7BiYdi6s/F1l1u/eBE98CU791a7jvd3wyGcHvz7TAGP2q0hrGkFa5hQ2r/02WHU9TH9ZaftsXrhrKBrkQv4e+xc4Pd8fFyVpGG14Ir128MegYUJJy7Z3rkwcb2uY9pfzfMFoXZlM+uL1LTD3nfDc95PrK34LM84roEtJkiRJkiRJqr48P/0cscLgUyRJkiRJkiRJkiRJkiRJ0jA7DKgj976/LTHGP+eZ+1b6Q9GeAg6NMV4UY/xw3zr39c0LwDsr1rEkScNl7jsru/7qW3Yf2/QMbFsx+LUtcyDU4q0HKkqhwWiQ/PupUMt+kzy+4lqIMbkmScOt/Q/ptdFzSl+2M/n7cGt2+l/O6zPpwWjdg31/nnJmem0or+WSJEmSJEmSVGH1w91AkS4ZcL5+2LqQJEmSJEmSJEmSJEmSJEmD2bfvYwQeT5sUQjgI2K9vXgQ+HWPcsLMeY9wcQvgA8Me+oQNDCDNjjEsr07YkScNg2tnk8j8rFAzVuQ4e+iSEAbcQbFlY2LUzXlWZnjSyNIyDttOg/dbB524u8PdOkhW/Ta/t6IDGttLXlqRKWfun9Nr0V5a0ZIyRjq6VibW2hml/Oc+GIQSjTX95em3Lc/mvlSRJkiRJkqRhVFPBaDHGSwafJUmSJEmSJEmSJEmSJEmSRoApA86T7/bOObXvYwA2Ab9+4YQY470hhGXAjL6hwwGD0SRJe46GCXDsN+G+v6vcHo99ofhrJhwJB324/L1oZDr6y3DLubmAsnyW/hJ6eyBTV979Ny8yGE3SyLP+MVhwWXq9ZWZJy27q2cD23m2Jtbbs9L+cZ6gjEIgJ4andg70Oj5oILfsmh6EuuxJ6uyFTU7cXSpIkSZIkSdpLDPJYCEmSJEmSJEmSJEmSJEmSpJI0DzjflGfeyX0fI3BTjLE7Zd6jA85nDaUxSZJGpP3/Fl7+CBzwwdLDoeZ/EkIZAk4O/TSc+is46w5omjL4fO0ZJh6d+z14wvdzv5dmXJA+d/VNpe3RszW9lhTcI0nD7cF/Sq/N/+eSl23vXJFaa2uY9pfzEAL1IZs4rysUcGvg4Zek11ZcN/j1kiRJkiRJkjQMDEaTJEmSJEmSJEmSJEmSJEmVEAacJ9/FnXPSgPPb88xbM+B8bEkdSZI00o0/FF70FTh/UWnXH3EptMweWg/7vj0XojLzNVDfMrS1VHuapsDcd+R+Lx34wfR5y35T2vqbF+WpGYwmaYTp2Q4rf5teb5lT8tIdXSsTxxszzYyuG7fLWH1K6Gl3poBbA1v2Ta+V+louSZIkSZIkSRVmMJokSZIkSZIkSZIkSZIkSaqETQPOpyRNCCFMBfYbMHRXnvUG3gkeUmdJkrQnqG+CSScUd83+78t9nHL60PZuG+L12nNMfFF6bcFlsP353cc3L4KNT0GMu9d6dsC2Felrrvxd8nWSNFy2LIbYm15vO63kpVd3Jr8etmWnEcKuf+WtD8lZ492hgFsDJx6dXlv6a+jtGXwNSZIkSZIkSaqymg5GCyG8JIRwaQjhmhDCvSGEp0IIzxV5LBjur0OSJEmSJEmSJEmSJEmSpD3Q8r6PATgsZc7LB5zvAP6cZ73xA863DKEvSZJqw2GfhkxyEMpuRrXCgR/MnR/4IWiYWNqe4w+DWa8v7VrtebJjIDs2udbbCVe0wj3vht4u2LEGbjgFrtoXrjkIrjsMtizd9ZoNjwF5gs/ab81dt3lRub4CSSpdjHDve9Lrs94IY/cvefmOtGC0hum7jWVDQ+Lc7kzd4BvVN0PTPsm1rvVw5UxYc//g60iSJEmSJElSFdUPPmXkCSGcA3yVXZ8SWerTH32ckCRJkiRJkiRJkiRJkiRJ5ffwgPOJIYRzYoy/f8Gcd/V9jMC9McauPOvNHXC+qhwNSpI0ok1/GZx5Kyz8AWx6JhcqtX11rjZ6Low5AOoaYfQ82P+9MGZerjZ+Ppx9Nzz7LVj3IMSewfeqa4LJJ8KBF0F2dOW+JtWe4y+DO/KE5S34Dow7BNpvh447+8c3PJa77pw/9o/d9VeD77fhMbjzzXDO3aX3LEnlsPJ30H5bev3knwxp+faulYnjScFo9SE5KLUrZArb7Nhvwm3nJ9e2rYRbXwEXLCs8kFWSJEmSJEmSKqzmgtFCCB8FvrjzU/qDzUoJOCs1TE2SJEmSJEmSJEmSJEmSJOURY1wQQniG3ENQA/CNEMJLY4wLAUIIHwZOHnDJlWlrhRBGs+vDVBdUoGVJkkae1hNzR7HGHgBH/0f5+9HeZ/S+g89Z8N1ceN8LrbkHti6D5hkQI2x8srA91/wRNi8sbG9JqpRFP02vtZ4KhYaSJYgx0tGZHIzWmp2221h9SL4FsDtTYA+j5+avb2+HVTfB9HMLW0+SJEmSJEmSKqymgtFCCOcAX+r7NPYdO8PNtgLrgXxPi5QkSZIkSZIkSZIkSZIkSdXzHXLv+4vAvsCTIYSHgDZgJv3vA9wO/DjPOqfT/37BbuCxCvUrSZKkgcYeBHXN0LM1fc6GR9Nrq2+F2W+Aro3F7bvxqfzBaDFCCOl1SRqqjU+k1yYeM6SlN3SvpTPuSKy1NUzfbaw+ZBPndhcazjZmHmTH5n8t3vikwWiSJEmSJEmSRozSH00xPL7Y93HnG6GWAe8H5sQYR8cYZ8QY9y32GLavRpIkSZIkSZIkSZIkSZKkPdtXgCf7ziOQBY4BZtEfdBaBL8cYO/Ks8+oBcx+KMeUOckmSJJVXfQvMu7D06+9+K/ysAX41ubjrHv9i8viin8K18+Hno+Hmc2DzotJ7k6Q0z3wL1t6fXp/3N0Navr1rRWqtrWHabmPZTEPi3IKD0eoaYb/3DNLUbYWtJUmSJEmSJElVUDPBaCGEecAR5N7UBHAPcGiM8RsxxiXD15kkSZIkSZIkSZIkSZIkSUoSY+wEziEXjrYzCC3Q/17AAFwBfCZtjRDCaOC1A665qSLNSpIkKdnR/wXzL84F61RL+62w4re7ji2/Fu56C2x4HHq2wqrr4YZToGd79fqStOdb+CO47+/S64dfCuPnD2mL9s6VieMtmTG01I3Zbbw+1CfO78rUFb7pkV+CQ1P/6g3Lfg09nYWvJ0mSJEmSJEkVVDPBaMCJfR93viHq7THGTcPYjyRJkiRJkiRJkiRJkiRJGkSMcSlwJPBe4LfA48AT5ALRXhdjfH2MsTfPEu8ExpJ7/2AArq1ow5IkSdpVpg6O+AK8YQtkGqq37zP/s+vnz35r9znblsPya6rTj6S9wzPfzF+f89Yhb9HeuSJxvLVhWuJ4fcgmjneHIm4NDBk4/LNw+OfT56y4rvD1JEmSJEmSJKmCaikYra3vYwQeiDE+M5zNSJIkSZIkSZIkSZIkSZKkwsQYu2KM34oxviLGeGjf8boY4xUFXH4ZMGHnEWO8o7LdSpIkKVHIwNiDqrffugd3/Xz51cnzFlxW+V4k7R1i3P21Z6D60dA8Y8jbdHStTBxvKzYYLVPCrYHjDkmv5fvaJUmSJEmSJKmKaikYLQw4f3bYupAkSZIkSZIkSZIkSZIkSVUTY9wWY9yw8xjufiRJkvZq+76tvOvNe3d6besSuONNsOxquP+i9Hmrri9vT5L2XlsWQs+29PrsN0GmfsjbtHeuSBxvy05PHE8NRgsl3Bo47dz02ubnil9PkiRJkiRJkiqgloLRlg84rxu2LiRJkiRJkiRJkiRJkiRJkiRJkvZGB/4DzH5z+dY7/FI44gvp9SWXw23nw9NfTZ8Te6FnR/l6krR36u2Bq+al1yefBEf/59C3ib10dK1KrLU2TEscz6YEo3VlSrjFrr4J2k5Prm1ZWPx6kiRJkiRJklQBtRSM9tiA85nD1oUkSZIkSZIkSZIkSZIkSZIkSdLeKFMPJ/1f+dZrGA8HXjT0dZZdOfQ1JO3dVt2Qv37WHZAdPeRt1nU/T3fsSqy1NUxPHK9PCUbrDiXeGjjr9cnjGx6D7q2lrSlJkiRJkiRJZVQzwWgxxkeAR4EAHBNCmDDMLUmSJEmSJEmSJEmSJEmSpBKFEGaEEF4cQrgghPC2EMLbh7snSZIkFSAEGH/E0Nepa4S6UVDfAtmxQ1ur/bah9yNp75bvdWT8EbnXvjLo6FyZWmvLTkscTw1Gy5R4a+DoucnjnevgmW+UtqYkSZIkSZIklVH9cDdQpP8AvgfUAR8GPjm87UiSJEmSJEmSJEmSJEmSpEKFEGYDHwLOB2YnTPlhwjWnAi/p+3RdjPFrletQkiRJBZlxAax/aGhrZMf1nzfPhA2Plb7WM/8Nm56GcYf2j9U1wKTjYPorc+eSlE/H7em1ma/Je+nWns08vPlelu9YTCTmnbtqx9LE8TF142iqa0mspQajhRKD0VpPyYVT9mzfvfbAR2HSCdB2SmlrS5IkSZIkSVIZ1FQwWozxByGEVwKvBT4WQrgzxvjb4e5LkiRJkiRJkiRJkiRJkiSlCyFkgEuBj5J7OGpImJZ29/jzwGd31kMI18UYF1SgTUmSJBXqoItg9c35g4QG0zC+//y4b8MNJw2tp1U35I4XmnImnHYV1DcPbX1Je67n/wgdd6TXD/xgamlNVztfXfoZOrpWDqmFtobpqbVspszBaNnRsN974an/TK7feCocfxnMu7C09SVJkiRJkiRpiEr86eewegdwFblQtytDCJ8LIYwf5BpJkiRJkiRJkiRJkiRJkjQMQghZ4HfAx0l+oGtaIFquGOMTwC30h6m9pawNSpIkqXgNE+CMG+GMm+Cof4d9zhvaepNeVJ6+kqy+CRb/tHLrS6p9D3w0vXbMV3YNcnyB69dcMeRQNIDW7LTUWn1IDkbrytSVvuH8j0N9S3r9zx+C7q2lry9JkiRJkiRJQ5D0BqMRK4Tw6b7Th4CTgMnAPwP/GEK4G3gcWAf0FrNujPFz5exTkiRJkiRJkiRJkiRJkiT9xWXAS8kFoEVyAWe3kws76wQ+X8AavwJe0nd+NnBp+duUJElSUeoaYOoZueOAv4fLm4q7vnlm/3kmm/t869Ly9rjT8mtg3l9XZm1Jta1zPXTckV4fs3/eyx/Zcl9Z2mhrKD4YrTtkSt+wsQ0OvAge+3/J9a6N0H47TD+n9D0kSZIkSZIkqUQ1FYwGfJZdnwy58w1SzcAZfUcpDEaTJEmSJEmSJEmSJEmSJKnMQghnAm+l//1+zwJviTHe31efTWHBaNcCX+9b49gQQmOMcXtlupYkSVLR6hqh9VTouH3X8cwoaBgH29t3v2bKmbt+3jK7csFo6x+Bpb/OndePhsnHQ3ZsZfaSVFs2L8xfn3xSaqmzdwfru9eUpY2Dmo9MraUGo2WGEIwGcPBH4On/hq4NyfUn/wNiD0w6Fhpbh7aXJEmSJEmSJBVhiD/9HBF2PkGyFKGcjUiSJEmSJEmSJEmSJEmSpF18pu9jABYDJ+0MRStGjHExsL7v0yxwUHnakyRJUtkc9lmoa9p1bP7F8KL/hlC/6/jYA2Huu3Ydq2RQ2eYFcPtrcsctZ8OvWmHRTyq3n6TaseqG9Nphn8uFO6Z4vmtVWVo4esxJzG7cL7WeGowWhnhrYMMEOOnH6fVVN8Ctr4Ar2uDRL0As9RY+SZIkSZIkSSpO/eBTRhzDzCRJkiRJkiRJkiRJkiRJGuFCCBOBk+h/+OlFMcbnh7Dk433rARwAPDiEtSRJklRuU8+As+/OBY51roN9XgEzXpWrNe0DSy6HrUth0vG5ULTG1sLXDvUQu3PnDRNz6z73vdJ77e2Eu94KradCy8zS15FU+x78p/TaYZ/Ke2l758rE8UCGQ1uOGXTrprpm9m86lBPHnUEI6bfMZdOC0TJDDEYD2OeVMGZ/2PRM/nkPfxJaT4IpLxn6npIkSZIkSZI0iFoLRvMnp5IkSZIkSZIkSZIkSZIk1YZTgJ13abfHGK8a4noDQ9XahriWJEmSKmHCEbnjhVpPzB15rz0aVlyXXHvTDggvCADasQaWD+WPmBGW/hIO+tAQ1pBU07YsSa9NPXvQyzu6ViWOT85O4b0z/rnUrnZTnxKM1hXqyrPB7DfBo5cOPm/x5QajSZIkSZIkSaqKmgpGizHeOtw9SJIkSZIkSZIkSZIkSZKkgkzr+xiB+8uw3qYB56PLsJ4kSZJGklmvhcc+v/v45BN3D0UDmPvOIQajAWvu7T/v2Q5dA/7ImamHhglDW1/SyLbxqfTahCMHvbyjc0XieGvDtMTxUqUFo3VnEl4bSzHpuMLmbXq6PPupcD3bc0f9GMjU5c4zoyAE6OnMfa9K+h4pSZIkSZIk1biaCkaTJO3B1j8CT3899480s14P01+R+4caSZIkSZIkSZIkSZIk1aqJA87XlWG9pgHnXWVYT5IkSSPJhCOh7XRo/8Ou4wdelDx/+itg9H6w+dn+sUwWpp4NK64tbM/FP4PlV0P3Fsg0QG/nrvWWOXD4pbDvWwv8IiTVlDX3pNf2/7tBL+/oWpk43pqdWmpHiepD8i2A3eUKxJp2Low9GDY+kX/e6lvg2e/Afn9Tnn2VbsH34J4Lk2vZsdC1EeqaciFpc98JR/1bLiRNkiRJkiRJ2kP4OABJ0vBbdSP89kh49n9h4Q/h1vPg0UuHuytJkiRJkiRJkiRJkiQNzcYB52PKsN6UAedry7CeJEmSRprTr4H9/x7G7A+tp8LJl8PsNybPrWuAs++EOW+Dln1h6lnwkt/DaVfDMV+BiS+C7PjcUdeUvAbkQtFg91A0gC2L4O63wcobhvylSRphYoSHP5Vcqx8No/cddImOzlWJ460N04bS2W6yoSFxvDtTRyzHBpl6eOltsO87oGV2/rn3vhuW/rocuyrN8mvSQ9EgF4oG0LMNutbDU/8FD11cnd4kSZIkSZKkKvExAJKk4RUj3P8BiL27jj/2BZh3ITTPGJ6+JEmSJEmSJEmSJEmSNFQdA873H8pCIYQ64KgBQyuHsp4kSZJGqPoWOPbrhc9vbIOTfrj7+IEfzB07LfkF3PGG0vta8B2Ydlbp10saedY/kl6bccGgl3f1drKu+/nEWmu2vMFo9SGbWusOGbIvvB+jFI2T4cTv587XPwLXHZ4+d8F3YOarh76nkj377eKvWXAZHPEvkKkrfz+SJEmSJEnSMMgMdwOSpL3c+odg45O7j/d2wtIrqt+PJEmSJEmSJEmSJEmSymXnXeYBODCEMJQn5L0MaO47j8Afh9KYJEmS9jLjDh3a9esfLk8fkkaO9Q+l18bNH/Ty57tWE4mJtbaGMgejZfIHo5Xd6HmQGZVezxcqp6FbflXx13SuhW3Lyt+LJEmSJEmSNEzqh7uBoQohZIETgVOBecBEYAxAjPHMYWxNklSIFb9Lry35xa5PapMkSZIkSZIkSZIkSVLNiDE+EUJYDuxDLhztw8CHil0nhJABLt65LPBQjHF92RqVJEnSnm/cwTDxWFh7X2nXb3wSenZAXZ6gIO2ZOjfAI5dAx23QvRm2LIae7blaYxs0TNh1fmYUTDoODrsEmqdXv18VZtmVcPfb0+tz3jLoEh1dKxPHAxkmZdtK7SxRfUi/BbA7k4Hesm4H9c0w6/Ww6MfJ9a1LYfm1sM8ryrzxHqbjTnjqq31BcuX+RUpw/UmwbUXuvHkmnPBdmPrSyu8rac+w5n548su5QOBxh0J2NCz4LrwwBHTGq2Deuwf/HrD4clj4Y+jZBjNfA/u/F0KoWPuSJEmSpD1PzQajhRBayL1B6v1A6wvL7Pa37b9c92bgC32frgWOjTEmP55DklR5+Z4U9PzdsGMNjJpUvX4kSZIkSZIkSZIkSZJUTv8HfIzc+/reH0K4LsZ4Q5Fr/D/ghAGff7tczUmSJGkv8uLfwJ1vhI47Srv+hpPh3PvL25NGtt4uuPHU9Pe8b2/PHS+0/mFYcS284gloGFfZHlW8hT+Gu9+WXq9vgZZZgy7T0ZkcjDYx20p9yJbaXXJLedbrDpmy7vUXx34zFya58ank+q2vzL2uznhVZfavde23wc1nQW9n9fbcGYoGufC6m8+C064xwE7S4NbcBzeelgsxA9jwWPrcZVfCsqvglMtzIZpJnvkfuO+9/Z+vvikXLnvUl8rXsyRJkiRpj1ehn3xWVgjhcOBPwCVAG7k3TBXqamASMAc4Cjir3P1Jkoqw8cn0WuyB5ddUrxdJkiRJkiRJkiRJkiSV278CG8k97LQOuDKE8J5CLgwhTA4hfB/4KP0PS10FfLcCfUqSJGlP1zwdzrodXvZAadev/ROse7i8PWlkW35N/geB57NtJTzzzfL2o/J4/Iv56/v9bUHLtHclB6O1ZqcW29GgsqEhtVaxYLTsaDhnkDDIxw24SfXkl6sbipbmiX8b7g4k1YKnvtLBKQYhAAAgAElEQVQfilaQCI+lfD+NMfm15+mvQ/fWktqTJEmSJO2dai4YLYRwCHArsD+5QLSdb3YKFBCQFmPcDPxiwNBry92jJKlAsTd/MBrAst9UpxdJkiRJkiRJkiRJkiSVXYxxLfBB+t/v1wh8M4TwTAjhX4DzB84PIRwXQnhbCOFHwALgbfS/P7AHeFeMcQTcWSxJkqSaNe4wqGsq7drn7ypvLxrZhvrrvfK35elD5dO5ATY8ln/OmP0KWqqjMyUYrWFasV0Nqj5kU2tdmbqy7/cX2dHQOCW9vuYe6O2q3P61rGOEfL9ovzV3744k5dNxZ/HXrPszdCeEqW1fBZuf2328Zyusvrn4fSRJkiRJe6364W6gGCGERuAaYBz9gWiPAF8BbgFGAU8UsNSVwIV952eWuU1JUqG2rcr9UDMf3zwgSZIkSZIkSZIkSZJU02KMPwwh7Ad8ktx7/wIwD/jYC6YG4O4XfB4HXPOJGOP1le9YkiRJe7RMHcx4NSz+SfHXPvu/sPZP0DwTZrwKJhxR/v7Ub+2fYNnVuXCmGRcUHFg1JKtuhJU3QOdaWP2Hoa3VfhusvB6mnV2W1lQGWxYOPmfGBQUt1dG1KnG8LVuJYLT0WwC7Q6bs++1i5mvhmW8k12JvLvxm7IGV7aHWdG2CHR3D3UW/2y6Afc6H2W+A7Njh7kbSSLJpASz5OWxZVNr191wI9aMh1MGEI2HWG3KvgWm2JX/vlCRJkiQpSU0Fo5F7auQc+kPRvgr8Y4y5xxaEEGYXuM4t9L9Rat8QQluMsb3MvUpSabYshQc+nHvSwpj94NDPwNQzhruryti2fPA529uhcz00jK98P5IkSZIkSZIkSZIkSaqIGOOnQwgLgG8ATfS/DzAMON/5OewaiLYDeE+M8UdValeSJEl7uqO+BBsegfWP7Doe6uHwS+GhTyRft+6B3AHw2OfhpJ/ArNdVtte91cIfwx/fkQteAnj0Ujj9d9B6YuX2fPjTuX3K6ZZz4Ogvw0EfKu+6Ks3mAoLRmgYPNuuOXaztSg6+am2oRDBaNr2XTIWD0Q77LLT/ATY8nly/9lB4w2aoG1XZPmpFjHDj6cPdxa6WX507nv4anHETNE4e7o4kjQQdd8EfXg5dG0pfY/HPdv38yf+EI780tL4kSZIkSepTa8FoH6D/DVC/iTH+QymLxBg3hxAWAfv2DR0MGIwmafh1b4UbToGtS3Kfb1sBN58JJ/4Q5rwVQsh/fa3ZWkAwGsCmZ2DSsZXtRZIkSZIkSZIkSZIkSRUVY/xBCOEW4GPAu8gFpEF/GNpAAegB/g/4bIxxUVWalCRJ0t6heQaccx88/0fY+ERuLDse2k6F5n2gcx088a/51+jtggc+AjNfA6HCwUR7m95uuP8D/aFoAF0b4cF/grNuq8yeW5fDY18o7dpDPgHPfgs61ybXH7oY5l4IDeNK70/lMVgw2uGfL2iZNV3tRHoTa63ZKgejVfr1p7EVzn0ALk8JPovdudAtQyJz1twL6/6cXAt18KKvkfxjkASd63Pfj5r3gUxD7vvO1qXQMAEaxsPWZRCyuV+j+98/+HrrH4YF/wvzLy74y5G0B3vo4qGFoiXZ9DQ8+rn0euwu736SJEmSpD1azQSjhRAOAfbp+zQCHx3ikgvoD0abC9w6xPUkaeiWXdUfijbQ3W+HBz8OJ/8s94/te4ptBQajrX/EYDRJkiRJkiRJkiRJkqQ9QIxxCfD+EMLHgFP6jpnAJKABeB5YDdwF3BRjXD9cvUqSJGkPVzcKppyWO15o7IGFrbFlMWx4AsbPL29ve7tVN0JXwl8FOm7PPYy8vrkCe96waxBbMQ68CDY9BUuvSK73bIf2W2HG+aX3p/LYMkgw2uh989f7tHeuTBwPBCZnpxTb1aAyIUMd9fSwe6BMV6au/5MpZ5R9bwDqGmDScbnQryQrrjMYbacVv02vNc+E/d9bmX0LCUaD3K+VwWiSurfm/mxSCeseSK+VO4hNkiRJkrRHq5lgNODIvo8ReDTG+NwQ1xv4LyQ+ckXSyLD4p+m1bSvgxhfDYZfkwtHaTqv9J4ttLTAYbfk1MO/CyvYiSZIkSZIkSZIkSZKkqokxbgWu7zskSZKkkWXqS4FA7haWQTz4T9B6ErS+GCYfD5lsf61rM6y+Ofeg6MY2CHWwfRW0zIFp58CoSRX6AmrcxqfSaz3byhuM1rMD1twDj1xS2vUTjoSmKTDjNenBaABLfwWd63Lno1qh9WRo8HamqtucJxgt1MGUMwtapqMrORhtQv1kspmGUjobVH2opyfuHozWPfC+kkM/XZG9AZh2bnow2srfQ4wQQuX2rxWrb06vTTu3cvvOeRss+tHg8zruhCW/hMknQfP0yvUjaWSKETY+AYvy3MNYSSt/Dwd9GHo74fk/wtalufFQBwQYfxiMP7T275mUJEmSJJVFLQWjtQ44f6YM6+0YcF6BR8VIUglW3TD4nEc+k/s4/eVw6q9zT96pVdtWFDZv9c3+I5kkSZIkSZIkSZIkSZIkSZKk6miZBQd/BJ74t8Hnrrg2dwA0z4Kz786FzTx/D1x/Qv5rT70CZr566P3uafK9bzwWEFZXqE0L4A8vg00l3qZU1whH/EvufPabYMG3of3W5LkLf5g7dsqOzd0PMPWM0vZW8WJv//+rSeb/cy7krgAdncnBaK0NU0vprCD1mSw7erbvNt6d6QuPmfX6XOBepez/Xnj0c8m1bSvg7nfA8d+p7XtchiL2wp//ETpuT59z8Icrt//8jxcWjAZwx+uBAMd8BQ78QOV6kjSy9GyHu98JSy4fvh5W3wJXtOV66dmWPGf6K+GUn0F9S3V7kyRJkiSNOLUUm9044HxH6qzCDXysyqYyrCdJQ5cdW/jcFdfBs9+qXC/V0F3gy2/XBtiW/A+HkiRJkiRJkiRJkiRJkiRJklR2R/0rvPgqOOD9MPst0FhA4NHWJfDgx3IBOXe9ZfD5d7weOjcMvdc9Tr7bnXrLt8197xs8FG3c/Nyv/8EfgZfeBmfdAQd/FA79NJxzL0w/NzcvUwdnFPCg9J26NsKdb4LertL7V3FWXJde2/ftcPglBS/V0bUqcbw1O63YrgpWH7KJ493TzoGTfpI7MvUV25+mqXD8Zen1RT8qPJhrT7T8WnjqK+n1Qz4BY/ar3P7jDoFXLYGDP1bgBRH+9EHY8GTlepI0sjz7ncJC0Y78Irz4ylxgaKbve092HLSeAs0zYMoZuT8bzXxdaX10rksPRQNYcQ089dXS1pYkSZIk7VEq+NPOsnt+wPnkMqw3d8D5mjKsJ0lDV9c4+JyBnvtebT+dpTvPDzFfaOOTuSenSZIkSZIkSZIkSZIkSZIkSVI1zDgvdwDc+Vew+CeDX7P0V3DgRbD5ucHnxh5Yfg3s+1dD63NPE0J6LfaUZ4/OdbCqgCCzee+Ggy7adaz15OS5mSwc+il49NLCetjRAe23wtSXFjZfQ7Pop+m1/d9X1FIdnckPfm9tqFwwWjYtGG3Om2H8WRXbdxcTjspfX/ILmPfX1ellpFnyi/z1ySdUvoeWmXDUl3JHz3a4vGnwa5b8Ag77VOV7kzT8lg7yOgUw6Xg45J9y5zPOhyM+nz439sLlzdC7ozz9DbTk5zD/E+VfV5IkSZJUU2opGG3nozQCMMhPUfMLIUwCDh4w9OxQ1pOksogRdjw/+LyB1j0A6x6CCUdUpqdKy/d0hxfa+CRMPaNyvUiSJEmSJEmSJEmSJKkqQghZ4ETgVGAeMBEYAxBjPHMYW5MkSZLSTT6hsGC0nu3w1FcLX/fJf4fWEyHUQfNMCJnSe+zalHtYdyY5QGmP0Ntd+rVdmyAzCuoaYNMCIA5+TbFhRpNPLG7+yt/DuEOhaWru8+3t0L0ZGibkDpXPloXptfGHFrxMT+xmTVd7Yq01W7lgtPqUYLSu2FmxPXcz9iDIjoOuDcn1jruq18tIs+np9FrIwMQXVa8XyH0vmHA0rPtz/nmrroe5b899/+nakAuNbJoB9OaCKOtbqtKutIsYYduKCgRuhb7XsPXQND33/8merGvjrvcqbszzOrVTMX/uCRmYfDy031Z8b4NZ92Du9YgAnWsHmZyBlllD+zO0JEmSJGlEqqVgtLuAXiADTAohnBFjvLnEtS4kF7AGsAW4vwz9SdLQ7FgD3VuKv+63R8Kbe/M/FWuk6tle+NyNT1auD0mSJEmSJEmSJEmSJFVcCKEF+BDwfqD1hWVSUglCCG8GvtD36Vrg2BhjAQkGkiRJUhnNeQs8/iXYtnzwuYt+XPi66x6Eq+blzkdNgsMugQP+vrjetq2Cu94C7bdCXRPMfRcc/V+QqStunREjz3vjYwnBaNtWw11/Be235ILRJh4NHXcOfl3rqTDpuOL2mnoWjD8C1j9U2Pwn/j13JJl4LJzyMxg9t7gelOz5u5PHs+OKCn9a09VBLz2JtbaG6gejdceuiu25exNNcOAH4dFLk+vdm+Cq/eCkn8DkIv/fqWVblsCae9Lrc94GzdOr189OB38U7npz/jkdd8CVc9Lr018JJ/3QoEZVz+Kfw4Mfzx9mWQ6ZLMx6Axz37dxr255k4J97Ym/h19WPgf3+tri9DvpI7nWkmH0K9cuJhc9tmADzL4aDPlyb91hKkiRJkhLVTAR2jHEdcN+AoUtDKP5vqCGEfYCPk3sDVQRuiLESf+uWpCLlezrMYB65pHx9VFPPtsLnPv21yvUhSZIkSZIkSZIkSZKkigohHA78CbgEaCNv0sFurgYmAXOAo4Czyt2fJEmSNKhRk+Dsu2HuOysXVLVjDdz/flj6m+Ku+8MrYHVf+EX3Fnj66/DIpyvTYzXku12ot4RgtNsugNU35f779GwbPBRt/BG5YI2X/K74cI1MPbz0D3DA+2HcodA8K3fUjy6+77X3wU1nQm9yCJeKsPTX6bWTLy9qqY6ulam1ydmpRa1VjBERjAa58MZ5706vb14AN58BO9ZWr6fhFCPccEp6ve00OP471etnoDlvglOvgGnnlr7GimvgzkHC1aRyWX1rLtCr0qFoAL1dsOj/cn/u2tPcdn7/n3sKNeuNcNbtMO7g4vaacR68+GqY/gpomd3/557mWVDXWNxaQ9G5Dh74KCz+afX2lCRJkiRVXM0Eo/X5yoDzE4D/KebiEMIU4CpgAv1vqvpyeVqTpCHa9Ezp1z56CXRtLF8v1VJMMBrAmvsr04ckSZIkSZIkSZIkSZIqJoRwCHArsD+59+7FnSUKCEiLMW4GfjFg6LXl7lGSJEkqSMtMOOF7cP6Cyu7z3HcLn7vhCVj3593HF/64fP1UXZ6/JsQig9E2PAlr/lj4/GnnwssfhKP/Heqbi9trp4bx8KKvwSsegQsW546DPlTaWlsWQfsfSrtW/Z75ZnqtyKDDjs7kYLTx9ZNoyIwqaq1iZFOD0UoICxyK/8/efYfHUd1tH/8eraolW5Z777gXsKm2AYNN7wkQAk+AUEMq6SEJLaQ8SQhvypMQkkACCaEaTHXoBowxNsXghnvvkqtsWdqVzvvHSPFqvbN1drQr3Z/r2ks7c86c81Pbnd2duccY5/8jltB+WP+4P/W0tMp34cAG9/bj7ncCE1tK34vglJlw8gupj7HlJTiw0buaRKKxFj78VvLP8+la9wiEkjy/LZvtWQJV85Lb5nM1MPlRqBiX2py9z4Ypz8MFaw/t91y4zhn3cgujfpTauKlYlcQ+tIiIiIiIiGS9nApGs9Y+CixoXDTAdcaYt40xJ8bazhhTaoz5UuO2R+IcVGWBl621cS7zIiLik33L09t+/XRv6vBTssFoy36bmTpEREREREREREREREREREREJCOMMcXA80B52OqFwLXAIGAECYSjAc+E3Z/qWYEiIiIiIqnqdXbmxt69KPG+buFDB9ZDfa039fguxkuEhmByQ215Kbn+Hcck19+PcZP5e5DoYoU6lfZPaqgdwejBaF0LeiQ1TrLyXYPRkvyf8EJBh/g/t7byd7t7oXtbQQco7edfLbF0HJ3e9ttne1OHiJuNM6IHvWZafQ1Ur/Z/3kxJ9rG3/VAIFGemlibdT83s+OH2tJHnHhERERERkTaiBS83kLKLgblA58blScAsY8xWYGV4R2PMvcBQ4ASgiENXmjTAJuALPtUsInK4vcthzUNwcDv0PN1ZjqbiKAjuif8m63vXwoDLIZC5Kwx5LtlgtE0vOB9k50X/QE9EREREREREREREREREREREss7XgQE4x+4B/B74lrW2AcAYk+gZ6G9w6Pi/gcaYbtba7R7XKiIiIiKSuMHXwuYXMzP2/jXw8iTAgglA9SqoCQtjKunpfK2JHtD0X3W7oaR7ZmrMJBMjGM2GoKEelvzCCVGp2Rx7rHg/o2bzBmDglYn3T0avc6GoK9TuSH7bD2+Gpb+EDiNgyI3Q/1Lv62vNrIW9S6O3FXWGQGFSw+2o2xp1fdfCnslWlhS3YLSgrcvovK4GXQsLb3NvX/FHJ6Bx5Peh6yT/6vLL/nXw8Y9g7cPufQZ8IXvOfyntBz1Og62vpLb9nM/Dojuh+ykw7hdQWB5/G5F4DmyGj2+B7W87+z4t5dWTmp+PVzoABlwBR3w59j5JNln7KCz7LVS9l9x2g6/JTD3huk9xAmJjBUl65eA2CNVAfknm5xIREREREZGMy7lgNGvtamPMucDTQE8OHejUEwi/tIYBbgi7T1jfjcC51tpKX4oWEYlU9T68Ps0JPANY9Vf3vr3Pg9G3QtU8eCXWh0EWXp0Cp70NeTny8J5sMFpwN2x/C3roor8iIiIiIiIiIiIiIiIiIiIiOeJrHApFm2GtvTmVQay11caYtcDAxlUjgDYXjGaMKcC5oGw/nOMmq4HNwEfW2rUtWJqIiIhI29P3MzDhD/DB1zIzfuUc97ZEw76CORqMRowQkoYQzP8SrPqb99Oe9Ax0HO39uOAEdEybBXO+ALs+TH77mi3Obdvr0FAHA//H8xJbrXWPured+HTSw+0IRv//61rQMsFooYZQRud1NeqHENoLS+9277PpOdjyMkx7E7oc519tmVZbBS8dDwejh+T91/jf+FNPoiY/Bu9eBVv+Aw3B5Lff+6lzq3wXzngf8gLe1yhtR3AfvHw8HNjQ0pVA3c7myzVbnL/zul0w+sctU1MyVv8D5n4xuW0KyuGIm2DEdzNSUjMmD05+znn82f4Wh94qBkoHQmnfxvUeWf4HGPk978YTERERERGRFpMjyTnNWWvnGWPGAw8AZzWtjvjabBOcT0UM8ApwlbU2zjuPIiIZtOiuQ6Fo8bQf6gSddZ0I562A545w71s1F9b8EwYn+WZmS6k/GH39pEfhncuit216TsFoIiIiIiIiIiIiIiIiIiIiIjnAGDMS6N24aIF0z7RbxaFgtEHAm2mOlzZjzCDgGODoxq/jgfZhXdZZawd4ME9X4E7gc0Anlz5zgHustdPTnU9EREREEjTsqzD0KxDaB6H90YNm8kvB5ENhubMc3AvWOseTh/bDCyMzV1/drsyNnVExgtEObnECQLx26mvQ41Tvxw1XPhLO+gDqdjvH/X/w9dTGWXq3gtGSsfhn7m0dRiQ1VIOtp7JuW9S2boUtFIxmUwi48kJeAI76NVQcBXOucO/XUAvL/691BaOtfTh+KNqoH0OgyJ96ElVYASc/C6EDsG8lzByX2ji7FsC216Dn6d7WJ23L+scTC0Wb+gaUDUpvrmf6p7bdst/CiO9BoDC9+TNtaQIhjAOvhLF3NS4YKOnlb7hhaX8nIDa479D+aaAdFHdx7jeEnAC1R+LUdME656sNwbNDiHo6+ZJfKhhNRERERESklcjJYDQAa+024BxjzATgG8BUnKsfRrMHeA34g7W2xQ+EEpE2zjbApmcT798+LAit/RDnCglvnufef92juRGM1hAEWx+9raQ39LvUeZM70p7Fma1LRERERERERERERERERERERLxyZONXCyyy1q5Oc7zdYffL0xwrZcaYKcAtOGFoUUPKPJ7vLOAfQLc4XScCE40xDwM3Wmv3Z7o2EREREQGMgYIOzi0RTf2agtKKu8PB6EFLaavbHb9PNjIxgtGq5jlhGF6rSDEgKBWFHdO7WPjujyFUA/kl3tXUmtVWubcVdU5qqJ3BSuqJ/vfXtSCzwWgFeVkWjNYkkXC5qnmZr8NPle/F7xN+LlC2yW8HFWOhqAvUVqY2RtU8BaNJeirnxu/T71LoPiX9ubqcAJXvJr9dbRVUr4by4enXkCnBatizKH6/iiOhtF/m64mnoL1zi5TXeKr74Oth1V+jb9vnwubfQ0E5BKPs69YfdEKIY+1PioiIiIiISE7I2WC0JtbaD4Ar4b9XXuwLdAYKgUpgG7DYWtvQYkWKiITbvz7xvkVdoNNRzdd1OxnyyyBUHX2bba87H2AXdky9Rj/U17i35Zc4Vw2KFoyWs1ctExEREREREREREREREREREWlzuobdX+HBeLVh99t5MF6qjgR8Ofu3MYRtBs4xkU0s8CGwGugIHAV0CWu/AuhgjLlQx06KiIiI5IB+l8Dy/8vM2It+Aqv/7gTfbHvdCWUb/1sY+IVDARTZyFr3tn1evLSI0OvspAOy0tZhBJSPhD1LUtt+9qVOuBFA2SAnPCby3AOB0AE4uDV6W+nApENTdgS3uLZ1KeyR1FjJyjfRg9GCti6j88ZVcSSUDYHqle599i2Hd6+CrpNh4FUQKHTvmwt2L4jdnlcEfc7zp5Z09LsEVtyb2rarH4TdC2HrK855Pv0ugZLeENoPHUfDoKsTDwyVtmfLy7Dqb7H75BXBmDu8ma/fJakFowGsfgCO+pU3dWTC/rUJdDLQ97OZrsQb/S5xD0brd2nz5YpxsP3Nw/vVH4Btb0CPU72vT0RERNq2fatg7cON7+XEeO/K5EOnCc7roqKMX2NLRKRVy+JPMZLXeDXJdK8oKSKSWdteT7zv8G9D5FV9CtrD+N/AvBujb2NDsHkmDPh86jX6IRQjGC2v2D3YLVevWiYiIiIiIiIiIiIiIiIiIiLS9hSH3a917ZW48rD7+zwYz2u1wEZgsBeDGWP6AE/RPBTtHeB6a+3SsH5FwI3A3UDTwUbnAT8FfuhFLSIiIiKSQWN/Ars/ge1veT925btAWBBIcC+8dw1sfBpOmgEmz/s5vWDr3du8DkYrHwlH/8HbMRNhDEz8N8w6C2rcw7ZcbX6++fKn98CJ06H3ud7U11qse8y9bdK/kx5uR13031WHQAXFeSVJj5cMt2C0kA1ldN64jIHJj8Ksc+DgNvd+ax5ybuseg1NmHn6uTK6o2xU70DBQDBMfhsIK/2pK1difOuFmO2Ynv231yuZheOufaN6+6n6YNis3fg7iryW/ggXfj90nrwgmPw7lI7yZ84iboHIurH88+W2X/hra9YNhX/WmFq8lEq57/ANQ2i/ztXihxzQY9WNY/NPm64d8yQlNC3fsX+H5odHHeX0qnPqawtFERETEOzs/gNdPc14TJmLdv2HVX2Dqm1DSPbO1iYi0Yq0qGE2ygzGmAJgE9AN6AtXAZuAja+3aFixNpOXtXQ7vXZtY3/KRMPxb0duG3OAkBf/n6OjtW1/N/mC0+hjBaPklUOASjBZUMJqIiIiIiIiIiIiIiIiIiIhIjqgMu9/Fg/EGhd2v8mC8dASBxcD7wPzGrwtxjp17w6M57gTCzyCeA0yz1h4M72StrQV+b4xZDzwd1vQtY8x91tp1HtUjIiIiIplQWAFT33DCaWYe6c+cm56DbbOyNywilWC0bifBEJeLjzeprXLCmAo6OMtlg6BiPAQKY2+XKRXj4PzVUPke1Gxy1hX3cM4l2LUA6nbCnCsSG6uhDhbcAr3OcYKqxDH/Jve2ivFJD7cjGD0YrWthj6THSpZ7MFow43PH1WkCnL/GCeybfWnsvtteg00vQN8L/anNayvudW8b9k0YcxsUupwPk22KOsHUWbBnkRP2VlgBJT1h33KorQTb4ITZVc1Lfuzdn8Dqh2D4NzwvW3JY3R5YeEfsPkO+BOPvhvxS7+YNFMOkR2HsXVC9Ckp6O/sTDWHXcVj8M/fQww++Dt1PgY6jvKvJC9bCyvti9ykfBYOu9qUcTxgD4+6CI26ELa+ADUKP06B0wOH7N+2HOL/b+oNRh+KTW7N3X1dERERyz6K7Eg9Fa7J3mbO/Nua2zNQkItIGKBitFTLG/AO4yqPh1llrByQ4b1ecA7E+B3Ry6TMHuMdaO92j+kRyy7wbEu979J9if8DaaYJzxYpoH6qsfsC5mlfv82DAFZAXSL5Wr9RshZV/ca72cmA99D4fxt/jfPDqJlDi/kFQ3W7njVt9WCsiIiIiIiIiIiIiIiIiIiKS7bY2fjXAUekMZIzpDIwIW7UynfHS9CDw58iAMgDj0TEtxpgjaH4cYB1wdbQ5m1hrZxhjHgzbrgi4HbjGk6JEREREJHNMnhOS1ft82PSsP3Oufyx7wyJiBaOF9kdf3/UkGHB5ZurJpEAxdD/58PUlZzpfV94H299KbKw9i+DgVifYSKCh3v1vqV2flALxdgS3Rl3ftSDzP/OCbA5GA8gvgb4XO2FGbv+nTba8lLvBaNvfdm8b+pXcCUVrkhdwnn8qxh1aF36/XT946/zUxl77sILRpLnKOVBfE7vPETd5G4rWxBjoMNS5AVSMbd6+eaZ7MBoWFt0Jkx/3vq50HIz+nNTMsBz9H2zXBwZ/MXYfY5yQW7ffW+UcCFZDQZn39YmIiEjbYq0T2pqKrS8rGE1EJA15LV2AZL047zQ5jDFnAYuAm3AJRWs0EXjSGPMvY0wG3qESyWLBfbAjxgcg4TofG/3DzUgVMY4X3fAkzL0K3vmcs8PdEqrXwsxxsPB2JxQNnA/qnxvifJDlJlDiXGkmGlsf/0MyEREREREREREREREREREREckGc4CGxvudjTHppC5cgxOwBrAfeD+dwoi/y6YAACAASURBVNJhrd0VK6DMI5cD4VdDfMpauyKB7X4ZsXypMabYu7JEREREJKN6ne3fXCv/Agvvci7UveNdaAj5N3c8sYLR3JQN9L6ObJDs38S6x5xAMIGajWBd/q5L+6c05I66LVHXdyvMfDBafrYHo4ETUtPzrPj91ufw3+m+GDntZYP8q8Mv3U+GQLvUtt05H6pXe1uP5K7qtbDwJ7H7tOsH5aN8Kecwvc6J3b7+CfjgZtjzqT/1xFOzBRb/b+w+JgC9z/WnnpYS7/e2f60vZYiIiEgr1BB0grGX/wmW3g31B1IbZ8c7sOp+2L3Y2/pERNqInApGM8aMNsa83nh7zRjTLYUxujdu2zTO0EzU2opMj9fBGDMFmAGE/z4s8AHwBPAKUBmx2RXAI8aYnPobFElLbRXYhvj9ADofl1i/DsPj99kwHSrfTWw8ry28Aw5uj9724Tfdt8svi32VnAMb0ypLRERERERERERERERERERERDLPWrsLmB+26i5jjHHr78YY0xv4Ac5xaRZ4xdpED8TJWRdFLP89kY2stUuB98JWlQKne1WUiIiIiGTYgCug64nx+5X0hE7HpD/fwttg/pfhlYnw5rkQrE5/TC8oGO2QwddDpwmJ9//wm/D2RRBK8YTd1mTzf9zbjv5T0sM12AZ2BLdGbeta0HLBaMFsCkYDGHMHFPeI3aduF7z9mdz7Ow3ug2qXYLSBVznBcK1NQQc4MjKDPQnPDoZPf+tdPZKbVtwLzw2GqrnuffIKYfw9kBdw75NJfS+CnmfE7rPsd/DCCPj4VrDWn7qi2TADnh0Ey38fu9/o2519xtZs2M1QNti9/bVTsyv8V0RERHJD3S5nP+LVk+D9r8CC76U33nvXwYuj4aPvt+x+pIhIDspv6QKSdCMwBefAppettS5pO+6stduMMUGcA30scD3wXS+LzALfAe5IYbujcYLMmljggVgbGGP6AE8BhWGr3wGubzzAqqlfEc7v726g6Z3484CfAj9MoVaR3BPal3jfzgl+SN0+wWzHNf+ErhMTn98L9bVOKFuy8ttDXj4UxAhGe/l4uHhX6/zQSERERERERERERERERERERKR1+R3w78b7xwN/xjmWLCHGmO7As0BF4yoL3ONlgdnGGNMDGBe2KoRzXF6iZgHhV2Y8C+dnKCIiIiLZrqAMTn0Z1k+HqnnQUAeBIigb5LTvXQ7lI6DvZ5zgoU3PQeVcqN0O5MGWmZBfCt2mAAbWPQrB3YnNveUlJ7hkZBacYpNKMFrpAM/LyApFnWDqLOfY/J3vHwr32DAdandE32bTc7DyrzD8G76VmZXmf8m9rWJs0sPtDlURcgkh61roRzBa9NMA3WpqMR1HwZkfwIanYNFPYvydPgur7odhX/O3vnR8crt729Cv+leH34Z9FTofDZtnwsHG0zlX/jnx7T/8JvQ5/9BzmbQtBzbC+1+FeNc4OPN96DjGn5qiCRTByc/B+idhzuWx+y7+KfS5wPm/8FvoAMy9CuoPxu43dRZ0P9mXklpUu15w5nx4slP09todsPEZ6PdZf+sSERGR3Lbk17Bjdvx+eQUw6Frnfqga1v4rdv+lv4Li7jDiW+nXKCLSRuRaMNoFYfcfTGOcB3GC0QzOVRWz4FMb71hrK4HKZLczxvwgYtUb1trVcTa7k0MHnAHMAaZZa5u9s2KtrQV+b4xZDzwd1vQtY8x91tp1ydYrknOCSQSjJXr1rsKK+H0AVj8Ax96b+Pxe2Pa6sxOfrMLGQLTCcvc+wT2w6yPoND612kRERERERERERERERERERETEF9baR40x38MJ+jLAdcaYkcAPrbVvu21njCkFvgDcDnTDCUQD56KqyYSE5aLREcufWGv3J7H9nIjlUWnWIyIiIiJ+ChTDwCucWzx9zndubspHwQdJhA5teDI3g9FMANr1zUwt2aCgDAZd5dya1GxyAtDcbJjetoPRgjHOZeh8bEpD7qjb4trWtaBHSmMmI98URF2fdcFo4ATVDPsqdD0B/hMjOGjD9NwKRtv2mntb2UD/6mgJXY53bk2SCUYDJyhvxHe8rUlyw4YZ8UPRRv2wZUPRmuQVwIDPQ6AE3r4odt8N01smGG3b6xDcG7tP7/PaRihak8IK6HYybH8zevuG6QpGExERkeRseDKxfqUDD+U31B+MH4wGsOB70PkY6HZi6vWJiLQheS1dQKKMMYOAPo2LDcDzaQz3HND0KclAY0y/dGprDYwxJcBlEavvj7PNEUDYpyrUAVdHhqKFs9bOoHmoXRHOgWsirV+iwWgFHaDD0MT65hXgHC8aTyJ9PLZxRmrbNQWjBYqhqIt7v50fpja+iIiIiIiIiIiIiIiIiIiIiPjtYqCKQ+Fmk4BZxphNwEPhHY0x9xpjXgN2AH8Eujc1AZtxwtJau5ERyyuT3H5VnPFEREREpK3oc15y/fetgF0Lmt/2b8hMbbE0hJLrb+shLz8ztWSrrpNjt+94G6yN3ac127/Ova1sUEpD7ghGD0YrC5RTEihNacxkFOQVRl0fasjCYLQm5aOgoKN7+/Y3c+vvtGaTe1thJ//qyAaDr0uu//on4cDGzNQi2W3f8vh9ukzKfB3J6HMBVIyP3Wfvp/7UEmlfAm8Tds2yn6cfYu0XJfIzExERkdzVUA+h/VBbBQc2Oc/9uxdB3e7kxqmvdbbbu9x5fywR4ftdgWLodEz8bWw9vPM52PHu4e/Bhd/qdkP1mkMhw9Y673XU1yb3fYmI5Lhcete/6QqIFlhmrY1x6Y7YrLXVxphlHDrYZwywPs36ct3FQHnY8i7gqTjbXA4EwpafstYm8iz/S5oHql1qjPlyrEA1kVYhlGAw2sCrwSSYW2mMs6NcXxO7X4PPO7m2ATY+m9q2hRWH7vc+H1Y/EL1fKJmL4IqIiIiIiIiIiIiIiIiIiIhIS7HWrjbGnAs8DfTEOQ7QNN7vEdbVADeE3Ses70bgXGttpS9Ft6whEcvJHt8YmQDQ2RhTYa3dlUZNIiIiIpKLSvvDwCthzUPx+wLU7YKZRx2+vsMIOHE6lI/wtj43tj65/qNvz0wd2WzgVbDs97GDmp7qDpOfgO4n+1dXtlgY429i9K0pDfnhvjlR13ct6BF1vdfyTUHU9SGbZJCgnwLFMOLb8EmMn/nTveDEJ7M/yKdut3OifTSDrnbO72lLhn4NVv0t8f5V78GMvlA+2nk+6TA0c7VJ9lj7KCz/Q+w+nSZAz9P9qSdRxsBxf4NXT3Y/H3DjDFj+Rxj6FX9rq14Tu72kl7OP0NYMuR4W/yx62875TjBjuz7+1iQiItKW2AaoP9h4qzl0v+EghGqcr5Fthy3XHNrGrS1aX9ewcAPdpzjvixR1jl3/kl/Bgu8n9z3nlzmvi8KNugVmX3wozMxNzRZ4ZWKC87SHI26CdY/AgQ3O6+yRP4DRt7W916Ei0iblUjBa/7D7kVczTMUqDgWj9fNgvFx3bcTywwkElV0Usfz3RCay1i41xrwHHNe4qhQ4HUgxRUkkRwQTCEbrfiqMuS25cRMJRgPYvRg6jkpu7FRVzYODW1PbNvxqQOPvjhGMlnI+poiIiIiIiIiIiIiIiIiIiIj4zFo7zxgzHngAOKtpdcTXZpvgBKIZ4BXgKmttigek5JyOEcvbk9m48eKxB4HisNXlOBdMTYsxphvQNcnNBqc7r4iIiIik4bgHoOMY+Oi7qY+xdym8cTqcvwbyfDgVKdlgtGFfz0wd2aykO5wxF+ZcAdvfit6ndgfMOhMu2ADFXfytryXteAc2THdvLx/p3uYi2FDHpwc+jtrWrbBX0uOlIt9E/98L2jpf5k/Z6B87oWKf/iZ6+8Gt8PppcNEmKKzwt7ZkfHCze9voJM8Dag0qxsJZH8O8G6FqbuLb7VkEb5wB562EvEDm6pOWt2sBzPl87D4jvw+jfuTPvkWyOh0F096Al44HtwDK978K7Y/wN9htf4xgtCNugpG3QIk/gZ1ZpbQ/HPsXmHdD9PbXp8G5n/pbk4iIiN9sA9TXphYwlkww2WFhZwehIRtfl1rY9gbMvhSmvubebeOziYeilY8Ekw8VR8Hwm6HiyObtfS+CKTOdEOk9S2DP4tTLbxLaB0t/dWi5/iAsvANKB8KgK9MfX0Qky2XhOwau2ofd3+PBeHvD7nfwYLycZYwZDJwUsfr+ONv0AMaFrQoB7yQx7SwOBaOBc6CbgtGkdXO7QkTpQDjur1DcDTqMTP6N/UBx/D7gXInCr2C0Hck8HEQwYd9/YYUTFrft9cP7hfanPoeIiIiIiIiIiIiIiIiIiIiI+M5auw04xxgzAfgGMBXo6dJ9D/Aa8Adr7Zs+lZgtyiKWE7hq4mFqaB6M1t6tY5K+DNzu0VgiIiIi4oe8AIz4jnN7ug/UbEptnAMbYfss6DHN0/KiSjYYLZvDlDKpXR84+QV4Isbufv1BWP84DP2yf3W1tDX/dG/rOjmlIRfv/9B9yAJ/AmjyTUHU9SEb9GX+tIy53T0YDZyT7Dc8BYOv9a+mZG1+Ifp6E4B2ff2tJVtUjIUz3m2+bsMMePui2NvtXws7ZkP3kzNWmmSBWI/FACf8Ewb+jz+1pKrTBDj1ZXjtVPc+ax7yNxit2iUYbexPYfSP/KsjG8XaR927DPYshfIR/tUjIiJtk7XQUOt9GNlhfaO0ZWU4WRbY9gYcrHQPjA8PHYulsBOck0DQWc/Tm+8fzvsSrLwvsTmSseYhBaOJSJuQS8Fo4Qf2eBFkFv6uf5KfmLQ61+BcVbPJh9baBXG2GR2x/Im1NpmUojkRyz6lNYm0oKBLMFpxN+gxNfVx8xIMRtu/NvU5krVvefT13afCCQ/BjN7u29YfbL5c4PIhbag6tdpEREREREREREREREREREREpEVZaz8ArgQwxgwC+gKdgUKgEtgGLLbWNrRYkS0rMhjtYNResdUA4ekQkWOKiIiISFs04tvw4bdS337PkuwLRut6IhgTv19rVVAGZYOgerV7nz0JnLjbmsT6fjuOS2nILXUbXNv6FA9MacxkFZjCqOsbaKDB1pMXfpH6bFPQHkoHwn6XQB9wHl+ylW2A4N7obSYf8nLpFM0Mq0jwf2zvEgWjtXbxnnsqjvSnjnSVj3ICEN32Tfx87LLW/fzAMn+ei7Jau75OWG7drujtexWMJiLSZvw3nCyBgLFQTVgoWYxgskT7NtS29Hcvh7FQszF6MFr1atjxTmLDJPpaJ9KE38LO92HnB6lt72bba96OJyKSpXLpXbfKsPv9PRivX9j9Kg/Gy0nGmABwVcTq+xPYdGTE8sokp14VZzyR1ifkEozmFvyVqECCwWgHUryyVyr2Lou+vnykEwQXS5cTmi8HSqP3CyWTxSgiIiIiIiIiIiIiIiIiIiIifjPGtAfCz8pbFXkBTmvtaiDGGfwCWJ+2EREREZHWrv/l8MmtqR+L/cE3YOV90O8yGP0jMHne1tckmWC0ITdkpoZcMuQGWPAD9/aV98Gah6CgHLqfCuPviX5CcGsQOgA7Zru3D/5iSsNWBre6to0qHZ/SmMnKNwWubSEbojCbg9HA+Tv9+Bb39k/vgYFXQcVY/2pKxO7F8O4XoKEuevuAK/ytJ9uVDYQep8HWV2L3m/9l2PISHHU3tB/iT23ivWA1fPB1WP33Q+vyG7P5Y+1rdDkBOo7ObG1eKe4GfS6CDU9Gb9/1EWx6EXqfnfla9i6DUHX0ttIBmZ8/2+Xlw+BrYend0dvf/ixMfhz6XeJvXSIikll7lsJH34OquU4wmQ05X0XC1UcJrFv3GLxzWeJjDLkxtbkDxTD5SXjpaKj1ONbm8YiMivB9RZMHgXYQKIGukxpfew32dn4RER9k6BOIjFjf+NUAY4wxnVMdqHHb8HdJfUwLyjpnAr3DlmuAfyewXeQ7juuj9nK3LmK5szGmImpPkdYi6BKMlu9TMNqWmenNk6iNz8H2N6O3tR8a/0o4kW8EF7hcrNbtjVwRERERERERERERERERERERyRafBz5qvM0Dilq2nJwReWBMSQpjRG7j1cE2fwJGJ3m7wKO5RURERCRdJd1h2pvQ6WhINURpzxJYeBt8+B1vawuXaDDa0f8HA/8nc3XkihHfgzF3uLfbeuf4+5pNsPaf8NrJ0JBE+FwumXWWe9vQr0KnCSkNWxXcHnX9uLLjCJg450h4JD/GPEHrEtqVTUZ+H0bfHrvPK5Oheq0v5STkwEZ4ZZITfOTmyF/6V0+umPwE9PvcoYAsNxufgZdPgIOV/tQl3nvzvOahaOA834SqiZnZf/JzGS3Lcyc8CGWD3NvfPAe2vpbZGhpC8MII9/ayge5tbcm4X8Run30prJ/uTy0iIpJ5BzbDyxNh8/NQW+nsgygUTaKJDLpe/2TioWilA+CYe6H/51Kfv2wAnDYHup4IXr6H0LTv/d998DC2wVlXuwM2znBee9Xu9G5uERGf+PPOqzfmArVAIU442leAn6Q41pc5FAoXAt5Ju7rcdU3E8nRr7e4EtusYsRz9HX4X1tpqY8xBIDzRqRzYlcw4kYwx3YCuSW6maFPxh1swWkGawWh5SRwvunc5dBia3nyx7F4Mb53v3t5hmPO141jY/UmUDgYqIq6WFCiNPlaqVykTEREREREREREREREREREREb90wTneD2C+tVZHWycma4PRrLXbSfJ4QWNM/E4iIiIi4p9OE+DM+dAQhLwCsBaCe2kWYLL017D457HHWfVXGHcX5Lsc752ORILRKsbD0K94P3cuMgbG3A7lo2H2xfH771kCW1+FXmdkvjY/7VkC299ybz8i9b+XquC2qOuHthuT8pjJyjcFrm0hG/StjpQZA2PvgNJ+8N610fuE9jkhS2Pv9LU0V6sfhOAe9/b8Uijq7F89uaKwHCY/6gQ5ffQdWPY79761lbDu3zDs6/7VJ97Y9TFsn5X8dme+n3v/N/ntYOoseKafe5/l/wc9pmauhq2vuLcFiqG4R+bmziV5+TDoGlj9gHuf5b+Hfp/1ryYREcmcNQ9CMJFYDGl5BgIlkF8CecXO/kug2FkXeT8vRlu0vuFjzjySqAG9DbXNl2O9Rol0wZq0vvP/6jAUTnvLCe9zC/Cb0ffwgDOv1O6AdY/ovTQRyTk5E4xmra01xrwNTGtc9R1jzNPW2oXJjGOMGQ18l0PPaO9Ya9tkuo4xpitwXsTq+xPcPPKSDTUplFBD82C0NNOhACf0Ls7lQ0RaSMglGC0/zT/9RK+GBfD8MPh8g/OBUias+7d7W14BdD7Wud/7/OjBaBdXHV5bgcsVYjK1Yy8iIiIiIiIiIiIiIiIiIiIiXmk6e9gCG1uykBwTedZ1UhcLNcaUcXgwms4MEREREZHm8hpDloxxQmzCdRwbf/tQNexdBp3Gx++brESOkS+NEU7SVnUYnnjfnfNbXzBa1Xz3trxCKBuQ0rD1NsTOYGXUts4F3VIaMxUFuR6M1qTDsNjtO9/3p45E7IzxNwXQ/ojMnZ/TGuTlQ+fj4veL9b8r2WvD9OS3MXlQNtj7WvxQ0ssJQwy5nIqc6ceuqhjjtx+qx6JwHYbGbq963wkG1s9MRCT3Vc1r6QpyjHEPGGu6Hy+0LGrfOGMGisHk+/PcGyiKHjpWHxaMZi3smJ3YeMO+6U1d4Zp+NtF0PwU2Pef9nE302ktEclDOBKM1uhsnGM3iBHPNNMZcbK2dm8jGxphjgSeBUpyrUNrGMduqK4Hwd8VXAW8muG1kUpFLLGlMNUBFjDFFWpegSzBaQZrBaA1J/vu9ejKc+CQUZ+ADuF0L3Nu6TTn0gfmoW5w3fLf8x1kOtIOJ/4TCisO3c7uCmILRRERERERERERERERERERERLLdlrD7hS1WRe5ZEbHcP8ntI/vvtNbuSqMeEREREWlrep0D+WXxj9l+eSIc8ycYdLUTduIVG4rfZ+AXvJuvtSgf6YTaRbuIeaRPboXh33Q/Xj+X1B+EFffCh99y79PnQvcTj+PYFazE0hC1rUtBj5TGTEV+nvvL6lAi/zPZovPx0K4fHFgfvX3zizD7MueE8MHXQV7A3/oAdi+CNQ/Cxmdi9+t/mT/15LLe58YOkwJY+y8o7e/8vlMMMBQfhQ44j7mL7kp+255nQmFH72vyQ14A+l0Kq/8evf3ARidwI1Dk/dxbX4OFt7m367GouX6XwoIfuLfXH4CNM6DvRf7VJCIimZFouFW2iRYcFjVkzCVwLK8Y8hMMMQvvm1fQ+oNB81yC0RrqnK/bZ8PyPyQ+Xv/PeVNXwvNdltlgtDUPOq/R+l2cuTlERDyWU8Fo1tqXjTGzgCk4oWa9gLeMMf8E7gPmW2tt+DbGGAMcDdwIfAEnCMw23t621r7o2zeQfb4YsfxA5M8vCalsl+pcIrkplKFgtGg76LHseBteOg6mzXI+OPBKcJ/zAZSbkd87dD+/HUx5EfYsgZpN0OloKOoUfbt8l8zEnR/o6gwiIiIiIiIiIiIiIiIiIiIi2W1R2P2BLVZF7lkasTwkye0HRSwvSaMWEREREWmLCsrgpBnw9mchuMe9X0MtvHctbH8TTnjQu/ltffw+fRRmcRhjYNJjMOts2L8mfv/XToVpb6YcGJYVGoLw+mnxT4g/OokTnyNUBre5tnUuyMAF613kG/fTAIMNQd/qSFteAE56Gv4zwb3P+sec29ZXYPIT/p43smMOvHFG/GDI/pfDsJv9qSmXFbSHE5+G2RdDcK97v8U/g1V/g2lvQYeh/tUnyak/6Dx3VL2X/LYVR8Kxf/G+Jj8ddTdseh5qd0Rv3/Qs9LvE2zlXPQDvXRe7z/AYwaBtUdlAOOGf8G6MEN23PwOTn4R+n/WvLhER8db+DVBbmfr2foWRHdZWqPPiM8ktULy+FtY/Ae98PrH3nEweHHUPdDnO2/ri6X8ZVL0Py/5f5uaYfQmM+hGM+2nm5hAR8VBOBaM1ugz4EOiJE6yVD1zdeNtvjFkG7Gps6wQMBZpSdUzjegNsAC71se6sYow5HhgVtqoe+EcSQ0S+u1uSQhmR28R5xzghfwKeSHKbwUCcS3iIeCDoEoyW73MwGsD+tfDWRXDWh+nNHV7DU93d2zsdAz2mNV9nDHQc5dxiiXUFqj2LoOOYxOsUEREREREREREREREREREREd9Ya5cbYz4BxgJjjTG9rbWbWrquHLAoYnmsMaadtfZAgttPijOeiIiIiEh8PabCZ7bBzvfhlcmx+655CEb+AMpHeDN3vJNUu5+iE4ndlA+H81bA7gVwYLNz8fOVf47et2oebJgBAy7zt0YvbXohfija8G9DceoBZm7BaB0CHSnK8y9ULt8UuLaFbJ1vdXii03g4/V14+YTY/TZMh50fQOej/akLnICueKFokx6D/m32tMTk9TzNeT5Z9FPn5+vm4DZY9js45o/+1SbJ2fhM4qFoJz176H7ZIGcfweRlpi6/FHWCC9bC4y7nus3/irfBaA0h+ORWnFOiXUz4HQSKvJuztRj4P9DnQngixnmbn9wKfT+jfUoRkVy16C73tnE/h25TogecBYohr0iP/62V235RQy0s+kVioWhTXoQuE6Gw3NvaEmHyYMI9MOoHTkBacC/kt8OJxwHqaxrD9QLNt1vzD9jwVOLzLP01DP8mFHX2qnIRkYzJuWA0a+12Y8yZwLPAAA69qjc4AWgTItb9d1MOhaKtBC6w1m73o+YsdW3E8kxr7eYkts/KYLTG32lSv1ejHVfxS8glGK2gBYLRAHZ9BFtfhx6nRm9vqAcbgrqdzhupRV0A6+z011Y5ffIKoKQXvHm+szPtZsxtqdUIUNDRvW3bLAWjiYiIiLSk4F4IlDpXcBQREREREREREREREYnuD8BfcY7d+wmHH7smEay1W8IC5cA51nMy8HKCQ0yJWJ7pUWkiIiIi0tYEiqDrJBhyI6y8L3bfra95F4zWEOdE1dKB3szTWuUFoNME5wbuwWgA217L7WC0ba/H79N+cFpTuAWjdS6IcXH5DCiIGYwW9LESj7Qfmli/ra/6F4xmLWx7I36/bidlvpbWJlAMA6+MHYwGzmOSZK+tCf5+xv0M+pyX2VpaSn47KO4BB7ce3hbaB/W13gWV7V0GNXFO+dU+kbuCMigfBXsWR2/fu9T5PZb09LcuERHxxu6F7m2Dr4Pirv7VItkjz2U/rHqNs28VT1Fn6HWWtzWlorgb9D478f771yUXjNZQ54TM97kg+dpERHyWkxHr1tpFOAFoj3Io7MyG3f7bleaBaA3AQ8Ax1tqlftacTYwxpcDnIlbfn+QweyKWk9o7NMaUcXgw2u4kaxDJLUGXYLT8FgpGA3h9Krx3vfOma7gNM+DRfHisGJ7uBc/0g8fbOVe0eKIDPDvQuc3oA4/kwdZXYs9T0iv1Grud6N4W7yo8IiIiIpIZ+1bBS8fBEx3hqW6w8CfOAUEiIiIiIiIiIiIiIiIRrLX3Ay/gHMN3tTHmey1cUq54OmL5i4lsZIwZDhwXtmo/iQeqiYiIiIhE1zuBcJMPvg7b3vTmOCIbJxgtkXrE0X0K5Je6t6/6m3MCbS6yDbDmoTidDPQ6J61pqlyD0bqlNW6y8ghgXE4FDNmQr7V4oqgTdJkYv9+in8CBOMFAXrAWNkyH+prY/TodAyU9Ml9Pa9T+COgwLHafvctg6T1QOVfHpWajyjmJ9etzUWbraGkdx0RfX38wscDORG1/M3Z7fqnzPC/u4u0zfvxjqF7rSykiIuKh4D6omuverlC0tiuvMPr6RXcmtn2fC72rxU+9U3jfY/XfYfHPYfVDULPF+5pERDySk8FoANbaXdbay4GRwP8DmmJdTcQN4GPgbmCYtfZqa21kqFdbcwkQnsS0DXg+yTFWRCz3T3L7yP47rbW7khxDJHdY61z1IZqCNIPRGtIIRgPng8wPv3loec+n8LbHb0CXJvsQEaaos3tbOqFwIiIiIpKahiC8NgWq5gEW6nbCupZEtwAAIABJREFUwtthxb0tXZmIiIiIiIiIiIiIiGSvz+MEfRngF8aYl4wxp7RwTdnuYSA8DeIzxpgjEtju+xHLj1trdZCNiIiIiKSn5xnQ/7I4naxzXNG7V6YfZhMrGK3vxamd8NlWFbSHCb+L3ef54bDxGX/q8Up9Lcz+HATjnCI29idQ2i+tqSpdgtG6FPgbjmWMId/kR20L2qCvtXhm/D1Q2Cl2n/oaeGEEbHsjc3U0hJzHrtmXxO5X0BEm/L/M1dHaGQMT/hA7rBHgo2/DyyfA/JucAETJDtvegD2L4/cb+X0oH5H5elrSMTGOmZ51NlSvTn+Ojc/C+19xbzd5zvN7uucltnbDboaO49zbVz/g7AdteMq/mkREJD3Va+H5GPsaY+/yrRTJQoGi1LfNL4VRP/KuFj+VDYQxdyS3zcZn4OMfwdyrnP+pbXFCeUVEWkj0d0NziLV2OfBtAGNMGdAdaErRqQS2WWv3t1B52eraiOWHrE360iBLI5aHJLn9oIjlJUluL5Jb6mvc34zPT/MNyMIKOLg9etu5y+CTH8P6J2KPseJeGHIjVIyDpb9Or55IHUbEDjdLRI/TYWuUC9c21KY3roiIiIgkb/tbcGDj4evX/RuGftn/ekREREREREREREREJKsZYx5ovLsX2IdzUc9pwDRjzD6cC59ub2xLlLXWRh4H16pYa1cYYx4ErmlcVQj8wxgz1S3ozBhzAXB12Ko6IMFLoIuIiIiIxJCXDxMfhoFXw6wzY/dd+y/oMQ0GXZX6fG7BaKUDYPJjThiIJG7wtXBgMyy8LXp7/UF473roeRYECv2tLVXrn4QNT7q3l4+E4x6ALselPVWVSzBa54JuaY+drHxTQNDWHbY+FGVdTuhyHJz9CWx+IXYIVnAvvHcDnLfcCdfy2qbnnceuWI65F3qdA6V9vZ+/Lel5Gpy9EFb/HRbFCa1YeR/0uwR6TPWnNnFnLcyN81Zcnwtg+Heg22R/ampJ7QdD52MbLzIdxce3wqSHUx+/IQjvXRe7z5kfQcXY1OdoK0q6w2mz4YkY52821MK8G5zH+HTCVERExB+f3Ao1m9zb+3/ev1ok++Sl8FxeMd5536T/ZVAUJ7g7m4253bmwwbbXAQPdp0JxF3h2cPxtg3tg/o1wztLMvOYWEUlDzgSjGWN6AMeGrZptrd0Z3sdaWw1UA6v8rC2XGGOGApHvLt2fwlCLIpbHGmPaWWsPJLj9pDjjibQuwRjHbaZ7ZYZxP4/+ZueAL0CHoTD5cXjxSNj9cexxZh6ZXh1uTvTgigmB4ujr63UxWxERERHfLb07+vod7/hbh4iIiIiIiIiIiIiI5IqrARu2bIGmI6o7cPjxbPGYxjFaNBjNGNOH6Mdg9ohYzjfGDHAZptpaWxljmtuBi4CKxuWJwKvGmOustZ+G1VIE3AD8JmL731hr18UYX0REREQkcSYPep0Bx/4V5l0fu++iu2DAFU6gWircgtF6n6tQtFT1Od89GA2gdgdUvgvdT/avpnRsnBG7/Zj7PAlFO9hQQ3X93qhtXQojX/5lXoEpoCbK+pAN+l6LZ9r1hiE3QFEXePuz7v2qV8KexdBxtPc1bHw6dnvHsXDEl7yft60qGwhj7oSlv45/XtCGpxWMlg32LIH9a9zbz/oIKjJ0Xlq26nOBezDaxhlOmFyqoRI75jjPy24GXqVQtGQUlEHv82HTs+59aqtgx2w93oiIZDtrY78WNHlQ2s+/eiT75CUZ9t7rXJjyXGZqaQldjndu4cbe5QQKxrN3Gez9FMpHZKY2EZEU5dKnAZ8Bnm68PQzUtmw5OeuaiOXZ1tplyQ5ird0CfBK2Kp/kDlCbErE8M9kaRHJKKIPBaL3OhvwoYwy44tD9oV9Jb45UDf8WlA9PfxzXYDQ9FYiIiIj4rm5n/D4iIiIiIiIiIiIiIiKx2bBbrpoNrIlyeySiX2+XfmsAlyvSOKy1G3GOnawLWz0JWGKMmW+MecwY8x9gA/B7oCCs3/NAAke5i4iIiIgkqdtJ8ftUr3ICb7a/7dx2LYCGUOJzWJe+JpD4GNJchxFQ1DV2nw3Tk/s9tZSG+tgnw+eXeRbQU1m3zbWtS0E3T+ZIRr4piLo+5PY/k0u6TIz/P775BecxZf9652911ydQ+R7U7Up93oOVsOah2H0SedyT5BgDXRP4ua75B+xeBLYh4yVJhIYQ7F4IwWrY+YF7v8IK6DDSv7qyRa+z3dvqD8Cm552LTtftTn7sne/Hbu+WIyGm2SSRn9nWVw49x4iISHaq3QGhavf2LhMhL/prJmkjAkXJ9W8Lr/WS2XesXpW5OkREUpRLwWgdca70aID51tr9LVxPzjHGBIArI1bfn8aQkZfD+GKCdQwHwi+7sh94OY06RLJf6IB7W6A0vbFLesKpL0P5qEPLx93vXI2ryaBrYNzP05snWd2meDdnnssLkYY4V4YREREREW80hGDRT+GlE9yvbgbO1VdEREREREREREREREQOZzy8tSnW2lnARcCOsNUGOBq4FDgDiEw3eAS4zFpb70eNIiIiItLGdBgK/S+P3+/jH8KrJzm3mUfBU91g80uJzbF3WfT1Jj/xOqW5QCGM/nHsPsv/ANO7wuaZ/tSUiu1vwdM93cPzAEZ8DwrKPJmuMrg16vo8AnTM7+LJHMlwC0YL2qDPlWRASQ844iux+yz4gfOY8kx/eLQAZo6Dl4+HJzvB3GugIYmfQ6gGZl8GT8UJDCzqAkO/lvi4krhRP3A/X6hJaD+8OAZm9IWq+f7UJbDxOZjeBV4cC0+0h7lXufcdfZvzHNPWVBwJ3ae6t791Prwy2Xl8mndTYsGjDUF473r46DvufcpHQb9Lkq+3rRt4JZQNit1nyS8PPcf851ioib4PICIiLWjhHbHbR/3IlzIki8V7fRGudAAMirGf21p0nQw9piXW983zYO/yzNYjIpKkXApG29n41QJbWrKQHHY20DNseR/wRBrjPQyEHzj1GWPMEQls9/2I5cettUo3ktatvsa9Lb8k/fG7HA/nLIKLd8GFm2DwNc3b8wIw6ha43PpzVYgep8G0N5JPVnYTKI6+vl4PHSIiIiK+mPtF+ORWqJobu1+s/V4REREREREREREREWmrBmbgFucsttbFWvsiMBr4M7ArRte5wMXW2st18VkRERERyagTHoIJv4de5ya+Td0ueOs8OLg9dj9rYZ/LSZgmkPh8crhhX4cTn4rdJ7gb3roAarb5U1Mygnth1tlQu8O9z5AvwZhbPZuyKhj977VTQRcCLfD36BaMFmoNwWgAE34Lx/41tW1X/x2W3p14/0V3wvrHYvfpMBxOf9cJhBTvdT8Fpr0Fg6+P37dmM8w6S+cR+eHAJnj7IgjuSaz/8JszW082OyWRwFcLK/8My34fv+un98Cqv8Xuc9psz8I/25TiLs7j+cjIU5td7JwP71yW2ZpERCQ5uxbAinvd26e9Db3O9K8eyU55CQT2lg2CEd919g2Ku2W+ppZmDJz8PBz5v9DzTOhyAhR0dO//1gXOe3MiIlkil4LRwsPQSlusitx2bcTyo+kc/GStXQE8GLaqEPiHMcYlwQiMMRcAV4etqgPuTLUGkZwRKyAi4EEwWpPCjs4Oaiz9fXhT7uRnvR3PLWCtvtbbeURERETkcPvXwdqHE+sb0vk1IiIiIiIiIiIiIiLSnLV2XSZuWfB9DbDWmjRvVycx33Zr7U1AD+BU4IvALcDXgc8Cg6y1J1hrp2fi+xURERERaSYvAMO+BlOeg/NWgEnw9KSGIKx/InafXQvc2xSMlr6+FzknAMeSyO+pJWx8Nv4xaqN+6OmUlcGtUdd3Kejh6TyJys9zCUZraCXBaMbAkOtg8HWpbZ/osY6J9j3pWWg/JLVaJDFdjoXj/gJnzIvft7YKtryc+ZraunWPga1PrO+AL2S2lmyXF4Dy0Yn1TeQxJ16fEd91zh2U1BR3cwJBRt6SWP/tb8HBGGGsIiLir1jPk+WjoNtk/2qR7OWWR9AkrwDOXQ5H/QpKWuZ1fYsIFDkBsafMhNPnQJ8L3Pvu/RR2fehfbSIiceRSMNpHQFO0pC6zkCRjTHfgnIjVceLjE3I7za9AORF41RgzPGL+ImPM14DIT0Z+kw0HqYlknFswWl5h4h8Ce2XgldBxbOL985PIoiwbBBdugIBrPmJq3MbTlV5EREREMqt6LXz0fQ69HI9DwWgiIiIiIiIiIiIiIiIZZa2ts9a+Ya39h7X2f621f7DWPmWtXdPStYmIiIhIG9V+CPS/PPH+e5aCbTweyUY5LmnvUvdty0cmV5tEVzE+fp+9jb+naL+jlrJnSez24m5Q0svTKauC26Ou71zQzdN5ElVgXILRbCsJRmvSKYG/0Wj2LIaG0KG/XbdbcB8c2Bh7rMIKKO2fWh2SvA7DIVASv1+s5wjxxpJfJN6301GZqyNXVCT4M9j7KdgG98elhnrYuyzOXCk+NkpzCT/HWKjZnNFSREQkTLTnx3B7YuwH6jlSmuTFCUbrOM4Jt23r4u0Pxfp/ExHxWX5LF5Aoa+16Y8xc4ARgmDFmqLV2eUvXlUOuovnve5G1NoFLKcRmrd1ojPkM8BJQ2Lh6ErDEGPMBsBooB8YDXSM2fx64Nd0aRHKCWzBaIm/aey2/HZwxH1bcCx/e7N6v36XQ6yzoMAJePj56n/KRcNRvYNvrUNzDuTJPQQfva3Z7IdJQ6/1cIiIiIuJ8gLDop7DoDudD+EQpGE1EREREREREREREREREREREpO0ZeydsfAZC++L3XfFHWH2/c5HsQAm06wtHfAmG3QzGQHWMzN+eZ3pXc1vW90Io6Q01m9z7rPiTcwPnvIFh34AhN/hTX6Rts2DBLVA1N3a/ITd5foJzZXBr1PWdC7p7Ok+i8l2C0YKtLRit/2Xw8Y+gblfy2z4a/WeUtMHXQ6Awfj/xRkF7GHgVrPxz7H4LfuAE2425U4EGXqs/CB/cDLWVifUvKE8uGLW1OuJGWPdw/OOt6w/AI2n8zZb0gj4XpL69HNL7PGf/88CG+H1nHgkTH4EBl2W+LhGRtmrFfTD/S4evD5RA10kw5iew9Few+QX3MVrqtapkn7w4r+GO+LI/dWS7/pfDJ7dBcE/09ne/AAvvhCHXw4jvOu/XiYi0kLyWLiBJv3a5L/F9MWL5fq8GttbOAi4CdoStNsDRwKXAGRweivYIcJm1tt6rOkSyWiiLgtHA+XBm+Dfgwk1QOuDw9pOegcmPwaCrIb/MfRxrodeZcNSvYMS3MhOKBhAojr6+/mBm5hMRbwX3wsq/wUffg43PJRewIyIiLaPyXVh4W/KP2aHqzNQjIiIiIiIiIiIiIiIiIiIiIiLZq2wQnPISdD4eTH78/k3HgdfXwL7l8OG3YNnvnXX710bfpv1QKO7iSbltXqAYTn8Hep6VWP89S2DejbDq75mtK5pdH8Mbp8cPRRvzExhzm6dTW2upCm6P2taloIencyXKLRgt1NqC0Qor4LQ50H2q+/kkmVLSG0b9GMb93N95BY7+PQz/tvM7iGXxz+DjH/hTU1vy7lWw8r7E+lYcBafNhpKWCYnMKl0nwUnPQqcJYDJ0unbn4+C0dyC/hc5DbG0CRc7fb6+zIb80fv85n4dNz2e+LhGRtmjV/dFD0cB5v2Drq/DKRNg4w32MAVdAt8mZqU9yT6DIva24GwyOjFxpo4q7OPuXsVSvhAXfh6WK9RGRlpVTwWjW2hnAAzihW+caY/5oTCKfmLRtxphJwPCwVXXAv7ycw1r7IjAa+DMQ63Icc4GLrbWXW2v3e1mDSFarz7JgtCbtesF5K+HU12DkLTDpMfhsFfQ5/1CfmG+a2oyXCCgYTSSXHdwOr0yGedc7L4DfOh/eu07haCIi2W7tv1PbLqSXeSIiIiIiIiIiIiIiIiIiIiIibVLXE+CMd+GyWrgsBBMfTm77FX90vlavid7e84z06pPmSvvDKS/CxEcS36bpd+SnVX+DhjihX8feB2Nu9TyQZm/9boK2Lmpbl4Juns6VqDYTjAZQPhymvgqX7nceU3qemfk52/WDizbCuLsgL5D5+aS5vAIYfzdcuAHG/SJ235V/hfpaf+pqC2q2wvrHE+tbUA5nfQgdR2e2plzS+xw48324LOjcAu28Gzu/PZz+LpQN8G5MgdJ+MOUFuGSv8xwT7xzPFff6U5eISFuz/E/pjzH0q+mPIa1HXqF727j/9a+OXNBxFAz7Rvx+y/8I1qc8CRGRKHIxVOxGYB/wDeBLwMnGmN8Az1prq1q0sixlrX0HJ0wu0/NsB24yxnwDmAT0B3oA+4FNwEfWWpdPqERaObdgtGy4UkNeAHqc6tyiifnGnk87snkuCc0N+hBDJOutuA92L2y+bvXfYcgN0OX4lqlJRETi2/xiatspGE1ERERERERERHZ9Aot/DrWV0OkoGHNHYldbFxERERERERGR1sHkOWewlI9Mbrt9KyBYDftdTjspG5h2aRJFMr+nXR9DQ72/gVE7P4jfp8PwjExdGdzm2taloEdG5oynoC0FozVpekzpMBy2/Cezc5WPyuz4khhj4oduBffA/rXQYZgvJbV6299MvG+HEZmrI9eZPOfWYRjs+sibMctHOP8TkhlNzzFu53422fmhL+WIiLQpDSHYlebjq8mD9kd4U4+0Du36urdl6L2DnPb/2bvv8Diqe//j76Nmyb33XrCNbYwNphubTiB0QighIZWUm/IjJIGEm5BcEkKSG0hCSGghhBog9GqqaTaYYoptjLstNxV3SZa02vP7Y6SrlTWzO7s7O7srfV7Ps49Wc86c+dqWV7M7cz7Hz99J7Xpo2AZd+mW+HhERF3kVjGaMeSnm291AD2B/4Lbm9nKgornNL2utPS6wIgVrbQPwcrbrEMkpXh+OJVpNIBfkQo2Fpe7bm/aGW4eIJO+jn7tvX/+QgtFERHKZ182FiSgYTURyQbQJbAQKPUK2RUREREREJHN2rYB5h7Zex9v6Imx9GU5627khVUREOiVjzBcDHM7i3B+4E9gCfGKtlqgWEREREclJvac7oVs7l/rf58Ee3m3dFIyWEb2nQa+psPPjxH1tBJ4/AgpiwrmKusOA2TDp/0FR1+DqqnzDWYy5akH8fl1HQv8jgztujGqPYLQuppRuhXF+VjOoyLhPBWzsyMFoLUZfCMtvyPAxLsrs+OLf4BOgS39nERYvT06CCd9yFm3vc2B4tXU0lQvgjfP999f/k8RGXxRcMJr+vnPD3i3w2rkw7qsw9DPZrkZE8pmNwqp/wKanYceHsGdVa9u4rzsLz3UdmrXyQpXMZwVehnxGYU3S1tBT4f3LwTa13d59HPQ/NDs15bIR58C734doQ/x+1e/A0JPCqUlEZB95FYwGzMW5samFxcnjbok8H9H88Hujk0mir4hI6jpqMFpY95UWeExmj9aHc3wRCd6q22HmH7JdhYiI7MtaWHNX6vs3KRhNRLIo2gjvXQ5r/ulMwB9yEhx2hy52ioiIiIiIhGnxT9ovbrTtXdj8nCYJiIh0bv8kc/fp1RhjFgF3Av+21upmEhERERGRXGEMzH4E5p8Guz9Nf7zuo9MfQ9ozBo5+BOZ/FnYtT9y/+u322zY/B5ueguNfhYIApqptfBJePcsJYoun22iY8zgUFKZ/TBdVDVtct/cvGYwxxrUt04pMiev2SGcIRus3Cw65Bd75bvBzSUwhTP6xE74muaGwC8x9Gl49E+o2efdb8TdY8y849gUt3J6KzfOc39O+GJjwbSeMTuKb+D3nd+qq20j9Y1EDE77p/J1LbtjwH+dx6O0w7ivZrkZE8tU734UVN7m3rboVNjwEpy6BsiHh1hW2SB08Mz39cQ77R/pjSMfScwIc9QAsuAQiu51t3cfBnCe0oKOb0gFw9ONOUHLjDu9+r5wM526Dkj7h1SYi0izfgtHcKNhMRHJfPgejFbhfOHOE9BJcWOq+vbY8nOOLSGps1LutpHd4dYiIiH+b58HCL6W+f+Oe4GoREfHDWmelrF2fwuIfw84lrW0bn4DXzoHjX8laeSIiIiIiIp1Kw04of8S9besrCkYTERFoXQA1SN1xFlydC1xrjPmytXZeBo4jIiIiIiKp6LkffPYTJxjttXPaXtdPVrcxwdUlbfUYD6cug90roG6zs+3VM+NPit1X1QLY9AwM9xuwE8fH1yQORTv6MRh2mhPsliHVjRWu2/sVD8zYMRMpMsWu2ztFMBrA+K/DmIth+wfOIh0FRYBxfl5sivNbCoqg9wFQ3CPQUiUA/WbBmRvgwZ4QibNwb6QGlv4Ojn44vNo6io+vgWhD4n7Hvwq9p2keiF8FxXDoLXDgb51zn5a5NW99DfasdN/n2Oeh5TXeFEDvqQqeyFUf/wrGXqJwFRFJXt1W71C0Fg3bYdXtMPWqcGrKlg0BnLeZIijN3nszyWEjzoZhp8P2xVDUHXpOzOhnB3lv6ElwTiXs+Aienendb809MPG/wqtLRKRZPgaj6beOiOSfSB4Ho8U72Y8XehQkr2A0gI/+x3mTrzclIrln5S3ebbogJiKSmz79S3r7N8W58UREJGhN9c6NQmvv9u5TMd8JTeu5X3h1iYiIiIiIdFYf/ty7bcPDMOO68GoREZFcFHtjh/XYvq99ZzS79bUxbUOAZ4wx37PW/jX5EkVEREREJCOMcSahjv0KvP/D1MYo7AolvYKtS9oyxrm/ouUeix7jYds7yY1RMT/9YLRIHVS/Fb+PKYQhJ2V8DkFV4xbX7f2LB2f0uPEUGfepgJFoJwlGA2d+Sf9Ds12FhMUUOKEG6+6L36/ilVDK6VCaGqDqjcT9xn0NBs7OfD0dUZe+bf/uDvglvHlR+36lg2Hw8eHVJempWec8uiu0V0SSVP22v34rb+74wWhBnLsd8Mv0x5COq6AI+h2c7SryR0ER9J0BQz4Dm59x71MxX8FoIpIVeRWMZq1VhLaI5KemPA5GiyvFFXWS1WWAd9tHP4chJ0D/w8KpRUT8qd8Gi77l3V6sm1NERHLGjiVQ/ijsrYBNT/nbp+9BsO3d9tvjrcgnIhK0VbfFD0VrsXmegtFEREREREQybfdKWHFjnA4hLbgkIiK56svNX3sAPwf64QSZRYGFwCJgPbALKAH6AtOA2UDLbHML/Bt4FigDegP7N/cZRduAtOuNMcustS9l9E8lIiIiIiLJGX566sFopQODrUUSG3FW8sFom5+BxcWwaxlsfRlK+sGwU2HYaU7gi0kwLSzaCCt85FwPPQUKuyRXWwqqGytct/crzt7PY3FBsev2RtuJgtGk8xl+RuJgtIbtUP4EDP2MM6lfWkXqnNfn3Sug22ho3AUbHoHqhWB9XL8ZfmbGS+w0hpwMBV0gWt92u/6O88+u5QpGE5HkRff661dbDouvhB4TnPc+ZdkLZs6Y3SvTH0O/P0WCN+JM72C0DQ/B4p9Crykw7BQo6RNubSLSaelTHhGRMKy61X17Uddw6wiaDSkYre8MKOrmHbSx5m4Fo4nkmvLH4rcXdQunDhERiW/Do/DGec4NZX7Nfbb55jMFo4lIlq2911+/mrUZLUNERERERERw3qPFmzxTsxaa6kOZrCgiIrnHWnunMWYC8DhOKBrArcA11toNXvsZYwqAM4A/AGOAzwHLrLW/2qffKcCfgHE4AWlFwP8CMwL+o4iIiIiISDp6jIfpv4YPfpb8vof9I/h6JL4J34ZNz0Lla/732bnUebRo3AWf3ug8Rl0Ah98FBYXu+0Zq4dUzYcvz8Y/RdSQceJ3/mlIUsY1sj1S5tvUvHpTx43spMiWu2yMKRpOObPhZMPI8WP9A/H6vng6jLoQj7kocxNhZNGyHl09xQtBSMfYSJ8xLgtGlLxx8Iyy6tPW6Wq+pMPWq7NYlyXvlM/C53VDcPduViEg+iUb89136W+dr6SA45jnoMz0zNWVDUz1UvJLeGFP/G3rtH0g5IhJj9Bfg7Uu925de63ztPg6OfV5BsSISCgWjiYhkWuMe77bCsvDqyIiQgtEKS2HAbNj8rHv7ir/CrHgr0ItI6FbcFL+9yecKByIikjk2Cu9+N4lQNAOzboKhJ8Gaf7p3UTCaiISp6k1//eo2ZrYOERERERERSbxgio3C7hXQe2o49YiISE4xxnQFHgUmAo3AxdbaBDNZwVobBR4xxswDngGOAn5hjFlvrf1nTL+njTGvAa8ABzZvPsAYc4K1NsGMehERERERCdWUn8LQU+HlE2Fvhf/9+h+RuZrEXUlvZ5Lr1ldg+3tgm1rbdnyUOKBoX+vucybYDjvFvX3tPYlD0Y56AAYfDyV9kjt2CrY1VmE95kv0Lx6c8eN7KTLFrtsVjCYdWmEJHHkf7PcdqHwTPrjSu++6e6H/oTDxe+HVl8tW/C21ULTRF8P4b8CAI8GY4OvqzMZ/DQbOhq0vQ9lQGHSswrXy1Zo7ndclERG/fM/dibF3Kyz+CRzjMbc6H8V7Lzn6YjjkZifcdcvzUNu8vlK0AXZ8CF1HwNivQF+tjSSSEUVd4dgX4KXj4/fbswo+vgYOuz2cukSkU1MwmohIpsVbIam4R3h1ZMLgBCe2QSrL3sVDEUnSugdg2zvx+yg4R0Qk+3Yth9pyf30PuAamXNm6gl6RxwX4SJxQYBGRINVX+++7c5l3W7TJuXAKzs1FhaXp1SUiIiIiItIZ1WxwJkYmsmuZgtFERDqvXwGTcVbgu85PKFosa22NMeZs4BOgL3CjMeYpa21lTJ/dxphzm/u03Bd5IqBgNBERERGRXNNnOhx6B8w/1V//siFQ2CWzNYm7wi7OQppDT2q7veK15IPRADY+5h2MtvGJ+PsOOApGfi75Y6aoqnGLZ1u/4oGh1bGvIuM+FTBiIyFXIhIyUwADj3Yeq26FPau9+y65FsZ9HYrKwqsvV5U/nvw+A46CI/4VfC3SqudE5yG5o88M2P64iqP7AAAgAElEQVR+cvuUP65gNBFJTqphxpvnQaSu45zbxHvvN/ky589ZVAZjvxReTSLSqsd4f/02PgYoGE1EMq8g2wWIiHR4W1/ybhtwdHh1pGPi9z22h7iCSkm/+O0168OpQ0QSW/KbxH0UjCYikn3Vb/nvO+WnraFoAEXd3Pvp9V1EwrLrU/99d3wAD/aGxVdAU4OzrakB3v4W/KcvPDzAeTzYE148zpnQLyIiIiIiIv6VP+bdVlAMw06HyT+GHhPCq0lERHKGMaYI+GLzt/XAdamMY62tAm5u/rYMuNClzxrgQcA0bzoylWOJiIiIiEgIBh7tfQ/SvgYdm9laJHl9D4KiFBaJX3mL83nirhWwcylseBQ2PAIbn4KdS+LvO+i41GpNUXVjhev2noV9KCnIXlBfsSl23R6xDSFXIpJFiX4v7N0Cr57uvMZsfh4ad4dTV7ZE6qDyTajbAnsrYdNzzmvrhkeSu1e4hX7vSmc0+cfu23tO8t5nyzznHGb3SrA2M3WJSMcSTTEYDQtr74FNz0Ld1kBLyoqqBd5tvaaEV4eIuOs6ErqPS9yvvho2POycD218CioXtM7XEREJkPsyESIiEgwbhWV/8G4ffHx4taRj4vedD8RrY8LHxl4CvUJc0b1L//jtzx0KZ28OpxYR8daw3QmeSKSpNvO1iIhIe9Em53U62ggLv5y4f0lfOPYFMKbtdgWjiUi21W1Mrn/jTlh6nXOh5aA/wns/gJV/b9sn2uiEmz93MJy5CSK7Ydu7zgXWssHB1S4iIiIiItLRbPQIRus5ET77Sbi1iIhILjoK6A9Y4G1rbToXE+YBVzY/PxP4k0uf53BC0wwwPI1jiYiIiIhIJhV3hylXwQdXxu9X0gcm/yicmsS/oq4w7efwfgr/Nq+emfw+3UbB+K8nv18aqhq3uG7vVzww1Dr2VeQRjNZoUw1ZEMlDky6D8kehvsq7z5YXnEeLQ26G8d/IfG1h2/AwvPkFaKoLZrxuo2H8pcGMJZJPhp8G/Q6D6oWt23pOhjlPwBPjvfeb/1nn68A5MPth6NI3s3WKSH6LRlLf9+2Y90MTvg0H/RkKCtOvKUzRRnj7Uqgtd2/ve7Cz+J6IZJcxcMD/wIIvODkZ8bx2TtvvS/rA7Edg0JzM1ScinU7eB6MZYw4ETgdmA+OAvkAPwFpr2/35jDG9gZ7N39ZbaztANK6I5Kyqhd5t474OhSXh1ZKO7mPgxAWw7j5nFYOBc2DUee0DMjIp0Ypge7c4b4i76p5WkazatdxfPwXniIiEr2YdvHJq4pU1W0y6DPb7DnQf276tqLv7Pnp9F5Gw1Fentt/y62HcV2H1nd599lbA/cXOe96WCzmTfggzfh/u+2AREREREZF80LADtr7i3jbyvFBLERGRnDUy5vmmNMeKXTFvlEefZTHP+6R5PBERERERyaQpV0CvybDmbtjwkLOIY8M2p633NBh6Coz9CvTcL7t1irvJl0OPiVD+CNQ2L3C3ZV7wxxl8Ahz+r9AXtatudJ9u1r84u4vrFRn3OSgRm0bIgki+6TUZTnoLVt4KS3/rb5+3L4X+hzu/XzqKus3w+nlgm4IZb+ovYMI3tYiodE5F3eDYebDyFqh+G/pMh3HfgNL+cNzL8OIx8fevmO8Exh52ezj1ikh+ShhmbHDWGUpgxU3Qd6ZzT3w+WfE3WH2Hd/uBPs/rRCTzRl8AZUNh3f2w+1PY+pK//Rq2w6tnwFmbnFB9EZEA5G0wmjFmGnA9EPuO0s/MxGOAh5qf1xhjBltra4OuT0QEa+GT673b+80Kr5YgdB0Kk3+YxQJ8vMRveib0laBEZB+bnvXXT8E5IiLhe+sb/kPRxn4ZZv6vd7tXaG1kT/J1iYikoiHFYDSAp6f66GSd9/UtPvlf6H8ojPxc6scVERERERHpaHYua55w4zHhbviZ4dYjIiK5akjM8wSr4iXUcve0AbxmaG6Ped4lzeOJiIiIiEimDT/DeUh+Gn6a82hxbwYWnDvsjqyE9FQ1eASjlQwMuZK2ioz7VMBIwpAFkQ6m+1g48FqY+H14fCw01SXeZ939HSsYbf1/ggtFm/wjOODqYMYSyVfFPdznTvaZ4W//9f+GQ26BgsJg6xKRjiPqcc7e92A4eZHz/LnDoXph4rHW3pd/wWjr7o/f3n1MOHWIiD+D5jgPgMfGQM1af/s17oTNz8KIszNWmoh0LgXZLiAVxphLgIU4IWf7fmqeKAr3MWB9837dgHOCrk9EBGvhra86K1d50QrpySkblLhPtCHzdYiIt/LH4eNf+usbqWkbNCEiIplVvw22PO+//+QfxW/3DEZT8KWIhKQ+jWC0VJU/Fv4xRUREREREctWKm+GpKbDzY/f2riP8TxIQEZGOblfM8/3THGtKzHOv1VpKY577mBErIiIiIiIigRlxbrDjlQ1xHllQ3Vjhur1/cfghbbGKTbHr9ojVXArppMoGw4Rv+eu75DfQuAua6jNbU9AitU7d0Sbna8tj2e+CO0bQr98iHUlJL+g+PnG/SA3s3Zz5ekQkf3ktOhcbftzvYH9j7fqk9ZwgGlBQaiZFI7DjI+/2LgOg68jw6hGR5PSblVz/6kXO+xgRkQDkXTCaMeYc4HagLHYzsAFYTPugtDastVHg3zGbTg+6RhERqhbA6ju82wuKnQ/FxL/Bxzt/b/EUdo3fLpKrmvbCh7+AF4+FhV+Gbe9mu6LkRWrh1WRW7LNO8reIiIRj51IS54jH6DU5fnuhgtFEJMsatoV/zLX3hH9MERERERGRXFS3Bd6/nLifNw07HUzc2zdERKTzKG/+aoCxxphD0xjr4uavNmbcfQ2O6VOZxrFEREREREQkWft9O+Dxvgsm/KlvdU011ER3u7b1Kx4YcjVtFXkGo0WwWrRaOqspP/UXWgTwYC94sAe8MAd2rchsXena9Aw8NRUe6ObUfX9Rc/3Nj9oNwRyn32HJBx2IdDYTv++v3+o7M1uHiOS3aKP79th50+O+DoWl7v1i1W1sPSf4Tz9nTmouhhBVLYR/l8H9xRDxWvMI2O87UFDk3S4i2TXhO2AK/fdf+lvnfcwTE6H88czVJSKdQl4FoxljhgAt7wxbPq29CRhnrR0NnO1zqMdahgTmBFagiEiLTc/Ebx/ymXDq6EhK+sCYL8bvkyg4TSQXWQsvnwQf/wq2vgyr/+lcZKt+J9uVJefJScnvU18dfB0iIuIumdWnxl+auE9xd/ftEfebwUREAqdzSRERERERkezZ8HD8G1YBhiezmIqIiHRw84FGnPv9DHCTMSbple+MMZ8HTqT1vsHnPbrOjHm+NtnjiIiIiIiISBoGHQNznkpvjMKu0Hs6zPwj7H9FMHUlqapxq2dbv+JBIVbSXlFBiWdbxEZCrEQkh3TpB8fOg9EX+esfbYSKV+GFo3IzQARg23sw/zTYuSSzxxn3VTj2OS12I5LIxP+CWTdBn5nOuYqXD6+CXZ+GV5eI5Bc/wWh9DoBjX4BBx0FxL38haY07nTmpCxLMvw5bzXqYdzg07Y3fb8K3YOrPw6lJRFIzaA7MeRIGHg1FPZzzocKuYBIEGu7+FF49I//my4tITsm36NSfAy3vGpuA8621/4lp97u0xSKcm62KgX7GmDHW2jXBlSkind6Sa+K3l/QOp46OZtbfYdXt3u01a0MrRSQwFfOdi2qxIjXw6Y1w+D+zUlLSdq9KbbWh+mroMS74ekREpL09SbzlHXpq4j7Fvdy3N+2Fpnoo7OL/eCIiqVAwmoiIiIiISPYs+U389uKeMFBr1ImIiMNau8sY8yRwFs79fQcCzxljLrTW+rrQbIz5GnAjreFqUeBuj+4nxTz/IOXCRUREREREJDXDToEL95neda/PwJ1Dbobx3wi+piRVN1a4bi+gkD5F/UKupq3iOJOOI7aRYrTYvHRS3cfAEXdDnwPh/R/522dvBZQ/BqMvyGxtqVj1D7BNwY139OMw/LTgxhPpjCZ8y3kAPDMDti9277f6n3BgguupItI5+QlGAxhwJBz3gvM8UgsPdPM3fvkjULcVyrIb5vx/1tzlo5OBmTcopFUkHww92XnEWvZHeP+Hiff95Ho48p7M1CUiHV5BtgvwyxhTCFyAc3OTBa7bJxTNN2ttBPgkZtOk9CsUEYmRKIW7WMFoKSlIkOf54X+D9ZuRKZIjPv2L+/Y1d4ZbR4umvVD1Nuz4KP7/JxuFbe87KxF9dHVqx6qvSm0/ERFJXjIBskNOTNwnXtBv407/xxIRSVXjjuwcd+OT2TmuiIiIiIhIrmjcA3Ub4/cZegoUloRTj4iI5IvLgdjl4I8Elhpj/maMOdYY03PfHYwx+xljLjXGLAJuBkpwQtEscLu19iOXfUYAc2ldYPW1YP8YIiIiIiIikpIBs/31G3RsZuvwqapxi+v2fsUDKDCFIVfTVpHxDj6LWI+gBZHOZMjJifvE8go2yrYdQeb9G+g3K8DxRISe+3u3Bfr/V0Q6FBtx3x4n/JiirtBtjM/xo7BzSfJ1ZcrS3ybu02O87i8RyWe94pwTxdr6kvIfRCRlCRJmcsphQMsNUA3A79IcrxyY1vx8RJpjiYi0VdTDCRfyEi9IQtJTvQj6H5LtKkT82/BwtitoVfkGvPmF1vCcwcfDUQ9ASZ+2/Wo3wssnpf9BWUN1evuLiIh/e9b663f6Kijskrjfvr8bYjVsh9KB/o4nIpKqSE3iPtN+BR/9PNjjfnoTDPtssGOKiIiIiIjkk/d/lLjP8DMzX4eIiOQVa+0aY8xXgLtwFnO1QDfgG80PjDG7gN04AWi9mr+CE4ZG8z4GeAu4zONQV9C6WOxe4PlA/yAiIiIiIiKSmjFfhMoE2dX9D3cmxeeAzfUbXLf3Kx4UciXtxQtGa7QNIVYikqN6TYE+B/oPPFv2O2jYBpN+CL0mZba2aBMsvwE2PQP1lW3buvSDvgdBUz1Uvw3VbwV33CEnQtng4MYTERhzMay7171t09Owazn0nBhuTSKS+6IeQcYF3uf4gPOa8/Gv/B3jpeNg1Pkw/lIYNDep8gJRtdC5337nRxDZk7j/6IszX5OIZM7g46BsCNRtjt9v7xZ4ehqYQigscz4DmvIzKO0fTp0dSd1mWPIbqHoLovXt26ddDSPOCr0skUzKp2C0lk+3LbDIWrsrzfFi92+34qSISFq83qC28Er2lsSmXwsfXOndvuo2BaNJ/tj1afx2GwVTEL9Pumo3wcbHYfsHsPLvbdu2vACLfwqH/K3t9gVf8h+K1qUf1HsEoHltFxGRYFW+AZufSdzv4Buh+1h/YxbHCfpt2OFvDBGRdERqE/eZ9t9Q9SZsfja44/p5PRUREREREelIok2w4T9QuwG6jmh/LWFfBcUw5ORwahMRkbxirb3fGBMFbsG5X69lSeiW4LNezY92u8b0ew4431rrtXLCXcADzc/3xOknIiIiIiIiYRr3FdizGpZe697e/3A46qFwa/IQtVEW7HrRta1/jgejRTRPRQSMgaMfgxfmtC4Yn8iq25xrIScuyGyQ0VtfgTX/8m7f+nLwxxw4Fw6/K/hxRTq7oSfDgCOd+/TdzDscTlwIPfcLty4RyW2pBqNNvQrqNsHqO8A2JT7Ouvth/UPOOdGwU5KvM1UVr8NLx7sH9bgZfylMiTNXXERyX0ExHDMPXjsHdieYLx87J736Ldj0FJz8LhT3yGyNHUl9tXOeWbPOu0/D9vDqEQlJPgWjDYh57r70RnKiMc/z6e9BRHJd4x5oTBAG0T03VjLKSyPOjh+MVrcpvFpE0rXxyfjt710OB/0xc8ff9j68fFL71YZirf4HzPhd65vLhh1Q4fOC27RfwX7fhtfOhopX27fXVyVfs4iIJOejX8JHVyfuZ4pgv+/4H7eom7NKg9tFFQWjiUgYIj7nM3bJwAoyDTugJE5ApIiIiIiISEfR1OBMHKpe6H+fsV+BErdMGxEREbDWPmCMeRP4A3A2rfftWZfuJubrGuDX1tp/JBg/iV9aIiIiIiIiEhpTAAf+Bqb9HGo2QFMdFBRB6SAnHKBscLYr/D+f1n7k2da/OPt1FscNRvMIWhDpbLqNhDPWOIvIN9VC4y5n7sZHv/Dep2E7fHoTHPynzNRUsw7WBBxQdvK7rc+LujffU2ehxwSINoCNQukAz91FJE0z/gjzDnVva9gOK/6e2TlhIpJ/vM7X45zjA07w0KG3wszrYfcKwMIHP4u/eLiNwLLrwg1G++QP/kPRpv3SeX8oIvmv91Q4bbnznqe+Gp47xF+I4+4VsP5BJ0xf/Flzd/xQNJEOKp8CwWJvfioMYLy+Mc81a1tEgpMo0Rag38GZr6OjSrRSglY5kkQad8HS66BqIfScDJN+AD2yFFZYtzF++/LrYfIPoesw/2PaKHz6V1jxV9i13Nm2/09g/yvbT0T64KfxQ9HAuSD2YE/n+bivwoCjnWMk0mM/ZzUCY6Ckn3uf+urE44iISOpW3e4vFA1g1AXJjW2MEwrk9lqulQVEJNNs1LlhzY9+h8Dau4M9/o4PYeDRwY4pIiIiIiKSi5bfkFwo2ohz4cDrMlePiIh0CNbacuB8Y8wQ4FzgCGA60B/oDdQD24F1wELgBWCetdYtPE1ERERERETySWEp9JyQ7SriWlm31LNtQEn2g9GKFIwm4l/Xoa3PI3vAO/fQUfl65mqpfBP3tQFSNPh46DszuPFEJHndx8Zvr3ojnDpEJH9EPeY+F/iM+yjuDn1nOM/7HhQ/GA2gagFEm6AgiFgOH5I5lxp2aubqEJHs6DbKeUy6DJb93t8+la8rGC0ZmXzPKpLD8ikYLTa1Y6hnL/+mxjxXKoeIBKcliMjLgNnQe1o4tXRUfQ+Gbe+4t0V1MU/iaKqHF+bC9ved77e+BOsfgBMXQI9x4dcT2ZO4z8YnYfw3nACaFvE+kHr7m7Dq1rbbll7nJGefusS5oSAacYIkNj+XXL2rbncefky7urXmLv3d+zToFExExJO1bV/7k7Xmbnjra/76miKYcGnyxyju4x6M1qjscRHJsKY6/31HXeCERDZsi9+vdDAccTe8dHziMV+YAxdE03udFhERERERyVWx1yBW3+F/v3OqoUvfxP1ERESaWWs3A39pfoiIiIiIiIjkhMqGzZ5tk7vNCLESdwpGE0lR/8OhdBDs3erdZ9cnsOg7bbdtexdq10P/I6F0YOt2UwC9D4ARZ0MXl4Xkd6+CdfdDUTcY9XnYszqYP0eLEWcHO56IJK+0PwycAxXz3dur34at82HQnHDrEpHc5TX3ucD7HN/TiLNhya8TH++N82DYGTDyHOe8JEhVC2HTs1D5GlS/BZEaf/t1Gw19sv/eSkQyZPRF/oPRVt8BZcNgyIkwcHZm68pVteWw4RFo2A5DTob+h4CNQvnjznvKipeh+3jocyBseCjb1YpkRT4Fo61v/mqAGcaYYmtT+8TWGLMfMCxm04fpFici8n92feLdNuHbMMPnyZx4i9Z7t+1cEl4dkn82Pd0aitaivhJW3gwzfhd+PX4+7Fn0TecBMPJzUP2OczFu8HFw6G2tF9dq1sMrp3j/H9izGv5dFkzdiRx+N4y+oPV7twt9APVV4dQjIpJPbBQ+/G/nd1NTAww7DQ66AUoHJDGGdUIx/Rg4F6ZfAwOOTL7Wkt7u2xsUjCYiGeb3oik4N56c/C4s/BJUvOrdb9Axzjn2ye/ABz9LHCJc9WZqr50iIiIiIiK5quI1eO8y2PEB9D4Q9vuv+Nc9Yw0/S6FoIiIiIiIiIiIi0iFUNroHo/UvHkRpQUj3YsdRaLynAjYqGE3EW0ExHHYnvH6u9wL3TbWw4ib3Nq8J6Euvg+NehG6jWretvR8WXAw24ny/5Br3hYhTNfwsGHNJcOOJSOoOvhGenubd/uJcmPZLmPbz0EoSkRzmdb4eJ/zYU9+Z/vpteNh5fPpnOGZecPd2LP8zvPv91PY97J9OyKyIdEx9psMB/+PMj/RjyTXOY/pvYMqVma0t12x7H14+sXWu/UdXO+eXFa/A+gdb++2tcOYwiXRS+XTWsACoAyxQBlwQv3tc34t5vtVauzydwkRE2qhZ6759xDkw669Q1DXUcjqkpjjBaHu3QuUCJ1REZF8rb3bf7jd9OmjJBDqA80amZo1zwW3jE/D8bCf8JhqBZw7MjWDAox6CMRe13eYZjBbgxT0RkY7io1/Ckt84r5GR3bDuXljwRef13q+G7bDzY399j3859WCf4p7u2xt3pTaeiIhfkdrk+ncfDcfPh5Pfg3Ffg8J9blIt6QP7X+E873sQHPMsHPtC/DFX/zO5GkRERERERHJRpBa2vATL/ggvHA3b3nFWDN62yAmY9qvXlMzVKCIiIiIiIiIiIhKiyoYtrttP6ntuyJW4KzAFFHmEo0UUjCYS39CT4LSVMCPA+SN7VsHSmPEa98B7P2gNRYP05k0MPgHmPAUnLXJCRE58C456EIqyH9QoIkDvqc7/z3g+/iXUbgynHhHJbVGP8/WCFILRAIp7+++77V1YdVtqx9lXww5Y/BP//addDeO/AYfcAmdXwKA5wdQhIrlr6lVw6lI45FaYeYPzGpDIhz+Huq2Zry2XfHhVaygaABbe+U7bUDQ/hp/p/D3PvAH6HRpoiSK5wHuZiBxjra03xrwIfLZ506+NMY9ba3ckM44x5kjgUpyANYCHAyxTRMT7g6rY1T8kPdE4wWgAzx8BPSc6H/73GBdOTZIfNj+X7Qra8lppyK/dnzrhOdvfc0Jwsq10EAw9uf32Lv3d+ysYTUSkLWth9T/ab9/8rDMptd8sf+O0+UAsgwq6uG/XzVUikmnJBgy36DsDDr3VubFt3X1Q/Y5zDjv2y9BzQtu+g4+DsqFQt8l9rFW3OWOJiIiIiIjkqzX3wIIvBDNW2ZBgxhERERERERERERHJopqm3dREd7u2DSjJnc9Bi0wxkdjQpWYRr6AFEWlVNggm/j/44Kfe4STJ2vR06/Mtz8PeACfzH3QD9Nrfed7v4ODGFZHg9J4av91Gnfls474STj0ikrui7c/hAfAIPk6oIMn9Nj0F+/84tWPF2voyNO3117eoB0z7RfrHFJH802uy8wDY9j6svCV+fxuBLfNgzMWZry0XRBvbvpdMx0E3KMdEOrS8CUZr9mucYDQLDAPmGWM+a62t8LOzMeYY4CGgADBABPhDhmoVkc6q4hX37WVDQy2jQ2tKEIwGsGu5s5L9Ca9nvh7pGGwUTEG4x0w10CHWh1elP0ZQDr0Nirq1317Sz71/fZUTAmRMZusSEckXTXuhtty9bcmv4ehH/Y0TVjBaYYn79qaGcI4vIp1XuufRJb1hwrdgQoJ+vad7B6MB7FzaetOZiIiIiIhIPtm9MrhQNIAeid5giYiIuDPGFAOHAOOAvkAPwFhrf5XVwkRERERERKRTqmzY7Nk2sDi3gtGgrt32iBY1FfGnoBAGHecsXByE2g2w9j7AwLLfBTMmQNeR0GNicOOJSGYUlsKA2VD5mnef9Q/BmC8mH2KUDbXlUP2287zvLOg2Irv1iHQkXufrBcWpjZfsXNidy2Dt/e5tvSZD72lgm2Dbu7Bnrfc4yZxDlfRJqkQR6aB6T4PSQYlDpJdcCz32g74zU39tzFU2CjuXOPOQrIWG6uDG7joyuLFEclAevItqZa19yxhzP3A+TjjawcAnxpjrgQeAdrOvjTGFwFzg68DncALRaN7/T9batZmvXEQ6jfInnDd+bsqGhVtLR9ZjAuzdkrhf5RvOG/DuozNdkXQE9dVQOiDcYwYRjBa0ISc5K5Eka+BcGPZZ97YuHsFo0XrnA3N9SC4i4ojs8W4rf8z/OH6D0frO8j+mmwKPYLSogtFEJMOaQjqPjiYI5X5qCpzf0PEuuIiIiIiISMe34ZHgxiodDIOOCW48ERHpFIwxRwGXAycCXVy6tAtGM8acDJzX/O02a+3lmatQREREREREOqPKRvdgtGJTQs+i3JnQ7wSjtdeoYDQR/6b9AqrehMZd6Y9lI/Dmhantu9934dO/tN9uCuHAa50QNxHJfQf8Cl45FZpq3ds3PwPPHgxzn4auQ8OtzS8bhcVXtg94nHQZzPh98gFMItJeNOBgtGTVV8KbF3i3lw115gP5nZPkx/4/CW4sEclfBUUw/Vp466s4MT8edi2DeYdBz0kw95mOkw/RsANePQsqXgl+7J6TwZjE/UTyWF4FozX7KjARmIHzqtcbuLr50Wb2tTFmGTAGaDkjNM37GOBN4IowChaRTiLaBG99xbs9Vz+0ykf7/xjmx1lFIVb12x3nxFfSU7MufnvdxiwEo8UJwMmGqb9wLvAt/xO89/+S23fYqd5t3cd4t216EiZ8K7ljiYh0VIkCM3evgh7jEo/j9yLExO/56+fFKxhNN1eJSKZFPG4cCVrT3sR9lv0vTNFHjCIiIiIiksPKH4O19wFRGHEu9D0IFv84mLFLB8GxL+THyuYiIpITjDHdgFtwFkaF1kVOY3ndCb0EuBgoaB7rLmvtB4EXKSIiIiIiIp1WZYP74u0DigdTkENhIEXG/TPZiO7dE/Gv/2Fw0tuw9l7YubR9+4aHMl/DxB/AzD/CwKNhy/NQv83Z3m0UjDgHBhye+RpEJBiD5jqvKU9P9e6z4wN49/sw+8HQykrKxqfah6IBfPJHGDAbRpwZfk0iHU3gwWgBB+HUbQp2PIBe+wc/pojkp3Ffhh7jnQU9l18fv++uT2DRN+GYZ8OpLdM++mVmQtEARn0+M+OK5JC8uzvVWltnjDkJuB84ltYboQzO6pEtwWcGJ0Dt/3aNaZsHnGetbQqrbhHpBCpfjx9CUaZgtMAMOhZ6TIDdKxL3fePzMOq8xP2kY6vbDE9Pj9+nthz6HBhOPS0SBeCEab/vwgFXO8/HXAxLroH6an/7lvSFUed7t5cNgd7TYMdH7du2L066VBGRDivR74Xyx2DyZaxdtZsAACAASURBVInHqa9M3KdsGAxP8+Kk18WXpgb37SIiQfFaUS9oQ050VgWN5+NfwegLodvIcGoSERERERFJxoqbnZvEWqwP8Cb74WfC7Ie14qSIiPhmjOkJvAZMpXWB01gt9/a5stZuMMY8DZzW3Pd8QMFoIiIiIiIiEpiKxs2u2weUDAm5kviKjfuipgpGE0lSz4lwwC/d2+4N4fpHt9HOdZaR5zoPEclvvafArL/Bom9599n4ODTVQ2GX8Orya/0D8dsUjCaSPhtx3+4RfNwhdOQ/m4gkb+Bs59F9DLz7vfh9N8+Dhu1Q0iec2jJp/b8zN7ZeZ6UTyMufcmttlTHmBODy5seAlqZ9vrZoCUrbAfwe+J1C0UQkUHVb4MW58ft0hBOvXFHUFY57Bd6/HNbdl7h/3VYoG5TxsiSHrf4nNO6M32f+aTDgKDjoT9B3ZihlEdkTznHi6TkRRl0IU37auq1LPzhhgfN/bOPj8fcf8hmY+QfoOjx+v36HugejNexIvmYRkY4q0e+F8kcTB6NFamHxFd7tZcOcVe5mXg/F3ZOvMVaB+81VRBWMJiIZ1rQ3nOOM/Dx8dHX8Pk11sPzPzjmxiIiIiIj4s/0DePtS2LUcek2G6b+GQcdku6qOx1pY8uvMjD39Wpj8I4WiiYhIsh4CptF6b18D8ADwMhAF/uljjEdwgtEATgCuDLZEERERERER6cwqGzyC0YpzKxityLgvaqpgNJEAjTof1t2f2WP0PzSz44tI+Pol+H8dbYDaDdBjfDj1xNNUD427oLR5ev7uT737bn8/nJpSsbcKoiHdVyySrojH4uAF7uf3HUJH/rOJSOoSnTMBYKFqIfSe1rqpdFBuva407oai7u730DXscOaKRuqgzv3zpkAU5GVklEhS8van3Fprgd8bY/4CXIBzo9NRwFCgIKbrduBN4DngLmttglQUEZEk2Si8dFzifoVdM19LZ9J1KBx5L4y+0Am0imfdvTDxB5qc0ZlVL/LXr/J1ePFYOOUj6DYiszVZ6/1hVhD2vwIOvDb1/XtOgDmPwaOjoHZ9+/ZDb4NxX/U/XnFP9+2Nu1OrT0SkI4rUxG+vfA32VkDpQPf2PavhlVO99x99ERxxd+r17UvBaCKSLU314Ryn1yQYe4kTtBzPhv/AjN/rPaeIiIiIiB+1G2He4U7IMEDVAuc6zykfQ/fRWS2tw9m9wrmpPmgzr4dJPwh+XBER6dCMMecCx9MairYA+Ly1try5fZTPoZ5tGRKYbozpbq3NgRXJREREREREpCOobNziun1giYLRRDqd/b7r3BcWjfl/1WsqTP8NvHamM5csHf2P8BkGICJ5pe8MGHQsbH3Ju8+8w+D0tekvcp6qxj3w1tecRduj9dBtNHQfC9Vve++z6xOYd6QzF6H7mNBKjWvzPFj0bdizKtuViKQv5ZCfOPeuT/4xLPtdiuMGSIE9IuKm3ywYMNuZKxnPK6e0/b6oG4y6AA6+EQq7ZK6+RCpeg7e/7iwM23UEzPgDjDrPadvxESz4UnjBskavs9LxFSTuktustXuttXdYay+01o4EioH+OAFpXay1/ay1p1lrb1QomohkRMV82Lk0cb/C0szX0hkNPh7KhsXv895l8MLRTrqudE7lj/jv27gzuf6paqqj9Z7vfQycA72npz72ft9LLxQt1oiz2m8rKIbhZyY3TlEP9+2RXcnXJCLSUUV8zNt5eJAzgThW01547XPw+DjnoqOXvgenV9++FIwmItkSDSkYDeDQ2+GwO2D0F7z71KyFHR+GVpKIiIiISF5be09rKFqLSA0suSY79XRkfj5rSkW/WZkZV0REOrqfxjz/GDihJRQtGdbaLUBF87cFwOQAahMRERERERGhrqmGPU3u084GFOdaMJr7pNdGBaOJBGfAEXDM8zD0VOg5CcZ9HY6fD8NPg6OfgMEnQulgKB3k/ogVu73nZCd07ZjntBCnSEc15wmY+P+82+urYeEloZXTzsIvw/p/t96LW7M2fpBbi6o34cVjINqU0fJ82bXcWVBeoWjSUXgEH6dl3FfgiPtg4Nw45ys+zkVMoff++57zuO6vwB4RcWEMHPOMMxe+ZxKX/CM1sOo2JzciW2o2wEvHO+cj4Cxc+sbnofJNaNwNzx/tPxStdFD7+Zl+X19b6HVWOoGc/yk3xkwHTgT2xwk8A6gClgHPW2vbvCpYay2wLdQiRSR51kLlG1C3EWrLnXCHuubHQX9x0vHzRfU7/vrpA+vMKCyFQ2+F18+LP8Gj8nVYfAUc8vfEY+5cCpuedSbmDDgKBh6tf798V9wTGpMI4PITdpiuSK1320F/di6e/aev80YtWVOuSL2udmP9zEmv3v6e870phFl/gy79khunuKf79sbd6dUnItKR+H3Nf+e/4OiYEM+P/wc2PJR4v+Gnp1aXF69VaaK6uUpEMqwpxGA0UwBjL3EeB/0JHh4I1uWmjg2PQJ80wo1FRERERDqL7Yvdt6+6HWbdDAWF4dbTkbm9d0lXl/7Q77DgxxURkQ7NGDMEODBm03ettXEumCf0CTCw+fkEYFEaY4mIiIiIiIgAUNm4xbNtQEluBaMVG/dFTSMKRhMJ1qA5zmNfw05xHiIiboq6wkF/hMrXYJvHvNPyR52AtGTnZqWrvhrKH0ncz0vNOtj6Igw5MbiaUrHmLrCR7NYgEqSCDMR9mCIYfb7z8PLkZNj1SfxxBh0Dxz4fv8+9BYD1rkNExE1RNzj4T87zl0+Gzc/533fNXTDzeih0/3wko9beA9GG9ttX3wEDZkPjDn/jdBsDZ6z21/eNi2Ddve5tmfgdIpJjcvan3BgzE7geOCpOt2uNMW8Al1lrfSYTiUjOePnE9ivCg5PUnk/BaIt/nO0KZOhn4LPL4JkDnQ/ovKy9B2bd5Exs97L6X/DWV9t+ODb+G04QVLz9JLeVDUsuGC2VMLJkReOEORR2cd6QDT8b1t6V/Nilg1Ovq91YA+DEN2DrfKgrh4FzoMf45Mcp7uG+XcFoIiKtNj/rr1/5o06wcNdhTjjQ8r/426/bmNRrc7PvigQt3D7cExEJUrxz6Uzq0tc5H3ZbGa/ildDLERERERHJS+vu827bvQJ6TQqvlo4uE9c6Jv1Q4XUiIpKKw5u/WmCDtfbVNMeLXTQ15FljIiIiIiIi0lFVNmx23V5kiuldlFtvP4s8FjVVMJqIiEgO6TXFOxjNNjlhRAOODLemncvSX2Br7b3ZD0bb8WF2jy8StO5jgx/TT1BOrymJg9F6Tcl8HSIivaYmF4wW2e0EtvackLmavCz7nfv2VbdBcS//4/Se6r9vvNdSo3v5pOPLybMJY8wZwL1AKWBimlriYmO3HQW8aoy50Fr7aEgliki6jHGCivasbN9WuzH8elL18a+zXYG06DrcCS97/TzvPpE9ULMeuo92b99bBQu/1H77yltg1IXuK73kOmud5OONj0NxTxhzsZPS3tkkuwpEZE9m6ogVNxit1Pk666/QUA2bnk5ubGMS90lGYSkMPSm9MYo8gtEiCkYTEfk/a/7lv++jw51gsmRCyIL+/aBgNBHJlqYsBaMBDPusezDarmXh1yIiIiIikm9q1sdv37tFwWhBCvpax8C5MOmyYMcUEZHOInZlrw8CGC/2l1z3AMYTERERERERobLRPRitf/EgCnJsgfUi4z4dMBJN8p55ERERyZyxl8CaO73bnz+q7fcTvg0H/I+ziG+Q6rfBh/8NFa/Czo/TH2/Nnc5j1AUw9SrotX/6Y/pV8Tp88kfY+ER4xxTJtNJBMPDo4Mf1eM/Qxtgvw4b/xBsExnzRx8Gsd5OfOkRExnzR+R0f7/VkXy8c7dxv2GL0RTDzeigdkF4tVW/Bst/D9sXugbIN2733Xfl3/8cZ+2X/feO9lup1VjqB3PpkFjDGTALuA8pwAtAsbQPRWmZy25hHKXCvMWZyuNWKSFq6DnPfXpcnwWir74QPr8p2FRJr2OmJ+8RLMH84zsluMknDueSDnzlhbxv+A6vvgJdOgPXxPqzooCI1SfbPcDCatfHDHAq6OF+Le8Dcp+DsCjhzAxz1UOKxR10YTI1BK/YIRmtUMJqICAC1m5LfJ5kAsuFnJj9+IgpGE5FsiRcy3KLHfpk5du8D3LfvrXBuHhEREREREXd1m+H52fH71FeFU0tnkey1kXj6zoLjX4ZCj8+DRERE4otdFnlXAOPFhqHtDWA8ERERERERESobtrhuH1A8JORKEisyxa7bG63u3RMREckZg+bCYXf477/iJicsLcjFg6ONzpgrbgomFC3Wuvtg3pGwe2Ww43qpfANeOg7KHwnneCJh6DMDjnsFCkuDH9sUJu4z7FQ4+K9Q4hLIWDYEjnoQ+s5Mr44CBfaIiA99DoDZDzuvPX7t3edznLX3wLzDIVKXeh3V78CLc51Mhj2roGZt+0c8fu7XK+kDB/0JRpzlv654r6V6nZVOIBd/yv+OE3QWG4bWCLwDbGj+fjhwEFBC23C0m4EMxOKKSEZ0He6+vTYPgtG2vgILL8l2FbKvwi5wxjp4bJR3n51LYOjJ7bdXvR1/7PrK9GrLhoYdzQnJMWwTLLkGRp6TnZqyJVKbXP8tL8CbX4RZN0Jxz+DqWHkrLL/BCb+Jt4JHYZe237ckVHdzX4msjSEnpV5fJnkFo0XroalBk6lERGrXZ3b8kecFP2aB+81VRBuDP5aISCw/N31M/01mjt1zknfbzqUw8CjvdhERERGRzmzVPxJ//rFzCXBuKOV0CkEtAlPSF45/JZixRESks4pdMrmXZy//hsY812oFIiIiIiIiEojKRvf7tAeU5E8wWsTq3j0REZGcMvYSWPcAbH7GX/9dy2DTUzDi7GCOX/6YM2amNO5w5srNuC5zx2jxyQ2JF3A/6iHoMz3ztYgEobg3lPbP3PjGZ4TIft+GCd+EmvVgI862gi7O/H9jwqtDRGTEmTD8DKjbCE0x66O9/nnY/p6/MfasckJUR1+YWg2f/qXtsYMy848w7DQntLLbKDAFye3v8TmQ06bXWen4cuqn3BgzFSfYzOIEoFngf4HfWGu379O3N3AlcHnM5iONMQdYaz8MqWQRSUfZMPftdTkejLZzGbx4TLarEC/dRkKvqd6rGGx5ESb/sP329Q/EH7dhR/q1hW3zPCd0al/bF0Pjbu+gqo6oyUfK8r7W3gU1a+CE14KpYc3d8PY3Wr9vjPMzVdDFfXu8EAaAnpNh1PnJ1xaGeAFzla/B4OPCq0VEJBfVbcrs+EFdHI1V4BFqmeiCo4hIutze58QacCQM/Uxmjl02FIp6QGR3+7bNzykYTURERETEy7Z3E/f56GqY+vNgbqwUaAwoGO2EN6CoazBjiYhIZxW7Et2UdAYyxnQBDozZVJ7OeCIiIiIiIiItKhs8gtGKB4dcSWLFxv3ePQWjiYiI5KAeE/wHowGsvjO4e/8rApoTF8/mZ8IJRqtakLjPwNlQOjDztYjkg4IkIkRMAXQfnZk6FNgjIskwxglmjNVriv9gNIBVt6cejObnfCMV/Y+EHuNT3z/ea7peZ6UTSDJKMOPOaf7aEor2PWvtj/YNRQOw1u6w1v4E+E5Mf4AMzPYWkYzo6hGMVrMu3DqSYaPw1P7ZrkISiffh39aXILJPSJa1UP5o/DHjhVjlKq9wOMh8+EouiTY6j1RUvg4rbg6mjlW3++/rFYyWKMzuM+9BoUdITbYVxal91W3h1SEikqtqMxgOPOx0KPT43ZIOBaOJSLbEC0ab8QeY+0zmJu0bA/0Pd29L9L5SRERERKQzK3/EX7+K+Zmto7OwFt77Qfrj9J4GvRIs2iIiIpJYy13KBhhtjEnnl8s5QMsFigiwMJ3CRERERERERADqo3vZ2dRu6hoAA0qGhFxNYkUek14jNhJyJSIiIpLQyHOT67/xcfj0Jmjclf6x480tDMqOj9pv2/gUvHsZLP091GxIb/ztH8DiK6AuwXyLgXMViiYSK1eCcpIJaBMRcTPyc8n13/oSvPlF5/Ha5+Cx0fDyKc4c/yaXuUjb3oMProI3LoLdKwIpuY1uo6HfwemNEe81Xa+z0gnkWjDarOavFlhorf1roh2stX8H3sC5cQrgkAzVJiJB6zrSfXvNWqjbEmopvr16VrYrED8mft9JKXcTrYctL7TdtnMJ7FkVf8wG9wudOc1a77ZtSaQj57t9g/CSteib0Lg7/ToqXvHXzxRBQaF3+9BT3bcf+FsoLE26rNCUxVktrUr3qouIJLxQl47Bx2VmXK9gtKa6zBxPRKRFk0cA49hLYPIPEwcKp2v4Ge7bd34Mu1dm9tgiIiIiIvnK7w3I5Y9lto7OYv0D6Y9RWAaz/p7+OCIi0ulZa9cAsR+cXZnKOMaYLsDPWoYFFllr07whQERERERERAQqG7znrwwszsVgtGLX7RGb4mLiIiIikjkDjoKpv0hun3e+A8/Phvrq9I4dRjAawJ7Vrc8XXwHzPwvLr4fFP4bnZsGOJamNu/FJeO5QWHpd/H7dxsAhurYtnZAx3m25EpRT4P7eRUTEt2GnwsQkFwhde5fz2PAQ1KyDzc/AW1+Dl0+Cpr2t/dY/6JxrLPk1rLs32LoBuvSDI+7xzrzwK95req4EYYpkUK4Fo02OeX5nEvv9K+a5lisWyRf9Znm3Vb4WXh1+LfqOk7gvua9LX/hcnCCrqgVtv694NfGY296FaFN6dYWtYZt325sXwqbnwqslmyK16Y/xZJqnF/FC6vZV2CV++9gvtd9mCmHUhcnVFLaibt5tNWth1R2hlSIikpNqN7lvT3fVIlMII89LbwwvXhco6jZBVCtPikgGRV1WaQEoSHAuHZThp3u3KcRBRERERMRd7wP89Vt3f3KfqYu7DY8k7jP2EmexIS+nr4YBRwRWkoiIdHotF4QN8AVjjMuFb2/GmALgVtreX5hw0VURERERERERPyob3e/fK6CQPsUDQq4mMa9gtEbrsdigiIiIZI8xcMDVcMqHye2340NY9Y/Uj7u3EvZWpL7/8fPhxLdg5g2J+77/E+drzQZY+rt96tgKS69N/vjWwuKfeN8z3GLuM3DqEug5MfljiHRkuRKUkyt1iEj+MgVw0PVw2gonZOzQf0Dv6amNVTG/9b46G4X3fwTWxxzIWX93jtvyiKelz9xngrv/Lt5raa4EYYpkUK4Fo/WOef5eEvu19DX7jCEiuazrMOg+zr1t09Ph1pLI8hthxU2J++33Xfftfj4AkmAVdYUR57q37btaQs06f2NuzLMJ7pufjd/+9jfaJht3VJEAFoiu2wTbP0h9/2T+nhOFOYw4F6Zd3fpGprgXzP4PdBuRcnmhmfrf3m2LvgWNcQINRUQ6uvpK9+29pqU+ZkkfmPMklA1OfYx4Ckq828ofzcwxRaRzqlkH7/0Q5p/h3DDRuNO9X1jBaF2HQ1+PsPf3Lw+nBhERERGRfGN9Lj6zdwvsTHG1aGlV8XLiPlN/ARO+7d7We3rmPlMSEZHO6k9ABWBx7vG73RjzG2NM10Q7GmP2B+YBFzXvb4GVwP2ZK1dEREREREQ6k8qGLa7b+xcPotAUhlxNYsXG/d69iJ/JvCIiIpIdvac59/cnI9HcwHjSve5e2BX6HwKT4iy21WL3p87X8sdwPsLfx9p7kj9+bTnsXBq/T+lgGHoyFJUlP75Ih2DiNOXI+xgFo4lIUHqMh9EXwrgvw9SrUh9nXfNtBrs+9ZcvUdwLJlzqHLfl4TVXvmxIa5+hJ0Nxz9TrjBXvtVSvs9IJ5NpPea+Y59WevdrbHvO8R0C1iEgYBs6BPavab19zF0z+MfSa3L4tbOsfhHc9As9iTfi281j9j7ZBTCV9YcTZmatPvJX0ct++b1BWnfsKT+2suz9//i2rFsKe1fH71K6HLS/CsFPDqSlbmmqDGWft3dAnxRRpr+AGN4UJwhyMgWm/gMmXw5410HNS/iQ6dx3p3Rath/LHYcxF4dUjIpJL6qvct/faH7a+mNxY034JYy9xPkwrcF8ZMhBxg9Eeh5EeIbUiIsnYvQrmHd4aILnxce++ic6lgzTiTNi2yL1t+Z9h4vfCq0VEREREJB/4DUYD57y/99TM1dIZJFr5e+ip0H2083zQsbD1pbbtEy7NSFkiItJ5WWtrjTFfAp7EWcy1APgJ8B1jzNPA+tj+xpjPA/sBJwKH48zsaJndsRe4wFrrMrtKREREREREJHmVjZtdtw8oGRJyJf4UeUx6jdjGkCsRERGRpAz5DKy713//rS/Bir85c8f6HZZcANiOj5OvL1Yy9+TuWQ0rb4EPf+bdZ9F/QY8JUNwD+s50FpDf+TFsexdsBGo3OfcVdB8NZcNg01OJjzv0FP81inQ2Jk5oWpjyZd6riOSXwcc7gWCpBMRvfBx2/n/27js8jure//h7dleSVVzl3ns3pts0B2x6MaYGCEloCSUhjSTkF3IhnRsCCUlubgoJkBB6B5tmbAOmmG7ce+/dkiVb0u7O749BV21mdnZ3Zov0eT2PHmvnnDnnK1lazc7O+cxSqFrnrX9hp5bb+l0Mi37RcvuAK5Kvxwu351I9z0obkGs/5aFGnydxZXSTviHHXiKSe3qdbgWJNWfGYN0jMN7moCCTYjXw9qXe+h75O+uEz+TX4bOfwL750OVoOPwuKO0XbJ1iL1xqv339ozDxfgi3sx57vXvChif9qSsTFtzhrd/m6W0gGO2gP+MsvRt2f2D9rnc5Krl9kwlGC7Xz1i9Smn8LwxKlW2+ZoWA0EWm7nILROo2FsqFwYJX3sUr6QqlLGKVf3ILR1j0Ex/87+BpEpPVb/oeGULREQhkMRus7DT5zuIBjwR0w/ObceUNZRERERCQXJBWMNh3G/Di4WtqCSHuIVtq3FXSEExu95zXpefjkO7DlZSgqh6E3wLAbM1OniIi0KaZpvmoYxk3A/9JwjV97oPmFOQbwSLPH9SFoUeBa0zQ/CbJWERERERERaVt21DoEoxXkajCa/Q1TFYwmIiKS48beZoWdHdrmfZ8Pb7L+7TASTn654QZYiexfnHR5TbitFWguegA+SHDzrZV/Tq+e5or7wOhb/R1TRPxnKPZDRAJQ2AmOuAs++V5q+88Y7b1v2GbNf+fDYOjXrWDYemVDYcS3U6snEYeA/IRtIq2EfspFJLv6ToOibvaLnHd/kPl6mvvo5sR9jAhMeq4hBb/rRJjyerB1iTcRh2A0gPe+Cic+Dod2OQeR2IlHcz891zRh9/ve+lauCLaWXBA75Nw2bSM8l0Rw4Y634JWjrQVD7YdDxzEQCife75DHIAdI7o4a+aagfbYrEBHJXU7HI0Xd4LCfwbtX0rDmJwG3YyA/JfNmp4hIqlb8yXvfTB5LdxgFpQPt7xJTtw8OboGSPpmrR0REREQk18WTuDvj7g/AjOviyHSE7BfFAdZ7I43vJF5QBhP+EXxNIiIigGma9xmGsRp4GOhB0zc/Gn/eOAzN/PzxLuCLpmnOyUStIiIiIiIi0nbsrHMIRivsmeFKvIk4nANWMJqIiEiO6zgazvwINjwJ22bBttcgXutt34pl8OktcNLT3vrvX+TcNvhqa13cop9D7KB9n0zerDhZR94LAy6F4twMsRUREZEMGPld6HIULPoF7HwbyidC2SCrbc0D/s0TsglGAzjmr9D7bNgxF8oGQ/9LoV1X/+ZtzO06SgWjSRugn3IRya5wEfQ5B9Y82LLN60mdoNTuhdX3uffpdxGM/Ql0PjwzNUly3EJBNj4FB7c2TeP14sAa6DA8vbqCdmg71O331nf7bIjHvIV75Su3E7QlfaHDCKhYntyYb19i/duuJ5z0DHQ7zrnv2ofgva94HzuXTxynK6JgNBERW7FD1l2S7BSVQ/dJ0K4HrP239WGErMXBTjIWjOaywFZExA/JBCdAZo+lDcM6J7DsHvv2yhUKRhMRERERacyMJdd36d0w+ofB1dOamSbUVdi3Hf+obmIiIiJZZ5rmbMMwhgI3At8E+jt0NT7/dxfwv8A9pmlWZqBEERERERERaUNq4zXsi+62betekJthGxHD/tq9uriC0URERHJeSR8Y+R3ro15dBTzZMfG+m16w1h6EHQI66pkm7HMIRjvmLzDsBuvz9Y/Bvs/s+zW+WbERATPJa3qD0u9CGPntbFchIiIiuaD7JJg8s+X23e/D/iX+zBEutt9uGND3fOsjm0KKjJLWTz/lIpJ9pQMdGlzCHjJh8wz39on/gsFJhB1J5rmFgphx2PMpLP9DcmMe2pH7wWgVS5Prv/IvMOKbwdSSC2KH7LfXnwSe8ADMPhVi1dbjSHuIeryW+tA2ePNcmLYJIjYvbvYtTC4UDZqeOG5tEi62MhK0i4i0UjX2F1UBUPT5nQJ6TrE+jvuX9XjzdHjzPPt9ImX+1ufEKXxURMQv+xYk1z/Tx9KH/dw5GG3WZCtEufc5EC7MbF357uB22DIdMKzQ76Lu0HUCtB+a7cpEREREJB3JBKMBzL/VuqC5rR8H1lXA1ldh32Lr8+4nQc9T3c+3x2ucL0ov7RdMnSIiIkkyTbMKuBu42zCM4cCJQD+gHCjECkPbDrwLfGKappmtWkVERERERKR121W33bGtW2FuBqMVOASjRU0Fo4mIiOSlgg7QcSzsdwgzq2dGYdd70GEk1FVa7xsXdIRISdN+B7dC3T77MTqOafjcCDnPFWp07evhv4FPb3GvLVO6HpftCkRERCTX9TjVx2C0HF/zb4SzXYFI4HIxGK3+IqaJhmEM9LhPz8YPDMM4iSSSNUzTfMtrXxEJgsMJlB1Z/tXc8YZzW6S9QtHygVswGsAn34HavcmNGT2Qej2ZUrkquf4bn2zlwWgOoS31wWjdjoPz18Gm56yTtr3OgFcnQPUGb+PX7oGtL1sLtJrb8GTy9YZy/EVSOhIFo61/BE54ODO1iIjkkppdzm31wWgtuL0Jmam/JS4vu93er5MFkAAAIABJREFUJBUR8WL/MnjlqOT2yfSxdKQEyo+F3R/Yt8+9ELocbd2BprBTZmvLVzvfhTlntHztHS62wkH7X5KdukREREQkfckGowGsexjG3eF/Lfmiaj3MmgIHVjdsW/576DgavjAdygY57Ofy/kZBB39rFBER8YFpmiuAFdmuQ0RERERERNqmnbVbbbeHCNGloFuGq/EmomA0ERGR1mf0rfDelxP3mzW55baBV8KEfzQEd2yf47y/52C0RtfkDrwclv0ODm5OXF+QinvDIK3pFRERkQSG3Qhr/wV1+9Mfy8jFSKZGcr0+ER/k6k+5ATyaxr5vJNHfJHe/DyJtQ8gliXTvZ9B5fOZqqWeasPqfzu2DPJxkkuxLFIxWuTL5MaOVqdWSSXUVyfXPdghh0GKH7LeHixs+b9cNhn6t4XH3SbDuP97nmHsRdD4c9s5PrcYmdbVLf4xcFUkQjAZQtRFK+wVfi4hILolWObelsljV8JwTnp6uE53bzDhUrIAOwzNTi7RuB9ZYr892f2gtpC8dCAMug16nZbsyCdKC/0p+n8YXa2RKl6Ocg9EA9nwET3WG4TfDqO9Daf/M1ZaP3r/WPpA8dhA+vBH6nA/hRnchPLAWlt5j3dmwxykw6Cr380x+MuOw6j7YPhuKe8GQa6HTuMzMLSIiIpKPUglG2zHX/zryyfwfNw1Fq7d/CSz6JUx0eC9zyW+cx/Rynl5ERERERERERESkDdlZZx+M1qWgm2MAWbYpGE1ERKQVGnQlxOvg/WuS33fdf6CoHI6613r83pX2/Yp7Q1GXRhvcgtEaXatZ3AtOexuW3Al7PoXaPVDY+fM1jGbLfVNZs5nIkOtg7O3Qrrv/Y4uIiEjr0nHk58cud8G6h9IbK1PrNFMVUlSStH65+lNuYgWcJbtPvRx/dhGRJuJR57aNz2QnGG3+re7tw7+RmTokPYmC0Zx0PgJqdkP1hpZtdXkQjBavyXYFucUxGM0lgGzEt5ILRgN/QtEA2xPCrYWXcJ/n+8NldXoxJiJti9PfKmh6p6XG2rncibKgU3r1eFWQYCHtzONhyhvQaWxGypFWqmIlvD4JDm1run3NAzDxfhh8VVbKkoDFDsGmZ5Pbp+No98DGoAy5Dlb9PXHIw4o/WQF/Z38G7YdmprZ8U70ZKpY5t9fshp1vQ8/P73a4fym8fETDa+B1D8P2N+D4NN+48mre1bD23w2PV98Pk1+HrsdmZn4RERGRfON0zNx3Gmx6zr5t+yyoOwAFZcHVlcu2vuzctvkF57Y19zu3pRLCLyIiIiIiIiIiItKK7azdZru9W0GvDFfinVMwWpw4MTNG2MjQTeVERETEX4OvSi0YDazrGY/8HVRvdO7T/AbEbkEfoWbHG2UD4di/JVfTIz4t9T/8NzD6h/6MJdKqKE5DRMRRp7Fw/L+tD4BoFTw/EGp2ZbUs3xlaiy+tn0ucc9aZSX6ksq+I5AIz7ty2f3Hm6qi3byEs/a1z+/g7rQXXkvtSDUbrf6lz0Ec+BKO5has4iVb7X0euiB203x4udt6n/BiYPCuYehIp6JideTMh7BDu09zOd4KtQ0Qk17iFeDq92dj5SPu7HZX0hw4j/KstkeMfcW6r2Q3L/5i5WqR1Wvm/LUPRADBhwe0QTxBGJcnZ+S7MOhWe6w+zT4OKFdmpo2J54qCxekYE+l8CU+ZkJ1y3y5FwzF+99Y1Vw4vD4NGI9YbKpz+07u4nlupNifscWAWf/cS6WGbG6JbB4Ov+Y7XNmuxjeLWN/UubhqIBRCvdzyeJiIiItHVOx/i9zoR+FzvvN/fCYOrJdbFDULvXub1ml/1r4kSvkxMF3YuIiIiIiIiIiIi0MTvrttpu71aYu8FoBQ7BaABRU9eiiIiI5C3DgG4npbZv7V44uA32L3Hu0+WoZhtcIgbcQtO8Gv7N9McA6HSYP+OIiIhI2xUphVGpBK3meAilgtGkDci1n/INKLBMpO0p6e3cdtD+TabAmCa8lOBEyeCrM1OL+CDF/M/h34RNz9m3RQ+kXk6mxGoS92muZhdE+vtfSy5wC5tx03MyXGHCoV3wTDf/63JS2Clzc2VD/0thwxPufdY9BD2+kJl6RERyQdzhb1XI5W9VKAxjb4ePmr1ZOO52f96E9Kqws3v76vtgwt8zU4u0Tm6BqdUb4cBq6DA8c/W0ZlUbYM4ZDa95qjfCK0fD1NXQLoPHwwC75iXuc+JT0P8i63V8Jp/37Ay9Dur2wac/8NbfjEHVeitEq3ojnPBosPXlC7fg/HofXO9trO1zYOaJcM5SKO2XXl121j1sv33jUxCrhXCh/3OKiGTagTVwcDsU94TSgdn/eysi+S8etd9uhGHMj61jKTvbZlqht50PD662XFSzO3GfaEXLczNV69z3aX5XbxERkQwyDCMEjAXGA/2BbkAx1vWCB4EdWNcPfgYsNk1T1xGKiIiIiIhI4ByD0QpyNxgtkiAYrYgE18mLiIhI7hpyHeycm9q+VeuhYpn72I0ZKa699GrwVdZNsr1cH+qkdAD0PNW3kkRERKQNG34TrH3QPUi2hVy4ftqlhlCuRUaJ+C+nfspN0xyY7RpEJAvcTkxkOoRq20z39q7HQXGPzNQi6YuncLejHlOgoAwK2tu3RyvTqykT4ikGo5W21mC0g/bbw8Xe9m/XFbqd4B7K4aceUzIzT7aM+kHiYLTV/4Txd2Y+gENEJFtSDfEc/g0o6QcbnrKC0vpdAn3O9r8+N5GSzM4nbY/TsVy9imUKRvPLol+2fA0erYR1/4GR381MDWbcChdb9jv3fic9C/2mWZ/nSkjLqO9Dp/Ew5/Tk9lv/GETaw7F/Df4Ck1zn9zmgaBWsuR/G3eHvuAAbn3Zue6IEjr0PhihYX0Ty1MFtMPMkOLCqYVvpQJg8E9oPzVpZItIKmDH77aEIdB7vvu/Kv1rHzG2Jl2C02v0tg9HcLnLveVp6NYmIiKTIMIxJwPXAWUBHj7vtNQxjBnCfaZpvB1aciIiIiIiItGl18Tr21O2ybetW2DPD1XiXKBhNRERE8tigL0PtblhyFxzalty+H98Mez52bm8/pOnjoK9b7XKUdc3vJ7c0vRapsUiZdf1ouARi1Y1qC1vr+Sb+S4EfIiIi4o9IKZzyKsy7Fna8AfHabFeUPkPHSdL66adcRLKvbDB0GAUVS1u2HdyS2VrW/se9/ch7M1OH+KPLUVgpuEncRLjbCda/EYdgtLo8CEaLpRCMtnkGdD4id0IF/JRq2ExjR/4e3jjbCpDzQ1E5nLcSPvo2rHuoYXv/S6D/xf7MkavKj4YxP4bFv3bv9/F34ISHM1OTiEi2pfO3qu9U6yNbwh6C0eJRvRkpqUt0krliGZDF34HWIh6D1ffZt7ldIOG3VfclDkU76o8NoWi5ptdpcN4qeDHJ0JjV90FhRzjit8HUlS+iVf6PufHpYILR3M4NmDF4/xrY+goM/BL0OgPCRf7XICISlHcua3khYtU6eHEY9DoTCrtApzFQ3Nt6jivulZUyRSQPOQWjGWHrYutj/wYfXG/fZ/eHwdWVq7y8H1G3v+W2qvXO/dtauJyIiGSdYRijgT8Dk+o3JbF7F+BK4ErDMOYAN5mmucLnEkVERERERKSN2xPdgUnctq17Qe8MV+OdgtFERERaMcOwbmg84jvWOoNIMTzi8fS62zW/A6+0myylEpNSv94hetD6Wsw4HNrZ0N6um3XNQDxqtYUKoGanFZimm7iLiIiI30r6wuRXrWOTugprW7gdPNUpu3WlSms2pQ0IOM5ZRMSjo/9ov71mV2ohT6mo3tQ0oKi5gVdC12MzU4v4o11X6HZicvsM/JL1b0EeB6PFHcJV3Cy8HT76hnUCsbVxDJsp9j5G+TFw9kKY+AAc85f0a5q2GQo7w3EPwpQ34Ih7YMpsOP4R6wRuazf+V1A+0b3PhseanugWEWnN/PhblS1e3mys3Rt8HdJ6xRO8HqxYlpk6WrtKl/WE6zIYVrv+Eff2/pfAiJszU0uq2g+BC1M4jl16t/XRlgURjLZvIWye7v+4Xmrd8AS8dT7MPAFq9vhfg4hIEGr2wI43ndu3vmL9vf7sNph3NUwfDdtd+ouINOYWjAYw9OvO+1YuBzOJm+C0Bl6C0Wr3tdx2cLN9307jrJtViYiIZIhhGJcCH2CFohk03NWu+Uc9u7b6/SYDHxuGcVGm6hcREREREZG2YUftVtvtBgblBT0yXI13EZfrzeviCkYTERFpFQzDChIDOPy/0x+v/fCW24bdaN+3uE/68zVX/7UYISju0fBhfB5zEIpAuND6utt1VyiaiBejfmC/vf2wzNYhIpKPIsUNxyORUud+RgaCZBNxq8FQMJq0fgpGE5HcUOxyN51D2zJTw4c3ubf3nZaZOsRfJzwGpQO89T3uIejw+Um+SJl9n3UPwRvnwvvXwTtXwCvHWHddeP0UWPFn6+4E2ZZqmODKv8D2N3wtJSfEDtpvD7dLbpzinjD4Khh2A/S7OPV6hnwNwkXW50YIenwBRn0PepzStpKZO9icUG/MjAcTYCAikoscg9GS/FuVDWEPbzh6Wcgr4iRe696+5gE4mKHXjK3ZwS3ObSX9MlfHjrfc2wdcnpk60tWuK1y8D/qen9x+n/4AZoyFJXdZd59pa6IHghl33lX+fz+TCSTf8zEs/rW/84uIBOWg/cIPR3X74IOvQdwh7EhEpLFEwWgAJz5l3ydaZd3gqC3xcj6l8XuoG5+Dedc4H3t2GO1PXSIiIh4YhnEJ8AhQQtNAtPqgM4CdwApgHlaA2kpgV6M+jfcDKAUeNQzjgsx8FSIiIiIiItIW7Ky1v2amc6QrBTl8s+sCw7m2qKlgNBERkVan/yXpjzHg0pbb+pxnfzP3IdekP5+IBG/AF+0DcZxCD0VExF4+r+3P59pFPFIwmojkBrdgtIPbM1PDno+c2wo7J7+gWXJDSW+YujZxv3OXwaArGx4XtHfuu2UGrP4nrH+04edmxxvw0Tdh7oVgms77ZkI8xWA0gM0v+ldHrggibGbYjTRcr50EIwKjvp/6vK1Jl6MS99n1bvB1iIjkAqdwlXwIRvNyJ6YtLwdfh7ReiYLRAF4aCxUrg6+lNavd49xWtz8zNWx9LXGfjmOCr8MvhR3hpGdh2iY45VU45TUo6Zt4v/2LYf6tMOsUiHn4+W9NolXBjFuzG7bP8m+8aLXz60wn6x6ywp9FRHJdKoskKlfC7vf9r0VEWh8vwWg9pzjvv3Ouv/Xkuv2LEvd55zLrZjmL74S5F1jh4U5KArijt4iIiA3DMEYAD2Bdl9g4EK0CuBc4B+hqmmZP0zRHmaZ5vGmaE03THGmaZg+gG3Ae8EegkqYBaRHgX4Zh6Db3IiIiIiIi4ouddfY3ZOxW2CvDlSQnomA0ERGRtqVsMEx0eT/Yiw4jWm4rKIMvvACRsoZtfc+HMbelN5eIZEZxTzjxSQgVNWwb+GUYfnP2ahIRkcyyC8gUaWUUjCYiuaGgg3NbLKCFsY3FY3DIJYDt7AVKTM1nhgHdv+DcXj6h5cm9ou6pzbX5Rdg2M7V9/eK0QHvk9xLvu/xef2vJBRuesN9ud0cLr3pOhpOehrKh9u2DvgonPQOdDwcjZC3s6nwkTH4dOgxPfd7WpN+FiftULA++DhGRXBBEiGemFJYn7rPgJ8HXIa2Xl2Comt2w7HfB19Ka1ex2bqurgLoDwdcwN8HxYXEvKBsSfB1+MgwrfKDX6dDrNDj8N9733f0+LLy94XE8CsvuhRdHwAtDYMHtwQWJZUuQX4+fIZ01u5Lf59AO2DvfvxpERIIST3GRxMwT4PFiePkIWPeYvzWJtEa1+2DetfBsX3h1Aqx9OLn9Nzxt7fd4CTzWDp7sBLNPg30egrSyyUswWmEnKB1k3+/dL8Ghnf7Xlau2vOKt3wfXw2c/TtyvWMFoIiKSMf8DlNAQiGYCPwP6mab5PdM0XzZNc6/TzqZp7jZNc4Zpmt8B+gG/+HyMemXAnwKrXkRERERERNqUnbVbbbd3K1AwmoiIiOSYwVfBxftg0nMw8V/J7TvsJue2nqfCRTvh1Ddh6hpr/HCRc38RyS39psHFu2HKbDh/Axz/b62FFxHxlZHtAtwZioyS1k9HNiKSG4yQFVIUO9iyLVod/Px1+8CM27dN+AeU9A2+BgnW6B/BrndbLu4zQnC0zTWzJWksEPnku3DO4tT3T1esxn57qAj6TIXNL7jvX7ka2vscOBCtgopl1gKnjmMg5Pxm7P8xTahaD6FCqNlhfV1GGDqMtO5I4cX2OWBG7dsiHsdw0u8C68P8/Brs+ucQI2QFINT3iUcBA0Jh22HaLC/PqxXLgq9DRCQXOAWjhfIgGM3L37eC9sHNH4/BgVVQOlBvwDZWtcH6vhd2znYl6Ys7HNs2t9XjgnGx5xaMBlYQlNdj8FRUrEgcijX85vw/pu5/CSy+E/Z7DKxY8hsY8W2ItId5V8HGpxvaFv3CCts69q+BlJoV0QAD+PwMJUslGA1g/1LocqR/dYiIBCHuIZTWSeyQ9Xz77uVWyHO/af7VJdKamCa8cTbses96fHAzvHelde574GWJ99/0Arx9cdNt8RrY9roVUnjeSmiX4o1fguZ0rt5odpzf5xxY8T/2fWedDGctyP/XBonEo1C11lvftR4veNd7nSIikgGGYZwATKEhFK0SuNA0zVmpjGeaZiVwh2EYc4FngNLPxz3NMIzjTdN815/KRUREREREpK3aWecQjFaY28FoYSOMQQiTlmtg6hSMJiIi0noVdoS+51ufb3oONj3rbb+ywe7t4XbQfVJ6tYlI9kRKoccp2Zt/wGWwXjdUFZFWquep2a4AOo5zbnMJzxdpLRT/JyK5I1Jivz3R4mg/uC1q7Xl68PNL8HqfCVPmwJBrG7YN+iqcNR/Kj2nZvziNYLT9S2D1A6nvny6n8IhwO2/BJOse8a8W04SFP4cnO8IrR8PLR8BTnWFNgoU6lavhpcPghUHwXB9rv9cmwqvHwFMd4bPbnMMM68UOwazJzu2dDkv+67FjGNZHKGx9GM3Sn0OR1r9IK1VH3uveXrMTavZkphYRkWxyCkYL50EwGlgBx26CCjrePB2e6QbTR8JTXWDpPcHMk0+q1sNLh8PzA+Cpcph7MURtwqfzhWl6D+eoWpffX2u2JQpGiwUcWL71Nff2DqNg5C3B1pAJoQI4430Y+1/e93m2NzzZvmkoWr1Vf4MDa/yrL9uCPP9Tudy/sRL9vjh570qIpRE4JCKSCc1vKpGquRdAXYCBlyL5bP+ihlC0xlb+b+J9Nz0Pb53v3F5XActtbgSTK8yY/Xaj2b3c+roEK+5fAltm+FdTrnIKkUtH+dH+jykiItLSTZ//a2CFo12faihaY6Zpvg5c32hcgBvTHVdERERERETatpgZZXfdDtu2bgU9M1xN8gocFr5GFYwmIiLSNvQ513vf3ucEV4eIyIjv2m8ff2dm6xARSUfj/In/Y8Cgr2S8lBZ6ToHCzi2395gC4cLM1yOSYQpGE5HcEXYIRgt6ATa4B6MVlQc/v2RGtxNgwj/gCtP6OO5B6OSQklvSN7253r8G3rkcFtwO866Gj26G3R9a4Q5BizkFoxVBxEMw2rYEoQRe1FXAhqfgteNg4R1NFzxFq2DeVdYiLjumCW9NsxaI2bbHYfGv4a0LIO6wkKp2L8wY41yfEYHeZ3n6UiRAzUPk7FT4GGAgIpKr8j0YbfSt7u3RKv+PgQ6stY4Xavdaj2PV8On3YdOL/s6TT0wT3jgX9n1Wv8EKUvo0j8Okkl0Ivnd+MHW0BbUJgp6CCqwyTdg2C+b/0L3fSc+0npP1kRI47OdwqU/f0zlnwr6F/oyVbTGH78nAK6HvBfZtw78Fx/2nZZhGczW7YadNAEkq3M4hJbLkN/7UICISFLdQ2lCSdxR7sj2seRCqN6VVkkirs/Yh++0751r/Rqth8wxY+TdYdZ8VAr7kLvjwm9br4EQW/9K6McmmF5zPN2SLYzBasxuLdJ8EBZ2cx/noZuv7s+uDxDdQyVdxn4PROo5NfAdwERGRNBmGUQSchxVcZgJPm6bp263hTdN8FHgaKxzNAKYahtFKThqKiIiIiIhINuyu20kc+/PM3Qt7Zbia5EUUjCYiItK2DbjMCsNIZNT3oePI4OsRkbar/BgY9o1m2ybAsBuyU4+ISCrG/heUDmq67YjfQrtu2amnsVAEjv1b02sti8rhyLuzV5NIBiVYMSYikkERh2C0aAaC0Xa+Y789XOxcl7Ruxb3TH2N9s2t8V/wPDPkaHPMXCIXt9/FD3GGxU6gICjok3n/n29bCqz4p3g2ichXMPh2q1rr3e2sanPQ09Luw6fa9nziHojW2+QV4ri+cs6hpgOG+hTBrCtTsdN63+0lQ6LKwSjLDaSFcY5XLodtxwdciIpJN+R6MNvBLsPCnLh1M62uMFPs358an7f+ObHoG+p7n3zz5pHKl/THUhqfg6D97CyTNNU6Bv05mHg/nr4PSAYGU06olCnoK4nV5tBrevhS2zHDvN/7XrfOCjEiJ9TqmJkEoXSKVK+Gl8TD+VzDm//lTW7Y4BfBFSmHAF2HTs023h4pg+Degw3DociRsfc16PTz/R/bjzDwejvkrDLs+vTrTCUZb+y8Y91/pzS8iEqS4wyKJcDGcvQC2vAwff8v7ePOuhkgZnPA49DnbnxpF8p3bscSBdfDW1PSDb+ddZf3baRxMegHKBqY3nl+czgc3f78kVABDvw5L77LvX70BPvz8wslBX4EJ/7Qu/GlNkg0KT2Skw515RURE/DURKPv8cxP4XQBz3ANc9PnnZcBxwJsBzCMiIiIiIiJtwM66rY5tXQt6ZrCS1CgYTUREpI2LlMDJL8HmF2H3+y1viFjQEXqcDD1OyUp5ItKGGAYc/Sfod4G1Vr/jKOh1FhSUJd5XRCRXlA6AMz+EzdOtm0L3PBW6Tsh2VQ36XwIdRsPWlyHS3sqAKOmb7apEMiKU7QJERP5P2CGALJaBYLT5t9pvL+oa/NySm8KFTcO2/LL6PuugM0hOARLhIjA8/ul/+1Ko2pjcvBufg3nXwovDEoei1Zt7EdRVNN225RXvcx7aBm+c23TbBze4h6KBtRhTsi/uYXFXxbLg6xARyTanUNN8CUZrPxSOe8i9j1PYTao+/YH99jUP+jtPPtnwpP32mp3O4Xu5rvkb9F7MOcv/OtqCA6vd22edDHPOhP1L0psnWg1LfguPGPBEaeJQNICRt6Q3Zy7rNsmngUxY8BPY5yFgOpc5BoUWQ++zYdxPG+5wU9gFjv2rFYoG1hvoI78No35oBfA4+fAGWPDT5J8XqzbCwp/Bu1fCsnuS27exA6v9/5soIuInp2C0UIF13D/iZjh/A3Q5xvuY0QPw5jkQPehPjSL5zu3mJR9/O/1QtMb2LYTFv/RvvHSYJphx+zbD5kYyY3/ibdy1/4ZNz6deV65yej5O1eCr/B1PRETEXv3drkxgqWma8/ye4PMxG5+k1B22REREREREJGW763bYbu8UKacwVJThapIXMexvGhL1++YbIiIikrvChdD/IjjiLjjq3qYfh/1MoWgikjmGAT2nwLjbrfAehaKJSD4qKofBX4Wxt+VWKFq9TmNg1Pdh2PUKRZM2RcFoIpI7IqX226MBB6O5ja9gtLatMIBgNIBVfw9m3Hpxh2C0UDuoq/Q2RqzaOXDEzsJfwNwLYM393vep92yfpo8XeFzwVG/3vIYwtdp9sOs99/5H/h7adUtuDglGaf/EfQ6sCb4OEZFscwpnCeVJMBrAoCvh7AXO7TGFwGRVvobwpBKMVrG0dS6KD1I8CpUJgtEAtr4KM8bA9jdTmyd2CGafBvN/6H2fk1+2LtporUbc7N9YZhzWJgipzHWJQr7H3QEXbIGzPoPz19qHOxgGdBjhPs+in8Gb53kPmziwFmYeDwt/Cusehqr13vZzUrEivf1FRILkdPwVanS3+dJ+cMY8OGeJ9bd60Fe9jf1aDl4gIJINBR2d2za/4P986x51DiTLJLca7ILRCtrDJR7fz9jyUmo15TI/F62dNd/7TXNERETSM6bR5+8EOM/bDnOKiIiIiIiIJKUqVmG7vVOkS4YrSU3EKLDdXpfKNVciIiIiIiIiIiIiOUhXwIpI7giX2G+PBRyMVrHcua1sSLBzS24L2d9FKW2bX4QPrvceUlYvdgg+/SE8XgyPGNbHm1Nhzyct+9kJF0E0iTk3PA4HtyfuV1cBi3/lfdzmogfg6e5QsdLbfHbeOMtaWFWzG+sG1C5GfDu1OcR/vc+BUIKgi9q9malFRCQTNj4Dr50Azw2A974KNXus7bGD9v3DeRSMBlDkEjy6b3Hm6mir7BaS1/vom94DgHJJqhfpfXCDv3W0dlXrklt0/8l3U5tn83TY9a73/qECKD8mtbnyRY9TYNLzVpBXouNiL5belRuhF6lyDPludBfmdt2h82FQ0MF5nPbDE8+17XV4rBBePwXm/whmngjTR8E7X4JDO5v2XfFnqN6UeEyvKpb5N5aIiN+cjhmb/50yQtBxFPQ+EyY+4G3sfQvTD5cUaQ3cjmOCEKuGR8PW+wkvjoDZp8Ou9zNbA4AZc25zej1bUAadDks89pr7oe5AanXlqriPwWidx/s3loiIiLvGF9gEecDReGxd1CMiIiIiIiIpq4rZn1suDbfPcCWpKXC41iRq5uF1YiIiIiIiIiIiIiI2FIwmIrkj4hCMFg04GO2tac5t424Pdm5pu1b9Hd48F0yXEK9oFRzcBrEaK0xkxhhY+tumwWebX4TZpzYNFIu5LCbvfU5ydXoJLtg1z3kBu1c1O2H6cNj8QupjfPztxMFvZy8Cw0h9DvFXQRmMTBCsUbsvM7WIiARt04sw92Lrb2v1Blj7b5h1ihVg0zyApV64OLM1pitS6tz25jnJh8JKctzuag3sAAAgAElEQVSC0TY8DvOuzVwtfnE6rgUoP9a57dA2qFjhfz2t1cEtyfXf+2ny31/ThJV/TW6fgV+CovLk9slHfafCucvgshr44qH0A9Le/ZI/dWWDUxhist+TDiO8993xBiz5Dex8xwosW/8IzDwB4o2CO5bdk9z8iRzc7O94IiJ+cnoudrjbvNVmwNTVEPGwQOSz26zznH4G/oiId5UrYNtMmD0l80GFbmHMhstNao7x+DrincuSqyfXJRNe7ab3uf6MIyIi4k2PRp8HebDReOyeAc4jIiIiIiIirVx1zP56tpJQfgSjRRzew4v6dY5ZREREREREREREJMsUjCYiuSPsEIwWCzAYLXrQCqawY4Sh07jg5hbZ8RbsW2jftvxP8Fx/eLYXPN4OXhoLB9bY963dC4t/3fDYKaQs3A56ne6+yKi5RCEJO9+BOWd4Hy+RD76e+r6r/gY1u5zbz5oPncakPr4EY/ydMOF+53YFo4lIa7Hyz0CzQNR9C2Db61C53H6fsoFBV+Uvp+P5eusfzUwdbZVbMBpY33+nEL5c5RTMAXDSs+77bnnZ31pas3gKd4nd+pr3vvuXwDPdYfus5OY4/K7k+rcG4SK4cJt7n67HQZejnNs3PBl8wHxQnMIQw0XJjVM+Ib06KlemF9qdSPRgcGOLiKTL6e7xiUIqywbDWZ/CkK+591v3sHWe8+lyWPdIajWK5LtUjr/rlQ5s+r5V1+NSGydaBQt/mnodqTBjzm1ur2e7efwat8yAPZ8kV1Mu8ytActgN/owjIiLiTeO7HAT5Jm/92AbQJcB5REREREREpJWrih2w3V4aLstwJamJOKwJiDq95yciIiIiIiIiIiKSZxSMJiK5I+IQpBDkgt6KZc5tfXQXdcmAj29u+BmPHrQCBuZeBB9/C2r3eB9nxR/BNKFmD8QcFllHyqCwExz9R+/jVm+0/q07YIVLrH0IDn6+UL92H8w+3ftY6ep1lvU1OInXwaYX7dtCRdB5fDB1SXoMA4ZcDcc7LIat25/ZekREghCtgq2v2rfNOQNih+zbOowKrqYghMJWEKuTNQ9mrJQ2yTDc280obHwqM7X4xS0YLVICF7mE4u5f5H89rVUqwQyf3gJbZzZ9/qraAGv+BUt/B5/9Fyy4HeZeAjPGuAcY2xl8DbTrlnxdrUFhZ5i6Fkr6N9powBH3wBUmnP4unPkRlE+039+MwfY5GSnVd06/84nCeJrrcYr7a0cvdr0H+xbBpz9Mbf+icuc2p9fsIiK5wOm4IGR/t/km2g+BCX+Hy+OJ+9ZVwLtfgvevs44dVv4N9i1OrlaRfJVqMFpRV5i6Bs5eYB0XXmHCqW9CuDi18dY86F/4lhepBqMB9DzV2xyL7/ReT64zffi/6X8J9Doz/XFERES8a5xuH2QwWuM3kF3elBARERERERFxVx23D0YryZtgNPv38OoUjCYiIiIiIiIiIiKthP3tIUREsiHsEIwWCzAYrXKFc9ugq4KbV/JD6SDYvyTYOXa8Ba8eCxMfsBYC7luQ+lgr/mwFkjhpP9T6d9iN0PU4WPJbWO8QRlVvyW9gwOXwzmUNQYKhQjjpWajZ6f33s9cZMPQGqFwO83/kbZ/GinvBKS9ZwQuvHOX8/7L5BfvtBe2Tn1Myq7CT/fa6fVboX6KwFxGRXHVgLcz2uIC3uQ4j/a0lE8LFzkFvu97zZ46oAmVsuYWI1TuwJvg6/OT2NYUKrXC0IdfB6n+0bHcLwZamUglmiNfCnNOhyzFw8nTY9jq891V/Fu8bIRj+zfTHyWdlA+Hs+bDxGSuQuvskKD+maZ9hN8Luefb7v3kuXB6zvpf5JF5jvz1UZL/dSbjI+v4s/W3qtSz9bXr7n/mp9dq1ZmfLNgWjiUgu8yOk0jCs4KaXDkvcd/U/G+8I438JY37sfS6RfJTqYqQBV7Q8RxoqsM7fr7k/tTF3vQfdT0pt32SlE4w28EvWa45ENj4FS++BUbckV1suSuW11ZG/h8Iu1g1vOh8Bvc/SeXUREcm0xidxglyB3fgPpYcUZxERERERERF7VbFK2+2l4fy47rzAsH8PL2p6uI5MREREREREREREJA/k2eo4EWnVIg7BaNEgg9FWOrf1nRrcvJIfMrUYf/9iKxwtnVA0gI9vhg9vsm+LtIfi3g2POx8Oh/3c27gvH940WCJeC+9eAfsXea9twj+g3zQYfSu06+l9v3r9L7P+DbeDsz5z7le1zn57QYfk55TMKnAIRovXKThARPLbrMmphVGVDoKC/LjzZBO1e93bTTP9OaL2d+ps87wExh2yCejJZU4hSdAQlNTlSPv2nW9DzR6oq4Sld8Pbl8IHN8C22bDxWZh3LbxzBaz8K8Rc5mkL0gkz2/MhfPZjmHe1P6FoAEf+Aboc4c9Y+aywMwy51gp1aB6KBjDoSvf9NzwZTF1BcvpdDCcZjAYw7o70aklVuAROfAJK+0H3L9j3SfS3UkQkm5wCU0NJZg10HAtlQ5Oc3ITPfgJ70zxHKpLrUgkm7nUGjP+FfdsRd6Vey+uT4OPvwJ5PUh/Dq7SC0b7s/f2aT78P+5J47yJXxVN4fTXyOzD4KzD2NuhztkLRRERERERERERERBJwCkYrCeXHdXsRI2K7PerXNTwiIiIiIiIiIiIiWaZgNBHJHZFS++3RquDm3Pm2/fa+08DQU2Sb12MylA7IdhX+6DCy5SIYp985L+r2w8ZnvPXtOBpK+jY8Hv+r5Ocr7tXweSgCo36Y3P6R/LhzV5tW6BCMBvBRhkIKRUT8tvZh59DORHqf5WspGdN+mHu7H2EwsUPu7aksHm4N4gm+LwCHdgRfh5/iDncvNUIQ+nzhfIeRzvs/XQ4zRsOnP7BColb9DWZPgbkXwpr7Yf2j8OGN8OZUiLXhO6WmEszQ2Op/Ov9fJevsRTBCx36eGCE4/hHn9tX3Z64Wvzj9HIXs73DsKlIKR/9PevUkq+fpcMEW6H+J9ThcbN9v7b8UyCgiucvxuTjJYDTDgDE/SqEA03qeFGnNkj3+nroaTn7Z+eYfReUw5rbU61n+B3htImx5OfUxvEgnGC0UhqP/BGd6DHB7aRyYce+15aJkF601vjGOiIiIiIiIiIiIiCRkmiZVMfsbdJaF8+O684hh/x5e1EzzWiARERERERERERGRHKHUHxHJHeES++2x6mDmi1bB9tn2bZ0OC2ZOyS/hQjj1LWtxc77rPqnltnY9oGxI6mMeWOOtX79Lmj7udXrywYPdTmz6uKRPcvsX5Mcb1G2aWzDamgf8CdIREcm0T7+X+r4DvuhfHZnU7ST39ppd6c8RO+je3laDFKIJvi8ANTuDr8NPTmFljUOSOh0GGPb9AKo3JZ5n22vOrw3bgnSD0fzSYzJ0GpPtKvJL7zOd23bMgdr9mavFD3GHsLBQUWrjZTpktOsEKOzY8DjiEIwGsG1W8PWIiKTC6bgglZDKwdfAkb+D4iTP4y37HTxiNHxMHwXrn0h+fpFclczx99DroWxwy5ueNDfwivRreuNsiLuEl6XLLcQ8UTBavc6HQ+lAb323z/HWL1clG/o+9vZg6hARERERERERERFppWrMQ8SxPy9ekufBaHUKRhMREREREREREZFWQsFoIpI7Ig7BaNGAgtH2LXZegNLn3GDmlPxT2h8mvwqXRRMHfeSy4d9ouc0wYMz/C3bekr4w6paW24Zc532MHpOh68Sm25JdUFnQIbn+knkFLsFoANvfzEwdIiJ+qd4Eh3akvn++HncM/6b7gubqjenPkSgY7f3r2mZwQvxQ4j75FjQadwhGa3xRX1F5y2PFVGx9Lf0x8lUuXAxphOGIu7NdRf4p7Ax9zrNvi9fB1lcyW0+6nH7nwykGo5UNhgGXp15PssLtmj12CUZb/odgaxERSZXTc3HIflGFK8OAkd+FCzbBJZUwOsXzkBXL4J0vwpoHU9tfJNckc/w94lve+nUcDX0vSK2ext6+2LktWg3Vm1Mf23QJXQtFvI1hGDDmNm99t8301i9XmS7BaCX9mz4uGwr9Xf7vREREMsv8/N+JhmFMCuIDmJDNL1BERERERERah6pYpWNbabgsg5WkzikYLWo6vOcnIiIiIiIiIiIikmc8XmUsIpIBYYdgtFhAwWg7HO4WHymFLkcFM6fkr1AYht0IO+dmu5LkDb4GygbZtw25Foq6wtqHYOPT/s7b+1yY+E8osLlr1jF/gY7jYMsMKOwC7bpB1QaoWtfQp7CTFYo26vvWgqfGinsnV0skP+7c1aZFiq2fhdo99u2NfzZERHKZacKiX8DCO1IfY+rqln/78kWXI+DMj+Hlw+3bZ59qLWI+7Bepf42JgtEAVv4ZBlya2vj5Kurh++IUDJ2rnBaCNw/mGPRl2PVeenMt/70VpjvudjDa2H0E4i4L7oPSYwpEq6xgu4KOMPpW6HxY5utoDSY9D486/Mxueh4GfDGz9aQjVmO/PVSY+pjH/RsqlsPeT1Ifw6tQEsFo29pwGKOI5Dan48V0nosBCspg/K+g4xhY/xgc3Aw1O61Aaa+W3g2Dr0qvDpFc4PV12eCrrMAzr058HJb9Hra9DiV9YOj1VoDWkv+G3R/C7nmJx9j0HBxY2/T9hHgUPvkerPqrVXuHkXDik9BprPfawD0YzS1gvbmh11nvaax7CDY+S0P2SjNLfgOH/3dSJeYUt5+T09+znhP3zbfezxx5i/XaSkREJHcYwKMBz2F+Po+IiIiIiIhISqpjBxzbSvIkGK3A4eZGUbebb4iIiIiIiIiIiIjkEQWjiUjuiDgEo0UDCkab/yP77e2Htb2F8OJNvwuhz3mw+cXs1VDcx1o4mIwRN7u39z3f+qjeBM/1S722xkbf6r7oyAjBiG9aH6ko7Z9c/8JOqc0jmTXkGmtBl53YoczWIiKSqvWPpReKdsTdUDbYv3qyofN4KOnrHHKw+FdQOtBazJwKL8Foez5Nbex8Fvfwt7J6A1SuhvZDgq/HD06BXaFmp7OGXAcf3pT+fIt+ZgUADP5q+mPlEzPDgXmX1bX8P5TUGYYV4r3yLy3btsyAWC2E0wyzcVO7D7bPgeqNYESg8xFQfqwVLp4MM+4ShliUen2hCBz/MMwYlfoYXoWbB6O1s+8nIpLLHIPR7BdVJMUwYNCXrI96Myd5vxHF/sWw6j7rPGa77unXI5ItXoLRyo+FI3+f3LihAhj9Q+ujsaP/aP27+E747MeJx3lhMFwWbTieW3YPrPhTQ3vFMnhpHFxWm9xzg1/BaAD9plkfAM/0hEPb7ftVroL2Q5MbO1c4HRsbESjpDUf9LrP1iIiIJCcToWUO6agiIiIiIiIi3lTFKm23GxiUhEozXE1qIoZDMFq+3TxTRERERERERERExIGSf0Qkd4QdgtFiAQSjLbnLua39cP/nk9YhXAQnPgVfeBFG/dChj8PPsV9OSPLGyl2Pg07jvfUt6QtT1yZfU3NTZruHovmhuLcVqOKVfq/zw9DrndtqdmWuDhGRdCzzsHB5wv1w6QH4wnToMcX6OzXup3D6PBh1S+AlZkRRV/f2DU+kPnbUQzBatNIKA2pLvHxfAKaPgEW/CrYWvzgtnDeahWqFCmDqan/mnHcV1OzxZ6x8kemLIRWK5r++0+y311XAno+Dm3fvfJgxBuZeCB9/Gz76Bsw8Ht6alnzIfdzlOTuUZrBbhxGZeU3YIhit2LmvHwFDIiJBcHo+dlhUkbZhNybX/4Ovw/SRsG12MPWIZILT8XdxHxj3MzjhMescu983+xj0VYi099Z37b8aPl/zoH2fN85Nbn4/g9EacwuQe3EYmHmameI1KFxERCR3mQF/iIiIiIiIiKTFKRitOFRKKJ3z1hnkFIxWl+mbJIqIiIiIiIiIiIgERFfOikjuiDgFox0CMw6GT1mOsRqYf6tze+cj/JlHWqdwIfQ51/rofRa8db612Byg7wVWcNnci2HLdP/nHn8ndDsxuX0m/BOMJG7GXNInufEbM0JwxkfQJQO/Q4ZhLf5ffq+3/h1GBluP+KP9UOc2BaOJSD7Y9jrs+dC9z+BrYMjV1ud9zrE+WqNEwWjbZqY+dsxjAFjtbijulfo8+SZ+yFs/MwYLb4deZ0D50cHWlC7TYSF482A0sEJzi7pBzc705517AZz6Zvrj5ItMBqP1PD1zc7Ul3U+GSClEq1q2VSyFbsf5P6dpwvtfh4NbWrZtmQ7P9oYzPoAOHgPJYjXObeGi1GqsZxgw6VmYfToc3JzeWG6SCUZzaxMRySanRRLphlQ6GfBF2DUPVvzR+z61e2H2FPhijXWuViTfOP2e9Z0K424Pbt6S3jDxfvjwBqjZ7d73/Wth0/PWa4WKZfZ9tr0G+xZDpzHe5g8qGC3Re3qPhqDfhRApg24nweCrIZQHC9ocXw8rYFdERHLaBhRaJiIiIiIiInmiKn7AdntpuCzDlaTOKRgtqmA0ERERERERERERaSUUjCYiuSPsEIwGVvhBpNSfebbPcW8f9BV/5pHWr8fJcOEO2PMRlPSF0gHW9iHX2gejTZ4F7YfBkjth5V8Sjz/xAeh0GBzaAeXHQFF5cvVN22wtdkpGqAAi7SFqfxcsRyX9Yeoqa/9MSSYYreOoYGsR/wz/lv1iWAWjiUiu2/U+zD4tcb/eZwZfSy4o6hbc2F6D0WraWDBazGMwGljB06v/kcfBaDaL2I0QDLsBFv0i/Xl3vAU73obuSYYS5yun73MQhl6XubnaknAhdBhtH875/rUw5Br/59y/2D0MtG4/vHosTH7d23NNvNa5LZRmMBpAx9Fw/nrr9fvye2H9Y+mP2VzzYDTXvgpGE5EcFXN4Pg7qnJ8RgqP/AKO+D/sWwLJ7Ep+/r/fmeTD51WDqEgmSUzBxJgKv+l8MPU+FihVQuwfeOMu57+YXEo/30li4PObtxkZBBaN19HBTlI3PWP+u/TdsmQEnPZPcDWWywel1WkiXd4iISO4yTXNgtmsQERERERER8ao6Zn+tfEm4fYYrSV2BgtFERERERERERESklfNwlbKISIa4BZ9Fq/2bZ/8S9/Zkg6SkbQsXQbcTGkLRAPpNgwn3Q9kQMCLQ/Qtw7groORlK+1mPvRh8FXQ50gpQSSYUrctRcObHqf8sF3VJfp/T3s5sKBpY3/d2PRL3K+nX9P9HcltRV/vtmQxG2zwdZp8O00fChzdBXUXm5haR/LXwZ4n7RMqgVxsJRisdGNzYyQSjtSVuoUJ2Vv3NCkjLZfEkF4KPvQNG3+rP3J98z59x8oFTMEO6Jj0H3U+2XieUDoJj/wb9LwlmLoEOLoEQ+xb7O9fuj+ClcYn71e2Hxb+ybzuwDuZeBC8dBnMvhj2fOI8TKkypzJbjhKHrBDj+YRhzm/V6MlIK/S5yfu7oMML6OfY0frNgNLfASgWjiUiuclok4ddzsZPSftDnHDjS400QALa9Bi+OgE3PB1eXSBCcjr8zdX69sBN0PdZ63+HY+9If79EwVKxM3K92j3NbOsFoAOd5mL/epufg0RDMPsM6rs1VTq+HDQWjiYiIiIiIiIiIiPihKnbAdntpqCzDlaQuomA0ERERERERERERaeV05ayI5I5IiXNbzMdgtNq9zm2j/59/80jbNuRq6yNe13JBk5eQro5jndsGfhnWPWTfdvp70HWi9zrtFHaGqvXe+5dPsBYvZlooAuN/De9f695v7E/AUBZs3mjnEIxWvTEz8295Bd6aBmbMelyxHPbOt8L/9HMkIm52vp24z2G/gIL8uaNkWsqPDm5st6CZxmrbWjCaw6JpN7s/shbE5yozyYXgoTAc/t8w/k6IVkKoqOG1ZEFH62/5snvhk+8mnnvPhxCtcg/wbi2CCEbrfQ70mQp9z7d/TST+6+gSjLbhCejkIcDTi8pV8Oox3vtveq7ltpo98MKghsf7FsLGp53HCBd5n88LIwTjf2n9XTZj1mvLmj2w5kE4tL2hX9lQOPNTiBRbX/fME5u2N1fQoenjeI1zXwWjiUiucgrbzdTf8s6HWccQm1/w1r9yhXUe5wsvQp9zg61NxC/ZDkZrbOh1sH8RLP9DeuNMHw7nb2h4n6Bmj/X1FLQH04TqDTBrsvP+TuHXXrUfagXRb33F+z7bXoMdc+CsBe7H0tni9Ho43e+ViIiIiIiIiIiIiABQ7RCMVhJWMJqIiIiIiIiIiIhIrlC6g4jkjrBLMFq0yr95Nj/v3Nb/Iv/mEQH7xUxdjobiXu77DXEJ+xr6NfvtA7+cfigaQGGX5Pp3cglxC9qQa9zbT3gMhn49M7WIP0oH2W8/uAW2vBr8/Kv+2hCKVm/Xe7D30+DnFpH85hbkWzoATnoGRnw7c/VkWxcPwWjzrk4tkCl20Fu/mjYWjJbKBW2vTYDqzf7X4pfmf5PrJVoIbhhWQFG4yAr9LezcEHDqFsjd3BNlsOZf3vvnKz+D0bpPgsN+aT3nGYa1TaFomdHbJQxm0c/9+39emELA2paXGz4/tBOeLk9u/1Bh8nN6YRgNzydFXeDsBTD0BitUY+QtcPq7VigaWGEbp70DJX3tx4qUQnmzwDincCFQMJqI5K6YUzCazyGVbk562gq67TDC+z4LfxpYOSK+c3rtlq3j5jE/aRnwmoo198PB7TBrinW891RneLobPN0Vnh/ovq8RTn/+k2ckv0+8Dhb/Ov25g+AUfu4UFC4iIiIiIiIiIiIiSamKV9puLw3nz41PnYLR6hSMJiIiIiIiIiIiIq2EgtFEJHe4LVCPugRNJKOuEvYtdG7vcpQ/84i4CUXgiHucFxSWT3QP/Op2Agy+qum2rsfB0X/0p75kg9E6jPRn3lRNfMB+e4dRMOCLma1F0uf28/TGmXBoV7Dzb3IIz1xyV7Dzikh+M03nAKeux8H566DfBQ0hQW1BSb/EfdY8CJ/emvzYXoPR6iqSHzufOS2aTmTuhf7W4acgFoK7BXLbmXcV7Pk49flySfVm2PgsbJ9jPW/VMx2+z50Ph4jHu+D2vQAuj8Opb8LY2yAcUJCVOOt8WEMAoJ0Pv5H+HPEobH4x+f3eONsKRAN45/Lk9w9nKIynXXc49i9wystw5N3QrlvT9vZD4PwN0P+SptuNEBz955Z19r3AeS63/ysRkWyK19hvz+Tf9lAExvwIzl0GV5jWMUYiez6G6k32bfuXWMdAez7xt06RVDkF1josXgpcu64wOoXX5s3tfBee6wvbZ1uPzRjU7ILaPYn39SMI1wjB5NetwNpkrHsIFtwBH94E6x+H2KH0awEw47D3M1h1H2yebr0/mdT+CkYTERERERERERERCVJVrPUGo0UVjCYiIiIiIiIiIiKthK6cFZHcES52botW+TPHK0c7t42/0585RLwYeDl0GmctEorXQlF3qFwJHUZA/4sh3M55XyMEE/4J/S+FXe9Bh9HQ97zkF/w4KeycXP9uk/yZN1V9p0H4ppYhKQOvyE49kp7S/tbPv9MCtG0zrd+fTDu4NfNzikj+cApFAzi8jQYrGoZ1TFG7173fhifgqN8lN7bXYLR4bXLj5junxfWJ7P4A9i2CTmP9rccPjgvBw6mPmcox85LfwIlPpD5nLlj9AHz0jYbfn24nwMmvQEGZ889OST+YMhuesglO7n02DLgCqjdAx9HQZ2rbCn/MVVPXwfP97du2vpr++PsWQN3+1Pbd8CT0OQe2z0p+X6dQ8WwwDDjhcRhwufV6vLCT9fvQ+fCWfTuPdx7HKXhIRCTbnJ6fsvlcbBhwzlKYMcq938xJcP6aptvm/+jzsPvPQ2EHXwUT7tdxi2SX0/F3KEvBaAAjvgMLf+pcW98LrGN/t9Doba+lNnf5RP9CY3tOgbM+g43PWPXGDsHqfyTeb9HPrX9X/sX697yV0H5o6nXEo/DulbDh8YZtpQPgCzOg0xhvYzi9Hg7p8g4RERERERERERERP1THDthuLwl7vIlgDihQMJqIiIiIiIiIiIi0crpyVkRyRyhihaPZBR3U7Ut//IrlULnCub2jx8UIIn7pNDb1AAojBL3Psj78VmQTfOCkuA+UuwQOZkJhJzjhMXjncohVW9v6ToOR381uXZIaIwTtekHVWvv2fQuALASjacGsiKVqI6z7D1RvhO4nQ/9L9PsB7oFUbXnB6shbYMFP3Psc3AybnoetM6GoHAZ+CToMd98n6jEYzW3BdmvktGjai/WP51kwWhq/V26B3E42PAnP9oUj77HCifPpeS8egwX/BUuaBYHvfAfe+zJMetY9mKGwM5y7DGafZj33A3Q6DI69D0p6B1u7JK+0H7TrCYe2tWyr3gC1+6GwY8u2eAzWPQx7P4XinjDsG1ZoXnP7l6ReW8VyK2wvFan83gbJMKDfBdaHa78QDP06rPp7y7aYgtFEJEfFHMKFw1kOqew4Eo79O3z0TecA5Kq1sHcBdD7Merx9jhVw29iaB62Psbdbz9ElfYKsWsReLgajRUrg6P+FD77Wsq1dDzjpaesYaOtrMOcMf+fud6G/47UfAqN/0PB48FUw92L7Y2QnLw6zXvsNviq192Devtg619FY1Xp4aSyMuQ1G/8j+eLuxeACvh0VERERERERERETk/1Q5BKOVhvInGC3i8N6CgtFERERERERERESktfDp9ssiIj4pKrffXrM7/bE3POXe3svnxRwi+aowiWC0cXdYi72zre9UuHAbTJ4F562Ek56BSGm2q5JU9b/Eua16U+bqaCKPAlBEglKxHF49Fj77Maz8C7zzRfjwhmxXlRs2v+jc1pYXrA7z+PPx1jRY+WdY9HN49RjYNc+9f/yQt3E3Pg1bXvXWtzVIJxitar1/dfjJaSF4WoGDZmq7HdwM71wG730ljbkzLB6D2VNahqLV2/ScFZDmdDFk/V1lO4yAqWvg9PfgrM/gzE8UipbLRn3fua1yZcttpglzL4B5X4Xl98L8H8GMMVBrE1BfsSz1ug5ugsrlye83/BfDx+AAACAASURBVFv5FUbYXPlE++1xBaOJSI5yen4KFWa2DjtDvwbTNkHnI5z7rHmg4fOVf3Put+jn8NI42POJf/WJeOV0/J3NYDSwQsDsjl2G3tBwPNbrdCgd5N+chZ2tkMIgdTsBpq6CKW8kt9+GJ+CNs2HhL5Lbb8FPW4aiNbb4V/BcX/vj7cYcA/Ta8HkmEREREREREREREZ+Ypkl1vNK2rSTcPsPVpC5iOAWjRTHNFK+REhEREREREREREckhOZBkIiLSSGGAwWhugRUnPAbhHFjcJZILCjt76zf+ThhybbC1JKOgPfScDO2H5vfCeXEPRmvXPXN1NKGfKRGW3g2HtjXdturvsH9pdurJFWbcPSAu2wubs6mo3DrOTkZdBSz8qXufeK338Rbcltz8+cxp0bQXNbv8q8NPZsx+ezqBg05ha16t+w/seCu9MTJl8wuw4033Pu9f5y2ALhSBrhP/P3v3GeZWfedt/JY0fdx7t3HFBoyNwfTeHXpCKMmmV9iQPEvabsqm955N2M1uCmwCaSS0UBIILfSOKabZuPfumfF4RtLz4uB101GXRtLcn+vS5dG//kbWaCTNOV/BwJkQjRWvRhXftI+F9215I5isux2evBKujcB10X3fL2lfAn8c+EZ/DK6rC75+/qvha5/xRPq6lv4JnvpEdt/D7g75bu5zKkmsMXV73GA0SRUqNBgt5PGs3JqGwtyfhfe/9IPgNVqiG5b8Lv1aOzbCc18Jvl51F9x1Etx2CDzxL9C5oXg1S3sLDbzq4fcPonVwwi0w5vwgDLFxMMz4Vzjwc3uOOybDz1a2GgbBSX+Dhv7FWS+dulYYfjwcdV3uc+d/Pnh82L4m89jt69I/Z96pa3PwfHvZTeFjwsLPe3MAvyRJkiRJkiQVyY5kJ90h78O2xvqUuZr8hQWjAaHfnyRJkiRJkiRVE4PRJFWWxpBgtB0FBqN1rof1j4T3j7+osPWlWtIwKPOY0x+DAz4NEZ9KqAQGHxre192+6+vta4JLPIeAnHTSfTqaYXsSLA458fX1X5e3jkqz5v7ghPowvf2E1eEn5j5n5R3pQ75yCQDb8ER2Jy/XgkIOZutcW7w6iinse4oW8HPVZ0J435TLsltjcY6Bfz1leZqT7HfasgC2vZa6r6eDGZSfaAz6H5i6b/Vd0LYYbj0IFnwvu/WSifCQwp0O/BwMOgTOfCa3WjPZ/18K+3mvBGFBQonO4L2qYr2WkaRiCXtcCgt67Anp3jcCuO882PpKdmst+3MQ+P33U2D13bDxKXjp+3D/+enfJ5IKEfaaNs3JS2XTOBiO+xNcuBUuWAuzvrZvMHK/afmvX98f3toGlybhLeth0JzC6s3VuAth4CG5z1t9N9x9JiQyPC9ee19ur83vOxeWhXyok8FokiRJkiRJklQybfGtoX2tsb5lrKQw9WmD0TweQZIkSZIkSVL1M81EUmUJC0brLDAY7aUfh/cd/vPC1pZqTWOGYLTmkcFJ71Ipjb84dXt3G2x8Fq6rhz8NDy6/a4SnPhGENhQibeCDT5vVyyWT0B1yMNDCq8tbS6VZcUv6/t4eLBRrzm/etoXhfYkcA8C2vJxfDdUml8C4vXWuK14dxRT2fx2JpW7PRv8DoXX8vu0DDoJD/wPGvjnzGq9clf/+5fLaz2Hhr7Ibu+be1O2VEMyg/Ayem7p94S/hxgnpH2ML2W/gTJj55eKtO+HS4q3VU8KChHZshOuHwJ+GwvwvGr4jqXIkOlO3hwU99pTzV4b3Lb8ZHn5P9ms9+sF929bcB8szvNaT8hX22q2S3j+INYR/UER9v/xC0CEIvq1ryb+uQkVjcMrdsP+VMOiw3OZufBKWhHxowE7ty3Kv6b5zUodShr0erqT7iSRJkiRJkiRVqbTBaNHqCUarSxuMVsCxZJIkSZIkSZJUIUx4kFRZGkoQjJZMwHNfDO8fOCv/taVa1Dwmff+cH0PEpxAqsYaBqds718Gdx0JyrxPDXvwOLPh+YXumC5QJOxFQ6i12bAzvCwtM6y02L0jfH60rTx2VKtaU37wtaW7XXA/aSrdWLck1MG53lRqMtvfv+50iBfxcRSLB89low662WAsc8r2g74hf7tkXpqtCH/val8HTn4ZH3lf4Wr398auajT67vPvtHowx5tzirDnt/8GgOcVZqydlChLq2gLzvxCEGUpSJQgNRsvi+VE5NY+AYceH969/uPA9lv1pz+vJJGx6Hhb/HtoWF76+eq94W+r2SgsgTCefMNx++8P0TxS/llzV94NDvgNnPAoXbYeBs7Ofu/RP6fs7VuRX06Pv37ct7PWwr9MkSZIkSZIkqWDt8W2hfc2x1jJWUph0wWhdBqNJkiRJkiRJqgGmmkiqLI2DUrfne6J+dwf85cD0Y3I56UHqDfpOhn7TU/cd9lMY9+by1qPeKdaSun3lbUF4QCqL/rewPRM7Cpsv1bKOleF9XVuCINreatsr6fvTHHzUK0Tz/P7XPx7ely7IMpXeEoxWyMFs3dsgvr14tRRLWNhboSeCjzkbznwKDv46zP42nPkkjDgl6KvvCxPelnmNrS8XVkMpLPpfuGkyvPDN4qzX2x+/qtmQw8u314hToG63g4L7Z3gPJpUZn4Lpn4T93hGEbJx0J8z5XvFq7EnZBoQu/m1p65CkbMVD3huJVWBg0+QPlnb9Rdfs+jrRHQTP3nogPHAR3DgBnvtqafdXbUrEoXND6r6mIeWtpRBDj4Zzl4T3R+qgdUJw6TMZDrsK5j0Ldc3lqjA7sUY4/ZEgIDsbS69P/9q5Pc9gtBW3BeGLuwt7PVxIULgkSZIkSZIkCYC2ROpgtOZoC7FIrMzV5K8uzXvG3WEfwCFJkiRJkiRJVcQjZyVVlqYRqdu3vZbfenedAFteDO8/7gaIRPJbW6pVkQgc83u4+3To2O1EnoO/DlM+3HN1qXepy+MT1zY9E5xAlu/jetpgNPOE1ct1ZDixc90jMPTI8tRSSRJdsDXD89RCA5x6q+U3wcFfTt1nMFpqYSdNZ6tzHbSMKU4txZKMp24vxong/WcEl1RmfQO2vATrHgyfv3kBDJpTeB3F0rkeHv0gJDqLt2a+wYbqeU0joK5PEHpYaqPP3fN6JALTPw4vfie7+fUDgteatfreTDTLIKHVd5W2DknKVthziWwfz8pp/MXw4KWlWz+ZCAKsGgcFAZYLf7Fn/7OfhRGnwpC5patBtWfHBiCZuq+xioLRAFrHwls2wf0XwOq/B21Nw+GIq2HU6T1bWy6i9TDxXTD85OB72ZAmqB3glunQOh76TIR4JyS7Ycnvgw/6iLfnV0PnWti+CppH7moLO2HNYDRJkiRJkiRJKlh7fGvK9pZY3zJXUpj6NB962F3Ih2xKkiRJkiRJUoUw4UFSZek7NXV7xwroSv0HqFCPXQbrHw3v7z8Dxpwb3i/1ZgMOhHMWwSn3BwGCF6yBAz7d01WpN6lryW/ejo3575kuGK1WgxqkbG1fnb5/+U3lqaPStC0OP1F1J09Yzc+mZ2HbwtR9uX6aZW8IRkvECT25Plud64pSSlGFnghe4k9mbRoGp9wLZ6Q5IX7tP0pbQ66W/gniHcVd02C06hWJQN8ppd+nZUwQIrG3cRdlv8bIU2v7uXasAoOEJCmd0GC0hvLWkY1IBM56qbR73DItCGbeOxRtp+U3lnZ/1Z50r7uqLRgNoKE/nHQnnPFE8Brq7FeqKxRtd61j4fRHgr+JpNP2Oqy5Fxb+EhZfG4SiQf6haDtt2evxLOy96lK/HpYkSZIkSZKkXqAtnvqD5lqjfcpcSWHqIuF/w+tOpvuwaEmSJEmSJEmqDp6hLamy9JsW3rf1FRg4C7a+ChueCC4bnwxCcFonwMyvwIADgrFbXoFXrkq/1/hLi1a2VJNiDTDsmJ6uQr1VLM9gtI7l0Dgov7npgtGo4bAGKRuZwnaW3Qizvl6eWirJ9rWZxxgsBCPPgJW35z5v+S0w7Yp92xM5fppl2yKIb4dYU+41VItsw+JOvgfuOiF1322zYcLb4eCvBSeEV4LQYLQyvJ0VrYNBc2C/d8Cia/btf/U/g5/vQ75bGT/nS/+UeUzfqXDiHXDTftmtabBjdRt6NGx8Kv/5kbrgZ7DPJGgeBRse3/P5wJAj4dCfQH2Kg4L7HwD1A6BrU+Z9xr45/xqrQdOw7Mc++XGY8SloGlq6eiQpnUQckonUfZUa9NhvKkx6L7z289Ks37kOVt4Bq+9O3f/81+Dgr5Zmb5VWMgHxziAMcOe/iR37tqXq26d/R+o5qebuSPP8qGFw+b7/YopEYNAhPV1FcUSiwd9EzloAt+xf/PWP+CU8/O7UfXedCPOehQEHBdfDPgCkoX/x65IkSZIkSZKkXqYtvjVle0us2oLRwo9Z6sr1w0clSZIkSZIkqQJ5hqOkytIyFqKNwQkie3vwUuhYCV1b9u3b+DSs/Cuc9SK0joMVt6bfJ1oPU/+5ODVLkoqvLs9gtPYVu04ey1W6oJ1INL81pVoRT/HcbHdbXgyCaftNKU89laJzXeYxBgvBtI/BqjuzD+/aadNzqdtzDUZLJqBtaW3fP7O9TYYfDw2DYMeG1P2v/xpW3wVveh4aBhavvnwlQu4z0TL+XI16U+pgNICXfwzdW4OT23tSvDO78MEznghCrObNh1uzeL5U11x4beo5Uy4P7rup3kMBmPQ+eO1/wudfuCV4b6ZhQO571zXD9Cvh2c+lHzdwNox9S+7rV5OmEdmPXfBdWPsAnPoPiMZKV5MkhUn1nvxO0QoNRoMg3DebYLTxl8JRvw5eH+xYD099EhZdnXney/9ReI07da4Pnmf3tveZEt2ZA8MK7cs1pKzSTgaqa/X5dyXpNw2O+SP8o8jPVaMNQYDx2gdS9986E057KHgO2bEi9ZjGIcWtSZIkSZIkSZJ6obZE6mC0PrF+Za6kMHVpjk3sTuZ4jJ0kSZIkSZIkVSDP0JZUWaIx6DsFNqcIQdjyUvq58XZ47itw+M9g3UPpx56zyE9Vl6RKFmvNb17H8vz3TOwI79v4VP7rSrUg3QnyOy2/Efp9vPS1VJJsgtGi4Z/K2GuMOh1OvA3+fmpu83ZsTN2eazAaBMEH1HAwWi4n9TcOCQ9GgyCMetGvYdpHCq+rUMl46vZyBg6OOhPq+kD3ttT9C38FRODw/+m5gItlN2QeM+K0IBQNoP8B0GcibFuYfk6/GYXXpp7Tf3849QF44Vuw4fFdjxPNo2H8xTD5A+mD0eqagQLCOQ74TBDosPi3sH0VdLdBfd8giKSuFYYdDwd9ofYDwCKR3MavfxiW/AEmXFyaeiQpnbTBaA3lqyNX2YYETbg0eFyOxKBpGEz5cHbBaCvvKKw+gA1PwoNvD0LF6wfAAf8G0z+e+++JTJLJ4PVSysCwTojvSNFWypCyN/qTieJ+n7XIsKvKM/L04q8ZrYdBc8OD0QD+emT6NbyvSJIkSZIkSVLB2uOpjwNqifUpcyWFiUQi1EXq6E5x7JjBaJIkSZIkSZJqgcFokipPv2mpg9GysfxGSP4nJLaHj5n9XWgZnd/6kqTyqGvJb17Hivz3TBeM1rESdmyChgH5r1+pti0Kgt8GHQqt43q6GlWqdD8fO73+m+DE7lqX6IY190J8Oyy+LvP4cgY4VbIRp0DDoPSBXHvr2pS6PZcQsJ22r819TjXJJixuzHnBv01DYevL6ccuurpCgtFC/q+jZfy5qu8L0z8B8/89fMzCX8LQo2HSe8tX1+7WPph5zMwv7fo6EgnuDwu+Fz4+2hj83Kq6DTgQjromvH/ax+ClH+zbPvE9he8dicDk9wWX3m78Jdk9Z9jp5R8ZjCapZ8TTvO6LNZavjlxlExI09s0wat6ebUMOh/3emV04WiG2r4Xb5+y63rUJnv4kLL0exl4QHiaWb0iZqlPLmJ6uQHur7wP7XwkLvlu8NSP1MOYceOn7+a9hMJokSZIkSZIkFawtJBittcqC0QDqIg0pg9G6/LuRJEmSJEmSpBrgGdqSKk+/afnP3b4GVt4By24MHzPhbfmvL0kqj0oLRgNYdhNMfEf+61eaZDI4EffF7+xqO+AzMPPLQZCFtLt4Z+YxG5+GFbfBqDNLX09P2bYQ7j0HNj+f/ZxorHT1VJtoQ27jd4QEo2UTAra3znW5z6km2YTF7Qw6yuYk6g1PFFZPsSRCvq9ImX+uZnwqCDXasiB8zCPvg9HnQlMPnKSeLuhu8ofgoM9D88g92zMFo+33T0EQgGrbuLekDkYbc275a6llk96TWzDauodKV4skpZNI87ovWsnBaIPT9x92FUz+QOr3Oo74ZfC86P7z89s7Ek3fv+VluCXk7x3rHwkuEgSvJVR5Zn87CDFLJoqzXrQehh4D/abDlhfzW8NgNEmSJEmSJEkqWHt8a8r2lmjfMldSuLpIfcr2VGFpkiRJkiRJklRtDEaTVHkGHlLY/HvmhfcNPQaahxe2viSp9GKt+c1rX57/npmC0Z76eG0Fo624dc9QNIDnvwrDjoeRp/ZMTapc6U6Q39098+CSRG2G68W3w02TerqK6hbLMUxhw+Op25MGo+0jLEBsp+mfhNFnBV83ZAiO2OnxK2Ds+TD8xPzr2vIyvH4trH84CFsbejQ0jwnWHHtB5seKsAP0ImV+OyvWCCfcBjftl37cPWfCGY+Vp6bdhQWjjTgN5l6Vum/IUdA4FDrXpuiMwMFfK1p5qmBDjoKZX4FnP7urbfrHYfTZPVdTLRp+cu5z1j8Ogw8tfi0qv/YVsOhq2PISkOzpaqT0ulKfAALk/ly+nKKpT/b4P5M/GP68MxKBsefBQV+A+V/IY+8M4c+Pvj/3NdX7jH0zTLuip6tQKpEInPl0EJLf9nrh60XrIVoHR14Nd58OOzbmvobBaJIkSZIkSZJUsLbEtpTtrbHq+xDBupDjqLrzOcZOkiRJkiRJkiqMwWiSKs+Yc6BlDLQvCx8Tieb3Ce2eXCJJ1aGuJb95HSvy3zOR4SCAlMEhVeyVkKCUhb8yGE37yhQcuLuFv4JJ7y5ZKT0i3gk3ju/pKqpfNI8whZd/ClMv27Mt0+N1KrUejJbuQLZTH4ChR+26nu3t9/KPg8vsbwdBSblacx/cfSbE23e1Lbsx+PeVn8Ck98PhP0u/RljgW7mD0QD6TIDzlsMNo8PHbHgcVv0dRpxUtrJIdIefoL/3z87uojE48PPwxEf27bu4K+hX7YtE4MDPwMR3wcanYMBMaB3X01XVnkgEmkdCx8rs59xxGBx1HUy4uHR1qfQ2L4A7j6395yHqHTIFgPW0gbOD32V7a92vtMHd6W6X7WuD58SqbpFY8Fo21pji34bUfdFGiDXs9nXI3FgzDD4M+k6tzYD5WjHgIHjT83D3abD2gX37j/oNvPBN2PRs5rV2BjkOPgzOXQJ3Hpf6sSudxizDziVJkiRJkiRJKSWTSdriqT8wqDXWt8zVFK4+kvpDhAxGkyRJkiRJklQLDEaTVHmi9XDSnfDQu2DDo0AE+s+AgYfAoDnBZeDBcPthsOXF3NYePLcUFUuSii3WE8FoOQQ/1YIVf0ndvvhaOPo35a1FlS/emf3YR96TWzBaojs4gXTV34Kwo+lXwqgzc6+xlF79GWxf09NVVL98whSe/iSMews0DdvVFhaWlU6tB5Kku01a9wr127Eht7Wf+gT0nQZjzt53z0XXwPNfhW0Lg7bm0dCxPLt1X/vv4LKzvvr+MPxkmPklqH/j01eT8dRzoz30dlbLqCBo7m9Hh495+F1w3pKylcSOjeGh4S0ZAq6mfBg618CCHwQBdsNPhMN/YShab9QyOriodPL53fXMp4PfgT31mKfcJROw4Huw9E/Ba9O2xT1dkVQ8+YQcl9OBn4X737xv+9A0z9uKId3ju48Bufu/oLE0oWLRhpCgsRz6sg44a/C5sQJ1LXDyPfDUx+G1X0D3VqgfAAd9HsZfAmPOh6euhIW/hPj28HV2Pzmtvk/w+vKpK8M/wGKfOvpCv/0L+lYkSZIkSZIkqbfrSu4IDQ1rqcJgtDqD0SRJkiRJkiTVMM+qklSZ+k2D0x8KTihMdAcnwuytcUhua467aN9QAElSZarLMxht+2pIJiESyX1ubwtGqwWdG6B7GzQM3HXirEojkUMwGkDbEmjNEMiz00PvgMXX7bq++i44/mYYfVZue5bS4t/2dAW1IZZHmEJ3Gyy7ESa/f1dbPgdtbV+d+5xqkkhzm0T3Ovht7JvDwzHD3HcOnHIvDDsu+D2b6IIXvwXPfm7PcdmGou1u98CITc/ChseDvSIRSIYETUR68O2soUfBcTcFt0kq7Uth84tQ1xpc4tuhcTDEmopXQ6I7eK0ca4DO9eHjGgenXycaC4LoDvxccJvm8/xJUnbGnBeEQeaibXHwuNh3chCCCEGYRl1LECbpz2zleeJj8PKPe7oKqfgiUYg193QV6Y05Pwh5XX33rrZoI0z9SHbzBx2a377xdkjEU4dnFRLeX3KR9MFgxQgiSxc4lnLPBn+3qbJF62DOD2D2d4Lw/OYRweMjQF0zHPZTmPNDePQDsPBXIWvs9fp893m3zYLNL6SvYeo/F/e1pSRJkiRJkiT1Qm3xraF9rdE+ZaykOMKC0boMRpMkSZIkSZJUAwxGk1TZItHwkJNcg9GO+t/C65EklUdda37zkvEg4Cyf8B2D0arHhifh4XfBpvl7tk/7KMz+buoTklWYXH8+lt0I07I4AX3ZTXuGou1079lw3I0wJiR4qJy2r4N1D/V0FbUhmsdjM8CyG/YMRksXAhamokMJiiAsQAz2DREbeWp+ezz7eTjke/DYh2H9o/mtkY2198PKO2DUGWmC0Xr4cX7M2dAyNghBS+UvM/Zt2+8dcOh/QH0Bnywb74Rn/i0I3Ul0waizYMIl4eMzBaPttPfJ+ZKKb9S83IPRAG6fA0SA5L59c34YBP4YIlMZNj1vKJpq15CjKj+IPBKBY6+HBT+ElbdD8yg46PMwcFZ280ecDPX9oGtL7nt3b4OG/vu2z/9C5rn1A6D/jPSBY4WEjYX1GYor5S9aBy2jQvrqg9eKoXNDXntF6+G0R+CpK+HVn6UeM+fHMPXy3GqVJEmSJEmSJO2jLb4ttK81VjvBaO3xrWzt3vzGmDqaY3kely1JkiRJkiRJPchgNEnVK5dgtFPu92RvSaomsZb853a35ReMFjcY7f8suwmGHp19oEohkskg4KxjBTQMgu4t0GdicNnb1tdg45Pwj7emXuulHwYnFc/8QklL7pXinbmNTxWMtmMTrP0HdG4I7lsDZ8F954avcd+5cNYC6Dct93o3Pg2r7wnuU8NPgNZx2c3r2gLrHoaOVcGJrk3D4aUfkTKMRLnL9/n4iluhfRm0jAmu5xOMtvEp2LERGgbmV0OlS3eb7H27t4yBGf8KL3w9tz3W3PtGQE8ZLPlDEIyWCAlGi1bA21mnPQw3jM5+/KJrINYEc/8r/z1f+CYs+N6u6ytuCS6pRBsLez4lqbhGzYMRp8Gqv+YxOeR5yBMfhebRMO7NBZWmIrn1wJ6uQCqNur4w6xs9XUV2GgYG7wfk855ArAlmfQse+1Duc1MFoy2/NXgNks7BX4UD/i33/SRVuDShg+neF6nvE7xe7H8gPHHFrva61uBvnINmF69ESZIkSZIkSerF2hNbQ/taaigY7Y4N13PHhuv/7/rwhjG8Zei7OaBPmY7/kiRJkiRJkqQiqIAzSSUpT9kGo9X1gSFHlrYWSVJxReshEoNkPPe53W3QOCj3ecksgnaSSYikObmtVtx3LhCBY34H4y4s3T7dbfDwe2HJ7/Zsj9QFJwfP/GJwPZmAZz6bXYjPomsMRiuFRI7BaGvuhfj24ORyCILS7jsv931v2R8uiUMkmt34RDc8cDEsvX7P9tnfgelXpp+77hG4/3zoWJl9feMvgUGHwlMZ1tYb0gTMxZqC+0yYG8YGJwhP/gAkQ8KyMrl+CBz7JxiTJpCvWqW7TSIp3vo5+Ksw7HhYfhO88tPS1ZWvhb8IfgesvT91f6rvqdxaRsH0T8CL385+zms/h4O/ll/waHcHvPit7Mc3Du4dz1mkahFrgBNuhdd/Aw+/s3jrvnKVwWiVYNP83MZPfFdJypCKrt/+MOZ86De1pyspjykfhAEHwd+Ozm1ed9u+ba/9T/o5pz0EQ47IbR9J1S/k5LQ9TPtI8DfNZX+GaBNMfj80jyh9bZIkSZIkSZLUS7TFt6Vsb4o2E6uEY5JyVJ/Ne8/A6h3LuGr51/jU+G8ztinFBxdLkiRJkiRJUgWqvndtJWmnpqHZjRv3VojGSluLJKm4IhGoa4WuLbnPTXVC6k6JOKy8A1b/HVpGw6T3Qn2/zPN2SnZndwJbTUjCQ++EEadAw8DiLr1tIbx+HTz72ZCtu+G5L0HX1iAQa8kfoH1Jdmu3LYJEVxCup+JJ7EjdPvxEWH33vu3J7iAAaOrlwc/xAxfnv/d1Meg3Pfh6yBHQOgHGnh+csL5T2xKY/8UgTCmVpz4Or18LA2ft1piAtQ9C/wNg5GlBuFEuoWhTr4BDf/jG+gajZaX/QbDmvn3bow1BMMBts9PPf/SDwWNSIosgy1SSCfjHRXDBamjon98alWbdo7DsBlhxS/iYVI+HkQiMOj24dKwMTriuNDeMDe+LVsjbWRPfnVswWjIOj/8zHH1d7nutviu75yo75RO+Jqm0ojGY+I4gkHL9I8VZc/Vdwe+3bENkVRobn8l+7Fu3Ba91JVWmoUfB1I/Ayz/Ofk68fd+2dM+vp/0/Q9Gk3irb9ysHHxpcJEmSJEmSJElF1xbfmrK9Nda3zJUUR10Ox8omiPPYlvsMRpMkSZIkSZJUNSrkTFJJykPz6OzGzfhkaeuQJJVGrCW/YLR4SGhIMgmPXw6v/teutgXfg9Mfg+YRQQhXJokdvStwK94By26Cie8s3pprH4S7T4fubqWuyAAAIABJREFU1J+6t4eXvp/fHot/D/u9Lb+5Si3embp90BxYc38QhLa3x/85CPFpnQDx7YXtv+XFPf99/mtwzO9hzDmw+l6464TMa2x8MrjsbevLeYRCRWDy+3KcI8a/NQiDIbln+7iLgtC6t7bB7zMEhSy5PjwY7bgbg/vcg5eGz090wqq/wrgLcyq9Ii38FTzy3iAQJ51IhpDobAOnCzH3v4PwtmU3Fme9TN9zufTbH/pOga2vZD9n8W9h4OzcX6cuuyG38Q0Go0kVa/wlxQtGA9j6GvSbUrz1lLv2pdmNO/luQ9GkatA0PLfxe4fXdqcISttdv2m5rS+pykTCu3rT+8qSJEmSJEmSVKHa46mPXW2J9ilzJcUxuH5YTuNX7VhWokokSZIkSZIkqfiiPV2AJOWteVTmMcf+2RONJKlaxZrzm3f7ofCPi2HT/D3bn/7knqFoAO3LYP6/B18vvjbz2mFhPLVs8wuFrxHfAa/8J/ztWPjb0dmFohXiUQOrii6xI3V7XR/oOyl83tOfggcuKkE9nfDUx2HjM9mFohXblMtgwEHl37faDTsOjvxfaBkTXI82BOEwc68Krte1BEFT6ax7iH2C1XZqGADjL4a+U9Ov0V4DB3d1roeH351FKFodRNKclA3QmNvBcTmb9tEgSPDQnwT1FEPHyuKsU6hIBMa+Jfd5878A29dkHrf2QbjnLPjjIHjt57ntMfiw3OuSVB7TroADP1e89W6fDX87Lvi90La4eOsqOzs2wzP/ln5M49AgJHT4CWUpSVKB6vvlNn7vYLStL6cf3396butLqh0Go0mSJEmSJElSj2tLpP4Q5dZY3zJXUhyz+xxFJN2HduwlLBhOkiRJkiRJkiqRwWiSqlfL6PC+ie+Ci7th7HllK0eSVGSxhvznLvkd3HE4bFsUXH/pR/Did1KPffVnsPDqfYPUUumNwWjZ3C57i2/f87Z65l/hsQ/D2n8Ur65M+3esLs9evUWiM3V7tDFzkFWpbH0FbptV/n37HwgHf7X8+9aK/d4G5y6B85bBhZvh6GuhrnVXf+v49PO3p/nZ3hkCNv3K9Gt0rMq+3koS3x4EoiW64foh2c2JZhFE1lTiYLTmN163tYyG/d5RnDX7H1CcdYphxieCwJtcxDtg8W+D/0sIAu6SCUgmIREPfoetuS8IE13xF9ixMfe6Jr4n9zmSyiMSgZlfCt63mvTewtfrboO198PCX8Hth+X3mKH8JLrhrpPSj7lwK5y/IggJlVQd6nM86WXvYLTNC9KP76nX0JLKI104ecRgNEmSJEmSJEnqaWHBYC2xPmWupDgmt8zgn0ZcQZ9Y/6zGtyUMRpMkSZIkSZJUPbI4Q1aSKlTzyPT90Vh56pAklUakwKeq8Q64aSIc8Fl49b/Sj334Xdmt2RuD0VbeDtvXQVMWITxd2+CR98KyGyEShXEXwoS3w4Lvlb7OvT33RTjsp+Xft1bFw4LRGmDkGcH/eW8w8nQ46jfQkN1BRAoRiYSHHGcKRos1h/dF3zjBePIHoK4PPPi21ONe/BYsvi54jBh9VuZ6e9qOjfDwe2DZDbnPzeak68YsQ9byNfK0XV/P/Rn0mwYrbg2uT/sobHgCns8xbHDIEcWrr1ANA+H0h+HZf4fXf539vCc+Ck/+CyTjwXOeZHfxapr0Xuhv4IZU8aIx6DuluGt2roVbZ8F5i4u7rlJb/XfY+GR4/+QPQn11Hjwv9Wp1uQajte95fdmfw8cOmpN7qK6k2hE1GE2SJEmSJEmSelpbfGvK9tZojn8jqiBH9D+Ruf2OZ13XarqTwXHOz217nBvWXbPP2PaQ71+SJEmSJEmSKlG0pwuQpLzFmiDWkrpv3MXlrUWSVHzFOlHs+a8EAQHFkNhRnHV6WiKX8JUkPPu57IY+/E5Y8ntIdAbBdIuugbtPyzyvFF65CtY92jN716Kw+36sMQi/G3x44Xu0jIUjfgWRCg23PeAzcOLt0Di4pyupbZmC0dI9nu/+e2PCpTD5Q+Fj25fCvWfDpudyq68nPHBpfqFokN39tS7kNVUxTHw3DDx41/VoDGZ8Ek65J7iMPR+mfiS3NSd/EAbMLGaVheszEY76X7g0ueflopBQyZ2S8Tf+LWIo2qA5cOhPireepNIaNS99f8tYeMtGOOX+7NdsXwKr7ymoLGVp6fXp+/sfWJ46JBVXfY4nvcTbdvt6e/C+SJhZ3wiCoiX1TgajSZIkSZIkSVKPa4tvS9neEqvuD72KRqIMaxjJqMZxjGocx+jG1MfhtcW3kUwmy1ydJEmSJEmSJOXHYDRJ1W3iu/dtq+sDw48vfy2SpOKqq8CDDBJdPV1BccS35zZ+0dXQ3Z5+TOcGWHZj/jWVwoLv9HQFtSMREu4TbYT6PnDy3TD94/mvP+ZcOPNpmPhOOPOZ/NdJZdjxQXjbzkusOfu5E94OU6+A4/8CB3+luHUptdYJ6fs3PRveF6nb83rjkMz7vfLTzGN6UttiWHl7/vNHnp55TF2RP+20zySYcjkc8wc4/OeZxzcPD0J/MmkaAcfdGIR+VUuYRKwBzniidOvP+SEc8n2Y+C6Y+B447Kdw6gNBaKWk6tD/QOh/QOq+Q74Hb3oBGgbAsGNgzo+yX/fV/y5OfQrXthhe/Vn6MS2jylOLpOLK9flx927BaMtvDh839gIYcUp+NUmqHnu/N7E7g9EkSZIkSZIkqce1xbembO8TK/IxVD2sJeT7SRBne6KjzNVIkiRJkiRJUn7SHJkrSVXgoC/Axidh3UPB9VhTcAJ+rKlHy5IkFUGxg1qKIVkrwWg5HtQQ74CXfwwzPhU+ZuPTkIwXVlcu6voEgT9Lrw8fs+QP0LkeGgeXr65aFQ8LRmsI/q1rhtnfhtb94PHLc1v7wH+HmV/YdX3AATDoMNjwWF6lAkEY2sl/h0iKLPDkNfDYZfDqf6Zf47yl0DImu/3m/jc8+v592ye+K7v52qU19SdVhlnUMYEb153Dpu4BnL2iD3MG7NaZVTDaVUGYVKVadWdh82d9I/OYwYcFP8uJHYXtBTDtY3DId1P/7KXTMABO/Qfcdz50rt2rb1DwGm/ESYXX1xMGHRKELL7+6+KvPf4SaBpa/HUllU8kAkf8Eu47FzpWBm2tE4LnMX3223PsmHPgiSuyW3fxtTD+Ihh9dvWESVabxy7LPKZ5dOnrkFR89Tm+H9W5YdfXG54KHzf+0vzqkVRdJrwNnv3svu0tY9KHpkmSJEmSJEmSyqI9sS1le0usAj/MuQCtab6f9sRWmmMtZaxGkiRJkiRJkvLj0beSqlvTEDjl3uCEo+0rYdhx0DCwp6uSJBVDfZqDDA67Ch77cPlq2akYoTGVINdgNICnPw19JsG4t6Tuf/FbhdWUq/EXwZgL0gejAVw/BM5fCc0jylNXrQq77+8MRttp6mVB+EY2QREAk967ZyjaTrmGKu1u4Gw45Z7w/kgE5l4V3IfuOjH1mAtWQ9Ow7PccNQ/qWqG7bc/2sRdmv4YCOQSjPbz5cObNv4VN3cHz/y//MMkv35XgHUe+cf/JJhgNYP6X4aDP5Vpp6W17HR55X/7zL1gdBI5lUt8XxpwHS36f/14AZ70E/abmP3/o0XD2S7D2AehYFbQ1DYOhx0DjoMJq62mzvw3Lb4KuLcVbc8plhqJJtWLwYXDWAlj3SPAcaOgxEGvcd1zLWIg1Z/9c/r5zYdL74fCfFbdewdbXYMWtmcc1jyp9LZKKL9dgtOe/Agd8OnhNuGVB+LjRZxVWl6Tq0GcCDJ4L6x/ds33cRQbWSpIkSZIkSVIFaItvTdneGqvAD3MuQLqgt7b4NgbXDy9jNZIkSZIkSZKUnwLONpekChGthyFzYcy5hqJJUi2pSxOMNvbNMPWK8tWyU6Kr/HuWwuYX8pv31CchEd+zrWsLPHY5rLyjsJrq+kLLuMzjog0w4W0w58cwel4QkpfJ058urDaF3/djDfu2TfkwHPIDqO+ffs39r4S5IUEd+Qaj7fcOOPmu7MYOPwFOuQ/6TNy5KQw+HM59PbdQNICWUXDiX6HvG6FQTcNh7n8F91Hlpmlk1kM/s+gr/xeKBpBMRvjIdUm6upNBw+BDs1to/udh28JcqiytjlXwyAfgpv0KWyeX+/HhPw9+t0brg8uY82D8xdnPH3lmYaFoOzUMDAIjJr8vuIw5p/pD0SAI55z5lSIuGIFZXy/iepJ6XH0/GHkqjDg5dSgaBM+PhhyZ27qv/Tf8rgUWXg3JZOF1KrD85uzGGc4sVae6PE56+euRcG0Elv05df+4i8If3yXVnuNvhuEnBc/fYi1BWO2sb/R0VZIkSZIkSZLU6+1IdNKVTP0hsS3RNMcsV6GWaGtoX3t8WxkrkSRJkiRJkqT81fV0AZIkSVJK6U5EjTbApPfCwl9Adxn/QF8rwWgv/SC/eW2LYONTu8KGkkm473xY/ff81qvvD2e/DJE6qO8LiW74fUv4+HnPBiFWdbsdsDHlQzD5A3D3mbDqr6nnLfl9EKBW15xfnYJkyH0/Up+6ff+PBgFpiR3Byd+JHdC5Pvi/i8Qg1pzhpPBI9rUNPAROvQ+I5v5/POxYOPtV6FgJsabCApiGHgVnvwTb10HjYIjk8D1ol2gsq2GdiQbu3nTiPu1bt8M9L8OpM4B+07Lfd/Hv4YAKCFHs2gq3HwodywtbZ9BhuY2v7wPH/hG62yGZCK5veAoW/zbz3EgMpvVAWGm1mfIheOYz0J36U2ez1mcSnPViEGAnqffZ/0pYc0/wWJ2teAc8/C7YvgZmfKJUlfUum5/LPKZpuI/VUrWqzyMYbdP89P3j3pxfLZKqU9OwILh/x+bg/SaDESVJkiRJkiSpIrQn2kL7WmN5/I2ogkUjMZqjrXSk+J7b4gUevyRJkiRJkiRJZRLt6QIkSZKklOrTfPpatB4GzoST7ixfPVAbwWidG2DV3/Kff8dhsOD7QSja8pvzC0VrnQBj3wynPxacKNg4KPg/zRRq1Tx6z1C0nSJRmPy+8HnxDlh9V+51apdEd+r2aJqs7VhD8HMcrQ/+31rHBYFhDQMynxCaLlRs7s9g2HHQ/0CY8Sk49R/B+vkG30Ui0DKqsFC03TUNMRStUFM+nHHI5u7+oX0LViV3XZnwT9ntueyG7MaV0o7N8Id+uYWiDT0mdfuYc/Oroa5l1+/fQbPhtIeh3/67+kecCvOeg2kfC34GR54Jx/8FRp2R3369SbQe9nt7bnNaxgS/J5uGw6A5QRDoqQ8YtCP1ZqPnwXE3w8jToXkUNI/Mfu7Tn4S2paWrrTd57eeZx4x6U+nrkFQa0XoYemxx1+ybQ2izpNrR0N9QNEmSJEmSJEmqIO1pAsFaYmmOWa5SfULC3gxGkyRJkiRJklQt0pzFLkmSJPWgkafD819L3RdrCv4dcjhM/wS8+O3y1JTYUZ59Smnjk5BMFLbGk/8C21fDhidzm3fg52Dml9KPiTaE3871/cLnjTwDIjFIxlP3L7sBRp+VXZ3aVzIkFLBk4TxpgsUmvB0mv79E+6oi7P8vsOymtAFhW7rDHw/67H7OcfOI7PZc/wi8/NMgUKxldJaFFtmDb8t9zsT3BMGAK+/Y1dZvOkz+YHFqGnI4nPXivu1zvl+c9XubmV+Bhb8KAjt3F6mDo6+DcW/pkbIkVZnR84LLTmv+AffMg+4sDly+ZX+4KPwTsCtadwdsehZIwuDDey6IduMzmcc0j4TpV5a+Fkmlc/BX4c7jirde3ynFW0uSJEmSJEmSJEl52ZYmEKy1BoPRWmJ9oWvVPu1tiW09UI0kSZIkSZIk5S7a0wVIkiRJKQ09BlrG7Ns+5jyI7PY0tpxhV4mQcKhqUqzv4YVvwqq/ZTd2ymVw/C2ZQ9EgCIcJE03TV98X9ntHeP+quzLvrdSSifAwvXT/XwVJE3SxMxhRtavvZDj90bT3r83x/qF9rbsHozUMyH7fxy+HG8bAM5+FZDL7ecXQvgxW/CX3efV9g8fXw38Bkz8Eh/wATnsQmoYUv0YVrnEQXLAKDvhs8FgWrQ8CXk9/2FA0Sfkbdgyc8RhM/3jmsfF22Jwi8LLSbXgSbjsY/noE/PVIuGMutIcHqJbU/C+m7+8zGc58GvrPKE89kkpj2LHQlGXIcib1A6CuuThrSZIkSZIkSZIkKW/t8dSBYI2RJuoipfqQ2J7TGk0d9taeJiBOkiRJkiRJkiqJwWiSJEmqTJEoHHVdcALpTn2nwqE/2XPc0GPhgH/bs23S+0pTU7IWgtG6y7fXzC/DpUk47Ccw+k3ZzUkXfpbJrG+F97W9Xv6go1qRjIf3lSoYLZLmpWokTWiaakfLKDjws6Hdm7vDg9FaGna7j9TnEIy20/NfhVV35j6vEJuey3NiJHjcnPRumHsV7P/R3MLgVH71/eDgL8NFHXDxDpj9LRg0p6erklTt+k2D2d+G4/8SPM6k8+zny1NTsSST8Mj7Yesru9o2PA6Pf6T8taz8Kyz7c/oxZ78MTcPKU4+k0hpyZHHWGX5icdaRJEmSJEmSJElSQdpCAsFaY33LXEl5tMRSB6O1hQTESZIkSZIkSVKlMRhNkiRJlWvYMXDuQjj+Zjj5bpg3PwjL2V0kAgd/Fc5+NQhSO/MZmPuz0tST2FGadcspXchVMY16U9pQo1CDDs1/z6YhcNpD4f0r78h/7d4skSYQMFqiT0nsM6k066q6RBtCuzalCUbbIwMxXcheOouvzW9evjpW5jfPEDRJ0u5Gz4OzX4EDPxc+Zukf4cXvlq+mQm14AjY+uW/7sj9D29Ly1TH/y3D36enHHP5zQ3ylWlKs59pTLyvOOpIkSZIkSZIkSSpIeyJ1IFhYgFi1Cwt8C7sdJEmSJEmSJKnSGIwmSZKkytYwEEafBcNPgFh4SA59J8GEi2HgzOBk9BmfLn4t6QKiqkWyuzz75Hv7T/946vb93pnd/KZh4X2Pvj/3epT+PhOtK82eU/85dfuoeaXZT5Up2hjatTlNMFp3YrcryUTouLSWXJ/fvHy1L8t9Tl0rDDmq+LVIkqpb0zCY+SUYODt8zFMfh62vlq+mQqx/JLxvxS3lqWHRb2D+5zOPq6/NTxGXeq36IgSjzf0vGH5y4etIkiRJkiRJkiSpYG3x1IFgrb0sGK0tvrXMlUiSJEmSJElSfgxGkyRJUm2a+K7ir1kLwWiJLILRhp9Y2B6Dj4ChR+c3d8Qp0P+APduijTD5A9nNbxwS3te+DLo8oCNn6e73kfrS7DlwFgw9dq+9ojDlw6XZT5Upll8wWnz3LLR+0/Lbu3treQNjsglb2dukD0Bdc/FrkSTVhqN/m77/5inlqaNQG54I79v4dOn3X3oDPPT27MbWGYwm1ZSGAoPRRp0VvJcRiRSnHkmSJEmSJEmSJBWkLb4lZXtLtDb/1tsSEvjWHhIQJ0mSJEmSJEmVxmA0SZIk1aZ8w3DSqYVgtGQ8fX/rBDjxbzDrm1DfL/f1hx0PJ/01/xN/o/Vwyr0w6X3B/+GoN8GJt8PQo7KbnymMYOsr+dXVm6UL04vWlWbPSAROuBWmfgT6z4ARp8FxN8Los0qznypTtCG0a3M8PBitO57cdWXosVCfZ6DBzVMgmcw8rlCbnkvfP3guTP8kzPpWEDw56FCY9Q045Dulr02SVL36Tc383Hj94+WppRDrHwvv61xXun3jnfDoB+H+87OfU1+bB8tLvVahwWiT3lucOiRJkiRJkiRJklQUYYFgrbHa/FtvazR1MFpb3A8YliRJkiRJklQdSnQWuyRJklSDEjt6uoLCJdOEXEXq4OCvQzQGMz4Jkz8AfxyY2/rH/qnwQIDGwXD4f+c3N1Mg29LroWsL9JkErWPz26O3SaYJBIzUl27f+j5w6I9Kt74qX7QxtKst3hrat3suGrEGmPV1eOzDe6476BBY91DmGl65CqZelkWxBVjyx/C+g74IB31+1/UZnyhtLZKk2jL1Mnjhm+H9K2+HwYeWr55sdayGtkXQOBS2vBA+rpTBaI9/BF7L8TVJXeqDyiVVqaYR+c8dfhKMmle8WiRJkiRJkiRJklSwtkRYMFpt/q23JSTwrS2+jWQySSTfD0CWJEmSJEmSpDIxGE2SJEnKViJNQFS1SMbD+069H4Ycset6ff/c12/IMUit3J7/WnABmPQ+OOw/gyA4hUukCdOL+pJSJRQLD0ZLJKOhfd17P8xN+RD02x+W3Qh1LTDuQhg4C1bcDk9/GjY9E17D45dD8ygYe16Oxedg1d/C+8aUcF9JUu2b+O70wWjPfi74HTnuLeWrKZ1kEl7+CTz5/9IHOu9UqmC0rm3w+v/mPi/ic2Oppow8Nfi53vvxqHkkTHg7dG2GV3+277xIHZxwaxDSLEmSJEmSJEmSpIrRHt+asj0sQKzahQW+xemmM7mdpkhzmSuSJEmSJEmSpNyEn0ksSZIkVbvpnyjuepueLe56PSEsYKDP5D1D0QAiEeg3Lbf1K+ET5LINEnrtf4LQhRe+CS/9CNoWl7auapUulMLwB5VSNDxIIF4/ILwvkaJx+Akw5/tw8FeDUDSAUWfAvKfhzKfT13H/+dCxOnO9+dq2MHV741AYOLN0+0qSal+/aTDnR+nH/ONCePwK2PxieWpKZ9HV8MRHsgtFg9IFo21ZAPHtuc2JNUOfiaWpR1LPaBgIR16z5+veIUfBm16E2d+Cuf8FR/8OorsFOg86FM5bljbkWZIkSZIkSZIkST2jLb4tZXtYgFi1a00T+NYecltIkiRJkiRJUiUxGE2SJEm1a+xbgCIGdS38BSy9oXjr9YRkPHV7NCTgavylpaulVMZfkv3Yl38MT38anvgo3DoL1j5QurqqVaIrvC9aX7461PtEw8ME4tHwg9G6UwWjpTPwYBh3UfoxK2/PcdEsJbpge0jo2pHXlGZPSVLvMu0jMPWK9GNe/jHcNhuW/rk8NaWy8Bp4+N25zelcD8lcf/FnYcuC3OeMPgfq/DRtqeZMuATOXQxH/xZOfQBOuQca+u/qH/9WOOc1OOo6OPluOPUf0Dy8x8qVJEmSJEmSJElSuLAwsJY0x6JVs9ZoeDBaW3xrGSuRJEmSJEmSpPwYjCZJkqTaNWQuHPUbaByyZ3tda/6BTo9fVpqT78sl0Z26PRISjHbAZ2DKZbsCigYcHLSlMuXywusrhvFvheEn5T6vaxM89Yni11PtkiH3GQi/30jFEAsPRktEW0P74vk8RB/xi/T9HSvyWDSNba/DvefAbxuAZOoxLaOLu6ckqfcanyEAFCDRCfdfAPHO0tezt64tQVBxrpJxuO88WP9Y4TWsexgefDv8/XR46J9yn3/4/xReg6TK1DIqeBwdelTq95JaRsOEi2H4CWlfw0iSJEmSJEmSJKnndCW66ExuT9nXJxYeIFbNmmPhx9iFhcRJkiRJkiRJUiUxGE2SJEm1bcIlcMFqOG8pXBIP/n3LZpj3PMSa9xzbPBrOfAaGHRe+XsdK2PRcaWsupbCQq0gsdXs0Bof9BC7cBOevhHlPwwH/GtxWu4s1w+T3F7fWQhzz+/zmrXsoCCzaXTUH4RVDoiu8L9+AQSkb0YbQrni0Obwvnx/ZuhY44bbw/u4iHgjWsRJungzLb04/bu/HWUmS8jXkyOCSjTuPL20tqSz/SxBSnNfcm4Oa1z6U//4rboM7j4PXfwOr/pr7/KlXQH1tfoK4JEmSJEmSJEmSJNWC9sTW0L6WGg1Gi0ViNEdbUva1pbk9JEmSJEmSJKlSGIwmSZKk2heJQsuYXf9GY9BvCpz2IIw8A1r3g/GXwCn3wMCZ+wam7e22g+Guk2Dra2Upv6iS8dTt0br082JN0Dwi+LquFU5/BMZfHNx2o94EJ90FAw8ubq2FaByc/9yb9oPf94X7L4RbZsBvG+C2ObDqruLVV00SIWF6kPl+IxUi2hjaFY80hfZ155tlOOoMIJK6r5g///O/GP5YvFOsCRoGFm9PSVLvFonAiXdkN3b9I9C1pbT17G3FrYXNj3fAS9/Pf/6C76UPA86kvjYPkpckSZIkSZIkSZKkWtEWD/9gzNZY7X4QVljoW7rbQ5IkSZIkSZIqhcFokiRJ6r0GzoITb4NzF8LR10LfyUF7mjCe/7P6brjzeOhuL22NxRYWchWJ5bZOy2g4+rrgtjvhFhh6ZOG1Fdu4i/Kf270Nlv4RtrwYBBhtfBLuPQc2LyhefdUimSYkIlJfvjrU+8TSBaOl6cs3GA2CwMdU1j8CnesLWPgNiW54/deZxzWNCEJsJEkqlvq+MOl92Y3d8GTx908mYdsiWPsAxLfv2bf15cLXX/KH/Otac19hezcNK2y+JEmSJEmSJEmSJKmk2uNbQ/taorUbjNYa8r21pbk9JEmSJEmSJKlSGIwmSZIk7a1xcHbjOpbDqrtKW0uxJeOp2yN15a2jHCa+s7jrxduDsLTeJixMDyBag/cbVY5oQ2hXMk0wWnchwWh1aQ5ye+mHBSz8hvlfgO62zOOGVGDYpCSp+tWl/iTofWwpchhwdxvcfwHcNBH+dgz8aQSsunNXf+e64uyTT4hp9zZI7Mg8bs6Pob5/6r6RZ+a+ryRJkiRJkiRJkiSpbNri21K2N0QaqU9znFq1a4mlPh6uPeT2kCRJkiRJkqRKYjCaJEmStLdsg9EAnv9a6eoohWRIyFUtBlyNPAMGzi7umpufL+561SDsPkMEIr6kVAlF60O74oQHo8ULCkZrDe977suw4Sl4/hvw5JXw0n9A2+Ls1+7aBs9/Nbux4y/Ofl1JkrJVn20w2kvF3feFb8GyG3Zd79oMfz8VVtwRXC9WMNqTV+Y+J9u9J74DjrwGYk17th/yfeg3Jfd9JUmSJEmSJEmSJEll055IHQQWFhxWK/rE+qVsb0tsLXMlkiRJkiRJkpS7Gkw/kCRJkgrUOCT7sTvWl66OUkjGU7dHYuWtoxwiETjqWvjL9OKtueQPcPR1xVsPNJzYAAAgAElEQVSvGiS6UrenCa2SSi0ebQnt6y4oGC3DgW63H7Ln9Wc/C8ffAsOOybz2rQdmV8OAg2DUmdmNlSQpF9kGo219pbj7vv6b1O33nAH7vRO6thRnn0VXw5G/ym1ONsFodX2hvh+MOQfOWQir74b4dhh2PPSdlFepkiRJkiRJkiRJkqTy2RZPHQTWJ5bl39GrVFjwW3s8dVCcJEmSJEmSJFUSg9EkSZKkveUSjFZt4VCJ7tTtkRp9adDQv7jrJeOQTAaha71FspfdZ1Q5+kwMHo/3DiyJtZBoGhE6LV5QMFprbuO7NsOdx8LZr0DfyeHjtrwEbYszr9c0Ao66rvp+t0iSqkN96k+C3sfGJ+Hh98LCXwTXYy1wzB9g9LzU47s74IVvwpp7ofuNg8nr+sLwE2DK5bDttfC9Fl2ddflZ6VwPjYOD5+yLfwuL3/i9OuUyGHFyivFZBKPtHijXPBImXFq8eiVJkiRJkiRJkiRJJdceEozWUuPBaK0hwWhtIbeHJEmSJEmSJFWSaE8XIEmSJFWchkHZj41UWXhNaMhVrLx1lEv9gOKv+exni79mJUt0pW43uEmlFonC5A/t2z7pPcST4cF83fEC9qxryW/ezVNg66vh/Uv/lH7+vOfg/JVw/goYcEB+NUiSlEm0MbtxHSt3haIBxNvh3jfBot/sOzaZhLtPh+e+CGvugQ1PBJc198D8L8BNE4tQeA5e+EZQ0/wvwIOXwvKbg9/Dfz8FXr9u3/Gd6zOvWV/bB8JLkiRJkiRJkiRJUq1ri29L2d4aTR0cVitaoqn/3h12e0iSJEmSJElSJTEYTZIkSdpbMpH92GhD6eoohWRIYlAkPGSoqtU1w6BDU/dNuTy/NRd8D7o78q+p2oSF6UVr9D6jyjLzSzDrWzBgZnA56Isw54fEE8nQKfHwrswSIff3bNw8Be46CbYt3Ldvxa3h88ZfEoShNY+ASCT//SVJyqSrwE98fv4r+7YtvwXW3h8+p7uInzLdPDLzmBe/A79rhOe+tG/fg5dCd/uebZ3rMq9ZZzCaJEmSJEmSJEmSJFWz9kTqv123xGo7GK015Ptrjxfxb/mSJEmSJEmSVCIGo0mSJEl7GzQ7+7GxKgtGCwv9qeWQq5lf3jfAbtY34bD/yG+9+HZYfXfhdVWL7WtTt0fqy1uHeqdIBGZ8AuY9E1wO+jxEoqTJRaM7JP8xK/ECQw9X3w1/OwbinXu279gYPmfMeYXtKUlStgbPLWz+lgV7BottXwPPfrawNXMx/JTsxiW6wvtum7Xn9bbFmderNxhNkiRJkiRJkiRJkqpZW3xbyvbWWG3/PTgs+K0tsY1kspBPIJUkSZIkSZKk0jMYTZIkSdpb637Qb3p2Y6stHCoZkhgUiZW3jnIadQac+gBMvQKmfBiO/wvM+GRha3auK05tlSyZhBe+BY9fnrq/lsP0VPHiifz6MooU4W2SjpWw9Ppd15NJaF8aPn7UvML3lCQpG4MOgcbBha2xMxht/pfghjGw6dnC68pWrAEmvbewNba+Ahue2HV9y0uZ54S9hpIkSZIkSZIkSZIkVYX2kGC0lmjq4LBa0Rrrl7K9O9lFV3JHmauRJEmSJEmSpNwYjCZJkiTtLRKBI36Z3dhotQWjdaduj9R4yNXgQ+HQH8JhP4XRu4UQHfBv+a1XX9ufEgjAmnvh6U+F91dbKKBqSrrws+5CgtHGnFvA5N08+DZ47HL4ywFw28HQtSX1uCmXQ31tH1wnSaog0To46lqINua/RrwDVv4V5v87JLqKV1s2og1w0BdgwEGFrXP7obD+seDrLQsyj+/aWth+kiRJkiRJkiRJkqQe1RZP/Xff1lhtHwvamib4Lew2kSRJkiRJkqRKYTCaJEmSlMqQw+GIqzOPq7ZAsWQ8dXskVt46KsW4C4FI7vMKCZOoFq//Jn1/tMru+6opiWR4X7rQtIz6TYf+MwpYYDev/BQ2vwCb5oePmfnF4uwlSVK2Rp4G5y2BI6+BaR/LfX68AxZ8r/h1ZSPaAC1j4LSH4YTbClvrjrkw/0vQ9nrmsWEBp5IkSZIkSZIkSZKkqtBrg9Fi6YLRtpWxEkmSJEmSJEnKncFokiRJUph+UzOPSXaVvo7ddW2DF78D954L/5+9O4+P667v/f/+zqbdliyNFie24zh7AtkJWYCQBZJSoATKvhVoadNLgUJb2lsaKC3w47LcUlpogQa4BUpICaUUAmHPBiQBErKROImdxYtGtixb6yzn+/tDsS3NnO+Zc2bVjF7Px0MP63y389FYOkejmfM+t10pzT4ebb7N+7ev1pCrgdOk874kJddGm+dl61PPSvLQZ4L7Wy0UEG0lKPwsX00wmjHShd9aPDbUW0da6his/34AACjWOSxtfo208SXR537zeGnnd2pfUxix5OK/iW5p/WXSmhOqW+/XV0kKSFs9KM+bwQEAAAAAAAAAAACgVeVtTgt23revOyA4rB0EfX0znn9YHAAAAAAAAACsFFzJDgAAALh0DJUfU/B/s0RdWE/68W9L4z8+3Lb9K9Jlt0m9R4dbw3MEo63mkKujXi5t/F3p7vdJd7833Jx2D0azIQIiDgZTAE1QCPgWDQpNC6Vnk3T5L6WZx6TUWim5RlrYI81sXwySiaWkRJ90z/ule/6u8v1UG+YCAEC14t3NriCaWGr5dtd6af/99d/vkS+s/z4AAAAAAAAAAAAAAHUxW5hx9vW0eTBa3CTUGevSvDdX0jdbIBgNAAAAAAAAwMq2itMPVjdjzAmSTpV0pKQuSfOSxiVtlXSntdb9l//yayclnS9po6QxSdOSdkj6pbV2W3WVAwAANNBKC0bbfs3yUDRJyu6VHvgn6YyPhFvDFvzbTby62lpdLC5teUN7BqM98S3prndLs9ultSdLT/uMtObY4Dlb/6X8uqs5TA9NFxR+VnUw2kE9Gw5/3jG4+LHUqe+TOkekO95S2fqjF1deGwAAtZBo8WC0nk2N2e9Rr27MfgAAAAAAAAAAAAAANTcTEADWE+trYCXN0R3r9Q1GmylMN6EaAAAAAAAAAAiPK9lXEWNMv6S3SnqDFkPLXArGmF9JutZa+8EI66clvVfSyyStc4y5RdJHrbX/GbpwAACAZkmuXbz4PigEq5HBaPd/2L999w/Cr2Hz/u0xnhqoZ6N0zB9KWz9VfmyrBKPtu0e68XckL7e4Pf4T6TtPk164TUqt9Z/z6LXSbX9Ufu3UQM3KBKLyrLuvZsFoYRz/v6TsHunX74k+95g317wcAAAiiTc5GC3WsRg8Orcj5Pjk8u1Nr5Aevrr2dS21/nnS0Hn13QcAAAAAAAAAAAAAIBJrrX62/4e6b+ZXmvGCA77mCjPOvu54b61LW3F64n3am8+UtM8WBaMtePP6yb5v6+G53yhnS98jG1dcmzqP0TP7L1dvYk3d6gWAYtZa/Xz/j3XvzC814/mHXQ4kBnV633k6qef0BlfXmqbyk7px3/XanX1CR3Uep2f2X6Zk8U0rQ8h5Od2479vaNv+ghlPr9Yz+y7Q2wTUGAAAAAIDaIf1glTDG/K6kT0oaDDE8LulMSUdKChWMZoy5XNLnJA2XGXqepPOMMV+U9GZrrfsVBgAAgGYzRlp3ljRxi3tMo4LRrJX23uHfN/mrCOsU/NtNPHpN7ejsf5bS50lb/1XK3OQe1yrBaL/+m8OhaAfl9kmPXStteePydi8n/fQN0rZ/D7f26MW1qRGoQFD4Wd5xmKubp1wl9T9VeuIb0twuaWabtP/+4DlnfULqGm1IeQAAOCWaGIx2/Nulza+SBk6XHv68tPv7UvfGxd/BMzf6zyl+893IhVLfcdKBB2pf36ZXSMPPkI5+oxTjuRIAAAAAAAAAAAAArCRf3v1J3TT13arWSJqUUrGOGlW0cvXE+3zbl4YL5bysPvbYX+vR+a2Ba/165jb9fP+P9Y6NH1BfwnFzXgCosa+Of0Y/2vc/ZcfdPHWDXj78Zj1z4PIGVNW69uX36sPb/+JQaOYdB27SndM/1Vs3vE/xCNeUFGxB//j4e7R17p5DbT+d+oHeufGD6k+GuYQZAAAAAIDyYs0uAPVnjLlK0jUqDUV7VNL3JH1Z0nWSfiopclCZMeZCSV/X8lA0K+kOSV+VdIOkiaJpr5L0ZWMM34MAAGBlW1/mhTGvQcFouf3B/dmpcOt4ef92Q2aypMUwvM2vkZ79HSmWdI9rhWC0/Kz02Nf8+372Jmn64cXPpx+WHvhn6T9S4UPRRi6Wjn9rbeoEKhAUjFbwbOMKOWjDi6SnXy09+9vSb98nnfVP7mPIUa+Sjr2ysfUBAOAn3qRgtCOeL535UWndmZKJSVt+Tzrv36XT3i+tPdk9zxSdW2NJ6ZzP1r6+0z4onf8l6dg/kuLR74QKAAAAAAAAAAAAAKif8ezOqkPRJHdgWLvpjvf6ts8Wpg99/svpW8uGoh00ntuhW6a+V5PaAKCcvbmMfrzv26HHf3PPl5W3ufIDV7Eb911/KBTtoK1z9+qemTsirXPPzB3LQtEkaW8+oxunrq+6RgAAAAAADiL9oM0ZY94h6T1FzV+W9AFr7a99xscknSvpxZKeG2L9IyV9TdLSK8RulvT71tr7lozrkPRmSR+WdPAKtudL+jtJfxXyywEAAGi8ztHg/kIDgtEKC9IPy/xqNrNdSj21/FrWEYwW46nBMoluaexy6Ylv+Pe3QjDaT14Y3P+NLdLRr5e2XyMVZsOve/GPpPR5wcFxQJ0FZZ8VmpCLVuK4K6Wx50iZW6TCjBRLLQZcrjtLSl+wGMIIAECzxTubs9/Nr3P3xQPuxu0XUjZ8gfSSfdLDV0u/eHv1tUlS1/rarAMAAAAAAAAAAAAAqLkHZu+qyTp98bU1WWel64n5B8BNFw4c+vz+mTsjrfmb2bv03MEXV1UXAITxwOzdsgq4m3KR6cJ+7VjYro2dx9Sxqtb2mxn/8+j9M3fpqb1PC7+O43x8/8xdev7QqyqqDQAAAACAYqQftDFjzKmSPrikKSfpldbaa11zrLWeFoPNbjbGhPn+eK+kgSXbt0i6xFq7LCHEWrsg6ePGmEclXbek60+NMf9ird0eYl8AAACNl+gO7l+YkHLTUtL/jmo18eg10p6fBY+Z2SYNhAlGK/i3m3jkstre06+W/nPQv68RgXjVmM9Iu0Lcke/hz0Vb9+xPSSPPqqgkoJYKAe9xyDsOcw3Xd8ziBwAAK5UxUv9TpH0l98+QTEyy4d9UqFhKGr5Q2hXirtwbXhS8TtS+1FrphLdJg+dIN5xXfv/ldI1VvwYAAAAAAAAAAAAAoC7Gsztrss5JPafXZJ2Vrjvu//7m2SXBaJlctMc0k9tVVU0AEFbU45MkjWd3EYwWwPWYRj4XZP3PBZwjAAAAAAC1FGt2AaiPJ0PN/k3Lw+/eHBSKVsxamy+zj2MlvW5JU1bS64tD0YrW/Lqkzy9p6pB0VdiaAAAAGi5eJhhNkr57jpSfk6ytTw33/9/yY2ZC5sx6jl/xQmXirjId66RhRwjYXe9ubC1RhQlFi6ojLW1+Te3XBSoQFIwW1AcAAIps+YPStrHLwz0PWuol+6Sn/E35cSf++WLomku8091nksFrD50jDZxWvoZyuo6ofg0AAAAAAAAAAAAAQF1UEpJT7MiOzbpo4Pk1qGbl63EEo80Upg997gq3cdmbyyhvc1XVBQBhZCoIw6zFeaJdzRVmdaAw5ds3ETHQzBWANl2Y0lxhNnJtAAAAAAD4If2gff2upDOWbH/fWnt1jffxSknxJdtfs9Y+GGLe/6flgWovNcZcGRSoBgAA0DSJEIEAU/dK13RLyTXS6HOks/9J6hyuXQ2Tvyg/Zs/PJL0leMzMo9Lu7/v3mbh/+2oXS7n75sdr+/9cS/M1vtPS+t+Wzv5EuJ8HoAG8gBzKPMFoAACEd/z/koyRtn5ayk5K639LOuMj0jU94dfo3igluqSBEHfT7hor07/e3Rf0u7m0GLh20fekO94u7bpB6j5SOuEd0sizpNuulCZuleZ3B6/RvVHqOy54DAAAAAAAAAAAAACgaVwhOcd2nayjuoJf740ppg2dW3RSz+nqjHXVo7wVpyfe59s+6y0Go817c9pfmPQdc0rPWbp75vaSditPe3LjGklx4zEA9TXuCDnb0nWipgv7tTv7REnfRMSwx9UkKPxsIrtbni0oFuK6Es8WtCdordwubYgfXVGNAAAAAAAsRTBa+3pz0fb767CPFxVthwpes9beZ4z5maRznmzqkfQcSd+oYW0AAAC1EY/wxofcfumxa6U9P5de+MjihfnV8kLeUW3bF6Wnf16KOV6IKixIN5zvnm94auArKHxh+1ek48uE0RUWpKl7pDUnNDZUbGGi+jVOeId0xoerXweog0JA+FlQHwAA8HHcHy9+VCvRLXWkpYWMe0y5YLQ1J7j78gfK19AxKJ33hdL2Z15X2vbIF6VbX72kwUhP+Rv3cyoAAAAAAAAAAAAAQFN51lPGEcRyQf9zdPaaZzW4opXPFYw2U1h8Dd4VNCdJL0q/TvfM3CGr0juZZrI7CUYDUFfWWmWyO3z7zl17sXYsPOobjJZxhKkh+LEpKK/J/B4NJsvfOH5ffq/yNh+wn13a0EkwGgAAAACgejVIasBKY4w5RtLSv+Zvk/TDGu9jVNKpS5rykm6OsMSPirYvr7YmAACAuqgkzGr2Uelrw1IhW/3+p7eFH5u50d33xDek2cfd/Vz871D6Zo5DDmwNnvrwF6Rr+6Xrz5SuHZDu+0htSwtSbTDaeV+STv8/takFqIOg8LM8wWgAADTPuT6hZEuVDUY73t1XmIteT5DNr5Ke81Pp6N+Tjv1j6eIfSFveWNt9AAAAAAAAAAAAAABqZiq/Vznr/97cdHJ9g6tpDd2xXt/2nM0q6y04g+biSmgktV79iUHfftc8AKiVGe+A5rxZ377h5JjSyVHfPo5Pbpls8GMTFJYZZVzYdQAAAAAAKIdgtPb07KLt71trAxIdKnJK0fZd1tqZCPNvKdo+ucp6AAAA6iNeQTCaJC3ske5+X/X7XxgPPzYTkFO757bguQceCr+f1SQofCEoNG/yTumnr5MK84vbXlb65Tulnd+tbX1LTd0r3f8P0l1XSVv/tfJ1nvK30lGvkIypXW1AjRUCnuEGhaYBAICQjr2ysnn9xX82LtK7Jbi/c1RK9vv3pS+orKYgQ+dIT/836exPSCMX1n59AAAAAAAAAAAAAEDNZHLuoJXhVJkbda1SPfE+Z99sYdoZXjOUGlHMxJV2PK6E3gCot6AQr3RqzHl8msrv1YI3X6+yWlrQeVSSJkKGypULnwu7DgAAAAAA5RCM1p6eVrR9qySZRZcYY642xtxrjJkyxswYY7YbY75njHmXMeaokPs4qWh7a8Qai5M3itcDAABYGYLCr8p57KvV7z93IPzYu/5a2v9gabu10n3/J3juWn4d85X3v8uUJCne5e57/Ov+7Y9dV109Lls/I33rqdIv3ibd/bdVLGSkza+uWVlAvXgB4We5QuPqAACgbR35O+HH9h1z+PPuI6WRi/zHpZ8hdR8RvJYx0jFvKm3v2SQNnBa+JgAAAAAAAAAAAABA23GF5PTE+9Qd721wNa0h6HGZ8Q44Q3LSybEn/x317S8XrgMA1RrP7vBt7zCdWhMfcB6fJIK5XMqFWo6HDL0sdw4Iuw4AAAAAAOUQjNaeziravu/JwLPvSbpB0uslnShpjaRuSRslXSzpA5IeMMb8kzGmXALIMUXbj0ascXvR9qAxZiDiGgAAAPUXryIYbXrbYihZFE/8j3Tr66WfvkHa8R0ptz/a/G8eJ930Uun7l0i//HPpwEPSxE/Lz1tzQrT9rBaFCoPRfv0e//atn6qqHF+zO6Sf/75ka5AGdcE1Uu/m6tcB6qwQcGidzzWuDgAA2tbYpdIZHw33fOjEdy7fPvcL0rqzl7etO1M6/z/C7fuUq6SNv3t4u+9Y6cLrJcPLGQAAAAAAAAAAAACwmo3n/ENyDoZ4oVRPUDBaYdoZXjOcOhiM5v/YukLqAKBWnMGNqVEZY7QumVbMcXk0xyh/mTKBcWED5coFrBGeCQAAAAColUSzC0BdFP/VuVvSbZKGQsxNSrpS0rnGmOdZa11/hegv2h6PUqC1dtoYMy+pc0nzWkmTUdYpZowZlpSOOG1LNfsEAABtLlFFMJq3IOVnpGTIu9A9+Cnptj86vP3w1VL6/Oj7ffSri//u/r70yOel9DODx/cdKw0/K/p+VoN8QDBaLNm4OoJ8/YjarPPSmeq+34EGKnjuvpls4+oAAKCtnfB26Zg/lKYfkvb/RrrpJaVjerdIIxcvb+s+Qrrs54tB0bOPSd0bpN6jwu832bsY2LuwR1qYkPqOk4yp5isBAAAAAAAAAAAAALQBVxALwWhuCZNUh+nUgp0v6ZstTLuDh558TNMp/8d2IrdbBVtQ3MRrVywALOEKNzt4fIqbhAaTw75hX+UCwFajrLegffk9gWPCPm7lAtT25fco6y0oFesIXR8AAAAAAH4IRmtPxaFlV+twKNqMpE9J+rakxyX1SDpV0hskXbBkzumS/tMY8yxrbc5nH8XpHnMV1Dmn5cFofRWsUexKSVfVYB0AAIBF8a7q5mf3hAtGs5706/eWtmdurm7/8+PSY9e6+9PPkM79XPjwttWmEBCM9puPSye8zWdO6ZtH6mbP7ZXNMwlJnpTok0aeLZ31CULR0FI86+7bGim2GwAABEp0Sf2nLH6c+wXp1tce7hu9RHr656V4yn9u71HRAtGKdQwufgAAAAAAAAAAAAAAIGncEYw27AjvwqKeeJ8W8qXvbZ3MT2gqv9d3zsFANFfonKeCJnMZDaVGa1coACzhDG5ccsxPJ8f8g9Ec54vVbCK3u/yY7C5Za2UCbmJprXWG1i21JzeusY4NkWoEAAAAAKAYwWhtxhjTIak4Sv3IJ/+9V9Jl1trHivp/IelqY8w7JH14Sfu5kv5C0t/57Ko4OaOS9Ic5SQMBawIAADSfiVU3f2FC6tlUftye26X5JtyZ6NKfNH6frSQfEIw284j00L9JW96wvP2W19S3pqV2/yDa+Ct2S53D9akFaKCCF9z/lds8vezsKo/fAABguc2vWfwAAAAAAAAAAAAAAKDBrLWhQnJQqjveq735TEn79vmtzjnp5GLg2VBqxDkmk9tFMBqAunGFmy0NbBxKjUo+b/ef8AlLW+3ChMUt2HntL+zT2sSAc8yBwpQWbPlLiTO5nQSjAQAAAACqxlXC7SfuaJ+SfyjaIdbaj0j6WFHz240xYQLLbMj6qp0DAADQWuYnwo1bGK9vHX5O/0jj99lqbJn0pYc+s3x7fkJ6/GvBcwrZ6mpa6p4PhB+bGpA60rXbN9BE5YLRPnsTTzcBAAAAAAAAAAAAAAAAoF1MFSaVs/7vv1wakoNSPXH/y8K2zT3g2x5TXOuSizfh7Yx1aU3cPyAnTMgOAFRipnBAM94B376lYZiu478rSHM1C/uYTGSDQ+XCHvszZdYBAAAAACAMgtHajLV2VpLfJeIfDQpFW+LdWgxRO2idpMt9xk0XbXeFqzBwTvGalfhnSadE/HhhDfYLAADa2ZrjK587+2i4cbYJIT7dRzR+n63m9A8F90/cunx7/33lw9S+/2xprgYvts48JuX2hR/fNSYZU/1+gRXAK3PI/N59jakDAAAAAAAAAAAAAAAAAFB/49kdzr7hFMFoQbpjfb7t4zn/x3QoOaK4iR/aTqdGfccRPASgXoJCtYaXhKG5jk97cxPK21zN62plYYPKyh3bM7lw60yEHAcAAAAAQBCC0drTjE/bF8JMtNbOSPpaUfOFPkNXZDCatXbcWntPlA9JD1W7XwAA0OY2vry0LbVOevGEdM5npfO+KCXX+M/9+R9Ik3eV34ctVFdjJboIRitrvV9GcICc/52plpm4Rbr+TClzS2U1HfTQZ6ONH76wuv0BK0ihTP4gAAAAAAAAAAAAAAAAAKB9ZLL+QS3dsV71xP2Dv7Ao6uNTHDSUTvoHz4UNxwGAqFzhXEmT0prEwKFt1/HJytOe3HhdamtVYcMsyx3bQ6/jOG8DAAAAABAFwWjtaV/R9m5r7bYI839atH2iz5ipou10hPVljOlVaTBacd0AAAArwyn/WzrqNZLM4nbXeumi70odg9KWN0hHvVJae7J7/s/eJD3yRenmV0q3/4m05/bSMc0IRus9uvH7bDU9m6R4Z/AYaw9/ng8RjCZJczul718o/eId0i//XLrpZdKDn5S8CN8Hd783/FhJ2vLGaOOBFYxgNAAAAAAAAAAAAAAAAABYPVxBLcMp/1AcHNYT7400Pp1cv3zb8RgTegOgXlzHl3RyTDFz+JLooeSIzMFrPEKusVrVKtBsIhsuFJPwTAAAAABALSSaXQDq4gFJG5ZsR/0rzo6i7UGfMQ8WbW+KuI/i8XuttZMR1wAAAGiMWFI67wvSmR9bDLRae5JkijKGEwF3U9t7m3Trqw9vP/Rp6Vn/LY1ecritMFfbmstZe4rUvb78OEgbXixt+6K73+Ylk1z8PBcyGE2SvJx0/0cPbz96jbT7h9L5X5GM/wu0h9x1Vfj9SNLGl0rrzog2B1jBPFt+zHfusXruyWV+lgAAAAAAAAAAAAAAAAAAK14mW3yp06J0kmC0crrjAe9x9pFOjS7fdjzGmdwuedZbFlIEALUw7gjxKg5qTMZS6k8MajI/UTKWYK7D8janvbnSx8jPRJnHLWzA2p7cuAq2oLiJhxoPAAAAAIAf/vLYnu4p2l6IOL94fKfPmPuKto+JuI+ji7bvjTgfAACg8ToGpf5TSkPRJCkZ4U0DhXnpB5dK1x0p3f6Wxe38TO3qDGPsOY3dXyuLdQT3e9nDn+cjBKP5efSr0tTd/n2PfV361mnSl4x099+617j8V9KZH5d6t0idw9Lxb5PO/ixCrxkAACAASURBVGR1dQErTMErP+bdXw8xCAAAAAAAAAAAAAAAAACw4rmCWIpDclCqJ94bafxwURDacFFQ2kF5m9O+/J6K6wIAl0zWccxPlh6PhnzaFtcgGO2gPblxWYV7X3W5xy1s4JyngiZzmVBjAQAAAABwIRitPd1VtN0fcX7xeL+/UhenNTzVGNMdYR/nl1kPAACgtUQJRjto7gnpgU9IP36BNPmraHOf/nlp4Izo+zxo7cmVz11tYqng/sKSXOHc/ur399BnS9t23iDd9GJp353Bc/tPlQZOlY5/i/SCrdIVu6UzPyZ1rKu+LmAFCROMdvt2yfNs/YsBAAAAAAAAAAAAAAAAANSNtdYZ1JJOEoxWTncsWjBacdicK3RICh+QAwBRuMIwh33CMP3agtZYjVxBc35mvAOaLUz79s0WpjVTCH8j+XH+DwAAAAAAVSIYrT19W9LSq7+PNsZ0Rph/StH248UDrLU7tTyALSHpggj7uLBo+9sR5gIAAKw8iQqC0Q7adYO09VPR5nQMSVveUPk+1xxf+dzVxuaC+72lwWjhX+hz2nVDadvWf5VsiCSoza+tfv9ACyiEzDub8H9dHgAAAAAAAAAAAAAAAADQIvYXJrVg5337XIE4OKwnHv49zjHFNJgcXtbWHe9Vb3yN7/goYTsAEMZsYVrTBf+bladT60vbHAGZHJ8Oixpi6Ro/EXGdCUeoKQAAAAAAYRGM1oastTsk3bqkKSnp4ghLXFa0faNj3HVF278XZnFjzAmSzlnSNCPpu+FKAwAAWKGSVQSjVaJjSDr69RVONtKaE2tZTXvLzwX3F5YEo+VrEIw2da9ki1KfHrs23Nzjrqx+/8AKZ60t+RFx2TlV31oAAAAAAAAAAAAAAAAAAPUVFG7jCsTBYVGC0QaTw4qbREm7M3goR/AQgNoKCt9KJ0dL2oZSpW2StCc3Ls8WalZXK4saEucaPx4x6IxzBAAAAACgWgSjta+ri7b/NMwkY8wzJD1tSZMn6VuO4V+UtPSvQ1cYY44NsZu/KNq+xlrHrVsAAABaRdL/Tmh10zkkJXqkZ30z+tz1z5M61tW+pnZVKBOM5i0JRsuVCUZbd6Z06U3l9/mzN0lexBdiL7lRindGmwO0IC9kKJok7dhXvzoAAAAAAAAAAAAAAAAAAPU37ghW6Yr1RAr9Wq164r2hx7oC0NKO4KGoYTsAUI4rfCtpUupPDJa0+4WlSVJBeU3mJ2paW6vKBITNRRkfNegs6n4BAAAAAChGMFr7ulrSfUu2LzLGBIajGWOGVRqodo219iG/8dbaByV9fklTStLnjDHONAZjzAslvX5JU1bSe4PqAgAAaAmJBr+xIvXki3qp/uhzz/nX2tbS7soFoxVCBqOtOUG64Bopfb7UVeYOhQ//m/TwZ6W7rpJ+ckX5Gs/4v9LwBeXHAW2g4IUfu3MqQooaAAAAAAAAAAAAAAAAAGDFcYVvpVNjMsY0uJrW0x2LEIyWcgSjOQLTJgi9AVBjmdwO3/ah5KhipvRyaNdxS5IyjpC11SZqiKVr/ETEx5PHHwAAAABQLYLR2pS1tiDprZKWXjL+EWPMPxhjBorHG2MukXSzpC1Lmicl/VWZXV315LiDzpP0PWPMCUXrdxhj3iLpq0XzP2Kt3V5mHwAAACtfo99YkVyz+G+8K9q87iPLh3JhuXLBaF728OfZPf5jNr5Uet69Uu/Ri9smWX6/P3+zdPffSo9fFzzu6DdIJ7y1/HpAm/AiZJ3tmKpfHQAAAAAAAAAAAAAAAACA+svk/ANahh1hXVguGUspZTpCjXUFDA0lR33bM9ldspYbmAKoHXcYpv9xqDPWpb74Wv+1CG9UwRa0Jzfu27cukfZtd4Veus7Ha+MllysfWsezEe6IDQAAAABAEYLR2pi19gYthqMt9SeSdhtjfmKM+bIx5uvGmG2SbpB0zJJxWUmvsNY+UmYfj0u64snxB50v6V5jzG3GmK8YY66X9Jikj0tamgDxTUnvruBLAwAAWHkWHIFY9XIwiC3eHW1euZAvlCobjLYg3f8P0rdOlSZu9R8zctHy8LxYqnb1DT+zdmsBLaAQ4fXxnQSjAQAAAAAAAAAAAAAAAEBLG3eG5BCMFlZ3vDfUuLQjbG7Y8Vgv2HntL+yruC4AKOYKM3Mdn4L6XCFrq8lkbkIF5X37Tuw5zbfd9bi5/m9O7Dndtz1ns9qfnwxRJQAAAAAA/ghGa3PW2k9IulLS7JLmpKRnSHq5pBdK2lQ0bbekZ1trvxNyHz+S9CJJmSXNRtJZkl4q6bmSiuPjvyzp5dbaQqgvBAAAYKVrVjhVImIw2nF/Up862tmGlwT33/MB6Rdvk/bd5R6z5oTl28f8fvV1HTT23NqtBbSAKMFou6a4EyUAAAAAAAAAAAAAAAAAtCprrTOgJSgkB8v1xPtCjXMFoAU91gQPAagl5zE/IAxzKDXqv5YjyGs1yeTcx+iTHIFmU4VJLXjzy9qy3oKm8nsjrSNJ4wH7BwAAAACgHILRVgFr7SclPVXSv0s6EDB0l6T3SDreWntLxH18S9Ipkj4lKSjG/aeSXmKtfaW1dibKPgAAAFa0wXOkRLg3DVQtuebw553D0eZuuKK2tawGm14W3L/jf8qvseb4ojVfXnk9S41dLnX5v5ALtCsvQtbZDm5ECQAAAAAAAAAAAAAAAAAta39hnxbsvG+fK8QLpcIEoxnFNJj0f19yT7xPXTH/mzkHhe4AQBRzhVntL/i/+Xc4IKDR1Udwo/sxWBMf0BEdm53zJopC5Yq3l9rYeYx6Yv7nmaB5AAAAAACUk2h2AWgMa+1Dkl5jjOmSdL6kIyWNSspKyki601p7V5X7GJf0R8aYtz65j01P7mNG0hOSfmmtfaSafQAAAKxY8Q7pnE9Lt7xKsoX67uv0jyzZb2f4eSf+mbT25NrX0+56NkqnfkC68y8rm5/slzpHfNb8e+nO/11dbWd/orr5QAsqeOHH7pyqXx0AAAAAAAAAAAAAAAAAgPoKCrVJB4TkYLmeWG/ZMeuSaSVM0rfPGKN0ckyPLjxU0pfJEnoDoDaCQrTSAWGY6ZT/jcYncrtkrZUxpuraWlXG8ZimU6MaTKYVU0yeSt+cncnu0hEdRx3aHnecj2OKaTCZ1lBqVDPzB3zWIZwOAAAAAFA5gtFWGWvtnKTv1XkfWUk/rOc+AAAAVqRNL5MGTpN+/ofS+I/qs494t7TxxeHHP+M/pQMPSukLpKHzpFX8ol5VTn5X5cFoI8/yf9xP/itp9NLF75fJX0Rfd/BpUu/RldUEtLCowWir/Q0NAAAAAAAAAAAAAAAAANCqMjn/QJXOWLd642saXE3r6o6XD0ZLJ/2DhQ71pxzBaI7/IwCIynU8SZiEBhKDznlDjqDMrF3Q/sKk1ibW1aS+VuR6TNPJUcVNQuuSaU3kdvvMWx6o5gqtW5dMK24SSidHtX3+wbLrAAAAAAAQRazZBQAAAABtZc3x0ql/V5+1k2ukC74qpQbCz9lwhXTSX0jp8wlFq1b3kZXNG7vc3Td4tnTpT6RYKvq6J1UY1Aa0OM+GH5srSNl8/WoBAAAAAAAAAACoJ2PMe4wxtoqPzzX7awAAAACAaoxn/QNdhpNj3DAzgp54X9kxw6n1gf1pR/BQxvF/BABRuY75Q8lRxUzcOS+dcgc7rvZjVCbrH0yWTi0e013H9omiec51npzv+j9Y7Y8/AAAAAKA6iWYXAAAAALSdlPtuRKHEu6ULvykNnC6l+qW5XdLsY9LaU6REV+n4jrS0kClt795QXR1YzstVNq9vS3B/okfq3SLtvy/8moPnSEc8v7J6gBZnIwSjSdJcTupI1qcWAAAAAAAAAAAAAAAAAED9ZHL+gSoHA10QTnest+wYVzjOoX5X6E1up6y1BNUBqJorRKvc8akn1qeuWI/mvJnSNXO7dIxOrkl9rcazniZywYFmQ6lRaba0v/j86zofDz15bnAGrOV2cY4AAAAAAFQs1uwCAAAAgLbTMVR+TP+p7r7fulMaefZiKJokdY1Kg2f7h6JJ0lPf599+4jvL14HwFiYqm9cVfAc9SdJld4RczEibXild8BUp5r7rFdDOvKjBaNn61AEAAAAAAAAAAAAAAAAAqK9KQ3KwXE+8r+wYV/DZoX7HYz7nzWqmcKCiugBgqUrDMI0xSicd4Y1Z/2Cw1WAqv1c56/9G6oOP6bDj2J4pClQr3j7o4Pwhx+PPOQIAAAAAUA2C0QAAAIBaSw2UH/Pcn0tjly1vi3cvtvcdE21/m14q9R27vK33aGnTy6Otg2CDT6tsXtcR5cckuqTNrw0eE+uQXlGQzv+i1LOpslqANhAxF01zubqUAQAAAAAAAAAA0AyvkLQ5wgd30wIAAADQsqy1zpCc4TIhOVguVDBambC5oGAi1/8TAEThDsMMDm6U3Meo1Xx8coWZSYcfU1eg2d5cRnm7+CbsvM1pby7jO+7gfM4RAAAAAIB6SDS7AAAAAKDtxOLS+t+SdnzLPSaekp75X9L9H5UyN0mdaem4t0jrzoi+v9SAdOkt0n0fkiZ/KQ2cLh3/NqlzuPKvAaVGLpImbo0+L7km3Lgjf0d65Avu/o5ByZjo+wfajOdFG08wGgAAAAAAAAAAaCO7rLXbml0EAAAAADTCdGFK896cb1+5EC8s1x3vDew3Ms5wnIPWxPvVYTq1YOdL+sazO7W56/iqagSwus17c5oqTPr2DafWl53vOi+4wtZWA9fX3hPrO3RecAWaWXnam8toOLVee3MZWfm/gfvg/KBzRCa3i3MEAAAAAKAiBKMBAAAA9XDaB93BaGtPWfw3npJOfldt9tc5JJ3+odqsBX8nvH3x/3Tyl+Hn9D81fJjZ2HMkGUnWvz81EH6/QBvzHD8iLnPZ+tQBAAAAAAAAAAAAAAAAAKif8YAwm2FHkAv89ZQJRhtIDCkZSwaOMcZoKDWqJxa2lfRN5HZVUx4AaCLrPo6ECcNMp/zDHTO5nbLWyqzCG5RnHMfmpY/VUHLEPT+7U8Op9YHhcgfnB50jVnM4HQAAAACgOrFmFwAAAAC0pf6nSC94yL9vwxWNrQW10TEoXfLjaHOOenX4sYkeaeB0d39ybbR9A20qYi6a5nJ1KQMAAAAAAAAAAAAAAAAAUEeZnH+QSmesS71x3lMZRU+sL7A/HTJoLp10Bw8BQDVcx5G4EhpIDpWd7zo+zXmzmvEOVFVbq3IFki0NmkvFOtSfGPSf/2SwmitgrT8xqFSs49D2kPMcQXgmAAAAAKAyBKMBAAAA9dJ7tHTxj5YHWm14sXTyXzatJFQpGfzGkGWO/j3puD+Otv6zvuHuCwpNA1YRz4s2fp5gNAAAAAAAVowf3G/1J//h6Z1f9fSzh6PGnwMAAAAAAAAAVhNXSE46OSZjTIOraW3d8d7A/uHk+lDruALUMllCbwBUx3UcGUqNKG7iZecHBTyu1mOU8zxa9Fi5A812Bq9TNM8ZnukIaAMAAAAAoJxEswsAAAAA2trIs6QrxqW9d0jdR0o9G5pdEaoV75YKs/59Y8+VnvJeqWtU6tkUfe3uI6Tj3iI98I/L201c2vza6OsBbSjqJdNz2bqUAQAAAAAAIvr0jZ7e/P8OP7P/xx9YfeUPYvqd07l4DQAAAAAAAABQatwRpBIUfgN/qViHkialnPV/Q1065R9mUzIu6QhGc4TmAEBY47kdvu2u406xNfEBpUyHsnahpG8it1Obu46rqr5WY611BpKVBJqlRrV17p6ScQcD5dyhdcXr+P9fTeRWZzAdAAAAAKB6sWYXAAAAALS9eEpKn0soWrs46V3+7R2D0gXXSEPnVBaKdtAZH5GOf9viepLU/xTpmV+Xhp5W+ZpAG/EiJqPN5aJGqQEAAAAAgForeFb/+7rlz9FzBend/+U1qSIAAAAAAAAAwErnDnQhGK0SPfE+Z1/Yx9QVejNd2K/ZwnRFdQGAFHDMDxncaIzRUNJ/rCvYq51NF6a0YOd9+4qP5cVBaQdlngw0yziCzYrPHa51DhSmNO/NBdYLAAAAAICfRLMLAAAAAICWcvTrpK2flOaWvPi65kTpstukRE/168eS0pkfk874qFSYkxLd1a8JtBEv4vXSc7n61LGSzWWtJmel4T4pETfNLgcAAAAAAN28VZrwuR7qnh3Sjn1W6/t5/goAABDSm40xfy3pREmDknKS9kjaLukmSddba29sYn0AAAAAUBPWWmVy/iE5w45wLgTrjvVqn/b49rkCz0rGOUJvJOmmfd/VQHKootpckialLV0nqi+xtqbrNoJnC3piYbt2ZR/37R9IDGpT53FKxpINrgxovgVvXo/M/UYHClOH2nY6flaihGGmU2Pakd1e0j7uOJ+0i4LNa/v8Vu3JjR9qm8jtdo4vPpa7HuM9uV26bf9PtMexVsk6AeeSG/ddr/7EoLO/EnGT0KbOLRpMjtR0XQCAv8nchLbNP6i8Lb1IJ2U6tLnreK1J9DehMgAA0M4IRgMAAACAKHo2SpfeLN3/MWnfr6XBs6WT3lWbULSljCEUDfBhI46fy9aljBXrYzd4+ttvWk3NSWNrpX95TUy//VQuLgcAAAAANNf2Pe5n9PvnpPW8LxIAACCslxdtd0jqlbRJ0jMl/ZUx5nZJf2mt/V6jiwMAAACAWpku7NecN+vbFyUkB4f1xHt9241MYODZUv2JQSVM0jcM4esTX6iqviAvSr9Ol657Ud3Wr7Xp/H596on36+H5+wPHrUukdeWR79b6jo0Nqgxovodm79OndrxfM4UDocYPp9aHXtt1LJvI7gq9RqvJZHfqnx5/n8ZzO0KN74x1qTe+PGwynfJ/3PI2r6t3ftS5VnEQ2kBiUHElVFC+ZOx1mc+Hqq8SF/Y/Ty8ZfoNiJl63fQDAauZZT/898SV9Z++1geOMjK5I/54uXveCBlUGAABWg1izCwAAAACAltO7WTrr49IlP5RO/5DUsa7ZFQGrhhcxGW2u9P1Xbeu/77R6x1cXQ9EkaeeU9LJ/8fRowMXnAAAAAAA0W4GnrQAAALV2lqTvGmP+3hhT87unGGOGjTEnR/mQtKXWdQAAAABob5ncTmdfcRALwumO9/m29ycGlYylQq0RM7HQIWq1dF3m83po9r6G77dS35j497KhaJK0N5/RF3Z9vAEVAStDwRb02Z0fDh2KJrnDznzHOs4PQeeUVvel3Z8MHYomLYaLFv/JcKjC43rx/03MxDWUGqlorWr8aN//6FfTP2v4fgFgtbh/9s6yoWiSZGX1n5l/0+PzjzSgKgAAsFoQjAYAAAAAAFqGjRqMlq1PHSvRtXeUPjhzOemff8wV5gAAAACA5gp6Zjq7ip67AwAAVOEJSZ+W9PuSLpB0kqQTJJ0v6S2SvlM03kj6K0nvr0MtV0q6O+LHf9WhDgAAAABtbE9ut297h+nUmnh/g6tpDz3xXt/2qEFzzQqmu2fmF03Zb1TWWt1x4KbQ4x+d36pMtn1Dm4ClHpq7V/vye0KPjymudcnh0ONdIWoHClOa9+ZCr9MqDuSn9JvZuyLNSadKH6PueK96HOGZLr3xNeqK95S0VxqyVq3b9/+kKfsFgNXg9v03Rhof5XdhAACAcghGAwAAAAAALcOLGoyWq08dK9Ft2/wfnA9dTzAaAAAAAKC5goLOZxYaVwcAAEAL+rmk50raYK39A2vtZ6y1N1tr77PW/sZae4u19hPW2ssknS3pwaL57zLGvLDhVQMAAABAleYKs77taxPrZIxpcDXtYWPHFt/2zZ3HR1rnqM7jalFOZNOFqabsN6r9hUnNef7fvy67s0/UqRpgZdm58Fik8Zs6j1HcxEOP9wv9OqgdAwjHszsiz3Edw2t1LtjcpHPEruzjTdkvAKwGUX9X5XdbAABQSwSjAQAAAACAlhE1GG02W586VqL7d7n7DswTjgYAAAAAaJ75gOBygtEAAADcrLXfstZ+19qgqNlDY2+X9HRJDxR1fdCYCFeQAgAAAMAKsGDnfds7Yp0NrqR9nN53rvoTg8vaumLduqD/0kjrnLv2IvXE+2pZWigFFRq+z0pUEr6UyQW8+Q9oI7sjBnldvO4FkcYPJIYUV8K3rx1/zqJ+TX3xtTpnzbN9+y4aeL5iIS83jymmiwae79t33tpL1BNr/Dkik92lgm2N8wQAtJqo55t2POcCAIDm8X+WDwAAAAAAsAKVv+xnucmZ+tSxEvV0uC8mn5yR+nhPIAAAAACgSaYDws9WU6g5AABAvVlr9xpjXiHpdknmyeYTJD1b0vdqtJt/lvTViHO2SPqvGu0fAAAAwCqw4BGMVmt9iX796Ya/1zf3/Ie2zz+osdQGPX/oVRpMjkRaZ21inf5s44f03xNf1Lb5B5TzAu6OUoE5b0Y5W/rigbVeTfdTL64gCKOY4iauvC19vDJZwiOwOoxnn/BtT5kOdca6JS3+QWusY6Oe2X+5Tut7eqT1YyauweSwxnOlAWyVhBaudJmc/9cUV2JZgGUyltTmzuP1gqFXqy+x1nfOCT2n6o+P/Bv9YPIbenxhm/zu02CM0REdR+migefrhJ5TfdfpTw7qnZs+uHiOmHtQeZuv4Ctz8+RpujBV0l5QXntz40qnxmq6PwBY7eYKM77HXUnqMJ2+gdaZ7E5Za2WM8ZkFAAAQDcFoAAAAAACgZXgRg9EmpiNOaGFdSXcw2oGAC9ABAAAAAKi3mYDws5ms1eHMDgAAAFTLWvsLY8x3JT13SfNlqlEwmrV2XNJ4lDlc/AIAAAAgqgVvzredYLTqDKVG9fqxt1W9znBqTG9c/84aVFTq/+38R926//sl7Z5aIxht3BG+tKHzaG3o2Kybp24o6XOFGwHtZnfOPxjteUMv16XrXlSTfaRTY77BaBOO0MJW5gp7O7XvHL1p/Z9FXu/EntN0Ys9p1ZalkdQRetP6P696HT8L3rze/uDLfft2Z58gGA0AaswV+itJrx37E316x4dK2rN2QfsLk1qbWFfP0gAAwCoRa3YBAAAAAAAAYfncgCzQxHR96liJUgHx9/v93ycIAAAAAEBDuIK8y/UBAACgYtcXbT+1KVUAAAAAQIUWPP8/HhOM1v5ixv9yR8+2RjBaxieQSZKGk2NKJ/0De1zhRkA7yXoL2pvL+PaNpI6o2X5cP2eu0MJW5gp7SydHG1xJ43TEOjWQGPLtG8/6H38BAJVz/Z6aMEkd23VK5HkAAABREYwGAAAAAABahkcwmlPcuPsOzDeuDgAAAAAAigWFn81mG1cHAADAKrKtaDvdjCIAAAAAoFILnv8bnjpMV4MrQaPFFPdt91RocCWVyWQdQUWpMaVT/mFFe3LjKtjW+PqASmVyO2Xl/ybgmgajOX7OXCFirSzoeNPOhlPrfdt3E4wGADWXyfkHnKWTo+pNrFF3rNe3f9wxDwAAICqC0QAAAAAAQMsgGM1tIe/u208wGgAAAACgiYKC0YL6AAAAULG5om2SAwAAAAC0lAVb/LRmUUess8GVoNFixv9yR896Da4kOmttQHjEmNJJ/7CigvKazE3UszSg6VyhVTHFNZQcqdl+0kn/YLTJ/ISyXvu8MDlbmNaMd8C3z3WsaReuIL3x3BMNrgQA2l+5EE5XGGcmSzAaAACoDYLRAAAAAABAy7ARg9Gm5qRsPuKkFhUUjHZgfnU8BgAAAACAlWlmwf28dCbbwEIAAABWj6Giba6uBgAAANBSFjz/O0ESjNb+jONyR08rPxjtQGFK855/qF86NaahlH9gkyRnoBrQLnZn/UOrhpIjiptEzfbjCmiRpD258Zrtp9kyOf+gGskdDtcuhlPrfdtd4XsAgMq5Q39Hl/0bdh4AAEBUBKMBAAAAAICW4VWQ77VnuvZ1rETBwWiNqwMAAAAAgGKzAeFnQX0AAACo2DlF21wVCAAAAKClEIy2esWNIxjNrvxgtEzWHQAxnBxVZ6xLa+ID/nMDQo6AduAKRhtJHVHT/Qwmh50Bi+0U0uI63iRNSmsS/seZduH6ntmX3+MMpwQAVMZ1vkknF4NIXYGkmSy/2wIAgNogGA0AAAAAALQMW0Ew2r5V8Bq3tTYwGG0/wWgAAAAAgCbKB1yrlCs0rg4AAIDVwBjTKemKouYfNaEUAAAAAKiYOxitq8GVoNFcgUaeWiAYzRG61BnrVm98rSQpnRr1nxsQqga0g/EGBaMlTFLrkkO+fe0U0uIKUxxKjirmCJhsFyPJ9c4+jqUAUDsL3rymCpO+fUNP/k57MCCtWCa3U7aSi38AAACKtPczXAAAAAAA0Fa8SoLRZmtfx0qTLwSHxh0gGA0AAAAA0ERBz1nzBKMBAADU2l9IWnpFaUHS/zSpFgAAAACoyILnfzfMjlhngytBo8VN3Lfdsyv/BQVXMFo6OSpjzKHPo8wF2oG1VrsbFIwmBYe0tAtXAJgrfLGdrEumlTAJ377d2R0NrgYA2teEI4RTkoafPNemU/7n3HlvTtOFqbrUBQAAVheC0QAAAAAAQMsICkZLOP7KsRqC0Rbywf37CUYDAAAAAKxQBa/ZFQAAAKxMxpjXGGNGIs75fUlXFTV/zlq7vXaVAQAAAED9LVj/NzylDMFo7S5m/N8I6Gnlv6Aw7gwqGvP9fKlM1h08AbS6A4UpzXn+b+YdSa2v+f6GHAGEE230c+YOYvQ/xrSTmIk7v85xRwAfACA61++nMcU1kExLkoYd51xJGg8IVgMAAAiLYDQAAAAAANAybEAw2kCPf/u+uYBJbaJcMNoMwWgAAAAAgCYKemaeX/nXMQEAADTLGyU9Yoz5vDHmecYYxyshkjHmLGPM1yT9qySzpOsJSX9d5zoBAAAAoOYWPP83PHXECEZrd8ZxuaNnV/4LChlXMNqSAB9XmM9EbldLfI1AJXYHhFWNpI6o+f6cAYSOMLFW5Ap5SwcE1LSTYcf3ze7sjgZXAgDty3XeHEqOKG7ikqTe+Fp1LmRZYgAAIABJREFUxrr85zt+NwYAAIgi0ewCAAAAAAAAwvIcV1IbI/V3SZkDpX37/G8y11bKBaOV6wcAAAAAoJ6Cgs7zhcbVAQAA0IK6JL32yQ/PGPOgpG2SpiQVJA1KOlXSiM/cvZIus9b6XyUJAAAAACtUwRaUtznfPoLR2t/BkIVinl3ZLyhYa53hEcNLQppcgU05m9X+/KT6k4N1qQ9oJlcwWlesR73xtTXfnyscbE9uXAWbV9y09mXVC968pgqTvn2uY0y7GUmt923fnXOH8AEAonGG/qYOn2eNMUonx/TYwsOl89sokBQAADRPaz+DBwAAAAAAq4rrQuqYkfq7/fv2zdWvnpWiXPDZfC7gCnQAAAAAAOos6Flp3pWCDgAAgGIxScc/+VHO9yW93lr7eH1LAgAAAIDay3rzzr5OgtHanlHMt92T1+BKopkpHNCc538X13RySTCaI7BJksZzOwlGQ1tyBaONpI6QMabm+1sa2LKUJ097c5mWDw/LZN33QVh6vGlnI6kjfNvHsztkra3L9xUArDauYLPic006NeofjOYIVgMAAIjC/y+FAAAAAAAAK5DrWmkjqb/Lv2+f/3uN2kq2bDBaY+oAAAAAAMCPK+hckvKFxtUBAADQYv5B0pckbQ85fkbSdZIusdZeQigaAAAAgFa1EBCM1hFzvEkMbSPWosFo47kdzr6lIUzd8V71xPt8xxEegXYVFIxWD0MBAYSZnDtUrFVMOL6GmOIaSA41uJrmGE6u922f92a1v7CvwdUAQHtyBXEWB4y6Qjnb4ZwLAACaL9HsAgAAAAAAAMJyBaPFYlJ/t5FUOmA1BKMtlAtGK9MPAAAAAEA9BQWjPbC7cXUAAAC0EmvtdVoMOpMxpl/SyZI2SBqR1K3FG+PukzQp6T5Jd1lriZ0FAAAA0PIWbEAwmulsYCVohriJ+7Z7K/wpryvUrMN0ak28f1lbOjmqmcKB0jUIj0CbGs/6BweOpPzDrarVEevU2sQ6TeX3lvRlsjulntPrst9GyeT8jzdDyRHnMbTdDAd874xnd2htYqCB1QBA+8l5WU3mJ3z70kUBpK5jMqG/AACgFghGAwAAAAAALcN1IXXMSGu7/fum5upXz0pRNhgt15g6AAAAAACI6je7pR37rNb3m2aXAgAAsGJZa/dJurnZdQAAAABAIyx47jd8dcQIRmt3xsR82z3rNbiSaFyhZunUmIxZ/hpIOjmmbfMPlq5BeATaUN7mNOH4+RhJHVG3/aaTo/7BaG0QQOg6VqRTo77t7ag3vkbdsV7NetMlfePZHTq2++QmVAUA7WMit1tW/hfvpFNjy7eT/uefWW9aM4UD6on31bw+AACwevj/pRAAAAAAAGAF8hzBaEZSn+M9bwfmHZPayEKZ4DOC0QAAAAAAzVTumfm1d7T/c3cAAAAAAAAAQDjz3ryzL0UwWtuLOS53tFrhwWiuoKLkWGlbqrRNkjI5gtHQfiayu+U5fn7rG4zm+DlrgwBCV7jbkCOYph0ZYzScWu/btzv7RIOrAYD24/q91CimweTwsjbX77ZSe5x3AQBAcxGMBgAAAAAAWobrMulYTFrjDEarWzkrRrYQ3E8wGgAAAACgmWyZ3LO3fYVgNAAAAAAAAADAogVHMFrSpBQ38QZXg0aLOf6PC7bMm+SabNwRHuEXFJF2hBdN5HbJlntRBWgxrpAqI+MML6uFdMr/56wdAgidQYwBwTTtyBWsN57b0eBKAKD9ZLL+IZzrkmklTHJZ25r4gFKmw3+dNjjvAgCA5iIYDQAAAAAAtAzPcdNHI6nPEYy2fxUEo7kel4MIRgMAAAAANBOX8AAAAAAAAAAAwnIFo3XEHG8QQ1uJOS53tCrzJrkmcwYV+YSgucKL5r05TRemaloX0GyuYLR1yWElY6m67XfIEbo2kdstz67s40mQnJfTZH7Ct88VutiuhlPrfdtd33MAgPBcgWZ+5xpjjPP323HH78gAAABhEYwGAAAAAABahue4kjpm3MFoB1ZBMFqhzBXmcwSjAQAAAACayJKMBgAAAAAAAAAIacGb821PmY4GV4JmiBn/yx29FRyMNlM4oFlv2rfPL7gnKLxoPLerZnUBK8HunH9I1UjqiLrudzjl/3OWtznty++p677raW9+XNZxW6q0IwyuXbm+hzLZXSrYQoOrAYD24gz9dQSguX6/dQWsAQCA/5+9O4+O5Czsvf+r6kVSt7bRqFujGW941djgGTtgsyRsISwhQGLWhPAmARJ4sydkuQnJzfoGSHJzk8ube8EkkJATDA4xEAw2YFZjY8DYI49taWzP2GN7tHRLo7VbvVbdP8Zjy9P1VFdL3a1evp9zOBxXtaofaaqrt3q+haAIowEAAAAAgLZhmkdt29JgF4fRnCrnfOUIowEAAAAAdhBhNAAAAAAAAABAUHnX+4SvHruvySPBTrAV8lzeypEbUzhC8o5H9IeG1GvYn/22BbSjVGHGc/mYRzSwnkZ9AoTpNg4QpgzHCEuWdkfGmjyanZWMeO9DjspaLM43eTQA0FlMQTNTAM0UTEsX2vc5FwAAtAbCaAAAAAAAoG2YAmCWpIFey3PdaheE0cpVJpi3exjtnsdd/fS1ji7+o7L2/3FZb/tnR48sMKseAAAAANoF7+AAAAAAAAAAAEHlHVMYzXDlTHQU2/Ke7ui6Va4euoNShnBE1OrRUGhXxXLLspSIGOIRhm0B7Wq+cMJz+VhkX0PvNxbqVzw04LluoY0jLQuGqNuu8KgidqTJo9lZSUOER5LmDUE+AEB1Zbekk8W05zrTa1he2wIAgEYhjAYAAAAAANqGaSK1bUkDhvPeCiWpUOrsKdimYNxpJUcqVauntaipWVc//AFHn7rT1UMp6ci89O/fdXXVXzlaXG/P3wkAAAAAAAAAAAAAAACAtwJhtK5mG6Y7OmrdMFq64B18SETHZVneF3xNRPd4Lm/nYBNwpkx5TevlVc91Y9HGhtGkzoy0mI833seUTha1ezQSTniuSxmCfACA6haLaeNr74QhSmlavl5eVba8XrexAQCA7kMYDQAAAAAAtA3H9Q5hWZY06HPe25r3uXIdI0jzLF9q/Dga4R+/7mo9X7l8YV36h68SRgMAAACAdmB4Ow8AAAAAAAAAQIU8YbSuZlshz+WO28JhNENkKRExh4o6MdgEnGneJ07VnDCa92PQFBdrB+bjjfcxpdMlo3s9l88XZpo8EgDoHH6vR0cjY57L/V73LhQJ/wIAgK0jjAYAAAAAANqGYzi3ybakAZ/z3lY7PYwW4JyvXLHx42iE24+aZ8/fcBcz6wEAAACgHfDuDQAAAAAAAAAQlDGMZvU1eSTYCbZhuqOjcpNHElzKEFlKRM2holFjsIlwBDqHKYzWY/VqKDzS8Ps3PQbTbRxoMR0jTMeUTmcK7PlF+QAA/kwB0eHwbkXtHuO6sBXxXJfi9S0AANgGwmgAAAAAAKBtmCZSVw2jbTRkOC3DcatPMW/HMJrjuDri8z3Y/bPSg/NMrwcAAACAVhfgbSsAAAAAAAAAAJKkvOt9sleP7XOCGDqGbRnCaG6Aq4fukHTREEaLmMNopmBTxllTprxWl3EBO22+MOO5PBndK8uyGn7/CWOAcFZuG36BWXbLWiymPNf5hRg7WTK613N5qui97wEAqtvKa1vbss3Pu4btAQAABEEYDQAAAAAQSHrN1d99xdF7P+PopsPt92UwOoNj2PUsSxr2uSDo/GpjxtMqygHO+WrHMNpjS9JGlXF/bpLjEQAAAAC0ujacVwAAAAAAAAAA2CF5J+e5nDBad7AN0x0dtWYYLVteN4bMkj6hoqRPWCJd8LmaKNBG5gsnPJePRfc15f5HDY/BvJvTenmlKWOop6Xigsoqea7zi9V0MtO+tFI6qZzT4VfVBoAGMb0W9XttK5kjnekCYTQAALB1hNEAAAAAAFUdX3R15V84+p3/cPW+m1y9+oOOfvv61jzJBJ3NNJHatqRI2FJywHv9zEpnz8A2BeM2qxYYa0XH0tVvc+sDnf1vCwAAAACdIMg7t2KJ93cAAAAAAAAAAMJo3c62Qp7LHbc1z1lNF80RM79Q0WB4lyJW1LBN4hHoDKkdDqMlI3uM61I+j91WteAz5tHoWBNH0jrGonuN61KFmSaOBAA6h+m1aLUIZ8LwvMtrWwAAsB2E0QAAAAAAVf3lF1ydWH76sn/4qqvJx5iwiuYyBcAs69T/7x32Xn9iqTHjaRXlAOd8FbwvEtfSsoXqt5luv3NTAAAAAAAe2jHoDQAAAAAAAACoP3MYra/JI8FOsA3THR21ZhjNFN6JWFENhUeMP2dbtjEe4Rc/AtqF45aNIZRmhdH6Q0PqNTx3pAvtF2lJGf6eg6Fdxt+z0+0KjypsRTzXzRvCfAAAM8cta6Ew77kuETUHRyVzOC1d4LUtAADYOsJoAAAAAICqbnuoskblutL7biKMhuYyhdHsJ8Jo+0xhtGXv5Z3C9HfZrFBu/DjqrRTgXLZjC1KhxLEIAAAAAFqZG+BtW5A4NgAAAAAAAACg85nDaL1NHgl2gm15T3d05cgN8oVDk5niSqORPcbf5bRE1BSPaL9gE3CmxWJKJdf7ir7NCqNZlqXRDgoQmo4N1UI1ncy2QkoaQjymcCUAwGyptKCyvJ+/TeGzJ9cbXtuulpeUcza2PTYAANCdCKMBAAAAAKqaNnz3e/2drXeSCTqb6bym02G0vcOW5/qZ5c7eV8sBAmIF7++nWloxQMyt7EhH040fCwAAAABg64K8K98oNnwYAAAAAAAAAIA2kDdMmu+xepo8EuwE22e6o6MAJ8o1WdoQV0oawhCbmYJNpm0C7WS+cMK4Lhnd27RxmCIu7RggNMXcEoZjSbcw7U9++yAAwFu6YH4dOlolxOkXTlvw2S4AAIAfwmgAAAAAAKBtOIaZ1NYTPbTxIe/1C+uNGU+r6NwwWrCg3fHFBg8EAAAAALAtptD5Zmu5xo8DAAAAAAAAAND68q73B8Y9dl+TR4KdYFkh4zrHbcEwmiGu5BeGePI2hnhaOwabgDPNF2Y8lw+Hd6vH7m3aOIyPs2L7Pc6Mx5sAIcZONhbd57k8ZdgHAQBmKcPz42Bol3qrvB/bFRlVSGHPde34vAsAAFoDYTQAAAAAwLas5YKFi4B6ME2ktp8Iow0ZvmtZzzdmPK3CFIzbrFBu/DjqrRhwzCeWOQ4BAAAAQCsjjAYAAAAAAAAACMJ1XeUd75O9mhnSwc4J+Ux3dNR6J8GZ4hFBQkVJQzxttbysnLOxrXEBO22+cMJzuSli1SiJyB7P5eniXFPHsV2u6xrHPGr4HbtFMrrXc/l84YTcIF9UAwCeZI5wVn+uCVkh7Y4kDdttr+ddAADQOgijAQAAAAB8VftCcHalSQMBZA6AWU+E0foN5751+uTqcoALYRZKjR9HvZUCnsc2s9zYcQAAAAAAtifI6earzO8BAAAAAAAAgK5XdAty5X0yFGG07mBbPmE0N8CJck20Uc5ovex9Eq0pxvS02/gEJhaIR6DNtUwYzfA4y5TXlC2vN3Us27FSXlLRLXiuSxgii93CtE/l3ZxWy0tNHg0AtLe0KfobMMJpigObtgsAAFANYTQAAAAAgK98lZjSLEEiNJGp02c/EUYb6PFe3+lhNFMwbrN8qf2uelYMGEY7wXEIAAAAAFpakAtxr2y03/tWAAAAAAAAAEB95R3ziV6E0bqD5TPd0RTN2ynpojlelozurfrzu8KjCils2DbxCLS3VKuE0XyiYX6P4VaTLpiPCUlDhKZb+B1vTYE+AIC3tCHOawqeVdzO8LybKsxseUwAAKC7EUYDAAAAAPja8L641JNmV5i0iuYxBcCeDKP1Wp7r1/MNGlCLKAc436tQJXLYioKG0WaXOQ4BAAAAQLtb7fCoOQAAAAAAAACgOt8wmtXXxJFgp4SskHFd2Q14QlmTmEJFYSui4fDuqj9vWyHtjiQN226fYBNwpo1yVivlJc91zQ6jDYVHFLYinuva6XG2YIi4xex+xUL9TR5Na+kPDSoeGvBcR4gHAIJzXMf4fOMXGn3a7aJ7PJe3U4wUAAC0FsJoAAAAAABfG0X/9fNrzRkHIJnDaNYTPbT+Hu/1uaJUKnduPCtQGK21zgkLJGgY7cRyY8cBAAAAANieIO/ICaMBAAAAAAAAAPLuhnFdj93bxJFgp1g+0x0dBThRrolSRe8w2mhkTLYVbNpmIuodmUgbtg20g1TRHKMai+5t4kgk27KViJgiLe3zOEsZQoymY0i3SUa896v5wokmjwQA2tdK6aSKbsFzXdDnm6QhoLZcWlTByW95bADQbR7NHdVD2fu0Ujop1+3c+ZBAEOGdHgAAAAAAoLVteH+u/aRV83lIQN2ZPsuznwijDfic+7aWk3bF6z+mVmAKxm1WKDV+HPVWCnge2wxhNAAAAABoaUHOzeEzJgAAAAAAAABA3jFfRYMwWnfwC4q99+g7Zcna0naHI7t1Rf/z9LrEzypk1Tal0nVdfX35Rt2+/BXNF54KPjnyvvJnwhCEqOW2t618RXesfL2mcW7WG+rTxX3P1JvGflFD4ZEtbwc47YHsYX1+4RN6NHdUjut/cqdriBhGrKh2hRONGJ6vRHRcs4XHKpbfuPAJfXHhU00fz1aYjzfe0bduMxbdq4dzRyqWf23p8/rG0he3vN14qF/741fojcl3KBbq384Qm+r+zN26afH6QI/XzWKhuCZiB/XGsXeoPzTYwBECrc1xHT2eP6apzKSms4c0VzihXrtPL9n1Gr1w+JVNGcPDGw/o8wv/roc3jqjkbn8iSDw0oEvjB/XG5DvVF/KeVOMXDA36fOMXUPvtB39my6/lTWzL1rm9F+o5gy/SC4ZeJtsK1XX7ALBTvnzyBt21dpskKWr1aDSyR4nouK4ceJ6eM/iiHR4d0FyE0QAAAAAAvnJVPkNfNZ+HBNSdKQB2+usRvzDaer5zw2jlAN9ZF7zPiWhpxYBjnl+TiiVXkXB9vygDAAAAANRHoDAanzEBAAAAAAAAQNczhdEs2YpY0SaPBjshJHPMwBQGCmKxOK9blj6rjLOmt+35tZp+9utLn9en0x8NfPukTxDiTImoOTJR1tYjGJnymu5e/44eyx/TnzzjH2uOwQGbPZo7qg8+9mfb2ielUyFAv/hho4waYi6u3G3/TjvN7xjSTZLRfZ7Lt/tvvFpe1ndXv675wgn97jkfkGW1/nnKR7NT+t+P/+WWnjPXyiv6/to3NVM4rj849+925PEK7JTFYkrTmUlNZQ/pSPYeZcprT1u/IumT8x+S6zp60a4fb+hY5vKP64OP/4lyTv2uMLhaXtIdq1/XfGFGv3PO+z2PZ+nCnOfPxkMDgeOQI5GEbNlyPCKp23ktb1J2pYc27tdDG/fr28tf0k+PvVvn9V1c9/sBgGZLF56KVRbcvGYKxzVTOK69Pefs4KiAncG7EgAAAACAr42C//rV+n3WDlRlmkdtP/EJR3+P+WeXsnUfTsswBeM2K7ThuRtBw2iueyqOBgAAAABoTQHetvIZEwAAAAAAAADAGEbrsXvbIkaC7bMaHGH53so3K0IXflzX1deXb6zpPhKR4GG0ZA233YqF4rwOr9/Z0PtA57t1+ea6BMTGDPGqRksYwmidoJbjTScbi+5t6PYfyT2g47kHG3of9XL7yi3bjg+dyD+ihzeO1GlEQGvaKGd0aO0OfXL+w/rTY7+sPz72S/r3+X/UXWu3+b5W/Gz641opnWzo2H6w9u26RtE2ezh3RMdzD3muSxdnPZfX8lwTtiIaiSS2NLbteix/TH/z6O/rurkPKVte35ExAEA9uK6rdNE7Vsnrf3QjwmgAAAAAAF8bRf/1a97nIQEN4VReOEaSZD9xzttAr/ln/+ZLQaZht6ey4e+yWTuG0UoBfq/TTiw1bhwAAAAAgO1xA7wlX93o3PftAAAAAAAAAIBg8oYAQI/lc8VMdJT+0KBCCjds+2WVdCL/SODbZ8prWiymarqPPT1nNeS2W/Vo7mjD7wOdrV770N6ec+qynVrt6Tl7R+63GfZEG38MaQd7e85t+H2YQkKt5vH8wy21HaBVlN2SHsrerxsXrtPfHP99/e5Db9O1M+/Xt5ZvUqo4E3g7eTen/1r49waOVJrJP9rQ7T9qOJ7NF7z/DrUGRvdEd+5515WrW1du1p8+/Cv6zspX5QY5YQkAWsx6eVU5J+u5rpOjz4BJ4z4lBAAAAAB0hI2C/3omraKZHMPudvpaoPEeybK8J1x/52jn7qumv8tm+TYMoxVruGDZzErjxgEAAAAA2J4g78hXie8DAAAAAAAAQNfLO94fFvfYfU0eCXZKj92rS2LP0v3Zuxt2H+nCnC6OPSvQbWsJZUjSrvCoLuy7NPDtd0fGdH7vhI7lpmu6n1qki7MN2zY6n+u6dduHnjP4orpsp1YX9l2q4fBuLZcWd+T+GyURGde5vRft9DBawlh0n87pvdAY+6mHdHGuYduup6yz3lLbAXaK67pKFWc0lTmk6eykHsgeVs4QYa7VHStf04uGf1zn9F5Ql+2dyVENkyi2wPS8njKE0cai+2ra/lWDL9K9mTtrHlc9rZdX9G9zH9TtK7foLWPv0r6e83Z0PABQiwWf152J6HgTRwK0BnunBwAAAAAAaG0bRf/1TFpFM5kmUttPfMJhWZZnFE2SIqGGDKkllJ3qtyk09vuxhqgljLaw3rnhOwAAAADoBqv1Of8UAAAAAAAAANDG8m7ec3mP3dvkkWAn/dz4b+ic3gsbtv1aYmfpQvAg1HB4t9697w9lW7WdrPgLe39L49FzavqZWtTyOwBnWi+vbjskE7Yi+vnx31Jyhybxh6yQ/t9979VwePeO3H8jjIQTete+/ybLsqrfuEu8ffw9Ncd7atEux9JMuT5Bs3ptB2imtdKK7ly9Vf8290H90bFf1J89/Cu6PvUR3bP+vbpF0STJlatPpz4q1zRxZZvKbqPDaJXBHcctG4NpyejemrZ/5cAL9PKRa2Rp55+jjm5M6X2P/LZuSP1LXfcBAGiklOF1Z4/Vq4HQUJNHA+y88E4PAAAAAADQ2jYK/h/WE0ZDMzmGANjmr0x+dEL6qsfFE5c7+HuMQGG0UuPHUW+1hdEaNw4AAAAAwPYEOReUz5gAAAAAAAAAAHnDZHXCaN1lIDys/3bu32qhMKeUIdAQxC0nP6vp7GTF8lriNqb7T0b26k1jv/jkfw+EhrSv59yao2iStDsypj867x80V3hcS6WFmn/+tAeyh/XlkzdULE8XZ+W6LgElbIkpkiJJ79z7e+q1+3x/Pmr16JzeCxS1e+o9tJqc3Xu+/vL8a3Uif1xr5ZUdHct2DYaGtbfnXNmWvdNDaSnJ6Lj++LwPaq7wuJZLi1vezt1rt+u2la9ULPd7LLSKsltWzsl6rvupxM9rX8+5Fcu/cvIzOpK9p2J5trxW9/EB9VZ0Cjq6MaWp7CFNZyb1WP5YXbcftsIKW1HPx9VDG/fp0Pp3dMXA8+t6n5LkyntyyBX9z9cLhn8s8HbuWrtNt6/cUrHc67XwyeKCSm7Rczu1Ridty9ZPJv4fvXzkGj2WO6ayGhN6c11H3175sibXv+t7O0eObln6rO5cu1VvSL5DV/Q/j9fFAFqa6XVnIjrO8QtdiTAaAAAAAMBXrkpMabWDY1NoPaZ51Pamz/V+82W2vjpd+WXQsvf3vB3BCTDBvB3DaCXCaAAAAADQEYKE0Vb4jAkAAAAAAAAAul7e8b6KBmG07jQa3aPR6J4t//yxjWnvMFpxLvA2TBG1fT3n6dL4FVse25ksy9J4z9ka7zl7y9vosXo9w2gbTlaZ8pr6w4PbGSK6VLrg/XjpsXrbLixiWyGd3Xv+Tg8DDWRbtvb2nKO9PedseRs5J+sZRlsozslxy1sKYDbLRjljXDcRu9xz/z+8/n3PMFqmzInZaD2O62gmf1xT2UlNZw7poY37VXQLdb2PfT3naSJ2QPvjB3Vh36Wazk7qQyf+yvO2N6T/Vc+MP1sRO1rXMTiudxgtEd1T0+vPbDnjHUYrzslxnacFNlPFGeN2EtHxwPe5WSzUr0vil2/pZ4O6rP+HdHj9+7o+9REtFlO+t10uLeqfZv5al8au0JvGfknJLf5eANBopvdgiQjHLXQnwmgAAAAAAF9574t+PGnV+zwkoCFMATB700XPhmPet8mXpFzRVW+kfU7CCKrs/d3X0xQac6GdhirWMOZFvn8HAAAAgJYVoIvGZ0wAAAAAAAAAAMJoqCvTpOF0YVau6wYKOqUK3pGIVgwp+EUr0sVZwmjYknTROw44Gt3TVlE0ICjTc0fJLWmptKjdkWSTRxRcxlkzrouHBmpannU4MRutYbm4qKnsIU1nJjWdndRaeaWu2x8Kj2h/7IAm4gc1ETugwfDw09Y/K/4cTcQOeMZ2F4vz+vrSjXr57mvqOiZH3pNDLNmey02ShsBwyS1qubSokUjiyWXzhROetx0O71av3VfT/Tbbs/qfo0til+tLJz+tr5z8jEpuyff292fv1l8+8ut6+cg1esXI6+setgOA7TK9B0tsIxwPtDPCaAAAAAAAX6YQ1WmrGwp8ggiwXY4hALZ57zOF0SRpKSOND5vXt6tqj1NJKvp/v9OSSjWF0YJMswcAAAAA7AQ3wFu2TF4qO65CNp8xAQAAAAAAAEC3MobRrNaejI/WlIzu9VxecPNaKS9pODzi+/Ou6xonJJu2vZMGQkPqsXqVdysfR6nCjJ7Rd8kOjArtbqE457k8EWFSPjrTqM++nS7MtnQYLVs2x8xiof6alvttC2iknLOhB7P3aiozqensIc0VHq/r9nusXl0Yu+zJGNp49GzfuVCWZen1yV/QXz3y23I9gmU3n/wPXT30Eg2Fd9VtjI7rPYkiZIVq2o7v8aw497QwmjkG3Hqveb1E7R69ZvStumrwxfpAI2cQAAAgAElEQVTU/LWeIbvNSm5RX1z8lL6/+k29KfmLuqz/h5o0UgCozhhGMwR8gU5HGA0AAAAA4KtacKnkSLmi1MdFMtAEpt1x85zpYZ9z4JY3OjOMVjYE4zbLt2EYrVhDGG2B798BAAAAoGUFTVmv5fyD5wAAAAAAAACAzpZ3NzyX99i9TR4JOkEiao5BpAozVcNo6+VVbThZ7223YBTKsiwlouN6PP9wxbq0IW4FVJMueO87frEVoJ31hWIaCA1prbxSsS5dnNOEDuzAqILJlNc8l4cUVo/l/VoqbnuH0TKE0dAkjlvW8dxRTWXu1nR2Usc2jshRDZMIqrBk69zeCzQRO6iJ+AGd33eJwlakpm3s6zlPPzz0ct26cnPFupyzoRsXPqG37vmVeg1ZjkeATZJs2TVtJxbqV39oUOvl1Yp16cKsLok968n/ni+c8NzGWGRfTfe508ai+/RrZ/2pfrB2m/4z9c9aKS/53j5dnNM/nvgLXdH/PL0++fanxeIAYCdky+vG13R+n3EAnYwwGgAAAADAV7UwmiStbBBGQ3OY9sfNF+nxm0C97H2OUtsL8jgtlIJOQ28dpQDBt9MIowEAAABA+1vdIIwGAAAAAAAAAN0s7+Q8lxNGw1b0hwYVs/uVdSpPLksXZnVx7Jm+P58qzhrXJaJ7tz2+RkhEDGG0gvl3AfyYonrJ6HiTRwI0TyIy7h1Ga/FjqSlmFg/1y9p8sv0msdCA5/KssybXdY0/B2xHujCrqeykpjOHdCR7WBtOpq7bH42MaSJ2UPvjB3RJ7HLFQt4BwFr8xOhP6/tr31LOI5p7+8oteuHwq3R27/nbvh9JclzvSRSWVVsYTTp1PPMMo53xOjdVmPH8+WSLvub1Y1mWnj34w7osfqW+sHidvrH0BWNs7rS717+j+zN368dH36yX7nqNQhYJFgA7Y8Enap6I8B4M3YlnZQAAAACAr3KAMNFqTtoz1PixdLp//66j67/vyrakt1xl6c3Pqf2Li07nGtpe9qbvXGNRKWx7R7U6NYwW5HFaqN+Fk5qmWA4ecyOMBgAAAACty/R+/kwrG40dBwAAAAAAAACgtRFGQ70louM6nnuwYvmZMQgvpgBOj9WrwdDwtsfWCAlDrCrI7wucaaOc1bpHHEqSRiN7mjwaoHkS0XEdy01XLG/1Y6lXCFSSbxQqblhXcksquHn1WLwGw/Zlyms6kj2s6cwhTWUntVicr+v2++y4JmKXayJ+UPtjBzQarf9z1EB4SD+++026If0vFetcufp06p/1m2f/ZV1igq4h4hVSqOZtJaJ79HDuSMXyza9zC05eJ0tpz58fa8Mw2ml9oZjekHyHnjv4Ul03/yHPv8NmeTenz6T/VXesfF1vGXuXLopd1qSRAsBTUgXvMFrEimooPNLk0QCtgTAaAAAAAMCXE2Di6iqTVrftAzc7+oMbnvpjf27S1cyyo9/6MeJom5n2x81hNMuyNBzzDmXNrbqSOu/KVUH6Ybli48dRb8UaYm4rG1Kx5CoS7rx/XwAAAABod0HDaKve890AAAAAAAAAAF3CFEaLEkbDFiUjhjCaIXr2tNsUZzyXJ6LjdYleNELCEKtKGyZXA34Wiub9xhThAzqB+Vja2mG0THnNc3k8NGD8Gb91mfIacVpsSckt6tjGtKYyk5rOTurR3FFj7GsrQgrrGX2XaH/8gCZiB3Vu7wWyrdqjYbV68a5X69blL3lGEh/cuE+T69/VwYHnbvt+yq73JArLqn1uUSJiiuY+9Ryf8jm2JaP7ar7PVnNW7zP0nnPepztWv6bPpP/VeKw8bbbwqP7nY+/V1YMv0TWJn9NAuDWDyAA6kynEOxoZk72F5wGgExBGAwAAAAD4ChRGY9LqtuSKrv765so/9PtucvUrL3EVJfT0JNP+eOY5Ruft9g6jHanvxYVahhPge8KVNgwY1hJGk6STWWlssDFjAQAAAABsXcAuGvF9AAAAAAAAAOhyecf7g+IeiygHtsYUb0oZJhs/7TaGSESyhYNQpt8346wpU17zDeAAZzJNyg8prF3h3U0eDdA8yehez+Xp4pwc12nZKEW27HHyvKSY3W/8Gb912fK6RiKJbY8Lnc91Xc0WHtN05pCmspN6KHuf8m59JxmNR8/WxBMhtItil6nX7qvr9oMIWxFdk/h5fXjmfZ7rb0h/TJfFf0gRO7Kt+zFF5GxtIYxmeG2YLszKdV1ZlqWUIQYcUli7I8ma77MV2Zat5w+9TJf3X6XPpf9Nt618perPfHf167pn/Xt63ejP6oeHX96U+B4AmEK8hKnRzQijAQAAAAB8BQkuMWl1e+5+VFrKVi5fWJfuPSFdeW7zx9SqXMNMavuMMNrEHkt3Hq+88ZHZoFOx20s5wK+17LGPtbpSjWG0hXXCaN3okQVXKxvSubul4RghSQAAAKAVmd7Pn2k150ridT0AAAAAAAAAdKuCm/dc3rMD4QN0hkSkegzCxDghOeIdzGkFScPvK0npwpzifYTREFy6MOe5fDQ6RhwEHc0Unii6Ba2WljQcac0wYMYQRouHfMJoPusyjvf2AElaKS1pOjOp6eyp/62UTtZ1+4OhYV0SO6D98QOaiB1omcfd5f1X6ZLYs3Qke7hi3UJxXt9YvlE/NvJT27oPxzWE0bYQZTS9Fi64ea2UlzQcHtF84YTnbUajexTqsOf7/tCg3rrnV/T8oZfpuvkP6fH8w76333Ay+mTqw7p99av66bF369zeC5s0UgDdyhSnTkT2NHkkQOsgjAYAAAAA8OUEmLjKpNXtOTJv/iM/MO/qynP5255m2h/PPDfpYsPnfdPe52i0vSABw+U2DBgWaw2jrTVmHGhNjuPqlz/h6p9udeW40nBM+sjbbL3+hzhmAgAAAK0maKZ8tb4XDAYAAAAAAAAAtJm84/1BcY/d2+SRoFMkDXGbzTEIL67rKmWYkGzaZisYCo8oYkVVdAsV69LFWZ3Xd9EOjArtyjQpf5RJ+ehwfuGJVHGmZQJNZ8o63idSx0LmKGbICqnXjinnVF6BO1vmxGw8peDk9eDGfZrOHNJUZlIzheN13X7EiurCvks1ET+o/bGD2tdzrm/AdqdYlqXXJ96h9x3/bbmqnMRx0+L1unrwJRoMD2/5Psoe25UkW1sIo0XNx7N0YVbD4RGlCjOe68eirRsD3q5n9F2i3z/3b/Wt5Zv0+YVPeB4DN3s095D++vjv6keGX6nXjr7VNyoJANuxYIhTm0KXQDcgjAYAAAAA8BUojNaGwaVW8lDKvO4Bn3XdyDXsj/aZYbQx79s9tqSqV3lsR0Eep8vZ9vvdaw6jcWGyrvKx211d+62ndv7lrPTGDztK/Q9bowPts58DAAAA3cD0fv5MK3zGBAAAAAAAAABdq+yWPWNOEmE0bF3CJ2J2OgbhZb28YgwktPKEZMuylIiMe8ZK0gXvyBVgkmZSPrpULNSveGhAGY8wWLowp4tjz9qBUVWXKXufSB2vEvCJh/o9n/NM20N3cFxHj+ePaSozqansIR3bmFLJLdVt+5YsndXzDO2PH9RE7IAu6NuviB2t2/Yb6aze8/SCoZfp2ytfrliXczZ048In9DN7fnnL23ddQxjNCtW8rbg9oD47rg0nU7EuXZzVRbpM84UTnj+bjHRuGE06FYZ8ya6f0JUDz9cNqX/R99e+5Xt7V66+tXyT7l67XT+V+HldPfjitpqbA6D15Z2cVspLnuv8PtsAOh1hNAAAAACAryDBJSatbs9Rn/jZEe9zCrqWaX88M4x29i5LUuWNs4VT++twrP5j20mO93dfT1MsSxsFKdbT+PHUS+1hNFcSXy51i7+/xfuAkHyPo/KHbb5oBAAAANoQ8X0AAAAAAAAA6F4FJ2dc10sYDVvkF4NIFWZ0Uewyz59LFc0nbyajrR2JSEQNYTSf3wnwki56x/QS0T1NHgnQfInIuHcYzfC4aAVZQ8gsZvuH0WJ2vxZVOaHBtD10rsViStNPhNCOZO/xfAxsx0g4oYn4AU3EDmoidrn6w4N13X4zvWb0Z3Tn2q3KOZUnuty2coteOPwqndX7jC1t25H3JApbds3bsixLiei4Hs09VLEuXZiV67rGMNpYdF/N99eOhsIj+oW9v63nZ16mT6Y+bPx7nLZWXtHH5/5Bt6/coreMvUt7e85p0kgBdDpTmFqSEhHeg6F7EUYDAAAAAPgKEkbLeF+kEQFlCuY/8vRsgH+ALmLaH8/sH+0dNm/jxHLnhdHKAXeT5Y32CqOVAgTfNlvyvkAnOtDxRVf3zZjXf+9h6erzmzceAAAAAP7cgO9bV81z3gAAAAAAAAAAHS7vE0brsfuaOBJ0EsuylIzu1fHcgxXr/EJh6YL3yUm9dp8GQkN1G18jmCZMpwutG/NB6yk4eS2XFj3XMSkf3SARGdcjuQcqlrfysTTrGMJoIf8wWjw04Lk849Q3ioXWs1HO6Ej2sKazk5rOTCpV9Dk5ewt67Zgujj1T+2MHNRE/oGRkb8dc+HogPKxX7X6TPpP+14p1rhx9Ov1R/cZZf76l39dxvSdR2FbtYTRJSkYMYbTirNbLq54BYUkaa/EYcL1dEr9c7z3v73XLyc/ppsXrVXT9J8o9tHGf/uqR39JLd71GPz76ZvXynhXANpkCvLZC2hVJNHk0QOsgjAYAAAAA8OUECBOt5xs/jk5W8r6giyTpyLzkOK5suzO+ANou00TqM/884z7nHZ1Yki7rsO9oygEDYstZ/2hcqyn6PDa8EEbrHvf6X4hJnznk6urzOW4CAAAArSJo9n218kK6AAAAAAAAAIAukXd9wmhWbxNHgk6TiOzxDqMZ4meSlDKEbxKR8ZYPeiSj457LU4ZJ1oCXxWLKuC5h2MeATpKIGiKTLXosdVxHmbJ3GM0UPjvNFE7LGraH9lV2S3p44wFNZyc1lTmk47kH5ajGK5n7sGXrvN6LNRE/oP2xgzqv7yKFrM5NWbx4+Cd06/LNWijOV6x7IHtY96x/TwcGrq55u6Z/E1tbC6OZnrfThTmlfF4PJ6P7tnR/7SxsRfTK3W/QcwZ/RP+R+mfds/4939s7KuuWpc/qzrVb9cbkO3Ww/7kt/14BQOsyBXhHI2MKWaEmjwZoHZ37ahIAAAAAUBflADNXM4TRtsUv/pQtSI8tSefubt54Wplj2B/P/O4gGraUHJBSHheqOrHsSuqsLxsc0x/mDCttNsGcMBpMsv4XYNIt97vSNc0ZCwAAAIDqTKHzM63lgibUAAAAAAAAAACdJu+YT27qsQmjYeuSUe8rqfrFbUzr2iEIlYh4j3G9vKKNckZ9oXiTR4R2ZHoMWLK1O5Js8miA5jMdS9OFObmu23Lhm7yzIdcQU4rZ3uGz0+K2dzgtU/Y4ER9txXVdpYozmsoc0nR2Ug9kDyvn85p7K5KRvdofP6iJ2AFdHHtmV73OiNgRXZP4BV07837P9TekP6ZL41cqYkdq2q7jGsJo1hbDaKbjWXFW80Xvq5X32TENhIa2dH+dYHdkTO/e94e6Z/17un7+IzpZSvvefrm0qI/MfECXxa/Um5K/2BbvGQC0HvPnEN7BXqBbEEYDAAAAAPhyAlwAhjDa9pSq/I0fWSCMdpppIrXt8d3yvmHvMNpR/+8k2lKQgKEkrZovqtqSTGG0kC2VPR43yxkm0HeLQpWdfqPYpIEAAAAACCTou7V2C3oDAAAAAAAAAOon55hPbooSRsM2JCLek4j94japwoznzyQj3pG1VuIXYkgX53RO6IImjgbtKl2Y81w+EhlV2Kot8AK0o6ThWJp3c1otL2sovKvJI/KXKa8b18VD/mG0mGG93zbRutZKKzqSvUdT2UOazkxqqbRQ1+3HQwOaiB3QROyA9scPaiSSqOv2282B/qt1Ud8z9eDGvRXr0sU5fXP5C3rZyE/WtE3HEDm0FNrSGE2vDXPOho5mpzzXJaP7Wi4AuRMu779KE7EDunnx0/rKyc+orJLv7e/L3KW/eOTX9YqR1+vlI9coYkebNFIAnWCh6P0ezBS4BLoFYTQAAAAAgC8nwMzVTJ4Y0XaUDPGn004su5L4UkEy749eYbSLxizd/VjlD0zPdt7+GiRgKEn5NotFmR4biX5pbrVy+TIT6LtGwf87xarHVQAAAADNZQqdn4kwGgAAAAAAAAB0r7whjBa2IgpZW4sAAJKUjHrHzE7FbZY0FB552nLXdZUuzhq21foTkofDuxW2Iiq5lScMpguzOqeXMBqqM03KHzWEBoFO4xuZLMy2XBgt63hcTfwJ8dCA78+awmlZhzBaOyg6BR3dmHoyhPZY/lhdtx+2wrqgb7/2x67QRPyAzup5hmzLrut9tDPLsvSG5Nv1/uPvketx2cAvLl6vqwdfooHwUOBtuq735JDQFv/uSZ/n7vsyd3kuHzO8fu5GUbtHr028VVcNvkifSn1YR7KHfW9fcov6wuIn9b3Vb+jNY+/SpfErmjRSAO3OFKf2e10KdAPCaAAAAAAAX8HCaI0fRycrVg2jNWcc7cC0P3pdjGbC8P3NtPfnhG2tHHCCea7UXpE902MjOegdRlvKNnY8aB35KmG0E8syXs0VAABgKx5KufrSfa6iYenVz7K0d5jXGUAjpM3nagMAAAAAAAAAOpwpjNZj9zZ5JOg0iUi1uM3Tw2jr5RXlHO+rufhtq1XYlq3RyJjmCo9XrDMF34AzpQve+0o7PAaAeojbA+qz49pwMhXr0sVZXahLd2BUZpmyd8TMkqVeO+b7s6ZwWqbMF/ityHEdzeSPayo7qenMIT20cb+KbqGu97Gv5zxNxA5of/ygLuy7VFG7p67b7zRn956v5w+9TLetfKViXc7J6saF6/TTe94deHtleU+isLS1MFp/aEi9dp/n69vV8pLnzyQjhNHOtKfnLP36WX+uH6x9W59OfdT4tzstXZzT///4n+mK/ufrDcm3a1dktEkjBdCOik5BS6UFz3XEqdHtCKMBAAAAAHwFCaOtE0bblpL3BV2eNEMY7UmuYX+0PZoE+w3nXjyYkkplV+FQ54QMnCr70Gn5ygtAtjRjGM1w4bKlynMP0KEKVcJo2cKpUN5IvDnjAQAAne3zk67efK2j3BOvp3fFXH3pN209+7zOeU8BNJrp/fyZZleIHAMAAAAAAABAtyq4hjCaRRgN2xMPmeM2qeKsLtRlT19mCEJJUjLaHlGoRGTcO4xW6MAry6Ih0kXvfSURZVI+uoNlWUpEx/Vo7qGKdX7PEzvFFEaL2f2yLf+YUszu91yeNWwTzbdcXNRU9pCmM5Oazk5qrbxS1+0PhUe0P3ZAE/GDmogd0GB4uK7b7wavGX2rfrD2bc/42LdXvqwX7nql9vWcF2hbrus9OaTaY9nEsiwlIuN6LH8s8M+MRfdt6b46nWVZevbgj+iy+JW6cfE6fWPpi3LlP5nn7vXbdX/mLr169C16ya6fUMgi7wKg0kJxXq68T7Jsl88hgEbhmRMAAAAA4CtIGC1T3wvMdB3CaMGZ9kev6dL7xy3J40PBYlk6mpYu6aBzM8oBJ5jnq8SkWo3psZEY8P63Xco2djxoHQVDNG+zB+al557f+LGgMb57zNUHv3bqq51XXib97HMt4hgAgB3hOK5+5RNPRdGkU687r/orR861oZ0bGNBmAr5tVb5E5BgAAAAAAAAAulXeMYTR7L4mjwSdxi9uk/aI26SKM57b6bVj6g8N1X18jZCIjkseFxpNF1sv5oPWU3bLWiymPNclIkzKR/dIRgzPHS14LM2W1zyXx0Le0bPN4obbFNy8ik5BETu6rbGhdjlnQw9m79VUZlLT2UOesdPt6LF6dVHsmZqIH9D+2EHtiZ7FObrbNBge1itH3qjPLny8Yp0rR59OfVS/ftafBfo7O4bQVkhbP1ctEd1TUxgtGd275fvqBn2huN6YfKeeO/hSfXL+w3o4d8T39nk3pxvS/6I7Vr6mt4y9WxfGLm3SSAG0C9PrS0u2RsLJJo8GaC2E0QAAAAAAvpwq0S5JWvc+HwkBFasEfmaWg04f7nymv4RtV35BdPGYZFveMbWp2Q4LowV4nEp6WsyhHZgeG6OG7+iXN06FK7z2B3SWfIB9+cicq+eez77Qjr50n6tX/cNTB7brvifdOyN94PX8ewIAmu+Oh6XHl7zXve8mR3/wqq1diRPoNm4NH23MLBNGAwAAAAAAAIBulHc2PJf32L1NHgk6kSluk/IKo3ksk6REZE/bREOShniVVwgOONNSMS1H3idwjkY66ORboIpE1Ht/b8VjacZZ91xuip5tFgsNGNdlnXUN2SNbHheCcdyyjueOajp7SFOZSR3bmDYeh7fCkq1zey/QROygJuIHdH7fJQpbkbptH6e8ZNdP6NaVL2mxOF+x7kj2Hh3OfF+X919VdTuO6z05xLK2fp5arWFTwmjBnN17vt5zzvv0nZWv6rPpjyvjeEcqT5spPKq/e+wP9dzBl+qnEj+ngXB7RJcBNF66MOe5fCQyqojNcza6G2E0AAAAAIAvr6jUmTKFxo+jk5WqfGe16HHVvm5lCvV5dbB6I5aeMSodTVeum5pz9ZNqjxOUggjyOJWkfKmx46g3Uxgtafj+3XWl1Zw0HGvcmNAaCgG+65/2/l4ALc51Xf3adZUH+w9+zdXvvtzV6EDnHLsBAO3hu8fML7bf+xlXv/cKVyHCvEBVtSTfZ5alZ+5r2FAAAAAAAAAAAC0q73hfoZUwGuohETWEwoqVcRuvZVJ7BSJMv+9KeUl5J8fjCr5ShseAZA5FAZ3IFBJKF+fkum5LxTKzZe8Yj1/07KnbmONpmfK6hsKE0RohXZjVVHZS05lDOpI9rA2nvpNGRiNjmogd1P74AV0Su9z33xn1EbGjuibxc/rIzF97rr8h9S+6NH5F1SidKYpnaxthNMNrQy/D4d28VqyBbdl6wfCP6UD/1frswsd1+8otVX/mjtWv6Z717+l1ibfpBUMvk22FmjBSAK1soeg9AarWsCXQiQijAQAAAAB8lQ0hqs3W840fRycrVfkbL3hfwKkrmQJgpu+V9497h9EePVm/MbWCII9TScoVGzuOenJd1xxGGzT/3FKWMFo3KASI/J1Yavw4UH93PSo9lKpcnitKtx2VXnew+WMCAHS3bJUQ+OET0sGzmzMWoJ25NZTRZlZcqYNi5ttxLH3qvfGFSRFhBAAAAAAAANDxCKOhkZKmuE1htiJuky6YwmjtMyHZb/J0ujCns3rPa95g0HYWCt6T8gdDuzgmo6uYjqU5J6v18qoGwkNNHpFZtuwd1Yrb1WNYMTvus10mMtRLprymI9nDms4c0lR2UovF+bpuv8+OayJ2uSbiB7U/dkCjhCx3xMH+5+nCvsv00MZ9FetSxRl9c+km/ejIa40/77quXMPlB21rG2G0GsI6Y20UA24l/eFB/eyeX9Xzhl6mT81/SI/nH/G9fdZZ13Xz/0ffWblFbxl7l87pvbA5AwXQkkyfQ4xGeD4HCKMBAAAAAHyZQlSbFUpSqewqHGKC5laY4k+nncxIZcdlAqxk+IpHMv1pxgYtz5862WHf0QZ5nEpSPkBMqlX4/U6Jfu9/V0lazjZmPGgthSrHTUlay9VQXkDL+Nwh87/b4ROuXneQ50IAQHNVC4EveF9wF8AZagqjLTduHO1iLefqp/63o69Nn/rvi5LSZ37Z1qV7eT0MAAAAAAAAoHMZw2hWX5NHgk6UMETN8m5Oq+VlDYV3SToVo0gVZry3EWmfSMSuyKhCCqusypMG08VZwmjwlS56T8pPENlBlzE9d0inHietFEbLON4nsMRC1cNoUbtHESuqolt59cCs02En3TdRyS3q2MYRTWcmNZU9pEdzR+Uq4NXQAwgprGf0XaL98QPaHzuoc3ovkG2F6rZ9bI1lWXpD8u36wPHf8QycfXHxk7p68MXqD3tfKd7x2Udsbf3f1+94dqZkdN+W7wfSBX0T+v1z/4e+ufxF3bjwCeWcDd/bP5J7UB84/nt64fAr9ZrRnwl03AbQeczvwdon0A40CmE0AAAAAICvoMGlTF4aijV2LJ2qVCXw47jS0uxJ7b73S9LaSenqV8g6+6LmDK7FOIbveUzTgncbvhNYzHRWMKkc8DvSdgqj+QUDTf+ukrREGK0r5IvVb7NWJWKC1vRfk+bj87F0EwcCAMAT0lXO72yn19hAu5hd2ekR7Lxf/YT7ZBRNkh5MSW+51tHkn9iyLOJoAAAAAAAAADpT3vWeMN5j9zZ5JOhESZ+oWbow82QYba28orzrHelrpwnJISuk3ZGkUsXKyFu64D3hGjgtXZzzXJ6IEEZDdxkIDanH6vV8XkgXZnV+38QOjMpbtux9gkvQwE48NKDl0mLF8kyZKwYG5bquZguPaTpzSFPZST2Uvc/4mmKrxqNnayJ+QBOxg7oodpl6bQLCreic3gv03KGX6jsrX61Yt+FkdePidXrL2Ls8f9ZxfcJolr3lMQ2FdhkDiGcaa6MYcKsKWSG9dNdrdOXAC3RD6mO6c+1W39u7cvTN5S/qrrXbdE3iF3TV4Is4PwjoImW3pMViynMd78EAwmgAAAAAgCqChtHWCaNtWSlA1GrhN9+skbknPgwP/Z70x/8q60ff2NiBtRHb8B3P7rj38sUOu3hV0MdpLkBMqlX4hdH6ItJAr7Tm8V3xUqZxY0LrKFQJSkrSqv/FldCCVjdc3fO4ef33H+msqCUAoD3MLfs//5yKLnMSElBNLa/kZqs87jqd67r6wuHKv8G9M9Idx6TnXbADgwIAAAAAAACAJsg73uEIwmioh3hoQH12TBtO5ZU308U5XajLJEmpQmVI7LRkpH3CaNKpkJtnGK1IGA3+0gVDGK2N4oBAPViWpWR0rx7LH6tYZwoI7pSMIYwWt4OF0WJ2v5ZVGUYzBddwykppSdOZSU1nT/1vpXSyrtsfDA3rktgB7Y8f0ETsgIYju+u6fXL/LZIAACAASURBVDTOa0ffqrtWb/OM4926/CW9cPiV2ttzbsU6R+aT5G1tPYxmWZYSkXHNFI5Xve1YdN+W7wdPNxwe0dv3vkfPz7xMn5z/sOdr883Wyiv617m/1+0rX9Fbxt6t8Z6zmzRSADtpsZiWI+/JpUnegwGE0QAAAAAA/oIGlzLVLxwCA78A1GkLKwVdfPo/ymW5f/PL0o+8Vla0p5FDazmm/dGUITCF0Y7M12U4LaMcIK4nSflSY8dRT36Pi0hI2hUzhNGyhCm6QTHAvuy1f6C1Pbbkv/6+GenInKtL9uz8Y/z7j7j62G2u0muuXn6ZpXf+sMWVuQCgQ2WrvNfttOgy0ChuDa2zmZXGjaMdFMvSSUP0++N3uHreBbzuBAAAAAAAANCZCKOhkSzLUiK6V4/mHqpYtzmGZoqG9dkx9YcGGza+RkgYQm6pAmE0mDmuowVD8Gk0sqfJowF2XiK6xzuM1mLH0mx5zXN5LDQQ6OfjIe+Amim41q0KTl4PbdyvqczdmspMBopM1SJiRXVR32WaiB/QROyg9vWcy7mpbWooPKJX7H69/mvh3yvWuXL06dRH9Wtn/WnFv6/jmieG2FZoW2NKRIOF0ZLRvdu6H1SaiB/Qe8/7B92y9FndvPgfKrr+JyU+uHGf/r9HflMvG3mdXrX7TbwnBjqcX7yc92AAYTQAAAAAQBVOwODSOgGaLSsF+BunQ8mnL8isSvd9V7rihY0ZVIsy7Y+m7/t291uSKmdf54rSStbVUKwzvigMGjAstFEYreQTRgs/EUZ71OOiWkuVF/REByoECEqu5Rs/DtTXiSphNEna/98dOddu74v97frmEVev+l+OcsVT//2fd7m661Hp/7y1M55TAABPV+11x6IhXgTg6Wrooul45UWou4pfRO5oqpa/JAAAAAAAAAC0F8JoaLRkZNwzjLZ5ErIpGpaIjLddmCQR9Z5A7TfpGlgtLRljHabYHtDJjJHJFjqWuq6rjOMdMDMFz85kCqhlHO/gWrdwXEeP549pKjOp6ewhHd2YUsmt3wn5liyd1fMM7Y8f1ETsgC7o26+IHa3b9rGzXrrrtfr28pd1spSuWDedndS9mR/oWf3PftpyVz5hNNnbGk8iQFwnpLB2R5JVb4faReyIXrX7jXrOwAt1feojujdzp+/tHZX15ZM36Pur39Ibk+/Ugf6r2+79CIBgFgreYeqh8Iiidk+TRwO0HsJoAAAAAABffpMxN8v4X7ACPvwCUKfNeH2pevg7XRdGM+2OtuE7npG4eVvvv9nV+67pjC8GggYMT0d82kHR53ERCZn/bQlTdId8sfqT0xrBzrYzsxLsRcddx11dee7OHb//+ktOxfH02m+5+u+vdjU+3BnPKwCAp1SLC/P6Ewgm6OdLkjS7Iq1uuBrs687XVn7x8wdTzRsHAAAAAAAAADSbMYxmEUZDfSSi3nGb9KZJyOnijOdtktG9DRlTIyUNMZ/l0qIKTp4J1vCULnpPypfMsT2gk5mfO1onjFZ0Cyq53ieJm4JnZzIF1LJl7+BaJ1sspjSdmdRU9pCOZO9RplzfONxIOKGJ+AFNxA5qIna5+sODdd0+WkfU7tFPJX5O/zz7t57r/zP1UV0aP6iQ9VTuw3F9wmjW9sJoScPxbLNEdI9sa2cvYN3pRqNj+uWz/kj3rH9P189/xDOct9lSaUHXzrxfz4w/W29KvlOjvB4DOo4pXk6YGjiFMBoAAAAAwJffZMzNMvnGjqOT+QWgTjsR9jipprev/oNpcab90TbMlR4fMm/rc4dcve+a7Y+pFZQDPk7zpRpmou+wamG03aYwWvd9/143ruvqyJw0HJPGBtXSVxQqBDhuruUkx3Flmw4QaDknloLd7hsP7GwY7aZ7K5e5rnTtra7+5DXsbwDQaaq97lgmjAYEUksYTZKOzEvPOa8hQ2l5fp/Fza00bxwAAAAAAAAA0Gx51xBGswmjoT5Mk4pThRm5rivLspQyhG5MYZxW5jfmheK89vac08TRoF2YJuXH7H7FAwaWgE5ieu7IOuvKlNda4nHhF+6K297BszPFDLerdxSsFW2UMzqSPazp7KSmM5NKGSKpW9Vrx3Rx7JnaHzuoifgBJSN7W/ocbdTXlQMv0DeWv6CjG1MV61LFGX1z+Sa9dNdrnlxWlvlkNUvbC6MlAoR+x6L7tnUfCO7y/qt0Sexy3bz4H7rl5OdUlv8VXO/N3Kkjj9yjV4y8Xj82co0idqRJIwXQaObPIQghAhJhNAAAAABAFUHDaOuE0bbEcdxAf+OZsMeXqpnV+g+oxZUNF8AxdY8uSJi3NT0nnVhytW9X+3+x6JgvDPQ0ee+LgbWkamG0kX5LUuWDZynTPvG3VvLAvKuf+6ij7z586r9f/Szp42+3tSvemo+Pgv/3fk/KFKQBzo1tGyeWg91u2nxR0h11f33PhQEAtIhqrzvWcrz+BIKo9ZFyZM7Vc85rzfcjjeYXkcsHfC8EAAAAAAAAAO0o75jCaN13AVE0RtIQCsu7Oa2VVzQQGlLaMCE5aQjjtLKRSEK2bDmqPMEwXZgljAZP6YL3yVmjTMpHl/KLTKYLs4r3tUIYzXxV6XgoWBjNFHjL+my7XZXdkh7ZeFBT2UOayhzS8dyDns+VW2XL1nm9F2sifkD7Ywd1Xt9FClnkHLqVZVl6Q/Id+sDx3/Fc/4WFT+qqwRepPzQoSXJd874YskLbGksiUv25PBkgnob66bF79brE23TV4Iv1qdS1eiB72Pf2RbegGxev0/dWv6k3j/2S9scPNmmkABopXfR+D2YK9ALdhlfSAAAAAABfphDVmTJ5V1JtE1bXc65umZIeW3L14ostPeus7pvwGvTveyJc+QWDu5yu8S/e/hxDRc4URrMsS594p6Wf+Sfvnzt+Utq3q16j2zlBA4a5NppAXfJ5bIRtaXfce91ipjHj6WSO4+od//JUFE2SvnBYes9/uProz7fmUSZoGG0tRxitnRxNBTuYPTDXmgGaQqk1xwUA2B6/YK8krREJBxoi3fkXnTYK+h4fAAAAAAAAADqJ67o+YTRO/kB9+E0qThVm5EZd5V3v/dAvjNOqwlZEI5GEForzFevSRe8AHGDaN9oxDgjUw1BolyJWVEW3ULEuXZzVeX0X78Coni7rmL9gjwUOo3nfLuO0fxjNdV2lijOayhzSdHZSD2QPK+ds1PU+kpG92h8/qInYAV0ce6b6QoYT3dGVzu29UM8dfInuWP16xboNJ6MvLHxSbx77JUnyjfTZsrc1juHwboWtiEpu0Xibsei+bd0Htma852z9xll/rjvXvqX/TH1Mq2X/q42nijP64ON/qisHXqA3JN6u4cju5gwUQN05blmLhjCaKe4OdBvCaAAAAAAAX0EnY67XOBl8ftXVK//e0eTjp5e4+p9vtvQbP7q9D+vbTbVJ9qfNep1QsLxY38G0AdP+aAqjSdKbn2MOoy10yETroI/TvPk7rJbj99iIhKTdhu/pF9v/+/em+84x6bajlcs//QNXH/pZV9Fw68XR8gHDaKsb0t7hxo4F9XOk8hxMTw8EvF0jmAKdUvD9EgDQXqoFWde950UAOINbY+wrU3lOedeo9W8FAAAAAAAAAJ2g6BbkGiIAhNFQL/2hQfXZMW042Yp1p2JQ5g/pk5HKi9u2g2Rkr3cYreA98RpYMOwbo5E9TR4J0Bosy1IiMq6ZwvGKda1yLM2UvU+e7rX7FLKCZQRioQHP5dlye55sv1Za0ZHsPZrKHtJ0ZlJLpYW6bj8eGtBE7IAmYge0P35QI5FEXbePzvPaxNt019rtKriVE69uXb5ZLxx+lcZ7zpbjmsNolrW9uVa2ZSsR2aPZwmPG27Tra95OYFmWnjP4Ij0z/mx9fuET+ubyTcb3yKfdtXab7lv/gX5i9Gf04l2vVsgKNWm0AOplqbSokut9ojLvwYBTCKMBAAAAAHz5BUA2y9QYRvvAze6mKNop77ne1Zuf7WrPUOtFeBql5P859ZOWbY+yz0p9v6BrB6bdMeTzHY9lWTprl/T4UuW6hXVXUvvvb4HDaG0U7akaRjNcSGsx05jxdLL/9VXvHWg9Ly2st2ZYrBAwKjm3Kk1wkZS2kMm7evRksNvOr0nFkqvIDkT7/I5NQfdLAEB7qXZ8X6vxvTDQrWptfdX6OVMnCfoeHwAAAAAAAAA6Sd4xX42GMBrq5XTc5tF85VUkU4VZ48/12XHFDcGYVpeIjkvZuyuWnwrBAU/nuq5x30hEmZSP7pWMeofRUi1yLM0awmgx23AVag9xw203nKzKbrnlYztFp6CjG1Oazk5qKnNIj+WP1XX7YSusC/ou1f7YQU3ED+isnmfI3makCt1lODyiV+x+vT6/8ImKdY4c/Wf6Y/rVs/67HJlPVgtp+4/DRHTcN4w2FiWMttP6QnG9aewX9byhH9V18x/SI7kHfG+fd3P6z/RHdcfq1/SW5Lt0QWx/k0YKoB5MYWpJShBGAyQRRgMAAAAAVBF0MuZ6jRNWP/zNyg07rvTZQ67e/aL2D1UF5RdY2WzN68vGpXR9B9MGTPujXWWXGe03hdG2P6ZWEPRxmis2dhz1VDWM1m/Ja2r9wvqpk3Msq3uOI9t1bMG8Ay22ahgtYORvZrkz4ofd4MFU8Nu67qno3dkjjRuPiV8cJ99Gx1gAQHDVXnesmefoANjENbztCNve0fhaP2fqJITRAAAAAAAAAHQj3zCa1dfEkaDTJaN7PcNop2JQ3h/SJ6N72/Z8NNNEasJo8JJx1rThZD3XMSkf3SwR9b5Cb9onqtlMWcf7hPhaop6xkDmitlHOqD88WPO4GslxHc3kj2sqO6npzCE9tHG/im6hrvexr+c8TcQOaH/8/7J33+FxVIfawN+ZLZJW3dJKstzBxqaFltAuaUAaKRdISOAmkOTmBpIQQgmhhl5DS0IJLRA+SgoQIISSEEIJYDCYYoyxZWNbLpIsrbq0K22b8/0hy15J58zOrLbM7r6/5+HBmjMze3anz5zzzr5YWLYHvHpJWudPxeeI2v/Gq/3PoS/WPaXsw+A7WDX8Nuo8jcrptTSE8Zkdz8v0clS4qqf9GZQec0p3wdlzr8XSgefxROB+5b5+XFu4FTduOR+HVB2Bo/0nodLNZUmUD1TX5hWuapS5yrNcGyJnYjAaERERERERmbLaGTNo8znSiCI85L7XBH70aXvzymeyzr8yQ64qGNCgJza86XHGw9RsUgajJXnG41c8q11rI4jHyQyL65Fqu3OimEn4kFsHGhTP6qNxoDcI1Fl/yVnR85i8PMqp4YFhi8Fobf2ZrQelz5oOe+kPbf05CkYzWffMQtOIiCh/Jdu/MxiNyBpVMFpFKdAv6VsRLOJgNNVvNS4WF3C78rPzFREREREREREREZFKWIwoy0r00izWhAqd3ysPg/gotApb9A3yafI4EEoV5tMbDeDBbbemPF8X3JhXthAfr/wkg2Icbjg+iLcHX0VbuBUGzBubhuLqBoOqdYmoGPg98vW/PbxpWvtSu2rd9fhYxYGYU7rLhOFBxbbrsxGmYRaiFjSGUIGdwWhCCHwQXI61oZXKMMVMGjVCWBdahaH4QFrnW+2egd19+2BJ+b5Y4tsHVW4Hvlma8ppXL8Ex/u/i3o4bpeV/6rwDc0t3VU6vIx3BaOrjeWMehwEXKl3TcVjN57FPxUF4ovt+vD7w76TTvD74b6wYXoaj/Sfi0OrPQU9DoF4hyvWxLJ08mhfzS3fDAVX/BbfmyXV1yKYuRdBuPt+HIEo3BqMRERERERGRKavBaAPqdklTBMPqmSYLuCo0ZuFPkwX1clQmvuVjoAciEobmLZ5GJaoAMD3J85f6Sg2ytzne+6rA3SeKvH+AY3U7DaX3RVgZFTULRnMBM01eYNMxwGA0O+ImbZ16gtmrhx1m4VSJ2hmMljdaOu2Nn6tla7ZvsrpeEhFRfjHb9wNj59hxQ8CV7KKEqMipLlsrSuTBaPl0/Zpuya7xg2Gg2peduhARERERERERERFlS9hQv42GwWiUTn5Ps3T4YLwfiMsbpDR45dPkA1X4hYDA0oHnpzXvVwaAV/v/idNmX4YyFx9eOFFftBu/3XIxuqLt05qPVytBlas2TbUiyj+qYMCwGJ32vtSuf/Q8iu83n4X9Kw/dMSwUH5KO69PVYWdTxnWpG15PDk18pOv3eKn/acvzdqoSrRSLfHthSfk+2N23L5q8s/O+TwE53wGVh+HFvqewcbRlSllvLIDe4YBy2nQEXJkFnTZ4Z017/pQZle5qnNh0Gg6tOhJ/6rwD7ZFNpuOHjGH8sfN2LB34N05o/NGUQE0CHu66Gy/3P5PraqTNy3gGywZfxI9n/RIeneFo+SQQ3SYdzmBqop2KrLs5ERERERER2WU1cKl32OKIADoH1WWuInuWlKyTfaJBvWrqwO7pNVbIN6r1MVkGgVlI1ivrUq+PU1jdToPhzNYjnVTbhlsHNE1Do2RzGNeR3heAFbwRk8CBbhv79myKWNx3Mhgtf6y1GYzW1p+bddMs/CzMYDQiooIjhLAUfJlP59lETlOp6Ms2POrMa5FsSPbNizk0joiIiIiIiIiIiAqXKhhNgwaP5s1ybaiQpdK5WBUulg/qPI3QkLmGua2j6/DG4AsZmz9Nz4t9T007FA0A6j1NDAuioub3NOW6CjvEEcNjXX+AIXY2pA1OCi4bV24SdjZZiVYKF9zSsmBC8FpHeEvehqJp0DG/dBG+OOM4nDHnSly/6AH8ZPYvcXjtVzGzZA73c5QVmqbhuIYfpDStDte0P9/svLYxj8OAi8Wuvt1x/vyb8HX//6JESx4g3jq6FtduOhsPd96NkXgwCzXMD+3hzQUVijZuTWgFVgy/ketqkE2BSId0uJPOP4lyjcFoREREREREZMowrI0XkL9oSMo0GK3IrlRjFn9fABjSJQ8nu+U3wApVqsFoC+rUZZc+aWMhOJTVYLR86jyt2jbc25/ned0a6hXP6zsGircDfSpGTcI+uuVtJXLOSkAJAASGuC7kix6bIXy9OXo2axbKx2A0IqLCE7MYxjok76dDRAmE4nSvokQ+PJhH16/pluxeXDH/NkRERERERERERFS4VMFoJXopQyoorRpSCDlrSCFMzSk8uge17vqMfsaq4DsZnT+lblXw7bTMx+9lp3wqbjXuOkcFtfbGAmgPb97xd8iQd+TwuSotz1PTNGWQWmLw2od5ts+v9zTisOov4IfN5+D6hffjnHnX42v+b2M3315wa55cV4+K1Pyy3XBg1WdsTaNBh1uThxfaUeupV4YgNngYjJYPXJoLR8z4Gi5ZcBsOqDws6fgCBl7qfxqXbTwVbw2+DKFqxFVECvn65YPg8lxXgWzqiwWkw+sZjEa0Q5F1NyciIiIiIiK7rAYu2QnP6TIJUSu2UBGrHe0BYEiXPJzs2pq+yuSBVIPRjtlPPcJLa4FL8jwczep2GjOAaCw/HmREFduGJ+FFRzOr5eN0DKS/PoVsxKRTfY9Dg9GsHit6+GKjvGH3+J+rABrVvgmwHthHRET5wywQMxGD0YiSU12JKoPRwhmriuMlu8Yv5t+GiIiIiIiIiIiICpcyGE0rzXJNqNBVuqsxp2QXy+NXuKoxp9T6+E60R/n+GZ1/IFJcL/jNF4YwEIhuS8u8Mr0OETmdrunYvXzfXFdjgq5o+45/JwaXJVIFnan4FOOHjJ3z74o6e59fppdjv4pDcELjj3H5gjtw+S534n+afoz9Kg9Vfj+iXPjv+u/AqykazUjMK10Ijz79gEaX5sKS8n2mDHdrbiz2fWza86fsqfHU4QfNZ+O02ZdaCrUbjPfjDx2/xm+3XoyO8JYs1NC5Cvn6JRBJz/k/ZUdcxDFihKRl1e7aLNeGyLkYjEZERERERESm4hbzogI2wnM6B9U9PIstxMYsYGWyQVkwWtv69FUmDyiD0ZLc4Zhfr+FrU5/f7HDFUwLvbs6PwDAZw0auW8gkBMtJVPsed8KybqqSj2MnqJGA0ai6zKnBaFYDqIrtmJLPzNZDmVwF0Jite239QDiav8cSIiKayuo5R76cYxPlkuplo6pgtOEiDv9KdkYZ5D6HiIiIiIiIiIiIClBYKILR9LIs14SKwdH+k+DRkgdLaNBxjP8kuDVPFmqVOZ+bcTRq3HUZm39PtAtxwTcKOk1/rAcxYbNRlsT80kX4RNWn0lAjovx2VN23UC5ry58jnZG2Hf8OKYLRfLq9ILByl/z7BeNDO/7ttDAZF9xYVLYnvlr/bZwz9zpcv/B+/HDWufhkzRdQ723KdfWIlGo99fjuzNOhW4j68GolONp/Yto++8t1x6NML58w7Et130KFW9E5gxxt9/J9ceH83+Kr9f9j6RpnbWglrm49E38LPKAMKC903WkKD3aiQv5uhWgkru7wpDovIypG7lxXgIiIiIiIiJxNFUQ1WV8IiMUF3C4t6bidg+qy1m6gPyRQ40s+n0IQsxFoNSx5mCq2rENx/FJjVAFguoUf4dKv6XhyhfoH/3+vC+w3Nz9/TavbKTAW2lDty1xd0kX1nbSERVRfqUHWZdypYV5ONWrSJq0n6LyQJyEEIhZDJXuGx8bXtPzctotJ2GbbyJwFoyVZ94693cBTp+lc54iICoTVIOuR6bclJyp4ymC0Uvl1XbCIg9GShZ8X829DREREREREREREhUvVIbtEL81yTagY7F6+L86ddz3eGVqKQETecbzGMwP7VByEXcqWZLl26ef3zsS5867HW4P/wdZwK4TqwU0SYTGC94ffnDLcQBy90QD83pnTrSqlUcAkFOHjlZ+EliSIxa27Mb90NxxU9Rl4dcXbjoiKyNzSXXHuvOuxfOhVbItsUT4DT7cNo6vRE+2aMjwxGC0xuCyR3UANVZBaYvCaat8yv3QR/J5mW583HdXuWizy7YVFvj1RyiBdylP7VR6KX8y7Du8PL0N3ZOp2DgBNJbOwb8UhmFkyJ22fO79sEc6bdwOWD72KYHwIe5Tvhz3K90vb/Cn7PLoHX6r7Jj5R+Sn8peturAq+bTp+HDH8s/eveGvwPziu4f+wT+VBWaqpMwSi8pDPbB/LpmM4PoDVofemDB+KD2DUGOGxMU8EDfk5HAD4XPYCbokKGYPRiIiIiIiIyJTVwCUhxsLR/Baen3Wp79sgZgDPfiBwwoH5HSjyziaBsx8xsHwTUOMDjt1fwzXHaCjzTvxedoLRBmUPJ7esm2ZN84tqfbQSjLZbg3n57S8J/OZb9uvkBHEb61Eokrl6pJOhaDGQuKzrFPd5u4edF+blVEIIjJisE90ODJmLG+pQhcnCsbF1vpztshxPFYzmcclDaYZGc7OdJwvIefYD4In3gGPYPoCIqCBYDWPNl3NsolxSnb2pztWDRbxdJTvTNbuGIyIiIiIiIiIiIspXYWNEOpzBaJQpzSXz0FwyL9fVyJpq9wwcOePoac0jbIzizHXHS8sC0W0MRnOYQEQe+FDhqsL/Nv88y7UhKgz13iZ8se4bWf3Mx7ruw/N9T0wZ3hVpBwDERBRhIQ+YtRuooRo/ZAzv+KzeaEA6zhfrjsPHKg609XlEBMwrXYh5pQuz/rl+70x8qe64rH8uZVa9twk/mfVLrBhehke6fo++WLfp+L2xAO5svwZ7l38CxzX8H+q9jVmqae6MHcvkv0s+Hcu6I524eOMpirJtmF26IMs1olQkhs9OZjfglqiQmce6ExERERERUdGzGowGAL1Ba+N1DZqX/+Z5kfIb6ZygZZvAx68y8NJaYDgMbO0Dbv63wMkPTP1OyQJWEvW4Zkwd2NGacj3z0XSC0XwlGubVqcujcSAYzs/1zs52mi+hDapdQOKyrlc8r+9xYJiXU8Xi5uuPE4PRVAFaKlwf8kM4Kh+uClwdkrfjybiIhfXv0idtpFUSEZGjWdnvAwwpIrJCdY1XqejPNjACxO1c7BaQZF87FCnO34WIiIiIiIiIiIgKW9iQNwRgMBqRc5Topah21UrLVCFclDuBqHyZ+D0MsCPKJ43eWdLhnZE2CCEQiqs7cJTbDEZTjR/cHtrRE+2CgLx9JPctRETOoGka9q08GBcvuBWfn/F16HAlnWZl8C1c0Xoanu15BFFD0ai/QPRGA8pjWb2nKcu1SV2tpx4uuKVlgei2LNeGUhWMD0mH63ChROP9MKJxDEYjIiIiIiIiU3b6oAbD1sZ75G3zmb7VCux1qYF1nfnV0dMwBM551MDuF8tvkj60TGB918TvFLMRjNbhltxk7Q9AxGymBOWx6QSjAcB/72s+4tubbFbIIQoxGM3KslYFozkxzMupRpI8t3JiqJjVgJJx25KEcZIzqALvVNu5k4PRVrYhrwNeiYhoJ6vnHQwpIkrdzGr58LgBBOTtfgqekSRnN1+u64mIiIiIiIiIiIjsYDAaUX7we+XBN6oQLsodVVidahkSkTOpgtFGjBCG4gPKQA0AKNcVb6ZV8OnyBpuh7cFoqv2KBg31nkZbn0VERJlVopfiaP+JuHD+b7CobK+k40dFBH/vfghXtZ6ONcEVWahhbpgFOufTscyluVDnaZCWMbQ6f4yHz05W7qqAplnsKElUBBiMRkRERERERKaSdcZMFEzSMVMIgT8uszbD1R3A4osMrO7Inw7m974mcMNz5vV94r1JwWg2ft8Ot6QxghBAX6f1meS5uOL30i3e4TjnCxp2N2nT8ZVbbCwQBymqYLSEZV1XLh+HwWjWjSYJRhscBSIxZ+2HIzYCJQHgxRZn1Z8mWrlV4J5XDbT1y8uVwWgWw1jTLWpx/XNiqCAREdln9bwjWdgsEQGqs/LZNepp2hXniIUu2RVMvlzXExEREREREREREdmhDEbTyrJcEyIy4/fIG2B2sfO946iWSYNiGRKRMzV6m5VlXZE2hIygstznUjTAVCh3yYPUxsPXAtFt0vJadz08utfWZxERUXbMLJmDR3HcowAAIABJREFUM+Zcge/NPBNVLpOGWtt1Rdtx89ZLcG/7jeiP9WahhtmlOpbVuOvg1UuyXJvpqfc2SYd3K74jOU/IkHc68SnOyYiKFYPRiIiIiIiIyJSdwKWgSUjJSETgm3ca+M499gJq9rzEwO9eyo+wqvtfT/7dXlwzcRyrASsA0C4LRgOA7uJpUKIMy7L4IoTmGg1vnK++HTIcBsLR/AtRKshgNFUIXsKyrq+QL/i+kPPCvJwqWTAaAPSq20zkRCRmb/xX13FdcKornjKwz+UGfni/ehn5Fdv54EimamXOakBO+0Bm60FERNlh9XotX86xiXJJKE75/JUa3IrLdFV4bqFLdo3PfQ4REREREREREREVorCQNwQo0UuzXBMiMuNXdL5XBQxQbgghEIjK2xarliEROVOFqxpluvxN0p2RdoS2h5ZN5tG8tgNeVEFq46EdAUXgIvcrRETOpmkaDqz6NC5ecCs+XXMUNAsRM8uHXsHlG0/FC31/R1zYfLO9g6lCw+o9+Xcs8yvqzGuz/BGKy4PRynV74bZEhY7BaERERERERGTKTuDSSfca+Pdq+QQPLxf46zup1eGnfxRTAsWcRgiBlW3Jx1s96f5izFYwmuKNTz0MRrMajAYAlaUavry3uvyjgL06ZYoQAg++YeDEewz84lEDH7artwFViJhMvnSgtrKsZ1arp1/vkOXodCMWgtG65ffacyZsMxgtIG/zQTn27maBy/6e/Nhep3imMyR/UXTGWQ1dbOvLcEWIiCgrrAayWjmnIiI5l66+tmvvd/a9oExRhciN4z6HiIiIiIiIiIiIClHYkDcE8DIYjchRGrzydqw90W0wCigwId8NxPsQFfLGon6P4iXNRORImqah0TtLWtYZaUNQEajhU4SpmSl3VUqHB+PDMIShDlzkfoWIKC/4XBX4VuPJOHfedZhXuijp+KPGCB7tuge/2vRzbBhZk4UaZl5XAYV8qsLcVOFv5DzK8zhFWC1RsWIwGhEREREREZmK2whc6h4GPv8bA/e+OnWiR9+eXmfWI24y8FarczvEdg4CA/KXVk7Q2gOMRnd+j5iN37fdrXho2FM8Ny1VAWB2gtEA4KzPqW+JrHZIztxpfxI46V6Bh5YJ3PicwMHXGHhjg3wbsBNgGIw4dztKZCUYbVe/etmvKZ7NYlpG8zAYzWpAybihcGbqQdPzh6XC0r7LL29ng5EoMDiS/f1Z1GL7zbYiDfEgIio0Vs878iV8mChXRJKkr1m18uEdAxmoTB5Idp7MfQ4REREREREREREVooghb+BRwmA0IkdRhd/ERAx9sZ4s14ZUAorABwDwexlgRJRvVKGUnZE2hOLytwf7FCFnZny6PIRDwEDYGEEgIm+czf0KEVF+mVu6EL+Yey1OaPyxct+faGu4FTdsPg8PbrsVw7HBLNQwc1ShYX5FyJiTqcLceqPdiAm+eTMfhAz5eZwqrJaoWDEYjYiIiIiIiEzZCVwCACGAi58UiMUnTvj0yunX5cy/2EgRS4PBEYFfPmFg1wviOPCquDTwbZzVECYhgLWdO/+2GrACAMOuSgxJbjqLbockeWWBlbAsKz67RD3BPSbLOVu29Ar87qWJX3Y4DBx6rSHtUG5nOx2Sv1zVcVTfSUtYdCUeDbv45eOt2cZQIitGLDzv6HFaMJrNF4vmyzpfbH7/irVtdLdGddmKrWmqjA1WA3LaizTEg4io0Fg9zx5hSBGRKbNcNA2AX9G+rt9CAH0hYjAaERERERERERERFaOwIb8pzGA0ImepNwkMMAvjouwKROXLwqdXsJM9UR5q9M6SDu+KtiNoyBv5lruSB93YmWYoPoDuaKe0TBWaSUREzqVrLnyy5gu4ZMGtOLjqcEvTLB14HpdtPBWv9f8Lhsh9vyu7DGEoj2X1eXgsUx1/BQz0RLuyXBtKRTAuP4/zucqzXBMiZ2MwGhEREREREZmyG4wGAO39wGqb7Rv+fHLyZKul68cCo7LltD8JXP2MwMZuYPkm4P/uF7jtRfnN243d1uu1pXfnvycHyCXT7pbcuOwpnsYkqvXRlcIdjqP3lQ//5ypgXWduQ7We+1D9+Tf+q7iD0SaH4C1WhCZtCKS3PoUqbCEYrXvYWSFzVuqcaLBIwxScLBgWGLW4HHdr1FDjk5e9szn766bVYL6N3AcRERUEq+fZDCkiMme2KWkaUOOT3xMaCGWmPk5nFiQHcJ9DREREREREREREhSks5I2aSjQGoxE5SZnLh0pXtbQsELX4hmHKOFVInd+bf4EPRKQORgtEtmEo1i8t86UUjKYOTtwa3ggD8gaUfq86NJOIiJyt0l2Dk2b+DGfNuRrN3rlJxw8aQ3io8zbcuPl8bBndkIUapk9/rAcxIe/E0JCHx7I6T4OyrDvCa7N8EFIEo5XrDLMmSsRgNCIiIiIiIjKVSjAaAKzetnPCkYj5TJqqgGP21fD5PZLPd955BroGMx+EsmKLwANvTP2c370k/+w2+TNFqYGRnfOI2XxJRpu7eerAbgajTQ7LsmLJTPVEiy8yYKS68qfB8x+qyy54TEBM6iVtp6qD+RKMptg2Ji/ruXXy5djR76wwL6eysu70BDNfDzusBlONGw5jyjZDudVu45hZ5gH2VzxjfXdzeupjR9Ti+teS44BNIiJKD6unECM2g1uJaCdNA6rK5GX9oeI8p0p2nTbCYDQiIiIiIiIiIiIqQGFDEYymK24iE1HO+D3ycC1VGBdlXyAqXxYNimVHRM7W6JX0HwBgII7No+ulZakEapTqPmiQt8veOLJWOV29J//CZIiIaKKFvj1w/vyb8HX/9y0FlG8cbcG1m87GI12/x0g8P95+2W0S5JyPxzKvXoIad520jKHV+SEYH5IOTyXglqiQMRiNiIiIiIiITKnCiZJZnfBM/YqnzXt03nKCDo9bw2+P19Fg4RncnpfsDK1atkHgj8sMvLkxvZ1lf/28fH6rO4BQeGqZnZCXgZGd/7YasDKuwy1plNBTPDcslcFoKdzh2D3Jfeu7XsldB+wKk+cIMQMYSmgHKISwHNgATJzWyVRfaXIw2qwa+Xh2wgqLmZVgtG75S0hyJhKzN74hgBCDAxzFzjGzxA3sN1fe0OadTdnfT1td/1q2MZCPiLKjPzR2PfTEuwI9w9zvpJvVX5QhRUTmzE6LNAA1PnlZ/4h8eKFLdhqZ7AUERERERERERERERPlIHYyWvEM2EWWX36sIRlOEcVH2BSLydsWqZUdEzub3zFQGlm0Nt0qHpxKooWs6fLp8uk2j66TDq90zeL5GRFQgXJobR8z4b1y84FbsX3lo0vEFDLzY9xQu33gqlg++4vi286pz5HJXZd4GUfkVgW5mIXDkHCFD3lmrPE/XR6JMYTAaERERERERmbISmiOztnPnv59aoZ7J8gt1fP2AsQd1i5s0rLtKx6IG83n3BIH9rzTw7d8bOORaA9+5R+Dgawz88H4jbTdSn1ulnk9PcOqw9n7rn5vYsTdmM3iuXRaM1r4BImYzKShPqYL6JodlWbH7TPOJHnojdzflh5OEl/UmrIN2V/mhPOlYbjUETxWM1j6Q3voUKivrT0+eB6MB+RMIWCzaB6zvuEo8wP5z5WWrtwGRWHb31RGLgaZ9ISAgf4EPEVHaLG8VmHfe2PXQsbcb2OdyIyehkYXM6vVwiCFFRKZMg9E0oKZMXtafHy8TTbtk+x4GPxMREREREREREVGhiYs4okJ+85NBG0TOo+p8H4gwGM0JhBDoirRLy1TLjoiczauXoNZdLy0zIG/UmGqghioYplURjOb3MHCRiKjQ1Hrq8X/N5+Cnsy+xtJ8fiPfh3o4bcfPWS9AZactCDVMTUISF5fM5cr1XXvcuXps5niEMBOPyzlo+V2WWa0PkbAxGIyIiIiIiIlOpBqNt6d054ahJiM3+8yaGU1WWavjgUh3HHWAeWvX+VuBPb06s3D2vCrhOGQtMu/NlA/FUKw8gbFLnbsl9p/Z+6/MeSAimiloMWBnXIbupPDwArFxqb0bTIAwD4sW/wrj2FBh3/BKiJ3tvklCGZaUQjLbHTMDrVpe/th45e2NJstCgvoTO4XZX86HR/AhtsBqC11wjX/iBISAczY/vmktW1p+BEWf9jmb7Z5VBBqM5SpuNY2aJG9h7lnw7jxvAtiyHIMZtBJq2dCYfh4hoOk68x5gQ/tneD5z+Z5vJy2TK6uUAQ1iJzCXblGp88uH9eRLsnW4MRiMiIiIiIiIiIqJiEzHUD1tKGYxG5Dh+rzwcIRDdBkPwmXWuDcUHEBby/apq2RGR8zV6Z9kaP9VADVWgWkxEpcP9ikAWIiLKf3uU74dfzv8tvlJ3AtyaJ+n4LaH3ceXG0/G3wIOIGOEs1NCe7qg8LKw+j4PRVKFu3YoQOHKOsDECAfn1c7meWsAtUaFiMBoRERERERGZSjVbLDH0ZEDRkXWvZvlwj1vDX07RceeJKaRdYSww7ccPCRx3h5FysJVZ8IksGG1zr/V5J/4eMZvBaO3e2dLhYunT9mY0DeK6H0Nc/D/A0/cBD10P8d39ITatycpnpzMYzVei4SefMZ/wyRX255sOydanaQWjOe/5gpTVZT2rRj2PbYPpq0+hsrL+DDosjCASl1fabXKnk2ElzmInTLTEbb6dd2Q5GM3OPnfNNmeFChJRYWnvF9IAxtfWA+u7uP9JF6v7/f5Q8nGIipnZrRlNA2rK5NfmxbptJbuVxWA0IiIiIiIiIiIiKjRhk2C0Er0sizUhIiv8shf8AoiKCAZjfVmuDU0WiMgDHwD1siMi52vwKjpeKKQaqGE3UI37FSKiwubRvTiq/lu4aP7N2LN8/6TjxxHDP3sfxeUbf4r3h9/MQg2tC0TkYWH5HB5crzgOd0c7GVrtcCFD0jl1u1QDbokKFYPRiIiIiIiIyJSqI/g1x2r4hsk9zfZ+7AglUwWjXX2s+WXpDz+p4xPzLVRS4Yn3ANcpBhZdGMc5jxoYjVrr1R6LCwyahOj0DE+cT19QoGvIer0SQ4ZiNu8zvlB5hLzg1b+nHAJnh3j+L2OBaIkGeiD+9OuMfzaQ3mA0ALj2WA0/OEw98TG/M3DDcwaMVBMCUxAKi+TBaMGd/zYL8ZNxWsiVitVl3WwSmNRmI3ypWFkKRnNYqJhqna/xqafJl/W+WHTY2DZLPWPLtlTxkqn2bAej2djntvBFS0SUQWbnOW9sZDBauli9xOrnuQaRKbNNSYP6XH5wFFm9HneKZF+ZwWhERERERERERERUaMLCJBhNK81iTYjIigaT4ICuqDqUi7IjoFgGpboPFa6qLNeGiNKl0TvL1vjlKQZq2A1UMzsmEBFR4fB7Z+Insy7Cyc3nocZdl3T83lgAd7RdjTvarkZPVPIW4CwTQiAQVQSjeZqyXJv08XvldY+JKAZiSTqmUU4F4+pgtHJXagG3RIWKwWhERERERERkShVAU18BPPwjF147V35pGY4BPcPAaFQgEpPPo8bCyxyfO2P6l67rA8ANzwn817UGVrULvL9V4MN2gVhc3tO0NygdvEP3pHtPLTbv0Q6Edn5uNG5v2l5RiYCrfmrB1vXA5hZ7M7NIDPVBrH0PYsWrEJedJB/p9X9k5LMnU4ZlpbiaeN0a7j5Jh9/k2e85jwpc8XT2OmKv60oewNCXsA7Z7SM+5LCQKxWrwWjVZYDPKx+3ncFoSeVjMJqqzl43UFEiL3uztfjCFJysrd/68vC4AE3T0FwtL2+3Ma90sPNpW/gskYgyqEwRGAkA63LfhqRgWD3X7g9lth5EhUzT1MFoQiS/R1OIkt0TGIlmpx5ERERERERERERE2RI21I1TvLqiMQgR5YzPVYFyXd7oMhBhMFquqYLR/J4maFqKbyEmopyzG4zmSzFQw+50fg+D0YiIioWmadi38mBcvOBWfG7GMdDhSjrN+8Nv4vKNp+EfPY8iJnLX6Gk4PohRQ97Qsz6fg9FM6q4KgiNnCCmC0TRoKNMVDSqJihSD0YiIiIiIiMhUsnCiuTPU07b1AwMj6vJqC8Fo1T4NHTek5/L13S3A3pca2PdyA3tdaqD+TAMPvD41+a1ryHw+gUn3nt7fai+UpT/hN4nZDEYDgJtnnCovWPac/ZmZEMFBGJd8B+KoJogfHATx0yPUI/dugxjKfAqVoQjqmxyWZddndjOfwWV/F/ioKzvhO2u2Jf+cvoT78XaD0ZwWcqWi+l6T2+VomobmGvm4dsKXipVqm0o0aLIfzwVVnV0asM9sedmzK7kuOInV0MLyEuxojDdTEYzWMZCmSllkZ587NMr1jogyx2x/9FFX9upR6JKFE43rC429UZCI5Mw2Dw1Ak8mL6duzfL7nBMnOOUOR7NSDiIiIiIiIiIiIKFvMgtFK9NIs1oSIrPJ75R3w2fk+9wIR+TLwexleRJTPGrzNtsYvTzEYrdxl8rZxiXwOkyEiotSU6mU4xv9dXDD/11hYtmfS8aMigie7H8RVrWeiJfh+Fmo4VbfJdUo+nycztDp/BePyzqtlejl0LXnoIFExYTAaERERERERmUoWRNVYpQ6lShaMVmMxwL6xSsO7F6X/EnZwFPjuHwT+9z4D5z1m4Du/N3DNswY+dpl5UtCmnol/P2MzcCeQcO8qpvio2nivcvrH6k+QDhcbVtmqh4oQAuK9VyC+6AdeeMT6hJvXpuXzzSQL6kvVtV9PPoMDrrSQIJUGk9cvmd7gzn9bCbZKlC+hDXZC8GYpgtGshi8VMyshT04L01PuB3Tgq/vIt+WVbfmx3mfK4IjAI8sFnnxPoDeY299BCGE53KLcu/PfzTXyZZvt7dzOPnfIYdsOERUWs2P4tsHiPealm9VAzLgBBMOZrQtRPjMNRtPM7y0V43Udg9GIiIiIiIiIiIio2IQNeSNDt+aBS3NnuTZEZIXfIw8PYOf73OuKypeBapkRUX6oddfDo3mTj7idT08tGM1nI1Ct0lWNMpfFDiFERFRwmkvm4sw5V+K7Taej0qV4C3qCzshW/HbrxfhD+00YiKn7zGWCKsC5RCtFlUvRISlP1CtCq83C4Cj3gsawdHiq4bZEhYzBaERERERERGRK1RnTtf2K0u3S0KS4f7m1T5iGPFWXWa/HPnM0rL48M5ex9y0VuO4fAn98U+DCx5P3fG/ZtnMcIQReapGPN69OPrytf2dATzQuH2ff0RXqz8dcbHM1Ti3YpKiIDSIagTjvWIjTjrQ/8aY10/78ZDIVjLagXsMFR5nPZGgUWNOR+ZCJNgudvvtCO/9tNaxh3Gg0P0Ib7CxrpwQm5SMrq89oFIjEnBOwEjcJzTt4F/m60BcCuuXPDQreu5sFFpxv4Ft3GTj6d2Phn+9syt3y7A2OrVNWVJTs/PdMxfPGjoHsfhc7+1ynhQoSUWFRHQ+BiSG6ND12jjL9JqHgRMUu2bbkdmlorJKXtfU751okW5JlOocixR38TERERERERERERIUnbMgfsJfopVmuCRFZ5fcqgtEUoVyUHUIIBCLt0rIGxTIjovygazoavM3WxoWOUj21wLJyG4FqDFwkIiJN03BQ9WdxyYLb8KmaL0FD8s5dbw39B5dt/Cle7HsKcaHoVJdmqgDnem8TNG2aHdJyzO+RB6OpwuDIGULxIenwMgajEU3BYDQiIiIiIiIyZSWcaLYirKStH7jwcXmPfU2bGHhixeImDf88Q0ddub3p0q2lc2cH1GBYHXzyg8PkN0dDEWBwe6f5mCLQwCNieGbzV5V1aPNIHmxuWmO7Y+yyDQKn/tHAOXd1YMV1N0AcXgksfcbWPMaJzdMPZkvGLBBpui76soZvH2Q+oz0uMfBRl73f+NV1Aqf/2cDP/mzglXXJp2230Om7fxrBaAAQyIOAKNXX0iV3s5oV+6CHlgl2Fk/CMAlVSTTooKAPs+PSEvkzHQDAmiJ9rvPde40JYYrt/cDP/mxxwWfA2k7r45YnnCc0K0JYOwamVx+77OxzhxiMRkQZZLY/Stzv0/RYPVcCJp6jE9FEZpdl4+3KVNd1xRh4beWc02rYMBEREREREREREVE+CAtFMJrGYDQip1J2vo90sM1eDgWNIYwY8ofXDDAiyn8Nsv4DEj5XRcohLz5XpeVxVSGZRERUfHyuChzfeArOmXc95pYuTDr+qBHCI12/x682nY2NI5nvi6YKCatXXNfkE79X/h26I0XagSZPBOPyjn12QmqJigWD0YiIiIiIiMiUlWC0WbXycdr6gfUBeVlVKaCnkGb1uT00tF6r46WzdTzxEx0fXKojcruOlZeO/X3jcZl/U0N/CAhsD+bvNgmYOniBui5t2zv2xhQvt3CLGI4MvqCcPuCqnzpwqA9oXa2u0CR3v2LgkGsN3P6SwA3LG3Dw2h/jqYovWZ5+ik1rUp/WIuX6mIY7HCUeDff/r4anTzOf2QFXGnh3s7WGOw8tM/CZGwzc8oLArS8IfPYGA/e/bp6u0Gah03dfcOfnpxKM1jVof5psU4VQyHYbsxQd6AHgnL+ykZUZq+uPKgAyF1R1dumAvxKoUbzkbn2g+NaFjn6BDyQvAF26HtjYnZvfo6XT+ucmbu8zFcFo2Q7KYDAaETmFWWBXXzB79Sh0do6WvfzdiZTMtqXxUz7VdV17loNwncBKX6ERBqMRERERERERERFRAQkbimA0vSzLNSEiq1RhOGExiqF4ET7gcYhApENZxgAjovzX6J1laTzfNAI1yl3Wp1WFZBIRUfGaV7oQ58z9FY5v/BHK9PKk428Nb8T1m8/FQ9tuw3A8cx2dVCFhhXAsU4W7BaIMrXaykCoYzUZILVGxYDAaERERERERmbISRNVcIw8Aa+8TUL1saGAk9TqVl2j41G4avravhj2aNbhdGvZsHvv7zM/pePKnOhY3pj5/K1o6x/5vFoy292x12XiQS1QVjIYYdAg0xDql5d0ev3zCV59Sf2iCtj6BUx6YuHDDeiku8V9iq/P/BDZC2VKlDupLTyCepmn40t4aPre7epyh0bFwtMCQ+S8Viwtc8JiYUGdDABc+LhCLy6cVQuCNDcnr2ZfwQr9UgtECJuutU1gJZRzXbBKMduNzAvVnxnHcHXGsap84065BgVP/aGDPS+I47Fdx/OOD4rvpb1h80JEPwWi6NrYNz1GEdRZjSMzmXnXZGxtys76vsfHioVhC6I/qXKN7GIjEsvddbAWjhTNXDyIixekkgLHjNhszpIedn7FjgL85kYrZtjR+OT/T5N5SsbFyzhmKZL4eRERERERERERERNkSNuSNCUv00izXhIis8nvUIVtm4VyUWV2K375EK0WVy6ShJRHlhUZvs6XxphOoYSdUjYGLREQko2sufKrmi7h0wW04uOqzlqZ5beBfuGzjqVg68DwMYfLm4BQFovLz5EI4lqnC3UaMEILGUJZrQ1aplo3PRkgtUbFgMBoRERERERGZMhT3ExODqGYpnpVv6ZsY4JTonC+mJ8hK5isf07D6CheMu1x44/zMXPq2bBvrpaoKRnPpgL8C8CueK27sGZs+pvh9PSIKAPDHuqXlgdmfkA4XLe8oajzRnHPlH7yi9GPocCtu7GoatAfeg3benRjRSrHKuztGtITGZ1vXQ7RvtPT5qbITljUdt307+XrT+HMDQ6Pq3sqrO8a2gcna+oFV7fJp/u9+ax2+exMCnlTbqJlkoW5OYGdZz1J0oB/XGwT++g7w2RsM9AyPzdgwBI75nYHbXxJY3QEsXQ8cdbOBl1uc/9ukk9WQp8FphFmmW7J1o9YnL1cdjwqZ2fLdYhKalkmt8sOaVHxCMJp6vE09qdfHLjv73EgMCEeLa59CRNmTbH80nSBq2slqiCwwdp5PRPaNX82p7i21D2StKo7BYDQiIiIiIiIiIiIqNmFD/sY+BqMROVeFqwqluryhlip0gDJPHfjQBC1NLyAmotxp8M6yNN50AjXKbUxrFpJJRERU6a7BSTNPx5lzrsJM79yk4wfjQ3hw2624afMF2DramrZ6jBojGIrLG6GpQsXySb1JuFt3xMZb7SmrQnF5h1Q752JExYLBaERERERERGTKSjiRqvPqqnZA1Y/8Wx/PzgP2AxdoePuXOr6x/8ThlaXAPrPNp/3c7uqyls6x/6sCpuorAF3XsKtfPv267dPH4vJyt4iNzScuT5DpbtxLPuHmFvnwBLe9aJ6i0OJdNHXgl78P7S9rEJu9BD9qOxZ1u3Vgn13fRu3iTpzTcBVicI2N99pTST9/OtRBfen9nIUNGlwW7ppU/8zA3a/IK7WqXd2T+QNJWSwu8Mhya8ELiQFPZh2my0vkwwN58NIPO8FoZoFJibqHgev+OTbjMx8WeH3D1HE+e6OB0SIKMrIcjCZvf5oT8ST7gRpFMFp/EQbEBMPqstYshokl6hiwvn0lhofOrwNUbfPGj8nZYHfvMOSgbYeICkuyY/jPHxEQNkK9SM7OT8hgNCI1s21p/ByvuVpe3iYJHC90VvY9DEYjIiIiIiIiIiKiQsJgNKL8o2maMkSAwWi5E1AEHzC8iKgwNHqbLY03nUANO6FqDSZBLEREROMW+fbEBfNvwjH+76FES36dv2F0Da7ddBYe7boXI/FQ0vGTCUTU1yd+b/4Ho1W7auHRvNKyQJTBaE4VVASj+fTKLNeEyPkYjEZERERERESmkgXQAMCsWvupVPVZDLDfb66Gh3/kgnHXzv8Gbnbh3YtdGLxZx56TnhGe/CkNxl0u/PNMF048WP7dtvaO/b9bfh9qx/db1CCffl3nWC/XqCoYDePBaPLkmu4SxYPNjR9CxGLyMgBDowKn/cm8h+1a724T/tbuXgr9vDugzZyPy58WuHt5OSL6WOJWTPPgprozUbr7EB6sOgHDr/zLdN7TZScsa7qszvKUBwSueMpAJDaxcusD6mk2SMrWB4BhkxCjRP0jgLH9xzALxWhU3A8NKNZbJ1F9L1kwkqoDvcz1/xTNJWnxAAAgAElEQVToHBS45QX1D3fOX4snREQVNjjZ4IhzfhPlfmD7nc4an3zr7Q9mqEIOZhaWsLYzN8u0Q/6yJanE8NAyr4Z5M+TjrdmWve9iNUxw3JDF/ToRkV3J9kd/eE3g8XezU5dCZme/38FgNCIls01pRzBajfw8vnNoLEi8mFjZ90wnGM0wBN7ZJPDQMgMbAsX12xIREREREREREZEzKYPRtLIs14SI7PArAnFU4VyUeapQOtWyIqL84nNVoNKVvNH0dAI1XJobpXryc7ByvdJWiBoRERU3l+bG52YcjYsW3IL9Kg5JOr4BAy/0PYnLW3+KtwdfndaLgrsV4WAuuFHrrk95vk5hFlqt+u6UeyFD3rFvOgG3RIWKwWhERERERERkykoQ1awa+/OtK0+tPulWUarhnV/quPd7Gq45VsNzZ+i44zs7L5ebFd+tfWDsh+kakpfvCEZrlJev6xr7vyp4ziPGws388W5p+ca4Xz4hADxwrbLoT7c+p55uuxbvop1/fOHb0JYcsOPPB99Q30z+3qx7UD36ON5aZSP1xibV+ujKwB2OT++WfJxxlzwp8KnrDPQM76zg+DKWWd469YustvGSRCGAwe3tAU2D0arkw7sV662TqAK7ZCF4JR4NPvkLTqSuedb8ociflomi6Xhv9VsOjGS0Grao1g3X9nWjxicv73dQuFu2BCPq77wmB8+4hBBotxEaE5u0rBcrXsjUksXvYjVMcJyTth0iKiyq64hE1z5rc6dFU9g5e2jrL75zDSKrrLRLU91bEsJeuG4hsLI3CaUYwBuJCZxwt8DHrzJw4j0CCy80eLwgIiIiIiIiIiKinAsLRTDa9pd3EpEz+T3ysK0uRTgXZZ4yGE2xrIgo/zR4FS9XTzDdQA2fnnx6v1fRoJOIiMjEDI8fP5x1Lk6dfbEyzCvRQKwX93TcgFu2XorOSFtKn6kKbq7zNEDXXCnN02nqFcflQITXZk4VisuD0Rg8SzQVg9GIiIiIiIjIlKrDfWIQld1gNJ8X8JVI0o1yxOPW8L1DdZz7RR1H7jGxXjMVL1Ua75S7vkveXbWpamw+8+vk0/cEx/4/OfRlnHt7MNrc6GZp+Stt5RjwzJCWiXuvgAhPTWIR6z/Ak+/E5B+Y4PYZp4z945AvQTvrtzuGD4QENvUknRw/vC+KuFla1zRYCepLl5MOsTfTN1sB/1nGjtCzwJD6N/jXaiAUnli+Zpu936wvNPb/VILRzOrmFHaX9cVfsb68bv63+ffvCQJL11ueXV6zuqkOytuf5oRy3dh+XKpRvKiuL5iZ+jhZ0CQsob0fGMxyWNzQKBCKWB9/8jnIwgb5dt7Wl73vYffwtiGQmXoQEVnZHy3fBLQzrGta7ARiFuO5BpFVZnui8TO8OfJbHADMg8cLkZV9z0g0tXn/4TWBR96euEQueFzgvS08XhAREREREREREVHuhA1VMFpplmtCRHY0eOVhW4FIO4SVN+dQWoXiwwjG5W/NZYARUeFo9M5KOs50AzXKXZVJx2HgIhERTcee5fvjl/Nvxpfrjodb8yQdf01oBa5qPR1/734IEcPeGyWV4cEFdI6sCpkLRLP4BnqyLGKEERXyjjXlevLzMKJiw2A0IiIiIiIiMqUM7kp4KUJFqYZqRRCNTH0ehdfP3PCydHhHv4AQAmsU9wgXb7+nWN3fKi0fGBq7gRWNyRt/uDEWYHZE8EVpeTSu4c09vquoNYDlL0wZZPz9XiwtO0g9zfi8NS9uPq0V2q8eh+ar3FHP+edbSwV4f6AWb2ywNKptyQKR0unr+2sprasHXm3g8XcF+kPqcUajwDuTMu9abN5v7t0evKAKLwSAhip5iFBA/mIJR7G7rE/5VHrT8Z54rzgaZlkN+xicmrWYM6p1fjw0r7ZcXt7voO+QLcEkIWTrsxza9UG7vfE/MX/i36og1vaBlKqTErvBaHZDL4mIrLK6P3p6JfdD02Hn1+szOf8nKnZm/V607efxNT4NfkWbnlMesJFSWACs7OOD4dT277e9KJ/uwTd4vCAiIiIiIiIiIqLcUQej2WiUSERZp+p8P2KEEDTkAV2UOWahBw2e5izWhIgyyUowmpVgMzNWgtX8inBMIiIiqzy6F1+uPx6/nH8z9vDtl3T8mIjh2Z5HcEXrz7ByeLnlz+lWnCfXK65n8pHqu3RHGIzmRKG4ulPfdANuiQoRg9GIiIiIiIjIlCqAxj3pilIVViKTL8FoIhpB0z9vlpYFIxr6hmJY2yWfdsn2e4pVL94vLR8VXowu/ZcyeM4jogCA/UffhT8m/5B3Fhyjrnzr6gl/io/eR+cTj6LfVaueJsH5LzVgePtLNIJhAd9PDQzYCBU66+GJX+y5VQKH3xBH89lxfOq6OB5allqnZlWIk57eTCwAgK9Ew39+oeOQXexP+/XbDbyeJBxucljOn9+y1wm5b3swmlmH6cYq+fCuPGhzpOo4r1rW1T4NVx6dvhXhN88LGHYTkPKQ1a84KG9/mhPK0LzxQAVFm9hiDCsJJQlGC2R5X/DsB/a2qTOOnHiy0aw412jrS7VG9tndLaztzEw9iIjMwnETPfN+4Z/PZJKd/X4xhrASpUPiVdwSRVuz9QEgMFQ8+zMr39TKPZql6wW+8OuxezGNP49j/yviyrDim/5VPL8vEREREREREREROU/YkN/0LNFLs1wTIrLDLBQnwA74WReIdEiHezQvqtzW2g4TkfNZCTos16fXWaPcSjCah8FoRESUHg3emTh19sX4YfM5qHHXJR2/J9qJ29uuxJ1t16AnqujUl0B1bVJIIZ+q7zIQ71OG0VPumAWJTzfglqgQMRiNiIiIiIiIlAxDKDuCF0MwGtavRHPvKmXxy7+6E5GYvGxxkwYhBKpXvaCcvv+C7yMak//ALjE2Yw3AHuHV0nEubPk4BMY6zA7pFRjVSnaUiU0tO//d0Qrx/U/g+NkPKOsyWTgGPPCGwIftAntfalgOXhj3VutYB1wRGsIL7w7ji7818NJaYNsg8OpHwIn3CNy3dGymXYMCW/usdcBNFoiUbktmanjtPBdGf6fj9CPS+yFrEu6tr+0UCCvWJZXxkCdVWBwANCmC0bIdhpSKVJb18Z9I7zI65nepBfjlE6thH0MOehaiqrNr+3FpRrl8PegahHKfW6iCYfPy7uHs/h4fbJV/3uxaoGpSW+ZDdwUOWzhx2Kwa+bLtCQLhaHa+i91gtE09xbXOEVH2WN0fvb3Z/rx7gwKrOwQ2BASEKq22SNj5+sFw8Z1rEFllti1pCad4uzWqr+n+vqJ4ti+z6/xxyYKf39si8OnrDfxr9di9mMAQ8N6W9NSPiIiIiIiIiIiIKN1UnXRLNAajETlZlasW3oR2q4kCUXlIF2VOV0T+hhy/pwm6xm7ERIWi0Tsr6Tg+C8FmptPryQM5GgooTIaIiHJP0zTsV3koLl5wK46sPRq6hRicFcPLcMXG0/Bcz2OIiah0nKgRRV+sW1rm9yje4pmHzL5Ld5Sh1U4TjA8ry3yu8izWhCg/8I4GERERERERKZmFYbkmB6PVWg8kqqvIUIpVum1qwexoG9yKG6RPrlM/NNytEUBPB6qD8oYGADCgVyG6Xh565hY7U7KWRNYq53Hzofdh4a6rUbu4C/MXrsXvak8ZK1i/EgAghMDGb38Oh8x/Ga/6DlPOR+anfxTY61IDrT22JtvhsF8ZCB81G0feXiYt/9GDAgdcEUfT2Qbmnmtg4QVxvLHBvKNztoPRxnndGm76poZbTtBQ4k7PPFu27fwyt7xgv4N3X2hsGrNQjMYq+Q8TigChsLM7laeyrOclfzmMLX9/HxgIOft3mi6roSqDI875HZKtG/MV60HMADamuD/LR63dAlc/Y77cutXPUzKirV8+/AeHaXjpFzq+/18aPrkIuOAoDf84XYfbNXGDbzYJYX3k7SwFo9nMS+zJ8m9MRMXD6v5oax8wPGptH9nWJ/CZ6+OoP9PAnpcYWHihgaazDfw1S/tYJ7IbiDkwkpl6EOU7s00pMRjtKx9TX/D944Pi2RdZ+ab9SfY3Vz1tP+SeiIiIiIiIiIiIKFfCQhGMpjMYjcjJNE2DXxGME4gwGC3bAorAA9UyIqL8VO9tTBoWM91gtHIL0/s93LcQEVH6leplOLbhe7hg/q+xa9nuScePiDCe6L4fV7eeibWhlVPKe2NdEIrWWPUFFIw2w+NXnh8EIgxGc5qQIhitRCuFW/NkuTZEzpemrrxERERERERUiGImHSjdrol/m4WVTFY3vWdtWSM2t8CDGBZG1mNNyZIp5X+r/Ip0urkzgPISDeKDFlQbg8r5D7iqEeveBpTvMaXMg53BaHuGP1TO4+d93wS8Y//udvvxs6ZfY0l4DQ5f+zLE0/8PhmHgC3Ofxnrvrsp5ZFL5IvmbNQAgEgPe3bLz7w3dwJE3Gdj8Kx0zyqd2hhZC3TU408FowFgjnlM/q+HUzwKnPGDg7lem1yl7TcK95TUd6nnNr4M0nK4vNPZ/82A0dVlgGJgnf1mjI6QSjObSNezVDHygziO07V+rgW8ckL75OY3lYDR5+9OcUHXuH183FjWOhSvIdhlrOrYHVxY4IQS+fEvyFIRsB6O1D8iHz6oB9p2j4Z7vmu/M59SOBbPK1oErnhL49kECmpbZA4LJoUiqJ5iZehAR2QnsOusRgf3nmk8gBHDqH6eOExgCjrvTwIqLdew9O08CrtPI7n6/fwSoT/7SXKKiY3Vb+vLe6rJ1XempSz6wso/vD6nLRqMCz35g7zOzcV+FiIiIiIiIiIiISCVsqILR5C/kJCLn8Hua0BZunTI8EGUwWrapwugYXkRUWNyaB3WeRtP9bLk+vcYrPpf59GW6D+VJxiEiIpqO5pJ5OGvO1Vg2+CIeC/w/DMcVHRG22xbZit9suQifqPw0jm34HqrdtQCALsU5sgYN9Z7C6Vji0tyY4fGjO9o5paxbEaBMuROMD0mHTzfclqhQmcdCExERERERUVFThc8AgHvSFeUsG8Fo9flyn2ZTCwBgcWSttLjfVSsdvrhiLAxNXPJtVBmD0IT8hxzQqxCFPMnfLXYGox07+ITlKgPA1fXnjn3+tSfjgj905SwUDQCEZu/WQygCPP6uvAewWcdgPct3OO48Ucc/Ttfx88+n3nN4Y/dYZ2VAHRYEALv65cN7t4ftpByMJr+P6hjKYLQky/r4A9Pbm/uFNdMLwHM6I3l2FgBgcCSz9bAjWWheqUfDgjr5OC2dhb08x134hMBqC20LsxmMFjcEtimD0axttxWlGo5UvPhpXRewfFOKlbNBtQapzm16g+bBnkREqTK7Vpvs968I/OQh8/9koWiJ7nu9OPdldgLoAPOgIqJiZrYpJZ4Jul3qsFyz6+ZCY+U6zWx/81br2P0VO1xsOUJEREREREREREQ5IoQwCUYrzXJtiMguv1ceuhWIsPN9tqlCklTLiIjyV6N3lml5mat8WvMvTxLK4ffMzPhLbImIiDRNw8HVh+PSBbfhkzVfhIbkx563hl7GZRtPxUt9T8MQcWUoWI27Dh7dm+4q51S9p0k6PMBgNMcJGfKOPMnOwYiKFZu3EhERERERkVLMLBjNNfFvq6EmQB4Fo20eC0bbI7za1mTzN70Isf4DYKAHOgQqDXkC1aCrGjHNLS3ziOiOfzfFp76xwcxL5Z9Bj2sG1nh3w/X1Zycd/9b/Sf3B5Ml1b+KhtpNSnl5mjeKeq1nHYD0Hz1Y/v6eG67+hw7jLlVJAmiGAj7rG/t2h6OB91TEaan3ysr7QzvmozChXd252fDCaYnkn+6XPOELDsfulrx7LNhR2CIjVbzeQB8Foiev6LopAwc7B9NfHaQZHBK591tqS7cliMFrnoHrZNdsIV730q+pb2u9vzfz2qto3+RUvPwzH7IdSEBFZYTewa7peWVvY50QqdrMtGYxGJGe2LU1uKz2nVn7VFxgCwtHi2BdZ+Zb9IfVYq9rt/06J91Xe2yJw0d8MnPtXA0vXF8dvTkRERERERERERLkTFREIyB/GMxiNyPn8HkUwmiKkizJjJB7CUFzeENWvCEggovzV6G1WlpXpPrg0l7LcCp+eJBiNgYtERJRFPlcFTmj8EX4x9zrMLdk16fijRggPd92NX236BVYNvy0dRxUils9Ux+duhlY7TjAu78jjcyk6pRAVOQajERERERERkVIsri5zT7qinFVrfb75EIwm4nFg60cAgMODL9qatqp3PcR9V+34u9qQJ/H06TWIah5pmRuxCX9/cy97qURLyw7GT5puTjremxfo+M5B9kO9/vA9Da3X6Lj9jNk4cOQt29Obae+XD4+b9MXNRTBaouu/oeN7h9qvxKsfCYxEhDJA4ZBdNNSUy+fbFxz7QcwC49y6ensLDDu7c7Mq7CPZsvaVaHjkRzpartDxyCk6/iv5cw8AwGcXy4e/u2Xnb12IrIaqDMpfzJsTqnU+cd2or5CvKL3BDFTIYfa7wmSnMEkqgQmpUu3bAXvBaAftomEPRZualiw8s1NtM36Tc5tsBtARUfEw7CZ2TdPyTUCPw88fM8HuN+53UJgskZOYBqNN+tvs/tK2Igg6Bqzt482CGFWB82bGX4Dw7EqBg68xcNXTAtf/U+BT1xl48A3r1xhEREREREREREREdoUNdaMUBqMROZ+q8/1wfBAhRWdvSr/uqPoBEQOMiApPo3eWsiwdgRrlSeahCsUkIiLKpPlli3DOvOvwrYaTUab7ko6/JbwBH4belZY1FOA5sioQmaHVzqO6Vi5PEk5LVKzcua4AEREREREROVfMpN+ja1Iw2mwbwWizanKcYmXFtlYgGgEAHBZaihJjFGGLDa0qjWHgpcd2/O2PdWOLZ87Uj3A3IqiXS+dRbkzs4VpXaS/b/Jg5jyYd5y8n6/j4/LFlcdM3NZz1sHnHW00DDt0F+P13dSxuGl+Gc9D8+S8AG2xVz1Rbn7weZgFguQ5GA4A7vqOhrgK46z8CQxZDpJ58T+Dze6grP7NaHWw2HrRjFmyla2NhPZ2SzuNdQ9bqmCvKYDQLC1vTNCxqBBY1An0hDa+tT96p/LTDdbzYIl/JPnODgRWXTO/taU5ltl0lGnRQyId63dj57xnyXWvBBrps6hE4/zGBP79l7/t92AFsCAjs4s/8TlQVjOZxAXWK5aXy8fkaPuyY+l1btmV++arWP7PQ194QMLcuM/WZLiEEHl4ucMsLAuEY8PX9NZxxpIZSj/V14sE3DNzzqsBwGDhqbw0XfVmD2+WAAzNRgbMabppOv/23wOX/XVzbt93feTgsMDXmiYjMaJM2meZq9bjt/cA8h55XpZOV7Ms+k2C0VM6Lx0/fznvMQCQhq98QwC8eFfifA4Wl63EiIiIiIiIiIiIqXBEjjLbwJsRENK3zHYz1KctKNAajETmdqvM9ALw3/EZGwnNmePyo8zSkPL0QAoHoNgzEeqXlDd6ZqHbPSHn+2TBqjKAtvAmGGHsD9kcjq6TjuTU3at1F8ICNqMg0eJuVZekI1Ch3mc/D71Xv+4mIiDJJ11z4dO1R2K/yUDwWuA9vDr6U0nzqTa5j8pXqO/VGA1gbWgkN5v0Sq90z4Pc0QZvcoI/SLmTIO/T5kpyDERUrBqMRERERERGRklkwmnvS/TB/xVi4STSefL5L8uH+4aaWHf/0IIaFkfVYVbqnpUmr4hNTqJpi8jexbXM3YVCvks/DmDiPuur0XcJrEAjf7poQWnL6ERqeWSnw/Oqp49/0TQ0nHKihogQoL5l6g7P01MvhPz2AgNuflvq1KcJzTAPA7OXGZYTXreH6b2j41bEC/1kHHH5j8sSpF1qAlW3qcrNgtG6rwWiKl3YF8jUYzeY99qP21gCYdwr/yWc0HDBPXb6yDXh9vcAhuxbeDX6rYR8jUSAaE/C4c/8bxBWbVuK6UafYbnqD6a9Prg2EBA6+xpAGIFqxfFN2gtHa+uUrW3ONtcDDRLs1yoe3dNqtlX2qbWZGhQZNE9IQi7Y+YN+p+ag5MRIR0LWx7SUaBx5+W+B/79tZ6bc3CawPADceB1SWIumDzd+/YuDkByZOvzEA3P+D3O8riAqd6niYSa+uK8yAUTNWwokSBcOZqQdRvjPblCafblSVAeUl8u2ptacwr8sms3Kd1m8SXr06hZd8unRg24CQ3qPoHASWrgcOW2R/vkRERERERERERFQYXu57Bn8N3IuYiCUfOY1KLL7IlIhyp8ZdB7fmkYYmPrjt1ox97oLSxThl1vmoctfYmq4n2ok72q5BW7jVdLwlvn3ww+ZzUebyTaOW6SeEwNM9f8Y/eh6BgeQNB+o9TdC1wnwpLFExa/TOUpalI1DD51I0Pt8uE6GXREREdlS5a/C9mWfg0Ooj8ZfOO9ER2WJrer+38I5lquBSAwZ+s+UiS/No8s7GT2ZdhHqvosMGpUUwPiwdXp7kHIyoWDmg2zARERERERE5lVlne/ek5+S6rmFmdfJ5+iuBuoo86MS6uWXCn4siH1metNKYeINqpiIYrcPdhEFdftOqKj4xtaquKn3BaIHT104IRQPGgk/+dqqOC47ScOB8YHEjcNRewN9O1XHGkToaqzRpKBoAaJW1+IJ3Rdrq19Y/FsA0WbIAMKfQdQ2fWazhvYt1HHcAsIexHjOj8l7JkRjwm+flG5q/Eqgq06YXjKYD/kr5j+P0YDRVCIXdZd1co2Fxknvyt5ygYXYtUGXSlvKiv+UgfSQLrAajAcCQQ4I+VHV2JdzprCuXj9NTgMFot70kUg5FA4AW+SEq7doH5MObLZw7TLakSb4jWB8AIpLjRzoZihXQ4wLm1MqnaenMfZCQEAJXPm2g/KcGyk41UPITAxWnGRNC0cbd86pAzekGDrrawLIN5nW/+d9Ty//4pkCHIgiPiNJHdTxsqAQu+oqGg3cZO6e3+58qfBIA1nVl5rs4mZ1zJQAYdsj5EpHTmIUMTj6z0zQNu9TLx12bhSBcJ7ASytgfGjvHmywYFtjca/8zXTowYBK2tqmX53dERERERERERETF6qPQh/hL111ZD0UDgBK9LOufSUT26JoOvyf7b0veONqSUvDaPe03JA1FA4A1oRX4S9edKdQss94dXopnev5iKRQNYHgRUaGqctWiVHGelI5ADZ+uaIS7XSGGyRARUX7azbcXzp9/E46uPwlercTydLm4hsm0+jR8p22Rrbi97co01IbMhBTBaD59+gG3RIUofb2qiYiIiIiIqODE4uoytyRqe1YNkna+XJIn9w7Fhg8n/L1bZK3laSuNiYlTTYpgtDZPM4ZcVYp5JKTclPowZ4YGYHqdUEuMUby7x+2YsefZ0vIyr4Yrj9Zw5dH2533ByQvx4B3Tqt4Oo1HglY+Aw5dMHJ4vwWjjPjZbw59PGIB4cG8Y0DB/4Tq0e5qnjPeyYtUa31bqK+TLvnt4rBN0st9FHazm7E7Nqu+VyrI+6VANFz4un+GyC3Ro2thM7zpJw/F3ycd7YQ3wxLsCZV7g8MWAx+3AlS4FdsI+BkeAGeZtHbLCyrpRp1jvnRqM1jMs8P5WYFW7wIJ6DXNnAL1BYF2XQFUZcOiuGmbXTl3neoMCv3zC2kI8Zj/g8XenDs9WMFpbn3x4s72XtgIAFivOJeIGsCEALMlgmxuz9W9Jk/w8aE2WfmMzN/5L4OK/2dvvL98EHHengQ8u1VFVNnX9i8YEPmifOp0hgIffFjj9iMLYTxI5lWp/VOYFLvuajsu+lvq8z3rYwG+en/oBbf3A8KhARWnxbN9WwokSBRmMRiRl9+pzt0ZgZdvU4evyJBhtaFTg5bVATRnwiflAicfeftPKdVo0DoQiQPmk9nyphsd1DwOPvq3+YKMws8KJiIiIiIiIiIjIgjcHX87J52rQ4NG8OflsIrLH752JjsiWrH/uquDbGI4NosItb4c7WVekHa2j6yzPf8XQMsSbYnBpzumCu2zgJVvjM7yIqDBpmoYGTzM2h9dPKfO5ph+o4dXNg2WqXCk0/CQiIsoQt+bB5+uOxcerPolHu+7Be8NvJJ0mHSFiTlOil6LaVYuBuKLjhkUdkS3oinSggdcSGROMD0mHpyPglqgQSbqxExEREREREY2JmXR6dCmC0ZL55CLnd6IXAz3As/+fvfsOc6Ja2AD+nsn2hS1soxepSlERuSoWELuIyrXfa0Gxo9jrp2LvXa5eK/aGXkVsiAURVLChUhaQKtv7bpYtyZzvj7DsbnLOZCab7Gbh/T0PD5uZM2dOksnJzGTOO6+0mnZg7RLby/sHo/XQBKOtiRusrSOlZR3xSTh8D9ur17rC+waGXaUORWurYaMH4u+hd+L2otvDUt8XKwMH43a2YDQAQLEvMcaAxHE1HztadGh335PSBZt5TF9QldXgZEMAWZrzosXq86hRQxdCYYRwNuus/QS6KH6jP+9AgX37N288p4wxkG1xHnnK0yaOftzEsFtNrMyL7mA5uxwFo9VFrh1O2ApGS1Z3CmVuwHTypNvBwlyJ4beZmPiIicvfkjjuKRN73mFiwsMmLnhV4rRnJQbdbGL2ktYf9m9yJTKvtJdOsOV+A0Ny1K9JbmH7vB75ler19Exz3oEPytL3+7kRDsuw2v6GdFc3ak1Bx25zLy02cd2c0Nrwdznw0hL1stUW4T+hBnIQkX1ezVdAOPaLp0/QV/K7IqhoZ+Z0t8HdEJl2EHV2ViGDQtHlDNbsu65pp33Xtli8TqLPdSYmP2Xi4AdNjL3HRF6Fs3bb7XsqagOn5bZh3/MWiyDdKDuMIiIiIiIiIiIionaU37C5Q9bbI67PjpsdElF06xs/sEPWKyFR2GD/R+y8emf9Wb2sQ41mwHpHKXAYQNc3oWPeGyKKvH4J6nEIPeP6hqX+/pr6ByUO5z4aERFFpW6xWbig1w24pNf/ITM2R1suO7YnEl1J7diy9tMnTPv/FZ7SsNRDarVmjeHAQ9YAACAASURBVHJ6OAJuiXZGDEajsBJCxAohxgshzhJCXC+EuFQIcaIQon9Ht42IiIiIaGclK0shX7kP5mNXwrxhCsz/3Aj52euQXm+b67YKRotRHFH2TA/+I9exI6P7hzBpmpBTdguYfmjtN0gy3bbq8A9G6+VRX3hR4UrX1pFiVjU/SEhC1wSBCw9p22t35iGJbVo+mB6X34Sbh6/G6ZVvtbmuVfmKYLQgAWBRqSRvx5+Tqz9ytOhuwheopws2A4Dv1gFnvah/YVwGtEFf0R6MZif8yq5e6QLPnimQ2uIjMHlP4KnTAyv75Zbgp8s2lADnv2JCWo3u7yScPIXKbZFrhxN2gmB0nxuvCZSof0PoEKYpMXW2iaIgn8cGD3DubAnjAi/2usOLM54zcejDwUPRkuKA16cJ9EoXGKa5qVFuAdplWy7VvO459m7Y2kp8rECfbup5hVWRfS5WfZPuNV6tzkcNm9X5EnfMMzH1JRMPzTdR7m5u5PwVEue93LbX5I6P1MvXWIQlVkdJf0G0MwvnvpK/fhlAYqx63qd/dv79HyecfkVa9Y1EuzLLYDTFtCGa69JyC9tn3zVUpilx8jNmq1DpP7YC17zrrM12n2KFYp8rUsc7DEYjIiIiIiIiIiLadRU3RPhHb41xaUd0yHqJyLn9Ug9FnFDcubQdFDfmOyjrvD+r9UbPxWZe6UFpY5Ht8qmudOzVZb8ItoiIOtJBaUfCgKvVtGSjK/bqun9Y6h+Xqt4XOyTt6LDUT0REFCkjuozB//V/AsdknIoYERMw/5D0YzqgVe3j4LSjwlKPlMHHqlBovNKDOlM92CKZwWhESoE9OXV6QoiZAG5rQxUvSynPcbjOLAC3AzgVgHJYohBiCYBHpJTvtaFtRERERETUgszbADltf6C6vHni4o8hAWDBW8CDc9t0Rx5d+AwAxLgCp/VKC17n4OyQmxNxUkrIW08HGgJHsyfIehxRswAfpBwftJ6ufsn9w+pzHbclpeVd5hJ8aU5Pnibw34WhjUQdUr8Gw3bX3/EiHERsHMTd7+CG79fgzZfaVpcqRMZqEK4RrdHvLYLRxtd+i67eKlS77KUApc+5F3LAUcjcR3/S/binrE82CyG2B0QFvnjF0XO9jpJVEF4oThtr4LDdJf7YCqQnA3v1UfeNPdMEjhwOfL7Cur7v1wO/bQH2Ds+N1TqMk8HtFbWRa4cTdoJgeqbql99aAWSHEMYVCT9uADY6vJnO738Dv/8d/I2bO93AfgOAzK6+F2ZodwFVX1BTD+RVAL30WZ1hUa7ZftJDvNlSVhdgk+K1i3TwnS6kwjCAoTnq17ioGih3S6Qnhz/F85tcieOeMuGub5721FcSP9xoILcAOOrxtnem5bW+fST/fcrqes0CAKrqmJxBFGm6fSVXGPaLXYbA+KHAp38Gzluybtf6fDsNAqptiEw7iDo7q4+S6rTVEM1+VXUdUFgFdLfY3+9Iv24BCqoCp7+1TOK18yQMm+mVdvueckV+f1WEAhoZjEZERERERERERLRrqjO3ocpbHrxgGHWP641xqUdgfNqx7bpeIgpdt9gsXNX3bswpehEb69bAIz3ttu6iBgfBaA7KNnF7o+cOtKWNxTAR/FqgeJGAgUl74LTsCxFndExgHRFFXu+EAbi8z0z8r/gVFNRvwYDEoZiSNRWpMeG5GHRc2uHwSg8WVnyKgoYt6BHXBxO7HY99Ug4MS/1ERESRFGfEY1Lm6Ribcgg+LX0Xf7p/QhdXKg5KO3KnPt8wossYnNvjGswvm4Ot9ZsgLa/c07Nz3EGhsQrfTjIYjEakwmA0ajMhxNEAZgMIFm9wAIADhBCvA7hQSqm4VJuIiIiIiJyQ/7mxdShaSz/OB76aA0w8OeT6PV79vBjFgPtgwWhxMUBGlJ6jkV4v5EPTgYUfaMtMjluGD2AnGK31hRADGjciVjagUcTZbk+K2WIkbbwvNSbGJfDBJQZO+I/zE4z/3PYRxIiLHC8XipH7D8GceImTngn9ROiaQqC2XiIpvnnQsNUgXFf4s2bCo7g5GC1eNmCi+2tb4XoAkN5QDPn0TUh+5WjkpPgGfzvRNN46S/OZq64D6holEmKj88XThl+1Iewjs6vAhGHBy43oJfD5iuA/AMz5WWLvvtH5+tnlZHB7fqUE0PHPV9dmV4uQgewUXzCMKuAzryJ6Au1yCyOTLnDbcQKTRrV+r4ZaZGOuLuh8wWiZmr4t0sFoVsF8w7rrl8stBPbbLfztufl/rUPRAGBzGTD+IRNrCsO3nvJaoFty62k1FqEbVeqbGBFRGNkJCm2Lw3YX+PTPwJV8nQtUbZNISWzffYJXvzcxe4lEXSMwaU+B648UtgOG2sLpN3UNgyGJHFMGo1n86rymMHqD0VT9ZpMyN5DZ1V49ujBefxWKfS4GoxEREREREREREVE4lTQo7m653e0DnkZGbPhv1GmIaL1DJhFZ6ZswCFf1vcd3g+IQB99beTH/YfxSvThgenGjg2A0TdmD047G95VfolEG3gmr1oyeO9BaPddHBr+JOOELQRMQbbqpNhF1HkOSRuL6fg8qb3waDgenH42D04+GKU3uoxERUaeUHdcTZ/eYEbHvymg0JuVAjEk5EKYMPqbvirWnwiMbA6YzGC1y3FbBaK4oHXRL1MF4JEJtIoQYD+ADtA5FkwB+BvAugC8AlPgt9i8AbwrBI2EiIiIioraQNZXA4nnWZea/0aZ1eCzOY7kUe/S9061PEvZMRfSeSHz3CWDei5ZFjv33QbaCBrr6XQgRAy8GN6xz1JxE2WJ0a0JzaszkvQROH6tuRGoisO5uAymu1gkp3T0FuPqgOojkFEdtaIspowW8/zXQeMyLKFjTB9Wru2FK1f8c1THy9tYboNUg3LaEZUWSLMlr9Xh4/Urby6aalcCm1RAFG3HkQOfZ4juC0SwGXpdGzzU7ASId9mHFKtyoJTvhadHOdPB7RV5F5NrhhK7NLfsBlyHQQxOWsLUiet63sgjcNiC7K3D5oYEflPRkgWxNfxCpgLYmpilRoQtGSw7tQ53ZRb1cJF7Tlqz6pp5pQBfNTVbXF4f3NfZ4JYqqJL5fr54fzlA0AMivDJxWbRG6UVQNSClR5paQdpM9iMgRVfgnEL59pRG99BVlX23CXd9+n+1nFpo4+yWJr3OB79cDN/9P4uLX22f9TvaVAMAdeJ08EcE66EvV22R2FQGhrE3WRHjftS3iLW5LV+zg+NtuCFlFbWDByggF1NrtD+sbJbaWcx+QiIiIiIiIiIhoZ6EL4XEhBt1is2EII+z/iKhzE0JEpG/Iju2pXF9xg4NgNE3Z7NgeSHapL6xye6uV0zuCrv1pMRlIMBJ3vFZRe502EUVMpD/33EcjIqLOblfcR7Z1rKWJGzKlt51bu+twW4Rv645LiXZ1PBrZNZwOYICDf9fYqVQI0RvA+wDiWkxeDGC4lHKMlPIUKeURAHoDmAGgZVzocQDuasNzIiIiIiKipV8AnsBU/laWfAJZG/qP8lbBaDGKI8qRvawH4vdKC7kpESU350LOusG6UEYPZB1xDPbsbV3MkF6keQPTg8Zs+9lRm1q9jPGJrebNPkfgjuMFurfIOZs0Clh1h4HdsgSW35WIc/qtx4HGnzjH+BxLDv0S6dNvcbT+cBBCwOg1AJneUiTKOkyutg7y87ehBNhQ0jyQ1jIYLVrPUfsFow1ryLW9aJrXl0IjT90dx300zfGqm0KiUhP1ZaxCbTpaRwajHTlcKMMf/f2yGfh2Tece7G13wD0AbI2SYDSvzW1D950TLc8DUIdNtUVOCrDsZkMbNqYL/Vutv8FzWFTX6be19CT19GAyNDfDKamOcMibpnohfN97fbup54frvc4tkNj/Xi/iLjbR/Zr2uxNTvuJzU1MfOK3Jynyg17UmMq800e8GE/N+79x9JVE00vVHdvZh7LAKim3wAF0vM3H6syZq6iL/+X5sQeA6Zi+RKK2J/LqdrsGqbyTalYXyaR2So54e7gDYcEqI1c8rqrJfj93jtHJF+HC1Jhht3ED761fRHYc1qWuUOPtFE92uMNHnehN9rzfxxo+8cygREREREREREVFnV9ygvqAgIzYbLuFq59YQ0a4sK079I3ZRY76tG7Y0mg0o95Ro6u6pHYBe642eu8/qwiqzYm3eCZaIiIiIiKgFXfipKXndV6TUasK3Y0QM4kR8O7eGqHNgMNquoUBKudHBP/VZvkC3A0hv8XgJgMOklKtaFpJS1kspnwBwit/yVwkh+oX+tIiIiIiIdg3SNCFXLIX84bNWIWfyO5shUwveCXndHouA/xjFdU3pyQIHD9Yv0zs9+tKrpJSQ/xoVtJx4ZiEAYPce1s+hm7cMLgSeAJxc87HtNu1ev6r1hITWqTGxMQL/d6yBvIdcMJ/1/Zs73YXuqb629csQePHmwfj2mT3x4jPHoP+/z+q4u1v0Hbrjz1Oq5uCA2iWOFv/g1xbBaBbnVaMxGE1KCSxb0GrasHonwWjNKTSH1yxAvOksxazpNUmxCEariuJgNN21Su3xXvdOF7jxaHsrGv+QCa+TdLEQbGuQ+OQPiW9yJRo84V2Xk6bnVURHsJGuL/DfNnqnq8tttHvmqx0UhDkYLe9BA3266bfdId3V89YURPa9VQU2NAk1GC1TE4z28+bQ6rMr2PbXPVU9P1gwmrte4ouVEq//aGJlnvr9qGuU2P1WEz9usNlYB2JdwD4WZ2rzKwPbVB0kDKlge/jH3+XACbP0z4uIQhPpENleaUDXBOsyb/8kcdFrkf1s19RJZQhSoxf436+R71ec7ua5GYxGpGQ1FkV3umJIjmbftTB69ykaPPp5xQ7GzNgYu+OrU3GNVJVmH22f/gKXTwz9S6I+yL0Zpr8p8eoPEtu2l9taAZz5osSitdH7fhEREREREREREVFwRY15yunZcT3buSVEtKvLiu2hnF5n1qLGG/wONSWNhZCa2/lkx/VAkqG+GKlGM2i9I+jCKrPi1K8NERERERGRFaGJGzIV4yIpPHTh20lG144b+0kU5RiMRiERQgwGcHaLSQ0AzpFSaodUSyk/APByi0nxAG6LTAuJiIiIiHYOsrwY8sqjIS86CPLa4yFPGQq55BPfzF8X2qvjwUual3HIG0IQ1Ql760/C7D8wpGZElHzh9qBlxJWPQXT3pYUMCXJjtUxvqXL64TULkOCySJpr4aiaz1tPSAgxNSYaZPcGEpMBAHFoxNebjsCzeRejf8NGpHvLcFXpo7il+G7t4gtWtQhGsxhLG23BaLK+DvL2s4CG1skII+pXIM1bbquONLM5RaeLdOP0Kmchh02vSXKcvkx1FAejmZqR4O31Xt9xvIG50+2dOrvk9cgN9F62UaL3dSYmPWni0IdNjLnLxIaS8K3PSdjH1orgZdqDLiTA5fd27ZYV/UEK64vD15YN9xpBfwgZpvkO+3ULYEYw4C8SwWgZmmC0wirgkS8i90NcsCCiHqnq98AqBG/5Fonht5k48jETZ74gMWKmiQtfNVvdzbaoSiLp0vA8r/12A2ZMFHjgJIFbJgncOklg5e0Glt2sv5v3ekWgYI2D8B9TAi8tiZ7PHtHOQHesFq59JcMQOGVM8Mre/VmiojZyn293g37e2qKIrXYHu+FETZz0jUS7EstgNM30wdnq6b9tQav9pGhidYxdVG2/zXZ3zfMU+5hV29RlUxOBR08RmHdZaJeI1FuEvjV6JOb8FNhoKYG3l0Xne0VERERERERERET2FDfkK6dnxQW5iI6IKMysAhmLG9V9lZ0yAga6xWQj2aW+GEk3aL0j6J6DLjSOiIiIiIjIiiHU15JJBqNFjNtUH2PqjkmJiMFoFLozALQcKfe+lHKtjeXu93t8ihAiIXzNIiIiIiLaucjHrgB++aZ5QmUp5PUnQn74HFCivhujsp7rT4Ssdp5o49Gcx4oxoA1fOX4v/eB5q3kdQa5dDrx8b/CCYw7d8efwHtbPIUMTjJb8z6k4bLg+cKTJuNrFmFl8V+uJ8Z03GE0IAfQduuOxCybOrXwZ6/7aA8VreuOBoptxW4k+GG1li+s4OlMwGj55GfgyMMgsFh4cVTPfVhWp3tYjnO8uuhX7bltmuwlNr4lhCHTVHHlXRXUwmnq60Y5nsyaNElh4rYGsrtblnlskUexgkLtdUkqc/IzZKlTqzzzg8jfD9yODkzyBMnfYVtsmum3D/2tpSI66XG5hdAQplLslvl9vXaZ3OvDd9QauPVJo+7mEWGD2VIF+GcE7wj0032HF1cDSjUEXD5lVMFpaiF9x3VP0z/eadyV+2RSZ9zhYMFr3VPX8/MrWC5a7JR6ab+L690zsfaeJzWWtyz+3SMJ1oYlr3jVR7pa4dW74ns+SG1x49FQD1xxh4PbJBmZONjAw2/cEJo1SLzN/ReD6nYZrPjy/4z93RDuT9thXuuuE4N8tjV5g/3tNXDvHxIKV4f+c11oEo1VVRT6FzOkug1V7iXZlVh8lXbbv7pp9181lwAr7p8TaVbVFt1Rcbb8eu11PfkVgyUpNMFpKgu8czTEjBf7zL+cnUeoa9fNKavTnF75cxX1AIiIiIiIiIiKizqy4sUA5nSE8RNTeurpSEa8ZgqgLcWxdRt2fdYvNRKwRi2SX+iJBt+ngR54IMqUXJQ2FynlZceyTiYiIiIjIOUMTN2RKBqNFii58O4nBaERaDEajUJ3o9/glOwtJKVcB+LHFpGQAR4SrUUREREREOxP5+2LgqznqeQ9Nd17flAGOl/F41dNdFkeT/TIEzt4/cIDlWfvbC21pL3L1z5Dnjg1ecM8DIVoEe40fav38M+MUo2CPPQfGjEewT7/gz/+bTYcjWfolyMR38jzpfsOCFvlwyxTl9E2lgLveN4jWMhgtys5wSEUoWpPRdb8GXT7JdCMOrUcd53iL8O3GiVi0cTxeypuGl47abFlHyxAlXTBadV30DlA2NefR2zsE76DBAmvuNPD8WdYrzrk6/Cf+V+YjICwJAD7+A9hSFp73zupz5a/CItyqPQULpmoyJEf9nlXUAuuKwtyoEIy9R7/NPHWGwPwrDKy+w8ABAwXu/6eBVXcYmH+F7//vbzDw8lSB9y82sP4eA2ftb68TPHAQEB+jnvfhb5HrD8o1oXpdE4AYV2gf6qFBbj495m4TjZ7wP6dg218PTTDa3+XNf68rktjrDhPXzZF48HPrNj7yhUTGlSae/TY8zyUnxXr+IUPU78cPG4ASvwDImsjnERGRBV1/FGK3qpSTIlA7K/h3TG6hL/zwiMdM3DkvvPtEbou+pnLhfMiS4Be4t4WTfSUA2MZgNCLHdMFoVudf5i6PzmPZKk0oGQAUORgzozse9penuAeCLqAsJbH577REdRkr9R79PKtQSDf7RSIiIiIiIiIiok6rwaxHhUd9k1CG8BBRexNCaPueokYbwWiaMk1Bj7pB6LpB6+2t3FMCL9Q/2GTFBrmQioiIiIiISEEbjAYGo0WK26u+kFAX1k1EDEajEAghugPYs8UkD4DFDqr4xu/x0W1tExERERHRzkg+eGl4K6yrhdy4ytEiHs15rBiX9XKPnCJwzgECQvgGuJ5zgMAjp0RHKJos+hvmnVMhzz8geOF/HAFx51utJmV0ETh4sH6RzH+MBcYd63sQGwecOgPiqicAAENzrFd3RuWbUL5KsfHB2xrFRL+hQcsMq8/Vzluz/SZ3lsFo0bF5NVv+nXbWUGNr0MWzPCXK6bHwYP9tS3Fm5Rs4s+xlXHm4/om3DItL0QajBW1Kh7EbftUeUpMEzj3QwMXjrVd+yesmpAzfAH3VIPcmdoIA/i6XmPqSieG3eXHAfV48PN+E1++FdRL2UVMPeLwdH0DgtRmaN7ynvo7nv2vf5+HxStz/mYne13lhXOD791exumyfdODiQwQO20MgKb75SQ3O8U0bsvUb7DvrOPzr1Yk4/o/7kRNvkb7gp0uCwERNVmVEg9Fq1XWnJ4Ve58Cs4GXmLg+9fh1t37S9z+3bTd1PbChp/vw8+LnElnJlsYg7d5x1P3bsSPV8KYHPV7Z+8tsalUUtRXMgJ1FnE6w/CpeEWIG1dxk4cJC98nfOkyisCt9n3TIYrSEG8tX7wrYuFafPpM4iOIhoV2Z1mKTbO+mWLDBuoHreJ39E5z5FjcUx9vIt9tts9zgtvzJwmi6cLbVFGFp6svMD6zqLfT+rYLQwHiITERERERERERFROytpLNDOawoSIiJqT9maYLTihuDBaEUNecrpTWFryYZ6ELpu0Hp7K26w6JMZVklERERERCEwhHqAqCkZjBYpuvDtJEMd1k1EDEaj0Izwe/y7lNLtYPklfo+Ht7E9REREREQ7HVlTCTgMMbPlh88dFdeFz8QEOZpMTxZ48RwDdbN8/148x0C3EAZdhpusKIGcui8w/42gZcXH+TAe+ggiPTB55fi99M8lK7srjPveh/i6BmJ+OYzpD0DE+YLNhvUIEkZS86l6hitIEl206xs8GK1/4ybEm+oRxKsLfKNoddsjEF3BaPLr9yzn737YfkHr6OlRX4TTyqK5yLI472m2eL26aoLRqjphMJrowPf6idOsV/7MQokb/yfDFo5mNbj8p43Wy1bWSoycaeLl7yVW5QM/rAeunSNx5TuhB6MB0bHN6Nrs8vtu6pYsMLa/uuxjCyRW5bffCP2LX5e48X1pGXbX5JhRAkKzoculX0BecRSw9AvgjyWQz90Gefd5geVME7LWd1GebPRtSLJ+G2ThFhy3m7oRqwuANYWReU0qNOEMbQlGi4sRGJxtXeaTP8P/fHQf76bvoSGaEFSPCWzcfiPtj2wEG0ZCelLwYLSh3YHdMtXzft7U+rFVOIbOt2ucL0NEanaDQsNhYLbAt9e5cNyo4GU9JvDlqvD1c1b7QxVGKvDVe5Bm5C7AcFp1gwcBQbREdkmPB7LefuhtZxLqp+K4PdWd2h/B88Y7hFUI7JK/gBqbIbF2X6+iaqDR01xaSolKzSaUktD8WqYlqstYqbcIfrQMRnO+KiIiIiIiIiIiIooSRZqgIQMGMmJt3M2MiCjMdKGMxRZBjsHKZG+vM8mlvhiz1lQPWm9vRY3qPjnFlYYEI4Qff4iIiIiIaJdnCPUAUQkGo0WKW3OMmaw5JiUiBqPtKi4UQiwQQmwVQtQJIaqFEBuFEAuFEHcLIQ5yWN8efo/XOVz+ryD1ERERERHR5sikRsiPZzsq7wkxGK1JbIxAbEwUJVbNfR6oKgtaTDw8DyKlm3b+lNECcTHqeYft7nu+IiYWIqZ1oRE9gd7p6uVS4704qma+eqZLs7LOYvd9ghZxwcSQhrXKeau3X49ilS8QVcFoj1+tn3nOzRhw0XRkBjlf2ctOMNr6FRhZ+5t2dssAqxRNMFp1FIRc6eje7458r12GwLfXWneAD3wmkTbDxDML2/5DgNWg+tU/roIsDkwDKK6W2O8eL9KvMJUD4p/6SuKnjc31Og37qKh1Vj4STM3Godo2poxWbzCNXmD6G2bYQux0TFPigldNvPCd/fWcOiawzXKbG+bd50FePSlwgW/eh/zwOV85KSFffwhycm/IIzNhHhQPeWhX3/+HpUGeNAiTHh6tXfeHv0Xm9SjX3FKhLcFoADDZIqgUAF5aHP7nE6xvGmRx7ffaQqBqm0RBVdibBQDoEg/00exnnDFW4NvrDAzMtn7NhBA4eIi6zDMLWz/5UILRPl/JaAyicLEbFBpOE4bZ2xH79wuyVVBPW7gtwnYKY3KAimJgrX6fuK10zyIpTr9MKP0j7dqk1wvziashj+sJeVQWzKsnQVaUdHSzwspqt9sq/Hp0X/XM6jrA442+/Yrqeuv5T35tr81OjtNa7lvWNerP5aW0GA+TFsJ+uFXfZhWMZhVyT0RERERERERERNFNFyKUEZsNl+jk17MRUaeUFacORitqyLO8DswjG1HWWGxZZ7Krq3K+2xsdwWjFmrBK3WtCREREREQUjKGJG/JKbzu3ZNdR661WTk/SHJMSEYPRdhWnAZgIoCeAeABdAPQDcDCAmwB8K4RYJoQ4zGZ9g/web3bYnk1+jzOEEJohe0REREREu6jNuaEtl9ULOPRk/fyNqyDLi2xXpxtkGsnB9pEkf1sUvNCUiyDGHm5ZpHe6wMzjAgfn/nM0cMgQ/XIxLoEH/ikCguWEAO4/tASppiYppZMHo4mcvsCgUUHLDW1QBwLOX+HbDq0GBkdLMJosyQNK1RegoGs6xLm3wOUyMGmUdYN7NrYIRuuSpi034fHxttrVVROMVqUIzooW0RiMBgAHDhbISLYuU10HXPK6xNSXTORVBB/4bpoSK/Ik3lxq4of1zUEiNRaD6nMbc2D+a1TABV0nP2Ni6Ubr9Y29pzkQzCpwUCUqgtF024biu+nCgwVyUtTlv84F3lwa2TCFl5ZIPL/I2TrGD229kcttbsjz/gF89pp2GfnQdMhtbuCTVyCfuRmoLNWW7eEpwNhtS5XzQnk9TFNi0VqJJX9JuOvVy5drtpv0IJ+lYK6YKLBbpnWZlkGA4aDb/poCPZLihTYEdU2RxFr7u2GOHDsSqHzCwKb7XTCfDfz32jQDw3va60AH56in1zUCm0tlq8dOrS2MvgATos5Kt28cyX2lY0bar3zATSb+u9DEyry2fe513y0AkBfTwxdc9tefbVqHFV2/nxyvX2abRUAQkYp8fibw7lNATSXgaQSWfgF5w5SOblZYWQajWSxnFeBVFYVB36pw6pbe/8Ven+ik58yraP7b6jVpGZieFcI1VA0e/TyrYDT2iURERERERERERJ2XPoSnZzu3hIjIJztWHQK2zXTDbaoHlwNAaWMRJNQ/smfFNgWjqe92W2fWwistfihpJ8WNmj45tns7t4SIiIiIiHYWQhM3ZGqOn6jtdOHbyYb6mJSIGIxGzcYAmC+EuFsIq/tyAwD8R2Q7Gs4nt3QxeQAAIABJREFUpawB4H9ZdqqTOoiIiIiIdnZyzW+hLZjSDWLmq8Do8foyc1+wXZ1Hcx4rxuWsWVFj2QLr+YP3hLjiMVtV3XC0gS+uNHDFYQIXjxd4Y5rAWxcYcAVJIjhtrIElNxi46RiBs/YXuOYIgUXXGTh/X33akOjkwWgAgIMmBy0ytF4djPbjBuCOeaZlgJMqEKkjyDvO0c/cdyKaDrlP2Mt6O+l9+ETgjKshZjwC8cEmYPd9leUSpEVyVgspier1VUfhQPImHRH2Yddf99jb4F7+XqL3dSae/kb/o4C7XmLK0yZGzjTxr+clDrjPxIEPmMivkJbvT4UrHRs8mZAn9Id0+0IV1xZKfLvW3nP4aXtsveNgtCgI0/M62DZSkwQePEm/0VzzrkRlbWSCmipqJc5/xVndWx9ovW3JX7+FPLE/sMXGG/vFm5DzXrS1nsnV85TTf9sCfPqH/TZvKpUYfZeJQx40ceD9Jva6w8QvmwKX1wXqpSW17QPdK13g11sNHGeRvfnfb8McjGZj+xuiCRZbWwisKwpvey48RODlqQIfXGog+Glde4Zk6+t56uuWwWjOn0vL4A4iahtNhnVE95WG5Aj00mf2tpJXAVz8usSImSamvWJa3p3birtIfdduAKgzElFppEKGGixug67ZSXH6ZbaFEBxJu7gv3w6ctuJHyL/XtX9bIsSqB7DahbEKRouG0GZ/ZW7r+T9v8h0nBOPkOC2vsvlvq2C21MTmv7slCwzKtr8OANhmse9nFYzmbkDI3wFERERERERERETUsYpb3tixBYbwEFFHyYpTB6MBQHFDgcU8daiYgEBmrO9CnyRDf2eZWs3A9fake35WrwkREREREZEVQ6jHRknJYLRI0R1fJmnCuomIwWg7u60AngNwPoADAewBYBiAcQAuA/C5X3kB4CYA9wSp179XDWVIrP8yIdyXOpAQIlsIMdzJPwADw7FuIiIiIqJwkVICi9WBJUFl9YQQAmLaTH39331kuzptMFonPJqU9cEToMSNzzkKFZm4u8AjpxiYdYaB08YGD0VrMqa/wF0nGJg91cADJxk4YKAAYi1G1u8EwWjCRjDanvW/a+fNnCux/G/9QNqEKHiJZN564NeF2vniikd3/H34HtZhCsMOGAHj4nsgTroUIj4B4uDjtWVf3XqOcvrY/s1/6waTF1VH7+BkXcuiIRgtJVFg3mX2O8JL35AYOdOLmAu9OORBLxava352T34lMXd56/LLNgK9rjNx/XvW789HXY4FygqA954GACz/23aT8NsWX91Ox6dHQ/iALiRAt2386x8ChwxRzyuoAm6dG5nPwVXv2K83MRZ49ZhNyHnvTpiPzoB8/SGYz8+EvPxwYHvwXTDywUuBP3+wVVYXjAYAxz5pwmszieGwR0z83mK7+6sYuPC1wPCbck34Q7pF0IVdXRMEXjhb/3lckRfmYDQb298gTbDY2kKJQntvpy21sww8/S8DZ+5vfx/Ejj376OfNXd4yGM153fmVwcsQkT0dFSJ78hjnK3jxO4lZX9vvj+WP82HOuh7115yIJ99WD7hpkhfTA9isDlgOB12/z2A0Chfp9QL5m9TzPnutnVsTOVbHHZbBaIn6edFwbOKv3EabttoIitX18Sp5Fc0vbpXFr/YpCa0fHx8ksN1fjcVptdoG/RvsNYF6j6NVERERERERERERUZRgCA8RRZsUVzriRYJyXlGD/rflokZ1MFpaTAZiDd+Pv8kWg9DdHRyMZkoTJY2aPjmWfTIREREREYXG0MQNmWAwWiSY0kStyWA0Iqc64VB2smEpgCMB9JFSXiClfF5KuVhKuUpKmSulXCKlfEpKeRSAfQGs9Vv+BiGEfsR1YDBa8HSBQP6XZYerp74EwJ8O/30YpnUTEREREYXH+hVA3oaQFhWjx/v+GLGfvtDqnyGLt9qqz7szBaPdebZ1gX0mAINGtU9jVGLj9fOMTviC+xs0Cujez7LIUTXzke4t085/eYl6oG1iLJAU3/FpWfLjl/Uzx0+BSM/e8TAxTuCS8eo2d08BjtjDb+Kkqdqqp1R/gMGJgSOrT923uf6eqeplt5brm9zRtOFDUfJxOGakwKcz7DdmRZ7vOS1aCxz0gIk75vk62LeXhR7atCjpQACA/NS37W2tsF/X6u3XSdnMv9qhQhNw1Z50bXZp3g4hBGadYWi/u2Z9LfHr5vA/ry9W2qvz3QsNrDv8A5z+2Ahg9t3A+89APnMz8PK9YW9Tk90bVmNQwzrt/CV/Ba/jmYUm/ioOnP7zJt/23lK5W11HOILRACCzq/47ILcAAUFtbWEnGG1IjrrMumKgVPNaNOkSD2y5P3jf8uNNBhJiI/Pdpwt2A4A1hcDqfN+LEEowWkkNUN/Y8f0I0c7A6fdhuFwxMbS+5/K3JIqqgn/+zadvgrzmONS//R/sX3QLlidYH6Ntie0NbM4NqU126L5CLIPRGiLTFtpJeSy+UGt2jURRq14lxSoYLZRbd0VQg0fCXR+8XEl18DJO9pbyWpwOqLL41b6L3xih6RME4h2EzFu93rVB+j07rwsRERERERERERFFl0azAeWeEuU8hvAQUUcRQiArrrtyXrEm/AwAihvU87JbBD0mu7pql3drBq63l0pPGRql+gcZhlUSEREREVGoDKEJRpMMRouEOrMWUnN1oNUxKdGuLkqGklI4SSk/kVLOlzZG/EkpfwKwH4A1frPuE0K47K7SaRtDXIaIiIiIaNewaG7oyx40GYDvx3/xxHx9ucUf26rO41VPj7F7tBAl5IJ3gIUf6AuMHg/xfy9BiA4M13JZjEa1mtdJCCGAg46zLJMkt+Guopna+b//rZ6eKSphXjwe5q1nQP66sA2tbKN5s/XzsnoFTLp9ssC0gwRiW3ye9u4DfH2NgbiY1tuiSMsETp6urDpeNuDdxuswtr/vcZd44PqjBK44rLmOXunqZm3Nr4H571EwrzsB8tvoyg03NefRjY7PwNvhyOECr08TyAwh7n3mXAnjAi+Wa7ZrO3Ljh/j++PsvVFfV4cq37Z9uyd0ebOQ0GK0mCga02wmm8rdHT4GrjlAXMCXw5FfhOVVVWStx/XsmRt/pxdbAvMJWztxPoPhBEyf+egdyHj4D8Gq+dCNAADihSv+Zn7vc+vWQUuLSN/Rl/tzael55rbpcerLlahz5aLr6VHd5LVBsI3zCLjvb34BM9baWVwGUWlwnuVsmMHe6gV7pAvOv0J+6f/4sgX37R7Yz/GOmfv1N28e2EILRAKCgKrTliKi1UL4Pw6FvhsDHl4X282L3a0xU1wU2XEqJF74zceg1f2HUD6djt0GrkTysAr8l7Bm0zr/iBgKbciG3h0t5vBK3fGjCuMAL4wIvsq/yYt7voX/P615ny2C0EPtH2kV5LTaYuihL/moDq0+h1akYlyHQNUE9r0Kzj9lRdPu8/optjJtxcpyW3yI/r0qzyXRN8L2WLfXLEPjfJQb6bD9fEOz7w+r1ZjAaERERERERERHRzqeksVA7UDObITxE1IF04YzFDQXaZYob1fNa1hUr4hAjYpXlar1hvPgoBFahb1mx6qA4IiIiIiKiYIQmbsgEg9Eiodarv3gw2QhhYBrRLoLBaAQpZRmA09H6mvRhACZoFvHvcS3u1a3lv0zH3jqBiIiIiCiKyFCD0Q6aDNF70I6HYu9DgAF7qNfx3UfWbajzjXb0aM5juUI4mpT122Ajvzns5E9fQt5+pr7A6PEwHv8cIrODL9iK04z0BYC+Q9qvHREktgf3WZlW8aJ2XqlbPT2zagPw5/fA1+9BXj0J8uevQ21iSOQ2N2TeBqBMf2GNGLZPwLTEOIFnzzRQ9YSBtXcZKH7EwM+3uDC0u3o0srj0AW39I1a8ge8vLkXNkwYKHzZw7xSjVdBfz1R1neWyC7Zt3gR8/ynkzadAfv6Gdh3traPCPpw6fazvNb9vSvs3bF3cQDQiBiYEjphZ5GjZv4p9/3fGYDRviKF5txwrdgz69/fV6rZ/P5mmxJGPmXjwc4nftujLPXqqQO0sAy+fayD9sfOAl+9p87pDcWXZk9p5P220fj02lgJWX+lr/DZHbTBakuVqHNm3v37eevVNrEOi7Zta7Bv1SlOXqfcA64rUFRw9Alh3jwvjh/o25MP2ELjs0MCN+snTBc49MPKn9Yf3FDhgoHpe0/ZRF2LwT16Q0EAisifU78NwOHqkQOMzBmqeNFD+mIFlN9vvlw57xERpTeu+8N5PJc5/ReKbqv5YGb8HNsf2tV3furjtndWcpwAAJz9j4u6Pm+svqQEmP2Xi5SUmtjU4/77Xfd9ZBqMFCQgiaqXRYoOpj7LkrzZoy+mgNM0v0RW10XUfrjLNOQt/U2cHv2jMyeuVX9lcuHKbesEUzSmno0YIbLzPwN8PGCh91Lovr7DI6QsWjBYNx5FERERERERERETkjC6ER8BAt5jsdm4NEVGzLE04Y3FjnnaZ4gZ1n9ayLiGEdiC622LwenvQhb4lu7oiycXB80REREREFBqXcCmnS8lgtEhwm/pjSx7bEekxGI0AAFLKXwDM95t8lKZ4NAej/QfACIf/jg/TuomIiIiI2kwWbgbW/BrSsmLGw4ETDzxOXfiXbyBrA+9gJj94FuaJAyCP6AbzooPhKS5ULh7j4GhSbv0L5iUTII/MgJyyG+Tbj9tfOAzkczMt54vJ09qnIUGIxGRg+D8CZ3RNB/Y9rP0bFAkjxwHZvS2LuGDi3zXvOKo2w9Mi8aaxAXLOrFBa55jM3whz+kTIo7MgTx1mXdjiPYyPFRiYLZDRxTrFQrhcELM0oW+mCfnYlUiKF0iMC6ynlyYMCgDyYpov7pGv3m/ZhvakCx8SURaMBvguirruKAP3/7N9G9co4rAhrj++TJ6AH2t6OVp26/ZgIqfBaO4oGNAeamhecrzA7cerCxVUoc3hndfMkVi6MXi5yyYIJMQKyL/+BBa83aZ1tkWOtwiXlan7y9x86x+yVutvQgoAWNniOkMppUUwWvg+M1ldgQT1TVuRXxm21cC0EUTUUxOMBgB/bFVP36Nn4Gvx4EkCj54qMLY/MG4g8Po0gYsPab9+ZsIw9brm/OL7XxeMdt6BAifvo29nON8Pol2Z7vswlBDrULgMgaR4gdQkgX36CSy+3sCRw4Mvt2wjkHWVid7XefHRcoknvzLxfx+E/h28Jm4wAEDOvge5BRIfLleXmzpbIm2GiWMe96Koyv76dCVdAoiPUc/bFmJwJO2iPBYbTN2uEYwWbO8mTROm+9Hy6ApG0+3z+nPXIyAg0p+T47SWobNVdeoyKRa/5gsh0DPN159bqajVHzMFC0ZzMzCSiIiIiIiIiIio09GF8HSLzUSsoflxnoioHWTFaoLRNP2WV3pQ2qi+6ah/Xcmurspytd7A663bky6sUvdaEBERERER2SE0cUMmvO3ckl2DW3NsKWAgwdBcKElEDEajVj7zezxKU85/6FqWk5UIIbogMBitQlXWKSllkZRyhZN/AP4Kx7qJiIiIiMKicAvQo7/jxcQNz0Lk9A2crgtGa2wAfmydjSy/fh/y4cuAkjzfiNUVP8Lzv+eUi9sNRpMN9ZCXHQ78sQTweoGSPMinroP87DV7FYRA1tVC/rYIctVPkH/+AKxcar3AhH9GrC1OiQvvBBJanMgSAuLieyBido6LyURMDMSMRwCXJkFgu+x6TWqMRqa3tPWE7z5y2jRHZN56yK/fgzxlKLD8O9+2beXsmyDSHR06643cH+g9SD3vqzmQeeuVs3qm6qssbHkX102rIStL9YXbUajhVx3p2iMN3D65fRuYGzcUixMPcLxcTT1QXSe1IU86HT2g3eOV+HGDep6dIJjdu6vfnwYPULkt9HblVUg8tiB4esHovoBhCEgpIZ+7NfQV9h4Y2nL7Hw0xZ92Oh8dWf6IsVlBtoKJW/3xWF1g/1y9WSni8vjI19YBXs52lh/G3GyEEemj6uvzK8IVm6Gpq2Td1T9GHOOpCwbolB06LixGYMdHADze5sOh6F04fa8Box05waI5+3n8XmtoAjH8MAN6+0MBAzVdfXkV0hZgQdVbRtq+0/0CBT2e48NkMeweLeRXA8bNMzHirbX3CjpDfulp8t8ZjWbbRC3y2AjjuKfs7QFZhvYlx6nnbGABETlgFo9W3YQc1ylh90oOFX2dqboT44XLgnZ9MNHiiY9+izG2/7E+brOeHHIym2WRSEuzXp9Po1fdvwYLRKnaejD8iIiIiIiIiIqJdBkN4iChaZcWp+yG3Wa0cZF7aWKwd1J8V173V4yRNMJrbrHHYyvAqbmCfTERERERE4WcITTCadDjQiGyp9aqPLZNcydr3gogYjEatbfR7rBu1vdbvcT+H6/EvXyalLHdYBxERERHRTkmMGgfx9mqI2T9DnHcbMGTv4AslJkMce7Z63rB9gAz1D9/y569aP/5kdkCZRxOmKpeNcQVvFgDg9++A4sCQK/nFWzYrcEb+tgjyjBGQlx0GecE4yIsPsSwvXlsOYUTPobHY+xCIZxdDnHsrcMbVEE99CXHcuR3drLASBx8P8d/vgH9dAxx8vLJMmleTGqMREIwWQeasGyBP3R3y1jNsL2NMuy1s6xdCAAdN1s6Xp+4OKQNHUCfHAwmafL1SV2brCZvXtKWJYRNtYR923TLJwFdXGxiz/ezHbpnW5dtqddwQ5MYPCWnZreW+HEwnaupDWlVY/F0uMeZuE9V16vl2to2cFP28wqrQ2gUAby+z90KOGyQgK0shLzsMWPyx8xXtOxHi2lkQs3+BmPGwo0XFebdB3Pc+RE4fiAvuBAAMbdB/3nPVN1EFAPy2xXpd5bXAou1nEMstAiLSFWFgbaELRpv7W/jCMqwCcprEuARy1NdJamWE+bUIh8HZ+g/Vxa9LbNR8/TZ93+jejzxnX/NEpKHdV+rgw5sjhgusuav9GlHqyvD94fVg5Tp7X+bLNgJ/brX33aDbVzIEkKjZv97WGB0hTdRJeCwSpZYtaL92RJjVcUewYLR9+ukLnPasxNBbTPy4vuM/d2Vu+2145Xvrsk6O00rdwLYG3wK6sOdU/1uWhahQfcPKoMFopTUd//4QERERERERERGRM0UNecrpukAiIqL2km0RBqYKENMFPQKBwWLJLvUde1SBa+1JG1bpF+xGRERERETkhKGJGzLBYLRI0B1bJhsOB58Q7WKiZ/Q3RQP/S6V1l0iv8ns8yOF6dvN7vNLh8kREREREOzUhBMTAERDn3ATjhR8grnzMuvyLS/XzDAPY7yj1zM/fgPnsrTCfug5y4QfAD5+3mv1TwmjkxfZULuqyeTQpX7hDPWPpF/YqcEDW1ULefZ4yiE1FXPU4RL9hYW9HW4kBe0BMvRnGxfdAjBrX0c2JCDF0bxgX3Q3j7neAA44JmJ9uVjiqr6cn8EI86VXf4a8tzKdvAt561NlCh54U9nYITaDcDh+9ELiMEMhUX7ODkqYwie3kkk9CbVpYmZrz6NEejAYA44cKLL3ZBfNZF9bd48KzZ0au0bnxQ5Ebpw9Ge/RU/brzKgGnw9PdNfWQ7z8Nc8puMC+ZAPn9p8owvkiY8ZaJ3//Wz7cTBJNt8XtBW4LRVuivn2tlcu8CyEk9geXfOV6HuPE5GI98AjF5GkR8AjDlEvvLXvU4xDk3NYeBnn4VMPEU9PLkIVlzR9PVD94P89x/wHzoUsiX7oJcuxwA4DUlPvkj+Hv+4XJfmfJafZn0JNtPwRZdENf8lYCpSxByyG7f1DvdWb290qKvcxvWHYi1G4bbQkKs77n01DynfGdf80Sk4Y3ifaVB2QIvnN0+DSlxZezYn6mvsP9lvmCVve8Fq0BMfTCa7WYQAR7rDUY2Bkmc2gkE6y0mjbIusakUOOclEw2ejg3fstrv9ffmUmm5f+p013V9ie//Kk2IdEqCvXpmTrZ+re/6WN2wbUE20xL1IQcRERERERERERFFseJG9d3UrAKJiIjaQ2pMN8SKOOU8VYCYKiwNANJiMhBnxLealqQJRqv1dtyPHVJKFDeo++SsWAajERERERFR6AyhCUaTDEaLhFrN2B3dsSgR+TAYjVrK9Htcoin3p9/jUUIIJ8MY/Uf2+9dHREREREQtTT4f2G24et7x0yB6W2cViz6a+XW1wKv3A28/Dvl/pwbM/qzLEdo6Y+weTdY5GBXaVt9/ChRsslf28NMgTrwosu0he7r3C5iU6q10VMUE98LAidvCeyGKfOsx4I2HHS8njj0nrO0AAAz/h+Vs+eClkOVFAdPtBqPhtQcgF38cauvCRjcQPBrCPpyadpCBzfcbePpfApdPFLjhaP2TeOoMgc9mGHj8NIFnp1TjmfxL8WDh9cjxFCrL/xm/B9bFDVTOu/d4EzMmGuiWrF7X5jKpDXnSqflxEeSjV/hCKP9YAnndCZAz/x3xcDR3vcTc5dZl7GwbSfECXeLV84racGPPvPLgz39k3R845Eb/+wXYI+ashTjmrNbTDANi9s/BF558XsB3noiJgbjtFbhmPIwhDeuUi60uBLD2N+DD5yFfvBPy/P0hP38DawqBUnfw1X63NngwWprutgwhyknRbwQ/2dxFCMZu3zS0u/3OKsYAxjm99UQ7SE0S6J8RvJy/pqAgXVBdfmXHhpYQ7Sx0/ZErSnaWTh0j0D0lfPWNrPtDOb3eSEDt9p+o8gvtH3/a/d7X7eIYAkjQBaPt/DlWFE4ej/X8XxXHu52Q1be/CNJtHWhjPym3EPiig2/FVWZjH7klq/1Tp4dXudvHwlRrgtG6Jtr7bjhptHW5d3+SymM/d711gxmMRkRERERERERE1Ll4ZCPKGouV87LiGIxGRB1LCIEsTUijKkBMFZYGqEPFkg31XTfd3jZcWNZGVd4K1Ev1j0Dsk4mIiIiIqC2EJm7IBIPRIsGtCd1OZjAakSUGo1FL/iOr81SFpJT5AH5vMSkGwIEO1jPe7/GnDpYlIiIiItrliJgYiDvfBHr0bz3j6LMgZjwavIKsXiGtt8iVrZ23d1+bg+0tRnLK78N7KCAfvtx2WXHS9LCum0In0vwzuoF6oUkt0hhTpwgGqg1+IYrM2wDzzqkwD4r3/TtvP5hn7wNzxpEwbzwJcsWPvnLffgg563pHbUKXNIhrnoIYe7iz5WwQQkC89JNlGTm5D6Tfa6ALRiuOCXwP5H9ugHSamBVmut7D6KRns3qnC1x4iIHHTjVwz4kG5l1moGda8/zEWOCuEwQuOljgiOEClx1q4LzdCzCt4iVcWfYk7iyaqaz3p8QxqDXUyWcHpPwNAOjXTd2mNYX6UBUdt8cVOPGrOcDiec4qcmhtEeANskm6bG4bOZqQlsKq0MOa8oLkOSaatXgh/0IYlpEQCnsd7AtFy+mrnC0GjoC47RUgu4+2CnHqDPV0IYATL8JQqU5kWBM3uPUErxfyrqnY8luurab/shk48wUTU55Wv3Fd4oHYmPCG9+zbXz/vle/DE8ZlNxhtSI79OscOANKSoiPIyN8PNzrvdJuCgnSftWgIxthQInH2iybG3efFFW+byKtgWBt1PrpdtSjJRUNSvMDHl7dtxy3e8OLqmqdRt6or3t76b225pqDf/LJG23U3BMmiaqLr94UAkjWHLbUMRiMnPEE2mE2r26cdEdaWHGXDEPjmmuD9Sbj290JlFQissqVMP8/pcVpuoW+Bylr1gikJ9urZo6fAR9P1r3VNve840l+wfi8a9v+IiIiIiIiIiIjIvtLGIkjNAFhdGBERUXvSBYIVNQYOhVSFpenqSNIMRnebHfdjR3GDOtgNYJ9MRERERERtYwjF+CAApvS2c0t2DbWa0O0kTUg3Efl00qGkFG5CiAQAU/wmf2OxyP/8Hk+1uZ5haB3A5gYw386yRERERES7MtF3KIx3ciE+K4aYsw7iyyoYNz0HERsXfOHM0H74bhD6us85wG4wmj7FRt4wBfLr95w2S13Xdx8BlSX2Cu9/NMQe+4ZlvRQGqRkBk4Y0rLG9+OWlT0K5NQYJRpN5GyCn7gvMf6N54ppfgfV/Ar98A3z3EeRFB0O++gDkzafYaou47mmI13+HeHsVxMf5EMefb/t5OCUGjQTGHWtZRk6fCOltPhmd2UX9uS11BQajYfMaYLO98KNIcRL2IRvqtfVYzetIx4wU2HK/gY33Gsi900DF4wZuOsaA0fIJlhXt+HOful8cryN9w1IAwLAe6vc+t0A6HnBfY6gv/pKfvuqsIocuejV4UJ/dIJhszW8GhVUOGuRng8VXkEt68ELehRhd91vwio76N8S3dRDvroH4OB/Gk19oQ9GaiMNOhXhrJcQNzwbO3O8oiL5D9cu6XBjSU/1jVm78EOX0/Fn3W7anpdd/lKjQBESkJ9muxrYpo/UbwX++kVi6oe1hGdqAHL/Qu2Hd7ScT9c+IkhQjhfRkgSdOc9a+pmC0DE0gZ6m7jY0KUXWdRF2jxJ9bJfa6w8SrP0h8vx544kuJiQ+bqNAEiQQjpYTptDMlCgOvzaDGjrR3X4E/Zjr7KfKJgiuxcsxLWH2ngcqnYvHAa5cg9u0VyHxziXaZ0pgM1Is4/CEH2F5PfpBQ0ya6MCcBIFlzyFwTnbufFK081oF+csvadmpIZFkFo9nptg4eIrC3PgsYALBwTcd+J5c73Mcpdevb6vRprNk+nqeqTj0/NdF+XceOErh9sv5d+XVzYOPcQYLRShmMRkRERERERERE1KnoQngEBDJjHdwljIgoQrI1wWiqELSihsCwNEAdKpbsUl9Yphu83h5KGtXBbglGErq4NHctJCIiIiIissHQxA3pAvOpbdxe9YV0Sa7kdm4JUefCYDRqcj2AXi0eewF8bFH+9e1lmkwRQgy2uZ6W3pFSai7RJiIiIiIifyI5BSKnD0RcvP2FMnuGtK4GEaucPiTHN8DdFl2y0fZ58u3HQ2hZM1lbA/P+iyHaf04KAAAgAElEQVRvPMneAidPh7jzzTatk8IsNTCUa4yDAKi7imeqZ7iDBKPNmRU0PA0A5LO32GvIvhMhjjsXou9QiJ67QRiRP+Ui7pljXWDtcsjnbt3xUBdQU6wKRtu+fEfSDQRvGfYhP54N85QhkIenwbz4EMiNq5rnff2eb95hqTDPPwBy9c8RbrFzQgj0zRAYnCMQGxPYr8qnb9rx9/D6lUg0NQlTGmm/zAMADNVck7q6wPmA+1pDk2b17YeQQUIdQlVQKbF0Y/BydoNgcjTXg4USjFZUJXHUY15Ua85uuaQHCzdOxCnV9oJAxakzIISA6N4PIqWb7XaI2DiIY8+GuPMtYJ8JwG4jgNOuhLjr7aDLDhutDpFZFzsQHgSGpuXHdLfdLiuDssNSTStdEwQOtjhDedvctv9Ap+2bHrwY5qReMP97C6TXizH97dfZK73NzYqoSycIPH+W/aSl+Bjf/xnJmkDOdg7G+GG9xKiZXqRebiLpUhOjbjcDPrO5hcCHvzkPUvl5k8SEh0zEXWyiz3VevL2MPwJT+3ESItuRhvcUWHJpJbp7Ai/WzvEU7vh3QO0SvFJyCS6dOhxDzz8PQ3IE4mIEhGFA9ByA9Myu2udW4srA94n/gFsT4KqSV2HvM2+1T9olQT3PzWA0ciLYPvTOEoxmMU/Y7Lcm7m5dsKgato4bIqXcIuhMxSos1ipITiW30LeALhgtxUEwGgDcMkl/TmNrReC0YP1eSQ1DZImIiIiIiIiIiDqTYk0IT1pMBmINGzdyJSKKMFWoGQAUN7YOdvRKL0obi5RlVeFqyS71b866wevtwf85NcmK7Q5h94c2IiIiIiIiBUOorxMzGYwWEbWm+thSF9JNRD4xHd0ACi8hxJkA5kspCx0scz6A2/wmz5ZSbtItI6VcK4R4GcC52yfFAZgthJioCzoTQhwP4JwWkxoA3G63nUREREREFKLs3iEt1iDUFzEdNNjBD+kyyImwFT86aFGLaqUEtqyBvGQCUFkafAGXC+LWVyAOtRmgRu0nNSNgUrxswEHuRViUfJDlov0bNiJJblPP3PoXMHxswGRZVgjk/gK8+2RIzVXqM9hW+FC4CcMA7nsP8oZ/6gu9/hDkyZdBZHRHluY86ZZYdR8h7zgb4vDTwtDS0OhCKMTKHyHjioDyIsiHpjfP+PMHyMuPAN5c4QuFu/WM5nmrf4a88mjgtd8hMsIT6hQOsrTAtz3WB55KkUu/AFYt2/E4Bl7sVbcc3yftb7v+9F/mQtZUYnDRHwACl9taLjFcfY0Y4mOAek/g9BqrwJEt64ABu9tun119r7f3o4rtYLRUAVU0w+YyZ4P1pZQ4/TkTX+fqy/yxfjSGNKyzV+EJF0AMGuWoDf7E+BMhxp/oaJmh+48Avgx87g1GPDbG9sOgxvWtpheEKRhtTP/IXJg3fqjAt2vV7+XnK4CKWom0pNDXrQ0iMhuByhLgtQcghcCAC+7AHj2AleprE1vplRZyc9qFEALnHihw0GCJcfebKAlyrWdG1XrI3wvQbT0A7Bcwv6YeqG+UiI+N3MWZ7nqJ5X8DK/IkLnzV3md72Ubg7APsr6OyVuL4WSbytoeDbK0ATn9OIrurxIRhAmVuiV82AUO7A3268UJUCj9daI4rym6JJNf9jrHPXIa/1/5gXfCUy2Fc9l/tbJchkJ6kDhIqc3XDNuEs9aeg0l45XQ8ihEBynLpEDYPRyInGBuv5W2zuS0Y5q6Avu+M1htnYDf3wN4n9duuY790yZznWKLMIRnMaYL1m+5UBVZpTJCmaIEcrh+0OLFgVOH1FHrBgpcTI3kBOiu+1rg2yGZc7fG2IiIiIiIiIiIioYxU3qH/oVoUIERF1hCxNf1TjrUKttwZJ2wPOyhtL4IXiIjiow9WSDfVFlttMN0zphSECbzIZacUN6rBK3WtARERERERklwFNMFqw8aAUklpN6HaSJqSbiHwYjLbzOQ/Af4UQ7wJ4B8A3UkrlZdVCiDEAbgLgP1pyK4D/s7Gu27Yvm7798QEAFgghpkkpV7dYTzyACwA87Lf8w1bha0REREREFB4iIQly4Ejgrz8cLdcoYpXTY538rm818rWpiNcL4bJfqWyoh7xnGvDlO/YWOO0KiAknQeyxr+11UDtKy1JOvrH0gaDBaCdVvaedJ+88B3BXQZx4YfO095+GfPJawNMYSkuVxCX3AsefD5HUMXdnEOMmQY7YD/jTImjih8+BY8/GIPVLjTVxg+GFAZfijh6yJB8is2MuoPFqzqOLBW9BvvuMemZ5EbB0AeS3HwTOq6kEFs8DJk8LXyPbQL7zBOR/bgS86guvVPat+9l2MFq8WYdEWQd5zzRkbu4CKJarrpPwmOrQgJREoLg6cLpbJOlXuml12IPRtpZLeGz+pmI3CGag5rOQq76GTOunTbAMRcvwlGBgw3p9gRbE7a8DEyxCDiNoaI46KA4AcuOHBASj5YcrGK1fZAIrTh4jcMc8/f7HmS+Y+Oiy0C9S1NVstPzx79NXIafNxN59BVbmB98X6pXWOUKzBucI/HqLgRcWS6zOB95aFvjcBjWsQ99LR0EC6Ba/B7DbT8q6St1AzwgFwi1YKXHWiyYKqpwt994vEk+dEbxck2cXyR2haC3N+trE2iKBS9+QO77LLh4v8PipAjGuzvFeU+egDZGNks1M1tZAXncCsHxR8ML7ToSY/kDQYhld1MFoJa7AsOVgVPWoaAMxBZCsCRoKFhBE1Io3yPFp4WbI+m0Q8c7C/6KN1R6R3W5raHf9fmuTucsl7p1it1XhVW6zX2lSahE2qzudlhwPuBXhi2VuoKRaolITjJaa6PzLoWea+vWevURi9hLf9JuPFbhjsoA7SL+3LXynYYiIiIiIiIiIiKgdFDWqg9FUIUJERB0h26I/Km4sQD/XoO1/6+9omBkXeA2U1WD0WtONLq4UB60MD/bJREREREQUKYZgMFp7cmuC0ZINBqMRWWEw2s4pEcBZ2/+ZQoi1ADYCqATgBZABYE8AOYplywAcJaUMOhRUSvm3EGIKgM8BxG2fPA7ASiHEzwDWA0gFMBqA/5DTeQBucfa0iIiIiIgoZAdOchyM1iDilNPjnBxJmt7gZTwNgMv+AF85+27boWjio60QaZm266YOkNVTOTnFa51mMq52Ma4te9SyjHzkcmCf8RB9h0Ku+x3y0StCbmaAjB4Q76+HMGwmMUWQuOddyMl9tPPl3+sgAAzTDCKvNxKwKbYvdmvcGLjwX38A7RSMVt8o8f6vEj9t8g0CX6m5JqmLaT3aXL71KLByqXreZ69DdHAwmly5DPLV+4Dv5jledp9tv9gum25uT+tZNBdpCXsDAxRtgYGK8m3wnUpqrUu8Ohit1ggSjBZms74JHirVxLA51n9ItvqzsKkM2NYgkRhnr6IPfrVu26SaT5WBg60LnQtx3X8gOjDFJileoG83YHNZ4LzcuCE4Fv/P3n2HR1Htfxx/n9n0QhKSUIKA0ouI2EWxYBd7vfZesKBe61WvXq+/a0WvDXvvHbH3ih0vYgEJiNIJSSC975zfH5uQsufszm42Db+v5+Fhd+a0bJmd2Z3zmXdbLVvrsyTLRWjbTWPSTJCxeYobDlVcOdP8/Lz1Mywr1gzKju4xtwYRtXxNFa2CylL6Z2R4arOjAsI6woAsxTUHBB67q6ZoDry+gD/9gddEpn89z6w8aUO4SU5DsbWd4orwf/faMs2seYHwsb3HKHYcGv45K6/RnPx45KFoACNN35aHcN0b5hfDq3Ph1Tbbh/s+1Ww1CE7buZskVokNXDcQYOfXgQAsvw6Es7b6F2aZG3EdHVw3wjZcDXOWml+D3WD3FAB981neQtEAdcvrnj4Lc9IgvyB4ebEvmyRdE9H41lUGngtfmB0I26e9UpBqPmSmstb7/osQnoK7V/wOQzfv+LF0Ea+7wmPzIM4hZHDygtWQX6AZ0bfzP3Nt4V9piVBhDDOzbyts+5yj+wUCmk0WFkCZZVPYK4pcvf4edmX/85Zmh81U2EBICYwUQgghhBBCCCGEEKJnKayzhPAkSAiPEKJ7yIjrTbxKoF4H/whRWLeawUnDNtw26eXLIskJ/gEl1We/QG6lv7zTg9G01hTWrTKu6yPbZCGEEEIIIUQ7OZgvOO/iYT6oiIjWmirXMEkLSAlxLCqEkGC0vwIHGNn4L5yPgJO11iu8Nq61/lQpdSjwOM3hZwrYpvGfyXPAGVpr+UQUQgghhBCik6iDz0A/cWNEdazBaObvvMxcD1cIaKiHRG8zNPXK3+Gpmz2VVVc8KKFoPYDKyEYPGQtLfm21PE3bw6/+ud0qrnxiP+JpCNu+fv95OPkq9CnbtnusLanjL+kWoWgAKqsPfFiK3tMya7nxSh0jQgS+5CcMNwejLV8E2+/d/kGGUVGj2f8ul9mLw5cdVhem0NoQX2ss+SWygcWYfuVe9J1/DyS/RWF0nffgsSz/+g23M/0l1nLr15ZiCkazBX1UOylowBQzoH/52rg8WlOfcXngs9gHo40MvtgnEHhafi+EzQd4a2fWj/axKTTT1t0Tsr665TXUjvt566yDjepnCUZL2yJwGYUWinzt/2zNToXB2e1uxuqK/Ry+WOTnHctb/qlvNFdNiTIYzbJr47QNwSspYkCWt2C03B76O9aY/jDvz+35lC2pU4nsXfEBqbpqw/refsOLqlFx6IxLFhVo9vqvu+F1ed0bmluPUFy8d+jP3lf+FwhS62gFZTrigI8zntQcsZUmIyWy157W2hi81Z5AraB1xjo6dPiXx35DjTN4LJqwY/WwrFW9MOU3Rr5ukL+nf/0WPn7ZU1n1+A+oOG8/V2anmpcX+7Jb7ft44WooqYLsMBdZs4UTOQpSE83rTAFIQlg1hD+uZcXiHh+MFuoQyOtmKzNFcdhWihfnhD5GmPWj5tJ9On9jaPtc6ZNu3i6sNZ/jBNi3Pf0zID0Jyg0BaHOXaesY0pPsfdkM8Bje+/hXLpVhtnsSjCaEEEIIIYQQQgghRM/h1w0U1681rsuNlxAeIUT34CiHnPh+rK5bFrSusH618XZLuQnmE8hSfPYfkKv8FRGOsv0q3XKq3Srjutx4y0lwQgghhBBCCOGRwnxuvtt2boRotzpdS4M2ny+aGuJYVAghwWgbozuBlcBOwGAP5SuB94EZWuuPoulQa/22Umpz4DrgaCDLUvQbYLrW+pVo+hFCCCGEEEJET+UOQE85Bd56zHOdOhVvXJ4QyZGk9vBFWH342ZG6aBX6qZvh1fs9datOvQb2O8FTWdEN7LhfUDDaiNpFZPhLKPW1nombngSXjs73FIoGwLzZ8O5TsRppwA77wiFnx7bNdlKJSehBI2BZfvBKfyCXPC1J0T8DVpcGF1kZH5wEpYGHfurNOwWB+udPdthjtHly+TdLNNPfc6msg303V0zdVZEQFyj7eb7mwc81v6zSaA3D+8C5uzvsPqq5rae+0Z5C0QBG1Rn+xpaKzFdIBCC7c04G0n4/vPs0+qYzmxdm9YH15hNHvRpRu8hz2Qx/8xOd6Rqe9EbrqjAmEdiCPgBqVSJJ2jDz/Zv30FXlqJT2pzw9/11koWgAXrMKh+SAzzEHFyxc4y0YLb9AM9983hwATw6dxfgFP5tX5g5A/eNB1LZ7ehtwJxjRT/H+/ODHO3+Lv0H5la1eu4Vx7Q9G230kKNWxYRWX7O3wzi/m/ZA35mmumuK9rfoGzRNfa16ao1lTZi7jtN3nKS2mf8ZQT+3bgn66K718EfrmqTDvC1KBKbxrLJdAPen+MsoNV8stCnOu6H/e1kFhfVe8qjl5oiY7zf7aef676IInAUqrvZd966fo+sm60GVITmTBX7ZgFCFsujq7V69agj57F09l1dWPoSIIewq8/4PfFMW+3iSY9k3CKKoIH4xmC3NSCtIs+0vhAoKEaMXDdyIUruz4cXSwKLOhgzxwvKK6TvPWz/bPyMtf0Vy6T2z6i4RtPAN7w5Ki4OWLCuxt2R4vR8HIvjBnafC6H0NkhNu2V6Fss6l5m9vWK/8L35YEowkhhBBCCCGEEEII0XOsqy/ExW9cZwsSEkKIrtAnob8xGG1t3Wrj7VZ14/OMyxNVEj7i8BvOT630h7jqTQcprFtjXZebIGGVQgghhBBCiPZxlPmkY+1lPqiISKhjylRf++dgCbExk2C0jYzWeiYwE0AplQmMBQYCfYEUwAFKgPXAAuAnrbX5V4vI+l0LTFVKXUBzKFs/AsFrK4G5Wus/2tuPEEIIIYQQInrq0hnoJT/DgjmeytfHIhjNS5JDQ+jZkbq0GH3WJFgbYoZnC+rlxai+Az2VFd2DGrJ50FTbBOo5c/3D3JpzSavlU3dTpNaVeJia2+jPBej3n4vFMAN23A/nltdi114sDRxuDkZzmw/7B2RagtHi8vDjUK2SSdOVAFzc52buWnMUNJ5b8/o8l0dPVhy7naKmPhBSp5TirZ80B97T/KX3e79q/rcUnjhV8cF8zQF3u9S3+Obh55Uw80eXN89z2G9cINzmTY8BM70bisnxF3sqa5SZG33dCOgH/wnP3tZ6YTtD0QDSdCUDkytZXh0+RSnLLdlwu2VIWlvrdFrEwWjVKtkcjAbo8/dCPfJN2PGFsq5Sc+zDkScnOJasJK01Sil0Qz0qLp74OMWQ5FIWVWYElV1YoGl6QJrqmcz60T6+ZTc75D35pXnlkLGox3/o8FCwSI2ynLv821oH9cJv6L17A+CiKPZlG8v+39pruLbPtfjxhexLKfjH/h2f2rPbSPu67/6ENaWafhnenoeLX9bc83Ho16TT9qpIpUUM7Bc+TMLnQEayp2F0C3r1n+hjIwgx8q8zBqMVVzS/10ye/Dr4cfO78NqPmtN2NterrtN8GiY7M5RIgtFenxd9uospGEWIWErqwl/+dHkJ+ujRnsqqadNR+xwbUfu2ELNiX29rEOx2mwa2+8Z6leH7DBVOZNtfqpBgNBGJhvqwRXTRqhCfmj1DqE/OSHaNM1IUs87zUVKlueldzS3vmlu++2OX8yd3blKkKXgZYFR/xWf5hlDHSigq1+SkBz8Atq/TlIKR/RRzlgYXWLDK/ignmb/iC2n7zSKvY1NVF/r4SgghhBBCCCGEEEII0X0U1ttDeHLiJRhNCNF95Mabg8EKW4ShFdabg9FsQY9KKVJ9aZT5S4LWVfrDXAWwA9jGn6AS6eXL6uTRCCGEEEIIITY2DuZz7Ny2cyNEu1WFOKZMccJc5VmIv7guvm686Eha6xKt9Zda6+e11ndqrW/UWv9Haz1Da/2s1npuLELR2vRZp7X+RGv9uNb6Jq313VrrVyUUTQghhBBCiK6nfD7Uza/BIWfCkM1hy11Q/30H9jZPRq9TCcblCaHzTlqzzSJvqT50MBrvPOktFG2nKain50koWk80aIRx8Q2F13BT2nNsORC23RRuOUJx46EKKuwhT0EcB+Z94b38VrvB+EnBywePhOMuQV3/vPe2OpvlSh20uFLHgExzkX/nXk3i6AoyRxUyeNginsw4jgeyzggqd+rjmqRzXDIvcPGd5eKc6W8VitbkqW80PyzV3PZ+61C0DUPScNVrzfXyC0L/aU22qpnrraBNtYf0i3bSBcuDQ9G8ik+AjOzmfwlJrVara59k5KbhQ9EAsvzrN9yOw0+a5eoilZYv0FPMHwEAVDshUpzy56I9BlnabH9DdD+i+Fq8BXTBctx/HoM7KRG9S1Lg/93TcCcl4j54DSPWmIPL8n8v4YP5GudM/4bXuHOmn49/a/15ZgtG234z2CQrxHZq2PhuGQYwsq95TIXlUNSQAjtNAWC9Lwu/Mifu7Fn5Me+5FzJ5FIwbEFg2MKs56MJRMHkUfHW5w4RBHf8YKKX44Wr7199eAxl/W62Z8Un4skHBaCXFbD0Y0kKEDAJkp4JjS/XrhvRD/4qofLZ/nXF5qDAiN0Sw7ofz7fU+XAB1wRfs9cxrMFp9g+aDEOMQoqvtNKzjtyn6py9xz5qEu0cG7rGbo+d8hF6/Fr1/X0/11RUPwBHnRdxvji0YLS6HSpViXDeqvyLZEghU5OGC3rZDWqXs2/hKCUYTkfCHD0ajyDzhoScJ9fVQNLvHmSmKE3ewV7QFpnUkWzDaGPOcHAB+s8wvtI3eUTDYnFPM74X2fqIJzVRKcfLE2HymaA217dhPE0IIIYQQQgghhBBCdJ6WgUItZcT1JtFJMq4TQoiukJtgCUZrDBNztZ8iS9ijLVQNIMVn/mG6yu2CYDTLNjk3oX+3PAdNCCGEEEII0bM4lnlorpZgtFirDHFMaTsOFUIEdOF144UQQgghhBBCdDaVlYu6+O7WC7feHV1fC5+80mpxvSUYLT6iYDQPX4Q1hJ4ErH8MH2qlHv4aNXIrr6MS3Y0lGE0BlxRO57Lbj2+1XFdGEIy2zmPiVlw86q3VqJR07213Nz7Lm9PfnEyWl6WwT7EOWBk/gFPzHmr3cK6Z5fJ+iOCYH5fDkkLNJlnwZ7G3NveveLd9g6oIvpJjzH0xK6pq6pJ7UAcHh9G1NarI5cMF4Sf5Z7W5amWmW0qFz/vrOzXB/lqpUWGSnr54HQ4/x3NfLX22UIec0B9KU7aUdl30dSfCz1+ZCz51MyP63MBb7B+06t25NTz5c/Bn1563u8y/zmFUf0VBmebrJeamD96ycRC2YLS0jHB/RpcYFeKizmc86TJz0kHoL9+iyGdJYQByGwrZZvET7P7QjG5z4t2EQYpR/cyBE2/+pDndkIPZ1hNfa085r07b90tpEQlxipsPV5z7rL0BW8hPd6TrauGD5yKq09tv3sCHCkYrCRFQlmQJNwKYOdf+OPscePN8h33GKt77VbPfncHv87Ia0FqHff2uKIFqDxk2QnSF3UfClHEd24deV4A+d3LzguWL0BcFf6baqOfnowYMjarvbEs+bLGvN1WOORgtJQGy02DF+uB1RRWawFGHXahwolRLkGyFBKOJSIQLiwcoXNnx4+hgoXanot1zHN0fBvWGZYYc1pUlUFKlyUzpvP1SW7ZrXoaiV5KmrCZ43dJ1mp0Nj4AtZE0pe+D52hBhj6H2oUIZGeI4IVIzPtFcvHf3OE4QQgghhBBCCCGEEELYNQUKtdUnRIiQEEJ0Bdt2qdxfSrW/imq3kgZtvnKLLVQNINVyjl2l5cKkHcm2Tc6Nj+GPOEIIIYQQQoi/LAfzPDS37UXjRbtVWY4pk5wUfCqSybpC/PVIMJoQQgghhBBC/MUppeBfT6PbBKPVYZ41mRDJkaTb/mA0luWHXr/VbhKK1sOplHT7JOk/F6CrylsFlulij2FnkdjtsJ4digZguVJHy4BC2wTqjvDOL+HLvPGTZt+xyjrpu6Vkt4ojy19t36BsYVUxomuq0HdeHFmlbfdAHX8ZaqvdPBUf2ddbs5ltgtEy/KWsiN/E87BSQmSfVavkkHX1z1+jogxGu+W96H9AqWrKlJjzkT0UrdHIukXG5Wvj7A/wjE81dx+j+GiBPSjrkHDBaOmd+CaMQF4mpCWag1xenwcNxx2ML+1yCv051jZy/UWgG+DzWbDrIR042sgcOF7x25rgJ+yD+VBdp0lOCB3O8OIcD6logNMmDFaXFKGAqbs5fP27y9PfmtvJ7knBaI/+O+I6OZZgtKI/VgHmbdIC8zmdACRaQj1WlWge/8r+XM25ymH8wMBznWHZhPndwHsgPcxFzos6/wLAoofyOY3/VIvbjf8cZV8XapljWZeaqNhlBBy3vQq7XWsvffCg6CrudhjqojtQvT3uzBhkp5mDW4t82VQ65tS01MRACKU5GC18n6EOaVMTzeOplGA0EYlw34kArFziKbyzOwsVNBvtn6WU4sDxihmfmBv/aAEcvnV0bUfDdlzrc2Bgb/h1VfC6lYZtU+i2FAMywweetxVtMFpeDHOd7/9Mc/HesWtPCCGEEEIIIYQQQgjRMdbWWUJ4QoQICSFEVwi1XSqsX021337VvlDBYrZgtCp/558wUlhnuBoksk0WQgghhBBCxIZjmYfman8nj2TjV2k5pkz19aAJJUJ0EQlGE0IIIYQQQgiBchz05CPh45c2LKtTCcayCZGE0GsPATf1ddZVurwElpvDa5qoY/8ewYBEd6X+/Sz6mmON6/R/L0Jd9XDzgu/ej23nQ8aizv5PbNvsCo7lzek2fyHdmcFoXlz0gmbw1PCz4BPcWu5ZcyH9G8wn+nhWWYp2XZRjCZFrB712BfrYzb1XcBzUuTejjpoWUT+j+nmbBJ/ltp5h39u/LqJ+UkMFozmhg9Goju4ksPIazUe/RVUVgN//KMW971Z49rawZYdbgtFCmb0o8LibAg0AhveBUf2bgtFKjGVUWgyTBWJIKcUWm8BXv5vXf1mQya6X3UfRf18xrk9xK0nR1QDoq4+GT6tQvu5x1ZoDt1Dc+l7we6a6Ht6fDwdvGZt+VNv35ao/Nty86XBlDUYbmtszAk50VQU8Mz3ietmWbU/x3B/RFenG98S5z9r3H5MtoR6HzLDXeWVqcygaBAKSbP4sgnFhMiSLOv8CwB1GqfDBXEFBXBEEeTnGdap10FcE4V/hlrWqp+x9GscZRUhZqMfHcXrGeztSes7HUdVT/3kRtcvB7e7f9v6tclIp9vU2rktJsNcrtp8Hv4Ftr8txAqGiJtX14Hc1vo30dSBizEswWsEy+HMBbDam48fTBdrzTrn5MHsw2pEPuLgPdt4+qWvZYPicwLG46ThilSVPOVTI2iZZkY8t2mC0AVmRh7DZ/F4Yk2aEEEIIIYQQQgghhBAdrLDeEowWLyE8QojuJTMumzgVT4MO/r2tsG41Va75B+E0XwbJPvOFtwBSHPMPzJX+zj9hRLbJQgghhBBCiI6ksASj4WE+qIiILWzbdgwqhGgmwWhCCCGEEEIIIQLaBJjUK/OsyYRIjiS1h8mT//sURgSnkujSYvQBeaHrjtwHVC0AACAASURBVNwKttkzggGJbmvH/ezr/vfJhpu6sgyW/Nr+/jJzUSdfCZsMhS13QSWGCXrqCWxhX27zF9J5GbGZ0BxLh91n/8L8v2suJtMtZVLVbDatX9b+zlw3EFjVyxycES09/3v0xVOgtjp0wUPPQg0aAcnpMG7HwO0IjbJfrLKVTH/rGfZ5DeaTpGxSzNmYAFSrpNCVi6MLsHv/V6hriKoqAP3euAWKb/dUdmRt5MFo81aA1pqFa8zvo202bRHpUGFJOEjrZumELRy7veKr381/26wfNbsdfRiFVbvCrOD1uQ1Fre7rG05H/fOxjhhmxHYcCtmp5vCbQ+91qbvPIc5nj+NY5yE0B0C1/fFv2cINN/MyFUdto3hxTvDje8x2PSQ053PDE++BLZSx2NcbPpsJU05utdx1NT+tsLdneoXW1GvmWeokxcPebTJkBveGeB/UGy5k9dsaD8FoFZF9lh6yZWD7kJkSLvhLeQrlsod/RR5SplQPef2JbkHX1qAvCrHPbrPN5JiEokFge26zIt785k358QNy+u+FaQtS5CHL1RZ0pAgdJFtVB+lhdpmEALwFowH8+HmPDkbz8vVQNFISFZvnwS+W8OL7P3M5e9fYB2ObhAozy8s0B4ytWm9+YKxtKRgQYTCaUoF9n2jkdc9cZyGEEEIIIYQQQgghRAdxtZ+iugLjutwECeERQnQvjnLIje/H6rrlQevW1q+m2m8+6adPmFCxVJ8lGM2N7mKh0aryV1DhLzOuk22yEEIIIYQQIhYcZQlG0xKMFmtVlmPKFMsxqBCimQSjCSGEEEIIIYQIcFrPkqxT5lSctsFoWmv46i30G49CYgpqjyObJ7674b8I0zMuR/3twsDtL99Ev/M0VJXD9x+Grjh6W9TVj6B8Uc7uFN2KSkpBJyRBXU3wyrUr0HW1qIREWL82Nv2deDnq8HNi0la34VjeCy3ehwN6+YGe8Z7Zq+IDzl9/X+wb/u4D2PPodjej/X54ZQb663dgzsdhy6vrnkFNPqLd/eZlQloiVNSGLpflL2l1v3+EwWiJcYEJ/KYJ+dVOmCDBZflorSMO3Hnjp/BpCQOzYPl687p9Kj7w3FdffwGD65ayNGGw5zoAa8thgSX3bWRjaJ3WGsotg0ztvskCZ++iOO9Z83PwxjzNf4+GIrIwBTrk+lsHo/H+s+jJh6N2OqADRmqmi1ah774UPn45sGDPo1HTbsOXlcuULRRPfm3+2xKmukwZB3uPVfRKgplzNWvLYevBiiv2VZSGyTts4rT98W/FYrTfv2E/5Z5jFBU1mrd/CazulQQ3HqbYa0z3DqbS5evRj/0fvHRPVPVtwWilvgz07DdRbYLRTAF2LVUatn2LCswhZwBbD4LUxNaPcXycYmhuIAStrYUFmkDckV24Mbb0zOmKY7brnDAWITrczPujqqaueTJmQ8gJ8dv/mjhzemzKnLfpvf/WQHCSULGHoENbmJNSgX0ym8paCUYT3ug1S72VW74ozCdU9xbq3dbenM7thyh+WWXu4ZxnNKfupEmI6/hHzxak6KjAcZzJKkuesm3b43MgNw0ykvG8n5oUF30YaqQhbEIIIYQQQgghhBBCiJ5tfUMRfsxXtMuN93glPyGE6ES5Cf2NwWiFdaupds0neIQLFUvxpRuXV/nLIx9gOxTV2y9OKttkIYQQQgghRCw4mM9z120vGi/ardJyTGkL5xZCNJNgNCGEEEIIIYQQAW1S/utUvLFYgq/NZMrXHkTfPm3DXf3xSzBtOurI88G1pFS0odevha/fRd94hrexjtkOdf/nUU/sFN3UUdPg6VvM6169D/52YSD0Jhb2PjY27XQnjiV4pWUwWloDPSUYbUTd4g5pV193IozfGZU7oH3t/OdU+OB5T2XVebfEJBQNAhPaR/WDOWHyEzLd1sFcAxpWRdaP1iTHmwPYalSYYLTqCiheDTl5EfX51e/m2f+nT1LMOEaxuhQG9oZZP8Jh97X+oWVi1VeMq/3Fc18KOGf9/Vze98aIxvjst5oFloy5UU3nm83/HirNV+sk3ZKI0A04juKxkxWnPB78PCwpgqJyTaHlwqfZ/uKgZfqKw+Gu91ETdo31UFv3U18HxavRR45oveLDF9DfvAcvLODALbKswWgAb/0Mb/3cev03SzQPfBY+MKeJ0/bHv/o6WPMnDBgKQE664s1pPoorNAVlgSA9n9O992N0VQX6lO2gYFlkFTNyAvuA5evJ9JvTPkp8mYH3ShsrSwyFW6iqC1620HzBcgBuPdL82TiqnzkYbUlh6P4BijxeAHhwNhw6oXs/x0JEQr/9RGQV0jJQry1DJcYuHax3auR1Ut1Kstf8BAR/Hnl5P4cKOkoNEYwWLsRWCGj8LmTWQ94KL1/UsYPpYLagL2h/MNq5uysemW3v4LN82GtM+/rwwhQqDYEwM1sw2hpLMJqtLccJ7LfvM1bx4hxv+6pJ5q/3PElPiu2+TDQB2kIIIYQQQgghhBBC/FXNLnmfd4tf6tQ+G7Q5FA3CBwkJIURXsAWE/VA+2zqRP1yoWKpjnpRe6fd4wkgI+VW/8PH611lZuxTd9iKMbdRrw0kyQJyKJzMuu91jEUIIIYQQQghHmc+1z6/6hat/9zjHs5PFqXiGJI9k3+yj6NNNv6/6ueJ7Pi95hzV1K9CNJ09W+M1zjFIcczi3EKKZBKMJIYQQQgghhAjwtQ5LqlMJxmLxLYrpyjL0/VcFldHP3AaHToUwP9xvUFKMfupmz0NVh02ViZQbIXXK1WhLMJqecTkcdDp89Xb7+7nkHlTGRnhiiGMJPGsRUNgroYE0fx0VlqsaRiojGQb1hhN2VIzoozjk3thdFWTLmnkxayvIu8/ACZdFVVUvW4g+ZzKUFnmuo46+IKq+bCYMUsxZGnoSfE5D66CqvAZLmpeFem46yVlnUUHwa6Xa8RBw8sf8iILRyms0i9ea1+0zRhEfpxjU+LY9ZALMPMfh9g9cVq6HfdT3XD/7cBy8h1gx+UgunvscN/ovo8SX5bnaxS/Z+9h6kEJrjT57krmAUjB0c+9j7AJ7jVFgeRz7XOySZgmAyW0wp0npaXvDY9+jhm0RoxG2aPvPBejp58Ev34DfcnJ2RQnMepi9j4wuVLMhgk1aUDAawNKFG4LRmmSnKbJ7ykV93nky8lA0QB0+FXY9FP3QtWQsNe9Pljq9YN0adEUpKi1jw/JVYYLRKmuDX5+/rbG/L3cYYt5fzMs0v9bXVYbfjoQKUtosB+oaYJcRiulHKJLiZX9V9Hx6+SL0pQfByiXeKw0Zi7rtzZiGogHE+RSZKVBS5b1OiltFzrLvIC66YDRbmJNSkGrexAFQKcFowov3n/Nedll+x42jE4QMRmtn21sOVEwZFwi7Nfnbgy7Fd8QuIFy/+Rj6iRuhohRGb4O6/D5U30H4QwQp9k4xryutNi+3teVrPA9tt5Hw4hxv421PMFqs1fshQc5QEUIIIYQQQgghhBDCkxq3inWW3+I7Wy9fJklOmIvoCSFEF8hNMJ+fZgsVC9QJPXE+xXJuZVU7g9Hyq37h7uX/wo89hNKL3Ph+1vACIYQQQgghhIiEwnxsUa/rus33UiZr61cxv/JHLht8C73jc7t6OK3MLf+Kh1fdivY4vynV11MmlwjRdeS0UyGEEEIIIYQQAU7rL7NswWitJjB+PguqyoMLFa+GFYtCz3xtqbQIViz2VnboONjzaG9lRY+iEhLRA4fD8kXG9fpvo0M3cOhZMPOB0GV2Owx1cPe8akW72U52cVuE9fgbGFy/gl99YyNq+tSSx3lw9TmoM6+H3AEwYAgMH49Kaj27+6O/O+xxe/vD0ZR22b/i3Xa3Y6Mf/CcMGQP9N4NNR6Mc+4lCuqEeFs6FkkIoKULfdKb3jtIyUfd/FoMRt3bgeMVDX4Tevmb717W6n1e/KqI+nJpKkmvWQ7whGE2FP9lVf/s+ats9Pff380r7ugmDgpcdNKqag+J+gvVr0Vce6bkffHGoa59C7X4YWmt+nrwpQ4cuoM6xJH55NLo/DO2j0M9Mtxfadk9UVp929dPR+mdAryQoqzGvr7CEvOT47UGB+pRt4e0CVHpmxOPRtdUw/3soWA6JyZDQ/DzpKw7z1sZ7T5N+wmVM3U1x36cRhOdFyDGFwS7Lh4n7d1if7aHr62DF74EQ283GBAXO6toa9It3Rd7wgCFw4GmonP6oG1+m9yINtwY/NtVOCrUqAf/vi5mXuhUj+kJuumJlSejnyPQazF9jLnvweHs7tnC6dZUhuweguMI8xtMnKR48QU48FRsP3dAAC/9nD/y06TMQ9fgPHRZk3Sc9wmA0XUV2wS8wIHhdsYfz1l3LMa2jIC1E7lul/Tx7ITbQL9zpvfCqP9CVZajUXh03oA5QVav5/k/48nf7Z3wsNhfPneHQa5r5WHR9Ffxzlstl+yjSk9rXmf7qbfTNZzcv+P5D9Pl7oZ+db/0KzOdARrI5lLWsBrTWQdtMv+WwuikYbZMse6BxW+0NRtthCHwTQTZmKDX1EowmhBBCCCGEEEIIIURPFC5ESAghukqf+Mi3T7lh6tgmpVe5FbjajTqU7OP1r7c7FA1kmyyEEEIIIYSIHZ+K3QVHO1uZfz0/lM9mr96HdvVQWvlg3WueQ9HAHs4thGgmp50KIYQQQgghhAhwWn+ZVa/MMycTWhTTX75pb69oFVSWeepaf/Oep3IA6qGvUL6e+8WbCGPH/azBaKxfG7Kq2vlAdIhgNHXpvTDl5HYMrpvz2YLR/M23/Q0cWPEWvyaZg9GG5MABNR/wx+pA8kyGv5Q9Kz/muLLngMZAsZb++zZqmz023J00HIbmwu+GC4OM7g/PnO6w1fXhg9P2q3iPvv7Qz3d76SsOD9wYtgXc9Cqq78DgMvO/R//jCFhnSd0JJSMb9fDXqH6D2znSYHuMgtREqLSEVAFk+4tb3c9rWB1RHw4uyW61cV2NCpEC0uS7DyLq7+cV5i/+05Ng0+zWy/Tns9D/dwpUe0gwarLrodBnE9TkI1Cb7wCAUor+Bx/G6bMf497eZ4dpILSDxgeCDPQ7T1rL9IRQRqUUo/rBd39GVi83RDAaAG8+Csf8PaI29eez0FcdFdlATJYuxL19GndP+y/3fdr+5mwcgrdtetlCOiYWqH30H/PR/zoBlvwSWDB+Elz3NCq7X2B9/o/o07b31JZ65Fv49Rv0gh9Qg0fCvsdvaAcgI0SO4oOZp3HFfeOobQzwnLaHIjNM7qJpu/fbGvP2Y2R/+6PfO9W8vNhTMJp5eY5crElsRPTqPwPb4EXzIq+83/EdFooGsO2mivwC7ycMpLqVxGnzyeWl1eZAopZsQUcKSIwLBKS5hjJLCjUTh3bHTwHRrRSGSAc2WTQPtowwrLALvTjH5aRHNbVh5nfEYpuRlqS47zjF1GfMb9r/vKW56yPNoyc5HL519P3ph64NXrj6T9yv3gbMgbiOgl6WfZx6P9Q2BIeX+U0bFsDXOPQBEWQOJ7czGO34HRTfLIlNwHBNvf2xEEIIIYQQQgghhBBCdF99EvK6eghCCGEU6fZJoegTJlgs1TIpXaOpcatIsQSnhbOkemFU9drqEy/bZCGEEEIIIURs2I5/eoqlNZb5h12kQdeztGZxRHUy43p30GiE2HhEF1EvhBBCCCGEEGLj0yJszI+DX5mztBMaF+v6OpjzsbU5/c7T3vt+5lZPxdTLi1DxCd7bFT2OOukf0VfeZg84zBBulJyKuvFl1EGnbdyherYrEeoWYT0N9VxcfAc7VX0ZVGxYVh3vXejw339uxcwVRzFzxVE8vvoMji97zhrsoy/aH/e+K9HFgeCwOJ/iob2WkhVX06rccfGf8dOf2zF+zgP8cOJi+idYUmUa3V5wacj16tIZOF/UwuY7hiznyeKf0LeeE7RYNzSgrz46ulA0QL22rENC0QCSExT7mrPtAOiVBPH7HdtqWd4++0TUh4NLsq4xrqt2PASjrf4TbUsSMVi2zrx88zxwnOZXoF5fiP7X8ZGFoo2biPN/z+NMm74hFK2JOv4yblp7FdtXfbthWZyu5+QSe8CZyUHlb6ILlsNSywlscfEwcUpEbXaVcZtEHhSRO2mXkOv1vf9A+/0hy7QqX7wmNqFoTWY+AMeO5tODf45dm22YgtFYlt9h/UVD19ag330afeKE5lA0gHlfoA8ZjDvjCvQz0z2HoqEUDB6FOvRsnCsfQh13SatQNCBk0NlF/W6j1m3+XL7rI82/3wy93WgbjKa1ZmGBuezIvvZ2sm3BaKE/ngAokmA08Regp58XXSjaFjuhIgzCjNQBW0RWPsWtJsMtNa5rcKG6LnR921bJcQJhTqmJ5vUnPhqbECEhWsmf29Uj8GxpseaYh8KHosXS0dsq4kKc/VBeA0c+4PLdH9G9P92Vf/DpqgxuyL6MF9MPp0o17+j4f7M/Nz4ncIxmU2rIo/Zb8sSb8tDzIghGaxu6FqlTJsYu5LGmPmZNCSGEEEIIIYQQQgghOtHW6Tt39RCEEMKod3wumyWN9Fx+dOqEsMFmqSHWV/jLPffVUrW/kgq/+XfrSG3dS7bJQgghhBBCiNgYkzqhq4fQLjWuec5TVymuX4s2zSux8BHH2NStOnBEQmwczLPchRBCCCGEEEL89TjNwRT1yj5rsikYjSW/QGWZvb33n43RwALUy4tRfQfGtE3R/aheveHvd6JvvyDyuo4DF94BB5wKC75Hr1mGGrU1jN4GlTugA0bbzdhC31qGEfkbyHJL+GDp/nydsj0/Jo7HVQ4j6hax6z/uoFefzYA+6BMuh6du9tbvs7ehn70NZnwCq/5gl5vO5Fey+Dh1N4p92WxV8z92qP4OBejbL2A88JOTyQEDZ/JtSnD4zur8QeT6i+z9JSbD7ocDoI79O/rKI72NM5TvPkCXFKEyc5qXzfsCCldG1Zx65FtUXMd+7XbQeMUr/zNP6C+rAefKh9CHnAmr/oBNhpI6amuyLvSzvspb+wpNkmuYoQ9UtwgAICER6mqDC9VUQVU5pPby1N9qy3lfm2S1mYT/2UyoD5Ng0oY63h60p3L6k3rOv/hixmQ+St2dYl82E2p+ZGD9Cp7IOB5tCxxsoV/DGrZ9+Cj0wyECFg46vcNfE7Fy8kTFI7MjC4vos8c+kHgBvHCntYw+cyd4YLanx0Ef0gGhgquXsvNN23PsxK94dv2WMW9emaJzulEwmi5ahb74AFjyq73Q8/+1BgAZ9RuMSgwdlJiZEkmD4ZW32dwUlAVCTkxG9bOHeGSnKkxxR+sqA2FrStnr2oLRbGFrQvQ0etUS+O4DT2XVtU9Bckpgf2PT0TBhtw7/vNtqkPn9a5OqK/G59nDOkmpIsYSbAbiW8xOathK2bRBAVa0mJTF2gUJi46JtL65QdRbOtYZWdzezftREkJMcE5kpiolD4fMwF4Hc4UaX2Zc7TBwa2aN50aMl3D34vQ33t67+H28vP4hs/zr8P3wGXGWs5yjICBEWW1YNfdscNoULRstNg3gf1HvIHm5vMFpyguKlsxyOfCDy12xbNZ0YlCeEEEIIIYQQQgghhIiNPbMOYVTK+K4ehhBCWB3X71zuXXE96xoKQ5brE5/H0X3OCNteipNuXVflLwf6RzpECuujuzhrWwfmHMegxKExaUsIIYQQQggh+iYM4Ni+U3mu4H50ZDMJuoVay5ynrrK2brXnsj7iODXv4rDh3UIICUYTQgghhBBCCNGkRfhLnUqwFov79CXc+56Gb96zlom5CbtKKNpfySFnQRTBaEAgyGT4eBg+vsdMGI8ZW4CTbjF52R+YhZxAPbtWzWbXqtnN1VOag9XUnkejvQajNXVz7u4bbvehkL+VvWQtm+WW8OnSvbi0703cl3UmfhXH+JqfeGD1OaFD0QA1/Q1Uelbgzs4HRjRGK61h7me482ZDwTLYdAz8uSDydlLSURf+FzUi9qFLbU3ZInwoiBqzLYzZdsP9AZl4DkbL9q8jRZsLVzot0n/6bAIrfjc3UrQqgmA089/SP7P5tq6qQN92vqf2WlIT9w9d4KhpODMuZ6/Kj1stHl63mPzEEWHbP6D8bZxwz8V5t4Rtp7vYaZjiwRMU057X1NR7q5ObDmrqjejli+Crt82F8ufCO0+iJ+6PnnEFfPBcYPkBp6LO/j9URjYA+pt3Y/BX2N3zzT7UTZnPy4uzY9qui2EbvH4t7jXHok64HDW8a08U1y/eHToULRpjtgtbJC0xEAbixuh30rVlrYPLVpbYyw7Nta/Ltvx+2OAGQo56WcJLtNbWYLSctL/cnofYCGmt0Vf/zXuFEVuiBoX/rIylTbMDwUC20KC2UtwqkrU9vWx1Kbw4x+Xj3zR9eymu3F+xWU7z+9m2+XI8vOWLKmBQiNA18Re3fm3kdfLnxn4cHWTpuq7pd+Y5DtkXhd9A7HxzoMxuI+De4xxG9Q/9pp67THP38i1aLfsheSvuzTqLfxbdiFtTDZb3u8+x71sAlBrOzQoXjOY4ioFZsCT04TPQ/mA0gBT714QR8Xp8IYQQQgghhBBCCCGEgDGpE0j12cN5OlqcimezpBHkJPTrsjEIIYQXeYmDuGaze/ijJp919ebf4HLj+zE4aTjxTvgfPZKcZBwcXIJ/sKl0LSeNhFFomRwfp+I4pu/UsPUTVCKbJY+kd3yIk2GEEEIIIYQQIgo7Z+7D+LQdWFz9KzXdLGisyYLKH5lT/kXQ8u423sJ687Ffui+DQ3JP3HA/xUljWMqYLv3uT4ieRILRhBBCCCGEEEIE+JpDkeqVfdZk/LM3QW2MgzXCUGf+u1P7E11LKYXedk/4/kPvlTbfoeMG1FM4PvNy1998uzEYzcjX/DWRGjIWvesh8NlrMRpcsHgauKPgEv5VeD1VTgp9GwrwGU4m2qDfYNQLv6Gc5vAhpRQ8+wv62M3bPR59zbHNd2a/GVFd9VI+VFXAoBGouBjMOvegd6qiby8oKAteN2WcuU5eJvyyylv7I2sXkuZWGtdVOSnNd/oMtAejFa+BwaM89bfKEm6UlxH4X9fXoc+c6KmtltRjc8KXcRy45B709PNaLT93/f1c0O/2sPUPrAjzehk0AhUfoySBTnL6JIeTJ2q2u8Hlx+Xhy+ekgfL54KZX0YcMhnUFxnL6udvhtvPA32K79Oaj6C9mwcuLUUkp6LefjG7QvfvCuInw2cyQxXq55Tz/xkDWv1XFH0Uax23g1Gfi+WlldN02SbH9qPbJK+hv3oM730ON3qZ9nURB19cFbnz0Ymwb9sWhDj8nbDHHUWQkew9lDKe6HsqqIaNxM2TbdsT7Aq9Lm96p9nWrS+3hJeU1gfA0k1D9CdFT6If/BYvmea+Qt1mHjcUmPk6xWQ4s9pgplepW0cs17DA12uM2P2U1TYFImhe+13zzD4cxeYFltmBH5SEYrSbErrcQ/Ppt5HWWLUTX1aISun/iXrHHOSGJMT5bIStV8chJitOe8JbK+mk+jLnW5bsrHcbmtV6XEAe+xhTEl34wt/d6+oH8s+hG/CuXwhBzHz4H0pPsYygzZDf6LcP3tcjiHd3fYzBaDB7jhBg9TxKMJoQQQgghhBBCCCGEd3mJg8lLHNzVwxBCiB4hwUlkZIrlpLkIKaVI8aVT4S8NWlflL4+qTdvk+Jz4fuyYsUdUbQohhBBCCCFErKTHZTAhPfL5Op3Fr/09IxjNEoqdlzhIjv2EaAcnfBEhhBBCCCGEEH8JLUKV6pQ9wCVB13XGaDZQ099ASejVX8+ICREVVwee1kED6UEcy9c8bosEl5ZhRG35Ws90Vlc/BkecG4OBhZbplpLXsDp0KNq+J6AenN0qFK2JGjgc9eCXHTjCMI48H9VvMGrI2E4LRWvyf4eYEzn2GmNenpfpIcGj0ci6RaRagtEqnBbpP0kp0Ku3uZG13pOmVgefRwZA/8ZgND56CZYu9NwegDrtWtQwjye87XRA0KJz198ftlp2QxF7VH4SutBmY7yNoZuJ8yku3NPbaya38UI1SinY7wR7weWLzNuh0mL0Xlnol2fAJ69EPtiDT0c9vwB1/XOo82/1VCVrSgpbnZTKlqdk8NXsPC5OmsWmWdEl2CS4tWxR+7O9QHUF+qW7o2o7WvqHT3BP3gY9OR09OR3Wrohd4xN2RU1/HTVuR0/F+/aKXdcAWRe6XDnTpbpOs7LEnBrSPyMQymYzINMeahQqbKkoRMiLBKOJrqJ/+hL33Mm4+/XBPW0H9Pzvo2unpgqev8N7hW0md/q+T5OtBnnfp0nRVSTpGuItx7HNoWgBFbUw/f3mbYu2hBOF2MRsUNW5h86ih9Ffvxt5JdeFlUtiP5gOUFzhLZhsR0uYWHucPDEQjpaZEr5sk+1ucEk9r/W/jGkuqef6yb3Iz03vmP+euUlbogF/vT3xy1GBgLU0S55dmeHcLL/l8NjXYtszsp+3bWFSDDbV8ZYc9khVy3ZRCCGEEEIIIYQQQgghhBA9QKrPfBJIpd/j1YHaKKxbY1yeG98/qvaEEEIIIYQQ4q8kyTFf9by2uwWj1cuxnxAdQYLRhBBCCCGEEEIEtAxGwz5rsjOD0dQDs1Hb791p/YnuQ+0cHFIU0q6HdMxAehLHMlPZbRFC5A8R+tMm2EIlpeBccDvq1ln20LVOoq58CJXVx75+9DZw3KWdOKJG2f1Rp1zV+f02OnmiYqehrZeN6gfHbmcLRvPWbi9/KTn+IlLdKuP6StUiYcAXBzl5xnJ63mxP/VXUaGvYUF6mQtdWo5+80VNbrRzkPTBR5fRHnXl90PL/LdmOdH+Ztd5Na68mSdeGbnvSwZ7H0d2M7h8+bCEhDjJa/M6kjvl71P3pOyOsqxTqqkdxLpmBSk5FKYU6ahqccHlEzSTVlHDz3GNYvGwCtx0RuuwRW/rxqdbBGNcV/ptkXRO64rzOC3DUS35FX7gv/B4irC0aY7dHfVqFc9f7C1GGMgAAIABJREFUqG28X7HI67YnEje9o7n2dc2SQvP6AWH6TE5QDMw0J47kF9iDXJats7cpwWiiK+jClejLDoGfvoSKUsifiz5rZ/SqKIKTfv8Z6sJsy5okp6JOuTryPmLkgC28l01xq1BApr/Ec52Pf2veDriWTUJTuOK+Y+3tVNXB2jLNzys06yq9hUSJv5BFP1pXqQtutx+DLc/voAG1X2295rs/NJ/na/4oCl8+KR6uOTD2x5pKKU7ZyWHdHT4u2dt7kGJbVXVQXQ/F5rzoDVbGDcANcdqFr3FVL/O5WZRWB28frMFoLboZ7fFcqaT46B+DJsPsh+MRqYkuh1gIIYQQQgghhBBCCCGEEKJTpTjmk0Cqog1Gq19tXJ6bIJPjhRBCCCGEECKcREswWk13C0ark2M/ITpCXFcPQAghhBBCCCFEN+FrDlVK0rX8rfQF6lQCdZn9qR+9A3VLFlJXbA/KiblhW8CorTunL9H9jNnOc1F1x7uo1F4dOJgewjZx3m0xozpUMJrP/DWR2mFfePR79Mz7YNbD7Rhg9JQKP5FbHX8p+plbO2E0wNBxMOkg1FHno9KzOqdPA5+j+ODvDk98pfn2DxiSCxfsoUhPMj9e4YKCmmxavxQFpLrmE7kqndQWg4iD0dvAkl+CC875yFN/+QX2dUNWfo6+5G9QFiKNyGT8zqjefSOqok64DEZOCIRzLQsETmxR+wvf/zGRB7NO47eEUejG1+Im9Ss5quwldq/6PHSjaZmw05TIxt6NjPTwEI7u1/o9qjKy4c1V6APMgXntctBpqJwB6EU/Qu8+qD2ORk3YJaiY2vd49HO3Q0N9ZO2v+J0L5p7HdUn3UGbIBkpwa7n3zfH8Y/I5PPJNApVOKoeVz2T/infDt71uDVprT9uz9tAL56JP3yH2DR94KurCO1A+SwhnCAMyFRD7QKDp79vbDBXGprWGx29g+PJtWZYWHPAWKhjttzXmddmpkJHSsc+tECb6melQGRzgqY8eDZ/XRLbNCRWKNnQc6vjL0N++D1m5qH2PRw0JkQjWwSYN97ZdSXKr8RHYF870l1IY5y3ZZ9k6KCrX5KQrtC0YrfH/KVso3v3VXOiKV1zmLIWaekhJgDv/pjhtZ7lmlWj8LFq20Lxyr2NQR5yLfvkeWGkIOVzWPYPRZi/SHP2gy+rS8GX3GAUTBimO2U4xYVDHfn7efLji11WadwyHK7HyW8IIxtfaA2mdxj8xIxlWGTIaTfudXoLRBvX2ti1MSQxbJKy8TMV2m8J3f7avnZoId8+FEEIIIYQQQgghhBBCCCG6Qqov3bi80i2Pqr3C+jXG5bnx/aJqTwghhBBCCCH+SpIswWgNuh6/bsCnuj42ya8bKK5fa1yXGy/BaEK0R9e/w4UQQgghhBBCdA9Oc9BFX/9anl51SuBOziScCz7EvetR+N/dnTYcdfn9KFvQk9joKcdBn3QlPHFD+MJb7dbh4+kRHEtYjetvvt0QeTAagBq6OeqSGXDJDHRDPXp38xURu5JKy0D3GwxrlnZcH1NvQB17cYe1H42keMVZuyrO2jV82TyP4URPrDoNgFRtDsKsaBOMpnbYF/3W48EFC5ahG+pRcfEh+7OFECXGaTa5/RgojzAULbs/atptkdVppLbbC/VMINRAz3wAffs0htUv4Za1V0XX3uX3o9IyoqrbHfRKVvRJh7UhzukzhVmojGz0UdPgxbtiOh516FTUsHGEi89Qg0bA1BvQ9/4jdCCkyZuP8v0+OWy+9ErqVUKrVY+vOp3e5cvoPesKIv7LGuqhtBgycyKtGZIuWg1fvxMINNp+744JRes/GOey+6Kv7jGUMZYGZYd4lXz5JvrRfzO0312Y4hvXLC8GzOFJC83nqTIyqxr9wiOQ3Q8mHYxKTIp4zEJESmsNr9xrL/D2kzDlJO8N1tdZV6lL70WN3Q6151ERjLDjDMyC5HioDhOwk9Ii1DvLXR9RH6c94TLrPB+uZdep6VD19J0V5z9nLjR7cfPtqjo48ynNpOGaEX0lSPEvr3AlVFcaV6nDpwZuDBxhDEbTy/LD7gt1tuo6zTEPeQtFe+4MxdHbdt53PUopXj/PYZ87XD7+rWP6WJg4knG1v1rXN4WZ9bLsHpQZLlppC0ZzWjz5XoOv02IQjAZw/wmBx7Gw8dggKwXev8hh/CZwyAyXtz2Ez9XUa+h2r2AhhBBCCCGEEEIIIYQQQojWrMFofvOFRkOpdWsobTCf/5abIJPjhRBCCCGEECIcWzAaQI1bbT2G60zr6gtx8RvX9ZFjPyHaRWaYCyGEEEIIIYQAQCnLIaJunI1ZFmEwTXtsviNq1Nad15/oltQBJ4cvtO0eKCWTaoHmdIa23BYzqkMFBIUIRmtJxcWjHvs+fLlbZ6GuewbSs+yF+g1G/f0u1FQPAXhe7Ht8bNoxOezsbheKFikvE+dT3YoNk/pTXXNYQ2WbYDQGDjc3pjWsKwjb5+JC8/JhSevxlReHrb9BYjLq+udRT/yAGrGl93o2ex4NifYfUMJRN76M2u3Q9o+ji/UJ8xvRVoPMy9UhZ3rerniy6WgYurnn4uqoaagn56KueDDiroa+dwvrF/blqZUnc2jZa9xacDlLFw3jqPJXIm6rlWJLqlaU9I9foE/eGn3LVPQdF6GPGRvT9puoR8Nv80PxGtoRS7sMt+8b6C/eACDHX2RcX7zaHp60yBLkOPKXF9H3XIa+7kT01F3QRasiGK0QUSpYFnK1vulMdHkEYWChgtHGbue9nU7gOIqRHi6c3TLkNa9+dUR9NIWaaUswWtNWJjFekZ1qLtOW1vDol+FDasVfwPJF9nWDRrT+P6hufuzH005v/KRZWeKtbE5a5x+/+xzFBxc5jOmgc4vyE4bjV5agcprDzGzBaKWmYDTLpsLX4rDf6z5WaoyC0bYcqJh/ncNLZzk8d4Yi//8cth6siPMp3jjf4cO/OzxwgmLeNQ4DLV8D1IQJtBRCCCGEEEIIIYQQQgghhOgOUn3mC8dW+kNcXdKiqN5+vlCfeJkcL4QQQgghhBDhJIYJRusO1oY4Tzkn3sNJz0IIKwlGE0IIIYQQQggR4LNM4nQb0+qLI5tI3i7JKZ3Xl+i++gwMXyYjp+PH0VM4tvdwi2C0UOEYtvoGatgWqCsfNq8cMAT18NeoHfZFTT4C9cZKezsnXoE69KyYBY6pEy6H/U+CprA823Ytmran3R6ztrrKyH7Nk/JttqyZt+F2mtdgtNw8e4OF4cOB1pm7YeCayMKY1J3voXY7FJWRHVE9a3vpmajpb4QvOOkgGDex+X5iMurSe1E7HxiTcXS1HPN5fhtsNdj8olIDh6OueQLSMto/iCGbo26eGXEQpho0AjXlJNj72Ii7TNK1HFP2Ii+tPJaL1t3NgAaPQVehXn8x3JfSWqPP3xNKIwgPDEFd+xT07tt6Ye9+qLs/RLXzORzUu/MDUPYaHWLlbz8AkNNgCUarsv9sYgt9GVK3pPnOonnol2eEG6IQ7bd2RfgyL9/rvT1bgG5aF6QbejCyb/htS4qv+W/Ka4hsG7y+CiprNa4lnKjlPlW6JezI5MP5EowmgPWWZOC0TFRjsLSyBaMty0fbEvu6yLu/eC+bHWbfsqMopZh9ucOBW8S+7d8SRuCGOO2iKcwsw3JuVllN8DK/G7ysZVsAvZIhJSH8+NJiFIwGkJ2mOHxrxdHbOmS3CLlTSjF5lOKMSQ7jNlEkxZvrSzCaEEIIIYQQQgghhBBCCCF6ghTH/KNWlb8i4rYK68zBaA4+suJzI25PCCGEEEIIIf5qkkIEo9V2k2C0wjrzecqZcdkkODE8iU+Iv6C4rh6AEEIIIYQQQohuwhaK5G8MRvMy8T5W1q3tvL5Et6UcBz1sC1j8k71QjAKQNgZKORinx+vAjGpdV4u+4jBzZcdBOZHl56v9ToDJRwSCftYXAgp6ZcEmw1qFFymfD+7/An32pNYNDB4F+x4fUZ9hx5SQiPrHg+jzb4UVi2HQCPRBA6G2fV90q8fmBP6OHi49STE2D362Z9UxqjZ/w+1Ur8Fo6VmQkAR1hhn9ReHDpEqqzMuz/CGC/NoauRWM2c57eY/UlpPgno/Q5+1hL3PAKaiJ+6OLVsP6tTB4FCph4/nhIlQwmlKwxYAQ6ycfAbscDH/+Fvw+jItHf/AcvHBnyP7VI9+iRmwZwYgNbZx8Jfr9Z9vVhqd+TrsWjrsEPTndXCAG+1La7wet0Xdc0O62WtntsMDztWwhVJZDajoMGhnxZ4PJyL7hy8TSweMhJTFEYFLj9jzHbw6VK9K90Fobg/hswWibNLTZsH72Gpz9H0/jFSJqxfarSjfRH7+EOuUqb+3V15mXx3tI3ekCIz1cPC110CBYmQEVpeR5DbhsIb8A8/41zTm84C2YqMn/lkU8DLExKjWHc5LZIvjbFoxWtg7+mA9DxsZ+XFGat9x7UFu40N2OlJmimHWej4IyzaoSiHOgqs2mz69h55stqWQW+Ykj8HsIRktPVpi2KmWGw1UvwWhKKQZkwqIwX6HFMhjNK2swmiWDUwghhBBCCCGEEEIIIYQQojtJ9ZnP/an0l0fcVmG9eXJ8dnwffKrnn5MohBBCCCGEEB0tVDBaTXcJRrMc++XGezjhWQgRkgSjCSGEEEIIIYQIsAVfuH50QwOs+sNed8hYGDcRZj0Um7HUmMN4xF+POuVq9FVH2ddn5FjX/eXYgruawg1/+DhE3ei+IlKJyZA3JPAvVLmx28H0N9CP/BtKCmHs9qizrkd1UNCGSsuAUVsDoA3BNp5tvgPqzH+jho2L0ci63ndXOiSfa5/oP7Ju4Ybb1mA0ldJ8x+eglELn5sHKJcGFC0OksDUqqTIHKWT6S8PWBWDf41HTbjOGGMWCGr8z/Ps59DXHBK/MyIatJwfK5fSHnP4dMoau1DvNHOAA0Ccd0pJCP+4qLh5s76ERW8KQzdE3nmGue94t7Q5FA1ADh8OMT9CXHAjVkV+51bNt90DFJ6BHbwML5gSt1t9/iDrglIia1LXV6KduhidubN/Y+g2GbfaANx8NXjdhV1Rc4+fApqPb14/BkNxAiIct4CPWjt42zLagoR6AbEswWrGThVu8Fl9O60S32npNkeXl07/tD5krFlvD1f6KtNaB/RG3xT+/5Xar+27jvwjrNN3WbsR19IZ+I+in5TrtWsYa5u9oNVZbG4b74fy5wPsT1cOC0UZ5OE8gN8OHevBL9N2XkrekLOI+fl2lcS3bLqfF29sWAGSiFFTWalJDBTiKjV/ZOvPylsFow7YIfE9jehF++Va3CkYrieC8ouzU8GU6Wt9eir697OtXT3e46JH1fPxzDaVOBgCb1i+lf8NqPk3dLaj88viBlPnsDTZtLzIs52aVVQfva1uD0dpsOjbLCR+MltqdgtHqO3ccQgghhBBCCCGEEEIIIYQQ0Ujxma/2U+VGft5RYZ1lcnzCxneemRBCCCGEEEJ0hHiVgMJBE3xiXbcJRqszX/Bajv2EaD8JRhNCCCGEEEIIEeBYQpVcPxQs3RAi0ZZ6bA5q2Di066K/eB3WFbR7KOqQs9rdhthITDoo9PpsuXLCBsoSbqhdtNboZ6bb60YZjBYJtf3eqO337vB+gvo97lL0I9dFXu/M61EnXNYBI+paifGKkycqHv/KHHQ1si5/w21bMFqF0+LEr6bXTo45GE3/OZ9wsR8lVeblGa49GE3dPBM1cf8wLceO2v0wuOJB9E1ntl5+3i2oxKROG0dXyDGf5wdApv3CO54opWD/E2HbPdAnToCKFs/5xP3hqGnt66BlX1tMRL0fHITl3n0pvHhXbDoZPCrw/ybDjMFofPwy+spHInrN6IeuhRfujH5MY7ZD3fcZqjEA183oDS0/DxKSUCf9I/r2PUiIUwzNhfz27yJ6ctQ2YbY6VYGTVHMswWiu8lGyeAnZbYLRVofIahzQsCp44fzv0CMmwKJ5UFFiCPyyBGBZA7Gay2pr+FbL+7ZwrxDLw42jVb8ext50X/QMDZZgtLgIUr860aj+9uDOJnmZCjVwOOqW1xj8m4bbI0to/GC+vYeWuYehtg9taR1o95AJEQ1FbGR0SZF5RUb2hpsqPQs9bieY90Vw/fy5YfexO1N5jbdyKQmQnNCdRt6ariyDxT/Rp66Gp1+dErR+SfymjBg231h3YcIIa7u+xkP1XpZdwDLD42cNRmtz2D+8r+L9+aG3hWldEMQowWhCCCGEEEIIIYQQQgghhOjJUn3pxuWV/gpc7eLYztU0KGx7sb1GufFy7qsQQgghhBBCeKGUIslJotoNnnxU212C0azHfhKMJkR7STCaEEIIIYQQQogAnyUYze+HFYvt9TYZCoByHPR+J7QO24hWF4Qnie5JKQWvLkEfNsRcYId9OndA3ZljOdlm+SL0sZuHfh9HcKJOjzNxfzAFox02FV69z15vzLYdN6YudtKO5mC0TFXJ5FOmoFIPQ990JqnaHIxW6yTRgI84/M3BaJm55s5mPfz/7N13eFvl3cbx+zmSLHkkTmI7w9khgwwCgbDCCJuwd6CMQmhLgQ7a0pc9CqVQKB28BUrZ0EIZYa9SRtn0BcreOwkhyxmOR7yk5/1DSWxZ50hHsuT5/VxXrljPOj8nWkc65z6yg0dKx50Zfzy3Y5ct0pqPayRnUnI90TWuS5qbX5OZsLnHb5c/Zr/jpZETZB+/TZKR2e94mc227/Q6OlvKYLSi3GzDVAyX7nhP9q4/SWuqZKZsLe1/out9JtfMj6+Q/fxd6c3nOrbQwMEyJaXxNUdO8I7qeeaeeBicD3b1cmn+1R0qy/z56Y2haJJkfniJNGEL2VefkPoPktn7GJlJ+U/n2XRo5wSjfXSxI8dJc79ZtlCSVOYRjCZJK75cpLLtEh/fi92fkiRJlS3JX2Tak3dOXQfQ3TR7BKOFCjq3Dp+m+DhOoHJA6887jM98G4+9Z7Wpx7HoTpbBaJL0xPtWB8/ovuFQ6ATVHq9BpeWJt7fYyTUYTc/dL7tskcyQkbmvLQu1jf7GlRXnt46OsPddK3v1GZ4XBZCk0c0LFY41qNFJTjj7MDzZc96G54v+HqHC1S7HZUU93ky2D0abNMR9XFvFXfA0HvE4CoVgNAAAAAAAAAAA0BMUOe4HTFnF1Bhbp8KA/y++VjQtdW2vKODkeAAAAADwK+wUugajNXSDYLSYjaqqyf1kCfb9gI7rxWe9AgAAAAAy4hWMZGNSlfsX8yobJhNpTUUxx54hTZ7ZsTJOvEBm7JQOrYHexVQMl/nl1VK7gBzzk9/JDB7RRVV1Q17BaGtXpQ5Fk6R1tbmvJ1MnnOveftipHVt3wubSsWcktm29ezwcaNKW7nNKBkib79ix7XZjsycZnbZ74uOpICj95fslKp57klQQliT1j9Z4rrEmsD5pZGMwWpnnWHvDhdLrTye3f/2R7OHjtaYl7DpvQCw5ZcQ8ubJLQtE2bn/6LDln/VXOWdf1iVA0SapwvwCqpNwFo0mSGTREzqmXyTnnBpmDT5IJds41PYwxMn94XNpx/+TOfgNl/vy0tNOB6Rcav1nrz2Oneg6zLz7suzZ779XxgNpsjJsm89BCmYLEx5cxRmb3I+Scd7Ocn17ZKaFokjRxSPYBQJ98PlWHrH0w7bhLDzGaNDT1duxLj2z8eXDLCs9xX36d/Pzz5Qr3hJLiWK36x9amrQ/oKvaTt2T9PJe0eASjBUK5LShHCoJGc2emfsxXtDlWvSBodPY+mT0XraqTXvnCva8j2Z0ffOsZn4m+orrKvb008T21GZ0cHryB/dWxuawoay1R6zvsKlXgbley7/9H9k8/TxmKJkkBxbRJ85eufYuDw73nrd9VL/UIRlvbkNwWjaVea4PJw9I/GZUk57jlXaFHGBvBaAAAAAAAAAAAoCcoCXgfMFUX9X+sZXOsSatb3L8brAhxcjwAAAAA+BVx3A/A6w7BaKtbqhRVi2vfYPb9gA7rnLPLAAAAAADdXyDg3h6LSmtXuvcNKE+4aUpKpWv+Lb32L+nrj6UhI6VvvpC96SLX6ebM66S9jpbefkFa/KU0fQeZTaZ15LdAL2UO+oE0Y7b05nPxsL4Zs2XGTO7qsroXx+Mx3EOYnQ+Sve1SySYGRZjZB3dsXWNkfvhr2V0Pkz74jzRivDRjl3jo0jXPyu4xIHnO3J/IBLtnCEiu/PFIR0dtbfXql1bFYWmPyUZjy9efVL8+6aM86hHYIGl5oELl0ZWtwWil5Z5jJck+fJPMNnu23n78dtnLfiBJWhModZ0zILom4bY59TKZom6aptCLVZYaSe4BLuFe8umyCQSkS+dL//239NnbUnOzVFEpbbOnTNlQqaEubaCZ2btNOMn2c7wHvv2CrLUyaRJ17OO3S3+7PJNfI27OsTI7HShtu5dM2CN9owtsOjT7uZs0f6W7Fh+re2sO07HDb0vqnz5Cuv1ER9NHpA8GsX+7YuPPRXadhjcv1uJQcpDJJwsbtG+7ts+Wu685oekLdSAfCcg7+/3tpKJ+stO2k9l8R2n6DtLkrWXC7ZJymj2C0UIe6TbdwC/2NLrnDe+QsTFliY/OSw42uut1q6/avcUpja5Rswmp3vF/Ve+2K08Y7P0c4eajJfL1WoBebJX7Hca0C0bTKO9gNL3/H9nl33R5WHhto/+xZd3wrbxtbpI9Zbbv8RUtKySXXOflwQrPOc76h3r/iPv76mqX47L8BqNtNy7+nrzR/ZgqSVJxFzyNR0Luv2tDijoBAAAAAAAAAAC6i6KA9xdbdbEalWuIr3WqmpfJehx3NbiAk+MBAAAAwC+vYLTGbhCMtrxpiWdfeUEHTqQAIIlgNAAAAADABl6hStGobPUq9772J+1KMqECaYf9438k2Y//K7kFo43YRNrvhPjJ4G3CcgAvZtREadTEri6j+3Kc9GO6MTNhc+m8W2Sv/LG0rlYqLJY55TKZGf5PUk+5/sQtpIlbJLaFC6W/viR76felBR/HA8HmHCcd8z852WZ3t+04o23HuQRymPh9qSJFMNqKYLnUpI3BaKb/II9DuNZ7/gE9cdGfdc+AI9VY0E/ff/B27SIpJqNqxz0YrTRWndiwyWaptoA8qUzODtyo3iNDpycyxkgzd4v/aW/bvWVOuVT2hgullubEvkBAOvqX0p5Hta4VLpRO/o3sdecmr1VbLa1cKpV7H9xoVy7dGByY0e9w9g0y+34343mdYdJQ74C9VO5fNFeSFFBMR629V0WxdZpXeb2qAwMUtM06f9wbOu+sHXyFC9k1VdKHryXW1fSJazDap6sKZNdUybQJAf50cZOk5NDM8U2fZ/hbAV2gvkZ67SnZ156K3w4VyG46U5o+S2b6DtJms5Kf3zboxsFo24w1uuooo9PuSn5+MUbaYmT7NqOnfu7ohFtiemn9Q3e/msd1w5JTdPKwq/VwvwN8bzvS5ulg3g5G5zzg/zludb20vEYa0t/3FPQiNhaTFn/h3lnW7v3B6Enxx6BXcOG3X0ldHIxW0+B/bOWA7hMGaKNR6aHrZf/4s4zmlUfdLxywPOAdjLYhzGxgkXt/9TqpJWoVDLT++3gGo7X7JywOG+22qfTE+56bV0nEuy9fIh45440eLzUAAAAAAAAAAADdScQpkpEjq+QvbeqiNb7XWdHsfnK8kaNBwcFZ1wcAAAAAfU3YIxitIZbBQYx5ssIjGK1/YKBnoBsA/whGAwAAAADEeQWjxaLSWvcTP9V/UNplzaZbyU7fQXr35cT2ky/1FWIBwCevx3APYvb6jrTb4dKiz6QR4+NBi/ne5pStpVv/Ky1fJIULZcq4GseGkL2IbVS/6FrVBJJTO6oC68OC1gejqbQ8aUxbfxl4kn6y+FRpcfz2XaOf1M3f/kBzav8la9xD/QZE2wWjjZns/3dAzqQKRqtr7Lw6upIxRjr6dOngk6Q1K6SySqlmlbTsG2nsFJkil6vE7neC5BaMJkkLP0kdjHbw6Mxr/MHF3TYUTZI2zfKpdXb9Cwm3D6x9VMs+HalPCiZqbPPXKqrcX8bs6G+xj99IrqvxUz1bnByG92VwdDxEbda+G9u+XlAtKfm5bnyTR7gNOkcgEH8P5ATir19Om9tt+wKp+gLxUNCE9va32/2cNM9JPc4JyLTtMyb92kk/O4m/Y5sx9q/nS++/6v/frblJeu8V6b1XZO+4Ml5PsUdKV7D7BqNJ0k92c9TYEtMZ8xODyQ6cLo0qS97fHFdh9Pz/OFqwUgo8cYuGX3+KJGla4wcZBaMVh1t/PmJKrc55oDijup/7xOrIrdkf7pOWL5IaPa5QOHpSwk0TKZI99BTp7qvcx69cmuPiMlebwfvBiUPyV0cmrLXxcOx/3el/0rAxMn97W+U31kjvJHcvT3HiirP+oV7ez6ueeGBiRZt+z2A0l12nAzY3euJ973DGkrBnV96EPY5CaSAYDQAAAAAAAAAA9ACOcVQUKHYNQauP1vpeZ0WT+/d5g0LlCjkeV5oBAAAAACTxChhrjHkcj9mJvEKxKwo4Pw3IBYLRAAAAAABxnsFoMWntKve+/gN9LW0uf0D26jOld16QggUyx/xS2vmgLAsF4MpxD5fqaUwwJI2d0snbDEqVYzt1m91am6CyimiVazDaikBFfOj6YLRH1k7SeWNf07LgYO1W95x+veJXGtf8tSSp0RToN+VnJa1xYuUNKcsY1byo9cbICVLF8Ex/E+RAv4h3aEt9UycW0g2Yon5S0frEinClVF7pPXZAuWxpmVTtEi779UfSlru4zrP/92Tmhe13gnTcGZnP60RlJUZlxdLKOv9ztlr3pkpja5Pag4pqatNH8RtV3/pfcMEnSU0jWr5xHboyUC4tfCkhGO3b5Q2SyzGpY5oX+K9Bit+H2od4tQ2+SheQlRDg5RHG5bpGu1AtjzkmaU6K7biu4XjU6nOOs36ej9Aw00ve++TEFQ/I7tuBL8+hRdvnAAAgAElEQVStlWqr3ftC3f9g7F/sYVRUIP3vM1ZG0l5TjS4/zPv1yxijMeWSPXae7IKXpCfv0MTGzzLaZnGbvLhxr/9NR1eX6s7S7/ie/50brE64JaqAEw86Crb/OyAFTOLPwUDiGNd5G/tMwjzH97zkGjZsN7kGk3pNz3lpamnzuztOLwyPc3k92mjUxKQmc8plsl7BaAs/zVFR2avJ4GKLk4Z07f+n/fRt2at+kRTcn1K/gdKWs2VO+4NMuFDlI8LSO8khZMtSBKNtCDMrd8nS3aCqNjEYLeaRc+b89VzZxpkyux62sW3/6Uan3uEdjDbUI/cynyIeLx0Nzd51AgAAAAAAAAAAdCfFTj/XYDS3Ni9Vze7BaBUh7wsqAgAAAACShT2C0Rq6RTAa+35APhGMBgAAAACI8woWiEWlaq9gtDJfS5uSUpmzrsuyMAC+eIUb+jFhi9zVgZ7PtAYWlEer9KXGJQ1ZESyP/+AE9NSHVgc/PUOKxJvuLp2rD8OT9dpXOyikFr0fnqqlwczCWgZGV2lwdPn6bTgy3/+VjOmFwRg9RDgoNbYkt5+0M/8nKY2aJL33SlKzff1pmUNPSW5vaZb95YGZbePQk+X83CMspZvZdKj08hfJ7UP6S0fMNLr62dagjJBt0vlVv0m/aAbBaHZRcnhMeYtLcJ2kqmCZ7MJP1Nhs9fYiacD7T2lJcLbr2GEtS6RDfig98Ne0NZgfXCzz3TN91wz4Vtgv/ZhsBQvSj+lijmN06i5Gp+6S2TxjjMx5NysmacrzH2Q0tyTc+hpon52vY6qLMgpGk9xfW3OnM8KH8r8NY7IJhcsk3E0KOmbjWKdDYXSptmtaf/5Acop3UzjWqC0a31X/2PoTJwYNlSlOTrAygYDsjNnSW88n9dmbL5aZd27O/92r660Wr5HGVUiRUOr3e7WN/ted3IXH+NiVS2W/t63/CUf9TM6PLk9q9go3q3eKPZdybExSQGXeQ1RVm3g7GnMfF6haJHvBH6Q/PCaz9R6SpBEDjWaMlN5alDz+yJmmSwIGvYPROrcOAAAAAAAAAACAbBUFSiSX7zbqY7XJjR5WNC1xbefkeAAAAADITKQ7B6N57fsVsO8H5ALBaAAAAACAOK9QpVhMWuseGmFKB+WxIAAZMR7hhn5s6R72gj6qTQBZRUuV65AVgYr4D4GArno6+az99yKb6R+lR+q71Xfok4KJGZcwqfFTGUna93iZOcfKzNg54zWQOz/f0+i3TySHn+w/nWC0lKZt5xqMpjeelW1pkQm2+3j+2flplzTn3iT70RvS2lUyOx8kzT4kR8Xm36FbGr38RfL96A9zjY7a2mjWOOmRJ79S/3ef0rHVd2j7da+lX7TqW1lr0wYn2sZ10kM3JrWXRz2C0QJluuXzkfrJz2LrAzx2lzw2MfyU02UO2EmavqPsb06UWlIkfkTcv5AFOsoEg/mLqAp6pNv0IuacGzVj4jXS0/7nFIfb3HjvFU0Kjcp5XZCslVqs1OIREpWjreRzcZdt7C6N2l2SFLTN+umqq3X58nNTf75S7n1wjP3ifZlNpuWkyljM6vInrc5/0CpmpWGl0h+PNJo703tfc6XP8z6mj+jiYLTDNslovFsomqSU4Waea73yqLT7QSosMCoOS3UuYXJJwWged8uAjUqS7M2XbAxGk6QTdzT6yT+SJ524Y9e8X/cKRltHMBoAAAAAAAAAAOghigPuV8ypi2YQjNbsdXJ8ZhcZBQAAAIC+zisYrbGLg9FiNqYVzUtd+wjFBnKjA2fMAgAAAAB6lYBXMFpUWrXcva+0PH/1AMiM12M4nYKIzPFn57YW9GxO60eGXqFBqwMD4j8EgnrmY/dlTqy8QQePuFeXlZ+RcQnTGj+UOfECOWdfTyhaN/CLPYy2HpPYduURRiMHEYyWitlhP/eOhnpp2YKkZvvCg6kXPPp0mTnHyvn5n+RceLvMrofJOD3nI/7v72S026aJbWfMiYeiGWN01DaO/r7j27pm6Wn+QtEkqalRqlmdftx917o2D/J4jqt3ivUDnbk+FC21ylnbyhgjs8dcOf+ulXmuXip0PzhWMwgiRR6NGO/dN2ELabs5Uklp5usOGpJ9TT2EcRwF5v5EN/f7i+85JeuD0ez6MMRRzYvUP1qdj/LQi7WYkP5Q9nPdWvpdKZIicWu4d6iXvf2ynNXzyLvSuQ/EQ9EkaUm1dNT1Vl9VeYfHPf1R+mC58hLpT0c6aYNMc822NMs+fY9i87aWoi3+Jg2okLnBJdh2vYp+mf8Ozt8u3fizV7BaVW3iv2PUIwwwoHgwmt5/VXbVso3tP9zZaO+piWNP2cVozyndKxjNz3srAAAAAAAAAACA7qA40M+1vT5a42t+1LZoZbP7sdecHA8AAAAAmQl7BKM1dHEw2pqWlWqx7gfGDS5g3w/IhWBXFwAAAAAA6CYcj1ClxnVS3Vr3vnI+oAG6DZNdOI55bIlMpCjHxaBHaxNYMCDqHji0OjBQkvRO/RA1psgYeLSfRzBUGsdW3yEVHpTVXOReeT+j537p6NmPpa+qrHaZZDRtOKFoaU2c4d238NOEkBPb2CA9nyIYbY8j5ZxyqXd/D9AvYvTETx09/ZH02XKrHcYbbTlKiSEpoYLMF/76I2n6DimH2Lv+5NruFf7oV8C2aPCgxJpNICC711HSQzcmDh49SRo/vUPbA1KafYh0x++S2wtLZP7yvEw4IhuNSl99IL3zkuy7L0vvvCytdL9C9QZmpwPyVHD3c/zu/XXafWtVE+ifdmzx+mA0LVsoSXJkNbv+RT3Sb/88Voje6qF+B2he4ULPfrPb4bK3/sa989n5spO3ljnqZx2u42+vuqdxbXJOTNG/JgebxWJWj77rHox20ObSgVsYFQSl3Tc1GlrayaFoa6pkf7Rr/D2XT+anV0p7HCkzcLDnmMos8iWdL97d+HN5ibRwVfKYqtrE257BaLZNx8uPSQecKEkKBowe/6mjf30oLVplNbXSaPtNuu79esTjKBSC0QAAAAAAAAAAQE9R5LgHo9VFa13b21vZvEIxuX/pU8HJ8QAAAACQkYhnMFp9J1eSaEXzUs++itDQTqwE6L0IRgMAAAAAxHkFo3mFoklS+fD81AIgc16P4VQOOJFQNCRrE7I3IFbtOmSNE08EOOrdPXO++cEty7TjulelyNE5XxvZKyww2m+6JBGI5pcpLJYdPFJavii5c9FnstvNkZ74m+w//y699XzqtQ45OU9Vdq5Q0GifzaR9vO5HobB7ewr2lcdlUgSj2Vcel1a7X4G3o8FoQ0uicpzk38Wccpns8sXSq0/EG0ZOkLnsvqRAGSCXzPcukP32S+nf9yW2X/mwTDgS/zkQiAf0jZ8uc9ipstZKS76S3nlZ9p2XpXdfkhZ9Fp8YLpSZd57Mtnt39q/SdbbfRz+86UZdWfaLtENLNjxd1bbuL9/+7YkaOMn9+WZk8yItCo3MRZXohRaHhkuFxZ79ZuwU2QlbSJ+97dpvrzlT2n6OzOhNE9pX1Vld+S+rW1+2WrpW2maMNLbc6JAt4wFVj70rVdXGg81GDjK6/y3vGgM/jOmEWUa7TJKO287IGKP/LpSWuO8u6JjtHB2+Vde87tmmRtkDMvu8yvzxCZmZu6UdN3xg5vU4islaK2OMykvcx/gNRnPanDxjX35UZn0wmhQPm917qtQd3q9HQu7tBKMBAAAAAAAAAICeojjg/sVOXbTG1/wVzd4XKSsPDcmqJgAAAADoq7yD0dZ1ciWJVjR969peEihVYcD7uFAA/hGMBgAAAACIc5z0Y9or56plQLeR6WO4sETm+LPzUwt6tjb3pYHR1a5DqgOlqjeF+qre/cqY2YrE1um9L7eK3wh6nE0P9CSjJrgGo9mFn0pX/UK679r0a0zYXNps+zwU1w0VZB6Mpvf/z7PL/usfsr8+wbN/YHS1jJGszXyzklQ5yD2U1BT3l7niQdmVS6XaNdKoSYSiIe9MqEDm4jtlVyyWFn8pDRoiDR0tk+JxZYyRKsdJleNk9jlOkmRXL5fWVEllQ2X6D+qs8rsFM7BCBw5eoCuj6ccWb/hnbWw9oKJfrFZ3fnOcjh7xt4Sxmze8q9e+mqXlwcH6LLSJonOOU2zOCYrGpJZYPACpJSpFrW3z8/q/24xJGB9L0ddufixhLes6NlfbbfEIc0Jq60xEiqQ+AMb86nbZY6Z79ttjN5deaNj4elNdb7X5RTEtXtM65rWvpde+trr7DdcV0tZ56ytWt74i/d9X0jVHGz38jvucgqDWB3R1Pmut7GmZBTqa616Qmbqtr7EDi6RwUGps8bm2jcVjyuprpOL+Ki8xcvu3Xuk7GK3NE9Trz8iuq5NJEarXVTyD0Xz+uwEAAAAAAAAAAHS1Iq9gtFita3t7K5rcg9EGBMtU4GRxfAwAAAAA9GFhj2C0xi4ORlvuse9XERrayZUAvRfBaAAAAACAuExDlSJFUklpfmoBkDnHPZzF1eY7yZx0kcyQUfmrBz1Xm/CeAdFq1yGrAwP1XNHOarYZ3O9SiMTWadt1r+mqZaerLLoqJ2sC3cLICdIbzya3P3SD7yXMn/7Zd0K1CiKZz1n0qWuzbWmRvTZ1AGhg1hxNCksfL818s5I0dFDqr1hM2VCpjC810blMxXCpYnj28wcOlgYOzmFFPcv2u22qkY8v0qLQyJTjigvW/9CUeEDFETX3ad23hbq87JdaESzXXrVP6/fLzlRAMQ1rWaphLUulB16WHjg5u3DyHiAmo6gCipqAWhRs93e8PaqAWkyw9W/jJI1tHeNsHBvd+HfrWhvnbehTQC3GfftuayVvI7nexLVb640l1evyuymwcXyjCavJ5SSHdaZQKnQ/sWKjkROlsVOkrz70HnPn76VjfilJuvQJmxCKlkvXv2B1xt5WD7/tHoy22ySpXyT3713sujrZmy6Snn9QkmT2O0H67lkybR5L9uZfS++/6m/BkRNkfnyF71A0KR4oWTlA+qrK3/jAhiCz6pVScX+Vefw3r6xN/LeMeuTUBWybYLSmBun1p6WdD/JXTCfyDEZr7tw6AAAAAAAAAAAAslUccL9gaH20xtf8Fc1eJ8dzQWoAAAAAyFTEIxitIdYga22XnW+xotn9RISKAvb9gFwhGA0AAAAAEJdJqJIkDRrSd0I6gJ7AZ7CC+d6FMieck+di0KOZ1vtSacw9GG2NU6q3I5tnvYmrlv5CP1p9nbT7XOmZe7JeB+juzKiJ8si18Df/krtl+g/KWT3dXiiLK+KuWiZbs1qm38DE9vdekVa6H2S6gfnu2drnQ6OPl2b3v1Q5gPfCQG/jHPh9XXHLPH1nxN9Tjive8HTVmBiMZiQdX/13HV+der4kKRbLrshuzpHkKCqPXKQ+7a7+R+jY4bclta9zIlJhUcq5xhjplEtlzzjYc4y97lxp/3l6a80g/e7JjrwDSS0ak659zuq9xe79B2yen9dH++sTpBcfbr1900VSc6PMDy6SjcWkD1+Tbv2Nr7XM+bfK7PWdrOoYnkkwmm0TjFY5VuUewWhVtYm3ox5PDxuD1tazLz8m0y2D0Yzk8i6YYDQAAHLPGDNW0haSKiWVSFoiaYGkV6y1vPoCAAAAAABkqdhx/2KnLlrr66T7FU1eJ8dzgT0AAAAAyFTYIxjNKqZm26QCk8V5CDmwosn9fIXBhGIDOdM7L0UOAAAAAMhcIMNgtOL++akDQHb8hhvO2Dm/daDnaxOyNyC6xnVIg1OodyObZbX8Vuve1Mmrr5e54DaZky7Oag2gxxg5sWPzt94jN3X0FNkEo0nSwk+TmuxLj6Ses+thMlO30TZjstukJFWWZj8XQPdkwhHNPe84PbVgTspxwcD6g9wbGzqhKvQWhTH3+8s6UyhFitPON9vvI3PxPzz7o3L0yz98qpm/yX/oXqrgtVwHo9lYTLHzjkoIRdvo4Ztkv3hfdt8hsqfM9rWe+emVWYeiSdL4wf5/P0fr/y+WLpSkjgej2cRgNL3yuGw06j64C0U8Ls9HMBoAALljjDncGPOKpC8l3S/pakm/lXSbpOckLTXGXGuMKe+6KgEAAAAAAHquokA/1/aYomq06b8nXtHsfnJ8BSfHAwAAAEDGIk7Es68hts6zL5+std77foRiAzlDMBoAAAAAIC7gcdail3BRfuoAkB3H58c8ozfNbx3oBVpP9B8Qq/Yc9Vrh1q7tR2zlHRQwrulL3b34aAX/9qbMnkdJFcOliMfrSV8LhELvNHpS9nNn7StT5JGe0VsVFGQ3b8EnkiTb0iz77/tkn7pLuud/vcdP2lLm51dJkoYPyD68ZZOKrKcC6MbMrH21a/0L2mrdm6794wPLWm80ds3BFOiZItb9/rLOKZQp9Peab3Y9VNouObjvrfDm2mX0U/rjkm06VGNHbTlKGjEwd8FotqVF9rwjpecfcB+wZoXsCVtJdWv9LTjvPJkjftKhmiYO8T92Q5CZvfR7kqTyEvd/m7bBaLGYd+hcQO1C0NaskD74j/+COkkk5N7e2BI/GAwAAGTPGFNijPmHpHslbZ9i6CBJp0h63xizd6cUBwAAAAAA0IsUewSjSVJdtCbl3JiNqqppmWtfRQHBaAAAAACQqYhT6NnXVcFo1dHVarZNrn0VocpOrgbovTI86x0AAAAA0GsFMwyiiHh/oASgC/gJRistkxlQnv9a0LO1uS8NjK7xHLYwNMq1fe+p0i0nOLr5mud1z5tGY5oWaEzzAk1r/EB71D2rgfPfkqkYLkkyoQLZWftKz85PXGTSljJDRnb8dwG62pBR0tDR0tIFGU81c3+ah4K6uVA4q2l24afSqmWyp8yWvv0q9eCdDpS54DaZ9aGMlQOy2qQkaf/puQt+AdC9mIe/0WHz/qD/Fm6Z1HfQ6vmyzSfLhAoIRkNGCj0OvmkxIbXIkUeWVBJz6b2yu7WeiPHr8rN1UcX5Oaiw4w7YPIehaNUrZX+8u/T1RzlZz/z5aZktdurwOpsONZL8hXs5isV/aKiXjcU8g9Gq10kNzVaRkNET73uvtyFoLcFbL0jTd/BVT2fxCkaT4uFoqfoBAIA3Y0xA0t2S9m3XtULSW5KqJW0iaYZar34xRNJDxpg9rLUvdVatAAAAAAAAPV1xwPvCRvXRWpWFBnv2r25ZqahaXPsqQkM7XBsAAAAA9DXhFMFojV0UjLaiaYln32BCsYGc8XHGLAAAAACgTwhlGoxWlJ86AGTH+PiYZ+zU/NeBnq/NfaksujLj6ZsOMyoKG/3otJ303Iz5unXpSfpV1SU6XM9p4B/u3hiKtnFzv7xG2rxNQMGYyTKX3JV1+UB3YoyRZu2T+cS9jpbZatfcF9TdFUSym7fgY9n//WX6UDRJ5hf/uzEUTZKGlWa3yW36LVX/QoLRgN7KDKzQL3aN6oQ1tye0H7b2fl387bnSW8/HG7yC0TbZTOaeT6Rp2+e5UvQkEdvo2Ve/vMr3OiZUIHPpvZKkqwb+KCehaA//2NGcqZLp4EvbQVu0LmCbGmXnX63YhccoduNFsssWxtvXVCl29RmK7RSO/7nuXNnP3lHs2rMVu/AY2Qevl21plr3hgtyFol33Qk5C0SRphns+tKuA2gSZrV2V8n3HFyuk+karE2+L+VtvPXvv1f4L6iSFKT5ibGjuvDoAAOiFfqvEULRmST+RNMJau7e1dq61ditJ0yS92mZcWNKDxhiOvAYAAAAAAPCp0CmSkfuXZ3XRmpRzU50cX8HJ8QAAAACQsUiKYLSGLgpGW970rWt7sdNPRSnCtgFkJtjVBQAAAAAAuolghsFoYYLRgG4lEEg7xGy7VycUgh6vTRpCoW3QoJaVWhUs8z190pD1ywQCMqf/Wfaki6UlC6Rx02SCyR9Hmn4DZK5+Oh6U0NggjZwQD5MCegkzaz/Z+6/LbM5pv89TNd1cQTi7ea8+LkWTg0KSBALSoCEJTYUFRoOKrFbVZ/a8c9KkhZKGpx0HoOcKnXqJbny4XJcvP0fvhadqcuMnGhJdHu/8/F1pmz2lJo+gq3ChzLAx0rX/lhZ9Gh/X2CCtq+20+tH9FFVFpPvd+xrHbp7RWmanA3XVxN/o9MDPfY1/6avZumbQKfpH6VFJfSVmnfbbrFj7Tw9oVZ3Vu9/E39Pf+ZrV/8y3vmvaZ5q0xcj466ltaZE961Dp9ac39tsnbpcuvVf2jEOkVUtbJ95xpewdV7aOe3a+9OoT0pvP+d62p0iRzBPLZYKhjq+13ugyo903lZ75OP1Yx7YJOVu5VONGlyngSFGX7LOPl0ifLZNWpDiPJmBdJlZXyT58k8yB30tfUCcZUybddZJRJGgUCSnhT0mWb/cAAOjrjDHjJJ3WrvkIa+1D7cdaaz80xuwu6RlJG9KayyRdKOnkvBYKAAAAAADQSzgmoEKnWPWx5O940wajNS91be8fGJDyZH4AAAAAgLugCSlogmqxLUl9XRWM5rXvV1EwtJMrAXo3gtEAAAAAAHGhDIPRIgSjAd2KcdKP2Wz79GMAJ/G+NLzlW9/BaOUlUllJYriQ6TdQ6jcw7VwzZJT/GoGeZMbszMaPmezrMdMrhVInZZjvXSh700XJHX5C0SSpf5mMk/x6ueVoo6c/8rfEBjtPIMAR6O1MqEB28tYqe+cl7VL/YkKf/cs50vb7yDZ6HEwRjh/MboyRRk3Kd6noIYqWW+l+l2ArSeum7pzRWmvXWV1Q8CPJx0vguo/6K6QWaZVcg9H2qP6X9NFIacrWGlRstMv6u+xpu8f/9hOONnem0V+PbfPa+M6LCaFokqTl38ieuqvU1JC+6FceTz/GB3Pi+TkNRdvgisMdbXWJ+/9lW4G2/0ErlyhUPkzjnEZ9FhuSNPaIv2a4Xhv2+guk/ee5vs/pCgOKjObO5L0SAAA5dqGktm9sbnULRdvAWrvOGHOCpPckbfgC8HvGmCustV/mr0wAAAAAAIDeozhQ4h6M5tLW1oqmJa7tFQXDclIXAAAAAPRFYadQLS5B1Y1dFYzmte8XYt8PyKXucWQsAAAAAKDrZXqiaJirlgHdSiCQfkxxaf7rQM/XLmSvssX9w3o3m3JhEyCJKQhLx53pf/zx58SDdPqiVO9HSwZIR/2sY+9BS91DHs/fP7OvSk5Yc7s22WRQ9nUA6DkC3teYsqfuKn3zuXtnOJKngtCTFaZ4mWsorcxorSfet6qNpg+4f2DREfFQNEnbNbyu49b8PaG/KFanM1b+XnrtqaS5wYDR6Xs5+u95qV8nT9nF6K6THJUWtb5/sXf9yX2wn1C0XBk+Tjr01LwsPWOU0TAfu9eO2oTKrVwq++sTNHH1f7PebsB6JOFVV0nfkm8CAEBvZYwplHR4u+bL082z1n4q6cE2TUFJR+ewNAAAAAAAgF6tKNDPtb3e5UT8tlY0e50cz8F1AAAAAJCtiON+HkFDVwWjee37EYoN5BTBaAAAAACAuFD6E2oTRIryUweA7BgfH/MUux+oAyRwEu9Lw1u+9T114tA+GuYEpOGcdLGvceaPj8vsMTfP1XRfxhhpuznufQ98JRMpkqZsk/0GSstdm3eaYLRz6EPXvln1r+ii5Rdpz9qndEDNo7p6yWm6fskpUnlmATYAeqhU4cO1a6Rn7nHvI0gcLgpTfOyyrtn/OtGY1XdusGnHTWn8UAfUPpbQdv2SU3XDtyfr4LUP6furb9YbX22vbRrekL3pIs91ZowyOnSG93auOdplX/Q//0xbX14d8ROZG/8jk8eQwsk+jl1qG2Rmn50v/d+/NLp5YdbbDMgjGE2SatZkvS4AAOj29pbU9ku5V621H/uce0u724fmpiQAAAAAAIDer9gpcW2vi9amnLeiiZPjAQAAACDXwsb92NzGLghGs9Z67/sRig3klPdlzgEAAAAAfUuGwWiGYDSge3FShDZsUEQwGvxIDDerbPYfjLYpn98DnsyNr8p+f3vv/isfkZm5eydW1D2Zn1wh++nb0qql8YZQgcw5N7W+9xw1QXrr+ewWH1Dm2XXv1Ee1+39iej8ybWPb0JalunbpTzWt8UNpZZvBxf1litwPfgXQy/h5j+2mgGA0JCsMefeta/K3xpsLrL57c8zX2H8uPCCpLaQWzau+XfOqb0/qs4s+kxk5wXWtm09wtGBVTP9d0NpWXiI99tPudR02c/6tMnt9p1O2NXGI0bMfpw6oSwgyWx8WN6zF/WAoP9oGrSWpq856XQAA0O21T5F/LoO5L0pqUetxojOMMUOstctyURgAAAAAAEBvVhRwPzakPkUwWszGtKJ5qWtfRYhgNAAAAADIVsRxPza3oQuC0Wqi1Wq0Da59gwu4ADuQSwSjAQAAAADigpkFoynMid5At+L4OCGdYDT40e6+VBGt8j110hCTfhDQR5lJWypldEY5X4BJkhk1Sbrtv/HwkPoaaatdZUZv2to/cmLqf8dUSr2D0crHjdSrd+2sh/odoA/DkzWmaYEOqH3M/TmwnANVgT4jkOVXqewvw0UkVTBac/r5Z90f0xX/9PcqeNO3J6kywwAue/Q06YUGGZP8nr5/odHLZzp68G2r9xdLIwdJB0w3Glrazd7/73Rgp21q4pD0YxybHGI3vMV/8HR7CUFr7dWuzXpdAADQ7U1rd/tVvxOttXXGmPckzWjTPFUSwWgAAAAAAABpFAfcj7esi9V4zlnbslrN1v2qSBUFHG8CAAAAANnqTsFoK5q8j88kFBvILYLRAAAAAABxoQyD0SJF+akDQHZMmmC0grBMpo9z9E3tgtHKMwhGm0quE5BaaZlUvdK9j+fojcyAcmnOse6d46Zmv+7YKd6dY6eq0DboqLX3pl9obPY1AOhhsg5Gi+S2DvQKxhhFQlKDSwjaOvdzIzZ69QvrOxTN2Jj2rHsmiwolu3NEdve5MlvOlvabJxMIbOwrCBrNnWk0d2ZWS+edOfUymcLiTttePBQ69f+JW5DZsNcqDQ0AACAASURBVAwD69qyShFEV1edOLbqW9m/nCv96854wwEnysw5Vmb6Dtlv/60XZJ+7T4rFZHY5VGarXbNeCwAAZGRyu9ufZzj/CyUGo02R9GyHKgIAAAAAAOgDPIPRot7BaMubU50cP7TDNQEAAABAXxX2CEZr7IJgtOXN7hdILXSKPPclAWSHYDQAAAAAQFwwwzCOMMFoQLfS5oR1V4V8sAq/Ek+2L2/xF4w2cYg0tjwf9QC9iJPiuZpgNH82myWFC6XGLL7A3OVQ777x06UBFdKaFWmXMQecmPm2AfRMqZ63UykgGA3uCr2C0Vza2rrtVX+haJK0f+3jquxA+JaeuUf2mXuk156WueSu7NfpbHOO69TNTRySfoxjY0ltwz0OiPIjZFPcUWpbg9Hst1/JHrlpYv8jN8s+dqt04d9kdjs8423bp+6SvWSeFIv/TvahG6Qz/yqz3/EZrwUAAPwzxgySNKhd88IMl2k/fkL2FQEAAAAAAPQdRYES1/blTd/q0ap/uPYtblzg2l4c6Oe5HgAAAAAgvYhHMFpDnoPRFjZ8rk/r30/YzufrPnQdWxEaJmNSXAAVQMYIRgMAAAAAxAVDmY2PEIwGdCvGSd1fxEE18MlJvC+VR1f6mrbXVMMH+EA6BKN1mIkUyc7aV/r3fZnN++39MuWV3v2BgOzsg6WHbki90OARMtvsmdG2AfRggSy/SiUYDR6KCqTV9cntdY1W7QOKN4jFrK5/IX0wWv+IdOiwr3XVe5d4DyoZIPPnp2XnzUxf7PMPKLZTWObE86XjzpIJpn482Leel73p19LK7IO/shYMSaVlnbrJMeXxf/O1Dd5jAoomtY1r/koFsUY1OeGMtje4ZZnGNn/t2W/XVG28B9m/nOM+KBaTvfAYaccDZAr8b99aK3vDhRtD0dY3yt74K2nf77IfCABAfg1od7veWluX4RrL290u7UA9AAAAAAAAfUax437MZU20Wo+vvDujtSpCw3JREgAAAAD0WeEuCEZ7tOofGe3/VRSw7wfkWpozZgEAAAAAfYUJBKRAirCO9sKc6A10K+kev0X9OqcO9Hwmu2C0ad55QwA2SBWwEyQYzS8z7/zMJ22/T/p1v3uWVNL+fOM2BlTI3Pxa5tsG0HNlso/chiHsEh5KPLKo6pq85xxwdcy7U1LQkZ76uaNVf3J089mbqN+dr8s8WyNz6mVJY81JF8uM30zaeg/fNdubfy17nUfQ1oYxX34g+/N9pXdelL75wvfaGakY7t1XNkzG6dxDHwKO0V5TUo+J2EbXtt3r/51y3hSXY6POrbpcjlIE5P39CkmSra+RXnw45fr2iAmyDS4JfV4WfSYt+Tq5vepb6dO3/K8DAACy0f7s22yO6G4/p8NfFhhjBhtjpmbyR9ImHd0uAAAAAABAZyoK5O6YS4LRAAAAAKBjIh7BaI15CkZb2vgNodhAN5DlZc4BAAAAAL1SsECK+vwwKOz+YRKALmLSnARe3L9z6kDPZ0zCzfJola9pk4eZ9IOAvi6Q4rm6wCMpBUnM2MnSbW/KHr+lvwl7HuUrLMUMHiHd8prsHVdKn78nFZVIq5ZJw8ZIg0fIHHuGTGlZx4oH0LOkCrRMJRjKbR3oNYo9Xu5rG9zbm1usnv/Ue72Dt5DOmONou3GJ78VNqED2qJ/LjJks+9itkozMAfNktt073n/lI7KzM/hc575rZb97lkz/Qa7d9oYLpWiL//UyVdRP6j9IWrHYvb+8aw4mOnym0fw3vcPKpjW879p+YM2jeqJkjue8Z0539MoX0r1/fUaNa6p19Nq7dUjNQ2nrsVXfSu+8nP7/YtUy2T0Hxu8jp1ya/n3S2lXefauXp60LAAB0SPtgNI93jim1/+Kv/ZrZOFXShTlYBwAAAAAAoNsqyWUwWsHQnK0FAAAAAH2RVzBaQ56C0T6oezPjOez7AblHMBoAAAAAoFWoQGr0+WFQQSS/tQDITLrQhqJcnOuEPqHdSfFh26RBLSu1Kpg6DGgKFzYB0nMC3n3Bgs6roxcw46ZKP7hY9oYLUg8cOlrmhHP9rzt0tMzpf+5gdQB6jWyD0UI8p8NdiUcwWl2Te/ui1VK9R9+2Y6X7T/V+b2GMkbbfR2b7fZL7HEe66knZsw+X6mvSlS21NMv+7kfS7IOlKVvLVI7b2GVr1kgvPZJ+DS9b7Sr999+px5QPSx0iO2hI9tvvgENnGE0fYfXuN+79+9c+7tl+iseac2caDelvdMgM6SDnN9LiV/wX9N6rsi+kD1Db6K4/yq6rkbaYLVWOlZmytfs46x3+1j5YGwAA5F2KF+aczgEAAAAAAOjzhofHKGwiarTZZNUnmlg0LQcVAQAAAEDfFXbcz2VtjHV8n81NTXRNxnMmFLLvB+Ramkv/AgAAAAD6lEwCOQhGA7qXYLpgtNxdvRC9nMuJ7bPW/SfllGmVUlkJJ8QDaaUMRgt1Xh29xXFnSMPHJbcPGipz8m9kzr1J5sZXZUZN7PzaAPQOTpZfpYZSBDihTyv2CkZrdG9fUu291qm7dOz9t9lyF5nb/itz2h+kfgPTT3juftmLvit7zHTZ+/8iSbKrl8vu27FQMrPzQdLgEakHlVemflwVl3aohmwFA0bXHO3IcfmvGNGvWfsft5PrvGEtS3Vk9T1J7UYx/f17bRaLtmRUj73gaOm5+zKao4dulL3oONkf7qjYeUfJxmKZzQcAAPlW2+62+yWwU2s/p/2aAAAAAAAAcFHghDWn7IgOr7Np0eacHA8AAAAAHRRx3L8ub4ity8v26qI+Ljrbxg6le6q8oGsu8gr0Zlle5hwAAAAA0CuFCEYDeqx0j9+i/p1TB3o+l2C0Q2oe0qP99vOccvAMQtEAX1IEo5lsw3f6MGOM9Kd/yl54rPTha/HGyTNlLrxdZvgmXVscgN4hkOVXqZnsW6NPKfa4a9RmEYx27HYdfw9uho6WDv+RtMXOsvNm+pvU0iz7x5/J/vFnHd6+JKliuMxv75c9cRvvMZtMk7760Lu/qCQ3tWRhh/FGd/7A6IRbrBqa423DSqV//DCsovE/kp0zV/bCY6S3nk+Y9/tlZ2pJcKheKN5ZkjS14QP9rfQaBQN/bR2UYTCaJKkjwWbPPyA9erN04PcT21PWwb4gAAB51l2D0a6VdG+GczaR9FAOtg0AAAAAANBp9i47TIMLhumd2v/T6uaVGc0tDBRpQuFUzR64b/wYFwAAAABA1sIewWiNeQpGq4+6f7U+IFimitCwjbdLAv01pXiGZpXukZc6gL6OYDQAAAAAQKtgyP/YgnD+6gCQuUCax28XniiOHsYkhzPtX/u4ArZFUeP+ceIhBKMB/mQbsANPZuho6boXpC/elwoKpMpxMpm8pwWAVFIEWqYUJBgN7koiRpJNaq/3DEZLHitJm1QopydPmPGbyW6+k/TOizlb07fySpkJm0tPV8v+dM/WsNMNAkGZOcfJ3vgr7zWK+uW1xHTmznR0wHSr17+WCoLSFiOlSCj+/2MGVkh/+qf0zWfSkgXS2CnSv+/T0KvP0DML5+jDgslqNiFNa/xAwVHtgl29Askcp2MBaCnYe/4s0z4YrdnjDiplF94GAAAy0T4qt8gYU2ytrctgjcHtbq/pYE2y1i6XtDyTOZz8CwAAAAAAeqoZ/WZpRr9ZXV0GAAAAAPRpEa9gNNugmI3JcTkXqiPqYu7BaNv230UHVRyX020B8JbbRzYAAAAAoGcLZXDydkEkf3UAyFy6EJguPlEcPYiT/JFhWXSVdq/7t+vw8YPjJ/4D8CGQZcAOUjLGyIzfTGbUJELRAORWtoGWmexbo08p8rhr1DW5B6AtbR+Dsd6w0hwV1Ia59B5pjyOl0vLcL55KRWV8++GIzFVPSof8UCoZIBkjTdhc5ooHZSZukTKg33SD/d3CAqOdJxptN85sDEXbwDhO/H3KtnvJDB4hVQyPt0ua2vSRtmh8V0FFpYWfJi7qFTq21W55+A3WW/Cx7JKvE9uaGrzHN6UITQMAAB1mrV0paXW75lEZLjO63e3Psq8IAAAAAAAAAAAAAIDO5xWMJkmNsRTHuGWpPlrj2l4U6PrjFYG+hGA0AAAAAECrIMFoQI+VJnzBFJV0UiHo8Yxxbb54xUUqiDUmDb38MEfGYw6AdhyC0QCgRyEYDTlW4vFRSq3HMTlLPILRhvbPTT1tmf6D5Fx4u5xHF8vc/XHuN+AmEJQGDmmtIVIk5xf/K/PYEpmn1si5+TWZbfaMdxZ4H9Sknra/Wz7Ms8u+9ULrDY9gNLPj/q6B1jnzyVuJt1OFnzW799loVHb1ctm6tTksDACAPuujdrfHZzh/XJr1AAAAAAAAAAAAAADo1sIpg9HW5Xx7ddFa1/biQA87XhHo4QhGAwAAAAC0yuTk7TDBaEC3Egyl7i/Ow5nz6J2M+0eGMxve1Ctfz9axa+7QzIY3dcRWRv/6maNDZhCKBvhGMBoA9CyBLJ+30703R59V7PGxS12Te/vSauvaPnRAft+Dm8qx0uCRuVls/HRp6rbufdvuJePyODOOI9P+c6eBFd7b6Gn7u+WVnl32L2e33vAIRlMoLHPn+zkuqo0F7YLxGlNcTbMpuc9+9Ibs97aVPXCk7P6Vil19hmw0muMiAQDoU9q/8G/vd6IxpljS9DTrAQAAAAAAAAAAAADQrUVSBKM15CEYrd4jGK3IIRgN6EwEowEAAAAAWoXC/scWEIwGdCuBNOELRf06pw70fI73R4ZbNL6rW5f8QP9ZdZDu/qGj3ScTigZkwhzxY/eOkRM6txAAgD+BYHbzMgkdR59S4vGxS22je/uSavf2YaW5qScVc+FtHV+kpFTmR7+Vuew+afSkxL5BQ2R+cLH/eiq8w8R63P5ueaVU4HFn+PID2Yb6+M9eYWKBoDR0TPbhjWnYBZ8kNriEn7X2NcrWrJF9dr7sf/4pW7Na9qQdpC/ei/e3NEt3XyV7zDTZ+VfnpV4AAPqAf7a7vUsGc3eS1HbH5i1r7bIOVwQAAAAAAAAAAAAAQCfqzGC05lizGq37cXPFgR52vCLQw2V5ND8AAAAAoFfye/K242R/gjiA/AimCUYr5IoU8Mn4uJZCpDj/dQC90Q77SeFCqTHxizez53e6qCAAQEpOlqFDmYSOo08p9gpGczl+piVq9c437uM7JRht+g6yu8+Vnrkns3l3vi+9/JgUjkiz9pUZMireccOr0rPzZb/+SGbkhHhf+TD/C5elGFvUs/Z3TUFYdtQk6fN3kzsb10kfvSHN2FmKtrgvEAjKBAKyZcOk5R53ko5Y9Gni7RTBaPbFh6XrL5Bq16Rec/GXsledLnO4R1AwAABI5UlJ6yRtOMp7e2PMptbaj33MPaHd7QdyWRgAAAAAAAAAAAAAAJ0h7EQ8+xpzHIxWH6v17CsO9KzjFYGejrPYAQAAAACt0gUrbVAQkTEmv7UAyIgJBGRTDSjiihTwyc/zeyHBaEA2TFE/6fIHZM85QqqviTfueph07P90bWEAAFcmEEz9HtuL39Bx9DmlHhcsXF2f3PbAW97rDO3fOZ/JmDP+IruuVnrlcX8TttkzHnp21M+S1yoslvY7XllXXpIiDc5PuHM3Y373sOwhY9w7Vy6J/50iGE2SNG5qfoLRqqsSbtqXH/Ue+/rTud8+AABIYK2tN8bMl3Rcm+YzJc1LNc8YM1HSIW2aWiTdmfsKAQAAAAAAAAAAAADIL8cEVGDCarKNSX0NuQ5Gi3oHoxUFOD8P6Ew97whhAAAAAED++D15u8A7YR9AN0UwGvxyfHxkSDAakDWz1a4yjyyWufY5mfmfy7n4ThkCdACgewpkeY2pIM/rcFde4h4LtrpeaokmxvDd/XrMc51hKTLCcskUlci5/AGZ29+Wuf5lmafXyNz3hcx5t7gMNjLzzstfMeWV3n3F/fO33Twx5cOkEePdO6tXxv9OE4xm9j8x/Ya+84vMi6up3vijveUS6Y1nM1/DjZ99TQAA4OVXkprb3D7BGHOg12BjTETSLZLa7pzcZK39Ij/lAQAAAAAAAAAAAACQXxHH/eq0uQ5Gq4vWePYVOZxPBXQmjjwFAAAAALQiGA3ovQqLuroC9BTGTzBaSf7rAHoxUxCW2Wx7mSEju7oUAEAq2Yb4EHgJD+Up3kavqku8ff9b3mM3HZqbevwyYyfLTJ4pEy6UGTxCZu+jZW58VZq2vRQulIaNkfnV32WmbZe/IsZNk8qGJbf3GyiN3zx/282n0jLXZrv8m/gPnsFoAUmSmX2wdOjJKTdhBpTH/+0yUbtGse9vr9hOYdmbf53ZXAAAkBfW2i8lXdWueb4x5sfGmIQdEGPMZEnPSJrVpnmlpIvyWyUAAAAAAAAAAAAAAPkT9ghGa8xxMFp9rNa1PWQKVOCEc7otAKkRjAYAAAAAaBX0G4zGBzhAjxN2//AXSGJM+jERgvYAAEAfEAhmNy8Yym0d6DVSBaNVtTmO5q2F1nPclGFSOOTjPXuemUlbyvnLc3KeXiPnnk9kdjs8v9sLBGSO/WVy+9GnywSzfKx2tf6D3Nvv/L3s1x9JtdXu/W2em8y881Nvo7BE5tj/8bef19Ynb2Y2HgAAdIazJD3R5nZI0p8lLTLGPGGMuccY84akD5QYitYk6RBr7ZLOKxUAAAAAAAAAAAAAgNyKeASjNeQ4GK0uWuPaXhzol9PtAEivhx4hDAAAAADIi5DfYLRIfusAkHsFBKPBJ+PjWgqFKRIdAAAAeotAILt5fvet0eeU+QxGO/v+mOe4W+f13WufmcN/LA0cIvvsvVJzk8xuR8jMOaary8peaZlnlz1uC+95bYPgSsvizznNTe5jC4tl9jxKKu4v+/ht0vMPZllsBwwaIg0cLDl9974LAEAuWGujxpi5km6UdGSbrsGS5nhMWy7peGvti/muDwAAAAAAAAAAAACAfAp7BKM12twGo9VHa13bixzOpQI6G8FoAAAAAIBWQYLRgF4rTDAafPJzsnoRH+YDAIA+IJDlV6kEo8FDJGRUEpZqG5P7NgSjNbVYvfql+3zHSJOG5q++nsDsfoTM7kd0dRm5UVud3bw2YdbGGNnyYdKSBe5j14dam1n7yszaV/aFh2TPnZvddrOx3zw5Z13XedsDAKCXs9bWSjrKGDNf0umStvMYukrS3ZIutNau6Kz6AAAAAAAAAAAAAADIl4hHMFpDLLfBaHUewWjFAc6lAjobwWgAAAAAgFahkL9xBKMBPQ/BaPDLmPRjBlTkvw4AAICulnUwWji3daBXKS9xD0ZbUWMlGb34mVTT4D53kwqpX8TH+3X0CGbiDNmXHsl8ohNIvF0+3DsYLVKUeDvb57UsmTOu7dTtAQDQV1hr50uab4wZK2lLSZWSiiUtlbRA0svW2qYuLBEAAAAAAAAAAAAAgJzqtGC0WI1re1GgX063AyA9gtEAAAAAAK2CBf7GhXyOA9BtmEAg/SBAkoyTfsiA8k4oBAAAoIu1Dx/yi31mpFBWIn29Mrl9zfrjch5913rOffJn6d+rowcZv1l285x294NBg73HFra7QuXkmfEwbOt9P8uJYWNkLr1Xpn2tAAAgp6y1X0n6qqvrAAAAAAAAAAAAAAAg38JOxLW9McfBaPXRWtf24kCJazuA/CEYDQAAAADQyu/J20F2JwGg1/Jz4vqAivzXAQAA0NUCWe77+g0dR580wP2ChVpTH//71S/cA6sO21IaU27yVBW6xHZzspvXPsy6vNJ7bGFx4tRBQ2S33Uv6z5PZbTtVWRfdITXUSyMnSBNnyITdD0IDAAAAAAAAAAAAAAAAACBTEcf9AMyGWENOt1MXrXFtL3IIRgM6G5fnBQAAAAC08huMFgjltw4AQNcxPsIWBpTnvw4AAICu5gSymxdknxneSr2C0dZJ1lp9uty9f88phKL1NiZUIHPJ3ZlP/H/27j3KsrOsE/DvO+dUneqq7nR3SOdCEuhcCQkYQJCrEklAgZEAIjoIGhGHhTdQRnGWo5AZlzoizBqdYXS8wQg6423AcURcusRRkFkjwvKGw02iokBUwO6qVHdSteePatJ1Oafq3HfVOc+z1l7p8+1vf/vtXbve6jrZ9attYdbl4iu6z51v7zzva96cPOUrknaXm7FfD7o+5Zc+lPKU56U842tSHv54oWgAAAAAAAAAAACMVLtLMNqZ9XtGep5uwWhLzSMjPQ+wtwF/zTkAAADTqLTmU/UyseXbSYCpVXr4XQrHLx5/HQAAdRvwe9/S8Lup6O7oYkk6vPvy2ZXk708nn1npfNyNlwlGm0blyc9O9bgvTd7zG30ctO1eeNjju889ujPUuixdkHLnm1Pdezb5hR9J9WPfvfc5r35YGm96b6r77k3OriZnzySHDgtAAwAAAAAAAAAAYCIWugSjrY44GG1l/XTH8aXm4ZGeB9ibp/IBAAA4b26+t3nNufHWAUB9egnyOLbzh+sBAKZOc4BgtMfcOvo6mCrHFjuPf2alygc/2f246y8ZTz3Ur/zAL/V5wLbv2W56bHLZg3fOu/qmlF2+dytz88lTnpe09n6frzzr6zf+25pLWTyScuwioWgAAAAAAAAAAABMzKSC0ZbXugWjHRnpeYC9CUYDAADgvB5+ELKveQAcQGXvKUcFowEAM6DR7PuQ8k0/NIZCmCbHOj+Xk8/ek3zwk1XHfUcPJSc8TzO1Smsu5a13JScf2tsB28KsS7OZ8s2vTebb5wfnF1K+9XV7n/uykykv/t7dJ13/yOTpL+qtNgAAAAAAAAAAABiDdpdgtDMjDEZbq+7L6vpKx32LgtFg4gb4NecAAABMrbn53uYJRgOYXo09fpfC0YtSNv/APQDAtGr2GYz2mFtTrnnYeGphahxb7Dz+mXuSD36y877rL0lK6SHAmAOrPODS5Cf/INWXnkjuu3ePyTu/ZytfdHvyk+9J/uDtyfp68uRnp1x5XW/nftF3Jp/3hFTveUfyjrckd398Y8fFV6a85NXJrc/3PSAAAAAAAAAAAAC1WugSjLY6wmC0lbXlrvuWGodHdh6gN4LRAAAAOK/VYzBa07eTAFOrww/Zb3HRZZOpAwCgbo3+gtHKi141pkKYJsc6P5eTz6wkH/pk1XHf9ZcIRZsFpX0o1YtelfzM9+0+sUuYdbnqxuSqGwc7981PSrn5SclL/+1AxwMAAAAAAAAAAMA4tbsEo91X3Zu16r40y/A/87qyfrrrvsWmYDSYtD1+yhEAAICZMtdjMFpLMBrA1Cp7hC6ceOBk6gAAqFs/oeAPuj65+QvHVwtT49hi539v330qeddHOh9z3SVjLIh9pRx9QA+TPOYBAAAAAAAAAADAbFnoEoyWJKvr94zkHMtrp7ruW2oeGck5gN55YhYAAIDzeg5GmxtvHQDUp7HHW4YPEIwGAMyIvYLRjl60MedRt6T8+7en7PXvKEjywGOdx+9bTz75T533PfzyPcKLmR5HL9p7jl4DAAAAAAAAAADAjJlMMNrpjuOt0sp8aY/kHEDv+vg15wAAAEy9Vo/BaHv9cDhQj6tuTP7yz3eOX3715GvhwCqlpNptwkWXTaoUAIB6ze/yAMMXPDXltb+a3Hs2pb0wuZo48B5ySX/z51vJrTeMpxb2oaMX7j2nCEYDAAAAAAAAAABgtrR3CUY7M6JgtJW1Ux3HFxtHUopfcguT5olZAAAAzpub621es8d5wESVF35n5/GXvGaidTAFGt3fNiyHL5hgIQAANXrQQ7rvO7SU0mgIRaNvhxdKrjje+/xbb0guOORhmplx9KK95+zy/RoAAAAAAAAAAABMo4VdgtFWRxSMtrx+uuP4UvPwSNYH+uOJWQAAAM5rzfc4TzAa7EtPfk7ymNu2jj3mtuQLn1VPPRxcu/0Wk/bi5OoAAKhROXZRcsW1nfc99DETroZpcsOlvc991s1C0WbKict3/34s2Xs/AAAAAAAAAAAATJn50k7pEpM0qmC0lbXOwWiLgtGgFoLRAAAAOG+ux2C0Zmu8dQADKe2FlB/45ZQ735K84JUpr3lzyg/+Skq7+2/EgI7KLm8bLghGAwBmR3nhd3Te8dinTbYQpspDLu092Orx1wjBmiXl+InkUbfsMck9AQAAAAAAAAAAwGwppaTdWOi478yIgtGW1051HF9qHhnJ+kB/BKMBAABwXru3sJvSmhtzIcCgSnsh5SnPS+Nl359y61ekzLfrLomDqCEYDQAgSfKlL0qe8bXnXzdbKS9/Xcq1n1dfTRx4N1za+9xrT4yvDvan8sof3X3Cbt+vAQAAAAAAAAAAwJRaaBzqOL46omC0lbXTHccXG4dHsj7Qn1bdBQAAALCPHL2wt3mC0QCmXOm+q935fyIAAEyj0mym/Kv/kuqff1vydx9Lbvj8lOMX110WB9wNl5Yk1Z7zrjyeLLZ3+bc5U6lced3ud0cRjAYAAAAAAAAAAMDsaY85GG15vXMw2lJTMBrUQTAaAAAA5x19QG/zms3x1gHA/rWwWHcFAAATV04+NDn50LrLYEo86kFJKUm1Rzba9ZdMph4OmIZgNAAAAAAAAAAAAGbPQpdgtDMjCkZbWTvVcXyxeWQk6wP98cQsAAAA5y0d7e2HK1tz468FgPrcd7b7vrZgNAAAGMbxpZJX3Fb2nHfdJXvPYQYVj3kAAAAAAAAAAAAwexYaCx3HV9dXR7L+8trpjuNLjcMjWR/ojydmAQAAuF9pNJIjx/eeKBgNYLqtr3fftyAYDQAAhvXDz9s79Oz6SyZQCAdPL7/UAAAAAAAAAAAAAKZMu3Go4/iZ9XtGsv5Kl2C0xeaRkawP9McTswAAAGx1wYV7z2kKRgOYWQud/ycCAADQu1JKvuSm3edcf8ne4WnMoOIxDwAAAAAAAAAAAGbPQpdgtNURBKOtV+tZWe8cjLbUPDz0+kD/PDELAADAVkcfsPecZmv8dQCwP7UX664AAACmwmVHuwefNUryuKsn6svn2QAAIABJREFUWAwHR8NjHgAAAAAAAAAAAMye9hiD0VbXV1Kl6rhPMBrUwxOzAAAAbLV4ZO85rbnx1wHA/rQgGA0AAEbhqou673vMyeTCpe7Bacyw4jEPAAAAAAAAAAAAZs9Cl2C0MyMIRlteO9V132Kjh5+5BUbOE7MAAABsNd/ee45gNIDZJRgNAABG4taHdg8+e84jhaLRRXFvAAAAAAAAAAAAMHu6BaOtjiQY7XTXfUvNw0OvD/RPMBoAAABbzfUQjNZsjb8OAPalIhwTAABG4nFXJZcf67zvWTcLv6KLhsc8AAAAAAAAAAAAmD3tLsFoZ0YQjLay3jkYrZFGFhqLQ68P9M8TswAAAGzVSzBaSzAaAAAAwDAajZIfet7OALQXP6nkhssEo9FF8ZgHAAAAAAAAAAAAs2ehSzDa6giC0ZbXTnUcX2weTime6YQ6+El2AAAAtuopGG1u/HUAAAAATLmvekzJ4nzJf/it9azelzz3USXf8sUeoGEXDcFoAAAAAAAAAAAAzJ5xBqOtrJ3uOL7YODz02sBgBKMBAACw1fz83nOavp0EAAAAGFYpJbc/Irn9Ec26S+GgKILRAAAAAAAAAAAAmD3tLsFoZ9bvSVVVKWXwX0y7vHaq4/hS88jAawLD8cQsAAAAW821957Tmht/HQAAAADAVg2PeQAAAAAAAAAAADB7FkrnYLT1rOfe6uxQa6+sn+44vtg8PNS6wOA8MQsAAMBWc/N7z2kKRgMAAACAiSse8wAAAAAAAAAAAGD2tBudg9GS5Mz6PUOtvbzWORhtSTAa1MYTswAAAGw11957TrM1/joA2H+WLqi7AgAAgNnW8JgHAAAAAAAAAAAAs2dhl2C01aGD0U51HF9sHBlqXWBwnpgFAABgi9JLMFprbvyFALD/XHC87goAAABmW/GYBwAAAAAAAAAAALNnnMFoK2unO44vNQ8PtS4wOE/MAgAAsNX8/N5zBKMBzKbH3FZ3BQAAALOt4TEPAAAAAAAAAAAAZk97l2C0M0MGoy2vdw5GWxSMBrXxxCwAAABbzbX3ntNqjb8OAOrzZS/uOFxe8MoJFwIAAMAWpdRdAQAAAAAAAAAAAEzcXGMuzXT+2dbVIYPRVtZOdRxfah4Zal1gcILRAAAA2KqXYLSmYDSAaVZe+B3Jicu3Dn75N6Zcfk09BQEAALCheMwDAAAAAAAAAACA2bTQONRxfHV9deA1q6rK8trpjvuWGocHXhcYjp9kBwAAYKv5HoLRWnPjrwOA2pQHXp38+O8lv/0LqT751ymPfHLyhc+quywAAAAagtEAAAAAAAAAAACYTe3GQpbXT+0YP7N+z8BrnqlWs561jvsWm0cGXhcYjmA0AAAAtpoTjAZAUk5cnnzVt6XUXQgAAAD3K8V3aQAAAAAAAAAAAMymhcahjuOrQwSjLa/tDFr7nKXm4YHXBYbjVwkDAACw1dz83nOacrYBAAAAAAAAAAAAAAAAAJiMdpdgtDNDBKOtrJ3uum9RMBrURjAaAAAAW/USjNaaG38dAAAAAAAAAAAAAAAAAACQ5FBjseP46hDBaMtrp7ruW2wsDbwuMBzBaAAAAGw11957TlMwGgAAAAAAAAAAAAAAAAAAk9FuHOo4Pkww2sr66Y7jhxpLaZTmwOsCwxGMBgAAwFbzvQSjtcZfBwAAAAAAAAAAAAAAAAAAJFnoEox2ZohgtOW1zsFoS83DA68JDE8wGgAAAFstXrD3nNbc+OsAAAAAAAAAAAAAAAAAAIAk7S7BaKtDBaOd6ji+2Dwy8JrA8ASjAQAAsNWDrk8OLXXfX0pKszm5egAAAAAAAAAAAAAAAAAAmGkLYwhGW1k73XF8qXF44DWB4QlGAwAAYIsy304e8UXdJ7TmJlcMAAAAAAAAAAAAAAAAAAAzr1sw2pkhgtGW1091HF9qHhl4TWB4gtEAAADY6YILu+9rtiZXBwAAAAAAAAAAAAAAAAAAM6/dWOg4vjpEMNrK2umO44LRoF6C0QAAANhprt19X2tucnUAAAAAAAAAAAAAAAAAADDzFhqHOo6fGSIYbblLMNpi8/DAawLDE4wGAADATvPz3fc1BaMBAAAAAAAAAAAAAAAAADA57S7BaKtDBKOtrJ3qOL7UEIwGdRKMBgAAwE6t3YLRWpOrAwAAAAAAAAAAAAAAAACAmbfQJRjtTLWa9Wp9oDWX1093HF9sHhloPWA0BKMBAACw01y7+77W3OTqAAAAAAAAAAAAAAAAAABg5nULRkuSs9WZgdZcWescjLbUPDzQesBoCEYDAABgp7n57vtarcnVAQAAAAAAAAAAAAAAAADAzGvvEoy2un5P3+udXT+Te6uzHfctNo/0vR4wOoLRAAAA2KHMtbvvbApGAwAAAAAAAAAAAAAAAABgchZ2CUY7M0Aw2sra6a77lhqH+14PGB3BaAAAAOw0P999X2tucnUAAAAAAAAAAAAAAAAAADDzdgtGWx0gGG15/VTXfUtNwWhQJ8FoAAAA7NQSjAYAAAAAAAAAAAAAAAAAwP7Qbix03TdQMNra6a77FgWjQa0EowEAALDTfLv7vmZrcnUAAAAAAAAAAAAAAAAAADDzGqWZ+dL551/PDBCMttIlGG2hcSjN4mdpoU6C0QAAANhpbpdgtNbc5OoAAAAAAAAAAAAAAAAAAIBshJZ1sjpAMNry2qmO44uNw32vBYyWYDQAAAB2mpvvvq8pGA0AAAAAAAAAAAAAAAAAgMlqjzAYbWX9dMfxpeaRvtcCRkswGgAAADvNtbvva7UmVwcAAAAAAAAAAAAAAAAAACRZ6BKMdmaAYLTltc7BaIvNw32vBYyWYDQAAAB2as1139cUjAYAAAAAAAAAAAAAAAAAwGS1uwSjrQ4QjLaydqrj+JJgNKidYDQAAAB2mm9337dbaBoAAAAAAAAAAAAAAAAAAIzBQpdgtDMDBKMtr53uOL7YONL3WsBoCUYDAABgp7ldgtHand80AgAAAAAAAAAAAAAAAACAcekWjLY6QDDayvqpjuNLzcN9rwWMlmA0AAAAdpqb775vUdI9AAAAAAAAAAAAAAAAAACT1W4sdBwfJBhtee10x/HFpp+jhboJRgMAAGCnuXb3fYuS7gEAAAAAAAAAAAAAAAAAmKyFxqGO42cGCEZb6RKMttT0c7RQN8FoAAAA7LRbMNohb+gAAAAAAAAAAAAAAAAAADBZ7S7BaKsDBKMtr53qOL7Y8HO0UDfBaAAAAOw0N9d1V1k8MsFCAAAAAAAAAAAAAAAAAAAgWegSjHamz2C0+6p7c6Za7bhvqennaKFugtEAAADYaW6++75DS5OrAwAAAAAAAAAAAAAAAAAA0j0YbbXPYLSVteWu+5aah/taCxg9wWgAAAD05/gldVcAAAAAAAAAAAAAAAAAAMCMaXcNRlvta53ltVNd9y02j/S1FjB6rboLAAAAYB86cUVy/OLk05/aOj7fTr7gtnpqAgAAAAAAAAAAAAAAAABgZi10CUZbXjuVH77ru3pe50zVPUhtsbHUd13AaAlGAwAAYIfSaKT6shcn//UHt+546gtSli6opygAAAAAAAAAAAAAAAAAAGZWu0swWpX1fHT1L4Zef67MZ77RHnodYDiC0QAAAOiovOQ1SXsx1W++JVlfT77o9pSX3Fl3WQAAAAAAAAAAAAAAAAAAzKCFLsFoo7LUPDLW9YHeCEYDAACgo1JK8jWvSvmaV9VdCgAAAADMjmfekfyvN+4cP7Q06UoAAAAAAAAAAABgXzncvGCs6x9pHh3r+kBvGnUXAAAAAAAAAADAhvLcl3Uef/H3TrgSAAAAAAAAAAAA2F8unDuRy+avHNv6Dzv8+WNbG+idYDQAAAAAAAAAgH2iXP+I5Ov+9dbBL3hq8pyX1lMQAAAAAAAAAAAA7CMvvPSbc6ixOPJ1r1p4SG49fvvI1wX616q7AAAAAAAAAAAAzmu8+HtSfdGzkz95d3LyocnDH5/Smqu7LAAAAAAAAAAAAKjdVYcekldf9YZ8YPn9+cf77h56vUYauXLh6lx36KbMNeZHUCEwLMFoAAAAAAAAAAD7TLn24cm1D6+7DAAAAAAAAAAAANh3Lmgdy2OP3lJ3GcCYNOouAAAAAAAAAAAAAAAAAAAAAAAAAEAwGgAAAAAAAAAAAAAAAAAAAAAAAFA7wWgAAAAAAAAAAAAAAAAAAAAAAABA7Vp1F8B0KaXMJXlikgcluSzJ6SR/m+R9VVV9rMbSAAAAAAAAAAAAAAAAAAAAAAAA2McEo82wUsp/S/KV24bvqqrq5ABrnUhy57n1Luwy591JXl9V1S/3uz4AAAAAAAAAAAAAAAAAAAAAAADTrVF3AdSjlPKs7AxFG3Stpyf50yQvS5dQtHOekOSXSilvLqUsjeLcAAAAAAAAAAAAAAAAAAAAAAAATIdW3QUweaWUY0n+84jWuiXJW5PMbxqukvxRko8mOZbkkUku2rT/q5NcUEp5dlVV66OoAwAAAAAAAAAAAAAAAAAAAAAAgIOtUXcB1OJ1SR547s+nBl2klHJFkl/J1lC0dyW5qaqqR1dV9fyqqp6W5IokL09y76Z5X5bk+wY9NwAAAAAAAAAAAAAAAAAAAAAAANNFMNqMKaXcluTF517el+R7h1juziTHN71+d5Lbqqr6wOZJVVWdqarqR5I8f9vx315KefAQ5wcAAAAAAAAAAAAAAAAAAAAAAGBKCEabIaWUpSQ/sWno9UneP+Ba1yX52k1DZ5PcUVXVardjqqp6a5I3bRpqJ3n1IOcHAAAAAAAAAAAAAAAAAAAAAABgughGmy0/kOTkuT9/NMlrhljrBUmam17/SlVVH+rhuH+37fXzSykLQ9QBAAAAAAAAAAAAAAAAAAAAAADAFBCMNiNKKU9I8k2bhl5aVdU9Qyz5nG2vf6aXg6qq+kCS/7NpaCnJ04aoAwAAAAAAAAAAAAAAAAAAAAAAgCkgGG0GlFLaSX465z/eb6qq6reGWO/SJDdvGrovybv6WOKd214/fdBaAAAAAAAAAAAAAAAAAAAAAAAAmA6C0WbDa5I85Nyf707yyiHXe9i2139cVdVyH8e/e9vrm4asBwAAAAAAAAAAAAAAAAAAAAAAgANOMNqUK6U8Ksm/3DT0iqqq/mHIZW/c9vrDfR7/kT3WAwAAAAAAAAAAAAAAAAAAAAAAYMYIRptipZRWkp9O0jo39BtVVf3cCJa+dtvrv+rz+Lu2vX5AKeX4EPUAAAAAAAAAAAAAAAAAAAAAAABwwLX2nsIB9l1Jbj735+UkLxvRuse2vf5UPwdXVXW6lLKaZGHT8NEknx62sFLKxUlO9HnYNcOeFwAAAAAAAAAAAAAAAAAAAAAAgOEIRptSpZQbk/zrTUPfU1XVx0a0/OFtr+8ZYI17sjUY7cjg5WzxjUlePaK1AAAAAAAAAAAAAAAAAAAAAAAAmJBG3QUweqWURpKfStI+N/TeJD8ywlNsD0ZbHWCN7WFq29cEAAAAAAAAAAAAAAAAAAAAAABghghGm04vT/K4c3++L8lLqqpaG+P5qgkdAwAAAAAAAAAAAAAAAAAAAAAAwJRq1V0Ao1VKuTrJ920aen1VVe8f8WlOb3t9aIA1th+zfc1BvSHJL/Z5zDVJ3jai8wMAAAAAAAAAAAAAAAAAAAAAADAAwWhTpJRSkvxEksVzQx9N8poxnGrfBqNVVfWpJJ/q55iNywYAAAAAAAAAAAAAAAAAAAAAAECdGnUXwEh9Q5KnbHr90qqq7hnDeT677fWJfg4upRzOzmC0zwxVEQAAAAAAAAAAAAAAAAAAAAAAAAdaq+4CGKk7N/3515N8uJRyco9jLt32utXhmL+tqursptcf2rb/wT3W123+P1ZV9ek+1wAAAAAAAAAAAAAAAAAAAAAAAGCKCEabLoc2/fkZSf5ygDUu73DcI5O8f9PrD2zbf22f57h62+s/7/N4AAAAAAAAAAAAAAAAAAAAAAAApkyj7gI4kP502+vPK6Us9nH8E/dYDwAAAAAAAAAAAAAAAAAAAAAAgBkjGI2+VVX1d0n+eNNQK8mT+ljilm2v3z5sTQAAAAAAAAAAAAAAAAAAAAAAABxsgtGmSFVVx6qqKv1sSb542zJ3dZj3/g6n+x/bXn9dLzWWUm5I8thNQ8tJfrPnvyQAAAAAAAAAAAAAAAAAAAAAAABTSTAag3pLkrVNr59bSrmuh+Nete31L1RVtTq6sgAAAAAAAAAAAAAAAAAAAAAAADiIBKMxkKqqPpTkTZuG5pO8sZSy0O2YUsrtSe7YNHQ2yZ1jKRAAAAAAAAAAAAAAAAAAAAAAAIADRTAaw3h1kk9vev2EJL9VSrlh86RSSruU8i1JfnHb8a+rququMdcIAAAAAAAAAAAAAAAAAAAAAADAAdCquwAOrqqq/qaU8twk70gyf274iUn+vJTy3iQfTXI0yaOSnNh2+K8l+Z5J1QoAAAAAAAAAAAAAAAAAAAAAAMD+JhiNoVRV9c5SynOSvDHnw89Kkkef2zr5+STfUFXV2vgrBAAAAAAAAAAAAAAAAAAAAAAA4CBo1F0AB19VVb+e5GFJfizJp3eZ+p4kz6uq6gVVVS1PpDgAAAAAAAAAAAAAAAAAAAAAAAAOhFbdBVCvqqremaSMYJ1PJXlZKeXlSZ6Y5MFJLk2ynOTjSd5XVdVfDnseAAAAAAAAAAAAAAAAAAAAAAAAppNgNEaqqqqzSX6n7joAAAAAAAAAAAAAAAAAAAAAAAA4WBp1FwAAAAAAAAAAAAAAAAAAAAAAAAAgGA0AAAAAAAAAAAAAAAAAAAAAAAConWA0AAAAAAAAAAAAAAAAAAAAAAAAoHaC0QAAAAAAAAAAAAAAAAAAAAAAAIDaCUYDAAAAAAAAAAAAAAAAAAAAAAAAaicYDQAAAAAAAAAAAAAAAAAAAAAAAKidYDQAAAAAAAAAAAAAAAAAAAAAAACgdoLRAAAAAAAAAAAAAAAAAAAAAAAAgNoJRgMAAAAAAAAAAAAAAAAAAAAAAABq16q7ANgH5je/+PCHP1xXHQAAAAAAAAAAQ+nw3MN8p3kAMEGe0QMAAAAAAAAADjzP501Oqaqq7hqgVqWUZyV5W911AAAAAAAAAACMwe1VVf1q3UUAMLs8owcAAAAAAAAATCnP541Jo+4CAAAAAAAAAAAAAAAAAAAAAAAAAASjAQAAAAAAAAAAAAAAAAAAAAAAALUrVVXVXQPUqpRyNMmTNw39dZKzQyx5TZK3bXp9e5KPDLEeQL/0IWA/0IuAuulDQN30IaBu+hCwH+hFQN1mtQ/NJ7ly0+vfrarqs3UVAwCe0QOmkD4E1E0fAuqmDwF104eA/UAvAuqmDwF1m9U+5Pm8CWnVXQDU7Vxz+dVRrVdK2T70kaqq/mxU6wPsRR8C9gO9CKibPgTUTR8C6qYPAfuBXgTUbcb70PvqLgAAPsczesC00YeAuulDQN30IaBu+hCwH+hFQN30IaBuM96HPJ83AY26CwAAAAAAAAAAAAAAAAAAAAAAAAAQjAYAAAAAAAAAAAAAAAAAAAAAAADUTjAaAAAAAAAAAAAAAAAAAAAAAAAAUDvBaAAAAAAAAAAAAAAAAAAAAAAAAEDtBKMBAAAAAAAAAAAAAAAAAAAAAAAAtROMBgAAAAAAAAAAAAAAAAAAAAAAANROMBoAAAAAAAAAAAAAAAAAAAAAAABQO8FoAAAAAAAAAAAAAAAAAAAAAAAAQO0EowEAAAAAAAAAAAAAAAAAAAAAAAC1E4wGAAAAAAAAAAAAAAAAAAAAAAAA1E4wGgAAAAAAAAAAAAAAAAAAAAAAAFC7Vt0FwBS6O8md214DTJI+BOwHehFQN30IqJs+BNRNHwL2A70IqJs+BADTydd4oG76EFA3fQiomz4E1E0fAvYDvQiomz4E1E0fYqxKVVV11wAAAAAAAAAAAAAAAAAAAAAAAADMuEbdBQAAAAAAAAAAAAAAAAAAAAAAAAAIRgMAAAAAAAAAAAAAAAAAAAAAAABqJxgNAAAAAAAAAAAAAAAAAAAAAAAAqJ1gNAAAAAAAAAAAAAAAAAAAAAAAAKB2gtEAAAAAAAAAAAAAAAAAAAAAAACA2glGAwAAAAAAAAAAAAAAAAAAAAAAAGonGA0AAAAAAAAAAAAAAAAAAAAAAAConWA0AAAAAAAAAAAAAAAAAAAAAAAAoHaC0QAAAAAAAAAAAAAAAAAAAAAAAIDaCUYDAAAAAAAAAAAAAAAAAAAAAAAAaicYDQAAAAAAAAAAAAAAAAAAAAAAAKidYDQAAAAAAAAAAAAAAAAAAAAAAACgdq26C2CnUkozybVJbkzywCRHk5xJ8ukkH0nyh1VVLY/4nHNJnpjkQUkuS3I6yd8meV9VVR8b5bkmpZRyU5JHJDmRpJ3kE0n+Jsm7qqparbO2SSqlHE9yU5LrklyYZCHJZ5LcneS9VVV9pMbydiilXJWNj9sDkxxO8ndJ7kry7qqq7q2ztlmiD42GPrRBH2JQetFo6EUb9KKu53F/7EIfGg332YaD1ofYH/Sh0dCHNuhDW5VSrszGtbgiyUVJDiU5m+SzSf4qG9fk7voq3B/0odHQhzboQwxKLxoNvWiDXsQg9KHR0Ic26EOduT+AOvgaPxp6+IaD9jXeszH7gz40GvrQBn2IQehDo6EPbdCHup7H/bELfWg03GcbDlofYn/Qh0ZDH9qgD23l+bze6UWjoRdt0IsYhD40GvrQBn2IQehDo6EPbdCHOjvQ90dVVbZ9sGWjYb4iya9l45v7apftviRvT/LMEZz3RJI3JPmHXc73riRfPuR5rk7ylUlem+SdSf5p2zk+NqLreCTJdyf5+C5/n39K8rNJrqnx4z2265FkLsmXJPmPSf50j3upOnet/k2SS2v+HHheknfvUuc/nLtXLxpg7b2uwV7byTqvzQQ/BvrQaK6jPqQPbV7z5Ah60Obtjjqv0YQ+DnrRaK6jXqQXHfj7o8aPgT40mut4IO4zfai2+2MpyZOSfFuStyT5YJL1bee6o67rUPemD+lD+tDYrsd1Sb4/ye9k439q7HU9qiR/lOSbkrTruiY1fRz0odFcR31IH+q0fi+9Z7ftZF3XpoaPhV40muuoF+lFm9c9OYI+tHm7o65rNKGPgz40muuoD+lDB/7+sNls07X5Gj9bPdzX+I51e0av5k0f0of0Ic/o1b3pQ/qQPuT5vLo3fUgfmuU+NMH7w/N5u18ffWg011Ef0oe2r+35vP6ul140muuoF+lFndbvpf/stp2s69pM+OOgD43mOupD+tDmdU+OoAdt3u6o6xpN6OOgD43mOupD+tCBvz/2/HvUXYCtSpKfG+IL2v9McsmA5316kk/2ca43J1nqY/1bkrxjjy8KI/vETPLYbKRw9vr3WU7ysgl+nMd+Pc5dg38c8F76dJIX1nD/H07y833U+YkkX9LnOQb9/PrcdnLS16WGj4M+pA/pQ2PoQxn9N7JfOenrM+GPhV6kF+lFY+hFB+n+qHvTh/ShWexDk7w/svHG8Z9k4w3pvc51x6SuwX7a9CF9SB8a3/2R5CVDfH79vySPndQ1qXPTh/QhfWi898cQn1+f205O6rrUuelFepFeNLbrcXIEfWjzNrXvV0cf0of0oZm/P2w223RuvsbPRg/3Nb5rzZ7R2webPqQP6UOe0at7iz6kD+lDns+redOH9KFZ7EOTvD/i+bxerpE+pA/pQ2O6P+L5vH6ulV6kF+lFY7w/hvj8+tx2clLXpa5NH9KH9KGxXY+TI+hBmzfvVetDvXwO6kP60IG8P/rZWmE/uL7L+MeTfCgbzbWVjdS/m5M0Ns35Z0n+dynlyVVVfaLXE5ZSbkny1iTzm4arbKSsfzTJsSSPTHLRpv1fneSCUsqzq6pa7+E0j0jytF5rGkYp5bZspIG2t+26K8kfZ+OT8IpsfPLOndu3mOQNpZRGVVX/aQJlTuJ6nEhyvMP42Wy8uf2JbCSmPiDJo8/993OOJfnZUsrFVVW9fsx1JklKKc0k/z3JM7btujvJ+87Vek027sVybt8lSd5WSrmtqqrfn0SdM0IfGpI+dD99aHxWspFoPc30oiHpRffTizqf5yDcH3XTh4Z0QO4zfWirid0fSV6Q5OiEznVQ6UND0ofupw/trcrGm/wfzsb/WFjJxm/MvSrJTTl/fyQbn5u/XUp5ZlVVvzvpQidMHxqSPnQ/fYhh6EVD0ovupxeNz7S/X60PDUkfup8+1MEBuT+A6eRr/JAOSA/3NX6bA/ZszLTTh4akD91PHxof73noQ7vSh+6nD3U+z0G4P+qmDw3pgNxn+tBWns/bX/ShIelD99OH9ub5vO70oiHpRffTixiUPjQkfeh++tD4eK9aH9qVPnQ/faiDA3J/9K7uZDZblSR/mPMpen+U5JuTXNNl7uVJfjw70/d+L0np8XxXZGfq4e8neei2ee0k35qNT/rNc7+/x/O8okOdVZLVbLyhMZLEwmykp25PRfxwkqd2mHs8yY9um7vWae4YPs5jvx7Z+EL+uTVOJfmpJLcmOdRhbknynGw0r+01jf16nKvhtdvOe/bc/T+/bd6NSd69be7fJ7msx/NsPu495+6ZfrbWJK5HnVv0IX1IHxpLH8rGN1579Zhu2+9vO98bJ3FN6tyiF+lFetHY/k10UO6Pujd9SB+axT40qfvj3Lk+0+Vcf9Nh3x3j/rvvx00f0of0obHeH1+f5C+y8W+vZyY5vsvcY0m+PRv/A2Tz+T+e5Oi4r0mdmz6kD+lDY//30Oa1vFfd/TrpRXqRXjSe6+H96t6vlT6kD+lDM35/2Gy26dx8jZ+NHu5rfMd6PaO3T7boQ/qQPjSWPhTvefTzsdCH9CF9aEz/Hjoo90fdmz6kD81iH5rU/XHuXJ7P2/sa6UP6kD40vvvD83m9Xyu9SC/Si8b7b6LNa3mvuvM10of0IX1oPNdaSfFZAAAgAElEQVTDe9W9Xyt9SB/Sh2b8/ujr71R3AbYqSf5vNtL2Ht3HMd/Y4Yb/qh6P/altx70rycIu85/d4RPrwT2c5xXnmv77kvxEkn+R5FHZSAy8ZYSfmD+/ba0PJbl4j2O+c9sxf5akOeaP89ivx7nG/cn8//buPFqatKDv+O8ZEBjWUZBBQBj2oLiAmAhqHA0YiEeQJS64MIL7cqLRHA9CTlATjYnrOfEoUQTEJRIEREEgiANuuJ1BQEcEdVCUQVZxhlnhyR99573d1ff27equ7qqu+nzO6T+q3q7l9vu837rvc+vUTb4jyW3W3OaOSf68cfzLs+Y3Alt8HvfO8jcFj13x/vOz/IPGn1rzWPPbXLrLr+tQXzqkQzq02w5tcG53S3Jj41ifvcvPYwgvLdIiLdpdiw5lfPT90iEdmmiH9jI+jo71gcx+08LLknzP0ed04dGfXdo41iW7/LqH+tIhHdKhnY6Pj9pgm09NclXjHL5rl59H3y8d0iEd2vn3Q/P7unSXX9chv7RIi7Roty3a4NwmN1+tQzqkQ8aHl5fXOF+u8dNouGv80nHdozeglw7pkA7ttkMbnJs5j/W20aHj4+jQ8TF06EDHR98vHdKhiXbI/XkDeumQDumQ+/OG8NIiLdIi9+j1/dIhHdIh9+f1/dIhHdIh46PV19T3CXjVJLlow+1e2BhcL1tjm/s1LozXJbnfGts9t3Gsn11jm48+7YLQYajundkTB+f39VlrbvuaxnZP2fHf8z4+j49dN9iN7T7lhM/x03f8eTyvcbznrLHN/Y/G7E3b3JDk3mtsN3+cS3f5dR3qS4d0SId226ENzu3pjXP7y11+FkN5aZEWadFuWnRI46Pvlw7p0EQ7tPPPY25/p/4G3bjx6qbP4aINt9MhHWruR4e6O7/vbZzD6/d9Dnv+ei/acDsd0qHmfnTo5P3N7+vSXX5dh/zSIi3Sot18Hluc2+Tmq3VIh3TI+PDy8hrnyzV+Gg13jV86pnv0BvTSIR3Sod12aINzM+ex/nY6pEPN/ejQgY6Pvl86pEMT7ZD78wb00iEd0qHdfB5bnt+k7s87+pov2nA7LdKi5n606OT9ze/r0l1+XYf60iEd0qHdfB5bnJu56vW30yEdau5Hhw50fLR5nRd6V2u9YsNNf6Kx/LlrbPOkJDebW35RrfWta2z3g43lLy6l3GrVBrXW99dar11j39v4gmRhHL++1vo7a277Q43lr+7mlE62j8+j1vruWuvVG2z3p0man9s642kjpZTzkzyxsbo5xpbUWv8yyUvmVt08szHNlnRoKzq0eAwd2lIppWR5LDy7y2MMlRZtRYsWj6FFiw5mfPRNh7ZyMONMh5aOuY/xcdOx3rmP4xwyHdqKDi0eQ4e68/LG8n17OYs90aGt6NDiMXSIjWnRVrRo8RhatKWpzlfr0FZ0aPEYOrToYMYHME6u8Vs5mIa7xh8b8r0xU6VDW9GhxWPo0JbMebSmQzrUPIYOLTqY8dE3HdrKwYwzHVo6pvvzBkSHtqJDi8fQoe5M6v68RIu2pEWLx9AiNqJDW9GhxWPo0JbMVbemQzrUPIYOLTqY8dGGB6Mdtssay+eXUi44Y5vHNZafs86Baq2XJ/mDuVW3SfL562y7Y/+6sfzKFtv+ZpLr55YfXkr5uO1P6WA1x9Ndd3isf5vk1nPLv19r/Ys1t22O2cd3c0psSId0qEs6NPM5Se4zt3xjZr+xjtNpkRZ1aYwtMj52T4eMsy7ts0OMhw7pUJd0aNH7Gsu36+Ushk+HdKhLOsSmtEiLuqRFM+ar29EhHerSGDtkfACHyjVew7s0xp9Hs3s6pENd0qEZcx7t6JAOdWmMHTI+dk+HjLMujXHuld3TIR3qkg4tcn/e+rRIi7qkRWxCh3SoSzo0Y666HR3SoS6NsUOjHB8ejHbYbjxh3S1Oe3Mp5S5JPqWx/e+2ON6ljeVHt9h2V+7eWH7zuhvWWq9L8ra5VedlGF9TX5rj6dSx1IFHNZYvbbHtb2fxXB9cSrlw6zNiUzqkQ13SoZmnNpZfVmu9ssP9j5EWaVGXxtgi42P3dMg469I+O8R46JAOdUmHFt2zsfwPvZzF8OmQDnVJh9iUFmlRl7Roxnx1OzqkQ10aY4eMD+BQucZreJfG+PNodk+HdKhLOjRjzqMdHdKhLo2xQ8bH7umQcdalMc69sns6pENd0qFF7s9bnxZpUZe0iE3okA51SYdmzFW3o0M61KUxdmiU48OD0Q7bfRvLNyZ5z4r3P6ix/MZa69Utjvd7jeVPbLHtrnxMY/kDLbdvvv+TtjiXQ9ccT+/c4bGaY/H3193waMy+qbF6CGNxqnRIh7o0+Q6VUu6Q5AmN1c/uYt8jp0Va1KUxtsj42D0dMs66tM8OMR46pENd0qFFX9VY/q1ezmL4dEiHuqRDbEqLtKhLk2+R+eqN6JAOdWmMHTI+gEPlGq/hXRrjz6PZPR3SoS5NvkPmPDaiQzrUpTF2yPjYPR0yzro0xrlXdk+HdKhLOrTI/Xnr0yIt6pIWsQkd0qEuTb5D5qo3okM61KUxdmiU48OD0Q7bExvLf1xr/ciK939CY/ltJ77rdH91xv76cH1j+ZYtt2++fwhf096VUm6f5JGN1X+4w0M+sLG8z7F4j1LKc0opf1ZKeX8p5fpSyruOln++lPJ1pZRm8DmdDulQJybWoVW+LMn5c8vvTPIbHe17zLRIizox4hYZH7unQ8ZZJ3roEOOhQzrUCR1aVEr55iRfMbfqxiQ/1tPpDJ0O6VAnJtYhc9Xd0yIt6sTEWrSK+er2dEiHOjHiDhkfwKFyjdfwToz459EnMe/RLR3SoU5MrEOrmPNoT4d0qBMj7pDxsXs6ZJx1YsRzr+yeDulQJ3RokfvzWtMiLerExFpkrrpbOqRDnZhYh1YxV92eDulQJ0bcoVGODw9GO1CllNsmeWpj9YvP2Kz5xMK/bXnYtzeW71hK+eiW++jaexvLH9dy++b7H7DFuRyyr09y67nlf8qOnq5/9J/E5n8U247F5vvv12LbeyW5JLMIX5Dko5Lc+Wj5y5M8K8nfllJ+9OjfGafQoXN0qBtT6tAqzX9Tz6u13tjRvkdJi87Rom6MtUXGxw7p0DnGWTf21iHGQ4fO0aFuTLpDpZTblFIeUEp5cinltUn+V+MtT6u1vrGPcxsyHTpHh7oxpQ6Zq+6QFp2jRd2YUotWMV/dgg6do0PdGGuHjA/g4LjGn6Ph3Rjrz6NPYt6jIzp0jg51Y0odWsWcRws6dI4OdWOsHTI+dkiHzjHOujHWuVd2SIfO0aFuTLpD7s/bnBado0XdmFKLzFV3RIfO0aFuTKlDq5irbkGHztGhboy1Q6McHx6Mdrh+IMld5pY/kORnztjmgsbyP7Y5YK31qiTXNlbfoc0+duDyxvJnrLthKeUeSe7aWN3317N3pZSLkvznxuofr7U2nwbZleY4/FCt9eqW+2iO3a7/3m6T5NuS/Ekp5RM73veY6NCMDm1Jh2ZKKZ+U5KGN1c/edr8ToEUzWrSlkbfI+NgtHZoxzrbUQ4cYDx2a0aEtTa1DpZQLSil1/pXkqiR/keS5Sf713NuvSvJ1tdYf6uFUD4EOzejQlqbWoTWZq16fFs1o0Za0aMZ89UZ0aEaHtjTyDhkfwCFyjZ/R8C2N/OfRmzLvsR4dmtGhLenQjDmPjejQjA5taeQdMj52S4dmjLMtjXzuld3SoRkd2tLUOuT+vM5p0YwWbWlqLVqTuer16NCMDm1Jh2bMVW9Eh2Z0aEsj79Aox4cHox2gUsrjknxLY/XTa63vO2PT5tOKr9ng8M1tbrfBPrr02sbyE0optz7xncu+6oR1fX89e1VKuUWSX87i131Fkv+xw8P2NQ5vTHJpkmckeUySh2T2W5senOSxSX4oy9/M3D/Jq0sp99zgHEdNhxbo0BYm1qGzNJ9U/dpa69s62O9oadECLdrCBFpkfOyIDi0wzrbQU4cYAR1aoENb0KFTvSvJ05Pcq9b6032fzBDp0AId2sLEOmSuumNatECLtjCxFp3FfHULOrRAh7YwgQ4ZH8BBcY1foOFbmMDPo+eZ9+iQDi3QoS1MrENnMefRgg4t0KEtTKBDxseO6NAC42wLE5h7ZUd0aIEObUGHTuX+vDVo0QIt2sLEWmSuukM6tECHtjCxDp3FXHULOrRAh7YwgQ6Ncnx4MNqBKaV8SpKfa6x+VZKfXGPzZribT6dcRzPczX3u28sye5rnTS5I8syzNiqlfHyS7zzhj25WSjm/m1M7CD+T5F/OLX84yZM3+G1IbfQxDp+R5G611s+ttf63Wuuv1Vovq7W+rdb6hlrrS2ut/ynJPZP89yR1btu7JHlRKaVscJ6jpENLdGg7U+nQSkffSH9FY7Wne6+gRUu0aDtjb5HxsQM6tMQ4204fHeLA6dASHdqODp3swiTfkOQbSym37/tkhkaHlujQdqbSIXPVHdOiJVq0nam0aCXz1e3o0BId2s7YO2R8AAfDNX6Jhm9n7D+Pvol5jw7p0BId2s5UOrSSOY92dGiJDm1n7B0yPnZAh5YYZ9sZ+9wrO6BDS3RoOzp0MvfnnUGLlmjRdqbSInPVHdKhJTq0nal0aCVz1e3o0BId2s7YOzTK8eHBaAeklHKPzAbifCzfnuQraq315K1W2tc2O1Nr/eckP95Y/Z2llP9w2jallLsneUWSO5y2245Ob9BKKd+X5Csbq59Wa33dnk9l5+Pw6D+vzad3n/S+a2utT0vyrY0/ekiSL2tzzLHSoWU6tLkpdWgNj01yx7nlf0rywo6PMRpatEyLNjeFFhkf3dOhZcbZ5gbUIQ6IDi3Toc1NuEMfTHKvudd9MpsDenySH03y7qP3fXyS703yplLKp/dwnoOkQ8t0aHNT6pC56m5p0TIt2tyUWrQG89Vr0qFlOrS5KXTI+AAOhWv8Mg3f3ICu8e7ROyA6tEyHNjelDq3BnMeadGiZDm1uCh0yPrqnQ8uMs80NqEMcEB1apkObm3CH3J+3JS1apkWbm1KLzFV3R4eW6dDmptShNZirXpMOLdOhzU2hQ2MdHzfv+wRYTynlzkn+X5K7za2+Mskja63vPnmrJVc1ljd5Ml9zm+Y++/D9SR6d4yczliQ/Vkp5YmZPR31DZk/ivOvR+74xxxe/dyS5+9y+rq21Lj3ps5Ry0bonU2u9otXZ96CU8m2ZPfV63o/UWv/nmttftO6xTvg8Bj8Oa60/UUr5/CSPmVv9TUl+scvjHBodWkmHWtKhJU9tLP9irbX5FGmiRWfQopYm1qKdj4+p0KGVdKilnjvEgdKhlXSopSl3qNb6kSRXnPBHlyV5cSnlGUl+MMm3HK2/R5JXl1I+s9b65v2c5TDp0Eo61NKUO7QOc9Wn06KVtKglLVpivnoNOrSSDrU0sQ6ZqwYGzTV+Jdf4lib28+jWzHucTIdW0qGWdGiJOY816NBKOtTSxDpkzqMjOrSSDrU0sblXOqJDK+lQS1PukPvztqNFK2lRS1Nu0TrMVZ9Mh1bSoZZ0aIm56jXo0Eo61NLEOjS6uWoPRjsApZSPSfLqJPefW/2eJI+otb61xa5GGe5a6/WllMcneXmST577o886ep3mvZl94/DKuXUfOOW9f9PilEqL9+5dKeVrk/xIY/VP1lq/o8Vutvk8DmUc/kAW/yP7GaWUC2qtp42RUdOh1XSoHR1aVEr5+CSPbKx+9qb7GzMtWk2L2plai/Y0PkZPh1bToXYG0CEOkA6tpkPt6NBqtdYPJfnWUsoNSb79aPXtk/xcKeXTNvwNQwdPh1bToXZ0aG3mqhu0aDUtakeLFpmvXo8OraZD7UytQ+aqgSFzjV/NNb6dAVzjD2UcmveYo0Or6VA7OrTInMd6dGg1HWpnah0y59ENHVpNh9oZQIc4QDq0mg61o0OruT/vdFq0mha1o0VrM1c9R4dW06F2dGiRuer16NBqOtTO1Do0xrnq8/o+AVYrpdwhyauSfNLc6vdn9iTLP2u5u39qLH9sy3O5bZbDPYiBXGv9+yQPT/KsJDessclvJXlokqsb66/s+NQGpZTylUl+KosxfU6Sb97jaTTH4a1LKbdpuY87N5Z3MQ7/MLN/aze5WZJP2MFxBk+H1qND69GhE12Sxe/J/rTW+idb7G+UtGg9WrSeqbbI+NiODq3HOFvPQDrEgdGh9ejQenSolacn+Ye55QcneURP59IrHVqPDq1Hh1oxVz1Hi9ajRevRohNdEvPVK+nQenRoPVPtkPEBDJFr/Ho0fD0DucYP7d6Y05j3OKJD69Gh9ejQiS6JOY+VdGg9OrSeqXbI+NiODq3HOFvPQDrEgdGh9ejQenSoFffnzdGi9WjRerSoFXPVR3RoPTq0Hh060SUxV72SDq1Hh9Yz1Q6NbXx4MNqAlVJul+QVST5tbvUHkzyq1vqGDXbZfPrlPVtu33z/+2qt7z/xnT2otV5da/2GJA/IbELkt5K8I8k1Sf45yeVJnpfZU1T/Ta31iiQPbOzmj/d2wntWSvnSzCI9/+/+F5J8zT6foF9rfW8W/4OYJPdouZvmWGzzZNe11Fo/kuRvG6tbfbMzBjrUjg6tpkPLSiklyVc3Vnu6d4MWtaNFq029RcbHZnSoHeNstaF0iMOiQ+3o0Go61E6t9ZokL2msflQf59InHWpHh1bToXbMVR/Tona0aDUtWma++mw61I4OrTb1DhkfwJC4xrej4asN5Ro/pHtjVjHvMaND7ejQajq0zJzH2XSoHR1abeodMj42o0PtGGerDaVDHBYdakeHVtOhdtyfd0yL2tGi1bSoHXPVMzrUjg6tpkPLzFWfTYfa0aHVpt6hMY2Pm/d9Apzs6LfRvDzJZ8ytvirJo2utf7jhbi9vLN+35fb3biz/+YbnsVO11r9J8v1Hr7M8rLH8B6fss5y0/lCUUp6Q5PmZPaX6Jv83yZOP/sPWSgefx+WZPWHyJvfN8vhcpTkW22zbxjWN5eYTXUdNhzanQ8t06FSfl+Rec8vXZfZNNUe0aHNatEyLju1ifIyVDm1Oh5YNsEMcAB3anA4t06GNvaWx3PbfzEHToc3p0DId2tik56oTLdqGFi3TolOZr15BhzanQ8t06Ji5aqBvrvGbc41fNsBr/FDujTnLpOc9dGhzOrRMh05lzmMFHdqcDi3ToWPmPNanQ5vToWUD7BAHQIc2p0PLdGhjk74/L9GibWjRMi3amLlqHdqIDi3ToVOZq15BhzanQ8t06NgY5qrPO/st7Fsp5fwkv57ks+ZWfyjJF9Raf2+LXb+5sfzJpZRbt9j+M8/Y30E5eqrq5zVWv7aPc9mlUspjkvxSFh+E+JIkT6q1frifs1oaO81Anurom5pPPmN/XblTY/k9OzrO4OjQfuiQDiV5SmP5RbXW9224r9HRov3QIi064ziTGB+n0aH9mMo4G2iHGDgd2g8d0qE13NBYvmUvZ9EDHdoPHdKhNUx2rjrRon3RIi2K+epT6dB+6JAOrTKV8QHsl2v8fkyl4QO9xg/+59FHJjvvoUP7oUM6FHMep9Kh/dAhHTrjOJMYH6fRof2YyjgbaIcYOB3aDx3SoTVM9v68RIv2RYu0aA3mqnVop3RIh2Ku+lQ6tB86pEOrDHl8eDDawJRSbpXkpUkunlt9bZLH1Fpft82+a63vTPLGuVU3z+LF4SwXN5Z/Y5vzGYDPS3LR3PJra61v7elcdqKU8u8ye3LlR82tflmSL6m13tjPWSVJXtFYvrjFtp+dxYvQZbXWd219Rg2llDtl+Smu/9D1cYZIh/ZKh/rTe4dKKRckeXxj9bPb7mestGivtKg/vbdoDaMfH6fRob0a/TgbcIcYMB3aKx3iLHdvLO/i+67B0aG90iFONeW56kSL9kyLJsx89el0aK90iFVGPz6A/XKN36vRN3zA1/jB/zx6yvMeOrRXOtSf3jtkzuN0OrRXOtSf3ju0htGPj9Po0F6NfpwNuEMMmA7tlQ5xlknen5do0Z5pEacyV61De6JDE2au+nQ6tFc6xCqDHR8ejDYgpZRbJHlRkkfMrb4uyRfVWn+zo8O8uLH81Wue279I8q/mVl2d5FUdnVNfvqux/KxezmJHSimPTPIrSW4xt/pVSZ5Qa72+n7M655VJrplbftjRGFvHJY3l5pjuypdmsZHvSnL5jo41GDq0dzrUnyF06MuT3Gpu+Yokr9lwX6OiRXunRf0ZQovOMurxcRod2rtRj7OBd4iB0qG90yHO8vmN5UFM7u+SDu2dDrHKJOeqEy3qgRZNm/nqE+jQ3ukQq4x6fAD75Rq/d6Nu+MCv8Yfw8+hJznvo0N7pUH+G0CFzHifQob3Tof4MoUNnGfX4OI0O7d2ox9nAO8RA6dDe6RBnmdz9eYkW9UCLWMVc9TEd2h0dmjZz1SfQob3TIVYZ7PjwYLSBKKXcPMkLkjx6bvUNSZ5Ya31lh4f6hSQfnlt+fCnlfmts1xzEL6i1Xtvdae1XKeXJSR45t+oNmT35cRRKKZ+T5Fez+A3SazL7JuC6fs7qWK31Q0le2FjdHGNLSin3T/K4uVU3JvnFDk/tpuNcmOQZjdW/VmutXR9rSHRov3SoXwPp0FMayz879s6sQ4v2S4v6NZAWrTrOqMfHaXRov8Y+zobeIYZJh/ZLhzhLKeULkjy0sfpX+ziXfdGh/dIhVpnqXHWiRfumRcR89RId2i8dYpWxjw9gv1zj92vsDR/6Nf4Afh49yXkPHdovHerXQDpkzqNBh/ZLh/o1kA6tOs6ox8dpdGi/xj7Oht4hhkmH9kuHOMsU789LtGjftIhVzFXr0D7oEDFXvUSH9kuHWGXo48OD0QaglHKzzIL62LnVNyb5klrrr3d5rFrrW5M8b27VLZI8t5Ryq1M2SSnlsVn8jTfXJ/meLs9rW0cXvnXf+/gkPz236sYkT6m13tj5ifWglPKwJL+e5Py51a9L8oW11mtO3qoXz8zsm5ObXFJKecxpbz4ao8/J4hM6n11r/asV2zyglPKFbU6qlHKXzD6/C+dWX5/kB9rs59Do0PZ06JgOna2U8qlJHjK36iNJntt2P2OjRdvTomNadOK2xscZdGh7xtmxA+oQA6JD29OhYzp0rJTy0FLK485+59J2n57k+Y3Vr6u1vqmbMxseHdqeDh3ToWPmqtvRou1p0TEtOpv56mU6tD0dOqZDy4wPoC+u8dvT8GMHdI1/ZtyjNxg6tD0dOqZDZzPnsUyHtqdDx3ToxG2NjzPo0PaMs2MH1CEGRIe2p0PHdOiY+/Pa0aLtadExLTpmrnp9OrQ9HTqmQ2czV71Mh7anQ8d0aNnYxsfaXww79bNJvrix7ruTXFZKuajlvq5c40mT/yWz32Dz0UfLD0/y6lLK19Ra/+KmN5VSbpnk65L8cGP7H661vn2dkyml3D0nj7O7NJZvvuJrvarW+p4zDvWmUsrLkvxKkj+otX7khHN5UJKnJXlS44++u9Z62Rn778SuP49SyoOT/EaS286tfkuSb05y51JKm9O9ttZ6ZZsN2qi1/nUp5ceTfOfc6heWUv5jkv9da73+ppWllAcm+ZnMxupN3puzv4H4uCQvLaW8KcnPJ3nx0TcvS0opt0vy5Mye7H1h44//a631r9f4sg6ZDumQDs103aHTPLWx/Mpa699tuK8x0SIt0qKZXbXoIMZHz3RIhybXoWR/46OUctskdzrlj5sTyndacax3DGlyrWM6pEM6tKir8XH3JC8qpbw5sx+gvSTJW2o9+bcslVI+IcnXJ/mmxnlde7RuzHRIh3RoUVfjw1x1O1qkRVq0qOvx0WS+epkO6ZAOLZrk+ABGyTV+Ig13jT/mHr3B0SEd0qEZ9+j1R4d0SIdm3J/XHx3Socl1KHF/3sDokA7p0CL35/VDi7RIixa5R2//dEiHdGiR+/P2T4d0SIcWTXJ8rK3W6tXzK0nt8HXxmse8OMl1jW0/kuSPkvxyklck+ccT9v9rSW7W4mu7ooOv6blrHOc9c+//5yS/l9k/0l9I8qoV5/F9e/673unnkdlvNOpqLF26h8/jZklefsKx35XZBegFSf74aGzO//l1ST57zXHe3PcHkvxOZhNsz0/y4qNj3HDK5/Csvhuxp7GpQzqkQzvo0CnHvGVmN0rM7+8JfTZgKK8Ox44WadEzOxxLl+7h89hLiw5lfPT56nDc6NDAx9muP48cXof2NT4u6egzuajvXuzw70KHdEiHdvN5fNEJ7//g0fh4aWY3QLwgyauTXHnK/j+U5BF9d2IPfxc6pEM6tJvP4+IT3m+u+vTPS4u0SIt2OD4axzRfffLnokM6pEPGh5eX1whfHTbZNX7gDd/155HDu8a7R28grw7HjQ7p0DM7HEuX7uHzcI/eQF4djhsd0qFndjiWLt3D5+H+vIG8Ohw3OjTwcbbrzyOH16F9jY9LOvpMLuq7Fzv8u9AhHdKh3Xwe7s9r9/ehRVqkRbv5PC4+4f3mqk/+rHRIh3Roh+OjcUxz1Sd/LjqkQzpkfKz9OulJckxArfXSUsrjkjw3yccerS5JHnr0OskvJfnaWuuHd3+GW7ltkoed8Z73J/mmWuv/2cP5cIpa64dLKV+c2W9W+pK5P7pzkkedstk/JnlyrfW3NzzsHZJ85hrvuzrJt9daf3rD43AGHdKhIeipQ49L8jFzy+/ObKKfHmiRFg1BTy0yPgZCh4wz6JsO6dCE3S5nj4+bvD7J19da37jD85ksHdKhCTNXPSBapEUTZr56IHRIhybM+ABGzTVew4fAPXrTpkM6NATu0Zs2HdKhIXB/3rTpkHEGfdMhHZow9+cNiBZp0YSZqx4IHdKhCTNXPRA6pEMTdvDj47y+T4D+1FpfnuRBSX4qs4F6mtcneWKt9Um11qv3cnLt/ViSyzJ7Kucqf5fke5PcZ6j/KKem1npVrfVLk/z7zMbaad6X5CeTPKjW+jbdgAcAAAUCSURBVIo1d395ku9P8rtJrllzm79M8t2Z/YYT/4ndMR3SoSHYcYdO8tTG8vNrrTdssT+2pEVaNAR7apHxMVA6ZJxB33RIhybgNZn9VtxfSvKONbf5UJIXJvnCJA9309Vu6ZAOTYC56gOgRVo0UearB0SHdGhCjA9gUlzjNXwI3KM3bTqkQ0PgHr1p0yEdGgL3502bDhln0Dcd0qEJcH/eAdAiLZoAc9UDp0M6NFHmqgdEh3RoQkY1Pkqtte9zYABKKbfI7KnH90xyl8yebvz3SS6rtf5Nn+fWRinl9kkenORemT2p81aZ/Qfm75P8aa31z3s8PdZQSrlXkockuWuS2yS5Msnbk/xurfX6LfZ7XpL7JblPkrsluSDH4+P9Sd6Z5I9qre/e6gtgYzrEUOyqQxwGLWIodtki42PYdAjomw4xBaWUC5M8MLNxfsckt05yQ5IPJnlvkjcnecsB/GafUdIhxs5c9WHQIqBvOsQUGB/AFLnGMxTu0ZsuHWIo3KM3XTrEULg/b7p0COibDjEF7s8bPi1i7MxVD58OAX3TIaZgLOPDg9EAAAAAAAAAAAAAAAAAAAAAAACA3p3X9wkAAAAAAAAAAAAAAAAAAAAAAAAAeDAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgdx6MBgAAAAAAAAAAAAAAAAAAAAAAAPTOg9EAAAAAAAAAAAAAAAAAAAAAAACA3nkwGgAAAAAAAAAAAAAAAAAAAAAAANA7D0YDAAAAAAAAAAAAAAAAAAAAAAAAeufBaAAAAAAAAAAAAAAAAAAAAAAAAEDvPBgNAAAAAAAAAAAAAAAAAAAAAAAA6J0HowEAAAAAAAAAAAAAAAAAAAAAAAC982A0AAAAAAAAAAAAAAAAAAAAAAAAoHcejAYAAAAAAAAAAAAAAAAAAAAAAAD0zoPRAAAAAAAAAAAAAAAAAAAAAAAAgN55MBoAAAAAAAAAAAAAAAAAAAAAAADQOw9GAwAAAAAAAAAAAAAAAAAAAAAAAHrnwWgAAAAAAAAAAAAAAAAAAAAAAABA7zwYDQAAAAAAAAAAAAAAAAAAAAAAAOidB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9M6D0QAAAAAAAAAAAAAAAAAAAAAAAIDeeTAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgdx6MBgAAAAAAAAAAAAAAAAAAAAAAAPTOg9EAAAAAAAAAAAAAAAAAAAAAAACA3nkwGgAAAAAAAAAAAAAAAAAAAAAAANA7D0YDAAAAAAAAAAAAAAAAAAAAAAAAeufBaAAAAAAAAAAAAAAAAAAAAAAAAEDvPBgNAAAAAAAAAAAAAAAAAAAAAAAA6N3/B89nvm568KCIAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor, Config\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 5), dpi=300)\n", + " configs = get_known_configs()\n", + " to_display = configs[\"Relative humidity\"], configs[\"Ambient temperature\"]\n", + " for i, config in enumerate(to_display, start=1):\n", + " plot = figure.add_subplot(1, 2, i)\n", + " coros.append(plot_sensor(config, plot, {}))\n", + " await asyncio.gather(*coros)\n", + "\n", + "display(figure)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAE0YAAAmZCAYAAAAwyqtnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdd5RkVbX48e8eZkiSGXIaJAoIKElRkiBREZAgQRyCOYvx93yK+MxZjKBkQRHBwEMMKPoQUBBEJKkIKEgecmZm//44NVJ9+1Z3pe7qnvl+1uoFd997ztlVdavWmu5d+0RmIkmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmDNGXQCUiSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJknoQEVn5OXrQOUmavPxMkSRJkiRJkiRJkiRJkqT5S0QcXa0dG8txgxIRM2pq5GbOL+tLkiRJkqT2TR10ApIkSZIkad4WEVOBDYDnAEs1fhYAHgEeBm4FbgZuzswnBpSmJEmSJEmSJEmSJEmSJEmSJEmSJEmSpAGzMZokSZIkSeq7iFgI2Bs4HHgxsEgbw56KiL8AlwG/AX6emfeMXZaSJEmSJEmSJEmSJEmSJGk0ETEDuKmDIU8ADwIPADcCVwKXAj/NzCf7nd9cEfES4IKaUz/LzF37tMb2wK9HuGSHzLywD+scCpw8wiVrZubNva4jSZIkSZIkTURTBp2AJEmSJEmat0TEnsDfgTOAl9JeUzSAacDzgNcB3wHujIgvj0mSktQnEXFzRGTTz0mDzkmSJEmSJEmSJEmSJEkasIWA5YC1gV2A9wM/BG6LiE9FxGJjtO4RLeIvjYjVx2jNqsMn2DySJEmSJEnSpGNjNEmSJEmS1BdRfA34EbBqH6acAoxXIZIkSZIkSZIkSZIkSZIkSRpb04H3An+JiBf2c+KIWArYp8XpKcDMfq43gldGxBK9TBARzwa27VM+kiRJkiRJ0qQzddAJSJIkSZKkecY3gNe1OPdP4FfANcDdwCPAYsDSwDrAZsAmlF0iJUmSJEmSJEmSJEmSJEnSxPYI8PcW5xYFlgGWbXF+DeD8iNguM//Up3wOBhYe4fxhEfHRzMw+rdfKosABwPE9zHE4EP1JR5IkSZIkSZp8bIwmSZIkSZJ6FhF7Ud8U7QrK7o6/Gq2YKCIWBXYF9m78PKvfeUrSRJeZFjRKkiRJkiRJkiRJkiRpMrg8M7cf6YKIWBV4OXAUsFbl9BLAWRHxnMx8qg/5HFE5ToY2F5sB7Aj8sg9rVd1H2Sh2rsPpsjFaREwBXlMJz6I0mtM8KjOPBo4ecBqSJEmSJEkTxpRBJyBJkiRJkia3iAjgCzWnzga2zswL2tlhMTMfzcyzM/PVwCrAO4G/9TdbSZIkSZIkSZIkSZIkSZI0HjLz1sz8OrAJpaawai3g9b2uExGbAs+rhL8APFmJHd7rWi18F5jddPyCiHhOl3PtAqzadHw/8NNuE5MkSZIkSZImIxujSZIkSZKkXm1N2Umx2W3AzMx8opsJM/OBzPxiZr6n1+QkSZIkSZIkSZIkSZIkSdLgZOYjwMHAdTWnX92HJY6sLgl8CTi3Et8nIpbuw3pV/wZ+Xol124StOu504PEu55IkSZIkSZImJRujSZIkSZKkXu1WEzspMx8a90wkSZIkSZIkSZIkSZIkSdKEk5mPA5+oObV5RCzT7bwRsTBwUCV8YWb+Ezi5El+I0qBtLJxQOX51REztZIKIWBbYc5R5JUmSJEmSpHleR79YkyRJkiRJqrFGTeyP455FCxGxPLA5sHzjZzZwF3AncGlmPjjA9IZo5Lo+sBawFPAs4CFgFnAb8IfMfHicclkK2KIplymNPH6ambeMUw6rA88HVgaWBh4GbgIuy8zbxymHRYAtgZUo989iwL3A3cBVmXnjOOSwJPACYB1gScrzcDdwRWZeP4brbgSsTXncywKPNta9mfIaPDVWazfWXwDYFNgAWAFYGHgE+HNmXtDm+GdT3lOrAEsACwD3NX6uB67OzDlj8gAmiIgI4LmU+2c5YBngAcrn4E2U+2jMn4NB3ceSJEmSJEmSJEmSJEmaUM6viU0B1gMu6XLOfSj1Zc1Oafz3PEqNynJN544AvtLlWiP5MXAPML1xvAKweyPerkOABZuO/5yZfywlQBPD/FiXFRGrUB7vDErt0yLAg5Sayn9S6ukeH1iCfRIRC1JqBtcHVqS8tlAe5yzK63rDOOUylVL7uyHlPTUHuJ1S83ZpZs4ejzzaNRFqTSVJkiRJmtfYGE2SJEmSJPVq+ZrYI+OeRZNGgcFbgAMojbVaVQU9HRGXACcBJ493oURELE7Z3XFnYHtg9VGGzI6IK4FvAqdk5pNdrHkS8Jqm0C2ZOaPp/G7Au4AdKMVKVYdRnq8x0Wji9BrgTZTGbHUyIn4HfCozz20aezNDG/WdnJkzu8hhCmVX0EOAbSkNuVpdexNwJvDZzLynw3VOYuTXYlPgg5R7ZFqLOW4BPgd8ox+NyiJiY+AdwC6UhnStPBwRv6S8Bpd2uMb2wK8r4R0y88LG+dWB91J2ca0WLAL8BqhtjBYR61AKHV8CvIjSXHAkD0TELyiv3+/bzH8GpbiqlddExGtGOA9AZtZ+LkVEVkIfycyj28mtMs+6lOdxd0qxVSv3RsTPKM/BlV2scxIT7D6WJEmSJEmSJEmSJEnSxJSZd0fEgzzTcGmu6XXXt+mIyvGjwFmN9Z6OiNOBtzed3zQintdNrcxIMvPJiPhOZa3D6awx2uGV4xN6TqwPxqMuq7HO1cBGTaG7gVV6qSmKiAOB0yvhN2fm10YYMx3YG9gJ2I7S5G4kT0bEpZSGez/opilcRBwNfLg51qrGrJ8a9V17UWpGtwIWGuX6u4FzKa/ttWOQzwrA+4GZlE1969wVEWcCx2Tm3f3OoV3jVWsqSZIkSdL8asqgE5AkSZIkSZNe3S53a9TExkVEHAD8Dfg0sBmtm6JBaRq/DfBt4KqI2HbsMywi4tPAXcBpwKGM3hQNSqOyzYHjgRsjYps+5rNYRJxF2SFzJ+qboo2pRsOp3wIn0ropGpTX9MXATyLiexGxaB9z2BW4mrJj6M6MUKjSsCbwPuAfEfH2Ua5tN4cpEfFR4HLglbRoJtWwBvBl4PcRUdeksN01V2oU5f2J0vxupKZoUHYz3Au4JCJ+GBHLdLt2JY8jgOuAN1PfFK3VuGUj4grgr8AnKa/daMV3UHbv3Be4NCJ+FBGtCqkmjYhYNCK+BlxDKfocqSkawLKUJnR/jIhTI6Lt532UPMb9PpYkSZIkSZIkSZIkSdKk8HBNrNoorS0RsSaloVOzszOzeY2Ta4ZWm6n1y7crx3u0Ww8TEZsDGzeFnqTUFw7MAOqyTqwcLwfs0W6+LcysHD8BnNHq4kYjvduB44D9Gb0pGsCClMZYZwJ/iYgNu8p0HEXE+hFxA3AlpSHbtozSFK1hOUqN4V8i4viIaGdMuzntDlxL2dx1pHtmecrmyddFxKv6tX4nJkKtqSRJkiRJ8zobo0mSJEmSpF7dURPbf9yzACLiv4HvAqt0MXxD4BcRcVB/s2ppS0YvhBjJqsAFEfHqXhOJiGcBF1CaFw1ERKxFaYr24g6H7g/8NCIW7EMO7wb+F9igi+GLA1+MiG9FxNQecphCKZT5IJ01p3se8NuIWKyLNTcB/kBpjtXNDpOvoBSwrdvF2OY83gN8C+im0d3ilOegF3sCf4iIVXucZ2AaO5X+CngjpfFjR8MpO1deFBHtNGocKY9xv48lSZIkSZIkSZIkSZI0adQ1PHqwy7kOZ3jN0ynNB5l5JaWBUbODI6KX+r1amXk18Mem0FSg3Rq/wyvHP87Me/uSWPfGuy7rNOCpSuywbhdurLlTJfzDzLxvhGFb03ntVbPnUOrpqutONCsCvdT8BXAkpd6rq8aGQyaLeDnwI6CTTVqXBU6PiNf1un4nJkKtqSRJkiRJ8wP/4SxJkiRJknp1MVAtKtgpIt6amceOVxKNpmjH1Jx6Gvg18EvgNsrvQ1YDdgdewNCiqAWB0yLi6cw8c2wzHiIphVdXA9cBd1MKvWZTiiCeDWxB2dlyWtO4acDxEXFNZl7Rw/rHURq1zfVv4Dzgz8BdlN0416AUKPVdRCxJaea0Ws3pfwA/pOw4eR9lt8HnUppxrdi4Zlvg8z3m8EnKbnxVs4BfUIrV7gIepRTmbQjsCqxXuf4I4H7g3V2m8jHg4Kbjf1EKaK4G7gEWoxROvZKyg2Cz9Si7cr6l3cUau4z+ujFvsznA/1He3zdRHtMilIZ82wE7MrTh1TrAeRGxWWY+0O76TXYG3t90/EQjrwspzRefbqy9VU2udR4GLqO8n/4GPAA8RHmPL00pSNqB8lw2Wwf4XkRsl5lPt5j7SeCqpuMNGPq+vA/4Zxs59lVELEJ5zjaqOX0PcA7PvKeX5Zn7aOXKtRtQmqNtmpmzukxnXO9jSZIkSZIkSZIkSZIkTQ6NDTTrNk78RxdzTQFmVsK3UTYJrToF+EzT8VLAPsDpna7bhhOAzZqODwc+N9KARpO2A2vmmWjGsi6LzLwrIs6j1AfOtXtELJ+Zd3WR76HAlEqsk+d1NnAFcA1wPXAvpbYzKHWV61DqUF9UWWcx4LsR8bzM/FcXeQ/CfTzz2t5IeZwPU+oGp1NqJncGqptubknZELWXDZXXBI7lme87J6V28Tzg1sbxasBulOe6ue43gG9ExL2Z+YMecmjLBKo1lSRJkiRpnmdjNEmSJEmS1KvzgMcoxQ/NvhwRLwU+nZkXjWUCEfEi4MM1py4CjsjMv9ac+5+IeCGlyGX95umA4yLi95l5S/+z/Y85wM8pBVc/z8y7RxsQEdOBD1EaBs0t7FgIOJnSLKwbqwIHNf7/MeADwNcys7rrIsAHx2KXTOALDC+WeYhS8HF8ZmZ1QES8DXgPcDTld1xvojSs6lhE7M3wQpX7KI26TsnMx1uMC2Av4BvA8k2njoqI32bmjztMZaWmPB4CjgJOyMzZNWv/P0ojwPdXTr0hIj6RmbeNtlhELA18n+GNxk4Ejs7MVs29Pt4oUPwqsEtTfC3K++mVo61d4708c0//AHhnq4KwEe7B+yk7hp4FXNziHq7OtTXwJWDzpvDWwDuAz9aNycx/A5s2zXEzpXHgXD/OzJmjrT0GvsDwpmizgU8BH627jyPincC7gI9SPkvmWo1SrLZPF3mM630sSZIkSZIkSZIkSZKkSaWutug+SjOmTu1CqX9rdlpmzqm59jTKZn3Nm0Eewdg0Rjud0ghtbp3TBhGxVWb+foQx+1CaKM11G6W+cCIYl7qsJicwtDHaVOAQuts8dWbl+FbKJrsjeRI4m/KYf9XORqERsQbwCYY2t1sW+DrwsnaTHYA7gJMom25e3uK98x+NmsndgC9SmsLNtV9E7JuZZ3WZx3t55v1yPTCzxfvl4xGxZSPn5uZ7AXw9In6Tmfd0mcOoJlCtqSRJkiRJ84Vqt3tJkiRJkqSONBp6faXF6ZcD/xcRt0bECRHx2ojYJCL61qy9UTDwbYYWLEFp2LZji6ZoAGTmJZTd466unFqS1o+pX/bOzF0y8zvtNEUDyMx7MvNtwGGVUxtFxM5d5jH3eXsE2DUzvzRS4VKrwo1uRcQLGP54Hm7kclxdU7RGHk9m5scoTd1mUwpbFqq7dpT1l6c0Amv2N2DjxvotH28W51CKt26tnP5E497sxIKUxzEL2CYzj69rJtVY+6nM/ABwfOXUAgx/Plv5KjCj6Xg2cEhmHj5CU7S5699IKXCqPnf7RMRWba7fbO59eCyw30i7ZLZ4Tf4NrJyZb83M37RTfNeY62JgG+D8yqm39fNzaqw1mkO+vhKeAxyWmf/V6j7OzNmZ+RlKYWX1Ods7Irppcjfe97EkSZIkSZIkSZIkSZImgYhYibJZZtUZozVkauGImtgpdRdm5h0MbzS2Q0Ss2cW6I8rM+ymNppqNVgtTfSwnt6q5GWeDqMs6D7izEpvZzrrNGjVV61TCJ7dxr22Rma/MzHPaaYoGkJm3ZOZBlI1em+0eEevXDJkI/gCslpkfyMw/tPMebNRMngdsBVxZOf2uHnKZ2xTtGuDFIzURzMw/UO6tayqnlqNsIjomJlitqSRJkiRJ8wUbo0mSJEmSpH74EHDJCOdXoRT2HAf8CXgoIn4fEV+OiH0jYoUe1t4DWK8S+yewf2Y+OdrgzJxF2V3wseq8EVGdt2/aLZhpMfZkyu6LzY7sLSPen5m/7XGObry5JvaeRmHUqDLz+5SdJbv1dkojvLkepTRlqxafjJTDv4BXVcIbAHt2mdNhmXlVm9e+H6gW1Owy2qDGvX1AJfxfmfmdNtel0bTu9QzfrfX97c5R8Qfgna2a4Y2Sy5OZWX0Ptzv2ceA1lNd+rtWAbpsNDsI7a2JfzMxT2xncKFb775pTR/WQ05jfx5IkSZIkSZIkSZIkSZocImItSpOs5SqnHgU+0cV80ykbtza7PDOvHWHYydVpGLvN+06oHL8qIhapuzAiZgA7VMLVBkwDMYi6rMx8GjitEn5uRGzWYQp1r+2oz2svtZ3AMcBlTccBHN7DfGMmMx9tPNfdjL0POLQSfmFEbNBDSk8C+2TmvW2sfy9lM9BqjfDBjc+GsTARa00lSZIkSZqn2RhNkiRJkiT1rFHAsjvwkzaHLAxsCbwV+D5we0RcGBGHR8TCIw8d5i01sXdn5iPtTpCZNzF8p7igvmnXRFHd2fLFPcx1I/DVHsZ3JSKWAvarhK+jNNDrxIeB+7tYfzHgTZXw5zLzH53OlZm/Ay6ohPfudB7gN5n54w7WnUXZIbPZphEx2u/93sPQ3w3eBHy23XWb1n8K+HglvFsX72MoDfEGsstpZt7F8N1Je3lPjZuIWAXYqxK+i9KwshOfp+xg2eyFEfH8LtIar/tYkiRJkiRJkiRJkiRJE1BELBwRq0TEHhFxHPBnYOOaS1/bSWOhJocCC1Zi1Zq6qh8B1aZXM8eoRuUC4Jam4yWBV7a49jBKveJcv83Mv49BTuOuh7qsamM5gJntrhsRiwL7V8K/zcwb252jG41NQaubWU6KOrROZeZfgCsq4V4e67GZ+dcO1v8rcGwlvBAd3CftmqC1ppIkSZIkzfP8YpkkSZIkSeqLzLwfeAWl4KjTopwAtgO+DdwQEQe3NShiwca4ZncA53S4PsA3gerudy/tYp7xUm1gtFJErN7lXCc2CnLG24sohSjVXOZ0MklmPgx8r4v1dwKWqsS+3cU8c/1v5bh6b7bj+C7G/KFyvBiwSquLIyIouyU2O6mHpmTVhlYLAVt1OMffMvO3Xa7fL9X31AsGkkXnXgIsUImd0klzSPhPk7u6+6+bz8Exv48lSZIkSZIkaaJrNAHYMSKOiIj3RcTbI2K/iNhk0LlJkiRJUp9sFxFZ9wM8BtwKnAu8Fli0MvZR4ODMPL3LtQ+vHD8FnDHSgMYGsGdWwqsBO3eZw0hrJXBSJVzNmUZTttdUwnVNwSazjuuyMvNahtcTHRQR1XrDVl4JLF6Jndjm2F5VH+/zI2LaOK093vpZc9dNzVndJry79ZBDKxOx1lSSJEmSpHne1EEnIEmSJEmS5h1zd7uLiDOAXYGDgD2AJTqYZnXgtIjYCXhDZj4xwrXPBxauxH6YmdUGZ6PKzDsi4iJg+6bwehGxbGbe2+l8nWoU7LwY2ATYCFiO8rwtxvCmRzB8t0soz90/u1j+112M6Ye6Iphqk612nQu8vsMx1WKS2zLzltor23NT5XhGRCzVaBrYrt90sW7dLpZLAv9qcf3GwNKV2MVdrAtAZs6KiAcaa871PDp7LBd2u34rEbEKsDXl8a5LyW8JYBGG7rA614qV424bDY63F9XEzupyrjOBT7cx/2jG4z6WJEmSJEmSNA+JiGcDWwCbN/77fIZ+gfmWzJwxgNQ6FhEbAR8CXs7wv2PNveZvlC9kfy4znxzH9CRJkiRp0B6ibIJ5TGZ2VRcSES8ANqyEz8vMe9oYfjKlUVuzw4Hzu8llFCdS/n04t1Zp+4hYMzOb68x2AtZoOn6I7mt/xsU41mWdCGzZdLwMsCfw/TbGHlY5frjNccNExGLAtpTHuwGwLOXxPguYUjNkscrxQsAKlEaBE1pErEWp69wYWIvyOJegPIa617b6WnZbc3d9Zt7Q6aDM/GtEXMPQz4MtImJKpxv0jmIi1ppKkiRJkjTPszGaJEmSJEnqu0ZjsnOBcyNiAWBTStOvzSlfZFmP+mZfzWZSCkf2H+Ga59fELu803yaXMbQxWlAaPP2yhzlHFBFrA+8H9mVoY6luVHeka0cCf+px3W49t3L8GHB9l3Nd2cWYasOnpSOil+eiWtAEMB1ot1jl8czspvjpgZrYSPdSXaOrYyNipCaEo6nu6Dq9w/FX9LD2EBGxL/AmSjFSXeFZu7p5Pw1C9XPwaeCqbibKzFsi4i5g+RHmH8143ceSJEmSJEmSJrmI2B74AOXvR8sMNpveRUQA/w0cTf2XhZutA3wcODAiDsrMv4xxepIkSZI0UVwOHNttU7SGI2pip7QzMDN/FxF/B9ZuCr8iIqa32VitbY1anF8BOzZCQamL/HDTZYdXhn0vMx/pZx79MoC6rDOAz1Mars01k1EanEXEGgytAwU4s9PnNSI2A95Daca2yCiXj2YpJmhjtIiYQnlPvZbSrL4X3dbc/bGHNa9gaGO0xSkN+7qtRa0z0WpNJUmSJEmaL9gYTZIkSZIkjanMnE0pWvhP4UJELApsBewA7Aes32L4fhHx1sw8tsX5uuZL1/WQ7rVtrtEXEfEh4P9RdtPrh26aCD2cmY/2af1OLVs5/lfjfulYZt4WEU8B0zoYtmrleFFgk27WH8GywN/bvHZWl2s8VRMb6XmoPm5o/R7sVvW1Hc1dvS4YESsDpwIv6XWuhsnSlKv6GXVTZj7ew3zXMbQxWqefgeN1H0uSJEmSJEma/DYFdh50En10PMO/nD+H8qX/m4EFgQ0oX86d67nABRHxwsz8x3gkKUmSJEl99Aj1tVHTgKWBlWrO7QBcFhEzM/OMTheMiGcBB1TCsygbubbrFOCYpuMFgUOAL3aaTxtO4JnGaAAzI+IjmTknIpYG9qq5fkIZVF1WZj4QEecABzWFd4mIlTLz9hGGzmR4w/IT200uIqYBXwDeSG8N4JpNyFq0iHgO8B3KBsL90O3jvKGHNesaoC3fIt6tiVZrKkmSJEnSfKFfv5iRJEmSJElqW2Y+mpm/zswPZeZzgF2Ba1pc/sFGI7U6S9fEetkx7b6a2DI9zNdSRHwV+Aj9a4oG3TURerCP63eq+vo90ON8nY4fk9e2opOdIusaQ42FTpuWdaPTHTJ7ug8jYhXgQvpXfAeTZ1OJ6vuo110jq5+DC43wGVxnvO5jSZIkSZIkSfOuJ4AbB51EJyLirQxvivZdYPXM3CozD8jMvTNzPWBL4Mqm65YHfhoRC49TupIkSZLUL5dn5qY1Pxtm5sqUOqWZDG9QtCBwakS8vIs19wcWr8S+m5lPdjDHKUBWYtV/0/XL2Qyt51mdZxqlHczQ+sHrM/OSMcqjKxOgLqva0GwB4NWtLo6IAA6thP+WmRe1s1ijKdr3gTfT3+/eTrgNIiNiI+A39K8pGnT/OHupHa0bu1QP89WZaLWmkiRJkiTNF2yMJkmSJEmSBi4zfwZsAfy05vTywJ4thlYLnKDsQtmturF1a/QkIg4B3lRzahbwbeBwYBtgBqXp0SKZGc0/wJp9SufpPs3TjWpTuE6K0+o80e6FjUZP/WxKN5nUNRQctF7vw5OAdWrifwI+AewNPB9YEVgCWLDmPfWRHnMYlOpnVC+fga3G9/1zUJIkSZIkSZIanqL8LvdbwOuBzSi/kzxykEl1IuCbghUAACAASURBVCKWBT5eCR+bmQdm5m3V6zPzMmBb4A9N4XWBd4xdlpIkSZI0/jJzVmaeDGxKaR7dbAHgtIiY0eG0dQ3MTukwr1soDaGabRQRW3aYSztrPQ6cUQkf1vjv4ZX4Cf1evw9OYrB1WRcAt1Rih9Vd2LAd8OxKrNpcbSTvA15RE78N+BpwCPBCYDVK862Fax7vDh2sNxCNBnBnAsvVnP4dcDTwMmATSg3v4sDUmsd6cp9SmrB1v/N5rakkSZIkSQPVSXd9SZIkSZKkMZOZj0XEq4AbgemV0zsyvDAK4KGa2LN6SKNubN0aXWsUlHy65tQngWMy87E2p5oXdoer7tTXazHKEh1c+zgwh6EbB/wwM/fuMYfJoO4eWzoz76+JT3gRsQewUyV8F3Boo+liuybre+ohhu5w2ctnYKvxff0clCRJkiRJkqSGk4FvNL4kPkREDCCdrr0VWKzp+DrgqJEGZObDEXEwcC0wrRH+QER8MzPvG5s0JUmSJGkwMvOJiHg1sAJDm0YtQdlIdMd25omI9YAX1Zy6tE//jjycoU2s++VE4I1Nx3tHxA7A85piTwOnjsHaXZsIdVmZmRFxMvChpvD6EfGCzLy0Zki1adps2mycFxHLAx+ohJ8G3gN8JTPb3fxzMtShvQ54TiV2I/CqzLy8g3n69Vgnct3v/FxrKkmSJEnSQE0Z/RJJkiRJkqTxkZkPUnYYrFqvxZC6L4YsVRNrV93YWT3MV2c7YKVK7NjM/EAHTdEAluljToNSff2W7XaiiFiQoV86GlFmzgGqjcDW7Hb9SeaemtiM8U6ijw6sHM8GXt5h8R1M3vdU9X3Uy2dg3fgnMvPRHueUJEmSJEmSpGEy8766pmiT0Msrx1/KzKdGG5SZfwd+2BRaAtinn4lJkiRJ0kTRaCp1KPBg5dRLIuKANqc5or9ZDXNgRCza70kz8zLg6qbQwsBplcvOy8w7+r12jyZKXdZJQFZiM6sXRcRiwCsr4Z9n5m1trrMnUH3935eZX+ygKRpMjjq06mv7ELBTh03RoH+Pdck+j+3bJrHzea2pJEmSJEkDZWM0SZIkSZI00dTtuDi9xbV318Squ9h1YoOaWF0TqV68tHI8B/hYF/M8uw+5DNq/KserRMTSXc71XKDTbT/vrByvGxELdbn+ZFJ93AAbj3sW/VN9T52fmd3s3DpZ31PVz8E1e7yPq5+D/f4MlCRJkiRJkqSBi4jFImKXiDgsIt4bEUdFxKsjYvOIaLu2NiIWBzathDv5gvj5leN9OxgrSZIkSZNKZt4KfKjm1McjYtpIYyNiKqWx2lhagrH7d9mJleOVK8cnjNG6vZgQdVmZeRNwYSX8qohYuBLbH3hWJVZ93kdSfbz3AV/pYPxcE7oOrdFA7oWV8CmZeXMX0/Xrsa7bw9i6jZfv6mG+OvNrrakkSZIkSQNlYzRJkiRJkjTRPFATa7Xb3hU1sc17WHuLynG2WKMXq1WO/5qZdY2qRlMtTJmM6oqkXtDlXN2Mq66/CLB9l+tPJnXP+27jnkUfRMSCwPKV8P91Mc8CwJZ9SWr8VT+jpjL8S3htiYjVGf58/rGbuSRJkiRJkiRpImo0Q/sVMIvSlOwE4FPAZ4FTgMuAOyPik21u5rIyQ2txH+nwi8RXV4539Iu1kiRJkuZxXwf+UYk9GzhilHEvA1aoxO4Arurxp2q0PLp1KvBki3N3Af87Rut2ZQLWZVUbnC0J7F2JzawczwJ+3MEa1drO32dmq9dsJBO9trP6uwzo7rVdnv41Rtusj2MfAv7aw3x15tdaU0mSJEmSBsrGaJIkSZIkaaKpFi/B8N3W5roCeLwS26tRTNORiFgB2KYSviEzZ3U61yimV447nr+xO+Ze/UlnoC6piR3U5VwHdzHmFzWxQ7pcfzK5GHikEtujzS94TTTV9xN08Z4CdgcW6zKHauPGjj9/enRxTazbnWv3a3N+SZIkSZIkSZpUImJ6RPyC0gxtB2DaCJdPB94H/C0ith1l6mUqx/d3mFr1+mnA+h3OIUmSJEmTRqPR1DE1p/5rlEbRdQ3LDsvMTXv5YXjDo20jYu1uH18rmXkPcG6L06dmZqvNYwdlItRlNfsB8GAldtjc/4mItRhe//mdzHyigzX6Uds5nfJ7h4msX6/tAb0m0uQ5EbFep4MiYl1gw0r4ssyc05+0/mN+rTWVJEmSJGmgbIwmSZIkSZImmpfUxG6suzAznwJ+XQmvSHdNw14HTK3Eft7FPKOpNqSqKzIZzUHASn3IZaAy8yrg+kp434hYs5N5IuLFdLfL4s8Y3ljvwG4KbCaTRnHh+ZXw4sBRA0inV9X3E3T3nnpXDzk8VDnuRyFfJy4AZldir46IZ3UySURMBV5bc2osPgclSZIkSZIkadw0vtD+e2CnyqmHgAuB7wFnAZcDzV+cXRb4RUTsMsL0T1aOR/oSf5266zfocA5JkiRJmmxOA/5aia1Kfe0KEbESsFslfCf1zYq6yaXq8D7MW+eEDuODNBHqsv4jMx+l/Pu92Y4RsVrj/2fWDDuxw2X6Udv5ZmDhLsaNp55f28bmvm/tTzr/cWQXY+o+M37aayI15staU0mSJEmSBs3GaJIkSZIkqScR8fJOG1mNMNdawP41p1rtlAjw1ZrYZyNi0Q7WXQN4fyWcLebu1e2V43UjYka7gyNiBeCz/UxowL5ROV4Y+EZELNDO4IhYrGaOtjR24TyuEl4AOD0iFulmzknkYzWx9zaazE0amfkA8GglvHMnc0TEkcD2PaRxX+X42T3M1bHM/DdwTiW8AvDhDqd6B1At1PpdZl7ZbW6SJEmSJEmSNGiNvxedw9Df3d4A7AssnZk7ZOarMnO/zNyC8kX845uuXRA4LSJWabHEvZXjpSOiky9A122E45dqJUmSJM3TMnM28NGaUx9o8W+qmZS6rmZnNObp1XeBpyux17Rbv9ah8yj/Dmz+WSEzrx2DtXoyQeqyqqqNzqYAh0bEFODQyrmruqh7qtZ2bt3J5pQRsSHwgQ7XHITq44QOX1tKbdo6fcil2Vsbze3b0ri22pztCeCkfiYF832tqSRJkiRJA2NjNEmSJEmS1Ks9gL9GxIkRsX63k0TEypQvplQbmt0N/HKEoecB11diMygFB1PbWHdp4Ec16/4kM6u7UvbD/9XEPtXOwIhYhtIkrpudCCeqE4BbK7GdgZMjYqGRBkbEUpTnY8Me1v8Ew3dAfD5wTuPe6FhErBERx0bERj3kNaYaRV8/qISnUR73tt3MGRELRcTrIuKdPSfYmYsqx9tHxO7tDIyIXYEv97j+1ZXjjZp2Ih0vX6iJHRURr2pncETsQn2zvM/1lJUkSZIkSZIkDd5ngObf1/8UeF5m/qDuC/SZeXtmvg44qik8nfov7EP5G8fDTccLAJt3kN8La2JLdjBekiRJkiar0xle97cy8Iaaaw+riZ3WjyQy827gZzV57NaP+StrZWbeUfm5q9/r9NGg67KGyMxLGH7PzAR2BFavxE/oYolqbeditLk5ZWNz3B8DI9Y8TgSNe65aG3twRGzSzviIOIyxaQC3EHB2O3WbjWvOZvjzfXqjidlYmC9rTSVJkiRJGiQbo0mSJEmSpH6YSikwuS4iLo2It0RE3Q73w0TEohHxBuBK4Lk1l7wnMx9vNT4zEzgCqH555RXAz0faQS4itqIU71QLOu5n+E5y/XI+8FAltn9EfGuk3QUjYmfgUp75Ms2DY5TfuMrMh4DX1Zw6GPhLRLw6IoZ8ASgiVoyIt1CKnLZrhG8C7uxi/TuA1wBZObUL8MeIOKTNBnvPiogDIuJs4O/AW4C63UsnktdTnrdm04ELIuIzEbFiO5NExFYR8TngZuCbwFp9zXJ0Z9bEvhcR+7YaEBELR8SHKE0R5+7Y2O176uLK8RTg+xHRyRffepKZFwNfr8nj1Ig4OiIWrBsXEQtExLuAHwLVa87JzHP6n60kSZIkSZIkjY/GpjxHNoVuBvbNzMdGG5uZn6dszjPXwXW/N8/Mp4HfVcKvbjO/AA6pObV4O+MlSZIkaTLLzDnAR2pOvT8i/rPJaURsB6xTueb6zPxjH9Opa7J2RB/nn6wGXZdV58TK8drAlyqxJ4HvdDH3D4A5ldh7IuKjI9UQRsSBwCXAsxuhyVDbWX1tpwHnR8T2rQZExFIR8SXg2zzzveR+Pda5NcLPBS6KiC1HyGMLShO7ar3x3cD7+pTPMPN5rakkSZIkSQMx6j+0JUmSJEmSOrRV4+fYiLgZ+D1wLXAPcC+lKGAJYA1gY8pufa0agp2ZmSePtmBmXhwRHwGOqZzaAbg2Ii4AfgXcBiwArAbsDmwNRHU64PWZ+c/R1u1GZt4XEV8APlQ5dQSwV0R8H7gCuA9YilIs8zKGFnHMBt7O8CKfSSkzfxoRHwP+q3JqbeAUYHZE3ElpWDcdWI6hr9uTwKEML1CrNstrtf4PGsVYH62cWhM4FfhsRFwIXE4pnnmEcg8v1chxc8q9POF3e2yWmfdGxJ6U5oDNzeemAu8G3hYRlwC/BW6l3JMLUR73SsDzKI99ufHMu8YplB0omxuyLUZpTnYF8BNKAdFTwPLAZpT31LJN11/buK6bwqgfAbOAZZpiWwGXRcRDwL95pnDrPzJz0y7WGslRwDZA8+6RUym7lr4xIs4B/kz5LF4a2ADYB1i1Zq5/MfTLgpIkSZIkSZI0Gb2BoZtCfCQzH+1g/Ocof0+iMc+uwEk1151G+RLsXIdFxNcz80+jzP9Whn+5H2yMJkmSJGn+cSbwQWDDptgKwJuAzzaO6xqUndrnPH5EafC0RFNsj4hYPjPv6vNak8mg67LqnAp8nFIHOtdzKtf8JDPv7XTizPxrRJxGqUVs9kFgZkScRam/ephSK7YesCdDn59HKY+1usnlRPMFSkOupZpiKwK/jojfAj+jNJif04hvDexGef3nuoBSk1t9vrrxaeBdjfk3AC6NiIuAn1Jq2aDU/e5KqZGrq/t9Y2be3YdcWppfa00lSZIkSRoUG6NJkiRJkqSxNKPx042T6WDXxcz8aEQEw3eRnEYphti1jWmeAg7LzLqdDvvpf4DtGj/NlqV8SWckSSn8urD/aQ1OZn4wIpJSRFS1ALBy46fqCeDgzLyoZre9tncjzMz/iYh/A19l+O57KwAHNH7mKZn5l8YOimcztKEWlC951d2nE0pmPhUR+1EavC1aOf38xs9IbgP2AGZ2uf7jEfFOymdW1eKUArgxl5mPRcRLgHOB6o6ZywOvb3Oq64BdM3NWP/OTJEmSJEmSpAF4adP/zwbO6nD8RcDTPFNruw31jdG+CxzNM1+Engb8JCJ2zcxr6iaOiAN45kv+VXM6zFOSJEmSJqXMnNPYELVar/feiPg6pW7sldVhwHf6nMdjEXE2Q+uHplEaPrX6t9s8b9B1WS1yuj0izm/M28oJPSzxNkrt1fqV+KrAO0YZ+xSwH6U52oSWmbMi4mDgxwxtMgewbeNnJH+hPNYv9Cmlm4CDKXWMC1Aan23T+BlNAm/IzB/0KZeRF5tPa00lSZIkSRqEKYNOQJIkSZIkTXqnUgqN7u/TfP8AXpGZMzNzdicDM/MY4EDg312sey3w0szsa9FUncx8CngFpYFRJ+4H9s/M4/qf1eBl5n8DOwN/a3PIn4AXNxW0LF05/0CH658AvBD4VSfjajxO+RLUP3ucZ1xk5t+ArYDPU3Yo7MXlwHk9J9WhzLwS2AW4vcOhlwIvyMybe1z/FOBI4KFe5ulVY8fLHYBvUL6s19Fw4HTgRZk5Ke5dSZIkSZIkSWolIhYGNmsK/QuYHhEz2v2hbNjS/PevtaiRmU9Tvrz7ZFN4VeCKiPhaROwSEetHxHMj4oCIOJfyd4RpjWtvrUzZr7+5SZIkSdJkcBbw50psOeCtwEEMb8h1UWbeMgZ5nFYTa3tj13nVoOuyWhip8dntwM+6nTgzHwB2ouTfiX8DO2XmuNfOdauR6350sAFtw7nANpl5X5/z+TGwF539XmQWZWPdca2pnV9rTSVJkiRJGm82RpMkSZIkST3JzN9l5iHA8sCOwDGUP/Y/3ME0d1Kaq+0BrNcocOg2n+8CawPvBa6gNPtp5WnKboZHAhtn5m+6XbdTjQKaPSlflKkWdlXdBXyG8tycNda5DVJm/gLYEHgZcCJwNXAPMJvS6Owq4DhKsdXzM/NygIhYnOFFcLO6WP9Pmbkj8ALgFIZ/GamV2ynFca8BVszMAzPzrk7XH5TMfDQzjwJmAEdTGpy105jwccr7/f8BG2bmFoMq7srMi4BNgE8zenHU5ZTX6kWZ2e5rPNr63wZWAQ6jNIy8kvLefawf83eQx6OZ+UZgI0oR4B2jDJkFnAFslpkH97tgTZIkSZIkSZIGZEWeaTwG5fffN3XxM71pjmVaLZaZvwcOofzefK4FgTcC5wPXUf4e9F3K38Pm+iFwUmU6G6NJkiRJmm9kZlLqlareDby+Jl7XwKwffg3cVomtHxFbj9F6k8ag67Jq/IRSU1jnlE435K3KzNuAbYG3UDb6HcktwH8D62fmb3tZdxAy8xxgY+CbjFznNge4kLLp8cszc0x+d5GZ5wIbAF9l5IZtdwNfoTzvZ4xFLqOZX2tNJUmSJEkaT1F+dyhJkiRJktRfERGUJkHrAKsDSwCLUxqVPQg8RPkD/9WZOVrjnl7yWAHYgtK4bTlKs6e7Kc2CLm00KBu4iFidsoPcCpTn6nHKLoLXAH9Of4kzooh4KfDzSnjHzOx1Rz4iYm1Ksc2yjZ8FKY3/HqB8Ker6ebEwJSKW5Jn3zrLAkpTip4co9+YNwD96LSQbCxGxALA5pcnedGAqJe+bgMvH8jNnoml8Fm9M+SxeHliK8hl8N888H3MGl6EkSZIkSZIkDRcR21O+lD7XLZk5o4Pxm1G+jN1PN2fmmqOsuznwNcrv10fyFPBx4GON649sOveOzPxSL4lKkiRJkjQW5se6rIhYF9iSUn/6LOARShOsP2fmDYPMrZ8iYiFgK2A9Sr3gFEojvBuByzKz441qe8xnGuX3Kxs28plDqTm+CbhkgtYtzpe1ppIkSZIkjRUbo0mSJEmSJGnSi4gvAm9vCs0Bls7MkXYNlCRJkiRJkiRJE1AfGqO9ELi4z2m1nUNjQ5c9gW2AlSmbVswCbgH+Fzg1M29qXHsR8KKm4S/OzN/1MW9JkiRJkiRJkiRJkqRJZeqgE5AkSZIkSZJ6ERHLAEdUwlfZFE2SJEmSJEmSpPnWPZXjn2fmLuO1eGb+AvjFaNdFxDRgs6bQ08AVY5WXJEmSJEmSJEmSJEnSZDBl0AlIkiRJkiRJ3YqIAE4GFqucOm4A6UiSJEmSJEmSpInhzsrxugPJYnQvAhZuOv59Zj42qGQkSZIkSZIkSZIkSZImAhujSZIkSZIkaeAi4tCI2KnDMUsAZwMvq5y6HzitX7lJkiRJkiRJkqTJJTMfBK5pCs2IiHUGlc8Ijqgcf2sgWUiSJEmSJEmSJEmSJE0gNkaTJEmSJEnSRLA18IuIuCEiPhkRO0TEMtWLImJaRGwREf8D3ATsVTPXWzLz4bFOWJIkSZIkSZIkTWg/qxy/diBZtBARawH7NoXuB743oHQkSZIkSZIkSZIkSZImjMjMQecgSZIkSZKk+VxEfAN4fc2peyhfBHoCWAqYDiw0wlTfzswj+5+hJEmSJEmSJEkaLxGxPfDrptAtmTmjwznWBq4DpjZCjwObZ+Y1/cixFxGxAHA+sFNT+N2Z+bkBpSRJkiRJkiRJkiRJkv4/e/cdZldd5w/8faaldxJCSEJIUSBIR5CiCLrYVkXFFdYCKIKr+0OxLbsqqCyru7rqrgW7riKyomJdsAUbKkgRUFqAkGAoIb3PJHN+f5wh0yczaTfl9Xqe88z99s+dmXufBE7el51GXa0LAAAAAIA+7JVkZpLZSfZN36FolyY5d0cUBQAAAAAA7NzKspyb5MsdugYn+XFRFAcNZJ+iKAYVRXHWZuY09DXeZW5jkq+lcyjajUk+PpC6AAAAAAAAAAB2V4LRAAAAANgZ/DbJvC1c+7MkzyrL8r1lWZbbriQAAAAAAGB7KopiclEU07peSSZ2mdrQ07y2a68+jrgwye0d2lOT/LEoin8timJKH3UNKYriOUVR/FeSBekcsNaT5xVF8ceiKP6ht33bAtZOa6vnjA5DS5O8tizLjZs5AwAAAAAAAABgj1D4t6IAAAAA7CyKojgkyYlJnp5kRqp/oDQ6yZAkG1L946DFSe5J8qskPyvL8i+1qRYAAAAAANgaRVHMS7LfVm7z1bIsz+rjjClJfpLkgB6GH0hyd5JlSRqSjEoyLcnMJPUdJ5ZlWfRxxouS/KBD18NJ/pJkSZLGJHsnOTzJsC5LFyd5YVmWf+htbwAAAAAAAACAPU1DrQsAAAAAgCeVZXl7ktuTfKrWtQAAAAAAALu+siwXFEVxdJLLk/x9l+HpbdfmLBvgsZPbrr78Nslry7J8YIB7AwAAAAAAAADs1upqXQAAAAAAAAAAAAAAbC9lWa4qy/LVSQ5N8vUkS/uxbGGSK5KcnmTiZub+OclXkzy6uVKS/KptzxOFogEAAAAAAAAAdFeUZVnrGgAAAAAAAAAAAABghyiKoi7JIUkOSjI2yegk65KsSDIvyV1lWS7Ywr2nJXlakilJRqX6EOMVSe5P8oeyLBdvXfUAAAAAAAAAALs3wWgAAAAAAAAAAAAAAAAAAAAAAABAzdXVugAAAAAAAAAAAAAAAAAAAAAAAAAAwWgAAAAAAAAAAAAAAAAAAAAAAABAzQlGAwAAAAAAAAAAAAAAAAAAAAAAAGpOMBoAAAAAAAAAAAAAAAAAAAAAAABQc4LRAAAAAAAAAAAAAAAAAAAAAAAAgJoTjAYAAAAAAAAAAAAAAAAAAAAAAADUnGA0AAAAAAAAAAAAAAAAAAAAAAAAoOYEowEAAAAAAAAAAAAAAAAAAAAAAAA1JxgNAAAAAAAAAAAAAAAAAAAAAAAAqLmGWhcAtVYUxagkz+rQtSBJc43KAQAAAAAAAADYGk1JpnRo/7Isy+W1KgYA3KMHAAAAAAAAAOwm3J+3gwhGg+qGq+/VuggAAAAAAAAAgO3gJUm+X+siANijuUcPAAAAAAAAANgduT9vO6mrdQEAAAAAAAAAAAAAAAAAAAAAAAAAgtEAAAAAAAAAAAAAAAAAAAAAAACAmmuodQGwE1jQsXHNNddk5syZtaoFAAAAAAAAAGCLzZ07Ny996Us7di3obS4A7CDu0QMAAAAAAAAAdnnuz9txBKNB0tyxMXPmzMyePbtWtQAAAAAAAAAAbEvNm58CANuVe/QAAAAAAAAAgN2R+/O2k7paFwAAAAAAAAAAAAAAAAAAAAAAAAAgGA0AAAAAAAAAAAAAAAAAAAAAAACoOcFoAAAAAAAAAAAAAAAAAAAAAAAAQM0JRgMAAAAAAAAAAAAAAAAAAAAAAABqTjAaAAAAAAAAAAAAAAAAAAAAAAAAUHOC0QAAAAAAAAAAAAAAAAAAAAAAAICaE4wGAAAAAAAAAAAAAAAAAAAAAAAA1JxgNAAAAAAAAAAAAAAAAAAAAAAAAKDmBKMBAAAAAAAAAAAAAAAAAAAAAAAANScYDQAAAAAAAAAAAAAAAAAAAAAAAKg5wWgAAAAAAAAAAAAAAAAAAAAAAABAzQlGAwAAAAAAAAAAAAAAAAAAAAAAAGpOMBoAAAAAAAAAAAAAAAAAAAAAAABQc4LRAAAAAAAAAAAAAAAAAAAAAAAAgJprqHUBAAAAAAAAAMDOoyzLtLa2pizLWpcCu42iKFJXV5eiKGpdCgAAAAAAAAAAAMBOTTAaAAAAAAAAAOzByrLMunXrsnLlyqxcuTLNzc21Lgl2W01NTRkxYkRGjBiRwYMHC0oDAAAAAAAAAAAA6EIwGgAAAAAAAADsodasWZOFCxempaWl1qXAHqG5uTmLFy/O4sWL09jYmEmTJmXo0KG1LgsAAAAAAAAAAABgp1FX6wIAAAAAAAAAgB1vzZo1mT9/vlA0qJGWlpbMnz8/a9asqXUpAAAAAAAAAAAAADsNwWgAAAAAAAAAsId5MhStLMtalwJ7tLIshaMBAAAAAAAAAAAAdNBQ6wIAAAAAAAAAgB2nLMssXLiwWyhaY2NjRo4cmeHDh6exsTFFUdSoQtj9lGWZlpaWrFq1KitWrEhLS0unsYULF2bGjBledwAAAAAAAAAAAMAeTzAaAAAAAAAAAOxB1q1b1ymUKUlGjBiRfffdVygTbEeNjY0ZOnRoxo8fn7/+9a9ZuXLlprGWlpasX78+gwcPrmGFAAAAAAAAAAAAALVXV+sCAAAAAAAAAIAdp2MYU1KFNQlFgx2nKIrsu+++aWxs7NS/YsWKGlUEAAAAAAAAAAAAsPMQjAYAAAAAAAAAe5CuwWgjR44UigY7WFEUGTlyZKe+rq9NAAAAAAAAAAAAgD2RYDQAAAAAAAAA2EOUZZnm5uZOfcOHD69RNbBn6/raa25uTlmWNaoGAAAAAAAAAAAAYOcgGA0AAAAAAAAA9hCtra3d+hobG2tQCdDQ0NCtr6fXKAAAAAAAAAAAAMCeRDAaAAAAAAAAAOwhyrLs1lcURQ0qAerqut+209NrFAAAAAAAAAAAAGBPIhgNAAAAAAAAAAAAAAAAAAAAAAAAqDnBaAAAAAAAAAAAAAAAAAAAAAAAAEDNCUYDAAAAAAAAAAAAAAAAAAAAAAAAak4wGgAAAAAAAAAAAAAAAAAAAAAAAFBzgtEAAAAAAAAAAAAAAAAAAAAAAACAmmuodQF0VhTFAUkOTTI5yZAk65I8nmRukj+VZbl6K/ZuTHJ8kqlJ9kmyKsnCJLeWZTlv6yrvdtb+SQ5LMinJ8CSPJHkoyQ1lWbZsy7MAAAAAAAAAAAAAAAAAAAAAAADY9QlG2wkURTE6yQVJzkkVWtabjUVRjXXTagAAIABJREFU3Jbk6rIsPzSA/ccneX+Sv0sytpc5NyT5z7Isv93vwnve5xVJLkzyjF6mLCmK4qok7yvL8omtOQsAAAAAAAAAAAAAAAAAAAAAAIDdR12tC9jTFUVxepK5SS5J36FoSVKf5Mgkbx3A/s9PcmeSN6WXULQ2xyW5uiiKrxdFMay/+3c4Z3hRFFcm+VZ6D0VLWw1vSnJnURSnDvQcAAAAAAAAAAAAAAAAAAAAAAAAdk+C0WqoKIqLk/xvknFdhuYn+VmSK5N8N8nvk6zegv1PSnJNkgkdusskN6cKMPtpkie6LPv7JFcWRdHv342iKOqTXJXkVV2GFiX5SdtZt7Sd/aS9k3yvKIoT+nsOAAAAAAAAAMBAzZ8/P+95z3ty4oknZu+9905TU1OKoth0feUrX6l1iQAAAAAAAAAAAAC0aah1AXuqoijenuSSLt1XJvm3sizv6GF+XZJnJHl5klP7sf/kJN9J0tSh+7dJzi3L8q4O8wYlOS/JR5I0tnX/bZJLk/xzP5/Oh5K8oEO7JcmFST5XlmVzh7MOSvKFtueRJIOSXFMUxdPKsnykn2cBAAAAAAAAADvAtGnT8tBDD21qz5kzJyeddFLtCtoCn//85/OP//iPWb9+fa1LAQAAAAAAAAAAAKAf6mpdwJ6oKIpDU4WJPaklyellWZ7ZUyhakpRl2VqW5W/LsrwwyaH9OOb9ScZ0aN+Q5DkdQ9Ha9l1fluV/JXlll/UXFkWxXz+ey/QkF3TpPr0sy092DEVrO+svSU5J8rsO3eOSXLy5cwAAAAAAAAAABuLHP/5xzjvvvH6Hol1//fUpimLTdckll2zfAgEAAAAAAAAAAADopqHWBexpiqJoSPKldP7en1eW5dX93aMsyw2bOWNWktd16GpOclZZluv62POaoii+2mHdoFSBZedsppyLkzR2aH+lLMvv9XHO2qIozkpyR5Kmtu7XF0Xx72VZPrCZswAAAAAAAAAA+uWiiy5KWZab2meeeWZe//rXZ8qUKWlsbL/VYa+99qpFeQAAAAAAAAAAAAD0QDDajnd6kiM6tH9eluWXt/EZZyap79D+TlmW9/Vj3YfTOVDtlUVR/ENvgWpFUQxJ8ooe9uhTWZb3FkVxTZJXtnU1tNV8aT9qBAAAAAAAAADo0z333JPbb799U/sFL3hBrrjiihpWBAAAAAAAAAAAAEB/1NW6gD3QeV3al22HM07r0u5X8FpZlncl+UOHrmFJ/qaPJacmGdqh/buyLO/uV4Xda3pZP9cBAOycWlYkC76T3PfZZNUDta4GAAAAAAD2aH/84x87tV/xiq6f+wYAsIdZdmdyxweSez+drF+SbFiblK21rgoAAAAAAAAAoJuGWhewJymKYmaSZ3XompdkzjY+Y2KSQzt0bUjy2wFscX2SYzq0n5/k+73MfV4Pa/vr16lqe/J38PCiKPYuy/KxAewBALBzWL0g+flJ7YFoRX1y/FXJ1JfXtCwAAAAAANhTPfZY59sPJk+eXKNKAABqbMV9ybWHJxtWt/f98c3tjye9MDnua0nTmB1fGwAAAAAAAABAD+pqXcAe5tld2j8vy7Lcxmcc3KV9e1mWq3uc2bMburRnD+Cs3/X3kLaa7hjAWQAAO69b39keipYk5cbkd69JNq6rXU0AAAAAALAHW7VqVad2Y2NjjSoBAKihJbck1x3dORStq4U/Sm56y46rCQAAAAAAAABgMxpqXcAe5uld2r9LkqIoiiSnJPn7JMck2TfVz+aJJPcl+VmSb5ZlOa8fZxzUpT13gDXev5n9OjpwG5x1eJezfjHAPQAAam/+Vd37Nq5NFnw3mXbGjq8HAAAAAAB2IWVZ5pZbbsndd9+dxx9/POvXr8/48eOz77775oQTTsjw4cMHvGdra+t2qBQAYBfSvDz59cuTluWbnzv/quTIjyeDx2//ugAAAAAAAAAANkMw2o51VJf2XUVRTEvyxSQn9zB/att1SpIPFEXx+STvLMtyTR9nzOzSnj/AGh/q0h5XFMWYsiyXduwsimJskrFbeVbX+bMGuB4AYOe26DeC0QAAAAAAoBdPPPFELrvssnz961/PokWLepzT1NSUk08+OZdcckmOOeaYXveaN29e9t9//17Hn/3sZ/fY/+Uvfzlnn312j2Pvf//78/73v7/XPefMmZOTTjqp13EAgJopy+SmNyWr5/Vz/sZk8R+SfV+0XcsCAAAAAAAAAOiPuloXsIfZp0t7aJKb0nMoWleNSf4hyW+Koui6T0eju7Qf7395SVmWq5Ks69I9qh/nrCnLcvVAzkr32no6BwBgF1bWugAAAAAAANgpXXPNNZk+fXo+9rGP9RqKliTNzc259tprc+yxx+a8887Lhg0bdmCVAAC7qAXfTh66cmBrfvm3ycb17e2NzckdH0x+eFDyf0cm9302KVu3bZ0AAAAAAAAAAD1oqHUBe5iuYWJfTrJX2+PVSS5P8n9JHk4yLMmhSc5JckKHNYcn+XZRFM8qy7KlhzOGd2mv3YI61yYZ3KE9Yjue01FP5wxIURQTkowf4LIZW3suAAAAAAAAANA/X/rSl3LuueemtbVzsMaMGTNy0EEHZejQoZk/f35uvPHGbNy4cdP45z73ucyfPz8/+MEP0tDglhcAgF5Nen4y49zk/s8PbN1Vg5PxJyQT/ya5432dx246P1l6azL5tGTQuGTMYUld25/JHvtl8vj1SdOYZOzRyYgZSfOyZOi+yaO/SFY/lOzzN8mIWUlRbJOnCAAAAAAAAADsvtwluoMURTEoyaAu3ZPbvv4lyfPKslzQZfyWJF8uiuLtST7Sof8ZSd6d5NIejuoaWLZuC8pdm2RMH3tuy3P62nNL/EOSi7fBPgAAAAAAAAB01bohWfNwravY/Q2d3B4ysZu57bbb8qY3valTKNphhx2WT33qUznuuOM6zV20aFHe+9735rOf/eymvmuvvTbve9/7ctlll3WaO3ny5Dz44IOb2h//+MfziU98YlP7yiuvzLHHHtutnr322isnnXRSkuT3v/99zjjjjE1jF1xwQd761rf2+lwmTpy4mWcLAFAjDcOSYz6X7HNqcuO5SfPS9rG6pqS1ufe1i35TXT2Z+9nq2lrjjk2W/SnZ2HYb6eSXVH2DxyeLb0we/VkydGoy6XnJ6EPbAteOSOoaq/mr5iWL/5AUdcm+L66e04bVSVFf9dUPStY+ksz/VjV/ysuqP2MPRMuqqr7B/fis3nWPV9+zsjXZ53lJ47a4HRYAAAAAAAAA9ly75120O6f6XvqXp+dQtE3KsvxoURT7Jnlbh+63FUXx8bIsV23m3HKAde7sawAAdh2lP+4AAAAAALuZNQ8n39+/1lXs/l78YDJ8Wq2r2C5e//rXp7m5PYjjhBNOyHXXXZehQ4d2mzt+/PhcfvnlmTlzZt75zndu6v/whz+cM844I0972tM29TU0NGTatGmb2qNHj+6018SJEzuNdzR8eBVcMW/evE79o0eP7nUNAMAuYerLk3FPT3736uSJ3yXPvSFZeV9yw5m1rWvx7zu3H/5edXW06oHk8eu3zXk3X5A0jkqmnJZsXFddQ6cm089Kxh5ezVl4bXLXR5Lld1RBZx01DKsC2B66snN/XWPS2tL9vNFPq0Lp6odWAW1No5Ipp1cBdWsXJkv+mBQNyYhZyV7HJOsXJy3LkwnPTJbcWs2bcEIybL9t8/wBAAAAAAAAYBcjGG0HKctyTVEUrUnqugz9Z1+haB28N8k5SUa1tccmeX6Sb3WZ1zUobchAa+1hTU/hazvqHAAAAAAAAABgNzBnzpzccsstm9ojR47MVVdd1WMoWkfveMc78stf/jI//OEPkyStra352Mc+li996UvbtV4AgN3CsCnJyb9IFt+YjDuqCu1qGJZsWF3rynasluXJA1/p3Hffp5Pjr6zC4v70z72v3bC6eyha0nMoWpIsu6O6OrrrIwMqN0kV5jb7X5Kppyet65MV9yarH0we+Umy4u5kw6pk3WPt8+sHJyOe0vYzHpEMm5pMeFYy9oikblBSFAOvAQAAAAAAAABqQDDajrU6yYguff/Tn4VlWa4uiuI7Sc7u0H1SBKN19el0/55szowk39vsLAAAAAAAAABgi331q1/t1H7zm9+cSZMm9Wvthz70oU3BaEly5ZVX5jOf+UwGDRq0TWsEANgt1dUn459RPa4flJwyJ7nu6bWtaWdQbkh+c3qtq+hdy/LktndVV39sXJcsu726enLEx5KnXiAgDQAAAAAAAICdXl2tC9jDLOvSfqwsy3kDWP/7Lu0De5izvEt7/AD2T1EUw9M9sKxr3T2dM7QoimEDOSvJhH6cMyBlWT5eluWfB3IluX9rzwUA6FlZ6wIAAAAAAGCn8Zvf/KZT+9WvfnW/186ePTtHHHHEpva6dety8803b7PaAAD2KOOOTl78QDK4622c7NZueVvyYL8+zxkAAAAAAAAAakow2o51b5f2IwNcv7BLe1wPc+7r0t5vgGd0nb+kLMulXSeVZbk4Sdf+qVt5VtfaAQAAAAAAAIDdwNKlS3P//e2fWzZ69OgceGBPnwfXu+OOO65T+6abbtomtQEA7JGG75+87LHk9OXJ0ZfXuhp2lJvfmmxYUz0uy+oCAAAAAAAAgJ1MQ60L2MP8OckpHdrrB7i+6/zBPcy5q0t75gDPmN6l/Zc+5t6VpONdxzN7OH8gZw1kLQAAAAAAAACwi1i0aFGn9qxZs1IUxYD2OOCAAzq1H3/88a2uCwBgj9c4Mpl1XnUlycZ1SYpk1f3V4+H7J0tuTn7x3L73GTolqRuUlC1Ja0sy7phk/PHJre/Y7k+BAWhZlvzvsJ7HBo1PGoYnG1YkE5+b1A9OBu+TNC9O1j6aHPL+ZNTsZPFNSV1TMubwpNyQ1A/asc8BAAAAAAAAgN2eYLQd6/Yu7dEDXN91/uIe5tzZpX1IURRDy7Jc088zjt/Mfl3HOgajPSPJD/pzSFEUw5IcMoCzAAB2QT5VFwAAAADYzQydnLz4wVpXsfsbOrnWFWxzS5cu7dQeNWrUgPfoumbJkiVbVRMAAD2ob/vM3lEHtfdNfE7v8yf+TXLydb2P9xaMVjcoedW65BsDC8vdZPShybI/9TzWMCyZ8Oxk4Q+3bO891fpF1ZUkD32z+/hfv9/72iGTkoPenaxZkCz9U/LoT5MJz6p+n8YckUw8uQrLWz2/ClprWZE8/L2kaKjGJr80qWts32/NwuSxOUlRJJOenzSN2bbPFQAAAAAAAICdmmC0Hev/UqVjPHkXx/SiKAaXZbmun+sP7tJ+uOuEsiwfKYri9rSHjjUkOSHJT/p5xkld2v/Xx9xrk7yxj7V9OTGdf/9uLcvysQGsBwAAAAAAAGBHq2tIhk+rdRXsgsqy84eJFMUWBmBs4z0AAOinyS+pgqy6mnVe3+umvDxZ8O3u/Yd9aPNn1g9ONvZwi21Rnzz318m3xyWtLd3HX/iXZNjUZOP6ZN43kiduSAaNS4btn9x0/ubP7csZrcnczyY3vann8ef8KhkxMxk8MVlwdfU9a16ejDks2e/vqnrvuKTvkLFd0dqFyc0XdO57/JfV10euS/7yb72vnXt5++P6ocnGXj4LeviMZNTsZMPKpGlsFa7W2pIsvbV6PPE51c95+jnJ+OOqgLzm5cn6J5KUybD9Ooev9aVsrepfeV8yYlYV8lbU9W8tAAAAAAAAAFtNMNoOVJblwqIofpfkuLauxiSnJPlRP7d4Xpf2r3uZ9920B6MlydnpRzBaURQHJDmmQ9fqzay7LsnaJEPa2s8oiuKAsizv3txZSc7q0v5uP9YAAAAAAAAAALugsWPHdmovX758wHt0XTNmzJitqgkAgAGYeX73YLShU5NJL+p73bRXdw9Gq2usQsKSZNILk4U93Ea735nJyKdUIWJdHXxx0jgimXxaMv9/O49NeFYVipYk9YOSGWdXV1KFZ93y1p7D1vpjn1OTokgmPb/n8bFHJxNObG9PPb26upr9L70Ho71kXjJ0SnJlfe91HPah5LZ/6nnsqE8l085IGkYk3+xnCNjOpLdQtCRZdX919ebRn1ZfH/pm73PqBiWt67estiSZ8Ya2B0Wy4q6keWkV1DdkUvKUtySD965C4oqG6uufLqqC2SY8Kxl5QDJ8ehW6NuVl1e/30tuSNQuTvY5NBnX4O9PG5iqIrc6t/gAAAAAAAMCeyf8t3fG+nPZgtCS5MP0IRiuK4sQkT+/Q1Zrkx71MvyLJe5I8eVfEy4qimFWW5X2bOebdXdr/W5Zlr3d/lGW5piiKq5O8psseZ/d1SFEUT0lyWoeuDUm+sZnaAAB2PWVZ6woAAAAAAGCnMH78+E7te++9d8B73HPPPZ3aEyZM2KqaAAAYgEnPS46/KvnLh5JVDyTjT0ye/pmkvqnvdVNemhz+H1XA2YbVVXDUcV9PhuxTjU89vedgtP1fk4x8anLXR5MNK9v7G0Yk019bPX765UnzsuTRts8AHndMcvyVvdfSODKZ9prk/s/3+2lvUtQlT31b9XjYfsm0v0/mXdF5fPZF/dtr7BHJ4InJukc79488oAqbK4pk5huTuZ/rvnbGG5ID35nc++lkzfzOY42jk+lnJw1tn3d85H8lN/+//tW0p9iaULQkuf8LPfcvuz155Nre1z3+y+p60p/6+buSJPVDqtC1Q/81WXxTsurBKmCtcXhSNCYjZiV1bbeMr16QrH4oGXNI9fsOAAAAAAAAsIsSjLbjfTlVGNqBbe2Ti6K4sCzL/+xtQVEUE9rWdfS/ZVn2+LFnZVneVxTFV5Oc09bVlOQrRVGc0lvQWVEUL0lyVoeu5iTv39yTSXJJklclefJj5c4qiuK7ZVn2+FF2RVEMbnsuHe+E+WJvzwUAAAAAAAAA2PWNGTMmM2bMyP33V7cHLFu2LHfddVcOPPDAzaxsd8MNN3RqH3300du0xqIotul+AAC7nf1eWV1lWYV39deB70ieekGy5q9VqFjHtfv9XTL/W53D0aa9Jpn43Crs6Tm/TG57V7L0T8mYQ6uQtWH7VfOaxiQnX5esezxpbUmG7rv5Wo7676R+cHLvf/c97/TlyW0XJY/9Ihk6JTngbcmkU9vHj/1KMvppycIfJ4P2SmacW4XH9UddQ3LYh5I/nJOUrW19TVXfk9+bqaf3HIy236uqELaD35vceG7nsdn/1B6KliSzzk9W3JXc95n+1cXOaePa5K7/qK6BGLJvsu+LqoC0Jbckj/2883jTmOq1NPm06jU0bGoVXDhsWjLmsKRpVPvc1o1JuaG61ixMhk5KGoZVY2WZpKx+LwEAAAAAAAC2EcFoO1hZlhuLorggybVJnvw/wB8timK/JJeUZbm04/yiKJ6T5DNJZnToXprknzdz1MVJTksypq19XJKfFUXxhrIs7+6w/6Akb0zy0S7rP1qW5UP9eD4PFEXxiSTv6NB9dVEUFyb5XFmWzR3OOjDJF9pqedLi9C+ADQAAAAAAAADYhZ1wwgmbgtGS5Iorrsill17ar7V33XVXbr755k3twYMH58gjj9ym9Q0aNKhTe/369dt0fwCA3caWBMrWNSbDp3Xvrx+cPPO7yaM/T5bdnow9Mtn75PYzxh6enPzTvvcePKH/ddQPSo76r2Taq5OfHNPznHFPr8Kkjv5U7/vUNSQHvbu6tsT01yUjZiYLvluFok19efXcn7T3KVX42Z0fbO+b/Z7qe5MkM9+QDJmYzPtGFVY15eVVyFynGhuToz+dHPiuZN7Xk9vfu2W1smta+9dk7md7H29eWl1Lb+t7n0F7Jeuf6HmscXTSsqzt8cgq0G/GG6vX5BM3tO1dJJNekIw/rgpgaxxVvX7qB3feqyyTjevaw/02Nle/wy3Lk3WPJSNmCV8DAAAAAACAPYhgtBooy/KnbeFoHT9u7v8leVNRFL9P8tckQ5IclmS/Lsubk5xRluWDmznj4aIoXpbkuiRNbd3HJ/lLURQ3J3kgyagkRyQZ32X5D5MM5O6Hf0oyO8nz29qNqZ7be4uiuCXJyiTT287qeDdMc5LTyrJ8ZABnAQDsQspaFwAAAAAAADuN1772tfnqV7+6qf3JT34yb3nLWzJx4sTNrr3ooos6tV/1qld1CzLbWqNHj+7UfuQRtzMAAOwQdY3JpOdV144y7qjex0Y8ZcfUMP746upJUSSHfCCZ+cZk6Z+S0Yckw6Z0nrPvi6prc4ZPSw5+TxVudc8ntrrsfusrUItdR18/wydD0ZKkZUVy/xerq6u7/r173/AZVahfw/Aq8GzVvGTDyr5raRyZjH9msvqBKmCttTlZcnPSNDYZPj1Z8sdq3pgjklnnJavnJ+sXJQ9fk6xfnJQbq/HpZ1evrVUPVO8/409MBu+dbFhVBRXWb9u/awIAAAAAAAADJxitRsqy/GRRFBuTfCTJ0LbuxiQn9rHssSQvK8vyhn6ecX1RFKcl+Uraw8+KJEe1XT25Msm5Zfnk//nt1zkbi6J4ZZIvJOn4cXMTkvR2l8rjSV5XluWv+3sOAAAAAAAAALDrOvnkk3PYYYfltttuS5IsX748Z5xxRn784x9nyJAhva772Mc+lu9973ub2kVR5G1ve9s2r2/69OlpampKc3NzkmTOnDlpaWlJY2PjNj8LAIAaK+qqsLFlt3cf2/+1O76e3gydXF3bwuTTeg5GK+qSsnXbnJEkIw9IXnRXe/vx3yR3XJI89vMq2OqkHycjD0zu+Xhy5wfb5zWMSA56V3L7QD7bmV3WqvsHvqZlRbLwh937m5ckS5a0t5fektx4Xu/7PPDl6toS445JhkxKRh1UfR00Llk5N3nom8mah5OppycjZlWvq5Vzk33/Nhl9cLL20WTYfknL8mTtI1XQYcPIpGlMUle/ZbUAAAAAAADAbkwwWg2VZfmZoih+kuSSJC9JMqKXqY8muTzJx8uyXD7AM35cFMXBSd6fKrRsTC9Tf5/kI2VZfnsg+3c4Z1WSVxVFcXWStyc5tpepS5JcleTisiwXbclZAAAAAAAAAMCO9+ijj2bevHlbtHbatGlJki9+8Yt5xjOesSl87Prrr8+JJ56YT33qUznmmGM6rXniiSdy8cUX59Of/nSn/ne961055JBDtqiOvjQ1NeX444/PnDlzkiTz58/Pi1/84px//vmZNWtWhg4d2mn+xIkTM3jw4G1eBwAAO8j0s5JbLuzcN2y/ZO+Ta1LOdjfhxGSfU5NHrmvvG7x3cvyVyc97ec4HvD25+6Pd+8cdmxRF8sTvuo8ddFGXc09ITvlZ93mHfKC6yrJqF0X1ddFvk0eu7T5//AnJc36VPPg/ybyvJxvXJlNflTzlzcmvXpr89fs9P4ckOfK/kmV3JPd/vvc50B+L/1B9ffi7PY93/R2be/nA9h8yKZnysmTFvVWQ4NqFSeOIZPW8ZPiMZOmtSf3QKoBw7JFVMNvkl1QBa/VDk41rkpZV1dqV9yStLcnYo5K6huq1tnFNFTBXNCSNo5LWddVcAAAAAAAA2MkIRquxsizvT/KaoiiGJDk+yeQkE5M0J1mU5E9lWfbwcXQDOuPxJG8qiuKCtjP2aztjdZK/Jrm1LMsHt+aMDmddneTqoij2T3JEkklJhqUKd3soyW/LsmzeFmcBAOz8yloXAAAAAAAA28wZZ5yxxWvLtrCDI444Ip/85Cdz/vnnp7W1NUly880359hjj83MmTMze/bsDB48OAsWLMiNN96YDRs2dNrnuc99bj74wQ9u+ZPYjAsvvHBTMFqSXHvttbn22h5CGZLMmTMnJ5100narBQCA7eypFyTrFiX3fjLZsDIZe3QVElZXX+vKto+iLnnm96ugpkW/SYbPTGadnwybmsw8v3uA09DJyaGXJvOvStY83Hls5huSDWu6B6PVD0kmv3iAdRWd25Nf0nMw2ow3VHOnv666utbam5N/lkw8JWndkDzwpaTc2H3O8d9Mbn1XsmZ+97HjrkimnVk9XvzHZN1j1XljDq36vlF0X7M5B7072dic3POxga9l97Z2YfWe1JMV97Q/XnV/svBH1eObL+jn5kV6vJ+tYUQy9fRk1dzk8V91Hpv5xmT/s5KxhydFfTL/6ur1OWTf6nU18ZTej2tZVe05aEIydFI/awQAAAAAAICKYLSdRFmWa5P08HFo2/SM5iRzNjtx25z1YJJtErYGAAAAAAAAAOw+zj333IwZMyZnn312Vq1atal/7ty5mTt3bq/rzjnnnFx++eVpbGzcbrW96EUvyqWXXpqLL744Gzf2EJgAAMDuo6hLDrssOeQDyYZVSdPoWle0/dU3JU/9f9XV0VH/XQWGPfDlpNyQjHxqcuJ3kvrBySnXJ79/XRWC1jQuOfAdyfRzqvkr7k7u+0ySMmkam5x49dZ/H6edmdz/hWTJze19445Jpr6y9zX7nJrc9+nu/XWNyZjD2h43JBOf2z10rX5otX7JLcld/959bNILO9RxVPcz9joueeKG7v1Hfzq56z+rYKiOZp6XHPah6nFvwWj1g5PTVyaP/iy57Z+qwLbmpclBFyV/+bee18Bm9fIhnxtWVqGBPZn7uerqScffxfHHJ0OnJGsWJCvuTdYv6jx3+PTqfWPNgqRxVJLWZMjkKghu5T3JsOnJhGcme5+UlK3JoLHJ+iVJ44ikaOgcoFiWXdqtVfBhfVPnM1tbqq912++/IQAAAAAAALD9CEYDAAAAAAAAAGCHesUrXpFnPvOZueyyy3LFFVfkiSee6HFeY2Njnv3sZ+fiiy/Occcdt0Nq+5d/+Zecdtpp+drXvpYbbrgh9957b5YvX561a9fukPMBANjB6hr2jFC0vtQ1JMd8Ljnio0nzsmTYlPaxETOS5/4m2bAmqR/SHkhUNCRHfyo59NJk9fxk1Oxqn63VODI55RfJA/+TLLstGX1YMvMNVVhYbyY9P9nned1Dz/Y/Kxk0rr19yAeTxTcSLAWJAAAgAElEQVQmzUva+w69tPr5z74oWXJT8ljbZ1DXD06O+1rSNKrvevd7VfdgtLrGZMorkvHPTH75t8nqts+a3ufU5NDLOtT3uuTBr3bf82mXVN/LSc+rro72eW7y85N7ruXwjyS3vqPnsVlvSo78RLL2keShq6pAqvWLkykvq4Lwhu2XLP1T8tM+/t41+SXJot9Wj1ubqzXL7uh9PnuOJ38verPqgeT29/Q9p7egwJ4Mn5Gsur9zX+PIZNyxyfI/J2v/2nnsmC9Vr6U1D1fz1j2WrH4omf+tZOV9SV1TMvm05ClvrkIzN6yuroe/mzz4P9X725RXVK/3jqFsSbJhbdKyPBkysf/1AwAAAAAAsFlFWfbyyT+whyiKYnaSO59s33nnnZk9e3YNKwIAdjnfKHrun35OcuwXd2wtAAAAAAB92LBhQ+67775OfbNmzUpDg89Vo3ZaW1tz88035+67786iRYuyfv367LXXXpk8eXJOOOGEjBgxotYlbhfb6/X45z//OQcffHDHroPLsvzzVm0KAFvBPXrADtHaktz98eSvP6gCjaaclhx0UVJX33neqnnJgquT5qVVmNqEEzvssbEKY1uzMNnrGcngvfp37o3nJw98qWrXD02O/0YVIpYkZWsV1NQ4Ohk6uXOo0qO/SH5xSuf9iobkxfcnw6b2fN7iPybXHd3z2HHfSG59exV+1tUL/5yMOmgzz2VD8s3G3sfP7OXfHfR279TmDNor2bg+2bCy7znrew7S3mTMEcnSW7asBtgSYw5PNq5LVtzVuf/Z1yUtK5ObL6jC0kYdnLQsTcY+vQppXPijZN2iKnxt9j8nk16YDNmncwDjivuqtaMPqeaVG9qDIdc+Ur1vNAxJxh7V+/sE7cqyCsQbMilJWYVRzv9W9XOYeW4y6/xaVwgAAAAAwC7G/Xk7jjubAQAAAAAAAACombq6uhx99NE5+uhe/nE/AADA5tQ1Jge9s7r6MnxacuA7etmjPhl7ZHUN5Nxjv5gcemmy6oEqpKthSPt4UZeMflrPayeenBzzheS2dyfrF1fBacd+pe+woxEz2sKSWruPjT8+mfGG5M4Pduk/YfOhaElS11CFMS27vfvYfmf0vm7cscni33fvP+YLVSDRHZf0vO4FdyZD9u49WG3YfslL5iXL/5L8qJdAzVNvTMa1/V2ybE1W3l+F3o07Klm/pAqiaxyVpKxC55b/ufo5NS9LBo1Nivrk/i8kC77T+/ODrpbe2nP/nFM7t598Xay4p/vcW99RXVvr4Pclrc3JyrnJ4huTEbOSfU6tgthGHZQ0jEiaRifNS6owsFUPJCmr94sNq5PV86v3xbFHJhvWJMvuqN7XRsxKHroqeeS6JK1V0OS4o5J1jydLbk4aRyZjj07qm7b+OWwP65ckd/9nMvezvYcr3vSm6nrZ48ng8Tu2PgAAAAAAYLMEowEAAAAAAAAAAAAAwJYask91DdSM1yfTz67ChgbvXQV59aVpTDLhpOSxX3TuH3t0Fah28MXJxvXJA1+sQo/2OTU55ov9r2fmG5M/vqVzX8OI3sPkkmS/v+sejFY3KJl8WhXC1FMwWsOI9iCip16Q3POJ7nMOaDtzxFOr0Lg1D3ceH7JPMuaw9nZRl4yc1d4evFf3PUcfXF0dTXp+++O7PpLc2ku43pll9fXnz0ke+3nPc05fmTQMTVbel9x4frLy3upnVjQkM85Jhs+sQqju/2Lbcy6SckP3fRpHJS3Lez4DOrrzA53ba+b3/vu5NXoLDzzxO8mkF1TvYSvursIVh+zdeU5Z9v3etn5xsmZBMvLApH7Q1tW5fkly98eq19eGlf1b85vTk+dcv3XnAgAAAAAA25xgNAAA2G7KWhcAAAAAAAAAAADszIq6ZMjE/s8/5ovJnL+pwreSZOjU5Bn/Uz2uq08O/3By2L8l5cakrnFgtcz6h2Tj2uSe/06aFyfjT0wO+3Ay5pDe1zzlzcnyO6uwr6QKPTvhqmTQ2KRpdDJsWrJ6Xuc1U19RPe+kCoeb+9lk47r28aaxybQz2p/TIf+a/P6stN+PVSSHXDrw57c5k17UczDafq9qfzz9rJ6Dp+qHJI3Dq8cjn5o8Z07v5xzx0eraXGBUa0vyxO+SuqYqBK5+cNK6MWldn5StyYKrk7/+KFn0m2SvY5OppyfL/5z8+bKe95vwzOr7tuDbPYfRwUD9+mUDXzP++Op9Yc2C5PFfdR5rGlO9py27PRl7ZBVutnFdMupp1XvC3icnrc3Joz+rvrZuSJ74bbL0tiqYbUs8/sukeVn1fgUAAAAAAOw0BKMBAAAAAAAAAAAAAMCuYPi05IV/SZb8sQrHGntkUj+o85yirj14bCCKIjnwHckBb6/2rqvf/Jq6xuSYL1ThZasfSsYc2l5PUZc885rk+hckaxdWfeNPTA7/SPv60U9Lnv3T5I73VaFeY45Mjvx4Mmhc+5zpr02G7ZfMvypJXTL15cnezx7489ucUQck089JHvhSe1/T2OSgf2pv73NqUjQk5YbOa6edOfDz+gpFS6rv7YRndumrT+qGVo+nn1VdHa1b1Hsw2gEXJhNOrK7D/yNZckuy9pFk4ilJ44hqTtmaLL6xOvuRnyR/+ufOexzx8apv45r+PEPobtFvq6snzUurK6ne4560+qFk4Q+3X02r5yVNh22//QEAAAAAgAETjAYAAAAA/H/27js8zurO2/g9Rb1LtmxLstwbtjHYmF4NobcACYGQTkJ62c2mbMiml01v+242bbPJBkgjpIcNSSiB0AnVNmCMe2+SrK6Z949jZTSaGVnFtlzuz3Wda+Y5v3POc55pBlvzlSRJkiRJkiRJkqRDRTQOY07cf+tHIhAZRChaX0XjQuuvagFctiqEcOVXQtmMzECw2lPh7D8PvP64M0Lb3074DtSeAZv+DMUNIXisbHqqXjg2BLs9+u5UX+l0mHvj/t/bYBSMgfLZ0LQsvT9WBLVnpo6jeTDmhMz5kWjqtVW9CCZeAZvvgqI6GH8OxAoh0QF/f3/28x/zOTjqX8L97jbYei889QnYfDdMegXM+ReoXhhqT9wIy76UfZ3iRigcB8ke2PFoZr32zHBN2+5PBWlJw7VrKVQZjCZJkiRJkiRJ0sHEYDRJkiRpv0mO9gYkSZIkSZIkSZIkSZIkaXRF4zDm+NHexeBEIjD11aHlMvtdUHsabPxTCAyrvxDyqw7cHgcSicC8f4P7Xknaz6/NeS/kVwx9vfJZofVVMjn3+OpjU/fjRSFMbfw5mePiRTDtDbmD0c5/CAprw/2eDtj4xxDWN/YUyCtPH5tMwu5V4X5+JbSth542+MNx2dcunQbHfQPuvCD3dZxyC9z7itz18jnQtDR3XYeW+66FydeM9i4kSZIkSZIkSVIfBqNJkiRJkiRJkiRJkiRJkiRJkiQNVvXC0A5Gk6+BgjGw8ofQ0woNl8PkV+679SecC9F8SHSm99ecALVnDn6d8jlQNgOan0vvH3tKKhQNIFYA9RfnXicSgdLJqeP8Smjfknv8/I9B3fnhPFvuzT5m0tW5g9GO/SLM+adw/6ZIjj3F4Zou2PEELP8q7HwyXNPs90DrWrj/tbn3p9HRthGKxo/2LiRJkiRJkiRJ0h7R0d6AJEmSJEmSJEmSJEmSJEmSJEmS9pEJL4GTfwCn/QymXBfCw/aV/Eo4+X9D+FevsafA6b+AaDz3vP4iETj+W5BXnuorHAeLvjbyPRaMgZJJWc4ZD48NwLQ3ZZ9bf2m4bbw6SzECjVemDuOl2deYfkO4rToaTvwunP8gnPkbGH82TH1N+mPX15iTYMkfs9cAzn0Aznswd724Ea5N5q4DnHPPwHWAhpfufczhpmXFaO9AkiRJkiRJkiT1YTCaJEmStL8k9/IDRpIkSZIkSZIkSZIkSZIkHWoaXwYv3QCn/hTOuRvOvguKJgx9nXFnwsXL4aQfwCm3wIVPQfXCke8vEoFZ78nsn/IqKKwN9ydeDnmVmWOmXR9u534QCmrSa7PelR641ju2v8mvHHh/M9+RvX/GW6B6EUTzMmvxEqicB6VTc69bc1y4PfoT2euTroHaU8N15FLcCKfclLs+5mSomJe7PljRgpGv0V9eJRz9SXjZLqhcMLS5Xc37fj+SJEmSJEmSJGnYhvDreCRJkiRlMPxMkiRJkiRJkiRJkiRJknSkKRwDjVeNfJ2i8SGwbF+b/a4QJrby+9C9G+ovg3k3pup55fCSu+H+18H2R0Ow2/yPQsMloV61AM57EFb+CNrWw/hzYOIV6eeY9U5Y8zNoXZvqa3gpjDlx4L3NuAFe+B507Ur1lU6HiVdBvAgaXwEv/jB9ztQ3QLw4tAnnwYbbM9edcH64nXQNPPkRSCbS69NeH27LZ+XeW+U8iBXmrk+8MgS3PfLO7PVrEiGYLtEDt+T4ylJxI8z/CDzwhuz1M38PpVNgy725x0w4D8aeCj0dkOyCuotCqFy8ONSP/gT89UpIdKXmNF4Nq3+cfb3uluz9kiRJkiRJkiRpVBiMJkmSJEmSJEmSJEmSJEmSJEmSpMPL9OtDy6VyPpz/MHS3QqwoBHr1VToV5n849/zSKXDu/fDC96HleRhzCkx9XeY6/ZXPgpfcA898DnY9A2NOgPkfD6FoACd8OwS3rfkpRPJg8rWw4NOp+Yu+Dve8FHY9neqrPSOMAyibBqfdBg+8Hjq2QqwYjv1cCHeDEMD2yHsg0ZG5t6l7wtMmXglrfp5ei8Rg0tWQ7IZH3gX0+8WyE69KXXs0FoLaNvwh8xxzPwBjT8v+2MSKYdwSiOXD7lXZxwAc8zmoOjp3veESeMm98OLN0NMGDZeG/eQKRlv5g1DPK8295sGkuw1aXoDdK8Prt3J+eL0mE+F5a98EdRdAfjU0LQ21kknQ0w6dO6FgDERzfKUs0QORaOq57OkIz0WiI5y3pxW6mqBtQzhvXnl4L8RLDtz1S5IkSZIkSZIOewajSZIkSftNcu9DJEmSJEmSJEmSJEmSJEnS6IkXD39ucT3M+9DQ51XOh5N/mL0WK4DF34Djvh6O+wetlc+A8x6Etb8MwWqV80PwV6wwNabhEqjfBLtfhOLG9BCswrGw5I9w37XQujbVv+hr0HhluD/vw7D5TujYlqrPeV+4XoBZ74TlX03V8qtg7r+m73PytZnBaNECmPgyKBwD1Ytg+yP95lwTQtEAao6HaD4kOtPH5FWEcLm9qVkcWl8VR4XHrL91v4afloX7jS+HCeeFELHVP4GmZTD+JSFobPw5sOF2WPrF8Dy1roGyWVA+M+yzqwnW3Jq+9rTroXgiNFwOFXMgmrf3vSeTsO5XsOonsOlP0NUM098UXqtPf3rv8wEee+/gxgFMegWsuiWzv+FyWP/77CF62VQvCo/dzLdD0QTo6QyvgaZl0Lk9hLmVzQghdOWzYcffQ2Dbzidg55N7HqdLobA2PP6RvBCyJ0mSJEmSJEk64hiMJkmSJI2I4WeSJEmSJEmSJEmSJEmSJGkf6x+I1le8OISIDTg/CqVTs9dqT4PLVodgtLxyyCsL43tVLQjhay/eDO2bQyBYwyWp+sIvw9hTYMMfQwDWlFdB2fT0c0y+Dpqfg2f+PYSGFdbCyTeHUDSA034B91wB2x8Oxw2Xw8KvpObnV8Kka2Dl/6SvO+0NIZRsOOKlex+z+ieh9fXi/4aWTduGECKXy4rvhNsnPxJuy+dA6TSY9jqoXgwlEzPnPPFhePpT6X3Lv5I5bl/JFooGsPa2oa2z/ZHQ9hbeNlD9wTemH0ficNrPQ6Bc9aLwOuqvuzWE7kVj4floehYiMSidAokuKBwH8aKhXYskSZIkSZIkaVQZjCZJkiRJkiRJkiRJkiRJkiRJkiQdSSKR7KFcvUqnwrwP5Z7b+LLQBlr/6I/DUR8MAWxl09LD10omwvkPhVq8BPKrMtc4/luhf/VPIZoPk6+F+R8b3PVlM5hgtP2taWlo638z2js5NCS74e7LDuw5y2ZC41XhtdfdBsu+AF1Nqfr8j8GU63IHD0qSJEmSJEmSRsxgNEmSJGl/SSZHeweSJEmSJEmSJEmSJEmSJEmjJ14E5TNy14sbctdi+bDoy7DwSyFobaQKx498DR3+mp+Fpz+du/7kR0IDGH8OFNVDrACqF0NPK6z/PWz4Q6hXL4LaM2HGm6FsOnTuhFgxJLugYxsUT9w3r21JkiRJkiRJOswYjCZJkiSNhOFnkiRJkiRJkiRJkiRJkiRJ+8++Co6a+FJYddO+WUsC2HhHn4NvZda3PxLasi/ufa3iBpj/Uag5HqKF0LQ0hPmVToa2DZBXDiWTQrha925Y+QPYfBdsvQ/KZkDJZJhwPhRNgPaN0NUM064P9zffBXmV4T0QzQs//2wgmyRJkiRJkqSDmMFokiRJkiRJkiRJkiQdISJZvuiU9BdASKMikUhk9GV7j0qSJEmSJGkfmXglTH09vPC90d6JlKl1LTxw/fDm7vh7aGtvS+9/7L2ZY/MqoacVEp3huOGyELRWcyJULYCieiABRXUhbA2gYytE4xArgqVfgA3/B+WzYdLLYexp4Xj3Kqg7H8qmQzIBkejwrqVXTyfE8ke2hiRJkiRJkqRDlsFokiRJ0n7jlwklSZIkSZIkHVyi0cwvInV1dZGXlzcKu5GObN3d3Rl92d6jkiRJkiRJ2kciETjhO1B7Oqz5eQii2vHYaO9q8IomQLwUYoUhlGr1T4c2v+ZEiBdDcQOs/MH+2aMOfl0704/X/jLcbrxjaOtsuQdWfDu975Es4wrHQfumcL98NjQ/D8l+fzcaK4Se9tznGnsKJHrCa3f82dBwORSNH9w+ezohmhfe/5IkSZIkSZIOGQajSZIkSSNi+JkkSZIkSZKkQ0ckEiE/P5/Ozs5/9LW0tFBcXDyKu5KOTC0tLWnH+fn5RPxyniRJkiRJ0v4VicDU14QG0NUEP63IPrZkCsy7ESKxEKLWtBy23Q+l00JQ0xMfzjFvElz2Yghy2ngHPPx2aHl++HuuPQPO/ktmsNOvZuRe96KlUD4LundDNB6Cp/o66X8gmYSWF0JIWncLTDgftvwVnvp49jVP/Rn89arM/uJGuHQF3DLAL+C4dAXsegb+/gHo3A6Vx0DZNCACz3499zwd+npD0QCalmUfM1AoGsCWe8PtNmDNz+Cht2SOqVwQAtC2P5xZK50aggW7W8NrvXt3eB32tENRHdRdBJEotG2AWAFMflUIdCuohq5dkOgK7+uC2rBeNBbe34lOiBelnyuZNIRNkiRJkiRJ2gcMRpMkSZIkSZIkSZIk6QhSVlbGtm3b/nHc1NTE2LFjDWSSDqBkMklTU1NaX1lZ2SjtRpIkSZIk6QiWV567NvcDMO31ueu5gtEaXx5uozGoOw8ufW7P+H+Dpz4xtP3N/xgc9f7sQUuz3x1C1/qb+XaomB3u55XmXjsSCeFkR38s1ZdfmT0YbdobYcJ5EC8JoVJ9TXlVCF/Lpf7SEExVOhXqL86sT3k13L44+9ySSbB7Ve61pV47H89da3khtGza1sOKb6f3rf7p4M8biUOye+/jiifCxKtgxyOw+e7sY07+EVTOh9Z1IYyxa1cIeysYA2NOgvbNUDY9BLVtvAOi+VB3YXif93TA2l/CM5+B5ufDZ9vY02Duv0LV0ennaV0H638LRGH8kvDe7JXoguYVUDYjfIb1Z/CbJEmSJEmSDhCD0SRJkqT9JjnaG5AkSZIkSZKkDP2D0bq6uli3bh319fWGo0kHQDKZZN26dXR1daX1l5cP8CVcSZIkSZIk7T+TroFVN6f3RaJQf8nA86a9MTNQCWDyddnHz/sIrP4JNC0feN1rB/nzp41Xh7C1zu2pvmg+TLt+cPOzqT4uhDet+Vmqr7AW5rw3hC+ddivccyV0t4Ra3UVw1PtS+1n948w1p71hL+dcCMWN0Lo6vX/CeXDWH+CmIf699bizYfF/wG9mD20eQOE4aN80tDmRGCR7hn4uHR4GE4oG0LoGln954DH3vXLk++nV3RLej73vyWyhhn01XAY7/p49iLDmRNh2f7hfMhmIwO6V4XjMSTDjLeFzLxKBRA+0PA9F9dC8HLbcC9GC8HlaMAZ2PQn5VelhbJIkSZIkSVIWBqNJkiRJI2L4mSRJkiRJkqRDS2FhIXl5eWmhTM3NzaxYsYLy8nJKS0uJx+NEo9FR3KV0eEkkEnR3d9PS0kJTU1NGKFpeXh4FBQWjtDtJkiRJkqQj3NwPwaa/QPvG9L6iCQPPm/1PsO5X6UFak6+DqqOzj4/G4Ow74aG3wtpfZB8z4y2D33fhGHjJvfDIu2D7Q1AxFxZ8CqoWDH6N/iIROOUWeOG/YfPdUDolBJuVNIb6hHPhik2w9X4oqoPymSFEDmDm22DNz9ODospnQd2FezlnFE78b7j7cuhuDn3FjbBwT4jUjLfCc/8vc16sEHraM/snvzLsbajGngLlR2UPu8uldBpcvAx6WqG7FTb8AWJFUHsmPPbP8OKPhr4PaX8YKBQNYO0vc9d6Q9EAdr+YXtv6t9D+9uqB13/ozQPX8yohryy02jOhcDy0rYeCaogWQtdOSHSFcLWJV0Ll3OzrJJPQsSWst/Nx6GqCinlQNG7g80uSJEmSJOmgYzCaJEmSJEmSJEmSJElHkEgkQl1dHatXryaZTP3yh66uLrZt28a2bdtGcXfSkaf3PRmJREZ7K5IkSZIkSUemyrlw/kOw+qchiGf8S0IA2N5UzIZz74eVPwhhQbVnwJRXDTynaDycfiss/wY88o7MeuPVQ9t7xWxYcvvQ5uxNNAbTrw8tm3gxjF+S2V97Gpz1e3jmc9DyAow9FY79AkQH8fW18Uvgkudg058hXhIey/yKUGu8Knsw2kk/DAFu63/XZw9nwqSrwx7HngJb7u03KQInfBceeH3mehOvguqF2YPRGi6D9X+AREd6f+NV4fqi5ZBXDlNfm6pVLgCGGIxWNAEmviy8nvIqYOzJUDIJnvn38Npsfi41duY7oGAsdO2CbQ9C8cTw+kp0wbNfz32OxpfD6p8MbV/S/ta1MzSAXc8MPPbJj8DY08JnzIbbYceje1+/oCa8Z8aeFoIwW56HLfdB57ZUaNyEC6B8NtSeGgIOi+pD4GQkCp3bQ9haNDay65QkSZIkSdKgRfr+kLN0JIpEInOBp3qPn3rqKebOzfFbIyRJkvpLdMEt+dlrk66FU/xNb5IkSZIkSZIOTq2trRnhaJIOrEgkQmNjI8XFxftszaeffpp58+b17ZqXTCaf3mcnkCRpiPwZPUmSJCmLrha4+9IQ0NNr6uvhhO+AAfrpkkl4/EPwzGdSfTPfDgu/AiRg7W2w/VGonB/CzWJ7fq5328Pw53NCcBhAtACO+xpMfxMs/SI89t7UenUXw6m3hDCkPy2BzXelavEyOOeuEKR033WQ6Az9tWfA6bdBfmX2fe9aCr89KrO/dFoI3nvuPzNrJ3wXpmUJbevV1RLOX1Cde0zHdvh5Tfba6b+EhkvT+5LJ8Bi1roP7roGdTwIRGHdWCFF76M25zyUdiWKFUDIFWtdC+UxIJqBlJZCEwnEhLDFWEgIaJ18HHZth8z2w4Q9hfsVcqLsQJl0DpZOBSFizY1uY37EFtv4NYsUhHDGvfBQvVpIkSZIk9efP5x04BqPpiOcPXUmSpBHp6YQfF2SvGYwmSZIkSZIk6SDX2trK+vXr6erqGu2tSEecvLw86urq9mkoGviDV5Kkg48/oydJkiTl0NMBG26HXU9DzfEwbomhaANpfh52PAaVR0PZzME9Vm0bYfXPgARMOD+EGP1jvRUhfKhsOlQvhmgs9He3wdLPw+a7oXQKzHwHVB0dau2bYctfoagBqheGAKSB3HFGWKevY78A48+G/zsJetpT/UX1cPEyyCvd+3Xtze+OgZ2Pp/fFS+ClGyCvbOC5XU0hkKn32v76Clj94+xjr+3zvcSu5nCOSDQcv3hLCFrL5pRboGpheMy3PgjJHmi4BNbcCve/LvucCx6HrffBQ2/JrJVOg5YVua+pqD48X1ULobsZln0p91jpYFQwFqJ5kFcBkT2fVXUXwJTXhPfP8q/A7lVhTP2lMOak8Bm5/OvQtBTat8C8G6H2tDA/vzoEsCWT0LQcttwD2x4IIW9l06HhpSG8zT+TJEmSJEnK4M/nHTgGo+mI5w9dSZKkETEYTZIkSZIkSdIhLplM0tHRQVNTE83NzXR2do72lqTDVn5+PmVlZZSXl1NQUEBkP3ypyB+8kiQdbPwZPUmSJElHrM5d8NBbYf3voKAapr8J5rwvhA1tuQ+e+mQILao5ARZ+AYob9s151/4S7rkKkt2pvgWfhrkfHPpa634Hd12U2T/+HFjyx9zzOrbBL+og0e/fHKoWwgWPZJ/T8iL8akpmfzQPrtoRgtcAEl3Q/ByUToVYYWrczidh+6NQOA5qz4B4Ufbz/KQ8BKRJGrqCMdCxNXstvxoKx4YxBWMgXgata2HznaFefwmUzwnhbD2tUD4rhIRGolAyCfJrINkFRXVQNiMVtNhXMhHmRPNDPde/syS6obslfEb0/ZyQJEmSJGmE/Pm8A2cvv5ZCkiRJ0vAZQixJkiRJkiTp4BeJRCgsLKSwsJDa2lqSySSJRAJ/0Zq070QiEaLR6H4JQpMkSZIkSZJ0kMqvCL9kOZnMDO8ZezKc9bv9c96Gy+Ccu+HFH0HPbqi/DCZePry1JpwbAshaXkjvn37DwPMKamD2e+CZf0/1ReIw/99yzymdHELitj2Q3l9/aSoUDUJQWsVRmfMr54e2N3M/AI9/KLN/zMmw9b69zx+MyvkhqC2Xy9dCcX24n0zAjsdg9yooHA9Vx8CLN8GDb8w+N5qfGTjXa/y5MOlqeOANuc+9t+ucfB3sXglb7s09RkeuXKFoAJ3bQ2N59vq6X4c2FEUTINkTgs5IQvfu9Nf/mJOgejGs/D50NYXwxYGUl8UAACAASURBVB2PZl9r/LlQvQialsGYE8J7r3I+7FoagtrKZkHlXOhqCe+B4onhMynZBbGiEMTWvhnW3gadO6H+4uyfRYkuIAJRv74tSZIkSdJI+H/WkiRJ0oj4xUBJkiRJkiRJh5dIJEIsFhvtbUiSJEmSJEmSdHgYjV+YMPak0EYqGg8haw/eAJvvhJJJMOdfoPGqvc9d8BkoPwrW/wbyymHKq6H29IHnnPpjuPMi2PV0OB57Ciz+5ogvI039ZdmD0SZdHQKNtj+UWcsadBaBeHEIaupv9j/Dyh/Cpj9l1qIFIQDtH8tEQ1hT9aJU35gTcu//kmfht/Ohuzm9P14Kp98KrWtzzz3uG1B3AfxqWvb69DfB8f8VAqNuzvFvRQs+BdOuhyc/Cmt/Be2bwuti7Cmw7SFoWpr7/NJQtW0YuL71b6H1yhWKBrDx/0IDWPuLke/t7+9P3a89M4TC7Xwi1Tf2NJh8DTRcEcLVIrEQ9DZciZ7weTHQnynJJJAM4yRJkiRJOsQZjCZJkiRJkiRJkiRJkiRJkiRJkiRJkjIV18OZvwmBO0MJeYtEYOqrQxuskklw4ZPQ/GwIECudPOTt7lXl3BDu1Tccre4imPYGyKuE+1+TPn7sKXD8t+FPS6B9Y6p/9nsgVgxPfzJ9fDQf6i8GktmD0eovguhefkFNxVwomQK7V6b315wYHqOZb4NnPptem/FmiJdAcWPYQ6Izc91xZ0PhAMFMZTPCbSQaxmbbf8PlUFgLi/9faNm0bwmBVuWzIZYPNw3wupnxNnjuP7LXJl0Lq27KPVc6WGy+M7Nvyz2hPfTW4a0ZKwaSkF8Nbesy66VToageelph+yOZ9VN/Ej4POrZCwVioOhq6miC/Jnw+xApHJ7hTkiRJkqRBMhhNkiRJ2m+So70BSZIkSZIkSZIkSZIkSZIkSRq5AxWgE4lA+az9e465/woTr4Qt90H5zBA4Fo2FELdkTwjqat8EE86DhV+CvHI470FYdUsIKBq3BOovge4W2Pq3VIBYNB9O/D4U1MDk62DXM7D086nzFjfCgs9m3VKaSBSO/ybccwV07w59BTWw6Kvh/oJPh7CkVbcACWi8Go56X6jFi0Iw25pb09esOgYqZof75bOhaVnmeRtemrp/1Pthy92Q6Er1TbwSKo7a+/4Lx4bWq/FlsPqnmeN6H6tcwWjHfn54wWjnPQg1i2H3anj8Rtj59/DY1yyG0mnQshKqFoSxOx4PYXPVC8NzXtwAd14ILS+krxnNS38spP2tpzXcZgtFg/Aa7f867euvLx/ceSrmhvdETyvES0MYZtsmaLwqhCBu+CNsfyjUzrkrfM6tuTV8VpbPgp522PU0FE+E6uMg0RHGjDk5fK42LYdtD0PJnnq8eGiPgyRJkiTpiBVJJg1r0JEtEonMBZ7qPX7qqaeYO3fuKO5IkiQdUnra4cdF2WuTXgGn3Hxg9yNJkiRJkiRJko5oTz/9NPPmzevbNS+ZTD49WvuRJMmf0ZMkSZIkHdYSPSF4a/fqEARUNC69vvPpEJ4WL4G6CyC/cvBr714FG24PIUMTzoei8YOb174Z7roEtj0YjkunwZm/TQXOPfef8NBb0+fUXQxn/jq9b/M98Nw3oX0jjH8JzHkvROOD33+v9bfDneen9xXUwKUvQrIbbh0fwpT6Kp0GlzwHf/8ALP1c5przPgIv/i+0rEjvLxwHl68JQWbD1dMRgp+6dsK4s0N4HsCtE8Jj0d+ir8Gsd4T7bRthwx+gcALUHBfWIgG3TRz+fqTDXXEDtK5NHY85GWKF0N0Ku18MQYYtL4SQxTEnQVEddGyFkikhhDGvPMzrboFoIZAI8yVJkiRpP/Dn8w6cYfwtlCRJkiRJkiRJkiRJkiRJkiRJkiRJ0hEuGoPqRaFlUzk3tOEomQTT3zT0eYW1cO790Pxs+EXgFfPCPnvNeAsQhee/BZ07oP4iOCZL+FjtaaGNVN15cPKP4KmPh3CjmhPghO9AXmmoz3wbLPtS+px5N0IkAlNeBcu/AonOVC1aAFNfEx7Xe68N4WoARGDBp0YWigYQK4DJ12S5jgvhhe+l90Wi0HBZ6rhoPEx9bebchpfC2l+MbF8A1yRgx2Ow8ofhsSyZDBMvh6pj4GfVueeddTtsfzQ8NvlV4Xnv3g0Vc6G4Hrqaw7XsegY23w1rfja8/dWeDrVnhtCqjq2w8wloWja8tXTk6BuKBrD1vvTjDXsCCZ/+9NDXnvVumP+RoYVSSpIkSZIOCgajSZIkSftLMjnaO5AkSZIkSZIkSZIkSZIkSZIkHWkiESiflbs+44bQDpTJ14aW6IZov6+1HvsFKJsOa24LYWlTXgMNl4Za5Tw487fw2L/Azqegcj4c9w0onRJaUUMI8Up0wcQrYNyZ++8a5n4QNt4Brav79N0IJY17nzvt9ZnBaPFSaHwZvPDfgzv/Ue8Pz2v1wtD6m/XuECLX38QrYMK5oe3N+LNh1jvgF/XQtj77mKpjQzhbNmf/JQSsZfPUp+CJG7PXZr4Tnv1a9tr0N0HtGSE8q2MbbH8INv0l+9h4CYxbEgLeWlZkH6Mjy/KvhPft2X8KoZGSJEmSpEOGwWiSJEnSSBh+JkmSJEmSJEmSJEmSJEmSJEnS3vUPRYMQ9jXjLaFlM/4cuOCx7KFqY08K7UAomw7nPwRrboXWdTB+CYw7a3Bz6y+Gxd+EJz8C7ZugYi6c9D8QLYBVN0NP+97XaLx64PrEl+YIRrtqcHvsa+6H4OG3ZfZXHQsz3wYPXJ9ZK5qQOxQNoO787MFoeZVQs3jgvfQPn+vpDIFyO58Ij+WkV0BBdebcnnaIxEOg2rYHoaAmhMr1tMGTn4C2tSFcb8K5UDoNWp6HOy/MvZdJr4BVt+Su6+C06ylY8d0QbihJkiRJOmQYjCZJkiRJkiRJkiRJkiRJkiRJkiRJkqSDV7ZQtQOtsBZmvHl4c2fcANPfBN3NkFee6l9yBzx+Ywhvqj4OFn4JXvgeLP3CngERWPhlqD524PXHngZz3ttnHjD5Oph45dD32nAZPPIOSCb69V8OdReFALT+tUnXDLxm1UIonwVNy9P7p1y3J2AuAvT7xfUFY6GoPnOtWH54PPcmVhhui8ZBwyXp/Yu+lDm+fEZ4jts3Z9ZO/hFMvjYE9K35WfbzXd0RHpvVPw3Pw45HIV4WnvOieujYAonOve9b+97GPxqMJkmSJEmHmIPgb4IkSZKkw1Vy70MkSZIkSZIkSZIkSZIkSZIkSdLhLxJJD0UDGHsKnPOX9L5jPw+z3gO7noaqY6FwzODWPvbzMOU1sP0RqDgqBK1FIkPfZ3E9HPf/4OG3pgLQxi2B2e8O+1/4FXjknanxVcfAnPftfX9n/AbuuhSaloa+iVfAMZ+FeAnUXwLrfpU+Z8abIRob+v5Hov5SWPGd9L5oAUw4P9yf+prswWhVC0NgG8Dka0IbSMe2EJ7WshJqjoNpb4T8ilT9pgGet4uXw29m5a6fcze0b4I1P4fVP4Nk98B7ORJ0bB3tHUiSJEmShshgNEmSJGlEDD+TJEmSJEmSJEmSJEmSJEmSJEn7UHFdaENVOS+0kZpxA0w4D7beByWToeZ4iO75SvKsd4SgtM13QnEjjF8Sws32pmw6XPQ0tLwAeRXpgW+n3BzC1tbeBvEymPpamPfhkV/HUM37N9jyV2haFo4jUTjua1BQHY7HvwQKa6F9c/q8qa8Z2nkKauCYz+SuT3sjrPh2Zv/cD0H5TJj5dnj2G5n1ya+C2tPC/car4NgvwK5noHAsVB4drmf3GvhlY/bzzv4naLgc7jg9997m3gid26CrGV7839zjDiadO0Z7B5IkSZKkITIYTZIkSZIkSZIkSZIkSZIkSZIkSZIkSVJK6eTQsqmcG9pQRSJQNi2zP14MJ3wHjv92GDNaSibCeQ/Cxj9C24YQAFcxJ1WPFcCSP8G9V4fAsVgRzHpnCCrbl6ZclyUYLQKTXxnuNrw0ezDapKvTj4vrQ+uraALEiqGnNXP+5FdC9UI46X/hb9dl1iecDws+kTrOFYxWvQhO/Rk8+RFY+YPsY16+G6L5IXAvmYTdL4bAvObngQSUTodYfhiz8c+w/KvQ/GwYByFcbsprQlBdsge2PwJrbs1+LoPRJEmSJOmQYzCaJEmStN8kR3sDkiRJkiRJkiRJkiRJkiRJkiRJh4bRDEXrlVcGE6/IXa+cBxc9DW0bIb86hHfta7Wnw/Hfgkf/GbqbIb8qBMf1hrSNOwuO+iA885nUnFnvDsFlexONQ+NVmYFlZTOg6thwv+GycM7+gWLT3pB+XLkAdj6eeY5Z7w6herP/OXswWtnMEIbXKxKB0inhfsHxmePrLwxtbzbdBX86M7O/ezfseBwqjoJo3t7XkSRJkiSNOoPRJEmSpBEx/EySJEmSJEmSJEmSJEmSJEmSJOmIUjR+/64//Y0w9XXQugZKJkEkmqpFInDMp8OY7Y9C5Xwonzn4tRd+GXa/CJvvDsfFE+G0W1PBdHmlcM5d8LdXw46/Q+E4mPfhEKjW18QrMoPRogVQf3G4Xzkfak6Ebfenj5nx1sHvdSjyq3LXfn9MuK27KDye2x6E4voQBldzIuRXQF55CLsrGAvRWGruqp/A8/8FXU3h2ub+KyQT0LYOihtD2NxgJLqBSPrayWTqcU90Q7IHYgVDumxJkiRJOhwZjCZJkiRJkiRJkiRJkiRJkiRJkiRJkiRJB5NoHEqn5K6XThm4nktBNZx9J7SsCGFflQvSw7oghJpd8Bh0NUO8NBXe1dec98L2h2Hdr8NxrBBOvhnyK8NxJAJn/Q4efDNs+AMUjIEZb4FZ7xz6ngdjoGC0Xut/m7q//WFY+8uhnWP7w/DkR9P78sqhYh5E88Nj0L0bonnhudn6AOx6au/rxsuguzm9b+Y7wmNVOi398U8m0oPyevsSXWEPXbugZSVUHJU7ZC1bSNvedLeF57qnFSZcAEXjBj9XkiRJkobIYDRJkiRpf0kmR3sHkiRJkiRJkiRJkiRJkiRJkiRJUrpIBMqm731cXlnuWrwYTv8lND8Lu1dBzQmQX5E+Jr8KTv1x9jCvfW0wwWj7Q1cTbL0vs3/TENboH4oG8OzXQxuJSDQ89gBFE6BqEbRvgqal0N0SQu9mvh3aN0PReGjbCKtugspjoP4iqL8ENt4BT308XGevaD7M/1hYs2kpxEpgzIlQOS/09T7fiZ5wG4nsCW/rhp62EBwXLx7ZtUmSJEk6rBmMJkmSJI2E4WeSJEmSJEmSJEmSJEmSJEmSJEk6EkUiUD4rtAHH7edQNIB4CeSVpwd4Hel6Q9EA2jZA22/S690t8MxnM+dtuz+0Jz6cfd1EJzz+wZHtrXwWVB8PhbXh9VF1LDRcDvGizLEHIlhPkiRJ0kHFYDRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0qErEoG6i2HVTaO9Ew1G0/LQ+iuZAoXjoLghhNz1tMHW+yDZA7FCqF4cbiecD+POgEQP5FeGllcBsYIDfy2SJEmS9jmD0SRJkqT9JjnaG5AkSZIkSZIkSZIkSZIkSZIkSZKODIu+DDseg6alo70TDdfulaFty1LraYct94T7G/+YfX6sEPIqIb9iz+2ewLT8ysH1x0tCyJ4kSZKkUWUwmiRJkjQihp9JkiRJkiRJkiRJkiRJkiRJkiRJo66wFi58ErbcDY/fCB1bofnZ0d6VDqSedujZCO0bhzc/EusTmDaEQLXe/rwKiMb27TVJkiRJRyCD0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJh75oDMadBefeG45bXoBfTcs+9pjPwriz4fbFudcrmQy7X9zXu9TBKtkDndtDG6542eCD1DL6KyBWuO+uR5IkSTpEGYwmSZIk7TfJ0d6AJEmSJEmSJEmSJEmSJEmSJEmSdOQqboT8KujckVmbdC2UTITF/wkPvSWzXjEXLnoKkkl44sOw7MvQ0wrVx8EJ34aqY8K4nk74cUH281ceDRc+njpe8T144A3Zx16xBbpbYPWP4e8fyKzXnAhta0NYW7wENtwOkSgkE6kxeeUhmKttXeb8vHLoasp+bu073c2hsXZ486MFITCtNzxtUIFqffrjpRCJ7NNLkiRJkg40g9EkSZKkETH8TJIkSZIkSZIkSZIkSZIkSZIkSTooReMw7XpY+vn0/rqLQygaQMNl8PDbIdmTPqbx6nAbicCCT8LcD0GyKwSP9Q2eiuWH0LJt92eef/Z70o/Hn5N9nyWToaAGCsfAUe8PbTB6Q9Ei0cxa5w7Ych+UToPyWdDyAvx6evZ1cu0foGohnP8wPPt1eORdg9uXhi/RAe2bQhuOSLRPoFqfwLS0oLUs/b1ha3nl4X0jSZIkjSL/i1SSJEmSJEmSJEmSJEmSJEmSJEmSJEmSdHha8GkgCS/8Twidqr8EFn8zVS+aEI4fuiEVNDb+HJj1zvR14kVAUfZzTHpFZrBYrBAaLk/vK2kMfWtvS++f9a70sLXByhaI1iu/CuovSh0X1eUeO+Mt0Lw8hKn1d/THwt5mvRPGvwS23hfC4RouD6FwK74LD1yfe+2r22DjHXDXJdnrp/4Edq+GFd+BpmW519HgJBPheezcAbuHuUa8NEtgWsXgg9Zihfv0kiRJknTkMRhNkiRJ2l+SydHegSRJkiRJkiRJkiRJkiRJkiRJknRki8bh2M/DMZ8LoVHRWOaY6ddD3fmw+a9QOhmqjwvzBmvm26DpGXj+W+E4rxJO+2kIiervlJvhsffDul+H+rTrQzDZ/hYvgqqFsOPR9P5oHtRdCJvvghe+l17Lq4RxZ6eOK+aE1lfdxbnPWTIphGTVngHxEujul9RVdyE0vizcL50C91yZfZ0574Oln8teW/hlGLcEunZC5649tzuha9ee2779fes7IdGVe+9Hsu6W0Fg7vPnR/MxAtVxBa/378ytC8N5wggIlSZJ02DAYTZIkSRoJw88kSZIkSZIkSZIkSZIkSZIkSZKkg18kApEsoWi9ihtg8iuGt3Y0Dsf/Fxz9KWhdDZXzQ+BYNrFCOO6roR1o8z4Ef305JHtSfTPfAYVjYMEnYfvDsPOJPfssghP/OwSqDaRoHCz4DDz+wcxa48vDbV4ZHPsFeOitwJ7vYxWMhQWfSo2tOTH7+tF8qJyX+/xVx0LV0QPvMZtkEnraBxmolqO/f9CbgkQntG8ObTgi0RCW1j8wLS9HkFq2+lCCDSVJknTQ8b/mJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEkaqcIxoR2sJl4BZ/0frPwf6GqC+oth6utDrWgCnPcAbP0btG+B2tNC32DM/UAIP3v47am++kth/kdTxzPeDNXHwYY/QH41NFwGxfWpenEdjD8HNt6Rvnbjy6DmhNznLps+uD32F4mE0Ld40eCvs79EV3gchxqo1tvftQuSieGd+3CWTEDnjtCGmz0XLxlkoFqO/lhheI1IkiRpVBiMJkmSJO03ydHegCRJkiRJkiRJkiRJkiRJkiRJkiSljF8SWjaxQhh31vDWnfk2mH4D7HgMCsdBSWPmmJrjQsvl5Jvh3lfApj+HUKr6y2Dxf0K8FMpmQPNz6eOrj0sPVzvQonlQUBPacCQT0N2SPUjtH+FpAwWt7YRE5769psNF9+7Q2tYNb340PwSmVR8HM24IQX4j1fIirL0NCmuh7qIQwiZJkqSsDEaTJEmSRsTwM0mSJEmSJEmSJEmSJEmSJEmSJEkiGoeaxcOfXzgGzr4DOraH0LG8slRt8Tfh7ktD2BVAfhUs+urI9jvaIlHIKw+NicNbo6d9gEC1QQStdbfs00s6bCQ6oWMLbPh9aH3N/yjEyyBeDPESiO25TTsuhtievlgRPP4hWPrvIQyv15iTofZ0mP5GaN8S+pI9UHVMmNereQV0N4f3xbpfQaI7vDd2PAYbbg9jSibBUe+HKa8Oe5AkSTrEGYwmSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIODgXVmX3jl8BFz8D634fQtAnnQXH9gd/bwSZWCEXjQxuORDd0NWUGpg0laK1v2NeR4MmP7pt1tt4X2jOfHflau1fBQ28NrXBcCN2LFYfnpuFyaLwKEh3Quh5e+C5s+gsU1UHZdFj8X1AxO6yz7WHY/jAUjof6SyAaG/neJEmShsFgNEmSJGm/SY72BiRJkiRJkiRJkiRJkiRJkiRJkiTp8FDSCDNuGO1dHF6i8RBEly2MbjCSSejePbxAtd77Pe379pqOdO2b0o+Xfzm0/trWh/bbOeE4mgeJrvQx5bMhVgSdO/Y8XztTtcJxMO4siJfBzieguxkmnA/z/g3yK1LjeoPzItFw27Q8tNKpUHFUqn+wOneE11zh+PD6lSRJhyX/lJckSZJGxPAzSZIkSZIkSZIkSZIkSZIkSZIkSdIRKBKBvNLQihuGt0ZPO3TuSoWnDRSo1hvO1be/u3nfXtORqn8oGkDTstzj2zfBqlvS+3Y9A8u+lH38hPOhYytsfzh7PZoPZTMh2QPF9SGQbfuj4Txl06GnbU8oWksqbA2g5gSoOhZiBSGkLb8ytLzKzPt5FYapSZJ0iPBPbEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJB14sUIoKoSiccObn+iB7qaBg9Q6d2UGqvUNYEv27NtrUqYNfxi4nuiEXU+F+01L02sDBbRteyC0wYqX9gtLyxKg1huiljGuAqJ5gz+XJEkaNoPRJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSdOiJxiC/KrThSCahpzUVmNayAu6+bN/uUQeP7pbQWDu8+fGS7GFqOQPWDFaTJGk4DEaTJEmSej33X7DyB+EvMRsuh7k3hr8UHUgyeWD2JkmSJEmSJEmSJEmSJEmSJEmSJEmS9q1IJIRdxUuguB4q58JVO2HZF2H1T6BpeeacvAoorIXu1vB9xO7dkOg88HvXgde9O7S2dcObnzNYrWIvoWp7xsTy9+31HG6SSWh+DlpXQ/FEKJ0G0Tj0dIZQukgk99zOXZBXPvAYSdIBYzCaJEmSBLDsy/DoP6WOd/wdWtfBCd8a/pqGpkmSJEmSJEmSJEmSJEmSJEmSJEmSdGjJr4CjPx5a7/cEe9og2QOxYojGMuckuveEpPUJS+vec/vns7Ofp+FyaH4edj01/L1G86DhClj94+GvoQNnpMFqseLcwWlHerBa63q4/7Ww8Y/Z63kVUD4b2jfB7hdzr1N7Znhv5leE7xlvuRealsHuldnHVx4NY06Cogmw/REoqAnvyfqLIBINYxLdsPRzsPluyK+GadfD+CV7al2h7X4RWteGevWiENCWTEDLCyHsrXs3tKwMz2XDZSGcUZIOYwajSZIkSQDP/kdm38rvw8IvQV7pAd+OJEmSJEmSJEmSJEmSJEmSJEmSJEkaZZFIuI0XDzwuGodoOeSVZ9YWfRUeeVe/daOw6GshdOm+a7KvedX2EGrV0wo/HwM97ZljprwaTvgOcAusuS18L7JtQwhrmvpaKJ0WQpfW/w5W3QLdLVA2E2pPD8eb74RoPpTPgaZnwlgdvHpaoa0V2tYPb36saHihar33D9Zgte5W+Mt5A4cMdu2CbQ/sfa3Nd4Y2WDufCK2vF74fbiNRiJdD1870+qqb975urDg839k8+CZYcgd0bINEB1TMC59RpdMh0QnNy6HpWahaAOWzBn8tq34Cj7wzhMcV1MDib0LjVSEgcstfQ3hbtAAq5kDZjPDZEYlCV3P4fMqvDJ8hLSuguDGEy/XqagGS4TWY7A6ffa1rofY0KJ06+D1KOmIYjCZJkiR1bAv/k91fogvW/gKmvGqAycn9ti1JkiRJkiRJkiRJkiRJkiRJkiRJknSIm/5m2Pq3EEQGEInD8d+CkokQOyccJ7vT55TPCkFUkQjES2DWu+GZz2auPfX1qfsTLw8tmxk3hNa/D0LoUW8AXDIBzSugoBq6mmDdr0P4Ud1FkFca9ppXFr6Xue7X0L0b8qth7S/D9zETnUN7bArGQMfWoc0ZSOXRIQCrc2e4VbqeNmhrC+F5wzGUYLW8isxarGDfXk+vNT8fOBRttCQTmaFog5UrFK3Xn88Z3Dolk2D+R8PzESuGwloonw3bH4I1t8LW+8Pz2j8MrmMb/PVlw9l5pnhJ+KwYyLglIbSxYysU1YXPkoIaGHsabL4rhNrFiqFwDBROgO2PhKC26uNgwaegdPK+2aukg4bBaJIkSVKiO3etu2UECxuaJkmSJEmSJEmSJEmSJEmSJEmSJEnSES2WDyffBPM/Ds3PQc1iKBwbaoVjYPob4bn/TJ9z1AdSYWUAR38SiMCyL0GiIwSUzf8ojDlp5Pvre55IFMpnhPsFNTDrndnnFNTA1Nemjidfk33cTZHs/TUnwHn3p47bNsKqm2H978K1LfoK/PGUEM6UMfd4OPdvsPPJEIiVVwGNLw9Bc30leqC7eU9I2s5wm+t+1j6D1TKMOFitcHCharn6cgWrbXtw+Nd0uNu9Cu5/3ejuYW+haACb/hzaUDU/C+t/A6f8GOrOH/p8SQctg9EkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZKk/SUSCYFjvaFjfR33DSidDut+BXnlIXBs4hXpY6IxOObTMPPt0LoaihtCO9iNW5I97Gjm29KPi8bD7PeE1mvam+CZz2TOnfGWEOBWtSC0XKKxVLDWcGQEq+0afKjaP4LVksM79+Gqpx16NkL7xuHNzwhWqwi32x7Yt/vUoaWrCe68INyPl0G8GNo3heNZ7w6fqQN9Vkg6KBmMJkmSJI1E0r+UkiRJkiRJkiRJkiRJkiRJkiRJkiRJwxSJwpx/Cm1viutCO1RMfX1mMFp+VWbwWzbT3wgrvgUd21J9pdOh8eX7do+5jDRYLZmAruYBgtP6BKjlqhmslm6kwWo6/HU3h9Zr+VdC+//s3XmUpGV9L/Dv09PD7AMM+zrs83+RdwAAIABJREFUIqIggqi4YBTFaFSMihqNGI9LjN6cmOS6JIbojcvNek2iSdRcJDcmUYlKFuOGmiCIYPS4gSKyqOwwIMwwCzM894/qoatrumvp7qrqmfp8zqnz9rP/CoZz6h3q/fb4quQZ30xWHTm82oCeCEYDAIB+/cWQ0DQAAAAAAAAAAAAAAAAAYFQd9pJk403Jle9OttyV7H588ri/T8ZXdF678vDkjEuTq/4w+dmVyZqTk4efm4wv73/d86GMJbvt3nitWNv7+vpAsnV9+1C1KQFrLX33/6yxB9AIS/vsKcnTL09WHTXsaoAuCEYDAIC2yrALAAAAAAAAAAAAAAAAAADY+ZSSHPfbyUN/sxHUtdueva1ffUxy6of6U9tCV8aSxasbrxWH9r6+1slgtV5D1bZfd/Zgtcd/LPnKC6cf2/dJyVO+1PgzmjTe69XvS37w5433fsDTk+PPTf7jhGTbxmn2/nhy6POT9dcl916TXPpLyebbpz9ryd7J5jumH1u8R3LUq5MDz0xu/lxy0380/r3VrcmipcmqY5LlhzTm/vD9vb1/ptpyV3LteckJ7xx2JUAXBKMBAEBbdY7jAAAAAAAAAAAAAAAAAAAjrIz1HorG3JSSLF7VeOWQ3td3Cla7/2edg9bqtnl/W10bX5Uc8Ixk5ZHJ+h/tOH7YSydD0ZLGn9GHvKHxanboC5Przp/at2h5csDTGj+vPLzxOvg5yY9mCPF7/MeSi35ux/7FuyfPXzdZx35PTk5898zv6VH/J7nu75Mfvq/x72fPE5NVRydb7002r2vUtHVDstseybd+J7n72zPvNZ2Hvz35zrkzj5/6t8mm25JvvaW3fZsd/7bku/9r9uvn6vZLhnc20BPBaAAA0DdC0wAAAAAAAAAAAAAAAAAA2MnMS7DahumD06YLUZvvYLVjfyNZvDI54V3JpS9O6gOTY/s9OTn8Zd3t84i3J3d8Nbn36ka7LEpOeV+yePXUeWvPnj4YbY8Tkn2emCw7KNl449Sxw395ajhbJ2OLkyNf0Xh1ctCzkjuvSO74WrJoSbJibbLx5uSyc6aff+J7kuPe1Pjn9N237zi+/JDkyF9pjM8UjLbi8OQJFySfedT04/s+MXnEO9oHox307OTGf5l+7HEfSfZ4RHL7xckVr5t5j3bWXze7dcDACUYDAID08JcGAAAAAAAAAAAAAAAAAADAzEppBJMtXpksP7j39bUm2+7rPVRt2YHJwc9JjpgID1v7wkbfdX+XpCb7PCE5/KVJGeuujhVrkzOvSG65KNl0WyNUbfUxO87b9/RGeNh9P5naf8QrkrFFyZP+JfnyM5NNtzT6939aIySsn/Y6pfHabut9ydd+ZWpI3Hb7/Vzjeshzpw9G2x4kV8aSVcdMBsU1O+mPkzUnNfa69Ys7jh/dKcysJA8/d/pgtDKeHPK8ZNHS5J7vd9injbmE7QEDJRgNAABSh7QWAAAAAAAAAAAAAAAAAACYopRkfEXjtfygue217+Mbr9lavDo55Kz2c8bGk6d8Kbnkxcm6KxprjvkfyUPe0Bhfc1Ly3J8kd30zWbJ3suKwxnscpPHlyQFnJjd9emr/8kOSNY9q/LzniclRr06u+cDk+O7HJce8frJ96AuS771z6h6LVzf2TpIjztkxGG3JXslBz54446Tkrm/sWN/Dz22cv+KwZMP1U8cOfk4jFC1JFu8+83t84qeSy16RbLlr+vGZ+oEFRzAaAAC0NZe/VBCaBgAAAAAAAAAAAAAAAAAAu7xVRyZnXp5suTsZX5WMLZo6Pjae7HXKcGrb7qQ/S3525WTw2PjK5DHnJWVscs4pf90IMbv9K8mqo5JDfjHZbY/J8Ye9Nbn7O8mN/9JoL949ecInGsFrSXLYS5ONtyRXvifZsq4RdvbY/5eML5sYf8n0wWiHvqBRx2n/lPznM5PNdzb6dz8+OelPJ+eNr5j5/S3ZJznmDcl33zH9+Lb7kus+kqz77+TWLyTbNifH/kYjGG7rfY33sPrYZPGqyTW1Jvd8v7H30r1nPhuYV4LRAAAAAAAAAAAAAAAAAAAAAABgrppDxBaa1cckP/+t5Nb/TLauT/b7uWTZflPnlJIc9MzGazrjy5MnXZisvy6578Zkr5OTRUunrj/ut5OH/mZy/73JbrtPXX/Ua5KbP5vc8vnJvoe/Pdn9uMbPe5+aPPv65PZLGgFlax6VLFoyOXfPE5JFy5JtG1vqWpns+chkyV4zB6MlyVdfOrV9xa9OP2/1Q5NlByS3fnFq/6l/myw7qBEut+nWRh1b1ycbfpysPCJZvDrZ/4zG+xhbPHMdc7HptmTpvv3ZGxYIwWgAADAXtQ67AgAAAAAAAAAAAAAAAAAAgM4Wr04O/oW577Py8MZrJmVsx1C0JFm8Mjn93xvBZ/f8INnncckeD99xzoFPn37f8RXJ4S9LrvnA1P4jXpGML0tWPyR59AeTy1/V2/tpdc9VjVerr72y89p2wWxJI1ht+cGN97L/U5IDn9UInLv3R42QtaX7JOOrki13Juuvb8xbdkAjEG3x7slXX5Yc9Kzk5L9ojMEuSDAaAAD0i9A0AAAAAAAAAAAAAAAAAACASWOLk/1Ob7xm4+T3NQLebvhoUsaTtWcnj/iDyfHDfmnuwWj9tPHGxitJbv1i8q3f6X2Pa89Lbrs4ecIFyZ4nzG99sACMDbsAAAAYPgFmAAAAAAAAAAAAAAAAAAAAC97YePLIP0qe++PkOdcmJ747GVs0OT6+LFlz8vDqG5T11ySfPTW5+v1J9bw8uxbBaAAAMCduEgEAAAAAAAAAAAAAAAAAABaMo14z7AoG44HNydd/Lbn2/w67EphXgtEAAKBvCdhC0wAAAAAAAAAAAAAAAAAAAAbqyF9JjnzlsKsYjD0fmRz20mFXAfNqfNgFAADA8AkwAwAAAAAAAAAAAAAAAAAA2CWUseTRH0wOeX5y+yXJirXJwc9O7r8nKYuSMp5svi3JWHLXN5P7703WX5Pc84PkjkuTrRuG/Q66M74yOe2jyaIlw64E5pVgNAAAmFMwmlA1AAAAAAAAAAAAAAAAAACABaWU5MAzG6/tlu47+fOKQxrXNY+cfv0dX0tu/WKy7IBkvycnFx42ixoWJXVb7+u69ei/SVYf3b/9YUgEowEAQO1XuJnQNAAAAAAAAAAAAAAAAAAAgJ3O3qc2XklSH5h53tL9kk237ti//JDkuT9Ott6XXPvh5L6fJnscn6x9UVLGkq0bkw3XJ5vvSNZfl6y/Ntnr5EYQ26IVyb8/dOYz15ycHPfm5NBfnMs7hAVLMBoAALQNMCsDqwIAAAAAAAAAAAAAAAAAAIAFpowle56U3PWNHccec37yX89JHtg8tX/t2Y3r+PLkmNftuG58WbL7RPjZvk+Y7tBM+xz8PqclZ3yll+phpzM27AIAAGD42gWjdVo6h7UAAAAAAAAAAAAAAAAAAAAsfEe9ese+PU9MDnha8tjzk7HFk/37nJYc9+a5nXfcm2ao47Vz2xd2AuPDLgAAAIauX+FmQtMAAAAAAAAAAAAAAAAAAAB2fke9Otm2Kbn6L5JNtyb7PzV59AeSUpK1Zyf7Pim5/eJk2YHJXo+eGpQ2q/Nelfzog8nmOyf7Vj8kOeSsue0LOwHBaAAA0JZwMwAAAAAAAAAAAAAAAAAAgJFWSnLsrzde9YGkjE0dX7Z/cugL5u+8lUckZ1yaXPVHyc++1whbO/5tyfiK+TsDFijBaAAAMKfwM8FpAAAAAAAAAAAAAAAAAAAAI6M1FK1fVh+TnPrBwZwFC8iA/gsDAICFrF24WenTvgAAAAAAAAAAAAAAAAAAAAA0E4wGAABVgBkAAAAAAAAAAAAAAAAAAADAsAlGAwCAzCUYTagaAAAAAAAAAAAAAAAAAAAAwHwQjAYAALVf4WZC0wAAAAAAAAAAAAAAAAAAAAC6JRgNAAAEmAEAAAAAAAAAAAAAAAAAAAAM3fiwCwAAgOFrE4xWSoelQtUAAAAAAAAAGKxSyniSk5I8LMk+SXZLsj7JjUmuTvK9WuvW4VUIAAAAAAAAAACzIxgNAAD6FW4mNA0AAAAAAABgp1FKOSLJKUlOnrielGRV05Qbaq2HDaG0B5VSjk7y20nOTrK6zdSNpZSvJPmrWusnB1IcAAAAAAAAAADMA8FoAADQjnAzAAAAAAAAgF1WKeX0JG9JIwxtzXCrmVkpZTzJ76VRazff/VyW5Iwk65IIRgMAAAAAAAAAYKchGA0AADKX8DPBaQAAAAAAAAA7sROTPG3YRbRTSlmW5IIkP98yVJN8L8mPk9ydZGWSI5IcG98PBQAAAAAAAABgJ+WLLwAA0LdwM6FpAAAAAAAAADupzUl+muTIYRZRSilJ/ilTQ9E2JfnDJB+otd44zZrlSc5I8qIkWwZRJwAAAAAAAAAAzBfBaAAAUNsEmJUyuDoAAAAAAAAAGIb7k3wvydeTXDFx/U6S05J8aYh1Jcnrkjy7qX1zkqfUWq+aaUGt9b4kFya5sJTie6IAAAAAAAAAAOxUfOEFAADSJhitr2sBAAAAAAAAGLLzk/x1rXVT60AZ8i/SKqUcmuQ9TV2bkjy1XShaq1rr1nkvDAAAAAAAAAAA+kgwGgAA9C3cTGgaAAAAAAAAwEJWa71r2DW08TtJVja131lrvXJYxQAAAAAAAAAAwCCMDbsAAAAYuirADAAAAAAAAICFo5SyKslLmro2JHnvkMoBAAAAAAAAAICBEYwGAACZQzCaUDUAAAAAAAAA5t/ZSVY2tf+51nrvsIoBAAAAAAAAAIBBEYwGAAAAAAAAAAAAsLA8uaX9+aFUAQAAAAAAAAAAAzY+7AIAAGD4ap+27dO+AAAAAAAAAOzqHt3S/mqSlFKWJTkryYuSPCzJgUk2J7kjyTfTCFD7x1rrvYMrFQAAAAAAAAAA5o9gNAAA6CXAbOPNyU8+mdz3k2T/M5KVh/evLgAAAAAAAABGTilljyRHNXVtSXJtKeVJSc5L0vo/qpcm2T3JkUmen+RdpZR31Fr/fBD1AgAAAAAAAADAfBKMBgAA6TIY7d4fJRedntz300b7yvckR5zTr6IAAAAAAAAAGE37t7RvSvK8JB9LMtbF+r2SvLeUckqSV9Rat85zfQAAAAAAAAAA0DeC0QAAoNtgtO+9czIUbbtrPzz3fQEAAAAAAABg0h4t7ZVJ/j6ToWg3JHlfkq8kuTPJmiSPT/JrSQ5rWvfSJLcm+a35KqyUsm+SfXpcduR8nQ8AAAAAAAAAwK5PMBoAANR2AWZl8sdrz+t7KQAAAAAAAACMvNZgtL2bfv54kpfXWje2zLmslPKXSf4uyQua+n+zlHJhrfXieartdUnOnae9AAAAAAAAAABgB2OdpwAAwK6uXTAaAAAAAAAAAAzUTN/tvCLJS6YJRUuS1Fo3JXnJxLxmvzuPtQEAAAAAAAAAQF8JRgMAgNqvYDSBawAAAAAAAAD0bP0M/b9Va93abuHE+Btbup9WStl3XioDAAAAAAAAAIA+Gx92AQAAMHztAsyEmwEAAAAAAAAwUNMFo91Qa/2vbhbXWr9SSrk2yRFN3U9K8vF5qO39s9jnyCQXzsPZAAAAAAAAAACMAMFoAAAAAAAAAAAAAAvH3dP0XdbjHl/L1GC0h86+nEm11tuS3NbLmlLKfBwNAAAAAAAAAMCIGBt2AQAAMHy1zdgcvqBd2+0LAAAAAAAAANO6Icnmlr6be9zjppb2XrMvBwAAAAAAAAAABkcwGgAACDADAAAAAAAAYIGotW5L8oOW7tagtE5a5y+dfUUAAAAAAAAAADA4gtEAACCC0QAAAAAAAABYUL7d0t6jx/Wt8++cQy0AAAAAAAAAADAwgtEAAKBvwWgC1wAAAAAAAACYlU+3tB/W4/rjW9o/nUMtAAAAAAAAAAAwMILRAACgCjADAAAAAAAAYEH5tySbm9qnlFLWdLOwlLJnkke3dF88X4UBAAAAAAAAAEA/CUYDAIC0C0YrA6sCAAAAAAAAAJKk1npvkguaupYkeX2Xy1+fZGlT+4Yk352n0gAAAAAAAAAAoK8EowEAQNtgtIW4LwAAAAAAAAA7k1JKbXmd3sWytyXZ0tR+aynlsR3OeWyS323pfnet1f/ABgAAAAAAAABgpzA+7AIYjFLK4iSnJTk0yQFJ1ie5Kck3a63Xz/NZhyc5McmBSVYmuTmN3zh5aa31/vk8CwCg/3w3HAAAAAAAAGBXVko5ONN/n3L/lvZ4KeWwGbZZX2u9Yz7rqrVeV0r5w0wGnS1J8rlSyv9M8qHm7+OVUsaTvDLJHyfZrWmby5OcN591AQAAAAAAAABAPwlGG6BSyu8nOXcOW5xfaz2nxzP3SfL2JGcnWTPDnEuT/Gmt9Z/nUFtKKc9P8sYkM/1GynWllI8m+b35/gIYAMCc+MXYAAAAAAAAAKPsK0nWdjHvoCTXzTB2fpJz5qugJr+X5CFJXjDRXpnk/UneVUq5LMm6NL4b+Jgke7SsvTHJL9Zat/ShLgAAAAAAAAAA6AvBaLuwUsozknw4yb4dpj4uyeNKKR9J8ppa64Yez1mZ5INJXtRh6pokv5rkeaWUl9daP9vLOQAA/dOnYDSBawAAAAAAAADMQa21llJelkYA2muahvZIcmabpZcnOavWelM/6wMAAAAAAAAAgPk2NuwC6I9SyulJPpWpoWg1yX8n+XiSzye5o2XZLyX5x1JK138uSimLknw0O4ai3Z7kcxNnfSNT00b2S3JhKeXx3Z4DANBfAswAAAAAAAAAWJhqrZtrra9N8tQ0vvu3rc307yY5J8njhKIBAAAAAAAAALAzGh92ASPuxUku62H++m4mlVIOTvKJJLs1dV+S5FW11qua5i1J4zdI/nGSxRPdv5DkD5K8tcua3pPk55va9yd5Y5IP1Fq3NJ11XJIPJXnsRNeSJJ8qpTy81npzl2cBAPRHbReMJjQNAAAAAAAAYFdWaz1sAGeUedjjoiQXlVL2SfKYJAck2TvJvUluTXJprfWncz0HAAAAAAAAAACGSTDacN1Sa72+D/u+PcmeTe1Lkzy11rqpeVKtdXOSPy+l/DjJJ5uG3lhK+Zta6w3tDimlHJHk11u6X1BrvbB1bq31ylLKU5JclMlwtL2SnJvktV28JwCAPmoTftY2NG0O+wIAAAAAAADALNRab0/yr8OuAwAAAAAAAAAA+mFs2AUwv0opRyd5eVPXliTntIaiNau1firJ+U1dS9IILOvk3CSLm9ofni4UremcjUnOmahpu1dOBKwBAAxRuwAz4WYAAAAAAAAAAAAAAAAAAAAAgyAYbdfzkiSLmtqfqLX+sIt1/7ul/cJSytKZJpdSliV5foc9dlBrvTrJp5q6xtOoGQBgeKrwMwAAAAAAAAAAAAAAAAAAAIBhE4y26zmrpX1eN4tqrVcl+VpT14okT2uz5OlJlje1v1pr/X5XFe5Y0/O6XAcAMARzCE0TuAYAAAAAAAAAAAAAAAAAAADQNcFou5BSyv5JTmjq2prkkh62+HJL+xlt5p7ZYW07F6dR23aPLKXs18N6AID5VR9oMybcDAAAAAAAAAAAAAAAAAAAAGAQBKPtWo5vaX+71rqhh/WXtrQf1sNZX+32kImavtPDWQAA/VMfSK54bbsJAysFAAAAAAAAAAAAAAAAAAAAYJQJRhuu15RSvlBKubGUsqmUcm8p5fpSyn+WUt5ZSnlCj/sd19K+psf1P+qwX7OHDvAsAID+ufFfkw3Xzzxe5xKMJlQNAAAAAAAAAAAAAAAAAAAAoFvjwy5gxL2opb0kycoka5M8MclbSylfT/KWWusXutjvqJb2j3us54aW9l6llD1rrXc1d5ZS1iRZM8ezWucf3eN6AID5cdWfDLsCAAAAAAAAAAAAAAAAAAAAAJKMDbsAOjo5yedKKe8spZQOc/doad/Wy0G11vVJNrV0797FOffVWjf0clZ2rG26cwAA+u/2iztMqAMpAwAAAAAAAAAAAAAAAAAAAGDUjQ+7gBF1Y5JPJ7k8yVVJ1iV5IMleSU5K8qwkT2+aX5K8NY0gu7e02XdlS3vjLGrbmGRpU3tVH89pNt05PSul7Jtknx6XHTkfZwMAu6q5BKMJVQMAAAAAAAAAAAAAAAAAAADolmC0wbo8jcCzz9daZ0rJuDTJX5ZSTk7yD0mObhp7cynlslrrhTOsbQ0s2zSLGjcm2bPNnvN5Trs9Z+t1Sc6dp70AAJIZP7YBAAAAAAAAAAAAAAAAAAAAMJ/Ghl3AKKm1frrW+rk2oWjNc7+e5DFJrm4Zek8pZVG3R/Za4wJfAwAwBD62AAAAAAAAAAAAAAAAAAAAAAyCYLQFrNa6LsmLMzWN49gkT55hyfqW9rJZHNu6pnXPQZ4DALBz65yHCwAAAAAAAAAAAAAAAAAAAMCE8WEXQHu11m+UUj6X5OlN3Wcm+cI00wWjJe9P8vEe1xyZ5MJ5Oh8A2OUINwMAAAAAAAAAAAAAAAAAAAAYBMFoO4fPZGow2iNmmPezlvY+vRxSSlmZHQPL7u7inOWllBW11g09HLdvF+f0rNZ6W5LbellTSpmPowGAXVUVjAYAAAAAAAAAAAAAAAAAAAAwCGPDLoCuXN/Sninw7Ict7bU9ntM6f12t9a7WSbXWO5O09h86x7NaawcAWCAmgtFmFZAmVA0AAAAAAAAAAAAAAAAAAACgW4LRdg4bW9rLZph3VUv7qB7POaKlfWWbufN9Vut+AAALRG25AgAAAAAAAAAAAAAAAAAAANAPgtF2Dnu3tO+YYd53W9qPKKUs7+Gc0zrs127ssd0eUkpZkeQRPZwFADB8VTAaAAAAAAAAAAAAAAAAAAAAQD8JRts5nNrSvmm6SbXWm5N8u6lrPMnjezjn9Jb2f7SZ+5kOa9t5Qhq1bffNWuutPawHABicBwPRZhOMJkwNAAAAAAAAAAAAAAAAAAAAoFuC0Ra4UsrSJM9r6f5ymyWfbGm/ostzjs3UALYNST7XZslnk2xsaj92Yo9unNPSbq0ZAGABEW4GAAAAAAAAAAAAAAAAAAAAMAiC0Ra+NyU5qKm9Lcm/t5n/kYk52z2vlHJ0l+c0+1itddNMk2ut9yW5oMMeOyilHJPkrKaurUn+oYv6AACGpLZcAQAAAAAAAAAAAAAAAAAAAOgHwWgDUkp5WSllvx7XvCrJuS3dH6613jDTmlrrD5Oc39S1W5IPl1KWtjnnOUnOaerakuTtXZT4+0nub2qfU0p5dptzliY5b6Km7f621vqjLs4CABiOWqdeZ7MWAACA2as1uefq5P57hl0JAAAAAAAAAAAAAAAA0GeC0QbnlUmuK6WcX0p5ZillxUwTSyknl1I+keQDSUrT0I1JfreLs85NcldT+3FJvlBKObblnCWllDck+XjL+j9pF762Xa312iTvbem+oJTy+lJKc/hZSikPTXLRRC3b3ZnuAtgAABYAIWcAAAADt+4byYVrk397SHLBmuTy1yYPbBt2VQAAAAAAAAAAAAAAAECfjA+7gBGzLMkvT7weKKX8MMn1SX6WZFuSvZKckGS/adauS3JmrfWWTofUWn9aSnleks8m2R5QdlqSK0sp/53k2iS7JzkpyT4ty/8tydt6eE9vTvKwJM+YaC9O8hdJ3lZK+UaSe5McMXFWc8jbliRn1Vpv7uEsAIAhqC1XAAAABmLrxuSLZyRb1jXadVtyzd8kKw9PjnvTcGsDAAAAAAAAAAAAAAAA+kIw2vCMJXnIxKuTi5KcU2v9abeb11q/XEo5K8mHMxl+VpKcPPGazj8meVWtdVsP52wrpbwwyYeSnN00tG+SM2dYdluSl9daL+72HACA4ZkIRKuzCUYTpgYAADBrt3x+MhSt2TUfEIwGAAAAAAAAAAAAAAAAu6ixYRcwQt6b5B+S3NDl/A1JPpnkqbXWp/YSirZdrfXTSY5P8tdJ7moz9bIkz6+1vqTWumEW56yvtb4oyQsm9prJuiR/leT4Wutnej0HAGAoHgxEE3IGAAAwUN//s+n711872DoAAAAAAAAAAAAAAACAgRkfdgGjotb6yTSCzlJK2SPJw5IckmS/JMvTCKm7O40As6uSfLvWum0ezr0tya+WUn49yWlJ1ibZP43gtRuTfLPWet1cz5k464IkF5RSDk9yUpIDk6xIcksagXCX1Fq3zMdZAACDIxgNAAAAAAAAAAAAAAAAAAAAYBAEow1BrfXuJJcM+MwtSb40oLOuSzIvYWsAAAtGnU0wmjA1AACA2XNPBQAAAAAAAAAAAAAAAKNmbNgFAADAgvZgIJoH8gEAAAAAAAAAAAAAAAAAAAD6STAaAAC0JRANAAAAAAAAAAAAAAAAAAAAYBAEowEAQFu15drLUqFqAAAAAAAAAAAAAAAAAAAAAN0SjAYAAO1sDzcTcgYAADBg7sMAAAAAAAAAAAAAAABg1AhGAwCArnggHwAAAAAAAAAAAAAAAAAAAKCfBKMBAEBbteU6m7UAAAAAAAAAAAAAAAAAAAAAdCIYDQAA2poIN6tCzgAAAAAAAAAAAAAAAAAAAAD6STAaAAC082AgmmA0AAAAAAAAAAAAAAAAAAAAgH4SjAYAAG1NBKLV2QSjCVMDAACYtVndhwEAAAAAAAAAAAAAAAA7M8FoAACMttLtR2IP5AMAAAAAAAAAAAAAAAAAAAD0k2A0AABGXKePxLXlCgAAwECUMuwKAAAAAAAAAAAAAAAAgAETjAYAwGgrHT4S1zr12ovZrAEAAKDBPRUAAAAAAAAAAAAAAACMHMFoAACMtk7BaPEgPgAAwIJz65eGXQEAAAAAAAAAAAAAAADQB4LRAAAYbWVRhwm15QoAAMDQfe9dw64AAAAAAAAAAAAAAAAA6APBaAAAjLhuPxLPJhhNmBoAAEBf3PKFYVcAAAAAAAAAAAAAAAAA9IFgNAAARlvp8JG41qlXAAAABsTZzKyOAAAgAElEQVR9GAAAAAAAAAAAAAAAAIwawWgAAIy2TsFoDz6I74F8AAAAAAAAAAAAAAAAAAAAgH4SjAYAwGgrizpMmEswmjA1AAAAAAAAAAAAAAAAAAAAgG4JRgMAYLSVDh+Ja516BQAAAAAAAAAAAAAAAAAAAKAvBKMBADDiuv1ILBgNAAAAAAAAAAAAAAAAAAAAoJ8EowEAMNpKp4/EteXagypMDQAAYPbcUwEAAAAAAAAAAAAAAMCoEYwGAMBo6xSMtj3cTMgZAAAAAAAAAAAAAAAAAAAAQF8JRgMAYMR1+kgsEA0AAAAAAAAAAAAAAAAAAABgEASjAQAw2kq3wWizCUgTqgYAAAAAAAAAAAAAAAAAAADQLcFoAACMtrKoy4lCzgAAAAAAAAAAAAAAAAAAAAD6STAaAACjrXT4SFzr1CsAAAAAAAAAAAAAAAAAAAAAfSEYDQCA0dYpGC215doLYWoAAAAAAAAAAAAAAAAAAAAA3RKMBgDAaCuLOkyYCDerQs4AAAAGyn0YAAAAAAAAAAAAAAAAjBzBaAAAjLgOH4kffBDfA/kAAAAAAAAAAAAAAAAAAAAA/SQYDQCA0VY6fSSeQzBaFaYGAAAAAAAAAAAAAAAAAAAA0C3BaAAAjLaOwWgThJwBAAAAAAAAAAAAAAAAAAAA9JVgNAAARltZ1GFCbbkCAAAAAAAAAAAAAAAAAAAA0A+C0QAAGHEdPhLXuQSiCVMDAACYPfdUAAAAAAAAAAAAAAAAMGoEowEAMNrGxjtMqC1XAAAAAAAAAAAAAAAAAAAAAPpBMBoAAKOtLOowYSIQrQpGAwAAAAAAAAAAAAAAAAAAAOgnwWgAAIy2jsFo2wlGAwAAAAAAAAAAAAAAAAAAAOgnwWgAAIy2Mt5+vG4PRBOMBgAAAAAAAAAAAAAAAAAAANBPgtEAABhtZVGHCROBaFUwGgAAwILiPg0AAAAAAAAAAAAAAAB2OYLRAAAYbd0Go8UD9wAAAAAAAAAAAAAAAAAAAAD9JBgNAIDRVjp8JK6C0QAAAIaiug8DAAAAAAAAAAAAAACAUSMYDQCAEdflg/YeyAcAAFhg3KcBAAAAAAAAAAAAAADArkYwGgAAtFVbrgAAAAAAAAAAAAAAAAAAAAD0g2A0AABoSzAaAAAAAAAAAAAAAAAAAAAAwCAIRgMAYLTVDoFnncYBAAAYDvdrAAAAAAAAAAAAAAAAsMsRjAYAAG1NPGjvgXsAAIABcx8GAAAAAAAAAAAAAAAAo0YwGgAAdMUD+QAAAAuL+zQAAAAAAAAAAAAAAADY1QhGAwBgxHV4kL7WqVcAAAAAAAAAAAAAAAAAAAAA+kIwGgAAtFVbrgAAAAAAAAAAAAAAAAAAAAD0g2A0AABGXKfAszkEo1VhagAAAP3jngsAAAAAAAAAAAAAAAB2NYLRAACgne3hZkLOAAAABsx9GAAAAAAAAAAAAAAAAIwawWgAANAVD+QDAAAAAAAAAAAAAAAAAAAA9JNgNAAARlvtFHhWW649bT6LNQAAAHSl4/0cAAAAAAAAAAAAAAAAsLMRjAYAAG1NPGjvgXsAAAAAAAAAAAAAAAAAAACAvhKMBgAA7QhEAwAAGI6O92Pu1wAAAAAAAAAAAAAAAGBXIxgNAIAR1+2D9rN54N5D+gAAAAAAAAAAAAAAAAAAAADdEowGAABdEXIGAAAwUKUMuwIAAAAAAAAAAAAAAABgwASjAQBAWxOBaFUwGgAAwEB1vA9znwYAAAAAAAAAAAAAAAC7GsFoAACMuA4P0j/4IP4sHrgXpgYAAAAAAAAAAAAAAAAAAADQNcFoAADQ1hyC0QAA+P/s3XuwpHld3/HPr89hZ4bdhAUEEQmsi4giQSVUqZALJpS38hIMojFFSWIMhff7pSICqdxMImXQqBWDQmlEAhJQg2i4WepiNLArGkCBheG27LrsCuzsmZk93b/8sWfc3p5+ntPdp5/znH769aqa2tPP9WvZ1XWeZn7vAeiOGDUAAAAAAAAAAAAAAAAMjjAaAAC0Olhob8E9AAAAAAAAAAAAAAAAAAAAQKeE0QAA2G4LB89WCaOJqQEAAKzOMxUAAAAAAAAAAAAAAABsG2E0AABo81fhNAvyAQAAThbPaQAAAAAAAAAAAAAAADA0wmgAANDqYKF9XWXBvUX6AAAAAAAAAAAAAAAAAAAAAIsSRgMAYMsdFi8TNwMAAAAAAAAAAAAAAAAAAAA4DsJoAADQpl4KowmkAQAAnCye0wAAAAAAAAAAAAAAAGBohNEAAKDNhb+4+791hQX3q5wDAADAAc9UAAAAAAAAAAAAAAAAsG2E0QAA2HKHLLS/9c3Jb3xWctsfHc84AAAALEaMGgAAAAAAAAAAAAAAAAZHGA0AAA7z8Xcmb3tO31MAAAAAAAAAAAAAAAAAAAAADJowGgAAdKb2PQAAAAAAAAAAAAAAAAAAAADAxhBGAwBgu1XxMgAAgM3keQ4AAAAAAAAAAAAAAACGRhgNAAAAAAAAAAAAAAAAAAAAAAAA6J0wGgAAdKb2PQAAAMCAeeYCAAAAAAAAAAAAAACAoRFGAwBgy1lIDwAAcCJVz2sAAAAAAAAAAAAAAACwbYTRAAAAAAAAAAAAAAAAAAAAAAAAgN4JowEAsOVqh5fu8NoAAADbzjMXAAAAAAAAAAAAAAAADI4wGgAAAAAA3ZmM+54AAAAAAAAAAAAAAAAAgA0hjAYAAAAAwPq9+78mv/4ZycuvSt74pcm5D/Q9EQAAAAAAAAAAAAAAAAAnnDAaAADbrdYuL97htQEA4AQ7+7LkD5+VfOJdyfh8ctNvJa9/cjK+2PdkbJTDnqk8cwEAAAAAAAAAAAAAAMDQCKMBAAAAALBe7/3Fy7fdcWNy65uPfxYAAAAAAAAAAAAAAAAANoYwGgAAdKb2PQAAAPTjw/9r/va3/cvjnYOB88wFAAAAAAAAAAAAAAAAQ7Pb9wAAANAvC+lZo3PvT25+Q/LxdyanH5J88hclVz8uKaXvyQAATobxhb4nAAAAAAAAAAAAAAAAAOAEE0YDAABYhw+8Mvndp+Wy2N6jvjV5wk+KowEAAAAAAAAAAAAAAAAAAMAhRn0PAAAAg1Xr4ccwDPt7yXXPyGVRtCR5139JPvK/j30kAAAYPM9cAAAAAAAAAAAAAAAAMDjCaAAAbDkL6VmDD/16Mr6zef/Nbzy+WQAAAAAAAAAAAAAAAAAAAGBDCaMBAAAc1U2/2b7/xhcfyxgAACdf6XsANoqQNQAAAAAAAAAAAAAAAGwbYTQAAOiMRfzb45DAx86Z4xkDAAC2imcuAAAAAAAAAAAAAAAAGBphNAAAtlu1kJ41uP369v1X/83jmQMAAIbE8xoAAAAAAAAAAAAAAABsHWE0AACAo9jfS26/of2YndPHMwsAAGwT4TQAAAAAAAAAAAAAAAAYHGE0AADojEX6W+HmNxx+zOSu7ucAAIChKaXvCQAAAAAAAAAAAAAAAIBjJowGAMCWEy/jiN7+Y4cfM7nQ/RwAADA01fMaAAAAAAAAAAAAAAAAbBthNAAAgKOY3HX4MR9+TVIn3c8CAABbRTgNAAAAAAAAAAAAAAAAhkYYDQAAulIt0t8Ko53FjvvAK7udAwBgE5TS9wQAAAAAAAAAAAAAAAAAnGDCaAAAbDfxMo5swbjHu36m2zEAAGDreJ4DAAAAAAAAAAAAAACAoRFGAwAAOIqy4GPVzW/odg4AAAAAAAAAAAAAAAAAAADYcMJoAADQmdr3AByHstP3BAAAMFCeqQAAAAAAAAAAAAAAAGDbCKMBALDlLLTnqDxWAQBAL6rnOQAAAAAAAAAAAAAAABgaK/gBAACOonisAgAAAAAAAAAAAAAAAAAAgHWwgh8AADpT+x6AY1H6HgAAAAAAAAAAAAAAAAAAAAAGYbfvAQAAoF/iZRzR5ELfEwAAnBx3fjC57a0tB4jKsozDntc8zwEAAAAAAAAAAAAAAMDQCKMBAEBXqkX6W2H/zr4nAADoX63JH/9w8vYf63sSAAAAAAAAAAAAAAAAADbYqO8BAACgV+JlHNX4XN8TAAD078OvEUWjA+WQ/Z7nAAAAAAAAAAAAAAAAYGiE0QAAAFZVa/Kxt/c9BQBA//78p/qegEESPgMAAAAAAAAAAAAAAIBtI4wGAACdsYh/8G5/a98TAACcDDe9dsEDS6djAAAAAAAAAAAAAAAAALDZhNEAANhy4mUcwUde3/cEAAAbxu/frFH1fgIAAAAAAAAAAAAAAIChEUYDAABY1cW/7HsCAAAAAAAAAAAAAAAAAAAAGAxhNAAA6EqtfU9A18Z7fU8AALBhSt8DsEkOfabyzAUAAAAAAAAAAAAAAABDI4wGAMCWs5CeIxjf2fcEAAAAAAAAAAAAAAAAAAAAMBjCaAAAAKva3+t7AgAAAAAAAAAAAAAAAAAAABgMYTQAAOhM7XsAujYWRgMAgP545gIAAAAAAAAAAAAAAIChEUYDAGC7VQvpOYLxnYsfe8UDupsDAGBTlNL3BAAAAAAAAAAAAAAAAACcYMJoAAAAqxrvLX5snXQ3BwDAphAmZineLwAAAAAAAAAAAAAAALBthNEAAKAzFvEP3v4yYbT97uYAAIBtJLQHAAAAAAAAAAAAAAAAgyOMBgDAlrOQniMY37n4sZO7upsDAGBTlNL3BGwU7xcAAAAAAAAAAAAAAADYNsJoAAAAqxrvLX5s3e9uDgAAGKTDQtZC1wAAAAAAAAAAAAAAADA0wmgAANCVapH+4C0VRht7TwAAAAAAAAAAAAAAAAAAAEALYTQAALacUBVHsH/ncsfXcTdzAAAAAAAAAAAAAAAAAAAAwAAIowEAAKxqvLfc8XW/mzkAADZG6XsABkXoGgAAAAAAAAAAAAAAAIZGGA0AADpjkf6g1bp8GG1yVzezAABsDL8jswzvFwAAAAAAAAAAAAAAANg2wmgAAGy3aqE9K5pcWP6cur/+OQAAAAAAAAAAAAAAAAAAAGAghNEAAKAzomuDNj6//DkTYTQAYNuVvgdgSISuAQAAAAAAAAAAAAAAYHCE0QAAAFYxvrD8OVUYDQAAAAAAAAAAAAAAAAAAAJoIowEAsOVq3wOwqSYrhNEmwmgAALA+nucAAAAAAAAAAAAAAABgaITRAACgK9Ui/UEbn1/+nCqMBgAAC/NMBQAAAAAAAAAAAAAAAFtnt+8BOB6llPskeVKShyf5lCR3JPlwkutrre9b870+LcnnJnlokquS3JTkbJLraq13rfNeAADQm8mFFc7x6zAAsOVK6XsCAAAAAAAAAAAAAAAAAE4wYbQTqJTyK0m+bmbz2VrrNStc60FJnn9wvQc0HHNdkhfUWn912evPXOdpSb4nyRc2HHJbKeVlSX601nrrUe4FALA+te8B2FRjYTQAAOiX5zkAAAAAAAAAAAAAAAAYmlHfA3BvpZSvyuVRtFWv9WVJ/jTJs9MQRTvwxCSvKKX8UinlyhXuc1Up5aVJXp7mKFoOZnh2kj8tpXzJsvcBANg8FukP2vj88udMVoipAQAAAAAAAAAAAAAAAAAAwJbY7XsA7lFKuTrJz6zpWk9O8qokV0xtrknemuTGJFcn+bwknzS1/58k+eullH9Ya50seJ+dJC9L8uUzu/4iyfVJPpbkkQf3Kgf7PjnJq0spT6m1/t4S/2cBAKxfFS9jRatEzlaJqQEAAPN5ngMAAAAAAAAAAAAAAIDBGfU9APfy40keevDzJ1a9SCnlYUlemXtH0X4/yWfXWp9Qa316rfWLkzwsyXcmuWvquK9M8q+XuN2/z72jaHcl+fYkD6u1fsnBvf5WkscmefPUcaeSvKqU8ilL3AsAAE6OcUMYbXSq5RxhNAAAAAAAAAAAAAAAAAAAAGgijHZClFKekuSfHbzcT/KjR7jc85Pcf+r1dUmeUmt9x/RBtdYLtdYXJnn6zPnfU0p5xGE3KaVcm7vDatO+ttb6U7XWizP3enuSf5B7x9EemOS5h90HAGBz1b4HoEuThjDazum7/8wz3utuHgAAAAAAAAAAAAAAAAAAANhwwmgnQCnlyiQ/N7XpBUluWPFaj0ryjVObLiZ5Zq31fNM5tdZXJXnJ1KZTWSxY9twk95l6/eJa66tb7rOX5JkHM13yTQeBNQCAnoiXsaJxw6/YO6eTUVMYrfHXcgAA4DKHPa95ngMAAAAAAAAAAAAAAIChEUY7Gf5dkmsOfr4xyfOOcK1vSLIz9fqVtdZ3LXDej828fnoppaHmkJRSziR52iHXuEyt9c+TvGpq027unhkAADbL5ML87aNTd8fR5hFGAwC2Xul7AAAAAAAAAAAAAAAAAABOMGG0npVSnpjkW6c2PavWuneESz515vUvLHJSrfUdSf7P1KYrk3xxyylfkuS+U6/fXGt950ITXj7T1yx4HgDAZqm17wno0rghjLZzKtk5M3/fRBgNAAAW55kKAAAAAAAAAAAAAAAAto0wWo9KKaeS/Hzu+f/DS2qtrzvC9R6S5HOmNu0n+f0lLvGmmddf1nLslx5ybpvfzd2zXfJ5pZRPXuJ8AIA1stCeFY0bImc7p+/+s8w5AADA8sSoAQAAAAAAAAAAAAAAYHCE0fr1vCSPPvj5L5J87xGv99iZ12+rtZ5b4vzrZl5/9hL3evOiNzmY6U+WuBcAAJw8kwvzt49OCaMBAMBalL4HAAAAAAAAAAAAAAAAAI6ZMFpPSimPT/J9U5u+q9b60SNe9jEzr9+95PnvOeR60z7rGO8FALChat8D0KUbf2H+9h1hNAAAWI/Dnqk8cwEAAAAAAAAAAAAAAMDQCKP1oJSym+Tnk+webHptrfWX13DpT595/f4lzz878/qBpZT7zx5USnlAkgcc8V6zxz9qyfMBANajWkjPij7+zvnb924WRgMAAAAAAAAAAAAAAAAAAIAV7B5+CB34oSSfc/DzuSTPXtN1r555fcsyJ9da7yilnE8yXXG4X5LbD7nPnbXWc8vca85s91vy/LlKKQ9O8qAlT3vkOu4NAHA50bXBOn9r8777XJWMGsJoE2E0AAAAAAAAAAAAAAAAAAAAaCKMdsxKKY9J8iNTm55Ta33fmi5/1czrvRWusZd7h9H+Wof3mTbvPqv4liTPXdO1AABgvvGdzftGVyQ7DWG0/VV+dQYAGJLS9wAMihg1AAAAAAAAAAAAAAAADM2o7wG2SSlllORFSU4dbHpLkheu8RazwbLzK1xjttQwe83jvA8AwDGwkJ4VjFt+BX7oVzSH0Sar/OoMAAAAAAAAAAAAAAAAAAAA20EY7Xh9Z5IvOPh5P8k/r7WOO7zfKpWPk3wOAFzurjuSOul7Cpiv+pVnsCYXmvdd+43Jzpn5+9qCagAAwL15pgIAAACOWSnl2lLK15VS/mMp5U2llI+XUurUn/f1PeOsUsp9SynvmZmzllJe3PdsAAAAAAAAAACwit2+B9gWpZRrk/zrqU0vqLXesObb3DHzuqHG0Gr2nNlrHud9VvHTSV6+5DmPTPLqNd0fgONyx43Jdc9IPvoHyalPSh793cljfjAppe/JgG0wbgmjXXF1snO64TxhNAAAWBvhNAAAAGANSilPTvLDSZ6Q5AH9TrOSf5Pk2r6HAAAAAAAAAACAdRFGOwallJLk55Lc92DTjUme18Gttj6MVmu9Jckty5xTBHQANs/4YvK6L0rufP/dr8/fkvzxDyenHph8+jf3OxsbyEJ6VjBpCaONTgmjAQAAAAAAwOb43CRf3PcQqyilfEGS7+h7DgAAAAAAAAAAWKdR3wNsiW9O8venXj+r1rrXwX0+NvP6QcucXEq5KpcHy/5ygfvct5Ry5TL3SvLgBe4DAPPd+uZ7omjTzr7s+GeBVqJrgzVuC6NdIYwGAADHwjMXAAAA0KkLSd7T9xBNSilXJHlR7vl7oJ/ocRwAAAAAAAAAAFib3b4H2BLPn/r5NUneXUq55pBzHjLzenfOOR+utV6cev2umf2PWHC+puNvq7XePntQrfWjpZTbk9x/avPDk7zjCPeanR0Amr3tR+Zvv/n1xzsHsL0mDWG00RVJKcmoIYw2EUYDAIDFCZ8BAAAAx+auJP8vyf9N8kcH//2TJE9K8sYe52rzo0kec/Dz2SQvT/J9/Y0DAAAAAAAAAADrIYx2PM5M/fzlSd67wjU+dc55n5fkhqnXs2GyT1/yHtfOvH57y7HvSPLEmXstE0abvdcy5wKw7eq47wkYkmqhPSsYN4XRTt39352GMNpYGA0A2HKl9D0BAAAAAMx6SZKfrbVe9j/mlRP6fVYp5XOS/ODUpmcn+fyexgEAAAAAAAAAgLUa9T0Aa/WnM68fV0q57xLnP+mQ67Xt+8JFb1JKuTLJ45a4FwDcm5AVG8N7dbAmDWG0ncPCaHvdzAMAAIN02MJjz1wAAADA0dVab58XRTupSim7SX4+9/zDuC+ttf5mjyMBAAAAAAAAAMBaCaMNSK31piRvm9q0m+RvL3GJJ8+8bvvLUq895Nw2fyf3/KWsJLm+1nrzEucDsPUsfAZ6Nm4Io40OC6NtzHoKAAA4ATz/AwAAAMzx/Ukef/DzbUm+q8dZAAAAAAAAAABg7YTRjkGt9epaa1nmT5IvmrnM2TnH3TDndv9z5vU/XWTGUspnJvn8qU3nkvx2yym/lWRv6vUXHlxjEc+ceT07MwC0q5O+J2BQLLRnBZOGMNrOpTDamfn7hdEAAGB9quc5AAAAYLuUUh6d5LlTm7631npLX/MAAAAAAAAAAEAXhNGG578nGU+9/ppSyqMWOO8HZ17/j1prY7Wh1npnklccco3LlFI+I8lTpzbtJ/nlBeYDgCkWPrMhLNIfrnFDGG10KYx2uuE8YTQAYNuVvgcAAAAAgI1UShkleVGSg/9RMm+otb64v4kAAAAAAAAAAKAbwmgDU2t9V5KXTG26IsmLSykNZYaklPLVSZ45telikucvcLvnJblr6vUzSylf1XKf00l+4WCmS15Ua33PAvcCgHvUSd8TANtu0hBG2xFGAwBoJx7Mgcl+cu6soDQAAADA4r4tyZMOft5L8qweZwEAAAAAAAAAgM4Iow3Tc5PcPvX6iUleV0r5zOmDSimnSinfnuTlM+f/eK317GE3qbXemOQ/z2x+RSnl20op0/GzlFI+K8nrD2a55KNZLMAGADMsmmaNLMJnFU1htNEhYbTJee85AAB4508kv/rA5NXXJK/6G8lHXj//uEN/d/a7NQAAALAdSinXJPm3U5ueX2t9dz/TAAAAAAAAAABAt3b7HoD1q7V+sJTyNUl+K8mlQNmTkry9lPKWJDcmuV+Sxyd50Mzpv5HkOUvc7oeSfHaSLzt4fZ8kP5nkOaWUtyb5RJJrD+5Vps67mOSptdablrgXANytTvqeABZkkf5gjRvCaJeCaKOGMFqdJHU/KffpZi4AgBOvHH4Iw/bBX0ve+t33vN77UPI7X5F8xZ8lVz68v7kAAAAATrafS3Llwc9/nOTH+xqklPLgXP73Dg/zyC5mAQAAAAAAAABgmITRBqrW+qZSylOTvDj3/CWkkuQJB3/meWmSb661jpe4z7iU8vQk/y3J103tenCSL2047ZYk31hr/d1F7wMA9yY2xTp5P7GC8fn520en7v7vTkMY7dK5I2E0AAC21Pt+6fJt4/PJB1+dPPrbj38egDbnziZ/9sLk9huSBzwhecwPJKce2PdUAADAlimlfFOSpxy8nOTuv+O33+NI35LkuT3eHwAAAAAAAACAgRv1PQDdqbW+Jsljk/xskttbDv2DJE+rtX5DrfXcCve5o9b69Um+9uBaTW5L8jNJHltrfe2y9wGAv1InfU8AbLvJhfnbdxYMowEAwLZ6/8vnb3/Ld6xwMaFroEN3fjh53d9L3vmC5OY3JO/4D8nr/m5y8WN9TwYAAGyRUspDk/ynqU0vrLX+UV/zAAAAAAAAAADAcdjtewDmq7W+KUlZw3VuSfLsUsp3JnlSkkckeUiSc0k+lOT6Wut7j3qfg3u9IskrSimfluTxSR6a5MokH0lyNsnv11ovruNeAGw7C5+Bno0bwmijRcJoe+ufBwAAAFivs7+cnDt7720fe3vyoV9LPu0Z/cwEAABso59OcvXBz2eT/EiPswAAAAAAAAAAwLEQRtsSB0GyNx7Tvd6bZC2xNQCYq076noBBEdpjBZOGMNrOpTDameZzx+fXPw8AwMY48r8FwVY55Hmtep4DOnT998/f/of/QhgNAAA4FqWUr0/y1VObnl1rPdfXPFN+OsnLlzznkUle3cEsAAAAAAAAAAAMkDAaALCBLHxmg9SaFPGHwRk3hNFGl8Jop1vOFUYDALaZ5zkANpznegAA4BiUUj4pyQunNr201vqbfc0zrdZ6S5Jbljmn+N/MAQAAAAAAAABYwqjvAQAAllYnfU8AbLtJQxhtRxgNAADWx4JZAAAAYGu9MMmDDn6+Lcl39TgLAAAAAAAAAAAcq92+BwAAWF7tewCGpHo/sYJxQxhtdOre/51nIowGAGwzoSuWcdjzmuc5AAAAYHhKKY9O8o+nNv1EkvuWUq455NSrZ15fNXPOpNb6/qPOBwAAAAAAAAAAXRNGAwA2T530PQEsoUb8YYAmDWG0nUthtN2k7CZ1//JjxsJoAAAAAAAAQKMzM6//1cGfZf2jgz+XfCyXx9MAAAAAAAAAAODEGfU9AADA8mrfAwDbrimMNjp1z887p+cfI4wGAABr4vsBAAAAAAAAAAAAAAAAGBphNABg89RJ3xMwKBbSs4JxQxhtRxgNAAAAAAAAAAAAAAAAAAAAViWMBgBsICErNkj1fh2kSUMYbbRIGG1v/fMAAPSuLHjYgsdBEs//wIl1y+/1PQEAADBgtdYbaq1l2T9Jnj9zqZfMHHN1H//3AAAAAAAAAADAsoTRAIDNUyd9TwBsu3FDGG06hrZzpuHc8+ufBwCgb4sGzy/lKC4AACAASURBVISDWSfvJ6AvH/6NvicAAAAAAAAAAAAAAIDBEkYDADaQhc+sk/cTK5g0hNFGp+75eTqSNk0YDQAYpAXDaACwKUZXNO97z4uObw4AAGAwSil15s+T+54JAAAAAAAAAABOot2+BwAAWFqd9D0BLEF4bZDGDWG0nakw2qghjDYRRgMAhmjBMFoRUANgQ4yuSCYX5++7cOvxzgIAAHSulPKwzP/7lA+Zeb1bSrmm4TJ31Fo9MAAAAAAAAAAAwBEJowEAG0hoCuhZU9xsNBVG22kIo42F0QCAASrFoxo98KYDOnTqQcn+HfP3Xf24450FAAA4Dr+X5BELHPepSd7bsO8lSZ65roEAAAAAAAAAAGBbjfoeAABgaXXS9wQMSbWQnhWML8zfviOMBgBsK1810wHPa0Cfrnx48777Peb45gAAAAAAAAAAAAAAgC1jtRoAsIEsjGaTeL8O0qQhjDYSRgMAtlQpfU/AVvK8BXTJZwwAAAAAAAAAAAAAAPRht+8BAACWVid9TwBsszpJJnfN37cjjAYAbKtFw2gCagBsiNoSRmvbBwAAbKRa6zXHcI9OvxyrtT4vyfO6vAcAAAAAAAAAAByHUd8DAAAsz8JD1sn7iSVNLjbvG02F0UZNYbS99c4DAHASFF81AzA0bf84g3+4AQAAAAAAAAAAAAAAumK1GgCweaqFh2yQKrw2OOMLzft2psJou2cazj+/3nkAAE6E0vcAbCPPW0CX2j5jfP4AAAAAAAAAAAAAAEBnhNEAgM1j4SHQp0lLGG00FUYbnW44XxgNABgiYTS64Pkf6FHrP87gH24AAAAAAAAAAAAAAICuCKMBABvIwkPWqeuF9hbyD854wTDaTkMYbSyMBgAMUBFGA2BoWr6D9A83AAAAAAAAAAAAAABAZ4TRAIDNU4XRgB5NWsJoO8JoAMC2EkajD8JEQIda42e+nwQAAAAAAAAAAAAAgK4IowEAG8jCZ6BH47Yw2un5P9/rfGE0AGCAiq+aARialvhZazQNAAAAAAAAAAAAAAA4CqvVAIDNU1sWJcKyOl/IaqHs4ExawmijU/f8LIwGAGyVsubjIDn0eUqYCOhS22eM7ycBAAAAAAAAAAAAAKAzwmgAwAay8Bno0bgljLazQBhtIowGAAxQETwDYGja4me+nwQAAAAAAAAAAAAAgK4IowEAm6e2LUqEZVnIypImLWG00RVTPzeE0cbCaADAEAmj0QXvK6BHteU7I99PAgAAAAAAAAAAAABAZ4TRAIANJGTFBmlbRMtmGjeE0Ub3ScrUI9bOmYbz99Y/EwBA7wSs6MJhz1Oet4AutcXPfP4AAAAAAAAAAAAAAEBXhNEAgM1T2xYlAnRscn7+9tGpe7/eOT3/uHHD+QAAm6z4qhmAgWn7DtL3kwAAAAAAAAAAAAAA0Bmr1QCADVT7HoBB8X5iSeML87fvCKMBANus9D0AW8nzHNClts8Ynz8AAAAAAAAAAAAAANAVYTQAYPPUSd8TwBIslB2cSUMYbbRgGG1y0ecYADA8RRgNgIFpe3b3XA8AAAAAAAAAAAAAAJ0RRgMAAFjG+IhhtLZrAABsrAW/ahZQA2BjtMXuhfABAAAAAAAAAAAAAKArwmgAAGy3aiErS5o0RM12lgijTc6vbx4AgJNA8IwuHPa85nkO6FKdrLYPAAAAAAAAAAAAAAA4EmE0AADolIX6gzNuCKONZsJoo5Yw2lgYDQAYGmE0AAamNX7m+x4AAAAAAAAAAAAAAOiKMBoAAMAyJg1htJ2ZMNqOMBoAsE2E0dgA++eS87f2PQWwMVriZ63RNAAAAAAAAAAAAAAA4CiE0QAA2HIti1xhnnFTGG0mhLZzpuUae+ubBwDgJCi+aqYPCz7PjS8m1z0jecX9k1c+KPntJyV7N3U7GrD5WuNnvk8CAAAAAAAAAAAAAICuWK0GAABdqhbKDs6kIYw2OnXv17OhtGnj8+ubBwAABmtNz1PXf2/yvl9KJnfd/frW65Lf+cr1XBsYsJbPoNZoGgAAAAAAAAAAAAAAcBTCaAAAAMsYC6MBAMDJsEA4rdbkvb94+fbb3pLc8d71jwQMR2v8TAgfAAAAAAAAAAAAAAC6IowGAMCWs5CVJU0awmg7M2G00RXN1xBGAwC2Vul7ADbKGt4vkwvJXR+bv+/srxz9+sCAtXxn1BpNAwAAAAAAAAAAAAAAjkIYDQAAOiW8NjhNYbTRTBitlGTn9PxjhdEAAGABXT9PCfUBLVrjZ77vAQAAAAAAAAAAAACArgijAQAALGPcEEbbOXX5tlFDGG0ijAYADI3AFD2oC4SJ2o4p3rdAi7YwWms0DQAAAAAAAAAAAAAAOAphNAAAttsiC+mPdoOOr8+xG+/N374zJ4I2b1uSjIXRAADgeLQ9kwmjAW3aPj983wMAAAAAAAAAAAAAAF0RRgMAAFjG/h3zt+9eefk2YTQAAOjQImEi8SJgRXWy2j4AAAAAAAAAAAAAAOBIhNEAAACWsX9u/vbdqy7ftnNm/rHCaAAAsIA1RM1q2zXK0a8PDFjb54foIgAAAAAAAAAAAAAAdEUYDQCALdfxQtbWRfhspMYw2pWXb9s5Pf/Y8d765gEAAFq0PJMVYTSgRZ2stg8AAAAAAAAAAAAAADgSYTQAAIBlrCWMdn598wAAbBQhKtZpkRB12zHej0CL1viZED4AAAAAAAAAAAAAAHRFGA0AAGAZTWG0HWE0AGCLFYEpTqjWsJH3LdCmJX5WhdEAAAAAAAAAAAAAAKArwmgAAGy5rheyWig7OPt3zN++OyeMNmoIo02E0QAA4Hi0PJMJ+gFtWsOKbfsAAAAAAAAAAAAAAICjEEYDAABYxv65+dt3r7p8205DGG0sjAYAAIeqh4SmD9t/6DHCaECbls+PRT5/AAAAAAAAAAAAAACAlQijAQAALGp8Man78/ftXnn5NmE0AABYXJ0kt9+Q7N203ms2EkYDWrR+frTtAwAAAAAAAAAAAAAAjmK37wEAAKBXtXZ9g46vz7Ean2veJ4wGAABH86qH3RNFe9hXJ5MLh5ywyPOWZzJgVS2fH51/nwQAAAAAAAAAAAAAANtLGA0AAGBR+8uG0c7MP1YYDQAALncpipYkH3z1eq5ZJ837SlnPPYBhavv8aNsHAAAAAAAAAAAAAAAcyajvAQAAoF+17wHYJEuH0U7PP3a8t555AAA2jRAVx67tmc/7EWjTFj/zfRIAAAAAAAAAAAAAAHRFGA0AALpULZQdlMnF5n2jU5dvawyjnV/PPAAAsNUWed4SRgNW1PadTm2LpgEAAAAAAAAAAAAAAEchjAYAALCoyX7zvtF95mxrCKNNhNEAgKERmOKEaosXFe9boE1b/EwIHwAAAAAAAAAAAAAAuiKMBgDAdqsWsrKE2hZG2718205DGG0sjAYAAMej7ZlPGA1o0fadUVt0EQAAAAAAAAAAAAAAOBJhNAAA6JTw2qBMWsJoRRgNAACO1SKh67ZjijAa0KDWtH+n4/seAAAAAAAAAAAAAADoijAaAADAoqowGgAAbJZJyz5hNKDJIeGz2vbZAgAAAAAAAAAAAAAAHIUwGgAAW+6Qha5HvnzH1+d4tYbR5jxeCaMBAECHFnje8kwGrOLQzw6fLQAAAAAAAAAAAAAA0BVhNABgWO64se8JgCGbNITRym5SyuXbd840XEcYDQDYVnN+Z4JOTVr2eT8CTdo+O5LUQ/YDAAAAAAAAAAAAAAArE0YDAIbl+h/oewJgyGpDGG20O3/7zun528fCaADA0AhMcULV2rxvXtwYIGn/7Lj7gGMZAwAAAAAAAAAAAAAAtpEwGgAwLB/41b4nYON0vZDVQtlBmTSE0cqyYbS9BRZZAwAA7Rb5nbrtGGE0oMmkfXc9ZD8AAAAAAAAAAAAAALAyYTQAYLMICQF9qkuG0UYNYbQ6ab4WAACwPq3xImE0oMGh30H6jhIAAAAAAAAAAAAAALoijAYAbJb9O/qeANhmTTGzUUMYbachjJYk4/NHnwcAALbZQvH0lmOKMBrQpC2qmEOiiwAAAAAAAAAAAAAAwFEIowEAm+XiX/Y9AUOz0EL6I92g4+tzrCYNYbQijAYAACdS6zOfMBrQ4NDwme97AAAAAAAAAAAAAACgK8JoAMBmuUsYDehRbQijjYTRAADgZGqLGwmjAU0OCZ8dGk4DAAAAAAAAAAAAAABWJYwGAGyWi8JoQI8mDWG0IowGALAYISrW6f+zd+9hsp11nei/v+4dsjck3OWqBoQoIIrgOMhFBVHQUUEYhfF2BJTjMKMw4hzHyyCCjOMI4x1UznhBOSpyFRkRPdwEQYEBQUJQIEBUIhEIhiR772R3vfNHV8+uVLqqV92ruj+f5+mnV631rvf97dR6Vq9VWe+3DgguSpI2pk05HoERDgw+63D+AQAAAAAAAAAAAAAApiIYDQDYLILRmLsFT2QdNwmfzdMmDUY7MbqvnmA0AABYvHHhRoLRgFEO+DznwOA0AAAAAAAAAAAAAABgWoLRAIDNcp1gNGCFRgWjbY0KRjs+uq8dwWgAwCFSAqZYU8KqgWkcGHzm3AIAAAAAAAAAAAAAAIsiGA0A2CzXCkYDVqg3IhitRgSjbZ07uq+dk7PXAwAAR1mn0LNxbQT6ASMcFIx2YHAaAAAAAAAAAAAAAAAwLcFoAMBmOfPpVVfAodNlIv06989StRHBaFujgtGOjQ5N2zk1n5oAADaK62OWbFx4UQlGA0Y56O+Vv2cAAAAAAAAAAAAAALAogtEAgM0ybkIzwKL1RgSjjQo/S5Lt4/uvF4wGAAAz6hJMNK6NYDRghIM+g/QZJQAAAAAAAAAAAAAALIxgNAAAgK6aYDQAgNl0CbKCeRKMBkzh1OUHNPD3DAAAAAAAAAAAAAAAFkUwGgCwWZpJh8zZwo8px+yh0hsRjLYlGA0AoBP3dCxb643eVoLRgBHe/5zx28edWwAAAAAAAAAAAAAAgJkIRgMANoxJ9MAKtRHBaDUmGG1rRDBaTzAaAHCYCJhiFTp8RjA2jM9xC4zwgecd0MBnlAAAAAAAAAAAAAAAsCiC0QAAOOJMZGUCo4LRtsYEox07sf/6HcFoAMBR5PqbZeuN2SYYDZhSG3duAQAAAAAAAAAAAAAAZiEYDQDYMCbRs2GaY/ZQ6Y0IRqsxwWhbx/dfLxgNAAAWzz0ZsCjOLwAAAAAAAAAAAAAAsBCC0QCAzdJlwqFJicCitCmC0bZHBaOdnL0eAICN436NOep0/z+mTdXcSgGOIn/TAAAAAAAAAAAAAABgEQSjAQBwxC16EqtJsodKb0Qw2tY0wWinZq8HAAAYr/XGbBSMBszAlzMAAAAAAAAAAAAAAMBCCEYDADZMlwmHJiUCC9JGBKOVYDQAgE6EyDBXM35GUILRgFmMC14EAAAAAAAAAAAAAACmJRgNAACgq1HBaFuC0QAAuhGMxrKNO+YEowEzEPYJAAAAAAAAAAAAAAALIRgNANgwHSYcmpTIJBZ+vDgeD5XeiGC0GhOMtjUiGK0nGA0AABau9cZsFIwGzGLc+QUAAAAAAAAAAAAAAJiWYDQAYLMIPQNWqY0IRtsaE4y2PSIYbUcwGgBwiFTXgCn3dMxTl+PJMQcsiM8pAQAAAAAAAAAAAABgIQSjAQCHkEmJwIL0RgSj1bhgtBP7rxeMBgAAi9d64zYurQzgMBp3fgEAAAAAAAAAAAAAAKYlGA0A2DAmLTNvCz6mmmP2UGnTBKMd33+9YDQA4Chyfcw8dTqeHHPAgvibBgAAAAAAAAAAAAAACzFm9v7mqqoLkzw8yZ2TnE5ycZKXtNauWGlhAMAcmPQMrNCoYLQtwWgAALCWxgYX+fwAmEVv1QUAAAAAAAAAAAAAAMChtPbBaFV1pyRfObDqBa21a0e0rSTPSvLkJFtDm3+mqp7UWvvNBZQJAKyTsZOeAWbQGxGMVtMEo52cvR4AgI3jfo0la4KLgAXxGSQAAAAAAAAAAAAAACzE2gejJfkPSb6vv/y/Wmu/PqbtTyZ5ysDrvRkJleS8JL9WVdVa+435lwkALIUJh8zdoo8px+yh0rtu//W1PXqfkcFop2avBwBg47g+Zp66HE9j2viMAZiJ4EUAAAAAAAAAAAAAAFiErVUX0MHXZTfYLElGBppV1ecm+X+yO8tpMBBtb9/WX/7FqrrjYkoFABZvxknPALPond5//fa5o/cZFYzWE4wGABwmdXATWAmfEQALIlwRAABmVlW3rqrzV10HAAAAAAAAAACwXtY6GK2qbp3kLgOr/mhM86fk+v+eVyb510kekeSl2Z2Z15KcSPKD860UAAA4EkYFo22NCUbbGhGMtiMYDQA4TDqGwwiRYdlab9zGpZUBHEJjzy8AAMAoVXVBVf1WVX0qyceSfKqq/r6qnllVJ1ZdHwAAAAAAAAAAsHprHYyW5PMHlv+ptfaR/RpV1XZ2Q9D2ZjH9SWvt4a21l7XW/rC19k1JXpDdcLRK8uiqqkUWDgAsSpdJyyY2M4GFBzM4Hg+VnRHBaNtjgtG2BaMBAMBi+IwAWCXnFwAASJKq+s6qurT/c1FVjfwfZ1X1hUneluTbktw0Z5/nu0OSH07ytv6XqQIAAAAAAAAAAEfYugejXdD/3ZJcPKbdv0hyq+w+JJUkz9ynzY/m7AyF2yS5+zwKBACWbOEhVgBj9EYEo22NCD9Lku0RX2wvGA0AOEw636u5p2PJWm/MNscjMINx5xcAADhaviXJZya5Y5LXt9b2/R9qVXUsyQuT3Dq7z/m1oZ9Kco8kL1lCzQAAAAAAAAAAwBpb92C0Ww0sf2JMuy8bWL6stfbnww1aa3+X64er3XPG2gCAdWViM7Aoo8LMtkd+8X2yPSI0TTAaAABHzbzv1zv15zMCYArHb9ehkfMLAABU1VaSBw6setmY5v9Xks/L2SC0JHlPkr8aWvfAqnrMnEsFAAAAAAAAAAA2yLoHo50YWL56TLv793+3JH8ypt3fDizfdtqiAIBVMuGQeVvwMSWo73DZ2fcL7pOtKYLReqcdHwDAEeT6hyUbe83teARG2D5xcJvWW3wdAACw/u6R5Mb95euSvGFM2+/q/64k/5zkfq21e7XWvjjJfZJ8LGdv1p+4gFoBAAAAAAAAAIANse7BaGcGlsfNQLj/wPKbxrS7amD5vKkqAgBWrMukZRObgQXpjQhG254iGC1Jdk7NVg8AwNpwH0YXqzhOBBcB0/AZJAAAdHSX/u+W5P2ttev2a1RVt0vypf12LckzW2tv3dveWnt3kidlNzStkjywqm6xyMIBAAAAAAAAAID1te7BaFcOLH/mfg2q6u5JbjOw6i1j+hsMV9uZoS4AYK2ZlAgsyM6oYLQx4WfjtvUEowEAR0xzv3akzf3979Df2DEdj8AIrUOoYpc2AABw+N1xYPlDY9p9ec6Gnp1J8uv7tHlZkn/uL1eSL5pHgQAAAAAAAAAAwOZZ92C0S/q/K8m9qmq/RIFHDCxf0Vq7eEx/txxY/vSsxQEAK2ASPXO36GPKMXuo9EYEo22dO3qfrTHBaDuC0QCAo8b18dG2ivdfcBEwjS7nK3/TAAAgyXkDy1eObJU8sP+7JXlLa+1Tww1aaztJ3jmw6q6zlwcAAAAAAAAAAGyidQ9G+6vsPgzVkhxP8vjBjVV1LMl391+2JG88oL+7DSz//ZxqBACWqsOEQ+FpwCK0NjrIbHtMMNq2YDQA4AhwH8ZKzPgZgeMWGKV1CFXs0gYAAA6/czq2u9/A8uvHtPvHgeWbTlwNAAAAAAAAAABwKKx1MFpr7fIkb+6/rCT/raq+o6puXFV3SvJ7ST5nYJcXj+qrqm6X5PYDq94/32oBAGA/JtofGu1MRr6fW4LRAAA6EUR1xK3i/XfMAdPocu5wfgEAgCRXDSzfYr8GVXWTJF80sOrPx/S3M7A85n/AAQAAAAAAAAAAh9laB6P1/Vx2Q9Fakpsk+c0kn07ywSSPzNlZB5dlTDBakq8ZWL4qyd/Mu1AAYAk6TaI3KZEJCGagq53To7eNDUY7MaZPwWgAABwhq7j/ar1xG5dWBrBpOpwfxp5fAADgyPj4wPLdR7T5qiTb/eWW5C/H9HfzgeVrZqgLAAAAAAAAAADYYGsfjNZae0mSl+ZsOFoN/GRg/Q+01sYkFeRRe10meWtrEjAAYDP5Ew6sSG/M7cb28em2CUYDAA6Nrvdq7umYI+HpwKJ0Cj1zfgEAgCTv6f+uJBdU1T33afNv+r9bkve01q4c098dB5Y/MYf6AAAAAAAAAACADbT2wWh935rk13I2DG1PJTmd5Ptbay8ctXNVfVaSr83ZGQqvXkSRAMC6MCmRSSz4eJHHe3jsjAtGO3f0tq0bjd7WE4wGAMBRsoL7o7H3ZO7XgFE6nB86hacBAMCh957sBpjtXUT/TFWds7exqh6Y5JsGtr9qVEdVdSzJPQZWfWi+pQIAAAAAAAAAAJvi2KoL6KK1dm2SJ1TVs5M8PMkF/U3vS/LS1tpHD+jia3P22ymT5A/nXyUAsBwmLQMrMi7EbGtMMFpVsn082dln//3WAQAcau7pjrZVvP+Ci4AJtV5y6vIuDRdeCgAArLvW2k5V/W6S783uRfJDkry7qv4wyW2yG4q2ld0vQG1JfntMd1+SZPAbhy5aSNEAAAAAAAAAAMDa24hgtD2ttb9J8qwp9ntekufNvyIAYC01kxKBBdg5PXrb9phgtCTZGhWMdnK2mgAA1kbH+zD3a0fb3N//Dv2NG9PxCOznb36hW7smeBEAAPqemeQ7kty0//rzknxuf3kvEK0leUlr7b1j+vnG/u+W5AOttSsWUCsAAAAAAAAAALABtlZdAADARDpNWjaxmXXieDw0emOC0bYOCEbbPr7/+v3C0gAAgDkSXARM6JLf6NZOMBoAACRJWmuXJ/nXSU7lbBDa/9ncX/fBJE8c1UdVbSV59MC+r19ErQAAAAAAAAAAwGYQjAYAbBghU8CK7IwJRhsVfHbQdsFoAMBh0SnEOnFPd9TN+/3v0N/YY9PxCOzjU+/u2FAwGgAA7GmtvTbJvZK8MMk12Q1DqySfSPJLSb60tfaJMV08PMkF/X2S5I8WVy0AAAAAAAAAALDujq26gINU1SX9xZbky1prH52ynzsmeeNeX621u8yjPgBgHZnYDCxAb0ww2ta54/cVjAYAAFnN/brPCIAF6Z1ZdQUAALBWWmsfSPItSVJVt+6v+3jH3T+U5JEDr1893+oAAAAAAAAAAIBNsvbBaEnu1P/dMlu9x4b6AgA2kj/jzFFbwvG0jDFYjt51IzZUsrU9ft/tE/uvF4wGABw5ro+PtFXcH7XeuI1LKwM4hJpgNAAAGGWCQLS99u9K8q4FlQMAAAAAAAAAAGyYrVUXAAAwkS6TqAVRAYvQdvZfXweEoiXJ9vH91/cEowEAh4X7MFag0/2/YxNYkJ5gNAAAAAAAAAAAAAAAWATBaAAAAF2MDEbrcFs1KhhtRzAaAHDECLI+4lbx/o8Z0/EIDJvkvNAEowEAAAAAAAAAAAAAwCIcW3UBS3TOwPJ1K6sCAJhRl8mJJjbT1TKOFcfjoTEyGG374H23BKMBAOxyfXy0reD9b73ljwlsrt7p7m0FowEAQGdVdfMk5yep1tqlq64HAAAAAAAAAABYb0cpGO22A8ufXlkVAMCMTKIHVmSWYLTtUcFoJ6evBwBgrbhXYxVmDU933AJDJgkw7wlGAwCAUarqG5M8PMmXJblTkq3+ppZ9nlmsqjsl+ez+y6tba/9r4UUCAAAAAAAAAABr6ygFoz2s/7sl+ftVFgIALFgzsRlYgNbbf/1MwWgTTLgGADgU3K8daau4Xx91HQ+wn0nu05tgNAAAGFZVD0vyC0nuureq4653SfKn2f3w6NqqukNr7YoFlAgAAAAAAAAAAGyAtQhGq6rPPrhVkuSOVV2flUqSnJvk9kkemuQHBtb/1SSdAABrpNMkahPt6Wgpk/Idj4dG29l/vWA0AADoaM73R13u6ca2cb8GDJnkPr0nGA0AAAZV1Y8l+bHshqFVrn/j3TImJK219pqqujjJ3ZPcKMljkvzK4qoFAAAAAAAAAADW2VoEoyX5cA6egVRJ3jTDGIMPVr10hn4AgJUyaRlYEcFoAACjdQ0dXko4MetrFe+/Yw6YwCT36U0wGgAA7KmqJyX58f7LvZvx00nemuTKJF/foZsXDvTxdRGMBgAAAAAAAAAAR9bWqgsYUvv8HLS9y09y9oGrtyR55cL+BQDAGjDpmTUi+OHwmCkY7cT+6wWjAQDAYrXemG3u14AhPcFoAAAwqaq6MMmzs/s/6lt2A9F+MMmtWmsPSvJ9Hbt6xV6XSb6sqoafHQQAAAAAAAAAAI6IdQtGW5S9h6RekuQbWjPbCQA2lz/jzJPjiQnMFIx2fP/1k0y4BgA4FFyDH2lz/2i+S3+OOWACkwSY9wSjAQBA3zOSHMvuM3qnkjyktfbs1trJCft5d3//JDk/yYXzKxEAAAAAAAAAANgkx1ZdQN/zx2z7zv7vluSlSa7q2Ofet09+KsnFSd7QWvvI1BUCAOuhyyRqGajAIswSjLY1IhhtkgnXAABrzX0YXaziOBk3puMWGDLJfXoTjAYAAFV1bpKH5+xN9n9urb1lmr5aa72qujjJvfur7pbkb2evEgAAAAAAAAAA2DRrEYzWWnvcqG1V9Z05++DUD7TWLl1OVQAAMA8m2h8aswSjbQtGAwDY5fr4SJt7kHmX8PTenMcEDrVJ7tN7gtEAACDJA5Kc6C9fneS5M/b30ZwNRrvDjH0BAAAAAAAAAAAbamvVBXRUqy4AAFgXXSZRm2hPV44VJrCQYLST09cDALBWOl5bzz0YCw4y7phzPAJDJglGu+i/JL0RnxUAAMDRcaf+75bkra210zP2d+XA8vkz9gUAAAAAAAAAAGyoY6suoIPHDSx/5askPgAAIABJREFUfGVVAABrwqRlYEVGBaNtzRKMNsGEawAA2HgruKdvveWPCWyuSe7Tr/pg8tYnJF/664urBwAA1t9nDCz/4xz62xqxDAAAAAAAAAAAHCFrH4zWWnv+qmsAADaN8DTWiePx0OiNCEYrwWgAAN25Pj7a5vz+ty79jWnTaX/gSOmdnqz9Jb+Z3PtZybm3Wkg5AACwAQYvos+dQ3+DF9dXzKE/AAAAAAAAAABgA619MFpV/djAy59rrV05ZT83S/LkvdettWfMWhsAsAJdJi2b2ExXjhUm0RYQjNYTjAYsWWtJ1aqrAA4j19asK8cmMIlJg9HSkkuen9z9KQspBwAANsA/DSx/5hz6u9eIvgEAAAAAAAAAgCNk7YPRkvx4kr2ZS7+ZZKpgtCQ3H+pLMBoAbCQTmoEVmSkY7cT+63cEowFLcuZk8o7vT/7hFck5N03u/NjkHv9JSBqwAu7pjrSVhJT1xmxzPAJDpjlPnf74/OsAAIDNcUn/dyX5oqq6SWvt6mk6qqr7JPmMgVXvmLU4AAAAAAAAAABgM22tuoCO5jlL14xfADj0TGxmjaxk4j8LMVMw2vH91wtGA5blzd+afOBXk5OXJVf+TfKuH07e+1OrrgqAI2fe90cd+nNPBkxkXJjiCF0+FwAAgMPrrdn9otOW5Jwkj5+hr6cMLH+ktfaRWQoDAAAAAAAAAAA216YEowEA9JnQzDw5npjEiMnRXSZAb40IRms7Se/M9CUBdHHq48nf/8EN17/rR5IzVy+/HuCQ6nhtLaTqiFvF+z9uTMcjMGSav1OC0QAAOMJaaztJ/md2v6y0kjy9qj5r0n6q6pFJvjW7N+stye/Os04AAAAAAAAAAGCzHFt1AUtUA8tTfN37fFXViSR3S3JBkjskOT+735p5ZZJPJHlPkotaa3NJSaiqc5I8IMlnJ7l9kquSfDTJO1trH57HGANj3TnJF2X333VeksuSfCTJm1tr181zLADYn4nNwAK0nf3Xd5kAvT0iGC1Jdk4lW+dNVxNAFx/53Yy8PnrTY5IHvXKp5QBHnfs15qnD8dRW/r8DgI0iGA0AAKbwE0kek93n826e5PVV9fDW2kVddq6qxyb55exekFeSk0l+fjGlAgAAAAAAAAAAm+AoBaPdbGD5mlUUUFWPS/KVSe6b5C5Jtg7Y5aqq+v0kv9ha+6spx/yMJE/P7sNntxzR5s1Jfqa19pJpxhjo55uSPCXJ/UY0+WRVvTDJj7XWPj7LWAAcYc0keuZpGceTY/bQ6I0KRjvosj4HB6OdIxgNWKCdU6O3ffR/JmeuSY7deHn1AHB0reSefsyYPmMAhk0TprglGA0AgKOttfa+qvrFJE/O7o34nZO8o6pekOT3k3xyeJ+q+qwkD03y3Un+Zc5+6WlL8rTW2uXLqB0AAAAAAAAAAFhPHWbwHxpf1P/dkqwqlOsnknx7kgvT7b/9eUken+TtVfWzVTVRkF1VfW2S9yR5YkaEovXdP8mLq+oFVXWTScboj3NeVf1ukhdldCha+jU8Mcl7quphk44DALs6TFo2sRlYhDYqGK3DBOixwWgnp6sHoKuDAhw/+fbl1AEccl3vw9yvHW0reP+nCTkCjrApzlNdPhcAAIDD7weS/Gl2A85aknOSPDbJHyX5iwxcbFfV1Uk+nOR5ORuKtrf9Za21Zy+raAAAAAAAAAAAYD1NFLS1qarqwiQ/NLDqvauqZcg1ST6Y5NIkV2Y3LO2WSb4gye0G2m0n+Q9J7lRV39TaqESGs6rqQUlenuRGA6tbknckuSTJzZPcO8mtB7Z/W5KbVtU3ttZttlhVbSd5YZJ/NbTpn5K8M8k/J7lLf6y9b/a8bZI/qKqvaq29qcs4AACwcgsLRjs1XT0AndX4zQd/zAAAczLnYLROwejj2gjqA4ZM84ULgtEAACCttV5VPSLJc7MbiLZ3cb33AXUbWHdicNeBdr+e5N8utlIAAAAAAAAAAGATrEUwWlW9tmPT36uqSVIDzk1y+yQXDK1/zQR9zNPVSV6R5FVJ3pzkPaMCyKrqS5M8M8lDBlZ/Y5KnJHnWuEGq6jOTvDTXD0X78yRPaK1dPNDu3CTfk+TZ2f2WziT5hv64P9Lx3/RTuX4o2nX9Gp/XWrt2YKx7JPkfSe7XX3VukpdX1Re01i7rOBYAzGHSMwyYZrLr5IMsYQyWYpZgtK0xwWg9wWjAgtXW+O2C0YBlWso1OAxwzAET6fS9QdcnGA0AAJIkrbVTSR5fVa9K8tQk9xzVtP+7+j8fTPJjrbXfXXyVAAAAAAAAAADAJliLYLQkD8rBiRGV5L5T9D34rZNJ8qkkL5iin3m4Z2vtui4NW2t/UVUPTfL8JN8+sOlHq+oXWmunx+z+9CS3GHj95iRf1X/4bHCM00l+oaouTfKygU1Pqapfba19ZFyNVfU5SZ48tPqbW2t/sM+/571V9ZDshtLthaPdKsnT4ps+AZiIYDRgRWYJRjt2YvS2HcFowIIdFIzWO7OcOoDDTfgUXcz9OOnS35iQI8ctMGya84JgNAAAuJ7W2ouSvKiqHpzkq5M8MMlnZfdZsRsl+XiSj2X3mbZXJ3lVa77BAwAAAAAAAAAAOOuAmbGHwuA3TH46ybe21j6+kkI6hqINtO8l+fdJrh5YfbMkDx61T1VdmOQ7B1Zdm+Sxw6FoQ+O8PLsBbHvOzW5g2UGeluScgde/uV8o2sA4J5M8tl/Tnu/qB6wBAMB6myUYbevc0dsEowELV+M3tzGBMQBzJ4jqaFvB+y/8DJiIYDQAAJiX1trrWms/0lr78tbanVtrN22tHW+tfWZr7Ytba9/XWnulUDQAAAAAAAAAAGDYOgWj1YifLm1G/Vyb5PIkr89uiNfdWmuvXvC/Y65aa1cmedPQ6ruO2eVbkwzOwHhpa+39HYb6b0OvH11Vx0c1rqoTSb7pgD5uoLX2t0lePrDqWHZrBoCOOkxONOmZzpZwrDgeD4+ZgtGOJXVs/22C0YBFqwM+/jHnDJiLjte9ro9ZunHHnOMRGCYYDQAAAAAAAAAAAAAAVm0tgtFaa1ujfvaa9H/uNK7tPj8nWmu3b619ZWvtJ1prl63wnzmLTw69Pn9M20cOvf6NLgO01i5O8pcDq26S5KFjdnlYkhsPvH5La+19Xcbap6ZHddwPAEyiB1ZnlmC0JNkekTssGA1YtAOD0c4spw4AmHsQWZfw9N6cxwQOtWnOGYLRAAAAAAAAAAAAAABgrtYiGK2DWnUBK3bB0OuP7teoqm6X5F4Dq84k+fMJxnn90OuvHdP2aw7Yd5w3Zre2PfeuqttOsD8AHEB4GuvE8XhoLCoYrScYDVi0g4LRRpzfABbC9fGRtpKw83FjOh6BYVOcFwSjAQBwxFXVa/s/r6mq28zQz20H+5pnjQAAAAAAAAAAwGY5tuoCOviznJ2FcOQSA6rqc5Pcd2BVS/KGEc3vOfT63a21qycY7s1Drz9/TNvhsd7SdZDW2tVV9ddJ7j001se69gHAUWbSMvPkeGICiwpGO3NyunoAuqoD8uYFowFz4dqaLlZwnLTe8scENtc0AY6C0QAA4EE5e9M/4n+IdXK831fiwyYAAAAAAAAAADjS1j4YrbX2oFXXsCpVdfskL0oyOKPixa21D4/Y5R5Drz8w4ZAfPKC/QXefw1iDwWj3SPLaCfsA4Ejq8vyzZ6SBBZg1GG1rxDyQ3pHLfwaWbmv85t6Z5ZQBkMT9GnPVKcBoTJtpApCAQ26KMEXBaAAAkCQVH/wAAAAAAAAAAABzsvbBaEdJVR1Lcovsho59fZLvSXLTgSaXJPneMV3cdej1pROW8JGh17eqqlu01q4YqvOWSW4541jD7S+ccH8AgA3h+f9Do42YHN11AvT2iGC0HcFowILVAcFoo4IfAWDuVnB/JPwMmMQ05wzBaAAAAAAAAAAAAAAAMFeC0Vaoqn4uyZM7Nn9dku9orV0+ps3Nh16Pa3sDrbWrqupUksHEhpsluWKo6fA417TWrp5krH1qu9mE+wNwVHWZnGjSM105VpjEqOCgzsFoJ/ZfLxgNWLgav7mdWU4ZwOHW9draNfjRNvf3v0t/IwKOO+8PHC2C0QAAYIUGn2X0wTUAAAAAAAAAABxhgtHW3yuSPKe19icd2p439PrkFOOdzPWD0c5f4DiD9htnYlV1mySfMeFud5nH2AAsS5fJiSY2AwswczDa8f3XC0YDFq22xm/vXbucOgBgFffrwviASbRxYYojHHS9DQAAdHXrgeVJv6QTAAAAAAAAAAA4RDY2GK2qbpXk7klukeRmSSaaddBa+61F1LUAX5tku6pOtdb+7IC2w4Fl0yQsnMzuf9NRfc5znHF9TuvfJXnanPoCAJidSfiHh2A0YGPV+M2965ZTBkASQdYs37hjzvEIDJvmvHDA9TYAANDVl/d/tyQfXWUhAAAAAAAAAADAam1UMFpV3Tq7wVffluSuM3a3DsFoz0jycwOvTyS5VZIvSvLIJF+Z5JwkX5fk66rqOUme3NqoRIYbmGb2xjrvAwDp9CdEEBWdOVaYgGA0YFPVAVnyvWuXUwdwyHW9tnYNfqTN/X69S3+OOWACU52nnGcAAGDARBfIVXVOktsneWiSHx3Y9NfzLAoAAAAAAAAAANgsGxOMVlWPSvLrSc7P9F+93vr7rsUMhdbaJ5N8cp9Nb0ryS1X1wCQvSHJBf/2/z2542neN6PKqodcnpihreJ/hPpc5DgDckNAzYFUWFYzWE4wGLJhgNADWxprd0/uMAbgBwWgAALCfquryRZ6V5MNV0z7ad71nAl8xbScAAAAAAAAAAMDm24hgtKr6tiS/lf0D0QZnGwxvH9429VNXq9Bae1NVPTjJ25Lcqr/68VX1itbaH+yzi2C05LlJXjThPndJst9/TwA2lsmIrBPH46ExMhjtgMChPVsjgtF2BKMBiyYYDViGjte9gqiOuBW8/445YBKtt+oKAABgXXV97m6W5/P2vvT0fUlePEM/AAAAAAAAAADAhlv7YLSqunOS52X3oae9h5/eneRlSU4m+al+05bkcUlumuQOSe6f5AHZnf3bklye5JlJPr3E8mfWWvtQVT0jyc8PrP7B7B/k9c9Drz9jkrGq6rzcMLDsUx3GuXFV3aS1dvUEw92mwzgTa61dnt33urMZvqUUgJUwoZl5cjwxgZHBaNvd9t8eFYx2crp6ALo6KMBRMBoAm6pT6Nm4Nu4JgWFTnBcEMAIAcHTsPbu3KJXk7Uke01q7boHjAAAAAAAAAAAAa27tg9GS/MfshnXtzSp4epJntNZaVV2Qs8Foaa09f3DHqrprkp9O8o3ZDQn7niQPba1dtozC5+j3cv1gtC+tqpu31obDxN4/9PqCCccZbv/J1toVw41aa5+oqiuS3GJg9WcnuXiGsYZrB4ARZp30DDClhQWjnZquHoCuDgoEF4wGLJX7tSNtJeFBjjlgEtOcM5xnAAA4Ev4soy9+v6L/uyV5a5Ku//OrJTmd3S/UvDjJ61prb5ylSAAAAAAAAAAA4HBY62C0qtpK8u05+1DVi1prT++6f2vtA0keVVVPT/LUJPdI8odVdb9N+lbJ1trlQ0FkW0nunOSdQ02Hg8nuOuFQnzP0+r1j2l6c5P5DY00SjDY81iT7AgBsEJNjD42Zg9FO7L9eMBqwcFvjN+8IRgPmYCWBV2yeeR8nHfobe2w6boEhrTfFPs4lAAAcfq21B43aVlW9nL3Jfkxr7dKlFAUAAAAAAAAAABxaB8yMXbkvTHJ+kuq/fsY0nbTWnpbk5f1+7p3kSXOpbrmGg9zO3afNe4Zef2FV3XiCMR5wQH/jtt2v6yBVdZPsvrddxwKAs7pMNDQZka4cK0xi5mC04/uvF4wGLFrV+O09wWjAMrkGZ9kcc8AknDMAAGBKB3wQDQAAAAAAAAAA0N26B6Pds/+7Jbm0tfbecY2rxs70/eGB5e+atbBlqqrjSW49tPpjw+1aa5cleffAqmNJHjjBUA8aev2qMW3/+IB9x/my7Na2552ttRv8ewBgeiYwAgsgGA3YWILRgDUinPiIW8X7P2ZMxyMwbKrzgnMJAABH3tP7P89I8qkV1wIAAAAAAAAAABwCxw5uslK3HFi+aJ/twzMNjic5uV9HrbW/qaqLk9w9yedV1ee31vbrcx09JNcPsbsmyT+MaPuyJF848PpxSf7koAGq6m5J7juw6uoD9nt1dv9bn+i/vl9V3a219r6Dxkry2KHXL+uwDwD0mWjIhjHR/vBovf3XzxqM1hOMBqxY77pVVwAcCq576WDu90cd+nNPBkxkxL3/WM4zAAAcba21p6+6BgAAAAAAAAAA4HDZOrjJSp0/sHzFPtuvHtN+P387sHz3qSpasqraSvLUodV/3Fq7dsQu/1+SnYHXj6qqCzsM9Z+GXv9+a21kQkNr7ZokLz6gjxuoqs9N8siBVWeS/E6H+gCgr8tEQ5MR6cqxwgTazv7rZw1G2xGMBizaAX/veqM+YgBYBNfgR9sq3v9xYzoegSHThCkKYAQA4IjrP98GAAAAAAAAAAAwN+v+UNJg8Nk5+2z/9NDrOx7Q31UDy7ebqqIpVdX3VdXtJ9znnCS/luS+Q5ueM2qf1tr7kzx/YNWNkvxmVY1IYUiq6hFJHjuw6tokXb7J88eTXDfw+rFV9fAx4xxP8hv9mvb8Wmvtgx3GAgDYUCbHHhqjgtG2OgajbQlGA1bkoKAGwWgAbCphRMDcOa8AAMAULq2qp1XVQc/uAQAAAAAAAAAAdLLuwWgfH1i+6fDG1tq1Q23ueUB/g8Fk581Q1zS+K8kHq+oFVfUNVXX+qIZVdaKqviXJO3P9wLIk+e3W2msPGOtpSa4YeH3/JP9/Vd1taJxzq+r7krxoaP//3lr7yAFjpLV2SZKfH1r94qr63qoaDD9LVd09yWv6tez5RLoFsAHAWV0mPZsYTWeOFSYwKhitOgajbY8KRjs5XT0AnR30987fQ2AOOt+HOeccbat4/8eN6XgEhkz1uaJzCQAAR94dkvxYkg9V1Uur6qGrLggAAAAAAAAAANhsx1ZdwAH+dmD5whFtLkryFf3lhyT57f0aVdVNkvzLgVVX7NduwU4k+bb+T6uqDyT5cJJPJbk2yflJLkhyjyTn7LP/K5M84aBBWmt/X1WPSvLqJHsBZQ9I8t6q+l9JLklysyT3SfIZ+4zx1An+TT+U5POTfG3/9TlJfjHJU6vqHUk+neRz+mPVwH7XJnlka+2yCcYCgJhoyMZpvVVXwLwsLBjt1HT1AHR2wPWTv1UALMsqgsyFpwMTmeba2HkGAAD6jiV5RJJHVNWHkvxqkt9orX18/G4AAAAAAAAAAADXt7XqAg7w3iQ72Q3UunNV3XifNm/s/64k31xVF4zo64eSnDfw+qK5VTmdym7Y21cn+ebshqU9PMm9csNQtJNJfjTJo1prp7t03lp7fZJHJvmnoTH/RZJHJ3lYbhiK9rtJ/k1roxIf9h1np9/fC4c23SbJ12T33/bFuX4o2uVJHtFae2MAYCFmnIx45prk/b+a/MXjk/f9XHL6k/Mpi6Ppop9cdQXMy86IS/Gtc7vtLxgNWJUDA2EEOQBLJKTqiJv3+9+lvzFtHI/AsGnOC84lAABwbXafDdu7OK7sfpHmTyX5u6p6QVU9cFXFAQAAAAAAAAAAm2etg9Faa1cleUf/ZSV5yD7N9gK5WpITSf6kqr58b2NV3ayqnpndYLG9h68+meQvF1L0aE9I8swkb0nSKdwsyfuSPDXJ57bWfrK1dt0kA7bW/ijJPZP8SpIrxjT9iyTf1Fr71tba1ZOM0R/nqtbav8luCNpfjGn6ySS/nOSerbU/nnQcAEiy+ImGO6eSNzw8edu/TS75jeQd35+85sHJ6U8sdlxWYxkTV//hFYsfg+XojQpGu1G3/bdPjO7XJGpgoQ44x7TecsoADrmu1zOue1g2xxwwCecMAACYwh2S/GCSD+Tsl2e2/vK5Sb4lyRuq6q+r6t9V1fmrKRMAAAAAAAAAANgUx1ZdQAevTvIl/eWHJ/nDwY2ttYuq6g+SPCK7D1RdmOR1VXV1kiuT3CbJdr/53jdT/tKkIWOzaq29Lcnbkjy1qs5JcvfsfjPmHZOcl+ScJFf1a/5wkne21saFmXUd9/IkT6yqJyd5QJILktwuydVJ/qE/zodmHac/1ouTvLiq7pzkPtl96O0mSf4xyUeS/Hlr7dp5jAXAUdZlcuIMExg/+sfJx15z/XWfenfyoRckd3vy9P0Cm6834lJ2+9xu+28fH9P36fHbAWZxUPiiYDQAlmYFgUNj/w4KQAKGTHVt7FwCAMDR1lr7ZJJnJ3l2VT0kyROz+5zfsZy9YK4kn5/kF5P8t6r6nSS/2lp7xz5dAgAAAAAAAAAAR9wmBKO9MMl/zu7DUd9SVf+xtfbPQ22enOS+SW6bs982eV7/Z8/e+rcn+clFFz1OP5Tt3f2fZY15bZLXLWmsDyWZS9gaACzdu354//Xv+A+C0eCo2zm9//qtOQSj7ZwSjAYs0EFBDYIcgHnoei5xzjnSDgrrnLzDObUB2DPNOcN5BgAA9rTWXpPkNVV12yRPSPLdST57b3N2n9+7SX/9d1fV25P8cpLfa62dWkHJAAAAAAAAAADAGtpadQEHaa1dlOSLk3xJkq9IsrNPm0uTPCTJe7L78NT/2ZTrf+vkq5I8tB9MBsAm2zmd/NUPJ6+6d/LahyWXvmTVFbE0HSYazjLR+sr3Tb8vG8jEVSbQGxWMdqNu+28dEIwGsCqtt+oKAGBxxn5G4J4QGDbFeWHuoY8AALD5Wmsfa609M8mdkzw8yR/l7AX34PN8X5Lk15J8tKp+tqrutvRiAQAAAAAAAACAtXNs1QV00Vp7Z4c2F1fVfZI8KskjklyY5OZJrkjyriQvbK29dqGFArA8f/6Y5O//4Ozrf/zT5AG/l1zw6NXVxHJ0mmhoMiKwADsjgtG2z+22/7ZgNGBVDro2EowGLJHwmCNuzu+/zwiAeVtEaPA1H01O/WNy83slW9vz7x8AANZYa60leWWSV1bVZyX5niSPS3L7vSbZDUi7eZInJXlSVf1ZkucmeVlr7czyqwYAAAAAAAAAAFZta9UFVNUrq+oHquo+VVWz9NVa22mtvai19u2ttfu21j6vtfalrbXvEYoGcIhcfen1Q9GSJC15/3NXUg4AR0Tv2v3Xb92o2/6C0YBVOSg0ZhHhD8DRI/CMTlZxnIwZ03EL3MAU54W/fHzSu+6G63dOJ2/818nL75j88RcnL79D8om3z14iAABsqNba37XW/nOSz07y6CSvGWpS/Z8vT/J7Sf6uqp5ZVRcst1IAAAAAAAAAAGDVVh6MluRfJfnpJG9L8omqenlVPamqvmDFdQGwrv72l/Zff/kbllsHK9JlcqKJzXRkEjxdtV4y6gvpt87t1sfYYLSTk9cE0NlBf+/8PQSWyTnnSHMPBqy7ac9TF/3XG67766clf/fSs69PXZ68/mv2D1EDAIAjpP/lpy9urX11ks9N8t+TfCK7Hxy1nA1Iu22SH07ygap6aVU9cFU1AwAAAAAAAAAAy7UOwWh7KsnNk3xDkp9N8ldV9U9V9aKq+ndVdbfVlgfA2jj98VVXwEqZRA2swM7p0du25xGMdmqyegAmcsD1U+stpwyAJO7pmK8Ox9PYkCPHIzBsyvPC+597w3Uf+u0brjv9ieSyP51uDAAAOJxumuRmSQb/R1ob+EmS7SSPSPKGqnpVVd1luSUCAAAAAAAAAADLtk7BaIMPM+196+OtkjwqyS8muaiqLquq36mqJ1TVXVdUJwArZ9IqBxg76RlgCr1rR2/bulG3PrbGBKj1BKMBC3TQtZFgNGAu3IfRxSqOE8cmMIFpr41PfeyG605+dP+2l/z6dGMAAMAhUVUnqurxVfWXSd6e5LuS3HiwSZIzSU72lwefKXxYkndV1dctsWQAAAAAAAAAAGDJ1iEY7T8leVWST+dsIFqyf1DabZM8JsmvJPmbqrq0qp5fVY+tqguWWzYAKyP06mjz/jNXjic66p0evW1c4NmgqmT7+P7bdgSjAYt00N87fw+BJXJPd7TN+/3v1N+YNo5H4AaWcF7oXbf4MQAAYA1V1T2q6heSfDTJ/5vkX+Tss4J7zwdeluTHk1yQ5A5JvjfJRTkbkNayG6L2+1V1l2XWDwAAAAAAAAAALM/Kg9Faa89qrX19klsmuW/OBqVdlYOD0j4zybcn+bUkl1TVJVX1P6rq26rqDkv8ZwAASzPjpGeAaeyMCUbb7hiMliRbgtGAVTjg2qj1llMGAKzifl34GTCRGc4ZXc83vWunHwMAADZMVd2o/yzfG5P8dZJ/n+RmOftMYPrLr0/y6CQXtNae0Vr7x9bala2157bWvjDJ1yW5eGC/40m+f1n/DgAAAAAAAAAAYLmOrbqAPa21XpK39X+eVVVb2f1WyAcleXCSByQ5b3CXgeW9B57ulORx/Z9U1QeSvC7Ja5O8vrV2+eL+BQAsjwmtACxZb0ww2taNuvezfTy5bp/1gtGARToooEEwGjAXXe/V3dOzbOOOOccjMGSWa+OdU8mxEx3GODP9GAAAsCGq6sIk35PkO7P7hanJ7jN+e1+OWtn94tTfTvKc1trF4/prrb2qql6X5E1J7tPf/6sXUz0AAAAAAAAAALBqaxOMNqwflPbW/s9PV9V2doPSHpzdsLQHJLnJ4C4Dy3tBaRcmuWuSJyRJVV2c3aC017XWXrrI+gFYoIOCHTjkurz/jhG6cqzQUe/a0du2zu3ez/bx/dcLRgNWSjAaAMsy73swnxEAczbLZ88713QLRuvtl5gOAACbr/983yOT/NvsPuOXnH2Orw28vijJLyf5rdbaVV37b62dqqr/muRF/VWfNXPRAAAAAAAAAADAWlrbYLRhrbWdJH/Z//mpqjqW5EuyG5L24CRX2fZoAAAgAElEQVT3T3LjwV0GlvcesLpH/+eJ2aB/OwDDTGg90rpMThSeB8zbzunR27bnEIzWE4wGLNIB10aunYBlcs452lbx/o8d0/EIDJvhvHDmmuTcWx3cTjAaAACHTFVdkOT/TvL4JLfZW53dC+zWX95J8vIkz2mtvWGG4d47sDzB/6QDAAAAAAAAAAA2ycaGg7XWziR5S//nv/aD0v5ldkPSHpTkftk/KK1yNigNgI1k0ioAS9YbE4y2daPu/YwKRjtzcrJ6ACZy0PVzbylVAIecwDPWlmMTmECb4dr4zNXd2vWunX4MAABYTx/M9Z/JG3xO77Ikz0vyvNbaZXMY65qhMQAAAAAAAAAAgENoY4PRhvWD0t7c//kvVXVOkvsm+eYkT4hviASAQ6LL882egaYj4Q10NW7S8tYEtxpbI4LReqcmqwdgEgf9vZsl/AFgYq7Bj7Z5v/8z9ueeELiBGc4LO9ecXR53fmlnph8DAADW01Z2L6Zbzgak/VmS5yR5Wf+5vnmr+KAJAAAAAAAAAAAOrUMTjLanqm6R5CuSPDjJg5J8fs5+GyUAh4FJqwAs287p/dfXdrK13b2fYydG9C8YDVgkwWjAMnS9V5/wnv66TydXvi+5+Rcm2777YvMt6DOdqz+SnHvr5NhNljcmcEjNcM44MxiMtjO6Xe+66ccAAID1VUmuSvLbSZ7b2v9m787DLMnq80B/J6sa6G5WsQq1gG6QtSC0IckbaECDtdmSNVibLVndNjOjsWfRWLN4bGvzjD22Rx7b8iNrNF4k2mgxFthIxrIshA1oYRGLhNqgBbpo9oaGpmmglsy8x39UZtetrBtxI27cLW6+7/PU05kRceOcIg4nTkTl78v6n1bRSK31rlwOYgMAAAAAAAAAAHbY6IPRSimPTPIVuRKE9ozMDkKb3qYSCgBGq8NtXHgesGyThmC0vQf1O8/eQ2ZvF4wGrNS8tZG1E7Cl7vgbyW//9aQeJGeuT778Hyc3f8eme8UQy35ev+/tycs/J/n47yZ71yW3/LnkS3/06vDi1jbdA4EThsxTh9PBaC3hw4LRAADYPW9P8qNJ/nmt9f5NdwYAAAAAAAAAABi/0QWjlVIenquD0L4wV4eelVyuZjoZhPbWJK8++vOadfQVgFVRtHqqCT1jqYwnOmoqWu4bjHamRzDaJ84l73v55cLqz/j65BGf168tgGPz1k9toQ0Ay9b1me69P5+89fuufH94PnntdyaP+sLkkc9YTd8Yn3f82JWvJ/vJO/5xcv1nJM/4/qmDPPcBfQxYGx9MB6MdtjRxafE2AABgC9Van77pPgAAAAAAAAAAALtl64PRSikPS/LsXAlC+6Ike9OHZHYQ2ltyJQjtV2qt966jvwCsgeAG5lL0DCxZU0FzOdPvPF2D0T782uRVX5Psf/zy97/1vcmzX5Lc9Cf7tQeQZP7ayPoaWIYlP4e945/MbuPci5Iv/n+W2xZrtIbn9Tt/vEcwmvcHwAlDfinDYcdgtHqweBsAAAAAAAAAAAAAAHAKbF0wWinlxlwdhPbFSabTBsqMj02SvDlXB6F9fLU9BQA2Q9EysAHrDkZ78/dcCUVLLhdNv+G7ks/4hqTMeiQCGGBI+ANAbx3nnPe/fPb2t/+QYLRRW8M955N3nWjSfQ7oY8CccfCJqdO0BKNN9hdvAwAAAAAAAAAAAAAAToGNB6OVUm5I8qxcCUJ7ZuYHoe0neWOuBKH9Wq31EzOOA2AnKWg93bpcf2OErowVOlp1MNpkKhjt4keTj7zu2mMu3J185PXJY/5QvzYB5t7vJmvpBQBsJqSspU2hacBJdcDa+GN3TH3Tch7BaAAAnFKllEcn+eYkfzDJ45OcT/LeJL+c5N/XWi9tsHsAAAAAAAAAAMAW2XgwWpKPZX4Q2qUkb8jVQWjn19A3AGCMFDbTxfm7k3e/dNO9YCyWFYy21xCMdjD1eHPxnubP3/9OwWhAf/PWRkPCHwCOdX4O87zGmnlHAPQyYM5478uSZ/5wUkoyaXiPkCQTWQ8AAIxfKeUxSb4gyWOTXExyZ5I7ar32hXMppST5K0n+apLrZ5zuf0hyVynlL9Zaf3F1vQYAAAAAAAAAAMZiG4LRzuZylcF0INqFJK/LlSC019VaL2ygbwBspZbitFovF56xuxQ0swznfjJ53a2CYOhuWcFoZxqC0SZTjzttBdJnHtyvPYAkc8Md3A+BdfJMd8pt4vq3tWk8AicNmBc+9Z7kvjuSRz6j+T1CktSDxdsAAIANK6V8UZIfSvKcJHsndn+olPIPkvzdWi8vio9C0W5P8u25+ucDjxffx9uekuTflFJuq7X+1Gp6DwAAAAAAAAAAjMU2BKNNq0l+OcnfSfKaWlUGADCDIupTrsv1N0Zocf7u5LXfGeOEXppCg8rJeo85zlw/e/vhdDDaxebP7z2oX3sASYf1s3siAOvingNsuaGhwR985fxgtMn+sDYAAGBDSinfluSfJzmTq0POjj0+yf+d5CtKKV9fa50k+e4k35HLLwWmw9COPz/9suBMkh8vpbyl1vq2FfwVAAAAAAAAAACAkehZxb9Sxz/k9Lwkr0hyXynll0sp31tKeXYp5boN9g2ArdJWRKvAFpjjzp+IuYLemgqay5l+59lryKaeTGVCH15q+bxgNGARc+57Q8MfAJJ0X2Nbi7Nu3iMBPQz9pRzn33f0Rcsauy00DQAAtlQp5cuSvCiXfxFrydVBZ5n6viT5miT/SynlYUl+MFcHon0gycuT/HSSX0xyb64OWbsuyQ+v6u8BAAAAAAAAAACMQ0NV/lq9Pcnn5NrfInl9kuce/UmSC6WU1yV5dZJXJXldrbUlMQCA3dVSnFbr7N9LzA7pUpyosJkWd/74pnvAGC0rGK00ZVNPFUy3jdEzD+7XHkASwWgAbI2hgUNjaRMYsYFzxnHwufAzAAB2z/+X5EyuDjm7N8k7jr5+apJH5Uo42l9Kcl+Shx9t+0iSF9Ra/830SUspe0lekOQfJHnI0We/spTy1FrrO1f8dwIAAAAAAAAAALbUxoPRaq1PL6U8JslzcjkE7TlJPvdo93S0zfVH+56T5AeSXCylvD5XgtJeW2u9uI4+A7BhrQWtil133soLmo9/uTU7a7K/6R4wRksLRms4/jiUqNbknf+0+fN7gtGABcxdP1n7AOtkzjndNnH95wTsA1xlaDDa0XsnwWgAAOyQUsofTPIluRJ69uEk35Xk52q9/HBdSilJviHJjyV5XJLHJ/meo1PsJ3lerfWtJ89da50k+SellLuTvCxXFuXfnORvr+rvNFallOtz+WcrPyfJY5M8NMknknw0yR1JfrvWerC5HgIAAAAAAAAAwHJsPBgtSWqt9yR5ydGflFIelyshaM/J5R/kSa4OSntIkq84+vN9SS6VUt6QyyFpr07y67XWCyvvPABbRkErGVbYXPYULu46PwfOIpYVjJa99vPf+5vtH+/dHkAyd418HM4IMIjncbrYsmA0gJOGro2P3ztNvF8EAGCn/Kmj/5ZcDjn7qlrrb00fcBSQ9nOllHNJfiOXfy7xD+Tyg/lPzgpFO/H5ny+l/Mdc/sWqNcmXLvev0F0p5ZYkX3bUhy/L5VC4h00dclet9Slr7M+XJPnGJF+Z5MuTXNdy+CdLKS9O8sPz/jcHAAAAAAAAAIBtthXBaCfVWj+U5F8e/Ukp5fG5EpL23Fz+oank6qC0Byd51tGf702yX0r5jVwOSntVLgelnV955wFYg5aC1iGBWIzEqq9xmX8I4zbZ33QPGKPGYLSGoLMmTccfF15fuHteR/q1B9CJYDRgjTy3s26tY854BE4aOC88EMhvjQ0AwE75kqP/1iT/8mQo2rRa61tLKf8iyZ+d2vzSju28NJd/NjBJnt67lwOUUp6T5K/kchjap62z7SallIck+U9JbunxsRuT/Pkkt5ZS/m6S76u1+gdyAAAAAAAAAABGZyuD0U6qtd6d5MVHf1JKeUKuhKQ9J8lnHR06nWTyoCR/5OjPX83loLQ3Jnl1klfVWl+xjr4DsG4KWndepyL6AeOg7BlGu04wGouoDQXN5Uy/8zQdfxy8dvbGOf0wQQGLmDN3NM1xAH10XqdYz5xqG1nPGnNAD0PnqeP3Tk0B6w8cd5DsjeKfaQEAILnyS0yT5OUdjv+FXB2M9taO7RwHrpUkj+74mWX5oiRfteY25zmb2aFoNcnvJnl3knuSPDTJ55849kySv5zks0op31rrAynOAAAAAAAAAAAwCqP8ifta6weT/IujPymlfHquhKQ9N8lTjw49GZT2h4/+/OWM9O8OQKKglfmGjJEy/xDGzc98s4imgubewWh7DTuOQonOXD+vI/3aA0g6hDuYWwBYl20LRnMPBE4aGBo8OXrvNC8Y7fBCsvfQYW0BAMD6PGLq69/tcPzJYz7SsZ17pr5+eMfPrNrFJO/NlZ9H3JTDJL+U5PYkr6y13nPygFLKM5P8vSRfMbX5+Ul+MMn3rqGPAAAAAAAAAACwNE1V+aNSa/1ArfWna63/ba31s5LclMu/dfLHk9x5fNjRf0skngCMW2uwg4LW3bfia9wYWsTOmOyvv825gTRsvaUFozUcX48Kr/fm5TcbS8Ai5swddWD4A0Av1jOn2iaejTyPAX0MnTNqx2C0ycVh7QAAwHpNp/re1+H4j09/U2u90LGd6eOu6/iZZdpP8ptJ/mmS70ryzCQPS/Jfb6Avxy4m+UdJnlJr/bpa64tnhaIlSa31TUm+MsnPnNj1v5VSnrzifgIAAAAAAAAAwFLNq7ofpVrr+0spb0vyuCSPT/LEJA/ebK8AWJ6W4jTFrqdAh2s8aBy05KfWmhT5qqO3iWC01MjmHbmlBaM1hC8en39eOJH7HLAQwWjAOlinMELW18A1Bs4Lx++d5q2xD7vmQgAAwFaY/ofOOSnAnY/ZNrcn+bFZIW5lcz8jcCHJ02qt7+36gVrrYSnlBUmeleQzjzY/KMm3JPmh5XcRAAAAAAAAAABWY2eC0UopX5jkOUmem+TZSR650Q4BsDqtRasKWhmo9YeahVvthHqw6R4wRo3BaA1BZ42agtEmV/+3uSM92wPI/NAXwWjAOgmiOuU2cf2NOaCHoWvj4/dOTe8RjglGAwCArVJrvXfTfTip1nqQpHMo2tTnzpdSfiLJ909tfm4EowEAAAAAAAAAMCKjDUYrpTwjV4LQviLJo6Z3T31dG7YDsJMUu+68TkX0Q8ZBS8hRPVwgBAmSvPOfJU/7bzbdC4ZoKowuZ/qdp+n444JpwWjASsybO8wtAKzLtgWjuQcCJw2cFyaC0QAAgK3wlhPfP3EjvQAAAAAAAAAAgAWNJhitlPL0XB2E9ujp3VNf11ypWihT+96b5D9O/QFgtFqK0zqFZjFuK77GpSVHdW5gETT43X8gGG3smgqaewejNYQrPjC/uI8BqzBnbrHGAZai6zrGeoc1864I6GXgnFH3j/47JxhtcnFYOwAAAO0OTnz/oI30AgAAAAAAAAAAFrS1wWillM/NlSC0/yLJY6Z3T33dFIT2gSSvylEQWq31nSvsLgBr1VacptiVZNg4aAgtSuYXNEKT+96WHF5Izjxk0z1hUUsLRms6/iiUaF44kVAHYCUEowGwJhtZz3qPBPQwdJ6aHGUPzHu+P/jUsHYAAADaPe3E9x/YSC8AAAAAAAAAAGBBWxOMVkr57FwdhPa46d1TXzcFoX04Vweh/e4KuwsAbMyKi5ZLad4nGI0hDi8KRhuzpQWjNYQvPnD+eeFEghuABcwLdxC6CKyVOYd1M+aAPgaGBtfjYLQ57xHf+r3J8141rC0AAFiv4wfsP1RKecqcY58w/U0p5dm5+uf/On2OQb7pxPdv2EgvAAAAAAAAAABgQRsPRiul/FQuB6JN/2BTlyC0jyZ5da4Eof2n1fYUgK3RGtyg2HXndQnuGBLu0RRalCR1YGEkp9vk4qZ7wBDLCkZLUzDa5Or/NnekZ3sAyfy5wxoHWIKuz2HCGE+5DVz/tjFnPAInDZ0XJh2D0T706mHtAADAZpQkP7PAZ17V4/iabiFqNCilfFmSP3pi87/eRF8AAAAAAAAAAGBRGw9GS/Knc/UPNDUFoX0syWtyJQjtrevsJADbREEr8wwZBy0/Yz2voBHaHApGG7WmwLK2MMVZ9hqC1I7nl3nBaO5zwELmzB3CXwFYm02sZ62hgT4Gzhl1/+i/1tgAAOykPqFl04vrPkFnHuQHKKVcl+T/P7H5V2qtb1hyO49L8tieH3vqMvsAAAAAAAAAAMBu24ZgtGPHPzh1/INQ9yf5lRwFoSV5S61SAABI2n8O1q1i9636GrcFoyloZIDD85vuAUM0BSOWhqCzRg1Bag/ML/PmGfc5YAHzXqdY4wBL0XWdYj3DunmPBPQwdG08OTg6T4dfsFBrUvrkQwAAwFZY5GHaA/j6/FCSL576fj/J/7SCdv5ikh9YwXkBAAAAAAAAACDJ9gSjlSSfTPJruRKE9sZaVeYCMENrsIOfpyUZNA5KQ2hR0q2gEZocXth0DxhiWcFoTccfP/rMzYJ2nwMWYW4BYEv43SfA1hs4T9U+wWiHSdmWf6oFAIBW744XyVuvlPLnk3z3ic0/WGv9zU30BwAAAAAAAAAAhtiGn7b/vlwOQntDrcfVAgCwIAW2p8Cqr3Fp2SezlQEEo43b0oLRGsIXHzj/nHnGfQ5YxLy5Qy49ALus7T5ofQ2cNHRemOwfnadDMNpkP9nbhn+qBQCAdrXWp2y6D7QrpXxNkh87sfnlSf7WBroDAAAAAAAAAACDbfyn7Wutf3PTfQBgbBStnmpdihOHFDA2hRYl3QoaoclEMNqorToY7TgQbW44kXsgsIh5c4e5BYB12cQ9x30O6GNgaPDx74DqEj5c95NcP6w9AADg1Cul/NEkL01y3dTmX03yrbWuLBX+R5P8bM/PPDXJz62gLwAAAAAAAAAA7KCNB6MBwHIpdmWo0rxLMBpDHApGG7Wmgua2MMWZxzcEqR3PL/MKp1dWuwDsto7BsqVlHQSwTOYc1ql1DW19DZww9Ll7chyM1uE94uGlq2MLAAAAeiqlPDPJv01yw9TmNyT547XWT62q3Vrrh5J8qM9niveBAAAAAAAAAAD00LOKHwC2QUtxmsCYU6DLNR4wDtpCjuYFFkEbwWjj1lTQ3BR01qhhjjmeX+bOM+5zwIpY5wBrZU1zem3i2htvQB8D54y6f/TfDsFox8cCAAAsoJTyBUl+Kckjpja/JclX11o/vpleAQAAAAAAAADAcghGA2B8WkMbFLvuvlVf45bfUtyloBGaCEYbt2UFozWFLx6f/+D+fucD6KJTeLBgNGAAIeV0tZGx0tamsQucNHBemBwcnabDe8SJYDQAAGAxpZTPS/LLST5tavMdSb6q1vqxzfQKAAAAAAAAAACWRzAaADtGQSsZVmhd2oLRBIYwgGC0cVtaMFrD8cfzy/kPzutIv/YAknSaO6xzgHUSpMY6GW9AH0PXxfU4GK3DeQSjAQAACyilfHaSVyZ57NTm30nyvFrrPZvpFQAAAAAAAAAALJdgNABGqKWgVbHr7ut0jYeMg5blUVMwEnQxEYw2aksLRmuaY+rl+e3C3XP64T4HLGLV6ycA6GoT9xvvkYA+Bs4Lx2FnXd4jCkYDAAB6KqU8Lcl/SPKEqc2/n+Qra61z/qERAAAAAAAAAADGQzAaAOPTWrSqoHX3rfgal9LS9GS1bbPbDgWjjVpjMFrPR6q2ILU6SS58cF5H+rUHkHQLfbHOAQbpu0axpmGdjDegh6GBifXg6L8dgtGqYDQAAKC7UsrNuRyK9sSpzXfmcijaBzbTKwAAAAAAAAAAWA3BaADADhpSwNiyPOpS0AhNBKONW1NgUFvQ2czj2x7BJsmFeb/IXagDsAjBaABsi21bz25bf4DNG7gunvQIRptcGtYWAABwapRSnpTLoWifObX5rlwORXvvZnoFAAAAAAAAAACrIxgNgBFqK1pV0Lr7VnyNS2lpWjAaAwhGG7em///3DUabF754/oNz+uE+Byyiy9whGA1YJ2saVmx63WwNDfQxdM6oB0fn6LC+nuwPawsAADgVSilPTPLKJE+Z2vy+XA5Fu2sjnQIAAAAAAAAAgBUTjAbACLUUpyl23X1drvGQcVDalkcCQ0Zvk3OEYLRxW1YwWtvxdZJcuHteR/q1B5Csfv0E0HcOMeecXhu59gL2gT6WMC/Uw26/YEEwGgAAnDqllHriz3PmHP+4XA5Fe9rU5g8keW6t9c4VdhUAAAAAAAAAADbq7KY7AAC9tRbRKmhlqNK8a9KhoJHtVg8217ZgtHFbWjBaS/jiR9+cnH/fvI70aw+gMwGwAKzDutazNVee762hgR7qEtbF9aDbe0TBaAAAsFVKKTdl9s9TPuHE92dLKU9pOM0naq33LKk/j0zyiiSfM7X5k0lekGS/pQ8z1VrftYx+AQAAAAAAAADAOghGA2CEBKOdbl2u8arGgfE1ehstODV+Rm1pwWgtx//yszv0wzgCFtFh7lhGAARwivVdo1jTsGK1TuWitYw362vgGkuYFyYHze8RrjpOMBoAAGyZX03y5A7HfUaScw37bk9y25L680VJvuDEthuT/MKC52v5LXEAAAAAAAAAALBd9jbdAQBYKgWtp8Amr7HxNXqC0VhUU2BQ6flI1ff4azsy8PPA6dQlGM38AsA6bOJ+4x4H9LCMdXHdT9IheLgKRgMAAAAAAAAAAAAAgFkEowEwQm3FaYpdSVY2DgSGjN/k0ubaNn7GrR7O3l7O9DvP4GA0gAV0ugd1CG4AWBprY1atNnzddhxAspR5YXLQ/B7hquM2+J4KAAAAAAAAAAAAAAC22NlNdwAAoJcuwR4rC6BSMD16k/1N94CxWlowWs/jr+3IwM8Dp1OX9ZNgNGAIaxQ6Wltg9FQ7QqqBPpaxLq5dg9G8pwIAgG1Sa33KGtooPY59VZLOxwMAAAAAAAAAwC7Z23QHAKC31oJWxa67b5PX2PgavbrJglPjZ9SWFYw29BFMqAOwEMFowJaxpmHVrhpj3iMBfSxhXpjsJ598d7fjAAAAAAAAAAAAAACAawhGA2CEWorTFFeTZGWFzcbX+B1e2nQPGKtlBaP1DlK7piMDPw+cSp3WMOYXANZhE/cb9zigjyXMGfUg+dhvzT9OMBoAAAAAAAAAAAAAAMwkGA2A8WkNdlDsuvNWHk5mfO20usmCU+Nn1Opk9vbS85Gq7/HXdmTg54HTqcPc0TTPAXTR+znNmubUWlvgeMd2BKADJy1jXTzZTz722x3aEowGAAAAAAAAAAAAAACzCEYDYIQEV51uXa7xqsaB8TV6kw0WnCq4H7d6OHt7OdPvPEOD0YwjYBGd5g7BaMA6WdOwalNjzBoa6GUJc8bh+WT/4/OP2+R7KgAAAAAAAAAAAAAA2GKC0QDYLYpdWaUqMGT0Jpc23QPGamnBaD2Pv7YjAz8P0MA6GoC12MT9RsA+0MMy1sWHF7od5z0VAAAAAAAAAAAAAADMJBgNgBFStHq6dbj+Kwv2MPZGb7K/wcaNn1FbWjDawEcwwUXAQrrMHQJggSF6rlGsaVi1q8aY8Qb0sYR1cedgtE2+pwIAAAAAAAAAAAAAgO0lGA2A8WktoFbsykBt40vx/vgJRmNRSwtG63n8tR0Z+HngdOoSLCsYDYB1WNd6dqod75GAPpbx/u/wYrfjBKMBAAAAAAAAAAAAAMBMgtEA2C2Cq3Zfp2s8ZBwomN5pk0ub7gFj1RiM1veRaugjmHkIWECX9ZNgNGCtrGlYJ+MN6GMJc8bkQsfjBKMBAAAAAAAAAAAAAMAsgtEAGCHBVafbioPRWoNDjK/R22TBqeDGcWsKDCpn+p2nd5AawDKsOlgWwBxCR2t7Lppqp61Nz2nANZYwLxx2DEa7eM/wtgAAAAAAAAAAAAAAYAepygdghARXsUoKpnda3WAwGuNWD2ZvL2f7nadvkNo1/TAPAYvoMHc0BUACrIQ1zem1pmt/1brZeAN6WMa6+PBit+Pe85Jk0vC+AQAAAAAAAAAAAAAATjHBaACMT1sojMCYU6BLsMeAcdBa/Gh8jd7k0gYbN35GrR7O3t436KwMfQQzjoAFdFkbCUYDhuj7DObZnbUSsA/00TAvPPHrup9i0jEY7cLdyQd+qft5AQAAAAAAAAAAAADglBCMBsAIKWg91VZeQC94b6dN9jfYuPEzavVg9vZytt95+gapXduRgZ8HTqcuc4dgNADWYV3rWetmYEFN7/9u+fPdz3F4ofux527vfiwAAAAAAAAAAAAAAJwSgtEAgB00pABa8N5O22gwGqNWD2dv3+sbjDbwEUxAI7Aq5hdgrcw5rNrUGGu9xxmLwAm1ITC4lOQzn9/tHJOL3dt778uSS/d2Px4AAAAAAAAAAAAAAE4BwWgAjJCC1tNtxddYwfRum1zaXNsCZ8ZtcjB7eznT80RDH8GMI2ARXeaOhgAIgE6sUehoI89FxifQR9OcUbqf4rBHMNrkUnLXi7sfDwAAAAAAAAAAAAAAp4BgNAB2i+ChU6DLNR4yDlo+a3yN32R/g40bP6NWm4LRzvY7T+8gtWs6MvDzwKnUZQ1TBaMB62RNw4pdde/znA/00RaM1jEc7fBCvybvfGG/4wEAAAAAAAAAAAAAYMcJRgNgfFqLVhW0MpTxtdM2GozGqNXD2dv3+gajDXwEE9wALEQwGgDbYl3r2al2rKGBPprWxeVMOgejTXoGo33k9cl9v9PvMwAAAAAAAAAAAAAAsMMEowEwQm2hDYpdd16XguYhRc+C93bb5NIGGzd+Rm1yMHt7OdPvPEOD0YwjYCFd5g7zCzBEzzlEUNUptolr7zkf6KExGG0vKR2D0Q4v9m/33O39PwMAAAAAAAAAAAAAADtKMBoAu0Vx9Smw6mCPluA944AeVzUAACAASURBVGv86v6me8BY1cPZ28vZfucRjAZswqqDZQF6M+ewarXha4B5WoLROp+iJRjtEU+fvf3ci5JJw7sHAAAAAAAAAAAAAAA4ZQSjATA+QhtYpdbxZeyN3mSDwWjmrvGqNakHs/eVM+vvC0Bvqw6WBYCO1rWenW7Hcz7QR236pQl7SUq3cxxeaN731BfM3n7+fcndr+x2fgAAAAAAAAAAAAAA2HGC0QAYIQWtp1uHazyo0Lrls42FkYzG5NIGGzc/jVbb//f3zq6vHwALE4wGrFjfZzBhr6yV8Qb0UA9nby99gtEuNu978p9O9h48e9+dt3c7PwAAAAAAAAAAAAAA7DjBaADsGMWuO2/lBfSC93baZH/TPWCMmoqik6SsOxjNPAQsoMv6SQAsAGuxrvVsx3aE9AEnNa2Ly15SOgajTVqC0R786OSmb5y9773/Krl0X7c2AAAAAAAAAAAAAABghwlGA2CEWopWFbSSZFChdesYMr5Gb6PBaMbPaNWD5n3lzPr6kcQ4AlbH/AKskzmHFbvq2d54AzqqNY1zRp/n/8MLzfvKmeSWW5s/9+6f7d4OAAAAAAAAAAAAAADsKMFoAIyP4KpTbtXXWPDeTptc2lzbxs941cPmfXtn19ePxDgCFtRh7jC/AIOYQ+hqA2PFeySgs5Y5oewlKd1OM7nYdJLL53nCH0uu//TZh5x7Ybc2AAAAAAAAAAAAAABghwlGA2CEFLSebl2u8ZBxYHzttMn+pnvAGNWD5n3lTP/zPfrLF++LeQhYyKrXTwB9mXNOrbUFcdaGrwFa1EnLzh7BaIcXZm8/foewdzZ5ynfMPubDv5bc/45u7QAAAAAAAAAAAAAAwI4SjAbACLUUtK6twJad1VoAaXyNXt1kMJrxM1qTtmC0s/3P9/S/tnhfjCNgEV3WyK1rIIB5rFHYNh2D0bxHAqa1rYnLXlKWFIyWJDff2vz5c/+8WzsAAAAAAAAAAAAAALCjBKMBAOPSKdhjQGFz22cVTI/f4aVN94AxqofN+xYJRnvi1w7oi3kIWESXucP8AqyRNc0ptoFrb7wBnc0JRut8mosN55gKRnvk05NP+9LZx915u+BiAAAAAAAAAAAAAABONcFoAIxPa0GrYtfdt+pgD+Nrp9X9DbZt/IxWPWjeN13U3NUiYWoPMI6ABXS6B5lfgHUy57BiV937POcDHbWGke0lKd3Oc9ghGC1Jbrlt9nGfenfyoVd3awsAAAAAAAAAAAAAAHaQYDQAdovgIQZrGUPG1/hNNhiMpuB+vOph8769BULOSsdC6pl9MY6ARXSYO8wvwBDmEDpb11jpGowGMKUtGK30CUa70HCOE8FoT/62ZO+62cfe+cJubQEAAAAAAAAAAAAAwA4SjAbACLUVtCp23X1drvGAcdBa0G98jd7k0qZ7wBhNDpr3nSxqXjnzELCILnNHSwgEwNJZ05xamwjR85wPdDYvGK3raS7O3r534h3Cgx+dfMY3zD72PS9N9j/RvU0AAAAAAAAAAAAAANghgtEAGJ/aFtqgoJWhFEzvtMn+Bhs3fkartgWjnV1fP05qC2wDmNYlhObgk6vvBwCsjecvYAFt753LXlJKt/McNgSjzXqHcPOts489+GTynpd0a49xuvCh5EO/mnzsjuUEhx58MrnnDcnBp4afCwAAAAAAAAAAAABgwwSjATAuh5eST7yzef8yCojYbl2u8aBx0PJZ42v8NhqMxmjVw+Z9e+sORqvJB1+Z/LtnJi9+SPILX5h86FfW3AdgJ73mG5MPvGLTvQBGq+ezkmerU2xN1/6qMeY5H+io9Rdy7CXpGIx2cP/s7eXMtdue+DXJQx43+/g7b+/WHuPzOz+c/NyTk19+dvILz0j+/Zcn97f8u0eX873kUckv/cHkJZ+W/P6PLa+vAAAAAAAAAAAAAAAbIBgNgHF56/fOOUBB6+5b8TVuLYA0vkZvcmlzbSu4H6/JQfO+WUXNq3Tf25JXf31y75svB7Z97K3Jf3he8vHfX28/gJHpeA96zZ9M9htCHABgrDyLAV21vRcse0npGIzWeI4Z7xD2rkue/O2zj//Qq5JPnBvWJtvnI7+RvPkvJYcXrmz76Bsvh1Uvcs+6+z8mb/6fr/xCiMnF5Df+QvLh1y6nvwAAAAAAAAAAAAAAGyAYDYBxufOFm+4BozCk6Lnts4qpR++4QHAjjJ/RqofN+8rZ9fUjSd7zkuTw/NXbJpeSd71ovf0ARqbjPejwfPLen19tVwCSWBufZuu69rXh67bjAOYEow3VFK5+y23NnznneX/nvP/fZeb95747kvsXCL5/5z+bvf3dP9v/XAAAAAAAAAAAAAAAW0IwGgDjcvHDcw5Q0Lrz6oqvcdv5V902q1c3GYzGaNWD5n1NRc2rcvEjs7ff8X+ttx/AuPRZw5x74cq6Aeyyvs9Knq1Yta7BaABT2oLRs5ekDDt/0zuER31B8qgvmr3v3O3eSe6aC3c37zv//v7ne9dPzd7+u3+//7kAAAAAAAAAAAAAALaEYDQAdosisVOgyzUeMg7aPjsZcF62wuTSBhs3P43WpCUYbe/sYue87pGLfQ5gIT3uQesOfATgdNnEe5vWNj2nAVNqy7u/ssJgtCS5+dbZ2z9xZ/LhXx3WLttlcrF5X1s4PwAAAAAAAAAAAADAKSIYDYAdo6CVDCy0bvms4L3xm+xvrm3jZ7zqYfO+smAw2md/92KfA1hIn3uQV0XAAvquda2NT7E1XfurxpjxBnQ0LxitrDAY7Sl/pvkdw7nbh7XLdjm80LyvLZwfAAAAAAAAAAAAAOAUUe0KwI5R7Lr7VnyNWwv0ja/R22QwGuNVW4pS24qa23ze/5484XlT59lLnv7Xksd/ZfLgxyx2TuMbaNIngGjReQ0AtkrHYDQhfcBV2oLRlrBO3msJV3/I45Inft3sfXf9y+TgU8PbZzscXmze590OAAAAAAAAAAAAAECSpOUn8AFghBS07r5O13jIOBCMttMmlzbYuPEzWvVw9vayl5Sy2DnP3pA85xeTe9+cfOJc8thnJTc88cr+X/zS5KNv6nfO8x9MbvzMxfoD7Lge96A9wWjAOlgbn1qbeG/jXRHQVW0LRttLsuA7gAfOMWetfcttyft+/trtB/cn7/nXyc3fPqx9tsPhheZ9beH8AAAAAAAAAAAAAACnyN6mOwAAsFXaCiAVU4/fZH/TPWCMJg1FqfMKmufZO5M8+suSJ3/L1aFol0/e/3yX7h3WH4Bk+NwGnFKeldg2XceksQtMaXsvmDUEoz3xjycPfvTsfedeOKxttsdEMBoAAAAAAAAAAAAAwDyC0QDYMQpad1+XazxkHLR91vgavY0Goxk/o9VUlFrOrrDRRYqt2wq4gdOtzz3IqyJgHayNT681Xfurgs2NN6CjtmC0speUFQejnXlQ8uQ/M3vfB1+ZfPI9w9pnOxxebN7XFM4PAAAAAAAAAAAAAHDKqHYFYMcodt19m7zGxtfoTS5tru1q/IxWPZy9faXBaAtoK+AGTrc+96B5YQ0Ay2BtzFoJQAe6mhOMNlSXtfYttzbsqMm7XjS8D2ze4YXmfU3h/AAAAAAAAAAAAAAAp4xgNADGo0vhtOJqksXHwbzPGV/jV/c33QPGqKkodZXhQaX0/0xTgBtAn9CXZQQ+AKePZyU6W9dYmWrH+AS6ag0c30uywLP6tC7vER71JckjPn/2vjtvN6ftgsnFln2C0QAAAAAAAAAAAAAAEsFoAIxKl6IvhWE7b6XFf/PObXyNWq3JZJPBaMbPaDUVpe6dXWGjiwSjtRVwA6dbn2C0FYY+AjzA2vjUWlugT234+uRhxiIwpe25uuxl8P2ry1q7lOSWW2fvu//3knteN6wPbN7hheZ9TeH8AAAAAAAAAAAAAACnjGA0AMajU7Gqgtbdt8JxMHeMGV+jtvHCQuNntOrh7O0rDQ8SjAYsUZ/Ql+JVEQA74OD8la8nlzbXD2Bk5gSjDX3uLh0D1p/y7c3vHM7dPqwPbN7agtEWeLcEAAAAAAAAAAAAALAlVLsCMCIdCs/6hD7ANeaMH+Nr3Cb7m+4BY9VUlNq1oHkRZZHiVcFoQJM+wWirDH0EdlffZyXPVqfXmq79m//S5f/e8/o5BxqLwJS24LOlBKN1XGtf/+nJp3/17H13/Yurwx8Zn8nFln1LfH+596DlnQsAAAAAAAAAAAAAYM0EowEwHkKpSNKtaLnhmFqT+9+ZHHyyYf+84kZjcNSawq3W1r7xM1r1cPb2lYYHLRCMNrRAG9hdfe5BxasiAHbAB19x+f73npdsuifAmLQ+V+9lcCB5n/cIN986e/v+fcn7fn5YP9iswwvN+yY931+2PevtXdfvXAAAAAAAAAAAAAAAW+TspjsAAN0NCMRid3QJ9ph1zEfflLzm+cmn3p3sPSh52n+XPOJzkzt/Irn0seQzvj55xg8Mb5vt5fqxqE0Eo5VFgtEa+gnQZ4280tBHgCPW5qfYOq99Td7+d+cfA/CAluCzsjf8/tVnrX3TNyTXPTLZ/9i1++68PXnytw7rC5szudi8r+73PFfL8YLRAAAAAAAAAAAAAIARE4wGwHjUlsK0B45R0MoMB59KXvm8K4WEk0vJ7/3Dq4/5nf83uf/355zI+Bq3TV+/TbfPwpruPysND1okGK3DfRJgrr1NdwAYpb5rXWtj1sA7IqCvtufqsjc8kHyvx3uEMw9JnvxtyTt+7Np9H/z3yafen9zwxGH9Yf1qTQ4vNO//zf/j8v7P//5uofltIWt7D+rfPwAAAAAAAAAAAACALaHaFYAR6VLQquh19y0wDj7wi1dC0dq87+eX0Dbba9PXb9Pts7CmwueyysepBYLRIhgNaNLjHrTS0EcATr21hpUJ2Ad6ag0+2xseSN53rX3LbbO310nyrp8a1hc2Y3Jp/jG//YPJ2/5Ot/MdtgWjXdftHAAAAAAAAAAAAAAAW0gwGgAjIhiNZKFrfMffXFLTQodGrW/B+5nrV9MPxqfp//urDA8qCwSjmaOAJn3ugSsNfQR2Vt+1tjCqU2yN1976GOirbd4oexk8h1338H7HP/rLk4d/9ux9517ofjpGk5Ygs2nvetHw8xXBaAAAAAAAAAAAAADAeKl2BWA8uhS0KgYjyTVFil0Lzvqel5Hpef2ef3fyrJckX/X65BGft4TmjZ/Rqoezt680PEgwGrBMfYLRVhj6CABrJWAf6Kk1GO3M8Ofu6x7V7/hSkptvm73vvrclH33TsP6wfocXuh1339u6Hdf23vvMg7qdAwAAAAAAAAAAAABgCwlGA2BEFLSSxcKlDpcUjCbYatz6Xr/rHpY86U8lj/nyZO/Bq+kT49BU+Lxt4UFNAW4AgtGArePZ6vRa47UXHAz01haMtte+v4sHPbL/Z27+jjSGp9/5wiG9YRMml7of2+U+1vbeu1zXvS0AAAAAAAAAAAAAgC0jGA2A8RBKRVcnx8pkScFoivdHbsj1ayhAXVv7bFRT4FhZ5ePUAmNO8APQpM86WjAasBBrXbaRgH2gp9bn6jL8ufu6h/X/zA03JU/4Y7P33fUzy/uFEGyfLgH4be+99wSjAQAAAAAAAAAAAADjJRgNgBHpUnimoHX3LXCNDy9srm22yIDrV5YQjCbcccQa7j+rDA9aaMwJRgOa9AlG86oIWAdr41Nrnc9FgoOBvhrnjXL5OX3ovHL2xsU+d8uts7df+mjyvpcv3h/Wr899cHLQ4Zj95n2C0QAAAAAAAAAAAACAEVPtCsB4dCkaEjx0CnS5xieOmVxaUtPG16j1Kl49GUq1hGA0xqseNuxY5ePUAmNO8APQqE8w2gpDHwFgnbqsjz3nA1dpCkY/fv4fOGecfehin7vpG5PrHj5737nbF+8P260ODEbzYwAAAAAAAAAAAAAAwIj5iWgAxqNT4IuCVnJtYfPk4rJOvKTzsBkDrl9ZxrLZ+BmtpvvPSsODBKMBG7KUex5w+vRc6wqjOsXWee2NM6Cnxuf/vfb9XZ29ccHP3ZA86Vtm73v/LyTn7168T6xZj3tTl2C0tmP2znZvCwAAAAAAAAAAAABgy6h2BWBEuhQNKXrdeYsU0B9eWFbjSzoPG9Fn7JSToVQLhFRd24ElnIONqIezt68yPOiaMdhBUz8BBBABW8e8dHqt8doL2Af6apw3lhSMdsNNi3/2lttmb6+HyV0/vfh52V6TDsFok/2Wnct4nwkAAAAAAAAAAAAAsBmC0QAYkQ7FqkIfToENBuQZXyPX5/qtIhiN0WoqfC5nVtjoIsFoAwu0gR3W4x5oLgFgV9QOgTIA0xqf/4//OXXgWvlRX7z4Zx/zR5KHPm32vjtvX/y8rFmfZ7OhwWie7QAAAAAAAAAAAACA8RKMBsB4CGlg4wSjjduA61eWEIwmWG+86uHs7WWVj1OLjDn3SaBJn3uQ+xWwgN5rXXPNqbXO56LD8/OP8ZwGXGVOMNqQOeNz/9dh7xFKSW7+ztn7PvZbyb2/ufi52U6TgcFo/j0FAAAAAAAAAAAAABgxwWgAjEiXwjMFrSSrGwfG16j1Kl49GUq1hGA0xqupkLScWV2bi4TxKXgFmvS5B5pLgG0grIplOPjUpnsAjE3jWvg4GK0hOL2LW16w+GcfOEdDMFqS3Hn78POzXWqHYLS2Y6ynAAAAAAAAAAAAAIARE4wGwHh0KuRR7LPTNl3Mten2GWjA9VskpOqke9+UvO7PJa94VvKbfzXZv3/4OVmPpsLnssrHKcFowDL1uQda7wBrMPfZyly0u9Z4bQ/PdzjIWAOmNAajHz//D3ju3ju7+GeP3fjk5PHPnb3vXT+VTPaHt8Fq9Xm/POkQjNZ6zb0nAgAAAAAAAAAAAADGSzAaACPSoZBHcBXJCseB8TVuPa7fNUFoS1g2X/hQcucLkw//WvK2v5W86usUrI5GU2H0mfV2Y56mADeAPvdAIYvAQjwrsYUOPrXpHgCjMycYbcg7x7KEYLQkufm22dsvfjh5/79bThtsh9rhvWHbu0XPdgAAAAAAAAAAAADAiAlGA2A8OhWeKcbebRu+voL3xm1Q8erJoLQl+PCvJve8bvnnZfkaA8dW+Ti1yJhT8Ao06HUPtN4B1mHOXOPZa4et8doenu9wkLEGTGl6/j8ORhvy3L23pGC0z3x+cvbG2fvufOFy2mCFetx3JgcdTtd2jHscAAAAAAAAAAAAADBegtEAGBHBaKde5+L4VY0D42vc+ly/k6FUKwhGS5Lf/sHVnJflqg2Fz+XM6tpcJIyvqZ8Afe6B5hJgIX2fleYd79lrZ60z9O7wwvraAnZD41p4b87+DsqSgtGue2jypG+eve/9L08u3LOcdti81tCzI5P9ls97tgMAAAAAAAAAAAAAxkswGgDj0aWQZ50FtmyxFY0DxWQjt4XBaPf/3mrOy3LVw9nbyyofpwSjARtiPQ1sBXMRy+A9EtDTvGD0QcFoSwxXv/nW2dsn+8ldP7O8dliBHvedSYdgtNoSjGY9BQAAAAAAAAAAAACMmGA0AEZEIQ+bHgObbp9BhhS8lxUFoy2zKJbVmVcYvRKLjDnBaECTPvdAcwmwBvPW5sKqdtgar21TwDFAk8bn/+N/Th2wVt47u/hnT3rcVyQ3PmX2vnO3L68dNqt2CEabtASjCdAHAAAAAAAAAAAAAEZsiT+FTx+llDNJnpbk85I8MckjklxMcm+SdyZ5Y631k0tu87okfzTJk5J8epJPJHl/krfUWt+15LZuTvJFufx3e2iSDyS5K8mv19r668sBmnUq5FE8vds6Xt+VFdEbX+PW4/pdE4S2omA0OcXj0BSoUFZ4/RYJ45sIfgAa9FkbCSMCFmHuYBt5jwT0NicYbVDo/hL/SbbsJTd/Z3LH/3ntvo++KfnYHckjP3957bE8vZ7NugSjtRwjGA0AAAAAAAAAAAAAGDHBaGtUSnlSkucneV6SZyd5eMvhh6WUVyT5kVrrvx3Y7mOT/PUk35rk0xqO+fUkf6/W+tKBbX1Tku9J8ocbDvloKeXFSb6/1nrPkLaA06hD0ZBibFbJ+Bq3QcWrKwrAKmdWc16Wq6mQdKXXb5EwPgWvQJM+90BzCbAO8+Ylz147a53P1QJhgL4a5429Ofs7WGYwWtIcjJYk525PvviHltse69cWenas9XdRWU8BAAAAAAAAAAAAAOO1ooQHTiql/HSSu5L8/SR/PO2haElyJsnXJHl5KeXflFIev2C7X5vkjiR/IQ2haEf+SJKXlFJ+spRy4wLtPLSU8jNJfjbNoWg56sNfSHJHKeWr+7YDnHKdimcV++y0zgXUqxoHxte49bl+J0OpFgmp6tKM5fgo1MPZ21d5/coCY07wA9CkTwiNIFhgK5iLWIKmdfzVB628G8CINAajHz//D3ju3ltyMNrDnpo89tmz9537yW6hWmxAn2ezDtdw0hKM5j0RAAAAAAAAAAAAADBikhjW5w80bH9fklcleXGSlyZ5S66trPgTSV5TSnlCnwZLKc9J8rIkj5vaXJO8KZcDzF6R5J4TH/v2JD9TSveUh1LKmaP+f9uJXR9O8ktHbb05V/+0/+OT/Fwp5Vld2wHoVnimoHW3bbqYy/gatyHXTzDa6dZUGH1mhW0KRgOWqc890FwCLKLvWnvO8UIad9gar631MdDbnGC0ReeVcjbZu26xz7a55bbZ2y98MPnALy2/PdarS7hd6zHugwAAAAAAAAAAAADAeEli2Iy3JPkfkzyt1npTrfW5tdZvq7V+U631S5I8Kck/PvGZP5DkZ0spnRISSik3JflXSR40tfnXkjy91vqltdZvqbV+VZKbknx3kulfKf71Sf5Gj7/P307ydVPf7x/9/W6qtX71UVvPTPL5SV47ddyDk7yslPLpPdoCTrMuhdGKp3db5+LDFY0D42vcel2/E0uubkuw/lYarMXS1MOGHat8nFpkzCl4BRocXuh+rPUOsA5z5xpz0e5a57XtsD523wOmNb57HBiMdvaGxT43z5O+KTlz/ex9525fTZusT+0QjFb3W/a5xwEAAAAAAAAAAAAA4yUYbX1qkn+b5MtqrV9Sa/2RWus7Zx5Y6/tqrd+V5L8/setZSb61Y3t/Pcmjpr7/9STPq7W+/URbF2ut/zDJt5z4/PeUUp48r5FSyi25HKw27ZuP/n6XTrT1tiT/Za4OR3t0kh+Y1w7AZV0KeRT77LRFiw+X14ENt88wPa7fNUFoqwpGsxwfhaa5Z2/Lgu0aA9yAU2/SIxhNyCIAu2Lj7xCA0WmaNx54f7NoMNqNi31unusennzm82fve+/Lkkv3rqZdFtcnrKxLMNqkLRjNfRAAAAAAAAAAAAAAGC9JDOvzzbXWP1FrfWPXD9RafzTJS09s/rPzPldK+awkt05tupTktlprYyV0rfVlSaZ/ffyD0y2w7AeSXDf1/QtrrT/X0s75JLcd9enYC44C1gDaKeSha/FhnwKzXgSjjduQ67eiYDTL8XFoDBxb4fW7JpyvA/dJoMnB+e7HrmwdBey2vnPHvOPNRTtrnfeZTsHBxhowbU4w2qLP3WdWFIyWJLfcNnv75FJy14tX1y6r1xZ61ukY74kAAAAAAAAAAAAAgPGSxLAmtdZ3LfjRf3Ti++d2+MyfSXJm6vt/VWv9/Q6f+zsnvv+WUspDmg4upVyf5JvmnOMatdbfS/KyqU1nc7nPAHN0KVZV0LrTOhcfTo2DZRZdCwoZt17X70Qo1SIhVZ2aOTP/GDavae5Z6fUTjAYs0WGPYDTF88A28OzFMnRaHxtrwJTG5//jf05dcM44e8Nin+vicc9Nbrhp9r47X7i6dllQjzE0OehwupZjrKcAAAAAAAAAAAAAgBETjLb93nLi++tLKY+c85n/6sT3P9GloVrr25O8fmrTjUm+quUjX51kuprjtbXW3+nS1ow+Pb/j54BTrUMhj2Kf3bZQ6M8yx4TxNW5Drt+Kls3FcnwU6uHs7Su9foLRgCU6vND9WOtpYC3mzTXmot21zmtrfQz01PhcvTdn/xxnb1zsc13snUlu/s7Z+z7y+uS+rv9sx9ZpCz07Ntlv27m0rgAAAAAAAAAAAAAArJskhu0366feH9R0cCnlCUm+8MTnf61He6868f3Xthz7NXM+2+ZXcvXf7YtLKY/v8XngNOpUeKZ4eqc1hRNde+DUl8ssADO+xq3P9TsRSlUWCKnq1MyZ1ZyX5WqaR1Z5/RYacwpegQaH53scbC4BFrD0UEXPXixBl3cIAkGBaY3P/wOD0c7cMP+YIZqC0ZLk3O2rbZueetx3hgajuccBAAAAAAAAAAAAACMmGG37Pe3E9wdJ7mk5/vNPfP/WWusne7T36ye+f3qPtl7btZGjPv12j7YA0q1oSLHPTluk+HCZwWiKycZt0PVbVTCa5fgoNAUqrPT6LTDmOodHAqfK5KBbQf0x6x1gHcw1p9gar/1Sg9KBU2Hu8/+C88rZGxf7XFcP/+zkMX949r5zL0om3heM0qTDc1zrs577IAAAAAAAAAAAAAAwXpIYtt83nfj+jbW2VnR93onv39GzvXfOOd+0z11jW8Bpd/87kt/7kfnHKa7ecR2Lua4aB8ssADO+xq3H9Sul/ftlEYw2Eg3zSDmzwjYXCUZT8ArMcHih3/HmEmAhS35W8my/u9Z5bTvd04w1YFrTvHH0/mbRtfLZGxb7XB833zp7+/n3JXe/cvXt002f+2CXgOvJfsvnPdsBAAAAAPxn9u49WpezrhP8r/Y+J3cSAiSQgEnOISAqOgrYNiiIDghoNzdpURBPutsZp132co3jmqvdtmt6pp1erbO6HXW6l445It6gBWy8gEIj0ly0EW0VlcA5uXAJCSSE5Jycy95vzR9nn/Ced7/PW5e3qt6n3vfzWSuL7Kq3qh5StZ9L7f37bgAAAAAAYLwkMWSsKIorIuIfzmx+c8VhN898fWfDy94xpDgpEQAAIABJREFU8/Vji6K4ek7bHhMRj1nyWrOff0rD44FNcdebI37ryyM+/vOrbgmr1qaYq8sCMMX5I9fk/s2GUvUVjNZnsBadSfYjPS6n2oTxKXgF5tl9uOEB5jvAEKr6Gn0RHSh3V90CYGxS6+rz72/avhs8cHm745q48dURWxfP33fsaP/Xp3uTJYPRzKcAAAAAAAAAAAAAgBETjJa3fxERT5j6+vMR8XMVxzx65ut7mlywLMuHIuLUzOaralznZFmWJ5pcK/a3bd51gE032Yn4wD+oKPCZpthnrdUO/Zl6DjoNChI6NGpLBdv1FIxmOj4OqUCFrT6D7do8c/ooYI7d2SV+FfNpYACVc3N90foa8N7Weh/gWQOmJIPRzr+/abnu3h4gGO2iR0c86eXz933iNyLOPNB/G6ihwbhT1ghGKxf83ESAPgAAAAAAAAAAAAAwYgdW3QDmK4riFRHxAzOb/7eyLO+rOPSKma8fbnH5hyPikqmvH9XjdabNu04jRVFcGxHXNDzsycteF+jR3b8XcfbzDQ5Q0LreWhRzpQKN2lgqWIvVa3L/ZkKpip4CzIo+g7XoTLKQtM9guxbBaApegXl2Gy7X9SVAK9ZK5MiYBjRVEYzWdq584LJ2xzV1+JaIO39t//bdUxF3vjHi5u8dph10o04w2mTBZ6ztAAAAAAAAAAAAAIARE4yWoaIo/quI+MWZze+IiJ+tcfhsYNmpFk14OCKuXnDOLq+z6JxtfH9E/GgH5wFy8bk/avZ5wVXrrXYx1/Rz0GUBmOdr3Ja5fy1Cqmqdts9gLTqTCljsM9iuaBOM1mEQJLA+jv1CwwPMd4AhVPQ11vZrbMB7W+cdgmcNmJbsN4qK/RUOXN7uuKae8MKIS6+LePjT+/cdPyoYbWwWhZ498pmzC3Ya4wAAAAAAAAAAAACA8ZLEkJmiKG6IiN+KC0PC7oiI7y7LVlVa63YMQAVdy1qrW3w4PWS2LVicf+IOz8XgmkylZkOp2oRU1bqO6fgopPqR3O5fp/0dsBaOvyHiIz/e7Bh9CZAFay86IDgYaKpy/d9yrnzJ49sd19TWdsRNr5u/7973Rjz4sWHawQIN5jhljWC0ckEwmrUdAAAAAAAAAAAAADBimVXyb7aiKK6NiN+LiCdObb47Il5YluW9NU/z0MzXl7Zoyuwxs+cc8jrApmucCal4eq21KebqsgCsVUYp+Vjm/vUVjLbdz3npVipQodf71+KZU/AKzLrtZ1ocZL4DtND12t3aa30NeW9rBaN51oBpqT5hb43edt39uGe3O66Nw0fS+47/4nDtYHl/+X9Uf2ayIDzNeyIAAAAAAAAAAAAAYMQOrLoBnFMUxWMi4vcj4qlTmz8bES8oy/K2Bqfa9GC0n4mINzY85skR8dYOrg3kQPH0mqtbzDX1HHRaAOb5GrVG/cNsKFVPwWhyikci0Y/kFoxWu48ENsZn39f8GMXzQBasvdbXkMFoxjSgodS7o2Lv/U2bfuXAFRFXfXn7NjV11ZdHPOZZEff95/37jh2N+Mp/9sX/PwyvyfvJydmIe98fcc2CYL3JmUUXq38tAAAAAAAAAAAAAIDMCEbLQFEUV0XEOyLiK6c23x8RLyzL8i8bnu6Bma+vadiWK2J/YNnna1znsqIoLi/L8kSDy11b4zqNlGV5T0Tc0+SYougr6ATohuIdppS7LQ4SjMZ5De7f7Pygr/nCVp/BWnQm1ff0WUjc5pkT/AB0wnwHGIBQc4ZQa37sWQSmpfqN82v0Fn3GwauGDyI7fMv8YLSTd0bc8wcRj/+mYdtDe7e/fnEw2u7D6X3eEwEAAAAAAAAAAAAAI+ZPgq9YURSPiojfjYhnTm3+QkS8uCzLP21xyttmvr6x4fGzn7+vLMv7Zz9UluXn4lx427QblrzWbNsBWlDQutbqFnNNF9l3WQCmeH/klrl/fU2bTcdHIdWPFH0G2wlGA1ZEXwK00nSuXfV5a6/1NeS9NaYBDaXe/S0TmL91sP2xbd34nenrHrt10KYwq+E4eNvPLt6/KBjNfAoAAAAAAAAAAAAAGDFJDCtUFMXlEfHbEfG3pzY/FBEvKcvyj1qe9q9mvr654fGHZ77+yIDXmj0fQAuKfdZam6COTsM9PF+j1ijYbqbgdZkC2IWXMR0fhXJ3/vY+71+bZy7VToBGzHeADAilpgt15seeNeACqfeIe+v/Z/1U81NuXdS6Na1d/NiIJ750/r67/n3E2YeGbQ/9WRSMJvQaAAAAAAAAAAAAABgxSQwrUhTFpRHxtoj4hqnNJyPi28qyfN8Sp/6Lma+/qiiKyxoc//UV51u079l1L7IXCvdVDa4FUI+C1jVXt5hr+jkQjMZ5y9y/voLRtvs5L91KFZL2ev/aPHMKXoEOKJ4H2mi8Fq/6vLXX2hryvY0xDWgq1UedDy9//H8dcdHVzc65imC0iIhDR+Zv3zkRcdebhm0LUzoeBxcFo3lPBAAAAAAAAAAAAACMmGC0FSiK4pKI+M2IeP7U5lMR8dKyLN+zzLnLsvx0RPyXqU0H4sLwtSrPn/n6dxZ89ncrjl3kuXGubed9uCzLzzQ4HtgUjYtYFU+vtTZFzV0WQgveG7km9282lEow2kYrdxM7+lxOtXjmBD8AXTDfAbKgL6IDtebHnjVgWqpP2Fv/X/yYiG9+Z8RVT69/ylUFo13/4ohLrp2/79jRYdtCf3YWBKNZ2wEAAAAAAAAAAAAAIyYYbWBFUVwUEb8RES+Y2nw6Il5eluU7O7rMm2e+/vs12/a0iPi6qU0nIuIdCw55e0RM/8b9s/fOUcctM1/PthngnMnpZp9X7LPeaof+TD0HnQYFeb5GbZn+oRCMttFS/Uif96/NMycYDeiEvgQYgLX7Bhvw3icDjgESkuv/qTX6Y74m4tv+POJV90U87y3V59w62E3bmto6GHHja+fvu+fdEQ8dH7Q57OlyDlSWEbsLgtGs7QAAAAAAAAAAAACAEROMNqCiKA5ExK9HxEumNp+NiFeVZfn2Di/1hoiYrvp6ZVEUT6lx3P808/Wvl2V5KvXhsixPRsSbKs6xT1EUT42IV0xt2omIX67RPmAT7TYMRhNctd7qhv6UgtGYp8H92xdK1VMwWm/npVOpQIWiz+WUYDRgRYQVAa103Hfoi9bYkMFodebHnjVgWqpPmLNGv+jqeoHpWxct1aKlHL4lve/46wdrBj2ZnImF45j3RAAAAAAAAAAAAADAiAlGG0hRFNtxLrDsZVObdyLi1WVZvq3La5VleVtEHJ3adFFE3FoUxSUL2veyiLhlatOZiPixGpf7Z3Eu3O28W4qieOmC61wSEb+w16bzfr4sy4/XuBawiSbJfEY2Uptirg4LwBTnj1yT+zdT8NprABb5S/QjdQqgh5QKcANoRPE8MISqubm1F10wpgFNJcaf5HuhGqHmqwxGu/qrIq7+6vn7jh/1rnMlOvxvvvvwcNcCAAAAAAAAAAAAABiYhIfh/H8R8R0z2/7XiPhwURQ3NfwnGXA25Ucj4v6pr58TEb9fFMXTpj9UFMXFRVH844h448zxP1GW5R1VFynL8lhE/OuZzW8qiuIHiqK4oNqjKIovi4h37rXlvM9FvQA2YFPtnm54gGKftVbWLWqeeg5qH9PwvIzPUsWeNQpdW/FMjUIqcKzXwLw2z5zgB6ADwhGAQQhG21hDjjN1goONe8C05HvE1Bq9TjDawbat6cahW+Zvf+hYxL3vHbQpdKwqGK3T9+IAAAAAAAAAAAAAAMM6sOoGbJDvmbPtX+7909Q3RcS7F32gLMtPFEXxyoh4e0ScDyj7+oj4SFEUH4qIYxFxVUQ8IyKumTn8bRHxTxq053+OiK+IiJfsfX0wIn4qIv5JURR/EhEPRsThvWtNV4mciYhXlGX56QbXAjbN7qlmn1fQut7aFHMJRuMRTe7fTGFr0VMwmgLFcUjdp2K7v2u2eeY8T0An9CVAGx2vlazt6YL5MdBUcvxJrNHrBKZvXVT9mT7d9JqID/9wRLmzf9/xoxHXPnf4NtGNqmC0iHPPdF/vNQEAAAAAAAAAAAAAelTjN/YZq7Is3x0Rr4iIe6c2FxHxrIj4joh4UewPRfuViPjOsix3G1xnd+98vzaz69qIeHFE/L2IeGZcWDlyT0S8rCzLP6x7HWBDTU43PEDx9HqrW9Q8/Rx0WAitqHrcdk4ucXBfBYT6rFFITY3rFEC3JhgNWFLbUCFhRMAQ9DUbbMB7X2t+7FkEpiX6hOT6v8bafdXBaJdcE3H9t87fd8evL/m+jOY6HHd2agSjGecAAAAAAAAAAAAAgJESjLbmyrL87Yh4ekT8vxFx/4KPfiAiXlWW5WvKsjzR4joPlWX5nXEuBO0DCz56X0T8bEQ8vSzL3216HWAD7Z5qeIBCn7VWP7dz6pgug9E8X6P2x99X/7PFbGFrT8FogqzGIXWfiu0eL9rmmfM8AdPazlv0JUAOrL3ogjENaCi5/k+s0VPbp606GC0i4vAt87fvPBhx15sHbQoNFQfS+3ZrBKN59wgAAAAAAAAAAAAAjNSC36amS2VZ9pSmUeva90TEPyqK4gcj4usj4saIeEJEnIiIT0bEh8uyPN7Rtd4UEW8qiuJQRDwjIq6PiMsj4u6IuCMi/lNZlme6uBawIZoGowmuWm91C7mmn4NOi788X6M1ORtx8hPtj69T6NqK4sRRSIYy9pgz3eaZaxMeCayXT/9exG0/HfHwpyOue1G7c5hPA2007juqPq8vWltDjjMf+3fVnzHuARdI9QmpYLQa7wW2DrZuTWeu/7aIix8bcfpz+/cdvzXi0GsHb9LGajrubC0ZjGZOBQAAAAAAAAAAAACMlGC0DbIXSPYfB7rW8YjoJGwN2HCT06tuATlpFXImGI2IePBjDQ+YLXjtKRhNEf44pALHFhWnLq1NMJqgPdhon3xbxHte9sW+4HN/1PJE+hIgA+bJayy3e5tbe4DVSvQJyQC0Gmv3rYtat6Yz2xdF3PiaiI/+1P59d78z4sRdEZd/yfDtolqxZDCad0UAAAAAAAAAAAAAwEjV+FPmALBCkzMND1DQutZqF3JNfa7L4i/F+SPWNGRq5vPJAthlKU4chXJn/vZFxalLE4wGNPRXP9FNP2C+AwxCX0MuPIvAlOR8OrVGH0kwWkTE4SOJHWXE7a8ftCmbreG4U2yn9wlGAwAAAAAAAAAAAADWmGA0APJW7jY9oJdmkIuahVzTgR6dFn95vkaraBEydeEJOmnGPsJnxmGSCEbb6jEYrc0zq9gVNldZRtzz7o5Opi8B2uh6XmuevL4yu7fm0MAFUn1UYo1eJ0g/l2C0q58RcdXT5+87dtQ7qlwtevdU64/KuK8AAAAAAAAAAAAAwDgJRgMgb6kwmhQFXOutdsGyYDRmNQyZ2hdK1VMwmvCZcSgTY1HRYzBaq2fO8wQb6/S93Z3LfBpoo+m6q7Kv0RcxFM8aMCU1PiUD0Gqs3bcOtm5Op4oi4vCR+fse/GjEZz8wbHs2VsNxZ9G7pzo/OxEACgAAAAAAAAAAAACMlGA0APJW7jY9oJdmkIk2wWhdBgUJChmxJYPN9gWldURx4jikCk1zC0ZrPGYCa+PEnd2dy9gEtNK076hYW1l7ra/c7q1xD7hAqk9IrNGTgWlTti5q3ZrO3fTaiGJ7/r7jR4dtC8tLBflfwDgHAAAAAAAAAAAAAIyTYDQA8laruOeCA3ppBrmoWcg1XdjcaZGz52u0GgebzX6+r2A0z9QopMairT6D0VrwPMHmOtlhMJr5DtBG5+FS+iIGIhgNmJZaVyffK9V4X5RTMNql10Vc96L5++741YjdU8O2ZxM1fXeTCrKLSAf5L3M9AAAAAAAAAAAAAIBMCEYDIG/lbsPPK2hda7Xv71TBl2A0ImL5YLOegtHqhv2xWqlgtKLHYLTGYX4R+ijYYCfu6u5c5tNAG437DvOWzZXbvc+tPcBqpcazxI9T66zdtzMKRouIOHzL/O1nH4j4xFsHbQo1HLwyva/WH5WxvgMAAAAAAAAAAAAAxkkwGgB5m9Qp7pnSNEiNcalbbF9OFzZ3WPxVKpgercYhUzOfL3qaNnum8ldO0n3PVo/BaK3C+DxPsLF2T3Z4Mn0J0EbHoRvmyWsss3srEBSYlhp/ku+VarwvKrZbN6cXT/y7EQcfPX/fsaPDtoVqi37eUScYzTgHAAAAAAAAAAAAAIyUYDQA8lanuOeCzwtGW2t17+90wVenxV+ZFXDTQMOQqX0Fr21CqupQnJi9Rf1OkVkwmgAR2GAdfv8rnAfaaNp3VM5bzGsYimcNmJbqExI/Tq0TxH/q3tat6cX2JRE3fdf8fXe/PeLkp4Ztz8ZpOO4s+sMxdf6ojHdFAAAAAAAAAAAAAMBICUYDIG9Ng84Eo6232sX2UwVfgtHoRE/3XvhM/hYVmfYZjFanuHoffRRsrE6L3fUlQAudz2v1RWsrt4AWazJgWqpPSK7Ra6zdT97Zujm9OXRk/vZyEnH7G4ZtC4st+sMxtf6ojHEOAAAAAAAAAAAAABgnwWgA5K1Wcc/05wWjrbcVB6PlVsBNfUXTae9MYWtvfYtnKnuLxqGtHoPR6hRXA5zX6XxH4TzQQuO+o2IebO3FYIx7wLTU+JNYo9d533TtN7ZuTW8e+7cirvzS+fuO32oc7lPT/7aL3kkuCvNvez0AAAAAAAAAAAAAgEwIRgMgb5OGYUSC0dZb3WL7Cz7XZZGzQrLxWjJkqq++RfhM/hYFoxU9BqMVbZ5ZfRRsri6///UlQBsN57VCOjZYZvfeswhMS/UJyQC0Gmv3676ldXN6UxQRh26Zv++Bj0Tc96FBm8MCi95L1fqjMt49AgAAAAAAAAAAAADjJBgNgLzVKu6Z/rxgtLVWO0Rqqoixy+ApIVYj1rTYfaawtbe+RRF+9iYLxqGtHoPR2oT5CXWADdbh97/5DtBG532HeQ0DMe4BF0j1CYk1elWo+VP+UcQVh5dqUW8OfXck/38du3XIlmyYhnOcRe+lFu175HLGOQAAAAAAAAAAAABgnASjAZC3psFoE8Fo661mIVfZUzCa4vzxWjYwqq9gNMWJ+Vs0DhWZBaPpo2Bzme8Aq9a4H6rqa/RF6yu3e5tbe4CVSr0/SgagVfyY9Vn/z1LN6dVlT4p4wgvn77vjVyJ2Tw/bHuZb9E6y1s9OjHMAAAAAAAAAAAAAwDgJRgMgb43DiIQMrbXaxfaTxL8ve32FZOPV8N7NFrwKRttckwVFpls9BqMli64X0UfB5urw+9/YBLTScd9h7bW+cru3xj3gAqk+KvHj1EVr9xteHVFk/mPYw0fmbz9zX8Qn3zZsWzZGw3FwUfhZnWA04xwAAAAAAAAAAAAAMFKZ/0Y+ABtvUSDNPB/9qYj3vCLiP/9gxAN/3U+bWJ26hVzThdadFn9lVsBNjwYKRvNM5a88m95X9BiM1kZuIRPAcDr9/teXAC00XndV9TX6IoYiMAaYkhrPkgFoC4LRiu2lm9O7J7084uCV8/cdPzpsW5hv0c9H6vzsRDAaAAAAAAAAAAAAADBSgtEAyFc5icbF0OUk4hNvifjov4l4x9dF3PfhXprGqtQt5BKMxqwl713TkMa6FCfmb9G97zUYbUFxdZI+CjZXh+OJsQloQ99BbZnNWYULAxdI9QmJNXqx4MesYwhGO3BZxA3fMX/fp3474uHPDNueTdB03Fn0xxrKOu8rjXMAAAAAAAAAAAAAwDgJRgMgX4uKfuo4+4WIv/6JbtpCHuoW21/wuS6DQhSSjVbjezdT8Lpsf5QiQCJ/i4pMtzILRtNHwebq9PtfXwK00HReW9lv6YsYijUZMC0x/iQD0Bas3Xt9Z9Chw7fM317uRtzxy4M2hTnKnfS8qc4fcvDuEQAAAAAAAAAAAAAYKcFoAOSriyCi29+w/DnIR+1CrqlisU6LvxTnj9eS925RONZyJ+7pvHRmUZFp0WORc7LoehHPE2yuDr//Fc4DrTTtOyr6LYGvayyze2vcA6Yl+4REANqitXuxvXRzBvG450RccfP8fceODtsW5ks9l3XeVxrnAAAAAAAAAAAAAICREowGQL4WhdE0sXu6m/OwerXD8gSjMaNpsEIxU/DaVxGh4sT8LSoy3RKMBmSiy/Hk7Be6OxewOTqf1wpOYyieJWBaqk9IBKMlt8d4gtGKIuLwkfn7Pv9nEff/6bDtWXstxp3UO/Faf8jBOAcAAAAAAAAAAAAAjJNgNADyVauwp4YTd3ZzHlavbrH99Oe6LNAXYrW56oTyPf2ftjlxi2MY1KKQzqLHYLQ2SzUBIbDBOvz+P31vxKRuGC3AnsZrpWX7LfOe0cptzmqdD0xL9VHJ8PJFwWh9vjPo2KHXpfcdOzpcO5gv9XOSOn9YxjgHAAAAAAAAAAAAAIyUYDQA8lUniKiOE7d3cx4yULeQa7qIUTAaEc2DE2YKWxcFNT7z30R8659HfNWPNW6VZ2oEFt37Pouck0XXi2QWMgEMp+vx5L4PdXs+YAN0Pa81r1lfud3b3NoDrFZqPEsEoC1auxfbS7dmMJffGPH4b56/7/Y3REzODtuetdZi3Hnwo4lT1fnDMsY5AAAAAAAAAAAAAGCcBKMBkK9JncKeGk7c0c15WL26oR/lVMFXl0EhXYX1sQINiwCL2WC0Bff+5u+LePTTmzcpIroPkKBzi4pMt3ILRgM2V8fF7vcLRgMaarruKiv6rWX3Q13CqoFpqfFl9j3RF3ekz9XnO4M+HDoyf/vpeyM+9TvDtoULve+187fX+fmJcQ4AAAAAAAAAAAAAGCnV9gDkq6sQqp0T3ZyH1asdjDaZ/+9LX18w2mgtG5ywqNBwmUJXgQ75S977ot/wslbn9jzBxup6PHnw492eD1h/nYduVPVr5j3jldm9ExgDTEv2CYk1ejIwLSKK7aWbM6gveWXEgcvn7zt266BNWWtt1m4PfCTi9H1zzlXnD8sY5wAAAAAAAAAAAACAcRKMBkC+ahX21LD7cDfnIQN1C7mmC8wEoxHRvPh+prB10b1fKhxLcWL2UmPRMoF4tbR4rgTtwQbreDy5+HHdng/YAE37oWWDz8x76IpnCZiW6BNSAWiL3gmNLRjt4BURN/y9+fs+9baIU58dtj1c6NQ9+7fV+fmJd0UAAAAAAAAAAAAAwEgJRgMgX4LRmFW2CEarfUyX12ft9BWKpzgxf5PEWFT0HIzWKnDP8wQbq+vxZHK62/MB689aibpyWwN5doELpILRUmv0RGBaRP/vDfpw6Mj87ZOzEXf8yrBtWVsLxsHHfl163+7J/dsmZ2tczzgHAAAAAAAAAAAAAIyTYDQA8jXpKIhIMNr6qFuwPP25ToPRegrHYgBNi+9nClt7u/eKE7OXCukUjAZkpePv/13BaEBDjcOuKj5fdb7cwrVoILd7l1t7gJVKvkdMBaAtCEbbGmEw2rXPi7j8pvn7jh8dtCkb6XlvTe+b9zOOVJj/NAGgAAAAAAAAAAAAAMBICUYDIF+pMJqmBKOtj9qFXNOFzYLRiOWDE/q694oT85cai3ovcG6xVBMQApur6Xjy7F+KuPpr0vsngtGAphr2Q5XzlmX3Q03WZMAFUuNLIgBtUah5sb10awZXbEUc+p75++77UMTn/2LY9qylBXOYix+XfqZ2Ts45VZ2fn5gzAQAAAAAAAAAAAADjJBgNgHx1FUQkGG2N1CxYni6y77LIWTDaiDUsAixmCl67CmrcR3Fi9iaJe1/0HIy2qLg6yfMEm6vh9/81Xx/xkj+JuO5F8/fvCkYDGuo6XGrp4DTyldm9E4wGTEuNP8k1eiIwLWKcwWgR6WC0iIjjR4drxyYqiojty+bv220ZjGacAwAAAAAAAAAAAABGSjAaAPnqKohoRzDa2qgdTDZV8CUYjYhoXnw/G4zW071XnJi/1Fi0JRgNyEnLANCLHjN//0QwGtBQ43mt4DNy4VkDpqXGs0QA2myw/gX7RhqM9qgnR1zz3Pn7jv9SOkCebmxfOn/7vJ9x1LkX3j0CAAAAAAAAAAAAACMlGA2AfHUVRLQrGG1t1C3kKqcKmwWj0YXegtEU4WcvVWRa9ByM1map5nmCzdV4vrMX4LB98fzdu4LRgKYGDt0w7xmv3O6dwBhgWqqPSgagLVi7jzUYLSLi8C3zt5+6O+LT7xi0KWunahw8cNn87bsn55yrTkhdZuMuAAAAAAAAAAAAAEBNgtEAyFcqjKYpwWjro3bB8nTBV5dFzgqmR6tx8f1MwWtX/dE+nqnspYpM+w5GK9os1RS7wuZqOc5tJYLRJoLRgIYah0tV9VvL7oe6PEvAtFSfkFijJwPTYoBA9R7d8KqI7Uvn7zt+dNi2bJQi/d993s846ryvFAAKAAAAAAAAAAAAAIyUYDQA8pUKo2lKMNoaqVnINV3w1WXx12S3u3MxsCWL3cue7r3ixPylxqItwWhARpoGgBaC0YCOdT2vrezXzHvGK7N7Z00GTEv1CckAtEXBaNtLN2dlDl4Z8SXfPn/fJ94Sceb+YduzVirGwe3L5m/fOTnnVHV+fpLZuAsAAAAAAAAAAAAAUJNgNADy1VUQkWC09VG7YHmq4KvLIue+wrEYQMvAmEcO7+veK07M3iRRZFpkGIzWNBgJWCNN5zt749x2IhhtVzAa0FTDfkjw2ebKbs4qGA2YluqjUgFoC/q0vgPV+3b4yPztkzMRd/zasG3ZFEURcSARjLbbMhhNACgAAAAAAAAAAAAAMFKC0QDIVyqMpqndU92ch9WrW8j1ibdEPPBXe18IRiOWL76/+qu7accsxYn5SxWZFts9X9hSDWig8Ti3F+ywlQhGmwhGAxpqPK9dMhgtu3AtRsuzBFwg0SekwssXvSvs/b1Bz679pojLnjR/37FbB23KeqkYd7Yvnb993h9/qfPzE+8eAQAAAAAAAAAAAICRUm0PQL66CqHj4sQhAAAgAElEQVSaVzTEODUp5Prtr4y4/Ze7Lf4SjLZBigu//LL/cf7HnvL9S15HEX72Ut/3fRc4p4quF/I8weZqON8p9sa57Uvm7xcsDDQ1eOiGec945XbvcmsPsFLJ8ayYv3lRMNXYg9G2tiMOfc/8fZ/7YMQDfz1sezbFgcvmb985uX9bKsz/wg8t1RwAAAAAAAAAAAAAgFURjAZAvmoV9tQgGG2NNCi2L3cj/ui/nV801pZgtBFrWgQ4U/D6mGdGXP93Ltx28WOXD0YbPECCxlL3qFVwWQOC0YAmypbj3PbF83fvnl6qOcAGajyvrei3GvdrsATPG/CIVH+QCEbbvjR9qkuesHRrVi4VjBYRcfzocO1YJ1VjTuqZmvczjkXBfI9cz7tHAAAAAAAAAAAAAGCcBKMBkK86hT11CEZbH02DyXZORHzyrau7PhlZstB9azviuW+KeMZPRjzxpRFP+6GIF7w34tFfsWSzFCdmL/V9X2z3fOEWSzWBDrDBWgajbSWC0SaC0YCmup7XVvVr5j3jleG9sy4Dzkutq1Ph5Zc+PuLKp+3ffvCqiOu+pbt2rcqVXxrxuGfP33f89RET70q7cz68+rL5ux/82P5ttdZtxjgAAAAAAAAAAAAAYJwEowGQr65CqHYEo62N3VPNj/n8n3fYAIVko9U0MKoo9m/bvjjiaf99xDe+NeIZPxFx1ZzC1+YN6+Ac9GpVwWipouuFPE+wsZoGupwf57YTwWi7gtGAhpr2Q5Xz84r9AmHplLU+sCc1ns17T3Te0/9pPBJq9ci2H4nYOtBZs1bq0JH52x/+ZMRn3jlsW9ZCxRxm+9L52+95d8QHv/fCMLo678rNmQAAAAAAAAAAAACAkRKMBkC+yp2OTqTAdW3srjjkbtJRWB8rkGkRYNMACYaXLIrueSnV5vyKXWGDNf3+3wtu2EoEo00EowENdT2vXTY4jXzlOGfNsU3AiqT6gwVr9Ju+K+Kb3h5x+B9E3PiaiG94Y8SX/XAvrVuJG1+dXjccOzpsW9bZ+fC9rYvSn/n4z0d87N9+8etawWjePQIAAAAAAAAAAAAA47Qmf64cgLVUdhRCpfhnfeycXO31u3omGYFioOsowM9e6vu+2O75wm2C1zxPsLEaB7pUBKPtnDh3zmKo8RAYv6br7qp+yzp+feU4Z/W8AXuS4egV8+LrXnjun3V00aMjnvTyiDt/bf++T7w54swDERddNXy71tVWxY/uj90a8dTvP/fvkxrBaMY4AAAAAAAAAAAAAGCk2lTbA8AwJjvdnEcw2vrYfXi11xeMNl6NA2MGon/KX7IouudgtEIwGtBEw/HkfLDDRVfP33/mvogHb1uuScBmaTqvrZqfV57PvIcO5bpeBFYg1R9seGDw4Vvmb999OOLONw7alPGrGHO2Di7ef98fn/vfyU69+ZcxDgAAAAAAAAAAAAAYKcFoAOSr7CgYrWlQBPkSjEZrTYsAByp4FYyWv9T3favgsgbanF+xK2yuxt//e+PcY58VyTHv3j9cpkXApul8XlsVnGbeM1453jvrMuC8RB/V9zuA3D3hhRGXXjd/3/Gjw7Zlbe2ty4oD9T6+e6rmeY1xAAAAAAAAAAAAAMA4bfhv8gOQta5CqAQPrQ/BaLTWsPi+GCgYLctQAC6QDEbb7ve6rYquPU+wuVqOcxc/NuLRT5//mdP3LdckYMM0XXdXBZ9Vnc+8hw55bwScl+wPhnpPlKmt7YibXjd/373vjXjwY8O2Z8yqwl27DkYTJgsAAAAAAAAAAAAAjJRgNADyVe50eC4FQGth5+SKG6BYerRy7QMU4I9A6h71vZQSjAY00Hg8mQp22L4scU6BsEADXc9rzZPXV5ZrsxzbBKxGqj/Y8GC0iIjDR9L7jv/icO1YW3vP2NbBeh+f1AxG8z4bAAAAAAAAAAAAABgpwWgA5KvLMAZF1eth9+HVXr+cZFrETfeGKnj1PGUvNRYV2/1et8359U+wwZp+/0+Nc1sHEqfsMKQYWH+N19wV/VbV+cx76JJ3RsB5qfGl8OPUuOrLIx7ztfP3HTuqL62tYg6TWp/N2j1d83LuCwAAAAAAAAAAAAAwTn6TH4B8TboMY1AAtBZWHYwWoZhstDINTvA85S91j3oPRrNUA5poOM4VU8FoRaLwvtO5OLD2Op/XVvVrmc7vqSHHe5djm4DVSI1nQwXoZ+7wkfnbT94Zcc8fDNuWdXN+jVYcrPf53VM1T2yMAwAAAAAAAAAAAADGSbU9APkqdzs8l/ChtZBFMFqHzyUDaloEOFTBq74pe6nv+b6Dy1qdX7ErbKzGc93pYLRE0GMpGA1oomE/VFbMWyr7NfOe8crw3nlnBJyXGp8KwWgREXHjd0ZsJYK7jt06aFNGq2oOtJUIrp41qRmMZowDAAAAAAAAAAAAAEZKMBoA+eoyjEEB0HrYObnqFghGG6uqosNVybVdfFEyGC0RJNQZwWhAE0sEgBaJwntzHqCJztfc1vAMyDsj4BGpebUfp0ZExMWPjXjiS+fvu+vfR5x9aNj2rJW9NVpqfTZrVzAaAAAAAAAAAAAAALDe/CY/APmadBiMpqh6/MpJxOT0qlshJGS0GgbGFEX1Zzqhb8peqoC072C0osVSTdAebK6m3//T49xWKhity7k4sPYah25U9FtV5zPvGa8s712ObQJWIvkOYKj3RCNw6Mj87TsnIu5607BtGaWKMWfrYL3T7NZ9T26MAwAAAAAAAAAAAADGSTAaAPnqMoBKmNX47Z5adQvO8SzRpSxDAbhA6nu+TXBZE63O73mCjdU4kGgq2KFIBKN1GlIMrL+Bg9HMe+hS43EUWF+p8UUw2iOuf3HEJdfO33fs6LBtWSt7z1hqfTar7rtyYxwAAAAAAAAAAAAAMFKC0QDIV9lhGIMCoPHbObnqFuzxLI1T0+CEgQpeBe3lLxmMtt3vdQWjAY0sMc6l+rMu5+LA+ut8zV3Vr5n3jFeO9y7HNgGrkegP+g5HH5OtgxE3vnb+vnveHfHQ7UO2Zv1sHaz3uYlgNAAAAAAAAAAAAABgvflNfgDy1WVgkAKg8dt9eNUtOGciyGqUykyD0RTg5y81fvReFN3i/I2fc2BtNJ3rFlPj3NaB+Z/ZOdG+PcDmadoPVc1bqs5n3kOXvDMCzkv2B0O9JxqJw7ek9x3/xcGaMU4Vc5jU+mzWbs1gNO8eAQAAAAAAAAAAAICREowGQL4mO92dS5Hr+JUdPg/L6DKwjwFlXASof8pb6nu+2O73uq2C1zJ+zoHuTc5G3POeiOOvjzh5Z8ODp4IdikTh/bFfiHjoeOvmARum6zltZTCaddl4ZThntSYDzksFbxaC0S5w9VdFXP3V8/cdPyrAtI3zz1hqfTatLCN2T9c7rzEOAAAAAAAAAAAAABgpwWgA5KvTICwFQOOXSUGdAvyRavj8tC14ffI/bH6MZypvqQJSwWjAKp39QsTvf+O5f97/PREP/GXDE0wHoy3ozz7YYlwDNlTTNXfVvEUw2trKMiwnxzYBq5Eaf/w4dZ9Dt8zf/tCxiHvfO2hTRqVqHNw6WOMcOxGTU3UvWPNzAAAAAAAAAAAAAAB58Zv8AOSry0LnVLAN45HLPbzvQ6tuATk7dKT5MUId8pa6P62Cy5pocf4sQyaAXvzF/x7x2fe3P346AHTrQPpzn/mPETsn218H2Bxdr9cqz5fJ+pD1kMv7BmD1UuvqtgH66+ym10QUibXE8aPDtmUt7D1jqf+m0yZnI3ZrBqMZ4wAAAAAAAAAAAACAkRKMBkA+dk5EPHTsiwVok53uzq0AaPxyCfx5z0vPFZ8xLo2fn5YFr9c+N+Lm/67ZMfqnvCWD0bb7vW6r4LVM+kmgf3/1r5Y8wdQ4V1V4f/bBJa8FbIam85Cqz1fsnwgXHq8c56w5tglYjVR/4Mep+1xyTcQTv23+vjt+XcByUsWYs3Wwxil26gejCZMFAAAAAAAAAAAAAEbKb/IDsHrlJOKPfyDiTVdH/OaTI/7DzRH3/1k6jKYVBUDjl1Gh8mc/sOoW0NiAz8/1L272+U77OrqXGj96XkoJRgN61SAYbXKm36YA66Fp2G9VcHHV+cyh6ZKwauC8VH9QtAzQX3eHjszfvvNgxF1vHrYto7f3jFWtzyLO/UGZusFoufyxEQAAAAAAAAAAAACAhgSjAbB6f/WvIm776YjJ2XNfP3Qs4l0viNg90d01FLmOX0738GP/dtUtoLGGRYBLFbw2PFaoQ95S96fY7ve6rYLRAGqaHueq+rPybL9tAdZD1+u1yvNltD6koQwDWnJ63wCsWKqPEow21/XfFnHxY+fvO37roE0Zj4pxcKtOMNrZiMnpmtczxgEAAAAAAAAAAAAA46TaHoDVO/76/dtOfzbi0+/o7hqKXNdARsXTWxevugU0VTZ9foYMRtM/ZS11f/oORmuzVGv8nAOba2qsqiq83z3Tb1OANdF0Tls1b6k4n3BhOmUeDZyX6A+El8+3fVHEja+Zv+/ud0acuGvY9ozZ+fDq4mD1Z8udiN1T9c7rvSMAAAAAAAAAAAAAMFJ+kx+A1XvgL+Zvf/hTHV5EAdDo5VTEtS0YjQ4Jdchb6v70XRTd6vwCHYCaiqlgtKIiGK08229bgPXQ9XqtKvDVHHq8cgzzzel9A7Bayf5gmQD9NXf4SGJHGXH7nD+IsumqxsGq4OqIiMnZ+sFo3hUBAAAAAAAAAAAAACMlGA2AzaDIdQ1kVMS1JRhtfJo+P0sUvBYNjxXqkLdkMNp2v9dtE4yWY8gEkL+q/mxyZph2AOPWeM1dNW+pOJ81/ojlOGf1PAHnpfoowWhJVz8j4qqnz9937Kh3FbXtPWNVwdUREeVO/WA0cyYAAAAAAAAAAAAAYKQEowGwGQQPjV9ORVzbgtFGJ+cizJyebfZL3Z++g9FaLdUyfs6BjMyEOmxVFN5PzvbXFGCNdDynrZojW+PTpZzXi8CwUv1Bm/DyTVEUEYePzN/34EcjPvfBYdszdlsHqz8z2YmYnK53Pu8dAQAAAAAAAAAAAICR8pv8AGwGBUBrIKNC5S3BaOPT8PkpiurPpA9u9nGhDnlL3Z++i6JbnT+jfhLI1+wYVwhGAzrQdM1dFUQlGG19ZRlC5p0RcF6qP1jmPdEGuOm16QD5Y7cO2pT8VYyDVeuziIjybMTuqW6uBwAAAAAAAAAAAACQKcFoAGwGwWhrIKMirm3BaOMz5PMjGG2tJIPREgW/XWkTjJZlyASQn6bBaGf6awqwPhqvuZcNRrPGp0Pm0cB5qf5gqQD9DXDpdRHXvWj+vjt+tUGI1ybbe8a2DlZ/dLJT/7+pORMAAAAAAAAAAAAAMFKC0QDYEAqARi+nIq4twWjrb8iC14yebfZL9T1tgssaaXN+gQ5AHTNj3FZF0OPkbH9NAdZH5+u1quA04cLjleOc1ZoMOC8VjObHqZUO3zJ/+9kHIj7x1kGbkreKcXCrIrg64twarXbYXI7jLgAAAAAAAAAAAABAtRq/XQ0AayCnUC1ayqiIa+vgqltAU2XT52eJYLSi4bEToQ5ZS4VuFBVBQstqVXSdUT8J5Gt2nCoqXg1NzvTXFmCNNF1zVwWfVZxPMBpd8s4IOC/ZHwwZoD9ST/y7EQcfHXH28/v3HTsaceOrh2/TmJxfp1WtzyIiyp2Iyel65zXGAQCstaIonhERT4mIJ+5t+mREfLQsyw+vrlUAAAAAAAAAANANwWgAbAYFQOOX0z1UhD9CGQdGeZ4yl+h7cgxGaxwACGym2VCHipCHydneWgKskc7Xa1XBaBmtD2koxzlrjm0CViPVHwhGq7R9ScRN3xVx28/u33f32yNOfirisuuHb1duqt7d1PmDHOVOxO6pmtczZwIAaKMoisMR8bUR8ay9/31GRDxq6iN3lGV50wqaFkVRHIyI/yEivjcinpz4zMci4uci4ifLsvSSHwAAAAAAAACAUWpRbQ8AY6QAaPRyCvwRZDVCDZ+fYpmC16bH6p+yNkl8v7cJLmui1fkz6ieBjM2OUxXjkGA0oI6moRtV67uq81mTjVdOa/vzhMYA56X6qL7fAayLQ0fmby8nEbe/Ydi2jM7eOq2o8TfNJmfqB6N5VwQAUFtRFM8viuLtRVF8LiI+HhG/GhE/HBHfGBeGoq1MURRPiYgPRMS/iEQo2p6bI+LHI+L9RVHcPETbAAAAAAAAAACga36TH4DNoMh1DWR0DxXhj8+gxfcNg9E8T3lL3Z9iu+cLC0Zjxs7JiLvfGfHAR/IMFGE4y97/2fDPqnny5Mxy1wM2Q7nT8fkEozEgcyvgEanxZ5kA/Q3y2L8VceXT5u87fqv+NiIq393Ued/0X360fjCan4sAADTx1RHxLRHxmFU3ZJ6iKJ4QEb8XEc+Y2fWxiHhrRPxmnAt0m/bMiHhHURTX9t9CAAAAAAAAAADolmA0ADaDAqDxy6lwThH+Bhiw4NXzlLnU+NHzUqqwVGPK3e+K+I1rI971gojf+opz/7tzYtWtYlWWntc2DEYrzy55PWAj1A3neETV+q5ivzX+iGW0tn+E5wnYk3r/OBsuzHxFEXHoyPx9D3wk4r4PDdueUdl7xrYvqf7oZ98XcerTNc9rjAMA6MDp2B84NqiiKLYi4i0RcePU5k9HxIvKsnxKWZYvL8vyZWVZ3hwRL4mIu6c+dygi3lwUFjYAAAAAAAAAAIyLansANoOi6TWQUfH0RJDV+Az4/DT9nXL9U95SwXXFdr/XbROMllOAJN3ZPRXxnpddGIT2mXdF/NmPrK5NrNbSgZoNg9EmZ5a8HrARug5GqwxttCajQ9ZkwCNWFI6+Tg69Lv1O49itgzYlTxVzoK0DEdf/nerT1J17eVcEANDU2Yj404j4uYj4voh4ZkQ8KiK+d5WNiojXRsTXTX19X0Q8pyzLd8x+sCzL342I50TE/VObnxMRr+61hQAAAAAAAAAA0DG/yQ/AhlDkOno5FSorwh+hpkWAy/zB7KbBaJ6nrKX6nr6D0Vot1RS7rqVP/oeInYf2b7/tp4dvC3lYdtyYDfCsOt/k7HLXAzZD42C0KoLR1leOc9Yc2wSsRCpEqmkI/ia77IkRj3/B/H13/ErE7ulh2zMW08/Y1/50xBVP7ua8Ob1TBwDI39GIuLIsy68py/K/Kcvy35Vl+SdlWa70JXlRFNsR8WMzm3+oLMvbU8eUZXk8In5oZvM/L4o2f5kJAAAAAAAAAABWwy+7ALAZFACtgYwKlRXhj0+qsDVlyIJXz1PeUven77qBVufPqJ+kO7e/Yf52YVWba+lxY3aMq5gnT84seT1gI0waBqNVzc+r1vDm0HTJOyPgEanxyY9TGzl8ZP72M/dFfPJtw7ZljC6/IeJb/7yjk3lXBABQV1mW95dl2XX6fxe+ISIOTX39yYj4pRrHvX7vs+c9OSKe02G7AAAAAAAAAACgV36TH4DNoGh6/HIqVPY8jdCARYBNQ9VyerbZLxmMtt3vddsEozUNAGQcJsYcZi07bsyMU1XjkBA+oI7djmtGK+c15tCjleWcNcc2ASuRmhsPGaC/Dp708oiDV87fd/zosG3JTXIcnHnGDlwa8ew6WRdV1zNnAgBYA6+Y+foXy7L6Fxb2PjM7qXxlZ60CAAAAAAAAAICeCUYDYLWGKohVALQGMipUFoy2AQYsePU85S1ZFJ1hMFpO/STd0Ucwa9lnYjbUQTAa0IXGwWhLBp8JDh2xDOes3hkBj6gZWsViBy6LuOE75u/71G9HPPyZYdszVode28FJjHEAAGvgxTNfv7vBsbOffclSLQEAAAAAAAAAgAEJRgNgtQYrPlUANHo5FSoLqRmhIYvvGxbLep7ylro/rYLLmhCMxp5yZ9UtIDdLhwHNBqNVnO/kXUteD9gIjYPRKlSt/8yh6VJO7xuAFUusq3t/B7CGDt8yf3u5G3HHLw/alLw0fHfzpJcveTnvigAAxqwoiosj4uaZzR9ocIr3zXz9lKIoLlquVQAAAAAAAAAAMAy/yQ/Aig1UfKrIdQ1kVMSlCH98GhcBNgw3W+ZY/VPeksFo2/1et03RtWLX9WTMYdbSz8TsOFUxDn3855a8HrARmgajVc1bKufI5tDjleOcNcc2ASuRHH+WeU+0oR73nIgrZvMb9hw7OmxbxqBIPGPblyx5YnMmAICR+9KImP6h5D1lWX6h7sF7n/3s1KbtiHhqR20DAAAAAAAAAIBeCUYDYLWGCgQSPDR+Od1DITUjlHGhu+cpb6m+p01wWROtzp/xc0575c6qW0Bulh03Zgvuty+tPubMA8tdE1h/k4bBaNUnXLzbHJou5fS+AVixxLo6FVpFWlFEHD4yf9/n/yzi/j8dtj3ZaPjuZuviJS9njAMAGLnZtOE7W5xj9pintGwLAAAAAAAAAAAMSjAaAKslGI3aMgr8UYQ/Qg2fn2UKXpse63nKW+r+FNvzt3fGUo09+gj2WXZeOzNOHf771YecumfJawJrrSwjdpsGo1XMz8uq/cbH0aq6tyuRY5uAlUj2UdborRx6XXrfsaPDtWMUEu8Tty9Z8rzGOACAkXv0zNdtXtbPHnNVy7YAAAAAAAAAAMCgDqy6AQBsuqECywSjjV5OxdOK8DfAEsFoTY8V3Ji5xP3pOxit7fnLcrlgP/IzWTDmuN+badl5yOwzc8WhiGufF3HPe9LHTJoGHgEbZXKmxUFV67uKObI5NF3yPAGPSIxP1l3tXH5jxOO/OeIz79q/7/Y3RHzNv4zYOjh8u1ap6TvuZYPRjHEAAGN3xczXD7c4x+wxj2rZlgsURXFtRFzT8LAnd3FtAAAAAAAAAAA2g2A0AFZrqMIcBUBrIKN7KBhtfHIK1pvlecpb8v5s9XvdoufzMx6L+ohy0n9IH/lZetyYE+rwvN+MeNOj04fsCkYDFuijj6haw5tDj1iGazPvjICIindHgtFaO3RkfjDa6XsjPvU7EU966fBtylLiGdu6eLnTGuMAAMZuNhitzYu42WC02XO29f0R8aMdnQsAAAAAAAAAAPZRbQ/AaglGo66cgq0U4Y9Q0+dnmYLXhsd6nvKWuj9bPYdRtQ5Gy6ivpBsLg9H0Hxtp0kMw2kVXRbzyM+lDBKMBi7TpI6rWd4LR1liO89Uc2wQMb0FfILy8vRu+PeJAInfh2K2DNiUPDcec7UuGvR4AALlrM8EzKQQAAAAAAAAAYJT8Jj8AKzZUYJlgtPHL6B4qwh+fnIL19sno2Wa/ZChH30upluF8WT/rtCIYjX2WHDeKRP9yybULLnl6uWsC62334e7PWRmMZg5NhzxPQERFX7BMgP6GO3B5xA2vmr/vU2+LOPXZYduTq9Q6bdlgNGMcAMDYPTTz9aUtzjF7zOw5AQAAAAAAAAAgSwdW3QAANtzuqWGuowBo/HIK+xFEM0INn59UMWIfx3qe8pa6P8V2v9ctijhXeN2078uor6QbgtGYtfR9XzBObV8WsXty//ah5uzAOLXqI6rmLBX7jYHjldPa/hE5tgkY3qK+QDDaUg4diTh26/7tk7MRd/xKxJf+48GbNBrLBqMZ4wAAxi7nYLSfiYg3NjzmyRHx1o6uDwAAAAAAAADAmhOMBsDqTM5GvOeVw1xLMNoayOgeKsJnoYbFshPPU9ZS40ffwWgREcVWi/5GwevaKXcW7NN/bKReg9EuEYwGNDfpoY+oWsMbA+mSd0ZAxOLgxmJruHaso2ufF3H5TREnbt+/7/jRzQpGSz5niXXa1sVLXs8YBwAwcg/MfH1Ni3NcO/P151u25QJlWd4TEfc0OaZY5o+TAQAAAAAAAACwcfwmPwCrc88fRHzuA8NcS9H0+C0qThya52mEmj4/Q/5StgLFrKW+34coim5zjZz6SrqxcMzRf2ykZechiwqPti+Zv10wGrBIqz6ias5SFYxmDByvHOernicgYnFfoHh/KcVWxKHvmb/vvg9FfP4vhm3PmKTWaHWZMwEAjN1tM1/f2OIcs8fMnhMAAAAAAAAAALIkGA2A1fnI/zXctRQArYGMiqcFo41P47CoZQpeGx7recpbavwYIhit1XIto76SbizqIyb6j4209Lx2wTi1dfH87ZPTS14TWGuTnebHVM3Pq/o6c2i65HkCIhaPPcX2cO1YV6lgtIiI40eHa8fKNXxvs2wwmvdEAABj9zcRMf3i4tqiKB5V9+CiKK6MiMdNbdoNwWgAAAAAAAAAAIyEYDQAVufu3x/wYoLRRi+ncDtF0yOUcRGg5ylzqWC0AYqitw60OCjjZ512FoXN6D8209L3fUEwWqrofvfUktcE1lrZIhit+qQVu42B45XhfFXYLBBREYzmx6lLe9STI6557vx9x3+pXdDqWkms05YNRsvpnToAAI2VZXk6Ij4+s/nZDU7xnJmvb9s7JwAAAAAAAAAAZM9v8gOwGRQArYEVFE+nih4VTY9Qw+enWBAa0/Wx+qe8pUI3hiiKLloEo5UZBk2wnEXBL0JhNtOy933ROCUYDWijVTBaVfBZxRzZHHq8cpyvmlMBEbHwD2sIRuvG4Vvmbz91d8Sn3zFoU1an4Ti4dfGS1zNnAgBYA7878/XzGxw7+9nfWaolAAAAAAAAAAAwIL/JD8DqtAl8aUvR9Pit4h6mCs8UTbNQ02A0z1PWkn3PAEuprTbjZIZBEyxHMBqzlr7vgtGAjk3aBKNVqAxGMwbSIc8TELG4LxCM1o0bXhWxfen8fcePDtuW3KQCrFNrtLpyDCQFAKCpN898/bqiKLarDtr7zHdXnAsAAAAAAAAAALLlN/kBWJ2tg+2PveJwwwMEo43fCoq4BKOtj8ZFgA3DzZbhecrXoudmiKLoVgGiCl7XjmA0ZvUZjJaa+0xOL3lNYK2ViWC07csirn5G6qCKkwpGW18Zzlc9T0DE4lDO6swB6jh4ZcSXfPv8fZ94S8SZ+4dtzyo0fUe5bDCan4sAAKyDP4yI4/Q6OiYAACAASURBVFNfPyn2B57N890R8cSprz8eEf+pw3YBAAAAAAAAAECvBKMBsDqtAl8i4ut/NeJb3t/smEWFbYzDKu7htmC09TFk8X3DUDX9U74WFkVnGozWOASQ7AlGY9ay40axYJxKFd3vnlrumsB6mySC0bYOLO5zFqnq64yBdMnzBERUjD1+nNqZw0fmb5+cibjj14ZtS1YSc6ZUeHVd3jsCAGSnKIpy5p/nL/p8WZa7EfGjM5t/siiKmxZc46aI+L9nNv9IWZogAgAAAAAAAAAwHn6TH4DV2TrY7rjLbwzBQ5toBWE/qcIzRdMj1PD5aRvg0OZYz1PGVlwUvdUyQJT1UibCZiL0H5tq6fsuGA3oWGqsWhTyWhnmWrXfGn+8MgzyNacCIlYfjr4prv2miMu+ZP6+Y7cO2pTVaDgOptZofV0PAGDDFUXxpKIobpr9JyKeMPPRA/M+t/fP43po2hsi4oNTXz8mIt5XFMW3zPn/8KKIeH9EXD21+X0RsclJxAAAAAAAAAAAjJBKewBWp20wWrEdjYPRFE2PX2XhfA+2BaOtjcbPzxLBaE15nvK1sCh6u//rLwoTSVLwunYW9RGCXzeTYDQgN5NEMNrWgUj3ORVzlqoxzhyaLnmegIjFfYFgtO5sbUccel3EX/6f+/d97oMRD/x1xFVPG75dK5eYMy0bjOa9AQBAU++NiBtrfO6JEXE8se9oRNzSVYMiIsqynBRF8YqI+EBE3LC3+bqIeHtRFLdFxF/GuUnlV0TEzTOH3x4RryzLVfzCBQAAAAAAAAAAtOc3+QFYnVaBL3EujKZoGFr0hb9pdy0ysoIiri3BaLTRsH9SoJivhcFoAyyltgSjERXBaMajjbTsfV80j07NfQSjAYuUiWC0tmv+iOo58sQYOFo51uCaUwERsfDd4xDh6Jvk0JH0vuNHh2vHSjQcB5cORstw3AUAoJWyLD8dES+MiA/P7HpKRLw8Il4W+0PR/iQiXliW5Wf6byEAAAAAAAAAAHRLMBoAq9Mq8CX2CtEaBg/9zb9udy3ysYoirm3BaOuj6fPTsI9ZhucpYysORmsTJqLgdf0sCobRf2ympQM1F/RfBy6bv333xJLXBNbawmC01Ly6Ys5S2dcJFx6vDOer5lRAxOrD0TfJlU+NeNyz5+87/vrNDEBNBVinwqtrM2cCAFgnZVl+NCK+LiL+l4g4tuCjH9/7zN8uy/JjQ7QNAAAAAAAAAAC61jKRBgA6UBxsedx2ulBokcnZiK2W1yQDKyjiShWeKZoeoSGL7xv2T56nfK26KLpNMFqOQRMsRzAas5a974vm0QeumL/97IPLXRNYb5NEMNrWgXZr93MnXbzbGEiXPE9AREUop2C0zh06EvHZ9+/f/vAnIz7zrojrXjh8m3K0fclyxy8drA0AsFnKsrxpgGss9Re6yrI8GxE/HhE/XhTFMyPiqRFx/d7uT0XER8uy/NByrQQAAAAAAAAAgNUTjAbA6rQNKSu2o3HwUIRgtLErVxD2s3XR/O2Kpsen6fPTOsChzbEKFLO16qLoLcFoRCy8p8ajzbT0fV8UjPao+dsFowGLlIlgtEUhr1Xz88r9xsDRWsXavornCYhY3BcMEY6+aW58dcSHfjBicnr/vmO3rm8wWtNxcNlgNO+JAADW2l4AmhA0AAAAAAAAAADWkt/kB2B1WgW+xF4hWovQIoWuI7eC8Kjti+dv9yyNUMZFgBPPU74W9DtDFEUvChNJyTFoguUsCugzHv3/7N15nB11ne//d50+3emEbE0WCGFJmsVABJFlDCEoRFCEi6AyUURJ1JlRYO7AOIA63gDKHRnc8OfAT9QLphkUETEgLsAV2VFAFgmGRbISMHtCtt5yTt0/Omm6T9e3Tu3beT0fjzyg9m84RdW3vqc+79OYwn7ubgGezYZgtJ0EowFwUTUEo5XKCvTs3rdT98WuAbaAT/SpAEju9xarKbl2NIqWsdK+ZzkvW7VQ6nkz2fakztBnssrhxqDoMwEAAAAAAAAAAAAAAAAAAADIKYLRAADpsZoDbtfkHuhgQhFQvqUR9lMiGK1xBQ1wCLAt51N2uRZFJ/AoFShAlGC04nH5TLl+NKbQn3uAYLRegtEAuDBdl1xDXg33N7sqbX1VqnQHOyZyIIP9Vc4nAJJSD0dvRO3znOdXOqWVtyfalOT4vA9alnmM2tPh+E4EAAAAAAAAAAAAAAAAAAAAQD7xJj8AID2lEMFoQUKLKHTNuRSKp5sIRisOv+dPiGA038GNFChmlmvxaAKPUq5hIgZphEgiPRQ4N6bQn7vLfapsCEbbSTAaABf2Tuf5Vlm++tWr7pZ+MVG6+2Dp9V/WOSbPZLlUrUgbnki7FUNxPgGQ0h8DaER7nyINn+S8bFlHsm1JnUufqak1xH4ZJwIAAAAAAAAAAAAAAAAAAACQT7zJDwBITylA4IsUIhiN8JBcS+PzKxGMVhhZDovifMout+uOldFgNApei6XevY/rR2MK+7m7BXg2m4LRtoU7JoBiMwWjuT7z1/RZtrwiPfJhqXuDx2PyfJ9Lf/la2i1wRp8KgOR+LUhiDKARlZqkKZ90XrbuUWnrq8m2JxEBxm3CBKPRZwIAAAAAAAAAAAAAAAAAAACQU7zJDwBIj9UccLsm90AHEwpdcy6FsJ8mgtGKw+f5E+Qa89bG/lbnfMqwlIPRAgWIEoxWKFVD0MxuXD8aU+jP3eU+VTYEo1V7pe6NIY8LoLBM9yurbO5X1wYXr7jNHLDmuD33wFxatTDtFjjjfAIgpR+O3qja55qXLbs5uXakzW0s0vTjHZ4QjAYAAAAAAAAAAAAAAAAAAAAgn3iTHwCQnkCBL+oLRvMbPCSJIqCccytOjEup1Xk+RdM5lOGwqDTObXjj+tkk8ChlBbhP1oaMIN/s3jrLuR81pDiD0ZoNwWiSdMd46fVfhzw2gEIyBZqVyrue3522qelnLbo8mmMi2zY9m3YLnNGnAiDJPRzdcD9DeGMOk/Y81nnZ0o7ijZsFGbdpMoxRx3U8AAAAAAAAAAAAAAAAAAAAAMgAgtEAAOkJEvgiSVZJgYLRKHTNuRSKuJpHOs+vdCfbDqQgSPhiwG25NmWXW/GtlcCjVNAAURRHtU7oC9ePxhQ2GMAKGIwmW3rsY1LX+nDHB1A8pvuVVTY/94cNNqv2hNseGIg+FQAp/TGARtY+13n+jpXS2oeSbUtqXJ7TQgWjFSxYDgAAAAAAAAAAAAAAAAAAAEDD4E1+AECKAgZdWU3ugQ7Gw1HommtpFHGVTcFoncm2A+HZCQbr+b0+cW3KsJSLogMFiKYQIon4VHvdl3P9aEyhP3eX+1TZLRhN0s5tDRRMAMAzU8iZVTYHvYYORqtzjwT8qNKnAqA6/Wy+To3VAR+TSi3Oy5YuSLQp8QswblMKEYzGOBEAAAAAAAAAAAAAAAAAAACAnOJNfgBAeoKGOlhNcg10MB4vhWAtRCiFIi5jMFpXsu1ABPyePwGuMUFxbcout8+GYDQkoV5oDMFojSnWYLQ96m/etSbk8QEUjul+VSqb+zNVgtGQIfSpAEjpjwE0smHjpMlnOC977Q6pd1uy7UmFy3Na07AQ+2WcCAAAAAAAAAAAAAAAAAAAAEA+8SY/ACA9QcOAAgejUeiaa3YKRVzNo5znV7vTaQ+C8/t5WWGC0Xxuy7Upu1zvUwk8SpUCBKNxbSqWeqEvXD8aU9jP3e0e19Raf/tqT7jjAygeU8iZ5RKMVi/8s+4xCUZDhOhTAZDqBKM1JdeORtU+z3n+zu194WiNzMtzmgk/yAAAAAAAAAAAAAAAAAAAAAAgpwhGAwCkJ2jhqdUULLSIIqCcS+HzK480L6t0JdcORCDDYVEU4WeXa1F0Ao9SpiARVxk+1+FfvdAY+jaNKfR9w6UfbZWkUov75tXukMcHUDim+1WpbA56NYWpeT4mwWiIEM9kACS5jj0mMQbQ6Ca9X2qd6Lxs6YJEmxKvAOM2YYLRGCcCAAAAAAAAAAAAAAAAAAAAkFO8yQ8ASE+YYDS3QIeoj4dssFMo4iqPMi+rEoxWbAGuMUG35dqUYSkXRZuCRFxR8Foo1TqhL1w/GlPoQLw696mm4e7LKwSjAahhCjmzyuag13rhn3WPSTAaIkSfCoBU51rA16mxKzVLB5zrvGztg9K25Um2JnluPwRTChGMlsaYOgAAAAAAAAAAAAAAAAAAAABEgDf5AQDpSTwYLWyIBNKVwufXPNK8rEIwWr4kWAToVsjohGtTdrl+Ngk8SpmCRNxQ8Fos9UJjCPFoTGE/93r3qXrBaNWecMcHUDym+5VVNge9EoyGLKFPBUByHwNIIhwdUvs887JlNyfWjFgFGbdpGhbmgCG2BQAAAAAAAAAAAAAAAAAAAID08CY/ACA9QcOArJL/4CGJQte8SyPsp+wWjNaZXDsQnu/zJ8A1JiiuTdmVdlF0kGA0Cl6LpV7oC9ePxhT6c68XjNbqvrzaHfL4AArHFHJWKpv7M1WC0ZAh9KkASC5jAFawsWj413aE1Hak87JlHQUPg3c5x+o9o7kq8n8zAAAAAAAAAAAAAAAAAAAAAEVGMBoAID1BC0+tkoKFFgUMYkNGpPD5lUeZl1W6kmsHIpBkEaDP6xNF+BmWcjBaiWC0hkcwGpzEHow23H15hWA0ADVMIWdW2dyfMYWpeWUTjIYI0acCIMk4BpDE8z/eMnWe8/xtS6V1jybalHgEGLcphQhGK3SYHAAAAAAAAAAAAAAAAAAAAIAi421+AEB6ghSeWk27/hkgGI1C13xLo4ireaR5WaUzuXYgAj7PnyDXmLc29re6TWhjZrl9NkkURlsBgtEoeC2WeqEx9G0aU9j7Rr17XL1gtGpPuOMDKB7T/apUNvdnTGFqXtULDwX8oE8FQJKqhmsBwWjJmvJxc/9hWUeybUmUy3NaoOD83Rh3BAAAAAAAAAAAAAAAAAAAAJBPvM0PAEhPkFCH3cFoQZiK25ATKYT9lEeZl1W6kmsHUhAmGM0nivCzy/U+lcCjVKDCV4LRCqVe6AvXj8YU+nOvF4zW6r682h3y+AAKxxRyZrkEo9UL/6x7TILRcifLAb70qQBIMgdI8VVqolonSJNPd1624mfSzh3JtidyAe6HYe6hWb7/AgAAAAAAAAAAAAAAAAAAAIAL3uYHAKQnSOFpmGA0Y3EbciFIkF5YTcNlDA8hGC1fkiwCtHyGqlGEn2Eu1x0rgUcpU5CIKwpeC6VeaAzXj8YUezDacPflFYLRANQw3a+ssjnolWC0xpPGM71X9KkASObrVKjxaAQyda7z/J1bpdcWJtuWpPgdT/SMcSIAAAAAAAAAAAAAAAAAAAAA+UQwGgAgPUkHo1HomnMpFHGVmqSmVudllc5k24KQ/J4/cRUjOslwQECjcwtvyGwwGgqlXuhLlgNGEJ+wfdp6Bfemvs9u1Z5wxwdQPFVDyFmpbO7PmLbxyiYYLX8y3G9hvAiA5BKMxlepidvndGnYOOdlyxYk2pTIBfrxhjDj4gSjAQAAAAAAAAAAAAAAAAAAAMgn3uYHAKQoQFFsmEI0wkPyLa3Pr2m48/xKV7LtQEhJFgH6DFWjCD+7XK87CTxKlQIEowUqsEVm1QuN4frRoML2ieoFoxn6PrtVukMeH0Dh2Ib7lVU292cGbhPkWa9eeCiyJ8tjMvSpAEjmawHBaMlrapEO+LjzstX3S9tfS7Y9iXB7Tgsx1sM4EQAAAAAAAAAAAAAAAAAAAICc4m1+AEB6qgEKT62m4Mej0DXnUiriamp1nv+HuRTj54nfIkDLZ7jZ4I39rR7kWohkuIU3JFEYbQUIRkvrWol42HXuM/RtGlPYz73ePa5eMFqVYDQANUzBaKWyuT8zMPyz2uP/mDyL5Q/BaAAyz3Sd4qvUVLTPMyywpeX/nWRL0hcq3IxxIgAAAAAAAAAAAAAAAAAAAAD5xNv8AID0BCk8DRWMluEiXNSX1udnCkar7JCe+bdk24KC4tqUXSkHo5UCBKOFKpZF5lQNQTO7EeLRmEIHatYLRjP0ffqPHyDACECxme5Xlksw2sAwtUpXgGMSjJY/GX7uoU8FQDKPPZZCjEcjuLZ3SmPe7rxsaUeOxz8SbjffiQAAAAAAAAAAAAAAAAAAAADIKYLRAAApClCUEyoYjULXfEu4aGxke98/S8PM66z4KcVlueH3/KkTGuO6qc9tuTZll+tnk8CjlClIxFVeC4PhqF7oC9ePxvPaL6SXrw25k3rBaMPdl1e6Qx4fQOHYLsFopqDXsMFoNsFouZPlZ2f6VAAkl+sUX6WmwrKk9rnOy7a+Im14Itn2xM11PDHMWA/jRAAAAAAAAAAAAAAAAAAAAADyibf5AQDpCVJ4GioYLcNFuKjPTriIa7+z+/7pds51r5O61ibTHoTk8/zxG242iM8uNkX42eV237ASeJQadUiAjSh4LZTNz7kv5/rRWDY+Kz06J/x+6t3jynWC0aoEowGoUTUEo5XK5qDXathgtCrP+HmT5c+LPhUAyXwtSOL5H86mnGsem126INGmRCfAuE3rxBCHY5wIAAAAAAAAAAAAAAAAAAAAQD4ZKtNQNJZlNUs6XtL+kiZJ2ibpDUnP2ra9POJjTZV0pKR9JI2U9DdJKyQ9btt2b5THApBziQejUeiab0kVUVvS/nOkI67aNVnnnMtycTfekmQRoN+CWc6h7HINRgsTnufR3rP9b0PBa7EsvsZ9OX2bxrLqzog+8zrXr2ET3JdXeyJoA4BCsQ3BaFZZsgz9KTtkMJokVXulpmHBtkUKMvzcQ58KgGQeAyAYLT3DJ0mT3i+98Zuhy1b8VDr6O1JTa/LtioXLc1r7POn5+QH3yzgRAAAAGptt26pWq7L5DhVAwizLUqlUkpXEuyUAAAAAAAAAAAAAUFAEo6XEsqx2ScdKOmbXP4+SNGrAKits254SwXEmSPqKpI9K2tOwzuOSvm3b9h0hj3W2pM9LOs6wykbLsm6TdLlt2+vDHAtAQQQJA7JC3LoodM23OF9UnTBLOvG3Uufr0rDx0rBxby2rG8bHC7T54PdzCvFiot8AR65NGZZyUXRTq9Q8Rup908dGXJMKo+rh2sD1o7G88NWIdlTnHrf3Ke7LK90RtQNAYZiC0Upl83N/dcA2VYLRGkKWA6HpUwGQZB4DCPFDHQivfZ5zMFrvm9Kqu6QDPpp4k0IJMsY9Yt8wBwyxLQAAAJA/tm2rq6tLW7du1datW9XTw4+9AEhXS0uLRo0apVGjRqm1tZWgNAAAAAAAAAAAAADwgZ85T5BlWSdalnWvZVkbJC2R9FNJl0h6jwaHokV1vA9IekHS+TKEou0yU9LPLcu6xbKsPQIcZ6RlWbdKul3mUDTtasP5kl6wLOv9fo8DoICCFJ6WwmR6ZrgIFx5E/PkNn9RXWHfM9X2haM0jpdFvGxyKJtUPQKKAGrUIRisOU3hDkkXRY6b73ICC18KoegifynLACLKrXohQ2xHSO79lXu7l3ATQWKqGYDSrbA43HximFjRw0e4Nth3SkeV+i5dAWgDFZ7xO8VVqqiafITWPdV62tCPZtsSqTlH0u24Ktts4f2wEAAAAyJgdO3ZoyZIlWr58uTZs2EAoGoBM6Onp0YYNG7R8+XItWbJEO3bsSLtJAAAAAAAAAAAAAJAbvM2frCMlvU/uIWWRsCzrREl3Spo4YLYt6Wn1BZj9X0nrazY7V9KtllUvAWbQcZok3SbpYzWL1km6b9exntHghIa9JN1lWdYsr8cBUFBBwoBMRdVxHQ/ZEXUR1yH/U5rxI+mQC/pC0UzqBSBVKcbPB7/nT4hfaPUdjJbhgIBGl4Wi6Kbh/tan4LU4bEPIzKB16NsggKbW+usc+nlzOFqVQiIANUz3rFLZHG4+KBitK9hxeRbLlyw/99CnAiCZrwXevzJDHJpapSnnOC9bfa+0441k2xNawHGb5qC/r5Xh+y8AAAAQoR07dmjlypXq7WXMEEB29fb2auXKlYSjAQAAAAAAAAAAAIBHvM2fDd2SlkS1M8uy9pX0C0ktA2Y/Jmm6bdvH2LY9x7bt90naV9JFkga+EXSGpP/t43D/Kem0AdO9kv6npH1t237/rmMdLentkv4wYL1hku60LGuSj2MBKJpAwWg+A4cGHY8ioHyL+vPzGHxFMFr+dW+QNj6b3PH8FsxShJ9dpvtGkkXRXgKMBiEYrTCqBKMhJiWP15WRU5znV7ojawqAgjDds6yyOdy8SjBa48nwmEzn62m3AEAWZGEMAM6mznWeb1el5T9Oti1xseqMVZeag+2XAH0AAAA0gN2haDb9XwA5YNs24WgAAAAAAAAAAAAA4JGhMg0x6pX0F0l/kvTUrn8uknS8pAciOsZXJLUNmH5c0sm2bQ+qMrRtu1vSdy3LWilp4YBFn7cs6/u2ba9wO4hlWe3qC1Yb6O9t276rdl3bthdblvVeSfdLOm7X7HGSrpD0OQ9/JwBFFCSoLEwhGuEh+Rb1S6z1is3616tzztkU42dWtSI99VlpyU3yHRbl9fxw3NZngCPXpgzLQFG078JXXvgvDJtgNMTEa+BiaZjz/CrBaABqmO5ZVlmyDP2pgdtUCUZrCFkOq+98o+/5sRQijB9AAZjGALg2pG7c30mjp0lbXhq6bNkC6dBLwo3lJSnoGLcVMBiNcSIAAAAUnG3beuONN4aEojU3N2v06NEaOXKkmpubZeXlmQFAYdi2rd7eXm3btk1btmxRb2/voGVvvPGGDjzwQK5PAAAAAAAAAAAAAOCCYLRkdUi6oTagTFJkX25blnWwpIE/nd4jaZ7TMXezbftOy7I6Bmw3TH2BZZ+uc7grJA18E3+BUyjagON0WpY1T31BcC27Zn/Gsqyv27a9tM6xABRRkDCPUMFoGS7ChQdRF3F5DUarU/xIMX52vfQtacmNATdOMhiNa1NmGT+bBIPR0LiqBKMhJp6D0Vqc51d7omsLgGIwBaOVyub+1MD7XIVgtIaQ9eeeTc9K445JuxUA0mS6TiUZjg5nliVNnSv9+UtDl725WNr4dAGu4XXGIn0H5+9GMBoAAACKraura1DYkCSNGjVKkydPJmwIQOqam5s1YsQITZgwQa+//rq2bt3av6y3t1fd3d1qbfX43S0AAAAAAAAAAAAANCDe5k+Qbdub3ALKIvJxSQPTOH5h2/ZfPWx3Tc30HMuyjN+4W5Y1XNLZdfYxhG3br0i6c8CssvraDKARBQrzCPHiIuEh+ZZWETXBaPn11++lc1y/BbNcm7Irj0XRNgWvhWF7uL9w/UAQXoPRmoY5z7crUpVzD8AApjBPq9z3x4kdQTCaKZANGZXxYLQtL6fdAgBpMz5fZXgMoJFM/aR5PGbpgkSbkoqgwWiMEwEAAKDgBoYMSX0hRISiAcgay7I0efJkNTcPfr7fsmVLSi0CAAAAAAAAAAAAgHzgbf7i+VDN9I+8bGTb9ouSnhgwaw9J73PZ5P2SRgyY/oNt2y95auHQNn3Y43YAiiZI0FWYMJq0grUQkaiLuDy+CFvvnCMYLbu2Lw+xcYgXpeuF6dUi2CjDchiMFvm1EqkxhcwMxPUDQXgNRisZgtEkqdodTVsAFIMpoKzULJU8BKMFvabwjJ8vmf+8st4+ALHLYzh6IxkxWdrrZOdlK26VKnl5RjGN29QZiwwajMY4EQAAAAquNhht9OjRhKIByCTLsjR69OhB82qvYQAAAAAAAAAAAACAwXibv0Asy9pb0jsGzNop6TEfu3iwZvoDLuueWmdbN4+or227vdOyrL18bA+gKAKFeYR4gZHwkHyLuoja68uw9UKubILRUMNvMBoF+NmVy6JoCl4LwxQyM2gdrh8IoGm4t/VKLeZl1Z5o2gKgGExhnla570+9bSpdwY7LM36+ZL3fwvkEwDgG4HecB7Fpn+c8v2ej9MavE21K4kbsF2y7rN9/AQAAgBBs21ZPz+DvK0aOHJlSawCgvtprVE9Pj2ybdzwAAAAAAAAAAAAAwCTLFf3w7+0108/btr3dx/aP10xP93GsP3g9yK42LfJxLABFZNsKFN4SJoyGIteci/pFsIiC0aoEoxVSmF+R9nud4tqUXcbi0Qw/RvHSbHGYQmYG4vqBIJpaPa43zLys0h1NWwAUgynMs1Tu+1Nvm6DBaAQM50vWg1my3j4ACchjOHqD2fcsqXm087KlCxJtSnABx2322D/Z4wEAAAA5UK0OfY5rbm5OoSUA4E25PPQ7E6drGQAAAAAAAAAAAACgD2/zF8thNdOv+tx+SZ39DXRogscCUESBC05DhBVRNJ1vkRcpez2X6nSXCEZDrXpherWqBBtllum6k+miaApeC8MUMjNoHa4fCKDkMRit1GJeViUYDcAApnuWVe7746QaQTAaQVY5k/HPi/MJQB7D0RtNebi0/xznZW/8Rupck2x7ouTlRxr2/VCAHTNOBAAAgOKyHX4wygrzA2gAELNSaeg4k9O1DAAAAAAAAAAAAADQh7f5i+WgmumVPrdfUTM9zrKsttqVLMvaU9KeIY9Vu/7BPrcHkHeBgzxCvMRIeEjORfwimNcXYkt1Qq4IRiuoENcav8FoWQ8IaGgEoyFFXu4v9G0QRJPXYLRh5mXVnmjaAiD/ejaZg81KLsFolR3StuW7/j1oMBr3wVzJevAY5xMA03Ug02MADah9nvN8uyKt+EmiTQkkTLHz2MOTPR4AAAAAAAAAAAAAAAAAAAAApIi3+YtlbM30Wj8b27a9TVJtJeIYD8fZYdv2dj/H0tC2OR0HQJEFLTgN8+uuWS/ChbvIi7g8nkv1Qq5sgtGKKUwwms8uNgX42WW8b2T4MYqC1+Kwd3pYh+sHAvAajNbkEoxW6Y6mLQDybftK6bdHm5db5b5wNJNfvU1647chgtF4xs+VzH9eWW8fgNhtes55vu8AfMRq/ExpZO3vRO2ytCPZYh4TLwAAIABJREFUtkTKw1hkc5CvUhknAgAAAAAAAAAAAAAAAAAAAJBPLpVpyKGRNdOdAfbRKWlglfSoGI8zkNNxfLMsa6KkCT43OzCKYwPwK2DBqd/AoYEID8m5tIqU65xzVYLREBLXpuwyhTeEuRfFjoLXwqgSjIaYeA1GK7WYl1UJRgMg6c9flrYvMy+3ynIN+aj2SE98Rpp8ZrDjcx/MmYwHj1U5n4CGt+JWw4IQ4fmInmVJ7XOl5+cPXbb5z30Bd21HJt8uz0KM27QQjAYAAAAAAAAAAAAAAAAAAACgcWS5oh/+1QaWdQXYR21gWe0+kzxOEBdIesHnn7siOjYAP3ZuD7hhiEK01xYG3xbps6Mu4vJ4LllN7ssJRkNYpvAtZEAGgtH8FvNGfq1EamyC0RATz8Fow8zLqj3RtAVAvi2/xX15qdz3x03n36RNzwQ7Pv3ofMn855X19gGIVfdG87ItLyXXDngz9ZPmZUs7kmtHpDyMVTcHCEbL/P0XAAAAAAAAAAAAAAAAAAAAAJwRjFZsQVIRsrwNgCJZ/0Sw7cKE0ax9UNr0XPDtkbKIi7gsgtHgwk7wcyXYKLuMxaMJPkYd+A8+N6CbXRgEoyEuJa/BaC3mZZXuaNoCoNissjz1mzr/FvAABH3kStaDWbLePgDx6lpjXta7Obl2wJs9DpD2mu28bPmPMz5eG2Lcpnl0gMMxTgQAAAAAAAAAAAAAAAAAAAAgnwhGK5ZtNdPDA+yjdpvafSZ5HABFtu7RgBt6DLMyee3OcNsjPZEXcXkNRqvTXUoyQAvJSTLwhWCj7DKFI4QJ6fRrxGTp4AsGzys1u2xAwWtheCnkJsADQTR5DUZrMgfEVglGA+BBqVw/aFqSegIGztCPzpmM91s4n4DG5uV+hWyZOtd5fvc66Y3fJtuWKHj5EY/mMQF2zDgRAAAAAAAAAAAAAAAAAAAAgHwiGK1YCEaT/n9Jb/f558yIjg3Aj54NwbYLG0bzwlfCbY8UGYqoJ8ySWtoC7M9rMFqdwkgvwTXInyQDXwg2yrAMBKNJ0jHXSTM6pCnnSodeKp3yeLLHRzqqO+uvQ4AHgvAajCZJpWHO86s90bQFQLFZ5b6QxXp2bg22f/rR+ZL1zyvr7QMQL4J/82f/j0jlkc7Lli5ItCmJaRlrXjZ6mmEBwWgAAAAAAAAAAAAAAAAAAAAA8qmcdgMQqTdrpif42diyrJEaGli22cNxRliWtYdt29t9HG6ih+P4Ztv2Wklr/WxjefkVdgDRCxzkwf+zDcs2FHGNbJeO+S/p+SukTc9Kex4j2Tul1+9235/X6z/BaI2pkmQwGsFGmWUKR0g6GM2ypPbz+v5IUqXLvK7pWon8sQlGQ0yG7+N93aZhUmXH0PlJ3icB5JdVlhTj8xL3wXzJevAY5xPQ2Nyes5FN5T2k/c92DkF741dS9wZp2LjEm1WXcdzGw1j1yIOk1r2krjWD5zeNkA78B+nZS3wcDwAAAAAAAAAAAAAAAAAAAACyLeGKfsTsrzXTB/jcvnb9jbZtb6pdybbtDZJq5+8f8li1bQdQdFWC0eCXoYjLKkltR0rvuUs6a6X07l9IYw+P7rAEozWmKsFokEt4Q9qPUW73QgpeC4NgNMSh7Uhpj/28r19qcZ6f5H0SQH6VyvWfp8LIetAWBsv855X19gGIFcFo+TR1nvP8aq+0/NZEm5KIUpN02BeHzj/2eqllT8NG3N8AAAAAQJKmTJkiy7L6/zz44INpNwkAAAAAAAAAAAAAANSRdkU/ovVizfRBPrdvr5lenOCxavcHoOiCBnlYBKM1LGMRtdM54aWL4/Fcsursi2C0YqokGYxGgWJmmT6beteF2BGM1hCqBKMhAntMeevfRx4onXCHv+1Lw5znV3sCNwlAA7EIRsNAGf+8OJ+AxkYwWj5NPGHwM89AyxYk2RIfQo7bTLtYmvVzaconpP0+LL37l1L7PPP3JjbjRAAAAAAAAAAAAAAAAAAAAADyqZx2AxCpF2qmj7Asa4Rt2zs8bn98nf3VLps5YPo4SXd7OYhlWXtIOsLHsQAUUtCC07TDaJAeQxGXU0CRl9AiryF79Qr5d7zmbT/Il2qSwWgEG2VXRoPR3K5fFLwWh5fgTa4fqOe059/qq4ye5v/61WQIRksyQBRAfpXK8fabuA/mS9aDxzifgMZGMFo+WSVp6lzpha8MXbbxaWnzC9LYtyffrkB8/CDM/h/p++Npe8aJAAAAAAAAAAAAAAAAAAAAAOQT6TIFYtv23yQ9P2BWWdIsH7s4sWb6ty7r3lNnWzcnaHAo37O2ba/xsT2AIghacJp2GA3SYyyidij68nSeRBSMtuSHUvcGb/tCfiQZ+EIBfnYZrztp34vcrl8UvBaGvdPDOlw/UI8ljTms70+QfnSpxXl+kgGiAPLLKtd/ngol40FbGCzzwWgZbx+AeFU6024Bgmo/z7xsWUdy7fAsrnEbgtEAAAAAAAAAAAAAAAAAAAAAFEvaFf2I3sKa6U952ciyrGmS3jVg1nZJ97lscq+kgZUix+3ahxfzaqZr2wygEQQO8vAYZoUCMhRxOYZ8RBmM5mFfK3/ubV/Ij0QDXyjAzyxTOELqIZ0EozUEgtEQBStk37k0zHl+tSfcfgHkn+2hzxF3MBr3wZzJ+HMP5xPQ2CpdabcAQY1slyac4Lxs2S1S1cOzdRaEfXYzbe+lzwYAAAAAAAAAAAAAAAAAAAAAGZR2RT+i92NJA6u4PmxZ1sEetvtCzfTPbNs2VoLYtr1DUm0KTO0+hrAs6xBJHxowa6ekn3hoH4CiCVpwGrZACPllCihyCgjyElrk9VzyUsj/l//tbV/Ij0qCwWh2lSLFzMpoMJrb9YtzqTi8FG+vffitf7dt6a83SL87UbpvpvTydzkfoNDDPk2GYLQk75MAssn4fDZAKe5gtIwHbWGwrH9eWW8fgHhVXYLRxr3LvAzZ0D7PeX7Xaulvbr8BlYLYntNNY0WMCwAAAAAAAAAAAAAAAAAAAADIJ4LRCsa27b9K6hgwq0XSAsuyWk3bWJZ1pqR5A2b1SPqKh8NdKal3wPQ8y7I+6HKcVkk/2tWm3W60bXuJh2MBKJrABafcuhqXqYgrYDCaV14K+Xesiu54yIZqwoEvFOFnk/FzSfte5BbsSMFrYdgegtEkacsrff/8y39IT50vrX1IWv8H6emLpOfnx9c+5EPYUOFSs/P8aq/zfAANxEP/1SrHGyhLHzpfMv95Zb19AGJVcQlGO+ifkmsHgtn/bKlpuPOyZR3O8zMn5LObqc+V+fsvAAAAAAAAAAAAAAAAAAAAADgrp92ARmNZ1r5y/u++d8102bKsKYbdbLNte73LYa6Q9CFJbbumZ0r6nWVZ/2Db9ksD2jJM0j9J+lbN9t+ybXuFy/4lSbZtL7Us6/+TdMmA2T+3LOvzkn5g23bPgGMdKun/7GrLbhvkLYANQBHZlWDbhQ13QH6Ziricir48Fd97PJfiLORHdiUdjKaqJA8hfEiWn+tOklzvhQSjFYbX4KkVP5Wm/7v08neHLnvlOunwK6USj/6NK+T1yjKcO0H78gCKw0vIRqnsLWg6cBu4FuVK1oNZOJ+AxuYWjDblE8m1A8E0j5b2+4i0/Jahy1bdKfVsklrahi5LRVzjNqaxIsaJAAAAACBJtm3rmWee0UsvvaS1a9equ7tbEyZM0OTJkzVr1iyNHDky7SYG9tprr+mpp57SqlWr1NnZqfHjx+vwww/XMccco1Ip3HeSa9eu1SOPPKI33nhDnZ2d2meffdTe3q4ZM2aE3reTxYsXa9GiRVq3bp22bNmiPffcU5MmTdKsWbM0bty4yI8HAAAAAAAAAAAAAAiG6ujkPSrpAA/rTZa0zLCsQ9I804a2ba+yLOvDku6V1LJr9vGSFluW9bSkpZLGSDpK0oSazX8lab6H9u32RUnTJX1g13SzpP+SNN+yrGckbZXUvutYA9/K75H0Idu2/+bjWACKJHDBKcFoDcve6Ty/1Ow008MOvQajEVbVkCoJB6PZFfV1o5AtGQ1Gc2NT8FoYpvterUVXSJNOlbrXDV3W+6a06Tlp3DHRtg35ETZU2NQP8np+AiguLyFXVtzBaBkP2kKNjH9enE9AYzMFo417l9TU4rwM2dI+1zkYrdojrbhNOvhzybfJl7DfexCMBgAAAABpWr9+vb72ta/plltu0bp1Dt/bSmppadHs2bN15ZVX6l3vepen/c6bN08dHR3908uWLdOUKVM8bfvggw/qpJNO6p++4oordOWVVxrXtwZ8r/ie97xHDz74oCTp8ccf1xVXXKHf//73qlaHjqPutdde+vKXv6wLL7zQd4jZs88+q0svvVQPPPCA47733Xdfffazn9UXv/hFlctlXXnllfrKV976LeYHHnhAJ554oqdjbdiwQd/4xjd0yy236PXXX3dcp1QqaebMmbriiit08skn+/q7AAAAAAAAAAAAAACil+GKfoRh2/aDkj4kaeBbFpakYyTNkfR+DQ1Fu1XSx2zbe1rRrnXnSLqtZtFESadK+ntJR2vwG/lrJZ1p2/YjXo8DoICCBqOFDXdAflUNARyWQ86rl9Air+cSwWj5FDYcqppGMBoyp2r4XLIQjGZsAwWvhWG67znpWm1exvWlwYUNRjPk6ROMBsDL/cVqirnfRJBVrmQ9eIw+E9DYTMFozaOSbQeCm3iSNGI/52VLFyTalFSYxroJ0AcAAACA2N15551qb2/XtddeawxFk6Senh7dc889mjFjhj772c9q587sf9/2ta99Te9+97v1u9/9zjG4TJLWrFmjf/mXf9HZZ5+tnp4ez/v+9re/rWOPPVb333+/cd+rVq3S/Pnz9Z73vEdr1qwJ9HeQpJtvvlnt7e265pprjKFoklStVvXoo4/qlFNO0Sc/+Ulffx8AAAAAAAAAAAAAQPQyUNGPuNi2/RtJb5d0g6RNLqv+UdLZtm1/3Lbt7QGOs8227Y+pLwTtjy6rbpT0PUlvt237Hr/HAVAwgQtiuXU1LFMAh1Nwmafie69BIR72VRrmcV9ITsiiv0rSwWgZDwloWKbPJQv3IlPBK+dSYfgJnurZbF7WNDx8W5BfYQOJTAGxpuBIAA2kTp/DauoL6IgzaJogq3zJej816+0DEC9TMBrPU/lRapKmftJ52YYnpC0vJ9seI8OYZegfhDFtTzAaAAAAAMTppptu0kc+8hFt3bp10PwDDzxQZ5xxhj760Y/quOOOU1PT4LHyH/zgBzrjjDMyHY72zW9+U1/+8pdVqfSNxb/tbW/TBz/4QZ1zzjk68cQT1draOmj9hQsXav78+Z72/a1vfUv/9m//1r/v3Q477DCdeeaZmjNnjmbMmNH/3+3xxx/XnDlzhqzvxeWXX665c+dqy5Yt/fMsy9K0adN0xhln6OMf/7g+8IEPaMKEwb8zfcstt+i0007L9GcEAAAAAAAAAAAAAEVXTrsBjca27SkJH2+tpPMty7pI0vGSDpC0t6Ttkl6X9Kxt28siOtbPJf3csqypko6StI+kPSStlrRC0mO2bfMTagD6BC1gDhvuIEmvXC8dcmH4/SBZpnOm5NSdiTAYzUshf3mEt30hOXbYor+EiwYJdcgmUzhCFPeisKyS4byh4LUwqn6C0VxysDc8KbUdEb49SFfg+1rI4nrHfpb8BfcBKKZ6IVLWrutHrMFoBFnlS8Y/L57JgMZWNQWjtTrPRzZNnSv95WvOy5Z2SEcalhWBMViNcSIAAAAAiMtzzz2n888/X9XqW2OfRx55pK6//nrNnDlz0Lrr1q3T/Pnz9f3vf79/3j333KPLL79cX/ta9p5XFy1apEceeUSSdNZZZ+nqq6/WtGnTBq2zadMmff7zn9eCBQv6533rW9/S+eefrylTphj3/fTTT+uLX/zioHknnniirrvuOk2fPn3Q/HXr1unyyy/XDTfcoIcffliLFy/29ffo6OjQVVdd1T9dKpV04YUX6pJLLtH+++8/aF3btnXXXXfpoosu0sqVKyVJ999/v+bPn6+rr77a13EBAAAAAAAAAAAAANEgGK1B7AokeyChYy2TFEnYGoACC1xwGjLcQZL+9M9S60Rp/78Pvy8kxxQQYzl0Z6IMLSp5KOQvNUd3PEQk40X3tSjCz6YsB6OZ7ocEhBSH3et93d7N5mVP/qO04qfSCbdLLW3h24V0BP1/21gc73V7Qz+I+xaAusFou64fcfabuBblS9b7qVlvH4B4VQzBaKVhybYD4Yw+RBp/nLT+D0OXLbtZOuIqb2O9cQr9Yw4mhj4X9zcAAADAkb1zp7RuVdrNaAwT9pVVLuZryp/5zGfU0/PW7wTPmjVL9957r0aMGPrjihMmTNANN9yggw46SJdeemn//GuuuUbnnHOODj/88ETa7NXGjRslSZdddpmuueYax3Xa2tr0ox/9SJs2bdJdd90lSapUKrrxxhsHhZHVuvDCC7Vz51vvgH34wx/WbbfdprLDeTJhwgR973vfU3t7uy677DKtX7/e899hxYoVOv/88/unhw0bpjvvvFOnnnqq4/qWZemss87SzJkzdfzxx+vVV1+VJH3jG9/QP/3TP2nq1Kmejw0AAAAAAAAAAAAAiEYx3zgAAGRf0ALmsOEOuy2/lWC0vLH9BKN5KHDzfC55KOQfdbDHfSExeSv6y1t7G4bpc8lAMJoxZCSuAlskzhQI6qTHJRhNktbcL/3qMOl9f5BGTgnVLKQkUN85gn6zUz9LMvfLADSOev3XMdP7/unl2SyuNiBbMv95Zb19AGJVNQRTNxGMljvt85yD0Tpfl9b8Xpp0SuJN8iZsqLUpQJ9xIgAAAMDRulWy57wt7VY0BOtnL0uTpqTdjMg98MADeuaZZ/qnR48erdtuu80xFG2gSy65RA899JB+9atfSZKq1aquvfZa3XTTTbG2N4hZs2bp6quvrrvef/zHf/QHo0nS73//e2Mw2lNPPaUnnniif3rSpEm66aabHEPRBrr00kv1u9/9Tvfdd5/H1vcFmnV2dvZPX3vttcZQtIEmTpyon/zkJ/q7v/s7SX1hb9dee62++93vej42AAAAAAAAAAAAACAaGajoBwA0pMAFsRHdulYtjGY/SI4pIKbkUGhvDAwatJK343oKWSNrNnPCFt0fnfQLjRQpZpIpiCjOgA/PTAWvBDoUhp/gqd46wWiS1LVaev5/BW8P0hUkiCyKQOGSKRgtYMgxgAKp0+c48NN9/4y130S/J18y/nlxbwMam58fZEC27T9HKhkC7ZYuSLQpzuIaAzQ9/zHmCAAAAABx6OjoGDR94YUXap999vG07X/+538Omr711lvV3d0dWdui8uUvf1mlUv33r6ZPn64pU6b0Tz/33HPGdW+99dZB0//8z/+sMWPGeGrP/PnzPa0nSdu3bx8UNtfe3q7Pfvaznrc/9thjdcIJJ/RP//KXv/S8LQAAAAAAAAAAAAAgOgSjAQDSEbTg9JALo20H8sMYUORQoJh0MBoF1BkUsuhv8unRNMMrwqyyyfS5ZCEYzXido+C1MEyBoE4qHl+UX/7jYG1B+gL1NSIIRjNd7/ycnwCKya3/evAF0sGf2zUR4/BzleewXMn6M0/W2wcgXqb+LcFo+dMyVtrvQ87LVi2Uet5Mtj2ehX1+IxgNAAAAAJL06KOPDpr+xCc+4Xnb6dOn66ijjuqf7urq0tNPPx1Z26IwfPhwzZ492/P6hx56aP+/79ixQ9u2bXNc7/HHHx80PWfOHM/HmDVrlufwuUcffVSdnZ3902effbankLeBTjrppP5/X7FihVauXOlrewAAAAAAAAAAAABAeASjAQDSESTcYfg+0vjjom8L8sH2U6DooYtjeQ1G87AvwkGyJ2xR+8j2aNrhGUWKmWQMZMzCY5ThGkagQ3GY7nuO6/K5F16QvnMU1ypTEISf8xNAMbldl9520Vv/HmugLPe/XMlCf+Wk+6Qpn3ReRuA50NhM/dsSwWi5NHWu8/xKp7Ty9mTbMkRMY4CmsW6bMUcAAAAAiNqmTZu0ZMmS/umxY8cOCgbzYubMmYOmn3rqqUjaFpUDDzxQLS0tntdva2sbNP3mm87B5H/+85/7/33s2LE66KCDfLXrmGOO8bRebXDdPvvso+XLl/v6U/v3X7p0qa+2AgAAAAAAAAAAAADC441+AEA6ghSczr6fYrRG5qdA0VMQiNdgNA+F/BRQZ1CIovsx06NrhldZCAnAUMZgtDgDPjwyXucoeC2Maq/3df2EVFUrUikD5zD8CdTX8NjXcd2F4Vyh7wPArf86sJ8SZ6As16J8SfuZZ2S7NOkUacWtzsvTbh+AdJl+9MAUFIxs2/sUafgkqfNvQ5ct65AO+ofk21SP1x/xMGKcCAAAAACSsm7dukHTBx98sCyfz3XTpk0bNL127drQ7YpSbdBZPc3NzYOme3uHfte9fft2dXV19U/vv//+vtvldZvXXntt0PTFF1+siy++2PfxBtq4cWOo7QEAAAAAAAAAAAAA/sVYmQYAgAu/BafNY6Qx0+qvh+LyU6CYeDCaj0AaJMMOUfQXZ3iDCUX42WT6XLIQjGa6hnEuFYefe4uvYLRu/21B+tIKRjOFEpv6ZQAaiFsw2oC+kmUpkuuRE/o9OZP257XrOc8Y+pl2+wCkys8PMiD7Sk3SlE86L1v3qLT11WTbM1CYMUs3pgJ87m8AAAAAELlNmzYNmh4zZozvfdRuk7XQrVIp+vdmNm/ePGh61KhRvvcxevRoT+tt2LDB977r2bp1a+T7BAAAAAAAAAAAAAC4441+AEA6fIc7xFRIjfwwnTOORc0RvqDnJSSLYLQMClP0l0Z2cExFkQjHeN3JQL60sQ2cS4XhJ3jKz7qVTqk8wn97kK4gwWhRXKucAmilgEFtAArFLWSj9vpjNcXzzETQR76k/XntDowx3R+5twGNzXSfMvWHkX3tc6UXv+68bNnN0hFfTbY9dYX9/sO0PeNEAAAAgKMJ+8r62ctpt6IxTNg37RZEzq4JvbZMYdU+RLGPrBs2bNig6Z6eHt/78LpNkH3XU/u5AwAAAAAAAAAAAADixxv9AIB0+C04bYAXwFCHqUCx5NCd8RIE4vWccgxeq0EBdfaEKbpPI/Qq7ZAAOPMVyJg0wzWMc6k4/ATI+Fm30uW/LUhfoL5GBP1n0/WOUFgArn2OpILReA7LldT7qbuD0Ux9+bTbByBVprBpgtHya8xh0p7HShufGrpsaYd0+JXZCL6PDMFoAAAAgB9WuSxNmpJ2M5BTe+6556DpN9980/c+ardpa2sL1SYnlUq2xtBr/46bNm3yvY+NGzd6Wm/8+PGDph9//HEdd9xxvo8HAAAAAAAAAAAAAEhXkd74BgDkie8CZoLRGp6fAkVPRW1ezykPxWOmtiE9eQtGo0gxm7IcjGY8TzmXCsNPgIyf+1Cl039bkL4gfY0o7mdOAbQSfR8A7v3t2utPbP1rgqzyJeXPqz8c3XA+ErQHNDY/P8iA/Gif6zx/x0pp7UPJtqWfYdwm7A/DmLa3GScCAAAAgKhNmDBh0PQrr7ziex8vv/zyoOmJEyc6rlcuDx6b2LnT+3d0QYLH4tTU1KTJkyf3Ty9dulQ7duzwtY9FixZ5Wm+vvfYaNB3kMwIAAAAAAAAAAAAApI9gNABAOvyGFoUtDEL+mQoUnYLRPHVxPJ5T1d7661BAnUFhiv5S6CKHCXJDfEyfSyrhebVMBa+cS4XhJ3jKT4hapct/W5C+QH2NCPrPpiBI+j4A3K4DQ4LRYgqVrXItypXU+6m77oumvnzq7QOQKj8/yID8OOBjUqnFednSBYk2JX6m5z+C0QAAAAAgam1tbTrwwAP7pzdv3qwXX3zR1z4ef/zxQdPHHnus43qjR48eNL1582bPx/jLX/7iq01JmDFjRv+/V6tVPfSQ9+DyjRs36s9//rOndWfOnDlo+r777vN8HAAAAAAAAAAAAABAdmShoh8A0Ih8hykQjNbwTOeMU5G9l9Air2F7noLRfATSIBlhitrTCL2iCD+b/Fx3kmYMdKDgtTC83H92617vfd1Kp/+2IH1BgsiiCBY2BUHQ9wEgt/5rQsForm1A5qT+zLM7GM0U+pl2+wCkytS/LRGMlmvDxkmTz3Be9todUu+2ZNsjxTduYxzPZJwIAAAAAOIwa9asQdM//vGPPW/74osv6umnn+6fbm1t1dFHH+247sSJEwdNL1682PNxfvOb33heNyknn3zyoOkf/vCHnrft6OhQT0+Pp3Xf+973qqnprbHgX/7yl1q7dq3nYwEAAAAAAAAAAAAAsoFgNABAOghGg19+ChQ9BVt5DUbz8FJdlXCQzMlbMBpFitmU5WA04zWMQIfC8BM89aaPX/uudPlvC9IXJBgtiiEfYzBakPYAKBS3/nZtXymu/jVBVjmT8ue1OzDUGDDMvQ1oaKbnL1N/GPnRPs95/s7tfeFomRH2+w/D9vSXAAAAACAW55133qDp6667TqtXr/a07Ze+9KVB0x/72Mc0bNgwx3WPOuqoQdN33323p2Pce++9evLJJz2tm6Rzzz1Xo0aN6p9euHCh7r333rrbvf766/rqV7/q+ThtbW0699xz+6e3bdumSy65xF9jAQAAAAAAAAAAAACpIxgNAJAOvwWnFsFoDc8UPuZUoBhl4b2XYDQKqDMoZ8FoFClmk+lzyUIwmjHQgZC9wvATjOZHpTOe/SJeQfoaUfSfTde7uM5PAPnhGoxW00+Jq+/Ec1i+pP7Ms+u8NN7b0m4fgFT5GXdEvkx6v9Q60XnZ0gWJNqVPTOM2xuc/xokAAAAAIA6zZ8/WkUce2T/95ptv6pxzzlFnp/t3sddee63uuuuu/mnLsvSv//qvxvWPO+44jRgxon964cKF+tOf/uR6jL/+9a+aO3duvb9CKkaNGqWLLrpo0Lw5c+bogQceMG6zfPlgP5p6AAAgAElEQVRynXLKKdq8ebOvY1155ZWDAuf++7//W1/4whdUqfj7bmHx4sV6+OGHfW0DAAAAAAAAAAAAAIgGwWgAgJT4LTiNIRiNotd8MQVwlJwKFD10cbyGhVR7669DOEj2hAqHSqOLTJFiJpnCNtIIzxvCdA3j3lYYpsL8sAhGy6dA/dYI+s+O/SzFd34CyJEsBKPR78mVtD+v3WMAxoBhgvaAhuZr3BG5UmqWpnzCednaB6Vty5NsjYuwz2+G7QnQBwAAAABHq1ev1vLlywP92e3GG29US0tL//SDDz6oE044QU888cSQ461fv14XXnihPv/5zw+af9lll+mII44wtnPUqFH66Ec/2j9dqVR0+umn67777huybk9Pj374wx9qxowZWrNmjdra2vz8J0nM/Pnzdfjhh/dPb9myRe9973s1Z84c/fznP9fzzz+vl156Sffdd58uvvhiTZ8+XS+++KJaW1t15plnej7O1KlT9YMf/GDQvK9//euaNWuW7r77bu3caf6+c/ny5br++us1e/ZsTZ8+Xb///e/9/0UBAAAAAAAAAAAAAKHxRj8AIB2+C05jCEar7pSaWuqvh2wwBXBYDt0ZT6FFXoPReuqvQwF1BoUouk8j9CrtkAA4MwajxRTu4Ycx0IGC18KIK3Sz0hXPfhGzAPeJKO5npusdfR8Abv3XIcFoMfWvuRblS+rPPLvHAAznY++bibUEQAb5GXdE/kydK730bedly26WDr88wcbENW5jGutmnAgAAAAAnJxzzjmBt7V3fSd/1FFH6brrrtPnPvc5Vat9459PP/20ZsyYoYMOOkjTp09Xa2urXnvtNT355JNDgrhOOeUUXXXVVXWPd9VVV2nhwoXavHmzJGnt2rV6//vfr4MOOkhHHHGEhg0bpjVr1uiJJ57Q9u3bJUl77723rrnmGs2dOzfw3zMuLS0t+vWvf63Zs2fr1VdfldT33/T222/X7bff7riNZVm6/vrrtXLlSt11112D5rs577zztHr1an3pS1/q/4z++Mc/6oMf/KBGjBihd77zndprr700fPhwbd26VevXr9fixYv7/1sDAAAAAAAAAAAAANLFG/0AgHRUfRYw13mRKRB7pySC0XKj2u083ymwI+lgNFPxJNITpug+jWC0MEFuiJHhc8lCMJrxGsa5VBjV3nj2W+mMZ7+IV6D7WgT9Z1MQRFzBfQDyw/W6VBuMFlffiX5PvqT9ee26L5rOxw1P9J3XqTwPAkidqX9b4mvUQmg7Qmo7Utr03NBlyzqkt8+P5/sHP8IeP+32AwAAAECD+sd//Ee1tbXpU5/6lLZt29Y//9VXX+0P/XLy6U9/WjfccIOam5vrHmPy5Mm64447dNZZZ2nr1q11jzF16lT9+te/1po1a3z+bZKz33776ZFHHtEFF1yghQsXuq47btw4dXR06PTTT9cXvvCFQctGjRpV91iXXXaZjjjiCH3qU5/S6tWr++fv2LFDjz32mKf2trW1eVoPAAAAAAAAAAAAABAtqnwAAOmwfQajRRHsMKQNBDrkxpuLzcucChS9FN57LRbzEkzDuZRBdohtU+gi22Hai9gY71UZeIwyBTZwLhVHXPeWSlc8+0W8ggSjRVEYbwqC8N2XB1A4bteB2n5KXMFoYcKQkby0P6/d90W34LP1TyTTFgDZY3r+MgUFI3+mznOev22ptO7R5NoR27iNy/2NsSIAAAAAiNXZZ5+tJUuW6KKLLtL48eON6zU3N+t973ufHnvsMd14442eQtF2mz17tp588kmdeeaZsgzfAU6YMEGXXnqpnnvuOR166KG+/x5J23vvvfWLX/yiPyDtsMMO09ixY9Xa2qr29nadfPLJ+v73v68lS5bo9NNPlyRt3rx50D7GjBnj6Vinnnqqli1bpuuvv15HHnmk8b/hbs3NzZo5c6auvPJKvfLKK7rooouC/SUBAAAAAAAAAAAAAKHwRj8AICV+C2JjCEarEmaVG0s7zMscCxS9hBZ5PKf2/aD0yn+5r0M4SPaEKbp3K5SPDaEOmVQ1/L8dV7iHL6ZrGOdSYcTVT6l0xrNfxCxIIXsE9zPT9W7zIun5K6XJ/0Mad0z44wDIH7f+9pD+dEz9a57D8iX1YLSmwf908tK3pQm3J9MeANliev4iGK04pnxcevYS5xC8ZR3SxBOSb9MgIb//cCvotqsZGcsCAAAAgPQsX7481v1PnDhR3/nOd/Ttb39bTz/9tF566SWtW7dO3d3dGj9+vPbdd1/NmjVLo0aNCnyMadOm6c4779T69ev10EMPadWqVdqxY4f22msvTZ06VSeccILK5bfGMk488UTZPsKy/axba8GCBVqwYEGgbWfNmqVZs2Z5Wnfx4rd+WNOyLE2cONHzcVpbW3XBBRfoggsu0MaNG/XHP/5Rf/vb37Rx40b19vZq5MiRmjhxog455BBNmzZNI0aM8P13AQAAAAAAAAAAAABEizf6AQDp8FvAXOeXGoO1gWC03Hjx6+ZlTgWKUQZbTXyP1NIm9Wwyr8O5lD1pB6Mde4P01Oe8rx/iBVPEyXAelTJQTGo6TzmXiiOue0ulK579Il5B7mtR9J/dgiBe+Ir0wleld90oHfip8McCkDNuwWhN7tNRSTtoCz6l/Hk1tfb90+15b+vLybQFQPaYnr9KfI1aGK0TpMmnS6vuGrpsxc+ko78rlfNc8Oz2/MdYEQAAAAAkpVQq6dhjj9Wxxx4b2zHGjx+vj3zkI7HtP6u2b9+uZ555pn/6kEMOCRw0t+eee+q0006LqmkAAAAAAAAAAAAAgJhEmBoCAIAPfoPRXAt7AqoSZlUITkX2noKtPJ5TpWbp3XdJ5ZHmdewqYURZEyokIYIu8n4fkvaYMnhe82iXDQh1yCTjvSoLj1GmaxjnUmHE1U+pdMazX8Qr0H0timC0emFGtvTMxVKlJ/yxAOSL63Wppq8UV6is73EFpCrtILuSh2C0OMaeAOSD6fnLLSgY+TN1rvP8nVul1xYm1AjTGHLYexDBaAAAAACAYuvo6NCOHTv6p4877rgUWwMAAAAAAAAAAAAASEIWKvoBAI3IbwGzp6Arv23ojX6fSF7JoUDRy/li+Sg2m3iC9OHV0vR/N69DUX7GhCj4i+J60zpROvkh6aDPSXseLR34j9LJD5vXTzskAM5M/1/XDQpKgOk8JaSxOOLqp1S64tkvYhbgPhHF/cypn1Wrd4u0+v+GPxaAfHHrvw65/sQ0BE0fOl/S/ryadgWjuQbHEIwGNCzbEIzmpT+M/NjndGnYOOdlyxYk2pTIuY11M1YEAAAAAMi5VatWaf78+YPmnXfeeSm1BgAAAAAAAAAAAACQFILRAADp8F0QG0NxatVQ8IZ8sZwKFL10cXyeU+U9pH3+h3k5wWjZEqboPqogxj32l/7ue9Kpf5Le9QNp1MHmdSlQzCbTeZSJYDTTNYyAkMKIq59S6Yxnv4hXoPtaBP1nx36Wg82Lwh8LQM64BaPVXH9i6zvR78mVrASjVbrTbQeAbDIFo3ntDyMfmlqkAz7uvGz1/dL21xJoRFxjgG7Pf4w7AgAAAACy5Y477tC///u/a926dXXXffbZZ/Xud79bGzdu7J/3jne8QyeddFKcTQQAAAAAAAAAAAAAZABv9AMAkpdWsEMtU8Eb8qXk0J3xFGwV4JxyK+i3d0oa5n+fiEkGgtGG7thlGaEOmWQKPIztHPHD0AZC9oojrn5KpSue/SJeqQWjeQwzcuqPASg2Y4CsQx8lrmA0wqlzJivBaITEAnBgCqamn1s87fOkV/7LYYEtLb9Fmv6lpFvUxxiA73V7t7EqxooAAAAAANmydetWXX311frmN7+pU089Ve9973v1jne8QxMnTlS5XNbGjRu1aNEi/epXv9Ldd98te8B7EC0tLero6Eix9QAAAAAAAAAAAACApPBGPwAgeUGKl8MWBjkxFbwhX6yAwWhBzim3YkjOp2wJFCCzW0yhV27nJWFW2WQMRosp3MMP0zUs1LmPTIktGI0wkHwK8P92FCGOXoMgnPpjAIrN+FzvFIwWU/+afk++pP15eQlGi2PsCUD22bb5+Yt+bvG0vVMa83bpzReGLlu6QDrsi/HeD2IbA3Rpc9r3YAAAAAAADHp7e3X33Xfr7rvv9rT+8OHDdfPNN+sd73hHzC0DAAAAAAAAAAAAAGRBTFVpAAC4CBKM5lbYE1RcgSNIlmNAUVzBVi7FkIHOa8QnRJFhXMENrvulQDGTshyMZrzOEbJXGHEFbla64tkv4hWoeD6C/rPX6x2BEUDjMQVsOF034uo7EfKRL2l/XiUPwWhxjD0ByD636xP93OKxLKl9nvOyra9IG55ItDlvCXsPctuesSIAAAAAQLaMHTtWTU3+vjs4/vjj9fDDD+vss8+OqVUAAAAAAAAAAAAAgKzhjX4AQPICFcMSjAaDkkN3xlOwVYBzyq2gn/MpW8IU3ccVjOZ2zqUdEgBnfgI/kmYZzifOpeKo9sazX9cwEGRXgP+3o7ifeQ2CMF2TABSXsZ/kcO2JLRiNcOp8Sbmf2rQrGG3nDpeVuJ8BDcltTM9p3BH5N+Vc6bkvOPclli6Qxs+I8eAxhZS5PZMFCtoGAAAAACA+Z511ltasWaN77rlHjz32mBYtWqQVK1Zo48aN6urq0vDhw7XnnnvqgAMO0AknnKDTTjtNxx9/fNrNBgAAAAAAAAAAAAAkjDf6AQDJC1K8HEfYQpUgq0JwCuyIKxjNrRiSovxsCRUOFVMwmut5SYFiJpn+v44tPM8PUxs4lwojrsDNSlc8+0W80goW9hpmVOkOfywAOeMnGC2mvhOBsPmS9ue1Oxit4hKMZscUTAsg29yevbwGBSNfhu8tTTpVeuPXQ5et+Kl09Hfeum8kJuzzm9v2jBUBAAAAALJn3LhxOvfcc3Xuueem3RQAAAAAAAAAAAAAQEZloaIfANBoAgVIxRCMFlfgCJIVNBgtSNieWzgIQXsZE6LgL7bQK5dzLu2QADgzBqN5DAqKk+kaxrlUHLEFo3XGs1/EK8j/21EEC3sNguC8AhqP8brkFIwWU9+JcOp8Sbuf2h+M5nLP2rk9mbYAyBa3MT23H0lAvrXPdZ7f+6a06q4YDxxTSJnr8x/BaAAAAAAAAAAAAAAAAAAAAADyh2A0AEDyghQvRxHsUIsgq4JwKq720sUJEozmUgxp9/rfH+ITpug+rmA0ChTzx3QeZSEYzXid41wqBLsaX3hIpSue/SJegYLRIrifeQ2CIBgNaDzGfhLBaDDJSDBa03DzOgSjAY3JLZTaa1Aw8mfyGVLzWOdlSzuSbYsUwfcfLs9/aYeTAgAAAAAAAAAAAAAAAAAAAEAABKMBAJIXqBAnhmA0t6I35IdTUbOnIJAA51R5hHlZ7xb/+0N8QgWjxRh6ZTo3KVDMJlPYRlzheX6YCmY5l4ohzqAXAqxyKqX+s9d7IucV0Hj89JPi6jv1bIxnv4hH2v3U0q5gtGn/al6nSuA50JDcfjyDYLTiamqVppzjvGz1vdKON5JtT1j8IAMAAAAAAAAAAAAAAAAAAACAgslART8AoOEECvuIIRjNregN2dI82rysZezQeV4K712LxUzHGifjudi11v/+EKMwwWhxdpEJs8oVY+BHjOF5npnOU4pdCyHOUI5KV3z7RnzSChZ26mc5IRgNaECG65JjMFpMfaeu1fHsF/FI+5mnaVcw2rgZ5nXSbiOAdLj9eEaJYLRCmzrXeb5dlZb/OJ5j2qZxm7DPby7bG48J/D/27jxejqrO//+7+y5JLiEJkIUlkIWwRnYYFtkRdBgEv1+ZEXAUZpRBdBzUUb8wuMCMgqM/BxzRr8go4AiI4yiRr05QJICIgIQlskbMiiRkD1lu7tb1++Nyk7vUOV3bqTrV/Xo+Hnk86KquqqN1uuqc6vt5NwAAAAAAAAAAAAAAAAAAAOAvgtEAAPlLEoyWJMSqbjscho4gW6bi5AM+Hr7cVeF9tUUaNTF8HcFofklV8OdwiGwMXaNA0U+mwA8PgtFM90XCHBqDrTA/LQKsSirBfSKLoM/xs6O9j8A9oPmYxhxh4yRXY6fOFW72CzeKHqcOBKO1tEtH/bvhTczLgKZkm39VCEZraLv9mTTuwPB1i28rWaCY7fuTMv3vAAAAAAAAAAAAAAAAAAAAAIB+BKMBAPKXJBjNWtiTUM1h6AiyVTOE2O3+NsMGUYY4CfvU6MnhywlG80yKovssgmTMOw9fXHRIAMLVDPcrp30kKkL2GlYQSEvudLd/gtHKKdF9IoPxc7VNat+1/vvoV+Xy2n3SEx+S5n9MWv1o/fe/Okd67APS/I9La55w3z6Ug/G6FDZGcTR26l4v9XW52Tcc8CQYTZJ2mh7+HuZlQHOyPSOuEozW0CoVacbF4es2viCtm+/goKbnNinnb7YflilVwBsAAAAAAAAAAAAAAAAAAAAA9POhoh8A0GyKCnYYLiAYrTRM56raFr48SmiRrVjMxhSM1kUwmlfSFLS7DL0y7psCRS+ZgjwrLfm2I7QNhOw1rGf/Sfrd5e7237fN3b7hTpLPdtKxznB7vL3+ewhGK4+F35QefIf0ys3Sy1+T7j9FWn6P+f0v/Kv08LukRd+VXr5R+sWx0qv35tde+Mt0XQob77ocO21b6W7fyFbR49TBwWjGeyRjaaAp2Z4RVwhGa3gz3md+Xrf49nzbkopt/sdzRwAAAAAAAAAAAAAAAAAAAADlQzAaACB/pqAZm6yCHQar9WS/T2QvCMx9Jk0wWtKwvVGTwpdvIxjNL2kK/lwOkQ37LjokAAamwA8fgtEI2WtIXWulF7/s9hi1bqmWYCyGgiW5T2R0P6u2139PL8FopVDrlRZ8ZuiyoFf6/efC39+3Tfr9tSOXP3yutPHF7NuHkokRjFZ1GYy22t2+ka2i5zzVUYNfhL+n6DYCKIbtGbEP83+41bGXNOVt4euW3Cn1dWV8QEfPbWzPw7m/AQAAAAAAAAAAAAAAAAAAACghgtEAAPlLEoyWNMTKhmC0crAWJ7YalrsMRpsYvrx7fbL9wY00BX+R+k/SfRv6HQWKfjLdr7wojKYvNaTF38/nHNa2uT8GspWkX2QVLNwyqv576FPlsOrh8DHrht9LnStHLv/TvVKfIfTu0Yv6A4zRvIzXpZCxtGnelgXm9SVSdDDaoKBP05yPsTTQnGqW4KuW0fm1A8WZeUn48u510ms/y6cNqedvtu0ZtwMAAAAAAAAAAAAAAAAAAAAoH4LRAAD5S1RoGlLY85bPpmsHAQ7lEPSa11XbTCvq7zdpsVnVEA5Ss7QT+fM1GM3YNylQ9JIxyNODaZSxn9KXSm3jc/kch3tW+WQ1fk5icJCMSa8hPAt+6fyTeV3PGyOXbVlmfv/6Z6TVv0nfJpSXMUA252C0osO2EF3RoWPVQf2QsTSAwfosz4gJRmsOU98ltY0LX7fotmyP5SxcmGA0AAAAAAAAAAAAAAAAAAAAAI3Fg4p+AEDzSVAMGxZiNe0iqW18+Punv6/+Pm1Fb/BHrce8zhSMVmlx0xZpaDH1YLYAN+QvVdG9wyGyKZCv6JAAhDOdF5fXmMjoS0iBe1b5JPlsZxX0GSUYrY9gtFKwhVOFhVzVu9+9/LV07UG5GcdJIdce0xwqk3aYgmzhnaLHqZUIwWhFtxFAMUzPiCtVx+Ge8EbrGGmf94Sve+3nUufrOTQiZbC17UdAnIWxAQAAAAAAAAAAAAAAAAAAAIA7BKMBAPKXqNA0pLBn/IHS6fdLU9+1Y1nrTtLsz0jHfbf+LglGKwdbeIupODFSEEjCYjNTGBshM55JUfCXVZBMKNO+KVD0kiloo+pBMJqxn9KXyi1lIXRUNe5Z5ZPks51RfyIYrXHYgs5Cg9HqBIFsfiVde1ByMQJkXYbKEIxWIgWHjg0J6DONpQlGA5qS6RlxdbQ9bAqNZebF4cuDPmnpnRkeyNVzG1tf5VkRAAAAAAAAAAAAAAAAAAAAgPLhp84BAPnLKhhNknY7Wjr5J8naQTBaOdR6zOtMIWW20Icdb0rUHGNRPyEzfkl0nXmTy2A0077TtBfuGIM2fMiXNlzD6EuIgjDP8kny2c7qflYdVf89BKOVg22MXOsaucw01h4QELDQ1EzXpbBrT9VlMBpjn9Io+lwNnsubgo6KbiOAYpieEbeMzrcdKNbEE6Sxs8LDfxfdLh34cccNSBvCRzAaAAAAAAAAAAAAAAAAAAAAgMbiQ0U/AKDpJAl2SFsYFNaMkOJ/+McWjGYKKYsSjJa0T5mOSciMZ3wNRjP1OwrwvWQKRosUvuiYsZ9S7FpqLsY7YbhnlVCGwcJxtbTXfw+Bw+Vgu3+FncN6YVY+3A9RHGOAVMgYxTSHyqQdpiBbeKfo0LEh/dAy5yP0EWg+BKNB6p+Pz7w4fN2GZ6X1z2R0IEf3GdvzzKLvwQAAAAAAAAAAAAAAAAAAAACQAMFoAID8JSpcdhAUQoBDOdjCW6pt4csjhTQk7FOmgIgaITNeSVXw53KIbNg3xfd+MvUjL4JgDNcwil0RBfes8kn02c5o/FyNEozWmc2x4JYtfDFsblQvzMplmCz8ZxwnEYwGg6LHqYPn8oTHABisRjAa3jTjfeZ1i253e+y0QenW7XnuCAAAAAAAAAAAAAAAAAAAAKB8qGAEAOSvyGCHwQhGK4daj3mdMRgtyhAnYZ8yFfXbAtxQgBQFfy5DPkxFihTf+8kUtOFDEIyxDRS7IgLbvRV+SnKfyOpaFTUYjZBP/9lCEZMEo7mYo6E84oyTTOHSmbSDcXR5FHyuKhGD0RhPA83H9IyYYLTms9M0acrp4euW3OH5XNoyNmeuBgAAAAAAAAAAAAAAAAAAAKCEPKjoBwA0nUTBDgSjNS1bwZkprKHS4qYtkrmon2A0v6QJSHAaekWYVakYAz8cXmMiI2QPKXDPKqECx8/VUdHeV+vK5nhwxzauDpsb1Q2z4p7T3EznP2S8WzdkLwXTeA3+KXqcOuSaZpnzFd1OAPkzPSOuEozWlGZcHL68a7X02v+k378xpCzt/M22Pc8dAQAAAAAAAAAAAAAAAAAAAJQPwWgAgPwlKjIlGK1p2cJbqm3hy6OEFiUNCzEV9dcImfFKqmJ2h0NkU+gaxfd+Mp0XH4LRjAF+FLuWm4PxThiC0cqnyPFztT3a+/o6szke3AliBqPVC4u1Ba2h8cUZJ9UN2UvTDoLRSqPoOc/gubz1eQBzM6DpmJ4RtxCM1pT2ebfUOjZ83eLb821LHNZ7G8+KAAAAAAAAAAAAAAAAAAAAAJSPw6o0AABMPAlGqxGMVgq2wIU0wWhJ+5SpqN8WNIECpCj4qxcCkoqp31F87yVT0IYPwWimvlR04ATiqfVJ6+ZL65+Wxh0g9W7O6bgEo5VPgvtaVvezyMFojK29Z/vsh82N6t1TCFlsbsZxUsi1xxQunUk7GPuUh0fBaLYwbPoU0HwIRsNgrTtJ+5wvLbpt5Lo/3St1rZVG7ZbiAK5CyizPugOC0RrS8nukZXdLLR3StPdIe5xVdIsAAAAAAAAAAAAAAAAAAACATBGMBgDIX5Ii04qDYDTCG8rBFoxmKrCPFASSsE+ZjknIjF/SFLO7DEYz7ZsCRf8EgYzFqk7D8yKiL5Vf7xbp1+dLK+bmf2zCjMon0X0to/FzS9RgtM5sjgd3bEG+YXMjU/DVAMa/zW3TK+HLQ4PRHIbK1uun8EfRgWODQ85t4/mi2wkgf6YfzyAYrXnNuCQ8GK3WIy25Szrg7x0cNOX8jXtbc3npa9JTH9vxetGt0nHflWZeUliTAAAAAAAAAAAAAAAAAAAAgKx5UNEPAGg6RQY7DNbXlf0+kT1beEu1LXx5lML7pGF7pmA0Qmb8kqrgz+UQ2dTvKFD0jq0PuQz3iIy+VHoLbyomFE0izKiMihw/VyMGo/USjOY9W+BwWLBd3WA0y/7Q+Fb/Onx5+64jlxGMBqn4UJZKxGA0UzgygMZl+vEMgtGa1+STpJ2mh69bfFu6fTsLtLfN/7i3NZRan/TctcMWBtLv/7n48RYAAAAAAAAAAAAAAAAAAACQIYLRAAAFSFCckTTEytoMQ9Eb/FLrNq8zFdhbi5zfNO7AZO2pGoLRCJnxTIoisCj9J+t9OyuKRGK2kA0fgtHoS+W39AfFHZswz/JJUtyc2f0s4jg8LFgLfrEGo4XMjer1O64lzatns/TGS+HrJp80chnBaJCKD+qoRgxGK7qdAPJnCkarjsq3HfBHpSrNuDh83br50obnHBwz7fcfBKM1jY2/l7rXj1y+ZbG08cX82wMAAAAgV8uWLdNnPvMZnXTSSZoyZYra29tVqVS2/7vtttuKbiIAAAAAAAAAAAAAAJkhGA0AkL9ERaYOgtFMRW/wS19X+PKW0ckLxqZdKLVPSLZtxRCMFlaMhOKkCYcqIhgtTZAb3LAGo/kwjTJd/+hLpbH+meKOTZhRCRU4fo46dicYzX+xg9HqBE5xLWlem18xr5v6rpHLXI6dCLEqkYLP1ZC5vO0eSZ8Cmo7pGXHL6HzbAb/MfL953eLbU+zYUUiZ7Tk5IfqNpWezed3mRfm1AwAAACiZ6dOnDwkQe/DBB4tuUmy33HKL9t9/f33xi1/UI488olWrVqmnx/LdDwAAAAAAAAAAAAAAJedDRT8AoNkkKVx2UUhNMFo51AznqToq+T6Puy35ttW28OV9W6Wudcn3i4ylKGZ3GnplKFIk0MFDlnNSacmvGcY2GPopxa7lYCtizcO2VcUeH/ElGj9nFSwc8brC2Np/QcbBaLagNTS2TX8IX15tl3Y+YORyp8Fodfop/FH0nGdwMJqtTxbdTgD5IxgNYcbOlCafHL5u8felWtYhwWnnb7bteVbUUFo7zOs6X5O2/kl68grplydKT35U2rIsv7YBAAAAcObnP/+5LrvsMnV1GX5ccpgHH3XGYEIAACAASURBVHxwSBDcNddc47aBAAAAAAAAAAAAAAA4QDAaACB/iYpMswp2GITwhnLoM/xRX5rixJb25NsOLqYe7g/fTL5fZCtVMbuD6832XZuG3xQoescWsuFDMJqxnxLkUApblro/xr4flFp3Cl/36HvdHx/ZSnRfy+qRT9RgtM6MjgdnbEFmocFodfpd5mEQKI1NfwxfPnamVA0ZJ7kcOxGMVh5FB44NmYsRjAZgENMz4irBaE1vxsXhy7etlFb8IuFOXT0DJBitadjGvxt+L91/irTw36XVv5EW3iTdf7LUuTK/9gEAAABw4qqrrlIw6EfSLrroIv3qV7/SwoULtXjx4u3/zj///AJbCQAAAAAAAAAAAABAtghGAwDkL1HhcoLinWP+r309wWjlYDpPaYLR0qhagtEWfDa/dsAuTTG709ArQ5Eixff+sQajeTCNMrUhoNi1FPIIRmsZI9W6zeu7N7pvAzKU4LNdySjoM+p1hWA0/9mC0WphwWh15m0BwWhNq3dz+PIxexo2cDl2YhxdHkUHow26L1rH84yngaYTNg6Sinv2CH/s85dSS0f4usW3Z3ustPM3272N546NxRZQ/YdvSJuHhRhvWSot+6HbNgEAAABw6uWXX9aCBQu2vz777LN1xx136PTTT9d+++2n6dOnb/83duzYAlsKAAAAAAAAAAAAAEC2PKjoBwA0nwSFOOufib/NXu+U2saZ1weWYAD4w1ScWB2VbzsGVCzBaPBHogDGN7kMvTLum+J779iKRp2G50VlKpil2LUUet5Itt2U06K/t2WMPQRp7ePJ2oBiJCpkzygYbcKh0d7X15XN8eCOLcgsLIy43njKdo1BYzP1pWpb+HLb2Gm3P0vZlhTjfuTLp1AWwmMADObbjzLAH207S3v/7/B1r94jda/Ptz1Wtvkfzx0bSpKA6vlXZN8OAAAAALl58sknh7w+//zzC2oJAAAAAAAAAAAAAAD5IhgNAJC/JEWmvVvib9Oxl3T6/eb1tQQFJMifKWSjqOLEKsFopZAqGM1h6JWpAJ/ie//Y+pAPwWjGvkSxayn0dSbbbqqhIDtMS50AUYI+SybBfSKrczxuP2ncQfXfVyMYzXu2ILMkwWhJCvLRGExzadN1xxZCdfRN0pE3SlNOl8bOTNAWgtFKw6s5jyU8xqt2AsgFwWiwmXlx+PJat7T07vj7Mz63SRlsXbHd23hW1FAIBgYAAACazuuvvz7k9dSpUwtqCQAAAAAAAAAAAAAA+SIYDQCQv0RFpgkLg3Y7Rjr5HkM7KOQvBVNxYrVO4IsrBMmUg6/BaKZrGcX3/rH2IR+mUab7In2pFGqGe5vNmb+Rdt43+vsrbfb1BH2WS5L7RJbn+IQ7pPZd7e8xjdngD2swWkhgY71+F/QRstCsTHNp03XHFoxWaZEOvEI641fSyT9N0BjGPuXh0bmy9Umf2gkgHwSjwWbyaVLH3uHrFt2Wa1PsbN+fMGZvKHyvBQAAADSdzZs3D3nd1lbne2AAAAAAAAAAAAAAABoEldAAgAIkKDKtJAxGk8xBVjUKSErBt+JEgtHKIU3QmLVIPiXjvilQ9I4tGM1peF5Epr5EQE05xA2QOuEOadIJ0opfRN+mWucP4rmflUuS+1qW53jXI6RzF0mrHpQeflf4e2pd2R0PbliD0UKuS1GCZoM+rifNyDSXNvUF29hp8JgmyTg8TSAy8uVTGLStr/nUTgD58O3ZI/xSbZFmvE96/rqR69Y+Lr3xsjTugBg7dPTcxvr9Cc+KGgrfawEAAABeC4JATz31lF566SWtWrVKXV1dmjRpkvbaay+deOKJGjt2bOx91mo8swQAAAAAAAAAAAAANCcqFwEA+UtSZJqm2NlUnB1QQFIKppCNoooTqwyfSiHVNcNl6JWhSJHie//YzknVg2A0U19KEj6K/MUNRhsYy8QJjKl3v3IZAonsJblPZD1maR8vTT1Pmni8tOa3I9f3EYzmvcBBMFqth/FxMzLNpY3BaLZ7zqAxDcFojc2rOQ/BaAAGqRnmZ1WC0fCmGReHB6NJ0qLbpcMN62JJ8cMwkuz3NoLRGgrfawEAAABeWrNmja677jp9//vf1+rVq0Pf097ertNPP13XXHONjj32WOO+lixZohkzZhjXn3baaaHLb731Vv3N3/xN6Lprr71W1157rXGf8+bN06mnnmpcDwAAAAAAAAAAAABAEaiEBgDkL1EwWorCVFOhPgUk5WAKj6mOyrcdA0zF/vCLr8FoprAHiu/9Y+tDTsPzIjL2JYpdS6GvM977B8YycfpevftVjXFQuSS4T7gas5jGYHED/5C/WsxgtCj9jjlVczKdd2NInuUR9JAxTZJgNMbRpeHTubKG8DGeBpqOaRxb1I8ywD/j9u8PiA6z+HtSLc5zSEf3mYotWM2jezDSIxgYAAAA8M4999yjmTNn6oYbbjCGoklSd3e35s6dq+OOO06XXXaZenv5jgUAAAAAAAAAAAAAABuSPQAA+cu7GNYUChHU+v9ZC2JRuFpX+PKiihONxf5vCoI6hWjIRaoCMZfXBNO+Kb73jrUPeXDfMF1nfAqcgFncAKntY5kYfa9eKBZhRuWSJPSw3pglKdMYzDRmgz9swWi1kOtSlIAHriXNyRSuabr3WIM9B93bkszNCYYoEZ/GqZY5O+NpoPn0efbsEX6aeYm05rcjl3f+SXr9AWmPM9PtP/XzZNu9jeeODYWgewAAgGzUeqWtrxbdiubQMdXdd1Ye+O53v6tLL71UtdrQ54r77ruvDj74YHV0dGjZsmV64okn1Ne343n2t7/9bS1btkz33nuvWlsb9/8fAAAAAAAAAAAAAADS4Bt1AEABci4ytf2BXdBHMJrvTOExRRUnRgmaqbTl0xaYpQlIsAY3pESYVXnYzonLPhIZIXulljQYLU7fq9a5FxFmVDIJ7hP1xixJtYwKX24KlIA/bMFoYdelKOMp2z7RuEz3ENPc2zbnHjw+Jhitsfk057H1NZ/aCSAfYQGxEsFoGGqfv5Ke/IfwQOhFt0UPRnMWUmYLVuNZUUPheQ4AAEA2tr4q/XRG0a1oDuculsZOL7oVTjzzzDO6/PLLh4SiHX744frGN76hE044Ych7V69erc9+9rO6+eabty+bO3euPve5z+m6664b8t6pU6dq8eLF21/feOON+trXvrb99V133aXjjjtuRHsmTpyoU089VZL02GOP6cILL9y+7oorrtDHPvYx4/+W3Xffvc7/WgAAAAAAAAAAAAAA8kcwGgAgf3kXmdpCIWq99YNDUCxjMJohlMO1eiEjfdvoU15IcZ1xGnpFmFVp2EI2fAhGI2Sv3Po6471/IGgmTmBMvV9er1FIWypJPtuuxiNVwxgsLCAAfrEV0IeOuSP0O64lzcl03k1zJevYadC9LVEwGmOf0vDpXFn7mkftBOBerc8c9EowGgZrnyDt/b+kpT8Yue7Vn0jdG6X28SkOYAs2i7K5ZXtnYWwoBMHAAAAAgDc+8IEPqLu7e/vrE088Uffdd586OjpGvHfSpEn61re+pVmzZulTn/rU9uX/+q//qgsvvFCHHHLI9mWtra2aPn369tcTJkwYsq/dd999yPrBxo4dK0lasmTJkOUTJkwwbgMAAAAAAAAAAAAAgK8SVJsBAJBS3sWwtmAQWzgA/GAK2agWVJxYL2TEFOSGfNVSFIglCWSIvG/CrErDGozmwzSKkL1Si3uvqBfKmWQbxkDlkuQ+kaTfRGEKRmMM5D9T6IcUfv6iFNxzLWlOpvNuDEaLOnZKEoxGMER5+DTnsfQ15mYok84V0jP/JN13vDT3z6SXv04AUly2cN+inj3CXzMuDl/e1ykt+6+IO3H1GbUFq3FdaCiEUwMAAABemDdvnp566qntr8eNG6e77747NBRtsE9+8pM655xztr+u1Wq64YYbnLUTAAAAAAAAAAAAAIAy86GiHwDQbPIuXLaFQlDI7z9TyEaLIZTDNVvQnkQoiC/SXGcqLdm1YwTT8Jvie+/YAhGc9pGICNkrt7j3ioFQzjjb1QvFopC2ZDwKRmsxBETYQiXgB2swWufIZVHGU7Z9onGZ5tHGuZLtEfSg61uS8FmC0crDp3Gqta8RHoMS2LxYeuJyac4M6YXrpbWPSet+J83/B+n5LxbdunKxzbFM4140r93PlMbsGb5u8e0pd24LNouyOfe2psF3WgAAAIAXbr996DzwIx/5iPbc0zBnHOZLX/rSkNd33XWXurr4ng0AAAAAAAAAAAAAgOEIRgMAFCDnYlhbKASF/P4zBqMVVJxYL2SEYDQ/+BqMZipSDChQ9I6tD/kQjGacytGXSiHuvWLg3hMWXGQyEKZmQiFtuSQJk6kX5pqUKZy2j4IN7wW2YLRtI8cjUcZTXEuakylc0zRXqlrGTkHaYDSPwrZg59W5soTPeNVOYJiNL0iPvl+6dz/plW+FB9Mu/DrPGOIgGA1xVFuk6X8dvm71I9KmV/JtzxDc25pG0ufe9AMAAAAgU4888siQ13/914b5YojZs2fryCOP3P5627Ztmj9/fmZtAwAAAAAAAAAAAACgURCMBgDIX94FGLZQCFNBN/wRVuQpSVVDKIdr9YLRagSj+SHFdcZpMJqhSJHCNP9Yg9E8mEbRl8otTsCZtGMsEysYrd79ijFQqST5bNcbsyRlGoMRDus/ayh0MHJ9lH7HtaQ5mQLxjPcey9hpyJgrSTBaikBk5MyjcaptPM94Gj5aN1/69buln71FWvKf9mvftlXStpX5ta3sbM/xCEZDmJkXm9ct/l6EHRiCC03PeSKzbU9YYkNJGk5NmDkAAACQmfXr1+uPf/zj9tcTJkzQQQcdFGsfJ5xwwpDXv/vd7zJpGwAAAAAAAAAAAAAAjcRRlSwAABZ5F5naQiGSFpEgP6YAh2p7vu3Yftw6wydCQfyQJiDBaeiVad8UKHrHdq9yGZ4XGX2p1OKGaA6MZcbF+IP6eqFYjIFKJsFnu96YJSlTQIQpzBb+sAajqf/a1DJojB1lPBXU2ScakykQz3TvsY2dBo+5kozDCUYrD58Cx6x9zaN2Aqselp6/TlpxX7ztfPq8+c72HI9gNIQZf7C06zHSupCC9UW3S4dcU0ygvi1YLeBZUUNJGk5d2yZpTKZNAQAAKLWOqdK5i4tuRXPomFp0CzK3evXqIa/3228/VWIGXh944IFDXq9atSp1uwAAAAAAAAAAAAAAaDQEowEACpBzcZ4tFIJQEP+ZCt2LCiaqFzRDMJofUgWjOexbpj+GpWjZP7Y+5EMwGn2p3OLeKwbGMuMPlnaaJm1ZGmGbNvt6xkDlkuSzXanTB5KqjgpfTjCa/+oFo/Vtk9rG7XgdZTyVtCgf5Wa6hxiD0SzhIIP7WaJgNMY+peHTubL2SY/aieYUBNKKuf2BaKsfSbgP+nFkq35tXkcwGkxmXhwejLZ1mbTqIWnKaeZtnYWU2QrwCUZrKL2bEm7XKbXvkm1bAAAAyqzaKo2dXnQrUFLr168f8nr8+PGx9zF8m3Xr1qVqEwAAAAAAAAAAAAAAjaiAn6wGADS9vIvzbEFWFPL7z7tgtDrHJRjNDzVPg9GMw2+Klr3jezCasS9R7FoKfZ3x3j8wlqlUpONuj7eNCWOgckkyfraFA6fRYghG6yMYzXtBhGC0Ie+P0O8IWWxOpvNuuu5EDaFKFIyWYtyPfHkV1EQwGjxU65OW/Uiae5T04NnJQ9H6d5ZZsxreyzea11UJRoPBtAukanv4ukUR5+wj2ILN0m7Ps6KG8uzVybar8b0FAAAAkJVgWOh1xfSjZjFksQ8AAAAAAAAAAAAAABoNwWgAgPz5FIxGIb//TMEtrsI+6qm22dcTjOaHNAEJSQIZ0u47oEDRP5Z7lcs+EpXpD6MJciiHuPeKwfeeKaf0F2HX3abOfZIxUMkk+GzXC8dLqmoKRmMM5L1a3GC0COOpevtEYzLN0UzXnV0ON+9r530HvSAYrbF5NE61FhkyN0POaj39QUo/f4v0yF9K659Ov0/mhdH1bDKvq/cMEM1r1G7SXu8MX7f8R1LPZsvGju4zUYNoUW7b1iTfljk7AAAAkJldd911yOuNGzfG3sfwbXbZZZdUbQIAAAAAAAAAAAAAoBF5UNEPAGg6SQpxJr01+fFswSCmgm74w1ToXmnJtx0DWkZJE08wr69RYOSHFAV/TvuWqQCfAkXv2EI2fAhGM07lCHIohbhBQsODZsbuG/6+4dsc9sXs2oBiJRk/uwqRbRkdvrzW5eZ4yE69uU+SYDRCFpuT6bybrjsdU6Vdjx65fNKJ/cEiAxKNsRhHl0aRoSxHfGXYAsJj4IHeTmnhN6V795Meu0R646Xo2044VDriq+b19OPo2nY2r7OGKKLpzbwkfHnvFmn5fyfYYcr+VqmYn2nWutPtG/74073JtyUYDQAAAMjMpEmThrxeuHBh7H28/PLLQ15Pnjw5VZsAAAAAAAAAAAAAAGhEPlT0AwCaToLivFkfSn644WEig1HI7z/TObKdV9cOu868jgIjP0QJ8jBxGYxmCnsICLPyjm+hjMOZCrQpgC+HuOOP4UEzpmCqIdu0Sfu8J7s2oFhJPtuuxkoto8KX9xGM5r2gTiBikmA0gqabk+m82647J9wpdey94/VO06Xj/3PY9gkeVacZ9yNfRY5TZ/7N0Ne2vsZ4Gq71bJJe+LL00xnSkx+RtiyNvu1ux0mn3Cv9+TPStL+yvJFnDJGZnuPN+rt824Hy2ePt0mhD0fqi2ywbOvx8towJX97X6e6YyFeac8ncDQAAAMjMLrvson333fFDVhs2bNCLL74Yax+PPvrokNfHHHNMJm0bUCHwHQAAAAAAAAAAAADQAAhGAwDkz1RkOuFQadoFI5dP/2tp2oXJjzc8TGQwikH852M40ZRTzOsIRvNDqmA0l0Nk0x+fUnzvnZrp2uPJFMrYDgrgSyHu+GN40EyUYLRKq7TzvuaQGsZAJZPgPmEbA6dRNQSj1RgDea9WLxhtWJF9lHAgQhabU5Lw6nH7Se98RXrbw9KZj0jvXCiNnT7sTQSjNbYC5zyjdhv62jqmZ24GR7rWSgs+L82ZJj3zf6Rtr0ffdve3SWc8IJ31qLTXOW8GZRPwlwnTc7zJp+baDJRQta3/e4swqx6UNi+Jt78sCtZNwWi9BKM1jDT9hLkbAAAAkKkTTzxxyOs77rgj8rYvvvii5s+fv/316NGjddRRR2XWNkkaNWro93ldXfzAEQAAAAAAAAAAAACgfDyp6gcANBVTcV61XTrhDumsx6UDruj/946npONvl6opQrBsxdkUg/jPFNziKuwjqvGzw5cTjOaHVMFoDkP3TAX4FC17yHBOigxlHMJQCElfKoe4448RwWiGYufBBu6Tuxr+iJ4xULkk+WzbxsBptHaEL6fY3n91g9GGjWOjjKfq7RONyXQPqTdHa2mXJp8kTXprf5jIcEkCaAlGKw+vxqkESiFHnSukpz7ZH4j23D9L3eujbzv1POmsx6TTfylNOW1oII7tmkk/js70HC9KGDUw42LzusXfC18eOAy0N83Vhgcgo8RS/GkHz4EAAACATL3//e8f8vqmm27SypUrI2171VVXDXl9wQUXjAgyS2vChAlDXq9YsSLT/QMAAAAAAAAAAAAAkAeC0QAA+TMVLleq/f8m/pl01I39/3Y9Illx9JD9EoxWasb+UnA4kalAkmA0P5QtGE0OiyKRjK/XngH0pXIzhX6aDA+aiVKkPzD+MYXUxG0DCpbgsx0WOpQFUzBf31Y3x0N26oWY1RIEozGfak6me0jaQMZEwWiE/5SGT+eqYggZlsR4GpnZvFh64nJpzgzppa9KvVuibVepStMuks5eIJ18jzTxWPP7jDz6vPlu+PhnAMFoiGKXQ6Vdjghft/j2mCFotntTRMzVGp91DFMHz4EAAACATJ1++uk6/PDDt7/euHGjLrzwQnV22sOpb7jhBs2ZM2f760qloo9//OOZt2/mzJlqb2/f/nrevHnq6eHHbgAAAAAAAAAAAAAA5ZKyWg0AUlj3tNS9tv+/BxeI7DRdGrdfIU1CXkzFeY7yOm2FghSD+M/XcCKC0fyWqujeZXawoXjNp5AA9DOGwfiSLU1fKrW4QULDg2ZMxc6DDYRiVQzhWIQZlUuSz3bagCKTlo7w5UFff/CWq0A2pBfUKXgZPo6N0u+YTzUn0z3EFMYZWZJgtBSByMiZT+NUS6gI42mktfEF6fkvSUvvjHeNqrZJMy6RDv60tPOsKBuYV9GPowkC83M8gtEQ1YyLpfVPj1y+eZG0+hFp8kn5tcUYjGYvykeT4DkQAAAAMMTKlSu1ZMmSRNtOnz5dkvSd73xHxx9/vLq7uyVJDz74oE466SR94xvf0LHHDg27X7NmjT7/+c/rm9/85pDln/70p3XooYcmaodNe3u73vrWt2revHmSpGXLluncc8/Vhz70Ie23337q6Bj6fd/uu++u0aN5HgIAAAAAAAAAAAAA8AvBaACK88yV0spfjFx+8JXS4dfn3x7kx1ScV3UUdFWp9AdDhBV+UAziP9M5chX2EVXV8AeBNYLRvJAmIMHVtUgyBzUODgiFH0z3qqJDGQcYQz/pS6UQd/wxPGgqSpH+wH3SFFLDGKhcfApGazUEo0lS71apfbyb4yK9WtxgtAjjqXr7RGMyBeKlve7YQs1NCEYrD5+CmioV9YejhYydfWonymXdfOn566TlP1GseVnLGGnWZdJB/yh1TI2+XYWAv9Rq3eZ1pud+wHDTL5Ke/mT4HHvx7SHBaKbrg+UzHZUpGK2XYLSGkSaYmlBrAAAAYIgLL7ww8bbBm3/fceSRR+qmm27Shz70IdVq/c9j5s+fr+OOO06zZs3S7NmzNXr0aC1fvlxPPPGEenuHjsvPPPNM/cu//Evy/xF1fOITn9gejCZJc+fO1dy5c0PfO2/ePJ166qnO2gIAAAAAAAAAAAAAQBIJqs0AAEjJWJzn8LY0PFBkAMUg/jMVuhcdTmQKpRkeKIFipAlIcNq3TEWOFC17x9SHXAbnxWLoSxTAl0Pc8cfwoJkoRfoDgWimkBrGQOWS5LNtCsVLy1RsL0l9W90cE9lwEYxGyGJzchVebQv5MbaFsU9p+HaujEF8nrUT/lv1sDTvHdLco6XlP1bkULS28dLsq6XzlkpH3RAvFE2qEyZJP47E9gwvShg1IEmjJ0l7/UX4uqU/7A+PzotprtZHMFrDSPPdA3M3AAAAwIlLL71Ud999t8aOHTtk+SuvvKI5c+bo7rvv1qOPPjoiFO1v//Zv9bOf/UxtbYa/Z8vAOeecoy984QtqafHlbxwAAAAAAAAAAAAAAIiHYDQAQP5MxbDWgr6UTAXaFIP4zxTc4irsIyqC0fyWJhjN5RDZdJ3zLSQA/oYyDjDeMyMW4aM4QU2xz9Pw891qCabavk2dYDTGQCWT4D6RNqDIpLXDvC7Pon/EE+XaM2IcG6HfcS1pTqbzXsQcLdW4H7nybc7D3AxpBIH02v9IvzxJuv8UacV90bcdNUk67Lr+QLTDvtAfqpSI5dkF/TgagtGQlRkXhy/v3SQt/8mwhQ6f2xCM1vhqKb57qBeUDQAAACCx888/X3/84x91xRVXaOLEicb3tbW16ayzztJvfvMbfec733Eaijbg6quv1oIFC3TllVfq5JNP1u67764xYyJ81wwAAAAAAAAAAAAAgAcKThQBgDAEejS+AoLRTAXaFPL7z9dwIoLR/JamCNhl3yLMqjyMfciXbOlK+GIK4P1nCvw0qbRKlWHnuxqhSL/65h/Sm8ZAcduBYiX5bLsKKGqxBKNRcO+vKEXww4vsaxECpyiub06me4irQEYbgtFKxLdxqmk8zdwMFrU+6dWfSM9fJ61/Ot62HVOlgz4l7ftBe9BsVLbnqMwLo7EFDBGMhjj2/Atp1G5S19qR6xbfLs14b/19DJ/3J2G6tjBPaxxpvnvguzAAAAA0uSVLljjd/+TJk3XjjTfq3/7t3zR//ny99NJLWr16tbq6ujRx4kRNnTpVJ554onbeeefY+77mmmt0zTXXJG7bwQcfrOuvvz7x9gAAAAAAAAAAAAAAFIVgNADFyaLQA+VURNiMqUCbUBD/mQp2iii6H4xgNL+lCUhwGrpHmFVp+BrKOICQvfKKW4gaFm4VpUh/4D5pul9SEFsuSe4TrsZKtiCP3q1ujon0ogSY9Q4LTIgynmI+1ZxM9xBXgYw2jKPLw7dzZRxPe9ZO+KHWIy25U3rhS9IbL8XbduwsafaV0vT3SS3t2bWJYLT0bM/wCEZDHC3t0rSLpIVfH7lu5f3SluXSTnv3v3YZwNkyJnw5wWjlEgTSxuekLUulSW+V2nfZsS7Ndw/M3QAAAIBcVKtVHXPMMTrmmGOKbgoAAAAAAAAAAAAAAKVHMBoAPwWB9OL/Jy3+Xn8AyT7nSwdfJVU9CSNBOqbiPFtBX1qmAm1CQfznazhR1VAgWSMYzQupgtFchjQSZlUavl57tiNkr7Tijj3Cwq1Mxc6DDYx9TGOgKCFJ8EiC+0S1LftmSPb+10cwmreCCJ/54ePYKOMp5lPNqXdL+PIiwqvTjPuRL+/GqYa5mXftRKF6O6VFt0ovfrk/oCaOCYdKs/9J2vt8R8+0bc8ueMYQCcFoyNLMS8KD0RRIS74vzb6qzg4y+CEh01yNAOvy6O2UHj5PWvnL/tfVNum426SeTdLax6RFtyXfN3M3AAAAAAAAAAAAAAAAAAAAlAzBaAD8EwTSgs9Jz39hx7INz0obfi+99QdSJYMCERSsgGA0U4F2jWIQrwWBudDdFPSSl1ZDoZmtqBL5SRWM5jL4ijCr0igixDMOQvbKK+7YIyzcKkqR/sDYxzQGoiC2XJLcJ1wFFFWqUnWUVOsauY6Ce39FCUMcMY6N0O8IWWw+G18wrytijkYw4LiqPwAAIABJREFUWol4NucxjaeZm0HqD6D5w7ekl74qbXs93ra7HSe95Wppz79w+xzbNjelH0fT12leZ/pBBMBklyOk8W+RNj43ct2i26SDr3zzmuDwuY0pGM3W1+GX57+4IxRN6p9vPfrebPbNcyAAAAAAAAAAAAAAAAAAAACUjCdV/QCakykcpk965f+OXL7sh9JL/+a2SciHsTivgGA0ikH8ZivkdBpeFYGpQJJgND/4GoxmKlxeMVfavNjdcRGfqQ8Vfe3ZjpC90oo79ggbw5iKnQcbCFQzhdQQDlsyCT7bLgOKWjvCl1Nw768kwWhRxlPMp5rPq/eY17kKZLRZMVda8Hlp5QP9wdrwl2/jVGOolGftRL661vZfU+ZMk575dLxQtClnSGc8IJ31qLTXOe5/3MMa2k0/jsT2DK9lVH7tQGOoVKSZl4Sv27RQWvt4vR2kb4PxhzyYp5XGwpvc7ZvnQAAAAAAAAAAAAAAAAAAAACgZgtEA+Gfbyv4itDBPf1Lq2Zxve5A9UzGstaAvJVMwBIX8frOFMRQdTtRCMJrX0hTdu7wWmYbfW5ZKP50p/ea90YJL4J7vwWimfupb4ARGiluIGjaGMd2DBhvoq4TDNoYkn22XAUWmcL6+re6OiXSSBKP1bIqwX64lTWfZf5nXFRGMJknP/bP0wBnS7y5nLOQz784NQcMYpHOF9NQn+wPRnvtnqXt99G2nnied9Zh0xv3SlNPcB6JtZ3l2QT+OpmtN+PJqu+NnQ2hY099rfm606LY3/8NhkKtxnkYwWmn0bHS375e+KnU73D8AAAAAAACA1Hr7Av36D4F+8Tw/CgYAAAAAAAAAgEQwGgAf1QsVeuPFfNoBd4xhMw5vS6YCbQr5/WYLbSmq6H4AwWh+s4Xq1eMy+KpegfTSO6WF33B3fMRQQIhnHMb7GsF63osbSBZ2riMFo1XN20vS0rvitQPFSvLZNgUDZ6GlI3x5L8Fo3oobjBYE0ron629DyGLz2bDAvK5W8FzolZulNb8ttg2w8CyoyTiup8igqWxeLD1xuTRnRn9gTO+WaNtVqtK0i6SzF0gn3yNNPNZtO01tMCEYLZqnPx2+PMp8CwgzZndpj3eEr1v6A/tz4yxCFY3Pq7vS7xvlt+kP0o8mSIu/X3RLAAAAAAAAAAyyaVug/54f6JJba9rjkzWd8pWarvox3/UAAAAAAAAAACARjAagUIZCj3qhQlEL1OAvU3Gey7AZUzAEhfx+s4VbuQyvisJUaFZ0GAD6+RqMFmX4/fLXHB4fkdVMIZ4FX3sGtIwKX16j2NV7WQSjVdujb28LxyLEqjySfLZdhsi2GoLR+uhT3opy7Rk8jt20MNp+CeRsPrsebV43aqK747buFO19K+931wYkFwT+BTWZnkH51k64sfFF6dH3S/fuJ73yrehjrWqbtO+l0jkvS2+9Q5pwiNt22lhDlOjHkfRuCl9OMBrSmHlx+PKejdKrc9weu8qzIkTw2/dJmxcV3QoAAAAAAAAAku55OtCkT9T0lzfX9L3fBlr7ZonE08ul5ev4QScAAAAAAAAAAAhGA+CfekUa9YLTUAKmYDSHYTOmYAgK+f1mC3CwBb1I0uFfDl9+0KeSt2cwU5Ek1yg/pApGczhEbokQZrRlibvjIzpTH/ImGM10DaLY1Xtxxx7VtpHLKpXo16q2ceZ1656M1xYUJ8lnO6zvZMVYcN/t7phIJ8q1Z/A4dv0z0fZL0HTzGTvLvG787PT7n3pe+PIDroi2fffG9G1A9lzfHw65NsFGBKM1pXXzpV+/W/rZbGnJf0Z/dtAyRjrgY9K5i6Rjvy3tbLkW5soQjkY/jsY0p9q2Kt92oLHs9U6pfZfwdYtu7w8LDWULO4yI59WIatmPim4BAAAAAAAAAElH7CN1G/7s4h/u4vseAAAAAAAAAAAIRgPgn3pF/xRxlJ+xOM/hbckUjEYhv99qlgLVeuFEU88dGdpRaZH2fnf6dklSlUIzr6UKRnMYfGXqN/CPMRjNkymUMZSIYDTv1WKOPVrGhC+f8X7zNnu8Y8d/736m+X29W+K1BcVJ8tkeNTn7dgwwBdTG7d/ITxAlGK1z0H9HHNNyzpuPbZydRSDjwVdKrWOHLtv/o1LHPtG2rzEf81KW8+Th/aw6Ktk83zSuJ1CqMa16WJr3Dmnu0dLyH0syBRMN0zZemn21dN5S6agbpI6pTpsZG/04HdO1afZn8m0HGkvLaGnaBeHrVt4ndb7m7tg8K0JUCz5XdAsAAAAAAAAASJq2W0WHGb5+mvOsVP27Ph16TZ8+cHtNP1sQqFaL+B0XAAAAAAAAAAANwpOqfgBNqVIJX16vWJLQofIzFee5DJshvKGcbEX3prC7AeMOkE65V9p5v/7XO02T3voDaeKx2bSthWA0r6UpAnYZjNZqCDiCh0z3Kof9Iw5TsSvXIP/FDWU13W+O+Ko08YTwdQdfueO/J51k3jf9pTzqhUeHGT0x+3YMIHS4fGpRgtG2hf+3TZTANTQW0+d8vw9ns/+Jx0ln/kY66JPS9PdKx39POuprUoth7DMc9zY/ZXVe2neVTvzRjnn+uAOlU/+fNP7gBDszPJc0zQNQPkEgvfY/0i9Pku4/RVpxX/RtR02SDruuPxDtsC9Ioye5a2caBKOlY7o2TXprvu1A45lxSfjyoCa9/qvwdabvy+IwjZcYH2E4X374AQAAAAAAAIDeeZj9+fBzr0m3/ibQO2+q6Yq7AwUB4WgAAAAAAAAAgOZRJ1EEAApQ79fr+XX7BlBAMBrhDeVkOz9Rwon2OFN650Kpe4PUNj6bArMBBKP5zRaqV4/La1ELwWilYepDvgSjmYpdGSf5L6tgtFG7Smc+Ir3+gPTs1dK6J6V9PyjNulTa9agd76u2SKMnS9tWjdwH96zyqHXHe/++H3TTjgHVtvDlhA77K3YwWmfE/XLOm47pPlYvuDqOXQ6VdvnK0GWmUNjhkgRJwr1aRmOOSlWaem7/v55NUtvO6fYVhkKC8gtq0vIfS89fJ61/Ot62HVOlgz7VP5Zq7XDTvkyZnl/Qj+sKauYxtmkOBkS12zH94Z1vvDRyncvgQuPzasZHGC7D70kAAAAAAAAApHLuYRV94WfRvtv5xrxAHzm1ogP3cNwoAAAAAAAAAAA8QTAaAP/UC/QgwKH8jMU/DsOIqoZbHoX8frOFW8UJJ2qfkL4tw5kKzWrb+gupswxhQ3ypgtEcBl9RXFse3gejUexaWnHHHrbrRqUi7X5G/z/rPgyhjFGDj1C8uKGHO89y044BhA6XT+xgtIjzbs5586kVNEYyhcIOl1UAF7KV1bO8wWFmaULRhu9rCIeBNXCr1iMtuVN64UvhYUQ2Y2dJs6+Upr9Paml30z4XjAF/9OO6bHNnnt0grUpFmnGx9OxV+R7XFCRLiD6G47sLAAAAAAAAwBtHTZMOmCK9/Hq09z+0MNCBe/CMDwAAAAAAAADQHBwm0ABAQvWKJQlGKz9TcZ6xKDUDhDeUk+38mMLu8mIqkgxq9CsfeBuMZggngn+KuFfFYSt2DaL9giQKEvcekcV1wxikx7i6NOKGHlYdhzmYxmGMgfzlKhgtyn7RWEyfc9fzM9PYZzjubX7K7LxkORYnUKph9HZKC78p3buf9Ngl8ULRJhwinXCXdM5L0r4fKFcomkTAXxq2IE2C0ZCFGe+L+QwpgyI24w95dHN/wzAUTQIAAAAAAAC+qFQq+p8roj9PXrvFYWMAAAAAAAAAAPCMJ1X9AJqT4Q/v6xVL2oqWUBIEoyGimiXcymV4VRS2IkmK8YuXptjPh2A0W99HPkzhekVfewa0WMJBCKnxWy1uMFoGRfmmkCzuV+VRixmM1uo4iNM0tub6468gwrkZPNeOOu9mPtV8jGMkx8FotrHPYNzb/JTVeclyLG56BkVwTHn0bJJe+Ir00xnSkx+RtiyNvu1ux0mn3Cv9+bPS9AukqifzvNjox4nZrkuuQ4bRHDr2kqa8Ld9j2oJka935tQP+8+WHHwAAAAAAAABIkqZPrOj1r1Y1fbf6712/1X17AAAAAAAAAADwheOKNQBIoK9O0T9FruVnKs5zWYxRNYU3UMjvNVvQguvC+3psRZJ926S2nfNrC0YyBTZE4vBaFDXgqNYlVTvctQP1+R6MZi123Sa1tOfXFsQTN0Qoi2A00z4IHC6PenOk4VyHOTC2Lp8o52bwXDvqvJtz3nxM9zHXYyTb2Gcwnhn5KbNgtCznaoYfbDCF+cMfXWull78uLfx3qXt9vG2nnCG95Wpp8qlSxdQHSoSAv+Rs16Us5mCAJM28RFr5i4hvzuCaZAuS7euib2OQBrgHAgAAAAAAAA1m0s4VLbq+RUvWBHpllfSub9a0NeQ3LzYQjAYAAAAAAAAAaCIEowHwT88G+3qKXMvPWJznMIzIFKIVN5wE+bKFWxUdTmQrJOM6Vbw0wWguQxpbxkR7X982qZVgtEIVca+Kw3oN6pLa8msKYoobIhT1upFkH72d6feNfNRiBqO5LnhnbF0+QU/99wwJRot4fYiyXzQW033MFJiYFYLRys3HYDQCpcqnc4X04lelV74l9W6Jt+3U86SDr5ImHuumbUUxfibox3URjIY8TH2X1DZO6nkjn+PVfV49Pp92oAQIRgMAAAAAAAB8NX1iRdMnSn99XEXffjgYsX7D1pHLAAAAAAAAAABoVASjAShQwj+8p8i1/EyBRS7DiExF2nHDSZAvW7iG68L7eghG81uqYDSHhWFxgtFQLOO9quBQxgG2cJC4AUrIV9zgqGoGRfmme1aNa00p1Pri39cIRsNwtQgBZrXu/v5WbYk+FmE+1XyMYyTH87OW9mjv497mp8zOSw7BaKKQwDubF0svfFladGu8uU6lKu1zgTT7SmnCIe7aVyjD8wsC/uojGA15aB0j7fMe6Y+31H9vFs8jeVaEqFx+FwcAAAAAAAAgExMMv6u7fmu+7QAAAAAAAAAAoEgEowEoHwo4ys9UnOeyGIPwhnKyhYAUHU5kK5KkGL94aYLRXIpaXEsfKp7vwWgtlmLXPsZKXos79siiKN+0D0IYy6HWHX8b12EOhA6XT5RgNKl/vl3tiH59YD7VfEzn3PUYyRb0MRj3Nj9ldV6yfG5k2heBUv7Y+KL0/PXS0jvjzfGrbdKMS6SDPy3tPMtZ87xAP06OYDTkZebF0YLRsmB9VsQYCYO4/GEQAAAAAAAAAJnYxRCMtoFgNAAAAAAAAABAEyEYDUD5UMDRAEzBaA4LqQlGK6eaLRit4GGMrUiS61TxfC0CbhkT7X30oeIVEeIZhy0chBBZv8UNjiIYDUk+067DHBhbl0/UYLS+bVJrjGC0qPtF4zDdx0yBiVmxBX0Mxr3NT5kFo2X53IhAKW+tmy89f520/CeSgujbtYyRZl0mHfSPUsdUZ83zCsFoydkC6aOGcQJRTDxBGjtL2vxKnTdmEFRVtf2QB8+KvBfEuOel5snzTQAAAAAAAABGpmC09QSjAQAAAAAAAACaCMFoAIqT9BfJKXItP2NxnsNijGpb+PI+CoK8ZgvXcBmkF4WtSJLrVPECS6hekaIG1dCHimfqQ0VfewYQzlhecYOjogYqJtlHX2f6fcO9JONV12EOpgAk+pS/ghjBaFL0c0kYXvMxjpEcP2aOel3rfM1tO5BMZsFoGT43Mj2XJFCqOKse7g9EW3FfvO3axkv7/710wBXS6Elu2uYt02ciz3CdklrzePjy6qjk31sAYSoVaebF0oLPuj+WLUiW70H8l+fzbK5zAAAAAAAAgPd26ago7DuftZulIAhU4TkfAAAAAAAAAKAJ8HPAAMqHsI/yMxWZZlngOpwpvGHpXVLN0wAl2IuBig4nqraai/+5ThXP22C0iAFH9KHieR+MRrFradXiBqNFDFRMsg+uNeVQSxKM1p59OwYzjYGW/1iqRQzgQr6inpfaQDBaxOtD3Gsays8Uhud6jBQn8HHjS+7agWR8DEYzfjVCMFqugkB67X+kX54k3X9KvFC0UZOkw66TzlsqHfaFJgxFk/kzQcCf3bY10rNXha+zzbWBpGa8X1K9ArUMCtgI0S+3XK/dFEwCAAAAAAAAvpsyLnz5G9ukVZvybQsAAAAAAAAAAEUhGA1A+fR1Ft0CpFZAMJopvEGS1j7h7rhIx1R0L/kRTkTQjL8IRkNaxhBPD649kj30aNvr+bUD8W14Nt77swhGqxr2sfy/pV7G1t574+X427gORqu2mdetesjtsZFM1GC0vpjBaFuWjly29TVp4TekJ/9Beu6L0hrmWw3FNEczhZFnJU5Qzas/cdcOJFPLan6T4XMj0zOo136e3TFgFtSkZT+S5h4lPXi2tPqR6Nt2TJWO+pp03hJp9lVS+3hnzfSe8VkqwWhWtgC+njfyaweax077SFNOc3+cSquMgVdJAreRsxyv3bVu6ZVbpF+eLP3XBOmZq7j+AQAAAAAAAJ45aA/zuhdey68dAAAAAAAAAAAUiWA0AOWzZXHRLUBam03nsKBgtJe+6u64SGfFL8KXV6pSxVDklSdTWE1mRd9IzNdgtDGWv1YZjBDQ4pn6kMsQzzgqVXMw0a//l/TGwnzbg2jWPim9+JV420QNVLTuwxKu9tA5Us3TayakjS9K886Kv12cAKEkbGPr5693e2wkEzcYLep4dusy6f7TpO4N/a9X/1b6f/tLT/69tPDr0oLPSL88Xvrjd+O3GX4y3TNch8dWY1zXTPNIFCer4Ocs+5lpXL/iPstzK6RW65EW3S79bLb0yF9K65+Ovu3YWdKx/yG984/SAf8gtXa4a2dpGPqxKegb/Tb9oegWoBnNuNj9MSoV81yQH2HwX57Ps7vXS0/8nbT611LPRumFL0n/NV56g+sjAAAAAAAA4ItJO1c0aefwdc+/FuTbGAAAAAAAAAAACuJJVT+A5pQw1OiNl/v/aB/lVOuRNiwIX+cybKZqCW947efujot0Xrk5fLktjCNPpqAZCs2K52swWtTCbYLRimcMRnMc+hGHLSBk/hX5tQPR/e7y+NvYQs0i78MSrvb6A9Lax9MfA268+OVk28UJEEq0f8tY7PUH3B4byQS90d43MI6NM55d9aD0+Af7//uJv5N6tww7dk166uNSX3f0fcJfpr7keo5mCoQNs+Y37tqBZDILRsvwuZGtz756T3bHQb/eTmnhN6V795Meu0R646Xo2044RDrhLumcl6R9PyC1tDtrZumYPhMEo9n5+swIjW2fd0utY83rs/oRkKrphzy6stk/3PHh2v3kR4puAQAAAAAAAIBB9p8cvnzlG/m2AwAAAAAAAACAohCMBqCc1v6u6BYgqQ3Pmde1jXN3XFvBqy8hWxipfdfw5TVPQhVMhWYEoxUvavjHcLuflW07wuz/9/XfU+tx3w7YGYPRPLpnmK6RkrT6kfzagWh6t0jr5sffbswe6Y9db4z1/PXpjwE3Ft2WbLs2S8F9Fny6FiKaqGOL7cFoMUNa//RTaetr0kbDfK/njWTXQPinqDFSnLCQKae7aweSyWp+k1cw2lOfyO44za5nk/TCV6SfzugPW9myNPq2ux0nnXKv9OfPStMvkKoehVT7wviZ8CBcx2e2Z0aTT86vHWgurTtJ+5zv/jgthpDsPoLRvOdDMNrKX0q9W4tuBQAAAAAAAIA37WR45NvrweNEAAAAAAAAAADyQDAagHJa83jRLUBS3evM6/b8c3fHrVoKXm3rUCxT8XSLIZAsb6Z2EIxWPFNgg02lKu3/4ezbMpwtzGpA0mA3ZMd0Dny6Z0w5zbyud7MUBPm1BfX1bJYU85yMntwfCJHWpBPs69c/lf4YKEZrSADaLkdK7bu4PS7BaOUTNZRo4P4Xdzxb65E2LLC/p29LvH3CT6YxUiWHwKKx+0Z7X8sYt+1AfJnNbzL8OsOncX0j6lorLbhGmjNNeubT0rbXo2875QzpjAeksx6V9jonXjBi0zF8JnwI1/GZ7ZnRnn+RXzvQfGZcYlmZ0bWuagpG43m195I8z3ahZ2PRLQAAAAAAAADwpjbD1/C9njxOBAAAAAAAAADANYLRABQnTVHbWoLRSstWkL/bMe6OawtvyKOAG8nUDAVbR30933aYEIzmr1rEwvsDPyFNOETa4x3SST+Wpp7ntl1StGC/qO2HO6Zz4FMY0BFftq+nGN4vpnvagNadhr4ePVk65WdSNYNxyq5H13kDYROltOc50qFfGLqs2iYdco37YxMmUz5BxGC0WsJgNKl+8BHjm8ZgOo95XBfe8rlo7+vrctsOxJfV57+S4dcZPo3rG0nnCunpT/UHoj13rdS9Pvq2e50rnfWYdMb9/SHQBKLVZ/r/iLmgne2adOAn8msHms/kk6Sdpoevq7ZncwzTc8ca4yPv+XLtZt4GAAAAAAAAeKPV8PVoD8FoAAAAAAAAAIAmQfUPgHJa+7gUBBTIlZGpWH54GEjWrMFo3A69ZQpkGDUx33aYEIzmr3rBHAOO/KrbdoSpjqr/nqjthzumc+BTGNDoydLbHpLuPyV8fdArifBPb/R2mte9a7nUvqu09AfSpoXSTtOkff5KGrVbNseuVKQJh0kbns1mf/DDPu+WZl4i7TxLevUeqXWsNO090sTj3B+b8XP52AKqBwtSBKPVC6NifNMYAsNfWOdxXWgdE+19BH/4J6vPf5bB9j6N6xvB5sXSC1+WFt0a7zNYqUr7XCDNvrI/tBzxGMMCPQnX8ZXpmjT1XVwb4FalKu37QWnBZ0auy+pHY1oMzx0JjvWfaZwtSQdfKb3wpXj7O+DjUuefpGU/jLcdY2kAAEaoVCozJB0uaU9JYyWtkLRU0qNBEPUXKZy0a1dJR0uaIWmC+n8FZ6OkVyX9LgiClUW1DQAAAEA2Wg1fj/byVRAAAAAAAAAAoEnwF/4AyqlrjbRlsTR2ZtEtQVymX5t3XURtK2qj4M1fpkCGlogF8a4Zg9Es4TdwL/D8rz5MBYqDERxSPNM58C0MqKXDvC7olRShvyEfNUvIUOtOUmuHtO/fuju+9d4ZuDsu3Km+OQ7Z6y/6/+V6bM+uhagvTjBarTfZWKR3S502ML5pCMYxUg5hrFXD/Gs4whz8k1kwmikEKsm+CBDOxMYXpeevl5beaQ90Ga7aJs24RDr40/0hr0jI8Jnw/blI0YoM+QQO+sf+oKoNC3Ysm3yytM97stm/abxkeyYBT1iu3XucFT8Ybe93SWNnxQ9G47sNAAC2q1Qq50v6hKTjDW9ZV6lU7pb0uSAI1uTUpoqk90j6iKQT67z3aUnfkvTdIODLZwAAAKCMWqsVhf1dV2+Mr+UAAAAAAAAAACgz/sofQIEq6TZf8zjBaGVk+nvLapvb49oK2yh681NQk2rd4etMgWR5MxWamQLdkA/fQzei9F/f/zc0g6KCPOOyBTrQj/xiuzdEDXpJw5d7J7JT5Dn17VqI+qIGo9V6k49lezfb11N71xhM44s8AhOjXveYj/knq3FppsFo3MtSWTdfev46aflPFCtkt2WMNOuy/mCgjqnOmtc0TJ+JgOBjqyJDPoGW0dLbH5de+Q9p8yvShEOkaRdJLe0Z7d8QkN9HcKz3bKGWSZ4bVUcle27AWBoAAFUqlbGSbpF0QZ237irpckn/u1KpXBwEwX2O27W7pDslnRZxkyMk3Szp7yqVygVBELzirHFAA9i6daueeuop/eEPf9CaNWu0bds2jRkzRlOmTNH++++vI444Qu3t2czdli1bpm9/+9t66KGHtHDhQq1fv149PTu+x7n11lt1ySWXhG77xBNP6NZbb9Wjjz6q5cuXa+PGjarVdswnFi9erOnTp0uSTj31VD300EPb1wU8MwIAoHTaDF9d9PIbOQAAAAAAAACAJkH1DwC/veVz0rL/kt54ceS6tU9I0y/Mv01Ix1SQ77og1VbYRtGbn2zFWr6Eu5jaUaN4qFCB5z+HVzUUKA5GcEjxjEGenk2hbO2hH/mlr9O8Lo/7WtX2h/opA4tRjJYxxR2bMJnyCSIGowUOg9EI7GwMprF2HvPqyMFoBH94J7NxaYbBaL6N68ti1a+l578orYhZ6902Ttr/o9IBV0ijJ7lpWzMyhgVSDWNlupdxXUBeWkZLB/y9m32bnjsSduU/2zPt1gTz/5bRBKMBAJBApVJpkXS3pLOHrVot6WlJGyXtq/7QsYEvV6ZImlOpVN4WBMEjjto1SdI8SQcOW9XzZruWqn8yOFXSUZIGDwSOkjSvUqmcGATBUhftA8qqr69PP/zhD3Xrrbdq3rx56u01P8ccPXq03v72t+uDH/ygzjnnnMTHvOWWW/TRj35UXV3xnmP39vbqwx/+sG655ZbExwYAAOXTagpG8/xPZAEAAAAAAAAAyAp/5Q/Abx17SROPNQejoXwKC5qxFARS9OanogNkojC1g+KhYvkeBtUSIRiN4JDimc6Bb2FAtvbQj/xiujdUR0mVHILJ8jgG8lXkeIjxc/lEvSfUepOH/PZssq/3fYyGaEznMY8xUtTrXo1gNO9kNS7NMoDPt3G9z4JAWjFXev46aXXM+u5Rk6QDPy7t92Gpfbyb9jU1QzBaQDCalXG+z49noAEYf8iD8ZH3bNfuKD+0EbZNku1s38sAANAcvqShoWg9kj4h6dtBEHQPLKxUKgdL+g9Jx7+5aJSkeyqVyiFBEKxw0K4bNTIU7VuSPh8EwarBCyuVygRJ/0fSp7Vj4jhV0s2S3uGgbUApPfDAA7r88su1cOHCSO/ftm2b5syZozlz5ujoo4/WzTffrCOPPDLWMX/+85/rsssuUxAEsdt79dVXE4oGAEATajF8FdTLV0EAAAAAAAAAgCZB9Q8Av43ZS9r1GGnRbSPXbV2We3OQgaKCZmxFuBTD+skWLkYwGmx8D92oRui/vv9vaAaFBXnGZLuH0Y/8Yro3eHFPi//H98hBvUCLIvsOoRHerce7AAAgAElEQVTlU+uJ9r6gN/lYtrdOMFrUNsBfQSAFhp+ezmOMFPW610fwh3eyGpdWDH/5n2hfno3rfRTUpOU/7g9EW/90vG07pkoHfUra94NSa4eb9sH8mSAYza7IkE/ANdMPMjA+8p9pnC0lm/+3jJKqLVK1Ld5cjO82AABNrFKpzJR0xbDFfxkEwZzh7w2C4IVKpXKGpF9pRzjabpI+L+lDGbdruqSLhi2+PgiCfwp7fxAEGyRdValU/iTp64NWvb1SqRwbBMHjWbYPKKNrr71W11577YiAskqlooMOOkhTp07VbrvtptWrV2vZsmUjwtOefPJJHX/88brpppt06aWXRj7uVVddNeSYF110kT7wgQ9o7733Vltb2/blEydOHLLd66+/rhtvvHH76/b2dl155ZU6++yzNWnSJFWrO54RTZ06NXJ7AACA/9oMf57Ta3mcCAAAAAAAAABAI+Gv/AEUqFL/LWP2lHoMxdW17vDl8FtRhWe2ohKK3vxUIxgNCdU8/6sPU4HiYLYwR+TDeL/yLAzIFkJCMJpf+jrDl7eMybcdKI9694Ii+w5hG+UTxAlGM1yv6undXH/fKDfbZz+PMVKUgGHJPpdEMYxj62q8e0qmwWiejet9UuuRltwpvfAl6Y2X4m07dpY0+0pp+vv0/7N35mGyVPXBfk9Vr9OzL3fnLqz3sgUVRcBEEIOiohE3EpKoMaJGE4ggBpMP8YoGUZOg0cQVEp+AfqhB9CPKoiiCiBiQ5V7gwl2469zZZ7qn16rz/XG6Z+mZ6mWmp7t67u99nn6661TVqV8tfc6p5byFHVqa+IRpPP8T0lYrSSMln4Kw1Hi1l6R95H9KtYmsBdSphXsXdrRKMdoCzwcFQRAEYXnwcSA4Y/jm+aRoBbTWSaXUu4AngEKF/R6l1A1a6501jOvCouF+4BMVzPcl4L3AqUV5iRhNOKK5/PLLufHGG2eltbW1cfXVV3PJJZewfv36OfM899xz3HzzzXzuc58jnTbi6Uwmw6WXXkoikeDyyy8vu9xnnnmGxx9/fGr4da97Hf/1X/9VUcy33347mcz0c5LXXXcdH/nIRyqaVxAEQRCE5ibgcUsz68hLMAVBEARBEARBEARBEARBEIQjgxr2JBIEQVgComvM28zno5oH+QX/4LXfvPZzrSglRpNOb/6klFys0g7xS42I0fyJ36UblYj9/L4ORwJeQiK/yTRLxSOCPX/hVTf4QvZZgbBYqD/l6oJGHjul2taCP6n0/NnNLbwtmxUx2rKn1D6sRxup0nLPSS9tHEL1eLVLqz63r+HtDLkWNJdcEp79MvzwOHjoXdVJ0TpPgbNuhTc8Dce8R6RodcPjPyES29J4nu+LMFFYBni9kEHaR01AKQnxAtpAVv5YqPbagdzbEARBEI5QlFJR4K1FyZ8pN5/W+lng9hlJAeBPahgawNFFw3dprcs28LTWGvhhUfJxNYtKEJqQ//iP/5gjRXvFK17Btm3buPrqq+eVogEce+yxXHfddTz++OOcfPLJs8ZdccUV3HfffWWX/cgjj8wafutbi4uc2s973333obWe+giCIAiC0HwEPC4N5uRWkCAIgiAIgiAIgiAIgiAIgnCEIGI0QRD8iwpApE/EaMsNr47US90htdEduIXqKdUBxxcSGbw7cbvSeaih+F3WYnl0UJyJiEMaT6Pqq2opFY8cR/7C12I0wZeIGE2oJZWeP+tFiNFyZcRoIuxsfkr99/0kRnNF/OE7vOq0auuyhUhBPPPyWbu+kWQnYNtn4Y5N8MgHIbGn8nl7zoA/uAMu+B1svBgsEUvVFa//hIjRSuNVJkm5ICwHvK47iuzK/5Rsay+gfi1I8qoV0cqxIgiCIBy5vAZomTH8K611pcbwm4qGL6pNSFPEiob3VTHv3qLhrkXGIghNy7PPPsuHPvShWWlnnXUW//M//8O6desqyuP444/n3nvvZcuWLVNpruvyp3/6pwwODpact7+/f9Zwpctc7LyCIAiCIDQ3XmK0/SOQc0R8KgiCIAiCIAiCIAiCIAiCICx/RIwmCELjUKr0+Ohq07lLxGjLC6/O8Evd8axUpxK/SW4EQ0kxWrR+cZTCqxO3dB5qLH6XQdkViNFEHNJ4GlVfVUupeOQ48hdOcv70utVpZdregv8o9x8WMZpQDZWeP7uLEaNNlB7v9zaaUJ5S+7AeMqRKyz0nDVoeAvcVXnVa1WK0Gh5nci0I0kPw+LXwgw3w2FWQ6i87yxQrz4Pzfgrn/wrWXVj+Oq+wRHhtdxGjlcSrLVvLMkYQGoVX3SriWP9TUmq5gEc6CpK8attbXtevBEEQBGH589qi4fuqmPd+YObFjxcppVYuOqJpDhUNV1PBF087vMhYBKFpufLKK4nHp1/w0tnZyfe+9z1aW1urymfFihV897vfJRQKTaXt37+fT37ykyXnm7lsgGDQ43nIGs8rCIIgCEJzE/S4dfHoXgh9wOWln3L45Q65Ny4IgiAIgiAIgiAIgiAIgiAsX6T3jyAI/iW6xnx7idG0iNGaEq+O1EstmikllvCb5EYweAoZlHe5UG9EjOZP/C5rsSp4Vl3EIY2nUfVVtZQSOshx5C+86oa6ya3kIbimo5zIqpGiWL/XtcJcKj1/1rmFd4TPxkuPP3QPbP7bheUt+INGn1dXXGdqcywrn5w3Ct7t0qrFaDV8z4vf2vX1JHkQnv4n2PFvkEtUN+/aN8JJH4PeM5YmNqE6vP4TJeU6gmd9JsJEYTng9UIGR8RovqfUefZC2kCFMq3aawdyb0MQBEE4cjm5aPhXlc6otU4opZ4AXjQj+SSgCgN5Se4vGn5xFfO+pGj4N4uMRRCakqeffpof/ehHs9Kuv/56Vq1ataD8TjzxRK688ko+/elPT6V94xvf4Nprr6Wrq2veeVx34ddrFjNvLdi2bRtPPPEEQ0NDjIyMEIlE6OvrY8uWLZx66qmEwxW8HHAecrkcDz/8MDt37mRgYIB0Ok1fXx8bN27k7LPPJhJp4EuiBEEQBMEnBMq80+W3e+C1N7o8ea3Fxl55kZEgCIIgCIIgCIIgCIIgCIKw/JCn/AVB8C8FMZpXR1btmk8tO0UKS4+X4GGpRVclO5WUuXMsNIZSAhnlkxv4IkbzJ6WEDX7Aq4PiTPy+DkcCXvIGv3WULiV0EDGav2i4GK0Eyf2NjkCYj3L/4UYeO+XEaHu+A+vf7p82m1BetFfgmRvhhMsXtoyR/y09/sCd8Pg1cOrWheUvNJ6S59V1aCNVs4zhR6H3ZUsXi1AdnmK0KkUdIkZbHPFdsO0G2HkTuFUIcpQF698BJ10NnacsXXxC9XiK0USKXBKv+uxILBeE5Yflcd3RlevVvqeU1HIx97CqvXawUFG2IAiCIDQ/W4qGn6ty/ueZLUY7EfjpoiKa5l7gGeCE/PDvK6VO1Vo/XmompdRa4C0zkrLArTWKSRCaihtvvBE943pJb28v7373uxeV5+WXX85nP/tZsllz/yWRSPC1r32Nq666CoDdu3ezadMmz/nPPffcedNvuukmgJLxKY/7b7t27WLjxo1Tw+eccw4///nPp4Z1FdeM9u7dyw033MBtt91Gf7+35zEajXLuuefyzne+k7e85S3Ydvnzl+3bt3Pdddfxox/9iPHxcc983/jGN7J161aOP/74iuMWBEEQhOVGJdX3ZAaO/pjL3/6hIhqE1vxlYqWgJWSGlYJkBnIudERhPAnpHGQcCNmwrgtetVnR1ybP+QiCIAiCIAiCIAiCIAiCIAj+Qp7yFwShgZS5eday1nyXEma52coEM4J/aJRopmQHbpHr+RKvzlp+EMgUEDGaP/G7DKqSY9jv63Ak4CWn81tH6VLxDP4auotfBC80DK+OpdUKQRZMmbb3vjtg3RvrE4pQGeXqgkaWR+XEaA9cDKOPw+99qj7xCOWpVLqaPACPXbV0cTz5STjmLyG2fumWISwdpcqlegjHq5Et3nUGvOFpaD+h/LTC0uNVBlV9fl9LMVqZY9bN+U+KvFDGtsNT/wh7bilfh8/ECsKmd8GJV0HbsUsWnrAIPK9plpDrCN71mbw8Q1gOeF6vrkKIKTSIUmK0RbSBqm1vPfcVOPUTC1+eIAiCIDQhSqluoLso+YUqsyme/riFRzQbrbWrlPoLjGgtjLlA8l2l1Pla693zzaOUWgncDrTMSL5Oa32gVnEJQjPx4x//eNbwn//5nxMKhRaVZ19fHxdeeCHf//73Zy2nIEZrVrTWfOpTn+KTn/wkmUym7PTJZJI777yTO++8c46YrRjHcbjyyiv5whe+gOuWvn6VTCb5zne+w/e+9z0+97nPcdlll1W7KoIgCIKwLHhiX+Vi03++e3Evzulq0Xz/AxavPEHkaIIgCIIgCIIgCIIgCIIgCIJ/WCY9ewRBWJZE15hvEaMtLxolmuk+3XtcNZ1ChfrhJRfzkxjN8ojFS+om1Ae//6etCuotEaM1nkaJPKulVDyPfAiO/6v6xSKUxu/12mNXiRjNb5QTWVUjCKo1ldS12z4DW66CUMfSxyOUR2cbHcE0z30Nfu+TjY5CWAhuiePIb20kgOe/Di/6bKOjEMC7bV1tO6iW0qJyx6yTAqu1dstrBMO/hac+DXv/G6iiI4QdhWPfB1uugJZ1SxaeUAs8RDlaxGgl8RSj+bAuE4Rq8ZKvJ/fXNw6hetxSL/dZRBuo2vZWqt/UI/JCIUEQBOHIorNoeFJrnagyj8NFwzW9MK61flAp9QbgFqAPI157XCn1DeDHwB7Myf864DzgUqBnRhZfAeSi7AxyjmbfSKOjODJY1wUBu3H3tPbt28fu3btnpZ1//vk1yfv888+fJUZ76KGHyGazBIMlnnX0Mblcjosvvpjvfe97c8atWrWKU045hd7eXtLpNP39/fzud78jHo9XlHcymeSP/uiPuOuuu2alB4NBTjvtNNatW0c4HObQoUM8/PDDTE5OTsV0+eWXMzIywrXXXrvodRQEQRCEZuMlGxU/+N3ihGeVMjIJ7/2Wy/atFrbl3X5zXI2lQDXyuSVBEARBKCKZ0RwYhawDjgbXBVfDxh7oaFlYnZXKalwXoiH/13ta65Ixam22zwvDkMrC6g5zzeaFYbN+azogaIOVbwMk0prJDIRsaI/OXv9EWjM6Cd0xiAQhnYPBOPSPQyxk8g7aZj9obZaXc8HJ7xPHhUPj0BqGgGUuauYcyDhm2tFJaI/AizeArSCVg4NjMDgBqzshmYGJlIn70BhYCk5ZB2s7a7efMjlNOmfi2jNstsO6LhP/gVHzrTWsaDfrEQvPXW4mpwnaJqZsTjOegrH8O9Yd16x3LAQB22yH9ggEA2pqf2Uds/yADaGAv48/QRAEQRAEQRCEpUae8hcEwb9UJEYr/2ZCwWc0quPZUW+GX3mMKyedEBqDk5w/3UtG1gi8OhV5yW+E+lDpf3r925c2Di8qEXpKudR4GiXyrJaSHSM1ZMZESuQXvKSZ9arX1r4BDv7Ye/z4M5AahEhvfeIRyuNnSWbn75WfRjsw8iisPGfJwxEqwE/nzofuEjFas+KkvcdVIv+tBa3HQvy5yqYd/PXSxiJUjlfbutp2UC3FaOXyclIQbFIx2uH74alPwcGfVDdfsB2O/2s44TKI9C1NbEJt8ZLWiBitNF6S31qWMYLQKFqPmT99ch8kXoDY+vrGI1RBibJbWXD8h+DZf60+24UI+Seeh/bjqp9PEARBEJqX4gsAHg8qlKR4nrYFxuKJ1voepdQW4HLgEmBT/vflJWZ7GrhGa31breNRSq3ASNqqwaPBWn/2jcDRH5Pz53qw89MWGxt4+/GBBx6Yk3b66SVerlkFL3nJS2YNJ5NJHnvsMV760peybt06du3aNTXuX/7lX7jxxhunhm+99VZe/vKXz8mzt9dsrHPOOWcq7eKLL+bXv56+3j0z35msW7e4lxxcccUVc6Ror3vd67j22mt56UtfOmd613V56KGH+Pa3v83NN99cMu8PfvCDs6RoHR0dXHvttbznPe+hrW12kZlMJvnyl7/MP/zDP5BKmXvsW7du5YwzzuCCCy5Y4NoJgiAIQnNy+gZFVS9AWiTPHYbg+11OXQfpLDzTP/90loKWkHmno86H19sKtmWEJlkHwgEjRUnljChlfTd0RI0IJJGGgbiRffS2mumzDrRFjFwknjbzn3G04oa3KHpbIZmFyYwRr7RFYF2XQmtNKmukboNxM6+rzXiATM7E0BMzsVmWmSfnGEFLJGhiGU7AUMKsz6p2IyZ5YRj2j0IsbGLOOia9JWTkLLZl4pxIaXpbFas7oLPF5DeaNNuoIHtxXCNUCQfNekWCZl0Oj5v8bMtIT9rCZvp42myzeAo6WmDzKuiOiRBFEARhPh58XnPtHS73bC893dnHwNouRdYxgk/bUqSymkNjpg5J5Ux5nXNMORwKGPlWgaBtPq42ZXpvq6nXNKYu1Jh6J5GeFn31T8AJK0391NkCazsVsXxdNZaE/nEj7g9Ypi4IBUz9YCsYT00LxUYn4fiVZtzopKmTlJqWjOXc6fq4JWTyiwTNZzxlYspW8C7kcnS1QCJj1rOAlY/DL7SG4eKXKSxl4g3aRriWyeU/+d+WAssyAr2sY7ZjPK3Z0W/q/3iJxyTnY0UbrGw3++zgmMkzvcBHwCNBk89M1nVBX6tp44QD5ng9pk8xmX8seGOv2e/94zA6qUlmpsV0WQcOT5h13DVotsExfWacq818sbykLuuYbRgNwVAcJtJwxiZF0DbjtqyGaNAc2zp//A1MmPbQZAZWdShWtBmZ3lDcLCsaNNMVhIXpnDl+V3eYZR6egAOjmo29inDA/Bdslf+e+ck3hQ5PmGMeoNA6Umr6XeOWMulK5X/P+FbMTVvacWr+6a355ys5Tk2vW/E01Y6bE2uNxvldICk0H66rp87hCseX1hrHNeWCHHOCIAiCcGThs179giAIMyiI0VQpMVrWe5zgT7z2mbXEVVKgBWIbILFn7jg/SyeOZLzkYgvpyLNUiBjNn3h1cC3m+A8tbRxeVCKNkHKp8TRK5FktXh3hC2RHRYzmF3Ie/WgC0fosf8MfwyNlyr1cHBAxmm8oJclcVZs32S+Y1a+BQGv+mClBLlGfeITy+Kl9qn30JIxQHW6JJ34qkf/WgrUXwjP/XNm0XrJtof54ta2rPb+v6fWAMg9FeElt/YrWRoL71Kdh4JfVzRvug81/C8f9lZw7NBue54PSsbsknrJGn53vC8JC6D3Te9zAAyJG8zOlrmkrGzZ/GPb9ACb3Tqf3ngmD87wRaP07pn/bC7ju5Mi5vCAIgnDEUSxGW8hFgeILUUtlWy+cuFTSNe9B4FrgniWK5a+Ajy9R3oJQM/bt2zdreOXKlfT09NQk75NPPnne5b30pS8lEAiwcePGqfTOzs5Z061atWrW+GJaW6eLkUhk9nXRUvMtlLvuuosvfOELs9Kuv/56PvrRj3rOY1kWZ511FmeddRZbt26dE2eB2267jZtuumlqeMOGDdx3332e6xGNRrniiis488wzOe+880ilUmit+Zu/+RueeeYZLKvMMxKCIAiCsIz4g+PgpDXw1IH6LvfxfaXHu3quMKScQGTX4Pzpe0emfw8VXZp8pl/zn7/yfsZkppitEgpSj9qztM/BBCz44h8r3vdKaQcJgiDMZNeg5g1fdBmdLD/tA8/D7PK6dNldLLUqSDzBSKvGK7yC+PShmUMLry9m5+NNQZRVaXzVMDLPdvaTFA1Me+Tr99c/qMMT5lMLiqVoYF7ysG9kdtr9Oxa+ns8drmbaapazmG3vs4OpJizHdSpNpUK1+URySzFuqWR44ykjuJzMmLZ6d8xIDR13WlpZ7vtgXsxZ4HNvU6RzJt/WMHRGjQRxJGHmsZSph8ZT5rwmnRc+FtY9aBvJYSEOMBLPgQl45pAmkTGi54EJk09vK8TCakoUaSsjHUykNas6FBt7jUB62wFN1oFNvYpjVxjZZkfULKd/3IgSbWVEiCMJzYFRI/rMOuZcLZeXRIcC05LRcMDUKenctIQ6k8t/O2YZxWVqa14inZhx3rm2E/raTB7pnCk/07np34X5WsPTEu6p3xEjK52THoa2iJo7XwRiISPbFgRBEAShMchT/sKSoJTaBJwGrME87HUQ2AM8qLUWk5WQp8yJQMta822FvKeRw6n58OoMa5UQ4NWK4z4Aj/3d3PRKJUpCfWl2MZrW06+dEOpLpVKxvrOXNg4vrIDpzFaq7CklwxHqg2d91WSnUFo6xPsGL7mGVad6LdwNL/sKPPw+72n8JE4SStdnp36yfnHMhx2Cl34ZfvXnpaeTY8o/LHZfdL8Ejnkv/Ob9NQjmyLvZv2woKUarU3128t/D8MNG7FEOKYP8gy/FaGVoluNHu7D3+0aINvJodfO2rIMtH4Fj/tK8UEBoQjw6P8h5YGm8rsf4TYQuCAsh0gvtm2H86bnjBh6AjX9c/5iEyihZdlvQugnOfwj2fBviO2HlOXDURXDf640ctYAdmf1CkIW0n7zk/oIgCIJw5LCQC5hLftFTKfVe4J+BWIWznAXcBTyplHq/1rqCC2qCsPwYHh6eNdzV1VWzvCORCOFwmHR6+tp58fKaha1bt84afv/7319SilZMsfitgNZ6Vt6BQIA77rijIrlbQbh21VVXAfDcc89x++23c9FFF1UclyAIgiA0Oy1hxY8vs/g/P9D89GnNUV3w8QstbnlYc/OD8uxFte/lWxop2tKTc+ED/6U58xjNqetq/1y662osS5HJaYK2ESB0RMlLEipbntaanANPHYTdgxBPa9ojivaoETQMxY2wYEW7ESfYFrRHze9kFlZ3QHvUxLB3GLpiRhSxe9Dst64YrGo3wpt4Gjb1QEvIyCJSWSOkGIibY2I8CcOTMJHS9LUqzjoGOlpKr0cyoxlOmFiDtslDKSO7CNpGuBAOgFIKrTWuBrdIcFHJb8eFJ/eb70jQbOdUFjpbzIWFTF5w0RYxy48EjRRjNAk5x+QxGIeJFKxsNxKOVNaIIyIBM5+jzT4M2bCuy+xHjRlO5mURXS1mnJJ+DsIi0Fo3/Bj6xA91RVI0QRAEoT5obdoigLzXs0quvK0R53dey5wvvbHnn/OJuPePmk8pUtnZArppSq2P97jYHIlaQaymaJ1HstYagbYZ44rniwSlTS4IgiAIlSJP+Qs1RSn1VuDDgNcryYeVUt8BrtFae7z3RRDyRNeY71LCLFfEaE2Hl+ynHh3PvJYhAiJ/0sxiNLQpn+wSYkdh6ahEdrj6AlANfHuaHYFcwnt8pXI3YeloZH1VS5xKXhgv1AU/1GvHXgodJ8Hdr5h/vJe8TWgMpeqCji31i8OLTX8Gu74Fh+72nqZZpDJHAovZF+0nwKt/YaQ5yoaH31u7uITmolS7wgrXJ4ZwD7zqXhj6DUzsgI4TYejX8NvL5k4rZZB/8GpbN1SMVuZBDb8fP24Wdt8C266fX35TitZj4aS/g41/Jtctmh2v6xoiRiuNVztb2fWNQxCWir6z568bBsWD4WtKld2F8r5lDWz58Oxxf3A7bPsM9N8LLRvguPdD31nT4xci5JfrQ4IgCMKRR3GXiOgC8iieZ95uFgtFKfX3wHVFyY8AXwbuBw5guhmtAl4OXAqcm5/uZODnSqn3aK3/o5ZxCUIzUCwq8xJ4LZTOzk76+/unhoeGhmqafz14/PHHeeCB6XPGtrY2PvOZz9Qk75/97Gc8+eSTU8OXXHIJp556asXzf/CDH+Saa64hlTLnKXfccYeI0QRBEIQlQY+bNoNq725wJHNZ26X45rtmd5Q+bwu89mS44zF4+pCRNAVtI3GKhcyd0KE4jCWNPEopI1JK5yAUgHjKyLaE5uK0rS6v3mL2YzIDARtWtpljZCgOP3tGY1tGhLWhx8gD9o1MS7k25A/vnGs+WcdIuA6Ne0vmWkLTcq9MzhxLazrMuPGUyXsy4xWxH+R9JoZoEE5YBaOTRkKQSMOBMbN+YERilaBU9UI+P/OqzXBMnyKZAatwKyJkyolo0IjU2iJw+gZFNGj2dThgypuJNChgOKEJ2EZOt2sQoiEjfEvnzPQHx4xELhQwx4vjGmFKOAB9rWYPzRTNacxvR5v95LjmmG6LTM+rMMtQysQ5ljTLS+W7liWzZj+lsuZz3EozfTIzXfYl85KMglCut9UI8MBMl8yafFe0wYvXK1683iwjnjYiukKpfGjcbI+sY7adbUE6L6Cb/miSGfOfcbWJbWW7Wa+gbfJ3XHhivxH6jadMmT0yaY5ZxzXyvn2jZrktITO+IMzb0GO2Qzhotlkya7ahxixLY7ZDW8TkN5Y08a7pNLEOxk15ErLNfrItk98je6aPlZPzXfsKZUf/OGQcs91sZdKtvOiwI3+VrLCNCq4PpUy8kxmzXdoiZntEAmY+pfJCRmX+ky0hIwuxlNnug3EjA9zYY2SKL1qv+M9fLaM/pCAIgiAIvieRNp/+8eIxCxOt2da0TG2OUC2iiM2Sr80Wsc2WrzElXwsFRLQmCIIgLE+arFe/4FeUUq3A14CLy0zaDXwAuEgp9U6t9U+WPDihObGjEMzfNREx2vLCs+NZPcRoHp3bKpEoCfXHUyCzkOeQl4hSnbLdlHQwbhSVyA4b/b+3woCI0XyN1z6wmuwUykk2OgKhgNe+qHe91vVi73F+F4AcaZQ61/GLpLH3zNJiNOlM7R8W8/8+6m1GigZw7F9CYjc89alFBCMPJDUtpY4jq47nPnYYVrzCfADGn5l/OimD/INX27qhYrQy+LVd5KTg+W/C9hsgsaf89DPpPAVO/BisfxtYIoBaFngK36UnS0m8rhs12/m+IHjRezY8/4256aOPQ3YCgm31j0koj+f1ajXdY2Q+7DCcco35zDt+Ae0nv7aDBEEQBGHp8LUYTSn1KuCTRcnXAlu1ntMde3f+822l1KXAv3wJIP4AACAASURBVGP6odrAN5RSz2mta2XM/TJwW5XzHAP8oEbLFwRfoEq115uEe++9d9bwn/zJn9De3l6TvO++e/Z9xHe84x1Vzd/S0sLLXvYyfvGLXwBw//331yQuQRAEQQDQrguP/QL931+B+74Pb/pL1JVfanRYFaGU4u2nK95++sLzePQFzUuuk3tKzcY92+dLnfsczv7RuVM9eaD65RVLz7SeP2+/k8zCY3vnpqeq7Iq0nKRoAD99Gn76dCUrtcxWvGqWev0Xl//OwYXNd3Cs8mm9yo8D85QHlYoGx8o83h6f5/2dw4np/P/fE0f6cSkIgiAIQrPjuKZNNH+7aGGytVCgWKI2W6jWOo9QzXyreeeLhcG2mv8+iCAIgtD8yFP+wqJRStnAd4DXFY0aAB4FxjAPNr2Iaen/SuAHSqlXa61/Wa9YBZ9R6sGg6Nrp8SJGW1547bN6dDzzEkiIgMifeHVir2dH6HJYJWJxUhCszYOCQpVU8p9utBjNDpceX4ncTVhavPaBX2RElSIdGf2Dp/CzzvVaqfJHRHr+olRd4BdpQ7njV8ogf6D14gRRgaI+fX4SFQv1xZ3niTMwUrRGdv7yKoukDPIPnhKiKttB1U6/GPx2/GQnYMe/w9Ofh1R/dfP2nAEn/T2sfUNj/6vCEuCxP7V0YimJ1zWhZjvfFwQv+s6eP127MPgQrP7D+sYjVIhH2e0pwayQBYnR5PqQIAiCcMRR3A20RSkV01pX2I0TgBVFw7XsJv4pZp8A/ofW+hPlZtJaf1UpdRTwD/kkG7gRWIQ6YVb+h4HD1cyzHARSQvPR3d09a3hsrIqe3xUwOjr77168vGbgwQcfnDV8zjnn1CzvX/5y9qPB3d3d7N69u6o8Zkradu/ejeu6WNYiz5UEQRCEIxo9dAj+51voH30T9u+cHvGDr+NOJlAf+xoqUKLvQpOjXReGDnJabzuffFOMa+7Qy072JAiCIAiCIAiCIAhHIpkcDOe8ZLULk61FgzOEafMI1WLzithmiNZmzNMahpaQ3DMUBEEQqkee8hdqwfXMlqJlgQ8DX9VaT70jRCl1IvB14Mx8Uhi4XSl1itb6YL2CFZqEljXTv0uJ0bSI0ZoOL2FRPTqeeQkkRIzmT/wikClFqVj81on6SKIS6Vmj//flOvQ3Oj7Bu43RbB2lpSOjf/BLvaYsI7BxM3PHSd3lL0rVBX4pi0SM1hzo3OIEKcXtFj+1x4X64niI0Rp9TIgYzf94ta2rPXbqeawtRihZS9JD8MwX4dkvQGakunlXngcn/z2sOEeEaMsVL1mO9F4pjef1abu+cQjCUtF2HIT7ID0wd9zAAyJG8yuul7RxkWXTQsTW0o4WBEEQjjC01kNKqRGga0byemB7FdlsKBresejAAKXUWuDlRcllpWgzuB64Aig0Cl6ilDpVa/14LeJrZtZ1wc5Pi1ipHqzrKj/NUlIsKhsZqfIaWwlSqRSp1Oz2c09PT83yrxcHD85+dPekk06qWd579+6dNfzylxcXadXhui6jo6NNKaATBEEQfMTPvof+yj/MP+7uW9F334p+218DGoYPm/su0RiMDpjfXStQr/wj1JkX1CwkrTU8+yg89WuYjKOHD6G6VqJTCVQoAoGgiSHaCvFRaGmHzl7IpGBi1KS1dprrjLF2sAPgupBKwNgQemwIDuyEvTvgwC5ITQJwdWsHb1PreaTvVWRPOpvoOa9nMmcxGIeABeMpeHyvJhI0HZ1ftB5cDavaFbZlNodSpuP1QFwTtCESAEfDRApCNhyegMkMhAMQtCEWNt/7RkyH6FgY2iOQysFIvuP2//lBc9zrspTZHoIgCIJ/+MA5imsvVAzG4Z/u1uwd1gQs6IopgrYRcWjAcU0ZHrBgfTes7YSDYzAQN9OcsBLWdiqCARhPQjwNg3FNOgepLNiWeZOBUqY+UMrkFQtDOgs/f9bUk7YFqazm0Dj0tZphS4FtKQI2rGiHFW0m/3QWAjb0tprYfvQ7TTQEK9sVHVH4zW5NNAhvOk2xvluRdUz9e2jM5NvXZmIIWGbYcaE9qmiLmLo3HIDVHeb3YNzUz1lnOibHhXQOBiY0QVsRDZnfh8ZNjB1RRSxk1jEcgIwDyYzZXp0t0BOD4UmIp0z8hW0TC0/HpLUZt6INklkTQ9A2bYGgDaGAme7J/TAwYeZtCUE0ZPIfnYSca6bV2sR/y8Oae7ZrhuJm31oKOqMmn3DA5BkKmHZJKKBwXIinNcmM2baRINi2mW9jDxzTB7GworfVLKM7ZrZLIm2W3R4x+6uw3caTsHdEM5wwca3uMHkentBkcmYZfW2m3dOef/QtYJvjJ5k1271/HJ46oIkEzfZZ3aEIBczynzus2T9qYvjWrzRDCThuBXS1wIYehaWgf1xj5dd3XZci50LOKRwDcFQ3xEJmOVnHHAdtEbMPhxNmfTqiZhtNpOCxvZqHd8GhcRO3paCn1eSRccyx7GpIZOD4FdAZUwzHNWNJk3/OnW7/hQMm/6EErGjVtEYUEymz3FQODoyabfmqE6b/m1MfPXu4sP27Wqb1PVoX/c4fY5oZv4u/fTJOM//0giAIfiOZNZ/DE/ON9Sq4vAs0pYolarOFarE58rXCeOU5XyggsjVBEITljk960grNilLqaOCyouS3aa1/UDyt1nqbUuo84F6m5Wg9wMeB9y9poELzEZ0hRlMlxGiuiNGaDtej41kpAV6t8OpA4tXhRGgsXp1vygml6omI0fyJVzkzk0aLx+xw6fGVrIOwtHjWV012CiViNP/gtS8W0kF1sdhREaM1A6WEDX65aF/u+JUyyB8s9r8dKNrPixUTiayleXE9xGhWmbbtUuNVFkm95h+82tZVi9HqeKw1+vhJHoSn/wl2/Bvk5n11mzdr3wgnfQx6z1ia2AT/4CVGYxFC1COB5XK+LwheKAV9Z8G+ObdqYfCB+scjVIhH2e1Z1lfIQs7f5FxeEARBODLZDpw1Y/hYqhOjHT1PfrXgtKLhnVrrXZXOrLVOKKUeAs6dkXwGcMSL0QK2YmNvo6MQ6sHatWtnDR86dIihoaGaCMyeeuqpsstrBoaGhmYNd3XVzmZXnHctmJiYEDGaIAiCsDjO/2P4t6sh43H/G+C2L5bMQv+/m+FDN6DeUdyNpnp0Love+k742fdmpxd9LwnxMY7lCY6deAJ23giJt6I++hWIxirqUKxzORgfgmTcXJseGTDStY5e82x+Mg72CCQmIBSGjh4jcItEIZeDbGZK3kZyHCYGIZ3i6hMP82x2Jb9yNnOo92RWbd7EsSstOqNGsnFo3Ag0osFpWUosZKQdGiNp0Ri5x/5RIynJ5IxcI5R/7OrgmBGiHLtCsaLNSGgcDU8fhH2jmjUdipcfbZY3OmmEL4NxiATNtCHbSE3AiD0mMzCWNJ2yO6Jm+em88KUrZjx1BZnOSF7qclSXkYU42kw3lJfx/N9HNFt/JM/WCIIgVEuQLFfv/Dg9n9hGz/gIXwmGIBiCYBjiYzA5bn5n0+YZxnDUDA/sh5Y2kx6JmZfQFuyfw/0mcztg2g7hKERbIBQ14zt6INICI4chFMkvL8R7O3pNHsk4tLShNm6BjZtNXZnLwuggenwYUhr6C5YkDUz//nAgb0kayhnLVcCGkSH4wbCpZ7U2FQz572jMxHlgF/SugeFD0N5jrF9ODlYcZUSpuSxrXdesZ3s3tHWCZUMyYerrcBQS4zB0CBJjZl27VsDgAdj3nNker/wjs6zU5PQ2CrewEqC1HeLjRirrZDEKMMz2KnxCUTrau8w2beuEWIcRwSbjkE1zSiBk5k+Mm/bCxAhkUnTlsmZd27uNINbJcW0wzLWtHWYdQxGzXq5jpnNn/nbAcaAlBl0roWcVjMyIDUweKLOP4qP5/DTseMxsg2NOgfFh80mMm22glBHTKpV/ebll8rAsE3sgaI6LwjEUyBvPHCcfm8Nm1+GVuZzJN5UwMtxkHCyb82NtsO5YOOp4Pn/GOujsM/vIyZlPLgt9SdPeau+GFWvNcTYxYtZbKZjIx5PLoUcHYdew2eeZtFmP8WHoWwtdfSafkX7zUtEV7SZ+yzax2gEIKBgahtFBM3wwf8yOHDbrm0mb/R4Mm+PDts12SSXM+EiL+b+5rjlWUklIJ2Gvmt6GSpll9qwyyz3rdai+tWZ9Xcd8a40eGYDBg9CzEtW7xvwfC8dboRWti75n/Z4nrdrpZj0PXSKPUtPNM712NS7K/M0BjcJ1NRplhGpuPq0gVMuna62mZGxT06DQ+XnzJQauzuetFVrr6em0NmkwvXw9+/f08hQaPZ1XPs0sd/Z00zI4NXvczHjzy52afuZ3fvkzpyuOc/Z8am6ezIhz5jrM2H5m+ul8CmlMza/QloUVsAkph925XhI5m82hfgKWNsJES2FbCluBbSssy8gwrfzHthVXbPN+rrM7mKLLThEOaCzbJulYrAoniagsGRXG0ZBzNBuicaIB1+wzRzOSDTGci5JIQzAArrKxlSZsa1ZEUnQF0uQIEM1N0J4bIaMDZCbTuOkUTjCKG4zgpNOMpgOM2e1MEiHkpFin+2kJwZ7QBgZ1B0kVoT/XSjpnDqZowEEDm9rSqEAAhSadcWmxsqyMpNnUMk5YZwjbmmwmSzYYI6kihFSOaEDjBCL0xjSR9lYCTopQNm72w1A/dmqC5+Jt7E628mJnG2sy+4mPJ9keO4XDsY1sWhWkw0oRJkPYSRAeOUCEDOEghMMBtLJIBDuJuyHiToi4EyTuhJjIBc1v1/xOuCEmcoXxQSacEGktzxEuJVobEedEyohpi8aWmtNzTACHVjtDm5Wm1crQapvvoHIYcyKMu1GUbdETyrCqzWFdKM6G4DDtgTSJlhXE3TCZeJJuZ4icCmJForwwbrM5OkRrSLNvRHMwtJZwOEDOVeS0heO4ONrCsYM4KoDjanKOecFLKylaoxYHnQ72JyK0B7O84eVtvPsPgthWZX3BdGLc1IeFdkogBKOHzW87aOroQN7JkBg3v13H1LV2ABWOorWeur6jXdfU+WODpv4NRaC9y7SpEuOm3s5lYfVG094Y6YfJuKmb9z4Lh/aYunzL6Wb8yqNQsfbK1kVrM28wBJSX2OlczrQhtEZZFtpxYOgg9O81bYpA0GyDjm5YdxzKlpciC8KRgNTOwmL5ODDTZnTzfFK0AlrrpFLqXcATQCif/B6l1A1a651LF6bgT0o0XmaK0UoJs0SM1nx4Ch7qUCV5LaPRgiRhfrw6IS9WxFBLRIzmT3QFssNGCxHLySOkXGosunDJfx7qUV/VEimL/IOf6jU7Atk5V5DlePEbXsIGP5VD5Y5fOab8wWL3Q7F0yk/tcaG+OB4PhtdTVjXv8j2OSZ0zZamIbhqP1/lNteWJFSo/Ta1olBAkvgu2fxae/6a3jHA+lAXr3wEnXQ2dpyxdfILP8JDlaBGjlcTrupHXSzUEoRnpPXt+MdrEc/WPRagMz7K7EWI0OZcXBEEQjkieZLYY7Uzgh5XMqJSKAafOk18t6CwaPrSAPIrnER2YcERx1llnzUl75JFHeM1rXrPovB955JFZw9FolNNOK/YZNh+VSFAqJZOZ52Vdi0TLC3gEQRCERaLau9GvfDPc/e1F5aP/9Sr0w3cbCVgwBLE2I3XIZKCzx8gbCvKVvBRDx8dMR07LguHDRsTy9G9rtGY14KffRf/0uwDojl5YvQGOOj4vwQgaQcnooOlEOzpohBtLxPH5zxSBoOmgC/Cqt5mOvsm4EYeEIzA+Mi0dKUhCLJvjV61Hnfgy6F1txtkB07n2qDWolrap7LXW4ORYsTFnOgUnEzBuE0nG6c5mIBOm+7knzDqv2QSbTjQxpJN0h1voDmZZlxyGXbvMfu9eaeJKTcJY2khCsvlPtNUITYbywp10EhLjbOzqgw2bOS0EsG7Jtm29CFguOXeR17gFQRCq4NP9/8Ca7aXlpo2i7mey++a7L/zQwvPb8/Ts4Z/fvvC8asHggdnDowOVzzs2CAf3VL/M+Bjs3VH9fAthbIZofuQw7HseHvpJ/Y+jpSA1aT5Qfr8NHTTfzz1edt2XxbYpotCKkqeZlh/f2XgfD0dfNid9XXYfu7cfP88cQr3JEiBhxZiwWonnPxNWK4n8t0mLMWG1Ebdi86YnrNjUfBNWG46f+gAtQ3LYjDpRRh2Pl60XSABLdymjJHfshEtvcQnoLO06TpsbJ6aTREgzqaIcsvr4/czDdOpxAtkkvzf5v1wy9m263NEFLW9K7znzekqN0a2dRs6rLMhljCw2l4WDu6cnCoWnX06Qv2aj27rMdZ7C9ZvCd0H+O3MZeZkaWe/7TXrDZtQ7r0b94cVzxjmuZjIDbREjGR1PGel9MgPtUSPSH09BT8y8WGs+UlmNAkKBuffQhhMarY0MvyVkhPm2ZfLP5FenJWTSXA2hQF5UpzUTKYjlu+EcHoeV7UawKQjC/EhNKiwYpVQUeGtR8mfKzae1flYpdTvw9nxSAPgT4LraRig0NdEZb08UMdrywmuf1aOjstcyREDkT/wkkPFCxGj+pJL/dKP/9+WOY6nfGouXjAiaT6zRKKGDMBc/1Wtey5S6y1941VV+KocsEaM1BbUWo5Xb72VZjo8gHCF4SZrKSX+XmnLnZVZr/WIR5serfV21GK3ENcKqKVMW1bsOG9sOT/0j7LmlMtl3ASsIm94FJ14FbccuWXiCT1EiRlsQjXxxhyDUi9ZN86dnFvaglFAHlkraKGI0QRAEQaiUHwOXzhg+p4p5f5/Zz2A+qrXur0VQQHEDLraAPIovjsUXGIsgNCXr169n/fr1vPDCC1Npd911V03EaHffffes4TPOOINQqI4vd6gRvb2zfYnDw8OsXbvWY+rq8z5wwHRWjkQiTE5O1lS8JgiCIAgLRb3h3ehFitEAePhuz1FN/2TEWF6A5hdx28xOvD+9rapZvfaFDkXMfTUnB65/7q/1Rs+AjT/zHP++ka+RUC08FTmJntwgMT1JRoUYsHtZn92LjUPYTbMh+wIbs3uYtFoYsrtpcycI6BwBHAI6R1BnyakAe4LrWZnrp88ZZFK18HzoaE7IPEubGyeoM1jaRaOIW61kVRBH2bhYdDmj2OQYszrYFdqIRvGa+N2cnH6KoM4SIEeOAJNWCxkVosMZI6NCOMomo0IcCqxkd3AD98ZehYNNtzPMutx+2t1x1mQPENYZVuUOkVVBFJq41UpEp+h0xngudDRJFSWkM9g4pFSEVbl+VuX6sXFod8e5s/W13B89mwm7nZgbpzfq0umMMKDbcRzNsG4j6k5yWvpxOp1RYm4CR9mEdIZ2ZwJXWUTdJAcDqxgK9BJz41jaxd5wHFasFdvNYY0exhrYi51NYeFiawcL10xH0W/tYuNCIMjqwBjJRIaArXEjbWQDLdihEKHDO7FwGbU7Cegcw3YXw3Y3q3L9tLiTWLiEdIZgKMBgoBflOqBderKDOChSVhS7s4eIypHRNvvUCrI5TXtmiEzWJUmY29rfwuPhU0hYLbS4SVr0JBE3RX9gJQOBPlblDqG05s62C6o6bm2dw8UipDP0usPEnDgtOkmbM06rTuBiYWtnarsM2j2kVRiFxtIuFi6qoxsrGMTKplHZFNFcHEtBVgVIOTbKdQi6GSatKINWj1keWWztgOswYncR1mna3DgOFk9GTkZply5nhHZ3gg53nDZ3HJSF0i5t7gRB5TJutzOouhm0u7G0S1QnCeosI3YXhwKrFvQ/DpAjrHKELdd8qxwdKkHAzZLOap5Ux3jOe3J6G63uBG0kCekMVsAiSYS4asFysvRkB4joFONWO+lgjKy26Qyk6F6/mhUtDrHMKFZmEmXbWJaFApI6iKvBSifIpjKEQhYDVg/doTRHtyXJpTJsy61lx2Q7q9Uo4YBmV6qDDivJCmucdePPEHGTBNZuIKA0oWyCqJVh8vAQWlkETjubiZWbyWVztGRGUW4OtEbnP7ianAOj4xnCbopw2CblBnCwSLs20SC0tEdp7Wgh58BkBsbTCjfn8Mg+m10TUU7uGOfn/T10hh1yLsQzFrGJAwR1lqMzu/irkX/n/MQ9C9pfgiAIglBP7t3zWto2D89Jv2Ts1gZEI8xHkByd7hid7lhN8tNAWoXnCNXM8PTvmSK2uNVKXMWYsNuIq7nytbjVivZ6flTwNTkVZFh1MWx1zRn3w8gfmh9RoP1PuXzVPwGwJb2duNVKtzNCxE2ywhlgwO5ld2gjSms6XHO+vTN09FReR2X3YmsHR9nsDR4FwOnJRwjpDA42WilyBBmz23GwcZTN2ux+1mf3EtUpwjptzke0Q1aFmLRaGLPacZRNSoUZsbuJWzGyKkirmyCjgoR0FgLwwvHrUFozHOgB4NzEz3CwmbRiuFhopViffYHe3BDrsy9g4xDSGRSaiE4zZHezJ7iBcasNWzvsD67hsL2CDdk9HJXbTw6bnAqYDwFyTgDnmza5Bw7htPeRcyHnwKFxeL4Kf27QhlXt5n0GrgtjSSNNK54mGgSlIOdCoop3oAP0tkLAgsG4mb+Y1jC89iQjVTs0Zs6NbMtI2QrLSmRMHK5rfp+yFo5ZoTg0qtk1BPtH4NDnLWyRrAnLDHnKX1gMrwFaZgz/Smv9tNfERdzEtBgN4CJEjCbMJLpm+reyzGe+Dl1axDFNRyM7nnl1IKmmw6lQP7xkPn4So5USALjSeahhVCRGa/D/3i4jj2i0uO1Ip9T2b7aO0tKR0T941mtl3kixFHjVpVJ3+QsviYyfyqFy7TIpg/zBosVoRfs5sNhyq+kf/z1y8ZR8+lyMFhQxWsPxlH1WeX6vailGK0O96rDh38JTn4a9/01V5aMdhWPfB1uugJbmf1u4sEA8H2zxT8cNX+IpH/JRO1sQFkuwY/703Li51yYPxvkPL6nlYvfVQsTW8qIFQRAE4cjkJ0AS85g5wJlKqc0VPgf3rqLh/65hXAeKhk9QSrVorSeryOPFRcOHFhmTIDQdr33ta/nqV786Nfytb32L66+/nmBw4dcbBwYGuOOOO+YspxlZvXr1rOFt27Zxyimn1CTvlStXTonRUqkUL7zwAhs2bKhJ3oIgCIKwKF70Sjj1bHj8gUZHIjSSjD+fa1qV83Zt/37ifr506LI6RrM4guTocMenhkM6O3VbvM8Z5JT0U1wYv7PqfFcky/dsfn38x7w+/uOq8y7m2OzO2Qnb71tchvnHJ1oLv+NzT/F7nSEAOt0xjs7unptHGlanJ2YlBYGIk4SB4anhE3huzqynDDxVcahpFWJ3cAO2dtiY3YONYwR1booAOeJWKy3upBG+LVMG7R6eDJ9IjgCtbpyITk9JByJuiqhO0erGieokCRUzYkKdxqrg+Y9nQsdxd+w8RuwuVucOcW7iPo7J7lp4sDsWPmvFeB0+v6vDsgVBEARhmRDVKe7ffQ5vXncbg4E+AN48fjsfG/xMgyMTlgoFRHSaiJOeausvFhdFUkVnCdUK34ki+dqE1UqiaJppMdt0WtJqKb9goSFsD28BmBKcFXOQ1XPS5pv2kejpJZezN3gUD/HyBURYmp/Fzp2T9mjktKrz2RE+rvQEB5h7d70Ksg7sHSk/TXYR3dIHy7zCLJ6G7/5vdXn2j8M922efg+4fgfU9VQYnCD5HnvIXFkPxkxz3VTHv/ZjLuIVj8EVKqZU1fGOm0AzkEt7jWtbMHlZB0POoU10RozUdXoIHqw6dW706t3nFJDQWz073fhKjBcxxNV8nbxGBNA63grPLRovHynVIk3KpsZQ6PqwmO4WSjoz+wU/1mlcZJHWXv/CUyPioHCp3/Ipszx8sdj8UCxwX0rFeWB64Hq+0afQxUWr5Ug75A686rdp2UD2uHRVY6nbR4fvhqU/BwZ9UN1+wHY7/azjhMoj0LU1sQhPhIcvxkusIBs92tsdLNQShGfESo2kXcnFTnwj+wlPauMiyaSFia7k+JAiCIByBaK0nlVLfBf5sRvJHgXeXmk8pdTzw5hlJOeCWGob2ODACFF4ZHsnH+JVKZlZKvQFYW5T8y5pFJwhNwmWXXcbXvvY1tDadAgYGBrjpppu49NJLF5znjTfeSDY7/dxiLBbjve9976JjbQRnn302t91229Twfffdxzve8Y6a5H3WWWfx6KOPTg3fddddTbudBEEQhOWFUgq23oJ+x2ZIy/N1gr/YlN3Nxsxudoc2zhl3YqYSf7cg1IawznBCZrZtq82Nz/t7udLrDHHO5P0VTduqS/SPm4cTMjvmbF9BEARBEI4Mzkw+zL4dR/O7yKmszB1mXW5/o0MSmgwLTUxPEnMmWekcrkmeDtaULC1eJFcrlqiZ9NnytbjVSkLFmLDbiOe/sypUk9gEQaiOXYMiRhOWHz7qTSs0IScXDf+q0hm11gml1BPAi2YknwSIGO1IIllCvRotei7PCs7fAVfEaM2HV8czL2lZLfGSSDRakCTMj1cH9kZ3ui/GjpjOZMVI56HGUcl/utHiMTtceryUS42l1PFRj/qqlkhZ5A+09pbJNEKMViw5KiAiPX/hVRb5qRwqd/zm5JjyBYutC4rLjMWWW7r8GzEFn+J41WVl2rZLTaljUtpCjUe73pKmqsVodbxBvhTHjtZGhPbUp2Cgyj7I4T7Y/Ldw3F9ByEN2Ixx5KBGjLYhmaGcLwmIJdXqPy4yJGM2XeJTdXmV9pZS8n6KAec7PpA0tCIIgHLlcC1wMFMzs71JK/bfW+o75JlZKRYCbgJkXLL6htX6+1EKUUsUV8Lla6/vmm1Zr7eSFbTMtQtcrpR7QWj9ZZjnrgX8vSn5Aa32w1HyCsBw58cQTueCCC7jzzjun0j760Y/ypje9iZUrV1ad37Zt2/jsZz87K+3d73433d3di461Ebz61a+eNXzLLbdwww030NbWtui8X/Oa1/ClL31pavjrX/+6iNEEQRAE36B6VqHuGUVvfwR9963QxJW0ZAAAIABJREFUv3f2S3lzOdj/PHT2wbZfg1PBC3trybGnglIwOQGTccikjMQtGIZIC8RHIZuZnj7SAqlJM0+0FSIxsCywA9DaAUefhDrqOFh3LDg5OLwf/bVr6rtOQkUo4IuHLufC9bfPGXfJWC1d3IIgCIIgCIIgNIoADi9JPVp+QkGoEzYuHe44He54zfLMECwSqpnfiXnka4X0cvI1d7EvmRSEI4Cdg5pXnqAaHYYg1BR5yl9YDFuKhp+rcv7nmS1GOxH46aIiEpqLkmK01bOHreD804kYrfnw2mde0rJa4nXSo+t8s1qoDK/ONwEPmUujEDGa/6jkP93o/70lYjRfU2r7N1tHaRFd+YNSdYKXpGwp8ZKQSN3lL7RHu9lP5VA5oY2X6FaoL74To0k7p2nxknyWa9suNSJG8zelzr2qFqN5XB9cCmp57GgX9n4fnvo0jFT5IEvLOtjyETjmLyHQUruYhOWBpyxHxGgl8SqX5IEZYTkRLCHRzI4BR9UtFKFCvKSWixajlRDLhrogMzw3Xa4nCoIgCEcoWuudSqkbgStnJH9XKfVh4Kta6ynjgFJqC/B14KwZ0w4Bn1iC0LYCfwoULtR2Ag8qpT4GfFNrPTlzYqVUCPhj4HNAb1FeVy9BfILQFHz+85/nvvvuY3LS/GVGR0e56KKL+MlPfkJra2vF+QwMDPDWt76VTGZaQrJ69WquuaZ5pSInnXQSr3zlK/n5z38OwPj4OFdffTX/+q//uui8L7jgAo455hief944Ix9++GG++c1v8hd/8ReLzlsQBEEQaoXacjpqy+klp9Gui77yQvjNPfWJaeutqHMvKjuddhywLJQyHR11OgmhyNRwWVZvQP/TZUayttRYFrge10EjLRCOQs8qCEXg6d8ufTw+54LEXXx/79u5dPWXGAz00ZMb5LOHr+as5K8bHZogCIK/CUfhlDONSLRvjRGFatfUQeEoKhID24aWNpicQMfHjBg1lwXXQXWtABQ6k0K1dhi5qOtCIGjEo5mUkZamk6A1enQAsmlAmTpMKUjGYegQvPAM7HlmdnwdvRDOPy/V2QfdK8z9QKVMXYkyvwsflIk/k4JwC7R2QlcfKhSenk8p9NgQjI9AcgLiY0aMatkmFq1h7w7zu2cV7N9ptsEr3ggbN8PEKKCNcDWVNL9bWs16B8NmGU7OtINiHSaPzj4IhSGdgvgIdOfF845jpm3tgFgHqrXdbDet8y/U1fntNmiEruPDkMjLV4JhiLbA2LDZJx29qHXHmG3f0Wu2T/9ek38wZPZ1IGjSM2mTlsua9bZts31m/rZtGB00y06MTb/gd+rbNdsuFDHxR1vNsgYOwOB+GD4MG7fAinVm3Q/vN3nG2lGF9dfabDftguugJ0Zh6CC0dUIgZGS33SshYPaPsuzpGC3LxJlMQCQK7T3mWOnfi37+CXj2MXNcoc3+LXyUBYf3zj7OAkFYedS82x5lQXu32cfjI5BKmG2/Yq2JLxwxx1qkxaz/6ICJKdpqtkswbGJuaTX/o0zKbM+OXlRvvi/w2JCZPhCA7lVmmaGQOT7Ghsx+yqSm91t7t5m+EKPron/4Ddj+iDkWIjHIZcz/rqXNbMNQJL/dbBNfenK2NJgZ7eFC23hmG1lVOp2aPd1842a1vRc4XalllptuqfKteF2K56tDbEu9zvNNp5Q51iZGTPkVjppjMhw1//FC+ec607+nhnNFn/w0EyOmbA4ETfp8Lx4PhU0ZOD5slgfm/5mvh4jGTJk8ctjE1bsGYm1wcI/5nxWItZv/YvcK6Flt/p+TcfOfPLQHNmw2/8fEuPmvbzzRlAfBEBzeBz+fK22uiEJ9FgxPxz9zXCUvWw9FTJk2eNBsrwLRVujoMdsvGDLbpVBv9e81ZYvt0e+m1Dmz17iS59kLmGdB42ocd6XXDhaxnBDQrRRzXyszmf8MVpWf1pBSYSZ0lDgR4joy/ZsW4npmWpSEjpDNaXpSB7BzaYacGM+oDfxv5EVopYi5k7TqSRIqyoTVyqjdNWeZvbkBbFzGrHZiboIXZZ8kqDPY2iHgmm9bO9jKxVIwrDoYsToJkOP54DEcDK6eZ00EYWnZ5fHXEoRmxke9aYVmQinVDXPaIi9UmU3x9MctPCKhKUn1e48r7ujn1fFx580w9FDNQhLqwMSO+dPrIXjwWkZuEh79yNIvX6iOxJ75061FihhqjVdH7p03w/Bv6hqKkGf0ifLTNFrIUU4AMLlfyqVGkp1HdligHiLPWnLgTshNNDoKwfEQycDiBUMLwWuZB34snV/9xOiT86f7qRwqd/yOPCb1mR/waldXSvF+Xmy5Je2c5uXwL+ZPt30sRtt2A0RX1i8WYS5uiXOvRorRyj1QceBOyNXgrWfaNXmNP13dfK3Hwkl/Bxv/DOwSQhPhCMdDljP4a6lrS+F1zuMnAbEgLJZQCTHaU/8ILWvqF4tQGWPb509frLSx1EOMwbb5xWgD9y9tPfJ715sH1AVBEATBn/wdcBJwQX44CHwR+D9Kqf8FJoCjgRczu/dBBniz1vpgrQPSWu9TSl0C3AYUKtG2fFw3KKV+CxzAWLJXAacD81me/l5rfX+t4xOEZmHz5s188Ytf5D3vec9U2oMPPsgFF1zArbfeyrp168rmsWPHDt7ylrewfft0+92yLL71rW/R19e3JHHXi2uuuYbzzjtvavhLX/oSmzZt4oorrqho/rGxMcLhMJHI7Gu+gUCArVu3cskll0ylfeADH6Czs5OLLiove5nJPffcw9FHH83RRx9d1XyCIAiCUAuUZcENP4D/+U/0U3kxVTRm5AsFscP4MCQmTOfxsSHTsT0xAQP7zL3JQNBMGwgamUNHD+z43ewF2QHUp/4v6uzXVxaXPfs6mwpX94JO9YcXw9mvh0MvwM4nTcdxrc26ZFLoHb+D/c+bDvMdPSburhWozl7TOb8z/4m1mw7/yjK/hw9DZw+0dZltFGlBKYXO5YyELZMyHdaDIQiGUeG59431ru3w65+gD+9Dda9E73wKxgaNPCASM1KWaMzElkkZmYgdADtovlMJsx92PGYkJ37GDpjO/snZz62+Mf4jLtzxIw4E1rA6dxCL/D3uQNBIQQJB87ED5tgaHSgSgsygs89IS5Q1LWSolIJoINZhvgNBc413T5X3wAvMFCCEwmafFdJdxwgdCkRaoKXd7OOO7rxQKGr2aVsn9K01x2syAYMHpiUrrmOO533PLSwuQRCakze/D+vDX6hqlgVoR6qaThfqVdeFjh7TplgCFqA1aSiNjLeey67VsirJR7uukQ7lMhBtQwWa+xkY9eq3NzoEQagLOjUJgRAqEEAPHjRt0oJsMZkw51Iz6g6t9fS5lVJzzglnTsfAftN271pRuTy7VKwD++HALiN6jMbybfU206ZPjJtzkYK4UlkmXVlG5lnII5c1UriZYsvEGIwOmnPJjh6zDUIRc46TGIfWzqkyTWcz8Nzj0N4Fa46uyXoJzUcs/1ko2nWnxKAq2DcrfTKjsSwLSwHZDKGQBfQaAWe0BXT0/7N35+GWpXV96L/vqTo1dA1d1d3V88xMM2iDE6IQwAkjoBghqKHVaKIxN0aMEUwuiT5ouKKJCRi5EUGJKFeUSeMQEFAwDtgo0LTQDT0ATTc9VHfX0F3je/9Yp6rO2Wfa++xh7eHzeZ71VK111vDutd/zXfu8e+3fTtl05r2UenyhAOL8ljNF648eaQqj7rs0eehADt7xqfz+Xx3KnQc356qdhzM/dyIHj2/OgWOb88DR+Vy//+z87f492VxO5nidyyce3N3Ho4PGLV88kVXvMYcJNdl/4dCmPR3zh2uth3rcxxc75te4S5+ZV1b54OMdv9dMTL5RFHhY7cNt9Xhy42uGf3wGo40CMmtZrVDbF/6gmRhPa304fxTWKx5x9D65NK4m7YPS9/5lMzG+2ij4udq19L6/VtRzEqz2t1Eb1vuA9sHPuJ5Ng03b157v1bH79YtpMzfGhdFuffPo2kHvei6MNsICYff+RTtfxrDnicnjX5Fc/o8UDGF9q93Y88DHm4nejFMBYujXpm3NdfPkCh+Auu0to28PfRjiDUqrvRa7/2PdffnIRj35Z3KmpgsAjJda64lSynck+ZUkL1r0o/OTfOMqm30xyUuHWXSs1vr2Usrzk7whyeJvAdie5OnrbH4oyU/UWl87rPbBpPje7/3eXH/99Xnd6153etkHP/jBPP7xj88rXvGKfOd3fmcuu+yyZdvdfPPNedOb3pTXvOY1OXJk6RdivfrVr15SUGxSPetZz8rLXvay/PzP//zpZT/2Yz+WD3zgA3nlK1+ZpzzlKcu2OXnyZP7yL/8yv/Vbv5U3vvGN+ehHP5orr7xy2XoveclL8t73vje/+qu/miQ5evRoXvjCF+YlL3lJfvRHf3TFfSfJiRMn8tGPfjTvete78ta3vjU33nhj3ve+9ymMBkBryubNybd8b8q3fG9P29Xjx5JaU+ab9zpPfZD91P+bok4Hk/MuaaWARTlrV3L1Nc3U+bON7vTsc8/8f/OZ+5zK5s1NIbVu2nXV45KrHne6Df183L0eeehMMbDjx5MH701u+2TzgfyzdpwppnZq2jzfFLirtfmg/4H9TaGR7TubfTx8uPlQ9LGjpwvdZOv2pkDA7r3N/++7qzn4qUIBW7Y1xeCOH03uuDXZtr05zu5zUrZub/rC/Xcn93yhOfZFVyWHHkw5fjSX1toUBNi6vTnW9p0rFgA4XSRhoTjaqT63bL0TJ5p+d3iheMHe85vHfargwuGDTRu2bG8+3L1GEZ96YH9y+6eaPrzj7KYfbVk4d8eONudr83xy9OGUnWefbmdqTU4cX9bGWmuy/4vJ4QNNu87a1Vexg3rnbcnffaj5QrNjR5u2bdnWPCdbtyVbz0r2XZycd3FzDo481JznA/ubIg0njjUFGT7656m3f6p53stc817+pk1NoYcdu5PHf1my94Jm/VP97NS2Bx9oigRu2doUbjvyUHLk4abQxalibAf3JwcfTPbuS65+QtPegw8kB+5vttt9TvP8nDje9LmjDzdtmJtbaM/Cv4cPNNvVk822u/Y0heW2NEUIc86Fzf4euLcpZpE0+9u2PTlxMjl2pCleePJEctGVzT5Lac7JFz/X7P/Y0eYxPHy4KSZw+EBy1eObgoWb55u+cOhA8/NzL0h27mnO81xJjh1r9n3q92v/F1N/6780bT52pDne7nOaYiD7Lk45+9zUAwvFFE+cSDlrZ1Pk79wLlz7RRx9uzul5FzaP98F7m/mzFurGL/Sl3PXZpr0H7m+Kdmw768zzvlB4JOdf2pzbv/rjpiDj9e9vHtupfnj8WNM/6snmsaQkF13RFO3bu+9Mcb3tO5tz9eB9zbG2bGv2v21H87v38OFm+YkTzeM/+9zkysel7N2X+tmbkh27Uy5e+Nvn5ImmnQ/c0/zs7z6YPPFpTbvf89Yz56GU5rGee1Ezv3nzmd/HUzbPNwUFHz7cFCF56FBTdHLX3iZnjh5p+vauvc05S5rnfv8Xz+z//Eub/dz8sabgw1rmFvpQmTtz/k5lZq1N/6snm3Y8tMaXmq9UuHDnnqaPHTuanH9ZU1T0Rf9q7fa0oJSy9LoIQ1Lm5hayvZ9SMcColW1nnfn/eRct/eFZy78D59Rr4/X+diylNNfsASr7LmleR6zk1OuG9fZxqrjzKVu3NdM5K3wB9vyWZX8/lvktyeOe2m2TYUVlbm7FPlvm5rJj8a1U84s+H7F55WJlze/i0t/HsmVr8/dUkuzam12P2ZsXP6b79h07XvORzyYf+FTNHfcnO7Ym+3Yl9xxMDjyc3H0g2b092b0tufq8ZNt8ctt9yYdvrfnTTyXPflxy1Xklj74geeCh5Of/uOboieTYieTyc5LnPblk17ZmP3c92Gz/mAuTHVuS2+9L7j2UHD+RHDmeHD1ec/xksnVzsm2+ZPf2ZMvCLV/n7EjuPpjcek/NFeeWXLC72W7/4eTSvclr/6Tms/uTay5OHrkvOXdXySV7kpM1+fz+5PP7ax4+3vwpeuJkcuhIUpM8dDQ5d2eyb2dyyd6SLz5Yc+u9TbvO2ZE87sKSreVoNv/v38jmeryZcjybTv//xOnlZ9XD2VKPZf+mPXn0kZtSUnOyzOXiY3ekpGb/pnOS1Jx18nAOze3MgbmdOVq2ZC4nU1JTUnOo7EgtJVcdvSXb6sM5Urbm0NyOnMimbMqJfHHT+dleH8rFx+/I9pMP5ViZT03JWScPZ0uO5XDZnrs3n58Tmcu2+nAOzu3MiWzKyTKXvSf2p6Tm187+7nx4+1Oy7/g9ueD4XTmrHs6ukwdz9on7s60eycNla847cW/u3HxhDs3tyI6Th/K5zZfkZJnLkbI1O04eyomyKXtOPJCrjt2Sq47emid93/+d5BHddzyYAO7yZ6M6X1U/tIF9dG7T3avfNZRSzk/S69fvSfZJMDdGH/5nOEZR4MEHSqfDuBVGG7f20J16ot3jt1EIicHwQWkGrY3rSL9FjWiXHGLUlhVG8zqGDm33ibK5uYGunmy3HfSu17+Lpnl88NyvSK75yeSSf7h6sSvoVHyb10CtV/QXJs2WPcnDnd9RxcQZZjYZHwKAFdVaDyZ5cSnlbUleluQrV1n1viRvTfLKWuvdI2jX75dSHp/knyX5vqx/v9tdSd6c5LW11tuG3T6YFK997Wuzd+/evOpVr2qKLiQ5cOBAXv7yl+cVr3hFHv/4x+eyyy7L3r17c++99+a2227LJz/5yWX7mZ+fzy/+4i/mB3/wB0f9EIbm1a9+dW6//fb89m//9ull7373u/Pud787F198cZ74xCfm3HPPzZEjR3LnnXfmox/9aA4cONDVvn/5l385+/fvz9vf/vbTy97ylrfkLW95S/bt25cnP/nJOffcczM3N5cHH3wwd9xxR2688cY8/PDDA3+cADBqZfPS9zgXF3k6XSxFwZShKls7xkL37kuueGz3O7hgefHcdS0UAVtm0/bkqsctW1xOFRzae/6ZhYuLAKxWgKBzH1m9INrp9TZtas7B3lU+dtVlUYMkKbv2Jtd8xUqNaQocnLJl66IflebnK3wxWimlKYqwUmGEDSgXXpFceEX3G5wqTLH7nKXLL3lEX8X5psKAnpMlrnxcypc+Y81VBnreL3tU9+te8+WtPedrHXfZz17566n339MUSTvngnV//zfq1N/PnYUKa63JPXckn/l481mt8y5JzruoKey2RlHFFY9x+EBy9+ebInC79i4UVCtNsbuF/5dSmmOePNlkGQAATJn5zSVfflXy5VcN5i+Sf/MNA9nNWB231q2pv/WjTZHsKfDNB/9w4PssR74tyucwbXyalo3qLIy2katHZ2G05SWMe/dDSV45gP0wCnuvTfZfv3z5Sh+o3XzW8mVMl1F8kFohoumwecy+wWLc2kN39q33xdlDpt9MLtcSBm3zIP4M6vWYMmiitV2AaLH5PW23gFHozAwZQqe2x2xKSTbtSI539wEsxsj87jS3bdb11mxsXeP7MDbvSI4fWr58tevmrh5ueB2mC56dXPOK5IJ/oCAavZvbuv46dG+cXmfDIGzZqzDaNNjUZ9ZvO3/1n+24Itn/t/3tHwCmWK31bUneVkq5Ksm1SS5OsiPJnUluS/KhWuvRDex3wwMAtdb7kvxskp8tpVya5ClJLkqyJ80gywNJ7k7ykVrrzRs9Dky7n/7pn84znvGM/NAP/VBuuumm08trrbnhhhtyww03rLn9tddem9e//vV56lOfOuymjtSmTZvy1re+Nddcc01e9apX5dixY6d/dscdd+SOO+7Y8L7n5+fzO7/zO/m5n/u5vPKVr1xS8Ozuu+/Oe97znq72sWOH96gAAAAWK4uLKA7rGKvcz1JKaQo3dlG8cd1jnLWrq6KVpZREUTQAAJhZpZTUCy9Pbv9U200ZX5+9af11YML4OnkGpctPr/W9DdPkEd+38vIv/3+XLzvvq4fbFtq3bwTP8TnX+sDgNDjvaW23YKm2C2yxMY97WbvH128m085HJNuH8K1n/XqCusATa/djkm3DvylhGRk02cbpb6MdlzX9mOm154nJlo5vsd12frLr0e20h/E0DteV87+m7RbQq63nJXuekJz7Zd2tv/PqZPcaN0A+9bW9Lb/iRcnc/Mo/G4VLnpd8/V8kz35PcuGzFEVjY8ZtjGySbdrWfJELTJN9X9t2CxiEfrN+z5OT7St8GGXHlcnVq7xPCwAsUWu9pdb6O7XW/1Zr/U+11jfVWt+3kaJoA27X52qt76y1/vJCu3621vpLtdbfVhQN1vec5zwnn/jEJ/Ibv/Ebefazn53Nm9f+jumtW7fmW77lW/LOd74zH/7wh6euKNoppZS88pWvzCc/+cl8//d/f84555w119+5c2de8IIX5B3veEcuv/zydff94z/+47nlllvyEz/xE7niiivWbc+uXbvy3Oc+N6973evyhS98IV/2ZV2OJwMAAAAAADCdvvYFbbdgrFVF45hCpVa1qehdKeVJSf5u0aJ7a609faK/lPIvk/zXRYt+t9b6wj7b9R+S9FUZ4uMf/3iuueaafnZBt47en7znmcn9i7rSOU9NnvP+ZHPHt/s9cGPy3mf6dvtpdfmLkq9+S1JGUK/zhv+U/N3Lh38chuMx/zp5yi+03YqlDt6SvOdrk8Ofa7sldOuyb0+e/tbRZM5qTjycvP+bk7v+pL020JsylzztLU0BhXFz+PPJH3xJcuSetltCL8qm5Kt/M7n8H43+2MceTN77nOS+vx79senPtguT53wg2T1GRaluf1vyoRcl9WTbLaEX83uSbfuSA2t8E0jZnHzN25JLn7/8Z7f9f8mHXhw178k5T0me9d7lBfRG7e4/T973Dcnxg+22g+59+euTR/5AcscfJn/6/OTkGp8lLnPJV/3P5Mp/vPo6K72+Wa9/fuynko+NsMhwmWvGwK55eVN4Evp17EDyJ1+X3PuXbbdk8j35Z5NrfqLtVsBgeV9t8m09N3n2+/p/3fCZX0v+4nty+u+3Mpd81ZuTy16YvP+5ox+jfvHRdgvUzpAbbrghT3jCExYvekKt9Ya22gMApZRrknz81Hy/9+gdP348N920dIz7UY961LoFrmAlhw4dyt/8zd/k5ptvzt13352jR49m69atueCCC/LoRz861157bbZunb0v4zx58mSuv/76/P3f/33uueeeHDx4MDt27Mj555+fxz72sXnSk56U+fmNv76/5ZZbcv311+fuu+/O/v37Mzc3l127duXiiy/OYx/72DzqUY/Kpk2bBviI2iW3AAAAAAAA+lMPH0z99y9O/up/977x1u3Jlm3J9p3JvV9IThxvls/NNV90fuoz58ePDa7Bo7JzT3L5o1Oe9tyUl6qjMQruzxsdhdHYkFLK1Uk+vWjR4VrrjtXWX2UfP57k1YsW/Xqt9aV9tuv8JPt63OwRSd55akZhtBE7cm9zQ/7+65O9X5I86oeSzWetvO7BzyS3vDm598NJfOh+KszvSS58VnLVS5O5Ed7g87l3JZ9/d/LQHaM7Jv3Zui+56BubgkSltN2a5Q59NvnMm5oPYNcTbbeGxcqmZNsFSWpy4mhy/tcmV790PD54dfyh5NNvSL74geSO30vmtiX7ntZ2q1jJzkcml397cv7XtN2S1R2+I/nUf00+sfDy+oJnJ5tm78bsibHzkU1BtPOf3l4bjj3YZNDdH0pOPNReO+hO2dQUkb7qu5OdV7XdmuXu/lBy61uST/+P5jX+ub6tfXzNNX97n+pLn/m15It/2hQs37rvzLVj16OTy78j2fdVq+/qix9MbvvN5KZfaubPeWqy7fyFw8wnB25OHlg0nrvrUc3EdNi0Ldn39OTq70m27Gm7NY37P5bc+hvJ/R+Pon1j7KzLk8u+Lbno684su/evk9vemjx4Y5MjFz832XpeU3yzbO7+tfjRB5LPvDG578NNUbSrr0u27F17m8++vbmGfe4dyY7Lk92P7evhrWhuPtnzJclV35XseuTg989sO/pAMyZ19595Xb8R2y9OLnlecum3tN0SGI6Dn0k+8+vJfX8T76tNkrnknGuTK78r2T2gv6Huel9y++80769c9u3JBc9olp8ao777T5PjhwZzrPV87TtH+57gDHPjFQDjRmE0YNbJLQAAAAAAgP7VkyeT2z6ZfObjydnnJBdcnuy7JNm8JTn6cLJpc/Pv8aPJ/NZkx+7k5MmklJS5pvjZqTpLZYWaBfXwweSu25Pd5yR7z2/uu/vczcntn0wuuKIppPbgfcmhB5PU5OCDTTu27UgOH2imTfPJpk1NWzbPn2nTg/uTXXuSPfuSkyeST/xV6ic/khx6IJnf0rR385Zkfr6Z37I95aydTXtrTdl2VnL2ucm+i5vjbTsrOf+yZM95Kz4Whsf9eaOjMBobUko5N8k9HYt31lq7vmO6lPKaJC9btOi/1lr/1SDa14tB33QFAAAAAAAAANAWN14BMG4URgNmndwCAAAAAACA6eD+vNGZa7sBTKZa671J9ncsvrzH3VzRMX/TimsBAAAAAAAAAAAAAAAAAAAAAAAw9RRGox83dsw/ssftr15nfwAAAAAAAAAAAAAAAAAAAAAAAMwIhdHox8c75r+q2w1LKTuSPGmd/QEAAAAAAAAAAAAAAAAAAAAAADAjFEajH3/YMf/MHrb9miSbF81/pNZ6V98tAgAAAAAAAAAAAAAAAAAAAAAAYCIpjEY//ijJQ4vmv6qU8tgut72uY/7tA2kRAAAAAAAAAAAAAAAAAAAAAAAAE0lhNDas1no4yds6Fv/b9bYrpTw6ybcuWnQ8yVsG2DQAAAAAAAAAAAAAAAAAAAAAAAAmjMJo9Os/JDm2aP66UsrzVlu5lLItyRuTbFm0+A211k8Pp3kAAAAAAAAAAAAAAAAAAAAAAABMAoWi+bsXAAAgAElEQVTR6Eut9TNJfrFj8dtKKT9cSllc/CyllMcleW+Spy1afG+S/zjcVgIAAAAAAAAAAAAAAAAAAAAAADDuNrfdAKbCTyS5Jsk3LczPJ/lvSf59KeX6JAeSXJ3k2iRl0XZHk3xrrfULI2wrAAAAAAAAAAAAAAAAAAAAAAAAY0hhNPpWaz1RSvmOJL+S5EWLfnR+km9cZbMvJnlprfXPht0+AAAAAAAAAAAAAAAAAAAAAAAAxt9c2w1gOtRaD9ZaX5zkHyX5izVWvS/Jf0/yhFrrH46kcQAAAAAAAAAAAAAAAAAAAAAAAIy9zW03gOlSa31bkreVUq5Kcm2Si5PsSHJnktuSfKjWerTFJgIAAAAAAAAAAAAAAAAAAAAAADCGFEZjKGqttyS5pe12AAAAAAAAAAAAAAAAAAAAAAAAMBnm2m4AAAAAAAAAAAAAAHSjlLJsWa21hZYAdGeljFopywAAAAAAAABoKIwGAAAAAAAAAAAAwESYm1t+6+uJEydaaAlAd1bKqJWyDAAAAAAAAICGd1QBAAAAAAAAAAAAmAillGzatGnJsoceeqil1gCs7/Dhw0vmN23alFJKS60BAAAAAAAAGH8KowEAAAAAAAAAAAAwMXbs2LFk/sCBAy21BGB9Bw8eXDK/c+fOlloCAAAAAAAAMBkURgMAAAAAAAAAAABgYuzatWvJ/OHDh3P06NGWWgOwuqNHj+bw4cNLlimMBgAAAAAAALA2hdEAAAAAAAAAAAAAmBg7duxYMl9rzWc/+9kcP368pRYBLHf8+PF89rOfTa11yfLODAMAAAAAAABgqc1tNwAAAAAAAAAAAAAAurVp06bs2rUrBw4cOL3s6NGj+fSnP53du3dn9+7dmZ+fz9yc7w8GRuvkyZM5duxYHnzwwTz44IM5efLkkp/v2rUrmzZtaql1AAAAAAAAAJNBYTQAAAAAAAAAAAAAJspFF12Uo0eP5siRI6eXnTx5Mvfff3/uv//+FlsGsLKtW7fmoosuarsZAAAAAAAAAGPPV+EBAAAAAAAAAAAAMFE2bdqUyy67LJs3+45gYPzNz8/nsssuy6ZNm9puCgAAAAAAAMDYUxgNAAAAAAAAAAAAgIkzPz+fyy+/PDt27Gi7KQCr2rFjRy677LLMz8+33RQAAAAAAACAieBr8gAAAAAAAAAAAACYSFu3bs3ll1+eY8eO5YEHHsgDDzyQY8eOpdbadtOAGVVKyfz8fM4+++ycffbZCqIBAAAAAAAA9EhhNAAAAAAAAAAAAAAm2vz8fM4777ycd955qbWm1pqTJ0+23SxgxszNzaWUklJK200BAAAAAAAAmFgKowEAAAAAAAAAAAAwNU4VJZqbm2u7KQAAAAAAAAAA9MgdHwAAAAAAAAAAAAAAAAAAAAAAAEDrFEYDAAAAAAAAAAAAAAAAAAAAAAAAWqcwGgAAAAAAAAAAAAAAAAAAAAAAANA6hdEAAAAAAAAAAAAAAAAAAAAAAACA1imMBgAAAAAAAAAAAAAAAAAAAAAAALROYTQAAAAAAAAAAAAAAAAAAAAAAACgdQqjAQAAAAAAAAAAAAAAAAAAAAAAAK1TGA0AAAAAAAAAAAAAAAAAAAAAAABoncJoAAAAAAAAAAAAAAAAAAAAAAAAQOsURgMAAAAAAAAAAAAAAAAAAAAAAABapzAaAAAAAAAAAAAAAAAAAAAAAAAA0DqF0QAAAAAAAAAAAAAAAAAAAAAAAIDWKYwGAAAAAAAAAAAAAAAAAAAAAAAAtE5hNAAAAAAAAAAAAAAAAAAAAAAAAKB1m9tuAIyBLYtnbr755rbaAQAAAAAAAADQlxXue9iy0noAMELu0QMAAAAAAAAAJp7780an1FrbbgO0qpTyvCTvbLsdAAAAAAAAAABD8Pxa67vabgQAs8s9egAAAAAAAADAlHJ/3pDMtd0AAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgNaVWmvbbYBWlVLOTvKMRYs+m+ToBnb1iCTvXDT//CSf7qNpAL2SQ8A4kEXAOJBFQNvkEDAOZBHQNjkEjINZzaItSS5bNP+BWusDbTUGAAZ4j94ps3qNB8aHHALaJoeAtskhoG1yCBgHsghomxwC2jarOeT+vBHZ3HYDoG0L4fKufvdTSulc9Ola6w397hegW3IIGAeyCBgHsghomxwCxoEsAtomh4BxMONZ9JG2GwAApwzqHr1TZvwaD4wBOQS0TQ4BbZNDQNvkEDAOZBHQNjkEtG3Gc8j9eSMw13YDAAAAAAAAAAAAAAAAAAAAAAAAABRGAwAAAAAAAAAAAAAAAAAAAAAAAFqnMBoAAAAAAAAAAAAAAAAAAAAAAADQOoXRAAAAAAAAAAAAAAAAAAAAAAAAgNYpjAYAAAAAAAAAAAAAAAAAAAAAAAC0TmE0AAAAAAAAAAAAAAAAAAAAAAAAoHUKowEAAAAAAAAAAAAAAAAAAAAAAACtUxgNAAAAAAAAAAAAAAAAAAAAAAAAaJ3CaAAAAAAAAAAAAAAAAAAAAAAAAEDrFEYDAAAAAAAAAAAAAAAAAAAAAAAAWqcwGgAAAAAAAAAAAAAAAAAAAAAAANC6zW03AKbI3Un+Y8c8wCjJIWAcyCJgHMgioG1yCBgHsghomxwCxoEsAoDp5BoPtE0OAW2TQ0Db5BDQNjkEjANZBLRNDgFtk0MMVam1tt0GAAAAAAAAAAAAAAAAAAAAAAAAYMbNtd0AAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgNYpjAYAAAAAAAAAAAAAAAAAAAAAAAC0TmE0AAAAAAAAAAAAAAAAAAAAAAAAoHUKowEAAAAAAAAAAAAAAAAAAAAAAACtUxgNAAAAAAAAAAAAAAAAAAAAAAAAaJ3CaAAAAAAAAAAAAAAAAAAAAAAAAEDrFEYDAAAAAAAAAAAAAAAAAAAAAAAAWqcwGgAAAAAAAAAAAAAAAAAAAAAAANA6hdEAAAAAAAAAAAAAAAAAAAAAAACA1imMBgAAAAAAAAAAAAAAAAAAAAAAALROYTQAAAAAAAAAAAAAAAAAAAAAAACgdZvbbgBnlFI2JXlkkscnuTjJ2UmOJNmf5NNJPlxrPTTgY84n+eoklye5KMnBJHck+Uit9dZBHmtUSinXJPmSJPuSbE1yZ5LPJflQrfXhNts2SqWUvUmuSfKoJOck2Zbk/iR3J/mbWuunW2zeMqWUq9I8bxcn2ZnkC0luS/LntdZjbbZtlsihwZBDDTnERsmiwZBFDVm06nH0j3XIosHQ1xqTlkWMBzk0GHKoIYeWKqVcluZcXJrkvCTbkxxN8kCS29Ock7vba+H4kEWDIYsasoiNkEODIYcacoiNkkWDIYsasmhl+gfQBtf4wZDhjUm7xrtHZjzIocGQQw05xEbIocGQQw05tOpx9I81yKHB0M8ak5ZDjAc5NBhyqCGHlnKPXvdk0WDIooYsYiPk0GDIoYYcYiPk0GDIoYYcWtlE949aq6nFKU1Q/kiS30vzR31dYzqe5A+SfPMAjrsvyS8luXeN430oyQv7PM7VSV6U5OeSvD/Jgx3HuHVA53FXkp9M8vk1Hs+DSd6c5BEtPt9DOx9J5pN8Q5LXJvn4On2pLpyrn0pyYcu/A9+e5M/XaOe9C331vA3se71zsN50ZZvnZoTPgRwazHmUQ3Jo8T6vHEAGLZ6ua/Mcjeh5kEWDOY+ySBZNfP9o+XmQRYM5jxPR12RRa/1jR5KnJ/nXSX4jyaeSnOw41nVtnYe2Jzkkh+TQ0M7Ho5L8TJL3pXlDY73zUZNcn+RfJNna1jlp8bmQRYM5j7JIFq20/27yZ63pyrbOzYifBzk0mPMoh+TQ4v1eOYAMWjxd19Y5GuFzIYsGcx5lkSya+P5hMpmma3KNn60Md41fsd3u1Wt5kkNySA65V6/tSQ7JITnkPr22Jzkkh2Y5h0bYP9yjt/b5kUODOY9ySA517ts9er2dL1k0mPMoi2TRSvvvJn/Wmq5s69yM+HmQQ4M5j3JIDi3e75UDyKDF03VtnaMRPQ9yaDDnUQ7JoYnvH+s+jrYbMMtTkrf0cSF7d5ILNnjcb0pyVw/H+p9JdvSw/2cm+aN1LgYD+4VM8hVpqm92+3gOJfnBET7PQz8fC+fgvg32pf1JvquF/r8zyW/20M47k3xDj8fY6O/XqenKUZ+XFp4HOSSH5NAQciiD/wP2RaM+PyN+LmSRLJJFQ8iiSeof4zDJIlk0i1k0yv6RZtD4Y2kGo9c71nWjOgfjNMkhOSSHhtc/kvzTPn6/PpnkK0Z1TtqeZJEskkXD7R99/H6dmq4c1Xlpa5JDckgODe18XDmADFo8GbOWRd0cTxbJoontHyaTaTon1/jZyHDX+FXb7F69MZjkkBySQ+7Va3uKHJJDcsh9ei1PckgOzWIOjbJ/xD163ZwjOSSH5NCQ+kfco9fLuZJFskgWDbF/9PH7dWq6clTnpa1JDskhOTS083HlADJo8WSsWg518zsoh+TQRPaPXqbNoU2PXmX555PclCZUN6ep9vfkJHOL1vmHSf60lPKMWuud3R6wlPLMJO9IsmXR4pqmuvpnkuxJ8qVJzlv08+9MsruU8oJa68kuDvMlSb6+2zb1o5TynDRVQLd2/Oi2JB9N88t3aZpf2vmFn52V5JdKKXO11teNoJmjOB/7kuxdYfnRNIPad6aplHpukqcu/HvKniRvLqWcX2v9hSG3M0lSStmU5K1Jntvxo7uTfGShrY9I0xfLws8uSPLOUspzaq0fHEU7Z4Qc6pMcOk0ODc/hNJWsp5ks6pMsOk0WrXycSegf40AW9WlC+posWmpk/SPJS5KcPaJjTSo51Cc5dJocWl9NM8B/c5o3FQ6n+bbcq5JckzP9I2l+N99bSvnmWusHRt3QFsiiPsmi02QRGyWH+iSHTpNDw2PMWhatSxadJotWMCH9A5hOrvF9mpAMd43vMGH3yEw7OdQnOXSaHBqeaR/3kEN9kkOnyaGVjzMJ/aNtcqhPE9LP5NBS7tEbL3KoT3LoNDm0PvforU4W9UkWnSaL2Cg51Cc5dJocGh5j1XJoTXLoNDm0ggnpH91ruzLbLE9JPpwz1fOuT/LDSR6xyrqXJHl9llfd+7MkpcvjXZrl1Q4/mORxHettTfJ/pfllX7zuz3R5nB9ZoZ01ycNpBjIGUqkwTdXUzmqINyf5uhXW3Zvkv3Wse2KldYfwPA/9fKS5gJ/ax4Ekb0jy7CTbV1i3JPnWNKHV2aahn4+FNvxcx3GPLvT/LR3rPT7Jn3ese0+Si7o8zuLt/mKhz/QybR7F+WhzihySQ3JoKDmU5g+u9TJmtemDHcd70yjOSZtTZJEskkVDe000Kf1jHCZZJItmMYtG1T8WjnX/Ksf63Ao/u27Yj30cJzkkh+TQUPvH9yX5+zSvv745yd411t2T5EfTvPmx+PifT3L2sM9J25MskkWyaOiviRbvy5j1yudIDskhOTSc82HMurfzJYtkkSya8f5hMpmmc3KNn40Md41fsb3u1RuTKXJIDsmhoeRQjHv08lzIITkkh4b0emhS+kfbkxySQ7OYQ6PqHwvHco/e+udIDskhOTS8/uEeve7PlSySRbJouK+JFu/LWPXK50gOySE5NJzzYay6+3Mlh+SQHJrx/tHTY2q7AbM8JfnrNFX2ntrDNj+0Qkd/cZfbvqFjuw8l2bbG+i9Y4Rfqii6O8yMLYf+RJP8jyQ8kuTZNpcBnDvAX8jc79nVTkvPX2ebHO7a5IcmmIT/PQz8fC4F9V5KXJdnR5TbnJvlEx/FvTJcvAPo4H1dn+YuB56+x/vYsf4Pxl7s81uJt3j/MxzWpkxySQ3JouDm0gbZdkuR4x7G+ZpjnYxwmWSSLZNHwsmhS+sc4TLJIFs1oFo2kfywc6/4037Lw+0n+48J5umDhZ+/vONZ1w3zc4zrJITkkh4baP+Y3sM2XJDnY0YZ/O8zzMQ6TLJJFsmjor4kW7+v9w3xckzrJITkkh4abQxtomzHr7reRRWeOI4vOHEMWTWj/MJlM0zm5xs9GhrvGLzuue/XGaJJDckgODTeHNtC2mRv3kENySA4NL4cmpX+0PckhOTSjOeQevTGa5JAckkPu0RuHSRbJIlnkHr22Jzkkh+SQe/TanuSQHJJD+kdPj6ntBszylOTKDW73to5O9ftdbPOojgvikSSP6mK7N3Uc61e72GbvaheCAQbU1WkqDS7e19O73PZPOrb73iE/z6M4H/u6DeqO7Z68wnn8siGfj1/rON4bu9jm0Qt99tQ2x5Jc3cV2i4/z/mE+rkmd5JAckkPDzaENtO0nO9r2qWGei3GZZJEskkXDyaJJ6h/jMMkiWTSjWTT087Fof6t+e27cdHXqPFy5we3kkBzq3I8cGlz7fqqjDX8x6ja08Jiv3OB2skgWde5HFq28v8X7ev8wH9ekTnJIDsmh4ZyPPtpmzLq37WSRLOrcjyya0P5hMpmmc3KNn40Md41fdkz36o3RJIfkkBwabg5toG0zN+4hh+SQHBpODk1S/2h7kkNyaEZzyD16YzTJITkkh4ZzPvpsn3v0ut9OFsmizv3IopX3t3hf7x/m45rUSQ7JITk0nPPRR9uMVXe/nRySQ537kUMT2j96meZCa2qtt25w09d1zP+DLrZ5SZJNi+Z/t9Z6Uxfbvbpj/jtKKdvW2qDWur/W+nAX++7HNydL+u9f1Fo/2OW2r+mY/57BNGllozgftda7a62HNrDd3yXpPG/d9KcNKaVsT/LtHYs7+9gytdZPJXnHokWb0/Rp+iSH+iKHlh5DDvWplFKyvC+8YZDHGFeyqC+yaOkxZNFSE9M/xoEs6svE9DVZtOyYo+gfp471hVEcZ5LJob7IoaXHkEOD87865h/ZSitGSBb1RRYtPYYsYkPkUF/k0NJjyKE+GbPeEFkkizqPIYuWmpj+AUwn1/i+TEyGu8afMc73yMwqOdQXObT0GHKoT7M67iGH+iKHlh5DDi01Mf2jbXKoLxPTz+TQsmO6R2+MyKG+yKGlx5BDg+Meve7JIlnUeQxZxIbIob7IoaXHkEN9MlbdMzkkhzqPIYeWmpj+0QuF0SbTRzrmt5dS9qyzzbd2zL+xmwPVWm9M8peLFu1I8vXdbDtkX9sx/0c9bPveJEcXzT+tlHJR/02aWJ396eIhHusbkpy1aP7/1Fr/vsttO/vstw2mSWyQHJJDgySHGs9I8ohF88fTfFMdq5NFsmiQpjGL9I/RkEX62iCNMouYHnJIDg2SHFrqvo75Xa20YjLIIlk0SLKIjZBDcmiQ5FDDmHXvZJEsGqRpzCL9A5hUrvEyfJCm8X1phk8OyaFBkkMN4x69kUNyaJCmMYf0j+GTQ/rZIE3j2CvDJ4fk0CDJoaXco9c9WSSLBkkWsRFySA4NkhxqGKvujRySQ4M0jTk0lf1DYbTJdHyFZVtWW7mUcmGSJ3ds/6Eejvf+jvlv6mHbYbm0Y/7j3W5Yaz2S5OZFi+YyHo+pLZ39adW+NADf2DH//h62/bMsbeuXllIu6LtFbJQckkODJIca39cx//u11jsHuP9pJItk0SBNYxbpH6Mhi/S1QRplFjE95JAcGiQ5tNQVHfN3tNKKySCLZNEgySI2Qg7JoUGSQw1j1r2TRbJokKYxi/QPYFK5xsvwQZrG96UZPjkkhwZJDjWMe/RGDsmhQZrGHNI/hk8O6WeDNI1jrwyfHJJDgySHlnKPXvdkkSwaJFnERsghOTRIcqhhrLo3ckgODdI05tBU9g+F0SbTIzvmjye5Z431n9Ax/9Fa66EejvfnHfPX9LDtsJzTMX9/j9t3rv/EPtoy6Tr70xeGeKzOvvh/ut1woc9+rGPxOPTFWSWH5NAgzXwOlVLOTvLCjsVvGMS+p5wskkWDNI1ZpH+MhizS1wZplFnE9JBDcmiQ5NBS/6Rj/n2ttGIyyCJZNEiyiI2QQ3JokGY+h4xZb5gskkWDNI1ZpH8Ak8o1XoYP0jS+L83wySE5NEgzn0PGPTZEDsmhQZrGHNI/hk8O6WeDNI1jrwyfHJJDgySHlnKPXvdkkSwaJFnERsghOTRIM59Dxqo3RA7JoUGaxhyayv6hMNpk+vaO+Q/XWk+usf7jO+ZvXnGt1X16nf214WjH/NYet+9cfxwe08iVUnYn+bqOxX81xEM+rmN+lH3x8lLKG0spN5RS9pdSjpZS7lqY/5+llB8opXQGPauTQ3JoIGYsh9byj5NsXzT/hSR/MKB9TzNZJIsGYoqzSP8YDVmkrw1EC1nE9JBDcmgg5NBSpZR/keS7Fi06nuS/tNScSSCLZNFAzFgWGbMeLDkkhwZixnJoLcasN0YWyaKBmOIs0j+ASeUaL8MHYorfl16JcY/BkkNyaCBmLIfWYtyjd3JIDg3EFOeQ/jF8ckg/G4gpHntl+OSQHBoIObSUe/R6Jotk0UDMWBYZqx4sOSSHBmLGcmgtxqp7J4fk0EBMcQ5NZf9QGG3ClFJ2Jvm+jsVvX2ezzkqFt/d42Ns65s8tpeztcR+Ddm/H/EU9bt+5/mP6aMsk+2dJzlo0/0CGVFV/4Y/Dzj8Qe+2Lnes/qodtr0pyXZrw3ZNkPsn5C/PfmeT1SW4vpfznhd8zViGHTpNDgzFLObSWzt+pX6u1Hh/QvqeSLDpNFg3GtGaR/jFksug0fW0wRpZFTA85dJocGoyZzqFSyo5SymNKKS8tpXwgyWs7Vnl5rfWjbbRt3Mmi02TRYMxSFhmzHhA5dJocGoxZyqG1GLPukSw6TRYNxrRmkf4BTBzX+NNk+GBM6/vSKzHuMSBy6DQ5NBizlENrMe7RAzl0mhwajGnNIf1jiOTQafrZYEzr2CtDJIdOk0ODMdM55B69jZNFp8miwZilLDJWPSBy6DQ5NBizlENrMVbdAzl0mhwajGnNoansHwqjTZ6fTXLhovn7k/zKOtvs6Zj/Yi8HrLUeTPJwx+Kze9nHENzYMf+V3W5YSrk8ycUdi9t+PCNXSrkyyb/vWPyLtdbOKpCD0tkPD9daD/W4j86+O+jnbUeSH0nyN6WUawa872kihxpyqE9yqFFKeWKSp3YsfkO/+50Bsqghi/o05VmkfwyfLGroa31qIYuYHnKoIYf6NGs5VErZU0qpi6ckB5P8fZI3JfnaRasfTPIDtdbXtNDUSSGLGrKoT7OWRV0yZt0dOdSQQ32SQw1j1hsmixqyqE9TnkX6BzCJXOMbMrxPU/6+9EYZ9+iOHGrIoT7JoYZxjw2RQw051KcpzyH9Y7jkUEM/69OUj70yXHKoIYf6NGs55B69gZNFDVnUp1nLoi4Zq+6OHGrIoT7JoYax6g2RQw051Kcpz6Gp7B8Ko02QUsq3JvnhjsU/WWu9b51NO6sUP7SBw3dus2sD+xikD3TMv7CUctaKay73T1ZY1vbjGalSypYkb83Sx31rkv9niIdtqx8eT/L+JP8uyfOSXJvm25q+NMnzk7wmy1/EPDrJe0opV2ygjVNNDi0hh/owYzm0ns4K1R+otd48gP1OLVm0hCzqwwxkkf4xRLJoCX2tDy1lEVNADi0hh/ogh1Z1V5KfTHJVrfV/tN2YcSWLlpBFfZixLDJmPUByaAk51IcZy6H1GLPukSxaQhb1YQaySP8AJopr/BIyvA8z8L70YsY9BkgOLSGH+jBjObQe4x49kENLyKE+zEAO6R9DIoeW0M/6MANjrwyJHFpCDvVBDq3KPXpdkEVLyKI+zFgWGaseIDm0hBzqw4zl0HqMVfdADi0hh/owAzk0lf1DYbQJUUp5cpJf71j8x0n+exebdwZ2Z1XKbnQGduc+R+3301TxPGVPkv+w3kallMuS/NgKP9pUStk+mKZNhF9J8uWL5k8keekGvgWpF230w3+X5JJa6z+otb6q1vruWutHaq0311r/ttb6rlrrv0lyRZL/lKQu2vbCJL9bSikbaOdUkkPLyKH+zEoOrWnhBfR3dSxW1XsNsmgZWdSfac8i/WNIZNEy+lp/2sgiJpwcWkYO9UcOreyCJP88yQ+WUna33ZhxJIuWkUX9mZUsMmY9QHJoGTnUn1nJoTUZs+6dLFpGFvVn2rNI/wAmhmv8MjK8P9P+vvQpxj0GSA4tI4f6Mys5tCbjHr2RQ8vIof5Mew7pH0Mgh5bRz/oz7WOvDIEcWkYO9UcOrcw9euuQRcvIov7MShYZqx4gObSMHOrPrOTQmoxV90YOLSOH+jPtOTSV/UNhtAlQSrk8TQdcHJK3JfmuWmtdeas1jWqboam1Hkjyix2Lf6yU8q9W26aUcmmSP0xy9mq7HVDzxlop5aeTfHfH4pfXWv90xE0Zej9c+KO1s2r3Sus9XGt9eZJ/2fGja5P8416OOa3k0HJyaONmKYe68Pwk5y6afyDJ2wZ8jKkhi5aTRRs3C1mkfwyHLFpOX9u4McoiJogcWk4ObdwM59CDSa5aND0izTjQtyX5z0nuXljvsiQ/leRjpZQva6GdY0sWLSeLNm6WssiY9eDIoeXk0MbNUg51wZh1D2TRcrJo42Yhi/QPYFK4xi8nwzdujK7x7tWbIHJoOTm0cbOUQ10w7tElObScHNq4Wcgh/WPw5NBy+tnGjVEOMUHk0HJyaONmOIfco9cnWbScLNq4WcoiY9WDI4eWk0MbN0s51AVj1V2SQ8vJoY2bhRya1v6xue0GsLZSyvlJ/neSSxYtvjPJ19Va7155q2UOdsxvpCJf5zad+2zDzyT5ppypyFiS/JdSyrenqYr6t2kqcF68sN4P5sxF73NJLl20r4drrcsqfJZSruy2MbXWW3tqfQtKKT+Sptr1Yr9Qa/25Lre/sttjrXA+xr4f1lpfV0r5+iTPW7T4h5K8ZZDHmTRyaE1yqEdyaJnv65h/S621s3o0kUXrkEU9mrEsGnr/mCWyaE2yqEctZ1QVJ7cAACAASURBVBETSg6tSQ71aJZzqNZ6MsmtK/zoI0neXkr5d0leneSHF5ZfnuQ9pZSvrrV+fDStHF+yaE2yqEeznEXdMGa9Mjm0JjnUIzm0jDHrLsmiNcmiHs1YFhmzBsaaa/yaXON7NGPvS/fMuMfK5NCa5FCP5NAyxj26IIfWJId6NGM5ZMxjQOTQmuRQj2Zs7JUBkUNrkkM9muUcco9ef2TRmmRRj2Y5i7phrHplcmhNcqhHcmgZY9VdkENrkkM9mrEcmrqxaoXRxlgp5Zwk70ny6EWL70nynFrrTT3saioDu9Z6tJTybUn+V5InLfrR0xem1dyb5gXDHy1adv8q697SQ5NKD+uOXCnl+5P8Qsfi/15rfVkPu+nnfExKP/zZLP0D9itLKXtqrav1kakmh9Ymh3ojh5YqpVyW5Os6Fr9ho/ubZrJobbKoN7OWRSPqHzNBFq1NFvVmDLKICSSH1iaHeiOH1lZrPZzkX5ZSjiX51wuLdyf59VLKUzb47UJTQRatTRb1RhZ1zZj1InJobXKoN3JoKWPW3ZNFa5NFvZm1LDJmDYwz1/i1ucb3Zgyu8ZPSD417LCKH1iaHeiOHljLu0R05tDY51JtZyyFjHoMhh9Ymh3ozBjnEBJJDa5NDvZFDa3OP3upk0dpkUW9kUdeMVS8ih9Ymh3ojh5YyVt0dObQ2OdSbWcuhaRyrnmu7AayslHJ2kj9O8sRFi/enqWB5Q4+7e6Bjfl+PbdmZ5YE9Fh241vr5JE9L8vokx7rY5H1JnprkUMfyOwfctLFSSvnuJL+cpSH6xiT/YoTN6OyHZ5VSdvS4j/M75ofRD/8qze/aKZuSPH4Ixxl7cqg7cqg7cmhF12Xpa7G/q7X+TR/7m0qyqDuyqDuzmkX6R/9kUXf0te6MSRYxYeRQd+RQd+RQT34yyR2L5r80yXNaakvrZFF3ZFF3ZFFPjFkvkEPdkUPdkUMrui7GrNcli7oji7ozq1mkfwDjyDW+OzK8O2NyjR+3e2RWY9xjgRzqjhzqjhxa0XUx7rEmOdQdOdSdWc0h/aM/cqg7+ll3xiSHmDByqDtyqDtyqCfu0VtEFnVHFnVHFvXEWPUCOdQdOdQdObSi62Ksek1yqDtyqDuzmkPT1j8URhtDpZRdSf4wyVMWLX4wyTfWWv92A7vsrHp5RY/bd65/X611/4prtqDWeqjW+s+TPCbNQMj7knwuyUNJDiS5Mcmvpame+uxa661JHtexmw+PrMEjVkp5cZpwXvz7/htJ/ukoK+fXWu/N0j8Mk+TyHnfT2Rd7qejalVrrySS3dyzu6UXONJBDvZFDa5NDy5VSSpLv6VisqncHWdQbWbS2Wc8i/WPjZFFv9LW1jUsWMVnkUG/k0NrkUG9qrQ8leUfH4m9soy1tk0W9kUVrk0W9MWbdkEO9kUNrk0PLGbPujizqjSxa26xnkf4BjBPX+N7I8LWNyzV+nO6RWYtxj4Yc6o0cWpscWs64x/rkUG/k0NpmPYf0j42RQ73Rz9Y2LjnEZJFDvZFDa5NDvXGP3hmyqDeyaG2yqDfGqhtyqDdyaG1yaDlj1euTQ72RQ2ub9Ryapv6xue0GsNTCt9D8ryRfuWjxwSTfVGv9qw3u9saO+Uf2uP3VHfOf2GA7hqrWekuSn1mY1vNVHfN/uco+y0rLJ0Up5YVJ3pymOvUpv53kpQt/qPVkAOfjxjSVJU95ZJb3z7V09sVetu3FQx3znZVcp5oc2jg5tJwcWtWzkly1aP5ImhfTLJBFGyeLlpNFZwyjf0wzWbRxsmi5McwiJoAc2jg5tJwc2rBPdsz3+jsz8WTRxsmi5WTRhhmzlkMbIoeWk0OrMma9Dlm0cbJoOVl0hjFroG2u8RvnGr/cGF7jx+UemfUY95BDGyKHlpNDqzLusQY5tHFyaDk5dIYxj+7JoY2TQ8uNYQ4xAeTQxsmh5eTQhrlHTxZtmCxaThZtmLFqObQhcmg5ObQqY9VrkEMbJ4eWk0NnTMNY9dz6qzAqpZTtSX4vydMXLT6c5JtrrX/ex64/3jH/pFLKWT1s/9Xr7G+iLFRTfVbH4g+00ZZhKqU8L8lvZmkBxHckeUmt9UQ7rVrWdzqDcVULL2aetM7+BuW8jvl7hnScsSOHRkMOyaEk39sx/7u11vs2uK+pI4tGQxbJonWOMxP9Yy2yaDRmpa+NaRYx5uTQaMghOdSFYx3zW1tpRUtk0WjIIlnUBWPWcmio5JAcijHrNcmi0ZBFsmgts9I/gNFyjR+NWcnwMb3Gj/370guMe8ihoZJDcijGPVYlh0ZDDsmhdY4zE/1jNXJoNGaln41pDjHm5NBoyCE51AX36MmioZNFsqgLxqrl0FDJITkUY9WrkkOjIYfk0FrGuX8ojDYmSinbkrwryTMXLX44yfNqrX/az75rrV9I8tFFizZn6UVhPc/smP+DftozBp6V5MpF8x+otd7UUluGopTy3DQVK+cXLf79JC+qtR5vp1VJkj/smH9mD9t+TZZefD5Sa72r7xZ1KKWcl+XVW+8Y9HHGkRwaKTnUntZzqJSyJ8m3dSx+Q6/7mVayaKRkUXtaz6IuTH3/WIssGqmp72tjnEWMMTk0UnKI9VzaMT+M115jSRaNlCxiVcas5dCIyKEZZsx6bbJopGQRa5n6/gGMlmv8SE19ho/xNX7s35c27iGHRkQOtaf1HDLusTo5NFJyqD2t51AXpr5/rEYOjdTU97MxziHGmBwaKTnEetyjJ4tGQRaxKmPVcmhE5NAMM1a9Ojk0UnKItYxt/1AYbQyUUrYk+d0kz1m0+EiSF9Ra3zugw7y9Y/57umzbY5N8xaJFh5L88YDa1JZ/2zH/+lZaMSSllK9L8jtJtixa/MdJXlhrPdpOq077oyQPLZr/qoU+1o3rOuY7+/SgvDhLs/GuJDcO6VhjQw6NnBxqzzjk0Hcm2bZo/tYkf7LBfU0VWTRysuj/Z+/Ow2S7ynrxf98QCEMgYQqjJMyDyhiUgJiDgAIKGFBAZAjkyiDOIALXIaAXLj9F8YqCoJAwKoMEZFTEwxAIMo+KTIkQmQmEEDKv3x+7jqfO7urumrqquvvzeZ5+yF6119qrqtZ+O+x+867lWYVYtJkdvT42IhYt3I5eaysei1hR4tDCiUNs5id7xyvxYH+riUULJxaxEc+s9xOHto44tLt5Zr0OsWjhxCI2sqPXB7BYfscv3I6O4Sv+O347/F3ac4/9xKGtIw4tzyrEIc89RhCHFk4cWp5ViEOb2dHrYz3i0MLt6HW24nGIFSUOLZw4xGbk6O0nFm0dsYiNeFa9nzi0dcSh3c2z6hHEoYUTh9jIyq4PhdGWrKoOTvLKJPccar4wyc+11t46x0u9LMnFQ8f3q6obj9Gvv3hf2Vo7b37TWqyqeniSuw81fSRdxccdoaqOTfK6HPgvRm9P98v//OXMar/W2rlJXt1r7q+xNarqJkmOG2q6KMnL5zi1fde5RpLf7TX/Y2utzftaq0QcWixxaLlWJA49snf8wp0eZ8YhFi2WWLRcKxKLNrrOjl4fGxGLFmunr7VVj0WsJnFoscQhNlNVP53k6F7z65Yxl0USixZLLGIjnlmLQ4sgDhHPrEcSixZLLGIjO319AIvld/xi7fQYvuq/47fB36U999hPHNoi4tByrUgc8tyjRxxaLHFouVYkDm10nR29PtYjDi3WTl9nqx6HWE3i0GKJQ2xGjp5YtAhiERvxrFocWgRxiHhWvYY4tFjiEBtZ9fWhMNoSVdWl0gXS+w41X5Tkga21N8zzWq21zyQ5eajpMklOqqrLrtMlVXXfHLjTzQVJnjrPec1q8Atv3HPvl+QFQ00XJXlka+2iuU9sCarqmCRvSHK5oeZ3Jrl3a+37o3stxYnp/qVkn+Or6j7rnTxYoy/KgZU5/7a19rkN+ty0qu49yaSq6prpPr9rDDVfkOQZk4yz3YhDsxOH9hOHNldVt05y26GmS5KcNOk4O41YNDuxaD+xaGRf62MMYtHsrLX9tlEsYoWIQ7MTh/YTh/arqqOr6rjNz1zT7/ZJXtJrfmdr7ePzmdlqEotmJxbtJxbt55n1+MSh2YlD+4lDm/PMejSxaHZi0X5i0VrWB7AsfsfPTgzfbxv9jj8xcvVWhjg0O3FoP3Foc557rCUOzU4c2k8cGtnX+tiEODQ762y/bRSHWCHi0OzEof3Eof3k6E1GLJqdWLSfWLSfZ9XjE4dmJw7tJw5tzrPqtcSh2YlD+4lDa+209TH2m2FLvDDJA3ptT0ny4ao6asKxvjJGhck/SLdzzZUHx3dM8raq+l+ttf/Yd1JVHZLkUUme1ev/rNbaGeNMpqqum9Hr65q944M3eK/ntNa+scmlPl5Vb0zymiTva61dMmIuP5TkyUke3HvpKa21D28y/lxs9edRVbdJ8uYkhw41fzrJ45IcUVWTTPe81tpXJukwidba56vqz5M8Yaj51VX1W0me31q7YF9jVd08yd+kW6v7fDOb/4vDtZK8vqo+nuSlSV47+JeWNarqikkenq6i9zV6L/9Ra+3zY7yt7UwcEofEoc6849B6Tugdv7W19sUpx9pJxCKxSCzqbFUs2hbrYwWIRWLRrotFyeLWR1UdmuRq67zcf5h8tQ2u9aVVerA2Z+KQOCQOHWhe6+O6Sf6hqj6R7o9npyT5dGujd1iqqlskeXSSX+7N67xB204nFolFYtGB5rU+PLMenzgkDolDB5r3+ujzzHo0sUgsEosOtCvXB7Aj+R2/S2K43/H7ydVbOeKQOCQOdeTqLY84JA6JQx15essjDolDuy4OJXL0Vow4JA6JQweSo7ccYpFYJBYdSI7e4olD4pA4dCA5eosnDolD4tCBduX6GFtrzc+SfpK0Of7sGfOae5Kc3+t7SZL3J/n7JG9J8rUR4/9jkktN8N5On8N7OmmM63xj6PzvJnlPupvzZUn+aYN5/OGCv+st/TzS7WQ0r7W0dwGfx6WSvGnEtb+a7hfPK5N8YLA2h18/P8mdx1zn/bG/neTd6R6svSTJawfXuHCdz+Gvlx0jFrQ2xSFxSBzagji0zjUPSZcgMTze/ZcZA1blZ45rRywSi06c41rau4DPYyGxaLusj2X/zHHtiEUrvta2+vPI9otFi1ofx8/pMzlq2fFiC78LcUgcEoe25vP42RHnnz1YH69Pl/zwyiRvS/KVdcY/N8ndlh0nFrQ+xSKxSCzams9jz4jzPbMe/VmJQ+KQOLSF66N3Tc+s1/9sxCKxSCyyPvz48bMDf+YYk/2OX/EYvtWfR7bf73i5eivyM8d1Iw6JQyfOcS3tXcDnIVdvRX7muG7EIXHoxDmupb0L+Dzk6a3IzxzXjTi04utsqz+PbL84tKj1cfycPpOjlh0vtvC7EIfEIXFoaz4POXqTfR9ikVgkFm3N57FnxPmeVY/+rMQhcUgc2sL10bumZ9WjPxdxSBwSh6yPsX9GVZJjB2ut7a2q45KclOTqg+ZKcvTgZ5RXJPml1trFWz/DmRya5JhNzjkryS+31v5uAfNhHa21i6vqAel2VHrg0EtHJLnHOt2+luThrbV3TXnZw5LcaYzzvpfkN1trL5jyOmxCHBKHVsGS4tBxSa4ydPz1dA/4WQKxSCxaBUuKRdbHChGLrDVYNnFIHNrFrpjN18c+pyV5dGvtY1s4n11NLBKLdjHPrFeEOCQO7WKeWa8QsUgs2sWsD2BH8zteDF8FcvV2N3FIHFoFcvV2N3FIHFoF8vR2N3HIOoNlE4fEoV1Mjt4KEYvEol3Ms+oVIQ6JQ7uYZ9UrQhwSh3axbb8+Dlr2BFi81tqbkvxQkuelW6DrOS3Jz7XWHtxa+95CJje5Zyf5cLpqnBv5YpKnJbnhqt6Mu01r7ZzW2oOS/Hy6tbaebyV5bpIfaq29Zczh/z3J05OcmuT7Y/b5zyRPSbezif/zusXEIXFoFWxxHBrlhN7xS1prF84wHjMSi8SiVbCgWGR9rDCxyFqDZROHxKFd4O3pdsR9RZIvjdnn3CSvTnLvJHeUcLX1xCKxaBfwzHrFiUPi0C7lmfWKEYvEol3E+gB2Fb/jxfBVIFdvdxOHxKFVIFdvdxOHxKFVIE9vdxOHrDNYNnFIHNoF5OhtA2KRWLQLeFa94sQhcWiX8qx6hYhD4tAusqPWR7XWlj0HlqiqLpOu2vGRSa6ZrqrxmUk+3Fr7wjLnNomqulKS2yS5froKnZdN939czkzy0dbap5Y4PcZQVddPctsk105yhSRfSXJGklNbaxfMMO5BSW6c5IZJrpPk8OxfH2cl+XKS97fWvj7TG2Bq4hCrYqviENuDWMSq2MpYZH2sPrEIWDZxiN2gqq6R5Obp1vlVk1w+yYVJzk7yzSSfSPLpbbCrz44lFrHTeWa9+sQhYBWIRewG1gewG/kdz6qQq7d7iUOsCrl6u5c4xKqQp7d7iUPAsolD7AZy9FafWMRO51n16hOHgGUTh9gNdsr6UBgNAAAAAAAAAAAAAAAAAAAAAAAAWLqDlj0BAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAHqq6qiqar2f45c9r0Wqqr2997932XPaiXzO21tVndiPFdvh+tYdAAAAAAAAAMDutl3zXgAAAACA3UFhNAAAAAAAAAAAAAAAAAAAAAAAAGDpDl72BAAAAIDVVFVHJfnCBF3OT3J2ku8k+VySDyc5LcmbW2sXzHt+AAAAAAAAAAAAMKyqKl3e25G9ly5OcmRr7czFzwoAAAAAgEkctOwJAAAAADvGIUmunuRGSX4qyZOSnJLkzKp6ZlUduszJ7XRVdVJVtaGf05c9J2BnqarTe3HmpGXPCQAAAAAAAACg525ZWxQtSS6V5PjFTgXmo6r29PJ2WlXtWeJ85CvCHLmnAAAAYC2F0QAAAICtdrUkT0zyiao6ZtmTAQAAAAAAAAAAYMc6YYPXHllVtbCZAAAAAAAwlYOXPQEAAABgW/leks+u89rlk1wlyVXXef3IJG+pqmNbax/ZiskBAAAAAAAAAACwO1XVVZL87Aan3CDJniT/upAJAQAAAAAwFYXRAAAAgEl8oLW2Z6MTquq6Se6d5PFJbth7+UpJXl1VN2+tXbg1U2QeNvuegaS1dmKSE5c8jYm5vwEAAAAAAACAHeohSQ7ptbUkNXR8QhRGW7rtmncDAAAAACzGQcueAAAAALCztNa+1Fp7bpJbJfmHEafcMMmjFzsrAAAAAAAAAAAAdrhH9o4/k7U5bPerqsMWNB8AAAAAAKagMBoAAACwJVpr30vyi0n+fcTLD13wdAAAAAAAAAAAANihqurodJt5DntxkpN7bZdL8uCFTAoAAAAAgKkojAYAAABsmdbaeUmeMeKlo6vqKoueDwAAAAAAAAAAADvSCb3jluQlSd6c5GubnAsAAAAAwAo5eNkTAAAAAHa8t4xoOyjJTZO8d9pBq+qgJLdJclSSqye5SpKzk3w9yWeTfLi1dsm0489TVV0nyc3SzfWwdLuOnp3kW0n+K8n7B0Xk2AJVdbkkP5LkWkmOSHJokm+mWysfba19bonTG0tVXT3JHZLcIN38v5MuYfN9rbUzljm3rVZVh6V77zdOd/+cl+TMJO+d5L1X1bWT3D7dfXhouvvvS0ne0Vo7e87TnkpVHZLkTkmul+SaSS5O8tUkH0/ykdZaW+L0AAAAAAAAAABW0iA/6Bd6ze/cl1tSVS9P8htDr92uqm7VWvvoFs/r0unylm6R5KqD5q8m+dAk166qK6XLe7lpksOTfC/JV5Kc2lr70lwnvfbaV03yo0lumORK6fKW/jsrmndVVddNcqt0OYVXT1cg7+tJvpzktEXkCVXVjZPcLsl1khySLlftv5O8u7V21lZffyeqqh9KcqN0+X9XTXJuuu/19HT5lxdu8fXdy9Nfd1XuyVsluW663MELkny5tfaSMfvLAd4CVXWZJEenux+uli5enp0uL/Z9E4xzo3T35r41dn6Sb6TLDz2ttfb9OU8dAACABVEYDQAAANhSrbWvV9XZ6RIphl1tmvGq6s5JHpfk7umKoa3nW1X1piTPaK19apprTauqrpbkuCR3S3Jskmts0uWCqjotyXOSvGbcgm5VdXqSI9d5+ciqGqeI0l1aa3tHjL033dz3eUdrbc868/h4kh8aavp6kuvMkmxUVb+Q5OW95se11v5qzP4HJfnFJA9J8uNJLrvBuV9I8sokf9Ja+8Z0M94aVbUnyVOS3DVdQcFR53wqydOTvHySwllVdXySF/War99aO32Kefav+9TW2omb9DkxyR8Mt7XWauj12yf53ST3yjrPMavqHUme1Fo7bYPr3DvJ7yS5Y5IaccoFVfXaJE9srf3XRnOe9D1MMM5RSU5MFzf6sXKfr1TV85I8q7V2zqTX6F1vb8a4vwfz+sIGQz28qh6+2fX2fSaDxL4z0yWX7bO3tXaXTSe9gar68yS/1mu+9VYnLwMAAAAAAAAAK+Pn0hWrGXZy759/o/f6I5P8+jQXG+T0/Guv+X/ysAYb+P3vJA9NcsV1xvjPJH+0UWGeqrpluvyZ+6QrecPL+wAAIABJREFUGDPqnPcm+e3W2qmTvYuNVdWx2Z+3dKl1zvlQkucm+dtJN/ybV97NYKwjkvxmknsn+cENTr2oqt6X5C+T/P2kG69ulCM1yFd7eJLfyoG5dMMuHuTt/O5G+U5D1zsxvc+o51+rNv3ITm6tHb/ZSePYynzFda53y3T37U8lufYGp55TVW9L8sxxPtfeNfZkm9/LY+Thbem9vM54q3BPXiHJryb5pXQb0o4y8jvb7jnAm63rSYyY46YxZbPc1Kr6wSRPTHL/JFcYMcTJSTYsjFZV108Xb++V9b/fJDmvqt6V5M9aa2/eaEwAAABWz8j/mBIAAABgzkYV8Vmv+M9IVXWTQaGzdyZ5YDYuipbB6w9J8vGq+puqWrcw1jwNdhf9cpLnJ3lANk+ISJLLpCve9coknxj80X876ScwXD3JT8845vG94/OTvGKcjlV1jyQfT/LiJD+ZDYqiDVw/XeGsz1fVVMmO81ZVh1TVC9Ilp9w9Gz/Hu0WSlyZ5yyCZZ1urzh8mOS1dIthGmzscm+Q9VfWEEeMcVlWvSfL6JHfK6KJoSXf/PTDJp6rqbjNNfgqDNffJdImRG8XFa6YrnvbJqrrdAqY2d4PdPV/aa95TVTefdszBjs8P6zW/V1E0AAAAAAAAANhVTugdn5vk1fsOWmsfSfKx3jkPqaqRBYpmUVX3S/KpJL+cdQopDdwkyYur6pX9eQzyZ34/yYeS/HzWKaQ0cEySd1XVU2ab+f9c+1JV9Zwke9PlXo0spDRw2yQvSPLOQZGahaqqy1TV05J8PsmTsnEBpqTLQ7pTug07PzooVjWPeVw3ybuTvDDrF0VLus/yrkneW1X/Zx7X3omq6lpV9bIkH0nyiGxcFC3pNmn82XSf6ylVtVlu6bjzcC9Pfs1VuSd/NN1394xsXDRrVN/dmAO8MFX1u+nu7YdldFG0zfpfabCuP53kV7L593vZdDm4b6qqd1XV9Sa9JgAAAMujMBoAAACwCIePaDt73M5Vddd0u3/dc4prH5Qu8e0dVTVOgsKs7piNCzlt5uZJTltGgaYZvDTJhb22R0w72CBRrP/+T2mtnTVG3yckeWO6YmGTumKSZw8K6c3yHc5kUMTvzUn+14RdfzJd8sZGCUzbwfPS7Y457rPLSvLHVfWo/2moOjzJvyS53wTXvUKS11fV7SfoM5NBguOzk1x+gm7XSxfPtmVxtHS7YvY9ZobxfiFrf8c8d4bxAAAAAAAAAIBtpKpulK4gzbBTWmvf7bWd3Du+SrpiSvOcy0PSFWQ7bIJuP5+uoNa+MSpdgaKnZuNCRgdcOsn/qapfmeC6awfprv3SJI+bsOuPpctnmagA0SwGxa/+KcnvZYriOukKmJ1aVfeecR43SLcB5DETdn1KVf3RLNfeiarqVkn+LcmDs/5GmBu5b7r8y5vMOA/38uTXXJV78sfTFYObtgDWbswBXohBQbM/zJSfb1UdmeTUdOv60lMM8WNJ/q2q7jDN9QEAAFi8pf0HngAAAMDuUFU3zOiiP58fs/+9k7wma/+IfUGSt6crmPbFJN9Jt/PfUUl+Ismde+f/SJJTqurHW2v9Il5b5eJ0O/19Msl/JPlmuoJwleRKSW6c5A7pdrwbLgJ1aJK/q6rbtNa+uMH4n0ry7cE/Xy/JlYdeu3Dw+mbOGeOcDbXWvlZVb0qXVLTPvarqiNba16YY8mFZWxTrhaNOHFZV/zfJ74x46VtJ/jnJB5N8Ld2OsIen243wHklu2jv/hHSf6xMmmvX8vDDJXYaOP52uUNp/pHsvhyW5TZL7Z+1uhD+e5DeT/MnWT3P+qurXkzxqqOmMJP+Y5BPp3vvhSX40XRLZlXrdn11Vb00XD/4uyXDhsA8meUuSLyT5brrP7SeS3CcHrrXLJXlBVR3dWrtoTm9rpKr6rSSjdvc8fzDXdyb573RJYtdPd3/t21H2CklOydDOxlvkgiQfHTq+RQ6MxWcl+a9JBmytfbKq9ibZM9T8sKp6cmvt3Cnm+Nje8TeTvGqKcQAAAAAAAACA7emRWVtAqV8ELUleluT/y4EFik5I8vdzmsfRSZ4+NJdvJ3lTuqJZX0uXl3LzJA9Il+M27MFVdUpr7VXp8klOGHrtjCRvSJc/8810+TM/Mhinnz/zzKp6Q2vt9Cnfw+OTPGjo+LtJXpfk/Um+Orj2zdLlLf1Ar+8PJHl7Vd26tfbtbKHBpomnDubS94kk70iXs7dvHkekK1x2r3SbZ+5zaJJXVdWdWmsfnGIqV0yX13WdwXFL8p4kb0uXU3NOkqunyw88Lslle/2fXFX/2Fp73zrjfyX7c3cOTXLD3uufy+b5fxPl9mxiS/MVq+roJP+a7r0OuyTJu9J9tl8YzOFySa6b5Ngkd82B9/WN020wervW2nfGmFOfe3nCe3mF7slrJvmHHHiv/Vu6gm1npPscrpUuD+7nxxhvV+QAL8gv5cBCfeeky+s9Nd2aPCjdPX2XdJ/7AQZF0d6XtTmzSfcdn5ou1/asJJdJ9z3fMd2G3IcMnXuNJG+sqtu21s6Y7S0BAACw1aq1tuw5AAAAACuoqo5Kl0Qy7B2ttT0TjvPEJM/sNZ+V5GqttUs26Xv9dEkFhw81X5Tkz5L8cWvt6xv0vXWSv8mBxZGS5E9ba4/f5LpHZe17f0Rr7aSN+g36/meSj6fbbe/t4yTWDP5g/4wkv9B76Y2ttZ/ZrP9gjJOSPHyo6YzW2lHj9F1nvL3pkob22fC7r6r7pEucGfb41tqfTnHt/0yXMLLPl5IcudF6qarj0iW0DDsryZOSvLi1dt46/Srdzq/PS5dsM+y+rbXXTzj9iYz4nM/L/qScryT51dbayOJXVXVokr9MV0hu2LeTXLu19v1Nrn18khf1mq8/TTJVVfUfMj61tXbiJn1OTPIHvebz0yWhnJsuOesFrbVRSS7XSFcw8U69l56fLrnlWYPjzyd5VGvtX9aZw9FJ3pi13/2DW2uv2Gj+672H1tqmO5VW1U2TfCRrkx3fPJjvl9bpd1yS52Z/cs/30yXaTXr9vZng/h7qd3qSI4eaTm6tHb9ZvxHj3D9ri7qd0FrbtABib5zbJflAr/lPWmu/PemcAAAAAAAAAIDtp6oula7w07WHmv87yQ+MyjWqqjemK8SzzyVJbjBpcZSq2pOugNOwfXkvSfIXSX5/VFGhqjokXW7L43ovfTpdHtB70xWI2Sx/5prp8mfu2Hvp+a21R4/xHk7M2tyd4dylFyX5rXXew0HpNm/8o6zNfzmptfaIaa4/Tt7LoO9r0+V8DXvPYL7rFRnbV7zp99LNffhapye5ZWvtu5tct58jNfx5vS/JL7fWPrRO36PSfV+37b301tbaPTa67qD/nqxdc3dpre3drO9W2IJ8xSunyxXtj/GiJCe21tYt8DbYvPcvk/xU76V/aK3df5Pr7ol7eaZ7eTDOqtyTF2d/kbyPJXlMa+296/S97Ki80p2QAzzPeDFNzuA6uanD383zkvxua+2b6/Q/4LupqsskeXeS2/dOfUOSJ7bW/n2DuVwzyR8neUjvpfcnOWbUPQkAAMDqOGjzUwAAAACmU1XXSvKEES+9YrOiaAMvy4FF0c5N8lOttSduVBQtSVprH0mXKPLPvZd+tar6O9zN0+1ba/dvrb123N0GW2tntNYenOTE3kv3qqpRO+itojel27Vt2PGTDlJVd8qBRdGSLpFio6JoR2RtEsVn0iXGPH+9omhJ0jqvTbfLY78Y1TMGhdMWaV9y0eeT3GG9omhJ0lo7J91n/NbeS4en28lxO9pXFO1urbXnrZd00lr7apKfSbcD57CHJHna4J8/mS5xZWRRtME4H8joz2qshK4ZPDdrE8lemeRn1iuKliSDtXps9r/vy6137oo7JWvvt8dOMU6/T0vy11PNCAAAAAAAAADYju6ZA4uiJclLN8g1Orl3fFCmyHFax75CSr/eWvu1UUWIkqS1dn5r7VeyNufnpkn+cTCnc5L8xCb5M19Jlz/Tz6N7UFVNm1OyL5/l/7bWHrnBe7iktfasJD+fbqPTYcdX1Y9Pef1NVdWjsrYA018l+bGNCjAlSWvt24NNVU/ovXRUkl+eYjr7Pq83JNmzXlG0wbVPT3L3rM2xu3tVXW+Ka+80f5kDi6JdnOQhg3W4blG0JGmtfS5dLOjnEN6vqn50irm4lztj3csrdk/uK7x1apI7r1cUbXDt9fJKd2sO8Fbb9908vrX22PWKoiUjv5sTs7Yo2pNaa/feqCjaYKyvtNYemuSpvZdun+TnNp82AAAAy6QwGgAAALAlBrvwvSXJ1XsvnZtuZ7TN+t89yTG95ke21t4+7hxaaxekS9j4xlDzpZP81rhjTGrcRIh1PC3dLmT7VJJHzjajxWitXZRuh7xhP1xVt5twqFEFqfoJS32/nuSwoeNzk9xjowJTfa21LyZ5UK/5FknuM+4Yc3RhkgeMsxNta61l9Hru7365nfzGRglJ+wyStf6k13z5JFdIt+PlA1pr/cJpo8Z5d7pYNewuVdUvXDYXVfXDSe7Sa/5skoeNUzCytbZvR9Fta5Dk1y9gdnRVHT3uGFV1WNbusPnPrbXPzjo/AAAAAAAAAGDb6BfTSZIXb3D+65L0CwQ9oqrm9d/Yvby19v/GPPf3RrQdMfjfX9+soFCStNbOSvKsXvOV0m0oOq29rbUnj3Nia+0NSf5oxEu/NsP111VVByd5Sq/5La21xw3yqMbSWntRkr/pNf9mVR0y6vxNnJ6ugNe6m3cOXfdbWVuc56B0BdN2raq6aZIH9pr/d2vtZeOOMfj+H52kXyTpSVNOy73c2fBeXtF78jtJHthaO3uKvrs2B3hBXtNa+9NJOlTVlZP8aq/5ea21Z04yTmvtxKzdaHva+AAAAMCCKIwGAAAAzEVVXbaqrlNVP11Vz0/ysSS3HHHqL41ZsOp3esfvaq39/aTzGiQp/Hmv+bhJx1mEQSLIS3rNP7aMuUzphSPajh+3c1VdPskDes3vHOzouF6fQ7N2Z8BntdY+P+5192mtnZrkX3rNy1grL2+tfXDck1trn0rS32100oJ0q+I/szbBaSOvWaf9JYPPZVyv7h0fnOSHJ+g/iceMaHt8a+38cQdorb013a6i29nzk1zQa3vsBP0fnq4Q3rDnzTQjAAAAAAAAAGDbqKojkvx0r/lDrbVPrtdnkJ/Rz0E7Msld5zCli7O2QNC6WmvvT/JfI176dDbfSHJYP+8lSW47Qf++SYuaPTNJPx/wvlV1rRnmsJ4Hpfu+9mlZWzBnXE8b9N/nGlm7kes4njphIaW/S7dWhm3XXK95+e0c+N+5fiFrN8zcVGvtwiRP7zXfc4oNMt3L+212L6/iPfmnrbUzp5zDTHZADvBWuiTJE6bo97gkhw4dn5O1+eXjelrv+NZVddSUYwEAALAACqMBAAAAkzi2qtqonyTfT5cU8YYkv5S1BWvOTfKLrbWXb3aRqrpKkp/oNU9SLKnvjb3jI6vqyJFnLt9nese3rapLL2UmExoUovq3XvODJ9i17/5Jrthr2ywx6G5JDu+1/e2Y1xulv1aOnWGsab1gij79z/0m85jIErxowp0iP59uh8e+SdfAh0e03XTCMcZ1z97xl7N23Y3jr+cwl6VprX0tyat6zQ+qqv79vJ5H947PzPYvFgcAAAAAAAAAjO/hSfp5VSeP0e/FI9pOmH06eVtr7YwJ+3xkRNuk+TOfS3J2r3navJfTWmsfn6RDa+28rC0EdHC6vK55+7ne8d7W2menGai19sUk/fc6aa7Y95Jsmg/Zu+5ZWZsjuFV5SiuvqirJ/XrNJ7XW+sXjxvWm3vEhSX50wjHcy/ttdi+v2j3ZMnqD30XatjnAW+ztrbXTp+jXX2Ovaq3175NxvSfJt3tty8gRBgAAYEwKowEAAABb7bvpiprdbJyiaAN3TlK9tvfMMIcvjGi7zQzjja2qDq2qe1XVk6rqxVX1xqp6V1V9qKo+0v9J8pzeEIek2/luu+gXMrtKkvuM2fcRveNzsrZwUl8/KeHMKZKShvXXylETFGqah+9nbZGzcXyud3ypqjp05Jmr7Z1T9Onvtnlukg9OOMbpI9rm/r0Pdiq+fq/5dVMm8r01XXLldtaPd5dP8rDNOlXVsUlu0Wt+QWvtonlNDAAAAAAAAABYeY/sHV+U5BWbdWqtvSdrC9f87GAzz1lMk/cyKs/pXXMYZ9q8l1Om7PcPI9ruMOVYIw0KaN251zxLTmGyNlds0pzC01prF0xx3X6u12FTjLFT3DLJlXttU3+vrbVvZe1Gm5N+r+7lA428l1f0nvxsa+1LM87hALswB3ir/OukHarqykl+uNc8S3y4JGvvsYXkkgMAADCdg5c9AQAAAGDH+0CSvxjs5jauO41oe01Vjb173hiuNsex1qiq2yX57XRFwS4343CHJ5lrssYWekWSP82B7/n4bFLgrKqOTLKn1/zK1tpmhZ/6a+XKg+SSaY0qJna1rN0lbquc0Vq7cIp+/WSupEuYO2fG+SzaNLtFfrd3fMYUBbL6YyRbk3B4uxFtkxZxS5K01i6qqo8lOWa2KS1Pa+20qvpgDvxcHpPk/23S9bG944vSFeAEAAAAAAAAAHaBqrpTkpv1mt/cWvv6mEO8OMkfDh0fkuQXk/zFDNOaR97LvMaZNu9lqjyWJB9PcmGSSw+1jcqTmcXN023SOezhVfUzM4x5vd7xpDmF/QJ74+rneu3mwmijckX/oqrOn2HMy/eOJ/1e3cvj3cureE9+aIZrH2AX5wBvlWm+m2OSHNRre3JV/coM87hR73hLc8kBAACYjcJoAAAAwCS+l9HJGpdOt2vftUa8dpck76+q41trm+7IOXDdEW23HLPvuK465/GSJFV16SR/lq5wT/8P8tPaNolPrbXvVNVrkzx4qPmnquparbUvb9D1+CTVa3vRGJfsr5XLJ7nVGP0mcdVMl6Q0jW9N2W9UMbVLj2hbdWdN0af/3iceo7V2YbeB5QG24vM7YkTbp2cY7z+yjQujDTwnB97rN6+qPa21vaNOrqojkhzXa359a+3MLZofAAAAAAAAALB6ThjRdvIE/V+S5Gk5MF/phMxWGG0eeS/zGmfavJep8lhaa+dX1elJbjzUPCpPZhajcgqvu077tCbNKZxXrtd2zPOal1HfX7/o4awm/V7dy+Pdy6t4T35t1gvu9hzgLTTNdzNqLd1g1on0bEkuOQAAAPMxr/9jDgAAAOwOH2it3XrEzw+21q6d7g/Ex6cr1jPsMkleUlX3HvM6i/hD86w7uK0xSIh4VZLHZb7PXbZb4lO/oNmlkjx0vZOrq0j1sF7zZ1pr7x7jWv0dB7fC3NfKBkYlSO0arbV5vP9V/gwPH9HW3wF2ErP0XRV/l+SbvbbHbHD+Cel+pwx77lxnBAAAAAAAAACsrKo6NMkDes1nJXnDuGO01s5IsrfXfKuqut0MU5tLzsqc8memNc88llF5MrNYxZzCVc5T2i527Pe6C+7lVfzuzp7lYnKAt9Q0380qrjEAAAAWSGE0AAAAYG5aa99qrZ2c5Nbpit0Mu1SSl1bVUWMMdeU5T21RfifJfUe0n5nkr5I8JMkxSX4gXbLIZVtrNfyT5C4Lm+3W+ZckZ/TaHrHB+cdm7S5u/eJqa1TV5ZMcMtnUYKmuOKLtezOMN0vfldBaOy/J3/aa71dV1+ifW1UHJXlUr/kz6WIOAAAAAAAAALA7PCjJFXptf99aO3/CcU4e0XbCdFPaMeaZxzIqT2YW2zWnkI35XrfGIu7lVfzuLpqxvxzgrTPNd7OKawwAAIAFOnjZEwAAAAB2ntba+VX10CTXyIF/5L9SugI4d91kiO/3jr/dWlvpP3BX1RFJntxrvijJbyd5Tmtt3D/qb/vdx1prrapOTvL7Q803q6o7tNZOG9GlXzTt4iQvHuNS5yW5JAcW/z+ltXbcRBOGxfnuiLZ+ou4kZum7Sv4qyROy/16+dLpE46f3zrtnkqN6bX/dWmtbOjsAAAAAAAAAYJWMKl72mKp6zBzG/oWqenxrrZ+/tltcIcnZM/QdNipPZhajvpOfba29bs7XYbFGfa9Xbq19e+Ez2VkWcS/vqHtSDvBKGrXGbt1a++jCZwIAAMBSHLT5KQAAAACTGyQBPCxrkyt+oqoeuEn3b/SOD6+qw+c2ua1xnySX77X9Tmvt2RMkRCTJVeY4p2U6KUm/WNHx/ZOq6tAk9+81/1Nr7czNLtBauyRJPwHq+uNPkXmoqksvew7byKiEvcNmGG+WviujtXZGkjf0mh9VVf3n14/tHZ+XLtYAAAAAAAAAALtAVd0iyR228BKHJ7nfFo6/6uaZxzLvwlb9nMJErthOMOp7PWrRk9iBFnEv77R7Ug7waMvMD91pawwAAIAJKYwGAAAAbJnW2peS/P6Il56+STGlr45ou+V8ZrVl7t47PivJc6YY5wZzmMvStda+kGRvr/lBVXXZXtsDsnaHwRdNcKn+WrlJVR0yQf/d7MIRbdMksVx11onsIl8b0XbTGca72Qx9V00/Xh6Z5J77DqrqgOOBV7bWvrnVEwMAAAAAAAAAVsYJO+Qaq+om03SqqstkbTGrUXkys9iOOYVszve6NRZxL++0724n5QDPKzc0WW6ht522xgAAAJiQwmgAAADAVntuks/32m6QjRPI/m1EW78gzqr5gd7x+1prF0wxzjHzmMyK6Bc4OyzJcb2243vH30ry+gmu0V8rl0uyZ4L+u9nZI9quNMU4N5p1IrvIB0e03W6agarq4OysJJ+3Jfl0r+2xQ//8qKx9nv3cLZ0RAAAAAAAAALAyBhtxPrTXfEGSj874863emHuqahUK2yzDVHks6XJY+kV3RuXJzOJj/z97dx4maVnei//79KwsAwwwIEsUWdxQYxRUEEVwTfQkaAyuiRijHIInag4aDWFRE40/RJKjxiWK4kE9xBhAcwx4RIgiKuBKxAVcGDZlhGGYYXqmZ6af3x/VM3RXV3VXddd09XR/Ptc1F7zPuzx3VXf1VE3f7/dJsqFp7Lk9noOZtyP2iu4IZuK1PNdek3OpB7gnvaGllAOTNC+GPJO+1WLMzwcAAIB5RDAaAAAAsF2NNAa8vcWu00spS9qc9v9ajL14JAhottq7abu5YW5SpZS9kxw3xfk3N20vmOJ1eulzGd9g8aqt/1NKOSTJU5v2f6rWurGLOVp9r7yii/Pns3tbjE2lqfPY6RYyX9Ra70ryi6bh3y+lTOXfaZ+TZJfpV9WV7fZzptZak/xT0/DvllIeMtLY3Bym+b1a6zd7NT8AAAAAAAAAMOv9fpIVTWMX11ofN50/Sf6m6Zolo3qc5pkTpnjeC1uM9bSvo9a6IcnVTcP7lVKe0ct5ZrHmvp2kvz2CveojuibJ/U1jzyulLJ/i9WjY7q/lOfianEs9wHOiN7TWekuSm5uGn1hKeVg/6gEAAGDmCUYDAAAAZsKFSX7aNHZgkte0OrjWenvGrzL30CQn9byy3mluzmlukujEqZn66mprm7Z3neJ1eqbWuj7JRU3DzyilbF1Z76QWp328y2kuz/hVB19aSnl4l9eZj37SYuyJ3VyglLIgyZ/2ppx54z+atvdP8rwpXKflz8/tbHv/nPlEknWjtgeSvDbJC5Ls23TsB3s8NwAAAAAAAAAwuzUvqpY0+tKm66IkQ01jJ01xobsd3VGllMO7OWFkcdQ/bhrenOTLPavqAZe2GDt7O8wzGzX37ST97RHsSR/RyMK7lzUNL0vyP6dyPbaZqdfyXHpNzqUe4Nsztg8v6bI3dMRrp1FDrzR/jw0kObMfhQAAADDz5uM/0AIAAAAzrNa6Jck7Wux6aymlXRPA37UYe88sXunrzqbto0spu3R68kgTylunMf/qpu09Zsmqic1BZwNJ/mSkcfBPmvZ9v9b63W4uXmv9TZKPNA0vSPLpUspOXVU6z9Ra70pyW9PwiSNhZ506NVNbSXA++1CLsfeUUhZ3eoFSyjOT/EHvSupY88+Znn7ta633JfnfTcOvTvI/msbuS/LpXs4NAAAAAAAAAMxepZQDkjy7aXhVxgcqda3Wek/GL3R3YJLnTPfaO6h/7PL4N6fxfI12aa21uZ+uFz6W5FdNY8eUUv5qO8w12zT37ST97dvqZb9iq17RN5dSjpni9WiYidfyXHpNzpke4FrrcJLvNQ0/r5Sye6fXKKX8fpKnTWX+Hjs34xdPfnkp5cX9KAYAAICZJRgNAAAAmCmfTvLjprH9k/z3VgfXWi9Ocn3T8O5J/qPbley2KqUsK6W8qZTyiqmcP4mvNW3vmuSsTk4spRyU5PNJlkxj/htajP3eNK7XE7XWb2T81/2kJM9I8uCm8fOnOM27Mn61vscnuXiqjSGllIeUUt5XSnn0FGvaUTQ3dT44yRs6ObGU8owk/1/PK5rjaq03JLmyafhhST7eyUrDpZTDMj48bKY0/5x5dCnlt3o8x/ubtvdN0tzkeGGttXlFSwAAAAAAAABg7npVGosljnZRrXVzj65/YYuxV/fo2juaZ5RS/raTA0spv5vkjBa7/ldvS2qotQ6mdYjWO0spr5vqdUspzy2l/NPUK5sRtyZZ0zTWz/7AnvUrjiym+rmm4UVp9P9NKZiplLKklPLaUsobp3L+HLHdX8tz7DU513qAm3tDd0rS6ffDYzN+UeS+GAnm+0CLXeeXUv5wKtcspSwopby4lNLqexcAAIBZRDAaAAAAMCNGViB7W4tdbyml7NzmtJcmuadp7OAk3yqlnN7J6mWllIFSynGllA8lWZlGkNODuii9U59LMtw09qZSyjtKKQsnqO+lSb6RB1ZvvG+K83+zxfznllL+oJSyaIrX7JXmBolDM341wqEkn5rKxWutv0ryyiS1addzkny7lPKKib4GW5VSdhlpdvi3JDcneV2SpVOpaQfy0RZj7y6lnFxKKa1OKKVaAjpkAAAgAElEQVQsHVnR8T/SaORpXo2Pyf15xj9vL0vy+ZEVjlsqpZyQ5Kt54GfY4PYpr61rmrYHkny2lHJEryaotd6Y8cFxzT7Uq/kAAAAAAAAAgNltpIflVS12tQozm6ovZHzo1O+XUlb0cI4dwdZ+ltNLKf/crj9vpCfvDUn+LY0Aq9E+UWv96nas8QNJLm0aG0jyvlLKxaWU3+7kIqWUh5ZS/qqU8oM0+qCmFMA1U2qtNY0+w9GeWUp5Vyllnz6U1Ot+xZOT/KJpbO8kV5RSzimldNTzWUp5Uinl3CS/TPLhJIdMoZa5YCZfy3PlNTnXeoA/kWRL09jrSilva/d4RgLDXp3k6iR7ptGTOzSFuXvtb5Jc2zS2c5J/LaV8tJTS0eu8lPLoUsrbk/w0yf9J0tH3JgAAAP0z6Q2hAAAAAD30L2n8gvrwUWP7phES9J7mg2utN5dSTkzyxSSLR+3aJY2Vy95aSrk6ydeT3Jnk3jR+2b1Hkt9K8viRP3v0/JGMr/WnpZQLk/xJ066/SXJSKeVfk/wgybo0GgYenuT3M7bxZn2Sv0rywSnMf2cp5bKMXSFu3ySXJBkqpdya5P6MDw/7s1rr9d3O16X/neSdGbtq6yObjvlCrfXuqU5Qa/1cKeXMJO9o2vXQkfnfU0q5Ksn1SVal8Vzslsb3xqFJjkjy2Exvxb4dTq312lLKpUn+YNTwgjSCp04tpVycRkjcUJIVSZ6QxvfY6Ga6N0RQVVdqrT8upZye5NymXc9LcnMp5T/SWIHyzjRWajw4ja/RY0Yde3uSz6bx/M+US9MIq9xz1NiTklxXSlmb5I60CMqrtT6uy3k+kOS4NvuurrW2Wh0TAAAAAAAAAJibjssDgTNb3VRr/VavJqi1biylfDbJn40aXpTkFUnO69U8O4Az01h4NGk8FyeWUi5Jcl2Su9LotXpEkj9M8uAW59+S5I3bs8Baay2lvCKN4J7mUJsTkpxQSvl+kquS3JRka0/aHmkEbT02jR6o5u+pHcH5SZ7bNPaWNBanvTONvp7NTfs/X2s9s9eF9LpfsdZ6dynl99P4uo4O8VqY5LQkf1FK+UYai0relmR1Gr1+eyTZL8nvpNEDON/CDNuZsdfyXHlNzrUe4FrrHaWU92V8f+GZSV5eSvlckh+N1LxXGr2Jz8vY74d3p7HA9UO6fTy9VGvdUEp5QRrhcb/VtPvVaXx9rk/yn2mEIt6TRh/sHmn0uj4ujZ8PbRetBQAAYHYSjAYAAADMmFrrcCnlbWkEpI325lLKB2ut97c454pSylOT/GvG/0J7lyTPGfkzG/xFkiem0TAy2oGZPLxoU5I/SqPJYKrelOTYNJ6X0Ran/cqHu05jvo6Math43gSHnd+Def62lHJHGqFKS5t275vkxSN/GOu/Jzkyyf5N44/J2CCuVs6ptX64lCIYrUu11veWUvZO8tamXUuTvGDkTzv3p9E09vztVF5LIw1Gb0xyQYvdy9Jo9uqFS5LcmvE/85MpNI0BAAAAAAAAADu0V7cYu3A7zHNhxgajbZ17PgWjvSeN8JgTR7Z3SyMkqDkoqJXbkhxfa713O9W2Ta113UhP4cfTCHZq9tsZH9A0F3wuyRVJntFi334jf5p9bzvW09N+xVrrf5VSjkzyb0ke3eKax478YXIz+lqeQ6/JudYDfHqSZ2b86+mQJG+epJaLRs5/6STHzYiRoLcnplHX05p2L0hjgdcnzXhhAAAAbFcD/S4AAAAAmHe2rpo22ook/6PdCbXWa5M8Po2miU3TmLumserc16ZxjfYXr3VNGk0E3+zy1DuSPLPW+sVpzn9jkmcluXk619lOJgo+uzPJ5b2YpNZ6fpKjknxlmpfakOT/JFk57aJmuVrrr5Ick+6+b4aSnFZrnaw5hgnUWv86jZU1u2mGui3Jca1WeZwJtdZPptEEvHY7zrElyYdb7FqVRoMnAAAAAAAAADAPlFL2SPLCFrs+tR2m+2rG9wodXkqZN0Ertdaa5OVJul0k8etJjq21/rz3VbVWa11ba31RklOS3D7Ny61MozdxVqu1Did5UZJP97uWZPv0K9Zab0oj3Oi9aSweOR3XJ5lWT+aOqh+v5bnwmpxrPcC11vVJnp7k2m5OSyNY72UjP3NmjZFe12ck+Zsk90zzcj/K+EW+AQAAmGUEowEAAAAzaqTh4uwWu04rpSyb4Lzf1Fr/NMmhafzS/Ydp/AJ+MmuT/N80woceWms9rtb6ra4L71Ct9fY0ViN7XZLJmkNuSXJGkkfUWr/ao/m/kcZqdb+X5J+SXJ1G08W6JP1sUvhCkt+02ffJkSCknqi1fq/W+owkT07yyTSCpDpxZxorv74yyYNqrS+ttd7Vq7pms1rrL5I8Nslfp/E8tDOUxop7v1NrPXcmapvraq3/kOTwJBckuW+CQ+9K8rdJDq+1XjcTtbVTa/1YkgOSvCrJ/07y3TTqG+zhNK2C386vtW7s4RwAAAAAAAAAwOz28iRLm8a+UWv9Wa8nGulraxW49upezzWb1Vo311pPSSMc6CuZuOfsu0lek+SpMxmKNlqt9UNJDh6p48vpbIHC4TRqPyfJcUkO2lF6oWqt99ZaX55Gj+DZSf49yc+SrM70Fp2daj0971esta6vtf7PJAel8RivT9JJf+GGNL5n/zqNHqsjpxtUtSPr12t5R39NzrUe4Frr3UmekkZg3UR/d25J8h9JnlJrfdNsC0XbauT7+u+SPCTJ/0zj+Rnq4NTNSa5J8vYkT6y1PmpkkVgAAABmsdL4N1sAAACAHU8pZUWSJyRZkWSvJLumsUrg2jTCsH6c5Jbax38AKaU8LMkTR2rcZaS+25L8oNb6k37VNd+UUg5N8qg0vk/2SrI4jUaRNUl+keTH8yUErROllMcm+e0keyfZOY3n6SdpNJau62dtc1kpZUmSY5I8OMmD0mhk+nWSHyT53mxtNtoeSimfTvLSUUM1yaH9aqIFAAAAAAAAAJiPSil7p7FA5SFp9Ofdl8bCi9/dHgF101VKWZxGT+GBafQ+LU8jEGdtGgt7/jTJT2utvVwAkO2slLJ7kiOT7JNG/9/uaSziuDaN0KifJPl5Lxdo3VGUUs5OctbosVpraXFcX17LO/prcq71AI88niek8VpalsbX4WdJrqm13tPP2qaqlLJzkiOS7J/Gz4c9kmxM47HdlcbPh5trrZ0EqAEAADCLCEYDAAAAAGDWGAm9vDXJklHDl9Vaf7dPJQEAAAAAAAAAAMw6nQajAQAAAOxoBvpdAAAAAAAAjPKajA1FS5IP9KMQAAAAAAAAAAAAAAAAAGaWYDQAAAAAAGaFUsouSV7fNHxzki/2oRwAAAAAAAAAAAAAAAAAZphgNAAAAAAAZou3J9mnaewfaq3D/SgGAAAAAAAAAAAAAAAAgJklGA0AAAAAgL4qpexZSnlPkr9s2nVLkn/uQ0kAAAAAAAAAAAAAAAAA9MHCfhcAAAAAAMD8Ukr5aJIjRjb3TrJ/ktLi0DfVWodmrDAAAAAAAAAAAAAAAAAA+kowGgAAAAAAM+3QJL89yTGfrLV+diaKAQAAAAAAAAAAAAAAAGB2GOh3AQAAAAAA0OTCJH/W7yIAAAAAAAAAAAAAAAAAmFkL+10AAAAAAADz3mCS25N8I8n5tdar+lsOAAAAAAAAAAAAAAAAAP1Qaq39rgEAAAAAAAAAAAAAAAAAAAAAAACY5wb6XQAAAAAAAAAAAAAAAAAAAAAAAACAYDQAAAAAAAAAAAAAAAAAAAAAAACg7wSjAQAAAAAAAAAAAAAAAAAAAAAAAH0nGA0AAAAAAAAAAAAAAAAAAAAAAADoO8FoAAAAAAAAAAAAAAAAAAAAAAAAQN8JRgMAAAAAAAAAAAAAAAAAAAAAAAD6TjAaAAAAAAAAAAAAAAAAAAAAAAAA0HeC0QAAAAAAAAAAAAAAAAAAAAAAAIC+E4wGAAAAAAAAAAAAAAAAAAAAAAAA9J1gNAAAAAAAAAAAAAAAAAAAAAAAAKDvBKMBAAAAAAAAAAAAAAAAAAAAAAAAfScYDQAAAAAAAAAAAAAAAAAAAAAAAOi7hf0uAPqtlLJ7kmNHDd2aZKhP5QAAAAAAAAAATMfiJL81avs/a61r+lUMAOjRAwAAAAAAAADmCP15M0QwGjQari7tdxEAAAAAAAAAANvBHyT5fL+LAGBe06MHAAAAAAAAAMxF+vO2k4F+FwAAAAAAAAAAAAAAAAAAAAAAAAAgGA0AAAAAAAAAAAAAAAAAAAAAAADou4X9LgBmgVtHb1xyySU59NBD+1ULAAAAAAAAAMCU3XzzzTnhhBNGD93a7lgAmCF69AAAAAAAAACAHZ7+vJkjGA2SodEbhx56aA4//PB+1QIAAAAAAAAA0EtDkx8CANuVHj0AAAAAAAAAYC7Sn7edDPS7AAAAAAAAAAAAAAAAAAAAAAAAAADBaAAAAAAAAAAAAAAAAAAAAAAAAEDfCUYDAAAAAAAAAAAAAAAAAAAAAAAA+k4wGgAAAAAAAAAAAAAAAAAAAAAAANB3gtEAAAAAAAAAAAAAAAAAAAAAAACAvhOMBgAAAAAAAAAAAAAAAAAAAAAAAPSdYDQAAAAAAAAAAAAAAAAAAAAAAACg7wSjAQAAAAAAAAAAAAAAAAAAAAAAAH0nGA0AAAAAAAAAAAAAAAAAAAAAAADoO8FoAAAAAAAAAAAAAAAAAAAAAAAAQN8JRgMAAAAAAAAAAAAAAAAAAAAAAAD6TjAaAAAAAAAAAAAAAAAAAAAAAAAA0HeC0QAAAAAAAAAAAAAAAAAAAAAAAIC+E4wGAAAAAAAAAAAAAAAAAAAAAAAA9N3CfhcA81GtNcPDw6m19rsUgHFKKRkYGEgppd+lAAAAAAAAAABA1/ToAbOV/jwAAAAAAACAyQlGgxlQa82GDRuydu3arF27NkNDQ/0uCWBSixcvzrJly7Js2bIsXbpUIxYAAAAAAAAAALOSHj1gR6M/DwAAAAAAAKA9wWiwna1fvz533HFHNm3a1O9SALoyNDSUu+++O3fffXcWLVqU/fffPzvvvHO/ywIAAAAAAAAAgG306AE7Iv15AAAAAAAAAO0N9LsAmMvWr1+flStXargCdnibNm3KypUrs379+n6XAgAAAAAAAAAASfToAXOD/jwAAAAAAACAsQSjwXayteGq1trvUgB6otaq+QoAAAAAAAAAgFlBjx4wl+jPAwAAAAAAAHjAwn4XAHNRrTV33HHHuIarRYsWZbfddsuuu+6aRYsWpZTSpwoB2qu1ZtOmTVm3bl3uu+++MSvqbv35dsghh/gZBgAAAAAAAABAX+jRA3ZU+vMAAAAAAAAAJicYDbaDDRs2jGlUSJJly5blgAMO0KgA7BAWLVqUnXfeOStWrMjtt9+etWvXbtu3adOmbNy4MUuXLu1jhQAAAAAAAAAAzFd69IAdmf48AAAAAAAAgIkN9LsAmItGNygkjQYGDVfAjqiUkgMOOCCLFi0aM37ffff1qSIAAAAAAAAAAOY7PXrAXKA/DwAAAAAAAKA1wWiwHTQ3Xe22224aroAdViklu+2225ix5p9zAAAAAAAAAAAwU/ToAXOF/jwAAAAAAACA8QSjQY/VWjM0NDRmbNddd+1TNQC90fxzbGhoKLXWPlUDAAAAAAAAAMB8pUcPmGv05wEAAAAAAACMJRgNemx4eHjc2KJFi/pQCUDvLFy4cNxYq593AAAAAAAAAACwPenRA+Ya/XkAAAAAAAAAYwlGgx5rtUJbKaUPlQD0zsDA+LcMVqQEAAAAAAAAAGCm6dED5hr9eQAAAAAAAABjCUYDAAAAAAAAAAAAAAAAAAAAAAAA+m5hvwtgZpRSFiV5SpIHJ9kvybokdyT5bq31lz2e66FJHpdk/yS7JrkzyS1Jrqm1burlXAAAAAAAAAAAAAAAAAAAAAAAAMwNgtH6pJRycJIjkxwx8t/HJ1k26pBbaq0H9WCeFUneluTFSfZsc8w1Sd5ba/3cNOd6UZK/THJUm0PuKaVclOTMWutvpjMXAAAAAAAAAAAAAAAAAAAAAAAAc4tgtBlUSnl6kremEYbWMqSsx/P9bpJPJNlnkkOPTnJ0KeVTSU6utd7f5Ty7JvnnJC+Z5NA9k5yS5IWllFfWWi/vZh4AAAAAAAAAAAAAAAAAAAAAAADmLsFoM+txSZ49ExONhLBdkmTxqOGa5DtJfp5kjyS/k2TvUftfnmS3UsoJtdbhDudZkOSiJL/XtGtVku8mWZPkkJG5ysi+fZNcWkp5Zq316i4eFgAAAAAAAAAAAAAAAAAAAAAAAHPUQL8LIEmyMcnPenWxUsqBSf4tY0PRvp7k8FrrEbXWE2utz05yYJLXJ9k06rj/luRvu5ju7zM2FG1Tkv+R5MBa63NG5npCkkcn+cao45YkuaSUsl8XcwEAAAAAAAAAAAAAAAAAAAAAADBHCUabeZuSfC/JR5OcnOQJSZYl+bMezvG2JMtHbV+T5Jm11h+NPqjWurHW+r+SnNh0/l+WUh4y2SSllIPTCFYb7Y9qre+vtQ41zXVjkmdkbDjaXknOmmweAAAAAAAAAAAAAAAAAAAAAAAA5j7BaDPrgiS71Vp/p9b6mlrrR2qt36m1burVBKWUw5K8ctTQUJKTaq0b2p1Ta71kpLatlqSzwLKzkiwatf2JWuulE8wzmOSkkZq2evVIwBoAAAAAAAAAAAAAAAAAAAAAAADzmGC0GVRrXT1RQFmPvCzJglHb/1ZrvamD897dtH1iKWVpu4NLKTsledEk1xin1vrTJJeMGlqYRs0AAAAAAAAAAAAAAAAAAAAAAADMY4LR5p4XNG1/vJOTaq0/SvKtUUO7JHn2BKc8J8nOo7a/UWv9cUcVjq/phR2eB3PSQQcdlFLKtj9XXXVVv0sCAAAAAAAAAACAHZ7+PAAAAAAAAADY8QhGm0NKKQ9K8tujhjYn+XoXl7iqaft3Jzj2uZOcO5GvpVHbVr9TStm3i/MBAAAAAAAAAAAAAAAAAAAAAACYYwSjzS2Pbtr+Qa31/i7Ov6Zp+/Au5vpGp5OM1HRDF3MBAAAAAAAAAAAAAAAAAAAAAAAwxwlGm1se1bR9c5fn/2yS6432yBmcCwAAAAAAAAAAAAAAAAAAAAAAgDluYb8LoKcObdpe2eX5tzRt71VKWV5rXT16sJSyZ5I9pzlX8/GHdXk+AAAAACM2100ZrsNdnbOoLE4ppaNjh+twNtdNUyltzhkoA1lYFm23628a3pSa8V/LBWVBFpTZ/8+5w3U4A8V6HAAA3ai1dvzefL4aGt7YcnxhWZiBsmC7zdur97db6uZsqVt6UNH2181nxS11S7bUzRMeU1KyaGBxL0oDAAAAgDmr1prUmjLg9+0AAAAAAJAIRptr9mjavqubk2ut60opG5IsHTW8e5LVTYc2z7O+1np/N3O1qG33Ls8HAAAAmPdWbvhZPnvXR/OLwZ9mON3dZL/bguU5Yren5gUrXpkFbYIENg5vyEW//nB+sO66rB9e14uSd3gDWZCH7vSw/NE+f5YHLz2kZ9f9yfobcsmqT2blhp+1DkbLwjx0p4flxfu+NgcsOahn8/bKms2r8+lf/VN+uv6G7L5wzxy3/Pk5dvnv9bssAIBZ7cf3fz///pvP5NaNP88BSx6SF+97ch6ytHktrPnt6/f+v1yx+tL8aui2lvuXDuyUR+78uLzsQX+eXRYs69m83117Tb5497/krqE7ctDSh+VlDzol+y4+oOvr3Lnx1vyfX38oPx/8SbZk4gCx2WKPhXvlybsdn+fv/dK2oXCj3/9vrBsmvN5BSw/Lmx9yzvYoFQAAAAB2eHXD+tR/eGNy9b8nCxakPvcVKa99R8qC7bcgBAAAAAAA7AgEo80tuzZtD07hGoMZG4zWqnu8V/OM1pMu9VLKPklWdHla7+5gBQAAAJgh92xalX+89YwMDq+f0vn3bVmdr6z+fLbUzXnxvq9teczH7nhP/uv+66dT5pwznC352eCP8g+3npEzD3pf9li017SvecfGW/KB296ezXVT22O2ZHNuHrwx/7DyjJz50Pdl2cLmtQv6Z7gO5x9vPWNbWMVdm+7IRXd9JEsGlubJux/f5+oAAGanOzauzIdvf9e2UKlfbrgp5608PWc89H9lr0X79rm62eH6+67Op379gQmP2TA8mO+u+0buvm1V/urB56SUMu15f7L+hnz0jvdsCyy+afC/8t6Vf52zHvqB7Lyg+Vfl7a3bcl/ee+tf5/4ta6dd00y6d/Pdueyez6aU5L/t/fJx+5vf/wMAAAAAU1ffcVLy1UsfGPj0ualJyinv7FNFAAAAAAAwOwhGm1uau7AnXpq5tcEkyye4Zi/nmeiaU/XnSc7q0bVgTqm15jvf+U5+/OMf56677srGjRuzYsWKHHDAATnmmGOy6669ehnOvFtvvTXXXXddbrvttgwODmbvvffOYx7zmBxxxBEZGGi9kn2n7rrrrnzta1/LHXfckcHBwey///45+OCD8+QnP3na127lxhtvzA033JBVq1blvvvuy5577pn99tsvxxxzTPbaa/o32wMAAHPHD9ZdO+VQtNGuve+q/OE+r8rCsmjM+H2b780P7//2tK8/V20YXp/vrvtGjlv+/Glf6/r7rp4wFG20+4fX5gfrrstT9njWtOftlV9u+GnLUIRr1lwhGA0AoI3P/+bCbaFoWw3Vjfn2fV/Ps/d6YZ+qml2uve+qjo9dueHm3DF0Sw5YctC05/3Wmq9sC0Xbau2WNfmv+7+dJ+52bMfXuWHddTtcKNpo31jzlTx/r5eNC5v7xeBPhKIBAEAL+vOmRn8eAPNZ/c0dydVfGL/jsgtT//vf9WQhCAAAAAAA2FEJRpvb6hw7B5iC3/zmN3nnO9+ZCy+8MKtWrWp5zOLFi3P88cfn7LPPzpOe9KSOrnvSSSflggsu2Lb9i1/8IgcddFBH51511VU57rjjtm2fddZZOfvss9seP/qXuscee2yuuuqqJMk111yTs846K1/5ylcyPDw87rx99903p59+ek499dSum6S++93v5k1velOuvPLKltc+8MADc/LJJ+ctb3lLFi5cmLPPPjtve9vbtu2/8sor8/SnP72jue6+++6cc845ufDCC3P77be3PGZgYCBHH310zjrrrDzzmc/s6rEAAABz051Dt/bkOoPD67Nm8+rstWifMeO/Grot1T/hTOhXG3sTBnDn0Mouj+/N175X7tzYup5fzbI6AQBmizs33pofrLu25b47unxvOJf9usvwrTs33taTYLQ728zb7n1v+3p27PfD926+OxuG12enBbuMGZ9tn0cAAKDf9OfpzwOAKfvyRUmLvwdzz6+TdWuSZXvMfE0AAAAAADBL9H4pLfppXdP2TlO4RvM5zdecyXmAabrkkkty8MEH57zzzmvbdJUkQ0NDueyyy/LkJz85J598cjZv3jyDVU7NO9/5zjztaU/Ll7/85ZaNUUny61//On/xF3+RF73oRRkaGur42u9973tz5JFH5oorrmh77dtuuy1nnHFGjj322Pz617+e0mNIkk9+8pM5+OCD8+53v7tt01WSDA8P5+qrr86znvWs/PEf/3FXjwcAAJibNtdNPbvWxuHBjsYYa0OPnqNurzPbvjbt6u/V8wMAMNdcsfrStvtm23u9fhruMqi5V89du/ex3V5/w/D6XpTTV62eC9+jAADwAP15+vMAYDrqrTdNsLP135EAAAAAADBfLOx3AfSUYLTkn5J8tstzDknS/u4D2EGdf/75ec1rXjOuceiQQw7Jox71qOy8885ZuXJlrr322mzZsmXb/o985CNZuXJlvvCFL2Thwtn518R73vOenH766du2H/7wh+fhD394dtlll9x555355je/mQ0bNmzbf/HFF+eMM87Iu9/97kmvfe655+a0004bN/6oRz0qhx12WJYsWZKVK1fmuuuuy5YtW3LNNdfkxBNPzNOe9rSuH8eZZ56Zd7zjHWPGSil5+MMfnsMOOyzLli3L6tWrc/31149pnLvwwgtz55135rLLLpu1XyMAAGD72zzcu5tmBlvc2D4XbuLf3nr1HHUbLDA4y7427erfXDdlc92UhWXRDFcEADB73bv5nlx731Vt9wuXHa27YLRevT9vd51urz8XvpatHsNs+zwCAAD9oj9Pfx4ATNuvVrbfN+r9AwAAAAAAzEd+Wzu3rGnaXtHNyaWUXTM+sOzeDubZuZSyS631/i6m26eDebpWa70ryV3dnFNK6cXUPVM3b05W3dbvMua+FQemzOGGle9973s55ZRTxjRdPe5xj8sHPvCBHH300WOOXbVqVc4444x8+MMf3jZ22WWX5cwzz8w73/nOGau5UzfccEO+9rWvJUlOOOGEvOtd78ojHvGIMcesXr06f/mXf5lPfOIT28bOPffcnHLKKTnooIPaXvvb3/523vKWt4wZe/rTn573v//9Ofzww8eMr1q1KmeeeWY+9KEP5atf/WpuvPHGrh7HBRdcMKbpamBgIKeeempOO+20PPjBDx5zbK01l156aV7/+tdn5crGL8CvuOKKnHHGGXnXu97V1bwAAMDcsbm2Xqn+d3Y9Ks/a8wUt971n5VsznPHNs61u8G8VlpYkyxfundfs/+YuKt3xXb3mS7lmzZfHjfcqeKHdc72oLM6mFl/n2RawMFEwwobhwey6QDAaAMBWV63+92yu7UOOZ9t7vX6qtdtgtN48d+2Cf7u9/uBw61+fH7ns2By3/Hld17W9bKqbct6tp7fc1+oxt3t+Dl76iLxonz8dN754YOn0CgQA6DH9eTNoDvfo6c/TnwcAPfHrW9vvGxaMBgAAAADA/DY3Ow7mr5uath/S5fnNx99Ta13dfFCt9e5Syuoky0cNPzjJj6YxV3Pt89eq21JPfHi/q5jzyr/8JNnvoH6Xsd28+tWvztDQAzdOH1vQ57oAACAASURBVHPMMbn88suz8847jzt2xYoV+dCHPpRDDz00b3rTm7aNv/vd785LX/rSPOYxj5mRmjt1zz33JEne/OY3t11hcvny5fn4xz+e1atX59JLL02SbNmyJR/72MfGrQA52qmnnprNmx+4GemFL3xhLrrooparPq5YsSIf/OAHc/DBB+fNb35zfvOb33T8GG655Zaccsop27aXLFmSSy65JM997nNbHl9KyQknnJCjjz46T3nKU3LzzTcnSc4555y89rWvzUMf+tCO5wYAAOaOTXVTy/Hli1bkoJ0e1nLfTgM75/7htePGW93YvmFL67CrXRfs1vb6c9VNgz9sOb69gxf2WLhnVm36VcfH98tE9WzYMphdF+w2g9UAAMxeg1vW52v3XjbhMYLRpq4XwcXDdbjt16DrYLQ2n6n2Xbz/rPpMVWtNSUnN+CC6Vs9pu+dh+aK9Z9XjAgBoS3/ejJnLPXr68/TnAUBPrLm7/T7BaAAAAAAAzHMD/S6AnmoOJju0y/MPbtqeaHm1Xs/VTagaMIErr7wy3/nOd7Zt77bbbrnoootaNl2Ndtppp+X5z3/+tu3h4eGcd955263O6TjmmGM6Wonx7/7u78Zsf+UrX2l77HXXXZdvfetb27b322+/nH/++S2brkZ705velGc/+9mT1jLaOeeck8HBB24aOe+889o2XY22zz775NOf/vS27S1btszarxEAALD9bW4TjLawLGp7ztIFO7Ucb3XD/sba+mb3pQMTf76ci9o95l6FVrQLcNh94V4tx9sFLPTLRM+DYA8AgAd8fc2XMjhJeFcvwr3milZBXRPpxXvPjcMbenb9dl/rpQtm12eqUkqWDLT+rNjq+7Ht42pzDQAAmGv05z1Afx4ATNPa1e33DQ/PXB0AAAAAADALCUabW/6rafuxpZRuuqqfMsn1Jtp3VKeTlFJ2SfLYLuYCunDBBReM2T711FOz//77d3Tu3//934/Z/sxnPpONGzf2rLZeOf300zMwMPlfYYcffngOOuigbdvf+9732h77mc98Zsz26173uuy+++4d1XPGGWd0dFyS3H///Tn//PO3bR988ME5+eSTOz7/yCOPzFOf+tRt25///Oc7PhcAAJhb2gWjLZogGG1JaX2j+sYWN/gPbml90/9Os+wm/pnQ7gb/XoRWDNfhtuELeyzcc7vN20sTB6PNrloBAPplc92Ur6z+wqTHtXpvPl+1C0ZrFwbdm2C03r23HRy+v+X4TrMwbLr9Z57xz0e750gwGgAA84X+vAfozwOAadqyuf2+4S0zVwcAAAAAAMxCgtHmkFrrnUl+MGpoYZJjurjE05u2/2OCYy+b5NyJPDWN2rb6bq31112cD0zg6quvHrP9ile8ouNzDz/88Dz+8Y/ftr1hw4Z8+9vf7lltvbDTTjvl+OOP7/j4Rz7ykdv+f/369Vm3bl3L46655pox2yeeeGLHcxxzzDEdN7ddffXVY1ajfNGLXtRRE9loxx133Lb/v+WWW7Jy5cquzgcAAOaGdsFo7UICkvahZq1udm9303+7cLW5rJuQgG4N1Y1tAx/2WLhXy/F2QWr9MlFAhGAPAICG6++7OvduvnvS4zYMD2a4Ds9ARbNfu/fJ7YLFevH+fHCC97bdXr/d8TsN7NLVdWZCN89pu8e1dBYGvgEAwPagP28s/XkAMDV1yyTBZ4LRAAAAAACY5xZOfgg7mIuTPHbU9quSfGmyk0opj0jypFFD909y3uVJBpNsvSv0qFLKI2qtP+6gxpOati/u4BygA6tXr87Pfvazbdt77LHHmMajThx99NH5zne+s237uuuuy9FHH92zGqfrkEMOyeLFizs+fvny5WO216xZk1133XXccd///ve3/f8ee+yRQw89tKu6jjjiiI5Wh2xujNt///3zy1/+squ5mh//z3/+8zz4wQ/u6hoAAMCOb9MUgtGWtAn4anXzf7uwq6UL5mMwWusb/DfVoWyumyZ8ziczUbjCHgv3bDk+OLw+tdaUUqY8by9N9BgGBaMBAKTWmi/f0/mvRIfqxiydh4HE49TWwWhLB3bO2i1rxo1PFNjbqYmCfbsJRhuuw22v1S54uZ/afVbsLhht9j0uAADoNf154+nPA4ApWnfvxPsnC04DAAAAAIA5TjDa3POpJH+TZMHI9gtLKYfVWm+a5Ly/atr+l1rrhnYH11rXl1L+NckfN13jVRNNUkp5WJIXjBranOTTk9QGdGjVqlVjtg877LCub5J+xCMeMWb7rrvumnZdvdTcSDWZRYvG3py+adP44ID7778/GzY88CNvKk1MnZ5z6623jtl+wxvekDe84Q1dzzfaPffcM63zAQCAHdPmNsFoiyYI6Wp3o3qrG/bb3ey+U5uQsLlsohv8NwwPZtcFUw9Gmyh4YY9Fe7UcH86WbKpDWVyWTHneXproMUy0DwBgvrjx/u/kjqGVHR+/YXhQyFSS1rFoyU4LdklafBzqxXvPicLPNg4PdhxQvHF4MLXNI9hpwS5Trm97aff91ipsrm2I9jz8rAgAwPyjP288/XkAMEW3/GTi/cOC0QAAAAAAmN8Eo80xtdabSikXJPnTkaHFST5RSnlGu6CzUsofJDlp1NBQkrd1MN3ZSV6SZGtXw0mllItrrS2XZCulLE3y8ZGatvpYrfVnrY6ft1YcmPIvk/ySi+lbcWC/K9guVq9ePWZ799137/oazefMtqaegYGBnl/z3nvHrri1bNmyrq+x2267dXTc3Xff3fW1J7N27dqeXxMAAJj9Ng0PtRxfONA+pKtdqFmrm//bBQLMx4CGicLgNg4PZtcFnX0mbGVwS+tQgSTZfWHrYLSt8y4emB3BaIMThEe0C00AAJhPvnTPxV0dv2HL+mThntupmh1Jm2CxNu/PJ3pf2qmJgtFqajbWDVlaJv9MNDjB++DZGDbdPhitxWfFLa2foyXz8LMiALCD0p83c+Zgj57+vKnRnwcA49UP/83EBwwPz0whAAAAAAAwSwlGm2GllAPT+nl/UNP2wlLKQW0us67W+psJpjkryQuSbF227egkXy6l/Fmt9cejalmS5LVJzm06/9xa6y0TXD9JUmv9eSnlH5OcNmr4X0spf5nkI7XWbXfnllIemeSjI7VsdXc6C2CbV8rChcl+B/W7DHZQtY69QaTb1Shb6cU1ZrslS8beSD401DpcYCKdnjOVa0+m+esOAADMD5vr5pbji0r7YLR2N6q3umm/XaDVfLzZfekEwQWDWwYfWDZgCjZOELywx8LlbfcNDg9mWfaY+sQ9NNFjmChYAgBgPvjl4E25afC/ujrHe6iG2iYYrd37816E8k52jQ3Dgx2FRQ8O39923+wMRmvznDaFoNVa235/7jQPPysCADsm/XlMh/68qdGfBwAt3PLjifcPb5mZOgAAAAAAYJYSjDbzrk7ykA6OOyDJL9rsuyDJSe1OrLXeVkp5YZLLkyweGX5KkhtLKd9O8vMkuyd5fJIVTaf/e5IzOqhvq7ckOTzJ745sL0ryviRnlFK+k2RtkoNH5hrdvTGU5AW11ju7mAuYxJ577jlme82aNV1fo/mc5cvb34Q9VVu2zK5f1DY/xuaVPTvR6cqde++995jta665JkcddVTX8wEAAGyum1qOL5wgGK3dDfytgq3a3+w++27i394mCoObbvhCq1C6JFlSlmangV2227y9sqVuzqba/iaj2VInAEC/fHn1xV2f4z1UQ7tgtHafSSYK7O1Uu/fn3c7RHCg22tIJ3uf3S6dhc5vrpmxJ65DuiQKlAQBgrtCfNzX68wBgrLplS7JukvcRw8MzUwwAAAAAAMxSA/0ugO2j1npVkhckWTVquCQ5IsmJSZ6T8aFon0nyklprxx0RI8eemOSipl37JHlukj9K8oSMDUW7K8kf1Fq/1uk8QGdWrBj7sv7pT3/a9TV+8pOfjNneZ599Wh63cOHYbM3Nm1vfBNHKVBqbtqcFCxbkgAMO2Lb985//POvXd3fT0Q033NDRcfvuu++Y7al8jQAAAJK0DaOaKBitXYBAq+CFdmEM8/Fm90UDi7KwtF5jYrqhFe2CFZYO7DRJINv0Qx96YbI6ZkudAAD9sGroznx37Tdb7jt0p8OzpCxtuc97qIZ2wWjtPpNsrpuzabh1gHSnJgs+G9zS2fv/weH7W44vLIuyaKD9Z7Z+aRei3fy9ONH35kSfXwAAYK7Qnzc1+vMAoMldtyZbJvm7fXh2BZ0CAAAAAMBME4w2h9Vav5jk0Uk+lGSiLodvJnlRrfVltdbWHdoTz7Ou1vqSNELQWnf2N9yT5INJHl1rvazbeYDJLV++PIcccsi27XvvvTc/+tGPurrGNddcM2b7yCOPbHncbrvtNmb73nvv7XiOH/7wh13VNBOe/OQnb/v/4eHh/Od//mfH595zzz35/ve/39GxRx999JjtL33pSx3PAwAAsFWtNZtr6ybZRWVx2/Pa3ajefHP7cB3OxuENLY9td8P8XNcufGFDm+epU+2CBZYu2DkLyoIsLkvanDe9QLZemawOoR4AwHx2xerPp2a45b5n7XlCx2FU81brXLTstKB9WPNkwWaTmey57/T6gztY0HT778X1E26PttOC+flZEQCA+UV/3tTpzwOAUe74xeTHbBGMBgAAAADA/CYYbYbVWg+qtZZp/jmpi/nuqrWekuRBSY5P8qokb03yF0n+MMnBtdajaq2f68Fj+9da61FJDk7yopE53joy5/FJ9qu1/nmtddV05wLaO+aYY8Zsf+pTn+r43B/96Ef59re/vW176dKlecITntDy2OaVKm+88caO5/niF7/Y8bEz5ZnPfOaY7X/+53/u+NwLLrggQ0NDHR37jGc8IwsWLNi2/fnPfz533XVXx3MBAAAkyXC2tA1YWFgWtj2vfbjX2Jv7h+rG1DYpBPM3GK2zoIButQte2BpiN9vDMiarY7bUCQAw09ZuXpNvrLmi5b79Fv9WDt/lCVnaJuBruuFec0W7zyQ7TRAutr3en2/VLvCs0+Mmqr2f2n3uaA7Mnuj5aRfEDQAAc43+vKnRnwcAo6y6Y/JjhgWjAQAAAAAwvwlGmydqrUO11itrrZ+otf59rfV9tdZ/q7V2sNRM13P9otb6uZE5/n5kzitrrZ11JQDT8id/8idjtt///vfnV7/6VUfnvvWtbx2z/ZKXvCRLlixpeezjH//4Mdtf+MIXOprj8ssvz7XXXtvRsTPp5S9/eZYtW7Zt++KLL87ll18+6Xm333573v72t3c8z/Lly/Pyl7982/a6dety2mmndVcsAAAw722qm9ruW1gWt923dGBpy/Hm8IANW9rf7N8uXG2um+lgtJ22BaN1FmbXLxuaghLG75/e8wMAsKP6z3u/mE1tfj36zD1PyEAZaBsk1Wn41lzXPhhtl7bnTPd98mTvXzsNrWv3mWrWBqO1Cekb91lxgsc/X0O0AQCYf/TnTY3+PAAYZaiDf2cUjAYAAAAAtLBhU83f/t/hPPu8LTnqXQ/8ufyHrXsuYUcmGA1gjjn++OPzuMc9btv2mjVr8tKXvjSDgxP/AvW8887LpZdeum27lJI3vvGNbY8/6qijsvPOD9wkcfHFF+f666+fcI6bbropr3zlKyd7CH2xbNmyvP71rx8zduKJJ+bKK69se87/z96dh0lSFXi//53IzKrM3rt6VRqGpUGWEZARQWiYpllGQQFHXhWdYUa9jo6+iuMdF1zxOtdtZoSZC47ggOAyyAVZbNEWkIaWRkAaEBQa6JamAemNql4rMysz47x/FFVdWRUnMqJyz/x+nofHjjgnIk5GllXnZJ7ziw0bNuj000/X9u3bY13r4osvLpvQ9oMf/ECf/vSnVSrF+wL7iSee0KpVq2IdAwAAAKAzFP2wYLSUs8wVslW0RRXGnDMsiMG1YL7T1SugzBW80DsajOYIZAsJr2ukSsERrRLgBgAA0EhDfl73bP95YNnMZJ9eP/1kSXvDcMeLGr7V6VzBaGEBXPUKLo5aPiLr7wncn2nR8ZTrno4fG7rub8r0hI5FAQAAgE7C/LzJYX4eAABj5AlGAwAAAAAAABCf71u96VJfX7zV6s4npQee3fvfy7sJRkPnIRgNAFrMpk2btGHDhkn9N+Kqq65ST0/P6Pbdd9+tk046SQ888MCE623btk0f+chH9IlPfKJs/6c+9SkdeeSRznZOnz5d73znO0e3S6WSzjrrLN1+++0T6g4NDem73/2ujj/+eG3evFmzZ8+Oc0sa5gtf+IJe+9rXjm7v3LlTp556qt7xjnfoxhtv1GOPPaa1a9fq9ttv18c//nEdccQRevLJJ5VOp3XOOedEvs4BBxygK6+8smzfN7/5TS1ZskTLly9XsVh0HrthwwZdfvnlWrZsmY444gjddddd8V8oAAAAgLZXtO5gtJQXPxhNKg9fCAtiCAsh6GTuYLTqghdc93rker2uYLQWCcuoFNrRKu0EAABopN/s+JX2lHYFli2b/dbRPnur9/WaL3iSTtKknCFc1QcXhx8fFiId5Txpb2rsNjWCa5xXsEMq2b0LMF2vy/WzDAAAALQi5uc1D/PzAAB4xVC+cp2YgZ4AAAAAAAAAOt9da6VVzzS7FUDjJJvdAABAufPPP3/Sx1o7vEDkmGOO0WWXXaYPfehD8n1fkrRmzRodf/zxWrx4sY444gil02k9//zzevDBBydM9Dn99NP1la98peL1vvKVr+jmm28efSLjli1b9Fd/9VdavHixjjzySPX29mrz5s164IEHtGfPHknSwoUL9Y1vfKMln0zZ09Oj2267TcuWLdO6deskDd/TG264QTfccEPgMcYYXX755dq4ceOEJ3qGueCCC7Rp0yZddNFFo+/R/fffr7PPPltTpkzR6173Oi1YsECZTEa7du3Stm3b9MQTT8R++iUAAACAzhQWjOYKCJDCQ81y/qCmacYr/w5e7G5k1GvSEVvZWVz3rtrghawzMGH4epmEK5CtNcIysqXwYIhqg+MAAADaTcmWdOfArYFlaS+jJTPPGLPd2n29Zhv53ms8Y4zSXka7SxPHRVUHo1Xo31YKBh6R9fcE7s+0aIBYpRDtKYlpktz3t1VfFwAAABCE+XnNw/w8AACG2XyEzxmtX/+GAAAAAAAAAGgr9zwTPK8S6FQEowFAh/rABz6g2bNn673vfa927949un/dunWjk4qCvO9979N3vvMdpVLuhfQj9tlnH/3kJz/Rueeeq127dlW8xgEHHKDbbrtNmzdvjvlqGmfffffVr3/9a334wx/WzTffHFp3zpw5uvbaa3XWWWfp05/+dFnZ9OnTK15r5Kmf733ve7Vp06bR/YODg1q9enWk9rbq0z0BAAAA1FdhssFoibBgtL0Tb7OOMKteL1NxoUmncgejVRf85QpWGAkmqNd1a6VSMETU4AgAAIBO8eiu3+jlQvD3IEtm/pUyiamj2/UK3+10RiPBaDsnlFXbT65076O+N64A4bQ3NXB/s4WHaI8NRnOPFQEAAIBuw/y8yWF+HgAAkqIEo/ml+rcDAAAAAAAAQFtZ17pfAwJ14TW7AQCA+jnvvPO0fv16XXjhhZo7d66zXiqV0hlnnKHVq1frqquuijTpasSyZcv04IMP6pxzznEujp83b54++clP6tFHH9Vhhx0W+3U02sKFC3XTTTeNTsA6/PDDNWvWLKXTaR144IE67bTTdMUVV2j9+vU666yzJGnCkyJnzpwZ6VpvetOb9Oyzz+ryyy/X0UcfXTFgIJVK6YQTTtDFF1+sp59+WhdeeOHkXiQAAACAtlYMCUZLhQWjhS52Hwz8d9TjO91IUNl4uVJ1oRXue52W5A4YaJVgtErBEEVbVMF3/7wCAAB0Emut7ugPXtSdUFLLZr+1bJ+zj9kifb1ms3I92dDULVSuZsFojvcwkwh+z5vN9bMojR8rhgc7AwAAAN2G+XmTw/w8AEDXG8pVrlMiGA0AAAAAAABAuXVbXfMqgc6UbHYDAKDbbdiwoa7nnz9/vi699FJ961vf0po1a7R27Vpt3bpV+Xxec+fO1aJFi7RkyZJIT1B0OfTQQ3XLLbdo27Ztuueee/TCCy9ocHBQCxYs0AEHHKCTTjpJyeTePzlLly6VtdE7XXHqjnfNNdfommuumdSxS5Ys0ZIlSyLVfeKJJ0b/bYzR/PnzI18nnU7rwx/+sD784Q+rv79f999/v1566SX19/erUCho2rRpmj9/vg455BAdeuihmjKFxSUAAABAtyvYIWdZMiQYLWlSSppUYLDa2AXursXumS5e7O4KXnAFHkTlutcjgWiue15t4EOtRGlH3s8q5UVf5AUAANCunh58XBvz6wPLjp1xsmal5pTtGwnDHS/fIn29ZnMFoxmFhcpVd+8q3fuooXU5f0/g/lYdU4WHaI8dKxKiDQAAgPbD/LzKmJ/H/DwAQIPlI3yO6ROMBgAAAAAAAGAva63WbQkue80C6ah9wx8QBLQjgtEAoEt4nqdjjz1Wxx57bN2uMXfuXL397W+v2/lb1Z49e/Twww+Pbh9yyCGTnsjW19enM888s1ZNAwAAANChgoLNRoQFo0nDAQK7Szsm7I8SjNbbxYvd04ngRTDVhlZUCqFzBQy0UzBazh/UNM1oQGsAAACa646BW5xlp/WdO2Gfq3+dbZG+XrO5g9GM895V00/2bUl5mwutE/X8rvcw402N3a5GSJkeefLky59QFmWsSDAaAAAAwPy8emJ+HgCg4wzlK9fxJ35WBwAAAAAAAKB7bdst7XBMYfzuBZ6OeDXBaOg8XrMbAABAu7v22ms1ODg4uv3GN76xia0BAAAA0A2Kthi4P6GkPBP+kV/aSwfuz/mDgf8uP7Z7F7vXK6CsUgidO/Ah+D1qtCjtaJUQNwAAgHp6IbdBT+x5OLDsz6e+Xq/u3W/C/pEw3PGqDd/tHMHBaDLGee+q6SdHC/2N9t7kSsHtyDgCl5vNGKN0hHuaK7mC0VrzdQEAAADoDMzPAwB0nHyEzxlLpfq3AwAAAAAAAEDbWLfFXXbwgsa1A2gkgtEAAKjCCy+8oC984Qtl+y644IImtQYAAABAtyj4Q4H7kyZZ8Vj3Yve9E29di91d4QPdwHXfslUEL1hrnaEXI/faHfjQGmEZ0cIjWiPEDQAAoJ7uHLjFWXZ639sC97tDcFujr9ds1pWLJqNeZ+Dz5O9drYLRrLXK+nsCy1o5QCxKGDQh2gAAAAAajfl5AICONJSrXMcnGA0AAAAAAADAXs9sCZ5UOa1Xmj+9wY0BGoRgNAAAxvjJT36iz372s9q6dWvFuo888ohOPvlk9ff3j+476qijdMopp9SziQAAAACgoi0E7k95PRWPjRSM5ljs38qL+OstLCTAuhIbKsjbnKyCjx0JyYjyfjVTrcIjAAAA2ll/Yase2vnrwLL90wdrcebwwDJXCG6+ij5mJ3H1lY1MXfrJtQr9HbJ5+fIDy1o5bNo55intfc3usSLBaAAAAACiYX4eAACS8hE+x7TBnzECAAAAAAAA6E7rtgTvXzxfMsY0tjFAgySb3QAAAFrJrl279LWvfU3/9m//pje96U069dRTddRRR2n+/PlKJpPq7+/X448/rp/97Gdavnx52cKknp4eXXvttU1sPQAAAIBuUXAEoyVNquKx7oCvwcB/j9XbxYvdXQEGVr4Kdkg9pjf2OfMhwQvp0WC04Hs+EpbR7C8vwl7DCILRAABAp1s5sFy+SoFlp/e9zdlnc/WvrazyNqe06d7+txQejBYWKjdZkfq2pcrBaNmQ8LRWDpuuKkQ70bqvCwAAAEBrYX4eAACShvKV65SCP3MGAAAAAAAA0J3WO547dPB8QtHQuQhGAwAgQKFQ0PLly7V8+fJI9TOZjL7//e/rqKOOqnPLAAAAAEAqOoLRUlUFo41d7B68kD+T6N5ghrAAg6w/qB4vfjBaWGBYpWC0VgnLcP2slNchGA0AAHSuwdJu3bv99sCyealX6ahpxzmPdfX1pOE+VFh5dwgORpPcoXLZCMFlLmGBZiPyNiff+vKM5z5PaY+zLJOYOqm2NUKUsaIrPI6fVQAAAABxMT8PANDV8hG+Q/cJRgMAAAAAAACw1zObg+dUHjS/wQ0BGsg9WxcAgC40a9YsJRKJWMeceOKJWrVqlc4777w6tQoAAAAAyrmC0ZKRgtGCA77GBly5gqzCwsE6Xa+XdpZFCQcLPi5KMJr7nrdC4FiUNkz2/gAAALSDVdtXKG9zgWWn9p0jz7i/cwgLk3IFUHUT6whGMzLOe5e3k79vUfvXeT/4/Y5ynkwLj6nSjiDssf15V3hcN48VAQAAAMTD/DwAAEQwGgAAAAAAAIBYrLV6Zktw2eJ5jW0L0EjJZjcAAIBWcu6552rz5s1asWKFVq9erccff1zPPfec+vv7lcvllMlk1NfXpz/7sz/TSSedpDPPPFMnnnhis5sNAAAAoMsUqgpGcy12z435N8Fo44UFGEw2oCxXcgeGjQSxhYVl5EqDUrJvUteulWjBaIR6AACAzlTwh3T3wG2BZdMSM3X8jFNCjw/rX2dD+ordzhh3MFquNPm+Z9QwuryfVSYR8t75ewL3e/LUY3on1bZGcIdoD98Xa23IWNE9bgEAAACAsZifBwCApKHwhy9IkkoEowEAAAAAAAAYNjAo7XBMcTx4gWlsY4AGIhgNAIBx5syZo/e85z16z3ve0+ymAAAAAECgYj2C0cYEL+T84BCG9CthXd2oN+S1hwWchXGFCvSatDyTkCSlQwIXmh04VrIlFexQxXrNbicAAEC9PLjzHu0sDQSWLZ11pnq88BCssD5m1JCuTmWtDSk1zn5y1h+UtVbGxJ/ok3WMg4LqzdIcZ7l7PDVlUu1qFHeI9vDPYsEOycqPdSwAAAAABGF+HgCg6+UjBKP5BKMBAAAAAAAAGLZ1l7tsv77GtQNoNK/ZzqQG5QAAIABJREFUDQAAAAAAAAAQT9ERRhUpGM0RIDB28b4ryCrtuUO6Op1nEuo1wcEVkw3+ct/nvaECPaZXRsHhCa7AhUaJGtbR7aEeAACgM/nW150DtwSW9ZhenTz7zRXP4RnP2ceMGtLVqazcwWhGRmkTHMTlq+QMkq6kVv3brCM4ORMSetwKXOO9kXFL2M9kN48VAQAAAAAAgNiGCEYDAAAAAAAAEF3/HnfZnKmNawfQaASjAQAAAAAAAG2m4Acv9E95PRWPHRu6NdbIYveSLargCF7r9sXu7ns3udAK13G9Y67jGU+9Xm0D2WolalhHt4d6AACAzvT47t9q89CLgWUnzDxN0xIzIp3H1cfs9nDZ8GA0KZ0Ivm/S5PvnrkCzieevEIzmB89AyrT4eKq3wngn7GfS9XMMAAAAAAAAIMBQhM9/fb/+7QAAAAAAAADQFlzBaD1JaWpvY9sCNBLBaAAAAAAAAECbKdrgYLSkSVY81hVuNrK4P2yRf7cvdk8nwu9dXHk/+CnQ469T6T1rlqhhHc1uJwAAQD3c0X9z4H5Pnk7tOzvyedxhVN3eh3IHo0kmdGxS6/553PO7ytNeaz+WMVMhpC8scK7bx4oAAAAAAABAVNZaaShfuaJfqn9jAAAAAAAAALSF/j3Bcyr7pkjGmAa3BmgcgtEAAAAAAACANuMKRkuZnorHuhas5/xBWWtZ7B7CFVCWDblnYVzHjb/PYe9ZM2UjBk5EDVADAABoF+sHn9Qfc2sDy46ZfqLmpBZEPletw3c7hQ0JRjMyzr65NPl7F7V/Xale1g9+NGOrj6fc451s2f8GH9varw0AAAAAAABoGUPRHtBAMBoAAAAAAACAEf2OaYt9rf28VqBqBKMBAAAAAAAAbcYVjJY0qYrHuhas+/JVsEPKlsIWu7vDB7qB695NNvjLdVy7BKNFfd3ZUnPbCQAAUGt3DNzsLDut79xY53L39bo8GM2diyZjTGgQ12TvXdTA40r1XP3fjNfaM5B6K4w7XP3/HtMrzyTq1i4AAAAAAACgo+Qjfn5ZIhgNAAAAAAAAwLD+4Oe1EoyGjkcwGgAAAAAAANBmCs5gtGTFY8PCzXJ+NjRsi2C02oZWuO71xGC04Pue8yM+SbpOor7uvO3uUA8AANBZNuVf0OO7fxtYduiUo7Rf+qBY52vVENzmcyejGRklTFIp0xNYPtl7FzX4t1I9V3BaJtHa46mM42exaAsq2oIz8K3bx4kAAAAAAABALEMRv+f3/fq2AwAAAAAAAEDbeHl38H6C0dDpCEYDAAAAAAAA2kzREYzmCgYYyxW8IA0HCLhCBJImqZSXitbADuVa8O8KPqjEFSzWOyEYrTXDMqJeP1ciGA0AAHSOXw3cKusI7Tqt79zY53P19aKGdHUq1z0eZiTVI7g42nGV6uX84EczZlo8QGz8OGSsnJ91/kyGjTEBAAAAAAAAjJOP+PmlX6pvOwAAAAAAAAC0jQHH8p2+qaaxDQEajGA0AAAAAAAAoM0UHMFoSVM5uCw8GC2rnB/8dOKwRfLdotYBZa5AhfGBCa0bjBY9OMLasGALAACA9rCjOKAHdq4MLFvUu78Om3J07HO6w3cJRnMZmcbTqsFo2VJwPz3jtfajGcOC2/J+1vm6CUYDAAAAAAAAYhjKR6tHMBoAAAAAAACAV/TvCZ5T2dfa0xKBqhGMBgAAAAAAALSZoiMYLeVVG4w26AzbcgU2dBPXPah18ML4ELpaX7dWco7Ah/FKKjp/ZgEAANrJ3QM/U9EWA8tO63ubjIn/5D1X/zxPMFpI6fB9rn3/PFr/tlI9Z4BYorXHVGFjvmwpq6xrrNjirwsAAAAAAABoKflon19a369zQwAAAAAAAAC0i/49wfsJRkOnIxgNAAAAAAAAaDNFPzhkKmkqB6N5JqEe0xtYlvOzzkX+mZBAtW6RqXHwgivsYnw4RssGo8W4frPbCgAAUK2cn9Wq7b8ILOtLztNfTD9xUucdH4o79noI5r0SQOe+d9ECziYeF+2eV6qX9YNnILX6mMp1P6Xhexp1/AIAAAAAAAAgxFAuWj2/VN92AAAAAAAAAGgbBKOhWxGMBgAAAAAAALSZgh0K3B8lGE0KD9pyLfJ3HdNNer104P5caXLBC1lHYMPEYDRH4MMkr1sr8YLRmttWAACAaq3efoez/7as72wlTHJS53X29bq8/2StDSkdDkar5b0r2aJznDXx/JWC0Vz9/NaegZTyUko6fo7zISHaBKMBAAAAAAAAMeQjfs9eIhgNAAAAAAAAwDCC0dCtCEYDAAAAAAAA2kzRFgP3Rw9GcwdtuRb597LYPTRQbjLyEUPo3IEPk7turbjaH6TZbQUAAKhGyRZ118BPA8umeNN0wszTJn3uVu3rNZuV7ywzFYPR4t+7WKG/IQHFBb+goi0ElmXaIGzaNe7L+lllGSsCAAAAAAAA1RvKRavnE4wGAAAAAAAAQCr5VtsdUxznTDWNbQzQYASjAQAAAAAAAG2maIcC96eqDUbzs8r5wYv822ERf71lEq5gNHcwgou1Vjk/eMLz+Pcn7bxuc8MyYoVHdHmwBwAAaG8P7bxXA8VtgWUnz3qzs38dRa3Dd7uJ896V6hyMFlI35zseyyj3eKKVuO5p3s86g5EZKwIAAAAAAAAx5AlGAwAAAAAAABDd9kHJ2uCyvqmNbQvQaASjAQAAAAAAAG2mYAuB+5OmJ9LxYUFbrpCvasIeOoXrHgzZvHwbb1LykM3Lyo90HXeQXfxAtlqKc32CPQAAQLuy1uqO/psDy5ImpaWzz6rq/K6+Xt7PyrpmsnQBK/drNxp+wmHYvYurVn3bbEhZxmv9GUiZkLEHY0UAAAAAAACgBvIRP78kGA0AAAAAAACApH7381oJRkPHIxgNAAAAAAAAaDNFZzBaKtLxYUFbuVLwJNy0Fxym1k3CFvzHDf4Kqz/+XtcykK2W4rzmZoe4AQAATNYTg4/oT0PPBZYdP+MUzUjOqur8rn62lVXe5qo6dzsLDUYz4cFo2Un0PXN+9HsdFryW890zkNohQKzXOVbMOvv/rmMAAAAAAAAABCjko9UrEYwGAAAAAAAAQHpxu7tsDsFo6HAEowEAAAAAAABtxhWMlqo6GM292L0dFvHXW1g4XPxgNHdYQ6+Xrtt1aynOtcPCIwAAAFrZnf03B+43Mjq175yqzx/Wz+7qPpQ7F01GrwSjJYL7yZO5b3GCfPM25wwozpbc52mHMZVr7JHzB539/wwh2gAAAAAAAEB0pWJt6wEAAAAAAADoaOu2BE+onDNVmpY2DW4N0FgEowEAAAAAAABtxhWMlvSiBqOFLXYPXsjfDov46y08oCx6kIIUHtYwPlgg7N43MxgtTuBEtptDPQAAQNvamFunpwYfDyw7ctpxWtCzT9XXaNW+XrPZsGS0kWC0kMDnuHIhgWZB8n4ucH82ZDzlmUTsdjVaeIh28GvrZawIAAAAAAAARBc5GC344QwAAAAAAAAAusv6rcH7D5rX2HYAzUAwGgAAAAAAANBGfOuraIMnyiZN1GC0sMXuwSEC6YQ7FKxb1DK0IiworNdLj7tuWCBb88IyXKEPQeKEqAEAALSKO/pvcZad0fe2mlyDYLRgYcFoZjQYzRX4PIlgtNj9+eC+cNbfE7g/rE/fSlw/j1l/jzMMbnywMwAAAAAAAIAQxeAH4U0QNUANAAAAAAAAQEf7oyMYbfF809iGAE1AMBoAAAAAAADQRkqOUDRJStUgGM21wL9dFvLXU8r0yHN8pBo3SMEVFNZr0vJMomxfeFhG9HCyWirZkgp2KHL9ZrUTAABgsrYNbdLDu+4LLDsoc5gOyLymJtcZH4o7FsFo4dzjmkFZW/n48mPi9ueDQ8Jc58l4U2Odv1lc476dxe3O9yRsvAIAAAAAAABgnFIpYj2C0QAAAAAAAABI67YEz907cF6DGwI0AcFoAAAAAAAAQBsJC6NKRg5GC17snvMHnYFdLHaXjDGh9y6ObCm4fm/Afa5lIFutuH5OXFyBewAAAK3qVwM/lZUfWHZ639tqdh3PJNRrgsPRco4+Y3dwB5t5Zrhv7Bqj+PJjhfhK8fu3rv5/trQncH+mTYKmXfd0e/Fl5zFBYxgAAAAAAAAADlEDzwhGAwAAAAAAALqetVaPPB9cdhDBaOgCBKMBAGpi48aN+vznP6+TTjpJCxYsUE9Pj4wxo/9dc801zW4iAAAAAHSEonVPfk2ZnkjncC1231XcId8R/kAw2jDXfXAFnbnECaALD2RrTjBa3OvGDZoAAABopt3Fnbpvx52BZQt6FunPp76+ptdzBUs1q6/XCtyxaHuFjVHi3ru4Qb6u+q796US7BKMFt3N7sd95TLuEvgEAAADtjvl5AAB0CILRAAAAAAAAAET0nXvcsykXzzcNbAnQHMlmNwAAut3++++v5557bnR75cqVWrp0afMaNAnf/e539dGPflT5fL7ZTQEAAACAjle0BWdZ0kT7uM+12H2Pvyv2Md2mVgFlrvqucIe0l9GgvzvgPPECHGol9ustdW+oBwAAaD/3bP+5CnYosOz0vnPlmdo+fyztZbSzNDBhf7P6ei3BuifzGA1P5gkbo+T8Qc3QrMiXi3uvXcG/rvO0S3iYazwSNg51BfsBAAAArYL5eQAAoJXYovuztjIEowEAAAAAAABd7/u/cc+lPGheAxsCNEltZ2wDALrOz3/+c33wgx+MPOnq7rvvLntS5cUXX1zfBgIAAABAh3EFNEhS0qQincO12L3Wx3Qi131wBSO4uILFXKECruvmSs0KRot33bhBagAAAM0y5Od1z/afB5bNTMzWsdP/subXdPcxczW/Vrvw5YeUjgSjuccocfufce+16/xZf0/g/nYPRgvT66Xr0BIAAAAAI5ifBwBAh4kaeEYwGgAAAAAAAND1BkKW7iyY0bh2AM2SbHYDAADt7aKLLpK1e5Nm3/3ud+v973+/9t13X6VSexfkz507txnNAwAAAICOU7TupwenTE+kcxCMNnnpRHCgQbZGQWEZx/nTjiCFZgWOxb1u3CA1AACAZvnNjl9pd2lnYNkps9+qlBctjDiOWvUxu4V55X9docJS/P5nrfrzWUdwsas/32pcP4vO+l5GnuF5fAAAAEA9MT8PAIAOQzAaAAAAAAAAgAhyBaunNweX7TtbMsYEFwIdhGA0AMCkPfXUU3rsscdGt88880z96Ec/amKLAAAAAKDzFXx3MFoyYkjDZBblE4w2zHUf4gYvuOr3muDzuwIK2icYrTntBAAAiMO3Jf1q4NbAsrSX0ZJZZ9Tluq4+Zr6L+1BW1llmXolGS5iEekyvhmx+Qp24/c+499rVn3cHIE+Ndf5mSTvGIy5h4XQAAAAAqsf8PAAAOlDRPeejDMFoAAAAAAAAQFf7+i/c8ygvfw8PNEV34CcdADBpDz30UNn2eeed16SWAAAAAED3KFr3JNmUiRqMFnOxu0nLM4lYx3SqjCNUrlbBC+mEIxjNSzuuGy+QrVbiB0d0b6gHAABoH4/uvl/bCsGP1ztx5hmakphWl+u6wnG7uw8VEow25imH7uDi2gSduesHnz/r7wnc3y5B067xiLP+JEK3AQAAAETH/DwAADpQ1MCzUqm+7QAAAAAAAADQ0q5Y5Z5HuWBGAxsCNFGy2Q0AALSvzZvLFwctWrSoSS0BAAAAgO7hCkYzMvIULbwsnYi3eL1dFvE3Qq2CF7KO4AXX+V2BA80Ky4gfNJGVtbYsxAIAAKCVWGt1R/8tgWWeElo2+611u7YrjKpZIbitwLrn80gaG4w2RTtL2yfUmEx/NVb9kisYLfg9y3hTY52/WeKO/RgrAgAAAPXF/DwAADpQ5GC0iPUAAAAAAAAAdJS1L1mtesZq8053nT6eaYouQTAaAGDSdu/eXbadSqWa1BIAAAAA6B4FRzBa0qQih071mF4ZGVmFpg2M6mWx+yjXvYgbWpH3c4H7XQForReMFvx6jTxZ+RP2+yqpYIfUY3rr3TQAAIBJeSb7ez2Xeyaw7NgZJ2t2am7drl2r8N1OEtSnHGHGBKP1eunAOrlSvP65616nTI8Kdihyfdd1M47+fKtxjTvc9RkrAgAAAPXE/DwAADpQqRSxHsFoAAAAAAAAQDex1uozN1n96y8rr/Xqa49ntQJVIxgNALqEtVYPP/yw1q5dqy1btiifz2vevHnaZ599tGTJEk2bNi32OX3fvSgFAAAAAFAfxZBgtKg846nXS0cOWkgn2mMRfyO4Ag3ihla46ruCBdxhGfECH2rF1f4ZiZnaURoILMv7WfV4BKMBAIDWdEf/zc6y0/rOqeu1Wy0EtxVEi3B237u8jds/D+5Xz0rO0dbCS5Hql2xJeRscgJxpkzFV3KCzuEFqAAAAQCdjfh4AAIikGDznYwKC0QAAAAAAAICucu86RQpFk6SZPNMUXYJgNADocNu2bdNXv/pV/fCHP9TWrVsD6/T09GjZsmW6+OKLddxxxznPtWHDBh1wwAHO8lNOOSVw//e+9z29973vDSz78pe/rC9/+cvOc65cuVJLly51lgMAAABAtynaocD9qRjBaNLwAvaoQQuZmIvjO5k7tCJeQJmrfvxgtOaEZeRKwdedmZrjDEbL+llN16x6NgsAAGBSXsxv0B/2PBxYdsTUv9A+vfvX9fquvl6+i4PRwqLRjMzov12BY1lHfzVIwS+oaIMXGc5K9kUORgt7vzJeezyeMWGSSpkeFRzjzvHiBqkBAAAAnYj5eQAAIJaogWcEowEAAAAAAABd5YY1UR8pK3meqVwJ6ABesxsAAKifW265RQceeKAuueQS56QrSRoaGtKKFSt0/PHH64Mf/KCKRb5IBQAAAIBW5Vqwn4wZjNYbYwG7KwysGzkDymIEL0juQDN3MFptAtlqxdX+Wck+5zHdHewBAABa2Z39tzrLTu87t+7Xd/UBs03q67UCGxaMZvZOc+g1rgDh6PcurJ86KznHcf6Jx2T9Pc7zZNpoTBUn7IxgNAAAAHQ75ucBAIDYCEYDAAAAAAAAMM6a56wuuytaMNqb/7zOjQFaSLLZDQAA1MfVV1+tD3zgA/J9v2z/QQcdpMMPP1xTpkzRxo0b9eCDD6pUKo2WX3nlldq4caOWL1+uZJI/EwAAAADQagr+UOD+uMFomRgL2OOEqHU6ZzCan5W1VsZUfuqKtdYZLOa612HXbQZX0IQrOELq7mAPAADQugYK2/TbnasCy/4sfbAOztR/Bomrr0ewbLCxPe50ovp7F9annpWKEYxWcvd32ylsOu1ltKu0I3JdAAAAoFsxPw8AAExKsRCtHsFoAAAAAAAAQFf4r7t9feR/ooWiSdLHT/MqVwI6BN+oA63GL0qDLzS7FZ1vyiLJ69xfgY8++qj+8R//sWzS1dFHH63LL79cJ5xwQlndrVu36gtf+IKuuOKK0X0rVqzQF7/4RX31q18tq7to0SI9++yzo9uXXnqp/uM//mN0+7rrrtPxxx8/oT1z587V0qVLJUn333+/zj///NGyCy+8UB//+Medr2XhwoUVXi0AAAAAdJeiDZ4km/J6Yp0nzsL8TBst4q83130rqaiiLShlKr8PBTskKz+wzHWvWy8YLfi6U7xpSpkeFezEAD+CPQAAQCu6a2C5fJUCy07vOzdS8G21XH3MnJ+LHL7baXwb3F8etvd+uPrJcUJ5XaG/kjv4N6hvG3bNTKJ9xlRxxortFPgGAAAwivl5jdPBc/SYnwcAACYtauAZwWgAAAAAAABAx9sxaPWxH0cLRdt/jnT133ta+prum1OK7tWZMw6Adjb4gvTTA5rdis539rPStP2b3Yq6ef/736+hob0LkJcsWaJf/vKXmjJl4uKEefPm6Tvf+Y4WL16sT37yk6P7v/GNb+j888/Xa1/72tF9yWRS+++//+j2rFmzys61cOHCsvKxpk2bJknasGFD2f5Zs2Y5jwEAAAAATFS0wZNfkyYV6zy9jgCBIK6wgW6UTrjvRc4fjBRQFxaY4HpfXIEDRVtQwS8o5cV7/6vlCjlLexmlvYwKpYnBaGGBEwAAAM0wWNqte7f/MrBsbmqBjp42cbF5Pbj621a+hmxevSbdkHa0C1MWjBbcT877ucjnC+unzkz2Be4P6tNn/T2BdVOmRwnTPlMz4oz/GCsCAIC2xPy8xungOXrMzwMAAJNGMBoAAAAAAACAV6x8SiqFPUdW0u8v9nT4qwlDQ3fymt0AAEBtrVy5Ug8//PDo9owZM3T99dcHTroa65//+Z/1lre8ZXTb931dcskldWsnAAAAAGByCnZi4JQkJWMutM/EWuwePqbsJmH3IusICxvPFSo2fH5XMJr7/Qo7X73kQoPRgu9RLkY4BQAAQCPcu/125W1wH+XU2efIM4mGtCMstNjV7+p0Vu4nII6d3uPqJ8cJ5XXd46RJalpiemBZwQ6pZEtl+7Kl4GtmvKmR29IKCNEGAAAAwjE/DwAAVCVyMFqpch0AAAAAAAAAbSk7ZPXvt/v66/8KT0VbNFt6zcIGNQpoQQSjAUCHufbaa8u2P/KRj+jVr351pGO//vWvl21fd911yufzNWsbAAAAAKB6RVsI3J8yPbHOEyfsjMXue9UioCwspMEdjOZ+v5oRluG6Zq+XqUk4BQAAQL0V/ILuGlgeWDYtMUNvnHlqw9oS1sfs3j5UWDDa3mkO7r5n9D6yO/R3Smg/fHz/3/VeZRLtFTSdiTVWbK/XBgAAANQC8/MAAEBVihGD0aLWAwAAAAAAANBWhopWp37L1ydvdM+THPH/nmuU8EzFekCnIhgNADrMvffeW7b9N3/zN5GPPeKII3TMMceMbudyOa1Zs6ZmbQMAAAAAVK/gCEZLmlSs8/TGCDsjGG2vsHuRjRhaERbS4Hpf0onWCssIC30gGA0AALSD3+66RztLA4FlS2edpR6vt2FtqUX4bqexIcFoGjPHpxZ9T3cwmjv0N+g413ig3cLDGCsCAAAA4ZifBwAAqlKKGHgWtR4AAAAAAACAtnLLo1b3/zFa3b99I7FQ6G78PwAAOsjAwIDWr18/uj1r1iwddthhsc5xwgknlG3/9re/rUnbAAAAAAC1UXQEo6ViBqNlYizOb7eF/PWUMEmlTE9gWdTwBVfwQo/pVcIkAsvCAxkaGzjm25KGbD6wrNfLOIMUwgLhAAAAGsm3vu7ovyWwLGV6dPKsNze0PeHhu93Zh7KhuWh7k9FcY5Wcn5MNO0lZXVegWSZ0LDT+OGd4cJuNp+KEnaUT7fXaAAAAgGoxPw8AAFSNYDQAAAAAAACgq/3qyWj1PvNmU7kS0OEIRgOADrJ169ay7YMPPljGxOvwHHrooWXbW7ZsqbpdAAAAAIDacQWjJWMGo7HYffJcwQZRg79c9cLek6RJOd/jRgeOhV0v42Xc96fUnaEeAACg9fx+z0PaPPRCYNkJM0/TtOSMhrbHMwn1mN7Asny3BqPJd5ZFCUaz8p1hvuO5++dTYoXWZUudEYyWiTH+izOuBAAAADoB8/MAAEDVCEYDAHSRP261eu/3fHn/UBr9711X+npoQ7QHHAEAAABAJ1q3JdqY6OyjCEYDks1uAIBxpiySzn622a3ofFMWNbsFdTEwMFC2PXPmzNjnGH9Mf39/VW0CAAAAANRWwa9NMFpvnGA0FruXSXtTtLO0fcL+6oPRwgMI0t4U7S7tmPR1ayXser1exvmz1eh2AgAAuNzRf3PgfiNPp84+p8GtGZb2pmioNDHIyxW2hWFhY5Wcn1Wvl654Dlc/tdfLKGV65MmTHxDUNj60LuvvCW5jmwVNM1YEAAAdj/l5jdOBc/SYnwcAAKpWDJ7zMUEpYj0AAFrUn7ZbvfHrvrbuKt///z9k9bPHrH79KU+v249F/gAAAAC6z7oIz036h5ONjjug/m0BWh3BaECr8ZLStP2b3Qq0KWvL02HjPo0ySC3OAQAAAAConaJ1BKN58YLRMjEW57PYvZwrXCEXMbTCVa9SaEPaSzuC0RoblpH3c86ytDfF+fPS6HYCAAAE+WN2rdZnnwwsO2b6CZrbs6DBLRqW9jLaWRqYsH98+Fa3sHI/EdFo73dX4cFog5qp2RWv5eqnZrwpMsYo7U3RoL+74nGugLWMN7ViG1pJpkJg81iVwp0BAABaEvPzUAXm5wEAgKqVirWtBwBAi7p6tZ0QijZicEj6/+6yuvrvGRMDAAAA6C65gtUL293lbzlS+vhpnk55Dd8jAhLBaADQUfr6+sq2d+yYuFi6kvHHzJ5decEIAAAAAKBxCnYocH/KxAtG640RdsZi93Ku++EKQhgvb4PrVbrP1V63VsICztJeJiQYrTtDPQAAQGu5o/8WZ9npfec2sCXl6EONFxKMZrzRf4cHo0W7d656I8HFaS/jCEYrPy7r7wk8T7sFTUcdKxp56jG9dW4NAADtwRiTkLRY0uGSXi1ppqS8pAFJ6yU9ZK0N7ixM/popSSdK2k/SqyTtlvQnSY9YazfU8loA9mJ+HgAAqFrkYLSSrLUsfmwi7j8AVGfF793f90nSD++3uvrv9277/nB9Y1j8j3L8TQYAAEAn2bRDso7h0hNf9nToq+j7AmMRjAYAHWTevHll208//XTsczz11FNl2/Pnz6+qTQAAAACA2iraQuD+pOmJdZ5MjMX5GYLRymQSroAyd2DYWNmSKxgt/D1pnWC04OuNBCOknfenW0M9AABAq9g89KIe2/1AYNlrprxW+6UXN7hFe7nCqLq1DxW+TGKvkfCyINUGo430v52hdaXy/n+2FDweyHhTI7WjVUQNckt7aRYgAAC6mjFmP0l/Lek0SSdJmhFSvWSMuUPSZdba26q87jxJX5b0Tkl9jjr3SfqWtfYn1VwLwETMzwMAAFUrBs/5CFQqSUmWfTXas9usPvIjX6vXSwfPl774Fk9nH81noQAQ15MvhZcXfalYsvoizKhjAAAgAElEQVT6CqtrVlv9cdvw/hlp6dTDpG+/x9OCGfz+7Wbrt1j97+t83ffK3+SLz/b0liP5mQAAAOEefd7q0zf6euBZ6dCF0r/+L08nHUwfAq2jP+SRavPDZh0AXcqrXAUA0C5mz56tgw46aHR7+/btevLJJ2Od47777ivbPvbYY2vSthEskAAAAACA6hRt8NODkybeZFhXyNZ4Rp5SMUPXOp0zGCFiMFreGbxQKRituuvWiut6I8EIrna6XjcAAECj/Kr/VllH5NbpfX/d4NaUc/f1urMPZa3vLDPa+12TZxLqNcHhaOODy1xc/dSRgOiooXWufrIrWLlVRQ3GjjqmBACgExlj/kfSc5IukXSWwkPRJCkh6U2SfmaMWW6MWTDJ675Z0u8l/aMcoWivOEHSjcaYHxpj2iulFWhxzM8DAABVK5Vi1A2eH4L62ZO3OvHrvlb8QdqVkx7eKL3tv3zd/VTUx3kAAKThwLOBCF/VfehHVl+8dW8omiTtzEk3PyKd8m++fJ/fv91qd87qxG/4+uWYv8nnXu7r18/wMwEAANz+tN3qjEt83fHkcL/ywQ3Sqf/u6/EX6EOgdbiC0YyRZkZ7pinQVQhGA4AOs2TJkrLtH/3oR5GPffLJJ7VmzZrR7XQ6rb/4i7+oWdskqbe3t2w7n8/X9PwAAAAA0OmKdihwf9KkYp3Htbh/vLSXYRHNOFGDEVxc9SoFC7RKWIbreiP3xfU6sg0OcAMAABhrR3FA9+9cGVi2T+/+OmzK0Q1uUTlXH6rRIbitImwq2thgNKn6fnLWEaA20r91BYWNP3/WD56xFDVorFXEGSsCANDFDnHsf1HS3ZKul/QTSY9IGp/4+hZJq4wxC+Nc0BizVNItkuaP2W0lrZF0g6Q7JG0bd9h7JF1njGGeKFBDzM8DAABViRN2RjBaw930sNWmneX7rJWuuIcF1AAQx3MvR6t39b3u369rN0m/WlujBqHt3Piw1ZZd5ft8K32Hv8kAACDET39ntW13+b6iL12xij4EWkf/YPDP46yMlPBYuwWMx4QXAOgwF1xwQdn2ZZddpk2bNkU69qKLLirbfte73jVholS1Zs2aVbb90ksv1fT8AAAAANDpirYQuD9lemKdJ+ri/HZbxN8IUYMRXFzhFr1eOvS4VgnLcL3OkfviCkjI+1lZy5eKAACgOe4euM3Zlz5t9rlNDwMO60N1p+j9RndwcbR+sqveyHsSJRjZt35IP3lqpHa0iqiBZ5WCnQEA6CKPSPqopMXW2kXW2lOste+y1p5nrT1G0n6Srhx3zCGSbjARO6HGmEWSbpI09kPg1ZKOsNa+3lr7DmvtGZIWSbpQ0tiO71sl/cukXhmAQMzPAwAAVSEYraX9tyOg5/qHJu7fusvqT9srf5adL1g9tclq7UtWuUJ5/a27rIaKVtsHrZ7dZvV8/3DdzTutNmyzemm7le8zzwJAfWzeOfx7pi7n3lW5ThRrnuN3YD0US1bPbB7+27Qn35r3+KpfB7frugfL92eHrNZtsSrx9xIAAMgdvPvtu4f7DGtfGv5vhyOYCmiEl3cH7+9rr2mGQMMkm90AAEBtLVu2TEcffbQeffRRSdKOHTt0/vnn6+c//7kyGfdChksuuUS33nrr6LYxRv/0T/9U8/YdeOCB6unp0dDQkCRp5cqVKhQKSqVSNb8WAAAAAHSigiPMIWnifdSXMj3y5MmXH1ov6qL4buK6J9GDFxyBCYnwYAHndUuNDctwtX8kMMLVTl++CnZIPaa2i7wAAAAqyflZrdr+i8Cy2cm5ev2MJQ1u0UTpRHAfKtvgENxWYUOC0cy457+lE1PKoz9ekfdzka7lqjfSr3W9N2P7/0M272xzuwWIRR0DVgp2BgCgw1lJt0m62Fr7UGhFa1+U9EFjzO8kXT6maImkd0r6cYTrfVnS7DHb90k6zVpb1pGx1uYl/acxZqOkm8cUfcIYc4W19rkI1wJQAfPzAABAVWz4HI0yBKM13K+fcZetfcnq0FcZrdti9c4rfD3y/PD+g+dLP/q/PL1+//Ls65Jv9c83WF2xyir3ymfYvUnp704w+shSo7+92tdjL0Rr1w/eb/Se47zKFQEggif+ZHX+d309/uLw9qELpf/5gKej963dg6QG9tTmPOu21uY8GGat1TdWWH3tF1a7XvlkMelJbz/G6L//zmhqb3MfJjbW6vXusmLJquRL//gjqx89YFUoSbOmSJ870+j/PoO/lwAAdLNHn3eXHfL5vZ/JGCOdfpj0w/d7mju9dfpA6A79jvHSHILRgEAEowFAi9m0aZM2bNgwqWP3339/SdJVV12lN77xjaOTm+6++26ddNJJuvzyy3XccceVHbNt2zZ96Utf0re//e2y/Z/61Kd05JFHTqodYXp6enTiiSdq5cqVkqSNGzfq7LPP1oc+9CEdfPDBmjKlfHHIwoULlU6zsAIAAAAARhQdwWgpryfWeYwx6vUyyvrhs5B6CUabwBVskHUEho1XKVjMfV1XIENjg9HyjuuNBkeEBD/k/Kx6PILRAABAY923/Q5nv3fZ7LOViBkyXA+uvl7UcK9OE/ZMTjNuLlrGce+ihMpZa5310q8EF0fph2dL7nFVpQDkVhM1GC3TZoFvAADU2P+y1m6Ic4C19tvGmGWS3j5m99+qQjCaMeZgSX83ZteQpL8fH4o27lq3GGOuHXNcr6QvSXpfnDYDnYr5eczPAwCgqUqlGHUJRmukFwbCPpmWDv+Sr9y3PZ1xia8NL+/d/8wW6bRv+Xr+m56mp/d+gP3NX1r9x6/Kz5kvSleusrpyVfi1xvvbq6wOmmd1/IEs1gZQnaGi1Wnf8rVp5959azcN/x7b+HVPU2oUjNW/J97vOZd1m2tzHgz7nwetPntz+T0t+tL1D1lleqSr/749/s48PyD956+srrlv72vZPih98karfft8veP1hKMBANCt9uuT/ritcj1rpdufkN79375u/6dE/RsGjNHvmNbYRzAaEKj5M7wBAGXOP//8SR9r7fAHesccc4wuu+wyfehDH5LvDycYr1mzRscff7wWL16sI444Qul0Ws8//7wefPBBFYvlX5qefvrp+spXvjL5F1HBJz7xidGJV5K0YsUKrVixIrDuypUrtXTp0rq1BQAAAADaTcEPDkZLmlTsc2W8KRWD0VjsPpE7tCJaQJmrXqV7nXYEKuQiBD7UkjM4YjQYzR2kkPMHNUOz6tIuAACAICVb1F0DywPLMt4UnTjr9Aa3KJgrXLbRfb1WYa3vLDMqn5DvChiO0j8v2oJ8BS9ETJvw4N+yYLSQ9yksOLgVeSahXpNW3p21Iqn9XhcAALUUNxRtjMtVHox2SoRj3i1p7Gz8m6y1z0Q47hsqD1R7hzHmw2GBakC3YH5eOebnAQDQYH6MYLRi8PwQ1MdND1cO37l4uS0LRRuxMzd8/N+dsPfz6++trm2YzzX3EYwGoHq//IPKQtFG9O+Rbv2d1flvqM3vmYEafcW5bmttzoNh14T8bfrxb60uf7dVpqf5f2sKxfC/oU9vlr7/m+A61z1g9Y7X16NVAACgHUQNRhtx55PS8/1W+/Y1vw+E7vHy7uD9fVP5OQSCEH0NAB3qAx/4gK6//npNmzatbP+6det066236vrrr9d99903YdLV+973Pt12221KpeIvqI/qLW95i/7lX/5FiQQpygAAAAAQV9EGT3xNTSIYzRUgMFY6UblOt6k2tMIVmlDp/XAFjuUiBrLViitgIlowWmPbCgAAsGbXavUXg2fMnzzrzaF9l0Zqlb5e6wib7F4+Aaia/nlYnZGxUJTzhwWjtWPYdJSxYpQ6AABggkfGbWeMMZWeIvC2cdvfi3Iha+2Tkh4Ys2uqpDOiHAsgGubnAQCASQl5KMQEJXcw2p681d1PWS3/ndW6LXY0wBWTFyV85+u/cN/n372w99+Deat1W2rQqDGuXMV7DKB6j7/o/l1y1b22YiBVVP3hz2qN7E/bh//moTYef9FdlitI61skiG5jf3j5zY9YZ/jefX+sfXsAAED7mDOtcp3x/vCn2rcDCLNhW/AYZ970BjcEaBMEowFABzvvvPO0fv16XXjhhZo7d66zXiqV0hlnnKHVq1frqquuquukqxGf+9zn9Nhjj+kzn/mMTj75ZC1cuFCZDAsoAAAAAKASVzBachLBaFFCIFwhAN0sLLTCrzCJ2VpbMVjMfV1XIENjwzJc1xtpX1hAQtTwOAAAgFqw1urO/psDy5ImqaWz39LgFrkRjFYueixadfcuG1JnpH/rOv/Yfn2uFLy6I6GkUqanYjtaTZSxYoYQbQAAJqMYsM/ZWTDGLJR01LjjV8e43t3jtt8c41gAETA/DwAAxFYqRa+bzwfuvvkRq/mf8LXs332dc7mvQz7v683/4WtnluCYavTvru74S++0emFg+D24/9kaNAgA6uBff+n+W3HXWunAz/p69Pnq/564Qqsmo1XCutrdzqzVll3hdd5xhS/fb35/olJYaVhY6O5cjRsDAADaSjHGxy4j1m1pfv8H3eUZR5j+4vmNbQfQLpLNbgAAdLsNGzbU9fzz58/XpZdeqm9961tas2aN1q5dq61btyqfz2vu3LlatGiRlixZounT48fIXnzxxbr44osn3bbDDz9cX/va1yZ9PAAAAAB0o0INg9EyEULPoiyI7zZhYXF5P6dMwl1esEPyFRyeVjkYzRX4MChrrYwZHxFRH66AiZFAtIRJqMf0ashOnKTdrcEeAACgOZ4cfFQv5DcElh034xTNTM5ubINCuMJlc362oX29VmFDotHMuOe/VRMg7AotHj5vpux/xxsbquYKWMskprTlexdlHNhrGCsCADAJi8dtFyVtC6n/5+O2H7PWBieyBrtv3PYRMY4FOgbz85ifBwBAS6nwsLUyhYnfuW/ZafWuK30Vxi30vf0J6Us/tbrkne33eWSr6N9T/ULoD/3A188+ltDZl8V4n2MY2GM1eyrvMYDJ2bTDakeFr89e3D4cjrX2//HkeZP/fbO9hsFoz2yWjlxUu/N1q3WO8IWx1m6Sfvo76dzX1b89YaoJJ/GtuvL7dQAAMGxoEsFoBPGikXbnrF7aEVy2eD59WCAIwWgA0CU8z9Oxxx6rY489ttlNAQAAAABMUsmWZB2hWqlJBKO5whfGCgsB61ZhwWd5PxtaHhbOMNlgNF++CnZIPaY39PhayZWCZ66NDdpLexkNlQhGAwAAzXVH/82B+42MTus7t8GtCefq69kG9/VaR0gw2rhJ7GkvHVgv51decZENqVMpGG1sqFrOD84nadeg6XTImCZOHQAAMMF547YfsjY0FeHwcdvrYl5vfYXzAagh5ucBAIBI/BgrdAOC0X7ysJ0QijbiugetLnnnJNsF9ceJoXZY8Yfh8LrBoerPFeSZLdIbDqjPuQF0vhvXRAubWrdFeui56n7fbNtdfdjkaHu2WkkEBFRr+D5Wdt2DVue+rrn3O0qIm0u+KGWHpCnd9vU6AACQJA0V4x+zPmI/CaiFDS+7yw6e37h2AO2EYDQAAAAAAACgTRSse+ZkchLBaOlElGC09lzIX09hgXJZf1CzNMdZHh6MFh4sEFae87Pq8RoUjOZ4Db1jAinS3hTtLG2feKwjVA0AAKDWNubW66nBxwLLXjvtWC3o2afBLQoX1tfL+oMN6+u1ijjTzVz3Lkoob95RJ2V6lDDJ0PMX7JBKtqiESToD1jLe1IptaEVRxoEZxooAAMRijJkm6f3jdgcn+e61eNz2xpiXfW7c9hxjzGxr7UDM8wAAAACoFT8sG3mcoYnBaL8ZH388xpZdUv8eq76phMdMxss1CEbzrfTf99ZvQfUzW6zecEC093fLTqtfrbV6erPUk5RSCWlWRlr6GqPF84fPkS9YrXpGevxFK99Ki+cZnfIaaeYUfoaATvTES3HqDv++efIlq1VPW+0a8yfpNQuMlr5Gmp4e/l0xVLRavU569Hmr0iu/An/x+9q1+5kqQrK6zfj36/BXGf3lIVLJly69M9rfpxvWWC34sa/9+vbuGxyS1r4kLZwpvXrW3v0HzDFadqg0u8Z9j2rDSfoHCUYDAKBbDcXIox9RTSgrENeOkCmNY/vaAPYiGA0AAAAAAABoE0VbcJYlTU/s82UqBHFJlcO6ulFYSECl8IWcIzCh0nkrX3dQM9SYb0Jc4RFjf1bGhqSNFSWcAgAAoBbu7L/FWXZ63183sCXRhPX1hvtfsxvXmBZgbfDiQBPwNHjXvYvS93T1z8ees1L/f2piurKOAOB2HU9FCUYLC4wGAACBviZp4Zjt7ZL+u8Ix4z/wizUt31q72xiTkzT2w7qZkghGAwAAAJrAWivZGEEfQ7myzd89b/XDB8KPX7dFesMBk2kd+msQjCZJn7+lfsFoX/mZ1XuOq1zvnqeszv22H7jY1jNWl7/b6O3HGL31Ml8PPDu21Gq/PukXF3o67FWEowGdZt2W6L+fnt4sfWOFr4tuCjrG6uD5w78r5kyV3vZtX3c/Xbt2jnf1vVbf/VsrY/i9FObrv/D12ZvHv19WPUmpWBoO74zqsruiVrZ61Uzp5x/zdNS+tXt/qg0neXqztKi7vl4HAACvGCrGP+aP26SSb5Xw6G+i/nZPfA6CJCnhSb2kPwGB+L8GAAAAAAAA0CaK1v1NTcpLxT5flIXsURbEd5tek5aRkdXECUBhwWfD5e5whkrvR6VgtEZxvYby8IjgAAiC0QAAQCNsG9qsh3etDiw7KHOYDsoc2uAWVdYqfb3WFxSMNvm+Z87PBe6PHow2OByM5gevmMsk2jUYjRBtAABqyRjzNkn/e9zuz1lr+yscOm3c9mQ+XMuqPBht+iTOUcYYM1/SvJiHHVTtdQEAAIC2VyrFq18oXyn5sR8HP1BirGe2WL3hABbyxlXyrbaHjLimj3s2XK4gFWK+nZI0e4pUfOVt3BX88XSopzdLu3JW09Pu99j3rT7wg+BQNGk4GOdjP7Z64FmNC0UbtrFf+ucbfN32sUT8BgJoac/ECJv6+eNWj70Qfq6LbrJ67SLVNRRtxG/+KJ3Ap0tOT2+2AaFowyYTDhLHSzukj17na9WnavN3o+Rb/XFbdee46CZfD3yWv2MAAHSjsL5PKhE8lh8qSi8OSPvNqV+7gBF7HMFo03pFGDTgQDAaAAAAAAAA0CaK/pCzLGnif9QXbbE7wWjjGWOU9jLKBgRUVA5GCy5PmR4lTPhknPBAhsYEjvm2pLydfHgEwWgAAKAR7hr4qXwFLxA7bfa5DW5NNGEhud3YhwoKIZaCYtHcfc+8n5W14U+Pd/XPx46VwsZN2VJWSrnfo4w31XlsK4syDmSsCABANMaYoyR9f9zu2yX9V4TDxwejTWLZvLKSZoecczI+LOlLNTgPAAAA0F1s5WCzMoW9c0Q277T69TOVD3m2yiCRbrVtt2SDP5bWQ5/zdMyfTfyc+R3fKenGh6NfY9mh0p2fiBbS8pmbfH1zRXCD7nhC+utj3Mc+/qK0rkL4UaEkXXOf4wVLWvEHaXfOalpIABuA9pIrWG2sFNE/Rlgo2ohbf2e1dtPk2zTeoQvlPN9tj1mdcBC/k1xuetj9O70R7l0nbdlpNX9G9e/Rph3Vh7k98VLVzQAAAG1qyBFi/p/vMrrgjUazLgz+bGbdVoLR0Bi788F996m9DW4I0EYIRgMAAAAAAADaRMEWnGVJ0xP7fNEWu1cOT+tGvc5gtPDQirwzMKHyffZMQr0mHRhM1qiwjLzvXnuZTlQOj6gUHAcAAFCt3aWdum/HnYFlC3r20WunHdvgFkWTMAn1mF4N2YmPBCQYbS8jb8I+17jGyipvc0qbsNA5VzBa5dBfaW//PuvvCSyP0s9vRYwVAQCoDWPMfpJuU3kY2XOS/sZa15L7UI06BgAAAEA9+OWrc6+c9X5tTO2rPd5U7fGmareZqt3eNL2quEnT/Z3a/ZvXSi/4SnjSrogfE/cHf1SJMX67wepnj1k9/JzVSzukN/250bzp7vr7zA7ef9IhRjfGCKI5aF70sJi/PNg4g9FWPmX1hgOkG9dYPfnS3kGftdKK31u9uD3yZZysldZvlY7at/pzAWgN67e6AyAna6g4HMZYK5843egffhDcyJd21O46neinv2v+R4CHfdHX8o96VQfYvVyDvkx2SMoXrHpThOkBANBtXAGrPUlpRsZo/nRpy66J5Rdc7evhz3s1CXoFJOnOJ6zueNJqYFA6bKH09mOM9ptjtGfi9FBJ0jSC0QAngtEAAAAAAACANlEMCUZLmVTs87HYffIy3hRt18sT9lcKrcg5gsV6I7wXI/XypYnnyJYaEzgW9vqihEe4guEAAABqZdXALwLDxSTptNnnyjMTg7VaRdr7P+zdd3gcxcEG8Hf2Tro7FduSLbnJVZKNjQGbGGyDHQwGU0MnkFBCSyGBQBKSEJJQEkIgdEJIIQQICUn4ANObMbbpBoMpxk2Se5UsyVa705Wd749zke5m9qquvr/n4cE3szc72tvbm72bfdcFb4DBaFaEYu6Z1TmLx3Rbnvfotm3P8bldFMAGOwIInzm3N1hNNx7P1vOpaPrtivIchoiIKF8JISoBzAcwvEfxdgDHSSmbomymI+RxPB/Aoc8JbZOIiIiIiFLFNHs9/FvZ5fjUeYh++fUA1scWdNLKYDRL/3jHxHcelzB7bNZPNuq3cakTqNSEpl0wTeC+NyTW7oxu3bWDo+/n3AP1dX9aKPGnhX0fgHPX6xL/vIwXhBPlirod6e6BtckjgItm6IPRWjrTH/yVqV5dLvHB2nT3AmjtAmbebuLecwV+OCf+3+STEfJqSmB9MzB+SOJtERERUXbxBtTlhXtSdWoq1cFoW3cBQ641seYWAzWVPBemxPxynonfv9L7HOb3r0i8do2BDk0wWnFhCjpGlKUyd9Y3ERERERERERER9WIVjGaPKxgt8sXu0YSn5SPdttsbjKCjq492O6c7cCzqYDSbup/uCNuHiIiIKBFesxuLdr2srOtnK8Ph/Y5KcY9iox9j5l8wmpSmpiZ84pnVWDrSONkTUNe7erwWQgjtOva+NrpxvsuWrcFokc9Pog13JiIiykdCiHIAbwAY16N4J4BjpZR1MTSVqcFoDwKYFON/pyVhvURERERE2c3sfXVusZn83GIGx+i5vRI/fap3KFokNRXB74hVyooF3v9F9Jfl1VREf2G1zRC45Mj0Xoj9ryUSZiwbi4gyWl2j+v1coQl/TNTwAcBXRlkvc/ho4Ku1wPUnCSz+qYFCu8CvTlYf+5IRlpWLpJT46VO631Wj8+JVyb3E/Nr/k9jdFf/nR7Je6/rG5LRDRERE2cUbft9LAEChLfj/6gjn5re/yvNgSsyGZonbFPvRzg7gpudNdGqC0UqcfdwxoixmT3cHiIiIiIiIiIiIKDq+pAejRb6OThdwle90284diBSMpg5eiDoYzVYEKHaDVIVlWK2nZzCCPsDNk/Q+EREREe31QdtCdAR2K+tml52MAiOzb6vnMNSzWzwRxpi5SEI9yUyogtEswsfiHZ+Hhn45bS50muG3C937fLepnqHviiKMOhNFCtE2YEOByOz3ExERUboIIfoDeB3AQT2KWwEcJ6X8MsbmQge3FTH2pQThwWi7YuxDGCllI4CYLi3UBQkQEREREeWVsGC05H/328zgGK0P1gKtMW7y2sHW5zIVpQJ3nC3w06ciXzhdUxnbug8aHtvyfWH1DmDC0HT3goiSYc0OdflXRgKfbgK2tyVvXa4CYOPtBoQQML4T0C73wfW2sLKBJeplGYymtrEF+HJr/M/v5wROOkjguAnA/JXJ6ZPfBN5cDZwxJb7nNycp5LW+SUJ10y0iIiLKbd26YDR7cFxQHeHc/MmlEg9dlOROUV55dbmE1AxpX/0SGKv5xb+YU/GItBiMRkRERERERERElCX8mmA0AzYYIvY790UVjBZlYFe+iTf4y6OZ2BwavBDret19MGFapVsTHCEg4BD7gzx0QQq6v5+IiIgoUaYMYEHLs8o6h3DiqwNOSHGPYqcdY8rUhOBmklimuxcKh7Yu0vhTVx/6WjiE+rXZH4yma6fYcv2ZKtJ5oMsoYrgJERGRghCiFMCrAL7So7gNwAlSyk/jaLIu5PGoGJ8funyLlLI1jn4QEREREVEymGavhyVmR9JXweAYvWBASmyqo4inPv7AyMFoI8piDxibO1Egtm/Lk6+OwWgxkVLivx9JPP8pUOIELpohMKs29u/SPT6J+xdIvN8gUTNY4AezBUYPyszv5KWUePwDiZc+Bxrbg/troQ04bIzANXMEBpVmZr+z3aYWiQcWSnyyQcK/56OlslTg5IOBC6cLCCHg9krc/6bEO3USzgLg6U/UbdUMFujyyqQGox1/YPwh+eWae/cw+DNcQ6PE1/9qRl7QwoUz+uY9etafTRw1Lvhvhx34yigBRwEw7xOJzzbvX276WGBUucDODolCO9DlBRavSU4fEgmMIyLqqaFR4qF3JP7wanCsU1MJPPANA3MP5DiHKBN5dcFoezJ5j58ocNPz+nPtdg/Q2S1R7OB7nKK3fqfEnxZJLNso8eYq/XK+ALBym3r/K9FPgSTKewxGIyIiIiIiIiIiyhK6YLQCURBXey5NeNX+dgthj7PtXBdv8JdHEywW6bXYv15dIFtqwjJ0gQ8Ow9VrQpuun7q/n4iIiChRn3UsQZNvu7Ju5oC5KLJpbi+eQXRjTHcgH8dQ6glABsIDoQ1hwGm4lGPNSONP7fjcVmT5eP/zuyClhEfzGumel+kiBaM5DKdlPRERUT4SQhQDeBnA9B7FHQBOlFJ+GGezK0Me18T4/LEhj1fE2Q8iIiIiIkoGM9DrYbGZ/JQXBqPp1e2I/Tm1gyMvM2m4wGUzBR5+R/29ts0AbjtLwGbEdlH1xGEC3zxc4IkP0xeOFgyT48Xg0bpBxuAAACAASURBVLrheYnfvbT/9XrsPYn/fdfAGVOi34YBU+KEe028tS8qXeLx9yXe/bmB6srMey1+9rTEXa+H76PzV0o8uVTi/esMDCzJvH5ns43NEkfcbmLrrtAaif/7GPhiC3DbmcDce0y82xC5vXGVgNsr8FZd8o41vz4l9hu87hXcX8L70tIZDOLjjXuCVm2TmPUHM6HAuBFlwI+Pi7w9Dx8NfLh+/+OBxcHPtsZ26+f1DDh7fYV6//pgLfDB2vj3vTkHACMHCjzybngbf39b4i/nSxgxfv4SEfW0ZofEUXeY2NEjQLS+ETjhPhP/uFjg4iPi/8wjor7hDajLC/ek6hw+Bpg4FFixTd9GfSNwyIjk941yU0OjxJG3mxHHx3st26QuZxgfkR6D0YiIiIiIiIiIiLKEz/Qqy+1GfOFljogXu1vX5zOnTb1tdMFhe+kCE6Ld1vEGsiWLLoAtNDhBH4yWmn4SERFRfpFS4vWWeco6AzYcXfa1FPcoPukOwc0kUhOMpuNIcjBa6PhcN173mG74pBcBqG83qhu/Z7pI/c7Wv4uIiKivCCFcAF4EMLNHcReAk6WU7yXQ9PKQxwcLIYqklNF+yXZkhPaIiIiIiCiVTLPXw+Koh/bRY3CMXkNT7MErNRXRbce/XSgwd6LAwtUSu3t87TyiHDhzisDhY+J7PR6/LHnBaD87QaDLCzR39C43BPDvJep11DUmZdV5obUzPCDMbwI3v2DijCm2qNt5YyV6hKIFNbYDf1woce+5mfW+bmyTuH+Bfv+sbwQee19GFbxE0XtwsVSEou13/wKJA4chqlA0AKgdLOD2JS8U7duzBKaMjP81Ly9Wl/sCQEc3UMp79wAA7l0gEwpFA4Al1xsY0j/ya/XUFQbeqZN4ux6orgDOnyZQ4gBKrzIjPjeZShzAxUcKNHcAzgLgiGrgwukC97+p338XrgbmTEhhJ4ko5/x5kewVitbTTc9LXDhdxhyATER9R0oJr3oK175gNCEE3rvOwICr9WMZBqNRLP64UEYdigYATZplix3J6Q9RLmIwGhERERERERERUZbwS5+yvEAUxtVepIvZXQxG09IHlFkHL0QbLKZfry6QLTVhGbrgt9B+6YMjPJyETURERElX5/4SGzx1yrqp/WahvKAixT2KT7pDcDOJlOoJ7LpxpNMowm60hJVHCpXTbVtXyGthFfxrFY4c2k62iHR+Eu35CxERUT4QQjgBPA9gdo9iD4BTpZRvJdK2lHKbEOJzAAfvKbIjGL72epRNzA55/Eoi/SEiIiIiogSZgV4Pi80OzYLx85vBCywr+yW96axXtyP259QOjm45IQTOmQqcMzW5cyGEEJhVC7yt/gkkaneeI/Dj4wxtfanTxF8Wh38v39CYvLCkXLdwNeBRTOv6fDPQ0ilRXhzdvvHkUvU2f+gtiXvPTaSHyfdOfTCsysqi1RI/Pi41/ckXC1dZvy99AeB3L0X/3q2tBLp9AojxpkU6cycmdhwcqAlGA4AtrcABQxNqPmc89HZir9dphyCqUDQgGEh23uEGzju8d/nPTxC4/dXUfU5cfKTA/eeFf5bVVgK6/XfRGok5EzhPkYji93ad/ji3sQVoaALGRXnOQER9z29xflLYI6+6n0ugshTaMKu6RgmAYwiKzqLVyRkTlzAEmkiLwWhERERERERERERZwqcJRrOL+L7mKzAKYBd2+KX61jiRgtPymVUwghVdcFr0wWjq1yRS4EOyRBvspguAkDDhld1wCP5yQ0RERMnzRsuz2rpjy05PYU8S4zDUY6RI4bu5SGovvlBPOtOFOluFlgH6bRsa9Ksb33pMt+U5QNYGo9ms+x2pnoiIKF8IIQoBPAPg2B7F3QBOl1IuSNJq5mF/MBoAXIIogtGEEAcAmNajqDOa5xERERERUR8yzV4Pi/vophgNTQxGC2WaEg1NsT9vcL/0Xwh9+mRhGcgQjVMneGE+eDPw4XxgwCCIM6+A+OppkN5uyH/8BjUflgH2H4U9r64xodXmjTa3xNl/MbX19Y3BG8Lc9oqJTzYGAwz3GjYAOG2ywC9OFDAE8Mi76tfa7QOa2iWunyfx1hqJju79deMHA5fNEjh/Wnhg0N/fNvHP9yU2tgBfGQXccIqBQ0ao92uvX+I3L0q89LncFxCwbff++opSwN5jFT3rdF78PPIy1NvOdolfzJN4u06i3RMscxUAR9YITB0NfLQ+chvRHu8KbMDIcqCyFCh1Yt/64lVUCBw3MbE2RpQDQgCqeyjVN+VvMJqUEn97S+JfH0isaVRvn56OqAbea9DXn3hQ9J9vxZp79p4xJbXBaCceqO7znAP0z2ng5xgRJag+wnFkLYPRMsbmVonrn5F4r0HCrb7cgvKA1RjJUdD78WmThTZstj6O7w8o/+w9d/t8c3LaG1WenHaIchGD0YiIiIiIiIiIiLKEXxOMViA0s0+i4DBc8AfUt7uJNqwrH8UbUKYLTYg2WCDeQLZk0Qe7FVk+Dm1DF/pBREREFKut3RuxvHOpsm5i8aGoco5ObYcS4NKMCfMxGE1HN0U/NMhsL6vxuZQy6uBiXfse0w13oFO7DpfN4rb2GaxQOCAgtAF1PFckIiIChBB2AE8COLFHsQ/A2VLK15K4qn8D+BWAvfcxP1MIUSulrIvwvJ+HPH5SSpng5a1ERERERJQQM9DrYYnZkVBzJQ70Ckfaq65RYkZ1+gO9Msm23Yj54vi7zsmMbXj5LIEXP5dYuFpdf0Q1cOsZBmbfqQ7m+u1pAmPvOxf44NV9ZfLjhcBvnoB89V/Aey+juuQkYER4MNrGFqDbJ+EoyIxtkYlMU+LYu/WhaADw1McSf1qoDmjYthv4eEMwuCzSRdCDf6Jez7bdwKI1Em6victn7U8uu+t1Ez99av/3/BtbgPkrTHz0SwPjh4S/phf83cRTn+jX36SeXhbRh+skDh/DfSgaXr/ErD+YWL0jvG7tTonHP0ju+qorALtNoMQGPPANgcsek72C+1TOmALMWxZebjOAP35DoJ8rsdfaWSAwoiy4v4aqb5TQ/1qY2/7wmsQvnok+hOz5Kw2c+1cTC1aF1504CbhgWvTbscCuXvaw0cAP5wjcv6Dvw9GqK4C5B6rrSpwCVWXA5tbwuuA+Q0QUv8p+QJvFLytrd+bvZ1Mm2d0lMeP3JrbsSndPKJMV2no//tXJ+mC0Bo4hKAKrc7d4ja3g5wmRDoPRiIiIiIiIiIiIsoQuGM0uCpTl0XAaRejUBKPpLv4nfRCAO2IwWnTBC8leb7Lo+h+6r1gFn3nMLvRHWVL7RURERPnrjZZntXXHlZ2ewp4kzip8K9/oArkEDGW5LpjXatv5pBcS6qs7QsfdVgHFunUIGHCI7AwENoQBh+FM+PyFiIgoVwkhbAgGlp3Wo9gP4Fwp5YvJXJeUsk4I8RiAS/cUFQJ4VAgxRxd0JoQ4DcDFPYq8AG5OZr+IiIiIiCgOIcFoxQncAG1WLdDhAZZtCq+rb4y72ZxVF8c2uWB6ZlyQWuoUeOVqAwtWAh9vlPDv2Y1sBjBlpMCxE4JBQo13GXjqE4knlkg0tgNHHyDw7ZkCU8yVkLe9GtauvP17QGcbAKDWW69ct5TA2p3AhKF99udlvUVrgKUbrJe58/XIF9X/XXNBfizueE3i8lnBfwdMibvnh7fZ0Q38ZbHEPef23r/XNknLULRE/PZFEy9cZYu8IOH5z5DUC+sjqa3c/+8LZxiYNlZi/gqJq/6j3x+f/K6BhauAjzZIdO+ZyjioBDh2gsABQ5Nz3Kyt1AWjJaX5rOMPSNyjeD/rnDEFKC8WePmHBhasApZuCH52FNiAaWMEjhqnDzuLhRAC954rcO5UiT8vktjRJvGV0QKFtmAg4qtfJryKfRZda8Bm6Pt886nBYL9QDU3J6wMR5SdfwLo+Xz+bMs1/PpIMRaOICkNSdUaUC/zuDIFfzgsfQ8TzHQLllxf64NytuiK57RHlEgajERERERERERERZQlfnwSj6S9od2nCBcgqeMF64nLiwWjq9XanORjNFdJ/q30nVX0lIiKi3LfL14yP2t5S1o10VGNc0UEp7lFidGPC/Bw/6YLR1BPe9cFl+m3nthi7h467rV4bt9mp7ZMQmXHhXDycRpHF+QvPFYmIKO/9A8DXQ8quB7BMCDE6xra26wLOergRwBnAvrsNHAHgDSHE5VLKVXsXEkI4AHwHwF0hz79LShnhMm0iIiIiIupzZu8bNZSYHXE3ddlMgZc+B5ZtCv8ulRfnh6tvjC10qrw4GPSTKQrtAiceBJx4kP4750GlAt87SuB7R/Uul/98Qf2EPaFoADDGtx6GDMAU4eFV9Y0MRrPyfkPigWbJUtcINHdIDCwRaGgCtu1WL7dw9f4+SynR2Q0sWNV3fwePSdF7f21q96fxQ3ofU8YNFhg3WKCx3cRvXwzvy5lTAJshcOxE4NiJffcbWHWlUO6TsR7Lc8W6nUCj+r63ShP2BNQV2AVOmAScMCnya3X5LAPzV4bfUKqyNPL6ZlQLzKjuvY7mDomKH6tvUBWrUicwbID1MtUVAqrfl1u7gJZOifLi7P3NlojSq1s9bX+ftU35+dmULp3dEnLPJrfbggHRALBkbRo7RVlDdY5/6Ej1GGLrruD+VuzgGILUkn3uVmgHRpYntUminMJgNCIiIiIiIiIioizhT3EwGi921wsNAtvLL33wS5/yNZFSJhwsoA98iP9O0rHQrccR0i+H4dS24c7LYA8iIiLqC2+2voAA/Mq648rPyLpQKt2Y0CrAK1dppw5pXtJ4xslWdaHt6V8bt/b1yfag6dAxfk/RBjsTERHlsIsUZX/Y81+sjgawyGoBKeVmIcSZAF4DULin+EgAK4QQHwNYC6A/gEMBhN5L+kUAv46jX0RERERElGxmoNfDYhn5u98fzhG4f0Hvb0xdBcCphwis2q7+JvW/H0k88e34u5mL6mIMZjr3MJF1vzGoyIblkA/dEHE5h/RipG8T1heODqura5TQfjlPeO7TzArDuPF5ifU7Tby8XL/M55uBgClx/TyJf74vsaNNv2wyrN0J+AMSdhv3o0gefz+1+9M3Dle/JucdJpTBaF87JDWvYW2lujxfQ/Zi/bvPnRr763TSQcHxhTtkeuq3jojvNR9YInDsBOCNlXE9vZevT438mVyj2WcAoKEpGHhKRBSPbvWUpH3y9bMplaSUuP9NiXvfkNjQvL9cCGByFXDveQYeS/EYirLPYaOBitLw8URN6K+qPcxbJnHBdJ7DkNoTS5J73DlzikChnfsbkY6R7g4QERERERERERFRdHymV1lekFAwmv5ifaeNF7vrWIUE6MLPfNILEwFlnVV7PekDH9wwZXLusmilWxvs1rtfhrDBIdThaJ5A/gV7EBERUfK5A514Z/dryrqBBYMxuXRGinuUON1Yr9t0Q8r8msQnNWNbobn4ymqcrKMb26ras3pt3JrxbbYHTevCoAEGoxEREaWDlHIRgDMANPUoFgCmAvg6gOMRHor2HwDnSSnVX0oSEREREVFqmb2/5y02OywXH4RduOU0gZMm7S9zFQD/utzAgCJheQHvZ5vy6zvlSBoao98eR1YDvzk1+y9GlW0tkFceE/XyNd56ZTnDHvR2dUks3ZDuXvT24CJpGYq215hfmLjjtb4PRQMAXwDY2NL368l2G5oldlp/LCTVH84WmDJSfaybMFTgvvMEjB7V354lcGGKgiFqKtXrWd8MeP359/lW3xT933z31wUOqor9dSp2CMz7voGiwv1lx00Abjgl/tf8LxcYGDc47qcDAKaPBW49I3IfhvYPjpFU6mMYAxARhYoUjLZ2J2CaPM70pYffkfjR/3qHogGAlMCyTcBRd/T93HnKbiPLgScuV0fqjBoI2DVpOxf9Q6K5g+9vCrepRWJ7Es+lK0qBO8/J/u+hiPqSPd0dICIiIiIiIiIiouj4pfoXVruRSDAaL3aPh8si5MATcKPE1i+s3Cp4wSp0oCercAWv7IZT9O1r5tYGo4X3y2G40B3whJVbhVMQERERRevtXa9pxxXHlp0Gm7CluEeJ042/TZjwSS8KhSPFPUof/bQyXTCaepxsNfbUjW2D7UUXjOYxu+A2O5V1Llt2B6NZhmhneegbERFRtpJSviyEmATgZgDnAijTLPoBgDullE+nrHNERERERBSZ2TuzuFjz3eJe1eZGlDgH4vkrDazaDmxqBaaNAQYUBb8nDQbHqL9N/dMiib9dyIsq96pvUpf/+hSBM6YIrNgqIUQwDOig4YDNyIFtt+BJoGN31IvX+NbiDUU5A2X0/vtR9m6bza3xP/dfl4W/P/q5BA4eDoz+hTqYoq4RGGsR5kjAo+/Ftz9tut3AX96S+N1L+uf//kyBEXu+RSoqFJg2Bhg6wPo4d9UxBs75isQnG4GJQ4HRg1J3XKypVJebMhiOlmjYVraxCqh86CKBdg8waqDAEdXA4H7xv05zDxTYfqeB99cCVWXAAUMAIeJvb2yFwOc3GvhkI7B2T7ibwy7g8QdDGb9aKzCoBPh4A9Dtl6gqExg/BFi2EWjplJgwVODgqug+k4UQqK4Alm8Nr2PAJxElIlIwmscHbN0dPG5S3/jL4vjH3N+aIXDcxCR2hrLO6EECh40CCuzq8YTdJjBmUPB8ReU/H0pceUwOfD9ASfXY+/rj0s9OELj5awKfbgLcPuDXz5p4t8G6vc23G9p9lIiCGIxGRERERERERESUJfzSpyy3i74KRuPF7jpW28ZjdmnK9cELjiiD0azCFTyBrj4Ps9OFu6nW6zRcaAuEz6TUbR8iIiKiaPlMHxbuelFZV2wrxYz+c1Lco+SwGst5TDcKjfwJRtNdzGdog9H0wWU6urFtoXDACAnW07Xvl350BNS3gHQZxdp1ZwOrcxSGaBMRUb6TUqZtZrKUshHAFUKIqwEcCWAUgCEAOgFsAbBMSrkuXf0jIiIiIiILsndg0CjfJsvFJ/lWA5gCwxCYOAyYOKx3/YSh+ueu2pa9gU19oaldXT52EDB5hMDkEblxAaqUEti2DvD7IF96LKbn1njrleUMlFHz+CQeeTf/3mdzJwLfnGZo64f2B7Yp8vjqdkgcf2BuvM+SodsnsWo7EDCBkeXAoFKBZRvj258GlgBH1Qr8TvPbWrED+PGxIq4L7Yf0FzjpoLi6tc9tZwpc90x43y6dqe9PdQUgBCAVf1J9Y/4FozVoAiovmylw2Uz9+zEeJc7kBsgU2gWmjwWmj+35evd+7UcP6l12wqTwZaJRU6kORlurCUclIookYEoE1JmvvTQ0xhaMFjAltu8G7LbEAi1zkZQS65sB0wyG6voDwOeb42/vt6cLVJVxG5O1ScP1wWgfb0htX+K1s11ie1sw2NZuC+7zHp/E6j3nHDWVwTBrSg6rc7cLpgk4CgSmjQ0+PmyMwLsN+uWnWgT3EdF+DEYjIiIiIiIiIiLKEn7pVZYnFoymD9rixe56ViEB8QSjuaIMobNar9vswgAMjKqdeHkC6r9NF4ym0m16ktonIiIiyj9L29/Cbn+Lsu6oASdlbYCYdfiuG/0wIIW9SS+puXhDNwleH4ymH4O7tWPb8NfB6rXZ5W9Wlkc7xs9ULgajERERZTQppRfAwnT3g4iIiIiIYhAI9Ho43L8V07s+wAdF05WLX9D+PwDnaZurKNVfOPlOffCiciF4cSUAdHSry3PpwmC5bDHkD+fG/fxq71pl+caWYIiToyB3tlUiTFPi189J3DVfwutPd29S74Lp1vtBbaUmGI0BewCCx+VbX5b43csSnh73Rz1uAvD5ltjbcxUAzgKB2eMlqsqAzeH3r8Q3Do8vFC1ZTpss8KtnJfwhwTLnfEXfJ2eBQNUAYJPi76lvlIgnNCub6d4/NZWp7UemG1shoLr5Vr0mWI6IKJJu9b3MwyyukzhqvP6zSUqJNTuABask3lwpsXA10LpnusqZU4DHLjVQ7MivzzaVzzZJnPNXc18w84gy4HdniLAxRCwYikbRuHC6gXnL1DvaY+9LzB5v4ltHJDeMNlmaOyS+8ZCJN1YGH5c6gTvPEdjYAtz5mkT3nnNWQwTPCx66SMDJc/uE1e3Q1x0YclODi2YI3PuGfjx64Qy+HkTRyMyjMBEREREREREREYXxS/WMuoKEgtGsLnbP7gv5+1KBUQC7UN93Qhe+YBXKYBV41pPV69Vt0X6y6P4GVf+dNvX+49YExxERERFFw5Qm3mh5VllXIApx1ICTUtyj5LEa6+nCd3OXekKQbiqQ7txFF+wL6LepOvRXf27U6tsZU5+yhdU5CoPRiIiIiIiIiIiI4mAGwoqe2vwNTOta0qus2OzAn7ddiVm734zY5L8v119A+eh7DAIBgkEEumC0kuy8z0oYuWsn5NXHJ9RGrbdeWW5KYJ36a/C89Mh7Er9/JfFQtB8cndkXPw8fANxyusDgfsHHDjtwwykC50+z7nfNYHU9g4mCnlwaDNbzhAStzF8J7GiLvT3fno8Vu03glasN1PYIyhICOGMKcPc56d3Xxg8ReOp7BgaVBB+XOoH7zxM4/sAI+5Im9CvfQvb8Aak9BtdUZPZxJNV0+0xDU2r7QUS5wxt++qZ00/Ph45zNrRKPvWfiW/8wMfLnJibcYOLKJySeWbY/FA0AnlkGXP0/jpO6fRJz790figYEA1Iv+kf82+axS/g5SdE5bTJQVaavv+RRiQ/XZeb79NJH94eiAUC7B/ju4xK/e2l/KBoQPK//9xKJXz6bmX9HNjFNqR1f3nqGCLtBweQRAo9fJlCouOzoR8cJfH82j1VE0VBfuUdEREREREREREQZxye9ynJ7QsFo+ov1ebG7NadRhI5A+Kw0fTCaOnihQBTCJmxRrdMhnBAQkIqgCKvgtWQwpYlu6VHWuRT7kW7/SUWAGxEREeWuLzs/xjbvJmXdjP5zUGrvn+IeJY9VEFVfj/UyjSk1E7GEejKQduwpPTClCUOE3zOu21SPbdXBaPrXptXfrCx3aYKCs4X1uWJ2/21ERERERERERERpYZphRUMCO/DuhqOxzT4EW+zDUCi9mNC9CgUIXsEq/X4Iu/7Sr+ljBXQ3mnjkXYlLjkxKz7NalxfQfeVc6kxtX/rMwqf1f2QIcekNwIwTehe6OzDm6lNgyABMxfyVukbggKHJ6Gj2e/z9yNv5m4cLPPGh9XJ3nSPwp4XqZb4yCnj8UgNjK4C364Dj7gk/dgDAvecKXJPEII1iB7DwJwb6u4IBQ0IIXHdCMJRpeBngLIh8wXatJpioPs/CrHT+GcX+E+rVqw2ccJ96H6go3f/vA4cJrPqtgQ3NwM4OoLoCKCvOjIvsT50ssP1gA+t2AqMGBoPcIqmpFFi4Onx7rW3KrzCHTa2AX/3ya4PA8lV1hXpMtL0N6PBIlDgz4/1ARNmjO4Yg3A/WSmxuBRaskli4SmLNjuifO+8Tib9dIGEY+Xuceu1LoKk9uW3OrM3f7UmxEULgz+cb+NoDmkEXguP4w8dk1j61s13ipS9ie84/35O482wZFt5F0du6G3D71HVzJqi36/nTDJw7VWLVdqDAFvyeavxgoMjB14EoWgxGIyIiIiIioqznNbux1r1Ke2F0shSIQox1HYChhSP4RWAf8ZlerPOsRpt/N8YXTUKpfUC6u0Q5wmd6sda9Clu9G9PdlV5swo4xznEY7hitvFA/lF+qv0UvEIVx98HqAn9e7G7Nabg0wWjqADRdmEUsAXRCCDgMl3IdH7e/s++zUEBgmGMkxjgPQIFhHZy3w7sFDe6V2mCIvfxS/yu/KsRD93et99RhYeuL+x73t5djXNEklNj6Wa6/M9CONV3LsUsTPOE0XKhxTURFofVsXK/ZjQb3Smz3brZcLtUKhSM4znCMiLuNNv8urOlajvbArqifYxcF+45DyR7feEw3Gtwr4TW7Mb7oIBTZSpLa/t6/1ye7Ue2aiMoIrz0Rxc7qM8IuCjDWNR7DCkfx/IhSan7LPGW5gIE5ZaemuDfJZRM2FIhCZSDy0ra3saV7veXzDRgY5hiFMa5xCYUn96WuQAfWdC1Hq19za/M9NnjqleUCmmA0ixCyBa3Pwy7Cp0as6VLPDlO1ZRVa1xHYrW4ny8+nVOHHe2X730ZERERERERERJQWZkBbNdS/HUP928Mr3B1AqX7+1Mhy/eo2t8bSudzV0a2vK3Gkrh99ST7z5+gXPvECiCGjej/fNOEoMDDStwnrC0eHPaW+UQKa7+fzzVt1kZeZNNy6fvIIoNAuMGMs8P7a8PpbTjdwwNDg9p42RsJZAHhCpowV2ICvTxX49XMS7dbTfaJ2+UyBqaN7v86GIVAdQ/hSbaU6mGjdTsAfkFEFYuWyL7bE/pwZ1cDwAcAWxVSgWSGBH0IIjB4EjB4UZwf7UKz70qiB6vJkh6ZkOqu/V7eN8pVVUFxDE3BI/FPyiChPdWuCb1SOuE0fqBRJa1cwhM0V/6UAWe/LbckNPi2wWZ8rE4U6ZETwXp26vPEHF0nMrAm+zwvtAoeNBkaUp/fcZvUOwIzxrdPcCexoA4Zk731n067OIviypkJfZ7eJiN8VEJEeg9GIiIiIiIgoq7X4mnD/phvR6NuasnUeXXYKzqq4NKoQI4pem38XHth8EzbvudDbLuz4zrDrMKlkalr7Rdlvl78Ff9x0E7ZlWChaT4eVfhUXDf0hbIqL9XvyaYLREgk9sA5Giz6wKx/pwgDcmgC0ZASj7V1eFYz27u75YWVVjjG4qupGZdCklBIvN/8PLzX/N6b16/oUShcesd6zBus9a8Ke/73hv8S4oknK59R3rcCDW27Rhs71dGbFxTi2/HRlXTrGDbGaW34mTht0YcwhQ190fISHtv5BG6AYyRH9j8U3B18BQ3H353g0erfi/k03osXfBCAYrHFV1U0Y7RqXlPaXdyzFQ1v/0Cs45vRBF2HuDjrRNAAAIABJREFUwDOT0j4RAa80P4kXdj4Rcbnp/Y7BBUN+kLTjB5GVde7VqHevUNZNKZ0eMSA1GzgNF3yB8GC0d3a/FnUb1a4JuGL4L5MeSpqo9e41eGDzb9BldiS9basx9bymRxNuq8AogF3YLcOCQ1kFi2UDh+HU1vFckYiIiIiIiIiIKA4yjovlIwSj2QyBiUOBFdvC6za2AF6/RKE9v4OIOixCo3IlGA3rV0a33PTjw0LRAEAYBuTwsaj2NiiD0eoaE+xfjmjpjHzVud0Axg9Rh4Pt9d2vBt+T3z1K4P21vZerrgCOnbD/cYlT4PxpAg+/03u58w4TGNJf4OIjBP74pn5dE4cC1xwr8J3HrftuN4DLZiZ+rKjVBBP5TWB9s3VwUa7r6pYxB1YO6QeUOgW+e5TADc+Fv4bfmpG7x/eBxeryls7U9iPdWjVT5WwG0J8/1/Uyoix4LPMrhlsMRiOieHRHPz0kYbowpnyxtim57Y0dFDxXJopWVZnAyQcBL36uX+abf9/7Rg3+/0fHCdxxloCRpn1t3rL4DhwXP2LilasN3gw5TvVN6u0+sBgoK+Y2JeorvIKbiIiIiIiIstpTjQ+nPNxkYeuLWNn1aUrXmQ+e2/n4vlA0APBLPx7eeid8ZnwBL0R7Pdv0WEaHogHAR+1v4cO2xRGX82veDwVGAsFoNv3F+tl+IX9f04UB6MK79MFosW3nWF6Xzd3r8PzOfyvrNnjqkxKKBqj3o1j66THdeGTrXTAVE8GllHh02z1RhaIBwDNNj2J792Zl3dON/8joUDQAeL3lGdS5l8f0HJ/pwyPb7o47FA0A3tv9Bj7t+CDu54f6746/7gtFAwC32YVHtt0NmYQZHH4Z/Ht7hqIBwLM7/4ktPcYSRBS/zZ51UYWiAcAHbW9iafs7fdwjoqD5LfO0dceWnZHCnvSdWMeGKg3ulZjf8mwSepM8wTHdvQmHohmaKQ7JDOrStRXzuN2muWIjS1j9vboQZCIiIiIiIiIiIrIQCMT+HHfk71Sf+Lb6e1NTAhuaY19lruno1teV6u8PkTVkvcWV23sVlQLHnQdxs3r+CACgqga1vgZlVd32OPbdHNQQRWDDmEFAaYTAve/sCUa7aIaB+88TGD0QcNiBuROBhdcaYSEOf/qmwBWzBcqLgbIi4PJZAn+9MLjMnWcL/HCOwKCQe+U4C4CTJgFv/NjAZTMF7jlXYNRAdX8OGg68/EMDk4YnfhF3dYW+rm5Hws1ntWj2n1C1g4P/v/5EgV+fIjCkX/DxAUOAxy8TOPGg3L3wvlwTKtAS3fSxnKELZCwrAsMsQthtAmMGqevqG/M8cYiI4pLKYDQzzw9T63YmdwPsHUMRxeKJy42w8yor98yXeCGK0/G+IKXE3fPje9+8vgJ4uy7JHcojuvNaHneI+pY93R0gIiIiIiIiipcpTazoXJaWdS/vWIoDiw9Ny7pz1ZcdH4eVdUsP1npWYXzRQWnoEeWK5Yp9KxMt71iKGf3nWC6jCz2yiwSC0Xixe9x0204fjKYuj3U7xxrIsLxjqbq8U10eD1V4RKzhFLsDrdjcvQ4jndW9yrd6N/QK2IrG8s6lGOKo6lVmShNfdn4SUzvpsrzjY4yL4bOvwb1CG7wX63oPLT0y4Xa6TQ/WdH0RVt7k246dvu2oKByaUPtr3avg1ryflnd8jOGO0Qm1T0SIOShxdefnOLzfUX3UG6KgRu9WfNaxRFlX65qE0a7aFPeobyQr4OvTjvdxWsUFSWkrGZp825MSUGsIXTBa8kKddW05DRc6Am0xtJPd51MuTYi2XRQkFM5NRERERERERESUt8w4wqU62yMuUlupr2to4sWZ7R59XUmEAKtsIN940nqBc6+GuOL3EDab9XJVNaj+Uh2M1rDZA4DfC0cTrFNbCbgK9fXfPUr0CjO68hgDVx4D+AMSdps65KjQLvCnbwr88bzg+o0ewWkFdoF7zxW45+uy177uKgjW7XX1HIGr5wDtHome97MrsAGuwuSFKxU5BKrKgM2t4XV1jRInIn+DnOIJRqupDG4vwxC4+VSBm74m0eUFih25vx3LNfcf2tUFBEwZFiCYq1o61eW67ZPvqiuAusbw8nUMiiWiOKQyGC3Pc9Gwfmdy29s7hiKKRYlT4P3rDNT+Kvwm7zr//VDitMmp399WbEvs+f/5SOKr4/g+iUdDk/qIXVPB7UnUlxiMRkRERERERFnLK7vhlRa3dOxD7YFdaVlvrjJlAG2abdoZw0XHRKF8pg9dZuS752YC3XugJ18fBKNVOUajQBTCJ729yocWjtBeCE9BLk1ggjugDmzSleva0RntqsU6z+qol28L7IaUMuwukW3+5HyWDS0cqQx9GOMcH3Nb7Yo+xdNP1XO6TU/axg2xiuZ4kMjy2nb8ipmpcegI7IYJ9Q/DHYF2VCCxYDSrfYJjNKLk2OnbHtPyXaZmNi5REr3R8hykZirg3PIzUtybvjPaNQ6butcm3E6zbwdMaWqDxFItWeOMkc4aZbnDcGJo4Uhs825MeB1jnOM05eOx06e57WMIAYHRmnayxShnDQRE2Psu2/8uIiIiIiIiIiKitJEWF9cKgV5pRXt1qH//lJ4uYOkCYO0KOEeOw/D+p2DL7vDvg4MXbObfxZmrt0u8uUpicD8Bv6n+bcFuAIW5cFXdh69bVosTLogcigZAHDgNNS88pqxb31mEbp+EoyD/9qWe6hVhO6GmjRVwWkzj0m1BXShaT4ZFEJQQAv2iuF9LqTP5r6H0eYFPFgFrPgUCftTaL8ZmhCcyqsKK8klzZ+yRJ6HBl0IIFOdAoGM0rIK/WjuBQaWp60s6MRgtSDYsB5YtgqxfDjRuAgYMAiqrIJy9N0TVzuMBTA57/s72fI8cIiIr3b5gwGx7dzBUee9/yzYlfuyYOBQ4ZoLAnAME+jmBOXerzwnN6HOYslqHR2L+SmBHm8RXawUmDguOTdcmORht+tjktkf5Y/QgYEg/YHuUl7B9viW5Y4w2t8T8FcDqHRKThgkcOyEYPh1qVYLBaGu2c2wUrzrN1MGaPL8pAVFfy4WvcImIclpXVxc++eQT1NXVYefOnfB4PHC5XBg8eDDGjRuHKVOmoLDQ4pYyZGn27NlYvHjxvsdS9YNyEixatAhHH330vsc33ngjbrrppj5ZFxERUT7xaAJmUqErwAv/k8ljurV1PtOrrSOKxJNFIR3uKI4rfk0wWkECwWgOw4mjBpyEN1qf7VV+XA6FS/QVpyY4zm1qgtE0+6PLFttMpZn9j8eS3YuiDv2TMNEtPXCK3jMgdf2JlW5fqSk6EGOc42MKcVMF68TTT9VzkvX3pkI0x4NEltdJVpCk1TgpNIQxrvYtXkuO0YiSo9kX66x0TpSgvtXm34UP2t5U1g0rHImJxYemuEd9Z1b/E7C07S3tmDJafulHe2AX+tvLk9SzxCRjLFYgCjF7wMna+rnlZ+Cx7fcltI7BhVU4uORwZd3sspPxWceSqMJ2Z/Sfg372AQn1Jd3628sxrd/Rvd57BgwcW35aGntFRERERJR8nJ/Xtzg/j4iIqIdAQF1uLwCKSoG2lvC6tvCbTsjm7ZA/PRWo+2xf2djat7DFPjVs2YamuHubtR5+x8T3/iURMAGr37BKnAi7wVy2ke++1Gs/CDP1GIiag6Nr7MiTUeO9QVt96t2dePVnxVm/zRIR6f1UVgRccqRAm34qZM79qiq7OiCvPxv4eOG+spohg7Cw7LKwZesbc+2vj01rHD/91Vbm7/ttoMV0upYuBqOV59H9buV/74H803XqupDH5RUGMCg8GE23HYkoO3n9cl94WUdImFl7t+z1uKMb6PAA7Z7w8LO9z/VpTtPiMWogcMwBAsccABwzXmDogP2f5Z9aBK1pspxzytZdEsfdY2LlnkAnmyHxp28KzB4f+3inrEg/tqqpBE6fnL9jKEqMzRD40XECP386ujflym3A7i6J/kWJ73Prd0ocf6/ZI1BaYsoI4OWrDQzu17v9YAh+/KIJ/aZwpim13wvUVKS2L0T5hsFoREQZKBAI4Mknn8QjjzyChQsXwu/3a5d1Op04/vjjcfnll+OUU05JYS+JiIiI0s8qTGtwYRVsCL8LZqw6Am1oC4TfeTPRC5SpN+sAFXUQFFE0rMJzknWciFWX2Yld/mZleSS6QCF7AsFoAHBGxbdQUTgUn3UsgUM4cHi/2TikdFpCbeYDl6GegaUL5NOFQRRp2tEZ6hiBH4+8FYtaX8R6Tx1MGfxV3i/9aPRtVa870Amn4QorUymx9UM/W+QQh8GFwzGt/9Ha4AibsOGqETfh9eZnsKbrC3h6fHY2+rbCL8O/71D1SfcZYYMdTsOFTrM9vB3Ftrb6rBlSWAUjDceD9sButAd2h5XHGhyiO34UiEJUFAwJK+80O7DbHz6pPlmhYp2B8NdkL13AYyysguCyKQCPKJPpgtEEDEiE36JS5twUfso0i3e9pP0MObb8jJy6CKfKORo/GnErFu96CRs8dTCl9W1hJSS2eTcp61p8TRkUjKb+HsWADUMKh1s+VwgDIxxjMXPAXIx1HaBdblr/o+GyFWPJ7kXY4d0cU/8KDQeqXRMwt/wsbXDxGNd4XDPiFry16xVs6l4LqXhtSu0DMKl4Ko4uy43f7C4Y8gMMd4zGl50fo8TWD0f0PxYHFB+S7m4RERERESWM8/OIiIgoLXTf9xoG0K9MHYzWHl4mn7grLAyrumMF3h6gCEbLsyCi1k6Jq/6zNxTNWqmj7/vTl6TfD3n79/QLlA+BuO2ZqNsT9gKM/erhEJtNSBE+f2J+gwtL1gHTx8bT29xgFex11qHALacbqCoTWBfIo/fdS4/0CkUDgBpvvXLRuh2p6FDmao1jOkvt4OT3I1uUWwWj5dHUIF3oS3lx7vw+bkU2bob88/VRLz8woBhLAWjOo32GKBP5Az3CykKDzDyyd7hZSJBZePAZ4NV/lZsy35oh8E69hJTA1NHBILQ5BwiMrdCHL1sdufNh9HjzC3JfKBoABEzg6v9KHDQ8tr9++ABgyfUGrviXiRc+319eXQHMqhW4/SyBQnt+fE5S37h2rkCpE/jXB/tDsHa06Ze/+UWJu7+e+D530wuyRyha0LJNwB2vSdx5TmgwWmLr2tQKuL0SrkK+V2KxdTfg1lwGUTuY25KoLzEYjYgow7z55pu44oorsGbNmqiW93g8eO655/Dcc89h6tSp+Otf/4pDDz20j3sZu9GjR2PDhg0AgFGjRmH9+vXp7RARERHlBI9FONnPR90RFgATj8WtL+N/jX8LK7cK5KDYWYWY6IKgiKJh9V5N1nEiVp+2f4C/bb0trDya44oqSAoA7KIwoT4JITBrwPGYNeD4hNrJNy5DfetFd0D9+aQLndIFL1gZ5hiJbw75fq+yNv8uXNdwsbpPZifKMKh3fzTH3qPLvoYTB54Tc59UnIYLp1acH1Z++4afYoOnLqxc1SddiMZQxwhMKJ6M+S3zwp+jeA2sPmuuH31PwgGD8VjQ8hyebnokrDzWgDLd8aPWdSCuHHFjWPlHbYvxyLZ7wtdrdsS0Xh2roMekBKNZtJ+scDeifOYzfcrwRACoLByKHd4tKe4R5TuP6cbi1leUdQPsAzG138wU96jvVTlH4/whP4hqWSklflR3HryyO6yu2deEMa7xye5eXHTjlYrCIfjVmPuTtp6DSw7XBvcmw2hXLUa7avus/UxjCBvmlJ+KOeWnprsrRERERERJw/l5RERElDaBgLrcsAGl5QAawuvaWsPL3n4urGisd62y6UQvls02r6+Q8ET5k3Sps2/70udWLQVa1Tc7AgBx5/MQjtjmRTknHYqR6zZhQ+EoZf28ZRLTx+bvxb71ms395/MFvnvU/jA5l8X0k1zbevLtF8LKar2KYxmADS2AaUoYRq5thejoAq6s1FQkvx/ZotgBFNgAn+Kj0yqYItc0tqnDYgbEPt0wO737EmBGkXa6hzYYLTlT4ojyRsCUIeFlPQPKZFi4WUdImFlofXcGBJklUz8n8Mglsd+I2WoIFMOhLmu9ujz8M63bDyzdEFs7NZXAsAECz11pS1LPiHoTQuB7Rwl876j9ZU3tEoN/on6jvrUm8WhDKSXmLVO38+wyiTtDLutoaEp8net2AhOHJdxMXtF9JwDk97kbUSowGI2IKIPcfPPNuPnmmyFl70GpEAITJkxAVVUVBg4ciKamJmzcuDFsctbSpUsxY8YMPPDAA/j2t7+dyq4TERERpYXHdCvLBQQcIjkzl4o0YTVWgR8Uu74OUKH8pdu3BIykHSdipTuudEsPAtIPm9B/Zad7P9gtnkN9RxuMptnvdOVFRnJmKun6A8QWFJas/liJZdvpQjRcRjFcmr4q29H8vYXCkZZQNEAfimcV/BXL8rr2i4wSZXlXoANSSu0d66LVFdDPJvOZiQeeWoWfxbrtiChcq78JUnMfyoEFgxmMRin3/u4F2vDOY8q+lrbP8UwhhEB5QQW2ezeH1bX4LGbjpJju3MxqDEtERERERJRsnJ9HREREaSU1V7sbNqB/ufopbS0QAOSS1yGXvA40bga2hV85Xu1TB6Ot2JZfQUQ3PR/9xcFH1mT5Ntlcr68bUAGMnhB7m1OOQs3T9dpgtDtek7j9rNibzXZd3RIPLpZobFfX11T23pecFj9dJX75et+S7buA15+AXL0MCOxJMSkfDHHESRBTvtp72W3rgWWLw9oY5t+qbDtgArvdQFm+BDqF2BVjMNq0MUCRI8uPUyHk9g3AG09CvvQI0NEGFDqAsZMAXzdQVQNRfRBw/PkQRSUQQqCqLBjYECoYBJFb20Zn2SZ1edWA1PYjXeSm6ELt99IGo3E6GeW4gCnR0TO8rFcwmQwJNgvW9woyC6l389INS9PHxvc8wyJLzcz0QWKCpJTYpMj8jsfwAfkxBqDMMkg97R4A8MlG9Jp77w9I/HuJxHsNgNsbPP85/kCBkw5S77td3RJ3zg8ej1XW7gQ8Pglnwf7nf7Q+un4fNwF4c3XwXCxUfSOD0WJV16iZV10MlBXz2ETUl3jFJBFRhrjmmmtw33339SorLS3FL37xC5x//vkYOXJk2HPq6+vx6KOP4s4770R3dzcAwOv14jvf+Q46OztxzTXXpKTvREREROniNtUzBRyGK+FAj710gSseszMpwSEUpAu9AZIToEL5S7dvFRnFaXv/6o4rQDC8qsTeT1vvl+r3Q0Geh0Gkiz7USv35pA340rQTqwKjEHZRoAzQUwVR9HV/rOgCAlV90od+FWmDNFTBWfqAtfSFccQS7GZFFxSma7/Ipv6F1oSJbumBU8R21+jw/lgEoyUh8NRq+zAYjShxzRZBSgPtlcry0IuJiZIlIANY0PKcss5lFOHI/nNT3KPMNLCgUhmM1uzPnGA0q7BbIiIiIiKiVOD8PCIiIko7UxeMZgCl6mA0tLVCPnIL5D9+a9n0WO86bd38lcDxB0bbyez1foPE6h3RL3/VMdk970/e/j1tnbj4eoiCwpjbFGMPRJVzdSLdyjkdHolj7zbx4Xr9MjUhP6G6snQal2xthLzqOGDDqvC6/94DXH03xNk/CD6u+wzyB0cr2xkYaNauo7kzf4PRWrui/029wAb86mSL9JQsJOu/gLzmBGB3SNJZ457fOD9eGAwOfOEfwP2vQ5T0R02FOhitPnN+Au1TO9okdrSp68ZWZPdnWDSklMD/PRDTc8o1xx+PLxg6kmthg5S9TFOi09szvKxnOJlUhJthT/CZ7BVutvffXbzUImUcduC6E+P7jLY6AuX6zLtk7qP5Opak9BJC4PuzBR5cpH63Xv0/ifvPE/AHJE59wMSrX/au/+ObEj8/QeD3Z/Y+frR7JI6LcL4JADN+b+KTXxsQQmBDsz5EraeRzg48dFE/HHOXibWKMXUw5Itjo1jozkNqB6e2H0T5iMFoREQZ4LHHHgubdDVz5kz85z//QVVVlfZ5NTU1uOWWW3DRRRfhrLPOwvLly/fV/eQnP8HkyZMxe/bsvup2Tli0aFG6u0BEREQJ6DbdynKnkViYR08uTXCIX/rhk14UCkfS1pXPrEJMkhGgQvnLKlApXXSBUEAwvKoE6mA0KSX80q+ssxuxT2akxOkCtdyBLmV4piqcLNhO8n6ldRlFaA/sDu+TYt2p6I+Obh2qPulCv4qMYn3AWix/bwqC4HSKtAGsbpgyAEPYompHd6zTbR9dMBoQDDVLdCyl29aAPuAxFlaBqrr9hYiipwtG62cbgELNmEPm/PQsSpdP2t9Fi79JWTdrwAlpHddnknJNaGGLT73t0kF/bsYZi0RERERE1Pc4Py99OD+PiIioh0BAXW7YgH5l6roNqyDn/ydi0zXeBm3d9/9touHW6H57zmY3Pq8JnlO4/iSBScOz9wJgubsZ8Gvm1NkLIM76ftxt26bOBj7V15umhGFk77aL1b+XSMuL1AvtQFVZeFlWeu7vylC0veRDNwInfQuiqATy0d8BbvVvPwMDLdo2mjvCg+TyRatmOsuNXxMYUAQsWCmxqwsYP0Tg4iMEjqzJrfeZfOzW8FA0lbpPgVcfB86+EtWVAvNXhs9FqG/Mj/kJN7+g/zvHDkphR9Ll83djfkp5oFVb19IFFHHKP8VJSonO7p7hZT3DyaQi3Cwk5CykvqM73X8RRWIzgFInUOrY838ncMgIgUuPFDh8THyf0VZDaF2Gdq5oSeK03nJOM6I0+cWJ+mC0B96UOGNyMPQyNBRtrztek/j+bIkR5fsPBv/50Pp8c6/PNgPv1gMza4HrntaPEad1LYFLujHDvQSXe5/CiJJ3UVNZqAxGq8+caYVZQ3ceUpMHocVE6ZatX7UREeWMNWvW4Morr+xVdsQRR+CVV15BSYn+ItWexo0bhwULFmD27NlYuXIlAMA0TVxwwQX49NNPMWhQPnzjSURERPnIbXYpy3VBNfGwasttdqLQ4K+kyWAVYpKMABXKX7p9KxXBTzpW67YKCfRbhATaRZbeajTL6V7LAMLDM00ZgEfzuaULx4q3T8pgtJD3gs/0avepZPZHR7ftPIHwbWQVoqFrRzVG0IVppfV4YBHm4jHdlgFmPcUacmf1GncFOlBeUBHVeq3a0ElG4KlV8JrH7IIpTRgit+6cS5RKzb4dyvKBBYPBO8RRKkkpMb9lnrLOLuyYXXZKinuUuXSf3ZkVjNb33+EQERERERGpcH4eERERZQypudpdGEC/cnXdyo+iarrM3IWyQAtabeHttHRCeXO3XOL1S7ypz3MKc8rBWb4tPlmsr/v6DxNq+uRJwD8sgtGaOoDB6ns+5qRXl1sHMI0ZCNhCUi6s3muHjUpKt/qEXPK69QJd7cCXH0B+5RjAYtlSsx126YNfMZ+tOY/vdbejXV1eUQp8f7aBq+ektj+pJKUEFj0T/fILn4E4+0rUakL06tX3ess5X2zWH3/G5MHXEPKD16JeVvxvFbBrJwZ9/3TtMtt2hwdZUu6SUsLt3RtcFvqf3B9u1qO+w7M/yCy0vqMbkPmRyZi1DLE/wGxvoFnJvmAzEfy3sl70Lt/zn8NuPaaLh1Vzub57JTMYbSCD0ShNhvYHXAWAWzMN/vp5Jg4dpX+jmxKYv0Li0pn7l3nty+jf/a8sl5hZK1BnERL8xsYT4ZKe/QUrPkJ15UxgRfhzGvIkbDiZ6tRTq1EzOLX9IMpHDEYjIkqza6+9Fh0d+y8WHTBgAJ5++umoJ13tVVlZiaeeegpTpkyB1xsMjtiyZQt++9vfht3tkoiIiChXeEy3stxhuJK2DuvgkE70t2smpVFMrMKgkhGgQvlLt28V2dL3q5jTKIKAgFT8jKkLbgKsg9EKGIyWFlahVm6zq1d4pu4zK9hO8vbHIlsxoNhVQt8LVsFSyexPrOtQ9UsbjGYUw6UJDvNLH3ymFwVGYY92NMF0aTweWIWydQU6ow5G04a+af42q3a7TH2oWbSs2vCZiQeeWo0bJCS6TXdK9mOiXNXsU88iHliQp7fuprRZ1fUZNnevU9Yd3m82BvB8fB99MFpjxlzslokhtURERERElB84P4+IiIgyhhlQl9tsEJVVCV8MP1ATjLbbDTR3AINKE1xBBlvfHLzIOFo1id0rrM/JBf8HufBpYOtaoO6zYOHkr0JcfRdEzcHABn0KnJh+QkLrPnqS9Y1iWzvzKxitPsI9aE7ShOydPhl4NiRgrtAOnDM1/b/ZaG1piLiIvPdHEHe/BHTr50EJAOWBFjTaw68Ob+6QyMebcXn9Epta1HUjyvJge7TGmGT2+bswb/02qif9GMC4sOr1zUC3T8JRkFvbzu2VuPN1ifcbJNw+4F2Lt2RZcW797UpRHJMAACPHAUNHA5VVGBhohtN0w6O4jqChUeKw0Xmw3XLYu/USD78j0dQucfyBAt+fLfDC58B/P5RoaOoRdrYnyCyWsSGlnhCh4WU9/xP7ysPrhTL8zFWY/CCzZDMsupfr+2syg9HKOc2I0sQwBE6cBDyzTF2/ZB2wZJ31m/nyf0r87a0AbAZwyAiBeZq2VH7/isQbKwP4ZKN+mV6haACwdS1qKmYql82XsOFkebdeYvlWdV2mf8dElAsYjEZElEarVq3Ciy++2Kvstttuw5AhQ+Jqb+LEibj22mtx66237it7+OGHcdNNN6GsLLdua1BfX4/PP/8cW7ZsQXt7O4QQKCoqwuDBgzFmzBgcdNBBKCrSX6CeLN3d3Vi8eDHWrVuHlpYWVFZWoqqqCrNmzeqT9W/btg1LlixBY2MjmpubUVJSgsrKShx22GEYO3Zs0tdHRESU6bo1ITPOJAajWYVqWIVyUGy6LMKgfDLxABXKX7rwp3RefG8IA07DpQxpsgqrsgpGszMYLS2s9iN3oBP97fvPxa0+M6xCOGPlNNTnoqH7m1UIXzL7E+s6VNvJKkTDpfl7geD7qX+vYLTMOx4hVep3AAAgAElEQVQka5yhDYHU/G02YYdDONEd+gMorD+To9UV0AejWR3LomW1/wLB157BaETx0wWjlRdUwpTqC3ZUga9EiZrfMk9bN6fstBT2JPPpggu7pQedZjtKbOm/Qkk7FuNnNhERERER9SHOz4sf5+dxfh4REfUB01SXGzZgeOKfMw9uuwpzR72irKtrzO1gtLURwqt66ucEBsaWkZtS8om7IP98fXjFp29BXnIY8NB7kA/frG9g8qyE1t9/gAu/bboBv65Qr6NVfU+6nGSaEg0W+1ZNJXDNHHXCxU2nGnin3sTOHtMnbj9LoNSZmYEdsrMtuvCqjWsgz66NuNhAXTBank653diiDzypzoOL6OW/7oj9Sa/8EzWLPwZGfaSs/tvbElcdk5nvp3gETInj7zXxTn3kZX95cu783ZY2RxGMVuiE+P5twTAkewGMybMwtm0dVjgmhi1qdTynzPfqconT/mTCt2fa0ktfSPzwv5yrlGoloQFmex6XOEV43b56dV1RFgSZJZtlMJrmVDFXJPMcojwfwkEpY93wNQPPLEvsDfvh+uD/318b++fYR+v1dbfv+EVYmdyyFjXTBKCY37uxJTfDhvvCGysk5t6rf91rB3MbEvU1BqMREaXRfffdByn3DygHDRqESy65JKE2r7nmGtxxxx3w+YIXmXZ2duKhhx7Cz372s7BlL774Yjz22GP7Hq9btw6jR4+Oaj2LFi3C0Ucfve/xjTfeiJtuusmy/b02bNhg+cXFt771LTz66KNh5d3d3bj//vvx0EMPoa6uzrJ/NpsNkydPxumnn44f//jH2klQs2fPxuLFi/c97vl6WNm9ezduuOEGPProo2hrawurLy0txbnnnoubb74Zw4YNi6pNHZ/Ph4cffhgPPvggvvjiC+1ytbW1uPbaa3HppZfCbudHPBER5QdVqBAAy5CUWBUKBwzYYCI8AEC3fopdl2kRoGImHqBC+UsbqJTmi+9dRrHyGGIV9uNjMFrGsQ616v36WoVNOW3J+9wq0vQpdN+yCt1KxftDtw7Ve0D3eVtkK7YMcQsLp7MIWEsXq3VbBSX2JKXU7l9Wr6XLVoxuvyIYzeIzOVpWwWjJCDyNtG3cgU6Ah0WiuOmC0QYVVKLRu03zLE42pOTa5FmLVV2fKesOLjkcQx0jUtyjzFauCUYDgBZfU4YEo2nGdGkcixERERERUe7j/Dw1zs/rjfPziIgoZUz1DWhgGMCwMbG3d8zZwJtP7Xt4dNdi7aJ1jRIzqnP3Qs2Gpuh/qxo1MHNDGGS3B/Lfd1ovc/OF+sqzf5Dw3yYMA9d1/pnBaAC27AI8mulalxwp8IezBAaWqLf3wVUCS39p4JllEk3twImTBGbWZuZ+BwDYsjapzZUHWpTl+RqMZhXINGZQ6vqRNv/3x7ieNsZdBwETEkZY3S/nSVx1TKIdyxyL1yCqUDQAuOzIDD6WJImUEthiEYxWVglx5hXAUadDjNkfgiYu/RXG/kETjLbVC8DZB72lVPj9K/tD0Sh6xY4e4WW9wskESkLDzRz760LDzUqcQHEhYFgle1FEVsP0XJ9519IZ219oNwC/JoPIHj4sIEqZg6sENtxmYNR1mZdmeMHu/2fvzOOjKPL+/6memUzukxAh4UrCLcopcnqAgoiKJ4L7eK27rLrq7uO6ruu5uu4jK+oPb2VXdF3XY5FLWA9QkUMRYQHlEJJwGK4k5M7kmpmu3x9DQiZT1dMz03Pm+369eJHpqq6q7umjpvtb73rXc+HRAyiUhBWqHDhUCQz0bx6hLsVTn2h/34VdQHZNEOGG3soSBEGEkU8++cTt84033oi4uLiAyszOzsZll12GpUuXutUjCryKJkpLSzFt2jTs3btXV36n04lt27Zh27ZtuP7661FYWGhYW3bu3IkZM2bg2LFj0jz19fX429/+hqVLl2LlypV+17Vt2zZcd911OHDA+4umoqIizJs3D6+88gpWrVqF3Nxcv+slCIIgiGih2dkkXG5VEgyrgzGGRFMSGpyewdZaAiPCN7RlUIELVIiui0z+FO7B94mmZFQ5PCOetGQ/Dg0xmoXEaGHByuLBoIDD82VH52NPU0Rm4PEoK8tD1CZpjwIT4pjVsPbIkLVT1C7ZvktQknyT08nKCaMo0cRMsLJ4tHBPQZnefkYrbxEKXAHta12ikowaVHos15Ka6UVLrqYledSDXW3VvB666qc+GkH4S6vagjpntTAtU1OMRhDGsrZquTRtasasELYkOkg1pcPMzHBwh0dalb0CveMLwtAqdyJVWk0QBEEQBEEQRGxD8Xn6ofg8is8jCIIgQoAqGUipmIBuuUBcPNDq+e5YBPv9K2CX3Qp+/2vg07JcywAMb96JHfFne+QvEs+LEzMcq9Gfd0iPCBY6HNwN1ImFUu0ckYtiWO+BhjSDJSSju6MM5eYcj7TqRg7X0Rb7HK+Vpy24hiEjSXs/9M5i+M3UKNlXWgIiP+jm9IxHAYCj4lfRMc+xGrEMpEcakBAXJceIn/B6Hy7QnbDyVpzhKMNxcw+PtBYH4FQ5TDEi6dlYrE8YE28BemUGuTGRQE0F0FgvTGIvrwMbNk68Xm4B8luXCJMOHG8BidGiE7uDY4O2vz9mSIzrLDBrE5e5RGYeafFAivW0yKxjepIVMXONjBW0vg41xs1oR33sDvx8EsNrX4l3ygDPnygEEVJ6ZTLseETBiCdU6JwHJuikOmvR3Sl48HO0BPndXGJGUVuLy0mM5g2nqt0P6ZYMr88GCIIIHBKjEQRBhIkjR47g0KFDbssuvvhiQ8q++OKL3QKvNm/eDLvdDoslOgfKt7a2Yvr06R5BV5mZmRg2bBhycnJgsVhQX1+P48ePY8+ePbDZgjMAds+ePZgyZQoqK91f1OTk5GDEiBFIT09HWVkZNm/ejKamJlRVVWHmzJl4+umnfa5r1apVmD17Nhob3Qdy9+jRA2effTYyMzNhs9mwZ88etxk6d+zYgbFjx2Lz5s3Iy8vzb0MJgiAIIkpoVsXTD8Yr4tmo/SVBSRSK0Ui6YRxawqBABSpE16ZRNvg+zGI0qbzKT0mgmcRoYYExhnglQXgN63yPkh2LVhYPEzMZ1ia9x5bsWEs0JYVkZmSZsMvB7bCrrbAoroFpTu5EsyoWoSYoiYhjVigwCcVgnnI6cb8h3KLEBFMSWhwCMZrOfobWdUPrWpdoShYulx2rvqBVRqDCU9n36JaH5LUE4TfVjpPStCxLd+k9IkLiO4gYodJejm31G4Vp/eIHoiBhcIhbFPkoTEGGuRsq7Cc80qrskTHaTXYPTzD4GQ5BEARBEARBEEQbFJ+nH4rPo/g8giAIIkSo4gmvwBiYyQQ+8TLgi397L8dkBiZc6lo1MdntPU3/1iKhGK24zI/2RhHV3l8jt3PlyOC1wx/4wT3grz0E7N0KVAX4RU2caUyjEpOQ4awRi9G60Ov4eomnkDEgzbi5eyMCvm+7oeX1aT0sXF5c3jXfLFdJzpvslNC2IyysXxHQ6oNb9grFaHanS7TXOyug4iOGkzrnsZw1nHUN0VFpsTwtT2NSsG49UaCWCpPWH0nGV/s4zhvYBfZfjHFI7NqMCOItHeVlHeVkLpGZu9ysLZ0J5GZAcjyJzCIdzjnw7rPga98Hjov7OpqYcoGe30nKDrBxEc6XP/q2gcPzgHPzgc2d5rIYdAbQtxudJ0T4OSuP4cKBwOc/Gl/22H7AkWrfhIJX1a8Q68v3/RdWC0PvTOCw4H5aXNF1xOf+cqTa9dtDxlUjaf8RRCggMRpBRBhO7kSNxsAjwhjSzd0MHXTsD5s2bfJYNnr0aEPKHjVqlNvnpqYm7NixA2PGjDGkfL0sWLAAjz32GABg4sSJOHr0KAAgNzcXGzeKBzUBQHKy+8DcxYsXY8+ePe2f+/bti5deegnTp0+Hoige63POsW3bNqxatQp///vfDdgSF3a7HTfccINb0FWPHj2wcOFCXH311W5taWhowDPPPIMnn3wSNTU1Ps8IumfPHlx//fVuQVfTp0/Hn/70J5xzzjke+bdv34577rkHGzZsAAAcPXoUc+bMwbp162AyhfdYJwiCIIhgIhWlmIyNOvFHYET4hpZAxRGgQIXo2sjEQgmm8IqQEiX1a4mQHNwhTWuTSBGhJ0FJFH5vna9roToWE0xisURnEYVM7hkqaaDWdjeqNqSdOqZlEtS2MhhjSDAlwub0nCHS4zuQ3GviJfssVCQoSaiB59tGvf0MLVGr1n6WXYcaVZ2RdhJUrmpfy9TAhKd6hHF6pXIEQXhy0i4fbJFp7g4mC4KI9egsIqR8Ub0SKlRh2kWZV4ZE4hqNZFqyhWK0Skf4xWh2tVUqRw23tJogCIIgCILoelB8XugId4wexedRfJ4WFJ9HEARBhAWZGO3UvYTNexx8/3+BIyXyMhQF7J5nwTJPC6vY/a+Cz/8VAKCwVbxuUYzLiPTKuuacw3Dl8Mh5z8DLSsFvPw+weU7a6g8sO9eQcpCQjPRW8SjsKh8kdNFOQ4t4eVIcoMSQuIRzDrzju2jYg/7DgaIdrj/t4mtRcfhfW4UFmRgtM8bnD+LHD4E/9cuAynjl+F0YWLhbmFZSETtitFod11bGgD/Pip1rjxb8kbnihMQUID1buh5TFOSniscWAMAFz6j45g8KxuZ3jf0YK9z5L3H8iD9YzR3lZZ3FZKyT3KztH3MTm3VMN5voWOpK8EWPAm/P93t9ZpbHx6gx/HOtppFjfZH3fB3JTGJ4/nqGy15UUXbqp1JaAvDGzZ7PqgkiXAw4g+FzH6V/enj5BgVldcC1r6mwSX6TdmRIyx48WvGENJ2vX4HC7JliMVoX/X3mC799X94P6ZMFPHwp9QUIIhSQGI0gIowax0k8fGBeuJsR8zyR/xqyLJ6z14SSI0eOuH3OyclBVpYxT2TPPPNMYX2hDrzq1q0bunXrBgAwm0/fcsxmM/r27au7nBUrTs8QYjabsWbNGhQWFkrzM8YwevRojB49Gg8//DBU1ZgHYC+88AJ27NjR/rlHjx7YuHEj8vPzPfImJyfj0UcfxZlnnonrrrsO1dXVuutRVRWzZ892m1Xzsccew6OPPipdZ8SIEfjiiy8we/bs9tlIN27ciHfeeQc33nij7roJgiAIItqQyVLiFWOjBWRSEZJuGIfWvrQHKFAhujYysVBimAffywb/a0kC7apcEmhm9JgvXCSaklDlqPBY3llEFqpjUXpsqfokYaGSBmptd5PThjRzxqm/5VFfbWUkKklCMVrne4vsXhPu64FcUKavn6ElUNPatkQlWbi80RmYGK1ZbQSH/EWvTIqiF63rZHse6qMRhN9U2sWRDmnmTFgUC2Szw2md9wThCw3OOmyqWSNM627pibOSPQcmEy4yLd2Fy6vsnn3VUNO5b9wRmdiXIAiCIAiCIIIFxeeFjnDH6FF8Xl/d5VB8HsXnEQRBECFCds9krsHdrGc+8Pdvgf+uAw7v88yXkg6MOA+sV3/35eNntP/Zv7VYWEVRuUt+FKuTj1Q3it9V3TiOYdpQoKwOOKcfw7n9IktoxVe/aZwU7S4DxFZtJCQjs1ncv6puUAF0DSFBQ4v4uEq2hrghweaHbwIvo89AYODIdjFaoeRadKIOqG/mSImPnPMwFFRLXpVlxvj8QXz1W9oZJlwKmC1A1hlAzUngiyUeWQrsB5FssqPBafFIO3CS4wLZ5G5RRpXNe8xFxbMKMpNiY3u14C1NQOVxcWJugde+TEGOAojdngCAl9dxEqNFEZxzrN3r2zpLfqVI5WcWM333hH/wlmZg2asBlaFoxNfFshhtxQ7fNy4zCRjdl+GHRxV8tR9ocXBcPIShWwqdw0TkUCB3tQIA/vlzhn7dGHYd46iyAXVNwP99rH0+XDkCGNHbdZz/+LiCz3/kOF4ryNhkA958EoNbf8QFtq+QxOWxefzt+Sg47zKhxK0kxiX6gcI5x/Id8vRdjylIstJ1iSBCAY2YJAiCCBNVVVVunzMyMgwrOz4+HlarFS0tp3XAneuLJg4fPtz+99lnn60ZdNUZk8lkyIyMqqrihRdecFv2+uuvC4OuOnL11VfjjjvuwIsvvqi7rqVLl2LXrl3tn6+77jrNoKs2zGYz3nrrLWzcuBHl5a4BjAsWLKDAK4IgCCKmaVbFszpZlQRD65FJRbRkLYRvaIrRAhSoEF0bmRwnVPInGTIRkta54OBiSSADg4ke84WNeMk9ornTdxmqYzFBIgftLM8KtyRMa7s7ijO0zom2MmQyuI7bzDmXCrXCfT2Qtl+n3Et2bJmZBRYlTrpeokkiRgtQKuZNXGaXXMv0ome/aMniCILQpkoiRssyi4VLBGE0G2o+QSsXT3U4NXMWFNY1Btr4g+w8jQwxmkafLsySWoIgCIIgCIIgYheKz9MPxedRfB5BEAQRIlSneLly+l7KElOAiZe5/ukl4/TzYZmMqL4ZKK8HclL1FxtNyKRDA3KAOecE590C5xyorwYSkgHFBOZjn4hzDnzzsXEN6jPQuLJSM5BVUSlMKj1mA5BmXF0RiMPJwbnrvBGRHB/a9gQT7nSCf/0feYZh44EfvvZeUO+BYHkF7bqP/NaD0qxldS5BTSzDOUdlA8ABxFuAasmrsvRYl1zt2SJPO/8qKE+867ZILT8K7PIU9Q22nsB3jb08lpeE/zWoYVR5CXUq7I4uIUUDIJbDttGzn9fV++alwFrVjBZFfKH59iAJQKKJYxqSOxG3TGC4amQXOVeI0HKkGGgQ2Yn0w7TEaC0tAGKzg7S91Pd1sk6FN3dLYbh6FCCbzJUgwsnAHAZIzusHL2WYO9b1LGJcwenj961vnJr3tvEd8uZmMNw4TjKR8Xffglc9p6+hVeUolIT/FsdQfzoYlNfL087Og89SNG6rA1QnWIpx7ysJoqtAkeMEQRBhonMgVHp6uqHldy6vslL8YiraaAsoCjXr16/HoUOH2j+PGTMGM2fO1LXuI488AovFc3YSGc8//3z734wxPPXUU7rXTU5Oxrx5p2e1/eGHH9zaTRAEQRCxRotEjJZgsBhNJkzRKywhtHFyp1RyB8hlUAThDbtql4r1QiV/kuGPCEl2LpiZJWZn9I0G5CIy96hb2XdrtAhC7z1LKgkL0bkRx6xQJI+nO7ZVS9IVf2rf69lmO2+FCnGQecReD3TKvfyV3MnSG50NuuqV0ahqr+8IUHjqTbwGUB+NIALhpL1MuDzLkgNAHmLENQK3CEIvrWoL1lWvFqalmtIxNvX80DYoysi0iKehjAgxmsb9WyZrJQiCIAiCIAiCCBSKz/MPis/ThuLzCIIgiIBQVfHyACWjjDGgu0sY07+1RJrv/62N3fc5MjFahjikI2D4ikXgl/Zw/bswBfz8RKjzbwdvFU/+4rYu5+Bv/xX8it7Aj9uMaVBGd2DkBcaUBYBNvBz97IeEaSXlkuM4Bmi2c9z2DxVZv1WR+VsVd7wjPmdSrCFuWBDgDjvU//db8Jk9gXeeluZjf1wEWL3H47JpNwB5pwXL2c6T0ryVgYWlRDSccyz4TEXufSq636si514VaXereH+r+FjKDNI1KmL4bq00iU2d7bkwr0CYt8D5k3D5km2xc1/zJkabe07XiQ/lbz4pTWPT5npd39qrL66sXyFNP3jSJcAkooMfjvqWv0AcNkEQgVO0M+AiFC7vR6tq7F6XZIJYLfK7Gd8OgjCaqYOBboKwN7MC3CwRml0/Rt6nUxhw7Sidfb493+nLBwDlpShIF8fuHzwJ2B2xe/0JlCJxODUA4PLh+vvnfNuXUH92Fvj0bPAZZ0C9bgD42vcNaCFBdB1IjEYQBBGjxNKg+EGDBrX/XVpaigULFoS8DRs3bnT7PGfOHN3rZmdn4+KLL9aV12azYfPmze2fx4wZg379vM9o0ZELLnB/qblhwwaf1icIgiCIaKJJFUc0xUskNf4ik95oyVoI/TRLvsc2ZGIrgvBGs8Y5KhMphQpZ/VrCH7tUjGY2pE2EfySYJGK0Ttc2mQwi0eBjUSbZsvNWN7meVKYVonODMabrPJDtNyuLh4m5gsP13Kf1CNbChWyfy/o5Hvlkkjsv36VMQhKwGM3L+rJrmV70SM/0yNMIghBTZRcPfM2ytE0ZFzvPnYnI49u6dah3imdXPT/jUliUuBC3KLqQidFsar2mjDwUyPo1DAqsLDZnvCUIgiAIgiAIIvah+Dxjofg8giAIokugiifzAgt8aBd7/F8AgG7Ok0hz1gjzzP+EY/tPsTngVSaUCYYYja9bBr7g10B9tXvCqjfAF/7WewHLXwN//WGg2iAhbVoW2J/fB7MY+B5lxo0olEj2imsTwHlsHkd3vMPxxkaO+mbApuG4S46BVxv8lT8CH74MNIivFwCAzDPA8gpd15cEL/FEky53E6OlqPUwS+JDvAmgopk3NnH8fgnHiTp9+TPDG8IYVPi2L+WJvQe4jplOsFyxGC3f9qNweXE5cKI2Nq5HVRphYleNAH53cew8g9CCb/sS2LBSnmHiZd4LySvAs2W/R7zkHbndCZRWC5OICGTG874JWQu7e89DEP7An7w14DIUyI/nWO1fA0CVzbdt654CpCZ0jfseEd1YLQwf3q64PXewmoHXb2Qo6C4+hh+ZyTB9qOfyODPw1q0MvbP0Hfv8b4/51NZCiE2jThU4XCVMIgAUV8ivXw/O0Pld/bQf/N6ZwOF9pxcePwz+pxu1fzMRBOEGjZokCIIIE5mZmW6fa2vFg338pabG/QVF5/qiiblz52Lp0qXtn++77z4sX74ct9xyC2bMmIEePXoEvQ1bt251+zx27Fif1h87dixWr17tNd/mzZtht59+AZSfn+/zjJJqp9nESkrkM38RBEEQRDTj5A6pMMuqeJ+hzhdkkhmZiITwDW/7MVCBCtF10ZIKyc7rUJEou65oCH8cknPBwkgQEU6k94hO36VMzGX0sahVXpOzESnmtFN/h6Y9WiQqSbA56z2Wd9x3snOio/RLJgBrdp6+Bmjda0Ilg5Mh2+d65V7+HltSMVqA4tdG1YsYTQ1MeKqn/6VHnkYQhJhKr2I0MRyxG5xFhAaVO/F5lXjWZiuLx+T0S0LcouhD6zytspejp7VPCFvjjrRPpyTGlEiAIAiCIAiCIIjIguLz9EPxeYd8qovi8wiCIAi/USUD4RVT4GUPGA4oCpiqon9rCbYmjBJme2MTxwu9Y+u5rKpy1EhChDKSjN9W/tHf5Ymf/gv8rgVg8XIjG1/xN691sJ8/CgweBQweA9ScBPZuBSxxgNninjEtCxg0GsxqrKmLMYbCfqmA4PW+zWnBiVqgR7qhVYad+maOd7foe+eZbA1yY4IMd9iB/7zlNR+b4xL9sfEzgJVHwC/KEGc0mcAUBTw3//S6ADKdVSg353hkr2rkiNUJuRat9+29eUyL0T58WZrG/vwBmCKQguZJxGhVOwDJq9Bl2zluPz+6jyfOuVQY+NJchl+dx7rMO1X+0RvyxPEz9O2H3AJ0d1bgeFEfZAwUx8AUlwP9uvnZSCJk1DX5HotUkN01zhUitHAvQmP25Ae6ylEOHgM2idM6P2+MJXyV4vYnwSERRUzqz3D0aQXfHQKaWoExfbWfQ6QmMKy+W0FxObD7GMABpFiBsflASrxO0dahvT63M//7fwO4T5hWVEZiURlFZeLlo/oAcWad39fHbwNOhzjtozfARl0gTCMIwh0SoxEEQYSJzoFQ1dXGTTfQ3NyM5uZmt2VZWVmGlR9qrrrqKlx11VVuwVebNm3Cpk2uJwGFhYUYP348JkyYgEmTJmHw4MGGt6GszL0H279/f5/WHzBggK58paWlbp/fe+89vPfeez7V1ZmqKlI2EwRBELFJs2QmJ8A1sNZIZMKVQMUhhAtv+zFQgQrRddGSCoVbjOaPcFEmRjMzi3A5ERr0fpdNTnEUrtFSLq3ymlQbUuASo0llWiGUhOnZd7JzoqNcUCYa7LiNWveasF8PTOJ+i165l5595Et6o7MBnHO/A+oandpiNNm1THf5OvaLXqkcQRDutKjNqHeKBwi3CZdYjAaoE+FnZ8MWlNuPCdMmpF8kFXoSp0k3Z4FBARfMMFtprwirGE12bw5l35MgCIIgCIIgiK4Hxefph+LzKD6PIAiCCBGSgZAwBS5GY5Y48JzewPFDGNaySypG21kae5PdHKsFVMlmZRv8eoE7ncCWNfIMLU3A4X3AwBHu69nqgIN7gNZmoOQH7UqsCcCc34JZT00Om5oJ9NbX1zGSvj0SgMPitPL62BOjfX8EaJGcop1JtkbnO1OuqsBP+1yivQYd4uj8oe1/svhE8EtvAVYv9sz3s/tP5+meB5QfAQBkOquFYrRK7bCSqEVVOXYe8W2djMToPJZ0cUJyAQGAnv3Ey3PFYrShth3Son484UujIpP6ZsAp8eGM6hP9UjTusAM/7Qdy80/f2zrnOXkMOPET8LmGXCj/TH0Vdu8FmMxIcTbgDMcJnDCf4ZGluJzjoiHRvV9jlbI6DlsLkJEIvPWNb/1Wi4mESkSQOLBbnjb7HrDJV+gqRkn9XkOMFlu/01SVY1+ZS4q2TyIWkjE0l67PRHQRb2GY5MPrDMYY+ucA/T1/KmnCHQ7g4G7wVYLfZF5I+OCvyD3rf3G0zvP5U0lF7IqrfaG0iqOsDhiWC1gtrv1RLPFi9u/uub8450BpkUtu35Glr8gr3b/d3+YSRJeDxGgEEWGkm7vhifzXwt2MmCfdHH6tf25urtvnEydOoLKy0pAAqd27PX9sd64vmmCM4f3338ejjz6KZ5991iOorLi4GMXFxfjHP/4BwBWI9bOf/Qx33XWXYTNxdg6MS01N9Wn9tLQ0XfkqKyt9KlcP9fX1hpdJEARBEJGAlhgtXhG/OPUXmTikmaQbhqAlggIAOycxGuEfMqkQgwKrYuxMqb4iEwC08GY4uQMm5vnYzmzxXYIAACAASURBVE5itIhELrVq7PRZIoMwWMqlJQft2CZZe7zJtIxEj3hUj8BNj2BNds82wQwLi/Pa1mAibb9eMZqfkjuZYEaFE628BVbm33XSm5QsUDGat34DoH/fEQThTpW9QprWLkaTxj/EVnAWEVo451hTtUyYpkDBhRmXh7hF0YmJmZFuzkS146RHWpVde/baYNO5b9yG0WJ7giAIgiAIgtADxeeFjnDH6FF8nn4oPi8wKD6PIAiC0I1MjGY2KO4jrwA4fgg31ryNxek3CbPIBnVGMyUa25SfbVw9fPMn4A9e5z3fbecC/9gO1m8IuNMJ/uJ9roGwqsR605mps6XimFDSrXd3qRit0hZ7A6c3Fut/35lkDWJDggT/cRv4g7OB8lLvmQGXWGjkBW6L2Iz/Ae8sRlMUsGlzT3/OK2wXo2U4xXLq//6ku9lRxdEa/XK9NjJjdA4hzjlw7KA40WwBs0pikvLEYrTRzdukdVXHQIhQlcY2RPsxwr9YAv7UPKCpwdXfue0xYO697bI3XlcF/vAc4L/rvJbFpt+gq05mNoP36AMcKUFBa4lYjCYPjyHCRF0Tx9xFKv6zy/8yrh7JkJoQW/0TIjLgmz+VprEZ4t9dIhST/PjkMSRG23qI46pXVBzxc56Sm8bReUwQneEbPwJ/8ufeBdeX3Qp89Ibn8iYbCuwHcBSeBreu3i86Uctx9Ssqvjng+hxvAZ67jmHeeQqKysXX5oJOIlZ+YDf4H68Bjh7wrfLSIvAdG8CGT/Kj5QTRtSAxGkFEGCZmQpbFR80rEZWMHz/eY9nWrVsxbdq0gMveunWr2+eEhAQMHz484HLDidlsxpNPPom7774b//znP7FixQps2bIFLS0tHnmLi4vx2GOP4bnnnsNrr72G2bNnh6HF/tHaarz0g/PYeTBCEARBEB1plgyqBYB4gwfW6hG3EP7jbT86uB2c86if9YwIPXIRVSIUpoS4Ne5oyaeanI1INnsO9pDJhEiMFl5kModwidGsSgIYGLhAUNNRKCWTS3mTaRmJ7DxwE5pJJRodxGiSNjfpFKyF+/6SKOtn6BSwyvJ5O7YSFfnU2I3OBr8Fko2q9tS+gQpP9UjPSIxGEP5RaRdPz8jAkGHp1v5JBD2BJAKhpGkPDjXvF6aNSpmETIuBo5ZinExLtlCMVhluMZqf/RWCIAiCIAiCCAYUn9d1oPg836D4PP+h+DyCIAhCNzIxmsmgoV15hcB3n2NS09e4vvZ9vJfmeY8+UQc0NHMkx8dOHFZJhfhenJEIpCcas5288gT4A9cADn0TgfH7ZwHv/QiseB1Y8pL+ii68BuyeZ/1spbGY8/KR6qxFnclTQFu1fTswaFQYWhU8Hliqv0+XEt75OH2Gt7aA/+5yoNbzHZKQgmFgj78DZna/NrGzJgAPLAJ/8fdAfTWQmQP2+1fAenUYXJ9X0C44ynJWCYv/xzcci2+OvXjQIj9ex0W79EpKbSVgqxMmsb8ul67GUjLAUzOBOvdjhwGY1eMnLD/e22OdKlv0/x6LVTEaLy0Cf7SDzMxhB3/1QbD8ocC4S1x5FvxalxQNNz8I1meQ/sp79AOOlKCw9QA2JU7wSC4ui/7jJtb47Qc8ICnarOHAqz+LrfsKERlwzoH3npOms/yhusvS6vuoMSJGa7FzzHhexUntMGIAwPVjGD7dzVF9Kkw8M8klIxpXQOcyQXSEl5W6JO3eZOsJyWC3/wV83TLX77VOFJ74GuvTPMVoJRL5V1fh5sWnpWgA0GwHbn+HY1gel/7G699BjMadTvDfzwLK/DOA87umAp9WgiXKx3UQBAGEdwQoQRBEF6Z3797o3dv9oexnn31mSNlr1qxx+zx27FjExcUZUnYbTqfT0PL0kpOTg3vvvRfr169HbW0tvv76ayxYsABXXHEFkpPdO361tbWYM2cOli+XPzjXS0ZGhtvnujrxQ3oZtbVeTMyn6NbNfabUv/zlL+CcB/TvzTff9KmtBEEQBBEtNDubpGnxirEzJsoG6tp5K+yqvmAnQk6jU/vNBweHEz5OpUcQ0JAFhVD8JEOrDTKBk0NyvTErJEYLJ/GSe0Sz013oFarjUWGK9D7YURbVWdzW3h6D5aJa6BKa6ZBoyO7THbdRJuPQkhSGCln7m9VGqNz7jNEyCZhMuHY6XUOM5kVupoW3+7pdInnUix7pmV6pHEEQ7sjESenmLBKxEkHls6pl0rSLMmeFsCXRT6a5u3B5lSO8UztKJcGm0PU9CYIgCIIgCILoelB8nn9QfB7F5xEEQRDBg8ukWgaJ0VhuQfvfT1Q8Js1XEt5HxoZzsFK8vMDIeVe++LduKRoA4Phh4PtN4J/+S/cq7NNKKH96Bywh/HEMAIDcfGQ6PQdTA0DV1u9C3JjgckAi15ORbA1SQ4LFd2v0SdHSs8GWH4by5law3gOFWdiMG8FWHQNbegBs+WGwCZe6p+cVtv+dKRGjAcCe4/qaHk0U+yEUyIjVV2XHD8nT8s/UXrfDvawjw1mJcHmVfI7tqEEmRmMMSDM2HD6k8DXviZefujfyxgZgw0pdZbHrf+Nb5T37AQAKW4uFycUx1heKduwOjve/038NvWoEcGKBgtL5Cn54TEHNQgVL7zAhNYFkSkQQ2L9DnjbtBnmaAEWRKz14jIjRPt0NXVI0APjNVIaKZxXse8L1r/wZBf8zjrQnBOHB5x94l6IBwMybwVIywG56QJhc2FIkXF4c3vlWw0pZHcdne8Rpz36mwuY5bxAAoH/3Dn2O7zf5LUVrZ9OqwNYniC6AQdOKEARBEP4wffp0vP766+2f3377bTz11FOwWPwfZFZRUYGVK90fDE6fPl2Y19xpBheHQ79sorpa/JIrlFitVowbNw7jxo3Dvffei9bWVixbtgyPPPII9u/fD8BlZb/77rtx+eWXaz488EZOjvtMsUVFRcjO1v+2tK09vtajdz2CIAiC6Io0S4QuJpgNH7QvE5a42mGDRUk3tL6uhh7BiV21w2wiGQPhG1JZUASIkLTaIGu3QyITspCoJKzI5FNNqg2cu2Y3VbkqvW8F43hMUJKE4rM2WZRdbYWdt0rXDRUyCZu7wM27REP6HXSQY8mEgxEhSpTscw6OFrXZqzBEum1evkstcVogYjFvUjWZ5FF3+Tra1qw2QeUqFEZBEgThCzIxWpbltGiJQRxEyHlsBGcRoed4Syl22bYK0wYnDkdefL8Qtyi66Xi+dqTKHplitEj4bUYQBEEQBEEQRGxD8XmBQfF5BEEQBGEwTklfwCAxGvJOy2R62Y/AwlthZ57y1uJy4OxexlQZCcgG3udliJf7Az8oGSmrtc7LfwD2it+BeDDpcrBE+eRmYaH3AGQ69+AQ+nokVVaLY06ilQM+vkYZ0jM47WiDt7YAP24FSsVCHyGWOGDwaLBe/T3L2/ypvjImXgaWdYbXbExRgOxccWIHMdrQFvl5s+sox9CesSWw8UcokBmrr8rqJb9nFQXIzBGntZHTC9jrKV/MbBWfqDKpWDRR1SiOt0hPAEyK9nnCG2qB79YCh/a69q351H0/LRPIHwoc+hGo9vEix5hr3cKzwcy+91E458DhH4HFfxZn+PwD8DFTwYt36pOO5hWAJaX61AY2YAQ4gMJWsVBv3wnAqXKv+7cr4VQ5dpYCPxzlSLIyjC8AeqaHZv8crgIafehajOjN0D3V1bZcA/t7BCFE43cAGzDcp6IYk59TaoyI0XYf178d3VMARWHo76VrQBCxCq+vBr7/GqjpILE2W4DBo4BeA9qvGfzgXl3lsf6nrklX/gr48GUPWbGsX7S/vOv2i37UEHYv3S5P65N1+m++7YuA28G/+QTsout9X8/e6nruVNpJejd8otvkCQQRC5AYjSAIIozcc889WLRoUfugsYqKCixevBi//OUv/S5z4cKFsNtPPxhMSkrCL37xC2He1FT3B4M1NTW669m9e7dP7dL64W4UcXFxmD17NqZNm4YzzzwTR48eBQCUlpZi27ZtGDNmjN9ljx49GitWrGj/vHnzZowfP173+t9++62ufOPGjQNjrP2YWLNmTftAeoIgCIIg3GlWm4TL400Jht87NcUhqg0pIDFaIOgRozl4K4BYnR6PCBYyeU4kiJCsSgIYGDg8XwA2SdotE1kZLYMkfEMm91KhooU3I54loEVtEn7XQHCOxwRTEuDwDGhqu96KpGltaN3zjEYm7up47sra2nHdeMl30MKb4eQOmJhZKqaTfX+hRGufN6k2r2I02TXD27FlZhbEMStaued0Ro1OnVO2CfAmLpNdy/Sip9/AoeqSyhEE4Y5MjJYpES25ExvBWUToWVu1XJp2UeaVIWxJbJBpEQ8YD7cYLZJ/mxEEQRAEQRAEEdtQfJ6xUHweQRAEQQSITP5hNijuo4OQyAwn+rUewn7rAI9sReUckEyGE41US14hZyYbs42cc+CjN3xfUa8UDQCb5X//NFiw+ERksjphWlVtC3iTDSwhNp7zy6REIs5IBS4dFrzzh5eVgv/+CuCAb78H2te/5k6wXz8NZjK5Pv/zaWD5617WcsHyDBg43UHMdl3dEtyf83/CbHMWccwYxpESHzvXopIK39+Zp8QHoSGRQKMk7igxxftvr7RM4eKs1jLh8pgQo8nuY14usXz7evC7LzK+QW0Mnwz85QOwFP3mKe6wg//1DuDjf2jne0r/fY/Nmqc7bzsXXgM8fQcK7AeEySoHtv8EjO7re9GxSF0TxzWvqljb7l3hUBjwwhyG288P/sSkH+3Uf/1MjANuHBc79w4i8uFHxSIhAMBFc3wqS9GQDqkxMinpg8v0bUecGeglvuUTRJeAf7cW/KHrgcZ6cYYrbgN+sxAwmYBP3vZeYEZ34DxXrCWLs4KfMxVY8Te3LAWt4n4R58DWQ8DYfF+2IDbw5zccAGSd6qfzZa8Bb4l/8/rEmnfBC84Eu+F3ulfh5UfA77sCOLDLI4098hZAYjQixgj+rxKCIAhCypAhQ3DJJZe4Lbv//vtRViZ+YOuNPXv24Omnn3ZbdssttyAzU/wrsXt39wFte/bon8noP//5j09ts1qt7X+3tHgOuDWS9PR0XHXVVW7LDh48GFCZEydOdPv87rvv6l63oqICn332ma682dnZGDFiRPvno0eP4uOPP9ZdF0EQBEF0JaRitCAITmTiFgBocsrlMoQ+vAlUAMDOdcwKRhCdkMlztM7pUKEwRXq9apS02yE5DyyC2X2J0KF132k+dY+QfadAcI5HWZltkjEtsVQozw+ZCKNj+2TSr44ysUQd92mpjCMCrgdacjY990jZ96m1X9rzmMQzTjeq/ovRbE7JS9pT2Lm9fcCZP8iOCY98OgRqBEG4U2kXP5fuZjk9LSOTDJKJjdAsItTUOKqwpe4rYVovaz4GJp4V4hZFPzIxWp2zGnY1MDlpIMglteHvixEEQRAEQRAEEdtQfF5woPg8giAIgvATp0O83GQ2pvwe/YAOwhmZDKQ4vHNpGE61TfymKtOoMMIdGwwqqBOMAQXDwB5/F+ycIIptAiBz2FDh8mpTJvgbj4e4NcFDr1jposHAV/cpSE8Mohjtpfv9lqIBAJa8BGx29W/5vu3grz2kf90OckW/yS0AFNdw1V6Oo+hhPy7N+vznsfWWuciPn5kxK2iWCR4SU7yvmyL+fZ3RdEK4vMoGqGp0H0v+iNG4wwH++E3BaVAbO9aDv/1X39ZZ+75XKZovsDv+D7jubt/XS04DLHFSAQgA3PA3NZCmxRRPf8Y7SNFcqBy4818cB08G//y699/66phQ4LoP98qM0WsnEZnIxGh9BoJliGN0ZCgaRg8e5fcyADhSrX8b8rsBJg1RHEHEMry1BfxPN8n7zIBLarZhhffnEdYEYPSFYC9/CZZ4ekwA6+lpOdPqF81Z1DX7RSV+PB9LsgJWCwM/dhD8Wd/7qTL4qw+CF+3Un//lB4RSNIKIVUiMRhAEEWaeeeYZJCaefutWU1ODq666Cg0Nvg1AraiowDXXXIPW1tMDW3r06IFHHnlEus7IkSPdPn/00Ue66vr000+xZcsWn9qXnp7e/vfJkyfdZs0MBmaz+wvijoFf/jB58mT07du3/fPWrVuxatUqXes+/vjjPm3vr3/9a7fPv/vd73w+HgiCIAiiKyAbVBuvJBhel1WJB5P8hCbpRuDo2Yd2Hr4B3ET0IhUqRcjg+0SZFErSbgcXB8iamUEBsoRfyOReQAcRmYbIKRjHo0y01dYOLdmW1vYYjWzbO+4vmVSuo0RD+zuwuf3v0YYQbq+MeC2xm5d7JOdcLn3TsW2y70CPkE2GlggQADhUqHAGrfz2fAFsA0F0VSod5cLlWZbuwuUEEShfVn8EJ8R93Isyr4zdgQBBROt8rXKEb6RbJEtqCYIgCIIgCIKIfSg+LzhQfB5BEARB+IFDcr8yWwwpnsVZgZze7Z/7txYL85WUR/+g+45USeY11RLK+AL/4t/SNPb0CrDbHvOtQGsC2Bf1YF80QHlzK9gFV3lfJ0xkdhNLjMpN2cCWtSFuTfDQI0YbkAN8+lsT+ucEUYpmbwU2rAy8nC8+dP2/bqlvK+YWBFw3s8QBPfq2f766fpk07wdbY+tadLDSt/y56d7zRC1Nkt9XCeIJHDvC0sRitMzGI8LlKgeqo3x+a3/EaNi9GTh5LCjtcePLD33Kzr9YYljV7PevgM35X//jBoaMRZpah2xJLMzBkwhocs9Y4t8a1+Ml24K7j07Uei+/ewpgf1XBhvtNGNWH4kiIEHP8kHj5xMt9LoqZ5EoPVY1+KdGy7fqvF4UUjkh0ZXasB2pPes3GP/+39vOIBSvBPquC8tzHYJ0l14LfdsnchjMcYtnw4aqu2S/6qcr3dbLa+uje+sk3PQD2ZYP7v0ff1lyF6+x7c4cdWL9cV16CiBVIjEYQBBFmBg0ahBdeeMFt2ddff41LLrkER46IH9x2pqioCFOmTMHevaf1/Iqi4O2330Z2ttw8Pm7cOLegr2XLlmHr1q1e67rpJt9nlRg8eHD73w6HA19++aWu9RobG/HCCy+gvl7DftyJhoYGLF3q/hKnY/3+oCiKR0DUvHnzvM50uXTpUrz88ss+1XXjjTdi0KBB7Z/37t2LK6+8EtXV1T6VU1FR4bEfCIIgCCKWaFabhMuDIUZTmCItl8RogaNHXGJXgxu4T8QmUqFSBIiQALkEQNZumSDQzIwJkCX8Q0ts1naP0BI5JZiMmqK4Y5kS4VibqE3SHgUKrCze8PbIkLWz4/6SSeU6yt/0fAfycsJ/PbAoFlhYnDDNWz+jlbdIJWN6pHuJJnHAYaPq/wCwRqf3de3cv/u6XbXrlqVSH40gfKNZbYLNKX4Gm9lBtMQgCzDsekERRGA0ORuxoeZTYVqWpTtGpIwPcYtigwxzN2lalT18YjSZ3D4YfWGCIAiCIAiCIIjOUHyeNhSfR/F5BEEQRAhxiicLgcnACfGGjWv/s6D1gDBLsdgPErXIhDIZRj2C/mm/PG3gKLd9rovhk8AscWDmyJ8IsWe2OIZkVcqlQLm+vnQ0UKkjvGDK4NPvSfm+7eDvPgu+5j3w+hrjGnK0RC5Q9IXP/gV13iTgn3/1bb3c/MDrBtwEjeOaNkuz/XAUUNXYeM/cbOewtfi2zgUDQy/34U4n+OZPoL7xBNRFj4J/uRS8KQjxNY2S2KFEsWzRjRSxGK1nvVj2CQB7j+tpVOQiF6PJjxH+zcdBak0nThwGX/IieFmpq97iH6AuuBPqL8aD/+sZ8JOunc+//xrqQ9cDRrVLUYBzLgqsjNQMAEC2UywecahAhf5HITGL3cFRohFK8KPYn2IY+3SUP7k/YFJIiEaEiVqx+ZRl9/S5KK3DOBa6RL5cL87Np3Oa6MLs/lZfvq+WActfl6cPHgOmSFRBkt923SXCWM6Bsjp9zYol6pp8v/i2yYv5ljWa+djwSWBmi9s/nDkW0JL+vj0f6qsPgf/zafDd7pMn8T3fuZb/6xngX88Cdn3jKQgiViAxGkEQRARw66234s4773RbtnHjRgwZMgRPPfUUSktLhesVFxfjoYcewrBhw/DDDz+4pc2fPx9TpkzRrDclJQWzZ89u/+x0OnHppZfis88+88jb2tqKRYsW4dxzz0VZWRkyMjL0bh4A4IILLnD7fMstt+Dll1/Gtm3bcODAARw6dKj938mTpx86tra24u6770ZeXh5uvfVWfPTRR5pBWFu2bMGUKVNw+PDh9mXnnnsuBgwY4FN7Rdx99904++yz2z8fO3YMEyZMwJIlSzys7DabDY8//jiuv/56qKrq0/4ymUxYsmQJUlNT25etXbsWZ511Fl555RXN7a+qqsL777+POXPmoFevXnj++ed92EKCIAiCiC5kg2rjleAMqk2UyVt0SL0IbfSISxw6JSgE0RGZCEmPLCgUyIRMsnY7JCIhmVCJCA0WFgcFJmFa23cp+06tLB4mZnygq+wYbxe1ySRhpiT/Z1j0A1k77bwVdtUOznm7zK0zHaVqViVBKupp21Z5OZEh45DtC2/9DNmxBeiTvknFaDrkZiJUrkr7aB2xq/7d15t9kJ2RGI0gfKPSXiZN62bxPkUjJzEa4SMbaz+T3jMuzLgcJibuXxHaxClWpJrE08uHU4wmlVZHyG8zgiAIgiAIgiBiH4rPo/i8jlB8HkEQBBE2HBIxmtm4CfHYNadFowWtJcI8R2uAxpbYebdTLXlFrSWU8YkjchkPy8gGhk8GhpyjryyTGWz2Pca0KwQUarwmfNkyG7zeN7FspFLtJbwg2Qrceb7reOLvPQd+27ngLz8A/vhN4PMmgpf9FHAbuL0V/Fadx5Ee9mzxnqcTLMGY9zbs1ofb/76i/iPNvHMWxca1SOsY+uMMz2tRvAX41fmhFYJwhx38kTng910BLP4z8I+nXJ/vmgpeIxZH+V1Xo+Q3VaI4TsmNNLEYrUfNj0iyileZ/LQa1fe1apu47ZqCzyb/J730Fb7wXvCbR0P9863gt4wGVvwN+HEb+Ct/BL+yL9T/nQF+5wUueYdRXDwXLKdXYGWkuJ4TPFzxF2mW97dG73FjFIcqAacqT1+8iQdVYllcoV12nBm4ZyppEIgwUifp76aK71daSAVGALjWiRgllJTru1Z0TwFuGU9iNKJrwo+WgL/xhCFlMa3rUM9+wsWPVjwpXSXWJPp6qG/2fZ2sJIBv/Rz47zp5pkGjgJEXeCxmZ/QBLpqjXcE7T4O/9hD4ryaBL/4zAIAvftL17OG1h1x98EWP+N5wgohyIn96CYIgiC7Ciy++iIyMDDz55JPg3PUjsL6+Hg888AD++Mc/YsiQIejVqxcyMjJQWVmJw4cPY9++fR7lWCwWLFy4ELfffruuep944gksW7YMNTWumWrKy8sxbdo0FBYW4qyzzoLVakVZWRm+/fZb2Gyup/VnnHEG5s+f79PMlNdeey0efPDB9lk2jx075hFs1sZNN92EN998021ZXV0dFi9ejMWLF4MxhsLCQuTn5yM9PR1msxmVlZXYtWuXxyyeiYmJeP11DSuyD1gsFrzzzjs477zzUFnpsr0fP34c1157LXJycjBq1CikpaWhrKwM33zzDZqamgAAaWlpmD9/Pn75y1/qrmvo0KH48MMPcc0116C2thYAcOTIEdxxxx246667MGzYMPTu3RupqalobGxETU0N9u/fr3sWU4IgCIKIBZrVJuHyeCUhKPVJBUYk3QgYLalLG3aJEIogtJCdnwkS0WGokQkXZe22q+LzwMyMC5AlfIcxhgRTImxOz4CuNhlXqI9FmeyrXdQmaU+opYFa29+s2mBRrOAQv+zv2FaFKYhXEoTys3YZXITLOBJMSah1egZQeOtnyLarrUxv+Ctkk9GsNuqSI9n9FJ5qba9HXpLXEoRPVNrFUQ0KFKSbu4W4NUSs4+B2fFktHgSRpKRgfNrUELcotsi0ZKPOWeOxvEoy42OwUblTKsGLFGk1QRAEQRAEQRBdA4rPOw3F51F8HkEQBBEmnCEQow0ZAz7nf4F3n0WhRIwGAAdOAmfmGlZt2HCqHDVSMVrg5fPmRqBcfP9nTy11/a8owHMfg7/xOLDtS8BWK8isAPlngl1zJ9goz8GxkUr/HAZIYgDuPuM5zC35AZnDfRP6RiJVEikRAFw/huH+6QxDejLwk8fBX33IPUNpEfjb88F+91JgjfhqOWDXiKXo0cdz2fHDnssiAHb2xPajJp63YH/xEAwo3CPM++9tHA8e4TgrL7rlGJUaISp3ns8wug/Dog0q9pcBI3sz3D2FYXxBiLd5w0fA+hWey/f9F/zDl8F+buDgeqkYLcX7uhLBA2tpwoBsFduPiKUy737H8fOJ0XkcVflzH6s84V9lomsJALS0AFUaZTbUAJ++I0777nP99Z/RB8L5T9uuZ2ndwK67C7jhPv1lykh13Z+uqV8KmX7invc47row8KqiGT0SlC/3AVMGh77+q0YAv5mqYEJhdJ7bRPTDOQcaJGK0FPGkhVooivxYDqJ/MGRonc99swCrGRibz/DoZQw90um8Jrom/E25sNUX2P8t0U5PTAHP6A5Uu5+YlzfIxdXFFRwT+3etc7Ohxfd1MpMA/txv5BnMFrCFn0plmOyBReC7NwNHD3iti7/xBHDWBNfzJr306APEaxmWCSI6ITEaQRBEBPHEE0/gvPPOwx133IGioqL25Zxz7N69G7t379Zcf+TIkXjttdcwevRo3XXm5ubiww8/xKxZs9xmOiwuLkZxsefsRv369cPq1atRVlamuw4ASEhIwLJlyzBr1iwcPXrUp3U7wzlHUVGR2z4SkZubi6VLl2LYsGEB1deRoUOHYu3atZgxYwaOHz/evrysrAz/+c9/PPKnp6dj5cqVcDqdPtc1depUbN26FXPmzMHWrVvblzudTuzYsQM7duzwWoavM4cSBEEQRDQhkp8AZw13OQAAIABJREFUYRCjOSVvpAnd6JGc+CtQIbo2ES9C8lFI5JAIAi0KidHCTYLiTYwmvlcE61j0JvOUCSlDfW5o1deo2mDRkGJ2ln4lKEkSMdqp7yBCtlmGvJ+hfY/UStcjGkk0iWdibVT9m1W00alvPdn1zBt6ZKrteUleSxA+IROjpZuzYGKm9s+Mda3AByI4bK3bgBpHpTBtcsYlsCrxIW5RbJFpycahZs/3J7LzPNjIxPaAXOhLEARBEARBEAQRLCg+Tx8Un0fxeQRBEESQcEjek5pM4uV+wi6eC/7us+hj/wkm7oCTeQ4dKy6PDTGaTIoGABlGPILWGqjae0D7nywxGezXfzWgwsiif3ft9A+32PGL4aFpSzCpkoQXPDyT4U+XdxjM/O2nYsHhhlVAgGI0vmmVPPHsSVBeXOu5TtlP4Nf0D6jedvqfbUw5bYy6wCUKBJBvP4RsRzkqzOIDasWO6BejyY4hwDVwftYIhlkjjL3W+wrfKJcgYMNKwFAxmiR+KEEcp+RGiliMBgD905ux/Yj44v7RTo6fT9TTuMhDdvxoitGOyOWnUm55CMqtD0uT1asLpDLQQGGfVYElhDZOj6VkgMPlYRvevBM74sXXufpmjpT46L4GBUJxhXcb0/IdHFMGB2cf/VQlXj7nHIZ3bhMLRQgiZDQ1ALJnjim+PxNUJJIcAOCqeBLpaIFzLj2fl96uYNaIrnudJYg2OOeAVp/cF3rp+B2Ym+8hRmMARjX9F9sSRnpk1yNLjTX8EaNloRb4ab80nc1fBqYhhGZmM/DAIvBfT9FVH18gngBJyMjzoSz8VH9+gogiSIxGEAQRYUydOhV79uzBBx98gDfeeANfffUVHA7J7FAArFYrLr74Ytx222247LLL/BqYduGFF2LLli34wx/+gJUrV7bPiNmR7Oxs3HzzzXjooYeQmprqc+AVAIwePRp79uzBu+++i08++QS7du1CeXk5bDabNDApLS0NX331FVavXo3PP/8cO3fu1NwfADBw4EDcdNNNuOeee5CYaPygmuHDh2Pv3r14+OGH8eabb7oFrLWRnJyMa665Bo8//jh69eqFdevW+VVXYWEhtmzZgtWrV2PhwoXYsGEDWlq0e9uDBw/G1KlTcd1112HChAl+1UsQBEEQ0UCLZGBtvBKcQbWJJm3JDOE/eiQn/gpUiK6N7NiSnc+hxtfrikwQaGYkRgs33qRWcilXcO5Z3qR7UmlgiM8NLSlZk7MRTkX++7/zuommJFQ5KgTlnPoOJNscKdcD2b731s+QfZdmZoFFifNab6IiEaPpFJx5tkffev4KT/XIVNvwRaJGEIRcmJRl6RycLn7+LHqmTBAiOOdYU7VcmGZhcTg/fUaIWxR7ZEoGlVTZPftKoUCrPxMpklqCIAiCIAiCILoWFJ/nDsXnUXweQRAEEUJEQiUAMBsc95GbDwCwwIG+9sMoiSvwyFJU3qYKiW6qNcRomkIZvRzxFNkCcMnsevQ1oILIJjWBITEOaJS84n+vqBt+EdomBYVKnVIivvLv4oxVJ8Ab6zUHP4vgqgp89i/wF+4D6iQmCQBs1PnihO69gLxC+XHqA2zuvQGX4caZ49rFaABwoW0d3k+7Tpi1JDyvsAxFJrZKsgJWS4Rca49qiLRKfgDn3LiJ0po8f8MBABJ1iNG6y62dF2aU4gMMFKat3AnYWjiSrBGyv33AVzEaLy0CSn7wuR424jztDCMvAD552+dyvTJ0bMilaADcpEWDWn6UitFKKoDhvULVqMhDjwSlpDx4MUFVNnHZPdL0rc9bW4DVi8F3fQu00GT3hMG0NMvT/BCjMUV+j1KjPPSurglwSNxuuTSvBNHF4ZtWg3/zMXBoL9BQG3iB3fOAPB1itMKzgF2bPRYXtJYIxWi7jkb5hcgP6jUu8zImH/5Anmi2AEPO8V7IwJFAUipgq/Oe1wchMht5vu68BBFtkBitC8EYSwEwEUAegG4A6gEcA7CLcy5XU/pejwXABAC9AfQA0HCqnu2c80NG1UMQsYzZbMbcuXMxd+5c2Gw2bNu2DcXFxaioqEBrayusVitycnIwYMAAjBw5ElarNeA6Bw0ahOXLl+PkyZP46quvcOTIETQ2NiInJwf9+vXDpEmTYDafvm2cf/75fg12S01Nxbx58zBv3jxd+RljmDx5MiZPngwAaGpqwu7du1FSUoITJ07AZrOBMYbU1FT07t0bZ511Fvr06aO7Pf4GRKWlpeH555/H008/jXXr1uHgwYOorq5GdnY28vLyMGnSJCQlnX5w6+/+Alz7YObMmZg5cyaam5vx7bff4vDhw6isrITNZkNSUhIyMjJQWFiIwYMHIysry696CIIgCCLaaJaI0cIlmSH8w8mdaOHenybaVf8EKkTXxcHtaOXiQQuRMvheKtOSiAMcXBwgS2K08ONNahVqEZm8Pa7AD6k0MMTnhlWJB4MCDs+34U2qTVOK2fl+Hy+7T6s22FW7VMQVrH6Dr8j2vTcRmFT4pvO7lB0rvgjI3NbT2S+yq/4JT32Rnfm7DQTRVZGL0XLcPsvCszi6XlAE4R+7bdtwvPUnYdq5aRcixZwe4hbFHp5CQxdhE6M55cHHkfLbjCAIgiAIgiCIrgfF552G4vMoPo8gCIIIIU7Je1KTsUO7WEISeLeewMljKGwtEYrR9EgwogGZTAYwRozG/0+i/erRF8xooV2EYlbkaV/W9g5dQ4KI7DjK6nwMcYntAQCOHgD6i6U7MvifbwXWvOs942U/Fy5mjAG3PQb+xE2ARITsQXI6kJENlBadXjZoFDB5lr71dcKuvh38rb+0f76v8lm5GC2Iwp1QIRP7ZEZGWJILbwPqv1sLnHORMXU1ysRo3uWBLCkVPKM7UO15o5qTsBm/kojRAOD8BSrW/U6JKjka51zjGuS5HXzfdvDbzvW9onOnAcMnaWZhc34L/vVqTVGjz8RZwW592LjyfCE1s/3Pxyv+hPfSZguzPbFKxYe3m0LVqohDzzW4OIihBr6KATvCHXbwe2cCO9Yb2yiC0IMfYjQoChhXwZlnB1uNcjNalZawOpL6QwQRYvjiJ8HfeNy4AhkD+/mjYCbvfRf2P/eDL3/dY3mB/YAw/8qdQLOdIz5SxM4hoEF7jhwPzkn4CTM3/kGazm5+ECzZu92VxScCN/8R/CV5WT7Tsx9w2a3GlUcQEQaJ0boAjLEJAB4GMAWS75wxthPAqwBe435GBjDGsgH8CcBsAJmSPF8DeJZz/qE/dRBEVyQpKckt8CjYdOvWDVdffXVI6vKHhIQEjB49GqNHjw53UwC4ZgSdNm1ayOqLj4/Heed5maWDIAiCILoIsoG1ViUhKPUlmMRP5GVCEkIfegUndg05DkGIiIbB91IhkeS8kEmiSIwWfmRyrXCJyGTtaVYboXJVeu8KlqhNhsIUJCiJaFQbPNKaVBscTHzMW1gcLEqc27JEmQzOaUOzxr061NssQypK9HKflKXr3a5ERTwTa5PT8zvRg80pCWzshEMiqvNG2zmlKy/JawnCJ6qkYjSxYIkg/GVN1TLhcgaGKRlXhLg1sUmmJVu4vMZRCSd3wsRCG9StJSuVPWshCIIgCIIgCIIIJRSf5w7F51F8HkEQBBFEHOIJ8WAKQtxHbkG7GO1TQXJJRXQPvG9DJtMwKUBKfGBl8/pqwFYnTswrDKzwKIJ5GRO9f8dBDBjeLzSNCQJaUqLMzlIiu0asw5ESn8RofN92XVI09qd3wLr1kKdPuRbIOgP8rqm66mVPvAvkDwVWLQYv2QU2YDhw9R1gcYHLoN3qyegO3mcQcPhHAMDwlu9xd+ULeD7rLo+8wRTuhAqZDMQIQaMR8IZaoPakdp6F/wv2zg/GVNgojjtiOsRoAFzXWIEYLalsH9b8VsFFz4klhdsOA+9/x3HrxOiROTS1Ai2S7oHo+OFvP6VZHltSBGxZC771C6C+GkhMARsxGbjiFy6Zota6+UOB1zaAr1oMvLNA7yZol/nSl2CDRhlSls+knJ6ULd9+CMnOejSYPI/BZdsBp8phUqLnuDESPdfgQycBu4PDYjZ+H8nuwRl6Qgm+/g9J0YjwkeLPxI8MClQ44SlG83fCh0gh2MJqgohGeG2l175bG2xJEfg1/bUzXf5zsAuvBRt1gb4yu+eBZ+YAVWVuy/u3FkvXWfpfjrlju0afiHMuFaOlJwLn9D39OTEOGJ9Ti18+PxqJvElaJrvpAd31s+t/C/TqD75+JVBx1CWqDgD26nqwDIr3JmIXEqPFMIwxC4AXAOiZ9u1sAK8AmMMY+xnnvNTHui4B8CYAb1fM8QDGM8beATCPc06j0wiCIAiCIAiC8ItmiRgjPlhiNJmwhMRoAaE1QLoj/gpUiK6L1rkpEyiFGpkUS9Z22XlgITFa2JGK0U4J+mTXumBJuWT3LA6OFrVZ3p4wSAMTTElCMVqj0waLRIwm2t/y+3SjtowjwkWJ3voZgX6XiSaxGK1RbQDn3GtAnN72dMbBJRF9XvCl36W3LQRBuDhpLxMu9xSjdY2gByI4HGraj6Km3cK04cnj0D1OPqiD0I9MjKZCRY3jJLIsOSFtj0xWamXxMDEKVyAIgiAIgiAIgiAIgiAIogvhlEwMaQrCs9K8AmDnBhS0lgiTi8Vz5kQd1Y1igUBGInx+3+3B95vkaSRGa2ftutKoFqPZWgC7U5zWUeLAOQeOH5IXdPKoT/XyDSv1ZRw61msWNnwS8KsnwV990Ht5eQVgmTnAjX8I/pvfM89tF6MBwCW2T4VitLI6oKGZIzk+et9FH6sRL48YEcjRA97z1FYZV1+jZGLFRHGckge5BcAPX3suP1KM4b20V/1sD3DrRH3VRALHa+VpncVQnHPgu8/lKySnA917gV12K9hlt/rVHpZXCParJ6GWHwHWvOdXGe1lPfbP8EnRACA10+3jpKZN+Dh5ujDr/jJgcBcMV3A4OQ5qOxNd+VTgcBVQGATXRnUAYkm+ZY2xjSEIvSSng5n9iN1XFDCIf7+oztgUozEGpAVneBdBRD47N2rLtdvofzaQnQfEJwLN4hsj+81zYFff4XsbzpoArFvqtkj2nAgA1uwB5nr/CRoTNNsBp9i3jNV3KRhX4P77lK/+CFww5qWdWb/0uQ1swkywCTNd5a9fAf7gdT6XAQC49i6SohExD0UaxyiMMTOAjwB0nibNDuBbAEcAJMElROvdIX0ygDWMsQmc80qddZ0PYDmAuA6LOYD/AjgAIB3ACADdOqTfACCVMTaLcy65bRAEQRAEQRAEQchpUZuFyxNMeqYI8h2ZwKhRMsCX0IdewYmdSwIDCUKC1rkZMSIkmchJ0na7RCRkJjFa2In3IrmTXeuCdSxq3QubVJv0GAuHNDBRSYLoIWSTaoOTiY95kURMKqfT2F7XepFxPZCKEp2SyJ/2dMl3GaAYzcEdsPNWxDHfZgRudGq88OuA3U/hqS/9LpLXEoR+Gp0N0nOms0CJScLjuSRoiyA6sqZquTTtosxZIWxJbJNplge5VNorQi9Gk4ntg/T8hiAIgiAIgiAIgiAIgiAIwhv8y6Xgb/759IKak0CVYBKZoWOB0VPA/ud+MGt84BU7JfYlfwbVe4HlFoADKLCLZTg/VQHNdo54S/SKiAD5AHyZTIMf2A3+/kKgaAfQMx9s+g1gEy8TZ9YQCbEJl/rY0ujF2xGy80h0vyes1AgtcDuOPnwZsNXJMzv0xzfympPAW3/xnrHwLKB7nr5CJ1wKeBOj5Z8J5PTWzmMgbPwM8NVvtn8uaJWfUxuLgelnhqBRQaKkXHwe9MkK/jWWf/sp+EeLgdL9rgXJ6cCoC8B6DwD//N/AsQPAAfHkVW7UngQvLQLr1d/3NhTtBP/geaD4e0B1AqVF4oyJKbrKY70KxREIG1chs3Qbzs0fgc2Sw+mDrRwPXcpxZm503N+KNESlvTM7LaipkEvnAGD8jMCloKdg42eAByhGw5gphrTFb1LS3T5e3LBGKkYrqeiaYrTSarkctDPF5caL0VSVS8VoGYnMJQNcsQh8/Qqg8rhnJj3XNoIIBudM9W89xqBwVdjB5jy6+9RVNrmwWlGi455MEEbCm2zgj8zRl3n8DDBFAR93CfDlh+I848R9GK/kFngsGtO0TZq9WPK7JlrhnOPldRwrd3DUNAHn5jM8dClDdgpDQ4t8vWTB8Am+6g3NugJ+TjTyfMCaALQ0+bwqGz8jsLoJIgogMVrsMh+eUrTnATzGOa/uuJAxdjGAVwDkn1o0EMBSxtj53EtvmjGWB2Ap3KVomwD8gnO+t0M+K4B5ABYAaHtrcxmAPwP4ow/bRRAEQRAEQRAEAc65dGCtVQnOlCIiCQtA0o1A0ZLVdMSu+idQIbousnOTQYFVMSBY1QBk15UW3gwnd8DE3B/dOSQiIRKjhR+ZiKz51L0q1CIyLSlWk2pDY4hFbVrIzoNGpw0ORSJGE7RTqxzZ9kbD9cBbP0Mq3dN5bGkdK43OBsQpPorRtGZC6oC/wlNf+l16+xgEQQBV9gppWpZFb1RjbAVEEMZT3nocOxq+Eab1TxiKvgkDQtyi2CXBlIhEJVl4X9Y634OF7P6tV+RKEARBEARBEARBEARBEARhOPXV+kQKu78Fdn8L/v0mYOGngctGJOIkZgrC0K68QgBAYWuJNMtLX3Lce3F0D1L3RYzGD+4Bv+P803Krop3gXy0DHnwDbPoNnvmPyvcdRl7ge2OjFG+H/aK6iXjJ7oTZYgpNgwxGdgwBQOapcCD+wfPgL9ynXZBDHOPSGd7YAH77ZO8ZE5LA7pyv+7rD+g4Gn30P8P5CeXl3/dUwaZIuxrsPDO9tL4WZ2+EQxLrNeF5F+TMKuqVE5zWpWPIKzmiJUGf4F0vAH/sZ0Hn45/eb/HqDz+eeCXxcDpacpn+d/TvAf30h0KQjTkenGE0kcGiv79cXYv793+C8A4OkeSbOV/H1HxQM6Rn5x9P1r6vC5bnpQKLVvf38H0/JC4qLB7vpAeMaNnkWMPZi/H/27jvOjeL8H/hnVtJVt7tz99nYvjPG9GIIzaETOtiUHzgkAUIgJkCAQPgmQAiBFGoghJJAgNA7JmAwmGLAuFKMbTC2z/3cfcXldEXSPr8/dLZ10jyjXZ3q6Xm/XveytTu7O5JGuyvtzGcx6/2EFldX3wPVIzrZLc2itn9x49O4tv+92qLhEJDsby/Jdsck53uKVLxGW1tid187lJcC9OhNwPP690yIjOk9EOrimxNbVllQzBHatnO7753bwGohujKybdA1J/Hh+JGG7w01bgIAQF18C2j+DGDz2o5lfnIj1MDhmoXjU5VVMXudAgQwpnUGPis8LKY8970mV133MuGBD3e9AnNWEN6ZT/jqFgtzVvDLdYsaXkIzJwMLZvILHDUWOPiETtVVdesJTPgL6IHr+BMknWPPDYeqCdHFSTBaF6SUGgXgmqjJvyGi+3Tlieh9pdQRCAea7Tgy/hDA/wMQL9r9NgBlEY+nAzieiFqittEK4B9KqVUA3oiYdZ1S6l9EtDLOdoQQQgghhBBipwC1wYb+R8IiSx9O01lcWIyEbnQOF1YTLZhggIrIX1x4YrFVAktZaa6NnjG8KuRHN2+PDtOCtv5z4LMKtNNF+nDvpb/9GJHuILIiY9tqYo9dGQlGY47bzXYTQqTvNKp7vbn3oMVu2hlQp9t2tuwPuNch3nHS38n30hTO57e3oxcqHK1nV30cBqMlGHjq5rzL6TmGEALYHNignW7Bg17ejh1FVR52BBXJ8WHDmyCmc9/x5WPTXJuur9zXB/5WXTCa4ZbjKcIdv1P1+40QQgghhBBCCCGEEEIk3defAPNnAPse3rn1hJjgJG8KbohXGQ6VGda2AhaFYKvY0Ko/vkX4zYnJ33Q6Nei7A6BM8xM0vfrPXaFokdNfuE8bjIY1y/QrP/0SKCs7+hqkg5Org5Nf/xKn/b9DUl6XVDAFo5WVAhQMgJ67J/6KmODDGB+9AtQaQvfaqSdmQ7UHHDplXXkX6NCTQM/cCSz/LrzP6T0Q6uQLgSNOgxo8wtX6Okt5vaBjzw0/ZwBehDA0sBI1Bfrn9d8ZuRnWaNuEZZkKRnvmTneD5p2Y8gIw9pfO6/DKP52FogFASTdn5Sr5YDS0teKIaX/G05c8i58+oX/uW1uABz8mPPLj7G5P21oIW1v087Rt59WH2HWpV5dAlSWvwamCQuBvbwCf/Q/03Wygrb2izU3A7ClA3Tpg6CjgwKMAKKB+QzgsYo8DoS68EWqvLDgmlPYMp3u2f0a6UROO8H+Oz0uOiClak/7L6Fnhyc9dBKOlICjFeAxW24DXHk5sxf13Aw4/JbFlheAoBTV8r/A5VUX/hNdhQR+ImeO5aHwwmnQNEvlozgfAd7PNZc69Emr3A4AxZ0CVhscMqWGjgMdnhM+/ViwEuvWEOugYqAOOSrwuTODwTevvwEm7TYqZvmFr+By1e1F2n0c7Ubed8MgnsTvXpZuAF+cQnp3J73i7R91Xnp4zBLUO3wvqT88n5XcidfYVwJ6HALPeBzVoTlBXLwmf31ZWA0UlUPscBhx+al79RiXylwSjdU03Aojcg33AhaLtQETrlVKXAJgaMfkvSqlXiEibNqCUGgHgZxGT2gBcFB2KFrWdiUqp/0YsVwjgVgCXmOonhBBCCCGEEJFa7WZ2XrFVnJJtFjPBIa3UghCF4NF0HhPxOQ04CVBiASoif7HBT57sucLG7VeAcKBPN0QFozEhUV7NXTRFenGhDjsCubj2aAql6gyf5YNPFWj3nc22H81MYFSq6mPCB4/6EbL0bb5I8znmPk/+UBMfHpaB58vh6tIcagIRsXfs7ex7WWLxHQ6dhpx1XCa1gaduws4kvFYI57igpHJfb1gOv+fkeN8skWLbgo2YueUj7bwBBUOwV+mBaa5R11fu64Pa1uUx0+uD6b+tYzadewohhBBCCCGEEEIIIUTC5k/vfDAaF5zkSUG/s0HDAQAFCKB/cAPW+gbGFGkLAsEQwevJ3QGvaxr00ytKNc9p6hv6wssWgFr8UEVRfRHW6MOr3IZV5bobT1b47avmq4HTFvhx2v9LU4WSbHWD/rmVlQAeS4FW1YQDf+KgUMBRiBzNmx63jPr94wm3MzX6WKjRxya0bErsNrLDwxFtNWww2rQluRnWWNsAtDK5l1V9Urd/Jf82oGZe8tc7bzqUi2A0zJvmvGwvh8FdldUdAq1itzkdJ16vYOqpMG1J9vdimLuan1fVt2PbIU2w507D9kxqKNoOyusFjhkHdcy4pK87HZRlgcr7h0Pc2u3VupAJRsv+9pJsrQF3z3lpCl4jLuAWAMrWfAO08uNFTNS9b0ENGRm/oBDppiw2GI1yPBmtnvk8l0vXIJGHaL75O5+69n6ocRP08yr6A2ddlrzbFzOBw9UBPqx76SZg/8HJqkDmzF4e/t1LZ9oSoM4wTKJHxLBUCoWABTPYsuqC3yQ1mEyNGg2MGi23sBYiisT/dTEqPELu1KjJDm5NARDRJwDmREwaBuBowyLjAURegXmdiJY42NSdUY/PU0oVOamjEEIIIYQQQgBAsyEYjQun6awSJrgF4Af5ivicBpwEEgxQEfmLa1tcCFMmuN2vcAGBXiX3Psg0NtTKboJNNppt/RXfVLZHbt1bg41sW8rE54MLxGi2m/gQDU09i5njv2k93DKZwO0PbNho5e9D0el9nc8qgE8VuFq3id92FqaWaOCpm7CzZtsPm/SdSIQQHdUF9cFoFb7YjrNcUCNJNJowmNr4DrvvP6H8LFhKLlknW7lX3/G9jglCTKVc+G4mhBBCCCGEEEIIIYQQ8dDcTzu/khAzItOb/BviqZLuQHk/AMDerd9qywRCwKr6pG86ZWybcMckG6NuCaH7VSEcfXcIr3ypv0Y1tHfHx2TbwFbDk23ueK2bgkFg3Up92TwLRjvnwPjDce/aMAahHA1zqGEunQzb0YaWL3S2Ii74MNrU1+OXOfwUZ+vKAeqosR0ej9s6kS375jeprk1q1BjuS1TdJzXbpGAAdNN5qVn5By+5qgc2rHJWuLw/MGI/R0VVaQ/g4OP5AnXr0Mfnx5gRfJFv1wIbt2b3fumxT/n6nXdQ1L63toZf0f5jklSjLujwkzs8rGrTh4C8/x3gb83u9pJsH37vrvySFHQ1qGe6AioF9Hjd0ZD4WMP3BgbvnnilhEglpaCY0M8cPZXeqYH5PJfrAquj0LoVsH93NuxT+sM+rifsCUeBPnZwzixEGtG3s2BffSLsEytgH9s9/HdcT9iXjwF9Ev6OQ8Eg7EdvAv77V35FHg8w5ow01RpAxQCgsDhm8uBALXwqpF3k27U5vkNq9/Vq/nk8M5Pw3Tp2Ngq8EfuujavN3/ejzjeFEKkhvcy7nj0BRP6E3wZgqovlJ0c9PsdQdmzU4yedbICIFgKYFTGpFEAO3tNBCCGEEEIIkSktTMAMABRZsT/aJYNpwK6bkA7RkdPXLtEAFZG/uLaVTYPvC61iKOZeHrr6B5mAQC7USKQPF7DVYjejxfaDmDt8pTQYzaOvUz0TfgPwIWWpxL0GzXYT/NznWFNPbj0tdjOaQvqwrmzaHyR6nsHu61y8l1wom5953UycLpNo4KmbMFqCjVabD5UTQuzCBSWVa4LRWNydmkXea7Vb8GnDu9p5vbwVGN1DOmmnQoVPP8qiPmAYmZEiLaH0hwQLIYQQQgghhBBCCCFE0s18D+Tf1rl1cAMpPSm6Id6gKgDAo+t+xRa57JncudnUzW8S/vAmYdEGoKkV+HQJX7Y6+jLXaw+ZVx4VjIaNq/ggu4HD49a1KxnaW+Gf4xWY+yftdP0ruXm9kAtGG9E3/ITpDxc4W5GDYDRauzy2rUVRN/0HqmeFs23mAFW1d4fH47e+aCz/1crca0c1G/V17tMd6FkSPwwkEXTnBOCLj1KybgCg5d85K7hqUcrpAAAgAElEQVR+JRDSByp0UNId6rZnoSznQ5nVr+81F1izFA+NN69v95vtrA1tnLmM8Owsvm7Hj+r4mP74E7asuuz2ZFWry1G/uK3D4xFMMBoAjH04d86JOmvFZsJpD7p7vss3A8FQcj9P9U369fXyBWDNih7m7kCvPlA3Psre9FGIjLMsWEx/crJzex/EfZ7L4nQNIv920ISjgWlvA9sagLYWYMFM0K3jQZ9PSn5FhUgArfwedPWJwNefhL/PBdrCf20twHezQbecD5rxLujeq4DnzMGe6pr7ofoMSlPNET7/HhT7G4YHNoa36IN3f/Kf7Dx/duvmiYk9jxcv63geQfddzZZV1/0Dqkd5QtsRQrgjwWhdT2XU4yVE1Opi+flRj0/VFVJK9QcQGdMfBPC5i+1MjXoscZhCCCGEEEIIx0zBaIUpCkYzhcU0G+ojzJwGnATtxAJURP7i2lYmgp84lrJQxARq+aPqH6IQbOZiqFcl/87Bwh0u1IFAaAzWsculsj1ydaozhGFkIpyCC/Dyh5rY46suiI57LcPvwWbtvGzaH5iCzEznGey+zsV7WeLppp2eUDCa7WyZYIKBp9H7xnjcBKkJkc+4YLTevn6aqdJ5ULgzfcsHaLL1A8WOKTtdzmVThAs2bAhugk3p7UzJHb/dBLkKIYQQQgghhBBCCCFEUu19KNSv7wPGnOFuuS8/7tx2uaAtb4p+K6+sBgAMCdaigrlu/tH3AOXADXDagoRHP3Fezx2hVjvQS/8wL+CP+i27lg9O0Q0q7uquONrC0j9bOKnfWrbM49MI/tbsb0vRlmzQ17m6H0B1652vyEkw2ltP8DMPOQHq1Rqoky50vs1ccf61O/9bSG2YvvyHbNF7p+ReG+LC9ar19zHqNGrcDEx5odPrUXdN5LfxyoPOVrKG31eqq++B+vV9ULe/CPXyIqj93d0wSw0ZCfXOBr5A7VLsPUhhxV/54dFbW4APF7rabNqYjmnnHAhY1q7jGAXagFp9cAUqq6G69Ux29boMVdYXOPbcnY+rDMFoUxYCS5mgw67mic/dP89ACFjdkNx6NDDdIsuZ89Yd1K/vi/3788tQz8+H2vPg5FZSiGRSig1Gy9IcT8fqma665fG6Bk19HahbFzudCPT2k52ulxDJQG89EQ5BYwsQ6Om/Ae89a17RxTdDnXVZcivnRHtofrSqtmXsImsbc3un9M3qxOt//KiI83AiYOZ7bFk19vKEtyOEcCdFtxURGRQdK9nocvno8oOVUj2JaEvU9L2jHs8jIjejzKZHPd7LxbJCCCGEEEKIPNdiN2unF6hCeJQnJdssMgSuNYckdCNRfoevXSDBABWRv7i2lYngJ5MST6k2uCd6vxIkvvOcT8IkMq7Yow+4A+IFkfHLdRa37nom/AbITDgFF+DVbDchRPpO4brPsemzzQX+ZNP+wNQWuPMMIuL3dS7eSzYYLYFQMadhaoEEA0/dnnP5Q00o96Wop6kQXQQRsfvJcm9ssBIXi0bI7Y4QIjVCFMJHDf/TziuySnBkzxPTXKP8UcEc/4IUxLZQI3p603enQu74ncpzYSGEEEIIIYQQQgghhDBRw/cChu8FHHceaNpbgNNgsGXfug9Ta0dEwIbV+pkpCkZTlVU7r+AMC6xEnbe3tty6LcDAXimpQtIs3QQ0urh3aXXEZS4iArbyN7UDAPijbvKyhhkgXN4fqjh7+hqk09DeCrcf24jJLwzUzm9qBRZtAA4YkuaKdQIRYYkp1GrJXOcrcxCMhsVfs7PU9f+E6jfY+fZySOS+CABGti1myy5mguqy2bJN+jpX9XF20zFq2AgUd4MqcnjtrOYbPmjTqYHDgD1G8/NnTA6HcREBWzYDBUWA1wdV2qNjOW5f2Xsg1LlXda6OAFT3XqDBI4DVS2JntoeyDalQ6N8DWL9Vv45pNYQT98q+G8DNWcG39ZEDouq7lg+tyMewTtcq+u/87/DAchTYrWizCrVFv1oFVOnvQdZlhGzCHZMS29eu3wIM059OJoQLUipr5fu4qstuhzrnV8mrhBDppCwo6I/hdo4mo9k2Ye0WYJP+nplxg9Ho+y/4mUvnJ14xIZJpoaGd7rBgZtwi6tCTklCZBAwdBXwW24dzj7bv8Q5O1i4yd3X2/05kYjrXNlEKKC+NOBevNwQ1j9gvoW0IIRLDR6KLXBU9Ulz/LZ2nK7+ng2lM7DwrOl5dtw0hhBBCCCGE0OKC0YpSOKjWUh42HC2R4BARpguE0gkYQqGE0OHaVkkGgp9MuGCm6P2KKRjNK8FoGWcK2DIFkRWlMJiLC8aqZ4LaLFgoVEUpqw+He+2aQ02uPscJBaMZAu3SzacK4FX6+5hw5xlt1AobIe08LnBOh90POQw528GmEJptZz3REwk8DVIAbdTqahmn5xlC5DO/vR0tzGe3wqcLRsu+DsMie329bTp7HB7T60dZdSzuanTBhjtw70mqcOcHmQjlFUIIIYQQQgghhBBCiEiqrA9wyAmOy9OcDxPaDn3wEmjsMKCtRV/Ao79W3GmDqnb+99ytr7LFlvL3e8saN0+0HZftWQz0jrw/2MZaoDnOtePmjtfHaU30kKd2lVX66XnigAMGYvdWPtTq61W5FeiwcRuwnemGMKKfAmqZdqATdBBUZQg3UgOGOt9WrhnU8XPT02YSrAB8ubI9zDCH1DD70HjhSjTnA9jnjQSdMRh0cl/Yvz0LtK3BvMyqRaBrT0mwphFOuCB8DORsXgs6tjvouB6gccNBpw0EndQH9pXHgSJCPmnGu/rlByVxX8msix69CdT+uRv/A74fwx2TCD9+3EZTa/a0K9smLFzHz7/g4Kjns8gQqnjShUmqVdeleuy6aVgxtWDstjfZslMXZ087STYiwh//Z6P3teZzqkG9gALm1JQLMkvE2kbCzRP1r7cpGA3HnZu8SgiRbkrBIv1nMMdOf0BEuGOSjd7X2Rhyo41FTHZQebyuYW/8i5/X4iIZW4gUobXLgXmfd35FlVXAKEMwcQqpE87XTh+/5SV2mZnLcmynFGXSvMTqf0B0VnnNN2xZdfS4hLYhhEiMBKN1PdG3MRngcnld+ZGaadVRj1e53M7KqMcVSqkyl+sQQgghhBBC5KmWkP5Hbi64LFnY8BYJ3UiY82A09wEqIr9xbcsUnpQJTgOJTOGAEoyWecWGYM76oL73m08VwGel7r3j6tQQ1N8FudhTCqXSH3bDBWK0UguamGAu3efGFKyyJVjveD2ZopRyfZ7RHOKPoW6eW4mnm3a633YXjOY0FA0whz2y62fO/4zLyDmaEHGZApJ6+/qlsSaiqyEiTKl/QzvPAy+OKTs9zTXKL6We7ihQ+vtncUG5qcKG3WbRuZgQQgghhBBCCCGEECJ/qRsfBXY/wFnhbz4LD4p1gebPAN32U6DOkIDiTVHfgYgQr2vqH2SLLd2U3QNeP1xIeIPPhIlR3Rcd+j/QHx2ExkQHp61hAqySGfaTg6xeFXi14TJ2/qVPZ3dbiraECXAAgBF9Aaqtcb6ykLkfBAWDwLrooXRh6ld3Ot9OLhocPQQReLn2Arb4Qx/nTjsiItQwl9yrDcFotGYp6IYzgXUrwhOCAWDGu6Cb9aEFAEBtraCrTky4rjsdczbUT34LAFA3PeFu2W+mgX5zKogIFGgDZr6nL5fMEElN+9mBnvozAOCPp5v7vL0wm/DLZ7OnXf3lXb4uVx6rsOfAjs+Hbr+IX9lx5yWnUl1Zj45Dlh/Y8Bu26CNTCbadPW0lmR6eSvjT24Qt+nvT79SrhA8yqm9KzmtDRDjtQT6grSzUqJ2uLrsdauCwpNRBiIxQFhT0n6Nc2/f8+1PCH94kNMbp1lteyh+j455rN7vrwyxEslEoBPrF4Z1fUf/doP78SkbGaQCAGrandvr+rfPYZe6YlFv7pEitAcKbfJ6Z0fO/6Bi9RNefwRcef31iGxFCJESC0bqe76MeD1JKVbpY/jDNtJ6aab2iHru6tTgRbQcQfbsb3XaEEEIIIYQQIkaLrb8ql7FgNEMwiTCLDn/iBGwJRhPu+JnPJRfClCklTH2iwwOCNt95LpXhWsIZn1UAr9LfJo8Lnkh1EAR3zCLoO5RkKpjCFCpnI8QsE1tXj/KiUBVpyxPTkSDbwjjcnmf4DaFfbvZ1JRYTjOby/MbpMR1ILPDUTfDaDm6fgxD5iAtG88CLHl7d/Wz0nTO4fa3IX4v887C6VT9o6JAeR6GXt1w7TySHUgrlPv1d3tMZjEZEbLip6TxQCCGEEEIIIYQQQggh0kX1GQT1+Ayo5+ZBPTMX6qNtQEl3tjy9+4yr9dPbT8Yv5NH3N+i0iBAvD2wc1PyVthgX6pMtnvjc3XWoEX0jQtGIgAUz4y8UPeh+zVJtMTVouKu6dEV79rdxwvYp7PwNW3PnuuGSjfq69iwGencD4CoYLWiev3E1X2b0sc63k4v6VAIFHW/oc4R/Blv8P9Nypw2t3wL4mS4w1X0MQSCTn9O3h6+mgurW6xeaORmoZ+Y5oK66G+qN5bD+9DxUYXtf6wN+6H5FKxeF96szJ/PbGpi8faUyBVK+/SSICN2KFP453hw08cqXhK3N2dG2np7B1+P2M6JC0bj2AAAHHZOxgI2c0qNj34TeoTpcUf8oW3y6/hQg5z3hcN9aUgCUM10P691339P6ehUwdzU/v9xu0M+44LrkVECITFEKFtOHO9eC0Zx+R+P2JwBAk581L9ziB9l8iKIQKff1J8BW/c3ZHRs8AurFhVDD90pOnRI1boJ28kWNT7OLfLc2t/ZLO0yan9hyxb5wQPoOtE0f1AoA2OMgKG+KfssTQmjJJ66LIaL1SqlFAEZGTP4JgL/GW1YpVQpgnGaW7qpO9Gi5OFnhWs0AIkcr8lePHFJK9QWg7+XPy+9btgghhBBCCJGD2GA0T2oH1fIBRkm60peHTKEukYJkvqOiENGig8V2yNUgJFOIkFdJMFo2KLZKsS20JWY6FzyR6pA+t+vn2mKqccdWE+65FXtK0RqMvheD+/VkSomnFNAc7rhjpSmY1c2+jnsP3ASdAc6P6QAQMIQ9crj9OgD09JZjSzD24rNpGSFEWF1Afxv0cl8fWCr2/kqGrttJq5PoGqbUv8HOO778rDTWJH9V+PpifVttzPS6YPpGuAWoDSHoB/lk27mYEEIIIYQQQgghhBAifymlgCG7huDQqNHAlx/rCz/1Z+Dnf3C0XtqwGnjnv/ELpigYTXXrCerVB2gM91sYHliGL4sPjCm3LH3300jIN6vdXYeqihjIirp1zhaKCEYj2wbWLteXMwX05IvKauz9zbeY0u0E7ewFa4B+PdJcpwRs8RMbwFXdN7xfICYgTysYpx/EWv0NhQAAA4c5304OUpYFGjAMWPn9zml9Q/z1qg1b01GrzmkLEuauBibN5/dP1X3ZWcD3X/Dz1q0AKvrHTl8aZ4T/2MuBN/6ln2dZwAkXQJVFDbnsMygcGuUy8IFeegBoMFxzrNrb1fqMqvfl59WtA7bUAb16Y99BCqZ+C21B4IXZhJ8fCXg9mQsTIyLUMplPANCzJKpuy7/jCw/bMzmV6up6xQ413qd1AVv8m1rCkSO6VuBcyCYsWOus7P6DFRau03+W6pPQFa+5jfDIJ+Zzu+o2TTDpiP0kgETkPsuCxRyriHKn751tE+ascFa2jyk1It65DQC0+IES/c2fI5FtAysWOv/+J/JH/92AyurEwmRr5nV68+rE8VAeT6fX0+l6VO+r3fvsbTgnmr+GsOfA3Dsnmleb2P50x+8AO0V8f40xePeEtiGESJx8E+iangVwe8Tj3yqlniaiNXGWux1AT810J8Fozkcc7tIMoMywzkRcAeDWJKxHCCGEEEIIkcVamCCyIqs4pdvlQmP8hmASYWYKdYlkCoUSQodrW5kKf+KwgURRYT6mcECfKkhqnURiuGC0uoC+E1iq26LbEMDiFIeLsttN4HXgnluxVYJG1KV026nkNChxBy6IzKt88FnO9wslHv3Psn7bZTCaiyC1YALHde51UFAo8/bWB6PJOZoQcXHHqQqfqZd2rNzpmiXSobZlORb652rn7V06GgMKB6e5Rvmp3Kv/HNczn/tUMAWnZtu5mBBCCCGEEEIIIYQQQuxkdW7QKvm3gW69EJg52dkCqRwkW1m1KxitTR/29eIcwvO/SF0VOsO2CUtdBreNiPx5/Ls5zhZqjvg9u24d0Kq/cSsGDXdXma5oUBUu/uRp/L3iGu3s178mHDcqewdPExFue4tw+yQClz8xoq8CNTcBtUkMRlvDBKOV9YUqMSVGdBGDqzsMLFcARjd/iS+KD4opun4r0Ogn9IoOiMoSkxcQLnjMxhZmNwEAPYuBctOlsHUr+XkBfZ8aeukBfpmCIqiLbwYt+xb4Zlrs/CNPjw1FQ3to3Sk/A178u6GyGp/wN8kCAPzgRHfrM9nncKC0B9CkT8yj+66G+tPzOLwKGNkPWKS/NxwAYMJzhD++RZh4hYUfDM9M+3pqOqGF2V2cqMk5I8O5hDr14iTVqovTHLvP3foaJgz4p7b4VS8QfnoYoXtRdu6DErG6HgiEnJUdf4jC3z9ITTDa87NsXPgfcw+jIrsZ47ZOjJmuTr2ocxsXIisoKOYE1LZzp/edKeAzkscCdivXzyMiYNrb8VfS0hQ3GI1Wfg/6v3Huzt1FfqneF7j7f1C9BzhehPzbQA/d2LnterzAiRd0bh3JcszZwF0TYiZfsOVlXN/vLu0iFzxGGHsAocCbW+dEbn9D2mFgr6gJtZqg1nZq7OWJbUQIkbDYW72LruCfACJHYfYC8K5SahC3gFLqOgD6X6UB28E2Eznrzp0zdSGEEEIIIURWyVgwGhMa02wY6Ct4QQqgjVodlQ0YQqGEiBaiIFpJn+FezASRZYrTICRTMJpX+ZJaJ5GYIuYYsTWkvwLMheIli9u2nqlgiiKrBAruLphxr7Xb55B1+wOX5xncdLeheCUWE4zmMlSsyUUwWiLHdS5YpcgqQSkT7ibnaELE5zoYLZE754m8M6U+tpPqDieWj01jTfJbuS92cAMA1AcS7P2TAFNIabadiwkhhBBCCCGEEEIIIcROlnmoFdnmITb0r1uch6IBwFaHI8sTMahq53+r2phgJgDTlmTn8J7aBqA16G6Z6r67rmfRTec5Wob823Y94AKsgHDQXJ5TldXYs+17dv4jUymrgx3e+gb409t8KBoAVPcF6MHr3a04TjAace0qX8L2BsV+dv679hK2+HUvZ2cbqm8ijHvEHIoGhNuQYq6tk20D61bwCwdjg9GofgMbDAYA6v7JUGV9oW5/ETj4+F2Bm14fcNRZUL9/nF/2sj8BZ/4CKExS/+sxZ0B5k9efUVkW1FNf8AU+fg009zNYlsJ711g4Is5uesNW4IyHbLQF09/GNmwl/Py//Hb/87OO5x9EBBgC8VT1PkmrW5fWd3D4sxChl70F+7XMYxe55c3s3AclqsbBvdPKSoCnL1E4aqRCeal+/9XQia54NRspbigaALyz6gwMCdbGzhgXG+YiRM6xLFhMXIPp3DTbLHF4P8ahFYCPC1Sa9Z6zlTSb+yUTEegP4yUUTZjVzAPd9lNXi9Bjt5oL/PiGcHgvZ8BQqHvegho4zNV2U0V16wl1f+zvVP1CG1EWir0x+Q4PfJhDO6d2NRv1dTYGVwPwRv0USKZgtH0Oc1stIUQnSTBaF0REjQCifx3cB8BCpdRdSqljlFIjlVL7K6UuUkp9BuBeYOcIxOhvjo2azUSfTSby61f0Ms5HzgkhhBBCCCHyWout71VQZOkDRZKFDTCS0I2ENIf0AXc6QdLfBU8IHVPbchsYlGpcGED0fsUUIuRV3qTWSSSm2OUxKNVBZK7rk6FgCktZroJNLVgoVEXaeW6fQ9btD1yeZ3BBI65fB6a833b3c62b8oEEjuvc8y3xlLKvHRemJoTYxW0wGhdmSbnUO0ukVF1gI77c9pl23tCi3VFVrLnNtUgJUzBauj6zpt9Lsu1cTAghhBBCCCGEEEIIIXZScYZa1a1jZxERMOVFd9vzFbor74KKDEYL8IPFn56Zndd6ahK410d1+8/j1BonuShS5ID7Nczr1L0MqnuZ+wp1Ne3hcD9tfIYtMmt5uirj3vOz47f1EX0BzHrf3YrjBKNhLfOiDMyPYDRVWR0zbXjbcnhIn3z44cLs3Ce98TWhxcG9AKv7GG44tmkN0Ka/6SsAIKDpU/Pxa2xxdcPDOwfmq7I+sO6bBPXOBqiXvod6dyOsO16CMoQ2KF8BrOv/CfXuRqBvJV8vh9ShJ3V6HTHr7L8bMGI/dj5NeQEAMKRC4bMbPTh2D/P6Nm0DPliYzBo688oXfLsuLQQG9oqauMJQyZMuTE6l8oDyeABNKMl5W19hl3luJnWpfjBLN/HPpeF+C6vutLD57xYuPDR8DlzGXMqvb0r8NXnBwfH395v/hh82fx4zXf32ETZsUoicohQU9J8FO4f2OUuY0KFo1cx9WQGA3uW/S3TQHGe80dIFwLJvna1L5Ld500DbdHEpseL9rqOuvAvWL++AmrQe6uVF4fPuyL+JK2G9vAhq9LHJqn1SqIOOAXr2jpn+ky3Ps8s4OX5nGy4Q9m/jFFoe5n/v229w1LnGaiYY7dhzEqyZEKIzJBitiyKi1wH8GugQH9wdwA0APgLwPYCvATwJ4MiIMv8A8GHU6nIpGO1hAHu7/DszCdsVQgghhBBCpFGmgtHY4BAmqEOYuQmUC9gOepMI0c4UhJOp8CcOFwYQ/RyCTDCaBQ8s5Ul6vYR7boMdUt0W3QavZTKYwk1diz2lbCcX9+F0qT1vcIsN92LOM7h9nfv3vpt2epACaLNbHa/HH3L+8y63TzOu3/B82ZBJOUcTwoiIUM8Go/Vzu7bOV0h0CR83vAWbubvpCeVjpbNqGnEBh63UgiZ7W1rq0GzrOyha8MCnCtJSByGEEEIIIYQQQgghhHDNE6cfxppl/LxVi4BtDe62t/8Yd+XdqNwVjLZPCz9gfPH67LzWU+Nw0P0Ou1UAfbq3PzC9T9EiQoqIWy7itcxrw8I3wRnd8hVb5Lt12dmeAGeBWwcNJmBjrbsVh/QBXzutZdrVoPwIRsMeB8VM8iEILxOMtnk7YNvZ146+43MxO6gyBIFg9WLzwpqQPVr5PV9e89qqku5QA4dBFTnvG6V8BcDR4xyXZ40a3fl16Gie504rF3V4eOwe8a9Jv/dt+tuXqf2M3g2x19JX8O+7GnlgkmqVJwbFHsMPauaPY3VN4f1QV8E9l4OHAj1LFCrLFJRSoFAI9O1slK+coy1f34mueAsd7D9Hc++JtHfRVSgLFtOnqimQO3EfS5jQoWijhxqOx6uXOFtJc5ydcc03ztYjhG0DDQ4bb8NGYEsdP7/9vFR5PFADhobPuyP/KvonocIp0is2GO3A5q/Z4vNrCXaLIdQ5yzQ0EeqY85XqvgoFXoUDBuvnjzsgap+1apG+oCb0WwiRerlzpiRcI6J/ADgZALPn7WA7gF8BuAbAoKh56zXlt0Q91t9ynKGU6obYYDRnUasGRLSRiL518weAv+2NEEIIIYQQIiu1MANri6yilG6XCxppcRHwJXZxEygXIM1d8IRgmEL3Mhn+pMPtV6LDfLgQIZ/yJb1OIjFFHnchW6lui8Uu6+M2TCuZuOBRbVlDPd2GzWVdUCIX7sWc93ChX27bVolHH4wGmIMmY8q6CEYLJBCMxj3fYquUfc5uQliFyEdNoW1oJX2nBS5QiZN9XdJFJvhD2/F54xTtvL6+gdiv2yFprlF+Kzd8jusDm9JSB/Z8xRB2K4QQQgghhBBCCCGEEBmn4gy1WqMfgkKLvgJduJ+7bR1+ClTvAe6WcSNiwGa5zQe21aTnZ2PXuEH3hw4HTtk7dvpVx6pdvz/X1jjfUGvETcOY9xcD8yTAKg5VEk6eu2DLS2yZP72VnVcPX/2SHyS9w/GjgFH1s9yvXBNmtQMRsUF9Kl/aFRNq8/PGp7TTmwPAuuiRi1ng71Octe1q5jIdtfhB155iXjig6Stbyw99VLvv76hOTqjTLwEKOtEPe78joUa4PA46pM78BT/zm2mgiM/gzw5T6B7naTz4EeHfn+rDaVJlqSHs88pjYs896PVH+JWdeEEyqpQ/NOGmx/qnordhOPPYh+3w/rsLqNd3P0RFRJc7am4C/e5s0C/HoOyTZ1ytxwknYbcnb58cO3GPg5K6nxMio5SCRfpjz5WfDMequtzY59RsiF/PkgLgkiP0/YKoxQ8scRho1sKfvNOWOtCff+5sPUIAcNLLlWwbdMOZfIG+lcC+RySxTumlLrg2Ztq4bRPZ8iFSmP/Ln4LqdFEz2Wep4betHd/Rrjw2dt90RBVwwJBdj6nFD9TM065HSTCaEBkhwWhdHBG9D2AvAGcD+A+AhQDqAQQArAEwDcD1AEYQ0cMU/ra+R9RqvtCsOjqOdzeXVYsuX09ELm+LI4QQQgghhMhXzXazdnqR5S4Exi0uNMZNwJfYxU1YCRcKJYQON/heQaHQis5pzywumKmNWju0e+4z4LUkGC1buA0WS3UQmev6ZDAkrMhFXU3HereBYKk+b3DLaVDizunMcdTte2kMRnMRdubquG67Dzzl1l/iKZVzNCEStDmwgZ3HBaMpSJCR4H3a+C4btndc+ZmwlCfNNcpvPTy94FVe7by6gMM7YHYSF7JanGXnYUIIIYQQQgghhBBCCNGBZR5qRZqAGiIC3flLd9s54+dQtz3nbhm3ooJA3lw9TltsbSPQ1Jp9A/G5EJnd+ym8fLmFXx2jUFkG7DMIuP//KVx7fMS1LDfBaIHIYDR9gJUuVCVfqb+9hjK7EaObdcPNgNUNQENTdrWn7S2E8/5lDkG6dIzC6xMs0G0/4Qtd+Fv9dEMwGho3A/5t+nmD8iMYTSkFdcktMdNv2/QndhkuGLlJDh0AACAASURBVDFT5q523qar+zDX1d/6T/yFdcFoXGDjxTc7rpMTaugoqAfeA/b/IVDEXM/zeGP/yvsDp/wM6s43klqfDnUbeSAw/jd8gfdf2PnfQWUK035r4YRR5nX+6nnC2sb07au4ENLRuwFnH9SxzVBbKzD3U/0Cg4ZD9ShPcu26NjUo9hhugTC/7kfsMtOXAp8sTmWt0qeB6UJXXhrR7v73ODDj3fD0UL22fH2CXfGIKO4+ffmSEfAhGDNd3a8JSxMiVykFZQhmumlidp0/c0yf59JC4JiRwCc3WBjWmwlGe+4e5xtrNgSjxVuP7pxF/vLgz9A/0Ung6ZwPgMVfs7PVk3Ny+2agp/wsZlIJNWP28sPZRX4ZvAb0yO9TWauk4YJYi3zAwJ7h/198hIV//0Rhv0pgQE/gosMVJl1tdXhf6dm7+Y1IMJoQGeHNdAVE6hFRCMDr7X9GSqnBACojJq0hojWaogujHrvdi0f/cvudy+WFEEIIIYQQeaw1Q8FoJUzQiJsgELGLm9ctQG0gotz+EVmkDTf4vsgqgRXvrr5pZgpyag750d0b/gU+wIQIeZUEo2ULt+EOqQ4icxuM5jZULJm446vbsm6ec5FVDE+WhbO4Pc/gQr+S+d67CUZzUzaQQOCp6fnKOZoQiakP6nsp+VQBenjKtPP4YLTc6JglUidgt2FqwyTtvO6envhBj6PTWyEBS1ko8/bGpkDsHRvrA4bbIyZRS0h/y+hUhwQLIYQQQgghhBBCCCFEp8TrW6ILqFm7DFjyDb/M7gfA+s/MztUrAap7GahHObA1HHAxqvV7tuzSTcC+lezsjOAG3Vf1AUoKFR68QOHBC/RliAsS0mkPRiMiNoBIF6qStwaPAACctP19fFE8Wltk0nzChYdmT1+/KdGj4KI03G+hZ4kKhxzWrdMXKu8H1b2X/sqoKRhtLRO2B+RNMBoAYPf9YyaV2Y2oCNahzlsRM69mI+HokdnThl790vk18ao++un0cdyhnUCwYz9BCgaADau0RdWI/RzXySm196FQD05J+nqTQZ16Eej5e7Xz6NOJUKf8dOfjfSoV3rvWg7sm2/i/1/XvXcgGJs4lXHF06ttZW5Cwsk4/7+ZTNecdXCgaAPzgxORUKp8w4aZ9Ns7H/vvamLtGf+736pfZtR9KVD0TVloWcdmepu7aP5XZDdryDX7AtgmW5e41qW8CtuiHfuw0OKgZwn7AUVClPVxtS4hsppSCl2IDAHd47SvCUxcTPC4/Y+lERFjBHM9evEzhvNEOxmnMet/5Bv2GfslTX+PnnX8trF/9zfl2RJdB9RtAZw5hZsY/n6ephqDf3Q/I+XBapRSoel+gZl6H6Qe0zEUPTwu2hopilllaMBx47zng5ifSVc2ELWf2T1V90OH85dIxFi4dY1jRFx/y8yQYTYiMyK6RoCIbHBf1eCpTbkHU432VUm5Gfx4RZ31CCCGEEEIIwWqx9QNri6zilG6XG7jbYjfDJvPdBEUsLuCEEzRcCBIiUjPTttyEL6VLiacbOy8y0Idr/z4JRssaroPRUhwGUWgVQbn4+TfVQW3Gbbt4LUxl3TyHVIepJqKIeW7NdlO487Vmuo7bfV2BVciGLLoJFvPbboLR9GGPJqbny7WLZiaMRQgRVhfQjyQp9/VxHUhMEoyW92ZtnYqtoUbtvKPLTkWBVZjmGgkg/HnW4YIRk40Lrc7kuacQQgghhBBCCCGEEELE5Ylzk61aTXDWoq/Ny+x7eOL16ayIgbtDAqvhZW5kNXd1dl3vsW3CUuY+HyP6OljBsu+cb6ytJfzv1npg+xZ9mXwKsIpnYDhg5kj/52yRj/gMvox4fhbfv9PnAXqWtF8f3bwWCIX0Bcv7AV6mr5YpGG0NE4xWXAqUOWnMXQQTLlgV0IcRZlsbenues31kVR+gf09m5nez468gENWnZv1Kvk3m26D8gYb98Hp9eNwR1ea+D1O+Tc+xb0UdYDObqtbtBlYvYdel9sngOUWuMoSbHtGPOe4DWLIhu86NElXPdAEsj7xsH9HmykP6YDSi+AFnOlzQ7Q4XNj6nn5HJ82chUmR061fsvJYAsLo+jZVx4auVhL+8Y+O+KYQW5rS3ssxhf8OFc5xvuD3AOhq1tgDrVrKLKdl/5C9Tv1cnh/XP3uTndZV2pTkvUgBKqUVbfLO3D5pVEYj7TpJF6pihDIN66afTwi9A//0r7Aeug/3oTaDP324Ppl7Nb6RX785XVAjhmgSjiWg/j3r8uK4QEa0DEBkH6gVwpIvtHB31+F0XywohhBBCCCHymE02Wmz9VbWUB6MxA3cJxIa1CZ6bsBUACCYQoiLyEzv4PsVBVIkw1SkyPDDIdErlwoxE+rkNd0h1UJ+lLFfHxZIMfj5cBaMZXjc368nk8+VwdQpSUBsklsx9XYmlD2n0h5yHnbkJPOX2aSbceUORVcK2Cz8TKieECNsc2KCdXuHNo873IilssvFB/UTtvAJViB/2OjnNNRI7lPv0n+f6ADOSLMm447fbUGEhhBBCCCGEEEIIIYRIKxVnqNWapR2uQ1LDJtCtP+bLd+sFNfbyJFXOPXXpH3f+34sQhrct15a76EnC5m3Zc3117Rawg+6r+5oH3ZN/G7BghvONtbUPuNeF3u1gCFXJN8rrBfb/IY71T2XLPDWd8MWK7GlPr/EZFLAim5OhDahf3MYHo4UMN33lgtEGDnd9w6qcNmCYNqhgRFuNtviLcwizlmVHG3pnPmFerbOyvztZad9XWvatuZ3sEIzqI7TGsF8aOMxZpboI5fUCexykn7l2ubaP0OFVwNG78+t88xvg85rUt7N/f6rfhlLAcM29ruj+a/mVjTkzSbXKI/13Y4NvJ9Q/zC5Wk57L6ikXLxiNtjUAW+p2TQ/xyUzfrnW//ZqN/GesxG7C1Q0Pxc7o1Qfq9Oih7kLkvgmNjxnn16TnPoeu/PtTG4f8xcbNEwk3vMp/nsscdAWyH73Z3caZYDRjeFVRCXDYKe62I7oQ0/cr8zkfffxah+NhzJrH/jLBOmWZSv1vG7fY/2EXebP76UCLu/F/mcCd81R003w/e/Uh0OVHgh7/I/DqQ8Bz94D+72zQ/40LB6brnHB+fn2HFyKLSDCa2EkpdSQ6hpstIqKphkXeiHp8scPt7AHgBxGTmgC872RZIYQQQgghhGgj5sdthIMxUskUNNIswWiuuQlbAYBAAiEqIj81M+E82RiMVmgVQTE/0UWGCOhCkQAJRssmbttXOtqjm/A1t8FuyeSqnobXLVeeL8dUJ12oCLuvS+C5ca8dF76m0xTa5rhswHYfdso93xKrlA2VI9hoZe5gJYQA6gP6nlQVvn7sMorpOJId3dFFpszbPhsbA/rOIIf3PAGlnu5prpHYgQs6rGM+/8mWzPMVIYQQQgghhBBCCCGESBsrzlAr/zagcVdSBr3+iLG4emQq1JCRyahZYo49p8PDqgAT0gTgUSa4JROW6O/xAwCojnefnzfNgQMxAu3XsLkAouJSoJy/hpaP1DV/hwXCNXUPsGVuesNOY414yzaZ27Un8iNfqw/pAgB1+CmGYDS+byOtZT5zg4Yb69XVqMIioE9lzPSqNn6f9H+vZ74NERGueclcjz0HAGfuB7w2wcIlR+qPIXTvVc422BbVR5oL6+szCKowtTeTzkbq6nv1M5q3Aw2x10CVUph0tQWfPhMLAHDja6ltZ0SE+6bo90ODy4AiX8d+GNRgSOM66qzwZ0m4orw+YMBQ7bw93v0z/jpW3xdmZR3QFsyec6NEscFoO4ZdRAV4loca2HX94U33nxdT0NPUlSfgwJa5MdPVvz6F6jfY9baEyHaHt87BtOVHsfNr4py3ptv2FsL1rxBsB9WKF4xGm9cCz93trgLR50U71nXHJewi6tWacJiqyE+m0CrDjbYpFALdNYFf7ZV3QQ0xpO3mEMWEvl+0VhNU2u6SAf8On29nuYYm/XscvX+ibQ2gR36vbxOz+MgbdcktnameEKITJBhNAACUUiUAHo2afFOcxZ4DEIp4PE4pNcLB5m6MevwykYxOE0IIIYQQQjjTEuIDyIo9qQ1G40I3AH6wr+C5CVsB+GAoIaLpAoSA1O8jEmEpC8VMqGPk8wgywYA+VZCSegn3uPeR4ybEK1FuwtcyGRzoZtumY3GuPF+O6bn5NecZ3L7OtB5+292Y7Tq/iOnmuJ5I2Cm3/mJPqTFcxW0QqxD5hAtGqvAZRpKwHUeyq1OWSB8iwpT66HsphVmwcFz56WmukYhU7tPcXhxAfSA9t7Zmv5tl4bmYEEIIIYQQQgghhBBC7GQZ0lN2iAyqmf4OX+7Ui6GGjup0lTpDKQVU7bPzcXUbE7ID4O1vsueaDxcK0Lsb0KvEMNgZAM350N3GAu0D7tcwAU0Dh4dfR7FLe6jXAS3fsEU++B5obst8m3pnvrkOE47e9d4SF4w26uDwvx4mGC0Y5DdgaFd5pzJ2EL5pn/TJYmBrc2bb0OIN5lCfaTdaWHCbB2/8yoOxBxj2E5tqnW0w2LFPDXGBjUygQZdnChSc8a52cnGBwvOX8sOopy8F6pkQhWRY08jPq9Jdzv2CP4apkQd1vkL5yvCZOb3/au10m4AVdamqUHoQEeqZoRflpe37rKgAxh72VviYPvtLErgH26p6/fSxWydqQ9Fw1mVQ+XiMFPlBKRzaMgeH+6drZyfyGUulTxYD2/XZZDHiBaOZwoZYgdh9EQUDADEhjQOGQvWscL8d0XUkGIyGpfOB7Vv4+YedlHidso3mOxkAFGxZj+GF+nDUkPIguD37++Pz5zxRE76cCrS5jLbxeID+uyVSLSFEEkgwWhellHIcZ6uU6gZgEoC9Iia/RkSvmZYjoiUA/hsxqQDAU0opNnZeKXUmgIsiJrUBuM1pXYUQQgghhBCi2eaD0Qqt1N79zBSq5DbkS7gPk+OCoYSIlsywoHTgAn0ig5C4ECGv85+ARIq5Dd5LRxiEm7C2Eo8+GCsd3ITEmQKw3DzfbAzjMD23lqjzHyLShqXFWw+He//9trOLmDaFYupoLI8QQhSKXzACd95QbJWaw2vlHE0ILSJig9HKTcFohvWJ/LS0eSGWtyzSzjuo+5Go8PVLc41EJC4YzW9vR4vdnPLtNzPh9tn63UwIIYQQQgghhBBCCCEAAMrBUKv2oCOybWDx1/yqDjk+WbXqnIiBr8c38YErs1cA17xk48uVmb/2s2SDfnq1k0tZa5kgKk77gFg+gEjCOaKpohKgbyWO9n/KliECvlyZxkoxFqw1zz/nwIjB80uYoLfK6vC/Xi4YzdC3kQlGU/nYrjRBN6Y2BABfr0pVZZwxhaJ1KwQOHBJ/HRQMABudBaNRdAAIF6yXr8FoZX2BvpXaWfS3y2E/fhtI81r/cHfzau+bkrrj3uc1/LoPGaYJ76jlwwKRLecVOUjtewQ7b5h/MZujYtoH5AJ/G9DGZHfuDAlZvbjDdAUgwNy0edN2IGS7+7xwwYODgvoDtDpY2rnowtq/a45ggmEf/yzz38MiTZzrrD7FPqDQFye8eqW+f5lRUBPSuG4FYPPBaCLPJRqM1mA44PcbAlSOSLxO2aZiADur0qdP9A0pL1Zv1IempsOGrYTb3rJx5j9DOOWBjn8/ftzGk5/bsG1CPTNkICYYbfUS95XoNwSK+z1ACJFyEozWdV2ulPpIKXWRUkrb410p1U0p9TMA3wM4OmLWCgBXONzOrQAi4z8PB/CBUmqPqG0VKqWuAvBK1PL3ElEW/MwthBBCCCGEyBWmgbtFKQ5G8ygvClShdp7bkC/hPqgkYGfuh1SRW5IZFpQOXChA5GeECwb0MZ0PRPoVuQx3cBPilSinbV7BQiF/r4OUK3IVaMaXdfMZdxPGli4FqhAW9Hcejw5gbaNW2NAHiyUSNMK9Htz+NKZcAuFjbgJPQxRCK+nvzFTiKTV+/uQcTQi9baEtCDB3d+1tCEZTMHdgEvnng4aJ7Lzjy89KY02EToXh81zPhCMmE/e9P1u/mwkhhBBCCCGEEEIIIQQAwIo/1GpHgBZdfzpfSCngSMP8dNoR6gTgpO3vw2u4XvuPDwlH3mnj/W8zOyh/6Sb99kf0jTPgPhgA1rscptTWGv5XAojcGVSFQcG1uLruQbbID++22UCUdAjZhH9/ym//3IMUDhkW/j+1NgNzPtCWU4MTC0aj5iagfr1+mYHD2Hp1Vaoy9rM0MLgO19X9nV3mmHttbPFnrg3VMPsiAPjb2QpFcUJAAAAbVgEhhzcQjA4AYQIbda9lPlBKAceeyxf4719Al48BrVvRYXKf7go3ncq/V395h/DXd5mQlU5Y10i44DG+DV13Qmyd6Ik/seXVyAOTUq+8dNZl7Kyi9UswuEw/76oXkt8u0okLCAF2hYTQE7fHzLtv/fXaZdqCwJoG7SzXdSgLMSs6/BR3GxAil7SHNlUxwWjbWoCnZ2TPfuc/05ydg5XF6QZERMAL9/EFivU3d6Yd39Mi1dawq1FX3WOuiOj6jMFohs/WNn0gGACoy2+HcvA7Uc7oUc7Ouq8v3xf0runMyVKKrWskHP43G7e9RXhrHjD5245/L8wm/Py/hEufdh6MRv++xX1F8jHYXIgs0oX2wiKKAnAMgCcBbFBKLVVKvaOUek4p9YZSagaAOgBPARgUsdxyACcQkaOe8ERUC2AcgMhf3Y4A8J1Sao5S6iWl1GQAqwH8A0DkL8BvA0jgyCGEEEIIIYTIZ61MMJqCSkuoCzd4123Il3AetrJDwEWAishv7OD7BMKC0oHbr0R+RgK2vv17LbnrSLZwE0blUwXwWakPtXPa5kus0nCnsQxx89qZnlOy1pMpSikUe/TBb9HhXqawr0SeW4ml71TgD213tLzbYzoANpBJx3SeVWyVwmf52KDIRELbhMgHdYZAJFOQksSiiUjrWldj3vbZ2nl7lOyHwUXSGSTTenkroJguAab9QLI0237t9HSEBAshhBBCCCGEEEIIIUTCLP0NrTpYsxS07Fs2RAkA1CuLoQr0N+FMNxUR7OWBje+X7mMs3xoE/vhWZgfk1zA/Y1fxl7LC1q3gA4jOv1Y/PdB+/VoCiNxpf13u3XijsdhT0zMXavXet/y8kf2A53+hdvWZ+ehVvnBlYsFoWLucX2c+DqxmQgbv3HiTcbFnZmauDS3dxM+74miHQ3NN7SBaYFd/GgqF+GXzsf20Uyf/xFxg81rQaw/HTL79TPP79Zd3CNtaktvW/mUIZty9XziwLRKtWsyv7NyrklWtvKR6lAPV+2rn0ZqlqGbOL5ZvBprbMhsW2xl1cYLRaPFc7byfbXmWXa7GsF/UYUNKQvWxE48aC8Uda4XoCtrDlaqZYDQAuHkiIWRnfr+zss55HcridQNaMJOfd8zZwP5j9PMCLoPRqs3fc0U+MAWjGdr0Nj71U51wfifqk4W69WJn7R/gv0D/+7v+4ZDDNHtsGmH55vjlnppOWLdFP6+8dFe7oGWGHwlMJDBfiIySYLT8oAAMB3AygPEAzgJwKIDokWL/A/ADIuLPCjWIaCqAsQAiv9IqAKMBnAfgRwD6RC32AoDzicjh7Q6EEEIIIYQQIowbVFtkFacl1IULXeHqJXhuw+TcBKiI/MYFBrkJTUonLsQo8jMSZIIBvcqbkjoJ97hAK23ZNLVFp9txU/dU4MIB3Zb1WQXwKmedYtxsM524/VR0uJcp7CuR51biYYLRbKfBaM7KRQoygY86piC4kvbny56jJRDaJkQ+qAts0E4vUIXo5ulpWFL/nYuQ+c5YIv0+bHiTnXdC+dg01kRwPMqLXl79XR7rAy57KyeAOw5nY0itEEIIIYQQQgghhBBC7GQ56INWuxT48iN+fmkPoO/g5NWps6KCvXYLrEJJnL5bM5cBTa2ZuQZk28QGo1VHj06KxoSbAYAauod+RlsLKBgEGpiNDhwWZ6P5SbWHhSkAP9r+Plvu4+8zdy3xQ8O2/zzWgifi805fTeVXtDMYjemrFWL6QHDt0eMB+g3ht9dVMSGDCsCPCr5hF/sog21o6Ub9ti8d46K/8pplzssGI/rJbqrtEJTWQR4PzFfD9wJG7G8u9OXH2sljD+AXaWoF5qxIvF46prZ7yFBNGzLsh9Tg6iTUKM+NPEg/fXUNqvrwn+m5q1NUnzTgQsmA9iAj5ny2p70VvYP6PgVLN7nbJ/PBaJoQmmF7ulq3ELknvK8Z0cbHONQ28CHR6fTpYuef9fJ43YC+4L87q8NPBbhAcU0wGtUy59cHHh2nEiIvmMYUJhKMNurgztUnCymvF+jG9BFu2IjD/DPYZdczwWOp9NHCzn8X7LCPMv2WZ6DyOJhaiGwgwWhd1zQArwDgI0rDggDeBXACEZ1JRAn1gCeidwDsDeDRONucCeAcIhpPRDIiTQgH/H4/pk2bhieffBJ33303br/9dtxzzz145plnMGvWLLS1JS8cYtWqVbj55psxZswY9OvXDwUFBVBK7fx76qmn2GVnz56NCRMmYL/99kN5eTk8Hk+HZVesWLGz7NFHH91hnhBCCCGEGy1MAFmhVZyW7bMBRhK64Zrb14wLhhIiGhcYlGtBSJGfET4YLTr3XmSKR3nhc/h+pKstOg08y3QwhZvQwnhliy2nzzmzYXAcp+cZxqCwBN5PNpDN4bHaaYBaJDeBp6Yw1R2vGfe5MoXICZHP6gL63lMVvr4J/mYrwWj5ZkuwHrO3TtXOqywchj1K9ktvhQSr3KcfIcbtB5IlREG0Uot2XrZ+NxNCCCGEEELkJ+mfJ4QQQogYysFQq4VzQN9M4+cfeXp2HYejAnQUgNO3TYq72Effp6g+cazbAjQzXcVG9IvzutYyIQN9K4HuZfp5gVagxXBtubv+JiR578jTdv73jG1vs8WWZDDYoWYDfx3z+FFRE7i2A+wKYfIyN+wLMg12LROI1W8IFLeurmz43uys05vfY+e9yWempdy7C/TTq+KFNLajxs2ge69yvsHIIDQu+AMA8nxgvjrzUnOBmnmg5tj9+un7mY8h5/3LRksgef0fphl2K7q6kClE77CTk1Cj/MaGy82cjNP34d/3Cx6z0ZrEdpFOXChZjyLA61EgQ6BsVZu+PboJbCIi1DP3ni/TBKOpiHMLIbokK/xdc9/W+egb1N/YFABe/iLz+5w6F11vh5Sbj6+mfQ1+cCLgZfrf636b587ZmQBekWcs0+85/OeKuGC07r06V59sxf020rgJY/z8b12T5qd/37Rsc+fXsVvETzq0eG5iK8njYGohsgFzmwKR64hoLoDzVPhKyu4A9gRQCaAHwkfuRgCLAcwiom1J2uZGABOUUr8GcASA3QD0B9AEYA2Ar4loeTK2JURXFwqF8PLLL+PJJ5/Exx9/jGAwyJYtKirCj370I1x66aU47bTEf/x57LHHcNVVV6G1NTZF2yQYDOKKK67AY489lvC2hRBCCCHcaLGbtdPTFXAioRvJ4/Y1C9jJG3QgujYuMCjT4U8cJ/sVLhjNp/Kwg1wWK7ZKEQjF31clElyVCKfbKclwMIWbYIx4YW/FVim2heLfjijTz5nDvRbRwWDcMdSrfPBZ7gMTSzzdtNOdBp75Q/pyCgrEXEgOuAg85QLaFBSK2s8BJbxWCHe4QKRyX1/jcgpZNIBHZNTHDZMQJP21ixPKz8quwV55rtzbF0uxMGZ6PXN352RpZoLtgewNqRVCCCGEEELkD+mfJ4QQQggj40DaCJ9MZGepi36fpMokSe+BQGEx0Lqr792tm+/AjJJDsco3hF3szIdsrL3bQv+e6f3d/6aJ/GDb6jhhRMQFCVVWAz5uwH0r0Gy4Pl6cnX0MMk0NGbmzR8CFW57Hrwb8Q1tu2SYgGCJ4Pem/frSYyZsYWgH0KI6qD9d2Dj0Jyts+BNPDDMVkgtHYkKM8DbVSlgU67jzgw5dj5l1Y+zCu3O232uWIgEXrCSP7p7cNza817Yvi14Vam0ETjnK30UBEW+KC9cr6QpX2cLferua0S8LH4TkfsEXokoOB57/tcO36/IMVXp5DmPytfpn6JuCsh2xMvsbT6SpOXcS3n9JC4Mz9NTMMwTGq/26drlPeMwRa/OjNSwE8rp23qh44+xEbb1/d+XaRbvVN+nZYvuPUxhDAWBVYhln4Qcz0ZZuch6L424A25me38lB9zDQ18kDH6xYiJ7Ufkzyw8e91V+Cswa9pi936P8KZ+xP2rcxc/ysuWFFnWO84Bbjjm8cLVdYH5CvUzw9q+uQz61KVTPilyDOGzwwZjl/bGvXTuQCxXNejHFi3InZ642bcWHcv7up9g3axy54hHD+KMLR3evZNLQHCGuatcarIBwzoGf4/hULA5GcTW5EEowmRUQ5/rRe5isIWEdEbRPQgEf2ZiP5CRA8T0QfJCkWL2mYbEX1MRE8R0d/at/u6hKIJ4cxHH32EPffcE+PHj8eUKVOMna4AoKWlBW+++SZOP/10HHzwwfjqq69cb/Odd97B5Zdf7rrTFQDcdNNN0ulKCCGEEGnFBaMVpSsYjdmOhG64E7ADCJC7oDM3ASoif4UohFZq0c7L1iAkLrwqcr/CtX+vBKNlFacBX+kKgnB6bMx0aKCbY3i8ujr9nGf6OXP4/UHHYJHooLR4y8fdLheMxgSeOS3XzcN3wgy6OA/gnm+hVQyr/W7t3HvPLStEvqsL6EcAVMQJRuNwIYiia2oO+fFZ47vaeeXePjiw+xFprpEw4T7X9YEUB6MZfifJ1u9mQgghhBBCiPwg/fOEEEIIEZfVydCLH1+fdYOylWXFBDHt3laD2cuPwJNrLzUu++T09F4HIiI8PUO/zYpSoKw0zgDc2hr99EHDAW7AfaAV8BuGV5Xor6kLQF36RwBAKfkxc/mR2jJBOxwqk27BEGHZZv28u87pOKSStm8BGvXXTtT51+x64GH6ahGFB1lH44LRBuZnMBoAqHOv1E7vi0A0PwAAIABJREFU5t+Iz37ZwC535+T0X5O+YxK/zSonl9Y/mcjvkzgRASBs0GOeButFUh4P1D1vQf32Eb5Q7VJg/vQOk4p8Cv+70kIvQ3e1978Dvl7V+fZ26/9sdt7Xt1go8GqOZ8w+Q13yh07XRwCo5AMtPB88j9P30Pc9BoB3FgDzDGGJ2YoLNtoZjMYdpwBUtenn1ejvxehq+wBQbkft88dNcL5iIXKV2nUOetr2dzEksIot+s+PM7vPcROMNjxOeDUXwqiuvT/8nwJDgHUECgaA9Sv1ZSW0SAA7wwe1TMFoW+r007v36lx9slUPJvCtYSN62luxd8sCdtHHPkvfvmnZJvPb5sTw3oBltbeLLz5MfEUDh3WuIkKITpFgNCGEyCK33XYbjj/+eCxevLjDdKUU9txzT5x44om44IILcPzxx2P33XePWf6LL77AYYcd5roj1O9+9ztQxNnh+PHj8eGHH2Lx4sVYvnz5zr9zzjmnw3IbNmzA/fffv/NxQUEB/vCHP2DmzJlYunRph2UrKytd1UkIIYQQgtNi+7XTC62itGyfC73xS+iGKy0JvF5uAlRE/jIF4GRrEBK3X4l8Llz7l2C07OI08MxpgFpnOQ4Jy3AwhUd5UGQVxy2noOKGqDkPg0tPOJ1bTvYHAB80kuh7yQWqBagNATt+MKnf1gej9fTyd8oKkHmwYYf1M883st7cPl7O0YTQqwvoeylW+PoltL7c6/opOuPzLe+jmfluflz5mfAob5prJEzKffreh/XMfiBZuDYCZO93MyGEEEIIIUTXJ/3zhBBCCOGI1bmhVmqvHySpIknWf7eYSb1DdfjJludx6gj+uurMpem9EmQagF/JX4LeZQ0z6H5QFVDA9DEkArY18usskt+1WREBBKNav2eLLUntZQmtlXVAQJNVBgAjokOtmHYDoGOQjtfQVyuk6QdRt15bVA0Yyq+nqzMER+4VXMLO+359+q9KL95gCEaLFwACgBbMcL/RQEQ/wc3r9GUGyKB8oD3087SLgR7lfKH5se+B16Nw/YnmkM3pSTj21fI5fxhaETuNiIC1TEiVIdBLuDBwuPE8bw+r1rj4G1/nXu8Yrh1WlALU1gps4EOZ2GC0TejwO5eJMRgt1LFyareRjtYpRE6LCm06ZftktuiMNH8Pi9bAd/uJMaIvf1w1BRDv/C5hCrDuUKmNgC6MOHJdIr8lEIxGRMD3X+qX6dk7CZXKQj00J6MAEAyPGdi3dT67aDr3TVMXd35b1RHf/WnBzMRW0nsgVFF2jj0RIl9Ir3QhhMgS11xzDR544IEO07p3747f/e53+PGPf4whQ4bELFNTU4OnnnoK99xzz867Sba1teGyyy5DU1MTrrnmmphloi1atAjz5s3b+fiUU07Bc88956jOEydORFvbrh/d77jjDtxwww2OlhVCCCGESFRLqFk7PV0BJ1xwSCJBX/nMFFLiUwUIaEKgAhQ/mEUILiwIcB4SlW5OwnyCTPv3KeYOSSIjHAejpSkIwul2uGNbOhVZJWix9cf4HQqtYljK3AE9V8LgOFwbij5ucsfRRNtWiYe/u7Xf3o6elrl3ORdc1t3TCwoKpIlMCtrOA0+50MvI95ENlTMcF4TIVzbZqA/qOxtV+My3tVamjiMiLwQpgI8a3tLOK7G64bCex6W5RiIeLhhta6gRAbsNPis13ylMx2AnobhCCCGEEEIIkWzSP08IIYQQjsW5Lh3XISckpx5Jpo45GzT9He28c/svxaQl+2rnvTUPeHG2jfMP6eTr4lCNIUDrR3ubr1VRMACsW6mfOXgEUMAMuAeArfX8PAlG40WE9ZSSHwMC67DONyCm2MkP2Nhwr4U+3dN3vXHBWn5edfRl0VomGK2gEOgTEUJsCkYLBmLb2DYmkabMfF22S+tRDnTrBWyPDSPsuepLAIdoF5vJ5EWlChHhG0NGUvciB235w1fcbzgY0Z9ma52+TJmDVLY8oZQCHXM28KY+wJwevQkY/5uYvg7nHKRw80Q+aOGqFwhXHE0J95FoCxJWMm9f96JwOFuMuvVAC5NCM3B4QvUQHamSbqBDTwKY86Gz6SPcDT688blZhFtPT1XtUmPpJn07H+rZBDprfzYkBkqhKqA/Nja1Ahu3Af16xN++KRitVyjqOPDDM+OvUIhcF/Vd85ytr+HRssu0Rb9dC6xtJAzslZn+enNXOw8kOtR0mPrwZX5epctgtK2G1FE5PxJAQsFo+G4OsFn/5VGNPCAJlcpCcYK6z9n6/9k77/g4irv/f2bvTrrTqctykWRjS7JxwUCwTTEYDDY9ENoTCCEklOQHcRqBhzwQQhzTTBJInAAPIYUaAw8x3RQXsAEXjLGNbVzlLldZvZyku9v5/aHiK/Od25PuTifp+369/LJ2Z3Z37m52dnb3O+95A3OzvqNMW7INqG6UyHHHv236cGP3xWjF+QHlXLWwazth8SLD9DiJeSrNMAzDaHn++efDgq7OOussbNq0Cffcc48y6AoASktL8eCDD2L9+vU44YQTgtLuvPNOLFmyJOKxV69eHbQcOutkPLZdsmQJpJSd/xiGYRiGYaKBkqY4EyRGIwVGLN2ICt33lWlXy1dUsjSGCYWS5wCJk1FFCyVyChQJ+KRiRlEAdsHzHiQTLpu1a1GiJH1W5V/JcG5YkbNZydObZHAqqPKHikUo0UhXP1eaoRGj+Rsibt9kqvOk2dJhF+qg4Giu6x5THfQX+H1Rn113XWCY/kqdv4aUrkYUo4EKZuDnvP2F1XWfocanjuA+J+diFl4lIbrzmpIkxgJK5Oo00mAIW9yOyzAMwzAMwzAMo4Lj8xiGYRiGiQqjG88wx50GkZqkz8qnX0cmXZeyHG6NM+z6f0jMX5+YfgUl8ACA+y+NMPD20B7Ar46xQWEJPeAeoMVoKU4IO8fnkIQMEC5tLSOznv8nM6H90yufMpXrC7MBd2pIXSonyl1QDGEEDL/UidH8inewVL3K1E9Q15cRQgQJ9QKRc+7E0zfQ5/lb6xJXf575hD7WS7dElgDIw3v1wsVCwiDiDRSjqeUfIisv4vH7E+KW+/UZnn8kbNWoQQJ/vlb/Oz6+sOv1bXclYBKb/+c2Ykj3AY39j6ovTNSInz9Gpk14XS/ALzvSJr3rTVDC2ZKlT9DyTiGASdNR2krXSZ3INhBKjJblr4Ed/uDDDiiwtlOG6c2ESJvOafoU5zfQop6Rvzbhpy4ocaTZK7H5oLW8354oYDPU11R5cDfkH3+i3tCRckxATAmsW0PFaJq+VUb/7V8zgej6d+pzSd42RZ3dMIBvnNP9IiUhgrgf6+DShvdQ0krIwwFMfzz+9/YtXomPtqrTzj3e+n5K2p2Jsqke2LSqa4XhvjjD9DgsRmMYhulhtm3bhp/8JPjmbvLkyXj//fdRVFREbBXMqFGjsHjxYowZM6ZznWmauOGGG3D06FHttocPHw5atnrM7m7LMAzDMAzTVZoJMYbTlpiAMlJgxNKNqKC+LwED6Tb1FFI+Uy1vYJhAKOmegEiYQDFaKBFSq2zplJZ4TbVAiBIOMT2DVSlXokRklsuTIFFbd8tgKY/Fz+xMVjEa8RlDxSLUdbSrv2WaTSNGs9DHoeRpaYZOjGb9uk6K4AI+L8trGcY6lV46OjGSGI2CB9j2D6SUWFT1hjLNLhw4J/vSBJeIsUKOfQCZVuWNnxiNen7jStL7MoZhGIZhGIZh+i4cn8cwDMMwTNQYXR9qJf7rpzEsSGwRdjtwylRlmv3Adiy9S/+5n16qlkzFmh3Eo+txBUBaqMwqlP30wF0UFtMD7gGghujXuej36QwgMrKBrGPvIkZ66d9gfTnwGe1NiylH6uj3lyMVr0RlOVHuotLgZZ0YzRccByFbPECLeiJgZObS++kPFNID8c/P3kWmPbYgMe0QAPzlI7oOXTA2shgN771IJolfPU3LKgPrUZ16wioWfwQjcgZCzJhNpss3/gZphtedn00zcPtU+rd8aknX4yB00qgpI4mE/YSEyp0JsAwvZoiCYuCS76vTAJyQR7Tb7by3IQ6FihNen8Ruohkp9RCmEQAYNAwYMRYD/EeR4a9TZtGJbAOpalLny/WHSNmmXmVpfwzT6wm51xQAXt5/I5nd4wUWbY5zmRQs+Np63msm0NdS+T7dH0JBMYStTUouKIG1N2T8BCV0dKVDOFJ0xWT6C0LTT1f0B+VOTWUfPREiPSsGhUpCNPdjAGCDiXf2XUmmr90HrNsX60IFs2wH0NiiTrvuVAv3Y+2U5Lfn/Xhel8siInxfDMPEHxajMQzD9DB33XUXGhqODR7Nzs7GvHnzkJ4e3Qu0gQMH4j//+Q9SUo7dwO3fvx8PPPCAdrvAYwOAw2F9UH13tmUYhmEYhukqpBjNSIwYjRKpePzqcjFqKElJmuGGQ6hfSrRK4qkmwwRAyYKchguGSM5HYTqRU0fb4iMEQg6DX+IlE8kmIrMqnUhLAkmYle/OUh4L361DpMBhJOczDOq3CBWDUdfRrkr3HCIFdqGe4ZqSngXlIdreNBt9XfdJtfAxmv0Hfl6W1zKMdaq8h5XrU4UTbiMjwaVhehObGtfgQOteZdrpmech056d4BIxVkgxUpFpU/82OlFid4l1f4VhGIZhGIZhGKarcHwewzAMwzBR0534kuFjIufpSYqIwZzlZRg1CHDY6E2/3BOfIoVCidFUMqsw9hHWrfxCCGca4KTjKGSV+h0a0vi5dkTyCzr/HNuySZt1zd7ETLj0VTmdNqZAMYi6nKg7oeeMTR1bASBMjIa6KjpvPxejiRFjybShh1aTaftr4lEaNUfULiAAQJ6F20m5bQ2dePIUWt4RKACpI+Qf/bz+KCk9kU6rOgQcPaBM0knudh0Fqhq71maVHVFvNzQHcDrUx5SU3LOwBEIn+WCiRow8iUz78RDNuQvgywRdx2LBzqOAn/BJlrRqZLKDhkEMHwMBoNSrFvbp5H+BVBGhe2FitAyON2H6C+HtebZZiwInLWX890qJOk9i256NB6wf77QRmsStmjY18N6Z6hf5QuKMqf41942YDnR9JtXkv7o6OuHc7pcnWQkVgCsY0bobLmL8JgB8uSe+7dIHG9X7z3IBF58QjRit7X+5bW3XC1NY3PVtGYaJCck5GpRhGKafsGXLFrz77rtB62bPno3Bgwd3aX9jx47FXXfdFbTun//8J6qriYfhaJu5sqt0Z9tYsGnTJrz66qt46qmn8NBDD+Gxxx7DCy+8gC+++AItLV2XZvh8PixfvhwvvfQS/vSnP2H27Nn45z//icWLF6O5uTmGn4BhGIZhmK7QbKof+jstyl+6i066IVUPShkllKTEZUuDQ6gD+ikxFMME0hsH31PtCnDsXPES9d9OnC9Mz+CyJZeIzGp5EiVq06E7DzqwInqz8t0mc3tA/Rah103qOmrle1QhhCC/F0tiNCJPmi2dlNBR7ZqKUDFcB4FlpsrP8lqGCecoIULKcwyMGEwrFMFZTP9hQdUbyvUCAtNzv5Xg0jDRkOvIV66v8hKjy2KA7r6fYRiGYRiGYRgmUXB8Xvfg+DyGYRim32LT2MF0lIwHisfFtiwxRlCDX1ctRLpT4Mpv0O+CDtUBjS3xj4/bQchkivMjv6eSi19TJxS2y610A+YP71Ovd0Un1O2PiGnf7vz723XzYNfEA9zxqoTXF/96tJ2oRwBw4+mKukQIiURhiBjNronVChOj0fcJ/V7ecP61ZJLxwI0Y7PYp03YdBT7fGf/6U90oUUnIfCYcB2uSqs/eJZNEUSkt2TP9AADp9wMNhAkuq5/XHxUnnwO46LgpeXUJZHV4rMRFES7b6zWSRR1lxGvYUp3kc79aQMUihjhw3jVk0jU7/6rd9KH5Ek0J6A91Bykl/rTQxJj76edKxa276B24M4BzrmzPp66XOy2GGlBitBx/iNyov18Xmf6DodZ63HDcbnKTlz6XyP2Ficv+6kdNU2Lan2qLYbdTRwFDcwnhZ+UhYPl75Lbigu8cW6DEaK0hz6BJMVqOrphMf0LbTw8/fyTV/wIgvnlTDAqUpOQN1orjAcABH75dN49Mf3d9fNujD79W73/6GCDf4mMaQwDH5QHS0wi8/nTXC0NNMsAwTMLQTFPAMAzDxJs5c+YEyTMGDBiAm27qXmf5F7/4Bf7whz/A6217qdLY2Ii///3vuPvuuwEAu3fvxogRtIb73HPVFuNnn30WALTlox7u79q1C8OHD+9cnjp1KpYuXdq5HI1AZN++ffj973+P1157DYcPE7MyAXC5XDj33HPx/e9/H1dffTVsFl5Qb968GQ8++CDeffdd1NWpp3dxuVy4/PLLMWvWLIwaNcpyuRmGYRiGiR09LUajpBsmTLTIZjiFKyHl6O3oBCcOQ/1iwytblesZJpBYy4ISgU7S1CF6o8SAlEiQ6RmsXosSJSKzCwccIiVi+5koUZsOK7IyK99brPL0FNRv4ZWt8JreTslYEyUa6cZvmWZLR72/Nmx9k9kNMZqRDrsgruum9eu6lbZdJ5WTUvLMqQwTQBUpRhtkYWsikEkRNML0LXZ7tmO7Z6My7aT00zAwpSDBJWKiIdeRj93N28PWV/ksTuPcBUgxWhL0PRmGYRiGYRiG6T9wfF4bHJ/HMAzDMFEi1IPVI2720KvJ/14yVPIUgFw2H09efwk+3yWxp1KdZ0cFcGJRnMoWcAwVWpkMANnUAGxcoU5sF8KJVBdkihNoVchYj7AYrct855fA3+4DABT4DuI/5dfhiqH0AOqH3pOYeXl8z5UyzSuQ04qDjy0b6wCFMAlAZ93pJCoxGiFuAICM/i1vEAXF2jfM8/ZcjTMHvKVMO2O2ifq/GnCnxq8OUVIrAJh7a+RrhFy9mEwTtz/c9gd1D+Vvl8LVVwPUvVwGC4RCEXY78NQSyJsmkXnkb2+A+MuCoHWpDoGV9xg4/RG1QOrSv5hofDJ6YSol+SwZqKm3lJijgMVosUbkDoLMGahs+3O/fBsfPtGKC58kJD0Afv6qxN9vTN4+35vrgDtfo1vZAu8BuKXGeuR0Q2RkQwIoaVWLQ8s0AtJAKDFarj9YHir6+XWR6UcQ94v3j96I328dQ25mSmD+BuCmZ028MaOLIu8osCJGm3gc8OItdL9I3vtf9MalJwJTLj+27EhV5/MGi9EkJR7mNoTpRHN9VvWtCUE2AIgC+j1Pb0cIAVlYAuzYoM33+OH/xvPZ31Omvf0V4PVJOOyx7xPtr5bYsF+dduE4gVSHgMsBeCLM0T4sF0ixC5iP/rx7BeL+OMP0OF17Ws8wDMPEhA8++CBo+cYbb0RKCv3gzAr5+fm47LLLtMfpjUgp8eCDD6K0tBRPPPGENugKADweD9577z1ce+212LePeEnZjt/vxx133IETTjgBc+fOJYOuOvb76quvYty4cZgzZ06XPgvDMAzDMN2j2VQ/ZXcazoQcXydXomRfTDiU0CXN5oadED15zQhPLRkGvXPwfarhhCAe03V8HkqMRp0vTM9gtZ4lUkRm5VjOJDg/rMgLrXwWK79BMojgKHS/RXNA+0YKRrshfUsz1MHcVvo3lDwtzZZOChypdk25f41QVfV3IB3yWoZhjlFJitEijCbRwGK0vs+i6jfItPNzr0pgSZiukGtXn99VXovTOHcBqg+RzNJqhmEYhmEYhmH6HhyfZx2Oz2MYhmGYAIwuDLVyZ0JopGNJQ6jkKQD51t+Rly6w/UH681PSsljR0CxxiOgqlORHGGz7iVqiBACiKOC3ySSEQoeJPo0zMRO29maEzQYcf0rn8jcb3sfMillk/ueWx//dIiVs+cFkRT0qpwfDoyjkvNaK0XzBy7WEYdCVDuHo3n1Jn+A7vySTTjr6CYTmHfTbX8W3DlH1x+UASvIjby/f+gedOOG8tv9tdnV6hxitjqg/AJDFYjQVovREYAwtRsPapZAHd4etPnWEwNgh6k08XsDTGn19o+SMpbr6c0AtRhOh7RATE8TVPybTph99F898j+53vLxKotmbvHEyzy1Ti/46oGRnnXRIYc/6Jkq8u5RZdALJQKob1d9TrhkiN6L6ZwzT1yAk3C6bD09cH1ku9M564Gh9/NufGuLc/X/nCOx91MDOhw2s+rUNhTnEJKt7twGbVpH7F/f8PVgqnmJNjEb2r7kNYTrQPc9RitEIMe13/zs25UlmLPQxs8w6/KbiITJ9waZYFugYn5XR7dyF49rajhwLIYgl+YBsbgI+eq3rhcnMhcjI7vr2DMPEBOIJCsMwDBNvysvLsXv37qB1F1xwQUz2fcEFF+D111/vXF65ciW8Xi8cjt45YN7n8+G6667DvHnhswYNHjwY48ePx4ABA9DS0oLDhw/jq6++QkODekBuKB6PB1dccQUWLAie9cPhcODkk09GUVERUlNTcejQIaxatQpNTU2dZfrFL36B6upqzJw5s9ufkWEYhmEY6zSbHuV6p5GYACSdcMVjNiIHAxJSjt4OKXQx3HAIddCPT7bGs0hMH4GU5yTx4HtDGHAZaUqxUIcYzctitF6BVclDIkV9TpsbtX5ihqx2kkFOYeU7sXIeuyz0B6zk6Sl0v0WT2YgMtL1YoySQ3ZG+UcempGcd+KWf7J+1idHU13VvFNd18vMGlDmSvNZpuCwfj2H6OpVe9aBWK2K05J3vloknFa0HsbZ+pTKt1DUWI1yjElwiJlqo85sSJcYCDyG2T2ZpNcMwDMMwDMMwfQuOz7MOx+cxDMMwTDDCsNE6ntxBQFX4uxZx3R1xLVPM0MnbDu8FANhtAiX5agnam2slvnUSYBjxeWu08yidFklGJHdupBNLTzz2d2YOcPRAeJ6K/eptXepJxpgQSk8Ctq7pXJzgWUNm3VsF1DZJZKXF7+3jdsLzO3KQYuV+QhCTkgoMHBq8TidG84fEdx3arc6XY8Gs1Q8QpSeSba1TtmCM6yg2edTf1Yb9wHfiVzRSalWSb7H9o+oUAAwd2fZ/JDHaob30PrK5DpEMGwVs/oJOX/cpMGR42OrifGDTQfUmWw8DJw9Vp6nw+SV2Edez0oGEQKa+hpa9FBZbPzhjncC+QQhyxwZMuOgagGilmlqBXUeBMYRQr6fZqOjmBHJSywZ9Bld7fGVGLilRq2psk57luPVtYh0xn2mmvzZ4BV8bmf6CIM4Z08TJQwWodqczm2y7Lg3IiH3RAqki5lPOSQOKCBlaELs0tqQU57H+UAdOIpaosT54+aBa1shtCNMJdY4BhBhNfZ3rF2Jai3L/k5vXk2mf75K49MTY39cfrFWvLx0IDM1tO97ADOBAjX4/JQMFsHcb0NqNCdYHFnV9W4ZhYgaL0RgmyfD5Jcr1Y1WZGFCU0/bCridZtmxZ2LqJEyfGZN8TJkwIWvZ4PFi3bh0mTZqEoqIi7Np17Abwz3/+c9DMii+//DJOP/30sH0OGNAm+Jg6dWrnuuuuuw6ff/5553LgfgMpKupex+/OO+8MC7q65JJLMHPmTEyaFD6bh2maWLlyJV555RU899xz2n3PmDEjKOgqKysLM2fOxC233IKMjOAnBB6PB0899RTuu+8+NDe3dYRnzZqF0047DRdffHEXPx3DMAzDMNHglz5SopE4MRp9HErIxIRDC07SYUA9SwclhmKYQOIhC0oELptbKR/qaFd8RP13sBgtqbB6LXLZEifmslL3k0FOYUmMZuH7tSJ5S2ZRolbA2t4eSCnjIoFMM9TB3E1+/eA2Snbatk83KXCM5rpOte2B5xzLaxnGGqb0o8qrjsDNc6hGAYTCarT+yOLqtyGhnlH4/NwrE1wapivkOtQBgDW+KvilDzYR+7ABsr+SBH1PhmEYhmEYpn/D8XmJo6dj9Dg+zzocn8cwDMMwIRjq2CUAwGU3Ay/MDh5Q60gBLvpu/MsVA0SqEzI9G2hQjB49sAtSSgghUDpQLUZ7caXEJ9slPrvbQKGVAfFRojomANgNYFhuhI0P7KTTJpx37O+MSDsKgcVolhCX3QQ5/9nO5fMbF0NIE1Koz6ftR4CJw+NTFr8pScleab6i3paXqTMPGQER2h5QMisA8AXHQUhqvxYHoPd5zv4WkJVHyqBuTv0Id3muVabNfl/i4Ti+pqTEaEqxXghSSqCcEKM5UiDS2tsUqi511KMDhPgjdzCEM3knhexpxFW3Q374bzqDQm4KAD89z8C769XvxE95wMTa3xg4aai1697eKsCn3hVKqfnqdNewAhajxYXTNPL8Fx/FyT/8HcYXtokYVSzYJDFmSPLF0LT6JPYQjj0AMKQfP6h5Qb+TDkFRZg5KWxeT2XZUABMjvP5vaFGvTw+NByws1e+IYfoKlGC1qQ5nFANjh9Cizg52VEicWRrf9qdaPRcicix2QeRHr9GJ538HwhXSeGTmqPPWV0Oa5rE++X719VJw/5ppRwih0QsGp8j6GqCuSp21H4hpRWFJBBVjGxc3fECmPThfYtQgEzecrnmO1gUoOeOQrGN/l+QD6/bp91MiDkHeclr3CuPO7N72DMPEBBajMUySUV4NFN9LPP1iYsbOhw0M7+GxkOXl5UHLgwYNQl5eXkz2fcIJJyiPN2nSJNjtdgwfPrxzfXZ2dlC+wYMHB6WHkp5+7MWe0+kMStNt11UWLFiAv/zlL0HrZs+ejV/96lfkNoZhYPLkyZg8eTJmzZoVVs4OXnvtNTz77LGXb8cddxyWLFlCfg6Xy4U777wTZ5xxBqZNm4bm5mZIKfGzn/0MW7duhaF7Cc4wDMMwTExoNj1kmtNwJaQMDiMFduFQSoooaQcTThPxXbkMN/zSr0yjpHgME0g8ZEGJIM1wQxWL4DEbIaUkxWiUcIjpGayIu9ryJa4+RiqTgIFUQ33fnEisnKPW5Gm9QwRHkWo4IWAo5TMd185W2QIT6mtldySQaTZCjBahf6OSOgbu02GkKNO8prXrul/6yT5g4OdleS3DWKOR2A7JAAAgAElEQVTWVw0/fMq0PAcVgXsMQcyoJy2FSDC9kXpfLVbUqgNdB6cUYZx7gjKNSS4oMZqEiRpfpUUxYnQ0m+ooyURKghmGYRiGYRhGBcfnJY6ejtHj+DxrcHwewzAMwyggRE4AIEZPAB5+DfKJu9sGZQ8fA3HXExCDj0tgAbuHmD0P8ifTwhOam9qEMXmDUZwvEDpouIM9lcCMuSbenGGLednKjqiPOXyABekuJSK65PsQ9oDhc9Sge4q05I0xSCbEuNMgr/gR8OYzAAA7/Ni64wSMKt2kzL/tsMTE4fEROuytArzqsAql2EpSdWeoQtJi18Rq+UPew1L7LWJxA4A2udcTiyG/d7Iy/ee1T+MuqMVoALCzQra3VbGHaotKrByv+gjgUcfSiD++c2yBEqO11yNJidH6gaShO4ixk7TRC/LIPuV0cOeP1f+23/6biS0PGGTMRCCUWA9oEzgoIUQvSEkF8gsjHpOJHmF3QJ5/HbDwFXWGg7uw8I4RGHyX+jniHa9K/FzRneppdlcCpuYkeL382zi5Zb12H6JdCisy81DgOwCn6UGzYpxG2ZHI1/JGUowW0E4KARSM0O6HYfoOROzdcw/DuOYnWHCHgR88a2LpNro/u5OQSceS7ojRpN8PfPQfMl3c8efwlZmEvFpKoLEWyMiBbGkGDu9V5ytiuSJjARlygdSJafuDbM/ifWkKvLigYSEWpJ+vTL/xXxJnFEuUDIzdvRklRssLeDxTOpB+btVB8YePatPFA69A/uY6fWFCRY4Mw/QI/IaYYRimh6iqCjYJ5+RE+YJNg9PpRGpqqvZ4vYVZs2YFLd92223aoKtQsrOzlYFXUsqgfdvtdrz99tuWgsc6Aro6KCsrw5tvvmm5TAzDMAzDdB1qUC2QODEaQEtHPJry9RV2ebbi5UNP46nyB5X/Xjg4B+vqV0bcj4cQlKTZ3HAY6uAhn6kWQzFMIOTg+yQWIQG0FKrJ3wifVMtLAMBOCIeYnsFKPbMLOxwicb9bJOGYy0iDoQnqThRWhF5pVuRpFvJY2U9PYQiDFHx1tG/UNRToXltHfS9Nflp8Fik9zUiHgxA4UsLHUHT9v8Df22GkkOcWy2sZ5hiVXvXsx4A1MRpJaNAI02dYWvMeKak+P/fKpOhHMJHJtdPnd6U3PhGTOiE6wzAMwzAMwzBMIuD4PGtwfB7DMAzDKNDJOA0bxFmXwXhlM8SiGhgvroM46azElS0WHDeaTmsXs5RS4pZ23lkP1Hli/35oB/HImhTJtCOlJAc1i1OmBq+gBt1TuNSTjDHhiO/eFbRc7N2N8c0blHm3a8RB3SVqKVF5mTqzajC8TSNG84XEQRBiNMHihk7E8DEQ//2UOm1/GZ6/iR5c/8oX8XtHXUa0RaVWXqlTQjwAGDHu2N+kGK3dgnJwtzqd5UGRGTiUTtP8PheMpTfbfgT4co+1w5dVqOvmkCzAnUrUaapcQ0ZAsCQ8bohJ0+nExf/BwEyB6WPoLPuqki9WZu1eukwNmI5vNrwfeSeu9vjFzBwYkChpVfexqLYy6JikGC0gniC/CCK15yf3ZZiEYCPk0rVt06sXZAssuMOGmjkGpoxUZ423GE1KiUoi5DYnzYL4aMNyOu2KH6nP9wzNs/u69ufuh/fQMYosHmYCoUS2ofWH6n+lpAIDCmJbpmQkCvnb+Y2LtOlvrottn4iUM7qP/bZW7s2KDyyjEyeeB+RamEyWnwkxTFLAd8UMwzA9RGggVOjMkN0ldH+VlZUx3X8iWL9+PZYtO9bxzMjIwKOP6g29Vvn444+xcePGzuXvfve7OPHEEy1vP2PGjKCArrfffjsm5WIYhmEYRo/H7yHTnIREJB5Q0hWdqKQvsK5+Jf649x58WvsBNjauVv5bWfcxnjkwG/OPEjNotaMbIE1JTajB+AwTSBNxHib74HuqfB6zET5N3XcIIkCK6RFctsjXIpfhtjRzZKyIVPetiMQSgZVyWDmPU4UTRoTH3onsM3QFnSgRoK+hum2tkGaoX9xFFKMR5TFgwGm4un1d1/WvQoV6VB2hrg0M0x+p9KpHAbiMNKTZIr/Ap65gyRfqycSCVrMFS2veU6Zl2XMxMePsBJeI6SouWxp5ra+KkxhNJ0RnGIZhGIZhGIZJBByfFxmOz2MYhmEYAq0Y7ViaSE3cRJ4xJSsPSMtQpx3YBQA4dYQ+rkFKYBs9H0+X2UnIZIrzI8RZVB0GPMR74dBB8rpB9yp4EKx1FDKi0lb1YPPfvSPjJpTZfkS938GZQIZTUZf2RyEwo2QWQJAYTbY0A0f2qfNFMQC9XzCUEMXVVmLSwHpys2Vl8ak/tU0SFcRhSwdaiPmiRHvuTCB7wLFlUozWPolqLXGPmV8YuQz9HHHVbXTi7i1k0qQI175bXzDxzlcS9c36ukfJGXXyBknIPVFYrD0W003GTiKT5J62unLyULpefPh18kXLfPi1en1JPuAs32xtJx19n5Ent23rJcRoFiSnlBjNLQP6bSw0YvoTjlQySTYdi9V1pQicXqxuf176XMLnj1/7U1EPNBLn7uAsCzvYQ19rxegJ6oSsPHp/ddVt/9donr8PGmahYEy/waoYbT/R/yoo7h9i2ijuKyZ5VmvT1+7tbmGCqWxQt3G5AWGHp0XouwPAqNbtdOKYSYBDPcYhCH4mxDBJQT9olRmGYfoniRxkHS8WL14ctHz99dcjMzMzJvteuHBh0PK1114b1fZpaWk49dRTO5c//fTTmJSLYRiGYRg9LWaSiNEo6YZGVNLb8Us//u/I3yFhWsr/fuVr2sHV1ABpl+GGXahnVfRKr3I9wwTiIc7DZB98Hyr36cDjb4RPU/fthHCI6RmsXIsSLemLJGuj6l6isfK9WJF+CSEi7itZPjOFi6hHHe1bNKKwaKCESJH6N41+dTSoy9YmAezudT0aERwpr+3DfTSGiRZKjJbnsDK1NUCr0Zi+yIraxWQ7f272N+Ew1G08k5zkOvKV66uIdqE7SCnhMdVTNya7pJZhGIZhGIZhGMYqHJ+nh+PzGIZhmF6N0InRNFKkXoIQAigYoUyTL/0eADC5BBgZ4fXR8ytiPxh/BxFuVqp+xH0MakAzABQES2VEZm5UZRKu5I4xSCaEYQDfOCdo3UjNQOTjf2PizbWxr0f//Zp6nyMHha+TjXVtYj0VClGLEAKwE+/IAsRoOLArfOB9B5QIrL+iEcUdv/1dMu39jcAXuxPXDgGR20UAkC88ok4oLAm+j+yiGE1kRdeG9UsuuoFOO7IPslr9I99ypkCGU5kEAFhfDnzrSROTHjKx6yhd93YQcsYSQvIppQTmP6feGYsU44o4bjSd+OG/IU0Tt51DP//50YsScz+3FlefCKSUpKxtWkkLUF9tbUfO9r5PuziuhJCcvrBCwjT17XBDs3q9OzCejwWATD9CXPn/6MQvFgUtFg8g8qHtetTYEh85Wrf7QuXqNgMAcO7V6vVpGbSAuK59ApT6KnV6ihPCybFITACkGC34mi0JQXZ/uS4JwwDGnho5I4AzPSsw0fMlmT53lcTKnbFrk6qIsP9AMdoJhfp3dAWOergk0RFxpUN88wcWxWj8TIhhkgEWozEMw/QQubnBD6Nra2tjuv+amhrt8XoDy5cvD1qeOnVqzPb92WefBS3n5uZi9+7dUf0LDALbvXs3TDN5HmYyDMMwTF+lmRhUaxf2hA7I1gmM+iqbGtegxmd9lnMTfnxet4RMbzIblOvTbG44CNGTT7ZaPj7Tf6HkN4mWUUULJfNpMhu18iBKOMT0DDZhQ6rQREch8ZK+SHXfimwsEVgRelk9jyPJ4JLlM1OQAtb2fgYlCrMLBxxG12WJ9HHV1+xI6W6jbYbx7l7XKakKEC5WIftoLEZjmE4oMVquRTGaIMVoyTcLLtM9/NKPRdVvKdOchgtTsi9McImY7kKJ0Sp9sRejtchmUqye7JJahmEYhmEYhmH6DhyfFxmOz2MYhmEYAkMnRusjw7Cogb57tkB6GiGEwKp79Z/1yY9lm8wlRrT6JPYQ4WmUTKYTakCzOxPIDjEKZOZEVzAnP9eOBnH3U0HLIwmZCgA0e4FbXzDR7I1dPTpcJ+EhQq2U9Ugn1aOERFbEaPvL1HkMAxiiFhP2WwYUAKkuZZJ86Gb8+Vr6/J/x79jfI2wnpFapdqAwW7+tbGqg61RRiBAvkhiNEhhl5ukLwUDkDYZ44BUyXT5xt3L98AECn94d+Tq/7TDwmzfpdquMknxSYRlffUYkAKKfiDl6EvHTP9CJaz5Gcb5Aeiqd5baXJOqbkyNmZsN+4CDx+OvCAeXWd+Rqi8kTQgDX/UJ7Lf94K70bv0lfk9MDxhEIFgAy/YnLf0gmyd99L2hZdw/0/kbg2WXxaXvKiL5QhhPIz7CwA+re7JSpEGnqHQghgAzi+XpHn6iO6hv1vufyTLyhxGghdZvqt/ej65L45V+s5QPw4d5LtXluf8mM2TMiUowWMkTkl+fT7eQruU+SaeLJjyAKigGbhbFYLvXE8wzDJBbiCQrDMAwTb0IDoaqrLVr3LdDc3Izm5mCTbV5e73v4ffDgwaDlcePGxWzf+/btC1o+/fTTu7U/0zRRU1PTKwPcGIZhGKY34TE9yvWphjooIl44CeFKX5ZuLK9dFDlTCCtrP8JFudeEzZbuNVvhI0RPLsMNByF60smhGAZokzc0E+1EsouQdMJF6nwB2sSQTHLhsrnR4iNml0HiJX0uI4IkLEnEFJFkZoB1iUZEGVyE76SnoeR5Hf0Mqr/RXclImk394q5VtsAnvaSIkRK1dXwOSl7rNa1d1ynxrNNwwSaCZ4gjJZN9WF7LMNFCCZAGOBTTo0eBZDFan2Nd/QpUeg8r087KujDp+9dMOLl2daR9lVcz1WsX0Ynjue4wDMMwDMMwDJMoOD4vMhyfxzAMwzAEho1OE31EjKYTM61eDEy5HFlpAplOoI4OgcCmg8C4gtgUaU8lYBKvnEoizPEjqQHNBcVhsWtRD5znQbDRMXh4m/CpXe40snW7NntVI/DJNuCCGHVF311Pv7ccqXolWk4IzBwpwMCh6jRKjNYhtAKAQ3vVeQYNhXB0fdK7vogwDMjCYmDn18r0E/JbAKi/s9V7gL2VEsPyIsgTo6CMmFOoJB8wjAjHWb2YTisKESzYiGtNRz2qq1KnRyt37K+crpnoa8tqMunEIoG7LxL4/Qf6GIg31kqYpgyrE6YpsTNKMZr85E36QCxGiz/FJ5BJcumbEBOn4epTBJ5foa4TDS3Awk3AVafEq4DW+XyXuox2AzjPvt76jgL6PuL4U1Dy9r/IrPPWSEwbo24bmzTzproDJ0sdOtJ62RimlyNsNshho4C928ITva2Qfj9Eex+hWD3/YSevr5H4yXmxL+NuUlaN8HsrFYQYTXzjHP12mTlAjeIi2tEn4r4RYxWqnoaJ0Yi62p/6X1F81iyzDr8dvxW/23C8Mv2rcmDX0chtlxWqiTnVc0LCDieXCDy+UN3/GVWxUr2T6++EGHlS29+OyGI0wc+EGCYp4JGTDJNkFOUAOx/uIy/LkpiiJLjXKSwsDFo+dOgQKisrYxIg9fXX4S8EQo/XG6isDL6LzsmJ3Q8Xuu9YUF9fz4FXDMMwDBNnWgjhkTPBghNKPNJXpRt1vhpsaKADASgqvAex07MFJWljgtZTAhWgTaLiMNRBLF5T84aUYQA0m8QTcHRfGBRvKDmAx9SL0RyCA+WSDZeRhhrQ95yJFkFQkq3O9CQ5N2zCjhSRilbZQuaxIk9ryxdBjEYIwJIFSuzWIRihRCPdrVtpBv29NPkbkWlXT3vb5G9Qru/Yn51op3RtWyCUCE71PZGSyT4sr2WYaKn0qqO4cx0RRpN0EruAciZ5kVJiYdUbyjQb7Dg355sJLhETC/Ic6qijuIjRNNfeZBHzMgzDMAzDMP0Xjs9LHD0do8fxeZHh+DyGYRiGIdAN9tZJ03oR4uSzIF/5kzoxYHDwj84W+OMCWg7z9FKJv34nNu+PdmgeVxcPiLAxMaBZOcg3I8o+T1pyxxgkG8JuD5pU6RvNXyHDX4d6Wya5zfYjEheMi0092qae9wcAcPZIxTHKibpTMKJTShGGjRg87QuIg2iqV+fJ6d6EVX2WolJSjDbBsRuGGEWKE1fvAYbF0FNNtUWU1CoIleSkHXHimcErbMSwXr8PssUDtKjjpZHZ+6TcPYFwptHTu+3dBnP2bYAQEIOGAmddBlE6vjP57JGRxWgeL7CnChgRcn3aXwO0+NTblOYT7dw+QtAIAGMmacvBxIDRE+i0dnnmlJHA8yvobJ9ul7jqlJ6Pp9lOXANPGQZkHt5ibcpDuwM4PsDyVliCic1ryOzry+m9NmjkuulmQMxhYQmdkWH6IvmFdJ/h8F6goE1ifVweMDQH2EfM97GCcEN3l6PqkGBLz/ulaQKUtDpUEhsKJbCua/sCZD3xRWTw82ImBIN6B3jsmiWbm4CjB9TZ+tF1SaRnRTUlcq6s0aa/sEJi5uXd6xNJKVFP9CGyXMH7nno8kGoP73+PHgzkfbxAuQ8R+PtS0vNA0jjWkWGSARajMUySYbcJDI/00obpE0yePDls3erVq3HhhZpZKSyyenWwtMLlcuHkk0/u9n57GktGcYu0tsZeqiFDjdEMwzAMw8QcSnrkMlwJLYdOYNQX+bxuCUz4lWlnZE1DmuHGx9XvwoQZlr6y7qMwMRoldAHaBkjbhfrholWBCtN/iVS3khmqfE1mI7yauk+dL0zPEamuJVpE5oxwvESL2nS4bG60+tRitBSRCpuw9jg72X6DaKFkdp72fhAlGO1uO6eT6DX5G2gxmkmI0doFdA6indK1bcHHtv55I0nlGKa/45d+VBMCpDy7NTEa9YSWn4z2LbZ5NmJvi3oQyKTMKchx8Ius3gglQKz2VcCUJgwROzGEThzvSrDcnmEYhmEYhmFC4fi8/gPH50UPx+cxDMMwjAXIAba9jNMuIpPkk/8Dcd0dAIDbpwo8vlCSQqInP5bIzzBx/ze7/72UHVEfpDAbcKVE6KdQg+9VA5qpAfcUruSOMUhGxM2/hfz7/QAAt2zCnVV/xsz8+8n8P31ZYsa5sTk2VY8AYLKiOkhKqldUSh+EGjwdIEaTHuJdCdcnJeLWmZCfvKVMy6zYhnsuOR4PzVf/ttc8beLQHw0MzIzN/QxVh0oGRt6//Nt9dOKk6cHLdlqMhroqej+ZPWwh703ccDfw0u/VafOfBdAe6/DCI8DMlyDO/hYA4MJxwGkjgM936Xc/+jcm6v9qIMV+rG788zO6DSpRz2NFyz0BiCwW4cUbkZ4F6UwDmhVjFNp/m2sntYlitxxS72POYonbzpE4fnDPydGklKTMdtQgAfmvB6zt6JoZEO4AmWlRCbLMOrjMJngU7/qX7wDqmyUynOGfvVHzaChIjNYugWKY/oL44SzIL6co0+Sbz0D8+BEAgM0Q+PWlAre9pD63W3zAloMSo4fEtu2pJrqxuW4Lx6k8SMtdI8mmCIG1rKtqi1mk+kfcN2LCIOpq4PuFA5qOnkqw3pf51q3AW/+wlDXbp7lPATDrXYlBmSZun9r1Z0StPsAXPjQRAJCeGryc6xb42TSBP3x47LcVAvj1hH0QHxMHCJQ0UrLqQFwZkfMwDBN3+sgTeYZhmN7HsGHDMGzYsKB1CxaoDbTRsnDhwqDl0047DSkpKTHZdyIZMCA4CrGqSt9p7uq+nU4nTNOElLJb/4YPHx6z8jEMwzAMo8ZDiNFSEy1Go6QbRPl6M1JKLK9dpEzLdwzBDYN+gqsH3oxxbvWMWV/Wf4ZWM1hyoxPIuWxuOIS67+qVsQ+eZ/oWlCwI0At/kgFShORvhM+k5UEOg8VoyYbLphc9JFpEFkkClkySMF1ZovneIn2mZJLBqaD7GW1tHCX56u5v2SEyU0HJzwCNuKz9e6au6z6L13Wq36BqN6nfVnd9YJj+RI2vUikzBoA8R3dnJudBqX2JhVVvkGnTc69IYEmYWJLnUEfa+6QPdX79bI7RQj0fsQsHHEbve1/FMAzDMAzDMEzvhOPzIsPxeQzDMAzTBQxbT5cgJgi7HbjoBjJdHj0AABgxQGDbg/qhZw+8K3Gwpvvvinao5/ehRTKBEFIZUaQSo0U5cN5Fv0tnCK78UdDifUdn44X9N2k3OVwXm/eN2w+r199zsVCLgMvL1BvoxA0WxGjwEHEWLEZTIkaMpRMP7MSsy/Uijv9dGrv31duPqNePjDDXmNy7lU781q0QoWJNahC+3wfU6sRoUcod+zHi2z+zltHbCvnE3ZBmWzyFzRBY/EsD939T4NzjNZv5gbfWBa+b9a66LuZnAFlp4fVY+nzAwd3KbcQDr1gpPRMDxMwX1QmH90G2tsCdKvDZr/T9odnv92zczJq9dFqJg+hkdXDSFODMSyHu/l+IH88OShIZOUBmLubu/z65+fPL1Z+9QT1HLgAgvSOeb0ABBF8bmX6GGHcqnfjy40GTQ/zobAN//C+6H/SzVwh7UDeoalSf0zlW5kEsp2WfUN2bBUL1cTqEaHXV0W3H9F+oCWACxWiUmNZmAwYfF/syJTHihrst5/V6miPm+Z/XJRpbut4v0vYfUsPXzb5K4O83Clx+EnD9qQLv/czAdz6g+y1B9/pWxGhp/EyIYZIBFqMxDMP0IBddFDzT0osvvgivlx7wboWKigq8/fbb2uP0FoYMGRK0vGnTppjte9CgYwP9mpubsXev5gkgwzAMwzBJQ7Opnj3EqZiBKJ5Q4hFKVNKb2dW8FYdby5VpZ2RN6wwWOj3rPGWeZtODdQ0rg9ZRchIDBlKFEw6hDhzyyu71lZm+j+4cdCZYoBgtlAipVbagWRIzJwGwwcLDeCahUL+l1fRYk2yiNh2678YVxbU+4mdOcL8hWqjydQjIKFFYd3/LVOGEAXUQf5NfJ0ZTp6UZbS8C7ULdTlm9rlPiNVX/rz/10RimK1R6iQhu0MKkUJSDBQBIFqP1Gcqbd2NT4xpl2gnuiShI7V+BP32JXDs9WqNK0z50BVJsmkRSXoZhGIZhGIZh+gccn6eH4/MYhmEYhkBq3nuEim16MaJ4HJ246thEmsX5AjPOpQfj+01gwabuvyvaWaHeR8lAvRBJ1lcfGywfSmFx+LpoB847+dl2tIiMHCA9O2jd9XWvYtaRmeQ2izbH5n3jXqIqjCsgNiDkDaKolD6InYjXChSjNROT7LJoj2bSdOVqWb4DQgj8YDLdFry3ITb1p8UrcbhOnVaSr2+LsPojMkmUjA9fSYrR/EBdJX0cln9YJ3uA9XPu4G4gQG6Xliow83IDi++04XTFpaSD9zceq3v1zXQ9LMomEo7sC247gjbStENMbKG+a9MEDu4CAOS6BeZcp2mHNvZs3IzuOlpcuZpME3c9AeOJRTBmvw5x2c3quKDCEpS2EiJRAJ9sI8RoGneKuyOmQNVXY5j+wIln0mmVh4IWf3qugI24Dd11NIZlaqeK6MbmWrktomRTmblt9wg6KIF1pxiN6OhH2i/T/7AiRjuiHiOHQcMgKBF2X2XgUMBhbeKf4307I+apbwaW0d2GiEQrRhNC4JazDLw5w4aXbjVw4ThB/74pqUB+4bFlK781C1wZJinoO0/kGYZheiE///nPgx4YVVRU4Nlnn+3WPufMmRMUvOV2u/HDH/6wW/vsKc48M/gGf8mSJTHb9+TJk4OWYzUbKMMwDMMw8aWFEKMlWnBCCVco4VdvZnntIuV6AQOnZ57buTw+fSLctgxl3pW1wQEflJwkzZYOIQTshvqhqk96g2bAYZhQqHPQaaTBEMk9Y69OCFXvq1GutwsHKSdheo5Iss6EX7OSTNSmQyf2iqacurwGbEgRirdiSQT1PXQIRihRWHd/SyEE0mzqYEBdH8djEmK09n1R13Wv2WqpXKRYRfE9RfruGKa/U+lVT4+eZqRHIVfkvkdfZ1H1m2Ta9NwrElgSJta4bRlkP6jKG2GG6Cih7vsTLbZnGIZhGIZhGIbh+Dw9HJ/HMAzDMF3ASO74k6g47UIySX7wUtDyReP074huek6SUgyrlBGPqksize+zXzMwt7AkfJ0rnRYSqXAm92SMSYti8PAFjepYRADYfLD7h/T6JOoICcuQrPA6LJvqgapDitwAihR1pwNq8LQ/QG7kISag40HVNJQcZ9MXAIALNS7HL3YDD8030eztXjtUTYhAAGBIln5bWaMxk5x6fvg6XTtUTTSIaRn9T9TQDYQQ6u+egpC5XKi5Bj63XOIfn5qQUuIoPe8kxhcp2qBDeyDv/S96IxZGJY4hI2iJylfLOv+8YCxdFyrqgdqmnotxr6in06Y1f0InElLKIIpKcHzrNjK5kgjNo8QmDtmKFLRfM/MGRz4+w/RFxkyk0zatClp02Om2Z0cF0NgS27anijinrYjR5O7N6gTVfVkIIoOQvx5tv1Gor1Zvx9JYJhQrYrQ6dX1C7iD1+j6MMAzLz0gmtn6FHAvhfxfNMfH5zq61TVoxmjPy9rLFQ4vR7Cltn7cDK5+b5YsMkxSwGI1hGKYHGTt2LC6++OKgdb/61a9w+LB6gFokNm3ahD/84Q9B62666Sbk5vbOm7vp04Mfrs2dOxf19ZondVFw4YXBL3L/8Y9/xGS/DMMwDMPEF4+pjjpwGokNPqLEIx5/Y58SdzWbHnxZ95kybZz7FGQ78jqX7cKBSRlnK/NubVofNMiakqt0fK8OQQdu+GT3ZnBn+jakPCeJxE8UKsFPB3WEGE13rjA9ByXP7ED3W8eDSKKbRJdHh+5cjaacus+cZnMnvVBQ188AohOFRQv1GzT56ci9RiLN3S5Go9oqq9d06vOqvifqu+uL8lqG6QqV3iPK9XmOgZb3Qbagfec2qF9T5a3A6rpPlWnDnSMx0qUZbcAkPUII8nyn2oeuEs/+CsMwDMMwDMMwTDRwfHkdzi0AACAASURBVJ4ejs9jGIZhmC5g9J1hWKJY89x/7VLIZfM7Fy86AbgowmuCaY+beH1N114amabEzliL0VJSgQEFYauFEEA0g+dTWYzWFcQv/hS2bkLzGjL/w+/Jbsde6qRWeap54nRSvaJSOo0aPO33HfvbQ8QpOPldCYWghBnb10HWV+OKkwXpOACA37wlccGfTPjNrtcjSu4DWJCB1FWRScrPphWjEe/usnrnvWdPIn5wL5A1wFJeOesHyvW3naOPNfvRixIz5kpSJAMA/3NR8D7kgZ2Q/28KsGODeoO8IRAsUkwYIiUVGDRMmSb/8GPIdinP8YMFvnkivZ8nl/Rc8Iyu/g0+tI5MEwUjIu+8sAQGJCZ5vojq2I2E2CQ9cCJWlo0w/RTx3f8m0+Svvw1ZWxm07n+/S1+LTphpwuxG/yeUrorRpJTAq3PUiTrpcAeZRHuwfR2k30/3tajtmH4Mdb4cO09kPVGf+ul1Sdz5V0v5HA1H8ejV1sZhnPNHEws3Rd82NRCycwBIV88JG8yB3WRS2Oe0IkZj+SLDJAV954k8wzBML+Wxxx5DWtqxQdM1NTW46qqr0NCgmSpCQUVFBa655hq0trZ2rhsyZAjuv//+mJU10YwbNw7nnHNO53JdXR3uueeemOz74osvRknJsRvqVatW4V//+ldM9s0wDMMwTPxoNj3K9amJFqPZVFEygB8+eGWrMq03srZ+OVqk+qniGVnTwtadnnWeMq+ExOd1SzqXO8QuoXSIbBwihSxTX/p+mdgTqW4lM5TMBwDq/OoZaewsRktKdL+llfRYkyqcEJrHwIkujw7duRpNOXWCtWT6vBSUMKRFNsMvfREFo907trqPoxOjUWlpRocYTX1dt3pNbyLadtX3RH13fU1eyzBdpSoGYjQKyWa0PsHH1e/AhF+ZNj33yqSXizKRyXWoR48FysxjAXX97g19MYZhGIZhGIZh+h4cn0fD8XkMwzAM0wVEHxuGdeP/kEny+Yc7/7YZAm/NMFCQTe/KbwKz3jW7VIwDtUCLT51WOjDC+4n9O9TrC4ohKJFdNIPnWYzWNSZfErZKALiz8nFykxUaT5kVdFIYpcihvEyd2ZECDBxK78xGxGz5AiaIo8RoLnVcBgOgsJhOm/8cUh0CZQ/p2+DPyoAPv+56EaKuQ4HUqWP8cNEN6vWaQfiyhnh3l8GD8qNFlJ4I8fdlED96ADj/O8D519GZm+ohG2rDVg/KFHjlR/pr0TOfSHy1j46bGDUoeFm+/jRQpZG2WxHIMLFF1wa988/OP9/4Md0O3fdmz8XOVDeqj/3jqYIUgYqf/kG5Pixfu9zxR9X/VKZTbWdDi7pMbjPAZMqyEaafInLygSHD6QzvPR+0+J1T6evQnkpgybbYlMs0adFnrjvCfdlXn9FplAA3EF178MVCuq/F7QgTChXjGBhHXl+jztNPxWg492pr+eqqcOsUA5/ebeCn5+nbhFYf8OD86J8RNRBiVSEAl5XhU/uJ+3wg/HPaLewwK8/CQRmGiTd97Ik8wzBM72P06NH461+DLbPLly/HxRdfjPLyckv72L59O6ZNm4bNmzd3rjMMAy+++CLy8yNNkZTchAaOPfnkk3jssccsb19bW4vm5nCZh91ux6xZs4LW3X777Xj99dejLuOiRYuwc2c338IxDMMwDGOJZr96Sj+XkaZcHy90whUPISvpjSyvXaRcn27Lwvj0iWHrh6YWoyDlOOU2K2s/6hSSUN9Rx/eqF6N5yTSGiacsKN6kGrS8qs6nfvGiO1eYniPSNYmSa8YLIUSvEYXpvrtoyunU7iexfYauoPusHrMprhJISoxGXbv90kdKVDskZZTE0eo1nTq26nuivjsTJllOhulPHI2JGE0dzMBitN5Pk78Bn9UsUKblOwbj5PTTElwiJh7k2tXne5WPmHW+izSbxPMbW/L3xRiGYRiGYRiG6XtwfJ4ejs9jGIZhGBWa9x6GLXHFSABi6Eg6cfNqyAC5k8Mu8OAV+oGv68uBKkLMoaNM85i6JEJ3S5YTYjSdVCYauRCL0bqEsDuUkpnjW7aT2yzZ2r13jpU6qZXqFQVVdwpGQNg05zo1eNoXYPdrVhdGuJInTifpKKLbI/nVMgDA8DzAnarfzWuru16PKBFIWgrgdESQgdRXqddTsg7dIHxKmBWN1JHpRAwZDvG9u2Hc/xyM+58HrvgRnXnLauXqScP1v78pgXe+Ute9XDdgGCHbr1mq3Z8lgQwTW4pKySS59pPOv22GwEgizEYIoNnbM/EzVepX9Mh1+oAj+9SJms8cnK+tPuYSkzxTx6bEJunmsckKBLdrTH/m+FPIpMB2BwDcqQKFGkl1d/vRHTS2tl3TVGRHui0KKXMgwkp7k0PHMMovPwYaWGTFWIQSo5kBkq56QrSXoTnR+jAi1QUMKIicsV1QeGapwJzrDDx0pb6PvKwMaPVF1z5R/Qd3iqJPrYISoA8ZDuEIGX8V6RmfYQDp/bNOMEyywWI0hmGYJODmm2/GjBkzgtZ99tlnGDt2LGbPno19+9QPoMrKynDfffdh/Pjx2LBhQ1Dao48+imnTpsWtzInivPPOw5133hm07q677sLll1+OL7/8UrmNaZpYsWIFfv7zn2Po0KE4dOiQMt/111+Pm2++uXO5tbUVV199Nb773e+S+wYAv9+PtWvX4ne/+x3Gjh2L888/H3v37u3Cp2MYhmEYJlqaTY9yvdNIbPCRTjzSRMhKehuHW/djh2ezMu20zHOUkhMhBM7IOk+5TYX3IHZ6tgCgv6MOmYnDoAM+fLKVTGMYShaUFgNZULwxhEEKm+r96hd5lGyI6Vkiyal0krJ44dQIKJLp/NAJwaKRfuk+UyzkYfFGV36PvzGiYLRbxyb2QV27df2eNKNNsuYw1BJHq9d0UgSnKGuk745h+jtVpBhtkHK9CkGI0Zjezyc1H5ASyWm5V8AQfWugV38l16EePVblJWad7yK9WVrNMAzDMAzDMEzfhOPzaDg+j2EYhmGixOhjw7BOv0ifvj9YHHXJCQKOCK8MbnrWhJ8aTU+wo4KWyWSnRXg/dYAQqBaES7k6iUbCkeK0npcJ5qzLwlZd0vABmf2+NyV2EnXBCpTUKtUOOL31MB//GcwbToT5reNgfus4yGd+o94gkpCIFKMFTBDnaVDnYTEazfDRdNpn70D6fBBC4IqT9W3C8ytk5yS+0UKJHXOt/Gx1armCoMRoNju9r2ri3V1mnoWCMJEQUy4n0+SvrgySgnYw1MJl41PCwRBaf2RTPbB9nXZf4my6jEx80NWLUMHG+EJ1NimBXUdjWKgooK6Bub7KtoKp0ElkA2m/Lub41QLIxhagRSGEayTFaAGFjUZWyzB9DG27s+J9yJbgOK5vafpAD86XuPp//Vhf3j1BWoNm/uGMCLdFcj8hHQaA0y+MfPDxk+m0LWvoNKqvxfRfKDFaIPUs2gujYETkPCEy6Ej3ZqYEdldGV4yGFnU7FqkN6kBuXKlOUPR7hGHon/Nl5LTlYRimx9E8QWEYhmESyRNPPIGcnBw89NBDnQ/h6+vrcc899+Dee+/F2LFjMXToUOTk5KCyshJ79uzB1q1bw/bjcDgwZ84c3H777Yn+CHHj0Ucfxd69e/Haa691rnvnnXfwzjvvoKCgAOPHj0deXh5aWlpw6NAhrF+/HvX19Zb2/fTTT6O6uhpvvPFG57q5c+di7ty5yM/Px0knnYS8vDwYhoG6ujocOHAAmzdvVs5yyTAMwzBM/Gk21VMK6YQv8YCSFwEgZSW9jeW1i8i0yVnnk2mTMs/BGxXPw4QZlray7iOUpI1Bk6kO+umQmdiFWqACAF7TS6YxTG8ffO+yuZXnR52PEqPxo71kRHeNAHpGzJVmuEG9U0qm80MntYpG+qX7TD0hposWXfmbzEZaMBqDupVmSyeOq752U+sD9+UgJI4+6YMpTRhC/8KQFMEpPq/uu/OYjcjBAO2xGKYv45c+VPvUV4M8Bz3bonV6ZsZbJjZ4zVYsqZ6vTEu3ZeH0zHMTXCImXujEaFJKCCuBYRaIRmzKMAzDMAzDMAyTKDg+j4bj8xiGYRgmFM2z0j42IFJkDwB+8SfIP9+hTJcP3wrxr1WdywMzBR7/tsBPX6bfDb2zHrj93xLPfM/6M+cdhAOoVP1YO5hy9QB8oZN9WB08n+KM2bPz/oj4zi8h1ywBtn/VuW6w/zDs0gsfEUtwxmwTG35rYGBm9N87JbXKcwO44yJgCy3nDaKLYjTp8x5rPTzqWFc4+V0JhRAC8vJbgLf/qUyXD98Kcf9z+N3lAv/+XP9++tdvSjx8ZVfqkHq9NTGaWhhEihhtGstktXrSs6ikjgzNRI3kvLUF8u4rgL8sCGr/7bbI9YmsPwHhhFJKyFtO0+/oguuB0yKIS5nYM2k6MKAAOHogPK1iP2RzE4Sz7cecc52B19eGx8kDwIx/m/jorsRPPEfVv5xPX1InGAYweLi1nWcPANyZyPWpBZAAUN0EDM4KXtdAiNHSAuMBuV1j+jNTrwIe+AGZLO+9BuKxdzuX771E4KkldB/ojbXAos0mvvi1gVGDunYP06iZ7zg9NcLGlBjNnQmRFVnuKlKdkMeNBvZsCU/csprekNsRJgyi/geKQom+u8jIjkN5egkFI4D1y/R5PI2QrS0QKW0NwpghAvddKvDgfLpt+ulcEx/eYb1vRAkaI7ZBAGRrC7D0TXUidZ9vdwCtRKfFQtvFMExi6FtP5BmGYXo5DzzwABYsWICRI0cGrZdS4uuvv8YHH3yAl19+GQsWLFAGXZ1yyilYvnx5nwq6AgCbzYZXX30VM2fOhMMR/BLpwIED+PDDDzF37lzMmzcPy5Ytsxx0BbQFqs2bNw+PPvoonM5gZXBFRQUWLVqEV199FS+//DLmz5+PtWvXhgVdORwOuN38gophGIZhEkGz6VGudxquhJYjRaTCgPrBHDX4tzfhlz58XvuxMm2E83gMSR1Kbptpz8ZY9ynKtC/rl6HVbIk4QJoSqACAV2retjD9nt4++J4SNtX5CTGaQUsEmZ4jkhitJ8RcTqJMAgZSjeSZ2Vh3rkYj/dIJ1npCTBctun5Nra8KJvzKtFjUrTSDEKP5CTGapt9zTIxGt1U+qReemtIk+3+q+qI7/3RlZZj+QLX3KKRCXgzERozGWrTezaq6pajzqwNYp2ZfghTDQlQJ0yugzvcW2YxGv/V3K5HwEGL73tAXYxiGYRiGYRimb8PxeWo4Po9hGIZhQtG8+ehjYjQAEFf/mE7c/hWkNzhea8a5BjbM1H8Pzy+XqKi3/gZpB+EAKhmoH9AvPY1A5UF1YkExvWGGxcHzqYmNS+xriLzBEE+GxyH++dBd5DYV9cDzK7r29rGSkhLZGq1L0QCIoaX6DHZiMktfQAyEh5hozqWOy2DaEJffSicufBmyYj+K8wWuVoeodvLUxxJNLdHXI7IOWZm7mRSjEYPpbZpJUSkxGg/MjwnCMICLbqAzrPskqjYjEkFivQ0rSKEnAIhZcyHu+xcE1c4wcUMYBsRfF9IZAn63whyBQZnqbEu2AX4zsVE0UkpajFZGCE4GDe2UmkRCCAEUliDPT7RzULeflBgtPUiMZlFWyzB9EJGSCvHPz+kMqxZC7t7cuViQLfDna/X3R/XNwDOfdL0Nos5bAEiPFG5OCat/PNvy8cUNd6sTmgnpMMDtCBMO9dwmUIxWrx6fY/lZQR9EFIywljHkvmfWtwx88Wv6GdHCzYAZRd+onuo/WOm2LHuXTBKUGE13X0bdyzEMk3D4DplhGCbJmD59OjZt2oT/+7//w7/+9S8sXboUPp+PzJ+amooLLrgAt956Ky677LI+OyOREAK//e1vceONN+KRRx7BvHnzUFVFP1BLT0/H9OnT8YMf/ADDhg2LuO+7774bN954I+bMmYOXX34Ze/bs0W6TkZGBKVOm4NJLL8W1116LvDzu4DIMwzBMvJFSasRoVqIOYocQAmk2Nxr8dWFp1OBfADjcuh+f1XyIvc07lVICp5GGkWknYGr2pXAYtBwscD+DUgpxeta5KHaN7tJnWVO/DOvqV6LGV9m5rtVsIUVMZ2RpZkrrzHMeNjaGz8rSbDbhj3t/haPew8rtOgZId0eg0sEOzxZ8XvsxDrXus5S/g0x7Nsa7J+HUzKnavnWr2YKlNe9je9NGNGt+81AMYcOw1BJMyb4Q+SlDyHx+6cPSmvextXE9PGY0IheBotThOCNrGoY6NcF9UdJserCk+l2UeTaj1Uze2dn3t+xWrtdJkpIJShJACQp0EkGm54gke9C1cfGCOgdcRhoMkTxB27rvLpJwLjhvbPbTUxjCBqeRpry+vH7kOXK7WEggqbqyt3kHHt97b9h6SjZmwECqaIuCsGvaKp/0IgX0m8pmswmSGHSgKqvDSIFDpChFqq8cfrpT1hYtNmHHcOconJNzCbLtHETB9E4qvUTgNIDcKMRogppNT4OUEp/XLcHGxi9Q5yMCSoijDUkdijMyp2G4a2Tk7FHwdeMafFn3KXlvMjClABMzpmC0+6SYHjcZMaWJRdXqWfJSRCrOzrk4wSVi4onufH+i/Hcxk+AdaFG/Y+kJSTDDMAzDMAzDMEwoHJ+nhuPzGIZhGMYihnoyzV7PpOnAF4vUaQd2AscFx6aNKxD4rwkCr32pfp/r9QNr9wIXjLN2+B0V6v0U50fY8MAuOq2IGPQKQGTmWpv4h8Vo3Ua43JCX3gTMf7Zz3fGt4RLiQFbu7JrMoVw9DxAG+CvVCRRDR+nTHcT7lNaAuLoWIqbQyXVKS1Fpm8jAVE/6hS1fAvmFuPlMA/PWEHkA1DUDmw8BE46L7vDlxC3QgAjhJtLTSIvRsog4E60YrUK5WvRjUUOsEceN1l8HNq0CxkwMWnXH+QJ/Whh9+5SXHvAcYZNGgJOeDUy9qs8+d+gVDB7edm76Fc+JysuA0vGdi8cPAg6HDyNoy1oNHJfAxxhHG4AW4tFWHnUNHEhPkq4kvwC5278mk8urgXEFwesaSTFagDyUhUZMf2foSMBmA/zqCZOx6Qtg+JjOxYnDBSJNYbqsrBtiNM0wEbcm/F021AI16v6L7r4sjMIox78IweJhJhyqL9UuRpM+L1Ctjhvt19elSPfBHVTsBwYEj4WbcJzAmSXAMsL/e6AWKLJ4K0O1QxHljADk15q+9nHHq9fr7ssysiMflGGYhMBiNIZhmCTEbrfj+uuvx/XXX4/GxkZ8+eWXKCsrQ0VFBVpbW5GamopBgwZh1KhROOWUU5Ca2vWBKjNnzsTMmTO7tO2SJUsSuh0AjBgxAs888wyefvpprFmzBlu2bMHRo0fR0NAAt9uNgQMHYvTo0TjxxBPDZq+MxODBg/HII4/gkUcewa5du7BmzRpUVFSguroahmEgIyMDBQUFGD16NEaOHAmbrY++2GYYhmGYJMUrW2FC/cDfaSQ+WMRlqMVoTYTE6mDLPjy+715ScNTBxsbV2Ny4Fj8puh+GCO9vhO5nu2cjVtYtxm2Fv8ZY9zei+gwfVL6Gt4/+23L+FJGKCRlnRcx3gnsS3EYGGs3wz1pOiKuAYwOkdQIVlegklK8bvsTT+x+BH/QABh1r6pfjYOs+XJF/ozLdL3342/5HsLlpXZf2v61pA1bVLcEvhz2MgSkFYelSSvz9wO+xvmFVl/Zf5vkaK2oX42dDf4cRLuLhbRR4zVb8dd9M7GrWB6QlM7GQBSWCaMupO1eYniPS79gTgUuUDCySxC3R6EQZ0ZRV1y/oLe1BmuFWitGOeA+Q28Ti96TEYS2yGWWeTVHsJ6OzrutkgJGu6zo5qJP4LV2GG15/+H4PtO7VHisSW5vWY3X9p7hr2CPIYjka0wup9KnFaOm2zKjup+jrGB1Q9UbF86R4KxJlnq+xsvYjzCj6DUaljY+8gQVW1C7Gi4f+GuG4m7Ci9iPcNOQOTMycEpPjJisbGr7A4db9yrTJWdORbiOmOWZ6JZm2bNiFHT4Zfr+8t4WemTxWJFpszzAMwzAMwzAMQ8HxeTQcn8cwDMMwETCSZ/KxWCKmXwtJiNHkK3MgfvW/YeuvnUSL0QBg1rsmLhgX+XoupcQOYgx9aSQx2n7i2bbNBgzSyFszLY7IZYlVTBDTvw0ZIEab0rQMQ7wHcdChnlj0jbVAdaNEjju6GJsdR9T1cUTtBus7cbmBkyO8H6TkC81tMQ5SSqCVsMFQUjUGACDcmZBnXAwsm69MlxtXQky5HOeNBvLcQKVmztk5iyReuCW6OlRGSBpH5EfYz/6ddFrBCPV63QB8T4N6fRYLo2PGuVcBf7uPTJarFkJc/eOgdddO7JoYbcSAgP2u+IDOOO0alqL1MMJuhxwyvE2CFoL8zXXALb8Fvn8PhBC4eoLAJ9vV9WHj/sSK0crouRJR3LpbuV6cdVlUxxDTr0Xqsvko9O7HfkehogwSF44Lrr+kGE0GNN4sfGT6OcLlhjzzm8AnbynT5dqlEJccG9Ny2ghgWC6wl57PAp/vAi79ix//uNHAkOzoriuNREiv3QBSdEYSXV+oMI5itBQnXzsZBRFiXA/toUXMVN+9PzD54rb7YY/mJgtoew4TIhAGgCu+IbBsh7pvdMYjJjbNMpDhjHy+NlD9Byu30tQzIgCYcJ56ve6+LC3DwkEZhkkELEZjGIZJctxuN84++2ycffbZPV2UpMIwDEycOBETJ4Z3oGPBiBEjMGJEP76JYRiGYZgkpNn0kGk9IkazuQFv+HqPX/0QcGnNexGlaB1safoKOz1bUZo2NixtSc38sP34pA8fVs6LSozWarbgw8p5lvMDwCkZk+GyRR7E7DAcmJg5BUtr3otq/x1CFyEE7MIBnwz/gr1mZDHaB1X/6bIUrYPFVW/jwtyrlZKZnZ6tXZaidVDnr8GnNR/i6oE3haWVt+zqshStgxbZjEVVb+GHhXd3az8AsLlpXa+WogFAWpLJnyh0UigVLEZLTigJWU9CCbOirXPxRif2iqashrDBaaQpxWLJJoOjcNncgI+I/CaIxe+ZZsRm5rTAsjgMjfDUVHSmAmgi+lWhxwjEZXOjzk9MA91NKr2H/z979x0eR3WvD/w9s7vSFnW5W66SKwYXwDRjeu+QS8cJkIQQkpAAISGFhNSbC5cEAiGBkHDzIwkhkIQWeu8ldDC4AcY2YGzZliWtpN2d8/tDWlnaPd8zs6vVqvj9PA8P0pyZM8fSaObMzpn34Pktj+Hg2uP7pX6i/rQxYZ7hriY0qiD1a20e0NCaasYjm+7qU90J3YEHG/9VkGA0rTXu2XCLv3Xh4t6Ntw77YDQptE7Bwf7VRxe5NdTfHOWgOjgCnyY+HpD9D5V7MyIiIiIi2r5wfJ4Zx+cREREJnGEa3HnwqcDPv2Auu/sP0Icvgdpxj16Lj5kHnH+AwlUPm58TPbMSuPt1jSN3sr/4urEZ2CIMDaz3DCMSXnodMwkqaBlXU+FzMqwSBqMVxM779fo2iBT+uvZ07Dv5YXGTY6518cTFuf29LReCYerXP++7DnX5nfZjB5CD0dIvkCctYyFKwr7bsr1S3/gVtBCMhr/8L/SXforSkMLfznFw4JVCoAGAm5/XOG8/jd2m+g/LWG5+rI4Gr8fqYkhjEBglhDTaXsCXMECoYNT4euCbv4G+/MvmFZ75N3R7G1Tptr/ZXScDPz9e4ZJ/5BaOlj5+dFsr8PJjcps+f1lO9VI/qWswBqMBgL7xMqhQCXDaRfjSYoXzbzEfC0dd48K9vnh9xuVCMGhZIIFRKeHi+JnzctvJ/v8FXLYE9R0rjcFopmtwc7u5XTGXwWhEPanzr4QWgtFw383Q3/odVLCz3xBwFG75ooOjr3GxQchRBYB73wQOuNLFmz904Dj++0LNbeblsVKPicGF8yZKSoGR2ecMUfUof8FM3fWzb00G0rGaHuO67j1527GTC96coUJFy4Ef3gz9g9OAtux3MLqtMd/7fG1/hW/eZr72r90MnHqDi7u+6t0/koPRfJzLPhTORTvvB1UiJKsFLPf/0r0/ERXd8JyqhIiIiIiIiIYdU7hJWngAQmikMI5W1/yEYWV8aU71S+tLgVnL42+KYQQma9s/QLsWnlwI9qw80Pe6e1QKsylYlAcqu78OCYFPCUNYWk+udrEq3vcQrxSSeL9tubHsvQLUDwAr428bl68Qlheq/lytaC1MPQOpLFAx0E3wpTxYldP6hQowosIqdSJwYH5oMzk8rcit6dTz/NrTYPvbkNoJ5N5WqS7bPgaTXNtZqsIIOSV932+O5yFJRY96gkpuV0LbA0+twbgB8wD0/v4dF+o6TVRsGxPmgY4jChSMJnm/bTlcpPpcT6H6tk2pTWjMIXjyo44PreeioW5l61Lx3nPn8r0womR0kVtExVAbGrjf61DpixERERERERERERGJ1PB8DUsFg8Au8ngvfeeNWcsCjsIvT3Kwz3S53uufkEOL0lZaHt3Uj7Rvq6UwovH19g39hnCUMhitEJRSneF7PSyKP4uHPzhY3OapFcDb6/yPh0y5Gqs2mMsaOoTjJGvFnaDmLvJeLyJMBNPaNeFtQniTG+gMhyArNXoicPTZ8gpvPgcA2H+mQtPVDmxZH79/yv8xtKlFY6OQwdHgFdIohYGMndwdZJIln2A0v6GO5Is6+mzg5K/LKzzVexI4pRS+daiDdZc72H2q//00jOo6fh43T1oGAOrLP4eqGuG/Uuo/ExqsxfqOGwAAoaDCnpbuxqaW3AL0+kLqSzWUbIDx7DVrF+8Q0AzKcYCaMWhIrDK3wRDOJgWbdAejhaO9wgeJtldqVB1w2kXyCi880Ovb3acqvP9zBzd+1t4/eedj4PFlubWlpUMIWvTqwkr3ZeOmdp4/fFJKAeNyuMiG2Lcmg3yD0WrHQoWL/27iYKL2PBzqXx9AXXGXeO+q3zOP5Q0FFXazzIVzzxvAwquqIQAAIABJREFUBxu9+0ctUv/B489dp1LAOnM/RR39eXlD6X4NACLb9/FANJgMz0/kiYiIiIiIaNixBmM4xR+AFBGC0eIpc4Bba8oyJYupHtc8wmJLslHcJpcX9ptTTTm1Z1zJJNRHZvtef0JpPSblEABUqsKoj8zq/j4khKh4B6i0QsN7QJ0f0u8gVYBgBwBoTZnrjwvLc65faH+upJ/DUBFSJZgWnTPQzfBldmx+TuvPjO3UTy2hvnCUgzllOxvLdizbtcit6TQ7tsC4fAdh+UCJBsowOZw9YnpUaBxGhMbkVJfp78mBg5mxuXm3r5hyPR/sUFaY3+XkcANiTnmf6+l5zElhpwCQ9Ag8la77DhwEhXpz/dnlaqhfF2n7JQWj1QRzC0ZT5iGTolzvgyRtbhwpnexzPR2u5SUEgasL0/8fjB7c9E+x7MCaY4vYEiqmuWW7Dch+ywIVmBD2eBGNiIiIiIiIiIiIaLDL4aXuIWfKDnLZ8lfFokPnyM+P7n4d2Nxqf/F15afm8mgJMCZjvg2dTEKvegv63Zeh168B1ppfesV4j5fp/YYLMRitYNTU7ONrfttrCFnGAz6x3H+ozJpNQIfwOLG+QzhOMjX4HFMSFSazjHeNJ+iwPJNkeIMvato8ubDH+agsrPCtQ+Vz0Cur/R9DtpDGaR7zDuk1QhhIneXZWD7BaJUMRis0NW+xWKaFa9+YSoVvHuK/PzC5tqu+Za/IK9Xv6Ls+6l/K1h8CgI/eh966GQAwY4x8/nn7owI2ysNGYWjOxNRac0GdPfxNVFGNeiFsdIVhWJIUbFKWnoSeYY9E3ZStH7ri9axF0VKFJXsolHtkC77yYW4hjWKgodCF1W2t0Mtfg14m3C/a+kKSXLZh6DCZeAWjbTKPpcWYif3TniFGxSqgdjsY+MxXzCv851Fo1/zO3pzx9vHFr37ovf/mNiGgUTjfpc9DWP0ukBA+X7CF5wcCcllEuPcnoqIbxp/IExERERER0XDS5poDx4CBCUaLBoRgNCEsI25pv4kUmmXdxvUfOtCSQzBaLFCO08ec1zkDi09KKZw6+lxUBKo813UQwGljvoISZ9uDCSnsxCtApZBhJdLvQOv+DV4rVKBZUieQcO1Bcn4M5QAYBw5OHX3ugJwj8tEQmY19qg73te78sj2wa4U8KIcG1vEjP4eaYO9pi+sjs7Bv1RED0p4JpVNxSM0JvZbNjM7FXlXyzLsD5eTR56AsUNH9fdiJ4LQcr0EAcFjtiRhfOrn7ewWFkzLqHswWVR2CGVF/A95qQ6Nx7IglBdlvQAVxxtivitdhPxoiO/Q6l0lhp4D3dV0qt9W5T9XhaIh4DFDrg0IFmBIVmxSMVhvKLRgNQjCahnkwQq73QTb53CNlSnicd0zcAgUvDzYft6/BG80vGstmRHfCRAZYDVu7V+6P2dH+DRLNFFQhnDHmqwgoy0AiIiIiIiIiIiIioqHAGb6fc6pDTpMLV74hvvh6yq725/k1X3dx0u9ctLabnyetEMKI6kei11gBfd/N0EeMgf7sAujP7wF9Qj3w0iPGbZXtpVcAqKi2l6eVeiQNkH8HnpS1qMLdimO33ilu8uU/a5x1k4uOpHeggymQJa0+4S8YTU3wFxSjpJej413jNzva5I1D8ngH6mG/E8Qi/cBfe31/+u7yOejl1cAba/wFgixfb14vHALGVRqLtlkrBaNZjql8gtHKGSJUcAsPkstuu1YsOmwOUGseRp5lRBmgt24Cbr1aXmnBfv4qo/637/He66zrvK6cvUg+/3ztr8UbayIFkFXEhYtj3sFoNWgQgtFWbQBSbu/zqBiwlB6XXu6zP0a0PVh0pFik77zRuDzgKJy2m/1e7KancwtGEwMNM/LHdCoF9+oLoQ8dCX3WQuBxYXJOr/syk3EeIdc9MRiNjKS/i86/B93UaC6urO2f5gxRau4ic8GWDcCDtxiLluxhPycd9xsXb661n5ek/oPxPHTNxdCHjYI+ayH0Est4SFt4fkB+Z0KFfXb4iajf5fEJChEREREREVHxtblx4/ISVQpnAF6sjThCMJrhZX1Xp8Rgt7JAJZpTW7LrMYRRpXTK2qbWVLPvYIOW1Fbj8opAFRZXHdb9fXVoBObEdkZ50DvgLNOE8FR8b/LVeLPlJTQmzCPYyoKVmBWdi5ElY3stDznmAUBeQV/xlBy8cEjNCcYglSe33I8tyewPt3MNBKsJjsSelQdmLV+f+AgvND1mrF9rnRX2IwWujC+djPlle2Qtb0414bHN9xi3aXVbUCn8LP2SAigaIrMxM+pzlswBUBaowMzYXIwqGTfQTfHNUQ5OHPUFLKzYFyvibyPhZn+qH1BBTI3MxNTITIYKDGKjSsbhO5N/iXdaX8f6jrWYGG7AtMgO4rmtvymlcMzIMzC/fA+sjL+DsSUT0BCd3afwq/4yMVyP70++Gu+0voakTmJWbD6qgrkP6qsIVuGiif+NZa1vYFNiA6ZHd8SY0rp+aHH/CDsRnFd3KVa0vo3325bBFUI5x5ZOwIzoTogGCjcj0U5lC/GDKddgactraEpu8r2dUg4mhRswLTIHIWfbsWU7zhKWmZ8B+bofdOQ6I4Eovlr3QyyPv4kP2lbkHWi6pv09vNr8XNbyQgWYEhVTwk0Y+7sAMCLkMbW1T2IwmtCXrArWYlFldkBn3G3Fw5vuMG7T6jajHF4jzu2SHucdo9zGhw0ZD2+6Q/y9HVRzXJFbQ8VU6oRxbt13say181rpenzW0FeVwRrMjM3NI4iRiIiIiIiIiIiIaIBoy8MBxyleO4pMzZgPfcKXgdt/Y17hT/8NfO47WYsn1ipcdbLC+bfIP7e//0djZDlwzanZL8musgSjpel3/gP907Ot7e/F9tIrAFT4HIdQOjQmYxwK1OgJ0KURoL33ONDrPvoq/l7xGXG7m57RGFcF/ORY+wvWK4RQq1HJT1DhmsdKZhk72d96EeHl6HQwWkJ4kxtgeINPqrIWevxUYK0h1O6t56Fbm6GinWNlZo1VOP8AhaseNh8Du/zURfOvHYSCXseQeXn9SMBxPCZ0FILRrCGNeQWjMUSo0FSoBHrRUcBTd2UXtsehP/kQavSErKJwSOH+rzvY5af2cUllpUBJUMG94ivySgedDBXka96DhSqvAn7xT+hvWcZNrFkJzFiAPevlc8MrHwL3valx6JzcJoTNR7MQPlvW8rFxuWeArKSiGvUd5rDRRAr4sBGYPKJnu8zVlKXH3/ntjxFtB1Q4Cj13EfDaU9mFn6yG3vQpVPXIrKIrPqOwsbnzfsvkzXXA5laNqqi/c5HfQCLcdg3w92s868vnfKPGT/U/XC/EvjUZSJOxp8Pem4Sx8bwu9TZ/n85g70T2mFv9kzM7+7AZn5HtPU3hd2conPP/5L/iQ69y8f7PHQQD5t+T7/PQP38L/O0q6z8BAFA1EqrMMu7Ydl8m3fsTUdHxjpmIiIiIiIiGBCkYLexEi9ySTpGA+QMuU1iG1HYAGF86Ee+2vpG13BQg4BXUJYWdmTSnmozLR5eMx+EjsmdnzFdZsAK7V+6f83YhIUQloRPW7WxhJUeOOAUBlf1RyLL4m8agCCkQzIV5IENtaJTxZ7cy/o4xGC2pk0joDpSo3p/QSv+G+sgsY/2bk41iMFo81YLKYN8Gw8SFUL/ZsQU4tFYelEb5UUphSmQ6pkSmD3RTqI+igTIsKN9zoJvRy8RwAyaG85ztr4jKg1XYtWKfPtdT6oSxY9muBWjRwAiqEGbG5mJmrPghlLWh0VhUlR1YlA+lFIIqhKThGu51XZfKTUGnvcqdEGbH5mN2zDL7k4dXtz5nDEaTQp6IBrNNyQ1iAFZNjkFFuQ7XlPq2o0vGGfu28ZQlGK0Af38J137eMdFC/38o25LchOebHjWW1ZVOxqzovCK3iIotoIKYFZuHWTH+romIiIiIiIiIiIhy4gzvSezUWd+HFoLR9MO3QhmC0QDg3H0ULrhVI2V5rHLzcxpXnawRyAgYWvWp+TlW/aht6+n7bvZoeYbxHmMjYpWdL0vbQvAABqMV2vHnAn+9steiKncLLtrwv7hixIXiZn96VuMnx9qrXiEF7AkBLkYjx/tbLyJMXhfvep7ZYZmsqSTsvz3bOXXEmdDXf99c+OSdwCGndn/77cPkYLRECnhoKXDYjvb9SSGN0zweqev2NmD9GnNhXQGD0coqGZ7VT9Q+x0GbgtEA4KG/AaddZCxaMEnh+jMUvmgJfqiJAbp1K/CEeRwEAKhFR+XUXup/as/D7aE8PcIQT9xF4daXzGv/6dliBaOZl8cSm80FdXmOIS2vQX3iMbF4xfrewWgtYjBaV5BoBcMeiXpSB5wIbQpGA4BHb+vsS2eIlir87RyFmXe6+PHd5nPR7S9rnL2ob8FosYxAIt/3Z7a+kMQr5Lonhg6TiRSMlr7/bzJPMswQ4t5UJNYZ2PjSI+YVXnsKmL84a/EX9nbw4vsufv+k+Zy0bnPn/dmhc8zV+g1G0/f/WWp6b17nIWswWuEmrieivhm+U5UQERERERHRsNKWMoczhZ2BGXwUdczBaKbwMtsL/FIQgSlAwCuIozX9oNAHKUQtFij3XUd/CgqBJwltGTQE+WdUqsLGUDQAiOTwu7Qzf4AuHSuA+ffcmjL/HqV22uv3f0xIpJ+pbb9EREQ9BaXAU9d+XTeFqQFygGohRYUQ3HbdhpRO9fv+iQppY+ITsaw252C03AZsSn1JqW8bdiJwhMeXhejbet1PmPiegXIIeWzT3UjqpLHswJrjoKTBQURERERERERERERE27th/hm6qqiRC1e/KxYFAwpz6+x1N7UBazZlL/9UmAt0Ys+mrHrLXnmmcZOtxcpxgGofz8n4YnRBqenmCVsWtL1q3W7NJmBLq/2p3cr15vKGjpXG5VnCUWDGAn/rRoUxlq1dzzMTwpvcABBieINvwvECAPq9t3t9P6ocGFclV/Xou95PfT/dal5nYm2PkMZkAvqtF6AfvR163SporYGmjXKloyfJZU6Or/XGKnNbn/ybIU+8qJ+917rp5Fp7v6AmBmD1MiBpmcStYSdrHTRAdj1QLNJrtl1b5k2Qq/jHK7rzPNHPmtvMy8ukcfD5BBUBQM0olLvNGJ00j0NakRF2KwWbRHXXOyFl7GcR9TLdcj1a/rp10/1myNej3z2u0Z7wdy4SAw1Le/aHksAKe3u6jc/jfDMuh2A09q3JROpnp6/JzebgUOvnIdsptfuhcuH7b4tFCyfb6318mXxO8hOMprUG3vmPfSdp0zwmqA9a3kmI8J05osGCwWhEREREREQ0JLS5cePygQpGiwhhGaYX/20BW7VBIRjNEI7lFdTVIgRqmdc1jygrC1T4rqM/SYEnUkBKmvQzkn5fgCXkTghx0DBPbeoIAx9t+87leJECWkKqBAGYQ9+8wvT8MIW3AfZ/FxERUU/5XtelACMpQLWQpNAmIJ/wVKKBtTGx3ri8IlCFEqcwg4O0EB+Wa/9cKSWWSQHCuUh4nHdMpH/bUNXmxvHEZvPg7ergCOxcvleRW0RERERERERERERENIQM82A0AMDCg8zLXRf6jhvEzb60j/fP5oTrXLhu72cvjeb5UlHb9chIJ5PAK4971t1tVB1UqY8xhT5e0lf5BoeQ2d5HAzWjsxYf3Xw3xiQ/tm76qJzLBwBYYX4kivrEKn9tO+Q0KL8vPUvrxZs7X9C2BaOVMLzBt10OkMv+fHmvb5VSOGexfA664gGNXz9iHveZ5nku+vgD6DN3hf7S3tCXngp90izoy78MNAoHHwBUyuEKSikgYB73aRQt878u5URNmS0XvvYU3KsugE6ZJ1Gs9jht1EY19AVHyCvM3wdq4nQfraRiU8d+US6890/dgWdL9pDPPR1J4L9+6yLe0b/jTsQAEdMEhOXVUJW1ee1HdYUV1Quho1c+uO3fmUxptAlDdLrbVcFgNKJeZu8ql939B+hPPhSLF0+TN33pA2D691y8udb7XCQFo8V6BhL9/oee9QDoDBsaZUmPlIya4L+PxL41GUnX5q6/gaZGczGvS9mO+JxYpG/9tVh24i4K1VG52l/cp3HjU+b7MzHwNdzjmzUr5MozqCPPsq9gO98wGI1o0GAwGhEREREREQ0Jcdc86iAcsHxa1o+ksIxWtzlrdidbeEZNyByMZtqm1SPkKpeggOZUk3F5LCDMZlhkISHwRApISRNDvCzhJmLwglCXPHmX+QN0KXhN2ocYHiHUYw2P6GNwi9ZaDFez/buIiIh6yve6LgWnSUFrhSQFkgKFCR4lKiYpGE26F7ESX/bJLRjN1peMOuYB3YUIRkt6nHdMhlsw2tObHxTvrw+oPhoBlcPgeyIiIiIiIiIiIiIiGnbUN68Vy/QVX4Fu/MRYdvYihStPVJhkydp4eTVw31s96tMajcLj15pY13Opf9/k0eIMPgLPfK/nty7yRZVGoK59JGt5WLfj8fcPwOKWJ8Rtj79ODrVyXY2Vn5rLpnVkvzCtLv0/4KizgLIqoGokcMKXoc6/0vsfkBYRAqpSSaCjHegQ3uQGgBDDG/xSgQBwxJliuV69rNf33z3cHs54/i0ab62Tn/3K56Ku/V15PvD+0t6Fd/0B+p+/lXda7hGukFMw2uAY2ztcqS/9VC687VrgyTuNRTUew2irW9YAWzfJ+/3Z3/00jwaAWnwMMMsSUvTGswCAcVUKvz5FPv/84xXg2scGKhjNcGLrS+jrhAYAwDQhGG3FemBLa+e/VQpX6tkuVSGHRxJtj5RSwGnfFMv1VReIZY6j8JX95XPRh5uAz/3RHhILAC3t5vNVOhhNr12ZFVArGjcFKpj7ODQVDAJjJ/lbmX1rMpHGuKZfBGsS+mZeffftkCqrBGbtYi5cswK6dauxqCKi8OTF9hijL/4/jfc2ZJ9zxH5N6bbfq778PGvd3Y79ItT0efZ1bBMghPnOHNFgwWA0IiIiIiIiGhLa3bhxedjxMbtjP5Be5E/qZFbIhxRoVqrCKBOCyOJuS04BawDQkjJ/qJjLuoMlGC3omANPEq4wfVQXMcTLEm4i/S6lujTMD4WUEIwWUiUIwPxQJ24Id5COl0L+G/xK6A6kkDSWSWFsREREmYJCkFlCCD7rLnfNAUYhxxy0Vki2UFUpUIhosNqYML+cUptHMJrU55VIfVvb31g0IASj9TH0F/A+7xjJychDTkon8cgm84DtqFOGPasOKnKLiIiIiIiIiIiIiIgGoVilXKa2g9ewRtYBIcsz2cf/ZVyslMLXD3Tw3s8DmFsnb37LC9uevWxtA1LC+/ndYUQP5xgaM26qr9VUV7iHVZ2PdSgnqq4B6gd/ylpen3gPj6w+FNPCjeK2UlDDR1uAuPAYsL5jVfbCWbvAufg6qLvXQd35IZyv/xLKdsxnkoLRACDe3BmOZhIIQjnbwTmkgNT8xXLho7f3+tZxFH55kv159q0vyc9+NwrzdNXEAN3SBDx/v3mFe24yL4+Wex9XuQSjRThes19JgQ9d9MO3GpdXe8ztXfPpUrlw0VGdYRM0aKkvXiaW9TwmTlnoce55caCC0Qwntr70bboCY+uFYDQAuOv1rmA0y7yF3e2qYAANUSY1Zze58Jl7oOPy+Lm9G+znopdXA8s+sZ+P5ECiri8e/Yd1+176EjLt854OJQxGIwNLMJrWGtgq3HPyumSk9j5GLnxOuEcCMHucwv/+l3xe0hr4e8b9WSKp0W5+fQ2xnrdWK9+Q29SDOvYc75USljRX3oMRDRr8NI2IiIiIiIiGhDYhgCLseDxV7ie2UKjMADMp0CwSiCEivPSfS8Bad7npAaZACkYrC1T4rqM/hZR5QEhSW56UwvKztgQvSL9LqS7pcZAUEqGU8r0PV7visZ7Pv6Gv4RG27W3tISIi6kkKMksKwWdpUoCRFLRWSLbw3b4GjxIV28bEeuPy2tDogu1Dyg6z3QtJpNDfVkOocK6kwEUbLd4BDD0vNT2FTckNxrK9qw4dsOBxIiIiIiIiIiIiIqJBZd/jzGE1E6dvFwEmKhAAZsoBMXr1u5517D9Lfvn15uc1bn3JxeZWjUbLo9d0MBpefsxzfz2pOp8v4O9gCR0AgKqRwLgpOe2bfJq9q1g0q+MdseyqhzXaEtnP7laYH4cCMASjVY8CxkwG0HmsK+mleZuoZdxcvFl+sboknPu+tnc7LBSL9AfZx8oeU+2/zx/frXHNIy6WftT7OHJdjU3CHHm1MQWsWQG4QoqjpKLGe51cwjxsgXzUd9Pm2kNBn7rLuLgiLGdvAMCYphVimZotH980SEybJ5f94zroriDMmpjCNMvchC+vRtZk6YUkB6Nld7T6dNyNGAcA2C3+grjKu5/Y2wQAsfQ4+XIf50mi7c3MneWyVApYawj97bJwiv2aBAD/esV+LmoR/nZjXV0WvXqZfQc9KK/7Ldu2c3b3tyL712Qi/R1oDbRu7fxbMuF1ycxyTwaPc8LuHvdn3/6HxoNvayRTnecm6Z4MAKq6Xh3VHe1Akxyo3q2syl8gbKv53crOOob/Z4BEQwWD0YiIiIiIiGhIiLtx4/KBenE7KgSaAdkBZlJ4RsSJiS/9A/4D1tJafAYFaK3RLASjxQLlvurobyEh8EQKSEmTwuOsoWJS8IIYjGYe4KIsM8LK4Q6999HuxsXgBdsxFxECAr2OGS+24JeoJcyCiIiop3yv61IgqhSgWkiOCogBvH0NHiUqtkYxGM0yKjNHUh82nkfor9TvzSUIWpLMI3BxuASjaa3xYOM/jWVBFcK+1UcUuUVERERERERERERERIOTipYDR3w2e/kJXx6A1gwMdfLX5cLbrvUM9zhnsf3l15Ov19j1py5efF9epzYG6FuvttZjNH6qv/Xm7wPMWCAWqxO/BhXs/0m7tkdqnPw7+s7Ki8Wy7/1L48ArXWxq6X38LV9vPh5rkxtQ7W7uve+TzocKGoIPc2ELqIq3AAlhsqZcQrAIAKBsL7I/eAt0RqjBrpOBxdPsdX7tFo2dLnPx+ye3jQNtagNc4bRWEwP0PTf5a3BP5dXe6+QS5sFgtH6lyquBI8+UV0gmoO/5v6zFjqNQaRnGPm3Tf+TCw87IoYU0EFRlrbVcf+Mw6K2d15mLDpH7Pq4G3lhb0KZtq9vVcpCRaZzNwafkvS/lOMDCg7Bf6+PiOj+9p/Nk2twm11OWbleFj/Mk0XZGjRgHHHSyWK7/fZNYNqlW4cSdvUOIbnhSDnsVgxZLuwIe7/2Ttf5uFTXA4Uv8rWtyePb9uFGI/WsyEZPR7IFavC6ZzVssFukbL7NuuvtUYC+P7PpDfuXi+OtcxDt8hue/8IC9wrTPnAdV6uN+q8USjOYn7JqIioLBaERERERERDQktAkv1EuBFf0tl0AzKTwjGoghYgmXygpYE34G29b3FxTQrtuQQtJYNliC0YJC4ElCCEhJk4LAbCFeUpkUCiYN7LM9RhL34fNYAfILj7AFm/lhC1aztYeIiKinfK/rUnCaFLRWaFJ/r6/Bo0TF1OG2Y0tqk7Esn2A0ZRs0YiD1R639c0cIRutj3xaQzzu2wMXhEoy2tPVVrOv4wFi2W8W+qAxyYA8RERERERERERERUZq64NdQX7gMmLkzsGBfqEtugDr+3IFuVtGoxccAc3aXV3j7Bev200crXH2y/aX8lZ8CX/2rNEElUNH2KfSvv+nZ1izjPd66Te/DcaCuuh847hxg0gygZkznf3P2gLrgauD0PPZNvqkLzKF3u7S9bN3umZXAtY/1fn634lPzuvWJVdkLT73QV/usrMFozUCHkCjB4Ia8qAuukgszXopXSuGerzmo9hhWnHI7A9LSIXu2F/Croxr45+/8NnebSh8v0ecSlhdlMFp/U+f/Elh0lFiu//uL0C1NWcvjluFPDfFl5n395G9QI8bm3EYqPvXTW+XC158G7rgBAPCFvR384gS573PO/5ODiPqi1XL8lWWOcZuxAKqPAR/q67+EA43zGq8T13npfY0WS7ti6XYxbITISH3nRrnw79dYQ6r/dJbCd4+w34ede7POChpOE4MWSwG8+qS1XtSMAcZMAvY7Aeq6x6FGjrevb6FGT4C6NDuQNEuo/ydZpiFICX8DWgNN5rG0AHhdEijHAY6QA4T1R+/L2yqFe893EPBINLr7deCWFzUaLa9MpoPR9I8swYnl1cAOu0Gd/79QZ33fvtO01uz+fbeyKn91EFG/YzAaERERERERDQntbty4POxYptrqRyFVggDMMwdmvvwvhWdEnFhOAWteIVetppmdDJqT8gd3ZYEKX3X0t5BjDjxJCgEpaVJYgi3ESyrr0O3G/cnBCPJDJGkfme21hdvZjhWpzO8xIZGOuQCC1vAIIiKinqQgM6/ruhRgJAWtFZoUYNvX4FGiYtqU3CCWFTYYLVtSJ9ChzaOlbAHXUmia3yBoGylwscSxDTgfHsFoDzb+w7hcQeHAmmOL3BoiIiIiIiIiIiIiosFNBQJQS74N54Zn4Fx1P9ThSwa6SUWnTvq6WKafvNNz+xMWeD9XWr/VvLw6CjjP3+e5vdH4qb5XVbEKOBdcDefm1+Hc8UHnf9c9BnXcOVDSy9RUGJNniUWHNdt/93e82vv53QfCI9H6jt7BaOqcnxTm91oaARzhlcx4M9DRZi5jcEN+LMeKfiL7XBQrVbjrq96vzLYlgAfe7jyWPrG8C1/dZJ58ylO5j4mpSsL+67MF8lFBqEAA6pLr7Su9+HDWolmWfLOGjpXmgoUH5dAyGlATp1uL9RN3dH990cEKEWG+z/fk4Tt90iyEGAE9AsjSFuzb9x2OmQQEAljQ9oq4yl9f1GgWLoUlbjtC6cndyxk2QmSigkFg90PkFdYK1xYAoaDCj49x8MXFcp/X1cD9b5nHw0nnlLJS+z2g+p9/dd5L/X0ZnB/9Bcrj3OnLnod7r5NLyCxtP6R7PtcFtjZU/IhmAAAgAElEQVTK28Qq+69NQ5yaPlcufPpu67ZlYYW7fdyf/esVLQZWlwSBaAmgUymg3fxuKcZOgvPvj+H89gmoz3zF/72/FGyOrlA4IhoUzG9wExEREREREVn8ft3/4JOOdUXd5ycda43LI5YX6vuTUgqRQAzNqS1ZZa1ZgWbmaQsiTgwhVYKgCiKpk1nlmaEbmfVmakkJI8Uy13Pl9WKBcl919DcpdCvhWqaQgiWETghXAOyhafFUK8qDmR9wmx8E2UIixGCVzGPF8juOBORjXapfCorzSzrmIoEYB/8REZFvIUe4rgvBZ2lJ1xxgJAWoFprUR4i7limpiAaZjYn1YllNcGTB9mPqIUv3QYBH6K9wTxLvY+gvACSF806JJXDRNsvmULG6bQXebX3DWLZT2W4YXZL/DJ1ERERERERERERERDRM7bSnXPbnK6BPvxiqTH5xeEwlMGM08O4nue+6JgboD5fnvuH0+VCxwTExKHmYsQAIR4G27GeK+7Y8jnvLDhU3/c8HwLsfa8wY0zl+bWOL+XneuGTGGNe6hvzb24NSCjpSBrQY0rRam4GE8GI1gxvyM2OBXLbS/Ax0Xh1QGQG2CO/Mpy3rOj+t/NR8DMVKgaoNeZyLAGBUnfc6OQSjKQajFYWqqIGu31E8tvSffg4sPqZXSMK+MxRe/TD7GNqpfCOq3c3ZldSOhYrIYyZokBk7pTMsRRo7svTF7i+VUoiVAnHDkLf1W4GX3tfYZXJhx16b9pUW073HgKu6+j7vT4VKoEdPxOJPnxTXue9Njd2nmP+dZT3H/lTU9Lk9RMOV2nFP6OfuNxeuXenZr91vBnD9E3L5n57VOHlh9nI5GE2J10YAwA67WduTDxWrgK4eBWySxz/mFDJL2w/xPScNNG0yF5VVQQUC/dakIW/+PmKRvu47wNFfgLLc7+42BQiHOsOpJc+uAk7Y2dzfqol23Yev/7Az4M5kBMfAEg1njCkkIiIiIiKinK3vWIe17e8X9b+kNn8CVupEivyv30Z6mT8z0EwKu4p2hUtJoRvZAWv2kKvWlL+gAClATcGxhoQVU1CZA08SwnGQJgWV2IMXLMFoht+dziMYTdp/ZnCZFGRWqsIIKDnfvr+CW6RjzvbzJCIiyiRe14Xgs+5yIcBIClAtNKmP0NfgUaJi2pAwv2lSGagWQwvzk91HtvVFbcHFfvvO+ZDOO7bzitT/H0oebPyXWHZQzbFFbAkREREREREREREREQ0Vqma0tVyftx/0lo3y9krhB0cpOHnkf9RE0fnCfy4CQagzv5v7zmhAqGgZ1BnfNpZ9dsvNmNqxyrr9rEtdPL2i8zleo/AYsTbV2HtBAQJhukkhVfEWoEMKRmNwQz5UtByoHmUuXPoitCGgLlqq8J3DvU8+P7iz8xhaLuRtNIwEcP33/Da1FzXex/GWyzERZTBasaizvi8XLn8N+qdn95pg7dx9FEZnZHIGHODSpeeZ6yjkuYj6nSoNA6MmWNfRbz7X/fUvTpDPPQt/5uKRdwo7BiVumZc07GZcj/ycl/wYX48piQ/g6JSxeOlHwNsfmf+dZemwtkBQvpYSEXD058UifeOPPTc/dp69H3TfW9nLXFejVTinRNEGvPyYWJ/qr6BDr2DjEIOHyUQ4/rUGmhrNZeVV/decYUBNmS0XdrRDX3gktHQfDKAqqnDhwfbz0oZm4LU15rLari6D/sd1chu//HNr/UQ0tDEYjajAlCFJVkuJ8EREQ4RrSFE2ne+IiIgGQngAg9Gkl/kzA82kF/jDTrSznj4GrKV16HbPgBEAaE4ZZioEEAuUwVGD46MCKZggKQSkpElBXpFAVNzGFgZn+t2JwWiW/pF0rGT+TqXfsS04AvAf0perzGPZb3uIiIh6yve6LgWiBi1hoYWU7qtl8uqTEQ0mjQnzCO7akP1FFokUBmzqI9v+VuzBxeaBj62uvyBoGylwscSRB0kN9WC0DR0f4+WtzxjL6iOzMDUys8gtIiIiIiIi6juO0SOi4Ybj84iIaLBS379JLlz1FnD3H63bn7zQwYPfcHDmXrld12piANasMBfuegDUH18Ejj8XmLcYmLs3cNRZUFfdD7XoqJz2QwNLLfmWcfmI1EY8/f6+OLv6Bev2l97R2YeSgtFqUpt6LyhUIAwARITnna1bgYQwFoLBDXlT3/qtXHjPTcbF3zzEwW1fcnDqQvv55401GiulYLQRLrD8NZ+tzOAn/Kokh2OCAUJFoxYfA0ybK6/wwF+Ad1/u/nbaaIWnLnbwzUMU9p8JnL1I4aEzN+DYrXeatx83tcAtpn433v4707/6RvfXp+9mP+d871/Z9/990WZ5bSCi470XFCqUr6ue91bMEFf55yvmz2pj6bFEFTX83IPIQlWNACZONxcufRE6aX9nqDTk/ff1xpref6dSKBoAlL16n1imfvQXz33lzaP/rti/JhNHeCdOa2DrZnNZf4X7DSPqnJ/Iha8+ATwp9H27/OhohZvPVphuGbr8ywfN/YeaWNdz4Ft+Jbdvzu7W/RPR0DY43nYmGkYcQ4cpkfAOJiAiGsySyWTWMtP5joiIaCCUBwduZoaIz7AMKRAg2hUuFRUD1nq/+C8FrNm2MWlJbTUujwXKPbctlpAKGZdLASkA4GoXcbfVWGYLPyt1wlDCRySm3530Yo0UEmHbf2bwmBRkZguOAPyH9OVKDGoTjn0iIiKTfK7rgBycFhSC1gpNDB5lMBoNIRvFYDRhRm0vOQxKlPq2CgqlloBrKRitzY0jJcw261dSOO9IAY7A0A9Ge3jTndAwD6w9qOa4IreGiIiIiIioMDhGj4iGG47PIyKiQauuwVqsn3/As4r9Zirc+FkHi+xV9VJtCUZTB58G1bATnG/8Cs6vH4RzzUNwLr4Oau4i/zugweMz5xkXj0xtwG/XnoPysLzpY8uAtoS2BKM1bvumdiyUFGaWDymkKt4MnWg3lzG4IX+WUCL9n0fFsuMXKNz8eQfXnSY/577vLY3VjeZnwvXOR/7bmMnj/AkAKLEc4JkKefySJ3X4Z+0rZFz/6kcp/OIEBw9dEMANSxws3mAJkClUOBUVj0cwGho/6f4yFFSoHymv+twqYEtr4cahxC0fiYZ127ZvSkqBkXUF2afqCioan1yHndpeN67z+hrzttuC0aoL0haiYW32bnLZyjc8N//eEfZxfve91ftc1GIJRosufUou9NPnyZOa4FF3LiGztP2QxrhqDd3UaC4r53XJkxTW2EU/d7+1XCmFU3dz8OJ3c3/uURMFsElIswaAvoSizd/HvLx2bP51ElHB8YkpUYEppVBS0vsFmuZm72ACIqLBLPM8VlJSwpkZiIhoUIg55ZgcnjZg+xcDzVK9r51yuFSs1/+z6/EXsGbbt4kUjFYWqPDctliCjjmYIOHKT1za3TbxhX9bMJqjHN8hd4AcjGALRpPCHTLDIqQgMyn4rLt+Kbgl1SIGufkRT+UeNEdERJRJCjKTAorSEq4UYGQOWis0MXjUR1gt0WCxMfGJcXlNvsFoOZD6tmEnAkfJjyhtocBS2JpfCSFwMeQMz0FSzckmPLPlIWPZ6JI6zIntUuQWERERERERFQbH6BHRcMPxeURENGhNnwfUjJHLX3kc2hDwaXLYjv6vbTWBOBAXngsxUGZYUbsfKpd98C4O38E8HhAAtAYOv8pFU5u5vDq1ads3Iwr8UrMQjKbjLUCHEIxWUpxJ4IaliTPksuftL+ADwKFz5PPPivUQw/XGrHvJs26jYAgYNcF7vVyC0UrlyceoH+x2sLVYewTS6LUr5cI9DsunRTSAlNfv7NO10M1bur/16vOs2lCIVnVqE4bfKe2ipOcYmbFToAoVwN6jL7ZH/PmcNi1LTwBfXlOYthANY2r3Q+TCde95bn/MPPu56Fu3a/ztxW197WahTw0AZa8/LBdOnePZlrxZ7hUAAKN99LdoOyQd+xrYuslcVMHrkqf5i+33L+tW+aqmPJz7c4/qmALWWPrXs3bNuc40dfTZ5uXn/izvOomo8BiMRtQPysvLe33f1NTUpxfRiYgGktYaTU1NvZZlnueIiIgGQokqxVnjLkRABQasDVI4VGaYlhQulQ5Wk0I3surxEYwmhZ711JxqMi6PBQbPNV4KPLEFqNh+PlKIXVouwSd5BaP5PVY8QvTE+oXgtRSSYviDH1J7vH6eREREPYUc83U94RWMJgYYFWewsN/rN9FgtjFhniVtRGh0XvXZhiRkPgeRQszy7dsCQKvbt5fcpcDFEiHAEQBcLb9sMdg9sfle8Vx6YPUx1oA6IiIiIiKiwY5j9IhouOD4PCIiGsxUMAT1lV9Y19HfP9lXXV/cO4dgtOVPyIV1Db7roSFg1wOB0RPF4u8+eypqLY8XH1sml9WmGru/Vhddk0/rZBGhUfFmoENIlQgNz8maikE5DnCQcK5JpaA/eMe6/aRaWzCaxkZhGEjNf+7028Texk2BCvgY25xLMFoJj59iUhOmASedL6/w6O3QScu4J0swmpo2tw8towGxx+Ge4Tx6yfzuzyYvPEhhcq287qV3FG4cSlw4DMO6rfcYn0IGy/boizV0rMhp07L0uLuK6sK1h2i4WnyMWKR/9FnPzXeepHDmXvZ7sFNu0Ljigc5zUovllZOyVvPkrFh0lL8+T57U9Hn2FXhvSCbShCNaA02N5jJelzyp8mqoL1wmr2ALLsvwixNyC0eriQH6ivPEcrXk2znV18vexwALD+q9bOf9gH2Ozb9OIiq44EA3gGg4Ki8vx8aNG7u/TyQSWLt2LcaPH88Z3IhoSNFaY+3atUgken9SWlFRMUAtIiKiweLAmuPEcK1iqAhUY0Z0DsqDVQPWBkB+Yb9nmJarXcRdczBaOhDAT+hGSqfQ5sY92+QnKEAKTxtcwWjmQRy2kC9TiFmaZ/iCE8NGw3JT8IkYjGa535OD15qhte7eVvo3eAa7Wf59ralmlDj5DYrJN8yCiIiop5AQOJRw7eGdUiBqUAhQLTQxvNbS5yAaTDrcdmxNbTGW1YZG5Vmr/2cc+YbsRh1LMFqqj8FoUuCicP8xlHW47Xhs8z3GsopANRZW7FvcBhERERERERUYx+gR0XDA8XlERDQUqINOBpwA9A9PN6/w1F3QH7wDNWmmtZ7aMoV/nOvg+Ou8w0Bq3nzAXFBWBVRakkZoyFGOA9z4HPSR44zls1feiVf/9w1M+P2OOdddk9q0bT8zd867jUZRYaxlvBlwhHCIXEKwKIs6+RvQD95iLNN/+DHUZX+2bv/LkxS+8bfssZ+vfAhsNg/xRU1KCE7Y5zioeXtDX3WBuXy8zwCiXI4JBusVnfOV/4H7wbvAc/eZV3j6HjkwQQqG6EtoAw0YFQwCP78deOAv0D//gnmlT9cCrz8NzF2ESbUKL3zHwagLzX2ee94AXFfDcfr+GWabJRitF7/nJT/GTukMndEaDR2rcto0lh5LVM4AGiIvKlQCvesBwIsPZxcmE9AtTVAx+2eIv1+i8N6n2hom/It7Nb66n0Zzu7xOTBgHqE6/2Lr/gliwL/DyY+ayQp7baPiwBqNtMpdV1PRfe4YRdfLXoZu3AP/3s+zCxo+hW5uhovL437TP7anwrdv9T3ZVE04C771tLqxrgKoa4buuTKo0DPzsNuDpu6GXvgTVsBOw3wlQDKYmGlQYjEbUD8LhMEKhUK+BClu3bsXKlStRUVGBsrIyBINBOI4zgK0kIjJzXRfJZBLNzc1oamrKGnQVCoVQWspOPRHR9m5hxT4D3YRBQQqH6hmE1u62QcP8YDPiRDv/L4ZmbXuA0CaEq2WSQs96kkLtYs5gCkYzB54khIAUQA5eAIBIIGrdn5/fQVp6Rq9s8gNqKfzOhYt23YawigCQ/w1eQWRS+wGg1W1BFfIbENgqtccjzIKIiKgnKchMCj5LkwOMzEFrhZbuq2Wy9TmIBpONifViWU2ewWjK0ufV0L3K8+3bhp0IHDhwDfdRUv/UL+m8U+LI5xUpGHmwe3bLw+K93/7VRyHkFCdkkoiIiIiIqL9wjB4RDVUcn0dEREPSPscCgSCQSprLX3sK8AhGA4AFE/3trmegVS9jJjIIeRhSlbXQlbXAFtPUpsC4lY/g0B12xH1v5VZvd6jV7IV9bKFBTBhr2fgJUCm8lM1gq76pswRfrLakfXSZPkoBhme/UigaYAlGmzzLflxNmObZHgBALv1+BusNCHXCudBCMJp+7SkoQzCa1hpYaw5GU3UNBW0fFY8KBoHDl0D/4cfAJ6vNK732FDB3EQBgRLnCgbOAh5aaV127GZhQgAyWeId5TEvE7R2Mpmzn0BypklLo2rHAhnWo7xBCAAVl6XE/FQxGI/Jl0kxzMBoAvPtyZ2iYhVIKFx7s4LFlcjj1xhbg7Y+A5jZzeQAplGohNa2A5xaJOmwJtCkYbcQ4XwFMtB2yBaNtNffvVVlVPzZoeFGHL4E2BaMBwLpVQMNOnnWMKAOqovZ7sZ6q4x/JhdPm+qvEQpWGgf0/A7X/Z/pcFxH1DwajEfUDpRTGjRuH1atX93phPpFIYOPGjb1mqiQiGkrS5zc+UCYiIuokhV3Fe4Rp2cO6Orf3E7AWNwR0mZiCvDJJ4WllgcEz63RICCZICgEpgPyzLlGlYiBLmvw7MNVpfojsQH6xxhb+EE+1IOx0BqNJv7+oRxCZdCym68+X9DO17Y+IiCiTFGQmBZ+lJbV5UL0UoFpo0vW7zY3D1S4cxZdqaXDbmPjEuFxBoSaU/wxpst79ZKlv6xWyq5RCJBAz3rf4CYK2kQMX5QHnUtD1YObqFB7edIexrFSFsajq4CK3iIiIiIiIqPA4Ro+IhiOOzyMiosFKBUPQex0BPGF+/qDffgnq6M971jOxVmGXScBLH9jXq5aC0eYv9twHDVGLjwHu+oOxSP/mEhx30Sm47y3/kz+F3TiiOt75zfjCBzaoMZPMowg/XAFEhNC0Egaj9YWKlstTWq14HbqpEapCThnaexoQLQFa7UNVeqlxzecite9xwJQdgFETgPUfZpfvc5y/HeQSdsZgtIEx3zKRuBB+hs0bgBbzJGb9cT6iIlt8DPD3XxuL9CuPQy35dvf3h81ReGip+cx1+o0uHrnQQcDp2/1/m5BZG9YZCUeFPvYmTgc2rMPUxHtQ2oX2OY4u5jYDAFR5AVLhiLYDavGx0LddayzTt10L5RGMBgD7z/QOILrxKY0DZpnPR7FUsziVqqqs9dx/n+1xaGc/uiMjnM0QTkrUSTpiNdAkfNZguY+gDKMmAMEQkMyepFjfdzPUV/7HswqlFI6br/DHp/1NWlzTnH3P1V2X33svIhrS+NYOUT+JRqOYOJGz0RDR8KGUwsSJExGNRge6KURERIOG9EJ/a48wKVtQWTpcyk/AWqslYK33vr2DAqQwgVhAGJAzAKQgs6ROwtXmYIJ8gxcAf7+DNC0PrxHZ2tAzfEwKIrMFqwGdQXLSz8zvsWNsWx9+pkRERGlBZZ6jJaGzH4r2LhcCjIQA1UKTgkk1NNpcn9NUEQ2gjYn1xuWVwRrP4GCJ7YlHZi85374tAEQd82yOralmz21tpPNOieW8onPv/g+4V5ufwwYhGG9R1SGIBjhbJhERERERDQ8co0dEwwnH5xER0WCnzv2ZXHjPH6FTKV/1XHuag5Eew9RqUo3mNpx1qa990NCjzvyetfy06/fA0bPbrev0VNMzXK+uH4KIpICZdauAdmE8Qag4Yx2GM/Xt34ll+ox50K486VVZWOH8A3L7/KDGFNJ44ElQDTtBBQJQ3/4tEMl49nri14Ad9/C3g9KI/8YwWG9AqNIIMHNnc6EUjCYtB/rnfERFpc64WC586RHo+LaxMufuK59znlwOnPeXvg9IiQthjxE33ntBgY89dfFvAABh3Y4JyTW+t4vprmtkRXVB20M0bM3bWy578k7olx72rCJSonDDGQ5KzcN4AQC/eUzj0XfN56QyYQygOv9Kz30XgqqshbrgaiAQ2LZw2jyoM75VlP3TECQ9M3RdoMn8WQOvS/6pYBAYO9lc+LeroJe/5quey45W2GGcv31W/+0nciFDEom2CwxGI+pH6YFXoVB+LxgREQ0WoVCIg66IiIgMbGFa6ZnppTAAAAing9GEl9J7BlpJAVWZWnwEBTSnzDORDaZgtJCSBwElhTAD6Wct/Z568hNylyYFoynLxyy2NvQMdJN+z36CC8TjsQ/BaFKomp8wCyIiojQpyCwpBJ91l7vma36+gU65sl3v+nJ9JSoWKRitNuR/JvVs/geKx1PmAf++gtF83CPlI+mazzslSh5EriEPnh+MtNZ4sPFfxjIHAexXfWSRW0RERERERNS/OEaPiIYDjs8jIqKhQNU1ACd/XV7h5Ud91bPrZIW3fmh/na3GNYQRTZoBVVbpax809KiR46G+8COxPNz0EW4b+Vv85jR/zyt7huspKcSsL+oazMsTHcDaVeayEIOt+mwvy7POxk+Alx+zbv7twxTGVPjfXbUhGE199w/bvt71QKi/vAn1/ZugvvErqBufh/PVy30HuKuSsP/GMBhtwKhTLzIXrHvPHAq6RghGi5QB1X0Zr0GDgaoeBfWV/5FXePT27i/DIYWFk+VVb3pGY1NL38LR2oR5ScO6R5hoIAiMmtin/WRS4+uBWOcJtb7DEgaYocztes+hoqag7SEarpRSwMGniuX69t/4queEnRXe/bH9HuyaR6RgNOH9pCKGEakjPgf15zegvn091BV3Ql33GFTtmKLtn4YYqS/e3gZ0tJnLeF3KjeUeW99xva8q6qoVnrvEwV+/4H3vZPyMCAD2PBwqyOfDRNsDBqMR9bNoNIr6+npMmTIFtbW1KCnhDB9ENDSUlJSgtrYWU6ZMQX19PQddERERGUhhWikkkegK+pBCM0KqBCEnZK2nZ8Ca3wCAVo9gtA63vbttmcoCOYz46GchS+CJ1H4pVMxX8IIl5C5T+neSyTaWJeSUiGFvPY+RvgSR2Y6jfCTcDjGELuKwb0hERP5J1/WEEHzWXS5c820BqoUkXVsBOfCJaDCRg9FG99Mee/eTxeBiy99W9zpC/9frfsdLQujfSgGOQ9Hy+Jv4oG25sWzXisWoCY0scouIiIiIiIj6H8foEdFQxPF5REQ0FKnZC+XCpf/xXc+IcoWJlveOawxhRGIQFQ0fM+Zbi52lL2DJ7gpBH29D9gxGQ10/BKNNsByP771lXp5LCBaZVdYClSPk8qUvWTcvDyv87Hif4XrJjQhkTqJVVw8VDPZapEaMhTr4FKjjz4WaPs9X3d1yCTtjsN7Akc4hiQ7gw2VZi/VaISSqrt53aB4Ncpa/db30xV7f7zBe/p13JIHX1/StKXExGC2+7Zuxk7POXQUxZQcAwKz2d31vUuFu7fqiuvDtIRqm1KSZcuHb9r5PTxNrFS46OPfrUEwLY2Vrx+ZcV1+o8fVQR3wWardDoEojRd03DTFCf0s3b5a3Kavqp8YMU5Mt56UcPhuKlSqctKuDPT1u2UckN5gLJs7wvS8iGtr64W6GiDIppRAOhxEOhzFq1ChoreG6rvgyPRHRQFJKwXEcfuBORETkgy2sqtVtQYlTKoZS9XzRX3rpP4UkOnQ7SlVYDBXI2q9HUEBLaqtYFguU+9pHMdiCCaQwA+lnZAs18VrHVKeGEIzmkT8fcWJIpLIDXlq7jhFXp9Dmmh8cScdIZv0mfkP1MsWFtgD+wiyIiIjSgkKQmRR8BgApnYKbOcC0iy1AtZC8+npEg93GpBSMlv8MxAryZ4aZ/eTWvgQXB8qMy1ulGSh9yidwUer/D1YPNv5TLDuw5pgitoSIiIiIiKi4OEaPiIYKjs8jIqIhbfdDxSJ9w6XAqRf6Dt6wddWrUtkvLKtDTvdVLw1hO+8H1IwGGj8xlz/+T0QW/gHHzPscbn/ZXlWvcL3xhQ9GU9FyaKmtrnmsQ04hWGSklII+6CTgtmuN5fr67wOnfAMqKI8rWbK7wu8e13j+Pfu+pibez15Y6IDGXMLyGKw3cMZPFYv0GfOgdz0A6rt/gKod07nwkb8L9fRDSCMNjB33ksv+dT30woOg9j4aAHDyrgp/fFru9Dz3nsY+M/L/fEAMRnPbtn3THwGh6XrffBYnNv0dv6n5kq9NJne83/lFuSUhl4h6O/C/gBsuNZc1fgzduhUq6u89oFMWKlzxQG7PTGKm8Xqj6qAcH2nFRANBCcdmq/wuHSJ8PyoX6sCToG/5lblw2SvQ69dAjarzXd9OdQrPrDSfm0IqhfHJdeZ2HHyK730Q0dDGYDSiAaCUQiAQGOhmEBERERFRH9nCoeKpFlQFa8TQjHCPbW3BAPFUC0qdsBiwlqnFIyigOdUklpUNomC0oCXwJOmawwykn3XE8Z5ZO7dQMSkYzWMfgRiaDLOZpsMdbEFkfsLdxPAIj7A8iS2Mz0+YBRERUZoUZJYUwk4Be2iaFLRWaAEVQKkKo123ZZX57ZsRDaTGROGD0aTZ9ICul1d6FMvBxd7986gj9W379rcnnXdKHPklhKEUjLa2/X281WJ+C2SH2AKML51c3AYRERERERENII7RIyIiIiIqPBWJQU/dAVj1lrFc33Ap1Lk/6/N+gkhlL9zn2D7XS4ObCoaAn/wN+sv7iuvoy7+Mqy+twwcbD8RLH8h11bhd4/TKKoHK2sI2NG18vRziZqBCDEYrBHX2D6CFYDQA0Nd9B+qrl4vljqNwx3kODr3Kxasfyvtp6FiRvbDQwVYMRhsSrEGIAPDiw9AXHgn88UWgqRFYvcy8HoPRhg0VDELv/19iCJ7+7onA9U9DzdwZB84CLjta4Qd3mseeXPIPjW/JubOe2oThd5Ge49366dhT4+uhAewVfxb//cl3cMmon0BLYTRdpia6UikrqvulTUTDkRo3FfrM7wF//ImxXF91IdQl1/uqa/5Ehc/tqXDTM/7Hww03m6sAACAASURBVMUM77ioH/3V9/ZERSeNcY1bxp5GzONVyUzNWAC97/HAY/8wlusv7An8833fAYoNliHNU0saERAmWlfT5vqqn4iGPsaxEhEREREREeXJFg6VDqOSQjOiPba1hV6lg7mk0K/s/VpmsQDQYimPDqJgtJAl8CQhhBlIP2t/oWLmdUx1umIwmv1jlqhwvKT3YQtYkbb1Vb/PYyeTLXTCz8+UiIgoTbquJ3QHtDANeNKVQ9NCjhygWmjSNS/f6ytRsbS5cTEUuTY0Ou96c5mjVgr+9ROyK/XP8w39TUsIIcu2+w/pPDUYPdR4h1h2UM1xRWwJERERERERERERERENV+qos+XCe26Cds0vrGYamctQtYUH+X6hloY2teMeUL9+yLrO6Id+i+cucXDuvvLTy+pUY+cX4+uhLJM/9UldQ27rh4ozCdxwp8oqob7xK3mFf/8fdDJprWNUhcJ/vufg9N3kY6O+Y1X2vusGMhiNwXoDyitYauUbwNKXgIdvFVcp+PFDA0oddJJcqDX0PTd1rqcUvn+kg4Nny6u/tS7/cSlxYe7RcI9gtH479rrqVQAuavwVPlk2AXu3PCmurrSLSYnVnd+UMxiNKBdqySVyoRDSKPnlibn1jcvcjPF6jgNMn5dTHURFJd3/tVretWMwWs7U166QCxs/AV5/2ndd00bJ56WpWGsuOPhU3/UT0dDHT4WJiIiIiIiI8lTilCKozMEc6SAzKTSjZ8iGLfTKT2hWTy0eQQHNQjBaxIkhoAK+9lEMIeHnCnSGqJhIP2s/oWJSOEOHbkcyK4hNeADt8YzIK1jFFn7nJ4hM+jf4PXakdmVy4KBUcfZBIiLyL+jIg3uT2jwYVbreA/YAo0KTrq9+Q2uJBkpjYr1YVhu0TK/WJ9v6ya5OoU0IRvMV+hswDzSJZw60ypEUsmw/rwyNYLRNiQ14sekJY9nEcAOmReYUuUVERERERERERERERDQsTd1BLtuyEfhUeGk1w8WHmgdbHdT8YPbC8VN91UnDRP2OQCAoly97FY6jcPKu8oC9hnSo1chxBW7cNqo+x+dvDLYqnPod5bLmLcB/HvacAEsphf/aRT6Gdmp/I3vh1AI/c/UbjOY49r8J6n+2a1/aK49DL3/dUgef2Q8rXsfEit7nkP1myuebV1bnPy5la5t5eaznmB2vYL98ZdRb427CuZuuF1cfl/wIYd3e+U1ZVf+0iWiYUsEgUC2M+etog+5o911XZVRhQg7ZhOWZ4/XGTIJi4C8NZlIwWlwYe+o4vFfLR+1Ye9DpCku/OMOc8XLZjnHDfRkAjJviu34iGvoYjEZERERERETUB9JL/fHuYDTvMICQU+IZsOY3fCPutsDV8qybLakm4/KyQIWv+oslaAkmkMIMWoUAMCnQxO868VTv36E0YEZ5JKNJx0p3iJ4lwCziRK11A3J4Wr7BLeLPMxDrv1k0iYhoWLIFniaFADTpeg9A7Df1h6gUbJpn8ChRsWwUgtEUHFSHavOu19bn1T0CxNrcuLien9DfqGMORpP6qH6kdAouUsayEkce2KKHSDDaI5vuEv99B9ccxz48EREREREREREREREVxty9gYoaufyNZ3xVc/gchcpI9vJTmm7NWqbGMRhte6LKq4B9jpVX2LAO+pl/Y696YJohHyLituLorXd31nX05/uplQAOPCm39f2GYJG3HfcERsihd/qio6FP3wl69bvWag7ZARhjGDpbm9yAI5rvzS6Yu3euLbXzG8AQKuXz3gGmDlviuY7+7XeBu/8grzBrlwK2iAaaGjcVmLdYXuHNZ3uNNz91ofw3vOQPGs+vym9sSmOLebua1MZt3/RXMFpddr1TE++Jq4d1V4pbWRVUYPBM5k40ZCw+xrzcdYFVb+ZU1ef28t+vqE419l5Q15DTvoiKTzi+W4VgtEgZ+9p5UI4DHHq6WK6vugC6zfw+ZaYpIxT2mW7YhwLOeO9K8/4ZjEa0XWEwGhEREREREVEfSC/1p8MypNCMzCAuz4A1nwEAGhptQhgbALSkthqXxwLlvuovlqCSZ7dLuuYAlbgQACYFmvhdJ7NeKRjBKxhNCl9L/26lALOwE4WjvB8Ai8dQnuER4s/TR9AcERFRT6E8Ak+lwDSv+gpNvH5b+ltEg8GGxCfG5dXBWgQsfW1v/gaA2ALM/IT+Sv3z1swZKHOQtAQulljOK0MhGK011YyntzxgLBsRGo15ZbsXuUVERERERERERERERDRcqUAA6ndPiuX6Mu/wGAAoCys8cqGDGaM7v68Ia/x4w2U4Y8ufs1cez2C07Y26+Dpg8iyxXH/rOKiWzbj3fAc7127pXj6l4z3ct/pIjE51TSS1+6H918baMcCoOv8bhHyGYJEn5ThQ1z5sX2n1MuhLPiNOhAsAJUGFhy5wMKdHxtqs9qV4YPURCOv23isffXbhg3z8huUxVG/AqR0WQn3/JqAyz4noTv46AzeGIfUjQ5+lp0dv7/5yQo1CueVP+fCrXcQ7ch+f0igMz6lJber8wnGAsZNzrtcPVV6d9TdR37FKXF+nxxxVVPdLe4iGO/XVy8Uy/d0Tc6rre4crnLuvv+tSdWpz7wWGUESiQUXqc8WFsadhvh+VL/Wln1rL9Y2X+a7rb190sP/Mbb++0RXA7fPuw6wOIeyawWhE2xUGoxERERERERH1gRSWkQ65ksKuIoFoxvceAWtCPSZS+BkANA+RYDSllBh6khCCUuIpc0CJ9Dvyu05mqEO+wWhSuEN3+F0fg8jEYyiHY6fXdkKYRdhHkAUREVFPIRUSy6TruhSYBgAhp5jBaObrXr7Bo0TF0phYb1xeGzJMmZ4Dv8N0bX1Qqd/aU9QpMy5vc+NI6ZTPVvQmnW8AoMSRX0KwDZQfLJ7a/ADa3Lix7IDqY3wFLRMREREREREREREREfml6hqAOfLELHrzBl/1zJ+osPTHAXx0hYNPL3ofl3z6C/PzqPF8+X57o2IVUH980b7SY//E1JEKL+zzb3y0bCLeXz4Ny1fugL3iz3WW14zp9yAideSZ/lcuYTBaIalxU4G5e9tXWr0MePdl6yqzxym8/sMA1l3u4MO5V+KNVTtjbvsb2fvb7ZC+NNeMwWhDijr4FKg71wAH5BY+AwBq5/36oUU00FT1KKhb3hbL9b1/6vX9OYvla9KmVuDeN3Nvg2cw2uiJUKF+HGuX0UerdjcLKwK7xV/o/KKcwWhE+VClEWDMJHPh+jXQKf9j6kJBhWtPdfD/zvbuK3efT9Lt4L0ZDXbSPWCrEIwWYTBavlRJqT0c7f6/+B5/O6pC4aELAthwpYOVP3Ow7nIHR7/2C3kDBqMRbVcYjEZERERERETUB1JoVXegmRCakRnE5RmwlkP4RktK+MAWcmhaWaDCd/3FEhRCVExBKVprSwid9wfVpU4YSviYJDPUQQ5Gs3/MIv6OvY4VH+231p9vMJoU1OazPURERGlBS5BZUghAS7hygFFQBfvcJr+k63C+11eiYtnYT8FoNj37ydZgNB/Bv9GAORgNyD+YMOlaAheVJRhN6P8PFgk3gUc23WUsKwtUYI/KA4rcIiIiIiIiIiIiIiIi2i5MmiWXrX43p6pGVygEP1olr8AXXrdLKhgCps0Ty/Xffw3d2gw0NWJkagPqkmt7r1BZ088tRG6hff0ZTLO9mrnAe52XHvFV1ZhKhbFrX5BXmDbXZ6NyUOo3GI3HzmChHAdqvxNy35AhMsPX6Ily2XP39woq2lnIM0p75+Pcx6c0mucUR02qsfOLun4+9gzH9oHNDxlXPbnp1s4v3PwmRCQiACPGymUb1splgj3rvYPRqt3ewWiYPj/n/RAVlRiMZn6XjsFofTTDck7YtB5oasypuuqYwpQRqjPk/NN18oq1lvMhEQ07DEYjIiIiIiIi6gMpLCMdBCAFAmRuJ7343x2wlkP4RqtrC0ZrMi6PBcp9118sIWUezJHU2UEp7boNGq5xfSm8ridHOYg4UWNZVjCaNGOFx3MhKVCsO/xO+L35CY6w1R9PtfieZcPUrnzbQ0RElBYSwk6BzkAfEykwTUEhgCIGo0khuAxGo0FODkYb3cea5U5vzwAxKdi5VIURUAHPvdjCeG33OzYJw31EmnTv0WlwB6P9f/buPE6Sur7/+Ptb3T1Hz7E7M8suyy7I5cEGEBGQQwE5lUMFb7zQmBhj1BhjPBOPBHMfaqJREzXRmOQXFcRbUBHxVjyIGg88OVxgZ6+Znt3t7vr+/pjt3Z6e76e6qs85Xs/Hgwc79a2u+k7PTHVNT/Wrv77789rV8M6cNeesvUQDEe88DwAAAAAAAAAAOs894QXmmH/BefJl+28zwdvc8F/hgamNckPh67qw8rnHP98e/Nn35a86Xv7Wm8Lj4z0Io20+Nv26Bf5u12nu0mc3Dc75t79G/qPvTrfBO2+397XxyAwzS2kgbRgt5XrojTMvSY5hNcrlpEObFLGwbLl8IfHr619xxXzEU9JjT3LatNbe1jUfy3Z9SjX22tEsjNbtKF8gvPb87e9ctOzofT/VxTM3zH8ws6O7cwJWMPeUl5hj/o+fmvk1I0etczpxc/I6E43XpT344Zn2AfRe1jCa/Sa+SOHkR0qja8xh//pntPR6Nr93TrrnV+HBLafJRWSSgNWEn3gAAAAAANpgxTJKB4Jm4b84Nsa6rHhX7UX/mcJoVTsUMBOHn8wdXYphtCgcUSkHQilJn7MVr0u73uKoQ/hJ2ajJ0yxmWGX/9q14RFIUYsF6xvZjxdrr96TaRmhejdLenwAA1CQFh0LBU8kOGOVdYf5doHokKTwKLGV2GG19W9tN+/OXNhBtKUb2xSZJ5/5JQr9H1CTFw+IlHEaLfawbpq8LjhXcgM5Ze0mPZwQAAAAAAAAAAFYLd+wJyStYobMAH8fSp/4jPBgIbmD1cJdeLa0/3F5h293SFz8WHhub6MqcFsjy/UncquPcUcfJ/f0npC2nJa7n/+YF8vfembxOHEt3hMNo7uX/3PIcEw2kjOUR1VtSXGFA7p8+K518brobbDhCrknAD8ube9377MGvfEr64FslSUMFp1tebl9rPleW7tud/hoVK4omSZP7Q0auy2E0t35xUemxMx/Rv935HJ2w5zaNV3fq8t0f1U2/uFB5VedX2E0YDWiVO+dx9uAPviF96/OZt/mR30t+DcxkfRjtSS/q6fW7QEusYFa1El4+zOuj2uGiSO5937VX+PpnpNu+lH3Dd/3c3uer/yX79gAsa4TRAAAAAABogxnLiGflvTdjV41BgKRoVtVXtSeeSz2n2arxThYJYyO58dTb75W8EVEpx4tDKXuMAJ1kB8PSrtcYdWg1jGBFIObikmIf2/GIlPNPiky0Eo+w5pP2/gQAoCbv8uaYFSqylidF1rrBPEfLEK0Fem2uOnsgsNxoss0wWpY5hKQ9tx2MhuWMP2OWWvz5s0KMUrNjy9INo/3v7De0dd8dwbEz11yg0fzS+z0PAAAAAAAAAACsIOc90Rzyn/tg+u38+Dv22GFHZ5gQViL3e3/Z2g3HJzs7kQA3Ppk+wEYYrSvcgx+u6O1fkJ72MnulalX6fPgNpw647y5pn/EGtMee2PoEk6T9niCMtuS4DYcretOnpMkNzVfucpgKS8AR908crj8nut+U05ueYkeFrv9O+mtUtieE0Sbi/SGjbgdmN4XP056267/0rZ89TNt+tFHX3vEkHVa5++DgqRd0d07ASnf8GeaQ/+wHMm9uQ5PLyybqwmjuNx6WeftAz2WN9w3x+qh2ualDpWPseH4rxybd+ZPw8iiSNh6VfXsAljXCaAAAAAAAtMF6YX8pntU+v1dx7d2NGjTGpayoVSmeTYx+hW9jR7Bmq7uCy0dyY5n20QsFVwgurwRCKVaATpKG2gyLLd52+I/OVrihxgqKecXaG+8xPwcrvpd2+1Jr8RYz6kcYDQCQUeRyyikcRysboaJQCFWyzw+6xYzgVrOdnwG9tK18jzm2rpDiotwESZeMeH/wPHnO+B0m7blt5CLz/LaV6K8kleNwcFGSCpF9bFm6WTTphulrg8udIp0/8ZgezwYAAAAAAAAAAKw27gT7Rfn6yifTb+hXP7L3cfzpGWaEFWnLadlf3C5J6zZ2fi4hST8HNc5JR23p/lxWMXfimYnj/pufS97AnbfbY0b4p21pw2gDhNGWrBOSv++kJo+VWBHc2IR0vwfZK9zx4wXX1Jx5jP2YdovRAAnZbbQcJWlN7fUCh2xKv8FWPOiUxGNZ6DN1Fz6le/MBVoOk348+/E75PdmubR3IJ59nT9aF0bp2TgR0VMbfHQeHuzON1SbpnPeDb5X/6feybe8O4/ezDUfIFXr7JusA+o8wGgAAAAAAbbBiWnPVGc0lxrqKCz62XvQ/V51N3E7IrBEKqPiy9sRzwbHRJRlGCz9ZGQqoWOGvghtIjBzUs4Jfjdv2VhityfPn1vdKbR/W55A2RJYUgMv6PVSbU3A+KWMWAADUsx6PQ8HTpOX5qLd/zGw8Z6spxbMLLlgDlhIrjBYppzX5dt8VPTGNduBf7Z7bSnZEreUwmhFidHLKKW+Gjr2PW9pft/107v90+9wPgmMPGTtD6wYO7fGMAAAAAAAAAADAqnPxVYnD/v1/m247d/7UHrvgSRkmhJXIbThcuij5ey14u83HdmE2gf08+cXNV7ry+XLF0e5PZjU77SLp2BPt8Vs+Iv/dL9njvzJqRGum5qNH3ZA2wpALvxkh+s896UVSUphhzTrp0qt7Nh/0j3vaH9qDc7PS9NYDH558hL3qe77k9Z1fpbsmbWavPTZae5P18XavE0rmhkekNI+D9U67sDuTAVYJ99jnJo77F14gv3Nbx/a3Jt558IPDCKNhGcga1Say1RHuyucnjvvnnCr/ifem3p63wtWbj8kyLQArBGE0AAAAAADaUIzCF6uU4lmVjBiAtPhF/mZgrcl2gvuu7g4ut4JpkjSyBMNoeRcOqJQDoZSSEf7KFF5IiNPVsyIoVkjh4PbtC5tKCQE8a16NClHBjMll/R6S7JhalvsUAICavBU8jcOhIiuMVjDOD7rFehz2irXXJ7ztJtBH2yrhMNpEYZ1yLtfWtl3Kd9PrxPn5cM76XavVMJoRXHQFOZf2M1s6bpi+zhy7cPKKHs4EAAAAAAAAAACsVm5sQu6vP2yO+7e9Sn57+G9XC9azwmjHnSpXXHrXtaH33CveIfdbb8h2o029ecG0O/lcubfcmLzOi1JGAtEyl883/Tr4f/wje8x84X0XA3uFwZTrEWtYqtyJZ8r9wyelc6+cjzQcdtT8f/d7oPSop8u9/Wa59Zv7PU30gHv0M+Re+hZ7hbpzHeecXnqRfZXKq69N9wZ+M8ala4PxHhVUmf+gy2E0SXK/9fr0Kx9zglzaKCSAILf5WLkX/IW9wv99U7r27R3bX1R7s9Q1U3Jjazu2XaBrCKP1hTtqi9xz/theoVqVf9MfyM+lfG2b9ftZj37PB7C0EEYDAAAAAKANjYGzmrmE0JW0OAhgBQJKcfJ2rNuEzFZ3mbcZyY1n2kcvFKL0AZU543O2gnNZ1m28P72sMFqz7RfNsaQAXpbPIW3cLY25uBTeR4b5AABQk3fhd6+1QkVlHw6mWRHQbkl6HC4lRGeBftpW3hpcvq6wvqv7rT9Pts/P7XPiRta5rRVda6bS5LhihY5jpbvgtJe27rtT3535anDsgcUTdL+hLl6cDwAAAAAAAAAAUO/EhyePf/XTzbdxlxFGO+GM7PPBiuTyeblnvly65Fnpb3R47/5m5k56hHTUlvDgwy+Ti3gJZy+40TVy1/w/e4UffF1+26/DY7/+RXj5YUe3PzGDy+WkfIo3CEyzDvrGnXiWoj/9T0X/+X1F//1/8/+977uKXv2vcoQbVpfH/pZkBV0bznW2bLQ388nvSXvL4WvV683sDS8frb3hYC5nz6eDnHPSlc9Pt/Ihh3V3MsBqcealicP+lo90fp9dPCcCOipzGC1lrBjNnXtl8vjsLunbN6fb1h3hMBrn18DqxLNqAAAAAAC0wQqaxYq1o7ItOJZ3+UVRj6TAWinOFt2Yre4OLp8xlkvSSLT03lmz4MIXc1QCARUrvGDFFLKs2xgVs8NoyU+z5F1BAy78pHmpOmPGy6zvseC6KeNuzVR8Wft8+C/mWeYDAECNFTSzQkVWMC1vnB90S9K5hHX+AfTbtvI9weWTXQ6j1bMiu1nOJYu50eDyrL8f1VjHldrvHVmvh+mnz0x/2Py95ILJK3o8GwAAAAAAAAAAsJq54qi05TRz3L/tVfKVSvJG7gyH0dwmXnyPhdxDH5luxeKYtPaQ7k6mgbvoqvDy857Y03mseieelTz+vfAbUGnXdHh5tyM+A0PN1yGMBiwLzjnJOHfx//yaBedDj3ygfZFK7KUfGA3HejN7w9eNjNauaRubnJ9TD6R+fB4c7u5EgNVi0zHShiPs8R/eKu+bBxYz2UyMCCvUAGG0jjn8AdIhm5LXuTMcPKvny/ukrb8MD3IsAlYlwmgAAAAAALTBCppJdpBgOBpZ9IfG5MCaccGFoVQNhwJmq7uCywfdkArR0rtwwgqolAMBlZIVFUv4+qRdtzF6YgUI2tnHTHWX9vo9wbGk77FF60bheIQVXbPMVcMhC4kwGgCgNVbw1AoVWcG0QhQ+P+iWoaQwWsLjJdBP08bvIVP59sNoTukumLTOPztxbmv9vtNMOQ4fV/IHjivhz62d8/9u2FXZoa/s+lxw7LCB+2lL8SE9nhEAAAAAAAAAAFjt3HNeYw9Ob5V/1RPk4zg47PfOSffdFb4tYTQ0Oudx0nGnNF9v87E9i8EccOnVi1+kfdyp0tmP6+08Vjm3dp30jJeb4/7VT5LfFigO7doe3t74ZKemFpYqjNbba2UAtOEw49xl293yr37igVDRkeucrj7Tfpw6+U9jlYzwWc1M+P2vNVp7w8E1XT5+1TvzknRhmQHCaEAnuFxO7rmvTV7pti91dqfW8Q1YarL+HlggjNYpLp+X+83XJn4NvBHGX+Dun0vGc0jafGxLcwOwvBFGAwAAAACgDUmRqG0VO4zWqJXAmmXWDKPtDi4fzY9n2n6v5DMEVBrjZTXFDBEv62tZaty28e45kWv+NIs1n2nje2X+NuEgRIgVXlv0OTRh3Z9StpgFAAA1eSNoZoWKynE4mGYF1rqlEBXMWGvS4yXQL9573WeF0QoburvvuoCYdf6ZJbI7kjPCaC3+7FWMEGPtuGJF37w3LrDok5u2f8z8XC6cfFzvX+ABAAAAAAAAAABWPfewi6VTL7BX+PInpO98ITx218/s2/HiezRwg8Nyb/q03HNfl7xiH14s7SYOkXvbzfMvBD/viXK/++dyb/603GCK8BU6KvrtNySvcP2/Ll62y3gD47GJ9ieUJFUYbem98TEAQ1LU9Usfl75984EP//VZydd3fODW1sJoI37/dTVjvQujuXxB7r9/2HzFQcJoQKe4Rz1d7rX/bo77t7yss/trDAADS1XG6ycdYbSOcpc+S+7vP2GvcMftzTdyp7GOc9LGo1qbGIBljTAaAAAAAABtGI6K5ti0ESQIxauSAl5Zw2ilePeBd5SqN2OE0UaisUzb7xUrQlLxiwMqc9X2wwtW8Ktx27GsMELzJ9Ct+SR9ja3YWYj1fWTdP5ZSwvpZ7lMAAGqsoJkV9ykHHu8lKW+cH3STGU/N+PgK9MJcPKs9cSk4NlVY34E9JLyTW10YzTr/zBLZLVphNCME3Yx1XKn93mGG0VraW3fsief0+R0fD45N5NfplPFH9HhGAAAAAAAAAAAA89wFT04c91+7MTxgveA1l5MOvV+bs8JK5IZH5J71SmnDEfZKfQo3uLXr5K5+laLXv0/uqX8gN2RfX4ouO/9J5pD/euB4ZIXR1kx1aEKGgRQhBsJowLLhNiU//tSfDznndPb97XVv/H7yvmb2hJePxvuvqxnvctixgVu3URpdk7wSsVCgs85/kh0c3H5v6s2cYvzadc7s5w9+cBgxIiwTWd9YdqD316WvdO6hj5R73p+FB+/6afMNbP1VePkhmwmPA6sUYTQAAAAAANpQiAbMgJcVuwrF1IYSw2hbg8tHc+PB5RVfCb7of7a6K7j+SG6JhtGi8MUc5XhxQKUUG2G0DOEFK3qyz+81oy310jx9bs0nKYyWFM1Lu33r/rHMGes7OQ1GPJEMAMjOOl+yQkXWY68VWOsm6/HVerwE+inpvLITYbTEa0b2F8S895oz4mxDCWHpRsWo02G08HElv/+4YoXRllIa7Us7bjCPPedNXK6cy/d4RgAAAAAAAAAAAPuddqGUS/hbxfv+Krz8TuNFsesPlyvwAmUkOOsSc8ideWkPJ4KlyJ2V8D1w25fkKwf/fuwrZakUfuPhroeFhsN/F1+AMBqwfJx+sRQlvGz/+19b8OGlJ9oX4rzvq1633WFfszKzN7x8tHZdyaEJAdFuaRaTtAJOAFrinJMGjNd2bP2l/O4dqbbzO+eEj0UvmX7zwQ8mOvGmrEAPuIz5nEKKUDGy23R0ePkvfxQOVdfbtT28fGpDe3MCsGwRRgMAAAAAoE1WUGu6HH6XlWIgrlGICpkDa1MF+0m92eriizRCyyQ7sNZv+QwBFSu8kCkqlrDuXPXg9r3i4DouxdMsVtzB+hrPh8jS/xHY+hyyhlus9YeioqKsfygAAEAHw0ONrFCRFUyzzpe6yTqfIIyGpeg+I6qcU15r8pNtb9+Ohx201+8xz5mznJ+Hfm+Sskd/ayrWcSWaP644o/rml0gYreor+uz2jwTHhqOizlp7UY9nBAAAAAAAAAAAcJBbt1Huua9LXMf/198vXnaXEUazXkQL7Oeueqm0+djFA5c9R9pyau8nhKXlnCsS3/nLv/IJBz/YbbzwXpLG2v87e6Jiijc2JowGLBtu/Wa5q19jr3Dr9MQnewAAIABJREFUTfJ7Dl6T/tyHJ1+H8+A3xPreXeHrVuww2vwbDrpNxyRPtgvcy/85eQXCaEDHJf3c+adukY/D1/HVe8qpThcct3DZ43d9SBfP3HBwwXiXz4mATkl8998AwmjdkXAe4v/gUvkvftQe3z0dHhjrcrQawJLFK1kBAAAAAGjTsPGC/X0+/BdHK16VNbqxLjGMNrNo2YwRRhvJpbiwog8GjPBJJRBQmauG7yPraxNihRekhV8DK4uQ5vlzax87K+EnbrOGyKztW/ePpT4El2b7AAA0YwXNrABaOQ4H0/JR7y/2tM4nrMdLoJ+mjeDuZOGQrgduawGxUuB3kZpM5+dGVHhPXFLsq9kmJ/u4UjgQbjTCaH5phNG+ufuLmq6E49tnr320hjIElQEAAAAAAAAAALrBPf1l81Eqg3//38lXGv5mcydhNLTGbThC7u1fkHvFO6QnvlB6xsvl/uZ6uT96q/mmSFg93MCg3L9/y17hK5+U//kP5v+9c5u93niXX3xfDP9dfIFC799EEEDr3LNfLV1unw/ppg8d+OfEiNNHfi/5ep63fDZ83cqsGUbbf814H8JoevAjEocdYTSg8x6W8GaaO7dJ3/xs000UB52u/71IH7joe/rje6/Rtb96gt5/5zNVUOXgSqNrOzBZoAey/i44QBitK5o8p+P/42/twV1GuJpAI7BqEUYDAAAAAKBNVtDMYoXRskQCJGkqIYxWihdH0GaNMNpobjzTfnsl78Lhk3IojGbE44ajYur9WV8XSSrVhcW8D79rjkvxNIu1D2/k1rKGyKztl2I7ThFe37o/CaMBAFpTMIJmFSNUZAXTrMBaN2WN1wL9tM0Io00V1ndoD0kXjcyf0yb9bGT53amYsy8At85Xk1jHlfz+44qzwmhmGrl3vPe6cfra4Fje5XXuxKU9nhEAAAAAAAAAAECYe/TT7cHt90i/+snCZffdHd7OxqM6OCusVG58Uu7SZyl60d8o+u03yD3sYqJoOGjTMVI+4Q34bvvy/P+tF95L3X/xfTHFGxvnev8mggDa4y692hzzt31pwccnHZ68rXfcHL5uZedcePlI7Zrxw3ofmXVRJB15nL3C2nW9mwywSrihorR+sznuv/slc6zeUMHpiqmf6LX3XaPLZz6unOpeMzO6Ri6Xa3eqQI9k/H2wQBitG9zIuDRpv+ZR3//q4nB+za7p8PJuR6sBLFmE0QAAAAAAaFPmeJWxftbo1FhuXENR+J2T6kNeNVYYbSSX4sKKPihE4fBJOV4YNPDeBz9fKVtsbjAaMuNm9XGHdrIIWeN3Wb8nrO9F6/6xzFn3J2E0AECLrKBZJRA8TVpeMMKp3TRkhFazPr4CvXBfeWtweafCaFY8TDp4nmydS0rSUKYwWrpwcVrNjitLOYz2g9K3dcfenwfHHjb+SK3J8054AAAAAAAAAABgidjyMGlNQvTi599f+PFuI0i09pDOzQnAquQKA9JZl5nj/q+er/jFF0vf/Fx4hYGh+dhINxXtNww7ICnuBmBpetAp9tj1/6r4EYMH/tv4lmc33VwcL752Zbtx6cxEdcf8P/oVITv3Snvs1At6Nw9gNTnnCnvsPdfI/+jb6bZj/W42tjb7nIB+yRrKLvT+DbtXjXMTjk3VqvTVT4XHzGMR18kCqxVhNAAAAAAA2pQ5XmWs30pgrRiFL4oIRdBmqruC6y7ZMJoRPin7hWG0fX6vYlWD61r3dUjkIg0b4ZOFYbQ4uE6U4mmWLPORpGIuxUUvC7YfXn9PXFLsw/MOqf98F86HMBoAoDX5lI/rzZZb2+km6/HPerwE+mm6fE9weafCaGnMxaXg8oIbUCFK/zNsndtKUqk6k3le1nGlFm60o2/9D6PdMH2tOXb+xGN7OBMAAAAAAAAAAIBkLp+Xe917zXH/J1ctXLBzW3jFNbzgFUD73Av+InmFW2+Sf9cbwmPjPTgOFZtfv+uINQDLjsvlpIdfnm7lG/5Tf1Z9W+Iqb785EEYLX56jyer+mEifQkbuSS+SHnJOw0In90dvk1u/uS9zAlY698xXJI773ztP/te/aL4hYkRYCbKG0QYGuzMPyF39aumoLea4f8Xj5bffu3jAeJ7IjU90amoAlhnCaAAAAAAAtGm4haBZcHnGaNZwNGKGs0rxwlBA7KtmvGM0N55pv72Sd+GLORqDBnNVO0qS+T41vjalhH10Yvvm+h2av5fX3ngu9XaszzfrfAAAqCmYj+vlTMut7XST9fhXIoyGJcZ7r219DKP5/QGxTp1LDkbDcsafMht/30mjHIePK/n9sTZnXBDj+xxG++We2/XD0neDYyeOnqZDB7loFAAAAAAAAAAALC3ulPOkBzzEHPfbfj3//71z0l7jmqZeBIkArHhu45HSVS9t7ca9eOF9ijCa8r1/E0EA7XOXPiv1ulf+PDmM9g83Lr52Zdq4dG0i3i4Nj8r16djhxtbK/d3H5N56k9wfvFnuNe+W+8BP5C5/Tl/mA6wGbu06uZe+xV5hblb+4//edDveCqMRI8JykjWMlidC3C1uYr3cv3wleaVPv3/xsl3WsYjniYDVijAaAAAAAABtKrYQNAsuzxjNKkYjGjHCaLPVhaGAUnXWfEH/SC7FhRV9UHDhP8hWGkIpSVGSVu7TkPqonPfh+9G55k+zZP1e6dT3lpQt3mJF9IZzxUzzAQCgphBZj+v7wsvj8PK8sZ1uss4nkuKsQD/MVndrr98THJsqbOjIPpySLhqZP0+2zyWzndtGLjLPh0vVFsJoxvHmYHDRCKMZ5/+9cuP0debYhZNX9nAmAAAAAAAAAAAAGZz0CHvs5uvkZ3ZK995przPGC14BdIZ70ENbu2EPjkNuOMXf0XP5rs8DQBcc8cDUqx657xcaiirm+I/vke7a4VXaO38NSxx7bS+F152obpfG+hsxcvmC3AlnyF3xPLmLr5Jbz5v+AV13/wcnj//g6823sWs6vLzPxxQgk6xhtIHB7swDkiQ3MCidcp457n9468KP9+6Rtm8Nr7xmqpNTA7CMEEYDAAAAAKBNSTGqEOvF/ZkjWLkRFaNw1KxU3b3g45nqLnM7SzaMFoXfeaPcEEpJipK0cp+GlOr2YQXm0jx9XswYg+hU2E3KFm8xYxYZ708AAGryznpcL4eX+/DygrGdbrLDqcbVZUCfbKvcY45NFdZ3ZB8uxUUj1rlk1nNzyT5/biWM1hhYrqkFma3PrJ9ZtPv2bdWtu78YHDt66EE6ZvhBPZ4RAAAAAAAAAABAOu6ip5pj/u9eLP/o9fJP/Q17A+O8+B5Ah5z+KGlkPPvt1vQg0FhMcf1uoffXygBonzviAanXHVBZT1j3o8R1Nv9RrNEXxnr826q6c4cUGxe0TFR3SGNrs0wVwEpw3KnSpqPt8a98Sv4D/5i8jd07wsv53QzLSsYwWoEwWre5C+3nh3TDf8nf+N8HP777Z5L1ZsZJxzgAKxphNAAAAAAA2tSp2FUxN5ptv9GIRozblOKFoYDZhlBavdFcCxd89EB+f6CgUWMopWSEF/KuYMbVLFb4qz7uYIfRmj/N0qmInrn9XNEcs+6nECui1krMAgAA6WB4qFHZ78u03NpON1nnbnPVWXnrj69AH2wrh8NoeVfQWK77FzzWfhrmquFo4HBkn6tahlP+vpOGfVyZ/53BOp/3ijPvq1M+u/16xcb+L5y8osezAQAAAAAAAAAASM898OT2NjDGi+8BdIYbHpH7iw9Ja6ay3XBsiYTR8r2/VgZAZ7jnvi71un+34TodmuKS/mu/JT3mH+1rWSaq2zmPAlYhF0Vy1/xP4jr+TS+Vv+lae4Vd0+HloxxTsIxEGfM5hNG67+KnScP2a9H8658pf9uX5z+48/bwSlEkHXpk5+cGYFkgjAYAAAAAQJuyxq6sIEDm7eRGzJjabLUhjBaHw2gFN6CBaGk+kVsLFDSKVVXVVw98PGcEv1qJeFm3qQ+F2WG05u8sYoVVOrV+zuU16IaCY6Vq+niEFVHLOh8AAGqsx/VKQ/C02fK8sZ1uss7dqqqYoSWgH7aVtwaXTxXWK3I9+JPg/lCgdX7eyrmkdX5eMkK+SRoDyzW1ILN9Nt+fAOJMdZe+tPPG4NiGgU06YfTUHs8IAAAAAAAAAAAgo8uf09rthkfkBpbmNW0Alid30iPkrvul3Mv/Of2NxnsQASmmeEPlfO+vlQHQIQ85J/Wqk3N36Vd/le76nu/ckbCd6nZprPtvoAhg6XHHHC/3r19NXMd/7N324O7t4e324pwI6BTX/HVdCwxwrt1tLpeTe+MHEtfxH//3+X/c+dPwChsO53kiYBUjjAYAAAAAQJs6FbsqZtzOUFRUMQpfFNEYwZqp7gquN5JL8W5zfVJw9rvc1cdS5owoQivhBes29aEwM4yW4gn0rPG7VuJu1udgBSqC61r3aQvzAQBAOhgeamSFxawwWtL5QbckPf5ZMVGgH7aV7wkun8qv79g+kmLAtfNkK1rWyrmkFYIuxemjvzWVOHy8KUTzF7Y4Ix7XnyyadPP2T2if3xscu2Dicb2J3QEAAAAAAAAAALTB3f/Brd1w7SGdnQgASHL5vHTBk6WB8JvPLlp/fLLLM5I0sqb5OvneXysDoEOOOV4qpAyu7N6hXOR08hHt7XJNvFNau669jQBYvo54QPK5zlc+Jb93Ljy2e0d4+RhhNCwnGcNoRIh746gtydG6j75LvrxPfjp8HbQOPbIr0wKwPHDFPAAAAAAAbbLiZCGRIg268B8asoQChqJh5VzODJvNVncnflwzuoTDaHlnP8FcH1Gxgl8thReM29SHwryPjVs3fwI953Lm1z+klbhbms8hSdVXtdfvCW+7hfkAACAlhdHCAbRybITRot7/ATrp8S/t4yvQC1YYbbLQuTBamnNe6/y8lXPJtCHoNKzjTbPgon3+3z374r26acfHg2PjubU6bTz9OwoDAAAAAAAAAAD0zXlPlIaK2W+3+ZjOzwUAJLmh4nwcLY3xHkRA1kw1X4cwGrBsuZFx6dzHp1v589dKkp59VsagS5211e3KKZbbxLkUsFq5oaJ04VMS1/EXrJX/zP8sHtg1Hb5BL2KxQKckxbdCONfuCTd1qHTGoxPX8Y85XLrpg+HBNL83AVixCKMBAAAAANCmLC/wH86NyBlPtGYJedXWLeaMUEBDjGCmuiu43khuPPU+e60Q2U8wV+piKSUjSDIcZb+ozgqRWXGHelHKdxbJEjuzImetbL/xe8KS9Lm2EpsDAECyg2aVQAAt9lVVVQmubwXWuinp8S/NOQLQK9vKW4PL1xU29GT/Xl6SNBeXguNDLZyfp/19J436uHK9WpDZGefzPvOe2veVXZ/TTHVncOzcicv6EokEAAAAAAAAAADIyq2ZknvTp6X7PSjbDYl5AOgi9wdvkk46u/mK4z148f1Yivhagb8PA8uZe9k/zQcZBwaT4yvey8/u0u+e6/Tay1uLo01Ud8z/Y/OxLd0ewMrgXvIP0vFnJK7jX/8M+V//4uDHlbJU2h1eeWxtJ6cHdFfWMFou3515YBH3x+9JDpzN7JDu/Gl4rBfRagBLFmE0AAAAAADalCUWlRS6yhRY27+dESMUsCcuqeoPBkVmq+E/UozkxlLvs9cKzr6Yoz5qYAVJsgTIDtzG+PqUqjMH/u0VG7dO9wR6lthZJz+HtOGWOSM0l7RtAACaKRhBs1CoqOLDUbT57fT+Ys+CG1Dehf/wnfS4CfSS917byvcExyYL6zu2nzRnvNbPRSvRX+s29efnaVX84hCjdPD4ZIfRrPP/7oh9VZ+Zvi44NuiGdPbaR/V0PgAAAAAAAAAAAO1wW05V9L7vyH3kzvS3IeYBoIvc4LDcmz7VPJrQixffj082X4dYA7CsueERRa/9d7lP3Cv3yXvnQ2mWL35Mzjm99vJIH31h9pf/T1a3z/+DyCywqrnBYbm33JC8kvfSZ/7n4Me7d9jrpjlfAZYKwmhLlhtdI/eeb7R24zGOQ8BqRhgNAAAAAIA2DeeKqdcdiux1MwXW9gezilE4jCZJpbogwfIMo9nvilWuixpYwa+WwgtGiKxUtw9v3NalfAK9aMTsQloJkVmfQ9pwS1JALUu8DwCAelbQrOzL8t43LFscSzu4nYR3zewS55yGrDhTyvAo0G0z1Z3mz85UR8No9jmv33+mbP1ctBL9tc6dWwmjlePw/VOI5o9Pac/nu+07M1/VveVfB8fOWntRpt8nAAAAAAAAAAAAlgq3dp101UvTrfygh3Z3MgBWPRdF0sia5JV6EAFxA4PScJO/ped7f60MgM5zA4Nyg8PSMSea6/h3/In8T78nSTrzGGkwY6tlbS2MtmFzq9MEsEK4fKHp71X+PdfI/+S78jf+P+nz19orjvUgFgt0DGG0JW1qo7TusMw3c72IVgNYsgijAQAAAADQprwraMANplo3KSyVJbBWC2YlvSi+FB+MBcxUdwXXGc2Np95nr+WNgIokVeqiDyUj+NVKeMEKkZX9PpXj+Rib93FwnaRIRJp9hLQSPbC2nzbcMlctmWND0XDm+QAAIM2fL4V4xYpVXbCsPoDaqBYw6jUruJo2PAp0233le8yxdR0MozXjvTd/LloLFxthtBaihNax5eDxKXw+7800cud573XDdPgis0g5nTdxec/mAgAAACA959zRzrknO+f+2jl3k3Nul3PO1/338za27dv878iOfaIAAAAA0CZ32bObr3T/k6QTz+r+ZADgyt9JHu9VBGR8Knm80J9rZQB0yZZT7bGtv5R/1smK3/xSrRnyeuYZ2eIuk/F2ybnm4UcAq4J7/AuSV9hTkn/2qfKvf4b8377QXo8wGpaTrG+QS4S4p5xzck9ocmwK6UG0GsDSRRgNAAAAAIAOSBvhSopiZQms1fY3khsz15mt7g7+u17S7futENlPMNciZZI0F4dDXlkCZGlus2d/fKHdLELa75VIkQbdUObtW/E9KyC3aD0jMjEUFRW5XOb5AAAgJQfNGmNFlXifsaYdWOs26/G7lTgT0A3bjDBawQ1oNNfJix2TLhrxKvt9qqoSHG0lXGzF1PbEJcW+GhwLqfrqoghjTe24EllhNN+7MNpP5r6vn+/5cXDslPGHa7JwSM/mAgAAACCZc+5c59ynnHPbJN0u6b8k/aGkcyQt3T++AAAAAEAfucPvL/eOL0qHbFo4UBiQJg+VLn6a3Js+KZf1hcwA0AL3tJclr9CrF9+PN4mNEGsAVhTnnPTY30pe6X/+Ubr1Jv3TVU6veHT686KJ6g5pbEIuIh0AQHKPeprcK9/Z3kbyBWk4+3V/QN9kfT4hl+/OPGC76qVyL/jLbLchjAasahypAQAAAADogGI0op2abrpesxjAcG5E+yp7U+1PkgbcoPIur4pfHB8oVWcO/NsKo43mxpvuq19yysvJyQdSZGV/MJgyZwS/rIhCEisqJs2HT8a0Vl5xcDxK2Z9PO6/h3EhLF/lZcbe5lOEWa71W7k8AAGoKCUGzcrxPQ9HwwY8bQmkLt9Ofd8EdjorB5WkfX4FumzbCaFOF9R194UjSprxP/ploJVxczI2aY6V4NvXvM5VUxxUjjNZ2Gjm9G6avNccumLiiZ/MAAAAAkMpJki7q9yQAAAAAYLlxx50i96Gf9nsaACBXHE3+a/BQ+FqRjmv2Iv8cYTRgpXEPPLnp1Sj+pg8pf8p5euMVTq96tNf4i8LXr9ebqG6XxtZ2ZpIAVgR3yTOl9ZvkX3JJaxsYmyBcjeWFMNqS55yTnvL70pop+Tc+N92NxprEpAGsaGSfAQAAAADogLQv8m8WlypG9gv/F+xvf8DLOWfeZnZ/GM17b4bRRnJjqfbXD8455Y2ISn0wpWTEF5pF6IK3Sfj61AJs7WYR0s6r1RCZGUYzAnJp12vl/gQAoCafEDSrD56GPq6XFFjrJiueOlct9XgmQNh95a3B5VOFDR3eU/JFI6WEc85WzieTfj9K2lej5DDa/HHFmZ9bb8Jod+39pf539hvBsS3Fh2jz0JE9mQcAAACAtu2VdHuXtv1VSUdl/O+OLs0FAAAAAABg+TvHeIOqk87uXQSkWRhtmGs3gRXnhDOar/Phdx745+hQuuPRRHV782MKgNXngSdLA0Ot3XacGBGWGZchn+OcXC7XvbkgWZrzoZp1G7s3DwBLHmE0AAAAAAA6IO2L/JsF1KzoxqL16rZTzIVjAaV4Pow2F88qVvhdokaipRtGk6SCEVGp7A+meO/NkFcrYbHBaEjOeLqkFmDzPnxfupRPoKedV9rY3qLtm98P6cIRZmiuxfkAACAlB80qvrLg43JCwCgpsNZNZng05eMr0G3T5XuCy6cK63s4C5/4M9HK+XnS70el/SHoNJKOK4Vo/rhiXdQe9yiMduP0debYhZPGxfgAAAAA+q0s6duS/kXS8yQ9VNKYpJRvbZ3ZHu/9zzP+V2m+WQAAAAAAgNXJPfnFi0MhuZzcU36/d5MgjAasOu7I4zLf5iUXNo+jTcQ7pNG1LcwIwErmxiakK5/f2o3HCKNhmckSN87luzcPNOU2Hytd8OTmK+Zy0sYjuz4fAEsXYTQAAAAAADogdeyqSfgsbXyqfjsjuXDcbLa6W5I0s///IaO58VT76xcrolILG5T9PlUVfk1P2lhdvchFGo6KwTErwFbjlO4J9NQRvRbmL9nfi3vikmJfbXp76/O07hcAANKwYqfSweDpgY/jfcaaUt7154/QZhityfkB0CvbKr0JoyWd83rZ0eKc8onHActQVDT3WQtBp5F8XKn9zmF8br77YbQd5W36+q6bg2NHDB6jBxRP6PocAAAAAGT2b5LGvfcP8d7/lvf+Hd77W71PKDMDAAAAAABgSXEnnCH3lhuli58mHXuidP6T5P7mo3JnXdq7STQNo4XfLBfA8uZe8BdN1/F79xz49ysf1fw69cnq9ubHFACrkvvdP5d76Vuy35AwGpYbwmjLinv1u+R+55rklSYPlcvbb9AOYOXjaA0AAAAAQAcUc+kuPGgWPksdRqtbrxiF912qzocCZhPCaFZUbanIRwNSoOVV3h82mIvtGEna+3LR7XIjwchCbV9ecfB2acNo1tdr8Xqtz9+yJ55r+r1aMu7TVkNtAABIUj6y/yBZbni9cNmHA0Z5V5DL8gfrDrIeB63HTaCXYh9rW9kKo23o2Ty8pLm4FBwbzhVb+vmdDxeHz89LGcKEjceZerVgW2Scz3t1P4z22e0fMYPPF0xe0bdjHwAAAACb9357v+cAAAAAAACA9rktp8ptObV/+x+fTP6rdHFpX+cLoEX3e1Dzde7+mXTkcZKkqVFpzbC0c85efW11uzSWYrsAVh3nnPS435b/9S+l//jr9DckjIZlJ8O1lsS2+s7l89LT/lB6xGPkn2a8gfCRnNsAq13U7wkAAAAAALASpI1wFZvEpZqNH1ivbn8jRuiqFg+Yre4KjkfKaSgaTrW/fim48BPNlf1hg6QYQtr7ctHtjK9lbV9WGCFtGC1tYKzVEFlSUC1NPGLOWKfVUBsAANLB8FBILXh64GMjYGSdF/SC9TiYFGkFemV3dceB8+NGU4X1Hd1Xs3NeM7LbxrmkdV4fiqVZrOCiVH9s6U8Yba46q1t2fio4NlXYoIeMndHV/QMAAAAAAAAAAAAA+mh80h7L5aWCfc0NgGXshDOlweTr+P0zTlL8j38k/7PvyzmnNU0u+5+sbidiBCCRO+2CbDcY55iCZSbLm9Dm8t2bB7LZfKy08X7BIXfahT2eDIClhjAaAAAAAAAdkDp21SQIkDYYUL+/ohFGm63OhwJmqruD46O58fl3flnCrIhKLWyQFCNpNb5gfS1r+zLDaCnvy7SBsU7PX0oXj5iLS5m3CwBAMzmXU2T8SaIx6FQxAkZJcbVuM88PquHHTaCXtpXvMcem8p0NoyXzZmS3nXPJYmSEoKtZwmjhcJwk5fcfW6yz+W6H0b6w41PaE4ffzvf8icco53Jd3T8AAAAAAAAAAAAAoI/WJITRhkeW/HW+AFrjRtfIXf3q5iv+95vkf+ds+e99TW9+SnISYKK6XY6IEYAkJ50tnXlJ6tVdUsAVWIoIoy1LLorknneNlGu4XvaoLdIlz+rPpAAsGRytAQAAAADogE7FrtIGA+r31ywUMGuE0UZyY6n21U95Vwgur4UNrPBCTvmW4ynW16hUC6N5I4xmphTSbb+RFbxrZigqmmPW/bVgHSM2l/Z7HAAAS8ENaK/fs2h5uSGEZgWMrPOCXrAev5MirUCvbCtvDS4fdEMdP+dPOuf18l05l7TOi7OE0SpxOLgoSXk3/+dS58IXj3YzjFaOy/rcjo8Gx0ZyYzpjzfld2zcAAAAAAAAAAAAAYAkYSwiORLyRFrCSuae/TDr2BPmXPTZ5xdJu+ff+hS574wcTV5usbpfGCKMBsLkokq75H+mT75X/zi3SHbdL//tl+wZja3s3OaATsoTR8v27Lh2LufOfKG04XP6mD0n33S33oJOlS58tx3EIWPUIowEAAAAA0AFpg2bDOTtaJWUIrNXtz4od1IJoM9VdwfHRZRBGK0ThuFllf0ClZIQXhnOtv0ue9TWoRcWsMELaMFqxhfhdFjmX01A0rD3x3KIx6/6qZ8XT0n6PAwBgyUcF7a2GwmgLQ2hlI2BknRf0wrARHi37fSrH+/o6N2Bb+Z7g8qnC+s6/c3ST7c1VS8HlaePAIdb5c5YwYWOAsabgBg7cR+ZnZoSRO+Ebu2/Wzsp0cOyctZdoMBrq2r4BAAAALEtHOOfeLek0SYdJGpG0XdJ9kr4l6WZJH/Deh3/RAAAAAAAAwNKzJiGMNhu+/hfAyuFOf5T8Fc+Trn178oq33iTnpAdskH4UeA/F4bikET9LGA1AUy6fly57ttxlz5Ykxa96ovSF68MrJwVcgSUpwzWzOVI7S407/nS540/v9zQALDGcPEZOAAAgAElEQVThtz4HAAAAAACZpI1YNVsvbXxqqC7OUcyNBtepRbBqgbRGVlBtKSm48DtwlOP5gIoV8Wo1KibZX4NaeMEKo6V9An0oGm5rHqlua8XdUsQjzNicEYQBACCtggvHwxpDaBVfMW7fv3fmSgqbzsXhEBTQK1YYbbKwvsczsc83mwWikxSj8O8tpepM6m00Bhhr8guOK+Hz+W5l0WIf68bp64JjBTegc9Ze0qU9AwAAAFjGjpJ0taQtktZKKkhav//jp0l6u6RfOuf+3jkX/uMRAAAAAAAAlpYNR9hj1fA1NABWFnfWZc1XmpuVbr9NV54cvr7l4pkb5q98IYwGIKuNR9pjY2t7Ng2gI7K8mXAu1715AAA6howlAAAAAAAdkCZi5eQ02CSKlSboNRQNK+cOPgFrBc5K1d3y3i/zMJoRUPHzARUz4tVGVMz6GpSqyWE0lzKMFrmchqKi9jSJqFhxszSKuVFtr9y3aLkVkquJfdWcVzvzAQBAkvIu/CeJSkOwqPY4v/j24fOCXkh6HJyLZzUuLv5A/1hhtHWFDR3fV9IZr/c+IbLb3rltSClOH0arGMeV+t83rPN5rzj1frL43uw3dfe+XwXHzlhzvsbya7qyXwAAAAAr3oik35d0iXPuSu/99zq9A+fcekmHZLzZMZ2eBwAAAAAAwErghopde8MuAMvEqRdIF10lffr9iav5Z5+qF39wWp/8dl7fvvvgtXibynfqz+597fwH45PdnCmAFchNHWqfi3BMwXKToYumHKkdAFgOOFoDAAAAANABaV7oPxQVFbkocZ1iiqDXUFRceBtj37Fi7YnnNFPdFRwfzY033Ve/WWG0WkBlzgwvFIPL07Ciagf25Y0wWoZ3FilGI03DaGkieRbr+9EKVdTsiefs+bQRmwMAQGoePK1pDKUdvH2h43NKKym6WmoSHgW6zQqjTRXWd2Fv9jmvlzdDvO2cSzYLF6dRto4r0cHjih1G644bpq8LLneKdP7EY7q0VwAAAADLVEXSLZJulPRdSXdI2i1pVNIRkh4h6ZmS6n8RfICkG51zp3vvf9Hh+fyupNd2eJsAAAAAAAAAsCq5KJJe8y7p0U+XbvuK/LveYK67/usf0M1PP12fePGf6NtDD9YD9/5IF8/eoEOq+99Qe4w3+ASQ0diEPTYcflNTYMmKkl+zt0C+f9elAwDSI4wGAAAAAEAHpIlYpYkBpAmsNe6rmBsz1y3FuzVb3R0cG0m43VKRj8JPNO+L5wMqvQwv1PbljTSCFVII7iM3ounKvYnrJAVY0mw/xLq/apLiEmm+NwEASJI3wmaNwaLGUFqNFVbrhUE3pEiRYsWLxqxQK9ALsY81XQ6fV052IYzW7JzXDhe3c24bvriqFM+k3kY5Dh9X8nXHFWdErL1f/HPfrp/N/VA/mftecOwhY6frkIGNHd8nAAAAgGXrNZLe6b0PV7Glb0u63jn3x5qPlb1cB6vWh0r6kHPuFO+Nd30BAAAAAABA/110lfTp9y9efvlzej8XAH3hnJNOOV865Xz5L39C+sHXg+v5b39BI5uO1uN3X6fH7w68KV9S4AgAQh5ydni5c9L6zb2dC9C29K/rUo7UDgAsBxmSlwAAAAAAwJImYpUmBpBqOw3rjBihAEmarc5oNg6H0UZz40331W9WAKWyP5hS6kJ4wfoa1PbViTBaqgBewte11e03i0ckhV3aCbUBACA1f1yvKcfl4HpWMLUXnHPmY2Gz8CjQTTsr06qqEhxbV9jQ49nYPw/DUbHlbZphtGr6MFrFh48rhbpgY4bLYdp2w/S15tgFE1f0cCYAAAAAljrv/TUJUbT69fZ4718p6YUNQydLempXJgcAAAAAAICOcI/5zfDy0x/V45kAWArceY+3Bz/5XvkXXhAeKwxIQ61fowNgdXKbj5UeePLigRPPkhtb2/sJAe1whNEAYKUhjAYAAAAAQAfkXE6DbihxnTQxgFTxtIZ1hqOiGeXaVdmu2equ4NhIbqzpvvqtPlRQr7w/bGCHF1qPeBWN25b9PpXjspFFyxhGSxEZs+aRavtWGK1JuCUxjNbGfAAAkKSCETZrDKE1htIO3N4Iq/WKdS6X9PgJdNu2sv3a+KnC+o7vL+mM18vb4eI2IrvWefFcXFLsq6m2UU51XAl/dlYYuVX37LtL35n5anDs/sPH68jh+3d0fwAAAABWF+/9P0m6vmHx73Z4N2+VdHzG/x7b4TkAAAAAAACsHCeeJT3rlQuXPeEF0iMe05/5AOivxz2vtduNTchlCcIAwH7uFW+X1m8+uGDDEXKvfEf/JgS0KsvjYL5/b9gNAEiPjCUAAAAAAB0ynBvR3sqexPFmaoG1vd7eTrFhO5HLaTgaUSmeWbTuW+/8M3M7yyGMljcCKLWwwVxcCo433kdZJH2d9sSz8oqDY1n+kNwsepZTvq34i/X5Nwu3WOG0QTeknMu1PB8AAKTmj+sHPy4H17OCqb3SangU6CYrjDYUFbsUtrXPeSu+bAbI2on+FnOj5thcXEr1e411XMnXHVes0LF1/t+qG6c/bMbWLpq8oqP7AgAAALBq/bmk+lfNnu6cW+u939GJjXvv75Fkl7oDeDEeAAAAAACAzTkn99zXyV/yTOknt0nHniB32NH9nhaAPnFDRelvrpf/w4xxxLGJ7kwIwIrnjj1Reu93pP/7huS9dOJZcoX+vpkx0JIsf5PMkdoBgOWAozUAAAAAAB1SjEa0Q9sSx9NoGlgLbKeYC4fRkozmxjOt3w9WAKWyP2xghb7aiUAk3bYUz8poGCgpErFoH03CbcO5kbZeJGR9DnNNwi3m/dlGaA4AgJpmj+s1VljJCqv1SqvhUaCbtpW3BpevK6zv+YvOrWix1N75ZDGyw2iz1Zl0YbQ4fFwpRAePK3YYrXN2VXboK7s+Gxw7bOAIbRk5uYN7AwAAALCKfU3Sdkm1V8HlJG2R9KW+zQgAAAAAAABNucOOlgiiAZCko34j+20IowFogyuOSief2+9pAG0ijAYAK03U7wkAAAAAALBSpIldpdEsoBaKchRTxAAapQkI9Ft9qKBeLWxghb7aCi/k7PDCXHVWseLgmBVSCGkWbksb0TNvb3z+pSbhFvP+bHM+AABIUsEImzWG0Ro/PnD7KBxW6xUzPJoQgwK6bVvlnuDyycL6ruwv6Zy3VLVDze2cT1rnts32Wc88rtQFG+2QXOfSaJ/f8TFzLhdMXtHzmB0AAACAlcl7H0v6ZcPiQ/oxFwAAAAAAAABAdm795uyBonHCaACAVS7LNZiE0QBgWSCMBgAAAABAhzR7sX/aGEDTwFpgO+sKG1Jtu6YYjS6L2FXehQMo5f0xASv01c7nNuiG5IynTOb3Fw4jZAmjJcXXpPbCblJCuMUIn9VY92dSjAIAgLTyRtis7Pct/DjeF1zPCqv1ivX43OzxFeim6XI4jDbVpTBa0ilvt8JoQ1HRPNcuxenCaI3HmZr644q1D+87E0bbE8/p89s/ERxbm5/SKeMP78h+AAAAAGC/uYaPh/syCwAAAAAAAABAS9wfv1s67tT0NxgjjAYAWOUIowHAikMYDQAAAACADmkWj0odRmshsPbQsbNSbbvm5LEzFbml/7SAFUCp+H0qx/tU2R9Ia1RsI7zgnDNvP1edle9EGK3p17iYelvB7Rvfi3v9HlV91bzdXBdCcwAA1FiP6+V44eN52Xh8t4KpvWI9HlphUaAX7jPDaNnCyWklnfNaPwtOkQajoZb3GbnI/vlLGSZMd1wxwmjG+X9WX975GTPkdt7E5X0/xgEAAABYcdY1fHxfX2YBAAAAAAAAAGiJW3eYonfcIveBH8u9+YbmNxgnjAYAWOWyhNHyhNEAYDlY+q+ABgAAAABgmWgWj2oWTku7Xmj8pNEz9Nh1zzCDIzVOTg8ePV1PWP+bqebSbwUjDlD25cQIyXDK+9q+fThMNhfPynsjjJbhCfTm3yujqbeVdftzCfGIuWop8/YAAEjLflzft+DjSsPHB2+ffJ7TbUnhVKAfqr6q7eXw69qn8ut7PBv7Z2E4KrYdZbZ+R7JCY43SHFes6FsnwmhVX9Vnpj8cHBuKijprzUVt7wMAAAAAapxz6yQd3bD4rn7MBQAAAAAAAADQHrfhCLmHnC1tPiZ5vbWH9GhGAAAsUQPD6dfNEUYDgOWAozUAAAAAAB3SLGiWNi5VjJKjWKHtOOd08dTjdd7EY3T3vl+o6uPgbdcPbNRIbizVPJaCQhQOoJT9vsQIiRUuScv6WpWqs2YYwQopBLffLH7X5vyTvhdL8axGNR4cmzNic2mjfgAAJMkbYbOKLy/4uNzw8cHbh8NqvWI9fluPn0C37axMK1Y1ODZV6E4YLemc1/pZaDdaLNV+R9q6aHmpmi6MVo7Dx5VCdPC4YoWOOxFGu3X3FzVduTc4dvbaR5lhZgAAAABo0VO08E1zt0r6QZ/mAgAAAAAAAADohE3HSHfcnjwOAMAq5sYn0l/xmevvdekAgHQIowEAAAAA0CFNg2YpgwBNo1kJ44WooCOGjk21n+XACqBU4nJihKTd+IJ1H8/FdhhNGcJozcJn7c4/KcKXdL+VjNhc2qgfAABJCsbjetnvW/hxvC+4nnX7XjHDqYTR0Cf3lReHwmq6FUZLYkXKhqP2o1/FXPh3rdRhNB8+rtQHG+2z+fbCaN573TB9rbH/vM6duKyt7QMAAABAPefcBkmvaVj8Ee99+9VnAAAAAAAAAED/NAufbV45ryEAAKAl45Pp182R2gGA5SBqvgoAAAAAAEijadAsZVyqaTRrFUWqCnWhgnplv8+MkETKacANtrXfpPCJFUaLMoTRmn2vtPs1HoqKcsZ85oz4mWRH04Zz7ccsAAAoRNbjennBx5WGj5vdvlescOqeaqnHMwHmTZfvCS4vRqNth3Yt1jmmZEcCO/H7S1K4OA3zuFIXXHTGn03jNtsBPyx9V3fs/Vlw7NTxc7Q2n+FCHAAAAACrhnPugc65yzPe5lBJH5W0oW7xPkl/3sm5AQAAAAAAAAB6zx3eJHy26ejeTAQAgKWKMBoArDgcrQEAAAAA6JBmL/hPGwRoGs3qUuRgKaoPFdSLFWumsis4VsyNyLn0kbIQ6z6ej4oZYYQM+2wWv0sb0bNELtJQNKy5eHGoxQpWSAlhtFUU4wMAdE/eeFyvxPsWfFz2+4LrWbfvFevxcK/fo6qvKOf4kwt6a5sRRpsqrO/xTOZZAV4rapZFMRoNLi9VZ1LdvjHAWGOFmBdqL4z26ekPmWMXTDyurW0DAAAA6C/n3GaFr8E8tOHjvHPuSGMzM977+wLLN0q63jl3m6T3SbrWe/9jYx5jkp4l6TVaGEWTpD/z3v/U2DcAAAAAAAAAYLk47lR77IgHyI2u6d1cAABYirKE0Yq8TgoAlgNepQMAAAAAQIc0i1kN54qpttOpwNpKkE8IFeyu7ggu78T9Y30t5+JZxT4cRnBKH0YbjIbl5OSNyEIn4nfF3GgwjGYFKySp1MWYBQAAVoCoMVjUXsCoe4Yj+1xurlrSaH68h7MBpG3lrcHl3Q2j2ee8pTgcKevI+XnOCKMZ+2xUjo3gYnQwuGidz7eTRfvVnp/q/0rfCY6dMHKqNg4e3sbWAQAAACwBt0i6X4r1Nkn6mTH2b5KuTrjtCZL+UtJfOud2SvpfSfdJ2i1pVNLhkh6s8LWg7/De/2mK+QEAAAAAAAAAlrotp0nHny7971cWDbknv7gPEwIAYInJEkYbn+rePAAAHUMYDQAAAACADmkWsxpKiGnUSwqsDboh5Vwu07yWs0JdqKDRrooRRutAxMuKN8yHw9oPo0Uu0nA0YoYcrPBDFubnEIfjZ7GPtScQUkvaFgAAWeRd+HG97BcGiypmGM0+L+iFpHOMUjyrURFGQ29tK98TXN7NMJpzCWE0I7KbNhCdpBgZYbSE6G89+7hyMLjoXBRcxytOtY+QG6evM8cunLyi5e0CAAAAWLXWSDorxXqzkl7ivX9nl+cDAAAAAAAAAOgR55z0tx+Vf+srpK/dKO3eLt3vQXKX/6bcpc/q9/QAAOi/8YnUq7oM6wIA+ocwGgAAAAAAHZIUNBuKhlMHzZKiG52Ifi0n9aGCRruq24PLh1MG6JJY9/NcPCvfgTBabR9mGK0DITI77hbe5954j/m5EUYDAHSCFTarDxZ5782AUT6yzwt6Ienxec4IjwLdZIXRJrsYRkti/Rx04lyyaJyfW+fTjRoDjDX1xyXrbN778DlyM9vK9+ibu28Jjh019EAdM3xcS9sFAAAAsGr8QNIbJZ0j6WRJwylu8yNJ75H0Tu/9fd2bGgAAAAAAAACgH1xxTO4P/6nf0wAAYGkam+zOugCAviGMBgAAAABAhyQGzTLEAJKiG50IZi0neSOgIkm7KjuCyztxH1nbmKt2LoxWjEa0zRjrZjzCClYkBV2sbQEAkEXBCJuV44PBIiuKJtlhtV4ZjIbl5ILnAnNVwmjoraqvaHslfDa5rrChx7OZZ8XHOnJ+nhsNLreiv43KVnCxLsTsFAXXsc7/m/ns9usVKw6OXTh5xfy7+AIAAABY1rz3R3Zx21slvVqSnHORpPtLOkbSJklrJQ1JmpO0XdLdkr7uvb+3W/MBAAAAAAAAAAAAgKXMDQ7Jr5mSdlqv1qozPtH9CQEA2kYYDQAAAACADhmKiuZYltBVYmBtlQWqCi4cUJGkXZXtweWduI+sbZQS4mFZwwbd/jpb33NWuKWUEHTpRKgNAAAreFofLLLCSlLyeUEvRC7SUFQMxkSTAqNAN2wvb5M3oltThfVd22/WGLDUmXPbYhQOo83FJcW+qsjlEm9fMY4t6YKL2cNos9Xd+uKOG4Jj6wuH6cTRUzNvEwAAAMDq5b2PJf1w/38AAAAAAAAAAAAAgJBNx6QLo62Z6v5cAABtI4wGAAAAAECH5FxOQ9Gw9sRzi8aGc3Y0rVGnAmsrQSGyAyg7q0YYrQP3UdHYRlKsRRkjEUnztPafRdEIUOyq7tCuyo5Fy7eVt5rbyvL9CwCAxQqbxaqq6qvKudyCSFojK6zWS8NGGG26fF/w8RXoljv2/swcm1xqYbQunttK0r3lXx/Yx3A0okK0+FhRjsPHlvrfN6zPbW+8J/PP9+d3fFz7/N7g2AWTj20acgMAAAAAAAAAAAAAAAAAAEBGm46Rvv+15uuNre3+XAAAbSOMBgAAAABABw1HI+EwWoYYQFJgLSkIsBIVEgIos9XdweWduI+GW9hG1kiEFT/Lu0JiEC4t63vuh6Xv6hW3X516OwU3sCRCNACA5S/pcb3iy8q5nCoJEVIrrNZLxdyIpiv3Llr+wXvfpQ/e+64+zAhYaDQ3rqFouN/TWKCVc+tGxWjUHHv9z15w4N8FN6DjRk7SMw99kYq5+dvEvqqqKsHb1p/nOhc+n79l56d1y85PtzLtRcZya/Sw8Ud2ZFsAAAAAAAAAAAAAAAAAAAA4yB1+rHyaFdes6/ZUAAAdEPV7AgAAAAAArCS1F98vXp4tBmC98D9LYG0liJSTy/j0RSfuo1a2kTWMZgUirGBaVtb3YubtrLLvOQBA9+QTwmbl/UG0clw21ylE/Q91rrZzMSw/k4X1/Z7CIp04n0x7blv2+/Tdma/pn+9844FlFR+OokkLg4tZz+dbce7EZR2JIAMAAAAAAAAAAAAAAAAAAKDBaRc1X+fYE+XWTHV/LgCAthFGAwAAAACgg6xYRtaIhhnNyhhYW+6ccyq4bBGUTgRLWomKZQ0pWIGI4Q4FzToVbrG+FwEAyCopbFbZH0SrBdKCt08Iq/UKj4tY6qby3Q2jtRIP68R56VBUzLTvn8x9X/ft2yqp2XGl/rjU3TDaoBvS2Wsf1dV9AAAAAAAAAAAAAAAAAAAArFpbTpUufEriKu53runRZAAA7cr3ewLoHefcsKSTJB0naULSkKRdku6RdKukn3jvfQf2U5B0lqQjJG2UNCPpLknf8t7/vN3tAwAAAMBSdsjAofrJ3PcWLy8cmm07hUN1596fL1q+LuN2VoJ1hQ26a98vU69/yED799GgG9JYbo12V3emvs1UIVuE4pCBjeHlHfoaW9vPajV+zwEAumPQDZlje/0eSVLFl8118hljqd3QqcdpoFs2Dh7e1e3nXUHjuQntqm5PtX7BDWg8v7bt/UYu0rrCobq3fHfq29xTvkvrBjaonHBcKUQHg4tZz+ezOmvthRrJjXV1HwAAAAAAAAAAAAAAAAAAAKuVc056zbulsy6T/9bnpS9+TLrvrvnB858k94yXyx1zfH8nCQBILer3BNB9zrkznHP/LWmHpP/P3n2HR37V9+J/n5G0u9JWr73r3gsG22DjRjU2mGJCL+b+CDUECJAfJJcQSiB0AgnhXgiQBLihtwAGYxIw1TYxNhAb27Exwb33trvaova9f2h9V9bOjEZazai9Xs8zz+p7zuec89mir0bSzlu/SPJ/knw4yfuSfCzJ15L8PskNpZR3l1JWT/GcNaWUTya5NcnPknw+yQeTfDzJaUmuKaWcW0p57o7+ngAAAGarY5Y/drux7tKTI5c/cnL7rDhhu7HFZUmOWHbslHubqx6+/NEt1+7cs2v2W3LIDp9ZSskxK7b/u2xk/yUPyqqenSd1xuFLj86SWt9248dO4tzmPR0yLeEOx9b5twgAU9HbtbTh3Mbh/iTJYDXQsGY2BKMdvfwxKSkz3QbUVUstx604sa1nlFJy1CQ+tzly2SOyqLZ4Ws6e7PPS++8rQyOt3VeOXPaItr1/99b68oSdntmWvQEAAAAAAAAAAAAYVWq1lCc8P7W/+Hhq374mtZ9vGX2864tC0QDmGMFo81gppbuU8vEk5yY5NcmiCZbsmeSvk/y2lPKUSZ51SpJLk7wmSbNgtUcl+WYp5UullMavggMAAJijHrz0yLxw19dmadfyJMnq7jV53Z7vyOqeNZPa5+HLH5Xnrnl5emujnzqt6dktr9/73VnWtWLae57tnrLz83PiqqdlUWkeqLDP4gPzhr3ek1qZni93PHvNS/OIFY9vGsJSUsshfUfkT/Z826T37+1amj/b+z1Z27PH6HWtL8/a5SU5dsXjptzzWLVSyxv2ek/2WXzglNZv60cwGgDTY1FZnFqDb0tsGrk/GG2w7nx36Z62j/E7Yr/eQ/Ly3d+YFV2rZroVeICVXTvlT/Z8W9Yu2r3tZz137ctz/IqTmj5PrqUrRy17VF6422un7dyn7nxqHrfqqekpE327a9RE95UkD9jroL6H5CW7vSErunbasUbHWd29Jq/a863ZqWeXad0XAAAAAAAAAAAAAADmq1JV1Uz3QBuUUkqSf03yvDrTv0tyeZJNSdYkOSbJ+Fd5DCR5ZlVVP2jhrBOTnJkHBq9VSS5McnWSVUmOSjL+FR9nJHlWVVUjE53RTqWUwzIa6pYkufTSS3PYYYfNYEcAAMB8MFKNZP3wfVnRtSqjn6JNdZ/hbBhenxXdwjeGqsHcOXBbqmz/tYxlXSuyvHtlW84dGNmSuwZvrzu3snun9HUt2+Ez1g3dm2Vdy1MrXTu8Vz3rh+7LhuF1LdfXSi1renZrWz8ALFxvuvLF6R9ev934H+3+FzlmxWNy0frz86mbP7jd/JJaXz5y8Fc60WJLqqrKXYO3NQ1cgk5ZVFuU1d1rd+jzjqlo9jx5p55dsqTW25ZzB0cGc9fgts8LPnPz3+WWgeu3q3vWLi/Jk3Z+Tq7ffFU+eN0b6+719wd9Ob1dD/w5PtP5/r2otjiru9d0/O8GAC677LIcfvgDfsLt4VVVXTZT/QCA/6MHAAAAAAAAAMwH/n9e53TPdAO0zR9n+1C0c5K8rqqqS8cOllK6k7w4yf9Kcv+ryBcl+Xwp5ZCqqu5rdEgpZa8kp+WBoWjnJnllVVWXj6lbnOTVST6cpGfr8NOTvC/J2yb3WwMAAJj9aqWWld3jM6insk+XULStuktPdlu8V8fPXVRbnN0X793WM9r9d7y8e2XbguMAYDL6akvrBqNtGulPMhqEWk936ak7PlNKKdll0W4z3QbMqE48T66np/bAzwtWdK+qG4y2cet9pVnAWXdZtN2Y928AAAAAAAAAAAAAAJhZtZlugLYZHzZ2TpKTx4eiJUlVVUNVVX02yclJtoyZWpvkTyY4591Jxr7S/xdbz7l8bFFVVVuqqvpYklPHrf+fpZR9JzgDAAAAAIB5oLe2tO74puH7A4wG6s73zLJgNGD26Gt0X7k/cHGk/n0lSbqLnyEFAAAAAAAAAAAAAACzjWC0eaiUckSS/cYNv76qqsFm66qq+s8knx43/PQm5xyc5KVjhgaSvKyqqs1NzvhOks+PGVqc5J3N+gIAAAAAYH7o7aofYLRx5P5gtPpfxu4pi9rWEzC3NbqvTBy4uCillLb1BQAAAAAAAAAAAAAATI1gtPnpgHHXN1RVdXGLa08fd31wk9oXJukac31aVVVXtHDGh8Zdn1pKWdJKcwAAAAAAzF19teYBRkMj9QOMuktP23oC5rbeWl/d8U0TBC66rwAAAAAAAAAAAAAAwOwkGG1+Gv/KshsnsfaGcdc7Nal99rjrz7ZyQFVVlyf55ZihpUme1MpaAAAAAADmrt6uBsFoWwOMhqqhuvM9tUVt6wmY23obBC5uvD9wsaofuNhT3FcAAAAAAAAAAAAAAGA2Eow2P9067nrJJNaOr727XlEpZbckDxszNJTk3Emcc9a461MmsRYAAAAAgDmoYYDR1mC0wYYBRj1t6wmY2yYKXBysBuvO99TcVwAAAAAAAAAAAAAAYDYSjDY//TrJljHXDy6l9La49ug6e9Vz+LjrS6qq6m/xjCT5xbjrwyaxFgAAAACAOaivUYDRcPMAo27BaEADfQ0CF//ffWWkfuBid1nUtp4AAAAAAAAAAAAAAICpE4w2D1VVtT7JF8YMLUnyionWlVK6kohUJLMAACAASURBVPzpuOHPNyh/yLjrK1tucNRVE+wHAAAAAMA809sgwGjjyGiA0VBVP8CoR4AR0EBvg8DFbfeV+oGLPQIXAQAAAAAAAAAAAABgVhKMNn+9Jcm1Y67/tpRycqPiUkpPkk8lOWrM8E+TfKvBkoPGXV8/yf6uG3e9cyllp0nuAQAAAADAHNIoGG3T8GiA0eBIgwCjmgAjoL6+BveVwWoggyODGRS4CAAAAAAAAAAAAAAAc0r3TDdAe1RVdXcp5aQkp2U07Kw3yZmllG8m+WaS3yXZlGSXJI9M8uokDxqzxa+SPK+qqqrBEavGXd8+yf42lFI2J1kyZnhlknsmsw8AAAAAAHNHX1eDYLSRrcFoDQKMugUYAQ30NrivJMnmkf4MVvUDF7uLwEUAAAAAAAAAAAAAAJiNBKPNY1VVXVtKOT7Jy5K8KsnRSU7d+mjkriQfSfJ3VdXglSKjlo273jSFFjflgcFoy6ewxwOUUtYmWTPJZQfu6LkAAAAAAEyst1Y/wGiwGsjgyECGGnxZukeAEdBAo/tKkmwa2ZjBkfqBiz01gYsAAAAAAAAAAAAAADAbCUab/7q2PrYkqZKUJrU3JPnrJF+bIBQt2T4YbfMUetuUZKcme07Fa5O8cxr2AQAAAABgmvV1TRBgVDUIMCoCjID6+roaf3tp43C/wEUAAAAAAAAAAAAAAJhjajPdAO1TSnl0ksuT/GOSR2fiv++9k3w2yfWllD+e5HHV5Duc0hoAAAAAAOao3lqzYLT+DDYIMOoWYAQ0sLgsSWnwLbDR+4rARQAAAAAAAAAAAAAAmEsEo81TpZQnJPlxkv3GDN+U5C1JjkqyKsmiJLsleUqSzycZ2lq3JsmnSymfKqWUBkdsGHfdO4U2x68ZvycAAAAAAPNIb1fjYLSNw/0ZHGkQYFQTYATUV0pJb62v7pzARQAAAAAAAAAAAAAAmHu6Z7oBpl8pZU2SryZZMmb4jCQvqqpq3bjy25KcmeTMUso/Jflekp23zr0yyVVJPlTnmNkajPbJJN+Y5JoDk5w+DWcDAAAAANDE4rIktdQykpHt5jaN9GeoQYBRjwAjoInerqXZOLL9t5k2DvdnqGoQuFgELgIAAAAAAAAAAAAAwGwkGG1++p9J1oy5/l2SU6uq2txsUVVV55dSXpDkx2OG31lK+WxVVbePK79v3PWaTEIpZVm2D0a7dzJ71LO1z/G9TtTLjh4LAAAAAEALSinp7Vqa/uH1281tGu7PoAAjYAr6aktzV53xTSP9GRxpELhYE7gIAAAAAAAAAAAAAACzUW2mG6Atnj/u+kMThaLdr6qqnyT5+Zih3iT/o07pFeOu9229vbr1d1dVdc8k9wAAAAAAYI7pqy2tO75ppD+DVf0Ao+4iwAhorLer/n1lY5PARfcVAAAAAAAAAAAAAACYnbpnugGmVyllaZIDxw3/ZJLb/DjJY8dcH1+n5vJx1wdN8owDxl3/dpLrAQAAAACYg3obBKNtHO7PkAAjYAoa3Vc2jfRnSOAiAAAAwKi7L0yu/2bSf+32c9VQMjKYLN032f2UZI8nd7w9AAAAAAAAALifYLT5Z1WdsVsnucf4+l3q1Fw67vqhpZS+qqo2tnjGoyfYDwAAAACAeai3q3GA0eBI/QCjntqidrYEzHF9jYLRhvsz2CAYrae4rwAAAAALyA3fTs59wWj42UT++6PJQ9+XHP5X7e8LAAAAAAAAAOqozXQDTLt764zVfzVIY8vGXW8YX1BV1S1JLhkz1J3kMZM448Rx19+fxFoAAAAAAOaoRgFGG0f6M1gN1J3rKT3tbAmY4xoHLm7M4Ij7CgAAALDAVVVy0ZtbC0W736XvSbbc1b6eAAAAAAAAAKAJwWjzTFVV/UnWjRs+apLbHD3u+tYGdd8ed/3yVjYvpRya5PgxQ/1JfthaawAAAAAAzGVLuvrqjm8a7s9QVf+Fed1lUTtbAua4RoGLm0aa3Fdq7isAAADAAtF/TbL+ismtGRlIbvlRe/oBAAAAAAAAgAkIRpufzhp3/apWF5ZSdkvyjHHDP29Q/uUkw2Oun1NKObiFY9487vpfq6ra3GKLAAAAAADMYY0CjDY2CTDqKT3tbAmY43q7GtxXhvszWA3UnXNfAQAAABaMW86c2rqb/216+wAAAAAAAACAFglGm5++Pu76BaWUF020qJSyOMkXkywbM7whSd3/EVFV1RVJPj9maFGSz5VSljQ545lJXjZmaCDJuyfqDQAAAACA+aG3QTDahqH7UqWqO9dTFrWzJWCO66311R3fNNKfwYaBi+4rAAAAwAKw/qrk16+d2tprvzS9vQAAAAAAAABAiwSjzU9fS3LxmOuS5AullI+WUnavt6CUclKS85OcPG7qQ1VV3dPkrHcmGTv/qCQ/LqUcOm7/xaWU/z/JN8at//uqqq5rsj8AAAAAAPNIb1f9YLR1w/c2XNNT62lXO8A80ChwcdNwf4aqgbpz3cV9BQAAAFgArvjkjq1fd8X09AEAAAAAAAAAk9A90w0w/aqqGimlPC/JuUnWbh0uSV6f5E9LKZckuTrJpiSrkxyVZLc6W/17kg9NcNaNpZTnJDkzyaKtw49O8ttSygVbz1mZ5OFJ1oxb/r0k75jc7w4AAAAAgLmsr0GA0bqhxsFo3WVRwzmARoGLW6rNKVX9nxPVU3NfAQAAABaA28/ZsfV3/DxZcfD09AIAAAAAAAAALRKMNk9VVXVlKeVxSb6Y5JgxU7UkR259NFye5NNJ/qyqqsEWzjqrlPLsJJ/LtvCzsvXcYxos+2qSV1ZVNTzR/gAAAAAAzB+NAoxG0vjLxT2lp13tAPNAo8DFJKkyUnfcfQUAAACYd4YHkkventx4erLpliRVMrShcf0hf5r8/uPN9/zlK0YfSdK9PBlav21u9dHJ8f+S7PTQHW4dAAAAAAAAAMaq/yPSmReqqvpdkkcmeWmS8zIaeNbMpiRfTvKoqqpeXVXVpkmc9e9JDk/yT0nuaVJ6fpLnVVX1wqqq+lvdHwAAAACA+aFZgFEjPWVRGzoB5otGgYvNuK8AAAAA8875L0su/7tk/e9HA8yahaKtfEjy8I8kB/5x6/uPDUVLkrsvSH74iGT9VVNqFwAAAAAAAAAa6Z7pBmivqqqGknwhyRdKKSuTHJNk/ySrkixOsj6jQWaXJvmvrfVTPev2JK8ppbwhyaOT7JtktyT9SW5K8puqqq7Zgd8OAAAAAABz3FQCjLprPW3oBJgvphK42F3cVwAAAIB5ZOPNyfVfb73+8T9Jaj3JcZ9KDnpV8rMnJwPNfi5yA8Obkgv/PHncdye/FgAAAAAAAAAaEIy2gFRVdV+Sn3TgnIEkP2v3OQAAAAAAzD29Uwgw6imL2tAJMF8srvWmpKRK1fIa9xUAAABg3hgZTm7+t6Qaaa2+Z1WyZNfRt0tJdj42OeYTyS9eOLXzbzojuebLyX7/X1JqU9sDAAAAAAAAAMbw3WcAAAAAAKBj+rqWTXpNd+lpQyfAfFErtSyp9U1qTU/NfQUAAACY40aGkgvfmHxrl+RXr2p93X4vHA1EG2vPpyXdk/+hFv/PeS9Kvrk6ufgdrQe0AQAAAAAAAEADgtEAAAAAAICOWVyWpEzi2xO1dKWrdLWxI2A+6Oua3At3u8uiNnUCAAAA0CH/9e7kdx9JBu9tfc2uT0ge9v7tx3uWJ489LelZMfV+Bu9LLntfcvnfT30PAAAAAAAAAIhgNAAAAAAAoINKKemrtR5g1FN62tgNMF/01vomVe/eAgAAAMxpVZVc9emJ6/r2Sk44ffTxtN8nj/9RsmhV/drdn5Q857bkqA/vWG+t9AUAAAAAAAAATXTPdAMAAAAAAMDC0tvVl/6R9S3V9tQWtbkbYD7onUTgYpL0FPcWAAAAYIpGhpP7LksG70tSTfPmJSm1pHtZUlucbLm9ftmmW5PNt0283WF/lez1jNaP71qSHPjHycVvTUYGW1831vorki13JYt3ntp6AAAAAAAAABY8wWgAAAAAAEBHTSbAqLv0tLETYL7o7ZpcMJp7CwAAADAlt52V/OSkme6iNV19yT6nTn7dopXJ3s9Nrvva1M/+1i7J0R9NHvT6qe8BAAAAAAAAwIJVm+kGAAAAAACAhaVvEgFGPcKLgBb0TTJwsZTSxm4AAACAeWlwXfLTJ8x0F61ZdkDy+B8ni1dPbf1xn0r2enZSuraNrXhwsvKwJC1+XeWCNyS3nzO18wEAAAAAAABY0LpnugEAAAAAAGBh6Z1UgNGiNnYCzBe9AhcBAACAdrvhO0k1MtNdNNe9LHna75K+PXdsn57lyQmnJYMbko03JkvWbgtZG7g3qfUk3UuTr/cmw5sb73PNF5O1J+xYLwAAAAAAAAAsOILRAAAAAACAjhJgBEy3yQQu9ghcBAAAYCEaHkhuPysptWT1scmilTPd0ey28abkjv9IBtdvG/vVK2eun1bt94c7Hoo2Vs+yZOWhDxxbtGrb23v8QXLDtxqvv+ozyc7Hj77dvTTp3SPZdHMy1J+Ukqw8LFl99GjQGgAAAAAAAABsJRgNAAAAAADoqL7JBBjVBBgBE5vMfaVb4CIAAAALzYZrkh8/Ltl4w+h1757JCd9Odj52Zvuara78VPLr1ybV8Ex3MjmlOznoVZ098+DXJjeclqRqXDNRoNwuj0pOOD1Zssu0tgYAAAAAAADA3FWb6QYAAAAAAICFpVeAETDNersELgIAAEBD579sWyhakmy6KfnVq5KqSZjVQtV/ffLr18ytULTSlex8XHLSD5LVD+/s2bs9Pnnst3Zsjzt/kVz2vunpBwAAAAAAAIB5oXumGwAAAAAAABaWSQUYFQFGwMQmE7jYI3ARAACAhWSoP7nj3O3H77koufs/k52P7XxPs9kNpyXVyOTXHfa25KHvndqZ1UjytQm+XvHgNyVHfrDxfJnBn5W997OTZ16bnL7f1Pe4/l+To//3dHUEAAAAAAAAwBw3g98FBwAAAAAAFqI+AUbANOubROBit8BFAAAAFpKBe5NquP7cjd/pbC+z2b2XJpd/OLnwz6e2fp/nj4aTTeVR6052Pan5/mse03yPmda39+hjqjbdkgzcN339AAAAAAAAADCnzYLvhAMAAAAAAAtJrwAjYJr1ClwEAACA+hqFoiXJZR9IRoY618tsdfXnk+8fmfzmTVNbv/tTkp2O3LEeHvympHTVn1v10GSPp+7Y/u1WaslD3rxje/zw+GSkyb9XAAAAAAAAABYMwWgAAAAAAEBHTSrAqCbACJjY5ILRBC4CAACwgIwMNp+/5czO9DFbDW1MLnh98wC5+y07cPQx1kPenJzwnR3vY49TkhO//8AAtBUPTg55fXLyOUmte8fPaLdDXpc88kvJ7k+u/2c1kXX/ndz6w/b0BgAAAAAAAMCcMge+Sw4AAAAAAMwnAoyA6dbX1fp9pVvgIgAAAAvJ8Mbm8zd9N9nzDzrTy2x0+9nJ4LqJ6x53RrLn09rby+5PHH3MZfv/4ejjfnf8IvnRo1tff+N3R0PiAAAAAAAAAFjQBKMBAAAAAAAdNakAoyLACJjYklpvy7UCFwEAAFhQ+q9rPr/+qs70MVsM3Jtc+enkik8m/de2tqa2ONnlUW1ta97a6ahk0U7JwD2t1a+/or39AAAAAAAAADAn1Ga6AQAAAAAAYGHprbUejCbACGhFrXRlSa2vpdoegYsAAAAsJBuunWD+6o60MSsM3JP86DHJRX/ZeihakjzkLcni1W1ra17r7k2OeFfr9RuubFsrAAAAAAAAAMwd3TPdAAAAAAAAsLAsri1JSS1VRias7akJMAJa01dbms0jGyes6xa4CAAAwEIyUQDYxuuTkcFkIXwd7uovJPdd1nr9AS9L9nx6svdz2tbSgvCg1yfLD05uOC3ZeFPSt1ey5fbkxtO3r+2/PhneknQt7nyfAAAAAAAAAMwagtEAAAAAAICOqpVaemt92TiyYcJaAUZAq3q7liZDd0xYJ3ARAACABaX/mubz1fBoGNXyAzvTz0y65czWa4/82+Qhb2pfLwvNHqeMPu533+/qB6OlSjZck6w8tGOtAQAAAAAAADD71Ga6AQAAAAAAYOHp7VraUl1PEWAEtKa31up9ReAiAAAAC8CNZyTfe0hyw2kT1264qv39zKQ7zkt+8aLklu+3vmbPp7WvH5Jl+yelwX9jX39FZ3sBAAAAAAAAYNYRjAYAAAAAAHRcnwAjYJr1tRi42C1wEQAAgIVgcF2y7vLWas9/eXt7mUl3nJv89PHJtV9ufc2hb0xWPrh9PZF0LU769qk/t+HKzvYCAAAAAAAAwKzTPdMNAAAAAAAAC0+vACNgmi2p9bVUJ3ARAAAAxtl0czK0KenunelOpt9/fywZ3txa7eHvSHY9afRB+y0/KOm/dvvx9YLRAAAAAAAAABa62kw3AAAAAAAALDy9tdaC0XpqgtGA1vS1el8RuAgAAADbW/fbme6gPe76ZWt1+zw/eeh7hKJ10rKD6o8LRgMAAAAAAABY8ASjAQAAAAAAHddqgFG3ACOgRb1dLd5Xaova3AkAAADMQfMtjOru3yQ/Pinpv661+r2f195+2N7yBsFot/4w+f5RyTVf7Gw/AACzRVUll/998r2HJF9bkpz5iOSmf5vprgAAAAAAOkowGgAAAAAA0HGtBhj1FAFGQGtaDVzsEbgIAAAA29tw1Ux3MH023pj89OTk9rNaqz/g5cnez2lrS9TRKBgtSe65KDnvJcl1X+9cPwAAs8Xlf5f85i+SdZcnI1uSu36ZnPOM5LazZ7ozAAAAAICO6Z7pBgAAAAAAgIVHgBEw3QQuAgAAwBg7H5sc84kHji3ddzRk4fY6gQrrr+xMX51w6XuTgbub1xz4imTn45Kdj09WPTQppTO9sc2yJsFo9/v9PyT7vqD9vQAAzBZVNfocaLvxkeSKTya7Pq7zPQEAAAAAzADBaAAAAAAAQMe1GmDULcAIaFFvi4GL3QIXAQAAWAhWHDL6GO/WH9cPRttwVft76oT+65OrPztx3RHvTvr2bH8/NLb8wIlr7r5gNASk1NrfD0yXkcFk4w3bjy/ZNRnekqRKUpKelUmtq9PdATDbbb4t2Xhj/bnbftrZXgAAAAAAZpBgNAAAAAAAoONaDTDqqQkwAlrT1/J9ReAiAABMt1JKSfKmJEvGDH+hqqprd3Df/ZO8eMzQxqqqPrwje8KCt/yg+uPr50kw2m8/NBpKNJFFq9vfC811LUlqPc3/voY3J/3XJcv271xfMFUjQ8mFb0yu+kwyvLG1NYf/dXLEu5JS2toaAHPIZR9oPLflztHg2NVHd64fAAAAAIAZIhgNAAAAAADouL6uFgOMigAjoDW9Ld9XBC4CAEAbvDDJB5NUW69P29FQtCSpquqaUsoRSZ5z/1gp5eqqqk7b0b1hwVp2YP3xTTclQxuT7r7O9jOdNt40GkjUiu7e9vZCa0789+SnT2xe84sXJU86tzP9wI649H3J7z82yTXvSZbsmhzy2vb0BMDccssPk9//Q/OaHxyTnLoh6W7t+2IAAAAAAHNVbaYbAAAAAAAAFp7eWmv/UbtbgBHQor4W7ysCFwEAYHqVUmpJ3nP/ZZIrkrx0Go94WZKrtu5dkrx/GveGhWf5QY3nrvli5/poh9/+bTIyMNNdMBk7Hz9xzZ2/SKpq4jqYaVf/y9TWXfV/prcPAOam4YHkP/+0tdobvt3eXgAAAAAAZoHumW4AAAAAAABYeFoNRhNgBLSqt0vgIgAAzJCTk+yf5P7UmrdWVbVxujavqqq/lPKWJN/cOnRIKeXxVVX9dLrOgAVl6b5J99JkqH/7uUvenuz7gmTRqs73tSOqKrnz/OT3H2utfu3j2tsPretZniw7INlwdfO6a76YrDg0WX1UUvO1HWaB4YHknguTgXtHrwfuSTbeMLW97rkwuenfkq4lyepjkuGNSf8NyU5HJl0Nvkey5e7krl8n1dBoIGRtcVJqyaKdktUP934CMNdUVXLB65P1V7RWf+8l7e0HAAAAAGAWEIwGAAAAAAB0XF+LAUY9NcFoQGuW1PpaqhO4CAAA0+5FY96+oKqqb0/3AVVVnVZKuSDJ0VuH/jCJYDSYilpPss/zk6s/t/3cljuT/3pPcvRHOt7WlA3cm/zH85Nbf9z6mv1f0r5+mLwD/zi5+G3Na85/6eivi3dJTvhOsubR7e8LGrnlh8l/nJoM3jd9e579tO3HelYlj/1GstvJ28aqkeTitye//ZvGey1anZzw7WTtCdPXHwDts/mO5IePSjZc2fqaVgPUAAAAAADmsNpMNwAAAAAAACw8vbUWg9FKT5s7AeaLrtKVxWXJhHU9NfcVAACYZk8Z8/b/aeM59+9dkjy1jefA/HfEu5OuBp9D//4fknX/3dl+dsRFb5k4FG3VEUnKaKjWw/4mOeDlHWmNFj34L0cfPSsmrt1yZ3L2M5Lhze3vC+oZuC8551nTG4rWyOC9ydnPTAbXbRu74bTmoWhJMnD36PvJ0Mb29gfA9Ljg9ZMLRUuS9ZOsBwAAAACYgwSjAQAAAAAAHbe4tiRlgm9TlNRSS1eHOgLmg96uiUMXu8uiDnQCAAALQyll3yS7jBn6XhuPG7v32lLK3m08C+a3pfskD35T/blqKLnwjZ3tZ6qqkeS6rzavefj/Tp56SfL8dclzbksOe0tSSmf6ozW1ruSoDyXPvTtZfvDE9QN3J7ec2f6+oJ6bvpsMb+rcecMbkxvP2HZ97VdaWzd4X3Lz99vTEwDTZ2jTaOjlZG24cvS5MAAAAADAPNY90w0AAAAAAAALT63UsqTWm00j/Q1rekpPihcpApPQV1uae3NX05qe0tOhbgAAYEF42NZfqyRXVVV1U7sOqqrqxlLKlUkO2jp0ZJIb2nUezHsPeXNy1b8km+q82978b8nNZyZ7PLnzfbVq8+3JNV9KBtc1rlmyNjnolaNv9yzrTF9MXa0r2fXxyforJq797YeStScmi1a2vS3mgM13JreflVTDo9elNvrvY8ma0estdye3n51snIanDRf/1Y7vMVnnvSgZ2Po1zxu/3fq6G7+T7PPc9vQEwPS48xfJyEDj+X1ekFz/9e3HhzcnG29KlsoLBwAAAADmL8FoAAAAAADAjOjrWjpBMNqiDnYDzAe9XUsnrHFvAQCAabVmzNs3d+C8m7MtGG1tB86D+at7aXLkB5PzXlx//sI/T3a7OKnNwoDxW3+cnPOcZGh987ojP5R093WmJ6bHQa9Orv5s84CQJLnzvOTfDktO+n6y6ojO9MbsdNvZyTnPTAbve+B4z8rkhO8kXb3J2U9LttzZ+d5Kd/K47yXn/WGypfkPc5jQBW+Y/Jprv5QsPyg54p07djYA7XHzD5KzTmk8v/ro5JiP1Q9GS5IbTksOncLHBwAAAACAOaI20w0AAAAAAAALU2+teYBR92x80SUwq010X0mS7uLeAgAA02inMW/f2oHzxp6xqgPnwfy23wuTnY+vP7fu8uSKf+xsP60YGUrOf/nEoWjHfybZ/6Wd6Ynps/qo5PE/StaemHQva1676abk16/rSFvMUtVIcv7Ltg9FS0bHzn9Z8stXdC4UrbZ49NG9NFl7QnLSmckeT06edH6yx9OarGvj1yv/613JPRe3b38ApmZkcPTjVDNP+GmyZG2yeJf68xf+2bS3BQAAAAAwm3TPdAMAAAAAAMDCNFGAUY/wImCS+romCFwsPSmldKgbAABYEBaNebsTP6h17BmLO3AezG+llhz90eSHj6g//1/vSvb7w2Txzh1tq6m7fpVsvLF5zc6PSA58RWf6YfqtPSE5+Wejb//+k8l/Ngk/u+Pnyabbkt5dO9Mbs8vdFyb91zae77+uY63k+M80vu8sPyg58YzGawc3JN/cKamG2tPb9d9MdnpYe/YGYGruODfZfFvj+d1PSXpWjL69/ODGIZ+eBwEAAAAA85hgNAAAAAAAYEZMFGDUUxY1nQcYT+AiAAB03MYxb6/pwHljz9jYsApo3S7HJ/u9KLn2S9vPDdyTXPLO5NiPd76v8fpvSG78TnLxWyeuXfvY9vdDZ7Tyd3ndV5ND/6z9vdA+g+uTG05L7vp1cs+FSe/uyZLdJ153xSfa31urdnn01Nf2LEuO/UTyq1dPXz9jrbu8PfsCMDUbb0wueH3zmrHPgXY6MrnzvPp19/wm6X1K4336r0tu/G4y1J/s+QfJqiMm3y8AAAAAwAwRjAYAAAAAAMyIiQKMugUYAZMkcBEAADru1jFv79uB88aecVsHzoOF4cgPjoYSDdfJG7zyn5KDX5OsOqzzfd3v7guSnz052XLXxLWLd04O/pP290RnrDoi2euZyY2nN6658M+T7r7koFd1ri+mz+Y7k589MbnnopnuZOr2fl6y8tAd2+OAP0pu+E5yy/enp6exbvhWMjyQdPnaKMCMu+ei5KdPSrbc0bimd4/Rjwv3e/Cbkiv+sX7tWackz70rWbx6+7m7fj161uC9o9eXvD151JeTfV8w9f4BAAAAADqoNtMNAAAAAAAAC9NEAUaC0YDJWiJwEQAAOu2qrb+WJPuWUg5q10GllAOT7FfnbGBH9e2ZPOQt9eeq4dHgqarqbE9jXfxXrYWiHfSq5InnJcsOaH9PdM5jvpE87P3Nay78i2SovzP9ML2u+MeZCUVbdcSOP9aemDzsb5JHf3XH+6l1J4/9ZnLEuyfuc+Xh268/4OVJafLSkJu+u+M9ArDjLn5781C0JHnyL5PeXbddL9s/6VnVuP7Kf64//pu/2BaKlow+r//1a5OR4db7BQAAAACYQd0z3QAAAAAAALAw9U4QYNRTW9ShToD5os99BQAAOu3iJANJ7k8hfkaSj7TprGeNeXswyQykqMA89uC/SK76TLLx+u3nbv1RctMZyV7P6Hxfw1tGz5/IYW9PHvbe9vdD59V6ksPeLnWOnAAAIABJREFUltx7WXLdV+rXDK1Pbv95ssdTOtsbO+7m73X+zINenRz3T50/dyLdfckRfz36mIoD/ij58WPrz930vWSf5029NwB23MhgcsuZzWsOf2fSt9f243s8Jbnua/XX3PS95LC3PnBsaFNy+znb1w7cndz2k2T3J7XWMwAAAADADGryY4EAAAAAAADap7drggCj0tN0HmC8ie4r3e4rAAAwraqqGkhydpKy9fGXpZTmT8ynYOueb0pSbX2cs/VsYLp09yZH/W3j+XOemWy5q3P9JMn130h+9JikGpm4VrjD/DfR3/FZpyS//bvRIBBmp4F7k0vfl5z19OSnTxp93PWrzvex+5M7f2YnrD668dw1n+9cHwDUd89FSTXUvKbR851mH7vu/MX2Y8NNng/d99vmPQAAAAAAzBKC0QAAAAAAgBnRV5sowGhRhzoB5ouJ7isCFwEAoC2+uvXXKsmaJE2Slabsg0nWZjR8LUm+0oYzgH1OTdY8pvH8t3ZJhvo708sl70r+49Tk7v+cuHavZzXvm/lhn1OTnY9vXnPRXyY/fUIyMtiZnmjd4LrRoMNL3pHc/L3k1h+NPjpt7YnJnk/r/Lmd0N2brDy88fxlH+xcLwA80MB9yZnHNa/Z+znJLo+sP7fPqc3X3nPx1PoCAAAAAJjFume6AQAAAAAAYGHqFWAETLPeLoGLAAAwA76S5P1JdstocNmflFJuqqrqA9OxeSnlLUlel9HgtZLktghGg/YoJTn6o8kPjsnou1wd1309OfCP2tvHwD3J5R+auO6AlyVrTkj2f8lo78xv3b3JE36W/Gtf87o7z0tuOmM0XITZ49qvJPddNvl1i1Ynu57UvGZw3fYha7s9MelZse26qy9Z86jkgJcntXn8vYeHfyT52ZPqz13y9uSQ1yU9yzvbEwDJtV9qPv+Izyb7vbjxc9ruvuSplyT//tD68xe9OTnpB9uuq6Gp9QkAAAAAMIsIRgMAAAAAAGbERAFGPQKMgEkSuAgAAJ1XVdVAKeWtST6XbeFl7y2lPDTJa6qqumcq+5ZSViX5ZJIXjNm3SvK2qqoGpqN3oI7VDx8NDrr6X+rP3/az9gej3XFeMry5ec1uJ48GSLCwdPcmR34wuegtzetu/algtNnm1p9Mbd0pFyVL957eXuaz5Qc3nquGk7v/c+KgOQCmX7OPg7ueNBr4O5EVh2bbp8Xj9F//wOsRwWgAAAAAwNxXm+kGAAAAAACAhalvggCj7poAI2ByJrqv9NQELgIAQDtUVfWFJKdn26u0S5LnJ7milPK3pZQmKR0PVEo5qJTyt0muyGgoWrn/mCRnVFX1uensHajjYe9vPHftl5KL/yoZ3jK9Z/Zfl5z30uR7hyZn/8HE9Xs9a3rPZ+7Y8xkT11zxieQrJTnjQcndF7a/Jx5o7Pvz6fuNPm745uT32enhQtEma+m+yaqHNp4/51nJ0MbO9QOw0N3yw+Sspyc3frtxTavPa2s9qRuKliTrLk+u+9dt11WzYLQGewAAAAAAzDLdM90AAAAAAACwMPV2TRBgVAQYAZPT29XXdL67CFwEAIA2enGSnyY5JtvC0VYneWOSN5ZSbknyqySXJ7l36yNJViZZleTBSY5LssfW8bGBaCXJBUle1PbfBZD07pbsc2py/b/Wn7/sA8k9lyQnnjE9522+MznzEcnmW1ur3/Xxyf4vnZ6zmXtWPjg54I+Sq/9l4tr1v09+cHTy1EuSVUe0vzcm//7cSM+q5OiPTk9PC0kpydEfS35yYv35wXXJz56SnHz2aC0A7XPzD5Kzn5ZUw83rDnh563s+8ovJeS+uP3fuC5KRgWT/FyUjg63vCQAAAAAwSwlGAwAAAAAAZkRfbaJgNAFGwOR0le4sLkuypdpcd17gIgAAtE9VVRtKKU9I8rkkz85ooFmyLeBsjyTP3PpoZGxCx9j1pyd5aVVVG6atYaC5g1/TOBgtSW7+XnLvZcmqw3b8rGu+0HqI0gnfTXZ/ctLlc/wF7fjPtBaMdr/ffzw57p/b1w/bTOb9OUnWnpjs8sikGkr6r0+WrElWPTTZ45Skb6+2tTmv7fq40T/X28+qP3/Hz5M7z0/WPLKTXQEsPJd/eOJQtJN/nvQsb33PvZ7RfP6/PzYajFYNtb4nAAAAAMAsJRgNAAAAAACYEYtrvSkpqf7f65wfSIARMBW9XUuzZahRMJrARQAAaKeqqtYneW4p5c+TvDdJX7LdJ/5lu4Vbl4+rLUk2JXlnVVUfnu5egQmseNDENXeeNz3BaHee21rdUR9O9nr6jp/H3FdKsvro5O4LWqu/8lOC0Trlzl9Mrv4x30iW7NKeXhay3Z/YOBgtGb1/C0YDaI9q66e1E35MLJN/Lt2zIundPdl0S/35ey4c/XVEMBoAAAAAMPfVZroBAAAAAABgYaqVWpbU+hrOdwswAqagt+l9ReAiAAB0QlVV/yvJvknen+TejIac3f+oGjzG1ty7de2+QtFghvTunqx5bPOaX70yuegtycjw1M4YuC859w+TG05robgk+zxvaucwP+1z6uTqN97Ynj7Y5vpvJDd8q/X6XZ8gFK1d9n5+8/nfvDG55K+TaqQz/QAsBAP3Jb94UfKtnZOv1pLhTc3rd39ysminyZ+zzwsaz1Vbn5dXg01q6v/QMgAAAACA2UYwGgAAAAAAMGP6upY2nOupCTACJq+31uy+InARAAA6paqqu6qqekeS3ZKckOQdSX6Q5NIkNyfZsvVxy9axM5P8dZLHJdm9qqp3VFV150z0Dmx13KeSpfs1r/nth5KL3jy1/c95ZnLdVyauK13Jcf+cLN13aucwPx3yp8mez2i9/rsHJSND7etnobvlh8l/TCKsbtmBybH/2L5+FroVBydH/0Pzmkvfm1zyzs70A7AQnPOM5NovJwP3TFy7/JDkmI9P7ZzD39F8vqo85wEAAAAA5oXumW4AAAAAAABYuJoGGBUBRsDk9TYLXCwCFwEAoNOqqhpM8h9bH8BcsvLQ5A9+m5x1SnL72Y3rrvp08rD3J12LW9/73sua75kkB/1JstvJyZpHJb27t743C0N3X3LCt5P7LkvuvTTpvy65+K2N60e2JLecmez5B53rcSG54p+azx/06mSXR4y+veyAZOfjkq4l7e9rIXvQnyYbrkz++6ONa678p+SIdyW1ro61BTAvrft9cvs5rdWefE6y87FT/zi4eHXyhJ8lPzmp/nw1kowMTm1vAAAAAIBZRDAaAAAAAAAwY5oFo3ULMAKmoK/pfUXgIgAAAExKd29yyOuah5gNrktu/E6y8rBk2YGja+43PJBsuTPp22M0pGHjjcnIQHLNF5qfW7qSIz+QLNppen4fzE+llqw6YvQxMpxc9oFkaH3j+uu+nuxxSjK8Odlwdf2anpWj/6ZTjV737Z0sWjntrc8bg+uS/uuTG7/duKZ0JUf+jffnmbDrE5oHo225M+m/Jll+UOd6ApiPrvtaa3VrHpusfeyOn1dr9n30kaQa2vEzAAAAAABmmGA0AAAAAABgxvR1NQ4w6hFgBExBb9P7isBFAAAAmLQ9njZxzbn/Y/TXWk9ywMuTo/8hufTdye/+VzK8afJn7vl0IUpMTq0r2e+FyZX/3Ljm2i+OPiaj1EbfBx71xaRnxY71OJ8Mrk/Oe0ly03dHQw+b2fNp3p9nyu5PShavSbbc0bjmjIOTo/4+OfTPk1I61xvAfLL5ttbq9n/x9JxXao3nfvy45EFvaLK4mp4eAAAAAADarMlXQgEAAAAAANqrt9YkwKjpT7oGqK/pfUXgIgAAAExed2/ypPNaqx0ZTK78VHL63sllH5haKNraxyXHfXry6+CoDye7PWl696xGRsO/fvXq6d13rvv1a5IbvzNxKNriNclxn+lMT2yva3Fy0veTvr2b1/3mjaP/zgFon+7lyYGvmKbNmrwc8M7ztoUW11MNTVMPAAAAAADtJRgNAAAAAACYMb1dfQ3nugUYAVPQ1yVwEQAAAKbdLo+YXP3m26d2zv4vSU4+K1myy9TWs7D1LEsef2by0PdO/943fCsZXDf9+85FQ/3J9d9orfaZ13l/nmmrjx79e1i8c/O6qz/XkXYAFqwTvp2UaXoZ347sMzI4PT0AAAAAALRZ90w3AAAAAAAALFy9tcYBRoLRgKlwXwEAAIA22f8lyTVfaO8Zezy1vfuzMOz2xOSSd0zvniODyUVvS9Y8KhkZSEp30t3gB3/UFiWrj016d53eHmbawH3JXb9Mbv/56J/BRJYfknT3tr8vJlZKss//SK74ROOaG09Pqmq0FoDJmfDjYklWHt7ydvcN3Z3rN1+VoWpou7me0pMDqi1p/OPHJjCy/Z4AAAAAALORYDQAAAAAAGDG9DUJMOopizrYCTBf9HW5rwAAAEBbHPjK9gajLVmb7PmM9u3PwrHzccmqhyX3Xjy9+17xiebBUuMd/s7kiHfOj6Cpq7+Q/OqPRwPiWnXQq9rXD5N34CuSK/8xqUYaFFTJ2c9IHvP1xqF/ANQ3cHfz+b2f01Jg6kg1ktPv/GJ+dPe3m9aVJM9ee2BOvv2qSTS5VTWJj+UAAAAAADOoNtMNAAAAAAAAC1dv0wCjng52AswXS2qNX7TnvgIAAAA7YO1jksd8Y/r3LV3JLo9KTv550t07/fuz8JSSnHRmsvspM9vHpe9ObvvJzPYwHTZcm5z/stZD0ZasTY54V3Lo/2xjU0za6qOSE85oXnPz95LL/64z/QDMJ/+XvfuOk7uq9z/+OrM7m2TT66YHAqGEFjqEIh0RRRQVudeuV8Verlgv9nrVawWx+1NRwQIoKCJdOtISWgokIWUT0nu2nd8f3113Q+Y7OzM7M7ubvJ6PxzzmO+dzvud8Astk2f1+37Ojm2C0439R0DJztzzYbSgaQAT+OOVgFgweVdC6Oykm5FSSJEmSJEmSepHBaJIkSZIkSZIkqdcMyuQJRsvUVbETSbuL+jzvK7W+r0iSJEmS1DNTXwX/EeHC7fDqDfDK56GuhECGDideBa/eCGfdBcP2K1+f0qAGOPUGOOfR/PMGNsC4F1Wuj0VXVm7tallyNUkESzfGHA8XrIZXNMIhn04C6tS3THoJvGZL/jmLf1edXiRpd7Lj+fRa/VSoTf/dVVf3b7y9qG3njBhf1HwA2lqKP0eSJEmSJEmSekFtbzdQjBDCLe2HEbgoxriqxHUagN90rBVjPL0c/UmSJEmSJEmSpOLU1+QJMArZKnYiaXcxKM/7Stb3FUmSJEmSyqNmQPLIAhPPhUW/LH6NzACY8GKorS97e9K/DT8QBoyBHatz1yeeA5POg1XFBZEU7JmfwdAcoX+DxsP4M6B+cmX2LadC/9lMfAkMGF3ZXtRztfUw4hBYPyd3ffMCaGuFTE11+5Kk/iq2weZn0uuHfKbgpVbsWFLU1huzA4qaD0BsLv4cSZIkSZIkSeoF/SoYDTiFzo+bGtiDdQa2rwUFfXyVJEmSJEmSJEmqhEGZ9ACjulBXxU4k7S7q87yvZH1fkSRJkiSp/PZ7Nyz5HbQ1FXfejIshO7QyPUkdMlnY730w59IctTqY8S4YOQuGzoBN8yvTw6Mfzz1eUw8nXg2TXlKZfcvh+Xtg+fXdz8uOgOlvrnw/Ko8DPgT3pvz7amuGbUth8LTq9iRJ/dW25dC6Lb0+7TUFLdMaW1nVtKKorZtDCSGWbS3FnyNJkiRJkiRJvSDT2w2UIPR2A5IkSZIkSZIkqTzG101hYKZ+l/FRtWMZUjO8FzqS1N8NqRnOmGzDLuMDwkDG103phY4kSZIkSdrNjTkWTrsJJpwNA8ZC3cjkkckTUH7oF+CIb1SvR+3ZDv4UHPF/MOqo5GtzwNjk6/W0f8Doo5PwtDPvgr3fAEOmw/gz4ejLYPL5le2rdSvc/7YkiKovihEeuDj/nEETkn9OZ90D9ZOq05d6bvqb4Kjvp9c3P1O1ViSp31s/N732krlQm/6BPl2tbm6kldyhZTXU5hxvyZRwW2Dso993SJIkSZIkSdIL5P7JqCRJkiRJkiRJUhVkM1lOH3ke16/57U7jZ416JSH4WSmSihdC4KxRr+TKlZfvNH7aqJeRzWR7qStJkiRJknZz405OHlJfFAIc8IHkkWbgWDj+FzuPzbgYHv8SPPrJ/OtfsBpatsK1U4vvbdsKWH0fjDux+HMrbcuzsP7R9PqpN8KEs6rXj8prv3fBnEthx5pda5ufgYZTq9+TJPU3McLjX8hdGzAaRhxU8FIrdjyXczwQOGnE2dy2/vpdas2hpuD1/60td/iaJEmSJEmSJPU1e2owWtc/tz/RlSRJkiRJkiSpF71k9IWMzI7hkU33kgkZjhn2Io4YekJvtyWpHztxxNkMrhnKAxvvoCk2cfiQ45k9/IzebkuSJEmSJEn9zeTz8wejDZ8JdaOgbiQMmZ4EShXrqW/A2BOSALe+ZOO8PMUAo4+uWiuqkCH75A5Ge/xLsPebIFNC4I4k7UmWXAXP35W7Nvq4opZqbFqae5nsOOprhuSsNWcyRe0BQFtz8edIkiRJkiRJUi/YU4PRxnQ53tJrXUiSJEmSJEmSJEIIzB5+hqFFksrq8KGzOXzo7N5uQ5IkSZIkSf3Z8Jkw9TVJ8MkLhQwcfGl7oFlIju99U/F7LL0GHnwPHP39nnZbXpsWpNdmfiwJg1P/NmQ6rLl/1/HNz8Bdr4ETr06+ziVJu2rZBg9fkl7f791FLbeyaVnO8fF1U6gN2dwtlBJgGVuKP0eSJEmSJEmSesGeGox2cvtzBJb3ZiOSJEmSJEmSJEmSJEmSJEmSpD5q9pUw5nhovAka/wEDG2DcKbD362HCmZ3zpr8RBo6DRb/OHSq25r70PeZflgSoDJ9Z9vZLtml+eu2wL1avD1XOkOnptef+CCtvhfGnV68fSepPnvsjbF2SuzbhbJjw4qKWa2xamnN8fN1ksqEuZ62llPDKtubiz5EkSZIkSZKkXtCfg9FiMZNDCFlgAnAW8MkupTnlbEqSJEmSJEmSJEmSJEmSJEmStJvI1MABH0ge3Zl4TvLI5bFLYe7n089d/te+FYy2OUe4G8A+b4UQqtuLKiNfMBrA8hsMRpOkNCtvyT0eauDwbxT1d2WMkZVpwWgDJtOSEmbWnCkhGC22FH+OJEmSJEmSJPWCEn4CWlkhhNa0R9dpwKJ8c3Ocux14FrgCGNZlreuq+MeTJEmSJEmSJEmSJEmSJEndCCEcGUJ4VQjhZSGEfXu7H0mSemxCSmBah4f/G/5xCjz0YdiyuCot5bXixtzjQ2dUtw9VzvgzSW7NSPHUN6vWiiT1O6vuyD2+1+tgxEFFLbW+ZQ3b27blrDXUTSabqctZaw41Re0DQErImiRJkiRJkiT1NX0uGI3kN2tpj0LndfeI7Ws8Bfy+cn8USZIkSZIkSZIkSZIkSZL2XCGEgSGE6V0eee/cDiGcF0JYBNwP/A64Bng6hPDPEMLMKrQsSVJljDkOpr02/5xVtydhVDceB5sXVaWtnDY8BbE1d22IeaW7jcFT4cCP5J/z1Leq04sk9SfbGmHzgty10UcXvVxj09LU2oS6ydSGbM5aS6aE2wJjS/HnSJIkSZIkSVIv6IvBaNAZXFYpAXgQeGmM0Y+6kCRJkiRJkiRJkiRJkiSpMj4MzG9/3Aq0pU0MIbwG+CMwhV0/EHU2cF8I4chKNyxJUkWEALN/DaOP7X7u9kaYf3nle0rz2P+k14bOqF4fqrzDvwp7vyG9/vgXoHVH9fqRpP5g3nfTayX8PZkWjDasZgT1NUPIhrqc9eb8ueO5tXkbnSRJkiRJkqT+oba3G8jhDtKD0V7U/hxJPg1ye4FrRmAHsB54Erg1xnhnT5qUJEmSJEmSJEmSJEmSJEndOp8k2CwCP4kx5rw+MIQwEriC5ANfY/sjtJc7zhkM/DGEsH+MsdDrByVJ6jtCBg7+FNz+su7nrrqt4u2k2vR0em3oPtXrQ9Wx//vh2f+Xu7ZjDWx4HEYdUd2eJKkvW31vem3ofkUvlxaM1lA3GYBsyOasN2cyRe9F09riz5EkSZIkSZKkXtDngtFijKek1UIIbXRe4HRhjHFJVZqSJEmSJEmSJEmSJEmSJElFCSEMAmbRed3fX/JMfy8wnM5AtGXAH4EW4JXAtPZ5k4H3AV+rQMuSJFVew6mQHQbNG/PPW3M/3PlqOPoyGDi2Or0BxDZYPye9Xju4er2oOkbOgvopsPW53PXNCw1Gk6QOLVth5S3p9cHT0mspGnfkDkYbPyAJRqvN1OVuJVOzU6J4QdbPgRghFHWWJEmSJEmSJFVdCR8N0ev8yaskSZIkSZIkSZIkSZIkSX3fIUANyXV/W2KMD+WZ+zo6Q9GeBg6OMb4/xvjh9nUeaJ8XgDdVrGNJkiqtdjAc/QPIZLuf+9zv4aYTobWp8n11eOZn6bVjf1q9PlQ9IQPH/ji9vmlh9XqRpL7u1rPTawd9oqTAsZVNKcFode3BaCH9e4aWkOPWwEkvy79hvr/rJUmSJEmSJKmP6G/BaJ9tf3wOWN/LvUiSJEmSJEmSJEmSJEmSpHR7tz9H4Im0SSGEA4B9u8y9NMa4oaMeY9wMvLfLKfuHEKaUuVdJkqpnr4vg3CeTgLR935l/7qZ5sPwv1ekL4PEvpdemnF+9PlRdE86CEYfmrm02GE2SAFj3GDz/z/T63m8oesmtrZvZ2Jr7FrmOYLRsnmC05kyOWwNP+hOceHX6po98rKgeJUmSJEmSJKk31PZ2A8WIMX62t3uQJEmSJEmSJEmSJEmSJEkFaehyvCLPvJPanwOwCfjTCyfEGO8PISwFJrcPHQo8V44mJUnqFUP3SR4xwuIroXlj+tz5P4DJr0jm1AyAUANtzdDWBLVDoGULSbboCwXIDoMQuu8ntkHzBtj8TO56pg7qRhbyJ1N/Ne5FsP6xXcc3Pg1N6yEzAGoHlXfPtmYItYV9jUpSb1tzb3otUweD906vp2hsWppa6wxGq0ud0xxqgJYX9FIDU18FA8fB9lW7nrRjNWx/HgaOLbpfSZIkSZIkSaqWfhWMJkmSJEmSJEmSJEmSJEmS+o36Lseb8sw7of05AjfHGFtS5s2lMxhtag97kySpbwgBpl4IC3+UPqfxJvhNprT16yfD/h+EAz6YO3yqdQf86/2w+HfQvD59nRGHlLa/+o8h++Qef/5O+P3IJJBv1NFw7I9gxME922vbCrj3LbDyVhgwGvZ/Hxx4iQFpkvq2lben16ZcADXpAWZp0oLRBmYGMaJ2NADZkE09vyWT5/uDcS+CJVfnKER48utw+FeLaVWSJEmSJEmSqqrE345KkiRJkiRJkiRJkiRJkiTl1TXZIv1Obpjd5fjOPPPWdDkeVlJHkiT1RYd9qXJrb10KD38Ynvlp7voDF8OCK/KHogEc/8vy96a+ZWhKMFqH2Apr7oWbToSmbr5e8q4T4ZYzYMXfoG0HbFsOj3wM5l9e+pqSVGltrbD4yvT6Ed8oadnGHbmD0RrqJhPawyJrM+mBa82hJn3xY65Irz35NdixtqAeJUmSJEmSJKk3GIwmSZIkSZIkSZIkSZIkSZIqYVOX44ZcE0II44F9uwzdnWe92q6n9qAvSZL6loFjYPpbKrvH/B/sOta8ERblCXnpUFMPww4of0/qW4Z0E4zWoXkDLLmq9H2e/ydseGLX8QV5AnwkqbetvDm9dtAnYNCEkpZtbEoLRpv07+NsSM8Zb87kuTWwbiTMeHd6ffFvuu1PkiRJkiRJknpLbfdT+q4QwqnAacDhwDhgOPk/VTKXGGMs8Dd4kiRJkiRJkiRJkiRJkiSpQMvanwNwSMqcl3Q53gE8lGe9EV2Ot/SgL0mS+p5pF8IzP63c+msfhOfvgVDTObbmPmjb0f25Iw6BYCbpbm/IdKgZBK3bup+79uHS91ny+9zj6x+D1iaoqSt9bUmqlHV53vdGHFryso1Nz+UcH183+d/H2ZD+vtiSqUmtATDpXJj//dy1dY90258kSZIkSZIk9ZZ+GYwWQjgb+A47f0pkqb9pjT3vSJIkSZIkSZIkSZIkSZIkvcBjXY5HhRDOjjHe+II5b25/jsD9McbmPOtN73LcWI4GJUnqMxpOg/rJsHVp5fa4aXZp501/U1nbUB9VMwCmvRae+Vn3cxf8AI65vLR9NjyeXtuyCIbtV9q6klQpLVvgkY+l1ye9rKRlm9uaWNO8KmetazBabUi//a85ZPJvMv7M9NrCH8OxP8p/viRJkiRJkiT1km5++tn3hBA+AtxAEorWNQwtlvCQJEmSJEmSJEmSJEmSJEkVEGNcCMwnuV4vAJeFEPbuqIcQPgyc0OWUa9PWCiEMYecPU11Y3m4lSeplmVo49UaoHdLbnXTKDICZH4V9397bnahajvwOTHkldBe0A7DhiRI3aUsvbVpQ4pqSVEEPX5JeG3M81NaXtOzKpuXElNvbJgyY8u/jTKihhtzhaM2ZmvybZGphxsXp9XWPdNunJEmSJEmSJPWG9I+M6INCCGcDX21/2RFu1hGOthVYD+T7tEhJkiRJkiRJkiRJkiRJklQ9Pya57i8CewNPhRAeBcYBU+i8DnA78Ks865xC5/WCLcDjFepXkqTeM3wmvGYTbF0KW5fD348tfo1zHoa/Ht6zPoZMh5P+BMP2g5qBPVtL/Ut2CJz0B2jaAFuehaV/hjmX5p777C9h1peL32Pr0vTaZoPRJPUxba2wKM//qk59TclLNzblfj+soZYx2YadxrKZLK1tLbvMbSkkyHLSeTD/8ty1Z34BR87qfg1JkiRJkiRJqrICfvrZp3yl/bnjQqilwHuAvWKMQ2KMk2OMexf76LU/jSRJkiRJkiRJkiRJkiRJu7dvA0+1H0cgCxwJTKUz6CwC34wxPp9nnVd0mftojHFHBXqVJKlvqJ8Mo4+G+inFnTf55TByFkx4cc/2n/5mGHmooWh7srr+2Xo0AAAgAElEQVThydfS9Delz3niK7D+cYhtnWNtzfD8PbDydmjN8e1aWwtsyhN+tvDH0LKt5LYlqey2PgfNG9PrI0sPI21sei7n+Ni68dSE2p3GakNdzrnNmQJuDRx5WHrt6W8lYZiSJEmSJEmS1Mf0m2C0EMI+wGEkFzUB3AccHGO8LMa4pPc6kyRJkiRJkiRJkiRJkiRJucQYm4CzScLROoLQAp3XAgbgj8Cn09YIIQwBLuhyzs0VaVaSpL4kBJjxruLO2fedyfOMi0vft2YQ7P3G0s/X7mVwN+F8NxwMd5wPLVtgyxK4/mC4aTbcfApcNz0JTutq7b/o/JYuh/Vz4M8zYN1jPe1cknqurRVue0l6vX4qjDup5OUbm5bmHB9fN3mXsWzI5pzbEmq632jQhPz1a6bA8hu7X0eSJEmSJEmSqqjfBKMBx7c/d1wQ9YYY46Ze7EeSJEmSJEmSJEmSJEmSJHUjxvgcMAu4GPgr8ATwJEkg2qtijK+OMbblWeJNwDCS6wcDcH1FG5Ykqa+Y+VE49PNQv2tAyr+FGhh2IMy+Eia+OBmbfB4c9wsYtn/he4UaGH0MnH5b92FY2rMc+5P89WV/hqe/A/e/HTbN6xzfthzuvmjnuf98Tff7bVsG97wBYp4ANUmqhmXXwsYn0+tn3w+h9FvzVjYtyzk+vm7Xv4ezoS7n3OZMgfvP/k16rWVT8n7dsq2wtSRJkiRJkiSpCmp7u4EijGt/jsDDMcb5vdmMJEmSJEmSJEmSJEmSJEkqTIyxGbii/VGsnwC/7LLWhnL1JUlSnxYCHPwpOOiT0LYDagbCv7NEQ1KPbblDWaa/IXm0bu9yTr69aqEmd+iK9nAjZ3U/Z+GPYfMzu46vnwObn4UheydBZ1uXFLbn+keTkLViwv0kqdwW/za9NvYkGNRQ8tJtsTU9GG3AroGotSGbc25zpqawDUcemr/etA4ab0rCVSVJkiRJkiSpD+hPwWihy/GCXutCkiRJkiRJkiRJkiRJkiRVTYxxG7Ctt/uQJKnXhJCEosGuIWi5QtG66jhPKtWwAyE7HJrzZNPmCkXr8MhHYfjBUDOouH3XPZI7GK1lG6y4EbY8mwQTjT6quHUlqRDNm2DJ1en1Mcf3aPk1zatoic05a+Prdg1Gy2Zyh5e2dPd9QIch+8KA0bBjTfqcjU8BBqNJkiRJkiRJ6hsK/Olnn9D1YzAK/DgLSZIkSZIkSZIkSZIkSZIkSZIklaR2EOz33tLPX3I1zPk0PHJJcefd9dpdA3y2r4Z/vAjufAU89CG48Wh47DOl9yZJuWxdCjcem3/Ovm/v0RaNTUtTaw11k3YZy4ZszrnNmQJvsaupg/0/mH/OIx8tbC1JkiRJkiRJqoL+FIz2eJfjKb3WhSRJkiRJkiRJkiRJkiRJkiRJ0p7i0M/Bkd+B4TOru+/T39359bzvwNoHdh6b+1nYOK96PUna/T3+Zdj4ZHr92J/C0H16tEVaMNqo2rEMyAzcZbw2LRgtFHFr4EGfgKMvzz9n87OFrydJkiRJkiRJFdRvgtFijHOAuUAAjgwhjOzlliRJkiRJkiRJkiRJkiRJUolCCJNDCCeHEM4PIbw+hPCG3u5JkiRJOYQA+78Xzn0cBoyu3r5L//SC19ekzLu28r1I2nOkvdd0mHJ+j7dIC0YbXzc553g21OUcb8nUFL5pCDDjnUnQZRrfTyVJkiRJkiT1Ef0mGK3dN9qfa4AP92YjkiRJkiRJkiRJkiRJkiSpOCGEaSGEb4UQngEWA7cCfwB+Dvws5ZyTQgiXtj/eW71uJUmStItxp1Zvr/WPwWOfhvWPw4Ifw/o5uec9/oXq9SRp99a8EbYtT6+POAzqRvZ4m8YdKcFoA3IHo9WGbM7x5kwJtwY25Hkf3zS/+PUkSZIkSZIkqQL6VTBajPEXJBdABeCSEMI5vdySJEmSJEmSJEmSJEmSJEnqRgghE0L4IjAfeC+wF8m1gF0faVYDnwE+DXwrhLBPRZuVJElSupkfLe96p9+Svz73c3DDwXD/f6XPad4Iba3l7UvSnidG+OsR+ecc8pkybBNpbEoJRqvLHYyWzaQEo4Wa4hsYcXB6bdOC4teTJEmSJEmSpAroV8Fo7d4IXAfUAteGED4XQhjRyz1JkiRJkiRJkiRJkiRJkqQcQghZ4G/Ax0iu/XuhmO/8GOOTwK10hqf9R1kblCRJUuFGHwUvmVPG9Y6Bly/p+TqNf+/5GpL2bM/fBZsXptfPuB2mnN/jbTa2rmdb25actYa0YLRQl3O8JVPirYGzvpp7fP2j0Lq9tDUlSZIkSZIkqYxyXWDUZ4UQLm0/fBSYDYwBPgl8KIRwD/AEsA5oK2bdGOPnytmnJEmSJEmSJEmSJEmSJEn6t58AZ5AEoEWSgLM7ScLOmoAvFLDGH4BT24/PAj5f/jYlSZJUkBEHw7D9YePTPVsnk4Waeqivh+wwaN5Y+lrL/wYTz+lZP5L2bCtuTK8NOwDGnVyWbRqblqbWxqcEo9WGbM7x5lBTWhPD9s89vn0lPP0dmHlJaetKkiRJkiRJUpn0q2A04DPs/MmQHRdI1QOntT9KYTCaJEmSJEmSJEmSJEmSJEllFkI4HXgdndf7LQD+I8b4YHt9GoUFo10PfK99jaNDCANjjNsr07UkSZK6NfHcngej1Y2EEJLj7IieBaPN+07yGDmL5FtGIFMHo4+GAy+BwVN61quk3d/T306vTTw376mLts3njvU3sGzH4m632dK6Kef44JqhDK0dnrOWDXU5x5szmW73y2nsSRBqIbbsWnvko9CyBQ75NIQS15ckSZIkSZKkHupvwWi5xO6npAo9PF+SJEmSJEmSJEmSJEmSJKX7dPtzABYDs2OMq4tdJMa4OISwHhgBZIEDgEfK1qUkSZKKc8AHYdlfYNO80teoG9l5fMwP4bYX97yvdS/4FnHNffDcH+HsB6B+Ys/Xl7R7euYX0JI7sAxI3vNSLNz2FN957lKaY1OPWhhfNzm1ls1kc46XHIw2YBTs81ZYcEXu+tzPwY7n4ejLSltfkiRJkiRJknqoP35sQyjjQ5IkSZIkSZIkSZIkSZIkVUAIYRQwm+QDTCPw/lJC0bp4osvxfj3pTZIkST1UPxnOuicJNJv+FqgZVMIiXW5pGX9G2VrbxbblsPAnlVtfUv8WI8z9fHp91tegflJq+aa1f+xxKBrkD0arDXU5x1tCTekbHvo5yA5Lry/4IWxbUfr6kiRJkiRJktQDtb3dQJFO7e0GJEmSJEmSJEmSJEmSJElSQU6kM+1iVYzxuh6u1zVUbVwP15IkSVJPDRgF+/5X8jjmCrhqMLQVEQ40bP/O40wNDJ0Bm+aXv0+A5++szLqS+r9ty2HzwvT66GNSSzFG5m+dW5Y2xtdNSa1lQzbneHMmk3O8IAPHwUGfgkcuyV2PrbD6HpjyytL3kCRJkiRJkqQS9atgtBjj7b3dgyRJkiRJkiRJkiRJkiRJKsiE9ucIPFiG9TZ1OR5ShvUkSZJULplamPxyWHL1zuMDxsKQfWDNvbueM+mlO7+un1q5YLTGm+Cq9m8ha4fAuBfBEf8H9RMrs5+k/mPj0+m1TBbGzk4tb2rdwLa2rT1uIZBh1tDjUuvZUJdzvCXU9Gzj/d8HC65ID4a78wKoGwWjj4XDvwojDunZfpIkSZIkSZJUoB58LIQkSZIkSZIkSZIkSZIkSVKqUV2O15VhvUFdjpvLsJ4kSZLKadZXYOiMztc19XDcT+GYK2DQpJ3nTnkV7PW6nccy2cr217IleWxfCUuugptmQ+v2yu4pqe+7/aXptZOuyfve1Ni0tMfbBwIXjH0To7PjUufUhtw9NGd6eGtgzQA45fr8c5rWwoq/wk0nwpYlPdtPkiRJkiRJkgpU29sNSJIkSZIkSZIkSZIkSZKk3dLGLsdDy7BeQ5fjtWVYT5IkSeU0ZDq8+CFYdQc0rYOGU6F+YlI7dy6svA22Pgejj4VRR0KmZufzB4xJX3vmR2Hzs9C8CcadBOPPgBuP6Vm/WxbDc9fAXq/t2TqS+q/mjdC6LXetfgpMekne01c2Lcs5PjBTz7mjL+x2+4GZevatn0lD3aS887KZupzjLaEm53hRhu0P098Mz/ws/7zmjcmcQz7d8z0lSZIkSZIkqRsGo0mSJEmSJEmSJEmSJEmSpEp4vsvxjJ4sFEKoAQ7vMrSiJ+tJkiSpQrJDcgcJ1Y2AKefnP3faa2HRr3Ydr58Cs76y6/iR34Z/vb+0Pjssvx6mXQghQMtWaFrfWcvUwoCxSU3S7mn93PTauBd1e/rKpqU5xyfWTeX0US8vtatdZEM253hzJlOeDUYf030wGsCa+8uznwoTI7RuTf5+qhsBmSy0bIGa+uTvptbtEGqTv68kSZIkSZKk3Yw/9ZIk9Q3P3w3zvpd82tLUVycXNoQy/ZJOkiRJkiRJkiRJkiRJvWFO+3MA9g8hTI4x5r5rvHvnAPXtxxG4t6fNSZIkqY8ZfwYMGA071uw8Pu2i3POnvhoe+hDE1tL3XPQrWPxbiC1JuExs2bk+aBIc9gWY/qbS95DUdz1/Z3pt79d3e/rKpmU5xxsGTCq1o5xqQ13O8bIFo025AP71Pmhrzj9v+Q0w7zLY713l2VfpFvwQ7n9H7lqmDtqakufMAJj+Rjjim0lwmiRJkiRJkrSb6PeJMyGEbAjh5BDCJ0MIPw0hXBNCuDmEcHNv9yZJKtCyv8BNJ8Di38DSa+Du/4RHP9HbXUmSJEmSJEmSJEmSJKkHYoxPAh13iQfgw6WsE0LIAB0Xk0Tg0Rjj+p53KEmSpD6lZgCcdE0SjtZh4kvh4P/JPX/QBDjhd1AzqHNs37fD+c/BqKMK37cjDO2FoWgA25bBvW+G5TcWvp6k/iFGeORj6fXxZ3a7RGNKMNr4usmldpVTNuQOvGoJNcRybDBwLJx4NdTUdz/3wXfDkj+UY1elWXpteigaJKFoHc8tm2De9+CRj1enN0mSJEmSJKlKanu7gVKFEAYDHwTeA4x9YRly/1w3hHAR8MX2l2uBo2OMZfkZsCSpBLENHnzvruNP/m9yYcKQ6dXvSZIkSZIkSZIkSZIkSeXya+ASkuv63hNCuCHGeFORa3wJOK7L6x+VqzlJkiT1MeNOhPOXw7qHYWADDJ4GIaTPn3oBTDwnmT9kehKWBnD2/bDxKdi8MHm9+Hew6Fel97XwxzDx7NLPl9T3rHskvTbtovzvPUBT2w7WNq/KWWuom9STznaRDXU5x2MItIZAbTlujZv8crhgNax9AFbdCY99Kn3uwh8n77+qjAUl/Nhj4U9g1lchU1P+fiRJkiRJkqRe0C+D0UIIhwJXATNILpaClCC0HP4M/AAYCkwDzgT+Xu4eJUkFev4u2LJo1/HYBot+Awd/suotSZIkSZIkSZIkSZIkqWy+BryT5Jq9GuDaEMIHYow/7O7EEMIY4OvA60muEQxAI/DTyrUrSZKkXldTB2OOLXx+bT2MPWHnsRBg+IHJA5LQtJ4Eo617uPRz1f+1NcO6R6Flc/I6ZCBGct7KlBkAIw+F2sFVbVElWPHX9NqIQ7s9fVXTCmLK7WxlD0bLZFNrzaGG2thSno1qB8G4k2HUUfD4F6B1e+55jcXmne/BdqyBDY8n98gUavn1xe/TvB6e/QUM2QdCDQzbDwaOK34dSXu2pvWwfi4MOwAGjoEtz3Xe91c/BbY+B0NnwKDxha23dWnyd8mQfboNHJUkSZIk6YX6XTBaCGEmcDswjOQip46LnQoKSIsxbg4hXA28pX3oAgxGk6Tes+LG9NqiXxuMJkmSJEmSJEmSJEmS1I/FGNeGEN4H/Jzk+r6BwOUhhI8AvweWd50fQjgG2B84CzgPGELn9YGtwJtjjE3V6V6SJEm7jeEzYfSxsOa+0s7fvDD5QOgXBrBp97f0Orj7ddCyqfBzMnVw5LdgxsWV60ula94Id10Ey29In7P367pdZlXzspzjNdQyJttQanc51Ya61FpLJgNFZG4VtmE9TL0wCdrKJbbCbefCiVcnc7WrtmZ44GJY+JPq7XnfW3d+PfXVcNwvksA7ScqnrRUe+iDM+x7d3KKdmPxyOP5XkB2Su960Hu54Bay6LXk9/GA45XoYPLVcHUuSJEmS9gCZ3m6gGCGEgcBfgOFdhucAbwWmAwfSeQFUPtd2OT69bA1Kkoq3fk56beOTyadMSJIkSZIkSZIkSZIkqd+KMf4/4Avs/GGo+wCXAN/qMjUA95CEqP0HMLRjifbnj8cY/SBUSZIklebka2DcKaWff9OJ0Lq9bO2oH9i6HO58ZXGhaABtTfDAu2DNg5XpSz3z8Efyh6INHAf1k7tdpnHH0pzjY+vGUxNqS+0up2zIptaaQ01Z9/q3o78Po45Mry+/AeZ8pjJ77w6e+lZ1Q9FyWXI1PP7F3u1BUv+w8Icw77sUFIoGsPRaePQT6fX739kZigawYS7c+aqedChJkiRJ2gP1q2A04H3AXnT+3/V3gCNijD+LMS4CCv0N0610Xly1dwhhXJn7lCQVakM3wWeLf1OdPiRJkiRJkiRJkiRJklQxMcZLgTfTeZ1fx3WAHWFpHY9A5wekdrxuAt4YY/x61RqWJEnS7mfQeDjjVjjvmdLXWHFj+fpR37f4txBbSz9//uXl60Xl0dYKi67MP2ffdxS01MqmZTnHG+q6D1UrVm2+YLRMhW4PrB0MZ96df86iX1Vm791BX/ln01f6kNS3PVvCe8WiX0PMEaTWugOWXbfr+NoHYMvi4veRJEmSJO2x+lsw2nvpvBjqmhjjB2KMbcUuEmPcDCzqMnRgGXqTJBWrZQts7ubCgqU5fhAqSZIkSZIkSZIkSZKkfifG+AuS6/UuIwlI6whAC+wciNYx1gb8P+DAGOMvq9iqJEmSdmdD9obBe5d27r8+AAt+CMv/Cs2bytuXdtW8CZZdD6vugNam6uy5bSUs+X3y7/nhD/dsrWd+CjvWlKcvlce2pdCyOf+cUUcVtFRj09Kc4w11k4rtqlvZUJdaa87UlH2/f6upg5Gz0uvbVkDTusrt31+1tcL6x3q7i8SWxfD0d2Hdo1D8bZiSdnet22HlbbC6myDMXJrWwtwvJN8zLfwJrP1X8j6zbRm0bst9TuMtPWpXkiRJkrRnqe3tBgoVQpgJdPxkOAIf6eGSC4GO32RNB27v4XqSVB7Nm+CJr8Lzd8HQfeHA/4Zh+/d2V5VRyKc8bHwq+SV2Tfov8iRJkiRJkiRJkiRJktQ/xBiXAO8JIVwCnNj+mAKMBuqA1cBK4G7g5hjj+t7qVZIkSbux/d5TWujVlkVw/zuS40ET4JQb8ocGqXRrHoBbzoLm9v8lGLofnH4L1Jc/dOrflvwe7n4dtO0o35p/GAOn/A0mnl2+NVW6TfO7nzPxnG6nxBhZ1bQ8Z218BYLRajPZ1FpLyJR9v53s9x64723p9TsvgNNuhhDS5+xpHrmktzvY2b/elzxPey0c93OoGdCr7UjqI7YsgdvOgQ1PlL7GnEt3fj3pZTDzY+nzY0vpe0mSJEmS9jj9JhgN6PhNUQTmxhif6eF6XS+WGt7DtSSpPNqa4ebTYO2DyetVt8HCH8NJf4LJ50Glf2FVbVuWdD8ntsDmBTB8ZuX7kSRJkiRJkiRJkiRJUlXEGLcCf29/SJIkSdV1wAeT54U/hI1PJ8fZ4dBwGhz9fbhmCsTW/GtsWwH3vhXO+Vdle90TxQh3vqozFA1g0zx44GJ40XWV2bN5I9zzxvKGonW453Vw/jI/LLwv2LQgf33vN0CeELIO61vWsCNuz1lrqJtcSmd5ZUP6105zpqbs++1kn7dCWxM88K7c9ZW3wqrboeGUyvbRX2xaAE99s7e7yG3xb6HhdNg3T9CdpD3Hw//ds1C0XJb9GWJbngmxvPtJkiRJknZr/SkYbWyX4wI+nqNbXX9TUV+G9SSp51bc2BmK1tWdr4CB4+GE30LDi6rfV6Vsfa6weeseNRhNkiRJkiRJkiRJkiRJkiRJUnmEAAd+KHnkcuS34cH3dL/Ouodg8zMwZHp5+9vTrXsItub4EO5lf4bWpsoEjC27AVq3lnbuec/CvW+EVXfkru9YnQRHTTiz9P5UHt0Fo407uaBlVjYtS6011E0spqOC1IQaMmRoY9ewmeaQ6XxRqfeiGRfD/Mth/Zzc9SVXG4zW4bk/pNcGNsArG8u/Z4zwm0z38wCW/M5gNEnJ91NLr6nM2suvT681b6zMnpIkSZKk3VJ/CkYb2OW4HB+/MrzL8aYyrCdJPbfsz+m17Y1w8ykw9dUw9mTY581QO7hqrVXElhy/rM5l6Z9gr4sq24skSZIkSZIkSZIkSZIkSZIkAYw9ofC51+0Lww+EvV4H098EgyZ01jY8CfO+B6tugxGHJtd/r74Xhh8MB3wQxhxb7s53D6v+mV5r2Qw1o8q315YlyXX8hQTh5VI/GQZPhUnnpQejAdzxcpjxruR44FiY8GIYeVhpe6p0G5/MXx8zu6BlGpuW5hwfVjOC+pohxXZVkGyoY0fcvst4S6am88UR/1eRvQEYc0J6MNr8y+Dwr0PtoMrt3x+0NcMTX0uvF/j1VbQQYMLZsOLG7uc2/gMe+zSMOwkaTk/OlbTnaNkCy/4CS65K3rOq7YmvwfS3QNNaWHY9bH0uGd+8AGqHwIRzYPLLIDus+r1JkiRJkvqc/hSMtrrL8ZgyrNf1IzDWlGE9Seq5Z37e/ZwlVyeP+d+Hs+/r3z/o25b7l4G7WHFj8gk2/sJFkiRJkiRJkiRJkiRJkiRJUqWNnJUEV634WwGTI2x4Ah79RPI45+Hk/MVXwV0Xdk7b8ESX48dhye/gsC/BQR8ve/v9XsjkKcby7bPqn3D7S6F5Q+lrzPxY0u++74CnvwVbU66Rb90GT32j8/Wjn4CjfwD7/lfpe6s4rdth+Q3p9cnnJyGHBVjZtCzneEPdpFI6K0htJsuO1l2D0Zoz7f+9jDgMxp9esf3Z7z2w4Afp9ZtPg1P/CnUjKtdDX9ayDe58RRL2k+aAD1Vu/wP/u7BgNIC5n0ue9/kvOOYK79WR9hQ71sCtZ8Paf/ViD8/DH0an1xf9GoYfBKfdtHPYsCRJkiRpj5TvNwV9TWP7cwAO78lCIYTRQNefVC/oyXqSVDbZ4YXP3fhU/k+S6Q+aCvwFcvNG2Lqksr1IkiRJkiRJkiRJkiSpKkII2RDCySGET4YQfhpCuCaEcHMI4ebe7k2SJEn6t5OvgYM+BaOPhaEzCj/vkU9AaxM8+O7u5z76CdiaO2Bpz5YnpCe2lm+bhz5YWCja0Bkw7mQ44ptwxLdg3Ckw4RyYfSXs1/7vOTsEzn6g8L1jW/v+m0pqXSVYfFV6bdiBcGKe+gukB6NNLrargmVDXc7xlqEzYP8PwOk3Q+3giu3PiIPg0M+n19fcCwt+VLn9+7olV+UPJpv2Whh3YuX2H38GnH4rDNmn8HMW/ghW31u5niT1LfMuKywUbcorYa//hNHHpM8ZOgNqh5avt642PA5PfbMya0uSJEmS+pXa3m6gCHcDbSRhbqNDCKfFGG8pca230Plbki3Ag2XoT5J6rmZAcfOf+Aoc+rluPhGrD2vdVvjc9XNh8LTK9SJJkiRJkiRJkiRJkqSKCiEMBj4IvAcY+8IyEFPOuwj4YvvLtcDRMcaccyVJkqSyqRkAh30+eQDc80Z49v91f17jjfD8HbBjdWH7LP8r7Pu20vvcHYU8wWhtLeXZY9sKWFvA7URHfa8z/KzDAe/PPXfQeDjkszDn04X10LIFVt4Kk88rbL56Ztl16bXZv4RMtuClGpuW5hwfXzep2K4Klg25+2s++BMw4qyK7buTyefDY/+TXl92Hcz8SHV66WvyfX0B7PX6yvfQcAqctyA5bm2CqwYlIYz5LPszjD2+4q1J6gO6e58CGHsCnPSHwtaLEa4emnw/U25Lr4PD/7f860qSJEmS+pV+E4wWY1wXQngAOLZ96PMhhFuLvbgphDAJ+BidF1DdFGN3P+GTpCpoa4XtK4s7J7bCIx+Dw79WmZ4qrXVr4XM3zIVJ51auF0mSJEmSJEmSJEmSJFVMCOFQ4CpgBp0fbFro9X9/Bn4ADAWmAWcCfy93j5IkSVJe488oLBgttsEtZxa+7v3/lQRVhBoYeUQSkjZoQvH9Lb0Olv0F6kbCXv8BIw8rfo0+I08wWmwubcllf0n+GWWHwV4XwbzLCjuv4fTi9hl/RuHBaAB3vBymXghjjk2+BlbfCy2bYcBoGH82TLswf1CcCrf67vTa8EMKXmZ72zbWt6zJWWuoYDBabajLOd4cmyq25y6GHQCDJsK25bnrz/8T5v8A9nkbZPrNbYs9FyM898f0es3A6oeP1dTBuBcl4Yv5PPFl2PgkbJoHgyYnoaBN65L3o2EHwtQLkvc1qVp2rE2+33r+LmjbUd61l/05eR66H0x4MUx77e4bDLj0z8mfd3tj8jrGwgJhG4r47z2E5PukQgLXirVpHlzZ/v1P7WBoOC1PHxkYMQv2eSsMnlL+XiRJkiRJvaa//YTx28CV7cfHkVzo9I5CTw4hNADXASPbhyLwzXI2KEkl27II2kr4Je2T/wv7vh2G7lv2liqupYhgtOV/g5kfrVwvkiRJkiRJkiRJkiRJqogQwkzgdmAYScJBbH8uKCAtxrg5hHA18Jb2oQswGE2SJEnVNuUCePq7sPaB8q/dEdSx9BpY+CM4804YPK3w8+d8HuZc2vl63vfglOuh4ZSytlk1+YLA2lqKX+/xL8Ojn+h8/dQ3Cjtv+pth+AHF7TXmeJh8fvLvslBLfpc8XuiZn8Pqu+Co7xbXg3a1dRlsW5G7NvbEJESqQKuaUkLBgIa6ycV2VrBsyOYcbyk1LLAUmVo49PNw31vT5zxwcRJCeMr1e06o3yPd3Osy8xNJaGW1HfxpWH0ftHZz707H+9WGJ3YeX1BVi9cAACAASURBVHU7LPgBHPU92O/dlelR6qppHdxyOqx7pLL7bJqXPOZfBif8Bqa+qrL7VdvjX4JHP1n8eYP3Tu5RLMZBn4RVt0HzxuL3K1TLls7vldMsvRYWXAFn3AHDZlSuF0mSJElSVWV6u4FixBh/C3T8VCMAbwsh3BlCOCnfeSGEwSGEd7afO4vkIqoI/D3GeFcle5akgr3wFwjF+POM5JPF+pvWbYXPXXVb8qkfkiRJkiRJkiRJkiRJ6jdCCAOBvwDDuwzPAd4KTAcOpDMgLZ9ruxyfXrYGJUmSpELV1sMZt8LhX09C0ipl63NJAFuhmjfC41/Yeax1K8z9XHn7qqp8wWhFhkA1bYC5X+h+Xld7vQ6O+zkc+5PizoMkCOrE38MxV8C0i2DiucmjVPO+D5sXlX6+EnM/n147/H+LWmpl09Kc49lQx6jsmKLWKkY2kzu8rbmtqWJ75rTPW7r/b2PFX2HlrdXpp7dtWwFP5vkamvlxOOR/qtdPVw0vgrPugQM/0rN1HrsUWreXpycpn4cvqXwoWlexJQkQi3k/s6F/KeX7ntHHJqGXZ98L9ROLO3fMMXDWvTDzYzDxpZ3f90w8F8afUdxaPbW9EZ76ZnX3lCRJkiRVVG1vN1CCVwH3AqPbX58A3BZCaAQWdJ0YQrgc2A84HhjAzp80uQx4fZV6lqTubXyyZ+c3/gMmnFWeXqqlpZtPnXmhJ78Os75UmV4kSZIkSZIkSZIkSZJUCe8D9iK5dg/gO8CHYkw+BTCEMK3AdW6l8/q/vUMI42KMq8rca58XQsiSXDc5FZgAbAaWAw/HGBf1YmuSJEl7htrBcOCHk+MbZsH6RyuzT+M/Cp+79FrIFYy08tbkw7dDpnx9VU2eYLTYUtxSq25PguIKNe0imP3L4vZ4oUwN7Pv25NHhqf+Dhz5UwmIRVt4CQ97Ss572dOseTq8NnVHUUo1Ny3KOj6ubSCbUFLVWMWpDNud4cywyLLAc9n4jPHBx7veeDo3/gPGnVa+n3tJdANyB/12dPtKMPBRGfg0mvwJuml3aGk1rYc0DMO6k8vYmdbXuUVhYQiBpT22al4TSDp5a/b0rYfXd0Lqt8Pm1Q5IAxVDI51akGH4gzPpyen3Bj+D+t6fXy6mY76ElSZIkSX1evwtGizE+E0J4KfAnkot6Oi50mgCM7zI1AG/vckyXuUuBl8YYV1elaUnKZfMiWPRr2L4yCTTb8ETP1rv7P+EVyyGT+5ddfVIxv2AGWHwlHPbFnv2wVZIkSZIkSZIkSZIkSdX0XjpD0a6JMX6glEVijJtDCIuAvduHDgR6PRgthDAdOBo4qv35CGBolymLY4x7lWGfscBngQuBUSlz7ga+GWP8Q0/3kyRJUgEmvbRywWjrH4Xbzk2C2Fq2wOaFsPHpzvqw/ZPnrmO5NG+AupGV6bGS8l0v3tYMMcK878LSa2Db8vxrdffP6IUmnVfc/EJNfGmJwWjAfW+FJ78Gww5MwtYmnlPe3vYEa+5Prw0YXdRSK5uW5hxvqJtY1DrFyoa6nOMtMU84WaVkamDiubD0T+lznvgybFmchEmOOqJ6vVXLtkaY+zmYf3n6nLEnwICc/wtffaOPgoHjYXtjaef/42QYfQw0nAoH/0/y95PUU9tXw9zPwvN35Q+wrLRrp3V+bwUweC/Y63Ww9+t6raWiLbse5n0fVvy1uPMmvbTy9+lNOg9q3l9cYFupNi+AthbI9Ltb5yVJkiRJOfTL/7uLMd4fQjgC+CnQ8dP8+ILnnU4hCUQLwE3AG2OMJf4UT5LKYN0jcMsZsGNN8nred9PnHvDh5JMTnvoWbJibPm/H6mTN025JfsnUH7QUGYy2ZTGsuQ/GHFeZfiRJkiRJkiRJkiRJklQ2IYSZwKT2lxH4SA+XXEhnMNp04PYerleSEMIpwMdJwtAqfodzCOEc4OfAuG6mzgZmhxB+Dbwjxril0r1JkiTt0fZ/Hyz+DWx+pjLrL78hvVZo2NeOtf0zGI08AR2xBf71AZj3nfJvO/FcmPKK8q8LMGwGzPx4EhZVio1PJ4+l18KJV8HUV5W3v93ZsuvTa4d9sejlVjblDuNrqJtc9FrFyIZszvHm2FzRfVMd+vnk/o584YSLr4Rl18IZd8Kow6vXW6U1bYC/H5fc45LPrP+tTj+FyGThqO/C3f8JbSWG6a25P3msugPO/CeETHl71J6lZSvcNBs2ze/tThJdv7fa+DSsuBG2r4IDSww1rabFv4O7LiL3rdV51E+BQz5TiY52NqgBZn0N/vU+iu6xFAt/AjPeUfl9JEmSJEkV1y+D0QBijCuBc0MIRwLvB04HJqRM3wDcDHw3xtgrF0JJ0k7mfLYzFK07w2fCPm+Bfd4K8y6DB9+dPnfVHbDolzD9TWVps+LSPulhv/emh8Ut+b3BaJIkSZIkSZIkSZIkSf3DrPbnCMyNMfY0MWJ9l+PhPVyrJ2YBZ1Vjo/YQtmuAui7DEXgIeAYYARwOjOlS/09gWAjh/BhjWzX6lCRJ2iMNHAfnPAJLroanvw2ZATD2xJ3ntDXBqluhbhTM/CjUDoGn/g82zYMxs6GtObn+u1Ka1gL7VG79iskTjLatERb8oPxb7vM2OPpyyFTwVqtZX4KJL4aVtyahHVufK2GRCE98xWC0Yjz2qfTa3m8saqm22MqqlGC08XWTco6XS22oyzneHEsMueqpEQfBix+Cu16T3MuSpmVLcn/IcT+tXm+VtujX3YeiTXstjD2+Ov0UauqrknuUlt8A6x6FRb8qbZ3V98Cq26Hh1P/P3n2Gx1Hdbx//HvXiIhfJlnsvuGFMs2kGbHpvCSShJUAgCSGElCeBEJL8CQmBhJCeECCd3nuzwVSDDTZuYBvj3qtkWVpJ53kxEpLlndnZ3dnZXen+XNde0sxpPxftrmZn7gm2PulYVj7gLxRt8IVQ0COJhSws+U1iQxf9EkZ+wwkWzGQLfo6vwLGR33K+GuM8F/Q9DYrKU1pay9pfd64HXPdcyzWVeSXO++GKI2DJb2H1I7D1vRjzNP0ZGqph6V+i95l/o4LRRERERERE2omsDUZrZq19D7gQwBgzBOgP9MA5CWgzsAFYoJN7RCRjNDbAumf99+8yuuX7EVdBwx6Y+233/p/8IzuC0Rojzt26ohlwrnMgc/Mb+7Ztn5faukREREREREREREREREREREQkKK2vrPNxpWNMta2+LwlgvqDVAqsJKHnCGNMPeJi9Q9FeBy6z1i5q1a8QuAL4FdB8peapwM+AHwRRi4iIiIi4yO/cdBPsS/2P6TW15XtrYe1TTQFmKVCbonlTzXgEo215ywmcC9r4n6U2FK1ZxZHOo98Z8Mz+sftHs/U9qK+BvOJga2uvatZF329yoLhPXFNtjWx2DSLrVdAv3sriku8SzFPfGEnpup6Ke8HEX8FzB3v32/R6OPWEZdOs2H16T0t9HYnoup/zsBbWPAmR7bHHRLPpdQWjSXL8/BxVHAWH3uP9vsDXWq/D1tnxj9uzAaqWQ5eRya2fSpEq2P5B7H4Tb4XR16W+Hi89DnQe0Yz9ofN46xJYfk/0Pn1OgUm3t2yvfDD6e+jITuc5Ltn/NyIiIiIiIpJ2WR+M1lrT3SSTvaOkJMkYkw8cBgwAKoEqYC0w11q7Io2liWSG6k+ccDM/Csuh+6S99w29FObdAA27o4/ZMMP54K64MqkyU67epX5w7vjQ99TowWip+tBfRERERERERERERERERERERIJW1Or7Wtde/nVt9f2uAOZLRgRYALwLzG76Oh/n3LlXAlrjJqBbq+03gGnW2r1OPrLW1gK/NcasBB5p1XStMebP1tpPA6pHRERERIJmjHNT6aV/Ts38M0501rCNLfu6TYQjHoROQ1KzZhCsdW/bsci9LVG9pzkBT2EqGw+dh8OuBDOk7y9xgr0ASofA4C/B2Otb9okjstMJtommuE/coSkb6la7tlUUxBeyFq98UxB1v1tQW2i6T4LSQVC9wr3Pro/gvhIoPxwm3QFdR4dVXWp8+l/v9pwC6HtaOLUkyhgYcA4s+1ti4+fd4DzaKujmBK9NuAUqDk+uRmmf6qvhvWti/98zOXDAbcGEWw04J7FgNICXp8EpS5xr3TKR3/cR/c9KbR1B6X+uezDagHP33u4yKvq1hw01MOdaOOB2haOJiIhIsJb+BT76HexYCHgcuzJ5zu/K43+SuaHZIiJZQke72yFjzD3GGBvQY0Uc65YbY/4ArMc5sete4Bbgdzh3rfzEGPO6MebsVPy5RbLGjJP99x19HeS2+fCqoAz2/7nHIOvc8SDTNdS4t+WWQGH36G3ZetcyERERERERERERERERERERkY5nc6vvewYwX+vkhi0BzJeoe4Eu1tqJ1trLrLV/sdbOsdZGglrAGDMcuKjVrjrg4rahaK1Zax9tqq1ZIXBjUDWJiIiISIqMu2nfm2kHxu4digawbS48dzBEqlK0ZgBsg3vbzoCD0UoHw6TfBjunH8bAofdCYY/E57CNzqNqKcy/MXpIUUc35zr3tsPui3u6DXVrou4vy+tBUU5x3PPFI8/kRd0fCe5X0cSYHJh8rxOI5aWhBta/AM9PgT2bvftmsu0LvNtNHhz8VygqD6eeZIz/qROWGaS6bbDpdSdMasfCYOeW9uG1c/2Fok3+Z3Dvj4ZfBX1OSmzs7tXw6pn7vp/KFG+cH7vPpN9mdiBua31OgBHf2Hf/wPNh4Of33nfo3e7zLPkNLPplsLWJiIhIx7bs7/DOFbB9vnPcqvmYTLRHYx1sfhNeORE2v5PuykVEslr0I6IiLTySi1oYY04E7gEqYnSdAkwxxvwbuMJaW51ceSJZZvGvnTvd+NHjEBh1bfS2kVc7B3dfcLl7ytI/QfkU6Dpu32C1dKhZBzsWQMMe6DwSugyHht3u/fNKoMAlGK1OwWgiIiIiIiIiIiIiIiIiIiIiWWJ901cDJHWlrTGmBzC61a6lycyXDGvtthCWuQDIbbX9sLX2Yx/jfsHegWrnGWOu8gpUExEREZE0K+4F09+ALW/Di0eGs2btFlh5Pwy9NJz14mXr3dt2Lo6+v+JIJzTDfVKoWgG5hVDcx9lVOhjKD4P8TolWmpzyyXDqUtj4GtQ0BW4V9YbOw53z7+u2wuwr/c/38R9h3I8hJz8l5WalZX91b+txSNzTrXcJRutd0C/uueKVZ6JfG1Jv61K+dkwVR8Jpy2DNU/Dml7z7RrbDin/BqGvCqS1oH93p3jb8KhjzAyjpG149ySjuDce9CVvecULMCsogvwxqVjvPl7Ye1j4D2z+If+7GWlj6F5j0m8DLliy2aymse8a7z5CLYf9fQFGsy1TjkN8JjnzcCYetWgb5XZ1r3RprW/p4vd6ufx5W/BsGx3h+C1tjBHYu8e7T42AYGSVoLFOZHJh0Bwz/Kqx62Pkz9j8LysY7obKtdRkBeZ2g3iXsd8mdMPq7+44TERERSYTX74JubD0s/TP0PDj4ekREOggFo0ksD8XqYIyZCjwKtD7CboE5wHKgDOekttZ3/PwC0MUYc4a1mRqXLxIwa2Hx7f765hY5d8zJ8XiaLj/M+cBkwc37tu1YCM8eCHmlMOU/0O+0xGpOVmPEOTC87K699/c4GCbe6j4ut9j9bkGRHdDYADm50dtFREREREREREREREREREREJFO8ATQCOUAPY8wx1tqXE5zrUpyANYBq4N0A6stkZ7bZvtvPIGvtImPM20DzFf6lwHHA4wHWJiIiIiJByy2AiiNg8EXwyb3hrLnoVqg4CkwulA5wgigyhW2If0zliU6IRrYpKIN+p+67v2yM83XtM7DG59v5um1QtRy6jAyuvmwW2eXeVtI/oWsSNtStjrq/V0Hqg7DyTfTAu0hjJOVr+1LQDQZ/Ed7/fkvQn5sts8OpKRV2fOjeNu7GYMOcwpBb6Lz+VBwRvb3PSYmHdi65Q8Fosre1z8buM+7Hqfk5ysmFHgc6j2h2LPQOu3jzQug5BToPDb62RG2dG7vPfv8v9XUEzRjoup/ziKXbBNj0evS2mjWwZ4MTAikiIiKSiMYG2L0SGvbAtvcTm2PlfTD+p1BcqcBWEZEEZNCnFrEZY8YaY15uerxkjIn7CIcxplfT2OZ5RqSi1jS7DhicwOPcNvNY4O9eCxlj+gEPs3co2uvAGGvtgdba86y1xwH9gG8CrY+2nwr8LIE/n0h2qlkHu6N/CLaP3tP9fRjZbX/v9vpqeO0sZ+10+Oj3+4aigXM3mRePch+XVwoF3d3b68K46a6IiIiIiIiIiIiIiIiIiIiIJMNauw1ofbXzT42J/4xvY0xf4Ps457RZ4IX2fENOY0xvYEKrXfU45+X5NaPN9onJ1iQiIiIiIRn0hfDW2rkYnhgGjw+GB3vAotudm4FngkSC0ToPC76OTDD4i/H1f3IULPldamrJNts9Aqz6Rgmj82FDXfTAr1CC0XIKou6P2LqUrx2XQRfE7vPpf+CjP6S+lqBZ6x7AA9kXiuZHzylQOijx8U+Ogi3tPdteYtr2Pjw1Ft77hne/8iOgdGA4NbXl5z3YE8PgscGw4ZXU1+OlagU8PwWeP8S7X0F36HNCKCWlTax/twX/F04dIiIi0r5YC/N/Ag91h8eHwFM+Alvd1FfDo33hsYH+goJFRGQvWRWMBlwBTAWOAuqstRvjncBauwEnnKt5nssCrC8jWGs3W2tXxPsAprWZ6hVr7fIYy90EdGu1/QYwzVq7qE1Ntdba3wLntRl/rTEmTUerREIW2em/b/lh/vp1HRu7j22AlQ/5Xzso1sKS38Y/LqcAckug0CMY7c04P9wVERERERERERERERERERERkXS5o9X3hwJ/imewMaYX8DjOeWrNoWq3B1Naxmp7UtA8a211HOPfaLM9Jsl6RERERCQsvafB/r8Ek+vdb8B5MOXfzg2pgxDZDnO/DSsfCGa+ZDXWxz+mvQaj9T8HxlwPJo5LwN77Bqx+LHU1ZYtXPcLPDrgt7ul2N1Sxs2F71LbeBf3ini9eeSY/6v56G0n52nEZ92Pof3bsfu9+DVY/kfJyArX8bve2yf8Mr44w5eTCUY8nHla1cwm8dDTU7Qi2Lske9dXw0jGwY4F3v7IJMOVf4dQUTc9D4CAfgY3VK+CV42H36pSXFJVthBknwOY3vfsVVcDUpyC3KJy60mXoZTDi6+7tH/0Otsx2bxcRERGJZtlfYf6N8WVDxLJ7Fcw8WeFoIiJxyrZgtNNbfX9vEvM0jzXAmUnM024YY4qBz7fZfVeMMcOBi1rtqgMuttbucRtjrX2Uvf/tCoEb46tWJEvF8+a3p89gNL93XVn0C/9rB2XLbKj+JP5xBd3BGOerm3XPOXe3EBEREREREREREREREREREZGMZq39H/B+06YBvmKMec0Yc4TXOGNMqTHmq01j9wds0+N5a+3rqaw5A7S97fjSOMcvizGfiIiIiGQqY2C/78A522Haq3DMizDtNTivCs7aCMe+Ameuh8Pvg0EXwNlb4IT34JytcOL7cOzLcMxLzrhjXoQeh8a3/vK/p+bPFS/bEP+YTkODryMTGAMTfgpnb4VjZ7T828ayLEP+LdOlMQK1W6K3dd0voaCYDXVrXdt6FfSNe7545ZuCqPszLhgtrwSOeBDOXAtjb/DumynPOX4t/Yt7W4XnYY7sVjYOTlsOJ83z/xzUWn1V5gRvSvhWPQp127z7VJ4AJ86F0gHh1ORm+JVwXjV0P8i7X2MEVvw7nJra2vSGEzjopaA7nLEWesb5PjAb5eTBgXdC6WD3Pl6hliIiIiLRxHNMpfl3pMPvj93XNsKs82D7h4nXJiLSweSluwC/jDFDgObbZzQCTyYx3RNAA5ALDDbGDLDWrkyyxGx3DtC11fY24OEYYy7A+Tts9rC19mMfa/2CvQPVzjPGXOUVqCbSLtTHEYzWfZK/fn4/jNuzwf/aQfn0f4mNK2wKRMvr5Pz5GlyeGjbOhE6DEltDRERERERERERERERERERERMJ0DvAW0KNp+zBghjFmPW1Cv4wxfwRGAJNxbrxpcALRDLAG+FJINafTsDbb8Z7f+Gmb7R7GmG7W2hhXoYqIiIhIxsjvtG/ITl4pFE3de19uIXQ/wPm+oFuUebrAcwf7X3fdc7D2mb33FfSA7hMhJ9//PMmy9fGPye8cfB2ZpKAr9DqqZXvkNbDkN+791zwO9budkKqOqLrtr0WtlCQWvLOhbnXU/YWmiLK8HlHbgpRvov8MRjItGK1ZcSWM+AYsuNk97HD1o1BfA3nF4daWqN2r3NuK+7m3tQcmxwlIa9bnZFj7lP/xC2+BsvHhv55I+m16LXaf/mc7QaCZIK8Ejn4WnhjmHei2YQbs973QyvrM9nmx+wz+EuTkxu7XnvQ6GpZ/Er1t2/vR94uIiEh2amyAxlonf6D5a0MtNDZ9bd5f0h+6jPL/PnP3GtixACK7YMvb/sZUngC9j23ZLukHu6MfO/hM/S6YeQpMutMJeXVT1Mv5s5SNd44TNuxx3teUDobiXv7qExFpB7ImGA0Y2/TVAkustVWJTmStrTLGLKHlLojjiP/Eofbmy222/+0jqOzMNtu+otOttYuMMW8DhzTtKgWOAx73M14ka9Xt8Nev3xn+P9QxBnIKnTfoXhojYG14B4ltI6z0kWwcTfMH8sZA7+mw5ono/SI+/z5FREREREREREREREREREREJK2stcuNMacAjwCVtASdVQK9W3U1wOWtvqdV39XAKdbazaEUnV5lbbY3xjO46RzJPUDruy52xblhqoiIiIh0JN0PdC6g9BOi0WzGSfvuKyyHIx+F8inB1ebFLUTJTd9TU1NHJhtyCXz0W+fcfTcPlsGUf8OAc8OrKxNYC29d6t4+4usJTfvq9mei7q8o6IMJ4VqN/JyCqPsjti7layesqNy5RmbVQ+59HuwGh/0P+p8RXl2JqN0CNWujt3Ud2/FCiIZ+Jb5gtKpl8PwhUFQBRz4GPQ9NXW2SGax1AjyX/tm7X36XzHudKuwOE2+Ft7/i3mfds/DBD2H8z8INddu11Lvd5DjvETqaoV+G5X+P3rb5Tdi+AMrGhFuTiIhIe9McSNY6jKxhz76BZG0Dy9z2N+5xDzXzCj2LJ0y/y0g4+jkoHejex1qY8y1Yckf8fydDv7Lv9vwfxx5X/Sm8epr/dSpPhE2vQn21sz3scjjw997BaiIi7UQ2PdO1frVZFsB8y2gJRkvsVh/thDFmKHBkm913xRjTG5jQalc98Hocy86gJRgN4EQUjCbtXWRn7D5FvZ0DovHILY4djAawbW7L3cBSbdMbULMmsbEF3Vu+H/8zj2C0XYnNLyIiIiIiIiIiIiIiIiIiIiKhs9a+Y4w5APg7zvli4ISetf661xCcQDQDvABcZK1dn/JCM0OnNts1CcxRw97BaJ0TL6eFMaYCKI9z2NAg1hYRERGRBBgDU5+BmafCtjmJz1O7yblg84w1kFsYXH1uGuO4yBXg4L+mpo5M1m28Ey400yMUrjECr58PPadASd/waku39S/Aptfc2/ueHPeUexprWLHn46htvQv6xT1fIvJMftT99Y2RUNZP2KF3w46FsHNR9PbGWph1LpyxGop7hVtbPN65wr3t8AfCqyNT9D8DDvoDzL4qvnF7NsKrZ8AZqyAn+v9paSc2vwFzrvXuUzYeJt8LBV3DqSkeQ7/sBE+89033Pgtuhu6ToP9Z4dVV5RGMVjoQJt0J3Sa492mvyqc4QSTL/ha9fcYJcPrKcEPsREREguIaSNY2QCyeQDKPsUEEkmWKnUtg1nlw/NvufT75R/yhaEUVMOYGGHD23vvHXA/1VbD0L/5yJfxa1yaofelfoGwCjIjz9zERkSyUTcForU/K2RHAfK1fSboEMF82u5SWu2sCzLHWvh9jzNg22/OstdVxrPlGm23FrUv75/UGduyPnDfB/c+J/4OcvGKIbI/db/VjIQajzUp8bOsP5bqNhy6jo38AVl+V+BoiIiIiIiIiIiIiIiIiIiIiEjpr7QbgZGPMJOCbwLFApUv3HcBLwJ3W2pkhlZgp2gaj7Ulgjhqgm8eciboKuDGguUREREQkDCV94MT3nHCPp8dD1fLE5qnd4gRO9T0l2PqisQ3x9S+qSE0dma7vKXBeFdzv8XbfNsDK+2HUt8KrK91W/Me9rfyIhKacXzXbta1XQTihc/mmIOr+iK0LZf2E5Xd2LkJ/wOPyPVsPqx6EEV8Lr654bXw1+n6TB52HhVtLphh+JQz7KtTvcl5jGuudUMI3vuA9bs8GWP8y9Dk+nDolPbyei8EJ8Br59XBqSdTIq53wtpeOdu+z4j/hBqPtcglGG/lNmPSb8OrIRGN+6B6Mtns1bHsfuk8MtyYREcluvgPJ2gSIxRNItk97OwkkyyRb3oGa9VDce982a2HRrf7nOn0lmFworoweuJqTCxNvhQm3QM1a55jMa2cnd7MCN5/+R8FoItIhZFMwWus7HgYRZNY6aC3OT0zaD2NMLnBRm913+Ri6X5ttj6j5qJbFmE+k/Ym4ZDr2nALjb0p83txif/2qP018jXjtWBh9f+Xxzt1+HunjPrbtLxZdRkYPRovsSrw+EREREREREREREREREREREUkba+17wIUAxpghQH+gB1AAbAY2AAustY1pKzKz2JDGiIiIiEh7llcKo74N7yYRPDT7SudG2L2mQkG3mN0TFk8wWu9p0S9G7SjySqHrfu7n8APMuRbIgYKuUHEkdBoSWnlpsf5F97buByY2Zd0q17ZBxSMSmjNe+SY/6v5GGmmwDeSa3FDqSEh+Z+gyCnYudu/zyb9g+FWZ9/NsLWx9F2o3RW/PLYKcbLpEM2DGQH4X5wFgjgQMMQ9LzLkGSu6HsnGprlBSbfdqWPmA8zrUaWjLdW4f/8F7XOX01NcWhLLxkFMAjS4hlKsect4b5UR/jg6UDq4q4AAAIABJREFUbYx+jR041yd2dCX9oaiXE74Yzcd/hAPvhNzCcOsSEZHUsha2fwCb324JEdsnyCyOULPW7Y2RdP/pJCg16/bNL2iohYW3wI4F/uaoPAFK+/vrm5Pb0nf6q/DCEbBtrv96/dj0Oiy+Y9/9jbVNNTS958krdt4rlo0Ndn0RkZBk01G3za2+HxjAfANafb8lgPmy1QlA61uT1AAx4vgBaHsri5Vxrts2oamHMaabtXZbnPOIZI/Izuj785PMevQbjOZ24DNokSpY8c/obWXjnQOMXrq2+VAjr3P0fvUKRhMRERERERERERERERERERHJZMaYzsDgVruWWWurW/ex1i4HlodaWOararPt8wQhzzFt5xQRERGRjmjQ+TD/RqjdHLtvNLtXw2tnQVEFHPUU9EgsZComW++/74irU1NDNhlxNcz+qnefOdc4X00OHPg7GH5l6utKh1WPQM0a9/ZhlyU07aa69a5to0omJDRnvPJMgWtbxNaRaxL51TFEI6+G2Ve5t295C965DA76U+YEjTU2wLtfh6V/cu8z4hvh1ZMNSvrBgHOcoCwvOxfD0+OdwM6Jt2ZeIJ74s/IBmHVe/OMqT4AuI4OvJxUKu8PgC2HZ39z7vDwdjnzMCSBNpQ9+6N7Wue3lvh1QTq7znDzv+ujty/4K296HqU9BUXm4tYmISGrYRuf9+sd/THclkuka9uy9vWejE1a26yOfE5jEf/fLK4WjnoDnDvE+XpGI5mM9foz+Duz/C/3uJSJZJyfdBcShOXjLAOOMMT0Snahp7PhWuwJ+Bckql7bZfshau93HuLI22xvjWdRaWwW0eQdB0kd+jDEVxpgx8TyAocmuK+JLyoLRivz12/IO1Nckt1Ys9dXwzET39q77OR+kehlw9t7b+W7BaDpXU0RERERERERERERERERERCTDnQ/MbXq8AxSmt5yskcnBaH8Axsb5OD2gtUVEREQkWQXd4Li3oO+pUNS7ZX9usXNeevMjlj0bYwdxJcM2+Ot3+APQ79TU1ZEthl8BB//ZX1/bCO9+A3avTW1N6VC/2wnuc7P/L6Hr6ISm3lgX/e/r8K7HkxPrGomA5Ofku7bVN0ZCqSEpw690Qs+8LLsL1j4VTj1+rHvOOxQNYKxLAE9HNvmfMPIaKB0cu+/i22DTrNTXJMGLVMGbF8U/rnQQHPFQ4OWk1EF/hN7HubdvnAlLfpvaGnavgYW3uLd30iWyAIz5gXf71tmw4OZwahERkdRb97xC0cSfxtq9tz/8mf9QtJ6TnfevfU9KfP2SvnDCbBhwHhSW730MrvmRk+KP0RfdCpvfTO0aIiIpkCG3T/DlLaAWKMAJR/sa8JME57qKllC4euD1pKvLQsaYcqDtJ0B3+Rzeqc12ImlLNUDrT8xc0o/ichVwYwDziAQvsiP6/vwkMwGN+4db+5h1jnNXg1RZ+QBULXVvL2vKpKw8EdY9s2/7wM9D6cC99+W1fbppEtmVWI0iIiIiIiIiIiIiIiIiIiIiEpaeOOf7Acy21m5NZzFZpO2JRuXxDDbGdGLfYDQ/N0yNyVq7kThvpGp053ERERGRzNJ5KBz1uHefxXfAnGu8+2x9D6pWQKdBQVXWorE+dp9eR8OAc4JfO1sNu9wJRXl5Wuy+tgHWPOYEVbUnG172bh/0hYSmtdayMbIuatvg4hEJzZmIfFPg2haxdaHVkZThV0BhD5h1rnuflQ9CvwzJ1171oHd7UW/IKwmnlmySWwiTfu08Ft0Oc7/t3X/VQ1BxRDi1SXDWvwgNCVxSevRz2fdzk5MHh98HD3Zz77PqQRh3Q+pqWP2Ye1thORQkeX1ie2GME8y45DfufVY96Dw/iYhI9ov1fl3CZ/Kc3weag75ah37tta8Qcor27btPu58+rfY/3AtslGNKDW2C0Vb5DOrtdgAc90byfy8AxZXOe0ovT42DHR8Gs140Kx+E8impm19EJAWyJhjNWltrjHkNaD5Cf50x5hFr7fx45jHGjAW+A9imXa9ba6sDLDWbXAi0TlRaBsz0ObZtUtGeBNavAVofDXJJPxJpJyI7o+/P75LcvI1x/PitfRrm3wSjv5Oag8jrX3RvK+kP3fZ3vh9+Jax7lpanYqCoAqb8e99x+S6ZifVB3cRWRERERERERERERERERERERFKkOeDLAqvTWUiW+bjN9sCovdy17b/VWrstiXpEREREpKPxG1Az6zyY+AsnpCxItiF2n24HBLtme9B9EuQW+wuqWfBzGHo55OSmvq5Us42w+nGYdbZ7n05DnYuQE1DVsIM9jbujtpXnJzZnIvJMvmtbxEZCqyNpPSeDyXH+3aJZ8S8o6ec8r/Se7oTchK1mHax6BJbf7d2v/PBw6slmfl5PltwBZeOg/9lQUJb6miQ5jQ2w+lGYlUA4aXEldBoSfE1hKChz/p9ud7mcefs853nN5AS/9o5F8O7X3Nv1XLS38sO9g9F2r3b+HcvGhVeTiIikxpZ3011B5ogWSLZPkFg8gWQe4WZec6T7GENuUfT8geYshl1LYcV/oWatv/mGXhpcbX70np7aYLQlv4aBn4eeB6duDRGRgGVNMFqTX+EEo1mcEK1njDHnWGvf8jPYGHMw8CBQinMXSts0Z0d1SZvtv1trbdSesSUyLtG1RLJTqoLR4r27xvwfOx/6Hf0sFMV1M9kYddTCiijBZs0GX9RycLffqXD4/bD411CzBiqOggN+Hf3gb55LMNrmN5OvWURERERERERERERERERERERSaV2r7wvSVkX2WdRme1ic49teYbowiVpEREREpCPqfgD0Ocm5MbeXrbPhpWNgzA9hws+CW9/Wx+4z8pvBrddeFJTByKth4S9i9929ygkSO/xByMm2y8tasY3w+vmw8n7vfmOvTzhga2PdOte2ioI+Cc2ZiHzj/mt1va0LrY6klfSFIV+GZX9177PwFucx8hqY9OvwagPYsRBenuaEo3nJLYbR3w6npmzW/UCoPAHWPevd7+2vwKJfwTEvQUl4P1cSp8YGJxBt9aOJjd/vB9n9mjPmh/D6593bN82CiiODXXPNkzDrXO8+o68Lds1s1/dUKJsA2z9w7/P0eDh2BvQ6KrSyREQkYLVbvZ/rw+IrkMwjZMxP2Nhec2RoIFmmyC2MHozWUAsbXoGZp0Vvj6Z0MAz6QrD1xTLiKljxD6jdkro1nj8UDvo9DL8ydWuIiAQoq44iWGufN8bMAKbihGr1AV41xvwT+DMwu22wlzHGAAcCVwBfAvKbxlrgNWttjE9p2idjzKHAmFa7GoB74pii7St+cQJltB3j812Epz8AD8Q5ZijwWABri3hzDUbrmty89XEGowFsmwOvHA8nzklu7c9qqIaHe3v32e97e28POMd5xJLfyb1t11LoHO95nyIiIiIiIiIiIiIiIiIiIiISkta3tB6ctiqyT9tbgY83xpRYa3f7HH9YjPlERERERGI74hFYdCusfxE2zvDuu+BmGPoV6DQomLVtg3d7UW8o7R/MWu3NhJ9Dp6Gw6mGoWQvb57n3Xf2YE1bU95Tw6gvahpdjh6KV9IchFye8xMbI2qj7i3KK6Zyb5PUgccjPcQ9Gi9hIaHUE4uA/Qd1WWPWQd78lv4Fhl0HX/cKpC2D+T2KHopX0c54jexwYTk3ZzBg48jFY9EuYd4N3352LYckdMNFHuKOkx7pn/YeilY1v+b7TEBh0AQyIEfCV6QZ+zgnkfOOC6O1vXgynLw9uPdsI730LGva49+l/NpRPCW7N9iC3AKa/6jyfL77Nvd/c78AJ74RXl4iIBGvhLd7tFVO9Q8ZyiuIMJHMJN1MgWWbJKYy+v7HWee33E4rWZTT0ng5jf+gE0Iep8zCY/iYs/hUs/UvL/rLxex/f6ToWTE7Lttexn31YmPtdGPRFyO+cdMkiIqmWVcFoTT4PzAEqccLN8oCLmx7VxpglwLamtu7ACKA5Vcc07TfAKuC8EOvONF9us/2MtTb6kfroMjIYzVq7EdgYzxiT4B1fROIW2RF9f36X5OZt9Di46WXbXFh0u3OnrGi/eO1eDVtmQ+0mKCyHvFIwuc4b5dqtTp+cfOi2v5MO7PXLwJT/egecefEKjlv/ooLRRERERNKlvsa542txX+g8NN3ViIiIiIiIiIiIiIhIBrLWfmSMmQeMxwn36mutXZPuujKdtXZdq783cM6TPBx43ucUU9tsPxNQaSIiIiLSkeQWOBeBjv0hvHUpLL/bo7N1wlKGfzWYtWMFo/U+Nph12iNjnCCpYZc52ysfhFkeQTRrnszuYLQ1T8XuM+rapJbYVLc+6v7y/MpQr0nKN/mubZHGutDqCITJgQPvjB2MBs6/cVjBaNbC2idj95v+OpQOSH097UVuAYy9HvqdDk+P9+679kkFo2WyNT5+PgBGXwcTb01tLeky6Hx49+tOuGNbe9ZDQ53zfz4IOz+CqqXefQZ+Ppi12pv8LnDAr5wQWLe/w62zYc9GKKoItzYREQnGptfd285YAyV9wqtFMkduUfT91Z/C1vf8zXHyAufYSrp0GQ4H/9l5+LXoNph7nf/+9VWw8VXoe3L89YmIhCzrgtGstRuNMScAjwODcILOwAk76wRMarPvs6G0hKItBU5vCtHqcIwxpcDn2uy+K85p2iY8lcdZQyf2DUbbHmcNItklsjP6/mSD0eprEh8799vw6X+du6+0/iVv/k9h/o+Sq6u1ZMLLenrctaJuW+LzioiIiEji1r8Ir57ZEo7b9zQ4/D73A8giIiIiIiIiIiIiItKR3Qn8FefcvZ+w7009JbpHaAlGA7gEH8FoxphRwCGtdlX7GSciIiIi4qn3cTGC0YDZV0J9NQz9MhSUJbdeY713e+Xxyc3fkVQcBTkF4BactfTP0OsYGHheuHUFYc9mWPKb2P0qj0tqmY2RtVH3VxSEe6F9DrkYDPazy+Za1NtIqLUEoqg3lI2D7fO9+73/Xeg6OvUBfnXb4YMfOM9jXrqMgpL+qa2lveoy2rkZb41HZv6OhTDjVCifDCOuhvxO4dUnsS39k79+/c9JbR3pVjYeNs7Yd39DDXz8Bxh1TTDrLLjZuz2nACqmBrNWe1V5PHzsES733CEw4WYnYC6dASgiIhKfrXNg8xvu7cWV4dUimSWnMPr+eTf4Gz/g3Ox8T1B5HMyNc8zMU6D3NCjp57x/V0iaiGSonHQXkAhr7Yc4AWj/oyXszLZ6fNaVvQPRGoF/AAdZaxeFWXOGORfo3Gp7A+Azrv8zH7fZHhjn+Lb9t1prlXAk7Ze17sFoBV2Tm7txT3Ljt74Lzx3Usr3+pWBD0QA6DU58rFcqd0OSf3YRERERiV99Ncw8vSUUDWDN4/Dh/6WvJhERERERERERERERyVjW2ruAp3DO4bvYGPPdNJeULf4NNLTaPssYM9zHuO+12b7fWquTbEREREQkOf3PhPLDY/ebex28ciJEqmL39WIb3Nt6Tm7/gStBKiqHMT/w7vP65+ADnxcJZ4o9m+H5ybH7Df0KdN0vqaU21a2Lur88P9yL7Y0x5Jn8qG0R6xJ8l8mMgQk/d4J9Ypl5Kiz2EYKXqLod8PwU+PiP3v1y8p2as/FC+UyQkwf73wImxiWta5+ED34ILx4J9TXh1Cax+f0ZHHAe9Dg4tbWk2wG3ubfN+ZZzbV6y5v0IVvzTu8+YH0BRz+TXas9GfcsJZHRTvQLeuMAJxhQRkeyw4RV4dpJ7+8hr9H69I8t1CUbzK9bxk0xVNg6GXBr/uPUvwvJ7nJC0JXcGXpaISBCyMhgNwFq7zVp7AbAf8Gug+fYQps0D4APgV8BIa+3F1todYdebYdrecfMf1toYt9PZR9tguWFxjh/SZnthnONFskt9FUS5Kw8AeV2Sm7vrOPe2aTOh1EduYc1aWPQr2L0W3vtmcvW01W1/KOyR3Bxud/Rq0AccIiIiIqFb+ww07N53/5rHw69FRERERERERERERESyxfnAIzjn9P3cGPOcMeboNNeU0ay1HwP3ttpVANxjjClyG2OMOR24uNWuOuCmlBQoIiIiIh1LbiEc8wIcFCM0CGDLW7DgZ8mt53WJyzEvQV5xcvN3NONuhOFXevdZdCvUbg2nniAsvxuqlrq353WCKf+Fg/+S1DLWWjbWrY3aVlEQbjAaQL6JHiIWsZGQKwlI35PhuLdgv+/H7vvhT1IXkrXiX7Cz7aVybYz+Lkx/A/qfkZoaOorBX4Rps2DIxbH7bpsLKx9IeUniQ8MemBcjQDOvMxx6Lxz23/YfRtL9AOg61r39w58mN3/tVlj4S+8+Rz3pvL6Lt85D4fh3YvdbfDvs2ZT6ekREJHkfxjjeMOqacOqQzJTj+jGqt2GXw2nLnEyEbHXI32DKf5yA+KGXwWH3wfRZ/sd/eBM01KauPhGRBOWlu4BkWWs/Ar4NYIzpBPQCmhN4NgMbrLXVaSov4xhjRgBtb9NzVwJTfdhme7wxpsRaG+Xq+KgOizGfSPsS2enelp9kMNqY78Os8/bdP/xrUHEknL4CXpwKG2d6zzP3O84jaEc8lPwcuS4fXDfoZrYiIiIioVvicse37fPCrUNERERERERERERERLKCMebvTd/uBHYBnYFpwDRjzC6cG59ubGrzy1pr294gNFTGmH5EPwezd5vtPGPMIJdpqqy1mz2WuRE4E+jWtD0FeNEY8xVr7eJWtRQClwO3tRl/m7X2U4/5RURERET8yy2C4V91gk/e/KJ33yV3OOezl/ZPbC3bEH3/iG8oFC1RI6+Bjz2C7RprYfObTlBVNtjwknf7sS9Dj4OSXmZnw3ZqbfTrFsoL+iQ9f7zyTX7U/ZHGupArCVD3ic6j4kiYcZJ7v7ptsP0D6Hlo8DVseNm7vcfBMPEXwa/bUZVPdv4dVz0Kke3efTe8DEMuDKcucbftfaivcm8/ZTF0GRlePZlg2GXw3jejt216DRrqIDd6mGVMm990Xpdd174ie16vM0FJHxjwOVh5n3ufxjrY/Ab0Oz28ukREJH6NEe9r5XMKoSTB4xDSPuQWxte//9lwxIOpqSVsxsCg851HaxN/BXOviz2+dgtsnw89DkxNfSIiCcqaYDRjTG/g4Fa7Zllr97oVibW2CqgCloVZW5a5tM32LGvtkngnsdauM8bMA8Y37crDCVx73ucUU9tsPxNvDSJZJeJx3maywWiVx0OnoVDV6qkvtxiGtjr3c/R3YgejpcKkO6DTkOTnyXVJaFYwmoiIiEh4ts+Hdc/BptfTXYmIiIiIiIiIiIiIiGSXiwHbatsCpun7Lux7o89YTNMcaQ1GA2YBA3306wt84tJ2L87fT1TW2tXGmLOA54DmKykPAxYaY94DlgNdgQOA8jbDnwRu8FGfiIiIiEh8Ko+HnHzngmQ3DXvgmf0hr5Oznd/ZCT2a8H9Q0M193GfjXcJATNZcBpV5Og+HLqNh5yL3PjNPgWFfdf6dCruHV1s8Irtg3g3OuWxuSvpBtwMCWW5T3TrXtor8ykDWiEdeTgFEyQ2stx4/j9mi4ijI7wqRHe59np8MJQOc63B2fNiyv6gCJv8LKqfHt+bqx53AwHXPevfrd0Z880psxkC/0+CTf3j3++ReJ5Sr8jgYd5PCMcOyZzPMu94J6Kr+1PvnsstI6DwivNoyRb8z3YPRbCPcVwilg6BsHIz6FvQ62t+86190Xo8919ZzUtz6ne4djAbw6hnOa0zpABhwrhPIa4z3GBERCdfG19yD1MF5f2lywqtHMk9OnMFoHSEUte+p/oLRAN66CE78AHJ0/E1EMkc2vbKfBTzS9Pg34BF5LtEYY3KBtrdIuCuJKR9ps32JzzpGAYe02lWN/0A1kezUsNu9La80ubnzu8C0mTD4Qicgrc8pcMxLzh1zmvU9GabG+KAmaAf8GkZeHcxcuS4fXDTUBDO/iIiIiHhbdjc8MxHmfse7X2N9OPWIiIiIiIiIiIiIiEi2s60e4sFaOwM4E9jUarcBDgTOA45n31C0/wKft9br6hARERERkQQV9YSJt9OSd+yibivsXuk8dixwwodeONw7UK3Zumei78/JjbtcaWIMHPg7yOvs3W/pn/z/O4XNNsJLx8KSO7z7HfTHwP6vbIpED0YrzimhU26XQNaIR77Jj7q/XQSj5ZU4/0djBSDuXrl3KBrAno3wynGw1iMwr62VDzkhOLFC0XpOhuFf9T+v+DfuRuc6qFi2fwCLbnXCoqwOJaVcQy28cBgs/TNsn+cdigZw4O87ZnhUaX+Y8HPvPtUrYM0T8PJxsOGV2HOuex5eOcG7z6AvQe84QyAF+p/lL/hk90rYNMsJvfvgB6mvS0RE/KvdAi8f695eWA7jfxpePZKZcov89+1zihOG2t51GQFjf+Sv746F8Ha6700mIrK3bApGK8P51MQAs6211WmuJxudBLS+Hcku4IEk5vs3e99n5CxjzHAf477XZvt+a+2eJOoQyXz1XsFoJcnPX9IXJt8Lpy2FqU9A+eR9+/Q5Hi6wMOzy5NeL5YDfwKhrgpvP7ReRBj11iIiIiKRcZBfMucb7rirN6qtSX4+IiIiIiIiIiIiIiGQjE+Cjw7HWPg2MBf4EbPPo+hZwjrX2Ap1jKSIiIiIpNfLrcOJcmHgbFHTzP27HQljzlHef3Wvd22IFJom33sfAyR/G7rdzkRPkkmk2zICts737HPkY9D0lsCU31kX//1he0AeThiCgfFMQdX/E1oVcSYoM/iKcND/x8Ytv89930a3EzGsf8wM49uX4nufEv05D4ITZMOU/0OOQ2P03vAxb30t9XR3d6sdg10f++nabCL09AkrauzHf99fP1sOi22P3W3y79/nanYY61w8qKDZ+uYVw+EMwNUYYZmsf/d4JChQRkczwyb+8209ZBF1GhlOLZK7cwth9Rl8HU5+GIx+JL0gtm42/CY57G/b/hfN7rpcV/4Lda8KpS0TEh2z6RGBr01cLRL/dhsTSNp7zf8mc/GSt/dgYcy9wadOuAuAeY8yxbkFnxpjTgYtb7aoDbkq0BpGs0eASjGbyICf6HXtSZvjXYOlfUjf/2Bth1DeDnTNHwWgiIiIiaVH9KSy+AyI7/fWvr4KCstTWJCIiIiIiIiIiIiIi2WZwugtIBWvtoJDX2whcaYz5JnAYMBDoDVQDa4C51tpPwqxJRERERDq4bhOcx8hvwJP7QdVSf+M2zoB+p4HJAWuhbbiUV/BVYc+Ey5UmpQPggNthzrXe/TbMgD4nAwZyo4dxhW7jq97tJhd6Tw92ybrol7BV5FcGuo5feSb69ScRGwm5khTqOgrGXA8Lfhb/2PUvNF1nEiO0rrEOtrwdYzIDo7/TcS6UT5eCbjDofKg4Ah7tH7v/5jegx4Gpr6sjW363/74dORStWe9psP7F2P02ztw7ZMvkNYWgNQc0Wue118vwq/Z93yT+5eRCn+Nh0h3wno9rH+t3wa6PoWxs6msTERHn+EBjhM9eG00u5LSKQtn8uvvYXsdCYY+UlidZIidGMFpxH5h4azi1ZJqeBzsPcN6HLvxF9H62ETa+BoM+H15tIiIesikYrfWR5NK0VZGljDG9gJPb7P5bAFPfCJwJNN/6YgrwojHmK9baxa3WLwQuB9reeuM2a+2nAdQhktnqXYLR8krCrQOg23g48lF49YzYfTsNhaFfhg880n97TnE+WCjoBhN+DsMuD67WZnnF0fc31AS/loiIiIg4Hygs+D+Yf6NzQNOvyK7U1SQiIiIiIiIiIiIiIllJ54cFy1pbB7yS7jpERERERD6Tkw8TfwmvneWv/5I7YMlvcS52NlA6EIZdAft9zwn72PWx+9jK44KoWPqfDXO+TUsYSxQf3ek8ADoNg5FXw4ivpyeQZd0L8P73YNtc7359T3O/9iBBmyJro+4vL0hPMFp+TvSQunpbF3IlKTbwvMSC0QDuC+j/QOXxulFsmEr6tVyf5OW9b8Lu1TDh5r2DMiR59bth9pWw7ln/YwZ8LnX1ZIsB5/kLRqvfBfclE7RoYMA5SYyXz/Q/G+Z8y9858k+Pg8n/gMFfSn1dIiIdkbXO8YE51+zblpMPPQ6F8T+BhbfAuufc5xmo9yTSJFawtd6/OgZ8zj0YDeCN853jMEO/AmOvVziviKRVTroLiMNcWo64j0hnIVnqIvYOwvvQWvtOspNaa1cDZwGtj6AfBiw0xsw2xtxnjHkWWAX8Fmh9a5IngRuSrUEkKzS4BKPlpiEYDaDf6XCBhaOfj97e/yw4ayOcthT6nuo+T5fRMH0WfK4GztkKw69IzZvbHJdfRBr3BL+WiASv+lOY+x2YeTosvNU9LFJERDLH5jdg3g3xhaIB1Felph4REREREREREREREREREREREclc/c90brLtm235Wr0CPvh/sPg2Z9eupe7DysYlWKDspXQAHPJXMLn++lcthfeuhmV3pbauaLbOgRknxg5F6zoGJv0m0KWttWyqWx+1rSI/TcFoJj/q/khjJORKUqxsHEy8DUjTxdedR8CBv0vP2h3ZIX9zwjJjWXSrc32CBOvNL8En//Dff8LN0H1S6urJFoMvgkEhhGYd8lfn9VuSV9IXDrkLjM9wxTcvhNWPpbYmEZGOaulfooeiATRGYNNr8NLR3qFoAIMvDL42yU45hd7tY68Pp45M130i7O8RjAaweyXM/xEsuDmcmkREXGRNMJq1diXwFs4RzZHGGIWjxeeSNtuBfRphrZ0BnAlsarXbAAcC5wHHA+Vthv0X+Ly1tiGoOkQymlsIUF6agtGaVU6HkxdC5QnOdnElHP4AHP4gFDX92HrWaJ0gtFgJyslym79BwWgiGW/XMnjuEFj0K1jzOLz/XZh5inNgSkREMteK/yQ2TsFoIiIiIiIiIiICzuejkZ3O3X1FRERERERERKRjGPN9OHM9HH4/HHoP9J4e3/iP/+h8dQtGG/61pMqTNoZ+Gc5YAwPO9T/+PHKwAAAgAElEQVTm4z+krh43S/8KsS49GvQlOGFO4IExOxu2UWujX7NQUdAn0LX8yjMFUfdHbF3IlYRg9LVwxirnGpdD7wlv3WmvwUnzoPPQ8NYUR9fRcPIiOPYV6DLau++yu3RNUZB2r4VVD/vvf/pKGPP/nGvKOrrcAph8r/N/d/K/4JC/B7/Gmeud120JzpCL4cw1cMTDzmtMTvTg0c98lIb3QCIiHUEQv2NOnwW5McKwpOPw+r9w8J+hsHt4tWS6/b4L/c6I3e/jP+r8LxFJq6wJRmtyq8v34sEYcxgwqtWuOuBfQa5hrX0aGAv8Cdjm0fUt4Bxr7QXW2uogaxDJaA0uwWi5xeHWEU3X0XD0M3CBhTPXwoBz9j4wnRsjGC0Mbn9PDTXhrC8iifv4D7Bnw977NrwCG2empx4REfFnwyuJjYvsCrYOERERERERERHJPgt/CY/0hQe6whMjYNOb6a5IRERERERERETCUtzLCdoachFM/GV8Y6uWQ8062DQrenvnYcnXJ3sr7gVjrvfff9tc2DoHts9veVQtT90FsvXV8Mm9sfsNu8wJpgnYxrp1rm3lBZWBr+dHvoke3FJv2+lNq0v6Ote4DLkIRl6T+vUqT4SKwxWskE55xdBrauzXkPpdsPpxhaMFZd0z/vv2nAyl/VNXSzYyBrqOgsFfgKGXQLeJwc3d4xDn9VqCV1QB/c90XmMaY7yOrn8e6naEU5eIdAw1653fp3Z+BFUroPpTaIwRCN3eNNTC9nnJzWFyoMuo2P2k4yjxCEwvGx9eHdmi8vjYfWrWQO2m1NciIuIiq4LRrLWPAn8HDHCKMeb3xpi8NJeV8ay1r1trTatHobV2cwrW2WitvRLoDRwDXAL8P+Bq4GxgiLV2srX2oaDXFsl49W7BaF6hYxnCK7zNNoZUQ1H0/foAQyTzLb49+v4V/w63DhER8a+hFnYuSmxsfVWwtYiIxKt6FSy5Exb8HLZ9kO5qREREREREOp5VD8P734PIdme7ainMOEmB+iIiIiIiIiIiHVHZBCgbF9+YR/pAY230NgWjpUbZOOffyq9nJ8HT41sejw+FR/snfjPOaBpq4a1L4IGy2DdTLx0M5YcFt3YrG+vWRt1fnFNKaU7nlKwZS76JHgAXsXUhV5IGg78YwhoXpn4N8af3cU5okZfXP+c8T8z5dscLEglKQx28fRm8/RX/YwZ/KXX1tBdBPpfo7ztzPFgGM0+HyM50VyIi2azqE3jmAHik0vl96smR8PhgeGwQ/C8Plv413RWG56PfJT9Hn5OhsEfy80j70fcUyIkSKN55uBM4K3sbcC7k+AgG//Cnqa9FRMRFVgWjNbkCuAMnHO2rwPvGmEuMMXrXkiGstXXW2lestfdYa2+x1t5prX3YWvtJumsTSZsGl2C0vCwIRsuEGhWMJtL+rHky3RWIiEg0tVucD1cSpQtcRSSdNr8Dz+wP710NH/wAnj0Qlv8j3VWJiIiIiIh0LPN/su++yHZY8Z/waxERERERERERkfQyBo58NP5wNDedFIyWEsbAkQ9DWRLnjdWsgVdOgJoNwdQ073pYfg/Yeu9+nUfA1KfApObyuE2RdVH3VxT0wRiTkjVjyYt2gTcQaYyEXEkadJ8Eh94NuSm4xiUnH8beCAM/F/zckpjcApj6LJQO8u7XWOvczH3JHaGU1e58eBMs+5u/viYXRn4Lhl6e2pragxFfdx4mN/E5mv++h301uLokeWseh3f0byIiCbKN8PI02DbXvc87l8OGmeHVlC5Vy2HudcnPc8hdyc8h7UvnoXDEw1DQvWVfl1Fw1BPO8Q/ZW2EP57hKYbl3v49+B1s9nrtERFIoL90FxMMY83KrzV1AZ2A/4G9N7auBjU1tfllr7bGBFSkiEo3bXYpS8YFM0Fw+OAPA2nBqyC2Ovr9mLexYCF33C6cOEYlP9Sr3toJu4dUhIiL+LbkTdn2U+Pj6quBqERHxY+0zMO9G2Dp73zZbD3O+5dzFJs/l90oREREREREJztpnYfsH0du2vAPDrwi3HhERyRjGmAsDnM7inB+4A1gPLLY2rBNYREREREQkbp2GwIkfQPUKePNC2DQrwYkMdBocZGXSWqchcNIHULUCaprCwF6YEt8cjXXw6X9h1DXJ1WKtE4oWy7RXofzwlF7YvLFubdT9FfmVKVszlnxTEHV/xNaFXEmaDLkYBn0Btn8IDXtazglqqHWCJhKRkwddx0BeFlzf09F0nwinLYfHBsDu1d59P7kXRl8bTl3tiZ/nW4Dj3nJ+TvI7pbScdiMnDw68Eybc7Fz31vz89O5VsO396GOmvQqm6XJvk6O/70y26iGIVOnfR0Tit+19JxAslk/ugV5HpbyctPrkn8nP0eNQKIoR5iQdU99T4OxNsGMB5JVC6WCFonnpfSyctR52LIKnx7r3++Re53c0EZGQZVUwGjAV58SmZhYwTQ+A/k0Pvyc6mTj6iogkrn539P1Z/8FJSE+hXn9PT42BM9dDca9wahERfxob4AmPO/MpGE1EJHPU18Cm15wP0T+8Kcm5FIwmIiHa+CrMPMX7pMa6rc5J1ZXTw6tLRERERESkI6rfDW9/2b193bPh1SIiIpnoHlJ3kkm1MWY2cC9wn7W2NkXriIiIiIhIokxTqNnwKxMPRsvJh9zCYOuSfXUa5DwA+p4Ka56Ib/z8m6CkPzTWQt02yCmA4sqmC9Z7+ptj2/tQu9m7T1FFykPRADZF1kfdX16QzmC06De+r7eRkCtJo5x8XYzdkRgD/c+FJb/27rd9HuzZ7P+5pqOpXgm7PoZuE6H6Uyesq2at84hl7A3Q85DU19ge5Xfe++/ugNvhpWP27ddtf6g4Iry6JDmNdc7Pk16LRCRe1Sv89Vt+D/Q5BToPh7KxzrU+7c32D5OfY9hlyc8h7ZfJgbJx6a4ie5gcKBsDQy6B5XdH77PkDqg40gnw7TxCYXMiEppsC0aLRsFmIpL51j4dfX9ulgejJXpHnXh13c+7fdnfYOwPw6lFRPxZ/7xzsN+NgtFERDLD9vnw8nTYs8H/mKJezokR0S5mjewKrjYRkViW3Onv99J1zykYTUREREREJNU+/a/3xTORnc7vcO3xhF0REYlHKs6O7oRzw9WpwM+NMZdYa59PwToiIiIiIpKsfmdCYTnUbop/7MDzg69HvA27PP5gtMh2mHVO9LaJv4JR17pfOGsb4f3vw6JbY68z9PKUX4BrrWVT3bqobRUFfVK6tpd8UxB1f8R6nLctku2GXgIf/RZsg3e/h8th/1/Cft8Jp65s0BiB2VfCsrsSn2PwRcHV09FVHOWESOz6aO/9w65ITz2SuJknw+mrICc33ZWISDZpjCPMuPn3qu4HwVFPQHGv1NSUDtbCqgeTmyO/Cww4N5h6RKTF0Mvcg9EAXjvb+Vp5PBx+v/OzKCKSYtl4xqkJ8CEiknqN9e5J3nlZHowWltKBUDbBvX3e9eHVIiL+LLnDuz2sYEUREfH2xhfiC0XrNBRO/MC5g1k09VXB1CUi4offD0TrtqW2DhEREREREYFP/+fdXl8F1Z+GU4uIiGSq1ufr2VYPL9ZH3+b9BqgEnjHGfC2JOkVEREREJFXyimH6a1B+WPxjJ/0m+HrEW99T4NC7oXRQMPPNvQ62zHZvX/1Y7FC0wh4w+rsw7sfB1ORhR/1W6mxt1Lby/MqUr+8mz+RH3R+xcYQsiGSbsnFw1FPQZXTsvu9/F1YmGbTRniy/J7lQtGkzofPQwMrp8EwOHPsy9J4OOQVQXOmE+SkYLfvUrEs+1EdEOp54gtGabZ0Nc64NvpZ0Wv+Cd/v+t8CgL0Fep+jtxZUw/Q3365pEJHHlk2HIpbH7rXsOPvy/1NcjIgLkpbuAeFhrszHITUQ6uk2z3NtyszwYrauPDxWCUjYWtn8Q3noikrjVjzm/2HpRcI6ISPpVrYDt8/33n/BzGHaZc3KZ2wcMen4XkbBEdvrvu+FlqK+GvNJ92+q2tVyYX9AdSgcEU5+IiIiIiEhHsmej87tXLNvnQ6fBqa9HREQy0SVNXzsDPwJ64ASZNQJvAbOBlcBOoADoDowDjgB6N421wH3As0AxUAbs19RnIHsHpP3aGLPIWuvjBUpERERERELVZSRMnwXL/v7/2bvv6Diqu43j36tqybZcZbl3sHHDdIxppvceWmgJCakvCQkpJCSkUtITEkJIAQKh946BgKk2BmwD7r1b7pKtutLO+8dIUZuZnS0zuys9n3P2aHfunTs/GbE7O+W5MOdqf+sU9IWC3sHWJc5GX2U/6neD1diyfPPL9qSc8Vr7IPQ/1KUtxuQL3UfCWSvtUJkQbI1scm0bUJDGYLQc52C0hmh9yJWIhGzwyTB4EUT2wOP9wetvft53YMiZkFsYXn2Zau2D8a9TMg5O/RhyC1Jfj0DxEDhuJjTWQ04+GBN7HQleYT+o2xHfOmsfhBEXBVOPiHROie6zr38covfYnxudwer73dtOfNcOZgKINkCkoqUtrzuQo30UkaDt9x1Y9a/Y/dY+CAfcFnw9ItLlZVUwmohIVlr7sHtbv4PDqyMZo66E1fd2XD7h++HVUFjq3V651D74LiLp98lPY/dpqAq+DhER8bb5Jf99z98BhX1bXue5zKwS2ZNcTSIiflUs8d+3ag080gNGXAqH3AEFvaC+At69DDY917Zvz33hqMftcG4RERERERHxZ/3jYEW9+3QfBY214dQjIiIZx7Kse40x+wDPYIeiAfwd+IVlWevd1jPG5ABnA78BRgGfARZblvWzdv1OA/4IjMEOSMsDfgsckOJfRUREREREUmXwaWBy24ZtuennEqQl4WkfTDfwRDB5YDXEN87SP0D1eiidDrlF9iT0jbXQZyqse8R73cGnhRaKBrC1frPj8u45Peme63L9XAjyjXMIQMSKhFyJSJrk97TfDzY85d6nag08ORjKjrPDjkZ/zv4s6awBVLs+hu3vQPEI+3fc/Sns/BCIQvnr8Y9XdrwCR8Kgf+PMMuUXMPcrHZd77e9seBoW3mJfdzrweAX5ikhs0QT32aN19ntUz32hzwEw4Jjs/RxprIM197m3t76GPyfP3pcTkXD1HOMvNLZ6PSy4sSm0ECjoY38HK9k3+BpFpEtRMJqISJCiEVhxp3v74NPDqyUZ+3zZPtHYWNOyrN+h0H9aeDV0G+Dd/uJUuKjGu4+IBK9uB+yaF7tfw97gaxERkY4ql9oXg9RssS8y8+PoZ9qGogHk93Duq/d3EQlL9br411n7ANRth+Nehrlf7RiKBrBnGbwwGS6shs0vwo73oddEGHZeywkbERERERERactroqiT3rO/V+Wn70ZBERFJP2NMMfAUMA6IAJdblhXjjnewLCsKPGmMmQm8CBwJ3GSMWWdZ1j2t+r1gjHkLeAOY2rR4ijHmRMuyXknpLyMiIiIiIqlRNBBGfhZW/9u7n8mBcd8Ipybxr1spjL4SVv4z/nXXP24/2i/zklsE+ziElQRoW8Q5GK20YFCodbSXb/IdlzcoGE26knHXwsZnvcM163fC+sfs5yv+Bvt8DQ6+vfOFo33yc/jkx6kbLw3vtyIZYei58OnPoWZTy7L8XnD00/Dase7rLfiB/bP7SJjxEpSMC7JKEcl2iQajQdvvXmUz4OinIL8k+ZrCVLcTZp3h3p5brGtLRDJBTj7s+w1/3zMW/rLta5MLh/wVxn4xmNpEpEsKb6oMEZGuaOub7m3DLoCCXuHVkoz+h8Nxr8LwC6HvQTD+W3DcK3bidlhi3YDeWAt7VoZTi4i4q1jor5+Cc0REwrfpZXjxQJj/fX+haH0OgGNfhKFndmzLUzCaiKRZ3bbE1tsy075hf/2j3v0eKYa3zodFt8F7V8BrJ0B9RWLbFBERERER6cyqN7mfE534Q/s8oy5cFRER+BmwH2ABt/kJRWvNsqwq4DxgJ2CAPxtjStv12QNcADQ0bQfgpCTrFhERERGRIB32D/sYUm6Rc3vZcXYYxeBTwq1L/DnkTpj0Y+g1CQr6BndTfkEfOP4N6D0pmPFdbK13DkYbkOZgtDxT4Lg8omA06UrKZtjXtw48wf86y//ifY9XNqpcmtpQtMGnp+X9ViQjFJXBCW/CiIuhx2g7KO2EWVB2DEx/KPb6VWvsa/RFRLykap+9/HVYfmdqxgrT0j/C9vfc2495OrxaRMTbpBvhwD9A34PjO95jNcIHX4e6HcHVJiJdToiJNiIiXUzlcvivx0H2IQ4BE5ms9Aj7kS6WFbvPlpnQUzOTiKRNZC/M8vneFlFwjohIqCwL5n0bGqv99R97DRz6N/f2PJebWSN74q9NRCQRtdsTX/edi+NfZ8dse5bqcf+X+HZFREREREQ6k9pt8MlPYPkd7n1GXBRaOSIikrmMMXnAFU0v64DbEhnHsqztxpi/ATcARcClwB/b9VltjHm0qc0Cpidat4iIiIiIhCAnH/b/hf2Q7JOTB1N+aj+aPWBSv53TF9thJSHbVr/JcfmA/MEhV9JWvsl3XN5g1YdciUiaDTrRftRsgWf38Tex7/on7JCjzmLDU6kba+ptMOG7qRtPJBv1HAPTH+y4fPDp/tbf+Cw01kOuc4ipiAhRl2C0vgfDKXPt568cBdvejj3W+iey77N7w5Pe7T33DacOEYnNGBj/DfsB8Mw+sHeFv3Wj9bDpBRh1eXD1iUiXkpPuAkREOqX6Cnj1SO8+wy8Ip5bOwteMIwGcSBUJS9VaWPcobJ8DVjTd1STmvSsgUumvb2O1+8E8ERFJvaq1ULHQf/8JN3i35/dwXu7nwhIRkVSo2xb+Npf/NfxtioiIiIiIZCLLgtlXeYeilewHvfyc3xMRkS7gSKA/dlDZ+5ZlVSUx1sxWz89x6fNy008DDE1iWyIiIiIiIhKvMVendryScdBtQGrH9CFqRdkW2eLYVlowMORq2srPcQ5biei6bOmqigbCfj5DQZb9CWZ/Dj641g4Tsaxga0tWQxWs+DvMuQZeORoezIPnJ9q/w+zPwfzvp25bQ89O3VginU1+D+h7UOx+ViPsWRp8PSKSvaIuYcat9/EH+Axx3TGnZZ9gwY2wY27y9QUhGoFV98ATg2D3J+79eoyGYp3WE8lYZcfG1/+9K2DOF2HZX+zvNSIiSchLdwHJMsZMBc4CjgLGAH2BnoBlWVaH388Y0xsoaXpZZ1lWeVi1ikgXsv4JqN3q3l48DPKKw6unMyg9Cgr6QP0u9z553cOrRySVVtwFc78GVoP9uux4OObp7PqbXv7X2Kn97dXtsE9EiohI8CrjPMnaY6R3e55LMFpkT3zbERFJVDqC0SoXh79NERERERGRTLT1TXtmTy8jLrJnDxUREYHhrZ5vSnKsza2ej3Dp0/pAXp8ktyciIiIiIiLxGPdNWPnPFA1mYNKP03KccXfDDiKWc2hBaf7gkKtpK8/kOy5vpIGo1UiOyQ25IpEMsN/1UP6qff4illX32D+X3Q6jPweH/yvQ0hJWXwH/PQF2ftB2ecUi+5FKIy6xgyhFxN2kH8Fb59vhZ15emAIXVkNeUTh1iUh2cQszzmm1jz/2Glj1L6jZ7Ny3teb9GoBFt8Lhd8Ooy5MqMaUa6+GN06D8tdh9J/0YTE7wNYlIYsZ9E9Y9BpHd/tdZ+Q/75/K/wknvQn6Jd38RERdZu4dgjJlsjHkV+BC4CTgOGIkdemaaHk5mAKubHsuNMUomEpHUW/uQd3v/w8OpozPJLYCpt3r3aawLpxaRVKre2DYUDeyDPYt/k76a4tVQBXO/Gv966QizEBHpqqrX+u+7/y9j93E7GNlQCVbU/7ZERBJVq31JERERERGRtFn+l9h9hl8UfB0iIpItBrV6nuzsYM3X+hnAbRau1jPuFSa5PREREREREYlH70lw+iIYdEriY/Q7HEZeDjNegpGXpq62OGyrdw8hGFAwyLUtDPmmwLWtofX16CJdSV4RHPMc7H9zfOutuht2fhhMTclafW/HULSUMJDXdIiu32Fw0B9h2n0BbEekkxl6Nhz3Goy+yt5X8bLukVBKEpEs5CcYrftwOGk2jLsOSo+C4mH+xrYaYd533LeRDhuf8ReKNu3fMPrK4OsRkcT1nggnvQf7fh1Kp9v7Q7H2iZpVLISlfwq2PhHp1PLSXUAijDFXAX8BumFf5GS1arZwD0UDeBpYhz1jZHfgfEBHb0QktbbM9G4v6BtOHZ3N2Gvg/S+5t7//RRj7hfDqEUmFdY+2DUVrtvE5mHxT+PVYUaheDzndoKjMu2/1RjuJf92jiW1LYRYiIuHZs9J/36Hnxe7jtj9rRSFSCQW9/W9PRCQR9TvSs91dH0OfKenZtoiIiIiISCaINsY+L9B7f+g1Ppx6REQkG1S2ej4hybEmtnq+16VPt1bPa5LcnoiIiIiIiMSr134w48W2y54cCjUbY697/OtQdmwgZcVjW8Q5GK1HbgnFuT1CrqatfJPv2hax6ilQRrh0Vfk9YeIN0GcqvHGa//U2vQh9DwqurkRtejF2n3icOs/+txGRxJUdYz8AXjseyv/r3G/TCwr4ERFnlktoWft9/O7D4aDfNa0ThUd6QKOPU1615bBzHvQ/NLk6U2X9E7H75PWAkZcFX4uIJK/XeDj49rbLVt4Ncz4fe911j8GkG4OpS0Q6vawLRjPGnA/8k7aBaAY77Gwn4HmExrKsqDHmYeC7TYvOQsFoIpJq+SV2IISbgj7h1dLV7FkJPcekuwoR/z66znl5ILP7xLD7E3jvStg1z3498rNw6F2QV9y2X91OePsCKH89ue3VKRhNRCQ0e30Go429xt9Nq4UeQb/1OxWMJiLBi+xJz3aX/A6m3ZOebYuIiIiIiGSCpb+P3WfERcHXISIi2WRD008DjDbGHGZZ1pwEx7q86afVatz2Brbqo5PSIiIiIiIimWDYebDsdu8+hf2g/+Hh1BPDprr1jstL8weFXElH+TkFrm0Rt6AFka6k9CjILYbGan/9P/4R1O2AcddCj1HB1mZZsOIu2Pxix0nmC/pC6TRoqIbts6H8tdRtt3gY9JqcuvFEBAad4h6Mtu4R2Hsb9BgZakkikgWiLvvrOe7hx5gc+z1nw5P+tjHzMBjzBfvR/7D4a0zWrgWw4m/2farb3o7df/CpYEzwdYlIMAadaL9PWVHvfrsXwMwjAAO5RdB/Gux3PRT0CqXMTqVuByz+DeyYA411Hdsn3gBDzgi/LpEAZVUwmjFmEHBv08vmULQ7gN9alrXaGDMSWOVjqKexg9EMcEyKyxQR8f4iCmCy6u03s4y7zvuGi9X3wpSfhVePSDKq1nq3W1bwB3b2rIB1j8LuT2HtA23b1vwHigbBAb9uu3zO55MPRQOo3Zr8GCIi4s2yYNPzsP7x2H37HACH3Olv3AKPYLS6ndBjtL9xREQS1bA3dp8LdsKz+0Ld9tRtd/W9CkYTEREREZGupbEWVt0L1evsYz7zvhN7HQWjiYhIW7OACPa1iga4wxhzlGVZPu9OtRljLgJOouW6wVdcuh7Y6vma+EoVERERERGRQIz/Fqy62/t6j6m3QW638GpyYVkWb+x+zrGttCD9wWh5xv1elYZofYiViGSo/B5wwK/gg6/7X2fpH+x7KU56L9jrX+d+FVZ4XKe7yfm9Jykmz74fJCc39WOLdGVjrob533Vvn3l403tKwIGLIpJd3PbXPcKPAZj8Y9j2lv9r4lf+A1bfB8c+DwOPj6/GZGyfA/89Hhqq/PUvLIVJPwq2JhEJVvFQmHADLPxl7L7b32t5Xv4abHgKTp4DecXB1dfZ1O+GmdNgz3L3PrpvXzqhnHQXEKcfA8XYF0hFgQsty/q6ZVmrm9ot1zXbmot9sRVAP2OMvl2KSOo01Nhpq166jwinls5o2Hne7Ts/CqcOyX6W392GAG14xrt9zhcSH7v59/P6Pbe9Cy8dBAt+0DEUrdmyP0Nkb8uMBJE9sOkF/3Uc8lfof4RzW50m5xYRCdxH34ZZZ/rre+I7/gM580uwv5o7qN/lbwwRkWT4CUYr6AMDT0z9tiN7Uj+miIiIiIhIJmqosc8jzP0yLLzZ33mLsuMUmi8iIm1YllUJPId9YsECpgIvG2OG+R3DGPMF7AlVrVbj3O/S/eRWzxckUrOIiIiIiIikWI+RcNZKmPwzyCm0J+YsPRK6j7RD00581w4YyQDLaj51bRuQn/5gtHzjHpoQsSKubSJdyr5fgxPegoEnAAb6HR57ndqtsPTPwdVUtR5W3pXaMUddYT/KZgDGfk8ddQWMuNT+OfFGOHm2JrQRCUJhXzjW496q2nJY/tfw6hGR7BB12V/PcQ8/BqDPVDjlA5j6Kxh1pf05H3NbdbDwlvhrTMbiX8cRitbP/p16Tw62JhEJ3v6/gGNfhHHX+Xt/albxKax7NLi6OqM1//EORRPppPLSXYBfxphc4BJaws9usyzr8UTGsiyrwRizBGjeWxoPrPZYRUTEv8rFsfv0nhJ8HZ1V6XTvdreDAyLNKhbD3K/Ajveh5772l64hZ6Snlqo13u2r/mWn3vcY6X/M+t3277f2oZZlpUfCIXd0PFC04AcQqfQer7EWHu1pPy8aAiM/6+//s+KhcPZaMDmw+WXnPrUKRhMRCYwVhfeuhDVu9wS1M+wCyCvyP77JsQOH6nd2bHNaJiKSSlbU/0nTkvGp3/7ml2D4Z1I/roiIiIiISKZZdAtULPLfv/tIOPgvgZUjIiJZ7XrgVKCw6fV0YJEx5n7gUeCDpgC1/zHG7AvMAL4AHEjLjC0W8E/Lsj5pv5GmsLVjabnG8K3U/hoiIiIiIiKSsG4DYPKP7EcGW17tEYxWMCTESpzlG/fQhIhVH2IlIhluwJFw3Cstr7f8F/57vPc6W2cFV8+2t+zr3lKlbAZMuzd144lI/Poc6N0e5HuKiGSnRIPRALqPgAnfaXldNAgW3ea9zra3INoIObn+a92C23wAACAASURBVEzG1jf89z3meeg+PLBSRCRkg0+xHwD5vWHZn/ytt3UWjL4yuLo6m/I30l2BSFpkTTAacDhQ0vS8HvhVkuNtoCUYzffskyIiMe12PxEG2MFE/Q4Jp5bOyBjoexDs/NC53WoItx7JLvW74JUjWwJbdi+AN8+2ZwMqPSL8eiJ7YveZeRiMvhqGnWe/f2x/F2o2w4BjoLjdyfU9K+HZsR3H2PY2vDAFRlwMg04Gcux/g3gPstdshMU+d8Em3miH5gAUljr3qVMwmoiIo8he2DEH6rbD4NMhv0f8Y3x8k/9QNICxX4x/GwV9FYwmIunRUO2/78hL7ZO+jT7WGXEJrH0wdr+3L4SL6/2dhBYREREREckWlgW7P4Zd86HvgdBrIqy62//6Rz5in4PIL4ndV0REuhzLslYbYz4P3AfkYAeXdQeuaXpgjKkE9gAFQK+mn9A2EM0Ac4BvuWzq+03jA9QCr7j0ExEREREREXG0pX6Da9uE7lNDrMRZnilwbYtYmmRexFXpkfZ9DV73MOz6CB7vz/8OR0Xr205EX9i/5bnJgd5TYPy3YPCpbcdpqIHlf4HV90FeD9jnK/Y5mFQaem5qxxOR+BWVQf8j7Pu8nOx4H+Z+DabeCvk9w61NRDJTMsFo7Q09L3YwWrQeHsqz70ua9CPof1j823HTWAsLfgibXoDKJfGtWzwU+h6culpEJLOMusx/MNqqu2HbOzDoJHufKa97sLVlotX3wYq77PsxB58OU34OteUw/3uw9qGWfvm9IbI7fXWKpFE2BaM1p3xYwNz2M0QmoPX6ujJXRFKnYqF729Bz4bC/2+FekrjGWve28v+GV4dkn3WPdgxrsaKw8h/pCUZr2Bu7T+1WWHSL/WgtJx+m3Q8jLrRfL/8bzP2y91hrH2r7RSgoB/ymbcBONwWjiYj4tnc1zDqzZZ8yvxcc9QQMPM7/GNFG+7PNj5LxsP8t9gHEeBX2BaePsrod8Y8lIhKPhir/fXuOhWNfgLlfgcrF7v1GXWHPoDn6KvjoOqhY5D3uxudh2Dn+6xAREREREclk0Ub48P9g+V9blpUeBdXuNwC2MehkGP6ZYGoTEZFOw7Ksh4wxUeAu7Ov1rKam5otoejU9Oqzaqt/LwMWWZbkdJLwPeKTp+V6PfiIiIiIiIiKOyus3Oi7vndeP4twEJjlNsTzjfitgQ7Q+xEpEskxuARz6N3j3Uu97kryuga3b3vb1llfte5iOfbHtdbjzvwvL/tzy2i00KVEDT4LRn0vtmCKSmIP/BC95hPssv8OemOrEt3U/qYiAW5Bxjnv4sat+h/jvu+l5KH8NTpoDfabEvy0nb11gj5uIQ++CnNzU1CEimaffITDhe7HDG5vtWWY/dn8Cx7/etfaZVv4T5nyh5XXFItg1z76vtGZz274KRZMuLJuC0VonaqxPwXjRVs+z6d9BRDJd1Wrn5SM/C0fcH24tnZXXSQiAJ4fC5JtgzBe61g6wxLbkD87LV90Nh/8r3FoAInsSXzcagXcugrJj7RNssULRwjJjJgw6se2ywgHOfWu3Bl+PiEi2mX9D26DdSAXMvhJOXwz5Pi+qqtsGtVv89T3DIyQolnyXjPF4AotERBLhJ2C4tbJj4PSFsO1tWHUPrHuk7RjdBsLEH9jPB51k9y2fBa8d6z7mwpsVjCYiIiIiItmtbid8fGPbMLTWtr3lf6z+01NTk4iIdHqWZT1ijHkX+A1wHi3X7VkO3U2rn6uBX1qW5Xli37Ks2amqVURERERERLqeqBVla/0mx7ZzSq8IuRpnxhjyTQERq2MImtMyEWll2Ln29bhrH4QFP0jNmFYUlv6xJRht72o7CClVymbA2C9BQV87LKBkPAw4GnLyU7cNEUlc34Pg5LnwskdA0fZ3YftsKJ0WXl0ikpmiLsFoJoHPdWOgoA/U7/LXv7HW3kc59M74t9VexZL4QtHGfRP2roT+R9j32XcflnwNIpLZpt4Kw86Hbe/Y9xlueiF2YPTWWbDzQ+jnETrb2Sz+TcdlW16Nf5zBp0P/pn3NvgcmV5NIBsqmQLDWFz+lIga2b6vnikcUkdSpWue8vPuIcOvozKJ13u01G+H9a+xZ7Kf8NJyaJDtUJhH+EoR4Ax2cPFGW/Bip0nuyfeKtvW6lHZeBHdwjIiItrChsfLbj8uoNdojPmM/7Gyes4MmcQufljTH21UREkpXIfrQxMOAo+3HQH2HD07B7ART2t0+wFg9p27/sGCgZB5VLncfbOdd+v8t1eS8UERERERHJZA018OoxUPFpasYrHpqacUREpEuwLGsDcLExZhBwAXAEsD/QH+gN1AG7gLXAbOBVYKZlWU7haSIiIiIiIiIps6thm2u42MCCIY7L0yHP5LsEo7kELYhIix4jYcL3YfGv/QeJxLL55ZaxVt1tXw+cKtPua7m2rf0E9iKSGfocALlF0Fjj3mf7e9kVjBZpuk7X78TuIuJP1CXIONHAUxNnTMjml9z3f/J729fbg70vE6nwHscvkwsH/d5/fxHpPPodYj8ARl4Cz4yJvc7ml+xgL5MTbG3pYllN768W1FdA5ZLUjDvtXijsl5qxRDJQNgWjtU7OGJyC8Sa1er4jBeOJiMDeNbBjjnNb8fBQS+nUGmv99Vvye9jvOzoIJ/401EBeUcjb3BPu9oI2/WHIcdi9LHQLRttp//+c2y3YukREskXDXmisdm77+Ef+g9HqQgpGcwsDcjtZIyKSKskGDOf3gFGfBT7r3a94mHswGtghAifPTq4WERERERGRdNj0QupC0QBKj0jdWCIi0mVYlrUZuL3pISIiIiIiIpJ2W+o3urYNyKBgtHxTQA1VHZY3uIS6iUg7xsCIS2D5HakZz2qEx/qmZqzWBhzdccJPEck8Obkw/DOw+t/ufeZ9G2o2wdRbne+7yhSbXoKPvgWVi+3XJePhgN/CkNPSW5dIZxF1CTJOOBjNxNe/aq37Pku3MhhztX2/59qHILI7sZraG3BMasYRkezWYzT0PRh2fuDd7+MfweLfwshL4cDfQ25BOPUFzbJg0a2w7Hao2Zz68RWKJp1cNkUlrmv6aYADjDEJ7uWBMWZfoPVRoY+TKUxE5H/eucS9rXhYeHV0dhNu8NevYU/snWTpOmIF6lWvD6eO1pINdAjCkY/AyMviX2/fr0Ov/Zzbiga5rGTZB81FRMQW8QjMrNkE9T5PLNT6DEab8nN//dzkuBxcVDCaiAQtEtJ+dKzvEDvmwPqnwqlFREREREQkUTs/ggU/hPk3wPY59kWsb1+QuvGHnQ8l41I3noiIiIiIiIiIiEialNdtcFzeO68f3XJCnoDbQ75LcELEcglaEJGOpvzcDh5Lp4K+cOyLkNejY1vPfeCwf4Zfk4gk5oDfQL/DvPss+S18fGM49SRi1wKYdUZLKBpA5RJ480z7nLOIJC/VwWjEGYzmpbYcFt4MK+5MXSgawPhvpW4sEclu0+6D7iNj94vstkOsP/xG4CWFZtmfYcEPgglFG3VF6scUyTDZFIz2HlADWEAR4JE+FNO1rZ6XW5a1NJnCREQAqFwOO2a7t3cfHl4tnd3Qs/33nf354OqQ7FFfAS/HOMC8Z0U4tbTmFYCTDmeusGcp2efL8a/r9f9lyTgo6OPctvXN+LclItJZxQrM3OAzfMdvMNrQc/31c+MajFaX3LgiIrE0dpzxNhAl42P3mfslO1RARERERETiZ1n2Q4Kz4WmYebh98eqiW+3nj6dwhsj9b4HpD6ZuPBEREREREREREZE0Kq/f5Li8rGBIyJV4yzPOwQkNbkELItJRYV84/nU47VN7cvn2jzDs920YfAqcuxmOe7Vl2yfNgdMXQs+x4dQhIsnrVgonvRs7mGLlPyDaGE5N8Vr5L7AcarOisFJBjSIp4RZk7HZvTmeQX5LuCkQkU/QaD2cug5Pegz4HxO6/+t/QUBN8XWFY8bfgxu6h743S+eWluwC/LMuqM8a8BpzRtOiXxphnLMuKK3bWGDMd+BJ2wBrAEyksU0S6quqN8Ny+3n26DQinlq6g5xg45A6Y+9XYfatWQ/1uKOgdfF2SudY9Crs/9u4z63R7do6D/gT9Dw2nrlgBOGEpGgLHPGv/vwXQ/wiY8H37Jik/9rseyo53b8/Jh0GnwFqHm6Nqy+OvV0Sks4oVmLn2YRh9VYwx9sJH18Xe1tTboPdE36U5yil0Xh6tT25cEZFYwjq5MfKz9kUoXmq3wtI/wZSfhFKSiIiIiEinsOMDeP+LULkUek2E/X8Jg05Kd1Wd0/zvuc84nIzuI+DIx6DfwakfW0RERERERERERCRNttRvcFyeacFo+S7BaBG3oAURcWZy7Gtpna6nLZsB5a8Hu/1ek+yf+T1goMf9GCKSHUwOjLjEDvFwU7cDajZC9+Hh1eWmepN9T1eviZBbANvfde+7/jE4+M9gTHj1+RGNQMUiaKxNdyUi/tTvcl6e47x/3ymYrIkyEZEw5ORD/8Nh8k/hzbO8+zZWw5r/QO/JLct6jLYDaTNBtAH2rIAeoyC33T2WVhQql9j3ijbWQsXC4OrozJ8hIk2ybW/il9jBaBYwBJhpjDnDsqytflY2xswAHgNyAAM0AL8JqFYR6SqsKPzXxwHovJ7B19KV7PMVGHIWvH8NbHrBu+/cr8KhdypdvCvbMtNfvx1z7P+fT18Y/EFmywo+GG3fr0NuEfQ50P5yU/46FA+G3GJ7Fo+8YigeBqVHQUGvlvWMgam32OE7z413H//Qu2DA0VAyLnYt3cqcl0cq4vqVREQ6tVifC5tfgsrlULJPx7ZoA2x8Dt461339HmNhys+g/2H2gcBkuc1Ko2A0EQlaNKQLGEqPgpLx9gkJL2vuh8k3Zd4FHyIiIiIimahqHbxyJETr7Nc7P4A3z4XTFmjW+1SrWmuHz6XawBPgqMd13k1ERFLCGJMPHAqMAfoCPQFjWdbP0lqYiIiIiIiIdEnl9Rsdl2daMFqecb52L2Lp2j2RlBl1VcdgtLzuMP7b8GkKDl0VlsKgk5MfR0Qyy8DjoWiIHX7m5ukRcO4WKHK5zypoNeXw9vmw7R37dW6Rfc9ZpNJ9ndqt8MwoOOoJ6HtgOHXGsvo++57RoO/NEwmDS/BxUgafDpueT/248VJgj4g4GXSyfc95bbl3v/e/6LDuqTD9wbb3xIdt3WMw52p7/ymnEKbeCuO+Yd9TtOW/8O4l9v5TGHKyLTJKJH5Z9VduWdYcY8xDwMXY4WgHA0uMMb8HHgE6HME1xuQCxwJfBD6DHYhG0/p/tCxrTfCVi4gvjXX2QZ9ugyCvKN3V+Ff+X383FeR2C76WrqZ4CBzxgH1A0Ctcae2DsPEZOHW+bqrpqtY/4b9vw167//hvBlcPQGONHawYhMJ+cObKjl/shp8f3zgl42DM1bDyn+0aDJyzDoqH+h8r3+VLpoLRRERaRPbE7vPcvnDqPOgztWVZ7XZ4ZTrsWea97tgvwMhLkquxNbdgtMa61G1DRMRJWDO75eTC8W/AB1+DDU+D1eDcb+9K2Pkh9Ds4nLpERERERLLZmv+0hKI1a6yGT34GR3jMnC3xq9sezLgTvqdQNBERSZox5kjgeuAkoNChS4e7S40xpwAXNr3caVnW9cFVKCIiIiIiIl1NTWMVlY27HNsGFsRxzXQI8l2CExqsSMiViHRioy6HqtWw6Fb7erXi4TD9Ieh3qH3z+/I7Ep9IuOe+cOSjkOt0WExEslpOPhw3E966ACoXu/d77zI47pXw6mqz7StaQtHAvr+tsSb2elVr4fVT4Jz16X//2jXf/j1EOosgwsP2vxm6ldohglZj6sf3S4E9IuIkt8DeF3r7M/FP/Ln5Rfjg63DEfcHUFkvlcnj7Quy4IuxrIT+6DnpNgL4Hw6zTw7vnCcDofVY6v2z8K78aGAccgP1u0Rv4SdOjzdEkY8xiYBTQvEdomtYxwLvA98MoWEQcRBtg/vfsWeGr19k/a7fYbSe+DaXT01tfPDbP9NfPmNh9JH4FveDA38Ocz3v3a6iC+d+Hox7z7heNwKLbYMMz9kG90iNh8k/SNwuDpEZuN/tvwC+vg8+p0lDt3nbqAigZD4/3S2zmitM+TV3a9YQb7Pe56vUtyyb+ML5QNHC/ScprRhERka6mwUcwGsCca+DkOS37lx99M3YoGsCwOAMyY3E7oZnohR4iIn6FGcBYVGZ/j7QsO1TgyUHOJ4fXPaxgNBERERERP3Z/7Lx8zX1w2D/si54kNaIBXNha2A8GHJP6cUVEpMswxnQH7sKeGBVaJjltzXJZfSFwOZDTNNZ9lmUtSHmRIiIiIiIi0iWV1290bSsrGBJiJbHlG+dj6RFL1+6JpIwxMPkm+36K2i1QPKzlut2Dfg9Tb4HKZbgfygK6j4SaTW2vqy3oA92HB1m5iKRbrwlwxiJ4cjDUbHbus+VVu61oULi11WyGLT7vhXVStw02vwxDz0pdTYlYnaYgFJGgBBGMltcdDr8bDrrdngTcyYtTY4/TbQDM8HjfyO8Fz4xyb3cJdRYRofdkOGMJVK2HmYe57zc5WfcoHHoX5BUFV5+bNffj+D1w1b2wd3V8oWinzrd/mjzIKbAnmG2taAg0VsG878K6R5zHCOIzRCTDZF0wmmVZNcaYk4GHgONoedcw2LNHNgefGewAtf+t2qptJnChZaUz4lakizO5sOLvzuEPVeuyJxitsR4W/zrdVciYz0HvSfDyod79Njxt30DvNSvBu5e13Tms+NQ+2Hjqh+7BTpnOikLFQsjrCT1Gprua9CgeBpVL/PePJBBGFq+ox5eb3CL75q/hF8Cqe+Ifu1sKg/x6joGT58L6x6FmI5TNgIEnxD+OW1BbpCK5+kREOpOPb/LXb+dcWPUvGHiiPSvCmv/4W6/n2MRrc5LjcqOygtFEJGhe+9JBMcaeNWvgCfZFHe2Vzwq/JhERERGRbLT2Ife2ysXQZ//wauns/Ibwx2O/7+hiKhERSZgxpgR4C5hEywSnrTVf2+fIsqz1xpgXgDOb+l4MKBhNREREREREUmKLSzBagSmkd16/kKvxludynDYSjYRciUgXkFvgHGSW2w36TIm9fqomvBeR7DPkTFhxl3v7ir9D3wPte9jyiqDf4fZkvkGo2QzbZ8PG55If682zYdq/of806DGmJTQyDFYUKhbBkt+Ft02RMJTsl/oxc5oiRPJ7uF+LM+JSWPuA9zijrkruWp6crIsyEZGwdR8Goz8HC2/2v060Dj75CfSaCLXl9mSfg09NTeisZdnXMe6aD05xRJ/+zHm9tQ/Apjj2tYZd4PP9tb+dOeDG6H1WOr+s/Cu3LGu7MeZE4PqmR2lzU7ufzZqD0nYDvwZ+pVA0kTQzxj4wXLGwY1v1+vDrSUT1Jngqs2b+6dL6HQIzXobXT3bvYzXAnmV2irCTZX9xTszduwI2PAOjLktNrWGqWAKzToe9q+zXZTPgqCegoHd66wpbvAEtDSEEo3mlPud2s38e/Geor4CNT9sHb/0oHpr6g8pFZbDvV5Mbwy1YsF7BaCIiAEQj9j6HX3O+EFwtfrkFozXWhVuHiHQ96XyfGXquczBaxUJ7n93khF+TiIiIiEi2+OSn3u01WxSMlkqpPtcx9BwY/+3UjikiIl3NY8BkWq7tqwceAV4HosA9PsZ4EjsYDeBE4IbUligiIiIiIiJdVblLMFpZwRByMux6kHzjfO1eg6VJTUVERDLGmC/Cyn86B2oAfOIwqfohf4V9vpzaOpb/FT74P/c6EvHeFfbPsV+Gg28PJ/iooQreuQQ2Phv8tkTC1GMslB6R4Moe95D6CcrZ50uw9kE6xnI0ySmAMZ9PqLKWMTT5noj4MPpzsPi3duCZX4t/1XHZgX+A8d9IvI6GGns/Z/1jia0fqfTfN559Pq99LQVQSheQWUdm42DZfg2MAK4GHgI20jJzZOswtOeBa4FRlmXdolA0kQxR7DBjBkDVunDrSERDlULRMtHAE+wDAV52f+q8vH43fPB19/V2vJ94XeliWfDWuS2haADlr8NH16WvpnSJ9+afjc+kZhaM9vausm/8ev9LsPrf7v2ag9HyusPRT8D52+HcLXCMj5oGn5GaWlMt32Wmo8hu+29VRKSra/15HYRxAXz+5xY6L483kFREJF5eIcPNxl4TzLb7HOC8vLEaqtYGs00RERERkc5gw9P2LI1e6raGUkqXEdmTurFGXApHP6kLqUREJGHGmAuAE2i5s+I9YB/Lsq60LOseYJbPoV5qHhLY3xjTI6WFioiIiIiISJdVXr/BcXlZQebdN5JvnMMFIlYk5EpERETEVb+D/d0H1trcr8CelamrYc8KmPu11IaitbbiTlj/eDBjt7f0TwpFk84lr7t9H+gJs4IJD/Mz5oCj4ajHoffktstNDvQ9CI57FUrGJVeHn4A2EZGeY+H416DvwWByEx/no29CxeLE11/xt8RD0fzqNRGOfAQGHu9/HZfjQDHbRDqJrN+bsCyrFri76YExxgB9gAJgh2XpqK5Ixuo+zHl5dYYHo9VXwBNl6a5CnJgcOP0TeLjIvc+2t2DkJR2Xr33Qe+z6XcnVlg67F0Dlko7L1z0Kh/69a9280lAV/zqzzoQpP4dJN6amht2fwGszoG5H7L7NwWjNCvrYP/0cSBp9VdylhSK/xL2teh10HxFeLSIimSjocGCn/Z9k5TjPOqlgNBEJnJ9gtNGfC2bbvSa4t5W/AT1GBbNdEREREZFs5+cC5fe/DKMuD76WrqIhRcFoQ8+GI+5PzVgiItKV/aDV80+BEy3Lqo53EMuythhjtgIDsCeF3Q+Ym5oSRUREREREpCsrr9/ouDwTg9HyjPO1exFL1+6JiIhklMGnwIiLYe1D/tdZ9yhM/H5qtr/2IVrmKwnI2odgxEXBbqN5O7GcPNcOGxHJBjn5wd7f6zeQbNi59qOxDqxo07q5kOtyv1C8ggh9E5HOqXQ6nDIXGuvbhrq+cQpsfdP/OOsegck3JVbD2ocTWy+W6Q/BkLPsHIzcwvjX9/q86EpZEdJlZfxfuTFmf+AkYALQv2nxdmAx8IplWfNa97csywJ2hlqkiCSmeLjz8qq14dYRr9eOg2hduqsQN7ndYPDpsOl55/b1T8JBt0NOu8TgWAfH6rPwo2XTS87LG6qgdgsUDw23nnSxookFowF8/CMYeAL0Pzz5Ohbd5i8UDToGozXrMdp7vUk/hv6HxVdXWPJ7ubctvR0O/E14tYiIZKLq9cGO3++Q1I/pGoymfWURCVis95n9b07NPryT/B7Qcx/Ys7xj27qHYUxAgWwiIiIiItluh4+8ksZqqFwOJfsEX09XsOaB5MfILYZp94MxyY8lIiJdljFmEDC11aL/SyQUrZUl2MFoAPugYDQRERERERFJUqPVyLbIZse2soLMu+Y+3yVcoMGKhFyJiIiIxNTv8PiC0RbcAL0nw6CTkg8U2jUvdp9kbXrBYbsfQ/nrUDTIDofLL0l8/OpN9jZ2f+zdr7Af9J6SujAnkWwXb1BOIkE9fvgNaBMRadb+s3zAjPiC0T75CUQbml5EoWo9FA+BgcdD2XF2OFlrVeth80t2vsmO2clU7szkwoCjIa8oiTE89gn1PitdQMb+lRtjDgR+Dxzp0e0WY8w7wLcsy/ognMpEJGW6uwSjVSyCyB7I7xluPX58cC3s+ijdVUgs477hHoxWuwW2vwsDjmpZVr0Btr7lPWZdFgajNex1b9v5YdcJRmtI5npqYOY0uKgu+QOja/7jr5/Jcf8iYnKg32GwY07HtqFnw5SfJl5f0Ar7ubdteErBaCIiVeuCG3vSj4IZN8flxEdjbTDbExFp5vY+k9cTzlhsn7QI0pCzYMlvOy7f8irUboNupcFuX0REREQkG8W6SLnZ2odgckDHMrqSrW/DtreTH2f0VXZAtIiISHKmNf20gPWWZcVx1bKj1hdweJyIFhEREREREfFnR2QrDVaDY1tZweCQq4kt3zhf1x6J1odciYiIiMQ06jJYfBvUOIewOpp1Bgw8AY5+CvK6J77tXfMTX9evaD3Ubodu/e3XS/8MH16LfUoAKBkHM2a630vsZdt79r9FvY/7Osd9U6Fo0vV4TXLnFaITpmQDHkVExlwNy273tz/QbOEvOi5bdCuMuBim3dcSHln+Brx5NkQqU1Kqo1FX2mGxyfAKu9T7rHQBObG7hM8YczbwFnYommn1+F+XVo8jgTeNMeeEXaeIJKnPVOflVgNsnRVuLX7M+5694ySZb9CJ9o6pmy2vtn29eSb/O9jmZsdssKJJlxaqyB73tjfP6fjv0Fl5BcT59aLL+1UQcgq9D0oNPct5+fhvB1NPqnQb4N62dyWs9vh/VkSkK6heH9zYQ84MZtwclxOH1esh2hjMNkVEwD0YbeQlwYeigX0yxInVCOsfD377IiIiIiLZqHS6v35r7g+2jq5ijc9j7rkeM1FOuAEO+lNq6hERka5uYKvnC1IwXuuLAJTgKSIiIiIiIkkrr9/g2lZWEMK1KHHKcwk5iFiRkCsRERGRmAr7wUmzYdDJ8a235VVYdW/i262vgL2rEl9/v+thwDH++i74gf2zdhvM+xZt7tOsXAoLb06shg+/ETsEpdckOOQOmPjDxLYh0ll5heiEyWRIHSKSvboPg5Pes+/j6TEGiocmPtbah2DTC/Zzy4IPvuYvFM3k2tttfngpGmT36XsITPkFHHpX4vU28wo/0/usdAEZF4xmjBkPPAgUYQefWbR8C2odkGa1enQDHjDG7BdutSKSlF6ToFuZc9vqDLvp4aPrYfGvYvcbdp7z8sk/S209Etuoy2Dwac5t7WdY2LPc35gbnk6uprCt/Id3++zPuwcKdCapCEarXAy7krg+u7HOf9/cbt7tY78MfQ5su2zUFVB6ZPx1hW3wGe5t718DkRT8txIRyVa1W5yXJ/v+PuZq6Htwqo8CRwAAIABJREFUcmO48ZpRaeMzwWxTRLqmHXNh1lnw3ASY80WocbkYNacwnHr6HmSfUHEy9yvh1CAiIiIikm3cAtbb27MMKhYHW0tXULEwdp9TF8AJbzq39RgNU2+GnNzU1iUiIl1Vr1bPUzHVcuswtC5w0YOIiIiIiIgErbx+o+PyvnmlFIR1PUoc8o3zMfcGqz7kSkRERMSX7sPh2Bchr3t86214KvFt7v448XUBhl8IJ7wBl1oxu7Jjjv1z80sQdQhqTeSezJrNsHOud5/CfnD6J7DPV8AY774iXY3JkOs9vMJ8RET8KtkXpj8IZ62Ac9bD4UmExzbvX+1dCRWLYvfPLYaLI/Z2mx/7Xuvc1+TBuZvsPqe8D5N+mJrr77zCzzIlCFMkQBkXjAbciR101hx6ZoAG4D3gEeDRpucR2oakdQP+FnaxIpIEY2DgCc5t6x6GnR+GW4+bpbfDkt/G7jfoFBh/PS1vTU1MnntgmgSraJDz8sjutq+r1/sbb80DydUTpo3PQ2O1d5/q9bDppXDqSaeGqtSM88HXoHZrYuvW7/LfN1YwWmFfOPEtmPZvmHgjHPMcHH5PdhzAHXq2e1tjLWx6PrxaREQyjdtnTO8p8Y/V7zCYeisc8zwc+vfgPiO8Lvja/HIw2xSRrmfXfHjlKNj4rB1YvPIfsO0d576x9qVTxRgYcZF7+7zvhFOHiIiIiEg2sRr99133aHB1dBVu35ua9TkQ+kyxg59LxndsH3FJMHWJiEhX1fqEeS/XXv4NbvV8ZwrGExERERERkS7OLRitrGBIyJX4k2+cwwUilkMQiYiIiGQGY6DsuPjW2fIKzJwOC26E3Z/Et+6u+fH1by+ecNjdH8PbF8J7Vzi3126BBww8tx+881lY/FuoXAaLf2e/fvM8u/0BA2+eY//OL0yOvd0BM/zXKNLVmAyJEPEK8xERSdSgkxNfd9XdsPRPsO1tf/0L+3e8N3P4Z5z7jv5c4nV58QqZ1PusdAEZsldjM8ZMAo6mJRAN4LfAQMuypluWdbFlWRdZljUdGAj8ut0Q040xCdw1LiJpM/h097a1j4RXh5uqtfChS2pre0fcD6XTYNp9UFhqLysaBEc9Dr0nBlejuMvr4bx83aNtU3zX/MffeOsfS76msCz+lb9+G58Nto5M0BAjIM6vbe/AE2Ww5A/xr1u/O3afZjk+whzyimHU5bD/z2HI6dkRigZQEOMa90RmABER6SzcgtH67A89Rsc31thrYML3YMhpwX5G5DjPOgnACuWWi0iKLPkDROv89Q0rGA1gxMXubavuhmgcoQ8iIiIiIl1BPMFoycx6LbbcIu/2o5v+jY2BGS9B30Ps1zmFMPZLMPkngZYnIiJdzrZWz5O6gMYYUwhMbbVoQzLjiYiIiIiIiABsqXf+ellWMDTkSvzJc7l2LxKtD7kSERERicuEGyCve3zrbH8XFv4SXj4Mtrzqf71kg9HivSbXzwRolUtg7QMw73p4bhzM+7b9esOTLX02PG3/znU7vMfKL7HvmRDp0rLgntKc3HRXICKdUVEZjP924ut/+A2Y7TPELM/hOrzS6TD4tLbLCvvD+OsSr8mLV/iZV2iaSCeRUcFowPlNPw12ONq1lmV9x7KsXe07Wpa127Ks7wFfa9Uf4LxQKhWR1Bh2HuT3dm7b+WG4tTh547TYfQCOfhoK+9nPR30WztsC52yAczbC0LOCq0+8uQWjAbxzKVhW/H9nqQrZClK0EXa8769v+WvB1pIJGmvc2077OP7xProOHsiBdy+DVffaf0deGqrgk5v8jx9mmEPY8kpidMiCg3EiIkGwLKhzCUbrVgaTfhzfePk9k6/JD69gNBGRVFl9r/++8cxOl6xek6DHGOe2uh1QtSa8WkREREREskG0wX/fXfMgsie4WroCr+M2n6mA7sNaXncfAae8D+dtgwt2waF3Qo5mkhQRkZT6qOmnAUYaY8YnMdb5QPMHXQMwO5nCRERERERERADK6zc5Lh9YMCTkSvzJN843vTZYkZArERERkbiUToMT34Vx34DiOANYG2tgwQ/99/cKRis7DsZ+2Xv93BCvyY3XuOvsf8d+B6e7EhEREUmXA34N0+5ruSc/r6e9j1N2XGq34zRBqTH2xKQH/RGGXQD7fQdOmg299kvttltvz7VN1/lJ55dpwWhN0xBjAbMty/pLrBUsy7oTeIeWJI1DA6pNRIKQWwhDz3Zus+K4QSIIFYvsh5dh58PJ73cMPzM5UDzEe0dDgucVjLZ7AVR8CsvuiG/MPcuTqykMe1dBY62/vlVroWJJsPWkW6NLmF1uEfSeDAOOTmBQC9b8B2ZfBe9f496toQZeOwHWPeJ/6M4cjFbQK90ViIhkpoa97p/dhQNg9JVw7Esw4mJ/43ntA6WSZhQQkaDFG4QQ5r60MTD2S+7tq+8DKxpePZ1NQ7UdnNFYp39HERERkc7Caoyv/1PD4wtT68yiDfY+coPHRDCtWVGIVDq3TX/YnjnbSbf+zjNcioiIJMmyrNXAilaLbkhkHGNMIdB815cFzLUsqyrJ8kRERERERKSL29tYyd7GCse2sowNRnOeHEPBaCIiIlmgzxQ46A9wznq41LIfF9XQcou8hx3vQ/3u2P2iEfu+SSeH3wPHvwaH/hX6THUfo/Vkxf0Oi73NsIy4BA76HfSemO5KREREJJ2MgVGX2ftRl1pwYaW9j3P8a1A6PXXbcQpGA/u+ynHXwlGPwgG/gp5jUrfNeGgCVOkCMi0YrXUE4r1xrPfvVs+TmVFSRNKhxyjn5TvmhltHe+se926fMROOegz6HeLdT9InVijI5ldg1b/iG7N+V+L1hMXtwKWbpX8Mpo5M0ehyo1Dzl5FD/wElrXYfeu4b3/gr/wGVS53bNjwNO+KcoLozB6O53WzVbO+qcOoQEck0tVvd27oNsH8OPhmmP9hy8vOYZ93XCSsYLRv2i0QkezXWwZsuQepuwt6XHn+de9unP4VHS2DJ78Gywqsp2zVUwdsXw2O94aF8eLgbPJgLr5/i/XkpIiIiIpkv3gmRIrvtY+xdmRWF+d+3940f6Q6PFMMDBj7+iXeAcMNe7KwYB91HBFGpiIiIH3c3/TTAZcaYK+NZ2RiTA/ydttcXxpx0VURERERERCSW8vpNrm1lhUNDrMS/POM8qWnEqg+5EhEREUmJ3G4w8AR/fR/rY583bn48MQg2vdi2T8ViiLrsF7QJQ/OIGMhtFYy279f91RaGIWekuwIRERHJdINTuL+Q6ff85zgfIxLpTDItGK13q+cfxbFec1/TbgwRyQYm13l5YzXU7Qy3ltZW/9u9re9BMOjE8GqRxOTHCAWZ9+34x4xUJlZLmKrXx9d/xZ3B1JEpGmIEo5XsA6d8BKd8CCfMgjMWQ984Aw9fmAJL/wTvXg7vfxnePBdePBDevST+ejP9S1Iy8nt5t++YDdE4b44TEekM6na4txX2d2nwmBHKhJT033Mf7/aGqnDqkM6voRo2PAsf3wQLboQVf4fqjemuSoK26DYofz2+dWLtb6ZaTh4MPs29vaEKPvoWvHwIrHnQnoFPvL13Fax7uOO/1eaX4Q2Hk1ON9bD6P7D0z7D7k1BKbGPXfFjyB1j7cHYcLxARERFJJ6sx/nU2v5z6OrLJotvsR3uf/hQW/8Z9vTX/cW8L+3uTiIhIiz8CW7HTOw3wT2PMzcaY4lgrGmMmADOBzzatbwErgIeCK1dERERERES6iq31ztchdcspoldun5Cr8SffNRhN16aIiIhkrf1/mdh6tVvgjdPs61SbzTrTuW9OPpS0mn/EeEQM5LS6v23Y+TAwA+6lHXgCDDsv3VWIiIhIpht7DfQ5IEWDZUIkUwbcRyqSRpn2V976KlyPO8M72NXqec8U1SIiYXELRgNY+xDs+9Xwamm2+j7Yu8K9few14dUiicuLEYzmJbfYDudrLxtudG50CQLrqtz+PZqD0QDyiqDvgS2vh38Gds71v41oPXz4jcTqa8/lRHWnkF8Su8/Lh9hBdcbji5qISGfj9dnttj/jlebvtX+dSiXjvdtfORJmzIRupeHUI51T/W54/RTYMaft8oI+cPQzMODI9NQlwbKisOz2+NcrOzblpcTe5vGw6QXvPjs/hHcvhU9/Die9CwWa18FRZA9sfNq9fedc2L0Qek+0X9duh5nTWh2/MXDAr2G/BELQE7HkD3bwHZb9umQczHgFug8LZ/siIiIi2cZtUoz8EvdzLyv/Dof8FXJCOtaRaVbf69H2b5jwXee2T3/uvl6BgtFERCQ9LMuqNsZcCTyHfeVwDvA94GvGmBeAda37G2MuAvYFTgKmYV/p23wSuRa4xLIsK6TyRUREREREpBPbUr/BcfmAgiGYDL2eOS+nwHF5gxXBsqyMrVtEREQ89DsEzlwOz8aYvNzNwl/CyEvs8+/V65z79JoIua32I7yC0XILW57nFcExz8KGp2HXPCgaZE+Otmc5OB2qr99hT45ctz2x38XJEQ/A8Au876MQERERASjsCye8CesftycZ3b3Avj8tWh//WJl+jEXBaNIFZNpfeetvUfFMGd26byZELopIPBrr3NsqPg2vjmbVG+C9K7z7jLw8nFokOYkGo426wg5eqFzasS0rgtFqE1invu2Bzc7EKeAOIM9j4umx17R82QlbXvfwtxkWP/9P7poPuz+BPlOCr0dEJFO4BaPl5Lvf+Nv/cLs92m6Gx9wi6D0ptfW5MQZGXwWr7nFu3zUflvwOpt4STj3SOS39Y8dQNID6XfDhtXDKh5l/kDmb7JoPn/4CKpfYM8Id+Lv0hDztXR3/xRD73wLFQ4Opx8s+X7G/O+z6KHbfysXwWB8o7AdFQ2HERTDhe94XlnQle5Z3/Fxrr+JTO4hu8a8c/kYsmHe9/Rh6Lky9DUoSvEAolpotMP+7/C8UDexjCAt/CYfeGcw2RURERLKd5XL6f/z18MmP3df78Fo45C/B1JTJoo3O56maVSy0LzBv/53YsqBms/t6+QpGExGR9LEs62VjzFeBO2i5xq8ncGG7rgZ4oN3r5gMxDcDVlmX5OCAnIiIiIiIiElt5/UbH5QMLhoRciX/5HhNxN1gR8k0nvS9ARESks+s5FnqMbTVhbBwqFtrXV+/62L1P7/3bLfC4frX9ta25hTDiQvvh11sX2IEkyTr8Hjv0TUTa0X0UIiKu8nvA6CvtR7NZZ8HGZ9NXUxAUGitdgO66E5H0K+jj3rbb40BMECwLnopx0/cZy+yUe8l8LjMhxTT+25BX4tzWWYPRUjkDQ6ZxC5vJ9fj/uKAXnPIBTPs3FJYGU5cbr8C2bGcM9PQRTLDh6eBrERHJJIl8VuWXwOAzOi4fek64nyXDzvduX/9EOHVI57XlNfe2XfPcZzST+NVshteOty9AqFgI6x+Dlw60L5II24Yn/fWbcAPsfzOc/D5M/H6wNbnJK4LjZkKfA/yvU7fDDmFe8AOYdWZwtWUbP7PvvHOxHUgW6zvshidh5mFQU56a2jqM/7RziNuKvwW3TRGRMEUbYevbsPTPsPVNe1IFEZFkWQ3Oy4sGwbEvuq+3/A6oWBxMTZmsfkfsPg17Oy6rcb6B73+8jjeJiIiEwLKsvwMnA1tpG3hG0/Pmh2m33ADbgZMty3ownGpFRERERESkK9hSt8FxeVlBGibo88kr+Cxi6dyeiIhIVht+QeLr7lnpfT/uiIvbvg56cuphSfwuzXIKYPDpyY8jIiIiMvVWMHlxrpThIZQ58f4+ItlHwWgikn4DjnRva6gOrw6Aco+b7gF6jIaeY8KpRZLn56ZqJ32mQH5P57ZOG4y2NfV1ZIqGBMJmwP4yMOpyOK/cnm0jLP2PCG9b6bD/LbH7fPJjqFobfC0iIpkikWA0gGn3wtBz7WT/nAIY/hk47B+pr89LXg/v9j3LwqlDOq9YoVy7Pw2njq7gk59C/c62y+q2w+r7w6uhsQ7euRTmfce7X7/D4cK9MPVm/p+9+46Tor7/OP6a3WvcHRz96BwdpEgTsCGCotiNBdQYjTFqNFFjfkl+xlRTTaIx0V+a0TRjb9gbYEeqovQicCDSOeDuuLY7vz/Gy7WZ2dnd2Xb3fj4e94Cb73e+3w/H3d7M7Hzfw8hbocsxyanPSW4XmDGv5Q0jXux40XrqjF3IVltTV+HveDUH4JP7/R2z3rrfObc93QNW/cIK3xcRyUSHN8Jj+fD6ibDsG/D6SfBoHhz4MNWViUimM0P2240gdJ/qvu/6//O/nnRX5eF9G7tzZrfz5C6TE39ju4iIiAemac4HBgPfAbZh3Unc/INGf98H3A4MMk1zQdILFhERERERkVYrZNaxt9b+AWjFOb2TXI13WUa2Y1utqXtQREREMtqI/4l9bdmiq2HZjc7tPU9r+rmR4IiBfhdAyWWx728E4Zg/QV5X/2oSERGRtqvoKDj+4cQfA/nO5Z6/qIPeRDKPvstFJPU6jXNuq9yWvDoAPvyee/uYn2XgwU4b5va95eSoW60/szvYt7fWYLTlt8DUuc6BcJks1rCZeoYBY34KCy8DM+xfXacvhXnTm35PFY2MLUwhk/T9gvWkjh0vuPdbcgNMez45NYmIpFqsv6uy28PUpz4PkglAlsffbX7KKojcJ1ynpw9I7MLV7u0HV0FvPQUsbuE62PgX+7Z9i4BvJKeO9f8HWx9279P3Qjjx8eTUE42cTtYbJAOugDdmRbfvp8/BCyPhzNVt+/Wy9rD/Y664DUZGuNYTi5qDkedd+XMYdDUMu1Eh+yKSWd6dY/PACRNeanSttftUyO9vXcfqfUZSyxORDBaus98eyIKsfBh8rfN5yd73EldXuvIajFbQr+m28k+c+x/9i/hqEhER8ZFpmhXAb4HfGoYxFDgB6At0AXKAvcAu4D1guWkqhV5ERERERET8t6dmJ2HsH+zRI42D0bKNHMe2OjPGh8uLiIhIesjtAjPmW++TV5RCMM+6n8eLshXObSWX2TxIK8HrZAPZcOy/YeiNcHAldBhhraM7tLqhT4cR0HEM7F8KNWXWPQRVuyGnI3Q/CQoHJLZGERERaVv6XQjdtsPOeVC9x9qWVwzvOYW5pvmDSAPO4fkirUU6rrSrv4lpimEYJR736dH4E8MwTiSKVxjTNN/y2ldEEsAIwLSX4Y3TW7ZV77VCnoJ5ia9j15uwf4lze5fJUHJJ4usQ/7Qrhi6TYN9i7/uUXGr96RiMdtC6qJjX3fq+rN5nLYCvPQw5RfHX7IdwDMFouxZYIV2nvGktQGpNQpX226P5d5bMgXY9YetDUHcEtvw7vprO3WotVjpvG6y7Bw58CJ3HW4vmczvHN3a6Mww48Ql4NEJ4z44XoHwLFJYkoyoRkdRyCjX1egzsJZwsUbzMXb3POi4TiUWLUI5myj5OTh2t3aE1zm1bH4bjHkxOHaWPubfn94MTHk1OLbHqdbp1XvX6SdHtd3gDLJgJx/3HOvdoi+rKEzPuxz+F0T/wd0yn88zmfdb/AT75O5y2CIpG+FuDiEgiVO2G/csi99v9+dtqW/4NE+6BYV9PbF0i0jqY9gvLMILWn5P+7ByMdmgNhEMQCCamtnTkNRitsboKOLTWvm92B+gxPf66REREEsA0zfXA+lTXISIiIiIiIm3PzprtttsNAnTLTt/7N7JdFr3WhmuTWImIiIgkRDAXik9u+LxiK3z43fjG7DC85bZhN8Get1tubz80vrkaMwzoOsn6qNfrtJb98s/xb06RtmLUbbDk+pbbO45Jfi0iIpmkXU8Y8MWGz8N1zsFoLYJl04yRjpFRIv5K1+9yA3g4jn3fiKK/Sfp+HUTaDrfgm8pPof2gxNfw8Y/d20d9P/E1iP+OfxhemWyF7EUy4R7oOMr6u1Mw2pYHrQ87XabAhN83vVCXCk7hKpHsXwrbn2kIh2stQkfstwcjBHM1V3yS9QFAGLb8J7Z6htxghaKB9X026rbYxslkwTzrSSORvobbnoIRtySnJhGRVPLrd1UqeAlGq9qlYDSJXajavX3Lg9DlGBj6dSt0W2Jz5DPntrwk/fyGqmHfIvc+E+/NjP/n7lPh/B3w9oXWE/u82rUAnu4FBf1h8gNtL7Sg7nBixv34hzD4Gv9+F5mm8+9uO3WH4aPvw4lP+jO/iEgiVe2Jfp+PboOBV0J2oe/liEgrY9bZb298Y87xj8K7s1v2CVXB4fVtK2y2amfkPtuehuJpcGQXLLwcdr7m3LfXWb6VJiIiIiIiIiIiItJa7K7ZYbu9S3Y3sgM5Sa7Gu2zDubZaM8KDKEVERCTz9J8dfzBa/zktt/U6HbIKWz7YtsQhGERE0kufL8Cym1s+jH7QV1JTj4hIpgqkedyQWzhbutcu4oN0XUloYgWcRfNhNvqIdl8RSbX8Ps5tVbuSU8P+Zc5thYOg1xnJqUP8VTgQzveweOTMNTDs6w2fZxdFP9e+9+GdC6GmLPp9/eQUjJbVPvK+nz7nby3poHqf/fZ4wmaG3gguT9pyFMyHo+K8EN1a9L0gcp/9SxJfh4hIOqjL5GA0D8cXK25NfB3SeoUjBKMBLLvJClSV2LmFoFTvs4KgEu3D/43cp9PRia/DL+16wqnvwKwP4Zg/w3EPQW43b/tWbIX5M6BiW9PtVXth3T2w5i6rT2tTWx65T6w+nevfWLUHIdqnK3/6AtQmKPhNRMRPzW+Q8qL2ELwwEj74Dmy63/pcRCI78CGsvgM2PwjV+6Pbt/aQtd8H34UPvg0rvg/bn03OcXs8zJD9diPY8PfeLuFdXs4ZWpNdCyL3Wf8HOLwRnu7hHooGDQ9sEREREREREREREZH/2lmz3XZ7cY7L+pY0kGU438deZ0Z5T4OIiIikv4L+1n2o8Wg/uOW2rAKY9iJkd2zY1n8OjNT9/yIZoV0xTH3GCjisN+irMOSG1NUkIiLJZSgYTVq/dP4uj+fOba/7KhRNJF0E88EIgBlu2VZXkfj5645AncsC1dOXWPVJZgoEod9FUPq4fXvfC6FoeNNt+b1jm6tym7UAcMS3YtvfD07BaEOugzW/cd936yMw5R8QzPW9rJSo3ucc9paVH/u4XSfB9Nfh49th17ymbUYQRvwP9DkfPv4RHFhhpTF3GgdjfwUFfWOftzXpMSNyn7KVia9DRCQdhDI4GC2nU+Q+O19PfB3SeoU8BKMBrL8X+l2Y2Fpas2qXYLRwjdWe1z1x89cdgXV3u/fpNA7yM+xY2jCsMLf6QLd2vWDeNO/7z+0Hl4Ss6xF7F8OCUxvCZlZ8D054FPqc63vZKeN2XSZen70Cg6/xZ6yq3dHvE66GPe9Br9P8qUFEJFFiCUYDqCxtuO648udw6tuxX18VaQvW3QvLvtHweeEgmP4aFA6IvG/lpzD/VDi0pmVbn/PhxCfdnw6YSk7BaI2fWJiVD52PsX9oxqfPWq8xo25LTH3pxDRh9xve+j43xFu/gv4xlyMiIiIiIiIiIiLSWu2q+dR2e4+c9H6vyy0YrdaM8T0/ERERSW8ll0Cfc2DvIqgrh3fnOK9DaG7Et53bup8IF+yG/R9Afh/I7+VPvSKSHL1mwQX74MBy6x6kPI8P8vaTkQVmXfLnFRFJhmBeqisA3DJO0vR+UREfpVswWinxBaKJSKYyDAgW2C+CTUYwmtsi8BlveAt8kPQ25ufWhb/K0qbb8/vAxHta9s/vF/tcH/wP9DilYfF7sjkFowXzoO8FsO1J9/13vAh9z/evnt1vwYrbrJCrQBC6TIZxv4Gio5z3CVXBh7c2DUfIKrAukhSNhDE/sb7GkTw/zLktr9j7v8FO96kwI0LQy8kvxzdHa5bdwfq/PLjKuc/hdRCuhYDzm/ciIq1CJgejeVls3fjpM36q2ArLvwX7FkHRKBj1feh2fGLmyhShauu469NnIbsIBn3FCsfNZGGPwWj7FlkLx9M1ACDdVe91b685mNhgtJ2vRu4z+ieZ///bfar1c7npfu/7vHsplG+C/Uubbg9Xw+JrrfOirAJ/60yV2vLEje1n6HIswWhgBQYpGE1E0l2swWiNVWyGZ/rAJeHM/90tkgjV+2H5TU23lW+CVb+Ayfe571u+BZ51CU/b/jRsfRRK5sRdZkKEHW6ANIJNP+93kX0wGsBH37faOwz1t7Z0E65tCEX2S+Egf8cTERGJgWEYAWAUcDTQD+gGtMO6X/AIsBvr/sEVwCrTNHUfoYiIiIiIiCSMaZqOwWjFaR6MFjACZBlZ1NmED9SatSmoSERERJIiqwB6TLf+PvBK2PAnb/t1HO3eHsiGrpPiKk1EUiiYA12npG7+SX+FRVe13F5yefJrERGJVZfJ1tq05oZ9M/m1NNd/NnzwrZbb83q0nvVEIi7SKhjNNM2SVNcgIimUlcJgNLdFrZEu/Ehm6DAEZn0An70Mu9+2gkY6jbUOBoO5LfsXxBGMBvDSWJj8NyuQomo3ZOVDj5nJeWqCWzBadlHk/Usfjz8YLVwL+5bC9mdgza+btu140fo4cw0UDbff/91LrUVcjdW/Fux9D+afChPugaE32C+wDNfB8m9C9T7nGr0Eq0liDb4Wlt3o3B6uhcMb3EP0RERaA6dgtKwMCEYDGHgVfPKAc3tdAoJuasrg1ePgyA7r88rtVhjrzPdSF06bDhZebh3L1du/1Pp9OuwbqaspHuEQmCFvfUNVVghH4cDE1tRauYWFQ2J+jusdXAsf3+7eZ/A10OfsxNWQLIZhnSeWXAalT8KG/4u8T+mjzm1Vu2DRNTD+TmjXw786UyWR32eH11u/K/L7xD9WpJ8XJ7vmwdbHoP/F8dcgIpIofgSj1XvlGDj6l9YNV9nt/RtXJNPteBHMcMvtm/5mBaOFQ3DwYziy03poT/lm67yorhyWeAi+XnoD5HW19u00Dgy3JwUmmdP5ndHsloX+F8OH33EeZ+Xt0H+O9R6PH8d36cjvRWtGlsLkRUQkpQzDmApjNpKcAAAgAElEQVRcC8wCPNy0AMABwzBeAO4zTfOdhBUnIiIiIiIibVZ56CCVYft7FYpz0v/6c5aRYx+M5ud7fiIiIpK+BlzpLRgtuwj6xLlOUETETa9ZkNW+ZT6A7pkWkUzSf07LYLT8Pulx311+b+h6nJWv0Fi/i/UQa2kT0uhOaBFp85wSSUNJCEY78IH9diMLcjomfn5JjtzOUHIpTPoTTLgLBn7JPhQNID/OYDSARVfDOxdZC5He/zI80xs++jEk+qHGYYdgtIDHYLStD8Oe9yL3c1K5A149Fl47rmUoWmMvjIBdC1puL/+kZSianWXfgFentAxPrCiFF46C9fc675vXAzpPjDyHJJaXoJODqxJfh4hIqjkFowUzJBit91nu7eEaCPl8s9X2ZxpC0eqFKmHzv/2dJ5NU7YbSJ1pu3/DH5Nfil3B1dP2fHQRVMQYWtXWRvm6JCCwP18Lia63zggPL3ftOzODvYzvFJ8PEe/wZa+tDMLcENt3vz3ipZBeWDzDoKzDaITzv2H/B+Tuhx6ktAzWae6YvbPNwrhmJW7h+JGvvjH9+EZFEclsk0SvCcX9z+5fBgpnw3FDYszC+ukRak89edm6r3gfzT4GXxsEbs6zr3+9dAgu/6C0UDaBmv/VgkZcnWn/Gc+ziN5vFWQAYwaafF/SH7lOdx9nyH3jzbOv47sP/Tfx7LqkQdvhaxWrAF60H+IiIiCSZYRhHGYaxAFgAzAE6AobHj87AF4E3DcN43TCMocn/F4iIiIiIiEhrtrPmU8e2Hjm9k1hJbLKNbNvtdX4/fENERETSU9dJcNzDkNfduU+HETBjAWQXJq8uEWl72vWA6a9Ch2HW53nd4Zg/Rl5rJCKSTobdBCO/B9kdrM87T7COowIR1qkky9S5n6+bCVprTgdeBeN/m+qqRJIiTX4KRURwDkartX8Kj68WX2O/Pa8bGMqQbJNyiuxTyuO18ifQ/UToMcPfcRsLOQSjBfOcg+Cae+NMOGs1tOvprb9pWkEknz4H22wCOZzMmw4XHW56gfWzV7zvv28xLDgNTm30gOhFX4HDG9z3m/RnpSCnA6eFcI2VrYJ+FyW+FhGRVHL83Z0pwWjnQLcTYc/bzn1CFRDM8W/OZTfbb197Z9u9qFf6BGCzGPzQWghVez8OTCfRBqMBvH6SdRwr0Snf5N7++onWRf1Jf4XO42Ofp+agFZ686hfe9zlrPQSCkftlGsOwnhyz5934xwpXw5KvQfeToP3g+MdLlbpK++3BAhjyNfjkfqjY2rC9+zQoucy6bjP9VSvAzwjC4x2s4D07b38BjvoujPqB83UoO4c2wMY/W+ea8fyf7Vucua/JItI2OAWjZbWHac9ZQT2lj8F7X8T22NNO1U7rAQqzq/T6JwKQ7fIwnmU3w+43/Jtr13xY+XOY+Hv/xoyVaTo/KKN5MBrAuN/CK5Mij7v6Dus4uNes+OpLN07Hs7E6+pf+jiciIuKBYRgXAw8A7bCCzsD+RMJL23RgmWEYV5qm+aSvhYqIiIiIiEibtbtmh+32doECCoMeHkaeYtmG/f14tabPDzEVERGR9FUyB/rPhsrSlg8yz+4A7YpTU5eItD1dp8BZa6FqL+R20dpdEck8hgFH/xxG/8TKlsjplOqKmsrraq2bqT0EgVzdky1titJ+RCR9OC1IratI7LxOQRQAuS6J+dL65XVLzLjr74l9X9O0fiZqDkL1fvvFMW7BaHUegwZry2DZTd7r+vB/4f0rogtFq/d4ewg3WhC15Pro9t/zLmyfa/299jDsWuDev8tk6HNudHNIYnh5jT20NvF1iIgkU6gajuxqtu2Ifd9MCUYLBGH6azD06859/A47rj3o73itQc1+5zavx4DpJhRDMNqhNbD1Mf9rac3CdXBoXeR++5fByxNgz3uxzVNXaQXXRROKNukv0GFIbPNlgkFX+zdWuBY2PeDfeKngFIYYzLPexDnjIxj9Y+vJNsf8GU5+uWmYfVaB1bf9UPd5Vt8B80+Fyu3WOTY0nGebdgGT6+G142HtXVYYuNvrrReH18e3v4hIIjkFo9WHHAeyoORSOOUtGHwd9DrD+9gvjIq/PpHWwO1mmS0P+j/f+j9YN8KYJtQccH9PLJHMsHOb3RMVuxwDM97wNnb9+wOtiZeHing1+QHrybwiIiJJZBjGRcBDQD5WuJn5+YdBQ9jZHmA98D6wGNgA7G3Up/F+AAXAw4ZhnJ+cf4WIiIiIiIi0dodD9vegdc0uxsiARfxZRrbt9lrT54dviIiISHozDCjob91v2/hDoWgikgp5XRWKJiKZLZCVfqFojWV3UCiatDkKRhOR9JFVaL89lOBgtL3vO7cVliR2bklvAfunKMVt+1x4cSwc2hDdfuVbYN40eKwQnugIT3aBp3vD5maLpdyC0WoPeZ+v9HE48lnkfjUHYN3vvI9r55Es2PESVGyLbf+3zrP+bVW7wQy5953+amxziP96nwVG0L1Pzb7k1CIikmimCR/eCk90hqd7wPPD4cAKq80xGC0vefXFK5gLI29zbt/+TPJqaavcfqe+PLFlIF8mcArmiGTZTfbhRmKvfLNzIJWdRVfH9vXd/gyUrfDe3whC77OjnyeT9L8Uhn7Dv/FW/9I6P8tUjueyn79pk90BRv8IptwPQ651fjOnaGTkufYuhGf6wuMd4NnB1rn1Ex3huSEtrxOt/z+o3uP93xFJ2Ur/xhIR8VvzJ8fWa36dtPsJMOlPMO0FmO1wPtNc+UYrbFKkrcspSv6cjxfBwwHrmsTcEth4X/JrcLtu73Q+W3xS5NBbgI1/aX2vL3YPxYnVwCv8G0tERMQDwzCGAX/Hui+xcSDaIeBu4Eygq2maPUzTHGGa5nGmaU4xTXO4aZrFQDfgbOAPwGGaBqRlAf80DKMVP01BREREREREkqUiZH9ffftgCq7lxyDbYa1DnYLRREREREREREREpJVQMJqIpI+sAvvtdQkORpt3snPbUf+b2Lml7SpbAQtOhbDDYqBwHWx9FFb+HN77EnzwbXh2AOx+q2m/6j3w/pfhwIcN29yC0fpeEF2de95zbzdNWPULfxbpvHEGvHlW7Pu/Mwdq7Z/c9V8zF1qL6SU95HaGAV9y71O9Pzm1iIgk2oY/wupfQajS+vzQOph/qvV7+8gO+32cjo/TlVPQMcCyG6Hy0+TV0hYZWc5tFVvgnYuSVopvQi5hXYUDnduqdsKB5f7X01pVeQhDbuzQmui/vmUr4b3Lotun74XQrmd0+2SaYA5M/AOcWwqnLbb+jNebGRwm5/QzH4jyaTZFR3nvW1cO5ZsaziXLN1nnprXlDX3W/yG6+SOp3O7veCIifnIKpnV7gEQwD2Z5DD99fhh88B3rgQxmOPr6RFqFFD8RtWoXLL4W9ryb3HnNOuc2t/PZifd4G/+di6z3VVoLt69XNPpfAoZuCRERkaS7F8inIRDNBH4C9DVN8xbTNF8yTdMx3d80zX2mab5gmubNQF/gp5+PUa8Q8HiQICIiIiIiIuKsPHTYdntBMDPuNc82sm231/n58A0RERERERERERGRFNJdsCKSPlIRjFbjeK+lpeuUxM0tUrEV9rzTcnu4Fl47Ad6dAx99H7b8G9b81nkcsw5W/erzv5sNgSvNBfKgeJr7QsbmKre5ty//pntt0Sr7KPZ9d71uhX44mT5PP9PpaNJ9MOanzu2RXqdFRDLF5n+33Fa9xwoEOLTOfp/CwYmtyW9Z+e7tm/+VnDraKiPo3r7nbSj/JDm1+CXsEow2/TX3fXe87G8trZlTAIqbnfO99934V3hxdHTj53SGCb+Pbp9MVtAXuhxj/XnuFve+gWwIurze7nkPjuzytbykcfqZD+ZFN063E+Oro+YAbH04vjHcOJ2zi4ikg1iC0QA6jYGZi6DXGZHnWPMbeOdiePMchaNJ2xTL8Xe9YF7T0Nj8fjEO9PkDT5LJdHhIDLifz/ac6W38so9g5+vR1ZTO/Fq0NvDL/owjIiLikWEYxwMzaAhFOwycZprmT0zTLHfd2YZpmodN0/wRcDpQQUNA2qmGYRznU9kiIiIiIiLSRpWHDtluL8xqn+RKYpNl2L+HV2vG8V6EiIiIiIiIiIiISBpRMJqIpI9UBKOVrXRuK/li4uYVqTdvmhUUALDp7/DSeHgkB/Ytim6c0ketxdsVm50XVuV0guwOMPlvYHg8BFh7pxW2tv6P8OIYeLo3LL7O+rksWwXrkhhWUHIZtOvp3B6utQ+dASs4oMf0xNQl8QkEYdT34YTH7Ntr9ie3HhERv5kmrLvX+Xf7wi85Lw7uGGWQUKoZAedjeoANf/RnHtOM3KdN8vB12fpI4svwk1swWk4XuLDMub3sY//raa1iWXD/4Xesc5fN/7E+rymDhVfAUz3hIaPpx+Jrox9/wOXQrjj6/VqDgv5w3nboNK5hm5EFkx+AS02YUwOzK6CHU0CEaQVsZyKnn/nG4R9edJ8Kud3iq2Xlz+DFsdb3cCzcfoeHjsQ2pohIMsQajAbQdRJMe8H6feXFjhfg4aB1LfTxTlZQWvkWz6WKZKxYA68KSmD2EZhTZf2cXWrCuZsht0ts4+14MbkPpTDrnNsCWe779v2CtznemAUVER72kincvl5eDbwKepwS/zgiIiLRuf7zPw2si9bXmqY5L95BTdN8Hbi20bgAX4t3XBEREREREWnbKpyC0YIdklxJbLIM++vrtaZPD98QERERERERERERSTEFo4lI+gimIBjt4GrntmE3Jm5eyQx9zk3OPIuvhddPgkVXwYEPYh/nic7w7CDn9qKjrD8HXA5nrYMhN0Qes3I7vHEGLL3BCpc4sgM2/gXevgA+e8l7bQOvhBlvwJS/e9+nsY5j4LgH4dyt0P8S5347X7ffnlMU27ySPDmd7bfXHoSwQ2CQiEgmWPs7WPaN6PcLZEOHof7Xk0qV2/0Zp+6wP+O0NqGqyH0qdyS+Dj+FXILRgrnWMd6Ib9u3b3u8IUTv0AYrwGvHS1B7CKr2wva5sPXRzPuaJIJTAEokBz6AhV+E0sdh/kzY/C+o2hl/PVntYfi34h8nk+X3hlPfhpOeg2P+DOdugUFfbtpn5K3O+2/6W2YGyzi9jgWjDEYLZMGoH8ZXS2UplK2Ibd+sQjjlLWjv8Hu8rjL2ukREEi2eYLTGzo/iGCtcC7Vl8Olz1kMk9DoprV2sx99Drmu5zQjA4DjyQN48F3bO93Y+GS+3a7xG0H3fQdd4n+fZEvdzyUwRS4DesQ/CSc/DhN9bx6OT/wZGjEG/IiIiMTAMIxc4Gyu4zASeNE3Tt6d1mKb5MPAkVjiaAZxjGEaUJysiIiIiIiIiDcodgtEKMiQYLdvhtLjOjPG9CBEREREREREREZE0o2A0EUkfWU7BaOWJm/PAcue2Lsckbl7JDAOuSN5cu99K7Pj5fZuGg7UfDEc5hEg099nLNttegV1veJ9/wj1QfJIVkNbnPO/71et9jvVnIBuOf8ha8GXH6fUiW8FoaS+nk3PbtieTV4eIiJ8Ob4IPYgz36TzR+r2XcSIsuPVjcXKk4OT6MKy2JnQkch8/QquSKezy/VIfztFpvH27GYZ3Z8PSm+D5oVaA1xtnwONF8FQ3eOs8eHcOPNMb1t7tf+2ZJJYF9429dznsX+JPLQAnzYWCvv6Nl6myCqD3WTDkWisorbniaZDfx3n/Nb9OWGkJ4/Q7IpgX/VhDr4+vllh1ngAzF0JOR+vvdtbfk9yaRESi4VcwWrue0PO06Oev2Aqf/CP6/UQySbTH37ldYdQPnEOhR/8o9lr2vA3zZ8DLExIfrGvWObcZWe779joNpvzT4zxhePVY73WlK7evl5MBl0HvM60HP3U/UaFoIiKSClOAQhreKLgrAXPc2ejvhUAr+MUvIiIiIiIiqVIesn9AZ2GmBKM53F9YG++9QCIiIiIiIiIiIiJpQsFoIpI+HIPRIgQfxCocgu3P2LcNujoxc0pmKRoBA7+c6ir80Wlsy215xbEtMK+34wVv/fqcC9mFDZ8Puzn6udoPbvr56Nuj21/BaOkvp7Nz27uz4w/sEBFJhXcujn3ffrP9qyOZOk90b6/aFf8ckQLAdr8R/xyZyFMwmg9f/2RyCkkKZDcE5XYc7bx/6eOw/g+R51n+TTiwIvr6Wot4j7PcAuyikdsN5tRC8cn+jNcWnPiUc1vpExCOIUwhlZy+lwK50Y9lBODkV+OrJ1pHfRdOXwodR1mfZ+U7993vEtQvIpJKfgWjAYz9NWS1j36/pTfAS+PgIcP6ePcS2OdjCKtIqjn9nNkpGglf2A1jbnd+WEggC058Or6aDq6GZwfEN0YkZsi5zQhG3n/gl+Bij+8XHvgADm3w1jddRXueNjzGYH4RERF/1YeUmcAa0zTf93uCz8dcbTOniIiIiIiISFTqzFqqwpW2bYXBGN7jSoEsw/49vFozivciRERERERERERERNKYgtFEJH1kFdpvT1Qw2qG1ULXbvq14RmLmlMwz+W9w7IPQ++xUVxKfAV9quS2YBz1nJX7u4bc0/bzbCVBQ4n3/QC70OafptoJ+0dWQnRlP7mrTcjq5t+9+Ozl1iIj4pWoPHIgj9GTAF/2rJZn6nOfeXr45/jnq7G9I+69502HXgvjnyTSRvi7gfP6TrhyDORqFJBWNgHY945+r9In4x8hU6RJAO/xmK9RBvOs80TnsunpP5r0WOoUhBmMIRgPofhLkdom9nmgFmwX+B12C0bbPTWwtIiKx8jMYrdMYOGMFHHUr9P1CdPse+LDh71sfgVePhR0vRV+DSDqK5vh7+C1gGJH79TzNn4eDrLjNua2uAiq2gmnGNrZbMJrX84CsfOtBLF6UPuatX7qKNuQ42tdZERGRxBjZ6O/vJnCedxzmFBEREREREfGsInTYsa0wmBn3nWcb2bbb68w0uRdIREREREREREREJE4KRhOR9JFVYL89UcFoO1+1325kQe+zEjOnZB4jAAMug5OehfF3pbqa2Dktipl8H3RN4EOUx90J3ac23RYIwtSnIb9v5P2zi+Ck51qGZnnZt/k4kt4ihdcd3pCcOkRE4mWa8NEP4anusY8x6kfJDXLx09Cvw6CvOrfPmwYffi/2hdTgLQBszZ2xj5+pQkci9wk7hA6lK6fAgECjm/qMAPSbHf9cq34GK34Q3/dmpkqHmyFLLocR3051FZnHMGDmQuf20keTV4sfwlX22wMxBqMFc+CkF2OvJ1pZ7ZrN386+H8DK2xNbi4hIrPwMRgMoHABjfwEnPglnb4COY2IbxwzBx3rtlFbC6efMzoArvPXLagfTXoDcrg3b+l8CY35qnTN5teoXVvhZY+FaWHIDPF4Ec0vguaFwYIX3MeuZLkFfRtD7OJP+Bl2mRO738Y+9j5mO3M7Txt9tvZcJ1uvzxHuh23HJqUtERMTdoEZ/X5TAeRqPPcixl4iIiIiIiIiL8tAhx7aCjAlGs38Pr9aM4r0IERERERERERERkTTm8fHLIiJJ4BSMFkpQMNryW+y3tx8C2YWJmVMyW7/ZsOa3cGRHqiuJzoz5zoufcrvAzPfg8EbYOQ+WXOfPnIEcOG8b5DmEwnQaC+dshoMfQ05nyO9j1VCxpaFPdhF0GmctZm+uoH909eR0jK6/JJ9hwMCr4JMH7Ntry5Jbj4hIrLb8B1b+NPb9i2fAmB/7Vk7SBYIw+a+w+Z/Oi71X/9IKSBjsEqDmJuQhGG3PO7GNncm8BKNVbIVPX4Res6zfvenOaeG80exy1lHfhXV3xz/fqp9BbmcY/s34x8ok0QQz+OGUt63j/9yuULHZCsiN9vheGnQaC/0ugtLHW7Ztewom/tH+nMovB9dA6RNwZLv1s9lpLPSfHTn4uDkz7ByGGMyLvb6uk+D0pfDyxNjH8Kp5EFpWfuLnFBHxm5dg2li1HwynL4dDaxqury44zfv++96HZbdYD7HoPCH+ekRSxWsw8ZmrrHNsr7odD+d/BmUfQbte0K6HtX3YjbB/OSy7yWqLZG4JzKlp+Llfcyds+GNDe/lGeGkszK6O7jgzHHJua36O5yavK5y2EA5tAMLw/HD7fmYdlK2EjqO8j51Owi7nw8NvgsFXQ9kq6DjS+f1VERGR5Ctu9Petjr3i13jsHgmcR0RERERERFqx8tBhx7bCYPskVhK7LMP+PbzadHhIooiIiIiIiIiIiIgPonhEtIhIgjnduF+XgGC0Rdc4txUd5f980jrk94JT3oJBV0PBgNTUMHVudP3bD4FuJ3roNxiGXAvHPxpbXY0N/TpcuN85FK1eIGgtmi/oZwW3dRgKPWc2fHSd7LywqqAE8qK4x7n9EO99JXUGu7w2V+1JXh0iIvFYe2fkPn3OhROegD7nN2zLKoSR34NpzyeutmTqMMK93S7AxysvAWC1ByHUxp58WechMA7gzTNh4eWJrcUvTgvBmwdztOsB01/zZ87lt0D5Zn/GyhROASiJ0v0EKCyxAsk7jlYomh/6X2q/veYA7F+WuHk/fRFeGgcf/xA2/tUKzFh8Dbx6XPTH724BfYHc+OrsNC6688dYNQ9wC7oEowUSGFYnIhIPp9djv163AkErpKj++t/4KMNt1/0OXpkMn/zTn3pEUsHtXLXTeOg/xwoRjOW9qkAWdB7fEIoGVmBt8TQ4/hHvAWTr7gHTtD423W/f57kor7k7BV8DGFEEwNXrMAQ6DIPJDvUBvDgaQtUN/5ZM4hhU+fn/YVaBFQKsUDQREUkvXRr9PZFPvaof2wA6J3AeERERERERacUqQodst7cL5BOM5oEeKZTt8B5ebbIfkigiIiIiIiIiIiKSIApGE5H04XTzfqjK/Uny0ao5CJvuc27vPNG/uaT1aT8IJt8H534CU/5hBXrV6zQeLtgLvc5MzNwDr4x+7Ml/a1go40Xf8yP3cTN1Lky8J/GLcQwD+l3kvX/H0YmrRfzTdbJzW9Xu5NUhIhKrJTfAgQ/d+wz6Ckx9BvpdAFOfgktN6+Piw3D0z1uGqmSqSAGpO+MIsfIaAFa9N/Y5MpGXwLh6W/4Dn76QuFr84vT0UrubD4unQ25Xf+Z9dmDmLZqPRzKD0XrMTN5cbUmv062ATTvxvN66CYdg6Q0Qrm7ZdnAVPNUd1v/R+3ghm3HqBeMMRjMCcNyDEGwX3ziRNB/fbb5E1yIiEqtEB6M1N/R66Hl6dPuYIXj/SqjcnpCSRBLO6TxnyNdg1jI4/mHoPM7/eYtGwNg7vIWQffAteDhgfZRvtO9TWWqF43plurzPF0swWr2ux7m3P5pn/TseK4QFp8Nhh39PunEKkjOy7beLiIikh8YXcRIZjHaw0d9byZsqIiIiIiIikmzldfbBaIXBDkmuJHbZDteM65zeixARERERERERERHJMApGE5H04RakFKrwb55d893bB17h31zSug28As7eAJMfgJNfhZnvQm4XGHyNff+jfwHTXoQep3obf/zv4LiHYcLvYeZCa55AFAuEzlwN3ad67w8QyIbsouj2qXfeNuhzTmz7xqL/HO99i0Ylrg7x17Cb7bdXJzEYLVwHexdB6eNwZFfy5hWRzLbuXtjgIQCm99mJryUdRApGi0fIazDansTVkI7CVdH1/+SBxNThp7DDQnC74F8jAEOu92/uNb/xb6x0l8xgNKdzJYlPMA86jrFv+/hH/obN11t7J1Rsce+z9AbY+Dfn9rKVsO0ZKFtlheI7CcQZjAbQYwacsxmm/DNxgfgtws7CUfQVEUkTIYdgtGCCgtEC2TDtBZj+Ooy7Ewr6e9/3mb6wa0Fyj2VE/JDsAMLGRtwCZ66CY/8F4++Of7zF11o/h144BX1BdA93aa5ouLd+oUr47BV4bgisvdu6/pvOgdhOr23xfK1EREQSr/FFnEQeqDc+sFBqqIiIiIiIiMSkPGQfjFaQUcFo9u8t1JoO70WIiIiIiIiIiIiIZBgFo4lI+nALRqvzMRjt8Hrntna9oV1P/+aS1q9wIAz6MvQ81VqMDlY42JR/QPsh1uK+4ulWgNrIW6HXLBh6g7exh98MJXNg2I3QdQoYhrf9ukyCWR9A0YiY/knkdo1+n/N3Qn6f2OaLVdcp1tc4kqJRya9NYucUpFOVpICy2sMwbzq8OgXeuRie6Q1bH0vO3CKS2byETOV1h56nJb6WdNDB48LkWNR5DEarSmKoZjpwCrFwsu0p6/deOnNaOG84LAQf9UMY+T1/5t54nz/jZIJEhYnMWGCdCwVyoHAQTLoP+l2QmLkEikY6t+143r95zDC8fRF8+F1v/Tf8yWYME5b/D7w4Gt4+H14cBQu/6DxG/bl2vNoVw8AvwWmLYdQPoF0vyGoP/S6Csb+y36frsVA8w9v4zcPO3MLesvK9jSkikmypCGwyAlaA5YhbrOMHI4q3LudNh9dOhOp9iatPxG+OgVdJyvToMAwGXA7Db4JjH4x/vHnTYckNkcN4S59wbjOieCCMnfO2Rdd/+Tcbrv86BXKnmtP5cLK+T0RERERERERERERaufKQ/X1ThRkUjJZl2F8zrjX1YCERERERERERERFpHfRIYRFJH1mFzm1+BqNVlDq3DbvJv3mkbRt4hfURroNAs1+3XoJC+pzv3Db+Llh+i33bWeuhg4ewMDe5XaB8k/f+PU6xFpgnmxGAiffCgggBM2Pv8B4qJ6mX18N++4EPoaYMcjomdv6VP4M9bzd8bobgvUut7/PczomdW0Qy28FV7u1GACb+0b9wl3TX9djIfXa8DL1Oj37skMdgtOo90Y+dyWK5oe2NWXDK2+l7rOS0QL358fV/twfh6J/DmJ9Z3ydGNoQ/DybKKrR+DtfdC8u+EXnu8o0wbwYc+8/WH7LrFIASj2E3QfE068PunEj812msc9uSr0Gfc/2ZZ+N9sM0l1KK5A8uh5iDkFFmfmya8fyVs/lfTfjtfdx4jmBt1ma4MA8bcDqN/YgW9Be6uLKkAACAASURBVIJQdwS2PgoHPmjo1+1EK6AnELTCNufPhLIVzuPm9236uVswWvMQNRGRdBGutt+eyGC0xgoHwLCbYe1d3vfZtwg+/jFMvCdhZYn4KhUBhE4GXGY9kOKDb8U3zoY/Wg+F6XUmbLoftj1pHcP1+QIcWg3bnnZ/aJFT+LVX+X2s4NuVP41uv21PwKbpMORr8c2fCE4BevF+rUREREREREREREQEgIrQIdvthcH2Sa4kdtkO7y3UmQm4F0hEREREREREREQkBaJ47LqISIJlFTi3+RWMZprWAg0nA77kzzwi9ewCADoMgy6T3Pcb+GXntj7nghFsuX3ivfGHogHkdImuv9sC/ETrORN6ugSqzPoQep+RvHokfkUjnNtePNp5QZhf1vy65TYzBKWPJ3ZeEcl8bq9PA6+CWSug3wXJqyfVIh3rALxxRmyvr6Ej3vpV741+7EwWy+/IPe86B+6mA9MhGM3haacN7YZ1fhnMgewO1ofx+SUwt/PO5nbNh+eHQ80B7/uks3AtlG+BqmY/G34+JXbI9XDi0zD+dw3bFIqWHP0udm478hmURhFm5mbDn6Lf5/nhDa9RH/2wZShaJAGfg9HqGYYVegaQ1Q5mvg8T7oHht8DkB2DGvIb2vO5wypsw5Ab7sdoPgaKjmm5zC1VsK0GpIpJ5nEIdk/m6Nf5OmPosDL7GeoBDQf/I+2y637n2ugrrGKjWfnGLSNI5Bl5FOM9JlGHfaHkcE4stD8OyG2HxV+Gzl2H7XHj/Clh9h3soGvgT9jXmdsjtGv1+S66HPe/BviVQuT3+OhoLVcO+pVD5afT7Op0PB1L0fSIiIiIiIiIiIiLSypQ7BKMVBDskuZLYZTu8t1Cb6HutRURERERERERERJJEKxNFJH0kIxht+Ted24pGQbtif+YRieS4h+Cdi+HA8qbbjQCM+Sn0Pst538KBcMLjsPAKqDtsLYQZ+QMrhMAP0S4e6jTen3ljNfI2a6FVc73Phk5HJ78eiY/bIrzKUtjzDhSfnLx66m15EIZcm/x5RSQzhEOAad826gfW4ty2JtvLkzNNWP0b6HdRdGPXVXrr5zVArbWI9Ya2dXfDyFut0J9047gQPI7LWdmF0fWvq4CVP4fxv419znSw601YdDWUb7RClgdfBxN+b4U+OX3v9DrDCnba+Ff79mA76+cspxOMvwsGXpmw8sWDvK5WoNfau+zbV/0c+l0Y3xwVpVC2Ivr9qnbCjpegeJpzfW6SFcYTzIFhX3duzymCY+6FrpNh8XUQ+vz3UfuhMO0FK2itsT7nwqKv2I9lhvypWUTEb+Fq++2JCql00uds62PSX6zPX58Gu9907h86Aku/AZPva7p987+t9wSq90FWoXXddfjNCStbxJNwjf32YE5y66gXyLYeujJvenzjbH0oxvlz/fu3z1oB7862riFH47XjG/7e+RiY/irkdIyvltV3wMc/abg2UTwDjn/I+7m3Y4Cebu8QEZG0V/9myRTDMEoSNEePBI0rIiIiIiIibYhTMFphBgWjZRn219drTYf3IkREREREREREREQyjO6cFZH0Eci1bui3W/xeezD+8Y/sgnW/d24fdlP8c4h41X4QnLYYqnaBWQt5PeHQGmg/2D0ksF7f863wtINrrLG87ONVbhfvfQM5VmBCKnU73grK2rWgYVsgB0Z8O3U1SeyyO1jfg9X77Nv3LU1NMJoRSP6cIunoyGew9RGo3A7dT7JCKJuHgLRFpksgVc/Tk1dHuhl8HWz8s3uf/Uvgs9fgs1es1//+c6BwgPs+XoPRDnzkrV9rEc+TPrfPhcFf9a8WvyRiIXgwhuPmtXfCztdhzE+g9zmZ9bpnhq3z4OW3NNoWgg3/ZwUgTPid89c5kGOFkQRyYP29TduO+SP0mw3Ve6FdD+sYTlJv7B2w8S/24fJlH0GoGoI2wTZmGEqfsIK783parwdZ+S377V8We2173rECaUIeX8MbC7aLfd5EGHA59L0Qyj62AjPaD7F/XXA7tw45BA+JiKSa0+tTsoPRmjv5VXjhKCjf5Nxn09+sYOqCftbnZSutgMr6Y526ciskbfk34ehfwMCr9KAUSQ3H85zs5NbRWPHJ1vF96aP27Se/Yp2HvXWe9bAWPw38sn9j5feCU96Cii1WqC/Aoqug/BPvY+xfAk90gkFfta5R9IghMG7J161zrsZ2zYOniq3Xn2E32R9vN+YYFJ7C7xMRERHvDODhBM9hfj6PiIiIiIiISEwqQvbXuzMpGC3b4b2FOrf7GUVEREREREREREQyiBIeRCR9GIbzotGqPfGPH+lp9b3Pjn8OkWgEgtZCnYL+EMyBTkdHF3AWyIZOY/wNRQPI7eq9b8llkFPk7/zRMgw46QUYeRt0Pc5awDXjDeh+Ymrrktj1dAnbK0tVyI3uqxfh8CZ4ZZIVrrP2LnjrXFimYFkAdrzk3NaWF6wOuspbvwUzreCpFd+DlydYIZhuvIbqbH0Ids731rc1iOeGtr0L/avDT2GnheBxBKPFGmpWtsIKAVichgFyTswwLDi9aShaY+vutn7ewg5Pia1//ZrwBzjmT1A8wwqGO/5RGPI1yO0MHYYqFC2dBLKgxyn2bWYYDq9vui0csn7O3rkY3p0Nq++A5TfDc0Oh5gCYJoSqPv+ogQMrYq+t/BM4uCr6/bpMie9nPlGy2kHXSdbPgNvryqS/2m8PVSWmLhGReDm9PgXzkltHi/lz4PQlkR9usrHR6+7au5wDqFZ8D14c3fbClCU9OB5/5yS3jubG/9b+vYZ+F0PPmVZA2EVl/s87+Bp/xzMMK3C9+CTr46x1MPbX0O2E6MbZdB/MnwGrfx3dfqt+2TIUrbEV34One0PtIfdxEhEULiIikjz1oWWJ/BARERERERGJS3nI/jptQbB9kiuJXbZh/95CnVmLaZpJrkZERERERERERETEfwpGE5H0ktvNfnu1D8Fo610WIvQ5D9oVxz+HSGvgFFDYXMcxMO43ia3Fq6x2cPTPYOa7cMIj0O3YVFck8eg/27ktr3vy6hCRptb8Giq3N922/h44tC419aQLM+welNSWg9G6HAMlX4xun5oD8PGP3Ps4LSK3s+LW6ObPZE6Lpr2o2uVfHX4yHYLR4lkIboZi3xdg0/2w+634xkiWT5+Dna+591n0FefvnfpgBsOAIdfBjNfhpLnQ/2J/6xR/TX7Aua3s82CyIzvhrS/AI1nwSDZse7JpvyOfwhOd4eEAPNru849cWPkT57GH3uhe17YnYVmEPnaOfzj6fdJJMN9+e1jBaCKSpsLV9tuDucmtw05OJ5hwt/WABCerfg51lVbw55YID0qp3gMrb7f+vul+mDsAHu9oheGWf+Jf3SLNOR5/p/j6QX4fmPpM0yDEDsNh7C8bPjcCcNx//Jtz7K+g8zj/xrMTyIKjvg2nvg0Tfh/9/h9+1zo2Prg2ct/qfZGvaQDUlsHjRbDuD1YYsR3HoPA2fJ1JREQyjZngDxEREREREZGY1YSrqTHt3xcrDGbOAwKzHB66YmISwuE6s4iIiIiIiIiIiEgG0SOFRSS95HWDgzbb4w1GqyiF8k3O7Sc8Ed/4Iq1JbtfIfUb/GEZ+HwLBhJcjbVCvWc5tdZXWn+WfwOYHobIU+nwBesyIf5Gu29PRDOUJi7DjJfvtWx6GMT9OailpZdcCa+GrE6ONL1gdfxdseTC6fT57FUI1ELS/cSuqYLR9i6Fqd9sI1owrGG23f3X4KRHBaPn9nNuyi6DW7oS0mc3/gu5TY68hGcwwrPhe5H5lH0FWoX2bFtxnptzO0H4oHF7fsm3Vz6BmPyy9wd85R/yPFZpdNByWXO/fuAOvgsIS/8ZLhcbBIo0d+cw6n8nvA91OsAI7RETSQcgpGM3h9SwVep7m3v5ERzh9uXPIW2PbnoTXToA97zZs2z7Xuu502lLncxKReDid0zosXkqqHqfAedut8/KcztD9BMgqaNqn1xnxzTHgS9BhGPS9EDoMjW+saA38Mqy+A47siG6/mgPwxulw5mrIcgi+Bdj9ZnTn5stuAiMIQ22Oz02HceI5HxYREUm8UhRaJiIiIiIiIhmgPHTIsS2TgtGyXe5NrA3XkhXUvT8iIiIiIiIiIiKS2XTnrIikF6dApuq98Y279i7ntrG/VriTSGO5Xdzb84ph1A8UFCWJYwSgx6mw87WWbXXlsOHPsORrDds23Q8FJXDaoviCb8yQW1GxjyvSGphhqNxm37bxz207GG37M+7tbT1YKNgu+n3MOji8ATqOtG+PNgDs4Kq2EYzmFCLmRboGo4Ud/k3x/Fx1HA35fVu+phWNhJnvwwsjreBVN5vuh8l/i72GRAtVw8LL4eBqb/33vme/va0HO2aybsfbB6MdXOV/KBpAt8+DAod8Dfa+b4UH+mHQ1f6Mk0puQUILL7f+7HocnPwyZLdPTk0iIm7CVfbbA3GG0fspEIRZK+Clo+3bw7Xw4mjv4zUORatX9jGUPgoDLo+tRhE3Tue06XL9ILcLlFzi3J7T0Qp23fNO9GMfdSuM/UXstcUruz1MnwdLr7d+9qMJXq/YCp/83T7E7L99IpxL2ln6dStsrnBA0+2JOB8WERFJMNM0S1Jdg4iIiIiIiIgXFaHDjm2ZFIyW5XJvT51ZA7g87ENEREREREREREQkAyjRRETSS243++1Ve2Ifc/9yWPd75/Zes2IfW6Q1Khzo3j7+dwpFk8RrP8R+++ENTUPR6lVsgZU/i2/OcLVzm77npa1zC6mtdX56YptwcI17e1tfsBpLMBpYQQROog1GK1sVWw2ZJtqvS2PVu8E0/avFL05hb0YcOf+G8fnxbKMxArlWYHZ2IZy1GoIebgqsijO8OxFC1fDRD+HRPCh9PP7x2vrrVybre2Fy5+txSsPfR97mz5iDr4Nux/ozViq5BaPV2/serPpl4msREfEi5HBtJJ2C0QA6jbFC9RNp62NNPz+0Ht7/CrwyBZbemL7hwpL+ag/ab8/KoMVJY26Pfp+CEhjl07FiPIqGw4z5cHElXLgfCgd533fro+7tTg8ViGTxtS23OQbo6bl3IiIiIiIiIiIiIvEqD9nf82hgkB8sSHI1sct2CUarNeO4l0xEREREREREREQkTejOWRFJL07BaEc+jW28/cvg5YnufYpGxja2SGtV0B+6TIZ9i1q2TboPSi5Jfk3S9mQV2m+3+76st/0ZmPiH2OcM17g0GrGPK9IaVG53bgsdscLRsjPnSYm+OqRgNFeBYGz77XwVSubYt0UbAHZwZWw1ZJp4gtFCVVBXDtnt/avHD4laCN7vAihcDNvnWmP1ORc6jrbasgpg8LWw7nfuYxxcBXknxVeHn0wT3jgDds33b8y2/vqVyZIZKNbvYshqFILZYWj0Y4z4jvUaVLndukbT7TjodaZ/NaaSl2A0sH7v8YuEliIi4olTaLzX17NkGv5N2Pla4sbf8bx1jGUYUP4JvHZ8Q2j4vkXW3KctarvnwhKbULVzMFpu9+TWEo/ik+HsjfDcYOc+2R0AA4ygFZ479Pr0ei0JBCGnE5y5Cj55AJZcH3mfPW/Dzteh4xio/LTh/zJUBbld4cCK2GrZ/aZ1/tv4HMwxKFznaSIiIiIiIiIiIiLxcgpGyw8WEjBivN8tBbKNHMe2WtPtnmgRERERERERERGRzKBgNBFJLwX97bcfWgtmGIyA97F2vQnzprn3OeMja2GTiDR14lPw1nmwf4n1eXYHOOZPUHJpauuStiMrhieuVW6DUA0End/odxVSMJqII7dgNLDChQZcnpxa0knNATiyw72PodPumGx7yjr2COa2bIv2aZZtIRjNNJ0XTXtVtTv9gtEcF4L78HPVeZz1YWfM7dbPdumjzvsfWA7FaRSMtnehv6FooGC0TJbTCfKKoWpX4ufqP7vltgl/gGU3etu/YACMu8PfmtKJ1/CP/csSW4eIiFehKvvtdsflqdZrlhWsX1eeuDnW/AaO+g5s+ntDKFq9Q2th+3Mw4LLEzS+tT/Ue57a8DApGA2g/CGZXwZKvwSf/AEwoGgVT/g5dIjywKJ0Ec2HI16DfbFj8Vet6hJv5p/pfQ7gGDm+EohGNtiUoKFxEREREREREREREHIPRCoOZ9UCcLJd7e2rjecimiIiIiIiIiIiISJrQnbMikl6KjrLfXlcBFaVQWALhEJRvhLKPrKev15RB4QBr4UJWvtW/tjxyKFqf86DjaD+rF2k98nvB6YutIJzqfVA0UgtuJLliCUYDK8SksCS2fcPVzm3RBHOKtEbV+9zbtz7WNoPRKkoj91GwEBQOto7fo1F7ED57Bfqc07ItHOXTLMtWWsFhrTkQ2WsoWn4f56DDt8+HITfAwCvTJ/gi7PDvSvRxaXYhnPAIVN0Lc/vaB4Qsv8U6n+xxSmJr8Wrn6/6PGYgxbFbSQ9HIxAejdT8J+pzfcnuvM7wHo/X9gr81pZtgFOc12+dC77N17iEiqWOazsfagTQ5PmzuvO3wRMfEjf/hd6H3ObDqZ/bta+9UMFprUx86Ha6BULX1Z/1H88/D1daDFhp//t++DtuqdjrPnWnBaGCdO055AMb+CkJHoF0fCARTXVVscjvDiU/Ckc/gzXMbHhrjpy6TYd8i+7b3r4TprzcEltdV2PdL19djERERERERERERkQxSETpsuz3TgtGyDed7e+rMKO+xExEREREREREREUlDSjgRkfTiFIwGsPgaqDkAB1faL0zf+Bc4fbm1iH37M5HnGnxN7HWKtBX5fawPkWSLNRitclscwWhuNwG04jAdES/cggMBdr5iHafldEpOPemianfkPgpGg56nwYYog9EAdr3hEIwW5dMsaw9aC5vze0VfQ6bw+jWZ9SE82dW+rexjWHIdbH0ITn4NgmkQiuUU+GYk6XJWXlcY8V1Y+RP79vmnwvi7YfhNyanHiWnCxz+K3G/MT2HkbfDSOChbEbm/odevjNZ/NuyaH/v+xTOsMIauU6D4ZNj8T9i/DCq2Qo9TodsJMOJb9qGThQOh80TYv9R9DiMIg66KvcZMEM25yVvnwcAvW+EiIiKp4HZdJJiXvDqikVMEU/4O73/ZW//60GYjy3u4cOmjzm0HPvA2Rr1wXdt++IRpWucuruFijcLE7MLFPAWWRRli1rx/KhjBzL6mkomhbk7a9YRT34Kne1nXuvw09Ouw0CEYbd9ieHYQnLnaes11CjnO6+ZvTSIiIiIiIiIiIiJtUHnokO32gmD7JFcSnyyXe3tqzSjvsRMRERERERERERFJQ2347nsRSUvZ7SG/H1SWtmzb+Zr7voc3wOo74OifRl7kPewm6DUr9jpFRCSxsgpj269yW+xzui18LI8h0EekNbELpW0sXAvb58LAK5NSTtrwEoymYCE4+mewb1HkgJzmqj6z3x5tMBpA1U4FowHkdoGC/lawkZPdb8H2p61QpVQLO4RVJDNwsP9s52A0gOU3W+F7o35gHxCVDLsWRO7TrqcVimYYMPNdeLI7hCrd98nv7U99khoDvgQ750HpYy3b8nrA1Lnw6mTn/We83vRzu6BKJ4YBk/4Kb54FR3Y49AnCuN+6B+S3BtEGCX3ydxhwuRVGJyKSbG7nfcHc5NURrY6jvfU7+pcw8n8bPt/0d1jkIaDz4x/HVFYTh9bDoqth70LI72sdOw7yGObmVYvQsUjhYrEEjvkQYib2cruBEUh1FVIvmAcz34fnh/k7biAH+s+BrY/Yt1fvgaciBJ/ltqIQOhEREREREREREZEUcQpGKwx2SHIl8QkaQQIECRNq0VZr6n0ZERERERERERERyXwKRhOR9FN0lH0wmhdb/g1jbod9S5z79DwdJtwd2/giIpIcWQWx7RdPMFqo2rnt8Aaoq4i9rnRlhmHfUjjwAXSeYH2kKtRF0lvY5eej3tq720YwWl0lbH8W6g7But9H7p/MAKd0ldPRWlD8SJSXIGoO2G+PKRjNQ4hdJvPyNSkosf7M7e4ejAaw46X0CEYzHYLRjCRezioaAb3OgB0vOvf5+EfW13fgl5JWVhOfvRy5z4hvN/yOzyqwQq6cFuPX6zkz/tokdYJ5cPzDcNT/wv5lDT9P7XpB96nWa3PP0+CzV1ruWzw9/vk7j4Oz1sDud6xwyk5jrRDBQ+ut78Fux0HhwPjnyQROX2cnn/xTwWgikhpu532BKIMekyk3QohQfZ8h1zXdVnIJfHQbHHEIZPZLxbam4UoVm61AtnV3W+9VxBIu5rRNMle7HqmuQJrrMBTyuvt7PSGQDb3Pjnwu5ibPw2ueiIiIiIiIiIiIiLiqaCXBaADZRjbVZstgtDozhnvsRERERERERERERNKMgtFEJP0UjfS2sNtOxVb49DnY/aZzn3G/jm1sERFJnlgDyCriCEaLtIB0+3NQMif28dNNOASLr4ZP/tGwbfA1cMyfwAikrCxJU27BgfXKVsDWx6D/xYmvJ1XKVsGCmXBkh/d9jGDi6skkgSDkFUPVLu/7VO+33x7LTVutPRjNy9dk1A+tP/O6R+67+Z9w7D/iKskXToFvgSRfzjrmT/DiaKi1vykSgPevgB6nQH6v5NVV7+Bq9/YJ98DQG5pu6z/HfTF+j1OhoH/8tUlqGQEroKzzOPv2wdfYB3aVXOrP/NkdoPcZTbe1xcCvfrOjC0ZLl9dgEWl73M77grnJqyNakYLROo6G4x+1QkEbC+bBzIWw5Hr3EFxXEcLl9y2FV46xbyv7yPoQAeihUOK0dNZaeKKzf+MFcqzzxpxOzmHwkeR6OKcXEREREREREREREVflocO22wsyMRgtkEN1qKrF9lo9VEdERERERERERERaAQWjiUj66eSwYNert851bgvmWwuhREQkvWUVxrZfZTzBaBGCn1bc2rqC0bY/0zQUDWDjX6HXWdDn7JSUJGnM5sYZW+/Ohn4Xts5wvcOb4MVR0e9nRFgo35YE86Lrv3+JFc7QPITBKSzLTTSBbJko0tekeDr0n239PS9CcES9x4tg+Ldg5K0QyI6tri0PW79bdr/RsK3jaOh+Mhz9Uys0yY1ZZ7/dSPLlrIJ+cNzD8OaZ7v2e6Q2XmsmpqTGnYLTcLnDBXvu2nqdDdhHUHrRvn/QXf2qT9NbrLOh1RtMwmO4nWUFe4p+SS2HRVdHts/7/2bvP8LjuOm/j95lRsyT33uM4sR2nOE53qtNJIz2B0GGBZemwLGF3gST0Tlg6+wCBZcMSCJAQ0nvvxenNiXuvkmWVmfO8ODGWpTmj6Wr357rmss6//iRLU6RzvvMj2PNffB4xEKy8GZ7/Lmx5AeiFxwgpH9meUyb6cDBa1ZDs/ac8Ef8atWE6LLwOnroEnr40/717Cox75MPZ+yWAYbNh9sd7uwplUjMSjroa7rkg/vVpPhLVUD0UDvwB3P+OwtbIJexckiRJkiRJkpRVUyrzmyM2JodWuJLiVQWZz+tqL+TNRyVJkiRJkiSpjzEYTVLfM/UceGwstK4t/doLrij9mpKk0qtqKGxeUcFoPbw7WvNrha/dF73wvcztL//MYDR111NwYGdPfBbmfyu/9VPbofl1CJIwdI/85lZCy2q4tg/W1d8UEqbw6CfgkJ/s2lbIu1m2rsl/Tn+SLcRi/2/CrI/sDIxI5fjz3L4FFn0RVt4IJ92beUwYwuZnIExD24Zo7ZoR0c/ys9+ApX/sPmfTouj24g9g4d+BN0IqaobDiHm7Bluk+0gwGsDkU+HYm+D2k7KPe/5ymFPBUIN0e/xzlEN/GT8vWQt7fQae+s/ufeeuh9pRJSlPfVyyBo7+Kyz9E2x8PPoZnHJWzwEzyk+yNgrqT23Lfc4jH4GWlTDvy+WrS+URpqPHxm0rosfQuNddUn+Tb8hxpY05HNbd1729cffcgrsLDaLM9hqnZSWsf6iwddVPBNHjfKIm+l5I1ES3ZJfjRE2ncZ2Pa2HUQdHfxHz+3XdNPRtOeRz+HvOmS/t8Hp7+Um5rJWqif2e8HYbPhRsOzL8eg9EkSZIkSZIkqShhGNIcG4zWw5s89kHVQU3G9o6wgHPsJEmSJEmSJKmPMRhNUt9TNQSO+Rvc9zZoejlqqx0dXaA7Yr/oNnI/uOdCaHolv7XHHF76eiVJpdcbwWipQXYSwNqYkJsV11W2DvUPqe25j33u27D/N3K7+Bxg/cNw70U7n/dNPgOO+D1U1edfZ7k8/+3ermBgSBYQjPbyT2H2R6MLhnfIFgIWp2V1/nP6kzAmQAxgt7ftGnKU68/mDuvug5uPguNu2fX/sHkJ3H0ubHgkv/U6u+PUXY9rR8OC38Gkk6PjuM8r0Uu/zpp4IhxzHdx5WvyYpy+LgugSycrU1LoeCDP3NeyWfe7cz8K2ZfDq/4t+rkbOh8P/x1CGwSZRBdMvjG4qn+F7w4aH85vzwg+in9Pq/veO1IPWlhfgzjNg60u9XYlUeoU8l6+kuRfDXW/u3j7+2BwXKDAYLVtoc9Nrha2pNwQ7w8N2CRTLNXSs0/GO8cma7iFmOc2PW7NCz/nV+0bsAxdsg4feD69fGQWhBskobHrfS2DOp+HBf8ocDt5Zonrnx6MOgPM25TZvh5qRMGyvgj8NSZIkSZIkSRK0htvpiDknqX8Go1VnbG8PCzjHTpIkSZIkSZL6GIPRJPVNYw6BM16Atk3RBdp14yDocnFSw/T8gtH2+CDUTyptnZKk8qhqLGxe67o3LkzLM/QFIN1a2J6qvDANr/4aVt8Br/8vhCmYeg7se2l0oaJKL9+fj3UPwNgcAmnTHXDjIbu2Lb8W/tAAFzT3jXC0MIQlV/V2FQNDoq6wea9dCfO+tPO4kGC07SsL27u/yPY1SXQ5+W3KWfDa7/Jbf+098Px3osCJ138Pa+6Cl3+Wf509aV0P970VTn8R6sZkCUbLfEJfRUw+FY6/DW49LnN/2wb4fRWM2Bc2LYraZn0EZrwTRh9c/P5b+BFGAgAAIABJREFUXooCA1Mt0WNf3fj4sXVjs6+VqIJDfgL7fzU6rh7R/XW3pNIYe3j+wWgdW2HRpdC+aWcI4rK/Rn2zPgb7XQo1I0peqgoUhvC3Ob1dhVQeyfro1pdNPh0mvxmWX7OzrXpYdH+Z0/zTYNEX89831RI9F8/0/HTDo/mvVzFxoWM5BIwlMwSOFRM6FhdiZuiY+pqqIVGQ9ME/joIPh+6x8/dWNcPhqKugdQPc/y5Y8bfMayRqdj3eMa9tI9xwyM43DYgz9+LoZ02SJEmSJEmSVLCmji2xfQ39MBitquvvnt/QYTCaJEmSJEmSpAHAYDRJfVeQgNpR8f1143Jfq2G36GIFSVL/UNVQ+NxUS2Hz022F7znQdDQX939QiHRHFNDSk1Qb3P8OWPKHXduXXh3dTrgbxh1ZnhoHs1SewWiv/1/mYLSOFkjWRWF2iSq4bm78Gn/fD057JrpIupJSrVE4b6IKakbB6tuh+fXK1jBQFfp/ufL6XYPRCjlpa8vzhe3dX+QTjDbxpChsIN/Awxd/GIU7LL06//ry0bYxCm6b8/HosSGToJd/nTX+WJh0evzF7rAzFA2ir91LP4Ejr4KpZxe+79r74JZjdgbGvfSTKIAtTu2Y3NatGVl4TZJyM+0CeOHy/Oc9/53M7S/+AF78Lzh7JQzJEpCoyrn3Lb1dgVQ+E0/K7fV6bwoCOOJKeOWXsPJGqJ8Me30Ghs7Mbf7I+VA/FbYtzX/vts1RqG9n25bDox/tee6oA2HIpBxDx/INGDN0TCqL6mEwcr/MfbWjYNT8LMFoMSHfNSPh9Gfhue/Ak5/LPOaI38P0C/OvV5IkSZIkSZK0i6ZUfDBaY3JoBSspjeog8++e79p0A882PwZAMqhmRt0sjh5xCkOrhleyPEmSJEmSJEkqSh+/kkGSsqjNIxjt+NujoDVJUv+QrC98bnuTwWjF+kMjjD0SDvt17hcRF+qVX8GT/w7bV+1sGzYHDrw8uvh6h1W3wEMfgqaXs6/39GVw3E3lqXUwS23Pb/zSq+DA70cXpwM0vQYPvBvW3LlzTLIu+7pNr8Btx8OJ9+S398v/DQ+9f9e2XALztq+Dh/8Zll+TPWRKlbfhUbh+Piz4TRQCVcj/z7ZlcPPR0RqNu5W8xF6XTzBa9bDoguq78wzoallZ/lC0HR77BOz5QdjyXOb+3g5GAzjyD/CHPJ6vhCl49GMw+YzCgkXCMLqPCruExXUOYOusekT8RfeSKm/MAtj3Ulh0CRCWaNEQnvkqHFRA4JpKq21T9+BmaaAYtlf/ecORqnqY/ZHolq8gET2/u2lB/nNTzUCXYLQXftDzvGOuhcmn57+fpD4uiO9K1GTpq4a9L4bRB8N9F8H2NVH7yPmw8HrDcCVJkiRJkiSpRJpjgtESJBiSqPAbCpdAdZD5d8/r21ezvn31P46fbX6MR7bezaenfo3GqmGVKk+SJEmSJEmSitIHriSVpALV5RiMNvqwgRl+IEkDWSIJySGQasl/bkcTkOVCsY1PwIbHoG48TDplZ3BmLnulU1Ftg8Hae+DWY+HNr5Q+WKV1A6y4Dp77Dmx6snv/lufh9pPh6L9C8+uw9l5Y8n+5rb3q5ig8JshyEaLyl27N3F47GlrXd29vWQmrb4MJx0O6A249DpoX7zoml7C1tffCdXvDuGMhWQvVw6FhGkw8GYZM3DmufQu88kt47JOZ17nlKNjzw92fPza/Bg27wZjD4IXLYcXfe66ps8N+DcPnwo2H5DdvsKrLct889ZzsoVsbn4CbDoezlhQeZLn2brjlmDfu1wbIr0OaX4cVN2T/3s30rqBTz4LzNsCau+GuM8tXXzFuOwm2r87c1xf+/6qGwJFXwT3n5z5n2zJ48Ucw5+P577fxifgQtExqx/Q8RlLlBAHs+wWY8Xa4poTBw0uvMhitL1hzV+5jp50PE08pXy1SKQ2bA6MPGjxhq2MOg/O3wh+HQ5jOfV57U/e25dfGj0/UwLnroHpo/jVK6t8yvT7vasLxcMbL0e/EkkNg3FG+8ZMkSZIkSZIklVBTTDBaY3IYQT8877Qql989v2F123Ie3noXx470zXskSZIkSZIk9Q994EpSSSpQ/eTcxs18X3nrkCSVR1VDEcFoMZ79FjzxWSCMjkcdCCfcHYWbtG/tee10GySG5F9Tf7VtKay4Hqa8uXRrbnoGbj8JWlb0PLbQsJ4dgVwqnVRMMNrU8+Dln2Xuu+0EOOyKKMCsayhaPjY/G906qxkJx1wLY4+AjU/C9fv3vM5LPyq8hkwOuwJ2f2dp1xzoxh8LS//UvX34PlHA1BMXw3Pfip/f0RSFp6XbM/c3zoy+17KFGGxbAqtvh4kn5ld7X7T8b3DPhZDaln1cXIhYzcjo/n3GO2Hxb0pfX7HW3h3f11cuCp90Wv5Bro99Igotm/G2/PZ6/ff5ja8bm994SZXRuDvs/h549VelWa9lJbSsgiETSrOeCtP0Sm7jhu8NR/6hvLVIKk51I+zzBVh0Se5zuv4eKt0BW56LH7/flwxFkwa0LBfNJWtyW6J6KEx6U2nKkSRJkiRJkiTtoimV+VzhhuSwCldSGvXJxrzGv7TtaYPRJEmSJEmSJPUbfeRKUkkqQP3UnsdMOBFmvrf8tUiSSq+qobB51+8Pd5wB6x7c2RaG8NQX4Yl/4x+haAAbHt15sesrv+h57XRbYTX1ZxseKX6NjhZ47ttw/QHw931yC0Urxn1vL+/6g1F6e+b2uvFQPyV+3gPvioLwSq1tIzzyEdj8fG6haKU2cn/Y7a2V37e/m/EuGHf0rm1VDXDg96Kgq/nfhPpp2dfY9AyEqcx9h/43vKUdqkdkXyNbSEF/0boB7jyj51C0INFziFhdmcN09vhnuCiEUx4v3Zotq0u3VjGqhsCUs/Of98hHoG1Tz+NW3QK3Hgf/G8Bz38xvj6Gz8q9LUmXs84XSBjxeMyN6nn33+dFzI1VW6wZ47FM9jxsxD05+uPz1SCpedZ4XvXQNRtv6UvbxI/bNb31JA0dQ3dsVSJIkSZIkSdKg15TakrG9Mdk/39hmTv1+eY2PC4aTJEmSJEmSpL6oqrcLkKSC9RSMduRVMPWc0l5sKkmqnERt4XNX/C26Hf0XmHJmFMr19GWZxz73TRi6B2x5oed10+2F19Rfrc/z4v0wDRsfh0QNDJsLiSQ8+vHcgudKZfsqaF0PtaMrt+dAl2rN3J6sg+F7w7Zlla0HYOMTcN1eld83WQcLfgMJL2bNW3UjLLwBVvwd1j8AQybB5DOi++Adhs6EbUvi11h9a3xfojp67j/j7fDiD+PHLb8Wpp4H9ZPy/xx6S7oj+p5vehWCAO65ILd5uVx0PaTMwWgNb7xuG7k/jDkc1t1X/Jqdv2d629x/gyV/gLAj9zntm+Dxf4M5n4Rhc2DzM9CxDaqHwpbnIbU9eizLJWgnzm4XFT5XUnk17gZnr4bFv4bHP1P8eqnt0fPvjY/D0j/COWugbmzx66pn6Xa45ZjsY+Z8GkbsF4Xq+vxR6h+qh+c3vmsw2uans48fvk9+60saOBI1vV2BJEmSJEmSJA16zbHBaHm+eU4fceDQo3iy6UGebHqw58HEf/6SJEmSJEmS1BcZjCap/8oWjDbz/TDtvMrVIkkqvUQJnqredRZMOAnW3pV93EMfyG29dFvxNfU3K2+Ara9EYUU9aXoVbn8TbH0pOh6xH0w5q7KhaDvccRqcdH8UIKTipbZnbk/UwvjjYeWNla2nNx13C4zYt7er6L+qhsC0c6NbJo0zYfXt8fPrxsX37bjAeP63oH0LLP5N5nGrboG/ToN9Pg/7fKHv309segbuPAOaF+c/N5cAltosX9NSGNcpMOaIK+GBd0f/x4lqmPHu6Ov/8s/zW3PUQaWssDgj50VhiQ99EDryeEfVV35RvsfHIZNh4knlWVtSadSNgb3+NQrWevLfS7v21ePgLR1RQLHKa+VN2QOQRh8KB3y7cvVIKo3qPC96ae8SjPbM1+LHDp0F9VPyr0lS/5HtdwyGpEqSJEmSJElSr2uKCQZr6KfBaNWJav5p0r/x0ranWbz9BTrC6A2gV7Qu5cmmB7qNj/v8JUmSJEmSJKkvMhhNUv9VNQSGTISWld37DEWTpP5vR8BNsVbdVJp1YOAEo6Xb8xv/+Kfh6L/0PO7et+0MRQPY9FR06w3rH4SlV8eHLyk/6dbM7clamP5WePmnUTBeUQLY91JY9IUi1ymTCSfCcSW8P1Fmjbtn79/yQnzfjguMk3Ww4AoggMVXZB4bpmDRJTD2KJhwXCGVVkYYwv1vLywUDbIHye1Q3VjY2rmYeDKMOXznccM0OP426GiBsD0KnWhanF8w2uQ3w6gDS19rMXZ7K0w9F1LN0fH2tdA4A1pWwF93q2wt9VPhtCwhPZL6lslv7jkY7aT7YfsauOvM3Ndd+keYfmFxtalniy7N3j/jHZWpQ1JpVQ/Pb/yO54AArRtg4+PxY/e7rO8HM0sqn1L9vluSJEmSJEmSVLCmVOY3Pmzsp8FoAMkgyZyGecxpmPePtmeaH8sYjNac2koYhgT+zUqSJEmSJElSP5Do7QIkqSjTLujeVj0Mxh1T+VokSaVVNbS3K+huoASjpVryG7/sGmhZnX3MtmWwvvtJFL3qhct7u4KBIxUXjFYHtaPgpAdhWhHhGyPnw5tfhn0/D8fdUvg6mSSHROFXO275GHtUFFhy8I/h2Bvixw2ZWFyN2qmnYLRtS7s1pcIEzal6CKp37WjYref9Xvnv3GvrDZufho1PFD5/4ik9j6kdW/j6mSTrYNLpMP/bcPQ1mYMfqoZEr9sgChA7c0luax/wPTji95BIlq7eUknWQM3I6DZsVhTU1zAdTn6ofHvu/w2Y/QkYfyyMPx72+jc45fGdX1tJfd/wuTBiXua+2R+HM1+HMYfBlDdHAbK58nlw+S3/G2x4OPuY+qmVqUVSaeUbjNbetPPjpX+KHzduoaGV0mBQMzK+L1Ed3ydJkiRJkiRJqojm1JaM7Y3JPnjOchHigt7SpGlJN2fskyRJkiRJkqS+xmA0Sf3bvpdEFxTtUNUIR/8FkrW9VZEkqVT6YqjHQAlG69iW54QQ/jwB2jbGD1mRJTSqHOrGwR4fyD5m7d3w6CchDCtT00CW3p65PfHGc666MXDk7+HQX+a/9ryvwSmP7QzEmnA8jDq4sDp3mHI2vDUNF4Vw4TY48a6dt7emYfYne17j7JXR+GP+Cnt+CIIsL58P+H7m9lkfK6z+waxxZs5DO9JJPvLi5Yy6Zx2j7lnH6b+cyvqmTj/vdeN6XuT1K2HLiwUUWgFhGu4+r/D5QRXs/7Wex406IP/whzhzPwcXNMPCa2GvT0dhYblomBoFLA6Z1L2vbjyccHf08zznE1GoWn8y+mCY9ZHSr5uoju6bDvweHH8bHH8LzP8G1I4u/V6SyicIYMGvoX7azrZhs+GspXDg96GhU/ue/5z7uuvuh+v2hfU9BHepMOl2eOiDPY8zGE3qn/L9fdRrv9v58aan4sft8x+F1SOpf5n+ViBDQPjwuZCoqng5kiRJkiRJkqRdNcUEozXEBIn1V9mC3ppSWytYiSRJkiRJkiQVzmA0Sf1bzQg4/lY49Sk49iY4ZxWMP7a3q5IklUK2C1EX/HbXYMxKSbdXfs9yaM98YkeP4i7+3/gUPPT+wuspxJ4f6TkYDeCF78Nr/1v+ega6uFDArmG0M98DC6/Pfd39vw57X9y9PVsIWU+mvwWOvjoKGskkCODA78Kpi2L6E1Gw05AJue858WRomLFrW3II7P7O3NdQZEdAXg4ufvVr/HjFh9maGkZ7WMPfn2/g7B+ndw4YMjG3hW5/E6T6UPBlGMLa++Dv+8HWIkLbzt8M1Tm8k2myLrf7056cuQT2/2rhP79jDoHTX4DjboHDfxfdjr0JzngJxh1ZfH29af+v5/W9nZP9vpTb/6+kvm/k/nD6c3DiPXDifXDqM1A/pfu4unFQOyb3dTc/DTceAs98FZqXlq5ewapboWVFz+MMRpP6p5o8Q4M3Pgav/x88cTG8+MP4ceOPK64uSf1D3ViYdn739j0+VPlaJEmSJEmSJEm7SIdpmmNCwRqrBlYwWragt+aYcDhJkiRJkiRJ6msMRpPU/wUJGLEvTDwRqhp6uxpJUqlkC0abdEp0q7S4cKj+5oXvFzZv6Z+gZeWubU9/Ga6fV1w9DTNg7BEw51M9jx2xHxzwXdjnP2HUgXD8HVFIRDZPXxoFDalwcaFRQXX3tklvguNuhbFZgoyG7x0FHM79bMy6BbxUrR0DB3wPFvwmt/Ej9omCnKaeB3UTou/DPT8E52+Bqvr89q4ZDifcGYWyNUyHiafAsTdG36PKT83InIalw4D/XfPWbu33vAzLNr7x855r8EDzYlj+11wrLK8whPvfCTcfAZufKW6tfL6P9/86zPsqjJgX/Xzu9yXY78u5z9/zX6ChBOEv1Y0w4XjY7aLoNvHEgRH+VdUAh/6ydOtNfwvM+XTp1pPU+6rqo+fDYxdAIhk/bspZ+a/95H/A3/eB1XcWXp92tfrWHAYFUDu67KVIKoNsv4+Kc+9b4NlvxPfve0lxAeCS+pcFv4W9PgPDZsPoQ+GQn8Hsj/R2VZIkSZIkSZI06G1PbyNNOmNfY5Ygsf6oNqijKtP5nUCTwWiSJEmSJEmS+omq3i5AkiRJyijbhaiJ2ijAaNlfYN39latpIASjtW2EV39d2NwwDX+eBMdcB5NPhY1PwVOfL7yWiSdHa+0IfwhDeP678ePPXgFDJu7aNv4YOGc1PHVJFICWydaXYOMTMGp+4bUOdmFH5vZE5hNnmHBcdCtYkOOwquji0pnvLWybhqlw1FWFzc201hFXlmatwSwIYOxRsPburMM2dYxgVdvEjH1/XxTygaODKLAuV6//Hqadn0+lpZdOwQ3zYdOi4tea/pb8xgcJ2Ptz0W2Hto2w5CrY9GT2ucNmx4ccaqfxx0RhiRseLW6d2R+HAwsMOJXU/+3zn7D6Dmh6Ob957Vvg1oVw4XZI1pajssFlWQ6BqqMOjJ7XSOp/kvVRePb2VaVbc9zRpVtLUt+XrIH534xukiRJkiRJkqQ+I1sgWGNyALx5YydBENCYHMamjvXd+gxGkyRJkiRJktRfGIwmSZKkvmn4PvF9ydookOm4W+HqsdDRXJmaBkIw2sanINVS3Bp3ngYHXg5b8wxkANjr36L/u1EHwpQzozCeHYIAgiSEqcxza0bGrzv9wvhgNIhCjwxGK1y6PXN7XDBasTp/X3R19ipYcV308zjmcBi5X3lqUO+Z+d4eg9G2dMSHZ+6SQTL7E/BCDiFSS6+Gxb+F8cdD/aQcCy2xh/85/1C0fS+DZ77c/fFp5vuLr6dmJJx0Hyy7Bl74HlQNhTmfhEmnwIbHYPWtUD8VJp0KNSOK328w2PcSuPOM+P5Jp0dhR1VDYcxhUNUIw/eKHhfbNkaPnYZqSINbw3R408Ow/FrY9DQQwsu/gPZNuc2/8WA49amyllg2HS2w6Y3aRx/Se6Fjza9Hwcs9mfm+8tciqTyCAHa7KHtwe76y/Y5LkiRJkiRJkiRJFZEtEKwhmeXNnPupxuTQmGC0rb1QjSRJkiRJkiTlz2A0SZIk9U1Tz4lCYrqGeI0+ZGcYU9UQOOTncN/bKlPTQAhGKzYUbYdHP57f+NGHwYIrYNis7OMS1ZCKCUZL1sXPG75XFBiz4dHM/Sv+BvO/kVut2lUYQtiRua9cwWhkCbqoGxsFZ2ngmvEuaFkFT34udsimjvggrsbaTgc1o3Lf9/53Rv/u/R+w35cqG7jSuh5e+e/85w2fA8feCA+8F5oXQ+0Y2P+bMOG40tRVVQ+7vSW6dTb6oOim/Ew+PQoW7foYOvU8OPTn2QNAJWmHmhEw4x07j+d9JbpfeeknPc/dtCgK9mqYXr76ymHD43DvhTsDyUYdCEdf0zthpk9+vucx874Ge3yg/LVIKp/9v17aYLS6saVbS5IkSZIkSZIkSQWJC0arCqqpDbKcn9pPxYW9NWcJiJMkSZIkSZKkviTR2wVIkiRJGVU3wt7/vmtbohr2+eKubVPOhFFdwlkady9PTen28qxbSXEBV+XQMANOfwHO2wAn399zKBpAUETQ1kE/iu/b/GwU8KX8ZfueKeb/K5sgy0vVbH0aGIIA9r4Y9okPHtnYER8g1VjbKdCskKCpZ74Cq2/Nf14xNj5R4MQEjF8IZ74K566Dc9bAzPeUsjKV2uyPwYXbo9uZS+CCZjjqKkPRJBUuUQ0H/xgubIWp5/Y8/q6zIEyXv65SCdPw4Pt2hqJBFIb8yL9Uvo4Xfgiv/Tb7uPM2Rs9jfM4q9W+Japj85tKsNeGE0qwjSZIkSZIkSZKkojSntmZsb0wOI6jkm2hWSGNMMFpcQJwkSZIkSZIk9TVenSNJkqS+a5//hKP+BLu/B2Z9BE64CyafuuuYqgY47hbY/5sw9bwoSOfkh8tTT7qtPOtWUrqCwWinPxeFoeUT9jL6kML3G3MoHPbr+P7FVxS+9mCWLRAwUVWePYfuUZ511b8kh8R2beoYntsahX6PLu4h9KTUmpcUNq/z/Wvt6ChUTn1fsja6NUyFqvrerkbSQJGsgSOvggX/A7Vj4sdtfAIe/Xjl6irW+kdg4+Pd25f9FZperVwd914Ej340+5j9vw41IypTj6TyK1Vw7e7vK806kiRJkiRJkiRJKkpcIFhjcmiFK6kMg9EkSZIkSZIk9XcGo0mSJKlvm3oOHPZLOOi/YMxhmcfUDIe5n4GjroL9LoPaUTD3s6WvZSAEo4UVCkY74c4o9CVfe306c/tu78ht/rij4/se/lD+9aiHYLTq8uy554czt086NXO7BqZE/H3Ixo74kIKOdKeDMFXY3ot/U9i8Qq25I/85VQ0wZkHJS5Ek9WNBADPeBueuhWRd/LgXfwhLrqpcXcVYd19839K/lH//VCvcdiIs+b+exzbuXv56JFVOzaji15j1MZh2XvHrSJIkSZIkSZIkqWhxgWANMQFi/V1DTOBbc2prhSuRJEmSJEmSpMIYjCZJkqSBaca7S7/mQAhGS+cQjDbxlOL2GH0ojD2qsLkTToDhc3dtS9TAnh/MbX7t2Pi+1HbYvrawugazbMFoQZmC0UbuD2OP7LJXAvY03G5QyRLosqljRGxfR+cstNGHFL7/4v8pfG4+0h2FBbHN/ABUDSl9PZKkgeG0Z7L333MBpPrB65t198f3bX66vHs3LYarJ8CqW3IbXz28vPVIqqzaIoPRJp0GB10OiarS1CNJkiRJkiRJkqSixAWjNQ7QYLS4zyvu6yBJkiRJkiRJfY3BaJIkSRqYhs8p/ZoDIRgt7CEYbcR+sPBvsP/XoaaAi4AnnADH3QRBUFh9iWo44S6Y+T4YOgsmnQrH3gBjj8htflVD9v7NzxZW12AWZglGS5QpGC0IYOH1MOsjMGwvmHAiHPUXmHx6efZT35Ssje3a2DEyti+VDncejDoQhkwqbP/73wHbVhQ2Nx8rb8jeP+pA2Otfo/vl0YdGx/O+Bgd8u/y1SZL6r8bdo8eMbFZeX5lairHuvvi+7WvKt+/q2+HaPaB9U+5zqgfmyfLSoFUT/5ojJ3t9ujR1SJIkSZIkSZIkqSSaU1szthuMJkmSJEmSJEl9k29TLkmSJOUqNcCD0apHwEH/BUEC5n4WZn0U/tBD0FhXR/8VquqLq7F2NBz634XN7SmQ7daF0b/jj4W9/z0KclN26SzfM+UKRgOoboy+HzV4JeKD0ban62L7OtKdDoIEHPILuOdcSG2P2urGwfS3wguX91zDXybDOaujOeXy+h/i+w76Icz68M7juZ8tXx2SpIFn+kWw4dH4/rvOgrNXwpAJlaupJ02vwiMfhy3PQVUjbFsWP7ZcwWhhCI9+HMJ0z2M7Sxb5OkhS3zJsduFzZ/4TjDumdLVIkiRJkiRJkiSpaE0dmQPBGpJDK1xJZcQFo21LNZEOUySCZIUrkiRJkiRJkqT8GIwmSZKkgWvIJGhZUbr1Us2lW6u3ZAu5Om0R1E/ZeVxIwFmxoWilMHwubH42+5jVt8Pae2Dh34EAkkNg1EGQrKlIif1K2B7fV85gNCkZH36WCuNPyurommEy+VQ47TlYeWN0HzXhJBgyHvb4Z3j1V/DcN7PXccOBcMYr5bt/WP9gfN+088uzpyRpcJj5Pnj6MmjfHD/mzxPhmL/B+IVQlWcocqk1vQrXzMx9fGuZgtGaX4NNi/KfVzO85KVI6kXjjoH6abBtya7te3wQRh8CYQoe+kD3eVPOgkN+3nNwuyRJkiRJkiRJkiqqKZU5GC0uQKy/iwt8CwnZlmqmsWpgft6SJEmSJEmSBo5EbxcgSZIklc2+l5R2vScuhk1Pl3bNSgtjgtGGzd41FG2HyW8ubz3lMOm03Mal2+G2E+G2E+DmI+CGA6DptbKW1i+lswSjBQajqYwStbFdqZqxsX0dqQyNjbvBnh+EGe+IQtEAhs+B+d+AC1uy17FtGay5o8dyCxKG3YMWdpjzaagbV559JUmDQ81wOO6WnsfdeTr8bS/Y8Hj5a4qz9t78QtEAtq+JHktLrZDXfI17RAFKkgaORDWccAeMPQKCBNSOhXlfg4N/AjPfC3u8H858DcYeFfVXj4B9Pg9H/clQNEmSJEmSJEmSpD6oObU1Y/tADUbL9nnFhcRJkiRJkiRJUl9iMJokSZIGrmkXwMj5pV3z3gtLu16lpWOC0YKqzO17fw6qMr9rXDdTziqsplKb9eHC5m1+Bh77RGlrGQiyBaMlDEZTGSWzBKMlGmP7OtL57lMHx92afczGJ/JctActK+H+d8GVCUhtzzxm2gWl3VOSNDiNPgiO+L+ex21bGgUFh/k+kJZAqhXue0cB81rggffApkXF17DxCXjoQ3DXOXD/2/OfP+/LBiFJA1G/5G7VAAAgAElEQVTjDDjxHjh/C5yzGva+eNef9YbpcOJdUf9562G/y6KQNEmSJEmSJEmSJPUpqTDFtnRTxr6BGozWkIw/99dgNEmSJEmSJEn9gWfnS5IkaeCqGQ7H3wbzvwNTz4Fhs2HKmbDvpXDYrzPPGTEv+5qbn4U195S81IoJ44LRkpnbxxwGJz8Acz8Hu78nClU44yUgw0X/084vWZlFaZgOJ9xd2Nxlf4V1D+4MKkp3wPa1EIalq6+/yRqMFhOoJ5VCsi62K5VoiO3rSBWw14TjYOq58f3tmd8ttCDb18K1e8Li32Qf1zC1dHtKkga3yadB9fDcxt755vLWksnKG6F5cWFzF18BNx0B6x8pfP9Vt8JNC+Dln8KyP0N7nieAj5gH0/t5gLak7KoasocfVjUYiCZJkiRJkiRJktSHbUs1EZL5PNBsAWL9WU2iltog8zl4BqNJkiRJkiRJ6g+8il2SJEkDW80I2OtTwKd2bQ9D2PoiPPPV6DhRCwdeDnt+EG47GVbdFL/mLUdB4x5wxJUw+qCylV4WscFoWV4aDJ8L+39117bDfgUPfQDSbdHxnE/B9LeUpsZSGHtE4XNvOiz6t2G3KBSsZTnUjonC9CafVorq+pdswWhBdeXq0OCTqI3tSsWcsAWQKjTHcMFvYemfMve9fiXM+1KBC3ex6IvQ0Zx9TKIa6saXZj9Jkqoa4Kir4bbjex674rooELS6gid+L/tLcfM7tsLz34Uj/rew+c99e2cwciEmnVr4XEmSJEmSJEmSJElS2WULAmtMDqtgJZXVkBxKa0f3v4c3p0r4RqGSJEmSJEmSVCa+fbkkSZIGpyCAeV+Bs1fBCXfDuWujUDSAZHzgzj80vQy3nQBtm8tbZ6mFqcztiTwzk3d/F5y7Dk68B85ZAwd8B4I+9PIiCGDqucWt0fxaFIoG0LoO7jwDNj1TdGn9TpglGC1hMJrKKJktGG1IbF9HzN1cj6qGxAc8Nr0CTa8VuHAnqTZ46Sc9j6ub0LfuUyVJ/d+E42C3t+c2dsMjpd9/+1p46afw1Bdh9Z279m1+tvj1X7+ysHlhCKtvL27vurHFzZckSZIkSZIkSZIklVVzlmC0hmQF3ziswuJC37IFxUmSJEmSJElSX+FVtpIkSRrchoyHcUdCdacTG2rH5Da3fTOsuqk8dZVLuiNze5BnMBpEX7OxR/TdIIBcgx9yFsKSq0q8Zj+QNhhNvSQRH1KZDuJD0zrSRexZleUktxe+X8TCb7j5iNzGjTum+L0kSeqqblxu40odBrz1ZbjhIHj4Q/D0ZXDrQlh06c7+7WtKs8/Gp/Kf07EV0q09j5v3FahqzNw38ZT895UkSZIkSZIkSZIkVUxTamvG9tqgjppE/Llo/Z3BaJIkSZIkSZL6M4PRJEmSpK7yCfp6+svlq6McwphgtEQBwWh93ZQzYeis0q65ucQhEf1B3PdMkIhuUrkEydiuVBAfmtaRKmLP6mzBaJfDvRfBnyfBldVw7azoMSDMMYlt3QOw4ZHcxk5/a27jJEnKR3XmE5672fx0afd95iuwbcmubYsugRsPi0LYWksUjPbwh/Kfk1MoWwCzPgaH/KJ7MPC+l8HwOfnvK0mSJEmSJEmSJEmqmLggsIZklvPFBoCGmGC0ZoPRJEmSJEmSJPUDAzD9QJIkSSpS7bjcx6a2l6+OckjHhVwNwJcGQQALr4Nr9yzdmsv+Urq1+ot0e+b2oDpzu1QqVQ2xXamq4bF9HTnmlGXeszF7/+tX7vx460vw1Odh4+Nw1J+yz0t3wE0Lcqth7BEw8eTcxkqSlI/q+MfPXTS9CusfgbX3QstyGHskTDo1e5hy81JYdx90NEXHVUNh3NFQNx6WX5t5zvoH4e/75Pc5ZLPuPkinIPFGuGpHM6y5K3qtM/7YzPXnEoxWPRyqG2G3t8Dog2H1rdHrwHELYeR+patfkiRJkiRJkiRJklQWccFojTHBYQNFY1Xm4Lem1NYKVyJJkiRJkiRJ+RuA6QeSJElSkeryCEZL1JSvjnIIB1EwGkD1iNKuF3bAhkdh1IGlXbcviwtGSxiMpjKrnwRDZ8HWF3dtHzKRdM3Y2GmpYoLRqgt4B9ClV8ODH4CDfxT/c5FrqOK4Y2DBb3cGukiSVErVOZ7Qverm6LbDc9+CIAlnvgb1U7qPf+mn8OjHMjxvDGDfS6F1faEV52/dfTDuKFh7H9xzHrSsjNqHzYaFN0DjbruOzyUYraZToNzQmdFNkiRJkiRJkiRJktRvNA/WYLSYzy8uKE6SJEmSJEmS+pJEbxcgSZIk9TlVjbmPHSjBaIkBGoxWMxJi3vGuYHefC2FY2jX7MoPR1Jvmf3PX4MYgAfO+ljX8rKOYYLSgwO/rV34Bv6+BRV+CVGv3/rX3ZZ9/URjdTrgDGqYWVoMkST1JZ3iMylWYioJAu9ryUkwoGkAIi75Q+J6FuOVouPetcPMRO0PRALa8ANfM6D6+NYdgtFwD5SRJkiRJkiRJkiRJfVJTamvG9oYBHowW9/nFBcVJkiRJkiRJUl9iMJokSZLUVe2Y3Mf2t2C0dEwwWjBAg9ESSZhyZua+428rbM3m12Hri4XX1N+kWjK3D9TvGfUtU86Ek+6DOZ+Gvf4Vjr8Tdn8XqSzZhB2pIvaL+37P1aIvwG0ndg9PXH5N/JwDf1DcnpIk5WrIpOLmr7x+1wC0jm3wzFfig3RLbeIpuY17/ffxfQ99aNfjbct7Xq96eG77SpIkSZIkSZIkSZL6pKaYILDGUr/xbh/TGBOMFvf1kCRJkiRJkqS+xGA0SZIkqavRB0GuJzsk+1kwWhgTjJYYwCFXB/0Qxi3ceTx0Fpz2DIw/tvA119xVdFn9wiu/gvvfkbkvUV3ZWjR4jT4YDvg2zP8WjDsSgFQ6fnhHlr4eFRuMBrD2blh9a5d1t8WPL+a+SJKkfIw5AoIi/yTQ0RT9+9JP4K/TYPEVxdeVqyETYPShxa3x8k+joOMdNj/b8xyf90qSJEmSJEmSJElSv9YcF4wWExw2UDQmM58L3ZLeRirufGJJkiRJkiRJ6iMMRpMkSZK6StbB7I/mNjbRz4LR0jEnMgQDOBitZjiccDuc8TKc/jyc9iwMnxv17f7uAtccUbLy+qx1D8GD743vNyBCvahswWgTTihicie3nQh3nwu/r4E/joaWlZnHJethxD6l2VOSpJ7UjYHd31PcGh3bYM098PCHoXV9aerKVaIW5l4MBMWt89fdYNUt0cebn+55fLvvlC1JkiRJkiRJkiRJ/VlTTDBawwAPRmuICUYDaEptrWAlkiRJkiRJkpQ/g9EkSZKkTPb7Mkw8uedxQT8Lh4p7h7eBHIy2w9CZMGw2JJI726ZdWNhayYbS1NSXvfqr7P397XtfA0rWYLRUEQuPWQA1o4pYoJOlV0O6Hdo2xI85/dnS7CVJUq4O/hns/3UYfVhhrwE6tsGzXwPCkpfWo0QNTD0LFv4dJp9R3Fq3nQiPfRq2vtTz2LbNxe0lSZIkSZIkSZIkSepVcSFgjQM8GC3b59ccExYnSZIkSZIkSX3FIEg/UCZBEMwB5gFTgCHAdmAN8DLwZBiGzUWsXQ0cAUwDJgJNwArg8TAMXyuuckmSpAoJAtjni7DyxuzjwvbK1LPD5mfhyf+ENXdC/VSY/y2YeGLu8+OC0RKD9KXBhBNhj3+Gl3+a37x0W3nq6Ut6+pokDEZT78kWjJatr0eJKjj8d3D32ZDaXsRCOagZCfXTyruHJEldJZIw97PRbc09cMtR+c3/26zy1JWLZE3076Q3RbdrZ8PWFwtf7/nv5jau3WA0SZIkSZIkSZIkSeqvOsJ2tqe3ZexrTA6tcDWV1ZDl82syGE2SJEmSJElSHzdI0w8GpyAIRgAfB95LFFoWJxUEwRPAH8Mw/Hoe648FLgUuBEbFjLkP+G4Yhn/KuXBJkqTeUjeu5zGplvLXsUN7E9x5BjS9Gh23bYDbT4YT74Gxh+e2RjomGC0YpC8NEkk4+Mewxz/BY/8Ka+7IbV66taxlldzGJ6FpMQzfC4bN7nl8mEOylMFo6kWpML6vo5hgNIiCVt78Kqy6BWpGwcj5sP6B6Gdo2zIYdQCk2+GF78OmRYXvM3yfKIRTkqTeUtXQ2xXkJ1Gz63H91OKC0XI1453l30OSJEmSJEmSJEmSVBbNqa2xfY3JYRWspPKqgmrqEvUZg+GasnxdJEmSJEmSJKkvGKTpB4NPEATnAz8BRucwPAkcCEwBcgpGC4LgFODXQE/pIYcDhwdB8Dvgg2EYNueyviRJUq/IKRhte/nr2OHln+4MRfuHEF78Ue7BaGFMMFpiEL80CAIYdSAc/jv4yxQgS+LSDum2spdVEmEI974VlvzfGw0BzPsq7H1x/JxUK9xwUM9rG4ymXpTKEn6WrS9nQybCjHfsPK4/p/uY3d8Niy6Fpy8rbI9JpxQ2T5KkUunvwWjD5sDqW8u/77Tzy7+HJEmSJEmSJEmSJCkvYRiypn1F1uAzgHXtq2P7GgZ4MBpAY3JoTDDalm5tqbCDFa1LaA+7nyObDKqYVDON6q5/u5ekCujpPn9E1WhGVY+tcFX9W1u6lfXtaxhXM4lkkCx4nVSYYk3bCkZXj6MmUVvCCiVJkiRJMhhtUAiC4IvAJRm6lgAvAmuBOmAisC+Q1xVxQRAsBP4CdP7tdgg8BrwKjADmA2M69b8NGBYEwVlhGJbisnVJkqTSq2qE6mHQ3v2P//+QaqlcPU/+R+b2DY/kvkY6Jhgt8KUB9ZNg7mfh2RyygVOt5a+nFF75RadQNIAQnvwcTD4DRuzdffza++HmHEP26qeUpESpENnCzzpSFSoiSMB+l0LNCHjsU/nP3+MDpa9JkqR89HYwWtVQGDoTNj6R2/iuJ87NeAe89KPS19XZ9Itg9MHl3UOSJEmSJEmSJEmSlJcl21/h58u/zoaOtUWt05gcWqKK+q7G5LCM4XDNXYLRHtlyN79b9SNaw/g3jK4KqjlrzDs4duQZBEFQ8lolKZNl21/j5yu+ljXoEmC3ull8YPLFjKgaVaHK+qcwDLlxw5+4bt3vSdHBkEQ975zwceYNPTTvtZ5qeogrVl5OS7qZJFWcNuZCTh51no8RkiRJkqSSSfR2ASqvIAg+TfdQtCuB/cIwnB6G4YlhGF4UhuE5YRguAIYBRwLfA9bnsP4U4Gp2DUW7F9g7DMODwjC8IAzDk4ApwMeB9k7jzgC+XOCnJkmSVH5BAOMWZh/TUaFgtHQHpLu/AxsAW1+EdI5JQKHBaFnN+yoccy1MPSf7uHQ/CUZ7/vuZ21+4fNfvmebX4alLcg9FA5h8ZlGlScXIGoxW6ejtOZ+E426F2Z+MwlMmntLznIXXQ+3o8tcmSVI2vRmMtu9l8KaH4U2PwVFXw6yPwv7fzP442vVdp0cfAuOPLX1tiRrY88Nw+JWw4DdRGKokSZIkSZIkSZIkqU9oT7fzo2WXFR2KNiRRT3IQnDvbkByWsb2pUzDaytal/HLld7KGogF0hO38ce0veX7bkyWtUZLipMIUP17+pR5D0QBe2/4iV6z8XgWq6t+eanqIa9b9Dymi60pa0tv4+YpvsL59TV7rbGhfy8+Wf52WdDMAKTq4Zt3veLLpwZLXLEmSJEkavAb+b3AHsSAI5gFf79TUDlwUhuEf4+aEYZgmCja7Nwhy+g3/pcDITsf3ASeE4a6/DQ/DsBX4QRAES4A/d+r6VBAEPwvD8PUc9pIkSaq8cUfB8mvi+1MVCEYLQ3jum9nHtCyHhmk5rBUToJbwpQEQheFNPh0mnQp/ngTbY/6ImuoHwWiLfwtbnsvc98ovYOUNcNgv4YnPwYZHcl83UQ1zPg27v7skZUqFyBqMlgorV8gOE46Lbjusvh0eeB80L951XKIG5n8HJr2psvVJkpRJbwWjzfoo7Pv5ncdTz45uEAX2xukajBYEcNiv4PaTYcsLpatv/rdh9kdLt54kSZIkSZIkSZIkqWSe2/Y4W1Obi16nMSYwbKCJ+zybOrb+4+MHt9yR15oPbrmdvRr2L6YsScrJC9ueYlPH+jzGL2JD+1pGVY8tY1X924Nbbu/WFpLm4S138qbR5+e8zsNb7iKk+wndD265nf2HHlZUjZIkSZIk7WD6wQD1RqjZL9n1//iD2ULRugrDsKOHPfYE3tWpqQ14d9dQtC5r/iUIgis6zasFvgi8N9e6JEmSKqq2hz+KbV8F6RQkkuWrYe298OR/ZB/T9EpuwWjpmKd4g+Bd7/ISJGDuZ+GxT2XuT7dVtp58pVrh/ndmH7NtKdx2Yn7rjj0Cjr2x90I0pDdkyz7LFppWMeOPhdOfj8JdqhuhfQu0bYIR+/jzI0nqOxLVvbPvnv8S35eszdJX072tYXr0mLv1FXjpJ/D8d4qvr35q8WtIkiRJkiRJkiRJkspieetrJVlnYm0O59wOAI3JoRnbm1Nb/vFxvl/TFa1Z3vRMkkpoeQH3NytblxiMlkXc13RF65I813ktZh0fIyRJkiRJpZPo7QJUNucDB3Q6vjUMw1+VeI+LgM4JIFeHYfhSDvO+0eX4giAI6kpXliRJUgnlEmBz2wnQ3hQFpJXDq/+v5zFbX8ltrbjs24TBaN3M+WR839NfqlwdhVh1a3nWPfgnhjqpT8gWftbRF4LRIApvGbYnDJkIw2bDmEP9+ZEk9T3TLuzeVjsGqvN8Z+wZ74JDc3jdMvEUGD4nvj+Z5dfEiSyhaUNnwt7/XprA5waD0SRJkiRJkiRJkiSpr1rVurwk6xw+/ISSrNPXNSQz//2/qVMw2uq2ZXmtubptBemwr5yoJ2kgW9OW/33+6gLmDBbt6XbWt6/O2Jfv1y1u/Lr2NbSn2/OuTZIkSZKkTAxGG7g+2OX4q2XY4+wuxzkFr4Vh+BzwYKemBuCkUhUlSZJUUrmE2Ky5A64aGt3ufDNsK/Ef0179dc9j1t7d85imV2HVzZn7ShEgMBCNPz5ze2obtG2ubC35aMoxKC8f+14CI/Yt/bpSAfpFMJokSf3BAd+NAjx3qGqABf8D7Vvi53RVPw0W/Bomndrz2PHHZO+vGR3fl6jJPrd2FBz2awg6/dljzOEw93O7tmWTrIehs3IbK0mSJEmSJEmSJEmquHxDvLqaVDONd0/8JPs1HlKiivq2xh6C0drTbaxvX5vXmu1hGxs71hVdmyT1ZFUB9/mr21aUoZKBYV37KtJkPtF6TdsKwjDMaZ0wDFkT83UOSbOufVXBNUqSJEmS1JnpBwNQEAR7AJ2vMHsNuL3Ee0wA5nVq6gDuzWOJO4BDOx2fAlxTfGWSJEkllksw2g6pFlh+bXS7oCm/uXHSHbmNW/wbOPT/QSLmKX5qO9x8ZPx8g9EyS9bG9y37K+z+zvj+MITNT8P6R2DkfjByfu6BDMXavqY068z9LAzfJ6p9xN6lWVMqgazBaKnK1SFJUr9XPwlOeQLW3gNtG2Hs0TBkfGFrDZmQw5gp2fuHz43vS23ref0Zb4Pxx8Lq26F+chSMlqyB3d8Nm5+BMA3pVlh9G6y7HzY/22X+O6F6aM/7SJIkSZIkSZIkSZIqLgxDVrdlfvPit43/MIcMW5h1fhBAVVBdhsr6rrhgtObUVgDWtq8kjAnJ+cy0b/CtJZ/N2Le6bTmjq8eVpkhJihF3n3/BuPezsm0pd2+6oVtfIWFqg0Xc1xOgNdzOpo71jKwe0+M6mzs20Bpuz7rPxNqpBdUoSZIkSVJnph8MTMd2Ob41zDWuPXf7dDl+KgzD5jzm39fl2JQFSZLUNxUabvaHRjhnNdQV+Uf/psW5j11zJ0w4PnPf0j9Dy8r4uYlkfnUJNjwaH4wWhvD4Z+D57+xs2+0dcNgv48PrSqk1v3fv62b6W+HgH0PNiNLUI5VY1mC0LH2SJCmDZB1MOKE0ax35B7jngvj++p6C0bL8mjjVmlsN9ZOigLTOhs2KbjvsdhF0tMAzX4FXfgHJeph2Acz7cm57SJIkSZIkSZIkSZIqblPH+tgglkm106hODK7Qs1w0JjO/OVhruJ32dBurYkJyEiSZVjeT4VWj2NyxoVv/6rblzG2YX9JaJamzpo4tNKW2ZOybVDuNkMyXy67JEv412PUUGre6bXlOwWjZAtZy6ZckSZIkKVeJ3i5AZXFIl+P7AYLICUEQ/CoIgmeDINgcBEFzEASvB0FwSxAEFwdBsFuOe8ztcvxynjW+0sN6kiRJfUOywGA0gEWXFr//9tW5j33+e/F9K67PPrdlVe77DCYd2+L7qurj+9bcsWsoGsBrv4UlfyhJWd2k2mDRZXDjArh2Nrz8s8LX2vdSOOJ/DUVTn5bKEv2dLTRNkiTlaM9/KWzemAXZ+4fumb2/fgrUji5s7XxVDYmC0M5ZDWcuhvnfAE+SlyRJkiRJkiRJkqQ+K1vQyviayRWspP9oSA6L7WtObWV1TEjO2JqJJIMqJsR8XXsK15GkYmW/z58Se7+/ObWRllSWawAGsZ5C43INNDMYTZIkSZJUKQajDUwHdTl+7o3As1uAm4F3A3sBw4B6YBpwPPA14MUgCH4UBEGWlAcA9uhyvCTPGl/vcjw6CIKRea4hSZJUftnCr3qy/NrC5jUthqbXoo/bN+c+b8V18OoV0LIS1twNbW/M7dgWhXJl07h7QaUOeB3N8X3JLN8br/wyc/urvy6qnFj3XgiLvgjrH4CtLxa+TpCA3d9VurqkMskWftbWUbk6JEkasKaek/vYsUfs/Lh+Ckw4KfO4cQuhflL2tYIAdn9f9/bG3WHkvNxrkiRJkiRJkiRJkiQNOHFhXMOSI6hPNla4mv6hMUswWlNqC6taM4fX7AhEGxcTPNRTuI4kFSvuPn9Iop5hyRFZAzHXtK8oV1n92uq27F+Xnvr/Ma7dYDRJkiRJUmVU9XYBKouJXY7rgYeBMTnMrQb+BVgQBMFpYRiujBk3osvxmnwKDMOwKQiC7UBdp+bhwMZ81pEkSSq7qobC57asgDAdhU3lNH4V3Hk6bHg0Oh59KOz2tvz2fODdOz8OEjD7kzByfs/zchkzGKWyBKNlC8177X8yt6+6ubh6Mnn2m7DsL6VZ66iroWF6adaSyihbMNq2tsrVIUnSgDXheDjoh/Dkv0P7luxjZ3141+MFV8A958Hae3e2jVkAR1yZ2977fjEKe94R7jx8bzjqz7m/rpIkSZIkSZIkSZIkDUhxQSvZwnEGu/pkIwEBIWG3vqbUFlbHBA+Nr5kCwIQ3/u1qlaE3ksos/j5/CkEQMLJqDNVBDe1h9xOHV7ctZ3rdHuUusV8JwzA2bG6HXEMvewpQW5NjwJokSZIkST0xGG1g6hpa9it2hqI1Az8FrgeWAQ3APOC9wJGd5swH/hQEwTFhGLZn2KPrW6m0FFBnC7sGow0tYI1dBEEwDhib57SZxe4rSZIGsGKC0cIUtG2E2tG5jb/vbTtD0QDWPxjdCt4/Dc9/B5JDso8btxDGHl74PgNZR5ZgtKZXK1dHnPYt8MRni1+nbjyctQwSvkRU/5AtGO1p/5YuSVJpzPowzPwnaH49el1z02Hdx4xbGIWedTZkApx4D2xbAduWQf0UqJ+U+75V9XD4b+DgH0LremicUdSnIUmSJEmSJEmSJEkaGOICXcbHhHcJkkGS+kQjzemt3fqiYLTMITgT3gibiwud29yxge3pFuoSPZyjLEkFirvP33H/lAgSjK+ZxLLW17qNiQt9HMyaUptpSWe5NgL+P3v3HSbJVd/7/3Oq0+Sd3Z2ZnrC7ykI5gIRAIAzYGOk6EJzANjYY44BzIjj8CNe+Nk6P8c/GXCcMBmNjDAZsIRDJgBICIUArIVZC0oaZ7pndyalTnfvHaKXZmTrdVTOd+/16nn12+5xT53ynt7u6e7rqU8oWwgajlR+34i9pubiovvhA6PoAAAAAAAjCWe9txhiTkpTa0nz6N/z3S7rRWntsS/89kt5ljPkNSX+6qf2Zkl4v6fcDltoajLa+g3LXJO0tM+dOvFbSm6owDwAAwAZv61uriNanwwWj5U5J2c/sbi2XUpkM28t+T7roNyQvUZu1W125YLQj75DOf42096ot7e+sbU2bHftwtPE9B6WuUalrWFqbkhL9Uvr50iWvJxQNLaVcMJok3T9pdcm4qU8xAAC0s1hKGrhw498vvFu666ek+W9s3L7sTRvvI40XvG3PeLRAtK0SAxt/AAAAAAAAAAAAAACQO4hl1BHehQ29sf7AYLTjuUeVs8Gng50Om3MFo0kb/x9ndZ1fnSIBYAvXPn9zGOZIcsIRjBYu4KuTZELcJ7OFGeX9nJJlzqEp+HnNFqYrzpXNnyAYDQAAAACwa5z53n5ijvYFBYeiPcFa+2fGmAlJv7ap+deMMX9hrV2usK6NWOdOtwEAAKgvs8tgnfVpac/FlcedvHN36+zE8LOkK95a/3VbSXG1fP833io950NP3i7lpXvfUH4ba3f/uDrtkXeHH2vi0vc9JMWS1VkbaKBShU+Tf/wJq396FcFoAABU1f5rpP/19UZXAQAAAAAAAAAAAADoQOv+muaLpwL70qkDge3Y0Bcb0HRhclv7w2v3O7dJJzcuhLY3PqSESapg89vGZHLHCUYDUBMFv6CThWxg3+bARld4Yza/fZ/X6cKExVlZzRSmNJE62zlmujApG+K04Ez+uM7rCXEeDQAAAAAAZXiNLgDVZa1dleQHdP15uVC0TX5PGyFqp+2TdFPAuK1Bad3hKiy7TaXwNQAAgNaz8li4cTboLVyNnfvq+q/Zas55Rfn+zK1n3p67VyosBI897QsvkXLBB+dEkp+Tsp8NP77nIKFoaBulCrvM99xBDjcAAAAAAAAAAAAAAAAAtItygS6jjmAcbOiLDwS2P7Z+JLB9ILZXPbE+SZJnvCdC0raaLlQO2QGAnZgpTMkGniIbLhhtOj8pvxHnZzSxMMFoG+PKh8qFDZ0Lux4AAMqodT0AACAASURBVAAAAOUQjNaeVgLa3hNmQ2vtiqQPbWl+bsDQZg1Ge4ekyyL+eVEV1gUAAO3s3FcGtz/lV6SeQ1L/he5t7/xJaf5wiEUa8MVb78H6r9lqzvnJ8v3FLW9h83OV5zz+EenmK6Xs53ZcliTpob+PNn7vFbtbD2gilYLRAAAAAAAAAAAAAAAAAADtI5M7HtieMEntjQ/XuZrW0hvrD2wv2mJg+9agoRFH8FAmR+gNgNrI5oP3+Z48DSdHn7jtCsYs2LzmiidrUlurCh+MVn5c2HmmC+EC1AAAAAAAKCfe6AJQE/OSNv/WOmutfTTC9ndKetWm2xcHjFnYcjvStwjGmD5tD0abjzJHEGvttKTpiLXsdlkAANDuLv0dKfNpafXYk21X/qF06Rukp/3Fxu1PXCed+lLw9nf8uHTgxdKJ/5ZSQ9L5r5EOvuTMMbZUm9rL6Tu3/mu2mqHroo0vbH2b7LB2Qvr086Xh66XEXmltUko/V7r8LVKir/L21kr3vi5abRe8Ntp4oIkRjAYAAAAAAAAAAAAAAAAAncMVxJJOTsgzXp2raS19sYFI47cGo40mDwSOCxuOAwBRufYvQ4lRxU3iiduu4MbTc+xPjFS9tlZV72A0XiMAAAAAANVAMFp7+pakg5tuT0Xcfmsc+/6AMUe23D4r4hpbx89aa+cizgEAAFAf/edLL7xbOvERafW4NPoCaeSGM8ck9ri3n7t3489pUx+XznuNdOFrpT2XS15MKq7WpnaXvnOl3nPqu2YrMp501sulx97vHuMXJe/xj1aFxQiTW2nmtidvzt0jnbxDesEXN9YNsj4tLT0s3fXqCOtIGnqmlP7OaNsATSxMMNq/3OXrR6/jgDcAAAAAAAAAAAAAAAAAaHXZ/PHAdldoF54UNRhtdEvQUDo5HjhuujAp35bkmdiOawOAIBlHqNZo6sx9fpfXrT3xfVoozm4bm82f0CW9V9ekvlZT8As6WciGGlsp0Gw6ZODZTD6jki0qZjiFHQAAAACwc5wh3J4Ob7mdi7j91vFdAWMe2HL7/IhrnLvl9v0RtwcAAKiv7rR0/s9IV7x1eyiaVD4YLcjDfyd9/GrpYxdI84el4kp16gxr4kWSMfVds1XFusv3l9af/HdhYXdrnbxj489Wfkm662ekD6WlW6+XFre+Hd/khv+QzvvpJ2+nnyc98583AviANlGylcf87/8KMQgAAAAAAAAAAAAAAAAA0PRcITnpLSFe2C5qMFp6S/BQ2hE+V7QFzRZO7rguAHBxhXMF7fNdrwOVAr46yclCRlYhrkqtjfvN2uBjsK21oe9XX6XQYWwAAAAAALgQjNaevr7l9mDE7beOPxUw5r4tt68wxvREWONZFeYDAABoLYloBw08YeUR6ebLpLt/Ltp2z3iXdPAHdramJO29aufbdhovWb7f35QrXFjc/XoP/8P2tiPv2AjTq2TftdLBl0rX/Z30w6vSSzLSd35G6j9v93UBTcQP8d38g1mpUCQcDQAAAAAAAAAAAAAAAABaWcmWNFOYDOxzhXbhSb2x/kjjR7eEDI0kx51js/njO6oJAFw2wreC9y2jAfv8dIJgtEqi3Bfr/qoWS/OBfUulBa35qzVZFwAAAACAIASjtaePS9p89ve5xpiuCNtftuX2tt8kWWundGYAW1zSsyOs8dwttz8eYVsAAIDmk9hT3/W6J6SJ79v59oNb3/LByV8v31/a1F9Y2P16p+7a3nbsg+G2vWBTwF68W+pO774eoAmVQuadZaqQVQgAAAAAAAAAAAAAAAAAaJxThWkVbTGwb2uIF7bri4W/+HPCJLU3PnxGW5fXrcH4/sDxhN4AqLaF0pzW/bXAvnTAPj+dIhitkkzEEEvXfRf1Ps3mg0NNAQAAAAAIi2C0NmStnZR0x6amhKTvjDDFjVtuf8Ex7sNbbr8qzOTGmIskXbepaUXSJ8OVBgAA0KQS4Q8aqIquEensH5e6x6JvG++XBi6ufk3tqljhqkZ+7sl/F6qQwrRwv5T59Jlt058Pt+25r9z9+kCTs9bKhgxGOz5X21oAAAAAAAAAAAAAAAAAALWVdQS6GBmNJMfrXE3riRKMlk6OyzPbTzcMCiOSpAzBQwCqLJtzh3gFBqM59k/zxVPOgLVOMx1xX+0aHzUYLeq6AAAAAABsRTBa+3rXltu/HmYjY8wNkp6+qcmXdLNj+PsklTbdfqkx5oIQy7x+y+0PWGvXw9QHAADQtJJ76rtealjyYtL174u+7QU/L8W7q19Tu6oUjFba9Fa2sFB+7NmvkF58rPKan7tJmv+GNHmL9M23Vx4vSS8+IQUcjAK0m5IffizBaAAAAAAAAAAAAAAAAADQ2lzhW/sSw0p6qTpX03qiBaMdCGwfdbRHDckBgEoyjjDM/tge9cb6t7WnE8HBaJI0nZ+sWl2tLBvxfnDt26Pu83mNAAAAAADsFmfNt693SXpg0+3nG2PKhqMZY0a0PVDtA9bah4PGW2uPSHr3pqakpH8yxnSVWeNFkl65qSkv6S3l6gIAAGgJsZ76rpcaenzd3ujbXvWH1a2l3ZUqBaPlnvx3ft497uLfkp7xD1LPAam7whUK/YJ08xUbAWn3/GrlGm+6V+rhqofoDNGC0WztCgEAAAAAAAAAAAAAAAAA1FzWEZLjCvHCmbq8HnkhTyFMJ4MDhkaSwceoEnoDoNpc+xXX/mlfYkhxk4g0Vyex1jrD5tz3W3CQmuv+jCke2O4KNgUAAAAAICyC0dqUtbYk6VckbT5l/M+MMW83xuzdOt4Y812SbpN03qbmOUm/XWGpNz0+7rTrJX3KGHPRlvlTxphfkvTvW7b/M2vtYxXWAAAAaH6FhfquF0tu/B2PGMiWGpIMHwMiKVYKRluXvv0e6VPfIWU/Ezzm6j+Rrv5jyXv8y0MvWb36rvpjae+V1ZsPaHKRgtHKZBUCAAAAAAAAAAAAAAAAAJqfK4hl1BGSgzN5xlNvrD/U2FFH2JyrfbE0p7XSyo5rA4CtXCFermA0z8Q0kiC80WW5tKA1P3g/fVFP8DkIrvvN1X5Bz6XOtVdLyyGqBAAAAAAgGIkIbcxae6s2wtE2+2VJWWPM540x7zfG/Kcx5lFJt0o6f9O4vKSXW2sfqbDGcUkvfXz8ac+SdL8x5m5jzL8ZY26RdEzSX0raHCP/X5J+bwc/GgAAQPMZeEpj1o33Rht/4MW1qaOdDV1Xvv/Bt0t3/qQ0/Xn3mIGLz7w98b27r+u0se+u3lxACyjZ8GNPzFUeAwAAAAAAAAAAAAAAAABoXu6QnOCwLmzXFxsINc4VPORqlwgeAlBd7jBM9z7ftY9i/yRlytwHV/RdG9h+qpBV0RbOaCvagk4Vso55nu5cg/8DAAAAAMBuEIzW5qy1fyXptZJWNzUnJN0g6WWSXiTprC2bZSU9z1r7iZBrfE7SSyTNbGo2kq6R9MOSXihpeMtm75f0MmttKdQPAgAA0OxGvkMy8fqs5aWe/HdqKNq2Z/9YdWvpBOe9unz/0X+rPMfgZWfePvendl7PZnsukQavqM5cQIso+eHHHp+LkKIGAAAAAAAAAAAAAAAAAGgqy8VFrZSWAvvKhXXhTL27DEYbjO9X0qQC+wi9AVAt6/6a5oonA/vK7fMJRnNz3Qc9Xp/O674ksM+Xr5l85oy2mXxGvoIP4r6w5zKlTFek9QEAAAAACINgtA5grf0bSVdIeq+k4G8DNmQkvVnSU6y1t0dc42ZJl0l6p6S5MkPvlPSD1toftdauRFkDAACgqSUHpYt/oz5rXf0nT/470R9+u9HvkoZvqH497W7PZdLBH9z59vF+qefQmW17r5IOvGR3dUnSte+UjNn9PEALiRaMVrs6AAAAAAAAAAAAAAAAAAC1lckfd/aNJg/UsZLW1herfLzxvviwkl5w+JlnPI0kxwP7MoTeAKiS6fyks6/cPj/t2D9N5yfl2wgHHrchVzBZOjmhocSojOMU863bueYx8jScGHe+RhCMBgAAAADYjXijC0B9WGsflvQKY0y3pGdJOiBpVFJe0oykr1lrv77LNaYl/bwx5lceX+Osx9dYkXRC0lettY/sZg0AAICmduUfSnsul+56teTnarNGrEs662Xhx1/8W9LSkY1AtAtfK3mx2tTVzoyRnvUv0r9+cGfbp5+7PbzMGOnZH5CO/I30lV/e2bzd49IIQXfoPFGC0U7MS9ZaGQIEAQAAAAAAAABACzLGvFnSm3Yxxbutta+sTjUAAAAAUH+uQJVur1f9sT11rqZ19cUGKo5JJyfK9o8mD+h4bvtpYdOE3gCoEtc+P24S2pcYdm7n2n/lbU7zxVNlt2135YLREl5CQ4kRzRQy2/q3htS5Quv2J4aV8BJKJyd0LPft0OsDAAAAABAGwWgdxlq7JulTNV4jL+mztVwDAACgKRkjnfNjUt+50q3XV3/+WLf0jHdJXRG+mLv6j6tfRyfyElLPQWn1WPRtD7zIMWdcesovSee/Rvrgfqm0Gm3ep/9d9FqANuDb8GNLvrRekLqTtasHAAAAAAAAAAAAAAAAAFAbmfzxwPbR5AEumBlBb6hgtANl+0eS44HtGUJvAFSJK0RrJDEuz7gvEF8u2HE6P0kwWoDT99lIciIwGG3rdu55Dpwx3/Z5ggPVAAAAAAAIw2t0AQAAAEDb6RrZ3faxHuk5H5Ve9Kj0o1b63gel598qvfiYdNaPbB8/9sLgeQ68ZHd14EyFhZ1t139B+f5YlzQcMUhv9AXS+E07qwdocVGC0SRprVCbOgAAAAAAAAAAAAAAAAAAtVUp0AXh9IUIRhutcJ+OOoLTZgqT8m1pR3UBwGbOMMxU+f1Td6xXA7G9kebsBAW/oJOFbGDf6ddRd6BZ2GC08vPMFKZ4jQAAAAAA7Fi80QUAAAAAbSdMMNr5Pyc99M7gvu//ttSdfvL2wIUbf1wu+Hlp6hPb2w/9YOU6EF6sRyosRt+u52DlMc/7hPR+91WsntB7lnTwB6RL3ihxpUN0KBsxGG01L+3rrU0tAAAAAAAAAAAAdfZySXdGGL9cq0IAAAAAoB6yrpAcR0gXgvXG+iuOSafK36eu0JuiLepUYVrDybEd1QYAp7nDtyrv89PJcS2uzYWesxOcLGRk5Qf2VQxGK5woezvsPEVb0GxhRkPJ0VA1AwAAAACwmdfoAgAAAIC2E++Tuit8uX/tX0tX/dGZbXuvll584sxQtDDG/5d06IfObJv4/o0ALVTP0HU72647xFUJjSdd+jvlxyT2SC96VHrqn0ldQzurBWgD/g6C0QAAAAAAAAAAANpExlr7aIQ/JxtdMAAAAADsVMHP62RhOrDPFcCCYH0hgtFGK9ynI8lxZ1+mg4OHAFSHb0uazk8G9oXZ5zsDvjp4/+T62T15Gn48qCzt2LevlJa0XNy4qPxyaVErpaXAcae3L/ca0cn/BwAAAACA3SEYDQAAAKg2Y6SzX1FhjCdd8nrpe+6Xrv5T6fr3Sy/4otTj/kLIyUtIz/pX6bkfl678Pxt/3/BBKZbaWf0Iduhl0bfpHpNiyXBjz6owf2o4+vpAG4oajLZGMBoAAAAAAAAAAAAAAAAAtJyZwpSs/MC+0dSBOlfT2vpiA2X7u7weDcT2lh2T8rq0Nx58Yd9pQm8A7NJs4aQKNvig30rBjZI7GM0VttYJMvnjge1DiVHFTUJS+dC504Fm2TL34entU16XBuP7y84DAAAAAEBU8UYXAAAAALSlK/9Amv+aNPWJ7X2bA7D2XLzxZ7eMJ43fuPEHtXH2y6T1jHTPr4XfZvS7w48dvEyKdUulteD+5J7wcwFtLGow2irBaAAAAAAAAAAAAAAAAADQcjKOIBVPMQ0l0nWuprVVCkYbTU7IGFNxnnRyQnPFk9vaXeE7ABBWtsx+ZGQXwWizxRnl/HWlvK4d19aqXKGVI8nxJ/49ENurLq9b6/72cxiyhRM6Txc7/2+6vO4zQjXTyQnNF09tG+d6PQcAAAAAoBKv0QUAAAAAbcmLS8+7RTr7x89sTwxKF/9mY2rC7l30q+HHJvdKF/16tPmf+W53X/8F0eYC2pQlGA0AAAAAgJb1kXutXvkuXz/zz74+882IH/IBAAAAAAAAAB3FFcQynBxTzMTrXE1r660QjJZOHgg1jyt4KJufjFwTAGzmCs8ajO9Xl9ddcXvX/kmSpjt0H+W6TzffV8YYZ/Bc9vHts86AtTNDNd2vEQSjAQAAAAB2ht8CAwAAALX0zHdL6edLmU9JPQekc18p7bm40VWhlsZukgYvlS78Ran3rGjbHvqhjcfJasDBPAdfWp36gBbnE4wGAAAAAEBL+otP+fr1Dzz5wf4fv2j1z682evnTuZ4bAAAAAAAAAGC7TC44SGW0TPgNgnV53YoprpKKgf3lAoU2G3UEqLlC7AAgLNd+xLXf2Wp/YkRxE1fRbt/PZfOTOth17q7qazXWWmcg2db7NJ2Y0NH1h7aNqxSMlk6c+drhei2ZJhgNAAAAALBDHGEMAAAA1JLxpPNeJT3rfdLVbyMUrR1c8gZ33/c+KD3vZunqP4keinbaC74oDV55ZtvFvyUd/MGdzQe0majBaGuFiBsAAAAAAICqKxSt/vd/nfkZ3bfSWz/G53YAAAAAAAAAQDBXSE46ZEgOnmSMUV+s39kfNnjIFXqzVFrQaml5R7UBgCRlXOFbIYMbPRPTcGIssK8Tg7mWSwta81cC+9LJ8TNuj6aC7+NsfvKMvyvN4/q/WijNaa20WrZeAAAAAACCxBtdAAAAAAC0lHNfKR15h1RYPLP9B05JqX27n7/3LOnGL0vz35DWTkj7rpW607ufF2gTvh9t/Gq+NnU0q3zR6iP3Sg/NWH3HhUbPPHfjoDYAAAAAABrpCw9JcwHHuj+YlU7MWU3s5bMrAABASD9rjPldSRdL2i+pIOmUpMckfVHSLdbaLzSwPgAAAACoCmutso4gm9GQITk4U29sQAulucC+sMFD5ca988Qfqsvr3lFtLgmT1Pk9l+iZe76z6nPX2vH1R3XX4medj+PB+H5d3f9MXdx7VZ0rAxrvq0t36L7lL2uptPBE29H1hwLHhg1ulDb2UVP5Y9vaXc/DdnFk9bC+svRFzRZmnmhzhaJJ2wNGXfv2mfyk3nH89zXjDEabKHt7s3ee+AOlqrwfj5mYDnWdpxsGb1RfbKCqcwMAzrRWWtHn52/RY+tHVLTFbf1JL6lzui7ScwZvVMJLNqBCAADQrghGAwAAAIAoBp4ifefnpMO/vxFetu8a6ao/qk4o2mleXNp3taSrqzcn0CZsxPGdFIy2sGr10r/x9dkHT7dYveYGo//7Ck4uBwAAAAA01ok59yf65VwdCwEAAGh9L9tyOyWpT9JZkp4j6beNMV+W9EZr7adqUYAxZkTScMTNzqtFLQAAAADa13zxlHJ2PbBva6ALwumLD0gBx9N58jScHA01x2B8v1KmK/D/5qG1w7stMdBXl2/XVxa/qF86+GalvK6arFFt31q9T399/K0q2PIHMH5x4RN62cjP6jl7b6pTZUDjfezkv+jjpz4QenzY4MZyYzP546HnaDVfWvwfvXvq7bIKd+XpHq9vW4jYSCL4fvPl676VLzvn2vp6vDc+pIRJBu77jtToNeJry3fpzoXP6DcPvU398T01WQMAOt1aaUV/evSNmsofLTvunqXb9dWl2/Vrh35fMUOECQAAqA6v0QUAAAAAQMvZd7V0w39I3/ct6Vn/IvUeanRFQMfwIyajdVIw2nvvsptC0Tb83ResbrkvapwcAAAAAADVVe6TaX77hWQBAACwO9dI+qQx5g+MMbW4esprJd0X8c9HalAHAAAAgDaWzZ9w9qWT43WspH30xfoD24cSo4qbRKg5jDEaacD9/+31b+oby3fXfd2d+u+T/1oxFO20/zr1fhX8Qo0rAprDUnFBt85+KNI2oxHCMF3BaNP5SVnbfsfS+rakj868N3QomrRxH239leFIckxG0X6NaGQ0khw7o80zXkNeI2YKGX1x4ZN1XxcAOsWdi5+tGIp22rfXv6mvLd9V44oAAEAnIRgNAAAAAAC0DD/8d/eSpLUOCkb75OHggzZ+64MR7zQAAAAAAKqs3HkGy7n61QEAANDCTkj6O0mvkfRsSZdIukjSsyT9kqRPbBlvJP22pP9TxxoBAAAAoGrmiicD2/tje9QT66tzNe1hILY3sN0VJOQSJaSomh5ee6Ah60ZV8PN6aO3+0OOXS4s6kXukhhUBzePI2mEVbfirJqVMl/bE94Ue79qf5ey6FoqzoedpFTOFjGaLM5G2CQoXTXop7UsMR5pnb3xISS8VMH+015Rq+ebKvQ1ZFwA6wTdXvlbT8QAAAOUQjAYAAAAAAFqGH/GCbSsdFIx2833B7YcnpVLUOw4AAAAAgCoqlsnsJhgNAACgrC9JeqGkg9ban7HW/r219jZr7QPW2gettbdba//KWnujpGslHdmy/RuMMS+qe9UAAAAAsEtr/mpge19sT50raR8X914V2H5V/zMizXN539OrUU5kRVtoyLpRzRSmZBXtYqbZ/IkaVQM0l0zuWKTxV/RdJ2NM6PHlQrna8Xm2k5/pir7rAtsv7422b3fNc0WDXiOm8scbsi4AdIKorzft+JoLAAAah2A0AAAAAADQMqLGey2s1aSMplQqcyzVzFL96gAAAAAAYKuVMuFnBKMBAAC4WWtvttZ+0lpb8SsSa+2XJT1D0re2dP2RMSZWxbLeIemyiH8IZwMAAAAQSc4PPvCry+uucyXt45Lep+qa/hvOaLuo50o9rf/Zkea5qv86Xd57bTVLC8W30cLGGiWzgyCIbH6yBpUAzWcyfzT02H3xYX3P0I9Emr8n1qd+R4Bmpg2Ds6IGz1zV9wxd3he8//7ufS9ROnkg1Dzp5AG9YN+LA/uu7rtel/Y+LVJd1bBcWtBScaHu6wJAuyvagk4WMpG2IRgNAABUU7zRBQAAAAAAAITlRzy2aWYxapRa69rbI80FXyhVC2vSKBdLBQAAAAA0SLnws5WclRT+Su8AAABws9bOGmNeLunLevJN1kWSnifpU1VaY1rSdJRtjOH9HgAAAIBo1h3BaCmvq86VtI+YiemVY7+qZ+x5vh5bP6Kx5CFd3netYhGztOMmoZ+deIPuW/mKHl07ooLNV7XO+1e+qqmA8KSSSlVdp1ZcQRB9sT0aiO0JDIbKtmFgExBkKncssP387kt0VtcFkiQjo7HUQV3ee6364gOR10gnJ7S0tj0gqx0DCF37m+HEmK7oe/oTtxMmqXO6L9SlvU+TZ7zAbQYT+/W6Q2/T15fv1onco7IBl7I2MppIna0r+q5Vd6w3cJ6El9DPTfy27lv+sh5dP6KiLezgJ3Mr2aI+N//fgX1T+WPqj3OwNABU08l8Vr6CT+K5tPdpOrzylW3ti6V5rZaW1RPrq3V5AACgAxCMBgAAAAAAWoYfMedseqk2dTSjVJnf8iyu168OAAAAAAC2WirzubRcaBoAAACis9beY4z5pKQXbmq+UVUKRgMAAACAenAFo3V53XWupL14JqZLeq/WJb1X73qeK/qefkbwTrWsZ1YDg9F82yrBaMEhZ+d2P0UHUudo8lRQMFpwuBHQTkq2qGlHONlzBm/SNQM3VGWddHJCD63dv619ug2fZ659x6W9T9MPjLwq8nzdsV5dt+e5u6xqI4jzyv7rdGX/dbueaytrre5e/LxW/O0HiGdyx3Rhz2VVXxMAOlnG8d7WyNMPjfy0Dj+yPRhN2ggkPaf7wlqWBgAAOkRwvDcAAAAAAEATihqMll2sTR3NKF7mwp0Lq/WrAwAAAACArcqFnxGMBgAAUBO3bLl9RUOqAAAAAIAdyhGM1rE8BR8I58uvcyU7k3EEFaWTE0onJwL7pgtTLRP8BuzUdH5KJRUD+8ZSB6u2zojjeZYtdE4w2qjjPmgHxhiNpg4E9k3lj9W5GgBof65Q0/2JYQ0nRpUyXYH9rrBgAACAqAhGAwAAAAAALcNGDEab3n5BsLaVDz5eRJK0EHycIAAAAAAAdbFSLhhtvX51AAAAdJBHt9webkQRAAAAALBT645gtBTBaG3PM8GnO7ZCcJi1VtlccAjEaPKARpPBYT5FW9BsYaaWpQENN5U/GtjuydNIonpBXq5QsNnCjPJ++1yxaaW0pOVS8NWjXSGM7WIsGRykRzAaAFRfxhFwlk4ekDFGI8lxx3btF0gKAAAag2A0AAAAAADQMvyIwWgLa1KuEHGjFpUrG4zWGfcBAAAAAKA5La27P5eu5OtYCAAAQOfYmiBAcgAAAACAluIKRusiGK3tOYPR5Ne5kugWirPK2eArwqSTE87gCEnKEh6BNjeZCw5GG06OK+ElqraOKxTMymo6P1W1dRqt3D6j7YPRUocC2zM5gtEAoNpcrzenX2tcwb+8twUAANVCMBoAAAAAAGgZUYPRJGlmufp1NKP1grtvIfg4QQAAAAAA6mKlzMXXl9vnwuwAAADNZGjL7ZMNqQIAAAAAdsgdjNZT50pQb55ige2+bf5gtEz+uLMvnZxQyuvSYHy/Y1vCI9DephyhVWOOQJWd2p9IK6Z4YN90oX2eZ67AmZTp0p74vjpXU19jyYOB7YuleS2XFutcDQC0L2ut8/Vm9PFgNFcYZ7bM+2IAAIAoCEYDAAAAAAAtYyfBaHMr1a+j2VhrlSu6+wlGAwAAAAA0UrnP88VS/eoAAADoINdtuT3ZkCoAAAAAYIdyzmC07jpXgnrzTPDpjr5t/i8UXMER/bE96o31S5JGHSFQrm2BdjGVPxrYPpY6VNV1YiamoeRoYF87Pc+y+eBf940kx2WMqXM19TWaCg5Gk6SMI4APABDdcmlRq/5yYF/68fe0rmC0mXxGpRZ4/w4AAJofwWgAAAAAAKBl+Du46ONsBwSj5cuEokkEowEAAAAAGssSjAYAAFA3xpgumyZUuwAAIABJREFUSS/d0vy5BpQCAAAAADu27ghGSxGM1vY8xQLbS2r+LxRcoUvpTWForvCIbP54TWoCmkHRFjSdnwrsG0tWNxhNktLJ8cD29gpGC95nuMIX28me2F51e72BfVPsSwGgasq9Pz39njbteN0pqahThWxN6gIAAJ2FYDQAAAAAANAyypxHrd5UcPvcak1KaSrrhfL9i+v1qQMAAAAAgCDlPs8XdxCCDgAAgLJeL2nzWdYlSf/doFoAAAAAYEdyjmC0LoLR2l7MBAej+bb5v1DIOIOKnvyY7g5Gm6xJTUAzmM5PyXeEG46nDlZ9PVc4WDs9z9xBjMH7mHZijNFYMvhxM5U7VudqAKB9uV43u71e9cf2SJJGkmMyMoHjXO+NAQAAoiAYDQAAAAAAtAzfcSa1MdK+nuC+2ZVyp1+3h1yxfP9avj51AAAAAAAQxJb5aF4MPgcCAACg4xljXmGMSUfc5jWS3rSl+Z+stY9VrzIAAAAAqC1rrXJ+8JUgCUZrf57jdEdXqFIzcQcVHdj07+DQosXSnNZKKzWpC2i0qdzRwHZPMY0kx6u+njuA8LhsuS8uW0TJljSTzwT2jXRAMJokjTkC9abywY81AEB0rmCzdHJCxmyEoSW9lPYlhgPHud4bAwAAREEwGgAAAAAAaBm+46KPRtK+3uC+2dWaldM01gvl+9fyrX8gBwAAAACgdZX7VFoo8ZkVAADA4dWSHjHGvNsY8z3GGMc3IZIx5hpjzIck/a02vjY57YSk361xnQAAAABQVTm7Luv4zXKKYLS25xlHMJp1HDzYJNb9Nc0VTwb2jW4KKnIFNkmER6B9TeWPBbaPJMcUN4mqr+cKB1v317RYmqv6evV2qjCtkoKvqJyuQdBcMxpLBgejZXLBjzUAQHSu96ajW15nN4cAh9keAAAginijCwAAAAAAAAjLd5wr7Rlpb09w31wHXERxPfj4hiesVQhOAwAAAACglspdeL3Y3OcxAQAANFq3pJ94/I9vjDki6VFJC5JKkvZLulJSOmDbWUk3Wmsz9SkVAAAAAKoj5685+7oIRmt7nmKB7b6a+wuF6fyks29zGNpgfL+SJqW8zW0bl82f0NndF9akPqCRpnJHA9vHkodqsl65cLBs/oT2xPfVZN16KRc0Uy58sZ2MpoKD0RZKc1otLasn1lfnigCg/bheb7YGkI4mJ3T/yj2htwcAAIgi+BIKAAAAAAAATch1HrXnSft6g/tmV2tWTtPIVQg+IxgNAAAAANBI5YLRbn+4fnUAAAC0OE/SUyS9UNIPS3q5pO9WcCjapyVdaa29r37lAQAAAEB1rJcJRkt5XXWsBI3gmeDTHX1bqnMl0WTzxwPb4yahfYnhJ257xtOII7QpQ3gE2tRk/lhg+5gj3Gq3+mID6o31B/Zly4QYtgrX/mZffFhJL1XnahpjLOl+7Ezlgh9vAIDwCn5BpwrZwL7R5IEzbm8NSjuNYDQAAFANBKMBAAAAAICW4Tsu+ugZabDXBPbNrdSwoCaxXizfv5avTx0AAAAAAER1cll6eLpMchoAAEDnerukf5H0WMjxK5I+LOm7rLXfZa0NPkMSAAAAAJpcrkwwWpfXXcdK0AieiQW2l5o8GM0VajaSGN/2M6Ud4RHThEegDRX8gmYcYWTjqUM1W3draMtprlCxVuIKmnGFLrajwfh+dXk9gX1TjiA+AEB4JwsZ+Qo+eWfre9lRx3vb5dKilouLVa8NAAB0lnijCwAAAAAAAAjLd5wnbSQNOo55W1xr/5Or1wu76wcAAAAAoJYqfTL/wFes3nhTcOA5AABAp7LWflgbQWcyxgxKulTSQUlpST3auDDuvKQ5SQ9I+rq1TX6WOAAAAACEsFYmGC1FMFrbiyk4GM06ghmahStsaTS1PSjCFYzmCjsCWtl04YQzWGU0ebBm644kx/Xw2gPb2tvheZZ1BM259i3tyBijseRBPbL+4La+DMFoALBrrtdLT56GEqNntKUdYaSn5+mLD1S1NgAA0FkIRgMAAAAAAC3DFYzmedKA45i3Bfdxcm2jUOE0pzWC0QAAAAAADWQrJKP9zoet3nhTfWoBAABoRdbaeUm3NboOAAAAAKiHnCMYLWGSipng0Cy0D2O8wPZSk2eBu4OKtgdFuMKLpgtT8m1JHo9ztJGpXHBooKeYRpJjNVs3nWjfAMJpx8/QScFokjSaOhAYjDaZO9qAagCgvWQcob/7E2klvMQZbQOxQXV5PVr3V7eNzxZO6DxdXJMaAQBAZwj+TSEAAAAAAEATcp1I7RlpjyMYbXG9dvU0i1KFi2ESjAYAAAAAaKQKuWgAAAAAAAAAADxh3RGM1u311LkSNEJMwaFgvpo3GM23JU07gtFGA4KKRgPC0iSpaAuaLcxUtTag0abywSFV6eS44iYR2FcNrpCwU4UZFfzWPah2tbSsxdJ8YJ9r39KuxpOHAttdYT4AgPCihHAaYwLf80pSxhGQCgAAEBbBaAAAAAAAoGX4OwhGWwg+Tq6tVAxGy9enDgAAAAAAgriCzgEAAAAAAAAA2MoVjJbyHAeIoa14Jvh0R99WOEiugWYLJ1WwwQfppQOCikaS4865CPRBu5nKBQejjaUO1nTd0VRwSJiVr5nCVE3XrqWsI4RRKr9vaUejjsfQfPGU1korda4GANpLJkIwmiSNONqzjnkAAADCije6AAAAAAAAgLBcwWjGSHu6jaTtAwhGk9Za9+J2kqSFVav33Gn11aMb/9fXnCX91LOMUgnT6NIAAAAAACEQjAYAAAAAAAAACCvnCEbrIhitI3hyBKOpeYPRsmXCzIKCilJelwbj+zVfPBUw16Quq2p1QGNN5Y8Fto8lD9V03aFEWp5i8lXa1pfNH9d4qrbr14orYCZpUhqM769zNY01lnSH603lj+nc7ovqWA0AtA9rrfP1ZjQg9HejnWA0AABQGwSjAQAAAACAluEKRvOMNNAV3Le0Lvm+lee1b4hWpWC09cLGF1TGtN59MLNk9dw/9fXApgv0ves26d23W33+dZ6S8db7mQAAAACg05CLBgAAAAAAAAAIa90RjJYiGK0jeCYW2O7b7eFGzSLjCHzYGx9yBvqNJg84gtEIj0D7KPgFzeSnAvvGahxMFjNxDSXSmi5Mbutr5eeZq/aR5Lg8Exws2a72xoeUMl3K2fVtfVM5gtEAYKeWSgta81cC+9IBob8b7cGBaScLGRVtQXGTqFp9AACgs3TWJ10AAAAAANDSbJlgtD1ljntb2v6dd1txBcZttl6ofR218I7P2TNC0U770qPS336eU+sBAAAAoBW4Ps8DAAAAAAAAALBVzhGM5gqYQnuJuYLRVOHqoQ2UzR8PbE8nJ5zbuPpccwGtKJs/4XzujiUP1nx99/Nse1haq5h2BKOV29+0K2OMxlLBj6NM/lidqwGA9lEuQNQVgOZ6HfLlayafqUpdAACgMxGMBgAAAAAAWobvOJO6UjDaQvCxcm2jFOKYr7UWDUa75T732fP/fCdn1gMAAABAK+DTGwAAAAAAAAAgrHWC0TqacZzuWLKlOlcSXmYHQUXtGNgEbDWVPxrYHlNcI8mxmq/vfp65A1+anav2TgxGk6Sx5KHA9qkcwWgAsFOuoN4er099sYHAvuHEmPN9fCu/7gIAgMYjGA0AAAAAALQM33EmdccHozkC4zZbb8FgNGutDpc5zuvuR6WHpzm9HgAAAACaXYiPrQAAAAAAAAAASHIHo6W8rjpXgkaImVhgu9/EwWjTjrCH0eQB5zauEKPF0pzWSitVqQtoNFc4VTo5rpiJ13z9csFotgW/wPRtSdOFqcC+Tg1GG00dDGyfyhOMBgA7VS6E0xgT2JfwEhpKpCPNBwAAEAbBaAAAAACAUP7nQauX/HVJN7ytpDd+yNfyeut9IYzW5wpGM0Ya7HFvl1msTT3NouRXHrOWr30d1XZ0VlrOlR/z719hXwQAAAAAza4FzysAAAAAAAAAADRIzhGM1uWVuXIm2obnON3RV4iD5BpgtbSsxdJ8YF+5oKJyfYRHoF1M5Y8Gto+lDtVlfdfzbM1f0VJpoS41VNNsYUZFG3yV5E4NRhtzBFDOFU9qrbRa52oAoD1kygSjleMOJD2+65oAAEDnIhgNAAAAAFDR579l9cK3+/rI16TbHpbedovV9/2V35JXy0Jrcz3kPCMl40bpgeD+Y7Pt/VgNFYwWfCxEU3t4pvKYz3+rvf9vAQAAAKAdhPnkVijy+Q4AAAAAAAAAIK07gtFSBKN1BM/EAtt925zBaOVCzEYdgT2SNBjfr6RJRZ4TaCVTuWOB7WPJg3VZv90CCMvVPJIcr2MlzaNcyF6GIB4A2JFpx+tNufe2UrlgtMld1wQAADoXwWgAAAAAgIr+8tO+8sUz2/7nW9LN32hMPehcfplgNEk6uDe4/+hsbeppFmGC0XLFymOazWq+8pjDfE8GAAAAAE0vTLb+SojPgAAAAAAAAACA9pdzBKN1EYzWETzH6Y6+SnWuJBxX8E7KdGlPfJ9zO894ziCjTAsGNgFbFfy8ZgqZwL6xVH2C0fpiA+rx+gL72ikYbTC+v2NfI/fGh5QyXYF9mXxwMB8AwK3gF3SyMB3YVymE0xWclskflw1z4BAAAEAAgtEAAAAAABV91fG94K9/oDmvwIf25QxGe/w3HAcdxxEdm6tNPc3Cdb9s1orBaIUQx7Idm5MWVvmiDAAAAACaWZhPbSu5mpcBAAAAAAAAAGgBawSjdTTPxALbrax823zHrLqCitKpAzLGlN3WFR4x3YKBTcBW2fwJWQU/Z8eSh+pSgzFG6eREYF9rBqMFX0nY9TN2As94SqeC96VTOYLRACCqmcKU8/Xb9d71tLQjOG3NX9FyaWHXtQEAgM5EMBoAAAAAoKJHTga3Hwm+EAhQM77juKbThw8d3Bd8INHx2fYOziqFON4rV6h9HdVWKIX7f/tm8EUFAQAAAABNIsyFX1fyta8DAAAAAAAAAND8co5gtBTBaB3BK3O6oyukoZEy+eOB7aMhgopGHOERmRYMbAK2msofDWyPm7iGk2N1q6OdgtFc+5tODkaTpPHkwcB212MQAOCWdbzWePI0lEyX3TZdJjiN97cAAGCnCEYDAAAAAOxKMWRwEVANrkeb93geWnoguH8++Fi5thEmGC1fqn0d1VYIWfPR2drWAQAAAACovcU2/+wOAAAAAAAAAAhn3RGM1uX11LkSNELMxJx9Jdt8B8G5wpXKBUM8OSY4zGimMCW/CX9WIIrJ3LHA9pHERNnnebW1UzDatHN/09nBaKOuYDTHYxAA4OZ6fRxKjCpuEmW37YsNqNfrd8wbHLgGAABQCcFoAAAAAIBdyS42ugJ0Et+RjOY9/huOPY6Lgrb7ydVh8glzhdrXUW1hg9GOzRHQCAAAAADNzIb42Da/Wvs6AAAAAAAAAADNrWSLKtrgA526PMfBYWgrXpnAJF8hriBaRyVb1Ew+E9gXJqho1BGeVrQFzRZmdlUb0GhT+aOB7eOpQ3Wtw/VcPFXIOl9vmtFaaVULpbnAvk4PRhtLBQejzRZnnGGrAIBgmV2EcBpjNJIcD+xrxUBSAADQHAhGAwAAAACUVSiWP3P1ePB3rEBN+I7jmjyz8fdAV3D/4npt6mkWpRDHe+WKta+j2vIhaz46W9s6AAAAAAC7EybOeoFj0gEAAAAAAACg45ULMCEYrTN4ZU539G3IK23WyclCVr6CaxoNER7hCo6QpEz++I7rAprBVO5YYLsrxKpWXEEuvnxnsGEzmi5MOvvSZfYlnWAs6Q7by+TYlwJAFNO7CEaT3MG/rsA1AACASghGAwAAAACUtZov339ivj51AJLkO86kfjwXTf1dJrC/3YPRXPfLZrkKIYfNqBDyOLbjs633swEAAABAJ7EhPrbNr/HZDgAAAAAAAAA6XblgtBTBaB3BM+WC0UJcQbSOXIE7Rp6GE2MVt095XdobHwrsy+bdIUhAs8v7OZ0sBIeOlQuxqoWhxKgzcDHbQiEtrloTJqm98eE6V9Nc9iWGlTDJwL5MPjigDwCwnbXWGWAWNhjNNS5L6C8AANiheKMLAAAAAAA0t7VC+f7JeasnY6mA2nKdIu09fszCQFdw/0pOKvlWMa89H6ulEMd75Yu1r6PawgajHZurbR0AAAAAgN0JE3k2v1rzMgAAAAAAAAAATS5XJhiti2C0juAp5uw7nntEvcX+Hc07GN+v/vienZYlSVorrZ4R9nRk7XDguKHEiBJecEjPVunkhOaKJ7e1P7L+oI6tf3tnhUrq9nq0P5GWMe15zCQao2SLyuZPqGTLH9w5U8jIOr4hHEsdrEVpTgkvof2JtGYKU9v6Hlo7rP2JkbrWs1MPrz4Q2D6SHC8bKNkJPONpNHlAx3Lb95lH1g5rInX2jufujfVrX6I1g+fCPl8364n1tcxzAqiXki1poTirpJdSX2ygrmv7tqRsflJFW+GkrhDC7M8WS/Na94MP3hlNHgi1jisY7VRhRo+tP+QMK90pI0/p5IQSXqKq8wJAo3116Q5l8sc1mpxQOjmh4cRY6N8zAO2GYDQAAAAAQFmr+fL98+7jkICq8x0BYKfzzgbKHPu2tC4N9lS/pmYQJhgt187BaLO1rQMAAAAAsDs2RDLaAr9jAgAAAAAAAICOt04wWscrF/Dzl8fftKu5L+i+VK8e/y0NxAcjbZf3c3pf5h368tIXZFX5YL10yOCIjbET+ubq17a137N0m+5Zui1SnVvtjQ/pp8Z/U+d1X7SreQBrrT479zF99OT7lLe5Hc8TN3ENJUarWFk46eREYDDaZ+Y+ps/Mfazu9VRTOjne6BKawljqUGAw2h0Ln9YdC5/e1dzp5AG9Zvx1Gk8d2tU89WKt1a2zH9bHT31AObseefuRxLh+evx1OtB1dvWLA1pA0Rb02PrDOrJ6nx5au1/fXntA6/6aPHl6+sBz9WOjr1XM1D6e446FT+s/pt+lVX+5anOOJg/oNeOvd4aUZvPHndu6As+2rZEKfh9s5ettj/1mqDmiSpikru6/Xt839KOEOwJoG19Z+oLuWbr9idtGnvYnhnX9nhfoxv0/2MDKgPrr7ChwAAAAAEBFFYPRgi8IAtSE7ziR+olgtC73tottfIJ1pwejZZekfDHEWfYAAAAAgIYIE4xG+D4AAAAAAAAAwBWMZuQpYZJ1rgaNEFOsZnMfWTusd039eeTtPnryvbp76X9ChaJJ4YMjoo6Naq54Un917M1aK3GgL3bnvpWv6IMz/7irUDRpI2AqZmr3HHev277hYbXch7SSsWRwyE81ZPPH9VfH36KSDXlQc4N9dfl2/efJ9+woFE2SpguTevvx31PBL1S5MqA5Ffy8vrV6n24++W96+7H/T79x5Mf0Z0ffoI+efK/uX7nnic8nvnzdufgZfSD79zWv6aHVw/rnzP9f1VA0ScpU2J9l85OB7b2xfvXFB0KtMZRIy6vh+/kgBZvXlxY/p7c88gv6z5n3aK20Utf1AaAWMrkTZ9y28nWykFXBVjjRF2hDtY+kBQAAAAC0tErBaAuctIo6cgWjmdPBaGUuCnrvMenQ/urX1AzaNRgtH7Jma6UT89I5Q7WtBwAAAACwM2GirBc4JwcAAAAAAAAAOl7OEYzW5XXJnD5IDG3Nq3Fo0oOrX9dsYUb7EsOhxvvW1x0Ln4m0xmjyQOixtQ41ytl1fXX5dl2/57tqug7a250RnwMutQyvKqedw8NGEu37s0UxlqrtY2u+eErfXP2aLu19ak3XqYa7F7+w6zlWSkv65urXdHnfNVWoCGguOX9dj6w9qCNrh3Vk9bAeXf+WijZ8EOAXFm7RtQPP0fk9l9SsxnuX76rZ3HPFk3pw9eu6pPfqbX3Z/PHAbaK8t42ZuIaTo8rmT1QeXGVFW9AnZz+k2xc+pZv2/7CeM3ijYoYoFQCtx7e+ZgpTgX3t/NkGcOHVHAAAAABQ1lqlYLTVMKe2AtVhHQ8373QwWpd72z+6xdf3X1X/K83VQynE07AVg9EKES6udvQUwWgAAAAA0Kxcn+c3W1jjd0wAAAAAAAAA0OnWHcFoKa/MFTPRVgbig+ryup2PhWo4kXssdDDaXPGk1vyVSPMf7Do39NgDqbPlyZOvEFdH3aETuUdrNjc6Q7UeQ2d1XVCVeaI61HVeQ9ath3b+2aI4mDpXRkY21CW7dubE+qMtEYw2kw8O0Yg8jyOMA2g16/6aHl57QEdWD+vI6n16bP0h+YpwkkKA92f/Rm88+88VN4kqVXmm2cJ0TeY97UTuscBgtKncscDxI8nxSPMfSp3XkGC005ZLi/r36b/X/8zdrBcP/4Su7LuOkG0ALWWuOKOCDT6hl2A0dCKC0QAAAAAAZa1WCkar3bEnwDZ+hWC0rjLfLbXzY9UPcUxUvs2D0U7MW0l8YQUAAAAAzSjM4efzqzUvAwAAAAAAAADQ5FxhWF0Eo3WMuEnoaf3P1m0Lt9ZsjWz+uC7XNaHGZvLHI819dtcFOpgKH4zWHx/UVf3P1D1Lt0VaJ4psrnHBFGh9JVvUyUJ21/OkTJeuG3ju7gvagYOp83RW1wV6bP1IQ9avlfO7L9VY6mCjy2gKexNDurzvWn19+Us1W6ORIT9RrPhL1ZmnVJ15gHpbLS3robX7N4LQ1g7r2Pq3ZascQDuVP6ZbZ/9TN+3/oarOe1otA3OljffCQabywcFo48lDkeZ/9uALdffS5yPXVW3ThUn97eQf6bzui/XS4VfpnO4LG10SAISSKfO+k2A0dCKC0QAAAAAAZVUKRptv47ApNJ9KwWjlruRS6bHcykohzjDPtXkw2sxy7eoAAAAAAOyODfG5tZ0DzQEAAAAAAAAA4RCMBkl6Wfpn5ZmY7lm6rSbBLFHCbbK5cMFoCZPUxb1X6cfTv1j2OMYgPzH6y0qalO5dvlPrfvWvJJMttEaYD5rTTD4jXxEO5tzCyNPBrnP1o+mfV198oIqVRajBGL124nf1vuxf64GVe1WwrX1AcdKkdGnvU/Vjo7/Q6FKayivHfk3/mv2/+vryXc73E7sRNSizEay1WiktVmWu5SrNA9TacnFRR9YO68jqYT20dp9O5B6TDXX5vt35+KkP6Gn9z9JIcrzqc/u21sFo298brpVWNF88FTh+NGII5wU9l+qnx1+nj868V9OFyR3VWE0Prz2gPzn6Oj2t/9l60dArNJRMN7okACjL9TuLPfF9/H4MHYlgNAAAAABAWWuF8l8KcNIq6skVjLb5OKI3f7/Rmz+6feDsSo2KagKlEN99tX0wGhcmAwAAAICmFSYYjfB9AAAAAAAAAEDOGYzWU+dK0EgxE9fL0z+nHxn5mV0FhX1k5r36wsIt29qjhNtkHCckX9B9qX524o1P3E55XYqZnZ2qmfRS+omxX9aP21/YVZjPAyv36h+m/nRb+2xhRnk/p6SX2vHc6Fyuk/KNjP7wvHcpXuFxHzeJpnjs9cf36OcmflslW1TOX290Obuym/1NO+vyuvXKsV9VyZac7yfCuHPxs/rg9D9sa8/mT8haGzn8sp5ydl1FG3zA+C8deLPO6jp/W/u/T/+D7lr87Lb2agWsAdW2UJx7PARtIwxtKn+0JuukTJfO675YObuuh9ce2NZftAW9P/s3+uUDb636fsG3wSdRPHfwe/W9Qy8LPc8dC5/Rf8z847b2oNf2cu+Px5LRgtEk6an91+up/ddr3V9z/jzVcM/Sbfqvk+/XYmm+4tivLH1RX1u+U98x+D26af8PqSfWV7O6AGA3srngz2CjyYk6VwI0Bz79AgAAAADKWq1wUaz56l+cDnBynUjtbfou6YbzjRRwlZ+ldalQtErEm/cL6Z0KFYxWqH0d1ZaP8B3YNMFoAAAAANC0wlyLl98xAQAAAAAAAABcoVApr7vOlaAZeMbbVWDBROqswHZX0FMQV0jEeOqsqocpeCa2qzkPdp0b2G5lNZ2f1IGuc3Y8NzqX6/myLzGigfhgnavZvZiJE4TS5mK73JceSAXvK1f9ZS2XFtUf37PjuWutXJjZ/kQ68H7ZE98XOH65xIHZaA6zhRk9tHa/jqzepyOrhzVdmKzJOt1ej87rvkQX9FyqC7ov1cGu8xQzMS0V5/WWR35Rq/7ytm0eXP2GvrT4OV2353lVrcVX8MkhKS8Vaf/meu+3XFrUcmlRfbGBJ9qm8seC1zRd2hsfCr3mVl01/hz37MEX6pqB5+jW2Q/rU7P/qYItfwJc0Rb16bmP6I6FT+um/T+s5wzepISXqGmNABBVthD8GWyEYDR0KILRAAAAAABlVQpcWtj5BZWAyPwQwWj7et3bz69Jw/3VrakZhAlGK9TuQjs1U4xQ88ximNPsAQAAAACN8P/Yu/M4R+oC///vqtzp+0y6p+eCaY7pAeELKKCCoCwKioAiC4uI51fddVdd15/ren69VndlxQtW3eVQEUFALkGRGx0YUI6ZnhnoYRimj+mk73Tuoz6/P4aZ6Zl8PpVKd5KuJO/n4+HjIakcn0lXKpWkPq9Shc4XiiQBwxDQ9doLmhMRERERERERERGRNaowWrkn1FNtCnj6pJdHcxFEsxE0OpulyxcKKcJoQbf8vpdThysAB5zIIZu3bDw9yjAaLYpqUn6Ak/KpRplt30PpEVuH0cxiZo0O+QH0DYrLYwyj0TIQQmAqE8ZQYm8EbSgxiKlMqCyP1aA3YZ1/Pfp9A+j3b8AKz2romiPvek3OVlzQ9T78MvQj6f3cOnEtBhpOsLRfaVVOyCdRyMZnJmjyXh1Kj6HRtyCMltotvV6PZyU0zd7H8Xh1H97ReSne2HI27pq6EU/MPQhR4BSOcSOKWyf+F4/M3oPzuy7H8Y2n2v7fSUT1I5SSfw/Bz2BUrxhGIyIiIiIiIlOqENU+qSyQzAh4XfwSmMpvqWG06Vj9htFS+cc62V4xMbcwf38nIiIiIiKyLStxy7uEAAAgAElEQVQpayGA+STQ4i/7cIiIiIiIiIiIiIjIplIMo1EJmccgRgsGLGK5eczn5qTL7Dgh2aE50O3uwZ70cN6ycFoetyIqJJwek14ecPdWeCREldHkaIFPb0DCiOUtC6XHsM4/sAyjsiaai0gv16HDq8t/iFcF01T3RVRKQgiEM2N7I2jxQQwltmA2O1WWx2pytKDfP4B+3wb0+wcQdK+ErumWbntqy1vwZORh7EgM5i2L5iK4beI6XN7zjyUbq4B8cogDxYXRmh1t8Op+JI143rJQegSH+47a/997lDHglUU95nJqdXXgvcFP4IzWd+D2ieuwLf5swdtMZkL42dh/YK33SFzYdQUO9x9dgZESEaklcnHM5Waky+wYaCeqBIbRiIiIiIiIyJSV4NJcAvC6yj+WepBI750q7HMzNCejCqNpRYTRalGhgCEApDJWpqHbC8NoRERERERE9WU2wTAaERERERERERERUT1LKsJoHobRaBHMYhDj6ZGC4YNxk5hY0GPPSETAvUIaRhtXxC6ICgkpXgcBl/3igESloGkagu4+vJx8IW+Z3bel0aw8ZtbgaFIGoBod8khoLBeBEAKaxjkNVDpCCOxJD2MovgVDiUHsiG9FRBF/WapWZwf6fQN7Y2j+Deh29S56fdY0DZcEPopv7voUcsg/W/0TkQdxcssZOMJ/zFKHDQDICfkkCs1iyO3A9TUE3CvwSnIob9l4auSQ/87ffwSAHs+qoh7TDvq8a/CJlV/B1tgzuC18HcbSrxS8zcvJF/Dd4X/F8Y2n4J1dl6Pb3VOBkRIR5Qtn5GFqgHFqql8MoxEREREREZEpK8Gl2TgQMD9xHhUQSQh88HoDdz63N/J1/nEafnq5hiYvf0xcSCjWR33B0+R3Ay6HPKo1k398U02wEjBM5f8GZ3vprPWYG8NoRERERERE9qX6PH+oOfl8NyIiIiIiIiIiIiKqEylFGM2reys8EqoF++I2u5Iv5i1TxZ4Ovo48gOPVfWhxtC15fOUQcMtjVVb+vUSHiuXmEc3JQ0uqdY2oFgTcvdIwmt23pTFDfjC1Kn5mtiwrskiJJLwa47S0eIYwMJrahaHEIIbig3gpsVX5vrJUHa7uV0NoG7DOtx6drmBJw349npU4u+Nd+N3Ur6XLbxy/Gv+25ntw6e4lP5YB+eQQBxxF35cqjLYwvJM0EpjOTkhv3+PuK/ox7WJ9w/E4as2xeCLyEO6a+CXmLET4noluxHPRTTit9W04p+M9aHRyohwRVdah4cp9XJobbc6uCo+GyB4YRiMiIiIiIiJTVsNotDQfut7ArX898N83Py3g0IFffohhtIVU6+PCMJqmaehoAMYlv5m9MiUA1N5zmrPwOo2nyz+OUpPF7VTmk0AyI+B11d7fl4iIiIiIqNpZDaPxOyYiIiIiIiIiIiKi+pZUhNE8OqMctDhB9wppGG1cET076DqKCckBd19JQxulFFDEK0LpURjCgK7pFR4RVTOzCBTDaFTL1NvSwu8dyymmCE41OJqUtzFbFstF4OU+GBUhJ3IYTu7EUGIQO+KD2JHYioQRK8tjdbt60e8fwDrfevT7N6DdVf5YzNnt78LTkccOiortE86M4ffTt+LtnZcs+XEMIZ9EsZj9uKDi/Xrhfu54alh5+x7PyqIf0050zYFTW96CE5regAem78D907cjJZKmtzGQw8Ozd+PJyIN4a8dFeFPruSUJ3hERWRHOyD+Ddbt7+Xme6hbDaERERERERGQqJz/ZyEHm5McikUXhiMBtz+RffsvTAj+4RKC9wZ4H0CwHZRjtkO/21nXLw2hb8n+DqglWXqczVTi5vJgwGgBMzAMr28szFiIiIiIiIlo8i100fsdEREREREREREREVOdUYTRGOWixlhK3UcXTgor7tANV/CItUpjNTlUkGkK1QxVG82hetDh5sCbVLlX4bzITRsbIwKW7Kjwia6LZeenlDY5m5W0aTZZFc/PocAWWPC6qXVmRwSvJl7AjPoihxCB2JrYp9+eXqse9Eut8A3tjaP4BtC7D+5BLd+OS4Mdw1fAXpcv/MH0rTmx6I4Kepe0rGpBPDtFRfBBHvT0bR1Zk4NRc2JOWh9E8mhdtztrYd/ToXpzTeTFe3/o3uGfyV/jT3B8hFM/zPgkjjtsnrscjM7/DO7suwwlNb2SUiIjKbjwl/wwWcPdWeCRE9sEwGhEREREREZlShagWmk0IAIx3LdamXfLnOWsAz+wG3nx0xYdkW4bit4dD176BFRoe35H/pA6OWp2KXV0YRtsrzDBa3Xlou8DX7zEwMQ8cv0rDdy/S0NnE9yMiIiIiIrsRFj+Oz8b5HRMRERERERERERFRPUsxjEYlZh63ScOlu5W3VUWhVPdpB2ZjC6VHGUajooTS8rMRd7t7oWn8TY9qlyqAKWBgIrMHvZ5VFR6RNTFDclZxAI2OJuVtvLofOnRpiCmak98f1a+Mkcau5BCG4lswlBjEy4kXkBapkj+OBg29ntXo3xdC861Hk7O15I+zGEf6j8HJzWfiiciDecuyIosbQ1fjkyu/tqSAliEUYTTNUfR9qSLBBgxMpkMIevqwJyUPowU8fTUXAmtxtuHS4Mfxpra347cTN2BL7OmCt5nOTuDaPf+FB2buwoVdV+AI/4YKjJSI6pX6ewj7BtqJyo1hNCIiIiIiIjJlJYw2V56TutSNF0PqJ3n7uMCbj+bBA/uonin9kKfoGMWxPdvHSzoc21AF4xaajpV/HKVWdBiNv7/XlWeHBc7+noHsq+v/ljGB258RmP6eDqeD200iIiIiIjuxmimf5XdMRERERERERERERHVLCIGkkZQu8zCMRotUOG6zWro8Y6QxmQkVdZ924HM0oNnRhkhuJm9ZKD2KoxuOW4ZRUbWqxjggUSl0ugPKWFgoPWLbMFo0Ny+9vMHRrLyNrulocDRhPjeXf39ZHphd79JGCjsT2zGUGMRQfBC7ki8iKzIlfxwNOlZ61qLfP4B+/wYc7jsaDSZBv+V2YdcV2Bx7CjHJa25HYhBPRB7EqS1vWfT9G5BPotBRfKSsy9UDDTqEZHs2nh7ZG0ZLy8NoPe6VRT9etej1rMLH+76A7bHncNvEdRhJvVzwNruTO/C94S/g2MbX4vzOyxH02PczARFVJ0PkMJHZI13Gz2BUzxhGIyIiIiIiIlNWgkuz8fKPo5ZtlX9nBQDYIj/ZWt1Shfr0Q37j6e/WIJt2HZ4HUhkBj6u2oklWAobzSSCTFXA5q+ffns4Wd/3QvABQPf8+Wpp/ve1AFG2faAo49/sGfv+p4s+IRURERERE5SMsltEY3yciIiIiIiIiIiKqXxmRlk7YBwAvw2i0SF3uIHQ4pIGJ8fSoMow2kdmjXB/tHEYD9k6YjiTkYTSiYoQZRqM65dRc6HQFEc7kH8g/buNtqSpk1lggMKUKo8UMeWiNalfSSOClxDYMxQcxFN+C3cmXkEORB/RboMOB1d51e0NovgEc5jsKPkdDyR+nXBqdzXhX1wdww/hV0uW3ha/DMQ0nosnZuqj7N4R8H1TXij8+3qW70OnqxkRmPG/Zvn3D8ToMo+1zVMNr8Dn/d/FU5BHcMfkLzGanCt7m+egmbIk+jTe0no1zOy5e9N+ZiOhQ05lJZERauizIz2BUxxhGIyIiIiIiIlM5CxNXI/KTNJJFk/PqJ3lw1OLM4TqhCvXph7SwVrap72NkBji8u3RjsoOchYAhAMwmgC77njwpT0Z+siOlqWh5xkH2Mx0T+P2gfNn924ChkEB/gJE8IiIiIiK7sBpGY3yfiIiIiIiIiIiIqH4lDPWXxAyj0WI5NCe63EFpFCyUHlHeblyxTIcDXe5gycZXDgH3CgwltuRdrvo3EckYIoeJjPzMzwGbxwGJSiHo6ZOG0ewcmYzlVGG0ZtPbqZar7o9qRzwXxY7EVgzFB7EjsRXDyZdgKMKwS+HUnFjjPQL9/gGsezWE5tG9JX+cSnpd85vwZORBvBDfnLcsbkRx68S1uKLnU4u6b1nQFwAciwijAXvft+VhtBEkjQSmMmHp7Xo8tR9GAwBd0/G6ljNwfNOpeHDmLvxh+lYkDfMzOxow8OjsvdgUeRh/034hzmw7D27dU6ERE1GtCmXU+5ndDKNRHWMYjYiIiIiIiEypQlQLRRlGWxKz+NOWMUAIAU1j4AcADMVE6kOfnZXt6vvYPV2/YbSZeG2H0aZj5RkH2c9fXzFffuMmgS+/g9tNIiIiIiK7sJp9nzU/rpCIiIiIiIiIiIiIaljKZPK5V/dXcCRUawLuFdKQzXhKPel4PCWPiHW5e+DQ7D0lM6iYMG3nmA/Zz1QmjKzISpcF3L0VHg1R5XW75Ou5XbelQgjEjHnpsoYCYTTV8mhWfn9UvaLZCIYSg6+G0AYxmtoFYfmIDutcmhuH+Y7EOt8A+v0DWOM9ouaiUZqm4ZLAx/D1Xf+ErMjkLd8UeQSvaz4DRzccV/R954R8EoUGvej7Ava+b2+RzLMIpcdMt2k97voIo+3j1j14a8e78fqWt+B3Uzfjsdn7CoYCk0YCd07+Eo/O3ofzOi/Da5tPh64t7u9ERBRSfA/R4mznCQOortn7WzgiIiIiIiJadqoQ1ULzqfKPo5aZxZ9m48DYLLCirXLjsTPV+qgf8ttBg0dDe4M8lLV7WiA/pVbdclZeqKi+cFixYbSpKvv30eIViiU8vav0P9ITEREREdHiCYu76JE49+WJiIiIiIiIiIiI6lXSNIzGCaC0eEF3H57HprzLQ2n5pOO9y+SRCFV0zE4Cnj7p5bPZKSSNBF9PZIlZKKWbYTSqA0HFtjSUHrHlSc9TIqmMGTY6zM+qrVoezUWWPC5aXnPZGeyID+6Poe1J7y7L43g0Lw7zHYV+/wD6fRuw2rcOTs1Vlseyk253L97WcRHumrxRuvym0DX4tzVXFR2FE0Ie43IsMrgVcMu3Z+PpEexJydcJl+ZGu6t7UY9X7Zqcrbg48BG8qe1c3D5xPZ6P5n+OONRsdgo3jF+FB2fuxIVdV+CohtdUYKREVGtC6THp5dXwPQRROTGMRkRERERERKZy5ie4AABEk+UfRy0rFH96aYJhtH1UE6l1yW/Lq9rlIbAXQ6Udkx3kLM4bnysQk7Ib1WtD0+TrwgzDaHUjlTVf6QflvwcQEREREdEysZo7KxRBJiIiIiIiIiIiIqLaZRZG8zDkREsQVMQgQulRZdxmXBFNU4Ul7CTgUk+aDqdHscq7roKjoWqlCqO1OTvh0b0VHg1R5am290kjgUhuBi3O9gqPyFw0q46YNTiaTW+rWh4z5pc0Jqq8mczkqxG0LRiKDyKcKc8B1V7dj3W+9a+G0Aaw0nsYHFp9JivOar8AT0Uele47TmTGce/ULXhn12VF3WcO8klcGhyLGqMqqJMwYngxvkVxmz7oiwyx1YqAewU+uuLzGIoP4raJ6/BKcqjgbUZSL+P7I1/GQMMJuKDrfej1rKrASImoVoQy8s9g3QyjUZ2rz71MIiIiIiIissywMHM1mrQ6vZVkCoXRdk8LAPY6q9RyUa2PsjDakQENzw7n32DLaO2tr1YChgCQzJR3HKWWVrw2gs3Anrn8y6ditfe3JblUgXVZtk0gIiIiIqLlowqdH2omXt5xEBEREREREREREZF9pRRhNJfmhkNbXASACFDHbVIiiZnsJNpdXQddbghDGYVSRdbspN3VCZfmRkak85aNM4xGFqleAwFOyqc6EXD3KpeNp0dtF0Yzi5g1OppMb6tabhZbo+UnhMBUJoyhxN4I2lBiEFOZ8pxBvkFvwjr/evT7BtDv34AVntXQuX8OAHBqLlwa+DiuHP68dPn907fjpOY3otez2vJ9CiGfHOJYZKjM7L17c/Qp6eU9npWLeqxa1O8fwL+s+jb+Mv847pj4OaazEwVvMxj7C7bGnsGpLW/G2zsvsd17BhHZUyglD7RXw/cQROXEMBoRERERERGZshJGm0+Vfxy1rFAYbXimMuOoBqr1UXLCRmxYAfz66fzLN8uP1ahqVl6nAJDMVFdkT/XaUIXRpmPlHQ/ZRyprvnxkFjAMAZ2FNCIiIiqBTFbg334rcMezAi4HcPkpGv7lbE165ngikrMaRhuXfNYjIiIiIiIiIiIiovqQVITRPLqvwiOhWmMWtwmlR/PCaLPZKaSF/MDYYBVEoXTNgW53L0ZTu/KWqWJXRIdiGI3qXaOjGY2OZkRz+XGwUGoER/qPWYZRqcnGCQA6dPj0BtPbNjqapZfHFPdJy0MIgXBmbG8ELT6IHYlBzGQny/JYTY4W9PsH0O/bgHX+9ehxr4K+yChXPVjnX4/Xt5yFP83dn7fMQA43jl+NT6/6puXnMAf5JAodi4vRNTpa4NcbETeiectUUcWgm2G0hXRNx0nNp+G4xpPx8OzvcN/UzUgY5md/FDDwp7n78XTkMZzVfgHe3P5OeHRvhUZMRNUmkYtjLiefQMrPYFTvGEYjIiIiIiIiUzn5yUYOEk2Wfxy1LFsgjLZ7ujLjqAaqAJisfXTMCg1A/g12TQHzSYEmb+1EDKy8TgEgmSnvOEpNGUZrATCcf/lU/m91VKMKhdHSWWBkBljVUZnxUOkJIfD4jr0BjWP7gFZ/7WyziYio+nzk5wLXbzzw2eJztwnMJYBvXMD3JyKrLHbRsGcOyOYEnA6+voiIiIiIiIiIiIjqTUoRRvNy8jgtkd/RiGZHGyKSScbj6REc3XBc3mUqAXdfycdXDgH3CkUYTf1vI1oolB6TXt5tEhokqjUB9wpEE/lxsHEbRiajWXnErMHRVPDEfw2KMFo0Nw8hBE8cuEyEENiTHsZQfAuGEoPYEd8q3ZcphVZnB/p9A1jnH0C/bwAB9wr+3Yt0Qdf78Hx0E+Zz+WcE3Jncjj/N3Y83tp5t6b4MoQijLTJOp2kaAu4VeDn5guXb9HpWLeqxap1Ld+Os9vNxSsuZuHfqZjw6cx9yMJ/YkBJJ3D31Kzw2ex/e3nkpTmk5E7q2uMgdEdUus4g5w2hU7xhGIyIiIiIiIlOqENVC8/IT45FFqvjTPsNTVqcP1z6hDKPl//B2rMnxR1tGgVMOL9GgbKDewmiBZnn0btr8pDtUQwqF0QBgcIxhtGo1MS/w1u8ZeObVAGJvK3Djh3ScdgQPsiAiosqbigrcuCl/3/Nb9wq892SBo3r4/kRkherz/KEMsTeOtrK9vOMhIiIiIiIiIiIiIvtJKsNovgqPhGpRwL0CkUR+TEQ2+VgVRmtxtsPn8Jd8bOWgmjg9nrJfzIfsJ5GLK+M7nJRP9STo7sNLiW15l4dtGEaL5eRhtEZF9Ozg6zRJL88hi5RIwqtxX6wSDGFgNLULOxJbMRTfgh2JrYgq/q5L1e7sQr9/A/pfDaF1uoIMoS2R39GId3d/ENfuuVK6/LcT1+PYxpPQ4ix8QIwB+eSQpcS0ig2jBd0rF/1Y9aDR0YyLuj+E01vPxR0TP8cz0T8XvM1cbga/DP0ID83chQu734/1DcdXYKREVC1UYTSX5kabs7PCoyGyF4bRiIiIiIiIyJSVMFo0Wf5x1LJCYbTx8vyeVZVU66Mu+R1udQfQ5AXmJevn5lGBUw6vnR/vLIfRLMSk7EQdRpNfHksBqYyAx1U7f1uSsxRG2yPwtmO4LlSjT/xK7I+iAcDYLPDB6w1s/5oOh2yDT0REVEa/HxTK/dJzvm9g57d49kaiUhueYRiNiIiIiIiIiIiIqB6pwmgehtGoBILuPgwltuRdHpJE0MZT8jBasIqCUKqxTmT2wBC5JYU1qPapJuUDDKNRfVFGJhUBzeUUM+allzdYCKOZXSeajcDr5r5YOeREDsPJndiRGMRQfBA7EluRMGJleawuV8/+CNo6/wA6XN1leZx6d2LTG/HE3IPYFn82b1nCiOM34f/FB3s/U/B+DCE/WM2Bxe+/Bd19lq/r0tzo5DpiSbe7Bx9e8Vm8lNiO28LXWorPjaV344cjX8VR/tfgwq4r0OddW4GREpHdhTPyz2Dd7l7oml7h0RDZC8NoREREREREZMpKcGk+Vf5x1LJCYbSw/HfKuqQKo8lOUKRpGjb0Aht35i/bPl7acS03y2G0THnHUWppRfwq2KK+zXQM6Gktz3jIPlIW1uUXQ+UfB5Xe2KzALX/J39i/NAE8PgScfuQyDIqIiOra7mn1sl1TQDgi0N3McCdRIRa6+/uNzAgAfF0BwExs7zPX1sDng4iIiIiIiIiIiGpfShFG8zKMRiUQ8KjiNvmTj2WxNAAIuleWdEzlFFDELzIijenMJDrdgQqPiKqJKozm0txoc3ZWeDREy0cVRpvOTiBtpODWPRUekVo0qwqjNRW8baPJdaK5CDrB94xSyIoMdidfwlB8EEOJQexMbFOGgZcq6O5Dv28D+v17Q2itTp6drhI0TcMlgY/ia7v+ERmRzlv+l/nHcXL0DAw0nqC8DyEEDMgnh2hLCOMUEzYNuFcwolukw31H4TOr/h3PRDfitxPXYzJTeCLD9vhz+NYrn8bJzWfiHZ2XotXVUYGREpFdjafkn8EYpiZiGI2IiIiIiIgKUIWoFoqlAMMQ0HVO0lwMK2E0IQQ0Wf2rzqjWR9Wqt65bw8ad+TeaqLHYXM7iDPNqCqMZhlD+vYMmJy+bYhitLqQU0byFZmPFpBfILm75i4BQ/OmeHRE4/Ui+FxIRUWXF8o9RO8jzI8Bb1ldmLETVTLWPJzMyU75xVItURuAD1wvc8rRA1gBOOQy46SM6VrZzf5iIiIiIiIiIiIhqlyoM4WEYjUogqAiFzWWnkcjF4XP491+mikJV04TkbnevclkoPcIwGpkKZ+SvgW53L/QlRFmIqo0qMgkA4fQY+rxrKzgac9FcRHq5WfRsH5/eAB26NMYUU9wvFZYx0tiVHMJQfAuGEoN4OfEC0iJVlsda4VmDft/eCFq/bz2anDyYfrl0uoM4t+Nv8dvJG6TLfxW6Bl/0/wAe3StdLhRRNABwoDJhtJ4qigHbiaZp+D9Np+LYxpPw6My9uHfqFsQM84lLAgIbIw/g6fnH8Jb2d+Ks9gsZBieqU7XwPQRRuTCMRkRERERERKashNGAvZPFm+TfzVMBWfVvFwCAdBaY2z2Klqd+CxGZgXbK26AdfWJlBmczqonUqjBap+K33In52gomGQXWoX2qKYxmFgwMNGsA5H/D6Vh5xkP2YiWMNleek6hRmd38lHr7vH28ggMhIiJ61WTUfHmh0DUR7VVMGG14unzjqBafvkXgV5sOPGkbdwIXXWPgic/zjLxERERERERERERUu1JGUno5J4ZTKZhNJg6lR7HG1w8AiOeiiORmpddTxdXsyKv70OrswGx2Km9ZKD2KAZywDKOiaqGelK8O7hHVog5XN5yaE1mRf9DqeHrUVmE0VXyn0WFyNupXaZqGBkcT5nNzecuiuRo7G3kZpY0Udia2YygxiKH4IHYlX0RWlP7gfQ06VnrWot8/gHW+Aazzr0eDhQAeVc6b28/DpsgjGEu/krdsOjuBeyZvwoXdV0hvKwsU7qNpiz9mpMsdhA4HDBQ+2C3oYRhtKZyaC2e2n4eTW87EfVO/wcOzd0vfRxbKiDTunboFj8/+Aed2XoLXt5wFxxL+3kRUXQyRQzgzJl0WZBiNiGE0IiIiIiIiMpezGFyaTzKMtlhWJtKH/vE9aJ7+CwBAXPt14DM/hPbOD5d5ZPajDKMpTn7T1Si/fKLGfqPNWZxgXithtAbP3v/FJCfNYhitPqQthNEi8mNlycaiSYEnXlYv//OO2opaEhFRdRidMX//mYoJAIpSMxHtV8yeXKHXXa0TQuC2v+Y/B5t2Ac8NC7xmJbc5REREREREREREVJsSRlx6OcNoVAptzk64NQ/SIv+gs1B6ZH8YbTw9oryPagqjAXvHKwujjSuiV0T7hNLySflmgUGiWuTQHOhy9WBPejhvWcjk/WI5RLMR6eVWg1mNjmZpGC2Wk98vAUkjgZcS2zAUH8SO+CBeSe5ADhYOcC6SDgdWe9dhnX89+n0DONx3NHyOhpI/DpWOQ3Pi0uDH8N3d/wohOWLmwZk7cVLzaVjpPSxvmSHUE7gcUEyasTimTldAGd5ZqMfNMFop+B2NuLD7CpzW+jbcOfkLPD3/WMHbzOfmcFPoGjw8czcu6HofNjScCE3jcUJEtW46M6mMqfIzGBHDaERERERERFSAYXEualQSKCJrrITRwgkX+hf8t/jR/wec/XfQvP6yjcuOVOujrviuv0vxW+4z+b9PVzWrAcNk6X9rLZu0yevC5QA6GuRhNIYp6oOVMNpcovzjoNJ6ZVodwASAzaPAoy8KnHbE8r/G//sRA1c/IhCOAGcPaLjqbzU0+5Z/XEREVHrzBWKrtRZdJioXs/28Qw3PlG8c1SCTA0KKY8uvfkTgmsu430lERERERERERES1KWXID/bw6vV1jByVh67pCLhXYDi1M2/ZwhiaKozm1X1ocbaXbXzlEHCvwPb4c3mX2y3mQ/ZiCANhRRit28VJ+VR/Au4VijCavSKTqoBZo6PZ0u0bFNeL5nhgzD7xXBQ7EluxI74VQ4lBDCdfggGLB/EXwak5sdrbj37fBvT7B7DWdyRDwVXoMN9ReEPr2Xhs9r68ZQYM/Cp0NT6z6t+ha46DluWEehLFodctVtDTZy2M5mEYrZQ63QF8oPefcWbiHbht4jrsSGwteJvx9AiuHv0GjvAfgwu7rsAq7+EVGCkRLZdQRr1f2c0wGhHDaERERERERGTOsPhbTaHJ4qRmJYwWcgYOviARA7Y8AZx4ZnkGZVNW18d9uho1QHKWHQB4KSxweHdtTCa2GkZLyU8gYUtmrwu3A2hvAHZP5y+bipZvTGQfKQthtAjfl6rO7vwT1OZ5038ayFyjw6EqYlbA/z5u4GO/PPDecv1GgZcmBB797NIOOCAiInsqFGSd4P4nkSVFdHAyMRcAACAASURBVNHw0kTZhlEVzCJyL4wX80wSERERERERERERVZekIozmYQiCSkQdRjswCXk8JY+GBdx90LTqOt4woJhAbbeYD9nLTHYSGZGWLlOtU0S1LODuk15up22pEEIZMFMFzw7V6JCfjTyqCK7Vg2g2gh2JrRhKbMFQfBCjqV0QRR39YI1Lc2Ot70j0+wbQ7x/AGu8RcOuekj8OVd75ne/F8/NPYi6Xf4bAXckhPDp7H97Udu5BlwuT2J4OfUnjsfI+7tSc6HQFl/Q4JLfGdwQ+tfIbeC76JH47cYOlSN2L8c3491f+Ga9tPh3ndV6GdldXBUZKRJUWUnwP0ersYByVCAyjERERERERUQGGxd9uogzQLFrWQtRq2Cn5UXXrpvoLoynWR13xG0+X/DdaAMBX7xK44YPVdaCSitXXabJGwmguB9DZKF/GMEV9SGULr/Rz8mNlycaGZ6xtzP64DTh7oMyDMfE/j+eP8/EdwNYxgfW9tfG+QkREB6QLhKwneGJcIkvMYl+HmowC4YhAd3N97luZfcZ/Ybxy4yAiIiIiIiIiIiKqtJQijMZJoFQqQWXcZmTB/5eHbqoxCKX690Zys4jnovA7FAfhUV0ziz1V4+uAaKmCJpFJQxjQtaWFikohJZLIQX7mv0aLYbQGRRgtpgiu1aK57Ax2xAcxlBjEUHwQe9K7y/I4Hs2Lw3xHod8/gH7fBqzyroNLd5XlsWh5+RwNuCjwYfxs7DvS5XdO/gLHNZ6MVlfH/styQn2wmq4t7QTOVt7HA+4+OJb4OKSmaRqOazoZxzSeiMdn/4B7pm6yFKDcFHkEf53/M85sOw9nt18In6OhAqMlokoJpeWhxIC7t8IjIbInhtGIiIiIiIjIlGEh2gUA86nyjqOWmQWg9tntWpl/obv+zgSkmhzsUMyVXtMhvxwA7tkskM0JOFU3riLWw2ilP0tVuRQKo3U1aYDkrFtTDKMtSs4QuPWvAj/fKNDi0/C+UzWctd6+r42UhchfLIWaeY3Xi+H8E6JJPbFT4OyB5fu7bsw/cTAA4EcPC/zoUq5vRES1ptB+x2y8evaxiZZTMWE0ABgcA7qtHZ9dc8w+40/yMy8RERERERERERHVsKQyjOat8EioVqliEBPpceREFg7NifEFkbSFVGEcOzOLX4TSY1jrO6KCo6FqoQqjNTva4HP4KzwaouWn2pamRQqz2Sm0u7oqPKJ80aw6qqMKnh1KFVCzEuypVjOZyVcjaFswFB9EOCOPkiyVV/djnW89+v0DWOcbwCrvYXBozDvUi+MbT8GGhhOxJfZ03rKkkcDN4Z/iIys+t/8yA+oJXDqWFmIMKKK5C/W4JfOWqOQcmhOnt52D1zafjt9P34aHZu5CRqRNb5MVGfxh+lb8ee5+nNNxMd7Yeja3JUQ1QvU9hJXtNlE94LsdERERERERmbIaXJpPCgDFx0BiKYFQBFjbuffsF/UmZwhLk4NHXPlfZonZqUU849VNtT7qit94elo1NHuBSDJ/2Uwc2D4ObKi+45XyWA0YJi3EpOyiUBitQ3Gyyol5hikW41v3Cnzpjn3PncCvnhK4/v0aLjt5+c9kJ5OSn9guz3wSaOMJkarGK5PWrre1PMeeLFlojtsfIqJalC4Qso7I5+cQ0SGK3VN6MSRwxlH19q3HXmbfxWUtfv4nIiIiIiIiIiIiqkaqMJpH91V4JFSrVJOKc8hiMhNCu7Mbk5mQ9DrBKoxEtDo74NG8SIn8AyhD6RGG0UgqnJYfnBVw91Z4JET2YBaZHE+P2COMZhIva1xiGC1WI2E0IQSmMmEMJfZG0IYSg5hSvOcvVYPehHX+9VjnG0C/fwB9njXQNUdZHovsT9M0XBz4CF58eTPSIpW3/NnoE3g+ugnHNr4WAGAI9cFqS12PrLyXBxnhqSifowHnd70Xp7W+FXdO/hKbIg8XvE00F8HN4Z/i4Zl7cH7X5XhN4+vqci4eUS0JK+LUZvuhRPWEYTQiIiIiIiIylbM44TKa/x19gfsV+OdbBH78kEDWAFZ3AL/5qI4TVtfXF7Jm8aeFhiVhNMxOlHYwVSCnmB2sm6w2T39BxxFfkK/Ie+ZqI4yWszjDvJrCaGmT8JXLAXQpw2jlGU8tG50R+NrdB69EQgDfuU/g714nbPlDmdUw2lyCYbRqMjhmbWO2xeL1ykGY1EytrpdERFRdzPZLAXmEmYjyWYnCL1TPr61inysiIiIiIiIiIiKiWpATOWREWrrMyzAalUi3uwcaNAjJKV1C6VHkRA4C8mMNq3FCsqZp6Hb3Yji1M29ZSDHxmki1blTja4CoFHyOBrQ42jCXm8lbFkqPYn3D8cswqoOp4mU6dPh0awfRNijCaNFcdR6YLYRAODOGofggdiQGMRQfxEzW4tl7i9TkaNkfQev3D6DHvQq6Zs8TU9Py6HB14+2dl+C2ieuky28K/TeO8B8Dr+6DAfUEI8cS16tGRzMaHc2mMcUez6olPQYtTrurC1f0fBJntr0Dt01chxfjmwveJpwZw0/G/h2H+47Gu7rejzWMHhNVpUQuLt3PBPgZjGgfhtGIiIiIiIjIlKJDlWe+yAmrP3hQ4PsPHLjzV6aAs/7LwOh3dPjc9ovwlIvVMFrIEci/cCZc2sFUAdX66DD5jWddt4b2BmA6lr8sPC8AVP/6ZlgMGCarKNpj9tpwO4EuxQnMJqLlGU8t++ljQvp8bxkDZuJAuw3DYlYDVBNRYE1necdCpZEzBLaNW7vuzom9B60sR7Qva7JtYhiNiKg2Fdq+13O8iagYxba+iv2eqZZY/S6OiIiIiIiIiIiIqJakjIRyGcNoVCpu3YN2VzemMqG8ZeOpEWSF/MdBHQ50u3vKPbyyCLr7pGG0cYbRSGE8PSK9nJPyqZ4FPH2Yi8vDaHagipc1OpotH2fZ4JAfmB3NRZbteM1iCCGwJz2MHfFBDL0aQosoIiNL1eJsR79vAP3+Dej3DSDgXmH754eW3xlt78BTkUel+2Wz2SncPXkj3t39QRhCPTFEw9KDewH3CkQTJmE098olPwYt3irv4finvv+HLbG/4PaJ65T7ZQu9lNiG7+z+LE5seiPO67wMnW7J3DMisi2z/Ul+BiPai2E0IiIiIiIiMmUIa7Mxo6ni7vdXm/LvdzYO/GEr8M7jiruvamYWWFkoIvuxsR7DaIrfefQCvyUGmhVhNPVvOlXF6qTphPykqrZkFkZzOYDORg2yqfUT1XlismV17xb1CjQxX91htOFp4KQ1ZR0KlcjOCSCZsXbdVHbvutktP0FhWaUZRiMiqjvpQmE09RwdIlrA4tdL+xX7PVMtYRiNiIiIiIiIiIiI6lHSJIzmYRiNSijoXiENo4XSo8hB/uNglzsIh1ad0zBVE6lDFiILVH9SRhKz2Snpsm5Oyqc6FnCtwIvYnHe5XbalsZz8gHhV7Eym0SE/INNADkkjAZ/Dv6ixlYshDIylXnk1grYFOxJbEVU8D0vV7uzaG0HzD6DfN4BOV5AhNCqaQ3Pg0uDH8Z1XPguB/EkxD83cg9c2n2762cehOZY8jqC7Dy8ltsnvH050uYNLfgxaGk3TcEzjiVjfcDz+PPdH3D15I+ZzcwVv9/T8Y3g2uhGnt56Lt3VcBL+jsQKjJaKlUoXRXJobbc7OCo+GyJ6q8xs5IiIiIiIiqpic+oQjB5lPFne/T+2SX/6TRw2887ilf2FfLcziTwtF9GYIAAf9hBa2x1mmKimnmBxcMIzWBGzbk3/5lrGlj8kOrL5O4zUURgsogkjRFBBJCDT7+INzKUzMA0fa8PfNQoGSfYZn8racZFODRW6Ph2eWKYxmsu6lLIbdiIiouhQKX0aK/CxMVK9UYbRmr/x1VOz3TLVEFYXfJ2cIOAp9EUJERERERERERERUZVKG+othL8NoVEJBdx8GY3/Nu3xL7Gm4E17pbVRxsWqgGns4vQc/Hf32ou/XoTmx2rsOp7a8BT6HDc+8SfvNZaexce4BjKR2QQjzH6LMtsXV/DogWqqAR77+70oMLWlbWqxWVweObzwF6/wDB10ezcnPKt2giJ3JNJpE1GK5yEFhNEMYeHr+MbwQfx7JXNzyY5RKSqTwcuIFJAzJWdNLoMvVsz+Cts4/gA5Xd1keh+rPau86nN56Dh6evTtvmYCBn459B12uHuXtdehLHoNZ6DTg7q3aGHAtcmgOvLH1bJzUfBrun74df5z+LTLCfEJQVmTxwMwd2Dj3AM7peA9Oa3sbnJqrQiOuLoYw8FTkUbyY2Lws72Wl5NTcWOPrx+tbzoJb9yz3cKhIqjBawN0LXVv6dp+oFnDvhIiIiIiIiEwZiomrh5pTn7AxTyKtvtPp8vw+ZVtWw2g5zYmY1oBGseAJmh6HyKShudzlGZwNqSYHF5oP3N2sAchf7679k8BP3yugV/mEYquv01gNhdH62tTLR2eBZh4PWRJh+bESy65QoGSf3dPlHQeVzpYxixuyVw1PAyesLtNgTJite1bXSyIiqi7pAp/Z5pOAYVT/ZwqiclPt7TUpwmixVFmHY2uF9ozj6b3PGxEREREREREREVEtSRrqAxA9DKNRCQXcfdLL53NzQG5OuizoXlnOIZWV6t9rIIdnohuXdN9Pzz+GP8/9EZ9e9U00mAR1aPlMpkO4cvjzmM1OLel+HHAyDER1LajYlqZEcsnb0mI9PPM7XBb8e5zS8ub9l8UUYTSz2Fn+ddURtWgugk4cOMvyz8d/gCcjD1m+b7sLuvvQ79uAdf716PcNoNXVsdxDohp2Xtff4dnoRul781QmjKlMWHlbXXMs+fGDJmG0oKd693lrmVf34R2dl+KNLWfjrqkb8cTcgxAFji6KG1H8ZuJ/8fDsPTi/63Ic33gqNI3HNy50w/hV2BR5ZLmHUTJPzT+CpyKP4pMrv8Y4WpVRhdHMQpZE9YaJQCIiIiIiIjJlNbg0EbEeNNkjP3YEAOCos0+qVsNoABA59AdHIYAJ+RdgtUq1PhZab7pMftd9YPvix2MXlsNoVTSxPK0IDDl0QNM09LaobzsyU54x1aqESTAvPF9crKpSrAaoRhhGqxrb9hR3/eGZ5Vk3VdsmgGE0IqJaJIQw3fbvE62i/Wwiu1EFvuaT9vwsUgmFPuNHJSE5IiIiIiIiIiIiomqXUoTRNGjwaDxbBJWOWQyilLexi253DzSUL4KwJz2MP889ULb7p6V5YOaOJUfRAKDLHYSjBDEWomoVcPcu9xD2EzBwx8QvkBWZ/ZdFcxHpdYuJVnp1P3TIX+cL7384ubPqo2i97tU4vfUcfKj3s/j24dfhS2t/iEuCH8VJzacxikZl59V9eE/3hxd1W9VrtBgBk/3aniqOAdeDVlcH3hv8BP519ZU42n+cpdtMZkL42dh/4D93fw4vJWpg4lSJDCd31lQUbZ9dyRfx1/k/LfcwqEiqMJrZ9pqo3jiXewBERERERERkbznD2vXC8hMNSTGMdkAxYbQ5vRm9OKQcEx4BeteWdlA2ppocrBc4bufwLvWys79nYOZ7Olr81XsGlFoMo6leG+5Xf8/zuDR0N8m3PSMzAijjwVy1JpFRL5soYtteSSmTMS8UKiLaSctrKlrc32oqWqaBFJA2ed9mGI2IqPZY/bwWSQLNvvKOhajaCcXuXrNiLls9BweNAt/F1fNzQ0RERERERERERLUrYcSll3t0HzSNxwFR6QTcfRW5jV24dQ/aXV2YyoTL9hjbYs/grPbzy3b/tHjbYs+W5H44KZ/qXZuzCy7NjYwwORNxBUVyMxhLvYJV3nUA1GG0xkNPym5C0zQ0OpoQyc3mLYvlDhxMXKrtSqVo0NHnWYN+/wb0+wawzr++qGAcUTkc13QyXtP4OjwXfdLybXTocGquJT92hysAp+ZEVuQf9NzjYRitGvR51+ITK7+CrbFncFv4OoylXyl4m5eTL+C7uz+H4xtPwTu7Lke3u6cCI7WvrbFnlnsIZbM19gxObjlzuYdBRZjOyj+r8zMY0QF1Nt2ciIiIiIiIimU1uFSqMFrCHr8XVkzWYngO2BtGy7NnV6mGUhVUob5CYbQLjze/wluvMpCzurLbkNWAYdYA0tnq+HeqIhSuBSc66muTX2c0/zd5MmEWRitm215JVgNUE8sUz6LiJS3G7vaZk58ouuzSJuseAxVERLXHbLu/UGSZ3peIqonqk2iTIow2nyzbUGyv0NcT3O8kIiIiIiIiIiKiWpQy5D+4eHWenYZKq8nZgjXeIyxfv8XZjlXew8o4ovI7puGkst5/KD1a1vunxcmKDCYz4yW5r2May7sOEdmdrunY0HDicg/jIHtSw/v/f6wEYTQAaFBcP7ogjGb3bb4OHWu8R+Cs9gvw8RVfwH+u+zn+dc2VeHf3B/Captcxika28Z7uD8OjKQ6akVjrOxIufelhNIfmwPqG/5N3uUtz40j/sUu+f6qc9Q3H4/NrrsRlwX9Ai0MxseYQz0Q34msvfwK3hH+mjGrWA7u/ly1FLf/balFWZJBUfB/W6myv8GiI7IthNCIiIiIiIjJlWAwuhYr4TnTPnHqG59gcIER1hJtKQRV/kplztORdJl7ZXsLR2J9qcrBe4BuOVR0a3neKOo725MvATU9V73pXTNMtViUTqFX/JseCv3VQ8Xu9XWNedhU3CVJO2vS5tBpGm2QYrWoUG0aLLFMow2zdm5gH7ny2et9LiIgoX9ri57VYnQW+iRZD9VVPs2I+Wz3HvxhGIyIiIiIiIiIionqkmgjqYRiNyuDCrvfBq/sLXs8BJ97d9QE4NGcFRlU+b2k/H12unrLd/0x2Eimjjs96Y1MT6XEYKOLszQpH+I/BiU1vLMGIiKrbuZ1/azk8Uwl70gvDaPKDfVWhM5VGRTRsYTxnPD1S1H2Wm1Nz4nDf0Xhr+0X4h74v4z/7f4nPrv4OLuh6HzY0ngifo2G5h0gk1ebqxAd6PwOnVjh25tP9eFfX+0v22O/ovBTNjtb9/61Bw/ldlzMcWIV0zYFTW96Crxx2Nd7ecYml2F4OWTw0cze+vPOjuH/6dmSM+jv4sZbjYeH0WF3Nyax2qn04oPjALVEtq+5v5YiIiIiIiKjscha/D4umgHhKwO9Rx6f2GZ9TLxubBTaPAsf2WRygTaUyAv/zJ4GndwGtfuDC4zW8oT//uSkmjDavS35o2LVt8YOsQspYVuHVDv92robrN6pX6F8/JfB3r1vkwJZZUWG0NNBWBb/xKiN4C/7W3c0agPwr2jXmZVcJk9+ywvP2+1HEMITlbedUdO/1dd3CRoKWVdJi7G6fSGJ51s10gXFe/r8GNn9Fx8p2rnNERLUgZTHcGWekiKgg1fFWTV7557r5Op47U+jYtGgdPzdERERERERERERUu1RhNC/DaFQG6/wD+PzqK/FcdBMmM+PS67Q423FM44lY4VlT2cGVQburC59d/R08O/8ERlO7ICS/zViRNlLYGHlAuiycHsNK72FLGSaVmCr4oEHHaa1vLXh7p+bEam8/jms62VK0hajW9XpW4XNrvovn5p88KEpWbi/Gt2BPenfe5XtSe8cghEBUGUYrLnKkun7s1TCaEEK5bTnK/xoE3CuKerylaHa24TDfUVjrPQJu3VOxxyUqpWMaT8TnV/8XNseewnRmQnqdgHsFjmk8ER2uQMked4VnDT635ko8N/8EYrl5HN1wHNb6jizZ/VPleXQvzum8GK9v/RvcM/kr/GnujxAFArkJI47bJ67HIzO/wzu73osTmt4AXdMrNOLlFU6PSS+v9HvZUsRy83h6/rG8y1MiibncDFqd7cswKirWwvjsoRirJDqAYTQiIiIiIiIyZRRxsrDwPLDGwu9Ke0zCaABw4yaBY/uqNyiSzgqc9A0DWxZ8V3rVAwJX/52Gj5x28BfFxYTRZheclWW/V7YvcpTVSRnLsvD9+2GdgM8FJBRxg7ufr96AUq6I12msSqINhmIm+MK/dZfie147xrzsyjAEUiahp7ANI3PpIrabhgCmY0AnfxOwvaRi29ziA+Ykxz5H5MdDl12h9S+SBH78sMC3Lqy+9xIiIspndb8jVn8nTSQqmupTWpPiRKWROo5/FYqfx7nNISIiIiIiIiIiohqUUobRFF8kEy1RpzuIN7eft9zDqJgGRxNe33rWku7DEDk8Nf8osiL/QJ/x9AjDaDajihd1ugK4OPCRCo+GqDa0ONtxWtvbKvqY903dgjsnf5l3+b5YWtJIIAf5gcCNjuaiHkt1/dir4bVoLoK4EZVe520d70G/f6CoxyMiIOjpQ9DTV/HHbXW24/S2cyr+uFReLc42XBr8ON7U9nbcPnE9BmN/KXib6ewErt1zJR6YuRMXdl2BI/wbKjDS5RPNRhAz5JNk3tpxUdX8+1VhNGDv5wCG0apDTBG3BRhGI1qoPrKdREREREREtGiFJmMuNG9x0uqD283v9Dv3CVz2MwPTseqLG92w0YD34wdH0QBACOBffiMwFz/435QtIvAz5uzJvzA8CqEISNUiVQDMSstM1zW8dq35dXZOFj8mOyjmdVotYTQrf+tuxfe8EzaMedmVKka1jx2fy1SBMR9qQn4MBtmMal1Uvc6XK5SRNgkJ7vPt++rnfZmIqNZZ2e4DjBQRWaH66qKjQX55LAXMJ+tzv6rQZ/xYuj6fFyIiIiIiIiIiIqptSUUYzaP7KjwSIlLRNQe6XZLjWKGOcNHyCaVHpJcH3CsqPBIiWooe9yrp5VOZMNJGyjSo0VhkUKNBEUaL5iIA1NsVAAhy20JEZBu9nlX4+74v4h/7voo+T4FJVK/andyB7w1/AdeMfrOm9+3N/m3VtJ/c4GhSBk1r+e9Xa6KK/Tiv7odTc1V4NET2xTAaERERERERmVLFiWSiBYJLQgjc87zA7unC93XjJoHOTxkYClXPZM+7nhO44lr1eOeTwG+fPXh5pogw2ohLciaYdBKIWHhCa4RqcrCVMBoA/MMZ5l+FvPuaIlZ4GzFK+Dq1Cyt/6y7F7/VhG8a87CpRIDI2GQWMYsp7FZCyGCjZ5/Ed9ho/HWzbHoGfbzSU+waqMNqc/HjosrMayKnXiAcRUa2xut8RZ6SIqCDVq2SVyckph+vn646DFAyjVcnneiIiIiIiIiIiIqJipBRhNC/DaES2EnBLjmMFJ9/b0bjib1JNwQciAno88jCagMB4emR/tEymocgwmiqwsi/aEUqPSZf79AY0OlqKeiwiIiq/oxpeg8+t/i4uD/4TWp0dlm7zfHQTvvbyJ3BT6L8xn50t8wgrL5SR7yN7dT+aHa0VHs3SdLt6pZeHFe/XZD+q/bhi9+GIah3DaERERERERGSqmB6OWXApmRG45KcC7/hhceGpI79o4CePVkes6uqHC4/z7ucXH0YbdioORpionwNKVAEwh8VvON51gobr3q+uqD0/AmRz1Rc1KOZ1Wi0TqFV/64VhtO4m+d9yYh7I2SzmZVfxtPlyQwDTscqMxap0EdtNALh/kOuCXX3zdwYGvmzgfSZR0W75cTaIJMs0qAKsBnLqNeJBRFRrrAYxq2Ufm2g5CcUu34o2DZriY7qVsH4tUj1X+8QKfI4jIiIiIiIiIiIiqkZJRRjNwzAaka0EPfLjWEPpkQqPhMwIIZSxuqAibkdE9tTp6oZLc0uX7UntRkwR1NChw6c3FPVYqgjHvscYV2zrg+4+aKof/omIaFnpmo6TW87AV9b+GOd1XmYpPm7AwKOz9+LLL38M9039Bmmjdg6QVO0jB9wrqu69TBU8ZrS6eqj241SxWqJ6xTAaERERERERmSqmLXT29wz89DEDQjKD8+anBW5+enFxmo/+QuDaP9k7jiaEwKZdha/3/CG/BxYTRhtxKQ5GCNfPASWq9VEv4vvny0/R8eaj1Mt3hIsbU7mkMgJfusPAKd/K4fwf5XD/VvXrJ1fEy6NaJlBb+Vv3KE4uZgjgpYnSj6kWJTKFrxOeL/84ipGyMOaFRmrvREU14ZndAl+6o/B+QXezfAM/Jz8euuzSFuOZwzNlHggREVWE1SBmodgsEam5HUBQcRzP8Ex9Ro4LfRfHbQ4RERERERERERHVIlUYzcqkbSKqnG6XavL9GAxh7+N868l8bg4JQ35GVFVAgYjsSdccytftnvQIoiZBjWIDL42KMFo0N28aXAy4e4t6HCIiqjy37sFbO96Nr669Gqe3ngPdQmYmaSRw5+Qv8JWXP44n5h6qif39WnovU+0fhBlGqxqxnHyylmqfjKheMYxGREREREREpooJLgHA//25wDd+lz+D85ZFRtH2+eD1Ar/bXPkJsUIIbBkV2DMrpMG3fcbngGn5MQQH2TEBJNIH7qeYMNqwsw/SEUzUz5eWqvWxmDAaAHzgDeobbLbJ0/me/zbw9XsEnnwZuPO5veHBu5+Xr4PFBAyjqeqYWK76NzkWfJt1RED9tx8cK/2YalHCwoR624XRLAZK9oksU0CLzP3kMWFp29Wt+E0nlgLm4pXfnqUtrn/D09WxrSUiInNWt/vVEh8mWi5m36doGrCyTb5stE5js4X2k2O1cxJWIiIiIiIiIiIiov1SRlJ6OcNoRPYS9MhP8JsRacxkJys8GlIZT6tPuMwwGlH16XGvlF6+J7VbGdRocCjOUGaiUXEbAzkkjbhJTEZx8nciIrKdJmcrLg58BF9c+wMc2/haS7eZzU7hhvGr8O1XPoPtsefKPMLyCqXlE42qcR+5WxFzm8yEkRWZCo+GFkMVuG1gGI3oIAyjERERERERkaligkv7XHm/OCj+BQD3bF76WD59s2E6mbbUNo8IHPf/DBz7VQMrPmvgwh8bygiL1QiTEMC2PQf+O1tEeC7qaMKc3pJ/n3UURlOtj8WG0f72JPUNLv7J8p/FZNsegbuez7/8vB8amJWsg8W8TqslEmXlb+1zazi8S369zaOMElmRsPB7x0SVh9HmqmSdrydCCFz/Z2uvIQYzYAAAIABJREFU0aOD6mVP7SrNeIphOYxWpxEPIqJaY3U/O84wGpEps69yNAABxfHY0/GyDMf2GEYjIiIiIiIiIiKiepQ05Ad4eBhGI7IVs2CAKphDlaf6WzToTcrwERHZV49HHkYbTw8jqgyjFR/UMLvNbHYak5mQdFk1xmSIiOpdwL0CH13xeXxq5TewyrvO0m2GUzvx/ZEv40cjX8NYaneZR1h6OZHDZHpcuqzbJY+M2Znq/VfAwITi30n2otqP42c2ooMxjEZERERERESmFhNGm40Dmxf8pm4lZnbL/y38EfXFEHDVA5WJHaWzApf9j3HQv+OO54DP/1b++DsnrY9rZEEsJZMr7t8z4pJ8cRmun4NJVOujo8hvODRNw0UnqONoP354eeNovx9Urxf/dFP+slwRw43IT65qO8ow2iF/6wHF7w8vT5R2PLUqZSGMFp63V2Su2DBatazz9WQuASQtnoToyKCGzkb5sk27Kr9uWl3/huTH/xARUZWx+nmYkSIic2YvJU0D2hrkn89nYuUZj90V+hqNMUYiIiIiIiIiIiKqRSlFGM3LMBqRrXh1H1qc7dJlDKPZh+pvEXCvgKYVeSZiIlp2Qbc8jDaZCWEmOyld1riIMJpZhGNX8kUIyA9YZxiNiKh69fsH8NlV38H7ez6NdmeXpdsMxv6Cb+z6JG4c/zHmstVzNvGpTBg5yCcDVON7WacrCE2RC+Jns+oQUwZuGUYjWohhNCIiIiIiIjJVTHBpoc2jB2ZxPjtsft113cAFxwMXn1j4x/ZP3yxw21/LH0K5b8vBcbd9btokpKG33dPW73smfuD2mVxx4xp29uVfGC7wBNcQ1fqoL+I4jQ0m31v/w40COyeWLwb15E71sp8/IZA9JKhXTMBwTn4Moe0YFv/Wazrlf/zhGXvFvOzKyrozIf+ufdlYibktNJ8EcoupfFLZDBfxnulzAa9bK1+26eXK/13TFt+3t4xynSOiyslk5Z9RaOmsPq2MFBGZM3staRrQ5pcvm4nV57at0McXbnOIiIiIiIiIiIioFiWMuPRyr674EpmIlk1QEQ0YT49UeCSkElL8LQKe6gs+EBHQ61klvVxA4KXEVukys8iZilf3Q4dDuuylxDbp5Tp0dLmDRT8WERHZh67pOKn5NHx57Y9wQdcV8Fn4HC5g4PG5P+ArOz+G303+GinD/mezN4uFdbt7KziS0nDpLnS6uqXLwumxCo+GFiOai0gvX8x+HFEtYxiNiIiIiIiITC22JbMwKva5W83ratdeoUPXNfzXxRpeI+l+Herd1xi4YaOBezcLrP9SDu6P5rDhyzn8YbB0E2a/do98zDNxeVhqpIiTXMwuuH2xYbQRl+QJCtVPGE21PuqL+IbjmBXmNbVv37d8E7B9bvPlMwuOAyw2glE1YTTV3/qQP9vKNvn1igkv1TMr2/iw3cJo8pP0mIra/3e2ujJcxHum1wW8dq18e/3ky8VvA5cqbXH9eyG0N1RERFRO8ZTA+6810PZJA+2fNPDxXxpIZrjtKSWrn4fjqfKOg6jamYbRALQ1yJfNyOfA1bxC255Yitt6IiIiIiIiIiIiqi1CCKQM+UFNXt1X4dEQUSHdijBa2CQ0QJU1rvhbBFwMoxFVo05XAE7NJV02mQlJL29wNBX9OJqmKUMcqjBapyuoHBsREVUXl+7GWe3n46uHXYMz2t6ujGUulBJJ3D31K3xl58fw57k/whBFTpKrINXnlXZnF9y6p8KjKQ1V0C2U4WezahBThNEWsx9HVMsYRiMiIiIiIiJTiw2jDYUO3DBkEtWZuFLH69ftDZ4EWzQ8/QUd/3K2ebAKAK64VuDcHxjYPg5kDWDrHuCtVxn45K8NXPWAgWd2L22S6M4J9TJZJGh42vrjzcQO/P9skd/5DsvCaCM7IEK7i7ujJRJjOyHu/BnEY3dCZBdRKVok1froKLzK5Dm2QITvjmeXb6JxOGL+2FPRA/+/2NdopMbCaKva5X/84ZnKB5OqkZX1Z+H6ZgeLCaNVSxCwXhTznul1Aa9ThNFCEWC2wrEMq2G0TA4YCpd3LEREH7xe4PqNAvH03ve6ax4R+OSvuf9TSlb3taOMFBEtmqYBbYqTjE7H5JfXOsP8/AKIMcZIRERERERERERENSYj0jAg/3LUwzAake0E3fKDL1UxLqqsjJHGdEZ+4FLQY+Hs1URkO7rmQFARpVRRBc4KUYU4QqrgYpHjIiIi+2t0NOOi7g/hS2t/iOMbT7V0m7ncDH4x/kN8c9ensTX2TJlHuDiq9zJVXKwaqN6Hw+mxCo+EipUVGSQVJwloZBiN6CAMoxEREREREZGpXIHJmCrD0wf+v9lE1o7Gg2MnDl3Dt9+l46aPLKJ0BeD7Dwh86tcCJ3zdwNfvWeTgAZhNaw9Lgvy7p/MvU5ld8L1Vpsgw2ohT8ePhQ7cVd0dLIH7zQ4hLN0D8x99DfP4iiI+/CWLGpCRXQspY1iK+4VjbCRy3Ur08PA9s37M8gYNC69PUgtdUsa/RuUR1RBushtFWtsuvl8zYL+hlR1ZiH3ZbZxYTRoskSz8OWrzhGevX9bqAo3vUy0eKuK9SKCZGuWXMXq8dIqotsZTAbc/kb2du2Cgwn+T2p1SsdnZnKhzqJKo2Zi8lTQPaG+TL6vW1VWjTE0tXZBhEREREREREREREFZNSTAQFAK/ureBIiMgK1eT7uew0Erk6/YHHRsKZMQjFL04MGBFVrx73qqKu37DIMFqxIQ5uV4iIale3uwcfXvFZ/POqf8da75GWbjOWfgU/HPkqfjD8FYwkd5V3gEWqxchnt2Lsqn8r2UcsN69cttjALVGtYhiNiIiIiIiITKkCIBt6905eVVkYdlJNZP3i29V38J4TdUz919I+tn7pDgH9Izmc+PUcvnGPgWzO2qx2IQSiJhGd8CHfPSXSAi9PWh/X7ILno9gw2p9azpBeLh66tbg7WiTx7GMQV/0zkFsw8G1PQdzyg4o8vioCdmgsywpN0/Af7zZfx9Z/2cBPHjUgrBYRSiCbE3hRfrK+/RYGv4qJ9ADAnPo4QluxGsFb2aa+j2LiS/XKsBDWm7XZsWqqbXmLyQmCq2W9rxfFxMw8TiDYrN7O2zqMxt8TiaiMXgzJP0skM8BD2ys/nlpldbtvFgMnIvPIoAagzS/f2ZuOoaKfx+2i0LYnzjAaERERERERERER1ZikaRjN5IAQIloWZuGA8P/P3n2Hx1EcbAB/Z+9O3VaxrWbZBtPcgNCrqYbQQseU0D8CoQQcSIAAARNqaAFCDxCSEAjNGNMCxpQYDBhjDO69SJYlWb2f7m7n++Ms6yTN7O1e00l6f8/jx7rd2d2529253b2dd33lCawJqehCEAy4MNxTkODaEFGsFKZaPA1cwWnAWdd0zoI4ClNLIloOERH1Hzulj8PvRt+Py4pvtH08ubx1Ee7b+Fv8a8tfUe+riXMN7ansUJ+r9OdgNF3dmwONlsFb1PeaA43acZkRHscRDVQMRiMiIiIiIiJLutCc66YIzLvJwNHj1OMb24GGVgmfX6LFqy5z1G7WaVa5mQKf/y76U9eFm4A/viORc52J/8w38eb3Ep8sk6huUvc0rW8F/BZhQVU9pltR4Swopa6lq7DTYLS1ogR1Rk7vEcvmQ1ZsdDYzG6RpQq5fDjnvA8jP3oL8zRR1wU/+E/Nlq2jDsiIIRgOAo8cLrL3Xehv79csS932YuI7Ya6qADr91mZqQbchOsFWo/hIQpXtfPdd1wVDA41KXDQ1oJDU7bVd9km0zujpnpgIpbvW4HzYNvjCFZFZaa399pLoBj1ugMFs9vqw+sevWyff92q3xqwcRke74BwCWbuH3XqzY/SR1YeBEFGS1LwkB5GWqx/lNoDHJzkcSIdx5vu46GxEREREREREREVF/ZRWMlspgNKKkk+seDo9IUY6r8JYluDbUky4YbURKEVxCc4MdESW9ohRnwWiZDgPOIp2uwNN/w2SIiMg+IQT2HnIw/rjDEzhzxKXIMLLCTiMh8XXjHNyx/kq8W/2K5bl/vLUFWtEYUD+RvV8Ho3mKteOqNEFwlByaLYLrGIxG1B2D0YiIiIiIiMiSVRDVAWMFXrhIf2q5qdY6UCcnI/zyD9tV4O8XR5h61UNrB3De8xJTnzVx7KMmin5v4sGPevc2DRemVNkjlH+hw8Cd0E7zToPRAOCxvGvUI758z/nMLMi6Kshrj4G88GeQN50Geft5+sJbNkK2xv9pErrOwa4ornDsOFxoA/463TZTYlFpYgImlti49lzT0vV3wGG1+kunct376hmMZhgCIxVZgYCz8KXByk7IU7KF6QUsQvPGFarHzVzEbSGZlKp/U+wl3RPcxwFgVK5mXgkOQHQSjFbfyu2OiOLHqj1aznsZYsZuCHFtCyAl230iHavdQwAotLivuqw+5tVJeuGOOVs6ElMPIiIiIiIiIiIiokTxWnSOTmMwGlHSMYSBghR1B3xdKBclToVXvQ4K+3HgAxEBRanOgtGyIgzUcBrEUZDKtoWIaDDxGB4clXcy/jT2GRydewrcNoJ3fbIDH9a8junrrsTc+o8QkBF0pIuS1XlKfw5Gy3bnIVWkKcfx3Cy5tWiC0dKMDLiFJ8G1IUpuDEYjIiIiIiIiS1YBNABQnNM7qKhTaV33ELCecm0EowHARQcbePuq2J/CBkzgprck8qYF4L4iAOPyAHa5NYC97rLu/b5ua/fXMxY66wAfGqzm1ywq02zWTv/q8AuhWqJc/aOjeujI+mqYL/wJ8uRRwI9f2p9w/bKYLN+KVVBfNKafHH77mvyAmZCwg3Vbwy+jJmTzsBvW0Km6uX+ENujel2pdj8pTl7UbvjSY6dr4UPUW7Xhf0LUDLgM45WfqxuCHTf1ju4+Xz1dK/PplE9NeM/Hl6r79HKSUKLO5bw4J+Y2uRBOMZndeseKkze0vQZRE1D9ZheaUNwze77xYsxuI6QsEg7iJSM0yGE0AI3OC/6skOgg3GYRrelq8CakGERERERERERERUcK0a4LR3MLNzqBESaogpUQ5nJ3v+15lR5lyeH8OfCAiYLin0NFxUZbL4gllMZou0zUk4uUQEVH/luHKwhn5l+D2HZ7EvkMm25qmMVCPVyufxj0brsPi5gUJ7d+hO0/xiBTkuIclrB6xJoRAPkOr+6XmQKNyuNOQWqLBgMFoREREREREZMkqgAYA3C6B4hx1mU21El+t0V+ozM20X49Tfibw5q/jcxpb39r1PtdutS4LAEvLu96TlBL/W60uN9oirKnzAq5P86CL/doWaJe/VpRgs1txg8L6pdpprPj8wbpIvw9y/TLIi/cFXrrH+YzWLolo+U6EC+qL1CE7C5yxt3WZFi/w3YbI5t/hl+jw27tobyfMq6al62+7YQ2dvP7+EdbjJARvVK56A0h0YFJ/ZGf78fqBdl/yBKxYtQNHj1NvC3WtwJaGOFYqib00z8RRD5t47n8Sj8+ROOIhE//+1mGiYgxVNgLtPntls1K7/h6p2c831yV223TS5jb0g7aWiPovq3DTGn3GMjnk5FumtiV8GaLBKty+5HELFGrulS5N8PFeMggXxtvaMbiDn4mIiIiIiIiIiGjgaTfblcNTjfQE14SI7NKFbOlCuSgxpJTaAAQGoxH1by7hsr0fG3AhzbD5BPseshyEcRRqQjKJiGjwGJ5SgEuLb8CNox/AzukTbE1T0VGGpzffjcfKbsem9rVxrmFQlU93jFwMQ/TvyB39uRmD0ZJZiyYYjaGzRL3171aaiIiIiIiI4s5OOJEuAGxTLXDHLPUMXEb3wBM7Tt9b4K0rDcfTxdryLYC57YNpbAsGZqlcfaQ6xKXd1xVWoAtGS5E+vF16prYOZW7FEx3WL4P020ybAbC1SeLCF0ykXx1A5hVtmHbe39B60UFAzRbb8wglIwxmc8JJWJZT/7zUwIm7W5c58D4Tt79jImAzGafFK3HBCyZyrgv+O/95E83t1tOW1oafd21zVxmnwWgAUNnkfJpE065rxdWsUZo26NX50tbnOZjZ3X6SKeDJKrBzovphNwCAJYPwdx3TlLhlRvcPzJTAbTOl7XYs1pY5+IrJDPm+H5WrLmMnTDKWnHxsjer7tomIYsKqPaphQFfMhAsnClXXGr96EPV3VhleYtv5vPZ4rzb29Ul2do452zriXw8iIiIiIiIiIiKiRPGa6htT0hiMRpS0dJ3vq3xbYErNjbEUdw3+Wnil+qYlBhgR9X9FKaNslctyDYEQkd1c7ySMg4GLRETUaYf0XfHbUffg8uKbke+x6NQRYlXrYty/8Qa8tOVR1Pq2xrV+upCw/AHwXZafov68qzrKE1wTcqIloO7Y5ySklmiwYDAaERERERERWQpoOoJ3D0ZT/3BWWqvv/JrmQUQ/uJ22l8Daew28c7WBf1wi8OVNBpr+amDujcHXt58Ug4SsMNp8wPrq4N9WAVOH7qyvy6ZtHXt1wWge6cNJzR9op69yF/Qe2N4KfP+pvkIhpJQ47AETL38rYUqBNpmCv+ZcgdtGTLc1vdK6vgtGc8UgGS09RWDWNQZmXGl9ueTu9yUuetFeMs4V/5L497cS7b5gIN4r8yWueNl62vnrw883NOxCt49aqVQ/WCKpOAnB0wWjAcCYm0089bmJz1dKSEWDtGSzxJOfmXh1vgmff/CFqJlWCQUhkikYzep7aViWQKHmnowNNYNv/a7dClQo9veNNcDCTYmvDwAsLY9sPZRYBKOp9u14cRKMlkz7DRENPFbHgNXNiavHQOfkG6Y/HGMT9RWrfanzFE93XsdgNLUWBqMRERERERERERHRANKuCUZLFQxGI0pWupAtv/TFPdSA9Co6yrTjGGBE1P8VpdoLRst0EG7We1r7YRxsV4iIKJQQAj8bciD+uOPjmJr/K9thm/MbP8f09Vdh5tZ/oS0QnycDV2pCwgbCdxlDq/un5oD6puNojuOIBioGoxEREREREZElO0FUus6rm2ol6jWhINHEWI0YIvCLPQUuOMjAwTsJZKYKHLJz8PX0kw3Mu9nAkbsBET7oyJZlW4L/V1l0ft99JOBxqceFC0Zzww8BYJSvVDm+Ml39w6ac96G+QiGue01iZWXv4S/kXIJ2kWprHr2sXAjpi2/PXDtBfdEQQuDUvQSuOcp6hq/Ml7jpLetEstoWidcX9N6BXl8gUdOs3rHmrpbKEKOeakLCLpyE9HTqD6EN+ran97BRudbr65pXJI562MS5f+sejvbgRyb2/JOJ37wq8cvnJfa400Rty+AKzzJtBuvVt8a3Hk6EC80bqQnQqo3Pb2RJrcbiPf+wqW+29aUOHjzkD9k+SzT7eYs3sdunkza3sT2xoW1ENLhYtUftPgzKwNd4sBsiCwCltfzMiXSsdqXOaze6473SusG3b9lpelq88a8HERERERERERERUaJ4NcFo6a6MBNeEiOzKTynWjrMK56L4quzYrBw+xJWNDFdWgmtDRLFWlDLaVrksB+Fmvae1H8YxEMJkiIgo9lzCjSNyT8SdOz6NY/POgFt4wk7jlz58XPsW7lh/Jb6o+wAB6Y9ZfUxpomoQBqMFQ6urE1wbsqs50KQcHs1xHNFAxWA0IiIiIiIishQugAYARmlCaFZU6Dtq/vXc+KWWHThWYM4NLgSedWHzAwZKNPWLxtLy4AdTpb4OhcxUICtNaD+blZXB6f2aUCKP9AEACvxVyvGVYw9VT7h2iXp46LIrJJ74VL1im11DsDJlV/WEE/aH+KQBr1+7EEeN/i9G7rIeR4z5GB9k/jw4vqURmD877PKjod0eY3yF466Tw2+fD34ksdMtASwqVVfq+43q9Rswge82qOd50Yv2UqpCw44iC0ZL/o7lusAuVQieLpyxp9cXSLw6P/jeP18pcdNbsluH85WVwG632UwKGyDsbj/JFIymC0jsDM3L09wTOxiD0Tosfg9c30e/cTkJjfGHhIeOGaYvt6Iiigo5ZDdMEAgGWjQzsIKI4kT3fdhp5qLE1GOgc9Lul9bFrx5E/Z1lMNq2/3XndaW1Ma9O0rNzntYa31x6IiIiIiIiIiIiooRqM9U3pqQa6QmuCRHZlWqkIdc9XDmuUhM6QPGnC0YrSClJcE2IKB6KUtUPVu8pM4pAjUwHwWiFbFuIiMhCuisTp464ANN3fAr7Dz3C1jTNgUa8VvUc7lp/LRY1fROTh5TX+avhk+qbrfI9+sDn/sIqtLrKx3OzZNWiCUZzcixGNFgwGI2IiIiIiIgs6TrchwZRjc5Th0ht1YSGAcBBO8UvGC1UUY7Aij8ZeOZ8gUsPFThnP4Frjxa47USBaVMEdi1QT3fe/gL3nCZQnKMev6oy+H9Vk/oia8G23xPHF6mnX74l+L8voB7fGYyWrwlGq8rRhJetWGB54TdgSoy/3bp3/7LU8b2Gidv/AfHkp3hlUQrOmz0O/8s8DJXuAnyZcShOHv02po78N+alHwD/J29azjtadoL6YiE7w94M11cDe99l4r9LZK/PfWWFfj10BuOFqmiQ2FBjr361Ldi+PKtQjALN9dCKRnvL6UtO1rUugFDl+bkSbR0SRz2s/uBqWoB/zBs84Wh2g9Ea1A/m7RPhto28TPX+W5tE4W6JYhXKtUrRDiXC5nr7ZUPDJUfmAEPS1OWWlCfuvQQcLqoxifYdIhpYwgV2nf2ciR81Ab5kn5NPcNMgDG8isstqXxLbDt9115ZK6xCTG9z6EzvnaS1RBqNVNEh8tkKiqX1wfbZERERERERERESUnLym+sf1NENzowARJYWClJHK4ZUdZQmuCXWq0Hz2hZp1RUT9y3BPIdzCHbZcVhSBGmlGOlwIvwwX3Bjm0XTEICIiCpHnGYGLi6bh5jEPYdeM3W1NU+Urx3Pl9+MvpbdiQ9uqqJavCw8G9Oc0/UmakY5st/qppFbvnfpWc0DdsS+a4ziigYrBaERERERERGRJ1xnTFdJfdfQw5/PNj/xBRI5lpApcfpiB5y808MqvDDx6toE/nWLgkakGVtzlwl/OFsjJCJYdVwh8eoOBly8z8IfjDZy1j7pj7ua64AdTqQmYyt92HWpckXr6ZdtCXPxhgtEKAupgtFJDk7jmbQM+flU9DsA7f/9cO67T0tQJ3V6L2XUQx5wD4fbgL7PVG8SMoafhsB0+w4jSR7BiU/xSYLTbYxyucOw0wn7ZEx43cfITJppDOhQvsXiwxsKNvYctcXC92esHWrd1grbqMF2crR6u226TiZNgtLxM+/P9fBXw3Fzrjt93zOoddDdQ2Q1Gq29Lns9DFwbY2Q7karaHupbkeQ+J0mIRjOakzYmlzXX2y4Z+RwohMFHzMKOlCXyQUbggop6SKVSQiAYWO0GNt7w9eMJe48XusRIAlNYOvmMNIrusTq86g9F0gdftPqC6OfZ1Sma2gtEsjvUt521KTHvNRPHvTRz9iIlh00y8NIjCwYmIiIiIiIiIiCg5tWuC0VKN9ATXhIic0IUIVLDzfZ/RBR8MhMAHIgJcwoWClJKw5TKjCNQQQiDTFb6jx4iUQriEK+LlEBHR4DM6bWdcV/InXDnyNhTa+D4DgDVty/DAphvxYvnDqO6ojGi5VR3qzgZDXblId2VENM9kow+t5rlZsmrRBKPZOQ4jGmwYjEZERERERESWdAE0RsgZ5Wj1gwW0PC4gO4nuWbruaAMVDxloeNzA4ukGjtitK3mpRNMxt6w++P8adW4ZCrZdh9pN8yCk8m3T+7TBaH4AQLFPfQF2zuZctAr1hyjvvgTS7+s9fNMq/GdOjXqBIe4ffuP2v8Xf5kGkBS/01rZILNxkPW2jMRSXPtMct1Ap7faozp+LylVHOJvp+4uBodea+Hxl8L2X1+s/g1k/SnT4u49fUu7sM6vZ1jHcqsN0kSYYraox+UMbnASjCSFwzVH219ctM6zf/6ZahN3WBwq7YR/JFO4UbtvQBeXVtsSnPsms2atfwWu2Am0diW0L2jokahysB3+PNn9CsXo/31CduPfhJCAHANZXx6ceRER2ghpnLwsew1PknJzWVDXFrx5E/Z3VrtR5hGd1bWlVZPe09Vt22p5Ig9FemS/x+JyuBfhN4NKXJFZs4fcFERERERERERER9R1dMFoag9GIkpouzKCKne/7hNdsR51ffbMSg9GIBo6ilFFhy2RFGahhZ3o7AW1EREQ9CSGwe9a+uHWHx3BuwZUY4tJ0euphQdNc/GnD1ZhR9RJaA86esqkPD9Y8tb0fKvAwGK0/8Uuf9lpYtMdxRAMRg9GIiIiIiIjIUs9Qkk6ekAf85GYAman25zliSPBiZjJJcQsMSRNw9UhdGrlqtrJ8WW2ww+iSzeqOo7sVBeczvG61cnxdQ7AHq18TjOZGMBjt0LavlONbfQLf7nKOemIA+P7TXoPMt5/DZ2mT9dOEuOfQNyD++QPEuH0ABMNshv/WRvoCgG+q8/Dt+t7DA6bExhoJnz/yzrZOwrKiNXVfAXcEV06OetjEy9+YqLMI/2lo6x28tdjh9ebOcCGrUIyiHPUHU6l+sERS0a5rzTq56nD7G0Fb79zAXv7z3eDoFG4nVAUA6lvjWw8ndNuGa9u2wWC0Ls0WYQlSJj5g4qcyZ+UnFHV/vcMwdbnS2sjqEwmnwWhLHYZeEhHZFbDRvPhN4J1FbIei4aTdtzr+JxrsrIK+Oi8PFWYDQ9PUZc5+zuaJywBhp+1psRlybJoSm2ok1ldLtHolXv5GPd07P/L7goiIiIiIiIiIiPqOl8FoRP2SLmyrMVDvOKyAolfVoX4QM6APsSOi/qcoNXwwWqZraFTLsDM9AxeJiCgaLuHC5Jyf486xz+D4YVPhESlhp/FLPz6pm4k71l2JT2tnwS9tdAyCVTDawPkuy9eEvFmdI1DfaQnon8ScFeVxHNFAxGA0IiIiIiIisqQN7go5oxRCYFSu/Xnm95PweultR/HmMR5cAAAgAElEQVScJ5XjmrwCNZsqsKJCPe2kbdcUsz//p3J8G1LR/vpT8GkSDTzbLtAe2fIFcgPqxJd3R1+mr/yaxd1eyg//hbXvvI8a93D9NCHurj8R9fnjAQCrKiUyr3HWCfng+7vKm6bE3e+byLnOxI5/MJE7zcS1/zEjCkjThTjFIxhtZK7A3y8RSHE7n/bCFyW+Wmtdpmeo3t+/cvZ51Gy7b8gqFKNI8/CUfhGM5nBdjysSOGPv2C3/4Y8lapoHfsdwu2EfDer7T/tEIMy2wWC0LlbBaEDi24JZDsMWbji2++Vr3bFGaV2kNXLOeTBafOpBRGQ33PTtHwb+8Uw8OWn3a5MoSJYo2VgGo3X+LwQmae41K68HyusHT3tmp+0JF14tpcTjc0wM+62JHf5gYqdbTGRfZ+LjZeryf5gxeD5fIiIiIiIiIiIiSj7tmmC0VMFgNKJkZhUkUMkO+AlX0aF+aqVbeJDnGZHg2hBRvBSmhA9Gy3JF11nDTiBH4QAKkyEior6TZqTjF8PPw507Po2Dhh4NgfCdw1rMJry59UXctf43WNg0D9Lq5jTow8EGUjBagSYYrc5fDa/ZnuDaUDjNAX1Hnswoj+OIBiIGoxEREREREZGWaUptZ0x3jzPK0Xn259tfgtGwehFKGpZrR3905e/g9avHTRopIE0TuSs+005f99R96OhQJ8+5twWjuRHAnu0/Kcs8vnkv+OHCpxmH4/HcqzBjyCkIbDvVl+uWbi8nv/8MSx96CON2XqKtS0++AHD0Iyauf93EuD86C0Xr9PS71ZBvP4u//OUr3P6ORMu2gJ7WDuCJTyXuel9i4UaJB/5r4u73TcxdHb4Trm57dMXpCscvDzCw5UEDH00z8LPwvyM7siTk2rqd995TTUtwGqtQjOIc9fCKRoS9+N/XdOvaKgTvgTNjuyFMeSSybb8/sR2MlkRBH+HagWGZ6o2kohFo9yX3dh9rS9QPN9quqimxn8fizerlDU1DrxDK8UXAkbt1HzYqT71uq5uBxrbEvBenwWgbagbXNkdEiWMVjhvquw3O5rt8i8Qjs03c9JaJ298x8f5PEqbTxm8AcXLI3OIFOiIIfyYa7ETIId6EYv0J3xvfD579y074Zbjg5/d+Aqa9JruFXOtCpomIiIiIiIiIiIj6mq6TbprBYDSiZJbjHoZUkaYcV6kJ6aL4qexQ3yyW7ymCIVwJrg0RxUtx6uiwZewEm1mxE8hRkFIS1TKIiIhC5XiG4YKi3+APYx7BuIw9bU2z1VeB58sfwEObbsa6thXKMh2mF7X+rcpx+QMqGE3/XnTBcNR3mgNN2nEMRiPqzR2+CBEREREREQ1WfosOk+4ev5EHw0rsdVLNHxL+CQ5JYd1SjPKVIc1sQ7viJqvXhp6lnMwQwLhCAFvWI7etQjv7OlcOfPM/BbKO6TXOsy0YDQAmeZfh88wjlPPYY9IqrAoUbX+9X9t3+GLDFKQs3vbUi+YGvHL7i7hgp4XaeugsKgUWlUbe8fjqd3Ox88YZ+P2Yy5Tj735f4p4PZEjYgMRvjxF4+Cx1uJWU+qA+q7CsaOVmChwzAThiVwPT35W478PYdMZeGhIQ9MKXkQSjBf+3yqkoylbvl+0+oKkdGJrE9w7qOmxbresxeUC6B2jz6cs48WMZUFortWFMA4HtYLQEhU7ZEW7b2CVfP93KCmDPGIccJqvXF5h4dX6Ypx/pf0+Ji9Ja9fDf/Vzg4J0EHvzIxJoqYPIuAvefLpDq6b7vleTq533X+xIPnhn/fdVOSEWo6ub41IOIyG57VNkIVDdJDLdxDvaf+SYu+ruEr1t2s8QpewKvX2HA4x64x0Q6TjPh6lqBgujuLSUakKx2pdBgtNN+JvD8XHXp2Uslrjs6tvVKVnbannDBaA9+xBQ0IiIiIiIiIiIi6j/azTbl8FQGoxElNSEE8lOKUepd12tchSaki+JHF4zG8CKigWW4pxBu4YZfap7ujugDNewEqxWkFEe1DCIiIpWStB1x7ag7sazlB8yo+jvKOzaFnWZ9+0o8tOlm7JV1ME4ZcQHyU7r62FmFglmFifU3wzz5cMGNAHofH1R2lGNU2tg+qBXptGiC0dKMDLiFJ8G1IUp+DEYjIiIiIiIiLX9AP87dI7tqdJ79+Y7oJx3F5fqlcMHE+I6V+CHtZ73GvzvkJOV0O48A0jwC8uv/IjdQr51/nSsHPs0FK0/Ixci923/QziM0FA0AvkvfDw8MvwG3bbkf8rA0lHuKcMHOa7XTx9vPx3xgOV726Oz7l9kSFx8ksXtJ79CFnmVDxTMYrZPHLXDPaQL3nAb8/k0TD38cXVDUkpDr6+u26uc1oQhYtqX38JptYTu6kCgAKM7Rj6tsTO5gtEhC8AxDYK/RwLwYbvJv/yBx7dEDNwTEbthHvfr+0z6hq7Nr2/fSzvlAihvoUNzzsaRcYs9RA3d9diqvlzjnufArN+HBaHXq4aPzgKPGCRw1zvrJpGPygMxUoMXbe9yzX0jcfpLEkLT4rl/dd5HHhR5BQkFbE/wZE9HgEXBwKJp/g4mh6od0b9faoQ/GfudHYOYi4Kx97S9zoLA6B1Gpa2EwGpGK1b4UevT284n6cmvVD+4ckOw0PbWt+nEVDRJfOTwvTsR1FSIiIiIiIiIiIiIdryYYLY3BaERJrzClRBmMpgvpovip7ChTDh9IgQ9EBLiEC/mekSjv2KgtYyfYzEpWmGC1oa4cZLiyoloGERGRlQmZe2HcDnvg64ZP8V71K2gIaDoihPiheR5+ap6Pw3KPw/HDpiLLNVR7XuKCG8M8+bGudp8xhAsjUgpRoTgnqOK5WdJpDjQqh4c7BiMarIzwRYiIiIiIiGiw0nWMB4IBIKGcBKPl95frNOuXAQAmeJc5mmxC22LI1mbIx65HpmyBS/NEpnojB36hzix3h0xzRuPbjpb/Qs4lMCHgFSkYbSMULd0TXcBXrL23WF0fqwAnV4KvcDx4poGvbjJw72kCY4ZFNo/KRmBrU/BN6cKCAGjnX9MS/N/qcynKtl5+MtMGo4VZ15dNjm1v7liGrCUj06KdD1Vv0ek+0XRhgJ0d+d0ugXGF6jKrK+NTp2RTcqO9FVuVwHag1StR26IeNyrX3n6b6hGYuq+6bLMX+GJVpLWzT9c26UJwaluAgN0EQiIiB+x+h3dqbLf+Z3XuBwAzFw3OtsxpE24VVEQ0mFntSiLk8M4wBF79lfp4r7QOkE7TCvspO218XYv+s/hmnfNgx9DrKgFT4rsNEl+tkfD5B8dnTkRERERERERERH3HlCa8sl05jsFoRMlPF7qlC+mi+DClicqOcuU4BqMRDTzFqaO14wy4kGZkRDX/zDDBavlsV4iIKAEM4cIhOcdg+tincdKwc5EqwjwhGEAAfnxW9x7uWPdrzK6dic1edZDoiJRCuIT1Q937G/25mfo8gfpOiyYYLdwxGNFgxWA0IiIiIiIi0rLqHO/uFYxmP4yovwWj7de2wNFkJaXzgJnPAgAEgFzNkynqXTnwwaMc55G+7X9nylaMzlaHq6mUekZhYdpeuHP4rWHL5mQAM6+O7GJuRgrw/B5zMXfDERFNr7OxRj1cF4YEhA/LioeDdhK4+XgD6+9z4Y0rIqvAgg2AaUps1gSjvXKZwLBM9b5V2xz83yqsYUgqkJWqHtdvg9HCNDUXHSRw3+kCudH9pr/d6wskzAEcamT3rTWoH8zbJ+xsGztoAgW3Nse+PsnmznftJ+WU1SVu27YKgBzlIFz17lP0jcDS8vi/H932pzu2MSVQpwmEIyKKRiDB4UCvzpfwBwbuMZGO08NAtvlEak6aLN31pdYOoG6QhA/aaXt0ocMAsHiz8/bave2yxuY6id2nmzjgXhOTHzCx060mVlYMvvafiIiIiIiIiIiIEsdrqkPRACCVwWhESU/X+X5rRwUCMpDg2gxedf5q+GSHclxhakmCa0NE8VaYot+vs1xDIER0D5nOcll39ihkMBoRESVQqpGGE4afjeljn8Kh2cdC2IjIaTNb8fbWl/Df2jeU4wdieLA2GM23OcE1oXBaAk3K4eGOwYgGK3dfV4CIiIiIiIiSl9/ingR3j+uITkJNCoZG92NbIsi6rUBtJQDg5Kb3MK3wEdvTDvXXQT79p+2vhwVqUe0e0atcpTsfbZqbt1Klt9vro3b246Xv7Z/GH7jjl2HLjMoFFt1uIMdhgNTJewJP/dJAUTaAwCGoeWO1sxmEUVqr7nBr1TE4XFhWvJ2xj8DH0wwc+6j9QCIAeOsHib1GC20I4a4FAt+uV7/x6ubgcMvPxQAKhgLNW3uPq2iUCEb3JSd9+JV1nYUQuOk4gd8fK1HeADz3P4m73w/fifuWEwTu/UBd7sa3JB46K3k/q2jYDfuoT6IAAl1Ioivke2n4EAGg95urVv9+0O81tUs8+JHE7GUS3663P90Xq4D6VomcjPhv36W1+nElufbnU5QjcOwE4ONlvcctTcBvdrp9psDi4TzVzcDwJP6NasEGiSc/k/D6gTP3EThtLzi6MerL1RL//EaixQucsDtw3v4i6huriCg809lhZ0y8Ol/igoMG1/7tNH+uoS25j7GJ+orVvtRzj7G6vlRaC+RlxqRKSc200fhYBaMtjeAhn50PQLjsnyZWVHQNL6sDzn7OxKLbB9YTUomIiIiIiIiIiMg5KSVqfFXwhzzwMxaaAg3acemuGD0ZkYjipkATzhOAH6taFyPXPTzmy8zxDENalMGJrYFmNPrrlePyPCOQYmieSJskTBlAta8K5rbwufXtK7VlB2LoA9FgV5Q6Wjsu02VxM6NN4eaha/uJiIjiKdudh/MKr8IRuSfh7a3/wNKW7yOe10A8Rta9p6qOzajwloWdfqg7BxmurFhXixSaA43K4bE4jiMaiBiMRkRERERERFq6sCagq8NkJyehJuOLIqtPQm3oSlwZ7S/DKF8pSj2jbE2a3eNmrWJ/OVam7tarXJl7JBqMbOU8cnrMY0R2bDugnrOfwBPnCeRmBrsgb37AwMgb9Sv8uIlAdrrA0eOBSw8RMDqTyNwe5D35DvB47Oq2SROek8zBaAAwZYLAglsNvPiVxFOf20tQmLFQ4iKLcImSXCBfc12zalvAky4kCgBcIhjWs1YRjFapvo6aNHRhH3bXtWEIlOQCP5+IsMFoY4YF9wldMNojsyV+NVlit8Ik2NBizG4wWpMXME3Zte/3IX1oXtffIzS/x3QGCg4kXp/EwfebEYUf+ALAvLXBMKt4K61Tf/YjhgBpHmfb1Z6jBD5e1nt+S8vjv351bVO+JowPAMobgHFJcuzT4g3W0RDB47yv1gAnPN71pv7zncQtJwj8dkowdCRcwNl7P0mc/pS5/Zjx1fnBII57T+v7toJooAv0wVdaMBgt8cvtS3aPlTo1tcenHkT9ndWu1PNwoyg7GHqsOtfdUAPsae/STL9mJ5TRKhhtyWbnXxJuA2hul/hoae9xP5UB67ZKjB3BYzwiIiIiIiIiIqLBakHjl3i96m9otggxi4fUKIOPiCj+8lOKICAgFb8I/bVselyWacDA7ln74cLC6xwHKDb5G/D3LY9gZetPyjoDgFu4sVfWITi/8Gp4jJRYVDmmvqj7ALOqX0abGf5pp9nuvKhD5Igo+RSl6H84z3JF/xTXrLDBaMVRL4OIiChSxamjcXXJH7Gi5UfM2PoSyrwOniy/zUAMRsv3qL+f2802/GnDNWGnFzCwc/p4/F/x7zHUnRPr6lGI5kCTcngsjuOIBiKjrytAREREREREycsf0I9z9zijTPMIFNgIps9MBcbkRVevhFjXvSfoOO8K25MONbtfoCrxbVaWK3cXo0Hzw2G22SMYLcdje/nhPLLPUrzyKwN5mV0dWotyBN69xkBOj3tEJu8CVDxk4IPrXHj1cgOXTTZ6BSOJifvjcP/8mNVvYw0QUCQQWIUSuJLkCsfeYwSeOM+A7xkDlxwSvsNwfSvw6CfqlJ3MVGB4FpCvua7ZGWxmGRhnQLtfJn0wmi78yuG6PmgskB3mvp6PpxnYrQAYkqYv84cZFgl0/ZjdsA8pgcYkCfrQhQGGtgPDNcFoW9W/H/Rrz82VEYWidYokNCESpXXq4aMcBKt2mqS5p2Z5hfr7I5Z0s89IBYZlqsct39L3gXxSStwxy8SQ3wT/ZV5jIvtas1soWqd7P5AYcb2Jfe42MW+tdd3ved/sFaT7l9kSdS19/56JBjqrcNw8TXsUrZWV8ZlvMrMTThSqyRufehD1d1b7Us9gNJchtNeNkuG4KhHsHNLqgtG8PhlRe+0ygM31+vFfrxscnz0RERERERERERH1tql9LV7c8lDCQ9EAMMyHqB9IMVKR5xmR0GWaMPFj87f4d+WTjqd9YctDWNH6ozYUDQD80o/vmr7Am1UvRlPNuFjcvACvVT1nKxQNAAoHYOADEQEjUorggls5LlyomR1Zbut5FKaURL0MIiKiaI3L3BM3j3kYFxZehxz3MEfT6kLE+rNow94kTKxuW4qnN98ToxqRTosmGC0zBsdxRAOR+syHKEJCCA+AQwCMBlAEoBlAOYAfpJQb+rBqREREREQUAZ+DYDQAGJ0XPmxpQhF6BWslI/nTV91ej/euwOysY2xNm93jJrBi/xZluU2eUWgwssPPIzUdxbkCsLgRw67ncT8u+dUflONO3ENg4/0Gvt8INLQBY4cDE4qDnZKtCCEw7UiJL+ZGXT0AQLMXmLsaOGK37sOtwh+SbZNyGQIvXCRw6xGNWPLrCzHKV4YjxsxGk+Ii5ds/qOcxcdu+EgxG673uq5qCQTeWwWgCKBiq3naqGpO7U7PufbkcrmvDELhsssDDH6tn+MhUgV0KgjM9Zz+Bv81Vl5u5CLjrPRPpKcAv9xcoykmyjS5CpoO8t4Y29ApP7Ava0LyQVTJCEyi4tTn29YmFn8okPl0hMWOhxME7C4wdDnj9wNqtwNA04MjdBI4c13ub+7FU4rr/2NuX9ywBfizrPXyZ+isq5kpr1cMjCUabWKxu19p9wLqtwC4Fzudply54zRDAxGLgf6t7j1sSRXBdrFzxssTzmvZNZ1EpMPVZE4vvMJCb2Xv78wckvlU8YMvrB95aKHHZ5IHRThIlK9334eg8YMn04DF9fVtk8z7tKfUBwoYaoNUrkZE6ePZvp3mbzUkSJEuUbKx2JVWLMqEYWFfde/jyBB27RuunMokPFkvkZAC/2ENgZK6zdtNO29PmA9o6JNJTus97ZaX19ROd6mbgznf1C3Zy7khEREREREREREQDy9cNc/ps2Skitc+WTUT2FaSUoMZXlfDlLmr6Bq2BZmS4NE/R7KG6oxKrWhfbnv+CprmYWvAruIQr0irG3NcNnzgqX8DwIqIBySVcKEgpRnnHpl7jMl2aG2gdSBUWT5oGEh6ISUREpGMIAwdmH4m9hxyMT+vexce1b6HdDH/zbLQhYskoyz0UmcYQtJjq0C27NravRo2vCsM8+TGqGfXUHFB3vo1FwC3RQMRgtAFICDEdwB1RzOIfUsqLHS5zBIA7AZwNQPkMbyHEPACPSCnfiqJuRERERESUQH6LTo8exe/8o/OA7zZYz/PQXZK/E70sXwd8+ma3YYe2zcPj+I2t6Yf0uIhY4t+sLLc8dRykUCTMAcg2Qy5ypWXi2AnRB6NdUP8yLnnhaghDvUwAGJImegWS2XHKBQfj7Q+vwBmZf4UZg5tA/rtU4ojdum8r4QLAktGOgVLs0PwhAODUpln4V875tqedODL4pgo01zV9gWBQVbjAON30ldFd6447qQu/0m++WpccLPDYJ7JXm5adDkyb0jXDZ87XB6MBwB2zguP+OFPiw+uMXttof+Qk7KO+FRjj7EE6caENzQvZNkZkqdvM6mbANGVSBXT+Y56Jy/4pt+/LX67pXe+735e4+XiBe0/repP//NrExX+3twK/+L2BWT9K/FjWu/ySzYkJSdxcp15OSZ7zdTG+CBBC3U4s2xLfYDSrYL6JIwX+t7p3gWXlfRtEefMM03EoWqfyeuDFryRuOLb3emqyCP/5fhNwWURLJCK7dMeALgPIShM4PIJj+k4r7zKw2x97L0BKYMFG4LBdI593f+M0GK3JG596EPV3uvM7IHhc19P4IoH3flIcV21J7oBvAHj5m+Bxemf7cccsiQ+vNbD3GPvHvXbbnrpWID2l+7Bojj3/851FMFryf/REREREREREREQUJ2VexROzEiDfUwxDc28dESWXUak7YlnLwoQv10QAW7yl2CljvK3yTtuzNrMFzYFGZLsjePJjnDh9D6NSx8apJkTU10an7awMRotFIKIQAiNTd8Bm74Ze43ZI2wVGEgVGEhERAUCKkYrjhp2JQ7Kn4P2a1/Bl/Ucwob7RNtc9HFnugRlAVZK2I1a2/hT1fBiMFl8tmmC0WATcEg1EvEJMURNCHA9gCYAroQlF2+ZgAG8KIV4WQmQmpHJERERERIOAnPMGzEv2gzk5Nfjv6KEwbz4dcv3yqOdtFYzmVvyeVZIbvpPnGXsnTxiNiqwshTy7900SP2+ejQyzxdY8ss2Gbq9H+3r/6AgADa4c7TxyAvVdL9IzMXyIwLETbC1e63c/NyCG6JcZrZP/9iA6fAdjasMbUc9rsSK8xwwTAJaUKrvW/VmNznLCdy37DNI0kW9xXXPaaxKHP6j/YFyGPhitokE9PFlYhQ85NaFY4O5TRbcO9xOLgQ33db80JoTA4unhL5d5/cD//cOEP9D/e4ZbBev11BD+wTkJoatz6Lah2+4DJlCVRKGAXp/E796QttbD/R9KGJcHtv+zG4p2z2kCk3cRmFSsHr98CxBIQMrB1mb18OIIvpbSUwTGaK5CbmmI73uxDEbTfMZLNgPSKg0kClJK/GW2id2nB5B1TQD73xPAB4vl9nEX/93EA/+NbtnT31VP32gRjNaYJO0F0UBmJyg0UmNHABkp6nEzF/X/4x8nnDbfVqGRRIOZZTCaYtiEInXZ5VuCQcfJqsMvcc0rslsbvbUJuHWmgxMv2G97ahWXqXTH3dFK4o+diIiIiIiIiIiI4qyyo7xPlrv/0MP7ZLlE5NxB2UfDQN+E5FR0lNkuW9mhfsixFV2H9b7gMztQ49tqu3y6kYG9hxwSxxoRUV+anHNcr2EpIhV7DTkoJvM/cOhRyuGHZB8bk/kTERHFwxB3Ds4puAK37fA49sjaX1nm0JyfJ7hWiXNojL6npXR2vxvZ55c+tJvqzhZZDEYjUmIwGkVFCHEEgJkAQiM/JYDvAbwBYDaA6h6T/RLAq0Lw0S1ERERERNGSX70POf18YE1Imn+HF/jqfcjrT4BsqtdPbIM/oB/nVhzRj7aKSt5G17k1GcjWJsgzd1aOy5StOKnpA1vzye5xI8RE7zLHdck2Q+aRlgEAeO83kZ9GTWpfgkn77RTx9HaIzKEQz3+DW84dHvW8vlzTe5hVJ9xYBEDERVXXTTdTWj5FbqDW9qTDvn4N8m93WAaj/fNr657JQggUDFUniVU2xi+oJxZ0QXgiwhC8G48z8OPtBp7+pcBrlxv44Y8GsjN6z2xiscDhu4af3/pq4LOVkdUlmTjp3F4dpw72TumDYLrW5yiL76NN9nfDuPtqLVBjL3PTsYfPElhwq4E/HB9sICcWq3eeNl9we463Gs32MyzCxyfowu/iHXynDUYzgEmaz7iuNX5hlA9+JHHDGxJLy4HWDmDBRuCkv5qYu1riz/+VYb8n7GjxqsPzrMLPGlqT9/uFaKCwExQaKZchMEXzQO0ZC/tm//YHJL5aIzFnuURTe+Lq4DQIqMUbn3oQ9XdWu5LqHG+C5riqtSO5jud7+t8qdXjsR0sBn99+g2K37VEFo9W32l6MI05CtYmIiIiIiIiIiGjgaA40ojmQ2KcvZrqG4Ni8M3DcsLMSulwiilx+SjGuKbkd+R7NUwXjyEnYWSTBaM1JFIy21bcFEuF/tBEQGJU6Fr8ddS/SXRkJqBkR9YUd03fFr4pvQp57BACgOGUMrim5A3meETGZ/1G5v8CJw85BlisbAJDlysZpIy7CwdlTYjJ/IiKieCpMLcGvR96CaaPuxm4Ze8AFNzKMLBybdwZ+nnd6X1cvbvYZeijOzr8c2a7cqOYTgEWHUopKS0Df4SXLpekkQzTIufu6ApQQ5wL4xkF5W91chRAlAGYASAkZ/BWAX0kpl4eUSwVwBYCHAHi2Df4FgLsB3OKgXkREREREFEJKCfnMrfoC1eWQb/wV4tI/RrwMv8Xv527Fw91G5wlYdXfNSgWy0yOuTlzJ0tWQ502yLHNW9o94HeFvuBpqdr8RYrSvFFmBJjQ7SO7PNkNuKEsPpsa4XQJzrjdw9CPOe6Ne4J0J7HaT4+mcEm439jh1CmaMkTj96ch7zTa1A29+L3HmPl2doa064cYiACIeZGXp9r9T4MNxzR/j1exzbE2ba9YDb7+N9Itvxc75Hqypcrbszs+kUHNdtM0HNHuBIWnO5pso2vChKNb1pJECk0aGn8HkXQS+WBW+J/or30ocMyFJNz6bnIR9lNVJAH3/fu0EwQzPAtI8QLuvd7nSWmD/HeNTN6fWbY1PsMsjUwWmTemeGDneIph0aTmwc75+fCyoQhsAYFhmZNuULjRya7yD0Sy2v4kW93YuKQeKcmJbFyklHpuj3oYOfzC2yRVVjb3rrwr96FQXp0AOIuqiDwqNzfxP2F1g1o+9F7KpFnhpnomLD05cMvGWeokpfzGxfEvw9YghwKyrDRwwNv7HJU6/qRMZ2kbUn1hlcquC0cYV6ssv2wLsEH0ee1x8u17/RquagJE27zeLJhitwSK8NhpOgyKJiIiIiIiIiIhoYKjsKNeOu2XMoxjizo75Moe4smGIZH1KJhHpjMvcE9PHPoXWQDN8UnHTVpTerHoB3zd92Wt4RUeZorSaLhhtcs5x+K7xC7SbvX9oaQzq7jUAACAASURBVLbotJ5ouvobcOGusc/CEMEbu1NEKgPRiAaJvYYchL2GHIQO04sUIzWm8xZC4MTh5+CEYWejOdCILNdQiEifbk1ERNRHds2YhF0zJqHD9MIjUgbFd9nhuSfgsJzj0RxogBnmLtg/rrscfsX5m5R8ima8WIVvZzrod0o0mPBK8eBQIaXc4OBftc353gkg9PbteQCmhIaiAYCU0iulfBzA1B7TXy+EGBP52yIiIiIiGuTWLwM2LLcu88lrkFa9T8PwWwT8uxVnlDuG6Zg6Kg9JeRFRShk2FA0Ajr92KrJs/GaYY3Z/SqYBiQkdYdZVD6myo+tFWub2P48cJ3DLCerP8GejgLpHDew6pHve9R7tP+E3U0dCpCYuAevUvQTM51wInP4qtq4sRvOKXFxa/5KjeUx91oTX17X9WnXCNZL1CkdV95tu9mhfbHvS3EAt0NIIOSUbp1S96njRnSFRuvAgAKixFY3eN+IRjGbXniX2FvKPr2W3bbQ/ctK5vbQufvVwwk4QjBACozShA5tqk2edVcbhgaJ7lAC/Prz3NpyZKjBW8z29ZHN8PxOfX2pDtIZlRTbPEUPV+2ncg9Es2qZhWULb5m6sic1nHDAlHptj4uxnTRz7FxNbEvRg7s31vYc1WQSjfbcB+N0bJo57NIAb3zRR3ZQ8+x3RQGEnKDQau1uEyV76ksRB9wUw84fE7NtX/bsrFA0ItvW/fN6M6lzXLl0gpo5V20g0mFntrarWZkiawOg8dfllW5L3uCI9RT/OybG//WC03gXr+zAY7YPFEhe8YOLwBwP4/ZsmSpPo3IuIiIiIiIiIiIgiU6kJHEoz0jEydQyy3bkx/8dQNKL+LcOVFZe2oSRV/SRMXVhYT1JKbYjaqNSxyHKpn0Br1Wk90So073VESiFyPcO3f1YMRSMafGIdihZKCIEh7uyk7ANCRERkV4qROqi+y4Lf3zlhz7NccCmnD8CiQylFxSp8m8FoRGq8WkwREULsAuCikEEdAC6WUmq7fEgpZwL4R8igVAB3xKeGREREREQDi/S2QVaXd+v4LT97K/yEpauBVT9EvFyfxXUsj+La1+4jgbzM3sM76UJq+pr87fHhC514CTIm7YX91fdWbJdmtiHL7J02dXTLZ7brU+Cv7DHT7jcp3H2qgbeuNHDu/l0XZe87XeDrmw1kZwj8cN9QPDS5FFfkfY0H89/BvKsbkXbGZbaXH1M7jEeuWY806cX/1f3d8eQfLe362zIYLVmvT29e1+3lRO8y25PmBbpSqM5a/6TjRXeGRGWn68vogoqSgTbsIwFXs07Y3botCzXhjsQ8CaW5XaKmOfadyp0Eo5XVxnzxEbEbBDNKE6SwoSa29YlGmSJsKhq/miww7yYDaR51ozixWD3dsi3q4bFS26ofZ3df60kXQFbREN/whXChjWOGqceX2QgW3NoksaxcwufXv4dTnjDx29ck3vheYs6K8POMFVX9G9v19fSbwCOzJT5eBjz0scSB95loaGUwBlEs2QkKjYbuO6PTt+uB05828eRn8T0W8geCbUlP66qB+evjumgAzo6VAKDZG596EPV3VjmGuvvNJhSphy8rj74+8aJ6iECnCgd9ZuzmPlYrws51x1zn7CeQ5rFfh56srhECwEvzTJz0VxP//lZi7mrg4Y8lJj9goqyOx4BERERERERERET9mS5wqCClZFB1KCaivleQMlI5vNpXCZ/pCzt9U6ABbWaLclxhykhkaoLRWpIoGE3fJqs/GyIiIiIiIiu6cHpTJqaf1GDUoglGSzMy4BZR3OBHNIAxGI0idR7QLQJ0hpRytY3p/tzj9VQhRFrsqkVERERENLBIbzvMx38HOSUH8rQdIX99GOSaxcGRc2fZm8dlB3VN45Df4jqWqsO9xy1wxt76G57GFSXfzVDy6w+B78OHlonrHwMATCy2fg/5ga1QlTi78Q3bdTqw7dvuA9J7p8actpfAvy8zYD7ngvmcCzcdZyB1WxBOeorA9RfsgKfvPxQ33H06Mg443PayY26H8dt7OR/Q/h0eqrzR0eRvLezqQKsLQwJiFwARK1JKyJcfBJZ83W343u2LbM8jNyQYbZ/2hdipY62jOnSG9Ay1CEZraHM0y4QyNT3BExGCl54iMONKexvV+mrg5W/id9G/okHi8AcDGHqtiaLfmTj/eROt3th1LDcdVH1TbXJ0aNeFBPRsB3Ycrt5YVmxJjvcBAKU1savLKXsCz15gICNVv5NMHKket6g0vp9JrfqeQgDAsAiD0UZkqYf/bzXwweL4vZ9wwWgjc9TjN1uE4FU0SBzzSAAFN5iYNN1E7jQTT33efef0+iQOuDeAD5ZEUGkbDtgRePFi/baj2v8bHXyHrKsGXvo6efY9ooHAblBopIamC+xZEr7cXe9JdFgEOkarsR1o09zD/l4c2/tOTpfQlMTBw0TJStdsjddcf/mpLHmPKazCESsb7dfbbiij6hizXhNKPGYYMOtqwzI83Uq7RX8iKSXu/aB3pTfVAv/6JnnXFxEREREREREREYXHEB4iShaFKeofsCVMbPWFfypkRUeZdlxBSgmyXOqnNDYzGI2IiIiIiAYoo1tcTBcJBqPFi+4cU3dOSkQMRqPIndbj9d/tTCSlXA4gtId/JoBjY1UpIiIiIqKBRj57K/DGX7sGLJsPecm+kJ/NADYstz+fS/aF9Drvoe0PqIe7DGif+Hju/vqe+KfsmVzBaHLzWsgbTw1bTjw+GyIlFQAwKcz9A/n+rcrhk7zLMKkg/FPpAODXdc91H5AWYWpMEhBpGcDIsdtfT6t9AhWrRuHTDcfgzbJz8O36Q7Bl1Wjt9N9v7OpAa9UxOBFhWY58/jbks7f1GlwYqMSBrd/YmkVeSDCaAHB31R2OqmBsu+qT4hZI0zw0IrmD0dTDE7WuD9tVwPuUgUnF4cte+KJESwzDykKd+YyJudui6P0m8Mp8iZtmxDAYzcGsKpLkHi9dEEzPr6XxRepyy8LfB5cQ7T5pK+RqpxHhy4wrBN60Eean256XbwFWVcYvsKCmWT8uL8KvuAL1Q1oBACf91cSG6vi8H23btO3jH5mrbqQ213WfsLFN4olPTdwxy8Qed5qYs6JrXGsHcM0rEsblAdz+jomGVol7PpD4bkMM3gCAL35v4MubDLQ8YeCnO4L/5t1s4OKDDRw0Vj3N7GWKYDSHh5Zvfc9QDKJY0rVHsQwMvum48AdeVU3AUQ+buG2miS9Xx34/b7EIGapr6Ij58npyEiILWIciEQ1munBjoPdxfKcJmuP5hZuAsrrkPK6wOsd2cj5l9zxN9Tno6pCdDkyZIFD1sIELDnR+Ym0VjFbTDKypUo9778fkXFdERERERERERERkT4VXHSRUyBAeIkqw4SkFMDRdYSstQs+6yqhDxTKNIchyDUWmS30zUrO/yX4l40hKyWA0IiIiIiKKKSHU51gByWC0eGnRBKPpzkmJiMFoFAEhRCGAPUMG+QF85WAWn/d4fXy0dSIiIiIiGojk0m+BN55Qj7v9XCDgdza/cyc4roNfcx3LbXE2OXkXdRjNuELgsF0dVyFu5OofIc+x8ZkMKwJ2P2j7y8N2se48OiKgDkYT/1mGY/dICbu4zzZMwTEtn3YfmJYRvp7JbMeJ3V4OD9TgsLavcGrTLOzT/gNGBKpxf+UtyklXVQJeX7ATbX8KRpPv6/PDj235JOz0KaYXGbK127CzmmbgrdKzcXTzHIzp2Igx2dZBe6GfSXa6ukxDW/J2UNaFUCRyXXvcAt/fZuCuU8IvtPj3sb/wv6lGYt7a3sOf+UJia1Ns1p2TYLS61vBlEiFcMFWnCUWagKr65AhSOOwB623mwLHAI1MFlkw3sOpuA788QOCAHYHcjGBY2g7DgkFnvzlK4OubDbhs7ByH7qwv8/qCOAajtaiHp3uA9JTIdupdCqynG3uLCX8g9u8pXNtUkqseX9qVdYn11RI/+5OJa/8jcdd7EtUWwXF3vy+RO83E3e/H7r1M3kXg4J0E0lMEJo0M/usMvD1Es43MXh4McwvV5DAY7cs1EVWXiDR0QaGxPFY6Z38Dz5wffobz1gL3fiBx2IMmHvhvbI+JrILG6j/9CLJOk8QTI05b37b4Z7UR9UtW+5IuGG2yxfWXN5M0cNUqOLbSSTCazaa0rK73sHpNMFrOtktLHrfAMc4vEaLN4hJEk0VbXaqoIxEREREREREREfUPfulDta9COY4hPESUaG7hwXBPoXJchSYwLJRVqJgQAlmaTui6TuuJ1hioQ7upvoGvIKUkwbUhIiIiIqKBwKWJG5IIJLgmg0dLQB2+neUakuCaEPUfDEajSEzq8fonKaWme6PSvB6vJypLERERERENcvKha2I7w62bITetdDSJNhjNpZ/GZQi8eJGBYZldw4ZlAi9ebC+0Jd7kyh9gXnUk5KX7hy+clgHx+ych3J7tg3YrFNjD4h6C/D0mdg8yKxgN8doKiJE7Yfcw94Od0jQLk9t6njIBSEkLX9dkNrbnaWRvxzd/pBzuN4PhaED/CUaTUgLffqwdv7s//H44PFAD1Vs6pfldfFT6C6xdOx5rxz+Ia4/Wv3FXyFUffTBa2Kr0GW34VYLXtcctcOuJBsznXEh168s1tQMnPBaAzx+7Dvpr1DmLCJjAWwvDL2fhRonDHwwg/aoACm8I4Kp/m2jxdp/OSTBafSsQcDJBnOiCYFw9tg2rNveR2Yl9H03tElf8y4RxeWD7vwUb1WVzMwDvUwbm3ezCtCkGUj0CO+cL/Ov/DMy72UD1US9h5bo9sGbZWCxKvRKPHlOF7Ax7O8boYQIHjlWPe/27+H0mtS3qeQ/LinyeExQhrD29+1Pk89fR7QKdbe7oPPX4NVVd+88DH0lsqIl93ey48gjrbeW0vdTjO/zAh0u6v/kWiwAMneb2vm9DiAaKcO1RrFx+mIGXLhHwWJwDhrp9lkRVY+z2dctgNK8L8qV7Y7YsFaeHPq0MRiNSkhE0C7sWCO0x/ds/JOcxRaPFOfaHi+3X2W7J0trew+o1gdY5IdcF8jKdn1i3WwSjWR0XRrLuiYiIiIiIiIiIKDlUd1TChPomDYbwEFFfKExVtz2VHWVhp9WV6Qx61HVCbzbVndYTzSr8rSClOIE1ISIiIiKigUII9U3HARnbhyRTl2ZN+HamJqybiBiMNlhcIYT4RAixWQjRLoRoEkJsEEJ8IYS4Rwgx2eH8ej5Deo3D6deGmR8RERER0aAnm+qBNXFI85j3gaPifk3AvzvM2eQBYwXW3GPgn5cK/PPS4N8Hju375CpZuQnyysOAxYrwsR7E1X+GePkniENO7DXu7P307yV/l9EQry6D+MPfIKa/DPHvxRDFOwIAJo20/gxObPpQPcJlkcbUD4ix4fOwd+1YDY9Upwgs3hzsRasLQwJiHwARlZnPWY6euM+YsLMY5SsNv5zXH0e+RaiQL2T/HarJ1uuXwWh9uK63PmK98P8uBUbdZOLbdTIYkBclq07136xo146rbpJ49gsT+95jYu5qwOsHqpqAZ76QOPXJ7juS07CPZNhm7G4bI3MFJmnu+XpsjsRXaxLTQz9gSoz9g4m/zbW3vJP3FPC4e39fyPZWyDsvhHzwKqBsDVBbAXzwD8grD4M0u9ar9Pshl3wD+dlbkKWrIefOgvzfO5CfzYB852+YmvaNcrlLyoFl5fH5TGo0j1TIy1QPtyMzVWDscOsy7/4Y+/cTLrRxXKH6u97rB9ZXB/9+20awYTy4DODig62PRQ7YESjOUY/7dn33120W4Rg6nyx3Pg0RqemOjeMRInvhQQaW3mnvIKzDD7zvIPwnHKuwnVpXLjDndUi/P2bL68l0eG+H158cQbLU/0i/D/KH/0F+9R5koyLtqp+z2iusmq0z91GPXWTjlLkvNLbp3+nqKtgOjrTbjFQ2AR0h4dxSSn0wWkiYciTH4ZEGo7FJJCIiIiIiIiIi6r8qNCFCAgZGeGw8zYyIKMY6Q8x6sgoNC1emKxhN3Qm9RdNpPdEqNfXPcg3V1p2IiIiIiMiKS6ifmiw1QfkUveaAOnxbF9ZNRAxGGyzOAXA0gGIAqQCyAIwBcBiAWwD8TwjxnRBiis357dzj9SaH9dnY4/UwIUSuw3kQEREREQ1s65fFZbbyyZsdlfdrrmN51Ne9usnOEDj/QAPnH2ggO6PvQ9EAQM54BvCpw7dCiesfhzhnGkTBKOX4c/cT2nC4KeMFxPAiiBMuhDj6LIjUrkSqPUYCRdnq6TI9AZzaNEs90t2/g9EwYb+wRTzwY5x3pXLc4m33c1h1po1HAESk5PPT9SMPPQm73HQHhoXphDzab6OXd0sj9lj+in50SMfk7HR1mWQIudIJFz7UF7LSgmGPVqqagIPuN3Hqk2a3DuqRaGrXT7/06xWQC+b0Gv7ZCon8G0xc+W/1tHNWAI9+0tW4Ow37qNUEXCWSqdk4XIpVc87+6vUlJXDpSyZavfHtpd/QKjHielMbDKZyrqLOct1SyOOGA3Ne7z3Blo2Qt50dLNdUD3nDiZBXHg55+3mQ502CvOUsyFunQt5+LuRD1+CMd86H0DzB57UFcQpGa1YPD9cWhnPSntb740vzJPyB2L6ncG3TbgWA0FRrWTlQ2yJR1QcPkt1xODDjSgP77WD9mRmGwLET1GUe/aT7m48kGO3DJUzGIIoVXXsUr8DgnfMFHplq70Ds//4hUWkz/CecZouwnS3uIqChBlg2PybLUtG9i8xU/TRt4U85ibqRNRWQF+8Lee0xkDefATl1N8hFc/u6WjFllRutO3YCgMm7qEc2tQO+KM+34iHcOfZDH9sMRrN5niYlUF7f9bqtQ38tL/S6QMyD0SzaPauQeyIiIiIiIiIiIkpuuhCe4Z4CeAxPgmtDRAQUppQoh1d6yywfZNphelHrq1LPMzU4z0xNuFizP1mC0dRhlbqwOCIiIiIionAMTdxQQAYSXJPBo1kTvq07JyUiBqNRl30BfCyEuEcIq9vPAQA5PV6rrwxqSCmbAbT3GKyJBiAiIiIiGqQ2RBiMlj8KmHyyZRG5cqHt2fk0YSK6ULCkt9RGh/mTLoU47QrLIjsMF7j1xN6nTiftARy5m346j1vg/tOFMtjpz0dVI8+sU04nXP07GE0UjgHG7xu23ESverv/838lmtulZcfgZAlGk0vnA4216pE5IyDufROu9DScvrd1hUt86ptYejp61pW2yjEYLXbOP9BAbkb4cu/+BKRdZeLGN000tll3fl9UKnHpSyb2uyeAs54JYM7yYPkmiyCQZe5d4P/tSZDLF2wfZpoSF74Yvtf59a9LtPuCy7AKHFSpa3VWPh50OVeG4rvpqiMECjW/D6yuAm6dGd8whV88YaLe4Wd2zISuv6XfD/nui5AX7Q0ELH5cmjsLcvNayNceBRZ+bjn/kf5yHNI2Tznurvek5U2CPUkp8dFSidOeDODMpwN45VtTOb0uUC/aYLTrpwiUhHncwsxF0S2jJ12wQ2fblJEqsMMwdZnlFRLLt8S2Pp2O3A3wP2PAfM6FwLPB/xseN+B/xoD3KQNr73XhF2GC5DpNKNaP+2Jl1/ptjyD4Z+3W5AswIeqvwrVH8XDKz+zPvOh3JozLAzjp8QA2VEe+7zdbBMVu9hTDhADW/hTx/MPRHStlpuinaWUwGjkkH7se2Liia0BLI+Qd50NaHf/1M5bBaBbTWQV4JcO5SU/h6vTG9/aOt52cp5WFXEqqtzjHzwk5j9WdI1mxDEazOHdlm0hERERERERERNR/MYSHiJKNrv3xynY0+DX3bQKo6tgCqXksVuc8szSd0L2yHT6z73/wqOwoVw5nm0xERET/z959x0dR538cf31n0xNKAiQBBAuidAtYaPZ21rOe3tl7OT3b/WznefaznOU8G+odp6fn2bGDDWxYALHQpLcACSQhvezO9/fHgiTZ73d2ZrMp6Of5ePAgmW+Zb7bMzszO9z1CCJEoR4WMy13kbphtpTpSaVxuOyYVQkgw2s/dauAJ4DxgHDAEGASMBS4FJreor4DrgTvi9JvT4vdEplG3bNMlgT5iKKXylVJDg/wDBiRj3UIIIYQQQiSTnvFhYg2790Td+jzsvp+97zee8t1d2DIHN8V83qvz+/YT7/JBI1H/94ivrm46yuHNSx0u3Fdx5hjFU2coXr7QISXkHRZw2miHj//P4cqDFSeNUvz+AMWHVzlcNLplfnQToa3/DpvqgBPj1hlWP8datvttLrUek3BNgUjtTbsu+sLx9gr7HcvmLPKT9/B+nWx74H5w/MWoi+5ATSmFUQcY66XrBnaq/9FY1qdJrHnXTPP6yi1hRZ2BLQgv1Ame61V3+x/EvVM03f/g8vlizfTFmmXrNZEms9xnLNOMu8tl4ueamcvh5Vlw8P0u//rM5XvzjXcBqHWy+Dxzb/T5Y6OBfMCXS2F1ub9xfbgpdyFoMJot4Ko9WV8bhpd59yzF46fZn6+/f6j5ZGHbBDVNmaP5dFGwNsXXrYFF36Eb6tHl69G3nYW+218Aon72Xvj3nb7qnlTxsrXs2Ef8f4n13FeaXz3oMulbeOUbOPUpzc1vmILRzI9xbnbr0nv691B8d5PD0bvY6zz/VXK/lPMT2ji40Fxn/hpYWJzc19sZoxWPnaqYfLmDs2kQmz9rumQoHEeRmhLscR5caK8/4ZMt469tDP63rDJnwAohEmDbHrXlvtL2PRW79w/W5u0fYIfrXYrKAwRvui56+Xz0snmsnjLFWi+sUikO5aOXJhgs7oNtvyM73d7G67hFiJa01vCRYd+sdC18M7Xdx9NWvLYAXrfs8gql7ozBaBuqvMuXb4A1G+P3E2Qva2XZltpeoczdmwSmd81U7NYvwEqAmgb7qKrr7WVV9dEQbyGEEEIIIYQQQgghxNZHQniEEJ2N1/ZnrSXMEaC40XwhXogUeqYWAN6T0G0T19uTPaxym3YeiRBCCCGEEOLnwrHEDbn653NT186mOlJhXJ4dSkrcjhA/SykdPQDRJr4CDgXe0/ZbTn8O/EMpNQp4DhjYpOxapdQXWutJlrYtg9E8Zu9b1QK5Hn0m6mLgpiT1JYQQQgghRIfQNZXw+duJNe6/EyoUgqv/gf7tMHOdqa+hL38QlRL/kDBsmQSe0gmCiYLSX7/vXcFxULe/8FOYiB+HD1ccPjx4qMuYAYoxA5q308Vp9gahrTWJrokDToCHr/GsMrbmc2vZomJ4aaZ9Im0Xj2CCdjP1Fc9idfFff/p5n52gb3d7iNXow3fH2W7klgUHnWwNTPzH2j9wyLbvxCwf0eQaoHzLNTuryjrv5GQ/4UMdJTNN8eX1Dnvd4T9wadxdzet+cZ3Dntsr/jZFU2O4oeQ5/47/3Lza9deMr/0c/ew9qDteZME6/8/nD6s1hw9XCQSjaaLZ+h0nYnttWD6bjtpFcfpoxdPTYxtqDWdPdJn9Z4fs9OT+Xbe86f/1UZAT4ZnKK8k7/YlAIQjNvPFP31WPq3iNywvuxTXc4ef1b6G4QpPf1fvxWFOuOe2p2NHe957mioM03bK2tLcFRPRIwhnB7lmK5851yLnU/HjPXdP6dTRl3TY1ef0N6q14+4fYinPXaAb3Tt7rLPzYljC0ZNpze3vZ699qauo1WemK2gRuhruqLBoAE2R/SwhhFrF8zLT1vtJJoxSzVgT/tNrm/1xf2y393efoW86AdSt4MPcS/lh4j2f9lanbULik7YLRbH9ptsfhm2nfTgirSNhapL+cghp1YDsOpu1Yv7HGOxgtL9te1tmC0bTWrI8TjAawdmPzIHMTWyijSdPg2XKP25l1bxEyd8peim9W+t+eb/TouzrOdq+mAXIyfK9KCCGEEEIIIYQQQgjRCWitrSFDhRLCI4ToINmhLnQJdaMyEnsnmnUNqxmUbb674tp68/asZ1ohIRW9ljrHYxJ6VaSC7qk9EhhxcjS49ZQ2lhjLCtL6tPNohBBCCCGEED8XyhaMRnJvTi+iwrqROtd8IZ7XMakQv3Rb4VR2EY/W+m2t9RSPULSmdWcAewM/tij6q1KGmZGWboKOMcE2QgghhBBC/DJ89hbUe8w29KDGHx39v99ASLPMONy4HmZ95Ks/azDaVpbTpdetQF95hHel4y9B5XfgRVupHsleoa0/11zlbwO7jPOsM672c3arm20tf/1b86FkXnojoQnXo1/6B3q9+U6l7UF/8IK98LBTUZlbZnSHHMWdx5lnfx8wCEZt22Lhob+1dr1/zTSOyPyu2bKQA1cevOW0T/88c9uVqypw77oI/czd6FWL7OPvAJ05GA1gj+0Uq+5O/NTa3ne6/OZxl//NSPwUycyM3aI/fPI6ruvy+DT/fc3Z9FYJGoxW3gnCB2whASGP18b9Jylr+MDiEnj4o+ScqtJa8/pszTUvu3y+OH79I4bD18fPYunXeRww/4mkjMGPwsg69qn5xFr+8qz4j8f4u81PRFU9zFjefFmp5XXTwyPoIoisdMUIy0f4wmKob0zeqUjb66/ptmlwb3OdJSXEDcsYVAi1D8fftqy5t21C0QB6dVHWv6G6Ht76PvpzbWPwvmsaOl+IiRBbK9tneKiNv/n7/f7Kum8Zz8kTXGxfXX27UnPjU6u58NYfuDlyGgf2f4er4oSiASxO2wG+/aRZvx/M05z0WIS0CyPc8KrLkpLEPwdsj7NXwI8Eo4lAwh4fqLXV7TeONub1LvTao8lKg1TLOajSTvbwVNbZz6M1VVwZv06Q47SVTYLRNlr2s1JDkJHafNlF+yq2CzB/x+vxrq73bluZyG3WhBBCCCGEEEIIIYQQHaoyspFa13xisCCtr3G5EEK0hwJLOKMtzBGioWkmhU22Z1lxgtE6UnHDGrTlGzcJqxRCCCGEEEIkKmSJk9FagtHaQnXEfvFgTqhrO45EiK2LBKMJtNalwCk0vyZ9ELC/8qRE5AAAIABJREFUpUnL6XuZCay2ZRsf988WQgghhBDil8EzXMlLtx4w5vCfflVv2L/k1x++5D2GTZPKwxFzeUoCR5M+spvbhF6xAH3CQM866rJ7Ub+/u51GZBHySJvL+nmk/qsDT/QuB54outBa/uM68/L8isXw3/vQD16FPn8ceuXCVowyOO266Po6+HiStY4aNDJm2al7O7x8kcNhQ2GnAthre7juV4o3L3VQqvnUcJWSinrsY3PfwH9/PIabDo+w705w1AiYfLnDQUO29NEv1zzVfHVdFpE3J6In3Ig+dzT6++k+/uL20dmD0QD6dFcsvsPhtL0TG9SLM1u3XZyTPuSnkzkX3buML5cGaFsUbWkLebKpijPhvT1EbK8Nj8+m3GzF46faK7zQioC6ps59WvPrR1zumezd36794D/nKF7LvZ/dbhtHGgkkTLXSeeX/tJa9N9d7/GXVmuWl9vIfipq332A585eXpGA0gOfONT+/Edf++ZEIP9um7XqYtwkbqmGlx+N2yf6KT69xSE9VlD9of70uvM2hoGvbbgy/udG+/imbXh+1CQb/rCqLX0cIEV/ER1BjW8hKV3xxncNJo4Kv6KVZcNnzmnCLD/PXvtHsfmuE278s5Incc7i11w1My97XV5/z0gZFf/j6fQBuedPl4PtdXpoVDSi68x3Njje4fLZIJ3RMamuSnWZvI8FoIpBGjxfMzykYzePtpzw2J0op6z5jWU3nug/XBp9P193vxj8ICxKMtrpsS+XyWnPD7lnEnGfITldMv87h/H0Uu2wD+3ifOvMORouz3esMx5FCCCGEEEIIIYQQQohgvAKGJBhNCNGRCi3bIFv4Gdi3aU1D1kIqRJaTY6xX5TF5vT2ss4w/RAo9UgvaeTRCCCGEEEKInwulLHMwtGVCqWgVr9DtbAlGE8JKgtEEAFrrWcCUFosPs1TvzMFojwDDAv47JknrFkIIIYQQotV0ZRl82XLX3B910R2ojKwtv2d1gYN+Y6788SS0YfKt/uBF3DN2Rx/aA/eaYwmXmdM7Uj0yvGL6XF+Ee+1x6MN6Rft+5xn/jZNAP3q9d4XTr0WdeCnKK1GnPXTJhZ59Ypc7Dow/uv3H0xb2O847AA7Ytf47MnVtoG57hUu2/FKyGv3svYmMLjC9YS3udSegD+uFPqibd+XBexgXH7ub4u0/hJh/a4jp14W4/ViHjFTzrHA1dC/YzRwQkVW1jhvX3sxHV4eY9PsQBwxq3ke/PPOwIiqFtSmF0V+qK9AT/uz9d7Qja/hQJzubtX1Pxb/Pdlh2Z/sPrDyUy5qU3nybPpwnFm0bqO2KTZv3IBPuASrrgtVvC7Ywt1CcfJYjRijOHGOutLC4lYMCHv7I5V+fxX9Al97pMOvGEKdsX4T6582tX3GCTqqwh6R+v8o7rOH71fZAns3lTdlCFHpkJy+9Z2C+PQxoZRKDuPwEo9m2uQCzV5o7+P0BiodOccjb9Jh0zVS8f6VD7pZdO/rnwbxbHAbkt31CZFqK4tzx5vU89emmYLQE8/wkGE2I5LBtj0LtsEtS2E3x/PkO7oQQ7oQQlQ85cQN1Nnv4I03aRS673RJh2gLNizM0xz3qokls2zY/fWcA9F0XUVyh+cvr5gdm/N0ueZe7nPqky8YAYUq2xzktxR4YLsFoIpCwxwumvqb9xtHGPIPR4rRtuj/U1IfzEx5Om1jv89vuqT9CbYP3dihIjmPT4N1yy0umu+Xb/IKuisdOdfjmzyGm/tH7fE2Zx8uxOk7wWWc4jhRCCCGEEEIIIYQQQgRTbAkYyna6kCMTNYUQHahpmFlTtmA0rTXFDUXGspYha7btW7XH5PX2YPvbeqUVElIBLugWQgghhBBCiCZCmI8nXOLf/FME5xW6nR0yB3ULISQYTTT3bovfR1jqbWzxe68gK1FK5RAbjFYepA8brXWx1npOkH/A4mSsWwghhBBCiKT4cgqEE0iZ2GU8HH5GzGK1//Hm+pVlMOODZov09HfQfzkVlsyB2mr4/G0aXplgbG6bAN6SDjeiLz0YPnsLaiphyRz0HeeiP3rFXwcJ0OXr0R+9jP7sLfT0d+DTNz3rq+MvbrOxBKGUgl+dFlsw5ghUbqDDrk5L5ebD0efGrXde6ZOB+s2PlDRf8NbEQO2D0nO/Rj//APrX28Knb0BtnNnPOwyFwaOSsm517xv2wmfvRa9baSzq7xHSsyqlycU9sz9G13Ts3Q03s4Uu2YKPOlr/HoqKv7f/qbYf0ofwdo4t295ufVV0Mn7QYLSqOBPe21plnea9eeYyP6F5Z401v4Aq66C6PuCD0URJpebS/8Zvv10P2LaHQofD6NvPAUNIaVtTN06M/g+8vNIcoLpkvaLG4/H4ocj7b333B4276cVV26CtAVo9kvjdTWqKotCSUbm6PPHntiU/wWjbdLe3X7DOvLyX4bE4YJBi0e0Oz52rePECh/m3Ouxc2H4bwZH97WX3THatARePnar4/Fr7G3JlafKeDyF+yTrTvlJ2uuKDqxzeu8IhO91fm29Xwf5/c/nNhNZdPLE0dfvoD+UlTP7Bu6+NtfDcV5pjH/G/Tq/tflaauUyC0UQgXvuDtZZ02a2Q16e/irPd6pFtXv6vzzSPTg0WdtiWNgS4DdiXS73LgxynNQ2d3WjJme+WyG3OWqhpgLpG88DiBaPZxiWEEEIIIYQQQgghhOi81lpCeArS+kavcxNCiA7SMsxss7Lweurc2C8lysMbqNfmi1xahqxlh7oY61V10mC0AstjIYQQQgghhBB+OMp8zb+rI+08kl+GakswWoaTRYpKbefRCLH1kGA00dSyFr/bZt4vbPH7tgHX07J+qda6zFhTCCGEEEKIX5oDT0I9+QWcciUUeKRRtKAeeNd8wdFeh0KW+Yt6/UXzbGT9evMwKg3ckH65sW2K3xuMfT8dVi2KXffk//jsIBj92Vvokwej//xb9LXHof/v15711SV3ofIK2mQsiVDn/gVOvxbyt4FuPeCIM1E3Pd3Rw0oqdcldcOKl0b/PIs8NdoiYHy6JXykJtNa4t56FvmAc+uFrfLdTD05J2gWBKi0djjjTWq5P2BEdiT0BnZsFqZb3bUlKz+YLllpSp9qZn/ChziYnQ7HyLofDh7XfOuekD2Fu+uCE2q4qAx0wQ8AWhNQeFqzV7HqLPcjEz2ujtyU4C2BNy1sBBPC/r/09kPvspNDr16DPHAmzpia2sp13Rz0yNRq6GEQohHpyOuqQU6DvDgAMrZ9jrKpRzFtr7+rrOEEOReXw6aaP/w0eeR55lpCLRNkCyf79eTsEozU5056VrqwBHja9zLtr5GYrTt7T4fiRiozU9t0ADuljX981L2uWbTCXZabC3jso9t7BXL4qKbfIEELYtkehDvrmL+QoDhysKLnP4ZrD2m979dO+bEMd8xf7+zCf+iPMX+Pvs8G2r+QVjFbb0DlCmsRWIuwRjPbVe+03jjbmddwR73B5+Db2Cpc8p9nhepcP5nX8+25Dtf8x3P+ed0BjkGC0dZVQvymwrNwSQNY9y39/XlZbTtdUxwmELKnq+OdHCCGEEEIIIYQQQggRzLqGVcblBekSwiOE6Fgtw8yaKm4oillmCxWL9tWn2e85oa7Gep03GM3+WAghhBBCCCFEPI4lbsildTc9Fma2Y8scS0i3ECJKgtFEUy0vlbbdO7rlDOkdA66n5ZS4uQHbCyGEEEII8bOllELtvBvOxXeiXlgQDT7Jzfduc99bqJQUc1l6Bow90tzwlcdwL94f99zRuA9eCZ++2az488y9aXDSjU1TfB5N6om3mws+e8tfBwHoqo3ouy6Eap8XIBx2Kupkc/BbR1GOg3PezaiXFqFeX4Vz7eOojCTNXu0kVHomzmX3ot5YjXq/HHbfL6ZObiRYYkrfcOxFH6ZwsNbQ4Ub0abvClOeCNRx3FKp7z/j1AlAHneRZrh+IfV0rpci3nCctCTXPRddP3pTw2JLJtZxH78zBaAB9cxVvXhbCnRAi/JhD9T8cTh/ddoOekz6UOelDrOUnjrSve2VZsAn3AFXF63EvOQB3fHr03wNXoEvXBeskQVe+4LJ0vb3cTxBMofnaNaB1wWizzdcDxzg+8j762O1g+fzgKznqbNSHlThPTkcNH4167BP/bX91Os7UGtTOuwOgnvoS+u/E9o3LyHRrjE2+v+Sc6HN8TH/cyw5Bv/wI2nVpDGsmfRv/hfPCjGidUo9gtKDhYfH0zTUv/3wxhCPJCWPwu23a1p7/adSnW+fbuA3tk9g2NzMt2sgWVGcL1BBCBBPppPtKGamKO49zeOiU9hlIcagXm7fwG0v8f5h/uMDf54JtX0kpyLQEo9XECQgSoplG7xeMrjPvq21tvN5x8bYWx+zqXaOsBs6a6FJd37HhW+ur/Nd94zvv/dMgx2law8Li6M/llpdLd9u3/i3EC7a8/lXzwGrqvfst7ti5QkIIIYQQQgghhBBCiASstYXwpEowmhCiY+Wl9iRVmb+sNYU6rrUEPXYNdScrlNNsmS0YrTpSGXCUyaO19ghG62NcLoQQQgghhBB+OMoSjKYlGK0tVFuC0bItx6JCiCgJRhNNtZypbZtq+kOL30copYLM1B8bpz8hhBBCCCEE0ZAsNXw06sWFsO0gc6VdxqP2OMi7nx2H2wu//xwWzIKXHo4pmpJ9sLVZmjmHLVZFqc+KSTDtVSgr9le393ao659s2/G0glIK5fy8D9mVUqj0TNg+NtCpe8BgtP2rp8UurPF3IYquLEevWIBeNg9dvArdUI9e8SN6ffM7B+qrjkwoyEgdfnrgNnHttp93+WsT0AtmxSy2BaOtS2kRvjjjQ/Sz9yY2tiSyTQTv6LCPIBxHkZmm+NeZikmXOAzpHV2+U4G9ze/2Ulx/uGKXbWDvfo2cUPEy/RtXWOvPytiVH9MGGsuOGeHy/PnKGj61dL22hqrYVM78Cr77bMuClx9BX3E4uiHOTPhW2lijeSfOGSQ/r42cDEWOOfOTNRsTD1JYVRq/7c71Czjk38cm1L+67X+oPz6CSt1yUZ/KzEY98G78xiPGoq6b0Ly/7K6oJ6YT2u/XDK5fYGw2J31w9IfSdfDNNPQDV6DvPJ/5a+2BC009MlVT36hZ4bErkJf0YDT7i2D6kuSsw++2aXBv/xurFAfGBr31RDvIy1YM9M7nNcpMjf5vez5WlXVsaMlmFbWaxcWahnDnGI8QQdm2R6FOsrN06l6Krhltv556J4MqJ3qx+uoi/xejL9/gr5722O5nWYLRqiUYTQQRDnuXz/ywfcbRgVSczdaBllNiTa0qgze/69jP9A0BgtEAvvDYPw0aYD2nKNpgo2U/vVuWv8+Gk0Z515v0rcY1DK4qTihdccfNFRJCCCGEEEIIIYQQQiSgwa2ntNF8HV5h+jbtPBohhGjOUSHyLYFgplBHe6hYbNBjdsh8kWWVZfJ6e9gYLqVe1xnLCtNkmyyEEEIIIYRInEPIuNxFgtHagu3YMsdyLCqEiPp5z7IWQe3V4vciUyWt9RrguyaLUoBxAdazX4vf3wnQVgghhBBCiF8clZ6B+ssz0DWvecHeh6LumRS/g4L+Ca23NJRnLdtjO5+T7V37iTD3+hPR9bVBh2Wk62rQf73Ad311+wuoeDNvRbtQubGJK67ljhM2e9Z9HbuwxvtCFO266Kf/ij68AP27EejTdkUfPwB9YFf074ajj90e97az0TVVuGfvCbOmBhoTKamo82+FcUcFa+eDCoVQj3/qWUefOxr96RvNluVbbiBRHOoV237i7Ul7fybKGj60FZ7NUkpx1C6KH24O4U4IMf/WEP85R9Elo2kd+MOBiolnKW77tcM3fw7x2alLeH71aSxZNIh/Fp1n7Pu7jBHUOZnGsqsHL0IpxYDYpxiAOUXBJ9xXOYYkqyU/wKQJscuT6P158euEfL42enczL1+z0f94WlpZ5l2e6dbwz6LzSSVO8EVLOwxFPTMbte+vjZ9bauT+qCsfhC651i7UDU+Z22bloG5+lqFqqbHdnPShsQvffYblD9/ne/iZl7gc/Q/zvkDXDEgJJfezeOwAe9m+97g0JiEAy28w2pAAN2QdMwB65HTO/ZKpfwy+0c3cFBRke6+VdIJgjLvfdel3jcvAP7n0vMLllVkSjia2PrZw006Si0a3LMUbl7Z+x+2simeomp/L/EXDrHVKQtH7/iwv9f/H1zX6q2fb7iuFNWy1ynxNuhBm4ThJesuCB3R3RraQQYB479yUkGLy5fG3J09+0sHBaNXB6q8ut4/X6/Eymbsm+v/GWnPDbuZDxhi79Vc8c479GWkIw4zlscur4+RkSzCaEEIIIYQQQgghhBBbl5LGNWjM5xtNQUJCCNHebNuidQ2rYpatNSyL9hEbKpYTMl9k2ZHBaLbxg2yThRBCCCGEEK3jWObvuTrSziP5ZaiOmC+ky7YciwoholI6egCic1BKZQDHtVg81aPJq8CIJr+fBUzxsZ5BNA9gq/bTTgghhBBCiF86teMIeLMIipZAfR30KER16+GvcX5idwSrdyyzvIGzx/qccK497hDwyevoh69BXfn3gCNrsYoF36DP3dt/g4NPRg3cpVXrFEmUG5vYNKLue9/Nby++0TyJuqoCCjwaTn8b/cRN3p1PfhY9+VnfY1GX3QuDRkFKajTMKN3nzOMEqCF7oI85FyY9aa2jrzsBXliA6r0dAPldFBguWixJMaRm1dXA0rkwaGSSRhycn/AhXVYM7z2PXr0Ytct42O841KbkNF1dAW9NRK9ciBq6Nxx4Iio1rR1G7s9v93I4fnfN3DVQH4ZBhdA9q8WrefGW98Lomi8CryPvh8lw4GCG9lV8tSz2AZ2zWpOXHSw9pcox34lEv/gP1ImXBh6jXyc+Hv+OM36DYHp3g4WGGxsXlQcc1CYfzdfMW2MvT3PreW716exlCnFs6cCTUNc8Bit+hOwu0HdA3CBPdeyFcOjvYPJz6Psua1548MmoPtvb2zoOQ7bNgHWxZXPTBxvbFP2wEHrH/Uvi6tUGN7U5ehfzdm6zf3ykueLg1iUGWQNyPnoRvWQJ7H88qv9ODOvjPZamdujVSVKMDAq6RgMbz/yX/3SOzNTo/7bnuKQqCQMLIBzR/Hu65qWZmslzYsur6uGEx1wW3e4Efi5cV/PabPh4oaZvd7hwX0WXjM77fIqfF9v2yG9QaHsYP1Ax/1aHQTf6v3Pc3euuZfThI3EO+g07F0JuysmwZBgFWQVwu7lNcagXWW4t34YG+V7PylJ/2zWvfVJrMFqcgCAhmmn0DkbTy+bFDQ7bGgQN+mrp4CGK8QPhk4X2Op8ugopaTdfMjnnENgTcx1nvUT9ogPXcomiDcku+efcs/339bi+HjbUuv3/OPIi5azR7bt/8MY633SuplBBaIYQQQgghhBBCCCG2JusaVhuXh0ihZ6rXBVlCCNE+Cg2hZgBr62O3X7ZtWqEhVCw7ZL7YpSOD0Wzj7xLqRlYop51HI4QQQgghhPg5UViC0fB/3a/wr8oSjJZjORYVQkR1oukRooNdAzQ9oxcB3vKo/+ymOpsdp5Qa6HM9Tb2gta7zN0QhhBBCCCF+2ZRSqL4DUDsM9R+KBgkHozWQaly+53YwqLfPSaZunBNhk58LNqgW9OTnAoWiqQtvR13/VKvWKZKse2wo1/D6H3w3v2rDA+aC6o3WNrqhHv3q477X4ctJl6FOvBQ1fDRq8Kg2DUXbTF31j7h19Ek7o8NhwB5QU5RiTjjSD1+b8NiSwRpCgUbX16LXrURfuA/6oT/CK4+hb/od+s7z0Fqjy0rQF4yLlr02AX372eg///anx6KzSE9V7FrYwF6FVXSjCl1TueXf6sXom0//qe6OjYvpFTakeXnIm/4/tNYMzS41ls9bG3zCfaVjuZhqzTJ0hXk9rXX1i/6+VPEbBNO7m/kzLJFgtAfedznwPvv4tmtYxsyle3NU1dvxO0vLQF10ByozG7XzbqhtdowbiraZyuqCOvYC1IOT4aDfwMj9o33d8M+4bYeOH25cviK1PxWGILxVKcm50+iIxHZPPGWmKY7f3V7+0Ica3cpUDuu26asp6Cf/gj5vDHrWVMbuCCk+X5P981o1pDZ3+miHSZf4/yohc1MGZU/L5qKkklY/D365rubg+13Oe9ocitbU/2YEH9Np/9Sc8JjL3z/QXPOyZrdbXNZVbOknEnQjK0QAtkMtv0Gh7WWnAsXc039gbM1nzZb3aSxieN33P/37dcUk3tZXctXloxl7wcmMHqDIy1ao9AzU4FF07b8NaZbbPZWk9GJ61t5oy53rTFaW+atn21w5StElw1xWKd96iSDiBKOxbF77jKONeX0i+tzl5aDB3hXrwzBpdsd99m6oCrbuEvM1TkACwWibgprLa8zl3QOeorh4P/v2dEVp7D5OvGC04o6bKySEEEIIIYQQQgghhEjA2vpVxuU90woJKcsXNkII0Y4KDKFmAMWNRbh6y3THOreW8vAGcx/psRcv5YS6GutWRyrb7VqXlmzBaLbHQAghhBBCCCH8CqmQcbmrJRitLdhCt7Mtx6JCiCgJRvuZUUqdppQKdAsWpdR5wE0tFk/UWi+3tdFaLwT+3WRRGjBRKWWZBgJKqWOAM5ssagBuDjJWIYQQQgghRAJ69oHM7MDNGlSacfku/QLMtI93IqwmsYsF9FsTcY/dHn3bWf4a9OqLeupL1O+uRqXIxVmdSm5+zCIHzVUb7ovbdEzN56Q0y+zeQl9yAHpx84A1vWAW7vlj0Qd3hy+nJDZekwNPQl1yV/L680kphXrOR4jct58AsE2uuXhB+s7mgtkfoxvizG5uQ7awD/XQVeiDuqNP2BGKljYvfPc/8ONseG0CLF/QvOzTN2D2tLYZbAL0nK9wz9kbfXB39KE9Y/+dPKRZfQWMrv0y0DpyV38LH7zAgOkTjOUlGyPW0B5b0EeVLRgNYLH/UEO/GsKa+97z9znhNwimnyWEav7aYJ9HxRWa61/1bvP5sn0Z3LDAsw4ASqGu/DuqoF+gMcR0s/t+ODc9jfPAu6jfXoUKmb+oamr4yG2tZXPTBsUsK0rt06oxbjZ6QNsk9xw8xN7vsg3w9PRWBqNZtk2hzRdV1lSiJ95BXrZi35389dnZg9EAjtpFUfaAw5gB3vUy3Fp2+F0P3PHp9Lx6H2OdxghsrG2DQW6yslTzm8ddnPMjpFzoMu1Hf+1mLQ/22nj7e81/v2reZsn6aADfd6s0Y/4aIfNilyF/jvDqNxKQJpLPFprjNyi0rWmt0c/fjzs+nZ2u25Npyw8mPC/rp38rFu3IN0v3+unfy2fXc9gTD6L2P87Yn1KKXrbAxVAv1ocChIfjP6TH9jgrBTnp5s+c6o7bhRZbo3CcYLTl89HxQue3Al6nfvwGow3tE7/iCwkEnSbL+qpg9Us86gd9yheuix47WYPRsoL1B3DMLublf3ldk3mxy263RPhgXvTxjrfdq5TtohBCCCGEEEIIIYQQWxVbCE+hhPAIIToJWyhYWDdS2ljy0+/Flu0ZQEFqbB+2YLRG3UCD7pgvPNY2mMMqJRhNCCGEEEII0VqOJW7ItczVE61THTHfTdV2LCqEiJLZ4D8/5wCPK6VeBF4Apmqtq00VlVKjgOuBY1sUrQb+5GNdN21qu3lq9RjgfaXUuVrr+U3Wkw6cD/ytRfu/eYWvCSGEEEIIIZJDhULoPQ+Gaa8FalfvpBuXp6cG6MTPTM5wI6SaQ9hM9NRX0X+9wF/lgbuizv4T7LoPKqeb73WIdpQXG4wGcETlO/ytx5WeTX9f+qhnuT5zJLxZhOrWA11Wgj53dMLDNDr9WtTYI2HwKJTfmdxJpvoNhD/ch37Q47H67jMYuf+mSeSxk8TXphSyPtSDnhHDnRF//AaG7Z28AXtwXc30JTBjuUZr+KHIXM8WhreZfvcZeMX82tAzp6JGHdjaobaKXrMM3vsf+ok/B247pmY6r3c5ylfdbpFyUoigbz6dvMy9YbtrYurUuyGqasKYThF2y4TKuth+Kz2D0b6H3cxBSIn6zxf+gw38BsEMseR6zVsTfR06PhPWXpqlqWu0l+9R+zX5kRJ7hU3U2X+GX52KKrQHlLWl/nmQkw5Vhmv35mQMZe+6r5stK0rpnZT1jmmjYLST91Bc/Ky2BtmcNVFzwkhNtiXMJp6IpV+HJvs830xD19UwsCCDD+bHfw33z+uYz5CgumUppl7t8MlCWLBOc/MbmnUtgoV+U/ESOZtOR+dHiq19lVTGD+ioqdd8sgiKyjUHDFJs2yP+4xRxNSdPcJm+JG7VGLNXBqv/78/Nz+3T0zUPfah/2obOXwvHP+oy7Y8O4wduHc+1iIZ6RdxoKFbExf6zjh7yRLRHnYT60XHbzi0yvwY7aLc01osPoR++1ldVdceLqPFHx62X3wVWl8cuL0npSZqOEy7VQnFl9HmOtx9vC3NyFORYgmQr6yQMUQTQGOe1W1sNxSuhg/YVk8XrXeF3szXMx9yOKXOhrFqTm93+G8Ogwa8bPILRbI/Xdj2iYb8thV34cZ19DN0ygz8e2+SZzyFsXt+3q+CIh1y+ut4xHks0JYGRQgghhBBCCCGEEEJsXWzBaAVp27TzSIQQwiw/zX5jx7UNq+iZVrjpZ/P2LFWlkZfaM2Z5Top9MnpVpIJ0x/IlcRsqbjBfSFko22QhhBBCCCFEKzkqZFzu6q3/Zq6dUXXEfFfnnFCXdh6JEFsXCUb7ecoETt/0z1VKLQSWARuBCNAD2AUoMLQtBQ7TWq+NtxKt9Sql1HHAZGBzisFYYK5SaiawBOgG7A70atH8TeDGYH+WEEIIIYQQIlHqV6ehAwajNShzWFma+ZyXmZ8TYY31voPR9Ia16BtP9r169dQXHRZYJXwq3A5yukNV84SDHHPG90+eKjqfkypfjt//5GfRJ16KPjrJF4GMPxrnvJsxewduAAAgAElEQVST22eijr8YKkrhX7cZi3V9LQoYZr8WiDnpg9m35tPYguXz2yUYrSGsOfVJl5dmxa/brzFOcs3UV+2hjP+9Dy64NfgAk0R/9DL6trOhwZA45sPIOh8P0CY9IqU//ZwXKbPWKy3agOkUUY45G5NaJxONObxAz/0KxSW+xxjPbW+5/HmS/2ARn3lmDOltnuBf0wDLS2H72GvejP73tffYzij/T9w+1N/fQyU5TC4opRRD+8CXS2PL5qQNjllWHDIHWga1e/+kdBOja6Zi3i0OO99o3wd55gvNhfsmtn9g27w0C0YDKCumX56/P7J394SG0iFSQor9B8H+gxTnjHW586wHeSrlWDLcOo6oeps7i7ec8u0VXm/tp6QKBprOTm+ydqPmVw+6fLvpprchR/P02YpT9vROQHznBxIKRYNo0IhfVXWaF2eatwGrLJvcfe9xqXnYISPV32tPxwvGarNArs11dMJtE1l/bFsf60/W42FoawvD2hr4DQptS3rFj+iH/uiv8pjDfYWiAfSyfO9fEupJN9d8sYBNfTgaCtolznXrtqBNpez7S/ECgoRoJuyRtLvZsnlbfzCax3bV72mbgfkwvC98b56/AkBjBF79RnP2uPY/FxS27Cf27gZrNsYuL66wPyi2bc/OhdF9DdO6Zq/U1FpeTvECaU365cav0xCGZ7/UEowmhBBCCCGEEEIIIcTPiNbaGoxWmObjDhZCCNEOMpxMclN6Uma4NmVdw2qGMWrTz6uM7fPT+hgDALI9JqNXRyrpkZqc66b8qnfrKA2bb8yZL9tkIYQQQgghRCs5mC86dom080h+/sK6kTrXfOdTr2NRIYQEo/0SOMDOm/7F8wFwptbafNbPQGs9VSl1LDCRLeFnChi16Z/Jf4HztNbyiSiEEEIIIUR7GXNE4Cb1tmC0IEeStvSQphob4lbRa5ejn7oV3n3G33oLt0U9/omEom0FVCiEHn80vPN0s+U7NCwlpMNEVOwLrujUz8m/IX7gEIBe+B3qIx8BagGpS+9Jep+JUkqhzr4R1xKMRiR6+F3YLToZurwmtsqK1NjwnggOf/8qj3cWRNv/fn+HX+9mfk+9P1fzt/dcqurgsGGKKw5SZKVH606eo3l0qsucouhk+IEF0b6OGLGlr/99rX2FogEMr/vBu0KpR9Z7r/a5GEg3NsCkCegHr9qy0BAAGNSw+rm+6+Y1CUbLjdjXu77SvJ22BX1EVAqNpJKGYcb9e8+j/+9RVEYCs+5beHGGDhSKBv6DYAb3tpfNKfIXjLaqTPPJQnv5uC4rOWfev+wVDjwJddPTneZzakgfxZdLYx/vObudCZOvabZsXUrrL/AbMwDf4VCJGFigmHiW4sx/mV9DL83UXLiv//5qGzSPf6x5cYZmrSV3x2kZBlu+nn65/oLReuX4H0tnoBd9h775dELL5vEn4E9ca6yXravJcGupczJjykoqvddxy5v6p1A0iIZVnTVRc+QITZcM+2snXmChl3Lz94xGb36X2HqyLnEp7OovzEuIRPkNCm0resUC9O9G+Ks8YDjq9hd9992riznctCSlFymNYd/9bFZckXgwmqPsbSsTy8AVv1R+gtHWrmj7cbQxz2A0n30opbjreIcTH3c9g7bOfVpz9rhAw0sK2+d33+7mYLQfi+192U6npadEj6nnrYkt+2qZvb942zqTQYXmbW5L90yOX6c6/qk/IYQQQgghhBBCCCFEJ1Ee3kC9Nn/ZUSAhPEKITqQgra8xGG1tkzA0W9CjbXuW5WSjcNAtb5AIVEWC3awrGYobiqxlElYphBBCCCGEaC1TYDSA23JuhGi16oh9AkVOqGs7jkSIrU8nuG+8SLIHgeeA5T7rVwOvAgdprQ8KEoq2mdb6bWAY8BhQ5lH1C+AErfVvtdbVQdcjhBBCCCGESJxSCvWm/QtykwZLMFp6kGA0r5mvm8UJRtNlxejzx/kPRTvkt6h/fY3KK/BXX3Q4NWJMzLLu7kYOrXovZvkxu0BBxHwHPKNpr6Bff7I1w4uh3ixC9d4uqX0mxZjDzcs3nZBWSrFdD3OVd7IP5bUuRzM1azylTi4AlxY+wB/XHMGH8+HD+XDcoy5nT3SZNFszeY5mZammrFpzw6suhzzgMnkOfLYYbpykOWti9L3/5neaIx9yef1bWFwCS9bD5Dlw1D9cXvtmy/bhpZn+AmZyIpX0D6/0ruQVyNij0Nd6Wks/el3zUDRodSgaQK/IevJT4qQJbZIX2XKKJte1n67ZEMk2LrcFowHUGkKONtMXtD6BoLhC85sJwb9IaRkEo8ON6CVz0PNmoL+fjp7xAbqilC4Ziv4Z5sdxblH0tbihSvPZIs20BZoNVbGvzxdm2F+zVx+ieK//I6RiDmhRtzzXqULRAIb1MS+fU94F9a8ZP/2ugeKUXsa6J230H2xz+UFtf1r6hN3tj+/UBdHXmV9/+J/myhc005fY6zgtL4gsK6ZfbvznWCnosRUFo+mVC9Fn7QHL5sWtq4hut0xKKr0f/8emxZY3hGHKHHub2gbdumA0Q3Cojdc2IJ61FVBcCRuqo+usqIPqeqhrjP6NEoomWivVfI1C0unqCvTiH9AbN2xZtmGt/1C07K6op75Epfg/wOxluSFaSagX1U7wjWmxj90q2yGto+z7S1UegU1CxPATFl8c+OvbTsfrkzPIbvFhwxTf3+Rwx7Hejf42pf0/UG2f4cP6msdaVA5l1eZHxiuUcYgl6Hn2CvujnJlqLbI6dGjwNjbV9aD9nCMUQgghhBBCCCGEEEJ0OFuIEEgwmhCicylM28a4vOl2bG29eZtma+uoENkh83fP1R0QjGbbJqeoFHqktv7mlkIIIYQQQohfNscSN+QSaeeR/Px5hW1nSzCaEJ6CTGcXWwGt9atEg85QSnUHhgL9gAIgi2gYXjnRALN5wHda61Z/Mmmti4GLlFJ/AMYC2wKFRIPXVgPfaK2XtnY9QgghhBBCiMSpbj3goffRd18EKxdCahocfga88ww0xN7l0RaMlhbkSNIroGizxjizxt+cCGXF8fvJzEb94T7UEWf6GZnoTLY3z7adWHQuJw+bzIeNwwA4aDBMON2BqQECptIy4JtpyRgl7DgC9Zdnou+lzsixpGC4Ww77++XCbEOu2AvdTuSFbif+9PslpY/yz+5nxNSb+Llm4ufxJzO/OFNz2SLN/e+51snh17/qcsyuDkop5q6J2yUAu9XNplVRUg1tn1KhVy+GF//RNp0fcALDcrL4cGH8qj0iW0JK0nUDWW41NU5sCFql5QR6Toa97xoni26u5aT8kjnooqWoPtvHH6SB1prCqxMLMWgajKbnfIm+7SxYtTh2HSPGMqTsalbkHBpTNue71dwf6stVLzZ/nd91vOLqQ9RPYWa28KVhfeDuExzc20vNgzz4FNT+x/v8i9rP0D4KU1zF2gpY0nUY24/cH2Z+RJmTS6Nl/+CK0r+zY9dqHsw4k2rLWy0tBW44XHHcbkkcvEVWuuKpMxTn/Dv273I1vPKN5sJ9429Rvl2pefKT+Nu92GC0EkbuHn+cPXMg1DLVrxPTj98YqH6v8HpWpvaLWV5SZW/j2pJAiH6+HD/S/Hi98wOEW5GBUuYzGK0hrHnXI6BNiI62V2IfwYHoN/6JfuS6aPBrSiqccxPseTD6nL38dXDACaj/exQVCpbiZg1GS+lFQXidsey0vRUvzNDUG/JKWxOMphR0sewvVcYeXgthF44fjMa6OOHQWwGvTKygecHb9VRc+yvFQYM1e95h/vB/6EPNVYcE67e1bMe+I8zzagCYUwTjBsYutz1cjoKBBeZ99x/Nm0EgsWC09FTFuB3h00XB27bk6mg4mtdxphBCCCGEEEIIIYQQonOwhfB0DXUnyxIWJIQQHcEW1rh203bM1RGKG803lC5Is9xFkuiEdNOE9aqIvxuaJpNtm9wrtQ+Oaqe7pgkhhBBCCCF+thxlCUbTcqfvZPM6prQFdAshoiQY7WdMa10OfNbO62wAPmrPdQohhBBCCCH8U7uOh6e/gfISyMhG5XRDX/UQ+ozdYencZnUbVLqxj/QgR5J+ToQ1ek8C1t99GrcLddm9cOyFqJQEZnqKjrf9YOPiPLeMKfPHU/zKRtJSIC87OltaV5b573vjhvh1AJRC/ec76NkHMrNh7XKorojO3nYj0L0n5Pf7KRSpU7IFS0SaBKPlmSdQt/Rw3kWtHs74u73f//PXwverYWC+Zsl6f30eXfVm6wZVFeC1kyD93/sTazjuSNSZNxgKFGRmQbeeqG49GPK8y4cL4z+HeZGymN9NwWg22Wn210qNyvRu/PEkOPly3+tq6tkv4/9tNqFN38nouhr0zafDmmXmit99xuD8I3jXEIz2zKI+PLModgzXvKzZewfF+IGwpETztaXr3+yxaRtRaQlG69Ld82/oKMM8bup8zMMu3x9wInrmR6xLsd9ptCC8jlvmX8zV75xJo3bIy4Z1FbChCgb0gtIayM2C7PT2246eOUZx5zuaRYZ81Zdmai7cN34fT37q7zXptHy/lJeQk6H485GKW96099FrK/oOS1dXwLRXA7XpFSkxLi+usD8mpdX2/rLMuXxANHDTy+3HKs4YrXhvruasibHrL6+JhjPG+6xfWQp1jZ5VhOgww/vCUSPadjur534dDdveLNyIfvxP8PiffLVXD7yLGrl/QuvOtwWjhXpSbdnPycmItltp2A0sqdQQJ3bXK5wox3zITFXbZ/GKn5M450QAKF7V9uNoY157VIlutUZuC327w2pDdvqK0uh7vFeX9tv3tGW79s9TdM3QVBhCE5es14wbGDtGW8iao6B/nrnMK+wx02MfysuRIxSfGo6PEnHDa5oHT+7E51SEEEIIIYQQQgghhBAArG0wn5O2BRAJIURHKUwz352mKrKRqkgFdZEawtp8gUeBpS1ATqgLpvvRmMLS2potGM0r2E0IIYQQQggh/HIwz0NzW940XrRateWYMsPJIkXJfFghvEgwmhBCCCGEEEL8wqiU1Gj40+bflYInpqMP6tasXoPlpEpakJuMNQlksgrHSZZYMse7fPAo1ImX+h+T6HRUVhf7JOmGegrWfoPaefefFulVi5I/iEN+i+q/05bfe2+X/HW0Ncfy5nS3vA9tE6g7ygszNCeOVGgf86yz3SpO2fhC61ZY0bbBaHrZPJj0RLBG2+6MOvUaOPS3voL3hvm8pikv0jyYKzdSxqpU+wVdLWVn2MtqnCzPtvqHLxION/j7B4lPui+rAR2JwPv/s4eibTK0fl7g/id8rBk/UPH+PPsYtwSjGdIZALp2sjfhJr27QfesaDBUS3PXQMXo4+nS7UbWNdqD0fI3BWB1ffACnBueBKBP9+g/gCxLeExbUkpx0ijFHW/HPmdTF0TDufK7er9aX5/tMxitRRis3rAGBfzlaIcvlkSYMtfczhby0xnpM0cFbtMrbA5GK/l6JvxmT2PZizPtj3mG5Tu/l2dqfjRdlbrJO39wOHRo9Lke3BtM8Syujm5H8uJkSJZUeZcL4Zejov9CTvRf3J8VOJv+b1knOx322UnxhwMU3bLaLnRGN9SjLxiXWOM+26PueAk1YFjC6++VYw5uLQn1pNIxJ01mp0F+V3MwmleI0Gaux7UdXTLM46k0hB8JYRX2EYy2+Ht0uHGrDoP3OuZLNH9cKcVv9lDc956587++q/nbie0XxGULMws5sH1P+NYwl3ClJU/Z3peiv8/A86YyE3zp9Evi4ct/v9I8eHLy+hNCCCGEEEIIIYQQQrQNewiPBKMJITqXgnT7tXDrGoqojdgv8Mj3CBbLCXU1Lu9cwWj+rwMUQgghhBBCCBtHOcblrvYxH1QEUhUxX7ScE9qKJpQI0UEkGE0IIYQQQgghBCo9A33gSfDBltChBpVmrJseZDKl9nGHgFrzxQdaa3jub1BsvgvlZurSewMMSHRW6p5J6D8eYyzT91+Oeuzj6M9awydvJHflO+2GuvD25PbZESwnpJu+D5M5qTkZ7nhbs3xD/HqZbg2Pr7mEwohH6o0f1RXocBiVktxTYrq+Dv34DfDiP/w3SklFXX4/6pjzAq1rWF9/k+BbBqP1ipjDiWxyPEKsalWmd+PqjYHWtdmSEs2M5Qk1BWDRlE/Qtx7iq+7g+vmB+588J/q4f2++3oxd+8GO+ZuCFyrMCQeqS/fA620PSin23A5reNcbi7vyu+smUHzvq8bybpFyMnR99Jd3n0GfcgVqh6FtM9iAThxpDkZzNZz3tMuk3wdJfLVTLe+KtGzLa+y/5zkUXu3SaPh+cES/9gvraA29fD6sDf4G7RlZb1xeUlSKXjLH+Dq57PngwWhXvWjf55xyucNBQ7Y8zr27Wasyfy2MGWAvByhu/+tc24xjCNgKGsiVeFsVU9/x2U9yxhK7/mQElPlt6yh8BaJ2NvqqIxNqp+5/GzXqwFavv5flu/96J4N1KQXGspzaEvK79DSW+QpGs2ySHMe+v1QfhsawJjVl63uORQdo9BGMVlkG30yDPQ5q+/G0Ec9gtFb0e8ex9mC0+9/T3HC4Ji+7fd6LEdv2QkWPxY3BaJbsbq+QtX65wcdm24eKp19u8BA2m/USLiuEEEIIIYQQQgghxFZhbYP5Wj0J4RFCdDbdQrlkOJnUubUxZesaVlEbMdwhEshN6UmGY7/+zRaMVt3OwWiudiWsUgghhBBCCNGmrMFoLedGiFazHVNmW45BhRBbSDCaEEIIIYQQQogop3kwSL0yz/JOM+SH6OoKmPoqZGTBbvug8jZNSvea+bq57b2/R/3r6+jPGzfAV+9BQz16/gx4bYJ343FHwrC9465DbAVGeUzwXvjtlp9L10F5sIAno+2HoH5zOfTdAYbuhUo1BwFuVUKWcJ8mM6r7dU/OhOZkevZL+5gmFF1Ed7ec0bVf0ju8NjkrLFkFvbdLSld6xY8w80P0fX/wVV9dcBt07wmZOTBsL1RB/8DrHNrbX70eLYLR+jVa0rwssj3eEjUeF4YBULQ00Lo2e2FG616fB859xHfdIQ3zAve/vgoawpo5q83jHLVdk8CFynJzJ107WTphE5cd6DBlrvkLrBdmaE79/ZEUl+0Dr8eWF4SLm/2uz9gdJm9AZeW0xVCNtNbR9+OHL0E4jDrkFBi5PyO2gYH5sLA4ts0b38GfJ7n0z4P9d1ZkpsF7czXrKqLP5/47Q4nPAAen5Zd/S7ekzOVmKy49IDa0Iz0FzhzT+UNz9OxP0H+7NKG2vSzBaBtCPdFT/ou68LZmy+sbtTUIBKAhHLusuEKzwpxFSH4X2G/n5su2yYUuGVBZF1t/TpFmzADv56S4Mti26qL9FEP7RLerzYPIVIcEcm1uq7bSYC7RcfTcr2H2x8EbHn1OUkLRIPqetlmaup1xedbkp+i139VA7L5yiY9gNNs73lHRbYlNVT3kyrewwg8/wWgA82Zu3cFoHmWt+ThKS1GM3gGmLzGX732ny4+3JScINx6vMLNtLAFjq0rNj4xXX/0DHlKkOJASSuxB7mzh6kIIIYQQQgghhBBCiLZV59ZSHjbf4bBQQniEEJ2MUoqCtG1YXrcwpmxt/SrqXHMwWrxQMduk9KqIjy+Yk6g8vIGGzTeqbEG2yUIIIYQQQohkcLAEo2kJRku2KkswWk7I4+JoIQQgwWhCCCGEEEIIITZrEarUoMypOGktjiT1vBnoKw+Hqo3RBXkFcNv/UMNHgxuJv95F36HDjbBsPvqqI6HUZ/jR8Rejzr5RAh1+JlRKCjp/Gyg23HW0oQ4992vUkD3go5eSs74LbkWNPTIpfXUajmWyd5P3Yf+ujUBq+4ynlU6oeJmzN/476f3qs/aA11eh0szhj777efc/6LsuhHCjr/rqn1+hBu7SqnUCdMtS9MuFlWXe9XIjzSts02i+o69NaggyUqHO8OfVqCzvxmuWoetqUBlx6rXw9vf2uISR28LyDTB+IGyshQ/nx9YZU/uF73V1cavYp/pjPs7eJ9AYv1wK36w0lw3rE/1flxVDuSGFC6BL90Dra0+HD1dskwurDK+t9+ZGQ+HWNeZgCnTIj8T+vfrQHvDKElSvtr8QT7su+voT4LO3tix752nY7zjUX/7DiaMUd7xtfn3d9tbm5S3LNYcNNb8HTJyWX/6tL0JXlqG65AJw57GK7HT4zxeatRthr+3hL0c77Nqv8+7HaK3Rd5wL7/4n4T7yIuaNVVmoO3zxLrQIRjO9/pqqNlzvOafIXv/w4SomCESpaFDZF4YAFa++NisOcJ3r9Gsd9tqh8z7HQgShn7s3eKNdxqOueDBpY+jl8d1/peXi9JyNq+hVOh8YGlNW4iPo0LVc26HwEYyWHbd78Qunw43oJ27yV3fZPLbmTxSv3PzWntY5chfF9CXmFSwqhsXFmgH5bf/oeYWZ2QLGbMd1Xn11y1LsVAA/rvM3rsxW5MD36ZZ4WyGEEEIIIYQQQgghROv8UDWDGZWftOs669xaa1lB2jbtOBIhhPCnIK2vMRhtVuVnRDBfvxwvGM02Kb0qbJ7EHsTGcClfVXxMUf1ydMubMAZYX7y/QQghhBBCCCH8cJR5HtrKusVMXHN/O4/GnxSVyvYZOzOq63jSHY8LeTvQ+oa1zKj8hLUNq9k8T2Vp7QJjXVs4txBiCwlGE0IIIYQQQggR1SJUqd4SjJaesmUyqY5E0LefvSUUDaB0HfqhP6ImfGqfRd5S0RL0Q1f7D0U76TKcS+/xV1dsNdSf/om+7BBjmb5gHHxch37wquSsbO9fJaefzsRHMFrv7DAhrYiozn9KaEj9vLbpuLoCPnsT9j8+oea6ohR998Uw7VXfbdS/Z6F2iA3jSNTwvvGD0XpESpv93i8cLBhNvf0vskInU0fsFwW1TqZ3Y61h2TwYNNL3+sIRzawV5rK/Hqf4v8O23IlmcbHm4PtdljW5SfHtxTfSO+zzM2STO4tvZOz20wK1Of9pl42W64CH941+PuqrjoKIJRg0v1+g9bW35893GHdX7Gd3fRiG3uSSZwl4KQibg+D0cTvApBWovIJkDjPa98YN6Ak3wuxPYMWP5kpTX4Fpr3LiyOOtwWhe3p3jv65julhx6VwYMRaA1BTFzUcrbj468DA6zhfvJhaKtu+xUFcNX04hr8W2aLPSUC4snodubEClbtnnjLdtq6yLfR5/KLI/t3870RyCsnOB4gtDgMrajYbKLZT4DEY7e5ySUDTxs6Ary9EPXgnTXgvW8Mizca55NKlj6ZIRDepuCPtvk+NW0Wvl15iC0fwEHdq2MI4DOR45u5V1voYnfuk+ecN/3WVtdHzUCbT20/LCfRQ3vGrfH7j6RZdXL7EcLydAf/Mx+tl7oufChuyJOu9mVGa2PcxM2QPGNlSbl3sFowGcMNIe/NtSZiuy0VNTkrsvE3E1IUf2j4QQQgghhBBCCCGE8GNtwyq+qgh2TUNbSVGp5KX27OhhCCFEjEJLQFhpuMSjjXfQY45lUnp1pHXBaMUNa3hg5Z8oD2+IX9lD11AumSG5S5cQQgghhBCi9Rwc4/KNkbJOc17K5PON7zN94wf8vt9NZMSb39TOVtQt4u8r/0KNW+Wrvi2cWwixReefBSuEEEIIIYQQon20CFVqsASjpTU9kvxmGiw3JNbP+xq9bgX2aeQtVFXArKn+6gLquAt91xVbD7Xbvp6vGH3jKd4djD0CPnsr/npeX4kKJW9SdKfhmE9INw0oTKGRvuESVqT2D9z9/62/h+IRR9I9SzG1vB977JRBWnoK/fPguN0UPXLg4PtdZi5P9A9o7tCq95LTkYG+7SxIS4fC7WD7ISjbYwfoxgb4cTaUl0DVxmjbIM64PqmhaACHDFW8/YP39rUgvK7Z79s0BgtGc9YuJzN3A6TGXjxWq3x8cfDVe4GC0eatgZoGc9kBg5pPnB+Qr/j6qjpeen8tRRsdDnn5dEbXfuV7Xex/POqQU9h70fc88vKlXNz7Id9NF6wzL++aAaMHgH7/f7BwtrlSr76wwzD/4+wAo7aFFAfChiCGxSXRfyb5HhcT6jNGwkuLUOnB78aj62th7tewbgWkZ0Lapj5SUtFXH+Wvj+f+xognjqdrBlS0YUhNvGC0zkY31MPqxdHPiB2GolTz95mur0M/fmNCfatfnQZ7HgyfvUX3mRvBsKu4MdSdSMSlfsliZjuDGFgABV0VK0u9t21V9bHL5hSZ6+65HeRmm4M38i03ViqpjL/vagtG2zEfTt5D0RiB8QMVv+rcb3ch4tLhMCz+Dn3u6MBt1c3PJhxC69mvUuR3gVVxQhSbynZryF/+BRSeGVNW7OO6ddc1bxcU0aA2G9P2SoiW9Cev+6+8bC66oR6V5pHI1wnV1Gu+XgafGwJJkyU3WzHlcodDHjCniU36Fh78wOWsMYquma0L5dLzZqCvOGxLEPKcL9Fzv4JHp2HZXBByIDdLYTpHVl5jbhMvGG2E93ydZjLNp/c6RG0D5HTOm3QKIYQQQgghhBBCCCE85Kf2wVE/w2uthBBbvYI4IWfmNuYwtc2yLcFoVZFKtNYx19j49V7pK60ORQMoSOvT6j6EEEIIIYQQAtiqz/csqZvPrMrPGNPtoI4eSjNvrn/edyga2I9BhRBbSDCaEEIIIYQQQoioUPNgIFswWnqTI0n9xj/t/a1ZDlUbfa1af/62r3oA6q8vo/oO8F1fbGX2PRamvWousy3fRI09Eu0VjJbTHXXHi6jc/FYMsBOzBqNFtvwcDjO+5lOe7fZbazcKF93krh871y/g30XnMKpuFnxw05aKn4C6/x3UqAN+WvTuHxz6XeNS12juOyfdX0jEgIbF7Fn3dfyKiWqoR1+7KaxjwHC46xVUQWxYnJ7zFfr6E6DUkoYVz++uRp31p1YM1OzEkYorXtBoj2yBXpH1zX7vFzQYDZcs1zxLv8bJittef/oG6vRrfdiUhNIAACAASURBVK9v5grzH5MaguEtrkXTH08i97azOK+22nf/QPQ9MvZI1DWPobK7wrijOG/WoTxd+gVfZO0drK8Wfr2bIiNV4b7wd2sddfzFnT6UMS1FsXOhPWjKJj9SbC8sL4F3noZfnx+oT/3xJPQNJwUbiMmCWej7LmPmDQ8wMLGcL18cHZteoZfMoXXRG21DL52L/supsGROdMGIsXDrf1F5BdHyH2ejz9nLX2f7HgtzvoT1RdAlF3X2n1Bjj4iW7ff/7N13eBtVugbw9xs1y73EJY6dnpBeSAiEFEgIEFoKJIHQy3KpCT0ssMCyF7gsnSV0WOrSwtJZem8LJNRU0km105zYjps05/6huGqONJLl/v6eJ0+kc86c+WxLo5E08850dOqpgJutkz0eSTsXV93TCxX7AjznTBRkhrngUbFFuN2STdbbj5Hd9b993Xq22/gOslATnjZ1mOBvU/VBm0RtidqyLrANXvlL5Asfejxk4oyY11RtYG6kwWglcFT5LPt2aQKJ6tIFHRkCxIcIG1q9TWFUj9b4KkCtyocv2B9bVQms+hUYcEDT1RNjLy80ceaTSvv+sFqU547UM2mAoH/nQOCylcteUrjhDYUnzjAwY0T0K1Tz59WGolVb8h3MHz8HMM5yGYcBpGreQu2tBCp9Cm5n/Zp8mo1P9Ud3XdOtg9asxDXyiJB5kwW3vxebYLuyKgajERERERERERERtUXhQoSIiFpKThMEoyVqTkr3w4dyswxeR/hj56wsKf0xquUa4jaZiIiIiIhixSNt+2CuFaW/tqpgNFP5sXzvzxEtk+RIaaJqiNoPnqVDREREREREAUZtWIsJgU9clsPc+4YpXxXww0fa6dSTN9tf99O32homd70NGXOs/XmpzZEzrol+4YkzgO79rfsmnwZ5axNk+Pjo52/tDE3gUt1gNH8VLt1xP5L9waGFTkPhtQsN7LrgZ/y8ZiR+XjMSa1f2weI1wwOhaBbUZUfBPPdgqBU/AQAyEgU3DFpuObbg9zwUdToLjwz9JuyPckfBNSHDhOScGyFvbgCS08POFdbq36DuvDioWfl8UNefFHUomvx7NYzzb2mSIKzOqYJD+uj7E9wK8ZkZ9dryMyL7GNCAiXhVZtm31/CGn2D9iojWt3qbdfugXMDjqn00qF3boG46DYgkFK1bP8g7WyD/KYBx64JAKNo+xp9uxMNbL7Z8TkRixuYnoJZ8ByxbaD3AMIApf2rUOprL4C6RB0Vkdw79ZYy6aw7U3mLb86mt62MTilbt9UfRY0Y8/rfvotjN2YABi/CvdcuabH3RUNu3wHz4L1CnD68NRQOAX7+GmtoV5rxpMG85x34oGgC55lHIq2sgr62FvLkRMqP+9jQtxLGgc3PuQYVZu428/5NAYEkoDcM1lVJYoglAGRTiONDMROv2bTYepoWaMVlhQt2I2hJ1x4XRhaJ5EyB/ujH8uEaYOiyy16kEVYo0v3WSWoUPKKsMvd3R9RoGYBiCRI91/ymPxyZEiKiepd+3dAW2/bFDYfZj4UPRAEBikYwG4N25od/zFJcDsx4x8cqi6J6flZv/wEMbBuL03Cfw105/wSZnbk2f/2f9+1xD9MFoALDb4m2X3zpXFs6aYDQ7FQd4Q4Q42nHe+NiFPJZVxmwqIiIiIiIiIiIiakaDE0e2dAlERJay3V2Q4cq2PT7P0x2pzoyQYxId+gNASv17bK+rrnKzDEW+HVEt29AgbpOJiIiIiChGescPaOkSGmWvaeOq6M1oR1UhfMr6Ys46/eKHNlE1RO0Hg9GIiIiIiIgooE6oUqXoz5p0OwFVVho4Ub7Y+gRzAMCPn8WwOEBufgky6vCYzkmtj/QZGgg4i2bZhGTIA58AZ1wLZHQONB54BOQvT0KufQzidMaw0lbI0HzM468TjOarwvCKX/DF+sNw0c6HMHbvVzh47zc4q+hpfHRGAaYOEyQPPwCDhuVhUMVS5Ps2hQwoAwAsXwT1p4OgPn8d5oPXYN7z++OFjafi+D2v4dDSz3DZjnux9fd8ZPh3Ah+9hHNenIS3/5iqnW7BxtmYUvK2fn0OB3D06ZC0rNgFb/z3/UDgllJQfj+UUsDPnwPbNkU1nVz3BCQr8qtRRuLEA/R/mdJKgfzze+CUK4FDjwdOuxopT3yM5Agu5iJQ8Jp7reeXhNo7Ls3rxd5iqFL7B4Jt0ryc9Mps0PDpK0BlheVYHZk1B5KcXi8QraZvyMEYNG4wvlo3AeftegzH73kNtxf8GYUr7F9ZM82/E5Peuwzq/BDBiwcfA0lKjajuljJ7VBTBaGddBHgTQo5RM/oE9h8AKNMMhA/6fFBm/dQHZZpQM/tGXIMd17wxDgkob5K5LYPRfvwssD1pBdT65VBnjgD+dYd+0LfvAu89Z3/S7K6B114RSKdcy9fZ9NAPi4jtafDnK9gDFFlvqjAwV/9Y7pRo3be9BGH/ZoWaTVsmg9GonVB/rAB++Nje4NmXA0edDgwdB0w9F/LEd5Bu/Zq0vkP6RvY6lWiWIl0TjAYAO0sDz/tKn/Vz39SEE1VX0TCwsa69Fa3jNYBaJ1X3fZrdZdpQMNprPys0925Q1wzB8Pzw42Y9YuLlhSaqfAqmaa9IpRSm/aMKc3LuxfMps3Fz5rUY3f0LrHN1BQD4fvxSu6zDAFJDZEtHEozm2Pe2Pzu5NiQtHK/1dQ9s69FJcPes2ISjldkIyiMiIiIiIiIiIqLWpbd3IPZPGtPSZRARWTLEwAmZZ8Ep4Y8NdYsH0zLPCHvRnkRH8DFm1UqiDEYrrIzuOMSGBiWMxKCEETGZi4iIiIiIqHtcXxyUPLGly4hauWlx8F0L2hrhe79JadPQyW0/7Juoo2rnZwQTERERERGRbY7at4ihgtFc914E9dtT9cOWmtqQMZBDpjXf+qhFyfVPQX3ySnTLJqcHwrJiFZjVltQJN6zHrPNc9QeuPDGoYinuK7ii3jDpubL29vm3QH33QUSrV385seb2zOJXMbP4Ve3YyaUfYteKLByf9xI+TZgAAEj37cATW87HcSXvhFyPXPVQbejYlHOBuy+JqE4dde+lwOL/AoUbgbzewMZV0U106jzI5FNjUlMoJ+wvuOBf1ifxOw1AUjIg599Sr71ruh+LN9ubv5NvBxLMUsu+UiO+9k5ON2DDSstxKNwE9NAfKFbXxl3WP0uXtNoD0dQvX0Hdc6mt+eo57pyQ3TLvIQz4KB0PbK3/WOpXsRzLPeHDXaYXvwk3Qp/hL9c/Gb7OVuKYwcClkwT3fmQ/ySIn3QV5axPUqUOBreutBxXvAl55ACqvN9QNs+v33fYqZMwxgdvvPhtl5fYsXTkI04Z9hZ9Kc2I6r2iSP9T4OOCCW4HZl4c9sLIpqefvBnbH5sqzNQYeGHZIUlwgwEMX7hGprbsDwSTVv8s/durH7hfiO0JdiJnPDISTpMZb95umwnbNhaWyklru70sUK6q4COqUIbbHy7FnQbo2TZilTu/MwL6Oz+Z2JdEsgdfUh2J+vFzh8S8VvloVCHO8dbrg3HFSs53RvRoaNp7y20qAbh57dVIHtGNL5Mss+S72dTSRddvtjYv17tErFxjodW34DcRJjypUP8P/foLgyiMk5L7aJ8uB93Z2r9e22ZWL+9Ln4J6Cq+DfvRPQ7D84DCAlRDCaVchruGA0hyHo3glYVaift5pX/xGfbX2zBfoton3lDEYjIiIiIiIiIiKyLdfTDaNTDmux9TvFhR5xfTEiaRxcRiOvwEBE1ISGJR2Eea478WvJd9jhs/7yJNOVg6GJB6GzJ/xVduKMeBhwwETwMdLRBqPpTo53ihMHJB8Sdnm3eNDT2w/7J42BIZrjRImIiIiIiCJkiIFTcy7G0MQD8XvZb60uaKza1oqNWFu+Iqi9zK+5wnoL0YVie414DEsaXXM/3khEv4ShGBA/vLlKI2rTGIxGREREREREAXVClSpEf/a2e9m3zRuKBgSF+1D7Jk4X1OijgG/ftb/Q4Sc1XUFthS4YTdU5o9oX4ixkR+1BjNJ7CNT4qcAXb8SouGBJZgk++OMYLIwbgd1GMkaW/4hUc3fIZeTNDZC0rNr7Dgfw/GKokwc1vqC6YXwRhqLJdf8EPHHAfsMhuT0bX4sNnZIEo7oD368L7jtuqPUy+emwHYw2oGIpEpUuGC2x9k5WXuD3ZRUKtW0j0KO/rfVt3GXdnpcW+F9t3wJ12VG25qpLnlwYNoxKvAnA1Q9D/f38eu0X7noEc3PuCbuOmXvCBDl27QuJ16QwtUKGIbh7lmDORIWhN5koqQi/THYyIB4v8PKKQBCYhnr0euv2Px8P/OmvwOzLoZ64KbrCAVuhhl18m/H1wv2wsM+JWOvqjp15w3HZhsgfWw3pni8AoB66NrDtOuq0Rq/HLmWagdfRlb9A/fIlsPCT2K7A4YDMuCjsMBFBWjy0YWKRqvABt/5H4aIJQGq8YIMmGC3OpQ8/A0L3/bFTH4xWVKYPY8pqO09zameUUsCvXwOrfg1sB0cdHnUQY92g27DcHqBLr6jW0xgup6BPNrDMZqZUgrkXKSH2Mc98snYfZmcpcP5zCllJgmn7jjUwNTlAdn7Feyvt1UgdVIRB1ACAzWuh9ha3iX1Lu6/9iTEOD+zRSfDgKYILNSHSVq7+t8KjXyicNKr+EzvVC0zsF9jfmPag9Q7AW4nHBILRNq8DelvP7zACYbEi1m+brILRdPsb1cFoADAo12YwWgzOV3TH6PyaMgajERERERERERER2TYgYTgGJPDkSCIiO/LiuiMvrntM5hIRJDqSsMdfFNRX4i+Oas4CzcnxWa4uOC1nTlRzEhERERERxYIhBoYmHYihSeEvmt5Svi760DIYrdxsXcFoWys3WrZ3j+vL935EjWCEH0JEREREREQdgqP2LMdKcWuHeUwbCSkxJHe8ARk8OvxAaldkUGR/cxk3tYkqaUMcmjOV6wYZhgo1dNTPz5e/PAnMvDgGhekJgAPKF2HS3k9Dh6IdfUZQKFrNHPl9II9/23RFhiHn3AiZfApkwgnNFopWbd5k64/2pgy1TurIS7MfkjKgcjmSNAdyFdcNRouLB9KyrSdZv9zWupRS2BAmGA1vPwlURZYuIhfdBuk92N7gQ6YFAl7quHDXI2EX61a5HhNKPw89aMhYezW0Mj06CZ44w97Hx9nJgf9FBHLezVGtTz3+V6jDkoFt1gcChjT1XMj7OyDPL4bMuSPscDeqcPDK53DK0psx54MTULw8HZfvuBc9vNFd1TXRX4zB5YtDjlHvPB3V3NFQPh/UvKlQfz4+EDQX61C0YeMhd75le/8sNzW2q7/+DYWuV5v4YZ3Chl3WoSd5aQgZDJWfBrg0L5vLtuiDVLaGeKliMBq1BKUU1E2nQ118GNS9l0FdeRzUjadAhQrD1c21fQvw42f2Fzj4mEBIbQsY3cv+Pk2iWQKPqkS8qQ+wbGj+p7WJRKYmnMiwUUJp8751pjZGhQoCN0Lsg62zt4/d0gr32AsmG6cJE2uM88YLHjtdkJNsf5nV24Bb3lH1/l31isKIm01tKBoArHN3R4W4Yfr1P6/DCIQPp3it+4ssLrLp16zSWeehMbCLvW1hXAyC0bz6jwkjUsbASCIiIiIiIiIiIiIiagMSHNZfNJX6ozu2qEBzcnyOp0tU8xEREREREXUkXof1Vc/LWlkwmi4UO9vN935EjcFgNCIiIiIiIgowak9qrwgRjOZWzXcWo7y0HHLQ5GZbH7UiE0+IbPzYY5umjrZENB/zmHXC0EKFZDjrny0t3gQYc+8KhI4lpsSgwOgZ1zxqGYpWTfbbH3L1w81Y0T79RgAnX9H8691n+nDglAPrnwx/5EBg5gjrE+Tz0+3Nm+IvQrJZjCSzxLK/2KiT/uN0Abk9LMepr962tb7NRfrgkPy4Eph3XBgId4qEyw1MOdf2cElKg1wdHIS2dmUf9Khca7lMvFmKB7fOgRMhAgcByCFtN7hxkI3vX1K8QIKnzmNu5sVAVn7TFVWXNwFyz7swrpwPiU8MBLPNmguZe2dk06hy3F54LVb+mIM3p68JOfaGlLeQ5qndlooy8diWC+CCL/RK1i2LqKZoqYpyqKn5wHcfxH7yw2dDviiHcf+HkJGH2V4sPy38mEiVVACzHzVx+cvWISTh1ulY9TP6YINl37It+uVWFFi3iwBZEYSvEMXMxy8H/tX16b+hHv9r5HNtDr39qycrD3LODZGvI0Z0+zoNiTLhVYHEoTSLq3nrfLI8EDoHALqoo+pgtNMO0tfy1SqF6Q/4MfQmP2Y/amKTJsyROqjVv2m75NZXAgHEVtYubaKCGqe0QuHSl0z0u96P7n/240Mbuz5ZScCdM2N/uIKI4JyxBjbf6cADJ9sPUozW7+4+8Is+KLJ6e5GqC0bbG7xt0AWjOeoGo3W2V1+8u/G/g+H5sQlYK4s8t5OIiIiIiIiIiIiIiKjZJTqsr45XEnUw2mbLdp4cT0REREREFF6cYX08ZblZVnO8b2uwlcFoRE3C2dIFEBERERERUStRJxgt1b8bNxXehEpxoyKnN6oOnYXKRV+iYt0qJJvFzVPP4bMhmrAdav8kr7c2hCBo7CurIC59mF+HYWhOxK4bjOYPEdzjsP6YSPbbH3hxGfDhi1A/fQ588UYjimxCk08F/n5+069n2Hhgv+GQfiOACTMgDv0J8E1NRPDM2cC54wT/XaPQK1MwbTjgMDTBaDbDiaYVvwUASNAEo5UYCbV3HE5g5ERg8bfBA5cthFIKIqFPxF8aIoRov/tnAcs+DVtzkMNnQ+ITI1pEjpgNDDgA6tWHgFceAJRCvm8TFq4djVeTpmGZZz8oBH6WLr7NOK74HfSqsg5Nq9F/JHDA4ZHX30r0zgTcTqAyxKZjRLf698XjBV5aBjUhst+/HXLjM4DhgPr9Z0h6FjD2OOt9haNOB164B9hm/cVSKEffOgizjt+Kl5cFp1wNK/8F1y47GRc6UvFS8kzsFS+mF7+B3lU2woR2b4eqKId44iKuKRTlqwqErlWUAf0PgDpvLLBnZ0zXAQDyt+eBQ48P+3y2kpcu0EcLRW/Ndn1ffrq+TvXHCqhLjkD/1AexNDk4xG/lH3sBWD9+l2y2/jl6Zih4ln4NlZEDdOkV1e+JKBrq9cesO/51J9SkkyC9B9ufrFKTUgoAh82CzL4cWPgxkJIBjDkWkpYZWbExdJDNt4kJZimqn43p/p3Y5LJ/YMH8TxXmTBSYms1X9dP85AMFz/7XelDd8MbfNil8ukJh1S0GEuO4jejoVFkpsNl6P1Iuug0y5hio7v2B5YuCl123FK3tEaSUwoyHTby/JPzYFC9w2eGC3BRgylBBVnLT/jQXHGoAMHHR80138NNST39k+wq1/dVhZqnxAHYE9+8uC27za8qtG4zWLcPePlZiDHY/4z2C6cMFL3wfvL6DewHfrLY3T1nzXWuBiIiIiIiIiIiIiIgoaokO66vjlfojP37aVCYKtcFoeRHPR0RERERE1NF4NcFoCiYqVQU8EttzNKJR6i9GiX+3ZV8O3/sRNQqD0YiIiIiIiAgAIA5HzemU6eYuXLfj74E7XcbCOPEkmBteBr59vPnqufTuZlsXtU5y51tQVx4Xflx2cKhJh6QL6DLN2tu+Kv3yTpe2S1IygBkXQWZcFJjy1KHA+uXRVNlkxOmCOuAw4IePm24dj/8Xst/wJps/GiKC8X2B8X3DBwrk2wwnenDrHABAkiYYrdioc0VMhxNywCSop24JHlhWApQUAUmhE9mWbrGuqbO3HGk/RhiK5nQBE06AXHpPZMvtI3m9IXPvAubeBfXT51Bzj0CKuQdn7X4muvlufKZFw/May+UU5KcBq7fpx4zqEfzYE6cLmPcQ1O0XxK4Ytwc48AhIUhpk4oyQQyUxBbj5Jag7LwZW/hzxqp54rTuSsu/CE2ln1bT1rFyD5zedBif86OTfgYt2PRzxvNixGcjtGflyGmrTaqgbTwVW/BizOa3Ihf8HmXBC1MvbDWWMpcEhso/Ue/8CSvega8Iflv3b1m0B0Meyb6n1caoYuPEDqIunB+4cPhu46gGIN8F6MFGMqJLdwC9f6vvPGgl8ttf+65BPn1Yjl98HSU4HWsl+UEp84PVpw67Q4xJVac3tbF8BfoP9oLjb3lWYMxHQXUiuOof2yIH2Q50Ki4EnvwkErlEHt26Zvm/clMD/mmC0kMu2kG/XwFYoGgA8e46BY4c073PggkMNxLtNnPVU04SjLfYMxPi9X2n7Hft+3FSvdX+RRTCazx/cVncuAMhPt1dfUoyO+XrsNIHPD7zxi4JSwDGDgafPNpAUJ/jnVyZuekthwy6gZyd9gG1ZlQJaXbQfERERERERERERERFRfQmaYLQS/56I59rl24YqZf19fLbb/sW9iIiIiIiIOqo4TTAaAJSZe+ExWj4YraByk7Yv28NgNKLGMMIPISIiIiIiog7B0Jww7993NuY2TRJEUxh1eODEe+rYho4NP2b81Kavo63QPYfrBqPtDXHFQof9/Hx57BsgM8RBOaOPgnxRDvlwF+SWl/XjTrkS8vp6yAs2z6IPV9eZ1wEezdnmjZ37+cWtLhQtUr0zw48ZXP4bPPsOxErUBKOVGnXCfhxOIKerfsKCDWHXubnIur3vnsgCreSaxyDvbYdxw9MxCSSS4YcAh0yLbuFOuZAPdkK69Gp0HS0tKyl0/4EWwWgAgKNOA/bbP3aFnHQZJEzIXl0y4ADI499C3t8B9BkW0aq8qhyPbL0IxcvTUfB7HnYv74QVqwehb+WqSKuuL8b7Uuq0YbELRcvtYd0++ijgpMsaNXXXFtilmz48RODGL4HgkiyfdeLftj2mZTsArN1uHajSv+TX2jsfvgC8/kj4Iokaa6ONbdIbj9qfr7LCuj0huVW+NxuYG35MglkbjJbv0x9wYGV7CVDlUzA1OUpSZzOTF0EA5NeNfCmhdqJwo3W72wN0DrwmS/f+1mPWtr5gtFcW2Q8cy0xswkJCOONgA29e3DSHRizxDIAf+hBKx77VpuiC0fYGt/k1uyOOOj9C55T693WSPOHH2BHvEbx0noFd9xrYcY+BVy90ICkusDE8e6yB1bcaKL7fwKpbHejZyXqOshBZ7URERERERERERERERK1FojYYLcTxlxpbQ50cz2A0IiIiIiKisLwhgtHK/RYH4LUAXTCaR+KQ4miBK80TtSMMRiMiIiIiIqIAbTCaL/D/1j+ar5Zdhc23Lmq1JC4eMMJ8dJFmI+mpgxDd78oMhBsqXxXUlcdpFhaIQ38id9BwbwLkuV+B2ZfXNu63P3DIdMjVD0NuexUiAomLh4yfCkw/L3gSjxcy5RxIRg4kr7ftdYesa8gYyEOfAydcCBxwGDBrbkzmxZnXQfL7xGauFtQ1Q5AQ5qT4gRVLa24naYLRio06SVkOF5DRGdA9fmwEo+3SfA+RVaYJjLDiTQQmnADxxPZKL/LXfwF5ocPN5KoHIbe9Chx1OnDQkcAZ10Ke+Skm4WytQfhgNOt2cbog8z+GnHtTIFxr/0Nr/0UiNRNy47OQP/01suUQ2C5KfCLk5MvDD7bgVeXI8O9EgtqLEDFbtY45C3Lh/+n7G7EvpSrKoSrKoLZvgdq8FuaD1wBV1leTjYY8uRAy905g3JTA32jcFMgld0FufQUitn56rX45jVs+Ugd0B3pmhlhnSSCNMctvHYxW6Nc/6Dfssm7vXrW+3n31wQshayQKRSkF5fdDVVUGnvdlpVCle6CKd0Ht3gG1qxBq+xZg9eLwc331tv0V67Yprhgl6sTYwC7hty2JnbNrbudVRbBfAaDKD6wshDYYzaiz+gS3/XlfXmg/QIrasSLr1yBk5NS+r+sxwHpMwR9Qm9c0TV1R+na1/cd1lvU5JM3i2CGCH64zMLpn/fZD+wIT+wX+Degc+bxLPf3hD3HYRXV4WWq89XZrt1UwmuZX6qzztsthiK1gxsQYXwzT6xYkxgX/LE6HIMEj+8ZYL1vOYDQiIiIiIiIiIiIiImoDEh3Wx46U+vdEPJfu5PgUZzrijKa5CCwREREREVF7EucIEYxmto5gtK2V1scpZ3vyGn0+BlFH52zpAoiIiIiIiKiVCBGqpPx+YOPK5qtlb+RXVaP2SS65G+qeS/UDUrOar5jWThtuGAhGw6JP9cs6Iv+ISOITAwFAoUKAqsdecg9UaTHwwfOBhoRkyKX3QnJ7hl4wCtJnKOTSe2rum288BlSURT/hlHMgZ/0lBpW1Dl9cZWDEzaa2f0DFsprbiZpgtBKjTuCX0wFxOKA6dQEKLEKfCm0Eo5Van/Wf7tckEDXk9kBufrFJgsjE6QSe/SUQKmj1HHK6gEOmQVIyIGOOifn6W4NOSQLA+m+UkQDkpOi/pJG4eOD0P2tDxVRxEdT1J+m3T937w3j258gKtnLYLGDJd8ArDzR+rhDksBmQAyZBvf88sPq3oH71/nOQI0+OaE5VvAvq3strt59NoecgSHwiMHMOZOacmE/fvzMgAqhmygI68YBwXxwG+jN91qE024x0+HduhyO9U732Kp/Clt3WMwYFLq36FUqpNvslplIqsP+gzEDAqtVtvz9wv+5t06zzf/Vtf/jbNfOb9tcVtN7adSvb6zVD/4wxq9HU/J40t2P5ZPnhI/tjtcFoEaR+NaOBueHHZGQmQi65C2r+1ciPMBgNAH7eoLR/jrrBaPER/or2VijEe9rm9oFiZJcmGK3u+9s+Q/XLf/YacPIVsa2pEbZF8BFOZmLT1WHHiG6Cr/8cOhT834sUzv5nJYqr7L1PXu3qiRJD/4NVB6OlaI7NKioL3tD4NW/ZHA02HT0ygPU7QteX1AL5lnEu6/ay2OX6EhERERERERERERERNZkEh/XVfkqiCUarsA5Gy3F3iXguIiIiIiKijsgtHggEyuK8lrJWEoymC8Xmez+igfUG1wAAIABJREFUxmMwGhEREREREQXogpFMP7BlLVBZYdktVz0I9B8JdO8PNbUrUGwzyCYEmfKnRs9B7cSxZwMhgtEkI6cZi2nldMFoyoRavxzqqin6ZZ2as5ZjRBwOyPVPQp1+NbB7B9CtHyQlo0nXWWP25cBTt0S+XL8RkL8+C+nSK/Y1taDhXQXHDwde/cm6f6CNYLRio84VMatfO7LyLIPR1IL5wJRzIQ59+MDOnWUAgq9+meov0i6DscdCpp4LeLxAv5FNEopWTZwuyL3vwbx+NvDZq/U7T7u6+R7LLSTL+gKoAICMRgZbSFIqcPd/gPeeg/q/c+t3pmZC/vl941ZQvR6RQNDmzIuBpT8ApXuAynKgx0Coh64Fftc8ISLVd3jg/279LIPR8MPHUCW7IYkptqdU913R6FA0ueddwB0H9BsBdeMpwFdv1e+fFfswtLoSPIIeGcCa7U26mhrnjw8TNlQS2LZk+q0L8okLRSt+R8bo+sFom3fr86ryfcGBS+rJm4EeA4E/VkCVFEUfzBUUvKXChJJZ3TbtBXJV326uFDtqXaqs3+819X5itAbl6oM7q3VNF8iMi4EJM9Dtk3XAh5Gt461fAFOzirq5h1sjPPb97d8UZo1kMFpHpnYVWnekZdbclMwuUP1GAMsXBS//0cuQVhSMVqzZfDTkdQEJLRDSZYcyTeDrt6FW/Ijpe0tw6OJn8YN3BPYYgZNeulX9gQSzFEN6/Ri8rBhY6umvnbs6SDE1+C0PAGC3RY63z2891tHgmgb9cwWf/R56W5gU1/zbG68uGK2qeesgIiIiIiIiIiIiIiKKRqLTOhit1F8MU5kwRHMhagsFVdYnx2fx5HgiIiIiIiJbDDEQZ3gtQ9DKW3kwWrY7r5krIWp/GIxGREREREREAbrQGr8fWL9Cv9zhJ9UE0qjJpwAL5je+llFHNH4OahfE7QEe/Rrqf8ZYDzjoyOYtqDUzNAfbLPkO6syRrSLkRLr1a/51jj4KyioY7ZgzgXee0i933s3tLhSt2v+MN/DqT2ZQe5IqwcSDsyF9b4eaP08bjFZhxKEKTrjgqw1GS8+2XtmGlVCXTgbufAviiQvqVt+9j50rsgHP4KC+dP9Oyyll3kPAMWdCdI/5JiI3PA0MHg31n2cC9489E5h2XrPW0BKyrI/zAwCkxyCPTgwDOPp0oHP3QJBU0TZgwIGQc66HuNyNX0HddeX2BHJ71m+c/zHU0dmAr5EpDRmda0LypHs/fVTPe88CMy62NaXavBZ4/1+NKkv+vRqSVefLtJv+BfXYDcC37wEpGZDjzoFMPqVR67BjUJfmCUb74FID8R59+IeqqgQKAyFmWT5NKA2ArSvXI2P0wfXa/rDeJAEA8quCg9Hw5M1hIpuIWhlfpXW7u3WmGA3JA5LigOJy/Zi8tMD/kpGDcdOygQ+D939CeetXhQGdrfuMOpuaLbsjmhbvLQZmjYxsGWpnirZZt6dl1b9/4JGWwWhY+TPUt+9CRh8V+9qisMci2MtKZlIgsLa1UaYJde0M4Ot3atrSABxR+nG9cX4YiDPLUG4EJ5z9FjdIO391mFlqvHV/kcVxWX7NTkTDYDTdNqquxBbYjDMYjYiIiIiIiIiIiIiI2rJEh/UBUyZMlJt7Ee+wfzXJggqLY0oA5PDkeCIiIiIiItvijHhNMJrNAxibkF/5sK1yq2VfNkOxiRqtec8eJCIiIiIiotbL0ASjmX5gZ4F1X2aXmlA0AJCz/gL0HNi4Ok6+AuilP6GUOh7pPxJy8e3B7efeBOncvfkLaq1ChUSFC/wpb/krZMi5f7PumH154ybuPxI44cL6bUPGQObcAfQeYr1MaiYwbHzj1tuKHTFQcM7Y+oEETgO476wkpFz/QE3IWaqpT/nY7uwUuOHYd8Z7WqZ+hT9/Abz7TL0mVVYK8+65UFdOwU4j1XKxdP+uoDZ5bxvkuLObPRQNAMTlhsyaC+OphTCeWgiZcTHEqTnjvx3JTtL3pWnCHaIhw8fD+McHMJ75CcafH4ZkNs8XQOJNgHy4CxgxIbjTmwi5+x1g4szwE+03vPZ232HaYerTV23VpYqLoE5sRJhkXm/Ia2vrh6IhEDhqXPR3GM/9AuOBT5olFA0ABuRGH4KyfNUgHFnyQdhx1x0jmDQgzHpeuKfmZra/EKKsQ5JWrC4ObttqnVCS4i9CirknbH1ELcW88VSoBfdDLfkOqrJCP1DX54xtSGWsuJ2CqUNDP+dz6+xixLkE8yZHti3aWwksXG/d15hsp182MDaxw9ulCUZLrb9PLSE+G1F3XATVCsKvK6oUKnz2xmaF2K9sSWr+VfVC0XQcMNGncpVl3yanft81qmA0TY6js8HboMFdwm+MkoLzqZucV/PSUabJ4CQiIiIiIiIiIiIiImpNEh36L7ZK/PaPESnz78Vui2PgAJ4cT0REREREFIk4w/oAvDJ/aTNXEmxb5VaY8Fv25fC9H1GjOVu6ACIiIiIiImolQgWjFW237kvLqndXktKAR78BvnwDat3yQBhH0Xaox26wXFz+/EggbOT7D4FNq4GhY4EBoyCNOcuc2iU58RJg/0OBRZ8Apgnsfyik34iWLqt10T2H24pDpwNP3QxU1TlT2uGATJzRqGlFBLjkbmDiDGDxf4G83sDooyAuN/DYN1ATgq/eKKdfDXG274/NHj1NMHuU4NvVCgke4PABgoHVwUUSONs+21eoXb7AkYXOvq2AY9/vqcHrQUPqrjko3+8g/OIcgErlwMF3Toax7HsAwC6bwWhyyd2QBOurcVLTyU8XANahG0Y7ebkWpwu46x3gm3egVv4C+KognToDBx8NyekGeOKhPlkQeo4p59TeOfBI/cCl30P5qkKG6imloK45IdIfI+CIkyEHTALGT4XE2786bVMbmBvdcglmCXpXrcHrG2bgxZRZOCv38aAx+2UDT55l4KCeoR+QSimofz9Qcz9OVaBX1RqscvcOGrtkTQmmK1Vvn3TpFut5+1WssPnTELWQTxbUbsNcbqjeQ4EBB0AGjAIGjgJyewYe67ogXben+WqN0NVHCZ77Th8M1T2j/nbh/6YL3vxZYXmDi7J1rtqCCnFjpzPD9rrrvgaeOFLw0kL7AVVLtwA+v4LT0U5eSClyhRssmyW1U/2GHgP0c2zbBKxbDvToH8PCIldcbn9sZisLRlO7dwAfvgAsmG97mWxfAX7D4KD2Lc4c7TLVT/VUr/V+9c4IgtEcDYLRDuwBpHiB3SEuetkiwWgu65+1LExmOxERERERERERERERUWuQ4NAfo1bi34Ms2DsQpqByk7aPwWhERERERET2eTXBaOVmiIPnmonuvZ/AQKarczNXQ9T+tO8zPImIiIiIiMg+hz4YTRVts+5reNIuAPHEAZNORPUp3mrreuCfNwH+Bsn3Q8dBjjkzcPuQaVGVTB2L9BkK9Bna0mW0XrrncBshXfsCt78OdddcYOMqoEtPyIW3xSQAT0SAIWMC/+q2O13Av36DunsusOhTIC4eOPES4ISLGr3O1k5EMLEfMLGfRSCHETjbvpN/OwzlhynBj60CZxZQAWBfgJykZWqiswKWuPvjpNsMLPMIABP9Kh7G664Z6Fq1ASWaK2ymmg2ulskwxBaRn6bvK6lovjqamjgcwLgpkHFTgvuGHAzc+AzUP64EdjUIDEzLgpx9PWTMsbXjnS7gb89D3XBy8Ip8VYFtXHd9iIl6+Drgl68i/xnu+Q9k5GERL9ccBuXqA/ZCeX/9MQAAF3w4bffz6F25Cud2fhjLPf2Q49uKm7t9ibNvPMneZGuWADsL6jUNqFhmHYxWmQus/g3oPaSmbdmq3QCCD3ztX8lgNGpDqiqBZT8Ay36A+veDgbaUTlD9RwKlmqtaO93NV1+EBuYK/n2BgRMeCk4QSvAAB/eq3yYi+OxKA5e+pPDiDwoO5cM5RU/h9oJrMDfnbjyTeprtdSfU+bVM7A+8tNB+3RU+YPFmYFi+/WWo/VBlpcDmtdaduT3q38/vC2R0BnZo0jkLN7R4MNqeCILRundqPWGA6ss3oW4+G9hbHNFymX7rCwdsdWZrl6kOM8vQZNaWVgB7KxTiPbW/H5/NYDSPSzB1mOCZb/X7WS0SjKZ56SivtG4nIiIiIiIiIiIiIiJqTTwSB6e44FPBV30p8Wu+W7egOzneJW6kOYOPvyYiIiIiIiJrcQ7rYLQy0+LKpM1M996vkysLLqP1HodN1FYwGI2IiIiIiIgCDE2okt8PFFmf+InUzLDTSk43qOMvABbMr210uSGX3xdFkUSkpXsOtyEy8jDIC0ug9hZD4q3DsmK+zq59gXveDWzrRALhSB2dBM62d8BEpn87CixO8q9uE0fg48U/XN1wZ/Zd2OLMwaTST3DG7mfhUbVnvc/JuQfLPLWhDcs9/dCv92IMLF+iLaOTb0ftHcMAeg5s1I9F0clN1feVtqNgtHBk0omQSSdCVVYALncg4Gz3DiAjJxC+2NCYYwOBlQ2DYQFg7VJtMJrasxN4/q7I62vFoWgAsF9O5MvEmWUYUf5TvbbRZd9j8Zr9scdIQpJZDMmYDMBmMNrKX4Ka+lcsx5tJxwW1b3LlBsbXCUZb/8ceWAWj7VfBYLSoGEZg36Xm/3C3Q4x3OAKvXfVuG9btjn3LWt42bNcjoWqzrMeqBqm9XW9+Oz+nUX+uz16FeuDP0f0tdm8H/vuevt/Vur+Qnz5c8OU8A+Nur58i9OfJgmRv8PY5K1nw/LmCp89SwI9fw3HFXADA4IrFEa03sU7Q0EzHlzgPYyNafv//NXF4/8Cfst4/ARyGBLcHjQn8c4bptxxTr1+Cx0jwnKHnsBhj0W8IrF8zO5r1ywGlCbFqsL8rDgdw/i1Qt5xtPb5wY4yLi1xxBMFog3Kbrg47VMluqBfuBp65LfKFDz0exv++gKxnSgGL/NpQwWjGvod9Voi3uNtKgG6e2vt+TTCa8f6zUD3GQXJ71rTNGBE6GC0jQb/ephLnsm4vr4o8KJeIiIiIiIiIiIiIiKi5iQgSHckoqnv82j6lfvsX3tGdHJ/tzoUhhmUfERERERERBYszvJbt5a0gGG1rpfWxnFnuLs1cCVH7xGA0IiIiIiIiCtCFKplm4GR5K6n2rlgmc+4EBh4E9fMXgDsOMuMiSOfu0dVJRNba0YEyzRWKVrM+EcDJj8lqGLWPpWxfgXUwmiMrcMPhwrItCqPfm4g96UcAAF5Nno4PEiZhwabZEABrXd3wRcJ4y1UtibMOO3MoH3pXra5tGD+t2R8XFOB06ANMhnfteOEm4t6XWOFyA506hxyn8noD64NDs9SPn0EmnBDcrhTUMfo5tev6x4eQ4dbPsdYiziXYLxtYUWB/mZP2LIALPsu+ZHPfQaYRBMKotcFBjLm+LZZjtzkyodb8B1AKa7cDqVsXY4OvK2DxUtut6g/bNQAADpnWBoK57NyWCNdVf70MR4otNf0CINpgtHBaeTAaAIzpLVhyk4GHPg8E7hwxQHDskNCPMZdTgFEToe59D+rSyRhYsTSidSbVCTBK/uJ53Lf1VVySc3dEc3y4TNfTnMFBzRtSFCo4zSGA09G4foexb4xFwJxhOSbcHHZD6cReaJ0BGL9ug+EZDI+qQO/K1XBiX4iqxwt07hH0O5PJp2iD0dTtF0CO04SmNYJSCjtKgPQEwDBCP5f2RBKM1qXltv2qohzqf8YAG1baX+jAI4CEZMj+hwLHBn7PWZleWD1vCkMEozn27T+EDEYrBrpl1N7XBaM5Fn0MdfolwD+/D4R8Azi8P5DiBXaXBY8f3AVIiW/+37suGK2sqnnrICIiIiIiIiIiIiIiilaiI8kyGK3Ev8f2HLpgNJ4cT0REREREFBmvEW/ZXtYKgtF07/1y+N6PKCZ4xicREREREREF6ILR/D6gyDoYTVJsBqOJAIfNhBw2M9rqiCgch+Y5bMehx8euDmr76oTVZPkKLYcUOKuD0Ry4432FPZX1P2Z8PXkq3is6AkeVfoBfPUMiLqFv5Up4VGXgTr8RkEvuingOip3jhwOv/hTcfupBDDYKqc8wy2A0fPEG1OX/CA6GWvhxZPNn5UOue7zVh6JVG9NHsKIgOEhk1kjBvCMFUx8wsalo39i9X+O2wuvCT2ozGE35qoDng7cjmb5t1tM6M/HmCi/Ov9JEYTEADLAMRQOALvmpkAs+gpozKWwdcs6NkDOvtVUzUUTcnvBjotUGgtEAoH9nwT9Oivx1SUZMAO58EyPnnRHRcklxddb1zlMY6xkc8bo7Ir+pD3yKvdYaMHc40PNwAECqfxeu3f53XL7zH0B2PkT3nm78VOCLN6zXXLABkp0fYb3WlFJ4/CuFy19WKK0A+ncG7j3RwOED9M+tIpvHFCV6gGGxKTMqkYaiyVOLIL0GBbWHCjfTMZZ8C4w4GKnxgcA8n8VzoLC4/n3d88SpfEBFGdTD10FuXQAA8LgE04cLnvom+HF40qiW2V/3MhiNiIiIiIiIiIiIiIjauARHsmV7ZMFo1se15LjzoqqJiIiIiIioo4rTBKOVmxZXFG1GSils1bz3y+Z7P6KY0JzKQ0RERERERB2O7gRc0w/s2Grdl2ovGI2ImoEu3NAGmfY/MSyE2rw6YU3ZfutgtG3OzMANhxMv/mAdBHFc19cxoOfPuKjzfRGXMLBiKZDXC/LMT5BHvoJ0yo14DoqdORMNOBt8kjyyG3Bwr5app62QcVOsO3YWWAZ6qQ9eCD1hfh/IR7shLy6FPPxl4P/9D218oc1k7kRBXIOQjF6ZwPzZgv27CdbcauDbSZ9i8eph+Gz94ejkD77qbpCSIqi9JeHHvfWEZXOm3zoYrciRhuPL/xIUUmIl/+q/QYaNC/xt5n8MuTzENm/YuPATEkVBRICktKaZPCGlaeZtReTAI5Hx7iocVfKe7WUS92XRKTOQXtSvcgUcytcU5VE7VuRIw7zs2/BK0nQgPkTiVojgM/WPK2JWz4dLgfOeDYSiAcCyLcCR95rYsFMf/PbpCnuhcBdNkPqBgs1AlZVCvfYwzCn5wJrFtpeTc/9mGYoGAFlJkf8MxoLAvoGIIMv6/BkUFtf/PVqFpwGAA/7AjS/fhCreVdP+1+MECQ0yMrtnAHMmtFAwmiZTs6yyeesgIiIiIiIiIiIiIiKKVmIjg9FM5Udh1RbLvmw3j4UjIiIiIiKKhFcXjOa3eXXXJlLi340ys9SyL8fdpZmrIWqfGIxGREREREREAQ6ndXtlBbDD+st5ZPEDGqJWI8pgNLnt35ARE2JcDLVpRu1Hhhn+nZZDdhmB8JVFe3NQXqWf6ndPX2x15kRcwgl7XoMcdw6kxwCIwY8wW9oh+wnev9TAsUOAgbmBYIsPLzPgMFomaKHNOGCSvm/dsnp3VUU58N5zIaeTf3wA8cRBuvSCDBwFcWkSJ1qpIXmCL64ycNwQoH9n4Kwxgq+uNtBpX8CIyykY1Xkv+lX+jogeWTaCTtRzd1q2Z/msg9HsEmWiS9eMwG1PHGToWMj084ExxwQPTukEDDywUesjCumwmdoueW0t5MmFkKseBI45E+gxoF4QaigydGyMCmzdJD4Rrx+7yvb4pLh9Nwr+AAB4VCUOKvuuCSqjjuCl5JmAN1HbL2OO1S/8xRswH78pJnU8+bV1yFm3P5vwm8F9pqnwyiJ9MNqBPYCxvYH7Zwtund7MoWjbN0OdPAjq7kuAXdZhz0GS0yFX3A+cNk87pEtq5LU4vn6z5naWJv+usMH5M35tMFqdji/fqrnZNUPw9dUGpg0D9u8KnDFa8OmVBhKbOYyumtdl3V4W4r0jERERERERERERERFRa6ILRiv127jKHoCdVdvgU9ZfjmS786Kui4iIiIiIqCOKM7yW7WVmywajba3cpO3jez+i2NCc9U5EREREREQdji5UqaRIv0xWftPUQkSRiyY8atKJoU+yp45Jah9Laf5dlkN2OgLBaDN/mdwkJUwrfhOIZ2BfazKhn2BCv+gCGDsqSUqF6pQLbN8c3Ll2KdTg0VDz5wFv/TP8XHe9DenU9q8WO7K74I2LQzyO3HH6Pg31+euQQQdZ9/l8UE/cBBRusOzP8jcuGC0nvhIuZ3Dyh5x3C9TKX2vX63JD5j3Y5sLsqG2RU+dB/fd9YOv6+u2X3BXYfnTKBXoPhkw5BwCgSvcAyxcBS76HWvY9sPQHYGdB/UkPmgwcdXpz/QgtznnYdFz46sN4MP38sGNrgtGKa98vP7zlYgzu9VMTVUft2Tp3dyBeH4yG4YeEnuDpW6EGHQg5qP6++derFK551cRXdTL/8tKAw/oJfCbwyXKFHfsuVNglFVi7Xb8K1/kmemcBE/YT3DFDkOwV/HctsNH67QKePFNwxsEtE3CsNq6Cmj0womXk/Fsgp1wZdlx+euT1GDChlIKIIFPzZy5scP6MNhhN+Wtuq08WQI6u3UYPyRO8emHr2F/3anZ5yiqbtw4iIiIiIiIiIiIiIqJoJTisr3hT4ttj2d5QQYiT47Pcbf8YICIiIiIioubkdSRYtpe3cDBaQeVGy/Z4I1EbuE1EkWEwGhEREREREQVEE6qUxeR6olZDF26o4/ZAzrimaWqhts0IH4y2y5GGHY50bCy3/nKhMdau7AMXfIBF2BBRm9Ojv2Uwmlq3DDihd+gA2mp5vYCRhzVBca1QFMFoWPyttks9+b/Ac7dr+9P9O2EIYKrIVwsA+Z2sv2KRHv2BJ78Hfvg48Dc+YBIkt0d0KyGySbLzgad/BH74COqNRyHDDgHGHgvpaR0OJAnJwIgJwIgJEABKqUCo2tIfgN3bgS69gFGHQ0Sa9wdpQZLdFbM6LcWDmkCiuhI9+26U1x5Q0b9yBe7dejkuzbm73tg+FSvx3bqxeDfxSKx094YfDphjpsCnBH7Lf0bNbcsxqO33mwI/IlzexhgTLRNo1VHtFS/g1QejiWEAz/wMdfow7Rh11VTgoyKIJ3BVxFWFCoffY6K8wUXoN+4Cnv42+IUvVChatVWFgXlXFih8cqUDLy+0fgF1O4Gpw5pm26F8VcCiT4GkNKDXoJqft6a/rDTyULSLb4eceImtsZ0SgTgXgn6v2rmVCQGA0j1AYgqykgVA8O9tm+1gNF/tnYWfQO3eAUnJsFdMM/Jq3sqV+6zbiYiIKHoi0gPAMAC5ABIBbAGwHsA3Simbey1ERERERERERNSQNhjNby8YbasmGC3VmYE4w2vZR0RERERERNZ076NaOhhN994v292lQx2DTdSUGIxGREREREREAY4IQ5XikyCJKU1TCxFFLpJgtG79IOffDOnev8nKoTZMaoMw0jXBaDsdafgoYSL8KnahGQMqlmL+lkuQ79NfLZOozenePxCO1dA7T9meQu59LxCI0hFEE4y2dimUUkFfHKrSPcCL94Zc1HHIVAxyA79aX6gprC6aYDQAkOR04LCZ0U1MFCWJTwQOmQY5ZFrky4oAnbsH/nVgY44YjJ5vrsEad8+Q45KqN1cV9Q+ouGjXw6gQD+7JuAS7jWSMLvsvntp8LpLNYpy455XagW/cEuPKY0sBMGHADwd84oRfHPDDEfw/jLD9ftk3R4N+s+a+Ydnvt91fO8aMYZ1166tus65D32+Kvfdoe414IF4fjAYEQjdVn6HAyl/0f7eTBkBeWwsAOPXx4FC0WPnsd+CHdQqvLLIORjtyAJAaH/sDetTKX6Cung5s2/d+oecg4PbXINlda8dM7apZ2oLbA7liPuTo020vIiLISwuExNnhgD9wY1chkJiCTOvzZ1BYXP936dMFo1XPBwB+H/DFG8BxZ9srphnpgtHKKpu3DiIiovZMRGYAuBzAaM2QnSLyEoAblFI2YnCJiIiIiIiIiKiuREeyZXupv9iyvaGCECfHExERERERUWTijHjL9nKzDKYyYUjLnG+he++X485r5kqI2i8GoxEREREREVFAJKFKAJCR0zR1EFF0bIYbykV/B2bN7TghOxS5Oo+NNE0w2i5HGn72DIl6FQ9smYsTil9DwqRpKP7oTcSpciSb9g4aI2pLpPsAWEeG2Fz+7nfqhX20e54ogtFK9wCFG4Hs/PrtX70NVJaHXFTOvA7Tlgp+3RjdXykvjVdxImpvjOPOxj2PzcTxeS/DL/qvUePd+26U1w9GEwBX7LwPl+ycDwf8aKtbCQEQiAYz4VZVaNSLWQdWN2DOLw68knw8zsp9PGhcmcQB8ZrErDpkzh1Qc4/QD9i+GSs+X4SpHw3D7wWNKNyGA2/VJHcBmDmyCULR1i+HOntU/cY1i6HuuRS49RXgg+ehbjnH9nxy6wLIuClR1dItPYJgNLUvyKxoO5DfB1m6YLQ99e/7dcFoyl/vvvpkAaQVBqPFuQRWG46yJgrrIyIi6khEJBHAYwBOCjM0HcAFAI4XkTOUUu83eXFERERERERERO2ILhhtr1kCU/lhhLlIUkGl9VX6eHI8ERERERFR5LyaYDQFhUpVgTjxNnNFAbr3fgzFJoodngFLREREREREAZEGo9k4aZeImpHdq1vsfyhD0Sg0qQ0ySNcEo/nEhe+8oyz7wplS/Bb+p+hxZN72T8Sf/xdk+bdZh6KlZEQ1P1Gr0r1/9MumZgLDD41ZKW2C2xPdcmuX1NxUe3ZCFRdBfbIg9DKnzoP0Hoz9u0Yf3pKfHvWiRNRKicuNY++/Gd+sOyTkOMPYt+2oKLPsd7bhUDSKneqAOTeq4FXlSPUXWY7ba8QD3sTw8w0/BPLQ55Z9CsA33gPR/19NH4oWiscJTBka20e/WvET1KlDrTt/+Ajq9gsiC0X7v1eiDkUDgH6d7f98DgSCzNTrjwKAPhitztshpRRMTRhh9Xw1fvwMatc22/U0F6/bur2ssnnrICIiam9ExAHgJQSHom0D8AGABQB+RP2E0mwAb4jI2GYpkoiIiIiIiIiondAFoyko7PWXhl2+oHKzZXuWO7cKlCbWAAAgAElEQVRRdREREREREXVEcZpgNAAo9+/V9jWlKrMSO6qsr7LKYDSi2OFZsERERERERBTg0py1qBOX0DR1EFF07ISdORxAt35NXwu1bXVC9tJM62A0APgy3vpcumuOEhza13qZY4vfwbPbzofxzhbIQZOBjM5A5+7BAz1e4IBJkVRN1Dr1GhTY9kZj4gkQpzO29bR27rjolluzBMpXBfOOC6GmdYM6Ohv45j/68cedDTnnBgCNCzc7sAdjj4jaI+k9GCMOyMeU4rcs+w/1/1B7RxOMRmQl3rQ++GavkQB49Aft1CWDDoJcdm+9ti+8Y5DXZy3Gd/+00TU21uSBQLI3Nq+Pyu+H+Y8roP50kH5QZQXwzlO255RbF0DGHteougZFcK6KQ+0LMvvgeQBAZpL176awOBCIBgBrt+vncypf/QbTBL5+235BzcTrsm73mYDPr0l9IyIiIjtuA3B0nftVAOYAyFNKHamUmqWUGgFgEIBv64zzAHhdRDo3X6lERERERERERG1bgkN/8egS/56Qy5b5S7FHc0HSHHdeo+oiIiIiIiLqiOIc+mMsyzTHZja1wqrNULA+Hi7Hw/d+RLHCYDQiIiIiIiIKcEYYjOa1d9IuETUTO8E7XXpBPFGGzlDHUSdkL8O/UztMifVHiwf1FHxypQPLT/0Zr285CW9sOB7/+eM4rFvZB6/v/h8kvr8JkhxIIhIRyImXBE8y9VxIHF9nqO2ThGRg2Pjolj3j2hhX0wZEGYym1i4FnrsDePMJoKoy5Fi55WUY8x6COAOJHflpUa0SADC2d/TLElHrJv/7Ii7e+SBcqv42xVB+zNl8J9SaJYGG8hAHUww8sAkrpLYoXukfL2W7Q588UZccfwGQFHgB+yx+HCZ2/xAFzuxG1xcLM0fWBn8ppaC+fhvmw9dBvfM0VMnuQHtFOdTbT8Kc3gPmCb2g3n0Walch1GuPBMZ+/2EgJOzfDwAL5semsKx8yAc7IeOmNHqqQV3sB78ZMGtuq7JSZCdbj6vyA5uKANNUOPUJ03oQAAf8QW3qgxds19NcvCE+Yiyrar46iIiI2hMR6Qmg4QepM5VS85Wq/8ZFKbUUwGGoH46WAeDGpq2SiIiIiIiIiKj9SHRovthB+GC0gspN2r5sd5eoayIiIiIiIuqovIb+/KLyFgpGK6jcbNluwIFOrtZxTCdRe+Bs6QKIiIiIiIiolXB7Ihsfl9A0dRBRdAwbwWhDxzZ9HdT21Qk8S/fvRJxZhnLDa3vxQfuO3eo7fgT6pF4GteB+YPNaYPgMyNnXQxqE+MkJFwIJKVAfPA9UlgfCCmbNjcmPQtQayIQToBZ9Gtky970PSe+AX4ZFGYyGRZ9CffGGvbGjj6p3NyMRiHMqlPvsh5wAwN/2+xEiB0S0DBG1HeJw4LBH7sN/zpuCB9IuwG9xgzCgYhnO3fUEji59H/j5MKDnQH0wWr8RkAc+Bd57FurFe4F1ywLtWfmAg9et6qjiK/VpUeUJmYjkUxZ5dQ1eOv5PODnv2UbX5YAfu+934Y1fFF7+QWHxZmC/bOA/iyObJzMJmDI08HqqlIL6+/nAO08F7gPAK/OBWxdA3XAysHxRzXLq1j/Vm0f9605g5sXAx6804qeq48zrIKdcGbPg5VHdgc4pwJbd4cc6VJ0gs22b0Cerj3bsks3Amm3Af9eEms8iNO2nz6G+fgcy5pjwBTWTeDeQ4AG8LiDOFfjf6w7879fnvhEREVFoNwJw1bn/lFJK+2GIUqpMRM4E8BuA6h3Rc0TkdqVUiD0OIiIiIiIiIiICALfhgVs8qFQVQX3hgtG2aoLR3OJBqjMjJvURERERERF1JG7xQGBAIfgAtLIWC0bbaNme6e4MhzDKiShW+GwiIiIiIiKiABeD0YjaNCN8wIKMm9IMhVCbV+exJAC6Vm3A756+thaNdwPd0mvvy5CDIUMODrucTD4FMvmUSCslahvGTwXunguYNlMgUjKAoeOatqbWKlww2tjjgK/eCm7fpr/Sbj1JaRBX/VAaEcGQPMH36+xNUe2Q3v7wg4ioTZPu/TEhvwQTVswO6lP3XAoMGg1VUWa9sCc+EAZ7zJmQY85s0jqp7UgoUMD11vsDewcegkhOgSgTL+Z2ewiw8XL09h9TMbn0Q7yYPBOndnk6qH9Y2S/wbk7A7FEDMHtUbfuqQoVJd5v4Y6e9mh49zUBi3L6g0WULa0LRaif8FeriSUDhhvCTLZhvb6XhTD8Pxjk3xGaufVxOwXXHCC5+XoUd66j7B9q+GalJqcg1BJvN9KCxR90Xfl/RofmDq4euAQ4+GiKRBb02lYG5guL7bYS3ExERkS0i4gUwo0Hz38Mtp5T6XUReBzBrX5MTwMkAbo5thURERERERERE7VOiIxk7fduC2kv9xSGXK9AEo2W5c2EIL6RFREREREQUKRFBnOFFmVka1FfeQsFoWyus3/tlu3ObuRKi9o2fpBAREREREVGAyxV+TF3e+Kapg4iiY9g46bgTP1wlGxocfJVfZSO4YJ+BuYBhtI6T8YlaC0nLAgaPsb/AUacHwnQ6ogahZQ3JFffbCgLVSu1k2XzKQZFtt4aU/4oxg5Ojr4OI2o4E/XP9/9m78zg587pO4J9fVd9HJgmZZDKTORjmDoxz4XA43AgoDKcjwq4ggopcHii4glyKuoKK4LGisCgil4DHgqICLgvIrhwLyLVyDMcMMzBXkk53ju5n/8gwSbqfqq6qrj7S/X6/Xnml6/f7Pd/fdyaVTlX183ye6lkPSq79Qv3kyOgyNcSJbKzNP3P7d+3uqtbffbrKd2YnFl33rJt/Pw+d+sckyWP3vDOXznyydk0+uDB49JztJZ9/WSM/cNfF+/nqrzfyyEuO/ntaveuP6xd2EorWR+UJP78sdZ9+35KBDl6SNI+9O+WN30j1kh/N7j0f63nfZtUiCe/aLyTfurbnugDAmveQJMf+UO4jVVV9vsNjXz/v8WP60xIAAADA+jfenKwd3ze7p+1xNxz8Ru34KUO7ltwTAADARjXaqL+WdXp2dYLRvPeDlSEYDQAAgCMGh7tbPzK+PH0AvekkGK1NsAPcYV7o0BmH6z+sr7P7VKFoUKe84m86W/j4n0n5qV9b3mbWsFJKcul96+fe8PGUbTuTi67sfYMt22uHn3n/1t+7mtXhXLn/o2lUsxmZm84P7n133vO1q1N2+IElbAjtgir3703e97b6uRFB4izULhht+lDnr6OnDlR5/B9XHa39rRuef8fXgzmcN3/jiXn0nndlaO5ATjv0zfzh9c/ME/f8ZarX/krt8SODJX/7rPanFNz6qkbOuNO8/t/zZx31t5zKq/4h5ZQzl6d2Kbn3OYuvOzbIrPr7NyYfe3/ucugrPe87kMOtJ2+7qee6AMCa99B5jz/QxbEfTI57EXFpKWXHkjsCAAAA2AAmmvXnWy4ejHZd7fj2ITe2BQAA6NVIi2C0mbnpFe4kqaoqNxz8Zu3cjqHTVrgbWN8EowEAAHDEYJsrdGuUUcFosKYIRqNvjg812HWom2C0fvcC60MZGUt55d+1X/PSN6XxjN9MaRfCswGUp70kmfc6szzjN1PO3n3kwV129158y8n1e5aSr1z8O9lx+Ibjxkfn9uefrn1oPnTt/bPnC9tyyxd25K+/8bjsGJlJ8W8qbAydvMauMywYjYXaBqMdXPz42/ZXee7b5jL5rLmO9vvsly7OQGaPG7vLoa/kbd98Qqa+sCXX/se5edqtr7vj1X/1gXfW1iml5FuvaGTXluPHBxrJe57TyKbRtROOXH75T9P44IE0Pngg5bL7LeteF3UQCt089v//x96fpLv3VwvqVbOtJ/fe0nNdAGDNu+u8xx/p9MCqqqaSfHre8BI+XAEAAADYOFoFo021CUabq2bz7UP1wWinDLkJHwAAQK9Gm62C0favcCfJbYdvzoFqpnbOez/or4HVbgAAAIA1YnC4u/UjLvSGNaXRQf69EBc6Me+5tOPwjR0furuDcADYqMr3PjhVuwVnXrBSraxp5W73TF774VT//LZkel/Kld+fcsUDj87feXf7/4/tbN7WcuqMC07PJ97+vXnt5qfkC8Pn5cxDX8sTb/vLXHDwi0mSkerA0cXb/bASNoxmjz9KHR7pbx+sC8MDSSlJVfMP2f5FgtEOHa5yn9+ay6frbzC4wGuv+6mcd/A/Ws7XvWqvXvj45BV/m2w/PTnz/JRj3hds31TyyV9p5I//Z5V/vy7ZtSV5wveW3G3XGnv9f99Hr9hWF+1cfE2jWhhid/pSgtHSLhjt1gVD1W03Jd+5Ptm/N9l5Zsq2pSdZVzffkMzNpWzr4H8AANAvF8573PqFXr0vJbn0mMcXJXnfkjoCAAAA2ADGWwSj7Zvd2/KYmw7dmMPV4dq5HUOn9aUvAACAjWikUX8t6/QqBKN962Dr8wC994P+EowGAADAEV0Ho40vTx9AbxrN9vMjYykDgyvTCye2ecFo22c7D0a79Ix+NwPrzEnbktu+Uz83OLSyvaxh5cwLUp7ywvrJ8y/rve7ue7SePO/SbJ/9dn75pt9cvFC7OsD60mswmiBxapRSMjpYH4K2WDDan/1r1XEo2tDcgTxq799032CS6rmPOPLF1lOSl7wx5ZKr7pjbOl7y/IetsSC0Y5TnviZldOU+q7poZ0kWiWutCzLbdbj3YLS5tAlE33vLHV9Wc3OpXvMLydtec9yS6ooHpPzKG1K2bO9672rvLale8Pjk4x848vjie6f82ltT2gTPAgBLV0rZmmTrvOGvdVlm/vpze+8IAAAAYOOYaE7Wjt92+ObcdKj+nLovTX+uZb3tQ0u/iQ0AAMBGNdoiGG1mBYLRpmb3ZmZu+o7HX5n5Yu26yeZJGWtOLHs/sJEIRgMAAOCIbsM4VvBiU6ADiwWjjZ+0Mn1w4ivHX2x/8uFvd3TYve6S7Ni0doMSYE1oF7Az1GVI7UZ14d2PhLXc/K3uj73q6tZzp5+bnHlBcu3nFy1THvvT3e8NnJh6DUYbGu1vH6wbY0P1IWhTB6okrV9Lv+Bd7QO4jvVTt742W+Zu7aG7Y9z8rVTPelCqxzw95eE/lnLu9yx6SDWzP3n3G1Ld1MO/0f3w4Mev6Ha7O7hupVktDEY781C3OSZHnTzbImA3SfbddvTrv/7jBaFoSZJ/e1+qZzwg5U2f6Xrv6uVPvSMULUnyqQ+leumTUn77f3RdCwDoyuZ5j/dXVTXVZY35V+n6YQEAAABAByaam2rHv37gy3nhl3+iq1pbB07OcGOkH20BAABsSCON+nNzlzMY7eszX84brn9Vrjt4bUfrdwztWrZeYKNqc0thAAAANpSBwe7WjwhGgzWlscjHPOP1dy+EBeY9l3bM1t/dcr4HXyQUDRbVbBNiOSgYrROl2Uwe/uTuj3vzZ1MmWl/3W0pJecRTFi/0mJ9KOeduXe8PnKB6DkbzPZ16Ey2eGvsOtD7mzz4ylxv2LF77fuclv/uA6/LKCz+anHl+/aJzLk55782LF/uud/xhqqfdK9W/vKvtsmr/3lRPvjzV7/xM8me/0Xn9bgy1uVBk4qSUsZV9z7t9U8m529uvaaY+GO3UQ9d1vd/FM5/KttmbWs5Xf/nbR36fm0v1F69sXejr/y/V22tC09qopqeSj7534cTH359q7xJD+ACAxcy/lfR07ar25h+z5BdOpZTtpZTd3fxKcpel7gsAAACwkiYG6oPRerF9qIO77gAAANDSSGOsdnx6dnmC0aZnp/K7X39Bx6FoSXLK0GnL0gtsZILRAAAASHIkDCKDQ50fMFKfsg+skkabsJ0kGW8dBgPHKcd/ZLj98Lc7OuziXYLRYFHtAnYEo3WsPPEXklPv3PkBZ16QcloH194+5unJPR/Wev7+j015zu90vi9w4usxGK34nk4Lky2yvfbO1I9XVZWfe2vVtuZdT02+/puNvO+5zTz78aen+bI3pfHGT6W89sPJ1h1HF95pZ8rz/zhldDzlRX/eedOzh1P9zs+kOnSw5ZLqdS9Lvvnlzmt2qzmQ7Dyz9fz21bnL4mMua/8eaOfh6xeMlSSP2/uOtse9/NElp24++njL7M3579c9tX0zt92UamZ/8pl/TW74Wtul1at+PnOPvzDVezp8Hnzp00ndn//sbPLv/9pZDQCgV/OD0Vq8cmxrfjDa/Jq9+Okkn+ny11/3YV8AAACAFTPe7F8w2ilDq/PzLAAAgPVitFkfjDYz18v9xRb3qX3/J9Nz3YWu7RCMBn3X423OAQAAWJcGh+svdKwzLBgN1pTmIsFoE/07SYd1rnF8MNpJc7dlaO5ADjbaB3zczef3sLhGm3uVdBNQu8GVsYnkTf+e6n71P9xcsP6xT+9s3eBQ8pvvTP7v/zoSALLt1GTztuQ71yfbd6Xc7Z5LaRs4EfUYjOZ7Oq20Ckbbd6B+/PrbkpunWtf7u2c18oALkpHBhQFd5YLLk7/8bPLRfzgSfnzl96eMjh+Ze9A1qT7wjuRf3tlZ4zddn+o1v5Bc/H3JRXdP2XnWHVPVgenkLa/qrE6vtp2ajIy3nl+lYLSfvE/J7/5TlQOH6+cfNPW+2vEf2vP2/N7WZ7as+4sPKfmJ+5R88Lm/nIPXfikP2fePmajaPBG+6/9+MNWH/kcnrSff/HKqlz81ueHryennJrvOSTn/0vq1VZtwviIgGwBWWPvU3P4dAwAAALDhbR/c2bdapw2f1bdaAAAAG9FIo1UwWnfhZZ268dA3uz5m13AXN38HOiIYDQAAgKMGh5Ps7WztkGA0WFMGBtvPjwlGo1NlwaNLZz6Zj45d2fKI7ZPJ2duWuS1YDxptQiwH24cPcrzSbCbvviHVD+yoXzA8mtzplJTHPD151E92XreU5JKrjvwC6DUYbcj3dOpNtHhq7J2pH//GLa1rPesBJT9wt/ahVGVsIrn/Y+vnXvj6VNt3Je/9y+S277StkyR5xx+lescfHQn+e/YrUx71E6lu/U6qRywtIbn8+ItS/elL2i9aLPhs052W1EOvztpW8uKrS37pHQuzRgZzOD984N21x91j+n/nggOfz+eHL1gw99mXNNJolGwdTx5R/a9k70c77qd67tXJ6ETn/wHJcf/vqwc8LuXFbzzyeui4RbJUAGAV7Zv3uJcfzs0/Zn5NAAAAAGpsGdyW88fuli/s//SS6ow0xnLZ5L371BUAAMDGNNKo/3H59DIFo+073OE1trc7eXBnzh2767L0AhtZY7UbAAAAYA0ZHOp87bBgNFhTFvv7O3HSyvTBia+xMFzhcXvf0faQx15e0qg5Dpin2ToYrbSZo16Z3JzyW3+dHBveMTSc8rI3p7z35jTe8vmUH37OwnAPgE71+r1Z2CUtTI7Uj+89UD/+zVtb1/q1Ry3t37cyPJrGs1+R8rffSHnl33V+4KGDqV75rMxdNbzkULQkyZkXpDzzv7Zfc/q57QMHxyeX3kePfv7BJddcsfDP4kWPGsxZ/+MTKa/+pwVhZSXJH17/zAzPHZ+I99qhV+WCncfUmj3cfUPTS8g5ed/bk7/5k4Xj1Vybg7zOAoBltlaD0f4gyV27/PXIPuwLAAAAsKKeeuovZvf45Wmkt58d7xw6Iz97+q9mtDnW584AAAA2ltHGeO34zHIFo83u6WhdScmdR87Ps09/cRpFhBP0W4+3OQcAAGBd6iYYrd0FqcDKG1jk7+/4ppXpgxNfzQfx1+z5q/zi9l9P1eJD+h+5u4vhoSNNH8n3W7nHQ5M3fSbVe/48ZXA4uc8jU87evdptAetFr9+3u3lvzYYyOVKSVAvGp2YWrk2Sb96ycG2SnLIpmRjpz2vwUkqqKx6YnHVh8tXP9aVmV3acnnL/xyTnXZrq2Q+uXVIe/PhUb/291jXGVy8IfKBZ8hdPTR5zWfI/v5gMDSQ/cNeSB110+5/PJVclr/to8k9vTfWta1POuiDVvtty1Rt+PZ/90vfkdZufnENlINfs+atcsmMmyc8dLX740Ir/91Rve01y9VOPD5Y92OIJmvQW3gYAdOO2eY/HSinjVVVNdVFj+7zHbeJ3O1NV1Y1JbuzmGMH1AAAAwIlovDmZZ+x6YQ7MzWTv4fkf1bQ30hjNxIDzNgEAAPphpFF/H7GZuenMVXN9DyVrFYx2n80Py4O2POqOx2PN8Yw1J2rXAkvnKiwAAACO6ubi7eFebkoPLJvF/v4KRqNTjYU/DDjt8HW5//4P5H3jD1gwd9adknvdZSUag3VAMNqyKLvOSXnaS1a7DWA96jkYTZA49cZbPDX2ztQHoH2jRWTFuTv61NDtSqORvPRNqV7yo8mXPt3f4ovZvutID5feJ3nHl1O9+D8nn/rQkbmhkZSn/1rKFQ9I9a4/blmirPL73Waj5JorSq65on6+7DonefJ/yR1RIO97e6okZx7+el7ynZcdXfi1pJqbO/LnkbQOHbv8/snH3t+n7ue59vNHfp114dGxA9Ot1x88sDx9AABJkqqqbiql3JJkyzHDZyTpJtH2zHmP/9+SGwMAAADYYIYbIxkeGlntNgAAADaskcZYy7kDc9MZbY73db+p2b214ycPnpJtQ30+iRNoqb+RhwAAAJzYurl4WzAarC2LBKOt9oXinEBqgtGS5OU3/koGq4MLxv/r4xppNErNEcACjeZqdwBAN3oORusidJwNZbLFtRL7WmRLXXdL/fhpm/v/+rvc+aKUP/1oyruuTXnth/tev9bwaLL16AlC5eTTUl7zzylv/4+UP/lIyntuTHncM49MjrQ+qemECwLfcXrrub/6/aNfHz5Uu6RcdXXL92198YVPHP/4wEzrtTWhaVVVpfrwuzP36l9I9fpfTXXLjX1uEAA2nPkhaOd0efzZi9QDAAAAAAAAgDVttNn6HMLpuf19329qdk/t+Hhzsu97Aa0JRgMAAOCoIcFocMIaWCR8YeKklemDE1+p/8jwipmP50NfvV9++La35pIDn8qjL03e85xGHne5UDTo2FZ3BgI4ofQajNbNe2s2lFbBaHtb5E5989aqdvzUzX1qaJ7SbKbc6ZSUCy5Pzr2kP0W/56rk7g+sn7vq6pR5AV+llJQdp6ecf1nKsX+Xtu1svceJFoy2fVfLqeptrzn6YPZw/aKhkZS3fL7PTR3Tw5c/c/zAwTbBaDVz1e8/L9XzHp289fdSve5lqa4+PdUXP5lq32197hQANox5/zjnnp0eWEoZT3LxIvUAAAAAAAAAYE0babQORpuZW3iDz6Woqir7ZvfWzo03T7DzFeEE1+PZ/AAAAKxLiwUrHWuoxdW8wOoYXOTv75gPXulQo/W9FC6b+WT+4ronJ1t3pPH0r61cT7BOlP/0C6k+8p6FE/d46Mo3A8DiBnr8UWo3763ZUCZaZObtO1A//v4v1I+ftkzBaMcqL/2LVD+ye2lFTr1zynNemew6J9UvPTb52PuPzt35opSnv7zzfrbvSn1MXE68YLStpySbT05u/fbCueu/mur6r6bsPCuZna0/fmAw2XFGMjKWzPT/TpeZH4x2oPVJY9UNX0v18qcl//zWI38Om7Ym1y4Mbat+/Mqk0Uj5l/6egAYAG8TfJ/mJYx7fr4tjr8rx54h+oqqqG/rRFAAAAAAAAACslNG2wWj9PY9uZm46s6m/semEYDRYUYLRAAAAOGqxYKXvGhhMaTaXtxegO81FPuaZ8MErnSqLLxmbWP42YD3afY/krAuTr37uuOHyA09apYYAaKc0B1oHMbUz1CL9ig1vskXG/K01WVGfva71s++0LX1qqI2y65zk51+d6pXP6vygrTtS3vL55GPvOxKov/vKlLHJI3O//e7kMx858jro9HOTi65MGe4idH/rKa3nRsc7r7MGlGYz1b1+IHn3G+oXfOnTyc6zksOH6uebAymlpNpxenJti/S8pbj+q8c9rL755dZr3/DrR78+OJPccmPrtXNzS2oLADawf0gynWT09sf3LKVcUFXVwjTShZ487/E7+9kYAAAAAAAAAKyEwTKURpqZy8Ibjk73ORhtanZPy7mJ5mRf9wLaa6x2AwAAAKwhnQajDY8uvgZYUaUsEmY1ftLKNMKJr9HBR4ajPsiHXpRmM+X33pvc/7HJSXdKzr0k5Zdfl3L/x6x2awDUWSx8uJVBwWjU2zZR/77t23uTqjo+CO3V728djLZrSwdhxv3wyKel/Pyrk9POTrZsPxLW1c5D/1PKyFjKvR+ecvcHHQ1FS1IajZSL751y9VNTLr1vd6FoSbKpTRrcYu+H16DyvD9qPXnLt4/8Plt/x8kMDB75/R4PXXyjU87srrEk2XPLHV9W7/+r5M2/032NOifgnxMArAVVVe1P8vZ5w89b7LhSynlJHn3M0OEkb+pjawAAAAAAAACwIkopGW2M1c7NzPY3GG1f22C0TX3dC2ivx7P5AQAAWJc6vXhbMBqceEYnVrsDThSlg2C0Mc8n6FXZsj3lpW9KVVWLh1oCsLoEo9Fn21vkCx+aTW6bTjYfc87On3+kdTDaOSf3ubEWSinJo34i5VE/sWBu7qVPSv7xzUcHzjgv5Un/ZfmaOf+yI4Fghw8dP95oJHe52/Ltu0xKo5HqvEuTL35i4eR3rjvy+/z/1u+6/XtTuebZqd7yqvb7POLHU73ld5M9N3fe3C03Zu45D0mu+0ryrWs7P24xXvsCwFK8OMnjk9yekJonl1LeWVXV39QtLqWMJHl9kmPviPSnVVV9aVm7BAAAAAAAAIBlMtIczdTc3gXjM3PTfd1nanbhHknSSDMjLcLZgOXRwVWOAAAAbBhDnQajjSxvH0D/jfrglQ41OvjIUNAeLJlQNIATQLPZ23GDg4uvYUNqFYyWJDcecx7N566vsv9gmzqbVv91RHnhf095+duSH3tBynNfk/L6f0tZxgDlMr4puffDF05c8cCUTVuXbd9ltXlb7XD1upel+rf3JfturT/u9u9NZcLK1l8AACAASURBVPuulNf/W/s9xieT+z+m+94+/oH+hqIBAEtSVdWXk8xPRH17KeWZpZRjw89SSrkwyT8nudcxwzclecnydgkAAAAAAAAAy2e0RSjZ9NxUX/fZN7undnyiOek6EFhhPd7mHAAAgHVpYGjxNUkyNLq8fQD9NywYjQ6VDoLRxtokOgAArBfNHn+UOthh6DgbzsntgtH2JOftOPL1L759ruW6d/702rj3WSkluerqlKuuXrk9n/dHqQ7sT/71H44MXHa/lBf92Yrt33cn1QejJUn1sw9rfdzAMeGLd77oyPeq2cP1a0cnUp71ilR7bkn+57uS2dkemwUA1oDnJ9md5LsvFAaTvDrJC0spH0+yN8nZSS5LcuyZ2AeTPLqqqutXsFcAAAAAAAAA6KuRFsFoM3PTfd1n3+ze2vHx5qa+7gMsTjAaAAAAR3V68fbQyPL2AfTfsEBDOtQQjAYAkKT3YLQhwWjUGx8uGR9Opg4snLvx9vNopg9W+cAX648vJbnvecvX31pXJjen/NbfpNp7a3L4YMqW7avd0tIcnOntuEbzji9Ls5lq26nJDV+rXzs2mTI8mvLSN6Xac3PygXek+q1n9LZvj8qffnRF9wOA9aqqqtlSyjVJ/iTJDx8ztT3JQ1scdmOSJ1VV9cHl7g8AAAAAAAAAllPrYLT9fd1n3+ye2vGJpmupYKWtjdtJAwAAsDYMDXW2TsASnHj8vaVTpSy+ZusJHkAAANCJXoPROg0dZ0Pa3uK8mBv3VkmSf/j3+uC0JLnglGTzWAev19e5Mrn5xA9FS1LOu7S3A48JRkuSbN/Veu3o+NH9Nm1NTjmztz17VN6/L+W8S+74BQAsTVVV+6qqenySH0ryr22W3pzkD5Pctaqqv1+R5gAAAAAAAABgGY22CEabnu1vMNpUy2C0TX3dB1hcj2fzAwAAsC4NdBiMNuQibzjRlGZz8UWQJGXxeymshxACAIBF9RyM1uF7azakbRPJV76zcPzmqSO///Unq5bHvuPp7nu2rpzfY1BYY97zYNvO1mvH5iXxXXB50mwms7O97d2praekvPytKQODy7sPAGxQVVW9PcnbSyl3TnJZklOTjCf5VpJrk3yoqqqDq9giAAAAAAAAAPTVSItgtJm5fgej7a0dH2+2uDMusGwEowEAAHBUp4FnvV4cDsDaN/8i+zpbdyx/HwAAq63nYDRh4rS2dbx+/LvBaP/nq/XBaE/43pLzTynL1BWr4vIH9nbc/DDrHWe0XjsvGK1s2prq/o9L/uktve3drq2f/vVkbi45e3dyt3ulTJzU9z0AgONVVfWVJF9Z7T4AAAAAAAAAYLmNNEdrx6f7HIy2b3ZP7fh4c1Nf9wEW50p2AAAAjhoY6nDd4PL2AcDqmX+RfZ0t25e/DwCA1dZrMJr3zLSxZawkWRh+dsv+5NDhKl+8of64h1+8vH2x8srAQPK6/53qKd/b3YHzwqzLaWfXPKNuN7LwRLDyS69NtWV78i/vSm78euf7jk4k0/sWjt/7B1P+y5+kbNraeS0AAAAAAAAAAADowkhjrHZ8pu/BaHtrxycEo8GK6+AqRwAAADaKMjTc2cLBDgPUADjxNDr4yHCrYDQAYAPoJRht+66UUvrfC+vG5vrzcnLLVJX/+HZyeK5+fvepnlfrUTn3e1Ke+uIuD5r3nu3eP5jUfd8ZGkm2nbrw8KHhNJ79ijT+6j9SXvTnne35kCem8d6b0vjggYW/fuMdQtEAAAAAAAAAAABYVqMtgtGm56b7us/U7J7a8YnmZF/3ARYnGA0AAICjOg08Gxhc3j4AWD3zL7Kvs3XH8vcBALDaeglGe8AP9b8P1pWt4/Xjt+xPPnd9/VyjJOd5Cb5ulSf9UvK4Z3R+wLww63Lyack9H7Zw3fc9ImV4tH2t+zwyOe3sxXt8+I913h8AAAAAAAAAAAD02UiLYLSZuf1926Oqquyb3Vs7N9Hc1Ld9gM4IRgMAAOCoToPRmoLRANatxiIfGQ6PJhObV6YXAIDV1Gx2fUj5yZctQyOsJ1vqz8vJzVPJZ6+vaufO2Z4MD5Zl7IrVVp71ipRn/EaHixe+Zyu/9Nrkyu9PSjnyveuqq1Oe90eLlxoaTnn525NzLm695vn/LeWSqzrrDQAAAAAAAAAAAJbBSKP+RqEzs/0LRpuZ25+5zNbOjQtGgxXXw23OAQAAWLcGhztbNyAYDWDdKosELmzflbLYGgCA9aDZ3Y9Sy0v/MsX7ZRaxdbx+/Jb9yeeur5+7aOfy9cPaUBqN5PE/m+rW7yR/8Yr2i2tCG8vmbSmv+NtU+/cls4dSJrd0vvfZu1Ne/39Sfef6ZP/eZOKkpKqSudnkTjuP9AYAAAAAAAAAAACraLRZfwLmgWomc9VsGqX7GyLPt292T8u5iebkkusD3RGMBgAAwFEDQx2u83YSYN0qi1z0vuP0lekDAGC1dROMNrkluedDl68X1o0tYyVJtWD8xr3Jv3xx4XiSXLhTMPFGUe50Ss2zY/6i1u/ZythE73tv25lECh8AAAAAAAAAAABrz2hjtOXczNx0xpq9nz/3Xftm97acG29uWnJ9oDtu7QsAAMBRQ8OdrRsYXN4+AFg9jUU+MtwuGA0A2CA6DUYb35TyK/89ZWRsefthXThtS/34wcPJdbfWz128a/n6YY3Zsn3xNYu9ZwMAAAAAAAAAAIB1ZqTR+jzdmbnpvuyxb3ZP7XgzAxlpE8wGLI8ubnMOAADAujfYaTDa0PL2AfRm95XJv3904fg5F698L5ywSimp2i04+bSVagUAYHUNtzmB4eJ7p/zsq5JbbkguuCJlcvPK9cUJ7cJTuls/NJA8ZHdZnmZYezafvPiaIhgNAAAAAAAAAACAjWW0TTDa9NxUkg7Ov1vEVItgtInmZEpxLiesNGfMAgAAcNTgYGfrBjpcB6yocs2z68d/9JdWuBNOeI3WHxuWiU0r2AgAwCo668LWc+ddknLO3VLu/iChaHRlYqTkzts6X//Q3cnmMSfTbBidBKO1eb8GAAAAAAAAAAAA69FIm2C0mdnpvuyxr0Uw2njTtVSwGpwxCwAAwFGDw52tE4wGa9N9Hpnc91HHj9330cn3PXx1+uHEVdp8bDgyvnJ9AACsojK5Obn8/vVzZ5y/wt2wntz11M7X/tAVQtE2lFPPSoYW+Xyu3fs1AAAAAAAAAAAAWIcGymCaGaidm5nb35c9pmb31o6PNyf7Uh/oTv3feAAAADYmwWhwQisDg8mL35h87P3JFz6RnH9JcvkDUwZ8BESXGo1ktsWcYDQAYAMp/+kXUn3s/ccPjk4k93rY6jTEurD7tJK//VTV0dp7ni0YbSMpY5Op7vvo5B/f3HpRw3MCAAAAAAAAAACAjaWUktHmWPbN7lkwN92nYLS62kky0dzUl/pAd9xKGAAAgKMmN3e0rAhGgzWrDAymXPn9KT/6vJQrHyIUjd6UNhfajwpGAwA2jnLFA1Oe+5pk4qQjA2ecl/Lyt6XsOGN1G+OEtvvUztaNDiZn3ml5e2HtKc/9/UUWOM0DAAAAAAAAAACAjWekMVo7PtO3YLS9teOC0WB1uDIWAACAozZv62ydYDSAda5NMNrI2Mq1AQCwBpRHPi15xI8n+25NJrektAuRhQ5cfFpJUi267vxTkmbD822jKWMT7Z8dDcFoAAAAAAAAAAAAbDwjjfprmqbnpvtSf2p2T+34xMBkX+oD3XHGLAAAAEedJBgNgCSzh1vPjY6vXB8AAGtEaTRSNm0VikZf3PW05OJdi6+7aKfnGzUEowEAAAAAAAAAALABjbYIRpuZm+pL/X0tgtHGm5v6Uh/ojjNmAQAAuEMZHEomTlp8oWA0gPWtXTDaiGA0AABYilJK/vwpi/+o/sKdK9AMJ57iNA8AAAAAAAAAAAA2npEWwWjTs9N9qT81u7d2fLwx2Zf6QHecMQsAAMDxNm9bfI1gNICNa6T+hwgAAEDn7rar5PvOab/mwp1lZZrhxNJornYHAAAAAAAAAAAAsOJaBaPNzO1fcu25aq5lMNrEwKYl1we6JxgNAACA453UQTBaUzAawIY1Or7aHQAAwLpwzvb2wWf3PHuFGuHE0nCaBwAAAAAAAAAAABvPaHP5gtFm5vZnLnO1cxNNwWiwGpwxCwAAwPEmNy++ZkAwGsCGNSIYDQAA+uHsk1vPXXnnZOfm9sFpbFDFaR4AAAAAAAAAAABsPCON+mC06T4Eo+2b3dNybqI5ueT6QPecMQsAAMDxBoc7WDO0/H0AsDaNCkYDAIB+eOju1sFn11whFI0WGk7zAAAAAAAAAAAAYOMZaYzWjs/MTS+5drtgtPHmpiXXB7rnjFkAAACONzSy+JqBweXvA4A1qfg3AAAA+uLyM5OLdi4cHxpIHne5YDRaKE7zAAAAAAAAAAAAYOMZbYzVjs/M7V9y7anZvbXjA2Uww6WDa26BvnPGLAAAAMcbHF58TXNg+fsAAAAAWMdKKfmDJzbSmJeB9oIfLDl9q2A0Wmg4zQMAAAAAAAAAAICNZ6RFMNr07NKD0fbN7qkdH29OphTndMJqcCU7AAAAxxvuIBhtYHD5+wAAAABY5+5zXsmnX9zIH3ygysyh5LGXlTz0rk6goQ3BaAAAAAAAAAAAAGxAo836YLSZuX4Eo+2tHZ9oblpybaA3gtEAAAA43qBgNAAAAICVcuHOklf/iDA0OlQEowEAAAAAAAAAALDxjDRGa8cPVgcyW82mWZo9156a3VM7PtGc7LkmsDTOmAUAAOB4QyOLrxkcWv4+AAAAAIDjNZzmAQAAAAAAAAAAwMYz2hhvOTczt39Jtfe1CEYbb25aUl2gd86YBQAA4HiDw4uvaQ4ufx8ArD3D9XdWAQAAYIUUp3kAAAAAAAAAAACw8Yw0Wl/XtNRgtKnZvbXjE4LRYNU4YxYAAIDjlKGRxRcNCEYD2JBO2rbaHQAAAGxsDad5AAAAAAAAAAAAsPGMNMZazk3PTi+p9r7ZPbXj483JJdUFeueMWQAAAI43NLT4GsFoABvT3R+42h0AAABsbMVpHgAAAAAAAAAAAGw87YLRZuamllR73+ze2vGJ5qYl1QV654xZAAAAjjc0sviagYHl7wOA1fODP1Y7XJ743BVuBAAAgOM0mqvdAQAAAAAAAAAAAKy4wcZgBspg7dz03PSSak/N7qkdn2hOLqku0DvBaAAAABxvcHjxNQP1Hx4BsD6UJ/xcsnXH8YOPeErK6eeuTkMAAAAc0XCaBwAAAAAAAAAAABvTSGOsdnxmbn/PNeeq2UzN7qudG29u6rkusDQDq90AAAAAa8zQyOJrBoaWvw8AVk0547zkv30wee+bU934tZRL7pM88JrVbgsAAIBSVrsDAAAAAAAAAAAAWBWjjbHsm71twfjM3HTPNffPTaXKXO3chGA0WDWC0QAAADje0PDiawYGl78PAFZVOeXM5EefF5fcAwAArB1FMBoAAAAAAAAAAAAb1EhjtHZ8enaq55pTs3tbzo03J3uuCyxNY7UbAAAAYI0RjAYAAAAAAAAAAAAAAAAAwBoy0hirHZ+Zm+655r42wWgTzU091wWWRjAaAAAAxxsUjAYAAAAAAAAAAAAAAAAAwNox2mwVjLa/55pTs3tqxwfLUIZKB9fbAstCMBoAAADHGxpZfI1gNAAAAAAAAAAAAAAAAAAAVshIoz4YbXoJwWj7WgSjjTcnU0rpuS6wNILRAAAAON5I/QdDxxkYWv4+AAAAAAAAAAAAAAAAAAAgyWiLYLSZpQSjHa4PRptobuq5JrB0gtEAAAA43hnnJc2B1vOlpDSbK9cPAAAAAAAAAAAAAAAAAAAb2sgyBKNNze2tHReMBqtLMBoAAADHKWOTye4rWy8YGFy5ZgAAAAAAAAAAAAAAAAAA2PBGWwSjTc/2Hoy2b3ZP7fh4c7LnmsDSCUYDAABgoZ1ntZ4TjAYAAAAAAAAAAAAAAAAAwAoaaYzWjs/MTfdcc2p2b+34RHNTzzWBpROMBgAAwEJDw63nmoLRAAAAAAAAAAAAAAAAAABYOaPNsdrxmbn9Pdfcd3hP7fh4c7LnmsDSCUYDAABgocE2wWgDgtEAAAAAAAAAAAAAAAAAAFg5I436YLTppQSjzdYHo000N/VcE1g6wWgAAAAsNNQmGG1waOX6AAAAAAAAAAAAAAAAAABgw2sVjHaoOpjD1aGeak7N7a0dF4wGq0swGgAAAAsNjbSeGxhYuT4AAAAAAAAAAAAAAAAAANjwRhqjLedm5qa7rjdXzWb/7L7aufHmZNf1gP4RjAYAAMACZXC49WRzcOUaAQAAAAAAAAAAAAAAAABgwxttjLecm5ntPhht/+xUqlS1cxPNTV3XA/pHMBoAAAALDQ61nhsQjAYAAAAAAAAAAAAAAAAAwMoZaY62nJuem+q63r7ZPS3nxpuTXdcD+kcwGgAAAAsNj7SeE4wGAAAAAAAAAAAAAAAAAMAKGm2MtZybmZvuul67YLSJ5qau6wH9IxgNAACAhQaH28wNrVwfAAAAAAAAAAAAAAAAAABseM0ykMFSf43rzNz+ruu1CkYbKsMZarS5zhZYdoLRAAAAWKhdMFpzcOX6AAAAAAAAAAAAAAAAAACAJKONsdrx6R6C0aZm99aOjzcnu64F9JdgNAAAABYaahOMNiAYDQAAAAAAAAAAAAAAAACAlTXSIhhtZrZ/wWgTzU1d1wL6SzAaAAAACw2NtJ4bGFi5PgAAAAAAAAAAAAAAAAAAIMlIs0Uw2tx017X2ze6pHR9vTnZdC+gvwWgAAAAsNDjUem5gcOX6AAAAAAAAAAAAAAAAAACAJKON0drx6bmprmu1CkabaG7quhbQX4LRAAAAWGhwuPXcQJvQNAAAAAAAAAAAAAAAAAAAWAYjjbHa8Zm56a5rCUaDtUswGgAAAAsNjbSeG5tcuT4AAAAAAAAAAAAAAAAAACDJaItgtOm5/V3XmprdWzsuGA1Wn2A0AAAAFhoabj03LhgNAAAAAAAAAAAAAAAAAICVNdIiGG2mj8Fo403X0cJqE4wGAADAQoNtgtHGfKADAAAAAAAAAAAAAAAAAMDKahWMNj3bfTDavtk9tePjzU1d1wL6SzAaAAAACw0OtZwqgtEAAAAAAAAAAAAAAAAAAFhho836YLSZue6C0War2eyf21c7N9F0HS2sNsFoAAAALDQ03HpOMBoAAAAAAAAAAAAAAAAAACtspNEqGG26qzr7Z/e2nJtobuqqFtB/A6vdAAAAAGtQaZOjfadTVq4PAAAAAAAAAAAAAAAAAABIMtIYrR3fP7cvew7f2nGdGw9e13JOMBqsPsFoAAAALHTyacmW7cktNx4/PjSc3P1Bq9MTAAAAAAAAAAAAAAAAAAAb1mhjrHZ8anZvnv+lJ/dlj/HmZF/qAL1rrHYDAAAArD2l0Uiu/vGFEw/+kZSJk1a+IQAAAAAAAAAAAAAAAAAANrSRFsFo/TJcRjLYGFrWPYDFDax2AwAAAKxN5cdflAyPpfqHNyZzc8l9Hpny1JesdlsAAAAAAAAAAAAAAAAAAGxAyx2MNt6cXNb6QGcEowEAAFCrlJL8519M+c+/uNqtAAAAAMCGUZ7/31L9xk8unHjwj6x8MwAAAAAAAAAAALCGbB3clkaamcvsstTfPnTqstQFutNY7QYAAAAAAAAAALjdlQ9JRicWDJf7P2YVmgEAAAAAAAAAAIC1Y6w5kd3jly1b/btvus+y1QY6JxgNAAAAAAAAAGCNKNt2przib5PTzj4ycNKdUn7md1Kuunp1GwMAAAAAAAAAAIA14Mk7fyZ3Hb8ijT5GJ400RvOIbU/IPTY9oG81gd4NrHYDAAAAAAAAAAAcVS6+V8qbP5fq5huSzSenNNz3DgAAAAAAAAAAAJJktDmen971gkzP7s+th29acr1GaWTb4ClplmYfugP6QTAaAAAAAAAAAMAaVLbuWO0WAAAAAAAAAAAAYE0abY5ltDm22m0Ay0AwGn1VShlMcu8kZyTZmWRfkuuSfKKqqq+uYmsAAAAAAAAAAAAAAAAAAAAAAACsYYLRNrBSypuT/PC84Wurqjqrh1onJ3nJ7fW2tljz4SS/XVXVX3VbHwAAAAAAAAAAAAAAAAAAAAAAgPWtsdoNsDpKKVdnYShar7UeluQzSZ6eFqFot7tXkreXUt5YShnvx94AAAAAAAAAAAAAAAAAAAAAAACsDwOr3QArr5SyOckf9qnW/ZK8K8nQMcNVko8n+XKSzUkuTbLtmPknJtlUSnlUVVVz/egDAAAAAAAAAAAAAAAAAAAAAACAE1tjtRtgVbwyyam3f7231yKllF1J3pHjQ9E+lGR3VVVXVFV1TVVV359kV5LnJDl0zLpHJPnVXvcGAAAAAAAAAAAAAAAAAAAAAABgfRGMtsGUUh6U5Cm3Pzyc5FeWUO4lSbYc8/jDSR5UVdXnjl1UVdWBqqp+L8k1847/uVLKmUvYHwAAAAAAAAAAAAAAAAAAAAAAgHVCMNoGUkoZT/LaY4Z+O8kne6x1bpInHTN0MMmTq6qaaXVMVVXvSvKGY4aGk7yol/0BAAAAAAAAAAAAAAAAAAAAAABYXwSjbSy/nuSs27/+cpIXL6HWE5I0j3n8jqqq/l8Hx/3mvMfXlFJGltAHAAAAAAAAAAAAAAAAAAAAAAAA64BgtA2ilHKvJM84Zugnq6qaXkLJR897/PpODqqq6nNJPnrM0HiS719CHwAAAAAAAAAAAAAAAAAAAAAAAKwDgtE2gFLKcJLX5eif9xuqqvqnJdQ7Jcn3HDN0OMmHuijxgXmPH9ZrLwAAAAAAAAAAAAAAAAAAAAAAAKwPgtE2hhcnOf/2r7+d5OeXWO+u8x5/qqqqqS6O//C8x7uX2A8AAAAAAAAAAAAAAAAAAAAAAAAnOMFo61wp5bIkzz1m6GeqqrppiWUvmvf4P7o8/kuL1AMAAAAAAAAAAAAAAAAAAAAAAGCDEYy2jpVSBpK8LsnA7UN/X1XVm/pQ+px5j7/W5fHXznt8p1LKliX0AwAAAAAAAAAAAAAAAAAAAAAAwAlOMNr69vwk33P711NJnt6nupvnPb6xm4OrqtqXZGbe8ElL6ggAAAAAAAAAAAAAAAAAAAAAAIAT2sBqN8DyKKVclOQFxwy9sKqqr/ap/MS8x9M91JhOMnLM48ne2zmqlLI9ycldHnaXfuwNAAAAAAAAAAAAAAAAAAAAAABA7wSjrUOllEaSP00yfPvQx5L8Xh+3mB+MNtNDjekkW9rU7NVPJ3lRn2oBAAAAAAAAAAAAAAAAAAAAAACwQhqr3QDL4jlJ7nH714eTPLWqqtll3K9aoWMAAAAAAAAAAAAAAAAAAAAAAABYpwSjrTOllLOT/OoxQ79dVdUn+7zNvnmPR3uoMf+Y+TUBAAAAAAAAAAAAAAAAAAAAAADYQAZWuwH6p5RSkrw2ydjtQ19O8uJl2GotB6P9QZK3dXnMXZL8dZ/2BwAAAAAAAAAAAAAAAAAAAAAAoAeC0daXpyV5wDGPf7Kqqull2Oe2eY9P7ubgUspEFgaj3bqkjm5XVdWNSW7ssp9+bA0AAAAAAAAAAAAA/P/27jxaurSg7/3vaZqGZupGhmbmZVQGBwheFTC2BlTkCjJcMWhCKw5xSjDxxqWYFTC5eHMdouvGKFeRJohcCWGSOSgNAkHFNAKCSCOgDI0NNGA3NE3Dkz/qvO+ps6tOndpVu2rvqv35rLUX7HprD2ef53zr9PPutV8AAAAAAAAAWIMHo+2Xp079/5cnuayUcuqEbW7TWD97zjYfrrVeO7X+nsaf33nJ8zvu/Z+otV7Zch8AAAAAAAAAAAAAAAAAAAAAAADsEQ9G2y/nTv3/b0vyvhX2cfs5290vyVun1t/V+PO7tzzGXRvr72y5PQAAAAAAAAAAAAAAAAAAAAAAAHvmrL5PgJ30jsb6V5RSbtRi+wedsD8AAAAAAAAAAAAAAAAAAAAAAABGxoPRaK3W+pEkb5t66ewkD26xiwsb669Y95wAAAAAAAAAAAAAAAAAAAAAAADYbR6MtkdqrefXWkubJck3NnbzgTnve+ucw72wsf69y5xjKeXLknzN1EtXJ3n10l8kAAAAAAAAAAAAAAAAAAAAAAAAe8mD0VjVc5J8YWr90aWUeyyx3U811p9Xa72mu9MCAAAAAAAAAAAAAAAAAAAAAABgF3kwGiuptb4nybOmXjonycWllBset00p5ZFJLpp66dokT93ICQIAAAAAAAAAAAAAAAAAAAAAALBTPBiNdfzbJFdOrT8wyWtKKV82/aZSyg1KKT+e5L82tv+lWusHNnyOAAAAAAAAAAAAAAAAAAAAAAAA7ICz+z4Bdlet9YOllEcneVWScw5eflCSd5ZS/izJXyc5L8n9k9yqsflLk/ybbZ0rAAAAAAAAAAAAAAAAAAAAAAAAw+bBaKyl1npJKeVRSS7O4cPPSpIHHCzzPDfJD9Rav7D5MwQAAAAAAAAAAAAAAAAAAAAAAGAXnNX3CbD7aq0vT3LfJL+R5MoFb31zksfWWh9fa716KycHAAAAAAAAAAAAAAAAAAAAAADATji77xOgX7XWS5KUDvbzd0l+uJTyL5I8KMmdk9wmydVJPpTk0lrr+9Y9DgAAAAAAAAAAAAAAAAAAAAAAAPvJg9HoVK312iSv7fs8AAAAAAAAAAAAAAAAAAAAAAAA2C1n9X0CAAAAAAAAAAAAAAAAAAAAAAAAAB6MBgAAAAAAAAAAAAAAAAAAAAAAAPTOg9EAAAAAAAAAAAAAAAAAAAAAAACA3nkwGgAAAAAAAAAAAAAAAAAAAAAAANA7D0YDAAAAAAAAAAAAAAAAAAAAAAAAeufBaAAAAAAAAAAAAAAAAAAAAAAAAEDvPBgNAAAAAAAAAAAAAAAAAAAAAAAA6N3ZfZ8ADMA50yuXXXZZX+cBAAAAAAAAALCWOfc9mwCVcQAAIABJREFUnDPvfQCwRe7RAwAAAAAAAAB2nvvztqfUWvs+B+hVKeURSV7c93kAAAAAAAAAAGzAI2utL+n7JAAYL/foAQAAAAAAAAB7yv15G3JW3ycAAAAAAAAAAAAAAAAAAAAAAAAA4MFoAAAAAAAAAAAAAAAAAAAAAAAAQO9KrbXvc4BelVLOS/INUy/9bZJr19jl3ZK8eGr9kUneu8b+ANrSIWAItAjomw4BfdMhoG86BAyBFgF9G2uHzklyx6n119VaP9XXyQCAe/SAPaRDQN90COibDgF90yFgCLQI6JsOAX0ba4fcn7clZ/d9AtC3g7i8pKv9lVKaL7231voXXe0f4CQ6BAyBFgF90yGgbzoE9E2HgCHQIqBvI+/QpX2fAACc5h49YN/oENA3HQL6pkNA33QIGAItAvqmQ0DfRt4h9+dtwVl9nwAAAAAAAAAAAAAAAAAAAAAAAACAB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9M6D0QAAAAAAAAAAAAAAAAAAAAAAAIDeeTAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgd2f3fQKwh65I8tTGOsA26RAwBFoE9E2HgL7pENA3HQKGQIuAvukQAOwnn/FA33QI6JsOAX3TIaBvOgQMgRYBfdMhoG86xEaVWmvf5wAAAAAAAAAAAAAAAAAAAAAAAACM3Fl9nwAAAAAAAAAAAAAAAAAAAAAAAACAB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9M6D0QAAAAAAAAAAAAAAAAAAAAAAAIDeeTAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgdx6MBgAAAAAAAAAAAAAAAAAAAAAAAPTu7L5PgFmllOsluXuSeye5XZLzknwuyZVJ3pvkLbXWqzs+5vWTPCjJnZLcNslVST6c5NJa6/u7PNa2lFLuk+SrktwqyQ2SXJ7kg0neWGu9ps9z26ZSys2T3CfJPZJ8SZIbJvlkkiuS/Fmt9b09nt6MUspdMvm+3S7JTZJ8JMkHkryp1vr5Ps9tTHSoGzo0oUOsSou6oUUTWnTscYyPBXSoG8bZxK51iGHQoW7o0IQOHVVKuWMm1+IOSW6Z5Nwk1yb5VJK/yeSaXNHfGQ6DDnVDhyZ0iFVpUTe0aEKLWIUOdUOHJnRoPuMD6IPP+G5o+MSufca7N2YYdKgbOjShQ6xCh7qhQxM6dOxxjI8FdKgbxtnErnWIYdChbujQhA4d5f685WlRN7RoQotYhQ51Q4cmdIhV6FA3dGhCh+bb6fFRa7UMYMkkmE9K8tJM/uO+LliuS/KKJA/v4Li3SvKfk3x8wfHemOQxax7nrkkel+QXklyS5NONY7y/o+t40yRPTvKhBV/Pp5M8O8ndevx+b+x6JLl+km9J8p+SvOOEsVQPrtXPJblNzz8Dj03ypgXn+fGDsXrLFfZ90jU4aTnV57XZ4vdAh7q5jjqkQ9P7PNVBg6aXi/q8Rlv6PmhRN9dRi7Ro58dHj98DHermOu7EONOh3sbHjZM8OMlPJHlOkr9K8sXGsS7q6zr0veiQDunQxq7HPZI8LclrM/lLjZOuR03yP5P8aJIb9HVNevo+6FA311GHdGje/pdpz6LlVF/XpofvhRZ1cx21SIum93uqgw5NLxf1dY229H3QoW6uow7p0M6PD4vFsl+Lz/hxNdxn/Nzzdo9ez4sO6ZAOuUev70WHdEiH3J/X96JDOjTmDm1xfLg/b/H10aFurqMO6VBz3+7Pa3e9tKib66hFWjRv/8v0Z9Fyqq9rs+Xvgw51cx11SIem93uqgwZNLxf1dY229H3QoW6uow7p0M6PjxO/jr5PwFKT5HfX+ED7/SQXrHjchyX5aItj/U6SG7fY/4VJXnXCh0JnP5hJviaTp3Au+/VcneSHt/h93vj1OLgGn1hxLF2Z5Ht6GP83SfLcFud5eZJvaXmMVX++Ti+ntn1devg+6JAO6dAGOpTu/0P2cdu+Plv+XmiRFmnRBlq0S+Oj70WHdGiMHdrm+Mhk4vjtmUxIn3Ssi7Z1DYa06JAO6dDmxkeS71/j5+vdSb5mW9ekz0WHdEiHNjs+1vj5Or2c2tZ16XPRIi3Soo1dj1MddGh62dv56uiQDunQ6MeHxWLZz8Vn/Dga7jP+2HN2j94AFh3SIR1yj17fS3RIh3TI/Xk9LzqkQ2Ps0DbHR9yft8w10iEd0qENjY+4P6/NtdIiLdKiDY6PNX6+Ti+ntnVd+lp0SId0aGPX41QHDZpezFXr0DI/gzqkQzs5PtosZ4chuOcxr38oyXsyievZmTz17yuTnDX1nv89yetLKd9Qa7182QOWUi5M8qIk50y9XDN5yvpfJzk/yf2S3HLqz787yc1KKd9Ra/3iEof5qiTfvOw5raOU8pBMngZ6g8YffSDJ2zL5IbxDJj+81z/4sxsl+c+llLNqrb+2hdPcxvW4VZKbz3n92kwmty/P5Impt0jygIP/Pe38JM8updy61vrLGz7PJEkp5XpJfi/JtzX+6Ioklx6c690yGYvl4M8uSPLiUspDaq1v2MZ5joQOrUmHztChzflMJk+03mdatCYtOkOL5h9nF8ZH33RoTTsyznToqK2NjySPT3Lelo61q3RoTTp0hg6drGYyyX9ZJn+x8JlM/sXcuyS5Tw7HRzL52fyDUsrDa62v2/aJbpkOrUmHztAh1qFFa9KiM7Roc/Z9vlqH1qRDZ+jQHDsyPoD95DN+TTvScJ/xDTt2b8y+06E16dAZOrQ55jx0aCEdOkOH5h9nF8ZH33RoTTsyznToKPfnDYsOrUmHztChk7k/73hatCYtOkOLWJUOrUmHztChzTFXrUML6dAZOjTHjoyP5fX9ZDZLTZK35PApev8zyY8ludsx7719kqdn9ul7f5SkLHm8O2T2qYdvSHKvxvtukOSfZ/JDP/3epy15nCfNOc+a5JpMJjQ6eWJhJk9PbT4V8bIkD53z3psn+X8b7/3CvPdu4Pu88euRyQf56X38fZJnJPlHSc6d896S5FGZxKt5Thu/Hgfn8AuN4157MP7Pabzv3kne1Hjvx5LcdsnjTG/35oMx02Y5exvXo88lOqRDOrSRDmXyH14nNea45Q2N4128jWvS5xIt0iIt2tjvRLsyPvpedEiHxtihbY2Pg2N98phjfXDOn1206a99iIsO6ZAObXR8PDHJX2byu9fDk9x8wXvPT/IvM/kLkOnjfyjJeZu+Jn0uOqRDOrTx34em92Wu+vjrpEVapEWbuR7mq5e/VjqkQzo08vFhsVj2c/EZP46G+4yfe77u0RvIEh3SIR3aSIdizqPN90KHdEiHNvT70K6Mj74XHdKhMXZoW+Pj4Fjuzzv5GumQDunQ5saH+/OWv1ZapEVatNnfiab3Za56/jXSIR3Soc1cD3PVy18rHdIhHRr5+Gj1NfV9ApaaJH+aydP2HtBimx+ZM+C/a8ltn9HY7o1Jbrjg/d8x5wfrzksc50kH0b80yW8m+cEk98/kiYEXdviD+dzGvt6T5NYnbPOvG9v8RZLrbfj7vPHrcRDujyb5V0luvOQ2t0jyzsbx35UlfxFY43rcNbO/FDxywfvPzexfNP7Gksea3uaSTX5du7rokA7p0GY7tMK53T7JdY1jff0mr8cQFi3SIi3aXIt2ZXz0veiQDo20Q1sZHwfH+mQm/9LCy5I89eA6XXDwZ5c0jnXRJr/uoS46pEM6tNHxcf0VtvmqJFc1zuGnNnk9+l50SId0aOO/D03v65JNfl27vGiRFmnRZlu0wrmNbr5ah3RIh4wPi8Wyn4vP+HE03Gf8zHHdozegRYd0SIc226EVzs2cx3Lb6NDhcXTo8Bg6tKPjo+9Fh3RopB1yf96AFh3SIR1yf94QFi3SIi1yj17fiw7pkA65P6/vRYd0SIeMj1ZfU98nYKlJcmrF7Z7fGFwvW2KbezQ+GD+X5B5LbHdx41i/vcQ2Nz/uA6HDUN01kycOTu/rwUtu+4eN7b5vw9/nbVyPWy0b7MZ2XznnOn71hq/HsxrHe+YS29zzYMye3ubzSe66xHbTx7lkk1/Xri46pEM6tNkOrXBuT26c219t8loMZdEiLdKizbRol8ZH34sO6dBIO7Tx6zG1v2P/Bd248er0dTi14nY6pEPN/ehQd+f3c41zePO2z2HLX++pFbfTIR1q7keH5u9vel+XbPLr2uVFi7RIizZzPdY4t9HNV+uQDumQ8WGxWPZz8Rk/job7jJ85pnv0BrTokA7p0GY7tMK5mfNYfjsd0qHmfnRoR8dH34sO6dBIO+T+vAEtOqRDOrSZ67Hm+Y3q/ryDr/nUittpkRY196NF8/c3va9LNvl17eqiQzqkQ5u5Hmucm7nq5bfTIR1q7keHdnR8tFnOCr2rtb5/xU1/rbH+jUts8/gk15taf0Gt9T1LbPcfGuvfWUq54aINaq1X1lqvWWLf63h4cmQcv7nW+oYlt/3Fxvr3dnNK823jetRar6i1Xr3Cdn+epHndlhlPKymlnJvksY2Xm2NsRq31r5K8aOqlszMZ06xJh9aiQ0ePoUNrKqWUzI6FZ3R5jKHSorVo0dFjaNFROzM++qZDa9mZcaZDM8fcxvg4fayPbOM4u0yH1qJDR4+hQ915eWP97r2cxZbo0Fp06OgxdIiVadFatOjoMbRoTWOdr9ahtejQ0WPo0FE7Mz6A/eQzfi0703Cf8YeGfG/MWOnQWnTo6DF0aE3mPFrTIR1qHkOHjtqZ8dE3HVrLzowzHZo5pvvzBkSH1qJDR4+hQ90Z1f15iRatSYuOHkOLWIkOrUWHjh5Dh9Zkrro1HdKh5jF06KidGR9teDDabru0sX5uKeX8E7Z5VGP9mcscqNb6riR/PPXSjZN88zLbbtg/bKy/qsW2f5Dk2qn1B5ZSbrv+Ke2s5ni63QaP9S1JbjS1/j9qrX+55LbNMfvobk6JFemQDnVJhya+Icndptavy+RfrON4WqRFXdrHFhkfm6dDxlmXttkh9ocO6VCXdOioTzTWb9rLWQyfDulQl3SIVWmRFnVJiybMV7ejQzrUpX3skPEB7Cqf8RrepX38+2g2T4d0qEs6NGHOox0d0qEu7WOHjI/N0yHjrEv7OPfK5umQDnVJh45yf97ytEiLuqRFrEKHdKhLOjRhrrodHdKhLu1jh/ZyfHgw2m67bs5r5xz35lLKbZJ8ZWP7N7Y43iWN9Ye12HZT7tBYf8eyG9ZaP5fksqmXzsowvqa+NMfTsWOpA9/aWL+kxbZ/lKPner9SygVrnxGr0iEd6pIOTTyxsf6yWuvlHe5/H2mRFnVpH1tkfGyeDhlnXdpmh9gfOqRDXdKho+7cWP9wL2cxfDqkQ13SIValRVrUJS2aMF/djg7pUJf2sUPGB7CrfMZreJf28e+j2Twd0qEu6dCEOY92dEiHurSPHTI+Nk+HjLMu7ePcK5unQzrUJR06yv15y9MiLeqSFrEKHdKhLunQhLnqdnRIh7q0jx3ay/HhwWi77e6N9euSfGzB++/bWH9brfXqFsd7U2P9Pi223ZQvaax/suX2zfd/+Rrnsuua4+kjGzxWcyz+j2U3PBizb2+8PISxOFY6pENdGn2HSinnJXlM4+VndLHvPadFWtSlfWyR8bF5OmScdWmbHWJ/6JAOdUmHjvqnjfXX9nIWw6dDOtQlHWJVWqRFXRp9i8xXr0SHdKhL+9gh4wPYVT7jNbxL+/j30WyeDulQl0bfIXMeK9EhHerSPnbI+Ng8HTLOurSPc69sng7pUJd06Cj35y1Pi7SoS1rEKnRIh7o0+g6Zq16JDulQl/axQ3s5PjwYbbc9trH+llrrFxe8/96N9cvmvut47z1hf324trF+g5bbN98/hK9p60opN0vy0MbLf7LBQ96rsb7NsXinUsozSyl/UUq5spRybSnlowfrv1NK+cFSSjP4HE+HdKgTI+vQIv84yblT6x9J8oqO9r3PtEiLOrHHLTI+Nk+HjLNO9NAh9ocO6VAndOioUsqPJvmeqZeuS/IrPZ3O0OmQDnViZB0yV909LdKiToysRYuYr25Ph3SoE3vcIeMD2FU+4zW8E3v899HzmPfolg7pUCdG1qFFzHm0p0M61Ik97pDxsXk6ZJx1Yo/nXtk8HdKhTujQUe7Pa02LtKgTI2uRuepu6ZAOdWJkHVrEXHV7OqRDndjjDu3l+PBgtB1VSrlJkic2Xn7hCZs1n1j4Ny0P+4HG+i1KKTdvuY+ufbyxftuW2zff/6VrnMsu+6EkN5pa/1Q29HT9g/9IbP6HYtux2Hz/PVpse5ckF2US4fOTXD/JrQ/WvzvJ05P8TSnlPx78nHEMHTpDh7oxpg4t0vyZelat9bqO9r2XtOgMLerGvrbI+NggHTrDOOvG1jrE/tChM3SoG6PuUCnlxqWULy2lPKGU8rok/6nxlp+utb6tj3MbMh06Q4e6MaYOmavukBadoUXdGFOLFjFf3YIOnaFD3djXDhkfwM7xGX+GhndjX/8+eh7zHh3RoTN0qBtj6tAi5jxa0KEzdKgb+9oh42ODdOgM46wb+zr3ygbp0Bk61I1Rd8j9eavTojO0qBtjapG56o7o0Bk61I0xdWgRc9Ut6NAZOtSNfe3QXo4PD0bbXT+f5DZT659M8lsnbHN+Y/3v2hyw1npVkmsaL5/XZh8b8K7G+tcuu2Ep5U5Jbtd4ue+vZ+tKKaeS/JvGy79aa20+DbIrzXH4mVrr1S330Ry7XX/fbpzkSUn+rJRyn473vU90aEKH1qRDE6WUL0/ygMbLz1h3vyOgRRNatKY9b5HxsVk6NGGcramHDrE/dGhCh9Y0tg6VUs4vpdTpJclVSf4yycVJ/uHU269K8oO11l/s4VR3gQ5N6NCaxtahJZmrXp4WTWjRmrRownz1SnRoQofWtOcdMj6AXeQzfkLD17Tnfx+9KvMey9GhCR1akw5NmPNYiQ5N6NCa9rxDxsdm6dCEcbamPZ97ZbN0aEKH1jS2Drk/r3NaNKFFaxpbi5Zkrno5OjShQ2vSoQlz1SvRoQkdWtOed2gvx4cHo+2gUsqjkvxY4+Un11o/ccKmzacVf3aFwze3uekK++jS6xrrjyml3GjuO2f90zmv9f31bFUp5Zwkv5ejX/f7k/w/GzxsX+PwuiSXJPnZJI9Icv9M/tWm+yV5ZJJfzOwvM/dM8ppSyp1XOMe9pkNH6NAaRtahkzSfVP26WutlHex3b2nREVq0hhG0yPjYEB06wjhbQ08dYg/o0BE6tAYdOtZHkzw5yV1qrb/Z98kMkQ4doUNrGFmHzFV3TIuO0KI1jKxFJzFf3YIOHaFDaxhBh4wPYKf4jD9Cw9cwgr+Pnmbeo0M6dIQOrWFkHTqJOY8WdOgIHVrDCDpkfGyIDh1hnK1hBHOvbIgOHaFDa9ChY7k/bwladIQWrWFkLTJX3SEdOkKH1jCyDp3EXHULOnSEDq1hBB3ay/HhwWg7ppTylUn+S+PlVyf59SU2b4a7+XTKZTTD3dzntr0sk6d5nnZ+kqectFEp5Y5JfnLOH12vlHJuN6e2E34ryf82tf6FJE9Y4V9DaqOPcfizSW5fa/3GWuv/VWv9/VrrpbXWy2qtb621vqTW+n8muXOS/ztJndr2NkleUEopK5znXtKhGTq0nrF0aKGDX6S/p/Gyp3svoEUztGg9+94i42MDdGiGcbaePjrEjtOhGTq0Hh2a74Ik/yzJD5dSbtb3yQyNDs3QofWMpUPmqjumRTO0aD1jadFC5qvb0aEZOrSefe+Q8QHsDJ/xMzR8Pfv+99GnmffokA7N0KH1jKVDC5nzaEeHZujQeva9Q8bHBujQDONsPfs+98oG6NAMHVqPDs3n/rwTaNEMLVrPWFpkrrpDOjRDh9Yzlg4tZK66HR2aoUPr2fcO7eX48GC0HVJKuVMmA3E6lh9I8j211jp/q4W2tc3G1Fr/PsmvNl7+yVLKvzhum1LKHZK8Msl5x+22o9MbtFLKv0vyTxov/3St9fVbPpWNj8OD/3htPr173vuuqbX+dJIfb/zR/ZP84zbH3Fc6NEuHVjemDi3hkUluMbX+qSTP7/gYe0OLZmnR6sbQIuOjezo0yzhb3YA6xA7RoVk6tLoRd+jTSe4ytdwtkzmgRyf5j0muOHjfHZP8XJK3l1K+uofzHCQdmqVDqxtTh8xVd0uLZmnR6sbUoiWYr16SDs3SodWNoUPGB7ArfMbP0vDVDegz3j16O0SHZunQ6sbUoSWY81iSDs3SodWNoUPGR/d0aJZxtroBdYgdokOzdGh1I+6Q+/PWpEWztGh1Y2qRueru6NAsHVrdmDq0BHPVS9KhWTq0ujF0aF/Hx9l9nwDLKaXcOsl/T3L7qZcvT/LQWusV87eacVVjfZUn8zW3ae6zD09L8rAcPpmxJPmVUspjM3k66lszeRLn7Q7e98M5/PD7YJI7TO3rmlrrzJM+Symnlj2ZWuv7W519D0opT8rkqdfTfrnW+gtLbn9q2WPNuR6DH4e11l8rpXxzkkdMvfwjSX63y+PsGh1aSIda0qEZT2ys/26ttfkUaaJFJ9CilkbWoo2Pj7HQoYV0qKWeO8SO0qGFdKilMXeo1vrFJO+f80eXJnlhKeVnk/yHJD928PqdkrymlPKgWus7tnOWw6RDC+lQS2Pu0DLMVR9PixbSopa0aIb56iXo0EI61NLIOmSuGhg0n/EL+YxvaWR/H92aeY/5dGghHWpJh2aY81iCDi2kQy2NrEPmPDqiQwvpUEsjm3ulIzq0kA61NOYOuT9vPVq0kBa1NOYWLcNc9Xw6tJAOtaRDM8xVL0GHFtKhlkbWob2bq/ZgtB1QSvmSJK9Jcs+plz+W5CG11ve02NVehrvWem0p5dFJXp7kK6b+6MEHy3E+nskvDq+aeu2Tx7z3fS1OqbR479aVUn4gyS83Xv71Wuu/arGbda7HrozDn8/R/5D92lLK+bXW48bIXtOhxXSoHR06qpRyxyQPbbz8jFX3t8+0aDEtamdsLdrS+Nh7OrSYDrUzgA6xg3RoMR1qR4cWq7V+JsmPl1I+n+QnDl6+WZL/Ukr5Byv+C0M7T4cW06F2dGhp5qobtGgxLWpHi44yX70cHVpMh9oZW4fMVQND5jN+MZ/x7QzgM35XxqF5jyk6tJgOtaNDR5nzWI4OLaZD7YytQ+Y8uqFDi+lQOwPoEDtIhxbToXZ0aDH35x1PixbTona0aGnmqqfo0GI61I4OHWWuejk6tJgOtTO2Du3jXPVZfZ8Ai5VSzkvy6iRfPvXylZk8yfIvWu7uU431W7U8l5tkNtyDGMi11g8leWCSpyf5/BKbvDbJA5Jc3Xj98o5PbVBKKf8kyW/kaEyfmeRHt3gazXF4o1LKjVvu49aN9U2Mwz/J5GfttOslufcGjjN4OrQcHVqODs11UY7+TvbntdY/W2N/e0mLlqNFyxlri4yP9ejQcoyz5QykQ+wYHVqODi1Hh1p5cpIPT63fL8lDejqXXunQcnRoOTrUirnqKVq0HC1ajhbNdVHMVy+kQ8vRoeWMtUPGBzBEPuOXo+HLGchn/NDujTmOeY8DOrQcHVqODs11Ucx5LKRDy9Gh5Yy1Q8bHenRoOcbZcgbSIXaMDi1Hh5ajQ624P2+KFi1Hi5ajRa2Yqz6gQ8vRoeXo0FwXxVz1Qjq0HB1azlg7tG/jw4PRBqyUctMkr0zyD6Ze/nSSb621vnWFXTaffnnnlts33/+JWuuVc9/Zg1rr1bXWf5bkSzOZEHltkg8m+WySv0/yriTPyuQpqv+o1vr+JPdq7OYtWzvhLSulfFcmkZ7+uX9Oku/f5hP0a60fz9H/QEySO7XcTXMstnmy61JqrV9M8jeNl1v9srMPdKgdHVpMh2aVUkqS72287OneDVrUjhYtNvYWGR+r0aF2jLPFhtIhdosOtaNDi+lQO7XWzyZ5UePlb+3jXPqkQ+3o0GI61I656kNa1I4WLaZFs8xXn0yH2tGhxcbeIeMDGBKf8e1o+GJD+Ywf0r0xi5j3mNChdnRoMR2aZc7jZDrUjg4tNvYOGR+r0aF2jLPFhtIhdosOtaNDi+lQO+7PO6RF7WjRYlrUjrnqCR1qR4cW06FZ5qpPpkPt6NBiY+/QPo2Ps/s+AeY7+NdoXp7ka6devirJw2qtf7Libt/VWL97y+3v2lh/54rnsVG11vcledrBcpKva6z/8TH7LPNe3xWllMckeXYmT6k+7b8mecLBf7C10sH1eFcmT5g87e6ZHZ+LNMdim23b+GxjvflE172mQ6vToVk6dKxvSnKXqfXPZfJLNQe0aHVaNEuLDm1ifOwrHVqdDs0aYIfYATq0Oh2apUMre3djve3PzE7TodXp0CwdWtmo56oTLVqHFs3SomOZr15Ah1anQ7N06JC5aqBvPuNX5zN+1gA/44dyb8xJRj3voUOr06FZOnQscx4L6NDqdGiWDh0y57E8HVqdDs0aYIfYATq0Oh2apUMrG/X9eYkWrUOLZmnRysxV69BKdGiWDh3LXPUCOrQ6HZqlQ4f2Ya76rJPfwraVUs5N8tIkD556+TNJHl6Dc7dAAAAPuklEQVRrfdMau35HY/0rSik3arH9g07Y3045eKrqNzVefl0f57JJpZRHJHlujj4I8UVJHl9r/UI/ZzUzdpqBPNbBLzVfccL+unLLxvrHNnScwdGh7dAhHUryfY31F9RaP7HivvaOFm2HFmnRCccZxfg4jg5tx1jG2UA7xMDp0HbokA4t4fON9Rv0chY90KHt0CEdWsJo56oTLdoWLdKimK8+lg5thw7p0CJjGR/AdvmM346xNHygn/GD//voA6Od99Ch7dAhHYo5j2Pp0HbokA6dcJxRjI/j6NB2jGWcDbRDDJwObYcO6dASRnt/XqJF26JFWrQEc9U6tFE6pEMxV30sHdoOHdKhRYY8PjwYbWBKKTdM8pIkF069fE2SR9RaX7/OvmutH0nytqmXzs7RD4eTXNhYf8U65zMA35Tk1NT662qt7+npXDailPJtmTy58vpTL78syeNqrdf1c1ZJklc21i9sse3X5+iH0KW11o+ufUYNpZRbZvYprh/u+jhDpENbpUP96b1DpZTzkzy68fIz2u5nX2nRVmlRf3pv0RL2fnwcR4e2au/H2YA7xIDp0FbpECe5Q2N9E793DY4ObZUOcawxz1UnWrRlWjRi5quPp0NbpUMssvfjA9gun/FbtfcNH/Bn/OD/PnrM8x46tFU61J/eO2TO43g6tFU61J/eO7SEvR8fx9Ghrdr7cTbgDjFgOrRVOsRJRnl/XqJFW6ZFHMtctQ5tiQ6NmLnq4+nQVukQiwx2fHgw2oCUUs5J8oIkD5l6+XNJvqPW+gcdHeaFjfXvXfLcvizJ10y9dHWSV3d0Tn35qcb603s5iw0ppTw0yX9Lcs7Uy69O8pha67X9nNUZr0ry2an1rzsYY8u4qLHeHNNd+a4cbeRHk7xrQ8caDB3aOh3qzxA69N1Jbji1/v4kf7jivvaKFm2dFvVnCC06yV6Pj+Po0Nbt9TgbeIcYKB3aOh3iJN/cWB/E5P4m6dDW6RCLjHKuOtGiHmjRuJmvnkOHtk6HWGSvxwewXT7jt26vGz7wz/hd+PvoUc576NDW6VB/htAhcx5z6NDW6VB/htChk+z1+DiODm3dXo+zgXeIgdKhrdMhTjK6+/MSLeqBFrGIuepDOrQ5OjRu5qrn0KGt0yEWGez48GC0gSilnJ3keUkeNvXy55M8ttb6qg4P9ZwkX5haf3Qp5R5LbNccxM+rtV7T3WltVynlCUkeOvXSWzN58uNeKKV8Q5IX5+gvSH+YyS8Bn+vnrA7VWj+T5PmNl5tjbEYp5Z5JHjX10nVJfrfDUzt9nAuS/Gzj5d+vtdaujzUkOrRdOtSvgXTo+xrrv73vnVmGFm2XFvVrIC1adJy9Hh/H0aHt2vdxNvQOMUw6tF06xElKKQ9P8oDGyy/u41y2RYe2S4dYZKxz1YkWbZsWEfPVM3Rou3SIRfZ9fADb5TN+u/a94UP/jN+Bv48e5byHDm2XDvVrIB0y59GgQ9ulQ/0aSIcWHWevx8dxdGi79n2cDb1DDJMObZcOcZIx3p+XaNG2aRGLmKvWoW3QIWKueoYObZcOscjQx4cHow1AKeV6mQT1kVMvX5fkcbXWl3Z5rFrre5I8a+qlc5JcXEq54TGbpJTyyBz9F2+uTfLULs9rXQcffMu+99FJfnPqpeuSfF+t9brOT6wHpZSvS/LSJOdOvfz6JN9ea/3s/K168ZRMfjk57aJSyiOOe/PBGH1mjj6h8xm11vcu2OZLSynf3uakSim3yeT6XTD18rVJfr7NfnaNDq1Phw7p0MlKKV+V5P5TL30xycVt97NvtGh9WnRIi+Zua3ycQIfWZ5wd2qEOMSA6tD4dOqRDh0opDyilPOrkd85s99VJnt14+fW11rd3c2bDo0Pr06FDOnTIXHU7WrQ+LTqkRSczXz1Lh9anQ4d0aJbxAfTFZ/z6NPzQDn3GPyXu0RsMHVqfDh3SoZOZ85ilQ+vToUM6NHdb4+MEOrQ+4+zQDnWIAdGh9enQIR065P68drRofVp0SIsOmateng6tT4cO6dDJzFXP0qH16dAhHZq1b+Nj6S+GjfrtJN/ZeO1nklxaSjnVcl+XL/GkyX+byb9gc/OD9QcmeU0p5ftrrX95+k2llBsk+cEkv9TY/pdqrR9Y5mRKKXfI/HF2m8b62Qu+1qtqrR874VBvL6W8LMl/S/LHtdYvzjmX+yb56SSPb/zRz9RaLz1h/53Y9PUopdwvySuS3GTq5Xcn+dEkty6ltDnda2qtl7fZoI1a61+XUn41yU9Ovfz8Usq/TPL/1VqvPf1iKeVeSX4rk7F62sdz8i8Qt03yklLK25P8TpIXHvzyMqOUctMkT8jkyd4XNP7439da/3qJL2uX6ZAO6dBE1x06zhMb66+qtf7tivvaJ1qkRVo0sakW7cT46JkO6dDoOpRsb3yUUm6S5JbH/HFzQvmWC471wSFNrnVMh3RIh47qanzcIckLSinvyOQv0F6U5N21zv9Xlkop907yQ0l+pHFe1xy8ts90SId06Kiuxoe56na0SIu06Kiux0eT+epZOqRDOnTUKMcHsJd8xo+k4T7jD7lHb3B0SId0aMI9ev3RIR3SoQn35/VHh3RodB1K3J83MDqkQzp0lPvz+qFFWqRFR7lHb/t0SId06Cj3522fDumQDh01yvGxtFqrpeclSe1wuXDJY16Y5HONbb+Y5E+T/F6SVyb5uzn7//0k12vxtb2/g6/p4iWO87Gp9/99kjdl8kP6nCSvXnAe/27L3+uNXo9M/kWjrsbSJVu4HtdL8vI5x/5oJh9Az0vyloOxOf3nn0vy9UuO8+a+P5nkDZlMsD07yQsPjvH5Y67D0/tuxJbGpg7pkA5toEPHHPMGmdwoMb2/x/TZgKEsHY4dLdKip3Q4li7ZwvXYSot2ZXz0uXQ4bnRo4ONs09cju9ehbY2Pizq6Jqf67sUGvxc6pEM6tJnr8R1z3v/pg/HxkkxugHhektckufyY/X8myUP67sQWvhc6pEM6tJnrceGc95urPv56aZEWadEGx0fjmOar518XHdIhHTI+LBbLHi4dNtln/MAbvunrkd37jHeP3kCWDseNDunQUzocS5ds4Xq4R28gS4fjRod06CkdjqVLtnA93J83kKXDcaNDAx9nm74e2b0ObWt8XNTRNTnVdy82+L3QIR3Soc1cD/fntft+aJEWadFmrseFc95vrnr+tdIhHdKhDY6PxjHNVc+/LjqkQzpkfCy9zHuSHCNQa72klPKoJBcnudXByyXJAw6WeZ6b5AdqrV/Y/Bmu5SZJvu6E91yZ5Edqrf//Fs6HY9Rav1BK+c5M/mWlx0390a2TfOsxm/1dkifUWv9oxcOel+RBS7zv6iQ/UWv9zRWPwwl0SIeGoKcOPSrJl0ytX5HJRD890CItGoKeWmR8DIQOGWfQNx3SoRG7aU4eH6e9OckP1VrftsHzGS0d0qERM1c9IFqkRSNmvnogdEiHRsz4APaaz3gNHwL36I2bDunQELhHb9x0SIeGwP1546ZDxhn0TYd0aMTcnzcgWqRFI2aueiB0SIdGzFz1QOiQDo3Yzo+Ps/o+AfpTa315kvsm+Y1MBupx3pzksbXWx9dar97KybX3K0kuzeSpnIv8bZKfS3K3of5Qjk2t9apa63cl+T8yGWvH+USSX09y31rrK5fc/buSPC3JG5N8dslt/irJz2TyL5z4j9gN0yEdGoINd2ieJzbWn11r/fwa+2NNWqRFQ7ClFhkfA6VDxhn0TYd0aAT+MJN/Ffe5ST645DafSfL8JN+e5IFuutosHdKhETBXvQO0SItGynz1gOiQDo2I8QGMis94DR8C9+iNmw7p0BC4R2/cdEiHhsD9eeOmQ8YZ9E2HdGgE3J+3A7RIi0bAXPXA6ZAOjZS56gHRIR0akb0aH6XW2vc5MACllHMyeerxnZPcJpOnG38oyaW11vf1eW5tlFJuluR+Se6SyZM6b5jJf8B8KMmf11rf2ePpsYRSyl2S3D/J7ZLcOMnlST6Q5I211mvX2O9ZSe6R5G5Jbp/k/ByOjyuTfCTJn9Zar1jrC2BlOsRQbKpD7AYtYig22SLjY9h0COibDjEGpZQLktwrk3F+iyQ3SvL5JJ9O8vEk70jy7h34l332kg6x78xV7wYtAvqmQ4yB8QGMkc94hsI9euOlQwyFe/TGS4cYCvfnjZcOAX3TIcbA/XnDp0XsO3PVw6dDQN90iDHYl/HhwWgAAAAAAAAAAAAAAAAAAAAAAABA787q+wQAAAAAAAAAAAAAAAAAAAAAAAAAPBgNAAAAAAAAAAAAAAAAAAAAAAAA6J0HowEAAAAAAAAAAAAAAAAAAAAAAAC982A0AAAAAAAAAAAAAAAAAAAAAAAAoHcejAYAAAAAAAAAAAAAAAAAAAAAAAD0zoPRAAAAAAAAAAAAAAAAAAAAAAAAgN55MBoAAAAAAAAAAAAAAAAAAAAAAADQOw9GAwAAAAAAAAAAAAAAAAAAAAAAAHrnwWgAAAAAAAAAAAAAAAAAAAAAAABA7zwYDQAAAAAAAAAAAAAAAAAAAAAAAOidB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9M6D0QAAAAAAAAAAAAAAAAAAAAAAAIDeeTAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgdx6MBgAAAAAAAAAAAAAAAAAAAAAAAPTOg9EAAAAAAAAAAAAAAAAAAAAAAACA3nkwGgAAAAAAAAAAAAAAAAAAAAAAANA7D0YDAAAAAAAAAAAAAAAAAAAAAAAAeufBaAAAAAAAAAAAAAAAAAAAAAAAAEDvPBgNAAAAAAAAAAAAAAAAAAAAAAAA6J0HowEAAAAAAAAAAAAAAAAAAAAAAAC982A0AAAAAAAAAAAAAAAAAAAAAAAAoHcejAYAAAAAAAAAAAAAAAAAAAAAAAD0zoPRAAAAAAAAAAAAAAAAAAAAAAAAgN55MBoAAAAAAAAAAAAAAAAAAAAAAADQOw9GAwAAAAAAAAAAAAAAAAAAAAAAAHrnwWgAAAAAAAAAAAAAAAAAAAAAAABA7zwYDQAAAAAAAAAAAAAAAAAAAAAAAOidB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9O5/AXpnFOxFOo7tAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "from uuid import UUID\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor\n", + "\n", + "\n", + "location_names = {\n", + " UUID('53998a51-60de-48ae-b71a-5c37cd1455f2'): \"Loft\",\n", + " UUID('1bc63cda-e223-48bc-93c2-c1f651779d69'): \"Living Room\",\n", + " UUID('ea0683de-6772-4678-bfe7-6014f54ffc8e'): \"Office\",\n", + " UUID('5aaa901a-7564-41fb-8eba-50cdd6fe9f80'): \"Outside\",\n", + "}\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 10), dpi=300)\n", + " configs = get_known_configs().values()\n", + " for i, config in enumerate(configs, start=1):\n", + " plot = figure.add_subplot(2, 2, i)\n", + " coros.append(plot_sensor(config, plot, location_names))\n", + " await asyncio.gather(*coros)\n", + "\n", + "display(figure)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9f576f5bb8e34cb8ab1d3c09f770d027", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(DatePicker(value=None, description='Start date'), DatePicker(value=None, description='En…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "from uuid import UUID\n", + "import functools\n", + "from concurrent.futures import ThreadPoolExecutor\n", + "\n", + "import ipywidgets as widgets\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor\n", + "\n", + "\n", + "def wrap_coroutine(f):\n", + " @functools.wraps(f)\n", + " def run_in_thread(*args, **kwargs):\n", + " loop = asyncio.new_event_loop()\n", + " wrapped = f(*args, **kwargs)\n", + " with ThreadPoolExecutor(max_workers=1) as pool:\n", + " task = pool.submit(loop.run_until_complete, wrapped)\n", + " return task.result()\n", + " return run_in_thread\n", + "\n", + "@wrap_coroutine\n", + "async def plot(*args, **kwargs):\n", + " location_names = {\n", + " UUID('53998a51-60de-48ae-b71a-5c37cd1455f2'): \"Loft\",\n", + " UUID('1bc63cda-e223-48bc-93c2-c1f651779d69'): \"Living Room\",\n", + " UUID('ea0683de-6772-4678-bfe7-6014f54ffc8e'): \"Office\",\n", + " UUID('5aaa901a-7564-41fb-8eba-50cdd6fe9f80'): \"Outside\",\n", + " }\n", + "\n", + " with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 10), dpi=300)\n", + " configs = get_known_configs().values()\n", + " for i, config in enumerate(configs, start=1):\n", + " plot = figure.add_subplot(2, 2, i)\n", + " coros.append(plot_sensor(config, plot, location_names, *args, **kwargs))\n", + " await asyncio.gather(*coros)\n", + " return figure\n", + "\n", + "\n", + "start = widgets.DatePicker(\n", + " description='Start date',\n", + ")\n", + "end = widgets.DatePicker(\n", + " description='End date',\n", + ")\n", + "out = widgets.interactive(plot, collected_after=start, collected_before=end)\n", + "display(out)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "60091fa7d9ea415985ec53937e422b4a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(DatePicker(value=None, description='Start date'), DatePicker(value=None, description='En…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from uuid import UUID\n", + "import ipywidgets as widgets\n", + "from apd.aggregation.analysis import interactable_plot_multiple_charts, configs\n", + "\n", + "location_names = {\n", + " UUID('53998a51-60de-48ae-b71a-5c37cd1455f2'): \"Loft\",\n", + " UUID('1bc63cda-e223-48bc-93c2-c1f651779d69'): \"Living Room\",\n", + " UUID('ea0683de-6772-4678-bfe7-6014f54ffc8e'): \"Office\",\n", + " UUID('5aaa901a-7564-41fb-8eba-50cdd6fe9f80'): \"Outside\",\n", + "}\n", + "\n", + "start = widgets.DatePicker(\n", + " description='Start date',\n", + ")\n", + "end = widgets.DatePicker(\n", + " description='End date',\n", + ")\n", + "\n", + "plot = interactable_plot_multiple_charts(location_names=location_names)\n", + "out = widgets.interactive(plot, collected_after=start, collected_before=end)\n", + "display(out)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "08a4d937037b45bda2298879df7f80b6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(DatePicker(value=None, description='Start date'), DatePicker(value=None, description='En…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import datetime\n", + "import uuid\n", + "import ipywidgets as widgets\n", + "from apd.aggregation.analysis import Config, configs, interactable_plot_multiple_charts, draw_map, get_map_cleaner_for\n", + "from apd.aggregation.database import DataPoint\n", + "from apd.aggregation.utils import merc_x, merc_y\n", + "\n", + "start = widgets.DatePicker(description='Start date')\n", + "end = widgets.DatePicker(description='End date')\n", + "\n", + "def get_literal_data():\n", + " # Get manually entered temperature data, as our particular deployment\n", + " # does not contain data of this shape\n", + " raw_data = {(53.8667, -1.3333): -1, (53.35, -2.2833): 1, (52.45, -1.7333): 3, (51.5, -0.1333): 6, (51.55, -2.5667): 5, (54.9667, -1.6167): -1, (55.9667, -3.2167): -1, (54.7667, -1.5833): 0, (53.7667, -0.3): 1, (53.7667, -3.0167): 0, (51.4833, -3.1833): 4, (53.2667, -3.5167): 2, (52.0833, -2.8): 2, (52.0167, -0.6): 2, (52.6667, 1.2667): 5, (50.4333, -4.9833): 9, (50.35, -4.1167): 10, (50.5167, -2.45): 9, (50.8333, -1.1667): 9, (56.45, -5.4333): 4, (57.5333, -4.05): -2, (54.5167, -3.6167): 3, (53.0833, 0.2667): 4, (51.35, 1.3333): 7, (50.8833, 0.3167): 8, (58.45, -3.1): 3, (50.1, -5.6667): 9, (58.2167, -6.3333): 4, (55.6833, -6.25): 7}\n", + " now = datetime.datetime.now()\n", + " async def points():\n", + " for (coord, temp) in raw_data.items():\n", + " deployment_id = uuid.uuid4()\n", + " yield DataPoint(sensor_name=\"Location\", deployment_id=deployment_id, collected_at=now, data=coord)\n", + " yield DataPoint(sensor_name=\"Temperature\", deployment_id=deployment_id, collected_at=now, data=temp)\n", + " async def deployments(*args, **kwargs):\n", + " yield None, points()\n", + " return deployments\n", + "\n", + "def draw_map_with_gb(plot, x, y, colour):\n", + " # Draw the map and add an explicit coastline\n", + " gb_boundary = [(-2.6653539699999556, 51.617254950000074), (-2.6937556629999335, 51.59617747600004), (-2.71312415299991, 51.58661530200004), (-2.760487433999913, 51.579779364000046), (-2.7980850899999155, 51.56350332200009), (-2.816395636999914, 51.555568752000056), (-2.8587133449999556, 51.546128648000035), (-2.943348761999914, 51.54254791900007), (-2.9562882149999155, 51.54572174700007), (-2.9641007149999155, 51.552801825000074), (-2.969471808999913, 51.559881903000075), (-2.9746801419999542, 51.56297435100004), (-2.984038865999935, 51.55853913000004), (-3.0102432929999168, 51.53803131700005), (-3.0156957669999542, 51.53164297100005), (-3.0737198559999115, 51.50836823100008), (-3.0764867829999503, 51.50775788000004), (-3.088937954999949, 51.505072333000044), (-3.105620897999927, 51.49721914300005), (-3.1317032539999445, 51.48041413000004), (-3.1350805329999503, 51.47630442900004), (-3.1409399079999503, 51.46478913000004), (-3.1453751289999445, 51.45994700700004), (-3.1524145169999542, 51.45718008000006), (-3.1666560539999296, 51.45600006700005), (-3.1723933579999084, 51.45327383000006), (-3.1727188789999445, 51.453111070000034), (-3.160064256999931, 51.43183014500005), (-3.167144334999932, 51.41046784100007), (-3.1848038399999155, 51.39760976800005), (-3.204009568999936, 51.401597398000035), (-3.218861456999946, 51.402777411000045), (-3.289418097999942, 51.38422272300005), (-3.539173956999946, 51.398504950000074), (-3.557443813999953, 51.40509674700007), (-3.5753067699999406, 51.420436916000085), (-3.6047257149999155, 51.44570547100005), (-3.6631973949999406, 51.476223049000055), (-3.6769913399999155, 51.47703685100004), (-3.695423956999946, 51.47150299700007), (-3.717925584999932, 51.478583075000074), (-3.7376195949999556, 51.49087148600006), (-3.748036261999914, 51.50092194200005), (-3.7494197259999282, 51.50535716400009), (-3.747670050999943, 51.507025458000044), (-3.7445369129999335, 51.50763580900008), (-3.741851365999935, 51.50836823100008), (-3.7493383449999556, 51.52806224200003), (-3.7519018219999225, 51.53306712400007), (-3.758941209999932, 51.54677969000005), (-3.770130988999938, 51.56329987200007), (-3.782215949999909, 51.57664622600004), (-3.7902725899999155, 51.58197663000004), (-3.8077286449999406, 51.589178778000075), (-3.8169652989999463, 51.59650299700007), (-3.8326716789999296, 51.61554596600007), (-3.8416235019999476, 51.621527411000045), (-3.8548884759999282, 51.62384674700007), (-3.8867895169999542, 51.62140534100007), (-3.9623917309999115, 51.61562734600005), (-3.9766332669999542, 51.61188385600008), (-3.989979620999918, 51.60651276200008), (-3.998768683999913, 51.60028717700004), (-3.999908006999931, 51.59088776200008), (-3.9922582669999542, 51.58112213700008), (-3.9818009109999366, 51.571600653000075), (-3.974598761999914, 51.56297435100004), (-4.016184048999946, 51.56297435100004), (-4.016102667999917, 51.56037018400008), (-4.0208227199999556, 51.555853583000044), (-4.026519334999932, 51.554022528000075), (-4.029204881999931, 51.55927155200004), (-4.031971808999913, 51.56313711100006), (-4.0385636059999115, 51.56622955900008), (-4.046457485999952, 51.568426825000074), (-4.0531306629999335, 51.569240627000056), (-4.056304490999935, 51.56704336100006), (-4.065581834999932, 51.55756256700005), (-4.070220506999931, 51.555568752000056), (-4.0768123039999296, 51.55695221600007), (-4.087269660999937, 51.56191640800006), (-4.112131313999953, 51.565619208000044), (-4.121652798999946, 51.56598541900007), (-4.132191535999937, 51.56297435100004), (-4.142730272999927, 51.55695221600007), (-4.156809048999946, 51.54629140800006), (-4.1664119129999335, 51.54254791900007), (-4.176503058999913, 51.544256903000075), (-4.18773352799991, 51.54877350500004), (-4.1967667309999115, 51.54938385600008), (-4.200550910999937, 51.538763739000046), (-4.213368292999917, 51.539129950000074), (-4.272450324999909, 51.554754950000074), (-4.2899063789999445, 51.555568752000056), (-4.293324347999942, 51.55914948100008), (-4.29515540299991, 51.56195709800005), (-4.297352667999917, 51.569240627000056), (-4.278309699999909, 51.578192450000074), (-4.280832485999952, 51.58881256700005), (-4.2897029289999296, 51.601548570000034), (-4.2899063789999445, 51.61701080900008), (-4.255767381999931, 51.62384674700007), (-4.252023891999954, 51.62710195500006), (-4.241281704999949, 51.63934967700004), (-4.234730597999942, 51.644964911000045), (-4.228505011999914, 51.63743724200003), (-4.234730597999942, 51.63743724200003), (-4.234730597999942, 51.631293036000045), (-4.2278539699999556, 51.628119208000044), (-4.22101803299995, 51.62384674700007), (-4.1900935539999296, 51.63027578300006), (-4.139027472999942, 51.63231028900009), (-4.0912979809999115, 51.639878648000035), (-4.070220506999931, 51.66229889500005), (-4.0698136059999115, 51.66893138200004), (-4.070383266999954, 51.67430247600004), (-4.07054602799991, 51.67597077000005), (-4.0754288399999155, 51.677801825000074), (-4.087269660999937, 51.668850002000056), (-4.095448370999918, 51.66510651200008), (-4.106841600999928, 51.66425202000005), (-4.146351691999939, 51.66705963700008), (-4.200550910999937, 51.68585846600007), (-4.214955206999946, 51.679673570000034), (-4.293690558999913, 51.67226797100005), (-4.3152970039999445, 51.67747630400004), (-4.342355923999946, 51.69086334800005), (-4.3664444649999155, 51.70848216400009), (-4.379261847999942, 51.72687409100007), (-4.338042772999927, 51.72333405200004), (-4.319976365999935, 51.72483958500004), (-4.310454881999931, 51.733710028000075), (-4.328724738999938, 51.73297760600008), (-4.3471573559999115, 51.73578522300005), (-4.3625382149999155, 51.74286530200004), (-4.371815558999913, 51.754787502000056), (-4.368763800999943, 51.75698476800005), (-4.362904425999943, 51.76386139500005), (-4.358021613999938, 51.773138739000046), (-4.358225063999953, 51.782131252000056), (-4.365101691999939, 51.789048570000034), (-4.3714900379999335, 51.78595612200007), (-4.379261847999942, 51.77529531500005), (-4.384917772999927, 51.77187734600005), (-4.3929744129999335, 51.763739325000074), (-4.399159308999913, 51.76162344000005), (-4.409331834999932, 51.76316966400009), (-4.417876756999931, 51.76788971600007), (-4.426503058999913, 51.77529531500005), (-4.445790167999917, 51.77326080900008), (-4.449330206999946, 51.76630280200004), (-4.441395636999914, 51.75678131700005), (-4.426503058999913, 51.747300523000035), (-4.460764126999948, 51.73578522300005), (-4.4988907539999445, 51.73484935100004), (-4.574208136999914, 51.74115631700005), (-4.603423631999931, 51.73924388200004), (-4.639230923999946, 51.73318105700008), (-4.6453751289999445, 51.732123114000046), (-4.678212042999917, 51.71743398600006), (-4.680287238999938, 51.692694403000075), (-4.689442511999914, 51.69159577000005), (-4.69163977799991, 51.689886786000045), (-4.69163977799991, 51.685980536000045), (-4.693959113999938, 51.67841217700004), (-4.712310350999928, 51.650091864000046), (-4.721424933999913, 51.652044989000046), (-4.734934048999946, 51.65924713700008), (-4.741851365999935, 51.65607330900008), (-4.759185350999928, 51.644964911000045), (-4.8482966789999296, 51.64630768400008), (-4.86351477799991, 51.64411041900007), (-4.878977016999954, 51.63743724200003), (-4.887806769999941, 51.62995026200008), (-4.8957413399999155, 51.621079820000034), (-4.904774542999917, 51.61383698100008), (-4.923695441999939, 51.608628648000035), (-4.931996222999942, 51.59902578300006), (-4.941029425999943, 51.59650299700007), (-4.946034308999913, 51.59760163000004), (-4.956450975999928, 51.602769273000035), (-5.021595831999946, 51.61603424700007), (-5.0457657539999445, 51.62689850500004), (-5.0366104809999115, 51.63743724200003), (-5.0511775379999335, 51.65692780200004), (-5.100493943999936, 51.66469961100006), (-5.119740363999938, 51.67841217700004), (-5.113433397999927, 51.68528880400004), (-5.0366104809999115, 51.67841217700004), (-5.038726365999935, 51.68183014500005), (-5.04133053299995, 51.68939850500004), (-5.043446417999917, 51.692694403000075), (-5.028675910999937, 51.69293854400007), (-5.002552863999938, 51.68740469000005), (-4.988189256999931, 51.68585846600007), (-4.974598761999914, 51.687933661000045), (-4.941029425999943, 51.70014069200005), (-4.892648891999954, 51.706366278000075), (-4.868275519999941, 51.716782945000034), (-4.8580623039999296, 51.71832916900007), (-4.844838019999941, 51.71381256700005), (-4.844838019999941, 51.720038153000075), (-4.873402472999942, 51.73773834800005), (-4.879017706999946, 51.76203034100007), (-4.8625382149999155, 51.78237539300005), (-4.824330206999946, 51.788275458000044), (-4.824330206999946, 51.79572174700007), (-4.836008266999954, 51.790716864000046), (-4.864979620999918, 51.783270575000074), (-4.921294725999928, 51.78001536700003), (-4.933583136999914, 51.77529531500005), (-4.9172257149999155, 51.77533600500004), (-4.905181443999936, 51.771185614000046), (-4.900542772999927, 51.76211172100005), (-4.906239386999914, 51.747300523000035), (-4.8920792309999115, 51.73940664300005), (-4.895659959999932, 51.728176174000055), (-4.9105525379999335, 51.71820709800005), (-4.988189256999931, 51.70685455900008), (-5.009917772999927, 51.706366278000075), (-5.149240688999953, 51.718085028000075), (-5.166900193999936, 51.71381256700005), (-5.156971808999913, 51.69757721600007), (-5.1686091789999296, 51.68891022300005), (-5.1828507149999155, 51.68927643400008), (-5.180653449999909, 51.70014069200005), (-5.180653449999909, 51.706366278000075), (-5.230132615999935, 51.73004791900007), (-5.2495011059999115, 51.733710028000075), (-5.228138800999943, 51.73395416900007), (-5.213937954999949, 51.73574453300006), (-5.202870245999918, 51.74079010600008), (-5.191151495999918, 51.75104401200008), (-5.176828579999949, 51.75967031500005), (-5.1432185539999296, 51.76386139500005), (-5.125965949999909, 51.76850006700005), (-5.110259568999936, 51.778509833000044), (-5.107085740999935, 51.78807200700004), (-5.112294074999909, 51.81317780200004), (-5.113392706999946, 51.82880280200004), (-5.11750240799995, 51.84369538000004), (-5.125884568999936, 51.85602448100008), (-5.139637824999909, 51.86399974200003), (-5.146473761999914, 51.85716380400004), (-5.16437740799995, 51.86676666900007), (-5.2037654289999296, 51.87018463700008), (-5.221587693999936, 51.87767161700003), (-5.2358292309999115, 51.87103913000004), (-5.2914119129999335, 51.86399974200003), (-5.3109431629999335, 51.86399974200003), (-5.304269985999952, 51.867621161000045), (-5.297352667999917, 51.87018463700008), (-5.297352667999917, 51.87767161700003), (-5.300689256999931, 51.882025458000044), (-5.302561001999948, 51.88523997600004), (-5.300160285999937, 51.888332424000055), (-5.2905167309999115, 51.89199453300006), (-5.2905167309999115, 51.898138739000046), (-5.2983292309999115, 51.91095612200007), (-5.288929816999939, 51.91693756700005), (-5.252837693999936, 51.91864655200004), (-5.234201626999948, 51.923041083000044), (-5.204172329999949, 51.942287502000056), (-5.191151495999918, 51.946600653000075), (-5.16038977799991, 51.94944896000004), (-5.1195369129999335, 51.95892975500004), (-5.088042772999927, 51.97601959800005), (-5.085031704999949, 52.00185781500005), (-5.070790167999917, 52.00185781500005), (-5.070790167999917, 52.00804271000004), (-5.082753058999913, 52.01447174700007), (-5.081206834999932, 52.021185614000046), (-5.070220506999931, 52.02635325700004), (-5.053700324999909, 52.028509833000044), (-5.0266007149999155, 52.027411200000074), (-5.015044725999928, 52.02533600500004), (-4.961740688999953, 52.007513739000046), (-4.942534959999932, 52.007473049000055), (-4.913685675999943, 52.014837958000044), (-4.920521613999938, 52.028509833000044), (-4.9016007149999155, 52.02643463700008), (-4.863189256999931, 52.01699453300006), (-4.841420050999943, 52.014837958000044), (-4.83226477799991, 52.01898834800005), (-4.833851691999939, 52.02875397300005), (-4.8382869129999335, 52.04010651200008), (-4.838002081999946, 52.04901764500005), (-4.83039303299995, 52.05292389500005), (-4.796986456999946, 52.05646393400008), (-4.77757727799991, 52.064886786000045), (-4.7631729809999115, 52.075873114000046), (-4.7386775379999335, 52.100816148000035), (-4.720285610999952, 52.113348700000074), (-4.7065323559999115, 52.11347077000005), (-4.673451300999943, 52.09739817900004), (-4.675689256999931, 52.126939195000034), (-4.637521938999953, 52.13849518400008), (-4.513824022999927, 52.13568756700005), (-4.50226803299995, 52.138373114000046), (-4.495757615999935, 52.14350006700005), (-4.490956183999913, 52.150376695000034), (-4.484283006999931, 52.156317450000074), (-4.454701300999943, 52.16205475500004), (-4.4348038399999155, 52.170355536000045), (-4.415394660999937, 52.18154531500005), (-4.385568813999953, 52.20343659100007), (-4.371245897999927, 52.20929596600007), (-4.3547257149999155, 52.212103583000044), (-4.334339972999942, 52.21283600500004), (-4.315825975999928, 52.21629466400003), (-4.197132941999939, 52.279282945000034), (-4.1390681629999335, 52.33022695500006), (-4.10960852799991, 52.365301825000074), (-4.096262173999946, 52.387884833000044), (-4.0873917309999115, 52.430121161000045), (-4.0789688789999445, 52.45302969000005), (-4.067941860999952, 52.47361888200004), (-4.056548631999931, 52.48786041900007), (-4.0618383449999556, 52.49705638200004), (-4.064035610999952, 52.50918203300006), (-4.062570766999954, 52.52098216400003), (-4.056548631999931, 52.52944570500006), (-4.048491990999935, 52.530462958000044), (-4.0266007149999155, 52.52338288000004), (-4.016184048999946, 52.52195872600004), (-3.998768683999913, 52.52594635600008), (-3.9473363919999542, 52.549261786000045), (-3.9473363919999542, 52.556708075000074), (-3.9744766919999392, 52.55654531500005), (-4.025868292999917, 52.545355536000045), (-4.0531306629999335, 52.54242584800005), (-4.068470831999946, 52.550116278000075), (-4.1141251289999445, 52.58860911700003), (-4.125477667999917, 52.60390859600005), (-4.122222459999932, 52.62872955900008), (-4.105946417999917, 52.653509833000044), (-4.0848282539999445, 52.67267487200007), (-4.067128058999913, 52.68024323100008), (-4.063547329999949, 52.68309153900003), (-4.05882727799991, 52.696600653000075), (-4.056548631999931, 52.70066966400003), (-4.052723761999914, 52.70221588700008), (-4.041981574999909, 52.70465729400007), (-4.001088019999941, 52.72410716400003), (-3.988270636999914, 52.73427969000005), (-4.014719204999949, 52.73232656500005), (-4.031971808999913, 52.723944403000075), (-4.048817511999914, 52.721584377000056), (-4.125152147999927, 52.77830638200004), (-4.144357876999948, 52.802801825000074), (-4.149037238999938, 52.81207916900007), (-4.146229620999918, 52.82021719000005), (-4.128895636999914, 52.82363515800006), (-4.117339647999927, 52.83075592700004), (-4.1197810539999296, 52.84625885600008), (-4.127756313999953, 52.86172109600005), (-4.132191535999937, 52.86831289300005), (-4.131988084999932, 52.882473049000055), (-4.129872199999909, 52.88922760600008), (-4.123605923999946, 52.89325592700004), (-4.064035610999952, 52.919175523000035), (-4.071400519999941, 52.921087958000044), (-4.074574347999942, 52.92279694200005), (-4.0776261059999115, 52.926662502000056), (-4.0891007149999155, 52.918850002000056), (-4.100493943999936, 52.914129950000074), (-4.1105850899999155, 52.915676174000055), (-4.118560350999928, 52.926662502000056), (-4.144398566999939, 52.91478099200003), (-4.171620245999918, 52.91347890800006), (-4.228505011999914, 52.919175523000035), (-4.300689256999931, 52.905585028000075), (-4.317290818999936, 52.89935944200005), (-4.337310350999928, 52.89203522300005), (-4.406605597999942, 52.89252350500004), (-4.4272354809999115, 52.885972398000035), (-4.446197068999936, 52.87592194200005), (-4.4816788399999155, 52.850897528000075), (-4.477935350999928, 52.84833405200004), (-4.475493943999936, 52.84414297100005), (-4.491363084999932, 52.83820221600007), (-4.500965949999909, 52.82680898600006), (-4.501332160999937, 52.81391022300005), (-4.4891251289999445, 52.803168036000045), (-4.501942511999914, 52.794989325000074), (-4.509185350999928, 52.791449286000045), (-4.5164688789999445, 52.789496161000045), (-4.5285538399999155, 52.79047272300005), (-4.5424698559999115, 52.80068594000005), (-4.5639542309999115, 52.80524323100008), (-4.583078579999949, 52.81464264500005), (-4.594634568999936, 52.81679922100005), (-4.606516079999949, 52.81509023600006), (-4.61351477799991, 52.81110260600008), (-4.619211391999954, 52.80654531500005), (-4.626332160999937, 52.803168036000045), (-4.648589647999927, 52.79962799700007), (-4.704497850999928, 52.803168036000045), (-4.719309048999946, 52.79751211100006), (-4.733225063999953, 52.78750234600005), (-4.747425910999937, 52.78343333500004), (-4.762847459999932, 52.789496161000045), (-4.752512173999946, 52.79877350500004), (-4.7514542309999115, 52.80320872600004), (-4.755441860999952, 52.80931224200003), (-4.7492569649999155, 52.81427643400008), (-4.734934048999946, 52.83047109600005), (-4.596058722999942, 52.92841217700004), (-4.580962693999936, 52.93349844000005), (-4.562082485999952, 52.93451569200005), (-4.543527798999946, 52.937933661000045), (-4.523996548999946, 52.944240627000056), (-4.443430141999954, 52.98216380400004), (-4.423695441999939, 53.00263092700004), (-4.358225063999953, 53.02846914300005), (-4.349964972999942, 53.04148997600004), (-4.345692511999914, 53.059475002000056), (-4.343861456999946, 53.10106028900003), (-4.340891079999949, 53.11273834800005), (-4.334339972999942, 53.11676666900007), (-4.3276261059999115, 53.11469147300005), (-4.324696417999917, 53.10789622600004), (-4.320668097999942, 53.10150788000004), (-4.312245245999918, 53.109442450000074), (-4.304758266999954, 53.12099844000005), (-4.303618943999936, 53.12531159100007), (-4.263539191999939, 53.15452708500004), (-4.2523494129999335, 53.159409898000035), (-4.234527147999927, 53.16400788000004), (-4.221302863999938, 53.175034898000035), (-4.200550910999937, 53.20099518400008), (-4.17796790299991, 53.21759674700007), (-4.151519334999932, 53.22809479400007), (-4.122222459999932, 53.23346588700008), (-4.0906876289999445, 53.23517487200007), (-4.08234615799995, 53.23354726800005), (-4.074330206999946, 53.23065827000005), (-4.066883917999917, 53.22907135600008), (-4.054107225999928, 53.234361070000034), (-4.032297329999949, 53.24070872600004), (-4.008900519999941, 53.24445221600007), (-3.974598761999914, 53.261786200000074), (-3.8653051419999542, 53.289129950000074), (-3.8312882149999155, 53.289129950000074), (-3.841420050999943, 53.30744049700007), (-3.870757615999935, 53.32562897300005), (-3.8784073559999115, 53.337591864000046), (-3.859974738999938, 53.33633047100005), (-3.840565558999913, 53.33283112200007), (-3.822987433999913, 53.32656484600005), (-3.8101293609999516, 53.31708405200004), (-3.7905167309999115, 53.323431708000044), (-3.7688695949999556, 53.31915924700007), (-3.748199022999927, 53.307806708000044), (-3.7319229809999115, 53.29287344000005), (-3.7162979809999115, 53.28693268400008), (-3.6022029289999296, 53.28888580900008), (-3.5623266269999476, 53.29441966400003), (-3.372059699999909, 53.350897528000075), (-3.33031165299991, 53.35179271000004), (-3.2923884759999282, 53.34052155200004), (-3.2713110019999476, 53.33055247600004), (-3.262074347999942, 53.32050202000005), (-3.250803188999953, 53.312567450000074), (-3.122222459999932, 53.26227448100008), (-3.107533331999946, 53.25189850500004), (-3.0951228509999282, 53.23932526200008), (-3.0877579419999392, 53.23468659100007), (-3.0845434239999463, 53.23859284100007), (-3.0845434239999463, 53.25857168200008), (-3.0845434239999463, 53.275458075000074), (-3.09593665299991, 53.28713613500008), (-3.1111954419999392, 53.302801825000074), (-3.1354060539999296, 53.33380768400008), (-3.171538865999935, 53.36225006700005), (-3.185210740999935, 53.37726471600007), (-3.186350063999953, 53.39276764500005), (-3.175526495999918, 53.40273672100005), (-3.157297329999949, 53.40875885600008), (-3.1146541009999282, 53.41266510600008), (-3.0942276679999168, 53.41738515800006), (-3.058257615999935, 53.434759833000044), (-3.0355525379999335, 53.43374258000006), (-3.0121964179999168, 53.41669342700004), (-2.9529516269999476, 53.323919989000046), (-2.9351293609999516, 53.309475002000056), (-2.9105525379999335, 53.29633209800005), (-2.8814998039999296, 53.288397528000075), (-2.850575324999909, 53.289129950000074), (-2.849598761999914, 53.29120514500005), (-2.848378058999913, 53.29555898600006), (-2.8449600899999155, 53.300116278000075), (-2.837554490999935, 53.302801825000074), (-2.8286026679999168, 53.302435614000046), (-2.813384568999936, 53.297756252000056), (-2.8061417309999115, 53.296576239000046), (-2.789784308999913, 53.29743073100008), (-2.775502081999946, 53.29987213700008), (-2.7481176419999542, 53.30963776200008), (-2.753651495999918, 53.32245514500005), (-2.750884568999936, 53.33161041900007), (-2.743153449999909, 53.33852773600006), (-2.734486456999946, 53.34442780200004), (-2.7261449859999516, 53.34198639500005), (-2.7174373039999296, 53.34271881700005), (-2.708607550999943, 53.346136786000045), (-2.6997777989999463, 53.35179271000004), (-2.7141007149999155, 53.35236237200007), (-2.764393683999913, 53.34516022300005), (-2.775380011999914, 53.341009833000044), (-2.782378709999932, 53.32636139500005), (-2.799794074999909, 53.32103099200003), (-2.810332811999956, 53.32172272300005), (-2.843658006999931, 53.323919989000046), (-2.886463995999918, 53.33356354400007), (-2.924956834999932, 53.35000234600005), (-2.956939256999931, 53.37055084800005), (-2.980824347999942, 53.39276764500005), (-3.096587693999936, 53.54433828300006), (-3.101918097999942, 53.55805084800005), (-3.0994766919999392, 53.57200755400004), (-3.087635870999918, 53.58771393400008), (-3.021839972999942, 53.65281810100004), (-2.968658006999931, 53.69403717700004), (-2.9603572259999282, 53.69757721600007), (-2.9517309239999463, 53.70807526200008), (-2.9114477199999556, 53.725043036000045), (-2.899037238999938, 53.73541901200008), (-2.9848526679999168, 53.73607005400004), (-3.021473761999914, 53.745794989000046), (-3.049183722999942, 53.769517320000034), (-3.056385870999918, 53.80304596600007), (-3.044911261999914, 53.87848541900007), (-3.056630011999914, 53.90615469000005), (-3.040679490999935, 53.923529364000046), (-3.017567511999914, 53.93195221600007), (-2.925689256999931, 53.95270416900007), (-2.909250454999949, 53.95384349200003), (-2.896107550999943, 53.94773997600004), (-2.8885391919999392, 53.94603099200003), (-2.885365363999938, 53.950506903000075), (-2.881988084999932, 53.95652903900003), (-2.874175584999932, 53.96165599200003), (-2.865142381999931, 53.96548086100006), (-2.8579809239999463, 53.96759674700007), (-2.869252081999946, 53.97882721600007), (-2.8344620429999168, 53.99982330900008), (-2.830067511999914, 54.01601797100005), (-2.8475235669999392, 54.00836823100008), (-2.864857550999943, 54.00429922100005), (-2.895497199999909, 54.00234609600005), (-2.900298631999931, 54.00495026200008), (-2.9160863919999542, 54.026556708000044), (-2.91820227799991, 54.03432851800005), (-2.911284959999932, 54.03998444200005), (-2.9007869129999335, 54.044907945000034), (-2.8920792309999115, 54.050116278000075), (-2.872670050999943, 54.071600653000075), (-2.8588761059999115, 54.08100006700005), (-2.826771613999938, 54.08881256700005), (-2.815174933999913, 54.09878164300005), (-2.795969204999949, 54.12518952000005), (-2.8128149079999503, 54.139878648000035), (-2.8364151679999168, 54.16758860900006), (-2.8509415359999366, 54.18463776200008), (-2.854237433999913, 54.19407786700003), (-2.8328751289999445, 54.19904205900008), (-2.810292120999918, 54.21190013200004), (-2.7952367829999503, 54.22947825700004), (-2.795969204999949, 54.24872467700004), (-2.8028051419999542, 54.24872467700004), (-2.806630011999914, 54.233710028000075), (-2.8208715489999463, 54.22174713700008), (-2.850575324999909, 54.20774974200003), (-2.886382615999935, 54.19627513200004), (-2.904652472999942, 54.18764883000006), (-2.9126684239999463, 54.176988023000035), (-2.9203995429999168, 54.16205475500004), (-2.939198370999918, 54.15509674700007), (-2.9842016269999476, 54.15314362200007), (-2.997710740999935, 54.15957265800006), (-3.011341925999943, 54.17413971600007), (-3.017323370999918, 54.19009023600006), (-3.008168097999942, 54.20034414300005), (-3.015370245999918, 54.21190013200004), (-3.024484829999949, 54.221584377000056), (-3.035755988999938, 54.22597890800006), (-3.049183722999942, 54.22207265800006), (-3.044667120999918, 54.208319403000075), (-3.047840949999909, 54.19432200700004), (-3.053537563999953, 54.181301174000055), (-3.056630011999914, 54.17023346600007), (-3.0610245429999168, 54.16193268400008), (-3.090728318999936, 54.13947174700007), (-3.10765540299991, 54.11855703300006), (-3.117909308999913, 54.10883209800005), (-3.145253058999913, 54.100043036000045), (-3.147450324999909, 54.08869049700007), (-3.1443985669999392, 54.07514069200005), (-3.1453751289999445, 54.063788153000075), (-3.1805313789999445, 54.09284088700008), (-3.1897680329999503, 54.09788646000004), (-3.2057185539999296, 54.098537502000056), (-3.219553188999953, 54.100775458000044), (-3.2311091789999296, 54.105129299000055), (-3.240956183999913, 54.11212799700007), (-3.2381078769999476, 54.12759023600006), (-3.232533331999946, 54.14468008000006), (-3.233143683999913, 54.15916575700004), (-3.248402472999942, 54.16681549700007), (-3.248402472999942, 54.17365143400008), (-3.215199347999942, 54.17983633000006), (-3.206776495999918, 54.20892975500004), (-3.2090551419999542, 54.24274323100008), (-3.207386847999942, 54.263006903000075), (-3.2231339179999168, 54.25763580900008), (-3.231353318999936, 54.24721914300005), (-3.240956183999913, 54.22207265800006), (-3.232167120999918, 54.20254140800006), (-3.247141079999949, 54.19794342700004), (-3.270130988999938, 54.19912344000005), (-3.2860001289999445, 54.19721100500004), (-3.306792772999927, 54.19188060100004), (-3.3285212879999335, 54.204738674000055), (-3.3644913399999155, 54.24249909100007), (-3.394195115999935, 54.26439036700003), (-3.407378709999932, 54.27773672100005), (-3.412912563999953, 54.29376862200007), (-3.41038977799991, 54.30145905200004), (-3.405995245999918, 54.30963776200008), (-3.4041235019999476, 54.31854889500005), (-3.4114477199999556, 54.33274974200003), (-3.4134415359999366, 54.342962958000044), (-3.4163305329999503, 54.344916083000044), (-3.440174933999913, 54.35175202000005), (-3.474273240999935, 54.39350006700005), (-3.497710740999935, 54.40582916900007), (-3.5918676419999542, 54.48309967700004), (-3.608143683999913, 54.488267320000034), (-3.613189256999931, 54.49164459800005), (-3.6236873039999296, 54.50608958500004), (-3.6341853509999282, 54.512884833000044), (-3.6268204419999392, 54.520412502000056), (-3.616200324999909, 54.52757396000004), (-3.61156165299991, 54.52993398600006), (-3.5903214179999168, 54.56464264500005), (-3.5638321609999366, 54.64276764500005), (-3.5301407539999445, 54.68805573100008), (-3.5160212879999335, 54.712876695000034), (-3.5091853509999282, 54.72166575700004), (-3.500721808999913, 54.72597890800006), (-3.478871222999942, 54.730902411000045), (-3.4681290359999366, 54.73529694200005), (-3.455433722999942, 54.745021877000056), (-3.439564581999946, 54.76146067900004), (-3.4309789699999556, 54.780462958000044), (-3.440174933999913, 54.79743073100008), (-3.4075414699999556, 54.85602448100008), (-3.3879288399999155, 54.88336823100008), (-3.3644913399999155, 54.89980703300006), (-3.3449600899999155, 54.90253327000005), (-3.3333634109999366, 54.89728424700007), (-3.3227432929999168, 54.889878648000035), (-3.3064672519999476, 54.88617584800005), (-3.295725063999953, 54.88690827000005), (-3.254628058999913, 54.89980703300006), (-3.267323370999918, 54.905503648000035), (-3.317290818999936, 54.92031484600005), (-3.2914932929999168, 54.93667226800005), (-3.276519334999932, 54.943426825000074), (-3.213612433999913, 54.954413153000075), (-3.2010391919999392, 54.95221588700008), (-3.1936742829999503, 54.94863515800006), (-3.1879776679999168, 54.94448476800005), (-3.1801651679999168, 54.94082265800006), (-3.14281165299991, 54.93353913000004), (-3.122792120999918, 54.93268463700008), (-3.0395401679999168, 54.94717031500005), (-3.021839972999942, 54.954413153000075), (-3.090728318999936, 54.954413153000075), (-3.090728318999936, 54.96124909100007), (-3.0715225899999155, 54.96312083500004), (-3.0562231109999516, 54.968817450000074), (-3.040923631999931, 54.97247955900008), (-3.021839972999942, 54.968085028000075), (-3.021839972999942, 54.97553131700005), (-3.0462947259999282, 54.982123114000046), (-3.0502913779999403, 54.981510325000045), (-3.1354060539999296, 54.968085028000075), (-3.453846808999913, 54.981756903000075), (-3.470692511999914, 54.984442450000074), (-3.486236131999931, 54.989488023000035), (-3.501047329999949, 54.99249909100007), (-3.515288865999935, 54.98920319200005), (-3.5123591789999296, 54.98712799700007), (-3.511463995999918, 54.98688385600008), (-3.510894334999932, 54.985988674000055), (-3.5091853509999282, 54.981756903000075), (-3.5260310539999296, 54.97711823100008), (-3.5418595039999445, 54.98065827000005), (-3.57054602799991, 54.995428778000075), (-3.583607550999943, 54.968085028000075), (-3.5756729809999115, 54.95734284100007), (-3.5706274079999503, 54.937567450000074), (-3.5687556629999335, 54.916001695000034), (-3.57054602799991, 54.89980703300006), (-3.581695115999935, 54.88361237200007), (-3.598378058999913, 54.87799713700008), (-3.691761847999942, 54.88320547100005), (-3.7176407539999445, 54.880845445000034), (-3.739247199999909, 54.859808661000045), (-3.8101293609999516, 54.86627838700008), (-3.8078507149999155, 54.86107005400004), (-3.806792772999927, 54.86090729400007), (-3.803334113999938, 54.85887278900003), (-3.8123673169999392, 54.855169989000046), (-3.8198136059999115, 54.855902411000045), (-3.826079881999931, 54.85993073100008), (-3.8312882149999155, 54.86627838700008), (-3.819976365999935, 54.878566799000055), (-3.815052863999938, 54.87714264500005), (-3.8101293609999516, 54.87250397300005), (-3.8116348949999406, 54.88003164300005), (-3.813221808999913, 54.88312409100007), (-3.8169652989999463, 54.88617584800005), (-3.828846808999913, 54.874986070000034), (-3.8443090489999463, 54.86627838700008), (-3.839751756999931, 54.855902411000045), (-3.8374731109999516, 54.851996161000045), (-3.844105597999942, 54.85097890800006), (-3.8578995429999168, 54.84454987200007), (-3.823841925999943, 54.82469310100004), (-3.833607550999943, 54.82005442900004), (-3.885731574999909, 54.80646393400008), (-3.9641820949999556, 54.771918036000045), (-4.011708136999914, 54.76821523600006), (-4.042876756999931, 54.76947663000004), (-4.042876756999931, 54.77692291900007), (-4.046783006999931, 54.77802155200004), (-4.050200975999928, 54.778550523000035), (-4.053334113999938, 54.77997467700004), (-4.055775519999941, 54.782538153000075), (-4.05296790299991, 54.78546784100007), (-4.050160285999937, 54.78900788000004), (-4.049712693999936, 54.78998444200005), (-4.051747199999909, 54.800034898000035), (-4.0477188789999445, 54.81305573100008), (-4.049956834999932, 54.82322825700004), (-4.063588019999941, 54.82684967700004), (-4.064035610999952, 54.83152903900003), (-4.078602667999917, 54.82412344000005), (-4.09007727799991, 54.809759833000044), (-4.093495245999918, 54.792669989000046), (-4.083851691999939, 54.77692291900007), (-4.122954881999931, 54.77301666900007), (-4.173939581999946, 54.792303778000075), (-4.209136522999927, 54.826239325000074), (-4.200550910999937, 54.86627838700008), (-4.215402798999946, 54.861029364000046), (-4.2397354809999115, 54.843003648000035), (-4.255767381999931, 54.838324286000045), (-4.2707413399999155, 54.83942291900007), (-4.345285610999952, 54.86017487200007), (-4.3569229809999115, 54.86554596600007), (-4.3656306629999335, 54.87250397300005), (-4.375152147999927, 54.88690827000005), (-4.379872199999909, 54.89789459800005), (-4.386789516999954, 54.90477122600004), (-4.402902798999946, 54.90729401200008), (-4.409006313999953, 54.90302155200004), (-4.416818813999953, 54.89280833500004), (-4.423573370999918, 54.88035716400003), (-4.426503058999913, 54.86945221600007), (-4.4172257149999155, 54.84593333500004), (-4.4094132149999155, 54.831244208000044), (-4.402902798999946, 54.82469310100004), (-4.386708136999914, 54.82416413000004), (-4.372425910999937, 54.82184479400007), (-4.35960852799991, 54.81663646000004), (-4.347645636999914, 54.80731842700004), (-4.344471808999913, 54.79450104400007), (-4.353179490999935, 54.78310781500005), (-4.358143683999913, 54.77098216400003), (-4.343861456999946, 54.75641510600008), (-4.356516079999949, 54.741888739000046), (-4.353260870999918, 54.72089264500005), (-4.348133917999917, 54.70197174700007), (-4.3547257149999155, 54.693793036000045), (-4.360340949999909, 54.69159577000005), (-4.365305141999954, 54.68695709800005), (-4.371896938999953, 54.68227773600006), (-4.382394985999952, 54.68008047100005), (-4.405262824999909, 54.682074286000045), (-4.426503058999913, 54.687567450000074), (-4.4518123039999296, 54.69879791900007), (-4.46117102799991, 54.701239325000074), (-4.4967341789999296, 54.70062897300005), (-4.505604620999918, 54.70465729400007), (-4.563628709999932, 54.75641510600008), (-4.596669074999909, 54.77529531500005), (-4.714466925999943, 54.81785716400003), (-4.759592251999948, 54.82534414300005), (-4.781076626999948, 54.83307526200008), (-4.799631313999953, 54.86127350500004), (-4.821034308999913, 54.86664459800005), (-4.859120245999918, 54.86627838700008), (-4.88304602799991, 54.86009349200003), (-4.905873175999943, 54.84979889500005), (-4.925770636999914, 54.83738841400003), (-4.941029425999943, 54.82469310100004), (-4.9496150379999335, 54.81582265800006), (-4.953684048999946, 54.81000397300005), (-4.954823370999918, 54.804754950000074), (-4.954701300999943, 54.79743073100008), (-4.952870245999918, 54.78896719000005), (-4.9479060539999296, 54.777329820000034), (-4.940256313999953, 54.76703522300005), (-4.930165167999917, 54.76264069200005), (-4.923247850999928, 54.75185781500005), (-4.911936001999948, 54.728216864000046), (-4.8959854809999115, 54.70453522300005), (-4.867258266999954, 54.69013092700004), (-4.866932745999918, 54.68146393400008), (-4.872141079999949, 54.663316148000035), (-4.872425910999937, 54.65403880400004), (-4.872059699999909, 54.64923737200007), (-4.859120245999918, 54.63296133000006), (-4.880604620999918, 54.63621653900003), (-4.923491990999935, 54.649725653000075), (-4.944081183999913, 54.652777411000045), (-4.953684048999946, 54.65973541900007), (-4.959868943999936, 54.67552317900004), (-4.958973761999914, 54.69196198100008), (-4.947255011999914, 54.701239325000074), (-4.954823370999918, 54.707464911000045), (-4.958892381999931, 54.714056708000044), (-4.959055141999954, 54.72093333500004), (-4.954701300999943, 54.728501695000034), (-4.973378058999913, 54.729722398000035), (-4.981556769999941, 54.731634833000044), (-4.988189256999931, 54.73529694200005), (-4.992665167999917, 54.74433014500005), (-4.997059699999909, 54.75836823100008), (-5.003285285999937, 54.77130768400008), (-5.0130102199999556, 54.77692291900007), (-5.033192511999914, 54.782416083000044), (-5.1282445949999556, 54.848944403000075), (-5.157134568999936, 54.87909577000005), (-5.175526495999918, 54.91461823100008), (-5.180653449999909, 54.954413153000075), (-5.177601691999939, 54.99054596600007), (-5.170806443999936, 55.008693752000056), (-5.156727667999917, 55.01654694200005), (-5.1356095039999445, 55.01585521000004), (-5.124582485999952, 55.016791083000044), (-5.119740363999938, 55.01992422100005), (-5.115142381999931, 55.03156159100007), (-5.105213995999918, 55.02619049700007), (-5.095529751999948, 55.01508209800005), (-5.091867641999954, 55.00971100500004), (-5.076893683999913, 54.99555084800005), (-5.069488084999932, 54.986029364000046), (-5.064564581999946, 54.97553131700005), (-5.0637914699999556, 54.96458567900004), (-5.065256313999953, 54.940334377000056), (-5.06086178299995, 54.93113841400003), (-5.0475154289999296, 54.92031484600005), (-5.030995245999918, 54.911322333000044), (-5.013091600999928, 54.90961334800005), (-4.9955948559999115, 54.92031484600005), (-4.992298956999946, 54.924261786000045), (-4.988189256999931, 54.927720445000034), (-4.988189256999931, 54.93455638200004), (-5.0240779289999296, 54.97638580900008), (-5.029774542999917, 54.98550039300005), (-5.032500779999907, 54.99371979400007), (-5.033029751999948, 54.99526601800005), (-5.047027147999927, 55.01508209800005), (-5.0502823559999115, 55.02680084800005), (-5.0496720039999445, 55.04897695500006), (-5.047596808999913, 55.05573151200008), (-5.043446417999917, 55.06427643400008), (-5.0257869129999335, 55.08869049700007), (-5.018950975999928, 55.10224030200004), (-5.016184048999946, 55.12262604400007), (-5.007801886999914, 55.14118073100008), (-4.988270636999914, 55.15265534100007), (-4.947255011999914, 55.16791413000004), (-4.882394985999952, 55.21857330900008), (-4.877552863999938, 55.22089264500005), (-4.867258266999954, 55.22247955900008), (-4.865305141999954, 55.22565338700008), (-4.865589972999942, 55.236314195000034), (-4.864816860999952, 55.24135976800005), (-4.841949022999927, 55.275091864000046), (-4.838002081999946, 55.28400299700007), (-4.8372289699999556, 55.293850002000056), (-4.839751756999931, 55.31557851800005), (-4.838002081999946, 55.32501862200007), (-4.832508917999917, 55.33112213700008), (-4.7992244129999335, 55.354722398000035), (-4.781076626999948, 55.36351146000004), (-4.773101365999935, 55.36937083500004), (-4.767160610999952, 55.37905508000006), (-4.758778449999909, 55.40228913000004), (-4.7492569649999155, 55.413763739000046), (-4.71703040299991, 55.43048737200007), (-4.650502081999946, 55.448472398000035), (-4.626332160999937, 55.468410549000055), (-4.617787238999938, 55.49559153900003), (-4.626779751999948, 55.51972077000005), (-4.6507869129999335, 55.53705475500004), (-4.687163865999935, 55.544134833000044), (-4.66624915299991, 55.562201239000046), (-4.666493292999917, 55.56329987200007), (-4.6711319649999155, 55.584418036000045), (-4.692738410999937, 55.60521067900004), (-4.7219945949999556, 55.619208075000074), (-4.776519334999932, 55.632879950000074), (-4.808745897999927, 55.63361237200007), (-4.818104620999918, 55.63719310100004), (-4.810617641999954, 55.646551825000074), (-4.810617641999954, 55.653998114000046), (-4.868560350999928, 55.67560455900008), (-4.900990363999938, 55.69232819200005), (-4.920521613999938, 55.70856354400007), (-4.876332160999937, 55.735256252000056), (-4.861073370999918, 55.756740627000056), (-4.865305141999954, 55.79047272300005), (-4.8717341789999296, 55.802435614000046), (-4.8777970039999445, 55.81102122600004), (-4.882720506999931, 55.82135651200008), (-4.888661261999914, 55.864528713000084), (-4.888824022999927, 55.865301825000074), (-4.892648891999954, 55.89288971600007), (-4.886463995999918, 55.91966380400004), (-4.872141079999949, 55.937201239000046), (-4.849354620999918, 55.94822825700004), (-4.818104620999918, 55.95563385600008), (-4.799387173999946, 55.957912502000056), (-4.7857966789999296, 55.95697663000004), (-4.722320115999935, 55.94009023600006), (-4.705433722999942, 55.93846263200004), (-4.693959113999938, 55.94135163000004), (-4.6725154289999296, 55.93378327000005), (-4.505970831999946, 55.91909414300005), (-4.4816788399999155, 55.92829010600008), (-4.590606248999961, 55.941514390000066), (-4.630034959999932, 55.94627513200004), (-4.673451300999943, 55.96185944200005), (-4.724517381999931, 55.99835846600007), (-4.765044725999928, 56.007066148000035), (-4.78343665299991, 56.017645575000074), (-4.7992244129999335, 56.030951239000046), (-4.810617641999954, 56.04376862200007), (-4.8237198559999115, 56.07367584800005), (-4.824330206999946, 56.07851797100005), (-4.8391820949999556, 56.08063385600008), (-4.844309048999946, 56.07298411700003), (-4.843739386999914, 56.06297435100004), (-4.837554490999935, 56.05060455900008), (-4.790150519999941, 56.010199286000045), (-4.778920050999943, 55.99209219000005), (-4.785308397999927, 55.984035549000055), (-4.803618943999936, 55.982082424000055), (-4.828033006999931, 55.98232656500005), (-4.851551886999914, 55.98802317900004), (-4.862294074999909, 56.00214264500005), (-4.865386522999927, 56.02020905200004), (-4.866851365999935, 56.05833567900004), (-4.865386522999927, 56.06671784100007), (-4.826324022999927, 56.124212958000044), (-4.755441860999952, 56.188381252000056), (-4.750884568999936, 56.20270416900007), (-4.755523240999935, 56.20652903900003), (-4.7662654289999296, 56.20209381700005), (-4.7799373039999296, 56.191473700000074), (-4.837269660999937, 56.12441640800006), (-4.851673956999946, 56.112616278000075), (-4.873117641999954, 56.11200592700004), (-4.880604620999918, 56.11985911700003), (-4.878977016999954, 56.15053945500006), (-4.883168097999942, 56.16400788000004), (-4.893544074999909, 56.174261786000045), (-4.9070938789999445, 56.177069403000075), (-4.920521613999938, 56.16791413000004), (-4.909087693999936, 56.14996979400007), (-4.895253058999913, 56.11473216400003), (-4.8862198559999115, 56.08038971600007), (-4.889149542999917, 56.06484609600005), (-4.901926235999952, 56.06191640800006), (-4.904367641999954, 56.054348049000055), (-4.900054490999935, 56.03412506700005), (-4.900054490999935, 56.01459381700005), (-4.898019985999952, 56.001166083000044), (-4.892648891999954, 55.98973216400003), (-4.906402147999927, 55.98574453300006), (-4.921457485999952, 55.98867422100005), (-4.937489386999914, 55.993841864000046), (-4.954701300999943, 55.99656810100004), (-4.954701300999943, 55.98973216400003), (-4.942005988999938, 55.986314195000034), (-4.928863084999932, 55.98114655200004), (-4.918446417999917, 55.97333405200004), (-4.913685675999943, 55.96185944200005), (-4.917388475999928, 55.94745514500005), (-4.9272354809999115, 55.93768952000005), (-4.9387100899999155, 55.92963288000004), (-4.947255011999914, 55.92084381700005), (-4.952137824999909, 55.90912506700005), (-4.954986131999931, 55.89935944200005), (-4.95921790299991, 55.89012278900003), (-4.96898352799991, 55.87986888200004), (-4.983143683999913, 55.87103913000004), (-4.994740363999938, 55.86981842700004), (-5.026356574999909, 55.87372467700004), (-5.0424698559999115, 55.884751695000034), (-5.056752081999946, 55.91030508000006), (-5.0668025379999335, 55.938788153000075), (-5.070790167999917, 55.958685614000046), (-5.1108292309999115, 55.98895905200004), (-5.116037563999953, 56.00169505400004), (-5.123605923999946, 56.00991445500006), (-5.139637824999909, 56.00275299700007), (-5.123768683999913, 55.986314195000034), (-5.085682745999918, 55.93187083500004), (-5.078236456999946, 55.91095612200007), (-5.086537238999938, 55.901271877000056), (-5.105620897999927, 55.90497467700004), (-5.171538865999935, 55.935532945000034), (-5.180653449999909, 55.948431708000044), (-5.180653449999909, 55.96930573100008), (-5.190825975999928, 55.96173737200007), (-5.1996150379999335, 55.948553778000075), (-5.2057185539999296, 55.93451569200005), (-5.207915818999936, 55.92462799700007), (-5.212635870999918, 55.91714101800005), (-5.242054816999939, 55.89288971600007), (-5.218129035999937, 55.86469147300005), (-5.208159959999932, 55.849269924000055), (-5.201079881999931, 55.83148834800005), (-5.2193904289999296, 55.83144765800006), (-5.2631729809999115, 55.845770575000074), (-5.296701626999948, 55.85268789300005), (-5.307118292999917, 55.86041901200008), (-5.313384568999936, 55.88544342700004), (-5.319325324999909, 55.889105536000045), (-5.327219204999949, 55.89154694200005), (-5.3348282539999445, 55.89667389500005), (-5.3382869129999335, 55.90375397300005), (-5.3391007149999155, 55.91303131700005), (-5.3382869129999335, 55.93138255400004), (-5.336089647999927, 55.93919505400004), (-5.326161261999914, 55.95026276200008), (-5.323963995999918, 55.958685614000046), (-5.325754360999952, 55.967230536000045), (-5.3382869129999335, 55.99656810100004), (-5.313628709999932, 56.01235586100006), (-5.204497850999928, 56.11945221600007), (-5.146473761999914, 56.13312409100007), (-5.104603644999941, 56.15151601800005), (-5.0949600899999155, 56.15737539300005), (-5.0594376289999445, 56.203111070000034), (-5.043446417999917, 56.21629466400003), (-5.013295050999943, 56.22760651200008), (-4.974964972999942, 56.23700592700004), (-4.9400935539999296, 56.25141022300005), (-4.920521613999938, 56.277777411000045), (-4.938099738999938, 56.27098216400003), (-4.975087042999917, 56.24799225500004), (-4.991932745999918, 56.24298737200007), (-5.0327042309999115, 56.24115631700005), (-5.049549933999913, 56.23704661700003), (-5.064564581999946, 56.22931549700007), (-5.0754288399999155, 56.21698639500005), (-5.099436001999948, 56.18195221600007), (-5.1088761059999115, 56.174709377000056), (-5.228138800999943, 56.12921784100007), (-5.3109431629999335, 56.05805084800005), (-5.319935675999943, 56.05491771000004), (-5.338042772999927, 56.05410390800006), (-5.345692511999914, 56.051214911000045), (-5.345285610999952, 56.046128648000035), (-5.350209113999938, 56.03192780200004), (-5.356353318999936, 56.01976146000004), (-5.359364386999914, 56.020738023000035), (-5.3686417309999115, 56.009426174000055), (-5.390288865999935, 56.00568268400008), (-5.415028449999909, 56.00690338700008), (-5.43382727799991, 56.010199286000045), (-5.434559699999909, 56.014960028000075), (-5.434722459999932, 56.02362702000005), (-5.437123175999943, 56.03001536700003), (-5.444406704999949, 56.02757396000004), (-5.4479060539999296, 56.02228424700007), (-5.448231574999909, 56.016058661000045), (-5.447621222999942, 56.009426174000055), (-5.454986131999931, 55.95563385600008), (-5.45140540299991, 55.95343659100007), (-5.436431443999936, 55.94896067900004), (-5.430775519999941, 55.94818756700005), (-5.420806443999936, 55.92829010600008), (-5.416737433999913, 55.91681549700007), (-5.416005011999914, 55.907416083000044), (-5.4125056629999335, 55.899603583000044), (-5.400380011999914, 55.89288971600007), (-5.400380011999914, 55.886704820000034), (-5.407215949999909, 55.886704820000034), (-5.407215949999909, 55.87986888200004), (-5.402943488999938, 55.87872955900008), (-5.39289303299995, 55.87372467700004), (-5.3976944649999155, 55.87156810100004), (-5.402495897999927, 55.868353583000044), (-5.407215949999909, 55.86627838700008), (-5.35179602799991, 55.83242422100005), (-5.326771613999938, 55.808579820000034), (-5.317779100999928, 55.78302643400008), (-5.324574347999942, 55.769232489000046), (-5.3385310539999296, 55.76264069200005), (-5.372425910999937, 55.75641510600008), (-5.3875626289999445, 55.75031159100007), (-5.433461066999939, 55.72101471600007), (-5.4445694649999155, 55.71161530200004), (-5.4539688789999445, 55.70058828300006), (-5.46117102799991, 55.68813711100006), (-5.463612433999913, 55.67983633000006), (-5.466175910999937, 55.662176825000074), (-5.468617316999939, 55.653998114000046), (-5.490101691999939, 55.644598700000074), (-5.488270636999914, 55.640326239000046), (-5.484283006999931, 55.63572825700004), (-5.482289191999939, 55.632879950000074), (-5.4838761059999115, 55.61005280200004), (-5.474761522999927, 55.603949286000045), (-5.462635870999918, 55.60203685100004), (-5.454986131999931, 55.59194570500006), (-5.461089647999927, 55.57880280200004), (-5.476918097999942, 55.57489655200004), (-5.488758917999917, 55.56907786700003), (-5.482289191999939, 55.55027903900003), (-5.503529425999943, 55.52651601800005), (-5.509632941999939, 55.516791083000044), (-5.5106095039999445, 55.51146067900004), (-5.509632941999939, 55.49258047100005), (-5.5109757149999155, 55.484442450000074), (-5.514271613999938, 55.48387278900003), (-5.5187882149999155, 55.48517487200007), (-5.523264126999948, 55.48265208500004), (-5.545521613999938, 55.44916413000004), (-5.561512824999909, 55.435532945000034), (-5.5846248039999296, 55.427435614000046), (-5.5846248039999296, 55.421210028000075), (-5.572132941999939, 55.422308661000045), (-5.562082485999952, 55.41986725500004), (-5.553089972999942, 55.41453685100004), (-5.543690558999913, 55.40692780200004), (-5.527455206999946, 55.38434479400007), (-5.5266820949999556, 55.38027578300006), (-5.5149633449999556, 55.37368398600006), (-5.525054490999935, 55.358628648000035), (-5.557972785999937, 55.33185455900008), (-5.574370897999927, 55.32200755400004), (-5.594105597999942, 55.31313711100006), (-5.616281704999949, 55.30658600500004), (-5.6399633449999556, 55.303900458000044), (-5.649525519999941, 55.30516185100004), (-5.669097459999932, 55.31085846600007), (-5.6808975899999155, 55.31134674700007), (-5.691395636999914, 55.308579820000034), (-5.714019334999932, 55.29913971600007), (-5.725575324999909, 55.29706452000005), (-5.7545466789999296, 55.29734935100004), (-5.772287563999953, 55.30125560100004), (-5.782866990999935, 55.31354401200008), (-5.794667120999918, 55.35639069200005), (-5.796701626999948, 55.37909577000005), (-5.7914119129999335, 55.39862702000005), (-5.763417120999918, 55.41205475500004), (-5.725412563999953, 55.437567450000074), (-5.715646938999953, 55.44790273600006), (-5.7152400379999335, 55.46889883000006), (-5.720122850999928, 55.491522528000075), (-5.7219132149999155, 55.51386139500005), (-5.707753058999913, 55.54336172100005), (-5.712066209999932, 55.55072663000004), (-5.718861456999946, 55.55731842700004), (-5.721831834999932, 55.56460195500006), (-5.718129035999937, 55.57575104400007), (-5.694488084999932, 55.605536200000074), (-5.6733292309999115, 55.640611070000034), (-5.6694229809999115, 55.66071198100008), (-5.6808975899999155, 55.67446523600006), (-5.626535610999952, 55.70062897300005), (-5.61945553299995, 55.71198151200008), (-5.613189256999931, 55.725775458000044), (-5.5982966789999296, 55.74298737200007), (-5.581206834999932, 55.75763580900008), (-5.5678604809999115, 55.76386139500005), (-5.539173956999946, 55.77094147300005), (-5.504628058999913, 55.78937409100007), (-5.4735001289999445, 55.815659898000035), (-5.454986131999931, 55.845770575000074), (-5.551747199999909, 55.783636786000045), (-5.587473110999952, 55.76715729400007), (-5.599436001999948, 55.76422760600008), (-5.6126195949999556, 55.76386139500005), (-5.60578365799995, 55.77684153900003), (-5.6332087879999335, 55.78278229400007), (-5.64671790299991, 55.78750234600005), (-5.66038977799991, 55.79734935100004), (-5.667958136999914, 55.81102122600004), (-5.669016079999949, 55.83783600500004), (-5.67406165299991, 55.845770575000074), (-5.631988084999932, 55.88178131700005), (-5.625599738999938, 55.889837958000044), (-5.61937415299991, 55.90314362200007), (-5.6043595039999445, 55.91364166900007), (-5.586293097999942, 55.92332591400003), (-5.571034308999913, 55.93451569200005), (-5.593495245999918, 55.92796458500004), (-5.6275935539999296, 55.90534088700008), (-5.6537979809999115, 55.89760976800005), (-5.671701626999948, 55.88690827000005), (-5.6808975899999155, 55.886704820000034), (-5.687977667999917, 55.89337799700007), (-5.694162563999953, 55.90497467700004), (-5.696400519999941, 55.91596100500004), (-5.586822068999936, 56.01203034100007), (-5.57843990799995, 56.02448151200008), (-5.5826716789999296, 56.028957424000055), (-5.576649542999917, 56.032538153000075), (-5.571034308999913, 56.037543036000045), (-5.583892381999931, 56.040716864000046), (-5.596424933999913, 56.036810614000046), (-5.609852667999917, 56.03001536700003), (-5.625599738999938, 56.02448151200008), (-5.6317032539999445, 56.005926825000074), (-5.674875454999949, 55.977728583000044), (-5.67406165299991, 55.95563385600008), (-5.690785285999937, 55.93764883000006), (-5.694488084999932, 55.93451569200005), (-5.704497850999928, 55.936753648000035), (-5.707508917999917, 55.942572333000044), (-5.705881313999953, 55.949652411000045), (-5.701975063999953, 55.95563385600008), (-5.696441209999932, 55.98216380400004), (-5.659901495999918, 56.02326080900008), (-5.5846248039999296, 56.08466217700004), (-5.5815323559999115, 56.08828359600005), (-5.580067511999914, 56.09292226800005), (-5.5774633449999556, 56.096991278000075), (-5.571034308999913, 56.09902578300006), (-5.564605272999927, 56.098089911000045), (-5.556548631999931, 56.09589264500005), (-5.550689256999931, 56.09349192900004), (-5.550526495999918, 56.09218984600005), (-5.547840949999909, 56.09003327000005), (-5.5394587879999335, 56.08685944200005), (-5.531605597999942, 56.08633047100005), (-5.530100063999953, 56.09218984600005), (-5.534738735999952, 56.098537502000056), (-5.5414119129999335, 56.10248444200005), (-5.5475154289999296, 56.10488515800006), (-5.550526495999918, 56.10643138200004), (-5.55695553299995, 56.12221914300005), (-5.558705206999946, 56.13080475500004), (-5.554676886999914, 56.13739655200004), (-5.522531704999949, 56.16575755400004), (-5.515736456999946, 56.174709377000056), (-5.509632941999939, 56.188381252000056), (-5.5399063789999445, 56.18341705900008), (-5.562489386999914, 56.16791413000004), (-5.5826716789999296, 56.15058014500005), (-5.60578365799995, 56.139960028000075), (-5.599354620999918, 56.160589911000045), (-5.586415167999917, 56.18113841400003), (-5.569406704999949, 56.20026276200008), (-5.550526495999918, 56.21629466400003), (-5.5594376289999445, 56.22955963700008), (-5.547230597999942, 56.24017975500004), (-5.52562415299991, 56.247259833000044), (-5.50617428299995, 56.24982330900008), (-5.494740363999938, 56.253119208000044), (-5.4928279289999296, 56.26040273600006), (-5.4992569649999155, 56.267645575000074), (-5.512684699999909, 56.27094147300005), (-5.554269985999952, 56.26349518400008), (-5.5631404289999296, 56.26032135600008), (-5.572621222999942, 56.25385163000004), (-5.58234615799995, 56.24876536700003), (-5.592152472999942, 56.24982330900008), (-5.5980525379999335, 56.25861237200007), (-5.595570441999939, 56.26992422100005), (-5.5846248039999296, 56.29075755400004), (-5.57258053299995, 56.32807038000004), (-5.56273352799991, 56.341050523000035), (-5.543690558999913, 56.352850653000075), (-5.525217251999948, 56.34662506700005), (-5.498199022999927, 56.34833405200004), (-5.4481095039999445, 56.35968659100007), (-5.4481095039999445, 56.36591217700004), (-5.4721573559999115, 56.364935614000046), (-5.515370245999918, 56.35683828300006), (-5.5375056629999335, 56.35968659100007), (-5.517323370999918, 56.39276764500005), (-5.509632941999939, 56.40062083500004), (-5.498931443999936, 56.404730536000045), (-5.486073370999918, 56.40810781500005), (-5.4780167309999115, 56.41290924700007), (-5.482289191999939, 56.421128648000035), (-5.457020636999914, 56.44086334800005), (-5.423573370999918, 56.45001862200007), (-5.322865363999938, 56.45498281500005), (-5.242054816999939, 56.44220612200007), (-5.208729620999918, 56.44684479400007), (-5.18187415299991, 56.45966217700004), (-5.118519660999937, 56.50775788000004), (-5.085682745999918, 56.54877350500004), (-5.064564581999946, 56.56513092700004), (-5.086537238999938, 56.55849844000005), (-5.099598761999914, 56.54364655200004), (-5.1105850899999155, 56.52586497600004), (-5.125965949999909, 56.51048411700003), (-5.166900193999936, 56.49005768400008), (-5.190174933999913, 56.46865469000005), (-5.201079881999931, 56.462103583000044), (-5.243763800999943, 56.45921458500004), (-5.350168423999946, 56.47296784100007), (-5.378081834999932, 56.458970445000034), (-5.394276495999918, 56.46548086100006), (-5.4105525379999335, 56.50364817900004), (-5.42414303299995, 56.500067450000074), (-5.4359431629999335, 56.49115631700005), (-5.454986131999931, 56.46954987200007), (-5.468617316999939, 56.47573476800005), (-5.433338995999918, 56.52362702000005), (-5.427642381999931, 56.53782786700003), (-5.4037979809999115, 56.524603583000044), (-5.379261847999942, 56.519191799000055), (-5.3566788399999155, 56.51968008000006), (-5.3382869129999335, 56.52415599200003), (-5.2905167309999115, 56.54466380400004), (-5.265044725999928, 56.551214911000045), (-5.252552863999938, 56.556341864000046), (-5.242054816999939, 56.56513092700004), (-5.27562415299991, 56.553615627000056), (-5.286773240999935, 56.552069403000075), (-5.306792772999927, 56.552801825000074), (-5.3109431629999335, 56.552069403000075), (-5.327707485999952, 56.54466380400004), (-5.338693813999953, 56.542303778000075), (-5.360340949999909, 56.53221263200004), (-5.372425910999937, 56.53034088700008), (-5.384348110999952, 56.53343333500004), (-5.400502081999946, 56.54364655200004), (-5.413929816999939, 56.54466380400004), (-5.410878058999913, 56.552069403000075), (-5.407297329999949, 56.55532461100006), (-5.402699347999942, 56.55744049700007), (-5.396636522999927, 56.561712958000044), (-5.392689581999946, 56.566473700000074), (-5.3893123039999296, 56.57489655200004), (-5.386626756999931, 56.57880280200004), (-5.360707160999937, 56.60626862200007), (-5.351918097999942, 56.612941799000055), (-5.31086178299995, 56.63361237200007), (-5.304514126999948, 56.64016347900008), (-5.298451300999943, 56.64642975500004), (-5.317779100999928, 56.65387604400007), (-5.317779100999928, 56.661322333000044), (-5.309071417999917, 56.66425202000005), (-5.286773240999935, 56.674994208000044), (-5.261463995999918, 56.67332591400003), (-5.248199022999927, 56.67405833500004), (-5.218902147999927, 56.688666083000044), (-5.196441209999932, 56.688666083000044), (-5.153309699999909, 56.68121979400007), (-5.132639126999948, 56.68451569200005), (-5.093373175999943, 56.69904205900008), (-5.012806769999941, 56.70929596600007), (-4.9955948559999115, 56.71596914300005), (-5.1605525379999335, 56.69586823100008), (-5.238270636999914, 56.71662018400008), (-5.23851477799991, 56.72256094000005), (-5.228423631999931, 56.73647695500006), (-5.222075975999928, 56.741522528000075), (-5.154652472999942, 56.78229401200008), (-5.136382615999935, 56.79877350500004), (-5.119740363999938, 56.818426825000074), (-5.179066535999937, 56.78925202000005), (-5.187489386999914, 56.78115469000005), (-5.191761847999942, 56.774644273000035), (-5.202259894999941, 56.76911041900007), (-5.214670376999948, 56.76520416900007), (-5.224964972999942, 56.763739325000074), (-5.233469204999949, 56.76068756700005), (-5.237049933999913, 56.75336334800005), (-5.2389216789999296, 56.74445221600007), (-5.242054816999939, 56.73647695500006), (-5.255238410999937, 56.721584377000056), (-5.268462693999936, 56.71308014500005), (-5.283355272999927, 56.70937734600005), (-5.30101477799991, 56.70856354400007), (-5.3098038399999155, 56.70648834800005), (-5.319162563999953, 56.69749583500004), (-5.34015865799995, 56.693060614000046), (-5.348378058999913, 56.687201239000046), (-5.359364386999914, 56.674994208000044), (-5.388050910999937, 56.65521881700005), (-5.403879360999952, 56.64923737200007), (-5.4242244129999335, 56.64704010600008), (-5.434396938999953, 56.64288971600007), (-5.4487198559999115, 56.62457916900007), (-5.458119269999941, 56.620347398000035), (-5.470773891999954, 56.618394273000035), (-5.482574022999927, 56.613267320000034), (-5.493316209999932, 56.60639069200005), (-5.53343665299991, 56.57290273600006), (-5.599598761999914, 56.52903880400004), (-5.667388475999928, 56.498480536000045), (-5.67406165299991, 56.49689362200007), (-5.683013475999928, 56.50063711100006), (-5.694691535999937, 56.51386139500005), (-5.70539303299995, 56.51666901200008), (-5.721791144999941, 56.51850006700005), (-5.740834113999938, 56.52326080900008), (-5.7582087879999335, 56.52997467700004), (-5.770253058999913, 56.53782786700003), (-5.7551977199999556, 56.554022528000075), (-5.751047329999949, 56.56199778900003), (-5.749134894999941, 56.571966864000046), (-5.756662563999953, 56.571966864000046), (-5.793853318999936, 56.54328034100007), (-5.8543595039999445, 56.550482489000046), (-6.0034073559999115, 56.61871979400007), (-6.009836391999954, 56.62653229400007), (-6.008168097999942, 56.642279364000046), (-5.998036261999914, 56.64988841400003), (-5.983509894999941, 56.65281810100004), (-5.933583136999914, 56.654730536000045), (-5.899037238999938, 56.650824286000045), (-5.866851365999935, 56.64154694200005), (-5.8391820949999556, 56.62653229400007), (-5.831695115999935, 56.633978583000044), (-5.855620897999927, 56.64472077000005), (-5.865589972999942, 56.65143463700008), (-5.865834113999938, 56.661322333000044), (-5.75999915299991, 56.70075104400007), (-5.735503709999932, 56.702337958000044), (-5.672596808999913, 56.68414948100008), (-5.647368943999936, 56.68121979400007), (-5.5941462879999335, 56.68333567900004), (-5.564808722999942, 56.68764883000006), (-5.543690558999913, 56.69546133000006), (-5.636545376999948, 56.688666083000044), (-5.658558722999942, 56.690741278000075), (-5.708851691999939, 56.70856354400007), (-5.749989386999914, 56.714544989000046), (-5.859038865999935, 56.68121979400007), (-5.89679928299995, 56.675116278000075), (-5.907378709999932, 56.674994208000044), (-5.9203181629999335, 56.67796458500004), (-5.942738410999937, 56.686753648000035), (-5.955555792999917, 56.688666083000044), (-6.0248917309999115, 56.68569570500006), (-6.098622199999909, 56.696966864000046), (-6.123850063999953, 56.69562409100007), (-6.143544074999909, 56.684881903000075), (-6.161732550999943, 56.67820872600004), (-6.186594204999949, 56.68109772300005), (-6.2096248039999296, 56.68846263200004), (-6.222767706999946, 56.69546133000006), (-6.228179490999935, 56.70107656500005), (-6.232533331999946, 56.70652903900003), (-6.235340949999909, 56.71238841400003), (-6.236398891999954, 56.71906159100007), (-6.234486456999946, 56.728583075000074), (-6.229562954999949, 56.72907135600008), (-6.222767706999946, 56.72719961100006), (-6.215321417999917, 56.72964101800005), (-6.193470831999946, 56.74852122600004), (-6.1805313789999445, 56.75462474200003), (-6.026966925999943, 56.763739325000074), (-6.0148819649999155, 56.76703522300005), (-5.979888475999928, 56.78156159100007), (-5.965199347999942, 56.784857489000046), (-5.948231574999909, 56.782538153000075), (-5.937977667999917, 56.77692291900007), (-5.928537563999953, 56.769964911000045), (-5.913644985999952, 56.763739325000074), (-5.860910610999952, 56.75079987200007), (-5.8522029289999296, 56.746975002000056), (-5.853342251999948, 56.757879950000074), (-5.858143683999913, 56.768459377000056), (-5.8683975899999155, 56.77586497600004), (-5.886341925999943, 56.777411200000074), (-5.886341925999943, 56.784857489000046), (-5.874012824999909, 56.78571198100008), (-5.861805792999917, 56.78510163000004), (-5.850087042999917, 56.782456773000035), (-5.8391820949999556, 56.777411200000074), (-5.8246150379999335, 56.78758372600004), (-5.8020727199999556, 56.79181549700007), (-5.7766007149999155, 56.787990627000056), (-5.756662563999953, 56.784857489000046), (-5.831695115999935, 56.80536530200004), (-5.8508194649999155, 56.818019924000055), (-5.851185675999943, 56.82892487200007), (-5.837473110999952, 56.83661530200004), (-5.7338761059999115, 56.84479401200008), (-5.692738410999937, 56.85492584800005), (-5.66038977799991, 56.87299225500004), (-5.673573370999918, 56.87653229400007), (-5.692005988999938, 56.87531159100007), (-5.7084854809999115, 56.87055084800005), (-5.724354620999918, 56.85382721600007), (-5.744496222999942, 56.85415273600006), (-5.783924933999913, 56.85993073100008), (-5.775380011999914, 56.86994049700007), (-5.735503709999932, 56.89411041900007), (-5.7805883449999556, 56.89874909100007), (-5.874867316999939, 56.887152411000045), (-5.9211319649999155, 56.89411041900007), (-5.8875626289999445, 56.89911530200004), (-5.8522029289999296, 56.90033600500004), (-5.8522029289999296, 56.90770091400003), (-5.859852667999917, 56.91054922100005), (-5.8801163399999155, 56.92202383000006), (-5.8625382149999155, 56.93374258000006), (-5.851429816999939, 56.95425039300005), (-5.842518683999913, 56.977443752000056), (-5.831695115999935, 56.99713776200008), (-5.814116990999935, 57.00950755400004), (-5.786040818999936, 57.02057526200008), (-5.755238410999937, 57.026556708000044), (-5.729318813999953, 57.02383047100005), (-5.719878709999932, 57.017564195000034), (-5.699940558999913, 56.998114325000074), (-5.688303188999953, 56.98969147300005), (-5.67406165299991, 56.983587958000044), (-5.658558722999942, 56.97947825700004), (-5.625599738999938, 56.976629950000074), (-5.571278449999909, 56.98383209800005), (-5.523264126999948, 56.99713776200008), (-5.523264126999948, 57.003973700000074), (-5.540435350999928, 57.001166083000044), (-5.556507941999939, 56.996079820000034), (-5.571278449999909, 56.99331289300005), (-5.5846248039999296, 56.99713776200008), (-5.607085740999935, 56.98851146000004), (-5.628814256999931, 56.991888739000046), (-5.6498917309999115, 56.999660549000055), (-5.6703181629999335, 57.003973700000074), (-5.685536261999914, 57.00958893400008), (-5.681711391999954, 57.02240631700005), (-5.680043097999942, 57.03620026200008), (-5.701975063999953, 57.044907945000034), (-5.710926886999914, 57.044175523000035), (-5.731353318999936, 57.03900788000004), (-5.742339647999927, 57.03807200700004), (-5.752552863999938, 57.04059479400007), (-5.769602016999954, 57.04975006700005), (-5.780181443999936, 57.05174388200004), (-5.791127081999946, 57.05927155200004), (-5.776193813999953, 57.075832424000055), (-5.734486456999946, 57.10541413000004), (-5.722645636999914, 57.116441148000035), (-5.715646938999953, 57.12006256700005), (-5.703277147999927, 57.120754299000055), (-5.673695441999939, 57.11904531500005), (-5.663482225999928, 57.12372467700004), (-5.645863410999937, 57.12946198100008), (-5.620838995999918, 57.12409088700008), (-5.57843990799995, 57.10639069200005), (-5.558257615999935, 57.10040924700007), (-5.4598282539999445, 57.09979889500005), (-5.454986131999931, 57.10297272300005), (-5.447417772999927, 57.11017487200007), (-5.430775519999941, 57.11074453300006), (-5.41429602799991, 57.10822174700007), (-5.407215949999909, 57.10639069200005), (-5.400380011999914, 57.10639069200005), (-5.400380011999914, 57.11383698100008), (-5.420033331999946, 57.12067291900007), (-5.503895636999914, 57.11269765800006), (-5.527414516999954, 57.107489325000074), (-5.540638800999943, 57.10639069200005), (-5.5477188789999445, 57.11009349200003), (-5.573312954999949, 57.12787506700005), (-5.5846248039999296, 57.133693752000056), (-5.668446417999917, 57.147650458000044), (-5.6808975899999155, 57.157904364000046), (-5.673817511999914, 57.174994208000044), (-5.638824022999927, 57.202378648000035), (-5.625599738999938, 57.21625397300005), (-5.644154425999943, 57.23322174700007), (-5.620106574999909, 57.25214264500005), (-5.578236456999946, 57.26675039300005), (-5.543690558999913, 57.27090078300006), (-5.511586066999939, 57.25763580900008), (-5.480091925999943, 57.23700592700004), (-5.446278449999909, 57.22304922100005), (-5.407215949999909, 57.22992584800005), (-5.407215949999909, 57.23672109600005), (-5.448841925999943, 57.24209219000005), (-5.458119269999941, 57.24664948100008), (-5.47288977799991, 57.26121653900003), (-5.482899542999917, 57.268011786000045), (-5.49250240799995, 57.27090078300006), (-5.501942511999914, 57.27765534100007), (-5.4889216789999296, 57.29242584800005), (-5.464833136999914, 57.306626695000034), (-5.4406632149999155, 57.311835028000075), (-5.4406632149999155, 57.31928131700005), (-5.464995897999927, 57.32493724200003), (-5.4817602199999556, 57.31671784100007), (-5.494292772999927, 57.30442942900004), (-5.50617428299995, 57.298163153000075), (-5.523426886999914, 57.29515208500004), (-5.558461066999939, 57.28143952000005), (-5.57843990799995, 57.27765534100007), (-5.599436001999948, 57.27924225500004), (-5.637440558999913, 57.28900788000004), (-5.656971808999913, 57.29132721600007), (-5.7000626289999445, 57.28359609600005), (-5.720570441999939, 57.284491278000075), (-5.729318813999953, 57.298163153000075), (-5.7252498039999296, 57.30158112200007), (-5.701975063999953, 57.33234284100007), (-5.6937556629999335, 57.337103583000044), (-5.671986456999946, 57.34442780200004), (-5.663482225999928, 57.349676825000074), (-5.654367641999954, 57.353949286000045), (-5.647206183999913, 57.34992096600007), (-5.6414688789999445, 57.34320709800005), (-5.636545376999948, 57.33978913000004), (-5.613189256999931, 57.34198639500005), (-5.5012914699999556, 57.37099844000005), (-5.456654425999943, 57.39354075700004), (-5.4481095039999445, 57.42169830900008), (-5.46507727799991, 57.423895575000074), (-5.492054816999939, 57.40875885600008), (-5.5375056629999335, 57.373928127000056), (-5.563465949999909, 57.36310455900008), (-5.586659308999913, 57.36505768400008), (-5.610910610999952, 57.37140534100007), (-5.6399633449999556, 57.373928127000056), (-5.615589972999942, 57.382473049000055), (-5.607085740999935, 57.389105536000045), (-5.609201626999948, 57.397772528000075), (-5.617746548999946, 57.41010163000004), (-5.619618292999917, 57.41669342700004), (-5.624012824999909, 57.41640859600005), (-5.6399633449999556, 57.40802643400008), (-5.707183397999927, 57.35976797100005), (-5.732411261999914, 57.352769273000035), (-5.784575975999928, 57.34857819200005), (-5.807769334999932, 57.35492584800005), (-5.8248591789999296, 57.39435455900008), (-5.822255011999914, 57.39350006700005), (-5.817372199999909, 57.39520905200004), (-5.812855597999942, 57.398098049000055), (-5.8111873039999296, 57.40119049700007), (-5.813872850999928, 57.40452708500004), (-5.8231095039999445, 57.41233958500004), (-5.8248591789999296, 57.41547272300005), (-5.825266079999949, 57.428900458000044), (-5.821888800999943, 57.435532945000034), (-5.8111873039999296, 57.44220612200007), (-5.8215225899999155, 57.44546133000006), (-5.852528449999909, 57.450384833000044), (-5.859038865999935, 57.45270416900007), (-5.861195441999939, 57.46344635600008), (-5.870513475999928, 57.48078034100007), (-5.872670050999943, 57.49371979400007), (-5.869699673999946, 57.500881252000056), (-5.856068488999938, 57.51780833500004), (-5.8522029289999296, 57.52411530200004), (-5.8510636059999115, 57.538397528000075), (-5.851470506999931, 57.55109284100007), (-5.847075975999928, 57.55890534100007), (-5.831695115999935, 57.55882396000004), (-5.833851691999939, 57.563381252000056), (-5.837025519999941, 57.57477448100008), (-5.8391820949999556, 57.579291083000044), (-5.821400519999941, 57.583197333000044), (-5.803618943999936, 57.581366278000075), (-5.7863663399999155, 57.57518138200004), (-5.732574022999927, 57.54523346600007), (-5.715646938999953, 57.538397528000075), (-5.707020636999914, 57.542303778000075), (-5.68976803299995, 57.52789948100008), (-5.6808975899999155, 57.52411530200004), (-5.650868292999917, 57.51264069200005), (-5.6399633449999556, 57.511053778000075), (-5.645334438999953, 57.51666901200008), (-5.648304816999939, 57.52187734600005), (-5.650542772999927, 57.52680084800005), (-5.6535538399999155, 57.53156159100007), (-5.5815323559999115, 57.538397528000075), (-5.5402725899999155, 57.534491278000075), (-5.5168350899999155, 57.534857489000046), (-5.512684699999909, 57.54148997600004), (-5.543120897999927, 57.55536530200004), (-5.588368292999917, 57.56102122600004), (-5.632720506999931, 57.55768463700008), (-5.66038977799991, 57.544582424000055), (-5.694488084999932, 57.56631094000005), (-5.689198370999918, 57.56940338700008), (-5.6808975899999155, 57.579291083000044), (-5.714222785999937, 57.58270905200004), (-5.7316788399999155, 57.59829336100006), (-5.744252081999946, 57.61798737200007), (-5.762806769999941, 57.633978583000044), (-5.778146938999953, 57.63743724200003), (-5.7936091789999296, 57.63857656500005), (-5.8058975899999155, 57.642645575000074), (-5.8111873039999296, 57.65509674700007), (-5.805409308999913, 57.667181708000044), (-5.785023566999939, 57.67951080900008), (-5.790760870999918, 57.68854401200008), (-5.790760870999918, 57.69599030200004), (-5.753570115999935, 57.707464911000045), (-5.734486456999946, 57.70795319200005), (-5.704986131999931, 57.69013092700004), (-5.692494269999941, 57.691066799000055), (-5.68195553299995, 57.69871653900003), (-5.67406165299991, 57.70966217700004), (-5.685170050999943, 57.71141185100004), (-5.692290818999936, 57.716498114000046), (-5.698841925999943, 57.723089911000045), (-5.708851691999939, 57.72955963700008), (-5.720529751999948, 57.73338450700004), (-5.803822394999941, 57.743841864000046), (-5.80695553299995, 57.75462474200003), (-5.8020727199999556, 57.780585028000075), (-5.803822394999941, 57.792222398000035), (-5.801258917999917, 57.800441799000055), (-5.809925910999937, 57.82062409100007), (-5.8111873039999296, 57.833197333000044), (-5.807362433999913, 57.84393952000005), (-5.799956834999932, 57.85370514500005), (-5.789540167999917, 57.86200592700004), (-5.776519334999932, 57.86790599200003), (-5.751128709999932, 57.87335846600007), (-5.724761522999927, 57.87352122600004), (-5.698638475999928, 57.86908600500004), (-5.67406165299991, 57.86050039300005), (-5.677886522999927, 57.846909898000035), (-5.674794074999909, 57.82709381700005), (-5.667958136999914, 57.80695221600007), (-5.66038977799991, 57.792222398000035), (-5.650542772999927, 57.78180573100008), (-5.6373591789999296, 57.77423737200007), (-5.622141079999949, 57.77020905200004), (-5.60578365799995, 57.77049388200004), (-5.613270636999914, 57.77521393400008), (-5.617909308999913, 57.78021881700005), (-5.625599738999938, 57.792222398000035), (-5.613026495999918, 57.792629299000055), (-5.603260870999918, 57.791083075000074), (-5.5846248039999296, 57.784816799000055), (-5.591175910999937, 57.80442942900004), (-5.587025519999941, 57.81858958500004), (-5.5852758449999556, 57.83144765800006), (-5.598988410999937, 57.846869208000044), (-5.6375626289999445, 57.86635976800005), (-5.650380011999914, 57.87775299700007), (-5.6399633449999556, 57.88784414300005), (-5.6476944649999155, 57.88898346600007), (-5.6507869129999335, 57.89081452000005), (-5.6535538399999155, 57.89468008000006), (-5.643950975999928, 57.90420156500005), (-5.620757615999935, 57.92088450700004), (-5.6126195949999556, 57.92877838700008), (-5.598215298999946, 57.91901276200008), (-5.587310350999928, 57.91510651200008), (-5.550526495999918, 57.91510651200008), (-5.556263800999943, 57.88776276200008), (-5.527902798999946, 57.86758047100005), (-5.487049933999913, 57.85586172100005), (-5.454986131999931, 57.85370514500005), (-5.46117102799991, 57.86050039300005), (-5.449045376999948, 57.869126695000034), (-5.437123175999943, 57.897650458000044), (-5.427642381999931, 57.908270575000074), (-5.4149063789999445, 57.90814850500004), (-5.369496222999942, 57.89752838700008), (-5.355620897999927, 57.89126211100006), (-5.327504035999937, 57.87327708500004), (-5.293853318999936, 57.86204661700003), (-5.221587693999936, 57.846869208000044), (-5.236317511999914, 57.86078522300005), (-5.2475479809999115, 57.86701080900008), (-5.276763475999928, 57.87417226800005), (-5.320668097999942, 57.898504950000074), (-5.384917772999927, 57.914129950000074), (-5.39289303299995, 57.91819896000004), (-5.394398566999939, 57.923895575000074), (-5.396839972999942, 57.926214911000045), (-5.3973282539999445, 57.928900458000044), (-5.39289303299995, 57.935614325000074), (-5.386545376999948, 57.936428127000056), (-5.378977016999954, 57.93183014500005), (-5.3717341789999296, 57.93105703300006), (-5.366200324999909, 57.943060614000046), (-5.3471573559999115, 57.936712958000044), (-5.319162563999953, 57.91474030200004), (-5.297352667999917, 57.908270575000074), (-5.2860001289999445, 57.90875885600008), (-5.266957160999937, 57.91400788000004), (-5.2562556629999335, 57.91510651200008), (-5.2436417309999115, 57.91290924700007), (-5.22101803299995, 57.90403880400004), (-5.211293097999942, 57.90208567900004), (-5.198801235999952, 57.897772528000075), (-5.162261522999927, 57.87848541900007), (-5.1199845039999445, 57.86798737200007), (-5.0911352199999556, 57.84031810100004), (-5.070790167999917, 57.833197333000044), (-5.07648678299995, 57.83852773600006), (-5.083404100999928, 57.84756094000005), (-5.0893448559999115, 57.85724518400008), (-5.091867641999954, 57.86420319200005), (-5.0971573559999115, 57.87091705900008), (-5.197255011999914, 57.91787344000005), (-5.221587693999936, 57.92133209800005), (-5.221587693999936, 57.92877838700008), (-5.201893683999913, 57.92865631700005), (-5.193959113999938, 57.935980536000045), (-5.19554602799991, 57.94765859600005), (-5.204497850999928, 57.960150458000044), (-5.216704881999931, 57.96588776200008), (-5.2488907539999445, 57.96938711100006), (-5.2631729809999115, 57.976548570000034), (-5.292632615999935, 57.98061758000006), (-5.333892381999931, 58.00853099200003), (-5.359364386999914, 58.011379299000055), (-5.357167120999918, 58.01406484600005), (-5.3566788399999155, 58.014878648000035), (-5.351918097999942, 58.01752350500004), (-5.366932745999918, 58.02887604400007), (-5.386586066999939, 58.032538153000075), (-5.427642381999931, 58.03119538000004), (-5.424305792999917, 58.03554922100005), (-5.422352667999917, 58.03896719000005), (-5.419585740999935, 58.04205963700008), (-5.413929816999939, 58.04547760600008), (-5.413929816999939, 58.05231354400007), (-5.447010870999918, 58.08437734600005), (-5.428089972999942, 58.09796784100007), (-5.390044725999928, 58.09218984600005), (-5.366200324999909, 58.06598541900007), (-5.344309048999946, 58.075506903000075), (-5.322865363999938, 58.07172272300005), (-5.300770636999914, 58.07013580900008), (-5.276763475999928, 58.08641185100004), (-5.283070441999939, 58.08641185100004), (-5.278065558999913, 58.09625885600008), (-5.2787979809999115, 58.10537344000005), (-5.283558722999942, 58.11347077000005), (-5.2905167309999115, 58.12055084800005), (-5.276763475999928, 58.12055084800005), (-5.276763475999928, 58.127386786000045), (-5.297352667999917, 58.134833075000074), (-5.284087693999936, 58.14008209800005), (-5.255523240999935, 58.143784898000035), (-5.242054816999939, 58.14789459800005), (-5.242054816999939, 58.15534088700008), (-5.275054490999935, 58.15452708500004), (-5.290842251999948, 58.156317450000074), (-5.304798956999946, 58.162095445000034), (-5.297352667999917, 58.168402411000045), (-5.304798956999946, 58.17332591400003), (-5.313059048999946, 58.17731354400007), (-5.321888800999943, 58.18024323100008), (-5.331450975999928, 58.18203359600005), (-5.3293350899999155, 58.186712958000044), (-5.326161261999914, 58.198431708000044), (-5.323963995999918, 58.203111070000034), (-5.336822068999936, 58.203192450000074), (-5.346791144999941, 58.20685455900008), (-5.39289303299995, 58.24469635600008), (-5.3920792309999115, 58.261379299000055), (-5.375884568999936, 58.26422760600008), (-5.352894660999937, 58.25893789300005), (-5.31078040299991, 58.243394273000035), (-5.293853318999936, 58.24091217700004), (-5.276966925999943, 58.243394273000035), (-5.237294074999909, 58.25763580900008), (-5.2160538399999155, 58.261419989000046), (-5.194325324999909, 58.25999583500004), (-5.173207160999937, 58.25092194200005), (-5.165638800999943, 58.258246161000045), (-5.152251756999931, 58.264837958000044), (-5.138335740999935, 58.269598700000074), (-5.129383917999917, 58.27138906500005), (-5.11156165299991, 58.26825592700004), (-5.0812882149999155, 58.25409577000005), (-5.0676977199999556, 58.25092194200005), (-5.017730272999927, 58.253241278000075), (-5.002430792999917, 58.25092194200005), (-4.933583136999914, 58.22304922100005), (-4.943430141999954, 58.233587958000044), (-4.954823370999918, 58.23981354400007), (-4.982004360999952, 58.25092194200005), (-4.968861456999946, 58.25678131700005), (-4.940337693999936, 58.259466864000046), (-4.926747199999909, 58.26459381700005), (-4.990223761999914, 58.27142975500004), (-5.009917772999927, 58.27138906500005), (-5.018055792999917, 58.26862213700008), (-5.029367641999954, 58.25971100500004), (-5.040028449999909, 58.25775788000004), (-5.0501195949999556, 58.25991445500006), (-5.0707087879999335, 58.269232489000046), (-5.081654425999943, 58.27138906500005), (-5.096424933999913, 58.27676015800006), (-5.125965949999909, 58.30019765800006), (-5.1362198559999115, 58.305568752000056), (-5.137440558999913, 58.30927155200004), (-5.156361456999946, 58.32461172100005), (-5.160145636999914, 58.326605536000045), (-5.167795376999948, 58.33926015800006), (-5.171009894999941, 58.34666575700004), (-5.173207160999937, 58.353949286000045), (-5.153309699999909, 58.353949286000045), (-5.1634008449999556, 58.364569403000075), (-5.162912563999953, 58.37449778900003), (-5.155913865999935, 58.384466864000046), (-5.146473761999914, 58.394964911000045), (-5.145497199999909, 58.400051174000055), (-5.14671790299991, 58.40664297100005), (-5.146839972999942, 58.41242096600007), (-5.143055792999917, 58.41478099200003), (-5.135487433999913, 58.413763739000046), (-5.122222459999932, 58.40957265800006), (-5.116037563999953, 58.40859609600005), (-5.057972785999937, 58.38727448100008), (-5.016184048999946, 58.38812897300005), (-5.043934699999909, 58.400091864000046), (-5.0533748039999296, 58.40664297100005), (-5.0502823559999115, 58.41478099200003), (-5.0570369129999335, 58.42218659100007), (-5.066151495999918, 58.41714101800005), (-5.076161261999914, 58.414496161000045), (-5.086822068999936, 58.41388580900008), (-5.0980525379999335, 58.41478099200003), (-5.0980525379999335, 58.42218659100007), (-5.08812415299991, 58.421942450000074), (-5.085031704999949, 58.42218659100007), (-5.085031704999949, 58.429022528000075), (-5.091786261999914, 58.429754950000074), (-5.09601803299995, 58.43146393400008), (-5.105539516999954, 58.43650950700004), (-5.0501195949999556, 58.45380280200004), (-5.025542772999927, 58.447699286000045), (-4.9955948559999115, 58.43650950700004), (-5.105539516999954, 58.48737213700008), (-5.105620897999927, 58.505560614000046), (-5.103667772999927, 58.51422760600008), (-5.095855272999927, 58.518866278000075), (-5.042795376999948, 58.53546784100007), (-5.0279841789999296, 58.54409414300005), (-5.016184048999946, 58.55939362200007), (-5.0229386059999115, 58.55939362200007), (-5.015207485999952, 58.580064195000034), (-5.011586066999939, 58.60057200700004), (-5.004953579999949, 58.61774323100008), (-4.988189256999931, 58.62832265800006), (-4.859486456999946, 58.61322663000004), (-4.835926886999914, 58.60504791900007), (-4.818104620999918, 58.59292226800005), (-4.817941860999952, 58.587591864000046), (-4.81281490799995, 58.571966864000046), (-4.806752081999946, 58.55841705900008), (-4.803822394999941, 58.55939362200007), (-4.804595506999931, 58.54832591400003), (-4.807240363999938, 58.53961823100008), (-4.811634894999941, 58.53204987200007), (-4.818104620999918, 58.524644273000035), (-4.799794074999909, 58.532456773000035), (-4.791818813999953, 58.54165273600006), (-4.7899063789999445, 58.55174388200004), (-4.790150519999941, 58.562486070000034), (-4.785755988999938, 58.577053127000056), (-4.777088995999918, 58.583319403000075), (-4.771595831999946, 58.59039948100008), (-4.776519334999932, 58.60716380400004), (-4.758859829999949, 58.59910716400003), (-4.7280167309999115, 58.577460028000075), (-4.7113337879999335, 58.57306549700007), (-4.683257615999935, 58.56150950700004), (-4.670399542999917, 58.55939362200007), (-4.660023566999939, 58.555853583000044), (-4.659291144999941, 58.54755280200004), (-4.663238084999932, 58.538397528000075), (-4.6673070949999556, 58.53204987200007), (-4.6790258449999556, 58.52391185100004), (-4.714466925999943, 58.50560130400004), (-4.732411261999914, 58.480454820000034), (-4.751535610999952, 58.46161530200004), (-4.7609757149999155, 58.44798411700003), (-4.74242102799991, 58.44953034100007), (-4.682972785999937, 58.48456452000005), (-4.673451300999943, 58.48737213700008), (-4.6668595039999445, 58.50291575700004), (-4.650502081999946, 58.50995514500005), (-4.630441860999952, 58.514960028000075), (-4.612131313999953, 58.524644273000035), (-4.6010636059999115, 58.54193756700005), (-4.595122850999928, 58.56000397300005), (-4.584950324999909, 58.57416413000004), (-4.560536261999914, 58.57990143400008), (-4.517486131999931, 58.575506903000075), (-4.475493943999936, 58.565619208000044), (-4.426503058999913, 58.54637278900003), (-4.426503058999913, 58.53888580900008), (-4.427886522999927, 58.53530508000006), (-4.428700324999909, 58.53473541900007), (-4.426503058999913, 58.524644273000035), (-4.449940558999913, 58.510199286000045), (-4.464751756999931, 58.49201080900008), (-4.477650519999941, 58.47134023600006), (-4.4953507149999155, 58.44953034100007), (-4.478098110999952, 58.453558661000045), (-4.46117102799991, 58.46246979400007), (-4.43390865799995, 58.483628648000035), (-4.432728644999941, 58.487616278000075), (-4.4339900379999335, 58.49237702000005), (-4.4342341789999296, 58.49628327000005), (-4.430165167999917, 58.49799225500004), (-4.425933397999927, 58.49909088700008), (-4.385365363999938, 58.52240631700005), (-4.382394985999952, 58.524644273000035), (-4.343861456999946, 58.53888580900008), (-4.317005988999938, 58.54572174700007), (-4.306996222999942, 58.54637278900003), (-4.287180141999954, 58.54291413000004), (-4.2573136059999115, 58.52798086100006), (-4.234730597999942, 58.524644273000035), (-4.248931443999936, 58.53204987200007), (-4.238189256999931, 58.536444403000075), (-4.232248501999948, 58.54242584800005), (-4.227691209999932, 58.548163153000075), (-4.22101803299995, 58.551947333000044), (-4.209706183999913, 58.55292389500005), (-4.190785285999937, 58.54783763200004), (-4.1769913399999155, 58.54637278900003), (-4.16820227799991, 58.54938385600008), (-4.1605525379999335, 58.562567450000074), (-4.149322068999936, 58.565619208000044), (-4.111195441999939, 58.565619208000044), (-4.0902400379999335, 58.56207916900007), (-4.081450975999928, 58.561835028000075), (-4.070220506999931, 58.565619208000044), (-4.061512824999909, 58.57282135600008), (-4.048817511999914, 58.58958567900004), (-4.039784308999913, 58.59292226800005), (-4.030629035999937, 58.59406159100007), (-4.029042120999918, 58.59516022300005), (-4.027821417999917, 58.59271881700005), (-4.0092667309999115, 58.57330963700008), (-4.003773566999939, 58.57062409100007), (-3.981434699999909, 58.57306549700007), (-3.8957413399999155, 58.565619208000044), (-3.8101293609999516, 58.57306549700007), (-3.7669571609999366, 58.58372630400004), (-3.6983536449999406, 58.61115143400008), (-3.659901495999918, 58.62083567900004), (-3.597564256999931, 58.62714264500005), (-3.565500454999949, 58.626613674000055), (-3.542591925999943, 58.62083567900004), (-3.552479620999918, 58.61546458500004), (-3.556263800999943, 58.61399974200003), (-3.532053188999953, 58.60211823100008), (-3.504017706999946, 58.60333893400008), (-3.447010870999918, 58.61399974200003), (-3.3914688789999445, 58.60065338700008), (-3.364084438999953, 58.600816148000035), (-3.3508194649999155, 58.62083567900004), (-3.3677465489999463, 58.624701239000046), (-3.3860570949999556, 58.631740627000056), (-3.402251756999931, 58.64203522300005), (-3.412912563999953, 58.655585028000075), (-3.3900447259999282, 58.67177969000005), (-3.3748673169999392, 58.677069403000075), (-3.3582657539999445, 58.675482489000046), (-3.3543595039999445, 58.67015208500004), (-3.35179602799991, 58.66083405200004), (-3.34788977799991, 58.652044989000046), (-3.340565558999913, 58.648138739000046), (-3.3098852199999556, 58.648138739000046), (-3.244252081999946, 58.65900299700007), (-3.204090949999909, 58.66111888200004), (-3.1519262359999516, 58.64126211100006), (-3.118763800999943, 58.64109935100004), (-3.052886522999927, 58.648138739000046), (-3.0191137359999516, 58.640326239000046), (-3.025380011999914, 58.62213776200008), (-3.0444229809999115, 58.601629950000074), (-3.049183722999942, 58.58673737200007), (-3.060454881999931, 58.57843659100007), (-3.0754288399999155, 58.56037018400008), (-3.0845434239999463, 58.551947333000044), (-3.1107478509999282, 58.53864166900007), (-3.1180313789999445, 58.53204987200007), (-3.129261847999942, 58.51264069200005), (-3.1293025379999335, 58.49640534100007), (-3.1187231109999516, 58.484442450000074), (-3.0975235669999392, 58.47748444200005), (-3.0850723949999406, 58.47825755400004), (-3.073963995999918, 58.481675523000035), (-3.064442511999914, 58.48297760600008), (-3.056630011999914, 58.47748444200005), (-3.053334113999938, 58.46576569200005), (-3.0577286449999406, 58.45685455900008), (-3.066761847999942, 58.451157945000034), (-3.077056443999936, 58.44953034100007), (-3.0863337879999335, 58.41421133000006), (-3.129790818999936, 58.36928945500006), (-3.182769334999932, 58.32843659100007), (-3.2205297519999476, 58.305568752000056), (-3.2622777989999463, 58.292629299000055), (-3.34984290299991, 58.27610911700003), (-3.38499915299991, 58.26459381700005), (-3.438099738999938, 58.236029364000046), (-3.447010870999918, 58.22675202000005), (-3.454741990999935, 58.210150458000044), (-3.473459438999953, 58.193426825000074), (-3.515288865999935, 58.168402411000045), (-3.7350154289999296, 58.07217031500005), (-3.809193488999938, 58.05190664300005), (-3.8275040359999366, 58.04205963700008), (-3.8362524079999503, 58.03143952000005), (-3.8460994129999335, 58.01117584800005), (-3.851714647999927, 58.003892320000034), (-3.8605850899999155, 57.998928127000056), (-3.8856095039999445, 57.991400458000044), (-3.9173070949999556, 57.98745351800005), (-3.981434699999909, 57.96356842700004), (-3.990956183999913, 57.96039459800005), (-3.997670050999943, 57.954413153000075), (-4.001372850999928, 57.94611237200007), (-4.001942511999914, 57.935614325000074), (-4.018299933999913, 57.940619208000044), (-4.023060675999943, 57.943060614000046), (-4.016184048999946, 57.949286200000074), (-4.0301407539999445, 57.953192450000074), (-4.055775519999941, 57.95498281500005), (-4.0843806629999335, 57.964178778000075), (-4.0891007149999155, 57.960150458000044), (-4.0863337879999335, 57.95189036700003), (-4.0776261059999115, 57.943060614000046), (-4.062652147999927, 57.93695709800005), (-4.03148352799991, 57.93618398600006), (-4.016184048999946, 57.93219635600008), (-4.009429490999935, 57.92767975500004), (-3.988270636999914, 57.908270575000074), (-4.008941209999932, 57.88959381700005), (-4.013824022999927, 57.879339911000045), (-4.009348110999952, 57.86790599200003), (-4.025135870999918, 57.868068752000056), (-4.054839647999927, 57.874335028000075), (-4.070220506999931, 57.87417226800005), (-4.0793350899999155, 57.87026601800005), (-4.0969132149999155, 57.85736725500004), (-4.1049698559999115, 57.85370514500005), (-4.132923956999946, 57.85415273600006), (-4.190419074999909, 57.87006256700005), (-4.218169725999928, 57.87417226800005), (-4.298898891999954, 57.86277903900003), (-4.3209529289999296, 57.87103913000004), (-4.353179490999935, 57.89520905200004), (-4.3723038399999155, 57.90448639500005), (-4.392404751999948, 57.908270575000074), (-4.339588995999918, 57.86570872600004), (-4.307728644999941, 57.85146719000005), (-4.269398566999939, 57.846869208000044), (-4.229074673999946, 57.85724518400008), (-4.2082413399999155, 57.85919830900008), (-4.190581834999932, 57.85028717700004), (-4.173451300999943, 57.83901601800005), (-4.1497289699999556, 57.82982005400004), (-4.1334529289999296, 57.830145575000074), (-4.1390681629999335, 57.846869208000044), (-4.0750626289999445, 57.82318756700005), (-4.0399063789999445, 57.81818268400008), (-3.9835098949999406, 57.84235260600008), (-3.9514867829999503, 57.838324286000045), (-3.933705206999946, 57.82566966400003), (-3.9473363919999542, 57.81268952000005), (-3.914784308999913, 57.80768463700008), (-3.877674933999913, 57.81671784100007), (-3.8418676419999542, 57.83490631700005), (-3.813547329999949, 57.857123114000046), (-3.798451300999943, 57.866522528000075), (-3.786040818999936, 57.86542389500005), (-3.779449022999927, 57.85565827000005), (-3.782215949999909, 57.83942291900007), (-3.790028449999909, 57.83071523600006), (-3.92601477799991, 57.734808661000045), (-3.948841925999943, 57.72492096600007), (-3.975209113999938, 57.70327383000006), (-3.988270636999914, 57.69599030200004), (-4.00804602799991, 57.693793036000045), (-4.02367102799991, 57.69782135600008), (-4.0286352199999556, 57.70770905200004), (-4.016184048999946, 57.72333405200004), (-4.042958136999914, 57.73729075700004), (-4.077951626999948, 57.73029205900008), (-4.155344204999949, 57.692572333000044), (-4.168568488999938, 57.689439195000034), (-4.1939998039999296, 57.68854401200008), (-4.2592667309999115, 57.67869700700004), (-4.277821417999917, 57.68060944200005), (-4.294789191999939, 57.68016185100004), (-4.302154100999928, 57.66860586100006), (-4.30882727799991, 57.65485260600008), (-4.324045376999948, 57.64826080900008), (-4.33820553299995, 57.64508698100008), (-4.4031876289999445, 57.60952383000006), (-4.412180141999954, 57.60297272300005), (-4.4203181629999335, 57.592962958000044), (-4.428456183999913, 57.57754140800006), (-4.423451300999943, 57.57680898600006), (-4.409901495999918, 57.582464911000045), (-4.379872199999909, 57.58934153900003), (-4.365101691999939, 57.59723541900007), (-4.3510636059999115, 57.60736725500004), (-4.340809699999909, 57.617173570000034), (-4.328724738999938, 57.626288153000075), (-4.283111131999931, 57.64142487200007), (-4.2445369129999335, 57.66303131700005), (-4.201893683999913, 57.674994208000044), (-4.1937556629999335, 57.67552317900004), (-4.182240363999938, 57.67279694200005), (-4.169016079999949, 57.663763739000046), (-4.118723110999952, 57.65770091400003), (-4.096791144999941, 57.65810781500005), (-4.0807185539999296, 57.66498444200005), (-4.068104620999918, 57.672308661000045), (-4.0246475899999155, 57.687201239000046), (-4.009348110999952, 57.68854401200008), (-4.004505988999938, 57.67597077000005), (-4.025257941999939, 57.65521881700005), (-4.0541886059999115, 57.63572825700004), (-4.083404100999928, 57.62335846600007), (-4.118560350999928, 57.592962958000044), (-4.11546790299991, 57.58783600500004), (-4.112294074999909, 57.58413320500006), (-4.1088761059999115, 57.58144765800006), (-4.1049698559999115, 57.579291083000044), (-4.151356574999909, 57.57684967700004), (-4.170643683999913, 57.570746161000045), (-4.187489386999914, 57.55882396000004), (-4.178089972999942, 57.54954661700003), (-4.184925910999937, 57.548163153000075), (-4.207997199999909, 57.552069403000075), (-4.262603318999936, 57.552069403000075), (-4.262603318999936, 57.544582424000055), (-4.233957485999952, 57.54511139500005), (-4.220285610999952, 57.543402411000045), (-4.207997199999909, 57.538397528000075), (-4.226307745999918, 57.51544830900008), (-4.237456834999932, 57.50531647300005), (-4.248931443999936, 57.49746328300006), (-4.212798631999931, 57.492173570000034), (-4.1948136059999115, 57.49160390800006), (-4.173898891999954, 57.49746328300006), (-4.157622850999928, 57.50849030200004), (-4.150054490999935, 57.51504140800006), (-4.149322068999936, 57.51788971600007), (-4.126779751999948, 57.518866278000075), (-4.116200324999909, 57.52179596600007), (-4.097523566999939, 57.53668854400007), (-4.082997199999909, 57.54441966400003), (-4.067290818999936, 57.54995351800005), (-4.0531306629999335, 57.552069403000075), (-4.034982876999948, 57.55687083500004), (-4.046457485999952, 57.56785716400003), (-4.083851691999939, 57.58612702000005), (-4.056019660999937, 57.585150458000044), (-3.9643448559999115, 57.592962958000044), (-3.8682755199999406, 57.587876695000034), (-3.8374731109999516, 57.592962958000044), (-3.6848038399999155, 57.65444570500006), (-3.625152147999927, 57.66193268400008), (-3.632557745999918, 57.65094635600008), (-3.637684699999909, 57.64622630400004), (-3.6456192699999406, 57.64142487200007), (-3.632476365999935, 57.635646877000056), (-3.6196182929999168, 57.63621653900003), (-3.606068488999938, 57.63947174700007), (-3.590972459999932, 57.64142487200007), (-3.61156165299991, 57.66811758000006), (-3.5747777989999463, 57.66111888200004), (-3.55492102799991, 57.659857489000046), (-3.535755988999938, 57.66193268400008), (-3.521473761999914, 57.66779205900008), (-3.5054418609999516, 57.67865631700005), (-3.4959610669999392, 57.69135163000004), (-3.501698370999918, 57.702826239000046), (-3.491851365999935, 57.71312083500004), (-3.4828181629999335, 57.71401601800005), (-3.4730525379999335, 57.711004950000074), (-3.460682745999918, 57.70966217700004), (-3.447865363999938, 57.71246979400007), (-3.4212540359999366, 57.72138092700004), (-3.409169074999909, 57.72333405200004), (-3.2847387359999516, 57.72044505400004), (-3.2100723949999406, 57.69399648600006), (-3.0786840489999463, 57.66941966400003), (-3.034901495999918, 57.66860586100006), (-2.994496222999942, 57.67552317900004), (-2.932687954999949, 57.69961172100005), (-2.9160863919999542, 57.702826239000046), (-2.75804602799991, 57.702826239000046), (-2.7512100899999155, 57.70062897300005), (-2.741118943999936, 57.69086334800005), (-2.731068488999938, 57.68854401200008), (-2.719878709999932, 57.690619208000044), (-2.711537238999938, 57.69399648600006), (-2.7035212879999335, 57.69472890800006), (-2.6929418609999516, 57.68854401200008), (-2.658924933999913, 57.69745514500005), (-2.573394334999932, 57.68146393400008), (-2.541981574999909, 57.68235911700003), (-2.526112433999913, 57.66860586100006), (-2.5181371739999463, 57.67011139500005), (-2.5110570949999556, 57.677801825000074), (-2.497954881999931, 57.68235911700003), (-2.4800512359999516, 57.68121979400007), (-2.4328507149999155, 57.66811758000006), (-2.425526495999918, 57.67572663000004), (-2.4177953769999476, 57.674261786000045), (-2.4087621739999463, 57.669623114000046), (-2.398060675999943, 57.66811758000006), (-2.3865860669999392, 57.671576239000046), (-2.369496222999942, 57.680568752000056), (-2.360503709999932, 57.68235911700003), (-2.3410538399999155, 57.675848700000074), (-2.3289688789999445, 57.67405833500004), (-2.3235977859999366, 57.678941148000035), (-2.32054602799991, 57.68455638200004), (-2.313384568999936, 57.68992747600004), (-2.3040665359999366, 57.69399648600006), (-2.295643683999913, 57.69599030200004), (-2.274322068999936, 57.69383372600004), (-2.230132615999935, 57.67914459800005), (-2.209950324999909, 57.67552317900004), (-2.1840714179999168, 57.67845286700003), (-2.1243383449999556, 57.702826239000046), (-2.108143683999913, 57.70498281500005), (-1.9976700509999432, 57.702826239000046), (-1.9969376289999445, 57.69904205900008), (-1.990834113999938, 57.69037506700005), (-1.982167120999918, 57.68109772300005), (-1.9735001289999445, 57.67552317900004), (-1.961293097999942, 57.674709377000056), (-1.9447322259999282, 57.68256256700005), (-1.9324845039999445, 57.68235911700003), (-1.9256892569999309, 57.678168036000045), (-1.914214647999927, 57.66474030200004), (-1.8294571609999366, 57.61347077000005), (-1.820464647999927, 57.59634023600006), (-1.817005988999938, 57.578192450000074), (-1.8113907539999445, 57.56049225500004), (-1.7960098949999406, 57.544582424000055), (-1.7960098949999406, 57.538397528000075), (-1.8000382149999155, 57.52586497600004), (-1.7895401679999168, 57.514837958000044), (-1.7611384759999282, 57.49746328300006), (-1.7753800119999141, 57.496527411000045), (-1.7821345689999362, 57.48899974200003), (-1.7812393869999141, 57.48041413000004), (-1.7717179029999102, 57.476263739000046), (-1.7593481109999516, 57.47357819200005), (-1.7659399079999503, 57.46743398600006), (-1.7891739569999459, 57.45644765800006), (-1.8301488919999542, 57.42617422100005), (-1.8474828769999476, 57.40814850500004), (-1.849964972999942, 57.39435455900008), (-1.9544978509999282, 57.341131903000075), (-1.9802953769999476, 57.31928131700005), (-2.044667120999918, 57.22650788000004), (-2.068511522999927, 57.17462799700007), (-2.074126756999931, 57.15420156500005), (-2.0714005199999406, 57.13556549700007), (-2.052357550999943, 57.12742747600004), (-2.0493057929999168, 57.118841864000046), (-2.065256313999953, 57.10053131700005), (-2.0658259759999282, 57.09983958500004), (-2.156158006999931, 57.020697333000044), (-2.1869197259999282, 56.98468659100007), (-2.200103318999936, 56.94871653900003), (-2.1971329419999392, 56.94025299700007), (-2.1912328769999476, 56.93414948100008), (-2.186268683999913, 56.92674388200004), (-2.1863907539999445, 56.91453685100004), (-2.191314256999931, 56.90892161700003), (-2.209706183999913, 56.895819403000075), (-2.213693813999953, 56.890692450000074), (-2.219878709999932, 56.87262604400007), (-2.23460852799991, 56.861395575000074), (-2.2689509759999282, 56.84634023600006), (-2.295806443999936, 56.82526276200008), (-2.3198136059999115, 56.80158112200007), (-2.336089647999927, 56.79083893400008), (-2.3918350899999155, 56.771185614000046), (-2.4086807929999168, 56.762925523000035), (-2.4264216789999296, 56.751288153000075), (-2.4359431629999335, 56.74038320500006), (-2.4407445949999556, 56.73484935100004), (-2.4516495429999168, 56.69098541900007), (-2.4637345039999445, 56.67877838700008), (-2.4774063789999445, 56.66868724200003), (-2.487456834999932, 56.65387604400007), (-2.4875382149999155, 56.64606354400007), (-2.481271938999953, 56.63239166900007), (-2.480620897999927, 56.62653229400007), (-2.4861954419999392, 56.619574286000045), (-2.504058397999927, 56.60883209800005), (-2.514556443999936, 56.591498114000046), (-2.530018683999913, 56.58075592700004), (-2.623768683999913, 56.543402411000045), (-2.6409399079999503, 56.522365627000056), (-2.6613663399999155, 56.51422760600008), (-2.6997777989999463, 56.50364817900004), (-2.708729620999918, 56.49599844000005), (-2.7276505199999406, 56.46954987200007), (-2.737294074999909, 56.46702708500004), (-2.74437415299991, 56.46954987200007), (-2.752308722999942, 56.47361888200004), (-2.764800584999932, 56.47573476800005), (-2.819325324999909, 56.47129954600007), (-3.055653449999909, 56.45213450700004), (-3.0606176419999542, 56.45172760600008), (-3.099273240999935, 56.44188060100004), (-3.1339005199999406, 56.426947333000044), (-3.238189256999931, 56.36774323100008), (-3.280181443999936, 56.35789622600004), (-3.3234757149999155, 56.36591217700004), (-3.311512824999909, 56.35651276200008), (-3.294016079999949, 56.352769273000035), (-3.2515356109999516, 56.352850653000075), (-3.230620897999927, 56.35602448100008), (-3.188384568999936, 56.37018463700008), (-3.149566209999932, 56.37555573100008), (-2.950266079999949, 56.43187083500004), (-2.9399307929999168, 56.43854401200008), (-2.930653449999909, 56.44806549700007), (-2.909087693999936, 56.45571523600006), (-2.88499915299991, 56.45799388200004), (-2.867909308999913, 56.45184967700004), (-2.8500870429999168, 56.44204336100006), (-2.8147680329999503, 56.44041575700004), (-2.8028051419999542, 56.42796458500004), (-2.800892706999946, 56.40892161700003), (-2.808257615999935, 56.391058661000045), (-2.8216039699999556, 56.376166083000044), (-2.837554490999935, 56.36591217700004), (-2.8129776679999168, 56.36591217700004), (-2.809193488999938, 56.36286041900007), (-2.8047582669999542, 56.34910716400003), (-2.8028051419999542, 56.345404364000046), (-2.7914932929999168, 56.34247467700004), (-2.7826228509999282, 56.34162018400008), (-2.7752579419999392, 56.33942291900007), (-2.768625454999949, 56.33234284100007), (-2.6771541009999282, 56.32843659100007), (-2.655262824999909, 56.32217031500005), (-2.621205206999946, 56.30442942900004), (-2.613189256999931, 56.30190664300005), (-2.5768123039999296, 56.28392161700003), (-2.5768123039999296, 56.277777411000045), (-2.6301163399999155, 56.24852122600004), (-2.648345506999931, 56.22870514500005), (-2.672027147999927, 56.22239817900004), (-2.7202042309999115, 56.21629466400003), (-2.7835994129999335, 56.19196198100008), (-2.8061417309999115, 56.188381252000056), (-2.8307185539999296, 56.190741278000075), (-2.8920792309999115, 56.20888906500005), (-2.940052863999938, 56.209418036000045), (-2.9643448559999115, 56.20563385600008), (-2.9746801419999542, 56.19830963700008), (-2.982411261999914, 56.189113674000055), (-3.0355525379999335, 56.16791413000004), (-3.0910538399999155, 56.13226959800005), (-3.107533331999946, 56.12689850500004), (-3.127552863999938, 56.12287018400008), (-3.138295050999943, 56.112209377000056), (-3.152251756999931, 56.07851797100005), (-3.1635636059999115, 56.06386953300006), (-3.1783748039999296, 56.05809153900003), (-3.2484431629999335, 56.055975653000075), (-3.268381313999953, 56.05093008000006), (-3.3030492829999503, 56.037543036000045), (-3.342681443999936, 56.02716705900008), (-3.381825324999909, 56.02338288000004), (-3.420969204999949, 56.02488841400003), (-3.5825902989999463, 56.05174388200004), (-3.671498175999943, 56.050848700000074), (-3.710031704999949, 56.05809153900003), (-3.7454320949999556, 56.07221100500004), (-3.7464900379999335, 56.072780666000085), (-3.782215949999909, 56.09218984600005), (-3.8031306629999335, 56.107123114000046), (-3.817005988999938, 56.11225006700005), (-3.8374731109999516, 56.112616278000075), (-3.8374731109999516, 56.10643138200004), (-3.777699347999942, 56.08283112200007), (-3.769154425999943, 56.07514069200005), (-3.7608536449999406, 56.07245514500005), (-3.7264298169999392, 56.03803131700005), (-3.721424933999913, 56.03070709800005), (-3.712635870999918, 56.028998114000046), (-3.693470831999946, 56.03115469000005), (-3.6866348949999406, 56.03070709800005), (-3.6795548169999392, 56.025458075000074), (-3.674794074999909, 56.01870351800005), (-3.6682836579999503, 56.01276276200008), (-3.656239386999914, 56.010199286000045), (-3.599720831999946, 56.017238674000055), (-3.5773819649999155, 56.01703522300005), (-3.405425584999932, 55.98973216400003), (-3.3582657539999445, 55.98973216400003), (-3.340891079999949, 55.99445221600007), (-3.331044074999909, 55.99408600500004), (-3.320423956999946, 55.986029364000046), (-3.303456183999913, 55.97760651200008), (-3.121815558999913, 55.96930573100008), (-3.1147354809999115, 55.966131903000075), (-3.096831834999932, 55.95197174700007), (-3.090728318999936, 55.94818756700005), (-3.078236456999946, 55.94684479400007), (-3.0156957669999542, 55.950506903000075), (-2.9399307929999168, 55.96930573100008), (-2.9166560539999296, 55.98061758000006), (-2.900054490999935, 55.996161200000074), (-2.8828832669999542, 56.00849030200004), (-2.8579809239999463, 56.010199286000045), (-2.863636847999942, 56.02228424700007), (-2.8663223949999406, 56.02676015800006), (-2.8709610669999392, 56.03070709800005), (-2.8527725899999155, 56.03978099200003), (-2.823150193999936, 56.059759833000044), (-2.8028051419999542, 56.06484609600005), (-2.635121222999942, 56.05805084800005), (-2.615956183999913, 56.053168036000045), (-2.587554490999935, 56.030951239000046), (-2.569406704999949, 56.02448151200008), (-2.57835852799991, 56.00800202000005), (-2.583648240999935, 56.00275299700007), (-2.5695694649999155, 55.99994538000004), (-2.5440567699999406, 56.00267161700003), (-2.528960740999935, 55.99656810100004), (-2.5248103509999282, 56.00055573100008), (-2.514556443999936, 56.00576406500005), (-2.507923956999946, 56.010199286000045), (-2.4932755199999406, 56.00153229400007), (-2.4525040359999366, 55.985256252000056), (-2.4143774079999503, 55.97833893400008), (-2.3509415359999366, 55.94818756700005), (-2.307769334999932, 55.93500397300005), (-2.146839972999942, 55.917303778000075), (-2.1380102199999556, 55.91461823100008), (-2.132557745999918, 55.90643952000005), (-2.13109290299991, 55.89720286700003), (-2.1287735669999392, 55.88979726800005), (-2.1209610669999392, 55.886704820000034), (-2.0994766919999392, 55.88178131700005), (-2.080189581999946, 55.86937083500004), (-2.0228572259999282, 55.80548737200007), (-2.009673631999931, 55.79083893400008), (-1.8778376939999362, 55.69489166900007), (-1.8631892569999309, 55.67161692900004), (-1.8530981109999516, 55.65932851800005), (-1.8315323559999115, 55.65070221600007), (-1.8260798819999309, 55.64362213700008), (-1.8216853509999282, 55.636419989000046), (-1.8164770169999542, 55.632879950000074), (-1.8071182929999168, 55.63450755400004), (-1.8007706369999141, 55.63922760600008), (-1.7962947259999282, 55.644232489000046), (-1.7925919259999432, 55.646551825000074), (-1.781402147999927, 55.64565664300005), (-1.768625454999949, 55.641913153000075), (-1.7564998039999296, 55.63361237200007), (-1.7476700509999432, 55.619208075000074), (-1.7679744129999335, 55.619208075000074), (-1.7679744129999335, 55.612982489000046), (-1.7559708319999459, 55.60887278900003), (-1.720855272999927, 55.614569403000075), (-1.6991267569999309, 55.612982489000046), (-1.6308487619999141, 55.58510976800005), (-1.6308487619999141, 55.57827383000006), (-1.6363419259999432, 55.57168203300006), (-1.6346736319999309, 55.56439850500004), (-1.6276749339999128, 55.55711497600004), (-1.6171768869999141, 55.55027903900003), (-1.6308487619999141, 55.544134833000044), (-1.6308487619999141, 55.53729889500005), (-1.6222224599999322, 55.534084377000056), (-1.6029353509999282, 55.52362702000005), (-1.6029353509999282, 55.516791083000044), (-1.6113175119999141, 55.50804271000004), (-1.6063533189999362, 55.503241278000075), (-1.5963435539999296, 55.49990469000005), (-1.5893448559999115, 55.49567291900007), (-1.5849503249999088, 55.483710028000075), (-1.5813695949999556, 55.41665273600006), (-1.5831192699999406, 55.40692780200004), (-1.5882869129999335, 55.39057038000004), (-1.5891007149999155, 55.385199286000045), (-1.5893448559999115, 55.37653229400007), (-1.5833227199999556, 55.354722398000035), (-1.5585831369999141, 55.32892487200007), (-1.5558162099999322, 55.31134674700007), (-1.5570369129999335, 55.306626695000034), (-1.5589900379999335, 55.302069403000075), (-1.5619197259999282, 55.29779694200005), (-1.5657445949999556, 55.29364655200004), (-1.570057745999918, 55.28620026200008), (-1.5682266919999392, 55.27960846600007), (-1.5642797519999476, 55.27326080900008), (-1.5620824859999516, 55.26666901200008), (-1.5564672519999476, 55.25503164300005), (-1.5439346999999088, 55.24388255400004), (-1.5209854809999115, 55.229396877000056), (-1.5291641919999392, 55.21625397300005), (-1.5240779289999296, 55.21010976800005), (-1.514271613999938, 55.204779364000046), (-1.507964647999927, 55.194647528000075), (-1.510812954999949, 55.184759833000044), (-1.5175675119999141, 55.176214911000045), (-1.5221248039999296, 55.16746653900003), (-1.517933722999942, 55.157131252000056), (-1.5007218089999128, 55.141791083000044), (-1.4959610669999392, 55.13458893400008), (-1.492543097999942, 55.112982489000046), (-1.4837540359999366, 55.09170156500005), (-1.4800919259999432, 55.08539459800005), (-1.4762263659999348, 55.083644924000055), (-1.4632869129999335, 55.08030833500004), (-1.459584113999938, 55.07859935100004), (-1.458078579999949, 55.07575104400007), (-1.4547013009999432, 55.067572333000044), (-1.438303188999953, 55.042303778000075), (-1.4291886059999115, 55.033270575000074), (-1.4240616529999102, 55.02435944200005), (-1.4195043609999516, 55.011704820000034), (-1.412912563999953, 55.00031159100007), (-1.4015193349999322, 54.995428778000075), (-1.398182745999918, 54.992621161000045), (-1.3702286449999406, 54.97553131700005), (-1.3626602859999366, 54.96478913000004), (-1.3617244129999335, 54.958685614000046), (-1.3635147779999102, 54.95425039300005), (-1.3640030589999128, 54.94818756700005), (-1.3628637359999516, 54.92593008000006), (-1.3603409499999088, 54.91705963700008), (-1.3531388009999432, 54.91351959800005), (-1.355824347999942, 54.904282945000034), (-1.2967830069999309, 54.77993398600006), (-1.2754613919999542, 54.74843984600005), (-1.2404679029999102, 54.72166575700004), (-1.2250870429999168, 54.71503327000005), (-1.172230597999942, 54.701239325000074), (-1.172230597999942, 54.693793036000045), (-1.1926163399999155, 54.693793036000045), (-1.192453579999949, 54.68927643400008), (-1.1907852859999366, 54.68618398600006), (-1.1851700509999432, 54.68008047100005), (-1.1827286449999406, 54.67206452000005), (-1.1788223949999406, 54.66474030200004), (-1.172922329999949, 54.65835195500006), (-1.1647029289999296, 54.652777411000045), (-1.172922329999949, 54.644191799000055), (-1.1824845039999445, 54.63922760600008), (-1.2062882149999155, 54.63296133000006), (-1.203724738999938, 54.62571849200003), (-1.1988419259999432, 54.62156810100004), (-1.1918025379999335, 54.61977773600006), (-1.1821182929999168, 54.61928945500006), (-1.1793513659999348, 54.62091705900008), (-1.1784561839999128, 54.624212958000044), (-1.1769913399999155, 54.62677643400008), (-1.172230597999942, 54.62612539300005), (-1.1695857409999348, 54.62360260600008), (-1.1654353509999282, 54.61871979400007), (-1.1629532539999445, 54.61395905200004), (-1.1647029289999296, 54.61180247600004), (-1.1526586579999503, 54.61318594000005), (-1.1467179029999102, 54.618475653000075), (-1.1380509109999366, 54.646551825000074), (-1.1205948559999115, 54.63300202000005), (-1.1036270819999459, 54.624660549000055), (-1.0842179029999102, 54.620428778000075), (-1.042062954999949, 54.61709219000005), (-0.9934789699999556, 54.59813060100004), (-0.7879125639999529, 54.56077708500004), (-0.5629776679999168, 54.47736237200007), (-0.5346573559999115, 54.461004950000074), (-0.5228572259999282, 54.44708893400008), (-0.5217992829999503, 54.43805573100008), (-0.5235896479999269, 54.43024323100008), (-0.5204158189999362, 54.42007070500006), (-0.5099991529999102, 54.41156647300005), (-0.47679602799991017, 54.39720286700003), (-0.46275794199993925, 54.38898346600007), (-0.4477432929999168, 54.37319570500006), (-0.43057206899993616, 54.349310614000046), (-0.4184464179999168, 54.32404205900008), (-0.41803951699995423, 54.303941148000035), (-0.4145401679999168, 54.297308661000045), (-0.4090063139999529, 54.29075755400004), (-0.4011938139999529, 54.28563060100004), (-0.39073645699994586, 54.28351471600007), (-0.3948868479999419, 54.273138739000046), (-0.39757239499994057, 54.269191799000055), (-0.3892716139999379, 54.26406484600005), (-0.3704727859999366, 54.247707424000055), (-0.3627823559999115, 54.24249909100007), (-0.3220108709999181, 54.23607005400004), (-0.31191972599992823, 54.231634833000044), (-0.30011959499995555, 54.224676825000074), (-0.2770889959999181, 54.21775950700004), (-0.26960201699995423, 54.20766836100006), (-0.26256262899994454, 54.18109772300005), (-0.2603653639999379, 54.176988023000035), (-0.2338761059999115, 54.16046784100007), (-0.11143958199994586, 54.13157786700003), (-0.07551021999995555, 54.11212799700007), (-0.16392981699993925, 54.08340078300006), (-0.1946915359999366, 54.06232330900008), (-0.2194718089999128, 54.022772528000075), (-0.1974177729999269, 53.99481842700004), (-0.1686905589999128, 53.929348049000055), (-0.1511124339999128, 53.899318752000056), (-0.045155402999910166, 53.801214911000045), (0.13347415500004445, 53.642645575000074), (0.1492619150000678, 53.60960521000004), (0.13689212300005238, 53.57713450700004), (0.13119550900006516, 53.573431708000044), (0.1096297540000819, 53.56289297100005), (0.1313582690000885, 53.59369538000004), (0.1359969410000872, 53.610663153000075), (0.12020918100006384, 53.61810944200005), (0.09945722700007309, 53.622300523000035), (0.056162957000083225, 53.64126211100006), (0.034515821000070446, 53.64606354400007), (0.014821811000047092, 53.64325592700004), (-0.023915167999916775, 53.62885163000004), (-0.04503333199994586, 53.62555573100008), (-0.06940670499994894, 53.626939195000034), (-0.09227454299991678, 53.63104889500005), (-0.11261959499995555, 53.63751862200007), (-0.1300349599999322, 53.64606354400007), (-0.2253311839999128, 53.719916083000044), (-0.2603653639999379, 53.73541901200008), (-0.2956436839999128, 53.738796291000085), (-0.3051651679999168, 53.73969147300005), (-0.4311417309999115, 53.71430084800005), (-0.4496964179999168, 53.71430084800005), (-0.5104874339999128, 53.71430084800005), (-0.5444229809999115, 53.70945872600004), (-0.5515030589999128, 53.71116771000004), (-0.5762426419999542, 53.72565338700008), (-0.5791723299999489, 53.72797272300005), (-0.6370336579999503, 53.73200104400007), (-0.6583552729999269, 53.72797272300005), (-0.7264705069999309, 53.70062897300005), (-0.7173559239999463, 53.69867584800005), (-0.7085668609999516, 53.695746161000045), (-0.7001846999999088, 53.691839911000045), (-0.6924535799999489, 53.68699778900003), (-0.6774796209999181, 53.702826239000046), (-0.6498103509999282, 53.710598049000055), (-0.6195369129999335, 53.71185944200005), (-0.5961807929999168, 53.70807526200008), (-0.5554906889999529, 53.69049713700008), (-0.5447485019999476, 53.683579820000034), (-0.5299373039999296, 53.67767975500004), (-0.5140274729999419, 53.681301174000055), (-0.48631751199991413, 53.69448476800005), (-0.3072403639999379, 53.71426015800006), (-0.27936764199995423, 53.707098700000074), (-0.2603653639999379, 53.68699778900003), (-0.1886287099999322, 53.620428778000075), (-0.1440323559999115, 53.606634833000044), (-0.11318925699993088, 53.58462148600006), (-0.09593665299991017, 53.57713450700004), (-0.06094316299993352, 53.57396067900004), (-0.0466202459999181, 53.570379950000074), (9.199300006912381e-05, 53.53534577000005), (0.0959578790000819, 53.488348700000074), (0.11508222700007309, 53.48322174700007), (0.1340438160000872, 53.48061758000006), (0.15186608200008322, 53.475816148000035), (0.1678166020000731, 53.464504299000055), (0.17090905000009116, 53.457017320000034), (0.1731063160000872, 53.44676341400003), (0.17579186300008587, 53.43768952000005), (0.1814884770000731, 53.43374258000006), (0.1906030610000471, 53.43187083500004), (0.21949303500008455, 53.41950104400007), (0.21192467500009116, 53.41266510600008), (0.2293400400000678, 53.40477122600004), (0.24488366000008455, 53.39093659100007), (0.2561141290000819, 53.375067450000074), (0.26042728000004445, 53.36147695500006), (0.34213300900006516, 53.22630442900004), (0.35621178500008455, 53.18854401200008), (0.3566186860000471, 53.145738023000035), (0.3357853520000731, 53.093451239000046), (0.32984459700008983, 53.08649323100008), (0.31869550900006516, 53.083685614000046), (0.29883873800008587, 53.08120351800005), (0.2824813160000872, 53.07485586100006), (0.19304446700004974, 53.02008698100008), (0.17448978000004445, 53.01544830900008), (0.16081790500004445, 53.008978583000044), (0.08212324300006912, 52.938666083000044), (0.061167839000063395, 52.924994208000044), (0.03760826900008851, 52.919175523000035), (0.022146030000044448, 52.91258372600004), (0.008555535000084546, 52.89862702000005), (0.010264519000088512, 52.88646067900004), (0.04066002700005811, 52.88507721600007), (0.09253991000008455, 52.89252350500004), (0.10564212300005238, 52.88934967700004), (0.13347415500004445, 52.87518952000005), (0.14714603000004445, 52.87201569200005), (0.17090905000009116, 52.86212799700007), (0.22242272200008983, 52.813666083000044), (0.24675540500004445, 52.79572174700007), (0.2644962900000678, 52.80369700700004), (0.2856551440000885, 52.805568752000056), (0.32553144600007045, 52.803168036000045), (0.34180748800008587, 52.79743073100008), (0.36988366000008455, 52.77301666900007), (0.38453209700008983, 52.76837799700007), (0.38453209700008983, 52.77521393400008), (0.37924238400006516, 52.79083893400008), (0.39942467500009116, 52.80951569200005), (0.42554772200008983, 52.827378648000035), (0.4386499360000471, 52.840725002000056), (0.44402103000004445, 52.86505768400008), (0.45671634200004974, 52.89199453300006), (0.47234134200004974, 52.916449286000045), (0.48568769600007045, 52.93349844000005), (0.5202742850000845, 52.95526764500005), (0.5695906910000872, 52.96930573100008), (0.6233830090000652, 52.97565338700008), (0.6718856130000859, 52.97443268400008), (0.6643986340000652, 52.98187897300005), (0.6847436860000471, 52.986395575000074), (0.7067977220000898, 52.98322174700007), (0.7291772800000444, 52.97748444200005), (0.7504988940000885, 52.97443268400008), (0.8357039720000898, 52.97443268400008), (0.8754988940000885, 52.96816640800006), (0.9210718110000471, 52.95465729400007), (0.9684350920000497, 52.94749583500004), (1.013926629000082, 52.960150458000044), (1.0034285820000832, 52.96474844000005), (0.9915470710000704, 52.96747467700004), (0.9790145190000885, 52.968410549000055), (0.9660750660000872, 52.96759674700007), (0.9660750660000872, 52.97443268400008), (1.2746688160000872, 52.92918528900003), (1.3960067070000832, 52.89142487200007), (1.6442163420000497, 52.775824286000045), (1.6733504570000832, 52.75568268400008), (1.6970320970000898, 52.73102448100008), (1.7158309250000912, 52.68374258000006), (1.7341414720000898, 52.65460846600007), (1.747243686000047, 52.62518952000005), (1.7407332690000885, 52.60390859600005), (1.7468367850000845, 52.58852773600006), (1.7487085300000444, 52.568793036000045), (1.7475692070000832, 52.53278229400007), (1.7711694670000497, 52.48590729400007), (1.7671004570000832, 52.47695547100005), (1.7544051440000885, 52.46735260600008), (1.7292586600000845, 52.41559479400007), (1.7301538420000497, 52.405910549000055), (1.7278751960000704, 52.39630768400008), (1.6836043630000859, 52.32453034100007), (1.6518660820000832, 52.289129950000074), (1.6411238940000885, 52.28180573100008), (1.6305444670000497, 52.27045319200005), (1.6282658210000704, 52.24481842700004), (1.6308699880000859, 52.19977448100008), (1.6254988940000885, 52.18036530200004), (1.6074324880000859, 52.14594147300005), (1.6035262380000859, 52.127834377000056), (1.5892033210000704, 52.100816148000035), (1.5875757170000497, 52.08698151200008), (1.582286004000082, 52.08148834800005), (1.5036727220000898, 52.060980536000045), (1.4868270190000885, 52.04901764500005), (1.4720158210000704, 52.05621979400007), (1.4668074880000859, 52.04800039300005), (1.4638778000000912, 52.035142320000034), (1.4558211600000845, 52.028509833000044), (1.4489852220000898, 52.02496979400007), (1.4248153000000912, 52.00185781500005), (1.3548283210000704, 51.95404694200005), (1.3435164720000898, 51.94285716400009), (1.332286004000082, 51.94009023600006), (1.2644149100000845, 51.99437083500004), (1.2348738940000885, 52.00031159100007), (1.1852319670000497, 52.025091864000046), (1.1578882170000497, 52.028509833000044), (1.1578882170000497, 52.02167389500005), (1.1935327480000524, 52.00079987200007), (1.2143660820000832, 51.991441148000035), (1.2602645190000885, 51.984808661000045), (1.2707625660000872, 51.98151276200008), (1.2751570970000898, 51.976996161000045), (1.2744246750000912, 51.96088288000004), (1.2710067070000832, 51.95644765800006), (1.2507430350000845, 51.95962148600006), (1.2389429050000444, 51.958644924000055), (1.2176212900000678, 51.954331773000035), (1.2057397800000444, 51.95343659100007), (1.193207227000073, 51.955511786000045), (1.1652938160000872, 51.96702708500004), (1.1430770190000885, 51.966050523000035), (1.0944930350000845, 51.955959377000056), (1.0691024100000845, 51.95343659100007), (1.0954695970000898, 51.945746161000045), (1.2620548840000652, 51.939154364000046), (1.2819930350000845, 51.946600653000075), (1.278493686000047, 51.92792389500005), (1.1995548840000652, 51.87767161700003), (1.2122501960000704, 51.87164948100008), (1.2278751960000704, 51.86737702000005), (1.2644149100000845, 51.86399974200003), (1.2747501960000704, 51.870306708000044), (1.2822371750000912, 51.880560614000046), (1.2866317070000832, 51.88165924700007), (1.288259311000047, 51.860581773000035), (1.2763778000000912, 51.84479401200008), (1.2192488940000885, 51.811835028000075), (1.167816602000073, 51.790228583000044), (1.1354272800000444, 51.78172435100004), (1.0654403000000912, 51.77529531500005), (1.0466414720000898, 51.777044989000046), (1.0372827480000524, 51.78217194200005), (1.021332227000073, 51.80255768400008), (0.9887801440000885, 51.83026764500005), (0.9798283210000704, 51.84357330900008), (0.9770613940000885, 51.82461172100005), (0.9620874360000471, 51.813788153000075), (0.9251408210000704, 51.80255768400008), (0.8942977220000898, 51.78461334800005), (0.8869735040000819, 51.782131252000056), (0.8864038420000497, 51.776678778000075), (0.8834741550000444, 51.76471588700008), (0.8789168630000859, 51.75275299700007), (0.8737085300000444, 51.747300523000035), (0.8619897800000444, 51.74555084800005), (0.8459578790000819, 51.736761786000045), (0.8357039720000898, 51.733710028000075), (0.8234969410000872, 51.73383209800005), (0.8014429050000444, 51.73969147300005), (0.7917586600000845, 51.74115631700005), (0.7671004570000832, 51.739447333000044), (0.7208764980000524, 51.728176174000055), (0.6985783210000704, 51.720038153000075), (0.7142033210000704, 51.715277411000045), (0.7324324880000859, 51.713771877000056), (0.7492781910000872, 51.70848216400009), (0.7607528000000912, 51.692694403000075), (0.7890731130000859, 51.710150458000044), (0.8530379570000832, 51.71889883000006), (0.8835555350000845, 51.72687409100007), (0.9123641290000819, 51.741522528000075), (0.9300236340000652, 51.74359772300005), (0.9455672540000819, 51.733710028000075), (0.9474389980000524, 51.72524648600006), (0.9445906910000872, 51.71548086100006), (0.9404403000000912, 51.70799388200004), (0.9381616550000444, 51.706366278000075), (0.9401961600000845, 51.698431708000044), (0.9440210300000444, 51.69057851800005), (0.9518335300000444, 51.67841217700004), (0.9417423840000652, 51.673041083000044), (0.9379988940000885, 51.664496161000045), (0.9381616550000444, 51.64126211100006), (0.9347436860000471, 51.63589101800005), (0.9267684250000912, 51.630926825000074), (0.9114689460000704, 51.62384674700007), (0.9384871750000912, 51.624986070000034), (0.9480900400000678, 51.621527411000045), (0.9518335300000444, 51.61701080900008), (0.9244897800000444, 51.588324286000045), (0.8733016290000819, 51.559475002000056), (0.8282983730000524, 51.541856187000064), (0.8162541020000731, 51.537176825000074), (0.7712508470000898, 51.52826569200005), (0.6920679050000444, 51.536322333000044), (0.6643986340000652, 51.53506094000005), (0.6637475920000497, 51.53554922100005), (0.6505639980000524, 51.53579336100006), (0.6466577480000524, 51.53534577000005), (0.6440535820000832, 51.53506094000005), (0.6427514980000524, 51.53351471600007), (0.6233830090000652, 51.52204010600008), (0.6086531910000872, 51.51898834800005), (0.5952254570000832, 51.51862213700008), (0.5822860040000819, 51.51654694200005), (0.5688582690000885, 51.50836823100008), (0.5527449880000859, 51.51797109600005), (0.5472111340000652, 51.51772695500006), (0.5254012380000859, 51.516913153000075), (0.45606530000009116, 51.505560614000046), (0.45085696700004974, 51.49827708500004), (0.44800866000008455, 51.48822663000004), (0.4416610040000819, 51.47703685100004), (0.42847741000008455, 51.46710846600007), (0.41407311300008587, 51.46190013200004), (0.39918053500008455, 51.45840078300006), (0.38453209700008983, 51.453111070000034), (0.4484155610000471, 51.45994700700004), (0.45679772200008983, 51.46312083500004), (0.4614363940000885, 51.47016022300005), (0.46485436300008587, 51.47724030200004), (0.4695744150000678, 51.48041413000004), (0.5348413420000497, 51.49168528900009), (0.6948348320000832, 51.47703685100004), (0.7094832690000885, 51.47052643400008), (0.7219344410000872, 51.456284898000035), (0.7231551440000885, 51.44672272300005), (0.7131453790000819, 51.44122955900008), (0.6923934250000912, 51.439520575000074), (0.6565047540000819, 51.444525458000044), (0.6409611340000652, 51.44415924700007), (0.6093856130000859, 51.425116278000075), (0.5727645190000885, 51.419582424000055), (0.5545353520000731, 51.412176825000074), (0.5622664720000898, 51.40656159100007), (0.5691024100000845, 51.399603583000044), (0.5765080090000652, 51.39362213700008), (0.5859481130000859, 51.391058661000045), (0.6718856130000859, 51.391058661000045), (0.7129012380000859, 51.38422272300005), (0.7049259770000731, 51.39598216400009), (0.7003686860000471, 51.409816799000055), (0.7053328790000819, 51.41950104400007), (0.7264103520000731, 51.41901276200008), (0.7283634770000731, 51.406236070000034), (0.7392684250000912, 51.387925523000035), (0.7534285820000832, 51.371527411000045), (0.7644149100000845, 51.36440664300005), (0.9772241550000444, 51.34918854400007), (1.1009220710000704, 51.37323639500005), (1.4238387380000859, 51.39207591400009), (1.4482528000000912, 51.382879950000074), (1.4391382170000497, 51.35008372600004), (1.4355574880000859, 51.343736070000034), (1.430837436000047, 51.33779531500005), (1.4251408210000704, 51.33295319200005), (1.4186304050000444, 51.32965729400007), (1.3829858730000524, 51.329779364000046), (1.3776147800000444, 51.326239325000074), (1.3806258470000898, 51.304754950000074), (1.387868686000047, 51.28790924700007), (1.4043074880000859, 51.261379299000055), (1.4130965500000912, 51.22174713700008), (1.4047957690000885, 51.18353913000004), (1.3844507170000497, 51.151678778000075), (1.3571883470000898, 51.13100820500006), (1.2903751960000704, 51.116522528000075), (1.2629500660000872, 51.10325755400004), (1.2516382170000497, 51.10252513200004), (1.2299910820000832, 51.10370514500005), (1.2181095710000704, 51.10097890800006), (1.2082625660000872, 51.09467194200005), (1.1997176440000885, 51.087591864000046), (1.1920679050000444, 51.08258698100008), (1.1722111340000652, 51.077378648000035), (1.1067000660000872, 51.07636139500005), (1.0871688160000872, 51.07298411700003), (1.0669051440000885, 51.06439850500004), (1.027598504000082, 51.04165273600006), (0.9764103520000731, 50.99445221600007), (0.9664819670000497, 50.98273346600007), (0.9690861340000652, 50.95685455900008), (0.9798283210000704, 50.91815827000005), (0.9451603520000731, 50.909369208000044), (0.8698022800000444, 50.925116278000075), (0.8022567070000832, 50.93919505400004), (0.7624617850000845, 50.930894273000035), (0.6643986340000652, 50.870306708000044), (0.6241968110000471, 50.858710028000075), (0.4074813160000872, 50.829331773000035), (0.3702905610000471, 50.818793036000045), (0.36524498800008587, 50.81899648600006), (0.35425866000008455, 50.80963776200008), (0.34441165500004445, 50.79905833500004), (0.3422957690000885, 50.79515208500004), (0.3081160820000832, 50.780951239000046), (0.2710067070000832, 50.747381903000075), (0.23389733200008322, 50.74701569200005), (0.2141219410000872, 50.748928127000056), (0.16830488400006516, 50.759833075000074), (0.1573999360000471, 50.761053778000075), (0.12208092500009116, 50.76080963700008), (0.11304772200008983, 50.76414622600004), (0.09555097700007309, 50.775051174000055), (0.07703698000005943, 50.778998114000046), (0.034515821000070446, 50.780951239000046), (0.01754804800009424, 50.784857489000046), (-0.17316646999995555, 50.829006252000056), (-0.20612545499994894, 50.83104075700004), (-0.20889238199993088, 50.83010488500008), (-0.2331436839999128, 50.821926174000055), (-0.2696833979999269, 50.831284898000035), (-0.39757239499994057, 50.802069403000075), (-0.5689591139999379, 50.802069403000075), (-0.7327367829999503, 50.767279364000046), (-0.7415665359999366, 50.769232489000046), (-0.7498673169999392, 50.773871161000045), (-0.7582087879999335, 50.77708567900004), (-0.7675675119999141, 50.774725653000075), (-0.7731013659999348, 50.76601797100005), (-0.7662654289999296, 50.74713776200008), (-0.7709854809999115, 50.73688385600008), (-0.7899470689999362, 50.73004791900007), (-0.8128149079999503, 50.73476797100005), (-0.9041235019999476, 50.77187734600005), (-0.9114884109999366, 50.77781810100004), (-0.9058731759999432, 50.78803131700005), (-0.8924861319999309, 50.794623114000046), (-0.8636368479999419, 50.802069403000075), (-0.8636368479999419, 50.808254299000055), (-0.8736059239999463, 50.812933661000045), (-0.8931371739999463, 50.82534414300005), (-0.9046931629999335, 50.829331773000035), (-0.9095352859999366, 50.82599518400008), (-0.9217016269999476, 50.821600653000075), (-0.9289444649999155, 50.82282135600008), (-0.9190160799999489, 50.83616771000004), (-0.9297989569999459, 50.83999258000006), (-0.9391983709999181, 50.84324778900009), (-0.9707738919999542, 50.846991278000075), (-0.9948624339999128, 50.84707265800006), (-1.0018611319999309, 50.84711334800005), (-1.0207413399999155, 50.84365469000005), (-1.033558722999942, 50.82591380400004), (-1.0426326159999348, 50.80190664300005), (-1.0562231109999516, 50.78302643400008), (-1.0827530589999128, 50.780951239000046), (-1.1030167309999115, 50.79547760600008), (-1.0936173169999392, 50.812933661000045), (-1.0753067699999406, 50.83002350500004), (-1.069162563999953, 50.84365469000005), (-1.0873103509999282, 50.84979889500005), (-1.0881241529999102, 50.84975820500006), (-1.1498103509999282, 50.84666575700004), (-1.1647029289999296, 50.84365469000005), (-1.129709438999953, 50.825100002000056), (-1.1237686839999128, 50.818793036000045), (-1.1212052069999459, 50.79938385600008), (-1.1249080069999309, 50.788723049000055), (-1.1380509109999366, 50.780951239000046), (-1.1511124339999128, 50.78139883000006), (-1.1693416009999282, 50.78587474200003), (-1.1856176419999542, 50.79242584800005), (-1.1926163399999155, 50.79865143400008), (-1.1992895169999542, 50.807928778000075), (-1.231516079999949, 50.81891510600008), (-1.2551977199999556, 50.83193594000005), (-1.288156704999949, 50.839178778000075), (-1.3014216789999296, 50.84365469000005), (-1.3185929029999102, 50.85691966400009), (-1.338937954999949, 50.872707424000055), (-1.4492895169999542, 50.91205475500004), (-1.4664200509999432, 50.91815827000005), (-1.4664200509999432, 50.91193268400008), (-1.4564509759999282, 50.90875885600008), (-1.4379776679999168, 50.90131256700005), (-1.4256078769999476, 50.900091864000046), (-1.4011124339999128, 50.88117096600007), (-1.323068813999953, 50.82575104400007), (-1.3142797519999476, 50.812160549000055), (-1.3172908189999362, 50.80023834800005), (-1.3398331369999141, 50.79515208500004), (-1.4039607409999348, 50.79157135600008), (-1.4186905589999128, 50.788397528000075), (-1.4113663399999155, 50.78489817900004), (-1.4049373039999296, 50.780951239000046), (-1.4049373039999296, 50.774725653000075), (-1.4505102199999556, 50.76935455900008), (-1.4762263659999348, 50.76341380400004), (-1.4875382149999155, 50.75771719000005), (-1.491932745999918, 50.75726959800005), (-1.5247289699999556, 50.761053778000075), (-1.5571996739999463, 50.72329336100006), (-1.559396938999953, 50.71922435100004), (-1.5611873039999296, 50.71898021000004), (-1.5807185539999296, 50.722642320000034), (-1.6021215489999463, 50.731756903000075), (-1.6706436839999128, 50.74005768400008), (-1.672922329999949, 50.74005768400008), (-1.6930232409999348, 50.739935614000046), (-1.7150772779999102, 50.73578522300005), (-1.7535294259999432, 50.72284577000005), (-1.7717179029999102, 50.72011953300006), (-1.7974340489999463, 50.723171291000085), (-1.8350723949999406, 50.72768789300005), (-1.8574112619999141, 50.72695547100005), (-1.8773494129999335, 50.72284577000005), (-1.8963516919999392, 50.71629466400009), (-1.8968806629999335, 50.716050523000035), (-1.9138891269999476, 50.70742422100005), (-1.9291072259999282, 50.69586823100008), (-1.9400121739999463, 50.69082265800006), (-1.9443253249999088, 50.69765859600005), (-1.946115688999953, 50.707912502000056), (-1.9492895169999542, 50.713324286000045), (-1.9877009759999282, 50.72011953300006), (-2.01390540299991, 50.71893952000005), (-2.0219620429999168, 50.72011953300006), (-2.0254613919999542, 50.723863023000035), (-2.026193813999953, 50.72508372600004), (-2.0338435539999296, 50.73712799700007), (-2.038970506999931, 50.739935614000046), (-2.0480850899999155, 50.734808661000045), (-2.0826716789999296, 50.69896067900004), (-2.0695694649999155, 50.700100002000056), (-2.0577286449999406, 50.702826239000046), (-2.046620245999918, 50.70726146000004), (-2.0356339179999168, 50.713324286000045), (-2.0141495429999168, 50.688788153000075), (-2.0025121739999463, 50.681301174000055), (-1.984120245999918, 50.67853424700007), (-1.9674373039999296, 50.67865631700005), (-1.9527888659999348, 50.67658112200007), (-1.9458715489999463, 50.668850002000056), (-1.9529516269999476, 50.65184153900009), (-1.9382218089999128, 50.645819403000075), (-1.9324845039999445, 50.64443594000005), (-1.9672745429999168, 50.61709219000005), (-1.965199347999942, 50.60219961100006), (-1.9837133449999556, 50.59662506700005), (-2.065174933999913, 50.59552643400008), (-2.082183397999927, 50.59784577000005), (-2.1573380199999406, 50.62051015800006), (-2.3426407539999445, 50.63377513200004), (-2.377064581999946, 50.64752838700008), (-2.398345506999931, 50.64557526200008), (-2.435902472999942, 50.63751862200007), (-2.447621222999942, 50.62787506700005), (-2.4600723949999406, 50.60651276200008), (-2.465646938999953, 50.585150458000044), (-2.4564509759999282, 50.575506903000075), (-2.4312231109999516, 50.57025788000004), (-2.428700324999909, 50.55756256700005), (-2.4392797519999476, 50.54181549700007), (-2.45335852799991, 50.52765534100007), (-2.4595434239999463, 50.52765534100007), (-2.4603572259999282, 50.56549713700008), (-2.4835098949999406, 50.59039948100008), (-2.6929418609999516, 50.69281647300005), (-2.8648168609999516, 50.73379140800006), (-2.887318488999938, 50.734361070000034), (-2.94554602799991, 50.725816148000035), (-2.9627579419999392, 50.72329336100006), (-2.998199022999927, 50.708238023000035), (-3.021839972999942, 50.70648834800005), (-3.059722459999932, 50.713324286000045), (-3.071359829999949, 50.711004950000074), (-3.0941462879999335, 50.69896067900004), (-3.099232550999943, 50.69708893400008), (-3.115834113999938, 50.68797435100004), (-3.1254776679999168, 50.68528880400004), (-3.135894334999932, 50.68593984600005), (-3.1551407539999445, 50.69135163000004), (-3.1664932929999168, 50.69281647300005), (-3.1856176419999542, 50.690741278000075), (-3.2191462879999335, 50.68081289300005), (-3.2598363919999542, 50.67454661700003), (-3.271392381999931, 50.664496161000045), (-3.280425584999932, 50.65119049700007), (-3.2955623039999296, 50.63751862200007), (-3.368153449999909, 50.61709219000005), (-3.390736456999946, 50.61782461100006), (-3.4075414699999556, 50.62128327000005), (-3.420969204999949, 50.62946198100008), (-3.433338995999918, 50.64443594000005), (-3.446359829999949, 50.66828034100007), (-3.4504288399999155, 50.672308661000045), (-3.453277147999927, 50.67328522300005), (-3.455433722999942, 50.675441799000055), (-3.458607550999943, 50.67755768400008), (-3.4644262359999516, 50.67853424700007), (-3.467762824999909, 50.67641836100006), (-3.468902147999927, 50.67169830900008), (-3.467844204999949, 50.66697825700004), (-3.45531165299991, 50.657904364000046), (-3.4420466789999296, 50.62352122600004), (-3.433338995999918, 50.610256252000056), (-3.451161261999914, 50.59943268400008), (-3.4672745429999168, 50.585598049000055), (-3.4817602199999556, 50.56854889500005), (-3.494862433999913, 50.548163153000075), (-3.505970831999946, 50.520819403000075), (-3.505034959999932, 50.501206773000035), (-3.487456834999932, 50.459418036000045), (-3.509755011999914, 50.45848216400009), (-3.532134568999936, 50.454779364000046), (-3.549427863999938, 50.446519273000035), (-3.556263800999943, 50.43211497600004), (-3.5493057929999168, 50.41559479400007), (-3.531971808999913, 50.410223700000074), (-3.487456834999932, 50.41156647300005), (-3.487456834999932, 50.40477122600004), (-3.4974666009999282, 50.38735586100006), (-3.49828040299991, 50.383693752000056), (-3.5073136059999115, 50.382798570000034), (-3.5149633449999556, 50.37995026200008), (-3.520130988999938, 50.37482330900008), (-3.5269262359999516, 50.34979889500005), (-3.5388891269999476, 50.34442780200004), (-3.5545141269999476, 50.347642320000034), (-3.57054602799991, 50.35639069200005), (-3.577788865999935, 50.334051825000074), (-3.5991104809999115, 50.325832424000055), (-3.6215714179999168, 50.321926174000055), (-3.631988084999932, 50.31232330900008), (-3.6373591789999296, 50.29539622600004), (-3.6475723949999406, 50.27456289300005), (-3.653309699999909, 50.25104401200008), (-3.6456192699999406, 50.22601959800005), (-3.6606339179999168, 50.22101471600007), (-3.700917120999918, 50.21352773600006), (-3.7180069649999155, 50.21238841400009), (-3.740386522999927, 50.21588776200008), (-3.758615688999953, 50.22174713700008), (-3.774240688999953, 50.22296784100007), (-3.788970506999931, 50.21238841400009), (-3.826324022999927, 50.23419830900008), (-3.8841853509999282, 50.280462958000044), (-3.949940558999913, 50.31899648600006), (-3.9610082669999542, 50.322251695000034), (-3.9702042309999115, 50.320746161000045), (-3.995757615999935, 50.311428127000056), (-4.005604620999918, 50.30923086100006), (-4.011341925999943, 50.30695221600007), (-4.024769660999937, 50.29718659100007), (-4.032948370999918, 50.294907945000034), (-4.044056769999941, 50.29645416900007), (-4.054351365999935, 50.30036041900007), (-4.070220506999931, 50.30923086100006), (-4.067941860999952, 50.31281159100007), (-4.064035610999952, 50.322251695000034), (-4.086008266999954, 50.326239325000074), (-4.1082657539999445, 50.33661530200004), (-4.118723110999952, 50.35187409100007), (-4.1049698559999115, 50.37067291900007), (-4.141753709999932, 50.36904531500005), (-4.1527400379999335, 50.37067291900007), (-4.1655167309999115, 50.37636953300006), (-4.171457485999952, 50.382798570000034), (-4.175770636999914, 50.39085521000004), (-4.18382727799991, 50.40106842700004), (-4.191477016999954, 50.417629299000055), (-4.18390865799995, 50.431708075000074), (-4.1703181629999335, 50.44513580900008), (-4.159535285999937, 50.459418036000045), (-4.179432745999918, 50.45307038000004), (-4.189564581999946, 50.45368073100008), (-4.200550910999937, 50.459418036000045), (-4.203684048999946, 50.45140208500004), (-4.204741990999935, 50.44867584800005), (-4.2123917309999115, 50.441473700000074), (-4.222523566999939, 50.43797435100004), (-4.234730597999942, 50.43829987200007), (-4.234730597999942, 50.43211497600004), (-4.2202042309999115, 50.425848700000074), (-4.2161352199999556, 50.415716864000046), (-4.219715949999909, 50.40509674700007), (-4.228505011999914, 50.397365627000056), (-4.2414444649999155, 50.39468008000006), (-4.2899063789999445, 50.397365627000056), (-4.273019985999952, 50.38190338700008), (-4.216175910999937, 50.38776276200008), (-4.1937556629999335, 50.37689850500004), (-4.228505011999914, 50.37067291900007), (-4.228505011999914, 50.36383698100008), (-4.220122850999928, 50.365301825000074), (-4.200550910999937, 50.36383698100008), (-4.207997199999909, 50.35639069200005), (-4.180043097999942, 50.35639069200005), (-4.180043097999942, 50.35016510600008), (-4.191314256999931, 50.34756094000005), (-4.197987433999913, 50.342230536000045), (-4.199126756999931, 50.33539459800005), (-4.1937556629999335, 50.32843659100007), (-4.1937556629999335, 50.322251695000034), (-4.214995897999927, 50.323146877000056), (-4.225697394999941, 50.33539459800005), (-4.235096808999913, 50.34955475500004), (-4.2523494129999335, 50.35639069200005), (-4.337717251999948, 50.37067291900007), (-4.383697068999936, 50.36749909100007), (-4.456206834999932, 50.33820221600007), (-4.4953507149999155, 50.32843659100007), (-4.659820115999935, 50.322251695000034), (-4.659575975999928, 50.32062409100007), (-4.662709113999938, 50.31777578300006), (-4.667795376999948, 50.315334377000056), (-4.673451300999943, 50.31541575700004), (-4.687163865999935, 50.34271881700005), (-4.694325324999909, 50.343451239000046), (-4.700184699999909, 50.34088776200008), (-4.705555792999917, 50.337551174000055), (-4.7113337879999335, 50.33588288000004), (-4.731556769999941, 50.33466217700004), (-4.752105272999927, 50.33030833500004), (-4.763295050999943, 50.32208893400008), (-4.755441860999952, 50.30923086100006), (-4.755441860999952, 50.30174388200004), (-4.7623591789999296, 50.298041083000044), (-4.771636522999927, 50.29157135600008), (-4.779855923999946, 50.28432851800005), (-4.783355272999927, 50.27789948100008), (-4.7818904289999296, 50.27179596600007), (-4.776519334999932, 50.26508209800005), (-4.776519334999932, 50.26080963700008), (-4.788441535999937, 50.24209219000005), (-4.790150519999941, 50.23655833500004), (-4.800160285999937, 50.22955963700008), (-4.849720831999946, 50.23456452000005), (-4.868723110999952, 50.22943756700005), (-4.887318488999938, 50.21499258000006), (-4.904774542999917, 50.20844147300005), (-4.947255011999914, 50.19936758000006), (-4.960682745999918, 50.19049713700008), (-5.002430792999917, 50.14411041900007), (-5.014556443999936, 50.15656159100007), (-5.0203751289999445, 50.19196198100008), (-5.033192511999914, 50.19936758000006), (-5.05296790299991, 50.19578685100004), (-5.053618943999936, 50.18691640800006), (-5.051869269999941, 50.17552317900004), (-5.064564581999946, 50.16461823100008), (-5.064564581999946, 50.15839264500005), (-5.058501756999931, 50.155462958000044), (-5.043446417999917, 50.14411041900007), (-5.051869269999941, 50.144598700000074), (-5.058461066999939, 50.14272695500006), (-5.070790167999917, 50.13727448100008), (-5.08031165299991, 50.13271719000005), (-5.081613735999952, 50.12539297100005), (-5.080962693999936, 50.117173570000034), (-5.085031704999949, 50.10993073100008), (-5.093902147999927, 50.105536200000074), (-5.125965949999909, 50.09634023600006), (-5.114654100999928, 50.09662506700005), (-5.106068488999938, 50.09511953300006), (-5.091867641999954, 50.089504299000055), (-5.086903449999909, 50.089056708000044), (-5.075347459999932, 50.09048086100006), (-5.070790167999917, 50.089504299000055), (-5.068470831999946, 50.085150458000044), (-5.064930792999917, 50.07184479400007), (-5.06086178299995, 50.06903717700004), (-5.056507941999939, 50.060614325000074), (-5.069488084999932, 50.042181708000044), (-5.0980525379999335, 50.01439036700003), (-5.107289191999939, 50.013006903000075), (-5.127430792999917, 50.01544830900008), (-5.139637824999909, 50.01439036700003), (-5.146473761999914, 50.01056549700007), (-5.176136847999942, 49.987941799000055), (-5.18773352799991, 49.964504299000055), (-5.191151495999918, 49.95913320500006), (-5.200103318999936, 49.961371161000045), (-5.210357225999928, 49.96674225500004), (-5.240386522999927, 49.988348700000074), (-5.245228644999941, 49.99310944200005), (-5.2495011059999115, 50.000067450000074), (-5.253041144999941, 50.01264069200005), (-5.25226803299995, 50.020697333000044), (-5.252674933999913, 50.027777411000045), (-5.259755011999914, 50.03766510600008), (-5.2884008449999556, 50.067694403000075), (-5.304351365999935, 50.08026764500005), (-5.323963995999918, 50.089504299000055), (-5.384185350999928, 50.10797760600008), (-5.424712693999936, 50.11273834800005), (-5.458119269999941, 50.125881252000056), (-5.47484290299991, 50.13043854400007), (-5.495676235999952, 50.12962474200003), (-5.521839972999942, 50.12372467700004), (-5.540923631999931, 50.11347077000005), (-5.540638800999943, 50.09975820500006), (-5.5346573559999115, 50.08234284100007), (-5.5455623039999296, 50.06891510600008), (-5.563465949999909, 50.05963776200008), (-5.57843990799995, 50.054754950000074), (-5.61945553299995, 50.046210028000075), (-5.667388475999928, 50.04287344000005), (-5.705148891999954, 50.05231354400007), (-5.715646938999953, 50.08270905200004), (-5.705962693999936, 50.08348216400009), (-5.698801235999952, 50.08539459800005), (-5.694488084999932, 50.089504299000055), (-5.694406704999949, 50.095770575000074), (-5.697092251999948, 50.10053131700005), (-5.700306769999941, 50.103216864000046), (-5.701975063999953, 50.103176174000055), (-5.707386847999942, 50.12201569200005), (-5.70921790299991, 50.13263580900008), (-5.70539303299995, 50.13727448100008), (-5.7035212879999335, 50.140611070000034), (-5.684641079999949, 50.16152578300006), (-5.676747199999909, 50.16502513200004), (-5.647368943999936, 50.17206452000005), (-5.583607550999943, 50.19586823100008), (-5.549427863999938, 50.20351797100005), (-5.5109757149999155, 50.21946849200003), (-5.4891251289999445, 50.21979401200008), (-5.458119269999941, 50.20075104400007), (-5.437977667999917, 50.19432200700004), (-5.417388475999928, 50.202460028000075), (-5.402943488999938, 50.21735260600008), (-5.395863410999937, 50.22724030200004), (-5.39289303299995, 50.23655833500004), (-5.3875626289999445, 50.240301825000074), (-5.351918097999942, 50.240301825000074), (-5.3148494129999335, 50.253607489000046), (-5.200306769999941, 50.33075592700004), (-5.1635636059999115, 50.34723541900007), (-5.1498917309999115, 50.35016510600008), (-5.146473761999914, 50.35529205900008), (-5.145659959999932, 50.366888739000046), (-5.147043423999946, 50.37938060100004), (-5.153675910999937, 50.39948151200008), (-5.142404751999948, 50.40448639500005), (-5.12726803299995, 50.40521881700005), (-5.119740363999938, 50.40477122600004), (-5.0502823559999115, 50.42869700700004), (-5.0481664699999556, 50.43439362200007), (-5.038726365999935, 50.44790273600006), (-5.029774542999917, 50.486761786000045), (-5.0286352199999556, 50.507025458000044), (-5.025257941999939, 50.52423737200007), (-5.015614386999914, 50.53803131700005), (-4.9955948559999115, 50.548163153000075), (-4.975168423999946, 50.548163153000075), (-4.967844204999949, 50.55158112200007), (-4.954823370999918, 50.56122467700004), (-4.947255011999914, 50.56244538000004), (-4.941477016999954, 50.55695221600007), (-4.937123175999943, 50.54531484600005), (-4.9344376289999445, 50.53164297100005), (-4.933583136999914, 50.52024974200003), (-4.926869269999941, 50.52289459800005), (-4.924305792999917, 50.52448151200008), (-4.920521613999938, 50.52765534100007), (-4.902414516999954, 50.52057526200008), (-4.860951300999943, 50.519191799000055), (-4.844838019999941, 50.51406484600005), (-4.855824347999942, 50.527411200000074), (-4.87328040299991, 50.534084377000056), (-4.906239386999914, 50.54197825700004), (-4.921864386999914, 50.55487702000005), (-4.92023678299995, 50.564154364000046), (-4.915191209999932, 50.57249583500004), (-4.920521613999938, 50.58295319200005), (-4.920521613999938, 50.589178778000075), (-4.895659959999932, 50.585923570000034), (-4.821197068999936, 50.589178778000075), (-4.7924698559999115, 50.59520091400009), (-4.7766007149999155, 50.60984935100004), (-4.765044725999928, 50.62799713700008), (-4.7492569649999155, 50.64443594000005), (-4.755441860999952, 50.659369208000044), (-4.751942511999914, 50.67007070500006), (-4.741932745999918, 50.67487213700008), (-4.728138800999943, 50.672308661000045), (-4.657297329999949, 50.71112702000005), (-4.645578579999949, 50.723537502000056), (-4.637806769999941, 50.74115631700005), (-4.619007941999939, 50.754787502000056), (-4.577259894999941, 50.774725653000075), (-4.5501195949999556, 50.80955638200004), (-4.55492102799991, 50.897772528000075), (-4.543771938999953, 50.93919505400004), (-4.536854620999918, 50.94757721600007), (-4.5226944649999155, 50.972723700000074), (-4.5266820949999556, 50.98037344000005), (-4.530425584999932, 50.99469635600008), (-4.531320766999954, 51.008693752000056), (-4.526437954999949, 51.014960028000075), (-4.437326626999948, 51.014960028000075), (-4.4264216789999296, 51.01268138200004), (-4.4057511059999115, 51.00287506700005), (-4.3957413399999155, 51.00067780200004), (-4.337717251999948, 50.99664948100008), (-4.317290818999936, 51.00067780200004), (-4.302316860999952, 51.007513739000046), (-4.234730597999942, 51.05532461100006), (-4.2291560539999296, 51.06110260600008), (-4.224680141999954, 51.06708405200004), (-4.218495245999918, 51.07245514500005), (-4.207997199999909, 51.07636139500005), (-4.214263475999928, 51.086004950000074), (-4.226307745999918, 51.11322663000004), (-4.228505011999914, 51.120428778000075), (-4.2319229809999115, 51.12669505400004), (-4.249012824999909, 51.14288971600007), (-4.255767381999931, 51.15151601800005), (-4.222320115999935, 51.149725653000075), (-4.214833136999914, 51.15151601800005), (-4.208363410999937, 51.16229889500005), (-4.2098282539999445, 51.17283763200004), (-4.217274542999917, 51.18138255400004), (-4.228505011999914, 51.18622467700004), (-4.228505011999914, 51.19245026200008), (-4.152333136999914, 51.21161530200004), (-3.969471808999913, 51.22239817900004), (-3.931996222999942, 51.231350002000056), (-3.9131973949999406, 51.23338450700004), (-3.840891079999949, 51.23338450700004), (-3.818959113999938, 51.23607005400004), (-3.787098761999914, 51.24677155200004), (-3.769154425999943, 51.247707424000055), (-3.6397598949999406, 51.22638580900008), (-3.559315558999913, 51.22809479400007), (-3.434193488999938, 51.20978424700007), (-3.4043676419999542, 51.19204336100006), (-3.38499915299991, 51.18622467700004), (-3.2707413399999155, 51.18939850500004), (-3.198882615999935, 51.203558661000045), (-3.1627498039999296, 51.206732489000046), (-3.096750454999949, 51.20453522300005), (-3.057525193999936, 51.20815664300005), (-3.029286261999914, 51.220404364000046), (-3.021839972999942, 51.21356842700004), (-3.0355525379999335, 51.199286200000074), (-3.021839972999942, 51.19245026200008), (-3.004790818999936, 51.21312083500004), (-3.0013321609999366, 51.220404364000046), (-2.9995824859999516, 51.23322174700007), (-3.0015356109999516, 51.23969147300005), (-3.0049942699999406, 51.24506256700005), (-3.008168097999942, 51.25454336100006), (-3.0076391269999476, 51.29197825700004), (-3.0106095039999445, 51.310980536000045), (-3.021839972999942, 51.32282135600008), (-3.0024307929999168, 51.31907786700003), (-2.992176886999914, 51.321926174000055), (-2.992095506999931, 51.32204824400009), (-2.988392706999946, 51.33112213700008), (-2.9877823559999115, 51.34666575700004), (-2.9798884759999282, 51.35586172100005), (-2.965972459999932, 51.364935614000046), (-2.959584113999938, 51.374253648000035), (-2.9746801419999542, 51.38422272300005), (-2.9529516269999476, 51.398504950000074), (-2.9210098949999406, 51.39443594000005), (-2.8841853509999282, 51.41697825700004), (-2.816395636999914, 51.47361888200004), (-2.798573370999918, 51.48261139500005), (-2.780873175999943, 51.48908112200007), (-2.7612198559999115, 51.49286530200004), (-2.7376195949999556, 51.49408600500004), (-2.716420050999943, 51.49957916900007), (-2.6961563789999445, 51.51264069200005), (-2.6078181629999335, 51.60736725500004), (-2.599598761999914, 51.611395575000074), (-2.5892227859999366, 51.61424388200004), (-2.580433722999942, 51.61863841400009), (-2.5768123039999296, 51.62750885600008), (-2.57445227799991, 51.63572825700004), (-2.568959113999938, 51.644964911000045), (-2.562245245999918, 51.65338776200008), (-2.556385870999918, 51.65924713700008), (-2.499175584999932, 51.69676341400009), (-2.464995897999927, 51.725897528000075), (-2.4477432929999168, 51.73187897300005), (-2.404896613999938, 51.74115631700005), (-2.3885391919999392, 51.750433661000045), (-2.380767381999931, 51.76190827000005), (-2.3833715489999463, 51.77326080900008), (-2.398060675999943, 51.782131252000056), (-2.4024145169999542, 51.76357656500005), (-2.4203995429999168, 51.753119208000044), (-2.4434301419999542, 51.74843984600005), (-2.4632869129999335, 51.747300523000035), (-2.482085740999935, 51.74286530200004), (-2.495838995999918, 51.73200104400007), (-2.507964647999927, 51.71857330900008), (-2.5221248039999296, 51.706366278000075), (-2.581695115999935, 51.681708075000074), (-2.5911352199999556, 51.67536041900007), (-2.600209113999938, 51.66559479400007), (-2.6653539699999556, 51.617254950000074)]\n", + " draw_map(plot, x, y, colour)\n", + " plot.plot(\n", + " [merc_x(coord[0]) for coord in gb_boundary],\n", + " [merc_y(coord[1]) for coord in gb_boundary],\n", + " \"k-\",\n", + " )\n", + "\n", + "country = Config(\n", + " get_data=get_literal_data(),\n", + " clean=get_map_cleaner_for(\"Temperature\"),\n", + " title=\"Country wide temperature\",\n", + " ylabel=\"\",\n", + " draw=draw_map_with_gb,\n", + ")\n", + "\n", + "out = widgets.interactive(interactable_plot_multiple_charts(configs=configs + (country, )), collected_after=start, collected_before=end)\n", + "display(out)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "apd.aggregation", + "language": "python", + "name": "apd.aggregation" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Ch11/apd.aggregation-chapter11/LICENCE b/Ch11/apd.aggregation-chapter11/LICENCE new file mode 100644 index 0000000..86685d4 --- /dev/null +++ b/Ch11/apd.aggregation-chapter11/LICENCE @@ -0,0 +1,31 @@ +Copyright (c) 2019, Matthew Wilkes + + +All rights reserved. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + +* Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + +* Redistributions in binary form must reproduce the above copyright notice, this + list of conditions and the following disclaimer in the documentation and/or + other materials provided with the distribution. + +* Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived from this + software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND +ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. +IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, +INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, +BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY +OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE +OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED +OF THE POSSIBILITY OF SUCH DAMAGE. + + diff --git a/Ch11/apd.aggregation-chapter11/Mapping.ipynb b/Ch11/apd.aggregation-chapter11/Mapping.ipynb new file mode 100644 index 0000000..916e704 --- /dev/null +++ b/Ch11/apd.aggregation-chapter11/Mapping.ipynb @@ -0,0 +1,254 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "datapoints = {\n", + " (53.8667, -1.3333): -1,\n", + " (53.35, -2.2833): 1,\n", + " (52.45, -1.7333): 3,\n", + " (51.5, -0.1333): 6,\n", + " (51.55, -2.5667): 5,\n", + " (54.9667, -1.6167): -1,\n", + " (55.9667, -3.2167): -1,\n", + " (54.7667, -1.5833): 0,\n", + " (53.7667, -0.3): 1,\n", + " (53.7667, -3.0167): 0,\n", + " (51.4833, -3.1833): 4,\n", + " (53.2667, -3.5167): 2,\n", + " (52.0833, -2.8): 2,\n", + " (52.0167, -0.6): 2,\n", + " (52.6667, 1.2667): 5,\n", + " (50.4333, -4.9833): 9,\n", + " (50.35, -4.1167): 10,\n", + " (50.5167, -2.45): 9,\n", + " (50.8333, -1.1667): 9,\n", + " (56.45, -5.4333): 4,\n", + " (57.5333, -4.05): -2,\n", + " (54.5167, -3.6167): 3,\n", + " (53.0833, 0.2667): 4,\n", + " (51.35, 1.3333): 7,\n", + " (50.8833, 0.3167): 8,\n", + " (58.45, -3.1): 3,\n", + " (50.1, -5.6667): 9,\n", + " (58.2167, -6.3333): 4,\n", + " (55.6833, -6.25): 7,\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAARS0lEQVR4nO3df4hc13nG8eexYodFuJWDVkq0tiqH2oIksiV3LEJFfshuJNukjiIItPQP0RRUmyTQgJVYFTRtjbGwUtxSSqlKTEOJGlKq3YS6tqTGENM/nGQVyZVCrcQ1SuJdN5JSRFOy9Q/57R9zx9pdzXpmdufee87M9wNmd+7OaF9rtM+ee+4573VECACQn6vqLgAAsDgEOABkigAHgEwR4ACQKQIcADL1tiq/2cqVK2PdunVVfksAyN7x48cvRMTo/OOVBvi6des0OTlZ5bcEgOzZ/lG740yhAECmCHAAyBQBDgCZIsABIFMEOABkqtJVKMBiTJyY0oEjZzR9cUZrVoxoz/b12rFprO6ygNoR4EjaxIkp7T18SjOvXZIkTV2c0d7DpySJEMfQYwoFSTtw5Myb4d0y89olHThypqaKgHQQ4Eja9MWZno4Dw4QAR9LWrBjp6TgwTAhwJG3P9vUauXrZnGMjVy/Tnu3ra6oISEfyFzFZgTDcWu81/waAKyUd4KxAgNR8r3m/gSslPYXCCgQAWFjSAc4KBABYWNIBzgoEAFhYVwFu+6ztU7ZP2p4sjm20/WzrmO3N/S6OFQgAsLBeLmJujYgLsx4/KulPIuJJ2/cUjz/cz+JYgQAAC1vKKpSQ9EvF578saXrp5VyJFQgA0F63AR6SjtoOSX8TEQcl/YGkI7a/qOZUzK+3e6Ht3ZJ2S9LatWuXXjEAQFL3FzG3RMRtku6W9CnbH5R0v6TPRsQNkj4r6UvtXhgRByOiERGN0dErbqoMAFikrgI8IqaLj+ckjUvaLGmXpMPFU/6xOAYAqEjHALe93Pa1rc8lbZN0Ws057w8VT7tD0g/LKhIAcKVu5sBXSxq33Xr+oYh4yvb/SvoL22+T9H8q5rkBANXoGOAR8aKkW9sc/zdJv1ZGUQCAzpLeiQkAWBgBDgCZSrqdLKpF73UgLwQ4JNF7HcgRUyiQRO91IEcEOCTRex3IEQEOSfReB3JEgEMSvdeBHHERE5LovQ7kiADHm+i9DuSFKRQAyBQBDgCZIsABIFMEOABkigAHgEwR4ACQKQIcADJFgANApghwAMgUAQ4AmSLAASBTBDgAZIoAB4BMEeAAkCkCHAAyRYADQKYIcADIFAEOAJnilmo9mjgxxX0jASSBAO/BxIkp7T18SjOvXZIkTV2c0d7DpySJEAdQOaZQenDgyJk3w7tl5rVLOnDkTE0VARhmBHgPpi/O9HQcAMpEgPdgzYqRno4DQJkI8B7s2b5eI1cvm3Ns5Opl2rN9fU0VARhmXMTsQetCJatQAKSAAO/Rjk1jBDaAJDCFAgCZIsABIFNdBbjts7ZP2T5pe3LW8c/YPmP7+7YfLa9MAMB8vcyBb42IC60HtrdK+pikWyLiFdur+l4dhg6tCoDuLeUi5v2S9kfEK5IUEef6UxKGFa0KgN50Owceko7aPm57d3HsZkkfsP1t29+yfXu7F9rebXvS9uT58+f7UTMGFK0KgN50OwLfEhHTxTTJMdvPF6+9TtL7Jd0u6Wu23x0RMfuFEXFQ0kFJajQaIWABtCoAetPVCDwipouP5ySNS9os6SVJh6PpO5LekLSyrEIx+GhVAPSmY4DbXm772tbnkrZJOi1pQtIdxfGbJV0j6cJCfw7QCa0KgN50M4WyWtK47dbzD0XEU7avkfS47dOSXpW0a/70CdALWhUAvXGVmdtoNGJycrLzExfAEjMAw8j28YhozD+eTS8UlpgBwFzZbKVniRkAzJVNgLPEDADmyibAWWIGAHNlE+AsMQOAubK5iMkSMwCYK5sAl7gbDgDMls0UCgBgLgIcADJFgANApghwAMgUAQ4AmSLAASBTBDgAZIoAB4BMEeAAkKmsdmICg4wblqBXBDiQAG5YgsVgCgVIADcswWIQ4EACuGEJFoMABxKw0I1JrrI1cWKq4mqQCwIcSEC7G5ZI0qUI7T18ihBHWwQ4kIAdm8b0yM4NWmZf8TXmwrEQAhxIxI5NY3ojou3XmAtHOwQ4kBBu3o1eEOBAQrh5N3rBRh70FbsJl4abd6MXBDj6ht2E/cHNu9EtplDQN+wmBKpFgKNv2E0IVIsAR9+wggKoFgGOvmEFBVAtLmKib1hBAVSLAEdfsYICqA5TKACQKQIcADJFgANApghwAMhUVwFu+6ztU7ZP2p6c97UHbIftleWUCABop5dVKFsj4sLsA7ZvkPQRST/ua1UAgI6WOoXymKTPSWrfhR4AUJpuAzwkHbV93PZuSbJ9r6SpiHiutOoAAAvqdgplS0RM214l6Zjt5yXtk7St0wuLwN8tSWvXrl10oQDmovc6uhqBR8R08fGcpHFJH5J0o6TnbJ+VdL2k79l+Z5vXHoyIRkQ0RkdH+1Y4MMxavdenLs4odLn3OnevHy4dR+C2l0u6KiJ+Xny+TdKfRsSqWc85K6kx/yIn0G+MOpveqvd6Sn8fvF/l6mYKZbWkcdut5x+KiKdKrQpogzv+XJZD73Xer/J1nEKJiBcj4tbiv/dGxMNtnrOO0TfKxh1/Lsuh9zrvV/nYiYls5DDqrEoOvdd5v8pHgCMbOYw6q7Jj05ge2blBYytGZEljK0b0yM4NSU1N8H6Vj37gyMae7evnzKlK6Y06q5R673Xer/IR4MgGd/zJC+9X+RxR3S74RqMRk5OTnZ8IAHiT7eMR0Zh/nDlwAMgUAQ4AmWIOHOiA3YRIFQEOvAV2EyJlBDhKlfvoNZeeIxhOBDhKMwijV3YTImVcxERpBqEXBrsJkTICHKUZhNFrDj1HMLyYQkFp1qwY0VSbsM5p9MpuwjTlfm2lXwhwlGZQemGk3nNk2AzCtZV+YQoFpcmhYx7yMwjXVvqFEThKxegV/TYI11b6hRE4gKywMugyAhxAVlgZdBlTKACywsqgywhwANnh2koTUygAkCkCHAAyxRQKAPRZVTtFCXAA6KMqd4oyhQIAfVTlTlECHAD6qMqdogQ4APRRlTtFCXCgJhMnprRl/9O68cEntGX/05o4MVV3SeiDKneKchETqAEtUQdXlTtFCXCgBtwsebBVtVOUKRSgBrRERT8Q4EANaImKfiDAgRrQEhX9wBw4UANaoqIfCHCgJrRExVIxhQIAmWIEjoFSVRc4IAUEOAYGm2MwbLoKcNtnJf1c0iVJr0dEw/YBSb8p6VVJ/ynpdyPiYlmFAp2wOaZ8nOGkpZc58K0RsTEiGsXjY5LeFxG3SPqBpL19rw7oAZtjytU6w5m6OKPQ5TMcerjUZ9EXMSPiaES8Xjx8VtL1/SkJWBw2x5Sryj7X6E63AR6Sjto+bnt3m69/UtKT7V5oe7ftSduT58+fX2ydQEdsjikXZzjp6TbAt0TEbZLulvQp2x9sfcH2PkmvS/pKuxdGxMGIaEREY3R0dMkFAwvZsWlMj+zcoLEVI7KksRUjemTnBuZo+4QznPR0dREzIqaLj+dsj0vaLOkZ27skfVTSnRER5ZUJdIfNMeXZs339nFU+Emc4des4Are93Pa1rc8lbZN02vZdkj4v6d6I+EW5ZQKoG2c46elmBL5a0rjt1vMPRcRTtl+Q9HZJx4qvPRsR95VWKYDacYaTlo4BHhEvSrq1zfFfLaUiAEBX6IUCAJkiwAEgU/RCwVBiSzgGAQGO5JQdrjS9qh+/QPuDKRQkpYp+G2wJrxc9VfqHAEdSqghXtoTXi1+g/cMUCpJSRbiuWTGiqTZ/HlvCqzFsv0DLnC5iBI6kVNFvg6ZX9RqmniplTxcR4EhKFeHKlvB6DdMv0LKni5hCQVJaIVr2CgW2hNenqvc4BWVPFxHgSA7hOviG5T0u+3oLUygAUJKyp4sYgQNAScqeLiLAAaBEZU4XMYUCAJkiwAEgUwQ4AGSKOXAA2Rr2roYEOIAs0RaYAAcGzrCMSt9qm/og/v+2Q4ADA2SYRqXD1tWwHS5iAgNkmHptD1NXw4UQ4MAAGaZR6TB1NVwIAQ4MkGEaldIWmDlwYKDs2b5+zhy4NNij0mHpargQAhwYIMPUaxsEOCBpsJbeDfuodJgQ4Bh6w7T0DoOFAK/JII34cseGEOSKAK8BI760DNPSOwwWlhHWIKXNFhMnprRl/9O68cEntGX/05o4MVV5DXUbpqV3GCwEeA1SGfG1zgSmLs4odPlMYNhCnA0hyBUBXoNURnwpnQnUiQ0hyBVz4DVIZbNFKmcCKWDpHXLECLwGqYz4UjkTALA4jMBrksKIL5UzAQCLQ4DPMmxrs9l2DeSNAC8M69rsFM4EACxOV3Pgts/aPmX7pO3J4tg7bB+z/cPi43XlllouVmQAyE0vFzG3RsTGiGgUjx+U9M2IuEnSN4vH2WJFBoDcLGUVysckfbn4/MuSdiy9nPqwIgNAbroN8JB01PZx27uLY6sj4mVJKj6uavdC27ttT9qePH/+/NIrLgm78QDkptuLmFsiYtr2KknHbD/f7TeIiIOSDkpSo9GIRdRYCVZkAMhNVwEeEdPFx3O2xyVtlvRT2++KiJdtv0vSuRLrrAQrMgDkpOMUiu3ltq9tfS5pm6TTkr4haVfxtF2Svl5WkQCAK3UzAl8tadx26/mHIuIp29+V9DXbvyfpx5I+UV6ZAID5OgZ4RLwo6dY2x38m6c4yigIAdEYzKwDIFAEOAJlyRHUr+2yfl/Sjyr6htFLShQq/X6+ob2lSri/l2iTqW4o6avuViBidf7DSAK+a7clZW/+TQ31Lk3J9KdcmUd9SpFQbUygAkCkCHAAyNegBfrDuAjqgvqVJub6Ua5OobymSqW2g58ABYJAN+ggcAAYWAQ4AmRqKALf9GdtnbH/f9qN11zOb7T+2PVXcru6k7Xvqrqkd2w/YDtsr666lxfZDtv+9+Hs7antN3TXNZvuA7eeLGsdtr6i7ptlsf6L4mXjDdhLL4mzfVfysvmA7qbt82X7c9jnbp+uupWXgA9z2VjXvHnRLRLxX0hdrLqmdx4rb1W2MiH+pu5j5bN8g6SNqNi1LyYGIuCUiNkr6Z0l/VHdB8xyT9L6IuEXSDyTtrbme+U5L2inpmboLkSTbyyT9laS7Jb1H0m/bfk+9Vc3xd5LuqruI2QY+wCXdL2l/RLwiNXua11xPjh6T9Dk178yUjIj4n1kPlyu9+o5GxOvFw2clXV9nPfNFxH9EREp37d4s6YWIeDEiXpX0VTUHX0mIiGck/Xfddcw2DAF+s6QP2P627W/Zvr3ugtr4dHGa/bjt6+ouZjbb90qaiojn6q6lHdsP2/6JpN9ReiPw2T4p6cm6i0jcmKSfzHr8UnEMC+j2lmpJs/2vkt7Z5kv71Px/vE7S+yXdrmYP83dHhesnO9T315IeUnP0+JCkP1Pzh70yHer7QzVv4lGLt6otIr4eEfsk7bO9V9KnJX0hpfqK5+yT9Lqkr1RZW/G9O9aXELc5ltRZVWoGIsAj4jcW+prt+yUdLgL7O7bfULMZTWV3WH6r+maz/bdqzuVWaqH6bG+QdKOk54obelwv6Xu2N0fEf9VZWxuHJD2higO8U322d0n6qKQ7qxw0tPTw95eClyTdMOvx9ZKma6olC8MwhTIh6Q5Jsn2zpGuUUJez4n6iLR9X88JSEiLiVESsioh1EbFOzR+w26oK705s3zTr4b2Sur7ZdhVs3yXp85LujYhf1F1PBr4r6SbbN9q+RtJvqXnrRixg4HdiFv8QHpe0UdKrkh6IiKfrreoy23+vZm0h6ayk34+Il2stagG2z0pqREQSvwBt/5Ok9ZLeULNN8X0RMVVvVZfZfkHS2yX9rDj0bETcV2NJc9j+uKS/lDQq6aKkkxGxveaa7pH055KWSXo8Ih6us57ZbP+DpA+reQb/U0lfiIgv1VrToAc4AAyqYZhCAYCBRIADQKYIcADIFAEOAJkiwAEgUwQ4AGSKAAeATP0/KVaoHKMq6aEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "fig, ax = plt.subplots()\n", + "lats = [ll[0] for ll in datapoints.keys()]\n", + "lons = [ll[1] for ll in datapoints.keys()]\n", + "ax.plot(lons, lats, \"o\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJcAAAD4CAYAAADhPXT2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAL9UlEQVR4nO3db6ieZR0H8O/XqXEQa8bOTKfrWOmCUqc9jmikLbOplC4hqFejgpVokNBK8Y0FoTgjehWdSPBFEQZzRWHTNIpeWJ41bTOc2pi2cyTPgoHSUme/Xjz3Wc8Oz3PO/dz3/buvP/f3A2PnPOc8ey7Gl+v/dV80M4h4OCV0ASRfCpe4UbjEjcIlbhQucXNqmx+2atUqm5qaavMjxdmePXuOmNnksJ+1Gq6pqSnMzMy0+ZHijOSLo36mZlHcKFziRuESNwqXuFG4xE2ro8XU7do7ix27D2Du6DGcu3IC2zevw5bL1oQuVrQUrpJ27Z3FHTv34dibbwEAZo8ewx079wGAAjaCmsWSduw+cCJYC469+RZ27D4QqETxU7hKmjt6bKzXReEq7dyVE2O9LgpXads3r8PEaStOem3itBXYvnldoBLFL1iHPrWR10LZUipzaEHClerIa8tla6IuX2yCNIsaeXVDkHBp5NUNQcKlkVc3lAoXyUMk95F8iuRM8dp6kk8svEZyQ9kP1cirG8bp0G8ysyMD398L4Ftm9jDJ64vvP1bmH9LIqxvqjBYNwNuLr98BYG6cN2vklb+y4TIAj5A0AD80s2kAXwOwm+R96DevHxn2RpLbAGwDgLVr19YvsSSjbId+o5ldDuA6ALeQvBLAzQBuM7PzAdwG4MfD3mhm02bWM7Pe5OTQQyKSqVLhMrO54u9XADwEYAOArQB2Fr/y8+I1kROWDRfJM0ieufA1gE8C2I9+H+uq4tc+DuB5r0JKmsr0uc4G8BDJhd//qZn9huRrAL5P8lQA/0HRrxJZsGy4zOwggEuHvP5HAB/yKJTkQVtuxI3CJW46e0Ajtf1kKepkuFLdT5aaTjaL2k/Wjk6GS/vJ2tHJcGk/WTs6GS7tJ2tHJzv02k/Wjk6GC9B+sjZ0slmUdihc4kbhEjcKl7hRuMSNwiVuFC5xo3CJG4VL3Chc4kbhEjcKl7hRuMSNwiVuFC5xo3CJG4VL3Chc4iapbc46JZ2WZMKlU9LpSaZZ1Cnp9CQTLp2STk8y4dIp6fQkEy6dkk5PMh16nZJOTzLhAnRKOjXJNIuSHoVL3FS+Eq94/askD5B8huS9fsWUFFW+Eo/kJgA3ArjEzF4nubrx0kVES0/jq9OhvxnAPWb2OnDiXqAsaempmrJ9roUr8fYUV9wBwEUAPkryTyR/T/KKYW8kua24SXZmfn6+iTK3TktP1ZStuTaa2VzR9D1K8tnivWcB+DCAKwA8SPI9ZmaDbyzuZpwGgF6vZ0iQlp6qqXMl3mEAO63vzwD+C2CVV0FD0tJTNXWuxNuF/lV4IHkRgNMBHBn176RMS0/V1LkS73QA95PcD+ANAFsXN4m50NJTNWwzD71ez2ZmTkyTaXifAZJ7zKw37GfB1hY1vM9fsOUfDe/zFyxcGt7nL1i4NLzPX7BwaXifv2Adeg3v8xd0J6p2luZNmwXFjcIlbhQucaNwiRuFS9woXOJG4RI3Cpe4UbjETVLPishRzhsmFa6Act8wqWYxoNw3TCpcAeW+YVLhCij3DZMKV0Cb3j851uupUbgC+t2zw5+dMer11ChcAanPJW7U5xI3uR9S0STqIm3OmOd+SEXhGhBixjznQypqFgfkPmPeNoVrQO6jt7YpXANyH721TeEakPvorW3q0A/IffTWNoVrkZxHb21TsyhuFC5xo3CJG4VL3NS6Eq/42ddJGsksb8+Q6ipfiQcAJM8HcA2AlxotlWShbrP4PQDfQP9WM5GTVL4Sj+QNAGbN7Gm30knS6lyJdyf6l0wtqQjjNgBYu3Zt5YJ2RU4nsKteiXcVgAsAPE3yEIDzAPyF5LuGvHfazHpm1puczONUi5eF/WSzR4/B8P/9ZLv2zoYuWiXL1lzFNXinmNmrA1fifdvMVg/8ziEAvcUd/hx51ixL7Sdb7jNirPEqX4nnWqpIee9UrbqfLNZnTizbLJrZQTO7tPjzATP7zpDfmepCreW9U7XqfrJYd9Bqhn4M3jtVq+4ni3UHrcI1Bu+dqlsuW4O7b7oYa1ZOgADWrJzA3TddvGzTFusOWu3nGsP2zetO6tsAze9UrbKfrI1yVaFwjSHWnaqxlivoHdeSvqXuuFafS9woXOJGfS5HMc6at0nhchLrrHmbFK4R6tY6ddYJc6FwDdFErRPrrHmb1KEfoom1ulhnzdukcA3RRK2j506oWRzq3JUTmB0SpHFqndhmzUOMXBWuIZpaq4vluROhRq5qFoeoujshVqH2e6nmGiGWWqcJoUauqrk6INTIVeHqgFAjVzWLHRBq5KpwdUSIPqSaRXGjcIkbNYuypDoz+wqXjFR3Zl/NooxUd2Zf4ZKR6s7sK1wyUt2ZfYUrkF17Z7Hxnsdxwe2/xsZ7Ho/yGVx1Z/bVoQ8glcMbdWf2Fa4AUjq8UWdmX81iAF05vKFwBdCVwxsKVwBdObyhPlcAsR3e8KJwBZLTNupR1CyKG9VcNXT9KTbLUbgqSmUiNKRS4SpuyHgVwFsAjptZj+QOAJ8G8AaAvwP4gpkd9SpobEJPhKZQa47T59pkZusHnn/5KIAPmtklAJ4DcEfjpYtYyInQVO4IqtyhN7NHzOx48e0T6F8u1RkhJ0JjvTFjscr3LS7yRQAPD3sjyW0kZ0jOzM/PVy1ndEJOhKayfFQ2XBvN7HIA1wG4heSVCz8geSeA4wB+MuyNuV6JF/J5EqksH5Xq0A/et0jyIQAbAPyB5FYAnwJwtbX5QPtIhJoIjfXGjMWWrblInkHyzIWv0b9vcT/JawF8E8ANZvZv32LKoFSewlP5vkWSLwB4G/rXEgPAE2b2FbeSyklSWD5aNlxmdhDApUNef59LiSQbWlsUNwqXuNHaYoNSWJJpk8JV0nLBiWkhO5aQq1ksocxaXixLMjGtOypcJZQJTixLMrGEHFCzWEqZ4DRxMUITPEJetZlVzVVCmbW8WE70NL3uWKeZVbhKKBOcWJZkmg55nWZWzWIJZY+CxbAk0/SxtTrNrMJVUgzBKavJstbpS6pZlCXVaWZVc8mS6jSzCpcsq2ozq2ZR3Chc4kbhEjfqc3VI27slFK6OCLElSOGKVNO1TIhnWyhcEfKoZUJsCVKHPkIee7JCnNJWuCLkUcuE2BKkcEXIo5YJsSVIfa4IeT0Lou2dHQpXhHJ5lLjC1bCmphBS2j82isLVoJjOLsYgi3DFcgg09EN4Y5N8uGKqLWI5uxiL5Kciqkw4et3SmsrjJNuSfLjGrS08j7vHcnYxFsmHa9zawvO4eyxnF2ORfJ9r3AlH735RDlMITUm+5hq3tlC/qD3J11zAeLVFKo/ZzkH04Wp6DiuXpZUURB0urzks9YvaUarPRfIQyX0knyI5U7z2TpKPkny++PuspgsX04PMZHx1rsS7HcBjZnYhgMeK7xulGe+01Rkt3gjggeLrBwBsqV+ck2lkl7Y6V+KdbWYvA0Dx9+phb6xzJZ5mvNNWtkO/0czmSK5G/66fZ8t+gJlNA5gGgF6vN9bNZhrZpa3OlXj/JHmOmb1M8hwAr3gUUCO7dFW+Eg/ALwFsLX5tK4BfeBVS0lTnSrwnATxI8ksAXgLwWb9iSorqXIn3LwBXexRK8pD8wrXES+ESN2zz3nOS8wBedPyIVQCOOP77KfL+P3m3mU0O+0Gr4fJGcmZgeUoQ9v9EzaK4UbjETW7hmg5dgAgF+z/Jqs8lccmt5pKIKFziJrtwkbyL5GyxJfspkteHLlMoJK8leYDkCyQb3ym87Ofn1ucieReA18zsvtBlCYnkCgDPAbgGwGEATwL4vJn9ra0yZFdzyQkbALxgZgfN7A0AP0N/a3prcg3XrST/SvJ+j1NJiVgD4B8D3x8uXmtNkuEi+VuS+4f8uRHADwC8F8B6AC8D+G7QwobDIa+12geK+lDsKGb2iTK/R/JHAH7lXJxYHQZw/sD35wGYa7MASdZcSyn28y/4DPpbsrvoSQAXkryA5OkAPof+1vTWJFlzLeNekuvRbwIOAfhy2OKEYWbHSd4KYDeAFQDuN7Nn2ixDdlMREo/smkWJh8IlbhQucaNwiRuFS9woXOJG4RI3/wOfdKaAPZfJtAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "fig, ax = plt.subplots()\n", + "lats = [ll[0] for ll in datapoints.keys()]\n", + "lons = [ll[1] for ll in datapoints.keys()]\n", + "# Don't draw lines\n", + "ax.plot(lons, lats, \"o\")\n", + "# This is a map of the UK. Here, 1 degree latitude is \n", + "# 1.7x as far as 1 degree longitude\n", + "ax.set_aspect(1.7)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Set up mercator transform from https://wiki.openstreetmap.org/wiki/Mercator#Python\n", + "# Thanks to Paulo Silva and the OSM contributors\n", + "import math\n", + "\n", + "def merc_x(lon):\n", + " r_major=6378137.000\n", + " return r_major*math.radians(lon)\n", + "\n", + "def merc_y(lat):\n", + " if lat>89.5:lat=89.5\n", + " if lat<-89.5:lat=-89.5\n", + " r_major=6378137.000\n", + " r_minor=6356752.3142\n", + " temp=r_minor/r_major\n", + " eccent=math.sqrt(1-temp**2)\n", + " phi=math.radians(lat)\n", + " sinphi=math.sin(phi)\n", + " con=eccent*sinphi\n", + " com=eccent/2\n", + " con=((1.0-con)/(1.0+con))**com\n", + " ts=math.tan((math.pi/2-phi)/2)/con\n", + " y=0-r_major*math.log(ts)\n", + " return y\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJkAAAEDCAYAAAAm1qYrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAARk0lEQVR4nO2de7BdVX3HP98mgqE8biTgwA1pghNCHTU8LoJaLQ9LgE4bcGhLtUVSbEpB+pgxo4zT6gwzVSd1xjIUMsBYSlVQMI1IlWgLiFMJmAgkPLx4IWO4CZbwCLYh05Lw6x973XBycu6957HW2Wvv8/vM3Mk5a6997u+efGft9fh915KZ4Tgp+ZWyA3Dqj4vMSY6LzEmOi8xJjovMSY6LzElOqSKT9GVJz0t6rM36vy/pCUmPS/pa6vicOKjMeTJJHwD+B7jFzN4xTd2FwDeAM83sZUlHmtnz/YjT6Y1SWzIzux94qbFM0tsk3S1pg6QfSjo+XPpT4B/N7OVwrwusIuTYJ7sBuNLMTgY+AVwXyo8DjpP0n5LWSTqntAidjphZdgCNSDoYeC9wu6SJ4gPDvzOBhcDpwFzgh5LeYWY7+h2n0xlZiYyiZd1hZie0uDYOrDOz14DNkkYpRPfjfgbodE5Wj0sz+yWFgH4PQAWLw+U1wBmhfA7F4/OZUgJ1OqLsKYxbgQeARZLGJV0KfAS4VNKjwOPA0lB9LfCipCeAe4EVZvZiGXE7nVHqFIYzGGT1uHTqSWkd/zlz5tj8+fPL+vVOAjZs2PCCmR3RXF6ayObPn8/69evL+vVOAiT9vFW5Py6d5LjInOS4yJzkuMic5LjInOTktnZZGdY8vJWVa0fZtmMXRw/NYsWSRZx/4nDZYWWJi6wL1jy8latWb2LXa3sA2LpjF1et3gTgQmuBPy67YOXa0b0Cm2DXa3tYuXa0pIjypi2RSfrrkFf/mKRbJb256bokXSNpTNJGSSelCTcPtu3Y1VH5oDOtyCQNA38BjIQ8/BnARU3VzqXI7VoILAeujxxnVhw9NKuj8kGn3cflTGCWpJnAQcC2putLKcwgZmbrgCFJR0WMMytWLFnErDfN2Kds1ptmsGLJopIiyptpO/5mtlXS3wNbgF3A98zse03VhoFnG96Ph7LnGitJWk7R0jFv3ry95VUbqU3EVqWYy2RakUmaTdFSLQB2UOTf/5GZfaWxWotb90tUM7MbKIwijIyMGFR3pHb+icNZx5cT7TwuPwhsNrPtIb9+NYXZo5Fx4JiG93PZ/5HaEh+p1Z92RLYFOE3SQSosRGcBTzbVuRO4OIwyTwNeMbPnmj+oFT5Sqz/TiszMHgTuAH4CbAr33CDpMkmXhWrfoTB1jAE3Ape3G4CP1OpPWzP+ZvYZ4DNNxasarhtwRTcBrFiyaJ8+GfhIrW6UvqzkI7X6U7rIwEdqdcfXLp3kuMic5LjInOS4yJzkuMic5LjInOS4yJzkuMic5LjInOS4yJzkZLGsVDZVy8ytGgMvsqpm5laJgX9cemZuegZeZJ6Zm552fJeLJD3S8PNLSX/VVOcwSd+W9GgwAS9LF3JcPDM3Pe2kX4+a2QnhAIeTgVeBf22qdgXwhJktpjgx5IuSDogdbArcQ5meTjv+ZwFPm1nz3qAGHBKMJgdTHMq1O0J8yfHM3PR0KrKLgFtblF9L4VjaBhwC/IGZvd5caTJzb9l4Zm5a2u74h8ff7wK3t7i8BHgEOBo4AbhW0qHNlczsBjMbMbORI47Ybydup6Z0Mro8F/iJmf1Xi2vLgNVhL4wxYDNwfIt6zgDSicj+kNaPSigMwGcBSHorsAg/XMsJtNUnk3QQ8FvAnzWUXQZgZquAq4GbJW2i2Bfjk2b2QvxwnSrSrrn3VeDwprJGc+824Oy4oTl1YeBn/J30uMic5LjInOS4yJzkuMic5LjInOS4yJzkuMic5LjInOS4yJzkuMic5LjInOS4yJzkuMic5FTWQe5bC1SHSorMtxaoFlHMvaHe6eH645J+kCbcAt9aoFq0c97lKIUDCUkzgK00mXslDQHXAeeY2RZJRyaIdS++tUC16LTjP5m598MUbqUtAGb2fIzgJsO3FqgWnYpsMnPvccBsSfdJ2iDp4lY3S1ouab2k9du3b+801r341gLVou2Of4O596pJPudkipZuFvCApHVm9lRjpVYn93aDby1QLToZXU5l7h0HXjCzncBOSfcDi4GnWtSNgm8tUB1imXu/Bbxf0szg0TyV/U/3dQaUKOZeM3tS0t3ARuB14CYzeyxBvE4FiWLuDe9XAivjhebUBV+7dJJTyWWlMvE1085xkXWAr5l2hz8uO8DXTLvDRdYBvmbaHS6yDvA10+5wkXWAr5l2h3f8O8DXTLsjK5FVYXrA10w7JxuR+fRAfcmmT+bTA/UlG5H59EB9yUZkPj1QX7IRmU8P1JdsOv4+PVBfshEZ+PRAXYlm7g11T5G0R9KF8UN1qkoUc2/DtS8AayPH6FScWOZegCuBbwJJjb1O9Yhi7pU0DFwArNrvjn3rRTH3OtUi1sm9X6I4fnBPi2t78ZN7B5NY5t4R4LbinHvmAOdJ2m1mayLE6FScTkQ2qbnXzBZMvJZ0M3CXC8yZoK3HZYO5d3VD2WUTBl/HmYpo5t6G8kt6D8upE9msXTr1JatlpUGnCpnB3eAiy4Q6Zwb74zIT6pwZ7CLLhDpnBrvIMqHOmcEuskw44/jWy2yTlVcJF1km3PvT1gkDk5VXCRdZJnifzEmO98mc5NTZreWTsVPQzxn4Oru1XGSTUMYMfF3dWv64nIQ6z8D3GxfZJNR5tNdvovguJX1E0sbw8yNJi9OF3B/qPNrrN9OKzMxGzewEMzuB4iS4V9nfd7kZ+E0zexdwNeEkuCpT59Fev+m049/Sd2lmP2p4uw6Y22tgZVPn0V6/6VRkkx2q2silwHe7Cycv6jra6zexDlWdqHMGhch+Y5Lry4HlAPPmzesoUKe6dDK6nMp3iaR3ATcBS83sxVZ13Nw7mEQ5VFXSPAq73B83HwntOFEOVQX+lsIyd11wke82s5Ho0TqVJIrv0sw+BnwsbmhOXfAZfyc5LjInOS4yJzme6pMpdXKTu8gypG5uchdZD6RqbabKZWvn83NrBV1kXZKyteklly3HVtA7/l2SMnO2l1y2HDN6XWRdkjJztpdcthwzel1kXZIyc/b8E4f53IfeyfDQLAQMD83icx96Z1uPuxwzer1P1iUrlizap+8DcTNnu81lSx1XN7jIuiTXzNkc45KZlfKLR0ZGbP369aX8bicNkja0yr7xPpmTHBeZkxzvk/WB3Gbg+00sc68kXSNpLBh8T0oXcrWYmIHfumMXxhsz8Gse3lp2aH0j1qGq5wILw8+pwPXh38rTayvU6zpkHYhi7gWWArdYMVRdJ2lI0lFm9lyUKEsixjpgjjPw/SbKoarAMPBsw/vxULYPVTtUNcY6YI4z8P0m1qGqalG23wRc1XyXMVoh31Mj3qGq48AxDe/nAtt6CSwHjh6axdYWguqkFcpxBr7fo90oh6oCdwIfl3QbRYf/lar3xyDeOmBOe2qUkW8W61DV7wDPAGPAjcDlkeMshV6yIXKljHyzWOZeA66IG1oe5NQKxaCM0a4vKw0YZYx2XWQDRhmjXV+7HDDKGO26yAaQfvcz/XHpJMdbMqctepnAdZE509LrBK4/Lp1p6XUC10XmTEuvE7guMmdaep3AdZFlwJqHt/K+z9/Dgk/9G+/7/D3ZpWb3OoHrHf+SyXEXnmZ6ncB1kZVMVTwAvUzg+uOyZAbBA+AiK5lB8AC4yEpmEDwA7WbGDkm6Q9JPJT0p6T1N1w+T9G1Jj0p6XNKyNOHWjzpm3zbTbsf/H4C7zezC4Fo6qOn6FcATZvY7ko4ARiV91cz+L2awdaVu2bfNTCsySYcCHwAuAQjCaRaPAYeoOL3rYOAlYHfUSDNn0Pe7mIp2HpfHAtuBf5L0sKSbJP1qU51rgV+nsMFtAv7SzF5v/qCqmXvbxfe7mJp2RDYTOAm43sxOBHYCn2qqswR4BDiaYt+Ma0MLuA9VM/e2S9k7Tue+YtCOyMaBcTN7MLy/g0J0jSwDVlvBGLAZOD5emHlT5lxXFVrRaUVmZr8AnpU0MaY+C3iiqdqWUI6ktwKLKHyYA0GZc11lt6Lt0O482ZXAVyVtpHgc/l2Tufdq4L2SNgH/AXzSzF6IH26elDnXVYUVg3bNvY8AzRvONpp7twFnR4yrUpS530WM/TpS4wvkkShrrivHffubcZFVnBx3DWrGRVYDcl8x8AVyJzkuMic5/rhMgK9j7ouLLDI55eznInYXWRdM9Z+XS85+TmL3PlmHTLdWmMsMfE7LTS6yDpnuPy+XnP1cxA4uso6Z7j8vl5z9FGLvNqXIRdYh0/3n5ZKzH1vsvaQUece/Q9pZK8xhBj72clMvAxoXWYdUYa1wgphi76WP5yLrghxaqn7TS0qR98mctuiljxfF3BvqnB5O9n1c0g/aDd6pBr0MaKKYeyUNAdcB55jZFklHdvg3OBWg225CLHPvhyncSltCnec7jsSpLbHMvccBsyXdJ2mDpItbfVBdzb3O1MQy984ETgZ+m8Lo+zeSjmv+oLqae6tGv83A7fTJWpl7m0U2DrxgZjuBnZLuBxYDT0WLdICJmbKT5aGqbZp7vwW8X9LMcADrqcCTUSMdUGI7xMvIzohi7jWzJ4G7gY3AQ8BNZvZYioAHjdiiKCM7I4q5N9RZCayMFJcTiC2KMszAPuOfObFTdspIRXKRZU5sUZSRiuQL5JmTIuuj3wv8LrKExJp6qHrWh4ssETm5hcqmdiLLxWuYizUuB2olspxaj5zcQmVTq9FlNxOXqdbxcrHG5UCtRNZp65FyU99crHE5UCuRddp6pFzHy8UalwO16pN1urVl6n5T1aceYlGrlqzT1sP7Tf2hUi1ZO9MTnbQeVdjUtw5URmQppieqZNStMpURWarJTe83pacyfTKf3Kwu0cy9od4pkvZIujBumN5JrzLttmQT5t7jKQwi++XvS5oBfAFYGy+8N/DJzeoSy9wLhQ/gm8ApEePbi3fSq0s7Hf9Gc+9iYAPFybw7JypIGgYuAM5kCpFJWg4sB5g3b17HwXonvZrEMvd+ieL4wT3NNzfi5t7BJJa5dwS4rTjnnjnAeZJ2m9maaJE6lWVakZnZLyQ9K2mRmY3SwtxrZgsmXku6GbjLBeZM0O5k7IS59wCKY5+XNRh7V015pzPwRDP3NtS9pMeYnJohMyvnF0vbgZ+X8suLfuPAnJHeQOq/+9fMbL8RXWkiKxNJ682suWWuPWX93ZVZu3Sqi4vMSc6giuyGsgMoiVL+7oHskzn9ZVBbMqePuMic5FRWZJI+K2lrOAXlEUnnNVy7StKYpFFJSxrKT5a0KVy7RmGxVdKBkr4eyh+UNL/hno9K+ln4+WhD+YJQ92fh3gP685d3jqRzwncxJql53Tk9ZlbJH+CzwCdalL8deBQ4EFgAPA3MCNceAt4DCPgucG4ovxxYFV5fBHw9vH4LxTLaW4DZ4fXscO0bwEXh9Srgz8v+Tib5nmaE7+BY4IDw3by9nzFUtiWbgqXAbWb2v2a2GRgD3i3pKOBQM3vAim//FuD8hnv+Oby+AzgrtHJLgO+b2Utm9jLwfeCccO3MUJdw78Rn5ca7gTEze8aKhNPbKP7evlF1kX1c0kZJX5Y0O5QNA8821BkPZcPhdXP5PveY2W7gFeDwKT7rcGBHqNv8Wbkx2d/QN7IWmaR/l/RYi5+lwPXA2yi2fH8O+OLEbS0+yqYo7+aeqT4rN0qPNWvfpZl9sJ16km4E7gpvx4FjGi7PBbaF8rktyhvvGZc0EzgMeCmUn950z30Ui8xDkmaG1qzxs3Jjsu+jb2Tdkk1F6GNNcAEwcTjFncBFYcS4AFgIPGRmzwH/Lem00Ke6mOIklYl7JkaOFwL3hH7bWuBsSbPD4/hsYG24dm+oS7h34rNy48fAwjAaPoBiYHNnXyMoe/TTw6jpX4BNFKeg3Akc1XDt0xQjqlHCCDKUj1CI8WngWt5Y8XgzcDvFIOEh4NiGe/4klI8ByxrKjw11x8K9B5b9nUzxXZ1Hcc7V08Cn+/37fVnJSU5lH5dOdXCROclxkTnJcZE5yXGROclxkTnJcZE5yfl/ynbAcPHJPm4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "\n", + "x = tuple(map(merc_x, lons))\n", + "y = tuple(map(merc_y, lats))\n", + "ax.plot(x, y, 'o')\n", + "ax.set_aspect(1.0)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJkAAAEDCAYAAAAm1qYrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAdbElEQVR4nO2de3Qc9XXHP1e7MtixAwa7kZEs/MAvqsY2CGzcJCWhhUDbUMqjhBAeDXWTBkh72iRNe8jpKee0p6Q5BUIDx3XTNqENwYYk9AVpSlLSYgM2tmPFxrGNgywhGRMeMciAtLr9Y2bNaDS7OzP7m53f7M7nnD1azfPu7Hfv/T3vT1SVnJwkaUvbgJzmJxdZTuLkIstJnFxkOYmTiywncXKR5SROqiITka+IyAsi0hfy+CtEZJeI/EhE/iVp+3LMIGm2k4nI+4DXgK+qak+NYxcB9wMfUNWXReTnVPWFRtiZUx+pejJVfQx4ybtNRBaKyMMislVEfiAiS91dvwP8raq+7J6bCywj2FgmWwfcpKpnAn8EfNndvhhYLCL/JyKbReSDqVmYE4li2gZ4EZHpwBpgg4iUNx/n/i0Ci4BzgS7gByLSo6qvNNrOnGhYJTIcz/qKqq4I2DcAbFbVUeCAiOzBEd1TjTQwJzpWhUtV/RmOgC4HEIfl7u5vAe93t8/CCZ/PpmJoTiTSbsL4OrAJWCIiAyLyMeAjwMdEZAfwI+Bi9/BHgJ+KyC7ge8CnVfWnadidE41UmzByWgOrwmVOc5JawX/WrFk6b968tG4fmZ0vHDr2fva0d/Cu6dORKse3Ilu3bn1RVWf7t4cSmYj8AXADoMBO4HpVfcOzX4A7gIuAEeA6VX262jXnzZvHli1bwn+CBrDgzi9W3NfpeX9OWyfr115Ke7GNYlshecMygog8F7S9pshEpBO4GThdVY+KyP3AlcA/eg67EKc5YRGwCrjb/Wsd1YQUxLSBySWKHQxxw7oHWHFGJ5sHDvLAFVeZMq8pCRsui8BUERkFpgHP+/ZfjNP/qMBmETlRROao6pBBW0MRVUR+gkQVxI7+IXb0DzHSNV7X/VqBmiJT1UER+WugHzgKfEdVv+M7rBM46Pl/wN02QWQishZYC9Dd3R3b6HqF5CWsqKqx4M4v8uzNf2jAmuYkTLicieOp5gOv4HT5XK2q93oPCzh1UtuIqq7D6Zukt7e3atuJSSGVMSGooGvm3qw6YcLlLwMHVPUwgIg8iNO/6BXZADDX838Xk0PqJI6OjnL1NzewbTiZqJqEqCqRe7PKhPkW+oHVIjLNrUWeB+z2HfMQcI3bDbQaeDVMeay90Mbqrrm1DgvNtIG2Ca8cOwhTJntCRDYCTwNjwDZgnYh83N1/D/AfOM0X+3CaMK6veV1gtDTO5oGDtQ4NxCYR5SGzOql1K3UtXaqr/vzzoUNlWqKaPvi2eF7rrGxDWWStHDJFZKuq9vq3p9bif3jk9aoCs0FUUci9WWXsiTkeGiWw6YPjk171kkStOOvYNmgxUUyIKCc6VnoyEyThpWpR9sC5N5uIlZ5spGs8cshshIimD45XLfznBGOlyMKQh77skP8sDZOHzMlY68nihMx6mXHg6LH3R+ZPbei9m5nUPJm0px/uZhw4OuHl3xeX3JtNxFpPZpp6ROMlL/xHJ7NPq9YXXc1LNZLcm6UssuIpI1X3Z7mbxqYO/LRp2ieRF9ztIdMiS7psVG+YzSsADqmLrFbItJG8ITgaqYusFkmWy4r7B+mZOYWrfrWHZT2dtU+og1b2Zk3dhHFk/tSqIW9p73z+cuPv095e4MNj43zm5nvZ3Tdo1IZ8nFkGPFkt6imXvXvNYtrbCxSKBYrFNpavPDX0uXFCZqt6s5rfkIgsEZHtntfPROT3fcecICL/KiI73MzUNcf4e0mrKWPbcy8zOlpizH3t2DZ5ln01T5iXzcIRZiLJHmAFgIgUgEHgm77DPgnsUtVfF5HZwB4R+WdVfcu0wSbZ3TfI5y67nXevWcwPH/8xu1+Obm6YHoBWD5lRY815wH5V9f/kFZjhTpmbjpPResyAfXVTq73smS0HuP/OR3hmy4GG2NOKITOqyK4Evh6w/S5gGc6E3p3Ap1R10k9XRNaKyBYR2VL62euRja1EPeWysYX11yrDhM1W7gEI/clFZArwIWBDwO4LgO3AKTih9S4Reaf/IFVdp6q9qtpbeOc7JuzLehdTlPJZq3mzKD+vC4GnVfVQwL7rgQfVYR9wAFgacFwq1AqZZW9W3B/cfBG25T+vCAQTRWQfJjhUgpPK4DwAEXkXsIQGZ6a2ZfhNNaG1asgM9alFZBrwK8CDnm0fL6cqAG4F1ojITuC/gc+q6otRjcliF1MQYTxaK4XMUC3+qjoCnOzbdo/n/fPA+WZNm0ySQ7LHFnZWDJdxqNS00YrNGS3jv20c+tMq3qypRFZvuayaN4sz7CevCDhYJ7IkmzJs8WbekN8K3sw6kaWNicZZL7k3a0GR2eLNWgkrRVZPU4Yt7WW1aKWQmY1vxEdaTQBxx/y3esjMpMjqxZaQ2SrerClFZmPIbGVvZt+34ZL0qAxbvJmXZvVm1oqsXmz0ZkG0Qqd583/CKsTxZvVM+G3VkNnUIsuiN2vGkGn1t5D10bJBtKI3s1pkjSCvACRPaiLrmTmnIffJYshsNqz/ZI0ImVG9Wb3Zflpt5GyqIlvWETQnxTxJeLM0szdmDSNpCtzjznX3/0hE/icJY1d2zOETvWezsmNiqM1aXyYEe7NmDZk1P5Wq7lHVFaq6AjgTZz3LCWkKRORE4MvAh1T154HLTRu6smMO915yOX+w+he595LLJwmtXuJWAJL0aM0SMk2lKbgKZ95lP4CqvhD2gmFCZvGUEVZ3zaW9UKDY1hZrxd8kKwAmhdaM3sxUmoLFwEwR+b6IbBWRa4JO9qYpOHz4cKQbbx44yGipxNh4KXDF3zQqAF6SmgPQDN4sdBI8T5qCz1W4zpk4nm4qsElENqvqj70Hqeo6YB1Ab29vpCWDtw0PcfU3N7C6ay6bBw6GXvHXy2udbS3ZGJo2ptIUDAAPq+rr7qTex4DlJgz0sm14iLu3PBlLYGGxwZv5Q2bWvZmpNAXfBt4rIkV3tvkqYHfYC4ctl9UiTMi0PWN2M2IkTYGq7gYeBn4IPAmsV9U+8+ZmAxNCa6YKQKhPoqojqnqyqr7q2XaPL1XBF1T1dFXtUdXbkzC2UZjoz4witGavAFjzc2mmkFkmD50O1ojMNkyNzqgnt1mzVABykTWAVvdoucgahCmhZdGbWSUy28plQSFzWU8nV350TaxlcmoJrVk7zZt62RvTLOvp5LY7r6a9WGB0rBRrmZwZB45aORo3SbL/M2kgy1eeSnuxQKHYFnmZnHrIegWgpUUWNWTu2PYco2MlxsZKjI2NBy6TE4ZWW0pHVCP1Uxujt7dXO29fHbhv9/C7ap4/9vy0mseEKc+E+VK9oljW08nylaeyY9tzda8oVylsBok/qJz57M1/WNf9TSMiW1W11789L5OFwLuk4e6+QWPLFVYqnwUlNc5yQuOmDpc2tf4nQVbKZqk+4Uu7zmfJjPmTtptqyjBJUjXCKO1nWW3OSNXqj5z6q9zac1Og0EyRVW/WTBWAVJ9uQQoUpEDPCYtind8s3qweshAyUxXZ2HiJkpboe3XvpH0m52Ta7s0qhcxm6QFI1eJ/6f93bun7EnuOxF/QNPdm9nuzVEX2wMB3qgrMVm+WhNCaeaRG9nxvAGmsLtcojxY2ZNrszawXWaPyZZSJUjazMXTaiLFcGO6xZ4lISUQuM29qdUwNAYqKSaE1awXASC4MABEpAH8FPGLaSJu9mU3YGjJN5cIAuAl4AAidB8M0zezNsoyRXBgi0glcAtwz6YyJx03IhfHt99wV8faNI6o3S7p8luUKQOgn6cmFsSFg9+04646Xql1DVdepaq+q9s6ePTu0kWGG/pRJy5tBXhGohKlcGL3AfSLyE+Ay4Msi8hsG7EuVOGWzJCcGZ9WbGcmFoarzVXWeqs4DNgK/p6rfMmBfLNL0ZpB7ND9GcmEkSZRQmQRxa5r1Cq2ZKgDGcmF4tl+nqhtNGRi3+SJtbwbJeLQshsxsNgg1mHrazfLQ2eQis8Gbgfmkx2EHNNrizZpaZCaptxcgaY9mczeTvZYZwqQ3a1R3kzcVQr0VABu8WT4lLiL1JDf2Tq2rRFAqhCdff2nScVmaNtf0niwsUb6cJCsCaaVCSJJMiKyeURhhZprHISmhBaVCyHrIzMOlh5Gu8UgF6HpDJ0yuQe7uG+QzN98bKhVCVkJmJjyZzZiodXpflciyN2tqTxYnVEb1ZqY59VcWcNufXE6xWGBstHYOtCx4s9Q9mc1jysJismnjjNPnUiwWKBbaKLabLfin5c1SF5mNxPECpoT29K6DTqG/5BT8Nw0PH9uX1U7zzITLZR2HIo3ISKpWWQ2/0OJUCvr2DfGZm5yC/6bhYfr2DUGN9jXbQ2buySqQ5mrAu/sGue9rjzsCc6lUG41KGiEzF1kFVnbM4Yb3n8Xy7ngrBMfxYn4BmV46Jy2aUmT1hsryUtQ3XrCG9WsvjS20KIQRVNRO9kq15EZ7s6YUWb1MXIq6wFkLuyKdH9WrVBOYf1+Y/k/byEUWwMSlqEs8tX8g9LmNCFuVPFqUmeaN9GY1a5cisgT4hmfTAuDz3uUGReQjwGfdf18DPqGqO0wa2kjKS1G/d0Y3T+0fYEd/uJWCTZTDKh2T5RG2NUWmqnuAFXAsFcEgk9MUHAB+SVVfFpELcdYZX2XY1sjNGPWwbXiIPVvCd8wnJbBmwEiaAlV9XFVfdv/dDEQqxHxg1jMRzbCLRgjM5JKGZRoVMo2kKfDxMeA/g3b40xTYTJL9l63iwcqYSlNQPub9OCL7bND+amkKTHqzRibFM1mTNHWubd4sSrdStTQFiMi7gfXAhar6UxPG2Y7NDaA2YSRNgYh048wu/6iq/tiEYWliak0mPybCZBKhNmlvZipNweeBk3ESrWwXkS3GLXVpdEK8ILJQk4wSMpMuXhhJU6CqN6jqzHJGxqCVwqrxqaXfjWZ1imRBYLaRt/j7MF2rTEJg9VQAKrF4461xzalJ04osjbTrfmz0YEE/oqTH3lklsrQbZW2e6u8nCQEn5c2y81Qzhi1eLGwFIElvlossAUwLzJsbI8n7JEUmRZZEM4apUJmEwG6782qu+51zue3OqycJLQxpVwAyKTJbScKz1MqNEfeejQyZucjqpOe0OVzzobM5+x0nJXL9oNwYUek5Ldp8BdPezLopcR+Y9QyPvrjUyLWKp4yE+nXGDZU9p83hrvJs74tX15ztHYdauTFqDWb02jhaKnHDugeODcJs1LS53JPVgX+299LzTguV1yIq5SlyUQXmtzHMfIXyj9KkN7POk2WJ8mxvUMbGxnl618EJ+/0iMFVmiyJgr42jpfFI8xVMkVmRmRyKHTfJSt++IW78iw2ccfpcnt51cMJk3CCCxBFVeFE9ZNnGntXB8xWCQubY89OM9phkVmS20LdvqKa4qhHF28UNwZuPHmLz96I3+yzeeCs/vuyWWPf0kpfJLKNSeS6uwGxYuzN9CxLGho7yOIRNjleNsAKr1mZmogJgjci8Y8rS7ihvBmzwYGXssSQDZGVMfxyBJenNcpG5NKJRstw70HNaMglcXutss8qDlTGVpkCAO4CLgBHgOlV92rCtk2jkjHKY6CGierUJvQNjJW78iw111Uqr2WYbNS1T1T3lsfvAmTgi8qcpuBBY5L7WAnebNjQtlncH9/uVvUbYL3dC70CxjTNOn2vMRlMCSypkRm0nC0xTAFwMfFVVFdgsIieKyBxVNfdTTYHl3XNYv/ZS2guT+/28lL/kat6tVu9AXOIKzF88SHJUsKk0BZ2A96kNuNsmECVNgQ0zys9a2OXkKQvZ71eNcsv7uo2PGwmV9ZS/gsqfI13jNXs+4nqz0J7Mk6bgc0G7A7bppA2q63Ay/tDb2ztpv208tX+A0VIJIFSeslorlNTbO+C9T1xqVXCC9tfbzWQqTcEA4C1kdAHPx7bKEnb0D3HDugc4a2FXpDxlSZKkwMIQp6spisgqpikAHgJuFJH7cPKSvdqo8ljSHeU7+oeaXlwrO+awumsumwcOsm04+LPW481CicyTpuB3Pds+Ds5McuA/cJov9uHUPq+PZU0TEGZRr6j5/pMW2L2XXH6scnP1NzdUFFpcTKUpUFX9pKouVNVfUNXEcmFknSDBVCvEJx0eJyZhbmN1V+2mlagVAHtb8AzTyI7yuMLwi60R5a+JSZjH2TxQuWkl7kQTq0XWbB3lYUVTb/NElAJ+OQnz32x+PFKojOLN8kGLDaIR3T5xa4/bhodCiytOBcBqT5YGpjrKG92XmMZaUGG9mVUii5unzPSMctNfWJKCixoe41A8ZeTYKw5WicwmbFnGrxqNstFb4I8jtFxkCZLk+C5bfgRhQqb1Ikuzo9yWL9KPrXZVwnqR5bxNI8pflajWRnbFo18BYMaMGe8I2p+LrAa2eA1b7PCz4qRO/ul9HwVg0aJFi4OOaRqR2ZB6PSlsEViQN1s1ex7tbYXyv0FDvppHZEmS1pecZngMyxOHf8LoeKn8b+AYwVxklmK7uMpsf2mQax/7GgB79+4NXI2m5bqVwuYs8xM3KUsUlnfP4ayFXfzgSH/dw20q2VqPeCvVzre/5KS0OnLkyOuB58W+YwMxmRjPVo5NWikW+N3Sqqqd1Wmkgm/U8OuWJ0lvtuKMTtqLzrguFN47ozvSysFJUu8wqbxMZgEjXeO+cV21J63EJeqPxMQ4vKbyZI2eUW6CchmpPK6rPNZ+T3/6XszUQM+wY/xPxFkwtQenmvrbqrrJs/8E4F6g273mX6vqPxix0DJMhkx/Idw7rmtaykHG5EjisJ/kDuBhVV0KLAd2+/Z/EtilqsuBc4EvuvM0I9PoZQnrGcJSD3HmP5qi1o/E9POoKTIReSfwPuDvAVT1LVV9xXeYAjPcxCvTgZeAMZOGmu4or0dc9QrA5jawJH5wYTzZAuAw8A8isk1E1ouIvyP0LmAZzoTencCnVHXSk4ySpqDRNMqbRRFYUmJstMjDiKwInAHcraorgdeBP/YdcwGwHTgFWAHc5XrACajqOlXtVdXe2bNn12e5hVTKAFTGBg9WzYakfmhhRDYADKjqE+7/G3FE5+V64EF3/uU+4ACQSutpPR3lUR6y/8sqN6beeP4a1q+9dILQ6umDNCnMNAQG4fKTDQMH3WR44KSP2uU7rN/djoi8C1gCPGvQTuuplAGo0d6rkjdNS2AQvp3sJuCf3Rrjs8D1vjQFtwL/KCI7cYZ7fFZVX0zC4KSJ27cZlAHIlMDCNptUyqeWtMCWdRzi4v+9sfI9wlxEVbcDvb7N93j2Pw+cH8fALOP98v0ZgDaNm13IKwxeb1r+v5od9QosbNEkU91KjZpRHvfh7+gfYv33nkpEYGG8YtmbjpXGGS2V+MGR/orHNkpg0GTdSjaQZg3S602rDReqR2BxKla5yOqkHDIbIa4w99g0PsimveZDZD219kyFy7CYGO9fT3OGrcQR2LKOQ3U/z6YUmY1kcY0nU5Nz8nBZhbjNGf5rmLyeCTtqYXrmV+ZElqWh2DZ4rzTFVaalwmWc8kXsZLwVzmuE8OKMMkly3qqVnuxTS7/LHc/8srHr+R9g0iNoi6eMsOKkTlbNnscTh39ybDaPd78tNGJStJUiM0FZSKZqmmHKUmXxlKfut7cVGB0vce1jX5sktDTwCv/NKYmvr3aMphUZJPcrDcp77/VO5an7xbY2QFk1e17qIisLf0qhjbHx93BL38vsOXKgIfduapFVI2rILHuzoLz3O9v2Tzj27an7yuj4OE8c/olZ42PwawtmMaXQRkEKqEDPCYtykdmKN+89KGuWdbBzz0SRlafuVyqTNQK/F+97dS9j4yVUoKQl+l7d2zBbMikyU80YcbzZU2/sZXR8NbW81PaXBhsurmrFgz1HDnBL35foOWERfa/uNe7FlsyYT2dnZ0fQvkyKLE3q8VKmy4hRKzZ7jhxIJEQumTGfW3tu4tGOr09afhJykcVqzojipZJsIrAlJ1vPCYsovp2jbBItL7IksUUESXPNvA8BzhpbQftbqsW/EqbFYGLkQlb49nvuOvb+0KFDgWuc5iIzTKuICyYKDGBwcHA46DgjuTDcY84FbgfagRdV9ZciWx0B0x3lJrqa0hRYpaHpSQwm8IurFmHLZOVcGJe5M5Ym9LG4Ivwy8EFV7ReRn4tkhaWkIRq/WKqJJMychyjXq3X+oy8ujSwwCCEyTy6M68DJhQG85TvsKpzJvf3uMS9EtsQC0vJE1cRievJMNdHVulccgUE4T+bNhbEc2IqT68KbH3Qx0C4i3wdmAHeo6lf9FxKRtcBagO7u7lgGh6X8wGwee2bDep5hbKg301IYkZVzYdykqk+IyB04uTBu8R1zJs4s8qnAJhHZrKoTsiGr6jpgHUBvb29gdbde/A/NtkGONggrCiZSeYURWVAuDH/ClQGcwv7rwOsi8hhOHrPAlNthiDOmzOYv0GbbADqOX0bXtBUMjGxn+I3dRvPE1RSZqg6LyEERWaKqewjOhfFtnEw+RWAKsAr4G2NWhqBWuSYtb2ZaXH4xmLrmb3Z/gYK0U9JR2tuON3LdMkZyYajqbhF5GPghMA6sV9U+o5YGUBaPjV4iCZv8Yniw/9NGhNY1bQUFaadNCrRJ5e6huBjJheEe8wXgC4bsCk3YLzOMN7NRrF68YgCla9qKukTWqNSpLdl3abuYKjEwsp2SjgJKSccYGNke6fxG5+Mt01Iiy6q4ygy/sZsH+z8dqkyWlqCCaCmRNQPDb+yeJC6bBBVELrKMYbuggshFZjFZFFQQucgSJkq7VrOIyk/Liuyi6f72ZPMcP+VMOmfdBjJlUrtWswoqiKYRWSWP0QgxVWLqcecg0o64jZy/Ne9LqdmSJk0hso7jl3F5922ItKN6FYMvXsEbb21NxZZFXYEjkFuaphDZeTPnuB6jCChTjzsnlMiOn3ImU487h6NvboolylxQ4ci8yC6avoujb05F3ZZw1TGOvrmp5nlOeel+1/uN1vR+uaDik1mRectab7y1lcEXr4jkld4uL032frmgzCIVpsolTm9vr27ZsqXmcUFjykwU5suerK1tat3XynEQka2q6h9IkT1PVo/Acg+VDpkRWVRx5YKyB+tF1nvSh+nmW7zhnx/lIxeVvVgvsjWzr53U9pULKlukVvAXkcPAc5X2d3Z2dnR0dHSCk8jj0KFDz1eaBh+SWUAml0dMiCSex6mqOmlJ5tRE1mhEZEtQzadVaeTzyBOu5CROLrKcxGklka1L2wDLaNjzaJkyWU56tJIny0mJXGQ5iZMpkYnIn4nIoIhsd18XefZ9TkT2icgeEbnAs/1MEdnp7rtTRMTdfpyIfMPd/oSIzPOcc62I7HVf13q2z3eP3eueO6Uxn9wsIvJB9zntExF/8hzzqGpmXsCfAX8UsP10YAdwHDAf2A8U3H1PAucAAvwncKG7/feAe9z3VwLfcN+fhJPv4yRgpvt+prvvfuBK9/09wCfSfiYxnmHBfT4LcJLj7ABOT/KemfJkVbgYuE9V31TVA8A+4GwRmQO8U1U3qfOEvwr8huecf3LfbwTOc73cBcB/qepLqvoy8F/AB919H3CPxT23fK0scTawT1WfVSdr5n04zyIxsiiyG0XkhyLyFRGZ6W7rBA56jhlwt3W67/3bJ5yjqmPAq8DJVa51MvCKe6z/Wlmi0udLDOtEJiLfFZG+gNfFwN3AQmAFMAR8sXxawKW0yvY451S7VpZo+OewbhSGqoZKrygifwf8m/vvADDXs7sLeN7d3hWw3XvOgJu87wTgJXf7ub5zvo/TmXyiiBRdb+a9Vpao9KwSwzpPVg23jFXmEqCcaO8h4Eq3xjgfWAQ8qapDwBERWe2Wqa7ByQpZPqdcc7wMeNQttz0CnC8iM91wfD7wiLvve+6xuOeWr5UlngIWuTXlKTiVnocSvWPatZ2INaOvATtxMjo+BMzx7PtTnFrTHtwapLu9F0eM+4G7eLuX43hgA04l4Ulggeec33a37wOu92xf4B67zz33uLSfSczneBFOPt/9wJ8mfb+8WykncTIVLnOySS6ynMTJRZaTOLnIchInF1lO4uQiy0mcXGQ5ifP/zauNAradx70AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "\n", + "x = tuple(map(merc_x, lons))\n", + "y = tuple(map(merc_y, lats))\n", + "\n", + "ax.tricontourf(x, y, tuple(datapoints.values()))\n", + "ax.plot(x, y, 'wo', ms=3)\n", + "ax.set_aspect(1.0)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJwAAAEDCAYAAADA/21vAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOydd3iUVdrGf2dakknvvQEBQm8CAgqKoljAtjbs3V3b2ll33V391rK6a3cVC/aCioiC2EUEgdBBCCGk997LtPP98SaTSTKZzCSTkITc1zVXZk57zyR3ntOe5z5CSskwhtFfUB3rDgzj+MIw4YbRrxgm3DD6FcOEG0a/Yphww+hXDBNuGP2KAUs4IcSbQogSIcQBJ8tfLIQ4KIT4XQjxQV/3bxg9gxio+3BCiJOBOuAdKeWEbsomAauAU6WUlUKIMCllSX/0cxiuYcBaOCnlL0CFbZoQYqQQYoMQYqcQYpMQYmxL1o3AS1LKypa6w2QboBiwhOsCK4DbpZTTgXuBl1vSRwOjhRCbhRBbhRBnHrMeDsMhNMe6A85CCOEDzAE+EUK0Jnu0/NQAScACIAbYJISYIKWs6u9+DsMxBg3hUKxxlZRyip28PGCrlNIIZAohDqMQMKU/OziM7jFohlQpZQ0Kmf4AIBRMbsleA5zSkh6CMsRmHJOODsMhBizhhBAfAr8BY4QQeUKI64FlwPVCiL3A78DSluLfAOVCiIPAT8B9UsryY9HvYTjGgN0WGcbQxIC1cMMYmhiQi4aQkBCZkJBwrLsxjB5i586dZVLKUHt5A5JwCQkJ7Nix41h3Yxg9hBAiu6u84SF1GP2KYcINo18xTLhh9CuGCTeMfsUw4YbRrxgm3DD6FcOEG0a/YphwTsJgMPDaa6+Rn59PU1MTw0eCPcOA3PjtLQwGA7t27WLixIl4e3v3uJ3GxkYyMjIICAhgxYoVPPLIIwCoVCrGjRtHXFwc06ZN49FHH3VX14c+pJQD7jV9+nTZG9x9990SkGq1WqpUKnnbbbdJg8EgLRaLNJvNduukpKTI/fv3SymltFgs8rXXXpN+fn4S6PS6++67ZVJSkgSkVquVJpOpV/0dagB2yC7+tsecXPZevSXc9OnTJSBvvvlmK0kWL14sExISpJ+fn7z//vtldXW1TEtLk88++6xcsmSJtdzJJ58sR48eLQF56qmnyrvvvltGRkbKmTNnSi8vL/nBBx9IKaUsLCyUnp6e8uqrr+5VX4cijivCvf322xKQy5Ytk7m5uZ2s04QJE+xarZCQEHniiSfKOXPmyHPPPVeuWLHCoeW65557pEqlkmlpaT3u61DFcUU4Pz8/GRoaKouKimR1dbVcsGCBlVTBwcHyySeftH6Oj4+XycnJMjc31+XnxMbGSkCmpqb2uK9DFccV4VrJtGTJEimllBs3brSm5eXlSbVaLQG5YcOGHj9DSilvuukmCcgHH3ywV+0MRTginFOrVCHEn4EbWv5w+4FrpZRNNvkCeA44C2gArpFS7mrJO7MlTw28LqV8wrnljOv4/vvvre/Xrl0LQEhICAsXLuTxxx8nOjqa5cuX4+XlxRlnnNFteyOe/4/d9FtnzOT0RYtYsWIF8+bNc0/njxN062IuhIgGfgXGSSkbhRCrgPVSyrdsypwF3I5CuFnAc1LKWUIINZAGnI4SWZUCXCalPOjomTNmzJA98YebOXMmKSlKoNZ1113HG2+80W2drkhlD/o8ZdtyUkw42ateJuPoUX4/fJggPz+X+zqUIYTYKaWcYS/P2X04DeAlhDACeqCgQ/5SFEkGCWwVQgQIISKBBCBdSpnR0pGPWso6JFxP0Uq2DRs2MG3aNGu6K6SyRSvBOuKHT9+nZPNmLrnzAW7c8BWfXXx5j9o/HtEt4aSU+UKIp4EcoBH4Vkr5bYdi0UCuzee8ljR76bPsPUcIcRNwE0BcXJyz/cdsNmMwGBj/2sv4L1pI9bc/sOy1V9BFR6OLiULl4dF9I3RNLlvU5xyhYs8Wag7vxW/sFPZrw2gsKnS6r8NwgnBCiEAUq5QIVKFEvl8hpXzPtpidqtJBeudEKVegSDkwY8aMTmW6slIl73xA/c5d6GKiMeTlA1D+2RqlUzotCU89breeMwSzRcWeLRR+9ylqL2+CTziFsDmLUKaukhHP/4eMO+5xqb3jFc4MqacBmVLKUgAhxGoUyQVbwuUBsTafY1CGXV0X6Q4hgUajkSs+/4Td3VgQoVaIY8jLRz9pIkIlqN+zT2nHYLSWc5VgtjDWVFL4/Wp8EscSe961qDTadu02xFh63PbxBmcIlwPMFkLoUYbUhUDHGf1a4LaWOdosoFpKWSiEKAWShBCJQD5wKdDthEcAWrWK2TGx3RIu8JyzqNuudCfo3LPQhoWiz1PRVFIAAjx7QTQAc1MjeeveR6gEkQsvaEc2WwxbOefQ7V9DSrkN+BTYhbIlogJWCCFuEULc0lJsPYq0QjrwGvDHlrom4DaUyPhDwCop5e/dPhMwmi1szcvtrigafz+EWg1A1ftrrJbMMywKz9Cobus7QnNlKRnvP0djQTbRZy1DFxjSq/aGMUAj72PGjpWzHnm4S+vWSqrGolxyPnsdU0MtAKFzzyBsTvf7a86gLusweWveQahUJJ10FX5hI6mL7vr/s3VYHbZy7tkW6VeUNtR3Ipu9OVhzebGVbAAB40/o8TN98hXCSIuFrB2rKUnfipd/BGPmX4eHT1CP2x1GewxIwtlDQ4ylE+n00YnW98EnnILO33litBLMFlJKio9soSR9K+Gj5xE7ZTFqjUe7Ol1ZueHFg3MYNISzB11AMImX3U7euvcoT/kJc0MdkYv+gErT+WvZI1gr6isLKMvYQXVRGo3VRXj6hRE/7VyESu1yn4YXD44xKAlXdSCFhoIsQmaeSs6aNzE31ivpv6fgkziGaD97moVtMJsMGJtq8fQJBqC6IJWiw78AEDV+IVHjT+0R2YbRPQZVTEO1vozynb+Q//WHVO79jcwPX7SSrRV5X71Hc11FFy0oKD78K3vXPk7m9k8pz95DYEybSHpwwlSkxYKxqd5BC/bROuT39CjteMCgsXDm+gYKnnoWS0ODNc1UV2237J61jzHr8qe7bCsofjK5e9dTkr6VkvSt7fKaakpJ+/kNMFqYctHf3NP5YVgxaCycoaAAS0MDGh9/a5p/8lSiF1/G6Fv/jn/kGMKSTgRA4+njsC1Pn2DGzL/ebt6RTW/TXF9Js6Ea38zGTvmO5oIwbOW6w6CxcCovLwB8RyRTuU+xSqFzz8QjUJEhi7niZnzyLSTMuABpMXfbXqwhgdgTH0VKSV1DETV1+ZjMTRzJ/gaAaeOu7aNvcnxjQBJOaO1YkRap/Mp9W1HpPPAdOR5dQOedfyEEQt3+a9mzVLbla+sLScvegNncDEBS/JkE+Y+wlmmqK6f06HaaastRa3Xop07BJ3GsNd9YV4PF2IxQa9D6BnT5LKPRyKFDhwgJCSEqqnenIIMVA5Jw9qCLirS+txiaiTnnCqfr1iZ6dSKd0dTIkexvKCjZ2S49PHgCcZFzlOdYTFTkHSBv79c0Vhej0wdgMRkoPbodfexI/EZPxlBRQsXuzdg6wai9vFEH+aP/3wrOmzqddevWERsbi9lsJjU1FYAJEybwySefMHbsWI4nDBrCNWfnWN/HLLnKbpm6aFW3cywAKS3sT/uYiuqjnfKSR54HQF5xCqkZa63p4UlzSDjhAixmE9mFm6jav52iH1YDgsDJJ6KPScRQUUJ97lFUHp7UZaZCvoUPU9MAKCsrw9PTk1deeYWvvvqKr776inPOOYeUlBQCAwNd+VUMagxYwmmiGjAV6Ns+BypDlcrHG31kfK/a3nv4QyvZkkecx6EMxX/O3zeOorJ9VFQfpaS8zccgYuzJxE09R3m+WkNizCnUzjwVY1U5Kp0HGm/fTs+oC2tGGo2Yq6vJffwpbG7P4eabb2bLli0sWLCAu+66i7fffrtX32cwYcASriOKX3kdAEtdPWmvPop3XBKBU+bgP2ZyNzXbQ0pJWeVhAEbGnmYlG0B1bQ7VtTkIVIyMO42EqJMQQkVtolendoQQDr1HfEo8aIjRovbWtyNbK+bMmcMll1zSLvDneMCg2RaR5vYrz/qcI+StfRtTQ51T9VtJI4RgytgrmTftHjLzN7Yrc88995Censn1Vz5LYvR8hHDPr6erLZIZM2ZQUFDAwYN9EuIxIDEoCCdNJowlpfgtOBnfObMB0MeMIPqsy1F7tRerceRC1IqQwCQ8PQIICRxtTXvzjTd5+umniY+PZfaJ47ttw5m5YndexieddBIADzzwQLdtDRUM6CHVOo9TqxEaDXXbdxD3r38QdN65CLUaj6PNGCpK8AgO71H7o+PPxM87mqlTZ3LZZcswGc2YzBb27u5S9d2tyMlRFkL+/v7dlBw6GJAOmJ4jo2Xck4ozcevCofClV2lKO0LUvXdR+ML/0IaGYMjLR6XzJPnOx9rVd2R9utqTmxCoY9Kc0ezOruTQgfxO+fbmcdC9RbV1WbL1IjEYDCQmJuLv78+uXbvw9PR02M5gwqBzwLQH76mTaUo7QsHTzwJYI7TUXnpH1ZxG6o5MUndkKh9GRjtdz5GPHNj3k2tsbOSiiy6ioKCAl156aUiRrTsM+DmcJko5rNePG4vaToS7Ru/TaUHhzDyuI0wukKwjnJnPQdviYfny5Xz99de8+uqrnHfeeT1+7mDEgCdcKzQBAUTdc0en9MbCHKfOTvsajkhnu3ioq6vj9ddf58orr+Smm27qj64NKAwawgGo/f0JPGdxp/SG/Eyn2+hqLga9s3LgnKVbvXo19fX13Hjjjb161mBFt4QTQowRQuyxedUIIe7qUOY+m/wDQgizECKoJS9LCLG/Ja9XN7YJIfCdNRMAr3HJaMPDAOzuxfVkWHUERw4AtuiOdLf+92liY2OZO3euO7o16OCMtshhYApAixpSPvB5hzJPAU+1lDkX+LOU0tbt9hQpZVmPO2lzzFW7bTsAXmOS8F9wPV45IFTuI5dpZDSao/m9ntN1JHzr4qE5K4e5ixfbPX04HuDqKnUhcFRK6Wij6jLgw553qWtYmpupXLcBgIrP11LxuXK4HrPkKvzHOI5jsIU975H+gqW5mc9Tth2TZw8EuGoaLsUBmVrkIM4EPrNJlsC3QoidLQpJXdW9SQixQwixw1xjP56g9IOPQUo8k0a1Szc3Ntgtfyxhb2g1FJcgm5vRhtq9u/a4gNMWTgihA5YAyx0UOxfY3GE4nSulLBBChAHfCSFSpZS/dKxoq57kOTK60260tFhoaBGpMdfWkvCfJ5BmM0KnwzvffoSVI3clR1aut4sHe5BSUvXealSeHgSefeZxG07oioVbDOySUhY7KNPJAkopC1p+lqDM/Wa62kmAxsy2YchYVEzWPQ+S968nAfotANnVYdiW7PXZR6jPSSfw7MVojmPFTFcI53BuJoTwB+YDX9ikeQshfFvfA4uAAz3paO3GPWiCAglZdok1zWvsmEEz+a7PTgOVirDYE491V44pnBWV1qPo9N5sk3YLgJTylZak81HUMW0nYOHA5y2k0AAfSCk3uNrJup2HadirOExKg5GE/z4JQji1Ou3psOpumJsawCKtenZwfEbpO0U4KWUDENwh7ZUOn98C3uqQlgG45iFpBw0706zvyz9ZTfknq4l77BHU3u45R+1L+ORbqApsoPboQfTRCS0+dsevBsmgOGkIvf5sPJNirJ9VXp6oPNtr9zbEWDDV11L8yzqnnTLB8cmDOyClJO/LdzE3NRA690yg/VHX8Ra/OmC9Rcy1DRjyS2k6WkDNDzsx5JZY8+Iee6TTcGppbubwy38HwG/0JDT6tmBoZ4NrnIFvZqPTJLWYjWTvWkt9zhEiF/0Bn/gkt/RhMGNAEs5c10jmTU8hTZ0P5QPOPN3u3C3noX8AoPH2Q+sfhNnQhFp3bN1+cvd8TcmR34gYczKBk2a3y7N1Wzqe5nIDk3CVtQrZ1Gq8Z4xBFxlM/c7DGHJLqNrwHVUbvkNotYQuuxT9xPGUffo50qgISJvqazj8oqIJMv6+/1rbPBaLh4rcfQTGTiR++hLqBslquq8xIAmn8vHCXFmLSqehfttB7J07SKMRQ2Eh9fsOUL9rd6f8mCVX931HHaChsgBDQxURY08GunfUPF4wIAmnCfQl9vGbUPvqyb7jeUzlbSpJSZ88QtMhIyqdjtL3P6Zhf9u2XszfluNd4dVu/uYs3G3lKvOVSKyAqK4j64/HYXXA/stpg/1R6bQEXThf2XPz0OJ70iRK31yPxt+fmi1b25HNc9RIzLW11HpVULF7M/ZiNdxlYbojZm1pFsVpm9EHROLp0xa76q6Fy2DGgLRwntq2Cz38T5+ByteL4uc/o3aTcpaqDval8svv0cXGYMjNA6Ap/Sg1v2y2Dq+BU+a4/Fx3WLma4nQO/bgCD30AI0+8zCXXqePByg1IwnWE7+zxeMSGU/zKGppScyh/7zs8EuLx9/OlpIVwan9/mo5mAOAZHtPlkZe7tkhat0ektGBoqKKptoyyjJ2UZe1Epw9g/Bl3ovX07rad402MekCGCQaMDZNh/3e73bzm7CIa9qYz94zL2XjbXVRVVXUqE//04/gUd32pW0/CCDuiojqD9JzvqKnLa5fu4RPM+EV3OCRbx6G9I+EGu5VzFCY4YOdwyRH2nVI84iMIXDKPKdHedskW89ADqLT2rydqhaO5nDObuqUVh9h1cGUnsgGMO/1PTlk2W/TmHrDBhkExpNrDS3c+BEBsbCyp6elcuebTdpeJ2LvXobeoqslmT+p7mMzWy7BJiD6ZhKiT2PL7ixgaqtF5Hb+uR85gUP5rWRqbKdunHOgLX1+nbh10BV1ZOaFSW8kWEz6Tk6bfx6i401GrPfAUylZMyqqHyNj2icPQxe7mkEP5fHVAW7jkiGIOFXXWDWk6ogxlmuAgxDXL2FNc1KlMzebfqMutIWxe57BC6Nniwd8nhtNOfLRTuhCC6eOvI79kBxWUUHp0G0IIEmde5HTbx8viYVBaOEO+EgBmKq+gMTWtXZ6xtIzMO++lfNVnlP72HYDdPbnu4OwBvZQSk6kJlUpDVNh0AqWy72YxGR3WO16t3IC2cF3BZ/Y4St9cB4B+wrh2eYXPv2R9H7T0HEp/+46y7T8x+ua/ovZs7z/X2y0Ss9nAgfTPKK04iE7ri5QWjKZ6fL2jSJz1B5fbOx6s3KAkXNW636zvzfX1aPz8sDQ3U/ruB5hrlNsFA89ZTMUXX7VVcvPhudHUyO5D71BTl0dEyGSaDNUIBIkxpxDoF0+duve/2qG4ETzgCWdvHqcJadFTU6nQ+PkhpSTnb48gmxXZ+9CrloHNMOo/fgZqD+eGSGNjLUc2v0dA1Fiixp1id19OSgs7DrxOQ1MZk8ZcRljQuE5lnPGbOx4P9Ac84exB5aVs6qq9PVFH1lP6+i9WskX/5X504WHtVM9DZixwvnEBtSVHqS05Sk3REaJ9JuDtGYKfTzRCqKirL6KwdA/1jSWMTjjbSrbi8gOUVhzCQ+eHl0cgEaGT8c103aN4qA+rA/akYf7rF1s/21o4Y2kVWX9U/Nz8z5hJ7S97sTQqZAtZdglqPz+8RifR8PshSl5fCYBXRCyJy+7s8lyz4zyusaaUfV892blfvvFU1eYAkvCwaJYuXk5GWiV5RdtJzfwSjdoLi8WIRZoQQsXMibfg6x3ZLemG2slDr04anBSzWSCEqLYp87BN3plCiMNCiHQhxIO9/TKF//nI+r7hQIaVbCpvPU1p6RT/7zXKV6+xkg2Uq8rz13/g9GrVyy+UMQtu6JReVZsNSJYtu4Lly+/nT3fPJzJWQ2rmlwCcOOU2Tpn1MEH+I5HSwrZ9L5Oa8SX6dPuX0HWFoXzy4JKFsxGzmWWrLyKEWADcK6U8x075NJQQwzwgBbhMSulQtrujhYM2K3fkD1Yu43fqNGp+3AWA5+gkmtKOWPM0oSGYSjvr53gEhxN15qXoo9rueuhqpSotFqTFjPZICeVVR6ipy8ciSqmoLMZobNv2UKm0TB5zOcEBigRFs6GOorK9VNZkUlaZhrdXCBGhk9GOGolvaCKqDgsKe/O4wWzl3Cm56oyYjS1mAukt4YIIIT4ClgJu0Yn3HB1rJZwt2QAr2fSTJqLy0FGXolxx1FxeTOW+re0I19X2iFCpECoV5uRoYjOV682TJ0TzxLOXc/jwIVaufIud2wpQmxPx0LVdDuKh8yE+ai7xUXMprzrCkexvOJrzPeR8j3/kWMYsuK6dJP/xtHhwlXCOxGxOFELsBQpQrN3vQDSQa1MmD5hlr3KL0M1NAF7hXXvs+p40mdpNe9FFh+I5ovMFaT6zTqBuW4r1s37ieHxnziB+wTJMjfUYayrxCI5w9B0d4tCBfB686wMmT42Hpsno1SHg4PLo4IAkggOSMBobSMveQGHhbooPbyZi7EkOn9Nx8TBUtkic/reyEbP5xE72LiBeSjkZeAFovd7F3uaX3TFcSrlCSjlDSjlDF9B5kt3qPeIxQrnkLfiyheTc/79O5fxOnkfUfX8m9Brl8jdzba01T+PljVd4DCpN7xbnhw7k89G7W+yqnXcFrVbPuJHnE+g3gsL932M2NbfLP168gd0iZiOlrJFS1rW8Xw9ohRAhKBYt1qZoDIoF7DE84pW5XOHTyuLBZ+5EhEaN18QRRN7xR3RRkXjEROM9ZTLqgAAMecrjuttq6G5Ic0fAtBCCkXELMRjryd3zda/bG4xwi5iNECJCtLjYCiFmtrRbjrJISBJCJLZYyEuBtfbasIWn2oMLYxYxxjexU55+4kjre6/keJpSc5BS4nfyZDxHjrBufVhq65BGA9JkcuEr9j0CfOOIjZhNcdqvlGfvcVi242p1KJyvOkU4GzGb1TZpt7QK2gAXAQda5nDPA5dKBSbgNuAb4BCwqmVu5xDRXmEsiz+bRyfc3o50yRHFNGcVofLxwmt8Ip5JMZiqaon9vxvxWzDVKrEPULdjJ5b6BusthDAwrBxAUvwZ+PvGkbFtFcamtiH/eBhWnSKclLJBShkspay2SXulVdBGSvmilHK8lHKylHK2lHKLTbn1UsrRUsqRUsp/OfM8gUAt1KiFmgn+7eUR6rb+jqWukZCrz6QuJRWPxEg8R3UWEPSZPRNddBQ1GzdR+PIKLE1NncocK6hUGsaNWIrFZGDX6n9SfGRLl3uEQ83KDci1uERispgxSzMHqttvdzQdzUcT7IdHfDjGkipUHu3dyVutnFqvJ+JPN6MND6PpcBoFz76IxWgcMFbOWx/GyNiFAGSlrCbtl5WYTc1D3soNSMLlN5bwQc46/nbgBQ7Xtt3BYGo00rA3Hd95kxTvD7MZU3lNl+2ovb2J+cv9BF14HsbCIhp/P+SW/rmLdIkxCxiz4HoCYyZQlX+Q8qzOCgL2MJit3IAkXJO5mc/yvm1HNgBpsoAEdaAPhrxSAHznd1Yvt53LAWiDFWm7qh9+Ano/lwP3kS4gKtnqO1eaYf8ai6F01DWovolQK9t6Yfoaan5QTg58507stp5+fDL6iRMwlVd0W9YVuIN0vpmNaD28CYqbRGONsuM0lIfVAUm4UT5xdtOrUhWNOGNdM1XrfkPl5YE2Ishu2VYrZzEaKX59JQ37D+A1tu1CXndYOXCfpdPpAxwG3gyVxcOAJJw9mA1mUv66AX20H1HzR6L20CiSXt04H9Tv3E3D/t8JOON0Qi692GHZnqK3pPPNbERaLCi+DgqGqpUbNISTJjPG2mbizkrGNzGIwPHhijeH0cFNgh5FVKxdhzYykoDFi1Dp2q9o3WXl3AGVWoPFbMDYbP9SFHsYjFZu0BBOo9eh9fMg9bVtfHXqK5Ttyif4klM7bYvYonbr71jq6wm98rI+l9fvrZXzC09CWszUlXXtiDMUFg+D6htM/PPJhM9NIOH8CUTc9QcCz3PscWHILUHl5YEuonNsayvcaeV6Qzp9sQEAi8lgTXNmWB1sVm5QxTTEnDaamNOUib+9AGlbGMurqdtyAP2UJITagf+Qm9FTya8A3zg0Ht4UHPyR4HjnL6obbBhUFs5ZmKrrKXpmFdJiIfiyhd2Wd/dcrieWTq3WERg9nqba8nbpHa3cYB9WB3fvu0DpyvU0pecTfstSdJHBnTaC+wM9IZ2+SYfF1Iyxsbb7wjYYTMPqkCOctFhoOpSNzwnJyhGYk+iLFaurpAsNVPSAK3L3OSw3mK3c4O25HZgqa8l7+E1MFTV4Tx/dLu9YWDlwjXR+PjF4e4V28h4ZSouHQbVo6A4Fj79Hc6Yi2yXNrm+c2tOUK9/1K+UpP+EVlYBXWDTeBm80Ht5odHqqCg7h6RdGaOJ0h+06s5BInhDN5KnxyA8y+OnXd6guTCUgKtnl7zDQMaQIZyxri/+sWvcb/gvbE0ET1YCpwLUL4Yp//gJpNmOsqaQm1b43R0jCtG73+RyRLnlCNP9+/gq0GjXnXjiZ0eO+I3vXlw4JZy9CfzAE2gypIVWoVVYZCENuCRaDfcms6p83UbbqM7tOjw0xFppKCzE3N9JUVoRHUDieYdGMu+dpPMNjOpX38g93elO5q+F18tR4tBo1ao2KoKAAZk2Zh6G+0uVhdTBg0Fo4eyI3HvHhGPJK8T9zJtrQAEpeWUtzViEhV52B95Qkq3Wr+Fy5Q9jS1IypooLAcxYr8RBC0JSZReFbL7Zr12/MFKpTd9NUrAgh+owYR8y5V+BbpOoU1NwT7N2djdFkVhxPTRaMzV5YzEYaa4rR+3cd0jgYdUiGlIULOHcupvIazFX1NOzLoHbLfoxFFRQ8/j7lH/1gtXiaoEAA6nfuojkzi8r1G8hZ/jCGwiJK32uLEwqafhLRZ11O5OkXUn1wJ1q/QJJufIi4869DrfOkIU7nch9rE72sr1YcOpDPy89+w+4dWbz87DcYG8IAqMpv7zA6FBYPg9bC2YP35FEEXTifis82AuAzezzBl55K+Uc/UvHZRmo2HiD8xusIOm8JJW++jdfY0TTn5NJ8VHH0zH/iaQA0IcEknn8LuoC2O4nrc9PxHzutXRr0TtSwlXQTRkXyxz+fgVatZq57u7oAACAASURBVOKUOLIyStmTGkFV/kGixp3So7YHKgashfti3ovdF7KDoItPwWviCEAJuNGGBRJ5zyVE3HYL0mCg+LWV6KKVYGqPhHii7r7TqqKpjQgn8OzFxDz0QDtile/ahDSZ8AiNtPvM3nqVTBsXi6ZlDqfRqJg8NZ7QoLHUlmVRmec4yM3entxAtnLuUk9aJoTY1/LaIoSYbJOXJYTY31LXvg+1GyFUKsJuPNf6uWr9VgC8kkYRsuxSTGVl5D36BABqHx+0oSGE33gdic89Tczy+whYtBChapsbmeprKf75S/TRiQQ5uE6pN6TbdTAXk8mMyWzGZLawd3c2cZFzQErSflnZLn51sC8euv0tSSkPSymnSCmnANOBBuDzDsUygflSyknAo8CKDvmntLRhV1HH3dCGByJa3Jbqd7dFfenHjiHi9lvxnjIJj4R49OM7K1d2ROW+rUiziagzLkal6f7CkdaXKziQXsj9t7/H2ys2cttjn7C9vgKtxovxoy4EIH3zezTVlXfTSnsMVCvnFvUk2zhUYCuKpEOfoytZfaFSEXnvpZSs+BKPhIh2e29eo0biNWpkpzr20BBjoS7rMF6RcXgEO/ZO6Q18Mxs5RD6HDuRb53W1iV6Yi9pclfaufZzg+KkExU3G3zSaxvi2264H02rVnepJrbgesBXOkMC3QggJvCql7Gj9gPbqSXFx9mMaXIH3lCQSX74bAFMP1UwmBQWzobyQuBnzXKrnyrDXcTPYVhvYb9Y8koUaU0wAtcVHKc3YQXn2blRqLYHT5hI290xUWtdXyscS7lJPai1zCgrhHrBJniulnIYihvMnIcTJ9uraqieFhoY6260+w9SISE6va6K5sZEX/nY/k+PsLxj6EkKlxm/2PIJiJhA/fSnTLvwHY0+9maDYSZSn/Ez6yqeoy1LuqRgsiwe3qCcBCCEmAa8DS6WU1gmHlLKg5WcJytxvZs+76zpcPcpqxeyYWEJb4ll3bN/OCSOdmyX0xrp1l65SqfGPSGLknMtIXngrQqUi+5NXKN36vdPPPNZwl3pSHIrQzZVSyjSbdG8hhG/re2ARcMBeGwMNW/NyOWfpUi699FIefvhvrF23vts67iCbs/ALH8nIa+7FZ0Qypb99i8VosFtuoFk5d6knPQwEAy932P4IB35tUVXaDqyTUm5wW++dQE/dknYXFXLlmk+ZcvF1+IZHs3HFfzHWdS0r0Z9ka4VKoyVo6jykyUzul+8MCj85d6kn3SClDGzdPmnd/pBSZrQoKk1uUVdySj2pFaeGpLpS3O3YXVTIu78dIHTx5VhMBgq+XWW3XF+QzZlyPvkWfEckE3bSYuqOHqSp1P6NigPJyg38f4lu0NVFvu5Aq8XwCA7Hd9QE6rPTkFJiMRmRFoVkx8KydYT/2KkA1KYfGPBWbmD3bgDBJ3400mSics8WDj3zAGUpP2GsrbJuyJZn7yFrx5puWnENzlo5rb8id1GW8jP1eRlu7YO7MeAJd6yH1VYETJqFLjCUwu8/A6AuM5XcD19l79rHKUnfSvrm9yhO+7XL+n1l3UDRDo6/+FaEWk32x/+jOb/zxuNAGVYHPOGOFToOTSq1hsjT2y7c1WsCaKxWhvPM7Z8CoNP7222rN2Rztq5PfBIjr7obKS1UvL2K+r37rcM+HLuYjo4YJpwL8IlPInKRouVWlqnIhWk9ffGPHINa64W9WwL60rJZ+9Uyj9T6BhB15iUYqsooefNtyj9Z3a7c6E8732bd3zguCOfO/27vuFHW9/6RY5l2wd8Jjp+C2diIPqD9aYS7yOZKO/6jJ6PRK7fiqLzanDx7ugHubgxowt051rkddHevVB2t9DwCQ5l63t8IiBpL3JSzsFjMZKYo87pIG2fJ/rBstmi1cjVp+zBUlhJ73rUELTm7U7ljbeUGNOEGKnR6f8YsuAF9YBRCCKRZuQuipji9z57pLIFFyy07Kp1Hn/WlNxgUhBsoK9WOqCo4xP71/7V+Dh1xAuAe65Y8IZpLr5xD8oTOVwI4gu/I8Qi1hrqjhzpZ6oEwrA4KwvUnXNk4zUr5HGNTLdETFzF+0e14eAe6jWz/fv4KrrlxAf9+/gor6bpr2yffgkqrQx87kpoj+7CY7IdJHsthdZhwvYBQa/ANTSRm4iJ8QuLdNm+zjVNtjXFwBSEzFmCsqaT0t+865R1rK3fcEM5dK9V2R1mmJsaNTmTCqEi3LhJa41RNJjMmkxLj0ApHz5kwKpIbTjmBufMXEDBhJmXbfkTstO99eqys3JAKE+wtXBlOJ4yKpDgsmIaqfOYmGGCED9kZdW7px6ED+dx/x3tMnhrP3t3Z1msybWNZpZQ0VBag1ujw9AtlbHww50zzoaLoCP+55FwMDXWseSSV/K8/JHLyndbFxLGGS1eQ9xdmzJghd+xQPJyeSz0NgB/LxnZbrztVzO6GE2cI12rhrloyE3X1IW65+WYAFi29gmrvNuVKd2+L2JLNYjaxY9VfkNK+40B4eDh3vfQ2L7+/itzP3yR07hn4XHx6uzKtFj/tor+5tZ/g+Ary42ZIdTd2Hcxl1qzZAERERBA+dn67fNsI+46R9q6iY12zobFLsgEUFxfz8v89jHfsSNSeXpRu/gZDgX3Xpf7GoLFw0L2V608LJ6Uk+9fXqasq4twb/kVmcc9uK+zOEnZFVFNzAwgwNtbSVFtGQHQyE5OiyTy4jh8//aBTeZW3nvjHHmmXpolqGLZwxxKuhNpV5u6nOPcwYeMW9ZhsYF9rxDa9K2g89Gh0erz8wwmMGY8QKrY2FlMYPRHvuLYrP0NmnQqApd7+oqm/Fw/DhOshGmuUa5j8I0Z3U9J59Gb4bQ2+Vuk8iL/4ZkJOPB2hVlN9SNG0C52zyG397A2OK8K58xA/OGEqCEHxkd/c1mZP0THSXwgV4fMWE3v+dZibGlF7eqHx6ew61TrF6E8rN6QI15fu5h0hhAApKTz4I2aT/Yip/oAjWQnfxGRGXPVntP7BFH77CXLL0X7smX24S8xGCCGeF0KktwjaTLPJO1MIcbgl78G++BL9jeIjW9jzxWPWz60OmF1hwqhIrloykwmj3BdM7ayGiUdgKHEX3ABA1sf/Q5pMbutDT+AuMZvFQFLL6ybgfwBCuR7vpZb8ccBlQojuFWS6QH8c4tfnHKFky7cYqtvuVpUWC9WHdpP5wQsc2PIaJUV7AUg66WoAyrN2UZK+lW0f3Meu1f/E0NCmNTxhVCQv/uUP3HTRXF78yx/cQjpXxXK0Pn7ELLkKAPOvae3y+ntYdYuYDbAUeEcqeyxbhRABQohIIAFIl1JmAAghPmope9DZB9459vt2WyN9CSklOWtXYmlsonTzBoJnnoIQAkP2YWqK8vENjaChvBhzkzIXLC7Zi3/yVIWMLVbO2FSLStOm99Gq/aZRqwDJtHGxHEjv+Z5YT2TBGmIs+JonoPLwpPbIfgIX9Ph/vtdwtfddidlEA7k2n/Na0rpKHzCQUmIoLqE2ZScF//4vlkZli0Oo1ZRv/4mKHRtJjAjlw48+ojAnizPveQRdkCKJWnN4D0FT5rVTVkpeeCsaXdsqs532m8nCroO59AQ9kQFriLFYt3qa4lXoJ42n5uiBTsNqf1o5py2cjZjNcnvZdtKkg3R77btVPakrdJTOL1/1GbVbFNFCta8vIcsuISRkMiqtBxZDMzedMY/bz5iLRq3CZLZw2txZZNTfTd6696k9sh+Nty8jr70fLBZ8izp/3QPphdz22CdMGxfLroO5PbJuPbVqHeE9ZTJ1KTtpPHwE/fhjcweEK0OqIzGbPCDW5nMMUADoukjvhBYZrxWgnDS40K8eozZlJ7VbtuJz4iy8J07AM2kUKp0WdcuJg9rDkx0Z+RjNyiXARrOZlKN5qLQ6Ypdeg6m+Bm3rdoNaDdjfOD6QXtjjYdRdZAPwGjsaodXSmNY14UZ/+mifnD60whXCdSlmA6wFbmuZo80CqqWUhUKIUiBJCJEI5KMMyZf3psPdoSuRwo4o/3wtNT//gkdCPMEXnodKa1/dcm9OITes+IwTRsaQcjSPvTkKcYQQbWRrQXcC063kcTZa351kA5gSEUm+SkWYXk/He7RNBfp+CSV0inA2YjY326TdAorGCLAeOAtIR1nFXtuSZxJC3AZ8A6iBN6WUjlWS+wk1P/8CQPiN13ZJtlbszSm0Es0d6I547iYaKOKKfLoGY3Mz/7zyaj5TWdhd1P8H+u4Ss5FSyj9JKUdKKSdKKXfYlFsvpRzdkueSmI09uGNrpDUy3W/+Sah9fHrdni26Iou9dHsLgb4gm7mhkf3/fY41n3/OPffcwwUXnM/smNhO5fpj8TAwvPL6Ec2ZhRQ+9yYqb298T5xlt4y9S976Er1RQO+ObNJiofSd92hKS+etd95h2bLLMZotbDqSRs2vW6j44it0UZF4xMeh9vFGHQL1u9LYM+pcJk6ciNrNt2kfN4SzNBspe/cban7ajcrLi8g7/ojQaqnffwBjUQlIif/ppzp9b5Yr6O09DvbgjGeLlJKq736g8dBhgi86n7Ueakq2bmFT2mE2PPAXjCWlADRnZWMoLEIaDNDirjZ16lQCAgKYN28eF110EcuWLUPjBq/h44Jw0myh6LlPqU85hPfMZFQeWkreeg9DXr71FwzgPWMq2qCgXj/PdvFwrMgGULdjF1XrvwHAIy6W3UWF7C4qpPqnjRhLSgm/6fp2q1VTVRX1u/ag8jWgDvBhSXMwP/74I9dccw2PPfYYK1euZM6cru+qcAZD6vC+FbaH+FJKSt74ivqUQ4ReexYqTx21m/Yh1Gr8F55C2LVXAqCfPLEd2Ww3TQcSXOmT2scbtb8/Ki9PCp59kaYs5YCo4WAq2sjIdmTTRDXgOU6H/6kLCFw6D7/5U/h5USxHjhxhzZo1mEwm5s+fz7PPPmv3FkZnMeQtXOPvmdR8p6xhKlZvxFxdj1dyPBG33K7kH1YuDtH2gXK6u62bq/8A+uSxxD3yN8z19eT/+xkKn3nBmue/aKHdOh23RoQQLF26lPnz53Pttdfy5z//mV9//ZU333wTPz8/l7/DoLRwrqxULY2K65A2OgRdVAjCU4f/4tnWfG1YKAhBY9oRGg+ntZO4Atf/yK1wJ9l6a23V3t6EXbUMj5GJ1rSARa6dTwcEBLB69Wqeeuop1qxZwznnnIPF4nqfBnxMA2D38N6V+AZLswGVR/sLNGyPt6p/3mS9QzXmoQcUEtrgWMqYuntYN1VWYSwpxWtMUqc8exu/U4KiWXXqde3S3njjDW644QY2bNjAGWec0anOcR/T0JFsnWBR9t31kyZ0Ihu4/4/uLPriuZrAALtks4cpQdG8ffKVndIvvvhihBBs3brV5ecfF4Szh9b/ZmmxUPXdj3iOTiLs2quOca8UDJQFy6zQBLSqzvtwvr6+jB8/nm3btrnc5qAgnLM6cT2HxFxVRc0vm2nKyOzjZznGsSRaxzDKbaVZGC0dT10VTJ8+nT179tjNc4RBQbiewNn4BqFSEXDG6RhLSqn4/Auqvv3Bbrn+IMJAsGq22FORz9W/vGs3z9/fn7o616Uthvy2iDPQxbT4hKpUhFx8Yb8+e3JcJCeMjGFTbU6PDtO7WtD0hLz2Fg17KvLtlg0NDaW2tpbCwkIiI513mx+0hDs1JNUpvRFnYMhTfqmx//grGv+u95bcfcY6OS6S12++EK1azc3mWVzx+SftSNefq2NXXZNycnLQ6/Uu78UN2SHVFRgKClH5eDskW19gyrRotGo1GpUKrUrNSb5x6PNU1ld/oTuydfQesVgsrFu3jrPOOgtvb2+XnnXcE87c0Ej9nn14jXYugt5d86yGGAtb83Ixms2YLGaMFsWb2F1wlrA9cbrctWsXBQUFLFmyxOW6g3ZIdQfUkfWU/PsLpMGA/8IF/fbcVtLuLirkis8/YXZMLFvzcjmc03+B3NBzJYKnnnoKT09PzjrrLNef2aMnDhI4cje3NDZT8tpX1O/YS8CZi/CeGQg09LkkaUcL2erBAUCMe+dt+jxVlxa5p2QrKSlh1apVLF++nOCWC4xdwZAmXFeo35VG0bOfYGlsJvjShQReMNel+j1dPPT3toe7yQZQVVUFwPjx43tUf1ATztmVqpSS+h2HMRSU0rgvg4Z9R/FIiCDkmsXoxye2K9sxjNBZtG5v2Aba2MJZsrlrJdwXZAMoLFS+W0BAQI/qD2rCOQOL0UTGNY8jDS0S8kLgv3gWIZefjsqzmzNWB7AlxuS4SF6/SdneMJrN3LDis3akG2gbur3BunXrUKvVzJs3r0f1hyThjLXNaLx1NBTWUPCvdUiDEeGpI+7JW9AE+6PycByl5SpOGBmjbG+oVdbPe3MKe0w0Z61cV1bVXdbN1sumurqa2bNnk5qayoIFC/D3t39zYndwNkwwAHgdmIASOX+dlPI3m/z7gGU2bSYDoVLKCiFEFlALmAFTV24r7sKuR78j79v2gi2BS+cRcoXzgnyuDqspR/M6BUv3tVXryqq6i2yNh7LJe/gNhFZDwgt38cQTT5CamsqVV17Jk08+2eN+O2vhngM2SCkvapF8aPfXkFI+BTwFIIQ4F/izlLLCpsgpUsqyHvfSCUgpKd6STeEvyo3IAclhVB8pI/CC+QRdOL+b2j1DqyXqGCz9m8X+cVBP2u4K9qxqV891lWzG0ipKXl0LgDSayLzlaZ4Arr76at566y2X2urUl+4KCCH8gJOBawCklAbAkQKfowj9PkF1ehl7//0TVYdK0PjomPnEWUTMbVsMHCpyfRLuqpVrDZbur/laR6u6qTbHbrmeLBKCivaTlV/aLm3hwoW8+uqrrne0A5z5S4wASoGVQojdQojXhRB2zzNaIvTPBD6zSZbAt0KInS2CNXYhhLhJCLFDCLGjtLS0q2J2kfX5fqoOKZq7QeMjCJvVd2I4juBusjlqr9WqPrNtM1es+cTuwX9PyDYmuICIkxJZ+PGV+I5o22dbt24dHh69v6HQGcJpgGnA/6SUU4F6oCsly3OBzR2G07lSymkoYjh/EkKcbK+ilHKFlHKGlHJGqJ2Alq584k4NScU7tm2JXrIth9KUNkksU5P9C86cgTN/sFZnyb6ybLbtd3z9Zsnnfzu2u4VsyRHFjA7MZ/Mda1h/+go8g/WETm9TVnMH2cA5wuUBeVLKVvfOT1EIaA+d9OOklAUtP0tQlDNn9qyrXWPUpVNZsulPzHxCuZC2NrOCgp/SWXvSS6w/fQXG4jb+m6rryfvnStKXPUpzVpG7u9IOhoJCCp5/CUNh3z6nI1whW3JEsdV3cOcj31F5QOnrdxe9Q8an+/AM8WbB25e6r2/dFZBSFgkhcoUQY6SUh1FUMDspWAoh/IH5wBU2ad6ASkpZ2/J+EfBIx7ruwO8vbeboR4oHanNlI1lr2zRzVHpPCv+7isbfMzHX1FvTi15cTfzTf3TYbk83gmu3p1D2/scANGXvRhe52OU2egJnydZKsubKBjbfvoa67EprXtSpozDVG/AfE8qoy6ai9XHfZb/OrlJvB95vWaFmANd2UE8COB/4VkpZb1MvHPi8RT5BA3wgpdzglp53gErX5nvfSjwABFSs/oW63w7gPWMsKi8PDLnFNGcVYcguIv//3kYXF4Ha25PApfMQmt5radRs2Ur5x4oEq35qEoFL5mEu6XWz3cJVsgHU5VS1IxtA2Ox44ha7x9ewI5winJRyD9Bx/+yVDmXeAt7qkJYBTO5595xH8o2zkWZJ+vu72qWrdRqqvtqCytuLyHsvRahVjA0v4si7O0l9bRsNe4/SsFeRk/cYFY2pogZMFvxOnYpoEXJxxcpVfPU11d8pbuqBF5xMyGWnudyGK3B1+OyI4MlRzH/zYqrTyxFCsPtf36PS9p3X2pA6aRh3y4nEnjmGjdevwmJQtgwiTkpE6+uB5cSTEGpVyy9dED4ngdTX2kcdFfzfO9b3xpJKQpa1v4HPHsz1DQidFqSk+vufrGQLiYtmwR+vYm9lm+Bnfwj+2UN38R3+SaH4J4Wy5S4lNtfc1HfS+kOCcLaH+L4JQZy26kryvk3DO9qfyJNHAEpgtO0vvrnS/qVqwZctxFBQTuWaTfjNn4IuRlkx21qoqRGRzI6J5dvffuPHRx9TjoA8PbE0tBHq5w3fMSJpFFf/8m6XcQF9hSlB0cwKTWBbaRbNul12yzSW1lFztJyyXflIiwVTnYHyPfn4jggi+jTn4lZ7giFBuI7wDPZm1GVT26V1/C8PnRHDpHvnk/7+bsye3niNS0AbFoj/GSdgqqyjduMeil74jOiHr0Ht7WmtNzUikvfO/wPvv/MOm//2DyyNTXiNT0QaTRgKJJa6Rh76618Zn5yMyWJmVmhCvxKuNXhZp1ZhsszjbwcqOVzbPvTxwIu/kvHx3nZpKp2auLOTGXfrHDSe7j1rtsWQJJwzEEKQsHQCCUsndHLS1Ib4o5+aRMPuI+Tc+xLRf70aXXQImqgGZkfF8stPP3HjDTcwZ+4cFv7zTt7L3Enug6+ClCRdcBr3PvhAi9u4hW2lWf3yfVr/oc6JmYxOrUIt1EgBE/yT2hGu8JeMTmQDmPnE2YSd0FkV0904bglnC3uewVH3X07dtoOUvrGO/Effwmt8Imp/H1Z67SPva0Vz7elnnuHer98h++mVyGYjMY9eDyOiuGnbKuuQ1pfWzd7c7ED1EUwWM1KAWZo5UH2kXb53tD8BY8OIXpjE7y9ttqZnf3HASjgpJfW5VTQU1dJc0YBvnSf3fH4P8+bN4/zzz+9VnweFmE0rHN1I09uQwa5c0Rt+z6T8w+8xVdRirqpDGk14R4Uxae4som9eymeLb0EaTUQ9uAzv6WPsttHTS+fs9cmZtsb4JjLBP4kD1Uc6DaetMDUa2XTTJ9RmtW2J6CP98ArzobGklobC2k51AgMDqaio6JTeEY7EbIYtXAu6in/Qj09E/383Asp/vmwyIDx1lAlB5rpvkUYT/mfOsku23t5u2NP6h2szuyRaKzReWk55V7nBoD6/muwvD9JYUktjcR2+I4JJumI6PglBLB2/CP3vJm77021MmTKlR/1p99xetzCEYDGaaD6aj6mqDkNuCZ4jo9HFhKLy8kDtq0cIgfDqvOvuO29iu8/9eY2mO+Ad7c+4W060m1fqW8fCkRMAuPXWW3v9rCFDuJ5E4pubTRx5dyfFW7JoKq+nuaoJLPanGNrIYPxPm442MhhDTjFNGYXUbz8EgDS1Cb4MNrI5whfzXgSgaYxy/1hqau+vLBgyhOsJDr26lYxP9qLSqYk9YwweQXpqw0ejCfJFGx5Ec0YBxtIqzHUN1O9Mo+zdb611tdEh1vceccpQ3N9kc6fcRUe0kg0gKysLgCA3CG4PKsK5+yrLpnLl2PfkFX/Ab2Sb71frXE4/aaQ1LXDJPJozFDcgbVgAal9lE1gaTQitpt/I1lFu1p78bE9IaEveVrKlpqbywgsv8O677+Lt7d3rFSoMMsK5G6EzYin4MZ2mioZ2hOuSPJGtB/u1La/eoa8uHO7YbkcCdvXcVqKtXbuWu+++m6NHlTPmSy65hHvvvZeoqKhe9+24IFzrL/ir36M59OpWVGoVAePCOPLeLjxDvfEb0fuhoif9GUjPa3Vw3b59O+effz6TJk3iL3/5C7feeisxMTFu68uQJ5ztLzs0LYXvv1MiunI3pKL19WDO8+fhGeyaAlBv+zHQcOfY72lubkan03HfffcRGRnJzz//3ONQQEcYUoSznYfY+wNX5DeBSrD4q+tpLK3DK8zHrc6FXfXJFfz6YR71lUZOvyUBlcq91zBFeCYTo59CXsMeipoOcefY75FS8tBDD/Hkk08SFxdHZmYmCxcu7BOywRAjXCu6+iPnp9YSnuiF1tcDre/AIlorPn3kMABfv5DBI7/MIy54PBRH0OCVTUnTEfzDPXp0H1iEZzIXxD2FWmgxSyOGRjObNm3izTff5K233mLp0qU0NzeTk5PDpEmTetR3ZzDkCOfoDy0QqNR9L4nXm+HziR3zeXDGRgAePvlX4NfOZVLm4+mjwWKWFKTVYWwyYzFLjmyr5OAv5Qhg9IlBTF4URnSyD0IIYvRTUAst69d9zd///nf27t2L2WxGrVbzwAMP8Pjjj/fJxXYdMeQI1xWa6kyUZjWg06s77V8NlPlVSWYD37+e1W251/64Fw8vNdn7a6ivbItKEwLCR3gjkXz/WhbfvZpFbGwsc+bMIeGyEF7O/R933HEHo0ePZvny5cyaNYtZs2ZhL0qur3BcEE5Kycq79lOS1cA1zyjHNL0lmZSS9JQqSjLqOfBjGSqNYPKiMCYuDMXLt+tf69qn0/nxjWxOuS6OploTCEjfVoneX0tFQRO1ZUqM+UlXxHDNfYv5/V0fnnvmeR78ywOU+23jlft+4GiKIpk1/Zxwkk8OwSdIy/mxTzJu3DjrirKsrIwvvviCb775hrVr1/Lxx0pAz7x58/jqq6/6bI7WHQaVtwg49hixB2OzmZV37ufgxnKW3DuKU6+Pd7k/1SXNbHwnl0W3JlCe28j65zLI3F1FQ7Xiih0a74XJIKksbEKjU7H49hGcen1cpyHKZLBw7+Sf2qV5+mqIHuuDxSwpTKvjgofGcMLSCGvdjhP9zN1VZK+K5YorruDCC51TXK+vr2fr1q3k5uZy/vnn9znZjmtvkd9/KuPgxnJmLInglOt6FpGfuauKH9/I5sc3svH01SAEjJkTRNwEP0ZMDyBukh9CQPa+Gn58I5sv/5NO5p4qAiM82fFlEZFJ3kSM8iEw0pOz7xrJumeVDdUL/zqak5Y5dnosajrEJQlttwAyFkVMwwV4e3uzcKH92wP7G+5ST1oAfAG0+sSsllI+0pJ3JooYjhp4XUr5hNt67wDb1xTy89s5VBU24Req4+J/jO3xpDg0oS3aKiDcg6v/O4HIJJ9O5RIm+3PtH3pWHgAAB5VJREFUcxP55d1cPn+8zfHR0qRj77cl7eZbAJNOD+vURt/funNs4Rb1pBZsklKeY5sghFADLwGno0Twpwgh1kopOwVSuxPfvJzJ1y9kWD/f+cEMdF7dx5ue5dPWrfV146zvf3hdsWx3fTiD8BF6h8QVQjD/qjhGJiTx9M3rAUjbl8PqnPs4kreHlC+KqKs0kjjVn4dP3tSTrzeo0RfqSbaYCaS3xKcihPgIWIqdyH13YvtnbVHH/uEeJE5tP2exJVZjozKH9fISXZZ5fGcpJ8/Tcd3kbKf74H3+Laz9Tzq33HILaqFRhsUEoGfCkUMGzlg4W/WkycBO4M4OEfYAJwoh9gIFwL1Syt+BaCDXpkweMMveQ1qUlW4CiIvrufqRJT+C8oI6/vnPf3DZZRdRWn0HoT72+Z2TZeK0k0rx8RXsOhhht8zmTc0UF1nIPOp8rGZSjBKLevjww65/gSEOd6kn7QLipZSTgReANS3p9sYeu8vi7tSTnMHWTwu4+7T38fHx4YILLmTUqNGMTuo8WTY0S77b0MRpJymyYHW1EkzX4amb3qlsWqoy78rKtE+4pJiCTq9hdA1nLJw99aR2hJNS1ti8Xy+EeFkIEdJS13YZFoNiAXuMrnzijM1mNn2gGNP9+3cSH5+IlCbKKjbxyku1HEkzsfRCL3JzzLz1Wj15ue2vZbzxmk28+OIzmNXL0fvuB8BikWz/TZk9XHSJfphMboBb1JOEEBFAsZRSCiFmoljOcqAKSBJCJAL5KHJel7v7S5iNFtbf+xsFqc3c9xdf1Pp7KK85kcbm33j15V957j/KNYvrv1RcpceO0/DsywH8fsDIay8rM4ONG39h4sTpREb58cpKHcnjtKz9+G5++O5+AJ5+8oj9hw/DJTi18SuEmIKyLWJVTwIuAUU9SQhxG3ArYAIagbullFta6p4FPIuyLfKmlPJf3T3P0cYvKJu/UkrKchopyWhgxxsH2b3TyCOP+3HpFW2uRjtTDFx2QTkBgYKnngvA319FaJiKqGi1daVZXDCWCaM/5JZb7kQIwcaNGzGbzbz99tvcc889aLVadu/e3S/njEMFjjZ+ldC3AfaaPn26dITb35km4yf7SZT5oATkI0/4y7TcSPnb7jC5+BxPGRunliqVknftjd4yLTfS+nKEffv2tWv37LPPdlh+GJ0B7JBd/G0H3UnD8uXLeeGJXYSE6Bg1WkNdrYU33wti1GhFD+PD9xr4+itl6LzoEi/++9RhoqOjUamc8xKZOHEiBw4cYNWqVcTFxbnFj38YNuiKicfy5cjC6XQ6GRISIq+66goJSJUKOWOmTn7wWbCsqamxWqZp06ZJs9nc23/WYfQAOLBwg+q+VCklBoOBsrIyPvjgI8aOHctf//owxYXhXH9FA/v27bOW/fbbb522asPoR3TFxGP5cmThHnjgARkcHCznz58vd+/eLaWUMjc3V2q1WqnX6yUgExISZHNzc2/+SYfRC+DAwh1zctl7dbdosIezzz5bAnLmzJkyJSXF5frDcB8cEW7IjDkrV67krrvu4uOPP2bGjD69zmsYvcCgW6V2hdDQUJ555plj3Y1hdIMhY+GGMTgwTLhh/H875/NSVRDF8c8XJVtVaptoURptXAVF1C4K1NxY0MJVUruifyDc+A+0iSApCKpNVqsIQoxqF1mL/LExn7QxXBRWtAqC0+KeV7fHUyx17n15PjAw78ycYWbel7kz3DsnKSG4ICkhuCApIbggKSG4ICkhuCApIbggKaW8eS/pI7D6K1J/z07g0wa2XyaKGOseM6t7MaWUgttoJL2x5b5I/c8o21jjkRokJQQXJGWzCu5G0R1ISKnGuin3cEFxbNYVLiiIEFyQlIYVnKRhSR8kvfXUlyu7LKkiaVZST85+UNK0l12V326W1CJp1O2vJO3N+QxKmvM0mLN3eN05992SZuSrR1Kvz0FFUm08mGJY7tvzsidgmCxKU629C5gEWoAOYB5o8rIJ4ChZkJ0nwEm3XwRGPD8AjHq+jSzSQBvQ6vlWL7sPDHh+BLhQ9JzUzEOTj72TLGLCJNBVdL8adoVbgX7gnpl9N7P3QAU4LGkXsM3MXlr2j9wBTuV8bnv+IXDCV78eYNzMlszsMzAO9HrZca+L+1bbKgu/YvNZFtOvGpuvUBpdcJckTUm6JanVbfVi0u32tFDH/oePmf0AvgLtK7TVDnzxurVtlYXl+l4opRacpKeSZuqkfuA6sA84ACwCV6pudZqyFez/4rPquHcFUso+lvrWlpmtKka+pJvAY/+5XEy6Bc/X2vM+C5Kage3AktuP1fi8IHsZvkNSs69ya457twGse2y+9aDUK9xK+J6symlgxvOPgAE/eXYA+4EJM1sEvkk64nuws2SR16s+1RPoGeCZ7/PGgG5Jrf7I7gbGvOy518V9q22Vhdd4bD4/QQ+QjbNYij61rOEUdheYBqbIJnJXrmyI7IQ2i59E3X6ITJjzwDV+v2nZCjwgO2BMAJ05n/NurwDncvZOr1tx35ai56TOHPUB73y8Q0X3x8zi1VaQloZ9pAaNSQguSEoILkhKCC5ISgguSEoILkhKCC5Iyk/jxQq/5JK0ZgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "gb_boundary = [(-2.6653539699999556, 51.617254950000074), (-2.6937556629999335, 51.59617747600004), (-2.71312415299991, 51.58661530200004), (-2.760487433999913, 51.579779364000046), (-2.7980850899999155, 51.56350332200009), (-2.816395636999914, 51.555568752000056), (-2.8587133449999556, 51.546128648000035), (-2.943348761999914, 51.54254791900007), (-2.9562882149999155, 51.54572174700007), (-2.9641007149999155, 51.552801825000074), (-2.969471808999913, 51.559881903000075), (-2.9746801419999542, 51.56297435100004), (-2.984038865999935, 51.55853913000004), (-3.0102432929999168, 51.53803131700005), (-3.0156957669999542, 51.53164297100005), (-3.0737198559999115, 51.50836823100008), (-3.0764867829999503, 51.50775788000004), (-3.088937954999949, 51.505072333000044), (-3.105620897999927, 51.49721914300005), (-3.1317032539999445, 51.48041413000004), (-3.1350805329999503, 51.47630442900004), (-3.1409399079999503, 51.46478913000004), (-3.1453751289999445, 51.45994700700004), (-3.1524145169999542, 51.45718008000006), (-3.1666560539999296, 51.45600006700005), (-3.1723933579999084, 51.45327383000006), (-3.1727188789999445, 51.453111070000034), (-3.160064256999931, 51.43183014500005), (-3.167144334999932, 51.41046784100007), (-3.1848038399999155, 51.39760976800005), (-3.204009568999936, 51.401597398000035), (-3.218861456999946, 51.402777411000045), (-3.289418097999942, 51.38422272300005), (-3.539173956999946, 51.398504950000074), (-3.557443813999953, 51.40509674700007), (-3.5753067699999406, 51.420436916000085), (-3.6047257149999155, 51.44570547100005), (-3.6631973949999406, 51.476223049000055), (-3.6769913399999155, 51.47703685100004), (-3.695423956999946, 51.47150299700007), (-3.717925584999932, 51.478583075000074), (-3.7376195949999556, 51.49087148600006), (-3.748036261999914, 51.50092194200005), (-3.7494197259999282, 51.50535716400009), (-3.747670050999943, 51.507025458000044), (-3.7445369129999335, 51.50763580900008), (-3.741851365999935, 51.50836823100008), (-3.7493383449999556, 51.52806224200003), (-3.7519018219999225, 51.53306712400007), (-3.758941209999932, 51.54677969000005), (-3.770130988999938, 51.56329987200007), (-3.782215949999909, 51.57664622600004), (-3.7902725899999155, 51.58197663000004), (-3.8077286449999406, 51.589178778000075), (-3.8169652989999463, 51.59650299700007), (-3.8326716789999296, 51.61554596600007), (-3.8416235019999476, 51.621527411000045), (-3.8548884759999282, 51.62384674700007), (-3.8867895169999542, 51.62140534100007), (-3.9623917309999115, 51.61562734600005), (-3.9766332669999542, 51.61188385600008), (-3.989979620999918, 51.60651276200008), (-3.998768683999913, 51.60028717700004), (-3.999908006999931, 51.59088776200008), (-3.9922582669999542, 51.58112213700008), (-3.9818009109999366, 51.571600653000075), (-3.974598761999914, 51.56297435100004), (-4.016184048999946, 51.56297435100004), (-4.016102667999917, 51.56037018400008), (-4.0208227199999556, 51.555853583000044), (-4.026519334999932, 51.554022528000075), (-4.029204881999931, 51.55927155200004), (-4.031971808999913, 51.56313711100006), (-4.0385636059999115, 51.56622955900008), (-4.046457485999952, 51.568426825000074), (-4.0531306629999335, 51.569240627000056), (-4.056304490999935, 51.56704336100006), (-4.065581834999932, 51.55756256700005), (-4.070220506999931, 51.555568752000056), (-4.0768123039999296, 51.55695221600007), (-4.087269660999937, 51.56191640800006), (-4.112131313999953, 51.565619208000044), (-4.121652798999946, 51.56598541900007), (-4.132191535999937, 51.56297435100004), (-4.142730272999927, 51.55695221600007), (-4.156809048999946, 51.54629140800006), (-4.1664119129999335, 51.54254791900007), (-4.176503058999913, 51.544256903000075), (-4.18773352799991, 51.54877350500004), (-4.1967667309999115, 51.54938385600008), (-4.200550910999937, 51.538763739000046), (-4.213368292999917, 51.539129950000074), (-4.272450324999909, 51.554754950000074), (-4.2899063789999445, 51.555568752000056), (-4.293324347999942, 51.55914948100008), (-4.29515540299991, 51.56195709800005), (-4.297352667999917, 51.569240627000056), (-4.278309699999909, 51.578192450000074), (-4.280832485999952, 51.58881256700005), (-4.2897029289999296, 51.601548570000034), (-4.2899063789999445, 51.61701080900008), (-4.255767381999931, 51.62384674700007), (-4.252023891999954, 51.62710195500006), (-4.241281704999949, 51.63934967700004), (-4.234730597999942, 51.644964911000045), (-4.228505011999914, 51.63743724200003), (-4.234730597999942, 51.63743724200003), (-4.234730597999942, 51.631293036000045), (-4.2278539699999556, 51.628119208000044), (-4.22101803299995, 51.62384674700007), (-4.1900935539999296, 51.63027578300006), (-4.139027472999942, 51.63231028900009), (-4.0912979809999115, 51.639878648000035), (-4.070220506999931, 51.66229889500005), (-4.0698136059999115, 51.66893138200004), (-4.070383266999954, 51.67430247600004), (-4.07054602799991, 51.67597077000005), (-4.0754288399999155, 51.677801825000074), (-4.087269660999937, 51.668850002000056), (-4.095448370999918, 51.66510651200008), (-4.106841600999928, 51.66425202000005), (-4.146351691999939, 51.66705963700008), (-4.200550910999937, 51.68585846600007), (-4.214955206999946, 51.679673570000034), (-4.293690558999913, 51.67226797100005), (-4.3152970039999445, 51.67747630400004), (-4.342355923999946, 51.69086334800005), (-4.3664444649999155, 51.70848216400009), (-4.379261847999942, 51.72687409100007), (-4.338042772999927, 51.72333405200004), (-4.319976365999935, 51.72483958500004), (-4.310454881999931, 51.733710028000075), (-4.328724738999938, 51.73297760600008), (-4.3471573559999115, 51.73578522300005), (-4.3625382149999155, 51.74286530200004), (-4.371815558999913, 51.754787502000056), (-4.368763800999943, 51.75698476800005), (-4.362904425999943, 51.76386139500005), (-4.358021613999938, 51.773138739000046), (-4.358225063999953, 51.782131252000056), (-4.365101691999939, 51.789048570000034), (-4.3714900379999335, 51.78595612200007), (-4.379261847999942, 51.77529531500005), (-4.384917772999927, 51.77187734600005), (-4.3929744129999335, 51.763739325000074), (-4.399159308999913, 51.76162344000005), (-4.409331834999932, 51.76316966400009), (-4.417876756999931, 51.76788971600007), (-4.426503058999913, 51.77529531500005), (-4.445790167999917, 51.77326080900008), (-4.449330206999946, 51.76630280200004), (-4.441395636999914, 51.75678131700005), (-4.426503058999913, 51.747300523000035), (-4.460764126999948, 51.73578522300005), (-4.4988907539999445, 51.73484935100004), (-4.574208136999914, 51.74115631700005), (-4.603423631999931, 51.73924388200004), (-4.639230923999946, 51.73318105700008), (-4.6453751289999445, 51.732123114000046), (-4.678212042999917, 51.71743398600006), (-4.680287238999938, 51.692694403000075), (-4.689442511999914, 51.69159577000005), (-4.69163977799991, 51.689886786000045), (-4.69163977799991, 51.685980536000045), (-4.693959113999938, 51.67841217700004), (-4.712310350999928, 51.650091864000046), (-4.721424933999913, 51.652044989000046), (-4.734934048999946, 51.65924713700008), (-4.741851365999935, 51.65607330900008), (-4.759185350999928, 51.644964911000045), (-4.8482966789999296, 51.64630768400008), (-4.86351477799991, 51.64411041900007), (-4.878977016999954, 51.63743724200003), (-4.887806769999941, 51.62995026200008), (-4.8957413399999155, 51.621079820000034), (-4.904774542999917, 51.61383698100008), (-4.923695441999939, 51.608628648000035), (-4.931996222999942, 51.59902578300006), (-4.941029425999943, 51.59650299700007), (-4.946034308999913, 51.59760163000004), (-4.956450975999928, 51.602769273000035), (-5.021595831999946, 51.61603424700007), (-5.0457657539999445, 51.62689850500004), (-5.0366104809999115, 51.63743724200003), (-5.0511775379999335, 51.65692780200004), (-5.100493943999936, 51.66469961100006), (-5.119740363999938, 51.67841217700004), (-5.113433397999927, 51.68528880400004), (-5.0366104809999115, 51.67841217700004), (-5.038726365999935, 51.68183014500005), (-5.04133053299995, 51.68939850500004), (-5.043446417999917, 51.692694403000075), (-5.028675910999937, 51.69293854400007), (-5.002552863999938, 51.68740469000005), (-4.988189256999931, 51.68585846600007), (-4.974598761999914, 51.687933661000045), (-4.941029425999943, 51.70014069200005), (-4.892648891999954, 51.706366278000075), (-4.868275519999941, 51.716782945000034), (-4.8580623039999296, 51.71832916900007), (-4.844838019999941, 51.71381256700005), (-4.844838019999941, 51.720038153000075), (-4.873402472999942, 51.73773834800005), (-4.879017706999946, 51.76203034100007), (-4.8625382149999155, 51.78237539300005), (-4.824330206999946, 51.788275458000044), (-4.824330206999946, 51.79572174700007), (-4.836008266999954, 51.790716864000046), (-4.864979620999918, 51.783270575000074), (-4.921294725999928, 51.78001536700003), (-4.933583136999914, 51.77529531500005), (-4.9172257149999155, 51.77533600500004), (-4.905181443999936, 51.771185614000046), (-4.900542772999927, 51.76211172100005), (-4.906239386999914, 51.747300523000035), (-4.8920792309999115, 51.73940664300005), (-4.895659959999932, 51.728176174000055), (-4.9105525379999335, 51.71820709800005), (-4.988189256999931, 51.70685455900008), (-5.009917772999927, 51.706366278000075), (-5.149240688999953, 51.718085028000075), (-5.166900193999936, 51.71381256700005), (-5.156971808999913, 51.69757721600007), (-5.1686091789999296, 51.68891022300005), (-5.1828507149999155, 51.68927643400008), (-5.180653449999909, 51.70014069200005), (-5.180653449999909, 51.706366278000075), (-5.230132615999935, 51.73004791900007), (-5.2495011059999115, 51.733710028000075), (-5.228138800999943, 51.73395416900007), (-5.213937954999949, 51.73574453300006), (-5.202870245999918, 51.74079010600008), (-5.191151495999918, 51.75104401200008), (-5.176828579999949, 51.75967031500005), (-5.1432185539999296, 51.76386139500005), (-5.125965949999909, 51.76850006700005), (-5.110259568999936, 51.778509833000044), (-5.107085740999935, 51.78807200700004), (-5.112294074999909, 51.81317780200004), (-5.113392706999946, 51.82880280200004), (-5.11750240799995, 51.84369538000004), (-5.125884568999936, 51.85602448100008), (-5.139637824999909, 51.86399974200003), (-5.146473761999914, 51.85716380400004), (-5.16437740799995, 51.86676666900007), (-5.2037654289999296, 51.87018463700008), (-5.221587693999936, 51.87767161700003), (-5.2358292309999115, 51.87103913000004), (-5.2914119129999335, 51.86399974200003), (-5.3109431629999335, 51.86399974200003), (-5.304269985999952, 51.867621161000045), (-5.297352667999917, 51.87018463700008), (-5.297352667999917, 51.87767161700003), (-5.300689256999931, 51.882025458000044), (-5.302561001999948, 51.88523997600004), (-5.300160285999937, 51.888332424000055), (-5.2905167309999115, 51.89199453300006), (-5.2905167309999115, 51.898138739000046), (-5.2983292309999115, 51.91095612200007), (-5.288929816999939, 51.91693756700005), (-5.252837693999936, 51.91864655200004), (-5.234201626999948, 51.923041083000044), (-5.204172329999949, 51.942287502000056), (-5.191151495999918, 51.946600653000075), (-5.16038977799991, 51.94944896000004), (-5.1195369129999335, 51.95892975500004), (-5.088042772999927, 51.97601959800005), (-5.085031704999949, 52.00185781500005), (-5.070790167999917, 52.00185781500005), (-5.070790167999917, 52.00804271000004), (-5.082753058999913, 52.01447174700007), (-5.081206834999932, 52.021185614000046), (-5.070220506999931, 52.02635325700004), (-5.053700324999909, 52.028509833000044), (-5.0266007149999155, 52.027411200000074), (-5.015044725999928, 52.02533600500004), (-4.961740688999953, 52.007513739000046), (-4.942534959999932, 52.007473049000055), (-4.913685675999943, 52.014837958000044), (-4.920521613999938, 52.028509833000044), (-4.9016007149999155, 52.02643463700008), (-4.863189256999931, 52.01699453300006), (-4.841420050999943, 52.014837958000044), (-4.83226477799991, 52.01898834800005), (-4.833851691999939, 52.02875397300005), (-4.8382869129999335, 52.04010651200008), (-4.838002081999946, 52.04901764500005), (-4.83039303299995, 52.05292389500005), (-4.796986456999946, 52.05646393400008), (-4.77757727799991, 52.064886786000045), (-4.7631729809999115, 52.075873114000046), (-4.7386775379999335, 52.100816148000035), (-4.720285610999952, 52.113348700000074), (-4.7065323559999115, 52.11347077000005), (-4.673451300999943, 52.09739817900004), (-4.675689256999931, 52.126939195000034), (-4.637521938999953, 52.13849518400008), (-4.513824022999927, 52.13568756700005), (-4.50226803299995, 52.138373114000046), (-4.495757615999935, 52.14350006700005), (-4.490956183999913, 52.150376695000034), (-4.484283006999931, 52.156317450000074), (-4.454701300999943, 52.16205475500004), (-4.4348038399999155, 52.170355536000045), (-4.415394660999937, 52.18154531500005), (-4.385568813999953, 52.20343659100007), (-4.371245897999927, 52.20929596600007), (-4.3547257149999155, 52.212103583000044), (-4.334339972999942, 52.21283600500004), (-4.315825975999928, 52.21629466400003), (-4.197132941999939, 52.279282945000034), (-4.1390681629999335, 52.33022695500006), (-4.10960852799991, 52.365301825000074), (-4.096262173999946, 52.387884833000044), (-4.0873917309999115, 52.430121161000045), (-4.0789688789999445, 52.45302969000005), (-4.067941860999952, 52.47361888200004), (-4.056548631999931, 52.48786041900007), (-4.0618383449999556, 52.49705638200004), (-4.064035610999952, 52.50918203300006), (-4.062570766999954, 52.52098216400003), (-4.056548631999931, 52.52944570500006), (-4.048491990999935, 52.530462958000044), (-4.0266007149999155, 52.52338288000004), (-4.016184048999946, 52.52195872600004), (-3.998768683999913, 52.52594635600008), (-3.9473363919999542, 52.549261786000045), (-3.9473363919999542, 52.556708075000074), (-3.9744766919999392, 52.55654531500005), (-4.025868292999917, 52.545355536000045), (-4.0531306629999335, 52.54242584800005), (-4.068470831999946, 52.550116278000075), (-4.1141251289999445, 52.58860911700003), (-4.125477667999917, 52.60390859600005), (-4.122222459999932, 52.62872955900008), (-4.105946417999917, 52.653509833000044), (-4.0848282539999445, 52.67267487200007), (-4.067128058999913, 52.68024323100008), (-4.063547329999949, 52.68309153900003), (-4.05882727799991, 52.696600653000075), (-4.056548631999931, 52.70066966400003), (-4.052723761999914, 52.70221588700008), (-4.041981574999909, 52.70465729400007), (-4.001088019999941, 52.72410716400003), (-3.988270636999914, 52.73427969000005), (-4.014719204999949, 52.73232656500005), (-4.031971808999913, 52.723944403000075), (-4.048817511999914, 52.721584377000056), (-4.125152147999927, 52.77830638200004), (-4.144357876999948, 52.802801825000074), (-4.149037238999938, 52.81207916900007), (-4.146229620999918, 52.82021719000005), (-4.128895636999914, 52.82363515800006), (-4.117339647999927, 52.83075592700004), (-4.1197810539999296, 52.84625885600008), (-4.127756313999953, 52.86172109600005), (-4.132191535999937, 52.86831289300005), (-4.131988084999932, 52.882473049000055), (-4.129872199999909, 52.88922760600008), (-4.123605923999946, 52.89325592700004), (-4.064035610999952, 52.919175523000035), (-4.071400519999941, 52.921087958000044), (-4.074574347999942, 52.92279694200005), (-4.0776261059999115, 52.926662502000056), (-4.0891007149999155, 52.918850002000056), (-4.100493943999936, 52.914129950000074), (-4.1105850899999155, 52.915676174000055), (-4.118560350999928, 52.926662502000056), (-4.144398566999939, 52.91478099200003), (-4.171620245999918, 52.91347890800006), (-4.228505011999914, 52.919175523000035), (-4.300689256999931, 52.905585028000075), (-4.317290818999936, 52.89935944200005), (-4.337310350999928, 52.89203522300005), (-4.406605597999942, 52.89252350500004), (-4.4272354809999115, 52.885972398000035), (-4.446197068999936, 52.87592194200005), (-4.4816788399999155, 52.850897528000075), (-4.477935350999928, 52.84833405200004), (-4.475493943999936, 52.84414297100005), (-4.491363084999932, 52.83820221600007), (-4.500965949999909, 52.82680898600006), (-4.501332160999937, 52.81391022300005), (-4.4891251289999445, 52.803168036000045), (-4.501942511999914, 52.794989325000074), (-4.509185350999928, 52.791449286000045), (-4.5164688789999445, 52.789496161000045), (-4.5285538399999155, 52.79047272300005), (-4.5424698559999115, 52.80068594000005), (-4.5639542309999115, 52.80524323100008), (-4.583078579999949, 52.81464264500005), (-4.594634568999936, 52.81679922100005), (-4.606516079999949, 52.81509023600006), (-4.61351477799991, 52.81110260600008), (-4.619211391999954, 52.80654531500005), (-4.626332160999937, 52.803168036000045), (-4.648589647999927, 52.79962799700007), (-4.704497850999928, 52.803168036000045), (-4.719309048999946, 52.79751211100006), (-4.733225063999953, 52.78750234600005), (-4.747425910999937, 52.78343333500004), (-4.762847459999932, 52.789496161000045), (-4.752512173999946, 52.79877350500004), (-4.7514542309999115, 52.80320872600004), (-4.755441860999952, 52.80931224200003), (-4.7492569649999155, 52.81427643400008), (-4.734934048999946, 52.83047109600005), (-4.596058722999942, 52.92841217700004), (-4.580962693999936, 52.93349844000005), (-4.562082485999952, 52.93451569200005), (-4.543527798999946, 52.937933661000045), (-4.523996548999946, 52.944240627000056), (-4.443430141999954, 52.98216380400004), (-4.423695441999939, 53.00263092700004), (-4.358225063999953, 53.02846914300005), (-4.349964972999942, 53.04148997600004), (-4.345692511999914, 53.059475002000056), (-4.343861456999946, 53.10106028900003), (-4.340891079999949, 53.11273834800005), (-4.334339972999942, 53.11676666900007), (-4.3276261059999115, 53.11469147300005), (-4.324696417999917, 53.10789622600004), (-4.320668097999942, 53.10150788000004), (-4.312245245999918, 53.109442450000074), (-4.304758266999954, 53.12099844000005), (-4.303618943999936, 53.12531159100007), (-4.263539191999939, 53.15452708500004), (-4.2523494129999335, 53.159409898000035), (-4.234527147999927, 53.16400788000004), (-4.221302863999938, 53.175034898000035), (-4.200550910999937, 53.20099518400008), (-4.17796790299991, 53.21759674700007), (-4.151519334999932, 53.22809479400007), (-4.122222459999932, 53.23346588700008), (-4.0906876289999445, 53.23517487200007), (-4.08234615799995, 53.23354726800005), (-4.074330206999946, 53.23065827000005), (-4.066883917999917, 53.22907135600008), (-4.054107225999928, 53.234361070000034), (-4.032297329999949, 53.24070872600004), (-4.008900519999941, 53.24445221600007), (-3.974598761999914, 53.261786200000074), (-3.8653051419999542, 53.289129950000074), (-3.8312882149999155, 53.289129950000074), (-3.841420050999943, 53.30744049700007), (-3.870757615999935, 53.32562897300005), (-3.8784073559999115, 53.337591864000046), (-3.859974738999938, 53.33633047100005), (-3.840565558999913, 53.33283112200007), (-3.822987433999913, 53.32656484600005), (-3.8101293609999516, 53.31708405200004), (-3.7905167309999115, 53.323431708000044), (-3.7688695949999556, 53.31915924700007), (-3.748199022999927, 53.307806708000044), (-3.7319229809999115, 53.29287344000005), (-3.7162979809999115, 53.28693268400008), (-3.6022029289999296, 53.28888580900008), (-3.5623266269999476, 53.29441966400003), (-3.372059699999909, 53.350897528000075), (-3.33031165299991, 53.35179271000004), (-3.2923884759999282, 53.34052155200004), (-3.2713110019999476, 53.33055247600004), (-3.262074347999942, 53.32050202000005), (-3.250803188999953, 53.312567450000074), (-3.122222459999932, 53.26227448100008), (-3.107533331999946, 53.25189850500004), (-3.0951228509999282, 53.23932526200008), (-3.0877579419999392, 53.23468659100007), (-3.0845434239999463, 53.23859284100007), (-3.0845434239999463, 53.25857168200008), (-3.0845434239999463, 53.275458075000074), (-3.09593665299991, 53.28713613500008), (-3.1111954419999392, 53.302801825000074), (-3.1354060539999296, 53.33380768400008), (-3.171538865999935, 53.36225006700005), (-3.185210740999935, 53.37726471600007), (-3.186350063999953, 53.39276764500005), (-3.175526495999918, 53.40273672100005), (-3.157297329999949, 53.40875885600008), (-3.1146541009999282, 53.41266510600008), (-3.0942276679999168, 53.41738515800006), (-3.058257615999935, 53.434759833000044), (-3.0355525379999335, 53.43374258000006), (-3.0121964179999168, 53.41669342700004), (-2.9529516269999476, 53.323919989000046), (-2.9351293609999516, 53.309475002000056), (-2.9105525379999335, 53.29633209800005), (-2.8814998039999296, 53.288397528000075), (-2.850575324999909, 53.289129950000074), (-2.849598761999914, 53.29120514500005), (-2.848378058999913, 53.29555898600006), (-2.8449600899999155, 53.300116278000075), (-2.837554490999935, 53.302801825000074), (-2.8286026679999168, 53.302435614000046), (-2.813384568999936, 53.297756252000056), (-2.8061417309999115, 53.296576239000046), (-2.789784308999913, 53.29743073100008), (-2.775502081999946, 53.29987213700008), (-2.7481176419999542, 53.30963776200008), (-2.753651495999918, 53.32245514500005), (-2.750884568999936, 53.33161041900007), (-2.743153449999909, 53.33852773600006), (-2.734486456999946, 53.34442780200004), (-2.7261449859999516, 53.34198639500005), (-2.7174373039999296, 53.34271881700005), (-2.708607550999943, 53.346136786000045), (-2.6997777989999463, 53.35179271000004), (-2.7141007149999155, 53.35236237200007), (-2.764393683999913, 53.34516022300005), (-2.775380011999914, 53.341009833000044), (-2.782378709999932, 53.32636139500005), (-2.799794074999909, 53.32103099200003), (-2.810332811999956, 53.32172272300005), (-2.843658006999931, 53.323919989000046), (-2.886463995999918, 53.33356354400007), (-2.924956834999932, 53.35000234600005), (-2.956939256999931, 53.37055084800005), (-2.980824347999942, 53.39276764500005), (-3.096587693999936, 53.54433828300006), (-3.101918097999942, 53.55805084800005), (-3.0994766919999392, 53.57200755400004), (-3.087635870999918, 53.58771393400008), (-3.021839972999942, 53.65281810100004), (-2.968658006999931, 53.69403717700004), (-2.9603572259999282, 53.69757721600007), (-2.9517309239999463, 53.70807526200008), (-2.9114477199999556, 53.725043036000045), (-2.899037238999938, 53.73541901200008), (-2.9848526679999168, 53.73607005400004), (-3.021473761999914, 53.745794989000046), (-3.049183722999942, 53.769517320000034), (-3.056385870999918, 53.80304596600007), (-3.044911261999914, 53.87848541900007), (-3.056630011999914, 53.90615469000005), (-3.040679490999935, 53.923529364000046), (-3.017567511999914, 53.93195221600007), (-2.925689256999931, 53.95270416900007), (-2.909250454999949, 53.95384349200003), (-2.896107550999943, 53.94773997600004), (-2.8885391919999392, 53.94603099200003), (-2.885365363999938, 53.950506903000075), (-2.881988084999932, 53.95652903900003), (-2.874175584999932, 53.96165599200003), (-2.865142381999931, 53.96548086100006), (-2.8579809239999463, 53.96759674700007), (-2.869252081999946, 53.97882721600007), (-2.8344620429999168, 53.99982330900008), (-2.830067511999914, 54.01601797100005), (-2.8475235669999392, 54.00836823100008), (-2.864857550999943, 54.00429922100005), (-2.895497199999909, 54.00234609600005), (-2.900298631999931, 54.00495026200008), (-2.9160863919999542, 54.026556708000044), (-2.91820227799991, 54.03432851800005), (-2.911284959999932, 54.03998444200005), (-2.9007869129999335, 54.044907945000034), (-2.8920792309999115, 54.050116278000075), (-2.872670050999943, 54.071600653000075), (-2.8588761059999115, 54.08100006700005), (-2.826771613999938, 54.08881256700005), (-2.815174933999913, 54.09878164300005), (-2.795969204999949, 54.12518952000005), (-2.8128149079999503, 54.139878648000035), (-2.8364151679999168, 54.16758860900006), (-2.8509415359999366, 54.18463776200008), (-2.854237433999913, 54.19407786700003), (-2.8328751289999445, 54.19904205900008), (-2.810292120999918, 54.21190013200004), (-2.7952367829999503, 54.22947825700004), (-2.795969204999949, 54.24872467700004), (-2.8028051419999542, 54.24872467700004), (-2.806630011999914, 54.233710028000075), (-2.8208715489999463, 54.22174713700008), (-2.850575324999909, 54.20774974200003), (-2.886382615999935, 54.19627513200004), (-2.904652472999942, 54.18764883000006), (-2.9126684239999463, 54.176988023000035), (-2.9203995429999168, 54.16205475500004), (-2.939198370999918, 54.15509674700007), (-2.9842016269999476, 54.15314362200007), (-2.997710740999935, 54.15957265800006), (-3.011341925999943, 54.17413971600007), (-3.017323370999918, 54.19009023600006), (-3.008168097999942, 54.20034414300005), (-3.015370245999918, 54.21190013200004), (-3.024484829999949, 54.221584377000056), (-3.035755988999938, 54.22597890800006), (-3.049183722999942, 54.22207265800006), (-3.044667120999918, 54.208319403000075), (-3.047840949999909, 54.19432200700004), (-3.053537563999953, 54.181301174000055), (-3.056630011999914, 54.17023346600007), (-3.0610245429999168, 54.16193268400008), (-3.090728318999936, 54.13947174700007), (-3.10765540299991, 54.11855703300006), (-3.117909308999913, 54.10883209800005), (-3.145253058999913, 54.100043036000045), (-3.147450324999909, 54.08869049700007), (-3.1443985669999392, 54.07514069200005), (-3.1453751289999445, 54.063788153000075), (-3.1805313789999445, 54.09284088700008), (-3.1897680329999503, 54.09788646000004), (-3.2057185539999296, 54.098537502000056), (-3.219553188999953, 54.100775458000044), (-3.2311091789999296, 54.105129299000055), (-3.240956183999913, 54.11212799700007), (-3.2381078769999476, 54.12759023600006), (-3.232533331999946, 54.14468008000006), (-3.233143683999913, 54.15916575700004), (-3.248402472999942, 54.16681549700007), (-3.248402472999942, 54.17365143400008), (-3.215199347999942, 54.17983633000006), (-3.206776495999918, 54.20892975500004), (-3.2090551419999542, 54.24274323100008), (-3.207386847999942, 54.263006903000075), (-3.2231339179999168, 54.25763580900008), (-3.231353318999936, 54.24721914300005), (-3.240956183999913, 54.22207265800006), (-3.232167120999918, 54.20254140800006), (-3.247141079999949, 54.19794342700004), (-3.270130988999938, 54.19912344000005), (-3.2860001289999445, 54.19721100500004), (-3.306792772999927, 54.19188060100004), (-3.3285212879999335, 54.204738674000055), (-3.3644913399999155, 54.24249909100007), (-3.394195115999935, 54.26439036700003), (-3.407378709999932, 54.27773672100005), (-3.412912563999953, 54.29376862200007), (-3.41038977799991, 54.30145905200004), (-3.405995245999918, 54.30963776200008), (-3.4041235019999476, 54.31854889500005), (-3.4114477199999556, 54.33274974200003), (-3.4134415359999366, 54.342962958000044), (-3.4163305329999503, 54.344916083000044), (-3.440174933999913, 54.35175202000005), (-3.474273240999935, 54.39350006700005), (-3.497710740999935, 54.40582916900007), (-3.5918676419999542, 54.48309967700004), (-3.608143683999913, 54.488267320000034), (-3.613189256999931, 54.49164459800005), (-3.6236873039999296, 54.50608958500004), (-3.6341853509999282, 54.512884833000044), (-3.6268204419999392, 54.520412502000056), (-3.616200324999909, 54.52757396000004), (-3.61156165299991, 54.52993398600006), (-3.5903214179999168, 54.56464264500005), (-3.5638321609999366, 54.64276764500005), (-3.5301407539999445, 54.68805573100008), (-3.5160212879999335, 54.712876695000034), (-3.5091853509999282, 54.72166575700004), (-3.500721808999913, 54.72597890800006), (-3.478871222999942, 54.730902411000045), (-3.4681290359999366, 54.73529694200005), (-3.455433722999942, 54.745021877000056), (-3.439564581999946, 54.76146067900004), (-3.4309789699999556, 54.780462958000044), (-3.440174933999913, 54.79743073100008), (-3.4075414699999556, 54.85602448100008), (-3.3879288399999155, 54.88336823100008), (-3.3644913399999155, 54.89980703300006), (-3.3449600899999155, 54.90253327000005), (-3.3333634109999366, 54.89728424700007), (-3.3227432929999168, 54.889878648000035), (-3.3064672519999476, 54.88617584800005), (-3.295725063999953, 54.88690827000005), (-3.254628058999913, 54.89980703300006), (-3.267323370999918, 54.905503648000035), (-3.317290818999936, 54.92031484600005), (-3.2914932929999168, 54.93667226800005), (-3.276519334999932, 54.943426825000074), (-3.213612433999913, 54.954413153000075), (-3.2010391919999392, 54.95221588700008), (-3.1936742829999503, 54.94863515800006), (-3.1879776679999168, 54.94448476800005), (-3.1801651679999168, 54.94082265800006), (-3.14281165299991, 54.93353913000004), (-3.122792120999918, 54.93268463700008), (-3.0395401679999168, 54.94717031500005), (-3.021839972999942, 54.954413153000075), (-3.090728318999936, 54.954413153000075), (-3.090728318999936, 54.96124909100007), (-3.0715225899999155, 54.96312083500004), (-3.0562231109999516, 54.968817450000074), (-3.040923631999931, 54.97247955900008), (-3.021839972999942, 54.968085028000075), (-3.021839972999942, 54.97553131700005), (-3.0462947259999282, 54.982123114000046), (-3.0502913779999403, 54.981510325000045), (-3.1354060539999296, 54.968085028000075), (-3.453846808999913, 54.981756903000075), (-3.470692511999914, 54.984442450000074), (-3.486236131999931, 54.989488023000035), (-3.501047329999949, 54.99249909100007), (-3.515288865999935, 54.98920319200005), (-3.5123591789999296, 54.98712799700007), (-3.511463995999918, 54.98688385600008), (-3.510894334999932, 54.985988674000055), (-3.5091853509999282, 54.981756903000075), (-3.5260310539999296, 54.97711823100008), (-3.5418595039999445, 54.98065827000005), (-3.57054602799991, 54.995428778000075), (-3.583607550999943, 54.968085028000075), (-3.5756729809999115, 54.95734284100007), (-3.5706274079999503, 54.937567450000074), (-3.5687556629999335, 54.916001695000034), (-3.57054602799991, 54.89980703300006), (-3.581695115999935, 54.88361237200007), (-3.598378058999913, 54.87799713700008), (-3.691761847999942, 54.88320547100005), (-3.7176407539999445, 54.880845445000034), (-3.739247199999909, 54.859808661000045), (-3.8101293609999516, 54.86627838700008), (-3.8078507149999155, 54.86107005400004), (-3.806792772999927, 54.86090729400007), (-3.803334113999938, 54.85887278900003), (-3.8123673169999392, 54.855169989000046), (-3.8198136059999115, 54.855902411000045), (-3.826079881999931, 54.85993073100008), (-3.8312882149999155, 54.86627838700008), (-3.819976365999935, 54.878566799000055), (-3.815052863999938, 54.87714264500005), (-3.8101293609999516, 54.87250397300005), (-3.8116348949999406, 54.88003164300005), (-3.813221808999913, 54.88312409100007), (-3.8169652989999463, 54.88617584800005), (-3.828846808999913, 54.874986070000034), (-3.8443090489999463, 54.86627838700008), (-3.839751756999931, 54.855902411000045), (-3.8374731109999516, 54.851996161000045), (-3.844105597999942, 54.85097890800006), (-3.8578995429999168, 54.84454987200007), (-3.823841925999943, 54.82469310100004), (-3.833607550999943, 54.82005442900004), (-3.885731574999909, 54.80646393400008), (-3.9641820949999556, 54.771918036000045), (-4.011708136999914, 54.76821523600006), (-4.042876756999931, 54.76947663000004), (-4.042876756999931, 54.77692291900007), (-4.046783006999931, 54.77802155200004), (-4.050200975999928, 54.778550523000035), (-4.053334113999938, 54.77997467700004), (-4.055775519999941, 54.782538153000075), (-4.05296790299991, 54.78546784100007), (-4.050160285999937, 54.78900788000004), (-4.049712693999936, 54.78998444200005), (-4.051747199999909, 54.800034898000035), (-4.0477188789999445, 54.81305573100008), (-4.049956834999932, 54.82322825700004), (-4.063588019999941, 54.82684967700004), (-4.064035610999952, 54.83152903900003), (-4.078602667999917, 54.82412344000005), (-4.09007727799991, 54.809759833000044), (-4.093495245999918, 54.792669989000046), (-4.083851691999939, 54.77692291900007), (-4.122954881999931, 54.77301666900007), (-4.173939581999946, 54.792303778000075), (-4.209136522999927, 54.826239325000074), (-4.200550910999937, 54.86627838700008), (-4.215402798999946, 54.861029364000046), (-4.2397354809999115, 54.843003648000035), (-4.255767381999931, 54.838324286000045), (-4.2707413399999155, 54.83942291900007), (-4.345285610999952, 54.86017487200007), (-4.3569229809999115, 54.86554596600007), (-4.3656306629999335, 54.87250397300005), (-4.375152147999927, 54.88690827000005), (-4.379872199999909, 54.89789459800005), (-4.386789516999954, 54.90477122600004), (-4.402902798999946, 54.90729401200008), (-4.409006313999953, 54.90302155200004), (-4.416818813999953, 54.89280833500004), (-4.423573370999918, 54.88035716400003), (-4.426503058999913, 54.86945221600007), (-4.4172257149999155, 54.84593333500004), (-4.4094132149999155, 54.831244208000044), (-4.402902798999946, 54.82469310100004), (-4.386708136999914, 54.82416413000004), (-4.372425910999937, 54.82184479400007), (-4.35960852799991, 54.81663646000004), (-4.347645636999914, 54.80731842700004), (-4.344471808999913, 54.79450104400007), (-4.353179490999935, 54.78310781500005), (-4.358143683999913, 54.77098216400003), (-4.343861456999946, 54.75641510600008), (-4.356516079999949, 54.741888739000046), (-4.353260870999918, 54.72089264500005), (-4.348133917999917, 54.70197174700007), (-4.3547257149999155, 54.693793036000045), (-4.360340949999909, 54.69159577000005), (-4.365305141999954, 54.68695709800005), (-4.371896938999953, 54.68227773600006), (-4.382394985999952, 54.68008047100005), (-4.405262824999909, 54.682074286000045), (-4.426503058999913, 54.687567450000074), (-4.4518123039999296, 54.69879791900007), (-4.46117102799991, 54.701239325000074), (-4.4967341789999296, 54.70062897300005), (-4.505604620999918, 54.70465729400007), (-4.563628709999932, 54.75641510600008), (-4.596669074999909, 54.77529531500005), (-4.714466925999943, 54.81785716400003), (-4.759592251999948, 54.82534414300005), (-4.781076626999948, 54.83307526200008), (-4.799631313999953, 54.86127350500004), (-4.821034308999913, 54.86664459800005), (-4.859120245999918, 54.86627838700008), (-4.88304602799991, 54.86009349200003), (-4.905873175999943, 54.84979889500005), (-4.925770636999914, 54.83738841400003), (-4.941029425999943, 54.82469310100004), (-4.9496150379999335, 54.81582265800006), (-4.953684048999946, 54.81000397300005), (-4.954823370999918, 54.804754950000074), (-4.954701300999943, 54.79743073100008), (-4.952870245999918, 54.78896719000005), (-4.9479060539999296, 54.777329820000034), (-4.940256313999953, 54.76703522300005), (-4.930165167999917, 54.76264069200005), (-4.923247850999928, 54.75185781500005), (-4.911936001999948, 54.728216864000046), (-4.8959854809999115, 54.70453522300005), (-4.867258266999954, 54.69013092700004), (-4.866932745999918, 54.68146393400008), (-4.872141079999949, 54.663316148000035), (-4.872425910999937, 54.65403880400004), (-4.872059699999909, 54.64923737200007), (-4.859120245999918, 54.63296133000006), (-4.880604620999918, 54.63621653900003), (-4.923491990999935, 54.649725653000075), (-4.944081183999913, 54.652777411000045), (-4.953684048999946, 54.65973541900007), (-4.959868943999936, 54.67552317900004), (-4.958973761999914, 54.69196198100008), (-4.947255011999914, 54.701239325000074), (-4.954823370999918, 54.707464911000045), (-4.958892381999931, 54.714056708000044), (-4.959055141999954, 54.72093333500004), (-4.954701300999943, 54.728501695000034), (-4.973378058999913, 54.729722398000035), (-4.981556769999941, 54.731634833000044), (-4.988189256999931, 54.73529694200005), (-4.992665167999917, 54.74433014500005), (-4.997059699999909, 54.75836823100008), (-5.003285285999937, 54.77130768400008), (-5.0130102199999556, 54.77692291900007), (-5.033192511999914, 54.782416083000044), (-5.1282445949999556, 54.848944403000075), (-5.157134568999936, 54.87909577000005), (-5.175526495999918, 54.91461823100008), (-5.180653449999909, 54.954413153000075), (-5.177601691999939, 54.99054596600007), (-5.170806443999936, 55.008693752000056), (-5.156727667999917, 55.01654694200005), (-5.1356095039999445, 55.01585521000004), (-5.124582485999952, 55.016791083000044), (-5.119740363999938, 55.01992422100005), (-5.115142381999931, 55.03156159100007), (-5.105213995999918, 55.02619049700007), (-5.095529751999948, 55.01508209800005), (-5.091867641999954, 55.00971100500004), (-5.076893683999913, 54.99555084800005), (-5.069488084999932, 54.986029364000046), (-5.064564581999946, 54.97553131700005), (-5.0637914699999556, 54.96458567900004), (-5.065256313999953, 54.940334377000056), (-5.06086178299995, 54.93113841400003), (-5.0475154289999296, 54.92031484600005), (-5.030995245999918, 54.911322333000044), (-5.013091600999928, 54.90961334800005), (-4.9955948559999115, 54.92031484600005), (-4.992298956999946, 54.924261786000045), (-4.988189256999931, 54.927720445000034), (-4.988189256999931, 54.93455638200004), (-5.0240779289999296, 54.97638580900008), (-5.029774542999917, 54.98550039300005), (-5.032500779999907, 54.99371979400007), (-5.033029751999948, 54.99526601800005), (-5.047027147999927, 55.01508209800005), (-5.0502823559999115, 55.02680084800005), (-5.0496720039999445, 55.04897695500006), (-5.047596808999913, 55.05573151200008), (-5.043446417999917, 55.06427643400008), (-5.0257869129999335, 55.08869049700007), (-5.018950975999928, 55.10224030200004), (-5.016184048999946, 55.12262604400007), (-5.007801886999914, 55.14118073100008), (-4.988270636999914, 55.15265534100007), (-4.947255011999914, 55.16791413000004), (-4.882394985999952, 55.21857330900008), (-4.877552863999938, 55.22089264500005), (-4.867258266999954, 55.22247955900008), (-4.865305141999954, 55.22565338700008), (-4.865589972999942, 55.236314195000034), (-4.864816860999952, 55.24135976800005), (-4.841949022999927, 55.275091864000046), (-4.838002081999946, 55.28400299700007), (-4.8372289699999556, 55.293850002000056), (-4.839751756999931, 55.31557851800005), (-4.838002081999946, 55.32501862200007), (-4.832508917999917, 55.33112213700008), (-4.7992244129999335, 55.354722398000035), (-4.781076626999948, 55.36351146000004), (-4.773101365999935, 55.36937083500004), (-4.767160610999952, 55.37905508000006), (-4.758778449999909, 55.40228913000004), (-4.7492569649999155, 55.413763739000046), (-4.71703040299991, 55.43048737200007), (-4.650502081999946, 55.448472398000035), (-4.626332160999937, 55.468410549000055), (-4.617787238999938, 55.49559153900003), (-4.626779751999948, 55.51972077000005), (-4.6507869129999335, 55.53705475500004), (-4.687163865999935, 55.544134833000044), (-4.66624915299991, 55.562201239000046), (-4.666493292999917, 55.56329987200007), (-4.6711319649999155, 55.584418036000045), (-4.692738410999937, 55.60521067900004), (-4.7219945949999556, 55.619208075000074), (-4.776519334999932, 55.632879950000074), (-4.808745897999927, 55.63361237200007), (-4.818104620999918, 55.63719310100004), (-4.810617641999954, 55.646551825000074), (-4.810617641999954, 55.653998114000046), (-4.868560350999928, 55.67560455900008), (-4.900990363999938, 55.69232819200005), (-4.920521613999938, 55.70856354400007), (-4.876332160999937, 55.735256252000056), (-4.861073370999918, 55.756740627000056), (-4.865305141999954, 55.79047272300005), (-4.8717341789999296, 55.802435614000046), (-4.8777970039999445, 55.81102122600004), (-4.882720506999931, 55.82135651200008), (-4.888661261999914, 55.864528713000084), (-4.888824022999927, 55.865301825000074), (-4.892648891999954, 55.89288971600007), (-4.886463995999918, 55.91966380400004), (-4.872141079999949, 55.937201239000046), (-4.849354620999918, 55.94822825700004), (-4.818104620999918, 55.95563385600008), (-4.799387173999946, 55.957912502000056), (-4.7857966789999296, 55.95697663000004), (-4.722320115999935, 55.94009023600006), (-4.705433722999942, 55.93846263200004), (-4.693959113999938, 55.94135163000004), (-4.6725154289999296, 55.93378327000005), (-4.505970831999946, 55.91909414300005), (-4.4816788399999155, 55.92829010600008), (-4.590606248999961, 55.941514390000066), (-4.630034959999932, 55.94627513200004), (-4.673451300999943, 55.96185944200005), (-4.724517381999931, 55.99835846600007), (-4.765044725999928, 56.007066148000035), (-4.78343665299991, 56.017645575000074), (-4.7992244129999335, 56.030951239000046), (-4.810617641999954, 56.04376862200007), (-4.8237198559999115, 56.07367584800005), (-4.824330206999946, 56.07851797100005), (-4.8391820949999556, 56.08063385600008), (-4.844309048999946, 56.07298411700003), (-4.843739386999914, 56.06297435100004), (-4.837554490999935, 56.05060455900008), (-4.790150519999941, 56.010199286000045), (-4.778920050999943, 55.99209219000005), (-4.785308397999927, 55.984035549000055), (-4.803618943999936, 55.982082424000055), (-4.828033006999931, 55.98232656500005), (-4.851551886999914, 55.98802317900004), (-4.862294074999909, 56.00214264500005), (-4.865386522999927, 56.02020905200004), (-4.866851365999935, 56.05833567900004), (-4.865386522999927, 56.06671784100007), (-4.826324022999927, 56.124212958000044), (-4.755441860999952, 56.188381252000056), (-4.750884568999936, 56.20270416900007), (-4.755523240999935, 56.20652903900003), (-4.7662654289999296, 56.20209381700005), (-4.7799373039999296, 56.191473700000074), (-4.837269660999937, 56.12441640800006), (-4.851673956999946, 56.112616278000075), (-4.873117641999954, 56.11200592700004), (-4.880604620999918, 56.11985911700003), (-4.878977016999954, 56.15053945500006), (-4.883168097999942, 56.16400788000004), (-4.893544074999909, 56.174261786000045), (-4.9070938789999445, 56.177069403000075), (-4.920521613999938, 56.16791413000004), (-4.909087693999936, 56.14996979400007), (-4.895253058999913, 56.11473216400003), (-4.8862198559999115, 56.08038971600007), (-4.889149542999917, 56.06484609600005), (-4.901926235999952, 56.06191640800006), (-4.904367641999954, 56.054348049000055), (-4.900054490999935, 56.03412506700005), (-4.900054490999935, 56.01459381700005), (-4.898019985999952, 56.001166083000044), (-4.892648891999954, 55.98973216400003), (-4.906402147999927, 55.98574453300006), (-4.921457485999952, 55.98867422100005), (-4.937489386999914, 55.993841864000046), (-4.954701300999943, 55.99656810100004), (-4.954701300999943, 55.98973216400003), (-4.942005988999938, 55.986314195000034), (-4.928863084999932, 55.98114655200004), (-4.918446417999917, 55.97333405200004), (-4.913685675999943, 55.96185944200005), (-4.917388475999928, 55.94745514500005), (-4.9272354809999115, 55.93768952000005), (-4.9387100899999155, 55.92963288000004), (-4.947255011999914, 55.92084381700005), (-4.952137824999909, 55.90912506700005), (-4.954986131999931, 55.89935944200005), (-4.95921790299991, 55.89012278900003), (-4.96898352799991, 55.87986888200004), (-4.983143683999913, 55.87103913000004), (-4.994740363999938, 55.86981842700004), (-5.026356574999909, 55.87372467700004), (-5.0424698559999115, 55.884751695000034), (-5.056752081999946, 55.91030508000006), (-5.0668025379999335, 55.938788153000075), (-5.070790167999917, 55.958685614000046), (-5.1108292309999115, 55.98895905200004), (-5.116037563999953, 56.00169505400004), (-5.123605923999946, 56.00991445500006), (-5.139637824999909, 56.00275299700007), (-5.123768683999913, 55.986314195000034), (-5.085682745999918, 55.93187083500004), (-5.078236456999946, 55.91095612200007), (-5.086537238999938, 55.901271877000056), (-5.105620897999927, 55.90497467700004), (-5.171538865999935, 55.935532945000034), (-5.180653449999909, 55.948431708000044), (-5.180653449999909, 55.96930573100008), (-5.190825975999928, 55.96173737200007), (-5.1996150379999335, 55.948553778000075), (-5.2057185539999296, 55.93451569200005), (-5.207915818999936, 55.92462799700007), (-5.212635870999918, 55.91714101800005), (-5.242054816999939, 55.89288971600007), (-5.218129035999937, 55.86469147300005), (-5.208159959999932, 55.849269924000055), (-5.201079881999931, 55.83148834800005), (-5.2193904289999296, 55.83144765800006), (-5.2631729809999115, 55.845770575000074), (-5.296701626999948, 55.85268789300005), (-5.307118292999917, 55.86041901200008), (-5.313384568999936, 55.88544342700004), (-5.319325324999909, 55.889105536000045), (-5.327219204999949, 55.89154694200005), (-5.3348282539999445, 55.89667389500005), (-5.3382869129999335, 55.90375397300005), (-5.3391007149999155, 55.91303131700005), (-5.3382869129999335, 55.93138255400004), (-5.336089647999927, 55.93919505400004), (-5.326161261999914, 55.95026276200008), (-5.323963995999918, 55.958685614000046), (-5.325754360999952, 55.967230536000045), (-5.3382869129999335, 55.99656810100004), (-5.313628709999932, 56.01235586100006), (-5.204497850999928, 56.11945221600007), (-5.146473761999914, 56.13312409100007), (-5.104603644999941, 56.15151601800005), (-5.0949600899999155, 56.15737539300005), (-5.0594376289999445, 56.203111070000034), (-5.043446417999917, 56.21629466400003), (-5.013295050999943, 56.22760651200008), (-4.974964972999942, 56.23700592700004), (-4.9400935539999296, 56.25141022300005), (-4.920521613999938, 56.277777411000045), (-4.938099738999938, 56.27098216400003), (-4.975087042999917, 56.24799225500004), (-4.991932745999918, 56.24298737200007), (-5.0327042309999115, 56.24115631700005), (-5.049549933999913, 56.23704661700003), (-5.064564581999946, 56.22931549700007), (-5.0754288399999155, 56.21698639500005), (-5.099436001999948, 56.18195221600007), (-5.1088761059999115, 56.174709377000056), (-5.228138800999943, 56.12921784100007), (-5.3109431629999335, 56.05805084800005), (-5.319935675999943, 56.05491771000004), (-5.338042772999927, 56.05410390800006), (-5.345692511999914, 56.051214911000045), (-5.345285610999952, 56.046128648000035), (-5.350209113999938, 56.03192780200004), (-5.356353318999936, 56.01976146000004), (-5.359364386999914, 56.020738023000035), (-5.3686417309999115, 56.009426174000055), (-5.390288865999935, 56.00568268400008), (-5.415028449999909, 56.00690338700008), (-5.43382727799991, 56.010199286000045), (-5.434559699999909, 56.014960028000075), (-5.434722459999932, 56.02362702000005), (-5.437123175999943, 56.03001536700003), (-5.444406704999949, 56.02757396000004), (-5.4479060539999296, 56.02228424700007), (-5.448231574999909, 56.016058661000045), (-5.447621222999942, 56.009426174000055), (-5.454986131999931, 55.95563385600008), (-5.45140540299991, 55.95343659100007), (-5.436431443999936, 55.94896067900004), (-5.430775519999941, 55.94818756700005), (-5.420806443999936, 55.92829010600008), (-5.416737433999913, 55.91681549700007), (-5.416005011999914, 55.907416083000044), (-5.4125056629999335, 55.899603583000044), (-5.400380011999914, 55.89288971600007), (-5.400380011999914, 55.886704820000034), (-5.407215949999909, 55.886704820000034), (-5.407215949999909, 55.87986888200004), (-5.402943488999938, 55.87872955900008), (-5.39289303299995, 55.87372467700004), (-5.3976944649999155, 55.87156810100004), (-5.402495897999927, 55.868353583000044), (-5.407215949999909, 55.86627838700008), (-5.35179602799991, 55.83242422100005), (-5.326771613999938, 55.808579820000034), (-5.317779100999928, 55.78302643400008), (-5.324574347999942, 55.769232489000046), (-5.3385310539999296, 55.76264069200005), (-5.372425910999937, 55.75641510600008), (-5.3875626289999445, 55.75031159100007), (-5.433461066999939, 55.72101471600007), (-5.4445694649999155, 55.71161530200004), (-5.4539688789999445, 55.70058828300006), (-5.46117102799991, 55.68813711100006), (-5.463612433999913, 55.67983633000006), (-5.466175910999937, 55.662176825000074), (-5.468617316999939, 55.653998114000046), (-5.490101691999939, 55.644598700000074), (-5.488270636999914, 55.640326239000046), (-5.484283006999931, 55.63572825700004), (-5.482289191999939, 55.632879950000074), (-5.4838761059999115, 55.61005280200004), (-5.474761522999927, 55.603949286000045), (-5.462635870999918, 55.60203685100004), (-5.454986131999931, 55.59194570500006), (-5.461089647999927, 55.57880280200004), (-5.476918097999942, 55.57489655200004), (-5.488758917999917, 55.56907786700003), (-5.482289191999939, 55.55027903900003), (-5.503529425999943, 55.52651601800005), (-5.509632941999939, 55.516791083000044), (-5.5106095039999445, 55.51146067900004), (-5.509632941999939, 55.49258047100005), (-5.5109757149999155, 55.484442450000074), (-5.514271613999938, 55.48387278900003), (-5.5187882149999155, 55.48517487200007), (-5.523264126999948, 55.48265208500004), (-5.545521613999938, 55.44916413000004), (-5.561512824999909, 55.435532945000034), (-5.5846248039999296, 55.427435614000046), (-5.5846248039999296, 55.421210028000075), (-5.572132941999939, 55.422308661000045), (-5.562082485999952, 55.41986725500004), (-5.553089972999942, 55.41453685100004), (-5.543690558999913, 55.40692780200004), (-5.527455206999946, 55.38434479400007), (-5.5266820949999556, 55.38027578300006), (-5.5149633449999556, 55.37368398600006), (-5.525054490999935, 55.358628648000035), (-5.557972785999937, 55.33185455900008), (-5.574370897999927, 55.32200755400004), (-5.594105597999942, 55.31313711100006), (-5.616281704999949, 55.30658600500004), (-5.6399633449999556, 55.303900458000044), (-5.649525519999941, 55.30516185100004), (-5.669097459999932, 55.31085846600007), (-5.6808975899999155, 55.31134674700007), (-5.691395636999914, 55.308579820000034), (-5.714019334999932, 55.29913971600007), (-5.725575324999909, 55.29706452000005), (-5.7545466789999296, 55.29734935100004), (-5.772287563999953, 55.30125560100004), (-5.782866990999935, 55.31354401200008), (-5.794667120999918, 55.35639069200005), (-5.796701626999948, 55.37909577000005), (-5.7914119129999335, 55.39862702000005), (-5.763417120999918, 55.41205475500004), (-5.725412563999953, 55.437567450000074), (-5.715646938999953, 55.44790273600006), (-5.7152400379999335, 55.46889883000006), (-5.720122850999928, 55.491522528000075), (-5.7219132149999155, 55.51386139500005), (-5.707753058999913, 55.54336172100005), (-5.712066209999932, 55.55072663000004), (-5.718861456999946, 55.55731842700004), (-5.721831834999932, 55.56460195500006), (-5.718129035999937, 55.57575104400007), (-5.694488084999932, 55.605536200000074), (-5.6733292309999115, 55.640611070000034), (-5.6694229809999115, 55.66071198100008), (-5.6808975899999155, 55.67446523600006), (-5.626535610999952, 55.70062897300005), (-5.61945553299995, 55.71198151200008), (-5.613189256999931, 55.725775458000044), (-5.5982966789999296, 55.74298737200007), (-5.581206834999932, 55.75763580900008), (-5.5678604809999115, 55.76386139500005), (-5.539173956999946, 55.77094147300005), (-5.504628058999913, 55.78937409100007), (-5.4735001289999445, 55.815659898000035), (-5.454986131999931, 55.845770575000074), (-5.551747199999909, 55.783636786000045), (-5.587473110999952, 55.76715729400007), (-5.599436001999948, 55.76422760600008), (-5.6126195949999556, 55.76386139500005), (-5.60578365799995, 55.77684153900003), (-5.6332087879999335, 55.78278229400007), (-5.64671790299991, 55.78750234600005), (-5.66038977799991, 55.79734935100004), (-5.667958136999914, 55.81102122600004), (-5.669016079999949, 55.83783600500004), (-5.67406165299991, 55.845770575000074), (-5.631988084999932, 55.88178131700005), (-5.625599738999938, 55.889837958000044), (-5.61937415299991, 55.90314362200007), (-5.6043595039999445, 55.91364166900007), (-5.586293097999942, 55.92332591400003), (-5.571034308999913, 55.93451569200005), (-5.593495245999918, 55.92796458500004), (-5.6275935539999296, 55.90534088700008), (-5.6537979809999115, 55.89760976800005), (-5.671701626999948, 55.88690827000005), (-5.6808975899999155, 55.886704820000034), (-5.687977667999917, 55.89337799700007), (-5.694162563999953, 55.90497467700004), (-5.696400519999941, 55.91596100500004), (-5.586822068999936, 56.01203034100007), (-5.57843990799995, 56.02448151200008), (-5.5826716789999296, 56.028957424000055), (-5.576649542999917, 56.032538153000075), (-5.571034308999913, 56.037543036000045), (-5.583892381999931, 56.040716864000046), (-5.596424933999913, 56.036810614000046), (-5.609852667999917, 56.03001536700003), (-5.625599738999938, 56.02448151200008), (-5.6317032539999445, 56.005926825000074), (-5.674875454999949, 55.977728583000044), (-5.67406165299991, 55.95563385600008), (-5.690785285999937, 55.93764883000006), (-5.694488084999932, 55.93451569200005), (-5.704497850999928, 55.936753648000035), (-5.707508917999917, 55.942572333000044), (-5.705881313999953, 55.949652411000045), (-5.701975063999953, 55.95563385600008), (-5.696441209999932, 55.98216380400004), (-5.659901495999918, 56.02326080900008), (-5.5846248039999296, 56.08466217700004), (-5.5815323559999115, 56.08828359600005), (-5.580067511999914, 56.09292226800005), (-5.5774633449999556, 56.096991278000075), (-5.571034308999913, 56.09902578300006), (-5.564605272999927, 56.098089911000045), (-5.556548631999931, 56.09589264500005), (-5.550689256999931, 56.09349192900004), (-5.550526495999918, 56.09218984600005), (-5.547840949999909, 56.09003327000005), (-5.5394587879999335, 56.08685944200005), (-5.531605597999942, 56.08633047100005), (-5.530100063999953, 56.09218984600005), (-5.534738735999952, 56.098537502000056), (-5.5414119129999335, 56.10248444200005), (-5.5475154289999296, 56.10488515800006), (-5.550526495999918, 56.10643138200004), (-5.55695553299995, 56.12221914300005), (-5.558705206999946, 56.13080475500004), (-5.554676886999914, 56.13739655200004), (-5.522531704999949, 56.16575755400004), (-5.515736456999946, 56.174709377000056), (-5.509632941999939, 56.188381252000056), (-5.5399063789999445, 56.18341705900008), (-5.562489386999914, 56.16791413000004), (-5.5826716789999296, 56.15058014500005), (-5.60578365799995, 56.139960028000075), (-5.599354620999918, 56.160589911000045), (-5.586415167999917, 56.18113841400003), (-5.569406704999949, 56.20026276200008), (-5.550526495999918, 56.21629466400003), (-5.5594376289999445, 56.22955963700008), (-5.547230597999942, 56.24017975500004), (-5.52562415299991, 56.247259833000044), (-5.50617428299995, 56.24982330900008), (-5.494740363999938, 56.253119208000044), (-5.4928279289999296, 56.26040273600006), (-5.4992569649999155, 56.267645575000074), (-5.512684699999909, 56.27094147300005), (-5.554269985999952, 56.26349518400008), (-5.5631404289999296, 56.26032135600008), (-5.572621222999942, 56.25385163000004), (-5.58234615799995, 56.24876536700003), (-5.592152472999942, 56.24982330900008), (-5.5980525379999335, 56.25861237200007), (-5.595570441999939, 56.26992422100005), (-5.5846248039999296, 56.29075755400004), (-5.57258053299995, 56.32807038000004), (-5.56273352799991, 56.341050523000035), (-5.543690558999913, 56.352850653000075), (-5.525217251999948, 56.34662506700005), (-5.498199022999927, 56.34833405200004), (-5.4481095039999445, 56.35968659100007), (-5.4481095039999445, 56.36591217700004), (-5.4721573559999115, 56.364935614000046), (-5.515370245999918, 56.35683828300006), (-5.5375056629999335, 56.35968659100007), (-5.517323370999918, 56.39276764500005), (-5.509632941999939, 56.40062083500004), (-5.498931443999936, 56.404730536000045), (-5.486073370999918, 56.40810781500005), (-5.4780167309999115, 56.41290924700007), (-5.482289191999939, 56.421128648000035), (-5.457020636999914, 56.44086334800005), (-5.423573370999918, 56.45001862200007), (-5.322865363999938, 56.45498281500005), (-5.242054816999939, 56.44220612200007), (-5.208729620999918, 56.44684479400007), (-5.18187415299991, 56.45966217700004), (-5.118519660999937, 56.50775788000004), (-5.085682745999918, 56.54877350500004), (-5.064564581999946, 56.56513092700004), (-5.086537238999938, 56.55849844000005), (-5.099598761999914, 56.54364655200004), (-5.1105850899999155, 56.52586497600004), (-5.125965949999909, 56.51048411700003), (-5.166900193999936, 56.49005768400008), (-5.190174933999913, 56.46865469000005), (-5.201079881999931, 56.462103583000044), (-5.243763800999943, 56.45921458500004), (-5.350168423999946, 56.47296784100007), (-5.378081834999932, 56.458970445000034), (-5.394276495999918, 56.46548086100006), (-5.4105525379999335, 56.50364817900004), (-5.42414303299995, 56.500067450000074), (-5.4359431629999335, 56.49115631700005), (-5.454986131999931, 56.46954987200007), (-5.468617316999939, 56.47573476800005), (-5.433338995999918, 56.52362702000005), (-5.427642381999931, 56.53782786700003), (-5.4037979809999115, 56.524603583000044), (-5.379261847999942, 56.519191799000055), (-5.3566788399999155, 56.51968008000006), (-5.3382869129999335, 56.52415599200003), (-5.2905167309999115, 56.54466380400004), (-5.265044725999928, 56.551214911000045), (-5.252552863999938, 56.556341864000046), (-5.242054816999939, 56.56513092700004), (-5.27562415299991, 56.553615627000056), (-5.286773240999935, 56.552069403000075), (-5.306792772999927, 56.552801825000074), (-5.3109431629999335, 56.552069403000075), (-5.327707485999952, 56.54466380400004), (-5.338693813999953, 56.542303778000075), (-5.360340949999909, 56.53221263200004), (-5.372425910999937, 56.53034088700008), (-5.384348110999952, 56.53343333500004), (-5.400502081999946, 56.54364655200004), (-5.413929816999939, 56.54466380400004), (-5.410878058999913, 56.552069403000075), (-5.407297329999949, 56.55532461100006), (-5.402699347999942, 56.55744049700007), (-5.396636522999927, 56.561712958000044), (-5.392689581999946, 56.566473700000074), (-5.3893123039999296, 56.57489655200004), (-5.386626756999931, 56.57880280200004), (-5.360707160999937, 56.60626862200007), (-5.351918097999942, 56.612941799000055), (-5.31086178299995, 56.63361237200007), (-5.304514126999948, 56.64016347900008), (-5.298451300999943, 56.64642975500004), (-5.317779100999928, 56.65387604400007), (-5.317779100999928, 56.661322333000044), (-5.309071417999917, 56.66425202000005), (-5.286773240999935, 56.674994208000044), (-5.261463995999918, 56.67332591400003), (-5.248199022999927, 56.67405833500004), (-5.218902147999927, 56.688666083000044), (-5.196441209999932, 56.688666083000044), (-5.153309699999909, 56.68121979400007), (-5.132639126999948, 56.68451569200005), (-5.093373175999943, 56.69904205900008), (-5.012806769999941, 56.70929596600007), (-4.9955948559999115, 56.71596914300005), (-5.1605525379999335, 56.69586823100008), (-5.238270636999914, 56.71662018400008), (-5.23851477799991, 56.72256094000005), (-5.228423631999931, 56.73647695500006), (-5.222075975999928, 56.741522528000075), (-5.154652472999942, 56.78229401200008), (-5.136382615999935, 56.79877350500004), (-5.119740363999938, 56.818426825000074), (-5.179066535999937, 56.78925202000005), (-5.187489386999914, 56.78115469000005), (-5.191761847999942, 56.774644273000035), (-5.202259894999941, 56.76911041900007), (-5.214670376999948, 56.76520416900007), (-5.224964972999942, 56.763739325000074), (-5.233469204999949, 56.76068756700005), (-5.237049933999913, 56.75336334800005), (-5.2389216789999296, 56.74445221600007), (-5.242054816999939, 56.73647695500006), (-5.255238410999937, 56.721584377000056), (-5.268462693999936, 56.71308014500005), (-5.283355272999927, 56.70937734600005), (-5.30101477799991, 56.70856354400007), (-5.3098038399999155, 56.70648834800005), (-5.319162563999953, 56.69749583500004), (-5.34015865799995, 56.693060614000046), (-5.348378058999913, 56.687201239000046), (-5.359364386999914, 56.674994208000044), (-5.388050910999937, 56.65521881700005), (-5.403879360999952, 56.64923737200007), (-5.4242244129999335, 56.64704010600008), (-5.434396938999953, 56.64288971600007), (-5.4487198559999115, 56.62457916900007), (-5.458119269999941, 56.620347398000035), (-5.470773891999954, 56.618394273000035), (-5.482574022999927, 56.613267320000034), (-5.493316209999932, 56.60639069200005), (-5.53343665299991, 56.57290273600006), (-5.599598761999914, 56.52903880400004), (-5.667388475999928, 56.498480536000045), (-5.67406165299991, 56.49689362200007), (-5.683013475999928, 56.50063711100006), (-5.694691535999937, 56.51386139500005), (-5.70539303299995, 56.51666901200008), (-5.721791144999941, 56.51850006700005), (-5.740834113999938, 56.52326080900008), (-5.7582087879999335, 56.52997467700004), (-5.770253058999913, 56.53782786700003), (-5.7551977199999556, 56.554022528000075), (-5.751047329999949, 56.56199778900003), (-5.749134894999941, 56.571966864000046), (-5.756662563999953, 56.571966864000046), (-5.793853318999936, 56.54328034100007), (-5.8543595039999445, 56.550482489000046), (-6.0034073559999115, 56.61871979400007), (-6.009836391999954, 56.62653229400007), (-6.008168097999942, 56.642279364000046), (-5.998036261999914, 56.64988841400003), (-5.983509894999941, 56.65281810100004), (-5.933583136999914, 56.654730536000045), (-5.899037238999938, 56.650824286000045), (-5.866851365999935, 56.64154694200005), (-5.8391820949999556, 56.62653229400007), (-5.831695115999935, 56.633978583000044), (-5.855620897999927, 56.64472077000005), (-5.865589972999942, 56.65143463700008), (-5.865834113999938, 56.661322333000044), (-5.75999915299991, 56.70075104400007), (-5.735503709999932, 56.702337958000044), (-5.672596808999913, 56.68414948100008), (-5.647368943999936, 56.68121979400007), (-5.5941462879999335, 56.68333567900004), (-5.564808722999942, 56.68764883000006), (-5.543690558999913, 56.69546133000006), (-5.636545376999948, 56.688666083000044), (-5.658558722999942, 56.690741278000075), (-5.708851691999939, 56.70856354400007), (-5.749989386999914, 56.714544989000046), (-5.859038865999935, 56.68121979400007), (-5.89679928299995, 56.675116278000075), (-5.907378709999932, 56.674994208000044), (-5.9203181629999335, 56.67796458500004), (-5.942738410999937, 56.686753648000035), (-5.955555792999917, 56.688666083000044), (-6.0248917309999115, 56.68569570500006), (-6.098622199999909, 56.696966864000046), (-6.123850063999953, 56.69562409100007), (-6.143544074999909, 56.684881903000075), (-6.161732550999943, 56.67820872600004), (-6.186594204999949, 56.68109772300005), (-6.2096248039999296, 56.68846263200004), (-6.222767706999946, 56.69546133000006), (-6.228179490999935, 56.70107656500005), (-6.232533331999946, 56.70652903900003), (-6.235340949999909, 56.71238841400003), (-6.236398891999954, 56.71906159100007), (-6.234486456999946, 56.728583075000074), (-6.229562954999949, 56.72907135600008), (-6.222767706999946, 56.72719961100006), (-6.215321417999917, 56.72964101800005), (-6.193470831999946, 56.74852122600004), (-6.1805313789999445, 56.75462474200003), (-6.026966925999943, 56.763739325000074), (-6.0148819649999155, 56.76703522300005), (-5.979888475999928, 56.78156159100007), (-5.965199347999942, 56.784857489000046), (-5.948231574999909, 56.782538153000075), (-5.937977667999917, 56.77692291900007), (-5.928537563999953, 56.769964911000045), (-5.913644985999952, 56.763739325000074), (-5.860910610999952, 56.75079987200007), (-5.8522029289999296, 56.746975002000056), (-5.853342251999948, 56.757879950000074), (-5.858143683999913, 56.768459377000056), (-5.8683975899999155, 56.77586497600004), (-5.886341925999943, 56.777411200000074), (-5.886341925999943, 56.784857489000046), (-5.874012824999909, 56.78571198100008), (-5.861805792999917, 56.78510163000004), (-5.850087042999917, 56.782456773000035), (-5.8391820949999556, 56.777411200000074), (-5.8246150379999335, 56.78758372600004), (-5.8020727199999556, 56.79181549700007), (-5.7766007149999155, 56.787990627000056), (-5.756662563999953, 56.784857489000046), (-5.831695115999935, 56.80536530200004), (-5.8508194649999155, 56.818019924000055), (-5.851185675999943, 56.82892487200007), (-5.837473110999952, 56.83661530200004), (-5.7338761059999115, 56.84479401200008), (-5.692738410999937, 56.85492584800005), (-5.66038977799991, 56.87299225500004), (-5.673573370999918, 56.87653229400007), (-5.692005988999938, 56.87531159100007), (-5.7084854809999115, 56.87055084800005), (-5.724354620999918, 56.85382721600007), (-5.744496222999942, 56.85415273600006), (-5.783924933999913, 56.85993073100008), (-5.775380011999914, 56.86994049700007), (-5.735503709999932, 56.89411041900007), (-5.7805883449999556, 56.89874909100007), (-5.874867316999939, 56.887152411000045), (-5.9211319649999155, 56.89411041900007), (-5.8875626289999445, 56.89911530200004), (-5.8522029289999296, 56.90033600500004), (-5.8522029289999296, 56.90770091400003), (-5.859852667999917, 56.91054922100005), (-5.8801163399999155, 56.92202383000006), (-5.8625382149999155, 56.93374258000006), (-5.851429816999939, 56.95425039300005), (-5.842518683999913, 56.977443752000056), (-5.831695115999935, 56.99713776200008), (-5.814116990999935, 57.00950755400004), (-5.786040818999936, 57.02057526200008), (-5.755238410999937, 57.026556708000044), (-5.729318813999953, 57.02383047100005), (-5.719878709999932, 57.017564195000034), (-5.699940558999913, 56.998114325000074), (-5.688303188999953, 56.98969147300005), (-5.67406165299991, 56.983587958000044), (-5.658558722999942, 56.97947825700004), (-5.625599738999938, 56.976629950000074), (-5.571278449999909, 56.98383209800005), (-5.523264126999948, 56.99713776200008), (-5.523264126999948, 57.003973700000074), (-5.540435350999928, 57.001166083000044), (-5.556507941999939, 56.996079820000034), (-5.571278449999909, 56.99331289300005), (-5.5846248039999296, 56.99713776200008), (-5.607085740999935, 56.98851146000004), (-5.628814256999931, 56.991888739000046), (-5.6498917309999115, 56.999660549000055), (-5.6703181629999335, 57.003973700000074), (-5.685536261999914, 57.00958893400008), (-5.681711391999954, 57.02240631700005), (-5.680043097999942, 57.03620026200008), (-5.701975063999953, 57.044907945000034), (-5.710926886999914, 57.044175523000035), (-5.731353318999936, 57.03900788000004), (-5.742339647999927, 57.03807200700004), (-5.752552863999938, 57.04059479400007), (-5.769602016999954, 57.04975006700005), (-5.780181443999936, 57.05174388200004), (-5.791127081999946, 57.05927155200004), (-5.776193813999953, 57.075832424000055), (-5.734486456999946, 57.10541413000004), (-5.722645636999914, 57.116441148000035), (-5.715646938999953, 57.12006256700005), (-5.703277147999927, 57.120754299000055), (-5.673695441999939, 57.11904531500005), (-5.663482225999928, 57.12372467700004), (-5.645863410999937, 57.12946198100008), (-5.620838995999918, 57.12409088700008), (-5.57843990799995, 57.10639069200005), (-5.558257615999935, 57.10040924700007), (-5.4598282539999445, 57.09979889500005), (-5.454986131999931, 57.10297272300005), (-5.447417772999927, 57.11017487200007), (-5.430775519999941, 57.11074453300006), (-5.41429602799991, 57.10822174700007), (-5.407215949999909, 57.10639069200005), (-5.400380011999914, 57.10639069200005), (-5.400380011999914, 57.11383698100008), (-5.420033331999946, 57.12067291900007), (-5.503895636999914, 57.11269765800006), (-5.527414516999954, 57.107489325000074), (-5.540638800999943, 57.10639069200005), (-5.5477188789999445, 57.11009349200003), (-5.573312954999949, 57.12787506700005), (-5.5846248039999296, 57.133693752000056), (-5.668446417999917, 57.147650458000044), (-5.6808975899999155, 57.157904364000046), (-5.673817511999914, 57.174994208000044), (-5.638824022999927, 57.202378648000035), (-5.625599738999938, 57.21625397300005), (-5.644154425999943, 57.23322174700007), (-5.620106574999909, 57.25214264500005), (-5.578236456999946, 57.26675039300005), (-5.543690558999913, 57.27090078300006), (-5.511586066999939, 57.25763580900008), (-5.480091925999943, 57.23700592700004), (-5.446278449999909, 57.22304922100005), (-5.407215949999909, 57.22992584800005), (-5.407215949999909, 57.23672109600005), (-5.448841925999943, 57.24209219000005), (-5.458119269999941, 57.24664948100008), (-5.47288977799991, 57.26121653900003), (-5.482899542999917, 57.268011786000045), (-5.49250240799995, 57.27090078300006), (-5.501942511999914, 57.27765534100007), (-5.4889216789999296, 57.29242584800005), (-5.464833136999914, 57.306626695000034), (-5.4406632149999155, 57.311835028000075), (-5.4406632149999155, 57.31928131700005), (-5.464995897999927, 57.32493724200003), (-5.4817602199999556, 57.31671784100007), (-5.494292772999927, 57.30442942900004), (-5.50617428299995, 57.298163153000075), (-5.523426886999914, 57.29515208500004), (-5.558461066999939, 57.28143952000005), (-5.57843990799995, 57.27765534100007), (-5.599436001999948, 57.27924225500004), (-5.637440558999913, 57.28900788000004), (-5.656971808999913, 57.29132721600007), (-5.7000626289999445, 57.28359609600005), (-5.720570441999939, 57.284491278000075), (-5.729318813999953, 57.298163153000075), (-5.7252498039999296, 57.30158112200007), (-5.701975063999953, 57.33234284100007), (-5.6937556629999335, 57.337103583000044), (-5.671986456999946, 57.34442780200004), (-5.663482225999928, 57.349676825000074), (-5.654367641999954, 57.353949286000045), (-5.647206183999913, 57.34992096600007), (-5.6414688789999445, 57.34320709800005), (-5.636545376999948, 57.33978913000004), (-5.613189256999931, 57.34198639500005), (-5.5012914699999556, 57.37099844000005), (-5.456654425999943, 57.39354075700004), (-5.4481095039999445, 57.42169830900008), (-5.46507727799991, 57.423895575000074), (-5.492054816999939, 57.40875885600008), (-5.5375056629999335, 57.373928127000056), (-5.563465949999909, 57.36310455900008), (-5.586659308999913, 57.36505768400008), (-5.610910610999952, 57.37140534100007), (-5.6399633449999556, 57.373928127000056), (-5.615589972999942, 57.382473049000055), (-5.607085740999935, 57.389105536000045), (-5.609201626999948, 57.397772528000075), (-5.617746548999946, 57.41010163000004), (-5.619618292999917, 57.41669342700004), (-5.624012824999909, 57.41640859600005), (-5.6399633449999556, 57.40802643400008), (-5.707183397999927, 57.35976797100005), (-5.732411261999914, 57.352769273000035), (-5.784575975999928, 57.34857819200005), (-5.807769334999932, 57.35492584800005), (-5.8248591789999296, 57.39435455900008), (-5.822255011999914, 57.39350006700005), (-5.817372199999909, 57.39520905200004), (-5.812855597999942, 57.398098049000055), (-5.8111873039999296, 57.40119049700007), (-5.813872850999928, 57.40452708500004), (-5.8231095039999445, 57.41233958500004), (-5.8248591789999296, 57.41547272300005), (-5.825266079999949, 57.428900458000044), (-5.821888800999943, 57.435532945000034), (-5.8111873039999296, 57.44220612200007), (-5.8215225899999155, 57.44546133000006), (-5.852528449999909, 57.450384833000044), (-5.859038865999935, 57.45270416900007), (-5.861195441999939, 57.46344635600008), (-5.870513475999928, 57.48078034100007), (-5.872670050999943, 57.49371979400007), (-5.869699673999946, 57.500881252000056), (-5.856068488999938, 57.51780833500004), (-5.8522029289999296, 57.52411530200004), (-5.8510636059999115, 57.538397528000075), (-5.851470506999931, 57.55109284100007), (-5.847075975999928, 57.55890534100007), (-5.831695115999935, 57.55882396000004), (-5.833851691999939, 57.563381252000056), (-5.837025519999941, 57.57477448100008), (-5.8391820949999556, 57.579291083000044), (-5.821400519999941, 57.583197333000044), (-5.803618943999936, 57.581366278000075), (-5.7863663399999155, 57.57518138200004), (-5.732574022999927, 57.54523346600007), (-5.715646938999953, 57.538397528000075), (-5.707020636999914, 57.542303778000075), (-5.68976803299995, 57.52789948100008), (-5.6808975899999155, 57.52411530200004), (-5.650868292999917, 57.51264069200005), (-5.6399633449999556, 57.511053778000075), (-5.645334438999953, 57.51666901200008), (-5.648304816999939, 57.52187734600005), (-5.650542772999927, 57.52680084800005), (-5.6535538399999155, 57.53156159100007), (-5.5815323559999115, 57.538397528000075), (-5.5402725899999155, 57.534491278000075), (-5.5168350899999155, 57.534857489000046), (-5.512684699999909, 57.54148997600004), (-5.543120897999927, 57.55536530200004), (-5.588368292999917, 57.56102122600004), (-5.632720506999931, 57.55768463700008), (-5.66038977799991, 57.544582424000055), (-5.694488084999932, 57.56631094000005), (-5.689198370999918, 57.56940338700008), (-5.6808975899999155, 57.579291083000044), (-5.714222785999937, 57.58270905200004), (-5.7316788399999155, 57.59829336100006), (-5.744252081999946, 57.61798737200007), (-5.762806769999941, 57.633978583000044), (-5.778146938999953, 57.63743724200003), (-5.7936091789999296, 57.63857656500005), (-5.8058975899999155, 57.642645575000074), (-5.8111873039999296, 57.65509674700007), (-5.805409308999913, 57.667181708000044), (-5.785023566999939, 57.67951080900008), (-5.790760870999918, 57.68854401200008), (-5.790760870999918, 57.69599030200004), (-5.753570115999935, 57.707464911000045), (-5.734486456999946, 57.70795319200005), (-5.704986131999931, 57.69013092700004), (-5.692494269999941, 57.691066799000055), (-5.68195553299995, 57.69871653900003), (-5.67406165299991, 57.70966217700004), (-5.685170050999943, 57.71141185100004), (-5.692290818999936, 57.716498114000046), (-5.698841925999943, 57.723089911000045), (-5.708851691999939, 57.72955963700008), (-5.720529751999948, 57.73338450700004), (-5.803822394999941, 57.743841864000046), (-5.80695553299995, 57.75462474200003), (-5.8020727199999556, 57.780585028000075), (-5.803822394999941, 57.792222398000035), (-5.801258917999917, 57.800441799000055), (-5.809925910999937, 57.82062409100007), (-5.8111873039999296, 57.833197333000044), (-5.807362433999913, 57.84393952000005), (-5.799956834999932, 57.85370514500005), (-5.789540167999917, 57.86200592700004), (-5.776519334999932, 57.86790599200003), (-5.751128709999932, 57.87335846600007), (-5.724761522999927, 57.87352122600004), (-5.698638475999928, 57.86908600500004), (-5.67406165299991, 57.86050039300005), (-5.677886522999927, 57.846909898000035), (-5.674794074999909, 57.82709381700005), (-5.667958136999914, 57.80695221600007), (-5.66038977799991, 57.792222398000035), (-5.650542772999927, 57.78180573100008), (-5.6373591789999296, 57.77423737200007), (-5.622141079999949, 57.77020905200004), (-5.60578365799995, 57.77049388200004), (-5.613270636999914, 57.77521393400008), (-5.617909308999913, 57.78021881700005), (-5.625599738999938, 57.792222398000035), (-5.613026495999918, 57.792629299000055), (-5.603260870999918, 57.791083075000074), (-5.5846248039999296, 57.784816799000055), (-5.591175910999937, 57.80442942900004), (-5.587025519999941, 57.81858958500004), (-5.5852758449999556, 57.83144765800006), (-5.598988410999937, 57.846869208000044), (-5.6375626289999445, 57.86635976800005), (-5.650380011999914, 57.87775299700007), (-5.6399633449999556, 57.88784414300005), (-5.6476944649999155, 57.88898346600007), (-5.6507869129999335, 57.89081452000005), (-5.6535538399999155, 57.89468008000006), (-5.643950975999928, 57.90420156500005), (-5.620757615999935, 57.92088450700004), (-5.6126195949999556, 57.92877838700008), (-5.598215298999946, 57.91901276200008), (-5.587310350999928, 57.91510651200008), (-5.550526495999918, 57.91510651200008), (-5.556263800999943, 57.88776276200008), (-5.527902798999946, 57.86758047100005), (-5.487049933999913, 57.85586172100005), (-5.454986131999931, 57.85370514500005), (-5.46117102799991, 57.86050039300005), (-5.449045376999948, 57.869126695000034), (-5.437123175999943, 57.897650458000044), (-5.427642381999931, 57.908270575000074), (-5.4149063789999445, 57.90814850500004), (-5.369496222999942, 57.89752838700008), (-5.355620897999927, 57.89126211100006), (-5.327504035999937, 57.87327708500004), (-5.293853318999936, 57.86204661700003), (-5.221587693999936, 57.846869208000044), (-5.236317511999914, 57.86078522300005), (-5.2475479809999115, 57.86701080900008), (-5.276763475999928, 57.87417226800005), (-5.320668097999942, 57.898504950000074), (-5.384917772999927, 57.914129950000074), (-5.39289303299995, 57.91819896000004), (-5.394398566999939, 57.923895575000074), (-5.396839972999942, 57.926214911000045), (-5.3973282539999445, 57.928900458000044), (-5.39289303299995, 57.935614325000074), (-5.386545376999948, 57.936428127000056), (-5.378977016999954, 57.93183014500005), (-5.3717341789999296, 57.93105703300006), (-5.366200324999909, 57.943060614000046), (-5.3471573559999115, 57.936712958000044), (-5.319162563999953, 57.91474030200004), (-5.297352667999917, 57.908270575000074), (-5.2860001289999445, 57.90875885600008), (-5.266957160999937, 57.91400788000004), (-5.2562556629999335, 57.91510651200008), (-5.2436417309999115, 57.91290924700007), (-5.22101803299995, 57.90403880400004), (-5.211293097999942, 57.90208567900004), (-5.198801235999952, 57.897772528000075), (-5.162261522999927, 57.87848541900007), (-5.1199845039999445, 57.86798737200007), (-5.0911352199999556, 57.84031810100004), (-5.070790167999917, 57.833197333000044), (-5.07648678299995, 57.83852773600006), (-5.083404100999928, 57.84756094000005), (-5.0893448559999115, 57.85724518400008), (-5.091867641999954, 57.86420319200005), (-5.0971573559999115, 57.87091705900008), (-5.197255011999914, 57.91787344000005), (-5.221587693999936, 57.92133209800005), (-5.221587693999936, 57.92877838700008), (-5.201893683999913, 57.92865631700005), (-5.193959113999938, 57.935980536000045), (-5.19554602799991, 57.94765859600005), (-5.204497850999928, 57.960150458000044), (-5.216704881999931, 57.96588776200008), (-5.2488907539999445, 57.96938711100006), (-5.2631729809999115, 57.976548570000034), (-5.292632615999935, 57.98061758000006), (-5.333892381999931, 58.00853099200003), (-5.359364386999914, 58.011379299000055), (-5.357167120999918, 58.01406484600005), (-5.3566788399999155, 58.014878648000035), (-5.351918097999942, 58.01752350500004), (-5.366932745999918, 58.02887604400007), (-5.386586066999939, 58.032538153000075), (-5.427642381999931, 58.03119538000004), (-5.424305792999917, 58.03554922100005), (-5.422352667999917, 58.03896719000005), (-5.419585740999935, 58.04205963700008), (-5.413929816999939, 58.04547760600008), (-5.413929816999939, 58.05231354400007), (-5.447010870999918, 58.08437734600005), (-5.428089972999942, 58.09796784100007), (-5.390044725999928, 58.09218984600005), (-5.366200324999909, 58.06598541900007), (-5.344309048999946, 58.075506903000075), (-5.322865363999938, 58.07172272300005), (-5.300770636999914, 58.07013580900008), (-5.276763475999928, 58.08641185100004), (-5.283070441999939, 58.08641185100004), (-5.278065558999913, 58.09625885600008), (-5.2787979809999115, 58.10537344000005), (-5.283558722999942, 58.11347077000005), (-5.2905167309999115, 58.12055084800005), (-5.276763475999928, 58.12055084800005), (-5.276763475999928, 58.127386786000045), (-5.297352667999917, 58.134833075000074), (-5.284087693999936, 58.14008209800005), (-5.255523240999935, 58.143784898000035), (-5.242054816999939, 58.14789459800005), (-5.242054816999939, 58.15534088700008), (-5.275054490999935, 58.15452708500004), (-5.290842251999948, 58.156317450000074), (-5.304798956999946, 58.162095445000034), (-5.297352667999917, 58.168402411000045), (-5.304798956999946, 58.17332591400003), (-5.313059048999946, 58.17731354400007), (-5.321888800999943, 58.18024323100008), (-5.331450975999928, 58.18203359600005), (-5.3293350899999155, 58.186712958000044), (-5.326161261999914, 58.198431708000044), (-5.323963995999918, 58.203111070000034), (-5.336822068999936, 58.203192450000074), (-5.346791144999941, 58.20685455900008), (-5.39289303299995, 58.24469635600008), (-5.3920792309999115, 58.261379299000055), (-5.375884568999936, 58.26422760600008), (-5.352894660999937, 58.25893789300005), (-5.31078040299991, 58.243394273000035), (-5.293853318999936, 58.24091217700004), (-5.276966925999943, 58.243394273000035), (-5.237294074999909, 58.25763580900008), (-5.2160538399999155, 58.261419989000046), (-5.194325324999909, 58.25999583500004), (-5.173207160999937, 58.25092194200005), (-5.165638800999943, 58.258246161000045), (-5.152251756999931, 58.264837958000044), (-5.138335740999935, 58.269598700000074), (-5.129383917999917, 58.27138906500005), (-5.11156165299991, 58.26825592700004), (-5.0812882149999155, 58.25409577000005), (-5.0676977199999556, 58.25092194200005), (-5.017730272999927, 58.253241278000075), (-5.002430792999917, 58.25092194200005), (-4.933583136999914, 58.22304922100005), (-4.943430141999954, 58.233587958000044), (-4.954823370999918, 58.23981354400007), (-4.982004360999952, 58.25092194200005), (-4.968861456999946, 58.25678131700005), (-4.940337693999936, 58.259466864000046), (-4.926747199999909, 58.26459381700005), (-4.990223761999914, 58.27142975500004), (-5.009917772999927, 58.27138906500005), (-5.018055792999917, 58.26862213700008), (-5.029367641999954, 58.25971100500004), (-5.040028449999909, 58.25775788000004), (-5.0501195949999556, 58.25991445500006), (-5.0707087879999335, 58.269232489000046), (-5.081654425999943, 58.27138906500005), (-5.096424933999913, 58.27676015800006), (-5.125965949999909, 58.30019765800006), (-5.1362198559999115, 58.305568752000056), (-5.137440558999913, 58.30927155200004), (-5.156361456999946, 58.32461172100005), (-5.160145636999914, 58.326605536000045), (-5.167795376999948, 58.33926015800006), (-5.171009894999941, 58.34666575700004), (-5.173207160999937, 58.353949286000045), (-5.153309699999909, 58.353949286000045), (-5.1634008449999556, 58.364569403000075), (-5.162912563999953, 58.37449778900003), (-5.155913865999935, 58.384466864000046), (-5.146473761999914, 58.394964911000045), (-5.145497199999909, 58.400051174000055), (-5.14671790299991, 58.40664297100005), (-5.146839972999942, 58.41242096600007), (-5.143055792999917, 58.41478099200003), (-5.135487433999913, 58.413763739000046), (-5.122222459999932, 58.40957265800006), (-5.116037563999953, 58.40859609600005), (-5.057972785999937, 58.38727448100008), (-5.016184048999946, 58.38812897300005), (-5.043934699999909, 58.400091864000046), (-5.0533748039999296, 58.40664297100005), (-5.0502823559999115, 58.41478099200003), (-5.0570369129999335, 58.42218659100007), (-5.066151495999918, 58.41714101800005), (-5.076161261999914, 58.414496161000045), (-5.086822068999936, 58.41388580900008), (-5.0980525379999335, 58.41478099200003), (-5.0980525379999335, 58.42218659100007), (-5.08812415299991, 58.421942450000074), (-5.085031704999949, 58.42218659100007), (-5.085031704999949, 58.429022528000075), (-5.091786261999914, 58.429754950000074), (-5.09601803299995, 58.43146393400008), (-5.105539516999954, 58.43650950700004), (-5.0501195949999556, 58.45380280200004), (-5.025542772999927, 58.447699286000045), (-4.9955948559999115, 58.43650950700004), (-5.105539516999954, 58.48737213700008), (-5.105620897999927, 58.505560614000046), (-5.103667772999927, 58.51422760600008), (-5.095855272999927, 58.518866278000075), (-5.042795376999948, 58.53546784100007), (-5.0279841789999296, 58.54409414300005), (-5.016184048999946, 58.55939362200007), (-5.0229386059999115, 58.55939362200007), (-5.015207485999952, 58.580064195000034), (-5.011586066999939, 58.60057200700004), (-5.004953579999949, 58.61774323100008), (-4.988189256999931, 58.62832265800006), (-4.859486456999946, 58.61322663000004), (-4.835926886999914, 58.60504791900007), (-4.818104620999918, 58.59292226800005), (-4.817941860999952, 58.587591864000046), (-4.81281490799995, 58.571966864000046), (-4.806752081999946, 58.55841705900008), (-4.803822394999941, 58.55939362200007), (-4.804595506999931, 58.54832591400003), (-4.807240363999938, 58.53961823100008), (-4.811634894999941, 58.53204987200007), (-4.818104620999918, 58.524644273000035), (-4.799794074999909, 58.532456773000035), (-4.791818813999953, 58.54165273600006), (-4.7899063789999445, 58.55174388200004), (-4.790150519999941, 58.562486070000034), (-4.785755988999938, 58.577053127000056), (-4.777088995999918, 58.583319403000075), (-4.771595831999946, 58.59039948100008), (-4.776519334999932, 58.60716380400004), (-4.758859829999949, 58.59910716400003), (-4.7280167309999115, 58.577460028000075), (-4.7113337879999335, 58.57306549700007), (-4.683257615999935, 58.56150950700004), (-4.670399542999917, 58.55939362200007), (-4.660023566999939, 58.555853583000044), (-4.659291144999941, 58.54755280200004), (-4.663238084999932, 58.538397528000075), (-4.6673070949999556, 58.53204987200007), (-4.6790258449999556, 58.52391185100004), (-4.714466925999943, 58.50560130400004), (-4.732411261999914, 58.480454820000034), (-4.751535610999952, 58.46161530200004), (-4.7609757149999155, 58.44798411700003), (-4.74242102799991, 58.44953034100007), (-4.682972785999937, 58.48456452000005), (-4.673451300999943, 58.48737213700008), (-4.6668595039999445, 58.50291575700004), (-4.650502081999946, 58.50995514500005), (-4.630441860999952, 58.514960028000075), (-4.612131313999953, 58.524644273000035), (-4.6010636059999115, 58.54193756700005), (-4.595122850999928, 58.56000397300005), (-4.584950324999909, 58.57416413000004), (-4.560536261999914, 58.57990143400008), (-4.517486131999931, 58.575506903000075), (-4.475493943999936, 58.565619208000044), (-4.426503058999913, 58.54637278900003), (-4.426503058999913, 58.53888580900008), (-4.427886522999927, 58.53530508000006), (-4.428700324999909, 58.53473541900007), (-4.426503058999913, 58.524644273000035), (-4.449940558999913, 58.510199286000045), (-4.464751756999931, 58.49201080900008), (-4.477650519999941, 58.47134023600006), (-4.4953507149999155, 58.44953034100007), (-4.478098110999952, 58.453558661000045), (-4.46117102799991, 58.46246979400007), (-4.43390865799995, 58.483628648000035), (-4.432728644999941, 58.487616278000075), (-4.4339900379999335, 58.49237702000005), (-4.4342341789999296, 58.49628327000005), (-4.430165167999917, 58.49799225500004), (-4.425933397999927, 58.49909088700008), (-4.385365363999938, 58.52240631700005), (-4.382394985999952, 58.524644273000035), (-4.343861456999946, 58.53888580900008), (-4.317005988999938, 58.54572174700007), (-4.306996222999942, 58.54637278900003), (-4.287180141999954, 58.54291413000004), (-4.2573136059999115, 58.52798086100006), (-4.234730597999942, 58.524644273000035), (-4.248931443999936, 58.53204987200007), (-4.238189256999931, 58.536444403000075), (-4.232248501999948, 58.54242584800005), (-4.227691209999932, 58.548163153000075), (-4.22101803299995, 58.551947333000044), (-4.209706183999913, 58.55292389500005), (-4.190785285999937, 58.54783763200004), (-4.1769913399999155, 58.54637278900003), (-4.16820227799991, 58.54938385600008), (-4.1605525379999335, 58.562567450000074), (-4.149322068999936, 58.565619208000044), (-4.111195441999939, 58.565619208000044), (-4.0902400379999335, 58.56207916900007), (-4.081450975999928, 58.561835028000075), (-4.070220506999931, 58.565619208000044), (-4.061512824999909, 58.57282135600008), (-4.048817511999914, 58.58958567900004), (-4.039784308999913, 58.59292226800005), (-4.030629035999937, 58.59406159100007), (-4.029042120999918, 58.59516022300005), (-4.027821417999917, 58.59271881700005), (-4.0092667309999115, 58.57330963700008), (-4.003773566999939, 58.57062409100007), (-3.981434699999909, 58.57306549700007), (-3.8957413399999155, 58.565619208000044), (-3.8101293609999516, 58.57306549700007), (-3.7669571609999366, 58.58372630400004), (-3.6983536449999406, 58.61115143400008), (-3.659901495999918, 58.62083567900004), (-3.597564256999931, 58.62714264500005), (-3.565500454999949, 58.626613674000055), (-3.542591925999943, 58.62083567900004), (-3.552479620999918, 58.61546458500004), (-3.556263800999943, 58.61399974200003), (-3.532053188999953, 58.60211823100008), (-3.504017706999946, 58.60333893400008), (-3.447010870999918, 58.61399974200003), (-3.3914688789999445, 58.60065338700008), (-3.364084438999953, 58.600816148000035), (-3.3508194649999155, 58.62083567900004), (-3.3677465489999463, 58.624701239000046), (-3.3860570949999556, 58.631740627000056), (-3.402251756999931, 58.64203522300005), (-3.412912563999953, 58.655585028000075), (-3.3900447259999282, 58.67177969000005), (-3.3748673169999392, 58.677069403000075), (-3.3582657539999445, 58.675482489000046), (-3.3543595039999445, 58.67015208500004), (-3.35179602799991, 58.66083405200004), (-3.34788977799991, 58.652044989000046), (-3.340565558999913, 58.648138739000046), (-3.3098852199999556, 58.648138739000046), (-3.244252081999946, 58.65900299700007), (-3.204090949999909, 58.66111888200004), (-3.1519262359999516, 58.64126211100006), (-3.118763800999943, 58.64109935100004), (-3.052886522999927, 58.648138739000046), (-3.0191137359999516, 58.640326239000046), (-3.025380011999914, 58.62213776200008), (-3.0444229809999115, 58.601629950000074), (-3.049183722999942, 58.58673737200007), (-3.060454881999931, 58.57843659100007), (-3.0754288399999155, 58.56037018400008), (-3.0845434239999463, 58.551947333000044), (-3.1107478509999282, 58.53864166900007), (-3.1180313789999445, 58.53204987200007), (-3.129261847999942, 58.51264069200005), (-3.1293025379999335, 58.49640534100007), (-3.1187231109999516, 58.484442450000074), (-3.0975235669999392, 58.47748444200005), (-3.0850723949999406, 58.47825755400004), (-3.073963995999918, 58.481675523000035), (-3.064442511999914, 58.48297760600008), (-3.056630011999914, 58.47748444200005), (-3.053334113999938, 58.46576569200005), (-3.0577286449999406, 58.45685455900008), (-3.066761847999942, 58.451157945000034), (-3.077056443999936, 58.44953034100007), (-3.0863337879999335, 58.41421133000006), (-3.129790818999936, 58.36928945500006), (-3.182769334999932, 58.32843659100007), (-3.2205297519999476, 58.305568752000056), (-3.2622777989999463, 58.292629299000055), (-3.34984290299991, 58.27610911700003), (-3.38499915299991, 58.26459381700005), (-3.438099738999938, 58.236029364000046), (-3.447010870999918, 58.22675202000005), (-3.454741990999935, 58.210150458000044), (-3.473459438999953, 58.193426825000074), (-3.515288865999935, 58.168402411000045), (-3.7350154289999296, 58.07217031500005), (-3.809193488999938, 58.05190664300005), (-3.8275040359999366, 58.04205963700008), (-3.8362524079999503, 58.03143952000005), (-3.8460994129999335, 58.01117584800005), (-3.851714647999927, 58.003892320000034), (-3.8605850899999155, 57.998928127000056), (-3.8856095039999445, 57.991400458000044), (-3.9173070949999556, 57.98745351800005), (-3.981434699999909, 57.96356842700004), (-3.990956183999913, 57.96039459800005), (-3.997670050999943, 57.954413153000075), (-4.001372850999928, 57.94611237200007), (-4.001942511999914, 57.935614325000074), (-4.018299933999913, 57.940619208000044), (-4.023060675999943, 57.943060614000046), (-4.016184048999946, 57.949286200000074), (-4.0301407539999445, 57.953192450000074), (-4.055775519999941, 57.95498281500005), (-4.0843806629999335, 57.964178778000075), (-4.0891007149999155, 57.960150458000044), (-4.0863337879999335, 57.95189036700003), (-4.0776261059999115, 57.943060614000046), (-4.062652147999927, 57.93695709800005), (-4.03148352799991, 57.93618398600006), (-4.016184048999946, 57.93219635600008), (-4.009429490999935, 57.92767975500004), (-3.988270636999914, 57.908270575000074), (-4.008941209999932, 57.88959381700005), (-4.013824022999927, 57.879339911000045), (-4.009348110999952, 57.86790599200003), (-4.025135870999918, 57.868068752000056), (-4.054839647999927, 57.874335028000075), (-4.070220506999931, 57.87417226800005), (-4.0793350899999155, 57.87026601800005), (-4.0969132149999155, 57.85736725500004), (-4.1049698559999115, 57.85370514500005), (-4.132923956999946, 57.85415273600006), (-4.190419074999909, 57.87006256700005), (-4.218169725999928, 57.87417226800005), (-4.298898891999954, 57.86277903900003), (-4.3209529289999296, 57.87103913000004), (-4.353179490999935, 57.89520905200004), (-4.3723038399999155, 57.90448639500005), (-4.392404751999948, 57.908270575000074), (-4.339588995999918, 57.86570872600004), (-4.307728644999941, 57.85146719000005), (-4.269398566999939, 57.846869208000044), (-4.229074673999946, 57.85724518400008), (-4.2082413399999155, 57.85919830900008), (-4.190581834999932, 57.85028717700004), (-4.173451300999943, 57.83901601800005), (-4.1497289699999556, 57.82982005400004), (-4.1334529289999296, 57.830145575000074), (-4.1390681629999335, 57.846869208000044), (-4.0750626289999445, 57.82318756700005), (-4.0399063789999445, 57.81818268400008), (-3.9835098949999406, 57.84235260600008), (-3.9514867829999503, 57.838324286000045), (-3.933705206999946, 57.82566966400003), (-3.9473363919999542, 57.81268952000005), (-3.914784308999913, 57.80768463700008), (-3.877674933999913, 57.81671784100007), (-3.8418676419999542, 57.83490631700005), (-3.813547329999949, 57.857123114000046), (-3.798451300999943, 57.866522528000075), (-3.786040818999936, 57.86542389500005), (-3.779449022999927, 57.85565827000005), (-3.782215949999909, 57.83942291900007), (-3.790028449999909, 57.83071523600006), (-3.92601477799991, 57.734808661000045), (-3.948841925999943, 57.72492096600007), (-3.975209113999938, 57.70327383000006), (-3.988270636999914, 57.69599030200004), (-4.00804602799991, 57.693793036000045), (-4.02367102799991, 57.69782135600008), (-4.0286352199999556, 57.70770905200004), (-4.016184048999946, 57.72333405200004), (-4.042958136999914, 57.73729075700004), (-4.077951626999948, 57.73029205900008), (-4.155344204999949, 57.692572333000044), (-4.168568488999938, 57.689439195000034), (-4.1939998039999296, 57.68854401200008), (-4.2592667309999115, 57.67869700700004), (-4.277821417999917, 57.68060944200005), (-4.294789191999939, 57.68016185100004), (-4.302154100999928, 57.66860586100006), (-4.30882727799991, 57.65485260600008), (-4.324045376999948, 57.64826080900008), (-4.33820553299995, 57.64508698100008), (-4.4031876289999445, 57.60952383000006), (-4.412180141999954, 57.60297272300005), (-4.4203181629999335, 57.592962958000044), (-4.428456183999913, 57.57754140800006), (-4.423451300999943, 57.57680898600006), (-4.409901495999918, 57.582464911000045), (-4.379872199999909, 57.58934153900003), (-4.365101691999939, 57.59723541900007), (-4.3510636059999115, 57.60736725500004), (-4.340809699999909, 57.617173570000034), (-4.328724738999938, 57.626288153000075), (-4.283111131999931, 57.64142487200007), (-4.2445369129999335, 57.66303131700005), (-4.201893683999913, 57.674994208000044), (-4.1937556629999335, 57.67552317900004), (-4.182240363999938, 57.67279694200005), (-4.169016079999949, 57.663763739000046), (-4.118723110999952, 57.65770091400003), (-4.096791144999941, 57.65810781500005), (-4.0807185539999296, 57.66498444200005), (-4.068104620999918, 57.672308661000045), (-4.0246475899999155, 57.687201239000046), (-4.009348110999952, 57.68854401200008), (-4.004505988999938, 57.67597077000005), (-4.025257941999939, 57.65521881700005), (-4.0541886059999115, 57.63572825700004), (-4.083404100999928, 57.62335846600007), (-4.118560350999928, 57.592962958000044), (-4.11546790299991, 57.58783600500004), (-4.112294074999909, 57.58413320500006), (-4.1088761059999115, 57.58144765800006), (-4.1049698559999115, 57.579291083000044), (-4.151356574999909, 57.57684967700004), (-4.170643683999913, 57.570746161000045), (-4.187489386999914, 57.55882396000004), (-4.178089972999942, 57.54954661700003), (-4.184925910999937, 57.548163153000075), (-4.207997199999909, 57.552069403000075), (-4.262603318999936, 57.552069403000075), (-4.262603318999936, 57.544582424000055), (-4.233957485999952, 57.54511139500005), (-4.220285610999952, 57.543402411000045), (-4.207997199999909, 57.538397528000075), (-4.226307745999918, 57.51544830900008), (-4.237456834999932, 57.50531647300005), (-4.248931443999936, 57.49746328300006), (-4.212798631999931, 57.492173570000034), (-4.1948136059999115, 57.49160390800006), (-4.173898891999954, 57.49746328300006), (-4.157622850999928, 57.50849030200004), (-4.150054490999935, 57.51504140800006), (-4.149322068999936, 57.51788971600007), (-4.126779751999948, 57.518866278000075), (-4.116200324999909, 57.52179596600007), (-4.097523566999939, 57.53668854400007), (-4.082997199999909, 57.54441966400003), (-4.067290818999936, 57.54995351800005), (-4.0531306629999335, 57.552069403000075), (-4.034982876999948, 57.55687083500004), (-4.046457485999952, 57.56785716400003), (-4.083851691999939, 57.58612702000005), (-4.056019660999937, 57.585150458000044), (-3.9643448559999115, 57.592962958000044), (-3.8682755199999406, 57.587876695000034), (-3.8374731109999516, 57.592962958000044), (-3.6848038399999155, 57.65444570500006), (-3.625152147999927, 57.66193268400008), (-3.632557745999918, 57.65094635600008), (-3.637684699999909, 57.64622630400004), (-3.6456192699999406, 57.64142487200007), (-3.632476365999935, 57.635646877000056), (-3.6196182929999168, 57.63621653900003), (-3.606068488999938, 57.63947174700007), (-3.590972459999932, 57.64142487200007), (-3.61156165299991, 57.66811758000006), (-3.5747777989999463, 57.66111888200004), (-3.55492102799991, 57.659857489000046), (-3.535755988999938, 57.66193268400008), (-3.521473761999914, 57.66779205900008), (-3.5054418609999516, 57.67865631700005), (-3.4959610669999392, 57.69135163000004), (-3.501698370999918, 57.702826239000046), (-3.491851365999935, 57.71312083500004), (-3.4828181629999335, 57.71401601800005), (-3.4730525379999335, 57.711004950000074), (-3.460682745999918, 57.70966217700004), (-3.447865363999938, 57.71246979400007), (-3.4212540359999366, 57.72138092700004), (-3.409169074999909, 57.72333405200004), (-3.2847387359999516, 57.72044505400004), (-3.2100723949999406, 57.69399648600006), (-3.0786840489999463, 57.66941966400003), (-3.034901495999918, 57.66860586100006), (-2.994496222999942, 57.67552317900004), (-2.932687954999949, 57.69961172100005), (-2.9160863919999542, 57.702826239000046), (-2.75804602799991, 57.702826239000046), (-2.7512100899999155, 57.70062897300005), (-2.741118943999936, 57.69086334800005), (-2.731068488999938, 57.68854401200008), (-2.719878709999932, 57.690619208000044), (-2.711537238999938, 57.69399648600006), (-2.7035212879999335, 57.69472890800006), (-2.6929418609999516, 57.68854401200008), (-2.658924933999913, 57.69745514500005), (-2.573394334999932, 57.68146393400008), (-2.541981574999909, 57.68235911700003), (-2.526112433999913, 57.66860586100006), (-2.5181371739999463, 57.67011139500005), (-2.5110570949999556, 57.677801825000074), (-2.497954881999931, 57.68235911700003), (-2.4800512359999516, 57.68121979400007), (-2.4328507149999155, 57.66811758000006), (-2.425526495999918, 57.67572663000004), (-2.4177953769999476, 57.674261786000045), (-2.4087621739999463, 57.669623114000046), (-2.398060675999943, 57.66811758000006), (-2.3865860669999392, 57.671576239000046), (-2.369496222999942, 57.680568752000056), (-2.360503709999932, 57.68235911700003), (-2.3410538399999155, 57.675848700000074), (-2.3289688789999445, 57.67405833500004), (-2.3235977859999366, 57.678941148000035), (-2.32054602799991, 57.68455638200004), (-2.313384568999936, 57.68992747600004), (-2.3040665359999366, 57.69399648600006), (-2.295643683999913, 57.69599030200004), (-2.274322068999936, 57.69383372600004), (-2.230132615999935, 57.67914459800005), (-2.209950324999909, 57.67552317900004), (-2.1840714179999168, 57.67845286700003), (-2.1243383449999556, 57.702826239000046), (-2.108143683999913, 57.70498281500005), (-1.9976700509999432, 57.702826239000046), (-1.9969376289999445, 57.69904205900008), (-1.990834113999938, 57.69037506700005), (-1.982167120999918, 57.68109772300005), (-1.9735001289999445, 57.67552317900004), (-1.961293097999942, 57.674709377000056), (-1.9447322259999282, 57.68256256700005), (-1.9324845039999445, 57.68235911700003), (-1.9256892569999309, 57.678168036000045), (-1.914214647999927, 57.66474030200004), (-1.8294571609999366, 57.61347077000005), (-1.820464647999927, 57.59634023600006), (-1.817005988999938, 57.578192450000074), (-1.8113907539999445, 57.56049225500004), (-1.7960098949999406, 57.544582424000055), (-1.7960098949999406, 57.538397528000075), (-1.8000382149999155, 57.52586497600004), (-1.7895401679999168, 57.514837958000044), (-1.7611384759999282, 57.49746328300006), (-1.7753800119999141, 57.496527411000045), (-1.7821345689999362, 57.48899974200003), (-1.7812393869999141, 57.48041413000004), (-1.7717179029999102, 57.476263739000046), (-1.7593481109999516, 57.47357819200005), (-1.7659399079999503, 57.46743398600006), (-1.7891739569999459, 57.45644765800006), (-1.8301488919999542, 57.42617422100005), (-1.8474828769999476, 57.40814850500004), (-1.849964972999942, 57.39435455900008), (-1.9544978509999282, 57.341131903000075), (-1.9802953769999476, 57.31928131700005), (-2.044667120999918, 57.22650788000004), (-2.068511522999927, 57.17462799700007), (-2.074126756999931, 57.15420156500005), (-2.0714005199999406, 57.13556549700007), (-2.052357550999943, 57.12742747600004), (-2.0493057929999168, 57.118841864000046), (-2.065256313999953, 57.10053131700005), (-2.0658259759999282, 57.09983958500004), (-2.156158006999931, 57.020697333000044), (-2.1869197259999282, 56.98468659100007), (-2.200103318999936, 56.94871653900003), (-2.1971329419999392, 56.94025299700007), (-2.1912328769999476, 56.93414948100008), (-2.186268683999913, 56.92674388200004), (-2.1863907539999445, 56.91453685100004), (-2.191314256999931, 56.90892161700003), (-2.209706183999913, 56.895819403000075), (-2.213693813999953, 56.890692450000074), (-2.219878709999932, 56.87262604400007), (-2.23460852799991, 56.861395575000074), (-2.2689509759999282, 56.84634023600006), (-2.295806443999936, 56.82526276200008), (-2.3198136059999115, 56.80158112200007), (-2.336089647999927, 56.79083893400008), (-2.3918350899999155, 56.771185614000046), (-2.4086807929999168, 56.762925523000035), (-2.4264216789999296, 56.751288153000075), (-2.4359431629999335, 56.74038320500006), (-2.4407445949999556, 56.73484935100004), (-2.4516495429999168, 56.69098541900007), (-2.4637345039999445, 56.67877838700008), (-2.4774063789999445, 56.66868724200003), (-2.487456834999932, 56.65387604400007), (-2.4875382149999155, 56.64606354400007), (-2.481271938999953, 56.63239166900007), (-2.480620897999927, 56.62653229400007), (-2.4861954419999392, 56.619574286000045), (-2.504058397999927, 56.60883209800005), (-2.514556443999936, 56.591498114000046), (-2.530018683999913, 56.58075592700004), (-2.623768683999913, 56.543402411000045), (-2.6409399079999503, 56.522365627000056), (-2.6613663399999155, 56.51422760600008), (-2.6997777989999463, 56.50364817900004), (-2.708729620999918, 56.49599844000005), (-2.7276505199999406, 56.46954987200007), (-2.737294074999909, 56.46702708500004), (-2.74437415299991, 56.46954987200007), (-2.752308722999942, 56.47361888200004), (-2.764800584999932, 56.47573476800005), (-2.819325324999909, 56.47129954600007), (-3.055653449999909, 56.45213450700004), (-3.0606176419999542, 56.45172760600008), (-3.099273240999935, 56.44188060100004), (-3.1339005199999406, 56.426947333000044), (-3.238189256999931, 56.36774323100008), (-3.280181443999936, 56.35789622600004), (-3.3234757149999155, 56.36591217700004), (-3.311512824999909, 56.35651276200008), (-3.294016079999949, 56.352769273000035), (-3.2515356109999516, 56.352850653000075), (-3.230620897999927, 56.35602448100008), (-3.188384568999936, 56.37018463700008), (-3.149566209999932, 56.37555573100008), (-2.950266079999949, 56.43187083500004), (-2.9399307929999168, 56.43854401200008), (-2.930653449999909, 56.44806549700007), (-2.909087693999936, 56.45571523600006), (-2.88499915299991, 56.45799388200004), (-2.867909308999913, 56.45184967700004), (-2.8500870429999168, 56.44204336100006), (-2.8147680329999503, 56.44041575700004), (-2.8028051419999542, 56.42796458500004), (-2.800892706999946, 56.40892161700003), (-2.808257615999935, 56.391058661000045), (-2.8216039699999556, 56.376166083000044), (-2.837554490999935, 56.36591217700004), (-2.8129776679999168, 56.36591217700004), (-2.809193488999938, 56.36286041900007), (-2.8047582669999542, 56.34910716400003), (-2.8028051419999542, 56.345404364000046), (-2.7914932929999168, 56.34247467700004), (-2.7826228509999282, 56.34162018400008), (-2.7752579419999392, 56.33942291900007), (-2.768625454999949, 56.33234284100007), (-2.6771541009999282, 56.32843659100007), (-2.655262824999909, 56.32217031500005), (-2.621205206999946, 56.30442942900004), (-2.613189256999931, 56.30190664300005), (-2.5768123039999296, 56.28392161700003), (-2.5768123039999296, 56.277777411000045), (-2.6301163399999155, 56.24852122600004), (-2.648345506999931, 56.22870514500005), (-2.672027147999927, 56.22239817900004), (-2.7202042309999115, 56.21629466400003), (-2.7835994129999335, 56.19196198100008), (-2.8061417309999115, 56.188381252000056), (-2.8307185539999296, 56.190741278000075), (-2.8920792309999115, 56.20888906500005), (-2.940052863999938, 56.209418036000045), (-2.9643448559999115, 56.20563385600008), (-2.9746801419999542, 56.19830963700008), (-2.982411261999914, 56.189113674000055), (-3.0355525379999335, 56.16791413000004), (-3.0910538399999155, 56.13226959800005), (-3.107533331999946, 56.12689850500004), (-3.127552863999938, 56.12287018400008), (-3.138295050999943, 56.112209377000056), (-3.152251756999931, 56.07851797100005), (-3.1635636059999115, 56.06386953300006), (-3.1783748039999296, 56.05809153900003), (-3.2484431629999335, 56.055975653000075), (-3.268381313999953, 56.05093008000006), (-3.3030492829999503, 56.037543036000045), (-3.342681443999936, 56.02716705900008), (-3.381825324999909, 56.02338288000004), (-3.420969204999949, 56.02488841400003), (-3.5825902989999463, 56.05174388200004), (-3.671498175999943, 56.050848700000074), (-3.710031704999949, 56.05809153900003), (-3.7454320949999556, 56.07221100500004), (-3.7464900379999335, 56.072780666000085), (-3.782215949999909, 56.09218984600005), (-3.8031306629999335, 56.107123114000046), (-3.817005988999938, 56.11225006700005), (-3.8374731109999516, 56.112616278000075), (-3.8374731109999516, 56.10643138200004), (-3.777699347999942, 56.08283112200007), (-3.769154425999943, 56.07514069200005), (-3.7608536449999406, 56.07245514500005), (-3.7264298169999392, 56.03803131700005), (-3.721424933999913, 56.03070709800005), (-3.712635870999918, 56.028998114000046), (-3.693470831999946, 56.03115469000005), (-3.6866348949999406, 56.03070709800005), (-3.6795548169999392, 56.025458075000074), (-3.674794074999909, 56.01870351800005), (-3.6682836579999503, 56.01276276200008), (-3.656239386999914, 56.010199286000045), (-3.599720831999946, 56.017238674000055), (-3.5773819649999155, 56.01703522300005), (-3.405425584999932, 55.98973216400003), (-3.3582657539999445, 55.98973216400003), (-3.340891079999949, 55.99445221600007), (-3.331044074999909, 55.99408600500004), (-3.320423956999946, 55.986029364000046), (-3.303456183999913, 55.97760651200008), (-3.121815558999913, 55.96930573100008), (-3.1147354809999115, 55.966131903000075), (-3.096831834999932, 55.95197174700007), (-3.090728318999936, 55.94818756700005), (-3.078236456999946, 55.94684479400007), (-3.0156957669999542, 55.950506903000075), (-2.9399307929999168, 55.96930573100008), (-2.9166560539999296, 55.98061758000006), (-2.900054490999935, 55.996161200000074), (-2.8828832669999542, 56.00849030200004), (-2.8579809239999463, 56.010199286000045), (-2.863636847999942, 56.02228424700007), (-2.8663223949999406, 56.02676015800006), (-2.8709610669999392, 56.03070709800005), (-2.8527725899999155, 56.03978099200003), (-2.823150193999936, 56.059759833000044), (-2.8028051419999542, 56.06484609600005), (-2.635121222999942, 56.05805084800005), (-2.615956183999913, 56.053168036000045), (-2.587554490999935, 56.030951239000046), (-2.569406704999949, 56.02448151200008), (-2.57835852799991, 56.00800202000005), (-2.583648240999935, 56.00275299700007), (-2.5695694649999155, 55.99994538000004), (-2.5440567699999406, 56.00267161700003), (-2.528960740999935, 55.99656810100004), (-2.5248103509999282, 56.00055573100008), (-2.514556443999936, 56.00576406500005), (-2.507923956999946, 56.010199286000045), (-2.4932755199999406, 56.00153229400007), (-2.4525040359999366, 55.985256252000056), (-2.4143774079999503, 55.97833893400008), (-2.3509415359999366, 55.94818756700005), (-2.307769334999932, 55.93500397300005), (-2.146839972999942, 55.917303778000075), (-2.1380102199999556, 55.91461823100008), (-2.132557745999918, 55.90643952000005), (-2.13109290299991, 55.89720286700003), (-2.1287735669999392, 55.88979726800005), (-2.1209610669999392, 55.886704820000034), (-2.0994766919999392, 55.88178131700005), (-2.080189581999946, 55.86937083500004), (-2.0228572259999282, 55.80548737200007), (-2.009673631999931, 55.79083893400008), (-1.8778376939999362, 55.69489166900007), (-1.8631892569999309, 55.67161692900004), (-1.8530981109999516, 55.65932851800005), (-1.8315323559999115, 55.65070221600007), (-1.8260798819999309, 55.64362213700008), (-1.8216853509999282, 55.636419989000046), (-1.8164770169999542, 55.632879950000074), (-1.8071182929999168, 55.63450755400004), (-1.8007706369999141, 55.63922760600008), (-1.7962947259999282, 55.644232489000046), (-1.7925919259999432, 55.646551825000074), (-1.781402147999927, 55.64565664300005), (-1.768625454999949, 55.641913153000075), (-1.7564998039999296, 55.63361237200007), (-1.7476700509999432, 55.619208075000074), (-1.7679744129999335, 55.619208075000074), (-1.7679744129999335, 55.612982489000046), (-1.7559708319999459, 55.60887278900003), (-1.720855272999927, 55.614569403000075), (-1.6991267569999309, 55.612982489000046), (-1.6308487619999141, 55.58510976800005), (-1.6308487619999141, 55.57827383000006), (-1.6363419259999432, 55.57168203300006), (-1.6346736319999309, 55.56439850500004), (-1.6276749339999128, 55.55711497600004), (-1.6171768869999141, 55.55027903900003), (-1.6308487619999141, 55.544134833000044), (-1.6308487619999141, 55.53729889500005), (-1.6222224599999322, 55.534084377000056), (-1.6029353509999282, 55.52362702000005), (-1.6029353509999282, 55.516791083000044), (-1.6113175119999141, 55.50804271000004), (-1.6063533189999362, 55.503241278000075), (-1.5963435539999296, 55.49990469000005), (-1.5893448559999115, 55.49567291900007), (-1.5849503249999088, 55.483710028000075), (-1.5813695949999556, 55.41665273600006), (-1.5831192699999406, 55.40692780200004), (-1.5882869129999335, 55.39057038000004), (-1.5891007149999155, 55.385199286000045), (-1.5893448559999115, 55.37653229400007), (-1.5833227199999556, 55.354722398000035), (-1.5585831369999141, 55.32892487200007), (-1.5558162099999322, 55.31134674700007), (-1.5570369129999335, 55.306626695000034), (-1.5589900379999335, 55.302069403000075), (-1.5619197259999282, 55.29779694200005), (-1.5657445949999556, 55.29364655200004), (-1.570057745999918, 55.28620026200008), (-1.5682266919999392, 55.27960846600007), (-1.5642797519999476, 55.27326080900008), (-1.5620824859999516, 55.26666901200008), (-1.5564672519999476, 55.25503164300005), (-1.5439346999999088, 55.24388255400004), (-1.5209854809999115, 55.229396877000056), (-1.5291641919999392, 55.21625397300005), (-1.5240779289999296, 55.21010976800005), (-1.514271613999938, 55.204779364000046), (-1.507964647999927, 55.194647528000075), (-1.510812954999949, 55.184759833000044), (-1.5175675119999141, 55.176214911000045), (-1.5221248039999296, 55.16746653900003), (-1.517933722999942, 55.157131252000056), (-1.5007218089999128, 55.141791083000044), (-1.4959610669999392, 55.13458893400008), (-1.492543097999942, 55.112982489000046), (-1.4837540359999366, 55.09170156500005), (-1.4800919259999432, 55.08539459800005), (-1.4762263659999348, 55.083644924000055), (-1.4632869129999335, 55.08030833500004), (-1.459584113999938, 55.07859935100004), (-1.458078579999949, 55.07575104400007), (-1.4547013009999432, 55.067572333000044), (-1.438303188999953, 55.042303778000075), (-1.4291886059999115, 55.033270575000074), (-1.4240616529999102, 55.02435944200005), (-1.4195043609999516, 55.011704820000034), (-1.412912563999953, 55.00031159100007), (-1.4015193349999322, 54.995428778000075), (-1.398182745999918, 54.992621161000045), (-1.3702286449999406, 54.97553131700005), (-1.3626602859999366, 54.96478913000004), (-1.3617244129999335, 54.958685614000046), (-1.3635147779999102, 54.95425039300005), (-1.3640030589999128, 54.94818756700005), (-1.3628637359999516, 54.92593008000006), (-1.3603409499999088, 54.91705963700008), (-1.3531388009999432, 54.91351959800005), (-1.355824347999942, 54.904282945000034), (-1.2967830069999309, 54.77993398600006), (-1.2754613919999542, 54.74843984600005), (-1.2404679029999102, 54.72166575700004), (-1.2250870429999168, 54.71503327000005), (-1.172230597999942, 54.701239325000074), (-1.172230597999942, 54.693793036000045), (-1.1926163399999155, 54.693793036000045), (-1.192453579999949, 54.68927643400008), (-1.1907852859999366, 54.68618398600006), (-1.1851700509999432, 54.68008047100005), (-1.1827286449999406, 54.67206452000005), (-1.1788223949999406, 54.66474030200004), (-1.172922329999949, 54.65835195500006), (-1.1647029289999296, 54.652777411000045), (-1.172922329999949, 54.644191799000055), (-1.1824845039999445, 54.63922760600008), (-1.2062882149999155, 54.63296133000006), (-1.203724738999938, 54.62571849200003), (-1.1988419259999432, 54.62156810100004), (-1.1918025379999335, 54.61977773600006), (-1.1821182929999168, 54.61928945500006), (-1.1793513659999348, 54.62091705900008), (-1.1784561839999128, 54.624212958000044), (-1.1769913399999155, 54.62677643400008), (-1.172230597999942, 54.62612539300005), (-1.1695857409999348, 54.62360260600008), (-1.1654353509999282, 54.61871979400007), (-1.1629532539999445, 54.61395905200004), (-1.1647029289999296, 54.61180247600004), (-1.1526586579999503, 54.61318594000005), (-1.1467179029999102, 54.618475653000075), (-1.1380509109999366, 54.646551825000074), (-1.1205948559999115, 54.63300202000005), (-1.1036270819999459, 54.624660549000055), (-1.0842179029999102, 54.620428778000075), (-1.042062954999949, 54.61709219000005), (-0.9934789699999556, 54.59813060100004), (-0.7879125639999529, 54.56077708500004), (-0.5629776679999168, 54.47736237200007), (-0.5346573559999115, 54.461004950000074), (-0.5228572259999282, 54.44708893400008), (-0.5217992829999503, 54.43805573100008), (-0.5235896479999269, 54.43024323100008), (-0.5204158189999362, 54.42007070500006), (-0.5099991529999102, 54.41156647300005), (-0.47679602799991017, 54.39720286700003), (-0.46275794199993925, 54.38898346600007), (-0.4477432929999168, 54.37319570500006), (-0.43057206899993616, 54.349310614000046), (-0.4184464179999168, 54.32404205900008), (-0.41803951699995423, 54.303941148000035), (-0.4145401679999168, 54.297308661000045), (-0.4090063139999529, 54.29075755400004), (-0.4011938139999529, 54.28563060100004), (-0.39073645699994586, 54.28351471600007), (-0.3948868479999419, 54.273138739000046), (-0.39757239499994057, 54.269191799000055), (-0.3892716139999379, 54.26406484600005), (-0.3704727859999366, 54.247707424000055), (-0.3627823559999115, 54.24249909100007), (-0.3220108709999181, 54.23607005400004), (-0.31191972599992823, 54.231634833000044), (-0.30011959499995555, 54.224676825000074), (-0.2770889959999181, 54.21775950700004), (-0.26960201699995423, 54.20766836100006), (-0.26256262899994454, 54.18109772300005), (-0.2603653639999379, 54.176988023000035), (-0.2338761059999115, 54.16046784100007), (-0.11143958199994586, 54.13157786700003), (-0.07551021999995555, 54.11212799700007), (-0.16392981699993925, 54.08340078300006), (-0.1946915359999366, 54.06232330900008), (-0.2194718089999128, 54.022772528000075), (-0.1974177729999269, 53.99481842700004), (-0.1686905589999128, 53.929348049000055), (-0.1511124339999128, 53.899318752000056), (-0.045155402999910166, 53.801214911000045), (0.13347415500004445, 53.642645575000074), (0.1492619150000678, 53.60960521000004), (0.13689212300005238, 53.57713450700004), (0.13119550900006516, 53.573431708000044), (0.1096297540000819, 53.56289297100005), (0.1313582690000885, 53.59369538000004), (0.1359969410000872, 53.610663153000075), (0.12020918100006384, 53.61810944200005), (0.09945722700007309, 53.622300523000035), (0.056162957000083225, 53.64126211100006), (0.034515821000070446, 53.64606354400007), (0.014821811000047092, 53.64325592700004), (-0.023915167999916775, 53.62885163000004), (-0.04503333199994586, 53.62555573100008), (-0.06940670499994894, 53.626939195000034), (-0.09227454299991678, 53.63104889500005), (-0.11261959499995555, 53.63751862200007), (-0.1300349599999322, 53.64606354400007), (-0.2253311839999128, 53.719916083000044), (-0.2603653639999379, 53.73541901200008), (-0.2956436839999128, 53.738796291000085), (-0.3051651679999168, 53.73969147300005), (-0.4311417309999115, 53.71430084800005), (-0.4496964179999168, 53.71430084800005), (-0.5104874339999128, 53.71430084800005), (-0.5444229809999115, 53.70945872600004), (-0.5515030589999128, 53.71116771000004), (-0.5762426419999542, 53.72565338700008), (-0.5791723299999489, 53.72797272300005), (-0.6370336579999503, 53.73200104400007), (-0.6583552729999269, 53.72797272300005), (-0.7264705069999309, 53.70062897300005), (-0.7173559239999463, 53.69867584800005), (-0.7085668609999516, 53.695746161000045), (-0.7001846999999088, 53.691839911000045), (-0.6924535799999489, 53.68699778900003), (-0.6774796209999181, 53.702826239000046), (-0.6498103509999282, 53.710598049000055), (-0.6195369129999335, 53.71185944200005), (-0.5961807929999168, 53.70807526200008), (-0.5554906889999529, 53.69049713700008), (-0.5447485019999476, 53.683579820000034), (-0.5299373039999296, 53.67767975500004), (-0.5140274729999419, 53.681301174000055), (-0.48631751199991413, 53.69448476800005), (-0.3072403639999379, 53.71426015800006), (-0.27936764199995423, 53.707098700000074), (-0.2603653639999379, 53.68699778900003), (-0.1886287099999322, 53.620428778000075), (-0.1440323559999115, 53.606634833000044), (-0.11318925699993088, 53.58462148600006), (-0.09593665299991017, 53.57713450700004), (-0.06094316299993352, 53.57396067900004), (-0.0466202459999181, 53.570379950000074), (9.199300006912381e-05, 53.53534577000005), (0.0959578790000819, 53.488348700000074), (0.11508222700007309, 53.48322174700007), (0.1340438160000872, 53.48061758000006), (0.15186608200008322, 53.475816148000035), (0.1678166020000731, 53.464504299000055), (0.17090905000009116, 53.457017320000034), (0.1731063160000872, 53.44676341400003), (0.17579186300008587, 53.43768952000005), (0.1814884770000731, 53.43374258000006), (0.1906030610000471, 53.43187083500004), (0.21949303500008455, 53.41950104400007), (0.21192467500009116, 53.41266510600008), (0.2293400400000678, 53.40477122600004), (0.24488366000008455, 53.39093659100007), (0.2561141290000819, 53.375067450000074), (0.26042728000004445, 53.36147695500006), (0.34213300900006516, 53.22630442900004), (0.35621178500008455, 53.18854401200008), (0.3566186860000471, 53.145738023000035), (0.3357853520000731, 53.093451239000046), (0.32984459700008983, 53.08649323100008), (0.31869550900006516, 53.083685614000046), (0.29883873800008587, 53.08120351800005), (0.2824813160000872, 53.07485586100006), (0.19304446700004974, 53.02008698100008), (0.17448978000004445, 53.01544830900008), (0.16081790500004445, 53.008978583000044), (0.08212324300006912, 52.938666083000044), (0.061167839000063395, 52.924994208000044), (0.03760826900008851, 52.919175523000035), (0.022146030000044448, 52.91258372600004), (0.008555535000084546, 52.89862702000005), (0.010264519000088512, 52.88646067900004), (0.04066002700005811, 52.88507721600007), (0.09253991000008455, 52.89252350500004), (0.10564212300005238, 52.88934967700004), (0.13347415500004445, 52.87518952000005), (0.14714603000004445, 52.87201569200005), (0.17090905000009116, 52.86212799700007), (0.22242272200008983, 52.813666083000044), (0.24675540500004445, 52.79572174700007), (0.2644962900000678, 52.80369700700004), (0.2856551440000885, 52.805568752000056), (0.32553144600007045, 52.803168036000045), (0.34180748800008587, 52.79743073100008), (0.36988366000008455, 52.77301666900007), (0.38453209700008983, 52.76837799700007), (0.38453209700008983, 52.77521393400008), (0.37924238400006516, 52.79083893400008), (0.39942467500009116, 52.80951569200005), (0.42554772200008983, 52.827378648000035), (0.4386499360000471, 52.840725002000056), (0.44402103000004445, 52.86505768400008), (0.45671634200004974, 52.89199453300006), (0.47234134200004974, 52.916449286000045), (0.48568769600007045, 52.93349844000005), (0.5202742850000845, 52.95526764500005), (0.5695906910000872, 52.96930573100008), (0.6233830090000652, 52.97565338700008), (0.6718856130000859, 52.97443268400008), (0.6643986340000652, 52.98187897300005), (0.6847436860000471, 52.986395575000074), (0.7067977220000898, 52.98322174700007), (0.7291772800000444, 52.97748444200005), (0.7504988940000885, 52.97443268400008), (0.8357039720000898, 52.97443268400008), (0.8754988940000885, 52.96816640800006), (0.9210718110000471, 52.95465729400007), (0.9684350920000497, 52.94749583500004), (1.013926629000082, 52.960150458000044), (1.0034285820000832, 52.96474844000005), (0.9915470710000704, 52.96747467700004), (0.9790145190000885, 52.968410549000055), (0.9660750660000872, 52.96759674700007), (0.9660750660000872, 52.97443268400008), (1.2746688160000872, 52.92918528900003), (1.3960067070000832, 52.89142487200007), (1.6442163420000497, 52.775824286000045), (1.6733504570000832, 52.75568268400008), (1.6970320970000898, 52.73102448100008), (1.7158309250000912, 52.68374258000006), (1.7341414720000898, 52.65460846600007), (1.747243686000047, 52.62518952000005), (1.7407332690000885, 52.60390859600005), (1.7468367850000845, 52.58852773600006), (1.7487085300000444, 52.568793036000045), (1.7475692070000832, 52.53278229400007), (1.7711694670000497, 52.48590729400007), (1.7671004570000832, 52.47695547100005), (1.7544051440000885, 52.46735260600008), (1.7292586600000845, 52.41559479400007), (1.7301538420000497, 52.405910549000055), (1.7278751960000704, 52.39630768400008), (1.6836043630000859, 52.32453034100007), (1.6518660820000832, 52.289129950000074), (1.6411238940000885, 52.28180573100008), (1.6305444670000497, 52.27045319200005), (1.6282658210000704, 52.24481842700004), (1.6308699880000859, 52.19977448100008), (1.6254988940000885, 52.18036530200004), (1.6074324880000859, 52.14594147300005), (1.6035262380000859, 52.127834377000056), (1.5892033210000704, 52.100816148000035), (1.5875757170000497, 52.08698151200008), (1.582286004000082, 52.08148834800005), (1.5036727220000898, 52.060980536000045), (1.4868270190000885, 52.04901764500005), (1.4720158210000704, 52.05621979400007), (1.4668074880000859, 52.04800039300005), (1.4638778000000912, 52.035142320000034), (1.4558211600000845, 52.028509833000044), (1.4489852220000898, 52.02496979400007), (1.4248153000000912, 52.00185781500005), (1.3548283210000704, 51.95404694200005), (1.3435164720000898, 51.94285716400009), (1.332286004000082, 51.94009023600006), (1.2644149100000845, 51.99437083500004), (1.2348738940000885, 52.00031159100007), (1.1852319670000497, 52.025091864000046), (1.1578882170000497, 52.028509833000044), (1.1578882170000497, 52.02167389500005), (1.1935327480000524, 52.00079987200007), (1.2143660820000832, 51.991441148000035), (1.2602645190000885, 51.984808661000045), (1.2707625660000872, 51.98151276200008), (1.2751570970000898, 51.976996161000045), (1.2744246750000912, 51.96088288000004), (1.2710067070000832, 51.95644765800006), (1.2507430350000845, 51.95962148600006), (1.2389429050000444, 51.958644924000055), (1.2176212900000678, 51.954331773000035), (1.2057397800000444, 51.95343659100007), (1.193207227000073, 51.955511786000045), (1.1652938160000872, 51.96702708500004), (1.1430770190000885, 51.966050523000035), (1.0944930350000845, 51.955959377000056), (1.0691024100000845, 51.95343659100007), (1.0954695970000898, 51.945746161000045), (1.2620548840000652, 51.939154364000046), (1.2819930350000845, 51.946600653000075), (1.278493686000047, 51.92792389500005), (1.1995548840000652, 51.87767161700003), (1.2122501960000704, 51.87164948100008), (1.2278751960000704, 51.86737702000005), (1.2644149100000845, 51.86399974200003), (1.2747501960000704, 51.870306708000044), (1.2822371750000912, 51.880560614000046), (1.2866317070000832, 51.88165924700007), (1.288259311000047, 51.860581773000035), (1.2763778000000912, 51.84479401200008), (1.2192488940000885, 51.811835028000075), (1.167816602000073, 51.790228583000044), (1.1354272800000444, 51.78172435100004), (1.0654403000000912, 51.77529531500005), (1.0466414720000898, 51.777044989000046), (1.0372827480000524, 51.78217194200005), (1.021332227000073, 51.80255768400008), (0.9887801440000885, 51.83026764500005), (0.9798283210000704, 51.84357330900008), (0.9770613940000885, 51.82461172100005), (0.9620874360000471, 51.813788153000075), (0.9251408210000704, 51.80255768400008), (0.8942977220000898, 51.78461334800005), (0.8869735040000819, 51.782131252000056), (0.8864038420000497, 51.776678778000075), (0.8834741550000444, 51.76471588700008), (0.8789168630000859, 51.75275299700007), (0.8737085300000444, 51.747300523000035), (0.8619897800000444, 51.74555084800005), (0.8459578790000819, 51.736761786000045), (0.8357039720000898, 51.733710028000075), (0.8234969410000872, 51.73383209800005), (0.8014429050000444, 51.73969147300005), (0.7917586600000845, 51.74115631700005), (0.7671004570000832, 51.739447333000044), (0.7208764980000524, 51.728176174000055), (0.6985783210000704, 51.720038153000075), (0.7142033210000704, 51.715277411000045), (0.7324324880000859, 51.713771877000056), (0.7492781910000872, 51.70848216400009), (0.7607528000000912, 51.692694403000075), (0.7890731130000859, 51.710150458000044), (0.8530379570000832, 51.71889883000006), (0.8835555350000845, 51.72687409100007), (0.9123641290000819, 51.741522528000075), (0.9300236340000652, 51.74359772300005), (0.9455672540000819, 51.733710028000075), (0.9474389980000524, 51.72524648600006), (0.9445906910000872, 51.71548086100006), (0.9404403000000912, 51.70799388200004), (0.9381616550000444, 51.706366278000075), (0.9401961600000845, 51.698431708000044), (0.9440210300000444, 51.69057851800005), (0.9518335300000444, 51.67841217700004), (0.9417423840000652, 51.673041083000044), (0.9379988940000885, 51.664496161000045), (0.9381616550000444, 51.64126211100006), (0.9347436860000471, 51.63589101800005), (0.9267684250000912, 51.630926825000074), (0.9114689460000704, 51.62384674700007), (0.9384871750000912, 51.624986070000034), (0.9480900400000678, 51.621527411000045), (0.9518335300000444, 51.61701080900008), (0.9244897800000444, 51.588324286000045), (0.8733016290000819, 51.559475002000056), (0.8282983730000524, 51.541856187000064), (0.8162541020000731, 51.537176825000074), (0.7712508470000898, 51.52826569200005), (0.6920679050000444, 51.536322333000044), (0.6643986340000652, 51.53506094000005), (0.6637475920000497, 51.53554922100005), (0.6505639980000524, 51.53579336100006), (0.6466577480000524, 51.53534577000005), (0.6440535820000832, 51.53506094000005), (0.6427514980000524, 51.53351471600007), (0.6233830090000652, 51.52204010600008), (0.6086531910000872, 51.51898834800005), (0.5952254570000832, 51.51862213700008), (0.5822860040000819, 51.51654694200005), (0.5688582690000885, 51.50836823100008), (0.5527449880000859, 51.51797109600005), (0.5472111340000652, 51.51772695500006), (0.5254012380000859, 51.516913153000075), (0.45606530000009116, 51.505560614000046), (0.45085696700004974, 51.49827708500004), (0.44800866000008455, 51.48822663000004), (0.4416610040000819, 51.47703685100004), (0.42847741000008455, 51.46710846600007), (0.41407311300008587, 51.46190013200004), (0.39918053500008455, 51.45840078300006), (0.38453209700008983, 51.453111070000034), (0.4484155610000471, 51.45994700700004), (0.45679772200008983, 51.46312083500004), (0.4614363940000885, 51.47016022300005), (0.46485436300008587, 51.47724030200004), (0.4695744150000678, 51.48041413000004), (0.5348413420000497, 51.49168528900009), (0.6948348320000832, 51.47703685100004), (0.7094832690000885, 51.47052643400008), (0.7219344410000872, 51.456284898000035), (0.7231551440000885, 51.44672272300005), (0.7131453790000819, 51.44122955900008), (0.6923934250000912, 51.439520575000074), (0.6565047540000819, 51.444525458000044), (0.6409611340000652, 51.44415924700007), (0.6093856130000859, 51.425116278000075), (0.5727645190000885, 51.419582424000055), (0.5545353520000731, 51.412176825000074), (0.5622664720000898, 51.40656159100007), (0.5691024100000845, 51.399603583000044), (0.5765080090000652, 51.39362213700008), (0.5859481130000859, 51.391058661000045), (0.6718856130000859, 51.391058661000045), (0.7129012380000859, 51.38422272300005), (0.7049259770000731, 51.39598216400009), (0.7003686860000471, 51.409816799000055), (0.7053328790000819, 51.41950104400007), (0.7264103520000731, 51.41901276200008), (0.7283634770000731, 51.406236070000034), (0.7392684250000912, 51.387925523000035), (0.7534285820000832, 51.371527411000045), (0.7644149100000845, 51.36440664300005), (0.9772241550000444, 51.34918854400007), (1.1009220710000704, 51.37323639500005), (1.4238387380000859, 51.39207591400009), (1.4482528000000912, 51.382879950000074), (1.4391382170000497, 51.35008372600004), (1.4355574880000859, 51.343736070000034), (1.430837436000047, 51.33779531500005), (1.4251408210000704, 51.33295319200005), (1.4186304050000444, 51.32965729400007), (1.3829858730000524, 51.329779364000046), (1.3776147800000444, 51.326239325000074), (1.3806258470000898, 51.304754950000074), (1.387868686000047, 51.28790924700007), (1.4043074880000859, 51.261379299000055), (1.4130965500000912, 51.22174713700008), (1.4047957690000885, 51.18353913000004), (1.3844507170000497, 51.151678778000075), (1.3571883470000898, 51.13100820500006), (1.2903751960000704, 51.116522528000075), (1.2629500660000872, 51.10325755400004), (1.2516382170000497, 51.10252513200004), (1.2299910820000832, 51.10370514500005), (1.2181095710000704, 51.10097890800006), (1.2082625660000872, 51.09467194200005), (1.1997176440000885, 51.087591864000046), (1.1920679050000444, 51.08258698100008), (1.1722111340000652, 51.077378648000035), (1.1067000660000872, 51.07636139500005), (1.0871688160000872, 51.07298411700003), (1.0669051440000885, 51.06439850500004), (1.027598504000082, 51.04165273600006), (0.9764103520000731, 50.99445221600007), (0.9664819670000497, 50.98273346600007), (0.9690861340000652, 50.95685455900008), (0.9798283210000704, 50.91815827000005), (0.9451603520000731, 50.909369208000044), (0.8698022800000444, 50.925116278000075), (0.8022567070000832, 50.93919505400004), (0.7624617850000845, 50.930894273000035), (0.6643986340000652, 50.870306708000044), (0.6241968110000471, 50.858710028000075), (0.4074813160000872, 50.829331773000035), (0.3702905610000471, 50.818793036000045), (0.36524498800008587, 50.81899648600006), (0.35425866000008455, 50.80963776200008), (0.34441165500004445, 50.79905833500004), (0.3422957690000885, 50.79515208500004), (0.3081160820000832, 50.780951239000046), (0.2710067070000832, 50.747381903000075), (0.23389733200008322, 50.74701569200005), (0.2141219410000872, 50.748928127000056), (0.16830488400006516, 50.759833075000074), (0.1573999360000471, 50.761053778000075), (0.12208092500009116, 50.76080963700008), (0.11304772200008983, 50.76414622600004), (0.09555097700007309, 50.775051174000055), (0.07703698000005943, 50.778998114000046), (0.034515821000070446, 50.780951239000046), (0.01754804800009424, 50.784857489000046), (-0.17316646999995555, 50.829006252000056), (-0.20612545499994894, 50.83104075700004), (-0.20889238199993088, 50.83010488500008), (-0.2331436839999128, 50.821926174000055), (-0.2696833979999269, 50.831284898000035), (-0.39757239499994057, 50.802069403000075), (-0.5689591139999379, 50.802069403000075), (-0.7327367829999503, 50.767279364000046), (-0.7415665359999366, 50.769232489000046), (-0.7498673169999392, 50.773871161000045), (-0.7582087879999335, 50.77708567900004), (-0.7675675119999141, 50.774725653000075), (-0.7731013659999348, 50.76601797100005), (-0.7662654289999296, 50.74713776200008), (-0.7709854809999115, 50.73688385600008), (-0.7899470689999362, 50.73004791900007), (-0.8128149079999503, 50.73476797100005), (-0.9041235019999476, 50.77187734600005), (-0.9114884109999366, 50.77781810100004), (-0.9058731759999432, 50.78803131700005), (-0.8924861319999309, 50.794623114000046), (-0.8636368479999419, 50.802069403000075), (-0.8636368479999419, 50.808254299000055), (-0.8736059239999463, 50.812933661000045), (-0.8931371739999463, 50.82534414300005), (-0.9046931629999335, 50.829331773000035), (-0.9095352859999366, 50.82599518400008), (-0.9217016269999476, 50.821600653000075), (-0.9289444649999155, 50.82282135600008), (-0.9190160799999489, 50.83616771000004), (-0.9297989569999459, 50.83999258000006), (-0.9391983709999181, 50.84324778900009), (-0.9707738919999542, 50.846991278000075), (-0.9948624339999128, 50.84707265800006), (-1.0018611319999309, 50.84711334800005), (-1.0207413399999155, 50.84365469000005), (-1.033558722999942, 50.82591380400004), (-1.0426326159999348, 50.80190664300005), (-1.0562231109999516, 50.78302643400008), (-1.0827530589999128, 50.780951239000046), (-1.1030167309999115, 50.79547760600008), (-1.0936173169999392, 50.812933661000045), (-1.0753067699999406, 50.83002350500004), (-1.069162563999953, 50.84365469000005), (-1.0873103509999282, 50.84979889500005), (-1.0881241529999102, 50.84975820500006), (-1.1498103509999282, 50.84666575700004), (-1.1647029289999296, 50.84365469000005), (-1.129709438999953, 50.825100002000056), (-1.1237686839999128, 50.818793036000045), (-1.1212052069999459, 50.79938385600008), (-1.1249080069999309, 50.788723049000055), (-1.1380509109999366, 50.780951239000046), (-1.1511124339999128, 50.78139883000006), (-1.1693416009999282, 50.78587474200003), (-1.1856176419999542, 50.79242584800005), (-1.1926163399999155, 50.79865143400008), (-1.1992895169999542, 50.807928778000075), (-1.231516079999949, 50.81891510600008), (-1.2551977199999556, 50.83193594000005), (-1.288156704999949, 50.839178778000075), (-1.3014216789999296, 50.84365469000005), (-1.3185929029999102, 50.85691966400009), (-1.338937954999949, 50.872707424000055), (-1.4492895169999542, 50.91205475500004), (-1.4664200509999432, 50.91815827000005), (-1.4664200509999432, 50.91193268400008), (-1.4564509759999282, 50.90875885600008), (-1.4379776679999168, 50.90131256700005), (-1.4256078769999476, 50.900091864000046), (-1.4011124339999128, 50.88117096600007), (-1.323068813999953, 50.82575104400007), (-1.3142797519999476, 50.812160549000055), (-1.3172908189999362, 50.80023834800005), (-1.3398331369999141, 50.79515208500004), (-1.4039607409999348, 50.79157135600008), (-1.4186905589999128, 50.788397528000075), (-1.4113663399999155, 50.78489817900004), (-1.4049373039999296, 50.780951239000046), (-1.4049373039999296, 50.774725653000075), (-1.4505102199999556, 50.76935455900008), (-1.4762263659999348, 50.76341380400004), (-1.4875382149999155, 50.75771719000005), (-1.491932745999918, 50.75726959800005), (-1.5247289699999556, 50.761053778000075), (-1.5571996739999463, 50.72329336100006), (-1.559396938999953, 50.71922435100004), (-1.5611873039999296, 50.71898021000004), (-1.5807185539999296, 50.722642320000034), (-1.6021215489999463, 50.731756903000075), (-1.6706436839999128, 50.74005768400008), (-1.672922329999949, 50.74005768400008), (-1.6930232409999348, 50.739935614000046), (-1.7150772779999102, 50.73578522300005), (-1.7535294259999432, 50.72284577000005), (-1.7717179029999102, 50.72011953300006), (-1.7974340489999463, 50.723171291000085), (-1.8350723949999406, 50.72768789300005), (-1.8574112619999141, 50.72695547100005), (-1.8773494129999335, 50.72284577000005), (-1.8963516919999392, 50.71629466400009), (-1.8968806629999335, 50.716050523000035), (-1.9138891269999476, 50.70742422100005), (-1.9291072259999282, 50.69586823100008), (-1.9400121739999463, 50.69082265800006), (-1.9443253249999088, 50.69765859600005), (-1.946115688999953, 50.707912502000056), (-1.9492895169999542, 50.713324286000045), (-1.9877009759999282, 50.72011953300006), (-2.01390540299991, 50.71893952000005), (-2.0219620429999168, 50.72011953300006), (-2.0254613919999542, 50.723863023000035), (-2.026193813999953, 50.72508372600004), (-2.0338435539999296, 50.73712799700007), (-2.038970506999931, 50.739935614000046), (-2.0480850899999155, 50.734808661000045), (-2.0826716789999296, 50.69896067900004), (-2.0695694649999155, 50.700100002000056), (-2.0577286449999406, 50.702826239000046), (-2.046620245999918, 50.70726146000004), (-2.0356339179999168, 50.713324286000045), (-2.0141495429999168, 50.688788153000075), (-2.0025121739999463, 50.681301174000055), (-1.984120245999918, 50.67853424700007), (-1.9674373039999296, 50.67865631700005), (-1.9527888659999348, 50.67658112200007), (-1.9458715489999463, 50.668850002000056), (-1.9529516269999476, 50.65184153900009), (-1.9382218089999128, 50.645819403000075), (-1.9324845039999445, 50.64443594000005), (-1.9672745429999168, 50.61709219000005), (-1.965199347999942, 50.60219961100006), (-1.9837133449999556, 50.59662506700005), (-2.065174933999913, 50.59552643400008), (-2.082183397999927, 50.59784577000005), (-2.1573380199999406, 50.62051015800006), (-2.3426407539999445, 50.63377513200004), (-2.377064581999946, 50.64752838700008), (-2.398345506999931, 50.64557526200008), (-2.435902472999942, 50.63751862200007), (-2.447621222999942, 50.62787506700005), (-2.4600723949999406, 50.60651276200008), (-2.465646938999953, 50.585150458000044), (-2.4564509759999282, 50.575506903000075), (-2.4312231109999516, 50.57025788000004), (-2.428700324999909, 50.55756256700005), (-2.4392797519999476, 50.54181549700007), (-2.45335852799991, 50.52765534100007), (-2.4595434239999463, 50.52765534100007), (-2.4603572259999282, 50.56549713700008), (-2.4835098949999406, 50.59039948100008), (-2.6929418609999516, 50.69281647300005), (-2.8648168609999516, 50.73379140800006), (-2.887318488999938, 50.734361070000034), (-2.94554602799991, 50.725816148000035), (-2.9627579419999392, 50.72329336100006), (-2.998199022999927, 50.708238023000035), (-3.021839972999942, 50.70648834800005), (-3.059722459999932, 50.713324286000045), (-3.071359829999949, 50.711004950000074), (-3.0941462879999335, 50.69896067900004), (-3.099232550999943, 50.69708893400008), (-3.115834113999938, 50.68797435100004), (-3.1254776679999168, 50.68528880400004), (-3.135894334999932, 50.68593984600005), (-3.1551407539999445, 50.69135163000004), (-3.1664932929999168, 50.69281647300005), (-3.1856176419999542, 50.690741278000075), (-3.2191462879999335, 50.68081289300005), (-3.2598363919999542, 50.67454661700003), (-3.271392381999931, 50.664496161000045), (-3.280425584999932, 50.65119049700007), (-3.2955623039999296, 50.63751862200007), (-3.368153449999909, 50.61709219000005), (-3.390736456999946, 50.61782461100006), (-3.4075414699999556, 50.62128327000005), (-3.420969204999949, 50.62946198100008), (-3.433338995999918, 50.64443594000005), (-3.446359829999949, 50.66828034100007), (-3.4504288399999155, 50.672308661000045), (-3.453277147999927, 50.67328522300005), (-3.455433722999942, 50.675441799000055), (-3.458607550999943, 50.67755768400008), (-3.4644262359999516, 50.67853424700007), (-3.467762824999909, 50.67641836100006), (-3.468902147999927, 50.67169830900008), (-3.467844204999949, 50.66697825700004), (-3.45531165299991, 50.657904364000046), (-3.4420466789999296, 50.62352122600004), (-3.433338995999918, 50.610256252000056), (-3.451161261999914, 50.59943268400008), (-3.4672745429999168, 50.585598049000055), (-3.4817602199999556, 50.56854889500005), (-3.494862433999913, 50.548163153000075), (-3.505970831999946, 50.520819403000075), (-3.505034959999932, 50.501206773000035), (-3.487456834999932, 50.459418036000045), (-3.509755011999914, 50.45848216400009), (-3.532134568999936, 50.454779364000046), (-3.549427863999938, 50.446519273000035), (-3.556263800999943, 50.43211497600004), (-3.5493057929999168, 50.41559479400007), (-3.531971808999913, 50.410223700000074), (-3.487456834999932, 50.41156647300005), (-3.487456834999932, 50.40477122600004), (-3.4974666009999282, 50.38735586100006), (-3.49828040299991, 50.383693752000056), (-3.5073136059999115, 50.382798570000034), (-3.5149633449999556, 50.37995026200008), (-3.520130988999938, 50.37482330900008), (-3.5269262359999516, 50.34979889500005), (-3.5388891269999476, 50.34442780200004), (-3.5545141269999476, 50.347642320000034), (-3.57054602799991, 50.35639069200005), (-3.577788865999935, 50.334051825000074), (-3.5991104809999115, 50.325832424000055), (-3.6215714179999168, 50.321926174000055), (-3.631988084999932, 50.31232330900008), (-3.6373591789999296, 50.29539622600004), (-3.6475723949999406, 50.27456289300005), (-3.653309699999909, 50.25104401200008), (-3.6456192699999406, 50.22601959800005), (-3.6606339179999168, 50.22101471600007), (-3.700917120999918, 50.21352773600006), (-3.7180069649999155, 50.21238841400009), (-3.740386522999927, 50.21588776200008), (-3.758615688999953, 50.22174713700008), (-3.774240688999953, 50.22296784100007), (-3.788970506999931, 50.21238841400009), (-3.826324022999927, 50.23419830900008), (-3.8841853509999282, 50.280462958000044), (-3.949940558999913, 50.31899648600006), (-3.9610082669999542, 50.322251695000034), (-3.9702042309999115, 50.320746161000045), (-3.995757615999935, 50.311428127000056), (-4.005604620999918, 50.30923086100006), (-4.011341925999943, 50.30695221600007), (-4.024769660999937, 50.29718659100007), (-4.032948370999918, 50.294907945000034), (-4.044056769999941, 50.29645416900007), (-4.054351365999935, 50.30036041900007), (-4.070220506999931, 50.30923086100006), (-4.067941860999952, 50.31281159100007), (-4.064035610999952, 50.322251695000034), (-4.086008266999954, 50.326239325000074), (-4.1082657539999445, 50.33661530200004), (-4.118723110999952, 50.35187409100007), (-4.1049698559999115, 50.37067291900007), (-4.141753709999932, 50.36904531500005), (-4.1527400379999335, 50.37067291900007), (-4.1655167309999115, 50.37636953300006), (-4.171457485999952, 50.382798570000034), (-4.175770636999914, 50.39085521000004), (-4.18382727799991, 50.40106842700004), (-4.191477016999954, 50.417629299000055), (-4.18390865799995, 50.431708075000074), (-4.1703181629999335, 50.44513580900008), (-4.159535285999937, 50.459418036000045), (-4.179432745999918, 50.45307038000004), (-4.189564581999946, 50.45368073100008), (-4.200550910999937, 50.459418036000045), (-4.203684048999946, 50.45140208500004), (-4.204741990999935, 50.44867584800005), (-4.2123917309999115, 50.441473700000074), (-4.222523566999939, 50.43797435100004), (-4.234730597999942, 50.43829987200007), (-4.234730597999942, 50.43211497600004), (-4.2202042309999115, 50.425848700000074), (-4.2161352199999556, 50.415716864000046), (-4.219715949999909, 50.40509674700007), (-4.228505011999914, 50.397365627000056), (-4.2414444649999155, 50.39468008000006), (-4.2899063789999445, 50.397365627000056), (-4.273019985999952, 50.38190338700008), (-4.216175910999937, 50.38776276200008), (-4.1937556629999335, 50.37689850500004), (-4.228505011999914, 50.37067291900007), (-4.228505011999914, 50.36383698100008), (-4.220122850999928, 50.365301825000074), (-4.200550910999937, 50.36383698100008), (-4.207997199999909, 50.35639069200005), (-4.180043097999942, 50.35639069200005), (-4.180043097999942, 50.35016510600008), (-4.191314256999931, 50.34756094000005), (-4.197987433999913, 50.342230536000045), (-4.199126756999931, 50.33539459800005), (-4.1937556629999335, 50.32843659100007), (-4.1937556629999335, 50.322251695000034), (-4.214995897999927, 50.323146877000056), (-4.225697394999941, 50.33539459800005), (-4.235096808999913, 50.34955475500004), (-4.2523494129999335, 50.35639069200005), (-4.337717251999948, 50.37067291900007), (-4.383697068999936, 50.36749909100007), (-4.456206834999932, 50.33820221600007), (-4.4953507149999155, 50.32843659100007), (-4.659820115999935, 50.322251695000034), (-4.659575975999928, 50.32062409100007), (-4.662709113999938, 50.31777578300006), (-4.667795376999948, 50.315334377000056), (-4.673451300999943, 50.31541575700004), (-4.687163865999935, 50.34271881700005), (-4.694325324999909, 50.343451239000046), (-4.700184699999909, 50.34088776200008), (-4.705555792999917, 50.337551174000055), (-4.7113337879999335, 50.33588288000004), (-4.731556769999941, 50.33466217700004), (-4.752105272999927, 50.33030833500004), (-4.763295050999943, 50.32208893400008), (-4.755441860999952, 50.30923086100006), (-4.755441860999952, 50.30174388200004), (-4.7623591789999296, 50.298041083000044), (-4.771636522999927, 50.29157135600008), (-4.779855923999946, 50.28432851800005), (-4.783355272999927, 50.27789948100008), (-4.7818904289999296, 50.27179596600007), (-4.776519334999932, 50.26508209800005), (-4.776519334999932, 50.26080963700008), (-4.788441535999937, 50.24209219000005), (-4.790150519999941, 50.23655833500004), (-4.800160285999937, 50.22955963700008), (-4.849720831999946, 50.23456452000005), (-4.868723110999952, 50.22943756700005), (-4.887318488999938, 50.21499258000006), (-4.904774542999917, 50.20844147300005), (-4.947255011999914, 50.19936758000006), (-4.960682745999918, 50.19049713700008), (-5.002430792999917, 50.14411041900007), (-5.014556443999936, 50.15656159100007), (-5.0203751289999445, 50.19196198100008), (-5.033192511999914, 50.19936758000006), (-5.05296790299991, 50.19578685100004), (-5.053618943999936, 50.18691640800006), (-5.051869269999941, 50.17552317900004), (-5.064564581999946, 50.16461823100008), (-5.064564581999946, 50.15839264500005), (-5.058501756999931, 50.155462958000044), (-5.043446417999917, 50.14411041900007), (-5.051869269999941, 50.144598700000074), (-5.058461066999939, 50.14272695500006), (-5.070790167999917, 50.13727448100008), (-5.08031165299991, 50.13271719000005), (-5.081613735999952, 50.12539297100005), (-5.080962693999936, 50.117173570000034), (-5.085031704999949, 50.10993073100008), (-5.093902147999927, 50.105536200000074), (-5.125965949999909, 50.09634023600006), (-5.114654100999928, 50.09662506700005), (-5.106068488999938, 50.09511953300006), (-5.091867641999954, 50.089504299000055), (-5.086903449999909, 50.089056708000044), (-5.075347459999932, 50.09048086100006), (-5.070790167999917, 50.089504299000055), (-5.068470831999946, 50.085150458000044), (-5.064930792999917, 50.07184479400007), (-5.06086178299995, 50.06903717700004), (-5.056507941999939, 50.060614325000074), (-5.069488084999932, 50.042181708000044), (-5.0980525379999335, 50.01439036700003), (-5.107289191999939, 50.013006903000075), (-5.127430792999917, 50.01544830900008), (-5.139637824999909, 50.01439036700003), (-5.146473761999914, 50.01056549700007), (-5.176136847999942, 49.987941799000055), (-5.18773352799991, 49.964504299000055), (-5.191151495999918, 49.95913320500006), (-5.200103318999936, 49.961371161000045), (-5.210357225999928, 49.96674225500004), (-5.240386522999927, 49.988348700000074), (-5.245228644999941, 49.99310944200005), (-5.2495011059999115, 50.000067450000074), (-5.253041144999941, 50.01264069200005), (-5.25226803299995, 50.020697333000044), (-5.252674933999913, 50.027777411000045), (-5.259755011999914, 50.03766510600008), (-5.2884008449999556, 50.067694403000075), (-5.304351365999935, 50.08026764500005), (-5.323963995999918, 50.089504299000055), (-5.384185350999928, 50.10797760600008), (-5.424712693999936, 50.11273834800005), (-5.458119269999941, 50.125881252000056), (-5.47484290299991, 50.13043854400007), (-5.495676235999952, 50.12962474200003), (-5.521839972999942, 50.12372467700004), (-5.540923631999931, 50.11347077000005), (-5.540638800999943, 50.09975820500006), (-5.5346573559999115, 50.08234284100007), (-5.5455623039999296, 50.06891510600008), (-5.563465949999909, 50.05963776200008), (-5.57843990799995, 50.054754950000074), (-5.61945553299995, 50.046210028000075), (-5.667388475999928, 50.04287344000005), (-5.705148891999954, 50.05231354400007), (-5.715646938999953, 50.08270905200004), (-5.705962693999936, 50.08348216400009), (-5.698801235999952, 50.08539459800005), (-5.694488084999932, 50.089504299000055), (-5.694406704999949, 50.095770575000074), (-5.697092251999948, 50.10053131700005), (-5.700306769999941, 50.103216864000046), (-5.701975063999953, 50.103176174000055), (-5.707386847999942, 50.12201569200005), (-5.70921790299991, 50.13263580900008), (-5.70539303299995, 50.13727448100008), (-5.7035212879999335, 50.140611070000034), (-5.684641079999949, 50.16152578300006), (-5.676747199999909, 50.16502513200004), (-5.647368943999936, 50.17206452000005), (-5.583607550999943, 50.19586823100008), (-5.549427863999938, 50.20351797100005), (-5.5109757149999155, 50.21946849200003), (-5.4891251289999445, 50.21979401200008), (-5.458119269999941, 50.20075104400007), (-5.437977667999917, 50.19432200700004), (-5.417388475999928, 50.202460028000075), (-5.402943488999938, 50.21735260600008), (-5.395863410999937, 50.22724030200004), (-5.39289303299995, 50.23655833500004), (-5.3875626289999445, 50.240301825000074), (-5.351918097999942, 50.240301825000074), (-5.3148494129999335, 50.253607489000046), (-5.200306769999941, 50.33075592700004), (-5.1635636059999115, 50.34723541900007), (-5.1498917309999115, 50.35016510600008), (-5.146473761999914, 50.35529205900008), (-5.145659959999932, 50.366888739000046), (-5.147043423999946, 50.37938060100004), (-5.153675910999937, 50.39948151200008), (-5.142404751999948, 50.40448639500005), (-5.12726803299995, 50.40521881700005), (-5.119740363999938, 50.40477122600004), (-5.0502823559999115, 50.42869700700004), (-5.0481664699999556, 50.43439362200007), (-5.038726365999935, 50.44790273600006), (-5.029774542999917, 50.486761786000045), (-5.0286352199999556, 50.507025458000044), (-5.025257941999939, 50.52423737200007), (-5.015614386999914, 50.53803131700005), (-4.9955948559999115, 50.548163153000075), (-4.975168423999946, 50.548163153000075), (-4.967844204999949, 50.55158112200007), (-4.954823370999918, 50.56122467700004), (-4.947255011999914, 50.56244538000004), (-4.941477016999954, 50.55695221600007), (-4.937123175999943, 50.54531484600005), (-4.9344376289999445, 50.53164297100005), (-4.933583136999914, 50.52024974200003), (-4.926869269999941, 50.52289459800005), (-4.924305792999917, 50.52448151200008), (-4.920521613999938, 50.52765534100007), (-4.902414516999954, 50.52057526200008), (-4.860951300999943, 50.519191799000055), (-4.844838019999941, 50.51406484600005), (-4.855824347999942, 50.527411200000074), (-4.87328040299991, 50.534084377000056), (-4.906239386999914, 50.54197825700004), (-4.921864386999914, 50.55487702000005), (-4.92023678299995, 50.564154364000046), (-4.915191209999932, 50.57249583500004), (-4.920521613999938, 50.58295319200005), (-4.920521613999938, 50.589178778000075), (-4.895659959999932, 50.585923570000034), (-4.821197068999936, 50.589178778000075), (-4.7924698559999115, 50.59520091400009), (-4.7766007149999155, 50.60984935100004), (-4.765044725999928, 50.62799713700008), (-4.7492569649999155, 50.64443594000005), (-4.755441860999952, 50.659369208000044), (-4.751942511999914, 50.67007070500006), (-4.741932745999918, 50.67487213700008), (-4.728138800999943, 50.672308661000045), (-4.657297329999949, 50.71112702000005), (-4.645578579999949, 50.723537502000056), (-4.637806769999941, 50.74115631700005), (-4.619007941999939, 50.754787502000056), (-4.577259894999941, 50.774725653000075), (-4.5501195949999556, 50.80955638200004), (-4.55492102799991, 50.897772528000075), (-4.543771938999953, 50.93919505400004), (-4.536854620999918, 50.94757721600007), (-4.5226944649999155, 50.972723700000074), (-4.5266820949999556, 50.98037344000005), (-4.530425584999932, 50.99469635600008), (-4.531320766999954, 51.008693752000056), (-4.526437954999949, 51.014960028000075), (-4.437326626999948, 51.014960028000075), (-4.4264216789999296, 51.01268138200004), (-4.4057511059999115, 51.00287506700005), (-4.3957413399999155, 51.00067780200004), (-4.337717251999948, 50.99664948100008), (-4.317290818999936, 51.00067780200004), (-4.302316860999952, 51.007513739000046), (-4.234730597999942, 51.05532461100006), (-4.2291560539999296, 51.06110260600008), (-4.224680141999954, 51.06708405200004), (-4.218495245999918, 51.07245514500005), (-4.207997199999909, 51.07636139500005), (-4.214263475999928, 51.086004950000074), (-4.226307745999918, 51.11322663000004), (-4.228505011999914, 51.120428778000075), (-4.2319229809999115, 51.12669505400004), (-4.249012824999909, 51.14288971600007), (-4.255767381999931, 51.15151601800005), (-4.222320115999935, 51.149725653000075), (-4.214833136999914, 51.15151601800005), (-4.208363410999937, 51.16229889500005), (-4.2098282539999445, 51.17283763200004), (-4.217274542999917, 51.18138255400004), (-4.228505011999914, 51.18622467700004), (-4.228505011999914, 51.19245026200008), (-4.152333136999914, 51.21161530200004), (-3.969471808999913, 51.22239817900004), (-3.931996222999942, 51.231350002000056), (-3.9131973949999406, 51.23338450700004), (-3.840891079999949, 51.23338450700004), (-3.818959113999938, 51.23607005400004), (-3.787098761999914, 51.24677155200004), (-3.769154425999943, 51.247707424000055), (-3.6397598949999406, 51.22638580900008), (-3.559315558999913, 51.22809479400007), (-3.434193488999938, 51.20978424700007), (-3.4043676419999542, 51.19204336100006), (-3.38499915299991, 51.18622467700004), (-3.2707413399999155, 51.18939850500004), (-3.198882615999935, 51.203558661000045), (-3.1627498039999296, 51.206732489000046), (-3.096750454999949, 51.20453522300005), (-3.057525193999936, 51.20815664300005), (-3.029286261999914, 51.220404364000046), (-3.021839972999942, 51.21356842700004), (-3.0355525379999335, 51.199286200000074), (-3.021839972999942, 51.19245026200008), (-3.004790818999936, 51.21312083500004), (-3.0013321609999366, 51.220404364000046), (-2.9995824859999516, 51.23322174700007), (-3.0015356109999516, 51.23969147300005), (-3.0049942699999406, 51.24506256700005), (-3.008168097999942, 51.25454336100006), (-3.0076391269999476, 51.29197825700004), (-3.0106095039999445, 51.310980536000045), (-3.021839972999942, 51.32282135600008), (-3.0024307929999168, 51.31907786700003), (-2.992176886999914, 51.321926174000055), (-2.992095506999931, 51.32204824400009), (-2.988392706999946, 51.33112213700008), (-2.9877823559999115, 51.34666575700004), (-2.9798884759999282, 51.35586172100005), (-2.965972459999932, 51.364935614000046), (-2.959584113999938, 51.374253648000035), (-2.9746801419999542, 51.38422272300005), (-2.9529516269999476, 51.398504950000074), (-2.9210098949999406, 51.39443594000005), (-2.8841853509999282, 51.41697825700004), (-2.816395636999914, 51.47361888200004), (-2.798573370999918, 51.48261139500005), (-2.780873175999943, 51.48908112200007), (-2.7612198559999115, 51.49286530200004), (-2.7376195949999556, 51.49408600500004), (-2.716420050999943, 51.49957916900007), (-2.6961563789999445, 51.51264069200005), (-2.6078181629999335, 51.60736725500004), (-2.599598761999914, 51.611395575000074), (-2.5892227859999366, 51.61424388200004), (-2.580433722999942, 51.61863841400009), (-2.5768123039999296, 51.62750885600008), (-2.57445227799991, 51.63572825700004), (-2.568959113999938, 51.644964911000045), (-2.562245245999918, 51.65338776200008), (-2.556385870999918, 51.65924713700008), (-2.499175584999932, 51.69676341400009), (-2.464995897999927, 51.725897528000075), (-2.4477432929999168, 51.73187897300005), (-2.404896613999938, 51.74115631700005), (-2.3885391919999392, 51.750433661000045), (-2.380767381999931, 51.76190827000005), (-2.3833715489999463, 51.77326080900008), (-2.398060675999943, 51.782131252000056), (-2.4024145169999542, 51.76357656500005), (-2.4203995429999168, 51.753119208000044), (-2.4434301419999542, 51.74843984600005), (-2.4632869129999335, 51.747300523000035), (-2.482085740999935, 51.74286530200004), (-2.495838995999918, 51.73200104400007), (-2.507964647999927, 51.71857330900008), (-2.5221248039999296, 51.706366278000075), (-2.581695115999935, 51.681708075000074), (-2.5911352199999556, 51.67536041900007), (-2.600209113999938, 51.66559479400007), (-2.6653539699999556, 51.617254950000074)]\n", + "fig, ax = plt.subplots()\n", + "\n", + "x = tuple(map(merc_x, lons))\n", + "y = tuple(map(merc_y, lats))\n", + "\n", + "ax.tricontourf(x, y, tuple(datapoints.values()))\n", + "ax.plot(x, y, 'wo', ms=3)\n", + "ax.plot(\n", + " [merc_x(coord[0]) for coord in gb_boundary],\n", + " [merc_y(coord[1]) for coord in gb_boundary],\n", + " 'k-'\n", + ")\n", + "ax.set_aspect(1.0)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "apd.aggregation", + "language": "python", + "name": "apd.aggregation" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Ch11/apd.aggregation-chapter11/Pipfile b/Ch11/apd.aggregation-chapter11/Pipfile new file mode 100644 index 0000000..32814fd --- /dev/null +++ b/Ch11/apd.aggregation-chapter11/Pipfile @@ -0,0 +1,26 @@ +[[source]] +name = "pypi" +url = "https://pypi.org/simple" +verify_ssl = true + +[dev-packages] +pytest = "*" +pytest-cov = "*" +pytest-asyncio = "*" +mypy = "*" +flake8 = "*" +black = "*" +pre-commit = "*" +wheel = "*" +twine = "*" +sqlalchemy-stubs = "*" +yappi = "*" + +[packages] +apd-aggregation = {editable = true,extras = ["jupyter"],path = "."} +apd-sensors = {editable = true,extras = ["webapp"],path = "./../code"} + +[requires] + +[pipenv] +allow_prereleases = true diff --git a/Ch11/apd.aggregation-chapter11/Pipfile.lock b/Ch11/apd.aggregation-chapter11/Pipfile.lock new file mode 100644 index 0000000..e3c4287 --- /dev/null +++ b/Ch11/apd.aggregation-chapter11/Pipfile.lock @@ -0,0 +1,987 @@ +{ + "_meta": { + "hash": { + "sha256": "1c3bf4b1b80582f2eba10739c2798bff13bb3d7662a9e5def7a2be63683711e8" + }, + "pipfile-spec": 6, + "requires": {}, + "sources": [ + { + "name": "pypi", + "url": "https://pypi.org/simple", + "verify_ssl": true + } + ] + }, + "default": { + "aiohttp": { + "hashes": [ + "sha256:173267050501e1537293df06723bc5e719990889e2820ba3932969983892e960", + "sha256:438f1f1555c02c50894604d94944cff188fe138b46467b7fa99fdceb51ab5842", + "sha256:90bed250d1435aef33a1f8c439c5056d5d25a44fe6caf33fcafafed805bad4dc", + "sha256:93c3b14747413f38f094a60e98f55e73831f0c9a23ae7faa3dc97d8963e13021", + "sha256:a6e70a38d883185b1921d8122759661c39ade54949770394412a9e713fec6fa7", + "sha256:b5036133c1ba77ed5a70208d2a021a90b76fdf8bf523ae33dae46d4f4380d86f", + "sha256:c138451a82cdbf65cddf952941d5c7a1a2cac8ce3bc618dee8d889e5251ec7a5", + "sha256:c94770383e49f9cc5912b926364ad022a6c8a5dbf5498933ca3a5713c6daf738", + "sha256:ea26536ae06df6dac021303a0df72c79e55512070e6a304ba93ad468a3a754dc" + ], + "version": "==4.0.0a1" + }, + "alembic": { + "hashes": [ + "sha256:035ab00497217628bf5d0be82d664d8713ab13d37b630084da8e1f98facf4dbf" + ], + "version": "==1.4.2" + }, + "apd-aggregation": { + "editable": true, + "extras": [ + "jupyter" + ], + "path": "." + }, + "apd-sensors": { + "editable": true, + "extras": [ + "webapp" + ], + "path": "./../code" + }, + "async-timeout": { + "hashes": [ + "sha256:0c3c816a028d47f659d6ff5c745cb2acf1f966da1fe5c19c77a70282b25f4c5f", + "sha256:4291ca197d287d274d0b6cb5d6f8f8f82d434ed288f962539ff18cc9012f9ea3" + ], + "version": "==3.0.1" + }, + "attrs": { + "hashes": [ + "sha256:08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c", + "sha256:f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72" + ], + "version": "==19.3.0" + }, + "backcall": { + "hashes": [ + "sha256:38ecd85be2c1e78f77fd91700c76e14667dc21e2713b63876c0eb901196e01e4", + "sha256:bbbf4b1e5cd2bdb08f915895b51081c041bac22394fdfcfdfbe9f14b77c08bf2" + ], + "version": "==0.1.0" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:8a18b4ea89d8820c5d0c7da8a64b2c324b4dabb695804dbfea19b9be9d88c0cc", + "sha256:e345d143d80bf5ee7534056164e5e112ea5e22716bbb1ce727941f4c8b471b9a" + ], + "version": "==7.1.1" + }, + "colorama": { + "hashes": [ + "sha256:7d73d2a99753107a36ac6b455ee49046802e59d9d076ef8e47b61499fa29afff", + "sha256:e96da0d330793e2cb9485e9ddfd918d456036c7149416295932478192f4436a1" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.3" + }, + "decorator": { + "hashes": [ + "sha256:41fa54c2a0cc4ba648be4fd43cff00aedf5b9465c9bf18d64325bc225f08f760", + "sha256:e3a62f0520172440ca0dcc823749319382e377f37f140a0b99ef45fecb84bfe7" + ], + "version": "==4.4.2" + }, + "flask": { + "hashes": [ + "sha256:4efa1ae2d7c9865af48986de8aeb8504bf32c7f3d6fdc9353d34b21f4b127060", + "sha256:8a4fdd8936eba2512e9c85df320a37e694c93945b33ef33c89946a340a238557" + ], + "version": "==1.1.2" + }, + "idna": { + "hashes": [ + "sha256:7588d1c14ae4c77d74036e8c22ff447b26d0fde8f007354fd48a7814db15b7cb", + "sha256:a068a21ceac8a4d63dbfd964670474107f541babbd2250d61922f029858365fa" + ], + "version": "==2.9" + }, + "ipykernel": { + "hashes": [ + "sha256:003c9c1ab6ff87d11f531fee2b9ca59affab19676fc6b2c21da329aef6e73499", + "sha256:2937373c356fa5b634edb175c5ea0e4b25de8008f7c194f2d49cfbd1f9c970a8" + ], + "version": "==5.2.1" + }, + "ipython": { + "hashes": [ + "sha256:ca478e52ae1f88da0102360e57e528b92f3ae4316aabac80a2cd7f7ab2efb48a", + "sha256:eb8d075de37f678424527b5ef6ea23f7b80240ca031c2dd6de5879d687a65333" + ], + "version": "==7.13.0" + }, + "ipython-genutils": { + "hashes": [ + "sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8", + "sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8" + ], + "version": "==0.2.0" + }, + "ipywidgets": { + "hashes": [ + "sha256:87b30e4dfd68a7c4e3c6462eedb95ac7d1a776cc182f87168d960151151de31c", + "sha256:9cb5590e583b8ea309a2d8e88fb02e44d054df2a77891f7d3356b0b883b99d3d" + ], + "version": "==8.0.0a0" + }, + "itsdangerous": { + "hashes": [ + "sha256:321b033d07f2a4136d3ec762eac9f16a10ccd60f53c0c91af90217ace7ba1f19", + "sha256:b12271b2047cb23eeb98c8b5622e2e5c5e9abd9784a153e9d8ef9cb4dd09d749" + ], + "version": "==1.1.0" + }, + "jedi": { + "hashes": [ + "sha256:cd60c93b71944d628ccac47df9a60fec53150de53d42dc10a7fc4b5ba6aae798", + "sha256:df40c97641cb943661d2db4c33c2e1ff75d491189423249e989bcea4464f3030" + ], + "version": "==0.17.0" + }, + "jinja2": { + "hashes": [ + "sha256:c10142f819c2d22bdcd17548c46fa9b77cf4fda45097854c689666bf425e7484", + "sha256:c922560ac46888d47384de1dbdc3daaa2ea993af4b26a436dec31fa2c19ec668" + ], + "version": "==3.0.0a1" + }, + "jsonschema": { + "hashes": [ + "sha256:4e5b3cf8216f577bee9ce139cbe72eca3ea4f292ec60928ff24758ce626cd163", + "sha256:c8a85b28d377cc7737e46e2d9f2b4f44ee3c0e1deac6bf46ddefc7187d30797a" + ], + "version": "==3.2.0" + }, + "jupyter-client": { + "hashes": [ + "sha256:3a32fa4d0b16d1c626b30c3002a62dfd86d6863ed39eaba3f537fade197bb756", + "sha256:cde8e83aab3ec1c614f221ae54713a9a46d3bf28292609d2db1b439bef5a8c8e" + ], + "version": "==6.1.3" + }, + "jupyter-core": { + "hashes": [ + "sha256:394fd5dd787e7c8861741880bdf8a00ce39f95de5d18e579c74b882522219e7e", + "sha256:a4ee613c060fe5697d913416fc9d553599c05e4492d58fac1192c9a6844abb21" + ], + "version": "==4.6.3" + }, + "mako": { + "hashes": [ + "sha256:3139c5d64aa5d175dbafb95027057128b5fbd05a40c53999f3905ceb53366d9d", + "sha256:8e8b53c71c7e59f3de716b6832c4e401d903af574f6962edbbbf6ecc2a5fe6c9" + ], + "version": "==1.1.2" + }, + "markupsafe": { + "hashes": [ + "sha256:06358015a4dee8ee23ae426bf885616ab3963622defd829eb45b44e3dee3515f", + "sha256:0b0c4fc852c5f02c6277ef3b33d23fcbe89b1b227460423e3335374da046b6db", + "sha256:267677fc42afed5094fc5ea1c4236bbe4b6a00fe4b08e93451e65ae9048139c7", + "sha256:303cb70893e2c345588fb5d5b86e0ca369f9bb56942f03064c5e3e75fa7a238a", + "sha256:3c9b624a0d9ed5a5093ac4edc4e823e6b125441e60ef35d36e6f4a6fdacd5054", + "sha256:42033e14cae1f6c86fc0c3e90d04d08ce73ac8e46ba420a0d22d545c2abd4977", + "sha256:4e4a99b6af7bdc0856b50020c095848ec050356a001e1f751510aef6ab14d0e0", + "sha256:4eb07faad54bb07427d848f31030a65a49ebb0cec0b30674f91cf1ddd456bfe4", + "sha256:63a7161cd8c2bc563feeda45df62f42c860dd0675e2b8da2667f25bb3c95eaba", + "sha256:68e0fd039b68d2945b4beb947d4023ca7f8e95b708031c345762efba214ea761", + "sha256:8092a63397025c2f655acd42784b2a1528339b90b987beb9253f22e8cdbb36c3", + "sha256:841218860683c0f2223e24756843d84cc49cccdae6765e04962607754a52d3e0", + "sha256:94076b2314bd2f6cfae508ad65b4d493e3a58a50112b7a2cbb6287bdbc404ae8", + "sha256:9d22aff1c5322e402adfb3ce40839a5056c353e711c033798cf4f02eb9f5124d", + "sha256:b0e4584f62b3e5f5c1a7bcefd2b52f236505e6ef032cc508caa4f4c8dc8d3af1", + "sha256:b1163ffc1384d242964426a8164da12dbcdbc0de18ea36e2c34b898ed38c3b45", + "sha256:beac28ed60c8e838301226a7a85841d0af2068eba2dcb1a58c2d32d6c05e440e", + "sha256:c29f096ce79c03054a1101d6e5fe6bf04b0bb489165d5e0e9653fb4fe8048ee1", + "sha256:c58779966d53e5f14ba393d64e2402a7926601d1ac8adeb4e83893def79d0428", + "sha256:cfe14b37908eaf7d5506302987228bff69e1b8e7071ccd4e70fd0283b1b47f0b", + "sha256:e834249c45aa9837d0753351cdca61a4b8b383cc9ad0ff2325c97ff7b69e72a6", + "sha256:eed1b234c4499811ee85bcefa22ef5e466e75d132502226ed29740d593316c1f" + ], + "version": "==2.0.0a1" + }, + "multidict": { + "hashes": [ + "sha256:317f96bc0950d249e96d8d29ab556d01dd38888fbe68324f46fd834b430169f1", + "sha256:42f56542166040b4474c0c608ed051732033cd821126493cf25b6c276df7dd35", + "sha256:4b7df040fb5fe826d689204f9b544af469593fb3ff3a069a6ad3409f742f5928", + "sha256:544fae9261232a97102e27a926019100a9db75bec7b37feedd74b3aa82f29969", + "sha256:620b37c3fea181dab09267cd5a84b0f23fa043beb8bc50d8474dd9694de1fa6e", + "sha256:6e6fef114741c4d7ca46da8449038ec8b1e880bbe68674c01ceeb1ac8a648e78", + "sha256:7774e9f6c9af3f12f296131453f7b81dabb7ebdb948483362f5afcaac8a826f1", + "sha256:85cb26c38c96f76b7ff38b86c9d560dea10cf3459bb5f4caf72fc1bb932c7136", + "sha256:a326f4240123a2ac66bb163eeba99578e9d63a8654a59f4688a79198f9aa10f8", + "sha256:ae402f43604e3b2bc41e8ea8b8526c7fa7139ed76b0d64fc48e28125925275b2", + "sha256:aee283c49601fa4c13adc64c09c978838a7e812f85377ae130a24d7198c0331e", + "sha256:b51249fdd2923739cd3efc95a3d6c363b67bbf779208e9f37fd5e68540d1a4d4", + "sha256:bb519becc46275c594410c6c28a8a0adc66fe24fef154a9addea54c1adb006f5", + "sha256:c2c37185fb0af79d5c117b8d2764f4321eeb12ba8c141a95d0aa8c2c1d0a11dd", + "sha256:dc561313279f9d05a3d0ffa89cd15ae477528ea37aa9795c4654588a3287a9ab", + "sha256:e439c9a10a95cb32abd708bb8be83b2134fa93790a4fb0535ca36db3dda94d20", + "sha256:fc3b4adc2ee8474cb3cd2a155305d5f8eda0a9c91320f83e55748e1fcb68f8e3" + ], + "version": "==4.7.5" + }, + "nbformat": { + "hashes": [ + "sha256:049af048ed76b95c3c44043620c17e56bc001329e07f83fec4f177f0e3d7b757", + "sha256:276343c78a9660ab2a63c28cc33da5f7c58c092b3f3a40b6017ae2ce6689320d" + ], + "version": "==5.0.6" + }, + "parso": { + "hashes": [ + "sha256:158c140fc04112dc45bca311633ae5033c2c2a7b732fa33d0955bad8152a8dd0", + "sha256:908e9fae2144a076d72ae4e25539143d40b8e3eafbaeae03c1bfe226f4cdf12c" + ], + "version": "==0.7.0" + }, + "pickleshare": { + "hashes": [ + "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca", + "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56" + ], + "version": "==0.7.5" + }, + "pint": { + "hashes": [ + "sha256:308f1070500e102f83b6adfca6db53debfce2ffc5d3cbe3f6c367da359b5cf4d", + "sha256:5690c85948dfb283382aa73357c3d5a333e8c7d818be7d8643db18e07597dd99" + ], + "version": "==0.11" + }, + "prompt-toolkit": { + "hashes": [ + "sha256:563d1a4140b63ff9dd587bda9557cffb2fe73650205ab6f4383092fb882e7dc8", + "sha256:df7e9e63aea609b1da3a65641ceaf5bc7d05e0a04de5bd45d05dbeffbabf9e04" + ], + "version": "==3.0.5" + }, + "psutil": { + "hashes": [ + "sha256:1413f4158eb50e110777c4f15d7c759521703bd6beb58926f1d562da40180058", + "sha256:298af2f14b635c3c7118fd9183843f4e73e681bb6f01e12284d4d70d48a60953", + "sha256:60b86f327c198561f101a92be1995f9ae0399736b6eced8f24af41ec64fb88d4", + "sha256:685ec16ca14d079455892f25bd124df26ff9137664af445563c1bd36629b5e0e", + "sha256:73f35ab66c6c7a9ce82ba44b1e9b1050be2a80cd4dcc3352cc108656b115c74f", + "sha256:75e22717d4dbc7ca529ec5063000b2b294fc9a367f9c9ede1f65846c7955fd38", + "sha256:a02f4ac50d4a23253b68233b07e7cdb567bd025b982d5cf0ee78296990c22d9e", + "sha256:d008ddc00c6906ec80040d26dc2d3e3962109e40ad07fd8a12d0284ce5e0e4f8", + "sha256:d84029b190c8a66a946e28b4d3934d2ca1528ec94764b180f7d6ea57b0e75e26", + "sha256:e2d0c5b07c6fe5a87fa27b7855017edb0d52ee73b71e6ee368fae268605cc3f5", + "sha256:f344ca230dd8e8d5eee16827596f1c22ec0876127c28e800d7ae20ed44c4b310" + ], + "version": "==5.7.0" + }, + "psycopg2": { + "hashes": [ + "sha256:132efc7ee46a763e68a815f4d26223d9c679953cd190f1f218187cb60decf535", + "sha256:2327bf42c1744a434ed8ed0bbaa9168cac7ee5a22a9001f6fc85c33b8a4a14b7", + "sha256:27c633f2d5db0fc27b51f1b08f410715b59fa3802987aec91aeb8f562724e95c", + "sha256:2c0afb40cfb4d53487ee2ebe128649028c9a78d2476d14a67781e45dc287f080", + "sha256:2df2bf1b87305bd95eb3ac666ee1f00a9c83d10927b8144e8e39644218f4cf81", + "sha256:440a3ea2c955e89321a138eb7582aa1d22fe286c7d65e26a2c5411af0a88ae72", + "sha256:6a471d4d2a6f14c97a882e8d3124869bc623f3df6177eefe02994ea41fd45b52", + "sha256:6b306dae53ec7f4f67a10942cf8ac85de930ea90e9903e2df4001f69b7833f7e", + "sha256:a0984ff49e176062fcdc8a5a2a670c9bb1704a2f69548bce8f8a7bad41c661bf", + "sha256:ac5b23d0199c012ad91ed1bbb971b7666da651c6371529b1be8cbe2a7bf3c3a9", + "sha256:acf56d564e443e3dea152efe972b1434058244298a94348fc518d6dd6a9fb0bb", + "sha256:d3b29d717d39d3580efd760a9a46a7418408acebbb784717c90d708c9ed5f055", + "sha256:f7d46240f7a1ae1dd95aab38bd74f7428d46531f69219954266d669da60c0818" + ], + "version": "==2.8.5" + }, + "pygments": { + "hashes": [ + "sha256:647344a061c249a3b74e230c739f434d7ea4d8b1d5f3721bc0f3558049b38f44", + "sha256:ff7a40b4860b727ab48fad6360eb351cc1b33cbf9b15a0f689ca5353e9463324" + ], + "version": "==2.6.1" + }, + "pyrsistent": { + "hashes": [ + "sha256:28669905fe725965daa16184933676547c5bb40a5153055a8dee2a4bd7933ad3" + ], + "version": "==0.16.0" + }, + "python-dateutil": { + "hashes": [ + "sha256:73ebfe9dbf22e832286dafa60473e4cd239f8592f699aa5adaf10050e6e1823c", + "sha256:75bb3f31ea686f1197762692a9ee6a7550b59fc6ca3a1f4b5d7e32fb98e2da2a" + ], + "version": "==2.8.1" + }, + "python-editor": { + "hashes": [ + "sha256:1bf6e860a8ad52a14c3ee1252d5dc25b2030618ed80c022598f00176adc8367d", + "sha256:51fda6bcc5ddbbb7063b2af7509e43bd84bfc32a4ff71349ec7847713882327b", + "sha256:5f98b069316ea1c2ed3f67e7f5df6c0d8f10b689964a4a811ff64f0106819ec8" + ], + "version": "==1.0.4" + }, + "pywin32": { + "hashes": [ + "sha256:300a2db938e98c3e7e2093e4491439e62287d0d493fe07cce110db070b54c0be", + "sha256:31f88a89139cb2adc40f8f0e65ee56a8c585f629974f9e07622ba80199057511", + "sha256:371fcc39416d736401f0274dd64c2302728c9e034808e37381b5e1b22be4a6b0", + "sha256:47a3c7551376a865dd8d095a98deba954a98f326c6fe3c72d8726ca6e6b15507", + "sha256:4cdad3e84191194ea6d0dd1b1b9bdda574ff563177d2adf2b4efec2a244fa116", + "sha256:7c1ae32c489dc012930787f06244426f8356e129184a02c25aef163917ce158e", + "sha256:7f18199fbf29ca99dff10e1f09451582ae9e372a892ff03a28528a24d55875bc", + "sha256:9b31e009564fb95db160f154e2aa195ed66bcc4c058ed72850d047141b36f3a2", + "sha256:a929a4af626e530383a579431b70e512e736e9588106715215bf685a3ea508d4", + "sha256:c054c52ba46e7eb6b7d7dfae4dbd987a1bb48ee86debe3f245a2884ece46e295", + "sha256:f27cec5e7f588c3d1051651830ecc00294f90728d19c3bf6916e6dba93ea357c", + "sha256:f4c5be1a293bae0076d93c88f37ee8da68136744588bc5e2be2f299a34ceb7aa" + ], + "markers": "sys_platform == 'win32'", + "version": "==227" + }, + "pyzmq": { + "hashes": [ + "sha256:0bbc1728fe4314b4ca46249c33873a390559edac7c217ec7001b5e0c34a8fb7f", + "sha256:1e076ad5bd3638a18c376544d32e0af986ca10d43d4ce5a5d889a8649f0d0a3d", + "sha256:242d949eb6b10197cda1d1cec377deab1d5324983d77e0d0bf9dc5eb6d71a6b4", + "sha256:26f4ae420977d2a8792d7c2d7bda43128b037b5eeb21c81951a94054ad8b8843", + "sha256:32234c21c5e0a767c754181c8112092b3ddd2e2a36c3f76fc231ced817aeee47", + "sha256:3f12ce1e9cc9c31497bd82b207e8e86ccda9eebd8c9f95053aae46d15ccd2196", + "sha256:4557d5e036e6d85715b4b9fdb482081398da1d43dc580d03db642b91605b409f", + "sha256:4f562dab21c03c7aa061f63b147a595dbe1006bf4f03213272fc9f7d5baec791", + "sha256:5e071b834051e9ecb224915398f474bfad802c2fff883f118ff5363ca4ae3edf", + "sha256:5e1f65e576ab07aed83f444e201d86deb01cd27dcf3f37c727bc8729246a60a8", + "sha256:5f10a31f288bf055be76c57710807a8f0efdb2b82be6c2a2b8f9a61f33a40cea", + "sha256:6aaaf90b420dc40d9a0e1996b82c6a0ff91d9680bebe2135e67c9e6d197c0a53", + "sha256:75238d3c16cab96947705d5709187a49ebb844f54354cdf0814d195dd4c045de", + "sha256:7f7e7b24b1d392bb5947ba91c981e7d1a43293113642e0d8870706c8e70cdc71", + "sha256:84b91153102c4bcf5d0f57d1a66a0f03c31e9e6525a5f656f52fc615a675c748", + "sha256:944f6bb5c63140d76494467444fd92bebd8674236837480a3c75b01fe17df1ab", + "sha256:a1f957c20c9f51d43903881399b078cddcf710d34a2950e88bce4e494dcaa4d1", + "sha256:a49fd42a29c1cc1aa9f461c5f2f5e0303adba7c945138b35ee7f4ab675b9f754", + "sha256:a99ae601b4f6917985e9bb071549e30b6f93c72f5060853e197bdc4b7d357e5f", + "sha256:ad48865a29efa8a0cecf266432ea7bc34e319954e55cf104be0319c177e6c8f5", + "sha256:b08e425cf93b4e018ab21dc8fdbc25d7d0502a23cc4fea2380010cf8cf11e462", + "sha256:bb10361293d96aa92be6261fa4d15476bca56203b3a11c62c61bd14df0ef89ba", + "sha256:bd1a769d65257a7a12e2613070ca8155ee348aa9183f2aadf1c8b8552a5510f5", + "sha256:cb3b7156ef6b1a119e68fbe3a54e0a0c40ecacc6b7838d57dd708c90b62a06dc", + "sha256:e8e4efb52ec2df8d046395ca4c84ae0056cf507b2f713ec803c65a8102d010de", + "sha256:f37c29da2a5b0c5e31e6f8aab885625ea76c807082f70b2d334d3fd573c3100a", + "sha256:f4d558bc5668d2345773a9ff8c39e2462dafcb1f6772a2e582fbced389ce527f", + "sha256:f5b6d015587a1d6f582ba03b226a9ddb1dfb09878b3be04ef48b01b7d4eb6b2a" + ], + "version": "==19.0.0" + }, + "six": { + "hashes": [ + "sha256:236bdbdce46e6e6a3d61a337c0f8b763ca1e8717c03b369e87a7ec7ce1319c0a", + "sha256:8f3cd2e254d8f793e7f3d6d9df77b92252b52637291d0f0da013c76ea2724b6c" + ], + "version": "==1.14.0" + }, + "sqlalchemy": { + "hashes": [ + "sha256:083e383a1dca8384d0ea6378bd182d83c600ed4ff4ec8247d3b2442cf70db1ad", + "sha256:0a690a6486658d03cc6a73536d46e796b6570ac1f8a7ec133f9e28c448b69828", + "sha256:114b6ace30001f056e944cebd46daef38fdb41ebb98f5e5940241a03ed6cad43", + "sha256:128f6179325f7597a46403dde0bf148478f868df44841348dfc8d158e00db1f9", + "sha256:13d48cd8b925b6893a4e59b2dfb3e59a5204fd8c98289aad353af78bd214db49", + "sha256:211a1ce7e825f7142121144bac76f53ac28b12172716a710f4bf3eab477e730b", + "sha256:2dc57ee80b76813759cccd1a7affedf9c4dbe5b065a91fb6092c9d8151d66078", + "sha256:3e625e283eecc15aee5b1ef77203bfb542563fa4a9aa622c7643c7b55438ff49", + "sha256:43078c7ec0457387c79b8d52fff90a7ad352ca4c7aa841c366238c3e2cf52fdf", + "sha256:5b1bf3c2c2dca738235ce08079783ef04f1a7fc5b21cf24adaae77f2da4e73c3", + "sha256:6056b671aeda3fc451382e52ab8a753c0d5f66ef2a5ccc8fa5ba7abd20988b4d", + "sha256:68d78cf4a9dfade2e6cf57c4be19f7b82ed66e67dacf93b32bb390c9bed12749", + "sha256:7025c639ce7e170db845e94006cf5f404e243e6fc00d6c86fa19e8ad8d411880", + "sha256:7224e126c00b8178dfd227bc337ba5e754b197a3867d33b9f30dc0208f773d70", + "sha256:7d98e0785c4cd7ae30b4a451416db71f5724a1839025544b4edbd92e00b91f0f", + "sha256:8d8c21e9d4efef01351bf28513648ceb988031be4159745a7ad1b3e28c8ff68a", + "sha256:bbb545da054e6297242a1bb1ba88e7a8ffb679f518258d66798ec712b82e4e07", + "sha256:d00b393f05dbd4ecd65c989b7f5a81110eae4baea7a6a4cdd94c20a908d1456e", + "sha256:e18752cecaef61031252ca72031d4d6247b3212ebb84748fc5d1a0d2029c23ea" + ], + "version": "==1.3.16" + }, + "tornado": { + "hashes": [ + "sha256:0fe2d45ba43b00a41cd73f8be321a44936dc1aba233dee979f17a042b83eb6dc", + "sha256:22aed82c2ea340c3771e3babc5ef220272f6fd06b5108a53b4976d0d722bcd52", + "sha256:2c027eb2a393d964b22b5c154d1a23a5f8727db6fda837118a776b29e2b8ebc6", + "sha256:5217e601700f24e966ddab689f90b7ea4bd91ff3357c3600fa1045e26d68e55d", + "sha256:5618f72e947533832cbc3dec54e1dffc1747a5cb17d1fd91577ed14fa0dc081b", + "sha256:5f6a07e62e799be5d2330e68d808c8ac41d4a259b9cea61da4101b83cb5dc673", + "sha256:c58d56003daf1b616336781b26d184023ea4af13ae143d9dda65e31e534940b9", + "sha256:c952975c8ba74f546ae6de2e226ab3cc3cc11ae47baf607459a6728585bb542a", + "sha256:c98232a3ac391f5faea6821b53db8db461157baa788f5d6222a193e9456e1740" + ], + "version": "==6.0.4" + }, + "traitlets": { + "hashes": [ + "sha256:70b4c6a1d9019d7b4f6846832288f86998aa3b9207c6821f3578a6a6a467fe44", + "sha256:d023ee369ddd2763310e4c3eae1ff649689440d4ae59d7485eb4cfbbe3e359f7" + ], + "version": "==4.3.3" + }, + "typing-extensions": { + "hashes": [ + "sha256:6e95524d8a547a91e08f404ae485bbb71962de46967e1b71a0cb89af24e761c5", + "sha256:79ee589a3caca649a9bfd2a8de4709837400dfa00b6cc81962a1e6a1815969ae", + "sha256:f8d2bd89d25bc39dabe7d23df520442fa1d8969b82544370e03d88b5a591c392" + ], + "version": "==3.7.4.2" + }, + "wcwidth": { + "hashes": [ + "sha256:cafe2186b3c009a04067022ce1dcd79cb38d8d65ee4f4791b8888d6599d1bbe1", + "sha256:ee73862862a156bf77ff92b09034fc4825dd3af9cf81bc5b360668d425f3c5f1" + ], + "version": "==0.1.9" + }, + "werkzeug": { + "hashes": [ + "sha256:2de2a5db0baeae7b2d2664949077c2ac63fbd16d98da0ff71837f7d1dea3fd43", + "sha256:6c80b1e5ad3665290ea39320b91e1be1e0d5f60652b964a3070216de83d2e47c" + ], + "version": "==1.0.1" + }, + "widgetsnbextension": { + "hashes": [ + "sha256:cb6181b4037da02deeabab39d5cb1113a7390aee7468b1f8237c2abbd6df6107", + "sha256:fee3b6ec261393db5b4ec7c4fc96bf85c146cc6e5f38069c27d54fb7892bbb15" + ], + "version": "==4.0.0a0" + }, + "yarl": { + "hashes": [ + "sha256:0c2ab325d33f1b824734b3ef51d4d54a54e0e7a23d13b86974507602334c2cce", + "sha256:0ca2f395591bbd85ddd50a82eb1fde9c1066fafe888c5c7cc1d810cf03fd3cc6", + "sha256:2098a4b4b9d75ee352807a95cdf5f10180db903bc5b7270715c6bbe2551f64ce", + "sha256:25e66e5e2007c7a39541ca13b559cd8ebc2ad8fe00ea94a2aad28a9b1e44e5ae", + "sha256:26d7c90cb04dee1665282a5d1a998defc1a9e012fdca0f33396f81508f49696d", + "sha256:308b98b0c8cd1dfef1a0311dc5e38ae8f9b58349226aa0533f15a16717ad702f", + "sha256:3ce3d4f7c6b69c4e4f0704b32eca8123b9c58ae91af740481aa57d7857b5e41b", + "sha256:58cd9c469eced558cd81aa3f484b2924e8897049e06889e8ff2510435b7ef74b", + "sha256:5b10eb0e7f044cf0b035112446b26a3a2946bca9d7d7edb5e54a2ad2f6652abb", + "sha256:6faa19d3824c21bcbfdfce5171e193c8b4ddafdf0ac3f129ccf0cdfcb083e462", + "sha256:944494be42fa630134bf907714d40207e646fd5a94423c90d5b514f7b0713fea", + "sha256:a161de7e50224e8e3de6e184707476b5a989037dcb24292b391a3d66ff158e70", + "sha256:a4844ebb2be14768f7994f2017f70aca39d658a96c786211be5ddbe1c68794c1", + "sha256:c2b509ac3d4b988ae8769901c66345425e361d518aecbe4acbfc2567e416626a", + "sha256:c9959d49a77b0e07559e579f38b2f3711c2b8716b8410b320bf9713013215a1b", + "sha256:d8cdee92bc930d8b09d8bd2043cedd544d9c8bd7436a77678dd602467a993080", + "sha256:e15199cdb423316e15f108f51249e44eb156ae5dba232cb73be555324a1d49c2" + ], + "version": "==1.4.2" + } + }, + "develop": { + "appdirs": { + "hashes": [ + "sha256:9e5896d1372858f8dd3344faf4e5014d21849c756c8d5701f78f8a103b372d92", + "sha256:d8b24664561d0d34ddfaec54636d502d7cea6e29c3eaf68f3df6180863e2166e" + ], + "version": "==1.4.3" + }, + "atomicwrites": { + "hashes": [ + "sha256:03472c30eb2c5d1ba9227e4c2ca66ab8287fbfbbda3888aa93dc2e28fc6811b4", + "sha256:75a9445bac02d8d058d5e1fe689654ba5a6556a1dfd8ce6ec55a0ed79866cfa6" + ], + "markers": "sys_platform == 'win32'", + "version": "==1.3.0" + }, + "attrs": { + "hashes": [ + "sha256:08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c", + "sha256:f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72" + ], + "version": "==19.3.0" + }, + "black": { + "hashes": [ + "sha256:1b30e59be925fafc1ee4565e5e08abef6b03fe455102883820fe5ee2e4734e0b", + "sha256:c2edb73a08e9e0e6f65a0e6af18b059b8b1cdd5bef997d7a0b181df93dc81539" + ], + "index": "pypi", + "version": "==19.10b0" + }, + "bleach": { + "hashes": [ + "sha256:cc8da25076a1fe56c3ac63671e2194458e0c4d9c7becfd52ca251650d517903c", + "sha256:e78e426105ac07026ba098f04de8abe9b6e3e98b5befbf89b51a5ef0a4292b03" + ], + "version": "==3.1.4" + }, + "certifi": { + "hashes": [ + "sha256:1d987a998c75633c40847cc966fcf5904906c920a7f17ef374f5aa4282abd304", + "sha256:51fcb31174be6e6664c5f69e3e1691a2d72a1a12e90f872cbdb1567eb47b6519" + ], + "version": "==2020.4.5.1" + }, + "cfgv": { + "hashes": [ + "sha256:1ccf53320421aeeb915275a196e23b3b8ae87dea8ac6698b1638001d4a486d53", + "sha256:c8e8f552ffcc6194f4e18dd4f68d9aef0c0d58ae7e7be8c82bee3c5e9edfa513" + ], + "version": "==3.1.0" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:8a18b4ea89d8820c5d0c7da8a64b2c324b4dabb695804dbfea19b9be9d88c0cc", + "sha256:e345d143d80bf5ee7534056164e5e112ea5e22716bbb1ce727941f4c8b471b9a" + ], + "version": "==7.1.1" + }, + "colorama": { + "hashes": [ + "sha256:7d73d2a99753107a36ac6b455ee49046802e59d9d076ef8e47b61499fa29afff", + "sha256:e96da0d330793e2cb9485e9ddfd918d456036c7149416295932478192f4436a1" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.3" + }, + "coverage": { + "hashes": [ + "sha256:00f1d23f4336efc3b311ed0d807feb45098fc86dee1ca13b3d6768cdab187c8a", + "sha256:01333e1bd22c59713ba8a79f088b3955946e293114479bbfc2e37d522be03355", + "sha256:0cb4be7e784dcdc050fc58ef05b71aa8e89b7e6636b99967fadbdba694cf2b65", + "sha256:0e61d9803d5851849c24f78227939c701ced6704f337cad0a91e0972c51c1ee7", + "sha256:1601e480b9b99697a570cea7ef749e88123c04b92d84cedaa01e117436b4a0a9", + "sha256:2742c7515b9eb368718cd091bad1a1b44135cc72468c731302b3d641895b83d1", + "sha256:2d27a3f742c98e5c6b461ee6ef7287400a1956c11421eb574d843d9ec1f772f0", + "sha256:402e1744733df483b93abbf209283898e9f0d67470707e3c7516d84f48524f55", + "sha256:5c542d1e62eece33c306d66fe0a5c4f7f7b3c08fecc46ead86d7916684b36d6c", + "sha256:5f2294dbf7875b991c381e3d5af2bcc3494d836affa52b809c91697449d0eda6", + "sha256:6402bd2fdedabbdb63a316308142597534ea8e1895f4e7d8bf7476c5e8751fef", + "sha256:66460ab1599d3cf894bb6baee8c684788819b71a5dc1e8fa2ecc152e5d752019", + "sha256:782caea581a6e9ff75eccda79287daefd1d2631cc09d642b6ee2d6da21fc0a4e", + "sha256:79a3cfd6346ce6c13145731d39db47b7a7b859c0272f02cdb89a3bdcbae233a0", + "sha256:7a5bdad4edec57b5fb8dae7d3ee58622d626fd3a0be0dfceda162a7035885ecf", + "sha256:8fa0cbc7ecad630e5b0f4f35b0f6ad419246b02bc750de7ac66db92667996d24", + "sha256:a027ef0492ede1e03a8054e3c37b8def89a1e3c471482e9f046906ba4f2aafd2", + "sha256:a3f3654d5734a3ece152636aad89f58afc9213c6520062db3978239db122f03c", + "sha256:a82b92b04a23d3c8a581fc049228bafde988abacba397d57ce95fe95e0338ab4", + "sha256:acf3763ed01af8410fc36afea23707d4ea58ba7e86a8ee915dfb9ceff9ef69d0", + "sha256:adeb4c5b608574a3d647011af36f7586811a2c1197c861aedb548dd2453b41cd", + "sha256:b83835506dfc185a319031cf853fa4bb1b3974b1f913f5bb1a0f3d98bdcded04", + "sha256:bb28a7245de68bf29f6fb199545d072d1036a1917dca17a1e75bbb919e14ee8e", + "sha256:bf9cb9a9fd8891e7efd2d44deb24b86d647394b9705b744ff6f8261e6f29a730", + "sha256:c317eaf5ff46a34305b202e73404f55f7389ef834b8dbf4da09b9b9b37f76dd2", + "sha256:dbe8c6ae7534b5b024296464f387d57c13caa942f6d8e6e0346f27e509f0f768", + "sha256:de807ae933cfb7f0c7d9d981a053772452217df2bf38e7e6267c9cbf9545a796", + "sha256:dead2ddede4c7ba6cb3a721870f5141c97dc7d85a079edb4bd8d88c3ad5b20c7", + "sha256:dec5202bfe6f672d4511086e125db035a52b00f1648d6407cc8e526912c0353a", + "sha256:e1ea316102ea1e1770724db01998d1603ed921c54a86a2efcb03428d5417e489", + "sha256:f90bfc4ad18450c80b024036eaf91e4a246ae287701aaa88eaebebf150868052" + ], + "version": "==5.1" + }, + "distlib": { + "hashes": [ + "sha256:2e166e231a26b36d6dfe35a48c4464346620f8645ed0ace01ee31822b288de21" + ], + "version": "==0.3.0" + }, + "docutils": { + "hashes": [ + "sha256:0c5b78adfbf7762415433f5515cd5c9e762339e23369dbe8000d84a4bf4ab3af", + "sha256:c2de3a60e9e7d07be26b7f2b00ca0309c207e06c100f9cc2a94931fc75a478fc" + ], + "version": "==0.16" + }, + "entrypoints": { + "hashes": [ + "sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19", + "sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451" + ], + "version": "==0.3" + }, + "filelock": { + "hashes": [ + "sha256:18d82244ee114f543149c66a6e0c14e9c4f8a1044b5cdaadd0f82159d6a6ff59", + "sha256:929b7d63ec5b7d6b71b0fa5ac14e030b3f70b75747cef1b10da9b879fef15836" + ], + "version": "==3.0.12" + }, + "flake8": { + "hashes": [ + "sha256:45681a117ecc81e870cbf1262835ae4af5e7a8b08e40b944a8a6e6b895914cfb", + "sha256:49356e766643ad15072a789a20915d3c91dc89fd313ccd71802303fd67e4deca" + ], + "index": "pypi", + "version": "==3.7.9" + }, + "identify": { + "hashes": [ + "sha256:2bb8760d97d8df4408f4e805883dad26a2d076f04be92a10a3e43f09c6060742", + "sha256:faffea0fd8ec86bb146ac538ac350ed0c73908326426d387eded0bcc9d077522" + ], + "version": "==1.4.14" + }, + "idna": { + "hashes": [ + "sha256:7588d1c14ae4c77d74036e8c22ff447b26d0fde8f007354fd48a7814db15b7cb", + "sha256:a068a21ceac8a4d63dbfd964670474107f541babbd2250d61922f029858365fa" + ], + "version": "==2.9" + }, + "keyring": { + "hashes": [ + "sha256:197fd5903901030ef7b82fe247f43cfed2c157a28e7747d1cfcf4bc5e699dd03", + "sha256:8179b1cdcdcbc221456b5b74e6b7cfa06f8dd9f239eb81892166d9223d82c5ba" + ], + "version": "==21.2.0" + }, + "mccabe": { + "hashes": [ + "sha256:ab8a6258860da4b6677da4bd2fe5dc2c659cff31b3ee4f7f5d64e79735b80d42", + "sha256:dd8d182285a0fe56bace7f45b5e7d1a6ebcbf524e8f3bd87eb0f125271b8831f" + ], + "version": "==0.6.1" + }, + "more-itertools": { + "hashes": [ + "sha256:5dd8bcf33e5f9513ffa06d5ad33d78f31e1931ac9a18f33d37e77a180d393a7c", + "sha256:b1ddb932186d8a6ac451e1d95844b382f55e12686d51ca0c68b6f61f2ab7a507" + ], + "version": "==8.2.0" + }, + "mypy": { + "hashes": [ + "sha256:15b948e1302682e3682f11f50208b726a246ab4e6c1b39f9264a8796bb416aa2", + "sha256:219a3116ecd015f8dca7b5d2c366c973509dfb9a8fc97ef044a36e3da66144a1", + "sha256:3b1fc683fb204c6b4403a1ef23f0b1fac8e4477091585e0c8c54cbdf7d7bb164", + "sha256:3beff56b453b6ef94ecb2996bea101a08f1f8a9771d3cbf4988a61e4d9973761", + "sha256:7687f6455ec3ed7649d1ae574136835a4272b65b3ddcf01ab8704ac65616c5ce", + "sha256:7ec45a70d40ede1ec7ad7f95b3c94c9cf4c186a32f6bacb1795b60abd2f9ef27", + "sha256:86c857510a9b7c3104cf4cde1568f4921762c8f9842e987bc03ed4f160925754", + "sha256:8a627507ef9b307b46a1fea9513d5c98680ba09591253082b4c48697ba05a4ae", + "sha256:8dfb69fbf9f3aeed18afffb15e319ca7f8da9642336348ddd6cab2713ddcf8f9", + "sha256:a34b577cdf6313bf24755f7a0e3f3c326d5c1f4fe7422d1d06498eb25ad0c600", + "sha256:a8ffcd53cb5dfc131850851cc09f1c44689c2812d0beb954d8138d4f5fc17f65", + "sha256:b90928f2d9eb2f33162405f32dde9f6dcead63a0971ca8a1b50eb4ca3e35ceb8", + "sha256:c56ffe22faa2e51054c5f7a3bc70a370939c2ed4de308c690e7949230c995913", + "sha256:f91c7ae919bbc3f96cd5e5b2e786b2b108343d1d7972ea130f7de27fdd547cf3" + ], + "index": "pypi", + "version": "==0.770" + }, + "mypy-extensions": { + "hashes": [ + "sha256:090fedd75945a69ae91ce1303b5824f428daf5a028d2f6ab8a299250a846f15d", + "sha256:2d82818f5bb3e369420cb3c4060a7970edba416647068eb4c5343488a6c604a8" + ], + "version": "==0.4.3" + }, + "nodeenv": { + "hashes": [ + "sha256:5b2438f2e42af54ca968dd1b374d14a1194848955187b0e5e4be1f73813a5212" + ], + "version": "==1.3.5" + }, + "packaging": { + "hashes": [ + "sha256:3c292b474fda1671ec57d46d739d072bfd495a4f51ad01a055121d81e952b7a3", + "sha256:82f77b9bee21c1bafbf35a84905d604d5d1223801d639cf3ed140bd651c08752" + ], + "version": "==20.3" + }, + "pathspec": { + "hashes": [ + "sha256:7d91249d21749788d07a2d0f94147accd8f845507400749ea19c1ec9054a12b0", + "sha256:da45173eb3a6f2a5a487efba21f050af2b41948be6ab52b6a1e3ff22bb8b7061" + ], + "version": "==0.8.0" + }, + "pkginfo": { + "hashes": [ + "sha256:7424f2c8511c186cd5424bbf31045b77435b37a8d604990b79d4e70d741148bb", + "sha256:a6d9e40ca61ad3ebd0b72fbadd4fba16e4c0e4df0428c041e01e06eb6ee71f32" + ], + "version": "==1.5.0.1" + }, + "pluggy": { + "hashes": [ + "sha256:15b2acde666561e1298d71b523007ed7364de07029219b604cf808bfa1c765b0", + "sha256:966c145cd83c96502c3c3868f50408687b38434af77734af1e9ca461a4081d2d" + ], + "version": "==0.13.1" + }, + "pre-commit": { + "hashes": [ + "sha256:487c675916e6f99d355ec5595ad77b325689d423ef4839db1ed2f02f639c9522", + "sha256:c0aa11bce04a7b46c5544723aedf4e81a4d5f64ad1205a30a9ea12d5e81969e1" + ], + "index": "pypi", + "version": "==2.2.0" + }, + "py": { + "hashes": [ + "sha256:5e27081401262157467ad6e7f851b7aa402c5852dbcb3dae06768434de5752aa", + "sha256:c20fdd83a5dbc0af9efd622bee9a5564e278f6380fffcacc43ba6f43db2813b0" + ], + "version": "==1.8.1" + }, + "pycodestyle": { + "hashes": [ + "sha256:95a2219d12372f05704562a14ec30bc76b05a5b297b21a5dfe3f6fac3491ae56", + "sha256:e40a936c9a450ad81df37f549d676d127b1b66000a6c500caa2b085bc0ca976c" + ], + "version": "==2.5.0" + }, + "pyflakes": { + "hashes": [ + "sha256:17dbeb2e3f4d772725c777fabc446d5634d1038f234e77343108ce445ea69ce0", + "sha256:d976835886f8c5b31d47970ed689944a0262b5f3afa00a5a7b4dc81e5449f8a2" + ], + "version": "==2.1.1" + }, + "pygments": { + "hashes": [ + "sha256:647344a061c249a3b74e230c739f434d7ea4d8b1d5f3721bc0f3558049b38f44", + "sha256:ff7a40b4860b727ab48fad6360eb351cc1b33cbf9b15a0f689ca5353e9463324" + ], + "version": "==2.6.1" + }, + "pyparsing": { + "hashes": [ + "sha256:67199f0c41a9c702154efb0e7a8cc08accf830eb003b4d9fa42c4059002e2492", + "sha256:700d17888d441604b0bd51535908dcb297561b040819cccde647a92439db5a2a" + ], + "version": "==3.0.0a1" + }, + "pytest": { + "hashes": [ + "sha256:0e5b30f5cb04e887b91b1ee519fa3d89049595f428c1db76e73bd7f17b09b172", + "sha256:84dde37075b8805f3d1f392cc47e38a0e59518fb46a431cfdaf7cf1ce805f970" + ], + "index": "pypi", + "version": "==5.4.1" + }, + "pytest-asyncio": { + "hashes": [ + "sha256:6096d101a1ae350d971df05e25f4a8b4d3cd13ffb1b32e42d902ac49670d2bfa", + "sha256:c54866f3cf5dd2063992ba2c34784edae11d3ed19e006d220a3cf0bfc4191fcb" + ], + "index": "pypi", + "version": "==0.11.0" + }, + "pytest-cov": { + "hashes": [ + "sha256:cc6742d8bac45070217169f5f72ceee1e0e55b0221f54bcf24845972d3a47f2b", + "sha256:cdbdef4f870408ebdbfeb44e63e07eb18bb4619fae852f6e760645fa36172626" + ], + "index": "pypi", + "version": "==2.8.1" + }, + "pywin32-ctypes": { + "hashes": [ + "sha256:24ffc3b341d457d48e8922352130cf2644024a4ff09762a2261fd34c36ee5942", + "sha256:9dc2d991b3479cc2df15930958b674a48a227d5361d413827a4cfd0b5876fc98" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.2.0" + }, + "pyyaml": { + "hashes": [ + "sha256:06a0d7ba600ce0b2d2fe2e78453a470b5a6e000a985dd4a4e54e436cc36b0e97", + "sha256:240097ff019d7c70a4922b6869d8a86407758333f02203e0fc6ff79c5dcede76", + "sha256:4f4b913ca1a7319b33cfb1369e91e50354d6f07a135f3b901aca02aa95940bd2", + "sha256:69f00dca373f240f842b2931fb2c7e14ddbacd1397d57157a9b005a6a9942648", + "sha256:73f099454b799e05e5ab51423c7bcf361c58d3206fa7b0d555426b1f4d9a3eaf", + "sha256:74809a57b329d6cc0fdccee6318f44b9b8649961fa73144a98735b0aaf029f1f", + "sha256:7739fc0fa8205b3ee8808aea45e968bc90082c10aef6ea95e855e10abf4a37b2", + "sha256:95f71d2af0ff4227885f7a6605c37fd53d3a106fcab511b8860ecca9fcf400ee", + "sha256:b8eac752c5e14d3eca0e6dd9199cd627518cb5ec06add0de9d32baeee6fe645d", + "sha256:cc8955cfbfc7a115fa81d85284ee61147059a753344bc51098f3ccd69b0d7e0c", + "sha256:d13155f591e6fcc1ec3b30685d50bf0711574e2c0dfffd7644babf8b5102ca1a" + ], + "version": "==5.3.1" + }, + "readme-renderer": { + "hashes": [ + "sha256:1b6d8dd1673a0b293766b4106af766b6eff3654605f9c4f239e65de6076bc222", + "sha256:e67d64242f0174a63c3b727801a2fff4c1f38ebe5d71d95ff7ece081945a6cd4" + ], + "version": "==25.0" + }, + "regex": { + "hashes": [ + "sha256:08119f707f0ebf2da60d2f24c2f39ca616277bb67ef6c92b72cbf90cbe3a556b", + "sha256:0ce9537396d8f556bcfc317c65b6a0705320701e5ce511f05fc04421ba05b8a8", + "sha256:1cbe0fa0b7f673400eb29e9ef41d4f53638f65f9a2143854de6b1ce2899185c3", + "sha256:2294f8b70e058a2553cd009df003a20802ef75b3c629506be20687df0908177e", + "sha256:23069d9c07e115537f37270d1d5faea3e0bdded8279081c4d4d607a2ad393683", + "sha256:24f4f4062eb16c5bbfff6a22312e8eab92c2c99c51a02e39b4eae54ce8255cd1", + "sha256:295badf61a51add2d428a46b8580309c520d8b26e769868b922750cf3ce67142", + "sha256:2a3bf8b48f8e37c3a40bb3f854bf0121c194e69a650b209628d951190b862de3", + "sha256:4385f12aa289d79419fede43f979e372f527892ac44a541b5446617e4406c468", + "sha256:5635cd1ed0a12b4c42cce18a8d2fb53ff13ff537f09de5fd791e97de27b6400e", + "sha256:5bfed051dbff32fd8945eccca70f5e22b55e4148d2a8a45141a3b053d6455ae3", + "sha256:7e1037073b1b7053ee74c3c6c0ada80f3501ec29d5f46e42669378eae6d4405a", + "sha256:90742c6ff121a9c5b261b9b215cb476eea97df98ea82037ec8ac95d1be7a034f", + "sha256:a58dd45cb865be0ce1d5ecc4cfc85cd8c6867bea66733623e54bd95131f473b6", + "sha256:c087bff162158536387c53647411db09b6ee3f9603c334c90943e97b1052a156", + "sha256:c162a21e0da33eb3d31a3ac17a51db5e634fc347f650d271f0305d96601dc15b", + "sha256:c9423a150d3a4fc0f3f2aae897a59919acd293f4cb397429b120a5fcd96ea3db", + "sha256:ccccdd84912875e34c5ad2d06e1989d890d43af6c2242c6fcfa51556997af6cd", + "sha256:e91ba11da11cf770f389e47c3f5c30473e6d85e06d7fd9dcba0017d2867aab4a", + "sha256:ea4adf02d23b437684cd388d557bf76e3afa72f7fed5bbc013482cc00c816948", + "sha256:fb95debbd1a824b2c4376932f2216cc186912e389bdb0e27147778cf6acb3f89" + ], + "version": "==2020.4.4" + }, + "requests": { + "hashes": [ + "sha256:43999036bfa82904b6af1d99e4882b560e5e2c68e5c4b0aa03b655f3d7d73fee", + "sha256:b3f43d496c6daba4493e7c431722aeb7dbc6288f52a6e04e7b6023b0247817e6" + ], + "version": "==2.23.0" + }, + "requests-toolbelt": { + "hashes": [ + "sha256:380606e1d10dc85c3bd47bf5a6095f815ec007be7a8b69c878507068df059e6f", + "sha256:968089d4584ad4ad7c171454f0a5c6dac23971e9472521ea3b6d49d610aa6fc0" + ], + "version": "==0.9.1" + }, + "six": { + "hashes": [ + "sha256:236bdbdce46e6e6a3d61a337c0f8b763ca1e8717c03b369e87a7ec7ce1319c0a", + "sha256:8f3cd2e254d8f793e7f3d6d9df77b92252b52637291d0f0da013c76ea2724b6c" + ], + "version": "==1.14.0" + }, + "sqlalchemy-stubs": { + "hashes": [ + "sha256:a3318c810697164e8c818aa2d90bac570c1a0e752ced3ec25455b309c0bee8fd", + "sha256:ca1250605a39648cc433f5c70cb1a6f9fe0b60bdda4c51e1f9a2ab3651daadc8" + ], + "index": "pypi", + "version": "==0.3" + }, + "toml": { + "hashes": [ + "sha256:229f81c57791a41d65e399fc06bf0848bab550a9dfd5ed66df18ce5f05e73d5c", + "sha256:235682dd292d5899d361a811df37e04a8828a5b1da3115886b73cf81ebc9100e" + ], + "version": "==0.10.0" + }, + "tqdm": { + "hashes": [ + "sha256:00339634a22c10a7a22476ee946bbde2dbe48d042ded784e4d88e0236eca5d81", + "sha256:ea9e3fd6bd9a37e8783d75bfc4c1faf3c6813da6bd1c3e776488b41ec683af94" + ], + "version": "==4.45.0" + }, + "twine": { + "hashes": [ + "sha256:c1af8ca391e43b0a06bbc155f7f67db0bf0d19d284bfc88d1675da497a946124", + "sha256:d561a5e511f70275e5a485a6275ff61851c16ffcb3a95a602189161112d9f160" + ], + "index": "pypi", + "version": "==3.1.1" + }, + "typed-ast": { + "hashes": [ + "sha256:0666aa36131496aed8f7be0410ff974562ab7eeac11ef351def9ea6fa28f6355", + "sha256:0c2c07682d61a629b68433afb159376e24e5b2fd4641d35424e462169c0a7919", + "sha256:249862707802d40f7f29f6e1aad8d84b5aa9e44552d2cc17384b209f091276aa", + "sha256:24995c843eb0ad11a4527b026b4dde3da70e1f2d8806c99b7b4a7cf491612652", + "sha256:269151951236b0f9a6f04015a9004084a5ab0d5f19b57de779f908621e7d8b75", + "sha256:4083861b0aa07990b619bd7ddc365eb7fa4b817e99cf5f8d9cf21a42780f6e01", + "sha256:498b0f36cc7054c1fead3d7fc59d2150f4d5c6c56ba7fb150c013fbc683a8d2d", + "sha256:4e3e5da80ccbebfff202a67bf900d081906c358ccc3d5e3c8aea42fdfdfd51c1", + "sha256:6daac9731f172c2a22ade6ed0c00197ee7cc1221aa84cfdf9c31defeb059a907", + "sha256:715ff2f2df46121071622063fc7543d9b1fd19ebfc4f5c8895af64a77a8c852c", + "sha256:73d785a950fc82dd2a25897d525d003f6378d1cb23ab305578394694202a58c3", + "sha256:8c8aaad94455178e3187ab22c8b01a3837f8ee50e09cf31f1ba129eb293ec30b", + "sha256:8ce678dbaf790dbdb3eba24056d5364fb45944f33553dd5869b7580cdbb83614", + "sha256:aaee9905aee35ba5905cfb3c62f3e83b3bec7b39413f0a7f19be4e547ea01ebb", + "sha256:bcd3b13b56ea479b3650b82cabd6b5343a625b0ced5429e4ccad28a8973f301b", + "sha256:c9e348e02e4d2b4a8b2eedb48210430658df6951fa484e59de33ff773fbd4b41", + "sha256:d205b1b46085271b4e15f670058ce182bd1199e56b317bf2ec004b6a44f911f6", + "sha256:d43943ef777f9a1c42bf4e552ba23ac77a6351de620aa9acf64ad54933ad4d34", + "sha256:d5d33e9e7af3b34a40dc05f498939f0ebf187f07c385fd58d591c533ad8562fe", + "sha256:fc0fea399acb12edbf8a628ba8d2312f583bdbdb3335635db062fa98cf71fca4", + "sha256:fe460b922ec15dd205595c9b5b99e2f056fd98ae8f9f56b888e7a17dc2b757e7" + ], + "version": "==1.4.1" + }, + "typing-extensions": { + "hashes": [ + "sha256:6e95524d8a547a91e08f404ae485bbb71962de46967e1b71a0cb89af24e761c5", + "sha256:79ee589a3caca649a9bfd2a8de4709837400dfa00b6cc81962a1e6a1815969ae", + "sha256:f8d2bd89d25bc39dabe7d23df520442fa1d8969b82544370e03d88b5a591c392" + ], + "version": "==3.7.4.2" + }, + "urllib3": { + "hashes": [ + "sha256:3018294ebefce6572a474f0604c2021e33b3fd8006ecd11d62107a5d2a963527", + "sha256:88206b0eb87e6d677d424843ac5209e3fb9d0190d0ee169599165ec25e9d9115" + ], + "version": "==1.25.9" + }, + "virtualenv": { + "hashes": [ + "sha256:5021396e8f03d0d002a770da90e31e61159684db2859d0ba4850fbea752aa675", + "sha256:ac53ade75ca189bc97b6c1d9ec0f1a50efe33cbf178ae09452dcd9fd309013c1" + ], + "version": "==20.0.18" + }, + "wcwidth": { + "hashes": [ + "sha256:cafe2186b3c009a04067022ce1dcd79cb38d8d65ee4f4791b8888d6599d1bbe1", + "sha256:ee73862862a156bf77ff92b09034fc4825dd3af9cf81bc5b360668d425f3c5f1" + ], + "version": "==0.1.9" + }, + "webencodings": { + "hashes": [ + "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", + "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923" + ], + "version": "==0.5.1" + }, + "wheel": { + "hashes": [ + "sha256:8788e9155fe14f54164c1b9eb0a319d98ef02c160725587ad60f14ddc57b6f96", + "sha256:df277cb51e61359aba502208d680f90c0493adec6f0e848af94948778aed386e" + ], + "index": "pypi", + "version": "==0.34.2" + }, + "yappi": { + "hashes": [ + "sha256:5650e28b53f624cccc4fd0f8697e7a0a823424197fc8da9ce6770e3d0bc1e392" + ], + "index": "pypi", + "version": "==1.2.4" + } + } +} diff --git a/Ch11/apd.aggregation-chapter11/README.md b/Ch11/apd.aggregation-chapter11/README.md new file mode 100644 index 0000000..85669dd --- /dev/null +++ b/Ch11/apd.aggregation-chapter11/README.md @@ -0,0 +1,4 @@ +# APD Sensor aggregator + +A programme that queries apd.sensor endpoints and aggregates their results. + diff --git a/Ch11/apd.aggregation-chapter11/Yappi Profiling.ipynb b/Ch11/apd.aggregation-chapter11/Yappi Profiling.ipynb new file mode 100644 index 0000000..153122f --- /dev/null +++ b/Ch11/apd.aggregation-chapter11/Yappi Profiling.ipynb @@ -0,0 +1,3140 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAEwsAAAmZCAYAAABbjid3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdd5RkVdWw8WcPM+TMkNMgIAiISBSUJAgoiqAEBcQhmMWE8XsNmHPEHMiCooKBFzGg6IsEQVCRoIiAgkgacmZmf3+cGqm+fau7UndVM89vrV5w973nnF1xrened5/ITCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNn2mDTkCSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJElSPZuFSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSUPKZmGSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEnSkLJZmCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkjSkbBYmSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDSmbhUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJElDymZhkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0pCyWZgkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZI0pGwWJkmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA0pm4VJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJQ8pmYZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSdKQslmYJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSNKRsFiZJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNKZuFSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSUPKZmGSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEnSkLJZmCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkjSkbBYmSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDSmbhUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJElDymZhkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0pCyWZgkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZI0pGwWJkmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA0pm4VJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJQ8pmYZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSdKQslmYJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSNKRsFiZJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNKZuFSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSUPKZmGSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEnSkLJZmCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkjSkbBYmSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDSmbhUmSJEmSJPUgIrLyc/Sgc5I0dfmdIkmSJEmSJEmSJEmSJEkLlog4ulo7NpHjBiUiZtXUyM1eUNaXJEmSJKlX0wedgCRJkiRJemKLiOnARsBTgGUbPwsB9wP3ATcC1wPXZ+bDA0pTkiRJkiRJkiRJkiRJkiRJkiRJkiRJGko2C5MkSZIkSX0XEYsA+wCHAc8CFmtj2KMR8RfgYuA3wM8z8/aJy1KSJEmSJEmSJEmSJEmSJI0nImYB13Uw5GHgHuBu4FrgMuBC4KeZ+Ui/85svIp4NnFNz6meZuUef1tgJ+PUYl+ycmef2YZ1DgBPGuGSdzLy+13UkSZIkSZI0dUwbdAKSJEmSJOmJJSL2Av4OnAo8h/YahQHMAJ4OvBL4NnBLRHxhQpKUpD6JiOsjIpt+jh90TpIkSZIkSZIkSZIkSdKALQKsCKwH7A68E/ghcFNEfDwilpygdQ9vEX9ORKw1QWtWHTZk80iSJEmSJOkJwmZhkiRJkiSpL6L4MvAjYI0+TDkNmKziHEmSJEmSJEmSJEmSJEmSNLFmAm8H/hIR2/Zz4ohYFnhRi9PTgNn9XG8ML46IpXuZICKeBOzQp3wkSZIkSZL0BDF90AlIkiRJkqQnjK8Cr2xx7p/Ar4ArgNuA+4ElgeWA9YEtgKdRdhOUJEmSJEmSJEmSJEmSJEnD7X7g7y3OLQ4sD6zQ4vzawNkRsWNm/rFP+RwELDrG+UMj4oOZmX1ar5XFgQOAb/Qwx2FA9CcdSZIkSZIkPVHYLEySJEmSJPUsIvamvlHYpZRdAH81XoFNRCwO7AHs0/hZot95StKwy0yL/CRJkiRJkiRJkiRJkjQVXJKZO411QUSsAbwAOApYt3J6aeD7EfGUzHy0D/kcXjlORjbcmgXsAvyyD2tV3UnZPHW+w+iyWVhETANeXgnPoTRf0xNUZh4NHD3gNCRJkiRJ0pCbNugEJEmSJEnS1BYRAXy25tTpwHaZeU47O/Fl5gOZeXpmvgxYHXgzcE1/s5UkSZIkSZIkSZIkSZIkSZMhM2/MzK8AT6PUFFatC7yq13UiYjPg6ZXwZ4FHKrHDel2rhe8Ac5uOnxERT+lyrt2BNZqO7wJ+2m1ikiRJkiRJeuKwWZgkSZIkSerVdpQd95rdBMzOzIe7mTAz787Mz2Xm23pNTpIkSZIkSZIkSZIkSZIkDU5m3g8cBFxVc/plfVjiiOqSwOeBMyvxF0XEcn1Yr+rfwM8rsW4bk1XHnQI81OVckiRJkiRJegKxWZgkSZIkSerVc2tix2fmvZOeiSRJkiRJkiRJkiRJkiRJGjqZ+RDw0ZpTW0bE8t3OGxGLAgdWwudm5j+BEyrxRShNyybCsZXjl0XE9E4miIgVgL3GmVeSJEmSJEkLqI5+2SRJkiRJklRj7ZrYHyY9ixYiYiVgS2Clxs9c4FbgFuDCzLxngOmN0Mh1Q2BdYFlgCeBeYA5wE/D7zLxvknJZFtiqKZdpjTx+mpk3TFIOawGbA6sBywH3AdcBF2fmzZOUw2LA1sCqlPfPksAdwG3AnzLz2knIYRngGcD6wDKU5+E24NLMvHoC190EWI/yuFcAHmisez3lNXh0otZurL8QsBmwEbAysChwP/DnzDynzfFPonymVgeWBhYC7mz8XA1cnpnzJuQBDImICOCplPfPisDywN2U78HrKO+jCX8OBvU+liRJkiRJkiRJkiRJ0lA5uyY2DdgAuKDLOV9EqS9rdmLjv2dRalRWbDp3OPDFLtcay4+B24GZjeOVgec14u06GFi46fjPmfmHUgI0HBbEuqyIWJ3yeGdRap8WA+6h1FT+k1JP99DAEuyTiFiYUjO4IbAK5bWF8jjnUF7Xv05SLtMptb8bUz5T84CbKTVvF2bm3MnIo13DUGsqSZIkSVow2CxMkiRJkiT1aqWa2P2TnkWTxh/dXw8cQGk21apS5rGIuAA4HjhhsosHImIpyi6AuwE7AWuNM2RuRFwGfA04MTMf6WLN44GXN4VuyMxZTeefC7wF2JlSwFN1KOX5mhCNxkYvB15LaVZWJyPid8DHM/PMprHXM7J53QmZObuLHKZRdo88GNiB0qSq1bXXAacBn8rM2ztc53jGfi02A95NeY/MaDHHDcCnga/2o3lXRGwKvAnYndKkrZX7IuKXlNfgwg7X2An4dSW8c2ae2zi/FvB2ym6f1SI+gN8Atc3CImJ9SvHfs4FnUhrujeXuiPgF5fW7qM38Z1EKjlp5eUS8fIzzAGRm7fdSRGQl9P7MPLqd3CrzPJnyPD6PUoDUyh0R8TPKc3BZF+scz5C9jyVJkiRJkiRJkiRJkjScMvO2iLiHx5sQzTez7vo2HV45fgD4fmO9xyLiFOCNTec3i4ind1MrM5bMfCQivl1Z6zA6axZ2WOX42J4T64PJqMtqrHM5sElT6DZg9V5qiiLipcAplfDrMvPLY4yZCewD7ArsSGn8NpZHIuJCShO6H3TTKC0ijgbe1xxrVWPWT436rr0pNaPbAIuMc/1twJmU1/bKCchnZeCdwGzKRrd1bo2I04APZOZt/c6hXZNVaypJkiRJUrNpg05AkiRJkiRNeXW7oa1dE5sUEXEAcA3wCWALWjcKg9JIfXvgW8CfImKHic+wiIhPALcCJwOHMH6jMCjNu7YEvgFcGxHb9zGfJSPi+5SdFHelvlHYhGo0YfotcBytG4VBeU2fBfwkIr4bEYv3MYc9gMspO0vuxhjFGw3rAO8A/hERbxzn2nZzmBYRHwQuAV5MiwZLDWsDXwAuioi6xn3trrlqo1Dtj5SGcGM1CoOy693ewAUR8cOIWL7btSt5HA5cBbyO+kZhrcatEBGXAn8DPkZ57cYrSIOyy+O+wIUR8aOIaFVcNGVExOIR8WXgCkoh5FiNwgBWoDRm+0NEnBQRbT/v4+Qx6e9jSZIkSZIkSZIkSZIkTQn31cSqzcPaEhHrUJocNTs9M5vXOKFmaLXBWL98q3K8Z7v1MBGxJbBpU+gRSn3hwAygLuu4yvGKwJ7t5tvC7Mrxw8CprS5uNJe7Gfg6sD/jNwoDWJjSLOo04C8RsXFXmU6iiNgwIv4KXEZpUrYD4zQKa1iRUmP4l4j4RkS0M6bdnJ4HXEnZ8HSs98xKlA2Fr4qIl/Rr/U4MQ62pJEmSJGnBZLMwSZIkSZLUq//UxPaf9CyAiHgP8B1g9S6Gbwz8IiIO7G9WLW3N+MUBY1kDOCciXtZrIhGxBHAOpaHPQETEupRGYc/qcOj+wE8jYuE+5PBW4H+BjboYvhTwuYj4ZkRM7yGHaZTikXfTWcO2pwO/jYglu1jzacDvKQ2jutmJ8IWUoq4ndzG2OY+3Ad8Eumn+thTlOejFXsDvI2KNHucZmMaOlr8CXkNphtjRcMoOh+dFRDvNC8fKY9Lfx5IkSZIkSZIkSZIkSZoy6poA3dPlXIcxuubpxOaDzLyM0tSn2UER0Uv9Xq3MvBz4Q1NoOtBujd9hleMfZ+YdfUmse5Ndl3Uy8Ggldmi3CzfW3LUS/mFm3jnGsO3ovPaq2VMo9XTVdYfNKkAvNX8BHEGp9+qq2d+IySJeAPwI6GTj0hWAUyLilb2u34lhqDWVJEmSJC24/MekJEmSJEnq1flA9Q/tu0bEkZl5zGQl0WgU9oGaU48BvwZ+CdxE+X3ImsDzgGcwslBoYeDkiHgsM0+b2IxHSEox0uXAVcBtlOKnuZTCgCcBW1F2QJzRNG4G8I2IuCIzL+1h/a9TmpfN92/gLODPwK2UXRvXphTt9F1ELENpcLRmzel/AD+k7Ex4J2VXuqdSGlSt0rhmB+AzPebwMcqubVVzgF9QCrhuBR6gFKttDOwBbFC5/nDgLuCtXabyYeCgpuN/UYpKLgduB5akFBO9mLLTXLMNKLs3vr7dxRq7Uf66MW+zecD/UT7f11Ee02KUJnU7ArswsgnU+sBZEbFFZt7d7vpNdgPe2XT8cCOvcykNCR9rrL1NTa517gMupnyergHuBu6lfMaXoxTp7Ex5LputD3w3InbMzMdazP0I8Kem440Y+bm8E/hnGzn2VUQsRnnONqk5fTtwBo9/plfg8ffRapVrN6I0DNssM+d0mc6kvo8lSZIkSZIkSZIkSZI0NTQ2lazbTPAfXcw1DZhdCd9E2Tiz6kTgk03HywIvAk7pdN02HAts0XR8GPDpsQY0Gpe9tGaeYTORdVlk5q0RcRalPnC+50XESpl5axf5HgJMq8Q6eV7nApcCVwBXA3dQajuDUle5PqUO9ZmVdZYEvhMRT8/Mf3WR9yDcyeOv7bWUx3kfpW5wJqVmcjeguhHl1pRNQnvZZHgd4Bgev985KbWLZwE3No7XBJ5Lea6b634D+GpE3JGZP+ghh7YMUa2pJEmSJGkBZbMwSZIkSZLUq7OABykFAc2+EBHPAT6RmedNZAIR8UzgfTWnzgMOz8y/1Zz7UERsSyn82LB5OuDrEXFRZt7Q/2z/ax7wc0oR0s8z87bxBkTETOC9lCY684sdFgFOoDTQ6sYawIGN/38QeBfw5cys7s4H8O6J2E0R+CyjC0jupRRBfCMzszogIt4AvA04mvI7rtdSmjh1LCL2YXTxxp2U5lUnZuZDLcYFsDfwVWClplNHRcRvM/PHHaayalMe9wJHAcdm5tyatf8fpTneOyunXh0RH83Mm8ZbLCKWA77H6OZbxwFHZ2arhlcfaRTtfQnYvSm+LuXz9OLx1q7xdh5/T/8AeHOrIqkx3oN3UXaW/D5wfov3cHWu7YDPA1s2hbcD3gR8qm5MZv4b2KxpjuspzfTm+3Fmzh5v7QnwWUY3CpsLfBz4YN37OCLeDLwF+CDlu2S+NSkFXC/qIo9JfR9LkiRJkiRJkiRJkiRpSqmrLbqT0qCoU7tT6t+anZyZ82quPZmygV3zBomHMzHNwk6hNAebX+e0UURsk5kXjTHmRZTGQvPdRKkvHAaTUpfV5FhGNgubDhxMdxuKzq4c30jZeHYsjwCnUx7zr9rZPDMi1gY+ysiGbysAXwGe326yA/Af4HjKRpSXtPjs/FejZvK5wOcojdLm2y8i9s3M73eZx9t5/PNyNTC7xeflIxGxdSPn5oZ0AXwlIn6Tmbd3mcO4hqjWVJIkSZK0AKt2RZckSZIkSepIo8nVF1ucfgHwfxFxY0QcGxGviIinRUTfGpg3/oj+LUYW8UBpYrZLi0ZhAGTmBZRdxi6vnFqG1o+pX/bJzN0z89vtNAoDyMzbM/MNwKGVU5tExG5d5jH/ebsf2CMzPz9WMU+rYoZuRcQzGP147mvk8vW6RmGNPB7JzA9TGp3NpRR7LFJ37Tjrr0RpjtXsGmDTxvotH28WZ1AKmm6snP5o473ZiYUpj2MOsH1mfqOuwVJj7Ucz813ANyqnFmL089nKl4BZTcdzgYMz87AxGoXNX/9aStFP9bl7UURs0+b6zea/D48B9htrN8UWr8m/gdUy88jM/E07BWmNuc4HtgfOrpx6Qz+/pyZao2HiqyrhecChmfk/rd7HmTk3Mz9JKTasPmf7REQ3jd8m+30sSZIkSZIkSZIkSZKkKSAiVqVsIFl16nhNilo4vCZ2Yt2FmfkfRjff2jki1uli3TFl5l2U5kvNxquFqT6WE1rV3EyyQdRlnQXcUonNbmfdZo2aqvUr4RPaeK9tlZkvzswz2mkUBpCZN2TmgZTNT5s9LyI2rBkyDH4PrJmZ78rM37fzGWzUTJ4FbANcVjn9lh5ymd8o7ArgWWM11svM31PeW1dUTq1I2VhzQgxZrakkSZIkaQFmszBJkiRJktQP7wUuGOP86pRil68DfwTujYiLIuILEbFvRKzcw9p7AhtUYv8E9s/MR8YbnJlzKLvQPVidNyKq8/ZNu0UkLcaeQNmlr9kRvWXEOzPztz3O0Y3X1cTe1igWGldmfo+yA2G33khpDjffA5RGZdWCjLFy+Bfwkkp4I2CvLnM6NDP/1Oa17wSqRSa7jzeo8d4+oBL+n8z8dpvr0mjk9ipG7+r5znbnqPg98OZWDeLGyeWRzKx+htsd+xDwcsprP9+aQLcN+AbhzTWxz2XmSe0MbhRwvafm1FE95DTh72NJkiRJkiRJkiRJkiRNDRGxLqVx1IqVUw8AH+1ivpmUzUybXZKZV44x7ITqNEzchnbHVo5fEhGL1V0YEbOAnSvhalOigRhEXVZmPgacXAk/NSK26DCFutd23Oe1l9pO4APAxU3HARzWw3wTJjMfaDzX3Yy9EzikEt42IjbqIaVHgBdl5h1trH8HZYPMao3wQY3vhokwjLWmkiRJkqQFkM3CJEmSJElSzxpFHc8DftLmkEWBrYEjge8BN0fEuRFxWEQsOvbQUV5fE3trZt7f7gSZeR2jdxQL6htZDYvqDojP6mGua4Ev9TC+KxGxLLBfJXwVpalcJ94H3NXF+ksCr62EP52Z/+h0rsz8HXBOJbxPp/MAv8nMH3ew7hzKTorNNouI8X7v9zZG/m7wOuBT7a7btP6jwEcq4ed28TmG0iRuILthZuatjN7FspfP1KSJiNWBvSvhWylNHDvxGcpOh822jYjNu0hrst7HkiRJkiRJkiRJkiRJGkIRsWhErB4Re0bE14E/A5vWXPqKTprtNDkEWLgSq9bUVf0IqDaCmj1BNSrnADc0HS8DvLjFtYdS6hXn+21m/n0Ccpp0PdRlVZutAcxud92IWBzYvxL+bWZe2+4c3WhslFnd4HFK1KF1KjP/AlxaCffyWI/JzL91sP7fgGMq4UXo4H3SriGtNZUkSZIkLaC82UqSJEmSJPVFZt4FvJBShNNpoUoAOwLfAv4aEQe1NShi4ca4Zv8BzuhwfYCvAdVd0p7TxTyTpdrUZ9WIWKvLuY5rFKlMtmdSijOquczrZJLMvA/4bhfr7wosW4l9q4t55vvfynH1vdmOb3Qx5veV4yWB1VtdHBFB2VWv2fE9NOqqNnlaBNimwzmuyczfdrl+v1Q/U88YSBadezawUCV2YicNE+G/jd/q3n/dfA9O+PtYkiRJkiRJkoZd48b4XSLi8Ih4R0S8MSL2i4inDTo3SZIkSeqTHSMi636AB4EbgTOBVwCLV8Y+AByUmad0ufZhleNHgVPHGtDYFPW0SnhNYLcucxhrrQSOr4SrOdNoVPbySriuUdZU1nFdVmZeyeh6ogMjolpv2MqLgaUqsePaHNur6uPdPCJmTNLak62fNXfd1JzVbUz73B5yaGUYa00lSZIkSQuo6YNOQJIkSZIkPXHM3xUtIk4F9gAOBPYElu5gmrWAkyNiV+DVmfnwGNduDixaif0wM6tNv8aVmf+JiPOAnZrCG0TECpl5R6fzdapRxPIs4GnAJsCKlOdtSUY3AoLRuyJCee7+2cXyv+5iTD/UFYZUG0+160zgVR2OqRZY3JSZN9Re2Z7rKsezImLZRiO9dv2mi3XrdjtcBvhXi+s3BZarxM7vYl0AMnNORNzdWHO+p9PZYzm32/VbiYjVge0oj/fJlPyWBhZj5E6c861SOe62+d5ke2ZN7PtdznUa8Ik25h/PZLyPJUmSJEmSJD2BRMSTgK2ALRv/3ZyRN/XekJmzBpBaxyJiE+C9wAsY/Xes+ddcQ7lJ+dOZ+cgkpidJkiRJg3YvZWPID2RmV3UhEfEMYONK+KzMvL2N4SdQmpc1Oww4u5tcxnEc5d+H82uVdoqIdTKzuc5sV2DtpuN76b72Z1JMYl3WccDWTcfLA3sB32tj7KGV4/vaHDdKRCwJ7EB5vBsBK1Ae7xLAtJohS1aOFwFWpjTPG2oRsS6lrnNTYF3K41ya8hjqXtvqa9ltzd3VmfnXTgdl5t8i4gpGfh9sFRHTOt20dhzDWGsqSZIkSVpA2SxMkiRJkiT1XaNZ15nAmRGxELAZpRHWlpSbOzagvgFWs9mUYor9x7hm85rYJZ3m2+RiRjYLC0rTo1/2MOeYImI94J3AvoxsttSN6s5l7Ujgjz2u262nVo4fBK7ucq7LuhhTbYK0XET08lxUi3wAZgLtFnA8lJndFATdXRMb671U1/zpmIgYqzHfeKo7f87scPylPaw9QkTsC7yWUqBTV4zVrm4+T4NQ/R58DPhTNxNl5g0RcSuw0hjzj2ey3seSJEmSJEmSpriI2Al4F+XvR8sPNpveRUQA7wGOpv4G2mbrAx8BXhoRB2bmXyY4PUmSJEkaFpcAx3TbKKzh8JrYie0MzMzfRcTfgfWawi+MiJltNhtrW6MW51fALo1QUOoi39d02WGVYd/NzPv7mUe/DKAu61TgM5QmZPPNZpymXxGxNiPrQAFO6/R5jYgtgLdRGpQtNs7l41mWIW0WFhHTKJ+pV1AauPei25q7P/Sw5qWMbBa2FKWJXbe1qHWGrdZUkiRJkrQAs1mYJEmSJEmaUJk5l/KH/P/+MT8iFge2AXYG9gM2bDF8v4g4MjOPaXG+riHRVT2ke2Wba/RFRLwX+H+UXdf6oZvGOvdl5gN9Wr9TK1SO/9V4v3QsM2+KiEeBGR0MW6NyvDjwtG7WH8MKwN/bvHZOl2s8WhMb63moPm5o/RnsVvW1Hc+tvS4YEasBJwHP7nWuhqnSqKr6HXVdZj7Uw3xXMbJZWKffgZP1PpYkSZIkSZI09W0G7DboJProG4y+YX0e5Ub464GFgY0oN6zO91TgnIjYNjP/MRlJSpIkSVIf3U99bdQMYDlg1ZpzOwMXR8TszDy10wUjYgnggEp4DmVz03adCHyg6Xhh4GDgc53m04ZjebxZGMDsiHh/Zs6LiOWAvWuuHyqDqsvKzLsj4gzgwKbw7hGxambePMbQ2Yxu4n1cu8lFxAzgs8Br6K0pWrOhrEWLiKcA36ZsqtsP3T7Ov/awZl1TsJVaxLs1bLWmkiRJkqQFWL9+WSFJkiRJktS2zHwgM3+dme/NzKcAewBXtLj83Y3mYnWWq4n1srPWnTWxCdnJPiK+BLyf/jUKg+4a69zTx/U7VX397u5xvk7HT8hrW9HJjoJ1zZImQqeNvLrR6U6KPb0PI2J14Fz6V5AGU2ejhernqNfdBavfg4uM8R1cZ7Lex5IkSZIkSZKeuB4Grh10Ep2IiCMZ3SjsO8BamblNZh6Qmftk5gbA1sBlTdetBPw0IhadpHQlSZIkqV8uyczNan42zszVKHVKsxndtGdh4KSIeEEXa+4PLFWJfSczH+lgjhOBrMSq/6brl9MZWc+zFo83DzuIkfWDV2fmBROUR1eGoC6r2uRrIeBlrS6OiAAOqYSvyczz2lms0Sjse8Dr6O+9t0O3aWJEbAL8hv41CoPuH2cvtaN1Y5ftYb46w1ZrKkmSJElagNksTJIkSZIkDVxm/gzYCvhpzemVgL1aDK0W/UDZrbBbdWPr1uhJRBwMvLbm1BzgW8BhwPbALEojoMUyM5p/gHX6lM5jfZqnG9VGaZ0UbNV5uN0LG82P+tmobSqpa7I3aL2+D48H1q+J/xH4KLAPsDmwCrA0sHDNZ+r9PeYwKNXvqF6+A1uN7/v3oCRJkiRJkiQ1PEr5Xe43gVcBW1B+J3nEIJPqRESsAHykEj4mM1+ambxgrjgAACAASURBVDdVr8/Mi4EdgN83hZ8MvGnispQkSZKkyZeZczLzBGAzSkPlZgsBJ0fErA6nrWvqdWKHed1AaZLUbJOI2LrDXNpZ6yHg1Er40MZ/D6vEj+33+n1wPIOtyzoHuKESO7TuwoYdgSdVYtWGY2N5B/DCmvhNwJeBg4FtgTUpDakWrXm8O3ew3kA0mqKdBqxYc/p3wNHA84GnUWp4lwKm1zzWE/qU0tDW/S7gtaaSJEmSpCHUSRd2SZIkSZKkCZOZD0bESyg7xc+snN6F0cVCAPfWxJboIY26sXVrdK1RZPGJmlMfAz6QmQ+2OdUTYRex6o5uvRZoLN3BtQ8B8xjZTP+HmblPjzlMBXXvseUy866a+NCLiD2BXSvhW4FDGo0I2zVVP1P3MnInxF6+A1uN7+v3oCRJkiRJkiQ1nAB8tXHj9AgRMYB0unYksGTT8VXAUWMNyMz7IuIg4EpgRiP8roj4WmbeOTFpSpIkSdJgZObDEfEyYGVGNlJamrK55i7tzBMRGwDPrDl1YZ/+HXkYIxs798txwGuajveJiJ2BpzfFHgNOmoC1uzYMdVmZmRFxAvDepvCGEfGMzLywZki1kdhc2mwmFxErAe+qhB8D3gZ8MTPb3RBzKtShvRJ4SiV2LfCSzLykg3n69ViHue53Qa41lSRJkiQNoWnjXyJJkiRJkjQ5MvMeyk50VRu0GFJ3s8SyNbF21Y2d08N8dXYEVq3EjsnMd3XQKAxg+T7mNCjV12+FbieKiIUZeSPOmDJzHlBtjrVOt+tPMbfXxGZNdhJ99NLK8VzgBR0WpMHU/UxVP0e9fAfWjX84Mx/ocU5JkiRJkiRJGiUz76xrFDYFvaBy/PnMfHS8QZn5d+CHTaGlgRf1MzFJkiRJGhaNRkuHAPdUTj07Ig5oc5rD+5vVKC+NiMX7PWlmXgxc3hRaFDi5ctlZmfmffq/do2GpyzoeyEpsdvWiiFgSeHEl/PPMvKnNdfYCqq//OzLzcx00CoOpUYdWfW3vBXbtsFEY9O+xLtPnsX3bOHUBrzWVJEmSJA0hm4VJkiRJkqRhU7cz38wW195WE6vudtaJjWpidY2VevGcyvE84MNdzPOkPuQyaP+qHK8eEct1OddTgU63h7ylcvzkiFiky/WnkurjBth00rPon+pn6uzM7GaHz6n6map+D67T4/u4+j3Y7+9ASZIkSZIkSRq4iFgyInaPiEMj4u0RcVREvCwitoyItmtrI2IpYLNKuJObps+uHO/bwVhJkiRJmlIy80bgvTWnPhIRM8YaGxHTKc3GJtLSTNy/y46rHK9WOT52gtbtxVDUZWXmdcC5lfBLImLRSmx/YIlKrPq8j6X6eO8EvtjB+PmGug6t0VRt20r4xMy8vovp+vVYn9zD2LrNiG/tYb46C2qtqSRJkiRpCNksTJIkSZIkDZu7a2KtdmW7tCa2ZQ9rb1U5zhZr9GLNyvHfMrOuedN4qsUaU1Fd4dAzupyrm3HV9RcDdupy/amk7nl/7qRn0QcRsTCwUiX8f13MsxCwdV+SmnzV76jpjL4xrS0RsRajn88/dDOXJEmSJEmSJA2jRoOwXwFzKI26jgU+DnwKOBG4GLglIj7W5gYnqzGyFvf+Dm+uvbxyvIs3m0qSJEl6gvsK8I9K7EnA4eOMez6wciX2H+BPPf5UjZdHt04CHmlx7lbgfydo3a4MYV1WtenXMsA+ldjsyvEc4McdrFGt7bwoM1u9ZmMZ9trO6u8yoLvXdiX61yxsiz6OvRf4Ww/z1VlQa00lSZIkSUPIZmGSJEmSJGnYVAt6YPSuXPNdCjxUie3dKDDpSESsDGxfCf81M+d0Otc4ZlaOO56/sYvi3v1JZ6AuqIkd2OVcB3Ux5hc1sYO7XH8qOR+4vxLbs82bnoZN9fMEXXymgOcBS3aZQ7WZYcffPz06vybW7Q6n+7U5vyRJkiRJkiRNKRExMyJ+QWkQtjMwY4zLZwLvAK6JiB3GmXr5yvFdHaZWvX4GsGGHc0iSJEnSlNFovvSBmlP/M07z5LomXodm5ma9/DC6CdAOEbFet4+vlcy8HTizxemTMrPVhqqDMgx1Wc1+ANxTiR06/38iYl1G139+OzMf7mCNftR2zqT83mGY9eu1PaDXRJo8JSI26HRQRDwZ2LgSvjgz5/Unrf9aUGtNJUmSJElDyGZhkiRJkiRp2Dy7JnZt3YWZ+Sjw60p4FbprpPVKYHol9vMu5hlPtUlTXeHFeA4EVu1DLgOVmX8Crq6E942IdTqZJyKeRXe78f2M0c3mXtpN0clU0ii4O7sSXgo4agDp9Kr6eYLuPlNv6SGHeyvH/Shu68Q5wNxK7GURsUQnk0TEdOAVNacm4ntQkiRJkiRJkiZN4ybvi4BdK6fuBc4Fvgt8H7gEaL6ZdAXgFxGx+xjTP1I5HuvG9jp112/U4RySJEmSNNWcDPytEluD+toVImJV4LmV8C3UN/DpJpeqw/owb51jO4wP0jDUZf1XZj5A+fd7s10iYs3G/8+uGXZch8v0o7bzdcCiXYybTD2/to0Nb4/sTzr/dUQXY+q+M37aayI1FshaU0mSJEnScLJZmCRJkiRJ6klEvKDT5k5jzLUusH/NqVY76gF8qSb2qYhYvIN11wbeWQlni7l7dXPl+MkRMavdwRGxMvCpfiY0YF+tHC8KfDUiFmpncEQsWTNHWxq7NX69El4IOCUiFutmzinkwzWxtzcar00ZmXk38EAlvFsnc0TEEcBOPaRxZ+X4ST3M1bHM/DdwRiW8MvC+Dqd6E1AtXvpdZl7WbW6SJEmSJEmSNGiNvxedwcjf3f4V2BdYLjN3zsyXZOZ+mbkV5eb0bzRduzBwckSs3mKJOyrHy0VEJzcF120O442mkiRJkp7QMnMu8MGaU+9q8W+q2ZS6rmanNubp1XeAxyqxl7dbv9ahsyj/Dmz+WTkzr5yAtXoyJHVZVdXmX9OAQyJiGnBI5dyfuqh7qtZ2btfJho0RsTHwrg7XHITq44QOX1tKbdr6fcil2ZGNhu9taVxbbVj2MHB8P5OCBb7WVJIkSZI0ZGwWJkmSJEmSerUn8LeIOC4iNux2kohYjXKzRrXJ123AL8cYehZwdSU2i/JH+OltrLsc8KOadX+SmdXdC/vh/2piH29nYEQsT2mc1s2OdcPqWODGSmw34ISIWGSsgRGxLOX52LiH9T/K6J3yNgfOaLw3OhYRa0fEMRGxSQ95TahGIdQPKuEZlMe9QzdzRsQiEfHKiHhzzwl25rzK8U4R8bx2BkbEHsAXelz/8srxJk07Vk6Wz9bEjoqIl7QzOCJ2p76B3Kd7ykqSJEmSJEmSBu+TQPPv638KPD0zf1B3U3lm3pyZrwSOagrPpP4mdih/47iv6XghYMsO8tu2JrZMB+MlSZIkaao6hdF1f6sBr6659tCa2Mn9SCIzbwN+VpPHc/sxf2WtzMz/VH5u7fc6fTTouqwRMvMCRr9nZgO7AGtV4sd2sUS1tnNJ2tywsbFh7I+BMWseh0HjPVetjT0oIp7WzviIOJSJaYq2CHB6O3WbjWtOZ/TzfUqjsddEWCBrTSVJkiRJw8dmYZIkSZIkqR+mU4ouroqICyPi9RFRtxP6KBGxeES8GrgMeGrNJW/LzIdajc/MBA4Hqjd0vBD4+Vg7jUXENpSClmqRw12M3nGsX84G7q3E9o+Ib461C11E7AZcyOM3mNwzQflNqsy8F3hlzamDgL9ExMsiYsRNMRGxSkS8nlL4s2MjfB1wSxfr/wd4OZCVU7sDf4iIg9tsOrdERBwQEacDfwdeD9TtcjlMXkV53prNBM6JiE9GxCrtTBIR20TEp4Hrga8B6/Y1y/GdVhP7bkTs22pARCwaEe+lNAqcv7Nft5+p8yvH04DvRUQnN4P1JDPPB75Sk8dJEXF0RCxcNy4iFoqItwA/BKrXnJGZZ/Q/W0mSJEmSJEmaHI2Nao5oCl0P7JuZD443NjM/Q9mwZr6D6n5vnpmPAb+rhF/WZn4BHFxzaql2xkuSJEnSVJaZ84D315x6Z0T8d+PPiNgRWL9yzdWZ+Yc+plPXeOzwPs4/VQ26LqvOcZXj9YDPV2KPAN/uYu4fAPMqsbdFxAfHqiGMiJcCFwBPaoSmQm1n9bWdAZwdETu1GhARy0bE54Fv8fh9yf16rPNrhJ8KnBcRW4+Rx1aUxm7VeuPbgHf0KZ9RFvBaU0mSJEnSEBn3H5+SJEmSJEkd2qbxc0xEXA9cBFwJ3A7cQflD+dLA2sCmlF3dWjXJOi0zTxhvwcw8PyLeD3ygcmpn4MqIOAf4FXATZUf3NYHnAdsBUZ0OeFVm/nO8dbuRmXdGxGeB91ZOHQ7sHRHfAy4F7gSWpRSQPJ+RhQ1zgTcyuvBlSsrMn0bEh4H/qZxaDzgRmBsRt1CauM0EVmTk6/YIcAiji7aqDeRarf+DRoHSByun1gFOAj4VEecCl1AKSu6nvIeXbeS4JeW9PPS7AjbLzDsiYi9Kw7zmhmzTgbcCb4iIC4DfAjdS3pOLUB73qsDTKY99xcnMu8aJlJ0Km5uULUlp2HUp8BNKUc2jwErAFpTP1ApN11/ZuK6bYqEfAXOA5Zti2wAXR8S9wL95vJjpvzJzsy7WGstRwPZA8y6D0ym7W74mIs4A/kz5Ll4O2Ah4EbBGzVz/YuQNdJIkSZIkSZI0Fb2akRslvD8zH+hg/Kcpf0+iMc8ewPE1151MuTF0vkMj4iuZ+cdx5j+S0Te8g83CJEmSJC04TgPeDWzcFFsZeC3wqcZxXdOuk/qcx48oTY+WbortGRErZeatfV5rKhl0XVadk4CPUOpA53tK5ZqfZOYdnU6cmX+LiJMptYjN3g3MjojvU+qv7qPUim0A7MXI5+cBymOtbvw4bD5LaVK1bFNsFeDXEfFb4GeUpuvzGvHtgOdSXv/5zqHU5Fafr258AnhLY/6NgAsj4jzgp5RaNih1v3tQauTq6n5fk5m39SGXlhbUWlNJkiRJ0nCxWZgkSZIkSZpIsxo/3TiBDnbny8wPNnZgr+42OINSILBHG9M8ChyamXU74vXTh4AdGz/NVqDcuDKWpBRDndv/tAYnM98dEUkprKlaCFit8VP1MHBQZp5Xsytb27vWZeaHIuLfwJcYvUvbysABjZ8nlMz8S2OnvdMZ2WQKyo1Pde/ToZKZj0bEfpSmZ4tXTm/e+BnLTcCewOwu138oIt5M+c6qWopSFDbhMvPBiHg2cCZQ3VlxJeBVbU51FbBHZs7pZ36SJEmSJEmSNADPafr/ucD3Oxx/HvAYj9fabk99s7DvAEfz+M3BM4CfRMQemXlF3cQRcQCP3/heNa/DPCVJkiRpSsrMeY1NQqv1em+PiK9Q6sZeXB0GfLvPeTwYEaczsn5oBqUJUqt/uz3hDbouq0VON0fE2Y15Wzm2hyXeQKm92rASXwN40zhjHwX2ozQMG2qZOSciDgJ+zMjGawA7NH7G8hfKY/1sn1K6DjiIUse4EKUZ2PaNn/Ek8OrM/EGfchl7sQW01lSSJEmSNDymDToBSZIkSZI05Z1EKb65q0/z/QN4YWbOzsy5nQzMzA8ALwX+3cW6VwLPycy+FhLVycxHgRdSmvp04i5g/8z8ev+zGrzMfA+wG3BNm0P+CDyrqchjucr5uztc/1hgW+BXnYyr8RDlxqB/9jjPpMjMa4BtgM9QdrLrxSXAWT0n1aHMvAzYHbi5w6EXAs/IzOt7XP9E4Ajg3l7m6VVjZ8Sdga9SbmDraDhwCvDMzJwS711JkiRJkiRJaiUiFgW2aAr9C5gZEbPa/aFsYtL89691qZGZj1FuaH2kKbwGcGlEfDkido+IDSPiqRFxQEScSfk7wozGtTdWpuzX39wkSZIkaSr4PvDnSmxF4EjgQEY3qTovM2+YgDxOrom1vdnpE9Wg67JaGKsZ2M3Az7qdODPvBnal5N+JfwO7Zuak1851q5HrfnSwKWvDmcD2mXlnn/P5MbA3nf1eZA5ls9lJraldUGtNJUmSJEnDwWZhkiRJkiSpJ5n5u8w8GFgJ2AX4AOUP4Pd1MM0tlIZjewIbNP7o320+3wHWA94OXEppgNPKY5Rd744ANs3M33S7bqcaRSV7UW4eqRY7Vd0KfJLy3HS66/2Ukpm/ADYGng8cB1wO3A7MpTT/+hPwdUoB0uaZeQlARCzF6MKwOV2s/8fM3AV4BnAio2/QaeVmSsHYy4FVMvOlmXlrp+sPSmY+kJlHAbOAoylNv9pp1vcQ5fP+/4CNM3OrQRU8ZeZ5wNOATzB+wdAllNfqmZnZ7ms83vrfAlYHDqU0UbyM8tl9sB/zd5DHA5n5GmATSmHcf8YZMgc4FdgiMw/qdxGXJEmSJEmSJA3IKjzejAvK77+v6+JnZtMcy7daLDMvAg6m/N58voWB1wBnA1dR/h70Hcrfw+b7IXB8ZTqbhUmSJElaYGRmUuqVqt4KvKomXtfUqx9+DdxUiW0YEdtN0HpTxqDrsmr8hFJTWOfETjeprcrMm4AdgNdTNr8dyw3Ae4ANM/O3vaw7CJl5BrAp8DXGrnObB5xL2Qj4BZk5Ib+7yMwzgY2ALzF2E7PbgC9SnvdTJyKX8SyotaaSJEmSpMGL8vs0SZIkSZKk/oqIoDTOWR9YC1gaWIrSvOse4F7KH70vz8zxmtn0ksfKwFaUZmYrUhog3UZpoHNho2nXwEXEWpSdxlamPFcPUXabuwL4c/pLnDFFxHOAn1fCu2Rmrzu3ERHrUQpQVmj8LExphnc35Uahq5+IxRoRsQyPf3ZWAJahFATdS3lv/hX4R6/FVRMhIhYCtqQ0npsJTKfkfR1wyUR+5wybxnfxppTv4pWAZSnfwbfx+PMxb3AZSpIkSZIkSdJoEbET5Ubt+W7IzFkdjN+CcoNyP12fmeuMs+6WwJcpv18fy6PAR4APN64/ouncmzLz870kKkmSJEnSRFgQ67Ii4snA1pT60yWA+ymNof6cmX8dZG79FBGLANsAG1DqBadRmsNdC1ycmR1v3tpjPjMov1/ZuJHPPErN8XXABUNat7hA1ppKkiRJkiaXzcIkSZIkSZI05UXE54A3NoXmActl5li7y0mSJEmSJEmSpCHUh2Zh2wLn9zmttnNobHKyF7A9sBplI4c5wA3A/wInZeZ1jWvPA57ZNPxZmfm7PuYtSZIkSZIkSZIkSZKeAKYPOgFJkiRJkiSpFxGxPHB4JfwnG4VJkiRJkiRJkrTAur1y/PPM3H2yFs/MXwC/GO+6iJgBbNEUegy4dKLykiRJkiRJkiRJkiRJU9e0QScgSZIkSZIkdSsiAjgBWLJy6usDSEeSJEmSJEmSJA2HWyrHTx5IFuN7JrBo0/FFmfngoJKRJEmSJEmSJEmSJEnDy2ZhkiRJkiRJGriIOCQidu1wzNLA6cDzK6fuAk7uV26SJEmSJEmSJGlqycx7gCuaQrMiYv1B5TOGwyvH3xxIFpIkSZIkSZIkSZIkaejZLEySJEmSJEnDYDvgFxHx14j4WETsHBHLVy+KiBkRsVVEfAi4Dti7Zq7XZ+Z9E52wJEmSJEmSJEkaaj+rHL9iIFm0EBHrAvs2he4CvjugdCRJkiRJkiRJkiRJ0pCLzBx0DpIkSZIkSVrARcRXgVfVnLqdcnPMw8CywExgkTGm+lZmHtH/DCVJkiRJkiRJ0mSJiJ2AXzeFbsjMWR3OsR5wFTC9EXoI2DIzr+hHjr2IiIWAs4Fdm8JvzcxPDyglSZIkSZIkSZIkSZI05KYNOgFJkiRJkiRpDDOB9YCNgdUZu1HYh4BXTEZSkiRJkiRJkiRpuGXm34HjmkKLAmdFxEadzBMR/5+9e4/zqq7zB/46A8NNQJCbF0xESRMvZWqIeMPc7LJlZZZZZrVl6u5qrt1+ZdjWau5WWqubm5tJWayleasWTYW8kPdKE68p4pWLiIJchsv5/TEwzgwzw3dgmO/APJ+Px3nwfX/O5/I+MwzyePD2fXoXRXHieub0bOt+s7m1SX6Wpo3C7k5yQXvyAgAAAAAAAAC6F83CAAAAAOgK7kgyawPX3pTk0LIszyrLsuy4lAAAAAAAgE2pKIqRRVGMan4l2bbZ1J4tzVtzDW3jiDOSPNAofkOSe4ui+LeiKHZsI6++RVG8vSiKHyR5Jk2bjrXkqKIo7i2K4pTW9l3TdOz9a/I5rtGtl5OcUJblqvWcAQAAAAAAAAB0Y4X/fxIAAACArqIoir2THJzkgCS7pP5/2hmUpG+Slan/H2ZeSvJokluT3FSW5czqZAsAAAAAAGyMoihmJdlpI7eZXJbliW2csWOSG5Ps3sLtJ5M8kmRhkp5Jtk4yKsmuSXo0nliWZdHGGe9Jcn2joWeTzEyyIEltkhFJ3pJkq2ZLX0ry7rIs72ptbwAAAAAAAACApL6wAQAAAAC6hLIsH0jyQJKLqp0LAAAAAACw+SvL8pmiKPZPcnGS45vdHr3mWp+F7Tx25JqrLXckOaEsyyfbuTcAAAAAAAAA0A3VVDsBAAAAAAAAAAAAANhUyrJcXJblx5Lsk+TyJC9XsOz5JD9P8qEk265n7kNJJid5cX2pJLl1zZ4HaxQGAAAAAAAAAFSqKMuy2jkAAAAAAAAAAAAAQKcoiqImyd5J9kiyTZJBSZYleTXJrCQPl2X5zAbuPSrJXkl2TLJ16l/s+2qSvyW5qyzLlzYuewAAAAAAAACgO9IsDAAAAAAAAAAAAAAAAAAAAAAAALqommonAAAAAAAAAAAAAAAAAAAAAAAAALRMszAAAAAAAAAAAAAAAAAAAAAAAADoojQLAwAAAAAAAAAAAAAAAAAAAAAAgC5KszAAAAAAAAAAAAAAAAAAAAAAAADoojQLAwAAAAAAAAAAAAAAAAAAAAAAgC5KszAAAAAAAAAAAAAAAAAAAAAAAADoojQLAwAAAAAAAAAAAAAAAAAAAAAAgC5KszAAAAAAAAAAAAAAAAAAAAAAAADoojQLAwAAAAAAAAAAAAAAAAAAAAAAgC6qZ7UTgGorimLrJIc2GnomSV2V0gEAAAAAAAAA2Bi9kuzYKP5DWZavVCsZAFCjBwAAAAAAAABsIapan6dZGNQXIV1b7SQAAAAAAAAAADaB9yW5rtpJANCtqdEDAAAAAAAAALZEnVqfV9NZBwEAAAAAAAAAAAAAAAAAAAAAAADto1kYAAAAAAAAAAAAAAAAAAAAAAAAdFE9q50AdAHPNA6uueaa7LrrrtXKBQAAAAAAAABggz3xxBM5+uijGw8909pcAOgkavQAAAAAAAAAgM1etevzNAuDpK5xsOuuu2bs2LHVygUAAAAAAAAAoCPVrX8KAGxSavQAAAAAAAAAgC1Rp9bn1XTmYQAAAAAAAAAAAAAAAAAAAAAAAEDlNAsDAAAAAAAAAAAAAAAAAAAAAACALkqzMAAAAAAAAAAAAAAAAAAAAAAAAOiiNAsDAAAAAAAAAAAAAAAAAAAAAACALkqzMAAAAAAAAAAAAAAAAAAAAAAAAOiiNAsDAAAAAAAAAAAAAAAAAAAAAACALkqzMAAAAAAAAAAAAAAAAAAAAAAAAOiiNAsDAAAAAAAAAAAAAAAAAAAAAACALkqzMAAAAAAAAAAAAAAAAAAAAAAAAOiiNAsDAAAAAAAAAAAAAAAAAAAAAACALkqzMAAAAAAAAAAAAAAAAAAAAAAAAOiiNAsDAAAAAAAAAAAAAAAAAAAAAACALkqzMAAAAAAAAAAAAAAAAAAAAAAAAOiiNAsDAAAAAAAAAAAAAAAAAAAAAACALqpntRMAAAAAAAAAALqOsiyzevXqlGVZ7VRgi1EURWpqalIURbVTAQAAAAAAAACADqfuDKiW7lSfp1kYAAAAAAAAAHRjZVlm2bJlWbRoURYtWpS6urpqpwRbrF69emXAgAEZMGBA+vTp0y2KkwAAAAAAAAAA2PKoOwO6mu5Qn6dZGAAAAAAAAAB0U0uWLMnzzz+fFStWVDsV6Bbq6ury0ksv5aWXXkptbW2233779OvXr9ppAQAAAAAAAABAxdSdAV1Rd6jPq6l2AgAAAAAAAABA51uyZElmz56tYAuqZMWKFZk9e3aWLFlS7VQAAAAAAAAAAKAi6s6AzcGWWp+nWRgAAAAAAAAAdDNrC7bKsqx2KtCtlWW5RRYkAQAAAAAAAACw5VF3BmxOtsT6vJ7VTgAAAAAAAAAA6DxlWeb5559fp2CrtrY2AwcOTP/+/VNbW5uiKKqUIWx5yrLMihUrsnjx4rz66qtN3qy69mdyl1128XMHAAAAAAAAAECXpO4M6Kq6U32eZmEAAAAAAAAA0I0sW7asSSFEkgwYMCA77LDDFlEIAV1VbW1t+vXrl2HDhuW5557LokWLGu6tWLEiy5cvT58+faqYIQAAAAAAAAAAtEzdGdCVdZf6vJpqJwAAAAAAAAAAdJ7GBRBJfYGEgi3oPEVRZIcddkhtbW2T8VdffbVKGQEAAAAAAAAAQNvUnQGbgy29Pk+zMAAAAAAAAADoRpoXbQ0cOFDBFnSyoigycODAJmPNfzYBAAAAAAAAAKCrUHcGbC625Po8zcIAAAAAAAAAoJsoyzJ1dXVNxvr371+lbKB7a/6zV1dXl7Isq5QNAAAAAAAAAAC0TN0ZsLnZUuvzNAsDAAAAAAAAgG5i9erV64zV1tZWIROgZ8+e64y19DMKAAAAAAAAAADVpO4M2NxsqfV5moUBAAAAAAAAQDfR0lvRiqKoQiZATc26ZTtbwpsLAQAAAAAAAADYsqg7AzY3W2p9nmZhAAAAAAAAAAAAAAAAAAAAAAAA0EVpFgYAAAAAAAAAAAAAAAAAAAAAAABdlGZhAAAAAAAAAAAAAAAAAAAAAAAA0EVpFgYAAAAAAAAAAAAAAAAAAAAAAABdlGZhAAAAAAAAAAAAAAAAAAAAAAAA0EX1rHYCNFUUxe5J9kkyMknfJMuSzE3yRJK/lGX52kbsXZvkPQtRGwAAIABJREFUoCRvSLJdksVJnk/yp7IsZ21c5uuctXOSNyfZPkn/JC8keTrJjLIsV3TkWQAAAAAAAAAAAAAAAAAAAAAAAFsqzcK6gKIoBiU5LcmnUt/IqzWriqL4c5Iry7L8djv2H5bkG0k+nGSbVubMSPK9siyvqjjxlvc5JskZSQ5sZcqCoiiuSPL1siznb8xZAAAAAAAAAAAAAAAAAAAAAAAAW7qaaifQ3RVF8aEkTyQ5O203CkuSHknemuT0duz/ziR/TXJyWmkUtsb4JFcWRXF5URRbVbp/o3P6F0UxJcmv0nqjsKzJ4eQkfy2K4h3tPQcAAAAAAAAAAAAAAAAAAAAAAKA70SysioqimJTkl0mGNLs1O8lNSaYkuTrJnUle24D9D0tyTZLhjYbLJPelvqnX75PMb7bs+CRTiqKo+PdGURQ9klyR5CPNbs1LcuOas+5fc/ZaI5JcWxTFhErPAQAAAAAAAABor9mzZ+drX/taDj744IwYMSK9evVKURQN12WXXVbtFAEAAAAAAAAAALYIo0aNalKfNX369GqnBFuMntVOoLsqiuJfkpzdbHhKknPLsnywhfk1SQ5M8sEk76hg/5FJfp2kV6PhO5J8pizLhxvN653kpCTfSVK7Zvjvk3wryf+r8HG+neRdjeIVSc5I8qOyLOsanbVHkv9Z8xxJ0jvJNUVR7FWW5QsVngUAAAAAAAAAdIJRo0bl6aefboinTZuWww47rHoJbYBLLrkk//RP/5Tly5dXOxUAAAAAAAAAAACADVZT7QS6o6Io9kl9g621ViT5UFmWH22pUViSlGW5uizLO8qyPCPJPhUc840kgxvFM5K8vXGjsDX7Li/L8gdJjm22/oyiKHaq4FlGJzmt2fCHyrK8sHGjsDVnzUxyRJI/NhoekmTS+s4BAAAAAAAAAGiP3/3udznppJMqbhQ2ffr0Jm+0PPvsszdtggAAAAAAAAAAAAAV6lntBLqboih6Jrk0Tb/2J5VleWWle5RluXI9Z4xJ8olGQ3VJTizLclkbe15TFMXkRut6p76J16fWk86kJLWN4svKsry2jXOWFkVxYpIHk/RaM/zpoij+vSzLJ9dzFgAAAAAAAABARb7yla+kLMuG+KMf/Wg+/elPZ8cdd0xt7eulDkOHDq1GegAAAAAAAAAAAAAV0yys830oyb6N4pvLsvxJB5/x0SQ9GsW/Lsvy8QrWnZemTcaOLYrilNaajBVF0TfJMS3s0aayLB8riuKaJMeuGeq5JudvVZAjAAAAAAAAAECbHn300TzwwAMN8bve9a78/Oc/r2JGAAAAAAAAAAAAABuuptoJdEMnNYvP2QRnvL9ZXFEzsrIsH05yV6OhrZL8XRtL3pGkX6P4j2VZPlJRhuvm9IEK1wFdQVkm8+9KHv1BMvfWZPXKamcEAAAAAAAA0ODee+9tEh9zTPN3oQEAdBOrVyR/+0ly/5nJnOnVzgYAAAAAAAAA2EA9q51Ad1IUxa5JDm00NCvJtA4+Y9sk+zQaWpnkjnZsMT3J2xrF70xyXStzj2phbaVuS31ua38PvqUoihFlWc5pxx5ANZSrk3v/MXn8h6+P7fjB5KApSU1t9fICAAAAAAAAWGPOnKblByNHjqxSJgAAVfTa08m1o16PH/lu/a9HP5P08/cjAAAAAAAAANicaBbWuQ5vFt9clmXZwWfs2Sx+oCzL19qxfkazeGw7zvpjpYeUZflaURQPJnlLs7M0C4Ou7sWbmjYKS5Jnrkpm/SIZ/Ynq5AQAAAAAAADQyOLFi5vEtbVefAQAdEONG4U1ds2OyUc7unwVAAAAAAAAoPOUZZn7778/jzzySObOnZvly5dn2LBh2WGHHTJhwoT079+/2ilusGeeeSb33HNPnn322SxdujRDhw7NXnvtlf322y81NTUbtffcuXNz22235fnnn8/SpUuz/fbbZ/To0Rk3btxG792SmTNn5sEHH8y8efPy6quvZptttsl2222XCRMmZMiQIR1+3pZOs7DOdUCz+I9JUhRFkeSIJMcneVuSHVL/vZmf5PEkNyX537IsZ1Vwxh7N4ifamePf1rNfY2/qgLMaNwvbI8kt7dwD6Gwz/73l8QfP1iwMAAAAAAAAaLdNUbS1evXqTZApAMBmZPmCtu8vfjLpP7pzcgEAAAAAAADoIPPnz88555yTyy+/PPPmzWtxTq9evTJx4sScffbZedvb3lbRvieeeGImT57cED/11FMZNWpURWunT5+eww8/vCGeNGlSzj777Fbn17caqnfooYdm+vTpSZIZM2Zk0qRJueWWW1qsgRsxYkS++tWv5tRTT213Y68//elP+cIXvpBp06a1uPfIkSNz0kkn5ctf/nJ69uyZs88+O9/4xjca7k+bNi2HHXZYRWe99NJL+Y//+I9cfvnlee6551qcU1NTk/Hjx2fSpEl5+9vf3q5n6c46vp0bbdmvWfxwURSjUt8M7PdJTkx9A66BSfoleUPqm4idm+SxoiguKoqi33rO2LVZPLudOT7dLB5SFMXg5pOKotgmyTYbeVbz+WPauR6ohjk3tzz+2qxOTQMAAAAAAADYvM2fPz9nnHFGRowYkf322y8f+9jHcsYZZ+QrX/lK/uEf/iHvfOc7M2TIkLzzne/MXXfd1eZes2bNSlEUDVfjIqUkOfzww5vcX3tddtllDZ8bF2slyTe+8Y0W16y91hZoAQB0SS9Mbfv+s9cnZdk5uQAAAAAAAAB0gGuuuSajR4/O+eef32qjsCSpq6vL1KlTM27cuJx00klZuXJlJ2a5Yc4555wccsghuemmm1p9WeacOXPyz//8zznmmGNSV1dX8d7f+973sv/+++fmm29ude9nn302Z511Vg499NDMmTNng54hSX76059m9OjROe+881ptFJbUvxD09ttvz5FHHpmPf/zj7Xqe7qxntRPoZrZrFvdLck+SoRWsrU1ySpIDi6J4d1mWL7Qyb1CzeG57EizLcnFRFMuS9Gk0vHWSl9dzzpKyLF9rz1kt5LZ1O9cDAAAAAAAAAJuha665JieccEIWLVrU5ry1RVtTp07NZz/72Vx00UXp2VO5CwDAej33m7bv3396Mv+PyX7/mfQekpSrkxp/zwIAAAAAAAC6pksvvTSf+cxn1ml2tcsuu2SPPfZIv379Mnv27Nx9991ZtWpVw/0f/ehHmT17dq6//vouW3v2ne98J1/96lcb4t122y277bZbttpqq7zwwgu58847s2zZsob7V199dc4666ycd9556937u9/9bs4888x1xvfYY4+MGTMmvXv3zuzZs3PPPfdk1apVmTFjRo499tgccsgh7X6Or3/96/nmN7/ZZKwoiuy2224ZM2ZMBgwYkJdffjn33ntvk2Zvl19+eV544YVMnTq1y36Pugpfnc7VvMHWT/J6o7DXklyc5P+SPJtkqyT7JPlUkgmN1rwlyVVFURxaluWKFs7o3yxeugF5Lk3TZmEDNuE5jbV0TrsURTE8ybB2LttlY88FAAAAAAAAACqzJRdtAQB0CatXJs//3/rnzb6i/mpsx2OSXf4hGXFosmJR0rN/svT5pN+OSY9e655TtyDpM7zjcgcAAAAAAABo5s9//nNOPvnkJjVnb37zm3PRRRdl/PjxTebOmzcvZ511Vv77v/+7YWzq1Kn5+te/nnPOOafTcq7Ugw8+mNtuuy1JcvTRR+fcc8/N7rvv3mTOyy+/nDPOOCOXXXZZw9h3v/vdnHzyyRk1alSre99333358pe/3GTssMMOy4UXXpixY8c2GZ83b16+/vWv5+KLL86tt96amTNntus5Jk+e3KRRWE1NTU499dSceeaZecMb3tBkblmWufbaa3Paaadl9uzZSZKbb745Z511Vs4999x2ndvdqJzsJEVR9E7Su9nwyDW/zkxyVFmWzzS7f3+SnxRF8S9JvtNo/MAkX0ryrRaOat7Ea1kLc9ZnaZLBbezZkee0teeGOCXJpA7YBwAAAAAAAIDmVq9Mljxb7Sy2fP1GJjVbZknHpiraGjlyZJ566qmG+IILLsj3v//9hnjKlCkZN27cOvkMHTo0hx12WJLkzjvvzHHHHddw77TTTsvpp5/e6rNsu+2263laAIBqKZJDrkme/03y8HfWP72xZ66sv9pr6IHJyPcng9+cDH5L0mfo+tcAAAAAAADQLZQrVybz1J1tcsNGpthCX8L46U9/OnV1dQ3xhAkTcsMNN6Rfv37rzB02bFguvvji7LrrrvnCF77QMH7eeefluOOOy1577dUpOVdqwYIFSZIvfvGLOe+881qcM3jw4PzkJz/Jyy+/nGuvvTZJsmrVqvz4xz9u0qCruVNPPTUrV65siD/wgQ/kiiuuaPFlncOGDcsPf/jDjB49Ol/84hczf/78ip/h6aefzsknn9wQ9+7dO9dcc02OOuqoFucXRZGjjz4648ePz0EHHZQnnngiSfIf//Ef+exnP5udd9654rO7my3zJ7xr6tHK+CtpuVFYg7Isv1sUxQ5JPt9o+PNFUVxQluXi9ZxbtjPPrr4GAAAAAAAAgGpZ8mxynSKMTe69TyX9R1U7i01iUxVt9ezZs8kbEgcNGtRkr2233bbVNyj271//brNZs2Y1GR80aFCbb10EAOiyanokIw6tvx79QbK6bv1rNtb8P9Zfrfm7u5KhB2z6PAAAAAAAAOh65j2b8tjdqp3FFq/45aPJdqOqnUaHmzZtWu6///6GeODAgbniiitarDlr7Mwzz8wf/vCH/OY3v0mSrF69Oueff34uvfTSTZrvhpgwYULOPffc9c77t3/7t4ZmYUlyyy23tNos7J577sldd93VEG+33Xa59NJLW2wU1tgXvvCF3HTTTbnxxhsrzL6+ydfSpUsb4vPPP7/VRmGNDR8+PL/4xS9ywAH1/5a8atWqnH/++fnBD35Q8dndTU21E+guyrJckmR1C7e+11ajsEbOSn1jsbW2SfLOFuY1bx7Wt7IM21zTUkOyzjoHAAAAAAAAANgCbEzR1nve856GeG3RFgAAFdj7X6udQb0b35b8okhWLl3/XAAAAAAAAIA1Jk+e3CQ+9dRTs/3221e09tvf/naTeMqUKVm+fHmH5dZRvvrVr6amZv1toMaOHdvkBZh//vOfW507ZcqUJvE//uM/Zuutt64on7POOquieUny2muvNWnANnr06Jx00kkVr99///1z8MEHN8TXXXddxWu7I83COtdrLYz9tJKFZVm+luTXzYYPa2Fqd28W9l9J9mzn9b4OOBcAAAAAAAAAaEN3KNoCAOhy9vhStTNo6pdtN4oFAAAAAAAAaOz2229vEn/sYx+reO3YsWOz7777NsTLli3Lfffd12G5dYS+fftm4sSJFc9/05ve1PB5yZIlWby45XY9M2bMaBIfe+yxFZ8xYcKEimv7br/99ixd+vpLo4455piKGp81dvjhhzd8fvrppzN79ux2re9OelY7gW5mYZIBjeI5ZVnOasf6O5N8slH8phbmvNIsHtaO/VMURf+s28RrYQXn9CuKYqs1Tc0qNbyCc9qlLMu5Sea2Z01RFBt7LAAAAAAAAACwHh1RtHX//fcneb1oa/z48R2aIwDAFumYl5MrB1c7i9e9+ngycEy1swAAAAAAAAC6uJdffjl/+9vfGuJBgwY1aZZVifHjxzfUnSXJPffc06XqznbZZZf06tWr4vmDBzf9t99XXnkl/fv3X2feX/7yl4bPgwYNyq677tquvPbbb79cd911653XvC5w++23z6xZs9p1VvPnf/LJJ/OGN7yhXXt0F5qFda7HkuzYKH6hneufbxYPaWHO483indp5RvP5C8qyfLn5pLIsXyqK4uUkjf8EeUOShzfirOa5AwAAAAAAAABbgO5QtAUA0GX1GpQctyqZ0qPamdT7zRtf/7zzCck+5yZ9RiRFkaRY8ysAAAAAAADQ3c2bN69JPGbMmBTt/PfE3XffvUk8d+7cjc6rIzVv/rU+tbW1TeIVK1asM+e1117LsmXLGuINabxV6ZpnnnmmSXz66afn9NNPb/d5jS1YsGCj1m/JNAvrXA8lOaJRvLyd65vP79PCnObNutrX1i8Z3Sye2cbch5M0rrrdtYXz23NWe9YCAAAAAAAAAJuJ7lC0BQDQpRU1yQ5/nzx3fbUzaeqpn9ZfzQ3aOxlzSjL0wGTgG5MeLZXMAgAAAAAAAFuyl19+uUm89dZbt3uP5mu6WiOqmpqaDt9z4cKFTeIBAwa0e4+BAwdWNO+ll15q997rs2jRog7fc0uhWVjneqBZPKid65vPb+mn5a/N4r2LouhXluWSCs84aD37Nb/XuFnYgUkqqiIpimKrJHu34ywAAAAAAAAAqq3fyOS9T1U7iy1fv5HVzqDDdYeiLQCALm+PL3W9ZmGtWfhAcs/n2p5T0ys54EdJ0TNZtbS+sdigsZ2THwAAAAAAAJUbNjLFLx+tdhZbvmFbXt1ZWZZN4va+oLIlHbFHV9e7d+8mcV1dXbv3qHTNhuy9Ps2/77xOs7DO9X9JyiRr/9QYXRRFn7Isl1W4fs9m8bPNJ5Rl+UJRFA/k9UZcPZNMSHJjhWcc1iz+vzbmTk3y2TbWtuXgNP3996eyLOe0Yz0AAAAAAAAAna2mZ9J/VLWzYDOkaAsAoAsYMi4Z8rbkpbuqnUnHWF2X3Hli6/ePmJ6MOLSzsgEAAAAAAKAVRc+eyXajqp0Gm6FtttmmSfzKK6+0e4/mawYPHrxRObVk1apVHb7nxmj+jM1f9lmJSl/mOXTo0CbxjBkzcuCBB7b7PCpTU+0EupOyLJ9P8sdGQ7VJjmjHFkc1i29rZd7VzeJPVrJ5URS7J3lbo6HX0naTsRuSLG0UH7hmj0qc2CxunjMAAAAAAAAAsIXYXIq2AAC2aDU9kok3JrudlgzaJ9nxA8lOH6l2VpvOzYclvyjWvWZfWe3MAAAAAAAAgAoMGzasSfzYY4+1e49HH320STx8+PAW5/Xs2bNJvHLlyorP2JBmXJtSjx49ssMOOzTETz75ZJYsWdKuPR588MGK5o0YMaJJvCHfIyqnWVjn+0mz+IxKFhVFcXCSAxoNrU7yu1am/zxJ45aDHyiKYkwFx3ypWfzLsiyXtTa5LMslSZpXTDTfYx1FUbwxyfsbDa1M8osK8gMAAAAAAAAANkOdWbQFAEAbagcmb70gedefk4OvSg6akhy3Ktn1c0nR4/V5/XZMxk9J3rOev7ft+73kwMuTnltt2rw70u0fWreB2C1HJi/dW3+/LJMVryarWi2hBQAAAAAAADrB4MGDs8suuzTECxcuzMMPP9yuPWbMmNEk3n///VucN3DgwCbxwoULKz7joYcealdOnWHcuHENn1evXp0//OEPFa9dsGBB/vKXv1Q0d/z48U3iG2+8seJzaD/NwjrfT5I0/lNnYlEUbTYMK4pieNZtMvbLsiz/1tL8siwfTzK50VCvJJcVRdGnjTPel+TERkN1Sb7RVl5rnJ1kRaP4xKIo3tvGOX1S/yy9Gg3/uLVnAQAAAAAAAAA2f51ZtLWhiqLo0P0AADYbRU1ywA+TD76UvOvB+uZhR89ORn2k/l5rxl2W7P75ZOfjk/e/kBxyXTJiYn2jsZreSb+RnfYIG+3Fm5Ib9q9vHDalJvnV1skVfddtKvaLIpkzPVld+VvEAQAAAAAAgA03YcKEJvHPf/7zitc+/PDDue+++xriPn365K1vfWuLc5u/vHLmzJkVn/O73/2u4rmd5e1vf3uT+JJLLql47eTJk1NXV1fR3COOOCI9erz+Yqrrrrsuc+fOrfgs2kezsE5WluWqJKclWd1o+LtFUXy/KIrBzecXRfH2JHck2aXR8MtJ/t96jpq0Zt5a45PcVBTF7s32710UxT8l+VWz9d8ty/Lp9ZyRsiyfTPL9ZsNXFkXxj0VRNG4IlqIo3pTk5jW5rPVSKmtKBgAAAAAAAABsxjqraGtD9e7du0m8fPnyDt0fAKDL67V1MmjPpg3C+oxoff6QA17/XDsgGfn3yRE31zca+8iy5Ohnkh0/uOnyrZabD0/+t7blRmIz/z2pq/wN4wAAAAAAAEDbTjjhhCbxhRdemBdffLGitV/5yleaxB/5yEfWqRNba999920SX3/99RWdccMNN+Tuu++uaG5nOv744zNgwICG+Oqrr84NN9yw3nXPPfdc/vVf/7XicwYPHpzjjz++IV68eHHOPPPM9iVLxTQLq4KyLH+f+oZhjf1zkjlFUdxaFMWUoiiuKYpiVpLfJ9m10by6JMeVZfnUes54NskH1sxf66AkM4uiuKcoiiuKopia5JkkP0hS22jeb5Kc1Y5H+nKS/2sU1yb5zyTPFEXxf0VR/LIoinuTPJSmjcLqkry/LMsX2nEWAAAAAAAAALAZ6qyirQ01aNCgJvELLyhnAABIbf9k27evOz5wt2TrN61//c6f6PicurI/fym5cnDLjcSuHpnccmTy7LXJkueTsqx2tgAAAAAAANDlTZw4MW9+85sb4ldeeSXHHXdcli5d2ua6888/P9dee21DXBRFPv/5z7c6/8ADD0y/fv0a4quvvjr33ntvm2c8/vjj+cQnuua/iQ4YMCCnnda0vdGxxx6badOmtbpm1qxZOfLII7NwYftekHT22Wc3qef72c9+li996UtZtWpVu/aZOXNmbr311nat6W40C6uSsiwvTHJKkiWNhmuTHJzkI0nel2SnZsvmJDm8LMv1t+mrP2N6kvcnmddouEiyX5Jjk7wjybBmy6Yk+UhZlhX/tK2Ze2ySK5rdGp7kqCQfSvLWNWevNTfJ+8qyvK3ScwAAAAAAAACAzVdnFW1tqNGjR6dXr14N8bRp07JixYoOPwcAYLNzwI+SrUa9HvcemoyfUtnakX+fHPjTTZLWZmfpc8mLNyW3Hp1cs0Mypaa+idivt01mfDx5/IfJsvnVzhIAAAAAAAA61IsvvphZs2Zt0LXWj3/84ya1XdOnT8/BBx+cu+66a53z5s+fn1NPPTVnnHFGk/EvfvGL2XvvvVvNc8CAAfnwhz/cEK9atSrvfve7c+ONN64zt66uLpdccknGjRuXOXPmZPDgwe35knSas846K3vttVdD/Oqrr+aII47IsccemyuvvDIPPPBAHnnkkdx44405/fTTM3bs2Dz88MPp06dP3ve+91V8zs4775wf/ehHTcb+/d//PRMmTMj111+flStXtrp21qxZueiiizJx4sSMHTs2t9xyS/sftBvpWe0EurOyLH9YFMWNSc5OfXOwAa1MfTHJxUkuKMvylXae8buiKPZM8o0kH07S2p8udyb5TlmWV7Vn/0bnLE7ykaIorkzyL0nGtTJ1Qeqbik0qy3JeK3MAAAAAAAAAgC5mbdHWhhg1alSS+qKtAw88MHV1dUleL9q66KKL8ra3va3Jmvnz52fSpEn5r//6rybj6yva2lC9evXKQQcd1PDmxNmzZ+e9731vPve5z2XMmDFN3hqZJNtuu2369OnT4XkAAHQ5/XdO3vNwMm9Gsnp5MmxCUttayWsLdv54ss1+yS1vT5Y+v+79okdy4OXJgnuSR77XcXlvLpbNSWZdXn/dc8q694e8Ldl6bLLdO5IBY5IVC5NBeycpktqtk5oenZ4yAAAAAAAAVOq4447b4LVlWSZJ9t1331x44YX53Oc+l9WrVydJ7rvvvowbNy677rprxo4dmz59+uSZZ57J3XffvU5zqiOPPDLf/OY313veN7/5zVx99dVZuHBhkmTu3Ll5xzvekV133TV77713evfunTlz5uSuu+7Ka6+9lqS+juy8887LJz7xiQ1+zk2lV69e+e1vf5uJEyfmiSeeSFL/Nf3Vr36VX/3qVy2uKYoiF110UWbPnr3OSz7bcsIJJ+TFF1/MV77ylYbv0Z133pn3vve96devX97ylrdkxIgR6du3bxYtWpT58+dn5syZDV9rKqNZWJWVZfm3JB8viqJvkoOSjEyybZK6JPOS/KUsywc28oy5SU4uiuK0NWfstOaM15I8l+RPZVk+tTFnNDrryiRXFkWxc5J9k2yfZKvUNzx7OskdZVnWdcRZAAAAAAAAAEDn2ZyKtjbUGWec0dAsLEmmTp2aqVOntjh32rRpOeywwzZZLgAAXUqPPsm2Ezd8/dZvSt77ZPLSXUlZJjW1yaqlSd2CZNghSd8RyU4frm+K9dz1ycK/Jouf6Lj8N2cv3VV/PXlp63OGH5r06Jvs8PfJtkckA3erHy/LZD1F+xWrW5jMvyvpt0P996mj9gUAAAAAAIAKfOYzn8ngwYPzyU9+MosXL24Yf+KJJxoaYbXkU5/6VC6++OLU1tau94wddtghV111VY4++ugsWrRovWfsvPPO+e1vf5s5c+a082k6z4477pjbbrstp5xySq6++uo25w4ZMiSTJ0/Ou9/97nzpS19qcm/AgPW/UGrti0A/+clP5sUXX2wYX7JkSe64446K8h08eHBF87orzcK6iLIslya5aROfUZdk2nondsxZTyXpkAZkAAAAAAAAAMCWozOKtjbUe97znnzrW9/KpEmTsmrVqk12DgBAt9SjdzL8kNbvF0Wyy6fqrySZMz159AfJoseSZXOT7d+V9OyXDNor2XrP5N5Tk4UPdkrqXd7cP9T/+kLLjW5zwCXJTscmq1fWfw1ffSxZ8mwydFzSe5u2965bmFy9Q7JqSdPxYxcnPbfa+NwBAAAAAACgQsccc0wOOeSQnHPOOfn5z3+e+fPntzivtrY2hx9+eCZNmpTx48e364yJEyfm7rvvzpe//OVcd911DS/KbGzYsGE58cQT87WvfS0DBw7s0s3CkmTbbbfNr3/969x+++2ZMmVKpk+fnueffz7Lli3L9ttvn9GjR+dDH/pQPvzhD2frrbdOkixcuLDJHmvH1+eoo47KU089lUsvvTSXXHJJ/vKXv7T4NVyrtrY2+++/f/6JHjndAAAgAElEQVTu7/4uH/3oRzNmzJgNf9BuQLMwAAAAAAAAAAA6VWcUbW2or371q3n/+9+fn/3sZ5kxY0Yee+yxvPLKK1m6dGmnnA8AwBojDqu/WvPOvySLn0x69EmKnsk9Jydzbk5WvNrxuQx4Y33Tss3V3Z+pv1pz4E+TnT9e/7ksk5RJUZOsWJxc2cqbu3/zpuTo2R2eKgAAAAAAAJu3WbNmbdL9hw8fngsuuCDf+973ct999+WRRx7JvHnzsnz58gwdOjQjR47MhAkTMmDAgA0+Y/fdd88111yT+fPn5w9/+EOeffbZLFmyJCNGjMjOO++cgw8+OD17vt626bDDDmuzIVZz7Znb3GWXXZbLLrtsg9ZOmDAhEyZMqGjuzJkzGz4XRZHhw4dXfE6fPn1yyimn5JRTTsmCBQty55135oUXXsiCBQuyYsWK9O/fP8OHD88b3/jG7L777unXr1+7n6W7KjbmNw9sCYqiGJvkr2vjv/71rxk7dmwVM4Iu7hdF6/c+6r8pAAAAAAAAXdnKlSvz+OOPNxkbM2ZMk6IV6GyrV6/eZEVbXdmm+nl86KGHsueeezYe2rMsy4c2alMA2Ahq9OhUZZk88aPkns+te2/bv0vm3JSUq9u/74Qrk7/9T/LC1I3PcUty3Kr6pmIAAAAAAMAWTd0ZdC+vvfZahg8fniVLliRJdttttzzyyCNVzqp9ttT6PH/qAgAAAAAAAABQNTU1Ndl///2z//77VzsVAAA2d0WRjDkpKVclT/x3smxOst1RyX7/mdQOSOZMS2ZflaxenvQekjzyvWT1irb33OPLyY4fSOpebrtZ2G6nJ289v/7z6pXJH96TvHBDxz1bV7T0xaTf9tXOAgAAAAAAAOhAkydPbmgUliQHHnhgFbOhMc3CAAAAAAAAAAAAAIAtxxtPqb+aG3F4/bXWm7+dzJmePP7D5NVHk3JFssP7km32rW8mtvWeSZ9h9XN3+XSy+Mlk5rnr7tujb7LzCa/HNT2TPSdt+c3CVi+rdgYAAAAAAABAB3r22Wdz1llnNRk74YQTWplNZ9MsDAAAAAAAAAAAAADonkYcVn+tT1Ekbz4n2fOsZN7t9Q3GXrqzvqHYnl9LtnlL0/lDDkgGjEkWPd50fK+zkwfP7pjcq63ulWpnAAAAAAAAALThqquuyn333ZfPf/7zGTZsWJtz//SnP+WDH/xgFixY0DC2zz775PDDD29jFZ1JszAAAAAAAAAAAAAAgEr07Jtsd2T91ZaaHskRtyR3fjKZe2vSe2iy22nJm76QzPr5uk3ENkdzpq3bJA0AAAAAAADoMhYtWpRzzz033/nOd3LUUUfliCOOyD777JPhw4enZ8+eWbBgQR588MH85je/yfXXX5+yLBvW9urVK5MnT65i9jSnWRgAAAAAAAAAAAAAQEfrNzKZ+Ptk1fKkpldSFPXjB1ySTD8qWbWsPu7RN+nRJ6l7+fW12+yXDB2XPHZh5+ddqaenJG86o9pZAAAAAAAAAOuxYsWKXH/99bn++usrmt+3b9/89Kc/zT777LOJM6M9NAsDAAAAAAAAAAAAANhUevRuGo84NHnPY8kzV9U3Edv+XfWNxZ69Jpl/ZzJoz2THDyRLX0yeujxZsbA6ea/P0PHVzgAAAAAAAABow6BBg9KjR4+sWrWq4jUHHXRQLrjgguy3336bMDM2hGZhAAAAAAAAAAAAAACdaasdk91Pbzr2hmPqr7VqByZvn548dE4y+5edml5Ftt59/XPK1UndwqRuQbLVzklNj6b3lr6Y9N02KWo2XZ4AAAAAAADQTR199NGZM2dOpk6dmjvuuCMPPvhgnn766SxYsCDLli1L3759s80222SnnXbKwQcfnHe961056KCDqp02rdAsDAAAAAAAAAAAAACgKxq8TzLhiiRX1Mer6pIeveo/z701eeGGpM92yeC9k+d+mzz6/WT18s7J7Z5T6q+1dvj75OBfJ4seT24/Nnnlr+3bb5d/SIZNSHptk2y9RzJgl47NFwAAAAAAALqhIUOG5Pjjj8/xxx9f7VTYSJqFAQAAAAAAAAAAAABsDtY2CkuS4YfUX43jt5xX/7ksk1ceqr+GjkuWvpjcOG7T5vbc9cn/1m74+r/9T/3V2H4XJqM/mSybm/TdLunRe+NyBAAAAAAAANhMaRYGAAAAAAAAAAAAALAlKYpk0J71V5JstVPy0bL+8/KXknl3JDW9kxWvJPNuS17+U/1YV3PvP9ZfbXnjPyf7fb9z8gEAAAAAAACoEs3CAAAAAAAAAAAAAAC6i95DkpHvfT3e6dim95c8lzx3XbJsbrLdO5K7Pp28MrNzc2yPx35Qf6018ffJiIlJUVO9nAAAAAAAAAA6mGZhAAAAAAAAAAAAAADU67dDMubk1+Nhh3TtZmHN3XJk6/d6D0kOuTYZdlDn5QMAAAAAAADQATQLAwAAAAAAAAAAAACgZXt8MXni4mpn0TGWv5T8fkLL9/rtmLz520nRI1n0ePLKQ8keX04G79O5OQIAAAAAAAC0QLMwAAAAAAAAAAAAAABa1n/npHZgsuLVameyaS15JplxfNOxp//39c87fiDpsVUy/OBku3ckfUYkPXp3bo4AAAAAAABAt6VZGAAAAAAAAAAAAAAA/5+9O4+zs6zvh/+5Z8+QyR4SIEAgIRA2WWURbEBFpZS60J+ASou4L5VWXKi2ICLV1uen+KB1eRRtpWjdwFJErQ1UREA2EQ0JWwhhCdmTIclklvP8cZPMnCSTdTIny/v9en1fZ67ruu/r+t6RoM6Z85n+7fWaZM5/1LqL2nrqR+Xr7H/b9LUjjkym/VfSOiHp6Uqe/kmy8tlkz5cnww5J6hq3b68AAAAAAADALkdYGAAAAAAAAAAAAAAA/Zv4FmFhW2LJg8kN+27+9Xu9OnnZ9Ul9a1LfvP36AgAAAAAAAHZawsIAAAAAAAAAYDdRFMV6c5VKpQadAD09PevNbejvKAAA7BD2OiNpHJZ0Ltv6PYYdkkx+d3L/3yaV9f/38G7t2Z8lPxi1/vzolyaHX1b++fesTuqHJP5/AwAAAAAAAOyWhIUBAAAAAAAAwG6irq5uvbnOzs40NjbWoBvYvXV1da03t6G/owAAsEOob05e/pPktj9LupZv/n0TXpd0r0pGHZNM+etkyLhkr1cnz/0iaRia/O5jyarnt1/fO7uFdye3/Wn/62fNSoYdNHj9AAAAAAAAADUjLAwAAAAAAAAAdhNFUaSpqSmrV69eO9fe3p7W1tYadgW7p/b29qpxU1NTiqKoUTcAALAZxv1J8obnkgV3JkP2SoYdnCx5MFn6cLLgN8msL1ZfP+q45NQfJev+79zhh5SVJBPPS+b8IFl0TzLy6GS/v0ge+XJy/4cH55l2djdN2fD88MOTgz+QjDwmGXlUUudjAwAAAAAAALCz864fAAAAAAAAAOxG2trasnDhwrXjZcuWZezYsUKKYBBVKpUsW7asaq6tra1G3QAAwBZoaE3Gn947HnlUWfu/KWkelTz61WT10mT8K5MTv7l+UNi66luSA95S1hpTL0kaRySPfSPpXJysfC5pHpu0P7rl/Y49NZn/qy2/b2e39KHk7ndt+rqDL06O+kxS37z9ewIAAAAAAAC2ibAwAAAAAAAAANiNrBsW1tnZmaeffjr77LOPwDAYBJVKJU8//XQ6Ozur5ocNG1ajjgAAYAAURXLEZcnh/5BUupK6xm3bb/Lby+qrp7Pct9KTLP5dUtQnIw5Pnv1Z8r+vT3o6qq8/+p+T8a9KfnbC+muUZn6hrP7sf14y6phkyIQyDG7J75OxpyRjThi8HgEAAAAAAIAkwsIAAAAAAAAAYLfS0tKSxsbGqqCi5cuX57HHHsuwYcMydOjQNDQ0pK6uroZdwq6lp6cnXV1daW9vz7Jly9YLCmtsbExzc3ONugMAgAFUFEmxjUFh/VkTQFbUJaOO7p3f+7XJ6+Ymz99Wnl/XUoZZNY8u16fdlDzwd8mSB5NRx5YBYg99cgsOfjEI7feXD9ST7DyevL6sTalvTca/Mpn0tmTcaUmjMGQAAAAAAAAYaMLCAAAAAAAAAGA3UhRF9t5778yZMyeVSmXtfGdnZxYuXJiFCxfWsDvY/az5O1kURa1bAQCAnVfLmGS/N254bfwrk9e8Mqn0lEFjSdLYljz4D0n3iqRxRLLH/uXX3SuTFXN77y3qkhOuTfb50+ShK8o9WF/3iuTpn5S1xoTXJ13tZUDbonuTjgXJnn+SHPWPSX1L7XoFAAAAAACAnZSwMAAAAAAAAADYzbS2tma//fZbLzAMGFxFUWS//fZLa2trrVsBAIBd35qgsCSZ+qFkygeSF2YnbZOr13q6koW/Ldf2PDVpnVDOv/RryV1vH8yOd25zf1y+PveL3rnF9yczv9A7nvKBpG1KsvdrktZ9k/rmwe0RAAAAAAAAdiLCwgAAAAAAAABgN7QmMOyZZ55JZ2dnrduB3U5jY2P23ntvQWEAAFAr9U3JsCnrz9c1JGNPKquvSRclY09JHvpUMvu6welxVzfr/y1f793INQdemEy9JBl+6KC0BAAAAAAAADsqYWEAAAAAAAAAsJtqbW3NpEmT0tHRkWXLlmX58uVZvXp1rduCXVZTU1Pa2toybNiwNDc3pyiKWrcEAABsiWEHJyd/p6w1Vj6XLLqv/LpjQTL2ZcmQvZMFvy7XRh+fPPCxZO4NG97zuGuS5rHJHecllZ5N93DsF3uv3x08fm1ZfZ35UDLisNr0AwAAAAAAADUiLAwAAAAAAAAAdmNFUaSlpSUtLS3Zc889U6lU0tPTk0qlUuvWYJdRFEXq6uqEgwEAwK5oyPhknzPXnx//yt6vX/7jpLM9ee6/k2duSrpXJ/u+Idn3db3XNLYl93wgaX+s/7P2fWMy+V1JepKmUcnqRQP2GDuVmw9PXn13GcQGAAAAAAAAuwlhYQAAAAAAAADAWkVRpL6+vtZtAAAAwK6lcWgZDtY3IKyvvV+bnP1osvLZ5JmfJk/9KOlantS3Jq37JFM+kIw4IinqyutP/+/kV69PXnhy8J5hR/KzlybnCzoHAAAAAABg9yEsDAAAAAAAAAAAAAAAdgRD9komva2sjRl1dHL2E0n7Y0nLuKSoT373iWTm57dPX+csSppGJj8al6x6fvucsSWK+qSnK6nzkQgAAAAAAAB2D3W1bgAAAAAAAAAAAAAAANhCRZG0TU4a25KG1uTY/5ucsyQ56jNlsNeII5IjLk8OvywZc1Iy7hXJidcm+5+3ZedMfGu5X5Ics53CyLZUpTvpXlnrLgAAAAAAgF3UnDlz8olPfCKnnnpqxo0bl6amphRFsba+9a1v1bpFdkN+jQ4AAAAAAAAAAAAAAOwKmoYnh360rL6OvLz364lvTcacmDzxnWTRb5P6luTAC5N9z0me/PfksW/0Xjvm5OS4L/aO9/mzZNRxyaJ7Nnz+UZ9N/vDppHPZgD1Sv3o6t/8ZAAAAAADAFpk4cWKefPLJtePp06dn2rRptWtoK3z961/PBz7wgXR0dNS6FahSV+sGAAAAAAAAAAAAAACAQVJXnxz818lr7k7OryRvWpkc/+Vk/OnJCf9fcm5XcsZdyVkzk1fdnjSN6L23sS05/b+Tl/zj+vvu9xfJwRcnk94+OM8hLAwAAAAAABhgN998c971rndtdlDYrbfemqIo1tbll1++fRtkt9ZQ6wYAAAAAAAAAAAAAAIAdRF19Mual/a83DU8O+1hZncuSBXcmQyclQw9MiiJ5yaeT9ieSuT/etj6GHZyc+uPkvw7d8Hr3iuSZnyY9XcmeLy/7AgAAAAAA2AaXXnppKpXK2vH555+fiy66KPvuu28aGxvXzo8ZM6YW7bGbExYGAAAAAAAAAAAAAABsucZhyV5nVM/VtyQv/1Gy8rlkxVNloNjK55LRL03uvyR5+iebt/dB7y/36s9PDtz0HsMPS15+Y9I2qf9rulf19g0AAAAAAOy2Zs6cmQcffHDt+Mwzz8x1111Xw46gmrAwAAAAAAAAAAAAAABgYA0ZX1Zff3JjGRzWsTAZfmiy4DfJHW9JXnii95oxJyUHvi2Z/PZkxdxt62HpH5L/nLx5145/VXLaz5Ki2LYzAQAAAACAndI999xTNT7nnHNq1AlsmLAwAAAAAAAAAAAAAABgcPQNERt7cnL2Y8kLs5OWcUlDa/W1dc2D19dzv0iur6ue+/M5yR77Dl4PAAAAAABAzcybN69qPGHChBp1AhsmLAwAAAAAAAAAAAAAAKiNokiGHrDhteYxg9vLum7cr/frqZckR302Ker6vx4AAAAAANhptbe3V40bGxtr1AlsmLAwAAAAAAAAAAAAAABgx1MUyb5vSJ76Ua07SWZ8rqy9Xp2MPiEZc2L52jyq1p0BAAAAAMBup1Kp5L777svDDz+c559/Ph0dHRk7dmz22WefnHLKKRk6dOgW79nT07MdOoWBIywMAAAAAAAAAAAAAADYMZ3yg+T6ulp30evZn5W1RtuUMjhsTXjYiCOSusba9QcAAAAAALuwBQsW5Kqrrsp3vvOdzJ8/f4PXNDU15fTTT8/ll1+eE044od+9Zs+enQMOOKDf9dNOO22D89dee20uvPDCDa598pOfzCc/+cl+95w+fXqmTZvW7zpsjLAwAAAAAAAAAAAAAABgx1QUte5g45bPKuuJfy3H9UOSUcdVB4i17lPbHgEAAAAAYBdwww035IILLsjy5cs3et3q1atzyy235JZbbsk73/nOfOlLX0pDg5gldn7+KQYAAAAAAAAAAAAAAHZcR/8/yf0fqnUXm6d7ZTL/V2Wt0TohGX1ib4DYyGOShiG16xEAAAAAAHYy3/zmN/OOd7wjPT09VfOTJk3KoYcemtbW1syZMyd33313uru7165/7Wtfy5w5c/Kf//mfAsPY6fknGAAAAAAAAAAAAAAA2HHt+4bk95cnXcu3/N7D/z6Z+ObkpkMGvK3NtmJusuIHyVM/KMdFQzLyJdUBYkMnJUVRux4BAAAAALaXnq7y+6RsX60TkrpdM0rogQceyHve856qoLCjjjoqX/rSl3LyySdXXTt//vz8/d//fb761a+unbvlllvyD//wD7nqqquqrp0wYUKeeOKJteMvfOELufrqq9eOr7/++px44onr9TNmzJhMmzYtSXLnnXfmvPPOW7v2wQ9+MBdffHG/zzJ+/PhNPC30b9f8Gw4AAAAAAAAAAAAAAOwahk5MTv95cu/fJAvv3Pz7msckB1yQtE1ORh6TLL5vu7W4RSpdyaJ7y3rkS+Vc8+je8LDRJySjX5o0Da9tnwAAAAAAA2HF3OQnB9S6i13f2U+U30/fBV100UVZvXr12vEpp5ySn/3sZ2ltbV3v2rFjx+YrX/lKJk+enA9/+MNr5z/72c/mvPPOyxFHHLF2rqGhIRMnTlw7HjFiRNVe48ePr1rva+jQoUmS2bNnV82PGDGi33tgWwkLAwAAAAAAAAAAAAAAdmxjTkxe/ZukpzvpWp7M/3Wyx8SkZVxyx5uTeb9MKt3ltSOOTEYdk0z9cBkUliSH/E3ym7cOTC9D9kpWPjswe63RsTB55r/KSpIUyfCp1QFiww9L6uoH9lwAAAAAANiBTZ8+Pffd1/vLQIYNG5bvfe97GwwK6+uSSy7JbbfdlptuuilJ0tPTk89//vP55je/uV37he1JWBgAAAAAAAAAAAAAALBzqKtPmkYk+/xp79zpP0s6lyd1zUl904bv2+//JHNvSJ764badP+4Vyem/SFbMTRbemSy4q3xddG/SvWrb9q5SSZb+sazHX/zgUsPQZPTx1QFiQ8YN4JkAAAAAALBj+fa3v101ft/73pe99957s+79zGc+szYsLEmuv/76/Mu//Euam5sHtEcYLMLCAAAAAAAAAAAAAACAnVtj28bX65uSl303mX97sviBZMSRybCDk9Z9kse/ldzzgaSrvQziWnhn//sc/vdJUSR77FvWfn9RznevTpY8mCy4szdErP3RAXu8JGV/86aXtcYeE5MJr08OuzRpGZsseyR57hfJ0APKYLP+wtMAAAAAAGAncPvtt1eN3/KWt2z2vYcddliOOeaY3HfffUmSVatW5d57783JJ588oD3CYBEWBgAAAAAAAAAAAAAA7PrqGpJx08rq68C/KmuNjkXJ/56dzP919XXDD0vG9vMBovqmZPRxZeX95dyq+cnCu3sDxBbenXQuG5BHWeuF2cnMz5c1ZJ9k5dPV63XNSU9H7/gln04OvbQMPAMAAAAAgB3Y4sWL89hjj60djxgxIlOnTt2iPU4++eS1YWFJ8tvf/lZYGDstYWEAAAAAAAAAAAAAAABrNI9KXnV7MvfG5OH/m7Q/nuw5LTnm80ld4+bv0zI22edPy0qSSk+y7OEyPGxNgNiSh5JUBqbvdYPCkuqgsCT53cfLWmPopORl1yejjks6lyaNw5KibmD6AQAAAACAbTB//vyq8UEHHZRiC38ZxiGHHFI1fv7557e5L6gVYWEAAAAAAAAAAAAAAADrmvDnZQ2Uoi4ZfmhZk95WznUuTxbdUx0gtmoQP6jU/ljys5dueG3I3smJ3yr7qqtP9j0nGTZl8HoDAAAAAHYNrROSs5+odRe7vtYJte5gwC1evLhqPHz48C3eY917Fi1atE09QS0JCwMAAAAAAAAAAAAAAKiFxrZk3GllJUmlkrwwu0942F3J4vuSns7B723lM8n0M3rHv/t4+Tr5ncnYlydjT0r2OCApisHvDQAAAADYedQ1JEMn1roLdkKVSqVqXAzA96MHYg+oFWFhAAAAAAAAAAAAAAAAO4KiSIYeUNbE88q57lXJ4gd6A8TmfK+2PT76tbKSpGXPZMxJvTXquKShtbb9AQAAAACwSxg1alTVeOnSpVu8x7r3jBw5cpt6gloSFgYAAAAAAAAAAAAAALCjqm9JxpxYVpJ0fzv5Xktte1pj1fPJ3BvLSpKiIRn5kmT0iWV42NiTkj0OKEPQAAAAAABgC4wdO7ZqPGvWrC3eY+bMmVXjPffcc5t6gloSFgYAAAAAAAAAAAAAALCzqG9O3rgw+eHoWneyvkpXsujesh75UjnXMu7FsLOTyhp1XNLQumX7rpqf/GgzP8B11GeTSncy7JBk/CuS7tXJiifLPlonbNm5AAAAAADUzMiRIzNp0qQ89thjSZIlS5ZkxowZmTp16mbvcccdd1SNjz/++AHtsfDLMhhEwsIAAAAAAAAAAAAAAAB2Js2jkvMrveNljyQ3TaldPxuzal4y98aykqRoSEa+pDc8bMxJyR4Tk/4+UFXp2fygsCR54KP9rw07OHnZd5O2KcmCO5NfvynpWJAceGFy2MfLPrpfSCqVZPH95fVD9tr8swEAAAAAGFCnnHLK2rCwJLnuuuty5ZVXbta9M2bMyL333rt23NLSkmOPPXZA+2tubq4ad3R0DOj+0JewMAAAAAAAAAAAAAAAgJ3ZsIOS8Wckz/1809c2jkg6l2z/nvpT6UoW3VvWrGvKuZZx1eFho45LGoaUa8/+YuDOXjYz+enR688/fm1Zm7LXq5OjP5eMOHzgegIAAAAAoF8XXHBBvv3tb68dX3PNNXn/+9+f8ePHb/LeSy+9tGp87rnnrhfuta1GjBhRNX722WcHdH/oS1gYAAAAAAAAAAAAAADAzu7lNyT3vG/joVcHvS85/precWd70tOR/HivpKdz886pb026VyapbFO7VVbNS+beUFaSFA3JyKPK4LDnbx24c7bVsz8r66xZZUAbAAAAAADb1emnn56jjjoqDzzwQJJk6dKlOe+883LzzTdnyJAh/d73+c9/PjfeeOPacVEU+Zu/+ZsB7+/AAw9MU1NTVq9enSSZPn16Ojs709jYOOBngbAwAAAAAAAAAAAAAACAnV3DkOTEbyYHXJD86o3J6kW9a+Nflez7hmTyO6vvaRyaZGhywjeT37x102ccflly5OXJ6qXJwruSBb95se5KOpcM3LNUupJF95S1I7ppSnLqj5J9X1/rTgAAAAAAdmjPPfdcZs+evVX3Tpw4MUnyjW98IyeddNLaQK5bb701p556ar70pS/lhBNOqLpnwYIFueyyy/LlL3+5av4jH/lIjjzyyK3qY2Oampryspe9LNOnT0+SzJkzJ2effXbe/e5356CDDkpra2vV9ePHj09LS8uA98HuQVgYAAAAAAAAAAAAAADArmLctOQN85Ilv0/22D9pHrXpe/Y6IykaypCu/tS3JPv/n/LrpuHlPXudUY4rPcmymX3Cw36TLP1jksq2Ps2O61dvSF769WTy22vdCQAAAADADuu8887b6nsrlfJ7zMccc0yuueaavPvd705PT0+S5N57782JJ56YyZMn57DDDktLS0ueeuqp3H333enqqv5e96te9ap86lOf2vqH2IS//du/XRsWliS33HJLbrnllg1eO3369EybNm279cKuTVgYAAAAAAAAAAAAAADArqSuIRl19OZf37JncuoPkl+fm3SvKuda90uaRiZL/5CMfEly9OeS4Ydu+P6iLhk+taxJbyvnVi9NFt7VJ0DszqRz6bY9147m7nckky5KiqLWnQAAAAAA7NLe8Y53ZOTIkbnwwgvT3t6+dv7RRx/No48+2u99b3vb2/KVr3wljY2N2623s846K1deeWUuu+yydHd3b7dzQFgYAAAAAAAAAAAAAADA7m7CnydvXFgGfA2dlOyxXznf053U1W/5fk3Dk73OKCtJKj3Jsof7hIf9Jln6x4Hrv1aW/C4ZeVStuwAAAAAA2OWdc845efnLX56rrroq1113XRYsWLDB6xobG3Paaaflsssuy8knnzwovX384x/P61//+vzbv/1b7rjjjsyaNStLly7NypUrB+V8dg9FpVKpdQ9QU0VRHJbkoTXjhx56KIcddlgNO4IdUOey5IG/S+b9snyDvr6oUUkAACAASURBVD/n++8UAAAAAAAAgFr6wx/+kMMPP7zv1OGVSuUPteoHAPyMHgCwUauXJAvv7hMgdmfSubTWXW2Zk/41OeCtte4CAAAAALabrq6uPPLII1VzBx10UBoaGmrUESQ9PT2599578/DDD2f+/Pnp6OjImDFjMmHChJxyyilpa2urdYvU0Pb691atfz7Pv3UB2LhKTzL9tcmCO2rdCQAAAAAAAAAAAACwK2kakex1RllJ+bPLyx7uEx72m2TpH7ftjOOuSaa8r/z634tt22tDls4Y+D0BAAAAANiourq6HH/88Tn++ONr3QoMGmFhAGzc4gcEhQEAAAAAAAAAAAAA219Rlww/tKxJF5Vzq5ckC+5KFt6ZtD+RLJuZ7H1mMv6VydiTkvbZyW/fkzx7y/r7HfXZ5KD39o4P/Wjyx88OcNM9A7wfAAAAAADA+oSFAbBxD11Z6w4AAAAAAAAAAAAAgN1V04hk71eXtSFDJyan/TSZ/e/Jk99LKj3Jvq9PDrwwKYrqa/c/P5l5ddK9auD6W3R/+Qua2w5KGvYYuH0BAAAAAAD6EBYGwMZ1zK91BwAAAAAAAAAAAAAAGzfx/LI2ZuSRybSfJg9+Iln8YDLq2OSAt5ZhX/NvTxbfv+XnPvfz5Kc/r5477ppkyvu2fC8AAAAAAIB+CAsDAAAAAAAAAAAAAABg9zBuWvKq25NKJSmK9de7VyW/+0TyzM1Jy9jk+f/d8jPueX9Z/Wk7qOyhaVRS6UrqmjfcCwAAAAAAwIuEhQEAAAAAAAAAAAAAALB76S+cq74lOeZzZSXJynnJ9DOSJQ8O3NnLH0l+NK7/9SF7J6+5L2keldQ1Dty5m9LTmSy4KynqkuGHJUV90jh08M4HAAAAAAD6JSwMgE2o1LoBAAAAAAAAAAAAAIDaGDIuee0DyU0HlyFfg2HlM8mPx294bcLrkpf8Y9K5LBk2JWkaMTBnLvl9cvOR/a+PPTWZekky7OAkdcns7ySL70+6VyYHvi3Z/9z+A9gAAAAAAIBtJiwMAAAAAAAAAAAAAAAA+lMUyRGXJ3e8udadJHNvKGtzTHxzMu4VyZ4vL0PFmkdv+LpKJbn1Tze+1/xflbUhz/13csf5veOhByYHvScZe0pS1Cfzb0+WP5a0HZQ8/Z/JvF+W4WN7vybZ+6xkxBGCxgAAAAAAYBOEhQGwCd50BQAAAAAAAAAAAAB2c/u9KXniO8mzP611J5tv9nVlrWvvs5I99k+KuqRjYTL0gGTFUwN3bvvjyf0f3vg1a8LHfvfxDa+3HZSMOjZ5/n/L4LFDP5bU+RgUAAAAAAC7L98lBwAAAAAAAAAAAAAAgI2pq0+m/VfyzM3JspnJE99OljxY6662zjM31bqDTVv+SFlJ8uDfl9W6bzLutGTYIb01dFJS31TbXgEAAAAAYBAICwMAAAAAAAAAAAAAAIBNKYpknz8ta+rfJt8fmXQuqXVXu48VTyVP/Gv1XNGQtE2qDhAbdkgy7OCkaWRt+gQAAAAAgO1AWBgAm1CpdQMAAAAAAAAAAAAAADueKe9N/nBVrbvYvVW6kmUzy8qN1Wst4zYQInZIssd+SVFXk3YBAAAAAGBrCQsDAAAAAAAAAAAAAACALXXghcLCdmSr5pX1/G3V8/VDkrYpveFhw6eWr20HJQ2ttekVAAAAAAA2QVgYAJtQ1LoBAAAAAAAAAAAAAIAdT9vk5JgvJPddXD0/+Z3JS/4x+elRyYqnatMb/etemSz5XVlVimSP/XtDxPpWy55J4WfrAQAAAACoHWFhAAAAAAAAAAAAAAAAsDUO+WCyz1nJ/F8lbVOS0S9N6l78uM4r/ieZ/tqk/dHa9shmqiQvzC7r2VuqlxpHlKFhw9cJERt6YFLXWItmAQAAAADYzQgLA2ATKrVuAAAAAAAAAAAAAABgx9U2qaz15icnZz+SvPBkMu+2ZPF9SeeyMlRs3LRkjwOSBz6SPP+/ZUBVwx7JmJOSoZOTp36YdMwf7Cep1jQyWb1449cM2SvpWZ10LOz/mjPuSsa8tHru34ut72vo5OSFx5NKz9bvsaU6lyQL7yyrr7rGsp9h64SIDTs4aRo+eP0BAAAAALDLExYGAAAAAAAAAAAAAAAA28se+ycHXpDkgvXXTvr2hu85/BPJ3BuSe97fOzfq2KRlXPLMzdulzSoH/00y+R3Jr9+ULPn9hq8pGpJj/9/k+VuTWdds+JrWfZPRx68/P+Wvk1lf3PK+Xv9MGVDW3ZEsfzRZ9nCfmlG+dr2w5fturZ7OF8+dsf7akL02ECJ2SNI6ISnqBq9HAAAAAAB2CcLCAAAAAAAAAAAAAAAAYEfSuk8y5X1ldXckncuTljFJpZI8+/Pk2VuSJ7+bNI9KRrwkmfc/yap56+9T1CXNY5JVz2/+2XVNyaEfTYaMS858sLx30f3J4vuThqFJV3tS6U72OSsZ+ZJk79cm7bOTZ26q3qdhjzIMrSjWP+OwS5N5v0yW/mHz+9r/3DKAK0nqm5MRh5XVV6WSrHy6DA1b+nB1mNjKpzf/rIGw8tmy5k2vnq9vTYYdnAybWoaHDX8xRKztoKS+ZXB7BAAAAABgpyEsDIBN2MAbswAAAAAAAAAAAAAADI765rKSMnhr71eXdezne6/p6UrmfD+Z/+skPUldc9LYlkz482TkMcnyWcmi+8rwqgc+mlS6+j/v6H8ug8LWaNmz98wNaWhNpv1nsuKZpP3R8ozuVcn4V5ahZxsyZHxyxh3JM7ckv37Tpv8Mjrg8OezvNn1dUSStE8oa/8rqtc7lybKZ1QFiyx4u/2x6Oje990DpXlEGry2+f52FIhl6QBkctm41j9lw6BoAAAAAALsNYWEAAAAAAAAAAAAAO5GiKBqSHJPksCRjkzQlaU/ydJJZSf5QqWws/QEAgF1OXUMy8byyNmTYwWUlycijkse/WQaLVbqTlnFlWFbLnskBb00mvmXremjdu6zN1Tgs2f//lNWxKHlhdhmWtWJuMuzQlKFnjVvXywbPa0tGH1dWXz1d5dlLZ6wTJDYjWb144M7fpErS/nhZz9xcvdQ0qjc4bPjU3q/3mFj+Zw8AAAAAwC7Pd4MB2IRKrRsAAAAAAAAAAIDtriiKA5Mcn+S4F1+PSdLW55InK5XKxBq0tlZRFAcl+XCSNyUZtpFLVxZFcXuSf6lUKj8elOYAANh5jD+9rB1J86iykqRp5IuT9YNzdl1D0ja5rPxZ73ylknQsWCdA7MVqfyKD+rP2qxclC+4oq6r3pqTtoN7wsLV1cBmOBgAAAADALkNYGAAAAAAAAAAAALBbKopiWpJLUwaEjaptN/0riqIhyT+k7HVzfvZzSJJXJVmURFgYAABsjaJIWsaWteep1WtdK5P2R8vgsKUPJ8tmvBgkNjPpXjF4PfasTpb+oax1DdmnOkBs+CHJsKnJkL3LZwMAAAAAYKciLAwAAAAAAAAAAADYXR2V5IxaN7ExRVEMSfKDJGeus1RJ8ockc5IsSTI0yYFJDomfDwUAgO2rYUgy4oiy+qr0JCvmvhgctk6tfHZwe1z5dFnzflk93zC0OkRsTbVNTuqbB7dHAAAAAAA2mx8GAWAT/MYgAAAAAAAAAAB2Ox1J5iaZVMsmiqIoknw31UFhq5L8U5KvVSqVpzdwT2uSVyU5N8nqwegTAAB4UVGX7LFfWXutk0u8emmybOY6IWIzkuWPJpWuweuxqz1ZdE9Z6/V+YBkcNnydILHm0YPXHwAAAAAAGyQsDIBNqNS6AQAAAAAAAAAA2J46k/whyT1Jfvvi6++TvCzJ9Br2lSTvTXJ2n/GzSV5RqVRm9HdDpVJZkeTGJDcWReHnRAEAYEfRNDwZ89Ky+urpTNofrw4RW/pikFjn0sHrr9KTtD9a1jM3Va81j3kxOGxqb4DY8EOS1v2TuvrB6xEAAAAAYDfmh0AAAAAAAAAAAACA3dW3k3ylUqmsWnehKIoatFN1/n5JPtNnalWSV24sKGxdlUqla8AbAwAABlZdYzLs4LLy573zlUqy6vnqELE19cLswe2xY0Ey//ay+qprToZN6Q0QW1sHJw17DG6PAAAAAAC7OGFhAAAAAAAAAAAAwG6pUqksrnUPG/HxJEP7jD9dqVT+WKtmAACAQVYUyZBxZY37k+q1rhXJ8keSpTOqQ8SWz0y618tC3n56OpIlvy9rXa37VgeIDZ9avraML58NAAAAAIAtIiwMgE3wJhwAAAAAAAAAAAymoijakpzfZ+qFJFfXqB0AAGBH09CajHxJWX1VepIX5lQHiK2pVfMGt8cVT5X13C+q5xuHVYeIramhk5L6psHtEQAAAABgJyIsDAAAAAAAAAAAAGDH8qYkQ/uMf1ipVJbXqhkAAGAnUdQlQyeWtfdrqtdWL06WzewND1s6o3xtfyypdA9ej53LkoV3l9VXUV8Ghq0bIjb8kKRp5OD1BwAAAACwgxIWBsAmVGrdAAAAAAAAAAAA7G5OW2f8i5p0AQAA7DqaRiZjTiyrr+7VZWDYmhCxvtW5bPD6q3Qny2eV9fRPqtdaxq0fIjbskGSP/cqANAAAAAB2KitWrMh9992XRx55JAsWLMiqVasyZMiQjBs3LlOmTMnRRx+dpqamATlrzpw5+drXvpbbbrsts2bNyuLFi9PZ2bl2/dprr81f/dVfbfDeu+++O9dee23uuOOOPPXUU1m6dGl6enrWrj/xxBOZOHFikmTatGm57bbb1q5VKrI6GHjCwgAAAAAAAAAAAAB2LC9dZ/ybJCmKYkiS1yc5N8lhSfZO0pFkQZL7U4aKXV+pVJYPXqsAAMBOrb4pGT61rL4qlWTVc73BYUv7hIitmDO4Pa6aV9bzt1XP17ckbQdXB4gNPyRpm5I0tA5ujwAAAABsVHd3d/7jP/4j1157baZPn56urq5+r21pacmrX/3qvP3tb89ZZ5211Wd+/etfzwc+8IF0dHRs0X1dXV1573vfm69//etbfTZsD8LCAAAAAAAAAAAAAHYQRVGMSDK5z9TqJI8XRfEnSa5NcsA6t7QkGZ5kUpJzklxVFMUVlUrli4PRLwAAsIsqimTIXmWNO616rbM9WT6rNzxsbc1Kerbsg5fbpHtVsuR3Za1rj/2TYVOrg8SGHZK07Fk+GwAAAACD5n/+53/ynve8J7Nmzdqs61etWpUbb7wxN954Y4477rh89atfzTHHHLNFZ958881517velUqlssX9fvzjHxcUxg5JWBgAm+BNMAAAAAAAAAAAGETj1xk/k+QNSf4jSd1m3D86ydVFURyf5MJKpdL/r2MGAADYGo1Dk1HHlNVXT3ey4slk6bohYg8nHfMHt8cXnizr2Vuq5xtHlKFhw9cJERt6YFLXOLg9AgAAAOwGPvnJT+aTn/zkeqFdRVFk6tSpmTBhQkaPHp358+dnzpw56wWK3XPPPTnppJNyzTXX5B3veMdmn3vppZdWnXn++efnoosuyr777pvGxt7vA40ZM6bqvnnz5uULX/jC2nFTU1M+9rGP5cwzz8zYsWNTV9f7tv2ECRM2ux8YCMLCANiELU9JBQAAAAAAAAAAttqIdcZDk3wnvUFhTyb5UpLbkyxMMirJKUnel2Rin/vekmRekksGqrGiKPZMMnYLb5s0UOcDAAA7uLr6MnRr6IHJPmdWr3UsrA4PWxMo9sLjSaVn8HrsXJIsvLOsvoqGpG1ynwCxqS++Hpw0DR+8/gAAAAB2IRdffHGuvvrqqrm2trZceumlefOb35z99ttvvXseffTRfOtb38rnPve5dHR0JElWr16dd77znXnhhRdy8cUXb/LcmTNn5sEHH1w7PvPMM3PddddtVs833HBDVq9evXZ85ZVX5sMf/vBm3Qvbm7AwAAAAAAAAAAAAgB3HumFhfX+N8feT/GWlUlm5zjV3FkVxTZJ/TfIXfeY/VBTFjZVK5VcD1Nt7k1w2QHsBAAC7k+bRydiXldVXd0ey/NHqILE11dU+eP1VunrPXdeQvfqEiPWp1glJUbf+9QAAAADk29/+9npBYaecckquv/76TJgwod/7Jk+enCuvvDIXXHBB3vjGN+ahhx5au/ahD30oRx11VKZNm7bRs++5556q8TnnnLPZfW/tvbfeeutmnwFbS1gYAAAAAAAAAAAAwI6jv0+a/zbJ+ZVKpWtDi5VKZVVRFOcnmZjk+D5Ln0jy6gHtEAAAYKDUNycjDiurr0olWflMb4DX0hm9X698enB7XPlsWfOmV8/XtybDDl4/RKztoKRhyOD2CAAAALADmTVrVt7//vdXzZ188sn56U9/mqFDh27WHlOmTMkvf/nLTJs2LTNmzEiS9PT05C1veUseeOCBjBkzpt97582bVzXeWDjZQN4L25uwMAAAAAAAAAAAAIAdR3s/85f0FxS2RqVS6SqK4m+T/KrP9BlFUexZqVSeH7AOAQAAtreiSFr3KWv8K6rXOpcny2b2hoetqeWPJD2rB6/H7hXJ4vvLqlIkQw9YP0Rs2CFJ85jy2QAAAAB2YZdcckna23vf+h4xYkR++MMfbnZQ2Bp77rlnfvCDH+Too4/O6tXl932efvrpfOpTn8rVV1/d7319z06SxsbGzT5zW+6F7U1YGACb4E0oAAAAAAAAAAAYRBsKC3uyUqn87+bcXKlUbi+K4vEkB/aZ/pMk3x+A3r68FftMSnLjAJwNAABQamxLRh9XVl89XckLs9cPEVs6I1m9aBAbrCTtj5f1zM3VS02jNhwiNvSApM5H/QAAAICd38MPP5ybbrqpau4zn/lMxo8fv1X7HXroobnkkkty1VVXrZ37xje+kcsvvzwjR47c4D09PT1bdda23jsQ/vjHP+b3v/99Fi5cmMWLF6elpSVjx47N1KlTc+SRR6a5uXmr9u3q6srdd9+dxx9/PPPnz09HR0fGjh2biRMn5mUve1laWloG+EnYHnwHEYBNqNS6AQAAAAAAAAAA2J0s2cDcnVu4x12pDgubuvXt9KpUKs8neX5L7ikKv6wQAAAYJHUNSdvksvY5q3pt1fz1Q8SWPZy0P5FB/dzE6kXJgjvK6quuMWk7KBk2dZ0gsYPLcDQAAACAncTVV1+dSqX3+y1jxozJhRdeuE17Xnzxxfnnf/7ndHZ2JkleeOGFfP3rX89HPvKRJMns2bNzwAEH9Hv/aaedtsH5a6+9Nkk22l9/73k/8cQTmThx4trxtGnTctttt60d9/0z2JSnnnoq//RP/5Tvf//7mTdvXr/XDRkyJKeddlr+8i//Mm984xtTX1+/yb1nzJiRK6+8MjfddFOWLVvW775nn312rrjiikyZMmWz+2bwCQsDAAAAAAAAAAAA2HE8maQjSd9fB/zsFu7xzDrj0dvUEQAAwM6uZWxZe55aPd+9Kln+SBkctnSdILHuFYPXX09nsvSPZa1ryD7VAWLDX3wdsk8ioBkAAADYwdxyyy1V4wsuuCBNTU3btOfYsWPzZ3/2Z/nRj35Udc6asLCdVaVSyac//el86lOfyurVqzd5/cqVK3PzzTfn5ptvXi+sbF3d3d255JJL8sUvfjE9PT2b3Pd73/tefvjDH+Zzn/tcPvjBD27pozBIhIUBAAAAAAAAAAAA7CAqlUp3URQzkxzZZ7pjC7dZ9/qWbesKAABgF1Xfkow4oqy+Kj3JiqdfDA6bUR0itnJL85y30cqny5r3y+r5hqHJsIOrg8SGTU3aJif1zRveCwAAAGqgq7uSuYtr3cWub8LIpKG+tsHic+fOzezZs6vmzjjjjAHZ+4wzzqgKC7vzzjvT2dmZxsbGAdl/sHV1deXcc8/ND3/4w/XWxo8fnyOOOCJjxoxJR0dH5s2bl9/97ndpb2/frL1XrlyZ173udfn5z39eNd/Y2JijjjoqEyZMSHNzc5577rncfffdWbFixdqeLr744ixevDiXX375Nj8jA09YGAAAAAAAAAAAAMCO5cFUh4WN2ML7171+4ba1AwAAsJsp6pI99i1rr1dVr61emiybWR0gtuzhZPkjSaVr8Hrsak8W3VvWer0fWIaHDT+kOkysefTg9QcAAAAvmrs4OfDvemrdxi7v8avqMnFMbXv49a9/vd7ccccdNyB7H3vssVXjlStX5oEHHsjxxx+fCRMm5Iknnli79oUvfCFXX3312vH111+fE088cb09x4wp/8CmTZu2du7cc8/NXXfdtXbcd9++JkyYsFXPscaHPvSh9YLCzjzzzFx++eU5/vjj17u+p6cnd955Z7773e/mW9/61kb3ft/73lcVFDZ8+PBcfvnlueiii9LW1lZ17cqVK/PlL385n/jEJ7Jq1aokyRVXXJETTjghr33ta7fy6dhehIUBAAAAAAAAAAAA7FhuTvKWPuPDtvD+w9cZz922dgAAAFiraXgy5qVl9dXTmbQ/0SdAbEay9MWvO5cMXn+VnqT90bKeual6rXlMdXjYmtpjYlJXP3g9AgAAALukuXOr35oeN25cRo8emPDyww9f923w8rzjjz8+DQ0NmThx4tr5ESOqf7/W+PHjq9bXNXTo0LVft7S0VK1t7L6t9fOf/zxf/OIXq+Y+85nP5KMf/Wi/99TV1eXkk0/OySefnCuuuGK9Ptf4/ve/n2uvvXbteP/998+tt97a73MMGTIkH/rQh3LSSSflFa94RVatWpVKpZK//uu/zsyZM1NXV7flD8h2IywMAAAAAAAAAAAAYMdyU5KOJM0vjo8vimJUpVJZtKkbi6IYmWSdT6znVwPcHwAAAOuqa0yGTSkrZ/fOVyrJquf7hIj1qReeTFIZvB47FiTzby+rqvfmpO2gZPjU6hCxtilJ49AN7wUAAACwjkWLqt/SHjly5IDt3dLSkubm5nR0dPR73s7iiiuuqBq/+93v3mhQ2LrWDUNbo1KpVO3d0NCQn/zkJ5sVeLYmhOwjH/lIkuTRRx/NDTfckDe84Q2b3Rfbn7AwAAAAAAAAAAAAgB1IpVJZXhTFD5K8+cWp5iTvT3JF/3et9f4kfX+F8JNJHhrYDuH/Z+/Oo/Q66zvBf28tqpKqSqXVsmVb3m3JZgvtDvsS4gScNGEC6ZCGE5qQrUn+4EySSRqGxk13pwNZZoYJ9GShIRmm4QRCEyAhwUBiNpMQMInBlmR5lW1ZtqylqlSlUm3P/HEl1XtLJVmySm9p+XzO+Z2q+zz33uf75nBkVHF9AQAATlhVJUvX1bPuZc29qbFkZNs8RWJbk+kD7cs4czAZ+l49cy27tFkgdniWXlR/NgAAAIBD5pZ3HavU6ulasWJFHn/88SPXu3fvXtD3t8Odd96Zr3/960euBwYG8t73vndB3v13f/d3+d73Zn++88Y3vjHPetazTvj5X/7lX8673vWujI+PJ0k+85nPKAs7wygLAwAAAAAAAAAAADiNqqoqc5Z+oJRy21M89h+S/OskSw5dv6Oqqi+UUr5xnHNekOSdc5Z/q5Qy93wAAADOBF3LkpXPrqdVmUlGt89TIrYlGX98/nedLmMP17PzC831roHZ4rDBTbPf91+VdC6Z/10AAAAAp6A6B4rLv/SlLzWu3/CGN2T58uUL8u4vfKH585vXv/71J/X8smXL8v3f//35yle+kiT56le/uiC5WDjKwgAAAAAAAAAAAIDzVlVVl2T+f5/ywjnXXVVVXX6M1+wvpTy5kLlKKQ9UVfXbmS3/6klya1VVv57kg6WUycP3VlXVleRnk/xuZsvFkuSbST68kLkAAABog6oj6b+8nvWvau5N7E2Gtx5dIjZyb1Km25dxaiTZ84/1tKo668Kww+VhRwrFNiZLVrYvHwAAANB2q1atalwPDQ0t6Pv37dt33PPOBrfffnvj+uUvf/mCvftrX/ta43rVqlV58MEHT+odrcVlDz74YGZmZtLR0bEQ8VgAysIAAAAAAAAAAACA89nXklx2AvddnOSBY+z9aZI3L1SgFu9Kcl2Sf33ouj/Jf0vyX6uq+vske5KsSvL8JCvmPPtokteVUiZOQy4AAAAWy5KVyZrn19NqeiLZf39Lgdjm2e8nh9uXr0wnI/fU8+hnmnu9FxxdIrZ8U9K3oS5IAwAA4Jx0ycrk/v/q732n2yVnQEf33PKuvXv3Lti7x8fHMz4+3lhbvXr1gr2/XR577LHG9Q033LBg73744Ycb189//vOPceeJmZmZyb59+87KUrZzlbIwAAAAAAAAAAAAgDNQKaVUVfXTqUvBfrFla0WSVx3n0W8m+fFSyo7TmQ8AAIAzSOeSZHBjPa1KScZ3zhaHDW2Z/X5se3szjj9RzxNfaa539iYD1zVLxAY3JgPXJl3L2psRAACABdfVWeXyNYudgna4+OKLG9c7d+7M7t27F6TU66677nrK884Gu3fvblyvXLlwLW9z370QRkZGlIWdQZSFAQAAAAAAAAAAAJyhSikHk/y7qqo+keQ3krwiSecxbv9ekt9N8v+VUqbbFBEAAIAzWVUlSy+qZ90PNPemRpPhe2bLw4a3JMOb67WZg+3LOD2e7Pvneubqu6xZInZ4etfVnw0AAAA4Y7zwhS88au1b3/pWXvnKV57yu7/1rW81rpcuXZrnPOc5p/zexVYt4M83JiYmFuxdh5VSFvydPH3KwgAAAAAAAAAAAIDzVinl8jacccr/dm8p5UtJvlRV1dokz09yUZI1SUaSPJ7k9lLKI6d6DgAAAOeRrr5k1ffV02pmOhl7KBnaMqdIbEtycFd7M44+VM9jn2+ud6+oS8MG55SI9V+ZdHS3NyMAAACQJNmwYUM2bNiQ7du3H1m79dZbF6Qs7Atf+ELj+nnPe16WLFlyyu9ttzVr1jSu9+zZk4svvnjB3r1jx44kSW9vb8bGxha0jIzFpywMAAAAAAAAAAAA4CxRStmV5LOLnQMAAIBzWEdnXbrVf2Vy8Y809w7uToa3Hl0itv++pMy0L+PkvmT339fTqupKBq5uFogdniWD7csHAAAA56lXtXYQhwAAIABJREFUvepV+aM/+qMj1x/5yEfynve8J93dT7/ce9euXfnMZz5z1Dlno4suuqhxfffdd+eZz3zmgrx73bp1R8rCxsfHs3379lx22WUL8m7ODMrCAAAAAAAAAAAAAAAAAICn1rM6WfvCelpNH0xG7j26RGx4SzK1v335ytTsuXP1XjhbHDa4afb7ZZckVUf7MgIAAMA57G1ve1v++I//OKWUJHXR14c//OH8wi/8wtN+5/ve975MTk4eue7r68vP//zPn3LWxfCiF70on/jEJ45c33bbbXn961+/IO9+4QtfmO985ztHrm+99daz9v9OzE9ZGAAAAAAAAAAAAAAAAADw9HX2JCtuqKdVKcmBHfOXiI090t6M4zvreeK25nrnsmT5dbPlYYdn4Jqka2l7MwIAAMBZ7vrrr8/NN9+cz33uc0fWfuM3fiOvec1rsm7dupN+3913353f+Z3faaz9zM/8TFatWnXKWRfDTTfd1Lj+6Ec/mt/+7d/OwMDAKb/7la98ZT7wgQ8cuf7gBz+oLOwcoywMAAAAAAAAAAAAAAAAAFh4VZUsu7ieC3+wuTc5kozckwxtSYY3z5aIjWxLZibal3F6LNn7nXoaqqTv8tnysMHDRWKbkp419WcDAAAAjvJ7v/d7ue222zI2NpYk2bdvX1772tfm85//fPr7+0/4Pbt27cpP/MRPZGJi9ucEF110Ud71rncteOZ2ueGGG/Kyl70sX/7yl5Mkw8PDefvb3573v//9p/zum2++OVdddVXuu+++JMk3v/nNfOhDH8pb3vKWU343ZwZlYQAAAAAAAAAAAAAAAABAe3UPJKv+RT2tZqaS0Qdny8MOz9DmZGJPGwOWZPSBeh776+bWklWzJWKt039F0uHXNgEAADi/bdy4Mb//+7+fn/3Znz2ydvvtt+fmm2/Oxz72sVxyySVP+Y5t27blda97XTZv3nxkraOjIx/5yEeydu3a05K7Xd71rnflB39wtlT9Ax/4QK644or86q/+6gk9PzQ0lJ6envT29jbWu7q68p/+03/KG9/4xiNrb33rW7NixYq89rWvPamMX/ziF3PllVfmyiuvPKnnOL06FjsAAAAAAAAAAAAAAAAAAECSumxr4Ork4n+VbPq15HkfTH7oa8lP7E5euyu56avJ9/9xsvFXk/U/mvRflVRt/lXJiT3Jk7cn938o+adfT77yY8lfXpt8fFnyVzckX31d8s//e/LAR5Ld/5hMDrc3HwAAACyyt7zlLfnlX/7lxtrXvva1XH/99XnPe96Thx9+eN7n7r333rzzne/MM5/5zHz3u99t7L33ve9tlGydrV7xilccVQz2a7/2a/mxH/uxfPvb3573mZmZmXzjG9/I2972tlx66aXZuXPnvPe94Q1vyFve8pYj1xMTE3nd616XN77xjcd8d5JMT0/nO9/5Tt797nfn+uuvzw/90A9l+/btT+PTcTqpqAcAAAAAAAAAAAAAAAAAzny9a5LeFycXvLi5Pj2ejGxLhrckQ1vqr4dneqx9+WYmk6G765lr6fpk+aZk+cZ6Bg99XXpxUlXtywgAAABt8v73vz8rV67Mb/7mb6aUkiQZGRnJ29/+9rzjHe/I9ddfn0svvTQrV67M7t2789BDD2Xr1q1Hvae7uzvve9/78ta3vrXdH+G0ee9735vt27fnE5/4xJG1z372s/nsZz+b9evX55nPfGZWr16dgwcPZufOnbnzzjszMjJyQu/+gz/4g+zduzef+tSnjqx99KMfzUc/+tGsXbs2z372s7N69ep0dHRkeHg4O3bsyObNmzM+Pr7gn5OFpSwMAAAAAAAAAAAAAAAAADh7dfYmK55ZT6syk4w92iwPOzwHdrQ344Ed9Tz+peZ6V99sgVjrDFyTdPa0NyMAAAAssP/8n/9zXvayl+WXfumXsm3btiPrpZTcddddueuuu477/HOf+9z84R/+YW688cbTHbWtOjs782d/9me54YYb8pu/+ZuZnJw8srdjx47s2PH0f27R3d2dT37yk/md3/md3HLLLY0SsF27duWLX/ziCb2jr6/vaWfg9FAWdp6oqqo7yYuSbEhyUZL9SXYk+U4p5cEFPuuKJM9Jsj5Jf5LHkjyU5PZSyuTxngUAAAAAAAAAAAAAAACABVF1JH2X1nPRDzX3JoeToXlKxEa2JWWqfRmnRpM9367nqOxX1MVhg5uaRWI9q9uXDwAAAE7RTTfdlLvvvjsf//jH86EPfShf/vKXMzV17L979/T05Id/+Ifzcz/3c3n1q1+dqqramLZ9qqrKLbfckje96U35rd/6rXzyk5/Mnj17jnl/f39/brrpprz5zW/Ohg0bnvLdv/7rv543velNed/73pePfexjeeihh477zMDAQF7ykpfkR3/0R/P6178+q1f7+cOZpiqlLHaG80ZVVf8xyS2n8Io/LaW8+STPXJvk3Ulen2TVMW67Pcn/UUr55ClkS1VVP5HkV5K84Bi37EnyZ0neVUp58lTOWkhVVd2Q5HuHr7/3ve/lhhtuWMREcIa59UXJk7ef2L1v8M8UAAAAAAAAgMV011135RnPeEbr0jNKKcf/n98EgNPIv6MHAADAWWdmMtn/wNElYkObk8l9i52u1rOmWR52ePouTzo6FzsdAABwjpmamsq2bdsaa9dcc026uroWKRFnu9HR0Xz729/Ovffem127dmViYiI9PT1Zt25drr322jz3uc9NT0/PYsdsu5mZmdxxxx3ZsmVLnnzyyezfvz99fX254IILsnHjxjzrWc9Kd3f3037/Aw88kDvuuCO7du3K3r1709HRkYGBgaxfvz4bN27MNddck87Oc+PnCqfrz63F/vfz/Kl7Dquq6uYkf5Lkgqe49YVJXlhV1f9I8oullNGTPKc/yR8n+amnuHVVkrcmeW1VVf+2lPL5kzkHAAAAAAAAAAAAAAAAAE6rju5k+bX15Mdm10tJDu5qlocd/n70oSSlfRkPPpns+lo9jew9ycA1zQKxwU3JwLVJd3/78gEAAMBx9PX15aUvfWle+tKXLnaUM0pHR0duvPHG3Hjjjafl/VdccUWuuOKK0/Ju2kNZ2DmqqqqXJ/mLJEtalkuSO5Lcn2RFku9LsqZl/41JlldV9b+UUmZO8JzOJH+W5EfmbO1K8p0kQ0muOnRWdWhvXZJPV1V1Uyllzk8jgTNOVT31PQAAAAAAAAAAAAAAAHAuq6qk94J6Lpjzy8xTY8nIttnysCOzNZk+0L6MMweToe/VM9eyS5slYodn6UV+fwgAAADgLKAsbHH9myR/fxL37z+Rm6qquiTJ/0yzKOzrSX6+lLK55b6eJL+Y5HeTdB9afnWS/5LkHSeY6T1pFoVNJvmVJH9USploOev6JB9M8oJDSz1J/qKqqmeWUh47wbMAAAAAAAAAAAAAAAAA4MzStSxZ+ex6WpWZZOzhZKi1QGxz/XX88fZmHHu4np1faK53DcwWhw22lIj1X510Lpn/XQAAAAC0nbKwxbWzlPLgaXjvu5OsbLm+PclNpZTx1ptKKQeT/N9VVW1P8qmWrV+pquoPSykPHe+QqqquTPK2Ocv/upTy6bn3llLurqrqB5N8KbOFYauT3JLk353AZwIAAAAAAAAAAAAAAACAs0fVkfRdVs/6Vzb3JvYmw1tbSsQOzci9SZluX8apkWTPP9bTyN6Z9F+ZLN80WyB2uFBsycr53wUAAADAaaMs7BxTVdU1Sf5ty9JEkjfPLQprVUr5i6qq/rTluZ7UJV5veYrjbknS3XL9J/MVhbWcc6Cqqjcn+W6Sw/+TAj9bVdVvl1Luf4qzgMVSymInAAAAAAAAAAAAAAAAgHPLkpXJmufX02p6Itl//9ElYsObk8nh9uUr08nItnoe/Uxzr/eCZoHY4em7rC5IAwAAAGDBKQs797whSWfL9f8spWw7gefem2bJ2E9WVfVLxyoZq6pqaZKfmOcdx1VKuaeqqr9I8pOHlroOZf4vJ5ARAAAAAAAAAAAAAAAAAM5dnUuSwY31tColGX+8Lg0b3pIMtRSJjW1vb8bxJ+p54ivN9c7eZODalgKxTfXnGLg26VrW3owAAAAA5xhlYeeeH59z/eETeaiUsrmqqn9I8rxDS31JfjjJZ47xyCuTtP507hullC0nmPHDmS0LS5LXRlkYnLmqarETAAAAAAAAAAAAAAAAwPmtqpKlF9az7geae1OjyfA9s+VhR2ZrMnOwfRmnx5N9d9YzV99lLSViLdO7zu8vAQAAAJwAZWHnkKqqLkzy7JalqSRfP4lX3JbZsrAkuTnHLgt71TzPnqivps52+D9/31dV1bpSyuMn8Q4AAAAAAAAAAAAAAAAAoKsvWfV99bSamU7Gts+Whw1tnv3+4K72Zhx9qJ7HPt9c7x48ukBscFPSf2XS0d3ejAAAAABnMGVh55ZnzLm+s5QyehLP3z7n+oaTOOsbJ3pIKWW0qqrvJmn9yeMNSZSFwZlo6sBiJwAAAAAAAAAAAAAAAABOVkdn0n9FPetvbu4d3J0Mb50tDzs8++9Lykz7Mk4OJbv/oZ5WVVcycPXRRWLLr0uWrGhfPgAAAIAzhLKwxfWLVVW9M8mmJKuTTCbZneShJF9L8jellK+exPuun3N970nmue8p3tdq0wKc1VoWdn2Svz3JdwDtsPeOxU4AAAAAAAAAAAAAAAAALKSe1cnaF9bTavpgXRh2uDxsqKVIbGqkffnK1Oy5c/VeeHSJ2ODGZNmlSdXRvowAAAAAbaQsbHH91JzrniT9SS5L8tIk76iq6ltJ3l5K+eIJvO/qOdfbTzLPQ3OuV1dVtbKUsrd1saqqVUlWneJZc++/5iSfBwAAAAAAAAAAAAAAAAAWUmdPMnh9Pa1KSQ7smC3wap2xR9qbcXxnPU/c1lzvXJYsv+7oIrGBa5Kupe3NCAAAALDAlIWd+W5McmtVVb+V5J2llHKce1fMuX7iZA4qpeyvqmo8SW/L8mCSvXNunXvOWCll9GTOmifb4Ek+DwAAAAAAAAAAAAAAAAC0Q1Ulyy6u58IfbO5NjiQj9yRDc0rERu5JZibal3F6LNn7nXoaqqTv8tnysMGWIrGetfVnAwAAADjDKQtbHI8m+VySbybZnGRPkpkkq5M8N8m/SvLKlvurJO9I0pHk7cd5b/+c6wNPI9uBNMvCBk7jOa3mO+ekVVV1QZK1J/nYVQtxNgAAAAAAAAAAAAAAAACcd7oHklX/op5WM9PJ6APNArHhLcnQ5mRiTxsDljrH6APJY3/d3FqycrY4bPnGZPmm+mv/FUmHX8EFAAAAzhx+UtFe30xdAvaFUko5xj23J3l/VVU3Jvlokmta9v59VVV/X0r59DGenVviNf40Mh5IsvI471zIc473zqfrl5LcskDvAgBgoY1uT/bdmaz6l8nSdYudBgAAAAAAAAAAAACA06WjMxm4up6L/1Vzb/zJo0vEhrfUhV5lpn0ZJ/YmT36jnkb27mTgmjlFYhuT5dcl3cvblw8AAADgEGVhbVRK+dxJ3Putqqqen+QbSa5t2XpPVVV/WUqZPpHXnGzGM/wZAADOVqUkd/yvydb3za4957eT6/+3xcsEAAAAAAAAAAAAAMDi6F2T9L44ueDFzfXp8WTk3maB2NDm+uv0WPvyzUwmQ3fXM9fS9fOUiG1Mll2SVFX7MgIAAADnFWVhZ7BSyp6qqv5Nkm8lOfwToo1JfiDJF+d5ZP+c66VP49i5z8x9ZzvPAQDgXPHwnzeLwpLkn349ueAlyZrnL04mAAAAAAAAAAAAAADOLJ29yYpn1NOqzCRjjzZLxA7PgR3tzXhgRz2P/21zvatv/hKxgavrzwUAAGepap5S3FLKIiQBODHz/Rk1359lZxtlYWe4UsodVVXdmuSVLcuvirKwY/lvST5xks9cleTTC3Q+AADz2fJ/zb++7f9RFgYAAAAAAAAAAAAAwPFVHUnfpfVc9EPNvcnhZHjr0SViI9uSmcn2ZZwaTfZ8u56jsl8xf5FY75r25QMAgKepo6PjqLXp6el0d3cvQhqApzY9PX3U2nx/lp1tlIWdHf4mzbKwZx3jvqE512tP5pCqqvpzdInXvhM4Z1lVVX2llNGTOO6CEzjnpJVSnkjyxMk8cy60/gEAnPGevH3+9Qf+3+QFf9reLAAAAAAAAAAAAAAAnDu6lyer/2U9rWamkv33H10iNrQ5mVyQX2k8MWUm2X9fPTv+qrnXs/pQcdimZolY3+VJR2f7MgIAwHFUVZXOzs5G+c6BAwfS29u7iKkAjm1sbKxx3dnZeU50DCkLOzs8OOf6WCVg2+ZcX3aS58y9f08pZe/cm0opu6uq2ptkZcvyhiSbT+GsudkBAAAAAAAAAAAAAAAAAJ6ejq5k+bX15Mdm10tJDu5qKQ9rKRIbfTBJaV/Gg7uTXV+vp5F9STJwbbNAbHBjMnBd0t3fvnwAAHBIX19fhoeHj1yPjIxk5cqVx3kCYPHs37+/cd3ff278XVpZ2NnhwJzrpce4b25Z19Unec6Vc67vPs69m5O8cM5ZJ1MWNvesk3kWAAAAAAAAAAAAAAAAAODkVVXSe0E9F7y0uTd1IBnZlgxvni0QG96SDG9Npuf+qudpNDORDH2vnrmWXdIsEVu+qf669KL6swEAwGkwMDDQKAsbGxvLxMRElixZsoipAI42MTGRsbGxxpqyMNppzZzrJ49x39yf+jyrqqplpZSxee8+2oue4n1z91rLwl6Q5LMnckhVVX1JnnUSZwEAAAAAAAAAAAAAAAAAnF5dS5OVz6qnVZlJxh5OhrbMKRHbkozvbG/GsUfq2fnF5nrXwGyB2GBLmVj/1UmnAgcAAE5NX19f47qUkocffjiXXXZZurrU1wBnhqmpqTz88MMppTTW5/4Zdrbyp+3Z4XlzrnfMd1Mp5bGqqu7MbBFXV5IXJ7n1BM95+Zzrvz7OvX+T5BeO8+zxvCTN/+x9p5Ty+Ek8DwAAAAAAAAAAAAAAAADQHlVH0ndZPetf2dyb2JcMb20pENtcfx25NynT7cs4NZLs+cd6Gtk7k/4rZ8vDWqdnVfvyAQBwVuvs7MzAwEBGRkaOrE1MTOS+++7L8uXLs3z58nR3d6ejo2MRUwLno5mZmUxOTmZ4eDjDw8OZmZlp7A8MDKSzs3OR0i0sZWFnuKqqepO8ds7ybcd55FOZLQtLkp/JCZSFVVW1Mc1SstGneO7zSQ4kWXro+gVVVW0spWx5qrOSvHnO9adO4BkAAAAAAAAAAAAAAAAAgDPLkhXJmufV02p6Itl/f0uJWEuZ2ORw+/KV6WRkWz2Pfra517M2Gdx0dInYsg1Jx7nxi9QAACyciy66KBMTEzl48OCRtZmZmezbty/79u1bxGQA8+vp6clFF1202DEWjLKwM99vJLm45Xo6yV8d5/7/keSdSQ7/FOa1VVVdU0rZdgLntPp4KWX8WDeXUsaqqvrzJD895x0/c7xDqqq6NsmPtyxNJfnoU2QDAAAAAAAAAAAAAAAAADh7dC5JBjfW06qUZPzxeUrEtiSjD7U348FdyRO7kie+0lzv7E0Grj26RGz5tUlXX3szAgBwxujs7Myll16aBx98MFNTU4sdB+C4uru7c+mll6az89wpw1YW1iZVVf10kltLKY+fxDM/n+SWOct/Uko55k97Sinbqqr60yRvObS0JMmfVFX1g8cq/6qq6jVJ3tyyNJHk3ScQ8T8m+akk3Yeu31xV1adKKZ85xjm9ST58KNNh/72Uct8JnAUA55epsWR0e/3/RKk6FjsNAAAAAAAAAAAAAAAAC6GqkqUX1rPu5c29qdFk+J55isS2JjMH25dxejzZd2c9cy3bUBeHDW5qFon1rqs/GwAA57Tu7u5s2LAhjz/+eEZHRxc7DsC8+vr6sm7dunR3dz/1zWcRZWHt87NJ/rCqqk8k+XiS20op8/5Tr6qqG5O8I8mPz9l6NMk7T+CsWw49u/LQ9QuTfLGqqp8rpWxpOacnyS8k+b05z//e8QrJDiul3F9V1fuS/FrL8p9XVfUrSf6olDLRctamJB88lOWw3TmxUjIAOH+Ukvzz25Mt/2cyM5H0XpC86OPJupctdjIAAAAAAAAAAAAAAABOp66+ZNX31dNqZjoZ2z5PidiWZPyJ9mYc217Pzlub692DzfKwwzNwVdJxbv1yNgDA+a6npycbNmzI5ORkhoaGMjQ0lMnJyZRSFjsacJ6qqird3d0ZHBzM4ODgOVcSdpiysPZamuRNh2amqqptSR5MMpRkOsnqJM9Osm6eZ/ckeVUpZedTHVJKeaSqqtcm+XySJYeWX5Tk7qqqvp3k/iSDSZ6bZO2cx/8yyX84ic/075PckOTmQ9fdSX4/yX+oquqOJCNJrjx0Vmsl/ESSHy+lPHYSZwHAue++/57c/d7Z6/Enktt+JHnNg0nv3H9sAwAAAAAAAAAAAAAAcM7r6Ez6r6hn/c3NvYN7kuGth8rDNs+WiO2/PynT7cs4OZTs/od6WlVddWFYo0RsU7L8umTJivblAwBgwXV3d2fNmjVZs2ZNSikppWRmZmaxYwHnmY6OjlRVlaqqnvrms5yysMXTkeS6Q/NUvpTkzaWUR0705aWU26qq+vEkf5LZQrAqyY2HZj4fS/LzpZz4T39KKdNVVf1kkg8meX3L1gVJXnWMx55I8m9LKV890XMA4Lxx3wePXpseSx75dHL1z7U/DwAAAAAAAAAAAAAAAGeunlXJ2hfU02r6YLL/vtnysKEts99PjbQvX5k6VGa2Ncmnm3u9F84pEduYDG5Mll2aVB3tywgAwCk7XNTT0eG/xwGcLsrC2ud9SR5N8qIkl53A/aNJbk3ygVLKl57OgaWUz1VV9Ywk705d5LXyGLf+fZLfLaV88mmesz/JT1VV9edJfjXJ849x654kf5bkllLKrqdzFgCc8+b+r6cc9t1blIUBAAAAAAAAAAAAAABwYjp7ksHr62lVSnLgsdnisOEtyfDm+uvYI+3NOL6znidua653Lk2WX3d0kdjAtUnX0vZmBAAAgDOEsrA2KaV8KsmnkqSqqhVJbkhyaZJ1SZYl6UiyL8neJJuT3FlKmV6Ac59I8taqqt6W2aKyC1OXkT2a5DullAdO9ZxDZ/15kj+vquqKJM9Nsj5JX5KdSR5K8vVSysRCnAUAAAAAAAAAAAAAAAAAwEmqqmTZ+noufEVzb3IkGbknGdrSLBMbuSeZaeOvh04fSPb+Uz0NVdJ3+Wx52GBLkVjP2vqzAQAAwDlKWdgiKKXsS/L1Np85keTv2nTWA0kWpIAMAAAAAAAAAAAAAAAAAIA26B5IVv2LelrNTCejDzYLxIa3JMObk4O72xiwJKMP1PPYXze3lqycLQ5rnf4rkw6/Tg0AAMDZz99uAQAAAAAAAAAAAAAAAACA+XV0JgNX1XPxjzb3xp+cp0RsS13oVWbal3Fib/LkN+ppZO9O+q+ui8MGN7UUiV2XdC9vXz4AAAA4RcrCAAAAAAAAAAAAAAAAAACAk9e7Jul9cXLBi5vr0+PJyL3zF4lNjbYv38xkMry5nkc+1dxbur6lPKxlll2SVFX7MgIAAMAJUBYGAAAAAAAAAAAAAAAAAAAsnM7eZMUz6mlVSnLg0bo0bGhzs0TswI72Zjywo57H/7a53tWXDFw3Wx42uDFZvikZuLr+XAAAALAIlIUBAAAAAAAAAAAAAAAAAACnX1Ulyy6p58KbmnuTw8nw1maB2PCWZGRbMjPZvoxTo8neO+ppZO9I+q6YLRFrnd417csHAADAeUlZGAAAAAAAAAAAAAAAAAAAsLi6lyer/2U9rWamkv0PHF0iNrw5mdjbvnxlJtl/Xz07/qq517N6/hKxviuSjs72ZQQAAOCcpSwMAAAAAAAAAAAAAAAAAAA4M3V0JcuvqSevnl0vJTm4a7Y8bKilSGz0wSSlfRkP7k52fb2eRvYlycC1zQKxwY3JwHVJd3/78gEAAHDWUxYGAHBWqBY7AAAAAAAAAAAAAAAAAJw5qirpvaCeC17a3Js6kIxsmy0Pa53pA+3LODORDH2vnrmWXdIsETs8S9fXnw0AAABaKAsDAAAAAAAAAAAAAAAAAADOHV1Lk5XPqqdVmUnGHk6G5ikRG9/Z3oxjj9Sz84vN9a7+Q8Vhm5LBlhKx/quTziXtzQgAAMAZQ1kYAAAAAAAAAAAAAAAAAABw7qs6kr7L6ln/yubexL5keOvRJWIj9yZlqn0Zp/Yne75VTyN7Z9J/5Wx5WOv0rGpfPgAAABaFsjAAAAAAAAAAAAAAAAAAAOD8tmRFsuZ59bSamUz23z9bHja0efb7yaH25SvTyci2eh79bHOvZ+3RBWKDm5JlG5KOzvZlBAAA4LRRFgYAAAAAAAAAAAAAAAAAADCfju5k+XX15DWz66Uk44/PFoe1zuhD7c14cFeya1ey66vN9c7eZODao4vEll+bdPW1NyMAAACnRFkYAAAAAAAAAAAAAAAAAADAyaiqZOmF9ax7eXNvajQZ2ZYMzSkRG9maTI+3L+P0eLLvznrmWrZhtjxssKVIrPfC+rMBAABwRlEWBgBwNjjw6GInAAAAAAAAAAAAAAAAAE5EV1+y8jn1tCozyehDzQKxwzP+RHszjm2vZ+etzfXuwdnisNYZuCrp6G5vRgAAAI5QFgYAAAAAAAAAAAAAAAAAAHC6VR1J/xX1rL+5uXdwTzK89egSsf33JWW6fRknh5Ld/1BPI3tXXRg2X5HYkhXtywcAAHCeUhYGAAAAAAAAAAAAAAAAAACwmHpWJWtfUE+r6Ym6MGx4c10eNtRSJDY10r58ZepQmdnWJJ9u7vWuaykP21R/HdyYLLu0LkgDAADglCkLAwAAAAAAAAAAAAAAAAAAOBN1LkkGN9XTqpTkwGOzxWGtM/ZwezOOP17PE19urncuTZZf11IkdmgGrk26lrY3IwAAwFlOWRgAAACjH0ltAAAgAElEQVQAAAAAAAAAAAAAAMDZpKqSZevrufAVzb3J/cnIPXVx2NDm2RKxkXuSmYn2ZZw+kOz9p3oaqqTvsmaB2OCm+mvP2vqzAQAA0KAsDAAAAAAAAAAAAAAAAAAA4FzR3Z+sem49rWamk9EHZ8vDWufgk20MWOocow8mj/1Nc2vJymaJ2OHpvzLp8KvxAADA+cvfiAAAAAAAAAAAAAAAAAAAAM51HZ3JwFX1XPyjzb3xJ5ORrbPlYUNbkuHNyegDSZlpX8aJvcmT36inkb076b96niKx65Ilg+3LBwAAsEiUhQEAAAAAAAAAAAAAAAAAAJzPetfUs/ZFzfXp8WTk3tkSsdaZGm1fvpnJurxsePPRe0vXz1MitjFZdklSVe3LCAAAcBopCwMAAAAAAAAAAAAAAAAAAOBonb3JimfU06qU5MCjdWnY0JwSsQOPtjfjgR31PP63zfWuvmTgutnysMFDXweuqT8XAADAWURZGAAAAAAAAAAAAAAAAAAAACeuqpJll9Rz4U3NvcnhZPieZHhzs0RsZFsyM9m+jFOjyd476mmokv4rZkvElm+a/b53TfvyAQAAnARlYQAAAAAAAAAAAAAAAAAAACyM7uXJ6hvraTUzlex/oFkgNrylLhWb2NvGgCXZf389Oz7X3OpZ3VIi1jJ9lycdfjUfAABYPP5GAgAAAAAAAAAAAAAAAAAAwOnV0ZUsv6aevHp2vZTk4JPNArGhzfXX0QeTlPZlPLg72fX1ehrZlyQD18xfJNbd3758AADAeUtZGAAAAAAAAAAAAAAAAAAAAIujqpLetfVc8JLm3tSBZGRbs0hseEsyvDWZHmtfxpmJZOiueuZadsn8JWJL19efDQAAYAEoCwMAAAAAAAAAAAAAAAAAAODM07U0WfmselqVmWTskXlKxLYkBx5rb8axR+rZ+cXmelf//CViA1cnnT3tzQgAAJz1lIUBAAAAAAAAAAAAAAAAAABw9qg6kr4N9Vz0w829iX3J8NajS8RG7k3KVPsyTu1P9nyrnqOyX5kMbjq6SKxnVfvyAQAAZxVlYQAAAAAAAAAAAAAAAAAAAJwblqxI1jyvnlYzk8n++5sFYkNbkuHNyeRQ+/KVmWT/vfU8+tnmXs/aowvEBjcmyy5LOjrblxEAADjjKAsDAAAAAAAAAAAAAAAAAADg3NbRnSy/rp68Zna9lGT8ibo0rLVIbHhLMvpQezMe3JXs2pXs+mpzvaMnWX7toQKxTS1lYtcmXX3tzQgAACwKZWEAAAAAAAAAAAAAAAAAAACcn6oqWbqunnUvb+5NjSUj9yRDc0rERrYm0+PtyzhzMNn33XrmWrZhtjxscOPs970X1p8NAAA4JygLAwAAAAAAAAAAAAAAAAAAgLm6liUrn1NPqzKTjG5vKRDbPPv9+BPtzTi2vZ6dtzbXu5fPFoe1Tv9VSeeS9mYEAABOmbIwAAAAAAAAAAAAAAAAAAAAOFFVR9J/eT3rX9XcO7gnGd7aUiR2aPbfl5Tp9mWcHE52f7OeVlVXMnDV/EViS1a0Lx8AAHBSlIUBAAAAAAAAAAAAAAAAAADAQuhZlax9QT2tpifqwrC5JWJDm5OpkfblK1OHysy2Jvl0c6933fwlYn0b6oI0AABg0SgLAwAAAAAAAAAAAAAAAAAAgNOpc0kyuKmeVqUkBx47ukRseEsy9nB7M44/Xs8TX26udy5NBq6ts7eWiA1ck3Qta29GAAA4TykLAwAAAAAAAAAAAAAAAAAAgMVQVcmy9fVc+Irm3uT+ZOSeeYrE7klmDrYv4/SBZN8/19NQJX2XNQvEDk/vBfVnAwAAFoSyMAAAAAAAAAAAAAAAAAAAADjTdPcnq55bT6uZ6WTsoWRoSzK8uVkkdvDJNgYsyeiD9Tz2N82t7hV1adjg4QKxTfXX/iuSju42ZgQAgHODsjAAAAAAAAAAAAAAAAAAAAA4W3R0Jv1X1nPxjzT3xp9MRrbOlocNHfo6en9SZtqXcXJfsvvv62lk7076rz5UINY61yVLBtuXDwAAzjLKwgAAAAAAAAAAAAAAAAAAAOBc0LumnrUvaq5PH0xG7p0tERvekgxvrr9OjbYv38zkoXM3H7239KJ5SsQ2JssuSaqO9mUEAIAzkLIwAAAAAAAAAAAAAAAAAAAAOJd19iQrbqinVSnJgUfr0rChLc0ysQOPtjfjgcfqefzvmutdfcnAdbPlYYOHvg5ck3T2tjcjAAAsEmVhAAAAAAAAAAAAAAAAAAAAcD6qqmTZJfVceFNzb3IkGd7aLBAb3pKM3JPMTLYv49RosveOehqqpP+K2RKx1ulZU382AAA4RygLAwAAAAAAAAAAAAAAAAAAAJq6B5LVN9bTamYqGX0wGdo8p0hsczKxt40BS7L//np2fK65tWRVXRo2uKlZItZ3edKhZgEAgLOP/xYLAAAAAAAAAAAAAAAAAAAAnJiOrmTg6nry6tn1UpKDT84pEDs0+x9IUtqXcWJP8uTt9TSyL0kGrmkWiC3fmCy/ri5HAwCAM5SyMAAAAAAAAAAAAAAAAAAAAODUVFXSu7aeC17S3Js6kOy/ty4OG9qSDG8+VCS2NZkea1/GmYlk6K565lp6cbNAbHBjsnxTsnR9/dkAAGARKQsDAAAAAAAAAAAAAAAAAAAATp+upcmKZ9bTqswkY48cKg6bMwcea2/GA4/W8/iXmutd/c0SscMzcHXS2dPejAAAnLeUhQEAAAAAAAAAAAAAAAAAAADtV3UkfRvqueiHm3sTQ8nw1jklYpuTkXuTMtW+jFP7kz3fqueo7FfWxWGDc4rEela3Lx8AAOcFZWEAAAAAAAAAAAAAAAAAAADAmWXJYLLm++tpNTOZ7L+/WSI2dKhIbHKoffnKTLL/3np2/GVzr2dtszzscKHYssuSjs72ZQQA4JyhLAwAAAAAAAAAAAAAAAAAAAA4O3R0J8uvqyevmV0vJRl/olkidnhGH2xvxoO7kl27kl1fba539CTLrz26SGz5dUlXX3szAgBwVlEWBgAAAAAAAAAAAAAAAAAAAJzdqipZuq6edS9r7k2NJSP3JENzSsRGtibT4+3LOHMw2ffdeuZadmmyfFNdHjbYUiTWe2H92QAAOK8pCwMAAAAAAAAAAAAAAAAAAADOXV3LkpXPqadVmUlGtzcLxA7P+OPtzTj2cD07b22udy+fLQ5rnf6rks4l7c0IAMCiURYGAAAAAAAAAAAAAAAAAAAAnH+qjqT/8nrWv6q5N7E3Gd5aF4cNbZ4tEdt/X1Km25dxcjjZ/c16WlWddWFYa4HY4KZk+XXJkpXtywcAQFsoCwMAAAAAAAAAAAAAAAAAAABotWRlsub59bSanqgLww6Xh7XO5HD78pXpZOSeeh79THOvd12zROzw9G2oC9IAADjrKAsDAAAAAAAAAAAAAAAAAAAAOBGdS5LBTfW0KiUZ3zlbHDbUUiI2tr29Gccfr+eJLzfXO5cmA9c2C8QGN9ZrXcvamxEAgJOiLAwAAAAAAAAAAAAAAAAAAADgVFRVsvSietb9QHNvcn8ycs9sediRuSeZOdi+jNMHkn3/XM9cfZclyzc1i8SWb0x6L6g/GwAAi0pZGAAAAAAAAAAAAAAAAAAAAMDp0t2frHpuPa1mppOxh5KhuSViW5KDu9qbcfSheh77m+Z694q6NGxwTolY/5VJR3d7MwIAnMeUhQEAAAAAAAAAAPz/7N17lOZ5XR/497eq+t5VNZeenivMfbp7QBCUcI2LghG8EDWGuCbnQOK6BE1Wj3E37m4UyHGzm2w0u+we4yUq7K4aL1EwKqKgrCDKIoKCdPf0MDM9MNMzPZeequpLdXdVffePXzX1PNU1/VT1VP+e56l6vc75nHp+3+/v9/u+q2GKGWjeDQAAAAAAANC2kdGmdGv3HcnN39i9d/ap7vKwC4Vipx5I6kJ7Gc8/kzz1Z810KmPJ+F2L5WEHOorE9iVbJ9vLBwCwSSgLAwAAAAAAAAAAAAAAAAAAABgk265Nrnt1M53mzyYz93cXiV2YuZPt5atzS+fmfd17O27sKA/rmJ23JGWkvYwAABuIsjAAAAAAAAAAAAAAAAAAAACAYTC6LbnqBc10qjU582hT3jV1sLtE7Mwj7WY8c6yZx/+oe310ZzKxb6k8bPJA83X87mR0e7sZAQCGjLIwAAAAAAAAAAAAAAAAAAAAgGFWSrLz5mZueF333vmZZPpwd4HY9KFk5kiycK69jPOnkxOfbqZLSXbfvlQi1jnb9jTfGwDAJqcsDAAAAAAAAAAAAAAAAAAAAGCj2jKeXPvVzXRamEtOPdRdIDZ1MJk+mJw70WLAmpx8oJlHf7d7a+s1K5eI7b49GVGZAQBsHv7OBwAAAAAAAAAAAAAAAAAAAGCzGRlLxu9q5uZvXlqvNTn7ZHeJ2IU5+WCS2l7Gc08nT368ma7sW5Pxu1coEtvXlKMBAGwwysIAAAAAAAAAAAAAAAAAAAAAaJSSbL+umb1/s3tvfjaZOdIUh00tKxKbP91exoVzydRfN7Pcjpu7C8QmF7/uuLn53gAAhpCyMAAAAAAAAAAAAAAAAAAAAAB6G92eXPUVzXSqC8npRxaLww52l4idOdZuxjOPNPP4h7vXx3YnE/sWS8QOLJWJjd+VjG5rNyMAwBopCwMAAAAAAAAAAAAAAAAAAADg8pWRZNfzmrnx67v3zk0l04e7C8SmDyUzR5I6117GuZPJ059q5qLsdzTFYZP7l0rEJvYn265tLx8AwCUoCwMAAAAAAAAAAAAAAAAAAADgytg6mez5G810WjifnHywo0DsYDK1+Pn8M+3lqwvJyfubefS3u/e27ekuD5vYn0weSHbemoyMtpcRANj0lIUBAAAAAAAAAAAAAAAAAAAA0K6RLcnEPc3kTUvrtSazxztKxDrm1NEktb2MZ59MnvhYM13Zty1mX1YkNn5PsmV3e/kAgE1DWRgAAAAAAAAAAAAAAAAAAAAAg6GUZMf1zVz/X3TvzZ1OZo6sUCR2OJk/017GhbPJM59tZrmdz7u4RGxif7LjxuZ7AwC4DMrCAAAAAAAAAAAAAAAAAAAAABh8YzuTq1/cTKe6kJx6eIUSsUPJ7OPtZjz9xWYe+4Pu9S0TK5eI7b4zGd3abkYAYOgoCwMAAAAAAAAAAAAAAAAAAABgeJWRZPdtzdz0hu69cyeS6cMXl4jN3J/U+fYynp9Onvr/mulURpvCsOUlYpP7k61Xt5cPABhoysIAAAAAAAAAAAAAAAAAAAAA2Ji2Xp3seUUznebPJScfWCwPO9hdJHZ+ur18dT6Zua+ZR36re2/73sXysAPdRWK7nt8UpAEAm4ayMAAAAAAAAAAAAAAAAAAAAAA2l9GtyeT+ZvKtS+u1JrOPLRWHTXWUiJ1+uN2Ms8ebOf7H3euj25Pxfd0FYpP7k/F7krGd7WYEAFqhLAwAAAAAAAAAAAAAAAAAAAAAkqSUZMeNzVz/td17c6eS6fuWysOmDyXTB5u1hbPtZZyfTZ75y2aW23Vrd4nYxIHm6/a9zfcGAAwlZWEAAAAAAAAAAAAAAAAAAAAA0MvYruSalzTTaWE+OX00mTq0rEjsUHL2iXYznjrazLEPdq9vuaopDZvc310mtvuOZGRLuxkBgDVTFgYAAAAAAAAAAAAAAAAAAAAAl2tktCnd2n1HcvM3du+dfSqZPnxxidjJLyR1ob2M559JnvqzZjqVsWT8ru4CsQuzdbK9fADAJSkLAwAAAAAAAAAAAAAAAAAAAIArYdu1yXWvaqbT/Nlk5v6LS8SmDyVzJ9vLV+eWzl1u+w3J5IGLS8R23pKUkfYyAgDKwgAAAAAAAAAAAAAAAAAAAACgVaPbkqte0EynWpMzj65cInb6S+1mnH2smcf/qHt9dGcyse/iErHxu5OxHe1mBIBNQlkYAECSLMwnI6P9TgEAAAAAAAAAAAAAAAAAwGZWSrLz5mZueF333vmZZOa+ZOpgd4nYzJFk4Vx7GedPJyc+3UyXkuy6bak8bPLA0udte5rvDQC4LMrCAIDN7Yu/kXz2nc1/EXLtK5KX/WRy1Qv7nQoAAAAAAAAAAAAAAAAAALptGU+u+apmOi3MJace6i4Qmz7UlIqde7rFgDU59WAzxz7QvbX1mqXisM7ZfXsyov4EAHrxn5YAwOb1+P+bfOzNSZ1vrp/4aPLhr0u+6a+T7df1NxsAAAAAAAAAAAAAAAAAAKzGyFgyflczN39z997sk8tKxA42X08+mKS2l/Hc08mTH2+m08iWZPzulYvEtoy3lw8ABpyyMABg8zr6y0tFYRecfSI59vvJ7X+/P5kAAAAAAAAAAAAAAAAAAGC9bN+TbH9Nsvc13evzs8nMkaY4bOpQd6HY/On28i2cT6Y+38xyO27uLg+bXPy64+aklPYyAsAAUBYGAGxe9//0yuuf+IfKwgAAAAAAAAAAAAAAAAAA2LhGtydXfUUznepCcvqR7vKwC3Pm0XYznnmkmcc/3L0+tjuZ2NddJDaxPxm/Oxnd1m5GAGiJsjAAhtP8bHL/zyRHfyW5623Jbd+VjPiPNdbJwvl+JwAAAAAAAAAAAAAAAAAAgPaVkWTX85q58eu7985PJ1MrlIjNHEnqXHsZ504mT3+qmYuy394Uh00e6C4S23Zte/kA4ArQqgLA8Dn7dPKfOv5h7MmPJ3/2luTNp5OxHf3LBQAAAAAAAAAAAAAAAAAAsFFtmUj2/I1mOi2cT04+eHGJ2NTB5Pwz7eWrC8nJLzTz6O90723b010edmF23ZaMjLaXEQAuk7IwAIbPx//ByuuffUfykn/TbhYAAAAAAAAAAAAAAAAAAIDNbGRLMnFPM3nT0nqtydknusvDLnw+dTRJbS/j2SeTJz7WTFf2bcn43d0FYpMHkvF7ki2728sHAD0oCwNg+Bz7wMrrB/9XZWEAAAAAAAAAAAAAAAAAAACDoJRk+95m9n5N997c6WTmyFJ52JfncDJ/pr2MC2eTqc81s9zO53WXiF2YHTc23xsAtEhZGAAAAAAAAAAAAAAAAAAAAADQnrGdydUvbqZTXUhOfzGZ6iwQO9h8nX283Yynv9jMY3/QvT42vlQcNtlRIrb7rmR0a7sZAdg0lIUBAAAAAAAAAAAAAAAAAAAAAP1XRpJdtzZz0zd07507kUwf7igRW5yZ+5M6317GuZnk6U8205V9NNl951J5WGeh2Nar28sHwIakLAwAAAAAAAAAAAAAAAAAAAAAGGxbr072vKKZTvPnkpMPXFwiNn0wOT/dXr46n8zc18wjv9W9t33vxSViE/ubUrQy0l5GAIaWsjAAAAAAAAAAAAAAAAAAAAAAYDiNbk0m9zfTqdZk9rGl8rCpjiKx0w+3m3H2eDPH/7h7fXR7Mr6vu0Bscn8yfk8ytrPdjAAMNGVhAAyXcyf6nQAAAAAAAAAAAAAAAAAAAIBBV0qy48Zmrv/a7r25U8n0fUvlYV+ew8nC2fYyzs8mz/xlM8vturW7ROzCbL+++d4A2FSUhQEwXJY3JQMAAAAAAAAAAAAAAAAAAMBajO1KrnlJM50W5pPTDy+Vh00dXPp89ol2M5462syxD3avb5nsLg+bPNB83X1HMrKl3YwAtEZZGAAAAAAAAAAAAAAAAAAAAADAyGiy+/Zmbnpj997Zp5Lpw0vlYRfm5BeSutBexvNTyVOfaKZTGUvG7+ouEpvYn0zsS7Ze1V4+AK4IZWEAAAAAAAAAAAAAAAAAAAAAAJey7drkulc102n+bFMYdqE8bKqjSGxupr18dW7p3OW233Bxidjk/mTn85Iy0l5GAC6bsjAAhky59PbcqWRsVztRAAAAAAAAAAAAAAAAAAAA2NxGtyWT9zbTqdbkzKNLBV6dc/pL7WacfayZ4x/pXh/dmUzsu7hIbPzuZGxHuxkBuCRlYQAMmR5lYeeeURYGAAAAAAAAAAAAAAAAAABAf5WS7Ly5mRte1713fiaZuS+ZWlYiNnNfsnCuvYzzp5MTn26mS0l23bZUHjbZUSS27brmewOgVcrCANhg/EMFAAAAAAAAAAAAAAAAAAAAA2zLeHLNVzXTaWE+OfVgd4HY9KFk6mBy7ukWA9Ymx6kHk2Mf6N7aevVicdiBpQKxif3J7tuTEVU2AFeKn7AA9FCS1H6HWNKrYbiMtJMDAAAAAAAAAAAAAAAAAAAA1tPIaDJ+VzM3f3P33uyTF5eITR9qCr3qQnsZz51InvzTZrqyb0nG7+4uEJvYn0zsS7ZMtJcPYINSFgbApZWRpM73O0WHHmVhPfcBAAAAAAAAAAAAAAAAAABgyGzfk2x/TbL3Nd3r87PJzP1L5WFTB5c+z59uL9/C+WTq880st+OmjvKwA8nk4ucdNydFRwDAaigLA+DSBq4srAf/IAAAAAAAAAAAAAAAAAAAAMBmMbo9ueqFzXSqC8npR5aKwzrnzKPtZjzzaDOP/2H3+tiujhKxjhm/q/m+APgyZWEA9DBs5VvDlhcAAAAAAAAAAAAAAAAAAADWWRlJdj2vmRu/vnvv/HQyffjiErGZI8nC+fYyzp1Knv5UMxdlv/3iErHJA8m2a9vLBzBAlIUB0MOglW/Vfgdgo6j+vQQAAAAAAAAAAAAAAAAAAGxCWyaSa1/WTKeF88nJBy8uEZs6mJx/pr18dSE5+YVmHv2d7r1tey4uEZvYn+y6LRkZbS8jQMuUhQFwaWWk3wnWSAEUq3T0P/Y7AQAAAAAAAAAAAAAAAAAAwOAY2ZJM3NNM3rS0Xmty9omO8rCOIrFTD6XV/5//2SeTJz7WTFf2rcn4Pd0FYpP7k/F9yZbd7eUDuEKUhQFwaYNWFjay9dL7VVkYq3To3/U7AQAAAAAAAAAAAAAAAAAAwOArJdm+t5m9X9O9N3cmmTmSTB9cKhCbPpRMH07mz7SXceFcMvW5ZpbbectigdiB7jKxHTc23xvAEFAWBkAPA/Y3tjNHetygLIxVevqT/U4AAAAAAAAAAAAAAAAAAAAw3MZ2JFe/qJlOdSE5/cVk6tCyErFDyexj7WY8/aVmHvtQ9/rY+FJx2GRHidjuu5LRre1mBOhBWRgAl1ZG+p2g2+zxHjcoCwMAAAAAAAAAAAAAAAAAAIC+KiPJrlubuekbuvfOPZNMH14sDzu4VCI2c39S59vLODeTPP3JZrqyjya771gqD5vYn0wcSCb2JduuaS8fQAdlYQD0UPodoNvWqy+9X5WFAQAAAAAAAAAAAAAAAAAAwMDaelWy5+XNdJo/l5x8YKk87MtzMDk/3V6+Op/MHGnmkf/cvbd977ISscXZ+fxkZLS9jMCmoywMgOFSF3rd0EoMAAAAAAAAAAAAAAAAAAAAYB2Nbk0m9zfTqdZk9vGLS8SmDianH2434+zxZo7/cff66PZk/J4VisTuScZ2tZsR2JCUhQHQQ+l3gGWUhQEAAAAAAAAAsP5KKXckeVmSr178+tIk4x23HK213taHaM+qlLIzyWeT3LFs67211re2nwgAAAAAAADgCigl2XFDM9e/tntv7lQyfd/FRWLTh5OFs+1lnJ9NnvmrZpbbdesKJWL7k+3XN98bwCooCwNguNQeZWFVWRgAAAAAAAAAAKtTSnltkv8+TUHYNf1Nc1n+p1xcFAYAAAAAAACweYztSq55STOdFuaT0w+vUCJ2KJk93m7GU0ebOfbB7vUtkyuXiI3fmYxsaTcjMPCUhQEwXHqVhUVZGAAAAAAAAAAAq/aVSf5Wv0NcjlLKK5L8N/3OAQAAAAAAADCQRkaT3bc3c9Mbu/fOPp1MH06mD3aXiJ38wio6DdbR+ankqU8006mMNYVhEweWFYntS7Ze1V4+YKAoCwNgyCgLAwAAAAAAAADgijub5EtJ7ux3kJWUUrYm+bkkI4tLM0nG+5cIAAAAAAAAYIhsuya57pXNdJo/2xSGXSgPm+ooEpubaS9fnVssMzt88d72G5YViO1PJvcnO5+XlJGL7wc2DGVhAAyXXi28VVkYAAAAAAAAAABrcj7JXyf58ySfXPz62SSvTvJHfcx1KT+a5N7Fz0eT/FqSH+pfHAAAAAAAAIANYHRbMnlvM51qTc4cWyoOmz6UTB9svp7+UrsZZx9r5vhHutdHdyQT+5YViR1Ixu9Oxna0mxG4IpSFAXBppfQ7QbdeZWHptQ8AAAAAAAAAAF/23iQ/VWudXb5RBu33zSwqpbw4yT/vWHp7kpf3KQ4AAAAAAADAxldKsvOmZm74uu698zPJzH3J1KHuMrGZ+5KFc+1lnD+TnPhMM11Ksuu2pQKxyY4ysW3XDV6nBPCslIUBMFx6lYXV2k4OAAAAAAAAAACGXq31RL8zrEUpZSzJz2fp93/+cq31A6UUZWEAAAAAAAAA/bBlPLnmq5rptDCfnHqou0Bs+lAyfTA5+1SLAWty6sFmjn2ge2vr1UvFYZ2z+45kRC0RDBp/VQIwZHqUhUVZGAAAAAAAAAAAG9Z/m+Sli5+fTvIDfcwCAAAAAAAAwLMZGU3G72zm5m/q3pt9coUSsUNNoVft1amwjs6dSJ7802a6sm9Jxu9eoUhsX7Jlor18QBdlYQD0UPodoFuvv7GtysIAAAAAAAAAANh4Sin7kryjY+mf1VqP9ysPAAAAAAAAAJdp+55k+2uSva/pXp+fTWbuX7lIbO5Ue/kWzidTn29muR03rVAitj/ZeUtSBqyfAjYYZWEADJeeLbjKwgAAAAAAAAAA2FhKKSNJfi7JtsWlP6y1vqd/iQAAAAAAAABYd6Pbk6te2EynWpMzjzSlYVMHu0vEzjzabsYzjzbz+B92r4/tSsb3NcVhkweWSsTG72q+L+A5UxYGwKUNXHOrsjAAAAAAAAAAADadf5Lk1YufzyR5Wx+zAAAAAAAAANCmUpKdtzRzw+u7985PJ9OHuwvEpg8lM0eShfPtZZw7lZz4i2a6so8ku25fKg/rnO172ifL/oMAACAASURBVMsHG4CyMACGS+1RFlaVhQEAAAAAAAAAsHGUUm5L8q86lt5Va72/P2kAAAAAAAAAGChbJpJrX9ZMp4W55OSDF5eITR9Mzp1oL19dSE5+oZlHf6d7b9u1K5SIHUh23ZaMjLaXEYaEsjAAhkud73VDKzEAAAAAAAAAAKAlP5tk1+Lnv0zy4/0KUkrZm+S6NT5255XIAgAAAAAAAMAljIwlE3c3k29ZWq81OfvEUnnYVEeR2KmH0mpnw9mnkif+pJmu7FuT8Xu6S8Qm9yfj+5Itu9vLBwNGWRgAw6Uu9LqhlRgAAAAAAAAAAHCllVK+O8nrFy8XknxPrXWuj5G+N8k7+ng+AAAAAAAAAM9FKcn2vc3s/ZruvbkzycyRpfKwzpk/017GhXPJ1OeaWW7nLd0lYhdmx03N9wYbmLIwAIZLr7KwqiwMAAAAAAAAAIDhV0q5Kcm/7Vh6d631k/3KAwAAAAAAAMAGN7YjufpFzXSqC8npLyZTK5SIzT7WbsbTX2rmsQ91r4/tXiwOO5BMdpSI7b4rGd3abka4QpSFAdDDoDWn9igLi7IwAAAAAAAAAAA2hJ9MctXi56NJ/kUfswAAAAAAAACwWZWRZNetzdz0Dd17555Jpg9fXCI2c39S59rLOHcyefrPm+nKPprsvmOpPKxztl3TXj5YB8rCABguVVkYAAAAAAAAAAAbWynlO5P87Y6lt9daT/UrT4efTPJra3zmziTvvwJZAAAAAAAAAOi3rVcle17eTKeF88nJB5risKmD3UVi56fay1fnk5kjzTzyn7v3tl3XXR42eaD5uvP5ychoexlhlZSFbRKllC1JXp3k+UluTHIyyaNJPl1rfWidz7o9yVcmuSnJ7iTH0vyphh+vtZ5fz7OANpR+B+jWqyysKgsDAAAAAAAAAGB4lVL2JHl3x9Iv11o/0K88nWqtx5McX8szpQzY7z8CAAAAAAAA4Mob2ZJM7Gvmlo4/K6vWZPbx7vKwC3PqaLsZzz6RPPFE8sRHu9dHtyfj93QXiU3sTybuScZ2tZsROigLG0CllP+Y5O8tWz5aa73tMt51XZJ3Lb7vmme55+NJfqLW+p/W+v5l7/mOJD+Y5JXPcsvTpZRfSfKjtdYnn8tZwGbWoyys5z4AAAAAAAAAAAy0dye5bvHz00l+oI9ZAAAAAAAAAGD9lJLsuKGZ61/bvTd3Kpk5kkx1logdTGbuS+Zn28s4P5s881fNLLfz+UvlYZMXSsQOJNuvb743uIKUhQ2YUsqbcnFR2OW+641J3pNkb49bX5XkVaWUX0zytlrrqTWeszvJzyb5zh63XpPk7Um+vZTyllrrB9dyDkCSpPYoA6u1nRwAAAAAAAAAALDOSin7kvyXHUv/W5KdpZTbejx61bLr3cueWai1Pvxc8wEAAAAAAADAFTO2K7n6K5vptDCfnH64o0CsY2aPt5vx9MPNPPb73etbJpdKxDpn/M5kZEu7GdmwlIUNkFLKVUn+/Tq967VJ3pdka8dyTfIXSR5I8xuDXpJkT8f+308yUUr51lp7tfF8+ZzRJL+S5BuXbT2R5NNJppLcuXjWhfrD65O8v5Ty+lrrx9bwbQH0LgvLqn58AQAAAAAAAADAINqx7PpfLs5a/Z3FuWAqFxeKAQAAAAAAAMDgGxlNdt/ezE1v7N47+3QyffjiErGTX0jqfHsZz08lT32imU5lrCkMW6lIbKv/GZ+1URY2WH48yU2Ln2eSjF/OS0optyT5jXQXhf1Jku+ptR7suG9bkrcl+bdJLlQQfkuSH0vyP6zyuP8l3UVh55P8YJKfqbWe6zjr3iT/IckrF5e2JXlfKeUraq3HVnkWQHqWga2u6xAAAAAAAAAAAAAAAAAAAACAYbbtmuS6VzbTaf5ccvL+pfKwqY4isbmZ9vLVucUys8NJ3t+9t/2GiwvEJvcnO5+XlJH2MjI0lIUNiFLK65P8o8XLuSQ/muTfXebr3pXk6o7rjyd5fa11tvOmWuvZJO8upTyc5Dc7tn6wlPLTtdajPTLfkeT7ly3/3Vrr+5ffW2v9fCnldUk+nKXCsGuTvCPJP17F9wT0Syn9TtCtVxmYsjAAAAAAAAAAAAAAAAAAAACAzWt0azJ5bzOdak3OHFsqDuuc019sN+PsY80c/0j3+uiOZGLfxUVi4/ckYzvazchAURY2AEopu5L8bMfSTyT5zGW+6+4kb+lYOpfkrcuLwjrVWt9XSnlvx3Pb0pR4/aNne2bRO5Js6bh+z0pFYR3nnCmlvDXJZ5NsXVz+7lLKv6m1PtDjLICGsjAAAAAAAAAAADaoWutnkqz5T/crpbwzze/pu+C9tda3rlMsAAAAAAAAANgYSkl23tTMDV/XvXf+ZDJzX1McNnVwqURs5r5k4Vx7GefPJCc+00yXkuy6tSkOu+alyW3/IJk80F4u+k5Z2GD4n5Pctvj5gSTvTPLyy3zXdyUZ7bj+jVrrkVU896/TXTL25lLK9z5byVgpZUeS71jhHZdUa72vlPK+JG9eXBpbzPxjq8gI9MWaf+/hldWzDExZGAAAAAAAAAAAAAAAAAAAAABrsGV3U8J1zUu71xfmk1MPLZWHdc7ZJ1sMWJscpx5Kjv1e8tf/KrnlW5N7fzjZc7lVRQwTZWF9Vkp5VZLv61h6W631TCmXXc7zbcuuf2E1D9VaD5ZSPpGlkrJdSf5Wkt96lke+IcnOjus/rbUeWmXGX8hSWViSfHuUhQGr1qMMrGeZGAAAAAAAAAAAtKuUUpctfW2t9SP9yAIAAAAAAAAArMHIaDJ+ZzM3f1P33uyTyczhpfKwqUPJ9MHk1IPt9F986X3NfP3Hk+teeeXPo6+UhfVRKWVbkp9PMrK49N5a64eew/tuSPLijqW5JH+yhld8JEtlYUnyxjx7WdgbVnh2tT6aJtuFf/+9pJRyfa318TW8A9isev3NkLIwAAAAAAAAAADWoJRyS1b+/ZQ3LLseK6Xc9iyvOVlrbfOPCwYAAAAAAAAA+m37nmaue3X3+vxsMnP/UolY58ydWt8MV7042fOK9X0nA0lZWH+9M8m+xc9PJPlnz/F9L1x2/Ve11rX8dPj4susXrOGsP13tIbXWU6WUzyZ5ybKzlIXBQCr9DtCtzve4QVkYAAAAAAAAAABr8rEkt67ivpuTPPgse+9N8tb1CgQAAAAAAAAADLHR7clVL2ymU63JmUea0rCpZSViZx65vLPu/eGkDFg3CFeEsrA+KaW8NMkPdSz9QK31qef42nuXXd+/xue/0ON9nQ6sw1mdZWH3JvnDNb4D2IymPnfp/aosDAAAAAAAAAAAAAAAAAAAAIABU0qy85Zmbnh999756WT6cHeB2PShZOZIsnB+5fftviN5/ndc+dwMBGVhfVBKGUvy81n69f+9WusvrcOr71p2/fAanz+67PraUsrVtdYTnYullGuSXPMcz1p+/91rfB7YrKYPX3pfWRgAAAAAAAAAAAAAAAAAAAAAw2TLRHLty5rptDCXnHywKQ575i+Th381eeazzd6B/y4ZUSG1WfhXuj9+OMmLFz+fSvL2dXrvVcuuj6/l4VrryVLKbJLtHcuTSU4su3X5OadrrafWctYK2SbX+PyKSil7k1y3xsfuXI+zgQGhLAwAAAAAAAAAgDWotd7WwhnlCr//nUneeSXPAAAAAAAAAAD6YGQsmbi7mVu+JXnB/5gc+2By/88kd7yl3+lokbKwlpVS7k3yLzqWfqTW+tA6vX73suszl/GOM+kuCxu/gud0Wumcy/G9Sd6xTu8ChpKyMAAAAAAAAAAAAAAAAAAAAAA2oFKSm97QDJvKSL8DbCallJEkP5dk2+LSp5K8ex2PWF7iNXsZ71he4rX8nW2eAwyCckX/UNP1V5WFAQAAAAAAAAAAAAAAAAAAAAAbh7Kwdn1/klcsfp5L8l/VWuev4Hl1gz0Dm8fCXDK3vFOPJMmOGy+9rywMAAAAAAAAAAAAAAAAAAAAANhAxvodYLMopdyR5Mc6ln6i1vqZdT7m5LLrHZfxjuXPLH9nm+dcjp9M8mtrfObOJO9fp/PhuVmYS/78nyYP/WKycC656Q3JK96bbJ3sY6jSx7NXMNrrR46yMAAAAAAAAAAAAAAAAAAAAABg41AW1oJSSknys0l2Li49kOSdV+CoTV8WVms9nuT4Wp5p/uWBAfHpH0ru/6ml6y+9P/no30le96H+ZRo0tUcZWK99AAAAAAAAAAAAAAAAAAAAAIAhMtLvAJvE9yT5uo7rt9Vaz1yBc6aWXV+3lodLKbtzcYnXM6s4Z2cpZddazkqydxXnwOZSa3L0Vy5ef/zDyewT7ef5sgEr1FMWBgAAAAAAAAAAAAAAAAAAAABsImP9DrBJvKvj8+8mub+UcluPZ25Ydj22wjOP1lrPdVwfWbZ/6yrzPdv9T9daTyy/qdb6VCnlRJKrO5afn+TgczhreXbYfM4+mcw+tvLew7+a3PN97eYZWLXHvrIwAAAAAAAAAAAAAAAAAAAAAGDjUBbWjh0dn78xyYOX8Y6bV3juJUk+03G9vKzrrjWeccey689f4t6DSV617Ky1lIUtP2stzwKbWe1RBrYw304OAAAAAAAAAAAAAAAAAAAAAIAWjPQ7AOvqc8uuX1RK2bmG51/d432X2nvlag8ppexK8qI1nAWbRO13gCHRoyys5z4AAAAAAAAAAAAAAAAAAAAAwPBQFraB1FqPJfmrjqWxJK9Zwyteu+z6A5e49/d6PHspfzNNtgs+XWt9fA3PwyZU+h1gcNQeZWC99gEAAAAAAAAAAAAAAAAAAAAAhoiysBbUWq+qtZa1TJKvXfaaoyvc95kVjvvNZdf/cDUZSyn7k7y8Y+lUkt+/xCMfTHKm4/qVi+9Yjbcuu16eGTanWvudYGVl0IrKevw6KQsDAAAAAAAAAAAAAAAAAAAAADYQZWEbzy8mme+4/vZSyt2reO6fL7v+1Vrr7LPdXGs9neTXe7zjIqWUe5J8W8fSXJJfWkU+2NwGrrCrj3qWgSkLAwAAAAAAAAAAAAAAAAAAAAA2DmVhG0yt9UiS93YsbU3ynlLK9md7ppTyt5O8tWPpXJJ3reK4dyY533H91lLKmy5xzvYkv7CY6YKfq7V+YRVnwSZQ+x1gOPQqC+tZJgYDbGG+9z0AAAAAAAAAAAAAAAAAAAAAbCrKwjamdyQ50XH9qiQfKqXs77yplLKtlPJPk/zasud/vNZ6tNchtdYHkvzvy5Z/vZTyT0opnYVgKaUcSPLhxSwXPJXVlZIBKZv07BUoC2Oj+sIvJL+xt98pAAAAAAAAAAAAAAAAAAAAABgwY/0OwPqrtX6plPLtST6Y5EJp16uTfL6U8qkkDySZTPLSJNcte/y3k/zIGo774SQvSPLGxestSf6PJD9SSvmLJDNJ7lg8q7Nx6FySb6u1HlvDWQBJepWBKQtjCB3/4+QT352k9jsJAAAAAAAAAAAAAAAAAAAAAANGWdgGVWv9SCnl25K8J0uFYCXJVy/OSn45yffUWufXcM58KeXNSf5Dkr/XsbU3yRue5bHjSd5Sa/3oas8B+qn0vqVNtUeZUlUWxhB66JeiKGyNjv1B8uD/lZx7Jrn5m5O7/uukDNjPKwAAAAAAAAAAAAAAAAAAAIB1MNLvAFw5tdbfTfLCJD+V5MQlbv2zJN9Ra/2uWuupyzjnZK31O5P83cV3PZunk/z7JC+stf7eWs+BjU9R0Or0KANTFsYwuv+n+51guHzxN5OPvDF56P9JHv3t5JP/OPmLH+x3KgAAAAAAAAAAAAAAAAAAAIArYqzfAVhZrfUjSco6vOd4kreXUr4/yauT3JrkhiSnkjyS5NO11gef6zmLZ/16kl8vpdye5KVJbkqyK8ljSY4m+ZNa67n1OAs2n+f842Dj6FUGpiwMNr7P/+ukznev3fd/Ji96V7Jloj+ZAAAAAAAAAAAAAAAAAAAAAK4QZWGbxGJJ1x+1dNaDSdalgAw2lVr7nWA49CwDUxYGG95Tn7h4rc4lD/7fyT3f134eAAAAAAAAAAAAAAAAAAAAgCtopN8BAFiFUvqdYID0KFXrWSYGbFhnHu13AgAAAAAAAAAAAAAAAAAAAIB1pywMYGD0KMHql0ErKutVBqYsDDa2eomflf76BwAAAAAAAAAAAAAAAAAAADYgZWEAQ2HACrv6qlcZkLIg2LTqfL8TAAAAAAAAAAAAAAAAAAAAAKw7ZWEA9DBgRWW1RxlYr31g41IWBgAAAAAAAAAAAAAAAAAAAGxAysIAGB61ruIeZWGwsV3i54C//gEAAAAAAAAAAAAAAAAAAIANSFkYwMBYRRHWpreaXyNlQbBp1fl+JwAAAAAAAAAAAAAAAAAAAABYd8rCAIZC2aRnL1NXUQS2mnuA4VUvURo4c197OQAAAAAAAAAAAAAAAAAAAABaoiwMYFBcqgCHhrIw4FKOfbDfCQAAAAAAAAAAAAAAAAAAAADWnbIwgGFQSr8TDIjVlIXNX/kYAAAAAAAAAAAAAAAAAAAAAAAtURYGMDBqvwMMvrqKX6O6ikIxYIj5WQkAAAAAAAAAAAAAAAAAAABsLsrCAIZC6ePRfTz7IqspAlMWBgAAAAAAAAAAAAAAAAAAAABsHMrCABgedRVFYKu5Bxhi9dm3dt/VXgwAAAAAAAAAAAAAAAAAAACAligLA2B4KAsDLmXnTf1OAAAAAAAAAAAAAAAAAAAAALDulIUBDIza7wDPovQ7QIfVFIEpC4NNqw7qz1EAAAAAAAAAAAAAAAAAAACAy6csDGAoDFJhVx+tpgioKguDDU0hGAAAAAAAAAAAAAAAAAAAALDJKAsDGBQKcHpbTRGYsjDYvIpiRQAAAAAAAAAAAAAAAAAAAGDjURYGMAz6WoAzSCVmysKAS/xMUroIAAAAAAAAAAAAAAAAAAAAbEDKwgAGhpKbnlZVBKYsDAAAAAAAAAAAAAAAAAAAAADYOJSFAQyF0u8Ag2E1ZWGrKhQDAAAAAAAAAAAAAAAAAAAAABgOysIAGCJ1FbcoC4ONbRU/BwAAAAAAAAAAAAAAAAAAAAA2EGVhAAyPVRWBKQsDAAAAAAAAAAAAAAAAAAAAADYOZWEAA6P2O8AQWEUR2KoKxQAAAAAAAAAAAAAAAAAAAAAAhoOyMIChUPodYDCspghMWRhsbFWxIgAAAAAAAAAAAAAAAAAAALC5KAsDGBQKcFZhNb9GysIAAAAAAAAAAAAAAAAAAAAAgI1DWRjAMCil3wkGQ11FEdhq7gGGmGJFAAAAAAAAAAAAAAAAAAAAYHNRFgYwMAa0AKcOUC5lYQAAAAAAAAAAAAAAAAAAAADAJqMsDGAolH4HGAzKwoBLGqByQwAAAAAAAAAAAAAAAAAAAIB1oiwMgCGymiIwZWGwsSkEAwAAAAAAAAAAAAAAAAAAADYXZWEADI+6ipKgOn/lcwAAAAAAAAAAAAAAAAAAAAAAtERZGMCgWE0R1qa30PuWuop7gOHlZyUAAAAAAAAAAAAAAAAAAACwySgL4/9n786jZb3LOtF/n5MTkpAEAoEACZBAQAkgo4hMymCDaBuGRsb2ggyXi63Sja2t12aU5dWG9iIoglcFlBaQeWgmm0FGRSE0JIQxkDRNIIYEQkLGk+f+UXU8lWIP7z577xr2/nzWqlXv+3t/w7Orzq6z16rf+r7AUqh5F7AYhgSBCQtjJ/v+N5Krr5x3FQAAAAAAAAAAAAAAAAAAAADMkLAwgIXR8y5g8Q0KAhMWxg72lhOSNxybfPa5SfvMAAAAAAAAAAAAAAAAAAAAANgNhIUBLIOqeVewIAaEIw0KFIMldtX3ks8+JznrFfOuZE6EpAEAAAAAAAAAAAAAAAAAAAC7i7AwgIUhAGddQ4LAhIWxW3z1r+ZdAWydS7857woAAAAAAAAAAAAAAAAAAABgYQkLA1gKNce1FyjETFgYHHDeB+ddwZws0GcSW+fir867AgAAAAAAAAAAAAAAAAAAAFhYwsIAWCJDgsCEhQEAAAAAAAAAAAAAAAAAAAAAO4ewMACWRw8IAhvSB9ihet4FAAAAAAAAAAAAAAAAAAAAAGw5YWEAi6KF3KxvwGskLAx2Np+VAAAAAAAAAAAAAAAAAAAAwC4jLAxgKdS8C1gMg4LAhIUBAAAAAAAAAAAAAAAAAAAAADuHsDCAhdHzLmAJDHiNBgWKAcvLZ+XO5H0FAAAAAAAAAAAAAAAAAACA1QgLA1gGVfOuYDEMCQITFgYAAAAAAAAAAAAAAAAAAAAA7CDCwgAWRs+7gCUw5DUSFsZWENAHAAAAAAAAAAAAAAAAAAAAwGIQFgawFAQXJUl6QBDYkD6wLuF9i8t7AwAAAAAAAAAAAAAAAAAAAOwuwsIAWMciBfMMqEVYGAAAAAAAAAAAAAAAAAAAAACwgwgLA2B5DAkCExYGO1svUoAhAAAAAAAAAAAAAAAAAAAAwPYTFgawKATgrG/QayQsDAAAAAAAAAAAAAAAAAAAAADYOYSFASyDqnlXsCAGBIG1sDDYtYQuAgAAAAAAAAAAAAAAAAAAADuQsDCAhSHkZl1DgoCEhbElBPQtLp+VAAAAAAAAAAAAAAAAAAAAwO4iLAxgKQguGhkSFrZv+8sAAAAAAAAAAAAAAAAAAAAAAJgRYWEAC2NAENZu11cP6DSkD6zH7+PCau8NAAAAAAAAAAAAAAAAAAAAsLsICwNYCjXvAhbEgJCgQYFiACwWIXAAAAAAAAAAAAAAAAAAAACwGmFhACyPIUFgwsIAAAAAAAAAAAAAAAAAAAAAgB1EWBgAS6QHdBEWxlaoeRfAqgZ8DgAAAAAAAAAAAAAAAAAAAADsIMLCABZFL2gAziLVNSgITFgYAAAAAAAAAAAAAAAAAAAAALBzCAsDWAZV865gQQwILhsUKAYsrwUKMAQAAAAAAAAAAAAAAAAAAACYAWFhAAtDAM66hgSBCQsDAAAAAAAAAAAAAAAAAAAAAHYQYWEAy+CC0+ZdwYIYEqgmLIytILxvOXnfAAAAAAAAAAAAAAAAAAAAgJ1HWBjAwlgj5OYLL5pdGYusBwSBDekDLK8WCAYAAAAAAAAAAAAAAAAAAADsLsLCABZF71v92lUXz66OhTYgJEhYGFui5l0AAAAAAAAAAAAAAAAAAAAAACQRFgawOK6+at4VLL5BQWDCwmBnGxAaCAAAAAAAAAAAAAAAAAAAALCDCAsDWBS9b94VLIEBIUGDAsUAAAAAAAAAAAAAAAAAAAAAAJaDsDCARdFXzbuCxdfCwgB2pCGf7wAAAAAAAAAAAAAAAAAAALBLCQsDWBRXXznvClaxSAEuA4LAhIXBDrdIn0kAAAAAAAAAAAAAAAAAAAAA209YGMCiuPqqeVew+HpISJCwMAAAAAAAAAAAAAAAAAAAAABg5xAWBrAoWljY+gYEgbWwMNjRBoUGAgAAAAAAAAAAAAAAAAAAAOwcwsIAFoWwsPUNCQkSFgYAAAAAAAAAAAAAAAAAAAAA7CDCwgAWxdXCwtY3JAhMWBjsWkMCBVlQ3jsAAAAAAAAAAAAAAAAAAABYjbAwAJbHkCCg3rf9dQBzJFQKAAAAAAAAAAAAAAAAAAAA2F2EhQEsiqp5V7AErl6/Sw/oA8CC8X8gAAAAAAAAAAAAAAAAAAAArEZYGADLo3tAH2FhbAHhfYtr36XzrgAAAAAAAAAAAAAAAAAAAABgpoSFAbA8BgWB9bBQMViLf0OL65zXz7sCAAAAAAAAAAAAAAAAAAAAgJkSFgbAOhYpNGloLYtUM7ClvvPZeVcAAAAAAAAAAAAAAAAAAAAAMFPCwgAWRQu4WldfvbX9gOVT/nzdmfwfCAAAAAAAAAAAAAAAAAAAAKuRtgDAEhkYJiMsDHawWuOawCkAAAAAAAAAAAAAAAAAAABg5xEWBsASGRoEJCwMdqxa489XQYEAAAAAAAAAAAAAAAAAAADADiQsDIDlMTQISGAQm1U17wpY1Vrvjd99AAAAAAAAAAAAAAAAAAAAYOcRFgbAEumB3QQGsUk98N8as7dWkJvffQAAAAAAAAAAAAAAAAAAAGAHEhYGwPIYHAQkMAh2LmFhO5OAPgAAAAAAAAAAAAAAAAAAAFiNsDCAhSEoZX0DXyOBQbCDrREWJigQAAAAAAAAAAAAAAAAAAAA2IGEhQGwPIaGgAkLg52r1vjztffNrg622FohcAAAAAAAAAAAAAAAAAAAALC7CQsDYG3d865gwsBahIWxWSW4aHGt8d743QcAAAAAAAAAAAAAAAAAAAB2oL3zLmA7VNWtk5ya5BZJLk9yZpI3dveFcy0MgM0ZHAQkMAh2rLWC3ISFAQAAAAAAAAAAAAAAAAAAADvQwoeFVdVJSe4/0fTq7r5ilb6V5AVJnp5kz9TlP6iqX+3uV25DmQDMQvfAfgKDYOcSFgYAAAAAAAAAAAAAAAAAAADsLgsfFpbk3yf5lfHxJ7v7L9bo+7tJnjFxvj9VppIcleTPq6q6+xVbXyYA229gEJDAIDZraDAds1fTebCT/O4vL79zAAAAAAAAAAAAAAAAAAAAsJq10hYWxc9mFPaVJKuGfFXVDyX59YySBiZDwvaP7fHxS6rqhO0pFWAzBKWsa3CAk8Ag2Llq9UuCAgEAAAAAAACWRlXdoKqOnncdAAAAAAAAAACwDBY6LKyqbpDk5Immd67R/Rm55s/zjiT/JslDkrwpo2SJTnJEkt/Y2koBmI2BYWECg2AHExYGAAAAAAAAsKyq6sSq+suq+k6SbyX5TlV9vaqeX1VHzLs+AAAAAAAAAABYVAsdFpbkdhPH/9zdZ6/UqaoOySgYbH+KzHu7+9TufnN3v727H5Hk1RmlS1SSR1bVGkkTACwmYWHMiD8TFlet9eer330AAAAAAACAWaqqx1fVOePHGVV12Bp975DkH5M8Lsl1cmA/3/FJfivJP45vMAoAn/UGzgAAIABJREFUAAAAAAAAAExZ9LCwE8fPneTMNfr9aJJjM9o4lCTPX6HPb+dAysxxSU7ZigIBmKEeGha2b3vrAObn0Ousfu2Qa8+uDgAAAAAAAACS5DFJbprkhCQf7O7LV+pUVXuTvC7JDTLa59dTj0py2yRvnEHNAAAAAAAAAACwdBY9LOzYieNvr9HvPhPH53b3R6c7dPf/yjUDx26/ydoAmLmhYWFXb28ZwPwc+2OrXzvmR2ZXB1traBgkAAAAAAAAsDCqak+Se080vXmN7v9Hkh/OgXCwJDk9yaen2u5dVY/a4lIBAAAAAAAAAGDpLXpY2BETx5es0e+e4+dO8t41+n1x4vhGB1sUwO6ySAEuQ2sRFgY7Vi36n68AAAAAAAAAu8Ztk1x7fHxlkr9bo++Txs+V5LtJ7tHdd+zuuya5S5Jv5cDGkKdtQ60AAAAAAAAAALDUFj1t4aqJ4yNW7XUgLCxJPrJGv4snjo86qIoAtksvUijXghr6GrWwMNixfFbuTFXzrgAAAAAAAADYuJPHz53kS9195UqdqurGSX583K+TPL+7P7H/end/JsmvZhQkVknuXVXX287CAQAAAAAAAABg2Sx6WNhFE8c3XalDVZ2S5LiJpo+vMd9k4Ni+TdQFwFwICwPWIkgMAAAAAAAAYIZOmDj+6hr9fiIHgsCuSvIXK/R5c5Lvjo8ryZ22okAAAAAAAAAAANgpFj0s7KzxcyW5Y1UdvkKfh0wcX9jdZ64x3/Unjr+32eIAmLWhQUDCwgAAAAAAAAAAttlRE8cXrdoruff4uZN8vLu/M92hu/clOW2i6VabLw8AAAAAAAAAAHaORQ8L+3RGG4Q6yeFJnjh5sar2Jnny+LSTfHid+W4zcfz1LaoRgFnpgWFhLSwMdq41PgeGfkYAAAAAAAAAsBUOHdjvHhPHH1yj3zcnjq+z4WoAAAAAAAAAAGAHW+iwsO4+L8nHxqeV5Per6heq6tpVdVKS1ya55cSQN6w2V1XdOMlNJpq+tLXVArD9hIUB7EiC3gAAAAAAAGAZXTxxfL2VOlTVkUnuNNH00TXm2zdxfNgm6gIAAAAAAAAAgB1nocPCxl6UUVBYJzkyySuTfC/JV5I8LAeSY87NGmFhSX564vjiJF/Y6kIB2G5Dw2SEhcHOtdbngMApAAAAAAAAgBk6f+L4lFX6/FSSQ8bHneQf1pjvmInj72+iLgAAAAAAAAAA2HEWPiysu9+Y5E05EBhWE49MtP9ad1++xlQP3z9lkk90tzQJYMH4WFrX0I/uFhYGAAAAAAAAALDNTh8/V5ITq+r2K/R59Pi5k5ze3RetMd8JE8ff3oL6AAAAAAAAAABgx1j4sLCxxyb58xwICNuvklye5D909+tWG1xVN0vy4BxI4nnPdhQJwDYbGgImLAx2KaGLAAAAAAAAADN0ekahXvu/rP2Dqjp0/8WquneSR0xcf9dqE1XV3iS3nWj66taWCgAAAAAAAAAAy23vvAsYoruvSPKUqnphklOTnDi+9Pkkb+rub6wzxYNz4C6GSfL2ra8SYKdapPCdgbUIC4OdqxfpMwkAAAAAAABg9+rufVX1miS/nNGmjgck+UxVvT3JcRkFhe3J6KagneSv1pjubkmuNXF+xrYUDQAAAAAAAAAAS2opwsL26+4vJHnBQYz70yR/uvUVATBbQ0OChIXBjvW9L6x+TZDYEvPeAQAAAAAAwJJ6fpJfSHKd8fkPJ/mh8fH+kLBO8sbu/twa8zx0/NxJvtzdF25DrQAAAAAAAAAAsLT2zLsAABhsaBBQCwuDHevs1867AgAAAAAAAADGuvu8JP8myWU5EA72L5fHbV9J8rTV5qiqPUkeOTH2g9tRKwAAAAAAAAAALDNhYQAsEWFhsOtd+Ok1Lg78jGAB1bwLAAAAAAAAAA5Sd78/yR2TvC7J9zP6ArCSfDvJHyX58e7+9hpTnJrkxBz44vCd21ctAAAAAAAAAAAsp73zLmA9VXXW+LCT3Ke7v3GQ85yQ5MP75+ruk7eiPoAt00Ju1jf0NRIWBgAAAAAAAAAwK9395SSPSZKqusG47fyBw7+a5GET5+/Z2uoAAAAAAAAAAGD5LXxYWJKTxs+dzdW7d2ouAJbN0EC1FhbGZtX6XVg8QhcBAAAAAAAA5m4DIWH7+//PJP9zm8oBAAAAAAAAAIAdYc+8CwCA4YSFMStCpwAAAAAAAAAAAAAAAAAAAABYDMLCAFgiwsKAtQh5W17eOwAAAAAAAAAAAAAAAAAAAFjN3nkXMEOHThxfObcqADh4PTRMRlgYAAAAAAAAAMAiqKpjkhydpLr7nHnXAwAAAAAAAAAAy2g3hYXdaOL4e3OrAoBNGBgW1vu2twxgQQ0NFAQAAAAAAABgu1TVQ5OcmuQ+SU5Ksmd8qbPCnsWqOinJzcenl3T3J7e9SAAAAAAAAAAAWDK7KSzsQePnTvL1eRYCsFR6kcJ3hoaFXb29ZbAL1LwLAAAAAAAAAIClUlUPSvLiJLfa3zRw6MlJ/jajjSFXVNXx3X3hNpQIAAAAAAAAAABLayHCwqrq5uv3SpKcULWh8I7DktwkyQOT/NpE+6c3MgnAbCxSKNeCGhpcJiwMdqeFCjcEAAAAAAAA2D2q6llJnpVRQFjlmhthOmsEh3X3+6rqzCSnJLlWkkcledn2VQsAAAAAAAAAAMtnIcLCknwt66fkVJKPbGKNyc1Gb9rEPADMzdAgIGFhAMtF0BsAAAAAAAAsq6r61STPGZ/u//Lv8iSfSHJRkn89YJrXTczxsxEWBgAAAAAAAAAA17Bn3gVMqRUe610f8kgObEL6eJJ3bNtPAMA2Ghgm08LC2CzBRcvJ+wYAAAAAAAAwS1V16yQvzOgL284oJOw3khzb3fdN8isDp3rb/imT3KeqpvcOAgAAAAAAAADArrZoYWHbZf/GoTcm+bnuliQBsIyGfnwLCwNYMvb5AwAAAAAAwJJ6XpK9GX3pd1mSB3T3C7v70g3O85nx+CQ5Osmtt65EAAAAAAAAAABYfnvnXcDYq9a49vjxcyd5U5KLB865/y6F30lyZpK/6+6zD7pCABaAsDBgLfJgAQAAAAAAAGalqg5LcmoOfFn7n7v74wczV3dfXVVnJrnzuOk2Sb64+SoBAAAAAAAAAGBnWIiwsO7+xdWuVdXjc2Az0a919zmzqQqAxTM0CEhYGJtV8y4AAAAAAAAAABbdvZIcMT6+JMlLNznfN3IgLOz4Tc4FAAAAAAAAAAA7yp55FzCQxA5gFxgahLWL9cDXqIWFwa7kdx8AAAAAAABglk4aP3eST3T35Zuc76KJ46M3ORcAAAAAAAAAAOwoe+ddwAC/OHF8/tyqAGABCAsD1vDNv513BRw0gZkAAAAAAACwhG44cfzNLZhvzyrHAAAAAAAAAACw6y18WFh3v2reNQDsbgsU4NJDaxEWBrvWvsuTQw6bdxUAAAAAAAAAu8HlE8db8UXtsRPHF27BfAAAAAAAAAAAsGMsfFhYVT1r4vRF3X3RQc5z3SRP33/e3c/bbG0AzNrAELAWFrai7qRq3lXA9jr33clNHzLvKgAAAAAAAAB2g3+eOL7pFsx3x1XmBgAAAAAAAACAXW/hw8KSPCdJj49fmeSgwsKSHDM1l7AwgGXTvX6fRFjYtC+8OPnyy5PLz0+O/5nkri9ODj163lXB9rjyYP9UBAAAAAAAAGCDzho/V5I7VdWR3X3JwUxUVXdJcsOJpk9ttjgAAAAAAAAAANhJ9sy7gIFqQecCYKYGhoVFWNi/+OJLk08+Pfnu55LLzkvOemXyoYfMuyrYRv7UAwAAAAAAAJiRT2R0889OcmiSJ25irmdMHJ/d3WdvpjAAAAAAAAAAANhpliUsDGDn66FBWLvZwNeohYX9i7P+4gfbvvWB5OKvzbwUgFX5PxAAAAAAAACWTnfvS/LfM7qrUyV5blXdbKPzVNXDkjw2o40hneQ1W1knAAAAAAAAAADsBHvnXcAM1cTx3FNkquqIJLdJcmKS45McndHdFS9K8u0kpyc5o7uv2qL1Dk1yryQ3T3KTJBcn+UaS07r7a1uxxsRat0hyp4x+rqOSnJvk7CQf6+4rt3ItYJcZGiYjLOyACz65cvun/kPyE2+ebS0wE7V+FwAAAAAAAAC2yu8keVRGX9Yek+SDVXVqd58xZHBVPSHJn2QUElZJLk3yh9tTKgAAAAAAAAAALK/dFBZ23Ynj78+jgKr6xST3T3L3JCcn2bPOkIur6m+SvKS7P32Qa94wyXMz2pB1/VX6fCzJH3T3Gw9mjYl5HpHkGUnusUqXC6rqdUme1d3nb2YtYLcSFrZlvv6WeVcAcEAJeQMAAAAAAIBl1N2fr6qXJHl6Rhs7bpHkU1X16iR/k+SC6TFVdbMkD0zy5CQ/lgN3heokz+7u82ZROwAAAAAAAAAALJPdFBZ2p/FzJ5lXUNXvJDlhA/2PSvLEJI8fb6j69e6+aujgqnpwklcmOW6drvdMcs+q+m9Jntrdl2ygxlTVUUn+vySPXqfr9ZM8LcnDq+rx3f2ejawDMDgsLMLCAAAAAAAAAABm5NeS3DbJv8poc8ehSZ4wfmTcVklSVZckOXxibE1cf3N3v3AmFQMAAAAAAAAAwJLZFWFhVXXrJL850fS5edUy5ftJvpLknCQXJdmTUaDWjyS58US/Q5L8+yQnVdUjunvfehNX1X2TvCXJtSaaO8mnkpyV5Jgkd05yg4nrj0tynap6aHcPStqpqkOSvC7Jz0xd+uckpyX5bpKTx2vtvwPkjZK8tap+qrs/MmQdgCRJDwwLG/YRBuxEVev3AQAAAAAAAGDLdPfVVfWQJC/NKCBs/waP/V/g9kTbEZNDJ/r9RZL/a3srBQAAAAAAAACA5bUQYWFV9f6BXV9bVZdtYOrDktwkyYlT7e/bwBxb6ZIkb0vyriQfS3L6aqFcVfXjSZ6f5AETzQ9N8owkL1hrkaq6aZI35ZpBYR9N8pTuPnOi32FJnprkhRndzTFJfm687v898Gf6vVwzKOzKcY1/2t1XTKx12yR/luQe46bDkrylqn6ku88duBYwFwMDumZCWBiwHmFhAAAAAAAAALPW3ZcleWJVvSvJM5PcfrWu4+caP76S5Fnd/Zrtr3K5VdURSU5JcpskN0xyVJKLk1yQ5PQkn+3uq+ZXIQAAAAAAAAAA22khwsKS3DfrJ8BUkrsfxNyTdydMku8kefVBzLMVbt/dVw7p2N1/X1UPTPKqJP924tJvV9WLu/vyNYY/N8n1Js4/luSnxhuyJte4PMmLq+qcJG+euPSMqnp5d5+9Vo1VdcskT59q/vnufusKP8/nquoBGQW17Q8MOzbJs+OOkDC2SKFci2poWNi+7S0DgK3V/g8EAAAAAACAnaC7X5/k9VV1vyT/Ksm9k9wso71i10pyfpJvZbSn7T1J3tW9OBs9xnvi7pbkR8fPd0ly9ESXs7v7pBnWc5eMbjJ6/yQ/lgM3BV3JJVX1uiR/2N2fmUV9AAAAAAAAAADMzqKEhW2nzoG7EH4vyWO7+/y5FDIwKGyi/9VV9e+SPCzJkePm6ya5X5J3rzSmqm6d5PETTVckecJ0UNjUOm+pqldNjDssoxCvJ65T4rNzzc1Hr1wpKGxinUur6glJPpvRxq8keVJV/ZfuPmudtQA2ECZz9baWASyyWr8LAAAAAAAAANuquz+Q5APzrmOIqrpvkt/KKCDs+vOtZqSqDk9yRpJbbmDYkRnt+Xt8Vb0wyTM3umcRAAAAAAAAAIDFtWfeBUyoVR5D+qz2uCLJeUk+mFGw1W26+z3b/HNsqe6+KMlHpppvtcaQxyY5ZOL8Td39pQFL/f7U+SPHG45WVFVHJHnEOnP8gO7+YpK3TDTtzahmgAEGhoW1sDAAAAAAAAAAAAa5U5IHZkGCwsb2ZuWgsE7y+STvTfLXSd6WZPpGnYck+U9JXltVu+GGsgAAAAAAAAAAu8JChIV1957VHvu7jB8nrdV3hccR3X2T7r5/d/9Od587xx9zMy6YOj96jb4Pmzp/xZAFuvvMJP8w0XRkRhugVvOgJNeeOP94d39+yFor1PTwgeOAXU9YGAAAAAAAAAAAM3F5kq/Mu4gk+5K8K8mjkxzX3ad094O6+3Hd/ZDuPjnJjyb50NS4hyd5zmxLBQAAAAAAAABguyxEWNgANe8C5uzEqfNvrNSpqm6c5I4TTVcl+egG1vng1PmD1+j70+uMXcuHM6ptvztX1Y02MB7YrVpYGLOy2//0WGLlvQMAAAAAAACYlap6//jxvqo6bhPz3Ghyrq2scaArk3w6yZ8leWqSu2Z0U88nz6GW/S5P8scZ3WT1Z7r7dd19/kodu/uTSe6f5DVTl369qqb3HwIAAAAAAAAAsIT2zruAAT6UZH86zGXzLGQequqHktx9oqmT/N0q3W8/df6Z7r5kA8t9bOr8dmv0nV7r40MX6e5LquqzSe48tda3hs4B7FYDw8IiLIzNGvpvjcUjLAwAAAAAAABghu6bA1+yH76JeQ4fz5XM/kv7VyV5WXf/wP7Emt8Nqy5Lcqvu/vrQAd29r6qelOTeSW42br5WkkcmecHWlwgAAAAAAAAAwCztmXcB6+nu+3b3/caP8+ZdzyxV1U2SvD7JIRPNb+jur60y5LZT51/e4JJfWWe+SafMcC3YJYQTrasHvkYtLAwAAAAAAAAAYEaW+q5O3X3hSkFh89TdV20kKGxi3KVJXjHVfL+tqQoAAAAAAAAAgHnaO+8COKCq9ia5XkZBXP86yVOTXGeiy1lJfnmNKW41dX7OBks4e+r82Kq6XndfOFXn9ZNcf5NrTfe/9QbHA7uSsDBgHfO7qzMAAAAAAAAALILTps6Pn0sVAAAAAAAAAABsKWFhc1RVL0ry9IHdP5DkF7r7vDX6HDN1vlbfH9DdF1fVZUkOn2i+bpILp7pOr/P97r5kI2utUNt1NzgemJUeGNA1E0NrERYGAAAAAAAAALBEJvcyXjW3KnaG6dfvWnOpAgAAAAAAAACALSUsbPG9Lckfd/d7B/Q9aur80oNY79JcMyzs6G1cZ9JK62xYVR2X5IYbHHbyVqwNzMDQ4LIWFsZm1bwLAAAAAAAAAIDd5AYTxxu9cSXXdKup83PnUgUAAAAAAAAAAFtqacPCqurYJKckuV6S6ybZs5Hx3f2X21HXNnhwkkOq6rLu/tA6fadDvC47iPUuzeg1XW3OrVxnrTkP1i8lefYWzQUsHGFhwHoEvQEAAAAAAAAsoZ8YP3eSb8yzkB3gEVPnn5hLFQAAAAAAAAAAbKmlCgurqhtkFAb1uPzg3e82ahHCwp6X5EUT50ckOTbJnZI8LMn9kxya5GeT/GxV/XGSp3f3voHzD0zVWZoxwK439KNDWBjsXsLClpM/DQEAAAAAAGAH2NAXf1V1aJKbJHlgkt+euPTZrSxqN6mquyW511Tzm+dRCwAAAAAAAAAAW2tpwsKq6uFJ/iLJ0Tn4FIgej12INILuviDJBStc+kiSP6qqeyd5dZITx+3/LqNAsSetMuXFU+dHHERZ02Om55zlOrC79EJ8NC22oa9RCwtjs/w+AgAAAAAAAECSVNWQm1tWkq9VHfQNniYHvu1gJ9nNxuFrL59q/nB3f2Ie9QAAAAAAAAAAsLWWIiysqh6X5C+zckjYZJrH9PXpawe9E2keuvsjVXW/JP+Y5Nhx8xOr6m3d/dYVhggLS16a5PUbHHNykpVeT2DhDAwBExYGAAAAAAAAALBVhu6728z+vP03Av18kjdsYp7d7AVJ7jxxfmWSX93qRarquCQ33OCwk7e6DgAAAAAAAACA3Wbhw8Kq6hZJ/jSjjUD7NwR9Jsmbk1ya5PfGXTvJLya5TpLjk9wzyb2S7BlfOy/J85N8b4blb1p3f7WqnpfkDyeafyMrh1t9d+p8Qxtyquqo/GCI13cGrHPtqjqyuy/ZwHLHDVhnw7r7vIze68E2cTdLYNa61++TCAuD3cz/6wAAAAAAAADbYf/eve1SSf4pyaO6+8ptXGdHqqonJnn6VPNzuvvT27DcLyV59jbMCwAAAAAAAADAGhY+LCzJf8wowGp/Qsxzkzyvu7uqTsyBsLB096smB1bVrZL8lyQPzSg466lJHtjd586i8C302lwzLOzHq+qY7p4O2PrS1PmJG1xnuv8F3X3hdKfu/nZVXZjkehPNN09y5ibWmq4dYAUDw8IiLIzNEjgFAAAAAAAAAGMfyuqbNn5y/NxJPpHksoFzdpLLM7rJ5JlJPtDdH95MkbtVVf10kpdNNb8jyf8zh3IAAAAAAAAAANgmCx0WVlV7kvzbHNho9Prufu7Q8d395SQPr6rnJnlmktsmeXtV3WOZ7j7Y3edNhXPtSXKLJKdNdZ0O67rVBpe65dT559boe2aSe06ttZGwsOm1NjIW2LUGhoW1sDDYvQS9AQAAAAAAAGyl7r7vateq6uoc2NDxqO4+ZyZFkSSpqnsleWOSQyeaP5LRezH0rnwAAAAAAAAAACyBhQ4LS3KHJEePjzvJ8w5mku5+dlX9SJKHJrlzkl9N8l+3pMLZmQ43O2yFPqdPnd+hqq7d3d8fuMa91plv+tpkWNg9krx9yCJVdWRG7+3QtYC5WqB9g0P3MAoLAwAAAAAAAACYlcpCbTDZHarqrkn+e5JrTzR/IsnPbmDP4MF4aZLXb3DMyUneug21AAAAAAAAAADsGoseFnb78XMnOae7P7dW56qqNe6G91sZhYUlyZOyRGFhVXV4khtMNX9rul93n1tVn8mBIK69Se6d5L0Dl7rv1Pm71uj77iT/5xpj13KfXPPf3mnd/QM/D+w+9kyub+hrJCwMAAAAAAAAAGAGnjtx/J25VbHLVNUdMtoXeN2J5tOSPKi7L9rOtbv7vCTnbWRMVW1TNQAAAAAAAAAAu8eih4Vdf+L4jBWuT6fGHJ7k0pUm6u4vVNWZSU5J8sNVdbvuXmnORfSAJHsmzr+f5H+v0vfNORAWliS/mAFhYVV1myR3n2i6ZJ1x78notT5ifH6PqrpNd39+vbWSPGHq/M0DxgBkcFhYCwuD3csGYwAAAAAAAIBZ6e7nrt+LrVRVt03yP3LN/ZWnJ3lgdwtsAwAAAAAAAADYofas32Wujp44vnCF65es0X8lX5w4PuWgKpqxqtqT5JlTze/u7itWGfLfkuybOH94Vd16wFL/aer8b7r7stU6d/f3k7xhnTl+QFX9UJKHTTRdleSvB9QHkPTQsLB96/cBAAAAAAAAAGBTxvvbmJGq+uEk70tyw4nmzyf5qe4+fz5VAQAAAAAAAAAwC4u+UWcyDOzQFa5/b+r8hHXmu3ji+MYHVdFBqqpfqaqbbHDMoUn+PMndpy798WpjuvtLSV410XStJK+sqsPXWOchSZ4w0XRFkiF3fHxOkisnzp9QVaeusc7hSV4xrmm/P+/urwxYCyDJ0LCwq7e3DGBxVc27AgAAAAAAAIDd5JyqenZVrbd3j02qqlsleX+uuffxS0nu393fmk9VAAAAAAAAAADMyqKHhU3e6e460xe7+4qpPrdfZ77JsK6jNlHXwXhSkq9U1aur6ueq6ujVOlbVEVX1mCSn5ZohXknyV939/nXWenaSCyfO75nkf1TVbabWOayqfiXJ66fG/9fuPnudNdLdZyX5w6nmN1TVL1fVZCBYquqUjO5oeM+J5m9nWCgZwJiwMICdaeDnOwAAAAAAALBojk/yrCRfrao3VdUD513QTlRVt8goKOz4ieazMgoKO3c+VQEAAAAAAAAAMEt7513AOr44cXzrVfqckeQnx8cPSPJXK3WqqiOT/NhE04Ur9dtmRyR53PjRVfXlJF9L8p0kVyQ5OsmJSW6b5NAVxr8jyVPWW6S7v15VD0/yniT7Q7vuleRzVfXJjDYJXTfJXZLccIU1nrmBn+k3k9wuyYPH54cmeUmSZ1bVp5J8L8ktx2vVxLgrkjzMRiVgQ3pomIywMAAAAAAAAACAGdqb5CFJHlJVX03y8iSv6O7z1x7Geqrq5hkFhd1sovnsjILCvj6fqgAAAAAAAAAAmLVFDwv7XJJ9SQ5JcouqunZ3f3+qz4czCgurJD9fVc/u7rNXmOs3kxw1cX7GdhS8AZVRANpqIWiTLk3y/CQv6O4rh0ze3R+sqocleWUOBIJVkh8dP1bymiRP6e59Q9YYr7Ovqh6Z5M+SPGri0nFJfnqVYecleXx3f3joOrA7rBOE9fW3J994Z3LYDZITH50cc7vZlLVQBoaFtbAw2L1q/S4AAAAAAAAAbJUrMrqh5f5NHZXRzSV/L8nzquqNSV7W3R+ZU31LraqOT/K+JCdNNP/vjILCVtonCQAAAAAAAADADrVn3gWspbsvTvKp8WklecAK3V63v3uSI5K8t6p+Yv/FqrpuVT0/yW/nwIakC5L8w7YUvbqnZBT49fEklw8c8/kkz0zyQ939u0ODwvbr7ncmuX2SlyW5cI2uf5/kEd392O6+ZCNrjNe5uLsfneTnx3Ot5oIkf5Lk9t397o2uA7veh05Nvvyy5IznJ+/98eSfPz7vin7QvivmXcGIsDDYxYSFLaUrL553BQAAAAAAAMDBOT7JbyT5cg58Ydvj48OSPCbJ31XVZ6vql6rq6PmUOX9V1VOP+67T/7iMgsJuNdF8bpL7dfdZ21gqAAAAAAAAAAALaO+8CxjgPUnuNj4+NcnbJy929xlV9dYkD8lok9Gtk3ygqi5JclGS45IcMu5e4z5/tNHgrc3q7n9M8o9JnllVhyY5JaM7KJ6Q5Kgkhya5eFzz15Kc1t1rBXwNXfe8JE+rqqcnuVeSE5PcOMklGd1h8LTu/upm1xmv9YYkb6iqWyS5S0YbwY5M8s0kZyf5aHcvSJIQLLmrLk5O/53kfu+cdyXX9L0vJcfcbvvm716/T5JEWBjAUvnii5ObPXTeVQAAAAAAAAAb1N0XJHlhkhdU55f/AAAgAElEQVRW1QOSPC2jfX57c+DmnpXkdklekuT3q+qvk7y8uz+1wpRzUVU3zcr7KW88db63qk5aZZqLu/v8LarnmCR/m+Q2E82XJHlSkivXqGFF3f21ragLAAAAAAAAAID5WYawsNcl+c8ZbRh6TFX9x+7+7lSfpye5e5Ib5cBdCY8aP/bb3/5PSX53u4teyzio7DPjx6zWvCLJB2a01leTbEkAGbCGc981o4WGBnTNwsBaWlgY7FpV6/dh8XxrJn+mAgAAAAAAANuou9+X5H1VdaMkT0ny5CQ33385o/17R47bn1xV/5TkT5K8trsvm0PJkz6S0Y0413NCVt8b96okT9iieu6U5A5TbUcmOdg7C/oyHQAAAAAAAABgye2ZdwHr6e4zktw1yd2S/GSSfSv0OSfJA5Kcnmtuaulc8+6E70rywHFYF8APuuR/JX//xOQdt00+8ujkwk/PuyKuQVgYAAAAAAAAAMAi6+5vdffzk9wiyakZBVzt3/QxuZ/vbkn+PMk3qur/rarbzLxYAAAAAAAA+P/Zu/NoSfO6vuOfb3cP0w0DDIszAyIQBwiBsKOIAs4YZBGNgQCuOUE5xrhEj+YPj0aDmgWXRLMARlyiqEQBESOKgjoDxEFwDqMITAQGwYVpBpjNgXtn6fvLH7c6XV1zl1ruU/U8t16vc+r0rarnqef7PPfWr/ucrvO+AAADcWzVA0yjtXbVFNtcXVWPT/K8JF+Z5KFJzk9yQ5I/S/JrrbU/7HRQYNhuvT75g0uSWz68ff/mq5OTb06e8Y7kHn9/paMxK7EwWFs3vje5/3OS8kuRAQAAAAAAAFaptdaSvDHJG6vqc5J8c5JvSHK/05tkOxp2fpLvSPIdVfW2JK9I8huttTuWPzUAAAAAAAAAAPTTymNhVfXGJJeNbleNPiA0l9baqSSvHd0AZvOx3zkTCjvtthuSj7w6efQPdX/8+Ze//ug6zjPtNWpiYbC2/ux7kw+9MvmSNyd3f8iqpwEAAAAAAAAgSWvtr5N8f1W9JMlzsx0O+5KxTU5/6ORpo9t1VfVzSX6mtfbRJcz34CUcY+oP1rTWLs+ZawIAAAAAAAAAADmy6gGSfFmSH0vyJ0k+VVVvqKrvqKpHrXguYN2888U7P/7eH17uHEPWefBMLIwl6Tp8R7c+/ZfJW//xqqcAAAAAAAAAYEJr7VRr7XWttS9N8rAk/znJp7L9oZCW7UBWJbkwyfcm+VBVvb6qnrKqmQEAAAAAAAAAoA/6EAs7rZKcn+Qrkvxkkj+tqk9U1Wur6lur6uGrHQ849LZuW/UE7EssDJjSzVcnN75v1VMAAAAAAAAAsLt7JLlnkuNjj7WxW5IcTfKVSd5aVW+qqouXOyIAAAAAAAAAAPRDn2Jh4x/wOf3bAe+T5HlJ/nuS91XVtVX16qr6pqp6yIrmBGA3VaueYEQsjAW1KcN09Nu1b1r1BAAAAAAAAACMqaoTVfWNVfXOJFcmeXGSu45vkuSOJBujr8c/U/jMJH9WVc9Z4sgAAAAAAAAAANALfYiFfU+SNyX5u5yJhCU7x8MuTPJVSf5Hkr+oqr+qql+sqhdV1YOWOzYASzdtwKmJhQGxFgAAAAAAAAD0RFU9oqr+W5KPJfmZJE/Mmc8Knv584LVJfjDJg5LcP8m3J3lfzkTDWrbDYq+pqouXOT8AAAAAAAAAAKzaymNhrbUfb619eZJ7J3lSzsTDbsn+8bAHJPn6JD+X5MNV9eGq+tmq+rqquv8STwOApRALA2Yx5ZoBAAAAAAAAwIGrqruMPsv39iR/nuTbktwzZz4TmNHXlyd5YZIHtdZ+uLV2srV2c2vtFa21Ryd5TpKrx/Y7nuS7lnUeAAAAAAAAAADQB8dWPcBprbWtJH8yuv14VR3J9m8PvCTJpUm+KMl547uMfX36Q0APTvINo1uq6kNJLkvyh0kub61d190ZACyqp1Gb1qe5pp1FLAxIz9YvAAAAAAAAgPVQVQ9N8s1J/nm2f4losv0Zv9O/MLSy/ctEfynJy1trV+/1eq21N1XVZUn+T5LHj/b/0m6mBwAAAAAAAACAfupNLGzSKB72rtHtx6rqaLbjYZdmOyD2RUnuNr7L2Nen42EPTfKQJN+UJFV1dbbjYZe11l7f5fwArFATC2NBVftvwwBYCwAAAAAAAACWYfT5vucm+ZfZ/oxfcuZzfG3s/vuS/FSSV7XWbpn29Vtrm1X10iSvHT30OQsPDQAAAAAAAAAAA9LbWNik1tqpJO8c3X6kqo4l+bxsh8MuTfKFSe46vsvY16c/dPSI0e1bMqBzB2Cktf23ScTCgG3TrhkAAAAAAAAAzKWqHpTkXyT5xiQXnH4425/fa6OvTyV5Q5KXt9beusDh3j/29bkLvA4AAAAAAAAAAAzOYINZrbU7krxjdHvpKB72+dkOh12S5MnZOR5WORMPA2BQpg3/iIUByfRrBgAAAAAAAABzuiZnfyZv/HN61yZ5ZZJXttauPYBjfWbiGAAAAAAAAAAAsDYGGwubNIqHXTG6/YeqOifJk5K8IMk3xW8SBFiCrluMU37Wc+tUt2MMRfPZ2Lm5doeD7yMAAAAAAABA145k+wMdLWeiYW9L8vIkvzH6XN9BqwiGAQAAAAAAAACwZg5NLOy0qrpXki9OcmmSS5I8Mt3XawDola1VD8DQtTuST/1Jcv6jkqPHVz0Nc7MWAAAAAAAAACxBJbklyS8leUVr7X1dHKS19tFsx8kAAAAAAAAAAGDtDD4WVlXnJ3lazsTBHpWd42Djj/mtgkAPzbE0tZbUGvUQ25TXqAkEcQB+7/O3Q2FPfHly8TeuehrmMe2aAQAAAAAAAMC8rk7yiiSvaq393aqHAQAAAAAAAACAw2pwsbCqukfOjoM9JmeHwCrbxZ3JONh7krx1dHvbMmYF4KBNGf65/srkxj9Pzn9Ut+Nw+J3aTN754uRej0nu/YRVT8PMxMIAAAAAAAAAutRae+SqZwAAAAAAAAAAgHXQ+1hYVd09yVNzJg722CRHxjfJznGwq3ImDvb21toNy5gXYLkml7/Dbobwz5sel3zhryQP+qruxuk9oaQD8+FfEAsbJO8BAAAAAAAAAAAAAAAAAAAAYPh6Fwurqrvl7DjY45IcHd9kh922krw7Z8fBbu52UoAeaG0JrbCBxnbaqeRd/zL5nOcnR47uvz3s5QMvS57431c9BbNqA12/AAAAAAAAAAAAAAAAAAAAAMasPBZWVXdN8pSciYM9IfvHwW5PcmXOxMH+qLV2S7eTArBys4Z/br8xOfnm5P7P7mYeYPnu/cTk+iun3FgsDAAAAAAAAKAPquo+SV6Q5ElJLkyykeRvkvx+kt9rrd22wvEAAAAAAAAAAKD3Vh4LS3Jj9o+D3ZbkXTk7DraxhNkAem4JIZyZAl07LeEHaY7zvelqsTA4TI6emH7bttXdHAAAAAAAAABrqqrum+TRST4rya1JPpzkva3d+T9pq6qSfG+S70uy03/4fnuSj1bVt7bWfre7qQEAAAAAAAAAYNj6EAs7lu36y3hhZjPJH+dMHOyPW2ubK5gNYHlminL9/50OfIyzbN2R3H5jt8eYyRznW0cOfgxgIJYQVAQAAAAAAABYE1X12CQ/nuSSJJMfyLiuqv5Lkv/UWjs12r6S/GKSr8vZnw88/Z+5px97cJLfqqoXtdZ+pZvpAQAAAAAAAABg2PoQCxvXkvx+kh9N8rbW2h0rngdgvX3452fcoY9hntp/k8NqrgAd9N0sP9feAwAAAAAAAAAHoaq+OsmrkhzNzh/GuDDJf0zytKr6itbaVpLvTPL12f7P2/FA2On9x/9T92iSn6+qq1pr7+/gFAAAAAAAAAAAYNAmf7vfKp3+4M/Tk7wlyU1V9ftV9f1V9dSqOmeFswH0U9cxqPe9tNvXn9U851t9+qsOWCrBPAAAAAAAAICFVdXnJfmlbP9y0srZ8a+M3a8kz0ryr6vq7kl+MGdHwq5N8sYkr07yu0luyNnhsXOS/NeuzgMAAAAAAAAAAIbs2KoHSHJ1kofnzr9t8ESSS0e3JNmsqj9O8tYklyf549babcsaEqCfOg7hfPojM+6w0y+OPUhiYcAstlY9AAAAAAAAAMBh8FNJjubs8NcNST40+vriJPfKmWDYdyW5Kck9Ro99KsmLW2u/Nf6iVXUkyYuT/Jckx0f7fklVXdxau6bjcwIAAAAAAAAAgEFZeUGltfbIJBcmeWG2P1R09djTNXY7keSSJC9JclmSG6vqsqr6waq6pKrOXergACxfmyeO1nXAbKBE1BisGdaBudYMAAAAAAAAAE6rqicleXzOhMA+meR5Se7bWntSa+3zk9w3yXOTXDfa7sIk3z16iduTPH0yFJYkrbWt1trPJPma0Wuf/k/eF3R3RgAAAAAAAAAAMEzHVj1AkrTWPpnkdaNbquqCbIfBTt8ePtp0vPhyPMnTRrcfSHJbVb0ryeVJ3prkitbaZufDA6yUEM6+RLFgjVkjAQAAAAAAABb0T0d/VrbDX89orf3Z+AattZbkN6vqL5P8SbY/l/iwbP+n7S+31t6z1wFaa/+7qi5Lculonyce7CkAAAAAAAAAAMDw9bKg0lq7rrX2mtbat7bWHpHkftn+7YE/neQDY5vW2O3cJE9J8v1J3pLkxqp6e1X9u6r6R1V1YrlnAbCGqvbfZiFzhH/WOhYmlMSaa1urngAAAAAAAABg6B4/+rMlec1kKGzcKAr2qzn7l4L++pTHGd/ukTNNCAAAAAAAAAAAa+DYqgeYRmvt40l+bXRLVV2U5JJs/ybBS5I8dLTp+IeM7pLkC0e370tye1VdmeStSS5vrb1lGbMDTG+OsFPrWQyq83nmef2uA2bAUs20zvRsjQQAAAAAAAAYnoeNff3GKbb/nST/bOz+e6Y8zukIWSW5z5T7AAAAAAAAAADA2hhELGxSa+1ktn8D4a8mSVXdL2fCYZcmuXi06WQ87Mmj2/dkoOcOcLY1C+HMFSMTC9tR30Jz0AU/5wAAAAAAAACLuufY138xxfaT23xqyuN8cuzre0y5DwAAAAAAAAAArI1DEcxqrV2b5NWjW6rq/tmOhp0OiH1uzhR1VGMA1kkdWfUEwMpsrXoATmu+FwAAAAAAADBQ5419fdMU2988fqe1tjnlcca3O2fKfQAAAAAAAAAAYG0ciljYpNbax6rq/UkuSHJhkvsnOXe1UwF0oe2/yTJV1z3Gnp1v77leHEYz/Fw374HeeNc3r3oCAAAAAAAAYD7jHwY5NcX202wDAAAAAAAAAADM6NDEwqrqMUkuSXJpkqcmOX+lAwEsw9qFcOY533W7RsAZ3v+98JmPJdf87KqnAAAAAAAAAAAAAAAAAAAAgMEabCysqh6VM3GwpyW51/jTY1+3XR4H4KB1HS+b5/Xb1sHPAQyEWFgvfOBlq54AAAAAAAAAAAAAAAAAAAAABm0wsbCqemTOjoPdZ/zpsa9bzpQhauy5v0ly2dgNoGfmidr0LIRz89XJPR++6ikm9OwaAYuZJRooFtgPt1yz6gkAAAAAAAAAAAAAAAAAAABg0HobC6uqf5AzcbAvTnLf8afHvt4tDnZtksszioO11lQKgEOoZyGs9/9o8jnP7fAAc5zvLGGhteK6sA78nPeCaBsAAAAAAAAAAAAAAAAAAAAspDexsKr6+zk7DnbB+NNjX+8WB/tEzo6D/UWH4wKwk42PdXyAecI/axwLEkpj3V3/7lVPQJJELAwAAAAAAAAG7vQHEL6gqh68z7YXjd+pqqfm7M//TbUfAAAAAAAAAABwtpXHwqrqV7IdCRv/sM80cbDrk7w1Z+Jg7+t2UoAe6lsMqnUchJnrfHt2jYAFzfCevv7K7sZgen37uwoAAAAAAACYRyX5X3Psc/kM27dMFxYDAAAAAAAAAIC1s/JYWJKvydkf8tktDnZjkrflTBzsPcscEqCf+hZg6XqeOV7/Lvc5+DEAmEHHIUkAAAAAAABgGWYJeY1/wGOW+FffPggDAAAAAAAAAAC90YdY2GmnP0x0+sNBf5fk7RnFwZJc1VrzYSCAPmunVj3BnR2/YNUTAKy3JhYGAAAAAAAAh8Q8n9/zmT8AAAAAAAAAADgAfYmFVZJPJ/mjnImDXdmasgCwRubqIfbt85Rdz9O38+0714vDyM/14Oj9AgAAAAAAwJD9VfxHLQAAAAAAAAAArFwfYmE/kO042Ltaa3esehiAQelbgKXreQ5FUA1g3ViHAQAAAAAAYKhaaw9e9QwAAAAAAAAAAEAPYmGttf+w6hkAOChbHb++4AzA4LSu/24AAAAAAAAAAAAAAAAAAACAw+3IqgcAYBE9i2cJwgBdaz1b95iCvxsAAAAAAAAAAAAAAAAAAABgEWJhAEPWt2hO57Gwnp0v0G/3fsKqJyDp399VAAAAAAAAAAAAAAAAAAAAMDBiYQAcoI6DMPMEZ9Y6UrPO5w6Jf+r2RdchSQAAAAAAAAAAAAAAAAAAADjcFBQAemOesFPPYlCt6yBMz84XWIFZ1gFrRi90/ncDAAAAAAAAAAAAAAAAAAAAHG5iYQCD1rMQjiAM0Cs9WyPXlu8DAAAAAAAAAAAAAAAAAAAALEIsDIAD1HUQZp7XF6kBWCkhSQAAAAAAAAAAAAAAAAAAAFiIWBjAkLWehbC6DsL07Xz7zvXiUJrh59p7oB/EwgAAAAAAAAAAAAAAAAAAAGAhYmEAg9a3EE7X8/TtfIF+s2b0g1gYAAAAAAAAAAAAAAAAAAAALEIsDICD0/oYhBELAlipZh0GAAAAAAAAAAAAAAAAAACARYiFAfTGPDGVngVY2qmOX79n5wssn3UAAAAAAAAAAAAAAAAAAAAAWDNiYQAMiEgQMAtrBgAAAAAAAAAAAAAAAAAAADB8YmEADMgc4Z+2zrGgdT53yJq//3ukatUTAAAAAAAAAAAAAAAAAAAAwKCJhQEMWd9COIIwQOd6tu4BAAAAAAAAAAAAAAAAAAAAdEwsDIDh6FscDeg5awYAAAAAAAAAAAAAAAAAAAAwfGJhAIO2biGcec533a4RcEategAAAAAAAAAAAAAAAAAAAACAhYmFAfRFE7Xan2s0G9eLw2iGn+tjd+tuDAAAAAAAAAAAAAAAAAAAAIAlEQsDAOBwOnLOqicAAAAAAAAAAAAAAAAAAAAAWJhYGMCgtVUPsFxtjvOdZx/gkPD+BwAAAAAAAAAAAAAAAAAAAIZPLAyAARH+AWYgFtgTteoBAAAAAAAAAAAAAAAAAAAAYNDEwgCGrHchnK6DMH07X2DpZlr3rBkAAAAAAAAAAAAAAAAAAADA8ImFAXCAhHl6pXcxOViytrXqCQAAAAAAAAAAAAAAAAAAAAAWJhYG0BvCTvuaK37lusL68v4HAAAAAAAAAAAAAAAAAAAAhk8sDGDQ1i2Es27nC9zZDOtA2+puDAAAAAAAAAAAAAAAAAAAAIAlEQsD4ABVx68vFgbM4PabVj0BAAAAAAAAAAAAAAAAAAAAwMLEwgAGTTxrf+t8jdb53CHJxslVTwAAAAAAAAAAAAAAAAAAAACwMLEwAA5Qx3GqJn4FzLAO3H5jcmqzu1GYUq16AAAAAAAAAAAAAAAAAAAAABg0sTAABkQsDJjR5sdXPQEAAAAAAAAAAAAAAAAAAADAQsTCAPqizRHCmmefTlXHr38YrhGwVBsnVz0BAAAAAAAAAAAAAAAAAAAAwELEwgAAGI5ZA4CbYmEAAAAAAAAAAAAAAAAAAADAsImFAQzajNGcoZs1ErT2XC/IhlgYAAAAAAAAAAAAAAAAAAAAMGxiYQAMyDzxK8EsOFxmfE9vioUBAAAAAAAAAAAAAAAAAAAAwyYWBsDOmsgWcAhsiIWtXNWqJwAAAAAAAAAAAAAAAAAAAIBBEwsDGLQug15iYUAfzbg2bYqFAQAAAAAAAAAAAAAAAAAAAMMmFgbQGz2Lc7V55unwHOaaJ+nddV2mua8ZHCIbYmEAAAAAAAAAAAAAAAAAAADAsImFAQxZpzGorQ5fex7CV0BmX/c2xcIAAAAAAAAAAAAAAAAAAACAYRMLA2BnnYbI5tC3eYBh2LjW+gEAAAAAAAAAAAAAAAAAAAAMmlgYALsQ1wEOga1bk9tvWvUUAAAAAAAAAAAAAAAAAAAAAHMTCwMYtA6DXm2ru9eey5zn2kTP4HCZ4z29cfLgxwAAAAAAAAAAAAAAAAAAAABYErEwAHYxR5Cn0zCX6NfsXDNIkmyKha1WrXoAAAAAAAAAAAAAAAAAAAAAGDSxMIDeEOfaU6fnCgzHHGvBhlgYAAAAAAAAAAAAAAAAAAAAMFxiYQDsrG2teoIDIjIGa29TLAwAAAAAAAAAAAAAAAAAAAAYLrEwAHbRt8hW3+YBVqLNsRaIhQEAAAAAAAAAAAAAAAAAAAADJhYGMGgdBrTmCfJ0qm/zDIFrBkmSDbEwAAAAAAAAAAAAAAAAAAAAYLjEwgDYxdYc+/QxXiaYBYfLHO/pzSXGwrZOJTf/RXLDn55Zt1pL/u5Dyc0f7GGIEQAAAAAAAAAAAAAAAAAAAOi7Y6seAIBF9DHO1TMf/OnkAV+56imAVdpYUizsM3+TXPbs5Kb3bt+/12OTJ74sufI7khvePXrsccklb0pOXLicmQAAAAAAAAAAAAAAAAAAAIDBO7LqAQAY6V2c65DMc+2bko/86sGOcljcdtOqJ4DZzbNWbi4pFnbF158JhSXJDX+avOUpZ0JhSXLDVckVX7uceXqjVj0AAAAAAAAAAAAAAAAAAAAADJpYGAA7a1urnmDCAvGyj/zSwY1xmPz161Y9ASzHrZ9Itk51e4zbbkg+8fbptv34Hya3Xt/tPL3St/gkAAAAAAAAAAAAAAAAAAAADItYGMCQtS4DLD2Luyxyrh/7nYObY0j2u2bX/Pxy5oBVa1vbwbAubX5itsjiDVd1NwsAAAAAAAAAAAAAAAAAAABwqIiFAbCzTkNkAPOac23aPHmwY0yaJRSWJLVO/wyvVQ8AAAAAAAAAAAAAAAAAAAAAg7ZOlQKAQ6jLoNeM4ZvOiZcduBLwYY1sXNvxAWZdM73/AAAAAAAAAAAAAAAAAAAAgOmIhQGws9a3OFff5gFWY861YOPkwY4xqYmFAQAAAAAAAAAAAAAAAAAAAN0QCwPojb7FsHo2z17xsme8Y3lzDMp+30OxItbIZsexsFnXzPL+AwAAAAAAAAAAAAAAAAAAAKYjFgYwaB0GvdpWd6990I6cm5xz/qqnGCCxIgZor3DgXjY6joXNvGau0ftPGA0AAAAAAAAAAAAAAAAAAAAWIhYGwC46DJHNZZ95xGiAvWyKha3MvIE3AAAAAAAAAAAAAAAAAAAAIIlYGMCwdRlgmTl807U9zlUoDNbInOte17GwzLhmWrcAAAAAAAAAAAAAAAAAAACAKYmFAbCLDkNk89gzjCa6A+xjo+NY2MyBxTVat4TRAAAAAAAAAAAAAAAAAAAAYCFiYQDsomexsD0J0exoz8BaBHwYqDnXpk2xMAAAAAAAAAAAAAAAAAAAAGCYxMIABq3DoNfM4Zuu7Xeuwjuzc81YI7ffnNzxme5ef9Y1U6wPAAAAAAAAAAAAAAAAAAAAmJJYGEBvdBj+mkcb0DyiO8A0Nj/e4YvPGlhcp3Vrnc4VAAAAAAAAAAAAAAAAAAAADp5YGAC76FksbM95pgjR9C1+1gsCPgzQIu/ljZMHN8ekNmMsrNbpn+HWXwAAAAAAAAAAAAAAAAAAAFjEOlUKAA4hAZZtlZTwFbCPzQ5jYTOvx9YsAAAAAAAAAAAAAAAAAAAAYDpiYQAMxKJhtHUMq63jOXP4LfBz3WUsrG3Ntr3AIQAAAAAAAAAAAAAAAAAAADAlsTCAIWtrFIPa61ynie6s07WallgR62ajR7GwrNP7b53OFQAAAAAAAAAAAAAAAAAAAA6eWBgAu+hbXGuveSpiNLAuFlibNq49uDHuRCwMAAAAAAAAAAAAAAAAAAAA6IZYGEBftL7FuYZkmuiO63tnYkWsmc2T3b12mzEWVt5/AAAAAAAAAAAAAAAAAAAAwHTEwgAGbZ0CWOt0rgfFNeMQWiSsuNGjWNhaxfrW6VwBAAAAAAAAAAAAAAAAAADg4ImFAbCzRYI8XdhrnqrsH6Pp2fkAy7fZYSxsZusU0LL+AgAAAAAAAAAAAAAAAAAAwCLEwgAGbZ0CLHud6zpFdw6S68aa2TzZnxBief8BAAAAAAAAAAAAAAAAAAAA0xELA+AQmCK605dAUJ+IFTFIC7yXt25Pbrvh4EZZyDq9/9bpXAEAAAAAAAAAAAAAAAAAAODgiYUBMBD7BIKEr1hHIniz2zy56gkAAAAAAAAAAAAAAAAAAAAAZiIWBpD0JLgzxwydzt2HazJmr3OdKhTWs/NZhn1/PgTWGKIF38sbYmEAAAAAAAAAAAAAAAAAAADAsIiFATAQewWCxMKAKW32JRZmTQIAAAAAAAAAAAAAAAAAAACmIxYGMGhiM0mSmiYWBhwKbcF1b6MvsTAAAAAAAAAAAAAAAAAAAACA6YiFASQR3RqC/b5H+wTDFg0MHUoia6yhza5iYTOuMdYkAAAAAAAAAAAAAAAAAAAAYEpiYQDsomchmz3DOqJXO+vZ95AOrOP3eMFz3ugqFgYAAAAAAAAAAAAAAAAAAADQDbEwgEHrYSjo5g909MKLxsJ6eK1WrUTWOMSOnLvz45t9iYWt0ZpkrQEAAAAAAAAAAAAAAAAAAICFiIUBJEnrQ7SlDzMcgA//wvKPWZXpgmHA8E25Vp64386P9yYWBgAAAAAAAAAAAAAAAAAAADAdsTCAIetF5GzC+1/a0Qsveq49vFZAd3aLhW1cu9w5dmVNAgAAAAAAAAAAAAAAAAAAAKYjFgbAzvoWIttznlraGIeL68Yhtlss7NZPJlu3L3eWtWetAQAAAAAAAAAAAAAAACDdzXUAACAASURBVAAAgEWIhQEkSXoWxmIH+8TCap8YTd/iZ0ux3zkL+AzeOv5cT3vOx3eJhSXJ5nUHM8si1up7t07nCgAAAAAAAAAAAAAAAAAAAAfv2KoHWFdVdTTJQ5I8Isn9k9wzya1JbkhyTZIrW2ufPuBjnpPki5I8MMn9ktyS5GNJrmqtfeSAj/X3kjw22+d2XpJrk3w0yRWttdsP8liw3gRYkuwfCkviWsGaObFXLOxkctfPXt4sAAAAAAAAAAAAAAAAAAAAAAsQC1uiqnpgkucleXqSpya5xx6bn6qqtyR5WWvttxc87mcl+aEkX5Xk3rtsc0WSn2it/fqCx3p+ku9O8uRdNrm+qn4tyb9trX1ykWMBa6aJfR24qSJr0DdTrgXn3jepo0k7defnNk4e7EgAAAAAAAAAAAAAAAAAAAAAHTqy6gHWRVW9OslHk/xkkudk71BYkhxN8qwkb6yq36qqC+c87rOTvDfJt2SXUNjIFyZ5XVX9clXdbY7jnFdV/yvJa7N7KCyjGb4lyXur6pmzHge604MQ1TwxrE4DWj24JmfZa54a3ebdHzh06mhyfJd/Pm12EAubeT1epzVJmBAAAAAAAAAAAAAAAAAAAAAWcWzVA6yRh+3y+N8m+WCSj2f7+/G5SR6Ts0NuX57kbVX1xa21qesWVXVJkjckucvYwy3Ju5N8OMn5SR6X5L5jz39dkntU1T9prW1NeZyjSX4tyZdNPPWJJFcluSnJxaNjna5FXJjkN6vq6a21/zPtOQHrbL9YGHfSaUwOVmXKn+s6mhy/KNn42J2f2+ggFgYAAAAAAAAAAAAAAAAAAADQkSP7b0IHrkryr5I8pLX2gNbapa21r26tPb+19vgkD0zyyol9HpbktVU1VRGnqh6Q5PU5OxT2R0ke2Vp7Ymvtha21ZyR5QJLvTHL72HZfkeTfz3A+P5KzQ2G3j87vAa21Z46O9YQk/zDJO8a2OzfJG6rqfjMcCw4xYae5TbM0rmU4a79zFlkbvnX8uZ5SHUlOXLTzc5t9iIX53gEAAAAAAAAAAAAAAAAAAADTEQtbnpbkt5N8Xmvt8a21l7XWrtlxw9b+trX2zUm+beKppyT5qimP90NJ7jV2/4okT2+tXT1xrFtba/8tyQsn9v/uqnrQfgepqs/Ndmxs3AtG53fbxLHen+Qf5exg2H2SvGS/40DnBhuSGurcc9j3eyR8dSdta9UTwMGbdr2uo8nxXWJhG32IhQEAAAAAAAAAAAAAAAAAAABMRyxseV7QWvvy1tqV0+7QWntFkl+fePif7bdfVT00yT8fe+i2JC9qrW3ucaw3JPnFsYfOzXQRr5ckOWfs/i+01n5zj+NsJHnRaKbTXjyKjsGa61v4a0jzTBMK69v5LMN+sTCBNQ6xOpqc2CUWttmDWNhgI5UAAAAAAAAAAAAAAAAAAADAsomFLUlr7SNz7vryifuXTrHP1yY5Onb/9a21D06x349O3H9hVR3fbeOqOpHk+fu8xp201j6Q5A1jDx3L9szAzNYpNiMWNrO2TyysxMIYoinfy3UkOX6/nZ/b6EEsDAAAAAAAAAAAAAAAAAAAAGBKYmH9d9XE/RNVdf4++zx34v7/nOZArbWrk7xz7KG7JXnGHrs8M8ldx+6/o7X2f6c51g4zPW/K/aAjPQhJtR7MMFRVwlc72S8WBodZHU1OXLTzc5t9iIVZ8wEAAAAAAAAAAAAAAAAAAIDpiIX13x07PHaX3TauqouSPGZi/z+a4XiXT9x/9h7bPmuffffy9px9bo+rqgtn2B9YN4vG1NYxxiYWxjqro8nxXWJhd9yS3H7LcudZa2KOAAAAAAAAAAAAAAAAAAAAsAixsP57yMT9O5J8co/t/+HE/fe01j49w/GumLj/yBmO9Y5pDzKa6c9nOBasgTliVl0GsHoX19prHiGaHbVTq56AzvXtfboE065NdSQ5sUssLEk2Tx7MPPPq3RoLAAAAAAAAAAAAAAAAAAAA9JVYWP89f+L+la21rT22f8TE/Q/NeLxr9nm9cf9giceCjvUh2tKHGfps0VjYOl7fvf66SETWONTqaHJ8j1jYxkHHwtZxjQEAAAAAAAAAAAAAAAAAAACWQSysx6rqvCQvnnj4N/bZ7SET9/9qxsN+dOL+farqXjvMdu8k917wWJPbP3TG/eHg3HbTqieYkzhNkqQqwlc72LMtmdF1g6GZct2ro8k55yXH7rbz85sHHQsDAAAAAAAAAAAAAAAAAAAA6IZYWL+9NMlFY/dvTPKz++xz/sT962Y5YGvtliSbEw/fc4rjfKa19ulZjpU7z7bTcWA5/u9PrHqCpAl/7WnR67OO13e/WBgcaqN/5h6/aOenN1YdC1vDNQkAAAAAAAAAAAAAAAAAAACYy7FVD8DOquq5Sb594uF/01q7fp9dz5u4vzHH4TeSHB+7f/cOjzNup+PMpKouSPJZM+528aLH5RC4+sdWPUEP9S1ks9c8tbQphmW/WJjrxhBNuTYdObr954mLkluuufPzm6uOhQEAAAAAAAAAAAAAAAAAAABMRyysh6rqMUleNfHwm5P81BS7T0a8NucYYSPJvfZ4zYM8zl6vOY9vTfKSA3gdWIF54lx9C3p1aY9zrcr+4at1ulYjbb9YGIPX1vDnelo1ioUdv2jn51ceC1uj710JEwIAAAAAAAAAAAAAAAAAAMAijqx6AM5WVQ9M8ts5O5z10SRf39pcRZDDtg+wrvZcAqcJ0azhknPLNaueAA7etP8cOnpi+8/dYmEbq46FAQAAAAAAAAAAAAAAAAAAAExHLKxHquqCJG9J8tljD59M8qWttU9M+TK3TNw/Mccok/tMvuYyjwPrY54e4FwNQdbGR391nw2miazBQJ1zz+0/T+wSC9tccSzM+g0AAAAAAAAAAAAAAAAAAABM6diqB2BbVd07ye8nedjYw59M8vTW2gdneKl1j4W9IslrZ9zn4iS/eQDHhkOmbyGbveappPYJX61jmOevX7/38/tdM+ilKd/Lx87b/vP4LrGwjRXHwgAAAAAAAAAAAAAAAAAAAACmJBbWA1V1zyRvTvKosYdvSPKlrbX3zfhyN03c/6wZZzkvd4543TjFce5aVXdrrX16hsNdMMVxZtJauy7JdbPsU2I59MYaxqxmssf18T4GJtWR7T9P7BIL2/x40rbObLd01nwAAAAAAAAAAAAAAAAAAABgOquqIzBSVXdP8rtJnjD28M1JntVa+9M5XvKDE/cfNOP+k9tf31q7YXKj1tqnsh00G/fABY81OTuwrzWKzbS9znWaWNgaXSvWiJ/r3Y3WhRP32/npdkdy6/UHeDzfCwAAAAAAAAAAAAAAAAAAAKAbYmErVFV3S/I7Sb5g7OFbkjy7tfauOV/26on7D5lx/8+duP/+JR5r8vVgzfQsNLNnnKtvKtMFw4Dhm3JtqtE/c49ftPs2mycXH2duQ1pjAQAAAAAAAAAAAAAAAAAAgFUSC1uRqjqR5I1JnjL28GeSPKe1dsUCL/3eifuPrqq7zrD/F+3zens99+RpDzIKpT16hmMBO1qn2Myi57pO12paAmscZqOf7+MX7L7JSmNh68RaAwAAAAAAAAAAAAAAAAAAAIsQC1uBqjqe5H8nuWTs4c0k/7i19rZFXru1dm2S94w9dCxnB8n2c8nE/Tftse3v7rPvXp6a7dlOu6q19vEZ9ofDp4lZ7Wmv61NCNPNx3RigadfKGv0z98g5ybn33XmbjRXGwqz5AAAAAAAAAAAAAAAAAAAAwJTEwpasqu6S5PVJnj728K1J/klr7Q8O6DC/MXH/G6ac7eFJnjT20KeTvHmPXX4vycbY/SePXmMaL5q4PzkzwIS9wjqVfcNXwjywZsbWhOMX7bzJxrXLGQUAAAAAAAAAAAAAAAAAAABgAWJhS1RVx5K8Jsmzxx6+PcnzW2u/d4CH+pUkp8buP6+qHjrFft8zcf81rbXN3TZurX0myev2eY07qaqHJXnu2EN3JHn1FPPBITdHzKrTANaQ4lr7hMKSDOt8lqSmuW702zr+XE95zjX2z9z/x969B9121oUd/z0nJ8negRASSXICVK6xVRiVi1WD7dDWqnTGIgwC9VKZqdZRp+OUdjq1U4vM+AetlQ7VWm+tYNVKvcF4Kdh21EGitQLekTuoJIcjJAEC7z45532f/nHek7zZZ6+911p7XZ691+czk3mz195rrd+67JUzk3e+Z14RC1uc3X4cAAAAAAAAAAAAAAAAAAAAgJ6JhQ0kpXRVXIp4Pf/E4osR8ZKc8y91ua+c83si4nUnFl0TEa9NKc3WzPf8iHjZiUUPRMQra+zuu+JS8Oyyl6WU/v6a/cwi4seOZ7rsv+Sc31djX8CkTTGKBLR2MoY3q4iFHYwZC/NMAwAAAAAAAKCdlNIzU0ovSSm9/Pifl6SUnjH2XAAAAAAAAAAA9Of02ANMyH+NiBcvLftXEfGOlNITG27rbM55seEzr4iIF0TEjcev74iI/51S+sac859e/lBK6dqI+McR8b1L639vzvlDmwbJOb8/pfSaiPjnJxb/bErp5RHxwznnB07s67Mj4kePZ7nsY1EvSgYT0CYcM6HYTF5zrCejQNUb6GwUYEx1v8snngvziljYYsxYGAAAAAAAAAClSSk9OSK+ICKeffzzmRFx/YmPfCjn/MQRRouU0tUR8c8i4hsj4ikVn3lvXPodvVfnnC+s+gwAAAAAAAAAALtJLGw4/3DFsn93/E9Tfysifn3dB3LOf5FSemFEvDkirjle/JyI+JOU0tsi4v0RcUNc+mWmm5dW/6WI+M4G8/zLiHhaRDzv+PXVEfF9EfGdKaW3R8QnI+LJx/s6WfR5ICJekHO+u8G+gMlaFwhKNYNhPJxzxh5Lpx7699kAsbB1QcPVK3S3bwAAAAAAAABaSyk9NyK+Iy4Fwm4ad5rVUkq3R8RPx6XfwVvnqRHxqoj46pTSS3PO7+19OAAAAAAAAAAABiEWtsdyzr+eUnpBRLw2HgqCpbj0S03Prljtv0fEN+WcDxvs5zCl9OK49DcSvuTEW7dExFdUrHYuIr4h5/yWuvuBvdc4NNO30uZZp0b0qrjzC/TrxHOhKhZ20GEsjDWECQEAAAAAAICifX5EfNnYQ1RJKZ2JiP8VEU9Yeuu9EfHHcel/yj4tIp5y4r1nRcSvppS+KOd8bpBBAQAAAAAAAADo1amxB6BfOedfiYinR8QPRsS9az762xHxopzz1+ScP9ViP/fnnF8aEV99vK0q90TEf46Ip+ec39R0P8CyHgNYFxs/Cnom9tU9AZ+dN8UIXt1jTif+mDuviIU9cE/E4fntZ2pjitcOAAAAAAAAYLecj4j3jTlASulURLwhHh4KuzsivjznfHvO+atyzs/POT81Ip4XESf/1qwnRcQvpJT8gggAAAAAAAAAwB44PfYAU5FzHu0Xbo7/ZsBvSSl9e0Q8Jy794tCZiPhURHw4It6Rc/5AR/v62Yj42ZTSkyLimRHx2Ih4RFz6JaQPRcRbc84PdLEv2D+FhWM+8mtjT/Bw68I6KcXm8FVh5xfo2YlnwqwiFhYRsTgX8Yi/0v84AAAAAAAAAJTsQkT8cUT8bkT8v+OffxiXft9uzF+i+dqI+MITr++JiDtyzh9c/mDO+U0ppTsi4m0RcePx4jsi4iUR8dM9zwkAAAAAAAAAQM/EwibkONI1yC8uHcfHOgmQASP5w+8ae4Il62JfdXqME4uF3fXmsSeAntT8LqdTD/37fF0s7OxIsbCJPZMAAAAAAAAAyvW6iPjBnPNi+Y2URvs7QiOldFVEvHJp8ctXhcIuyzl/IKX08oj4sROLvzul9D9yzkc9jAkAAAAAAAAAwEBObf4IAMNoEY7JYjOXjPeLmcV69/dv/syIv9AK/Ttxf19zU8Spq1d/7ODsMOMAAAAAAAAAUKSc872rQmEF+JKIeNKJ1x+OiJ+osd5/O/7sZU+JiDs6nAsAAAAAAAAAgBGIhQGwIzaF0TaEr6YWVrvrl2p8SCyMXVTzu5xO/DE3pYjZmdWfW4wVC5vYMwkAAAAAAACApl6w9PrHc86Hm1Y6/sxyVOyFnU0FAAAAAAAAAMAoxMIAStEqZjWh2My685NEr5iqCT0DGlt6LlTFwg7GioUBAAAAAAAAwFpfsfT61xusu/zZ5201CQAAAAAAAAAAoxMLAyiG6M96685PnViY83slkTV2UO2w4tL9Pa+IhS3Ewnon6AgAAAAAAADQSErp2oh46tLi326wiTuXXt+eUrpmu6kAAAAAAAAAABiTWBgAuy8lMZqTaseUYI+lpT/mzvqOhTX83k3pezqlYwUAAAAAAADoxl+NiKtOvD6Xc/5E3ZWPP/vRE4uuiojP6mg2AAAAAAAAAABGIBYGUIw2MZUpBVimdKxbOjo/9gTQo5rPguWA4LwiFnZw93bjAAAAAAAAAED3nrr0+s9abGN5ndtbzgIAAAAAAAAAQAHEwgDYDVksrLZ8WO9zyzEl2GezqljY2WHneNCEnmmeNQAAAAAAAABNPXrp9bkW21he54aWswAAAAAAAAAAUIDTYw8AwLE2MaxJBbSqjjUt/Wy6PjAJ84pY2OLspWepoBUAAAAAAAAA5Xjk0uuDFttYXuf6lrM8TErploi4ueFqT+li3wAAAAAAAAAAUyYWBsBuE/i5Uu2InHO3+6YYwWt5zLOKWNjhQcTFT0Zc/aj2I7UyxWsHAAAAAAAAQE3LsbBFi20sx8KWt9nWt0bEKzraFgAAAAAAAAAANZ0aewAALhOOWc/56Z5YGBMyr4iFRUQcnB1ujknyrAEAAAAAAADYUptfnPHLNgAAAAAAAAAAe0QsDGCnTeh3+nLVsR5HaNKGGE3l+sBOaftdnt1a/d5ihFiYZxIAAAAAAAAA1e5fej1vsY3ldZa3CQAAAAAAAADADjk99gAAXCYcs96GWBgnuJfgCqcfEXH6+oiLn7zyvYMRYmGT4pkEAAAAAAAA0FDJsbAfiIifabjOUyLijR3tHwAAAAAAAABgksTCAHZZFmCJJBbWmnPHTqrx3Dv9yNXL52ciPrkiFrYYIxbm+Q0AAAAAAABApY8vvb65xTZuWXp9X8tZHibnfC4izjVZJ/kdFQAAAAAAAACArZ0aewAAjgl/ref8wJV8LypU/JLx7Mzq5QddxMJci2p+6RsAAAAAAACgofcsvX5Ci20sr7O8TQAAAAAAAAAAdohYGAA7oirEk5Z+Nl1/H9U9VgEf9lSq+CPu/LbVyxddxMIAAAAAAAAAoDPviojDE69vSSldX3fllNKjIuIxJxYdhlgYAAAAAAAAAMBOEwsDqOMjvzHATtrErASwBK+AK1U8F2ZnVi8/GCEWlqf0/AYAAAAAAACgiZzz+Yh439LiL26wiTuWXr/neJsAAAAAAAAAAOwosTCAOt75PWNPQJUkFtaac8euqRvYqrq35xWxsMUIsbBJ8awBAAAAAAAAaOFNS6+f22Dd5c/+z60mAQAAAAAAAABgdGJhAHXc9cv976NuBOfhK3U+RrE2np8NMZpW53dHTelYYaWK58GspFjYlL6nUzpWAAAAAAAAgM78wtLrr08pXbVppePPfN2GbQEAAAAAAAAAsGPEwgDYEVWxmQ2RMNhrIkwrpYrnwrwqFnYu4uiwv3kAAAAAAAAAoLm3RMQHTrx+fFwZAVvl6yLicSdevy8i3trhXAAAAAAAAAAAjEAsDKCufNT3Dnre/q4TC+vc4tzYE0BDdZ+TFc+FWUUsLB9GnP9oq4nam9Iz33MaAAAAAAAAIKWUl/557rrP55wPI+IVS4tfnVJ64pp9PDEi/sPS4n+dc++/+AQAAAAAAAAAQM9Ojz0AwM44PB9xej72FA+XpxSbqZDSw38StSNEd/1Kv2PAaCqeB/OKWFhExOJsxPzWfsYBAAAAAAAAoGgppcfH6t+nXP4fzafXxLruzzl3/TdV/WREfFtEfOHx65si4s6U0styzr968oMppS+PiNdGxI0nFt8ZEa/veCYAAAAAAAAAAEYgFgZQ19EiIvqMhQl/rbV1GM35hZ1X9zlQFQ+89ua4FBJbsZ2DsxE3fl7byZo/o8QeAQAAAAAAAErymxHxhBqfe1xEfKDivddFxMu6GigiIud8lFJ6QUT8dkR85vHi2yLizSml90TEH8el/xH+tIh46tLqH4yIF+bsf1ADAAAAAAAAAOwDsTCAuo4Ox55ghSn9Ll/VsVZEgYAJq3gunDodMbs5YnHuyvcWZ/sdCQAAAAAAAABayDnfnVL6uxHx0xHxjBNv3X78zypvj4iX5Jw/0vd8AAAAAAAAAAAM49TYAwDsjNxzLMxf4rnBpliYaNhD3EvTMbVrXfN405o/4s7OrF4+eCxsQtcueT4DAAAAAAAAbCPn/O6I+MKI+I6IeP+aj77v+DNflHN+7xCzAQAAAAAAAAAwjNNjDwCwO47GHoBVakdoJhTmqevWvz32BNCTNc+F2ZmI+IMrlx8MHQubEDFMAAAAAAAAoHA55ycOsI+t/qalnPOFiHhVRLwqpfSsiPisiHjs8dt3RcS7c85v225KAAAAAAAAAABKJRYGUFfuOxbWJqYyoQCL2Ez3rnn02BNAQ3WfA2t+v3p+ZvXyhVgYAAAAAAAAALvhOAomDAYAAAAAAAAAMCGnxh4AYGfkw7EnmLiqSFBa+kntsFrvATwYSVrzPJhVxMIOho6FTSiAuO56AAAAAAAAAAAAAAAAAAAAABuJhQHU1XtYqUU4pm4Uai9sioXRmFgYu6b2M2/Nc2F+2+rli6FjYQAAAAAAAAAAAAAAAAAAAAD1iIUB1NZzWGlS4a8OpZqxMOd3Bedk57mvK6x5LszOrF5+MHAszLUDAAAAAAAAAAAAAAAAAAAAahILA6gr9xwLYz1hnQZqniv3NPtqXURwXhELu3BfxOGin3kAAAAAAAAAAAAAAAAAAAAAtiAWBlBXPux7BwOts6uqjvU4CrQuDsRqYmHsnLrPvDXPg1lFLCwiYvGRRtM8XNPn8ZSe3wAAAAAAAAAAAAAAAAAAAMA2xMIA6hJWGllFWKd2JEyY50ruafbVmufCfE0s7OBs96MAAAAAAAAAAAAAAAAAAAAAbEksDKCu3mNhbWJWAlhro0BTlWveF3U/B8Woec+uiwhefUPEqWtXv7cYMhbm+3eFowtjTwAAAAAAAAAAAAAAAAAAAABFEgsDqK3vWBhrbQxbiYY1557efYJTq615HqQUMT+z+r2Du/sZZ/JqPp/f/2P9jgEAAAAAAAAAAAAAAAAAAAA7SiwMYGOE6vLnDsuYY7Kqzo9IWGtZLIwdU/c5mTb8EXdWFQs722yebXjmX+mPvnvsCQAAAAAAAAAAAAAAAAAAAKBIYmEAlRGq5Y8VGFaaUmym6lhT3VjYhM7VLt/T0IUbnr7+/XlFLGwxYCyMK336z8eeAAAAAAAAAAAAAAAAAAAAAIokFgZQN7jVe1hpSjGrLqWln9TnnmPX1Lxnn/6d69+fiYUNqnbUEQAAAAAAAAAAAAAAAAAAAFhFLAygbnwmH/Y8RpsY2ZRiT1M61oH0HsCDETz++RE3ft76z1TFwg6GjIVN6JlWN8oJAAAAAAAAAAAAAAAAAAAArHR67AEAxldKxES4ab2q65Rqrl7KdR5C3WN1z7FH5o+N+Ox/EXH7t0SkDT3ceUUsbDFkLAwAAAAAAAAAAAAAAAAAAACgHrEwgNoRqZ5jU1m4aa2q65TSw39Sn3tuD0wpghex9nj/xi9EPOav19vMrCIWdnD20rOm1fOk6bWY2rUDAAAAAAAAAAAAAAAAAAAA2jo19gAA4ysk2JIP26zU+Ri7RySstYufHnsC6E6TwNf8ttXLj85HXPh4N/PwEDFHAAAAAAAAAAAAAAAAAAAA2IpYGEDd4FbuOcyVj/rd/s4TRqut7r36wD39zgFd6+o5PD9T/d7B2W72sUnf/00BAAAAAAAAAAAAAAAAAAAA9oZYGEApwZY2sbBSZh9E1bGmpZ9N15+ww8XYE0CHNj0DTpjdWv3eYqBYGAAAAAAAAAAAAAAAAAAAAEBNYmEAtSNSPcem8mG/2991VWG01CAQxBIBNXZNR/fsVbOIqx+9+r2DoWJhvn8AAAAAAAAAAAAAAAAAAABAPWJhAMUEW47GHmBHiYVdqZR7mt5VRfSmqGk4cH5m9fLFULEwAAAAAAAAAAAAAAAAAAAAgHrEwgBqx3Z6jvLkwzYrdT5GuTYd66ZQ0JTOVV3OCbumw3t2NnYszPcPAAAAAAAAAAAAAAAAAAAAqEcsDKCUYEs+GnuCwlVdp02RMCrVDuXBLmj4LJhXxMIOhoqFTYnnNAAAAAAAAAAAAAAAAAAAAGxDLAygbiys77BSq1jYhGJPVec/idBcqe59MaH7h/3Q5XN4VhULu7vd9sT3AAAAAAAAAAAAAAAAAAAAgJ6IhQGUEnjJh2NPsKPEwlor5d6HTjR8FswrYmGLs9uPUofvHwAAAAAAAAAAAAAAAAAAAFCTWBhA1A229Bx2yUf9bn/nbTj/aUMoSJhnBedk97mGrc1GjoUBAAAAAAAAAAAAAAAAAAAA1CQWBlBMbKdFLGxSAayqY90QCZui2vfFlO6fJZP67uyTDq9bZSzsLyOOLna3n0ruQQAAAAAAAAAAAAAAAAAAAKAesTCAUsJK+bDf7e+6quuUxMJam3Qwa8rHvqeaPgvmFbGwyBHn/3LrcQAAAAAAAAAAAAAAAAAAAAC6IhYGUEo0aNLhpm2kpZ9VpnR+ax7rxU/2O0bJfN92VIfXbVYVC4uIg7Pd7aeKexAAAAAAAAAAAAAAAAAAAACoSSwMoG6wpciwS4kz9WVKx7qle3+v/mcvHvQ3R9HcT/tnUzBwybWPiUgVfxReDBALm5SG1wYAAAAAAAAAAAAAAAAAAAB4GLEwgNrRoL7jQuJF61WdHxGaK9z5aN2G+QAAIABJREFUdfU/+5Ff62+Oou3J963IiGGPujzeU1dFzG5d/d7BELGwiV07AAAAAAAAAAAAAAAAAAAAoDWxMIBdDrace8vYEwynKhKULsfCRMMiIuL+90dcuK/+5z/2O/3NUrKpRbYmocUzYHZm9fLFELEwAAAAAAAAAAAAAAAAAAAAgHrEwgDe+e9rfrDAuNAHfnzsCQpQNxBU4PXrw8ffOfYEO2Ii98Pe6fi6VcXCDtrEwprO5h4EAAAAAAAAAAAAAAAAAAAA6hELA6btL34x4p3fM/YUx1qEYy5+svsxiiWsU0/deNrUuZ/2Tmpx788rYmGLNrEwAAAAAAAAAAAAAAAAAAAAgH6IhQHT9oHX1f9sFhcaV8X5vxwIahMKwnljt3T9HJ6JhQEAAAAAAAAAAAAAAAAAAADlEwsDpu3Pf27sCairMhJUM3Yl9sZJe3M/7MtxdKFF+G5eEQs7GCAWtjf3IAAAAAAAAAAAAAAAAAAAANA3sTCA2noOuwjHtNQiEAQiW0REzCpiYYsBYmFTkjynAQAAAAAAAAAAAAAAAAAAYBtiYQDsiE1xJzGaiBDlqU0sbDd1fN3mFbGwC5+IuPjpbvd1BfcgAAAAAAAAAAAAAAAAAAAAUI9YGEBtfYddhGPWyhXnRxyLNqruJ3ZYi2fBrCIWFhGxONt+FAAAAAAAAAAAAAAAAAAAAIAOiYUBsCOq4k51A0HiUJzkfthNHV+3+ZpY2EHfsTD3IAAAAAAAAAAAAAAAAAAAAFCPWBhAXVnYpUx1Y2FT4XzUsy/f5305jg6kFvf+6esjrpqvfm/RdywMAAAAAAAAAAAAAAAAAAAAoB6xMIBiiP6st+n8iGRd4jzUIv63m7q+bilFzM6sfu+gaSys4WzuQQAAAAAAAAAAAAAAAAAAAKAmsTCA2oRdRlUV1kniWNuZ6vnzfd4/Le/leUUsbNE0FgYAAAAAAAAAAAAAAAAAAADQD7EwAHZEVdypbiBoInEo8bSaJnI/7J0ertv8ttXLD/qOhU3pHvRcAgAAAAAAAAAAAAAAAAAAgG2IhQHUlXsOu/S9/b11HKEpKZJ1//sj7npzxIVPjD1JDe479kXLZ8DszOrli75jYQAAAAAAAAAAAAAAAAAAAAD1nB57AACoZweiVkcXIu78+og/e/2l16eujrjjpyI+80XjzrXOVCN1Uz3undfDdauKhR2IhQEAAAAAAAAAAAAAAAAAAABlODX2AAC7Q1xoVFVxp5S2W79L73rNQ6GwiEvxsLe+NOLTH+5/361N9b7ek+MWPXtI3WfBsnlFLGzRdyzMtQMAAAAAAAAAAAAAAAAAAADqEQsDKEaLcMxNz+p+jGJVnZ+09HNE7/zeK5flw4gP/uSAQzQ9DxMNFolscdlsTSzMfQIAAAAAAAAAAAAAAAAAAAAUQCwMoLYCozHXPX7sCQpQQCTsssXZ1cvf/X3DzkENBX6f2ayPeNe8IhZ2dCHigXu7399lQmQAAAAAAAAAAAAAAAAAAABATWJhALtsUrGZXT7WgoJmyyZ1D5001ePeZy2/Z7OKWFhEdQBwlcl+l+oo+BkIAAAAAAAAAAAAAAAAAAAAO0AsDKCu3kMwbbbf40y3Pa+/bbdRdf5TevjP6g10Ok6xNp6HZRM5L8uEnXZUD9dtdkv1ewcNYmGNuQcBAAAAAAAAAAAAAAAAAACAesTCAHZZn8GjW76kv223UnWsTeNYYyh5xqkGi/bluPflOLrQ8nt21bUR19y0+r2Du9uPwwnuUwAAAAAAAAAAAAAAAAAAANiGWBhAbT3HTlqFv/qcaVf+E1FyiGsH3PO2sScYiXjRburpus3PrF6+ONvP/iLCPQgAAAAAAAAAAAAAAAAAAADUtSslGABWmlJsZtOxboiGtYqxdSQNGTRruK+739zPGKUb836gH9t8z2ZjxMKmRNQRAAAAAAAAAAAAAAAAAAAAtiEWBlBbgXGhXoNHhR1v1bEOGuJqq+BYGOySvp55VbGwgx5jYYJ1AAAAAAAAAAAAAAAAAAAAQE1iYQDFaBOOmVJspupYxbFoY0rfnanY4lkwr4iFLXqMhQEAAAAAAAAAAAAAAAAAAADUJBYGUFcWFxrXplhYydGwgme74WljTzCSffk+78txjGxWEQs7EAvrRCr4GQgAAAAAAAAAAAAAAAAAAAA7QCwMoLYSozwlzlSqEc/VkKGcpvv6jC/oZ47Sif/tqJ6u2/y21csXfcbC3IMAAAAAAAAAAAAAAAAAAABAPWJhAKVoEy+aUvCo6liHDHHto3w09gQjmdB3Zyq2eRbMz6xefv6jEUcXam7EPQUAAAAAAAAAAAAAAAAAAAD0QywMoLYSQzB9zlTa8VbNswuxsIJnFAtjp/R03WYVsbCIiMW5fvbpHgQAAAAAAAAAAAAAAAAAAABqEgsD2GkTis3kimNN6eE/qzfQ6TjNDBkLa7ivqcbCqu4ndtgW37O1sbCz7bcLAAAAAAAAAAAAAAAAAAAA0AGxMGC6msaCeo8Ltdi+4BHbyodjTzCSPfnuTO0Z0NfxXntTRDq9+r2DnmJhU7t2AAAAAAAAAAAAAAAAAAAAQGtiYcB03feHY0/QgSnFZqqONQ06xf45GnuAkezLd2dfjqMLWzwL0qmI2a2r31v0FAsDAAAAAAAAAAAAAAAAAAAAqEksDJiuxUcartB3lKfN9qcUCtoUCys4GpYKni0fjj0BNNDjM29+ZvXyg75iYVN6fhf8DAQAAAAAAAAAAAAAAAAAAIAdIBYGTFfag0dg7jE20+e226iaJ9WMhY16PEOGchruKx/1M0bpSru/W9uX4+jAtlG+WVUs7O7ttku4TwEAAAAAAAAAAAAAAAAAAGA7e1DKAWiraVimxNhJiTMN7fg6bhsK2hsN74mpxsL25buzN9Gzuno83nlFLGxxtqcdTu3aAQAAAAAAAAAAAAAAAAAAAG2JhQHTVVpcqlX0Z0qxmU3HWtj1PKm0e+2kfDj2BOPYm8jWvhxHF7b8ns2GjoVNScHPQAAAAAAAAAAAAAAAAAAAANgBYmHAhDV8BO5NXGhXVZ3/tPSz6fpDKDiUk4/GnmAkvs8sqYqFHdSMhflvBAAAAAAAAAAAAAAAAAAAANATsTBgulLBAae6phSnqTrWy9dxH67nKMTCdtu+HEdNfT7z5hWxsEXNWFhTU3p+AwAAAAAAAAAAAAAAAAAAAFsRCwOore+wS5vt9znTroRs0tLPEg05W8Prlg/7GaN0+xJq2pfj6MSW37NZRSzs4qciLty/3bYBAAAAAAAAAAAAAAAAAAAAtiAWBkzYPjwCpxQK2nSsJcfCCpaPxp5gJPvy3dmX46irx+Od31b93uJsDzuc0rXzfAYAAAAAAAAAAAAAAAAAAIBt7EMpB6Cd1DBect8f9DPHNvKUYjNVx3p8HTdezxHPVdN7bRtN7wmxMPbFtt+z2a3V7x30EQubEt83AAAAAAAAAAAAAAAAAAAA2IZYGDBhDcMy7/2hfsZ4UJuYyoQCLFURrAcDQQMGuRobcramsbDDfsYo3d6E9vblOGrq87pd/ciI049c/d6ih1jY3tyDAAAAAAAAAAAAAAAAAAAAQN/EwoAJaxhwWpzrZ4xtiM3EQ9ex5FhYyY7GHoBteAac0MEzYHZm9fKDHmJhk+L5DAAAAAAAAAAAAAAAAAAAANsQCwOmK+1DvKTHUFBxEaJN82x4f9TjGfJea3icR4f9jFG80u7vtvblOOrq+XjnFbGwRR+xsKldOwAAAAAAAAAAAAAAAAAAAKAtsTBgwgqLhbWKWU0pNlN1rGnD+xPT+D466mWM8rlf9k8Hz/TZNrEw9xQAAAAAAAAAAAAAAAAAAADQD7EwYMIKi4W10SowtqOqjjUdX8dccPQqFXyvlXze+rQv3519OY7aej7eeUUs7KBOLKypCV27kp+BAAAAAAAAAAAAAAAAAAAAsAPEwoDpSqU9AtuEYwqNzQwaMLocoSn0XAyu4XnIh/2MUbx9uV/25Tg60EWQalYRC1v0EQubkMlF7QAAAAAAAAAAAAAAAAAAAKBbpZVyAIbTRViGAW2IzWyM0YwZqxnwXmsa5clH/cxRvILiRZ/+8BYrF3Qc+2BeEQs7uHvYOQAAAAAAAAAAAAAAAAAAAABOEAsD2Gl9hoK22XYfc1VtM214vwRDhukanof7fr+fMUrXNKrWp3t/b+wJdkff121WEQtbfKT7sF5J9yAAAAAAAAAAAAAAAAAAAABQNLEwYMJKewS2CMdMKTZTdaxpF2JhhbvwibEnGEFJ98sWMbkpPQM26iDKN6+IheXDiPMf2377U5WGDCYCAAAAAAAAAAAAAAAAAADA/imtlAMwnKbxkutv72eOrRQaCho0YHR8HfPRhs+NeK4GDeW0OM6z/6f7MYpX0HcnbfPHsYKOYxA9H++sIhYWEbE42/HOpnbtAAAAAAAAAAAAAAAAAAAAgLbEwoDpahq0etxX9jPHVkqNzfQx16ZtlnouIh4Mmg2hTajtrl/ufo7SDRq022TImNw+6+A8zm6p3s5B17EwAAAAAAAAAAAAAAAAAAAAgHrEwoAJaxgLOnVtP2Nc1iZeVFTwqGeVx5o2vM9GD9w39gTTlrb549jU7vuej/fU1RHXPmb1e4uuY2FTu3YAAAAAAAAAAAAAAAAAAABAW2JhALWVGHbpc6Zttt3HXBXbTKnHfXYlbf5IZ0o+DyUp6DylLe4PkbyHbHMeT5qfWb38YFMszLUAAAAAAAAAAAAAAAAAAAAA+iEWBkxY07BLiSGYEmcaWs1YWN9RpXXb7ypiVIt7opaiIlvb/HGspOMYwBDXbVYRC1tsioU1VNQ9CAAAAAAAAAAAAAAAAAAAAJRMLAyYrqahlt7DLi22X2psppe5Ro6BbTT2/o+1Og9DxsxKUcj1ihg4JrfPOjqPVbGwg45jYZPiHgcAAAAAAAAAAAAAAAAAAIBtiIUB1FZQXOhBJc7Uk6oI1uXQUj4abpZVRo+VbWGSsaqSrtc2fxwr6TiGMMDxzitiYYuuY2FTu3YAAAAAAAAAAAAAAAAAAABAW2JhwIQ1DbX0HXZps/1SYzN9zFW1zbTh/U3rd2VdrGzIGFep90RhSoq7bRNrK+k49sVsqFgYAAAAAAAAAAAAAAAAAAAAQD1iYcB0NY3slBjl6XOmEo93pbqxsJ6tPV9iYeUp6Txtc3+UdBxj6+h7Nq+IhR2IhQEAAAAAAAAAAAAAAAAAAADjEAsDqE2Up74+ztWGbY4eNxt7/9sYMmZWipKuV0mzlG6AczWriIU9cE/E4fkOd+S6AwAAAAAAAAAAAAAAAAAAAPWIhQET1jDU0neMqtX2JxSbqTo/6XLoauRzkY+q30sDxrha3UcTjIWNHpfryr4cRwe6+p7NK2JhERGLc93sAwAAAAAAAAAAAAAAAAAAAKABsTBgwppGdkqM8pQ4U/QUYqraZt1YWN/nat32h4xxFXpPFKeg87TN92Vvomc1DXG8szWxsIO7u9vP1K4dAAAAAAAAAAAAAAAAAAAA0JpYGDBdjUMtBYZdxGbiwRBXPhp3jBLvj7rSkDEzurXD913nOrqPr7kx4tTVq99bnK1ez/N4Dc8YAAAAAAAAAAAAAAAAAAAA2IZYGEBdvYdgWmz/4K7ux3jQNsfbx7natM2RQz1rY2VDhnIEi+op6TyVNEvpBjhXKUXMzqx+b10srDHXHQAAAAAAAAAAAAAAAAAAAKhHLAyYsKahlgLDLhfvHyBiVoiq40xp/fub1u9MIdeh1XEOGTMrxN58b/blODqQOryPq2JhB13GwgAAAAAAAAAAAAAAAAAAAADqEQsDJmwPYmEREff9wdgTrNDHuaraZtrw/kDWxae6jBhtJBZWT0nf5y1m2ZvoWV0DHe+8Iha26DIWNrVrBwAAAAAAAAAAAAAAAAAAALQlFgZQV+9Rnpbb/9NXdzvGzjkOXY0eTTta896AMa73/kjzdQaNmZViX0JN+3IcXejwPp7ftnr5QZexMAAAAAAAAAAAAAAAAAAAAIB6To89AMNIKV0dEc+JiM+MiNsi4v6IuCsi3pFz/mDH+3pSRHx+RDw2Ih4ZEXdHxIci4s6c84Uu9wVbaRz/KjTKk9dFqkbSS1htwzavvz3ik+/pYb81HV0cb98nnf3V5uvMbu1+jtL1Hv9roKRZuGR2ZvXyRYexMNcdAAAAAAAAAAAAAAAAAAAAqEksbCQppSdHxBdExLOPfz4zIq4/8ZEP5Zyf2MF+bo6IV0bESyLiporP3BkRr845/9yW+3pRRLw8Ir644iP3pJReHxH/Juf80W32Bd3Yk1hYb3MVdrxVYZ2ULv284ekbYmE9H8+536h+76jwTuKpa8eeYASF3d9tTS04NdTxzitiYQcdxsIAAAAAAAAAAAAAAAAAAAAAahILG1BK6bkR8R1xKRC2MtzV8f6eFxGvjYhbNnz0joi4I6X0kxHxzTnnTzXczyMj4kci4qUbPnpTRHxLRLwwpfQNOec3N9kPjK7vSE3b7RcZC+pjpqptph721cK9v1/93mGjx+oIjsYeYAQlfW+2maWk4xhbh8+CWUUsbHH20jM3FfLcAQAAAAAAAAAAAAAAAAAAACZBLGxYnx8RXzbEjo7DZG+IiGtOLM4R8faIeH9EPDoinhERjznx/tdGxKNSSl+Vc65VjkkpXRURr4+Iv7f01l9GxDsi4uMR8ZTjfV0ua9waEW9MKX1pzvk3GxwWdKxpZKfUKE+pcw2lkGjPVbPq9y5+erg52qj3yN8vRUb22tiX46hroOOtioUdHkRc/GTE1Y9a8ea+/DcFAAAAAAAAAAAAAAAAAAAAKM2psQcgIiLOR8T7utpYSunxEfHz8fBQ2Fsj4mk552fnnF+cc/6yiHh8RHx7RFw48bmvjIjvbrC7V8XDQ2EXIuKfRMTjc85ffryvZ0XE0yPit0587tqIeENK6bYG+4JuNY4F9R12abv9EoMzfcy07TZ7Pk+nr1uz64v97ntrJd5DU+L8dyJ1GA6cV8TCIiIOzna3HwAAAAAAAAAAAAAAAAAAAIAaxMKGdyEifi8ifjQivjkinhUR10fEN3a4j1dGxI0nXt8ZEV+ac37nyQ/lnM/nnP9jRLx4af2Xp5SesGknKaUnx6XY2ElfnXP+/pzzA0v7+pOI+Dvx8GDYZ0TEKzbtB4rROC42kL7m+tjv9LPdtqqO88FA0MjX54anV793898cbo428tHYE4yg0O9zU0elh+i6NtB1m91a/d6iq1jYntyDAAAAAAAAAAAAAAAAAAAAQO/Ewob1uoh4VM75GTnnb8o5/3DO+e055wtd7SCldHtEfMOJRQ9ExMtyzouqdXLObzie7bJro17E6xURcfWJ16/NOb9xzX4OIuJlxzNd9o+Oo2Mwgn0JtfRwHIeLiLvf3H79XgJmVdtMFcsHdup09XunrxtujjamGAsrKf63zSz3vK27OXZeh8+C09dFXP2o1e8ddBULAwAAAAAAAAAAAAAAAAAAAKhHLGxAOed710W7OvI1EXHVidc/n3N+T431/u3S6xenlGZVH04pzSPiRRu2cYWc87sj4g0nFp2OSzPDCJoGevqOC7Xdfg9z3fWm7rfZm0JiYWuDTwWFqVaZYiys9GtS171vH3uCYQ0ZeZudWb180VEsrKRgXe+mdKwAAAAAAAAAAAAAAAAAAADQPbGw/fOCpdc/VmelnPM7I+L/nlj0iIj4sjWrfHlEXHfi9W/lnP+01oRXzvTCmutBtxqHWgqNnfQRnHnvD225gT7O1aZtboiG9R7mKfT+qGWXZ2+rpGPeYpZHfXZ3Y+y8jsOB84pY2MHd3e4HAAAAAAAAAAAAAAAAAAAAYAOxsD2SUjoTEZ93YtHFiHhrg038+tLr56357FdsWHedt8Sl2S57Rkrp1gbrwzh6j021VepcHas6/6njQFBra65DsffOsXw09gTDK/2a1HXd48aeYGADXrdZRSxscbajHezJPQgAAAAAAAAAAAAAAAAAAAD0Tixsvzx96fUf5Jw/1WD9O5deP63Bvn6r7k6OZ/rDBvuCnjQNtfQcdmkdL+pjrm23OeRMacP7A1l7/UqPAk0wFlbSNdkmXLYv0bMudB0OrIqFHXQVCwMAAAAAAAAAAAAAAAAAAACoRyxsv3zO0uv3Nlz/fRu2d9JnD7gv6ElhsbC2ph4L6joQ1NoOX4dJ3kNTPGYamVfEwhYdxcIm+b0DAAAAAAAAAAAAAAAAAAAA2hAL2y9PXXr9Zw3X/9DS689IKd24/KGU0k0RcdOW+1r+/O0N14fhFRt2KXCuPs7V1tvs+Tzlo/H2vbV1s++por7P28xS0nEMYMjrNr9t9fKDqljYxK4FAAAAAAAAAAAAAAAAAAAAMBixsP3y6KXX55qsnHO+PyIWS4tvqLGfT+ecP9VkX3HlbKv2A/1qHJ3pOwTTdvtTCdRUHWcadIpqa65DUWGqFdaGzvbUhY83X6fI61jiTGPp+FkwO7N6+flzEUeH3e6Lhzi3AAAAAAAAAAAAAAAAAAAAcIXTYw9Apx659PqgxTYOImJ24vX1Pe7npFX7aSyldEtE3Nxwtad0sW92UcPITpGhoOhnrq232ce5KjwWtvacFXrvPKj0+XrwrteMPcEJEzz/bT1wz3D7mlfEwvJRxPmPRsxv3XIHrvtKP3064h8cRiRNYwAAAAAAAAAAAAAAAAAAALhMLGy/LEe8Fi22cRARN67ZZpf7WbfNtr41Il7R0bZgSc9hl9aBrokHZ9JxLOyGz4n4izdUf6732NsOX4d8NPYEw7vnd1uslKOYON1lpUYM+/LBn1rzZsfXZlYRC4uIWJztIBZGpXe9JuKv/dOxpwAAAAAAAAAAAAAAAAAAAIBinBp7AHrVpiBS8jrQrcPlZt0GH/yJfubYVomxoD5m2rTN27+1+302sma+Eq/RSVOMhZWk9PujJB/+xeH2de3NEanij8oHZzvYgete6e0vH3sCAAAAAAAAAAAAAAAAAAAAKIpY2H65f+n1vMU2ltdZ3uaQ+4F+nf/o2BN0ZCrBmarjTJd+XPe4iNu/bbBprrA2+FT6NSp9vkIUGfUqcaYepdTuvTZOXXUpGLbKootYGAAAAAAAAAAAAAAAAAAAAEA9p8cegE6JhUX8QET8TMN1nhIRb+xo/+ySw/NjT7CkbfSnxFhQHzNtiIVFRDz7+yLe85962HcdOxwLy0djT7Aj+rqO22y38Hura2ngzu3sTMTiI1cu7yIWVmR8DgAAAAAAAAAAAAAAAAAAACiRWNh++fjS65ubrJxSemRcGfG6r8Z+rkspPSLn/KkGu7ulxn4ayzmfi4hzTdZJKW3+EHtqT0ItvQRndujcnPwOpxRx6pqIowdWfLDvY9qhc7ZMLIydsS4W1sN/z+dnIu77/SuXH3QQCwMAAAAAAAAAAAAAAAAAAACoaV1xgd3znqXXT2i4/vLn78k537v8oZzzxyJieflnbrmv5dmB2kqMVPUwU+0o2kgBwHXz9RJ061Lp85Wir/O0xXaLv7c6NnTgc3Zm9fJFF7GwiV07AAAAAAAAAAAAAAAAAAAAoDWxsP3yzqXXT224/pOXXv/JgPta3h70r7jITtt5SjuOvlQd50hxsCusuw6FX6N8NPYEUNO6P7r28CyYV8TCDlbEwor7bwoAAAAAAAAAAAAAAAAAAACwL8TC9ssfLb3+3JTSdQ3Wf86G7a1774vr7iSl9IiI+NwG+4Ke7EnYpcRATS8zbRsL6/s8FXgdahMLq6Wv79pW293l+66FNHAccFYRC1vc3cHGJ3btAAAA+P/s3XmcW1d9///3kWbRjD2O7Ti2Yzv7bjshJJCNAGEPhS8Uyg79krIV+m2hv/JtS6Bl+9JC+4PyZSlbCVspEAiEQCgJJBAITsKSOHHikMRZsOPE+zr7jKTz/UOzSBpd6epenXuPRq/n4yHP3HPvPfdzF8ka6egtAAAAAAAAAAAAAAAAAAAAAAAAIDLCwuYRa+0OSZvKmrokXdxEF5dUTf+4zrLXNVi3nqeqVNu0jdbaXU2sD6DcyFYHnbZRiE11eFDSYULT6gY+eX48fQyc85KPx8nHmlxK+KlrUFjY6M5k62h7nXadAgAAAAAAAAAAAAAAAAAAAAAAAAAAAADQWoSFzT9XV03/WZiVjDGnSzq/rGlY0k/qrHK9pNGy6Qun+gjjsqrp6pqBhHgWXhI1sOnw/a2toyUcHFvvA63q1Od97cW0C+hwvl8fHjH1nro6OI59AWFhk4ek/GjteQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC1GWNj881+SCmXTLzXGnBJivb+vmv62tXYsaGFr7Yikqxr0MYcx5lRJLylrykv6Roj6AHS8oCAgk2gVweoEFW27Utp7W3KlNMsWGi8DeRnq5X0QXYstPSd4nsm2fnt9RwfPG9sVr+9OO3cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAywsLmGWvtFklfLWvqkfQVY0wuaB1jzIslXVbWNCHpAyE2935Jk2XTlxljXlRnOzlJX56qadoV1tqHQmwLaD2CWhxycWxjhoW5Pt+N+v/Zc6T9G93WALecXUM8FoW24pnB8zJdrd9ebmXwvLGdrd8eAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABADYSFJcwYs8YYc3z1TVJ1GkVXreWmbssabOZ9kg6UTV8k6QZjzOlVtfQaY/5K0neq1v+YtXZro32x1j4s6RNVzVcZY/7SGFMeCCZjzBmSbpyqZdo+hQslAxzxLaDHt3rahKkOCwsZHtZyDc5ffkh6+EvJlNIsgvPaWKedu4D7d6andntc3YukbEDe6mjcsLBOO3cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCqrrQL6EC/knRciOVWS3okYN5XJV0WtKK1drsx5qWSrpc0nZ7xFEn3GmNul/SwpCM/q+KTAAAgAElEQVQknSPpqKrVr5X0jyHqm/YuSeskPX9qulvSpyT9ozHmDkmDkk6c2lZ5wseEpJdYa3c0sS1gnvMoOCZueJSL8CnfA63C1PfAp6Unfcp9LU3z/Nh6w9FxinVtd9q5C9jfRae52ZwxUm6lNPyHufPG4oaFAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhENY2Dxlrb3JGPMSSV/RbCCYkfSkqVst35T0ZmttoYntFIwxr5D0RUmvLJu1XNKlAavtlvR6a+3NYbcDuOFZyI7vYVipCzo+JqA97Pqt0sbnj2sP7cIWA2Zk3G0zKCxstDosrNn7Efc7AAAAAAAAAAAAAAAAzD/5gtXeIWn3oLRnULrkNCmbCTvODwAAAAAAAAAAAAAQhLCwecxa+9/GmPWSPqBSkNeSgEVvk/RRa+13I25nSNKrjDFXSXqnpAsCFt0v6UpJ77PW7omyLWB+m0/BMS72JWxYWEqDigJDjNrBfLr2XHJ1nGL023FBbwH7axze7/tW1m4fqw4LAwAAAAAAAAAAAAAAADrTll1Wf/yZonYflvYNV87b9bGMjhpIpy4AAAAAAAAAAAAAmE8IC0uYtfb4hLe3W9LbjDHvkPQUScdJWilpWNJjkjZaax9p0bauknSVMeYESedIWiVpgaSdkrZK2mCtnWjFtoCW8C5kx7d62oTLkKCmtPP5a+faE+TdY0YHCgzly7jbZs5RWBjXEwAAAAAAAAAAAAAAAOaJ/h7p9ztqz9s9KMLCAAAAAAAAAAAAAKAFCAvrEFMhXT9PaFuPSGpJABngVoSglslBqdvRqBWvgmPi1uJgX7w6PrX4Xl8d3h/b+S7O8e+0cxewvy5DA/sCwsJGY4aFAQAAAAAAAAAAAAAAAPNEvTCwXYeldauSqwUAAAAAAAAAAAAA5qtM2gUAQFvZdZPDzjst9KdZQccnbEiQ4+MbNnBrbLfbOiLh2gvHw+PUaUFvgfvrMCwsFxAWNhY3LKzDzh0AAAAAAAAAAAAAAADmrZ4uo8X9tec9+9+Ksp02zgkAAAAAAAAAAAAAHCAsDEAHizD45I6/bn0ZM+bRYBgXA3vChgQZh6FBdYXc5xue7raMSObRtRdWpiftCmYxEK4JxdrNxuFT2r6AsLDRnZy7sDhOAAAAAAAAAAAAAAAA897ygeB5X7uV8SMAAAAAAAAAAAAAEBdhYQDQDFtw2HfEwTC55a2to92kFg5WLeT5O3yf2zKi6MQgn4FTI6zk43HysSaHwoYGtlIuICysOC5NHnK3XQAAAAAAAAAAAAAAAKCNPLAreN7VGztsnBMAAAAAAAAAAAAAOEBYGIDO5V1AUtR6fAnLKufi2Mbs0/X59u56akY7154gZ+eY4x9eCmFhfQFhYZI0uiNGxx103r0JdQQAAAAAAAAAAAAAAIAr739R8BiRHXwnHwAAAAAAAAAAAADERlgYgA7mW1CLT2Fhvh0bKXxIUFqhNJ4cs+5FaVfQJjw5X7HNl/0IyRZrtxuHT2lzK4Lnje10t935pK3DFAEAAAAAAAAAAAAAABDGuy4NHrs3nk+wEAAAAAAAAAAAAACYpwgLA4CmOAyiihqmYtIKx6rHQTBM0PHxZv99CcOJ8l+7L7X7ztVxitFvx4UwpfA4kM1J3YtrzxstDwtr8lx03LkDAAAAAAAAAAAAAADAfNbTZfTRl9cexzM+mXAxAAAAAAAAAAAAADAPERYGoINFCWpxGe4StW9fwrLS4sn+exP8E6EOb2pPUifu8zwQeK06fhzoO7p2+9jO2u0AAAAAAAAAAAAAAABABzqir3b7eD7ZOgAAAAAAAAAAAABgPiIsDAC8MY/Ci5yET8Xt0/Xxbefz1861J8nRcYp1f+m0c1es3WwcP6XtW1m7fTROWFgnnbtO2lcAAAAAAAAAAAAAAIDO1dtVu52wMAAAAAAAAAAAAACIj7AwAJ3LSaBVDD7V41MtM4JqMg2mk+LLMYtShy+1JyjKNd5W94t5KvAcOL7f5wLCwsbihIUBAAAAAAAAAAAAAAAA80tvV+1xPBOEhQEAAAAAAAAAAABAbISFAehgvoXs+FZPHA72JSgkyKQVDlbFyyCpkNq59nmB4x9eMaA9pbCw0ThhYZx3AAAAAAAAAAAAAAAAzC89XbXbxwkLAwAAAAAAAAAAAIDYCAsDAF9EDmzyJCwrNWH333UwjyfBP5GuI09qT9Q8OU6dFvQWGBro+CltX0BY2FicsLBO0mHXKQAAAAAAAAAAAAAAQIfqJSwMAAAAAAAAAAAAAJwhLAxAB/MtvMS3euJwsS8h+zRphae18/lr59rngU4L/Iol6Fg5vt/nHISFcd4BAAAAAAAAAAAAAAAwzwSFhU0WpGKR8TIAAAAAAAAAAAAAEAdhYQDQDKfhLgyEqS+lkKCwvAn+iVCHN7Unab4cJx9rcsgWa7e7DgnsCwoL2yMV+drThry87wAAAAAAAAAAAAAAAKDVeruD500WkqsDAAAAAAAAAAAAAOYjwsIAdK5I4SUOA0+ihqk4CcmJuZ8ugmGC+nQdEhSaL2E4nl3XvvLq/h+n3047d0H76/gpbS4gLExWGt/jdtsAAAAAAAAAAAAAAABAm+jJBs8b5zv5AAAAAAAAAAAAACAWwsIAoCkug3k6LfSnVUKGhbkIMEuyf6fauXZ0lpRCA/uCwsIkje4s/Wz6MYD7HQAAAAAAAAAAAAAAAOaXTJ1hPG09xA4AAAAAAAAAAAAAPNCVdgEAkJ4II09cjlaxxYgrOg7JicTFcQrbZ1rHI+r5azFGVIUU5Ti5OrYx+h15rHVltIPAx0nH9/ueIyWTlWxh7ryxnW63PS/wuAQAAAAAAAAAAACg/RhjTpB0tqRVkhZK2iFpq6RbrLWTKda1VNKTJJ0gabFKb5ofkrRd0m+ttbyRDSA19b7zjxEkAAAAAAAAAAAAABAPYWEAOlekUCWHw1UKI+76nheCjr0nYWntHNLVzrV3ukevks79eNpVJCjgWjUZt5vNZKXccml0x9x5oxHHWHO/AwAAAAAAAAAAAAAvGWNeJulvJF0YsMh+Y8yVkt5rrd2bUE1G0isl/S9JFzdYdqOkz0n6krU2n0B5ADAjU2c4X5HhMgAAAAAAAAAAAAAQi+NkBQCYbxyNVikWoq/bvah1dcyIuZ8uQnCC+qz3VYSVHbSslHT6DytCHYWx1pfhuyjXqKtwpzj9jmxvXR3tIPBYJRAamFtZu32sRoAYAAAAAAAAAAAAAKDtGGMWGmO+Kek7Cg4Kk6Slkt4m6R5jzPMSqGulpBslfVMNgsKmPFHS5yXdZow52WVtAFCt3nA+vlsPAAAAAAAAAAAAAOLpSrsAAEhPlLCgYuvLkKR9v4m+bqa7dXW0perRRQmEBtXky0imCHUcuKMUGJbNtb6cecXVOfbl2mkDgY/BKYaFje6M2GEnnfdO2lcAAAAAAAAAAAAA7cgYk5V0paQ/qpq1R9JGSYcknaRSENf0m9QrJF1jjHm2tfZXjuo6StLPJZ1eNWtyqq6tkoqS1kg6V1L54I9zJf3cGHOxtXari/oAoFq9UTyEhQEAAAAAAAAAAABAPJm0CwCAtuIqLKw45qbfyEIE7/QdXWemi1E9no8UaveRTNu+m3YFCfPpfPlUi+8CjpVJ4Clt0GPeWNSwMAAAAAAAAAAAAACARz6iyqCwSUl/JWmNtfZ51tpXWGvPlbRe0q1ly/VK+r4xpt5Amjj+r+YGhX1uqq7zp+p6lbX2YklHT+1H+QCnNZI+76g2AJjD1Bl6yCgpAAAAAAAAAAAAAIiHsDAAHSzK0BNXw1ViPBw7CakK0eczfupgu/UE1RQi2CwRngxlino93PXu1tYxLzk6x+0eNJekoMDGeqMMW6VvZe320ahhYZx3AAAAAAAAAAAAAPCBMeZESe+oan65tfbT1tqJ8kZr7b2SnqXKwLAjJb3PQV3HS3pNVfOHrbVvs9burl7eWnvQWnu55u7L84wx57e6PgCopW5YGMNlAAAAAAAAAAAAACAWwsIAdK5II08cjVYxcR6OUxpB07OkzkwHNQWdr9AhQa6PU5uPZBrZlnYFCfPpfPlUi+9SDA3MBYSFjUUNC+sgjPQEAAAAAAAAAAAA4Lf3Seoum/6KtfaaoIWttaOSLpNUHiT2xqnQsVb6H1XTuyR9IMR6/y5pU4O+AMCJTJ1hPEWGkAAAAAAAAAAAAABALISFAUAzXAWe+BYWFmY/Q4d0uVZVR1p1eROG40sd85A357iTBYUGJvCUti8gLGx0OiysyeuD6wkAAAAAAAAAAAAAUmeM6ZP0sqrmf2m0nrX2AUnfL2vqkvSaFpYmSdXhYz+x1o43WslaayX9sKr5lJZVBQB11Bu9x3AZAAAAAAAAAAAAAIiHsDAAHSzKyBNXo1ViPBz7OILGSU0e7mcFX+rzpQ7PRbpGXR1bzllothgwI4GQwFxAWFh+UMoPu99+W+MaBwAAAAAAAAAAAOCt50nqL5u+1Vp7X8h1v1w1/dLWlDRjQdX09ibWfbRqeknMWgAglHrf9ckIEgAAAAAAAAAAAACIh7AwAGiGq2CueiNkGkprCE0C4TwVgvYzZB3OQ9UYytRePDpfPgb+eSvgWJkEntIGhYVJ0tgu99sHAAAAAAAAAAAAALhwadX0TU2se7OkfNn0E40xK2JXNGtn1XSuiXWrl90fsxYACKVuWBjDpAAAAAAAAAAAAAAgFsLCAHSwKCNPii2voiTOw7GPI2gc1BQ0UmjO6KKkQ8ym+DKSyZc65iVXx5ZzFlrg9Z3A/b6vTljYaPX47DA47wAAAAAAAAAAAADggfVV07eGXdFaOyzp7qrmdbErmnVz1fQ5Tax7btX0b2PWAgChZOoM47mf7+MDAAAAAAAAAAAAgFgICwPQuaKEKrkKYjIxHo5TC4dKOpQrxZCgUAj+aS8+nS+favFdUGBjAo8DXQulbH/teWNRwsI6SRtc42O7pb23SYWJtCsBAAAAAAAAAAAAkKwzqqYfbHL9h6qm18aopdqNku4vm36qMeasRisZY1ZL+pOypklJ32xhXQAQqN4onlf/R1EHhq0Gx6wsX4oJAAAAAAAAAAAAAE0jLAwAmuJhWJiXISw+1uSaL/vsSx3zkKsBagx8Cy/oWMV6DA3JGKlvZe15o1HCwjjvXigWpNveKH1vhfSTC6XvHik9fn3aVQEAAAAAAAAAAABIgDFmqaSlVc3bmuymevlToldUyVpblPQGSeNTTRlJVxljjg9axxizQtL3JZV/G9aHrLWPt6ouAKinWGdIzJ5B6cj/r6gj3l7U2vcW9Y1fB31xIAAAAAAAAAAAAACgFsLCAHSwKEEthIXNMPW+A9CBwJCgsHU4Pk7eBD75UofnIp0vV8eWcxZe0ADBhB6PcgFhYWNRwsLghQc+KT38pdnp/JD0yxdLY3vTqwkAAAAAAAAAAABAUhZXTY9Ya4eb7GN31fQRMeqZw1p7i6QXStoz1XSKpE3GmI8bY55njDndGHOaMeZZxph/lrRZ0pPKuvi8pP/TypoAoJ5Do+GWu3+X9KdfsvrJZsZOtZNivTS4Jvsp1OjLlo3rKxSt9g1ZWVu6HRypve1C0VasV95XrXYAAAAAAAAAAACgnXWlXQAAtBUfBw4UCw46jbmfTo5TUJ9VIUFJh5jN8PDaQGtZF/c1iWunCbFDA2PqCwgLG90pLTi+ub58/P/EFZ/39cEvzG0rjkuPflc65c+TrwcAAAAAAAAAAABAkhZWTYeMuKm7zkDEWgJZa28wxpwh6a8lvVbSCVO//3Wd1e6T9F5r7XdaXY8xZrmko5pc7aRW1wHAT8cfGX5Za6VLPxH05YElX/yfRi95otHopNSTlY5cKI3npV2HS8FkB4al3YPSCctKy69aLO08JGUz0pbd0gUnSmuWpDWmcH7Yus/qvddYXbvJ6sBI2tW48+rzjMYnrb63sbL9lOXSW55mdP8u6UebrC67yOj4ZVJ3tvxmZn7vyVbPC771dJV+ZjOSSW3sKwAAAAAAAAAAANoJYWEAOliU8BJHgSdxglTsZOvqaErSAxNChoWlxZcwHF/q8F6E41QYb30ZcR2xNu0KEhZ03jLJbD4XEBY2tjOZ7aP1Dt9Xu/33HyUsDAAAAAAAAAAAAJj/qsPCxiL0UR0WVt1nq0yP9QwzeOEWSe+XdIOjWv5C0vsc9Q2gzS0bMDrnWOmOba3p701fs3rT1+KNiXvTU40++1qjbMaTsYZtZN+Q1dP//6K27U+7Eve++Zva19mW3dLfXjU778M/rrVc/HGbYYPFqm9ZI930gDQyMdvXqSukB3ZV9n/RSdKqI6Sr7qhsX9wvHYwQAnfOsdL61UbrVknrVxmduUZavZjQMwAAAAAAAAAAANcICwPQuaKEKtn632IXXYyBAsWJxss0Le7AhQQDq0IPLHBdEyFd856T+5riBbz1LG1dHe0g6DE4qQFGQWFhozvU/GMAjxl+4/wAAAAAAAAAAAAAHcijbx6cZYx5s6SPS1oQcpWLJP1E0j3GmLdaazc4Kw4AavjaGzJa/35XYy2b98WbrU46Svpfl0iHRqWurPSbR6ShcatzjzPaPyz9/XeLunmL9NrzjR47YHVgRNozJI1PSksWSEcukJ58gtF5x0snLDPa/LjV9gPS4Jj0snONFvRK126y+vptVo8flC45TbrkNKOf3mu1cpHRMUulE4+S7nxUOmaJ9OrzjFYtTidUaXzSqmhL4VPZjNH4pNXwhLQoJxWKUjYjjU2WhmR98me2I4LCfDBZKN1aoTooTJJueaj2slGCwqRSIOAd26afBpV+HtEnrV8lrVtttH5VKUxs/apSiCAAAAAAAAAAAABag7AwAGiKq/F9ccLCJltXRlMSfvM+dKBSWoMKfAmW8aWOKjtvkB79npTpkXqWSKM7JZOVjn25tOLpKRQU4Ti5CguLdc48Pd/OBO1vQvf7vqNrt4/tTGb7basNr1Nn4aAAAAAAAAAAAAAAPDJUNd0XoY/qdar7jMUY8x5JH6pq/p2kz0i6WdLjkoqSVkq6QNJbJD1jarn1kn5hjHmjtfarrawLACTJTo3pM1Vf9Ld2ldHgpzK66CNF3f1YGpXNdfn3rC7/Xq0xLJVt//XrucvsG5YelPTrR2zNdT5x49x1rt1UCg+rtbwk/e1VtcfTLFsorVsl9XWXAp8e3ltzMUnSS58o3b5N2rqvNP28daVj/+uHbWAwFODSoVFpw0PShocqr/0ViypDxM5cbbR2lTSQI0QMAAAAAAAAAACgWYSFAehgHn0ZaOggrBqcBRjF4eI4pRwS1Mj2a9KuwF8P/of0m7fUnrfl36WLvikd/6pka4rCx7CwOI8d7Shof00mme33razdPrYrQrhUh527dmPzaVcAAAAAAAAAAAAAwD2vw8KMMc+U9H+qmt8v6YPWznkD/Q9Tt28ZY94i6XMqDarJSrrCGPOgtXZDi0r7jKTvNLnOSZIYXAO0KTs+Kl33ddnd26XvfU4aOjgzz3z9Lum40+ess6DX6K73ZTWZt7rxPum6zVafrBGqhUp7h6RfPBBu2e9trJy+frN0/WaOMfyz63DpduN9lSFixx8prV8trVtltH61tH6V0ekrpd5uT8YFAwAAAAAAAAAAeIiwMABohrNgnjhhYZOtK6MZJuk34z0PCzuwsfEyncgWpbveXX+ZW16dfFhYlPuyq7CwTgv8iiUokCuhx4FcQFhYcVKaOJBMDUjGyKNpVwAAAAAAAAAAAADAvUNV0/3GmAXW2uEm+lheNX2w5lLR/JMq3xD/qrX2A41WstZ+wRhzjKR/mGrKSvqEpCe1oihr7W5Ju5tZxyQ+zghAaxnZj/5l7Vm3/HfNsLBp3V1Gl66XnrdOOq3wkP7qpuNVVEJfDAjAa3/YV7pdu2k2RCybkU5ZLq1fJa1fY7R+KkjspKOkbIbnEwAAAAAAAAAAAISFAehgEQJ6bKH1ZUjxwoLSCgurJ8nwo7CDCV3WNLbXXd/N8DF0as8GaTzE8TmwSVpylvt64rBBQVWxO05p3TYUdI2bhAYQ9gWEhUnS6M7m+vLx/upKJ+0rAAAAAAAAAAAAgLZhrd1njDkgaUlZ87GSft9EN8dVTW+JXZgkY8xqSRdUNTcMCivzEUnvlNQ3NX2uMeYsa+2mVtQHoLOY3lzgKCX7mctlr/68zD99W+aUJ8he/w3ZD/1ZzWX/XNL5vWfpqkUv1UeW/d1Me3+PdPYx0i0Ptb52uLVGuzWpLu3S0qbWy6qggrIz0xdrk4rW6szhu3TRwGM63L9cWrZKO7NHqW/sgD7y6AUayg5U9NFvxnXhkt3aPdqjx4Z7VLBGq7sO6YxDt+u0ZZO60TxZvx4/sSX7OS1jrE5ZbpQvSpOFWjeryQKBVnEUitJ9O0u3q+6wmh4jmeu2OmOFtG6V1cpF0vC41Xkndem81RM6ZqnRiO3WQ3ukvh6jPYPSeF46YZm0bhXnAwAAAAAAAAAAzC+EhQHoXF6Fl8QJIUprPxJ+Az30+Urhjf3CSPLbbBdju8It9+DnpCd/xm0tFaLcbxzd1+I8Fnn1OJaEgMfKpMLCequ/ELrMWJNhYQAAAAAAAAAAAAAAH/xe0kVl0yerubCw6hSSZtat5+yq6YettY+EXdlaO2yMuU3SM8qaz5dEWBiA1tvxB9k3nCd75kXS3bfUXfTs8U06e88mfWjP+2cbc/3SXbNj8ArK6EcL/0hfP+LV2tB/kd574F+16JnPV1dxQrcOPFWHM4u0b8jqzNXSCUdM6PgVXVKmS2OT0jd/Y/WN33TamKpkZW1e27ecqKMKyX3J6ruaXeEx6YMhFy3KyMiGH3l679RPY2qO37OS8urSpOmuvJW1TZieOW3Tt/xU+8wyNdaf7adbkyqt85mlbw27BzOOyu9WVkXt7Ar+Es2szatgZj9y8rqD/6WnjfxK9/eeos2963RP7zpt717T9LabNTZptHG7tHH77Jn67M1WUvfUlK36OeuikVv07r3/omcO36QeteALmi99nczL/0rm1OqnawAAAAAAAAAAAO4RFgYAPogV+OPjwBYXNQX1ybd+zfLxWgh5frZ8tnPDwhCeDQpWTCgsLNsj9R4pje+bO4+wsDq47wAAAAAAAAAAAADw1j2qDAu7UNIPw6xojFkg6awa/bXC4qrpKG9KV6+zLGItABBOg6CwQGOVX9aZVVEvGrpWLxq6drbx25+VJL28QVfjAy/SN9Z8K1odDnXbCU2anrTLaIl/3XV5okFhrmWijm0KGPdrJHUrr26bl+xo9MKa9MldfyNJ+soRf6o3rfr8nPnPG/qJfvToHzvZ9sHMEdrce4Y2967T5t61uqd3re7pXad9XX489bil/yK98NhrAucfmd+r1x36hn654Gn6fc9pGsv0zcx79tANGs4s0DGT2/XDgRfouMltum/r6dJHJalQd7snL5ce3F173jueZXTno1a/eCDcPgzkpOeulYpWunrjbPvbLjG6/PlGh0el4Qnp8Kj02EGrOx+VfvuI1eolRodHrRb3G73yyUZnrpZ+t9Xq6jukK39n9eInSEsWGC1bKD37DKM/7LM6OCKtWSKN56Xv3m5192PSkgXS196Q0VlrSmOCrbWaLJSWGRyTlvRLGVPK0Bsck/7xGqvP/aJ0H+nKSPmi9JSTpPt3SXuHpGOXStv2V+7fkn7pWWcYvfv5Rictnzv2OF+wslbq7mLcOAAAAAAAAACgsxEWBqCD+RReEqOWWEFjMfo0Sb/Z6nNYmA81wDkX97VSxymt24aCwsJMQmFhkpRbWTssbLTZcdkddu4AAAAAAAAAAAAAwE/XSXpL2fQlTaz7VFWOwdxord3ViqIkHayaXhChj4VV00MRawEA6ZxLpDtuSruKhgoNvnTwbfs/r+cO36Dt3au1Ir9L3XZSB7OLlbUFPWf4Rh1V2Ktb+s7Xzq6VWlgc0tNHbtawWaCRTL9uz52jXV3L1WMn1GdHdenQTzSS6deEurWoOKh+O6IeO1ExmnDc9KjXTkiSijL6Wf8l+vTSv9C1Ay8IrHHt+L166sgGjZte3d27Xrf3nRNq31fmd2pn18rA+aeN36+37/933dd7mv7ziNfoYHaJjszv1QuHfqwXDP23rIzypkv7s0v1i/6nasT069d9T9a+rmU6dfwBXTp0vV46+H1dPHprqHqQjlcd/rbevvLfNJKpfOrwnr0fdrbNxcVDesrobXrK6G0zbVbS7uzymeCwzbl1uqd3rTb3rtVwpvopSrr2dS3TJ458e815Nyx8tiRp+qq/r/f00P0GBYVJ0idubG784OCY9N075rZ/9iarz95Ury878/Nbv5273DV3zS7z0Z8E9/PoAensDwZ92Wt9+anVNjw021YeFCaV9m9wTPryBqsvb2h8bJYPlG5dWSmbKQWSdWWmfs+W/V72sytrZn7PzLTVXj9rAvrJVvc5vawJ109A3+V1zO1bMomP2QcAAAAAAAAA+IywMADwwnwLC0qwptBvgDqsyZc3YZ2FWcXgy7GpFulY+RgW1mk8CQs7tHlu+1iUL3EGAAAAAAAAAAAAAKTsekmjkvqmpi80xpxurb0vxLqXVU1f3cK6Hq+aPs0Y02+tHWmij+p0Gd7YBhCZefcXZV92ctplNHTqxJbAeQ9vOVXH5rc37OOi0V9XTPfaCS0tHtCaocfmLHtE8XDdvqaDwiQpI6tnj/xczx75ecMa4phUl37fe7qWFA7omPzcmiXp47v+tm4fbzvwBRelIQE5O66HHjxDly//kH7Vf5FOmXhQ79z38TnXtWtG0orCbq0Y2a1njdw0016U0bbuY0oBYtNBYr1rdV/PaZrI9CZaI9rX7sHSrTkux+q6HQdsTNhAtPqhY7XDz0xFWzZE380Fq5k5ddSqLXzoW2UbQWoAAAAAAAAAOhFhYQA6WIQ35ly9oeRjyFNDCb+5FvYYdYV4/e0AACAASURBVPSbfj5eR/PofLi6n8bq18dz7pAN+ma6BMPC+gK+fXPiQJMdddK566R9BQAAAAAAAAAAANBOrLUjxpirJP1pWfPfS/qzeusZY06V9JKyprykb7SwtE2SDkhaMjWdm6rx82FWNsa8UNLqquZftaw6AB3HrDhG+ti1su98Ydql1LV+fLPOGtukTbmzKtpPnHhYx4QICpsPupXXWeP3pF0GUnRUYa++uOOtaZdRU0ZWx09u0/GT2/TCoR/PtE+qSw/2nFQRILa5d60e7DlJRZNNsWIgfdZKk4XSzUHvLjpNrP+MCRtaFiVYzcwJNKvXd6Pws7k1muB+6tQWJliNIDUAAAAAAABgfiMsDEDnihLQ4yzUKygAJyRr/QrJcnKcgvr0Yb99qMFXvh6bKNeoq/t/jH7bMmgwhqCwMJNgWFguICwMAAAAAAAAAAAAANCu3i/pVZK6p6YvM8Zcba39Qa2FjTE5SV+W1FPWfIW19qF6GzHGVL/J/wxr7U21lrXWFqZCzN5c1vwRY8wGa23dBBhjzLGSPlfVvMFau6PeegDQiDnvOdIvx6SbfyD7nlc0t/L6C6R7bnNTWBkj6eO7/rf+ZM2VOpgt5S3miqP6wo63eTuSbV7IZqWCkxQbdIhu5XXGxP06Y+J+vWzw6pn2UZPT73tPnwoRW6vNvet0V+9Z2tF9dIrVAvBF0UoT+amJyVb33t5BanPCzQJDy6IEq5k54WTN9N04WM2ED1FrMlgtYwhSAwAAAAAAQPsjLAwAfBA78MeqtaFMYepJ+k2SmGFhHRGq1An7mCYPw8I6jQ9hYX0tCgvriMckAAAAAAAAAAAAAPCftfZhY8wnJP3vsuarjDF/I+kL1tqJ6UZjzBmSvijporJl90n6gIPSPijpdZL6pqYXS7rFGPNuSV+y1o6UL2yM6ZH0akkflbSsqq/LHdQHoAMZY6SnvVj695/JXvFB6Y6b6i9/zTaZpStmpu01/yH70b+cXaB/oDSOZnSoNP30P5aWrZK++5nINT595Fe68+HzdP3C52jM5PTiwR9qTf6xyP2hyilny1xxm2StTGZ23Ja1VrrtOmnXo9LYsLR0pdS/UFpzsnT0CVJ3j7R9i/TYw9KS5dIJ60orjo9I+3ZJx5wsZbtkjCn1NTkhZTIyXd0BhUxt8+BeqbdPpn/hTFt5CIjdv0t6YKP0yL2y2x+UOfkJ0pkXlbabyUrHnV76st6enEw2W9n/4f3S3bdKgwekxVP/tWayUiYjyZR+GlMav2ZM1e9TPxsuoxr9BfRTvkz574W89OiDpeN+1Bppcly6+xbZ266TbrteOvZU6YlPl0aGpN/eIPXkpEteIrP+QmnFMaVl7/yltPGX0vDh2QOw/gJp305pxx+knl7pRW+SWXmcdPbTpurR3HFwFdM2oL1qOuh3Sf2yOlfSueXzittUvOfbuvUHt+kruZfpW12XavXk43pd/od64znD+umdo/pQ9o16qOckAUCnKhRLt4nGi0bQ/kFqzYSONResZmZ+z9QNRIsarGbq99NU6Fvl+pkMIWoAAAAAAADtgrAwAB3Mp6CWmLVYm3x2V10JHts53+zi1YGAt9+8E+EadRXuFKtfnx7HkuBBWFiuRWFhnYRgNAAAAAAAAAAAAAD+e5ekdZKePzXdLelTkv7RGHOHpEFJJ0o6R5WDUyYkvcRau6PVBVlrtxtjXivpO5Km00sGpur6V2PM7ZIeV+nN9JWSniRpYY2u3mOtvbnV9QHobOasp8h84npJki0Wpftul73hSmnLXVI2K/OMPykFC1WNHzMvfrPMi99cWm90WMr1z1lGkvTXHy8tMzEu09MrOzYi/fIa2Xt/UwqdmpyQbvyOdHDP7DpPuLgUivTDL2nN6cfqTecfJzs6JI29SCpMStsfkk5cJ7P6JGnRUinXL/XkZL/zKenXPyn1ceI6mZe8VcotkIYPSd290jNeKm3bIvvNj5XGKfUPSHu2S7+9sRTANDkhyUojgzLPfLnsF99fuS9HHi0duVJauqIUinbXr+Id/N4+aXw0Xh9RXfRHMn/32dI5qz63xkgXPj9gxSnHnla6levNlc5HdV89vQ3LMcZIS46a21Y+vXSFdMGl0gWXNj261CxaKj3lBU2ulZIlyyunTz1b5k/+Ity6a58s88p3tL4mh7JnXaSLXyNdrFKKq7RI0umSpNdP3STpunus/uiTAeMOHTph4hGdPXaXrl70xzXnrx2/V9u7Vutw9oiEKwMATAepudHeQWqtCB0LDj8zsyFndQPRGgerza3DNO6nRlvYfSRIDQAAAAAA+IawMADwQtwX7VMIYkk6BMrrsBlPavPyGM2nN0Z8PL4dxga9M5tgWFhfq8LCuJ4AAAAAAAAAAAAAwBfW2oIx5hUq5U28smzWckmXBqy2W9LrXQZxWWuvNsa8WNIVklaUzepTKR+jnmFJ77LWftpVfQAgSSaTKYUNrX1yc+v1LWi8zFRglMn1S899tcxzXz07cypQbI6/++zs+mHqOP+5jRdad57Mh64M0ZtkXn95qOVawebz0v6d0uS4tGy1TG9u7jKFgnTf76RMthSG1ttXCngbPixlu6R9O6RfXy/lJ6UT1pVC1JYdLW17QDq0XxrcL62/UDrlCTJd3YntG9AKl643Kn4hO6d9dMJqcExavqj2o8T4pJ0KEjEaPzwo+4KjVTQZ5ex4cwU8JhVllGnheMFRk9Nvc+fqRwPP10BxSEfnd+r4iT/omPx2HVE4rKMKe7Q7u1wHsot18sRDuju3Xv95xGv1pcWv12sOXalTJx7Q+aO/UY+d1FBmgQrKaqA4pHt7z9CWnpN13OQ2veHgV9SlgiTpq0e8Tl854k+1tHhAp4/fr3PGNmpx4aCsjH7T92RNmm4NFAf1dys+MlPjx3e+U2878AVlVah4HLaSRk2f+u2o8sqqSwWNmx7d23OGPrH0L/X9gRdpKDsQuO9Zm9c/7v1nLXvuC5U/9VzlpwJ/Zn4WNLdtqr28rTDTZkvzy9vs3H6q189XLTvTVlUHALSb6cey8byL3l2OnXc7Lt+YsIFotUPHGoWfZafCzkrBZOGC2cIHq5lw/YQOfav8SZAaAAAAAADpICwMQOfyKVgpdi0e7YskN/UE9enBi8uBAUZJ8+06kLw4P7VEus+5Or5x+vXxnDsUdF8zCYaF5VoVFpaQ4a3Sls9LhzZLyy6QTnu71NV4oGVHaPTYbW3ywZgAAAAAAAAAAAAAUmOtHZL0KmPMVZLeKemCgEX3S7pS0vustXsSqOtHxpi1kv5c0hslndRglV2S/lPSp621W13XBwBIj+nqkpavqb9MNiutO7+yLZORBhaXJvpPkY45Ze6Kqxv9dwO0r74eo76e4Pm93bPjxnoGFsoeuawUrBdBK4PCJKnPjulpoxv0tNENgcusLOzSysIuSdI5Y3fqnLE79fFdf1u33/PGflez/fWHvq7XH/p6zXnPHvn5zO9/s/+TjUqXkdRvRyVpJoys107oieN36Ss73izteHPDPiRJhVFlntVcQGUailNhZHFDx4ID0WzNvhuFn9XqO1+QihV12Ia1xQlWA4B2Yq2Uty4fv9o7SC0oiKw1wWpmpi0bGIgWNVjNhOunTt/19tHwOQQAAAAAgEOEhQHoYBFe9HT2Yl3MF2BTCT5L+oXLuGFhDo/Rls82XqYcATTtydn9LEa/PoUeJsKDsLC+o1vUUQLnbvhR6adPlUYeLU0/9gPp8R9Jz7xBys79FlF3PL1O7/2X+vMf+Zp04uuTqQUAAAAAAAAAAACAN6y1V0m6yhhzgqRzJK2StEDSTklbJW2w1k5E6DfyYBFr7X5JH5b0YWPMGknnSjpa0mKVBs8ckrRH0kZr7YNRtwMAAIBKxhjZ57xS+tb/TbsUTJsYS7uCUDIZox6nw1vbcyy6tVZFWycQLUToWP3QMhu677DBaoWK9W2oQLS6oW8B+1ggSA1Am7FWmiyUbo624Kpjx31LGRM2EC1KsJqpWD8Tsu/wwWomuI5IoW+zbQSpAQAAAEBrEBYGAM1wFcxj476z0+K64u5nkgFGc14kTPhFw6GHpXs/0uRKVm7q9DCQx9cXcYtNj9mVs+PbcYFfMQQ+ViYYFtazRMp0S8XJ5LYZ1UNXzAaFTduzQdp5o7T6BenU5JOt36o//7bLCAsDAAAAAAAAAAAAOpi19hFJj6RdRzVr7XZJ29OuAwAAoFOYt/6zbH5S+sEVbRNUNa8VSVRqZ8YYZacCVHqcfKLN07HrIUwHqQWFljUVrFYzEM2G6rtR+Fn5vMpt2qZC35oJVisy3B5AmylaqTgdpNbyj564flB0H6QWN3QsKLysK2sq5levX6vvRnVUBquZ8P00uY8ZQ5AaAAAAgPAICwPQwXx6xyBuLWnsS8IvQPkaqLT9B82vY207vw/ZJA931Fpp8nCUFVteSvx+Pb1fuBIUFmYSDAszGSm3Qhppg3HX93ygdvvGdyYcFubpdXpwU9oVAAAAAAAAAAAAAAAAAAA8Z7JZmXf8m+zbPyaNjcj0LZizjLVWKhSkTEYyRsYY2ccflh68Wxo8KC1aImW7pLOeIvUtlPKTMr052fFRSWb2y3lHBqVNG6RtD0jnXCLdc6vsT78ljQ5JW+8vLbNslXTymdKBPVKuX1qwSOaCS6XBg7K3/lg67YnS0CHp+v8qLT+wRLr0ddLvfyuNj0n9C6U1J8s851VSfkLasVVad77Um5OGDksDi0t1ZLJSV7d0+89k798oHdonHdxb2sfD+2We+xqpu0fq6ZV94C7puv+Uslnp4v8hc+ZFsvt3SVvukk59olTIS9sflGSlX107e+CWrZKWHS3dd3vZATf1x43H/pJuwE/lQWq9brbgpNckWGvnhpPFCFabG1pmawaiRQ1WK87px0YLfQsRrEaQGoB2U7TSRF6acNJ7ewepVQeL1Q5Eqx9+FhysZuaGqNUMRIsarGbq99NE6Ft13wSpAQAAAHMRFgYAPogbhOVdkJaLeoL6DPtij6NjtPVbEVYqSsq2uhIPrwPJyzcV88OKdD04O76EhYXnQViYJOVWxg8LS/P+evj+9LYNAAAAAAAAAAAAAAAAAEAbMsZINYLCZuZ1VX48x6w6UVp1Yu3OsqVxxKa3r7K9p1d62otnp9c+WeYVbw9f4//8+9mJf/hS6PXqOmFtw9HARpLe88W5bTEUP/h66ac1xmmTjAN0HGNMKUgkS5BatekgtTChY6GC1eYEotm6oWW1+q5XR6EQvu8owWrl7V5+vAYA6pgOxnSjvYPUwgWiRQ1WMzNtmRp9xwtWM437aSr0rbItk2nf5zAAAACIh7AwAJ3Lq1d+49aSwjckJZ7IHnCMqutIuq7iePPreBk61UEmD0Vc0dHx9eqxyHOB3waXQlhYu7M2hcdxAAAAAAAAAAAAAAAAAACAEIK+SDZwLCkAdJ7yIDV1O9mCi04TUSzaOcFitULH6oaf1Q1bs4GhZVGC1YoVbcF9hwp9qxOslue/UQBtaPoxdTzvoneXn+tz/5nBVoSOBYefmZm2euuHDVarXMc0308T+0iQGgAAmO8ICwPQwSL8se0sWCXmH/7FCUm1v6kqFYmGH6X8h3txovl1bKH1dfjKxzCiycMRV/Qw1KvTgsaCBngEDQhxpa8VYWEpn7u7PyCd9f5ktuXjdVoYS7sCAAAAAAAAAAAAAAAAAAAQJGgMcpGUEwBAY5mMUSbjKENNUuqfZYqhWBVGFjZ0rCL8rG4gmm0YWtZMsFrlNsP3HWUfAaDd5J0+frVvkJoxYQPRgkPH6oefmdl5DfpuPljNNAx4ay70rXKe8fHzvgAAoGmEhQFAM1Y+x02/cb/haPs10omXtaSUkjB/bCf8R6GPYTOSVIgQFnbgTumoC1tfS9rhQzV5+OJBlIA3yeE16ON585QvYWG5VoSFpey+f5PWv0fKuHv702uPX5d2BQAAAAAAAAAAAAAAAAAAIEjQ2NC44+4BAOhwmYxRj9OPYHj4OaIQrLUq2uDQsqaC1WoGotm6fUcKVquow4aqLWqwGgC0E2ulyULp5mgLrjp23LeUMa0JHasdfmYq2jKBgWiNw89qB6uZ4H6a6LvWPmYzBKkBANoLYWEAOliEP5q6FrS+DEmx/4DbvzGFsDCX6zfTZ8g/wFwFPdkIrxg8fIWjsLAYjKunBD7+gRz1WvAxLKzTgsY8CQvra0VYWMrnLj8o7bxBWvX8dOtIy+ShtCsAAAAAAAAAAAAAAAAAAABBMkFhYZ02dhYAACTBGKPsVIBKj5OPWPn4+apwpoPUAkPLQoaOBYeW2ab6DhOsVlmHjRb6FmIfCVID0G6KVio6C1Jz/fe6+yC1uKFjweFlpmL9bHU/sYPVTHAdIUPfgvYxYwhSAwAfERYGAM1w9U1EbfmmZcJP7oOO0Zw/MhKuy6c/cuJcRz2LW1dHOZ+Oz7TIx8lV4BxhYaEFPgYnHBaWa0VYmAcmDia0oQ67TgEAAAAAAAAAAAAAAAAAQDxBXyRbJJEBAAAgSeVBao624Kpj56y1c8PJIoSOBQei2cBAtOq+G4WfFWrUUSjaOX23KlityEeJALSZopUm8lMTk63uvb2D1CrCzRqEjjUKP5vbj5kbolYzEC1qsJqp209zoW+V6xOkBiBNhIUB6FyRAnpcPWGO22+L64odXubiOAX12YZPpNMMh1v3D9LmD81tdxWE5+X5iXj8nZ03Xv0MLeg6DRoQ4kpfC8LC2jIkEgAAAAAAAAAAAAAAAAAAIAGZgDHIzsY8AwAAAM0xxpQCRLJSr5stOOk1CdNBanUD0eqEn80JL5vTZmsGokUNVivM6cfGDn0LClbjI2UA2s104OSEk97bP0gtbuhYcLCamWnL1A1Eqx+sVrsO07ifWvWG3MdM0Ot6AFqGsDAAHSzCEzxvw4JSeIXAm7TbsHV0wqsoIfZx6TkBq3bSG+dRrwVH11Ccx5WOe3XQk7CwXAvCwgAAAAAAAAAAAAAAAAAAAFBbJmBsaLGTxjwDAAAA7ak8SM3RFlx17FyxWApSCxs6VjP8rG4gmm0YWtZMsFqxyb6jBKtNTwNAu5kOUhvPu+jd5efH3X82PVwg2tzQsUbhZ6WfZqYtG9B39GA103w/TQSrEaSGViEsDACa4iosKOZfsi0PDIrZn5MAo7B9tsOTpBRD5wJDlVy9muJhmJV3AVtx6vFtXxwLfKxMOixsRQs66aRz10n7CgAAAAAAAAAAAAAAAAAAYgsa89xRX5AMAAAAYL7JZIwyGalbmvqn1drh87W1TQepxQkdqx+IZmsGojUbrDbdXqjox9atLW6wGgC0m+nHOTfaN0jNmNpBZK0KVnvTUzN67rr2fS6A8AgLA9DBIvxn7SxkKG6/aQSxJPxEIejYG56wNCfhN87D3mdWvdDN9muKeH/x9v7fQYKu08AQPEe6F0pdC6X8ULLbbTmuPQAAAAAAAAAAAAAAAAAA4KFMwNjQIp+SBgAAAID5qCJIzYn2/SxycTrorCL8LFzoWGD4WUWbbdh3M8FqxYo6bPOhb03sIwC0E2ulvHUXpPasM6za+f87hEdYGAA0xVGwStwQopYHPfkYXhbUZ9pPWNLefpkw11Hi37IVst9sztH2a4h8f/MxWMnHmlzyJCxMkvqOlga3JL/dduQsaA8AAAAAAAAAAAAAAAAAAMxLiY95BgAAAADAT5mMUU9G6nGWDOLR56SbYK1V0bYmdKx2IJoNDlsLGX5WHaxWqGizoUPfmt1HgtSAzpRN4eP2SAdhYQA6V5TwEmdvLvoYztVI0n/8xQ0L8ymsJsVaAt84L7jZnpchQZ6FhXl5jDwV9BicRlhYbmW8sDDOOwAAAAAAAAAAAAAAAAAAQG0mYIx4kU+7AgAAAAAAyRijrCmF47gJUmvPEDVpNkitZsBYnfCzmuFlNdryRRsYiBYlWK0wpx8bLfQtRLBakY/2Yh7ryqZdAZJCWBiADhbl2ZyrZ4CehYXFDrFJ8Jly9RvBQW8Md4QQx90EPctLOwgvyb+uIm7LWbhTjH47LXAqMLAxhbCwvpXJb7PleLwEAAAAAAAAAAAAAAAAAAAeCvyCZMLCAAAAAAAA6ikPUut1swUnvSbBWjsnWKxW6FjoYLU569vA0LIowWrFOf3YhoFoYYPVqusgSK39daXwcXukg7AwAGiKo2c53gX+hAmdSviJvHfHKIY0Q6cSf+Pcw7CwyMffw7Aw3wOPhh6R7vmQtPcWafFZ0rr3SEvOit5f0HUadF27lIsbFub5uWspD/d1Pv2fAgAAAAAAAABpsUUpPyxNDkqTh0u3/OHZ6Uy3dOR50sDJaVcKAAAAAACAdpMJGBu64UfJ1gEAAAAAAIB5wxijrqzUlXW2BVcdO1ecCiKLGzoW3GZrrh82WK26jkL5Ok303Wyw2mQh7TMTXpawsI5BWBiADhYhKMRVuEjcoCbfQk+c1BPUZ8gnzc6OUbs9aU84LMzLb+/yLCzMt/tvq4ztln72bGno4dL04fuknT+VnnubtOjUiJ16FBbWFzcsDOmap/c7AAAAAAAAAGjEWqk4XhnwNXlYyldNT8/PV01XLDuoUK+3PuGfpLWXJ/9lRAAAAAAAAGhfo0OBs+zPvyctGJAWLJL6F0n9C0u/9y2UyTr7pCcAAAAAAAAwb2UyRpmM1C1N/dNq7Tt2bDpIrZnQseYC0Wxg3830c8ry9j3GaA5hYQDQFFfhInH7bXVdYfqr92QhzbCwdngSk2LoVGCoki2t3/IPaYTc10QDsyJuy1mNcfr1OPBo03tng8KmTRyQtn5LOvO90foMDJ9LISwsFzcszONz1wm8DDIEAAAAAAAAgDqKhdqBXvkaAV9B4V/TyxYnk639rvdIK54lLTs/2e0CAAAAAACgfT14d+As+95XB8/rWyD1DZTCxPqnA8Wmfy/9NOUBYwumfi9v6x8oBY9lUhifCgAAAAAAAMArFUFqTrRDPgZ8QlgYgM4VJfjHWbiIb2FhHgo6X+34DeSJBmNVCQwLk0rXUYuPZ+h9TfCYRD7+HoaFpXkt1TP4oPTQFbXnHdgYvd+gx+C617UjscPCOomP16mPNQEAAAAAAACYd6yVCiO1w7waBXpVL18YSXtv4tlxPWFhAAAAAAAACG/wQLT1RodLt/07AxcJPbq5KmRsNnRsNoDM1Aobq2gbkPoWyLTjmHcAAAAAAAAAgHcICwPQwaIEhTgKF4kb+NPqwKBQ/dV7wzLJEBbeOJ0V5rjXCVWyBQehSz4G8vgWFjYPbXqvZPMBM+OEoxVqt6cRFtYXMyzM16A3F3zcV2fhnwAAAAAAAADmhcLEVJhXyICvoPn5QV6PnDaxP+0KAAAAAAAA0E76B9KuQBoZLN32Bi8SaoRkJiPbNxUkNv1zJoBsNmTMVISRLawIJZtp7+0jeAwAAAAAAAAAOhhhYQDQFFeBJ3H7TSGIJfE3GdvwGCUtTCBPvVAlJx9W8fG4R6zJVeBRrH49PL4H7pK2fjN4fpz9HX0sYEYKYWG5mGFhXkjq+vHwOj20Oe0KAAAAAAAAALRasSDlhxoHejUMABuUiuNp7838Q2gaAAAAAAAAOlWxKA0fLt3qCDXaMpuV7asKFJsJIJtq618kExQ2Vh5S1tNL8BgAAAAAAAAAtBnCwgB0sAjhJc7CguIOjm91XTH7c3KcgvqsfoOSNyzrMtngeS4+pBG6zwTDhCJfn76GBXrmrvckv816IXiu5I5S6fHGt+vJRx7u68NfaryMyZYeLxgIAwAAAAAAALhjrVQYnQ3pygcEfNUK9JoJ/ppedyjtvUFdHr5WDAAAAAAAALSbQkEaOli61REueKxLtjxQrCKAbGAmWMwsmAoX659tKw8m04JFMt09Ldk9AAAAAAAAAEB9hIUBQFM8DQvqXdaaMmaEqSfh8JSggKd2DHHJ9jrqOMR5qxuq5OIb3UNe266C+GpvLOH1HPab6HELYc8G6fEfNVgoYs2TdT7kNfpYtD7jyHSXHnvH9yS/7XbjIogwrvxw42VsQSpOOHzMBgAAAAAAANpYcTJaoFetZW0h7b2BJGVzUvciqWtR6Wf3wNTPqVtX1fT0/Orlb7tMevR7c/v38bViAAAAAAAAtKf+AWlsWCrymlMshbx0eH/pVkeYkb+2u2cqUGwqbKxGAJmZbqsRNla+nunqbs3+AQAAAAAAAMA8RFgYgM4VKWTHw7AgSRo4pTVltIyL4xTUZ9iwMEfnLkpY2VEXt76OsOqFhbn4kIZvYVaSIl8LrvYlVr8eHV9rpTsvd9h/nQ+LLT7L3Xbr6VtJWFgoHl2nzbJ5SYSFAQAAAAAAYJ6wRSk/VBnala8K8Kob/lU2XRhLe28gSSZbP9ArKOBrzryB0pdktKqmmtr4tWIAAAAAAAB4JXP9XllrpbERaWRQGj5c+jnz+5A0Uvpphw9XtQ1Kw4OVy48OeTrmuY1MTkiH9pZuAcIeYduTmwoUG5gKIJv+fepn34DMgkWzbdUhZWXrmWzQ65UAAAAAAAAA0J4ICwOAZrj6xuu4by6m8U3cUUKynKiqI+m6ohz7wA9JxBXmOko4LCz827oOth20qajb8jQs0Bc7rpP23Nx4ucjHv871mVsRsc+Ycisl3R1xZcfnPdRxrvN40ErtPIAmjf9fAQAAAAAAgHLWSsXx4ECvfIiAr+n5+cG09wbTuhZGCPSamtdVNp3NefSe3bSAeni9FQAAAAAAAC1kjJH6FpRuR64MXi5EX7ZYlMaGK8PGagSQ2eHD0mhZ2FjFMlM/R4dat5OdamKsdDsY/IW+oUeo5/qnAsWmw8YWzQSOTYeNmQVTYWP9c8PGZgLJ+hYSPAYAAAAAAADAC4SFAehgdd4iMlnJFppbx1UtoVZv8eD62MEuLo5TQJ9pfwCieyDCSikG5/w/9u48zJX0oO/975XUi6TuPsucM3Nmxp7xzHiZzTM2xjE2PYR4lgAAIABJREFU+2IDDiFsF3ggYQ1c58YJD6uNjcGOsTEQdq6Bm7AEEogDuSwBYt/EBmMDIcF4Vo/tGY/twZ7xzJk5S3dL6kXSe/8oqVUq1VsqlWpT6/t5Hj2nJVWV3pJK6tMl1VcmKg6UwUEacbfNXGNCxykWVpIIk+1Ld78m+9twidyuM7Tu/nBJ4eI893J7/SzJdpoEB68BAAAAAAAgqX43EO2KCnpNiX/ZbtFrA0mqrE0GvWqBuNe0+NfKllRtSpVjfFCZa589+1sBAAAAAABQUqZSGcWkzlzjni7Gsmyv54XHWtujgFh7MkBmhz+3dtwBsr12eiu5rPba3unC485JYofH6k0vItbcnAyQDWJjR+Gx5lZgms3RZetNb5sDAAAAAAAAgASIhQFYYo63dU6/QHraV0j3vC5kloyCJ/N+OD71D9eXMOySa0xqBvVrpYt3zTZPZttRjOVGRZX6YYG8ecVd1zwPEEl4/5d1GyyDR353hudB0vs/ahsp6A3z+tXJ5818e4rznMopFrbQzx0OXgMAAAAAAFgq1krdVnTQqxsn/rUt9TpFrw0k732RWYJeNUfgq7YpVVeLXpsF4dpnv8j7igEAAAAAAIB4TLXqRaGaW9HTxViW7Xalzu5kbKw1DJB5P9tgkCwsUnawl84KLrNOyzs99Zhzklh7QY2RrW+MRcZGgbHRz2YYGasHYmP+SNl6Q6boL18HAAAAAAAAkCtiYQAQdOI2ud9+y+pD7PMut2Qxk0zCMK5lxnxzq1SxmgK3IxP1TfUZbEdx7/c8H5/Et1Vg5C2LedPSPwyPK6YtKhYWFcHLUv1cMbcbR5yIZG4fDijZ76hZpB7jBAAAAAAAQCZ6++HBrmlBr8MdX/xrW+rusk+oLGrN8KBXLSTwFRUAqzZy3BcKSe77m+cWAAAAAAAAMBNTq0mbJ71T1HQxlmW7h4O4mC8g1tkZhcUGITI7MU1IpOzwIJ0VXFbWDmJuO9GTxVlWpSLb2AwEx4YBslFkzBzFyQaXDedp+sJjq+uExwAAAAAAAIAFQCwMQHEuvF86eGry8sb10tazsr/9qMiO80PsJY2Fpf7h+rjjMTNMOy/H7Uw8Vnm/QZXk9ooMPEVElTI5SCPuuuZ5n5QsFjbXcksQC3v4N6SdB2eYIemYSxgLW58nFpbxYxfn+ZxXbK4MUbukOHgNAAAAAAAgO/3eIN41JegVFQDrDs73OTCpFCorg2jXDEGvsfODn2sbUoWPMiwu1z579rcCAAAAAAAARTG1FWnrtHeKmi7GsuzB/ih21fbFxobhsfa27DA21t71AmNhkbLWttTrprOCy6rfl3Yve6cIsT7JW63KNoJBsc1RZGxwMs2Qy4ORstU1wmMAAAAAAABARviELYDi3P2D0mPvmLz81ldJz3tL/uM5YuT+EHtGwZN5Qyqli5nkGYYp+k2kBOtaZHQuKqqUxXYUd5l5bsNJ7/+sHrdFDil1O9K9b8jntiK3kYJiYfV5YmFZi/OcKjj2uAhK9/sVAAAAAACgYNZKvfb0wFdY0Cs4bbdV9NpAkmTGg161aYGviOuqa0WvDMog9y9lAgAAAAAAAJAns7omra5JJ8+4p4mxHGutdLDvxcTaO6PYWGtb6gzCYq1BeKzti435A2X+AFmvl95KLqNeT9q56J0ixNrTW1uRDQbEjgJkW0c/m2BsbCJAtimzsprK6gEAAAAAAADHBbEwAEss4m0K54fYs4qGzPvh+JTHFffD+sbk98F+5+3EjYVlFXpKct8XeDBEVCwsk290j7uued4nSW+rwMhbJvOm4MFfkjqfdFxpFDq+xLG2iO0zcrvO0Po8sbCMH7s4r025HZi1yAeAEQsDAAAAAADHRO/AHfTqhgW+IqYlsF4O1Xq8oNe0+FetUdw+VhxPru2J1w4AAAAAAAAAPsYYaW3dO5260j1djGVZa6X9znhErL09HhRr78gehcZ2JiNl/ggZX34wn+6hdPkp7xQhzr1sV9ekui82NhYUG0bHfLExZ6RsU6a2ks76AQAAAAAAAAUiFgZgebnewDFG7reUyhgLUgYfrp93PbO4n+IuM248LC1J1jWrcFmM5UYd8JPJQRrHKBaW2Zu+cyy3yDeiD7elD7w5/LrKqvS0r5Ae+c8p3mAJY2H1eWJhGYv1fC469rgALN8yBwAAAAAACmT7Und3MtgVJ+gVnL6/X/TaQJJMbTLoVQsJfE3Ev4IBsE2pwlv9KCvXPvsF3lcMAAAAAAAAoNSMMdJ6wzudvso9XYxlWWulTmsQDxuPjY0iY7uyw8v8kbGjSJnvcsznYN87XX7SOUnsIxbW6qOAWH1zFBbzBciMKzbmj5Q1NmWq1XTWDwAAAAAAAJgRnyAGgFA5x8LmjTQV9k3cOYa5IuNuBUpy3xcanYqKhWUQxYm7rnluw4nv/wIjb2X0wE9L+45ve3rmK6TqmmPGpLG2EsbCVk56YbT+wezzZv64lygWtsgHgBX2+xUAAAAAACwsa6Xenjvo5Qp8hV3f3S16bTB0FO6KEfSqOQJfK1tSZa349zWArLm2cfa3AgAAAAAAAFgAxphBLGpD0tXu6WIsy/b70l4rNDbmv8wOw2T+yFgwQNZppbaOS2u/450uPuGcJHZ4bL0xCIoNYmNjkTHvMtMIhMaOImW+y+sbMpWCPgsPAAAAAACAhUQsDMASc+3GNxEfYi9rLKhkH67P5H6KeLwKlWRdCwznREWVMjlII+4y87xPShYLm2u5BW1Le+elD/5U+HW1pnT7a6UHHNcnFbl9FvQGqTHS+jmp/Ugxtx+l254+TV6hukU+AGyRxw4AAAAAAGbTPxyFu2YJek2c35Fst+i1gSRV18ODXmGBr8j410ZxX1gALCTX84X9rQAAAAAAAACWi6lUvChUYzN6uhjLsr2e1NkdD4gdBchGsTEbjIwdhcl8P+930lnBZbbX9k4X3JPEDo/VN0axsUFALBggMw1fZCwYIGtsepGyetOL3QEAAAAAAOBYIxYGoHw+8OPSHW+UKisFDcDI/XZLGWNByiBmEnc8ZXgjIe4YyvTYFTgWU42YPYODNOLGiPKKFnk3lnC2AiNvZXP/j0nd3fDrnvPd0vqVETMnvf8jts8iD9SrlzAWdvkD0p8+N8aEeW3Ti/zc4eA1AAAAAABKzfalbms86NWNE/jy/dwdnO9xUEQpmGp00KsWiHs5A1+bUnW16LUBlpNrnz3vswAAAAAAAABAYqZalTZOeKeo6WIsy3a7UmdnFBtrDcJjw9MgNmaDkbGJSNm2dLCfzgous86ud4oQaw+7MbKNYFBsGCAbhcXMMDTmj40FI2VrdcJjAAAAAAAAJUUsDEA5/a//U/qMX8v4RiJ2lzvDM2UKTvlnTzlmMveH9bO4nxzLDL4BkfcbEknu+yIPhoiMKmURxYn9fTgZ3LbDwcWEM5bx+V/AttT6e+nBt4Zft3pauuX7vJ9Tfy6WNBa2fi7hjBk+du/92pivTcTCpsoioggAAAAAwLKzVurvxw96Rca/drTQ+x6Ok1rTF++KGfQKm75az38/P4CUuZ7D7G8FAAAAAAAAgDIwtZq0eco7RU0XY1n28MAXGRsGx7ZHP7e2pc4wPOafJhApa21L3cN0VnBZWevdj63t6MniLKtSkW1sjQfFjgJkvvBYMEzW2BqPlDU2pdV1wmMAAAAAAAApIhYGoJw++pvSHT8qNa7J7jZcwSZj5HxbI6toyLzxqKJiJsbk2Jop6wFfScaV0brEuo8iokqZbEcx1zXPbfhT70w4Y5GPWwbzJnXfG7yDOcPc+mppNfrbqhKPOXIbKTAWVk8aC8vI9oPS5fvjTZvX865sr9+zjIdYGAAAAAAAI/3uKNDlD3p1tycDX6HxL9/5Ph/0L4XK6vSgV80R+PJPX9uQKtWi1wZAWbi+4IP9rQAAAAAAAABw7JiVVenEFd4paroYy7IH++Gxsfaud1l7R7Y1eVlogKzXTWcFl1W/L+1e8k4RYn0qu1qT9YfGxgJko7CYCblsNK33s1ldS2X1AAAAAAAAFhmxMADlZHvSw78m3f5DBQ3A9VZEVsGTeT8cn/aH6+dcz86j6QxjjGtMMb9hJKtYTaLlZrUdxViu6wANKZuDNGLfPznGhD7675PN9+G3Sjd/d7pjkZTrus9r+0PSw78efl39GunZr8zutqO2z6jtOmvrCWNhWR0UdeF9swwimzEUdjtxzTCenQelrWdnNxQAAAAAALJmrdRrjwe74ga9gtP32kWvDSRJZnrgy3n9MO41+LnKh+kBZCHv91kBAAAAAAAAAMeBWV2TVtekk2fc08RYjrVWOtgbj421tgdxsd2joJg9CowFQmNjAbJtL5yF5Hpdaeeid4oQ510Eu7I6Co4dBcg2vJjYIDZmmltSPTw2dhQpa27J1FbSWT8AAAAAAICcEQsDUF6X78/4BiLiU8bxFkKpglP++Yt688FxP/3Pb5Vu/JaUbytuLMwVDSpR6O1wN/1hSJo7FpZ6dG6WZS7AASK7D0kHF6XVUykveJ51z/l+u+d17teb239YqtV9F6R8MNDBBfd1RcbC6gljYVk9dq7fX2EuvC+D1+oQhf2Octh/Kv607/4y6Ss/JdWvym48AAAAAACE6R0Mwl0xA1/+67uBn8v2t/myqjbCg1614Pkp8a9qY7Z9QACQN9c+e34fAQAAAAAAAAByYIyR1ure6dSV7uliLMtaK+13vJBYa1vqjGJjo6DYjqz/sk4wUjaaLrNjkpbF4YF0+Snv5BD76+5X18YiY15QbGMsQGaa/ssCkbLhfPVNmRqH6AIAAAAAgPywJwJAeRUawMr7G69LFguL+wZE/8B93eGOdxBT1oIHRTlDbxltT0nerPnkH0m3fn8xY4mKKtleemM5WmbM+yfP53utKXVbyeb95J9IN/yTdMcz1xt+Ob5ZeOHvpEd+N/y6jWdKN31btre/94T7OlPgf2nXr042X2bb/AwHin74F6VP/4WMxuFXsje1P/622aZ/9I+lm749m7EAAAAAAI6Xfk/q7k4PenVjxL+i9r0iP6YmrZ6YLegVnHZlS6ptSBXelgWwJJzvRZVsXzEAAAAAAAAAAFMYY6T1hne6wv0l07HCY/2+tNeW2oHYmD8o1tqRbe8MptkNiZTtjs5jPgf70sF56dJ55ySxw2Nr9bHI2NjPg9iYaWx6gbF6IDbmj5TVN2Sq1XTWDwAAAAAAHFt8Kh1AiWX9gfGo5S9YLExpR2dSWM/230snbp1/OUPOoFIwFpb3AQgJ7vt6wrjQVHHGEhULyyJeFDcWluMBIs98hfTBn0o276V70h2LpIU5OObu17ivu+NfS5WVwIVpv45GzLeylXCZKai73/SNltHj7gomurQflRrXZDOWIyXbxh/6pdmm/5t/RiwMAAAAAI4za6VexxHtmhL0OtwZhL+G1ycM1CNlxot1uYJetZDAlysAVlmbfX8LACy9nL/YBwAAAAAAAACABWAqlUFAaiN6uhjLsv2+LyA2CI91JgNk9ujn3ckA2fCyvXY6K7jM9jve6cLjzklih8fqzfGAWGNzdGp6cbGj8FhjMxAp81223vS2OQAAAAAAcOwQCwOwvFxxImPcwamsgkZxlrt2Vtp6jnT+vSHzl/DD9amPKe5973rsMrqPkmwT60njQlPEWcfIA9sy2L5j3z85xoTWzrivu+YfSo/+SX5jmVdekbXH3y099o7w607eKV3/ddmPwbV9V9eLPWAz6fM5s9ftGe+Li+/PPhY263ZqMv4TJc84IQAAAAAgO/3DZEGvsOltr+i1gSRV64PIV0jgKyroFZy+1oz4UgkAQOac77OW8P1MAAAAAAAAAAAWkKlUvCBUM/pLt2OFx7pdLzzW3hmdWtuj8NggMmaHYTJ/gKy1PR4p2++ks4LLrNPyTk+5J4l9lM5YZMwfFxudN67Y2PCyxqZUb8rwJVsAAAAAAJQGsTAABSrxjkLnTsysPsQ+ZVftqedLL/4t6a5XOWYv44fr046xuJYXeKxyPwAhwXpmFi6Ls9yI510mAZ2Y65rrNuxYzyteJH32f5Hetp7jWKRcQ2lJWCvd/YPu6+98U/jzLu03g1zbyMqJdG9nVutXJZuvLLGwXMy4jdca2QzjSMmfcwAAAABwnNm+1N2NF/hyXT/8ubdX9NpAkkw1EO8KCXqFBb4mrtuUKitFrw0AIA3OYCP7ZgEAAAAAAAAAKBtTq0mbJ71T1HQxlmW7h76g2HhszAuQDcJj7e3ANIFIWWdHOthPZwWX2fB+fdI9Sax3byqVUXhsIkA2ioyZRiA21twaBMc2RpGytTrhMQAAAAAA5kQsDMASi4pPOXY8ZhJTkjsac/qF0hf8d2l1EMPJLYSVwnqmfV+5lhfcSew8AKHIQFdQkeGyqJ3qGWzfsbeDPA8QiXjuV9ekjRul3YdzHM48657D/fbJP5ae/Ovw685+pnTNy2dbXuL1dTxvnM/5nNTqXrDs8PKMM2b0OjDzG2c5vNE262Oe1e/a0Q1kvHwAAAAAOGas9cJcrqBXNyTw5Zx2p+i1wVBtI0HQK+R8dT39aDwAYMG53mct45cfAQAAAAAAAACAtJjairR12jtFTRdjWfbwYBQQa+960bGWLzzW3pEdC5MFA2SDaXcvS71uOiu4rPp9737cjT5mItan9KtV2XowKBaIjDW2ZIbXNbekum86f6RsdY3wGAAAAABgKRELA4AJEbGwzAIjrhBWZRQKG54PlfKH61MJteQVMAs+VnkF1Y4WnGCWAsNlUTvCMwn0lDAWNi08l3moKKjEsTDbl+55rfv6O38sYptK+U0X5/ZdcCxMkurnZo+FZfaaVIL7Y0LJDgDL/TkOAAAAAAXpdwPRrkDAa5b4l+WDs6VQWZsMetVC4l5T418bxQfYAQDHl/N3DPtmAQAAAAAAAABAPGZlVTpxhXdyTRNjOdZa6WB/PCA2iI2NYmQ7skeRsfHLJwJkvV56K7mMej1p95J3ihDrXaXaiuwwIDYRIBv9bAYBsqPYmD9QNoiUmZXVVFYPAAAAAIA8EAsDUF6Zxzwilu+K32Q2prKGsOaQW4wlcB85H7sCA11pzJPacqPeDikwFpZrvGfa822RYmEZ+9jvSJfuDb/u6i+VrvzsBAtNuL6u7bsMB7aun5O2PzTbPFm9Dsz6zTh5fJNO6eJcZRsPAAAAAPhYK3Vb0UGvbkjgK2z6XqfotYHk7buYJehVcwW+NqUqH04FACyCnN+rAwAAAAAAAAAAcDDGSGvr3unUWfd0MZblhcf2RiGx1jBA5guKtbZlO4MgmT8ydhQp2/XOt7ZL+Dn7BdM9lLYveKcIce5lu7I6FhhTc0uqb4wFyIwvLiZnpGxTpraSzvoBAAAAAOBALAzA8nLtVDVG7t28Ge2IjRyL//wCxcJSv69i3keuoJqyuo8SrKfN6ptEShgLi71t5rgNT3u+5f18mucNnizfHOodSPf+sPv6O980ZQFpR6hKHgubWVbbWQ7xr5nNup1m/KYnb6oCAAAAyEJvPzrw5Qp6TZzfEZHjkqg1w4NeYYEv5/WbUrWRT6wbAICyWKj3MwEAAAAAAAAAAOLxwmN173T6Kvd0MZZlrZX22qPwWHsUG1NrR+p4ATI7vMwfGRv+PAyQdXb5jPy8Dg+ky096J4e497BdXR8FxBq+sJjvMjO8rLE5GSnzzWeq1XTWDwAAAABwrBALA4AwuX+I3RUvqkSfP5L2uFLYSZz2fRV3x7Xzscs59BYpo+0ozliiDkzM5D6Kucxc35hw3ZaZcn1WSvqmzMO/Ku0+HH7ddV8nnX5+wgUnXF/na0oJYmH1BLGwzLb5WQ8+zuNg5bJt42UbDwAAAIDC9Hu+UJcv2NWdFvgKmbZ/UPTaQJIqK9LKieigVy14PmTa2qZU4QOXAAAk49pvz75ZAAAAAAAAAAAAaRAeqze9k652TxdjWbbfl/Za47GxYICsvSvb2h6PjI1Ns+Nd12mlto5L62DPO118wjlJ7PDYemMQFBvGxgaRsfooNmaGlzc23ZGy+oZMpQTH3gAAAAAAUkEsDMASiwoGuXanZhWcckVwguPIK2KWxnqmfV9NCzwNz+YVVJtjuZlF5+IsN+qtggy279hBpDIdIFKmsUyT0Vi7bem+N4ZfZ6rSHY7rxqZLOULlet44n/M5Wk8QC8vqNWnm+z2H7X3mMFrWY1qk5zgAAACACdZKvfZktCtO0Cs4bZcPOJaDGQ961cICXxHxL//11bWiVwYAALj2U2f2/hgAAAAAAAAAAMDyMpXKKBZ15hr3dDGWZXs9qbPrC4gNImL+n4/CY4NpOoN/gwGyvXZ6K7ms9tre6cLjzkliH7VV3xgFxBwBMjOMjYUFyIaXrTcJjwEAAABAwYiFAcCEAmJh84aw0v5w/cxhl4yWMb7A8IsnDjjIK6g2XG6C9cxsLCWMhcVdZq4HiEx5vqW+7U4zz+1lNNYP/4LUeSz8uhu/Tdp6VvJlJ75/SxwLqyeIhWW2zaccaUtFyQ4Ay/05DgAAAECS1DtwB726IYGviWkH13e3CU2URbURL+gVFv/yT19rph8dBwAABcr7i30AAAAAAAAAAACQBlOtShsnvFPUdDGWZbvdQXjMFxtrebExLzrmRcZsa3sUHHNFyg720lnBZdbZ9U5POY4VUswjlIzxwmNjQbFhgGwUFjsKjzVcAbJNab0hw2eGAAAAAGBmxMIALLGIXVjOb7zOKDDiWm5wHM4oThk/XJ/XmAoKqo0WnGCWAscStRM1i+079rrmGO+Z+nzLOSRUtnDRwSXpAz8efl1lTXruD8dcUMo77F3bUhliYeuLHAvL4Y2VWbfxzJ8TJXvOAQAAAGVm+1J3dzLYFSfoFZy+v1/02kCSTG0y6FULCXxNDYBtShXeYgIAACGc79WxbxYAAAAAAAAAAGBZmFpN2jzpnaKmi7Es2z0cj421tgfBseHPXlTMTkwTEik7PEhnBZeVtaP7NWqyOMuqVGQDkbHxoNggPOaPkzWH0/siZc0taXWd8BgAAACApcGRHABKLOMPjEcGg1w7h7Iak2u5wXHkHcKaQ9of+Hcur+BYWKLlFjmWqB2fWWzfcZeZ5wEi07alqLFkseN4jnXP4sCaB35SOrgYft2zXyk1njbnDSQcs3P7LkEsrF6iWFgp39wo2wFgZRsPAAAAkDJrpd6eL+YVM/AVdl13t+i1wdBYtGtK0MsV+FrZ8kLgpfzbEQAAHB+u/2uU8P1MAAAAAAAAlBfvaQEAgAFTW5G2TnunqOliLMse7A9iV4GoWGvn6HI7/Lm1I3UiAmS9bjoruKz6fWn3sneKEOsIkGpVtrE1iow5AmQmeNkwNtbclOqDaVbXUlk9AAAAAMgKsTAACOMKTuUdCwuOI7cQVhrrmfZ9FXd5eR+AkGA9Cw2XlTQWlmvwbkosLO9vtp/r9lIea+dT0gd/Nvy62qZ066tnWFjKH9JwbSPO1+scrV+dYKastvlZ7488Pkwz63ZaUCwUAAAAKFr/0B3tigp6hZ23vaLXBpJUXR/Eu2IEvvzXT8S/muX4+xcAACAO5/uZ7JsFAAAAAADADNifBAAAMmBW16TVNenkGfc0MZZjrZUO9gfRsUFYzB8TGwTFbHt3PEzW2pY6u+MBss6O1OPzXnPp9aSdi94pQpz/Ydraynh0bCxAtumFxRqbMsHYWGNzIlJmVlbTWT8AAAAA8CEWBmCJRQWDHLv12p/IaCiuaExgHIsUC8sr/hT81qjc7qM5llvkWKK+ZSuLccV+oz7HN/RdYzq6byLGcvm+1IeT67pPc/+bpF47/Lpbvk9ad78ZEl/C9X38neGXX74/+VDSsnbGe+2Z5TmU1etAGb9Jr3Qf2CnbeAAAALDQbF/qtsaDXt2QuFdU/Gs4fW+v6LWBJJlqdNCrFhL3ck1bWSl6bQAAAPLn2k+d6xfHAAAAAAAAAAAAANkxxkhr697p1JXu6WIsy1or7XdCY2NHQbH2jqz/smCkrDOarnzHcCyY7qF0+SnvFCFWeGx1bSIgdnRqenEx4wuQhUbKmltSfVOmRg4AAAAAgIe/DgAUqIRBE0mRsbDMRIXL/GcdISyV8cP1Ke5YjNxJGfc+ymhHZ/8wyUypD8MTZx0jtu0L75Ou+ry0BjMQ837f/pD06H+Trv6SHGJH055vEWN+9E/THkz07U1zEP2NFzPZ/aj00K+EX7d2Vrr5u2dbXtqP4yf+IN3lpalSldaulPY+NcNMWb35MuP9fhD95kU6Zn3NK+EbU9aWM8QGAACAZKyV+vvxg17dkMDX0fS7KuX/YZdRbSNZ0Gtla3z6ap3//wMAAMxlkd7PBAAAAAAAAAAAAIpljJHWG97pinPu6WIsy1ordVqD4Ni2FxObiIztyvrDZBORMt/PmM/BvnRwXrp03jlJ3E8f2rX6WGRM/sjY4GRcsbFGYLpqNZ31AwAAAFAIYmEAyitRhGkWEbtSLt/rvm7nIWnzmekOZfvD4ZdPHJjo+HB9Kb+JO68DZWPeR7sPZ3Pzuw/NPs/f/7/pj0OSDi5MnybqYNcPvEW65XvTG48027b55y+XnvXPpRe+Nd0xTJgSC1vWb9C49/Xu193bXuMdMJ2G43r/1s/NFgvL6nV71gPa/+obpau/WFq7IpvxSCV8zBOM5+++R3rBz6Q/FAAAAMym3x3EvGIEvqKu7+7ksN8JsVTWpge9XIEv//W1DS/kDAAAgOK5vtindPuKAQAAAAAAAAAAgOPFGDOIRW1Iuto9XYxl2X5f6uyGxsbU2j66zLa3JyNjLd9lnR0vYIb57He808UnnJPEDo/Vm1LdFxsbi4wNgmKNQGzsKFLmu6y+IVNxfZkUAAAAgKwQCwNQXpWMX6JcH0g3RupEBF/2zqcfC3vs7Y4rArvenB+uTzk6k8aH9VMdU8R4gmEc1330sf8oveQ/pDckSdqPEedysXYsv57tAAAgAElEQVT2qM8097xuvvn3n0xnHGNm3JYe/CXppu+QTj8/g7EMRD33vQmyu+0w8z7f9p+aP/R06X7po78Vfl3j6dKzXpFgoSlv32W37v72llCZRR4T3O9/9qXSl/yv9IdypGQHgCV5zn3oZ4mFAQAAJGWt1G1FB726wfOOaXvtotcGkrfvZZagV80R+FrZlKprRa8NAAAAUufaT13GLz8CAAAAAABAaaX9OWsAAADMxFQqXhSquSWdvdY9XYxl2V7PC4/5o2MtX3is44XFrD80NhYg802730lvJZdVp+WdLriPoY0fHhvEw4bhscZkgMy4YmNH82xJ9aYXuwMAAAAwFbEwAOV1uJvt8vccOzOq69HzZbHT4dxLpU/8/uTlF94XuG1XaT3tD9dP2Z3zzO/0/q1tegfwJlnGTMOZYVnG8att5WQ6Y/G7fF/yeS/dK526I72xSNLFu6KvP5VhgMslSZTn8XdlGwtzbpuD53Ym0bQocz5Xnni39PSvmm8Z9/yQexzPff3018WZlCwclZb6jLGwrA6KqtZnn+fC/05/HGNmfMzTCFZGOftZ0iNvy/Y2AAAAjoPevhfp6obEvaKCXsH4V3cnw1guZlJthAe9aiGBr4kAmO/naoMP5gMAAMAtry8/AgAAAAAAAAAAALAQTLUqbZzwTlHTxViW7XYHcTFfQOwoLrZ9FBmzwcjY2DSDYNnBfjoruMw6u94p4nC8WEcJVSqj8Njw36Ow2OhnMxYk2xyFx/yRsrU64TEAAAAca8TCAJTX4Xa2y+86YmT1a6WOu4oeb7fTjFw7HyYuz+vD9VN2wdz47d6/znhZ2qLGE7iPXPelPUxtNEe6c3wTgTOylqHnvSX/20wShtr9SPrDGDMlFhbl7GelOhLPnGGkecNKT/6N9Ik/CL9u62bphm+ab/lpOXGrdPkDk5evbOU/ljDrM8bClumgqKzjX7PaenbRIwAAAMhOv+ft75gW9IoTAOsfFL02kKTKyuxBr7BpaxtShbcDAAAAkAPn+4cl21cMAAAAAAAAAAAAYOGYWk3aPOWdoqaLsSx7eOCLiA3jYsOfB2Gxzq5sa3t0mStA1s3g2MVl0u9792Mr+pjiWO86V6uy9c3x4NhRgGwQGWtseuGxsNiYP1K2ukZ4DAAAAKXD0UEAyqubcSzMFS8xFXdwypsgg7E4ojHXf2PgpkvyTdxn/oH3r6m6p0k1DjNDLOymfyY9+qcZj2co4n6/8vO8g3I/+V8zuN0Ezr1MuvJz87/dRQwiXfEi6am/Cb9u7Uz6tzf3tjnn/He/xn3dHW+c42By12tlwvGuXxUeC3v2K5MtL231q2ebfhGfG4k5HvOTd0qX7o4/fVrKFi8DAACwVup1pge+XNf7z3dbRa8NJEnGF+4KxL1WNn0xr2nxry2pulb0ygAAAAAzcn2xzzLtFwcAAAAAAMDc+KwfAAAAMmZWVqUTV3inqOliLMse7A/iYoHYmC8oZo8iY7tedMz/89F121Kvl84KLqteT9q95J0ixAuP1WQngmKDqFjdFx5rDq/fOrrsKDzW8OY3q3weFAAAAOkgFgagvA4zjoU5/5yfsvsmixK468PxwRiX85u4C/pwvXM8eY4h8HhUVh0TZvCGcdRBDV/w/0l/9U/Tv82kPvcPCzrAuIRv1DtDgUVV/guMhX3qf0iPvyv8utMvkJ7+1cmXnTbn4xYRLczTuZeFX26qkg3bSZ/V63YZn3OOdT3zYkcsLGslvI8AAMBi6h8mC3qFTRv6f0bkrlp3B76igl5j5zelWrMc+0wAAACAIjj/L8y+WQAAAAAAAAAAAADHk1ldk1bPSqfOuqeJsRxrrXSwNwqNDcNjY0GxHdmjGNnueJTsaJ7BZX2+1Gkuva60fcE7RYjzbrhdWfUFx0ICZI1NGf/lgdjYUaSssSlTW0ln/QAAALCQiIUBKK/DnYxvICIYFPlNRHnGwoIfpnd8uD7tb+KO+01MeR34OtPj4Xp8coyF1Takykq5Dgyurhd0w2U88CNhKDD2NLOa8z5K+s1p1kp3vcZ9/Z1vni+g5po38Te9zfO45eDEzdIzXyE99MujyxpPl274p9L9b56cPqtvvCvlN+nNGujLeB1cr90n75Au3ZPtbQMAgOLZvtTdjRH4ihH/6u0VvTaQvEDvyonxoFdtWuAr7LpN7295AAAAAHNyvT/Ah9ABAAAAAAAAAAAAIIoxRlqre6fTV7mni7Esa6201x4ExLalziAsNoyMDQJkdixMFoyU+U6lPGZpgRweSJef8k4Oce9hu7o+FhlTY2v0c3NTqg/DYxuDwJj/Z9989U2ZGqkJAACARcP/4ACU1+G2twNhnlhNFOfOiSICTzFjYa74VOofro8bC6vOv4xYZoiFpR4oijLlcStTLKwopdwJWLLo1Nz3UcL5P/H70oX/HX7dlZ8nnXtp4hFlo2SPW5gXvlU690XS+fdIzeul679e+uSfhE+7TAdFler3reSOl0X9TgMAAIWy1gtzBYNdw6BXN2bg63DHuwzlMAx0xQl6RcW/quvZ7TsCAAAAMLvc3s8EAAAAAAAAAAAAALgYY6R60ztdcc49XYxl2X5/EB7zxcaGkbHhqbXjhcc6vtjYWKRscFlnN72VXFYHe97p0nnnJLHDY2v1UUSssTn4eWMsMGbGLnNEyuobMlWOzQIAAMgDsTAAJWalbkta2chu+WGMiT7INIsDUF0fji8sFhZXXqGXWWJIrscng2iV836vBP5dZiU88MMVLlrUg8uTxMb6PenuH3Jf/7wfS+H+SPm5uAiPmzHSdV/tnfyXhcrqubFAgb5c445jNxB+8bRYWJYBUwAAjqt+1x34igx6hUxvu0WvDSQvzBUMetW2wgNfE/Ev3/W1DQLbAAAAwHHl/L9+GfdfAwAAAAAAoLT4vB4AAABQGqZSGcSiNqQz17ini7Es2++PAmLtYVhsMkBmh7Gx9u4gUuYLkA0v22unt5LLar/jnS487pwkdnis3hyLjIUFyMwwNua/3h8ga25J601vmwMAAEAoYmEAChQjlHK4nV0szBkjmbZLIoM/Mm0v3m05P1xfUJAprwN7o8IxE28ElyAWNrxfOPA5h+hPEkmf+1mZ9z5KMP/HfkvafiD8umu/XDrzGfMNKRNle9ziKlvksQgle+ycr91T/jSy/elBMQAAjgM7CHdHBb2iAmD+63qdotcGkve36SxBL2fga1Oqrha9NgAAAABKz/VFEcu0XxwAAAAAAAAAAAAAEMZUKl4QqrkVPV2MZdlu1wuPBWNjw7DYIDJm28Eg2fBf388He+ms4DLrtLzTU+5JYh0JaYxsfWMsMhYWIDsKj9UDsTF/pGy9IUOMGgAAHDPEwgAUp38wfZpuK8MBRMVLIv74y+IPw2nRqSN5RWdixociY1h5RaICj4fr8ckkWkUsbLoSxsIShwKlbNYn51hYb1+650ccVxrpzjfNOZ7hotJ+LpYsOBWX63Ugs4Oiyvici/s7Li+O+6gyLQTWl0QsDABQYr39ZEGvifM7KuX/KZZRrTl70Cvs+mqdb1wGAAAAkB/nvl/+1gQAAAAAAAAAAAAApMfUatLmSe8UNV2MZdnu4SAwNoiNtbalji88NoiM2fZ2YJpApKyzIx3sp7OCy8ra0WMRNVmcZVUqssN42FFMbBggG0XGjD80NgyPBSNla3XCYwAAoBSIhQEoTpxYWKYfGncse+ofa1n8MRczpJJXdCZ2zCevP2yjxhMcg2tMGWxL0wI4xMKU6H7PJOw2dgPhF8fZUZNF4Gne9Z11/od+RWo/En7dM75ROnn7fOPJims9y76Dzfk6kFEsLPPnTxKuMRV0wJjztXtKCCyzwBsAYKn1e5OhrsNtqRuIe0XFv7qD8/3DotcGklRZkVZORAe9aiGBr4kY2EaMmCkAAAAAlFHeX6IBAAAAAAAAAAAAAMB8TG1F2jrtnaKmi7Ese7A/il21x2Nj3r/bskc/70oTATLfz71uOiu4rPp9afeyd4oQ62i2alW2EQyK+SNkg/BY03dZfRAbC0bKVtcIjwEAgMSIhQEoTi9GLCzLD407gyoFxMKc6xkzFpZ6dGaBYmHBP4idfyDnGAsbPm7TwjPLYKHCRbF21aU5kJSWOcP8h7vSfT8afp2pSXe8Yc6xjC3QcXnS9Z3ncSsSB0W5Q28FBRWd45nyp9EyPWYAgGjWSr32eLArbtArOH2vXfTaQJJkxoNetZDAV1T86ygAtilV14peGQAAAAAoluu9OvaxAgAAAAAAAAAAAACWgFldk1bXpJNn3NPEWI61VjoKj217AbFheKwzjI3tyLaCUTL/+Z3R/L1eeiu5jHo9aeeid4oQ6+jJ2orsUXQsGCAbhMWaWzLDwFhzdFkwUmZWVlNZPQAAsDiIhQEoTj9GLCyTMM+0ZRcQnnF9OH4ipFKy6ExU6CXNSNRMy3IdgJBFLMyxc+QoEhaxLZUyopWBJNtm1kV0Zygoxu1m8lzLMRb2oZ+V9s+HX/fM75Q2bpxzLAUoe0Hf+TqZ1WtAGV9bZn3OZb0OCWNhqYc5AQC56x24g17dkMCXKwDW3eEA57KoNuIFvVzxr+H0tWb5/18JAAAAAAsj7/3iAAAAAAAAOJaW5bPWAAAAAOBgjJHW1r3TqbPu6WIsy1or7Xd8QbFdLyA2DIoNw2NhkTF/jGw4P3+zzad7KG1f8E4R4tzLdnVNqvtiY80tqT4Iiw0uM41AbCw0UrYpU1tJZ/0AAECmiIUBKE5/P8ZEGf7B6Ax0GUX+eZzJAcQxY2Gu6EzqB6rHvd/zOpg6ajzBMeQYn5kWeYuKqS2NMu70mSMUmEUUYt4dY3Hn339KeuAnw6+r1qXbf2i+cUxI+bm4qDsQc3vdLjPXY1fQa6Tztbsafvm0+QAA2er3pO5ueODLGfRyxL9i/Q2KzJlaIOblCHxNu762KVXYtQkAAAAApeN6L5V9rAAAAAAAAAAAAAAAFMIYI603vNPpq9zTxViWtVbaaw8CY4PwWMsXHut4/9r2KEI2GSnzzYP5HOx7p8tPOieJe2SmXV0fRcbqg/DYUWRsQ2psybhiY75p1NiUqU45Vg8AACTGEXUAitOLcaB2pnGYpMGgDAJZccMlzvhUyh+uj/th/chwWk5hn+AYMom5uUyLvBELK2csbB5lPJAl5n38gR/3IhlhnvNdUv3q9IaUiTkib0XKPRZWwuec63e5877Jeh0cy58WG+FANgCIz1qp1xlFurrT4l6B6/3Td3eLXhtIkoxU23AHvWoxA18rW1JlLee/2wAAAAAA+crp/UwAAAAAAAAcb3y2AAAAAABKyRgj1ZveSe5jEmOFx/p9aa81Hhsbi4v5wmPByFgwQNZppbaOS+tgzztdfMI5Sezw2HpjEA4bxsb8kTHvMtMYhMaGsbGjSJnvsvqGTIVjtQEA8CMWBqA4/YM4E2U4gIjwTN5vLjpjYZXo89PmT3s8EyLup1RjL1HLCo5hypjSfGyd99PgcQrG3pZRku3g0r3pj2PMHNGpTGJB8z5XYszf/qT04V8Iv27lpHTrD8w5hhCu51ri14YFjYU5x5fR77fMQ1tJxPwdlxtXvGzaazYHsgFYAv3DQLQrZtArbHrbK3ptIEnVdV/Ma4agVzD+VWsW+LsbAAAAALBQCvuiCAAAAAAAAAAAAAAAsEhMpTKKRUVNF2NZtteTOru+6FgwQOaFxWxrezwyFhYg2++ks4LLbK/tnS64J4kdHqsPg2MbRwGxsQBZfVNmGBsLBsiOYmVbUr3pxe4AAFhwxMIAFKe/P32aLD807lr21P/oZzCmadEp5/lp8ycUd3mR91WK91PkdlDgH2bTIm9RB9Pbw/THU0oJts3z701/GH6Jn/uSPvXf0x2LNP/rXJz573uj1NsLv+7WH5BWT803hjzM87gVKa/IY5k5t1HXY5fxAWPO1+4psbBleswALBbbl7qt8aBX1xH4cgXAhtO7/r+AfJlqdNBr7PyU6yorRa8NAAAAAGDp5PwlGgAAAAAAAAAAAAAAYOmZalXaOOGdoqaLsSzb7UqdnfHYWDAoNgyPdQbTjAXIfPMdcJzG3Dq73ilCrCMSjZFtBINig6hYffMoNmaGkbGGL0AWjJStNwiPAQAKQywMQHF6MWJhmQZDIuIlJ58XMVsWY5oSnXKdHyosYJJTLGymZUWMyfYkk+avvjliYZ/4I+mqz09xLCmx/ehxz7y8Mn5L/JRw0bSgQr8rVdLcjua9j6bMv/OQ9JFfDb9u/SrpOf9qztt3STsENWtwqiRcAap+VsHABXrOpflaM5OE49l5SFq7Iv3hAFhO1nrx5LhBr7Hzwet2Vc7X/yVU2xhFumpbMYNeIdNX18sfRAUAAAAAwMX5fib7LwAAAAAAAAAAAAAAQPmZWk3aPOWdoqaLsSzbPRwFxoYBsfYgLOYLkNlWIDLWDkTKWttSN6tjEpeEtYPHYTt6sjjLqlRkG1uj4NhYgGwQG2tuyQQv888zDI+trhMeAwDMhFgYgOL0D2JMVFAs7OlfJb3vX8443zxDmTMWluc3cZ/6tNHPUWGVVD/wH7Gs4B9AUdvV438mXf3SdIYkTX/czn6m9MGfds2c3jjStPtRafOmFBdYwvV0Pm6DqNP1Xy+df697/t2Hpa1npzmgbOe/54cl2w2/7vbXSbXmnLeflwWNhdU2wi/vttKP883j4JK0ejL95Ub+LijosXMGNqeM54M/LX3W21IfDoAF0+/6wl2zBL1CzmcWjsRMKmuTQa9azMCX/3y1KVUckVAAAAAAAJaKa19rUV9+BAAAAAAAAAAAAAAAUAxTW5G2TnunqOliLMse7E/GxlqDn9vbg+jYji86FhEg6zmOOUU8/b60e8k7RYh19HC1JhsMih0FyPzhsY3BNKPLjsJjdW9+s7qWyuoBAMqNWBiA4vT3p0/jDHqkwBUwMUaqrkfNmMFYXOsZjMi4vok7xw/XP+sVvjNRf37mFYkKjKHXcU966Z58YmHDx+maL3PPW1lNbxxDpirZ3uTls8SgYkX8ZpDnthnblFDQuSnbiCu8ldS8Yb2o+S/eLX38d8Kva94g3fQd8912pJRDUFGv2WW2csJxhfVCMquu65NKuD31YvxOTiQq9lhUUCVheO7yfamPBEBOrPUijcFglz/o1Y0R+DrckXrtotcGkhfbnCXoVQsJfNU2vfNV3ggBAAAAACBVri/JKOV7RgAAAAAAAAAAAAAAAIvBrK5Jq2vSyTPuaWIsx1orHeyNwmHD8FggKGbbO+Oxsda21BlGynZG4bI+nwmZS68r7Vz0ThHiHDlqayujiFgwQDYIi5nmllQPxMaGYbKjnzdlVjI4Dh4AkApiYciEMeYGSc+TdI2kDUmPSfq4pL+y1h4WOTYsmiyDUxGxkKj4zLxhn1COP4SCH6Yvw4frN27wnckpFhZ5nwfHkGPAzHW/Dx+nasQfQlk8Zmc/U3riLyYvnykIlfb2XcI/8qc9blvPlm57rXT/m2abP/mAspv/7te6r7vjDdHbaGaSrm/CwFPRnLEwSYeX04+FJf4dldFzNer54vqdljVneK4ifeG7pHd+gWO+Er6eAcddb98LdHUdgS9X0Oso/jU4393hOVwWtWZ40Css5hUV/6o2yh8MBQAAAABgWTn3/eb1RUMAAAAAAAAAAAAAAABwMcZIa3XvdOpK93QxlmWtlfY747Gx4c+tUXzMDi9v7UidQKSs44uVZXIM/xLpHkqXn/JODnHvYbu6NoiMDcNi/p+9AJkZxsb8gTJ/pKy5JdU3ZWpkbQAgTbyqIlXGmK+R9D2SXuyY5IIx5m2Sftha+2R+I8PCyvQ/9VHhmRyDU9L0eJHr/JEc4wf+xyQq9JLqYxexrGAkIM/Qm+2FX26qo5+v/UfSJ/9ryLxZPGaOdV/ZGj9/4lbp8gfCp017XEmXZ/sZhoQiQkFDN39PjrGweTnW5/xfSo/+Sfh1J26Trv+G7IYkZRDwWNBYWFQM7PByfuOYJqvtOjIWVnVfZ22GERjXmIzUuM49W+me+0BJ9XtSd3d60MsVAPNP2z8oem0gSZWVQbhrhqBXLSTwVduQKuyGAgAAAADg+HPs22UfKwAAAAAAAAAAAAAAwLFijJHWG97pinPu6WIsy/b70l5bagdiY8OwWNuLjdn2zmCa3ZBImS9Ahvkc7EsH56VL552TxA6PrdXHImMaRsZ8cbGj8Fg9EBvzR8rqGzLViONSAWBJcJQmUmGM2ZD0byV9/ZRJT0v655K+yhjzzdbad2Q+OCy4DGNhrnCUKXEsTI54UmEfrs/pfpop8pXnYxfjccs18BY3phQVeVuCWJhzTHEeNyn9x27O7TLs+WGtdNcPuue5801SpaA/iJNG+yJfs0tsJSIWdpBFLCzp/ZvV75GoWFhWQcAporalyIAZB7LhGLNW6nWmB75c1/nPd1tFrw0kSWY86hUMeoUFvlzXV9eKXhkAAAAAALBIXPt++eZXAAAAAAAAAAAAAAAAOJhKZRCT2oieLsaybL/vBcOGEbHWjtSZDJDZsTBZIEA2nKfDsVJz2+94pwuPOyeJHR6rNwdBsWFUzB8d8/41ja1RjGwsUjaIjjW3pPWmt80BwAIiFoa5GWOqkt4m6eWBq85Ler+ky5JukvR8jf7/dZWkPzTGfJG19r15jRULKNMwR0RYKSo+k8kH2WPEi6SID9fnGTDxrX9kpCfN+ylqWcExRE2b8mMXJzqVZ+Atbkwp1xDWHLGwrMSJ80XdR6kH1ebdLkPmf+zt0vn3hE9+xYuka798ztssQtwYXslU16TKmtTfn7zuMItYWFIZPeeini9RYS5ZZffYuralSs6vj0AKegeBcFfMoNfEtNsE8cqiWo8X9KpNCXzVGsVFGQEAAAAAwHLL9Yt0AAAAAAAAcGz9g5dKH3xf0aMAAAAAAAALyFQqoyjU2Wvd08VYlu12R+Gx9nhszPt3EB4bRsaOphlM54+U7XfSW8ll1Wl5pwufck4SOzwWiIyNomOjCJlxxcaOLtuU6k2ZyOYCAKSLWBjS8BaNh8IOJX2PpP/HWnswvNAYc6ukfyfpxYOL1iT9gTHmudbax/IaLBZNlt8wHRVWyvk/ZHHiRWHnj+T44fqxsFHeUbUwgTFE3W7aY5onOpVJkCNmTCnXEFbS5RURC/PfTzneR3O/zgXmt33p7te4J7/zzVNCf2lx3UbS9V3QWJjkRVv2z09enkUsLOnrXFaRoMjlFhSxiXoNyPP1EcvL9qXu7mSwK07QKzh9WIgQ+TO1yaBXLSTwNREAC7muwm4aAAAAAACw6Bz77dnHCgAAAAAAgBmYf/wdsr/5lskrvuZf5D8YAAAAAACwtEytJm2e9E5R08VYlu0eeuGx1vYoINb2h8e8sJgdXt7aCY+UtbelA44rm9vwfn3SPUmsI3YrFdn6xlhkbBQgG0XGzFiMLDD98PK1OuExAFNxFCrmYoy5UdJ3BS7+P6y1fxic1lr7AWPMF0p6p0bBsCsk/YikV2Q6UCyuLINTzmVPi4VlMKZ5Y2G5frg+Ziws1fspYlkT/+GNut20H7s5YmGZxLDixpQWIBaW6TbtWnacx03li4UFX8se+V3p4l3h0577IuncF8x3e0VxvWYvwh+9Kyfyi4Ul3Z4ye85FLNdU3ddZm2EHzrUtVZRvKBALxVqpt+cOenUdga+w6bu7Ra8Nho7CXTGCXlHxr+r6Yvw+AgAAAAAAyIPzPZa8vmgIAAAAAAAAx4G58mnSK94k+8uvHV34jFtkvunVxQ0KAAAAAABgDqa2Im2e8k5R08VYlj08mAyIDWJjw/CYPYqM+cJkYZGy7mE6K7is+v1BAG47crJYn56qVmXrgaDYMEQ2vKyxJROMjQ1/9kfKVtcIjwHHFLEwzOtHJK34zv9GWChsyFrbMcZ8i6R7Ja0OLv52Y8xPWGsfzm6YWFxZxsJc0Q8TfbB/FgEz51iCH6Z3xcJ6aY5mSuzAt/5xp5tX5H0+QywstxBWxfFzhmOR4seU8gxhlTEWFifOF3UfpR16m/s1xTd//1C653XuSe9885y3NQvX60Par6EL8Ifqylb45YclCgZl9ZyLWm7k8yxDkb//c3zuIx/9w0HMKyTw5Qx6OeJftlv02kDywlzBoFctEPCKjH8Nrq9tFPc6BAAAAAAAcKw59tvzhQwAAAAAAACYkfnG75Ne8PnS+/5MuvoZ0oteJtN0fCYTAAAAAABgiZiVVenEFd7JNU3MZdmD/UFgzBcQG4bGBkEyG7x8LFK2O5q/l3LzYNn0etLuJe8UIV54rCbb3PICYhMBslFYzDQHcTF/bMwXJlNzy9veAJQGsTAkZoypS/qawMU/Pm0+a+2HjTF/IOlrBxfVJH2DpB9Nd4Q4FjL90LgrrFRR9H9/swiYxYgXhZ0fyvPD9WNho6joVJr30wyxsMjbTfmxmyc6lclj5lq/GWJhqcdwki6vqOf+UI5BtXm3S/82//BvSDsPhk/39K+SrnjhfLdVqJjbdxlVHH8EZxIeSro9FRELq0bNmPpQpi97SiyMA9nyY/tStzUe9OoGAl9x41+9TtFrA8l7vkcFvWpxA1+bUpUdiwAAAAAAAKVWhvczAQAAAAAAcGyYm18g3fyCoocBAAAAAABwbJnVNWn1rHTqrHuaGMux1koHe6OoWGsYHNse/dzalu3sjmJjE5GyYYBsR+rzeaO59LrS9gXvFCHO0bx2ZXUQFBvExhqBqFhzS2Z42fDysEhZY1OmtpLO+gFLjFgY5vHFkhq+839trf1gzHl/XaNYmCR9lYiFIVRBsZC8Y2FxolNh56fNnwnf+pu87qdZlpXlNhO8qTixMFcMJ4PHzBVKm3iccozhJF1eltu0c9kxIm+R8yc17zY7GE+3I937hvBJTEW6I+dfs67Xh8QhwRyf22mrOP7L3c8iFpZQVs+5yFhYVLgwQ87XyoryDSTe0mUAACAASURBVAUeQ7398GBXWNArGP8am35HC/2cP05qzdmDXmHTV+tT/t8IAAAAAACA48O1n5V9fgAAAAAAAAAAAAAAAMBxZYyR1ure6fRV7uliLMtaK+21R+Gx9ig2NgqK7cq2ticjY63A9J3dOY5thiTp8EC6/KR3coh7D9vV9VFArDEIjzU3ff8OwmPDy4KRsubm0Xym6uo4AMcbsTDM40sC5/98hnnfI6mr0Tb4fGPMVdbax9MYGI6TDP/jFTusFHO+ucYSI14Uen6ooFhYXlG1qPs8+HhFxVxSf+xcsTDffyxzDbxFBfD8Z4mFhfJvS5ERo5IFg4br8+Bbpc4nw6e54ZukE7fkN6YsJH3NLgPj+C+3zSAWlvR1LrPnXFQsrKg/wl1jMov13E9LvxeIeu34Yl5RQS/f9cNp+4dFrw0kqbI6PehVcwW+/D9vSBV2lgEAAAAAAGBGzi8TOab7WAEAAAAAAAAAAAAAAACkyhgj1ZveSVe7p4uxLNvvS3ut8diYP0LW8oXHOoPY2ESkbPBvZze1dVxaB3ve6eITzklih8fWG4Og2DA2tuXFxOqj2Jjxh8lckbL6BuExLBRiYZjH7YHzfx13Rmttyxhzr6Tn+y6+TRKxMIzLtNIaEVaKjM9kEQvrOYZSiT5/NH+OH673PyaR0am8CrvBxyrqdlMekzM6VQn/Oc68c0kjFubYFpNKurxMt+k4cb6I14DU76M5t0vb9yI9H/ix8Osrq9JzXz/fbSTiug+Trm/M7buMKjnGwhLfvxk956KeL5FhroJioXm+Ps7DWqnXngx8xQl6BafttYteG0iSzPTA17TraoOfq2tFrwwAAAAAAACWmXM/K9/OCQAAAAAAAAAAAAAAACBfplIZxaTOXOOeLsaybK/nBcP8AbH2ZIDMDn9u7YwCZO1AhGyPYzvnttf2ThfcmZrY4bH6xnhAzB8gGwTGjsJjza3ANJujy9ab3jaXA2utdPEJmdNX5XJ7KA9iYZjHLYHzD804/0c0Hgu7VdK75hoRjqEsg0FR4ZmcY2Gu9SwsFhZ3/fO6n6KWVWQszBWOqTh+jjPvHKICOOMXRCwk7W0p6fIyfO7HirwNXwdC7tPUn2/zbpd96YGfkvafCr/6ma+QmtfPeRtlEHf7LiHj+C93P4tYWEJZhbAiny/5/LE7yfWcq0yJhaXw3O8dDGJe0wJfU+Jf3Z18Q6FwqzYmY15hQa+o+NfKlrecRXg9AwAAAAAAAKYqwZcfAQAAAAAAAAAAAAAAAEDKTLUqbZzwTlHTxViW7XYH4TFfbKw1+Lk9io3ZYZDsKDgWEik72EtnBZdZZ9c7PfWYc5JYRQBjvPCYLzI2CpCNYmPmKEzmCpBtSesNGcdxp9Za2Z//XunPf1/6uXfIXPfsZOuNhUQsDIkYY05LOh24+JEZFxOc/lnJR4Rj68Fflh7902yW3dsPv9xMiYV9+BelT/xBumM53HGMJfhheseH6w8vS+///hTHczniSt9/Y6KiFh/9D9KFv01pPI77J2wMrmCWJH30N6XubjpjkqQn3uMYUyX8Z78Lf5vuYyZJbdfLcOA+inrcHvyldJ9zl+5LNt+9r5dqzfTG4Xfp3vDLw+J8YQGlB39Zeuzt6Y1n9yPzzf/If5EuO+7nWlO6/bXzLT8xx3bWeTTZtr/3xGy3UyamGn754+9K/3VgJ+H29MBPS/UMytGRr9+O+0WS3v8qqRJx/Twu3uUYj1FkwOzgYvTjZftSt+UOfB3uSH3H/z2QL1OTVk/MFvSqhQXBNqQKf1IDAAAAAAAAY5zvQ2XxhUwAAAAAAAAAAAAAAAAAsHhMrSZtnvROUdPFWJbtHg5CYr6AWMcXFmt58TE7MU1IpOzwIJ0VXFbWDmJuEcdXK+an6SoV2UYwKLbhxcTePeqd2H/1Munn3yFz3XPmGzsWBkc2I6ngb5y2tbY14zKC1Y/ofCaW0yP/uYAbNdExpY//p/yGEoyWuMJTvY70wL/JfjhSIMYVcT89+sfeKXcR/zXafTif+ylOLGz7g94pFzPElB753eyGMYsHf6mAG40ZC/v738tnOHE99T/d1z3nu6X1K/MbSxz7T6b8PFyAWJgrJnThb9OLKs7rY7+V/226Xh8l6UM/k984jkz5/S/l97sWIYwX63IFvWohga+JANjg58ra9McaAAAAAAAAQEIR+36tZd8cAAAAAAAAAAAAAAAAAKTI1FakrdPeKWq6GMuyB/uj2JUvNHYUHmtvyw5jY62dQZQsJFLW2pZ63XRWcFn1+9LuZe8U5anHZP/ly6Sfe7vMM27JZWgoFrEwJLURON9JsIzgPJsJx3LEGHOlpLMzznbTvLeL48aoNPGZYEglKqxSiDLcT4Ex2DJ8K3nF8XNBOOginon7qQSP3TxWT0u3fF9xt5/XdrcI27fhv9yhTLXoEYwr3e/YY6JaH0S+QgJfUUGvYPyr1uQxAgAAAAAAABZB1H572y/fvmEAAAAAAAAAAAAAAAAAgCTJrK5Jq2vSyTPuaWIsx1orHexL7UBsrLUtdYaxsUF4rO2LjY1FynwBsl4vvZU8ji58Sva7vlj62XfI3EAw7LijXICkgrGwvQTLCMbCgstM4v+S9CMpLAfLrLrqxShMVbIF/6ehshZ9vgjrV45+Pv3p0vn3FDcWSaqsjp+vX13MOPyqa+E/FyV4H518nvTEXxQzljILPr+qa1J/v5ixpOHWV0urJ4q7/eB2t+i3M4/qetEjKKeVuTux6aqsEnYbMtXxmFcw6FULxL6c8a9NqbJS9NoAAAAAAAAAyFVU9L8viVgYAAAAAAAAAAAAAAAAABxnxhhpbd07nbrSPV2MZVlrpf2OLyIWEhRr78j6LwtGyvzzWpveipbJ9gXpUx+TiIUdexwNj7QkeTU8pq+giO15PyHd9QNFj2KcqUqnX+jFws68WDr/3iIHI5150fhFZz7Du7zIp8+Zzxj9fMM3Sh/6meLG0niad/K78rOLGYvfmZeM//yhnytuLMMx+N38XdKHf76YsZTZ2c8cP3/mJdJjby9mLPOqXyM9+5XFjuHMi3O6nZdMn6ZoZz9T+th/LHoU5dJ8hnTuZVKtKXVbRY/Gc+Yl5Qg8zqO2kSDoFXK+ui6ZOLtYAAAAAAAAACDARMTCjuuHrAAAAAAAAAAAAAAAAAAAmTDGSOsN73T6Kvd0MZZlrZU6rUFAbDw25oXFvMusP0o2ESnzXV4WtRWZN/6OzIu/tOiRIAfEwpDUbuB8PcEygvMEl4nj7sZvlh7+NWn7g0WPZOS210qrJ7yfn/t66d1fJvX2ihnLra+S1q4Yv2z9rHTL90sP/EQxY3rhL49/wP/U86Wt50jbHypgMEa6882TMRNTkZ71L6QH/+8CxiRp62Zv2x669h9KZz+ruPDcdV8rnf608cs2bpRO3CZdvr+YMZXRuS/yTn63v046/57yhIziqq5LL/ltqZbkV3OKTt4hXf8N0sd/O7vbuPHbpM1nZbf8tFz/9dKDvyJduruY269teNvEXa+Sth8oZgx+puK9fldXpTveKP3d9xQ9IunKz5GuGfwB/KJfk/7m2/K77craZNCrFjPw5b++thF9EB4AAAAAAAAA5CLqI1f93EYBAAAAAAAAAAAAAAAAAICfMUZqbHgnXe2eLsaybL8v7bW8kFhrEB4LCZDZ9vZkZOwoQDaYpzNHz2B1TeZHfkvms/5R8mVgoRALQ1JljYW9VdLvzjjPTZL+MIXbxqzWr5S+6N3Sw//eC6hU61K1Ie0+VMBYznlRp6d95eiyc18ovfQvpY//p3yjSutXSte8XHr614Rf/7y3SKdfID3236S9J7Idy/n3SofbkqlKn/NH0rUvH7/eVKSX3yfd/RrpgZ/0LmtcJ528PdtxNW+Qrvtq6arPD7/+hb8onbhF+ttXeudXTkpnX5LtmCqr0pkXSzd+i/cYDtWa0uf9qfTwb0hP/IXUa2c7jqGVE942fMM3h8djXn6PdNerR4/b5rOyjS71D6RP/Y/R+eu+Vrp4l7Tz4fHpGk/zIlN5qTWls58j3fRtUnVt/LqzL5Fe+lfSx39HunSvpBy+7X734fGA4vN/yosGPvHnUv1a6fCy9OFf9K5bv1I6/enj85+4Xbr+6yYDcUUwRnrxb3oRtsffKR1cTG/Zq6elcy+Vbvgnk8HAMlo9JX3hu6SHf106/5dSfz+nGzbe8+kZ3+C9Lp95kfc79yP/Tmp9TDrzEqnWyGksAxs3SU//aumqz/XO3/zd0uZzpE/+odT+RL5jkbz/d1z5udJN3zq6L276VmntjPQXXz6a7pqXh88fVGuGB71qrsDXphdNAwAAAAAAAIDjYvWUdO5l3vtTpiLJjP6N9REqAAAAAAAAAAAAAAAAAADKzVQqUmPTO5291j1djGXZXk/q7AaiY4PAWGtb6gzDY77I2F5LOnedzFd8p8x1z0lvxVB6xtocwhc4dowxV0h6MnDxhrU2dq7QGPNvJH2v76Kft9Z+Vxrjm4Ux5jZJ9w3P33fffbrtttvyHgYAAAAAAAAAAAAAAMDc7r//ft1++9gXPN1urc3xG7IAABjHZ/QAAAAAAAAAAAAAAMBxUPTn8yp53RCOF2vtU5IuBi6+bsbFXB84/2DyEQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABw/xMIwjwcC55854/w3TlkeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUiMWhnncFzj/4rgzGmOaku6YsjwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIClRiwM83h74PznzTDvZ0uq+c6/31r7+NwjAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOEaIhWEe75DU8Z1/sTHm5pjzfkvg/O+nMiIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBjhFgYErPWtiX9XuDiV02bzxjzbElf6buoK+m3UxwaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAsUAsDPN6vaRD3/lvMcZ8uWtiY8y6pF+XtOq7+FettR/JZngAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACLi1gY5mKtfVjSzwUu/j1jzCuNMf4gmIwxt0h6p6SX+C5+StIbsh0lAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAYqoVPQAcC6+WdJukLx2cX5H0C5JeZ4z5O0k7km6U9GmSjG++A0lfaa19LMexAsD/z969R0+XlfWB/+6maRoaBASaq9BcjYASiJmIkrFjAEEnIEqUkGToGDUTk0xwNJlBzZpoMiYzGiauxAuJCo4XRkVBEATGxEaEeAEbRSAKSKMYGrkLLU1z2fNH1dtv1fndqn5VdersXZ/PWnuxTr116uxn1342dZ7zW7sBAAAAAAAAAAAAAAAAAAAAAJphszA2Vmv9VCnlq5P8UJKvWfinK5M84YTT/iTJM2qtr951/wAAAAAAAAAAAAAAAAAAAAAAAFp1yb47QB9qrR+ttT4tyV9P8munvPUDSX4gycNrrS8fpXMAAAAAAAAAAAAAAAAAAAAAAACNunTfHaAvtdYXJHlBKeX+SR6V5F5JrkhyQ5J3JnlNrfXmPXYRAAAAAAAAAAAAAAAAAAAAAACgGTYLYydqre9I8o599wMAAAAAAAAAAAAAAAAAAAAAAKBll+y7AwAAAAAAAAAAAAAAAAAAAAAAAMDxbBYGAAAAAAAAAAAAAAAAAAAAAAAAE2WzMAAAAAAAAAAAAAAAAAAAAAAAAJgom4UBAAAAAAAAAAAAAAAAAAAAAADARNksDAAAAAAAAAAAAAAAAAAAAAAAACbKZmEAAAAAAAAAAAAAAAAAAAAAAAAwUTYLAwAAAAAAAAAAAAAAAAAAAAAAgImyWRgAAAAAAAAAAAAAAAAAAAAAAABMlM3CAAAAAAAAAAAAAAAAAAAAAAAAYKJsFgYAAAAAAAAAAAAAAAAAAAAAAAATZbMwAAAAAAAAAAAAAAAAAAAAAAAAmCibhQEAAAAAAAAAAAAAAAAAAAAAAMBE2SwMAAAAAAAAAAAAAAAAAAAAAAAAJspmYQAAAAAAAAAAAAAAAAAAAAAAADBRNgsDAAAAAAAAAAAAAAAAAAAAAACAibJZGAAAAAAAAAAAAAAAAAAAAAAAAEyUzcIAAAAAAAAAAAAAAAAAAAAAAABgomwWBgAAAAAAAAAAAAAAAAAAAAAAABNlszAAAAAAAAAAAAAAAAAAAAAAAACYKJuFAQAAAAAAAAAAAAAAAAAAAAAAwETZLAwAAAAAAAAAAAAAAAAAAAAAAAAmymZhAAAAAAAAAAAAAAAAAAAAAAAAMFE2CwMAAAAAAAAAAAAAAAAAAAAAAICJslkYAAAAAAAAAAAAAAAAAAAAAAAATJTNwgAAAAAAAAAAAAAAAAAAAAAAAGCibBYGAAAAAAAAAAAAAAAAAAAAAAAAE2WzMAAAAAAAAAAAAAAAAAAAAAAAAJioS/fdAZiAyxYP3va2t+2rHwAAAAAAAAAAGznm7x4uO+59ADAif6MHAAAAAAAAADRv33+fV2qtY14PJqeU8qQkP7/vfgAAAAAAAAAA7MCTa60v3ncnADhc/kYPAAAAAAAAAOjUqH+fd8lYFwIAAAAAAAAAAAAAAAAAAAAAAADWY7MwAAAAAAAAAAAAAAAAAAAAAAAAmKhSa913H2CvSil3TPLFCy/9UZKb99Qd2KUHJvn5heMnJ3n7nvoCjEv+w+GS/wDtsXbD4ZL/cNisAXC45D+wC5cl+ayF41fVWj+8r84AgL/R40C4v4PDZg2AwyX/Adpi3YbDZg2AwyX/4bBZA4Bt2+vf51061oVgquYJ9+J99wN2rZQyfOnttdY37aMvwLjkPxwu+Q/QHms3HC75D4fNGgCHS/4DO3TdvjsAABf4Gz0Ogfs7OGzWADhc8h+gLdZtOGzWADhc8h8OmzUA2JG9/X3eJfu6MAAAAAAAAAAAAAAAAAAAAAAAAHA6m4UBAAAAAAAAAAAAAAAAAAAAAADARNksDAAAAAAAAAAAAAAAAAAAAAAAACbKZmEAAAAAAAAAAAAAAAAAAAAAAAAwUTYLAwAAAAAAAAAAAAAAAAAAAAAAgImyWRgAAAAAAAAAAAAAAAAAAAAAAABMlM3CAAAAAAAAAAAAAAAAAAAAAAAAYKJsFgYAAAAAAAAAAAAAAAAAAAAAAAATZbMwAAAAAAAAAAAAAAAAAAAAAAAAmCibhQEAAAAAAAAAAAAAAAAAAAAAAMBE2SwMAAAAAAAAAAAAAAAAAAAAAAAAJurSfXcAgNG8N8l3DI6BwyD/4XDJf4D2WLvhcMl/OGzWADhc8h8AAKAP7u/gsFkD4HDJf4C2WLfhsFkD4HDJfzhs1gCgK6XWuu8+AAAAAAAAAAAAAAAAAAAAAAAAAMe4ZN8dAAAAAAAAAAAAAAAAAAAAAAAAAI5nszAAAAAAAAAAAAAAAAAAAAAAAACYKJuFAQAAAAAAAAAAAAAAAAAAAAAAwETZLAwAAAAAAAAAAAAAAAAAAAAAAAAmymZhAAAAAAAAAAAAAAAAAAAAAAAAMFE2CwMAAAAAAAAAAAAAAAAAAAAAAICJslkYAAAAAAAAAAAAAAAAAAAAAAAATJTNwgAAAAAAAAAAAAAAAAAAAAAAAGCibBYGAAAAAAAAAAAAAAAAAAAAAAAAE2WzMAAAAAAAAAAAAAAAAAAAAAAAAJgom4UBAAAAAAAAAAAAAAAAAAAAAADARNksDAAAAAAAAAAAAAAAAAAAAAAAACbq0n13AGhHKeVWSR6U5KFJ7pXkjkk+nuSDSd6e5HW11hu3fM1bJ/miJPdNcs8kH03y35JcV2u9fpvXGksp5WFJ/nySuyW5TZIbkrwryWtqrTfts29jKqXcOcnDkjw4yWcmuTzJh5K8N8nra61v32P3jiil3D+z7+1eSW6f5N1J3pnktbXWT2zxOvdL8hcym+93TPKJzMblrZmNy0e2da01+yX/t0D+z7SW/4dO/m+H/J9pIf/HnPMtjAdt6nHt7jGmbRnrXqUVhz4ePeZKjzFty6HP96FDr93M+9ZdvvQY07ZYA1jUY670GNO2yH/1GwAA+uVeaDs8n59p7X5GjdcasC3WgJnW1oBDJ/+3Q/7PtJD/ary0rsd1u8eYtsWzuWXGo8986TGmbTHnlx16/abHXOkxpm2R/wz1mC89xrQt1gD1G5i8WqumadqJLbMfW89M8gtJPpykntI+meQXk3z5Fq57tyTfn+T9p1zvNUm+asPrPCDJ1yT57iTXJvnTwTWu39I43iHJtyX541Pi+dMkP5bkgXv8vnc2HkluneRLk/z7JL97xlyq87H6ziT32HMOPDXJa0/p5/vnc/WuG1zjdkn+aZLfP2NMPpXkpUkeP1Ls8n874yj/G8z/Xc+PFcbgrHbVjuOX/9sZR/nfSP6PNedbGQ+tzdbj2t1jTFv+zse4V7kiyWOSfFOSn8jsnuXTg+tcs+/5f+jj0WOu9BiT+d78eEyydjPvW3f50mNMDc75JtaAqN90lys9xrTl7/yg83+s+RH1G03TNE3TNG3k1vu9UDyfH208Wr2fiRqvNWA742gNaHAN2PX8WGEMzmpX7Th++b+dcZT/jeT/WHO+lfHQ2ms9rts9xrTl7/ygn80ZjyN96y5feozJnG9+PCZZv+kxV3qMqcH53kT+58BrN/M+dpcvPca05e/8oNeAseZH1G80beO29w5omjbdluQnN/iR/ZIkdz/ndZ+Y5D1rXOvHk1yxxudfneQVZ/yg3MrNyvx6fymzXW1XjefGJH9/xO955+MxH4MPnHMufTDJ39rD/L99kuev0c8bknzpOa7z6CR/cI5x+ckkt9th/PJf/h9c/o85PzbIrwvtqh2Og/yX/weV/2PN+VbGQ2uzjTWPj7nuztbuHmPa4ve983uVzB5evDGz4v1Zn3/Nnuf/QY9Hj7nSY0zme7vjMb/OJGs3veZLjzG1NOdbWAOiftNtrvQY0xa/74PP/7HmR9RvNE3TNE3TtJFbr/dC8Xx+9PFo8X4marzWAGvAQa4BY86PDfLrQrtqh+Mg/+X/QeX/WHO+lfHQ2mtjzeFjruvZnGdzNQfw9zlTH48e86XHmMz5dsdjfp1J1m96zJUeY2ppvreQ/1G76Tpfeoxpi9/3wa8BY82PqN9o2lbapQE42UNOeP2Pk7w1sx9ml2a2O/Ajklyy8J7/IcmvlFK+uNZ6w6oXLKVcneRFSS5beLkm+a3MbvjvlOSRSe668O9/M8lnlFK+otb66RUu8+eTPH7VPm2ilPLYzHZPvc3gn96Z5Hcye+h4n8x+2Nx6/m+3S/L9pZRLaq3fN0I3xxiPuyW58zGv35zZD9sbMtth9i5JPn/+vxfcKcmPlVKurLU+e8f9TJKUUm6V5KeSfNngn96b5Lp5Xx+Y2Vws83+7e5KfL6U8ttb6qyte59FJXpnZTcSijyT5zcxy7DZJHpTk4VnOsb+R5MpSypfVWm9eMbR1yP8Nyf9btJT/o82PiZP/G5L/t2gl/8ea862MB23qce3uMaaNjXWvkuTpSe64eY93y3gk6TNXeoxpY+b7MrWbW/SYLz3GtDFrwBL1m5kec6XHmDYm/2+hfgMAQK96vRfyfH6Z5/MDary3sAZsyBpwi5bWADXeGfm/Ifl/i1byX42X1vW4bvcY08Y8m1tmPG7RY770GNPGzPll6jdJ+syVHmPamPxfonZzUY/50mNMG7MG3EL9Blqy7d3HNE3rpyV5XS7utPlbSf5hkgee8N57J3lOju7Q+eokZcXr3SdHdwL91SSfM3jfbZL8z5n9n/7ie79rxes885h+1iQ3JXnb4LXrNxi/q3J09+S3JXncMe+9c5J/N3jvp4577w6+552PR2Y/8i58xkeS/HCSv5rktse8tyR5SmYPa4d92vl4zPvw3YPr3jyf/5cN3vfQJK8dvPd9Se65wjUuP2Z8/2w+ty8/5v0PTPLiY8bkWTsaA/kv/w8u/8eaH/NrLX7Wr83nzDrt0h2Og/yX/weV/2PN+VbGQ2uz9bh29xjTlr7rnd+rzM//0DHjWZO865h/u2aPc//gx6PHXOkxJvO9zfHIxGs3veZLjzG1Mufn509+DYj6Tbe50mNMW/qu5f+I8yPqN5qmaZqmadrIrdd7oXg+P/p4tHY/EzXeC9e0BlgDDm4NGGt+zK+1+FlqvPJf/vsbvcmMh9Ze63Hd7jGmLX3Xns0Zj4PIlx5jMufbHI9MvH7TY670GFMr831+/uTzP2o3XedLjzFt6bu2Bow4P6J+o2lbaXvvgKZp022Z7bz9C0k+f41zvvGY/7N92orn/vDgvNfkmJv6hfd/xeD9NyW53wrXeeb8h9p1Sf5jkm9I8qjM/qtBVw8+8/oNxu/5g896a5Irzzjnnw7OeVOSW+34e975eMx/uL0nyTcnuWLFc+6S5M2D67/lrB+JWxiPB+ToDcWTT3n/bXP0x/0PrnCdawbnfDrJl55xTknyM4PzPpzBDceWxkH+y/9DzP9R5sf8Woufde0u4zpH3+S//D+o/B9rzrcyHlqbrce1u8eYtvA9j3KvMj/3Q5n91zhemuQ75mvY3ef/du3gM6/Z07w3HrXPXOkxJvO9zfHIxGs38+t1ly89xtTKnJ+f28IaoH5T+8yVHmPawvcs/0eeH1G/0TRN0zRN00Zuvd4LxfP50cejpfuZqPEuXs8aYA04xDVAjbfKf/l/ePk/1pxvZTy09lqP63aPMW3he/ZszngcTL70GJM53+Z4ZOL1mx5zpceYWpnv83NbyH+1m4v96y5feoxpC9+zNWDk+RH1G03bStt7BzRNm25LctU5z3vB4P9sX7rCOQ9O8smFcz6e5MErnPe8wbV+ZIVz7nzSj8ls78HbAzL7rw4tftZjVjz3Pw/O+9odf89jjMfdVv3BNjjvblCzNwAAIABJREFUEceM41/c8Xj86OB6z13hnIfM5+yFcz6R5AFnnPOzg+u8cMX+3SNHbzweu4NxuOqc58l/+T/8nJbyf+fjsfB5i5917S7jOkffrjrnefJf/g8/p4n8H2vOtzIeWputx7W7x5i28D2Pcq8yP+/E/7JJJvAQwngsXf+qc5432VzpMaYtfM/m+x7GIxOv3cyvddU5z5tsvvQY0xa+Z2vAcj/Ub2qfudJjTFv4nuX/yPMj6jeapmmapmnayK3Xe6Ex7t/j+fzwc5q5nxnrfjdqvMNzrAEXz7UGXDzP3+jtqcl/+X9o+T/WnG9lPLT2Wo/rdo8xbeF79mzOeJzUh6vOed5k86XHmLbwPZvzexiPTLx+02Ou9BjTFr5n+b/cD7Wbi/276pznTTZfeoxpC9+zNWDk+RH1G03bSrskACeotV5/zlO/b3D8V1Y45+lJbrVw/HO11reucN7/OTj+6lLK5aedUGv9YK31phU+exNfniytsb9Wa/3VFc/9nsHx39lOl443xnjUWt9ba73xHOf9dpLhuK0yn86llHLbJE8dvDycY0fUWn8/yYsWXro0szl9mgcMjl9yZgdn17ohyW8MXn7wKueuQ/5vRP4vX6OJ/J9fc4z5MXnyfyPyf/kaTeT/WHO+lfGgTT2u3T3GtImR71VSa333Wh0cmfG4qMdc6TGmTZjvy9Rujlzr+nOeOtl86TGmTVgDjlK/mekxV3qMaRPyf5n6DQAAver1Xsjz+WWez1+kxnvkWtef81RrgDVgeI0m1oD5NdV4I/83JP+Xr9FE/qvx0roe1+0eY9qEZ3PLjMeyHvOlx5g2Yc4vU79Zus715zx1srnSY0ybkP9Hqd1c1GO+9BjTJqwBy9RvoC02CwN24brB8W1LKXc645ynDI6fu8qFaq1vSfLrCy9dkeTxq5y7Y//94PgVa5z7nzLb2fyCLyyl3HPzLjVrOJ/utcNrfWmS2y0c/5da639d8dzhnP3KM95/xeD4XSteJ0n+aHB85zXO3TX5L/+3acz8Z3PyX/5vUwv5f545v61rTXE8aFOPa3ePMSXj3qu0wHhsrsdc6TGmxHwfUrvZjh7zpceYEmsA29djrvQYUyL/t0X9BgCAXvV6L7QOz+e3x9/nHaXGO2cNOAhqGm2R//J/m1rIfzVeWtfjut1jTIlnc0PGYzt6zJceY0rM+SH1m831mCs9xpTIf3ajx3zpMabEGrAt6jewBzYLA3bhk8e8dtlJby6l3CPJIwbnv2aN6107OH7iGufuyn0Gx7+76om11o8nedvCS5dkGjHty3A+nTiXtuAJg+Nr1zj31Vnu6yNLKXc/5f03DI7X2dl4+N4PrHHursl/+b9NY+Y/m5P/8n+bWsj/teb8lq81xfGgTT2u3T3GlIx7r9IC47G5HnOlx5gS831I7WY7esyXHmNKrAFsX4+50mNMifzfFvUbAAB61eu90Do8n98ef593lBrvsmsHx1PIF2vA9qhptEX+y/9taiH/1XhpXY/rdo8xJZ7NDRmP7egxX3qMKTHnh9RvNtdjrvQYUyL/2Y0e86XHmBJrwLao38Ae2CwM2IUHDY4/meR9p7z/4YPj36m13rjG9V47OH7YGufuymcOjj+05vnD93/uBn1p3XA+vXuH1xrOxf+y6onzOfvGwcunzcVXD44fteq1jnnvb65x7q7Jf/m/TWPmP5uT//J/m1rI/3Xn/DavNcXxoE09rt09xpSMe6/SAuOxuR5zpceYEvN9SO1mO3rMlx5jSqwBbF+PudJjTIn83xb1GwAAetXrvdA6PJ/fHn+fd5Qa7zJrQN/UNNoi/+X/NrWQ/2q8tK7HdbvHmBLP5oaMx3b0mC89xpSY80PqN5vrMVd6jCmR/+xGj/nSY0yJNWBb1G9gD2wWBuzCUwfHr6u1fvqU9z90cPy2Y991sref8Xn7cPPg+DZrnj98/xRiGl0p5TOSPG7w8m/s8JKfMzje5Vz8oSzPk68tpdz2rAuUUp6S5L4LL72p1vr61bu4c/Jf/m/FHvJ/n+5bSnluKeVNpZQPllJuLqW8Z37846WUbyilDP/AZYrkv/zfiobyf905fy4NjQdt6nHt7jGmZNx7lRYYj831mCs9xpSY70NqN9vRY770GFNiDZgS9ZuZKc7BHmNK5P+2qN8AANCrXu+F1uH5/Bb4+7yj1HiPZQ3o1IHVNNR4Z+S//E/SVP6r8dK6HtftHmNKPJsbMh7b0WO+9BhTYs4Pqd9srsdc6TGmRP5PSS+1m6TPfOkxpsQasC3qN7AHNgsDtqqUcvskf3fw8gvPOG24i+cfrnnZdw6O71JKufOan7Ft7x8c33PN84fv/+wN+tKyv5fkdgvHH07yy7u40PxGcXizuO5cHL7/wSe9sdb6jiTPWnjps5I8v5RyuxNOSSnlL2ZWBLvg00n+0Zp93Bn5fwv5vx2j5f8E3D/JNZkVA+6U5NZJrpwf/80kz0nyh6WU/3ueZ5Mj/28h/7dj8vl/zjl/XpMfD9rU49rdY0zJ+PcqU2c8NtdjrvQYU2K+D6ndbEeP+dJjTIk1YILUb2YmlSs9xpTI/21RvwEAoFe93gudg+fz2+Hv85b7qMZ7PGtAvw6ppqHGOyP/5f8Fk89/NV5a1+O63WNMiWdzQ8ZjO3rMlx5jSsz5IfWbzfWYKz3GlMj/CWq+dpP0mS89xpRYA7ZF/Qb2x2ZhwLb9qyT3WDj+UJZvvo9zp8Hxn6xzwVrrR5PcNHj5jut8xg68ZXD8BaueWEq5b5J7DV7edzyjK6VcleSfDV7+3lrr8L8ItS3DefhntdYb1/yM4dw99XurtT47yT9J8on5S09O8uZSyv9WSnlMKeXBpZSHlVK+opTy3CSvycWbj08k+dpa65R+yMr/Gfm/oT3kfwuuSPLMJK8vpTxs3505hvyfkf8baij/zzPn19bQeNCmHtfuHmNK9nCvMnHGY3M95kqPMSXm+5DazXb0mC89xpRYA1qkfjMg/89N/m+H+g0AAL3q9V5oXZ7Pb8jf56nxrsoa0Cc1jWOp8Q7I/z41lP9qvLSux3W7x5gSz+aGjMd29JgvPcaUmPND6jeb6zFXeowpkf8tmnrtJukzX3qMKbEGbIv6DeyJzcKArSmlPCXJPxy8/G211g+ccepwF9+PnePyw3PucI7P2KZXDY6/6rQdzQf+x2Ne23c8oyqlXJbkp7Ic9/VJ/q8dXnYv87DW+j1JHpHkR5J8MMn9Mvtx/Ookv5/kdzPbRfeazHbDTpJfSvIFtdYfPUcfd0L+L5H/G9hT/u/LJ5Ncm+TbkzwpyaMy2z38kZkVt78nRwsGD0nyS6WU+43XzdPJ/yXyfwOt5P8Gc37d6zQxHrSpx7W7x5gWtNDHMRmPDfSYKz3GtKCFPo5J7WZDPeZLjzEtaKGPh0D9Ztlk5mGPMS1ooY+Tpn4DAECvOr8XWpfn8xvw93lqvOe4vDWgIwdW01DjXSb/j9p3PKNqJf/VeGldj+t2jzEtaKGPYzIeG+oxX3qMaUELfRyT+s0GesyVHmNa0EIfD0EXtZukz3zpMaYFLfRx0tRvYL9sFgZsRSnlEUn+n8HLr0zyAyucPvxBNdztdRXDH1TDzxzbSzPb/fSCOyX552edVEr5rCTfcsw/3aqUctvtdK0JP5Tkv1s4/lSSZ5xjV9517HMeXprk07m4A/5pfjTJN9Vaf2udju2S/D9C/m9mH/m/D9+e5N611r9Sa/0/aq0vqbVeV2t9W631DbXWF9da/0lmBe5/naQunHuPJD9XSin76Pgi+X+E/N/M5PN/wzm/rsmPB23qce3uMaYzPm+KfRyT8TinHnOlx5jO+Lwp9nFMajcb6DFfeozpjM+bYh97p34z0XnYY0xnfN4U+zhZ6jcAAPTqAO6F1uX5/Gb8fd7J1HiPZw3oy6HUNNR45f8t5P8tJp//ary0rsd1u8eYzvi8KfZxTMZjAz3mS48xnfF5U+zjmNRvzqnHXOkxpjM+b4p97F0XtZukz3zpMaYzPm+KfZws9RvYP5uFARsrpdw3swdviz9i3pnkb9Va6/FnnWqsc3am1vqRJN87ePlbSin/+KRzSin3SfLyJHc86WO31L1JK6X8iyR/e/Dys2qtvzJyV3Y+D0sptyml/Lskv53k65JcucJpz0jyxlLKi+dzZq/k/1Hy//wmlP87Ny9gDXe1P+59N9Van5XkHw3+6VFJ/sZOOrci+X+U/D+/FvJ/B3P+tGtNfjxoU49rd48x7eh6Pf//ifFYQY+50mNMO7pez/Nd7WZFPeZLjzHt6Ho9rwE7p35zrL3Pwx5j2tH1DjL/1W8AAOjVgd4Lncrz+fOb0P2MGu+KrAFHWQPOb0JrwM6p8R5L/p/wsVvq3qS1kP9qvLSux3W7x5h2dL2e/7/EeKyox3zpMaYdXa/nOa9+s4Iec6XHmHZ0vZ7zf+d6qN0kfeZLjzHt6HoHuQao38A0XLrvDgBtK6VcmeT/S3LvhZdvSPK4Wut7V/yYjw6Oz/Nf5xmeM/zMffiuJE/Mxd1KS5J/W0p5apIfTvKGzHaNvdf8fX8/F38YvSvJYqHiplrrkV1pSylXrdqZWuv1a/V+D0opz8xsN+hFz661fveK51+16rWOGY9R52Ep5dIkL0ryhMVuJXlhZrvbvy7J+5LcJsl9k3xJZjezD56/968leXQp5XG11jeco68bk/+nkv9r2nP+T16t9ftKKY9P8qSFl78xyU/uoz/y/1Tyf00t5P+W5vyq19poPOAkPa7dLcXU0r3KGIzHuFrKlVW1FJP5vqyl8eihdpO0lS+raimmlub8GHq7nx1SvzmR/D+D/F+mfgMAAMtauhfaA8/n1+Tv89R456wB1oBFk/obnX1S4z2R/D9DC/O9hfxX46V1Pa7bLcXU0r3KGIzH+FrKl1W1FJM5v6yl8eihftNSrqyqpZhamu9j6O1edmhqtZukrXxZVUsxWQOWqd/AYbFZGHBupZTPTPJLSR6y8PL7kjy21vrWNT6qux9USVJrvbmU8pVJXpbk8xb+6THzdpL3J/m7SV6x8NqHTnjvO9boUlnjvaMrpXx9kmcPXv6BWus3r/Exm4zH2PPwn2W5kPWxJE+ttb5s8L6bk7wpyZtKKf8hyfcn+dr5v901yS+UUh5Ra33/Ofp7bvL/dPJ/PRPI/1b8qywXs76glHKnWutJc2Qn5P/p5P96Wsj/Lc75Va61jfGAI3pcuxuMqaV7lTEYj5E0mCtnajAm831ZS+PRdO0maTJfztRgTC3N+TF0cz97CvWbo+T/2eT/MvUbAACYa/BeaFSez69nAs/n1XjXZA04nTVgPRNYA1qhxnuU/D/bpOd7C/mvxkvrely3G4yppXuVMRiPETWYL2dqMCZzfllL49F0/abBXDlTgzG1NN/H0M297CkmUbtJmsyXMzUYkzVgmfoNHJBL9t0BoE2llDsmeWWSz114+YOZ7fz5pjU/7sOD47ut2Zfb5+gPqtF/2B+n1vrHSb4wyXOSfGKFU345yecnuXHw+g1b7tqklFL+dpIfzPKPy+cm+QcjdmM4D29XSrlizc+4cnB87Dyc/yAe/iD9xmMKWUtqrR9P8vVJXrXw8r2TfOua/dyI/F+N/F/NRPK/Fb+RWa5dcKskDx2zA/J/NfJ/NS3k/5bn/FnXmvx40KYe1+4eYzrDaPcqjTAeK+oxV3qM6Qzm+zK1mzX0mC89xnQGa0Cb1G+W+yL/z0f+r0H9BgCAXh3gvdC5eD6/moncz6jxrsEasBprwGomsga0Qo13uS/yv3Et5L8aL63rcd3uMaYzeDa3zHisocd86TGmM5jzy9RvVtRjrvQY0xnkf5v2XrtJ+syXHmM6gzVgDeo3MD02CwPWVkq5Q5KXJ/kLCy//aZIn1FrfcI6PHO4Wer81zx++/wO11g8e+849qLXeWGv9n5J8dpJvy+xh47sy2+n8I0nekuRHkzwuyV+ttV6f5HMGH/O60To8slLK0zL7kbb4/0k/keTraq11rH7Md44fzpv7rvkxw7l40k64X5Zk8abhHZnNgTPVWj+d5DsHLz+jlDLKTt7yfz3y/3RTyf9WzPP/Dwcvr1Uo2YT8X4/8P10L+b+DOX/atSY/HrSpx7W7x5jOMvK9yuQZj9X0mCs9xnQW832Z2s3qesyXHmM6izWgTeo3R8j/c5D/q1O/AQCgV4d4L7QJz+dPN5X7GTXe1VkD1mMNON1U1oBWqPEeIf8b1kL+q/HSuh7X7R5jOotnc8uMx+p6zJceYzqLOb9M/WY1PeZKjzGdRf63ad+1m6TPfOkxprNYA1anfgPTdOm+OwC0Zb4r6suSfMHCyx9N8sRa62+c82PfMjh+0JrnP2Bw/OZz9mOnaq3vSPJd83aWRw+Of/2EzxztD1B2oZTyVUl+LLPdmy/4mSTPmN+0rWUL4/GWzP4rUxc8KEfn52mGc/Gkcx8xOP7lNX+k/kqSm5NcNj++S2Z93emNhPw/P/l/1ATzvxUfGxwPd0jfCfl/fvL/qBbyf0dz/qRrbXU84IIe1+6WY2roXmUUxmO3Ws6Vk7Qck/m+rKHxaLJ2k7SdLydpOaaG5vwoWr+fXYP6zUXy//zk/xnUbwAA6FXL90L75vn8URN8Pq/GewZrwPlZA46a4BrQCjXei+R/o1rIfzVeWtfjut1yTA3dq4zCeOxey/lykpZjMueXNTQeTdZvWs6Vk7QcU0PzfRSt38uuYS+1m6TtfDlJyzFZA5ap38BhueTstwDMlFJum+QXkjxm4eU/S/LltdbXbvDRvzs4/rxSyu3WOP+Lzvi8psx3MP+Swcuv2kdfdqmU8qQkz8/yxpUvSvL0Wuun9tOrI3Nn+ED4RPMfvJ93xuddcKfB8Q2rXidJaq2fTPL+wct3Xecz1iX/xyH/95r/rRjm+vt2fUH5Pw75P5383+GcP+5akx8P2tTj2t1jTGsa616lFcbjBD3mSo8xrcl8X6Z2c4oe86XHmNZkDWiT+s1F8v/85P8p1G8AAOiVe6FxeD7v7/POosZ7hDWgQRNdA1qhxnuR/G9QC/mvxkvrely3e4xpTZ7NLTMep+gxX3qMaU3m/DL1mxP0mCs9xrQm+d+m0Ws3SZ/50mNMa7IGnEL9BqbNZmHASkoplyd5cZKrF16+KcmTaq2/ssln11rfneR3Fl66NMs/HM5y9eD4FzfpzwR8SZKrFo5fVWvd+X+RbkyllC/LbDfXWy+8/NIkXzMv1OzLywfHV69x7l/O8o/Q62qt7znhvR8aHF+xxnUuuP3g+KPn+IyVyP9RyX9OVEq5a47uNv7fdnxN+T8e+T8Bu5zzx1xr8uNBm3pcu3uM6RzGuldphfE4Ro+50mNM52C+L1O7OUGP+dJjTOdgDWiM+s0RVw+O5f/q5P8J1G8AAOiVe6FReT6/P2q8J7AGjMoawInUeI+4enAs/yeuhfxX46V1Pa7bPcZ0Dp7NLTMeJ+gxX3qM6RzM+WXqN8foMVd6jOkc5H9j9lG7mV+3u3zpMaZzsAacQP0Gps9mYcCZSimXJfm5JI9dePnjSb6i1vqftnSZFw6O/86KfftzSf7Swks3Jnnllvq0L//r4Pg5e+nFjpRSHpfkZ5NctvDyK5N8Va315v306havSPKxheNHz+fYKq4ZHA/n9KLhzecjV7xGkqSU8uAkdxi8vNbu+WtcS/6PS/5zmqdl+ff7e5K8ZVcXk/+jk/97NtKcv3CtyY8Hbepx7e4xpnMa616lFcZjoMdc6TGmczLfl6ndHH+97vKlx5jOyRrQHvWbi32T/5uR/8dQvwEAoFfuhUbn+fz+qPEefz1rwLisAZxGjfdi3+R/Y1rIfzVeWtfjut1jTOfk2dwy43GMHvOlx5jOyZxfpn5z9Frd5UqPMZ2T/G/PqLWbpM986TGmc7IGHEP9BtpgszDgVKWUS5P8dJInLrz8iSRPrbW+YouX+okkn1o4/sr5DftZhg/tfrrWetP2ujWuUsozkjxu4aU3ZLYbahdKKV+c5OeTXL7w8n/O7Afix/fTq4tqrX+W5AWDl4dz7IhSykOSPGXhpU8m+clTTrl2cPxFpZSHrtLHub83OP69Wut71zh/JfJ/XPKf05RS7p7k2wcvv6TWWnd0Pfk/Ivm/fyPO+SbGgzb1uHb3GNN5jXiv0gTjsazHXOkxpvMy35ep3RzVY770GNN5WQPaon5zhPzfgPw/Sv0GAIBeuRcal+fz+6XGe5Q1YFzWAE6jxnuE/G9IC/mvxkvrely3e4zpvDybW2Y8juoxX3qM6bzM+WXqN8t6zJUeYzov+d+WsWs382t2ly89xnRe1oCj1G+gIbVWTdO0Y1uSWyX5qSR1oX0iyVN2dL0fHlzrNUkuP+X9Tx68/+NJ7rdhH64efOb1G37epWu89yuT3DwY60fueQ5sbTySPDrJRwaf96okt9tnjMf08wGD76EmedIp7798PlcX3/+DZ1yjJPm9wTmvT3KHFfr3hGP69y93MA7yX/4fXP6PMR5JPjvJX1vznHsk+c1j5vwDdhSr/Jf/B5X/Y875FsZDa7P1uHb3GNMW+rjze5UV+3Ht4DOv2WXcxuPM63eXKz3GtIU+mu8jj0caqN3Mr9VdvvQYUwtzfsV+TGINOKOPVw/6eP05P0f95uj15L/832v+jzk/on6jaZqmaZqmjdgO8V5oW/fvC5/n+fzFz2rifmaM+92o8Z50PWuANWDSbVvjETXe464n/+X/XtuYc76F8dDaaz2u2z3GtIU+ejZnPE7qQ3f50mNMW+ijOT/yeKSB+k2PudJjTC3M9xX7MYn8P6OPVw/6eP05P2fytZv5NbvLlx5j2kIfrQF7mB9Rv9G0jdulATjZjyT56sFr35rkulLKVWt+1g317J1b//fMdlK98/z4C5P8Uinl62qt//XCm0opt0nyDUn+zeD8f1NrfecqnSml3Cc5dg28x+D40lNi/Wit9X1nXOqNpZSXJvnZJL9ea/30MX15eJJnJXn64J++tdZ63RmfvxW7Ho9SyiOT/GKS2y+8/HtJ/kGSK0sp63T3plrrDeucsI5a6x+UUr43ybcsvPyCUsr/kuQ/1FpvvvBiKeVzkvxQZnP1gvcn+Y4zrlFLKc/KbF5c8Kgkr59f56W11rp4TinlLkn+cWZzZfG7en+S71k1vjXIf/l/cPmfjDI/7pnkxaWUNyb58SQvrLW+9YS+3CHJMzLb8f7ug3/+l7XWPzjhGpuS//L/0PJ/lDnf0HjQph7X7h5j2sgY9yoL598+yV1P+OfLB8d3PeU7eVet9ZOrXHNdxuMWPeZKjzFtxHxfpnazpMd86TGmjVgDjlK/SdJnrvQY00bk/xL1GwAAetXtvZDn80f64Pn8nBrvEmuANeDg1oBEjXdO/sv/Q8t/NV5a1+O63WNMG/FsbpnxWNJjvvQY00bM+WXqN7foMVd6jGkj8v8otZtb9JgvPca0EWvAEvUbaEmdwI5lmqZNs2V5N85N29UrXvPqzHZ6XTz305nt+PtTSV6e5E+O+fyXJLnVGrFdv4WYnrfCdd638P6PJHltZgWMn0jyylP68S9G/q53Oh5J/vkW59K1I4zHrZK87JhrvyezH6A/neR187m5+O8fT/KX17jOs0+I8X1JXjGfJz8zn/+fOOZ9NyX5Evkv/+V/U+Nx9THv/1CSX03yoiQ/luSFma0xx+V9TfKcHY+B/Jf/B5X/Y835VsZDa7ONNY8H17w6O1y7e4xpS9/1WPcq12xp7K8yHrsdjx5zpceYzPemx2OytZte86XHmBqb89dsaex3vQZcv4U+Pu+MOTF8v/qN/Jf/e8z/seZH1G80TdM0TdO0kVvP90LxfH7U8WjtfiZqvNYAa8ChrwG7Ho+rj3m/Gq/8l/97zP+x5nwr46G118aaw4NrXh3P5taKaUvftWdzxuMg8qXHmMz5psdjsvWbHnOlx5gam+/XbGnsd53/12+hj887Y04M3z+p2k2v+dJjTNaA9uZ81G80bSvtuF09Afam1nptKeUpSZ6X5G7zl0uSz5+34zw/ydfXWj+1+x5u5PZJHn3Gez6Y5Btrrf/vCP3hBLXWT5VSvjqzHX6/ZuGfrkzyhBNO+5Mkz6i1vnqNS33z/LzvSHLZwut3SfL4M859Z5Jraq3XrnG9SZP/8v+A3THJF63wvhuTfFOt9T/uuD+jk//yH2hPj2t3CzGNeK/SBOOxHy3kyrpaiMl8X6Z2sz8t5Mu6WojJGjAJ6jcN5Mq6WohJ/gMAANvWwr3QBjyfb4Qa7/5YA6wBB0yNV/7Lf6ApPa7bLcTk2dwy47E/LeTLulqIyZxfpn6zHy3kyrpaiEn+T8LB126SNvJlXS3EZA0AWnTJvjsAMFRrfVmShyf5wcwezJ3k15I8tdb69FrrjaN0bn3/Nsl1me0We5o/SvKdSR7oIeQ01Fo/Wmt9WpK/ntlcO8kHkvxAkofXWl++5jVqrfVfJ/ncJP8+p8/3C96cWRHs4T0Vsi6Q//L/ALwlyXcleU2Sj614zu8n+dbMdvzuspCVyH/5D7Sos7U7SRsxjXGv0hLjsR8t5Mq6WojJfF+mdrM/LeTLulqIyRowKvWbE7SQK+tqISb5DwAAbFsL90Jr8Hy+UWq8+2MNsAYcADXeE8h/+Q+0pbN1O0kbMXk2t8x47E8L+bKuFmIy55ep3+xHC7myrhZikv+jUrs5RQv5sq4WYrIGAK0ptdZ99wHgRKWUyzLbDfh+Se6R2a6/f5zkulrrO/bZt3WUUj4jySOT3D+znW8vz+wm5o+T/Hat9c177B4rKKXcP8mjktwryRVJbshs9/nX1Fpv3tI1SpI/l+QRSe6a5DOSfDLJhzKbK6+rtb5nG9dqgfynd6WUS5I8OMkDk9w7yZ1ycX58MMm7k/xmrfW9e+vknsh/gPb0snYvaiWmMe5VWmI8xtdKrqyjlZjM92VqN/vRSr6so5WYrAHjUL85WSvjoXbWAAAgAElEQVS5so5WYpL/AADANrVyL3QWz+fbp8a7H9YAeqfGezL5D9CWXtbtRa3E5NncMuOxH63kyzpaicmcX6Z+M75WcmUdrcQk/8ehdnO6VvJlHa3EZA0Aps5mYQAAAAAAAAAAAAAAAAAAAAAAADBRl+y7AwAAAAAAAAAAAAAAAAAAAAAAAMDxbBYGAAAAAAAAAAAAAAAAAAAAAAAAE2WzMAAAAAAAAAAAAAAAAAAAAAAAAJgom4UBAAAAAAAAAAAAAAAAAAAAAADARNksDAAAAAAAAAAAAAAAAAAAAAAAACbKZmEAAAAAAAAAAAAAAAAAAAAAAAAwUTYLAwAAAAAAAAAAAAAAAAAAAAAAgImyWRgAAAAAAAAAAAAAAAAAAAAAAABMlM3CAAAAAAAAAAAAAAAAAAAAAAAAYKJsFgYAAAAAAAAAAAAAAAAAAAAAAAATZbMwAAAAAAAAAAAAAAAAAAAAAAAAmCibhQEAAAAAAAAAAAAAAAAAAAAAAMBE2SwMAAAAAAAAAAAAAAAAAAAAAAAAJspmYQAAAAAAAAAAAAAAAAAAAAAAADBRNgsDAAAAAAAAAAAAAAAAAAAAAACAibJZGAAAAAAAAAAAAAAAAAAAAAAAAEyUzcIAAAAAAAAAAAAAAAAAAAAAAABgomwWBgAAAAAAAAAAAAAAAAAAAAAAABNlszAAAAAAAAAAAAAAAAAAAAAAAACYKJuFAQAAAAAAAAAAAAAAAAAAAAAAwETZLAwAAAAAAAAAAAAAAAAAAAAAAAAmymZhAAAAAAAAAAAAAAAAAAAAAAAAMFE2CwMAAAAAAAAAAAAAAAAAAAAAAICJslkYAAAAAAAAAAAAAAAAAAAAAAAATJTNwgAAAAAAAAAAAAAAAAAAAAAAAGCibBYGAAAAAAAAAAAAAAAAAAAAAAAAE2WzMAAAAAAAAAAAAAAAAAAAAAAAAJgom4UBAAAAAAAAAAAAAAAAAAAAAADARNksDAAAAAAAAAAAAAAAAAAAAAAAACbKZmEAAAAAAAAAAAAAAAAAAAAAAAAwUTYLAwAAAAAAAAAAAAAAAAAAAAAAgImyWRgAAAAAAAAAAAAAAAAAAAAAAABMlM3CAAAAAAAAAAAAAAAAAAAAAAAAYKJsFgYAAAAAAAAAAAAAAAAAAAAAAAATZbMwAAAAAAAAAAAAAAAAAAAAAAAAmCibhQEAAAAAAAAAAAAAAAAAAAAAAMBE2SwMAAAAAAAAAAAAAAAAAAAAAAAAJspmYQAAAAAAAAAAAAAAAAAAAAAAADBRNgsDAAAAAAAAAAAAAAAAAAAAAACAibJZGAAAAAAAAAAAAAAAAAAAAAAAAEyUzcIAAAAAAAAAAAAAAAAAAAAAAABgomwWBgAAAAAAAAAAAAAAAAAAAAAAABNlszAAAAAAAAAAAAAAAAAAAAAAAACYKJuFAQAAAAAAAAAAAAAAAAAAAAAAwETZLAwAAAAAAAAAAAAAAAAAAAAAAAAmymZhAAAAAAAAAAAAAAAAAAAAAAAAMFE2CwMAAAAAAAAAAAAAAAAAAAAAAICJslkYAAAAAAAAAAAAAAAAAAAAAAAATJTNwgAAAAAAAOD/Z+/Ow2S7qrrxf1cYwhBImAeBhEFAUEBmBEwi+DIpo4LMgQiC4MiMiAFRX15BfV9EUJQZFBAZZPKnYJhnZVCUmQgBZCYJQ0LI+v1x6krf09VDVVd3V/f9fJ6nn9yzz9l7r6pzdt0nXeuuDQAAAAAAAAAAAAAAsKQUCwMAAAAAAAAAAAAAAAAAAAAAAIAlpVgYAAAAAAAAAAAAAAAAAAAAAAAALCnFwgAAAAAAAAAAAAAAAAAAAAAAAGBJKRYGAAAAAAAAAAAAAAAAAAAAAAAAS0qxMAAAAAAAAAAAAAAAAAAAAAAAAFhSioUBAAAAAAAAAAAAAAAAAAAAAADAklIsDAAAAAAAAAAAAAAAAAAAAAAAAJaUYmEAAAAAAAAAAAAAAAAAAAAAAACwpBQLAwAAAAAAAAAAAAAAAAAAAAAAgCWlWBgAAAAAAAAAAAAAAAAAAAAAAAAsKcXCAAAAAAAAAAAAAAAAAAAAAAAAYEkpFgYAAAAAAAAAAAAAAAAAAAAAAABLSrEwAAAAAAAAAAAAAAAAAAAAAAAAWFKKhQEAAAAAAAAAAAAAAAAAAAAAAMCSUiwMAAAAAAAAAAAAAAAAAAAAAAAAlpRiYQAAAAAAAAAAAAAAAAAAAAAAALCkFAsDAAAAAAAAAAAAAAAAAAAAAACAJaVYGAAAAAAAAAAAAAAAAAAAAAAAACwpxcIAAAAAAAAAAAAAAAAAAAAAAABgSSkWBgAAAAAAAAAAAAAAAAAAAAAAAEtKsTAAAAAAAAAAAAAAAAAAAAAAAABYUoqFAQAAAAAAAAAAAAAAAAAAAAAAwJJSLAwAAAAAAAAAAAAAAAAAAAAAAACWlGJhAAAAAAAAAAAAAAAAAAAAAAAAsKQUCwMAAAAAAAAAAAAAAAAAAAAAAIAlpVgYAAAAAAAAAAAAAAAAAAAAAAAALCnFwgAAAAAAAAAAAAAAAAAAAAAAAGBJKRYGAAAAAAAAAAAAAAAAAAAAAAAAS0qxMAAAAAAAAAAAAAAAAAAAAAAAAFhSioUBAAAAAAAAAAAAAAAAAAAAAADAklIsDAAAAAAAAAAAAAAAAAAAAAAAAJaUYmEAAAAAAAAAAAAAAAAAAAAAAACwpBQLAwAAABipqmOqqkc/J+x2XDupqk4evf6Tdzum/cj7vLdV1Unjz4q9ML/nDgAAAAAAAADg0LZX814AAAAA4FCmWBgAAAAAAAAAAAAAAAAAAAAAAAAsqXPvdgAAAADAcqqqY5J8eoYuZyY5Lck3k3wyyb8meVeS13f3WYuODwAAAAAAAAAAAFaqqsqQ93b06NT3kxzd3afufFQAAAAAAFt32G4HAAAAAOwbhye5RJKrJLlVkkcneWWSU6vqyVV1xG4Gt99V1XOrqlf8fGa3YwL2l6r6zOhz5rm7HRMAAAAAAAAAwMgts7pQWJKcK8kJOxsKLEZVHTfK2+mqOm4X45GvCAtkTQEAALBZioUBAAAA2+3iSR6Z5N+q6ia7HQwAAAAAAAAAAAD71onrnLt/VdWORQIAAAAAsEDn3u0AAAAAgD3lW0k+sca5CyS5aJKLrXH+6CRvqKpju/sD2xEcAAAAAAAAAAAAh6aqumiSO65zyZWSHJfkn3ckIAAAAACABVIsDAAAAJjF+7r7uPUuqKrLJfnZJA9LcuXR6Qsn+duq+pHu/t72hMgibHSfgaS7T0py0i6HMTPrGwAAAAAAAADYp+6V5PBRWyepFccnRrGwXbdX824AAAAAYDcdttsBAAAAAPtLd3+uu5+R5NpJ/m7KJVdO8ks7GxUAAAAAAAAAAAD73P1Hxx/P6hy2O1fVkTsUDwAAAADAwigWBgAAAGyL7v5Wknsm+Y8pp++9w+EAAAAAAAAAAACwT1XV9TNscLnS85M8b9R2/iT32JGgAAAAAAAWSLEwAAAAYNt093eT/MGUU9evqovudDwAAAAAAAAAAADsSyeOjjvJC5K8PsmXNrgWAAAAAGDpnXu3AwAAAAD2vTdMaTssydWSvHPeQavqsCQ/nuSYJJdIctEkpyX5cpJPJPnX7j5n3vEXqap+KMnVM8R6ZIbdKU9L8rUk/5XkvZPCamyDqjp/khsmuUySSyY5IslXMzwrH+zuT+5ieJtSVZdIcuMkV8oQ/zczJDG+u7tP2c3YtltVHZnhtf9whvXz3SSnJnnnLK+9qi6b5AYZ1uERGdbf55K8ubtPW3DYc6mqw5PcNMkVklw6yfeT/HeSDyf5QHf3LoYHAAAAAAAAALCUJvlBdx81v+VAbklVvTjJr684d72qunZ3f3Cb4zpPhrylayS52KT5v5P8yyxzV9WFM+S9XC3JUUm+leSLSd7e3Z9baNCr575YkhsluXKSC2fIW/p8ljTvqqoul+TaGXIKL5GhaNyXk3whybt2Ik+oqn44yfWS/FCSwzPkqn0+ydu6++vbPf9+VFU/muQqGfL/Lpbk2xnu62cy5F9+b5vnt5bnn3dZ1uS1k1wuQ+7gWUm+0N0v2GR/OcDboKrOm+T6GdbDxTN8Xp6WIS/23TOMc5UMa/PAM3Zmkq9kyA99V3d/Z8GhAwAA7CrFwgAAAIBt1d1frqrTMiQXrHTxecarqpsneUiSn85QIGwtX6uq1yX5g+7+yDxzzauqLp7kTklumeTYJJfaoMtZVfWuJH+a5OWbLXJWVZ9JcvQap4+uqs0UFjq+u0+eMvbJGWI/4M3dfdwacXw4yY+uaPpykh/aSgJOVd09yYtHzQ/p7j/bZP/Dktwzyb2S/GSS861z7aeTvDTJU7r7K/NFvD2q6rgkj01yiwxF9qZd85Ekv5/kxbMUk6qqE5I8Z9R8xe7+zBxxjud9QneftEGfk5L8zsq27q4V52+Q5HFJbps1fo9ZVW9O8ujuftc68/xskkcl+YkkNeWSs6rqFUke2d3/tV7Ms76GGcY5JslJGT43xp+VB3yxqp6Z5Kndfcasc4zmOzmbWN+TuD69zlD3rar7bjTfgfdkkux2aoaEqwNO7u7jNwx6HVX1f5P86qj5Otud0AsAAAAAAAAALI2fy1DAZaXnjf7866Pz90/ya/NMNsnp+edR8//kYU02tfutJPdOcqE1xvhYkietV6ymqq6VIX/m9hmKqEy75p1JHtHdb5/tVayvqo7ND/KWzrXGNf+S5BlJ/mrWTfAWlXczGeuSSX4jyc8mueY6l55dVe9O8vQkL5l1M9L1cqQm+Wr3TfKbOTiXbqXvT/J2HrdevtOK+U7K6D0a+eeqDd+y53X3CRtdtBnbma+4xnzXyrBub5XksutcekZV/VOSJ2/mfR3NcVz2+FreRB7etq7lNcZbhjV5wSS/kuQBGTZpnWbqPdvrOcAbPdezmBLjhp8pG+WmVtU1kzwyyV2SXHDKEM9Lsm6xsKq6YobP29tm7fubJN+tqrcm+ePufv16YwIAAOwVU/+BIQAAAMCCTStss1ZBnKmq6qqT4l9vSXK3rF8oLJPz90ry4ar6y6pas1jUIk12ofxCkr9IctdsnCSQJOfNUNDqpUn+bfJF+F4y/lL/Eklut8UxTxgdn5nkrzfTsapuneTDSZ6f5H9lnUJhE1fMUEzqU1U1VwLgolXV4VX1rAwJGz+d9X+Pd40kL0zyhkmCy55Wg99N8q4MyVHrbXhwbJJ3VNXDp4xzZFW9PMmrk9w00wuFJcP6u1uSj1TVLbcU/Bwmz9y/Z0gWXO9z8dIZCor9e1VdbwdCW7jJLpAvHDUfV1U/Mu+Yk52B7zNqfqdCYQAAAAAAAABwSDlxdPztJH974KC7P5DkQ6Nr7lVVU4v2bEVV3TnJR5L8ctYoLjRx1STPr6qXjuOY5M88Psm/JPn5rFFcaOImSd5aVY/dWuT/M/e5qupPk5ycIfdqanGhiesmeVaSt0wKt+yoqjpvVT0xyaeSPDrrFyVKhjykm2bYxPKDkwJOi4jjckneluTZWbtQWDK8l7dI8s6q+r1FzL0fVdVlqupFST6Q5H5Zv1BYMmxceMcM7+srq2qj3NLNxmEtzz7nsqzJG2W4d3+Q9QtJTet7KOYA75iqelyGtX2fTC8UtlH/C0+e648meWg2vr/ny5CD+7qqemtVXWHWOQEAAJaNYmEAAADATjhqSttpm+1cVbfIsEvUbeaY+7AMyWBvrqrNfGm/VT+R9YsbbeRHkrxrN4oWbcELk3xv1Ha/eQebJE+NX/8ru/vrm+j78CSvzVBAa1YXSvInk+JyW7mHWzIpbPf6JL84Y9f/lSGhYb2knr3gmRl2Udzs7y4ryR9W1QP/p6HqqCRvTHLnGea9YJJXV9UNZuizJZOkvz9JcoEZul0hw+fZniwYlmH3xLEHbWG8u2f13zHP2MJ4AAAAAAAAAMAeUlVXyVCkZaVXdvfpo7bnjY4vmqHA0CJjuVeGImVHztDt5zMUmTowRmUo2vOErF/c56Cpk/xeVT10hnlXDzLM/cIkD5mx680y5LPMVJRnKyYFof6/JL+dOQrOZCjq9faq+tktxnGlDJsi3mTGro+tqidtZe79qKquneQ9Se6RtTeHXM8dMuRfXnWLcVjLs8+5LGvyJzMUSJu3KNShmAO8IyZFvn43c76/VXV0krdneK7PM8cQN0vynqq68TzzAwAALItd+0ePAAAAwKGhqq6c6YVwPrXJ/j+b5OVZ/cXuWUnelKGI2GeTfDPDDnHHJPmpJDcfXX/DJK+sqp/s7nFhq+3y/Qw7wv17kv9M8tUMRdIqyYWT/HCSG2fYGW1lYaQjkvxNVf14d392nfE/kuQbkz9fIclFVpz73uT8Rs7YxDXr6u4vVdXrMiTaHHDbqrpkd39pjiHvk9WFop497cKVqup/J3nUlFNfS/KPSd6f5EsZdg49KsOudbdOcrXR9SdmeF8fPlPUi/PsJMevOP5ohuJh/5nhtRyZ5MeT3CWrd637ySS/keQp2x/m4lXVryV54IqmU5L8fZJ/y/Daj0pyowyJVRcedf+TqvqHDJ8Hf5NkZTGt9yd5Q5JPJzk9w/v2U0lun4OftfMneVZVXb+7z17Qy5qqqn4zybRdIM+cxPqWJJ/PkDh1xQzr68DOoxdM8sqs2AF3m5yV5IMrjq+Rgz+Lv57kv2YZsLv/vapOTnLciub7VNVjuvvbc8T44NHxV5O8bI5xAAAAAAAAAIC96f5ZXVRoXBgsSV6U5P/k4KI9JyZ5yYLiuH6S318RyzeSvC5DIakvZchL+ZEkd82Q47bSParqld39sgz5JCeuOHdKktdkyJ/5aob8mRtOxhnnzzy5ql7T3Z+Z8zU8LMkvrDg+Pcmrkrw3yX9P5r56hryly4/6Xj7Jm6rqOt39jWyjyUaCb5/EMvZvSd6cIWfvQByXzFDM67YZNpQ84IgkL6uqm3b3++cI5UIZ8rp+aHLcSd6R5J8y5NSckeQSGfID75TkfKP+j6mqv+/ud68x/hfzg9ydI5JceXT+k9k4/2+m3J4NbGu+YlVdP8k/Z3itK52T5K0Z3ttPT2I4f5LLJTk2yS1y8Lr+4Qybbl6vu7+5iZjGrOUZ1/ISrclLJ/m7HLzW3pOhiNkpGd6Hy2TIg/v5TYx3SOQA75AH5ODidWdkyOt9e4Zn8rAMa/r4DO/7QSaFwt6d1TmzyXCP354h1/brSc6b4T7/RIZNqg9fce2lkry2qq7b3ads7SUBAADsjuru3Y4BAAAAWEJVdUyGxIqV3tzdx804ziOTPHnU/PUkF+/uczboe8UMX7QftaL57CR/nOQPu/vL6/S9TpK/zMEFg5Lkj7r7YRvMe0xWv/b7dfdz1+s36fuxJB/OsCvbmzaTbDL5EvsPktx9dOq13f0zG/WfjPHcJPdd0XRKdx+zmb5rjHdyhkSaA9a991V1+wzJJCs9rLv/aI65P5YhieKAzyU5er3nparulCHJY6WvJ3l0kud393fX6FcZdgh9ZoYElJXu0N2vnjH8mUx5n7+bHySqfDHJr3T31IJQVXVEkqdnKK620jeSXLa7v7PB3Cckec6o+YrzJBhV1fiXjE/o7pM26HNSkt8ZNZ+ZITHj2xkSlp7V3dMSPy6VoYjgTUen/iJDwsdTJ8efSvLA7n7jGjFcP8lrs/re36O7/3q9+Nd6Dd294Y6WVXW1JB/I6gTA10/i/dwa/e6U5Bn5QcLLdzIkn806/8mZYX2v6PeZJEevaHped5+wUb8p49wlqwudndjdGxYFHI1zvSTvGzU/pbsfMWtMAAAAAAAAAMDeU1XnylAM6bIrmj+f5PLTco2q6rUZitMccE6SK81aMKSqjstQ1GilA3kvSfK0JI+fVminqg7PkNvykNGpj2bIA3pnhqIpG+XPXDpD/sxPjE79RXf/0iZew0lZnbuzMnfpOUl+c43XcFiGDQ2flNX5L8/t7vvNM/9m8l4mfV+RIedrpXdM4l2r8NaBgka/nSH2lXN9Jsm1uvv0DeYd50itfL/eneSXu/tf1uh7TIb7dd3RqX/o7luvN++k/3FZ/cwd390nb9R3O2xDvuJFMuSKjsd4TpKTunvNomeTDW2fnuRWo1N/19132WDe42Itb2ktT8ZZljX5/fygcNyHkjyou9+5Rt/zTcsr3Q85wIv8vJgnZ3CN3NSV9+aZSR7X3V9do/9B96aqzpvkbUluMLr0NUke2d3/sU4sl07yh0nuNTr13iQ3mbYmAQAAlt1hG18CAAAAMJ+qukySh0859dcbFQqbeFEOLhT27SS36u5HrlcoLEm6+wMZkif+cXTqV6pqvBPaIt2gu+/S3a/Y7K503X1Kd98jyUmjU7etqmk7rS2j12XY3WulE2YdpKpumoMLhSVDcsF6hcIumdWJBR/PkCzyF2sVCkuSHrwiw26A4wJNfzApJraTDiTcfCrJjdcqFJYk3X1Ghvf4H0anjsqw499edKBQ2C27+5lrJWJ0938n+ZkMOzWudK8kT5z8+d8zJHNMLRQ2Ged9mf5ebSrJaQuekdXJVS9N8jNrFQpLksmzemx+8LrPv9a1S+6VWb3eHjzHOOM+neTP54oIAAAAAAAAANiLbpODC4UlyQvXyTV63uj4sMyR47SGA8WFfq27f3VaYZ4k6e4zu/uhWZ3zc7Ukfz+J6YwkP7VB/swXM+TPjPPofqGq5s0pOZDP8r+7+/7rvIZzuvupSX4+w+afK51QVT855/wbqqoHZnVRoj9LcrP1ihIlSXd/Y7LR6ImjU8ck+eU5wjnwfr0myXFrFQqbzP2ZJD+d1Tl2P11VV5hj7v3m6Tm4UNj3k9xr8hyuWSgsSbr7kxk+C8Y5hHeuqhvNEYu1PNjUWl6yNXmgGNXbk9x8rUJhk7nXyis9VHOAt9uBe/Ow7n7wWoXCkqn35qSsLhT26O7+2fUKhU3G+mJ33zvJE0anbpDk5zYOGwAAYPkoFgYAAABsi8lubW9IconRqW9n2EFro/4/neQmo+b7d/ebNhtDd5+VIYnhKyuaz5PkNzc7xqw2mxywhidm2K3qgEpy/61FtDO6++wMO6mt9GNVdb0Zh5pWpGmcxDP2a0mOXHH87SS3Xq/o0lh3fzbJL4yar5Hk9psdY4G+l+Sum9mxtLs705/n8S6Je8mvr5ekc8Akgekpo+YLJLlghp0R79rd42Ji08Z5W4bPqpWOr6pxMa+FqKofS3L8qPkTSe6zmSKK3X1g58k9a5L4Ni7qdf2quv5mx6iqI7N6J8Z/7O5PbDU+AAAAAAAAAGDPGBeYSZLnr3P9q5KMi+bcr6oW9W/sXtzd/2+T1/72lLZLTv77axsV2UmS7v56kqeOmi+cYZPNeZ3c3Y/ZzIXd/ZokT5py6le3MP+aqurcSR47an5Ddz9kkke1Kd39nCR/OWr+jao6fNr1G/hMhqJWa25ouWLer2V1wZrDMhQRO2RV1dWS3G3U/Fvd/aLNjjG5/7+UZFw46NFzhmUtD9Zdy0u6Jr+Z5G7dfdocfQ/ZHOAd8vLu/qNZOlTVRZL8yqj5md395FnG6e6Tsnrz6Xk/HwAAAHaVYmEAAADAQlTV+arqh6rqdlX1F0k+lORaUy59wCaLOD1qdPzW7n7JrHFNvrj/v6PmO806zk6YJEe8YNR8s92IZU7PntJ2wmY7V9UFktx11PyWyc5/a/U5Iqt3kHtqd39qs/Me0N1vT/LGUfNuPCsv7u73b/bi7v5IkvGulLMWaVsWH8vqpJ/1vHyN9hdM3pfN+tvR8bmT/NgM/WfxoCltD+vuMzc7QHf/Q4bdJ/eyv0hy1qjtwTP0v2+G4nArPXNLEQEAAAAAAAAAe0ZVXTLJ7UbN/9Ld/75Wn0l+xjgH7egkt1hASN/P6qI5a+ru9yb5rymnPpqNN1dcaZz3kiTXnaH/2KyFvp6cZJwPeIequswWYljLL2S4Xwd0VheR2awnTvofcKms3tx0M54wY3Ghv8nwrKy0V3O9FuUROfjfuX46qzeR3FB3fy/J74+abzPHppHW8g9stJaXcU3+UXefOmcMW7IPcoC30zlJHj5Hv4ckOWLF8RlZnV++WU8cHV+nqo6ZcywAAIBdo1gYAAAAMItjq6qn/ST5ToZEgdckeUBWF3H5dpJ7dveLN5qkqi6a5KdGzbMUEBp77ej46Ko6euqVu+/jo+PrVtV5diWSGU2KM71n1HyPGXZ3u0uSC43aNkqWuWWSo0Ztf7XJ+aYZPyvHbmGseT1rjj7j9/2qiwhkFzxnxh0FP5VhJ8CxWZ+Bf53SdrUZx9is24yOv5DVz91m/PkCYtk13f2lJC8bNf9CVY3X81p+aXR8avZ+ATUAAAAAAAAAYPPum2ScV/W8TfR7/pS2E7ceTv6pu0+Zsc8HprTNmj/zySSnjZrnzXt5V3d/eJYO3f3drC6Oc+4MeV2L9nOj45O7+xPzDNTdn00yfq2z5op9K8mG+ZCjeb+e1TmC25WntPSqqpLcedT83O4eF1TbrNeNjg9PcqMZx7CWf2Cjtbxsa7IzfdPbnbRnc4C32Zu6+zNz9Bs/Yy/r7vE62ax3JPnGqG03coQBAAC2RLEwAAAAYLudnqHQ19U3Uyhs4uZJatT2ji3E8OkpbT++hfE2raqOqKrbVtWjq+r5VfXaqnprVf1LVX1g/JPkT0dDHJ5hh7S9Ylzc66JJbr/JvvcbHZ+R1cWExsZf1J86R6LOSuNn5ZgZihctwneyuvDXZnxydHyuqjpi6pXL7S1z9BnvyvjtJO+fcYzPTGlb+H2f7Gh7xVHzq+ZMbvuHDAmHe9n48+4CSe6zUaeqOjbJNUbNz+rusxcVGAAAAAAAAACw9O4/Oj47yV9v1Km735HVxVzuONngcivmyXuZluf01gWMM2/eyyvn7Pd3U9puPOdYU02KSt181LyVnMJkda7YrDmF7+rus+aYd5zrdeQcY+wX1+6QKh4AACAASURBVEpykVHb3Pe1u7+W1ZtPznpfreWDTV3LS7omP9Hdn9tiDAc5BHOAt8s/z9qhqi6S5MdGzVv5fDgnq9fYjuSSAwAALNK5dzsAAAAAYN97X5KnTXb92qybTml7eVVtepe1Tbj4Asdapaqul+QRGQplnX+Lwx2VZKEJDNvor5P8UQ5+zSdkg6JfVXV0kuNGzS/t7o2KIY2flYtMEi7mNa3A1sWzejex7XJKd39vjn7jBKdkSCI7Y4vx7LR5dhU8fXR8yhxFo8ZjJNuThHe9KW2zFjZLknT32VX1oSQ32VpIu6e731VV78/B78uDkvy/Dbo+eHR8doailAAAAAAAAADAIaCqbprk6qPm13f3lzc5xPOT/O6K48OT3DPJ07YQ1iLyXhY1zrx5L3PlsST5cJLvJTnPirZpeTJb8SMZNq5c6b5V9TNbGPMKo+NZcwrHRec2a5zrdSgXC5uWK/q0qjpzC2NeYHQ86321lje3lpdxTf7LFuY+yCGcA7xd5rk3N0ly2KjtMVX10C3EcZXR8bbmkgMAAGwHxcIAAACAWXwr0xMYzpNhd7fLTDl3fJL3VtUJ3b3hzo0Tl5vSdq1N9t2siy14vCRJVZ0nyR9nKGYz/pJ6XnsmGai7v1lVr0hyjxXNt6qqy3T3F9bpekKSGrU9ZxNTjp+VCyS59ib6zeJimS9xZx5fm7PftAJj55nStuy+Pkef8WufeYzu/t6w0eFBtuP9u+SUto9uYbz/zB4uFjbxpzl4rf9IVR3X3SdPu7iqLpnkTqPmV3f3qdsUHwAAAAAAAACwfE6c0va8Gfq/IMkTc3C+0onZWrGwReS9LGqcefNe5spj6e4zq+ozSX54RfO0PJmtmJZTeLk12uc1a07honK99mKe16JMu3/jQoBbNet9tZY3t5aXcU1+aasTHuo5wNtonnsz7Vm60lYDGdmWXHIAAIDttKj/WQUAAAAODe/r7utM+blmd182w5emJ2QoYLPSeZO8oKp+dpPz7MSXr1vd6WuVSZLAy5I8JIv9vcteSwYaF/k6V5J7r3VxDVWa7jNq/nh3v20Tc413ptsOC39W1jEtaeiQ0d2LeP3L/B4eNaVtvFPoLLbSd1n8TZKvjtoetM71J2b4O2WlZyw0IgAAAAAAAABgaVXVEUnuOmr+epLXbHaM7j4lycmj5mtX1fW2ENpCclYWlD8zr0XmsUzLk9mKZcwpXOY8pb1i397XQ2AtL+O9O20rk8kB3lbz3JtlfMYAAAB2nWJhAAAAwMJ099e6+3lJrpOhAMxK50rywqo6ZhNDXWTBoe2URyW5w5T2U5P8WZJ7JblJkstnSKA4X3fXyp8kx+9YtNvnjUlOGbXdb53rj83q3b7GBcdWqaoLJDl8ttBgV11oStu3tjDeVvouhe7+bpK/GjXfuaouNb62qg5L8sBR88czfOYAAAAAAAAAAIeGX0hywVHbS7r7zBnHed6UthPnC2nfWGQey7Q8ma3YqzmFrM993R47sZaX8d6dvcX+coC3zzz3ZhmfMQAAgF137t0OAAAAANh/uvvMqrp3kkvl4C++L5yhKMwtNhjiO6Pjb3T3Un/pW1WXTPKYUfPZSR6R5E+7e7NfdO/5Xaq6u6vqeUkev6L56lV14+5+15Qu40Ji30/y/E1M9d0k5+Tggviv7O47zRQw7JzTp7SNk1dnsZW+y+TPkjw8P1jL58mQfPv7o+tuk+SYUdufd3dva3QAAAAAAAAAwDKZVtDrQVX1oAWMffeqelh3j/PXDhUXTHLaFvquNC1PZium3ZM7dverFjwPO2vafb1Id39jxyPZX3ZiLe+rNSkHeClNe8au090f3PFIAAAAlshhG18CAAAAMLvJF+P3yeqEg5+qqrtt0P0ro+OjquqohQW3PW6f5AKjtkd195/MkCSQJBddYEy76blJxgV8ThhfVFVHJLnLqPn/6+5TN5qgu89JMk4KuuLmQ2QRquo8ux3DHjItie3ILYy3lb5Lo7tPSfKaUfMDq2r8++sHj46/m+GzBgAAAAAAAAA4BFTVNZLceBunOCrJnbdx/GW3yDyWRRd7GucUJnLF9oNp9/WYnQ5iH9qJtbzf1qQc4Ol2Mz90vz1jAAAAC6FYGAAAALBtuvtzSR4/5dTvb1Bg6L+ntF1rMVFtm58eHX89yZ/OMc6VFhDLruvuTyc5edT8C1V1vlHbXbN6J7rnzDDV+Fm5alUdPkP/Q9n3prTNk9hxsa0Gcgj50pS2q21hvKtvoe+yGX9eHp3kNgcOquqg44mXdvdXtzswAAAAAAAAAGBpnLhP5lhWV52nU1WdN6sLPE3Lk9mKvZhTyMbc1+2xE2t5v927/ZQDvKjc0GR3i5/tt2cMAABgIRQLAwAAALbbM5J8atR2payfVPWeKW3jIjHL5vKj43d391lzjHOTRQSzJMZFv45McqdR2wmj468lefUMc4yflfMnOW6G/oey06a0XXiOca6y1UAOIe+f0na9eQaqqnNnfyW+/FOSj47aHrzizw/M6t9nP2NbIwIAAAAAAAAAlsZkc8p7j5rPSvLBLf58bTTmcVW1DMVedsNceSwZcljGhWim5clsxYeSfHfUdusFz8HO24u5onvBTqzl/bYm91MO8EJyQ6vqcknGGwTvpHdPafP5AAAAHPIUCwMAAAC21eTL8idOOfVbVXX4Gt3+cUrb3SbFcZbVxUfH4ySyDVXVxZMcP+f8Z4+OzzXnOIv08qxOOrjfgT9U1ZWT3Hx0/kXdfeYMc0x7Vu41Q/9D2TemtM2T6HjsVgM5VHT3l5J8etR8+6qa5/e0t0pywa1HNZNt+5zp7k7yZ6Pm21TV0ZNk33GByQ9097sWNT8AAAAAAAAAsPRun+QSo7ZXdPd1tvKT5HGjMSsrcpwOMXecs9+dp7QtNK+ju7+b5G2j5stU1S0WOc8SG+ftJLubI7ioPKJ3JPnWqO12VXWROcdjsO1reR+uyf2UA7wvckO7+5Qknxg137Cqrrob8QAAACwLxcIAAACAnfDCJB8btV0uyQOmXdzdp2b1bmRXTHLCwiNbnHHCyjhxYDMekvl34Tp9dHzEnOMsTHd/O8lLRs23qKoDO7CdMKXbc2ac5h+yene6u1fV1WYc51D00SltN5xlgKo6V5L7LyacQ8brR8eXTXK7OcaZ+vm5zbb7c+a5Sc5YcXxYkgcmuVOSS42ufcaC5wYAAAAAAAAAltt4o7FkyEvbqpckOWvUdsKcm7/tdTepqmvO0mGyYei9R81nJ/mnhUX1A6+a0nbSNsyzjMZ5O8nu5gguJI9oshntG0bNF0rysHnG43/s1FreT2tyP+UAn5qD8/CSGXNDJx64hRgWZfyMHZbk8bsRCAAAwLI4FH9pCQAAAOyw7v5+kt+dcuoxVbXWF+O/N6XtKUu8I9QXRsc/UVUX3GznSWLGY7Yw/9dHx0ctye564+JfhyW5zySZ7j6jcx/s7n+dZfDu/kqSvxg1nyvJi6vq/DNFeojp7i8l+dyo+a6TAmCb9ZDMt+PcoeyZU9qeUlXn3ewAVXXLJHdYXEibNv6cWei97+7Tkrxg1Hxikl8ZtZ2W5MWLnBsAAAAAAAAAWF5V9UNJ/teo+ctZXWRoZt39taze/O1ySW611bH3qP874/WPzPB+rfSq7h7n0y3CXyX54qjtZlX1qG2Ya9mM83aS3c3bWmS+4rRc0UdW1c3mHI/BTqzl/bQm900OcHefk+QDo+bbVdWRmx2jqm6f5CfnmX/BnprVGwrfs6ruthvBAAAALAPFwgAAAICd8uIk/zlqu2ySB027uLtfkeR9o+Yjk7x+1h3PDqiqC1XVI6rqXvP038BbR8dHJPmdzXSsqmOSvDrJ4VuY/8NT2m67hfEWorvfmdX3/YQkt0hyhVH7s+ec5g+yele36yZ5xbzJElV1dFU9rap+dM6Y9opxouMVkvz6ZjpW1S2S/J+FR7TPdfeHk/zzqPmqSZ6zmR1pq+qHs7qg1k4Zf878aFVdfsFz/Ono+FJJxol/L+zu8c6HAAAAAAAAAMD+db8MGwiu9JLuPntB479wStuJCxp7r7lFVT1pMxdW1W2S/PaUU/9vsSENuvs7mV5Y6ver6qHzjltVt66qP5s/sh3x2STfHLXtZn7gwvIVJxuMvnzUfJ4M+X9zFSuqqsOr6oFV9Rvz9N8ntn0t77M1ud9ygMe5oedPstnn4VpZvVHwrpgUq3v6lFPPrqq7zDNmVZ2rqu5WVdOeXQAAgKWnWBgAAACwIyY7VT1hyqlHV9UF1uh29yRfG7VdKcm7q+q3NrPLVVUdVlXHV9Uzk/xXhuJGl54h9M16eZJzRm2PqKrfrapzrxPf3ZO8Mz/Y5e+0Oed/15T5n1pVd6iq88w55qKMkwauktW71p2V5EXzDN7dX0xy3yQ9OnWrJO+vqnutdw8OqKoLThIA/i7JJ5I8NMn55olpD/nLKW1Prqpfqqqa1qGqzjfZ+e/1GZJbxru2sbFfzur37R5JXj3ZCXeqqrpjkrfkB59h39me8Nb0jtHxYUleVlXXX9QE3f2RrC6mNvbMRc0HAAAAAAAAACy3SQ7L/aacmlbga15/n9WFmG5fVZdY4Bx7wYF8lt+qqmetlZ83ycn79SR/l6Go00rP7e63bGOMT0/yqlHbYUmeVlWvqKprb2aQqrpiVT2qqj6UIQ9qrqJUO6W7O0Oe4Uq3rKo/qKpL7kJIi85X/KUknx61XTzJG6vqD6tqUzmfVXWjqnpqks8k+fMkV54jlv1gJ9fyflmT+y0H+LlJvj9qe2hVPWGt1zMponVikrcluWiGnNyz5ph70R6X5D2jtgsk+duq+suq2tQ6r6ofraonJvlYkr9JsqlnEwAAYNls+I8kAQAAABbopRm+tL3mirZLZSic85Txxd39iaq6a5LXJTnvilMXzLDD1WOq6m1J3p7kC0m+keEL4KOSXD7JdSc/Ry38layO9WNV9cIk9xmdelySE6rqb5N8KMkZGb5Ev1qS2+fgZJRvJ3lUkmfMMf8XquoNOXgnsUsleWWSs6rqs0m+ldUFtX6xu98363wzekGS38/Bu3v+yOiav+/ur847QXe/vKoen+R3R6euOJn/KVV1cpL3JflyhvfiwhmejaskuX6Sa2VrO7vtOd39nqp6VZI7rGg+V4ZiTA+pqldkKJx2VpJLJLlehmdsZYLZr0fxppl0939W1W8leero1O2SfKKqXp9hp8IvZNjR70oZ7tGPrbj21CQvy/D+75RXZSjgeNEVbTdK8t6qOj3J5zOleFx3X2fGeZ6e5Pg1zr2tu6ftoggAAAAAAAAA7E/H5wdFWA74eHe/e1ETdPeZVfWyJL+4ovk8Se6V5I8XNc8e8PgMm3Emw3tx16p6ZZL3JvlShlyrqye5S5IrTOl/SpLf2M4Au7ur6l4ZitmMC73cMckdq+qDSU5O8vEkB3LSjspQfOpaGXKgxs/UXvDsJLcetT06w4atX8iQ13P26Pyru/vxiw5k0fmK3f3Vqrp9hvu6srDVuZM8PMmvVtU7M2y0+LkkX8+Q63dUkssk+fEMOYCHWoG/tezYWt4va3K/5QB39+er6mlZnV/4+CT3rKqXJ/mPScwXy5CbeLsc/Dw8OcOmz0fP+noWqbu/W1V3ylBQ7fKj0ydmuD/vS/LmDIUCv5YhD/aoDLmu18nw+bDmRq4AAAB7iWJhAAAAwI7p7nOq6gkZioat9MiqekZ3f2tKnzdW1c2T/G1Wf8l7wSS3mvwsg19NcsMMSRQrXS4bF/T5XpKfz/DF+7wekeTYDO/LSufN2jvkHbGF+TZlRRLD7da57NkLmOdJVfX5DIWGzjc6fakkd5v8cLAHJblBksuO2n8sBxenmuYPu/vPq0qxsBl19x9V1cWTPGZ06nxJ7jT5Wcu3MiRS/cw2hTfVJOnmN5I8b8rpC2VIgFqEVyb5bFZ/5idzJFIBAAAAAAAAAHvaiVPaXrgN87wwBxcLOzD3oVQs7CkZCqrcdXJ84QyFc8bFc6b5XJKf6u5vbFNs/6O7z5jkFD4nQ7GjsWtnddGi/eDlSd6Y5BZTzl1m8jP2gW2MZ6H5it39b1V1gyR/l+RHp4x57OSHje3oWt5Ha3K/5QD/VpJbZvV6unKSR24Qy0sm/e++wXU7YlL87IYZ4vrJ0elzZdj09EY7HhgAAMAuOGy3AwAAAAAOOQd211rpEkl+Za0O3f2eJNfNkEjwvS3M3Rl2J3vrFsZYe/Dub2b4Yv1dM3b9fJJbdvfrtjj/R5L8dJJPbGWcbbJeMbAvJPmHRUzS3c9OcpMkb9riUN9N8jdJ/mvLQS257v5ikptltufmrCQP7+6NEkZYR3c/NsMOjLMkCH0uyfHTdgPcCd39/AyJsadv4xzfT/LnU059OUPSIwAAAAAAAABwCKiqo5LcecqpF23DdG/J6lyha1bVIVN8pLs7yT2TzLpx4NuTHNvdn1p8VNN19+nd/XNJHpzk1C0O918ZchOXWnefk+Tnkrx4t2NJtidfsbs/nqHgzx9l2FBxK96XZEs5mXvVbqzl/bAm91sOcHd/O8lxSd4zS7cMxebuMfnMWRqTXNdbJHlckq9tcbj/yOqNrwEAAPYExcIAAACAHTVJQjhpyqmHV9WF1un3le6+f5KrZPgi+t8zfCm9kdOTvDZDQZ4rdvfx3f3umQPfpO4+NcOuVQ9NslHCxClJfjvJ1bv7LQua/50ZdjW7bZI/S/K2DIkIZyTZzS/u/z7JV9Y49/xJcaCF6O4PdPctktw4yfMzFFfajC9k2CH0vkku3d137+4vLSquZdbdn05yrSSPzfA+rOWsDDuz/Xh3P3UnYtvvuvtPklwzyfOSnLbOpV9K8qQk1+zu9+5EbGvp7r9K8kNJ7pfkBUn+NUN831ngNNOKoT27u89c4BwAAAAAAAAAwHK7Z5Lzjdre2d2fXPREk7y2aUXITlz0XMusu8/u7gdnKJjzpqyfc/avSR6Q5OY7WShspe5+ZpIrTeL4p2xu075zMsT+h0mOT3LMXsmF6u5vdPc9M+QInpTkNUk+meTr2dpGrPPGs/B8xe7+dnc/LMkxGV7j+5JsJr/wuxme2cdmyLG6wVaLN+1lu7WW9/qa3G85wN391SQ3zVDEbb2/O7+f5PVJbtrdj1i2QmEHTJ7r30tydJKHZXh/ztpE17OTvCPJE5PcsLuvMdk4FQAAYM+p4feYAAAAAHtPVV0iyfWSXCLJxZIckWE3udMzFIj6zySn9C7+AqSqrprkhpMYLziJ73NJPtTdH92tuA41VXWVJNfI8JxcLMl5MyRPfDPJp5P856FSGGwzqupaSa6d5OJJLpDhffpohmTLM3Yztv2sqg5PcrMkV0hy6QzJPf+d5ENJPrCsCTjboapenOTuK5o6yVV2K7EUAAAAAAAAAOBQVFUXz7Bp45Uz5OedlmEzwn/djqJtW1VV582QU3i5DLlPF8lQJOb0DJtdfizJx7p7kZvisc2q6sgkN0hyyQz5f0dm2Njw9AyFlD6a5FOL3LR0r6iqk5L8zsq27q4p1+3KWt7ra3K/5QBPXs/1MqylC2W4D59M8o7u/tpuxjavqrpAkusnuWyGz4ejkpyZ4bV9KcPnwye6ezNFxQAAAJaeYmEAAAAAACyNSSHIzyY5fEXzG7r7NrsUEgAAAAAAAAAAwNLZbLEwAAAAYH84bLcDAAAAAACAFR6QgwuFJcnTdyMQAAAAAAAAAAAAAAAAgGWgWBgAAAAAAEuhqi6Y5NdGzZ9I8rpdCAcAAAAAAAAAAAAAAABgKSgWBgAAAADAsnhikkuO2v6ku8/ZjWAAAAAAAAAAAAAAAAAAloFiYQAAAAAA7KqqumhVPSXJb45OnZLkWbsQEgAAAAAAAAAAAAAAAMDSOPduBwAAAAAAwKGlqv4yyfUnhxdPctkkNeXSR3T3WTsWGAAAAAAAAAAAAAAAAMASUiwMAAAAAICddpUk197gmud398t2IhgAAAAAAAAAAAAAAACAZXbYbgcAAAAAAAAjL0zyi7sdBAAAAAAAAAAAAAAAAMAyOPduBwAAAAAAwCHvO0lOTfLOJM/u7pN3NxwAAAAAAAAAAAAAAACA5VHdvdsxAAAAAAAAAAAAAAAAAAAAAAAAAFMcttsBAAAAAAAAAAAAAAAAAAAAAAAAANMpFgYAAAAAAAAAAAAAAAAAAAAAAABLSrEwAAAAAAAAAAAAAAAAAAAAAAAAWFKKhQEAAAAAAAAAAAAAAAAAAAAAAMCSUiwMAAAAAAAAAAAAAAAAAAAAAAAAlpRiYQAAAAAAAAAAAAAAAAAAAAAAALCkFAsDAAAAAAAAAAAAAAAAAAAAAACAJaVYGAAAAAAAAAAAAAAAAAAAAAAAACwpxcIAAAAAAAAAAAAAAAAAAAAAAABgSSkWBgAAAAAAAAAAAAAAAAAAAAAAAEtKsTAAAAAAAAAAAAAAAAAAAAAAAABYUoqFAQAAAAAAAAAAAAAAAAAAAAAAwJI6924HALutqo5McuyKps8mOWuXwgEAAAAAAAAA2IrzJrn8iuM3d/c3dysYAJCjBwAAAAAAAADsE7uan6dYGAxJSK/a7SAAAAAAAAAAALbBHZK8ereDAOCQJkcPAAAAAAAAANiPdjQ/77CdmggAAAAAAAAA+P/Zu/M4u+r68P/vc2cmCYEAARJkUUIAQVMBqXxlCciiaLVfpZQv1dKitl9LhbZYv4D6tQjqryp1a79fqNStxKXWrwsgasEqi0DKIovSAipLCGDINpOQfe7c+/n9QWaYmdzlnJububM8nzx4mHPO55zPmZuc65B88roAAAAAAAAAAAAAAMWIhQEAAAAAAAAAAAAAAAAAAAAAAMA41d3pG4Bx4KnhG9dee20cfPDBnboXAAAAAAAAAICWPfroo3H66acP3/VUvbEAMEas0QMAAAAAAAAAJrxOr88TC4OI/uEbBx98cCxYsKBT9wIAAAAAAAAA0E79zYcAwA5ljR4AAAAAAAAAMBmN6fq80lhOBgAAAAAAAAAAAAAAAAAAAAAAAOQnFgYAAAAAAAAAAAAAAAAAAAAAAADjlFgYAAAAAAAAAAAAAAAAAAAAAAAAjFNiYQAAAAAAAAAAAAAAAAAAAAAAADBOiYUBAAAAAAAAAAAAAAAAAAAAAADAOCUWBgAAAAAAAAAAAAAAAAAAAAAAAOOUWBgAAAAAAAAAAAAAAAAAAAAAAACMU2JhAAAAAAAAAAAAAAAAAAAAAAAAME6JhQEAAAAAAAAAAAAAAAAAAAAAAMA4JRYGAAAAAAAAAAAAAAAAAAAAAAAA45RYGAAAAAAAAAAAAAAAAAAAAAAAAIxTYmEAAAAAAAAAAAAAAAAAAAAAAAAwTomFAQAAAAAAAAAAAAAAAAAAAAAAwDglFgYAAAAAAAAAAAAAAAAAAAAAAADjVHenbwAAAAAAAAAA2iGlFNVqNVJKnb4VgBGyLItSqRRZlnX6VgAAAAAAAAAAAIAJSCwMAAAAAAAAgAmpUqnEhg0bYt26dbFhw4aoVCqdviWAhqZNmxazZs2KWbNmxYwZM8TDAAAAAAAAAAAAgFzEwgAAAAAAAACYUCqVSixbtizWrVvX6VsBKKS/vz9Wr14dq1evjp6enth3331j5syZnb4tAAAAAAAAAAAAYJwrdfoGAAAAAAAAACCvcrkcTz75pFAYMOGVy+VYunRpbNy4sdO3AgAAAAAAAAAAAIxzYmEAAAAAAAAATAhbtmyJJUuWxJYtWzp9KwBtkVISDAMAAAAAAAAAAACa6u70DQAAAAAAAABAHsuXL4+BgYER+7Isi5kzZ8asWbNip512iq6ursiyrEN3CFBbSinK5XKsX78+nnvuuSiXyyOO/eY3v4mDDjrI+xcAAAAAAAAAAABQk1gYAAAAAAAAAONeuVyODRs2jNg3bdq0ePGLXxzTpk3r0F0B5NfT0xMzZ86MOXPmxDPPPBPr1q0bOlYul2PLli0xY8aMDt4hAAAAAAAAAAAAMF6VOn0DAAAAAAAAANDM2rVrR2yXSqU44IADhMKACSfLsthvv/2ip6dnxP7nnnuuQ3cEAAAAAAAAAAAAjHdiYQAAAAAAAACMe6NjYbvuumt0d3d36G4Atk+WZbHrrruO2Ldu3boO3Q0AAAAAAAAAAAAw3omFAQAAAAAAADCupZSiv79/xL7RkR2AiWaXXXYZsd3f3x8ppQ7dDQAAAAAAAAAAADCeiYUBAAAAAAAAMK5Vq9Vt9vX09HTgTgDap7u7e5t9td7vAAAAAAAAAAAAAMTCAAAAAAAAABjXUkrb7CuV/HE3MLHVeh+r9X4HAAAAAAAAAAAAYPU0AAAAAAAAAAAAAAAAAAAAAAAAjFPdnb4BxkaWZT0RcXxEvCQi9omI9RHxm4i4P6W0pM1zHRgRR0bEvhGxS0Qsi4gnI2JxSqnczrkAAAAAAAAAAAAAAAAAAAAAAAAmM7GwDsmybH5EHB0Rr9r6v0dFxKxhQ55MKc1rwzxzIuLDEfEHEbFHnTGLI+IzKaXvbOdcZ0bEeyPi2DpDerMs+2ZEfCiltGp75gIAAAAAAAAAAAAAAAAAAAAAAJgKxMLGUJZlJ0XEB+L5QFjNcFeb5/udiLg6IuY2GXpcRByXZdnXI+LclNKGgvPsEhFfiIi3Nhm6R0S8OyLOyLLs7SmlG4vMAwAAAAAAAAAAAAAAAAAAAAAAMNWIhY2tIyPitLGYaGuY7NqImDZsd4qI+yLi8YjYPSJeGRF7DTt+dkTsmmXZ6Smlas55uiLimxHxxlGHVkbE/RGxNiIO2jpXtvXY3hFxXZZlr00p3V7gywIAAAAAAAAAAAAAAAAAAAAAAJhSSp2+ASIiYktEPNaui2VZtn9EfDdGhsLuiIgFKaVXpZTOSimdFhH7R8QFEVEeNu6/R8T/V2C6T8TIUFg5Iv4yIvZPKb1+61y/HRG/FRH/MWzc9Ii4NsuyfQrMBQAAd3Xq+gAAIABJREFUAAAAAAAAAAAAAAAAAAAAMKWIhY29ckQ8EBFfjIhzI+K3I2JWRPzPNs7x4YiYPWx7cUS8NqX08PBBKaUtKaX/ExFnjTr/vVmWHdBskizL5sfzsbHh/kdK6YqUUv+ouR6KiFNjZDBsz4i4tNk8AAAAAAAAAAAAAAAAAAAAAAAAU5VY2NhaFBG7ppRemVJ6V0rp8yml+1JK5XZNkGXZIRHx9mG7+iPiHSmlzfXOSSldu/XeBk2PfBGvSyOiZ9j21Sml6xrMsyki3rH1ngb96dboGAAAAAAAAAAAAAAAAAAAAAAAAKOIhY2hlFJfo2hXm/xhRHQN2/5uSunXOc67fNT2WVmWzag3OMuynSLizCbX2EZK6VcRce2wXd3x/D0DAAAAAAAAAAAAAAAAAAAAAAAwiljY5PN7o7b/Oc9JKaWHI+KuYbt2jojTGpzy+oiYOWz7P1JKj+S6w23v6Yyc5wEAAAAAAABAU/PmzYssy4b+veWWWzp9SwAAAAAAAAAAAADQMrGwSSTLshdFxBHDdg1ExB0FLnHLqO3faTD2DU3ObeS2eP7eBr0yy7K9C5wPAAAAAAAAAAAAAAAAAAAAAAAwJYiFTS6/NWr7FymlDQXOXzxqe0GBuf4j7yRb7+nBAnMBAAAAAAAAAAAAAAAAAAAAAABMSWJhk8vLR20/WvD8x5pcb7iXjeFcAAAAAAAAAAAAAAAAAAAAAAAAU1J3p2+Atjp41PbSguc/OWp7zyzLZqeU+obvzLJsj4jYYzvnGj3+kILnAzBBlKv9kSJFREQpK0V31rN1fzlSVLfr2l1Zd3RlXXXnnFaanus61VSNUqahSnu169fV4LPSk02LLMtGHEspRYo0Yp5KGohKquS6dlfWFV1Z99Z5XnhWt0cWpegp9Wy9l0pU0kDNcc2ez5RSlFN/3WvnUU2VGBg1//D3jeE/R8Pfk4rOAwAAAAAAAADAC1K1GlnJeiwAAAAAAACAdhILm1x2H7W9osjJKaX1WZZtjogZw3bvFhF9o4aOnmdjSmlDkblq3NtuBc8HYJy7c+3N8e+918Sy/hf6kKXoimpUohRd8XziaPtiYdOzGXHozofHH+59XuzavXvctfbm+NGwOef07BMn7v47ceoeb655/qMb/yuuWfmVeGrL4/Hi6fPjjDnviINmvmy77omprZqq8YPV/xp3rr0pNlc3xhG7vDrO2vvPYkZpp8LX+uXGB+O6lV+JJzc/FimqsVvX7HjVrifG7805JyKyuG7VV+Pu526NShqIw3f5b3HK7DfHt1d8KR7b9PA2ka16urOeGEjl6Mmm5T4nj126dov1lbUxLZse/WlLzTF79uwdC3c7LU7b44wREbRqqsQ1KxfFz567LdZWRn4bmkUpXjLjoHjLXn8Uh+18RN35N1TWxTeWfy4e2vBAbK5uHHGsJ5sWA6kcu3TtGpuqG2MglSOLUsTWd6Xn58nixTMOijfvdXa8fOdXtvgqAAAAAAAAAABMLemGr0X6+qcili2JdOQJkV14RWQvOqDTtwUAAAAAAAAwKYiFTS67jNre1MI1NsXIWNisHTjPcLXmKSzLsrkRMafgaQe1Y24AXvDAujvjK8/+wzb7q1EZ8b/ba0vaHL9Yf3es7F8W/32vs2PRqDlXlpfFd1Z+OXpK0+LE3d8w4tizW56OK57+yFDI6InNv4wrnv5wvH/ep2Pvafu15f6Yen6w+hvxb6u/NbR953M3x/rKujhv/78pdJ1ntiyJf3z6oyMCXmsrffGTvuuiGpXoiu74cd+1Q8cWr/1xLF7748L3O5DKERFtDYVFRKyvrI2IqBsKi4hYXV4e1636anRn3XHqHm8Z2v/tFV+OW9b8oOY5Karx5OZfx+ee+du46CV/F/vPmLftmJTiyqc/Eks2/7rmNQa/1nVb73HwuiPnSbF086Nx1TMfiwtf8ol4yQzfLgIAAAAAAAAANJJ+el2kv/3TF3bc9aNIf3VaxFcfiGx68Q/aAwAAAAAAAGAksbDJZXTEa3ML19gUEbMbXLOd8zS6ZqvOi4hL23QtAFp0z3O3jul8y/qfim+v+FLd43etvXmbWNj96/9jm5DRlrQ5fr7urjhtzzN2yH0yuVVTNe5Y8+/b7P/PDT+LdQNrY1b3brmvdf+6/6gb8Lp77a2RZVnL9zne3PXczUOxsEqqxN053j/KqT/uX39HzVjYivJv6obCihpI5bhv3R1iYQAAAABAXSmluO++++KRRx6JFStWxJYtW2LOnDmx3377xcKFC2OXXdr1R+Fj76mnnop77rknnn766di0aVPstdde8YpXvCJe9apXRalU2q5rr1ixIm677bb4zW9+E5s2bYp999035s+fH8ccc8x2X7uWhx56KB588MFYuXJlPPfcc7HHHnvEPvvsEwsXLow999yz7fMBAMBUlG78+rY7ly2J+MUdEUe/dqxvBwAAAAAAAGDSEQub3NIkOweACeLZ/mfGfM7egZV1jz3b//Q2+65fVWNxWkRcu+orYmG05LnKmniusqbmsRXlZYViYbV+zQ7aUF1X+N7Gs2VbXvha11fWxsbq+lznPbul9mtUb3+rGv1cAAAAAABT16pVq+JjH/tYfO1rX4uVK2v/GcW0adPilFNOicsuuyxe/epX57ruO97xjli0aNHQ9hNPPBHz5s3Lde4tt9wSJ5988tD2pZdeGpdddlnd8cM/mOI1r3lN3HLLLRERsXjx4rj00kvjpptuimq1us15e++9d3zwgx+M888/v3DY6/7774+LLroobr755prX3n///ePcc8+N97///dHd3R2XXXZZfPjDHx46fvPNN8dJJ52Ua67Vq1fHJz/5yfja174WzzxT+8+uSqVSHHfccXHppZfGa18rXgAAANvlp9fV3J2+/NHIxMIAAAAAAAAAtlv7P46VThpdVtiphWuMPqdWrWGs5gFggkqx7V/u6KTxdj9MTn3lVXWPpVQZwzuZWKrDns9KgdepOkbPdTV5/wAAAAAARrr22mtj/vz58dnPfrZuKCwior+/P2644YY45phj4txzz42BgYExvMvWfOxjH4sTTzwxfvzjH9eMeUVELF++PP7qr/4qzjzzzOjv78997c985jNx9NFHx09+8pO613766afjkksuide85jWxfPnylr6GiIivfOUrMX/+/Lj88svrhsIiIqrVatx+++3xute9Lv74j/+40NcDAADktGlDp+8AAAAAAAAAYFLo7vQN0FZiYRH/GBHfKnjOQRFR++PMAGhJitTpWxhB7Iex0DdQ/y+EjVXYaiJKUY2UUmRZVuhZLRIW2x5+7gAAAACA4b785S/Hu971rm1iVwcddFC8/OUvj5kzZ8bSpUvj7rvvjkrlhd/H/PznPx9Lly6N66+/Prq7x+dSjU996lPxwQ9+cGj70EMPjUMPPTR23nnnWLZsWdx5552xefPmoePXXHNNXHLJJXH55Zc3vfanP/3puPDCC7fZ//KXvzwOOeSQmD59eixdujTuueeeqFQqsXjx4jjrrLPixBNPLPx1fOhDH4qPfvSjI/ZlWRaHHnpoHHLIITFr1qzo6+uLn/3sZyNib1/72tdi2bJlccMNN4zbnyMAAJiQuns6fQcAAAAAAAAAk4LVjZPL2lHbc4qcnGXZLrFtxGtNjnlmZlm2c0qpyEd/zc0xT2EppRURsaLIOVmWtWNqAIZJqVgs7NW7nhyv2f13co394m8+Gb0Noky1VGNsokJMbb3lBrGwwsG69gT3Xjx9frxt7z8fse9fV3w+lm5+tOF5r519ehw167jc89z93K1xy5oftHSPEc8Hubqiq9CzWi/i1e5YYXWMomQAAAAA7FhpYCBi5dOdvo3Jb87+kU3iyNIDDzwQ7373u0eEwo488si48sor47jjRv6e6sqVK+OSSy6Jf/qnfxrad8MNN8SHPvSh+NjHPjZm95zXgw8+GLfddltERJx++unx8Y9/PA477LARY/r6+uK9731vXH311UP7Pv3pT8e73/3umDdvXt1r33vvvfH+979/xL6TTjoprrjiiliwYMGI/StXrowPfehDcdVVV8VPf/rTeOihhwp9HYsWLRoRCiuVSnH++efHhRdeGC95yUtGjE0pxXXXXRcXXHBBLF26NCIifvKTn8Qll1wSH//4xwvNCwAANCAWBgAAAAAAANAWk3eV7tT061HbBxQ8f/T43pRS3+hBKaXVWZb1RcTsYbtfEhEPb8dco+8dgAks1Yn41LNHz14xb6eX5ho7vTS6a9lc8VATFNc3sKrusXphqx1t565Z2zxbO5d2aXre3Gn75H4mIyIe2/RI4Xsbrpqq0ZV1FXpWxyri1amfOwAAAADabOXTkc46tNN3Mell/++XEfvM6/Rt7DB/+qd/Gv39/UPbCxcujBtvvDFmzpy5zdg5c+bEVVddFQcffHBcdNFFQ/svv/zyeNvb3haveMUrxuSe8+rt7Y2IiIsvvjguv/zymmNmz54d//zP/xx9fX1x3XXXRUREpVKJL33pSyMCXaOdf/75MTAwMLR9xhlnxDe/+c3orhGWmzNnTnzuc5+L+fPnx8UXXxyrVtX/vffRnnzyyXj3u989tD19+vS49tpr4w1veEPN8VmWxemnnx7HHXdcHH/88fHoo89/0MYnP/nJ+LM/+7M48MADc88NAAA0IBYGMKaeXJ3iqltTvPmILI6Z78PVAQAAAABgMil1+gZoq9GxroMLnj9/1Hajj+ht91xFQmMAjHPVSIXGZwW+JSllxb99qUY1Uip2T1BUb7lBLGyMwlajlbKuGvuaP0NFnsm812xkMDBYjfyvU2WsYmEd+rkDAAAAAMaXm2++Oe67776h7V133TW++c1v1gyFDXfhhRfG7/7u7w5tV6vV+OxnP7vD7nN7LFy4MD7+8Y83Hfe3f/u3I7ZvuummumPvueeeuOuuu4a299lnn/jyl79cMxQ23EUXXRSnnXZa03sZ7pOf/GRs2rRpaPuzn/1s3VDYcHPnzo1/+Zd/GdquVCrj9ucIAAAmJLEwgDGRUoqFl1fiwA9U4/IbUhx/eTW6zq3G5rL1swAAAAAAMFmIhU0u/zlq+/AsyxqvTB7p+CbXa3Ts2LyTZFm2c0QcXmAuACaYlKqFxnfVCBrVU2rx25fBGBHsKH3llXWPVQv++mtX267W85InBFY0/tUVzZ/h7qz+X/waDH8VCYAVCYttj2rB9zMAAAAAYHJatGjRiO3zzz8/9t1331znfuITnxix/Y1vfCO2bNnStntrlw9+8INRKjX//eEFCxbEvHnzhrYfeOCBumO/8Y1vjNj+i7/4i9htt91y3c8ll1ySa1xExIYNG+LLX/7y0Pb8+fPj3HPPzX3+0UcfHSeccMLQ9ve+973c5wIAAE30TOv0HQBMCd+9L2LxY9vuf/3fWwMHAAAAAACThVjYJJJSWhYRvxi2qzsiFha4xEmjtv+twdgbmpzbyAnx/L0Nuj+ltLzA+QBMMnniRYNKBcJiwxWNNUFRfQOr6h7rVHCqVvQrT5yvlCP+1Wye0bqz+p8SOxjzK/KcjtVrOlZRMgAAAABgfLv99ttHbP/RH/1R7nMXLFgQRx111ND25s2b4957723bvbXDTjvtFKecckru8S972cuGfrxx48ZYv359zXGLFy8esX3WWWflnmPhwoW5g2y33357bNq0aWj7zDPPzBU+G+7kk08e+vGTTz4ZS5cuLXQ+AABMZanSYH1Fd/01IwC0zx9+sfaautt+PcY3AgAAAAAA7DDdzYcwwVwTEYcP235nRPyo2UlZlh0WEa8etmtDk/NujIhNEbHT1u1jsyw7LKX0SI57fMeo7WtynAPABFI0zJUnXjSo1GLrtJqqEVlLp0JT/dUtsa6ytu7xTgWnumpEv/I8Q3niXyPHN3+Gn4+Fbap5rJKef32KBMDGKgDYqdAbAAAAADB+9PX1xWOPPTa0vfvuu4+IZeVx3HHHxX333Te0fc8998Rxxx3XtnvcXgcddFBMmzYt9/jZs2eP2F67dm3ssssu24z7+c9/PvTj3XffPQ4++OBC9/WqV70qvve97zUdNzrmtu+++8aSJUsKzTX663/88cfjJS95SaFrAADAlDXQX/9Yl1gYQD2VaorFj0X8/KkUR8/L4r8dGJFlrS12LftcTAAAAAAAmPTEwiafr0fE30QMlSHOyLLskJRSs8+Ded+o7f+XUtpcb3BKaWOWZd+OiD8edY13Npoky7KXRsTvDds1EBH/0uTeAJhgUqRC44sEwIpGjAaNVViIqWnNwOqGx4sHp4o9Q/XUinjlCXsVCfhFRJRqRMlGez4WVtvg81lN+Vcr1Rtb9P2n6TwdCr0BAAAAAOPHypUrR2wfcsghhf/S5mGHHTZie8WKFdt9X+00Ov7VTE/PyN/zLZfL24zZsGFDbN78wrKDVsJbec956qmnRmy/5z3vife85z2F5xuut7d3u84HAIAppdwgFtYtFgZQS/9Aij/6YjW+PdSXT/Huk7L4v2+NKJXa++m4/QMppnX7xF0AAAAAAJjoxMImmZTSr7MsWxQRf7J117SIuDrLslPrxb+yLHtLRLxj2K7+iPhwjukui4i3RsTgn+K/I8uya1JKNT/WN8uyGRHxz1vvadCXUkqP1RoPwMSVUsFYWIEwUZ4oUS1FIkRQVF95VcPjnYrV1Xpe8sT5sgIBv4h8Eb/urP5/eqStMbVKgTBXZYye6eKhNwAAAADGpTn7R/b/ftnpu5j85uzf6TvYIfr6+kZs77bbboWvMfqc8RaiKpVa+7CWRtasWTNie9asWYWvseuuu+Yat3p14w/1aMW6devafk0AAJi0Nm+sf0wsDKCmf70nDQuFPe9zt6Q445VZnPqy9s91zrFiYQAAAAAAMNGJhY2xLMv2j9qv+4tGbXdnWTavzmXWp5QaFSkujYjfi4jBj/49LiJ+nGXZ/0wpPTLsXqZHxJ9FxKdHnf/plNKTDa4fEREppcezLPuHiLhw2O5vZ1n23oj4fEpp6GPCsix7WUR8ceu9DFod+aJkAEwwqWAYKU+8aGhsjihRLYI/7Ei9AysbHu9UrK7W85InztdVIOAXkS/i15XVX/g5GAkr8jpVC4TFtkelQ6E3AAAAANor6+6O2Gdep2+DCWr0h6Rk2fb/xcp2XGO8mz59+ojt/v7+OiPry3tOK9dupuiH4wAAwJT25CP1j02bXv8YwBT2Dz+u/XsP/3hLNU59WWsfrFvPvz8Ucc6xbb0kAAAAAADQAWJhY+/2iDggx7j9IuKJOscWRcQ76p2YUno6y7IzIuLGiJi2dffxEfFQlmX3RsTjEbFbRBwVEXNGnf79iLgkx/0Nen9ELIiI39m63RMR/zciLsmy7L6IWBcR87fONXy1c39E/F5KaVmBuQCYIFIU+8sTeeJFg7pyRIlqqYxRWIipqa/cqOMaUe1QcKpmLCxHnC8rEPCLiOjKEfHryer/p0faGvMr8jqNVQAwCQ0CAAAAwJS3xx57jNheu3Zt4WuMPmf27Nl1RrauUhlffxYy+mvs6+srfI3e3t5c4/baa68R24sXL45jj/U3YAEAYMwMlOseyvY5cAxvBGD8uv3XKb7/YIqerojTj8zi/qdqj7vm/vbP3btBFB0AAAAAACYDsbBJKqV0S5ZlvxcRV8cLQbAsIl619d9avhER70op5V5BnFKqZFl2VkR8MSL+YNihuRHxhjqnrYiIt6eUbss7DwATS9FPWs8TLxqU5YgS1SL4w47UN9AkFlbw11/R4F49teJ6tQJirYwZLk9crDvrqXtsMOZXzf9taIMAYHsXNQkNAgAAAABz5oz8DK5f/epXha/xy1/+csT23Llza47r7h65jGNgYCD3HK3EuHakrq6u2G+//eKZZ56JiIjHH388Nm7cGDNnzsx9jQcffDDXuL333nvE9q9+9SuxMAAAGEv9m+sfy7L6xwCmiKturcZ5X39hbdvl/9b+eNfuMyPWbKx97N/+s+3TAQAAAAAAHdBabYMJIaX0w4j4rYi4KiIarQq+MyLOTCn9YUppQwvzrE8pvTUi/sfWa9XTGxGfi4jfSindUHQeACaOahQLIxUJExUJiw0n+MOO1Fte2fB4kQhWO5WyGrGwGgGx0WpFxhqOrzHPaI1iYYMxtSLvHWP1mgoNAgAAAACzZ8+Ogw46aGh7zZo18fDDDxe6xuLFi0dsH3300TXH7brrriO216xZk3uO//qv/yp0T2PhmGOOGfpxtVqNW2+9Nfe5vb298fOf/zzX2OOOO27E9o9+9KPc8wAAAG2wpUEsrOAHTwJMNlvKKS7+9sj3woEdsCytXigMAAAAAACYPMTCxlhKaV5KKdvOf99RYL4VKaV3R8SLIuKUiHhnRHwgIv4qIn4/IuanlI5NKX2nDV/bt1NKx0bE/Ig4c+scH9g65ykRsU9K6byUUuOaBgCTQLEFXkUCYLXiR3kI/rAj9Q6sani8aECvXWo9W3nifFmBgN/z19y+WFja+vpUCgTAxioWJjQIAAAAAERELFy4cMT217/+9dznPvzww3HvvfcObc+YMSN++7d/u+bYuXPnjth+6KGHcs/zwx/+MPfYsfLa1752xPYXvvCF3OcuWrQo+vv7c4099dRTo6vrhd+r/t73vhcrVqzIPRcAALCdylvqHxMLA6a4Ox6LWN/gbbJdsqzx8d4N3o8BAAAAAGCiEwubIlJK/Smlm1NKV6eUPpFS+r8ppe+mlJ7YAXM9kVL6ztY5PrF1zptTSvlW8QIw4aWisbACYaIiYbHhBH/YUVJKsabcJBZWMGzVriU5tSJeeZ63roLPWVc0j4V1Zd11jw1Gwoq8TvUCbO1eziQ0CAAAAABERJxzzjkjtq+44op49tlnc537gQ98YMT2W9/61pg+fXrNsUcdddSI7euvvz7XHDfeeGPcfffducaOpbPPPjtmzZo1tH3NNdfEjTfe2PS8Z555Jj7ykY/knmf27Nlx9tlnD22vX78+LrzwwmI3CwAAtK7aaH2FOA0wtT27dmzeB2fV/u2mIes3j8ltAAAAAAAAO5BYGADQdqngp0GWcoSGBnXViB/lURX8YQfZWF0fW1LjVTT1wlY7Wq24Xp7gXlbwOctyBMi6s566x9LW16fI6zRWz7TQIAAAAAAQEXHKKafEkUceObS9du3aeNvb3habNm1qeN5nP/vZuO6664a2syyLv/7rv647/thjj42ZM2cObV9zzTXxs5/9rOEcv/71r+Ptb397sy+hI2bNmhUXXHDBiH1nnXVW3HzzzXXPWbJkSbzuda+LNWvWFJrrsssuGxFh++pXvxrve9/7olIp9vu8Dz30UPz0pz8tdA4AANBgvVjBtWQAk82m8tjMM9BkSd1zYmEAAAAAADDhiYUBAG1XNIxUyhEaGpS1+O1L6lCsicmvt7yy6ZhOxepqxfVKOUJgXQWfszzjexrEwipbX59qyv8XtsYq4iU0CAAAAACTw7PPPhtLlixp6d9BX/rSl2LatGlD27fcckuccMIJcdddd20z36pVq+L888+P9773vSP2X3zxxXH44YfXvc9Zs2bFH/zBHwxtVyqVeNOb3hQ/+tGPthnb398fX/jCF+KYY46J5cuXx+zZs4u8JGPmkksuiVe84hVD288991yceuqpcdZZZ8W3v/3t+MUvfhGPPPJI/OhHP4r3vOc9sWDBgnj44YdjxowZ8Za3vCX3PAceeGB8/vOfH7Hv7/7u72LhwoVx/fXXx8DAQN1zlyxZEldeeWWccsopsWDBgrjpppuKf6EAADCVCYIB1HXTI2MzT7nJkrofP+y9GgAAAAAAJrruTt8AADD5pEafFFlDKZrHiwZ1FQiLDVcpECGCIvoGVjUdUy0ctmrPopxaIb5SjrBXkYDf8+ObP8PdWf3/9BgMDBYJDdYPi7V3QVORgBkAAAAAMH697W1va/nctPUvvR911FFxxRVXxJ//+Z9Htfr872fee++9ccwxx8TBBx8cCxYsiBkzZsRTTz0Vd9999zZxqte97nXx0Y9+tOl8H/3oR+Oaa66JNWvWRETEihUr4vWvf30cfPDBcfjhh8f06dNj+fLlcdddd8WGDRsiIuJFL3pRXH755fH2t7+95a9zR5k2bVr84Ac/iFNOOSUeffTRiHj+Nf3Wt74V3/rWt2qek2VZXHnllbF06dK47rrrRuxv5Jxzzolnn302PvCBDwz9HN15553x5je/OWbOnBmvfOUrY++9946ddtop1q1bF6tWrYqHHnpo6LUGAABaVG2w5kNIDJjiXrRb8XNSSk1/H2S0gSbL79ZsLH4fAAAAAADA+CIWBgC0XSq4wKtImChrMRaWCkSIoIi+co5YWOrMr79aIb48z1uWIyg2cp7m47uznrrH0tYgV5GoX/EAW2uKBMwAAAAAgMnvXe96V8yePTve+c53xvr164f2P/roo0MhrFr+5E/+JK666qro6an/e6WD9ttvv/jOd74Tp59+eqxbt67pHAceeGD84Ac/iOXLlxf8asbOi1/84rjtttvivPPOi2uuuabh2D333DMWLVoUb3rTm+J973vfiGOzZs1qOtfFF18chx9+eLzzne+MZ599dmj/xo0b44477sh1v7Nnz841DgAAGNRgvZhYGDDFlVtY6tY/EDG9+W8jDalUU9O32498P8UZR6U4fP9iETIAAAAAAGD8aK22AQDQQNEwVynbNmhUT1eN+FEelQ7Fmpj8egdWNh3TqeBUrWerVkBstK4Cz2S9eba9Zv1OcWXr61PkdRqrZ1poEAAAAAAY7cwzz4zHHnssLrjggthrr73qjuvp6YnTTjst7rjjjvjSl76UKxQ26JRTTom777473vKWt0SW1f4LnHPmzImLLrooHnjggXjZy15W+OsYay960Yviu9/97lA07OUvf3nsvvvuMWPGjJg/f3689rWvjX/6p3+Kxx57LN70pjfQQVaJAAAgAElEQVRFRMSaNWtGXGO33XbLNdcb3vCGeOKJJ+LKK6+MI488su5rOKinpyeOO+64uOyyy+JXv/pVXHDBBa19kQAAMFU1LNSIhQFT26b+Fs4pFxs/kDNIduRHqvHYCu/LAAAAAAAwUdX/G/sAAC1KBRd4lQr0S7OstdZpp2JNTH595VVNx1Q7FKurFdcr5XiGsoJN4bwBsixKNeNbaevrU035P0IxRTWqqZrr69keQoMAAAAAMDEtWbJkh15/7ty58fd///fxmc98Ju6999545JFHYuXKlbFly5bYa6+9Yv/994+FCxfGrFmzWp7jsMMOi2uvvTZWrVoVt956azz99NOxcePG2HvvvePAAw+ME044Ibq7X1j2cdJJJ0Vq+Bf0RyoydrSrr746rr766pbOXbhwYSxcuDDX2Iceemjox1mWxdy5c3PPM2PGjDjvvPPivPPOi97e3rjzzjtj2bJl0dvbG+VyOXbZZZeYO3duvPSlL43DDjssZs6cWfhrAQAAtmrw3xcppWic7wWY3DYXDH9FPB8Y273Ab1WU8y+9i6/fneJDv+udGQAAAAAAJiKxMACg7QrHwrLmoaFBteJHeRSJEEERfQM5YmEFY3VFn6F6asX18oa9isgzvhRdUYpSVGq8FpV4/vks+pw+Hx4b+TVuz19uqzdHSimyzOIoAAAAAGBbpVIpjj766Dj66KN32Bx77bVX/P7v//4Ou/54tWHDhrjvvvuGtl/60pe2HF/bY4894o1vfGO7bg0AABit0XqNNq/lAJhoNvUXfx/cVDAwtmUg/9jLvpfiQ79b7PoAAAAAAMD4sG09AABgO7QS6ikV+JakVCN+lEfRWBPk1Vte2XRMp2J1XTWerTzPUJFnMvc1s1LdcdX0/PNZKyTWSGWMXlfvHwAAAAAAY2/RokWxcePGoe1jjz22g3cDAAA0lKytAKinaPirlXNamQMAAAAAAJh4xMIAgLZKLUR1SllX/rGRf+xwnYo1MblVUiXWDPQ2Hdep2FStZyvPM1TkmXz+mnkCZF11xw2+bxR9Tsfqda1a0AoAAAAAMKaefvrpuOSSS0bsO+ecczp0NwAAQFONPmCyhQ+fBJhMNvYXP2dTwXOKjgcAAAAAACYmsTAAoK1SFF/clSc0NDQ2a+3bl07Fmpjc1g705grkdSpWV+vZyvMMFXkmn79mngBZqe7cla2vT9HntNbruiOWl1ZDbBAAAAAAYHt85zvfif/9v/93rFy5sunY+++/P0488cTo7X3hwzqOOOKIOPnkk3fkLQIAANujYRBMLAyY2loJeW0q79jxAAAAAADAxNTd6RsAACaXagufBNlVIABWiuZRolqqSSyM9usrr8o1rlOxuloRrzwhsKxglC/PNUtRqhsVGwyuFY2qjdVz7f0DAAAAAGD7rFu3Lj7+8Y/Hpz71qXjDG94Qp556ahxxxBExd+7c6O7ujt7e3njwwQfj+9//flx//fWRhv1507Rp02LRokUdvHsAAKC5BmvGWlhPBjCZbBkofk7RwFgrcwAAAAAAABOPWBgA0FaphShSliM0NKhUMGI0aHiEqFn4J6UUWZa1NA9TS+/AylzjOhWb6qoVC6sT7BpxXsEoX55rlrJS3ahYZevzWY1isbBKwfGtKnpfAAAAAADUVi6X4/rrr4/rr78+1/iddtopvvKVr8QRRxyxg+8MAADYLo2CYGJhwBRXbmH52aZysfH9BWJh8/Ysdm0AAAAAAGD8aK22AQBQR2r0KZF11Aoa1VMvNtRMdVjErFn4p5XgGVNTX3lVrnFFY1OpTYskaz0veZ6holG+PHGxUnTVjYoNxtQqBaNqwyOAL2j/AtNOxd4AAAAAACaL3XffPbq6in1QxfHHHx8//elP48wzz9xBdwUAALSNWBhAXf2txML6i713FomFVb0tAwAAAADAhNXd6RsAACaXVmJhWYEAWNGI0aDhUaFm4Z9KqtaNGsFwfQM5Y2Edik3Vel7yPENFf/3nu2apbqhsMNBXO/5VX9EIW6vGah4AAAAAgMnq9NNPj+XLl8cNN9wQd9xxRzz44IPx5JNPRm9vb2zevDl22mmn2GOPPeKAAw6IE044Id74xjfG8ccf3+nbBgAA8qo2WBsjFgZMceVWYmHlYuOLBMmKXhsAAAAAABg/xMIAgLZKLSzu6ioQJipFaxGvalRr/riW1OQ4DOotr8w1rlOxqVrPS71gV9ExI8bneIZLUaobFatsjYQ1eza3PW9sntVOxd4AAAAAACaTPffcM84+++w4++yzO30rAABA2wmCAdTTP1D8nMKxsAJzrN0UcesvU/zsyRSbyxFvOjyLQ+ZGLH7s+bDZCYdEzJqRFbsBAAAAAABgTIiFAQBt1Upoq0iYqF5sqJlqqtT8cS2VJsdhUN/AqlzjisamUpsWUNaKeOUKexV8znIFyLKuurG/wfeNZs/maLXGt+u1GzFPh2JvAAAAAAAAAAATQsMPmBQSA6a2cgvLzzYXjIVtKRAL6x+IOPnTL6xpvOS6ke/TO0+PuP4vSnHSoYJhAAAAAAAw3rRW2wAAqKOVUE9WIExUJCw2XHVYxKzaJGjWSvCMqamvnDMW1qFfU121YmF5wl4Fn7Na89S6Zr0I2WCgr1IwyjVWr2vR2BsAAAAAAAAAwJTSKBbWMCQGMPn1Fwh5DdrUX3SO9r3XbtgSccbnqlFu4zUBAAAAAID2EAsDANoqtbC4qyuah4YGlXJEiWoZHvtpFv4RBiKPLdXNsaG6LtfYamrhowHbIKvx7X69YFez87Z3fCkrRanOsz4Y/UoFn72xel07FXsDAAAAAAAAAJgQxMIA6iq3sMxtU7nY+P42L6VbszFi8WPtvSYAAAAAALD9xMIAgLZKLUR1shzxokGlFr99GR77aRb+qURnwk5MLH3lVbnHdio21VUjrlcv2PXC8VJkWVZonlJWiiwan1PKuuqGygYjYUWfveoYPasCggAAAAAAAAAALRILA6a4VkJehWNhA8XnaGb5Ou/fAAAAAAAw3oiFAQBtVY3iiwO6msSLhivViB/lUU2Vmj+uJQkDkUPvwMrcYzsVm6oV16sX7Mp7vP5czSNk9WJ/la0xtaKvU6Xm+PYvUKo0ec8AAAAAAAAAAJjSqo3WfIjNAFNXtZqi0sLyweVri43/xL+1/732hv9s+yUBAAAAAIDtJBYGALRVamFxV5E4Uasho2q8sNqiWZCoEsJANNdXXpV77PBff2OpVlyvWXCvWfSr/lzNImRddeceDPQ1C/mNVnR8q1KHfv4AAAAAAAAAACaEJAgGUEu5xSVu/3J3/vfVzeUUS1a3Nk8jVy9Okby/AwAAAADAuCIWBgC0VWoS4qqlWbxoxNgWQ0bDA2HNwk2tfA1MPX0DBWJhYxS1Gq1U49v9WvtGHG8xyNf0ulv/qWUw0Fc01DdWYb9Kh37+AAAAAAAAAAAmhgYxGaEZYAprNRZ2wJ75x97yy9bmyGNp7467NgAAAAAAUJxYGADQVqnRwq86mkWGRoxtMWRUHRYVahZuahYTg4iI3vLK3GOL/ppq5TmqpatGiK9ZnK/VIF/T62ZddZ/fwUBf0VBfrWd5RywvTd4TAAAAAAAAAADqaxQEEwsDprD+FmNhs2fmH/vL5Tvuffbx/MskAQAAAACAMSAWBgC0VUuxsAIBsFZDRtVhEaJm4aZKk5gYRET0DRSIhRWMYLVLrYBXszhfq0G+ZueVtv5Ty+AzWYliz95Yhf28JwAAAAAAAAAANCAWBlBTucWlZwMFzutpbVltLo+v8h4OAAAAAADjiVgYANBWqYXFXc3iRSPGthgyqg6LEFWbhH/SGAWImNj6yqtzj232a25HqfVsNY2FtfifCF1NQn6lrFT3+R2McRWNqo1VxGusomQAAAAAAAAAABNSwzVjQjPA1NU/0Np5AwWWrHXvwL8V9MSqHXdtAAAAAACgOLEwAKCtWgltZUViYS1++zI8QtQs/DNWASImrpRS9A6szD2+eGyqPYska8W5SlmzqFdrHzPY9LpRilKdoNjg+0bRqFqt95tWgoXNdCr2BgAAAAAAAAAwEaRGHxC3A9ZyAEwU5RaXnhU5r6e1JX+5LBELAwAAAACAcaW70zcAAEwuqWDkqBSlyLIs//ga8aM8qvHCyolqo8Vp0VrwjKllfWVtDKRy7vHFY2HtUSvO1ewZajXI1+y8UtZVd+7BQF/R12mswn6d+vkDAAAAAAAAAJgQBMEAauofaO28gQJL1hotwZ2/V8Tj2xH8enxV+97fH/pNiv9zU4p7nkgxc1rESYdl8b7XZ7HLjPxriAEAAAAAYKoTCwMA2qpwLCwr9pFmXTXiR3kMD4QND4fVUmkSE4O+gWKrZ6pjFLUaravG89U86tViLCxHhKxWvCzihUBf0fjXWL2unfr5AwAAAAAAAACYEBrFwoTEgCms3OLSsydX5x+7en39Y+efnMX/+lbr78NPbEdobLhHlqV4zSersXrDC/vueCzFzY+kuPl/laKnWzAMAAAAAADyaK0EAABQR7VgaKtZuGi0rMWQ0fAIUbN7rIZYGI31lovGwjrza6pWnKt51Ku1IF+z80pZqe7cg69Ps5DfNucVHN8q7wkAAAAAAAAAAI2IhQHU0t9kidsBe27/HN//Re332cNeFLH7zO279vLnIjZs2f738S/enkaEwgYtfizitke3+/IAAAAAADBliIUBAB1VyoqFibpaDBmlYbGfZoGhlMYmQMTE1TuwstD4olGrdi2RrBXnyhP1akVXk2e5FF1144CVra9P0ahapeb49i8w7VTsDQAAAAAAAABgQmgYBBMLA6au/oH6xzZcUYqPviWre7xvQ773z5fuXfsay9ZGvGyf+tfPa8nq7b5E3P1E/a/lrgbHAAAAAACAkcTCAIC2Gh7lyqNePKierMWQUXV4LKxJ+KdS8Gtg6ukrF4yFdSg2VSvG1ywGVvSZHJQ1Oa+UlerGAdPW16da8NkrGmFrVdH7AgAAAAAAAACYUhrFwhqGxAAmt03l+sdm9EQs2Ld+zGtjf745Buosb1u7KeLoeRF77pzvOvW84rJqnPvVaqzf3Nr7+eZyitsfrX8879cJAAAAAACIhQEAbVYtuLirXjyonq4oNn7Q8FhTs/BP6lDYiYmjb2BVzf1Z1F64UzSi1y5dNb7dbxYDaxYTqztXk2e5tPWfWipbo1/VVCz+VXR8q8ZqHgAAAAAAAACACanaYG2MWBgwhW2qE8Ka0RORZVnDkFej0Nhw/3xH7ffZtx6dRVcpi2+eu/1/begLt6U4/R9bWwc58/zG5/30V/5/AgAAAAAA8hILAwDaqmgUqVm4aJvxLYaMRsTCmoR/BsNFUE9vuXYsbLfuPWrurxSNTbVpkWStGF+zQF+pxSBf0+tmXXXHDAb6ir5OtcbviGVDzQKDAAAAAAAAAABTm9ALQC31gl879Wz932kNzq0TGhuuUq3//rvH1hDZKYdlcdaran8QahE3PRLx6Ipi7/fPrm0+/rZft3pHAAAAAAAw9YiFAQBtlQou/Coa/2oWJKqnOiwA1iz8MzwsBrX0lVfW3L9Xz94193cqNlUrxtcs0NdqkK/pdbf+U8vg61MtGOobq9fVewIAAAAAAAAAQAONPhivTR+aBzARbeqv/R44GAkbjIbVPLdOaGy436ypf6x72HLbc47d/lhYRMQvni42/l/vaf7/ASce0uLNAAAAAADAFCQWBgC0VeFYWMFvR4qOHzQ89tMs/JM6FHZiYhhI5XiuUnuFzZ71YmEdik3Vius1C+6VorUgX7PIWCnrqjtm8PUp+jqN1etaNGIGAAAAAAAAADClNAyCiYUBU1e94NdgJGwwGlbz3P7Wrx8R8Tu/9UIg7ORDI2bNaH695vMVe09ftrb5mLLleQAAAAAAkJtYGADQVqlgvKdZYGi0rMVvXyrDYj/VJjGwSrLygPrWlHvrRvH27Jlbc3+zX3OjFY3u1VMr/NUsuFf0mWw01+h5640ZjHEVjXLVHt/+Baadir0BAAAAACxdujT+5m/+Jk444YTYe++9Y9q0aZFl2dC/V199dadvEQAAoHEsrGFIDGByu2dJ7f2DsbCuUhY9dZbeNQqBDVqyqv6xVx0wbL5pWfzwr0qxx87Nr9nIxhwBs+G+dmfz/w/ot2QXAAAAAABy6+70DQAAk0vRyFGzwNBoXVmx8YOGR8yahX9SwbATU0vvwMq6x+rFwopG9NqlVvir2TNUavEZy3PdeiGyytbXp2iUa6zCflUBQQAAAACYcObNmxdPPvnk0PbNN98cJ510UuduqAVf+MIX4i//8i9jy5Ytnb4VAACAJsTCAGp54Kna74E7TRv2456Ico0lanliYTf8V/332MEg2aDjD87i2U+V4v6nIubsEvGWK6vx4DPN5xhxTwVjYcvWNh+zJcfXCQAAAAAAPK/239YHAGhR4VhYnXhQu8YPqsQLKymq0Tj8M1YBIiamvnLtj+LbqbRz7FSq/bF7lSa/5naUUo1v97Mm/wlQ65xW5xp9vN7zOxjoK/o6jVXEqyogCAAAAACMsR/+8Idx7rnn5g6F3XLLLZFl2dC/l1122Y69QQAAgOGqDdZWaIUBU9iCfbOa++9Z8sKPh4fDhtvU3/wNdHp3/WO1rtvdlcXR87KYt1cWf/jq2vfWyJaBYuMPqf35qyP0W7ILAAAAAAC5NfijAQCA4lLBT4IsRdf/z96dx8lRFXob/53unp4t24QkhFV2IewoFwRUQPG64MJVr+KC2wuu9+rF5b4uiKgv6n3d8IrbVVwRdwFRQPQNICACSQCFsAVC2JMhk2XWXuq8f/T0TC91TnXVdPdMZp6vHz7prlPVVd1T1cLk9NMx108WMrJ2ckJaYP3hn6hxzG0DhU2hyxd3LHXHsGKeU3Gje2FSSsmY+sk8UcG9xLEw47+WUyblfOzyNRc3/hUW8WrGa1e3HwKCAAAAAAAAANrsox/9aNXfubzhDW/QO97xDu2xxx7q6OiYWL5kyZLpODwAAAAAqOabMxZzPhkAzCbDY+HvgcvmT97u7ghdRSP56McfyrnHwuYPVjrtSKNzL7fKxQiAxVlXkjINTBGO+5gAAAAAAAAAAMxlxMIAAEBT2ZB4j09UuGiq65cVNRn7CeQP/0SNY27bnO8PXd6XWaK0I35XnIZzyhXvigr0RUW/3NtFRMhMWsYZCyu9PmHxL59imyJecY8LAAAAAAAAAKbi3nvv1Z133jlx/6UvfakuvvjiaTwiAAAAAIhCEAwAwvxqdfjylx46GfLqzoavM9pALOyb14a//776qOhtD9jZ6HfvS+k9Fwdat0nqyUrDnviYJOVjTtlrZP0cU3YBAAAAAAAAAGgYsTAAANBUQcyJX3HDRFGhI5fABqG3o9YFag0UwmNhizuWyjiCWdNxTqUcYa7oqFeyIJ9rf5Xjacf1Xo5xBTHjX+0K+/GeAAAAAAAAAKCdbrvttqr7r3nNa6bpSAAAAACgQdY3Z4yQGADUuuGByffG7o7wdUYaiIVlUlIxZHrb/C5TvzDEKSuM7v8/aT21zWqnXin7bv9cubhhr1yhOesAAAAAAAAAAICSZCUAAAAABxs3FhbzX0eShoysKmJh8k9msBHjmNsG8ptCl/dllijtiNlNxznlCvE1EvVq5v4mx1PO67c4HgmLG+VqV8SrXVEyAAAAAAAAAJCkp556qur+7rvvPk1HAgAAAAAN8sXCvCExAJibHtg4ebvLFQvLRT/OQbuEL7/z0XjvvTsvMMqkowNjccNe+Qam3hELAwAAAAAAAACgccTCAABAU9mY8Z50RGCoVsoRY4pSjhFJUmD9sw+KEeOY2zYX+kOXL+5YIuOIYVnZtoWtylzhMmOMjOc/A5IG+Vz7m3hcpZzXbzmmVnREuTImE7q8XRGvdv/sAAAAAAAAAMxtg4ODVfc7OhyfGAUAAACAmYJYGADUGR5r7P2v2xULy0dv6wqKveCg6PBXErmYU/YaiYWNEQsDAAAAAAAAAKBh4Z+6BwAASMgq3uQuX7QoTNKQUTlGJEmB/OGfqHHMXSPFIY0Gw6FjfZml3m1L52D7Wr2+ayVtUio4AlhJg3ypiPBfyqSdx1SOcbmiXBmTVcHWzwhqV8SL9wQAAAAAAAAALtZarV69Wvfcc482btyosbExLV26VLvttptOOOEEzZs3L/ZjBgG/kwQAAACwg/HN4SAWBmCO+uI1DcbCsuHLXSGwqnUcQbEDlze069gaiX9VyjUQAssVS79jM6Y1gTMAAAAAAAAAAGYTYmEAAKCp4sbC0jHjX0lDRsWKCWk2IjDUrgARdjwDhX7nWF/HEm0rDDjHAxso3ca5LClPmMwX6Usa5PPtrzzu2m+goqy1ChQ+k6jDdGg0ZHnRxpx5lFC79gMAAAAAAABgx9Hf36/zzz9fP/nJT7Rp06bQdbLZrE4++WR96lOf0jHHHON8rPXr12vvvfd2jp900kmhy7///e/rbW97W+jYeeedp/POO8/5mCtXrtSJJ57oHAcAAACAWLxBMGJhAOamK//eYCyswyjsvdIVAmtkne6OhnYdWyPxr0qNxMWslQpFqYNPNwEAAAAAAAAAEIlfpwMAgKaKGwvzRYvCJA0ZWU0GwKLCP4GIhSHc5nz4B76MUlqUWaztha3ObYsqqtH5N3GvozAp4w7r+cJeUdEv9/4iYmEmpbTjmAIbVF2jtTIm/JULi4s147Wrf0zeEwAAAAAAAABMuvTSS3XGGWdo+/bt3vVyuZyuuuoqXXXVVTrrrLN04YUXKpNhmgYAAACAWcgbCwOAual/0D32s7Mmv3m0Oxu+zmgjsbBc+PLubLJvNj3jOUY/+qv7PT3fgliYJI0W3LGw0bzV7++UVm8oHde8Lqk3K83rLN82FberxzsybfyGVwAAAAAAAAAA2oBZqAAAoKmsjRfVccWDXFKKt35ZZSAsKgYW9zlg7hgoPB26fGGmT2mT8Z7P7T6vvLEwk3Z+aatvu6T7k0rXritEFqioouf1ccbCIsJ/zRIVGAQAAAAAAAAwd1x00UU688wzFQTVv9Pcd999tWLFCvX09GjDhg265ZZbVCxO/m7xO9/5jjZs2KDf/e53BMMAAAAAzEKeWBghMQBzUBBYrQv/blJJ0ssPm4xYdTm+hdQVAqs0OBa+vLvRbzat8e7nG/1qldWwY9+Nxr8kyVqrQoPTJkdy0vyu+uWDo1avvDDQynu9e3KOZDO1YbHS7d5OaV6nUW9deKx6fPL25J9EyAAAAAAAAAAA04kZqAAAoKmsb+JXCOOIB7mkTLz1yyoDYVGBoaIIAyHc5nz47J2+zBJJ/vO53edV2hPW811HrqBXlKjtUiblDIoFNlDgeX06HLEwX2CsmWxEYBAAAAAAAAA7gKAgDT863Ucx+/XsLqVm7zSE22+/Xe9+97urQmFHHHGELrzwQh133HFV627atEnnnHOOvv3tb08su+qqq/TJT35S559/ftW6u+++ux566KGJ+1/96ld1wQUXTNy/5JJLdOyxx9Ydz5IlS3TiiSdKkm6++WadfvrpE2Pvf//79YEPfMD5XJYvXx7xbAEAAAAgBl8QjFgYgDnohgfcY99+s1F3djI25Qp7jeT975+5gnu8O+vd1OmYfYz+3wdTOvZz4XPmcsXG39PjhMVG8uHLf3SzjQiF+eUKpX8GhsNGo56Le7wjPRkOq4+JGfV0+sd7HeNZImQAAAAAAAAAgAizd5YuAACYFnFjYWlHPMglacioMhAWRIR/bJsCRNjxDBTCY2GLO5ZK8ke44p1XU58kaTzH4g+JxbsmJx7Ts11qfH+u6zdQoMDz+mRS4TOXwgJjtgUTTIsRgUEAAAAAAADsAIYflS7fe7qPYvZ7xUPSvL2m+yha5h3veIdyudzE/RNOOEFXX321enp66tZdunSpvvWtb2m//fbThz/84YnlX/jCF3T66afr0EMPnViWyWS01157TdxftGhR1WMtX768arzSvHnzJEnr16+vWr5o0SLnNgAAAADQdMTCAKDKO37ong+3R191EMoV9hrJhS8vW/uEe8wVIGvEP+1tdPYpRl++pv79e8wR9QoTKxbmeK4r75mZ/x+SL5YCZK2KkIXHxExIeKx6vHYZETIAAAAAAAAAmH2IhQEAgKbyBX/CxI1/GWNklJKNCH7VqjyuqG2LIQEiQJIG8v2hy/sySyT5g1lRkbpmS3uuLV9ILGmQL+UNkKW8+w1sEBr+Kusw4TOXgjZFvNr9swMAAAAAAAAw86xcuVKrV6+euL9gwQL9/Oc/Dw2FVfrQhz6k6667TldccYUkKQgCfeUrX9FFF13U0uMFAAAAgLYKfGGUmRl6AYBWWhf+vaSSpOfsU33fFfYaiQhzDXliYgcu928bpctxTKOFxh8jKnZWta7juW4fbfwxZoNWRshCA2NZaV5XKULmG3cFyoiQAQAAAAAAAED7EQsDAABNZWNO7kp54kouaZNSIWaUrDIQVozYNm7wDHPH5oIjFtZRioUZT2ir2KawVZnv2kp7w17xr8nSdu7nXt6fa7+Bit7wV8YVC2tTxKtdUTIAAAAAAAAAM9cPf/jDqvvvfe97teuuuza07ec///mJWJgkXXLJJfrmN7+pzs7Oph4jAAAAAEwfz5wxSywMACot7KkOLHVnw9eLim35xnun+GsnVyys0QCYtVav+07j8/vWPy0duWf98jxT95oiX5S2DJf+qZc8QpZJSfO6KsNi1ZGxnrplNZEyxzgRMgAAAAAAAABwIxYGAACaKnYszBNXcvEFmVwqQ01R4R/bpgARdiyBDbQl/3To2OLMUkmlkJ1Lu88rX/TLeI4zyTVZ2i56f66gWGADFT2vT4cJnw3VrgBbu6JkAAAAAAAAAGauG264oer+m970poa3Pfjgg3XUUUdp9erVkqTR0VGtWrVKxx13XFOPEQAAAACmDUEwAG5Gt0gAACAASURBVJjwxJZ474ndrjBX3r+da7y7QzJmarGlpMdUdvsj0sp7G9/ft64NdNqR9XMQC46pezv1lsJSg6PS4Jg0Vmh8X2ieQtDaCFlvthQPq7zd22nU2+kfr11Wvp3NTP3aAAAAAAAAAIDpRiwMAAA0lbXxojq+oJFL2qSVjzm/rDLUFBX+aVeACDuW7cUtKip8RsnijlIszBeyK8a4NpoxfdIX/fKOeUJi3v01ECBz7TdQ4I34dZjwmUftingFMd/XAAAAAAAAAMwuAwMDWrdu3cT9RYsW6aCDDor1GMcdd9xELEySbr31VmJhAAAAAGYPXyyMkBiAOeamddHrVEoa5hp1jHc6Hi+O7vDv99RIrrHtv/bneO/916wNX553TCv8j1OMPvbSyfmIhaLV0FgpHDaUK0XEyn+WltmK25PjQ2PS4KitWXdy3PUao7VaGSHr7RwPiHXW3i5FyHzj9ctKfxIhAwAAAAAAANBOxMIAAEBTxZ3a5YsWufiCTC6VAbCo8I9tU4AIO5bN+X7nWF9miSR//K7d51Xacyy+40wpfsCv0f25gmKBDbzXZcYVC2tT2I9YGAAAAAAAADC3bdq0qer+/vvvH/vDXwceeGDV/Y0bN075uAAAAABgxiAWtsMbyVk95/OB7ny0dH+/ZdLqT6Q0r4v4CRDXcM79vrfrovplrjDX0Jh/P/li+H6yyaYAVkkaMCu77r7mvPcXHFMEO2qeYyZttLBHWtjjeqRk72XlCNlQrhQSq4yQlZbZitvVEbKhMVu9zZgmgmZEyKZHIZC2jpT+qdecCFl9TKw6QuYaDwuUESEDAAAAAAAAEIZYGAAAaKq4QSRXPKjZ2wQVxxV1jMU2BYiwYxkobApd3mGy6k3PlySlPSG7dgenfCE+71iC60vyR/zK+zOOEFmgogK5r7tMKnzmUbuuVd+xAQAAAAAAYAfRs7v0ioem+yhmv57dp/sIWmJgYKDq/sKFC2M/Ru02mzdvntIxAQAAAMDM4gtsEAub6ay16n1f9dymBzZKC/49UP5bKaVThEqAOHKe6WY3fKR+nl13h1HYe2X/oH8/+QZDWkm4YmEbGvyV1vqnp34MknTbw+HLM8mmOcbWygjZcDkwVhERK/85OGYrbk8uHx4fq16XCNl0a1WELJ1yBcaqI2S+8bDtO4mQAQAAAAAAADs0YmEAAKCpbMzJXSlHPMgnnWCbylBTVGAoiBk8w9wwkO8PXb64Y+nEX5obT2grTtjKNuEbVVPGfZ2kPcfpC4n5pD37KwfIXPsNbOB9fTImfOZRWMQr7ntQI9odegMAAAAAAEALpDLSvL2m+yiwg6r9nW0zPkjFh7EAAAAAzCqBZ25FE+bBoLX+/ph77Nb10rH7tO1QgFkhVwhfvmSetNeS+t8JdWfdj9W/3WrJ/PDfIxVaGAvrcgTMJCkIrFLTHBFsxnOcTpm00YJuaUG3a41kr28xsCHhscoYmQ0NlA15AmVDY9IIEbJpUWxThKw3K83rqrxt1FO3rHzbaF5X2DZEyAAAAAAAAIB2IRYGAACaysaM6qQ80SIXX5DJpTIAZiNiYEGMqBPmjs2FTaHL+zJLJm77QnZR512z+aJfxjOW5Jos7c8TCxvfn2u/gYre16fDhM+GalfEKyxKBgAAAAAAAGDuWLx4cdX9rVu3xn6M2m36+vqmdEwAAGDmMMakJe0naYWkXSUtlDQmaUDSOkm3WWuHmrzPDknHS9pT0i6SBiU9LmmNtXZ9M/cFAA3xBcFaFAuz1hKkaJJLbnH/jL5/o9Wx+0zv68zPGrVm+jmRc0w322Vh+PJl892PtXqD9KKDw8fyLYyF+R7j0QFpz53c40m/LDXOz3VgONEuZr10qrURMldMbHA8QlY7PuQIlBEhm17+CJnkD5H5I2TlcFhvthQSq749GSGrH6+OkFWOEyEDAAAAAAAAqhELAwAATWUjv6moWpIwkS/I5FIZACtGxMCCNkedsGPYnO8PXd7XMRkL84Xsos67ZksZ93WS9oz5ol/+/bmfe3l/rv0GNvC+PhnTEbq82KaIV7uiZAAAAAAAAABmpqVLl1bdv++++2I/xr333lt1f9myZVM6JgAAML2MMXtK+hdJL5T0XEkLPKsXjTHXSPq6tfb3U9zvUknnSXqdpMWOdW6S9GVr7a+nsi8AiKc1QbAwT2yxet8lgVbeK+29k/TBFxm94ZhkX46Hkg2b3WP/8xerdz3f6sg92xvpsNbqi3+0uugGq4Fh6dTDjS54nVFvJ7GQueyBjVb/8fNAf7lfOmgX6RMvS+llh828cyJXCF+edXx65/Dd3Y/liym1MhZ2mOeYhnP+bQfHku0zV5A6K6YKBoH7/1tW7DLzfu6zWSsjZMM5aXB0PCBWeXs8QjYUMl4ZIQsbJ0I2PYqBtG209E+4ZBGylKkPj/V2ji/rlHo7Tel+6LiZvF0z3tVBhAwAAAAAAAA7JmJhAACgqWLHwhR/opYvyORSGQCLioFZwkAIMZDfFLp8cWbyQ2K+89nGitBNfQKlLwhmPMeZJOAn+Z97eX+udYLx/7l0OGJh4ddq8yefBm2KkgEAAAAAAACYmfr6+rTvvvtq3bp1kqQtW7Zo7dq1Ouiggxp+jJtuuqnq/tFHH93UY+RDTQAAtI8x5qeSTo+xSVrSiyW92BhzhaT/Za19KsF+XyLpB5KiqqPHSTrOGHOxpHdaa4fi7gsAYrOe+Rq+sZjyBauTvhTovvF30TXD0pu+Z9XbafXKI/jvoqTyBf/P6AVfDnT7OSntuVP7XuMvXWP1n7+ePK6LbrB6fMDqD+9vQgUJO6Qtw1YnfynQowOl+397SDrtG4H+/MGUnrv/zLr+nbEwx+mbSrmP/5HNVq4QkysWlmnCZTKv0z02FBELW3Z2sjm4I/nqWFjB8zC7LEq0C8ww6ZTR/C5pfpdrjalHyIZypZDYxO1RaShnq5eN3y5tY+u3GSNCNp0C29oIWW9nWIBsMjQWPm5q1p38kwgZAAAAAAAAWo1YGAAAaKogZmgr5QkauaQVf5vATs6KiIqBFYmFIcRAoT90eV/HkonbvkBX3GtjqnzxLl8QLEnAT/I/9/L+XKG/wBarrtFaHSYburzo2aaZ2v2zAwAAAAAAADDznHDCCROxMEm6+OKL9dnPfrahbdeuXatVq1ZN3O/q6tKznvWsph5fZ2f1JzjHxsaa+vgAAKDKAY7lj0m6X9JTKs3N3EfS4VLVX8KeKul6Y8zzrbVPNrpDY8yJki6VVPmXp1bSakkPSlok6UhJSyrG3yhpgTHmVZZvTQPQat4gWPNiYTc8oIlQWKXv3xjolUcQkUrKFRwq2zIs/WaN1Qde2L7wxff+Un/eXHWX9NiA1W59BDjmomvu1kQorKwQSD++2c68WJjjmur0fHpnz8XShs31y1fea/W+k8O3cV27HU14O+wOn7InSfrrOqtnPSP8Nd8ybDXmiKVFGclJi3om7/vem5rxHDF7tTpCNjQ2HhAbq7hdESGrHR8aq46Q1Y4PRwT40BqtjJDVh8cqlxn1OMeNM2BGhAwAAAAAAABlxMIAAEBT2ZiTu5KEiVzBIZ9Ak/Nei/LPbrJijiyq5YIxbS9uDR1bnFk6cdt4zueo867Z/EEwX9gr2Swa33bl/blCf4ECb/grk+oIXR606TVt134AAAAAAAAAzFxnnHGGfvjDH07c//rXv673ve99Wr58eeS2H/3oR6vuv/71r6+Le03VokWLqu4/8cQTTX18AADgtEbSRZKutNauqx00xuwm6ZOSzqpYfICkXxpjnmett65TfozdJf1G1aGwGyWdaa1dW7Fep6R3SvqipPJfsr5c0mclfSzOkwKA2HxvZ9FvdQ37wlXh87ouv0MKAqv1T0uLe6V1m6StI9KRe0h9vUQVag2OWuWK0uLx1yYqFiZJazY0b/+5gtWjA9JeO0mpVP3PpxhY3RsShZOkn95i9eF/5mc6F/3v34Rf/9/9i9V33tzmg4mQc8Sysp5P74SFwiRpn6Xu872VsTBf2KwrfDqfJOnKfyR/zx/JV98veN6bMsm+ExWYklZFyILxCFldgGzitg0NlJVCZOGBskEiZNMmsNL20dI/4aYeIZv4MyvN6yovM55xU7Pu5Hh3lggZAAAAAADAjoZYGAAAaLKYsbAEYaJ0gsBYUPEluVFfmOuLFmFu2lJ42jnW1zH5xcy+QFecL2puxhRJfxDMFxJLNovGt115f77QX9G6v04wYxyxsJDXtHnTS/37AQAAAAAAADC3nHzyyTriiCN0++23S5K2bt2q008/XX/4wx/U3d3t3O4rX/mKLrvsson7xhj9x3/8R9OPb5999lE2m1UuV/oE2MqVK5XP59XR4fn0JgAASMpK+r2kT1lrb/OuaO1jkt5pjLlD0oUVQydIep2knzWwv/Mk9VXcv0nSC621VR89ttaOSfqaMWaDpN9WDJ1tjPm2tfbhBvYFAMn45lY0MRb25Db3WOZd7mPYckFKC7qJIGwftTrje4F+/3epaKXj95V+flaqoVhYoQnTZ4LA6oO/tPruDaXoyZJ50mdeafTO51fPKRrxxE3+89dWb/gnq936+HnONZu2u8fuftxqxa4z55zIOa4pXyzMZWjMPdbKWJgvHLNlxL3doOd4oxzx6UD/+FRKe+4UHTJsxnMEZopUypQiTi2MkIXFxCojZJXjw+NjtWGyQSJk06pVETJjQsJj47dLf5YiZOHjRvM6K9clQgYAAAAAANAOxMIAAEBTBXFjYQnCRL7QkUugyVkDRflnNwUiDIRqA/l+51hfZknV/ZTSVedbWdR512y+EF/aGxJLNovGt115zLffgs2HLjcyypjw/2xp12vKewIAAAAAAACw43vyySe1fv36RNvutddekqTvfe97es5znjMR5Lr22mv13Oc+VxdeeKGOOeaYqm36+/t17rnn6hvf+EbV8o985CM67LDDEh2HTzab1fHHH6+VK1dKkjZs2KBXvOIVete73qX9999fPT09VesvX75cXV3OT58BAAC/11pr18fZwFr7DWPMyZJeXbH4zYqIhRlj9pf0lopFOUlvrQ2F1ezrUmPMDyu265R0rqS3xzlmAIjFFwRrYizszkeTbbfo/YGC71CWedv3A112x+T9Gx6QXvbfgRa5G9gTRvNT/zl+7kqrC/48+Tj9g9K7L7bac7HVSw6djElERUhefEGgO89NEaCYYzoz7hDVSV8K9PDnU+rqmBnnRM7xvZlZz9vQ6482+tmt9dfZt66z+sYbw7dpZSxMkg7aRVr7RP3yj/zK6kMvCt/m6UH/Y552pPTbNeFjg2PSi74aaO2nS9e3L1KYSfadqMCc0s4I2VBOGhwtL7P1y3LS0GhNoKx2fAqxQSRnKyNkoWHe5BGy3qyqY2KdUm9neZlRj3Pc1Kw7OU6EDAAAAAAAgFgYAABoMuv7lsgQScJEKU9wyCewgVImpSDiGC1hINTYXNgUunxeeoGyqc6qZaVzrH4WTtxrY6p8IT7jCe4lifGV9ueJhY0fi++x845YWEpp53MJe51bIeo9AwAAAAAAAMDMd/rppyfe1o5/sP2oo47S17/+db3rXe9SEJR+b7hq1Sode+yx2m+//XTwwQerq6tLjzzyiG655RYVCtWfDD3llFP0mc98JvmTiHD22WdPxMIk6aqrrtJVV10Vuu7KlSt14okntuxYAACYzeKGwipcqOpY2EkNbPMGqeovY39jrb2/ge2+oOrI2L8aY97ji4wBwJR4g2DNi4VNxdZhq4U9czcsMDhqdcXf65ff/oi0bH709iMRAa9G/OK28HPhl6uqY2Ej4dOIJtz1eClgtGLXqR8TdhxdHe6xTdullfdILzm0fcfj44yFZdzvQT2dziEnV0yrWbEwV4xMkgpFq0y6/vn8/TH3Nh98kdHnTjPKvts9H+++p0rvS0fu6d9/s54jgPhaHSErR8SGxoNkE7dHqyNk5fGhUWkoZ6vCY1XjRMimhbXjP78xtSxCNhETq7jd22kqbteOm9BtiJABAAAAAIAdDbEwAADQVDbm5C5f0Mi5TcKYUaCiUkpFxsCKbQoQYccxkO8PXd6XWVK3LK20CqqfsRa0OUKX9oT4fGNJY3y+67K8P+O53gs2fIZUyqScUcG2xcIICAIAAAAAAAAYd+aZZ6qvr09ve9vbNDg4OLH8gQce0AMPPODc7u1vf7u+9a1vqaPD88nWKTr11FP12c9+Vueee66KRf6uAwCAGWhNzf1uY8wia+0Wzzan1dz/fiM7stauNcb8TdIx44t6Jb1I0uUNHSkAxBY+Z2xraoFuzR2iA/qt9loy9Q/fr9hFuvuJZNvetG7mhISmw2Nb3AGjjdujt48KeDXCFRH68c1WF721Yl8NhMlueMBqxa4EHeaSZfNL57HLg/1WSQM1zeaKXPkCV09vD38f7ck2dz9xPLDRPfbEVmmPxfXL91/m3ub1R5vQwFit7/zF6ptvNBr1vO9k+SQUMOtURsh2XhC2RvII2Ui+Jjw2HhErLbP1y8ak4TFpcMyGb0OEbNpURcjC1/Bt7RwpR8hcMbFyhCx83B0o6yFCBgAAAAAAWoBfkQMAgKaKHQvzRIuc2ySMGQU2kEx0DMxawkCoNlBwxMI66mNhxqRC/y4xXoRu6t+o6rtOfNGupDE+X/ivvD9fpKxgw2f2pJRyPpdiSMQr7ntQI9oVJQMAAAAAAACwY3jNa16j5z3veTr//PN18cUXq78//HfIHR0dOumkk3TuuefquOOOa8uxffzjH9dpp52mH//4x7rpppt03333aevWrRoZGWnL/gEAgFdYosWZfzDGLJd0eM32N8bY37WajIVJ0ktELAxAq9j6+Rpf63uPPrzz51XcnpE+Fuilh0i/eGdKPZ3JPyy/z9LksbBi86eU7FB80Z1GNBLw8rEh50hZsWYKUDPCZJh9jt/faM0j7vNoJp03Bcd0s4xn6us/H2J02R31z28kX7p+wkIjrY6F+bgu6TFHlFCSjtqzscceGCr9OfzwQ5KeEbpOd+t6/ABmmVRqMvLUqgjZ0FhYTMxWhcXKfw6NR8hqw2OVf6L9KiNkT4Wv4dvaOWJMKRgWHiArhcZ6PIGy8G2IkAEAAAAAMNcRCwMAAE0VN7TlCww5t0kYMwrGw0I2JDBUqSjCQKi2Ob8pdPnizNK6Za5zOuq8azbfdeK77pJck5I/BFY+Fl+krGDDZxSmTFppx3NpV8QraPPPDgAAAAAAAMDUrV+/vqWPv2zZMn31q1/Vl7/8Za1atUr33HOPNm3apLGxMS1ZskS77767TjjhBM2fPz/2Y3/qU5/Spz71qcTHtmLFCn3uc59LvD0AAGiZ/WruFySFV0dLDqm5f6e1dijG/m6quX9wjG0BIJ6aasyN3cfq7OVfrFr2h39I51xu9aXXJv9QuyuMg2hPbZva9lMNMcX52TWyr0yyKU7YgUXFoaYatGumgmO6me+8PXQ3o7DYiLWl6ycb8skfdyysOfGQpfOlTdvDx7aNhi93Xb/PfsZk1OSNxxhd/Dd3WOUXt1ldcqbV8AUfk3ovDl2nx5ncBYD2qIyQhZtahMwdE7MhYbLyP+GBssExaSjnDj2idayd/Pm0KkLWm5XmddXenoyQ1Y8bxzalf99KpYiQAQAAAAAw0xELAwAATWW9f2FRL0n4K+WJEvmUw0LFiKBZEDN4htlvcyF8fnZfR0gszHF+Rp13zea7tvxhr2TXVyMBMt9+8zZ8llDapJVS+Hbtini1K0oGAAAAAAAAYMeTSqV09NFH6+ijj57uQwEAADPfa2ru32b938i2oub+AzH3ty7i8QCgeWrezn4372Whq/3uDqsvvTb5boiFJbfmkanVIYanGGKKCjn1b7daMt80tK4kpYmFzTlRgZOpBu2aKV8MP9gOz9Q8XwxtJBcvFtasmN4Ru0vXrA0fW7PB6pDd6mMirut3n6WT6zYU+nrobo3090u94cNdEfE4ANhRVUbIloWukSzkZK3VSM4VICtFyMICZcM5aXA0PFBGhGz6VEbIHGv4tvY+dm85INZZiohV3zbqrVtWvj0ZIasd78kSIQMAAAAAoJmIhQEAgKaKHQvzBIaauY00GQGzEYGhQMwqwyRrrbbkw2NhizNL6pa5zk8b47yKex2FcQW2JMk0EPaKvb8GAmS+gFnBFhzHk3Y+dmjEqwV/49yuKBkAAAAAAAAAAACA2ckYM0/SO2oW/zZis/1q7m+IuduHa+7vZIzps9YOxHwcAIhWM1/jR4veFLraAxuntpvCFKZ1feHKQJ+/UnrmcqO9l0iH7mZ00jOlBd1z40PrDcV5PKYaYrrnSf/4O38S6DOvTGnFrka58GlEVWgNzD1BVCxsikG7ZnK9V2U8sTBf/GokLy2MsR9flCyO952c0jVrw+fOpRxTAUcd7xWVMbQj9ojed3Dz1Rox3aFjnRlLcAQAYjLGqKdT6mlhhGwoJw2O1sbE7OSyivFyhKxqm/HbQ+OPR4RsepQjZBu3h402J0LW2zkeE5u4XR0hqx43dWGy8jgRMgAAAADAXEUsDAAANFXcyFHaExhy8UWJfMrBn8D7xbzR45hbhoNBjdnR0LG+jpBYmCOI1e7zyndtpT3RLl/Qy8cbCxsPkPkiZQUbPksoZVLO59KusF9olAwAAAAAAAAAAAAAGvc5Scsr7m+R9N2IbRbV3I+V2LHWDhpjRiV1VSxeKIlYGIDmq/kk/8bMzp5VrYxJ9oHu/BSmcNy4rvTnTevKx2q1e5/0p7NTOmDn2f8B8+EphpQe35J82x//NdBbvu+fV/jbNdJv1wT65KlGR+wR/fOYyrmAHVPUzNSpBu2ayXV++iJe3Z6gn+u5ufbji5LF8YID3WOu95SRXPhPqqvi+b3qCKNPX2H11Db34w/ZLn1i2adDx7o9YTUAQHtVRsgcayR63HKErBwOm4iITcTEbFVYrHy7FLqy1duMESGbCVoVIetxBshKEbKeumWTgbLK5ZXjRMgAAAAAADMdsTAAANBUNubfnvjiQS6pBNtIk7GwYkRgyIpYGCZtzm9yji3OLK1b5jo/gzafVym5Z/wYXyws4fWVbmA7X6TMGQsb/1+YYpsCbO3+2QEAAAAAAAAAAACYPYwxp0l6X83ij1trN0dsOq/m/kiC3Y+oOhY2P8FjVDHGLJNU/5flfvtOdb8AZrgYc8ZyBakzYeil2YGoRwek914c6Jqzm1TWmcFGphgLS2pgyOrtP2z8/Pj0FVYf/ufo9a6/X3r7CVM4MOxwgogpXKMzKBZWcBxrxjPFzhfAcl2/+WL4teWLksXR02m0uFfaPFQ/dsUdVmc+t365K2xW+fx2WWR03YdTOvW/Az3gyOF+ZN0JuqPrYMdjUXkBgNmuMkK2NPQ3GckjZKP58YDYeLyqOiZmJ5dVjFdGyMLGiZBNn+HceMS0xRGy6tiYqVteGSgLC5f1dkq9RMgAAAAAAE1CLAwAADRV3KhO2sSflZDyBId8AluaLWYjAkNFy9cOYtJAoT90eUppLcjUfpGz+/wM2hS2ijoOSUp7QmKpBNekJJkGtvPFAfNB+IymtEk7j8kqUGCDqudqI79DMj7eEwAAAAAAAAAAAAAkYYw5XNKPahb/UdI3G9i8NhY2muAQRiT1eR4zifdIOrcJjwNgNqn4ZHzBMy9FKoVkZkosTJL+fI80krPqzs7uD227Aj5xPLXNaucF8V6nlfdKxZjTpq64M3r+z+AoNYa5JuonPl1BvDCu9ypfxMsbC3Ncv0n2E9fufeGxMNfPw3WsPdnq+wfsbPSHf0/pgE+Ev0F859HwUJgk9RALAwAkZIxRd1bqzrYuQhYeG7OhgbHhMXegrHw74P/2pkUrI2QTAbGsNK+r8nYpNBY+biZv14wTIQMAAACAuYdYGAAAaKq4oR5fPMgllWAbaTLWFBX+sTGDZ5jdBvLhsbBFmcWhEauUY8JjUe0NTvmuE+MJiSW9vtINbOeLAxZsIfx4TNp7TKXrNdkxNyoqMAgAAAAAAAAAAAAAtYwxe0r6vaoDXQ9LepO1NslHPdu1DQAkYPWBnb+ogsnonuwB3jVz4VNEIo3lre54NNm2UbaPloIBs9lwE0JKA0PSzgvibdM/GP//ip7YGr3Ozgv5MPxcExXKGMnPjH/t2TxktfLe8LGMLxbmeQ9yhdAKbYiF3el4310yL/wadB1rWAxt7yXJjqk7w3w+AMDM0uoImTsmZkMDY0M1EbKw7YmQTY9yhGxTkyNk3R214bHxPztLEbKeujBZedxM3q4Z78lKaSJkAAAAADAjEQsDAABNFTeqk/JEi5q5jSQF47GmqBhYkTAQKmwubApdvrhjaehy1/nZ7uBUWMhsYswT10p6ffn218h+Czb8KwVTSnsjY0VbVNq09j9rigQEAQAAAAAAAAAAAMRgjFkm6RpJu1UsflLSKdba8L+ErjdYc787waHUblP7mADQHEGgb/adpWIDczhyCb5vbzRvtezs1s3faEZIa6YbCZ+aE0uSn93DT8ffZstw9DquIBFmr6jU6hV3tuc4fB7fYvXCL7vfq3wRr460lDLh4Y4tI+Hb5NsQCzt+X+nGdfXL/7ou/Afieq8Ji6GlU0bZTPyIJLEwAMBcURkhW9LkCNlYQRocHQ+I5Spul0NjufrxocpAWcg4EbLpM5Iv/dOqCNlkeGzydm+nUW/dsvH1ymMh472dRMgAAAAAYKqIhQEAgKayMb+U1hcBckkp2UyGYDzWFESEf6LGMbcM5PtDl/dlHLEwx/kZ57xK9iXS1ZJcW1Ly68sXAisznhCZMxZmUt4QWTuu13aH3gAAAAAAAAAAAADsuIwxiyX9SdIBFYv7Jb3QWnt/jIeaqbGwb0j6Zcxt9pV0WRP2DWCmslZpW2wsFhYzCiNJl91e+kB6qzy2RdprSesefyZoRlwryc/uy9e0phZALGzuaSQ8cCqoSgAAIABJREFUMTBk1dc7feGBC/5sdc+T7vGMZ4pdOQYyFPJe9+tVVqceVv+82hELO+oZRjeGhMHufSp8fde12d0RvvyjLzE673fx3ieKTOcDAGBKjDHq6pC6OloXIRvKleJhE7dHqyNklePDOWlwtDpCVjlOhGz6TETIQkenFiGbDItN3u6tCI2Fj5u6ZUTIAAAAAMxFxMIAAEBTxY2FmQYCQ7VSnuCQT6DSzIjA+r/ikDAQKg0UHLGwjvAZgq7zM+q8a7ZG4l2h2yW8vnxBr7K0J0TmjIWN/8+lHa9rUe392QEAAAAAAAAAAADYMRljFkr6o6RDKxYPSDrFWntXzIfbWnM//But3McyT/WxsC0xj6GOtXajpI0xj2WquwUw41mlG5xfkSQ4ddENrf1k+LpNVsfvN7vfq0ZyU38NxxL87PZeIm88KamRPLWAuaaRQMS3r7f63y+Zvmv50jX+g4yKeLkiWCPhU+vaEgvzhbmstXX/nuc61u5s+PL5XfGPafUTnfE3AgAALVcVIQtfI9HjhkXIhsYqY2S2Okw2Pj40VoqQ1W1TcZsI6fQoR8j6Q7/WIHmErKujPjBWGSHrCQmQVUbIXAEzImQAAAAAZhpiYQAAoKnixsLSDQSGaqU8wSGfYDwCFsj/G33CQKi0OR/+PSiLM45YmCNsFXXeNVsj8a7Q7RJeX41cy8YTIss7YmFpk/Y+dtCGuB8BQQAAAAAAAAAAAABRjDHzJV0l6VkVi7dJerG19vYED3l/zf1nxNy+dv3N1tqBBMcBANGsVbrBL3zLJZiadc3a+Nu0i7VWl9xidcWd0sIe6c3HGi1fIH3nL1b3PWl1wv5G7znRqKsj/MPFdz1uddGNVrdvsNpnqdEb/snopAOb80HkymO7NMn/E9VIEnprVS9yJNeax93R9G+3OuUrge54tHT/+281estxyb4scqazDUxNvfouq//9ktYfi8v9ETnVTMSPZtQR2so6ps+5YmGZJsbClsxzj+UKUmdHY8fkeg7PP8AoKvoAAADmtlZHyIbGXDExW7W88k/fOBGy6TOaL/3TqghZeEzMVIXFagNlvVlpXlf4OBEyAAAAAEkRCwMAAE1lG5mRUcE4wko+KU9wyCcYj4AVIyamEQZCWdEWtbWwOXSsryP8S5tdka6o867ZXNGyyO0SXl++a7kcEUx7QmRFGz6bMKW0N2DWjrgfAUEAAAAAAAAAAAAAPsaYXkl/kHRsxeJBSS+x1t6S8GFr0zj7xdx+n5r7dyc8DgCIZq3SDc6vSBKcarWphKfOuczq/D9Mzpn79nXV8+cuvd3q6n9Y/f7fU8qkqz8IvPphqxd8OdDWkdL9lfdaff9Gq5+eafSvz5568OkTl1p97srmRXjiht6KgdXaJ5q2+yozOSDXLgNDVss+WD3X8W0/sNo0GOhDL5p9wbCggVN5OiNyNz4QfYAdERGv5+0vXV+bi5X0k79Z/egd9ctdYa6o/cTx0kONPn1F+HMbGJaWL6xe5nqP70iHhxCO2nMqRwcAAJBcZYRsp9BAavIIWa5QGx6rjIlZZ6BsyDNOhGz6tDJCVhUTqwqLlSJk4eOTEbLa8d5O1f3uAQAAAMDsQywMAAA0lVW83z6nHWElH184yCcYj4BFxcAIA6Fsa2GzAsc53ZcJ/14aV6QrzrVhm/BNeUmuLSn59ZVuIDLmC5EVbPjXIqZMyhlgk6SgJsLWjNeufh/8rRoAAAAAAAAAAACAcMaYbklXSDqhYvGwpJdZa2+awkP/o+b+YcaYHmvtcIPbHx/xeADQPNbKNDhnI25wqhEvOURa1GO0Yhdpxa5Gr/5mvLkeI+HTViJtH7X64h+jn/c1a6UbH5Ce/8zq5Rf82U6EwsoCK33mCqt/fXayYyrbNtLYscURN/R284NN3T1q/PSW8J/vR35l9aEXtflg2qCR77FNei03w/+9Ovp9JxMxNe9Zexldf3/4Ew0Cq1Sq+kP/7YiFze9yj112u9U7nz+1YzLG6JWHS5fdkfAAAQAAZhhjjDo7pM4WRsgmYmI5aXC0vMzWB8rGx4c849tHiZBNl3KE7OmhsNHkEbLOTCkeNhETq7zdZdRTu2zithkPldWPEyEDAAAAZhZiYQAAoKnihnpcYSXvNg1EicKUo0+u+FNZVEwMc8dAvt85trjDEQtzhK3aHZwyCa4tKfn11UhkzHdMeRv+tY4pk/aGyII2xP3asQ8AAAAAAAAAAAAAOx5jTJekyyWdWLF4VNIrrLXXT+WxrbVPGGPulHTY+KKMSkGyPzb4ECfW3L9yKscDAF7Waku6r6FVx1oQ8/nv01PaZ2npQ6uPb4kfyBoOn7YS6derbcMBrc9fFej5z6yeX/O7O8OP9a7Hpa3DVgt7kn8Qd9XD7mhPUnFjYede3rr5UobPKOvfLnGf69tGrBZ0z64XKWjg0t5/WeuPw+XyBmJXmYipeV2eT/c8sEk6YOfqZe2IhS3udY/d82T9siTH1NtpFBU8qHTSblslLW54fQAAgNmg1RGyqvBYOTKWkwZHbX2YbPz2cMj4UK60zuCoVOCjWdNirFD6p1URsomYWFVYbDJCVj9eHSGrHSdCBgAAAMRHLAwAADRV3CBSkjBRI1GiMIEtjv/pP8aomBjmjoFCeCysK9Wt7lT4LBjXOd3u4FTaES2LkiTgJ7kjaSV2fJ2UjExoVLBgw2cTppTyRsaKbYqwBTZIHFIDAAAAAAAAAAAAMPsYY7KSfiPphRWLxyS9ylr75ybt5reajIVJ0tvUQCzMGHOgpGMqFg01sh0AJGYbj7zkEkyh2X+ZdP9G9/jeFd/5t+sioxW7SHc/0fjjjyQMmK3b1Pi6V98lpc4q6sg9StttG/WvP5STFvYkO67NQ1ZnXNT8OTW5olWcD6D/v3uafggTrC19qN1QDQs1mpcWdDf3Ma+/z+or1wRatUEqTsMUyy3D0esctOvMPh+6s/7x5x9g9Lkrw99Ph8bql7niC82Mhe28wP2ajoVM+UsSC4t7vB858hERCwMAAGiOyghZeCg2+b9j5wp2IhxWjogNjZVjYrYqLFY5PuQZJ0I2fdoVIauOiRn1ugJl42OugBkRMgAAAMxmxMIAAEBThUWAfJKEiZIGe8oRsKhoU9G2N+qEmWtzPnxGX19miXOimeucjhvSmyp/vKsF2zV4LRulZEOuwYINn3WZNmlv+CyouV7jvgc1KlAxcUgNAAAAAAAAAAAAwOxijMlI+oWkl1Qszkt6jbX26ibu6mJJn5AmvlXtX4wx+1tr74/Y7j9r7v/CWhuRpQGAKYgTCwv/PjmvqJBM7Tye75yR0ksvCCKDXGUjufjHJEl/ezD+PJU1jzS23nDCYxrLW530xUCPbUm2vfexY/zstgy3Zg5PpdF8dHxprhpNGMBzuWmd1T9/NYh1DkyHZj/vRj2xpbHzvbvD/2H15x3gHhsMiYUlCXMlsc8S6cGQ71391nVW33jj5H1rrTPckPV8cikd83hfuOxJSYfH2wgAAABtl80YLc60LkI2ER6ruD00ZuuWVUbIwsaHxqTtRMimTSsjZO6YWHWELGw8LGDWm5U6MkTIAAAAMP2IhQEAgKaKHQtLECZKGuwpx5qiok1W/IYXJQOFkBkukvo6ljq3cZ3T7Y7QpdTa6FctX9Crdr3awJfkjoUZpbzPJSr+1yyBDaby91EAAAAAAAAAAAAAZgljTFqliNcrKxYXJL3OWntFM/dlrb3fGPNDSW8fX5SV9ANjzAtc8S9jzCslvbViUU7Sec08LgCo19pY2EjMANBx+xqt/XRKf7zbas0j0tf+7D++kZG8pM7Yx/WntbE3adjtj0j7LYu/3cp7pb8/1vzjkeL97H7/99bHwkaIhTnFvWai/M/1dsaHwqTk4b+p+uktjcbC/OOdnk/3XH+f1XP3r57A1q5Y2IkHGj14Q/hz3DpstbDHeI8n6piGYiRtu4IRmTtukI7958Y3AgAAwKzSyghZeIBMGhxzB8qGI8Z9/56M1ilHyDbHjpD5x7OZ2rBYKSI2r6sUGeupW1Y9Xr5dO06EDAAAAHEQCwMAAE0VN7SVJEyUJDAmScH4sQURx9juqBNmLlcsbHFmiXMb1znd7ghdyiSLfiXfrrHr0vX6uGJhaZP2hsjadb1GvW8AAAAAAAAAAAAAmDMukvSvNcs+JmmNMWavmI/1pCv6VeFcSadJ6hu/f5ykPxlj/pe19p7ySsaYTklnSfpSzfZfstY+HPO4ACAe23gYaqxgFffDu75I0aG7hS/fZZHRW44zOiMI9OWv90iS3rLrd3XxwjfUrTu8eauk+GWuxb2uD51O3Wg+/uskSas3tC7SFScWtXpDyw5jwkhOUuiHw9HsWNhtD7c+/tYMzX7ejbrr8cbW23mBf9wY9zXfExLGa1csbNl899idj0nP3d9/PFHHdPkdjZ9fn+j/nMy8vugVAQAAgJiyGaNsRuprYYSsPiYWHiirjJC5xomQTY9cQdrcwghZVUyss3zbqLfLPz55u3qcCBkAAMDsRCwMAAA0VYx5X5KShb/SCWNG5ahQYP3Rn3ZHnTBzbc5vCl3e1+GJhTnOzzixKRvj21adx5EgxCclj/H59lf5bIxJhf5+Ox+Ez9RKKe09pnZdrwERQQAAAAAAAAAAAAAlZ4Qs+6/xf+I6SdK1vhWstY8aY/5F0tWSypmI4yXdbYxZJelBSQslHSVpac3mV0g6J8FxAUA8MSaNJYn5+D4Ae+phER96zE02GbuD8D7jSC7ZXJ2ghf2k0YTRo+Fcc4+j0kiMx27lcZRNVxhqpnjBgdKf7wkfi/Oz8hnNW/37z2zDMazp1qzn3ar9HuKIGzZitCbWd++TVv2D4etmUs39MPjLDzP6/JXhb3iVzz1pLCzOtfzabb+WCm9pfAMAAABgmrU6QjaUkwZHq2NiQzk7uaxyPCcNjfrHczFC4WieVkbIqsNi49GxTmleZylC5hufvD35JxEyAACA6UcsDAAANFXccE+SoJFJGEEqH1sgf/SnGBETw9wxkO8PXd6XqZ1fPcl1TkdF6potnTD6lU4cGWtsu7TCj6tgw2f8pE3a+z7Rruu13T8/AAAAAAAAAAAAACiz1l5rjDlN0g80GQQzkp49/k+YSySdaS3fjASgDWLMq7jj0fgP7wvQfOJlER9OfGL9xM1uOxK6ykjC6tSW4USbNSRpCOuPd7WuYBYnADbqWffnZ6V05o8CbRtvtx2/r/TF16b0nM/Hm58zXWGomWJRj3usWSG1t//A6me3trCK12Q/u9Xqp2e2f78/v62x18iY6A9TH757+Pvk//m91UdfUrq9ddjqxC+6rxdfmCuJ5+zrPu7Ht1qVAwdJY2GNygZj2jf/kOzqa2Xe8tGpPyAAAACwA2tVhCxfsKWA2FgpIlYdE7OTyyrHx6ojZGHjRMimR65Q+mcg9HdYySNkHenJcFh9TMyop9M/3usYzxIhAwAAaAixMAAA0FQ28hdF1VIJgkZJI0hFW1Rgg8hjtApkrW1oYgZmr7FgVEPB9tCxxR1LnNu5olntjk0lubYkyTQY/arbnyMC1ujju2JhRinvNR+0aV57EDOECAAAAAAAAAAAAADNZK39gzHmEEnnSXqdpD7HqjdL+qK19tdtOzgAsI3PGfvLffHDQwXH9JDL3ptSdzZijte1v5m42RU4YmFbtsU+pmLQ2oBS0hDWqg2NrdfVIa36REqPDpQ+4Hnyl6LnxsQJULnWffsJRq99ttGph6X01welZfOlg3ctRZRGv5HSdfdJ514eaPuo9MKDjP5pb+mN3w1/rZsVxJqNRpvw2mwbsfr1av95ftqR0quPav88y/N+Z3X/xrbvti12WRgeC6uM9V11l9VTnretZsfCJGnpfGlTyHTK6+6V3npc6bbvw/9ZzyeXlsyT+gejj+GdW75burH2tuiVAQAAACTSkTFalHEFqpsTIRsaq42J2cllleNj0vCYf5wI2fTIF0sBslZFyMJjYiYkPFY9XruMCBkAAJitiIUBAICmsjEmfklSSvHDRCbBNtJ4BKzB4I9VINNg/Aiz00C+3znWl/HEwhznTaD2fllzkmtrStv5ImMV7wtpx+O7YmFpk/Je88U2va7tipIBAAAAAAAAAAAAmNmstdP2qRJr7UZJ7zbGvF/S8ZKeIWm5pCFJj0laY619aLqOD8AcZq1eNHiN/jjvlMhVD90t/tto3jFto5Egjt0+MHG7xzpiYane2Me0MX5fLJbhhLGw5+wj3bQuer33nWR00C5GB+0iDY81NucvTpxrNB/+mL3Z0p/dWaOTD6wey2aMTlkhnbJi8gdbDKw7FpbwNZotfL26gWGr9f3SbotKH/ROYt0m97VX9uZjU3rVke3/V6Ob1gW6f2P4C1AoWmXS4ceUL1g99LSUMqVzcZdFzTn2nRfIG++SStdmI7aNhi9PGU18Ce7aJ/yP0YpYWFgoTJJ2q8jX+s4X3zH928lG514e/T60R/6R0o0VR0euCwAAAGBmaXWELDwmNhkZqx0fihgfI0I2LVoZIQsNjGWleV2lCJlv3BUoI0IGAACmC7EwAADQVI3GuMpSJv6shHSCbSSpaIsKbGPHV7RBomPD7LG5sMk5tsgXC3NEsxo990qm/s2jSc/fVp/3xvX6ON47UiatlEnJyMiGvC61Ea+wdZrBdXwAAAAAAAAAAAAA0G7W2pykldN9HAAwwVq9avvlDcXChnLx53a4AjSZiO/Es9ZKv/z6xP3uwBELK8b/cr2hFoeq4oS5yq640zYUCpOkfzlq8sOMPZ1Gpx0p/XZNxDHFeM45x4dqO2N+eiGdMupIh58DSV6j2STwTGd68/esJKvlC6QLXp/Sa58d78Or1lp97LfR86WO2jPWwzbNSc80+sa14e8lo3lpXsgUuC/+MdBHflW9zdF7Sb95d0q79U3tw72NXBvnvryx95kXHGR007qweXKl6yCbiT73WxELc7nh/sljTRoLe/VRjcXCXr7996UbTz/Z6OEBAAAAmOXaFSGrj5HZquVDVSEy69iGCNl0yRelLcOlf+olj5BlUtK8rsqwWHVkrKduWU2kzDFOhAwAAEQhFgYAAJoqbqgnpfgTrZJsI5ViTY0Gf+JGzzD7DOT7Q5cvSPepI9Xh3M51frY7NpVOeJ0kvb5a9fgppSf+LKr+t+Ltel1ro2QAAAAAAAAAAAAAAAAoszpzy/e0vmNPfW3x+zSa6nauGRWkqhUEVoFjSlpkEOfHX6i6221HQ1cbKcYv63zystZ8oV1Z3BDWfU9Z/cs3GptH8/23Gh27j6lZltLQWKBr1krW8dRixcIcU22yCT690N1BLCxMI2fgk9ukN30v0IpdUzp418Y/aPqjv1pdfVf0er2dDT9kUx2ws3vsnielZ+9Vvey3a2xdKEySbl0vveLrgVadM7W6VtS5ePYpRi86uLHX/xWHG33mivCf7g9usjrreUYX/83/029FLMwVFLz+fmn7qNX8LpM4FvbM5dH7P2pkjfbPj9cQ16+N3gAAAAAApsAfIZOShsgKRTsZFstJg6O1MbLw8eGcNDhaEyirGCdCNj0KQWsjZL3ZUjys8nZvp1Fvp3+8dln5djYjGUOIDACA2YBYGAAAaKq44Z6USRALM8lmMlgFDQd/ioSB5ryBQngsrK9jiXc71/nZ7thU0usknXC7Vj1++T0iZVIqhvwetF3XartjbwAAAAAAAAAAAAAAADsMa2Uknb/pXH2y/3zdl91fP174Bn1lpw9M+aELnikbmYhpKPZ/zq263x2MhK43Uow/pf5nt7Y2FjYcI8wlSZffYb2vVdmX/9XoLcfVz9lb0G101QfSenrQ6r0/tfrFbfXPbyTf+HPOOT6kmigWlpW2hXTeRnJWST+cOxu4Inq18kXpijttrFjYb1Y39uDd7u/cbKnurHvs8jusnr1X9XP99Sr381nziLRuo9W+y5J/0NsVyfrEy4w+eapRJt34Y/te01/cZnXW86TNQ/7HaEUsrDdr5Pog85/WlmJirkhg1DGlU0Yd6fAoYNmrt/+m6r4d2ibTu8BzxAAAAAAw82TSRgt7pIVtiJBVxchytuL25PjQWClCVr3u5PjoHA+1T5dWRsh6O8cDYp21t0sRMt94/bLSn0TIAABoP2JhAACECGygx8ce1oOj96po62etpE1G+3Q9U7t2PiNR7CqMtVaP5x7Wo6MPaa/uA7SsY9cZ8x/JG3OP6/7hu5SzY971jIweGL675ceTUrLXfHN+k1Zvv6mhdZ/KParHcxs0FoxqXnqB9u0+SP35p/T42MOyEb9U6Up164CeQ7RTx84aDUZ0//A/1J9/amJ8WXZX7de9Qp2pLklSPsjpwZF7NBQM6oCeQzQvvaBq+dbigA7oPkSLOnZK9LxnolwwpnUja/Vk7lGlTUZ7dx2g3Tr3atr11Ayb85tCly/ORMTCHOfnrduv14kjL9OeXfs5g1mBLerRsYe0fvT+eAcb4ziimITb+VReM3EfP6XSa5U2aYXNN6yNsBWC1vwm+uatKzU/szByvfnpRXr2ghNacgwAAAAAAAAAAAAAAAAzUjBZqeqyYzps7B96Oh0+12np/HgP7YvHxA3i9NjQT9hpJJh5U+pHY8bCbri/sbjTiw/2z0ncaZ7R7n3hjzUWY1qOMxaWIGLkiieNzPEPrAYxvvvw8S3xHvt3dza2Xtc0xcJ273OPbQ8Jy/30Fv/18fBmad9lyY7Fdx6+/PB4oTBJeoZnmui28d7hEXtINz/oXq8VsbBnLnePre8vhft879dR1/6By6W/P+bZf65mTuXTT0jEwgAAAABAUusjZEO58ZDYeJBsIkY2ZituT44PjUlDY7Zm3clxImTToxBIW0dK/9RrToSsPiZWHSFzjYcFyoiQAQDgNvP+ZhMAgGlWtEX96IkLdOv26yPX/acFz9cZy/9dKUf4p1GBDXTJU9/UjVuvmVh2yuLT9KolZ0zrf9Baa3XF05foyqd/MW3HEMYkDEpd8fQlDa/7Xxs+kmgflY5b+ELdOXirBotb68b6Mkv0/j0+o85Up776yCf1VO5RSVKHyeo9u5+jnbO76YJHztFTudLsB6OUzlj+bzpm4UlTPq7ptjm/SRc8co425Z+sWn7U/OP0tl0+6AxptdtAITwW1tex1Lud7/3g/274Tz2z51C9a7ePT8TiyvJBXt99/L/096Fb4x9szOPwb9faYFvcn296/HjK0bBagSZnvQ0WtunS/h8lPziPqzb/sqH19uzcl1gYAAAAAAAAAAAAAACYW2z9h8WeN3yDfrTozXXLR2JGsApNjIV1ByEVIUnDwfQUj1KmFOBZ+0T92EjYt+p5+F6nsmc/wx/8Kcs6PmGQa2AfUeu6HtunOxu+PO65NNvEO0NaI5WanvmtXR3u/V7wZ6v/fLHV8oWNH9tUziXftq7QnU9vp/u4b3s4ep9Sa2Jhr3mW0TmXhZ9128bfWqcSdzzjOUYf/pX7rH7h4J+rF4yGfrIZAAAAANBErYyQDY8HxGojY6VltuL25PLh8bHqdYmQTbdWRcjSKVdgrDpC5hsP276TCBkAYBYgFgYAQI1btl3bUCistO51OrDncB278OQp7XPN9puqQmGSdM3m3+qgniN0YO/hU3rsqXhw9N4ZFwqTpLQjGjTT3LT1T86xgUK/Ln7yQs3PLJwIhUlS3ub03cf+Swf0HDIRCpMkq0A/evJrWtF7pOZnFrX0uFvtFxv/py4UJkmrt9+kA3oO0/MWvXgajqreQP7p0OV9mSXe7VLyx7buHf67/rT5Ur1syeurll+/5cqmhcJKxzEzrxMT8frUKkfPXPGzwE7OMGpVKAwAAAAAAAAAAAAAAAA+9R/q2rXweOiaIzE/tOeLz2Rifidelw2Py4zYeEWfYjD1TNPBu0rnnGq06mFp7RP1jzfc5BBWT1a68v2phj4Il3VMO8oVGt+fa13XY/u4gkujMY5nNopzGs6EsFizvf5oo5/dGv7M3vWTQJe+t/GT7TdrrF52WLIPifre05LEwiTpv083+rdLwp/bowM28n0004Kpg89cbpQy4efd56+0OvflUt5zTUbFws4+xWg0L33m97bu/eOeBw7RPDtUvXCMWBgAAAAA7KgyaaMF3dKCbtcayf4bvRjYuvBYdVTMhgbKhjyBsqGx+L/PRHMU2xQh681K87oqbxv11C0r3zaa1xW2DREyAEB7EQsDAKDGPUN3xFp/7dAdU46F/WngstDl1225clpjYWuH1rR8HxkTfzZEysSc5TVDrRtZq0D1s9mGgu1aM/jXuuVWVv8YWqXnLHxBOw6vJQJb9F5j9w7dOSNiYdZabS5sCh1b3OGPhaVN9L9i3z20pi4Wtnb49sYPsAFpR1xLkhZldmrqvqIs6Zj8StJMA69PpfT4f7KkHZGxymso7vs3AAAAAAAAAAAAAAAAmsDWf/iqOwgPuRQDKV+w6sg09sEpXyzMF5+xY6MNH1PBdKhQtMqkGzum0QY/IBh8J61iYJVOGW0fterNSrli6TXo7Szt6+7Hg9BtR5ocC7vy/SntNK+x59fpmNKX8/wsGl03m+DTC67gUrNfox1NEH7qzBnuDxRLf7xbyhWsshmjoIGq2rqNyXNqvvOwO5vsMRf1uMeu+oeNjAkmifI14pQV0tV3ucdd79cpI6VS/vcfY4w+/jKjj73UatvL95fdvkWddkyd1vFkiYUBAAAAAGqkU62NkLliYoPjEbLa8SFXoCwnDY4SIZsu/giZ5A+R+SNk5XBYb7YUEqu+PRkhqx+vjpBVjhMhAwCEIRYGAECNoWAw1vrDwfYp7/Ph0ftDl98xePOUH3sqhovxXou4ds7upgWZRbG3SzmiQTuasFBYlLt28FhYzuaUs2PO8ZFgyDnWToPFrSrY8N+49WWWerd9Rtf+kY8/VKx/3xgOWZZUd6pHy7K7OsePW/hCXd7/E9maX1Dt333NATelAAAgAElEQVTwlPZ7xLxj/z97dx4fZXXof/x7npnJCoGEJSI7IgUVVAQV3FBUXNC6VdzqdttaW6ve6rX1tu61P62296JevdRata219irudVeoaIGCogJa2fedAMlkMttzfn9MZjLLOed5ZklmknzfffkiedYzk8yUhPN8HixRvG+dVHdW4uOhFQdifXCV62MOq4w9n5YmfhaVbbPeVM9r3EFVh2N5szmAOKBsMCQktoY2uh4fERERERERERERERERERERUbenioXJzFhXXCAM+FzOYo8YgkheUxCnsSFjUZXUx2UCYaCny8BONpEqT2sgp2dF7M+KtKlvld4ooJgPl+3Fgk49pKosokW60FAo4v4Yum2ziYXJSBh4688o/3x/oDrzhq7d/YJKFw2sBMVLVCsSdbfx1NHuj9kexg/Rr2sJxy74LPNIvPKZ8+Pp2yP3cZi+D3WhOyfjhwjoLj7dus/8HtSnGhhcl9t5nSzfrF4eP58uEmgKO6YTQqBnlQXsNc+nlH+4D1izDPB4AcsT+zP+sTd5mSd1vSdtW0/atqr1imXC6hrzmImIiIiIiMhZe0bImlvDYckRMX9imUz6uG15bB+ZsowRsuKL2sC+lth/arlFyCyRGR6rLm9dVh67KUW1dr1o+zhtfYWPETIios6MsTAiIqI0tswu4BTNcvvOJJpDzCobp9Sdm9N+umgQlb6I3Tl+29QQ2aldV+czx8IOrh6P/cuGYnNonXabsOJud4V8Lzm57hx4DK+Tnt5emNzrZHy0953EMgsWptZ9M6/zTqmdjmX+T1Ie36E9jkJ/X1u47Lje07Co8e8I2M2OxxtSfgC+UTUuNj7N40mO7tnQzw79Zr9vo2p3Dyxq/FC7zSl150JC4o9bH3YcGxEREREREREREXVuzc3N+OSTT7BixQrs3LkTLS0tqKysRH19PUaNGoXDDz8cZWVZXElNKaZMmYK5c+cmPpfZXJWchTlz5uDEE09MfH7HHXfgzjvvbJdzERERERGRgSoWZpvDXPqL61L95h39zxPGAE0wc26KaUzNIaBnhbsxNWcRCzORwQAq3ngawHfzPkfYYepRNtEiXdCrILEwl1P/ZDAAeXLsRqSVg55XbpNNtK2zC0cklm0BFq+TWLwO+GSdxKcbCn+eYFjiwlmGQl+Sfz+luLGkcw4T+P6f9O8PyzcDVz1lY+0u52Pl85o27ZtNpC/Z6P306z74Shov+r12ikhECgvtkqME7n8z8zlfuT0WmdO9D2UTCQQAbNHPvUz4dC7kp3Odt2snUgh1hCwlXGY5rE+Ok5kiZl7AY6nXe70Q6WEzx3G5OK9Xsa0hnpa8LS80JiIiIiIicsdjCfSsMP1OMv8ImT8UC4klR8j8IZm6LJgaIcvYJ8gIWTHZsn0jZNXlqgBZW2hMvV6kbdv2JyNkREQdg7EwIiKiNKbYTCG270x04bQKqwp13r4AgIDdbAwrxR3X6zQMqTgAS5rmo0yUYWLNCTis59E5jcsUQcrW2OqJ+ML/z5z27ePrj3IR+23MrvB2BA13w6QYVSSrFO0Oq7+nvcKLHp4a476VnircOPgevL17Nt5teEm5TURm/nbM9F5yZM0J8MCLTcG1iX09wot+ZQMQlVHsjexCyA6iztcfh/echEm9phrHCAAX138fA8oGY6l/MXp4ajC518kYXX2o434mo6oOwfWD7sK8vW9jT2QnvlF1KE6u+2bKL3gGVQzHjYN/gb/veQPrWlbAlpmPu9yqxIFVh+DUunNRbsVeY5biDqpA6vuULrj2zb7fxuCKEbhiwI0YXDECy/2foMrqgZAMAZAoExU4suYEHNrzKABApVWNf+77O7aFNmb9HPQtM8zUIiIiIiIiIiIioqKKRqP461//iieffBIffPABIhH9Vc4VFRWYNm0avvOd72D69OkdOEoiIiIiIqJOSDH/o1Lqw1wtLi8s29QgMfO9HGNhyzPnhJnGtHRtEPXj3NXCCnZh3GtPomrtZ8AAxTkKHQvLIlqkC3qFsrgXom7bMq/LC8X+9nTiQ93XLRBqnzB1sYUiEss2t4bB1sfCYJ9vBIJZxNpy9dTHEq9+7rzdK9dZOGNscS/6618j8OEtFo77lXrendtQGJBfLEz3WhUih0hWYl+BqaOB977KXPfBv2LHVpk+Drjr7Pb7uhw2WL9u9qcSlmZgxvfqNHLX1ixHVSRSAtFI7L9iD6XYA0gjk4Nl6TExb1rQTBU2yypS5jGuF7o4mnJcSdsax5U+Rs36tHMJq7iBRSIiIiIi6j7aO0LmD7YGxIJtH8f+lCnL4h/H/pMZ+8Q/LtSNGSg77RkhywyPJS8TqNKuF5pwGSNkRETpGAsjIiJKowrXAICAgFT8EKMLanUFuudiXI+JuHLAvwMAPm9aiP/d9EvHYwkhcEzvU3BM71PyHpeFwsTCvMKHawf9DO/sfhEv7njaeYc0397vRxhVNRYA8MjGu7Hc/0lBxtWVhRWRrFK0O7JDubzW2xeWcP4H+x7eGpzX/0ocUDkGszb/v4z1qudB915yYf/vYkrtmY7nzJYlPDip7mycVHd2QY97QNUYHFA1xrjN4IoRuHS/H2Z1XEsTCYwHwqSUsKF+DodVHAggFho8pe5cnFJ3rvFch/U8OueYIREREREREREREZWm999/H9deey2+/vprV9u3tLTg5Zdfxssvv4wJEyZg1qxZGD9+fDuPMnvDhg3DunXrAABDhw7F2rVrizsgIiIiIiLqnmTmvLpKw40X3Yaw/jjfnEApN8yEl6u+yGpMj762B1PHubtJXKFiYfKj11Fp9ynIOZxiYdXZxMI0z2s2sSrdtm6jQfIP9yc+rrQ1sbDdDQD6uh9UCQpFJJZuAhavl1i8rjUMtgkIFbg/pHiJKpnifHHHHABMH1caF+Ydsr9+ndtQGJBnLEzzWq3M8wLGXpX6dbqv509Os9r1osnqcgHdxaDvLAdOGq1el00sDIs/yH5gVFqi0dh/4eJf7V1KITUphHOEzLIc1ivCZ8qImRfwWNqImUhZ5iKO5ua8HsW2hnha8ra82JuIiIiIqHNorwiZ3Roh08XEmoJSGyjzawJlTYyQFY0tgcaW2H9q+UfI1DEykbG+ugzoURGLkLV9nLq+sowRMiLqnBgLIyIiSqML9niFD2GZ+RNitAvHwqKa8E5yrMuCuzsdiRx/2Fee30WsyQ1P6+PINT6Wy/PQ3YVlsNhDcKUhvFO5vNbXL6vj+Cz1LLtIFu8lukhWd+PRvMZsxKKGEuq4IcDnkIiIiIiIiIiIqLu76667cNddd0GmXUkphMCYMWMwaNAg9OnTBzt27MD69eszgmKLFi3CpEmT8Mgjj+C73/1uRw6diIiIiIioc1CUaypsQyzMZQjrL/80Zz769DDMSbMy54tU2c3azV9c635ekNvYmY5c/y9gzovAP99Fec9zlNtkG4syxcJG9gf69XQxLv8+yJvPgm/9UGDgk3mNqcUQUHJl5+a2fTSRt0CgwEWtdhYMSyzdDCxe1xoGWy/xRTuEwfLx1VbnbawSmirZq6ow81L9ecXC1O9Trr/XNcbsL4BPs0sdVWURBczFUcP16/Y0S4Qi6q9HVrGwfVlU3og6EymBaCT2X7GHUuwBpJHpwbLkSJlXETSzdOEyN5EyTRytdZlwE0dLjEt3XlPIrXVfyzDW1uWilP4Pl4iIiIioHVmWiEWc2jFCpo6NSWWgrNkQKGOErHjaK0ImRHpYrO3j2J+xCJl6vYhFyyoy1zNCRkTtjbEwIiKiNLYmOKOLhem27wp04TRPUnjHbYRHFDCm5XER9/KJMuXXK1k8OpZrfCz5efAwRuRK2DbP9JMl8k/QDZEdyuW13uzuROkV6r9uR2QEtrRTvvdsTZzPzfd7d6B7r4m/T0UlY2FERERERERERESU6cYbb8TMmTNTlvXs2RO33norLr30UgwZMiRjn5UrV+Kpp57Cgw8+iGAwdhOMUCiE733ve/D7/bjxxhs7ZOxERERERESdR+acn0oZ0G7tNha2Lp9mzNZ1GYsqbf2YsvHZxtznOMnPP4a8+Swg0AQA8El1NCSU5T1MTbGw284UjhcmycYGyDP2AwCU9RygHpPLvkk4IhHVTOWpzCFmVKH5ugVCpTHXTCUYjoXAFq+TWLwe+GRd7HPT16k9FfKZsrrgNW75XOSpiwfm8r2e7OpjBO59PbuvXL6BMif9euq/+C98AhypiYllEwuTG1dlOSoi6vSi0dh/4eJfcV9Kf7OQQhhjYpnxM12kzHIRMfMCXo82YiaMUbYcz+tRbOv0eFvPzwvuiYiIiMiN9o6Q+UNAU0trTCz549YIWfp6f0tqhCxjfTDnh0p5kMkRsn3KLUx7a9cI0RoQS46JlQPV5fFlAlXa9SJt27b1jJARURxjYURERGl08S+f8EE15UQX1OoKdPEiKyle5DZkZBXwBxDhIu6li7sliweEco0xJQeILAadXIk4fE1Kxe7wTuXyOl92sTCf0M/4icgwykR54nNbE7vKNWbX1WhjYa3v2br3KwDwFDBWSERERERERERERJ3H008/nREKO/bYY/Hss89i0KBB2v1GjhyJX/ziF7j88stx/vnnY+nSpYl1N910Ew477DBMmTKlvYbdJcyZM6fYQyAiIiIioo4kMy+KKZdBCGlDKua+LF4nMfkA5/lkew1tr6mjHXZ+5y8Zi3xwWSlzcNerecTCfndnIhQGAD7NfKpwNLtz6CJU08cB357kYu7MC48lPiyT6ufJbcCs0XBhWy4xo0rZolweaNgLQB0260gtyWGwdbEw2NLNHRcGK/MCYwcCFxwh8MFXEm8vb9/z5RXxaweH7A8s3ZzfMfKKhWneVqryjIUNqct+n3wDZW7cerrA/3tD/f70m3fUy8uymV77wqP6dYceB0RCgB0FIhEgGol9nPiz9ePEn0nr4x/bXfcG0UTUxUjZ9v5V7KEUewBpZEokTRUZc1qvC5+pImUe43qRfiynOJrTeTPG7QG8msBb+lgszpcnIiIi6gjJEbL6GtUWhYmQ+UOxkFji45bUCFl8vb8F8Iekep8gI2TFImXr1yKIdouQJWJiSR9Xl4ukj9PXC+U+jJARdU6MhREREaXRxb+8Qj1LJdqFY2FRF/EiXcAnncjxh1wVN3EvnyhDAH5Xx3H7GNJZSQEiT47H6G7CmolkpaYhoo6F1Xr7ZXUc3fsG0BoLQ1IsTBMqZIguRve6j78Hm8KNub7GiYiIiIiIiIiIqPP6+uuvcd1116Usmzx5Mt544w306NHD1TFGjRqF9957D1OmTMGXX34JALBtG5dddhmWLFmCvn2zu8EEERERERFRl6WIhQlAGQoDzBEwtxzjQAeMBVZ9kTEmnTIrCricp5NrBEpGIsCnc1OW+XRhriy7ELoxnTnW3bw9+cRdSWNSl5OCLsf09Tb9uupy/brEWNK+nyql+hsmIHMoj+WpJSzx+cbWMNj61jDYJiDSQf2hMi9w6CBg/FCB8UOAI4YIHDIQKPPGvs6L16q/ERQv0ZytLbFYWE1l/sfIJxam2zeXMF4yj5X9nNuaivzO6UYvw/O9TXnhoz6opjRoJLBxZebyg46E9ci7WRxITUppjollxMbsto9V+6XsY1qfvH8UsKOQ6cszxhJ1WJ/NeZ2OUfwYERGRa/H3tXDxb2JeSiE1KYQxJpZY5hgps1xEzLyAVxdla42oaeNomqBa/LzJcTRtqM1Snld3XEYPiIiIqDNozwhZINwWDosHrBIft8iUsFh8fXMQaArKjPBY8v7U8VIiZOotTHtr18QjZLqYWDxCpl6vD5RVMUJG1G4YCyMiIkpjawJZuuiPja4bC9PFd5LDWO5jYYW7U4mbc/osH5y+NPHj5Br6Sn0eeCcWN8KaiWSlJCLD2BdpUK6r9WV34ZdP6G/Vl/5cuHm9dWe611j8eYsaXvAMrhEREREREREREXU/N998M5qamhKf9+7dGy+88ILrUFhc//798fzzz+Pwww9HKBT7ve6mTZtwzz33YObMmQUdMxERERERUaelmXOn43U51WpAL2DLXvU6XRxLSgk8998ZoTAn5+y/CcBwV9uWuZiKcuPJigtgQpnRqzLNfCpbCkRt6ToYpHs+fDlMm9HFuUIRuBqTKQY3qt7FAEItqeOx1Qdskfq5WYWyfLPE/3tD4pkFHZ+CKE8Kgx0xFDhiqMDBAwCfV//8xy68KqVsRfvbqnmPyEZzKPbekcuFawFdLKz9vz0z1Fa3/4V3J47O/nts/e4sNtZ9DRq2Z3VO/eFFLELiLf6lVKV0maSUMhZGS4+JRfKNlLXF0bTBNUUcTWrDZhEgauvDZ5G0MSaPK6I6r+08LruDapBERPmSEoiEART/5u6l9rdRmR5Jy4iQpcXJnCJl2vXOcTSRETwzjSub8yad3+t1eLytY7F4DRQREVF3YFltkSe1wkXIUmNiMiNM5k98LJXhMr8xgkXtKTlCpr4XSO4RsqoyXYAsFhqrMgTK1PswQkYEMBZGRESUQRf/0sbCspzo1Jnonovk8I7HZYSnkH/xdhML8xoiTYnjtAbMrBxDZsnPA2NE7kQ0d8IsJXvCuyE1P6DWeftldSyfpb89YNhOfS50sSu3Qb6uTvcasxF7Dza9FzO4RkRERERERERE1L189dVXeO2111KW3Xfffdhvv/1yOt5BBx2Em2++Gb/85S8Ty5544gnceeedqK2tzWuspWblypX4/PPPsWnTJjQ2NkIIgaqqKtTX12P48OEYO3Ysqqqq2n0cwWAQc+fOxZo1a7B79270798fgwYNwnHHHdcu59+yZQsWLFiA7du3Y9euXejRowf69++PiRMnYsSIEQU/HxERERFRlyM1c20iu7Db2ydjebPL+w3mMuVM/uZ64KXfatcf3rIEn1YclrG80nI/ryniMGXwwP7ATacoBh90HwsDYgEwj8upbQWNhdkt2nUtYdOFZbGLxE6faZjH4yZ+lvY8VUr1eALR9p0TtGyzxPh7bO1zW0gVvqQw2JBYGOwghzAYxdw2XeCqp/JLUkgJBCOxr0O2nl+sPndlDsfqDI4Ykv0+3z8hi+/jDSuUi8V538/+xOSaEKItluIrQukufTzFHkASmYioKYJoecfRTOuT42exY8qMc6WH2gp03qjLx0tE1FnE39fCxb/xfSmF1KQQxphY4nPHSJnlImLmBbz6aJvwpAXPHMeVdF5tHE2xrcvjMjxBRETkrL0jZOoAWSw0pgqM+Q2BsqYg4A9p/xmD2pGUbZG49oqQVZcBPSrSP26LkGWuF5p9Yr/TtVzewIWo2BgLIyIiSqMLzvgs9T9+6gI/XUFUOseL3EZ4RI5BLhWPi2P5NHG3lOO0jj3XGFMuz0N3F7Kd/oGl+D9xN0R2atfV+vpmdSxTtC49nGbrXm8FfO10ZpZQPw/x9ynd82fal4iIiIiIiIiIiLqmmTNnQibN8Orbty+uuuqqvI5544034oEHHkA4HPvdrt/vx+OPP45bbrklY9srr7wSTz/9dOLzNWvWYNiwYa7OM2fOHJx44omJz++44w7ceeedxuPHrVu3zjh5/YorrsBTTz2VsTwYDOKhhx7C448/jhUr1Bdkxnk8Hhx22GE455xz8OMf/1gb7poyZQrmzp2b+Fy6nHG3d+9e3H777Xjqqaewb9++jPU9e/bEjBkzcNddd2H//fd3dUydcDiMJ554Ao8++ii++OIL7XYHHnggbr75Zlx99dXwejnNhoiIiIhISfN3/okti/FWj1MzlgdcdrkChqlGqus1pH+fMRQG6GNhIdv9/BJdPOrA/sBNpwqcd7hA357uYmE+RLTnCWURLypoLExmjjNueyMw3BALW7JBv65XpcsBpMfCbPV4Anb7/oz22BzZLqGwCh9w2GBg/BCBI4bGwmBj9mvfMFjxZ+W1n8kHCBTiETaHcouFfbZRvbyjY2FnHNIx57EsgW/UA/9SX92nNLK/u+3k5tX6lX3z+z0QUa6EZcUCI97iFwBL6VJVKSWQCKklxcQiqohZJItIWXpwLWIIl7VtL9OPlbK/rYmrJQfZ3J7Xzlyffly7696Inoi6GCmBSBiA+3B2uw2l2ANII9MjYhmBMVVkzG2kLH0fcxxNmOJo2pCbm/MmxeC0wbW0sVi8LoeIiNpfcoRM/Sul3H46llIiEEoPjyXHyKQiTBb7nWFTi9SEyxghK5bkCJlmC9PexmNXxwNi5bGIWOrHAtUZy+Ift0XI0tdXlTFCRoXHWYxERERpbE38yyvU/7dpCtR0djbU/1jlSQrvuI3wFPKvsW7iXj5DpCn9OLmGvlKeBzAW5kbEcCfMUrE7vEO5vNKqRoXldsZajClaF057LnShQoboYjya11j8PVv3fmXal4iIiIiIiIiIiLqmN998M+Xzyy+/HGVlzv9uYNKvXz+cddZZmD17dsp5VLGwzmTDhg2YNm0avvzyS1fbR6NRLF68GIsXL8ZFF12EkSNHFmwsn332Gc444wxs3rxZu01jYyN+97vfYfbs2XjllVdyPtfixYtx4YUXYvVqw0WorVasWIFrrrkGjz32GF577TUMHDgw5/MSEREREXVZmqthquxm5XJTBCxZi+Ga5e8dr5iR9vUSx2P6pPqg2UShdNv++kIL08cZZsopYmFlhvlUhRiTz5P9zL2+0V3adat3AMMN91t87Qv9hTZ79Q2yVOmxME28LGC3b7jl0Tn5X+VVGQ+DDW0Ngw0RGDMA8ObwdXHD0BAvmO8eV1oXNQ3tU5jjNIeAuurs9jHF0d1GEU2+c5zA7z509324y5//+dzq1zO7WJjr75hlC/Xraurcn5CI2p0Qoi2W4svvd+8FGU+xB5BEJiJqmphYRmws+ziaNrgWSd1WZoTYdPEzU8jNxXmTo2za9V33mhsi6oLikcsSUErtESmEQ6TM0xYg0673pm2jiZRZHsDr0UbMhCqO5va8ruJoquCa5riWZbyhFxERlQYhBKrKgap2jJD5Q0BTS9ufsWUy6eO29f5gLEKWum3S/kFGyIolHiHb3qhaW5gIWXV5a0ws8XFqhCx1vcgIk8XXM0LWvTEWRkRElEYX7NHFp7p0LEzz2JLDWG4jWQKFu4OA5eJYHk3cLfU4npQ/sx9H0vPgMprW3YU1k+1KSUNEHQur8/XL+limaF0k7bmIakKFbuJ43YHueYi/T5nei/kcEhERERERERERdR8bN27E2rVrU5adeuqpBTn2qaeemhILmz9/PsLhMHy+9r04ub2EQiGcdtppGaGwuro6jB07FvX19fD5fGhsbMSWLVuwfPly+P3tc+Xp8uXLMXXqVOzalXpBen19PQ4//HD07t0b27Ztw/z58xEIBLB7925Mnz4dDzzwQNbneu211zBjxgw0N6dGCwYMGIBDDz0UdXV18Pv9WL58OVasWJFYv2TJEhx11FGYP38+Bg0alNsDJSIiIiLqstQXQegiT80uY2GmWJYyyrVrq+MxdXGusO3+goqI5p52XqcpZC3ZxcJCEddDQkgbC3PeV0ZST7R/ZEvOY1q4ugBXMKU9T5V2i3KzBrsq/3MVUFVZUhhsCHDEUIHR+7VfGCxOvv0s5Cu/A1Yvg6x7DKg6O3ObAl5Y9m/HltbFR2XewozHH8x+H9N71Kj98h/Xz89wHwvb3YGxsFMOEpi30v031dEjXD4XAcODGHeM6/MRERWTsKxYYMRb/H83KKX/x5ZStsXJkuNpkTwiZclxNGWITR9Hk9o4WlL4TLU+kjZGp/PatvO4WAAgos5CSiASBlD868JK7Z1TJiJjmkiZcX0WkTJLc6ykiJmw0o6ljaMpgmvG86YF11KCaep9hMVrLYmo60uOkGm2yOm48QhZPByWHCGLLZMpYbHkCJk/KFP3CTJCVgraK0IW/3eJ604UuOhI/n9vd8JYGBERURob6pk8XqH+B5uoZvuuIKqLhSWFdzwuIzyFrOS7Cf94hAcWPLA1AabYNlbr8XL7C3Auz0N3F7ZdzvQrooaw+s6YtV7DLTE1TNG6cNpEP13sypNjzK6r0b1Oo62BR11sLbYvn0MiIiIiIiIiou4uKqPYE9lZ7GF0eb29fYv++/KPPvooY9mECRMKcuwjjjgi5fNAIIAlS5Zg4sSJBTm+Ww8++CDuvPNOAMCxxx6LTZs2AQAGDhyIefPmaffr0aNHyudPPvkkli9fnvh82LBh+J//+R+cdtppsBQTd6WUWLx4MV577TU88cQTBXgkMeFwGJdeemlKKGzAgAGYOXMmzj///JSxNDU14de//jXuvfde7NmzB7fccktW51q+fDkuuuiilFDYaaedhrvuugtHHnlkxvaffvopbrjhBnz44YcAgE2bNuHiiy/GnDlz4PHwd89ERERERAmaaxV0kacWF9eVSim1Ua5JI4Cjhqdtb9uQd33b8bheSz3YkJtBtdIFghzDXM2ZV4H4DDdfNIWICjYmAAg2O2/TKuDwNA3pI6D7hvjmoW5P0pTyaYUmOhcu8qUQxxzQGgYb2hYG81gdm+WQb/0Z8hdXJT4XPTXFq2AAQHXe5/vZmQITh+V9mJLkNmKYLGDY58pJ+X8vDOkjMKAXsGWv87ZXTO64770bTxa44xX3VxUOqXO3ndy4UrtOVJRWHJCIiLIjhGiLpZSAkgqp2XZaIE0XMUv60zFSpgiuZaxPC65FI5Cq4yqDa3me1ynKFt+fiKiziEZL5n2rlPovUgiHSJkqfqYJm8U/9moiZZYH8KYtT1ovHONohvO6iaMlj1ETckNSyK2Q19kSUdeUHCHr11O5RU7HlVKiJdwaEGuNV6XGxGTbsqT1zcHWQFnyPkkf+4OAXUr/J9SNNIeAj1cBH6+SEMLGjIkMhnUXjIURERGlsaV6hpFPEwvTBX66Al04LTleZLkMGYkC/pOKmwuNPPDAEpbx6xMfe64xplyeh+4uYpjcVip2R3Yol4DrUf4AACAASURBVNf6so+FWcKCV3gRkZm31AwnPRdSSu3rTeQYs+tqdK9T2fq86d67Y/vyOSQiIiIiIiIi6u72RHbittXXFHsYXd49I2ahj6++qGPYuHFjyuf19fXo06dPQY59yCGHKM/X0bGwvn37om/f2O+svd62aR9erxfDhg1zfZyXX345Zd933nkHI0eO1G4vhMCECRMwYcIE3HbbbbDtwtxQ5+GHH8aSJUsSnw8YMADz5s3DiBEjMrbt0aMH7rjjDhxyyCG48MIL0dDQ4Po8tm1jxowZ8Pv9iWV33nkn7rjjDu0+hx9+ON5//33MmDEDs2fPBgDMmzcPzzzzDC6//HLX5yYiIiIi6vI0Px9USXWEqrklCjjM54gYpuXdf77iorqvPzUeL65MM80rvMfdzxe2LSE1F704hrmWfJg5HsN8qlBHxcI+zwxv7xfZiq3e/TKWt4QlTBci7d9bf5peVS7nEKaNp9JWx8IAYNV2iQP6F/4CS6n7Irf6/gkCj15a/DlJ8qVZ7jbcth7AGOMmURdXc919tujUF7T++67/xn/1uVG5LpdY2Lrd+nU9K7I/nsr/fd/Csfc7/w6mUOdzo2eFQH0NsG2fu+29bqfXLnxHvXz0EerlREREXYCwrFi0xKu+XqlDx1LsASSRUrbFyRwjZrnF0TJDbPo4mtSeNxL74VUVRLOjsXOmj9F43qjzuBx+ViEiKhlSApFw7L9iD6XYA0gjMyJp6ZExy2F9NpEyxbGS1gtVHM3pvMrgmiYGpwquaUJtnfl3TkSdhRAClWVAZVn7RcjUMTGZGShLipCp9mGELHuPzZGY0bHTGKmIGAsjIiJKY0M9a8YryrLavivQhbaSY12Wy5CRVcBYj5tjWcIDDzyIQP8LJav1cVgu4mPq/a2kjxkLcyMsc5hR08EawupYWJ23X07H84oydSzMbnsudKEwgKGrON1rLNr6PhU1hQH5+iQiIiIiIiIiIuo2du9OvUqztra2YMeuqKhAeXk5gsGg9nydybp16xIfH3roocZQWDqPxwOPJ//fvdq2jYcffjhl2W9/+1tlKCzZ+eefjx/84Ad45JFHXJ9r9uzZWLp0aeLzCy+80BgKi/N6vXj66acxb948bN++HQDw4IMPMhZGRERERJRCfbVGhSby1NwYAGC+GF4XvwJSA1gyHIpddLjiM6dBAr4y+Fr2AYqLYEKV7n5+NI3LMYhTnXlinykWljnlSCmaT8AMAHZsylhUYbcoNw3kcX3neYe7vNCooirl0/0jW7SbfrEJOKB/7mPS2dlkXl9eKldhrPzc1WZyr/PvLza66OWV6kWbRwwFFq8zb1NpN+Pe7XdgZt2PYCvmk+USCzPFsvpXRSFbQhBp38/Z2r+Xu+0qC9QXkY17gB69HL/WbkNhgMv3IQD4xnhg1ReZy79a7P5kRERE1CUIIVrjIaVxHUAp/S1Y2nZmUEwZMcs1jqZbnxw/i20rVSG3lFCbbV7v9rzRCBC1HdZ33Wv7iKgLikZL5n2rlBo8UgiHSJkn7WPV+rSImi5+Znliv8zVRMxENnE0VXDNMY7mcYyntY1VceMMohLT3hEyfUxMKgNjfkOgLP5xV4yQfbqh2COgjlQq/0xFRERUMmypjvb4LPW/pJsCNZ2d7rElh3c8LiM8hfyB1E34xxJWLOZl+Au7J+9YWPLz0DFBp85+ExCnWFgpPLyGyE7l8jpf35yO5xM+qKbORZIm+unCfABDV3EW1M9DPNhoCjfq9iUiIiIiIiIiIqKuJz3e1bt374Iev3fv3ti2bVvi8127dhX0+MUSj2B1tL///e9Yu3Zt4vOJEydi+vTprva9/fbbMWvWLITD7q5Uf+ihhxIfCyFw3333uR5njx49cM011+Cee+4BAHzxxRdYu3Ythg0b5voYRERERERdmmZSU6VUB6f2BJznkjnFwqR/H+RpWd78b8JU+L5W/wwRlu7mt21vNI/LRG5albGszDCfyvQcJPt8o2FMbq4WCGZG3SqlOvQWcAgqmcZ84mgXY1GM54Dwau2mgbBEe1y67xSOKoXr86SUQEtzyjKRxww8t99vpWj6OIHF68yPfVrTOyhDGFV2M5o8mVes5RILM70e6i4aANnSDHnI0RC3/hZi4AHZnwDAsL7uvtkq1fdDdk2+8jvIP/0K2LIO6D8YuPhGiAuu024/oBewZa+7Y3vdTq9N+34mIiIiokzCsmLREm+BarH5jKXYA0gipWwLjzlGzJIiak5xNGVwTRdqawuaSe15I0AkqgmepR/XzXmjzo+3s1+IRkTdh5Sxm0JE8rhbQaGGUuwBpJHKiFhyuEwRNFOFzVxFylRxtLb1wimO5nRe5fq0GJwqCqfYjxG1ri85Qta3wBGyYARoamkNiIWSPg4CTUGZuqz14+QImWp9sSNkjS2xm8t4LL42ugPGwoiIiNLogjNeof5Fqi4u1hXongsLVtLHLmNhBfw1sMfFOT3wOEaW4o/Dg9xCX8nj6KgYkY3O/f0Wtov/yxqTQNSPgK2ecFLrzTUWpp6FkxxOizJ05UgX5IuH1kzBNbdRQyIiIiIiIiIiIiInXWmi2ejRo7F8+XIAwIYNG/Dggw/i5ptv7tAxzJs3L+Xziy++2PW+/fr1w6mnnorXX3/dcVu/34/58+cnPp84cSKGDx/ufqAATjzxxEQsDAA+/PBDxsKIiIiIiOI0F55WaebhLNpW5XhIx1hYtqGwkeMgfjoLZb+aB+zOXB223f28N+VB/fwtUyxMRqPA7P/NWG6KhYVcxJv2BSSOvT+3MSXGtmxhxrJKWx16W7jGfKyIYcw9K9w9x/LtZ1M+N+3lFC/LlT9oXl8S11qHHAaZxM14TV+7UvfT0wSWbpJ44RP1+iMCn+B/t8bCV9WyGU1QxcKyD8/FYnUa/n2xPz+bB/mjU4Bnl0OUV2R1/LiTRgPvf2XeptKX+++s5NyXIB/4YduC7RsgZ94E9KyDmHaJcp/bpwtc+4y7F4Kb9yEAwPv/p15+0rdcHoCIiIiIuishRGs4pDSuHSmlf1GWtp0aF9NGzHKPo6nXtwbXkraV6aGzjGBa1GG9y/Mm1jmsJyLqLOLvaXD/+8D2Ugq/Fo2TQhhjYinxM6dIWXy91xQpUxyr9WORaxxNFVxT7qcJvSWPN/Gn1aXmt7UHIQQqfECFr/0iZP5QLB6W+LglNUKWvL45BDS1pEbIktdnEyFrbAF6O/8THHUBjIURERGl0cW/fLpYmCHy09npnovk8I7bCI/IMcil4hQBi2/jFBWLH8fN8ZzGkesxsmUKInUGYcPktlLQENmpXVfry3KCYStdaDAiI4mPGbpypnuNRVvfp6KGkJ6lCY0RERERERERERFR11NXV5fy+d69ewt6/D179hjP15lccsklmD17duLz//iP/8BLL72Eq666CmeccQYGDBjQ7mNYtGhRyudHHXVUVvsfddRRrmJh8+fPRzjcdkOTESNGYO3atVmdy7ZTfw+9atWqrPYnIiIiIurSNCWiSqkOTgFAc1Ciqlx/wYUplOVt1M/xURFPfwIMPwhCCPjK1HNQwrbz/JI1OyXWGE7tNR3iy38qF/uk/uaLpmBa3FvLgIDh/o2uIj1ff5qxqEIGlJv+c635ihTdmKcd7GIccau+yFg0OvgVviofnbHc9NjzsWid+XF6S2FK17b1GYtEHpfrOX2/9e2R86HbXblP4P++78G6XRIrtwNHDo9dYPXPtcDwbfMx+u4picu7dBHD5hymNur2GRJO+9rs2AR8Ogc4+rTsTwJg7ECB978yf20r1dMUXZFv/1m9/K1ntLGwmkr3x3cVLWxu1K9UvEcREREREZE7wrJioRRvHj80FGosxR5AEillanisEJGytDiaMrimiaNJ7Xmjsbq3MniWflw3542a10fa6RctRETtQcrY+1YJvHeVUkQNAGRGmCz9Y8thvSJ8poufWZpjta4XVtqxjHE0p/MqgmvK5ZqxtHNELSVCpt4ip+PGI2T+YCwc9tVW4PSZ6uup9wYYC+suGAsjIiJKo4t/6YI/EhK2tLtkjCaqeS5yiWSJAv5Kz3IRHrPgcRxbPCZmOUTF3IzDKUxWKJ09ThcxTG4rBQ1h9Ww+AQu9vbld8OWzypTLk8NpujAfwNBVnO51H39NmIJrub7GiYiIiIiIiIiIqPNJj3c1NDQU7NgtLS1oaUm90L1Pnz4FO35HO++883DeeeelBMM++ugjfPTRRwCAkSNHYvLkyTjmmGNw3HHHYcyYMQUfw7Zt21I+P/DAA7Paf9SoUa6227BhQ8rnf/nLX/CXv/wlq3Ol2717d177ExERERF1KZpYWI29T7vLhgbgG/vpD2kKF/nWL3M7MuCUiyBGtJWqynzqOShuYmHPLDBf8mMM4mxYod4H+vlUoYh2VcLnm/IYU9yBh2aMb0HlkcpNDxtsngcY0UyDcjUOALJhO1BZDQT8Kct14bn2ioU5zXY8bmQJXOK8Z4frTd1crKb72sVdfWwJPGYHQ/sIDG39VU3PCmD6OEB+tCvl8RcyFtai+f6rsDO/X+WSeRA5xsKGq68sy3obrb+/rF7+z3e1u4zoK+D2MkiP4u1VhoKxMODWdUB1DbB5jf4AG1e6Og8REREREZFbQojWcIgHQHmxh1NaITXbdhFPa42jxQNkbuJoquBayvrM4JrUHVcRXMvrvIl1hscb7dzXdBJRNxN/T0Ow2CMpqZCatCxjTEwfP9NEyuLxM21QTXGs1j+FLo6mGVe55UG5x4M6jxeVoQoAJygf4171fWCoC2IsjIiIKI0u2qOLhQGxWI2bgFVnE5Xq2UbJ4R23j7uQxV038SSPsBzHFo+JeVwGz1L2hZXymDoq6BQ1BJE6g+RAVinaHVHHwnp5a+ERuf3V2ad574jYbTOFdGE+gKGrOF38Lx4J08XCBASDa0REREREREREhN7evrhnxKxiD6PL6+3N56rEwhg4cGDK51u3bsWuXbsKEvVatizzYvT083UmQgg899xzuOOOO/Cb3/wmI4S2cuVKrFy5En/4wx8AxOJhl112GX70ox9lRNlylR5zq6mpyWr/Xr16udpu165dWR3XjcbGxoIfk4iIiIio09LMuTvZ/752F7/DNSrGWJjt/gIXccpFqftqqlUhF7Ewp5iQKYglF76jXC4AeGUYEcUcIzexsKhD4MlVpCuaeaLB4Y1YWzYsc0xR86U9uq+b0zhkcyPkbRcDmuepwlZf4RJoh+loti1xxZPmxzm18D3t7AULe9XPp+vNj/mC8aV06bJ7cumClM8rpfp5c3pPSvfVFokf/ln9nJVLxcFC6uCdG2cfKnDjc+avjym+mA/7p+dB3PkniIqqlOUTh7k/Rvr8Yfl/D0M+dHMBRkdERERERESFJiwrFkrx6q+l7bCxFHsASaSUqeExY8QstzhaZrxMsaz1Y6k9bxSIRDPPpRyLm/OqomrJ52qnkj8RUXuw7dh/JfDelU9ErQY+YMxe5TrGwroPxsKIiIiSSClhQz17xifKtPvZ0s75tw+6OFkp0I3NkxTecRvaEgX89YwuGpS+jdPY4gGhXEJC6WNwM6ZC6PyxMPMPUVJzl9GOsjusvttibR4XuHk17x3J4TRpeB/IJWbXFemiafHQmi64xtgaEREREREREREBsd+z9fHVF3sY1AEmT56csWzRokWYNm1a3sdetGhRyueVlZU47LDD8j5uMXm9Xtx77724/vrr8ac//Qkvv/wyFi5ciGAw86LWlStX4s4778R//dd/YdasWZgxY0YRRpybUKjwV48X+980iIiIiIhKiubvx30i+nCvU3jLFAvzvvg/bkYFABCTTk/53FemnksSDjvP41uxzfxzgFczDU3u2w28+5x2vzIZUsbCNjZIOE1MDDoExVzFwhQXxpzb+BL+q8+NGcudAmYRzdPotcyPQ/76em0oDNAHngLtcE3PIx+Yv86f3mahurwELlfduCpjkcjxEqNwROI7f9Dv+4erBSYMK4HHnCUZCgJ/+lXKsiq7Wbmt03tSMtuWmPbf+veMMtU8yZdmAdc/6P4kSYb1FaitAhrUQ8fg2sLe0DfFR69DPnQTxC2PpSy2LIFD9geWbjbvfstpaaGwhe8wFEZERERERESdjhAC8Hhi/6G82MMprZCabbuIp8XjaNHM5S7iaOr1yctj20pjHC2aef5cz5sIqTmsJyJqB2UIo8IOoMWqzFjHWFj3wVgYERFREqkJhQGAV+j/bzOfgJOtCdyUAt3YkuM7Au5CW263c8PjIv5jweMY8IofJ5eYkJX2eNyMqRBK+fvFjXAWd/UshoaIOhZW5+uX8zF17x3J4TRd6Apg7CrOo4n6xaOGtuZ9OJcYIBEREREREREREXVeQ4YMwZAhQ7B+/frEsrfffrsgsbB33km9aPmoo45CWZn+ZjO5iBZpsmB9fT1uuukm3HTTTQgGg/jkk0/w8ccf48MPP8R7772HpqamxLZ79+7FxRdfjPLycpxzzjl5nbe2tjbl83379qFfP/e/k9+7V32XxHR9+6beFOSXv/wlbr31VtfnISIiIiIiB5pYWBnC8MqwMoTlzyMW5vt6kX5lspq6zDHpYmGKMaZbrZ5alKANcxkiWEAsFtaM6ozli9cDVzuMKeDwPLqKhUUzC2DK2BGc42S6r5tpHDISAT56zXjcSrtFuTwQtIECzk0EgNte1kezJg4DDh1cGpdjylWfu9/WoSH2j9Xm9ZccWRqPOWufz8tYVKUJz2UTC1u8HtjQoF/vk4qDhfMLmZ85VuBPC9RfyGG53wsVcrPDFx8A/v4K5H88mhEkO3h/gaWbzd9cNRVp5/v7y9kOkYiIiIiIiIhKmLAswLIAr/PvV9t9LMUeQBIpZWp4zClSZtsOEbPkEJvtsD4zfCa1540CEU3gLafzOjxexe+iiSh7vex9mliY801oqGtgLIyIiCiJbYqFWfqLPfIJOMVDNyqFDGzlQhdBS45wWcKCgGUMrQGFvWuZUwQMADzC4xhZih/H4+J4TmNwM6ZCMH2/dAZhzSSyUtEQ3qlcXuvNfTaNT6jfOyJJE4J0oSuAsas43Wss/r6te//O5fVNREREREREREREndtpp52G3/72t4nP//jHP+K+++6Dz5f7xMQdO3bglVdeyTiPitebOhUjEnE/0a2hwXClaQcpLy/HpEmTMGnSJNx0000IhUJ48cUXcfvtt+Prr78GEJvUeP311+Pss8+GZeX+e+z6+vqUz1esWJFVLCw+nmzP43Y/IiIiIiJySx+LqbKbsc/TK2O53+Geg8ZYWM8aYM8u52ENPyhz37A6FBQSPshoFMKjn2syql7g0w36x9q/JvantG1gxWfAqi8AKSGf/bVxmHs8tcrl+9UYdwPQfrGwcqn+AoUcfsTVNbA9Kz+F/bP7gX4DIUYcDHhaf0YfcTBQ1x/w7zMet0o2K5cHAhHkcklES1hi/mpgTzNw/CigrrptfmOjuksGIBZHKhm19RmLhOG1aPKvbeb9LKuEHrdLsmkv5IuzMpZX2ervpWxiYXO/Nj9fZapY2MARkJvXAMsWAHX1wCGTIMorMrfTMJ1xjXraozvbNjpvs3cnEAwAFVUpi/fLfGvPUJn+67htG9yPjYiIiIiIiIiokxJCAF4vYr+7LC/2cEoqHSRt20U8LQpEUoNn2cTREIk4hNpi28qM46afS3EO1T7GcSUdSzeu+Hoil3pF92KbN/PfCPY0RlHoG6xQaWIsjIiIKIkpxOQz3DlQF9Vyw7SvKPKPYLqAUXp8xyMsRBwiVoV8LJaLv6hawoLHIbIUj4k5RcVUPGn7uBlTIUTzCNOVgohqEkwJ2R3RxMJ8ecTCLPV7R9huC6eZQoWMXcXoXqfx9ylt3DCH1zcRERERERERERF1bjfccAMef/zx2F06EQt9Pfnkk/je976X8zFnzpyJcLjt97rV1dX47ne/q9y2pib1au49e/a4Ps+yZcuyGlchb9aiU1ZWhhkzZmDatGk45JBDsGnTJgDAhg0bsHjxYkycODHnY0+YMAEvv/xy4vP58+dj8uTJrvdfsGCBq+0mTZoEIUTie+Kdd96BlLJDnj8iIiIiom5B6jM21ZpYWHPIfHdzYyxs71ZXwxJnXpmxrGz4gcCXivMJXyyGU9VDezyvwzQUjyUg/fsgf3Iu8Nk8V2M02dnkvE3A4d6NrmJhisi1MnYEIOQwfU33dfOtXgJsif38l/Hd0sO5OFRpqyNvu5qyv/nmim0SU39jY2Nrr9trAX/+roULjnD+GfHbR5fQz5ER9zfulA7zNw0v4U5JLnwH8j+/FXtNp9HFwpzCe8mcvguUr59NqyFnjG77vM8AYOabEENHZ26rMGOiwDML1F+obx6Wx/dlUP18ZAj4M2Jhl08SmPme+ZunMv1eq599mMXgiIiIiIiIiIioqxGWBVgW4M39po8FG0uxB5BESmmIozlEylzG0fTrM+NoUnveCBC1NcGzXM6rOFbyesXNTgiosdU3YNm7cy+A3K+Hp86DsTAiIqIkpmCP1xAL00W13J1Tv69V5AsUdM9HehgrFuMx/4W7kDEtIQQsWMavlwWPYyQoHhOzHKJiyuOn7dNRQad8vtdKQVi6n6DU0WxpY09YfcfROm+/nI/rFemzXWLCSROCTNFAxq5idK+x+HOne21YjK0RERERERERERF1OwcddBBOP/10/O1vf0ss+8lPfoJvfvObqK/PvKOek+XLl+OBBx5IWXbVVVehrq5OuX3//v0z9p8wYYKrcyWP2Y3y8ra7jwaDwaz2zVbv3r1x3nnn4eGHH04sW7NmTV6xsGOPPTbl82effRY//vGPXe27Y8cOvP3226627devHw4//HB88sknAIBNmzbhjTfewBlnnJHdgImIiIiISM0UC5N+5XK/w48wxliYyzlI4vRvZ+5bVancNiTKgECTORZmmGZ2wfjYn/KJu7MOhZ3Z+De83jPz55OH35eYeZF530DIHOpxFQtTXGyjjYU5XJcT0Uzp80rDjk17zQcFUClblMtf+KJcudzkiifbQmFAbMwXP27jxG9Y6NPDPGfzxNEldPlYJPNrJDJTbK3M3ydvfNF1amEyGID8+QxlKAwAqqU6jtWcRSzM6XVV7uamqru2QN51BcTv3YXQD+yvX3f0CFeHUAuqX1sZAk1Abeo8ykMHOe9WlTR9UkoZi44RERERERERERFRCiEE4PUilgDK/vfehVZCvwmHzAiKmSJluuCaJo6mCq4ZjitNx00Lrrk6r+7xxLdTjaulGb2iqf+u0iPaiF72PpQHQmAsrHtgLIyIiCiJKcRkioVFDcGvfM4pChjYyoUuYJQe37GEx2kuScFZwoIt9bEwj/A4RoLi63MJfSmfgw7Q6WNhdhYzajpYY3QPoproXa0v9x+OfJr3jkjSpEXT17WjQnSlThccjAcXdeHFQoYKiYiIiIiIiIiIqPP49a9/jTlz5qC5OXYB6J49e3DeeefhrbfeQo8e+gu/0+3YsQMXXHABQqG2328PGDAAt99+u3af8ePHp3z+6quv4vLLL3c811tvvYWFCxe6HhsQC3jF7dy5E+FwGD5f+9150+tNnWaSHCvLxfHHH49hw4Zh7dq1AIBFixbhtddew/Tp0x33vfvuuxEOu79JyXXXXYerr7468fnNN9+M448/PqvvByIiIiIi0jDM46qy1WEev8M0IlMszOtwY0sAwAnnKBf7KtQ/M4VEGbBqPtBnP+0hLcM0lBH9Wy+dmf+m89jSlMvc488Bhx+LygocCws6PPXhqHoiodvAm47uObJEdhMXd/sl5q/OXB61gTeXSZw1LpfRFUm4cHPxsglllbzP5hmDVJWa96Rmh/BeMqdYmO71k2HFEshdWyEM7ztxmrcuAEBtVR6X7mmiahlaMp83yxLweczv1+XJv0pavSy7sREREREREREREVG3JywLsMqcN+wApRJRm3X2RMit16FXdB9q7H3wtl5fLWY8AWBkcQdHHYJXzhMRESUxxad0wZ/YfrkHnKLQn1MU8a+NUkptfMcDj/FzFSEK+9cOy+GcFjyOkaX4MZyOpZL+mHM5Ri5M3y+dQcRx0lfx7lC4O7xTu67O20+7zolPqH8IDSfHwgzBwY4K0ZU6S/MeEn/fjmrev3X7ERERERERERERUdc2evRoPPzwwynLPv74Y5x++unYuHGjq2OsWLECU6dOxZdffplYZlkW/vjHP6JfP/3vjSdNmoSqqqrE5y+++CIWLVrkeK4rrrjC1biSjRkzJvFxJBLBBx984Gq/5uZmPPzww2hsbHR9rqamJsyePVt7/lxYloXrrrsuZdk111yDNWvWGPebPXs2Hn300azOdfnll2P06NGJz7/88kuce+65aGhoyOo4O3bsyHgeiIiIiIi6Pamf86OLhTnFiXTxGa8lXc2qE6MnKJdX9FdHeaLCi0jQPLfJ8DBxweBNsQ8atrsYXar1vsHK5fvVOO8bMDyPh+wPlPvani0ZDkH+4w3IJ38B+cFsSP++2IpI5uMu18SOQo6xMPVyj3QReDNY5RuhXD64Z3YRsh2GH4M/3wjs1jem8I36rE7V/iLuC19Or5r9e+vXXzBeu6o07Ta/BqukOo6VTTCtzOuw3m0sDIgFw179PeRzMyHXLNduNqQu9l+66nLgpNGZy11zGwvTBNhMoTAAqKlI+t5q2OZyUERERERERERERESkM6yvwPDwOtTZDYlQGABg6/riDYo6FK+cJyIiShI1BHu8plhYHgGnqGESTFFjYYbHlB4vchPjsQr8WJwCSpawIBz+qhOPiTlFxXTHTz1Wx/y1Kp8wXSkIZzMJpoM1RHYol/tEGao9PXM+ru69I5L0XOhCVwBg8a/sAPRBvvj7tjZuyNgaERERERERERFRt3X11Vfjhz/8YcqyefPm4aCDDsJ9992HDRs2KPdbuXIlfv7zn2Ps2LH4e1hguAAAIABJREFU4osvUtbdf//9mDp1qvG8PXv2xIwZMxKfR6NRnHnmmXj77bcztg2FQnj88cdx9NFHY9u2baitrXX78AAAJ554YsrnV111FR599FEsXrwYq1evxtq1axP/7dzZdtOMUCiE66+/HoMGDcLVV1+NV1991RgOW7hwIaZOnYp169Yllh199NEYNWpUVuNVuf7663HooYcmPt+8eTOOOeYYPP/887Dt1N+f+/1+3H333bjoootg23ZWz5fH48Hzzz+Pmpq2q+3fffddjBs3Do899pjx8e/evRvPPfccLr74YgwePBgPPfRQFo+QiIiIiKgb0FW0DjkaVVIdC/MHzYfUBWh8lou5enX1wMkXKldVV+jn4gQC5qCVKYpz+E8Phvz4b0DTXufxpbl077PK5Vv3Oe8bMLSybjg5KRQWDED+9DzIW86B/P09kLdfDPmDKZC7twHRzMetix2tcGihRXRfN2QX9Up3ZtMbyuXr9qlv5Khjer5awkDI8DW+55wSm8cVznwwQvdadLiHp+lxXzulxB63kz3qeYBxuoCh03tSMt33eVw2sTD5H9+E/NW1kI/cAnnlEZBv/FG5nRAC/35K5jzca08QqPDlMT/XbSysRR0L+7FiTMnGDEj6pMnFmxoRERERERERERERmdWrb0Ijt6nnQ1LX43BPEyIiou5FGoI9PqGfVBLNI+Bkij+JDgpQqRjjRWnxHY9w/iuFU7grWx5NOCixXngcA17x4JdTeEy5b9r5dSGjQtMFkTqLko6FhXcql9f5+kGI3CfT+Cz1e0dYtk3WMr0PuInxdQe66Ff8udM9hx312iQiIiIiIiIiIqLS9Mgjj6C2thb33nsvZOsFs42Njbj11lvxn//5nzjooIMwePBg1NbWYteuXVi3bh3+9a9/ZRzH5/Nh5syZuPbaa12d95577sGLL76IPXv2AAC2b9+OadOmYeTIkRg3bhzKy8uxbds2LFiwAH5/7GLL/fbbD/fffz+uuOIK14/vW9/6Fn72s59h48aNAGKhrfRAWtwVV1yBp556KmXZvn378OSTT+LJJ5+EEAIjR47EiBEj0Lt3b3i9XuzatQtLly5NHD+uqqoKv/3tb12P08Tn8+GZZ57BCSecgF27dgEAtmzZgm9961uor6/HEUccgV69emHbtm34xz/+gUAgdhFrr169cP/99+N73/ue63MdfPDBeOGFF3DBBRdg797YBfwbN27ED37wA/zoRz/C2LFjMWTIENTU1KC5uRl79uzB119/nfH4iYiIiIgojS5QNOwgVC/RhHkcphFpY2HCUD0aMgo4ZBLEpTdD7DdUuUmloS21crcH43MY06V7/wwRCkLeeZlhb70DQyu16wIhicoy/dwlXfzq2JHAvx2bNO/orWeAhe+kbrR6GeQzDwKRzIOYYkdSSu18Kt1z5M1jjqV47kvU/9stOe+fLGD4vvvLPyW+d7z+uT7+wIIMoXDCWQSpnA4VUW8xZgBw4uji3fQ2F/L5/zGu18XCmrOY2mgKBwJAmcwxjmfbkA9eB5x4PkRFVcbqG6Za6F1p488LJIIR4NzxAteflOfXJ89Y2GVHC/zmHf13WFnS9GL59p+124n7X4T8ybnuxkJERERERERERETUndUPif3pKwP6D4p93n8wxKHHFndc1GEYCyMiIkoSNYSYvJZPu84U+nFiwxDlKnBgKxumKJUnbVxuxplPbEnFKaBkweMYCYqvz+V5Tg8X5RIcy0U+Ybpis6WNiDTffbOYdkfUdxSs9fbN67heoX7vCNtts4tM7z2MXcXoXmPx91/da6OjXptERERERERERERUuu655x6ccMIJ+MEPfoAVK1YklkspsWzZMixbtsy4//jx4zFr1ixMmDDB9TkHDhyIF154Aeeccw4aGxsTy1euXImVKzMvAh8+fDhef/11bNu2zfU5AKCyshIvvvgizjnnHGzatCmrfdNJKbFixYqU50hl4MCBmD17NsaOHZvX+ZIdfPDBePfdd3HGGWdgy5YtieXbtm3D3/72t4zte/fujVdeeQXRaPb/bnLyySdj0aJFuPjii7Fo0aLE8mg0iiVLlmDJkiWOx6itrc36vEREREREXZsmFFNRiWpbHZhpDprzReGoer3P0sy3q66B9cwXxmMCQKV+GiBmfj0STxv2jWjG1Cu6L/ZBQP1YzQPqgR52k3b1P1YDJ43W766LX105OXW+nvzwVfWG814FPJmXFJhiYf/aCoweoF4X0Xx5fDnEk8R/vwlxxIkAAK/hqodt+yTqa9zNT9TF1QBgVH9zBMpXatOQIplfI+GYBVMLaR73yWM6VygMAFDVw7xaquNYhYyFVWrO4UqoBVj0HnDsWcrVV0y2cMXk3A+vPJ8bmve3HuXm3VLec3Vhsl59ISafkeN3LxEREREREREREVH3Ir79E+CyW4C6egireC0KKh7GwoiIiJJIqQ93+TTBH8Ac1nJiij8VOrCVDVMALT2+kx7OUhEodCzMIQQmPI7bxMftZvxO58/lGLmwDd+jpS6S693yOsju8E7l8lpffrEw3XtH8vOhe70JCMcwXnehi/rFg4u68GJ63JCIiIiIiIiIiIi6p5NPPhnLly/HX//6V/z+97/H3LlzEYnob3BRXl6OU089Fd/5zndw1lln5fRvNieddBIWLlyIn/70p3jllVcgZeYlj/369cOVV16Jn//856ipqck6FgYAEyZMwPLly/Hss8/izTffxNKlS7F9+3b4/X5tTKtXr16YO3cuXn/9dbz33nv47LPPjM8HAHzjG9/AFVdcgRtuuAFVVVVZj9PJYYcdhi+//BK33XYbnnrqqZTIWlyPHj1wwQUX4O6778bgwYMxZ86cnM41cuRILFy4EK+//jpmzpyJDz/8EMFg0LjPmDFjcPLJJ+PCCy/EMccck9N5iYiIiIi6LMXPOwCAimptmMffYgOGm+jpYjw+oVlR7u7nlDLD7PkXNg81xsJ0Y/LmMS9K3PE0xt96mXb9nmbz/rrAUWVZ2oL5b6o33LwG2H94xuIjWj7RnrPBMCbtc4QcbjI5pi3aPUJu1m62pxmor3F3SFMQqqYSCBmG6fnv62EHtrs7UUdYuqBgh9J93Uyvl5LVuMe4uspWfwNnEwvTRfHijmn+2P3BVNZ+pY2FFZrUBbzSaWJhI/oCfaqBXZpWYu/yKOTf/gz50izgy0Xqjfaq524SERERERERERERUSbRZ79iD4GKrDP+8w3lSAjRE8CxAAYB6AugEcBmAEullF8X8Dw+AMcAGAJgAICm1vN8KqVcW6jzEBG1h6gh+uU1xMKieQScTFEuUcTIjem5sNImaTlFuYDCPxZdOCjOA8sx4BV/HLmMLf38TuMplHzCdMXmJhZWzDvDNUTUE07qvP3yOq5PpM+8iwkn3X1TF7pKf611Z7rXczygp3svdfP+RERERERERERERN2D1+vFJZdcgksuuQR+vx+LFy/GypUrsWPHDoRCIZSXl6O+vh6jRo3C+PHjUV5envc5R48ejZdeegk7d+7E3LlzsXHjRjQ3N6O+vh7Dhw/HcccdB6+3berGlClTlFExJzU1NbjmmmtwzTXXuNpeCIHjjz8exx9/PAAgEAhg2bJlWLVqFbZu3Qq/3w8hBGpqajBkyBCMGzcOQ4cOdT2eXCNevXr1wkMPPYQHHngAc+bMwZo1a9DQ0IB+/fph0KBBOO6441BdXZ3YPtfnC4g9B9OnT8f06dPR0tKCBQsWYN26ddi1axf8fj+qq6tRW1uLkSNHYsyYMejTp09O5yEiIiIi6hZs9dwXUVmNaltdkGluiQLQz8nTxsJ00anyCtMI2/Y3TCVptvXjAfSBoJxCWABw9GnAUdO0QTUACIQlYLhRZ0AzJavSl0X0WhGPHhper918k6HFFNF93XIIqomqnomP64X+pLrnQLmtIQgVCOm/7wCg7M0nAZT2DTN1nH5y1kXSTK+XUiTXfw3s1IflAGhfb1v3uT+P6fvk6Ob5OKNJE+dzK8ffdeRk4yp327Wo38stS+C+8wW++4fMMf/6AkDeeRkw90XzsSdOdTcGIiIiIiIiIiIiIiJiLKw7EEIcA+A2AFOh+ZoLIT4D8L8AZskcZ9IKIfoBuAvADAB1mm0+BvAbKeULuZyDiKi92YbolykWZgp+OZ7TGOXK/i71hWJ6LtKjPW6CRqLAj8UpAGQJj2PAyxJW4k8BC1ITbFLJeA46KEgUzeN7rdiS41ilqCG8Q7m81tc3r+Pq3jvCSRPgdF/X+Pco6V9j8bCh/jnsZDPWiIiIiIiIiIiIqENUV1enxLLaW9++fXH++ed3yLlyUVlZiQkTJmDChAnFHgoAoLy8HNOmTeuw81VUVOCEE07osPMREREREXU9mqnH5ZWospuVq5pbzNOVtbGwlkbtudzw5jEdRzsmmVssTPzy/yC8PsiyCgwPrcGasuEZ25jiVqb1ler7G6pFMgNYAkCFHUCLlfm8/n6ejQuOUM/J0T9H+UW2Ki39/l9slDhssLv5ibH4mlqzQyzM1wlCYSLH23XqHndZJ5t6Jf/6kOM2VZqAIQDYtoRlOX8v6cKBAPDGhrNRLdXveyXJKeQVF9A/pn871sKQOomrn7ITMcFnviNwUeUCSDfHP/hod2MgIiIiIiIiIiIiIiLGwroyIYQPwMMA3Nw6+FAAjwG4WAhxmZRyQ5bnOh3AUwD6O2w6GcBkIcQzAK6RUur/tY2IqAhMsSifIRYWNQS/nEQNUa5CB7ayYQqgpQeMPC6CRkIU9rF4HAJllvA4RoKSg18eYSFi+FpkHD/t/E7jKZR8wnTFFrZLd7JU2A6hMbpXua7O2y+vY/ss9cy7iN02U0/3dU2P0nVnuihh/LnThRc76rVJRERERERERERERERERERE1G3p7lNcUYUqe5dylT+YYyzMq5mHFnQX5/HlMZVENyZvrrEwX+u8olALKmVAuU3AMOUqEpXaaFGlfrpjpt1blYtVoTAAiBqm2RX6OYqr8OpPujuLLpMpvhYIAyHNMD0yUsTZnPlzSohpX2+dberVkg8dNymXQe26lTuAUfXOp9E9X1P8c9DTbnI+gJMCz7c1GjkOWPm542ayxW98DZxykMCGX6V+w8g/zXM1BNGjl6vtiIiIiIiIiIiIiIiIsbAuSwjhBfAqgPRb7YYBLACwEUA1YpGwIUnrjwfwjhDiGCml+l/nM881BcBLAJJLGBLAJwBWA+gN4HAAfZPWXwqgRghxjpRZlFmIiNpZ1BBi8ggvBASkYtpEPgEn077CRYSrvZgCaOnxHV3EJ1mhw2fpwbJ0ntb/GY+RtD72sfsJSekhMqcwWaHYhqBdqQtLh9tcFlFDRP/XnlpfX+06N3ShwUjSBDjd19XNa6u70EUJE7EwzV8pnd4riIiIiIiIiIiIiIiIiIiIiMhMvv405F9nAmu/BOykORrjjoF48FV9LKy8CtWa+wo3h3KMhTVp5vlsWWc8XmL/PKbjRHRjQg43UTzylJRPK+0W5WZOcSudytZZ3bJhB+QzD2Q7OiNTx0g3pkqZ9PhOOAf4+8v67xsA4mdPpH7uKcw8KtNzFgjrv+/KSnjuWzLtl8ahFhbSPe7OdrXJXufLHw4Ofqld16R+GabYskfi3tfVT2i+UbwEuwNvKut2fl0g+wiabG50t+ERJ2V9bCIiIiIiIiIiIiKi7opXzndd9yMzFPYQgHop5XFSyoullGdLKYe2brc6abtvAJgthPMtaYQQgwDMRmoo7CMAB0spJ0gpL5RSngpgEIAbgJR/DT8LwC+yfWBERO1JGkJMlvBowz35BJxMUa5iMkXMcglliQL/tcMpomQJy3FcyeuzjX2lh4t0IaNCMwXtSl1Jx8LCO7Trar35xcK8oky5PPn50L3eOipC1xkIzWs+2vr+q3svZXCNiIiIiIiIiIiIiIiIiIiIKE97dwKrl6WGwgDg848gT60DIpoCU0UVqu1m5Sp/0DxNWR9t0pzrhHONx4vz5jHNSxsw043JQPzkf9s+GTgCFTKg3O7DFfrKkykkVukDZNNeyB+dDDw3M+vxAcAle59VLn97uX6fVZppWJV22+MTF/07xDUOU8hPnpH6uceH8hyCaulWbtevC4QK+zUuJdLhZq/ax92Jpl5JKYE9+nmAcT1tfcDKFJMDgF1NEic8qJ8v7Eu+Ye3gA4HpVzuOR0V+Mien/XISUr/3ZAio38uNFrztvM23rgMOOCT7YxMRERERERERERERdVOd7V4v5IIQYgyAG9MW3ySl/I1qeynl20KIY/D/2bvzOCnqO3/8r0/fPczAzDAICCIioigRLzxQsxgTr9yJWf1pbnOfZmNi3Li/VWPcJJrdmDXZ7JosmsMcRk2MV/Ai660EFRXEA5BD7hkG5uqrPt8/unumj8/7U1V9TQ+8nnnkQVd9qurzmeqqcqDf/fpkQ75m5Va/FcB5AH7n0t2VADoKlh8H8HatddGnsVrrBIAfK6XWA7ijoOmflFL/rbX2Np0XEVGdZbQlLAwBBFQAGUPtTTUBTrZQrtFkC0ArDTAKegg0CrhnUPri1mcAQQRcAryCBQFmQZ+BQqUBRI0KJHKQgdYaHjI9m07KU8GUyxSGddKdNhcJtQbHIxKIVnXssAob16d0avi9dISgqyCzfYdJgXz5Z6gjPL+9PJ+IiIiIiIiIiIiIiIiIiIiIqA7iLWiRwsJSlYUXhSDUIE0+wNOQQlWUkohj0mlzQ95HvwX88nvZ18eeBnXVLVDjO0faZ81DfJ05sOfuF+TD2oKN4mEAj98DvPGyfWwW8xIviW19QxqtseL3UGu59qtFF1wH4zugLrwEmH8K9M3XAE/+daTtY5dBffxyqFDJ1xyCIRw/+AweGXdq2bHdAp4K3bbcEr6WApKmAlEIYWEf+Lz3juutpQ3q6LdC/SYEeMx+KpQULuGxFBaG1y03y0GHQ33uu9Arn0Hk5mugtANtqEdzC56741ltDZwrehaceCbUl64FFr0f+ol7gdt+6vIDFPj7w963rdaQxwtmqN//sV951t5+/tegvvBvY7IeloiIiIiIiIiIiIhotDAsbO90KVCULPGAFBSWp7XeopT6JIClBauvUUrdqrU5xUYpdQiAjxWsSgL4eGlQWEk/f1JK3VywXxTAvwKobNocIqIaswdkBRBUQaQMtSDVBH7Z+tSjFJwE2APQSgOMAh4CjZTLzHR+lQaWlQqqoGsAWOEx3ILF3Pp3G08taThQDQonq6W042MKxwbrSe0wru8IdVV97LCKGNdrOHCQQRAhMaiwkddVs5MC+fJBa1LgGs8hERERERERERERERERERERUZUsIVBWwTDGKXNZ8UDKXq+VEAKgjKFNABCNexpSNaE0SaGkThxTvs/3fw7q01fKG/RsQ3dworFp9n7ybrZgo3gE0C89ZR2Xm85Mj9i2YhOw8ODidVt65WMVnfXx2Z9VzTsR6to7vQ1m2wbEu8zXklvAU6GTDwZuF/KLBpNyIFyk9D0+80IEvvYj7x03ym+kkCn7PSz+3GPp2yYrnxGb1Df/C2reicDalQCAuB7EgBpXtp1b8NzNj9vP4+bQ1JGFoQGoQAA44QyoE86AnjEH+j9K54MXTD3Q23a1kPAYFta/2/+x2ycBu8wTuQKAOvcLDAojIiIiIiIiIiIiIvLJXyoGNT2V/bTknSWrr/Oyr9b6bwAKPyU7CMAiyy4XAEWpDbdrrV/10NX3S5b/USkV8zJGIqJ6s4V+BRBwDauphC2UyzbTXr1Zz0UFQVmqxr92uAWUBVTQdVzFYWH+AoWCJduXLteTFCzV7FK6icPC0kJYWLj6sLBQICy2pXJFZAy6ciedi/wzVHpmeQkzJCIiIiIiIiIiIiIiIiIiIiKLSsNclEJLMG1s2p0KWevjbn7C3BZ3zME2ymNYWDWkUKoWbQ/bUV1Tre1IJdHmmIN4kubTlx2PJdioJQJgaMDer4uz+paIbQMJwzpLedhbhl4Yfq3aK6jJGuxHi2P+edwCngplLKV3gyn5fIdR3Ik64QzvnTaScK9ql8lepZ879JNvwDl/LpyffAs67eNEN5DeugHO5edDX/sFeaPDjsv+Gc1+ZUG+luw1u4+9bh/LnkDr8Gt10OHFjX6eUanKz7W+55dwPr0Qzunj4bznADhXfhS6Rw7s8hwW1rfL/2D2yIGDOGQ+1OQZ/o9JRERERERERERERLSP4zfn9z6HAyj8BDUJYKmP/e8rWT7Xsu37S5YXe+lAa70KQOFUVeMANOknpkS0r3EgV4IoBCxhNZWHN9lCubRlPPVmC0ArDU0LCiFqhZRLsYlfAeUSFmYJd8srHLeXn6H0+LbleqomnG40pVxm0BxN3SlzMUxnaFLVxw4rS1iYk62Qk54Dfq/LvZkUyJd/TkrP4UYG+RERERERERERERERERERERFRAaXQEpJr4KSAoj89q/HGTnObGMwV9T5v8e/OXC22JYbkGicplEoKMAMAfODzruNRb/9HfHLXzca29d3yfrZwrngYwD3mY3o1Pb1JbHtpc3mo0rY98rHGO5ZGLy68BHHhvf/Z37xPyvrn5+3te4bM68OFtW9nfxR424c899lICsK5cDlFKaEkMbJnG7BpDfC7/4D+gSWMa5TogT7oL58O/O0O63YqFMq+iGQDu+La/EavsWRqefHR3l+PLBx5SnGjn7AwrwFeJfRfb4H+t08DL/8dSCaAnm3AA7+H/so75LC3pMe+dlseRpKMnHaovv2//o9HREREREREREREREQMC9sLTS9ZflVrbZi7SfRCyfI7TRsppaYAmF+wKg3gMR/9LC1ZPtvHvkREdSMF9gQQgFIKQeE/ndWEN9n21W4VGnVkC0ArDd+RQtQKqUpnlxS4BoGpIIIugWKFP4db+FhZ/xWcg1qxBcw1s5S2VKeNsp70DuP6jnD1YWEhFRHb8uckIz17fF6XezMpkC//rJKepW7PCiIiIiIiIiIiIiIiIiIiIiJycezbKttPKYwLy3VoUhDWzx+R9xGDuXwE8cyaJNeyPf6yXHYthoVJAWYA1FGnug8oNg6tTr/YnM6Y6wgHhXIspYAw5JAePyYKdVV3LC8f090vyPWOw+doyoEVjUO1tosBTxmPc7I6jns95m4hLCySr31beA7UZf8DFWzWmiTzte32kyeFksSikLQHfgc9KF+no2LZg8DmN+zbHP0PI69zzwnpOfLAqupqdscV3seRkgDD0mWbSsPC/vILc8O6VcALT5Rvn04BGY/1qLt7/I1l42tim/rebVAHz/N1PCIiIiIiIiIiIiIiymL6wN6ns2R5l8/9S7c/QCk1wbBd6aczK7TWfj79e7xk+Qgf+xIR1Y0Dc9VIPghKCoSqJrzJFsql9eiFhdl+ptIAIy+BRkooQqlUaWBZqYAKQrn8qlP4fvoNFAqWbF+6XE+ZKsLpRlPKac6wMK01elJCWFioq+rjh1VYbEvniqnEZw9/XR8mPX81HDjaEZ9Zbs8KIiIiIiIiIiIiIiIiIiIiIrJThx7tK4xrZMcA9g/1is1vClXO97woH1IKjELE+/imdcj1JG9sExLBAAwI5U9igBkAKbypSKwFYctEjJuE8ySGl4U11LqV7v16sFOon5reUf5zBS2lTi3OQPbFFpdgJ0kojJ5Au7GpNertEOt2um+zR7i8hkOzZsyp+cSptaQqnKA2JZQkRgrDwlJJYMOrFR2/bl63PCxMcvW6r0TnGJsPnVLde9sfGDeyMHFycWPARy1gcqiy+mHb+Xi9dE55+Asl29Ptb0xrLc+gGYd6Pw4RERERERERERERERVh+sDep/STYo8ff1q3P9zDOnnqF7PXPfRBRNRwUthMPrBHCqvJVBEW5liCn6QAoUawBVKVBmt5CcqqdViY9F7kBRF0DxQrGLffQKHS/t3GU0uOJWCumaW1XEiXpyssVqrGgNOHhFBE2BmuRVhYRGwbDguTnj0Muhpme85oOOIzy0uYIRERERERERERERERERERERHZqQu/UcFOCpOjQvoS5LArGzGYy0eY2ZSJ8uR/Q0Np4/qMo5E0NyGuLYE7c+a7Dygax5EJOeRnUMgRG0yZa63ig93QnzzevV9JMOS6yWvbyvuWxgkAwWprIcMRHDu03NjUl/B2COn9KyQFwoV1dmc1/xRvnY0hGUeLIWmh0po/p7kmOtWJAddt1AlnjCzMOdq67ZDLM8ktmO6YoWdH+h1fMge835C5pPzsFPVZ5pk3Hc9PWFgmAwzs8b59Qh6/OuAQ78chIiIiIiIiIiIiIqIi/Ob83qd0zqOpPvc3bW+aumV2yfJ6n/2UTgs1USnV4fMYREQ1J4Uw5QN7pLCaakK9pJAgYHSCk/KkcSmosvAdL4FGqsaBPQGXX2MCKuAeKFYwJr+hTOXnoHG/VtmumWaWssx+OZp6UjvEts7QpKqPHwrIxYWpXDGVFDjIsLARtnssozPy89tDmCERERERERERERERERERERERufjIN/3vo5Q1xMsUFqa1vWYuroVwoGjM+7iicbRneoxNyzaYa01sIUJxxxLqE291H08khnFOv9i8Wzi8FM4lBqp5VRBy9JXuG4ybPL2u/L26bbn5vTut/+GRhXecX9mYwlEsHHhCbE5n3Gstf/yQ+zY/edi8TThf+3bgYa7HaEbaMtnrVXfJ5yVSWvOXabLaxVt+6L7NmReOvB43HgDw8V2/NG66+DH7NeK4XEL7pbe7j8crn2FhOm1Pw9PP/q18pZ+wMADY3e19Ww9BbkRERERERERERERE5B/DwvY+L5csT1NKTfex/0mGdRMM69pLlrf56ANa6z4ApZ9gmfohImooB0JgT+4/mVJYTTXhTVJIEABoIfymEaQANFPwjpcwHmUpNqmEWzhXAEEx3K1wm5HX/n4tKj22W1+1lBGu02aXKp1lsEl0CwU6AQQxPlT6K49/YRUR21L/JOT3AAAgAElEQVROtphKevY08rpqdrbgNAeO+BwOMnCNiIiIiIiIiIiIiIiIiIiIqGoqFAbe9iF/O2UyQDSGyemtxuahVHnyzqrN9kOKwVyWULIysRYcknzN2LT8TfPEgFIwFwC0SAFmXscVjSOu5dCeJ9eYE4pMYWtADcLC2kZqptoye8TNlpdMNb2udMrrnMnpgjLz+LjKxhSOIK7l8KQN5uy3In/8e+WTt4bztW9+rrNRoMQyTfln//WTclsYJReZ02S1iy7hggCK37Pca1s4n9yVFu+5vOH7ePKM8sZgyF+HfoO8Xnjc3r7mper78BUWJhz7QNM89kRERERERERERERE5JXPTxyo2WmttyilVgMo/BTlIwD+zW1fpdQ4AB8wNLUZ1pVOc1XJp8qDAAqn8TL144tSaj8Ak3zudnC1/RLR3sMRwrnyITVSKFY14U22fbWlQKPepBAzU0hX0CW4C/AfxuXGLUQpqILugWIFIUJ+A4VKg4tsQUa1Vk043WhKl84y2CR6UjuM69tDnTV5X4MqiAACxgC+dK6ITH72MNs3z/YMcXRGfJZ6CTMkIiIiIiIiIiIiIiIiIiIiIg8eutXf9lveyAZhCeFVpgCuV12mLxZDtfyEOEXjeCa+wNh0eEc/TCXNA5bSJ2s4l8ewsKhOiM0xc36ZGGBmCx7zZP0rwy+lUDUAeH27xrEHjqRTHT8TeGpt+XaronNHFja+XtmYwhHsn5aT5LbuBg7qsh8iWEUp1pbQlOyLjv0qP8go0tqcIqa1xlpz+RwAIOqUXJevvwA95D9oq+YiMeCwY4EJXUCv5QeY0AWMGz+y3NYBAHg9Msu4+aGT5UMl0+7ZZC35Z8HW9eWNb1lo37mU3yCv7Zvs7YfMN/QhB/AZDfR531Yaf6S5A/eIiIiIiIiIiIiIiJodw8L2Tr8G8J2C5W8qpX6ptXb5BAjfATDBsN5LWJjPT4oAZMPCOizHrMQXAPxrDY5DRPsoRwybyVaJSIFS1YQ32fY1hQs1ijQu0znwEqikIE5ZVxG3PgMq6BoSVPiz+A0UKt2+kYFEo3ldVCPpNGlYWNpcLNQZ9ps/KgupMJKGgr5ULkCNQVfubIF+GZ0Rn1kMXCMiIiIiIiIiIiIiIiIiIiKqEaXc03IKaQ1E44hpc5nxYMqwLmk/fkaqp/ERFqZCYcxIrcX68Iyytt1CRfQuS25PXPj5EAgAQQ/l+tG4tbrOdJ4A4DdPmc+VdL49a50A9PUCAM7qXyJuVhoytXqrebujh54bWZhrDmlzFYpg//SbYrMtzC0vVcUcnWf23w8AUOFI5QdpAOVzgtoh4drKK7229Q+/7HdI9ROJAkk5ZA8AcPqHoAIj9WMqGIQGcNzg33Ff65llm0vXMCDfh4VsQX1q3Hh/747fIC+3cDFTu99AsqSPMUnj9xPsSEREREREREREREREZfjN+b3TDQB6C5bbAdyrlJom7aCU+icAFwvNXhJJ/H2yWPk+RER15WjzIy8fNiMFVEn7eetTrkDRfgqrakwOTjOEhXkINFKqxmFhLn0GELCGC+W3GX7tIfCsULAkgKh0uZ4yVYTTjaa09lAtMwq6U9uN6ztCLlNN+hBW5iKxVO6c+Ann21fZ7nkn9z8TnkMiIiIiIiIiIiIiIiIiIiKiGvEb8uJkgEhcDNNa8lJ5fZxbIM/m8NSajO2DA3cZ19+13jzB4KW3yTWCcUcI3InGvdXNxbJjP2bwWWPzfS+Wn6c12zWWrzcfrsUZcO/T5owLgH94PwCgK7NT3Oyy24vHtUvo9vjBZ4Zfq4PnVTamcNgaqPbgKvday2S6sq4B4D17/gLMO6nyA4wy6ey4haxVfS3Vk1tQ2Ds/AfXla8vXH/8OzE2+LO4m1e0OegikG34WnPVh8wYtpjncBT6DvPTypS7HMzyHkz7DwnyMST/we3NDjGFhRERERERERERERETVYFjYXkhrvQvAJ0tWvwXAKqXUD5RSpymlDlVKHaWU+rhS6hEAPwSGP0PdWLLvLkM3fSXLlXxqU7pP6TGJiBpOCpvJh0oFhP90ZoRgLS8ylkxG7SmvsT4yQgCaKXjHSxiPqvGvHW7hXEEVdA0AK2z3G/ZV+vPU+uezsQXMNbOU9lAtMwp60juM6zvC5sK/SoQCYeP6lJM9J1IAnN8Qu72Z7Vw4OiOfQw9hhkRERERERERERERERERERETkgd+wsHAUiMURE8K0NveWr3MLC5ua2iyMLeZraC1BfxMfPiRnCyGuhQCdiMfzlTuv4xxzKfXW3eXr7n5BDscaCLR469c2nnjr8OL8oRXiprsGsuPY0iuPp+j8RPy9T8NC2ckaOzLdxubl693DwlJVlN3F9SDQOqHyAzSI3zld3e43Keiv2anr/4rAt34GFTLU7bVOQNyRf65Xt5nXu50rAIjlz5f0rGxtdz9Ins+wMGwr/QqIh+P57cMtoK3QkBA05/e/I0REREREREREREREVIRhYXsprfXtAL4KFKXMtAH4BoCHALwM4FkAiwGcUrDNjwE8WHK4sRQW9lMA83z+/7016JeI9hKOEJAVyAVJSaFY1YQ32fbV4nxu9ecIAWimwB5vYWG15RoEhqAY7pYXLAgR8hsoVPozK6UaFkokvTfNLuX4K7BrlO7UduP6zlBXzfoIK3NYWFpnz4kUDOh2De9LbIF+DjLis5SBa0REREREREREREREREREREQ14jfk5eR3AtE4nmg5ydg8a1J5Vdmgy3yE5/TdZ27wGsyVsyndYVw/MWQOuImG5GPFpEAlr+dr4v4AgEfGnWpsnm2Y8/C5DfLhegOWUKs5R7sOR82aB+waSUyamDFPxgiMBJltMlWb58xIrR9ZiFUYFBSJAgB6gp3G5q5W9wrFZBVld4clXgE2vFL5AZpUwi2cLy2E8zW72UfKbauW4YjES2Lzph7zerewsCOGXkIgX/Mr3fvbLDduKb9BXlMO9H+8hM8wOD9jmn6wef2LT/nrk4iIiIiIiIiIiIiIijB9YC+mtf4xgLMBrPaweR+ALwK4GMC0krYthu1L5/IyfAwtU0q1ojwszPIxsTda621a65f8/B/A69X2S0R7D0cM7MmGzUihM9WEN9n21dDQenQCw6TgnaAhEMtLSJaq8a8dbn0GVNA1xKzw/fQbKFRpaFotZIRQu2aX1i6VfKMgozPoTZtnm+wI1zIsLGJcn8qdE+k9bdQ1NRbY7vmMdsRnqS1kjIiIiIiIiIiIiIiIiIiIiIh8iMR8ba5aJwDROE4YMIfDDCbLa+NsgTzHDS7DUYnnzY0+g8xO73/IuH5nuqVsndYafQnhOH0PyhNpRr2dLxXKJpGdPPCYsd10ToYqnLdRffJy+wZd+wMLz4Z66/uGV32u50Zx8/7cebGFvJ04+PTIwsy5XoZZLhcG154xJzm9stVeZ5lxNKopxexwdgEF52SseT1lLvW3Bah9ZNevERRqapudGm8OlQMAHP92HJxaKzYPCA8htyDDT+3635EFv8GKJn7Dwl560t6eNIWF+eyjv/QrJBab15nXH3uavz6JiIiIiIiIiIiIiKgIvzm/l9NaLwFwBIAPAvgFgFUAugGkAGwC8CiASwAcorX+qc4m0hxWcphlhkO/WrLsMhVNmdLtu7XWwjw8RESNIwVkBXJhM6agLKC68KaM0GeexuiEhUnjChiCd7wEbSnlPnOfH6ZxFAqqgOu4CkOE/IYymUPTGvOrlXSdNruUrrBCrY56091iSGBHyFcWqlVIhY3r07lzIgVdeQni21fY7mdHZ8TncK2DComIiIiIiIiIiIiIiIiIiIj2WT4CcNRDe7J/RuNYNPB/xm1MmTwDlkCee9a/1xLM5S+cZ78jDhHbSif47LXk6Vy+49/kRj9jmjwDp/oIC/vt0xXWFbbvB3XHOnPbKe+CuuGBbNDSjDnDq8/u+6t4uFty47CFvEUKJ5mMVBiilDuXn9h1s7H5mXX23ZPpyrotpOYuqP4gdSbdH8uSM43rbefl2m2XuXcYDDXu/15NsX+tQc2aBwAIC5OfPrvE9NUJ+zV+3dZv4ss9/zXSR6w8dBAA8I7zrWMrkhzyvi0AbFpjb0+UH08/tcRXF/qPN3jf+E1zIJs67BhffRIRERERERERERERUTEfn5rQWKW1zgC4Pfd/K6XUAQCmF6zapLXeZNh0VcnybJ/DmlWyvNLn/kREdSGFBuUDe6SwmmrCmxyXoLHRCgtzOxeFgi7BXUDtA3vcQpQCCHraZuS1v/GJoWkNeLsyQrBUs0tpYXrNUdST2iG2dYa7atZPWEWM6/MBatIzxG+I3d7Mdo86yPAcEhEREREREREREREREREREdVbJOptu/d+Giqcq5cJhRHXu42bmYLBBoWwsHfuuQedjjAvsVJA2FyfI4kF5UKvNduBg/cbWf7DMnnbFm1JEovEfAwojpa+AWOT6Tzt1wZs22M+1GHJ1XI/0ThU11SoR1xquQrGHtNyaNGLm3JhYcL7Ns7pKw6w8hnqNrJfdjwRy4SV6YxGKGiOy0rVouQuVuHYG0jLcXoYTGrEI8XtSct5iTkuYVWdUxD48xt+hlcV57sXAff92n1DKagrL3cNdmR6sC00uax504pXACwsWy9d40GdxsXdJSFaIfPkoq5jK5SwPFtK6G0bKzveUL/38QCAU4MCWZ/PaiIiIiIiIiIiIiIiKlbb1A7aG5xesrxU2O7FkuUjlVI+Pr3CyS7HIyIaFVLYTD4YSgqdcaoIb3LbVwuhXfXmJ3jHLZQLAJSlCKUSbgFlARX0tI3ptRfm0LTGhBJVE043mlKOZWq9nNJZOeutJ20OC4uqGOKBcTXrJxwwF/+kc7MTSgFwplC6fZXt/srojPgs9fJ8IiIiIiIiIiIiIiIiIiIiIiIvvNWAqa79RxYSg4g75tAbU/jOoFBiFLeFckXjUMpffdrBbzwotvWUZHb9+klLWJhjDvjKj8uzSFz8GU3nacoE+VAf2n2bZUweA8ymjcwLbTuz8VxZ1GDKfI5K33vV0uqt/1K5c2kLLjOFquUl05V1CwCtmVwq22HHVn6QBmkNyOdnt6HJFqIW0ZYTCgDdWzyOqsHWlc6JXiJ3LZmCwgCgfdD8c4nPJsPzTQ+aQ7jU3AX2sRXyERaG3p2ej6cTQ9BL74Dzk28Bj93tvQ8A6NzPfRsAOmO5sGxtRERERERERERERETkiukDVOqikuWfmzbSWm8GsKJgVQjAKT76WVSyfK+PfYmI6sYRgrnyQVIB4T+dmSrCm9z2bXR4Ul5Gm6tjTKFaXoK2Aj6LsdyPZ+8ziKBrSFBh+FDQZ6BQpaFptSAFSzW7lFvx0CjoTm03ru8MT/JdQGgTUuawsHyAmqOFZw+DrobZ7nkHjvgs9RsESERERERERERERERERERERERVOu0DI6+PeiviQsDTsxvK1w35COQZ5ieUK6frH04T23pLutplyQOzh5h5DOYCgGgcccd8np7fWL5uhWFd3jl991n78aS1vWjxoORa42YPrc7+uUfIqJLee99y47b9bFKYE2APxXLzlZ6fAABUh7egpNF0Xssysc0UOnftffJktmG4TA7qJ/iqkd52rr09kr0vh0PgSmwOTTGuH0wKgXiGZ4A66lRz3299LzD9YPv48vyEhXnZNp2C7t8N/c33Qv/L+cDv/sP78fNWyddXkaTlvp93ov9+iYiIiIiIiIiIiIhoGMPCaJhS6hQUB36t1lovtexyR8nyJzz2cxiAEwpW9QNY4mVfIqJ6E8Nmcv/JlEJnpKAfLxyX4CeNUQoLk4LTDL8+eAnaUjX+tcMtRCmgAq4hQYU/i99AIXNoWmN+tXKqCKcbTWntUjw0CnrSO4zrO8KTatpPSEWM6/MBatJ7agql21dJYY1A9vxJYY9B/pWHiIiIiIiIiIiIiIiIiIiIqLE6C8J2WlqtQV+lk2maAo0AoMUayuU/LCw8dQZCQj3T7c8Wj+nFNy3HESbl9D2uaMwaPOY42vi61A+2fgvjHXMIkp8xqUAACI/UPH249xbjdvmQsD89KwQpFb73h8z31LdRbtwdmR5xE+naAaoLCztx4KnmDcYqMS1oOT8ll3t3v8afnzdvG9ZJuE61efw7fI2tUZRbGFWsBQBwVr/56wu/bP+Icb0URmcMxIu3msc2YSLUfz4IfOhLwKHHAEecYNwOAJDwEbS35kVv2935c2D5UvftIlHvfZsM2J5BLdUdm4iIiIiIiIiIiIhoH8dvzhMAQCnVAuBnJau/7bLbb4CihJsPKKUO8dDdpSXLf9C6VtNGERFVR0thM7nAHikUyy3wy8YtaEwKwKk3P+FFXkKylHvpiC9uIUoBFbSGC+W3GXnt79ciY2hag4KdpFC7ZpcPxmomUlhYZ6irpv2EVdi4Ph+glhGeIbUO2RvLbPeXox3xmeU3CJCIiIiIiIiIiIiIiIiIiIiIqhQrCIOJxBGzlAm/uq14eSBpDp2KWQLHEIn5GV2WJTSrp794ucU8TyAAYJzTLzdG/ISFxa2haqu2jLx+eYu4GQ5IbXTtx8+Y8gKWOsY9QxptMXN9oC6sG3SqqIXMvcctlnMkhTkBQLKKkjvb9dtsWoLySSgNU/vNU3LoXMRTrV+jJ8L1WIPqVguau661cLzDEi8b14thYaZr0nKfqa6pCHzlhwj8/AkEfvZ/wDGLjNvphOWZV6p7m/s2APTtpV8XEVgCvXQy4b7/G+ZzCABoGedtDEREREREREREREREZMT0gb2UUirkY9tWAHcDOKJg9W1a69ts+2mtXwVwc8GqCICblFLiJ+5KqfcC+HjBqiSAK72OlYio3qQQpnxgjxQ6U014k9u+pTMnNooUgBYwBKZ5C+OpbViYWxBYEEHXcRWGv0lBcOK+ptA0n8eo1GgFyFUrJczEOZq6U9uN6zvCtQ4LM1cM5gPU/ITz7atswWkZZMRnKcPCiIiIiIiIiIiIiIiIiIiIiGrFWy2bChfUykRjWDC4TNx210DxshjIYwts8hOAVbBPWpgAMFJShf2uI+Xat3antzbjisZxwuDTYnNvQW7QLkuGkO0YAPwFq02YOPxyVnKtuNnuQSAuBKq9Gi2Yh/r1F7z3XUIFsrVDcS3/8AOWfKtUFWFhYZ0CVj1T+QEaKK7kGr3S8/Pwy1WGhfmcoLVhZh1hbw9HAQCvRmYbm03Pmjue1fjSLebzZXw2RX3cZ9Jzwk9YWNiSaFio25I0WGjaLLltyBKQmJeyXD9TD/I2BiIiIiIiIiIiIiIiMmrST2ioBj6rlHpIKfVxpdQk0wZKqVal1McAvAxgUUHTOgBf8NjPvwLoKVheCOABpdRhJX1FlVJfBnBryf4/1Fq/4bEvIqK600IIU1Dlw8LM/+mUgrW8cNtXGlO9+Qne8RK0FVA1DgtzKTQJqKBr0FLhz+I3UMi0faNCiaRgqWaXctwLiHSDZxvsSe0wru8IGX99qlgoYC4sTDnZ4iwpAM7tOt+XBFRADAxzdEZ8lvoNAiQiIiIiIiIiIiIiIiIiIiKiKrROKF6OxnFQap24+d0vFNcLDQolRnHHEpxTUVhYDMcOLjc2/fm54jE9s85c0xRymzwxEvUxnjhmpDeIzdv3jLyWzhEAHJDeaB1PPnTLk84pwy9PGXhM3GzrbuCuFeZzdHrfgyMLb32v974FtuvAFhaWTFfeZxAZ4IwLKj9AA4WVg4BQX7i9r3h5tyV/L+JhYlA1/2Q/Q2ucAw+zt+eCtc7f/Qdj87Oxo4qWv3OXgw/+l1zHGzNdkz6DAo3WrfR8CL3F49cxkglv2x38FrnNS4jZwB6xSdW4lpiIiIiIiIiIiIiIaF/D9IG9lwJwGoDFALYqpV5XSt2jlPqNUuoOpdQTAHYCuAnAtIL91gJ4h9Z6m5dOtNYbAXwAQOHHqycDWKmUekYp9Xul1H0ANgD4MYDCpIy7APxLZT8eEVF9ZLT5A/18QI0UOuMI+3nhFvzU6PCkPOlnChrCi7yEZEkhP5UKuAQABXL/s25T8LO4Hc9L/8EG/WolBbk1u5SX2QYbKOEMod8xF6V0hrtq2ldYmWfuS+eKqsRwPgZdFTE9f4Bs2Jr0zGLgGhEREREREREREREREREREVGteAh5WfjO4uVoHEE4CAu1Q9+5qyQsTMgoiusah4XFWnCyEIDVW9LVWvN8hPhK9w32PnwFBsWgAMSdAWPz758ZOU/iOXIG7O9QxOd56pw8/LLFcv5veVpjR5+57fDkyyML02f767/U/FMQRkoMw3pqrVxrmaqi5C6kM8DUmZUfoIGUku+VPzxTfH4eetm4GQAg46UWMjbOz9AaJxiyt4eytXyT0sKNXaBvSOO799hreI3nuxZhYc88aF5vcs8vvW/rRVuH3LbNEkiYo5+4z9xQ8EwhIiIiIiIiIiIiIqLK8Jvz+wYFYBaAswFcAOB9AE4EUJpacSeAE7TWr/k5uNZ6KYD3A9he0udxAP4RwJkAJpXs9lsA52s9RtNOiGivJQV3BXNhWFIoVjXhTVJAWZ7WoxQWBu/hRW6hXACgvBSK+RC0BJQFEIBSyjXErDD8TQohkvuvLDStFqT3pplprYeDsZpFT0ou9ukI1TosLGxcnw9Qc3v2UJYUOpjRGWR8PLOIiIiIiIiIiIiIiIiIiIiIqE4SJWFXsRYAQEqYbA8orpEbFOYjjOshuc9I1PPwRvaJI6PkUKF0ZmRME4VMpIGAS1hSJOZ9PAP9AIDBQIuxOVhQNiOeI8cSqAb4D1WbOBLs0yZMyggAb+6SD5EsfN8HhUQxryLZQDVHquO0lGImqyi5CyJTfl03sf5Aq3F9pORynztVPsaOUGnpv0HMfK3WjfJYg+oWFhbO1vI5lprRgUT2/v/7G0AybT9c3DE8m/zca9J9ceBh3o8x70Tv23phG//WDe77t7Wb1w/IzxEiIiIiIiIiIiIiIvKGYWF7r0cB3Aqgx2W7NIB7AbxDa/1erfV2l+2NtNb3AJgH4GcufT4J4Fyt9QVa6/5K+iIiqicNc7VIPqBGCp2pJrzJbV9pTPUmBaCZArG8BBopr4UaHtmCufJtQZeQoMJj+A36MoamNSoszCVgrhllkIbG6ATfSbrT8q897TUPCzMXO+YD1PyE8+3LpGeNozMMXCMiIiIiIiIiIiJfBgYG8Oijj2Lx4sW49tpr8Z3vfAfXXXcdfvWrX+Gpp55CMil887oC69evx+WXX45TTz0VkydPRiQSgVJq+P833XSTuO/TTz+Nz3/+85g/fz46OzsRDAaL9l23bt3wtosWLSpqIyIiIiIiGhVtnUWLKhQGgkEclFwr7pIoCOMZEP461uJYwprcwoFMDpqLg5Ovi82DBfMiSlVPLY69FFr5CTHzURM2mDKPyBqoBgBRH+FlANTCc4Zfx3RC3G4gKdeFFb3vfsPKSlURTpVyCXyyCek0VKsQftRsLP8eUDpv7RGWsDBP/IThNVLIPLHnsHC2lu+QxKviJv2551CffNkPi2tDSJ+fczPYfF+pULOPlBsdD/XS0iTJQ2MndI+IiIiIiIiIiIiIqFlV8MkojQVa6+cA/KPKVgDPAXA4gOkAxiP7mfUuAK8AeEprXZMpWrTW2wB8Xin1VQAnAzgQwBQA/QA2AXhWay1/0k9E1AQyQsFNIDeDWFCYSUwK1vJCCrgZbh+lgCUpvMgUvOMlJEvVOKM0YDlePiTMbVyFQUx+Q5mMoWkNCnbKVBFON1pSTsp9owbrSe0wrh8f7EA44FIw5FNImY+XyoWFuT17KMsW2OgIwYqNCvEjIiIiIiIiIiKi5pfJZPCHP/wBixcvxsMPP4x0Wv6mcCwWw5lnnolPfepTeNe73lVxnzfeeCO+/OUvI5Hw8O3SAul0Gl/4whdw4403Vtw3ERERERFR7bnXsqlF7ytfGYnjB9v+GR+a/lvjPgNJIJYrr9kgTFkcdwyBPHmBCupDYuNw2sDfxObBJNAWGxmfyVsHHrX34RZaVECdeBb0A7/HO/fcg7vbzilrv/uFkXO/vtt8DGNoUSG/YV3Hvb1o8dT+R/DIuFPLNrvzefkQp/c/PPxaHXmyv/5L5cY/LbUJm8LTypr/9U6NS88y75qsouQuiAww97jKD9Bg5+y5F/e0nV22/tdPafzyopHlUFDByz0tqjb8rV7cwgND2bCw/dObxU12DwKT2opDAyVlz6Zo3FeIu3rre6GfeaC8IekS/ldo+VLv23oxbZbYpJc9DPX28+z7J4VnUbXPACIiIiIiIiIiIiIiqnFqBzUdnbVaa32H1vo/tdbf1Vpfo7X+qdb6gVoFhZX0mdRaP6y1vklr/b1cv7czKIyIxgIthM24hU9JITVeuAU/6dEKC5PCiwy/PngJ2gqgtjPYm0LLhvtyCXcbOUag4LW/gjFzaFpjfrVyC5hrRmktVMyNop60OSysI9xV875CQvhYysmeF/HZw6CrItIzOKMd8b6wBQsSERERERERERHRvuOhhx7C4YcfjgsuuAD333+/NSgMAIaGhvDnP/8Z7373u7FgwQIsX77cd5/33HMPPvvZz/oOCgOAb3/72wwKIyIiIiKisSneVr4uGsfcxCpxl0dfzf7pOHKtXFxbgnMC/utDVCCAcUE5CSgfEuQ4GkPCZi3OgL2TcMT7gOLjAACHJlcbm3cVdHXnc+bzZA1UA3yHO6lgEGjrGF4+cfApX/sDQIsuGHisxff+RXLj78rsNDYnLX/VT1UTFqYzzRuMVUZhTvIVT1umM1XWpjb6nHgN4HILC8vdl7ZnygOrsudmMOl+jsqO4/e8tBiemQCQ8BEWVmvRGHDgYea2uxe77y+Nff+DKh8TEREREREREREREREBAFw+CSEiItq3ZISwGZULgZJCsTLa/oWSSvrM00JoV71J4zKF9biFcmXVNixMWQKA8mN0CzErPIbfQKFKQ9NqYSyGhaW0hyn2Gqw7td24vjNU+7CwsDIX/uicLboAACAASURBVKVz50W83xp0TY0VQeE+1ciIAYcMXCMiIiIiIiIiIqIrr7wSV155JbQu/oKnUgpz587F9OnTMXHiRGzfvh3r16/HK68Uf6l22bJlOOmkk3DDDTfg05/+tOd+L7vssqI+L7jgAlx00UU44IADEA6PTDLR1VX879Jbt27Fj370o+HlSCSCb33rWzjnnHMwadIkBAq+BD99+nTP4yEiIiIiImqI1gnl63Ztx6SgXPO0vlsDUNjQIx82aKvRC1RWHxK3VNIP5OZGlILCAA9hYSEfYWG5gKHu4ERj87T2kdfzpikse6M8xGhjeJq9j0jM+3jy9oy8KS3aJYzMoCjYq9pwqf7dAIDnY0f63jVReYknQjoNxFsrP0CDJVVUbktrRELZWs5qAtQAVHY91VswmA25s8ndlx0Z+YHTk7u1+zzkv8dL7wu/17m0fdLH/RYMApka1pVGW4Bd5slYMX22+/4JYezRJrxmiIiIiIiIiIiIiIjGGIaFERERFdAQwmZygT1S6Ew14U1u+2pUOXtbhRyYxxU0hBd5CTRSXmd188gWAJQfoynYTBqT27alzKFpjQklygjXaTNL6eRoD6FMT9pczNIRnlTzvsIqbFyfPy/Sc8Dvdbm3k85HRjvICM8snkMiIiIiIiIiIqJ928UXX4zrr7++aF1bWxsuu+wyXHjhhZgxY0bZPq+99hpuuukmXHfddUgkst8KTSaT+MxnPoP+/n5cfPHFrv2uXr0aK1asGF4+55xz8Jvf/MbTmP/0pz8hmRz5d/Wrr74a3/jGNzztS0RERERENOpmzDGunpjpFnfJBzkNWEqMjky8KDdWGhZmyfIazI1l0BIWFtdD9g7C/sPCpqU2GZv7C85NUgi+6gl22vsImWuYvDqj7wFcOelffO1T9L5XGxYmXFuFUmmNcKi8VnEwWXkdZhAZYPrBFe/faMcN/V1sG0wCkdw3SNLVliFG5FCyUdPa7r5N7r60hd/ln0nd/e6HizmlYWE+A7Gk7ft6Pe2uM5naBoUB2Xu1vQvoNdRYbjc/o4pIYWGRKp8BRERERERERERERESEgPsmRERE+46MENijVPY/mQHhP51OFeFNUihXnhRgVm9+wou8hPEo1DYszNZnvs1PeJffoC9jaFqDQomqCacbLSmnCcPCUkJYWKir5n2FlLnwL6Wz1YRyOB9/XS8k3WMOMuJ9YbpXiYiIiIiIiIiIaN9w8803lwWFnXLKKVi5ciUuu+wyY1AYAMyePRtXX301VqxYgXnz5hW1ff3rX8fSpUtd+162bFnR8rnnnut53JXuu3TpUmith/9PREREREQ0GpQpkGrB2wEAXentxn3+/f7s32EGLSVGrU6f3BisfVjYk2uzY7IFmLU4A/YOQv7Dwo4bWm5s3lXQ1S1Pm//O96me/7X34Se8LO+9nxp+efTQc/73LxTxGaJUQh13uus2UribLfTNTVBngGB1QWsNoxSOG5TDwnoLMpzufkE+zPiMh6CqYBPOW9/mISys4Bk1J/GKcZNfP5m9x7pdbnHAEBroNxDLEqKnvYSAScFc1YjGoT78TbE/13FJY6o2MJCIiIiIiIiIiIiIiJg+QEREVEgK/cqHzUhBNVLImBcZbQ8DG60vc0jjCqjyXx+8BG1JQWuVClgCgPJ9+enTdjzj9qbQtAb9auUWMNeM8qFYzUJrjZ60OSysM1z7sLCwMheLpXPnRb7fGHRVSAr+yuiM+Pw2PbOIiIiIiIiIiIho7/fKK6/gS1/6UtG6hQsX4t5778X06dM9HWPOnDl48MEHMXfu3OF1juPgwx/+MHbsMP8bc97WrVuLlr32We2+RERERERETal9EgDgLYkXjc2bc7lEtkCnuLYE4lRYHxKJhqCEup3f5QK5XtxkG9OQ3Aj4C+fKhejELD/nYNJeSzjecQl4MgW5ucm9dwAQRgoBH7WSBybfKF4RrS4szEvQ0Frhr+u2IDo3IWQqO3ejxHavLFnprR416FajGAxBqdpOIOvKS39tHR4Oo4bfz0OT5rCw13O5ht2WjMK8uFNyvv0GYtnCxXq2ym15Wzf468+LaBxoHS+3r3rGvn8yYVytGBZGRERERERERERERFQ1fnOeiIiogCMUsuTDZqRQLGm/avocbsfohIVJgVSmsB4pwKdQrQtDgpYCr/z75CdoyW+gkOnYXkLTaqGacLrRktJVVFvVQV9mtzimjtAk4/pqhAPmwr90bgzS/cawsGJKuE/TljA6v0GAREREREREREREtHe45JJL0Nc38o3O9vZ23HbbbWhtbfV1nP322w9//OMfEYmM/Dvvpk2b8J3vfMe6X2HfABAOe/9ScTX7EhERERERNaVcQMzuwARzcyj7pxTopLSDiK3+KFBZfYhauxJaqEeZkMu0sQWYdWXsQdK+wsIm7Q8AaHXkdKJ1O7N/Tms3t28NTbb3EfIxnjxnJExNAXB81DO16IHiFbZQJC86snVd//Pm58VNtu8xr7e9j26COgMExs7XLiant4ltewry7aaab0cAwA+3XmrvxM+13UhvrPa2XTgKANgcmmpsntGZ/bO7371+tyw0MBL1Noa8Dsvkpls3uu/vJVDMj3AEKhAAJs+Qt1m70n6MhBBYV21gIBERERERERERERERITTaAyAiImomDsyzBObDZqTQGSnox1uf9n21MKZ6k4PTys+Bl0AjVeOMUlsAUH48XkLM8vxsm92+/OdpVCiRI8xm2cxsYU6FdIPC8XrS28W2jrCl+KZCIWX+Ildap+FoR7zf/F6XezvTfQcAKUcuBm1UiB8RERERERERERE1j5dffhl33XVX0brvfe97mDJlSkXHO/zww3HJJZfgmmuuGV73i1/8AldccQU6OjqM+zhO5f+WX82+tbBy5Uq88MIL2LlzJ3p6ehCLxTBp0iTMnTsXRx55JKJRn196zUmn03j66aexZs0abN++HYlEApMmTcLMmTNx8sknIxbjF0aJiIiIiPZauYCYUwcewd/jx5Q1J9KA42gx0CmuB2GdqjJY+/qQnf3ZPweScj1TTCfsBwl5D39WbR3QAOYm5LCjfJjagFAqc+TQCzUbz/C4jlkE/avv+94PAOJOSYhStMqwsFx40bl7bsdn8F/GTaRraJsQIuZFMKRqPllq3SigRQtBTQCeL8ieSlv++eHMvvvt/VRwLTVEqyUBrVA0Dgz24eih57AsfmxZcz50rrvf/VBxp+R8B31+RWfKTLktKb+Xw6Rgrkrl79PZR1bep9Qe4b/9EBERERERERERERFVi2FhREREBeSArEDRn6UyVYQ3ZYQ+87RuTHhSqYwQYmYKxPIWFlbbYhnpvQBGApaUZZvy4/krGDNt36hQomrC6UaLLcxpNHSnzLN6hlQIbUGPBUM+hJU8k2Jap8TngO063xdJ96ktjM7vvU1ERERERERERERj3/XXX1/0+UpXVxc+8YlPVHXMiy++GNdeey1Sqey/R/b39+PGG2/EN7/5TQDAunXrcNBBB4n7n3baacb1ixcvBgDr+KQvJK9duxYzZ84cXl60aBH+9re/DS/7+Yxpw4YN+MEPfoBbb70VW7duFbeLx+M47bTT8LGPfQwf/OAHEfTwhfxVq1bh6quvxl133YXdu3eLx33Pe96Dq666CnPmzPE8biIiIiIiGiNiLQCAc3ffjh9N/Kpxk6EUMJgy/z2mLIynVKU1Nu//LP750e/hmq5vlTU9uSb7pxQ+1Zne6X78sFwzJIlbgp5efFPjmAOVOKbDknLQGIDKAp6mzSpa/MiuX+NX7R/2tGus9GepMixMBQLQAMY7cvLXw6s13j2//O/RP1xSeR1maAyWcM0fWoHnY+VhT798QuN/PqIRCSmkhTLEz3f/NyZnttk7CPm/tqvnoQb1jAu8HSp3LZ7d91fc2HFRWXP+HusecD9U2T3r8z7LX9dGXoLANq3x1Z+raPZ5rZSCbmkDBsrvN73iMahzvygfQwo5qzYwkIiIiIiIiIiIiIiIMAY/uiIiIqofB+bQr3xgT9AQlJXdr/LwJqnPPC2XAdSVIwSgBQ2FVUEPv1LUemY9WwBQvk16v0z8Bn2ZQ9Ma86uVW8BcM0rp5goL60mbw8I6Ql11eR9DSs7oTeuU/Ozhr+tFpPvedn3xHBIREREREREREe177rvvvqLlj370o4hEqvsS66RJk/Dud7/b2s9YpLXG1VdfjdmzZ+OGG26wBoUBwODgIO655x6cd9552LBhg3XbTCaDr33ta5g3bx5uueUWMSgsf9zf//73OOKII3D99ddX9LMQEREREVETGDfeuFrlAmLiekjcdTAFDAolILb9AADBCutDoi2YkOkVmxMpLY5panqL+/H9BipNmoaITkIJtXsPrsr+PW5ICAtzDVWrJOCpJNxngiP/3c46HqUqCk8r09oOAJie2mhsfvTV8nrLvqHqajCDlV5foyFXpzk1vVnc5NHXsn+mhdLVM/ofcO+nkuC5BlBew6iiMQCGQLsCfUMa3f3uhyp7PgXlWkFRqzDBacLl2QdAv/x3c8PEqVD//aj/seTODQDg4LeYt1m70n4MadwMCyMiIiIiIiIiIiIiqloFn0QQERHtvaSArHzYjBRU41QR3uS2r3YJE6sXaVymc2AL7spTXmZ188EWBJYfj5/QJ7+BQqZwMVOAWD1UE043WpotLKw7td24vj3UVZf+wkoudEvppK/7bV8m3fdpLVRAwn8QIBEREREREREREY1tGzduxLp164rWnXHGGTU59hlnnIHbb799ePnJJ59EKpVCONycX5B1k06ncf755+O2224ra5syZQre8pa3oKurC4lEAlu3bsXzzz+Pvr4+T8ceHBzE+973PixZsqRofTgcxlFHHYXp06cjGo1iy5YtePrppzEwMDA8posvvhg9PT244oorqv4ZiYiIiIiosdSXrzOu1zuzwUVxSzDPYCr7fxPXEKxAhfUhqQRiQs0gAGzbAwyIAWYuYwKASNTfeLZvggKghbq3thjEoDBPYwpV8NWB8ROLFteED/K8a1GIUjRemwlH+3YBADaGpxubD+gsX/emnAfnSTA09uqP5iRfxX0409i2docGoJASyhCDOu3eQbP+W0hh0JV1uxYAwPiMHH73Zq8cYFgoVvp8qiRILRIHYLhQEx6eM11Tzet3bpbbbN5cO/J65VPmbWbOtR9DGjfDwoiIiIiIiIiIiIiIqsawMCIiogKOEMyVD+yRQmcyVYSFue3r6OpmtatURgikMgVieQnJqnVYmC0IzC3czXw8fwU9pv4bFUokhdo1s5QlzGk09KTNYWGd4Ul16S8ckAuAUk5KvN8YdFVMuu9t11ejQvyIiIiIiIiIiKi5pTMaG3tGexR7v+kdQChY288D/HrsscfK1h133HE1Ofaxxx5btDw4OIjnnnsOCxYswPTp07F27ciXKX/0ox/h+uuvH17+7W9/ixNPPLHsmF1d2UksFi1aNLzu/PPPx1NPjXwZs/C4haZPN38x2quvf/3rZUFh55xzDq644gosWLCgbHvHcfDkk0/id7/7HW666Sbrsb/4xS8WBYVNmDABV1xxBS666CK0tbUVbTs4OIif/vSnuPzyyzE0lP0i+VVXXYUTTjgBZ599doU/HRERERERNVxrO7DQ/Du8OvIU6D//3Br61Z+Qg3lcQ7AqDAtTJ52Fd/zln8T2qgLMAP/BOIceA6xeLjb3JeTxZMc0JDcCQFie8FCiQiEUVjAuHHwC97R5+7ta0ftW45CgrvR27AiV13rtNGRcewl8sglFmjQYy+K83lvx484vGdvy5yMtlK6G4CEsLNik58TrdZbbbnZqjbjJYBJIeyjVLHs+BSv4io4UcuYlLMy2Tdf+/scy5cCR1zMPB15/oXyb5Uvtx+gXQti8hrkREREREREREREREZGIYWFEREQFHCG4azh8CuagGilkzFOfQkhQnq7i2NWQzoUpvMhLoJESzl2lbAFA+WCyoI+QIL+hTKZjNyqUqJpwutGSdqqsuKqxntRO4/rOcFdd+gspudAupZOWZw+DrgpJ5yOl5evLbxAgERERERERERHtnTb2ALP+eexNxDDWrLkmgJn1+WdWzzZu3Fi0PHnyZEycOLEmx543b56xvwULFiAUCmHmzJnD69vb24u2mzJlSlF7qdbW1uHXsVjxFydt+1VqyZIl+PGPf1y07nvf+x4uvfRScZ9AIICFCxdi4cKFuOqqq8rGmXfrrbdi8eLFw8sHHnggli5dKv4c8XgcX//613HSSSfh9NNPx9DQELTW+MpXvoLVq1cjEKjtZ0xERERERFQf6vq/QnXsZ26cOAUAENdymNU//cHBybPNAdQxy34AgEr/3jDlQHSlzXVEADCQtAWYuYwJ8B2Qpd73Gejvfw6f2HUzFrd/rKz9l09ofPd9cki3a6haqPqAp0OSr3netihQrVZhYae8G3j0L/hsz8/x3UmXlTX/36vlu9gC1rwIRv2HrI0alb0+Thh6RtxkMAVorcUgrJD2EBZWQfBc1ZSHgHrPYWHZf9Owhf7d/qxGxktYWGlIXyX3mTBuvXwp1Ls/ad9XCgt724egAgH4na5YvesTIwsLzzGHhe3uhk4loQzXgc5Y6lsjtQ0NJCIiIiIiIiIiIiLaF7GikoiIqIAU+hVQubAwIXRGCvox6U13496df8DPNl2Dn268GjtSW63ba98f1deGeC4Mvz7kz4+N8lKo4YOXcC8/IUF+Q5lMx/ZyHmrBLWCuGaW014qrxlzv3entxvUdofp8iy2s5AKgtE7B0fZnD2VJ933aka+vIM8hERERERERERHRPqW7u7touaOjo2bHjsViiEaj1v7Giquuuqpo+XOf+5w1KKxUe3u7MSxMa1107FAohDvvvNNT4Fk+hCzvtddew5/+9CfPYyIiIiIiotGl5hwlN+aCcFqcAXGTe1+UQ51ipWE8pQIVTiYXjaNFy2MaTMpjcg3myh3fl1gLAPt5GrDM2WgLPgIAhKoPeHLto3DbwkC1iDlw2rfcOfV0/nNs58yLMRUWVmDhwOPG9YMpWEOwPIWF1SB4ri48h4Vlt7MFET75uhyoVqjsWgyGvI3BMJ4y3fb6YgDAkHAv5I/Z2m5uF8cycq+q3DPJaMVj5vWbXpf3qfQ50D6psv2IiIiIiIiIiIiIiPZC/OY8ERFRATGwJxckJQXVZDyGN/WkduC69d/CX3bcghV9T+PF/mWu+4xWWFhGCEAzhWQFPQRtmULGquElCMxPn35DmUzH9hJgVgt+wumaRUpXWXFVQ2mdwu50j7GtI1yfopKwkgvG0jolPkO83Fv7Eum+t11ffoMAiYiIiIiIiIiIaGwrDe9qb/f5hUgXpcfbuXNnTY/fCCtWrMBjj418obOtrQ3f//73a3Lshx9+GC+++OLw8oUXXogjjzzS8/5f/OIXi0LI7rzzzpqMi4iIiIiIRpnHgKchMZirTmFhk6YjqhNQQt3gQFIOmrIFeg3zGxaWC9J5OTLH2Dx7Pzm8DPBwnmoQ8HRk4kX3jXJihcFifs+F5OVszeX2oHlSyBZDmdYuD2+VJKAzULUaeyO8umL4pRTsNpSS7zUAiOmEez81CJ6rC69hVLmgq6AwqS4AjIvaQ9XyDk6uKV5RyX22erl5/X4HuO/bt8u8vnV89s9D5vsby+yC7Q9+i7zdzi3m9bstwfr7z7T3/aEvGVerr/+nfT8iIiIiIiIiIiIion0Iw8KIiIgKSCFM+SApKXTGa3jTo71/xc7UNl9j0kIhUr1JP5MpEMtLcJeCqnpMRX16+DVGKe99+g1lMv3MjQolyozSNVGNZgoL25XqFkP4OkP1CQsLKbkAKKWTlmcPg64KSfd9SsvVa36DAImIiIiIiIiIiIhs/Hz20KwefPDBouULLrgA48ePr8mx77///qLl8847z9f+LS0tOP7444eXH3nkkZqMi4iIiIiIRlkkCgCuFWSDQomRFHo0rMKwMBUMQkEOMVu3U2NLr7nOyDWYC/AfkJXb/qz+Jcbm17bJ5whwP0+q0rCwk84efjk9vcnzbkXnqFaBW7mxnDbwN2PzQBLQuvg96+6vfMLWIDK1G3sjLHj78Esp9Gvlm9oldM7lfgNqEjznm5d/kvH6Xh1/xvDLuBD899wGb4dqKT1fwQqeR7OOMK9fv9p93z3miVNVW2f2z/d9xt9Y5p8y8vq4t8nb7dxsXp+wXD/t9vpMdeaHgVhL8cpps+zjICIiIiIiIiIiIiLax/Cb80RERAUcYZawfAiUFDrjeAxvemXA+6x6eVKoUb05EMKLDIFYnsLCavzlmVoHAPkNZTL136hgJ+m9aWYpx1Jd1GA96R1iW0fYPONktZRSYmBYyknKzx6GhRWR7vu0JYyuUSF+RERERERERERE1Bw6OzuLlnt7e2t6/F27dln7Gwsef/zxouVFixbV7NiPPvpo0XJnZyfWrVvn6/+FwWXr1q2D44y9SVSIiIiIiKiExwAfKcDINbwoUEUt2eQZYsjW136vca9Q8ucaYAYAkZi/seTO0wGpjeIm/bawMLfzVGHAk1pwetHyMYPPetqv6BzVKHBLzTgUANCRMQckAeUhT939lfcX0ukxFRamps0afi1dD3c+X13oHAAgHPE7tMbw+F6pQ+YPv75o103GbdbtrHAMldxnxywyr1/5tPu+u7vN68d3AADU286FuuLXwPxTgdYJ2f9bqIL3VkXjwISJxu30z680H0AKCwuFXeuI1aFHQ133l2wo4NQDgXf8f1A/vh/KZcxERERERERERERERPuS0GgPgIiIqJk4WgjIygXUBIXQmYzH8KbetPChvG1MoxQWlhEC0ExhPUEP+aOqxhmltQ4A8hvKZLoWgjUOMJNI12kzs4U5NVp3artxfTwwDrFA/Qq7wiqMtC6vaEwKMzgC3u6tfYn0DLaF0QUZuEZERERERERERLRPKQ3v6umRvzzs19DQEIaGhorWTZxo/sJkM9u8eXPR8hFHHFGzY2/YUPyN7BNPPLGq4zmOg127do3JUDYiIiIiIioQG+dps10D5lq5uB4yrh8WqKI+JBxGGGljU18CiIaAhKE5IEwOOCwShfIbYpYLF2txBsRNnlxjPkdhnUTQbUwVhoWV7teR8VYH2aILfo5gjWp4cmMZZzlHf31J4+gZI6FEPfKmroI64z/0bTQVvFchbb6uAWCPXLKGmKWebViwSb+G4jXYreB6fLTl5NqOoZJzY9lHO479WbJnl3l9W8fwS3X6h6BO/9DwsvP5RcCLT3gbW9f+QK+P5LSE8LxuafO0u5p/CtT8U7z3R0RERERERERERES0j2nST2mIiIhGhyMUy+SDqaRAKS/hTVpr9Kb9fyFFC6Fd9eYIAWimsB4vQVv2+cD8q3UAkN9QJtPPXOsAM4nXcLpmkjKEZJk0IhqvJ20OC+sMT6prvyFlLrZLOHIxo98Qu72ddD5SljA6nkMiIiIiIiIiIgKA6R3AmmsYzl9v0zvct6m3adOmFS1v2bIFO3furEmo10svveTa31iwc2fxFzw7Omr3xpUeuxb27NnDsDAiIiIiorFuwsjfyd695y78pe1dxs227TbvHncGrYdX1QRRbXwdew5tNfcbBrpagQ2Gsr+NIZe/DwYrCOY64BAAwIKhv4ubvCnkAsUsNUjDwhH/YwLKfpYTB5/Gg62nu+4WLxzTiscq67tULnDo8MQqcZO+kqyr/irmuQwiA0SilR+g0QrutTanT9ys13JLRbxMDFpp8Fy9eQ0LS48Eqa2Izqu4uw/uvr18ZSVhYSHLvZlK2H+uoX7z+hbzcw0A1Mcvg77kPeUNF15Svm7bRvNBYi3m9Qnh4vL63hARERERERERERERkRXDwoiIiApIoV8BFcj9KYSFwYHWGkrJkVhDzoA10EaiGxKfVE4+F5WFZCmfYVxuah3M5TdQyNR/o0KJnFEKkKtGJdd+vfSkzF9U6gh11bXfsDIX9FjDwhoUQDdWSOcjbZkFM1DjZw8REREREREREY1NoaDCzPr+EyA1iYULF5atW7ZsGc4888yqj71s2bKi5Xg8jqOOOqrq44422+dbfiWTtf88QOvR+ayMiIiIiIgMKvz9XCk1XAX3zzu+L4aFbe417x/T9rAwqCrqQ2YdgUt3XIf/f78rypoGU0BCKEs5p+8++3EDFYypdQIAYFJmh7jJll7ze1DXgKfDji1a/HjvL/HdSZe57hYvfN9OP6+yvkvNygY7RSBPXrnyzeJztHZ75X+vDOl0ZcFvo2X67OGXF/beghs7LjJutseSLRf0MplppcFz1fDy7xfRmLdjzT95+GVYp5CooPazxenHV7pvKG+o4HpRJ78T+jfXmhuTQ2LQlta6snCuoxcB804CXnxiZF3HflDv/Hj5tud+EVh8dfn63d3QA3ugcgF+wxIDwng8vjdERERERERERERERGTFb84TEREVcGAOYcqHzQQt/+mU9s3rTRumF6xiTPWWEcLCgoaiCNO6UrX8ogkwEuBWs+P5DGUKGvoPNijYSQpya2ZpLRdnNVp3ertxfUe4vt8UDClzEZAtLMzLvbUvMd13AJC2FDvyHBIREREREREREe1bZsyYgRkzZhStW7JkSU2Off/99xctn3DCCYhERuHLsVXq6ir+9/Du7u66HDsWi8FxshPuVPP/mTNn1mx8REREREQ0ig44BAAwLf2muMkaISMrbqmvAQAEqqgPOeIELBr4m9jcK+TwtDtCslleBfVtSikgkg3UmZg2n4zbnzXvG/FSn1Vp6FVJyM9BqTfQ4vS77hZ3Rk6emjGnsr4tY/nA7juMm/zpueLlu1+ovLsgMkBwDM3PXhAQNT29SdzszV1ygFrQS31ipcFz9WYLyCrarmX4ZQjyRJWShQOP48E3zsLJg0+WN4YquF7Gd8hteyy1x+kU4Ag1xpZzoSJRqB/eBfXJfwEWvB04XzcwwQAAIABJREFU94tQNzwIlXtOF2176NFy/w/8vnydFF4W8fjeEBERERERERERERGRFcPCiIiICjhaCAvLhc0ELKEzbgFOvZnKwsK0MKZ6k4PTys+BW3CXqsOvHLb3ohJ+A4VMP1OtA8wkGS8z9zWZpJMY7SEM60mZw8I6Q5Pq2m84YP7CWMIy82mjrqmxQrrvU5Zix3o8f4iIiIiIiIiIiKi5nXXWWUXLv/rVr5BKVTepxfbt23HnnXda+xkrpk6dWrS8cuXKmh178uTJw6+Hhoawfv36mh2biIiIiIiaQDUTRjrZmqc2Z4/vXeOW+hoAQLCKWrJMBi2OfPyEkCMUtkxuBwAIVFizkgv4yfisZ4u4jQeoPOCppa1s1YzUBn/HKAkcq1hBAFJamUOZxpd0dVAVc0gGtVNZ+NNoibcOv2xz+sTNVm2WDxHSHsKzKg2eqzevYWEtI+fp/bv/7Lub/9n8BSwY+ruxTVUSLjduvNy2/hW5LWkJUnQ5F6qlFeoTlyPw73cj8NV/lwP9WuSx6eWGoMWEMCav7w0REREREREREREREVnxm/NEREQFHCGEKZD7T6YpKCvPLcBpd7qyWdk15Bnc6kkKPzOFatnOCwAoVFEkJgjW+NcYv6FMylD4VusAM4lbMF0zSnuZubJBeoRZNzvDVVSFeRBW5gKphCVIze3e2tdI5yMlFDsqBBi4RkREREREREREtA/66le/WvTv+Nu3b8fixYurOub1119fFDg2btw4fPrTn67qmKPl5JNPLlpeunRpzY69cOHCouUlS5bU7NhERERERDTGbVoDwB5gJIlbwrwAVB7MBQA923BYcrXv3VzDuSqtWckF6uwKdvjbTXuYzLHSsLCu/YFps4pWvRw9zHW3Wam1Iwu1CgoqOE5CRc2blPyYLeY5Hj0JIV35eRsFqiAEa2JGrllNWUoQg14mM60kEKtaXsIKQx7f7Omzh19e3P2fvodiDVSrJEht4lS5LWPpK2F5NkZqFNA39zi5rb+3bJWWxsSwMCIiIiIiIiIiIiKimuA354mIiAo42jGuz4fNmIKyRva1F0j0pnsqGtNohYVJ4WemQKyAClgDwQLVzCgpHrO2IUq1CGUKNijYyYH5Om1mqSYJCxvM9GPQGTC2dYTqGxYWUuZCpISlmJFBV8Wk85F2zNdXkOePiIiIiIiIiIhon3T44Yfj7LPPLlp36aWXYuvWrRUdb+XKlbj22mv/H3t3Hh/XWd97/PucZUarZcmWt3iJ7cRxHDv7QkIWSJzQLCQsCSmhZUnZUmhpC5d7oZQEKAVK6S0tbSlQblkulLbABUoplFKgQIA2LAkhIXscssq2vEi2pJk55/4haaSRzjpzziz25/165ZWz/M45j+acGVvWT9+nZtvLXvYyDQ0N1T3GVtq5c2fN+qc+9SkdPHgwk3M/61nPqln/yEc+ksl5AQAAABwBzpr7XmTL5D2pDu32J6ILGugRMec/O1nQ1gKxYWH1BpgVpwN+rjn4xWzHI9Ud8GSMkfnNd9ds+909fxZ73HB5ZG6lkH1Y2K/t/1RgyciCb3HDgrEKEZM8zrL9SkeFhSX1iyfC+1LtJJOZNhLQl6eE92p+yPwpk7env4yiwsLS95EGTV5b9eQj4fuiwsKK2YSFma4eqXdJ8M7vfzX5mDIaDwAAAAAAAAAAR7s2/SkNAACtERbCNBskFRXcExY0NqvusLCY8+YlLPzMCvnrQ1TYlsnhrxzR10sfThYVBJdU1gFmYSpJmnHaTMlL0Iym/MPxRsu7Q/cNusO5Xts1wY1Ik154M2OzAug6Rdj7vhTS7JhFCCAAAAAAAACAzvS+971PPT091fV9+/bpec97nsbGxlKdZ2RkRNdee62mpub+HXL16tV661vfmtlYm+2kk07SRRddVF0/cOCA3vSmN2Vy7ssvv1ybN2+urv/whz/URz/60UzODQAAAKAN+A309qw7vrp45di/pDq0O2IyPkl1hfNU9Q3ISOr10n2/GBvOVW+A2UwY1skTd6QcT4LJHBt4ncyF19Ssb556MPYYd36gUjGjsDDHrQZVLavsCS3zvLlntRzSbnds6eH4y6nceWFhm7ZXF8OC+f71zvDDI4OwZllt2pdVx70yShZ+N19koFqdoXxasTZws/+VT4QfExUWllVAnyRzwxtC9/kLxzAVFhaW3XgAAAAAAAAAADiaERYGAMA8oQFZM407UcEzFUUHOB2oMyzMyzk8KfS6ISFlYaFaUUFq9YR3xcki3Gu+LEKFwoLUshb2nLazcpJmtCYYLQWHhRlZWuoM5Xpt1yoEbo8KC2tWAF2nsEM+Z0KDHnn9AAAAAAAAgKPW1q1b9Rd/8Rc12773ve/p8ssv1y9/+ctE57j33nt1ySWX6K677qpusyxLn/jEJzQ8nO8EFHlbGHb2l3/5l3rf+96X+Pj9+/drYmLxv287jqO3v/3tNdtuuukmfe5zn0s9xq9//et64IEHUh8HAAAAoE2V58K1hirpeum6/ZiwsEaCi5ZM9wyNW32pDivGhYVZdfaSje2XJPkpe+7cuPFI9YcYzVq9obq4zx6ILa8JVFsy2Ni1ZxhjJG+6V6grou/qvpG55VJIu12vfyj2erZf6bywsJlnSEp2nxaykvSs2m34ayi2M/181GG4Ej4JaRAnql/YqfN9dnBf8PZlq8KPmQx/D2QaztUf8Rzd+9Pa9bAxERYGAAAAAAAAAEAm2vCnNAAAtE5Y4MxsMFVUQFVcgNOBlA1Os/yQMeUtLPwsLHzHNuENDnmEhUWFk7XqfFkHmIXxYoLp2lEpSTNaE+wtBzf1DDiDkc9wFpyQ80/6hIUllfb1sDMIAQQAAAAAAADQuW688Ua95jWvqdn2ne98R9u2bdO73/1uPfLII4HH3XfffXrLW96iHTt26I477qjZ9573vEeXXHJJbmNulosvvlivf/3ra7a94Q1v0NVXX63bbrst8BjP83Trrbfqda97ndatW6cnnngisO6GG27QjTfeWF2fmprS85//fL3oRS8KPbckVSoV/fjHP9bb3vY2bdu2TZdeeql27dpVx1cHAAAAoB2ZYzZXl3eOfyPVsV0R/TWSGgsL23FuXYcVYsPC6hzTU9MB16dP/CTb8UiNh4U9/nB10Uvwawju/Akmt9f3OkfZNnV36L7xybnlckgLZo83HnsNWxUZu8PCwvbP9cg95axMdajtl5MVZty/mfCi0bsbCHVL+5lkR/UL1/s+OzwWvN2L6CGejAhSzDKc6+xLw/dNLHgfhY2pQFgYAAAAAAAAAABZyDcRAQCADlMJ+QG+mWlsiQwLiwlw2l+uMyzMTzBLWw7Cws/CwneiQnnqna0tipVxCFAWQV/NCnaq+K0JkGtE24SFlUYCtw86y3O/tmMKgdsnI2a4tMn2rZH2fZ91qCAAAAAAAACAzvOBD3xAg4ODeuc731n9mcvBgwf1pje9SW9+85u1bds2rVu3ToODg9qzZ48efvhh/eIXv1h0Htd19f73v1833XRTs7+E3LznPe/Rrl279I//+I/VbV/60pf0pS99SWvWrNGOHTu0bNkyTU5O6oknntDtt9+ugwcPJjr3Bz/4QY2Ojurzn/98ddunPvUpfepTn9Lw8LBOOeUULVu2TJZl6cCBA3rsscd01113aWIiJgAAAAAAQOc64+Lq4pkT4UHCQboi+mskSVb9PSKm2C1f0qkTP9VPuk5JfFx8WFidY/qVX5P+9ZM6tR3Dwq58qfTlv0tcPn9MptjV2LXnO+OZ0m3/oT4vJFxJ0liisLBDsZdy/HJDIVStYF70BvkffYck6Y2736s/Xv4/Eh/rJA0LaySgLy8N3KfTUr7fIl+net9n17xc+sJHFm+/9Svhx4ztC95ujOQG9yvWwxyzWWGdzP7t35M5c16wflhYWBdhYQAAAAAAAAAAZIGwMAAA5vEV3BVizQT2RAXVxAU41R0WFvoj9vz4vi8v7LUICd+JCuUxcTO61SHrEKAswseyDjALU0nakNNGSl57hIWNlncHbh9yh3O/tmuCm5EmvfDZ/ZoVQNcp0ob68foBAAAAAAAAkKR3vOMduuiii/Sbv/mbuvfee6vbfd/XnXfeqTvvvDPy+NNPP11/8zd/ozPPPDPvoTaVbdv6zGc+o5NOOknvfOc7VSqVqvsee+wxPfbYY3Wf23Vdffazn9V73/te3XzzzTUhYCMjI/r617+e6By9vb11jwEAAABAm5kXFGMkbZx6UA8WNiY6tNsP76+R1Hhw0fZztWn0gWzDwuqdYHPpdB+THdK/FzoeleKLGg0LW5puQkbXnxnTxdc1dt2F1m+RbvsPFf1JGd+TH9BL+K17fF1w/PQ9KIXMA9ubICzMlifZHdaDtHSuF25V+clUh9oxk+ZWNRDQlxun/nAsI2nL5D26p7gl2aWUfViYGV6bulvY//G3g3cUu7Of5HdgmbR/z+Lt//x/pBv/YG49LCysSFgYAAAAAAAAAABZICwMAIB5vJDAr9nAmajgmT/Z9b90THG91hQ3yPM97Sk9peHCKp27ZKckX4e98brG9LHH/0zfGN1UXR9yV2iZu0KHKmN6dPJhaaY9oNdeokFnmSSjRycfrIaMdVu9OqH3ZF249FfkGFdPTj2q7+77Nz08cV9oOFpUQFlYIFbUa2PUho0hC6QNIQo+R3O+zr3lEf3prjeraHXp+O7tumjwChWtDGdezEHJT9CMJmnXxH36011vljQdMreua7POG9ipNcX18n1f3z/wDf1s7DYdrOxTl9WjE3p26MKll8u1kjX6jJZGArcPOuka2erhmuAx7i6FN2Q1K4CuU1gpP0tsXj8AAAAAAAAAM3bu3Kmf//zn+od/+Ad99KMf1be+9S2Vy+G/2FksFnXZZZfp5S9/uZ797Gdn/wuWbcIYo5tvvlkvfvGL9a53vUuf/exntXfv3tD6vr4+7dy5Uy996Uu1fv362HO/8Y1v1Itf/GK9//3v16c//Wk9/PDDkcf09/frggsu0JVXXqnrr79ey5Ytq+vrAgAAANCGBlfUrD7hrEx8aLc3EV3QaFjYk7tUKgZPBBimGBcWVm+Y0tT017q8EjwpYuh4vMn4ogbDwkx3X7Wz8Fnj/6a36pbwWt+bC546GP59Zl1mQoeMFBgUJkm981q1pkK+/e/143s6bb8iOemejZbrngveXl1+ItWhTtKJTBt9z9Uj7t9m0t6ncy6TfvC16upD7obEh9p+RKhane8zf2x/8I7u8CB1s3R5cLfvRHwQXmpBQWGStHx17fpkyOc1YWEAAAAAAAAAAGSCsDAAAObxQmZFs2YaSqKCZ8Yq+/WLQ3foF4fumNs4Lv3H6D83NKZJf0L3Hf753Ib5ywndMf5fuufQHbp6+a/pzx55i8YqB+oeT1ioVtRr0wm/QBMVdpb4HE0KJir7peozcef4j3Tn+G167dpb5Frt2ZRU8Suh760g85/3ew/fqVv3/7t+Z9079IMD39Q3Rr9YU/uz8f/W3Yd+qlcf8/uJAt/2loOb6Abd/MPCHBN8f8oRQWpZhNgdSdK+T60mBfgBAAAAAAAA6AyO4+iGG27QDTfcoPHxcd1222267777NDIyoqmpKRWLRa1cuVJbtmzR6aefrmKxWPe1brnlFt1yyy11HfvNb36zqcdJ0saNG/WhD31IH/zgB/WjH/1Id999t3bv3q2xsTH19vZqxYoV2rp1q04++WS5brqfR6xatUrvete79K53vUsPPvigfvSjH2lkZESjo6OyLEv9/f1as2aNtm7dquOPP162zb+NAwAAAEcis2SoJtRmTflx3V/YnOjYbv9wdEG9wVyzDo/rvMqt+lL/VYkP6fZixlRn34rZdrb8z/11fBjZwvHEvUZSw2FhetqzpI/cIkk6feLHkaWuX1K1a3Ddlsauu1CC0KGJmcwr3/d1KOSlHEjQR2n75c4LCzv9GdXFnePfSHWonbTPrxVhYXFS3idzwdXy54WFTVnJ/x3IUUSoWp3vM3PsicHBX4cjQu284AmDc+EWpFLAm2nPgslSp4I/iwxhYQAAAAAAAAAAZIKwMAAA5vH84B+czwZhdXLwzO1jP9TB8v6GgsKk8LCeqNfGqLmvWz3hZEaNB5plEThWj3sP36l7D/9M23pPa8n140SFYSVx2BvXl/f8ve4Y++/A/XeO/0gPTdyrzd1bI8/j+Z72lYJntxtyhhsaYxKuVYgvWqCTP3PykDY8rVkBfgAAAAAAAAA6T29vry688EJdeOGFrR5KW7EsS2eeeabOPPPMXM6/ceNGbdy4MZdzAwAAAOgsb979Hv3Gmg8lqo0N5mo0uOiaV+iaf/y83rTynYkPyS3AbMup1cU37n6v/nj5/0g4non4IqfBXx3YvKO6aCRdc/CL+kL/1YGlhXlhZ+bpVzZ23QVMsacaqnTqxE/1k65TFtX85z2+3nS5NBmR6bTESxAWpkrnhYUNrphb9PZpSWW/DtgDiQ61/aRhYW3Y15Yy3FxX3Sj9yWurqy/Z9wl9bOmvJzrU8bMPC9Pa8PBEv1ySCXoOyyG9mcedXN8YIphXvkP+X/7PxTueeqR2fTLks7HYlfmYAAAAAAAAAAA4GrXhT2kAAGgN3/flKTgszMwE9rQqDCorD078ouFzdFs9Idt7I47JZ0awsLGc3Hd2dXmJvTSw5sz+C2rWHdN4hmrYeJrhwcON39u8lFLOchnk9rEfyg95f0rSQ4fviT3Hwco+VUJm9Bt0l9c9tqR6rL5U9a4pEHa1gJXy25e04WIAAAAAAAAAAAAAAADI0eoN1cWBBEFNs2KDsOzGekRMd6964gLJ5tf7nor+ZExRnW368wJ1jp+6P/FhsYFqUv0hRjOM49a81ucdujW0dszun1spZtw/OO81WlV+IrDkBw9O//9wROvaQGV/7KVsvyLZHRYW5rg1YV7XHvx88kOVNCysDfuyUt4nY9vSxm3V9SThcbOsiF7Gul+bqPfJU78M3OxXQkLL+gfrG0OUJUOhu/xd8/o3Jw4FFxXy6SMGAAAAAAAAAOBoQ1gYAAAzooKI7Jk/Mu2jPLhn0FmuYXd14L4TesJnItvSsyN0XyNO7jsncPsp87ZfvuwFgTXPHLyqZt02jrb1np7ous8aujZw+7Hdx6towmc/u2jpFYnOX49y1Ex1LVb2Qmavy5CXoElpb2l36L4hZzjL4QQ6sXfxDJZRTug5WVa9TYNHqLSBjZ0e8AgAAAAAAAAAAAAAAHBEefzh6uL60q7Eh3XFhYU1GFzk79+j4cpIqvGYuCKrzr6foVXVxQEvPsxqbkz5h4VJkipzfVrHlB9LdkxEyFBdCnM9ej8vnhhYcvbG6f9PRbSVLfEOxl7KUXk6fKuDGGMkb64fNixQLYjtJwwLazCgry4m5l1Xz33qnpsAtNsLCblaeBm/FP3+r/e9v2xV+L69TwZvDwsLczJ4ry80L+xxkV3zJrsthST0FcJ7awEAAAAAAAAAQHKkDwAAMKPih4eFmZnAmayDZ1YW1mZ6vjwVTFEvWf266UaSAM9a9nytL25etH11YZ2evfxFuYzpmuW/phXumpptz1n+Yq0ozG07b2CnTloQAnbp0HN1bNeWRed7wYqXa6mzrLruGFfbek6rqTm2a4suG3pu4Hgc4+olq39HVkCo3LkDl+jaFb+hC5b+SvwXVockYVmtMuVHTM/YRKPl4LAw1xTUO38my5ysLqzXlct+NVHtoLNc1634jZxH1HmslN++pK0HAAAAAAAAAAAAAABAjnqXVBdPm/hJ4sNcP2aywgYn5DPbzlIxRY9Tt5cgmKvOMZmunuryRYf+M/Fx3V5MoJqUecDT5WNfTVa4ZlOm19WZF1cX15Z+GVjy1IHp/1fC20LV543FXsr2Kx0XFrbQdQc+m7jWTtqH2I6TYLqF9McsGawuPnvsy4kOceImdq03LGz5mvB9EyFBZuWQz8YsggEX2nFe+L7ReWGLYWOq5/4AAAAAAAAAAIBFcvgpAAAAnclXeFeIPRM4k2XwzLXDN+qiwSt076E79dDEvfri7k9mdu60Tu47OzDoa9agu1wn9pyqpe6y0Jpeu1+/t/6PdO+hn2nX5P3yfV9ruzZqS88OdVndeQxbS91l+l/Hvk/3HLpDe0pP6fju7VrbdWxNjWsV9Opj3qz7D9+lRycf1qburVpf3BwYeraisEZvOfb9uvvQ7ZrwDmlrzykacof12OQu3XvoZxourNZx3dtUsIqhYzq1/2m6ZeNf6e5DP9GB8j65VkGbu0/UsV1bZBlLv7riVXrakot13+Gfq+RN6sGJe3Tn+G2Jvt6rlr1Q/3Xw23py6tFF+7ykM/q1QLkJYWG+78fWjJaCZ/8cdJaHhuBlyRijK5f/qk7uO1v3HvqZJkKaBlcV12lrz8nqsfsC9x/N7JSBjWnrAQAAAAAAAAAAAAAAkB9z/e/I/+jbp5dTHBcbFtZoCNbwMZKkcw79QD/oOSe2vNtPEMxVb2CQJPX0S4cOaknlQOJDuv0EAWZZBAidcr700+9Ikga8hOMrhPfb1WXpcHXxyrGv6Hs9i0OMfvzI9P+9iLayPm889lK2vM4MC9txnnTH96YXJ+9MfFhsENYMY7VhX1Y996l/qLq4ffLnyS4TGxZW32tjjFHY4+p/8o9l5oXkVVVCxpLDM2scN3x8f3yTzLNvnF4phfSLduL7CAAAAAAAAACANkRYGAAAMyoRYUvWzCxoxhhZsuRFBIsl1WsvkW0cbe09RVt7T9F3939Ne0pPNXzeepza9zQ9bSCgkSClglXUSX1n6KS+MzIYVTJdVrdO7js7ssY2jrb07NCWnh2x5+ux+3R6f23z0Jrieq0prk88puWFlTq/8KzAfcYYbezeoo3dWyRJDx2+N1FY2NaeU3TF8uv1yOSDgWFhFb/xZzIvpbhmvSbZWw4OCxtyhwO352Vd1yat68p4tsyjhJUy/MtSGzalAQAAAAAAAAAAAAAAHK26aiedXFV+Qk84q2IPsxUzkWIjwVySVOiSJK2oBPcXLZQomMs0MKahFdKhg3JVluOXVDbxITvdIRMX1sgiLKw75QSIxe7sJ3Iszj1HXV54cNvhKV+ViLa6Hj8+LMzxy42H0bVCb3/N6mBlr0btoZDiOXbSSUsbfc/lwa4jjGpg7jVJ9B6S5CgmLKyR56V/UDo4unj7T/4zuD4sLCyL93qQdcdLj9wbuMufnJApdkmVkH5Rh19dAgAAAAAAAAAgC234UxoAAFrDjwgAmx84kzasJoxtan/wbVLNlZitrL4mpGclbISafT7skCYyL64hroVKXshMcU02WtoduH3QXd7kkaBeacO/+GwDAAAAAAAAAAAAAABoH/6B2hAcP0HPXMGbjK9y6ggJmm/tZknSQGV/ovJEoUKNhCn98v7qYpKgMEkq+gl6tLIIELo7fmLMGpPJAphSmXe/eyKC20YOSp4ffpo+byz2UrYqjT9frXDXf9esJgkKkxIE882yWtCXFddrWU8Y1RO75g5P+LU7fkxYWCOvTVBQmCQNrgjePjUZvN0p1D+GKDPBioH2zYQtlkI+i/IaEwAAAAAAAAAARxnCwgAAmFGJmBHNmhfQZKcMqwljLwixMS38YzltAA+yk/S+m5lnMOxeeUln9GuBsh8yU1yT7S2HhIU5hIV1irCwvKzqAQAAAAAAAAAAAAAAkB9z6vk16y/Z9/HYY1wl6D0qdtc7JEmS6R+UJL3owKcT1XdHBFRVNRIWFhXIE6Loh4QGzZdFWNhJZzd+jgaZeaFRO8f/PbTucEmqhM8hq17vUOy1HL/cmWFh2+q7T7FBWLMaeb7z4qYPozJnXpz6mNhQsUbCws7aGbx992PB28PC+Lp66h9DBHPVS0P3+Z94t3zfl8ohn9md+D4CAAAAAAAAAKANteFPaQAAaA1P4V0h8wOarIzCZxaHhcXPkpgXAnVaJ+l9n62zTHAjSSXpjH4tUEoya2UTjJZGArcPucNNHgnqlTbYkCBEAAAAAAAAAAAAAACANtI/VLP6yn1/G3uIm2SiwkJjYWGSpLMu0bmHfpCotNtLEBbWSE/epS+sLr589KOJDkn0OmUQFmZ2nJfugOe+quFrBtp5vSRpoHIgtOSLP/Xl+eGn6PPGYi9jqyLZnRdyZE5+es361Qe/lOg4O6KPtkY7hoXVE0a1cl3N6pt2vyf+MnGBag28Nua614bu80cD+h+nQj6LiukDBxOZ99m0yBc+It3xvfD9dYS5AQAAAAAAAACAxdrwpzQAALSG54eHLc0PCAsLa0rLNrWNN6aFgV0E6rTO/FkOI+tmwsLskHvl+QmbdFqgHcLCSt6UDlb2B+4bcggL6xRpwxqz+rwGAAAAAAAAAAAAAACApGWrGju+WBvq1ZMgdCtRCFYxg7Cw/kF1+wlCwCR1+xPxRY2EKRWL1cWuJNeSVEjSo5VBWFjq17qQU2jRzDh6/EOhJd9/wFcloq0uyX20/Up9IVStVijWrHZ5yZ4jO6KPtobVir6smF7LekLdFjyfPV748zQrPiysgdemqyd83w//bfG2yZDPrCwCFINEjU+S/63/F76zA0P3AAAAAAAAAABoR4SFAQAww4uYEc2a90dmWFhTWgvPY8U1MuSIQJ3WMQn/OjYbkhQWlhQVdtdqJS//sDBfEVNAShot7wndN+guz3o4yEnaYEOLb3cAAAAAAAAAAAAAAAAyY176+8E7Lr422QnWHlezOlwZiT3EjQvm6e6V1h2f7PpR7vpv2RE9hPMV/cn4okYmD911T3VxZfnJRIe4inmdpGzCwraclq6+nCDsrR4P/EyS1BVxL4qOkRfRVpYkGMvxy50ZFrZkWc3q5tIDiQ6zkzxHkmS3Yc9pPfdpaGXN6vbJn8ceYivmuWkkLGzzjvB9e5+oWfVLU9L3vxpcm0WAYgATd96vfCJ8n1vIdjAAAAAAAAAAAByl+O15AABAJkwjAAAgAElEQVRm+H5EWNi8MK2sgrUWnse0MCzMJiysZZLe99m6sOevEteA0kKlJLN75my0FN5YOOgQFtYp0n7+EoQIAAAAAAAAAAAAAACQoeNPlXacV7vNcWWe/RuJDjfFrtr1BMcU/JiJCq9++aLz1uX8qxKXukn6oaz62/TNeVdUl6898LlEx7hxr5OUTVjYSeekKjcXXN34NYPOe96V1eWCFxwY9tAeX5WI/LfY0CdpOkCuE8PCTr+oZvXF+z6Z6LAkAWqSGgvDy0s9z/eKtTWrl43/W+whTlyAYQNhYWbJUOg+f/fjc8uHx+W/4dnh58kpLEySVIj4vD04Gr6vE99HAAAAAAAAAAC0oTb8KQ0AAK0RFbZkzfsj08roj0/b1DYmmBY2T2T1NSE9K+F9r4aFhdwrL2mTTguUkjSiNchXxBSQkvaWg8PC+uwlKljFPIaEHKQNNrTbsSkNAAAAAAAAAAAAAACgQxnblvmTL0rXvVbatF16+pUy7/m8zJkXJz/JltNqVq88+C+R5YHBXKs2SNvOlrnpj2Re857k145g1m2RJD390Hdja2MDzKSGAoO0/Jjq4jHlxxIdkijALIOwMGPb0WFBCw2taviagVZtqC7+9t4PBJZ8/wHJi2grs3xPF45/O/IytiqdGXLU3Vezelzp/kSHzQ9QMze+Nbywkec7L/U83wtCtYoJ3tvxYWEN9qyddlHw9n/487nlL3xI+tE3w8+RRYBimGteUd9xnfg+AgAAAAAAAACgDWUwPRAAAEcGzw+fQs6aF1CTNqwmjK3a85hE8yTmI2lgFbKX9L6bmZCwsOfPU8QUiC1WTtKIlrPR0u7A7YPO8iaPBI1IG2xoqQ2b0gAAAAAAAAAAAAAAADqY6emX+e331X+CBYExvd54ZLmr2t4j89aPyVz6q/VfP0xhesLB2CAgSa5fng7MmpoILzIN9APacz0vXX7ENeZJFmCWUZ/gkiFp93SI2erS43rcXb2o5NxDt04v5BVaNC/kyY7onatEtNXZqqg75vV1/HLN/egYXT01q0mfxurzv/3c6HvXitck7j1VT4CZu3ii0b7KQY3Z/aGHOBETE9c9jpoLhIRq9S2tLvr/N+YzeEEIWqZ6wl+bSISFAQAAAAAAAACQCcLCAABHlf/c91V9e99XAveVvPBmmfkBNVZWYWGmjcLCCNRpmcRhYTONLmH3quLHNKC0UNR7q1lGyyFhYS5hYZ0k7edvVp/XAAAAAAAAAAAAAAAAyMjPf1izet7hW/UPA9eFlrsLw7t2nJvHqKTjTpEkbSjtii0t+FNS75LosLBGgrlWbZg7jXwNl5/SiLMi8hA3bkJH26n2oDVsJihMkl544O/1p8t+d1HJjfs+Nr2QV2jRvCCrffbSwJKlPZLnh5/C8j3d1nVa5GVsv9KRIUfGLSjiSw9lzwZh/exW6dLrIy7QhhPUOul7xYxlLXqdev1DGlNEWFhcoGCjQWpPhnwG9S6ZW943En2OHMPCzBnPkP+xP0p/YAe+jwAAAAAAAAAAaEdt+FMaAADyc7C8T49OPhT431Olx0KPs+Y1NmQVrGWb2sxO08LmiYXBZWgek/CvY7OBdWHhR147h4UlmbWyYdGtTXtLwc0xQ85wHoNBTuyUn79p6wEAAAAAAAAAAAAAAJCzi55Ts3r9gX+KLK8JwbriJTLzgrQytekkSdJNox+KLXX9ktQbHiYkqbEwpeE1NatvG3lH7CGFBGFhmTlrZ3XxlaN/q9Wlx2t275i4Q889+IXpldzCwubOe9nY1wNL9h2SKl74KWxV9Ov7/2/kZWxVJPvoCTmyZ/sQL3lB9L2z2rAvK6Nn/C273xV9GcWEhTXYC2yuelnwjid3ya8k7BPNMSxMO86T3EL64+o5BgAAAAAAAAAALEJYGAAACcwPaLIzCvVaGNBlKaNZ++oQFkCF/CWdrdHMPB9hz5+ndg4Li2lEa4LR8u7A7YPu8iaPBI1I+1llteMMlgAAAAAAAKhL0L+lel7Eb3sCQAcI+hxL+rMjAAAAoGNt2FqzOlzZrb7KwdByd3aiwrXHyfzPD+Y3Lmc6EOr4qftiS11/SupZEl1kNdC3siDo53kH/1/sIYW4CR0zDAszO86tLh9XekDfevgSvXH3e3XFwa/olpG36+u7LtdSb/90QV6hRfOCh/q9A6FlP3kkfBJKS552TN4ZeRnbL1efjY5z4lmpD3Fm+xDXb4kJC2tBX1bc98v1PuOnnF+zesn4NyLLHT8mLKzR12bNpvB9d3wv2TkKXY2NIYJxXJm/+mb6Azv1fQQAAAAAAAAAQJvJcIogAACOTK4pyDVzP6S2lE2wlr3gj2HTwgxPi/zQljEJQ+JmfzEk7Pmr+O37S3GluEa0nPm+r9FSSFiYM9zk0aARacMaCUIEAAAAAAA4clgBv2RXKpVUKBQCqgGgM5TLi3/BOOjzDgAAADiSmGKPFsY3DXr7NGb3B9a7MxMVmhf8lkyOf182xsiX1OuNx9a6fik+uKiRSe4KtSFNfd5YsjFFsTPso+nqqVndVHpIfzRyc3BtXgFBvQPVxYGIsLBv3BUeFmbL06Affux0TaVzQ46mJlIfYvszYWGlqehn+FB4wF/L1BsWVq597wxUop+J2LCwgWX1jWNWb0QQ4Y+/LX/b2fHnyCukb9bgivTHOPw7LgAAAAAAAAAAWaDDEACAGMf3bJdt5poIsgqfsRecJ2loVB4WjgXNkzSobTZMLuz582abdNpQ2YtpRMtAeEuXdMgb06Qf3Pg05C7PZ0DIRdpQRTujcEcAAAAAAAC0njFmUTDYgQPRv7gHAO1ubKz2F/4LhUJ1AhkAAADgiHXqBYs2PeKuCy2vhmAVcg6/mb2eYoKAJBVUklZtiC5qINjMOLWhR13+ZPyY4iZ0tDLsozntosSluX2Ps3FbdfGUidtDyw5GvHR2saAeO/p+234Hh4Xdf0fN6rmHbo09ZDYIy3T3SWuPCy8s598TmFq9YWE9tUGFKytPRZY7UZ8RW06TGVpZ3zhmnXRO6C7/o2+XDo7GnyPvsLAVa9Mf06nvIwAAAAAAAAAA2gxhYQAARFjmrtALV76qZltWwVoLQ59a2fhvEajTMknv+2yYXFj4kaf2DQsrxTWi5Wy0tDt035Az3MSRoFFpP3+zCncEAAAAAABAexgYGKhZP3DggMrl+F/gBYB25Pv+otDD/v7+kGoAAADgCLL9aYs23bT3b0LLq+FdeYffSNWQnvMPfSeyzPVLNWFVgRoIC6tHNVQtTJb9iSecnqzOLcTX1MlYVjUcyononbv7iYhzFLvV7URNUzlz7k4NOfqVX6tZ/cORm2MPqQZhnXS2tKzB0KtmqzMQzzzv1anqnfkTu84PKOvqkXnte+oaQ814unsj9/uvvyr+JDl/XhpjpOtfl+6gTn0fAQAAAAAAAADQZuqcPgUAgM50Yu9p6rJ7EtWuKqzV5u4TVbS6arZbGWVtLgy9MS3M8CRQp3WS3vfZUDHLBNdX/HYOC2vtLIJ7yyOB2y3ZWuIsbfJo0Ii0wYZZfV4DAAAAAACgPQwMDGhkZO7f+zzP08MPP6x169apUMjvl08BIGu+7+vRRx9VqVT7M5QlS5a0aEQAAABA8xjLkl/okqYmqts2lR4IrX/A3Ti9UOwKrcnMCadLd/5Azxj/tr7Tc35oWcGfkukdVmTMVEifV2Lbnyb97PvV1TMO/0i3dYeHdBUUFxaWXR+NMUZ+V480cSi6cPu5mV0z0PWvkz71PknSs8a+pq/2Xbao5OE9wYfaflkq9sSGhdl+RbI7NORo+Zqa1eFy+KSbsxx/Jiysq0cqNOE9l0Zc4J1d56/GLFu9aNOxUw/pocKxgeXV1+i618pc8RLpu1+eDsY7/yqZ9SfUN4aFdl4vff0zwfvuvyP++K78wxXNM54n/zPvT1ZsOy2dUBkAAAAAAAAAgCMJYWEAgKPKxu4t2ti9paFzZBWsZS/4Y9iodT8ItzNsBEI6Se/7bOhR2PPnyctsTFkr+VNNuEp409ZoKbjJaakzRFBeh0l7vxaGMgIAAAAAAKCzua6r3t5ejY+PV7dNTU3pgQceUE9Pj/r6+tTT0yPbtvnlMwBtx/M8lctljY2N6cCBA4uCwlzXVbFYbNHoAAAAgCabFxQmScsrIYlOku4pzvT71RsElMbU5Mx4okOVXL8k9cSE/VoN9uTtr31Ner2x+DHlOZ6F4oLCJKmYc2BRaa4vbY+9LNWhljyp2KXu/U9IA+F1jsqS3aE9SIcO1Kwuq+yNPcTWzKSlvUuk7r7wwpPOaWRkuTD1fkZ0LZ6A2Ivoqa2+Rgf3yxx3snTcyfVdN8qSocaOz/u9J0kDKd5zLhM9AAAAAAAAAACQFcLCAABIyVZGYWELQmysFv7ikpXR14T0kv7C2myoWNjz5/mVzMaUtZLXjLCwcKMhMyIOucNNHgkalTbYkDA4AAAAAACAI8/KlSu1a9culcvl6jbf9zU+Pl4TIgYAncQYozVr1hB0CAAAgKPWzvFvxBdt3p77OMz64+VLunT83yPrCv7UdJhS5MkaDOd67MGa1Q2lXfFjih5QY+OpR86BRWbz9uoUk0856XrBbL8iFbvVfSg6QMs2fsd+r2aWDtdMwbmy8lTsMc5sH+K6LTK2Lf+cy6QffK22aNlqadvZ2Q00K/WGhRW7Fm06buo+7XLXB5ZPmJmg7/6IlLkGmbN3yv/cX9d/gkITwsLWHpe8thnhZQAAAAAAAAAAHCUyniIIAIAjX1bhM7apbUwwLfxjmUCd1rES3vfZ5yPsXlXaOCysHDdrZc72lkYCtw86y5s8EjQqbbBhVuGOAAAAAAAAaB/FYlHHHnusisViq4cCAJkwxmj9+vXq6elp9VAAAACA5rn42prV1eUn4o/piQnnysLpz5QknTB1b2SZ65el3v7oc1kN9gM+/zdrVo+buj9mTDE9Wo2OZ6ETTo+vyTsgaNs51cWX7vt4qkMteVKxWz1nXxBZZ3dmTti0rWcs2nTlwX+JPMTxpwP6jT3dd2V+98+klfNCs7p7ZW7+mEzWz1MiMTfDrrNXLCBY64+eemto+UFr+r1vTr2wvuslce4VjR3fhHAuY0yyzwFJcgr5DgYAAAAAAAAAgKMIYWEAAKRkNTrj3+x5FvwxbFoxc98MAnVaJ+l9n52dMCxczFP7hoWVYmetbJzv+6H7Rsu7A7cPuulmk0TrpQ02zOrzGgAAAAAAAO3FdV1t2LBB/f0xv5QLAG3OdV2CwgAAAHB0mh8+lFQTwm9U7Koubp/4WWhZwZ+Suvuiz9Vg34rpW1qzfvzUfZH1BX9KWrs54oQZ9yeuSnAP572euZh3/n7vYKpDbb8iFbvVPTQQWedY4X1pba9r8fea5x7+fuQhjspS39xrYo7ZLPOx22Te/VmZt35M5u/vkjntosyHmgmrzj7YgM+WDaVdoeVj1sx7P8fnu+EwtmZ8XkrSmRcnq9vzeL7jAAAAAAAAAADgKOK0egAAAHSaLIK1bDnV8KdZpoWhNgTqtE7S+z4bKmaHhCV5vpfZmLJWipu1MmejpeCwsCFneZNHgkal/fy1CEIEAAAAAAA4Ytm2rbVr16pSqWh8fFxjY2MaGxtTpdK+EysAgCQVCgX19/dryZIlKhaLi35mCAAAABwV9j6Z/hi3kP04FhpaWV2csMKDgHzHldxi9LkaDftRbUjViVN3R1bb8qRTL5J+eX9wQdY9goUEYUR5BxYtnZsscnX5iVSHWvKkQpd6uqJ/naKjw8KWrV60ySj663H8sjS2v/aY3iXS06/KdGi5cOr81ZiA4L+Byv6AwmmHrZnnOu4zoFFn7ZT+6+vpj1s6LGM3p2/OLF8d80QBAAAAAAAAAICsERYGAEBKVkhYUxpBgU+zYVCtkMXXhPokve9G081aYfeqovb9BbiyP9Wya1f8ivaV9wTuG3QJC+s0aYMNw8L1AAAAAAAAcOSwbVtLlizRkiVLJEm+78vzPPk+v6YGoL0YY2RZFuFgAAAAgCSz7vjUATPN+Lu0WTJUHdf5h76n+wrHBdZVnC6pqyfmZA2Gc516Yc3q9sk744/pjhhTw+FlCyQJAss5LMz09FXv12Vj6UKVbL8iFbtlFbs0UNmn/fbSwLpu09qJMhuy7vhFm54x/u3IQ+w27kOMZdf3qzHGcRZ9HhWU4L5v3FbX9ZIy518lv56wsGYGu517ufT+1zfvegAAAAAAAAAAgLAwAADSsnTkhYXZGXxNqE/S+27NNLuFPX+e375NOiWvdWFh+8t75ckL3DfoDAduR/tKG2xIECIAAAAAAMDRxxgj2+bfhQAAAAAAaGubt6er33BCPuMIcuqF0k++rdft/Qv93dIXB5ZU3C6p2BV9nkbDuY7ZVLOaqMusqzd8X9btiXFfvySTc1iYpOmAqEpZQ95oqsMseVKxW6bYrQ8/fpNesPbTgXVdppzFKFvCGLMoBGtDaVfkMbZfls66JL9BNSIuMLDOsDBJ0o7zpDu+l+6YvJ/va14pfeHD0gMJggJnnXqhzG/9cX5jWsAcs1n++c+WvvOlpl0TAAAAAAAAAICjXcZTBAEAcOSzG53xT8EBNlYG560XgTqtYxL+dWw2VCzs+fP84ECsdlDyWxcWNlreE7pvyF3exJEgC1bKb1/S1gMAAAAAAAAAAAAAAKAJCvFBUzUGV+YzjiDrjpMk9XljoSXGceKDghrtBww4/8kTt0dfMjIsLOM+miRBSWnvcz1WH1tdXFl+MvFhtrzpwLOubq0qPxFaZ9mtmwQ2Exu21qx2+4cjyx2/LPUP5jmi/DQSFja8JnlpeWR6oZBvWJixbZk/+LvkBzz9Spk//5pM75LcxhTEXPmSpl4PAAAAAAAAAICjHb89DwBASlkEa9la3JRgMp+6LzkCdVrHipvtbsZsqJil4OevokpmY8payS+17NqjpZHA7UXTpW4rojkObclO+fmbth4AAAAAAAAAAAAAAABNsGbjok0v3ffxwNK/evy3pkOdmsVxJUmryk+qywsOVjr/sS9KAzETFVoN9q30LV206RX7PhpYeuH4t6cXlkWEqiXsU0vKBNzDhfyDo5leM9DjD1UXn3SSh8pZvjcdeFbsVrc3EVHY4f1HD99ds9rvHYwsd1TJPQQrN42EhY08tmjT2Yd/GFh6476PSbY9HRqYt5XrktcOrpTJ+H2eyJpN8TXPe3X+4wAAAAAAAAAA4ChBMggAACmFhTWlERRg06rALktWaxoEICl5SNzsPQoLq/P89gwL831f5SaEhfnyA7fvDQkLG3KHee47kEn5OZlFuCMAAAAAAAAAAAAAAACyZdYet2jb8w58ftG2bu+QLh/71+lQpyYxF1w9fW1/Qlcf/OdF+0+cvEvbpu6ScQvRJ7Ia600y9uK+l6sOfjkwwOwFBz47vdAVMXmiybg/8bwrYkvMSedke80gJz+9rsNclebCwvzgUDhJ8q0mBELlaUGPnBXSZzfL9ivNDedLI67fr5Fgt1MvWLTpBQf+adG2Xm9MV4z9a9MC1Uz/YPLasy7JcSQRNm6b/i+CecbzmzQYAAAAAAAAAACOfISFAQCQUlDQVxbnaFVwEWE6rZU0/Gi2Luz589SeYWHNCAqLMlreHbh90B1u8kiQBctYqQLDsgh3BAAAAAAAAAAAAAAAQA4WhGFdMf5VfeDx12l5eXpywI1TD+rLu67RuvKjTQ0L0/GnVhc//PhNes6BL8iZ6YE659AP9JVdV8tcfN10wfAx4eexMmjTP/vSmtV15Uf1z488RxumHpYk9VcO6M27361X7fuwNLAsOkwpi/HMY4aPiT/n0MpMrxk4jue8srr8/AOfS3yc45dlij1SsXs6ICvMnscbGV7rXf0bizb97ydeH1ruqNzc91uW7PqD3cwpi0PnXrf3A3rD7vep1xuTJG2aekD/sutqrao8KRWaF6hmXvPuZIXrT8h3ICGMMTJ/8iVp+9OC97/pwzKnXdjkUQEAAAAAAAAAcOTq8KluAABoPiuDGfZss/iP4DQBOFmyCdNpqaQhcUbTdVbIc1LxvczGlKWSP9XS64eGhTnLmjwSZMU2lsoJn3c76xlRAQAAAAAAAAAAAAAAkI3VG6Vf3lez6dX7PqxX7vuInrJXTAfyzCo0Mbyoq6e62Osf0j89+kKNmV5NWkUtq+yd3uG40//vH5RGHg0+TxZ9K/2DizY949B/6v77T9SjzhqtLD8pZ3aSyYFl0dfMYzLTs3ZKP/ha+P5mhE4V50KberxDiQ9z/PL0sYWu6YCsEN2V8YaG13LFnkWbBrwDoeX7rAGp6Oc5ovw0EBYW9DoZSe8e+QO9Y+RtGnGGtaY8LziumYFqy1Ynqys2L8BsIbNircxff0v+/j3S6FPTn0dTk9KKtS2bSBkAAAAAAAAAgCMVYWEAAKRkZRCuFRTQNRsG1WxZhJ+hMUaWfEWHH1kzDROWCX7+fHnyfK/t7mezwsJ8BTco7S2NBG4fcofzHA5yNP0ZHN6gt7gWAAAAAAAAAAAAAAAAbWdBUNgsS35tUJjU3BCcgBCgPn9cffNDo2ZDiaICg6zG+7jMxm0hXVHSMeXHajfsuif6mnn0lbnF6P3NCFTq6q0u+il6MB2VpUKX5HnaUNql4fJTGnFW1NS4/pQuHf/3zIbaEo89sGjTqvIToeW77eXSk3fkOaL82A30im04IXSXq3JtUJgkPfVI/ddKa+O2ZHXNDDALYQaWTQeFAQAAAAAAAACA3LRXmgQAAB3ANo1nbQadw7Toj+Ww8Ck0T5KguNnnIyhoblZc4FgrlLxSS68/Wt4duH3QISysU6X5zOLzDQAAAAAAAAAAAAAAoE119yWvLTQvLMyYBIFTToKwsCzCuZ75/OS1/YNS1NiTfF0pmct/PbqgGeFF80Kerjv42cSHOX5ZcguSmZ7q86X7Pr6o5toDn9MS72Amw2wVc8YzF2078/CPwuvlBx7TFuKeYbv+3l4zuCK+qFU270hW1wZhYQAAAAAAAAAAIH+EhQEAkJKdQROPHRBgk6jJKAdR4VNoDivBvZ8NFIsKP6r4lczGlJWSP9Wya096ExqvBDdrDbrLmzwaZMVK8S1M0GctAAAAAAAAAAAAAAAA2sAlL0he2+wQnIuvjd4/G0rUFTEuq/E+Q7N+S/LiZz4vJiwsh18b2HFu9P5m3Ld519g2eVfiw1y/LDmF6mv2zpGb9fsj79LGqQe1pvSYXrP3r/W3j70q8+E23Yp1izbZCu8zNPKlZavyHFF+GggLkyQtW5289tIXNnatFIwxMu//anwhYWEAAAAAAAAAABwVGvyJCAAARx8rg3At2yz+I9hSa8LCosKn0BwmQfjRbFhYVFidJy+zMWWl7Jdadu3R0u7QfUMOYWGdKs1nVpL3FgAAAAAAAAAAAAAAAFqgUEhcatzktZkoxITuzIYSucX8x7J+i7Trnvi6Ynd0QFkG4WWB12xkfyZj6Kku9niHEx9mqyy5BalvQJJkydfbdr9Db9v9DvlSi7o5c9DVs2iTHTEpqZE6N3TKbrAXtm9A2vN4stpmv0bL18TXFLryHwcAAAAAAAAAAGg5fnseAICUsgjXCgoca1WojcVfB1rOJGgtMjMhYVFhdV5EE0+rlPypll17tBweFraUsLCOZaf4zLIJQwQAAAAAAAAAAAAAAGhPh8YTl/oH9uY4kMXM5pOiC2ZDeSrl8Jrxg9kM5tH7k9W5RSliIkqZ7OOvTE+/tO744J3HnigTEFSV+RgKc4FtKypPJT7O8WfCwnact/icmYysTRx/6qJNtqLCwvw2DguLuTNRz38SD9+dvLbY5GCuNZuk/sHw/SecLpNHICAAAAAAAAAAAGg7/EQAAICU7IiwpsTnCAiwMTk04yRBmE7rJQoLm6mJCqurtGVYWKkp1/HlL9q2tzQSWLvEXirXcvMeEnKSJrCRMEQAAAAAAAAAAAAAAID2ZJ7x3OS1Zzwzx5EEuPSF0ftnwpTMpb8aWmLOvjSbsVzzymR1jhsdCNZokFLYaa9/Xartuejpn75mikMcvyw5roxbiC68KPlz2o7M4PCibXZEn2F7h4XFaLQH97wrktc2+TUyjiNz3WvD97/gt5s4GgAAAAAAAAAA0Er89jwAAClZGTTNBIaFtWg+ujTBO8iHSfBMzYYeRYW7eREz/rVK2Ztq2bVHy7sDtw+6ixug0DlShYXx+QYAAAAAAAAAAAAAANCelq9OXts3kN84Aphlq6L3d/VML6xYF16U0ZiTBqUZx5WsiD60qH0NMNe8Qubmj0tPe5a0ZqP0tF+RueWTMle9LJfrBXruq6qLm6YeSHSIo7I0GxR24pnhheu3NDKy9rC0tl/OjugznA4L68p7RPlosLfXnHZh8uJWBKq99Pdl3vAB6fRnTL/X1myUzrtC5g8/I3NZTMAhAAAAAAAAAAA4YjitHgAAAJ0mi/AZ2yz+I9i0KMPTEmE6rZYkKM7MzHpnRTwnlYgZ/1plym9dWNje0kjg9iFneZNHgizZKT6z0tQCAAAAAAAAAAAAAACgibp7k9cWWhBeVChKU5PB+2bDlAaGwo9fmtGEhklfJ9uNDksy+U1manZeL7Pz+tzOH3v9Yrf8lMc4fkVyCrNnCC+0joD+I7u2X9WSF1pqfL8177csNPqMd/clv1QLwsKMMdI1r5C55hVNvzYAAAAAAAAAAGgfrUklAQCgg2URPhN0DpNjM04Uu8HZ1NC4qACwWbOBYlFhdZ4f3sTTKuWmhYUtbvcaLe8OrBx0CQvrZFaKz6wswh0BAAAAAAAAAAAAAACQg7XHJ69tQTBPaFCYJBVmxrP+BGnVhsX7l6+RtpyazThOPCtZnetGhyUdyX2C88KtHihsSnSI45cldyYs7JF7wgutI+B12/N4zWpsp2o1RK3NxPXYNtqDe/LTk9cWOzRQDQAAAAAAAAAAdLwj4KdXAAA0V1XeIS0AACAASURBVBbhM7ZxFm1LEhiVByuD8DM0JklQnJl5PqLC6jxVMhtTVkp+qWXXHi2FhIU5Gc3aiZZI85lFGCIAAAAAAAAAAAAAAEB7MmlCmFoRzPOiN4TvmwkvM8bIvPyW2pCimW1ZTR5q+gaSFTpudCBYiyYzbYp5YXI37P90okMcledCsZ776tA6cyT0H133W4lLLXnTz1InavReHXti8tpiT2PXAgAAAAAAAAAAqNMR8NMrAACaK4tQr6DAMRM/X1susgg/Q2OS3PvZ5rGo+1Xx2zAszJtqyXV939doOTgsbMhd3uTRIEtWiqYuwhABAAAAAAAAAAAAAADa2Lazk9UVuuNrMmZOuzB857xwKvOsG2Te/1Xpua+SrnmFzJ/+i8yVL8l2MMtWx9c4rhQVwHYkhF6FmXc/Tpm4PdEhjl+W3OmwMLP2uPDCNKF2bcqceGbyWvkdHBbWWA+uMUY66ZxkxcXmfyYBAAAAAAAAAABIktPqAQAA0GnsDMK1gs6R1UyCaWXx9aAxJkEA3WygWFRQkqf2Cwsr+6WmXMf3a9fHKgdU8oODygYdwsI6WZqAQ8IQAQAAAAAAAAAAAAAA2tjURLK6Yle+4wjStzRi30DNqjntIpnTLspvLJOH4mtsNzoQrEX9iU0x717ZCXvo5oeFLWo+m8efPNyiaWBb46zD/y05L2v1MOqTRbBbV0+yukILPpMAAAAAAAAAAACkBMkUAACgRhbhM3ZAXmeSwKg8WPx1oOWSBMXN3idb4c+f53uZjSkrYYFdeRstj4TuG3SHmzgSZC3qPbColrAwAAAAAAAAAAAAAACA9tXVm6zOLeY7jiAnnC71Llm8vdAlbX9ac8cytj++xi0c2YFgUU69oLp4+uEfJzrEUXkuhG7dceGFk4cbGVl7WL9l0abnHfj8om0Fb1IvOPBPkuM2Y1TpxT7fGTz/xe5kdbNBcwAAAAAAAAAAAE1GOggAAClZKYJqwgQF2JgWzT+XRfgZGpPk3s/WRN2vip9sVsRmalVY2N7S7sDtjnHUbw8E7kNnsKJmQF1Yy7c7AAAAAAAAAAAAAAAAbctc99pkhU7zg3mM48r83p9L1rz+E2Nkfud/y3T1NHcwl784vsZxa8d6FDGDc5NHnjR1V6JjHL8sFWaCoZavDi8st6b/LVNLF0+u+YcjN2tN6bGabX/+5O+p15pMNPlpW8pi3EnDwto1UA0AAAAAAAAAABzxnFYPAACATmOnCKoJP0f7hIXZGYSfoTFJAo3MzHMXFVbnqQ3DwrxSU67jy69ZHy0Hh4UNOstThU2h/aQJbCQMEQAAAAAAAAAAAAAAoI0NrYyvMUayW9MDYi57obRpu/SDr0qVinTOZTInnNb8cazdvKA7KoDjSlF9UX7sGTrb+i3SrnvU7R1OVO6oMhcMVYgIiCodAWFhAQFYW6bu0389eJ6+3He5nnKGden4v+uMiR9Lha4WDDAjWYTlJQ0Lc5sfYAgAAAAAAAAAACARFgYAQGppgmrSnKNVAUaE6bRekpn4ZsPkosLqPL8Nw8L81jRL7S2NBG5f6ixv8kiQtaCwxdBawhABAAAAAAAAAAAAAADa19IEvTxuIVF/VV7McTuk43a07PqJ2c50sNrRas8TkqQufyJRueOX54Kx+gZC68zWMxoeWsv19AduXll5Sjfu/1jtRsdtwoDqFPd8Z/H8e16yunZ+nQAAAAAAAAAAwBGtNakkAAB0sCzCtWyzOK9zNgyq2VoVUoY5Se79bI2J+OtbRQkbVZqo7Jdact3RcnBY2JA73OSRIGtpPoMJQwQAAAAAAAAAAAAAAGhjG7bG1ziF/MfR7k46J77GcaWjuRdw/IAkyZKfqNzxy5I7/WyZrh7p9GcEF559aRajaylTKCYv7ugQrMZ7cM1JZycr5HMJAAAAAAAAAAC0yFH8E0EAAOpjZxIWtvgcUSFQebJFmE6rJbn3s6FuxhhZIffM8yuZjisLJX+qSVeqbfIaLe0JrBpyE8xGirZmpfisJAwRAAAAAAAAAAAAAACgfRmTINzHJZRHG06Ir3ELknUU98rsvD5VuaOKzLzXy7zxr6SV6+cKjJH5nx+UWbUhqxG21qaTktV1clhYFs//069MVtfJrxMAAAAAAAAAAOhoTqsHAABAp0kTVBPGNov/CE7U+JQDK4PwMzTGJJjRbn6NbezAYLC2DAvzSi257t7ySOD2QYewsE6XJrCRMEQAAAAAAAAAAAAAAIA2t2m79MDPwvc7hIWp2B1f47hHd1hYktdoHtt4NevmmM3SJ38q3f5dad9u6bQLZYaPyXKErbVhq/TAnfF1nRyClUUPbiHhc0SIIQAAAAAAAAAAaBHCwgAASCmLcK2gAJskgVF5sAjTaTlj4pu05j8fYYF1FbVhWJg/FbjdMY7KfjmXa5b9kg6URwP3DbrDuVwTzZMmsJEwRAAAAAAAAAAAAAAAgDb38N3R+wnlkbr742tsV2pRD2JbuP27qcrdBWFhkmS6eqSzL81qRO2lFNzHt4jdzr9eEvd8Z/D89y9NVtfWrxMAAAAAAAAAADiSHcXTBwEAUJ+goK/U5zCLGwXSBOBkyU4QVIV8WQmaVOYHioUFIHn+4gamVgsLC3NNtk18/rzl/eW98mu2zBlyCAvrdGkCwAhDBAAAAAAAAAAAAAAAaHOVmAkHHbc542hjxnGk3iXRRY4rWUdxL+DwMdXFy8b+LbbcCQgLO5KZM56ZrLCT328ZPP8m6ddPiCEAAAAAAAAAAGiRo/gnggAA1CdNUE0YO+AcxrRmVr8svh40xiQJC5tXE/T8SJKnSmZjykrZLwVud00xt2vuLe0O3TfoLs/tumiONAFghCECAAAAAAAAAAAAAAC0uee9Ono/oTySJPOmD0cXuAXpaO6V2bituvjGPX8SW+5YwZNRHrHOuSxZXSeHhWXVg7v93PiaTn6dAAAAAAAAAABARzuKfyIIAEB9sgifsY2zaFuSwKg8pAneQT5MgmfKzPtrW9g9q/jtFxZW8qYCt7tWfs0ye0sjgdu7rV51Wd25XRfNkeYz2PDtDgAAAAAAAAAAAAAAQHsr9kTvdwgLkyQNrYze77gxYUlHeDhWca4vrNubiC0/6sLCign75to5BCs2DCyjHtxlq+Jr+FwCAAAAAAAAAAAtwm/PAwCQUhbhWlbAH8GtCrWxDWFhrZYkKM6a1+hihYQlee0YFuaXArc7JutmmbnmrdHy7sCKIXc442uiFayEn1mWbJmsZosEAAAAAAAAAAAAAABALsza46ILCsXmDKTdrdkYvd92JDuir8bzsh1PmzGX/3p1eVPpwdh652hrKxpckayuncPC4lgZ3dTJw/E1nfw6AQAAAAAAAACAjkZYGAAAKSUNqoliG2fRtiSBUXkIC55C8yS59/NrwgLePLVfQ1fZnwrc7pr8mmVGS8FhYYPO8tyuieZJGthIECIAAAAAAAAAAAAAAEAHOO+K6P3F7uaMo82ZZauiCxxXciMmcKyUsx1Qu9mwtbo4XAnuH5vPsdqv1y5PJurZmM/u4BCsjCaWNBdcHV+U9PUEAAAAAAAAAADIGOkgAACklEUATdA5TItCu5IG7yA/Se69mffXtrB7VvErmY0pK1OhYWH5NcvsLY8Ebh90CQs7EiT9DLb4VgcAAAAAAAAAAAAAAKDtmeWrowsIC5szENH/5BamA8PCHOFhYcYYmY/cmrjeORpbiy5/cXxN1DPU9jKasPfk8+JrOvp1AgAAAAAAAAAAnexo/DEXAAANySKAxjZOwHkzalRIKYvwMzQmyb0382qskHvmtWFYWNkrBW53rWzDwnz51eXRUvDMkEPOcKbXRGtYCYMVw94nAAAAAAAAAAAAAAAA6CCEhc1Zuix8n+NKTkRP1hEeFiZJGj4mcelRGRbWNxBfY7dxz5WJ6bO0MrqpST5z7MU9wAAAAAAAAAAAAM1wNP6YCwCAhmQRQGNr8TlMi8LCrICxoLlMgr+SmXmNLnZIfUXtFxZW8qcCt7sm27Cw+UbLI4HbB92ImTXRMZIGNhKECAAAAAAAAAAAAAAA0BnMjX8Qvm/T9iaOpM09/IvwfY4ruUd5WNjSuckkP/7oyyJLHcuP3H8kMpt3xBc5bv4DyUtcmFhScaFzjlvTzwkAAAAAAAAAANBMhIUBAJBSUNBX6nMEhNgY05o/lq0WXRdzkgTFzQ8UCwus83wvszFlwfd9lfxS4D7X5NNUdLhySIe9Q4H7hhzCwo4ESQMbCUIEAAAAAAAAAAAA0AzGmE3GmOuNMe81xnzTGHPAGOPP+++hBs7tN/jfsZl9oQCQp+e8KnzfJdc1bxztbtNJ4ftsNzro6SgICzPWXI/dlWNfiax1jsa2yadfGV9DWJhM3GsQFcoHAAAAAAAAAACQs6Pxx1wAADQkaVBNFNs4i7YlCYzKQ1BwGZorySxz1rznIzQsTJXMxpQFTxX5Cg4wc022DTO+Pz3T42h5d2jNoDscug+dI2kIGEGIAAAAAAAAAAAAAPJijHmGMearxpg9ku6X9PeS3iDpIkn9LR0cAHQgMzgs83/+q3Zjd6/Mh74rs35LawbVjjZsDd/nuJIT0ZP1/9m783DJrrpe3J+1q04P6e70nAlCEkKCkESmACIqiKgggoCACCh4nQAFnO69zvycxevwu15UFBTBCQWDAgp4AZFJFBGRUTJA5jkd0un0cIZ9/+gmOX26dlWd0zV11fs+z3ly9lprr/U9u6rr7Dy9+rMXJ2tv2dCcflaSZOvSHTnr0JWNw9ozuG2ybOvjYZuTHBbWa5/lAPeLle/9+ebO/fsGtg4AAAAAAMBqHZtUAgB0NYgAmk4BXeMKC+s3eIfhKX3kt5Zl77tWw2u2WE/Whq75er6xr10NZ1PRnvmbO7aXlGxr7xjKmoxWvwGHlVxkAAAAAAAAYHgenOQbxl0EwDQp9/vylPcfHHcZk+3e92vu6xXytNC8l2uq3Hrj3d+ed+jSXLnurI7D2rO6tejU+yQ3XtXc35rgsLBe+nhoa99O2jS4uQAAAAAAAAZIWBgArFJTUNPq5jj2V3AZ4FPNVqPqM3iH4eknKG75mKbAuqVJCwtbat68N1e6PMXyONy2cEvH9q3tHWkVt77ToN8QsH5DxQAAAAAAAAAG6GCSa5KcO4S5/yXJs1d5zjVDqAOAMSmPe0bqP3nFsR0PuDilOrynpm46eWlpaHVNlEMH7v72nzZ9TeOwmQ0LO7Cve3+v0LlJNsiwsAc8fHBzAQAAAAAADNCs/jUXAKzZIMK1OoXYVH0ERg1Dy+3A2FV9bFI5KiysIbBuKZO1oWu+bn4a5bDCwvbMdw4L297eNZT1GL1+P4MFIQIAAAAAAABDNp/kP5K8Jsn3J3lYki1JvmdI6x2o6/oLq/xaGFItAIzDuRclj/yGo9uqKuXZP9z73Hqy9paNwjPv+OvGvnZrPPs1x63ne+WEDgsb4F7YL7t4cHMBAAAAAAAMUHvcBQDAiaYpqGlVc3QIsSljCu0SqDN+/bz2ZdlGlk5hc0myWC8OrKZBmK8PNfatq4YTFnbbws0d27fPCQubFk3v/5UG8VkNAAAAAAAA0OB1SV5V1/WBlR2ljweGAcBalFKSX35T8ue/kfrf3pPsPDXlCc9LedQTe5+8NFl7y4bmlHsnN12TJHnAwc82DmvP6taihz62e397gv95Sa97rAHeg5VWK/XAZgMAAAAAABicCf7bHACYTK0BPH2sU9hNNcinmq2CsLDxK+m9SWX5mKbXbCmTtaFrfmm+sa9dBhsWVh/ZmrNnvnNY2I727oGux/j0GwI2iM9qAAAAAAAAgE7qut4z7hoAmE1l3frkBT+Z8oKfXN2JS0vDKWjSPPhrkn/48yRJ3WVfXqs1o+GeJ23u3n/DVaOpYxgGHdj6qCcm//z2Y9vvdd/BrgMAAAAAALAK/gU9AKxSGcCvz1aHvM5+AqOGodVn8A7DU/oINaqWh4U1vAeX6skKC1uoDzX2zZW5oax528ItHdu3z+0aynqMXr/Biv2GigEAAAAAAAAAwNRbmqy9ZcNSHveMu7/fWO9vHNduz2hY2H3u373/YPM1m3gDfrjk8vfSUR73zIGuAwAAAAAAsBrCwgBglcoAnj7WKseG2IwrLKzf4B2Gp5/XfnlIXaf3T5Is1pP19Mf5er6xb66sG/h6S/VSbp+/tWPf9rawsGnRFJZ3zLiGPycAAAAAAAAAADBzliZrb9nQPPzxd3/7iP0faRy2VA3nYZeTrlRVyo/+n+YBiwujK2bVeuyzHMDe3qN8zVOTCx91dNsZ56Q89fsGuw4AAAAAAMAqtMddAADMolY59ldwGVNoVxWBOuPWV1jYso0sTa/ZUibr6Y/z9aGO7VVaQwhyqrN38fYspvNmpR1zuwe8HuPSFJa31nEAAAAAAAAAADD1liZrb9mwlHXrU2/eltx5ezbUBxvHLVTrR1jVZClP/b7Uv/GSzp2LJ/D7ZMBhYeWkzclvvC1555+m/vRHUu57QfINz0nZedpA1wEAAAAAAFgNYWEAMAadQmz6CYwaBoE641f1ERRXcs+YptdsqZ6sjTrzS53DwubKcJ7KeNv8LY19O9rCwqZFv0FzVcYTwAgAAAAAAAAwJPcppbw2ySOSnJFkU5I9SW5J8rEk70vyprqubxtfiQBMrBkJC0uSbN2R3Hl7diw2/0o8de7OERZ0Alns/LDOE8IQHthbTtqcPO2FKU974cDnBgAAAAAAWAv/gh4AxqDVIa+zjOnXcr/BOwxPP0Fxy8c0hYstZrI2dM3X8x3b56p1Q1lvz0LnsLC5si6bWluGsiajV6XPsDCfbQAAAAAAAMB0OSfJC5I8MMm2JHNJTjly/Nwkv5/kqlLKb5VSNo+rSAAm1NLSuCsYnYd9bZLk7Pkrc+6hy4/p3rFwax62+YZRV3ViOJFD5cp4HtgLAAAAAAAwSsLCAGAMWh1CbKoxbVSo3A6MXT9hYcvfH01hSUv1ZG3oWqgPdWyfK4MPC6uT7Jm/uWPf9vauFBuBpkarzydAtvoMFQMAAAAAAACYIpuS/FCSj5ZSLhjGAqWUU0opF6zmK8m5w6gFgFU4kUOgVql8188c/m+S373+JTlpad/dfXP1obzm+helNXfsA19Jsrgw7gqa9doDaI8gAAAAAAAwA/wtFwCMQasc+yu4n8CoYegUXMZolT4C25aPaXrNlurJ2tA1X893bB9GWFiS3LbQOSxsx9zuoazHeDSF5R0zzmcbAAAAAAAAMB0WknwgybuS/GeSa5LsTbI5yX2SfHWS70xyyrJzzk/yrlLKV9R1feWA63lxkpcPeE4Ahq2ux13ByJRdp+dLP+3X3fXe/OcVD8s7N31DFko733jnP+R+81ck7R8ba40Ta5LDwnrp8yGUAAAAAAAAJzJhYQAwBlWHTQn9BEYNg0Cd8St9PNFueZhcU1jSYiYtLOxQx/Z2mRvKenvmb+nYvn1u11DWYzz6/czq9DkLAAAAAAAAcIL56SSvruv6pob+/0jyllLKz+RwgNf/TO7eYHBakktKKRfX9QwlxADMurPun1z5X8e2P3d2w7HOnr8q33/7a45ubA9nD9sJY+vO5Iu3HtNcnvbCMRQzIH3swwQAAAAAADjR+Rf0ADAGrQ55ncvDoEap1RA8xehUfdySLQ8UawpBWqonKyxsYWm+Y/tctW4I7/Y6ty00hIW1hYVNk1afYWE+2wAAAAAAAIATXV3Xv9QlKGz5uAN1Xf9Ekpes6Hpokm8fSnEATKTyzJW/Co60f+NzR1zJZCut2Q4LK8962bGNVZU89umjL6ZfvcLAhIUBAAAAAAAzQFgYAIxYleqo4Kcv6dQ2Ck3BU4xOP0FxZdltW1NY0lKWBlbTIByqD3ZsnyvD2Wi1Z/7mju075nYPZT3Go/T5vzBVn6FiAAAAAAAAANOiruvfSfKWFc0vHvAyv5vkwlV+fcuAawCgyZO+K1kRDFZ+5H+nnPPAMRU0Jk/4ju797dkOC8u3vSx59JPuOW61Un7mj1N2nT6+mo6XvbAAAAAAAMAMaI+7AACYNa3S+ddvvwE4g1ZFoM649RMUtzxQrOk1W6wXB1bTICzU8x3b20MIC5tfms/exS927NvRFhY2TZrC8lby2QYAAAAAAADMqF9J8pRlx19RStlW1/Xtg5i8ruubkty0mnPG9QA9gFlU2u3kp/4wef5PJF/4THLBI1N2nDruskZvZ4+fuT3b/4yirN+Q/MpfH36PXHt5ctFXpmzdOe6yjo/7DQAAAAAAYAbM9t9yAcAYNAXdVBnPRoV+g3cYnn6C4qplT72rGl6zpQkLC5uvD3VsX1etH/haexZuaezbPrdr4OsxPlWfwYotT4oEAAAAAAAAZtO/JtmTZPuR41aSByb50NgqAmCkSinJmecd/ppR5dQzU3cb0B78Ay9PNKWU5JwHHv6aBsLCAAAAAACAGeBf0APAiLUasjrLmIJtmoKnGJ3SR1Dc8jFNIUhLmbCwsKX5ju3tMviNVrfN39zYt70tLGya9PuZ5bMNAAAAAAAAmEV1XS8luWpF8+5x1AIAY/OV39S9X1jYCaf0CgPzcEkAAAAAAGAG+BsRABix7XM7O7b3Exg1DJXbgbHruYklR78/qnQOQVqslwZW0yAs1Ic6ts+VdcmA3+97Fm7p2L65dXLWVesHuhbj1Wp4/6/U9OcEAAAAAAAAYAbsX3G8cSxVAMCYlFPvk1z4Fc0DWp0f+soJrI99mAAAAAAAACc66SAAMGIP2tx5A8q4wsJaRaDOuPUT2FaWjakaXrOlenFgNQ3CfD3fsX2uDP6pjPuX9nVs397eNfC1GK+m9/9KPtsAAAAAAACAGbbyL8s7P4ELAKZY+Zpvae5sDX4PG2MmLAwAAAAAAJgBHokDACNSpZVHbX1cnrDzmR37SxlPhmcVgTrj1k9QXFm2kaXV8JotZdLCwg51bG+XdSOrYfucsLBp0+rzs7Ia02cqAAAAAAAAwDiVUnYlue+K5uvGUQsAjNX6jc1969aPrg4Go9Xjn77YLwYAAAAAAMwAYWEAMGQP2vwV+cYdT89p68/Mhqp580k/gVHDUBVhYeNW0nuTyvL3R1MI0mI9YWFhS53Dwuaq0T2VcUd798jWYjT6DTgUhAgAAAAAAADMqGcnR21EuDHJZ8ZUCwCMT7ewsG59TKZ2j32HZTx7cAEAAAAAAEZJWBgADNk5G87P2RvP7zmuGlNYWMvT1Mau9LFJpVq2j7cp4G0pSwOraRDm6/mO7XNl3chq2D63a2RrMRpNYXkrtQQhAgAAAAAAADOmlHJqkp9e0fzWuq7rcdQDAGPVNSxsw+jqYDDmeuw7FBYGAAAAAADMAOkgADAhyph+LVcRqDNupY+guOWBYq2G12ypXhxYTYOwUB/q2D7SsLD27pGtxWj0+5nlsw0AAAAAAAA4UZVS7l9KefIqzzktyduSnLqs+VCSXxlkbQBwwljXJRBsXZcgMSZTW1gYAAAAAABAe9wFAACHlTFtVKiKQJ1x6ycobvmYptdsccLCwubr+Y7tc2Wur4C0Qdgxt2sk6zA6/X5mVUUuMgAAAAAAADA8pZR7p/MezNNWHLdLKWc3THNnXde3dGg/PclbSimfSPKnSd5c1/WlDXVsSfL8JD+do4PCkuQX67q+omFtAJhu5z+4c3urlZx74Whr4fjNdQkLq6qx7cEFAAAAAAAYJWFhADAh+gmMGoZWhIWNW9XHJpXl4VpVw3tlKRMWFrZ0qGN7u+rxhL8B2t4WFjZtWn2GgDX9OQEAAAAAAAAYkA8kOauPcfdK8vmGvtcleUGXcy9K8ookryilfDHJJ5PckmRvks1JzkzyoHTeC/oHdV3/Qh/1AcBUKqedlfpRT0z++e1HdzzuWSkn7xhPUaxdu8u+w6Wl0dUBAAAAAAAwRsLCAGBCLA+DGqWqz+Adhqef1375U+9apXPA21I9WRte5uvOYWFzZW4ktVapsrW9fejrMFpVnwGHVcOfEwAAAAAAAIAT1NYkj+5j3L4kP1zX9auHXA8ATLzyC29I/fs/nXz4HUmrnXzVk1O++2fHXRZrMTe6h5QCAAAAAABMKmFhADAhqjKusDCBOuNW0juwrVo2puk1W8ziwGoahPl6vmP7XFmXg/WBoa+/rb3T+3sK9fuaNoXqAQAAAAAAAJwAPpPkl5M8JslDk2zs45zPJfnjJK+u6/qW4ZUGACeOsn5Dykt/PXnpr4+7FI6XsDAAAAAAAABhYQAwKfoJjBqGVgTqjFvpIyiu5J4xVcNrtlRPVljYQn2oY3u7zOVghh8Wtn1u19DXYPT6/cxq+nMCAAAAAAAAMAh1XZ89xLlvTPJTSVJKqZKcl+TcJPdKsi3JhiT7k+xJcn2Sj9R1ffOw6gEAGDthYQAAAAAAAMLCAGBSLA+DGqWqCNQZt36C4g7v/T2sVTqPX6qXBlbTIMwvzXdsX1etz77FvUNff0d799DXYPSqhvf/WscBAAAAAAAATLK6rpeS/NeRLwCA2SQsDAAAAAAAQFgYAEyKUsYUFtZHUBXD1U9Q3PIxVToHvC3U87lj4faB1XU86ixlMQsd+9plbiQ1bJ8TFjaN+g04bDX8OQEAAAAAAAAAAOAE0xYWBgAAAAAAICwMACZEGUNoV5VqbCFl3KPq4zU4KiysISzpYH0gP375CwZV1tDMldFs2tne3jmSdRitfgMO+w0VAwAAAAAAAAAAYMJt3DTuCgAAAAAAAMZu9KkkAEBHy8OgRkWYzmToJyhu+ZjWCf66zZW5kayzY273SNZhtPp9/5/of04AAAAAAAAAAAA44tyLmvta7dHVAQAAAAAAMEbCwgBgQlRl9L+WWxGmMwn6CYqryj1jqhP8Fm6uWjeSdba3hYVNo37C9ZIT/88JAAAAAAAAAAAAh5X2XMoP/lrnvtd+ZMTVAAAAAAAAjIdHqMyQUsrGJA9OrtH0bgAAIABJREFU8oAk25NsSHJHkpuS/HuSy+q6rgewzlySRye5T5LTk9yZ5LokH6vr+gvHOz/AJHjmKd+TN970mr7GXnzyV/c1bmt7R1ppZzELHfvbpZ2FunNfJ5taW7JvcW/XMTvmTul7Poann6C45YFiu+ZOHWY5Q9Uu7Wxt78jOHu+9k1vbc8finuNaZ9e6E/c60awqVXa0d+e2hZu7juv1HgMAAAAAAAAAAODEUb7tZcnZD0j9Y0++p+0vP5tyxjljrAoAAAAAAGB0eidTcMIrpTyqlPKXSW5P8qEkf5jk15P8YpLfTvKGJJ9LcnUp5edKKTvWuM7uUsrvJrkhyT8meV2SX03yyiSXJPl8KeWDpZRvPd6fCWDcLtr08MyVdT3Hnb3hvOyY293XnBuqjXngpod07KtS5XmnvSStVeR8Pnnnc3LK3Bldxzxsy6P7no/hqdLqOaYsu23bte60nLn+vsMsaWgu2HRxNlQbc+7GB+Tk1raOY7a3d+Xpp7zguNZ58OZHZUO18bjmYHI9tMdn17b2zpyz8f4jqgYAAAAAAAAAAIBRKI/8hlTvP3j3l6AwAAAAAABglggLm2KllHYp5ZVJPpjkWUl6pdrcK8nPJvl0KeUJq1zriUk+meRFSbqFjX1lkjeVUv60lLJpNWsATJJd607Ni+71U9nRPhwEtrm1Nc8+9YX5ipMfl3aZS0nJeRsvyIvu9VOrmvcFp/9wLtx08VHhUdvaO/PdZ/z3POLkx+R77/U/sq298+6+KlUeuOmh+dH7/GrOWHdWksOhY9+089vy1duekJec+f/l7A3nHbPOurI+j932zXnCzmeu5cdnwKrSR1hYKUcdv/jeP5P7bXxgSkrDGZOlSpWLNj08zz/9ZUmSuWpdXnbmL+Re688+atyZ6++bl535C3nEyY/JBZsetqZ1HrT5K/Kc0148iLKZUN+y+3l59Nav7xjaeOb6++aHzvyFtEr/4YoAAAAAAAAAAAAAAAAAAAAwyUpd1+OugSEohxNF/irJMzp0fzbJZ5LsT7I7ycVJtq8YcyjJt9R1/Y4+1npsknfm6DCyOsm/J7kiybYkD0mya8Wpb03y1Lqul3qtMUyllAtyOOgsSfLJT34yF1xwwRgrAk4kdV3njsXbs6W1NVU5nMF5aOlgFur5nNTavOZ59y/eldsXbs1cWZedc6ccFRRV13VuW7gph5YOZVt7Rza27sle3LvwxZzU2pzWivCpOxfuyN7FLyZJSkp2rTs17TK35voYrPfc9pa86eY/auwvqfI797+kY9++xb25Y+H2YZU2MNvndmVDtbFj3x0Lt2ff4t5sbm3Jlva2u9svu+tT+c2ruwfu/bfTf/SowLFu6zB95pcO5Zb5G+8+XvkeAgAAAACAWfSpT30qF1544fKmC+u6/tS46gEAe/QAAAAAAAAAgGkw7v157VEtxMh9T44NCntfkh+o6/qTyxtLKe0k35Hkt5JsPdK8LsnrSinn13X9xaZFSin3TnJJjg4K+2CS763r+jPLxq1P8v1Jfj3Jl9JpnpzkF5P85Op+NIDJUUrJ1vbReYvrqvVZl/XHNe/G1knZ2Dqpcc2dc6d27NvS3tqxfXP75Gxun3xcNTE81Ypwt5VKSmPfptaWbGptGXRJI3Vye1tO7hDw1Ou6JMnp68/M6evPHEZZnADmqnVefwAAAAAAAAAAAAAAAAAAAKZeNe4CGJqVAVzvS/L4lUFhSVLX9UJd169N8vgkB5d1nZLkhT3W+bkky1NyPnRknc8sH1TX9cG6rn87ybNWnP8jpZSzeqwBAFOtVyhWVZrDwqZZld5hYcXtLAAAAAAAAAAAAAAAAAAAADDlpCtMoVLKRUnOXtH80rqu57udV9f1vyV59YrmJ3dZ57wkz1/WdCjJC+q6PtBljb9J8rplTeuTvLxbXQAw7Vo9QrFmNRCr1SNELUlKZjNIDQAAAAAAAAAAAAAAAAAAAJgds5k8Mf3uu+L46rquP97nuX+74vi8LmOfkxyVbnJJXdeX9rHGK1YcP6uUsqGf4gBgGlWl+y3ZrAZi9bou/Y4BAAAAAAAAAAAAAAAAAAAAOJFJV5hOm1YcX7OKc69ecby9y9inrTh+bT8L1HX9mST/sqxpU5Jv6OdcAJhG1VHZm8ea2bCwHtclSYrbWQAAAAAAAAAAAAAAAAAAAGDKSVeYTjesON6winNXjr2t06BSymlJHrSsaSHJB1exzntXHD9xFecCwFRplR5hYWU2b9l6XZckqWY0SA0AAAAAAAAAAAAAAAAAAACYHbOZPDH9PpLk4LLjB5RSNvZ57sM6zNXJhSuO/7Ou6319rpEkH1pxfMEqzgWAqVL1Cgub0UCsKr3DwkqZzWsDAAAAAAAAAAAAAAAAAAAAzA5hYVOoruu9SV6/rGlDku/udV4ppZXkB1c0v65h+ANXHF/Wd4GHXd5jPgCYGVWPW7Je/dOqKr1/7jKj1wYAAAAAAAAAAAAAAAAAAACYHdIVptePJ/nCsuNfK6U8vmlwKWUuyR8keciy5vck+euGU+634viqVdZ35YrjnaWU7aucAwCmQqu0u/aXUkZUyWRplVbPMSWzeW0AAAAAAAAAAAAAAAAAAACA2dE9mYITVl3Xt5VSvjbJJTkcALYxyTtLKW9K8qYkn02yP8muJI9K8v1J7r9sin9N8oy6ruuGJbatOL5plfXdWUo5kGTDsuatSfasZh4AmAa9QrFmNRCrSh9hYUX2LQAAAAAAAAAAAAAAAAAAADDdhIVNsbquv1BKeWSSFyT5viQPS/KsI19Nbk3ym0n+V13X813GbV5xvH8NJe7P0WFhW9Ywx1FKKack2b3K08493nUB4HhU6R54VXr0T6teIWrJ7AapAQAAAAAAAAAAAAAAAAAAALNDWNj0ax35OpikTromalyd5GeTvKFHUFhybFjYgTXUtj/J9i5zrsWLk7x8APMAwMhUPUKxSpnNQKxe1yVJKmFhAAAAAAAAAAAAAAAAAAAAwJSrxl0Aw1NKeXSSzyT5vSSPTu/X+8wkr01yVSnle1a5XL36Ctd0DgBMnVZ6hIXNaCBW1cetanE7CwAAAAAAAAAAAAAAAAAAAEw56QpTqpTydUneleTsZc3XJvnxJA9Jsi3JuiSnJXlCktclWTgybneSV5dS/qCU0pROcueK441rKHPlOSvnBICZUJXuYWH9hGZNo1aP65IkzbcqAAAAAAAAAAAAAAAAAAAAANOhPe4CGLxSyu4kf5Fkw7LmtyZ5Xl3Xd6wYfmOSdyZ5ZynlVUnelmTnkb7vTXJ5kld0WGZSw8J+N8kbV3nOuUn+dgBrA8CatEr3MLBZDcQqfYSklczmtQEAAAAAAAAAAAAAAAAAAABmh7Cw6fQjSXYvO/5skmfVdX2g20l1XX+4lPJtSd61rPnlpZTX1nV904rhX1xxvDurUErZnGPDwm5fzRydHKlzZa29ajneZQHguFRp9ejvHZo1japSpaRKnaXGMf0EigEAAAAAAAAAAAAAAAAAAACcyKQrTKdnrjh+Ra+gsC+p6/rdSd6/rGljkmd3GHrpiuOz+i+v4/jb6rres8o5AGAqVKV7WNgsB2K1SvefXegnAAAAAAAAAAAAAAAAAAAAMO1mN3liSpVSNiU5d0Xzu1c5zbtWHD+yw5jPrDi+3yrXuO+K40+v8nwAmBqtXmFhMxyIVaX7tanczgIAAAAAAAAATLab3pf8+48mb1iX/HlJ3vukZP/1464KAAAAAAAAAE4o7XEXwMBt69B2wyrnWDl+V4cxn1xx/OWllJPqur6rzzUe3WM+AJgZvQKvSmY4LKy0krq5f5avDQAAAAAAAADAxLv095KPvPjotuv+PnnzGclTPp9sPnssZQEAAAAAAADAiaZ7MgUnots7tG1a5RybVxzfuXJAXdfXJ/nPZU3tJF+1ijUeu+L47as4FwCmSlVaXfvLDN+ytdLj2hRhYQAAAAAAAAAAE2nxUPKx/9nc/6lfGl0tAAAAAAAAAHCCm93kiSlV1/W+JHesaH7IKqd52IrjGxrGvXnF8Xf1M3kp5cuSPHJZ074k/9BfaQAwfXoGYmV2A7FagtQAAAAAAAAAAE5Mez6WLOxt7r/8NaOrBQAAAAAAAABOcNIVptN7Vxx/X78nllJOS/KUFc3vbxj+Z0kWlx0/vZRyXh/LrHxM3F/VdX2gzxIBYOpUPQKxqjK7YWG9rs0sB6kBAAAAAAAAAEy0bkFhAAAAAAAAAMCqCAubTn+54vjbSinP63VSKWV9kj9JsnlZ851J3tlpfF3XlyZ53bKmdUn+uJSyocsa35LkBcuaDiX5uV61AcA0q0r3W7Iyw7dsVY+fXVgYAAAAAAAAAMCE2nfVuCsAAAAAAAAAgKkxu8kT0+0NST6+7LgkeX0p5X+XUk7vdEIp5WuTfDjJ41d0vaKu6z1d1np5kuX9X5nkXaWUL1sx//pSykuSvHHF+b9R1/WVXeYHgKnXSqtr/ywHYrVK87UpKSlldq8NAAAAAAAAAMBE+/zreo+p6+HXAQAAAAAAAABToD3uAhi8uq6XSinPSPLBJKccaS5JXprkB0sp/5nkiiT7k+xI8pAkp3WY6u+TvKLHWteUUp6e5J1J1h1pfnSST5dSPnpkna1JHppk94rT35bkZ1b30wHA9Km6BGIlSSmzm+/a7drMcogaAAAAAAAAAMDEW39K7zEHbko2njr8WgAAAAAAAADgBCcsbErVdX1ZKeUxSf4kycXLuqokDz7y1Xh6klcn+aG6ruf7WOu9pZSnJfnj3BMIVo6se3HDaX+R5Hvrul7sNT8ATLsqPcLCZjgUq9u1KZndEDUAAAAAAAAAgIl39Zt6j3nzacnTb0w29BEsBgAAAAAAAAAzTMLCFKvr+rNJHpXk+Un+OYdDwLrZn+TPknxlXdffX9f1/lWs9fdJLkzyqiR7ugz9cJJn1HX9nLqu9/U7PwBMs1bpfks2y2Fh3a5NKbN7XQAAAAAAAAAAJtpnf6v/sZecmiwtDK8WAAAAAAAAAJgC7XEXwHDVdb2Q5PVJXl9K2Zrk4iTnJNmWZH2SvTkc7vXJJJ84Mn6ta92U5EWllJcleXSSs5KclmRfkmuTfKyu688fx48DAFOp9MhvrXqEiU2zKq3GvlkOUQMAAAAAAAAAmGiX/t7qxl/zt8l9vnU4tQAAAAAAAADAFBAWNkPquv5iknePYJ1DSf5x2OsAwLQopaRKK0tZ7Nw/w6FYVWkOC6t6hKwBAAAAAAAAADAGC3cley9d3Tkfeq6wMAAAAAAAAADoQsICAMAEaHUJxZrlsLCu16XM7nUBAAAAAAAAAJhYC/tWf87SwcHXAQAAAAAAAABTRFgYAMAEqLrclpUyu7dsXa/LDIeoAQAAAAAAAABMrI//1NrO23/9YOsAAAAAAAAAgCkyu8kTAAATpCqtxr5ZDsXqfl3cygIAAAAAAAAATJzPv35t51371sHWAQAAAAAAAABTpD3uAgAASFrCwjpqpct1KbN7XQAAAAAAAAAAxmr/9cn1/5BsOjtZvodj35XJ0sG1zbn30oGUBgAAAAAAAADTSFgYAMAEqLqEYlWpRljJZKm6hqjN7nUBAAAAAAAAABiLpfnkDeuGM/cd/zWceQEAAAAAAABgCkhYAACYAFVpvi0ry5++OmO6XZcqs3tdAAAAAAAAAADG4t2PW/u5j3lrcurXNfdf+9a1zw0AAAAAAAAAU05YGADABGiVVmNfmeFbtla6XRdhYQAAAAAAAAAAI3XzB9Z+7ub7JV/3ruTMZzSP2Xfl2ucHAAAAAAAAgCk2u8kTAAATpBKK1VHVLUStuJUFAAAAAAAAAOiqrpPbP5lcfUmy//rjn2ut2puSzWcf/n7nw5vHXft3Sb209nUAAAAAAAAAYEpJWAAAmADdQ7FmOCxMiBoAAAAAAAAAwNosHkre/63J3190+L9vvldy2avXNtfSYvKv37f2Ws5+XtLacPj7s57dPO7ffiB531OTxYNrXwsAAAAAAAAAppCwMACACdDqcltWZviWrVW6XRdhYQAAAAAAAAAAjS79neSaNy9rqA8Hft35+dXPddVfJpe/Zm11PODHkotfec/xpvt0H3/tW5P/+u21rQUAAAAAAAAAU2p2kycAACZIVVrNfTMcitXtupQuQWIAAAAAAAAAADPvitc2tP/x6ue67u1rq2H3VycP+V9J1T66ff3uHuu9bW3rAQAAAAAAAMCUkrAAADABuodizXBYWISoAQAAAAAAAACsye2f6Nz+mV9f/Vz7r11bDee9sHP7zod3P++m961tPQAAAAAAAACYUsLCAAAmQKtLKFaZ4Vu2VrcQtRm+LgAAAAAAAAAAa7Z41yrHH0hu/MfuY05+QOf2M57Uuf38l66uBgAAAAAAAACYcRIWAAAmQFWab8tKyggrmSxdr0uZ3esCAAAAAAAAADAyV72xe/8z9iRP+mRy5tPvadtwWvK0G5J1Wzufc8Y3Jid/Wfd5lxZXVycAAAAAAAAATLH2uAsAACCp0mrsKzOc79r9uggLAwAAAAAAAAAYuhve3dx38SuTddsOf//Vf726ec95fvLxn2ju/+Inku0PXt2cAAAAAAAAADClhIUBAEyAVukSilVmNxSr63WZ4RA1AAAAAAAAAICRufatzX27v3rt857xTd3Dwg7dvva5AYDVufZth78O3JBUG5LdX5Xc9zuTuZPHXRkAAAAAAHCEsDAAgAlQdQnFqjK7YWFVuoWFze51AQAAAAAAAAAYiav/Jjl0W3P/tovWPve2i5Kzvj258i869y/ctfa5AYD+fepXko//5NFtV/1l8oU/Sx73D8nclvHUBQAAAAAAHKUadwEAACRVl9uyMsO3bFVp/tmrIiwMAAAAAAAAAGCo3v+05r4LfzY5nv0bpSSP+pPm/sX9a58bAOjP/J3JJ17eue/WDydXXzLaegAAAAAAgEazmzwBADBBWqXV2FdmOBSr63VxKwsAAAAAAAAAMDxL89371+04/jWqVrLx9M59wsIAYPhu+2j33/k3f3B0tQAAAAAAAF1JWAAAmABVuoVizW5YmOsCAAAAAAAAALAG17y1e39d955j4a7u/ac9vv96umlt7NwuLAwAhm/xwPH1AwAAAAAAIyMsDABgArRKt1Cs2b1lq7pdlzK71wUAAAAAAAAAoKv527v3Lx3qPcfNH+jev/WB/dfTjbAwABijpe7d9eJoygAAAAAAAHqSsAAAMAG6h2KVEVYyWVpdbldLZve6AAAAAAAAAAB0tTTfvf/gLb3n+Oxvdu8f1J6W1kmd24WFAcDw1cLCAAAAAADgRCEsDABgArTSHBZWzfAtW9cQNWFhAAAAAAAAAACdlXb3/juv6D3H/uub+879ntXV0017Y+f2hbsGtwYA0JmwMAAAAAAAOGH02AkAAMAoVKU5EGyWQ7G6hYV1u2YAAAAAAAAAADOty56LJMnSwd5z3HlZc9/9X7q6erppNYSFHbx5cGswWy591eGv/dckpz4uedhvJxtPG3dVAKN317XJ39z72PaNpyenPzF52P+fpEdY2NKhoZQGAAAAAACsnoQFAIAJ0C0Uq5TZDQtrpct1meEQNQAAAAAAAACA47Kwv3v//N5kab5zX2kl2y4aXC1NYWGX/t7g1mB2XPr7yUdelNz+8eTgrclVb0ze9ZhkUdgNMGMW9ncOCkuS/dcnV/xR8k9PSerF7vNc+5bB1wYAAAAAAKyJsDAAgAnQPRRrdm/ZqtL8swsLAwAAAAAAAABosPPhycW/09y/dKD7+Ve9qbnv4leuraYmi12Cy+64dLBrMf0uf/WxbXs/l9z8vtHXAjBON76n95ib3pvc8V+9x/UKGQUAAAAAAEZidpMnAAAmSFW6hYXNbihW1S1ErUuQGAAAAAAAAADATDv5/OT8Fycn3btzf6/Qjxv/sblv31Vrr6uT69/Z3LfnY4NdaxgW9iV3XpHc9tHk4G3jrobbPtq5/co3jLYOgHH7tx/ob9w1f9N7zJ2XHV8tAAAAAADAQLTHXQAAAEnVJcN1lsPCWkLUAAAAAAAAACZeKaUk+e9JNixrfn1d1184znnPSfIdy5ruquv6149nTpg5rY2d2xd7hIXddWVzX72w9no6WbcjOdQQsrU0P9i1Bmn+juRD35Fc+5Zj+552fbLxtNHXNOuWFpv79l09ujoAJsG+Lr/Ll7v1X3uP+fsvTx72f5L7/+Dx1QQAAAAAABwXYWEAABOgWyhWVZqDxKZdJSwMAAAAAAAA4ETwnCS/mqQ+cnzJ8QaFJUld158vpVyU5OlfaiulXFHX9SXHOzfMjLWGhR24qblv0AFeux+dXPvWzn23fzzJcwe73qB88DnJdX/Xue/NpyfPqTv3MTwLdzT33fAPo6sDYNwW7hr8nB99SbLtwuTUxw5+bgAAAAAAoC+zmzwBADBBhGJ1VnW5Xe3WBwAAAAAAAMBolFKqJD//pcMklyZ5/gCXeEGSy4/MXZL80gDnhunXGBbWJUSkrpO7rm3urwb8rOL2pua+Wz8y2LUG5dCe5Pp3dB9z5xWjqYV7XNMQOgcwa258z3DmvfT3hjMvAAAAAADQFwkLAAAToJVuYWGze8vW6haiVmY3RA0AAAAAAABggjw+yTlJ6iNfP1HXdZcUotWp63pfkh9f1nR+KeVxg5ofpt667Z3b913VfM6hPcnC3ub++37X8dW00vkvbe7bcr/BrjUod34hqRe7j/n0ryX/+qLkitcn83eMpKyZt+/K5r71u0ZXB8C47b1sOPNe9VfDmRcAAAAAAOjL7CZPAABMkKo035bNcihW1S0szK0sAAAAAAAAwCR43rLvP1rX9ZsHvUBd15ck+eiypucOeg2YWpvP7dy+99Lmc7r1rd+VnPyA46tppZ2PaO67/DVJXQ92veNVLyX/8t29x132+8llr0o+/PzkjVuTT/z88Gubddf9XXNfaY+uDoBxWlpM/v2Hhzd/vTS8uQEAAAAAgK4kLAAATIAq3UKxZjcsrNXlunQLWAMAAAAAAABgZJ6w7Ps/HOI6X5q7JPmmIa4D02XLeZ3b936u+ZyPvKi574kfTwb94LuqlZzxzc393QKgxuGyP0j2fGz1533i5cl1bx98PRxW18mt/9Lcv7h/dLUAjNMX/nS481/26uHODwAAAAAANJKwAAAwAVqlSyjWDN+yCQQDAAAAAAAAmFyllLOS7FrW9LYhLrd87lNKKWcOcS2YHief37n9rmuShbs69x24oXP75nOTk84YTF0rnXz/5r5r/nY4a67V8dQzaT/LNOkWgJcICwNmR7ewsM33Tb59KXnqNcnXvGVt8/tdBgAAAAAAY9MedwEAACRVl7CwMuinsZ5AqjRfFwAAAAAAAADG7kFH/lsnubyu62uHtVBd19eUUi5Lcr8jTQ9OcvWw1oOpseW85r47L0+2XXRse73Uefz+6wdTUyfbvry5766hfbR0t7AvufyPkuv+7nB9G89ISpVc/461z3nrRwZXH0fr9T5ZOpQsLSaV/UjAlLv5A819d16RlJKcdK9k3faktSFZPLC6+a9/ezK/N5nbcnx1AgAAAAAAqyYsDABgAlSpGvtKZjcsrNUlRG2paWMqAAAAAAAAAKOye9n3141gvetyT1jYKSNYD058m85OSjupF47t23vpsWFhSwvJgRs7z3W/7x14eXe71zc3913/9uGt22TvZclblwWtXf/Owcy7598HMw/HOnRb7zGL+5Nq8/BrARiXxQPdw792f9U937dPSs75zuSyP1j9Om88OXnSZ5KtX7b6cwEAAAAAgDVrTqUAAGBkuoVilRm+Zau6XJc69QgrAQAAAAAAAKCD7cu+v2EE6y1fY9sI1oMTX9VONp/TuW/vpce2XfkXzXOd/oTB1NTJ+h3Jud/d3H9oz/DW7uSdjxze3LU9L0Px6Vf0HrNw5/DrABinmz/QvX/rhUcfX/w7yQN/ItlyflKtT1obDweKfWWX+4Ev+fuLeo8BAAAAAAAGqj3uAgAA6B6KVVJGWMlkqboEpQkLAwAAAAAAABi7dcu+H8WTsJavsX4E68F02HJe52CwTm3XvaN5nvZJg6upk61dQkdueHdyn2cMd/0vmd+bHLptePN/8dPJtguGN/+sOnBj7zG3/2ey8bTh1wIwLnd8bnXjq3by4F8+/NWp7wPPbD63XkgO3pqs37m6NQEAAAAAgDUbxeYcAAB6qNIlLKzM7i1bq0uIWl0vjbASAAAAAAAAADq4a9n3u0ew3vI17mocBRxty3md2zuFhe2/pnme7Q8eTD1Ndj6iue/gLcNdO0nuuiZ539OTN5483HVG8bPMormtvcf8x48n17w1WVoYfj0A47Bw5+Dm2vnw3mP2XTW49QAAAAAAgJ5mN3kCAGCCtLoEglUpI6xksnQLUatTj7ASAAAAAAAAADq4Ydn3Z41gveVr3DiC9WA6NIWF3fG5o48X9ic3va95nrkhh2h1Cwvb8/Hhrr3n48nfnJlc8+a1nX/Wc5JNfX4MLso6HLi6Tr74yd7j9nwsed9Tkg89V2AYMJ1u/cjg5tp0VnLWt3cfc+3bBrceAAAAAADQk7AwAIAJ0C0Uq8xyWFjpFha2NMJKAAAAAAAAAOjg8iP/LUnOKqXcb1gLlVLOTXJ2h7WBXrac37n9wA3J/N57jq9+U/McD37FYGvqpGol2x7Uue+yVw137fd9y+rGz52cbLsoOfVxyYN/LXnU65KnfD6591N7n3vT+9dWI832/Mfqxl/1V8n17xxOLQDj1O13+Vo86vXd+z/xs4cDGwEAAAAAgJFoj7sAAAC6h2KVMrv5rq0uP/uSDSYAAAAAAAAA4/bxJIeSzB05fkqS3xzSWssTeOaTrDIZBmbYlvOa+/Zelux4yOHvb3xP87i5LYOtqUlrw2jWWa6uk31Xru6cp1yRrN95bPvXvPme7//q5GRh77FjFvcZzLkWAAAgAElEQVSvbi166/bebfKJlyf3etLgawGYJlU7uc+zDocsNrnzimTLuaOrCQAAAAAAZpiwMACACdDqFhaWMsJKJkuV5utSR1gYAAAAAAAAwDjVdX2olPJPSb7+SNP/KKX8fl3X+wa5TillU5L/ntz9F8Xvq+v60CDXgKl20plJtS5Z6vDHZu+l94SFHbi5eY5THjOc2lYax0P1OgV6dbP1gs5BYf3OO45AtGl36PbVn3PbRwdfB8A4LS0OZ96znt09LGzf5/sLC7v5n5Mr/zy547/uaSutZMdDk/v+N4FjAAAAAADQhzH8jToAACtVXW7LZjosrEuIWp2lEVYCAAAAAAAAQIO/OPLfOsnuJL82hDV+Nckpyd1/gf7nQ1gDplfVSjY3BHBcfcnh/y4tJtf9XfMcJz9g8HV1cv4PNvftu3Lw6y0tJu/9ptWd86Bf6W/cprM7t9/8/tWtR283f2DcFQCM32rDL/t1xhO797/n65NDe7qPufbvknc/JvncK5Mb/u89X9e/I/nULyf/99FHh4gBAAAAAAAdCQsDAJgA3UKxyjiemDohWukSFlbXjX0AAAAAAAAAjMyfJ7n+yPclyQtLKT85qMlLKT+e5AdyOIwsSW6MsDBYvS3ndW6/6i8P//fWf2k+98KfScqIHnbXFLCVJB//qcGvd+uHk5s/2N/Y81+SfONHkns/ub/xOx/Rub3f9ejfTe8ddwUA43fdO4Yzb+v/sXfnYXKVdfr/70/1np3ubEAgIWEXlEUWQSSICCKLgCO4IO6jP7dxwXFGR8d1FGf8juio46AiKir7IqAghLBKCEsgYUnIQvZ97XSnt3p+f1R1urr7nFPnVJ2qU1X9fl1XXVX1rJ8qYldMPX2fZuldHcFjXr0huH/hN6V0j3//ng2ZIDEAAAAAAAAAABBo5CZPAAAAVJCgUKyUynTYsgKlAoLSnAgLAwAAAAAAAAAAAICkOee6Jf2LMkFhLnv/LTP7o5ntU+i6ZjbBzK6X9J2cdZ2kf83uCSCKuhbv9jEHZ+43PeI/t7E1/np89wr4sbHi9/HvF/S6JWnSqdJ7XOb2+qultteHX7vXJ1ilYUL4NRBO0J8bABgptj+Xf8ykUwtbu74l+Gdt0OdpX5e0ZV7+PfJ9JgMAAAAAAAAAAMLCAAAAKkHK/MPCRnIkVvD7ki5jJQAAAAAAAAAAAAAAP8656yTdrsGBYf8gaYmZXWVmh4Rdy8wONrOrJC2RdGl2LWXXvdM5d22ctQMjhl/AR/srmftdi/3nTj0r/nr8jDu8fHtJ0vLrgvtnfazwtRvGebf37Ch8TXjr3pZ0BQCQPNcT3J9qkg64pPD1p77Fv2/F76Te3d59254Nt37YcQAAAAAAAAAAjGCEhQEAAFSAwFAsN3JDserk/76kR3SMGgAAAAAAAAAAAABUnMslzdfgwLBWSV+Q9JKZrTazW8zsO2Z2pZl9NHv7opl928xuNrNVkl7OzmkbstbTkt6XwOsCakNQwEf7cmnpL/37xx8Zfz1+zIL7194T314rrpd2vODf39gqTb+08PWnX+bT4aR0nkAXhLfz5aQrAIDK0Nvp32cp6eRfSfUtha//uv8I7r9hjDT0vOvuldK9J4ff44kiQjoBAAAAAAAAABgB6pMuAAAAAFJdQIarG8GhWISoAQAAAAAAAAAAAEB1cM61m9mZkq6VdJG098vu/uSf/SRdmL35yU0Jyp1/u6QrnHPtsRUMjDT1o/z75v2jf9+0i/IHeJXT3POld/fGs9ZL/x3cf/F6KdVQ+PoNY/37Nj4kTT2z8LUxYNmvk64AACpDX0BY2LmLpPGHF7f+2FnSIZ+UlvyP/5itT0ltJww8f/UP0fZY+n/SSb8orD4AAAAAAAAAAEYA/1QKAAAAlE1QKFZaIzcUK0WIGgAAAAAAAAAAAABUDefcLufcJZK+IKlTmaAvl3NTts3rpiFjTdIeSV9yzl3knNtZrtcB1KTmKf596+8rbF4SXF9M6zhp21P+/Yd8origMCn4vdv6dHFrYwDvJQBk9Prk6s76SPFBYf3GHxHcv/LGwc+3BnzW+unaEn0OAAAAAAAAAAAjBGFhAAAAFSAl/7CwkRyKZQFXph3J7wsAAAAAAAAAAAAAVDLn3P+TNF3SdyRt1+BQMOdzyx2zPTt3unPuP8tdP1CT9jmmsHn7nRtvHWG87jul3yPdLbmAC/jF8brHBQSz+AW6ILqgsDsAGEn8QrYaW+PbY99zgvuHhoP1dkTf4+aJ0q6l0ecBAAAAAAAAADACEBYGAABQAeosICzMEYrlxQUd2AQAAAAAAAAAAAAAJMo5t8U592+Spkp6k6R/k/QXSQslrZXUlb2ty7b9VdLXJJ0uaV/n3L855zYnUTtQkywljT00+rz9z4u/lnyOuLL0e+xe6d835Uxpv7cXv4eZf0DLwm8Wvz6kNX9OugIAqBzdW73bm9ri22PsLGnGe/37Nzww+Pnauwrb586DpZ6dhc0FAAAAAAAAAKCG1SddAAAAAKSU+We4OhGK5cWJEDUAAAAAAAAAAAAAqHTOuR5Jj2RvAJI05Qxp1+Lw4w/9dCbwqtxSDcH9neullqnF7bHqJv++1/8kvtc98RRprU+gVV+3VNcYzz4j1Su/SLoCAKgcfmFhfsGVhZr1YWnF7/37d6+SRh9Q/D7r7pUOfGfx6wAAAAAAAAAAUEP8UykAAABQNnWq8+0jFMtbmvcFAAAAAAAAAAAAAAAgvK5N0caPiiHoo1AHXOzft+xXUpdPIEpYXVv8+1r2LW7tXHXN/n2dq+PbZ6Rac2fSFQBA5fD7bGxqi3ef1uOD+7cvGHhcP8Z7zPgj8+/z7JfD1wQAAAAAAAAAwAhBWBgAAEAFSFlAWJgjFMuLc+mkSwAAAAAAAAAAAAAAAKgerSdEGz/tgtLUEcbR3/DvW/AV6eY26a6jpD2bC1t/xe/8+xrHF7aml2nv8O/r7YxvHww35uCkKwCA8unrlnp3efc1tsa7V8O44P6550vpnsxndG+795gjrsy/T+ea6LUBAAAAAAAAAFDjCAsDAACoAEFhYWkRiuXFiRA1AAAAAAAAAAAAAACA0Ma/Jtr4cYeVpo4wJhyVf8yORdIj74y+9rZnpT0bvPv2PSf6ekGmne/ft/SaePfCEJy5AjCCdAWEZzbFHBYmSZfkCetc8FXpsXf794+ZKZ31SPAafXui1wUAAAAAAAAAQI0jLAwAAKAC1AX8tYxQLG+OA30AAAAAAAAAAAAAAADhpRrDj23Zr3R1hNU8Nf+YjXOlzvXR1l11i3/fqGnR1sqnrsW/b82d8e6FwdqXJV0BAJTPlnn+fY1t8e/X1CYd/HH//pd/JK3/m39/XYs06VTp1D/FXxsAAAAAAAAAADWMsDAAAIAKkLI63z7nCMXyQogaAAAAAAAAAAAAAABABJNODT923GGlqyO0kGdDlvxc6t4Wftn25f59Yw8Nv04YqQb/vvpR8e6FvXospcVj2vTMhH318piJ6jGOzAOocX2d/n3Nk0uz5z7H+Pelu4LnjpmVua+Iv28AAAAAAAAAAFA96pMuAAAAAFJKAWFhhGJ5co73BQAAAAAAAAAAAAAAILSGMeHHzri8dHWEddD7pRd/kH/cwm9IC78pHfN96cgrg8c6J634nX//ARdHqzGM5qnSnvXD27c/H/9e0EtjJ+l/Z52orrqBY/JNfb366NJ5OnLXpgQrA4AS2vSwf1+qRL82NP1S6cmPR5+3/wVSU2vm8YTXBo91aYnARwAAAAAAAAAA9uJfzQEAACpAnREWFlVa6aRLAAAAAAAAAAAAAAAAqC7v6gg3btYHS1tHGId+KsJgJz37JWnjQ8HDVlzv39d2kjR2VoQ9Qzrme/59fV3x7zeC7UnV62cHDw4Kk6Suunr9/OCT1FHHdbYB1KB0n7TkZ959Yw8p3b6NE6STfxN93qk5n8Vm0huu8x+7+rbo6wMAAAAAAAAAUMMICwMAAKgAqYArnzlCsTwRogYAAAAAAAAAAAAAABBRfYt04KVJVxFO3ajoc9b8OU//nf59U8+Kvl8Y9aP9+zY9Upo9R6iXx05UT8o7EKw3VafFYyaWuSIAKIOtT/r31Y8t7d4TT442fsblwz8XR8/wH7/i95FLAgAAAAAAAACgllVVWJiZPZC93W9mk4tYZ0ruWnHWCAAAUIiU6nz70o5QLC+O9wUAAAAAAAAAAAAAACC6fY4J7g8KtyqnpjapZf9oc179g5Tu8e/fs86/r/XYaHuFFfR+dwbUg2AeZ4d2NDQHTmlvaCpVNQCQnKDPklJ9tvULCvryMmq/4W0TjvIfv3NxtPUBAAAAAAAAAKhxVRUWJmm2pNOz98Hf5gZrzq7RfwMAAEhUyvz/WjaufkIZK6keU5umJV0CAAAAAAAAAAAAAABA9Zl+qdTY6t//xhvLV0sQM+nQT0ab07FaevBcqXe3d//Gh/znTj0r2l5hjT3Yv69vT2n2HAnS3cOaulP+F2yUpLSsVNUAQHL6Ov37Zn6otHvXNUr1Y8KP96qncR/J6r3H71gouXRhtQEAAAAAAAAAUIOqLSxMEt/SAgCA2nRQ82HD2kwpnTRudvmLqSBvmvA2z/Zz2y4tcyUAAAAAAAAAAAAAAAA1YMxB0lselPY7b3jfG66T9vM+q5GII78sHX+11HZi+Dnr/yYt/knEff5ZahgbbU4Uow/ybg8KeEEwj/euuy44LMxxCh1ALQr6LJl0Sun3P/7q8GNbpnq3vyUgzHPNXdHqAQAAAAAAAACghlVjWBgAAEBNekvrhbIhfz1744S3alRdhKuu1aA3jn+rWlKjBrUd3HKkZrYMD1cDAAAAAAAAAAAAAABACBOOlmbfKb3HDb4ddHnSlQ1mJh32aensJ6TzXg4/b929w9s61vqPHz0jcmmRNLV6t/ftKe2+taxn57Cm7lR94BTHNasB1CK/z5JxR5Rn/4YIZ1zrWrzbxx/uP2fbs9HqAQAAAAAAAACghgV/I1q7cl93b2JVAAAA5Dh27Cn6/6Z9VX/f8YB29+3S0WNO0OkTzk26rMRNaz5InzvgO5q7/W5t6F6rQ0YdqbNaL1a9NSRdGgAAAAAAAAAAAAAAAMpl7CHhx3ZtGd7W7dHWr9SBKn7hKH2dpd23lrUvHdbUnaoLnEJYGICa5PdZ4vfZE7e2k8ONaz1BSvmc+2zcx39e767oNQEAAAAAAAAAUKNGaljYxJzHuxOrAgAAYIjXjD5Orxl9XNJlVJxpzQfpvVM/mXQZAAAAAAAAAAAAAAAASIqZdNwPpac/n3/s9gXD23oDgrlajy+8rjDqmr3bNz5U2n1r2a4lw5q68oWFkRUGoBbt2eDd7vfZE7fRB0gzPyAtu9Z/jNVJr/lyYeu/+APpmO9n/h4AAAAAAAAAAMAIN1LDwt6UvXeS1iZZCAAAAAAAAAAAAAAAAAAAAIAQDv+c1Ngm/f2K/GO7tkhNbQPP+wLCwupaiq8tiN/6G+4v7b61zCMsrCdfWJgImgFQg165xru91J9tuU68Rmp9vbT2L1LXpsF944+QZlwuTX1z8BrTL5Ne/aN33/bnpH1eF0+tAAAAAAAAAABUsWoOC3NRBptZg6R9Jb1V0ldyup6PsygAAAAAAAAAAAAAAAAAAAAAJTLz/ZmbJK26VXr4Yu9xGx+SDrho4LlfWFiqQcoTMlU01xfQl5YsVdr9a1HH6mFN3Xn+O6bJCgNQi/Z5beYzbyjXU74aUnXSoZ/M3ArVMM6/b8McwsIAAAAAAAAAAFAFhoWZWcC34QPDJK0wK/gb29yJdxS6CAAAAAAAAAAAAAAAAAAAiJ+ZHS/pIEldkl50zr2ScEkAKtGk0/z7urYMft7X4T2ublR89fhpnurf17dHqi9DDbWmd/ewpq5U8NF4J9LCANQg8wlK3PpMeeso1uTTpVd+4d3Xs7O8tQAAAAAAAAAAUKEq8TJUFnALOy7fzWXXeEnSTaV7KQAAAAAAAAAAAAAAAAAAjFxm1mxmM3NuPmkGe8dfYGYrJM2T9CdJt0l62cweMbMjy1AygGrSPNG/b95HJecGnndt9h5X1xJvTV5mfci/r9cnxAzB1t49rKk7FfgRQ1gYgNq0YY53+6yPlLeOYk17h3/fyhvKVwcAAAAAAAAAABWsEsPCpIEwr1IxSfMlneec6ynxXgAAAAAAAAAAAAAAAAAAjFRfkLQke5sjKe030MzeJekWSQdo+EVCT5H0hJkdX+qCAVSZCa/179v2zMDj1bd7jylHWFjTZP++zY+Xfv9a5PqGNfXkCwsjKwxArdm11L+vZd/y1RGH+lHS1LO8+3YsKm8tAAAAAAAAAABUqPqkC/DwkPzDwk7P3jtlrhq4J+SaTlKXpO2SXpQ0xzn3cDFFAgAAAAAAAAAAAAAAAACAvN6hTNiXk/RL55zn+UAz20fS/ypzEVSXvfXHuvTPGS3pFjM7zDkX9vwggFrX1Obft+kxqfW4zOPR073HdG+Lv6ahmlr9+9oDgl7gr65Z6hv8UdCdLyxMpIUBqDFbnvDvC/rsqVSW8u9L90l5fs4DAAAAAAAAAFDrKi4szDk326/PzNIaOPRzqXNuZVmKAgAAAAAAAAAAAAAAAAAAkZhZi6RjNHDu788Bwz8tabwGQsLWSLpFUq+kiyX1p/xMk/QZSVeVoGQA1WjqWdKGOd59fbsHHqd7vcf0bI+/pqGCAs3SPaXfvxb1Dc+M7MoXFpabFdayX8wFAUAC+rr8+6aeVb464jL2MGndX737etulxvHlrQcAAAAAAAAAgAoTcNmNisUlnQAAAAAAAAAAAAAAAAAAqHxHS6pT5tzfbufc0wFj36eBoLCXJR3lnPusc+4L2XWezI4zSR8oWcUAqs+hn/Lve/bLA4/X3eM9Zto74q3HT12zd3tfZ3n2ryU+wW/decLC0rnH0DvXxlkRACTjxR/4940+sHx1xGXmFf59j723fHUAAAAAAAAAAFChqi0s7BvZ2zclleEyXgAAAAAAAAAAAAAAAAAAoEAHZe+dpBf8BpnZ4ZIOzhn7Nefcjv5+51y7pE/nTDnMzA6IuVYA1aphrDTpVP/+dF/mvmO1d3/LvvHX5GXSG73bCQuLbut8z+aePGFhjmtWA6glzkk7X0y6ing1jPPvW3uX1Lm+fLUAAAAAAAAAAFCBqioszDn3jZzbzqTrAQAAAAAAAAAAAAAAAAAAvqbkPF4XMO607L1Japd069ABzrl5knKTfl5bdHUAasemRwP6Hpb69khjD/XuL1fwSF2Ld3vfnoHHLj0QbgZ/OxcPa+qTqTdfWNjQrLC+7hiLAoAy66nBX6lpmiRZwK85bX2qfLUAAAAAAAAAAFCBqiosDAAAAAAAAAAAAAAAAAAAVI1ROY93BYw7NXvvJN3vnOv1Gbcw5/GBxRQGoMYEBYvcf4b0pxZp1/CAKUnSqGmlqWkov7CwZb+W0r3S/M9Kt0yRbp4o/f1DUm9neeqqRuk9w5q68wSFSZLTkLSw7q1xVQQA5de7O+kK4tc4Xpr0Jv/+uedlgjUBAAAAAAAAABihCAsDAAAAAAAAAAAAAAAAAAClkJvK0hAw7pScxw8HjNuS83hcQRUBqE0zLi987qRT84+JQ12zd3vPDunuo6XFV0tdm6We7ZkAsb9fUZ66qtG254Y1hQoLsyFhYZ3r4qoIAMrv+a8lXUFpvOE3wf1PfLg8dQAAAAAAAAAAUIEICwMAAAAAAAAAAAAAAAAAAKWwK+fxFK8BZjZV0sE5TY8FrFefO7WIugDUmoYi8gPrWuKro9B9dr40vG3VrVL3jtLVU802D/+oCBMWlh7asPGheOoBgCQs+3XSFZTG6AOlmR/07192bdlKAQAAAAAAAACg0tTnH1K5zOwMSW+WdKykyZLGK/jqg16cc25W3LUBAAAAAAAAAAAAAAAAADDCrcnem6Sjfcacm/O4S9LTAetNyHm8u4i6ANSagz8qLf5xYXNHz4i1lNj2cb3ShjnSAe8oSTlVbfxR0rZnBjWFCQtzQ3MmjetuA6hSLp251aoJrw3u3/yElGrM/hw3yUxSyvt+75jsvTzacu8HrZFn7N69AQAAAAAAAAAoj6oMCzOzsyVdrcFXEyz0X9hd8RUBAAAAAAAAAAAAAAAAAIAhnst53GpmZzvn/jpkzAez907SPOdcT8B6M3Mer4+jQAA1YvxRhc+d4JdlGLNp75AW/Eu0Oemu0tRS7bq3Dm9K5T8W74aeNu/rjKkgACizlTcmXUFpTb9Mevpz/v33nly+WkLJE1gWKXwsIADNb2zsAWghQtiSek2lqKHY9cKODXwNhQbVxfF+AgAAAAAAAKgmVRcWZmZXSvpe/1MNhH0VEvrFv2oCAAAAAAAAAAAAAAAAAFACzrmlZrZEmQuDmqSfmtlbnHPLJcnMviDp1Jwpt/utZWZjNPgCo0tLUDKAamUmnXSN9MRHos076ZflC0kYf7i079ukdfeUZ79atvauYU3ddXV5p7mhR8fX3Ckd+aW4qgKA8uhcLz16WdJVlFbL1KQriMhJzklKF/abTUCihgaPxR2+VuYAtEoOyQsbKBcqWC6m1xT2/RxUU6X8Gel/DgAAAAAAMLJUVViYmZ0t6fvZpy576/9XnQ5J2yUFXVUQAAAAAAAAAAAAAAAAAACUzzXKnPtzkg6S9JKZLZA0WdIBGjgHuEfS7wLWma2B84K9khaVqF4A1WrckQXMOTz+OoJMv5SwsGK5tGdzdypEWNjQMIGO1XFUBADltdo3XxcACkDYHapc1EC5UoavJRWSV5bXFHG9sGPLGZJXcaGDhN0BAAAAAApTVWFhkr6Xve8/HLRKmUNEf3bOrUysKgAAAAAAAAAAAAAAAAAA4OVHkj4o6TBlzv41SDpe2hv81X/h0B865zYFrHNRzvgFzrmu0pQLoGqNjxgWZilp7KGlqcVXxAQGR2LDML27PZtDhYUNbYj6ZwYAKsGi7yZdAQAAlaM/TNj1JVsHUJCI4WNRw9eqISSvEl9T2EC5YkPyShHUV7bQQcLuAAAAgCRVTViYmc2S9DoNfE/7hKS3Oud2JVcVAAAAAAAAAAAAAAAAAADw45zrNrOzJf1F0hHZZtPARUNN0s2Svu63hpmNkXSJBs4P3l+yggFUr8bx0tSzpPX3hRu/33lS88TS1jRU24nRxu9ZX5o6qllvh2dzmLCwtIb8Muvau+OoCADKq2Nl0hWUx0m/kp74UNJVAAAAlJAbCLojKxxVJ2KgXKQQtgoPlCv3aypFoFyxIXmJhw5GCOrzrB0AAKC6VU1YmKQ3ZO9NUlrS+wkKAwAAAAAAAAAAAAAAAACgsjnnVpnZMZI+JOkCSdOzXS9Jut45d0ueJT4gaVzO87tiLxJAbTj9Dum+06St8/3HNLZK0y6UXv+T8tXVr25UtPFPf046/J9KU0u1al/q2dydyn8s3nn9LmDPLqlhbJFFAUCZpHuSrqB8Zn1Q2vmC9OJ/Jl0JAAAAgGEIu0M18wswSzJQrogAtEoOyQu7d6hwvJheU1Hva8J/Rgi7AwBkVVNY2OTsvZP0jHNuSZLFAAAAAAAAAAAAAAAAAACAcJxzPZL+N3uL6peSfpuz1o646gJQY+qapXOelFw68wuLVpf5JZq+bsn1DoyxVDL11UcMC5Mk5/gloFwb53o2d6fq8k518ngfN8yRpl1QbFUAUB6bn0i6gvI69geZ297PcZf5jB9675yk/nufMYPuc8fnuw+zXs66Ycd61l5MDQHz/faO7f2M8r4WuV6+9zPp1wQAAACgCuT+XT/pWoACRA2UK2X4WlIheeV4TWED5QbVVGEhebG8r3H9GenvBxCHagoLy/1f/iuJVQEAAAAAAAAAAAAAAAAAAMrGOdcpqTPpOgBUEUtpUCBYXaOkxsTK2atpUvQ5q26R9jtHqh8dfz3VyKU9m0OFhXn9Isqe9cVWBADl07km6QqSUSmf40A+ecPIYghAK0Wg3NBawgaqRQ1fK0dIXkUGylXJawIAAABQHfr/jdz1JVsHUIiogXJhA8uqKSSvlK9p//Ok1uNL9B8PlaSawsJyv9XI/20uAAAAAAAAAAAAAAAAAAAAAFQKM6ntRGnLvPBzHnmntM9x0pvvlZraSldbtdi+wLO5K0xYmFdjz87i6gGAcunrlh69LOkqAAQZ9MueQJXZGyoWV/CZRwBa2EC5UMFyRYa6RQ1fKzQkrxID5Urxfib9mgAAAABUh9y/v5NbHb+W/QgLGyGqKSxsUc7jAxKrAgAAAAAAAAAAAAAAAAAAAAAKcdS/SXPPjzZn29PSC1dJx36/NDVVk5U3ejb3jJ2Zd6qTDW9c/jvpiC8WWxUAlN6qm5KuAABQy/aG3UlS/iBeoKJ4ht3FHYAWcb2wY0OF4yUUklcxgXIR3teqDMkjJQMAAABx8fgeDDWpasLCnHPPm9lCSUdJOt7M9nHObUu6LgAAAAAAAAAAAAAAAAAAEJ2ZTZM0U1KrpLGSzDl3XbJVAUCJ1Y8pbN6LhIUNuuL8EN2W/xcg0l5jmlqLqQgAymf938KPrWspXR0AAACVhrA7VLugILQkAtAKCparkEA5v9dQCYFyYd/PqgrJI+wOAICKYqmkK0CZVE1YWNZ/Sfq1Mv+P/QuSvppsOQAAAAAAAAAAAAAAAAAAICwzmy7pc5IukDTdY8iwsDAzO03SGdmn25xzPy5dhQBQYq3HJ11B9erb49vVVdcgqS9wuuevLzaML6okACibbc+GH3vCT0tXBwAAAIB4mUlG0B2qVOgQshBhbn4BaKUIlIslWK5CQvLCjiUkz2MdAKg1+S+sg9pQVWFhzrnfmNl5ki6R9CUze9Q5d0/SdQEAAAAAAAAAAAAAAAAAAH9mlpL0LUlXKnPBUK+Tqn4n8zdL+vf+fjO72zm3tARlAkDpNYxNuoLq1dfp29U9+gCpd0XgdGceHz0BawJAxdjxksNsAmcAACAASURBVLTtmXBj9zlGmvaO0tYDAAAAAICUCbuTSZZKuhIgumFhYiUIQAsbwhYqHK/IULdYQtiqJFAu0vtapa8J8OL1PRhqUlWFhWVdIalBmasK3m5m35P0Q+fc9mTLAgAAAAAAAAAAAAAAAAAAQ5lZg6S7JJ2pTEjY0FAwp4DL3DrnXjSzOZLOyI59jzLBYwCAkWTbs75dPan8x+I9EykJCwNQDV78fnD/vmdL9aOl1uOlgz8uNU4oT10AAAAAAADVirA7VLO9QWclDEALGyhXcLBcmHC8MofkFV1DCQLlorz+5qlF/9FCdaiqsDAz+1r24QJJp0iaKOkrkj5vZo9LekHSNkmRohCdc9+Ms04AAAAAAAAAAAAAAAAAALDXLyW9RXtPvcokPSxpjqRuSd8OscbNyoSFSdJbRVgYgGqWapDSPdHnda6TWvaNv55qsWORb1eX+vJOd165lF1bi6kIAMpjw1z/vuN+KB3+ufLVAgAAAAAAACBZe8PuJKku4WIAlFtVhYVJ+ncNvqhT/6GhUZLenL0VgrAwAAAAAAAAAAAAAAAAAABiZmZnSnqfBs77vSLpPc65+dn+6QoXFnaXpJ9k1zjBzJqdc3tKUzUAlNjR/y4t+Er0eUt+Jr12BB97TvcOa3p57EQ93nagVnQvzzvdmUdY2I6FmautWyqOCgGgNHYH/IybUuiv0QAAAAAAAAAAgGpTC99q9l9psBAe3/gCAAAAAAAAAAAAAAAAAICYfD17b5JelXRKf1BYFM65VyVtzz5tkHR4POUBQAIO+URh8xZ+S1r03XhrqSZb5g16+tz4qfrxIW/QvLYDQk1P+3Vsf764ugCglDrW+veNmiZNeG35agEAAAAAAAAAAImqxrAwi/EGAAAAAAAAAAAAAAAAAABKwMxaJZ2igYuCftY5t7mIJV/IeXxoMbUBQKIa9yl87gs/kNI98dVSTVb+adDT+6YcrLSFPw7vzOf4+NJriqkKAErr1T/49514jeT3sw0AAAAAAAAAANSc+qQLiOiMpAsAAAAAAAAAAAAAAAAAAAChvFEDFzXd6Jy7o8j1coPGJhe5FgAk65BPSkv+J/q8nu3SzsXShNfEX1OlG/8aacciSZkEyuVjooWuOb+O3vaiygKAktr8d/++5onlqwMAAAAAAAAAACSuqsLCnHNzk64BAAAAAAAAAAAAAAAAAACEsm/23kmaH8N6u3Iej4lhPQBIzqwPFhYWJklbnhiZYWHpnr0P+8yUtlTA4OGczLtj3X3FVAUA8du+SHruq9LW+VLHav9xE44pX00AAAAAAAAAACBx0b4hBQAAAAAAAAAAAAAAAAAACKc15/G2GNZryXnc4zsKAKpB6/HS0d8obO4TH5baV8RaTlXYtXjvw+5UXeTpznzCwjrXSNsWFFoVAMRr9yrp/jOk1bcFB4VNPEUq4GchAAAAAAAAAACoXoSFAQAAAAAAAAAAAAAAAACAUtiZ83hsDOtNyXm8NYb1ACBZR39NOu8l6fgfR5+78ob466lkLj3oaXeqPvoSQZ3Lfxt5PQAoidW3Sl2b8o/b/+2lrwUAAAAAAAAAAFQUwsIAAAAAAAAAAAAAAAAAAEAp5KYcHFLMQmZWJ+nYnKZ1xawHABVj3GHSYZ+Sznwg2rwtT5Smnkq1Z+Ogp92pOt+hJ4w93bM9bea//rZnCyorUM8uqWtL5t4FRpUBwICnPhtuXMt+pa0DAAAAAAAAAABUnOiXVAKAWtO+XFr8E2nHC1LbSdIRX5QaxiRdFQAAkKSendJDF0sb7s88n3G59IbfSEGHNwEAAAAAAAAAAABUiuez9ybpMDOb5pxbXeBab5M0KvvYSfp7scUBQEWZdJrUNFHq2hxu/KpbpLkXZs5RNE4obW2VoK9j0NOgsLCmVLNnu1PAeZOOVQWV5al9uXTHzOHtx18tHfbp+PYBMLLt+7akKwAAAAAAAAAAAGVW9WFhZtYg6Q2STpM0S1KrpLGS5Jw7M8HSAFSD9hXSfadKndkLja77i7T2LumsR6S6pkRLAwBgxOvtkG4cP7htxW+lLX+Xzl+cTE0AAAAAAAAAAAAAQnPOvWhmayTtr0xg2BckfS7qOmaWkvSv/ctKWuCc2x5boQBQCVL10ux7pAfPlbo2hZuz5g7p4YulMx8obW2VoGfX4KcFhYUF2BXTWRSX9g4Kk6SnPiM1T5GmvyuevQCMbC1Tkq4AAAAAAAAAAACUWSrpAgplZqPN7KuSVkmaI+mbkq6QdL6kMyTN9pn3bjNblr3NN7OAS0QBqHlLfzkQFNZv63xp7T3J1AMAAAas/5t3+64lUveO8tYCAAAAAAAAAAAAoFC/z96bpE+Z2VkFrPFdSSfnPP+/oqsCgErU9nrporXS2fOkC1dIl/VI+54TPGfDHKljTVnKS9Tmvw962h0QFtaY8r5YrMt3bHzXK5HLGmbz48H9K34f3A8AYRxwSdIVAAAAAAAAAACABFRlWJiZvVbSU5K+IWmyMoeIwrpTUpukGZKOlVTIwSMAtWLRt73bX/iP8tYBAACGW32rf9/KG8pXBwAAAAAAAAAAAIBiXCVppyQnqU7S7Wb2sTATzWyimV0r6crsfElaL+lXJagTACpDql5qO0EaPT3zePpl+ee0Ly19XUP1dkjr7pOW/lra8KDUsba0+6XqBz31CwtrsEbVybvPebbm2LWkgMJytK+Q/nZ68Jg1dxS3Ry1pXy4tu1Z64fsDF/5tXyZ1rE60LKAqjJmZdAUAAAAAAAAAACAB9fmHVBYzO1LSXEnjlAkJc9n7/sCwwO9xnXPtZnajpA9lmy6RdG9pqgVQtbbMS7oCAACwfaF/34YHpYM/WrZSAAAAAAAAAAAAABTGObfVzD4j6Vplzvc1S/qZmV0p6SZJg9JlzOxESYdJequkCySN0cD5wD5JH3TOdZenegCoAPudm39Mb2fp68i16D+kBf86vH3qW6XTbpIaxsa/554Ng576hYU1pppk5n0daufTvldvR0GlqXODNPc8aev8cOM3PyFNPKmwvWpB5zrpzsOk3l0Dbc9+efCYyadLb7pNapxQ3tqAanHgPyRdAQAAAAAAAAAASEAq6QKiMLNmSX+WND6n+XlJH5Y0U9IRGjgUFOT2nMdnxlYgAAAAgPi4tH/fq9dLc86Vdr1SvnoAAAAAAAAAAAAAFMQ5d52kb2vwBUJnSfqSpP/OGWqSHlcmWOw9kvrTZvovIvovzjkuDgpgZGmelH/Mhr+Vvo5+q+/wDgqTpPX3SvM/XZp9F3xl0FO/sLAma5b5HCdP5ztm/vKPCipNj707fFCYJN17spTuK2yvWvDIuwYHhXnZOFd64iPlqQeoRm0nJF0BAAAAAAAAAABIQFWFhUn6jKQZGjj4c7Wk45xzv3bOrZC0J+Q6czRw4OggM5scc50AAAAAitU8Jbh/3T3SfW+UureVpx4AAAAAAAAAAAAABXPOfU3SBzVwzq//HGB/gFj/zTRw0dD+592SrnDO/WfZCgaASjL5TcH9WyIEVRVr9a35++MOwkr3DGvyCwtrSDXJfI7I93/waPRB3vtsXxC9tq6tmWCrqLY8EX1OLdizUdr0SLixq26W+sL+egAwgow7POkKAAAAAAAAAABAQqotLOzTGvie9jbn3D8559JRF3HOtUtakdN0RAy1AQAAAIjTuMPyj9mzIXPFWgAAAAAAAAAAAAAVzzn3G2XO6/1UmdCw/lAw0+CQsP62tKTrJB3hnPttGUsFgMoy+fTg/uZJ8e7X0y6tuVva+JDU1z24r315nrk747/wW+e6YU1+YWGN1igb9HEywFm2fbfPa2jZv4Da1kjRj7NLL18dfU4t6FgTbfzulaWpA6hmuxYnXQEAAAAAAAAAAEhIfdIFhGVmR0rq/wbWSbqyyCWXSuq/LNRMSQVc0glARXBOeuV/pTV3Sg3jpYOukPY7O8S8Ag5nAACAMnL5h0jSU/8kzbyitKUAAAAAAAAAAAAAiIVzbqWkT5nZlyS9MXs7QFKbpEZJmyVtkPSYpPudc9uTqhUAKsb0y6QX/0vq6/DuX3mj1Nsh1Y8qfq8t86UHzpJ6sj9+xx4qnTlHGrWf1LVV2hjiyHXXJql5YvG17DX8DEmPX1hYqklm3tfTdv0hYvufnzlzOtTOF6OX1tsZfY4krb+3sHnVroPwL6BoB16adAUAAAAAAAAAACAh3t+EVqZjsvdO0kLn3LIi18s9QDS+yLUAJOnpz0tPfkJae7f06h+kB8/JHHzJJ91bXD8AAIiPc9LOJVJfV05byGDPnhh+N6BzvbT+AcJEAQAAAAAAAAAAgDJxznU45+51zn3NOfdB59wFzrlznHPvc859wTl3M0FhAJA1/kjpzXnCpV64qvh9nJMevnjwWYxdi6UnP555vOBfwq2z+CfF15Krb8+wpu6U9zWzG61Jqf5QsCFcf/P0y/z3ciEvbtdv44PRxvfr3ial+wqbW82e/GTSFQDV74BLkq4AAAAAAAAAAAAkpJrCwiblPF4Sw3o5KQSK4TJaABLRvUNa/OPh7Y+8K/9clycMrLe9sJoAAEA06++Xbt1P+vOh0k0TpIXfyR68jHj4shC9u6XrTbp1X+mBM6U/1Emv/F/p9wUAAAAAAAAAAAAAAIhi0qnS0d/w7193T/F7bHlS6lg1vH3NnVK6R1obco8dLxRfS66+zmFN3ak6z6GNqSaZX1hYf3tdi/9eUWvfvtC73VLS+a8Ez936VLS9akHnmqQrAKpfPb/+AgAAAAAAAADASFVNYWHNOY+7fEeFNz7n8a4Y1gOQhNW3Ss7nympr7g6emy8srIcfDQAAlFzHGumBt0h71mee9+2RnvuqtPIGKZ3nszoOt88Y3jbvY1LH6tLvDQAAAAAAAAAAAAAAEEXbCf59W+ZlLpg25xypc11h629+1L+vt8M7SMxLe56QrKh6I4SFWZPMvI/IpyXp+Kul1tf779W1MVptDWO8211aGjMzeG7UvaqdK+DCgc9+OfNnD8CAfY5LugIAAAAAAAAAAJCQagoL25zzeGIM6+V++7olhvUAJGF3wMGTuW/PHLbw4xcy1q+3vbCaAABAeEt+5t2+/DrplZ+HX2f3yuh7u7TUtdm77/H3R18PAAAAAAAAAAAAAACglKackX/Mur9Kt+4nbV8U795hg8KkzEXaVt0S3959EcLCUk0ymWefSzVKB75TGn2A/15Rg9bW3efdXtcimUkz3uc/d8Xvo+1V7Xa+FH3O6lulG0ZL3TvirweoVi1Tkq4AAAAAAAAAAAAkpJrCwtZn703SscUsZGZtko7IaYr58lUAysbn6m97bQq4yl26N3huz67o9QAAgGgWfce7fe3d0daZe370vf2CwiRpw5zo6wEAAAAAAAAAAAAIxcwazOxNZvYVM/uVmd1mZveb2f1J1wYAFa2uWTrpl+HG3n1UARt4h2xJkp77WrSl5v2jlM5zUdewtswb1uQXFtZgAWFhY2ZILftmntSP8d7rpf8XrbZ2n2Po/SFhp/zWf+6rf4zvPaoGz3yp8LmLvhtfHUA1O/DSpCsAAAAAAAAAAAAJqqawsMckpbOP28zszUWs9SENfJu9W9L8YgoDkKBUY3D/ypv8+1yesLBewsIAAJBLS1vmS8t/J7UvS7oaf9ufk/Zsijana2tpagEAAAAAAAAAAADgycxGm9lXJa2SNEfSNyVdIel8SWdImu0z791mtix7m29mAWk2AFDjRk1LZt+oF17r2pw5zxGH7m3Dm3zCwhpTTTKfC9G6VP3AE/Oer9728HXtCbhQXe764w7zHxfXe1QNNgdcADifF6+Krw6gmjWOT7oCAAAAAAAAAACQoKoJC3PObZP0ZE7Ttwo58GNm+0v6siSXvd3nnEsHzwJQsfJ94bn6Fv8+l+dqbFEOfAAAUIv6uqSHLpL+eoL0+OXSHbOkF/8r6ar8PfvP0cb3dZSmDgAAAAAAAAAAAADDmNlrJT0l6RuSJmvggp9h3CmpTdIMScdKOivu+gCgarSdFH5szy7p5R9Lj71feum/pe7the/bU8DcF6+S+roL37NfXfPwcvzCwqxRKZ+PGOdczgI7vPdKNYWvK+g9GXf4wONJp/mPe+AtnmFoidv4iDT/M9LcCwZuc86VrrfM7U+jpA1zw6/X21n863zio9Kq24pbA6h2k96UdAUAAAAAAAAAACBBVRMWlvWjnMcnS/p5lMlmNkXSHZL20cBBox/GUxqARPR2Bvd3rPbvS/cGz+3ZFb0eAABqyZKfS2vuGNz2zBel7YvCr7FlvvT4B6T7TpMWfEXq3R1riYMs+3W08X15/h4Rx2FVAAAAAAAAAAAAADKzIyXNlXSIMmf3+tNaTCFCw5xz7ZJuzGm6JO4aAaBq5LvIaq4bx0lPfUZa8Vvp6c9lg6l8QrJK4dU/Sg9fLKV7ilunfemwpm6/sLBUk8zniLxTzvWlZ33Ye6/tC6Sw16H2CxyTpAMuHnh8+Of9x3VvlW5qrazAsBXXS/efLi3+sbTmzoHbunsGxvR1SvfPll69If96fXukuW8vvq6l10gPXyQ99/Xi1wIq1a5XgvunXVieOgAAAAAAAAAAQEWqqrAw59wfJT2bfWqSPmJmD5tZwOWWJDMbbWYfz849RpmDRk7Svc65R0tZM4ASyxfyEcTlCQvzOFwCAMCI8vKPvNuXXhNu/pb50v1nSMt/I216RFr0XWnO2VK6L74ah9qzKfzYvj3B/UEHOgEAAAAAAAAAAACEYmbNkv4sKTfd5nlJH5Y0U9IRChEYJun2nMdnxlYgAFSjKWcUNm/rU9LKGwMGhPlxPMTsu4P7194lbXw4+rq5Vvx+WJNvWJg1ycz7daT3ZlVKmniK/35b5oera81d/n1NrQOPxx+Rf60Vfwi3Z6m5tLTgX8MHpj16af4x6/4qbZjj33/6ndLk08PtJ2XOIJUz9A4oJ78ze5J02GelhjHlqwUAAAAAAAAAAFScqgoLy3qnpC0auLLgqZIeNLM1kq7LHWhmPzOz+yVtkvQ/kqb0d0laK+nyslQMoHT6OvKP6Wn3bnd5gkpe/VP0egAAqCW7l3u3v/zf4eYv+ZnUO+RzeNOj0sbs4b90nuDOQtwyOXwYWb7Q0bV5DrMCAAAAAAAAAAAACOMzkmZo4Mzf1ZKOc8792jm3QlKeq/zsNSe7hkk6yMwmx1xnVTCzBjObbWbvN7N/NrNPmtlFZjYj6doAlNH+FxY+9+nPxVeHJDW2SaMPCh6z7i/F7dF6wrAm37CwVJPMJ/TM5QZgNU7w32/TQ+Hq6t7q31fXMvh5vvdo/ifD7Vlqu16Rdr8abU5XwPsg5Q+LG32QdMz3w+/neqXNj4cfD1SToP+9NE8tXx0AAAAAAAAAAKAiVV1YmHNumaTzJK1X5tBP/+GffSW9MWeoSfqYpNmSmoeMXS3p7c65zWUrHEBp7FqSf8zOl7zb8wWUjD8yej0AAIwUq+/IP2bZr7zbHzgrc7/5sfjqybX46nDj8oWFLfl58bUAAAAAAAAAAAAA+LQGgsJuc879kxuU1hKOc65d0oqcpiNiqK1oZjbTzC41sx+Y2YNmttPMXM5tRUz7TDKznypzdnKOpN9I+p6kn0i6RdJyM3vUzC6JYz8AFW7mBwqfO/TCb8VqPVaaembwmC1PxLun8oWFeR+Rd3s/jiRNPj1g8R3hiujr8u+zITVMfXO4NZO288Xoc9bfF9zfscq/r3mqNP4IqfU4qbE1/J5x/zkGKsX2Bf59U2aXrQwAAAAAAAAAAFCZqi4sTJKcc/MkHSfpHmnvpZ9czr3LeZ7bZ5Luk3Sic+65MpQKoJR2LpZe/WP+cbuXe7e7PGFhXVui1wQAwEjxUPYKtek+ybnh/em+/Gus/1u8NfV7+vNSmN8t6MtzgfLenfHUAwAAAAAAAAAAAIxQZnakpP01cM7vyiKXXJrzeGaRaxXMzGab2V/NbEu2pj9K+qKk0yWNLcF+b5O0UNInJAUlqZwi6SYz+52ZjY67DgAVpHF8cYFhfszyjxkq1SAd9W/BYzY+JO1eWVhNkrT1yWFNfmFhDdYkk/frGBQW1tTmv9+ib4er6xWfC9GN88izzPceSdLOl8PtW0oPvSP6nEcvkzb5XDSwt1NaeYP/3BN/nglWSzVIJ/w0/J6d66PVCFSDbQG/4tIwXmo7qXy1AAAAAAAAAACAilSVYWGS5Jzb4Jx7u6QTJP1Omavlmc9tpzJXzjvDOXe2c45vB4Fa8OJV4ca9/CPv9rxhYRuj1QMAwEjz8D9IN02Qbp8hLfru4NCweR8Lnnu9SQu/VbraNjyQf0xfZ3C/CxF4BgAAAAAAAAAAACDIMdl7J2mhc25Zkettz3k8vsi1inGMpLcqOLgrFmY2W9JtkibnNDtJT0m6UZkLqG4eMu29kv5gZlV7RhRACCf/WnrT7dLog5KrYfp7MvejD8w/dsX1sW2bltSTqvfsa0w1KeUTeuaGXnxuWkAwVue64CJ2Lvbvm3jy8LbR04PXk6Rl1+YfU0rtRXxML/EJ+tpwv/+cKWdI0y4ceD79UuncheH2W3NH+NqAavHKL/z7TrqmsEBHAAAAAAAAAABQU6r+IIhz7inn3Pudc/tLOljSGZLeKek9yhzGeZ2kNufcO51zcxMsFUDclv4y3Li+Pd7t6TwBIF1botUDAMBIs+omqbdd6lgpLfiK9JfjpI410sobpWW/Sra2J/KElUlSX1dwfyVcrRUAAAAAAAAAAACobpNyHi+JYb3cL/lGxbBe3LokLY1rMTObpsyFUhtzmh+V9Brn3Oudc+9yzr1V0jRJn5XUkzPufEnfjqsWABVq2gXShcuk9zhp/FHl379l6sDj1hOCx26ZV9geHmdAe63Od3ijNcl8jsg7ucENzZM9x0mStswPrivo9TRN8m5vO7HwNcthcxH7+9X+0g/954w7fHjbhNeE+7M89pBwdQHVJOhnQNDPKwAAAAAAAAAAMGJUfVhYLufcMufcXOfcLc65Pzrn/uace94NuwwUSsnMGsxstpm938z+2cw+aWYXmdmMpGvDCOUXFuZ6g+ele4L7AQDAYNuele6YJT3yrqQrkXYvzz/G5QkOlaQdLxZfCwAAAAAAAAAAADByNec8znM1n1DG5zzeFcN6xeiR9KykayT9o6TjJY2V9JEY9/iGpH1ynj8m6S3OuUFfZDrnupxzV0sa+mXt581seoz1AKhkU84IP3brM/Hsuf953o+9rL41/4XdvPR2DGvqTgWEhaUaZTLPvvTQsLB9z/Hft3trcF19w+vaaz+fdfc/P3jNDQ9I8z8tORc8rlSCXtNRXwueu3uFd/uGB/3nTDrNu/2kEBcT9jsbjJFpzZ+le0+R/tgo/aFOumGM9MDZ0rbnkq4smq6N/n1tJ5evDgAAAAAAAAAAULFqKiwMGWZ2rZm5mG4rIuw7ycx+Kmm9pDmSfiPpe5J+oszVDZeb2aNmdkkpXjfga4/PF6f5wsLy9QMAgOHScZzvL5MwYWHzPlr6OgAAAAAAAAAAAIDatTnn8cQY1puZ83hLDOsV6jeSxjnnjnXOfdQ59wvn3NPOudiuTmhmh0i6IqepW9IHnHO+6SjOuduytfVrkvT1uGoCUOFe85XwY/9ynLRnk0eHd8iWpyO+JE2enfP8i9LUs4LnPP7+8Ov36+sc1hQYFmZNMvM+Iu805PrT0y703/fvHwiua/si/77c9yXX4V+QJhwdvO7in0gLIvy3jNPzAR8ZR39dmnG5f3+6R0p7ncUJCD6b8mbv9oknSvue7T9Pkpb9KrgfI8eGB6WH3iFtfjzz59Clpd7d0vp7pftnS7tXJV1heLtf9W4/8B+kusby1gIAAAAAAAAAACoSYWHIZ/g37B7M7G2SFkr6hKTWgKGnSLrJzH5nZqNjqA8jVU97+LFdmzNf/A6VzhMGlo7t7B4AAEiCx5VlB/H6+8GwNUL9dRgAAAAAAAAAAACAt/XZe5N0bDELmVmbpCNyml4pZr1iOOe2BYV2xeQ9knLTcG5xzi0JMe/7Q56/y8ya4ysLQMVqCjq+62HJzwvb54gvSectlo79vmQ54WL1o6TZ92RCbfysulnq2hptv+0LhzUFhoWlmmQ+oWfODQmuspQ05mD/vTvX+/dt+Jt3e+sJg9+XXPUt0jnPSAflCU174T/CnWuJk3NSx2rvvn2Oy7xXp1wnHXOV/xob7o+2Z12Tf98Zf5He9kzw/HzngDEyLLvW/6KR3dukVbeUtZyC7XzZv2//88tXBwAAAAAAAAAAqGiEhSGfm/MNMLPZkm6TNDmn2Ul6StKNku7T4CtEStJ7Jf3/7N15nFxVnf//96nurl6TdBKSdMhOQsK+KvsOggiKKCIyoIgC44o6+B39OeMyo6Mzysyo48Io7gqoA4qIsu/7JmsCIQnZ973Xqu46vz+qOl1dfc+te2/t3a/n41GPrns/Z0tTqW4edfI+NxjX0V1APhscmyw8Wakv5yDR3a9L956epxubCAAAY5jnSZ81pneTf921SSzb+IXFWQsAAAAAAAAAAAAwNj0qaTDtZLIx5rQCxrpc2pP+0iXp6UIWVgPOz7n+aZBO1trFkp7IutUq6cxiLQpAFYs1SE3Tgrd/8Yvh55hzUTokbPy+jjXUSTPOc/e3A9KuJeHmHOgaccs3LMw0ucPC5BHA1TrLPffOl921iY4MzF2L3X2k9PfIL1BtUNeq/G2KacDnQL1U39Dz6T4/UrZ5/GiO+4TY1Y/zX9PEw6RFV7vrvT5hbhg7drzoX9+Zp14tPIIR92ieUb51AAAAAAAAAACAqlZTQU3GmIOMMfdmHvcYY6bm7zVijGmZvoPjjMZ//X+NpHkRHrmfPFtJP/GbyBgzU9LNkuJZtx+RdKC19k3W2guttWdKminpaknJrHZvl/TVCH8+QOpdH679PTn7DP/k2KiSLZVMn5QGAMBYlL3Jr1blQO51gwAAIABJREFUCwvz2gCaa+WNRVkKAAAAAAAAAAAAMBZZa7dLeirr1r8aY7wTXHwYY2ZI+pzSe9qspLustQE+8KtNxpgOSYdm3epXel9eUPfnXJ9d6JoA1IiZ7wzXfsQeyTxv0XXN+cfc+61SrNFd9wul8tLfPeKWb1hYLK6Y4yxjK489oX7fM7+19o8MMZMkGffa9pgWIDszyCF4xTTQ6651vGXoefsh7nZe+2wS29ztff477jHd50dYf8jXEkafVFLa/qx/mzW3lmcthervdNemnFC+dQAAAAAAAAAAgKpWU2Fhkq6SdIqkkyUlrLX5/vX/CNbajUoHVg2Oc0UR11cVrLVbrLVvhH1IOiNnqPustcvzTPcVSROzrh+VdEbmdMLsNfVZa78j6cKc/p8xxsyJ8MfEWJdK5m+TbWfWaUu7lwXvN3r3FAIA4C/sz9pSOfI70v7XSB1nSAd+QZr17uB9d7zgX+fnPAAAAAAAAAAAAFAO3856foykH4bpbIyZJulWpfepDabY/Gdxlla1Dsq5fsFa60il8fRozvWBBa4HQK044lpp77cFb7/0B+HGr2vJ36ZxsnTKn931V74Rbk6P/R+usLA61avO1Ms4Qs+s1wGyCz/unnv5z921NX/wvr8gwNb0+hbp1Dv826z+ff5ximnZj9y1ff9+6Lkx7tfYjhelvq1D1zuXuMc8/FvB1jX5Te5aZ4j9wBidnvts/jZ9m6WulaVfS6H8/ix1cXcNAAAAAAAAAACMKbUWFnZe1nOfT1/zGuxrJJ1fwDijhjGmWdJFObevz9NnX0kfyLqVkHSZtdZ5tJS19g8a/t+uUdKXwq0WULQT0wY3eezy2XyQq3d9+HkAABgNbH+lV5DejLnw49Lh35ROu0s69KvS0ddLk48J1n/Jtf71oL9P9G4O1g4AAAAAAAAAAADACNbaGyX9LXNpJH3YGPOQMeZEv37GmFZjzN9n+h4myWYed1prHynlmqvAATnXr4fsn5uekjsegNGqvjUd1PXOtdJJt0qn/NW//ZISZS92nC41tHvXNtwdbqxtz4y45QoLi8fSgTqusLCUPA6WMzGpZab33BvvCbbGbEEC1SRp2mn+9ZW/DT93Id64wV2rax5+PeNcd9t1fxl6vuZmd7umqcHWlTt3tvV5AtcwutmUtPLGYG1f/3Fp11IMfY49ahNyM2QBAAAAAAAAAMBYVl/pBQRljNlH0uAnsSlJtxUw3J8kDUiqkzTPGDPbWruqwCXWugskTci63i7J5xNaSdLFSn8PB91srV0aYK5/1/CQsQuNMR/1CxkDRogUFtYvmQYpsSN4n61PujeBAAAwmqUqGBY27XTpqOukcfNH1uITpLc8LC3/ifTklf7jNO7lX7ceG0C9bH9Omn5msLYAAAAAAAAAAAAAvFwg6XFJkzPXx0u63xizQTlBWMaYH0haKOlYpQ+jNEqHhBlJayVdWqY1V9KCnOuw+xtX5lxPNsZMtNZuL2BNAGpJy97pRz6dudmCeay9VXrz/wRrm3Ts1WycEm7OcQukjfcOH9oVFmYaJUnGeJ+nbWW95+he432/ZZZ7XfGJUsLjbbUn4CG1sTzb+B1/hpJJ+Wzjbpo2/Lr9UHfb7NfUbp/XV1vujzoHv7CwusZgY2B0sFbq2yp1r5b6u6TmDql3Y7C+L39VGr+fNPEwacIBkvEOFKwYv31s/bsjDdlvk1rZu0y9A10ji8ZoZuNcTaifFGlsAAAAAAAAAABQOTUTFiZp8EgUK+lVa21n1IGstZ3GmFc1dFrewQq/mWa0+VDO9a8DhHedn3P90yATWWsXG2OekHR05larpDMl3RqkPyApWljYQJ8Ua5D6NgXvU8mgFAAAKskmyz9n2wJp0dXSoo/7t4vVSZOOyD9eYpt/PejvE7tfJywMAAAAAAAAAAAAKIC1drkx5lxJt0iarqHwr+mSOrKaGklXZj1XVts1ks611m4py6Irqz3nOsSGpz17JHslNWXdnqD0IaIAxpqD/ll66V/d9ac/IR357XQ4Vb4Anb2OCT5vxxnShrtH3u/bHHwMSeod2T7hCguLZcLC5P3nsNYRFjbpTdK2p0fe3/GCe11eQWGSNOUEd59ck4+Rtj7uXdv2dDocqVyhRrtedddyQ7n2OtbdtmfD0POBHne7yUcFW5ffnz/M4cGofgO9UtdqqXuV1LUqHQq253nmq99rKp/HLkl/bZwsvfVZqXV2cdZdDAM+/2xj1gWhh3u561ldv+6b6k35f7+OHHeCPjD9atWbhtBzAAAAAAAAAACAyqilsLA5Wc9DHmPlaZmGwsKq6JOe8jPGzJd0Us7t6/P06ZCUfSxUv6RHQkx7v4bCwiTpbBEWhjAihYX1SA1t7g0axZoHAIDRoJyBmft/Vjr8P8L1mXCQVNciDXS72/idTir5n8iY7cUvSQs/GnxtAAAAAAAAAAAAAEaw1j5pjDlC0k+U3i8mpYPAsr8O66J0SJiRdJekD1hrN3i0G43acq6jJGP0aHhY2LjoyxlijJkqaUrIbvOLMTeAiA75F/+wsNf+R2o/VFrw4fxjte0TfN79rvEOC5Okbc9Ik44MNs6aW0bcWjx+qmfTBpMOtYop5lm3cuwVWfhx6fHLvGtdq0aGCrlCxySpZaa7lustD0s3+mznf+M30ry/Cz5eVP0++2+O+dnIe8ak//tte2Zk7fUfSkf9IP3cFew087z0YYFBzbpAWv17j7muk476YfBxUDk2JfVuGh781Z0JBBt83hsqGzW6vq3SIxdJZz5anvmC2PGSuzbv0lBD7e7fqevW/pv6bf79f8/sflgd8Zk6Z6+LQs0BAAAAAAAAAAAqp5bCwrI3quwswni7sp6PL8J4texyadgRWs9aa/+Wp89BOdcvWGu7QsyZ++nagSH6AtECTHYtkZqmSIkQbyEBPigFAGBUKufPQBNi89+gukZpxtulVTe526T6pGRnOizUu0GwufrGwsHkAAAAAAAAAAAAQOlZazdKOscYc6SkqyWdLmm6o/lOSfdI+q619oEyLbFa5H7I2RthjB5JE33GjOqjkr5UpLEAVIs1fwwWFtbUEXzM+maf+W4NHhbmYVdDo+f9eCwuSTLDtkUPsZ7ZlJLqfNa67i/SvlcNv9e10t2+rsldyxWrk479lfTYJd71tX8sT1jYxnvdtfhE7/ttC7zDwqR0MJSJucPCxi0Mtz7n3h9UjWTn8OCvEaFga6RUotKrHLLlMalnvdTs+jW0zNb92V3ze3/y8ErXc4GCwga90PkkYWEAAAAAAAAAANSQWgoLy/60sBjhXtnhYwNFGK8mGWPqJH0g5/b1AboekHP9esipl+UZD/BnI/y1TSXTX/t3+bcrdB4AAEaDwZ+b5RAlLEySjrleSvWmN6y6rLtdmnOhdy3Mz3lr06eiAgAAAAAAAAAAACiYtfYZSe+XJGPMPpJmSZosKS5pi6SNkl621gY8AWjUc6TbFL0PgNGq/WBpx4vuevfqzJM8eyPmvC/4nBN8zhHuXhVsDMfBshMT3iFUb/QulSQZxx4PKytr7cj6xEPda+hZN/Je7yZ3+9Y57pqXsHOXwqYH3bX2Q7zv+4UR9XenA75cYWEhw4/U7fg+NLSHGweFSe5Ov1Z2viR1rR4eBpbYXunVhffg+dIJv5NaZ1V6JdJAt7vWOjfUUDv7t4Vqv71/a6j2AAAAAAAAAACgsmopLGxL1vOQn6J6mp31fCx/wvFWSTOyrnsk/SZAvwU51wE/td8j90itycaYidbaGvykEBURKSysL/01sbO08wAAMBqEOF2wYHufHa1ffat00h+kxA7p945TTHvWuvuH+XcFvZuk5mnh1gcAAAAAAAAAAACMccaYcZLmZd1aZq3tym5jrV0uaXlZF1b9OnOuQ6aqePbJHRPAWHLgP0mPvNdd3/G8NJDIP06YvRONk9215T+TjvxuOlDKjyNsKhHzPphuVuM+kiSjmHNIKyuTG4o2bqF7DbsWj7zXu8Hdvink/hK/ULXNj5T+gLsl/y0t/qa73jbX+/68S6XV/+ddG+hJ/7fd+qR3PWxY2Kx3SRvuHHk/uYMDAMtl12vSPaf578WqNVufkP44Wzr2l9K8Syq7lpU3umt18VBDJWxfuPap3lDtAQAAAAAAAABAZbk/Ca0+g2FURtLBxhifT5D9ZfpmH3M0ij61Cu3ynOv/s9buCNAv9ygmnyOyRrLWdkrK/WRpQpgxvBhjphpjDgzzkDS/0HlRAVFCvPoz+93W3FLaeQAAGA1SyfLM0zRN2uvYwsaI+5wSuuUJdy3Mz/mBrvxtAAAAAAAAAAAAAOR6n6TnMo8nJTVWdjk1o5rDwr4v6aCQj/OKNDeAqOZcKB3zU/82y6/3rzdOCT/vgivdtcXfyt+/K/ds4rSkIyxsUUt6e/iIMLAsVnbkTWOkjjO8O6z63ch7z3/BOb5iIc/yNkY69Ovu+uaHw40XRn+P9Oyn3fX2g901v5CzDfekvw44QojChoWN29dd23R/uLEQzZNX1U5Q2P6flY6/KXj7xy6V+raVbj359PdI3Wu8a3MuCj1cIhUyLMz2KRXm0E0AAAAAAAAAAFBRIT+NrKjHJfVJiisdGPYxSf8ScayPaigorV/SIwWvrgYZY6ZIenvO7Tyf9O+Re5SX99Fd/nokNWVdj4swRq6PSvpSEcZBtYsS4rX+TmnWu0s/DwAAo0Gqv7jj7XWc1LtJ6nx9+P2T/ySZImQYTznBe3PkqpskOU5eDLPJaceLUts+kZYGAAAAAAAAAAAAjGF7SXsSW56y1lYwiaGm7My5DpXQY4xp08iwsCCHiOZlrd2kkIeLGuMO7QFQRvtclg5pesQRPrP+DqnjTHf/+tbwc8Ynumvr75AO+bJ//80Ped5OOMLC4rF0JqXx2YtilZLk0d9vramkFGsYuu5c7t0ubAjWoOYOd239HdLUE6ONm8/qm/3rcZ+zvf1eD1secYevSVJd3H/eEXO1uGvrbpemnRpuPITT3+X8u1gyjVOk1tlSy+zM11nS2tuChcO1zkkHJG56QFr6/WDzbbxHmv2egpYcmd/3tj73n2zkl7DeYWHt9ZO1o3+rZ63fJhU3ZPoCAAAAAAAAAFALaiYszFrbZ4x5SNLgJ4fXGGNusda+GGYcY8xBkj4r7TkW6hFrbVcRl1pL3i8p65NrLZP0QMC+uZ88OY5+8tUjKfuT9fCfZmHsihLitfE+affr+dtlSxEWBgAYo2yRw8IO+Jw04xxp+9/Sp4dO2F+adrpUH3GTZK62+e6TVK1Nn8I64n6IsLBH3ie9tzva2gAAAAAAAAAAAICxazD0ykpaU8mF1JilOddzQvbPbb/NWru9gPUAGC0mH+Wu9Wz079v1RoT5jnbX+rbk7z+Q8LyddISFNZh0CFVM7pBCa608y37hV/1dUrx96Np4z6+BKGcvq/DvU1Rv/Mq/vtcx7lqTT8CZTUkJ71AiSVLrPP95c7Uf4q4l+PFWcontxT18ua45Hf41LAwsKxSsZZb3nrLdrwcLC5vzvvTXee8PHhZWyr9nhczt93fQIZHyDgtrqxvvDAvrS/XuCVsEAAAAAAAAAADVrWbCwjK+pXRYmFU6WOovxpgLrLWPB+lsjDlK0u8ltSr9Ma/NjDlWfTDn+ifWWuvZMr8o/aLOBUT70LlzWXrDRhgp740mAACMeqlkccebfJRkYtKkI9KPYvP7Gb/1Ce+NU2F+nxjoSW9k9Dl5FgAAAAAAAAAAAMAI67Oexyu2itqzOOd6Qcj+++Rcv1LAWgCMJm0+IU1bH5fmXuyu+wWNuUw/y13rDHD46/KfeN52hYUNht0Yv7Aw1/bleZdJy3/mXdvymLT32ZnJd0n9u73bLbjKOa+v8fu5a69fJx31w2jj5rP+r/71fS5317wO7hvUuUzqXOGuh30t1be4a2v+IB3943DjIZz+MAcsGql5eib8a5ZHGNhsqXGy/+vHOXTAPo2T0l8nvzn42Ovvkvb9SPg1FcPmR921me8MPVzCusPC3H16JU0IPRcAAAAAAAAAACi/mgoLs9beaYy5X9IpSgdN7S3pQWPMLyVdJ+mp3LArY4yR9CZJV0m6VFJDpq+V9JC19vay/QGqiDHmGEkHZt0akPSzEEN05lx7HN+TV26f3DGj+L6k34XsM1/SH4swN8op1R+t39YnwrVfd5u0/2eizQUAQC2zEX/WurhOVC2WRZ+QVv/eu/bsP0hnPuJRSIWbI7lr+CmxAAAAAAAAAAAAAPJ5Keu5T0INcryUc32IMabFWhs0reP4POMBGMuO+G/p2U951zbe4+7nF2jlUt8iHfUj6ckrvOs9G6TmDu9aql/a8YJnKdHQ6nm/waRzKY3PYXAp136RtrnOPnr200NhYa5AMUmaeb675seYdDCXIxxN3WullhnRxnbJd770KbdL4/f1bzP/CmnZj0beX3+HNNDr7ucX/uWy78ekpd8beb9va/ixEE7XG+7afv8gTTx0KAyseYZUV6p82ACHPO517NBzE5Mu7JbuOUXa+qR/vzW3FLSygni9riUpPikdrBZS0nFQtl9YWF/KO2AMAAAAAAAAAABUn5oKC8u4SNKzkqYrHfhVL+myzKPLGPOqpO2Z2iRJCyW1ZfqazH0jabWkC8u47mrzoZzrv1hr14XoX5VhYdbaTZI2heljopxMhMqzA9H6PRXy1Ke6CBsSgCAG+qStT0lN06RxC6KdkgYApbT0B8Udr2SbwDKmnOCubXlUWnubNOPc4ffD/j6R2EFYGAAAAAAAAAAAABCCtfY1Y8wLkg5ROvBqhrV2baXXVe2steuzvm9Sep/kCZLuDDjEKTnXfynS0gCMBvGJ7trmR921tgXR5muZ5a5tvE+a+z7vmiMoTJKSjjCwPWFhcu/Hs66QrPpxzj7a9Wo6XMsYaeO97nYNPmPk4xcKtPE+ad4l0cf20r3Gvz7pTfnHiDV432/qSAecOfs15h97RB+fvUelCFPDkM7l7tqhX5PqIvz3jMInBHCPaacNv65vls7KHDR9y0ypx+d1mdxd2N/hKPxC+5qmRhoyYb2Dv9rqJrj7pHzC/QAAAAAAAAAAQFUJ8IlJdcmEQb1V0koNhX8p87xN0pGSTpd0Rub5uExNGgoKe13SWzNjjTnGmFZJ7825fX3IYXbmXE8JuYY2jQwL2xFyDRjLooaFhcXmAZTC5kelmzuku0+Ublso3fdWqT/owa8AUCar/694Y008TGpwn0xYFPk2gz3w9pH3rOOkWJe1t4ZrDwAAAAAAAAAAAECSvpv5aiT9SyUXUmNuybn+YJBOxpj9JB2ddatLwUPGAIwFU09y1/z2Zs46P9p8ex3jriVztyMHqyVi3udlx2MBwsLk2C/SOMm9FklKJTOTb3e3mXSE/xh+/P67+H2fokrm2bbdFGBreK9jK74x/nt5ohyuOvFQd60U3x9k8fnvVa6gMClYWNiiT7prs/OcM5/cHW49xTDgE9IVNSws5QoLcweh9TkCxgAAAAAAAAAAQPWpubAwSbLWvqR0ENiNGgoAs1mPPU2zHkZSStIvJL3ZWru4nGuuMu9ROkRt0EZJt4UcY2nO9ZyQ/XPbb7PW+nx6DuQoV1hYuebB2DGQkO4/Z/hGmw13Ss9/oXJrAoBiudhKh/7b8HumTjroi5VZT67ckxjDhoUl2FgIAAAAAAAAAAAAhGWtvV7Sn5Xew3eZMeb/VXhJteLXkrI3L73LGLNvgH7/mHP9W2utTxIFgDGnba67ltjmrk04MNp88Qnu2sob3LVdrzpLSUfYVNykg4uMzxZ5K+us6eCvuGtdK9N7TzY96F1vmibVNbn759PxFnft6Y9HH9fFL/Ts8G8FG2P2e7zv96yXdr/mXZv/oWBj59r7HHdtw93RxkQwG++r9AoyAvzTF7+ALb8gMUl6+qPhllMMAz3u2n7XRBoy6Qj+aow1q8HEPWuJFL8qAgAAAAAAAABQK2oyLEySrLXbrbUXSzpA0n9JejFTMjkPSXpe0rckLbLWXmatHev/yj/3U9ZfWGv7Q46RG7a2IGT/fXKuXwnZH2Nd2cLCQoaIAPlsuNP7RL7X/qf8awEAl1TYXw2zHPh56cSbpXkfkPb9iHT6fdFPli22dbcPPe98Q+pZF67/RjYWAgAAAAAAAAAAABG9T9ItSu/p+7ox5g5jzKkVXlNVs9YulfTzrFtxST8zxjiTaIwx50m6LOtWQpJP8g2AMWvBleHaN06WHAFdgUw+2vu+K3hLkl79juftlKR+ee9taYilg3BiPmu1uYfNZXOFX0nSsh/5BpjpgM+5a0HUNUqTjnTXu0Puc8lnzR/dtUWfCjZGc0f4eaedEb6PJDWMd9de/HK0MRHMqpu8708+qrzrMHn+6cvJf/Kvt82Vzv6bu77mj1Lf1tDLKsh2n/WMXxhpyEQq4Xk/HmtUPNboWetLeQeMAQAAAAAAAACA6lNf6QUUylr7mqR/kCRjTJukaZImZ8pbJG201nZVaHlVxxizUNIJObevjzDUSznXhxhjWqy13QH7H59nPMAfYWGoVW/82vt+6MxGACihKJt/9rl86Pms86snICzbA+dKJ/1RevC8aP39NqgCAAAAAAAAAAAA8GSM+Unm6S5JuyWNk3SGpDOMMbuVPgx0U6YWlLXW5h6aWVbGmJny3oOZm5xSb4yZ6xim01q7xWeaL0k6X9LEzPVxku42xnzYWrskay2Nkq6UdG1O/2uttSt9xgcwVsUnhexQ4PnUfnsx+7uk+taR9+vbPJsnY+7t7w0mHYRjfNZr5bOW+ER3becr0pZHovUNqsknfGvLI/5hZmEN+OwPitUFG6NpWvh5o36fYg3uWn/Q7euIpL41/fc0V7m/7/kCC4O8tsYvkkydex/6lsekGeeGX1tUu3LPb8/S0B5pyIT1/rsdN3E1miZ1efzKnbC9keYCAAAAAAAAAADlVzNhYcaYDknZx888bK3dlt3GWtspqVPSsnKurcZcnnP9sLXW55grb9ba9caYFyQdkrlVr3QI2Z0Bhzgl5/ovYdeAMc71IW0sLjlORIo2D2FhKDJeUwBqQWJn+D4LP1b8dZRC1KAwSWqbX7x1AAAAAAAAAAAAAGPHZZJs1rWVNJj2MF4jD7/Mx2TGqGhYmKSHJc0J0G6GpBWO2s+V/v54stauMca8S9IdkuKZ28dLesUY84yk5ZImSDpC0pSc7rdJ+ucA6wMwFnWcIb3yjeDt84X05NN+sLTtKe+aKywssW3kPUlJ4w4CazDpt0oj93pTw34k5Wj2Ceta92epy/V2rvT3tFAdZ6Tn8RJlP4+f9UXYuj1uYfg+U8P+2M8wRqprkgY8Qo1SfZK1hb9O4c0VCtaU+6tHqeUJLZz05vxD1DVJU06QNj3gXfcKRSulVNJda44Qxicp4TgotCHWqHis0bPWlyIsDAAAAAAAAACAWlHgMU9l9S5Jt2Qev5bkc5wRvBhj6iS9P+f29QUMeUvO9QcDrmM/SUdn3epS8JAxIM32e9/f53Lp2F+mP8gNY+6ljgLBTiiyVb+t9AoAwF9ip3Tn0fnbZVtwpTTpiNKsp5r4bc4CAAAAAAAAAAAAEIbNesCHtfZ+SedL2px120h6k6QLJZ2lkUFhN0i6yFrXiYwAxrxpp4bsUGAI06Kr3bV1t4+8l0pKnd5nRyf2+4RzqMEgHOMTGmXz/ejpeIu7tvMVd61lhv+4QSy4wl170qcW1ro7pM7l3rXJIfYNRQnn8gqGC+rI77prz302+rhwsz6/rvn9vS4Fn6BATT9bqou769mO/La7tuGucGsq1MtfLfqQCev9z2ziJq54rMm7jyNgDAAAAAAAAAAAVJ9aCgtrV/qTZiPpKWttmY9tGRXeJml61vVuSb8rYLxfS8reTPQuY8y+Afr9Y871b621HEeDcFz72GL10rxLpLc8FG68Ou8PP2UJC0MRJTsrvQIAyO+5z0rda4K3n3m+/0a80YR99AAAAAAAAAAAAEBUpoiPMcdae7ukgyT9UNJ2n6aPS7rAWnsxeywB+DIx6eAvl2++xr3ctSX/OfLeJvce0GTrLGctbtJhQcZni7zNty+043T/upepJ4fv46W+VRq/n7veva4487zydXet/eBwY00MccDgxMPDjZ2r/RB3bcm10kCisPEx0o4X3bXGqeVbhyT1+/xqM891aLSHiYdK8YnetWWFnMMekrVS31bvWsT3lJRNqd96H4gZjzWq0TR61hL8Uw4AAAAAAAAAAGpGfaUXEMK2zFcraX0lF1LDPpRzfWMhG4KstUuNMT+XdHnmVlzSz4wxp7vCv4wx50m6LOtWQtJXoq4BY5grrMPUhR/rqOukbc865iEsDEW05pZKrwAA/PVtlZb9yL/NzPOkRZ+Stj4lTTo8vTEp1lCe9VUcvxcAAAAAAAAAAAAAEcyr9AJKwVo7t8zzbZL0EWPM1ZKOlzRHUoekLklrJT1nrV1RzjUBqHF+oVS5ejcWNpcrmEeSkrtG3tv2jLN5It4u9XjXGmLpsLCYT7aklXWvRZKaOvzrXhqnhO/j0jpH2rXEu7b9Wall78Ln2PSAu+YX7OalucM/xjLbQIGBRM15/tvsfk1qP6iwOTDczpfcteZp5VuHJO1a7K41Ti7OHOMXFWecIPo2F33IpHUH5sVNo+Ix78O1E6m+oq8FAAAAAAAAAACURi2FhWUHhLVWbBU1yhgzTdI5Obd/XIShvyTpfEmDn+IfJ+luY8yHrbV7Pqk2xjRKulLStTn9r7XWrizCOjDWpAKEhZ2/Xrplev6x5l8hbf+Ya6LQSwOcXv/fSq8AAPwt/WH+Ngf/izTxEGnaKSVfTtXpWZ8OEjXu02cBAAAAAAAAAAAADMf+sOKy1iYk3VfpdQAYBfZ+W/nmqm9217pWSv1dUn3W9vDeDc7myYmHSD3eB3fGTaMkyRi/sLA8+0Knn+Vf9zLj3PB9XPZ+m7Tja2WdAAAgAElEQVT+Du/agCMlrZjC/ln2fpu07vZgbSe/Ofx6srXOlpr3lnrWeddtf2HjY8hAr3STz99bSWrbpzxrGeQXNjf1pHBjNU2VEh4pd7teDTdOIRI73LWpp0Qb0if0Kx5rVGOs0bPWR1gYAAAAAAAAAAA1o5b+lftz0p6jnBZWciE16gMaHg73krX2yUIHtdaukfQuSdnH0Bwv6RVjzFPGmJuMMX+VtFrSdyQ1ZLW7TdI/F7oGjFE2QFhYc0ewE56MkfPt0I7ysLANd0tPfFh69BJptffmGRTR5of96zbPiYUAUGov/FP+Nu0Hl34dUR385eKMM/Fwd23JfxVnDgAAAAAAAAAAAAAAgEpqGCcd/ZNgbaedXvh8R37HXXv4vcOvl/yns2ki5r3f08io3jRknru3yNt8+/SaO6QFf+/fJte8S8O197PvR9y1l75a+Pjda/zrU44PN96Cq4K33e8z4cb2csLv3LVVPjWEky8orBL8wsLqmsKNdcDn3bUN94QbK6pH/85dW3BlpCET1icszDQqbry/Twnr870FAAAAAAAAAABVpWbCwqy1qyQ9LslIWmSMITAsnA/mXF9frIGttfdLOl/S5qzbRtKbJF0o6SxJU3K63SDpImtdiU9AHkHCwiTpnMXBNheYMRgW9sZvpHvPlJZdL73xa+mhd0mLr630qkavno3524zm1xuA6rfmT8Ha+Zy8WnFz3qf0r6EFmnKCu/bcNdLuZYXPAQAAAAAAAAAAAAAAUGlzLgrWrnGvwuca57P1e92fpZ4N6eedy93tZp6npE14lupNg0xmX4vx2T+SUoBDPfe5LH+bQU3T3HtQo4g1SOP29a7teKHw8V/+RuFjZIvVS4s+Haxtw7jC52s/xF1bVrTt8WNbYnv+Ns0zSr+OXGEDwfzE2921Fb8o3jwuyU5p29Puen1rpGETKXdYWEOsUY0x7+9hn08/AAAAAAAAAABQXWomLCzjm47n8GGMOV7Sflm3EpJ+Vcw5rLW3SzpI0g8l+X1C+LikC6y1F1tru4q5BowxQcPCjJGOCBCAldtvj1Ec3vTSv0q5m15e+lcp1V+R5Yx6O54P0GgUv94AVDebkh58R/52M99Z+rUUYvxC6bgCf8096jopPtG/zas+J90CAAAAAAAAAAAAAADUiqDhO/XNhc/VOtu/vmtJ+uvOV9xtWmY7w8LipnHPc+MT3mWD7NNrmZW/TZS2QSV3ed83MckGCDvzs/R77lp8UrQx8/23laRYPB2sVijnfl9JvQEOdR1LOpdLa2+XUiHP9l57e/42PWujrakQ++SenZ7Rfmj4sVp8XrN+70HF0rXCXTMxqb4t0rBJ6w79ipu44rFGz1oi1RtpPgAAAAAAAAAAUH41FRZmrf2DpJ9IMpLONcZ8zxhTX+FlVT1r7SPWWpP1aLTWbinBPJustR+R1CHpNEkflPR5SZ+U9G5J+1hrj7XW/l+x58YYFDQsLCjXxhA7SsObutcObazJltwpbXqg/OsZC4J8cO96XY9lyd3SGzdIL35F2nB34RudAHh76iP525h6ad+Pln4thZp7sXRhxEza0++VFlyZ/2TG1wgLAwAAAAAAAAAAAAAAo4Ax0rTT8rerK0JY2Pj9pPH7u+v3nColdki9m91tZp2vRMo7LKwhFt/z3Mg4h7BB9qC17C01z8jfTpJmvTtYuzA6zvC+b1PSQAlDffb/bLR+M96e3lvkZ/pZ+ffkBBF1n/BYsuUJ6TdGunW+9MA50o310r1vCd5/oErPA59+lnfA4ewLwo818TB3rXtN+PHCevIqd23WBVIs2us8kfIJC4s1qtF4B0QmfELGAAAAAAAAAABAdampsLCMqyR9W+nAsL+X9DdjzAeNMZMruywMstYmrLX3WWt/Zq39hrX2u9bam621PkfgACHZfu/7RQ8LG6XhTa5T5yT/jTaIrr8zf5vR+nqLqm+rdPcp0qMXSy9+Ob1Z5ZmrCQwDSuH1/83f5uTbpOkhNo1VUn1L+MCwU++Upp2afh4kLHS0BooCAAAAAAAAAAAAAICx5c0/zN+mGGFhxkin/Nm/zaN/Jz1xubs+7VRnqE3cNO55HvMLC1PA/Wdvfcq/buqlBX8fPWDLz6JPuWsv/FP0cfPtvYv6Zxk3XzrxZv82x/482ti58u0T3vRwceapVX1bpTuPGXl/w93Ssp8GG2PbM/nbtM4Jt65iaJkhnfwnqWlq+trUSfOvkA74fPixjJH2/3/etd4N0dcYxBs3Slsec9eP/nHkoRPWO0wxpjrVmXo1xBo9632pEoYQAgAAAAAAAACAospzhE91Mcbcm3W5W9I4SQdI+nGmvkbSpkwtKGutPb1oiwRQHq5QpVjUtzVHWFgqGXG8KucXShXxNCrk8ZxjU0E2gmeGu+9safuzw++99l1p/uX+p7oBKL4D/0na+6xKryKc+pZg7c5fJzVPz7kZ4P246w2pbZ+wqwIAAAAAAAAAAADGHGPM+4s4nFV6f+BOSRskLbGWU8cAoCCNk/K3KUZYmCS1zZOaOtxhPOtu9+m7QJKUTHmH4TTE4nueG5/ztG2QfSFSej/JxVbqWiWtvllqP2To+2Bi0oQDpIZxwcYKy+/7vfIG6Yhro427a4l/vZD9ozPf7q7NukCKT4w+djbX4cCDVv9emnpCceaqRRvucdeeuFya/8H8Y2x+JH+bptz9VmXScYZ0/vr0a7llVmF/B9sPdtd6NkrN06KP7Wfxf7hrsYaC/kyJlCNMMRMS1mi8w8Jc/QAAAAAAAAAAQPWpqbAwSadIw45zspJM5iFJszKPoJt/TIi2AKqJK+wq34lhLq5+G+6KNl61S+xw16J+D+Fvx/P52/iFuI01256RtjlOZlz6A+mo68q7HmA0S+zM32a+z4mtta6hfeS9VID3423PERYGAAAAAAAAAAAABPMzlW6fXpcx5ilJP5d0k7WWpAMACCtIiFP3muLNN36ROyzMT32rJCnpeKtvMFlhYcZ4tpGkVNiMydbZ0n6fCtenUK1z3LUge31cdr8WvW8QU06UNj808v5+ny7eHD7/bSWlDwAcy4rx33ji4dLOl/3bHPb1wueJajCsr1Ats9y17lWlCwvb/py7Nm5hQUO73h/jmZCweKzJs95newuaFwAAAAAAAAAAlE+eo3VqgvV4ABjtejd7348adOV3CtPAKNxDuP6v7pqptRzJGjDgfZLhCISFDXnhy+7ail+VbRnAmJBvY9e4fdOnutaieJ6Tb2Nxqc5jA1SQ9+Ntz0RbEwAAAAAAAAAAADB2mRI82pQ+hPSnkpYbY84s258GAEYLE2A7+dSTijffvPdH65c57C5pvffjxWONe54buQOlrFLR5i+nhjapaap3baBbCht4Jkk7XpQefKe7fuS3w4+Zy+u/7bh9pclHFz52UJ0ryjdXNcq3BziVzD9GMkAg3ZQTg62nmk05zl3b/Ghp5sy3J33eBwoaPpFyvT+mwxQbs94nh/cjLAwAAAAAAAAAgFpRi2FhxdwoBKBWdTk+zI8aFuZ36t2WEn3gW0l+36e65vKtY6xY8q1g7WwNbEIql3W3+RTJBQWKKt/Jr6feUZ51lMLh3/Svx9u9TxuddX7+sV+p4OmYAAAAAAAAAAAAQO3J/mAu6MGgQQ4RHbxvJE2X9BdjzMcKWCcAjE0Hf8W/3jyjeHPNvzz/ng4vmRCdRMo7bKfBxPc8Nz5b5G2t7D877jfu2oa7wo1lrXT7If5tFn0y3JheFnxYOvxaqWVW+hC/jjOl0++TYhH39kax44XyzVWLlvxn/jZr/+Rff8eK8v43LZVYg7v27KdKs6f3lW/41/e/pqDhE9b7/TFu0iFh8ZjHwZqS+hzvqwAAAAAAAAAAoPrkOTqmulhrazHcDEA5hQ0La5mdv19yd/T1VKsNd1d6BWPL818I1s4OlHYdo8VAT/p0O7+NGgCC693krtU1S23zyreWYtv7HP96wwTv++2HSG3zpc5l/v0TO9KBYwAAAAAAAAAAAAD8fDDzdZykL0qarHS4V0rS45KekrRK0i5JcUmTJB0s6URJHZm+VtJNkv4qqVlSu6QDMm3maHho2H8ZYxZba+8t6Z8KAEaTpmn+9foiH0K6/zXS8/9feh9YUJmDUBM24VmOZ4eFeR0el1EzYWHxSe7ail9J088MPtaO5/3rbfODj5XP/p+R9vt0+r9tXTx/+1Lo7yn+a7Zm5Hl9r71NOuAfow2932ekI66N1rdaNYyXkru8a9v/Jk06orjzrfU7SFfeB1+G4AxTjKXDwhozoWG5UhpQv02q3rAvFwAAAAAAAACAakf4FoDa43dSU3+39/39P+t9/8hvp7/Wt7nHTHlvLKlpWx5112x/+daB4QgLC+73k6SXvpY+8RBAYfp8wsLOebl86yiF5mnStNPc9clHed83Rjrlz1LrXP/x+7ZGXhoAAAAAAAAAAAAwVlhrfy7pUUkfUzooTJJ+JGmetfZ4a+2nrLX/aa39sbX2+9bar1pr3ytppqR3S1qhdAjYeyTNsdb+0Fr7DWvt+6218ySdK2l5po1V+hDVUZZkAQAlNvsC//qEg4o/Z/th4dpngqeSjj2dDbGhYKqYzxZ567cHtZqMX+SubXkk3Fiv/Lt/vbnDvx6WMaUNCtvrOP96Ynvp5q52+V7fuxbnH6Npqvd9v0Mpa9VEn/ehfAdNRtG9xl0rQmhfwnqHhQ2GKcZjTe6+jqAxAAAAAAAAAABQXQgLA1B7Bnrctakned/f5zKpoX34vQkHSR1npJ/H6t1j7loSank1L0VYWMXUyiakatDfKb3wT+kHgMK4NnHNfKfUNq+8aymFY38pNU4eeb+uSdr3o+5+4xdJ71guTTrS3YYNUgAAAAAAAAAAAEBexpgWSX+QtEhSv6T3WWuvstau9utnrU1Za2+RdIikh5Xe7/glY8xlOe1ul3SEpOeybh9ijHlL8f4UADDKNU6Wmmd41ya9WWqcVPw5F34seNv2Q/c8dYfhNO55bmScQ1nVyAGV9S3uWudyacPdwcZ5+RvSyhv92yy6Ovi6qkG+187Ge8qzjqqU5/Xdt1Xa9Zp/G9d+sulnRltSNfPbP/bwhVLv5uLNNZCQeje464MHYBfAFfgVj6XfHxsJCwMAAAAAAAAAoOYRFgag9uxe6q41jPe+P+EA6Yz7pLmXShOPkBZ+XDr9XqmhLf98626Pts5aZQkLK6oN9wZvawdKt47R6uV/k9aOsb+jQLG5Nnc1TSvvOkqlZW/prCfTwaHjF0lt+0iz3yOdepc0Jc8po8ZIB3/FXR9ggxQAAAAAAAAAAAAQwL9I2l/p9Ip/t9b+Nkxna22XpHdJ2ibJSPofY8yUnDa7JV2gdBjZYErGKEy0AIASOm+F1H7I8HvTz5bOfLQ08+3zgeBt9/v0nqfJVMKzSUMsvue5Me6wsFSthIVJ0sl/dtfuDZCJ2bVSev7z+dvNeHvwNVWDuRdLR37HXX/s/eVbS7WxAV7fT3/CXeta6a6Nlv1k2ea817/+4peLN9fK37hrcy+VZpxT8BRJ6/3+OBimmB2qmKvP9hY8PwAAAAAAAAAAKL36Si8AAEJL7HDXWue4axMPk477Rfj5tjwWvk81y7cRgMCq4rr39OBt+d5H88wnpRlvq/QqgNq15RHv+01Ty7uOUmrbRzrmp9H6TjvVXRtggxQAAAAAAAAAAADgxxhTL2kwsaNP0r9HGcdau8UYc52kz0tqlnSxpG/ntFlhjPldpmYlHR913QAwJsUapLc9X+lVeKtv3fPUFYbTkBWCY3zO07Y2Vbx1ldr4hf71rtVS6yx3fXnAPbMxd4BQ1Zr/ofTeQZeuVVLr7PKtp2oEeH1vuk8aSEh18ZG19Xe5+9W1RF9WNRu3UNr9mndtg8/3I6z1d7pr8y8vyhSJlPfhlw2Zv+ONsabQfQEAAAAAAAAAQHVxfxIKANXK78PShnHRxhy/f7R+1aK/K/19WfdXqb87T9tO/3qqv3jrGuuSu8O1r6VNSNWkc5m0c3GlVwHUpsR2qXeTd61xFIWFFaLOvUFKia3lWwcAAAAAAAAAAABQm06QtJfS4V1PWmu7Chgre9PQOx1t7sh8NZJmFjAXAKAcDvpSsHZ7HbPnqSssLG6Ggo+MjHMoqzwHrlaT1nn+9c7l7lpiu/TiF4PNY9zfr6pV3yK1+ISB9Y3RfT35DhSWpFTSvZc4sc3db9Lh0dZU7fY61l3bvbR48/h+b48szhTWO/ArnglTjPsEA/alODgTAAAAAAAAAIBaUPNhYcaYw4wxXzTG3GWMWW6M2WGMGTDGeKbdGGPajTGzM49p5V4vgCJY9uPijznTtX+wBuxcLP1poXTfWdL9Z0u3zvcPTlr1O//xLGFhRZPcFa69HSjNOsaC7jWVXgFQm1bf4q41ERYmSTIx98bCJ64o71oAAAAAAAAAAACA2pP9Ydu6Asdan/V8jqNN9qaZiQXOBwAotf0+lb/N+P2klqH8x0TKOwynISsExz8srIYO9YzV+ddf+Gfv+72bpN9PCjbHcTeEW1M1OfSr7lpyZ/nWUVUChuE9/THv+3/7R3ef+tbwy6kFiz7pX9/yZHHmWX+Huxb1sOwcrvfHwZCwetOgmLzfV1xBYwAAAAAAAAAAoLrUbFiYMeZgY8zdkp6R9CVJp0maK2m80qcCuj7lPVXSisxjqTGmpfSrBVBUfZuLP2Z9c/HHLJfHPyj1ZO2l7N0gPXapu/0TH/Ifj7Cw4gkb/kVYWHS1eLIhUA2e/ri7RljYkAn7e9/v3SB1rijvWgAAAAAAAAAAAIDaMj3reaEJE4N7/YykDkeb7VnPGx1tAADVIt4unfJX/zZHDz9gNmET3kOZ+J7nxhhnYJi1AcOUqsWiq921zQ9JPetH3l96XbCxT7pVmntRtHVVg7mXuGtr/li+dVQTGzAMb+WNI/c9da1yt+84I/qaqt2kI6Qj/stdd4XyhTHg/b4lSTr064WPn5F0BH41ZL0/Nsa8f0XuS/UWbR0AAAAAAAAAAKB0ajIszBhzmaTHlQ7+yv0kN98nuH+UtCrTr1XSu4u9PgAom+510tYnRt7f9ozUs2H4PZuSdr2Wf8wUYWFFMxD2lK0aOrGw6hAWBkQy0OOuERY2pNHne7H2tvKtAwAAAAAAAAAAAKg9u7KeH1DgWAdmPe90tGnKeu7zgSgAoGq0H+hfbxqeD5lMOcJwYvFh186wsLxbzavM5KP865seHHlv+fXBxp759vDrqSZ+h4wmd5RvHVUlxOt7433Dr1/2Ca0yddGWUyumnOCubbw7eAiby/Zn3bWGcYWNnSWRcoQpZgWExY13WFiCsDAAAAAAAAAAAGpCfaUXEJYx5t2Srlc6FWTw0yyjdADYNkmH+fW31qaMMTdJ+n+ZW++Q9MvSrBYASmzXYp/aq1JzZpPMur9Kj10i9W3NP6YlLKxo/EJ4vNiB0qxjLNj+nNRxeqVXAYwufgFZY43fz9tVN0mLPlG+tQAAAAAAAAAAAAC1ZU3mq5G0jzHmaGutx8l4gVya+Wqzxs3VkdVmc8R5AADl1DLTvz5u/rDLpHWE4eQE4BjF5HWAZ6rWDvWc+U7/ejIrl7N7jfTa96SulfnHnXpSYeuqdqbm/plEkYQIC0vkBKqtvMHdtv3QaMupFRN9/nw2JfVulJqnRx8/++9prmmnhhqqN9Wj+7b/SSt6XlNHfKZOnni2NiXW66ldD2hF76uefbLfH+OxJslju/LtW2/SQzvu0NT43jpq/Mma0ThH9+/4s5b3LFEylZQk1Zk6zW1eqJPaz9bkBvYXAgAAAAAAAABQCTX1KZgxZrqkn2cuBz/J+r6ka621K4wxcyUtDzDUH5UOCzOSTi7yMgGgfBLb3bXBU/K610j3nx18TAKrimcg5ClbfO/TbISTG1/9trT/NcVfCzCWNU6q9AqqR8fp0ranvWsD3qfVAgAAAAAAAAAAAJAkPSApqfReRSPp+8aYE6213WEGMca8V9KZGto3eJej6RFZz98It1QAQMUc9b/Sk1eOvH/syPOgdw/s9ByiwcSHXRtjPHOTbJgwpWpQ3yLNe7+04hfe9Rf+WVpwhdS9TrrrRKnrjWDjvun7RVtiRU08PH3YaK5lP5aO/lH511NpYfZfPvcP0v6fST9P9UtJ779bkqQFHn8/R5NYg3TgF6SXv+Zdv/M46e1LpVjEf37z+v+6a+P3DzxMMpXQd1d/eU8o2EtdT+vu7X/I2y8eGwoLa4w1erbZnNygzckNWt67RI/vutc51tKel/XUrgd1zexvaFLDlMBrBwAAAAAAAAAAxRGr9AJC+qKkFqU3DaUkXWit/bi1dkWmHvTTraeU3oAkSZONMfOKu0wAKDLXh/c7XnD3MbF0vz/MCjdXKpm/DYLZ+WK49rbGTiwslSjfh27XgcEAnFb9n3/d1Nr/KpRQ8wx3je8TAAAAAAAAAAAA4GSt3SXpNqX3/FlJh0m6wxgTeEOLMebDSh8yarPG+ZWj+VlZz5+PsmYAQAUsuEI67Z7h9854SJp3ybBbKZ8DORtiOWFhMp7tbC3u0zv25+5a70ZpIJEOEwsSFNa2QDpvpdR+YNGWV1F7HeuuRTm4tOaFfH13vpH+uuUx/3bNHZFWU1P8DqztekPa8mj0sVc79uo1TpGM93uVl8Xdf9sTFBZGPCtMMW6aQvfPtaN/qx7beU/+hgAAAAAAAAAAoOhq5l+2G2PqJL1P6Y0+VtK/W2vzJBx4s9b2S1qSdWu/wlcIACWwa6l075nSb9ukvxwhrb55eL1hgrvvncdIN0R4m7f94fvA2zOfCtfeZyPTmML3ASg9a6UnPuSuH/zlsi2lJkw7xV3L2WgKAAAAAAAAAAAAYIRrJPVmXR8v6RVjzA+MMacZY8bndjDGLDTGXGWMeUrSdZLiGgoKu95aO+IEt0wA2SkaOnT0oeL+MQAAJdVxmnSxHXpMPWFEk83JDc7uDWb4Ho6YY5u8DXw2dZWZdqq7tvPl/GFPg972gtQ6uzhrqgamzl3rWV++dVSLsAFpg6+bfK+fWOEBU1WvYbxU5/Pn3BwxLCyxPVo/D7dv/W2kfi114/Y8b6sf8at3JMt7luRvBAAAAAAAAAAAiq6+0gsI4RhJg59MJCT9R4HjrZF0cOZ54FMKAVRYyidEaP4V5VtHOSR2SvecIvWsS19vf056+D3SqXelN8VI/pscokolij/mWJEakLY+LnWtTJ9W198Zrj8hWRk1eHIjUGt2viwld7rrsy8s31pqwYSD3LXkTim5W9ryuNS5LL1pLD5RamiX4oOPif4byQAAAAAAAAAAAIBRzFq7whhzuaRfKn3AqZXUKunKzEPGmF2SdisdCjYh81VKB4Qp08dIekLSZxxTfU5DB6j2SrqrqH8QAEDFJVJ9ztrejcMDsIwx8soFq9mwsI4zpY33edf+ekSwMSa9SapvLt6aqsFex0mvfde7NtBd3rVUhZCv776t6a+r8oRQxUqwX7namJg0/WxpzS3e9e414cZLDUgv/5v04hfdbSYdGWrIVb2vh1uDpHpTr31bDtxzvX/LYXqh88nQ4+RKWPf7MQAAAAAAAAAAKJ1aCgtbkPlqJT1lrd1V4HjZ/YtzPAqA0vPZ6KH5HyrfOsphw11DQWGDbEp645dZYWHeJ98VZICwsEj6u6T73yZtejD6GISFpVnCwoCSsinpgXf4t6lrLM9aaoUx0uHfkp67ZmRtx4vS7YdKXSv8x4g1DoWHNUzMep4JExt23T4ycCzWUJo/GwAAAAAAAAAAAFAG1tobjTEpSf+r9H69wSSLwTCwCZnHiK5Z7e6QdJG1tssxzS8lDSZddPq0AwDUKL+wsKbY8BAss+dHzHCpWt2ftuiT0vOfL2yM435VnLVUk47T3bVND0njFrjro1HY1/czn5DaD5S2PeNu87aXCltTLTn8m+6wsKXfk478bykW8J/gPPMJaekP/Nsc9vVw6wspppgu7fjEsPfH4yacoZe7ntVLXU8XNLbf+zEAAAAAAAAAACidWgoLm5L1fHURxsv+JKyWvg/A2Ob3weJoCzbxCiSRpOU/k475afq5LcEJdynCwiJ5+RuFBYVJhGQNIjQNKK3X/idYsBWGG7evu5bv+ymlf4fp3Zh+RFHfOjw8LG/gWNZ1/fixcbonAAAAAAAAAAAAqpq19rfGmEclfUvSuzS0b89rA4zJ+rpC0testT/JM/7jxVorAKA6Jaz3HtKY6lRnhm8HN/I+jNV6/tipAfUt6T09UQN6DvuGNH5RcddUDeqa3bWlP5Dmf7B8a6kKEV7fj73fXWs/OB0mNlaMmy9NO13aeI93fcuj0tST8o/T3yUt8/3VNa1lVrj1hfCOvS7RkeOO15T49GH3G2JxXTXjc1rWs0Rv9LymAQ3oz1tuVErh9u663o8BAAAAAAAAAEBp1VJIVvYnV8X4l+6Tsp7vKMJ4AMoh1e+umYbSzbv+Lmn6W0o3vpfezQEalSBcirCwaNb8ofAxCMlKIzQNKJ3eTdIzV+dvV9dU+rXUmvik/G1Kqb8r/ehZG61/w4SsILGsMLGGAIFj9W2S8T5tFwAAAAAAAAAAAAjDWrtG0kXGmOmSLpB0nKRDJe0lqV1Sn6TtklZKelzS3ZLutLYUJ+oBAGpNwhGUFfc4GM849jrUbFiYJLXOlnYvjdZ3/P7FXUu1qG9x14Lsd+nvSe+VGi17Y6L8ytS9xl3b8WL0tdSq8fu5w8K2PRssLGz9ncGC/erHhVtbCKdNfLvne6Mk1Zl6LWw5SAtbDpIkPbj9du0c2B5qfNf7MQAAAAAAAAAAKK1aCgvLTs3ZuwjjHZT1fGsRxgNQDtYnLCxWwre0F79U/rAw432q3TClCFUiLCyanS8VPgZhYRkRX9epASlWjDxRYBRbfG2wdpUOxqpGjZMrvYLCJHemH1oZvq+py4SNTfQPHItPzHqeFTg2mjZUAj/c87UAACAASURBVAAAAAAAAAAAoCisteslfTfzAAAgkIR1hIUZj7Awee/BtLV8mOXe50qv/lf4fnXN0rTTir+eauC313aHz77OLU9IT39c2v6s1NQhLbhSOuiLo2CPSw2/vqvFjHOlpd/zru1+PdgYb/wqWLu6eLB2ETSY4GO31U8IHxbmeD8GAAAAAAAAAAClVUthYasyX42kw40xDdbaZJSBjDELJc3IuvVCoYsDUCY969y1WENhY8+9xP3h7JbHChs7ikBhYSUIlyIsrHJqeRNSMaUivq53vypNOKC4awFGm8X/kb9Ny+xRsOmtBMZygJodkBLb0o8oYvHh4WFhA8dKuCkOAAAAAAAAAAAAAADUjkTKERYWG7m3ICbv/S9WtqhrKqtD/zV9sOmGu8L1O/lWqaGtNGuqBod+TXr+CyPvD3RL/V1Sfevw+12rpHvPkPo709c966QXvyzVtUgHfLbkyy0pW+TX95QTizteLZh+lru29HvSkd/2P9h261PS6puLv64Q4qZRJsQewLa68aHncL0fAwAAAAAAAACA0qqlsLDHJPVIapLULOl9kn4RcaxPZj3faK19tcC1ASiXlTe6a6bAt7R9PxL8JKdySO7K36YU4VKEhVVOKcLfalLE1/X6uwgLw+iR6pdiRf5VffG1wdqdfGtx5x0tGsdwWFihUgmpd1P6EUVdy/DwsCCBY4PXDRP8N+cBAAAAAAAAAAAAAICakbCOsDDTOOKecYaF1fChnvWt0ql3SDcEOIx20JmPSXsdU7o1VYPmGe7ahnukme8Yfm/NH4aCwrKt+EXth4UVOwxvLB46aYw0/a3S+r9617c8Jk09wd3fb697mcRjI98T/YyrmxB6jqRNKGVTigU5HBsAAAAAAAAAABRNzYSFWWv7jDH3SDo3c+trxphbrbU7woxjjDle0lUa+iSssse2AAhn8bfctULDwqYcV1j/SihFuBRhYaUXa5BSyZH3CQtLixqC1xcxhAaoJt1rpSeukDbeKzXvLe3/D9LCjxU+bn+X9LfPBWs78dDC5xuNYg1S4xSpb3Ow9mc9md6ImNwhJbZLiR3pR/Z1MnMv9zq5ozSBoLVqoFvq6U6f4hpFw/isILFMmFiDR/iYV+BY/bixuekRAAAAAAAAAAAAAIAqlHTsb/QKxjGOAJuULXKYUrkZI005Qdr8cIC2MWncwtKvqdLa5rlru18bec8V5rTzJfc4A4l03WvvZzXpWV/pFYwOvq+pV91hYclOad3tpVlTCF4Bin5a68ZFmqffJkPPBQAAAAAAAAAAClMzYWEZX1M6LMxKmiHpTmPMudbaQOkgxphTJf1eUkySkdQvySd5CEBNiZX4LS2xIx0aUQ75NhNselCaelJpgkQICyutqf8/e/cdJslR2P//U5M2717Od7rjlFBC2coCBSRAIgiQCBLYxkYm88P4azBgE43BYBvbyCQbY0ASAgMmCCEhFJGEUECghHQn6aIu3+2FTRPq90fvamZ3u3q6e3p2Znbfr+fpZ6e7q6prZmd7d6erP/VCafcDjrAwgmEkxQ9N27cm2X4AU61UkG4+pzxA7cDT0n3v9MKKnvem2tped51kC7X3cabrO1Ladmu4spkuqXOJpCXRj2NL3uylfgFjYQLH8nujH3M6y+/1loH10eualJTtGx8wFipwbHQ93UHYGAAAAAAAAAAAgIMxJivpZEmrJc2R1CPJWGs/3tCOAQCa1ogd9t2e9QmrMfK/Xm/V4mFhkrTi0nBhYQvPldrm1L8/jTbvVPe+kf7x6wObpR13u8uXilIqPX7b41+Qfvchb8JGzAzLXyM9+R/++379Z9KyV43/2SoVpfvfLT151dT0r4psKhepfE+6L9ZxRkrDvmGNAAAAAAAAAACgfloqLMxa+2tjzLWSXicvMOxESY8bY/5Z0nWSJiXcGGPSkl4o6c8lvVZ67sqvlfQFa+0z9e85gERUm80tla39GMsvkTZ833/f4JbmCQt75prRsLCQoUqzjvZmqzrwdIhjExZWV7vuc79X44ZkTTfVQtOWvNR/5rXh7fXpDzBVdv7afybLtV+rPSys/5Ha6sPTtSJCYf/ZaUMxKSnb6y2RjjmqVJTy/RVBYqNhYq71iYFjxYH4fZ9ubGn0ddkdr34qWxEyFjVwbJaUZjAdAAAAAAAAAACYfowxZ0h6v6QXS/K7IDIpLMwYc6GkS0dXd1lr31+/HgIAmtVIyT8szC+sxh0WNg0m9Tz0ndLARumxz7rLLDxXOv3aqetTI6WyUucy7zWZ6JFPSi/4RHn9jkuC29r6S2nx+eX1zT+THnhvMv1E61h0TvD+u6+QXvjT8vrj/9Q0QWGSlPMJUAzSne6NdRxXgCMAAAAAAAAAAKiflgoLG/UWSYdJOk5e4NcsSR8dXcYl3BhjHpO0StJYKosZrWMk3SXpA1PRYQAOd79Z2v1bqTQsFYek4ujXoz8qHf6eyeUdgzyeYxI4pR39MXdY2E+fL80+Tlp4jnT030nZntqP51ItLGnNl6ST/0MKO2hlpF866YvSHa+uHgZWJCysrgr7pbZ5/vsICxtV5X296Dz/sLChrfXpDjBVnvqG//btd9TetvEf/IiIDqwPX7aRr3kq7c1cGXdm2OKIFzY2Fh6WDxs4NhqqVS30dCYp5b0wy7iBlumOyWFirsCxSQFkfVKqFf/lBwAAAAAAAAAA05UxpkvSV+RNFirJN8XFNZvgI5Ku0OisPcaYb1prH0q8kwCApuYKpvELxjHGf6I36/xV00KMkY77jHTMx6XhHZKsNLxTKg56Y2m7V0ltcxvdy6k161j/sLBKAxu9CR2DPPqZ8WFhrjHFmP7mny5t/5X/vmdvlPJ7vckgJWnD/9a9O7bapNsV/AIUg3Rn+qJ2R5I7wBEAAAAAAAAAANRPy905bK0dNMZcIOlaSeeoPDjIyJtlcCwMzMgLFXuuasW+GyVdai2pLEBD7XtS2vO7ydsL+/zLFw4Et5dEWFjXQcH7dz/oLTvuks67vXoAw/BO6cAz0qwXRAtrCHt6CltuYL209CLpwgekTT+STEraea//IIZqYWKonWMQUtWQuJmi2vu6bYH/9qFtyfcFmEr5Pe59paIXABVbyOCqRedXLzOTzT1J2nZryMKOc30rSOek9HypfX70utZ64a+VAWORAsf2EJ5ZqTgoDQ5Kg8/Gq5/pKQeJ+QaOBaxne9x/swAAAAAAAAAAAERkjOmVdIeko1Se9LPS2Ng+X9baDcaY6yVdPFr2dZIICwOAGcYVTOMXjJNy/FqJErjT9NJtUudS73Hnssb2pdEKe937rPUC1vofq97O1pvHr0eZXHA6mk4/L1H1HuEOC7MFaXCLFxZWHKoeQpeAvA0/vjtrcpHa7k7Hm0DbFeAIAAAAAAAAAADqp+XCwiTJWrvDGHO+pPePLmN3sdsJX8eMhYftkfSPkj5LUBjQBFyzFhUdFw73/qFKewmc0rIhL3buuFvacY+04Az//aWidN87pDVfkWS9wIUzvyctOjdc+6HDwiKGS8060lsk6fcfJywsKVG/D8YR+MOvJk+11zM32397vr88qAdoSQHv3dKIlOqoT9uVTvt2DceYAXoOCV92pp6LjJEyHd7SsTh6fWulwv6K8LDd5WCxUIFj/ck/p1ZW2OctAxtiVDZStq8cIBY1cCzdOXN/DgAAAAAAAAAAgJ/vSTpa5bF9I5Kuk3SLpJKk/w7Rxg/khYVJ0vmSPphsFwEAzc4VTJMzk8ejGsdEb1ZM6jktrbhM2na7/7673iidfrW07bZwbVVO7LjlxmT6h9az6gpp7Vfd+39ymDeJ8y0XTEl3hktDocv6BSgG6U73Re2OJHeAIwAAAAAAAAAAqJ+WDAuTJOtN6/SPxph/k/R6eYN/zpC0RBp3dXe3pLsk/VzSN6213D0ONIt0u/9218XMoAuukmSm+JS2+Xp3WNgT/y6t+XJ5Pb9Huu0i6ZWbpLY51dsOGz41+Gy4cn4XfVOOWaMIC4tu35rwZYNm7yMszFM1LMwxKKGU92Zoy9QSqAQ00Prr3PtKI5JqeG8b/8GPk7TPr15mJttxV/iyYV9zjGeMF96a7ZG0PHr9UtGbKXZcwNjEwDHHen6PVDiQ+FNqXdZ7TfJ7pDgvi8mUw8OeCxKbEDgWFECWjjZoEQAAAAAAAAAANC9jzGsknadyUNjdki6z1m4c3X9QyKZuGGtS0guMMd3W2v2JdhYA0NRcwTQ5n/GQxjHBVSnq5KBoDfNOde9bd410yNukRz4Vrq21X5UO+Qup/9Fk+tYoJi3NPdmbINkl1Sap5I2/9G1jBk8Ut+BM6bRrpLte7y5zw/FT1h1XWKIfvwDFID3p3qjdkRStTwAAAAAAAAAAIBktGxY2xlo7JOnro4uMd2V3tqScpJ3WWseVKwAN5woAKDouHD7138HtTfUF6QNPu/c98+3J24pD0qafSM97U/W2w4RGDWyWnv5G9XKSdMQHJm9zhYXt/HW4NlFmC+HLLnmZtPlnjp0MQpIU/P4//C+lbMAMZvm9hIVhenINxgptBg/aSlK6M0JhXvOGSKVHg6dmx6tfyksj/V6AWD5q4NhuQlcr2YI0vMNb4ki3jw8PqwwcCwogy87ygkVT2WSfDwAAAAAAAAAAqMXfVDx+WNL51tqBqI1Ya7cYY7ZJWiBvQtHnS/pNMl0EALSCvCOYJuczoapxjN2wz2VXYlpJVxk3eOtLwrf12w94YWGbr3eXOfYz0qHvCt9mI5i0lM5JP1whDWzwL3PpfklWutYxpnimO+iy4LCwKeQKS/Tjd04M0pnukZGJfH6M0icAAAAAAAAAAJCMpg8LM8a8QNKLJR0had7o5h2SHpN0k7X2wcry1loradeUdhJAPKl2/+3Focnb7BQOzlhwtrTtturlula59+1yjEN85JPhwsLChEY98N4Q7Yxafsnkba6wMEQXJtxtTPsibwBGre1MZ0EzNx7+vuDXKd8vdSxMvk9Aow1tldrnVS/nEiZQM+34vYyylW+UnrwqXFmTqm9fUB+prPezFvfnrTg0GiK2uyJILELgGH8LlBWHpOIWaWhLvPqZ7orwsBCBY5Xr2V5+hgEAAAAAAAAASIgxZrGkYys2vStOUFiFx+WFhUnSISIsDABmlBHHJF5Z4xcW5n/dt8SkntNTz+rg/YUD4dvK90tD26TBgDEL88+cHhObppr+dpLGMkaac4K06/5G90TDJZ/x9Q45n3NikLRJqzPVrQOlfZHquQIcAQAAAAAAAABA/TTt1R1jzPGS/lnSGQHFPm2M+ZWk91lr75uangFIjCuUpOgzHvDA0/XtS6WD3xouLKzaLGS1CBMUsf674dtr9wlPKkYY+IBgfgF3LnNPkp75tv8+AkJGBQzGSrcHD04ZIS8U09T666RZH4tff2eIP5VXXhG//Zmi9/AIhUMEtGH6SbdLHYu8JSprvYGpYwFjEwPHqgaQ9UvMflxW2O8t2hijspGyfeUgsaiBY5mucCGNAAAAAAAAAADMDKeOfrWSNlhrb6+xvcqBAXNrbAsA0GJGHME0uZRfWJj/dVvLtfXpKZVNtr2fHiUNb3fvn3tyssdD8zrsPdLdYSaKrq8RG36scjbGhNLdmV4dGIkWFuYKcAQAAAAAAAAAAPXTlGFhxphXSLpaUrvG32U/dnW2ctsZkm43xrzBWvvDKeoigCTkZvlvH9k9eduar9S3L5XmnBSuXGF/9Lb3PxWuXJKhUXNOlDp8wsLaFwcc3xJwEEUxwsxYC8+RM8ijlE+kOy0v6P1vUlKmR0rlJL9BBkMBg3OAVratxvHyW26sXoYBbNW5gk598XsUERkjZbu9pXNZ9Pq2JOX3BgeM+a2PPY7zt+20Zb3XJb9HipOva9KjIWOzJwSOTVx3BI5FOtcAAAAAAAAAAND0KmdZeSiB9iovanQn0B4AoIWMlBxhYWZyWFjKMQbSWsLCpq2lF0ubfpxMW0FBYUtfLqXSyRxnSjCOqSarrqgtLCzT5U0gWCPX+c+P3zmxmu50r7ZqU6Q6rgBHAAAAAAAAAABQP00XFmaMOVzSNfKCwqTxAWF+wWEaLXu1MeYEa+1j9e8lgETkZvtv9wsLe/QzwW3NekHt/RmT6wtXbu1XpeOq9GuisCFgthStXZdMj3T8P/vv636eu97ARqlreTJ9mAnCzoy15KVSpkPav9Z//8YfSoe+I7l+taqhbe59JuWFqbQv8N6nEw0H1AVa2exj63+MpRfX/xitLt0RvqxJ1a8fgB+TKgdOxVEqSPn+cAFjfoFjxfCzl057tigN7/SWOFJtFaFi1QLHZk8IH5uV/GzJAAAAAAAAAADUpnIgzt4E2qsMCOMCBQDMMK5gmlxqcjCOkf/YDauExmei+fQcMjXH6VhUvUxTISCvYRIcwxElmMvvnFhNdzrk+PkKUQLMAAAAAAAAAABAMpouLEzSl+SFf1WGhOUl3Sdpw+j6MkknSMqNlrOjdb4s6awp7i+AuHJz/LcPbY3e1orX1taXSibkbF9+oWaSVG3WOWu9sKPAMiFDxYKc8AVp6UXuULBUwK+AtV+TjvlY7X2YKcJ+v573p8H7t/yi9r60usKgdMsF7v1jP59tjrCwZ2+SVr+lPn0D6q1tvntGyqRCJF0WnCV1LKzvMaaDar+/xxeuWzeAukhlpLa53hJHcUga6S+Hh43sqQgVCxE4ZgvJPp9WVhr2/ieK83+R5M1IWxkeFjZwLDdLyvS22OzHAAAAAAAAAIAWUDnAJnoCwWRLKh7vSqA9AEALcQXT5IxfWJj/2A1LcNL0teyV0uP/VP/jzD+j/sdAcznig9Kjn45e77h/kh76QCJdGC6Fz8n1OydW053uiVwnSoAZAAAAAAAAAABIRlOFhRljjpIX9mXl3V1vJX1e0t9ba3dPKDtL0gclvb9i8+nGmGOstb+boi4DqEXncv/tB56RiiNSOuet5/cHt3PYe6QjP5hcv8KGhbkMbAjen98r5aqMfaw1LOyg10uHvTu4TNDzXP8dwsKiCPv9ihQyM0NtualKgdHZHtsX+O9+9oZEuwNMrYCBiMPb6nfYhedIp3+nfu3PVMZ/dlpg2kq3Sx3t8YIHrZWKA+WAsYmBY5XrleFjlYFjDOYuKxzwlsFN8epn+yqCxCrCxLIhAscy3fzNCwAAAAAAAACYqHLGpCNracgY0ybp2IpNPrOMAQCms7wjmCaX8gkLc4zdsNUmhEXrmneqN2an3hMzLntFfdtH8znir6KHhfUdIR30OumhZMa4u8IS/fidE6vpTkfP9Y3SJwAAAAAAAAAAkIymCguT9OrRr2NBYe+21n7Rr6C1do+kvzbGPC3pKpXvDL5EEmFhQCvofp7/dlvyAgDGgga2/MLdxvJLpBP+Jdl+1RoWtm9N8P58f4iwsBoHKoQJKDEBvwJKNYaVzTRhw8IYZFTdQx8K3j/23h7e6b9/1tHJ9geYUgHniKEaw8LmnSrtuHvy9gVnSefeXFvbM83y10gbvheiIGE5QGjGSJkub+lcGr2+LUn5fe6AsWqBY4V9yT+nVpbv9xati17XpEfDxmYHB47lZlc8rggcS7cTNgYAAAAAAAAA088Do1+NpJXGmMOttY/HbOvVkkZnH1RB0j21dg4A0DqKtqiCLfjuy5ncpG3GMXajpDoHSaFxUhnp0gHpO+31O0bnCinbW7/20Zxys6VLtkvfnx+u/DGfkA6+Umqfl1gXRhxhiX6yJnpYWE86+vs6Sp8AAAAAAAAAAEAymi0s7KTRr1bSPa6gsErW2i8ZY94o6fTReifXsX8AkpTKBuysCExZf5272KnfSqw7z6k1LKywP3h/mGCpsOFTLmGeQyrgV0Ctx59peL2S0/9w8P6x97ZrsE3hQDL9KBzwvq8M6sFUCgoU3PrL+O2O7HGfpxa8KH67M9Wso8OFhYUJ7gSQDJPywnhzfVLXQdHrlwpeONZzQWIRA8eKg8k/p1Zli9LILm+JI5UbHx4WNXAsPfkGAAAAAAAAAABAY1lrnzbGrJF08OimD0p6c9R2jDFtksZmILOSfmOtTWiQAACgFYyU3KE0udTkYBxXWJgNmtAPrS/dJvUdIfU/Wp/22xfWp100vyjBX0d9OPHDD5eGQpfNpaKPn+jOVJkI20c+4LwMAAAAAAAAAADqo9nCwp5f8fgbEer9j7ywMEk6PLnuAGgK665x78t0JH+8sGFhXav8t1cLK9r7uNTtqDum5rCwEAElQc/TMfseHAgLmzpj7+3ll0hbb568f/eDtbU/uEX6weLx2158tzTvlNraBUKpMhDRWsn4D2L0tfUW6eZzgssEBUfCX6YrZMEI3ysAjZXKSG1zvSWO4vBo2NjucrBYZZhYtcCxUj7Z59PKSiPS0DZviSPdOT48LEzg2Nh6tk9K1RgcDQAAAAAAAABw+bqkT8m7iHa5MeaX1trQ4wONMSlJX9X48YVVJyIFAEwvI9YdSpM1k8PCUo5xlNaWEusTmlUdx+3MP716GUxfR31EevgTDTl0UGDiRDmfc2I13enok+sGnZcBAAAAAAAAAEB9NFs6wKyKxw9EqDdW1kxoA0BTC7oYXxGYkspO7Q30YcPCrKNPxcHgeo//i7TkJVXarnUwSpiwsIBfAQMbajz+DDPdwtUGt0rP/lwaWO8NbJl/VhMFJ4yeN7IBgxK23CwtOjd609ZODgqTpBtPlU66Slr1ZinTOb78zl9L238l9R7uHTPdHv24QFiDm6TOZeHKDmyqHhQmhf+dh7L8vnDlwgR3Apge0m1SeoHUviB6XWu9/x8mBow5A8cmrOf3JPC/wzRSHJAGB6TBzfHqZ3srgsRGw8SyPuFjfoFjmZ5ooZ4AAAAAAAAAMLN8QdJ7JM2Xd+H/P40xh0n6pLV2IKiiMeYISf8q6UUqDyhaI+na+nUXANCM8gFBObnU5GAc4xijaqtN6IfWt/ot0gPvq0/bz39/fdpFazj8fTHCwpI55wzbodBlsz7nxGpihYWVRiLXAQAAAAAAAAAAtWm2sLC+isc7I9TbXfG4J6G+AKi3oBup+x+VOkZDe7pWSfuemJo+SeGDU1wBZtVu1t95T/W2bTFcH1x23FW9TKrZfgW0sFKN369msvt30i/PlYZ3lLcd9Abp1P/2gvvqqdrr2LG0fN7oO9Jd7pfnSW+IMbhi7x/c+37zdmnt16UXXi+1z/OCPX77Aemxz5bLzD9TeuFPpSx/iiAmW+V9m98bvq113wlXrv+R8G3CE3aGRgJjAIRhjBdGmumUtCR6fWulwj7/gLEwgWNRfrfMBPm93jKwPnpdk5KyfeMDxkIFjo2upzv43QEAAAAAAABg2rLWDhhj3izpJ/JmwEtJ+mtJ7zDGXC9p3AezxpjLJB0q6cWSTpUXMDb2IeqQpNdbW+0CKwBguhmxAWFhhrAwVMjWce7xjhjX9huOa9GJyc2SzvqhdPsrp/zQQYGJE+VMLnL7scLCAs7LAAAAAAAAAACgPpotKSZV8ThK8kpl2ZSzFIDmUjjg3rf5Z9Kic73HrqCwJS9Nvk9S+Bu0XWFhqhIWFiYIrFrgWDV7H69eJt1R2zFQFuZ7ajLSovO8x4e+S3ri3xxt2caGBNz3zvFBYZK07mrpoMukZS+vvf0n/0N6+ptSYUBa/irpyA9LqdGAvonHneicm8qPZx0TXHbzz6UlF0Tr27prgvfv+o103zukM74j7XlofFCYJG2/Q3ryKumIv452XOA5VQYi7lsr9R0RrqkH/zJcuWe+LZ32rXBl4QkbnMi9CQCmgjFSttdbulZEr18qSvn+iiCx0TCxyvWgwLHiQPLPqVXZ0ujrsrt6WT+pbEXIWNTAsVlSOvqswAAAAAAAAAAwlay1PzfGvF3SVSqP8euRdOmEokbS1RPWxy6+FSS9xVr7QD37CgBoTiMBQTm5lE9YmPEfUm6rjfFE65tzQv3aZhIozD6+IYcdjhIW5nNOrKYn3Re5TtB5GQAAAAAAAAAA1EezhYUBmEnSne59Y0EcpYK7TO/hyfYnKldYWLWgrzBBYGHCp4I874+rl2mbV9sxUBbm+7X4QikX4kL67t9Kc46rvU9xFIe8wCs/679be1jYY5+THvyr8vqeh6TBZ6WTvzR6/MHg+n3PLz9OpaVMj1TY51/21gulV++U2uZE6GCIYJ/110kHPic9cZX//kc/S1hYWPufktb+l7TsFdKcExlEJanqe3DzT6VlFyd7yHoOjJuuekMGtpl0ffsBAElIpb2/lyL9zVShOOKFjfmFibkCyCrLlEaSfT6trJSXhrd7SxzpjslhYq7AsUkBZH1Sio8IAQAAAAAAANSftfarxpi1kr4taaHGXyStfFwZEGZH13dIusxae8tU9BUA0HxGrDuUJmtyk7YZ+Y9HKjEB3PQ36+j6tLvy8vq0i9bStdwb87jrvpAVkhkbOWKHQpfNmehhYdlUTm2mXcMRjkNYGAAAAAAAAAAAU487AQE0Tu+h7n19R3pf+x91l8nFvKE9KdYRZFY1LCxEsFStYWELz6teZiyQDbUL+n6lstLil0infau8bWSXu/zexxsbFuay897a2rZWeuLfJ29/6uvScZ+Tst1Sfq+7/unf8dl2tXRbQHDS09+UDn9P+D5mesKVW3+dtPZr/vuCvrfwWCv99PnS3j946498yvt62ZCUjj5AZVqpNhBxxz3JH/PgK5Nvc7pbcmH1Mtm+cAGRANDq0jkpPV9qnx+9rrXe35+V4WFRA8dq/b9pOikOSoODXhhvHJmecpCYb+BYwHq2R3LMyg4AAAAAAAAAE1lrf2mMOVjS2yS9U9IKR9GxVIUdkq6S9HlrrWNGMQDATOAKpcmanFI+16tcYWE2zKSSaG3GSOf/Srrp9Gj1Xni9dOtL3fuP+2xt/cL0cfKXpBtOnNJDDkcI5sql4o3F7M70ajgfPiwsHxDiCAAAAAAAAAAA6oOwoFmIogAAIABJREFUMACNE3QzcWnE+/rUf7vLLAm4ID8VSnn/7UmEhalKG0HmnCQte0X8+mOKQ1K6vfZ2ZgJXcFzHEuniJ6RM14QdAbOEpRr5qzlgEFRhf21ND22VDqybvL00Im2+XjroUumJf3XXX3zB5G3VzgEPvDdaWFi2O1y5x/5Rga/V4LNSx+Lwx51p1n6tHBRW6Tvt0utL3kCtGavKQMTuVckfct4pybc53aU7q5c58Yv17wcAtDpjpEyHt8T528la72/UiQFjoQPH+pN/Tq2ssM9bBjbEqGxGgzJnxwscS3fO8L8BAQAAAAAAgJnHWntA0uckfc4Yc6ikMyQtlzRXUk5eQNhWSXdJesDaajMvAQBmghE74rs9Z/xDcVLyH6NqaxmfidYx/7TodRZfKL1qi/TkF6Udd0v7n/bGfx71EWnJy7zr24AkzTlhyg85EiGYy3VerKY73aed+W2hy7tCHAEAAAAAAAAAQP00Y1jY2MCeU4wxK0PWWVS5Yow5U4FJLBMOaO3tYcsCSFjvYf6hMWMXD3fd666bCRHWUU+24N2gPumm5gTCwkIFijmc8/PwoUdBnr1JWnZx7e3MBK7vV6bLJyhMCvwVZRr4qzko6K7WsLCS/0AtSVJ+r/d17X+6y2R7Jm8zKannUGnfE7X1bUwm5M/N0Nbg/T8+VLqUyYyd7nuXe9+dr5HO/N+p60vTqTK+PUqoyaLzpC2/qF4uTPAVxgsKOx2z6o317wcAzHTGeH8jZnvk3T8WUakoFfaWg8TyFWFjYQLICgcSf0qty3qvSX6PFOdlMZlyeNhzQWITAseCAsjS8QY5AwAAAAAAAGgO1tonJCV04R8AMJ25QmmyqZzvduOYsIYMSjgZI3UslI75eKN7kqwj/p903zsnb+85dOr7Mp1kuqZ07MBIaShUOSOjjMnGOkZ3ujdS+SgBZgAAAAAAAAAAIBnNGBYmeSkq19RQ99YI5a2a93UApr+U46be4ujFw/1Puet2H5x8f8Z0LJUGN1Uvd01Kes0u7wblMUGBS2HFDQs76Uvj+1KLTf9HWFhYru+XM/gr4D1i0jV3J7agQVBjgV5xlfLufY5BWePLOMJ5Xny39L9z3fW2/0qaf3r19iX3+Siqwn4vSCI3K5n2ppugmeQ2fF86sE7qOmjq+tNMqg1EjPJzmA05aCfNbJeRhQkLAwA0v1R6NHgq5v9Ppbw00l8OD3MGjvmt7w4O051pbEEa3uEtcaTbx4eHVQaOBQWQZWdJuT4pFW+QNAAAAAAAAAAAAKaWK5QmZ/zHfRn5j/Gw1SaExfSx8grpmW+GK/u8P6lvXxpp+WukB943+Tr1oe9oTH+miyTGi0fgCkycKGtyzrDEanqihoUx9gEAAAAAAAAAgCnXrCFZVl7oV9Q6Y+Jd3QAw9VzhPGMXNOeeIm38gaNuHUOVDr5S+v3fhiv7vTnSGypOQWEu/g5skjqXuvfHuYDcsURa/upodboPlvav8d83sid6H2YqZ1iY4z1aKrjbyu+rvT+xVQkqsjZcsJefYtCMZjUE77TNkRacLW27zX//TWdIF94nzTmheltxQ/r87Pi1tOSC5NqbSbbdLq26otG9iK84JD17k9T/e+932NyTpGdvkHbdL/UcIi15mdSxKF7bI/0R+hFyEE6GsLDoqpwHV1w6Nd0AADRWKiu1z/OWOIpD5RCxOIFjSf7t2uqKQ1JxizS0JV79THdFeFiIwLHK9WwvQaIAAAAAAAAAAABTJO8Iysk5xqEaxxgPW22cHKaPU/4rXFjYwhdJJ3yh/v1plI6F0ln/J935Wm8yVEla/efSoe9sbL9a3tSeS4Zt0DjcMtc5MYyuiGFhRRVUtAWlnZMrAwAAAAAAAACApDXzp/K1XD0JW5dQMaDRUo7T0NiNz65ZkLLRLkZGtvpPwoeFSdLglorwlxBBX4WB4P2umZZSbdLh75Me/fT47SteKx372eg3qq9+i/TQB+P1EWVRw8JsQFjYrvulVW+svU+xVPn1ufu30pzj4jVdChikYExwgFo1R37IHRYmSTecKB3/z9Lh7w1uJ8lZ3oa3JdfWdGPSweEWd79JWvnG1gxdKAxIt10kbb3FXaZ9oXTOTdKso312VvkZdIU7+hnZFa5cmrCwyKqFJs4/c2r6AQBobel273/IOCGi1kqFA+WAsbEwsefWqwWQ9WuqBy03tcL+0QHxG2NUNlK2rxwkFjVwLNMVP5AZAAAAAAAAAABghhmxjrAw4wgLc1yHKVmulc0YqYy08nLpmW+5y7z8aal75ZR1qWGWXCi9eqe0+wGpe7XUPr/RPZoGpvZa74hrTP0ErnNiGD3pvsh1Rkoj6kg3821JAAAAAAAAAABML832qfx6cbciMLO4wpRKY2FhjtCs5/1JffozpnOZdPBbpTVfCVd+w/elQ9/uPQ4TODSyU9ozLP32g9LOX0vdq6Sd91avl+6Qjv17b0lCzyHufcXBZI4xE7iCruKEhXUs9m7+f+KL0tPfkAr7pGWvlI75hJTKRuvXvrVeGNyOe7xgoqM+Is07xV2+2nt3w/fih4UVAt5PJiMN1RCutejc6mUe/Ctp1RVS29yAQgmGhRG257boPOnZnweX2X6ntOCsqelPktb+V3BQmCQNbfXO/S/8ic/OEH8GD++s8j4eFfYcXsMsgnBY+rJG9wAAMN0ZI2W7vaVzWfT6tiTl904IGJsYODZhvTJwbGymaUiy3muT3yMdiFHdpEdDxmZPCBybuO4IHEu3J/6MAAAAAAAAgHoxxqQkHSXpBZJWSJovqUPehdJBSdvkjR98SNIj1pLkAgAYzxWUk3OMfzHyn6zQJjlODM2ve7V734IXzoygsDHpnHsM6YKz/SdtPfqjde1SSzv5y97kqBMd9IbJ5e7ymUT4oNdVPUS+lNeG4bXKl0aUt44x9RNkaxgT2J2JPpn35uF1Wt35/NjHBAAAAAAAAAAA0TRVWJi1dmWj+wBgijnDlKqEhWVn1ac/lU7+srTiMun2V1S/GXrTT6KFhf3hC9K6a8vrw9vD9altXrhyoQWMqywSdhTa2Pt1Itf7e9ax0sb/c7f1+Oe9cKsxj35GGtgsnfY/4fs0tEO6+UXSwAZvfWCDtO126cV3ecFh/gcPbjNfQyhAaci9z6SkQsCd9cteEdy28R/UNY4tSBt+IB38ZwFlHN/HOLbeIh1yZXLtzTQP/rV0wd2N7kV0D380XLnNP/VCBlMT/hQPM9Z9yy+kgy4LcZCQ4+YdM6iiBt2rGt0DAACCmVQ5cCqOUkHK91cPGPNbz++RigH/G8w0tuiFwQ7vjFc/1VYRKlYtcGz2hPCxWdEDqQEAAAAAAIAYjDFnSbpS0ksk9YWsttsY81NJX7XW3lm3zgEAWsqIjRYWlpL/uBjLvNYzy4pXS498yn+S15Wvn/r+NKuDLpscFtaxRJp3WmP60woWXyBle73JuioddOn49UXnS9k+7zp7pRWvDWz+zj0/13e3/WfokLAxOZOLVL5SZ6o7cp3Pb/iglrWt1NuX/a1mZebEPjYAAAAAAAAAAAinqcLCAMxAxnEaGrsoP+QI0ZqqG1oXnSO95EHpx4cEl3v2Z9KWm6VF50phZp2rDAqLYv+aePWcAga9FAgLC80VMjUxCGjM6rdID3/M3daTX5u8fd3V0on/JuVCjpvdfH05KGxMYb/0zNXSsZ92HLvKIKhawuoKg+59tiTtX+ve/4J/iH/cSg9/okpYWIIzRq7/jqSYP+fTXZhArJ33eOVaLcgqSsjDrgekeSdP2BjitVnz5XBhYUyy3RiLL2h0DwAAqL9URmqb6y1xFIekkf7RELHRQLHnQsVCBI75DeKfqUrD0tBWb4kj0zU+PCxs4FhulpTplVKOgGwAAAAAAABAkjHmCElflHTW2KYI1edIulzS5caYWyS93Vr7RMJdBAC0mJGSIyzM+IeFGccklJZxNTPLrKOlM78v3fdOaWC9ty07Szr8/5NW/3lj+9ZMDv4LaXCrNxlyfo805wTptKultP/PFyS1L5BedJN0z5ulvY9760f93eQJctvnS+f8wivX/6jUNl866iPS8kucTT81+Liu3vofsbrlClAMoy3VHqvexuFn9NVNn9FfHfSZ2McGAAAAAAAAAADhEBYGoLGM48bSsfClvY/570/Fn/UosrDH+uV50utLyQYOTTT3j5JtL2jQS5GwsNBcYWGu93fXcndbwzv9g7NsUdrwfWn1n4Tr071v9d/+6D+4w8KqBd098gnp6I+EO/5ExaCwsIJ060vc+3uqhPVJ0vPfLz32ueAyYwN9nP2o488uKoR8nbfcJC1+cX270kg3/pH0honn4BADEbfeIg3tkNqrhfcxqLEhaglVBABgpki3Sx3tUsfC6HWt9f5XHakID3suSCxk4Bh/J5UVDnjL4KZ49bN9FUFiFWFi2RCBY5nu1gsHBgAAAAAAQGjGmEsl/ZekDpVDwvw+nAuz7xxJ9xtj/tha+7+JdhQA0FJGSiO+27PGf4xnSo6wsLDjlzB9LLtYWnqRNLBRKo1IXSuZGGciY6RjPuqFWOX7pbY5je5Ra5h3snTRY97Y39wc9zXQuSdKL3tktNxsyRFmOOb3+++L3SXXOTGMrnR37LpPD/1B+wr96smEnBQZAAAAAAAAAADEQlgYgMaqFhbmksom35ckjrXjbu9Cbr0se3my7WUCLuqWCskeazqLGhYmSQvOkrbdPnl7achdp3AgfJ8csygGqjZjYikfvc0xQX2/p0oAWphBOUtfXj0sTJL2PyN1r/TfV+28g2SEDWV78P9N77AwyQuuyM0ur4edtXTTj6TVf1qlUIi2OpaGOx7CY+ZZAADqyxgp0+UtnTH+lrElKb9vfMDYxMCxyvXK8LGRPVJhX/LPqZXl+71F66LXNenRsLHZwYFjudkVjysCx9LthI0BAAAAAAA0KWPMayVdLT2X0DJ2Ea0yGGy7pN2jS0rSLEmzJc2vaKqyXpeka4wxl1lrf1C/3gMAmlnB+o9fyzjGeBr5X0uwTC4zMxkTPNErPKk0QWFxtM1NtFx/YVfsrixpO6imuh2pLg2Wxo/5zZqc2lMd2lfsD6zfX9hNWBgAAAAAAAAAAHVGWBiAxko5TkOlQnDgRpTQpFqlIsywdNPp9euHJK16U7LtLTrXvS/Ojdcz0f6npIc/7r8vKCzMON77xYCQr7rPZBdiEJS18W7ILg5ErxPFgjPDlRvY4A4LY8bIKRJysN2eh+rbjWbwh3+Xjv5IxYaQr80T/149LCxMaFXYnxsAAIDpwqSkXJ+3dMUYIF0qSPm9wQFjQYFjxcHkn1OrskVpZJe3xJHKjQ8Pixo4lo4/mzYAAAAAAADcjDGHSfq6vACwyrCv/tHtN0m6x1q721F/rqRTJJ0v6Y8l9Va0k5H0DWPMw9baJ+v1HAAAzaso/wlQ047h8MYxzq3EODEATS9eqGHGZHVy79mxj5oxWZ3Wd65u3v2jcdtP7j1bc7IL9OMd347dNgAAAAAAAAAASAZhYQAayxWmZIvBN9EuiH8hM7IoYWH11rks2fbSbe59QaFV8NiS9Mvz3ftdgWCSVPKf5VBP/VdAe3UOC7MhBkENbJC6VkRvuzgUvU5UL75HuvGU4DLb73AHJIV5/qgdr3PZ7/9WWnW51L1qdEPIAT67HwxRKERbiy8MdzwAAAB4UhlvFu24M2kXh6V8fzk87LkwsZCBY67/I2ei0og0tM1b4kh3lsPDKsPEggLHxtazfVMQ5g0AAAAAANCy/l1Sp7wLlkberF0fl/R5a+3+apWttTsl/VTST40xH5H0fkkfGm1Lkrol/ZskLnYCwAxUtEXf7WnHuDqjlO92G2YSPgBooGpnqXnZhdqV36552UXalt+stDJa1XGoXjbv9VrRvrqmY79q/h8rl2rXfXvvUMHmdXzP6Xrl/CuUUloppXTL7h9rb3FPzJ4DAAAAAAAAAIBaERYGoLGCwsL2/sFdL9tbn/74SWWn7lhBeg+vT7snfEG6/z2Tt5emINyp1e26X9r/lHt/psu9b/sd0Y+XVFhY/+NSn9/7KcRF+qFt8cLCpiIgau7JUts8aXiHu8yu+937HIPJkLAo74Vd90tzTqhfX5rB+uukI/66Dg2H+Hle8Zo6HHeGS/HvFQAACJBuk9ILpPYF0eta64WqV4aHRQ0cI7i3rDggDQ5Ig5vj1c/2VgSJ+QWOzS7vmxg4lumRjKl+DAAAAAAAgBZjjDld0rkqB4Xtk3SJtfbmOO1Za/dJ+jtjzB2Svi+pa7Td840xp1lr70qm5wCAVlG0Bd/taceknkb+n8dbwmwANDnXeeqU3nP0psXvruuxUyali+e9QRfPe8OkfRfMfbXOnHWB3r/mct+6nF8BAAAAAAAAAKg/7mYH0FiOQRqyheDAn+6VdemOL9MkYWHpjqlttzhcn+NNJ2u+Erw/053s8ZIKC3vq69Jxn/HZEeIifd41G1g1MW9Kf8Gnwpc1Rjrz+9Ltr5RGdvmXCfqeJHnjfKYnubamnQiDQW44UbpsyAtVmK5++4FyWFiSs5ZWez+f8o3gQEMEm3uytPPeydsP/8up7wsAAJgZjJEynd6iJdHrWysV9k0IGJsYOLZ7QvhYReBYfm/iT6ml5fd6y8D66HVNSsr2jQ8YCxU4Nrqe7iBsDAAAAAAANKu3j3418i4MXxk3KKyStfYXxpgrJX1b5QvOb5NEWBgAzDBFx2SQace4OuP4PN3GHcsGAFOG0C0AAAAAAAAAAOCPsDAAjeUKP7JF7yZWl2xvffrjJ5VQQFOtXMFqtUo5QnhKhIVVtfGHwfsTD+JJJdNMacR/e5igorVfl+aeImUjBqHFDUFa/WfRyi84U3rp76UfLvXf//T/SKd+w39fkmFhDChzi/o633W5dOZ369OXphPh58TaKgEBVdp63pvCHwuTrXzj5LCwvqOkWUc3pj8AAADVGON9lpLtlbpWRK9fKkqFve6AMWfg2Oh6cSD559SqbGn0ddkdr34qWxEyFiNwLJ1L9vkAAAAAAABIMsa0SbpY5QuV/2utvTap9q211xhjLpH06tFNLzfG5Ky1jgEQAIDpqCRHWJj8x3imHOPtbJIT+gFAHbhOU0aNn1QoqA+WkDMAAAAAAAAAAOqOsDAAjRUUFpbf778vN6d+/WlmqTqdstOOsLCBjfU53nQyvCN4f9u8qelHVM6wsBAhTuuu9pbz75LmnxrhoDEHALQviF6nc4l0zCel3304YsUEA74KB5Jra7qJGha24XvS4FapY2F9+pOk7oOl/Wui17MlyUQMA9z6S2nRuQFtMuimrg59l5TfJz15lTS8U1r4IumUr1cJcAMAAGhhqfRo8NTsePWLI1K+3z9M7LnHAYFjrv9jZ6JSXhre7i1xpDsmh4lVho+NW58YQNZXv8+nAAAAAABAqztF0tisY1bSP9XhGJ9XOSysW9Kpkm6rw3EAAE2qaAu+29OOiVhdgTaE2QBofs60sCZQwySnAAAAAAAAAACgZtzZA6CxXDcYlgpSYZ//vvb59euPyxnfk+58zdQft5IrWK1W6fb6tIvg8J++o6T+h6euL5WcN1lHuEh/xyulVz0bPuAoakCUJPUeHr3OmFTWva+U999v/WeeRNJiDAZZ8xXp6I8k35WkdSyMFxa2+Xppycui1fnDF4LDwoJe57l/FO1YmMwY6agPSUf+jXdOdQVvAgAAwJPOSen58T7TsVYqDo0PD4saOMb/e2XFQWlwUBp8Nl79TE85SCxU4FjFerYnelAyAAAAAABoFWOzjVlJj1lr70n6ANbae4wxj0o6ouKYhIUBwAxSdHzen3aMrTTy/0y6lOSkkgAwhVwhiFPah4AJNYkKAwAAAAAAAACg/ggLA9BYrgAsW5TyjrCwTE/9+uOy+MVTf8yJHLPf1Sy/371vYJPUubQ+x211w7uqlwkK5Fl+SfSwsL2PRyvvkkRY2NA2afdD0pzjQlaIMQTg4Cuj1xkz7zT3vuEdUsfiydvjBJoF2fOwNOuoZNucDuK8zr//Wy8Ya37A97UZxH0P3f4q6bKhaHWq3WBvA37mVl4e7VhwM4agMAAAgHozRsp0eIvf/3LVWCsV9k8OGAsKHKtcz/cn/5xaWWGftwxsiFHZSNm+coBY1MCxdKf3fgAAAAAAAM3oyIrHv6rjce5UOSzsyKCCAIDpp2gLvtvTjrGVrkAbGzSuBgCagHWMuW2GsLAgnF8BAAAAAAAAAKg/wsIANFZQWFjBERaWbUBYWCOOOVGqTqfsA0+79+1+kLAwl6Gt1cssPNu9b+nF0sMfj3bMNV+Wjv37aHX8uC7GRw062vdk+LCwqAMA+o6SDn1ntDqVeg5x7xvaNjVhYTvuJizMl+N1Puy90h/+xV3tV5dJr4xzM/oUijvQxRakHy6JWKlKWJgroC+VlQ59e8RjAQAAAC3MGO9znWyPpOXR65dGP6PyCxgLE0BWOJD4U2pd1ntN8nukOC+LyZTDw54LEpsQOBYUQEbQLwAAAAAA9bS64vGv63icX0t6q88xAQAzQFFF3+1p+Y9DdYXqWNf4JQBAVc0eWAYAAAAAAAAAwHRHWBiAxnLM6CZbkNb+p/++TIOCu1b/mbT2a/Vpe/lrpIMuk+58rbuM67Wq1YKAQKtsb32OOR088cXg/YsvkDJd7v2pXPRjjuyKXseXa7BTxKCjdddIB11a4zEdXvSz2gLy2uZKMvJ9TkPbRrtUkDb+QNr+K6ljidT/aPzj+WJAhC9XoFbnMmnhOdLWX/rvH9hYvz4lJuB9fsFvpJ+f5N4/9r4Ma+MPqhRwvM4nXiWZakFjAAAAAJ6TSpdDqOIo5aWR/nJ4WNTAsdJwss+nldmCNLzDW+JIt48PD6sMHAtaz86Scn1e+DIAAAAAAHBZWPF4XR2PU9n2ojoeBwDQhIq24Ls97RhbaRyT8dmo4+QAYIq5zlPNH9TF+RUAAAAAAAAAgHojLAxAYxn/Gd1ki9LQVv992QaFhZ38lfqFhZ32LSndJs0+Ttr9oH+ZoOCpWsw7pT7tTndrv+ret/Jy6dT/Ca5f7xtMUzmpNOK/79kb/Le7QpxcNv4wfNmobdc6oCGVkdrmScPbJ+8b2ioVR7xwvk0/qu04gRj04M8VqGWkpRe5w8IkKb+vcb8DwnC9z5//fmnOCc3RF9Psg4UAAACAaSaVldrneUscxaHR4LA9PoFju8v7XOu2mOzzaWXFIam4RRraEq9+prsiPCxq4Fgvwc0AAAAAgOlubsXjPXU8zljbRtKcOh4HANCEio7PvNOOcagpxzgZwsIANDv3earx4/+CAss4uwIAAAAAAAAAUH+EhQForKCwMJc9v6tPX6oxRjrvdukXZyXdsBcUJnk3D7rUKywsKLSqOFyfY04HriAuSTrtm9Xrp3LJ9cVPutPdx+Gdjkr1vEwfoe1Mt9SxuPZD5mb7h4UV9knP/jx8UNi8U6Udd8foAMMefFlHWJhJSQf/ufTA+9x1110jHfzW+vQrEY7vedsC73fImd+X7rgkucMNPhvws+IKZePmdAAAAKClpNuljkXeEpW1UuFAOWBsYuBY1QCyfvG/bYXCfm/RxhiVjZTtKweJRQ0cy3QR/gwAAAAAaHZtFY/rGRbWX/G4vY7HAQA0oahhYa5Am5Jr/BIANI1WvUbXqv0GAAAAAAAAAKB1EBYGoLFSjtNQfp+7TmGwPn0JY8GZ0oUPSDccn1ybR3yg/Lgw4C4XFOpVq3SnVPQ5dnGo4vGItPMe76bRBWcHB5tNd0kMFqp3WFi1C+77n5G6V06oEuN5HdggdS0P0Z0IbR98pRccVStXwN7O+yTzQPh20p3S8f8UHGLlh0FlDo73pklVD0W898rmDgtzBqGNDjxc/qpkj/eDJdLrClLKZ8Cjdb3O3FwOAAAAzBjGSNlub+lcFr2+LUn5vRVBYhEDxwr7k39OLct6r01+j3QgRnWTHg0Zmz0hcGziuiNwLM290wAAAACAuqsMC8vX8TiFisd1HEgDAGhGxXG/BsrSxn8cqnFMqmcJswHQ5JzD/xwhiFMpqA+cXwEAAAAAAAAAqD/CwgA0lmNGNxUCwsKqhcnU25zjpAvvl244IZn22heWH4/scpfrOzKZ4/lJt/uHhZWGva+DW6Sbz5H2PuatZ7qkF/7MC0+biXbc7d4X9vuU7Yl+XMegJn9VLrgPrJ8cFhbnIv3WW6Tnvan2/oxJd0jHfiZ6P/y4zhVbbpIGNoRvx6Skw94rPfNtadf9yfRtJnOGqI0OIDnu89KDfxlQ3zZx4JXrfV7R3wVnSdtuT+6Qj35aOurD8foCAAAAAEFMqhw4FUepIOX7y+Fh+YpwsaAAsrHAscoQ+5nOFqXhnd4SR6qtIlSsWuDY7AnhY7PqO4kBAAAAAAAAAIRUtEXf7Sn5j0M1jjFGhNkAaFlNMfwvKCwMAAAAAAAAAADUG2FhABrLGRbmE1w15uC31qcvUcw5Xjr7x9JtF9feVmWg0YrLpEc+6V9uxWtrP5ZLus1/e3E0LOz+95SDwiSpcEC64xLpVVuklON7OJ3tW+ved+IXw7WRiREW1j4/fFnXtGJjCgf8KkXqjiSpFPbG3ZBtv2pzcu8pV/jerKOjhYXtut8LpzrvDum2i6StvwxZkWEPvlxhYWZ0Js/VbwkOC9t6s7TovOT7lQjXdH4Vs5TOPi7ZsLDffUQ68kM+AWqEhQEAAABosFRGapvrLXEUh6SR/nJ42MiEMLHAALLdki0k+3xaWWlYGtrqLXFkusaHh4UNHMvNkjK9M/PzQwAAAAAAAACJKzo+9804JuE0Svlut87JDgGgWfiP/zNNMP4vcK7XamOXAQAAAAAAAABAzQgLA9BYjkEa/kFGo5olJGbhi8KV61gsDT4bUKBi4EnvYe5iuTnhjheHY8Y97fuD93X9dZP3De+Qtt0qLTq3bt1qXgGDhRaeHa4uWQfwAAAgAElEQVSJODdJlqLc5FplQNO226QlLxm/Lc4gqHuvDBfgF6bvp/6PdxNpUkzWf/vm66O1MxY6lumQzv6JtO5a6dd/GuL4/Jnlr0qgVq5POv070q8u8y/36D9KC8+tMuKkQZw/QxV97VoVvd0FL/TOty57fifNfoH3eP8zXgCka9BNM75uAAAAAOAn3S51tEsdC6PXtVYqDvgHjIUNHCMEvKxwwFsGN8Wrn+2rCBKrCBPLhggcy3TzvywAAAAAAAAASVLRMc4x7QwL8/9s0fL5L4Am5zpPNUVYWEAfOL8CAAAAAAAAAFB/pFgAaCzjCEwaWO+uk+2tT1+iynRJL75buvFU//0mLR3yDql9gfS7D7vbqQxRWvZyKZWVSvnxZWYdLWU6a++zy9A2/+1rviId/TF3va23zsywMFcIT8oRTtWMHv2MdOw/TNgY8yK9tcE3bW7+mfTYZ4Pb6DlEWnl5vOO7HPIX0m/elmybmQ5p9Z9IK14t3fFaacuN7rJt85M99nQRJlBr6UXu+ltulH58sHTWD71zY1Nx/QxVPLfOZdGbPfYfpBtPce+/963S6ddIt71c6n+kSmONHywEAAAAAHVnjPfZXaZL6lwavb4tSfl9FUFiEQPHCvuSf06tLN/vLVoXva5Jj4aNzQ4OHMvNrnhcsZ5uJ2wMAAAAAKbO2AXTU4wxK+t0jEV1ahcA0OSstSrJFRbmPw415fhs0FabiBMAGqy5I7eCrrs0d88BAAAAAAAAAJgOCAsD0FgpR1hYkGYJC5OkeadIry9Kux6QioPeuklL/Y9KXSu8vj76meA2FpxZfpztlQ5+m/TEv44vc/j7k+97GENbFXjhthVvtCsVpI0/kLbfJfUeLh10mXcDYSSO16Qjxs2nSRzXt2iMC+5x6kjS4Gb3jbcHNki3vjS4fucy6cX3JP9+Snck216lbK90zs+lgc3SDx3P3TGT5YznCgszqfLjauGI+5+Srj9Gel1eSjXRn7Nhntvck6K323uodPGT0o8P8d+/817pR6tDNtaC520AAAAAmGomJeX6vKXroOj1SwUpv9cLD6sMHAtarwwcKw4m/5xalS1KI7u8JY5UriJULGLgWHaWlM4l+3wAAAAAYPozkq6p8zGsuPAJADOOKyhMktKO4fBGKd/tpbjj5ABgyvifpwx/BgMAAAAAAAAAMOM1UboCgBnJxDgNVQuRmWomJc09cfy2WUdVrPgPOHlO31Hj10/4F6lntbTxR1K2R1r1Zmn5KxPpaizTaWBMqSjdfYW07trytievks75hdQ+P3w7hf2O9odr6181wzsiFI4TFhZzxsQ1X5WO+aj/vjsuqV7/gt9IbXPiHTvInOOTaadjsXtf5xKpbZ7/94awMAfXe3PCufKEf5Xuf3dwU3e9QTrjukR6lQzXc6sYoNO1Qpp/hrT9zvDN5mZ7S7pdKg7V1MOWDHkEAAAAgFaTynifdcT9vKM4LOX7y+FhE8PEAgPHdkulfLLPp5WVRqShbd4SR7qzHB5WGSYWFDg2tp7tizdZBgAAAAC0tqkI8ppGA1kAAGEVbMG5L238P4dzhepYfpUAaHLu81Tjx/8F9YCzKwAAAAAAAAAA9UdYGIDGcgzSmFZMlbCwicEtxkiHvdtbmkLMAKlmtONX44PCJGnP76S1X5OO/GD4dtZ/13/74LPR+nPwldKaL0erM7LHu+GwqjiX3GNepn/4Y+6wsF33Bddd8lKpY1G841bTvjCZdpZcFLzfFXoYMEBtRnOF0k08F4YJhlz/XW9Z8dra+5UEV7jixN8DJ/6bdNvF0sDG6m1ecG/58fLXSM98K37/JFUNsAQAAAAANF66TUovkNoXRK9rrVQcnBwwFiVwLG6g/HRUHJAGB6TBzfHqZ3srgsT8Asdml/dNDBzL9BD6DQAAAKBVkREAAEhcMTAszH/8ljssjM9AASA+97ULwhgBAAAAAAAAAKg/wsIANFbUsLCulXXpRl0FhYXNOnrq+hFk6culTT/y3zedbg588j/8tz/0N9HCwrbfmUx/0iHCkCZ66hvS4e+pXi7W962Gi/TFISndPn7bSH+IinW84THTk0w7C18YvN91HrPFZI4/7bjemxPOlQvPCdfcnZdKL7pRWnx+Tb1KRsggtNnHSi/9vfS92dWbnHtS+fHqt9QeFsZNxgAAAAAwvRnjBXBnOiUtiV7fWqmwrxwklq8IGwsTOJbfm/hTamn5vd4ysD56XZOSsn3jA8ZCBY6Nrqc7+BwAAAAAwFRaL0LCAAB1VAwYi5V2jN8yjrGb1jUhIAA0uWb42N8VxOjh/AoAAAAAAAAAQL0RFgagsRwzujktf3V9+lFPQYFoR/zN1PUjyJzj3WFhPz54avtST+uubXQPxtv7WPQ6O3+dfD/G1DIIaniH1Lls/LYwN4cGhenVKt3utV9r4N3Si4L3u37GN18vrbqitmNPR6732cT3Qvui8G2u/c/mCAtz/gz5DI7JzZJO+7Z01xvd7WW6xq9XC64LpQlGCwEAAAAAmpcxUrbXW7pWRK9fKkqFvT4BY471iYFjxYHkn1OrsqXR12l3vPqpbEXIWIzAsXQu2ecDAAAAYFqz1q5sdB8AANNbUUFhYf7jUF2BNpYwGwBNzhVqGBzUNTVMQGIZZ1cAAAAAAAAAAOqPsDAAjZUKCNLyUxysTz/qacHZ7n3VQoimSlBo28DGqetHvaVyUmmk0b0oe/aG6HVKwyELxrnkHhCq1bFUGtzk3j+ye3JY2MYfhDhmHQcuGCNleqR8f/w2jviAd3Ns4HEc57F110qnfIMbKydxvc8mvBcyHeGbXP8d6emLpFWXx+5VIlwzmLreIysuDQ4LO/+uydsufEC64fjofXuuL40fLAQAAAAAmMZS6dHgqdnx6hdHvM9yxsLD8lECx3Y312d/jVbKS8PbvSWOdMfkMLHK8LFx6xMDyPqkFJcgAQAAAAAAkJyiLTj3peU/Nicl/4ksbdA4OQBoAu5QwyYf/1fLpMUAAAAAAAAAACAURuoDaKygkCo/s4+tTz/qadYxUvdqaf/a8duXXixluxvTp4lcQTbVKybajbpLtbX+DYPFkGFhNsaApqCL9BfcI936UmnP7/33j/gEct3/nurHrHdwUaartrCwYz9dvUzQjY/bbpMWnx//+NOR671p/AfnhXb3FdLwTunwEO+7enGdX1KOwLhURjrk7dKTV03e9/Knpe6Vk7fPOS529zwtdt4GAAAAAMws6ZyUni+1z49e11qpODQ+PKwyTCxM4JgrCHwmKg5Kg4PS4LPx6md6ykFioQLHKtazPbV/VgQAAAAAAIBppRjw2V3KMf7ROMamlWJNxAkAjdcso/+MjG+gmTvkDAAAAAAAAAAAJIWwMACNlW6PVn7uSfXpRz0ZI73o59LtL5f6H/W2LTxXOvWbje1XpdhhYS0m3SYV9jW6F2V+IXLVFIdCFgxxwd2WJtx0F1CnfbH0koekaxw36U0M5BrcWv34kuSYvTExATNKVjX3j0IeI+B123ITYWGTOF4vvxtAOxZHuyH18c9Jh727/iF0LqW8/3ZXWJgkHfc5aXi7tP57kqzUd6R01v/5B4WNOeaT0u8+HLOTzTJcCAAAAACAhBkjZTq8pWNx9PrWSoX948PDJoaJjeyueDwxcKyGwPrpqLDPWwY2xKhspGxfOUAsauBYurNxnw8BAAAAAACgLooB48DSjklrjWOcjI0zEScATCF36FazfPZtFGqcMgAAAAAAAAAASBxhYQAaK9MVrXzH0vr0o956Vksve0Ta/4yU6ZTaFzS6R+OlZsivg0yXNLzDf19h0LuRcCod9h7p/ndHq1MaDlcuKMDqubbyXoDac3UCBkEZ4y1t871go4km3gy58Yfh+llvvUdIQ9vi1V3yknDl9q9x74t6jpsJnO8zn0Esh7wjWijWwEZp35NS76GxuhZZYVAa2uIFmg0+6w4jTGXdbWQ6pDOuG72xuD84JGzMoRFfl0p+oWwAAAAAAMD77Cvb4y1aHr1+qeh9NuAXMBYmgKxwIPGn1Lqs95rk90hxXhaTKYeHPRckNiFwLCiArPIzUwAAAAAAADSFoi0696Udk6Uax0SW7hAeAGgW/ucpVwjiVCMqDAAAAAAAAACAxpkh6TAAmla6M1r59vn16cdUCRMC0wiOwTIhKibajbrLzZUOrPPfN7xNyhw0tf1Zfkn0sLBiyLCwMHY/JM07uWJD0KX70e91ts8/LGzTT6WVbyiv73syXB923huuXFxLXiptuzVe3WWvqP34/Y/V3sZ04woL8wux6j0sevuFfV5Ynol5frLWu0m3MgTM9XhiSJ5LKle9TG62t4SR7QtXLm5fAAAAAABAdKl0OYQqjlLeCxLPhwwYm7gedpKBmcAWvEkjXBNHVJNuHx8eVhk4FrSenSXl+oKD4wEAAAAAABBLSQXnvrRjOLxxjB8iLAxAs2vVsxTnVwAAAAAAAAAA6o+wMACNlelqdA8g1RAW1mKCwuaGtkldUxwW1rk0ep2AGRInFKxe5JFPSWf/X7g6YwOnOhZJ+9dM3r/uaun0b5fX+x8J1UsNbgpXLq7D3iVtv0Pa9GN3mb6jpP6Hx2879h+kWS+o/fjrvyPp2trbmVYc7zO/sLA456YbTpQ6l0uHvE064gPl926pIA1tHR/2NbhFGpr4eEvyN9cmfYNo3CA0ibAwAAAAAACaVSortc/zljiKQ6PBYaPhYWNBYqECx3ZH+NxxBigOScUt3udIcWS6K8LDogaO9fp/TgYAAAAAADDDFQM+v0o7xhgZx2So1jXZIQAgJMIYAQAAAAAAAABoFMLCADQWYWHNwca8OBv2ZqmRfmnrLVLhgLToPKljYbzj1Srb6943tG3q+lGLsDftdSyRBjcHl9n0owltu94HFRf1u58nbb/Tv9j/z96dx8lV1Xkf/56qruolSWcP2QMhCWEzggEEFFAQQVGBccUNnRkZdRSXURmXB/FRZ1HRcXdGRceFeUZxXEaQxQ0EAWUHWQIhbAlZyNpJumu55/mj0unq6ntu3Xurbq2f9+tVL/res/2qursqdJ36Xq8gpfb90yJs8Nrc08L1iyvdJ530U+nKVRMDwUadeaf0zK3S2sukgYXSQW+UJh+UbF3dzLnZzm/zSMxQrD1PSHd9uHSbtqoUAja8WU273l7P5Oas66fewWUAAAAAAKA1pPtKQf/9c6OPtbb0t9v9QWIVgWO+AWTbxtryO9S0v7u0osJQ6aYnYww2UmbqWJBY1MCxnkm1Bc0DAAAAAAC0qKItONvSxn87fEr+oeyE2QBoeY79vKZF/v7rCmMEAAAAAAAAAADJIywMQHNFCQtb+tbk6uh2cd88Xv/L6n12PSxdd4q096nScc8k6ZQrpTknxVszKXtCfnBrkyMoq1HChoVNWVE9LGwCR4hT+c/HpIAQrad+IS06Z98Y/41WExxwarh+tTAp6bhvSdccN7HtyE9IqbQ0+/jSLQmF3QQjlnOFhfn9zIT9OQqy/a7a56hFqleasbr+8x7+Eem+T8WoJ1v/WgAAAAAAQHszRspMLt0GFkYfbz0pvys4YCwocKwwVP/71LZs6bHJb5d2xxhu0vtCxqZXBI5VHjsCx9J9db9HAAAAAAAA9VAM2DfnCgVzhdl4hIUBaHGuUMNWCekyRr7XECGMEQAAAAAAAACA5BEWBqC5+ueXgku8XPW+81+SfD1dK+abx2ECtv70jrGgMKkUnHTj66Szn4wfUhaXK6RIkh78vLT8girjrXTd8+tbU2QB92GckG+473pY+sXyKp3Kvk8r3inde4l/twf/bSwsrDgSbv3lbw/Xr1YzV0sH/630yH+MnZu2qk7rO3Y9jGpEWNiWW6QHPidtvT18oFyz5Hc4GhIKC2u21V+SevrrP+8hF8YMC8vUvxYAAAAAANDdTErKTi3d4vAKpb8ZjYaHRQ0cKw7X9/60M1uURp4p3eJI9ZaFilULHJteET42jb89AQAAAACAxBTlvycqrR4Zxz5E49h7ZIP2EQJAC3CHbrVGWJizDktYGAAAAAAAAAAASSMsDEBzZaaUQsCe/Gm4vkhGUoE8xWHp6Wsnnt+7XtpyszT7+GTWdQp4E3rng6XgLC8vDa70DzLbdntypYUV9o30sBuaqgaFafzPR99sd79Nvx/72gsRFjb/rPgfIIzKpKRjvy4tfIW0+UZp8BBp4dn1Wb9nslTY5W4fWif1zal9HZett0nXPDe5+RvF73cuO7PxdcSV7pf650l9c0v/nXywtPhVpaC6JPTNLr1+rr8yYp19ydQDAAAAAAAQV6pH6p1ZusVRHJZyO8bCw3IVYWKBAWTbJFuo7/1pZ96INLyxdIujZ9L48LCwgWPZaVLPoJRK1/f+AAAAAACAjlF0/A0nbdx/TzCOMBt3CA8AtLbWiQrj+RUAAAAAAAAAgGYhLAxA8z33O9KNr5M2XBXcb0ZCgStQYm8f53e627bd3viwsGoBWqPBWYMrpVOulCYfNL79L/+STF2RhH0jvZ5XP4zx81EMCgsz0rzTpRO+H7uiWExKWvDS0q2egoLCJGnd96VZx9Z3zVFeXvpVpzw3+oQWzjxW6p0ljWxpfDmjsjPGh4CN3sqP++ZKmUH/wLMknXi59IfXVn/9LDe4Mrl6AAAAAAAAmiHdJ/X3Sf0HRB9rrVTc4x8w5gwcqzjmw09jCrtLt71PxRufmVoWJFYWJpYJETjWM7nxf58DAAAAAAANU7RF3/PxwsLqubcOAOrPHbrV2n8D5a/lAAAAAAAAAAAkj7AwAM2XnSq94Erph1XewOyd0Zh6upHxCempBxv0tq/j+22tdP+/SndeVDpedoF0zFfrVGPIt6F3PiD9/izppfeNP5+ZVocaahXyPgQ+9lFVfK8Wv0Z6/P/5dx15RuqdKa2/0r996fnSUZ8t9ekUz/5X6c4Putsf+pK08j3S5KX1X7slAuzqxO9nIpWWDv+IdPt767uW6ZH6DggRAnaAlO6t79r1lBksvX7+7CBp97pwY1KZREsCAAAAAABoK8ZIPZNKt4EF0cdbTyoMuQPGqgWOVbsQQbfJ7yjd9Fj0sSa9L2xsenDgWHZ62ddlx+k+wsYAAAAAAGhhRVvwPZ827q3wKceeQ3cIDwC0Cv/nKVcIYqO56+D5FQAAAAAAAACApBEWBgBILiws6E3fyg/dWFv6YNTvXyFt+t3Y+Ye/IT3yLem1udo/qGMjXBFwx1+k7fdJgyuk4oiUmVz6AFe7iHJfq6l83Be8zB0WdsUs6YiLpeIe//a+AzorKEyS5r04OCxMkn5+sHTWA9LgIfVd++6P1Xe+ZslMk2Ye49+28j3SwELp8R+VPvD32OXR5l71TxNDwHpnJvi81wTZ6eHCwk5xhPgBAAAAAAAgHpMqBbpnBqVJS6KP9wpSfmfpb8/7g8S2Tzx2BY4V99b/PrUrW5RyW0u3OFLZslCxiIFjmWlSOlvf+wMAAAAAAMYpquh7PigszBVm80x+k4q2EDgWAJrpwT33+J5vlesduJ5ft+Q3hhq/o7BNf9h+tZ4aWacD+1bopOlnqi/VX88SAQAAAAAAAADoWLzLCQCQErvSVEBYWKHsQ0wPfkm67d0B0xSknfdLUw+rsZyIV6y68oja1kvC8KaQHet5da6KUCVXqNOoey8JmKq39nJazfRnhet3/TnSWX+p37pRf55bVc8k6eSfSamMu8/iV5ZuUunDd2u+Fm7upedLh19Uc4kd4dAPSPPOaHYVAAAAAAAAKJfqkXpnlG5xFEek/I6x8LDKMDFXANlo+JiXr+/9aWdervT399B/g6+QHhgLDysPEwsKHBs9zkyVUun63h8AAAAAADpM0RZ8z6fl/n9qV5iNJH1z/Wf1t/M/qFQnXXAQQEf45Zb/anYJsf1o0zd12KSjdEB2gbPPzsJ2ff7xj2hTfr0k6c6hm3Xn0M26cNEn1Jvqa1SpAAAAAAAAAAC0LcLCAABSUhtegsKM7ni/dOj7pPVXBweFjbr9H6QXXFlrQTWOT8DAImnPE+H757aVPgCWrhK6VdxTW11Bc/XNiT9Xtbo72c776zvfjnuD24/+fOlDZq2s7wBpzklSZnL4MdOPCt83Mz16TZ3m+T+Rpj9bmnxQsysBAAAAAABAvaV7pfSceH+ztVYq7p0YMBYlcMx69b9P7aq4R9q7R9q7Pt74zGBZkJhf4Nj0sbbKwLGeKZJJ6qIwAAAAAAC0hqIt+p5PG/dWeBOwL/KuoZv15MhaLe5bVnNtAFAvI96wrt56RUCP1v874PXbr9Kr5vyNs/2Wnb/bHxQ2at3wQ7pv9206esqJSZcHAAAAAAAAAEDbIywMQHs47tvNrqDDNenqeLnt0u/OCNd3w1W1r9eKH1ya/1Lp4a9HG7Ppemnei9ztue3S9ntqqytILQFUqQ4NC5uyXNq1prFrDm8Obl/5nsbU0WhRfoa8keTqaBeLzml2BQAAAAAAAGhFxkg9A6Wb5kcfb61U2DUWJBY1cCy/s+53qa3ld5Zuex6PPtakSn+3Lw8YCxU4tu843U/YGAAAAACg5RVtwfd82qSdY/pS/YFzPrL3AcLCALSUx4cfUcHmne3VntcapS89oJHCsG/bI3sfCBz7P5u/43v+F1suJywMAAAAAAAAAIAQCAsD0DpMWnJc/U0Hvr6xtXSbxD4EUiWc66GvJLSui23weiEc8RHp6eukoYfDj9m1Jjgs7KEv115XkFp+Xly/4+3u1N9IP13U2DV7Btxtx/574+potIANfhNkpiRXBwAAAAAAANDNjJEyg6XbpMXRx3tFqbBzLFxsf8BY5bEjcKy4p/73qV1Zb9/jti3e+FRmfHhY1MCxdLa+9wcAAAAAAB9F+e87Sxv3Vvhl/YfJKCXr2McYFMgDAM0w4u0NbF/ef0SDKgm2ov8I/WnX9b5tI55/iFg1G3NP1lISAAAAAAAAAABdg7AwAK3DpNxBQnzQIGGpZKa1VcLC7v5oMuu6VKunGQYWSi++RbpiZvgxXpVNSnd/rLaawljxbumhL0YfN+uE+tfSCgYWhuv30FekFe+sz5rb73W3LX1LfdZoRakI/3wdPCy5OgAAAAAAAADEl0rvC56aHm98MSfld0wME/MNHNs2MXzMy9X3/rQzLy+NbC7d4kj3TwwTy5SFjQUGkE2N9jdfAAAAAEDXKtqC7/m03BceHEhP1nkHvF0/2Oh/UVPXnADQLDnr/rvl6TPO1ZK+ZQ2sxu0Vs9/oDAvLeyMNrgYAAAAAAAAAgO7CzlsALSShwCpUZ5IKC3OEvzWNbXYB/npnSIOHSDsfDNd/+53utk3+b77X3dGXSht/I+0ICKzyM+u4ZOppF3/+e2n5OyRjap/rkW+62zr5w1UBVwOdYNE5ydUBAAAAAAAAoHnSWSk9W+qbHX2stVJxuCw8LEbgWMu9/9FExb3S3r3S3g3xxvdMGQsSCxU4VnacmZLce1wAAAAAgJbiDAurspfoxGkv0s+2fE9DxZ0+c/L/9wBaS1DQ1itmvVGmHntP62BGZrZed8DbdfnGr01oy1nCwgAAAAAAAAAASFIHJ0kAaDuHf1i65+KJ56etanwtXSehN4+tl8y8cbVaPeVMJnzftd+Rjvv2xMApryBdd3Jdy5Ikrfa5smIqLb30HumHEX52jv68lIpwP9tNZqqU31G9X26r1Duz9vWeuaX2OdqRcV8NdILMlOTqaCmtsQEIAAAAAAAAaAvGSD39pVv/vOjjrZUKQ+PDwyrDxHLbpbwrcCzE35G7SWFX6bbniRiDTelv86MBYlEDx9ID9bm4BwAAAAAgca5gr3SIvUQLepfowT33hJ4TAJolZ3O+5+dk5rdMUNioqT3Tfc/nAgLPAAAAAAAAAABA7QgLA9A6DnqDdM/HJdnx55e9rRnVdJekrrpe7800uR1SdmoNE9jqXZrFJ0TLs0Z7igOa3LN7Yv+d90tTDxt/bvONydS24h3utrkvkp6+Ntw8K99Tn3pa1bK/le7/bPV+W26WFrw0+Xo6VcHn98HPlBXJ1tFK+mY3uwIAAAAAAACgexhTulBBZoqkRdHHe8VSONaEgLEqx6OBY2H/RtoVbOlxyW+X4jwspmcsPGx/kJjPsSuALN1b93sEAAAAAPBXS1hY2rFdvqhCTTUBQL25grayqWyDK6kua/z/NpazI7LWtly4GQAAAAAAAAAAnYKwMACtY/JS6fjvSje/ZSxk6qA3ScsuaG5d3SBuWJhPwNU41os3r8vep2oLC6t3PZVWvCv+WDP2kmyt9InHPqavPPUObc3P0AlT/6jvHfomLel7fKz/hmsnhoVt/E389SXpkPdKD35+7HjSgdILqwSBZaeFm3vF38cuq20c+XFp253S09cF98vvrH0t28LBd0nbtSZkv4eSraOVHPlxacPVE88v+quGlwIAAAAAAACgilR6LIQqDi9furhKPkTAmN+x4wOHXckWpJEtpVsc6b7x4WFBgWPlx5lppfe7qr3PBgAAAADYzxXs5QoCK5dyBIq5AsgAoFly1v9vdxlHMFczZVPumvI25wwTAwAAAAAAAAAAtSEsDEBrOeiN0oKXSVtulgZXSpMPbHZF3SFuWNiMY4Lb672ZZsM1EwOyIkkwYCndXwq3iys19pL85afeqUvWXbz/+A87nqdT77xWDx53qNJmX+DZjnsnzrH+qvjrS9JzLpUOfV/p969/vjTzmOofVBlYHG7ubggL65kkveAaadsd0q+e4+53+3ulA19X21o7769tfDtLhfzn68CiZOtoJTNWS9OPlrbdPnbOpKWD/6Z5NQEAAAAAAABIRioj9c0q3eIoDu8LDtseI3BsW/3f+2lnxWGp+LQ0/HS88T2Ty8LDogaODcZ/fw8AAAAA2pAr2MsVBFaux/jvNypa/wAyAGiWnCPoP5vKNriS6oLCwPI2p6wICwMAAAAAAAAAIAmEhe2U5bsAACAASURBVAFoPdlp0vwzml1FlzExh1XZaFPvzTQPfF5a+Z74460Xf+yKd0vrr5R6+qUl50kHvl668yJpy43S4GHS4RdJM1fHnz89sP/L/7fpNROa1w4frD/vWq3jBm8tndh0/cQ5tv4p/voLX1H678BCafErw4+btCRcv8FDotfUjoyRZhwtzTnJ/3skScMbSx8gSvfFX2f3E/HHtrt0f7h+C16ebB2tJNUjnXqddMcHpKd/I00+SDrkQl5LAQAAAAAAAEyU7pP655ZuUVkrFXaXBYntCxArPw4MINuhRC/s0m4KQ6Wbnowx2EiZqWNBYlEDx3omld7TSMqWm6VNv5fmv1SaeniyawEAAADoCq5gr7QjCCxMH1cAGQA0S976h4VlAoK5miWbcteU80Y0KT1lwnmP510AAAAAAAAAAGpGWBgAQLHDwqp9oGP3upjzOux5vMYJHPUe+Qnpnv/jHnb6zdKs4yT92/jzJ/6gxnrKHH6RtPHXkqSbdp7g2+WfHrtIPz3y3NLBpMXjG4cerb7GjGPcgWKr/jlspeMtOke67d3BfU5zhGZ1sqMvlX4VEB736H9Ky97WuHo6yeJXSnf8Q/V+Ia4a2lGy06XjvtnsKtqS51n901VWV9xulU1LrzvO6N0vNDJ8eA0AAAAAAAAYzxgpM7l0G1gYfbz1pPyuiQFjQcfl4WOFofrfp7ZlS49Nfru0O8Zwk94XMja9InDMcVwZOFbtgiiPfl9a85XShXcGFknzX1IKDpv7wlJQGQAAAABE5Ar2SofYI+TqU1SdL4YKADXKeTnf80HBXM2SDQgwyzlCz3LW//4BAAAAAAAAAIDwCAsDAEh9B8QbZ73g9qG18eZNiqveaoEws46rfy2VZp9UtYstD3XLbRvfeOdF1ddYer50+k3SA58b63/UZ6WD3ij1zQlfa7mgDwPNe7F07L9PDDbrBjOeUwoDe/jf/dtvvaB6WFh+p/TMrdKU5dKkJePbinvd42YeG63WdlP5WLhsviHZOtAx3vcjqy/+eixM8tZ1Vjv3Sh87i7AwAAAAAAAAoK5MSspOLd3i8ApSfkf1gDFX4FhxuL73p53ZojTyTOkWR6q3LFSsMmBsWikobNSeJ6SHv1G6HfgG6YTv1ec+AAAAAOgqrmCvdIit8K4+rgAyAGgWV8hWUDBXswQFmOU8//uRd5wHAAAAAAAAAADhERYGACiFYfUdIA1vjDau2mYZLx+/pkRY/9Mm1dgy/KSzVbuMCwvbelsp/Gy09sf/O3hwZpq0/O2lYLTDPlS61ctfPSNdMXP8udOul+Y8v35rtKNjvuYOC6vm0R9It7xl7Hdo6VulY78hpfb90+2JK9xjT7ky3pqdZtsdza4AbWAkb/XNGya+Nnz991YffamVqRYmCQAAAAAAAKBxUj1S78zSLY7isJTbMRYelisPE6sWQLZNsv4fTO9K3kjpfcWo7y3OPzOZegAAAAB0PFewV9qkq4519fEICwPQYlxhWkHBXM2SCQgwy9mc43xwWJhnPaVaYU83AAAAAAAAAAAtjLAwAEApcOpZn5BuvSDaOOtV6xC7JF89U2ob76y3PcJgrK2o89H/lJaeH27wkReXgsKS0DtDOs9Khd2lK9BPWpzMOu3GpKT+edLeDX6NkrX+35OhddIf36hxvz9rvy3NPFZavu93dN333evG/ZBUpznqc82uAG3gNw9Ie3z2JW3YIT20UTpkbuNrAgAAAAAAAJCQdJ/U3yf1HxB9rLVScU9FwFjEwLF6v2/WbkxKmvfiZlcBAAAAoE25gr3ChYX5b5cvEgoNoMW4wrQypvoFiRutx/TIKCWriXuzXaFnOc8/RGx/ux1Rn+mvS30AAAAAAAAAAHQqwsIAACXL3iYNLJaeuEJ65JshB1UJC7N1/tBDYVeNEzjqaZOrUNnKULMHPh8+LCwzte71TNAzqXTDmNVfkW4416fBSvkdUnbaxKb1v5Tvz+pjPxwLC0N1S9/c7ArQBvyCwkaNsB8UAAAAAAAAwChjxt4HGVgQfbz1pMKQT8CY47gycKzm98hawMzncsETAAAAALG5gr1cQWDj+/gHihUICwPQYnKOkK1sqrfBlVRnjFHWZDVihye0uULPXOdH5b0R9aUICwMAAAAAAAAAIAhhYQCAMfPPKN1WfUr6SYirqjuu1lfWoS5ljVPMSemYV8iyrnAzIx33TemWv5nYdOQl8dZqhO13h++7+K+SqwNu01e52574iXTwWyeev+di//6bri/918vXXlc34ANHCCEVkBXpJfASBgAAAAAAAKBLmZSUGSzdJi2JPt4rSPmdwQFjzsCxbVJxb/3vU1QLXtbsCgAAAAC0saL89yq6gsDKpeTfxzUnADRLzvpf/TJrWi8sTCqFmI0UfcLCHKFnrvP726uEiQEAAAAAAAAAAMLCAAB+emeF6+cM39rfoeZSJtj4a2n+mTEHO+oxKWnBy6WBRdKeJ8bOZ6dLS14Xc636szLxBi59a+nDJ2i83jnutlv+2j8srJo1X4tfD4BxUgFPq5awMAAAAAAAAACtItUj9c4o3eIojkj5HWPhYZVhYvu/9gsc21b7hUz65kgr3lHbHAAAAAC6WtEWfM+nQ2yFTxv/Pq45AaBZ8o4wrWyqdcPC/HIXXaFfOW9isNj4dv+wNAAAAAAAAAAAMIawMADARCYVrl+1sLAoSSun3SA99kNp42+lnQ+4+w09Gn7OCfW46jVS32zptN9Ld39MeuZWafqzpcM/LA0uj79enfmGhVlPCnpzfNqR0rHfSK4oBOuZFH2MV2UT2m0XxqsFwARBYWEeYWEAAAAAAAAAOkW6V0rPKYV2RWWtVNw7MWAsTOCYJE0/WjrqM1zYBgAAAEBNitYnjUbuILDxfdKR5gSAZnGFbGVNa4aFZUzW93zOEXrmun9h2wEAAAAAAAAAAGFhAICaVAkLU4Sklf550jFfLX299rvSzef799u7IfycYesZDUebfJB0wvdrmD9Z1vqk2ux5IjiU7ehLS1ebR3OYgCQil/yO+tfRaeadKW24yt0++lwCVBEUFlas9hIHAAAAAAAAAN3AGKlnoHTT/GZXAwAAAKBLFa3/BRhdQWDj+/jvn3PNCQDNknNcPDib8g/lajZXiJkzLMxxPmw7AAAAAAAAAACQUs0uAADQxqpdWS8oxKpSz8DY1wML3f3u+6Tkxbyin3Ulv8QIdGoVa78rFYbc7VOPbFwtqN36q4Pb9zzZmDpa3YHnudvSfdKBb2hcLWhrQWFhXoSXMAAAAAAAAAAAAAAAACSn6Nir6AoCG9dH/oFiRcXchwgACclZ/7CsjCOUq9myKUdYmON+5Kx/GFq1cQAAAAAAAAAAYAxhYQAAf31zq/fZ+WCVDhGSVtL9Y1/POTm4723vCj/vOI56THu8HFq/ULP1v5QKu92DMpOTKwjhrP6yu23H/eOP/3RB8FzDm2uvpxMc9AbpqM9NfJ6asVp68Z+lzJTm1IW2kwp4+icsDAAAAAAAAAAAAAAAoDW4gr1cQWDj+jgCxTxbqKkmAKi3nOcfluUK5Wq2rCPEzHU/XOfDtgMAAAAAAAAAAMLCAAAuz/tRuH42KE0lZNKKSUs9ZeE+qSpX+1vzNWloXbi5x5XjuQqIPlcT+IaF9c4ODgsrD2FDcwwsdLf9/uVjX1tP2v1Y8FwjW4Lb2yT4ri4OfZ909pPSq/dIr/OkVw9JZ/xJmnZ4sytDG0kFPP0HvrwBAAAAAAAAAAAAAACgYYqOYC9XENj4Pv6BYkXrH0AGAM1QtAV5jmDErMk2uJpwMo4Qs7zN+Z7PWcLCAAAAAAAAAACoVRclSgAAIpnzPOnMO6r323Gvuy1s0sqS10qp6lf4G+fxkGFm4zjqaZOAJd+wMFuUfnOqe1Cb3LeOdkDA92fo4bGvt91Zfa7fnh7cPmlpuJo6RSot9fRLxkg9k5pdDdpQUFiYR1gYAAAAAAAAAAAAAABAS3AFe7mCwMb38Q8UIywMQCsJCsrKOkK5mi1r/Oty3ZdqYWD5KmFiAAAAAAAAAACAsDAAQJDpz5bOeii4z4arAxpDJK3MPlFa/eVIZUmS7vygtD0gqMy3HM/REJAW00Ks9alzZEvjC0E0mcnB7fldpf9uv6f2tYp7ap8D6CImKCzM9ZIBAAAAAAAAAAAAAACAhiragu95VxDY+D7+gWJF+c8JAM2QszlnW8YRytVs2VTW93zOEfpVLQysWpgYAAAAAAAAAAAgLAwAUM3gcmnVp93td3wgYLAjLGzOSdIZt0svWyOddoOUnRavtmueKxX2RhjgqCcoLaaFWL9Qs61/bnwhqK8df5GslZ7+de1zHfzXtc8BdJFUUFhYiLxLAAAAAAAAAAAAAAAAJM8V7OUKAhvXR46wMFusqSYAqKd8QFBWNtWqYWH+deUdwWfVwsBcIWMAAAAAAAAAAGAMYWEAgOq8KlfQs57jvCucKy3NOEqasswd1DX3RdXrKuyWNv+her/99Tjq5OUQzVTYLd35QWnd92qfa8l5tc8BdJGgsDCywgAAAAAAAAAAAAAAAFqDK9jLFQQ2ro/pccxZZV8kADRQUFBW1rRoWJijLlco2Ei1sDDPP2QMAAAAAAAAAACMIR0FAFBdtTdfR7Y6GlxRKwHpLKPmv7R6H0la++1w/aSA8LIQ9bQAG+ZxQ/vZdrt0/2drn2fVp6WpK2ufB+giQWFhRVe+JAAAAAAAAAAAAAAAABrKFezlCgIb38c/UMwVQAYAzeAK2JKkTCrbwErCy6aihYUFBaKFaQcAAAAAAAAAAISFAQDCiH2lphrCwsJetc8VAObLlfzSKi+HwY9L5LCwU66soRY0zB0fqH2OqUdIh/9j7fMAXSYd8PTvRXl5AQAAAAAAAAAAAAAAQGJcwV6uILDxffwDxVwBZADQDEFBWVnTomFhxhEW5rgv+YBANCk4MA0AAAAAAAAAAJS0SjoKAKCVxX3z1RXkZUKEXhWHw62RGWxMPY1w9KWBzdZGrHP+mTUUg7YyZVmzKwDaUtDTv+fKlwQAAAAAAAAAAAAAAEBDuYK9XEFg4/rIP1CsKP8AMgBoBldQVo/JKBUiGLEZMilHWJjjvgQFooVpBwAAAAAAAAAAhIUBAMLwclU6OEK4nOdDhF4tOrd6H0l64opw/SS562mRl8OD3iRNW9XsKtCOimyQAOJwZUhKkhfQBgAAAAAAAAAAAAAAgMZxBXu5gsDG9XEEihUtYWEAWkfe+u/Vzhr/QK5W4KrNFfrlChEblY97cWsAAAAAAAAAALpIi6SjAABaWt+84HbnppkawsIGV0qTl1Xvl9tavc/+cjxHOSHqaYTeGdKpv3E22zCP234tcp/QGGyQAGIJygMjKwwAAAAAAAAAAAAAAKA1uIK9XEFg5VLGP1DMypPn2lMIAA3mCtLKplo4LMxRW95xkWpXiFjYdgAAAAAAAAAAQFgYACCMg98S3O4KC7OOqJUw4VzGSKf8snq/KPY87mhooZfD3hnOpkhhYYd9qA7FoG6WvDbZ+QkLA2JxvUxJksdeUAAAAAAAAAAAAAAAgKbzrCcr/40criCwckGBYq4QMgBotJz1D9jKmhYOCzNZ3/Ou0C9XIFrYdgAAAAAAAAAA0FLpKACAljWwMLjdFlwNjvMhQ68GV0jP+WK4vtUMb3G3hQkvawGRwsIWnJVcIYhu+TuSnb84nOz8QIcKDAsLaAMAAAAAAAAAAAAAAEBjBAV6BQWB7e8jd6BYUa69jwDQWK6grEzKP5CrFWRT/kFmeZuTZyeGPLoC0UaNOELGAAAAAAAAAADAGMLCAAC189uMY61qDguTpANfH6eiiTZcFdDYHi+H1kZ43LIzkisE0c15frLzF9kgAdRb0f+CtAAAAAAAAAAAAAAAAGigoECvoCCw/X2Mu48XEEQGAI2UcwRlZY1/IFcrCKot7xMMlncEooVtBwAAAAAAAAAAUvXLKaEjGWNWSlolaaGkfknDkjZJeljSXdba3TXMnZF0oqTFkuZJGpK0XtId1tp1tVUOoCV5ZRtmnviJdO8npaFHpPxO//4mQuhVb51Cr+74oLstSj1NZCcfHL5zz6TkCkHrYYMEEIsr0lKSvKBGAAAAAAAAAAAAAAAANERQoFdQENhYH/d2+YJ1B5EBQCPlHPtAs6lsgysJL5tyh4XlvBH1pvr2H1trnYFo+8dUaQcAAAAAAAAAAISFdRVjzDRJF0p6q0pBXi5FY8ydkn5srf3nCPPPlnSJpNdI8k33McbcJOlSa+0VoQsH0PpGN+NsuFa64ZUKjl+RpIjhXAe+UVr3vTiVScObpc1/kIafDuiUijd3o/XPlV7+iPTzEKFhmcHk60HrmHtasysA2pINeLmysor8egUAAAAAAAAAAAAAAIC6KgYEegUFgY3qCegTNDcANFLe5nzPZ4w7kKvZMsYdZFYZ/JW3uX178txcgWkAAAAAAAAAAGAMYWFdwhjzKklfkzQzRPe0pOdIWigpVFiYMeZMSd+RNKdK1xMknWCM+YGkC6y1u8PMD6DFjYaFPfIfqh4UJkUOX1nymnhhYU9fJ11/jlQYqlJOe4TBWCtp8lLpFeuknx0Y3Dk7rQEVoWUs+7tmVwC0paCwMM9rXB0AAAAAAAAAAAAAAADw90x+k7MtKAhsVNqknW0P7/2LDksdpUnpKbFq6wZDxZ3alFuvlFKa37tE2VTtwUUFm9fm3NOak52///uzq7BDBZvX9MysmucH2lHOG/Y9X4/fuaQE1bZ27wPaUdi6/3jY21t1vmFvr9bufcDZPik9RQdkF0QrEgAAAAAAAACADkNYWBcwxlws6eM+TY9LekjSZkl9kuZJOlLSpIjznyLpp5LKLw1jJd0uaa2kaZKOklT+7u3rJQ0aY8621hLFALS70bCwx38Urn/UcK65L4rWX5K8vHTjedWDwiSpvz3eON6faTNpiXTg66V1P2hmOWgl045sdgVAWwqKt/TCZF8CAAAAAAAAAAAAAAAgETsK2/SNpz6tdcNrnH2CgsD29wnYLn/ZhktlZHTUlOP15rnvUSaVdfbtNjlvRJdtuFR3D90qu2+XTY/p0Qumv0xnz3qTTMyLtN6w/Wr9ZNNlGrHD6ksN6NzZb9ZdQ7fovt23S5KW9C3X3y34R03tmVG3+wK0uvUjj+sPO67xbcuaFg4LC6jtsg2XRp4vb3P67OMXOdtXTX6uLljgbgcAAAAAAAAAoBukml0AkmWMeb8mBoVdLulZ1tol1toXWWvPs9aea609XtKgpOdJ+rykZ0LMv1DSTzQ+KOxGSYdba1dba19trT1d0kJJF0rKl/V7maRPxrxrAFrJaFhYaBE3iaRjbMDZcK00sjlc31nHRZ+/CWx5cM3x33N3PO5bideCFnL4R6IH8AGQVPG8WqFInC0AAAAAAAAAAAAAAEDTfHP9vwYGhUnBQWD7+1QJFLOyun3XTfqfzd+NVF+n+/Gmb+uuoVv2B4VJUsEWdO3W/9GNjlCjatbsuU+Xb/yaRuywJGnY26Mfbvza/qAwSXpseI3+/al/qa14oI0UbVFfeuJiZ3srhxhmU60bZAYAAAAAAAAAQKciLKyDGWNWSfrnslN5Sa/aFw52j98Ya61nrb3RWvs+SatCLHOJpOllxzdJOs1ae3/FvCPW2i9KenXF+PcZY5aEWAdAK7OFaP3jBBtlpkbr/9TPwvdNZaLN3QqMkc5ZP/H80rdKS89veDlootz2ZlcAtK2ArDAVCAsDAAAAAAAAAAAAAABoih2FbXpk7/1V+1ULAiv1qR4oJkl3DP0xVL9uYK3VnUM3O9vv2BXvsboz5GP86PCD2l7YGmsNoN08uvcB7Shuc7ZnTesGcqVNj1Kq/jwMAAAAAAAAAADqh7CwDmWM6ZH0bWncJbMusNb+OOwc1gan/xhjlkt6c9mpnKTzrd13uSf/OX8qqfzSW72S3JfCAdAebFEq5iIMiBEWdvDf+J8fWOx//okrws277O+i19IktjLVpn+edJ6VznpQOuln0qt2Ss/9lmR4eW9J/fOSmbewK5l5gS6XLza7AgAAAAAAAAAAAAAAgO60Lb+lap/J6UFNSg9W7ZcKESgmSTsKW1W0bBiRpLzNaai4w9m+tVD9++Pnt9v+N3Tf+3ffEWsNoN08k98c2D6vd1GDKomn1esDAAAAAAAAAKDTkCbSuV4l6eiy419bay+r8xrnSeMuBfMTa+2aEOP+peL41caYvvqVBaDhinulzX+IMCBGWNjgCv/zex73P1905haOt/yC6LU0SWVW2H6DK6SFL5cyUxpZDqJa+f5k5s3OSGZeoAtMCGEsQ1gYAAAAAAAAAAAAAABAc+TsSNU+xw2eolSIC2umx113OVjeRrloaueq9vjnverfn1pZ945JoKMEPe9MTg/qyEmrG1hNdCdMPa3ZJQAAAAAAAAAA0FUIC+tclek3n05gjXMqjkOFkVlr75d0S9mpSZJOr1dRABISdHW9v/yL9OAXIswVIywsqoGF4fpNf3aydQCjVvy9lB6o/7wHvbH+cwJdgrAwAAAAAAAAAAAAAACA1hMURjW9Z5ZOn3Guzpn95lBzpYP2PlbINSAEqx1UexxyDQhVM3EuSgu0oaBwvvcs+qSm9ExrYDXRnTLtpTp39vmak5kfadxgerokaUp6ahJlAQAAAAAAAADQscJfKgltwxizTNLJZafWSfptndeYK2lV2amCpBsjTPE7SceVHZ8p6ee1VwYgMSYtWUdyyoarpVnHh59rZGv09Tdd72578IvSgpdJkw8aOxdmg89rhqPX0URBoTZoA+le6cTLpetfEW98/3xp7/rx56atIvAOqEHQ0yphYQAAAAAAAAAAAAAAAM3hCs/Jml59cul/yES4YGnKpGSUkpVXfV3CwiRJ+SphYEFhbgCicT3vHNi3QvN7Fze4muiMMTptxtk6bcbZynv50ON6TI+MMbLWqmALocakGnGxagAAAAAAAAAAWlyq2QUgES+oOP61tXWPmDmi4vhua+3uCONvqjg+vMZ6ADTblj+G77vpd9HnH1rrbrvtQunnS6U1Xx87Vy0srH9eKbypjZAV1gEibISY4JynpGO+Kg2ulDKD0qJXSi+8VjL8cw6IK+hfyIXq+0MBAAAAAAAAAAAAAACQAFd4zkB6cqSgsFHpMBcflTukrNtUC03L2RHVf2v6eJYdk+gSeVc4Yqq99jhLUiaVCX0bfS43xoQekzY9Tb6HAAAAAAAAAAA0H38t70zHVhz/UZJM6R2VUyW9XtJxkhao9DOwRdIaSddJ+i9r7boQaxxWcfxwxBofqTIfgJbT5I0XYTaW/Ont0vyXSJMWS9vvCe7bN7c+ddVZ0AaahPfWoBHmnBxv3LwzSv9d/vbSzVqJK6QBNQt6Ws0XG1YGAAAAAAAAAAAAAAAAyuRszvd81sQLz0krrYKqX+ixWkhWt6j2OFhZFWxeGZNNrIaCLSQ2N9BKXL9vSf5+AQAAAAAAAACA9kVYWGdaXXF8vzHmQEnfkvRCn/6L991OlfQJY8x/SPqAtXZPwBrLKo4fj1jjYxXHM40x06212yLOA6BrhEzKWnuZNOM51fvNfn5t5SSEQLAO1zcr3riFZ48/JigMqIug51zCwgAAAAAAAAAAAAAAAJrDFZ6TTcULz0mbnlBbEPOOkLJuk7PVQ9NydkQZJRdmlCe4DV0i59U3HBEAAAAAAAAAAHS2VLMLQCLmVRwPSPqT/IPCKmUkvUPSH4wxlfOUm1ZxvCl8eZK1dkjScMXpqVHmANBodQwnWnZB/eaq9Oh/Sn9+d/V+qz6VXA0JIUisQ7z8keD2gYVS78zS1+k+6dAPSsvelnxdQBciLAwAAAAAAAAAAAAAAKD1uMKqMjHDc9ImXdO63cYV1ha1T0018L1Al3D9rGdThIUBAAAAAAAAAICJeppdABJRGeR1maRZ+77eLenrkq6S9KSkSZJWSXqrpOeVjTlK0hXGmJOttXmfNSZXHO+NUedeSX1lx1NizDGOMWaOpNkRhx1c67oAIlrxrhiDIiRl7X40uP2wi6RM5dNYawi6l2SFdYjJS6VpR0rb75nY9sptUnZaKcFoaK3UP1/q6W98jQAICwMAAAAAAAAAAAAAAGiSnFd5PeKSuOE5aRNuy3zSAVjtIkxQV9QwLxvxaql8L9At8q6wsJjhiAAAAAAAAAAAoLMRFtZhjDG9kirfGVq4779/kXSGtfaJivbbJV1mjHm/pM+WnT9e0ockfdJnqcqUHf935YPtlTQ9YM443iHp4jrMA2CCOkZVTTs8xvIh1x9aG9w+63hp1aejr98gQXdz/fbG1YGEnXmXdNMbpMd+WDqed6Z0yv9KJlU6NkaaQpYlkLSgVxbCwgAAAAAAAAAAAAAAAJrDFUQVNzwnbdLh1iWgSlK4xyHqY1XwvXZ1wPwRw8iAdpXzcr7ns6lsgysBAAAAAAAAAADtgLCwzuN6N3uH/IPC9rPWfs4Ys0DSe8tOv9cY8wVr7VCVdeOkCNUxeQhA56vTU8ayt5WCmFpUUFjYpl2NqwMJM0Y68QelG4CmCXrOJSwMAAAAAAAAAAAAAACgOVxBVNlUzLCwkFvm8wRUSQoX1JWz/gFHtcxZLu8IUAI6jTMcMebzHQAAAAAAAAAA6GypZheA+rLW7pHk+TRdGhQUVuZjKgWLjZoh6UyffpXhYf3hKgwcUy2QDEAzLTy7PvMMrow3bvaJ9VkfAIB9gmIoCQsDAAAAAAAAAAAAAABojpwjKCprYoaFGde1mCvXJSxMCvc45CM+VlEf26jhYkC7cv1uZGI+3wEAAAAAAAAAgM5GWFhn2u1z7j/DDLTW7pb0k4rTp/h0bdWwsK9KOiLi7RV1WBfofCv/oT7z9EyKN+6gNzV3/QYJCq4BANSX5xexu0+BsDAAAAAAAAAAAAAAAICmcAVFZVMJh4URUCUp3OMQ9bGK3J/gdyRnaAAAIABJREFUNnQJ18963Oc7AAAAAAAAAADQ2XqaXQASsV3SlLLjjdbadRHG3yzpLWXHh/r02VFxPDvC/DLGTNbEsLDtUebwY63dJGlTxFpqXRboDjNXS8v+Tnr467XNY2K+9PTOrG1dSTIpac4ptc+TIEtaGAA0jBfwnJsnLAwAAAAAAAAAAAAAAKAp8nUOz0mF3LeY83Kx5u80YYK6oj5WUcO/cpbvBbpD3hWOaLINrgQAAAAAAAAAALSDVLMLQCIeqjjeEHH8+opjv4SeNRXHSyKuUdl/q7V2W8Q5ADSSSUnHfFVa9ana5nnmlpgD6/CSNfd0qS9StiEAoIMF5TPmCqQ3AgAAAAAAAAAAAAAANEPOGZ4TLywsrXRN63abMI+DK+DIPWey4WJAu3L9rGdiPt8BAAAAAAAAAIDORlhYZ7qv4jjqu6WV/ft8+txfcbws4hpLK47/EnE8gGYwRlrwsiatXYeXrBN+UPscCSOaBgAax/PcbblC4+oAAAAAAAAAAAAAAADAGFd4TjYVMyzM9NS0brfJh3gcoj5WYeYcNz/BbegSriC9uM93AAAAAAAAAACgsxEW1pnurjieFnF8Zf9nfPrcW3H8LGPMQIQ1TqwyH4BWFXLTTP3XrfEl65ALpd4Z9aklQbZKWtj2PcSJAUC9eAFPqbli4+oAAAAAAAAAAAAAAADAGFdQVNbEDQtL17RutwnzOER9rKL2jxouBrSrvOv5jrAwAAAAAAAAAADgg7CwznSVpPLog6XGmL4I44+oOH6ysoO1doPGh5L1SHpehDVOqTi+KsJYAM2UyjRr4dqGDx5SnzKaLFdodgUA0HzWWg3naw9P9AISGnm+BQAAAAAAAAAAAAAAaI6cIygqbnhOOuRFUgmoKsl5uRB9IoaFRe1PcBu6QNEWVbD+G9XihiMCAAAAAAAAAIDORlhYB7LWrpf0x7JTGUmnRpjijIrjGxz9/qfi+C1hJjfGrJR0XNmp3ZKuCVcagKYLuWnGafGrY65b40vWwnNrG98gAbk1kqSC15g6AKBVfe4aT4s+5GnwXZ5O/kxR67bEDw3zAoaOEBYGAAAAAAAAAAAAAADQFDnrH1aViRmek1Y65LoEVEnhHoeoj1Xk/gS3oQvkHc91UvxwRAAAAAAAAAAA0NkIC+tcl1Ucvy/MIGPM8yUdW3bKk3Slo/sPJBXLjs81xiwPscyHKo7/21o7HKY+AC0gVWNY2IKXxRtXa1hY/wG1jW+QapE3hNcA6GbfucnTB35stX57KTzxhjXSyZ/xlC/ECwwLCgvL8XwLAAAAAAAAAAAAAADQFHlHUFQ2lY01X9qEDAsjoEpSuMch6mMVtX9QiBLQKYJ+L7IxwxEBAAAAAAAAAEBnIyysc10m6f6y4xcaYwIDw4wxczQxZOy/rbWP+PW31q6R9N2yU1lJ3zHG9AWs8QpJ55edykm6JKguAC3GZGob3zurPnV0KFsl72Yk35g6AKAVXX7LxCfJJ7ZJv3kw3nye527LFd1tAAAAAAAAAAAAAAAASIa1VjnrCAuLGZ6TNuEukpojoEpSyLAwx/eoljkr+9tqGyqBNhf0e5Ex8cIRAQAAAAAAAABAZyMsrENZa4uSLpRUHoHwOWPMvxljplf2N8acJulGSQeXnd4m6cNVlrp4X79RJ0i6zhizsmL+XmPMuyT9qGL856y1j1VZA0AnsTHTV7xCfetoUyM8DAC62LX3+5//6E8DUr8CeAH7CXM83wIAAAAAAAAAAAAAADRc3uZk5b+pozflvJ5xoLRJh+oXNdCqU+VDBIHlvWjBavmIQWyePBXFBh50tqDQvWwqXjgiAAAAAAAAAADobOEuk4S2ZK291hhzoaQvlZ1+t6S3G2NulvSUpH5Jz5a0pGJ4TtLrrLWPVlnjSWPMuZKuljR6+ZoTJf3FGHObpLWSpko6WtLsiuH/K+ljke8YgOZK13ilqt6ZzVm3TVS7Dh5hYQAw0cad8cYRFgYAAAAAAAAAAAAAANBagsJzMiZeeE7ahNsyH7R2NwkTmhb1sYrz2Oa8EfWkM5HHAe0iKESPsDAAAAAAAAAAAOCHsLAOZ639sjGmKOmzkgb2nc5Ien7AsI2SzrXW3hRyjd8ZY86R9B2NBYIZSav33fxcLulvrbXFMGsAaCHZ6fHHZgalmcc2ft0FL48/tsFslbQwwsIAYKKiF29cYFgY/0oFAAAAAAAAAAAAAABouKCgqrjhOemQW+bzIUKyukGYYK8wgWK19C/Vkdu/+R3oREG/FxnTHRdZBgAAAAAAAAAA0aSaXQCSZ639mqRnSfq+pF0BXZ+W9HFJh4QNCitb40pJR0j6uqRtAV1vlvRKa+151trdUdYA0ELihm8961OSacJLz/yXNH7NhIzkm10BALSeRMLCCGcEAAAAAAAAAAAAAABouLzNOdtih4WZdKh+YUKyusFIiGCvoO+TnziPbZyAMaCduH4vekxP6OctAAAAAAAAAADQXcJdJgltz1r7iKQ3GmP6JZ0oaaGkuZJykjZLustae3eNa2yS9HZjzIX71liyb43dkp6SdIe19tFa1gDQIha+XHrq59HHHfL3ta1rUpKNkQgzaUlt6zaQDQiukaQRwmsAYIKg0K/AcQEvKXHnBAAAAAAAAAAAAIB6McZ8XNLFNUzxXWvt+fWpBgAaIyggKmuyseZMm3Bb5nPeiKy1MsbEWqcTFG1BnopV+0UN8sp70cLF4qwBtBvXz3jGxAtGBAAAAAAAAAAAnY+wsC5jrd0r6bqE18hJ+m2SawBoMi/fnHXjBIVJ0pzn17eOBFXLpinEfAgAoJMVYz43BgWCxZ0TAAAAAAAAAAAAAAAA8QWGhaXiBeikTTpUP0+eiiqoR5lY63SCsAFdORstyCtqf0nKxxgDtBPX71vc5zoAAAAAAAAAAND5Us0uAADQhmJc4a1p+udLPZOaXUVotkpaWKH6BfsAoOsEhX7FHRd3TgAAAAAAAAAAAAAAAMTnCpVKKaV0zOtkRxkXNiyrU4UN9Yr6OMV5XHO2jfaqAjG4AvGyhrAwAAAAAAAAAADgL947pgCALhcja/LA19e/jDBWf7k56yakaK0k0+wyAKClJBEWVvTizQkAAAAAAAAAAAAACXqdpJsj9B9KqhAASIorVCqb6pUx8fbOpU06/Po2p4FYq3SGsKFeYUPFos5b6xignbh+xjMm2+BKAAAAAAAAAABAuyAsDAAQ3aKzpdveFdD+SumJKyTtS2GZdKD0rP9b+7pzT5Oevi7amFR7XV2rWt5NodiQMgCgrcQNC7OEhQEAAAAAAAAAAABoL09ba9c1uwgASJIrhCpr4u8FjBQW1uUBVWFDwKI+TlHDxSQpH2MM0E5yNud7Pttme58BAAAAAAAAAEDjEBYGAIhuYKG7bcYx0vN/JG2/R9pwrdQ/V5p3htQ7o/Z1F78meliYSdW+bgMFBddIhNcAgB8v5nNj0FNu3AAyAAAAAAAAAAAAAAAAxOcKoaolPCdtwm+Z7/qwMM8/vKhS3ubkWU+pkHs04zyu3f69QOdzBeIRFgYAAAAAAAAAAFwICwMAxLPktdJj/zXx/LFfL/132pGlWz3NXB19TMiNK+2iSHgNAEwQ97kxKKCRcEYAAAAAAAAAAAAAAIDGy7nCc0z88Bxb7SqeZVzhPd3C9fj7Kdh86O9LlHn3jyEsDB3OGY5Yw/MdAAAAAAAAAADobOEu5QMAQKUjL5H6Dhh/btErpenPTm7NYozgr8FD6l9HgqrtSSoUG1MHgOZYt8Xqoz/19KqvF/WF6zwN50kIDMNLINjL46EHAAAAAAAAAAAAAABoOGd4Tip+eE5RhZrX7xZR7n+UALB8jAu/xgkYA9pJzvF7kU1lG1wJAAAAAAAAAABoFz3NLgAA0KYGV0in3ySt/Y6062FpzsnSwX8tmQRzKNMR3/yefLA0ZUUytSSkWjZNMYFAHACtYe1mq5M+42n99tLxFbdbXXOf1c/emVKmxzS3uBZXjBnsFRTQ6NnSVWWN4bEHAAAAAAAAAAAAAABoFFdAVMbUEBZmw1+ls9sDqvIR7n/OG5HSIfvGeFy7PbgNnc/1e5Gt4fkOAAAAAAAAAAB0NsLCAADxTV4qPesTjVtv6pFSdoaU2zqx7awHpd+9RBp6pHTcP186+edSm4W8BAXXSFKBsDCgY33jers/KGzUr+6TbnpEOvmQ5tTULqo9dzrHhZi3zV5GAAAAAAAAAAAAAAAA2porICqbqiUsrFDz+t0iyv3P21yofp71QvcdV0uMMUA7cf2+ZWp4vgMAAAAAAAAAAJ2NsDAAQPtIpaUV75Tu/b/jzx92kTS4ohQYtv1OyStIM54jpTrvZa4YISzMWqub10q/fsDqoFnSWUcaTR0g9QZoVZ+52j+66uO/8PTbQ0JegrNDbd9j9ct7YiaCBagWMlb0pFSq7ssCAAAAAAAAAAAAQFwXGGM+KulQSTMl5SU9I+kxSX+Q9Ctr7Q1NrA8AapazjrAwU0tYWDF036u3/li37Pxdac1Ur5b3H67jp54aGFbm2aJu3vlbPbj7Hu31dmtKeqoOn3y0jpp8gkybXaluzZ77QvcNGyy2Ob8hVi237bpB60cekySlTEpL+pbr+KmnalrPjFjzwd+GkSd0687f6amRx5QyKS3qXarnTn2BZmYOaHZpHafyueKx4TW+/bIm2+DKAAAAAAAAAABAu+i8FBUAQGc78hIpO0N67HJJRlr8Kmnl+0ptqXQpJKyNVYvCKUQIC/vE/1pd8ouxGQ+fb3X1e1KaP629Nh8B3e6WR5tdQXNt2G71ws95enBj49d+Zrc0d2rj1wUAAAAAAAAAAAAAh9dWHPdKmixpiaSTJH3YGPNnSf9orb0uiQKMMXMkzY447OAkagHQmfKOAKqgsK5qiiqE7vvkyDo9ObJu//Htu27UXUO36O0LPqpMKjOhv7VW39nwBf151/isxj/u/LVOn3Guzp79pth1N9p9u2/XH3f+OnT/MGFhz+Q36tPr3hurnmfym/RMftP+47uHbtVNO67Texd9UjMyUV+K4OfRvQ/pS09+XMPenv3n7h66VTdsv1rvXfxJHZBd0LziOozrucJPLc93AAAAAAAAAACgs6WaXQAAAJEYI618j/TiW6QX3ywd+v7SuQ5hq6SFFUOGhT2yaXxQmCTdt176wnXV4sgAoLV86kqbWFBYtWfETbuSWRcAAAAAAAAAAAAAErRa0jXGmE8Zk8immndIujfi7WcJ1AGgQ+WsIyzM1BAWZouxx0rSA3vu0kN77vZte2pknTP859qtP9VQcWdNazfSL7f8V6T+ru9Vueu3/0p5+//Zu/c4ucrC/uPfc2ZnZi9JNhdCQhIQQQXBe1ER8ALipRb9obX2Z2uprVVLEduiUH+lXKzlVi8UikKtoiCKWBVQqqhAQBFUkItUsIpCLiSQJdnsJrs7c2bmPL8/NruZ2T3PmefMfXY+79drX2TPfc7OORuyz35OUOshzbO98JR+PPaDhm2v131vx9crQmEzxkujun30v9twRAvXE/kNTqEwSUrXcb8DAAAAAAAAAAALG7EwAAC6iGss7MYHoxM4n/g+sTCg2yycHGJtPnN78+5b1QKNhfrGiQIAAAAAAAAAAABAozwh6T8lvVfSMZIOk3SopKMlnSrpe3OW9yT9o6TzW3iMANAQQRgdlkr7mZq3efDAoTWvO+O3U7+KnP7o1MPWdYxC/c6yXqcphAU9nvt1onWCsHos7NFJ+/mp1aOTv2z4NnvVbycfsc6Le28jud8mOJ+D/lATjwQAAAAAAAAAAHSzvnYfAAAA2KtauKboGAv75n1EwQCgmmr33KDYmuMAAAAAAAAAAAAAAIufSXqDpB8YY/0J512SLvM87whJX5H07LJ5H/E87yfGmBubfJwA0DChogfJ+XU8I/sFi16uPq9PRVP7YJCiKUROz4VTsevlw1zN+2ylvIl/HVECUz0Wlq9yfmpR7ZzDXdy55Dw3VpLzeejQC5t4JAAAAAAAAAAAoJsRCwMAoINUS3yVHGNhSwfqPhQA6HmFUruPAAAAAAAAAAAAAEAvM8Z8J8Gy93qed6SkuyU9p2zWhZ7n3WSMadRPQD8j6b8SrnOwJIJlAJyElttVykvVvM2s3693rjpZ1zx5mcyeUXr9/qBSXkoTpV01b1eSClWCWUFYPajVCWo5Tpd1XIJiifdrgoZvsxeVTFEl2QN6hS5573YL12vh91f8kfbNrGny0QAAAAAAAAAAgG5FLAwAgC5SdIyFeV5zjwMAFoJqgUZiYQAAAAAAAAAAAAC6iTFmh+d575R0r6SZ0SOHSjpW0i0N2sc2SduSrOMxkAVAAkbRg+R8z69ru68Yfq0O6D9YD088oMWpYR0+9BJl/KwenrhfG3K/UWlPpOyB3Xdre2H+bc5YRppUC2Y1I5bVDPkwZ52X9jIqRAS6XF5bEEaHvY4aPl5rswdqR2FEKa9PB/Y/W77na0Pu0dlzujXYpIcn7ovYpv1Y4W6hvHe7he1875NepRcuOlID/qAOGXyBDh58bouPDAAAAAAAAAAAdBNiYQAAdBBTpVxTakAszBjDIEwAUPV7bmB/cCYAAAAAAAAAAAAAdCRjzH2e531f0hvKJr9RDYqFAUCzlUz0IDlP9cXCJGlt9kCtzR5YMe3Fi1+hFy9+xeznTwabI2NhtsfS2WJYMwpV5neKuDDUsr59tK2wZd50l9dm2+7zho7QixYfOW/6Cxa9bPbPPx+/0xILI2LVCNViYEGYZ7xpA9nO9/7Zg/WH+/5Fi48GAAAAAAAAAAB0q/p/agoAABqmSrdGxZLbduKGZoTVdgIAkCQVHO+5AAAAAAAAAAAAANBhbp7z+QvachQAUAOj6FhYyku1ZP+eZfSdbdhd1eBSlfmdIi7ANZRaHL2Ow2uzbTfjZ6uum/H7I6fnTa7quqiuWnQtVKiSeNpioxTquBYAAAAAAAAAAABmEAsDAKCDmCohr5Jj6CvuQW6l6LFUANBzqt1SA2JhAAAAAAAAAAAAALrT43M+X9mOgwCAWoQmeoCb16HD3qsFl6rN7xRBGB3gSqlPA6khyzrxr61kigoVPQAn42WqHlPWElEqmoJCw8CeeuUd3pvd8v7tBra4XsYjFgYAAAAAAAAAANx15k9NAQBAJNfQV0wrTKFjcAxAZ4iL/6E+1QKNBddCIwAAAAAAAAAAAAB0lqk5nw+05SgAoAYlS1zKb9Gwd886+i56HIktAOQ6v1PkbSEjP2sNexVMELvNuNBUxhICq1gmJqIUVNk3qis4vDc5z40ThNHnMuNXD+cBAAAAAAAAAADMIBYGAEAHqR6uqX8frsExAJ2h2n0B08IaSoituOcCAAAAAAAAAAAAQBvsM+fzp9tyFABQA2OiB7ilvFRL9u9ZnuxnbLGwmCCWy/xOEYS5yOlZv98a9qr62mNiVOmYENiMjN9vnZe3HC/cubw3C13y/u0GtuvBJZwHAAAAAAAAAAAwg1gYAAAdpFrqxjX0ZRmvlGgbANBuW3a6B8C2TzR+/0Gx8dsEAAAAAAAAAAAAgBZ4+ZzPt7TlKACgBqGiB7h5XnuHvdseSleICWJJ8cGsTmKLb2W8rDKWsFe111YIA+s8l0BSNmYZIlb1y5vqwbVuef92A1uczSWcBwAAAAAAAAAAMINYGAAAXaRILAzoOe65rIXn4QTD1TfuSL79aue2UEq+TQAAAAAAAAAAAABoJ8/z+iW9bc7k29twKABQk9BED3DzWzTs3ZNt8F30SBNbAMh1fqcITHTYK+v3W8NeVV97TGjKFiCrXKbfOs8ldIV4QUzMLckycGO7XlzCeQAAAAAAAAAAADOIhQEA0EFsTx+cUXQM18S0woiFAV2m2n1hIQsTvPZa7m3Vzi2xMAAAAAAAAAAAAABd6B8krS37vCTpv9t0LACQWKjoARutioXZGFssLCaIJUmFKvM7RRBGx7cyflZpLxO9TpXXFhcTcwkkxS3TLRG2Tuby3qz2NYY72/l2CecBAAAAAAAAAADMIBYGAEAHqdbFcY6FxdTCksR3AKCdktyvagl7Vdt8QCwMAAAAAAAAAAAAQJt4nvdnnuetSrjOeyWdM2fyF40xGxp3ZADQXKGJfmKc76VadARxj+qcLwiDuuZ3irwtFuZlrdGuasGuuNCULUDmugyxsPrZvublOM+NYzuXLuE8AAAAAAAAAACAGcTCAADoIKZKuaaWGM5cpeixVAA6VC/3/ZLEwlxjikk04p4LAAAAAAAAAAAAADV6j6THPM+7yvO8P/A8b8i2oOd5R3ie901Jn1Vl5eYJSf/U5OMEgIYKZYuFtWbYuy0VZiyjeAITH1yKC2Z1EttxZvx+ZbzomFGhymuzxZHSXsbp6+l7vnXf+SrnHdW5hMCqfY3hLm+7xizvcQAAAAAAAAAAgCh97T4AAADgruhYzol7tmGpl8tDQBeqFhFcyBLFwmoIIbYi0AgAAAAAAAAAAAAAdRiQdNKej9DzvN9IelzSmKSSpBWSXihpVcS6OyS90RjzZGsOFQAaIzTRAzb8Fj0j27OMvouKhRljqgaXXIJMnSAIo+NbWT+rtB8dMwrCIH6bJnp+kjhSxs8qKM0/h91yXjuZS8iO89w4tnOZsVxfAAAAAAAAAAAAUYiFAQDQQaqFa4qO4Rrf9yTLkwxLNQR1ALRPkmDWQhMmuF81IxYWFJNvEwAAAAAAAAAAAACaxJd0yJ6Pam6V9G5jzObmHhIANF6o6EEgvpdq0RFYHtUZMc6kpKL1eGe4BJk6Qd4WMvL6rXGvaq/NFkdK+xnn47LtO2+Jm8GdSwiMWFhjlExRoaIHACeJ5wEAAAAAAAAAABALAwCgg1RrAhUcY2GW4UqSiIUB3aaXr9kkoTTXmGK5Rt1zAQAAAAAAAAAAAKAJLpH0hKSjJT3DYfkJSd+X9GljzK3NPDAAaCZjLLEw+S3Zvxc3+G6OhRRbsoW/sn5WGT86ZlQIg5q2mSSOlPX7E20b7lzOIee5MeLuA7brCwAAAAAAAAAAIAqxMAAAukjRMRoUN2ApSXwHANopUSysCVG1oNj4bQIAAAAAAAAAAACAC2PM9ZKulyTP85ZKOlzS/pJWSRqU5EvaKWlU0iOSfmGM4ZFIALpeSdG3Mt9rTSzM9qhOE/FYusDEx7IkqeCwTCcIwlzk9Izfr4yXiV6nSkiqYAkkZfzo7UVJW0JK3RJh62QLKXbX6eKulSTxPAAAAAAAAAAAAGJhAAB0EFMljFNwHNIZFwsrNSGoAwDNkCQWVkvYq9o9d2wq+TYBAAAAAAAAAAAAoNGMMTsl/bjdxwEArRCa6AFuvlIt2b9niYUpKhbmEFIqmoJCU5Lvteb4a5W3xIwyXlYZS7CrYAKFJrSG3GwxtXSCOFLWsmxgouNmcOdyDl2CeKgu7l5hu74AAAAAAAAAAACitOoRSwAAwEG1Lk7RMRbmEwsDsACE1WpeZfLFBGWxPaqtsW08+TYBAAAAAAAAAAAAAABQOyNLLMwSpGo0WyzM1BgLk7ojuBSE0eGojJ9VJibuVYh5bbbzkySOlPH7E20b7oKw+vuS89wYgSXGJyn2+gIAAAAAAAAAAJiLWBgAAB2kWhen6Bj6IhYGYCEIE9yv8sXG7/+pXY3fJgAAAAAAAAAAAAAAAOxKJvqJml4HDnsvxASAKpbrguCSLQqV9ftj415xMSnb+UkSR8pa9p3vgnPa6eICVjNc3+OIFxdmSxLPAwAAAAAAAAAA6Gv3AQAAAHeF6HFQ86RixkWVqgTJRnYZXXeP0YObpRcfIL3zpZ6WDcXUxwCgScIq96tytcTCqgUaRyeSbxMAAAAAAAAAAAAAAAC1M4p+upzvtSYW5il6rJzR/IEmcaGsiuW6ILiUN7nI6RmvPzbuFffabOcnSRzJtu/AcrxwF4TVz6Hrexzx4q6TPi/dwiMBAAAAAAAAAADdjlgYAAAdpFq4phg9DiqRMGYbT4wavfZToX791N5pl99udOtpvvZdQjAMQGsliYUFTYiFuQYaAQAAAAAAAAAAAAAA0BihiR7gllKqRUeQIBbmGAELwqCuI2oFWxQq62eV9jOJ15Ps5ycuPjZvWb8/8X7hxuUcdkPorhvYznXay7QshAgAAAAAAAAAABYGfrIAAEAHqdbFcQ3X+DHf4UsxO/n07aYiFCZJv9wife7OBMUeAGiQJLGwfC2xsCrzA2JhAAAAAAAAAAAAAAAALWOMUajoWJjXoqCOZ3umZsRAE9dgVacHl0ITqmCig2YZvz827lWIeW2285PxE8TCLPsmFlY/l/cl57kxbNdJkmsBAAAAAAAAAABAIhYGAEBXKTqGa1K2AUuSStFjqSRJ3/uf6HTO1+4lFgag9ZodC6smaMI2AQAAAAAAAAAAAAAAEM1YQmGS5Lds2Hv04DsTUQtzjYB1enAp7nVkvGxs0CjutQWWAFnayzgfm23feZNz3gaiBWH016dimQ4P3XULazgvJsQHAAAAAAAAAAAQhVgYAAAdxFQJ4xRjQl/l/Jjv8HGxsPs3RU//xWa3/QJAI4WO9zxJyheSb7/aPTdwDDQCAAAAAAAAAAAAAACgfmFcLMxLtfBIokTEwhwjYJ0eXIp7HVk/q5TXJ1/R598WBIvbblx8bP7++xNtG+4Ch+Aa57kxGnEtAAAAAAAAAAAASFJfuw8AAIBWGtlldOHNRnf+xujQ1Z7OeKOnw9dEPwmwHap0a1RwDNf4MS8pLhYGAJ0krHZTLJMvJt9+tc0HNWwTAAAAAAAAAAAAAAAAtQlNTCysRc/I9hQ9+C5qnIlrBKzTg0tBaI9GZbzpWFfGzyoXTkasa39ttvOT8dwDSbZlOz3A1umMMU7vy7gYHNzlG3AtAAAAAAAAAAAASMTCAAA9ZCJv9PqLQz24efrzex43+vYvjH78D76eu1/nBMPiFNsYCyuFRqm4DQNGdf0JAAAgAElEQVRAgzU9FlZl+4XS9MA4z+PeBwAAAAAAAAAAAAAA0GyhYmJhXqtiYe5cI2CdHgvLG3ssLOtPx4wyXlY5zY+FFWKiXYUwOjSV9jPOx5bxo2NK+ZjAGaorqRh7vc0odPh7t1vYzqPt/Q0AAAAAAAAAAGDTmp+aAgDQAW55RLOhsBk7J6XP3ZmgRtNkLuGaeiWJ75Sb4gFxQNuEtV64XS7Jyw5qiIW5aMR9FwAAAAAAAAAAAAAAANWFxj5Qw2/ZsPfoXJjR/IEsQUwoq1xcUKsTBJaolyRl/P49/40OfMWtazs/Gc89kJTds//5++3sc9rpnEN3Hf7e7Ra285j23MN5AAAAAAAAAAAAErEwAEAPuey26KegXfyDzonwVIuFFas/yK3qdmqOhRVqWw9A/UqO1/5C0+xYWLV7bq3bBQAAAAAAAAAAAAAAQHKh7INkfK81w949SyxMUbEw1+BSh4etgjBnnTcTM7IFvuJiUgXL68747rGwWvaL6hbKe7db2M5jkmsBAAAAAAAAAABAIhYGAOghP9/Y7iOorlq3xjkWFjOv1lhYjlgY0DalzmkatlSYIJKWryUW5rBMYH9gLQAAAAAAAAAAAAAAABooNDGxMKVacxCWVljUQ+lcg1WdHrbKm+hYWNrLzEbabFGjuJiU7XXbAmCRy/r9kdOLpqDQMLCnVkneu8bliYyI1YhrAQAAAAAAAAAAQCIWBgDoIYsWwM/UCw0Y25IkvlNuilgY0DbFHh3XliRumC82Z1BaUEOEDAAAAAAAAAAAAAAAAMmFiomFea0Z9u7ZamERj6UrhIHTNgPH5drFFvzKloW60paokS2CZIyxbtcWHotcNiamlI8JlSFePowOxEUpmM5+/3aDRlwLAAAAAAAAAAAAErEwAEAPSbfowYL1qPYANtdgUNx2SjX2dKYY7wG0TanGyF+3SxQLqyFo6PLQyzyxMAAAAAAAAAAAAAAAgJYIjX2AnN+iYe+2WJiJiIXZQlm1LtcutnBUeagr42cil7FFkEoqWuNvcQGwucqDZfP23eHntZMFCQJgnOf62c5hxrO/vwEAAAAAAAAAAKIQCwMA9Iy+LviuV61bExopdKjnxC0R1hgdmqohxAOgMWqN/HW7RLGwGqJeLpsPiIUBAAAAAAAAAAAAAAC0hLHEpSTJ9zpvAKAtlFXrcu1iCxmVh7psgS/bunGvOW0Jj0XJ+PawWGCJnKG6QoL3ZKe/f7uB7RzGvb8BAAAAAAAAAACidN5PTQEAaJK+VLuPoDGKNca+ZsTFd7J99nlT7g+SA9BgpTqv+25lmh0Lc9h+YH9gLQAAAAAAAAAAAAAAABqoZOyDZLwWDXv35EVONxGPpXONKBVMZw++s4eM9sbC0paokS06FcS8Zlt4LOmyeSJWNcsnCK11+vu3G9jOYcZzD+cBAAAAAAAAAABIUkwSBACAhaWvCxKZLuGaYknKVPkOHreduOiQFz3OSZI0VYjfJ4DmKfZosCoubjhXUEMsrJ3bBQAAAAAAAAAAAAAAQCUj++C2lNeqp4VGD6KbLO3WptzvtLRvuRb3LZUkBcYtuDRW3KFNud9pwB/SivS+8uIG6rVYaErakPtN5LzykJEt2jVWHNWm3O/mTd9Z3G7dZ8YSHouSLQuWzbU5/5iMQu2bWRO7XLmJ0i7tKIzMfr48vVJDqcXOx9OJcuGUSqaofn8w8jrJhVMaCbZWTNuQe9R5+5tyv5sNymX8rFamV8tv2fW4MNjibEmuBQAAAAAAAAAAAIlYGACghyyUWFjBIRoUt524+E7cPJf9AmiOUoJo1kKSJBaWryHq5XLPJRYGAAAAAAAAAAAAAADQGqGxx8J8tWYAoGeJhT0y+YAe2fCAJOmZ/Yfo+OX/R5vzjztt81eTD+qCDadJklak99V79vuwDhx4TkOOtx537vy+rh+5SlPhROT8TFmAyxY1Kj8vrmzhsSjpsmDZXFc/eYkkKaU+vXTJq/Snq/9GKS/61yOmShP6/JZP6JHJB2S0d9CQJ0+HDr5Qf7XmdA2khpyPqxOEJtQPdlyv7+34hnLhpJb17aM/W32qDh16oSSpEBb0pScv1X277lKo2geAXrn1kxWfL0kt05/td6oOH3pJXcffKzbkHtXm/GOR85JcCwAAAAAAAAAAABKxMABAD0nHPMgsDI18v/1P63Pp4hTt46GchMbI9vTDuHAOwRygfUp1XvfdqumxMIdlAkKJAAAAAAAAAAAAAAAALVEy9oEanteip4U6DCN8LPe/+s8t/1rT5rcXtunSzefovIM+19Y41f9OPqSvPPWZ2GWyZYGwRkaNbOGxKJ7nKeNlFZi8dZmSivrJ+G1a3Dest67888hlvrj13/Tw5P3zphsZPTL5gK568hL99dp/dD6udgtNSV968jL9dHz97LTR4tO64onzdd7Bn9NQarG+PvJ53bvrRw3f93hpVJ974l/1T8+8VCvS+zZ8+wvJVGlSl2w62zo/ybUAAAAAAAAAdAJjjMIwlIn7hXQAaAPP8+T7vjyv/c2QZiMWBgDoGX0xsbBCScq2aCxRvVxiYXH/ixUXHYqNhZXskTEAzVXs0WBVmCCSVlMszOHfo/KF5NsFAAAAAAAAAAAAAABAckb2wSK+WjPAz2vBGLlcOKVHJh/QSxYf3fR92dy/666qy2S8/r1/9jMN23efl060fMbvV1Cyx8Jm3LfrrshYWC6c0sMT80Nh5X65+z7lwin1+wOJjq0dSqaoq7ZeEhkCC0xePx1br2OXvVkP7vpp044hb3K6ZccN+uNV72vaPhaCX00+oFw4aZ1PLAwAAAAAAADdoFAoaGxsTGNjYyoUCoTCAHQsz/OUTqc1PDys4eFhpdPJfibVLbokiwIAQP36Yr7rBR0S4nH5/6Oxqfr2EcbsI273QQ0hHgCNUerRfzuJu1/NVUsszEWnfH8AAAAAAAAAAAAAAABY6MK4WJgX87TQBto3s6Yl+9le2NaS/dSz/1WZtZF/rse+6TXyvWS/wrA6s85puR2FbZG/pDZe3KmS4gcXlVTUeHFnouNqh6Ip6HNbPhEZCpuxOf/49OspjTb1WO4eu1W7S+NN3Ue3q3ad7ZtuzHUFAAAAAAAANEM+n9fGjRv16KOPamRkREEQEAoD0NGMMQqCQCMjI3r00Ue1ceNG5fPVH0jTbYiFAQB6Rl/MWKFCh8RgXP4X6XcjDtuJ2VBcfCduHrEwoH1K9nGQC1qiWFgh+fZdNv/rp/jHKwAAAAAAAAAAAAAAgFYIjX0gn9+iYe8vGHqZ+v2Bpu8nCNv7iwnV9p/xsnrx4qNmP3/u0Iu1JLW07v0eOXxs09YxMiqa+YOISsZt8KPrcu1SCAN99omL9ODun8Qu92Sw2enBtfUKTF4/HP1u83fUxeKus/2zB2lt9hktPBoAAAAAAADAXaFQ0MaNGzUxMdHuQwGAmk1MTGjjxo0qFGr4JfQORiwMANAz0l0QC2uUuHEecfGduAEiwQI7R0A3Kfbo9ZckFlbLPcplUNxpXzP6zkMEwwAAAAAAAAAAAAAAAJotNPYn6vlea4a975NZpVPXnasD+58jr4ah9qcfcJGePfA8pdQXu1xg2hsLK8Ts/4D+Z+nUdedq38x+s9P6/QH9/QHn6VkDh1d9bVGG+5brTSv+WG9Y/vbE6x41fLzevu97tCK9b9Vlo85rKSZCV8ty7RCEeV3xxPn6n4l7qy77VLBZbo9RjLa8b6Xzsrfv/I4KYVDzvha6wNjPzanrzpXneS08GgAAAAAAAMBNqVTSpk2bVCx29gMWAMBFsVjUpk2bVCp17s+Bkkr+kzoAALpUX8y4nU6JhbmEa/J1/r9VyTKeylTZecD/0wFtU+rRVlWSWFgt90bXJ2ie8O+hilf48n0GZwEAAAAAAAAAAAAAADRLqJhYmGKeFtpgzxw4RGc8418VhHkVTUEfe+xUjZVGq653xOJX6pkDh+jvD/gXFcJABRPoi1v/LTLwFITtjYXZ9v+Wfd6lN66IDnqtyqzVaQecN/vakhjwh+oKIx237M06btmbNVWa0EjhSV244UORywVhXkOpxRXTQrkNLHJdrtXyYU6XP3Gefj35kNPyU+GkxorV369RXr7kWJ20+oPKhZMyZcGx9aM36b+3f3Xe8rtLY/rp+Hods/QNNe1vobNdZy9Y9DIt6lvS4qMBAAAAAAAA3GzdulX5fOW/bfm+ryVLlmjJkiVKp9Py/dY84AMAXIVhqEKhoPHxcY2PjysM9/7cMZ/Pa+vWrVq3bl0bj7BxiIUBAHpGXCysU0JYLuEal2ON244tvlNt30GHBNWAhcrz7NehLfK30IUJXndQnI4eVhtUaJ7cIG3bLB16hKS08/YvvsXoQ68nFgYAAAAAAAAAAAAAANAsobEPUvO91v/iUcbPKqOssv6A5BALy/r9s39O+xmlldGAPxS5bGDaHAuz7H9RqnrAaOa1tcNAakhLzDLr/KjXVYp5X9WyXCtNlSb1mSc+pt9OPZJova3Bppr2l/Gz8jxPA6nK9+2xy07QLTtuUN7k5q1zy44bddTw69pyjXa6guU6y3jZFh8JAAAAAAAA4KZUKmnXrl0V0zKZjJ7xjGeor488DYDOlslkNDQ0pJUrV2rDhg0Kgr0Pv9m1a5dKpZJSqdY9oKhZ+IkMAKBnpGK+63VKiMehFaagVH2p2FiY5bVW22qnBNWAhSouaFjsvHFoLWGLG9rE3adMkFd45jtk/ug5MqccJ/PmtTIjTzhv+/SvJzwYAAAAAAAAAAAAAAAAJBIqenCb3+Yh7xnfLYyVjggA2dYthEHk9FYJLPvP+J0fMcp49q9HEEbFwtwGP7ou1yqTpd36983nJg6FSdKTweaa9mmLWA2mFumopcdHzttW2KKHdt9T0/4Wuqj3o9Qd1xkAAAAAAAB608TERMXnnudp//33JxQGoKv09fVp//33l+d5FdPn3uO6FbEwAEDPSPmedV6xQ2JhLvKF+ta3tcbiAmMSsTCg2WKDhj3YqTLGKHzsV4nWycfFwq6+UPrhjXsnTO6Suftm5233pxMdCgAAAAAAAAAAAAAAABKyxsK89j7hOyoCFiUqAGSLAuXDXF3HVK+CsUSMHF9rO8WFlqJjYW5PanRdrhV2l8Z1yaaz9Xju19ZlFqWWaGV6v8h5T+Y31bTfuHN73LI3W8N9t4zeUNP+Frqgi68zAAAAAAAA9KZdu3ZVfD44OKhMxu2BGgDQSTKZjAYHByum7d69u01H01jEwgAAPSMuxFNs0BiPXMFoKqi96lMt2CVJQZ3HGlrCaGG1WFjnjIMBFqSYnqFKXRQ0bBTzmY/I/PimROvExcL0navmTyu5VxBzdYYaAQAAAAAAAAAAAAAAEC80llhYm4e8xwWUKpbz5v/ClC0KZIsItUoQBpHTXV9rO6XUZ31PRJ3XkhxjYY7LNduu4k5dsulsbcr/zrrMktRS/d3+/6JDBp8fOX9rUFssLOv1W+etSK/SSxYfHTnvt1OP6HdTyR4M2Qui4nVSd1xnAAAAAAAA6E0TExMVny9evLhNRwIA9Vu0aFHF58TCAADoMnGxsEKdYzwm80Z/8p+hlv/d9Mcf/0eoiXzyaJjLGrExnJntxGzIFgWrFioL3Js6AGrQiqBhtzCjI9J1l8h4MQW1CLH3qZEn5u9HybZvXIqOAAAAAAAAAAAAAAAAqEloogfJ+F57h7xnfXtAqVxUAMgWBbJFhFqhZIoqKXqgTToieNZpPM9LdF5Lxm3wo+tyzTRW3KGLN/2Tnsg/bl1muG+5/v6A87Qme4BWZdZFLvNksLmm/af9+K//8ctPtM67ZccNNe1zIbNFAbvhOgMAAAAAAEDvMcaoVKr8d/qBgYE2HQ0A1G9wcLDi81KptCB+V5xYGACgZ8SGeKIfSOjsvV8y+uo9RrnCdMzrv35u9BdfqHOjFvVGu6yxsGr77bFYEdBqcdmqUnNuJ53re1+uXjCM4BJTLJc0Fra7vQ90BQAAAAAAAAAAAAAAWNBCRQ+S8do85D3jRYepXJazrVuwRIRaIQgD6zxbhKvT2M5rVJypZInQ1bpcs4wWntbFG/8pNvS1vG+lTtv/PK3KrJUkrc5Gx8Jy4WRNx1DtvX5A/8E6ZPD5kfMe3P1TbQu21LTfhcoWBeyW6wwAAAAAAAC9JQzn/xt9KpVqw5EAQGNE3cOi7nXdhlgYAKBn+DFNmHpiYZN5o+vvnx+1+dYvpN25ZLEblzaOSwwnbjO26FC1v9fUGykDULt6g4bdxjz28PR/E8a8mh0Lu+PXybYPAAAAAAAAAAAAAAAAd8YSC0t57f1lpLSfcVou4/dHrGuJWsUEu5otKqg1wzWM1m728xoVC3MbVOS6XDNsLzylT206U9sK9tjWPulV+vsDztPKzH6z01bviYY1SjbiPTzX8ctOjJxuZHTrjm819Hi6XWCir/Nuuc4AAAAAAADQW0zEL7l7XrLfwQSAThJ1D4u613WbvnYfAAAArZKKSWQW63gg3P2bpFxh/vSgKN3zuHTsoe7bcvm7Rb3RrtCyj2q7LrR4HMxPfmf0sZtCPbxVOupgT+e/1dMzVvA/lVi44q7BXouFqcbafNJYWFJfu8fohBdU3oeMMbpsvdFXf2b02xFpyYC0dEAaHpCWDkpLBjwtHayctnTA2/vnwenpS/olP65qCQAAAAAAAAAAAAAAsMCVTPRAPr/Nz8d2DftkIgJWtnXjgl3NVogIas3IOIbR2i3JeS3JbYCo63KNNhJs1SWbztaO4oh1mX3Ta/S3+/+zlqX3qZi+rG+l0l5GBUuUKqmo9/Bchw29RGsyB2hLsHHevJ+M36YT9vm/Wty3tCHH0+1s15rLeQYAAAAAAAAAAIhCLAwA0DPiGiz1hHgKMeNDSk0I/LjEcOKiY9ZYWJVaWNDCcTAPbjJ67SdDTe2JsG3YbnTXb43uP8vX0kFiOug99UYCu44/HQszSna95yPCjXGSbj+Tnj/twpuNzrx+7w102675e4na81yeJy3OVgbElg5ISwe96QBZRXCsLDZWFiHL9HF/BAAAAAAAAAAAAAAA3Ss00QPuPK/NsTDHsE/Gmx/asq0bxAS7mi2ICUu5htHazXZeC+H811YyboOvXJdrpKeCJ/Rvm87SWHGHdZn9Mvvrg/t/VMN9y+fN8z1fqzJrtTn/WEOOx+Xr73mejl9+oq5+8tJ58wom0B07v6sT9nlnQ46n29migOkuuc4AAAAAAAAAAEDnIRYGAOgZcS2sYh0hLFt8S5L8hGOUqvS6JEk5hxhOXPjLFjCrtu+g6HJ0jXHlj81sKGzGhu3Stx40OukVxHDQe6avvx5676dq+98UW0zRhNE3vqSxsGDOfckYo/+4ozH3RmOk8dz0x8aKsX9usTFJGkjvDYftDY6VxcbmRMjmBseGstOD+QAAAAAAAAAAAAAAANrBKHqMR0qpFh9JJdeAVlTAKiogJtkjQq0QFypLO4bR2i3JeS0ZtwGirss1ypb8Bl266RyNl3Zal1mbPVAfXPdRLe4bti6zOrOucbEwx6//EUteqRufviYycnbHzu/o9cvf5rythcx2rWX86PcvAAAAAAAAAABANcTCAAA9Iy6gVbQEtOrdri3MVcu2ZrjEwuLY4maWls6soIUPzfv326IP8t1fMDrpFa07DqBTBK0dh9Z+e2JhiWNetvtUMfrGaRKGscamKu9NOyfnhr3aa6ow/fHkePlU2zeW+dNTfnlMbG94bHjAi4yQzZ02PCClfGJjAAAAAAAAAAAAAACgNrZYk+clfGpng7lGj6KiYrZ1i6ag0JTke60PocWFymwRrk5jO69RcaaScRv86LpcI2zOPaZLN5+j3aVx6zL7Zw/Sqfufq0WpJbHbWp1Z17Djcg3j9XlpHbv0BN3w9NXz5k2UdunusVv16mVvathxdSNjjPVacz3PAAAAAAAAAAAAcxELAwD0jLgOV7GOEE9c4GsqaNy2ZuQdxqPEbcYWC6u260KvxYqAFou7/lsZ6+sIqdoGQVrvU5ZYWFLjucrPbffTblUKpR0T0x+Vol5o9Itf3B8VHPO0JCJCFhUc608TGwMAAAAAAAAAAAAAoFcZRT/x0lebY2GOYZ+M359o3cAE6vcGaj6uWhUiglqS1Of1tSVeVgvbeY2KM5XkNvjRdbl6bcg9qn/fdK4mw93WZQ7sf44+sO5sDaYWVd3e6mwDY2GOYTxJeuXSN+jmHf+lXDg1b95to9/SK5e+oWveT81QMPYBxEnOMwAAAAAAAAAAQDliYQCAnhEX4ilGjzFy227MvKmCkdTY8EnOoXkT91pLltdaLVRGLAxon6DXrr9UWpJkEt4/rfep/GTk5KTbH5s/rg1z7MpNf2weLZ9q+wYzf3q2rywoNrA3NjY8GB0hmzttcb/keQTHAAAAAAAAAAAAAADoRqGxxMLaHBxyDftEBazi1i2EefX7rY+FRQW1JCntGEXrBGnLeQ0iQmgl4xgLc1yuHr+b+pUu2/zPyoXR45kk6eCB5+qUdWc7vzdWZxoYC0vwHhhIDeno4dfr1tEb580bKTypB3f/VC9efFTDjq3b2K4zKdl5BgAAAAAAAAAAKEcsDADQM+JjYbVHveK2O2l/MFj0thyWyRVclrILLavbps/ouVgR0EGCYruPoMVKDlXECHNjYSafk7n8/0nf+Ezk8kljYTsm5qwfc99891GesmlpbFLaOWk0NiXtnJJ2Tk5Hx5J+f+gV+aL01Pj0x17usTHfm46GDe8JiJUHx5ZETFsaESHrSxEbAwAAAAAAAAAAAACgHUqKHqTmy2/xkVRyDftEhcHi1o2LCTVTVFBLco+idQLbeY06pyXjNvjKdbla/Wbyl/rM5o8pb3LWZQ4ZfL7+eu2Zyvr9zttdmV4jT76M6nhq7h5J3wPHLjtB60dvUhhx7f5gxw160aJX9OyD/2zXmdRd1xoAAAAAAAAAAOgsxMIAAJBUrCOEFdfYShwLc+iA5RwaOnGbCS3jQarte26EB0Dr9Nz1F0wPlEoa8yoPP5rJ3TJvWNHQw9q4QzLGOA1gO+11np631r5cUJwOiI2VBcR2Tko7p0zZn6XxqenY2Owye9YZm3L7ntFrQiONTk5/aHv5nKiTFX0Ch7LzA2JLBz1rhGzutIGMenaQIwAAAAAAAAAAAAAA9TAmenCb77U5FuYY9olaLh2zbhC252lzBRO9X9coWiewfU2iAk2hcRt85bpcLX418aCueOL82EDcYYMv1vvWfiRxSCrtp7VPepVGClvrPczE+16eXqkjlhyjn43fMW/e47lf67dTj+hZg4fVfVzdyHadSd11rQEAAAAAAAAAgM5CLAwA0DPioirFOh6oFrfdKYewV1JOsbCYYwot86o1Z3ouVoSOZozRJbcaXX230a6c9JYXebrgrZ4yfd0b6Im7BoPmPrSy80zurmm1mfuUGd0m85b9qy6fNEYmSU/vllYunlm/dpk+TysX793WXm7HFIbT7/2ZgNje4JiZDYrNTBubM21mee7r0Sby0x9bdpZPtX21509Pp8oiY2XBseGZsFh5hGzAKwuSTc9b3C/5fvfeywAAAAAAAAAAAAAAqFUoSyxMbY6FOYZ90l4m0bpx4ahmigpqSclDUe1kO6+FiHNaktvgK9flkvrlxH367BMXxsajnjd0hN675gyl/fnvIRerMmvrjoX58pWq4ddLjl92YmQsTJJuGb2hZ2NhtutM6q5rDQAAAAAAAACiHHjggdqwYcPs5+vXr9drXvOa9h0Q0EOIhQEAekZc1KVYRzDFFt+SpMmED/5zCc+4xMLilCxhtLjXIfVOVMYYo0e3SY9slY48SNp3CcGWTvSJ7xv9wzf2vmkv/oHRk2PSl/9qYX69gh65/mbd/KXp/3rJvp6FkmSKBZm/fpXT8rXEvu59XPr951dfLuGhJ+b7noYHpeFB6YDKPTutb4xRrlAWGZsqi41NVkbIxi0Rst3tGa/a8QolaWTX9EelqHfc/GmeJy3prwyOTcfE9nzNK4JjXmV8bM9/uzmcCAAAAAAAAAAAAADoXaGxxMK8VIuPpJJL2KfP61Mq4jgzMfGnuJhQM9kiZa5RtE5gO69BOH/QZsm4Db5yXS6JX+z+mT635V9VNPYQ2YsWHam/XPMh9XnpmvezOrNO/zNxb83rS1LG75dXw6Cndf3P1HMHX6RHJh+YN+8Xu3+mJ/ObtTq7rq5j60Zx13e6i641AAAAAAAAAADQWYiFAQB6hompwtQTworb7lTSWJhDuSbn8PC6uO3YomDV9h0056F5HaVYMnrv1UZX3T19MjxP+vSfePrrV7f3yZSoZIzR5bfPf8Ne+zOjy95ptGxo4UVyeuH6a4RCSdIt10lbHnNa3jiGtcptnzCaCXK53LM7led5GshIAxlpv6UVc5y3USwZjZUFxGzBsXFLhGxsqnqoshcZo9nzOmdO1NKR2xhIVwbEpoNj07GxqAjZ0jkRssGMahr8CQAAAAAAAAAAAABAPUJFD+Tz1d7xWy5hn4zXHzk95fUppT6VNH8AkC3a1WxRQS1JSseEzTqNLWwWdU5LMaGuWpZzdd+uu3Tllk9a39eSdMTiV+rP9/u7yNBcEo2IcdUTizt++YmRsTBJunX0Rv3p6lNq3na3sl3fnnz1efwaDwAAAAAAAAAAqA0/ZQAA9Iy4qEsx+oGEbtuNmTdVSLgtl1hYwm3OVWssrJ6gWrf4wl17Q2HS9Dn5my8bvfo5Rs/dj2hKp9iVkx7fHj3vwpuNLvrDhfe1Cnrg+pthcpN7/5ww5lUoSea89zT6kCqcdKXRSVeWtGxQuva99oGoC+9dOF9fytOKRdKKRXPnuL16Y4x25/eGw/bGxEzFNFtwbGyq/u+JC9VUQZoak7aOlU+1faOfPz3l7w2HDZf9d3jAi4yQLZ0TIVsyIKX8XrgKAAAAAAAAAAAAAACNFL1YBTAAACAASURBVJrogXy+195YWMZ3iIXFLJPxM5oKI2JhYZtiYZaIUT2xqFazne+oc1qyvK/mL9e4QVr3jN+hq7ZeolD2fR+55Fi9a/UH5NcZCpOk1ZkGxMLqiMUdOvhCrcs+U5vz8x/y+NPx9Tphnz/RcN+yeg6v6xRMdJQv42V4iB8AAAAAAAAAAKgZsTAAAFRnLCwmstWMwJZLGCWu+1WyvFZbRGxGL8TCvvjj6JPwtXuNznkzgzM6Rdx78Yo7jC76w9YdSyPF3UuCGh9aWSgabdslrVmq7hlgtHOk5lULu3YlWj5pjKzc6KT0xkvs3zy65XS3k+d5WtwvLe6X9q+c47yNXMFobKosLGYJjo1bImS7co1+VQtDKZS2T0x/VIq6UUXfvBb3z8TEVBYT8yriY3sDY/MjZNk0FxEAAAAAAAAAAAAA9BpbWMlXe2NhWZdYWExoK+NlNaXJedPbFguz7LeeWFSrpS3nOyqEVpLb4KtGxcLuHrtV1zx5mUzMSM6jh1+nd646uWEhvIbEwrz+mtf1PE/HLz9RX9x68bx5RVPUHaPf0VtW/mk9h9d17NdZ90T5AAAAAAAAAABA5yEWBgDoGXEtrGIdYzwaGfip0uuS5BgLi9mQLQpWbd+dEgsrhUYpvzkBkbt/Fz39o982OufNTdklahB3XS3U8E8tsbB/+e9QH/+e0a6cdOAK6dr3+nr5QV0Q39n5dM2rBvfdmWh5Q9Gr6/WnPfWnpVVL5s5x+9qWQrMnJLY3Ijb9X1MxbTo4Nj2tPDg2NlVfcHQh25Wb/tg0Wj7V9reN+dOzfXvDYXvDYp6GB6MjZEvnRMgWZbsokggAAAAAAAAAAAAAkCSFxhILa1BQqVZxIbDZZWJCWxk/K0WMvytEhK1aoWCCyOkur7NT2IJLUYGm0DEC5hoVi3Pnzu/pK09dHrvMq5e+SX+071819H09mFqkJamlGi/trHkb9Uasfm/x0bpx5EsaLc4f//XDnd/V61e8Tf3+QF376CZR4TqJWBgAAAAAAAAAAKgPsTAAQM+IC2jVE/qwxbckKZiYlLTIeVtxxzjDJRYWxxoLq7LvoENiYUFRGuieBxiiCfL1j8nqOkljfdf8JNTZN+69qB/fLr3u4lAbLvS1bKjD4zmj22b/aByDTzMKD9xddZmtfav17UV/oK19q3X3wJGJD89Vh59l7JHyPS0bkpYNzZ3j9hU0xmgyKAuIzUbEzHRkrCw4Nm6JkE3V+X19ocoXpafGpz/2co+N+V55ZExlMbH5wbHhAS8iTCb1pbiSAQAAAAAAAAAAAKCVQkUP5PPU5liYQ9wnHRPass2LClu1gm2/6S6KGNm+JlEBtpJxG3BWcoyK2awfvUn/te1zscu8dtlb9LaVf9GUB6CtyqzV+FT7YmEpr0/HLXuzvjHyhXnzJsPdunvsVh277IS69tFNbNdZN0X5AAAAAAAAAABA5yEWBgDoGXEtrGIdYzzithvcfYvMmw6V94xDa9/BHDmHcSsmpvxli4XFRc+k5LGiZiEWhnqDed0oSBhI++Z98y/o3Xnp278wOukVHR6/GR2pedWCl46d/5urRvTajxe0pbS05n0A5TzP01BWGspKa5dVzHHeRlA0s/Gwiv/uCY7NRMjGbBGynFtstNeERhqdnP6oFHWyok/gULY8MrYnJjboWSNkc4Nj/Wk1ZXAvAAAAAAAAAAAAACxUoSXWlPJSLT6Sufvvk6+UQtkH0cWFlmzzgoiwVSvY9ttNESPbsRZNUSVTqnjPuEbAXKNiUX6w4wZdP/LF2GXesPztess+f9q0sQSrM/vrN1O/rHn9Rnz9j176en1n+3WaCucN2NBto9/Sq5b+ftuv51ZZCFE+AAAAAAAAAGg3Y4zuu+8+/epXv9K2bduUz+e1cuVKrV27Vsccc4wWLVrU7kOs2aZNm3TPPfdo8+bNmpqa0j777KPnP//5OuKII+T79T1IZ9u2bfrRj36kLVu2aGpqSmvWrNFBBx2kI488su5tR3n44Yf10EMPaWRkROPj41q+fLn2228/HXPMMVqxYkXD99friIUBAHpGXEijGP1Awrq3GwQlmSs/Ju+jX3bblsMyQVEKQyPftw8YidtOyfJaq4VGOiYW1iHHcc/jRmdeH+rnG6Tfe4Z04dt8veQZBEFaobRAozix95Jishd9wwPR00/7mtFJr0i0qdYb3Tb7R5MguCTFx8K8f/yc/vm2RdrSojcQfSC4yvR5WrlYWrl47hy3N1EYGu3KVQbEds6ExSriY9L45PxpOyc753t8p5nIT388UfHQXds9ZP70dErzAmJLB6Qlg978CNlMbKxs2uJ+xf59DwAAAAAAAAAAAAAWmlDRg9s8Nf6XFpLK+FnlIgJIM7J+f+y6UYIwqPu4amGLGGX87nmKZ1ycrWACpbyB2c9LcouAuUbF5vru9v/St5+OHyN6wop36vdXvKOpDx1blV1b1/px59RVvz+gVy59o76/45vz5m0vbNP9u+7WEUuOqXs/3WAhRPkAAAAAAAAAoF2efvppnX/++brmmms0MjISuUwmk9Fxxx2nc889Vy9/+cudtvvud79bV1111eznjz32mA488ECndW+//XYde+yxs5+fc845Ovfcc63Ll/9M4NWvfrVuv/12SdJdd92lc845R7fddpvCcP7PxlatWqUzzzxTp5xySuKw1/3336/TTz9d69evj9z2unXr9P73v18f+chH1NfXp3PPPVcf/ehHZ+evX79er3nNa5z2tX37dn384x/XNddcoyeeeCJyGd/3ddRRR+mcc87R8ccfn+i1wI5YGACgZ7QlFuZlpNu+LrnGwhwbNvmiNFDjuJzQso9quy6Upuu7zRys4iKo/eF9sYzryZf06Daj118camxq+vNbHpGOvzjUvWf6OmglUY9mS/ClWjByDXrfT7ZnfKETk5uU/udumZuvqXkbOctAKu/SH8h78at07fsoImHh8X1Pw4PS8ODcOW7fj4wxyhX2RMbKgmNjUyZimjQWERybaM+DjjteoSSN7Jr+qBT1jWz+NM+TlvTPD44ND0x/zSsjZN7eP+8Jjg0PTMfoAAAAAAAAAAAAAKBbhCZ6IJ/vdUAszMsqJ3ssLC4AZJtniwk1W8Gy33QXRYzizncQ5tXvl8XCHCNgrlGxGcYY3bT9Wn13+9dilztxn5P0+hVvS7TtWqzOrKtr/UZFrF6z7ATduuNbkefzlh3X6/cWH932caitYI/ydc91BgAAAAAAAADtcMMNN+ikk07Srl3zfjGvQhAEuvnmm3XzzTfrfe97nz796U+rr6+zM0rnn3++zj77bJVK9p9dPPXUU/rgBz+o9evX66tf/aoyGbeoxKc+9SmdccYZsdvevHmzzjrrLH33u9/VN785/8Efrq6++mqdeuqpGh8fj10uDEPdeeedet3rXqd3vetd+vznP+/8emDX2e9yAAAaKK4vVKyjHxO33cBLJ9uWYwTpsaelw9bUtp2ICKzTvo2RSqHUl6p+fM2Ub1IsrNp2y0Np37jPzIbCZuyclK6/3+hDr1/4g1jarRdjYY2KfOUKjdlOo5lNv5H50B9IWzdUTneMHc14OrVP5HTvxa+q+dhq1QPj2bBAeJ6ngcx0hHS/pRVznLdRKBqN5yoDYlHBsbGYCJktZtrLjNlz3qakuXfHiKUjtzGQrgyILR2Qlg56WjIwP0K2NCJCNphRTwzQBQAAAAAAAAAAANAZjCyxMHVALMzPSDHjDNO+/RcbbHEgW0yo2RZCxCjuWOe+PudYmONy0vR4whuevlo/2HF97HJ/uPIv9drlb3Hebj3qjYVl/f6GHMfSvuV66ZJX6Sfjt82btzH/W/1m6n/0nMHnN2Rfnaxgogf9pT1+CQoAAAAAAAAAbK688kq9973vVTgniHDwwQfrsMMO0+DgoDZu3Kif/exnFVGsz372s9q4caO+/e1vd2ww7BOf+ITOPPPM2c8POeQQHXLIIRoaGtLWrVv1k5/8RLlcbnb+9ddfr7POOksXXXRR1W1/8pOf1Ic//OF50w877DA9+9nPVjab1caNG3XPPfeoVCrprrvu0jve8Q696lXJf//67LPP1sc+9rGKaZ7n6ZBDDtGzn/1sLV68WKOjo7r33ns1MjIyu8w111yjrVu36uabb+7Yr1G34OwBAHpGXGCoaAlouQhjNhzs+aF+eWiqETaPVomFxaxri3G4RDoKpdpjYcYYXX230Y0PGPX50p+9wtebX5j8nARNioXtysXPH5+Shgen//z/vhl9sk7/utGHXt/gA0MimQX6t9uJ9owLbBnzJ89ryHZ2+Ysbsp1GIK2DXpLu87RikbRi0dw5bleCMUa789PhsPLg2GxYrHyaJTjWrJhot5sqSFNj0tax8qm2v/TNn97nl8XEyoJjw4Pe7PTyCNnwnAjZkgEp5XNHBAAAAAAAAAAAAODGFmvyvTY/4VJSxosPKWU8e7zKNi8wbYqFWfYb9xo6Tdyxzn19JeM2qMB1OWOMvj7yea0fvSl2uT/e93169bI3OW2zEZb17aOs16+8qTIY0qKREavjl58YGQuTpB/suKEnYmHWKF8XXWcAAAAAAACAK1MsSiOb230YvWHlOnkLNLT0wAMP6OSTT64Ihb3oRS/Spz/9aR111FEVy46MjOiss87Sf/zHf8xOu/nmm3X22Wfr/PPPb9kxu3rooYf0ox/9SJJ04okn6oILLtChhx5asczo6KhOO+00ffGLX5yd9slPflInn3yyDjzwQOu2f/7zn+sjH/lIxbTXvOY1uuyyy3T44YdXTB8ZGdHZZ5+tK664Qj/84Q/18MMPJ3odV111VUUozPd9nXLKKfrwhz+sAw44oGJZY4xuvPFG/e3f/q02btwoSbr11lt11lln6YILLki0X1RamHcAAAAimJioV7EkbdlpNJCWlg0lCxrERchmYmEqFqR09YEUDr0uSdLTu41qTdGEljBa3OuYUShJAzXtVTr320Yfu2nvTr5+X6gvvNvTnx+V7KmPgfvD+xLZXWXc1VRBGm7OrpFQ3Fv12ENadhgNF/e6FnIsLPzEKdZ5JuF9ruCl503zTv904mMC0Fqe52lxv7S4X9p/ecUc523kCmY2HDbz351Te6fNTB+zRMiqRUN7VTGUtk9Mf1SK+q4V/Z1sSb8qw2KD0tIBT0vmRci8imVmImTZNLExAAAAAAAAAAAAoFcYRQ9u85VsjFkzZPz4wE/cfNu8giUm1GyFMIicXu01dpK4Y50baSrJbdChLVZXLjShrnvqs/rR2M3WZTx5+pNVf6Ojl77Oab+N4nmeVmXWamP+tzWt38iv/5rsATp86CX65cR98+b9cuLn2pLfqDXZAyLWXDisUT6/cVE2AAAAAAAAoGOMbJZ5Rxf/gm8X8b72v9J+B7b7MJriPe95j4Jg788wjjnmGH3ve9/T4ODgvGVXrlypK664Qs961rN0+umnz06/6KKL9M53vlPPf35nPbRix44dkqQzzjhDF110UeQyy5Yt0xe+8AWNjo7qxhtvlCSVSiV9/vOfrwh0zXXKKaeoWNz7QJS3ve1tuu6669QXEZVbuXKlLr/8ch100EE644wz9PTTTzu/hg0bNujkk0+e/TybzeqGG27QG9/4xsjlPc/TiSeeqKOOOkpHH320Hn30UUnSxz/+cb3vfe/TM5/5TOd9oxKxMABAz4gL8Vxyq9Eltxp5nvSWF0hf/itfg1m3MEFcZKswEwsr5N1iYY61sFyh9u2Elnkuuy7UGOqazBtd/IP5e7jgu0Z/flTECjHybg/vS6xaJGSqyjlHZ0gt0J5IrddepzPFonTj5xq2vSAiFqYT/rJh20/CW6DvRaBT9ac99aelVUvKp7pfiKXQaHxPOKw8ODY2ZSKnzY2Q7ZySSpYga68bz01/bBotn+oeG+tP7w2H7Y2JeRoeiI6QDc+JkC3KTv/DIgAAAAAAAAAAAIDOFxpLLMzr/FhY1uu3r+tFr2uLCTWbNWJkOc5OlPbs4zHnvr6ScRt0GFaJioWmpC8/9RndPXardRlPvk5afapePnys0z4bbVVmXe2xsAZ//Y9f/tbIWJgk3brjRv3Zfqc2dH+dZm60bkY3RfkAAAAAAAAAoFXWr1+v++7b+2/KS5Ys0XXXXRcZCiv34Q9/WHfccYduuukmSVIYhrr44ot15ZVXNvV4a3HMMcfoggsuqLrceeedNxsLk6TbbrvNGgu755579NOf/nT28/32209XXnllZCis3Omnn65bbrlF3//+9x2PfjryNTU1Nfv5xRdfbA2Fldt33331la98RS972cskTQfQLr74Yl166aXO+0YlYmEAgJ7hEuIyRrrxQekD1xpd+W7HWFjMvNlwTT4nDS522p6LoI5wkC0WFjoELoIaQ13//ZC0O2Lcw6+fknZMGC0fcg841HoM1UQdX7mp6Icpog3iruXiAg21dGsszOwaldZ/Q+axh+U996XSq98qL1s2MHLzb+LXTxh3KcyJhXn/fos8f3qwqHGtMQLoSSnf07IhadnQ3Dmu8VijyWBPQGxKZTExMxsTmwmLjVkiZIRJo+UK0x9PjZdPtd3T50/3vfKYWNmfBz0tiYiQLZ0TIRsekPoWao0UAAAAAAAAAAAA6DChLLEwpVp8JPNVCymlYwJAtjiQLSbUbEEYPRgu7Vd/IGqn8D1faS+jgpn/Wgrh3FiY2+CruKhYyZT0pScv1c/G77Afk3y9e7/TdMSSY5z21wyrs+ukXbWtm/Ia+6slzxl4ng7IHhwZL/vZ+B1688o/1dK+5Q3dZydZCFE+AAAAAAAAAGiVq666quLzU045RWvWrHFa98ILL5yNhUnStddeq8svv1zZbGf9e+yZZ54p36/+gJzDDz9cBx54oB5//HFJ0gMPPGBd9tprr634/AMf+ICGh4edjuess85yjoVNTExUBNgOOuggvf/973daV5Je+tKX6pWvfKV+9KMfSZK+9a1vEQurA7EwAEDPSJKJuf5+o/88ySjlVw8DxPVngpmn1xXcBvW4HmO1cFDcMZUsMSWXfdcaLPrtiH3rtuOxaVosLBc/n4BH54h7ryZ9P3WLboygmae3ypz2Jumxh6c/l6TvXi1d+E152YHphSZqHJlmEZQ9MdS76Hp5L3rl7Oetfm+QlQF6i+d5GspKQ1lp7bKKOc7bCIpmb2RsT1RsOjxmKiJkY7YI2VT1ffSi0Eijk9MflaL+RhH9t4xF2ajgmKfhmcjYnAjZ8JwIWX96+j0CAAAAAAAAAAAAIF5oiTr5XvVfnGi2TJWQVsazz7fFgYKI0FWzlUxRJUUPwuu2iFHGy0bGwuZGmuIiYJXLRb//SqaoL2z9lO7bdZd13ZT69J41H9aLFh/ptK9mWZ1Z29b9l/M8T8cvf6uu3PqJefNKKur20Zt04sqT2nBkrWGLAdrigQAAAAAAAADQy+68886Kz9/1rnc5r3v44YfrJS95ie677z5JUi6X089//nMdddRRDT3GegwMDOi4445zXv65z33ubCxscnJSu3fv1qJFi+Ytd9ddlT+7eMc73uG8j2OOOUZr1qzRli1bqi575513ampq7y8wvv3tb3cKn5U79thjZ2NhGzZs0MaNG3XAAQck2gamEQsDAPSMuIDWXGNT0vbd0r5Lqi8b/n/27jxOjrLA//j3qb577iQzOUgg4QiXnCZyQ0K4YQMIihhFQEHlJyusLoKLogvi6rrKroAskYVwihgCxCCHyn0IhACBAOHKTc65p++u5/dHT09f9VQ9fc3R/X2/XvPKdD1V1dVnZnqqPlXJWJjmNjoFs+xjStajOtddaizMLtKTKHKd0SrFwpzWG2EsbEyo1VhYqa+94SalBO64HvIvi4BP1xbO8NrfgeceAY47J3U5bB8Lk0Umt+LCM/S9OPyUnLFafW4QUe3wugXam4D2pvwRvffCpCnRF8FQcCwTHsuLkIWBnpDMzBPOzDtW/r8Zbv3R1NfG7uypqh+eC6d73blBsaHAWDoslhcha82LkDX5AUMjYkxEREREREREREREREQ01pmw3sHDwCiIhTmEtOwCQB5FaGxLbCMWbvwFPIYPuwf2wSHNc5TzVsKqgRV4tfdZ5fhYixh5DC+snjJPdC7Ba73PDV1eH/1Ya33rox9j4cZfFEzfkdiGdZEPlcu5hQcXTfkB9mucpXU91TTJO63kZavxV+mDmg7D+O0d2BHfWjD2XPdjOGn8F+A3AiWte3VoJd7qfwVd8e1FLRd0NWLvhgNxUOPhVT3xV1wqYmFjLMpHREREREREREREVG1dXV346KOPhi63trZi7733Lmodhx9++FAsDABeffXVURUL22233eD16v8NqK2tLedyT0+PZSzszTffHPq+tbUVu+++e1HbNWvWLDzyyCOO8+XH3KZMmTIUM9OVf/s//vhjxsJKxFgYERHVjWJiYQCQ0AzL2K13KBYW04uF6XrHOdCqpLpddtGztFIDEm6X/jqlwwPlFEorlVNIKDz8J3EkBbuniO7rdjSqidt1x88g/+9a21nky49DpGNhof6KXv2rgdmIww2PxdlPh/s+rOJ+ZEREllxGKjLVGgR2GZ89oveGJKVEOJYJiGWCYzInKNYTzkzPj5ANVPZH3poRSwBb+1Jfuaz+8y+cJkQqGpYOiA3FxAZjY7kRsqzYWFaEzOPmf0xEREREREREREREREQ0+plSEQsTNjugDROPQ0jLLgCkGouYIazofwkA8Erv03i97wV8e6er4TE8lvOX42+dj2Dxtv+znWesRYxU27s28gHW4oOS1pl+PHR5hBff3Okq7NNwUEnXV2nt3kkwYCjDe8PNJVw4tm0+Htj6+4KxsBnCC91PYt64+UWv9/nuJ3DvlptL3q4Xep7EnNbT8MWJ3yh5HU5ipvVOp07vJURERERERERERET1Ztu2bTmX99hjj6JP9rDXXnvlXN66tfAkFiMpP/7lxOPJ/VtRPB4vmGdgYACRSGTocinhLd1l1q9fn3P5sssuw2WXXVb09WXr7Owsa/l6xlgYERHVjSJbYYgU/sxU9HpjYvAHMc1YmG7Q7PF37Ge0W48qiqVz3bESY2Eem3218gM+TttR6jY4cQoJhTWfD1R9pTy/x7pElZ73lSSlhFxqv0MhAODxe4CrB+cLFVRTctdZwvkqT9n5YTz4jQRa8qaPhfuQiGgkCSEQ9AFBHzC5NWdEex3xhERvJDcg1h3KCosNXu4NF05LR8h0Arb1Rsr0/QiszR2xmttyHUFvdlAsKzYWtIiQ5QXHWgKp5at5RmUiIiIiIiIiIiIiIiIiADBhvYOHAWOYt6SQT/htx702ASC7sWzvhd7Ee6E3sF/j7KK2zUnMjOKR7Xc7zuc19M9oPxro3q/V4hN+fHvqv2FmcL8R3Y5sbuHBBM8kbI2XcUbaCjusZR6Wbf8DQmbhiSX/3vUI5rSdApfQP6wlKZN4ePtdZW/X091/xrxx8zHe01H2uqzEpPV+w2MtykdERERERERERKSlfSrEH98f6a2oD+1TR3oLKq6rqyvncktL/hHCzvKXGW0hKsOo/N+6uru7cy43NTUVvY7m5mat+Xbs2FH0up309dkfY05qjIUREVHd0A1xpenGoezWGxODO8/ENWNheleJ2dNLX48qiqVz3fESYzsum59f89fptB3RhEQx0QpdSYcyRTRR8aukKnCKvo1Vpb72hlVfF7BtY3HLOMTCSvFUw1zc0Gvimrzpwx38Y0+FiOqRxy0wvhEY35g/ovemaJoS/dGsyNhQcEwWTOuxiJB1h4EYf2azFIqlvjblfAas+vm3cLrbQE5ALB0cawkKywhZawBoCWYiZM1+wDD4nyMRERERERERERERERHZM6X1zj+GGPlYWMDVYD9uqMeDNmP5Pgi9U/FY2LrIh4jLmON8fiNY0eutNrv7vNr8RgD/b6cfY7fg3iO2DSqTfFNLioVN8e1Sha1J3VdHt56MxzofKBjrSmzH8r4X8LnmY7TX92l0PQaSldnv7MPQOxjfUp1YWNy0fs2NtSgfERERERERERGRDuF2A5Onj/Rm0Bgl82INogIH6FZiHaOdz5d7copYzPlvQfl0lyll3U7yH3fSx1gYERHVjWJ/XAhr/sxit96hWFgsorcuzY185E29+awkFNEhh1YWgNLjC26bfbWKjTtVK5qUdNiOVEys9n8xGAtsY3hjIapVgjERQduxRW++9p2GvpWfrLKdVZb4mvvTCgPXnJ47rVfvbRgA0CoG8JW5jdhvJ+Clj4A7Xiz+F06+WxARFc8wBJoDQHMAmDYue0T/XTUSl+gOZYJjqZhY7rTuMNA7GCHLzJP6t6+I/y/qScIEtvenvnJZ/R9p/f9ms98qOCbQYjGtNYiCCJnPw/9diYiIiIiIiIiIiIiIap0J651kBEY+FrZncD8sVYz5jQB28e+hXHbXwN5wwY0knHfAi5jhErewvHVO8+2KBlfxZ5wfSXsG98MH4beH/XoDRhDfmfoTzAjMHPbr1rFfw2y81f+K5dhU33T4jQZ8GH4nZ3qDqwl7BD9TtW06pu0U/LVrCRKy8DXw186HMLvpaO0Dt6IVfI1U4/WWlpDWZ7d08RAeIiIiIiIiIiIiohzjxuUcSIaenp6i15G/TFtbW1nbZCWZHF0Hseffxq6urqLX0dnZqTXfhAkTci6/+OKLOOyww4q+PqoM/qWBiIjqRrFx0Yj13+kLmDYRn6FYWDxa3JVrGIhKNPisd46wu63lRIdKjYW5bPbVyo9/OT1OpW6DE6f7ZUzEmuqE3XNEJ3o3WtlterUieRX14jK9+ZpaM98/9WBVNuUdixNj9haxX9dXdizC/3zpUgDAqfvJkmJhREQ0MvwegUktwKSW7Kn6kalEUqI3khUWUwTHesJAj0WErCfsHKGtV70Rq3infmzM78mEwzIxMTF0OeffweBYdoSswVcfZwUhrnALzQAAIABJREFUIiIiIiIiIiIiIiIay0xpvZOMS7iGeUsKTffPxBEtx+OFnidzpgsY+GLHRfAYHuWyAVcQZ3VcgD9uXeh4PTFZ+X0NY9L+zKk+4cdZHRdW/Hqr7ei2k/Fm/z+wPvrxsF1ns6sNl0y9Gjv7dxu26yzW7Oaj8UrvMwUhNZ/w4wsdF8EjPPjthp8ibA4AAAwYOKfj4qq+zlrcbTikeW7B6wcANkQ/wfuht7BXwwFa66rka8TptVGOJEbv+xkRERERERERERHRaNLe3p5zefXq1UWv4/3338+53NHRYTmf252bWUok9MMFpcS4qsnlcmGnnXbCxo0bAQAff/wxQqEQgsGg9jpWrlypNd/EiRNzLq9evZqxsBHEWBgREdWNYmNhYY1Y2FPvSXz/T+oVJ4QHJgRcMb2dE4rZxKfeB07bX7EemxWp4gU690+kxFCXewzEwpyiDow+jA21+jglTUBKOaoDF/KPv9WbMTyQ+X6f2cBLf1Gvs4i4S8GyefdXYZzEnnmUD3C5MPkH/4sLjliA218o7j+RUfxQERGRDbdLYFwDMK4hf0TvjV1KiYFoJhyWiYnJnGndoVTI0ipCpvN7SD2KxIHNcWBzb/ZU1f/PhdNdRjoklhcWC6aCY/kRsta8CFmzP/X8ICIiIiIiIiIiIiIiouoxYb3zj4DNDmjDxBAGzp34bRzYeCg+CK9C1Ayj2d2GzzR8FtP8uzouP6ftVEz374FVAyvQl+zBB6F3sCm2tmC+uFmFWJjNOs9uvxD7Nc5Gu3dyxa+32hpdzbhs2nVYOfAq1kY+gCkzz5+oGcHLvX8ved2zm45B0JX7h+MO7xQc0jwHQVdjyesdDl7Dh0unXYMVfS9hbeRDJGUC7d7J2K9h1tDj/MPpv8Fb/a8gZkaxb8NnMdU/verbNa/tdMtYGAA82blEPxameD674MaRrSdYjr3R/zJ6Ep0F06vxektLKuOHPISHiIiIiIiIiIiIKFtbWxt22203fPTRRwCA7u5uvPvuu9h777211/Hiiy/mXJ49e7blfM3NzTmXu7u7ta/jnXfe0Z53uBx66KFYvHgxAMA0TTzzzDM4+eSTtZbt7OzEm2++qTXv4Ycfjt/85jdDl5944gl87WtfK36DqSL4lwYiIqobRbbCEHI4YdivnzTx/Qec1xoXHv1YWBEbuaFLQjdakC1RRkwpWmK4wGNzIrREfizMYV0x6/0nyuYUmcrfTpUNXRJT2xgRqCa750iy2Bf6GJI0AfdoPqlg52a9+UL9me+j4epsC4BoAvBnnbC1t4irEulnWTIJef03cMtJz2HfL9yi9Z5PRET1TQiBRj/Q6AemtuWMaK8jGpfoSYfF8oJj2dN6VRGyIgOZ9SJpAp0Dqa9cVv+/W/+f3+jLCogFMmGxlqB1hKw1L0Lm9/D3BCIiIiIiIiIiIiIiIjvZsadshhj5WBiQ2o59Gz+LfRs/W9Ly0wMzMT0wEwDw4NY7LGNhMVmFWJhinR2eKTh23PyKX99wCriC+FzzMfhc8zE50/uTvWXFwk5v/wrGedrL3bwR4xYezG4+GrObj7YcH+/pwNy204Z1myb5pmK/htlYOfBqwdi7oTewIbJGK1qmej4HXQ04Z+LFlmNbYhstY2Ex6bCjcIlMaUIq4ocuMZp3AiQiIiIiIiIiIiIaGUceeeRQLAwA7rnnHlx33XVay7777rtYvnz50GW/34/Pftb6bzkdHR05l1etWoVZs2ZpXc+jjz6qNd9wOu6444ZiYQCwcOFC7VjYokWLEIvpfU4+b948uFwuJJOp4MIjjzyCrVu3FtyfNDwYCyMiorpRTIgLALb3q2Nc/RGpHY2JCS/8scofsR/0qsfstkwVvdK5f6IJ53msuGz21Yrnx8IctiNW4jY4cYqo6UbWnlwlccERjABUk91zxCn6NpbFk6M8FqYrnIqFyY0fAa8/bTurVLwHHxxegdcDB9ku2x/JjYVF4vr/CYi8d1HXY4tw+bevxYHTOnDcr/WeZHwXICKiUvk8Ah0eoKM5f0Tvf5ekKdEXyY6MpcNjMuv7dHAsNS0/OFZOYLiW9UdTXxu6sqeqfsYonO51Z0fG0t8LNBdMS0XIWvMiZI0+wDD4UwYREREREREREREREdUuE9Y7t7lQCzvN5PIaPsvpMbPysbC4Yp2qbagFPuEva/lavm9G0vHjzrCMhQHAX7sewvmTL3Nch+o1YveYDefrDQCSUn12WhcP4SEiIiIiIiIiIiIqcN5552HRokVDl2+88UZ85zvfwaRJkxyXveqqq3Iuf+lLX4LPZ/258MEHH5xzeenSpTjvvPMcr+Pxxx/HK6+84jjfcFuwYAGuuOIK9PX1AQCWLFmCxx9/HCeeeKLtchs3bsS///u/a19PW1sbFixYgDvvvBMA0N/fj+9///tDl2l48S8NRERUN4psheGy+yW+fqT12A1/019bTHiBaFhr3mKCZu9v1p83WzkH/qdiO8UfnC5sFsnfHqe7ID8uVilOkSndCFVf5btwVASz2Bf6KOL0+h/N0Q75ybv6M8cikAO9kF/ap+Trmxlb7RgL64sCE5oyl4t677B6MB67Gx3H/EsRKyEiIhoZLmMwMhXMH9H7OV5KiXCsMCDWE5ZDkbF0cKw3DHSHCiNkoeqcfHnMiyWArX2prwz92JghkAqLZQXEWgNAS1AMXc6OkOVPawkAHjdjY0RERERERERERERENHqZ0noHGSFszlY5RnmFIl4kK//HtphUxJUU21AL3MIDAQFZ9J6jKbV834yk3QL7YLp/JtZEVheMvdb7HOZPWIBxnnbbdcQVrxG7x0w1Fle8NsqlCh8CgEvUXvyQiIiIiIiIiIiIqFzHHnssDjzwQLzxxhsAgJ6eHpx77rl49NFHEQgElMv95je/wcMPPzx0WQiByy+/XDn/YYcdhmAwiFAoBCAV13rttdcwa9Ys5TIffPABvva1rxV7k4ZFU1MTvvvd7+K6664bmvbFL34RDz30EObOnWu5zJo1a3DKKaegu7u7qOv6yU9+gvvvvx/RaOqz9bvuuguTJ0/G9ddfD5dL/7PvVatWYfv27Tj66KOLun7KYCyMiIjqRjEhLgAYiKYOlBcWpas/La9SLEx7rcCzq9Vz291WVfRK57qjCY2ZrNZts/L8gI/T4xSrUizsmkfsr1g31KQbFaPSlfL8rgWJKj33K0H+pcjy82N3661XURoUkPhq9924q/UrymX788J95YYG5cqX0GQf0s5hF0kkIiIazYQQCPqAoA+Y0pozor2OeEIOxcN6sgNjIVkwrSdUGCHrCRf/+1s9MGUm3pbL6s6yvgOD3qzIWDo4FhTWEbJAJjyXDo4FvLD8HZmIiIiIiIiIiIiIiKgSJKx3/jFQg7EwQxELMysfL1KtU7UNtUAIAa/wISpLO/unR3grvEUEpB6X48edgYWbflkwZiKJp7uW4fMd59uuQ/V89tg8n4fz9QYASane2dYleAgPERERERERERER1Z7NmzdjzZo1JS07ffp0AMBtt92Gww47DLFY6qQRTz/9NI466ijcdNNNOOSQQ3KW2b59O6655hrcfPPNOdOvuOIK7L///srrampqwjnnnIPbb78dAJBMJnHqqafirrvuwgknnJAzbywWw6JFi3DllVeis7MTbW1t6OrqKuk2VtOPfvQjPPzww1i5ciUAoLe3F/PmzcPZZ5+NL37xi5g5cya8Xi/WrVuHRx99FAsXLkQoFILf78eJJ56YE1uzM2PGDNx666054bRf/vKXePbZZ/HDH/4QJ598Mtxu68/A16xZg2XLlmHx4sV46qmncM011zAWVgb+pYGIiOpGKQeb//Vd4Ph9CqdPbQXe2qC3jhg8QFRvh5NitnHPyYUHaK/vlLj+LxKPvaNeTjd6ZWVUxMJK3AY72/skOgfs59ENNSUZNRhRtRwLKzd2VVX3/bqo2eUN6iq3rhnxNbbjfXn7cRVz/wmbuAYRERE587gFJjQBE5ryR/QiU6Yp0R/NDYilvpepWFZWcKzXIkLWHa7O7w21IBRLfW3KOfmH6peYwukeVyYolg6ItQaB5nRYLCc4JnLnDQLNfsAwGBsjIiIiIiIiIiIiIiJrplTEwoT+2cjHCmW8SFYhFqZYZy3HwgDAZ/gRTRYfC/MKH0+gU0UHNB6Cds8kbItvLhh7vudxnDz+Cwi4GpTLK5/PQv18VsXfqvF6A4CkVO+s5qrB9zMiIiIiIiIiIiKic889t+Rl5WBc4OCDD8aNN96Ib33rWzDN1N+Mli9fjkMPPRS777479t13X/j9fqxfvx6vvPIKEoncg4eOP/54XHvttY7Xd+2112LJkiXo7k4dXLN161aceOKJ2H333bH//vvD5/Nhy5Yt+Mc//oGBgVSAYNKkSfjFL36RE8oaLbxeL5YtW4Zjjz0WH374IYDUffrAAw/ggQcesFxGCIGbbroJ69aty4mFOf195LzzzsPmzZtx1VVXDT1GL7/8MubPn49gMIiDDjoIEydORCAQQF9fH7Zv345Vq1YN3ddUGYyFERFR3Sil4XTab01Ef5f7h/nNPRIvf6K/jpjwQkZDmofF6xvI24dlW5/EnF+Z+GS7/XKq6JVOqCwS19u2YuhGuNKqcdD/46ucb7xuaMis4VjVaGH3aJk1HGsb1bGwYSYg4XPYUWtbX+7lYkKJlrEwIdBQRCyM+wsSERGVzjAEmgNAcyB/RP8/2Eh8MCyWFRwbio1lT1NEyPqrs0/4mBdPAtv7U1+5rH4QL5wmBNDkG4yJ5QTHUo95/rRMeCwTHPO6+YMWEREREREREREREVGtMmG9g4wBY5i3pPpUYaO4WYVYmGKddnGlWuA1fFA8pZyXo6oxhAvHts3H/VtvLRiLmGE83/MEjh93pnJ55fPZ5nFTjcXNmMPWliZp88RzCR7CQ0RERERERERERKRy0UUXoa2tDRdccAH6+zMHr3z44YdDISwrF154IW655RZ4PB7H69hpp52wePFinHHGGejryxyMrLqOGTNmYNmyZdiyZUuRt2b4TJs2Dc899xwuueQSLFmyxHbe8ePHY9GiRTj11FPxgx/8IGesqanJ8bquuOIK7L///rjggguweXPmxCChUAgvvPCC1va2tbVpzUfW+JcGIiKqGzoxrHzZcZ5wTOLLC008/GZx64gJLxANa80ri0iafdqTO++SFdIxFAYAyTJiVtESQ112tyo/gOR0D8SqEEy66Snn+103FlDLsarRwu61XM7ze6Q5vUfVXSysrQPycycAq62HnWJhf3lb4vQDMyGJYu6/uNWZJHfeE0GffpiCCQsiIqKR5fcITGoBJrVkT9X/HzqRlOiNZIXFQtbBsR5FhKw7xN8NrEgJ9EZSX+s6c0as5rZcR8CTCYdlYmKZ2JgqOJae1uBzPtMJERERERERERERERGNDFNa7/xjiBqMhSniRTGHfWJKEVMEkTxGEWfOG4NKjaHVekRtNDisZR6W7fgD+pO9BWNPdf0Zc9tOg1tYH9AVl4rns9U+X4NUj2k1Xm8AkJTqnW1dcCnHiIiIiIiIiIiIiAg4++yzcfTRR+P666/HPffcg+3brQMKHo8Hc+fOxTXXXIPDDz+8qOs49thj8corr+DKK6/EI488AmlxkHd7ezvOP/98XH311Whubh7VsTAAmDRpEh588EE8//zzuO+++/D0009j06ZNiEQimDJlCnbddVd84QtfwDnnnIOWltQBV93d3TnrSE93ctJJJ+GTTz7B//3f/2HhwoV48803Le/DNI/Hg9mzZ+OEE07Al7/8Zeyxxx6l31BiLIyIiOpHqcdpSykhhMBVS2TRoTCgyFhYERv57Ae5ly+7X2/hhCKmpLN0ybEwm5UnTInsg/ad7oNYidtgZ8YEgZc/tr/ivojeutgDGFljORbmpBqhvFHJH4S44zVgyq7AnRJYXfiqEpDwO5xFtT0vXl1MLOxt3z6FE92pX53OPAhYskJ/XURERDQ2uV0C4xqAcQ35I3qRKSklBqKZcFjP0L/SYpp1cCwSr/jNqgnheOprc85xA6rfxAqnu4zsmFh2eExYRsha8iJkLQHAZTA2RkRERERERERERERUDSYUsTDUYCxMFS8yo0P7LFaKKohU61Esr+EvaTmPIuRGleM1fDi69WQ8uuP+grHuxA681vs8Dm2Za7lsTLHfmN3zWRnnc9gHrVRJqd5ZzRCMhREREREREREREdHYt2bNmqquv6OjAzfccAN+/etfY/ny5Xjvvfewbds2RKNRTJgwAVOnTsWRRx6JpqYm55Up7LXXXnjooYewfft2PPPMM9iwYQNCoRAmTpyIGTNm4KijjoLbnckyzZkzxzaIla+YefPdcccduOOOO0pa9sgjj8SRRx6pNe+qVauGvhdCoKOjQ/t6/H4/LrnkElxyySXo7OzEyy+/jE8//RSdnZ2Ix+NobGxER0cHZs6cib322gvBYLDo20LWGAsjIqK6UerPUzv6gQlNwL3/KG0FqViYZmmqSKYpYQwepKx7ILkyFqZx80o9WN1u1fkBH6fNSFQhmLTnJOd5ejUfwlqOVZXKNCWSJuBxV2YHNrvniFnDtbZqhPIqQSYqW7EQX/8xxE67pdZt88bkczirYyjvBJKq9z4rM2MfFk5MpB6AS481sGSF88oquL8mERERjUFCCDT6gUY/MLUtZ0R7HdG4HAqHpcNiVsGxHkWETPd3mHqTNIHOgdRXLqufPa1/Hm3yZ4JjmZiYQLNFhKzVIkLm9/CHRSIiIiIiIiIiIiIiK6ZUxMJqMK6jClKZMJFEAm54KnZdcVVcqcajWL4Sb59XeCu8JWTlmNZT8GTnEsRlrGDsr50P4ZDmOZbRPGX8zlA/bso4n8M+aKVKSvXOfq4afD8jIiIiIiIiIiIiqhbDMDB79mzMnj27atcxYcIEnHXWWVVb/2g1MDCA119/fejyzJkzS46vjRs3DqecckqlNo0cMBZGRER1o9RYWMf3TIRuMrC9v7TlY8IDRMNa8xa7jWt2ALu2F7dMObGtaImxIrvbVRALc7gPYlWIhelE0PrCmQ2b3AJ82lP6uuqFlBJXPyRx2/MS/VHghH2A275moK2hvAPj7Z4jtRxrG62xMKx9v7Lr8zqf0VNICb+0r1/kx8Ly32vsfL5vSeHEZOrFPa5Bfz1ERERE5fB5BDo8QEdz/ojez9NJU6IvMhgZG4yKpcJjMjMtHRgLZcJk2cGxYoKr9aQvkvra0JU9VfWLSuF0nzs7Jpb+XqAlaB0ha8mLkDX5YXlgBBERERERERERERHRWGfCegcPA8Ywb0n12QWpYmYUblflYmHKuJIioFQrvMJ5PyTL5Wo8ojZaNLlbcGjzsXiu57GCsU2xtVgVWoF9Gw4uGLOKiwH2j5tHERJTratcSaneWc3FQ3iIiIiIiIiIiIiIaBRYtGgRQqHQ0OXDDjtsBLeGisG/NBARUd0osRUGADjtt6UfIR0TXiCWGwuT6z8AVjwLjOsADp4LEWwsaRtXfVp8LEwVU9IJlVUjFpYfL3OMhSXKeSSthTX29+jL2l/qwGmMhem4bpnEz/+SebweegPY1mfiuR9U78x4YzkW5vTMrkYoryLWrVaPNbUBfV3qcSsz9tWa7YjQi7bjobx9HIuJhc0deKZwYjL1BtikuQ8h0w1EREQ00lyGGIxN5Y/o/aQipUQ4VhgQ6w7LrO9T03tC1hGy/IArpUQTwNa+1FeGfmzMEKloWEtWQKx1MDjWbBEhy50n9b3bxZ9YiYiIiIiIiIiIiGj0MaX1zj+GqMFYmE3YKGZGEXQ1Vuy6oqb1SflqPYpV6u2r9YjaaDJv3Hw83/M4pMXfxP7a+ZBlLCxmFh+/U42p1lUuE+qdbV2ievtPEhERERERERERERHp2LBhA370ox/lTDvvvPNGaGuoWIyFERFR3dCJYan8/b3Sl40JLxDNxMLkY3dD/sfFQHKwXLPLXsANf4GYMKXobeyPSBSbpEmUEVOKViGElR/wcQwmlRgss6NzAHt2BMzuHmcsLOPefxQ+mi98BHy8TWLX9tIPTLd7nZiVb8mNGtV47leCfH+5ckx877eQP/mK/sqCTcABRzrOJiDRkdxmO8+HW3OfDMXEwtxWZ6nt7wUANHFfQCIiIqoTQggEfUDQB0xpzRnRXkc8MRgWywuO9YRlzrTUdIsIWbi83+VrlSmBrlDqCzuyR6zuLOs7sMFXGBBrDYqcCFl2cCx/WsCbeo4QEREREREREREREVWSCUUsDDUYC7MJG8VkZQNGMWm9g1ytR7FKjoXVeERtNOnwTsH+jYfgzf6XC8beD72FdZGPsLN/t5zpyliYzeOmGqtWLCwp1TuruQQP4SEiIiIiIiIiIiKiylq8eDGWL1+Oyy+/HO3t7bbzrlixAmeddRY6OzuHph1wwAGYO3dutTeTKoR/aSAioroxUscXx4UX6N+c2oZQH+TPvp47w9r3IH//U4gr/7fodf/lbeBLnytuGVUsTOf+KTWEZbfu/O1xOhA8VkTwR5fO7cqex24TI6M06DQS3t9iPf3W5yT+4/NlxMJsxpJlxPBGu9EaC8M9v1KPjZ9U1KrElbdCGJmdO+3eD/wOO0W+9HHu5YTme8e0+Hrrgb/cCfxwIZr8euthN4GIiIgI8LgFJjQBE5ryR/R+WDJNif5obkCsO5QVFssOjllM6woVF42tJwPR1Nem7uypqh/AC6d7XFmRsazgWEs6LJYdIQuIrCBZaqzJDxgGf2gmIiIiIiIiIiIiolymVMTCRA3GwmzCRpUOGMVLiCvVAp/Q3NEnT61H1Eab48edYRkLA4C/dj6EC6d8L2eaKqbnEV7ldage05iMQUpZ8ZPkJKV6Zz+XcFX0uoiIiIiIiIiIiIiI+vr68POf/xy/+tWvcNJJJ2HevHk44IAD0NHRAbfbjc7OTqxcuRJ//vOfsXTpUsisA7i9Xi8WLVo0gltPxWIsjIiI6oZThKpaulytQNfK1IUliiDYE/cCV/5v0UGzu16WWHRhccvoBnOshGKl3Yl2933+gdtO1xC2PslhWXRuVzRr3w272xMtMahWT3rD1Vt3cqSqgMOgGqG8ckm7F8MhJwC77FXU+sTcz+vNV0L+UTcS8fXu260HJkwBAPg8ejuGMRZGREREVD7DEGgOAM0BYOecEb0ftqSUiMSzImNDwTFZMK1HESHrr87JxMe8eBLY1pf6ymX1s3rhNCGAZn9uQCz1vUBLQYRMpMaDuREyr5s/dBMRERERERERERHVGhPWsTCB2ovr2AWpVDGkUqnjSrUdxSo1hlbrEbXRZtfAXtgtsDc+Cr9bMPZ63ws4Pf5VjPd0DE1TxfTsXlOqkJiEiYRMwCM8RW61vaRU76xm1OD7GRERERERERERERGNDvF4HEuXLsXSpUu15g8EArjzzjtxwAEHVHnLqJIYCyMioroxUrGwR5pOw9e2LYY0Tchb/s16pniqgFXKNsYTEp4iDpBNWu9PpXXdpYa67FatG/BJ2zFQ2jbY0bldkawImN3ticZruFZVIaEyg292z1VT8fweC5xegzH1yQZHzkCveswfhGhr1896feawgklOy57ffSfuaD3PcsxtAKYpYRip90fd95pd4uusBzyZHcaEGLn/U4iIiIhInxACAS8Q8AKTWnJGtNeRSEr0RgbDYoMBsW6L4Fjv4LTsedLjJn92LCDlYKQtDKzrzBmxmttyHQFPJhw29G8gKzaWFyFrzYuQBb2o+FniiYiIiIiIiIiIiKg8Ulrv/GMIY5i3pPrcwgMBAWnxObgqhlQqZVzJsA4o1Qq7eJSdWo+ojUbHtZ1hGQszYeKprqU4u+PrQ9NU8Tu7yJvdWFxG4UGFY2Gw3lnNgIt/nyIiIiIiIiIiIiKiimttbYXL5UIyqR9uOOKII3DDDTdg1qxZVdwyqgbGwoiIqG6M1LG5O8fXA9EwsPQ22/lkPIZS/mt+51PgwGn68ydMQEpZ0g4HpUae7KI6ibz9u5wCPF2h4q//6fclFr8u4TKAsw8WOHKP3NsejisWzBLRmAcAIqMx6DTKlBqdS7N7jiRr+CD8WFKimKjBsOjaqhwSX/xuwbSQCGBR61fxin8W9ou+jfN67sGE5I7U4LaN2lebvhcu7bxJGQtLmMBADGjypy7rxsKO3NMFvGIx8OmaoW99buf3hFH2SBERERFRidwugXENwLiG/BG9n/iklOiPZsJhmZiYLJjWYxEh6wnr/z5ab8JxINwDfNqTPVX1S2HhdJeRHRPLBMdaAiInQtaqmNYcAFwGf/InIiIiIiIiIiIiqiR1YKf2YmFCCHiFD1EZKRhTxZBKIaVUx5VqPIrlM/wlLWcXlqLq2K9xNjo8U7A1vqlg7IXuJ3HK+HMQdDUCAOKm9Q6IpcbCYjKGYJHb6yQprXckdQlXha+JiIiIiIiIiIiIiAg444wzsGXLFjz22GN44YUXsHLlSqxduxadnZ2IRCIIBAIYN24cdtllFxx11FE45ZRTcMQRR4z0ZlOJGAsjIqK64RShqpZOVxsAwPzVdxASQTRIRe0q1Acp24pe/wsfSszsKG4ZUwKuvONZde4enaiWFbv7Pj/g4/Q4DRS5H9RdL5k4/w45tN6bnpK480KBcz+X2YFMJ4KWfXC23TbyIG5n8SoWvaQsPYY32sVGY4iua5t6bI8DUv82tQF9XYgIH+ZPW4ynG+YMzbKo5av427qTUsGwSOF7o9P7wQHRlbh/w5dxztR7LccHoplYWNL6xLMFdj32KMhX7rIckwO9EA3N8Lr4WiciIiIiPUIINPlTP5dOzfmVX/93lmh8MCAWzoqNhQqDY72KCFlv4TFGhNTvCDsGUl+5rH4Rsf7lpMlvFRwTg9Gx3AhZa15wrCUA+D2197srERERERERERERUTmktN7BwxC1FwsDAI/hQzRpEQtTxJBKEZfqddV6FMtbaixMeCvnkyHBAAAgAElEQVS8JeTEEAaOG3c67t3yu4KxqIzg2e7HcNL4swGoY3oem/idx+YxjZmVi/OlJaV1+NAlePgOEREREREREREREVXH+PHjsWDBAixYsGCkN4WqjH9tICKiujFCrTD0G434XdvFuH78D7DZPRGzIstx26ZvYp/Ye7kzhvogYR0Lm9oGbOiyXv+l90lcfn9xty5pAq4S9p/a3Fv8Mk4S+bEwh/n7o/oxKCklrloic4JDSRP40UMSX5qdWYdOgCySFWpiLKw85UavnJ4jVjG8WjAqY2HdiliYPwgRaEh9f8bFwF2/wOMNJ+SEwgDgHf++uLvlXFzWeSNw2vnaVyuyngWfjbyunG9dJzCpJfV9fphQKdioHJJ3/RLiW9ch6HUOLtRgr46IiIiIRojPI9DhATqa80f0fuhMmhK9YVgExwojZD0hie4wCoJjCc34br3pi6S+1ud8ZqP6rbVwus+dHRPLio0FrSNk+dMafajJWDYRERERERERERHVLxOKWBhqMxamilLFFTGkUqjCSqnrr/FYWInRr1qPqI1WhzTPxdLt96Iv2VMw9nTXMsxrOx0u4VIG8OweN7ux6sTCrHf2cwlXxa+LiIiIiIiIiIiIiIjqC2NhRERUN+wCT9mO3gO4+lQDJ9xQmSNhH26aj4eb5g9dfjUwG/N2eQyrP/oMmsz+zIyhfoulU5wO+yz2oN1EEvDm/RSgc/9s6gZuf8HESfsKTG7VPxjVbtX5AR+n7UiaqWXyt9/K2xtT25zv4+3Au58C+0xJXR7QOBFjdgTMbhMZC0uRNg9kTDfapFy3/XgiWVoMb7Qr936rBvmPx60H2tqHvhVePySAqzqutZz1+xN/ics6b4TwBQvXr/G+1Ja0eJEP+mS7xOdmpN6rdGJhXz1UAAcerZ7hnv+EPPI0eGN7AigoNRARERERjUouQ6CtAWhryB/R+71eSolQLCsgFgZ6QkB3WGbCY4NjvYMRsuzgWE8YCGn83l2PoglgS2/qK0M/NmaITDzMKjiWP601L0LWEgDctVjbJiIiIiIiIiIiojErKa138DBqNLCjChhVMl5kt65aj2J5DX9py9V4RG208hheHNN6Cv68476Csd5kF17tewazmo5SLm8Xh7N7TCsZ50tLwvq9zMXDd4iIiIiIiIiIiIiIqEz8awMREdUN3VjYmh3AcfsI/PM8gf/5m+ZCRdrm7sBfG+bhzL6HMxMHem23ca9JwHubK3P9xcbFsn19kURbUGLZPxs4dFfdA4vVYwWxMI31xRJ6sbDOAfXY5t6sWJjGvh7RROoAaSHsbzNjYSnFPOaVFk8CPk91r6ManJ77MeuTDY6s1W9YT2/tyHzf1Jqa1TfTfl1e/Z3sRNa91WL2KufrCWe+jyed310Wnicg3O22j4X89jFYt3dIYxuJiIiIiGqDEAINPqDBB0xpzRnRXkcsIdGTFRDLRMZyg2NDsbH8CFlE/3OdemJKoCuU+spldWdZ34ENvtyAWGsAaAkKZYQsf5rfA8fPSoiIiIiIiIiIiIh0SVjv2GagBs8cCHXAKFbBeFFcqs/oUetRLF+psbAaj6iNZke3nYwnOh+0fA38tfMh7NcwS7msx+b57BbqHQpjNq+RUiWl9c5+rhoNHxIRERERERERERER0fBhLIyIiOqG7jGlXzk0dYDjz8+sXiwMAL4w9T7MHXgKl3TdmoqGhfuU2yhE5UJhgHUsrJiDbrtCwAW3m3j3Wr0dF+xWnb8tOtsR04xN+W2CUeGs/TvCGoEvKVMRKq/bfhsjozHoNMqUG71yjGpVOUY2Uip1u0xTwjAqdCB36wTr6V1bM98fNR+44XLndQUaCibpvC2Ji34KPG89dvPTEhcfnfo+YXP/uQ1g0YUCXrfe/fKV7ntwd+sCrXmJiIiIiAjwugXam4D2pvwRvZ/BTVOiL5KKh6WDYz3psFh2hCwM9FpM6w5VP1w9Vg1EU18bu7Onqn4bK5zucWVFxrKCY81BkRUZS4+nYmPZ05r8qNzvqERERERERERERDSmmdKEVHw+aYgajYUpolQxs3KxMLt11XoUq9QYWq3fL6NZo6sZh7XMwzPdjxaMbY5twIq+l5TL2j1uhjDgEV7LeF4lX29pSWn9hynGwoiIiIiIiIiIiIiIqFyMhRERUd3QjWE1DZ5MLuAViNxsYMHvTSx+vTrb9FTDXDzVMBf3b/gyzu7vhVScyE4IwOcGohUKUdlFc3S9vwXY1C0xpdX5gE67+z7/YF2tWJjm/eCziYVFsgJhIc0Tw0Xig7Ewm3miGuGxemB3H730cXWvu1YPAC83spYWTwIr10l43cB+OwFClHFQdvd26+kTpw19Kzqm6sUaW9u1r1YccCTEaT8FDp4D8ZlDsfdHSbz7aeF8rqybtvQt63W5DWDFjw3sO0X/fjgk8iruhn0srJy7lYiIiIiIchmGQEsQaAnmj+j94C2lRCSeFRkbCo7Jgmm9igjZQOWPE6kJ8SSwrS/1lcvqN8HCaUIAzf7C4FhLIPWY50bIRNZ45l/d8DMRERERERERERGNbhIWZ8AcZKA2AzuqmFVMDk8szFNiTGusKDX6Vev3y2g3r20+nu1+zPI94fHOxcrlnB5vr+FDPFm4s2i8gq+3tKS03tnPJXj4DhERERERERERERERlYd/bSAiorqh2QqDN2u/Iq9b4IFvufDntyTm36jeGalc50y9F7GuW4HJ1uMCqYMftxYceFkaq5iS7v2TbdlKiYuOKi8WVkq4rBIxqEhCAhCIJySSmg9tJA40B+xvT6RCQaexTjfOV411VyqqNdpU6nbt+kMTn/akvt9/KvD4ZQYmNpd4YPV7yy0ni3lfzJ3wueMBp/evtsJYmPKxnrY7xHlXDl20CoUBeoHFfz1RFITCxO2vQV4wS7nMuT3349JJN9iul7EwIiIiIqLRQwiBgBcIeIHJrTkj2utIJCV68gJiPemwWFZwrCcrQpYdHOsJA2YVf1ceq6TE0P26NnfEam7LdQQ8gzGxdEQsALQGBZoD+dNSEbL8MFnQW2ZIm4iIiIiIiIiIiCrClDaxMGEM45YMH48ibmQX+CqWKjwmYMBd4+Ein6E4e6uDUiNjVBkTvJNwUNOheL3vxYKxroTi5JYAvMJru16PYrySr7e0JKx3cnXVaPiQiIiIiIiIiIiIiIiGT23/hY+IiCiLbrzIY/G3+NP2F/iPzwtc+WD1jur82TszMW2SevxHpwlcel9lrj9mFQsrYdW6kS07+bEwnc3QjSbZbV8knvo3HNdbV/YytrGwItZXz6SUJR+I6/RcrURMbiQ43a5KhejSoTAAeGsD8PU7TPz5nyu8E1JjS85F8d1fA9c5LNNaGAvT9fUjBW57vvAOXJUVEZvUDGzuLVx2i0XETOy+n+17UavZgwU99+Keli8Xv7FERERERDQmuV0C4xuB8Y35I3q/20op0R/NhMMyMbHBsFhWcKzXIkLWHdILItejcBwI9+T+vqv+hKlwutvIhMPS/7YGgOZ0WCwvQtaSFyFrDgAug7ExIiIiIiIiIiKicpmwiYWhNmNhXqGIhSkCX6VQhZC8wlvzJ1JQ3b/VWo4q57i2My1jYXacIm/q11usqOvRkZSKWFiNB/qIiIiIiIiIiIiIiKj6+NcGIiKqG7oxLK/if8dGsw9AwRGhFfPTjXOwUDEmBHDmQRWMhVXo4NKtFpEdK3ZbnR920nmcrGJnVuxiYeHB/TuKioVp3G+MhaU4PY494dSBtdVQqef3aPPW+urECh99GxiISjT4itv5T67/QD3ozj0Lo9h5JqA4W+KQrFiYlKmD4lW3OH9LD94ZuE0x7yNvSMw/UCgPqp8xXnEdP/w95PXfUG7uHZu+YRsLq+1dKYmIiIiIqFhCCDT5gSY/MC13RHsdkbgcCo3l/BuWBdOsImR9kUrfqtqQMIEdA6mvXFa/lVr/ptrkT8fEsoNjAs3p74fiYpnYWHZwzOfhb5FERERERERERESmIq4DAIao0ViY4bWcHjcrFy9Shcecwkq1oNTbqHpcaPhMD+yBPQL74oPwO1rzCxhwORwao3o+xBVBvXIkpfXOai5R4ZN6EhERERERERERERFR3WEsjIiI6oZuZsej+Ft8w/svAjihUptj6aI7rbdSAJjSKjB9PLBmR/nXYxXN0Y2pZdvcozef3boTZu6gzmboxqDsYmHpSFm4iP2q0iEwp/hZ0pRwGTzI0862vtJjYU7PkfwAXa14TG+/p5Js6AL2nFTcMvLWH6sHw/3Fb0RTGwDgoRUS33vAxCfb9Rf1e9RjZ9xswrzVhZDitX7QzorX6glfBmxiYQLARV23YWHb1/U3lIiIiIiIqAx+j4DfA0xszh/R+wwiaUr0DobD0mGxVExMojsvQtZrMa07bP9ZSz3ri6S+1ndlT9WPjfk9mXBYJjg2GBuziJDlB8cafakgHRERERERERER0VhmQv0BpIHaDOyo4kWqwFcpYooQUl3EwoS/xOVq/74ZC44bdyY+2Ki305xXeB0/J1c9rpV8vaWp4ocuwcN3iIiIiIiIiIiIiIioPPxrAxERUR6v4n/Hho9eRbVjYU6e+r6BGVeVf1SmbmzLyS3PSNy8wHk+p7hWzrwatbCYZgzK7gDW9DrCcb11AZnImtM2RuNAsM73F3J6GH/zV4nxjRKHzBA4fm/A59E/oNXp/td9fow1MydWb90lHU/89IPqsZkHFb8NbjdWrJM451bTMfiWv73H7S1g96z71ROmZSQRAAKK0JhwuYDLfgN5w+XK9boVZ4C02kYiIiIiIqKR5jIE2hqAtob8Eb1fYKSUCMUy4bCecFZsLH+aIkJWzOcw9SQST31t6c2eqvo9t3C6IbJjYlnfWwbHREGYrCUAuF38RZaIiIiIiIiIiEaWKW1iYcIYxi0ZPsp4kSLwVQpVCKkegljuEsNM9RBSGwv2bTgYk7xTsTm2wXFencfMY3gtp1fy9ZaWhPV+ZbUaPiQiIiIiIiIiIiIiouHDWBgREdUNnQgVAHgUf4tv+PAfwM6V255ipKMzu4yvzEF7VjElzbunJHb3faKUWJhm7Gwg5ryOsM08Besb3CfEaRMjCcbCnB7HW55JzyBx/N7AkksMBH0Ven5XKIY32vRFqrfuYu95aTpEC3f7TEnbsWSFdAyFWZk2zv4WXPEn9RMyaL0PWMqZ3wJsYmEu1GiZjoiIiIiIyIIQAg0+oMEH7NSWM6K9jlhCZkXGssNjucGxHkWErDei/xlfPTEl0BVKfeWyurOs78BGn1VwbDA2ZhEhyw+O+T2p5wgREREREREREVGpTKj3RxGo0ViYInBUyXhR3LTeQc5TB0GsUj+zrIeQ2lhgCAPHjTsDd2++0XFenViYMs6nCOqVIymt9ytzCcbCiIiIiIiIiIiIiIioPIyFERFR3dA9jtDrst5BpNHsr9zGFCl7n5XV1xmYebVDqMdBpWJKHhcgpXTcqcbuIM78MJDO46S7/b98TH0/RdOxsLjeugDgo20Sc/YUjgelRotYJwFPvgvc/Q+Ji4/W2znL6TlSSmxqLKhqLKzY/eK22Z+tsdQd7a5bpvdObbX20w8AHn6z+OsM2MTChGFA7nkw8P7rluMuqX4z4uHRREREREREhbxugfYmoL0pf0TvtyjTlOiLpAJi2cGxnrDMnRYGekIyL0iW+r5WPzcoV3809bWxO3uq6vf0wuleNwoCYq0BoCUdFsuLkOVPa/IDhsHfpomIiIiIiIiI6pmpiOsAtRvYGY54kWpdDGKp6YSnaHjMbjoGj2y7B73JLtv5dJ7PqsdVFdQrR1KxX5lL8PAdIiIiIiIiIiIiIiIqD//aQEREdcMp8JTmUexX1NAcrNzGFCn7MLndO8o/aM4qtqV7/2SLJ1MBo+ZA6dtSEAvT2I6Y5kGdT72vHktHwsJF7Ofx0Ta9+SIVirGNZcU+nZa9JXHx0Zrrdlh5pWJ4o004rhfnK0XRr//3V6jHDp5TzqaUbNGFBlq/W3xIMWgTCwMANLcph1zgEeZERERERETDyTAEWoJASxDYZXz2iGaAXEpE4oUBse50WCwrONYzGBzLj5ANVO4YvZoSSwDb+lJfuaw+dCicJkQqGlYQHAsKNBdEyETWeCY45nEzNkZERERERERENJaZUO/3YcAYxi0ZPh5FvChmVjAWplgXg1hqDDqNHh7Dgzltp+KR7XfbzyecdgIbnjhfWlIRP6zV8CEREREREREREREREQ0f/iWLiIjqhm4Mx6v437HRPXoKRPdfbOCcW4uP4qTpxrZ0DESdY2F2d30yb1DnYapEDCodCQsVEQvrH9wnxOm5FImXtk21pNj41NK3Knfd+QG6WpE0U7dN9R6VTYjiHoNDfm7ig+sMjG/UPKi2T32mRnHDY/pXnPaly4ua3aqX1hwQ+MJnBR5YXtyTL+BxmGHGvsCrf7Mc8kr1i70KTTciIiIiIiIqkxACAS8Q8AKTW3NGtNcRT0j0RgqDYz1hmTOtxyZCZpYQ7a91UqbDbcDa3BGruS3XEfQWBsRag4OBOYvgWEswd1rQi6pE2omIiIiIiIiISI+U6v3hhKjNWNhwxItU6/JqxJWIRoOjW0/C4zv+hKiMKOfRid+p5qlknC9NGQvj4TtERERERERERERERFQm/rWBiIjqhu4xeF7FibsaIjuA5optTlHyj1H7pwPKW59VbKvUYxQ7Q/kHV1qs22bliRLCTjqxMOlQSkoHvaJFhMcG0rEwh/lUsbCPt0n87hmJD7dIHLGHwPwDBBa9KPHupxKH7Cpw6VyBoI8HJDpximCNxViY0/M1LRzTi4UZojDEZ6c7BFx6n8S9F2k+/7q2KYdKOahWnHlx0ctY+d1XBN5YL/HBVv1lgg77PYrTL4L84/9YjvlsdszkscVERERERES1yeMWGN8IjG/MH9H7RVBKif5oJoyViYnJofBYdnAsP0LWFapMSL8WhWKpr097sqeqPiApnO42smJiWcGxlqCwjJC1BpATHGvyAy6DHwgQERERERERERWjL9GDgWQfAGBHQr3DhwuKnfrGOFW8KGqGsTm6Yehys7sVQVfmQ8nu+A5EzDCa3C1ocDXZXocqhKQTVyIaDYKuRhzRejz+3rVUOY8qvJfNowjkbYyugSmTMETl3meSsP4g31XB6yAiIiIiIiIiIiIiovrEWBgREdUNzRYPGv2K6WF1HKfa8g8x83sEfrdA4Nv3lJb4iiWkxVpL8+QqiX2n2K/LbisTeSeE1HmcYknn7f/FY/YrCsdS/8aLKCqF0rEwh0WsYmGrt0js82MT5uCyD78pccWfMit66A2Jv6yUePwyAz7P2D+oUPf1VtK6HcaLiWSNNeE40KIxn8sAkuqTrVr6w6sS93xDasW+ZJdi58xDTrCcvL3P/kERU3Z1vM6c+RWbOK5B4KWrDEy4XP/GB5xOkjp5unLILhZGREREREREZEUIgSZ/Kiw1bVzOiPY6IvGssNhQcKxwWo8iQtYXqfjNqgkJE9jen/rKZfW5hvVnHc3+rNhYOjwWEGgpiJAJyzBZLXwuSERERERERESkY1vsU/x+039iffRjrfmFMKq8RSPDq4gXhc0Q/n3Nd4YuCwjsHtgHx7bNx4Pbbse2+Oah6TP8e+IbU/4VrZ7xBevpSXTi5d6/K66bsTAaO+a2/ROe7loGE9b7hXk04neqQN62+Gb864fn4fhxZ+Kk8WeXtZ1pSWl9xlOX4OE7RERERERERERERERUHv61gYiI6oZuP6jBYv8bKSWC4R0V3Z5yXXRUGbEwi/0QSo07PbpS4rLj7OexW3cib1u0YmHWJ13L8cMl9isaiKXG49b7ZNgu4yQ/FrapW2KvHznHi579AHh6NXDivvrbNFqV8nRKJCXcrvIPiCw2kjWWhC1CdFZKvRuTJuDWOXlhlyKe2NpuOfn+14av4DauQWDLfxmY+D29J4LP4Tci4fFCTt4F+HRt4bKKM68Cxb23EBERERERERXD7xHwe4CJzdlT9T8MSJoSveFUPGwoNhZSBceswmS1/flLOXojqa/1XdlT9WNjfk8mHJYJjgm0FExLRcjyg2MNPmiF4ImIiIiIiIiIRpIpk/jv9T9GZ0L/5J0GajQWphE4AgAJiQ/C7+CD8DsF0z+OvIcbN/wU/zb9vws+G7ppw7U21604qyrRKDTe04GDm47Aa33PWY7rxO/s5gmbA3hk+91odY/DoS3HlrydaUlpvZOrS+jsnEdERERERERERERERKTGWBhVlBDCA+AIADsDmAygH8AmACuklGtGcNOIiLRjWA1W+wNEw3DJJAJmCGEjWNZ23HrKZvz2wW1Y6d9Pexmr47vEQA++t2Mh/mv8vxS9DVGN2JaucQ3OB5/Z3ffJvDGdh8kqdgYAL30kcex/mVq3ry9ivy4rA4NdIKdtzI+FTb1C/+jJKxebOHHf+twhpD+aOrDRidNrOWlKFHOA7FgSjqnHXvxI4u/vSewyTj8qlk87Fta91Xp6m3Us7NL7KhsLc3p025sE4rcY8HzL/rXXFtQ7gFZ85QrI//x/BdMPiryhXCbgcVwtERERERER0YhwGQJtDUBbQ/6I3ucpUkoMRDPhsExwTBZM61FEyEr97KLWReLA5jiwuTd7qupzlcLpLiMdEstExFL/WgXHBFpz5gGa/ahIzJ+IiIiIiIiIyM4n4dVFhcIAwBA1GgvTCBzp2BRbhy2xjZjkmzo0bUtsIzZEP6n6dRMNl+PHnamOhRkWZwnO49GY5/W+FysUC7PeMdXFw3eIiIiIiIiIiIiIiKhM/GtDDRJC/ATANWWsYpGU8vwir7MdwE8BnANgnGKeFwH8Wkq5uIxtIyIqWVmxsPAAAKDR7C87Fnb+nAD27N+CY54tLxaGeBTjk50lbUPMIqale//k++NrEgvPk2jyl3YQWSJvnwid7YhaHEz427+b+O4f9G9EOhYWLyUW5nA12bGy19cWd8e+uaGo2UetUp5PfRHNWJjDeFK/zTZq6N5fIUUs7No/m7jmkfKDXNr33at/s5wsWq1jYZWms50uQ6DrBgP/9pDEzU9b3zcn7qv3viXmfwPw+CCv/0bO9KPCL2BKfBM2eabkTJ8zEwh4eWAtERERERER1SYhBBr9QKMf2KktZ0R7HbFEVkBsKCpWGBzrVUXIwhW/WTUhaQKdA6mvXFafjVh/XtLoywqIBTJhsZagdYSsNS9C5vfwMxEiIiIiIiIisrc9vrmo+RtdzQgYBeX7mjDBMwkCBiTK3+FpR3xLTixse3yL7fwd3sllX+dYcMr4c/DojvsLphswYFrc759rPmY4NotKMM2/K/YM7o/3Q28VjHV4d3JcvsM7xXGezrjiJJpFMqGIhYn6PJEsERERERERERERERFVDmNhVDYhxMkA7gDQ4TDr4QAOF0LcA+CbUsqCQxWIiCpBSgn5i28Dy24fmiZueAwSR2st32B18rCP3wYAtJi92Ob4dmfP1diMA0+fAzxb1moqHgsrxz3/kPjWMeqDwOwSRom8/W10ckfRvO1PJGVRoTAA6B8MfxUTCwsPRsqcwk6RuAQgsPRNidNvGoPlqgooJVuVDriVayzGwnSFLUJ563bIioTCACCpsRoZi6oH28p7f5w9HXh1jfN8a3fo3d6WoMCNXxb4z7MlzrnVxJ+z9hPbdQLw88/rH7wqTv4q5KZPgDt+lpkG4LZPL8bnp/5xKCQ5sRm4aUFtns2WiIiIiIiIqFK8boH2JqC9KX9E73f1pCnRF0EmODYYEesO50XIwkBPSGaNZ+bP/1ySUvqjqa8NXdlTVZ/FFE73urMjY5nAWEtQWEbIWvMiZI0+wDAYHCMiIiIiIiKqZTGpOFuewqymo2CI2twXo9HdjH0aDsI7A8vLXlcyL04UM9X7+ASMBuzb8Nmyr3MsOLjpCDzRuRgJmdnp0C08OG/Sd3Hn5v9GQubukDW7SW8/UxoZp0/4Kn69/qqcx9MjvDio8VDHZWcG9kOLexx6Eur9biuzFx6QlIyFERERERERERERERFRdTAWRmURQswB8BCA7LSOBPA6gI8BtAI4CMCErPEFAJqFEGdIKXkoBhFVnLzhspxQGADIy06CPLwLgM9xea/F/45y2SIAQHtiGz707l7W9gm3G01NbkBx5jDLZawmRiOlx8Isrlq1k4PLAJZfbeDMm018st16nuuWSXzL5oR6dnGtRN62OIW4gMJg0ssfOy+TLx2mKiYWlo6UOW1iJAE8uUri87/jf3PF6M/bP60vIvHcB8CkZuCAaYBr8CBBp+eITvBqrApb7Cu58PnK3WCt0NqqV9Rjbe0Fk3pC+tvn9+jNt2K99ioBAAGvwIPfNvDMauCVNRIzOwSO2zt1kGoxRENzwev/+IG/452PDsTfvvkYgrvuhhP2ERjfyANaiYiIiIiIiKrJZQxGpoLALuOzR/R+J5dSIhzLDYilImNyKDKWDo71Dk7Pj5AN2PTU61ksAWztS33lsvqMqHCaELmRsaGYWFAMXc6MZ54H2ct43PxshoiIiIiIiGg0s4tYZQsYDZjVfBTO6riwyls0sr4+5fu4e/Nv8Xb/csRk6R86JWXuGTjt7ufLpl2LJndLydc1lkzx7Yxv73Q1Htj6e2yObcBk7844q+MC7NNwEIKuBizeejs+ja3DeE8HTh3/JezbWB8RtbFqemAPXDj5+1i6/V5sjq3HJO80LJh0CSZ4Jzku6zE8+JdpP8Odm/8HH4XfVcxVqZN2Wp/R1yV4+A4RERERERERERHRaLJu3TrceuuteOaZZ7B69Wp0dXUhHs+EDG6//Xacf/75I7eBRBb414b6cC6Al4uYv19nJiHEVAAPIjcU9gKAi6SU72bN5wPwTQC/ApBOQPwTgOsA/LCI7SIiciQTCeDBW6zH+roBTHRchxAWBxI9eR8AoCO5rZzNwz/7lgGYDwAYuPQNNPz2QK3lrDYJ8ZnPwowAACAASURBVBjGJXaUtB0xi/0QVAEmAWD/qQL/eqLAJfdYz7Sp2/767HafSOTFiXRiYZG8WNjKjcXvoJEOU5USC3MSiQO3PS/1wks1SudxzNcbznz/9/ck5t9oIjQYxzp8N2DZpYZW3KmW7/f8UB4APPb2MMfCOreox/Y7POfioyslzioimpcfD1Rpcu4+FnC7BObtDczbu4yDRVsnWE7eObEBF7z9Ixhf+kPp6yYiIiIiIiKiYSOEQNAHBH3A5NacEe11xBOpgJhVcCx7Wq8iQtYTLu0ztFon5eB9FCoYsZrbch1Bb1ZkbCgwJtAStIiQWQTHAl7F3wmIiIiIiIiIqCJUQaydfbvh21OvHrrc5GqGIVzDtVkjxm8E8I0pVyAh4xhIZnbh/sXa76O7iP0DkzJ3x5u44n5u90zGNP+upW3sGLV3w4H48YwbETOj8BqZHY/2aTgI+8w4CBEzDL8RGMEtpGIc2HQoDmg8BAkZh8fwOi+Qpd07Gd/b+ed4YseDeGj7nQXjslKxMMXJhF118J5GRERERERERERE9WH69OlYu3bt0OWnnnoKc+bMGbkNKsHChQtx6aWXIhrlGYRpbGEsrD5sllKuqcJ6fwqgLevyiwCOk1JGsmeSUkYB/I8QYh2AJVlD/yKE+F8p5VoQEVXKp58oh2SoH/A6x8IKlss6Yqs9sb2kzQKAqYmN+M7Xdh667G9uwKzwcrwWcD4TneVhSbEIxic7S9qWWBGBrLSpbQKlnjXN7qC3gliYxvryg0kTGovftv5o6rEtJhaWjpQ5HcQXiQN/fK2+j/Qr5UDHe1+ROG4fgWhc4sybM6EwAHjxI+CqJRI3LxCO6x6LsTDdu6s/KpH/jmBU8LjFE28wcdw+At+ZKwZf8xa6tiqXF42ZM472RyTOvsXUiuxJKSGE0H7sfnjKCB2sOXGaeuyZJeoxIiIiIiIiIqo5HrfAhCZgQlP+iN7nFqYp0R8tDIh1h2QmPOYQHLM6KQQBoVjqK/ckF6pP4Aqnuw0UBMRag0BzOiyWFyFrDWTNGwSa/YBRyQ/tiIiIiIiIiGpMzLQ+4CLgakCLu81yrB64hSfn9vuKjFclZe6HRar7OTuWVW9Ut52hsLFHCAGPKC4Uls1n+C2nV2qvz/zXY5qLh+8QERERERH9f/buPEyOqtAC+LnV+8xkZpJMhiQECCRhCQJ5yBIgSAIiyuMhID5AAWUHQREQnoBAEAVFEURZREB4GlaVHQMICY/VmEREMGFNCIRAtslklt7rvj9quqeq+t7qqu6e/fy+r7901V3qTk3PpKf63lNEREREg8KTTz6JM844w5Ej4WXhwoWYM2dOcfuKK67A3Llz+2h0RN74aQNVRAgxDcA3bLsyAL7pDgqzk1I+LIS429YuBuAKACf32UCJaOTpbNcWSZ+LtEqseqv4tNHU9+/lh5MW4BtHbIOtdp3Ru7NuFK799Fs4cPIzlY0rm648LEwxD0H3Vlb0nLYDdwjSv8Qn7cBWY6xJGV7vkysJdkpmnNuxCt7RSGktGAuyoK4QelTubf8tC6ubMrJohcRe2468xWR3vSxx5zeBp/8NdCjeUdz6vMTNXy9//odiWJhfqvNSy1fK0lXA0lUSDy6WePEiAxOaS3uXr7+sbvyZfRybzy3vDdgrJ5cHIuHS8ECVSAg4fLcB+vnYddbAHJeIiIiIiIiIhh3DEGhMAI0J6zpqL//XPVJZW7BYMXDM2mcPHNusCSHr5I3QlHImsL7TejiprkyW7hMCGBUrDRxrSgg0lYSQiWLImD2ELBoeedeHiYiIiIiIaOTISk2IlRi5IVYq0YBBSHk475qZ4Xkm0hLa67C1iQvLS/VdbA0Rqkn/RERERERERERERFSdiy++2BEU9rWvfQ2nnHIKttpqK0QikeL+lpaWgRgekSeGhVGlvgbA/mnVn6WU7/ho91M4Q8b+WwjxLa+QMSIiv2TXZsjT99OXVxipI//w8+Lzpvxm3+3O3XAjrjNugfHg2wA+X1qhbhQ+l3wJJ2z6A37ffLxnX0I19EwaY2oYFlbu2HUx7/O3ZpPEhGaBnz1l4sdPSGxOAROagHtONTzb5VxzIvwE8LoDiNIBvh67jhSQVc/JUNrUbf1bbozvrK1sPAU3Pivxh1OH9mKwSqfMrNog8dA/qptwM5zDwjYnS/cZ3j9iFVmxHrhnkcQFX1C8Dp97UN1o9DjH5jPL/H8fsz1hYeW+dw0x4L7TDbSMGpifDxEK1ezukURERERERERE1YpHBMY3AeOb7Hv9XzfJ5a3ruPbAMStMTJbsa0+qgsmG97W4SkkJbE5Zj1WOS/j+wsYAIB4phInBFiZmBcypQsjc++pj1o08iIiIiIiIiAajjKkJsTIYYmUX9Hy4w4kyZkZZL2oECyEjGpY0186knwmsPuSlelJrSHD5DhEREREREREREdFAe+utt/D6668Xtw899FDMmzdvAEdEFAw/baBKHena/p2fRlLKZUKIvwHYu2dXPYAvAHi0hmMjohFKXnOad7mPRVIH7ajYuWxR8Wmj6T8s7Oub7wNGe1RINAAAfrfm9IrCwuSCPyKKLAyZhxnwbmMZRUCWnzkOd50k8M3fqSs+s0yiPgr8z596y9e0A4f80sTpn9Of+5xrMZmfqRbusLDOdGUTNDrTwcLCAGsBXY3mg2jds0jiD6f27TEG0oQm67Wh8tJ7EqEy4Vflzn9+GKc5bVbEq/bVkr8L/yhxwRcUBTvtASxbXLo/4xzca6v8fyMKvwfcvw8KzjtY4Jg9BHabBMQiXORIRERERERERFQL4ZDAmHpgTL27xN/1FyklutK9wWGbugvhYrJk32ZFCNmmZOm1XrKkssAnWeATx0cSuuttpftDRm9wmD1wrCkhbM97Q8iaXCFkTQkgZPA6HBEREREREfWNjNSEhQmGhdkFPR/ucCLdeY7wPBNB9NmsO4s7vK8gFHCuLxERERERERERERHV3uLFzjXSRx999ACNhKgyDAujwIQQ4wHsZtuVA/BSgC4WojcsDAC+BIaFEVGVZLILeP5h7zo+Ptw/bi9FnQ/eKj5tMLt8j2m7zApAjNGWC8OATNQDyS7s3/UCXqjf33ffAIAlCwAAMZlGUtQFappR37RMyX5GTpipDwt7/J8SEcU7i0wO+ONifWhQSViYj3yhZMZZafkn5duobE4GDwt74l+VHWuk8fo+3nCMgWNuU6dCnXufxNGf9QiXy8uygXJ5TeDUcNCeLN3X72v2ujvV+12phi+957/Lwu8B3fduyjhgr225OJGIiIiIiIiIaDARQqAhDjTEgUmOG2f4v46Tzkq0F4LFkrCFiTkDx9ptIWT2wDFVuD5Z19k2dlkPJ9XVVfUV14ZYIUzMFixWJ9CoCCFrVoSQxRn6T0RERERERBoZUxMWZjDEyi7o+XCHE/E8E+n19ZWrPDRhYWBYGBEREREREREREdFA+/TTTx3bkyZNGqCREFWGYWFUic+4tl+XUvpPzwFedm3vXOV4iIiAJc+VrSKF98f7R/4H8LW9nXWk6UyuqQ8QFtZobgbEWO9KiVFAsgv1stuzmnLko1uB1e8jKjNIovqwMD8hXcLjHP5xKaBbVPTJZn2fOdecCD/jaLOdLiklfvaUutGB6RfxF+MixCMvKcPiNnYFDwv79r0mWhqCtRmJvL6N22+hL1vfCaxu07dObdwIQB/CBwzNsDA/r3sA2KDI6TKM2o6lrJT695XY/8sVd1n4OdR978L9/TV6EKfOhbx9bmnB+G36eyhERERERERERENeLCLQGgFaG90l/pbr5U2JjpQzQMwKGZO25z3BYop9m7pLb2hBls609fiozb5XdyGzdH8sbA8TKzwXaCoEirlCyJpcIWQNMcDo9zslEBERERERUX/IyIxyf0RE+3kkg1tUBA0Lc04KzEhNWFjAfolGkvK3MvXHlOo7+oYEl+8QERERERERERERDbTOTudi7UgkMkAjIaoMP20YGc4QQvwAwE4AxgLIAtgA4AMALwKYL6V8IUB/013b7wYcz3tl+iMiCkw+/3D5OprFRftsB/z0Kwb2mQKE3AtP7r/BsTkx97Gv8YRkDgYkUCagDHX1wMbyIWTKbt54FQAQ1Uye8qIKCwt07BpyhwP5mWqxamPv84sf0rcYnV6L0OrXMHbaeqwPjyspX9shA4eFTR3nDCvrK1JKz3C2oUwIKzDs7U/V5c/82wSgTodKLfo/yAlHePY/GMLC5MfvA8uWANvPACZNrdn3ckNn6eu9318l3R3q/fW9Kzql3/SzHoXQQN3CzNAgCgvDuC3V+z/5oH/HQURERERERERECBmiJ2zKXeLvqpmUEsmMFSBmDxxrT0rnviTQ3q0OIesOfol+REjngLUd1qOX/7AxQ1ihYU22ALHmnsCxRlUImWtfUwKIhIfnNXYiIiIiIqKhLmNqQqwMhljZBT0feTgnwmV5nok86K4b1SYsLC/VE1NDIlST/omIiIiIiIiIiIhGCiklli5diuXLl2Pt2rVIp9MYN24cttxyS8yaNQsNDQ2B+zTNQbAQnagKDAsbGY51bccANADYBsDnAFwihFgM4GIp5V999DfVtb0q4HjcSQpjhRCjpZRtytpERH4s+FPZKrqwsDMOEJg1TV0m//cnju29kosxOr8RbaExnsc6ZvOD1hNRJuEmYk28aSgXFuYely2IJyqz3sdQyORLJzT4neJw0I7As8sDH1IrZzqDsfxkDK3cAHSmJBriAtfO1zf4MDIJANCaX6cJCwOyAYLTACAeqdV0EG/ZPBAdwu/Uyn0fdUFhAJDK6X9u0p9+Ajneu++BDAuTUkLeeilwz3W9O7/6beDbP6tJYFhK8Xrtz0w5mcsCHZq3bE1ji0+XrQnWbyG0b8V6dfmgCgsL6X8wpWlCGINpsERERERERERE5EUIgboYUBcDJjY7Snz3kc3J3kCxngAxVeBYexJo71aEkCX9XRcfaUxp3bijrRvWbbCKVCdLfQLrY/aQsd5gsUb3Pk3gWCKKYXtTDyIiIiIiooGUkZoQK8EQK7tIwPORl86JRTzPRHpCc/1P1iwsTD0x1QDDwoiIiIiIiIiIiIj8WL9+Pa6++mr84Q9/wLp165R1otEoDjzwQMydOxd77723tq+VK1di22231ZbPmTNHuf93v/sdTjrpJGXZlVdeiSuvvFLb54IFCzB79mxtOVE1hnAEBdXYHgCeFkJcA+AHUnpOSW92ba8NciApZacQIgUgbtvdBIBhYURUuVn/BTz7gGcVXViY5zKPznbHZhRZXL32cpw14dfaJuNya3Hhhl/0dF5mEUk4CgCoLxMWViLZWXyakMlgbQFkAgRkub+Cs2YbeHZ5bdOYTAmEeg7kd6rFsk+ALZu9a39n400AgHG5dVZUpsslD0mkAmatzX8T2HVSsDYFVx8pcMlD/r7CZGb4hoVVs7QqlVbfcc9OkYXXfxY94wwKA4AHfwV8djaw32FVd59WvF67M1V369+nHhmxo1uLT29aGOybsLELmPuY/vdKeDDlb0Wi+rL29Y7zQEREREREREREw18kLNAyCmgZ5S7xdyXUNCU6084AsWLYWLczhKy9W7rqWM+DXPMfSbrS1uPjTfa9umuXpfsjIZQEiDXXAU2FYDFH4JiwBZJZ/zbGAcNg2BgREREREZFb1tSEWBkMsbILej7y0jmvKsPzTBRYraYe5qGe5xgSQ3hSKBEREREREREREVE/efjhh3HiiSeio6PDs14mk8H8+fMxf/58nH766bjpppsQDvM6LA1/fJUPb6sBPAlgEYBlADYCMAGMBbA7gMMAHGKrLwBcAsAAcLFHvw2u7eApNVYbe1hYyfT5SgghWgGMC9hsSi2OTUQDbMLkslW0YWEB12mctulObJ95G4+d8gwMAXx+J4GVF5+NVxN7YVrmXRy3+X5Mzq7y13lP6ExdmbCwkm46ele2fCb1Jt6NTg30NagWDnnGRNr8166BDuVLLg+EAoYBvfmxxPw3vOsc0fEoAKA1r04MDhoUVuD3XLlNbRXwO52kOwM01VV2nMEu6M+cXSqdL3sG87XNsgtEPnybev8Dv4LwCAvz+5pKK352+3Wt2dP36ctG974F61LPNdTa48fe37TIYLqh4k576Mva1jEsjIiIiIiIiIiIAjEMgcYE0Jhwl/i/8JfK9gSLOQLHZDFkrBA41q4JIesMeD1vpMjmgfWd1sNJdUG3dJ8QVmBYaeCYQFMxZKx3X3PC+lzAHkIWDTNsjIiIiIiIhp+MZIiVH1HhcUM7hbx0TizKSPUdCKOC55lIaCcx1iYuzP3zWBASg2kiHBEREREREREREdHgc+edd+K0006DaTrXHU+ZMgXTp09HXV0dVq1ahUWLFiGf771xw2233YZVq1bhscceY2AYDXt8hQ9Pi2CFgD0jpTZ64mUAvxZC7AHgHgDTbGXfF0K8KqV8RNPWHRaWqmCMSQCjPfqs1LcAXFGjvohoKGlfX7ZKrcLCAOAA/BNz/rs33crcdAdO33SHovMyCVg9YWETc2s8q4Xd3Sx+rvj0qx1/wsONX/Y+jktGfdMyJff5ifTBwpScCRSmIPkNTXpjNfD0m/rKZ7bdhnjPxLLWnDosrBKj6yoLCzvjAIEtGv3X71bP1Royyp2im78u8K15wU9kKp0re/7NWt3erxIvPqbev3RhTbpXBdztNEHgbyv654uW836mL7SFZO2xDfC/r9TuuLtNGkQL4lomaovkafsAj62GqKtJDi4REREREREREZEv8YjA+CZgfJN9r/9rarm8xOYUSgLHisFiPfvaNSFkm7oH+LrsICVl73lbtdFRoqqt7CMR6Q0OK/6bsIWNuULIml0hZPUxr8WvREREREREAyNjasLCGGLlEDQ8zYRzUqDuPEeMYCFkRMOR0Fw70y+9CCYv1ZN0GRZGRERERERERETDlpkDuj8a6FGMDHWTAGN4RgW99tprOOussxxBYTNmzMBNN92Efffd11F33bp1uOyyy/Cb3/ymuG/+/Pm4/PLLcfXVVzvqTpo0CStWrChu33DDDfjlL39Z3L733nsxc+bMkvG0tLRg9uzZAIBXX30Vxx13XLHs3HPPxXe/+13t1zJ+/PgyXy1R5Ybnb4ARTkr5ZIC6i4UQMwG8AmB7W9FPhBCPS6n5pMrVTdAxVtiGiEivrXwYlNQshtDeHyyv/xUovv49P6MCjDJhYeEIAGBSbrVntajIAeidJCAf6H0DeljHk9gxvRzLYzv6GxOATCbv6A8I9ov5ssMErnq8dr/K87ZwX79zLf79scSUccAbH6vLf/LppcXnEc1dEr1MbQXeXVu6vzNd2X9i3zs4WFhYUhEKNZR4fR+FAE6cWVlY2J7vfRdX7+rdLm96Fg9pacUNB2s0P8nnAJLaIvuCs1CZX31B7Thh8CxmE5Eo5KjRQEdbaWEmDXlIC+Sx3wViCYhoHIjGgGjc9YgBsYRzX6y0nij3fwgREREREREREVENhEMCY+qBMfXuEn/X5aSU6Epb4WHFsLFuYFPSFixmCxxzh5BtSqpvlEDWZwXJdmBNu32v7qJw6f6QYQ8T6w0ca0oIZQhZsyuErDEBhIzBc32WiIiIiIiGB21YWMBwrOEuasQD1c9J58SijGQoG9FA0YeFcfkOERERERERERENU90fAY9uO9CjGBkOXwE0TB7oUfSJU045BZlMbybArFmz8NRTT6Gurq6k7rhx43Drrbdi6tSpuPDCC4v7f/rTn+K4447DLrvsUtwXDocxefLk4nZzc7Ojr/HjxzvK7RoaGgAAK1eudOxvbm7WtiHqa/y0gSCl3CiEOA7AYvTO+N4RwBwAf1U06XRtJyo4rLuNu08iomDaFKlOLlKzqEUIayFLyZ3V//mCvrOZX/Q3rkSDd/nYCQCAPZJLPKuF3/sHZNt2EKNbrR3vv1ksq5fdWPjBwfhxy/fxUmJfbJX7EN/Y9AdMyK3BPtuqv4bMirch2ydANI0t+yWoMtYur3FYWM4eFuazzb9WA6s36csbZFfx+dbZDwOPaUKTOiwsm1cHNnmZMg6Y0iogpUTYcH69Ot3B882GDAGgLiaw8hoDky8Onux1yUMMC7Pz83rqb0F/Roac0ePUYWEF990AoPp0XBmJloaMOQLG4p6BYyKWUISVufvoqePuKxwp/X+RiIiIiIiIiIhIQQiBhjjQEAcmjXaU+O4jnZXF4DB74Fh7Ujr2tWtCyDanav5lDQt5E9jQZT2cVFcv1Vc0R8WdgWPWv6IndMwZQqYKHItFeJ2RiIiIiIh6SSmR0dz4kSFWTkHPR94VFpZlKBuRlghw3SooKSXyUE+gC7lu8ktERERERERERERElgULFmDp0qXF7cbGRtx///3KoDC7733ve3j++efx+OOPAwBM08T111+PO++8s0/HSzSQGBZGAAAp5VIhxNMADrHt/iKGXljYzQAeDNhmCoBHanR8IhoovsLCNG65BPLyOyB3nw1x/o0QLVaAl3zwV/rOJk1xbu9/OPDCoyXVxGlXeo5J7Hso5NP3oF52e9aLdm8CHv4tcNKlPTtiQKZ3Mk9LfgOu//TCknbXf3IBzht/Xcn+TDoHPP474OvfK+6TAVJtan0X+ZztJmp+x+EVFHbR+p85tvdLvhJ4TGM8/nboDLDoaItG4I9nGgCsBVOtjcDHHmMvSA7xsDA/38atx/bNhJuhGBbm98evSzGHL6e+CWHNyW6Pt2vT93Js1jIs7Mu71a6vmln1dv8cJ5uxHl2bK2peVViZEJDFMDFFyFhhOxYHoomSsDLhqJNQh5XFXP8WHpEYRIgT44iIiIiIiIiIRpJYRKA1ArQ2ukv8XUfOmxIdqZ4AsWKoGLCpuzSErF2xb1P34Lwxw2DQkbIeHzrun6C7+ujcbwhg3ynADccY2H0bhoYRERERERGQkzlIqP8AizDEyiFoqFdeOicRZaQmLIyhbETQXXOSVd8eEjA1v+MAICS4fIeIiIiIiIiIiIhI5e6773Zsn3322Zg4caKvtj/5yU+KYWEAcO+99+KWW25BLMbPRGh44qcNZDcfzrCwXTX12l3b44IcRAjRgNKwMB+xKeVJKdcCKJ8Y5BxPLQ5NRAOtbV3ZKlLz4b74dJUVxPLCo5Cr3gLuWgIRjgDppLYvUTfKuX3I1yHdYWETtwV22dd7UPseCgAIS+9knYjMQt75Q4iTLoVcscwRFFYiXgekrPCxqMwqq2REFPKV+RA+wsJ0vyVv+brAWfOqnxgBOBfg1KLHMXnHihXUm12B+xhdL7Sj6fA4/Xb7TQEe+7aB5rres1gf9de2e6iHhXl8I+3/9T53gYEDr6vtCqyhGBbm12ZFUF02X5ufw7LWfaQtEid+37Fdy7CwvgqVq8rus4GlCwd6FH1LSuv/QY//Cz2bV3v4cMQZIOYOFIvGnPtc5UIVcObuI+YOL+sJNQtH+DcCEREREREREdEQEzIEmuuA5pIbgfi7ziOlRHemNzisN3BMOvcV9isCx4b6df2+YErgxXeBOdeZWP5DAxOaed2NiIiIiGiky2oCrAAgKnxOrBohgp4Pe1iYlBIZUxMWxlA2Iq1ahIXlPeYDhwRvoEhERERERERERESk8uKLLzq2jz/+eN9td955Z+y+++5YunQpACCVSmHJkiXYd98yOQ9EQxTDwshupWtbFwL2jmt7m4DHcdffKKVsU9YkIvJB5rLAVtOAt//hWW9duFW5X9g/3P/gLeDff4dsmQD8/VnfYxAHHAFc/FvI+28A1qwEdtsf4sKbIKLeE2tEoh7yy6ch/Og8z3pR2bvCRJ44Q1/x8FOsca9ZWdLOLi1iwD9f8DxmOWccYOC8B/JIqfPIAsnZbmrY5TOIy0tLfoNju7KwMH2Z3zF+dQ/hCAoDgHqfc62G86Ii+xnZb0rt+++v7KyB8ulmiS0ae89irr/C0bxCGfc40LGZrsHvhYLYIPyLRezzJcjhHhY20HJZ69HdUVHzqn4NCAHpDiazh4kVt9V1lEFlxYCzhKttaT0R4qRAIiIiIiIiIqL+JoRAfcy6hj+x2VHiu49srjRAbJMicGxz0hY2Zg8hS3rfiGMo60gB9yySuOALDAsjIiIiIhrp0qbiTnk9GGLlFPR85JFzPDehnlQUFTzPRH15hcIe3OcWEoNwMhwRERERERERERHRAGtra8N7771X3G5ubsZOO+0UqI999923GBYGAH//+98ZFkbDFj9tILukazuhqbfMtT014HG2c23/O2B7IiIHEY5A3PEqzNn1QF59Ry6vtRXCVSrv/CFgGPoGR5yu7ufQEyEOPRHSNCG82rvbTdkFEemdrFMnu62xrXD/Cnb1NX4yZNfm4rYuLCyjuOug7hwJj1kRG28wUHd29UlFuRXLgbHWm/Ybn62+vwm5NY7terM7cB+j66oeBuoUN3dc5zP3JpmV6NspKX3L74KmSLj2X2O+v8KzBsj5D0jMO7X3vGX1c4tqSxcWlmiAiDnfNqb1N0cMLB6pXV81wzCn4U1KIJ20HpU0r/bw4UhpyJg7nEwVVFYIG4slFCFkMVd7VZ04EIlCeP3HT0REREREREREWpGwQMsooGWUu8Tf9RbTlOhIQRE4VhpC1t4tiyFjhcCxTd39eL24Av9YNdAjICIiIiKiwSAj9XdpZIiVU9DzYQ8oypj68xwxFJPaiEYc9fUaWfXMH2dwn1sInHdGRERERERERERE5LZunXP98rRp0wKvc9xxxx0d22vXrq16XESDFcPCyK7Ftb1eU+8N1/auQog6KaXfJJb9yvRHRFQR8YM7Ia88UVm2IjLZf0ddm4HlS/TH2cU7RTZIUBgAIFGPsMfkAAAYk28DAMgTZ3j39bnDgXuuK27qw8L8p+94vZWORwTabzTQ9J3q0pmyF30F8n8fhZg0FQ+/VlVXAIDdU85O6mVX4D6aElZQmt/QK5Vxo0rPXs7n7zmaLQAAIABJREFUqepWfOuklHh3LdBcp+57qOjrHJqhGBYW5HV27yKJeaf2buf6a/HXJk1Y2OhxJbtS3vmHgXTobyg7cEI+/oz6zEzr33QKyBQeaevfdNL6l0gll7Ue3T7TJV2qDisrhom5gshi9uCxhDKsTDjCzRL6sLKSwLOe9gziIyIiIiIiIqIRzDAEmuqApjpga0eJv4vqUkqkss4AsULYWDF4rKdssyaErFO/lrxq76ytfrEtERERERENfV4hVlGDYWF2Qc9HXvbOQcxo5g0CDGUjAqBfZFbNhNEe9uA+t5Dg8h0iIiIiIiIiIhqm6iYBh68Y6FGMDHWTBnoENdfW1ubYbmpqCtyHu83GjRurGhPRYMZPG8hub9f2x6pKUso1QojXAezasysMYBaAp30eZ7Zr+y9+B0hE5EV8/hjI5x8GFv65pKwtNFrbbnp6mXPHxk+9D/QZ96/LKsXrYZSJ9vg01Fq+n6POgthmR8g5RwGP3QkAiGnDwqy7A8q2dRA9QT+VznEYFRdYfKmBo24xsarC9805EYa87tsQ19fmv4RxeWfeZVRmEJI55ANMtIiGgPpodQtjRsVL9/38qwIn3FH+ZGdc+XFvfixx+K9NrFhvhW199bMCd58kEIsMztAwr6/QPc/mmqMELv5z7RYJDcWwsGr4DaCrmjYsrPT3U9o7/zCQT9pr11fNGOUDjcRV90G0TNCWSymBbMYWJGYLFEungExPoFjaFjJmqyMLgWPuIDJHm6QtrMzVR66GiW40vBReIxWoOqgsFFaHicVKg8lUgWNCF3BWEkxmr9MTahaJBr7bABERERERERHRYCKEQCIKJKLAeMe8J//XPHJ5K0BMFThm37dZE0LWngRMzUWid3mjRiIiIiIiQrkQK8VkqxEsaKiXaQsoYigbkTfd1ZJazGK0B/e5hQRvpEdERERERERERMOUEQYaJg/0KGiIkq6Qg1qs8+NaQRrOGBZGAAAhRBzAUa7dCz2aPITesDAAOAk+wsKEEDvCGUrW5acdEZFfxlX3QmbSwN+eglzwZ+CZewEAJgxtm62zHzp3rP3I8xhi4nZVj9MhUVe2yhEdj5atI87+qfXv7KMge8LCImXCwvDsA8DRZ3v3m+yAecHxEPv9J3DQf0M0jS2ps/s2AiuuMbD8rBOws3l32bG65UQYWPxc4HYqJ276fck+AaDe7MLmkP8k4VgEaIhVFxYWU7zT+sruPsPCbDeXy+QkdpnbmwglJfDAYonGBLDbJIl/rwH23hY4dk+BaHhw/PESJHzunDnDKCwsHOmXECYpZfEP1az+RoS1PaYuLKy5pWSXO+yuGolo7fqqme0+U75OOOJZLIToCSyKAQiecl7tT7rM59VBZcWwsRSQTiqCynrCyjKaOu5wsmKomaufGtyFk4ahfA5IdlqPClQdVuYIIisEiiX0YWWF7ViiNKisGFIW6w0kU4WVFYLOwrw8Q0REREREREQDLxwSGNsAjG1wl/i7IimlxF/eAA77VemF+rZuYEOnxNiGwfE5BhERERERDYysJsRKwEA4wI0gR4JIwFCvPHon7HiGhQUMISManvouLswe3OfGsDAiIiIiIiIiIiKiUmPGjHFst7e3B+7D3Wb06NFVjYloMOOnqlTwPwC2tG3nATzhUX8egB8AKHxidZQQYpqU8h0fx7F7QEqZCjRSIqIyRDQG7H845OsvFfdJj0UMBvwnC4kzf1zV2JQSJSsuSozJbyxbR0R7JvHM+FxxX7RMWJj8YHnxzGinOJh5YNEzkIueAR76DfDLpyDGbFF6fCGww5sPYvT216MtNEbRkV6u5y1JMlP9RIuvdDzUO6Z5r0M+egewfCnqu7oDhYU1xgUa4hLYXPlYoop3WvGIwJwdgAVvebcthC3lTYn4t9Sv0dtf6D1ftywEHvi7xJ+/ZQyawDAd9+jqkhvwydu7Yvz2HyrrB2UOZAbRqNFA21plkcxmICK1Sb5qTwLNPTmDuf4KR3tlvnp/c2vJrnQNw8JKF6UNAjvvXb5OmbCwgSZCISBRbz0qaV/FsaWUVqieI3CsJ1AsrQgwK5a7gspKAsoKz90BZ64++iHQj4aowmukAlUHlYXCpSFjJcFj+sAxEUs496kCztx1bH3xTglEREREREREVAtCCPzHVvorJe+sHaTXfImIiIiIqN9kpDrEKiqi/NzSJWioV94WUJTVnGcAiAYMISMajkTVt2rUy8MjLIzLd4iIiIiIiIiIiIhKjBs3zrH99ttvB+7jrbecC/dbW0vXPhMNF/y0YZgRQpwA4Gkp5acB2pwG4ArX7ruklB/o2kgp3xFC3A3g5J5dUQB3CSEO0oV/CSG+DOCbtl0ZAFf6HScRUWCxuuJT0+ODfREk3uHos6sZkVq8fFDL9Mxyz3Lx4wd6n0djxa9IFxZmihDyMBDaWP6/C8f5WbkMeOxO4BsXO+rI9Wsgf3I6AKDB7AocFpbvuVvaP2qQFTUq31F8LrbeAeKcawEA9d9PAeUz14qaEsCK9dWNJaZ5p/WHUwxseZF3wlOmZ77ITQv8vz6ffAPY88cmll5mIGQM7OS5QKEpb/4NLfkNyC3r/Zk9aOu/4Pn6Ayo6dr6/wrNU4gl9WbITiKh/NoKGzKzt6A0Ly+rnFtXWmpXq/c0tJbvS2dolth35H4NvIqgIhcp/z+ob+2MoQ5IQAohErUcF56naV4TM54FsWh04lnaFjDnqJEvDytJpKEPP3GFl9nI5kImGNGjlc9b/E8nOippXHVYWjQHRRE+omDpQzAobKw0hE8XyuK0PReCZMvQsDhHmpSkiIiIiIiKi4WR8E1AfA7oU69LfXycxc7vBd82XiIiIiIj6T8bUhIUxwKpE1Ah2U0J7WJjuPANAWAzuG+AR9Q/19QlZ9QwMIC/1d9oMiZC2jIiIiIiIiIiIiGikGj16NKZMmYL33nsPALBp0yYsW7YMO+20k+8+Xn75Zcf2nnvuWdMx8qY3NJhwRebwcwqA3wghHgTwAICFUsouVUUhxB4ALgFwpKtoNYAf+DjWFT1tR/ds7wvgr0KIU6WUxVQbIUQMwOkArnO1v84rkIyIqGrZ3gkv0uMNmAH/yUIi5hEEVKl4XdkqE3NrvCvsvLdyd1RmtU0yIorE6N6kXV3AkjtMTd4+F8IWFiZNE/KUmcDGTwAAo8wOBJWDNQHigw3VT7QYn7cC0MRV9zn219dFAoWFjYoDs7cHnvXOafMU1czrmNAscPkeH+KHi7fStp33qsQ2Y0x89/5g5+Rfq4GL/yxx7dF9+0eHlBLpHNCdsRb8FP7tyljPP9yoH7f7x1F+/6iSOnGPu1uWM6BhYTGPn+dkF9AYLEhPZ+1mYPstrOe5fggLk1ICoRCQLz2YUIQ9pfXznQKZPgHYe9va9NWvEvX8w38QE6EQEKrz9f+vsn0Vx5ZSArmsIqjMFSimCR2TjnJXWFlJ2Jmij6w6RJTIeq1U9n9v1UFloVCZQLGYZ7kzrCxuCzVzh5XZtm11+PuaiIiIiIiIqLaEEDhyhoApgamt1mNaq8C0LYAx9fw7nIiIiIhopMto5gQxLKxUSIQRQhh5+JuIYw8o0p3niIjCEEZNxkc0HNXiFoD24D63kODyHSIiIiIiIiIiIiKVWbNmFcPCAGDevHn40Y9+5KvtsmXLsGTJkuJ2PB7HZz/72ZqOLxZzfpaVTle+Dp6oWvy0YXhKADix52EKId4BsBJAO4A8gLEAdgOwhaLtRgBflFJ+Uu4gUsqPhBBHAXgKQOH2VfsB+LcQYgmA9wE0AdgdwDhX88cBXBbsyyIiCsjsTQwyoZ/gYkifyUL/+c0qB6SRqK+6CzF2vHPHrMOAFx9HVOpDQTIiioS0pjZIKXHe/erzkDBT3gd//M5iUBgANJid/gZtk+uZAPHeusBNS0zLvGs9OeAIx/76gPPJQgZw8iyBZ5dXPv0j6vFO67L2nyG2tgmXtl6lLH9nLXDSXZUd++dPS1xzlEQ62xvepQr06kpL619bnUI96yEd7Qp1C8/NCk+NfSmQ1ATXxIZqWJhX+FBKmd9akbW2TL5aTFAqK9mpDAoDAIxpLdmV0ucU+rbNWOC5CwyEjKG3eEyczLe5pCaEACJR66EI2ivbvsrjS9N0hYmpAseSiqCynrCyYiBZsrSdPZysGGqWdvYr++U3Fg01+bwVqJms7P/JqsPKVKFixTAxj9CxWKI0qEzbhzusLA5EExBhXpYjIiIiIiKi4el/T+HCcyIiIiIiUsuYmrAwwbAwlagRRdL0GRaG3rk92vPMUDYiAF5zcKqf22IP7nMzhOYOtEREREREREREREQj3Iknnoi77767uP3rX/8a55xzDsaPH+/RynLxxRc7to899tiScK9qNTc3O7bXrFlT0/6JguCqxOHPALBDz6OcZwF8U0r5kd/OpZQLhRBHArgLvYFgAsAePQ+VewGcJqXHbXOIiGpAfPUcyPuuB+AdFiZ8frgvvnFx+UqViFthYae33Y7bRp9aUnz12h94t9+m9Fe82OMgyDJhYS3bf4zJ76/HitO9fx3Xm/rgBrluNeTPznbsqyYs7PJHqptosWV2tTWJY/peViCLTX1U2URrhy2ADZ0C1Uz+iHm80xKP3o7/AfBqYm88Nuqwio+hEzlzIBOzAnjzb8rd1YWFDWAYTcwjLKzCEBSVtR0S1ccGBfDRe/qy3WaV7Er7m6Po6c9nGWhtHHpBYQAA3oGVBilhGFaooVewoVf7Ko4tpQTyOWeYWDqlDSbrDRzrrSPT9lAzTVCZrg9NOCWR9dpJw8pXD6bqoLJQSB8oVgwVUwSR9ZSJaEIfVtYTaKYOKosDkZj1O4GIiIiIiIiIiIiIiIioH+lCrCIMsVKKGnEkzW5fde0BRRnN3CuGshFZ3PNLC2RNwsL0c3JDXL5DREREREREREREpHTggQdixowZeO211wAA7e3tOO644/Dkk08ikUho211//fV45JFHittCCJx33nk1H992222HaDSKTMZap7hgwQJks1lEIpGaH4uoHH7aMPz8EsBqAPsB2MZH/S4ATwO4SUr5bCUHlFI+KYT4DIArARwDYLSm6qsAfi6l/FMlxyEiCkq0ToLcdT/g9ZcgPeItDPgLVRITJtdoZC4JKyzsiI5HSsLCwjKLIzc/omrVO66LbindGbL+i/cKC5PCwIp8a9nh1cmkun1nO+RR25XsH1VJWFiN3pKcuulOAIA44IiSsvoA85ymTwAa4gIzt6tu4kdU82XJ1b3BS17fo+EqbLs5nnzsTmWduJmquP/8QOakxeL6Mo+wMBnwpfbsMokzD6isbUXe/oe+rKmlZFctwsLCQzm/hOErRCWEEEA4Yj3qRlXWRxXHl6YJZNPOoLGSwDFX6FgxbCwN6aivrqPsp1BuDpEQT+pf+bz1/qDCQNGqw8oiUVugmCKsLBrTlotY+TrK0LPC81BYO/maiIiIiIiIiIiIiIiIhi+GWAUT5LzYA4p0oWxRhrIR9dB8Xl2DuXh56CfPhURIW0ZEREREREREREQ0lH3yySdYuXJlRW0nT54MALjjjjuwzz77FAO5Fi5ciP333x833XQT9t57b0eb9evX44orrsDNN9/s2H/RRRdh1113rWgcXqLRKPbbbz8sWLAAALBq1SocfvjhOPPMMzFt2jTU1dU56o8fPx7xuMeac6IqMCxsmJFSPgTgIQAQQjQD2BnAVgC2AFAHwACwCUAbgGUAXpfS4/Y1/o+7FsBZQohz0RtUNh5WGNlqAP+QUq6o9jhEREGJH94DecQ2MIU+uEX4+XT/2O/WcFSu44cjkOEIvtD1LH71yXfxg3Fz0R5qRktuHW5fcyamZd/Ttz3/Rohd91MUWBMZYprJVUGEdP9N/PlW5e6GCsLC8iKEDaExgdu5bZFbaz0Jl6bw1scE/M7keOl/rNfLqCrfg8d0YWHXnFF8PtLCwsaNArbqiRWVC/4EPH2Psl6sivOS74/wLB2vkKhUZUEgKo+/3vu8X8LCkvqfazGquWRfTcLChvK8KIafEA06wjCsQKNYAqggq6yqoDIpgXxOEVDmChRThY711JeqdvZtrz4y1b8fpGEqm7EeaA/ctOq3H4YBWQwQS6iDyhyBY7Y6sTiEu04xsEwVVhZz1onErN8JRERERERERERERERE1O8YYhVMkPOSl70TdjKauVcMZSOy6OaByBqkheU1c24FDBgec5mJiIiIiIiIiIiIhrLjjjuu4rayZ6H07rvvjl//+tc488wzYZomAGDJkiWYOXMmpk6dip133hnxeBwffvghFi1ahFzOuZj54IMPxlVXXVX5F1HG+eefXwwLA4D58+dj/vz5yroLFizA7Nmz+2wsNLIxLGwYk1JuAvBSPx8zA2BB2YpERP1EjB0PXHUf5DU36+v46eeLJ9RuUCq5LADgrLbbcFrbHVgV2QqTsx/A8Jh4IOavg6hv1BRaX1VUZqse2s7pN5X75W8vV+4fVUFYWE6E8VT9wYHbubXk11tPItGSsrrSXSWebrkWn7/64uK2EAJbjwFWbaxsPFHdO61/vtBbpwbfo6Hk0kMFDENAfvw+5OVf09aLy1TFx8ibFTetnulx8GTtwsJ237pmXXkyTWl9v/54E56sPwTzGw7BmPxGHLP5QeyUeUvbriZhYYN9XtSBXwWee1BdtosixJGIRiwhhBVkGo4AdRUklaHKsDLTBLJpfVhZMbBMFVSWhvSqoww9c/Xr9X8jjVymCaS6rUcFqp2eLSPR0nCyYuCYKqwsBkStchHT1Cnpo7DPFXoWClu/F4iIiIiIiIiIiIiIiEagrDbEysfkrhEoSLhXHr0BRVmGshGVof7MtjZhYerJcyExlO+eSURERERERERERNQ/TjvtNIwePRonnXQSOjt7MwveffddvPvuu9p2J598Mm699VZEIpE+G9thhx2GH/3oR7jiiiuQz6tvHEHUHxgWRkREw9+4iTChTp0R0md4wZjWGg7IWxh5bJdd6V1ppz31QWEAChMZoprJVUEc3vlEoPoN+Y7Ax8gjjCXx/wjczq0p3249CZW+ka/3Mc9p0rK/ALjYsW/cqCrCwnzM7ajF92iwCRvW+a6LWv/WR4HtxgHH7mngq3tYr015/42efUQnbQ1Ulh0xsGFh0mOyUA3Dwl5533bImvVaavknwPSJwDXxM3BZ03eK+3855hz8ZdV/YeZeE5XtMrUICxvkc6PEEadB6sLCtp/Rv4MhIvIgDMMKKIolgAqyyqqNNJK5nCtMLKUPHbPXcYeVlYSdafpxB6IRqWQz1qNrc+CmVb/3MgxId6CYPUysJISsEFYW7wkr09Qp7LMHlsVK6wljsCeyEhERERERERERERHRcJZhiFUgUcN/iFpe9i5KyUj1eY4wlI0IACCqng2hZ/9ZtAthkE+IIyIiIiIiIiIiIhokjj76aHzuc5/D1VdfjXnz5mH9+vXKepFIBHPmzMEVV1yBfffdt1/Gdumll+LII4/E73//e7z88st4++230d7ejmQy2S/HJwIYFkZERCOBMGAK9YJoAz5ThZpaajgghc/MBN541Xd1cdnvylSoXVjYlzseDVR/lNlZvpJLToQgazD5osnsWewfKZ3UtMlH8FS0fU3JvtYKQjUAYPoEwDDKf00DERYWC9vCvKK9oV694V4CCdc+Z13hCAJz14mEfXwv/3yLZ3Fi+gxgcWVf38CGhXkcPFW7sDDHIfswLeyRf0psNQb4Yewsx/6OUCOuGncpnnj/AmW7moSFDfYcixmfA/7rZOCxOx27xe2vQoi+m0xGRDTUiHAYCDcAdQ2Vta/i2NI0rUAoR5hYUhEylrYFjSXVQWWOeklNWFna1kcSMAfyTQkNWqYJpLqtRwWqfesnwxFnoFhJ8FjMM3BMRONATBNUVmzj+rfwCEf4PomIiIiIiIiIiIiIaITThVhFBcPCVCIBzkte9k7YYSgbUaWqn4yXhyYsTHDpDhEREREREREREQ0fK1eu7NP+W1tbccMNN+AXv/gFlixZguXLl2PdunVIp9NoaWnBpEmTMGvWLIwaFTwIYO7cuZg7d27FY5s+fTquueaaitsTVYufOBAR0fAnhDaIyldYWDQGYfRxak2iPlB1sdW0MhWsrzcuU5WOCABw8fqfwlBMfpBt67RtmrYYHXi+RA5hrAuPCzq80mPn260n4UhJ2cHTgbte9m4flVnHtjRNtGx6F8DUwGM5ZZb6NSc//dB1TPXErGpccqjAgTsKZRBYXRQI+QgxG2ixiVuh0ok3AxsW5jHmpD4srJLAr86URENc1GB6kp4hgHl/k8ii9GfqqYYvANMPUbbLqOc7BVI/yOcmCiEgLroF8vgLIf98K8SkqcAXj4eI1w300IiIqIcwDCusKBavrH2Vx5e5nCtMTBU4Zg8Zs4eapVxhZemS8pK+0646RCq5rPXo2lxR86reewoBWQwUS6iDyhwhYwlHWJlwB5MVQ81ipUFlxb566kRiECHeqZuIiIiIiIiIiIiIaKAxxCqYIOfFlL0TdhjKRuRNaGYE1GIunv1n0S4k+HklERERERERERERUVCGYWDPPffEnnvuOdBDIRo0GBZGRETDnxAwoQ77Ej4SesQ5P6v1iEqtWVnb/nrCwsKaO5T5VW+qw43kGbO0bZr23AdYFOw4eRHC2lANwsLMngXv4WhJ2fQJAuWmcsRkGvKjdyEmTYXMZSHnNGBc64+Bsef5HsNu8Y9x0pe3xHcO0gTMffi2Y9MdUFYLVxwmEAkP3kAwmcuVrRMrzabyLd+X6VnlrHpbWyRTXVWHjti9/B7whZ1r2KGCIYB/faQ/oWLKLsr96fLfYk/xCDCmfvC+hu3ExO0gzrl2oIdBRESDkAiHgXADUNdQWfsqji2lLA0Yc4eOpZO28DJnHemoowgrKwk9cwWe5at8M0DDk5TWayadBDragjev9vDhSGk4WTFwrLCtLy8JK1P1EVPUiSWAcARCDI33t0RERERERERERERE1ejIteNP6+7Uln+Qele5P8IQK6Ug4V555NCea8OSjhfxcvtf1f0xlI3IU8ZM464112vLoyKOaXU7Y/dR+yIk1EtxPs2sVu7X1SciIiIiIiIiIiIiIgqCnzgQEdHwJwSkZqm9AbN8+/Fb13hApcSh34S87TJ/leN1fnqsajwFo8xOdcGaldo2TTvtFDgsLCfC2BxqDNZIdWyz3XpSV19SNtZHRkNUZiD/dDPEub+AvOtqAEAe/u/mdtfqU3D87DoYB92srSNv/UHJMWvp118b3EFhAIBNa73LjzwD8WrCwnz8WPeZdeqJPgCApDp8r1LrOyXk2tWQ6wBgQk37LjAEkEtnAJQG8AGADEWUv20yVeaD/OU7mrA9IiIi8kUIYYUWxeKVta/y+DKXA7JpW5iYInAsXQgZS5YEkcmSeqqgMo86RCq5rPXo7qioeVVhZUJAukPG7GFihW13WFkhqMxepySsLA5EE7a2pfVEiHcpJyIiIiIiIiIiIqL+kZEpLNr8fOB2DLFSC3JecjKHn6/6H2zI6udmBQkfIxrOdDf6MZEv+zvsxfan8FrHKzh54vcQEs7P4Val3sMTG+5TtnPXJSIiIiIiIiIiIiIiqgTDwoiIaAQQMIU6eEb4We6758E1Ho9Cc4vvquLbP+/DgTiNy60L3Ka5pRHwE8Jmk0MYKaEOMtgh/Ra+s/EmnD3hRs8+mvKbECsEb42bVFJer846cojKDPDHmyCPPhu42woL2z/5Mn6J75RvjJ7XU7JbWy67O4C3lpYes4ZO3m+QB4UBwJKFnsVi9zmIVZEVNVBhYTKT9q6Q1ITvVej/3kzh2GtnQzY8CsT6JiysMQH89lX9D4+580y4v1VSSmTzlR/znR8ZmNI6BF7HREREpCXCYSAcBhKlIb6+2ldxbCklkM24gsmS+rCyYrkiqCyjruMMKHOV56tMTaXhSUrrNZJOVta82sOHwj2hZK5AMXvAmKq8EDZWEmRmDyqzPUrqxIFIVLvYgoiIiIiIiIiIiIiogCFWakHPi1dQGMBQNqJa+UfnK3in+w3sWL+bY/+TG+7Xtglx6Q4REREREREREREREdUAP3EgIqLhTwiYJXE2FsNHqJUI98N/l4kG/3UPO6l8HdtC3MM6nsDjo/6zgkEB+yVfCdZgdCvGVpAHkBNhdBt1yrLvbvwVjmu/H99v/RE6Qo3aPlrtwWatirAwH/OcIjILAJDHTi/um9O1sHzDHmkRA1JtyjL50K2QN36vZH+tw8JiQ+DdnfxRmdfw7gcg/mbl/W/S57X1rXSZA6f05Wvagx/utldjuHnth0CAXx9BbTNGwCuaIDdmYskfFJkq8jGO31swKIyIiIiqIoToCTqKAWgK3r7K48tcDsimSwPHimFjrqAyV4CZVAWVOcLJXM8ddSoLoqIRIJ8DujusRwWqDisrhoklnEFkMUU4mauOUJZrwspKQs/iECHeoZ2IiIiIiIiIiIhoKEiE1HPHRrpan5e4Zo4e0UhTi4DCd5P/LgkLe7v7DW39mKG+oS4REREREREREREREVEQQyBOgoiIqEpCQLfk25Dlw8L6xR4H+qt34vchDHXwmYMtLOyCDdfjufrZ6DZ6U7xCModb15yDc8bfgLTHBIQtcx/7G1fhsN+5Dq36PC+tnAgjKRLKsoSZRIPswoUbfoHLW+dq+xiX7w0LEw2loQDRsPey/7DMwlAsgW4yN3u2s2sLNQOpj0r2y2WLIX9xrrJNLcPCYuGecIRBTHaow9SKjjkXonEMYuHKfzbf+rTiptXJZb3Lk53aokNu0H+9iQiQ1HT9YmIfvBXbwc/oKrJivXcsgBktnUCYyVd+vEM+U3lbIiIiosFAhMNAOAwkKkhRRnVhZVJKIJspDSHLpG0BY0lNWFnaCiqzh5qVhJWle0PJ3OWZVPn3wzRyFV4jnZsCN606qCwUdoWTxYBoQh1Upggsv1z7AAAgAElEQVQcKw0rcwedafqJJYBIdND/jU5EREREREREREQ0WGyf2GWghzAo1fq87FDH80wEAJMT2yOEMPKo/M6YGTPt2JZSImXqbyg6rW7nio9FRERERERERERERERUwLAwIiIa/oSACXXAlii37LR5XB8MSDGO5payC2DF+TdCHHmGzw57F6Pun3wZz31wCO5uOgHLYjtgz+RinNn2W2yT+xDT08tw85gzMK/payVdnL/h+gBfQeFgh2NsBe8ucgih21CHhdVJa/LEJRuu9QwLa82t05b54RXadXrb7bht9Kll+1gXagGSpZM95FkHeBy3dgvqY0Phnd1LT3oWi7N/CgCIRwSqXxbezzIp7/Jkl3J3R0ri/fX6Zl5nYfbkZ8uPqwqvvu9dnlNknGUqnz+F5gQX0hMRERFVSgjRE1gUA1AaoFy2fZXHl/k8kE2rA8fS7vCypDqszBFO5n7uCidz9JkC5BD7+4H6Rz5nBTd7hDd7qTqszBEgFnOGienCygpBZbGEIoTMVscWalbaT9wKLyQiIiIiIiIiIiIaAj4/+gi0RLcY6GEMStsmdsBejbOxaPPCqvua2XggtolPq35QRMNA3EjgqNZv4sG1t1fchwnn5LlsmRvHHjT6yxUfi4iIiIiIiIiIiIiIqICrRYiIaAQQkEK97NmAIunG3vLi2/piQGqGAZj68fgOCrNqO7b2SC3FHqmlJbX2Tv0de3/8dxzb/gCOmTQP3UY9AODArudw2fprAhwPwDcugYjFK3pzkRNhJIU6LCxu9gYwbZ1dhVWRrZX1WvM9YWGGOhgOAOadKvD129VLfUMyr23347WX+wsLC7cCb7zi2Ce7O63FyRpeIWVBxSM166rvrFnpWSx6flarDT6TUhb76jeZtHd5Sn3XwPVl1qyfM0fg508PTPDB3a94H7c9CTS6fnTb9DdHLGtIvIaJiIiISEmEQkCoDojXVda+imNLKYFc1hUmluwJJkuVBJP1liuCyjIpIF0IJkv2tE9795GrXQg0DTOF10wFqg4qC4XVIWP2gDGPwDFRbGfvQ9FPLF4SVIZorP//JiciIiIiIiIiIqJBISYS2KfpIF9164wG7FQ/AzvVzejjUQ1dhjBw4vjvYEbDTLyTfAMpM4lkvguvdb7qu4+xkVZ8ZdzJ2LVhLxhCP7eOaKSZM/owbBXbDm92LcXmfJu23ltdr2Oj4ma2pmvOaUbq5w9+Z9KVGB1pqXywREREREREREREREREPRgWRkREw58QMDXLjkW5pZd7H9IHA9KQNQwDCrgg80tdT+Ojd7bDy4mZ2DL3MXZO/xtGwGWp4vBTAtW3y4go0kZcWVYne5OHDu58FneMPklZb3zuE+uJR+DajuMFdMttuw39gvbR5ib8bcV+2Hvbl7R1AOCgrucAAHL9GoiWCdbORc94thnuYWGyuxNY/CzwyQfA7rMh7/yhvrLtdZuo8mvJm0A4VF0fgSW7ypSrU8Gy+pw6AMAJMwcuLKycJ/4lceYBzt8375XOi/JtW86HIiIiIqIKCCGASNR61DcGb1/l8WU+D2TT6sCxYiiZKnQsBaRTzrCytLufpD6srFBey+sJNHzkc9bfoZq/RcupOqysGCqWAGLuoDJb6FgxsCzmDCqLxmxBZAlN4Jkq9CwOEeZHX0RERERERERERAOlIdyIE8Z/e6CHMawYwsCMUTMxY9RMAMDazMeBwsK+tsW3sFM9A9mIVKbWTcfUuumedW7/+Fps7FCEhbluVpwx9WFhYyKtlQ2QiIiIiIiIiIiIiIjIhSsmiIho+BMCUrP015D6YCkAEKF+TBsawLAwAGg0O/DFLu9gK89Dtk4qPr/oiwLXzvf/9XQYo7RlCTNVfH7+xhu0YWFf7Hy67HFGqfPIAAB54f226LOpf3iWC2nikML5e/lJoCc8TV52rGe74RwWJtvWQl5wGPDOP33VFyddVnw+tqG6Y5sDsVZ+U5mULE2YWLmwsJ0nAluPAVZtrHBcfei1D0v35b1/rWrtsiWw3bhqYxqIiIiIiPqfCIWAUB0Q14dQe7av4thSSiCXLQkgKwkUU4aVWdvSHmjmDivLuEPPXOXZ2v1NS8NMJm090B64adVBZaFQmUAxRehYLO4RVlYINXO3i7naW3VEBdfliIiIiIiIiIiIiPwKiWBzGqMi1kcjIRoZDKh/5kzpnPiX9ZgLGjP4c0hERERERERERERERLXBsDAiIhr+hIAJQ1lkoMJUm8Gunxclimsfdmx/9yCB+W9IvP6Rv/ZdRr22LC57w8J2yLyDi9b/DNe2XOioc2bbbdgztdja2OtgbV/1UX/jqcQvP70AY/NWmpN85zUIAHLlsrLtojJbszEMurCwe67zHRQGADjqzOLTlirDwjZ1A62N1fURWHend3mqW7m7PalvcsvXBQxD4NbjDRx64+D7fbVti3PbNCXmPhp8nA0x4JfHqn9PExERERGRnhACiEStR31lfwRVFVZmmkA2bQsTUwWO9YSM2ev07JPFcDPbv6qwsmJgmWu7lsHrNHzk81Zgtya0u5yqw8p0oWLFwDJ9uTKoTNmHKqwsDhEeZBeHiIiIiIiIiIiIqOZCAaf/RxlSRFQVQ6jnteXhDAvLmGltHwztIyIiIiIiIiIiIiKiWmFYGBERDX9CYIfM27hw/c9hCgMSVniYhECd9Ejpmb5X/42xnDFbBKvf32Fh+3zJsT2+SeCFiww8+S+J435bfollt6jTlsWkcwLF1euuwKGd87Gw/gDkEcL+3S9iTvfzxcXN4qiztH3VVznf4q8fHILPb/NUyf4vdD6Db7X9pndHz/mXvzi3bJ8Rj7vJBRUfbO/s7rvBd1Vx5o8hmsYWt0fFqzv0wdebeO1yw1o431+y+sk+AICkOkzsv36lD9c6fqY1/i9Mr3hUWtNagXfWVtdHl+tLPv9BicUf+G9/+WECWzQCX/yMwLYt/ft7i4iIiIiIqicMwwoviiUqa1/FsaWUQD7nDBpzB4q5Q8eKgWXWtkyXr6Mtz9bu73kaZjJp64H2wE2rDioLhdQhY/ZtR+CYPYgs3hNWFteHlRUDy0qDyhCJWb8TiIiIiIiIiIiIqE+FRChQfYaFEVXH0NysWErnvD/PsDD+HBIRERERERERERERUY0MtkgJIiKi2hMCu6bfwK7r3gjWbsb+fTMenc/OAZYsUJftNitgZ/0YuqMZ26i4wDF7Ctz9ch7z3/TuosvQh4VF7WFaXz4NeOS3mJV8BbOSr6gbzPyitq+YxzufqMdEjYLZ3S/g0nXX4MfjLi7u26/7JTzx4ZedFXNZyHWrgX88X7bPaA3DwmIfvwWZmwYRjtSsz34zdRfHZl20uu7+tRpY8gGwx+Tq+gkkU+Y1lOqGNE3Hwtl3PpVo69Y3ifTM7TOM2v9MH7qLwM4TgfMekCWhX36t7eh93pWWuPFZ/8ua559r4As7MyCMiIiIiIgqI4QAwhHrUTeqsj6qOL40TSs02h5W5n6uCh3rKZeOuu46qtCztLPc1AdP0wiWzwPJLutRgarDyiJRW6CYJqxMUy5i5esoQ88K7ULh/g2NJyIiIiIiIiIiGiAhEWz6f0RUORGLaIQzNAF9eXdYmFRPwjMQCvxzS0REREREREREREREpMNPHYiIaPirdJFYtnYhTr7UN+rLwgEn7PTjwjjxlW95lm9Klu+j2zMsLNt7rP/+NuQjv9WP5fwbIUL6OydGPd75xGXKe5A9rlx/FeauvwpvR6dhauY9hKBYnJtJQ/7oZF/9RT//FeAdX1XLim9cBfzxKeDY82rTYX8Szrvv1WJx5+9elthjcj8uEs34eA2lk0Civri54C3vZbgR28v5iW8b+M9f1W4xeMgATt3fwCmzJKJnmchX0PUmW9DZ/73tXXeHLYC/XWJgYxcwuYWLd4mIiIiIaGgThmGFFcUSQAVZZdX+VSRzWUU4mStQTBtWloYslivqFLZ1fZQLy6aRK5uxHl2bAzetNqgMhgFpDxSLKQLG3KFjsd5/hapOLKFp5wo0i8Qc4fBERERERERERER9SRdcpBM1Yn00EqKRwYD6Z0665o5mNDes5c8gERERERERERERERHVEsPCiIhoBKg0LKyfFz5O3FZfFjQ4qR/DwrDfYZ7F9jAhnS6hDwuLFe62NmkKxNY7eC4cFEee4XkcrwCqmOaubsp+AOyQ8Uj42rQOWLrQV1+xo04Bflr1ckgAQFymIZ9/BGIQhIVJGfBr6oMFle9+Wpvz6puf3xndHY6wsM4yTeyv2S/tIvDs+QYO+kVtAsPCod5jtI4C1rQH7+OBxRL3nW49X/yB9/lubQQaEwKNieDHISIiIiIiIicRjgDhCFBXQVIZqgsrk6ZpBUJlkvqwssK2PZSsEFRWEl7mfrhDz1zbZu2CtGkYMU0g1W09KlDtVSQZiarDyQqBYiVBZIXtBERMF2jm7qNnnzsILRypSfA+ERERERERERENDaGA0/+jgkFFRNUwhHpuY17mHdsZzRxU/gwSEREREREREREREVEtMSyMiIiGv0oXSmWztR1HGeKI0yHvu0FTWPuwMPGrv0LM2B/yvushb/p+sP4Lxm8DEfWeyHD8TIEfPOy93K7b0IeFRWUGACBue9na8dk5wJIFJfXEFb8vM1hvRiSi3C/OvxHyibuAt5b67+xvT/uqJm79P8TCAtUvR7TEZBp44xVfdWU+by2wTXX1LqRMdVvbyS6rLNkFpLuBZBekvTzlbqfoI/DCzNovaExEa96lt2ymfJ32DcDY8cXNhoDzgObsKGDeFsK8/zwBJ2x5V7DGLiHbKTdqcPpvWuD9Ov6PrblolYiIiIiIaDgQhmGFFcXiQAVZZdX+dShzOWe4mDtQzBFWlrJCzXRhZYV2xVAzRT/pdG8fmX6+uQANHdmM9ejaHLhp1VcGDQNSFTJWDCZzhYs5wsriELo69n4KgWUxd6BZ3PqdQERERERERERE/SYkQoHqR0R/T6IiGl4MqH/mTLjCwkxNWJjBn0EiIiIiIiIiIiIiIqodhoUREdHwV2FYmNj9gBoPpIyJ22mLxK77BuzMx9fcs4hLHHse5IplwJN3BzwGgHFblq3y/+zdd5xU1f3/8fe5U7YvLG0lIE1EQFFQEEHBRsQaEQtijC2JRBPLT42mfCMYS/SrJl9LTGxfMMao+SqimMRoTDCWoIFILJgIikRQKUtfts/5/bGw7MzO3LnTd2dez8djH+w999xzPjPM3YWZc9/3oP7xw7Dq4oWFTTxRpqK7JMlc8hPZb02SmtuFufUdKB1+kqeSYwmVVEiBYHjgU+9+0pSz5Jw2S6FJab6724ix0ohxKvoifUMWh+olSaGbLooR+rWzLfxLjfXpmzgdMnBRYXlRlsOpvDynW2vCNm2SV4PO3PZbPVl5pp6vSP5172v3lKcSFlbbYPXvL6T122P3KSuSvn44YWEAAAAAgNQZv1/yl0ul5ckdn8LcNhRqfe+oQ6BYlKCyyPaG+oigsohwsqihZw3txqiTWlriF4nCEwrtCfFPQqphZdYfCA8UiwwrCxbtCiOLHjhm2h8Ta4yi3eOUhLf7AzLJ3iwEQMbY2m2yN10klXeTyiql8m4ypRWt20efLlNRlesSAQAAAKBLc4wjI0dWobh9g6aI90+AFDkm+trGkA0/BxttjLAwk+a1pwAAAAAAAAAAoKARFgYAyH/JLnY54pT01hGHMUb2kKOlpX/puPPwkxMdzEunPd9W9Uls/N169Y3b5ZjhUkWxtN0lR2mnKYm5L2gbZb4+u23b7DdGuvsl2Udvk/7zb2nkeJlLb5EpKUuo9Egh45e5b5HsI7dIH78vjRgn862b2i5aMbc9I3vdaSnN0ebUb8p862YZx1FpMNXL8fYo3r3Y5I+PpW3MrImxoCYVxVm+IZ9tjL7YJ8z2zWGbjUlc42vn3ixJ6tucWtJc+1deKlltOxulb/3affHhy1c5GtWfhYcAAAAAgK7NOE5raFFRcXLHpzi/bW7uGFTWIXAsMmRsTz/btr8+ejBZ2Bj1UkNEHyCa5qbWr50uSfIuUnp31BjZDqFiEUFlke1FMYLK2vaXhLcVRY61K7AsUCTj86VSPZC/ttZIry0Ma9p9rptDjpYICwMAAACAlPmMT83WQ1iYQ0gRkCpHMcLCFL74rzEUIyyM8xAAAAAAAAAAAKQRYWEAgPyXRFiY+cFDMqXlGSgmzrxX3SV7+VSp5vM9bZffIdNzrwQH8vKY91yGZU65UPax2zt26bO3NGR/afEL0ac55aK4s5QEje77qtEF/xtSi41eV60TPejLsS3yKST1HRg+76gJMv+9IO7ciQhZyQw/ROYnT0fvcOhx0nHnSC/+JqV5zILVYX+fZWkMtCq2XfiizQzcwXJHtp+OpvhhYfbFx2Umn9q23dic2BS2fqfs//5YklQS2pnYwREamvZ876Tw9Nc2SEtWx95/55lGhw4mKAwAAAAAgFQZv1/yl0tJvm+Zyv/OrbVSU2N4mFi00LGGiD93B5WF9alzCSurlxrrOgaetST4JgoKg7Wtr6eGuuQOT3V6fyBGOFnJnu2i2PujhpW1HVPSLqwssk+xFAjKZOA9VSAt3MIDSyuzVwcAAAAA5DGffGpWU9x+QUNIEZAqn4l+04AWGxEWZqOvHwxwHgIAAAAAAAAAgDQiLAwAUACSCAs74WsZqMPDvAP2k+Ytkf7+J6nmC2nsMTJDD0xiIA+PuXFPkpLpt4/siLHSB0vC+5zwNZnzvy97w9ekVyLCufrsLY05ylM5Xx3v6ODGd7X/owdE3b/ViX5xSNA2tn6ThYtH4l0YZvx+6YcPS6MmyN55WdLzRAa/laVxHUhRVw4LczrefW/aaGnBsuSH3FaX6uV+CfIQFhbZp6klRr9YXlvY9m1RjMVFXjW0u8Y2lbCwv3/ivv/MsVy0CAAAAABAV2eM2RVYlNybWam+O2Cbm1vfV3ELHGtoHzpWFzusrEOf9kFl7fq0HwOIprmp9cstGMlFSu9eGiMbLaisLWAsyvft+pgO+yLDyiJCzyL6GV/0CyQBSdKOrbH3lXfLXh0AAAAAkMd8xu/pzYWAQ0gRkCrHdFzbKElWobDtxlD09XxBzkMAAAAAAAAAAJBGhIUBAPKfl+Cs9t2v/FmGCvE4f/de0pfPzvxEDXXh8962QPamC6V/LJKKy6QTz5O56EcyjiPd+IT06G2yv71b2r5ZGjFO5vp5rQFaHg3v0aBZmx/U/VXf7LBvh68i6jG7w5CyceFRSyh+H+M40rSLpX5DZK86KfFJ9h3doakkEP+w/evfV7/mz/Ri+Zdd+xXHWGzSJURZUPPgeY4WLPPwFxPDtmxfx9nUGL9PcWnYZmOCYWH24Rv2DJViWFhdu5uLphIWdv5c97+j/lWEhQEAAAAAgNQYv1/y+6WSsuSOT2Fua23r+z5hgWOR4WIRYWXt2mzkcY0xQs8aouxvrG8NowIiWdv6+ol4n9/z4alO7/NHDxQriggmixE4ZtqCyUqiB5WFtZWEtwWCrQGG6LxqY4SFBYtlAsHs1gIAAAAAecpnvK2nCxr+HwakylH0863FRoSFxVjPFzSEhQEAAAAAAAAAgPQhLAwAkP8SuWhkyP7ZCerKNC+PuSE8SclU9Za583nZ+p1SoCgsoMsYI533Penca6X6nTKl5UmV5bfNCfUPWg/hS2kSSuDqKDNuisyrDbKrlsueN8b7cdf9skOb4yGladmqcfqv3jfEDwuzaUrHCha3XnhZVCqVlLaGxxWXtvsqk4pL2tpN2P52+z56V/bea73N6XQMC+tZbnTd8Ua3vZDcpWtvfCRd/GhIFcVSeZHa/mz93rT7fld7sVRRJAX8SV5o1uzh9d0YviCoMYFTwlorrfmobbsoxbCw+nanVyphYfUu16tO3jf5cQEAAAAAADoDY8yuoKMiSd0SPz7F+W1zs9TUED1wrKFeaqyLHlS2q59tqIsRVNauLWaf5IKoUABamqW6Ha1fSUg5rKx9eFhRtO/Dw8na9zFR95fEDisLCz0rzsrNTbq82u3R28sT/xkKAAAAAIjOZ7xdAhB0CCkCUuVEuRGqJFmFh4U1xbjZK+chAAAAAAAAAABIJ8LCAAD5z0tw1pfPlhlygHTqN2QqqjJfU2dQVBK12RSXxjzEOI6UZFCYJPkSDAsrD9VKx5yR9HyJ2LdPEgf1+pL3vn32ltnPe7DYbhdueURG3oKhwsLCuvWSTjxvV5hX+yCviNCvkrLW18LucLDi0ta/5zSwMV5j0UU/T38y3dHBA6z+uNyqqqhZd76c2IVYD70a67Kz2JejBf3RwsX2hIyVxQgZK90+QuWlk1QR2qH+TWtV3bK+4+Bvv9L27c4Gqy+2eX8s9qeXh22nGha23157vk/TX3kHj1yUoYEBAAAAAAAKhPH7Jb+/9f27ZI5PYW5rrdTcFBEmtjtgrD48VKxDWFmDbKNLn8iAs2hjNLuk1KOw7X6NJCHloDKfPyKELDJQrMg1cKxDWFlRx0Cz6OO0tplEbpCTK7Vbo7eXVmS3DgAAAADIYz7jbQ1V0BBSBKTKUfTzrcW2hG03xljPx3kIAAAAAAAAAADSibAwAEABiHPhxAET5Fz/SHZKyRYvF4uMPSbzdbRnjAJK7OKuslCtzPceSGsZlxxl9ItFHS8HumlaEqFGJd6D08zPfh9z33EjpReXd2wvDdXqznXXSpKCtjHuHMXtFpuYK+6U+fLZnuvLiG013vu6pFWdOdbozLFGUlB3vtwSs1+6NDZLm5qlTbXR9rpdSnaFNPCKtq2JO9/Q42vPU7/mz/Z0qd2m5harb//G6tHFVvUup8T/+3LEebwg/FwoTjEsbMa4PeM7Gbi+rEeZNLBnF7hwDQAAAAAAAFEZY6RAsPVL3RI/PsX5bUuL1BQjUKwhIrysbX+ssLIGqbEu4tiOAWdhY9hUY6WQl1qapbodrV9JSDmsrH14WFFEoFhRSeywst1BZZGhZEWR4WWxQs+KW8MLvdgR4y4Z5Yn/HAEAAAAAROfzeAlA0CGkCEiVEyOcLxQZFhaKvsYz6ATTXhMAAAAAAAAAAChchIUBAPKfSwiRpNYLHvKNh7AwU1SShULC+W1iQU+OQlJxaVpruOhwo1/9zaq2Xc7SAV+SjhqW+FjG72+9MKexPn7fAbEn+PbRjv70QUihdlcJDWj6jz5aObztgroiD8FQRaF2fQaPjNs/4wbs571vSZmnbqcU/UMLGw5OsqDseqN0ok7d+2n9fdWEPRdGFpXo+uesHnw1/iVhF0zYcx7brR2D18L+vhN0yoHS0D6ZDQt74ptJBPABAAAAAAAAuxifT/KVJv0ecSpveVlrpeam8DCxhvooQWVRQsca6sODytrCyqKEnkUbo6GudW4gmt2vkySkHFTm80nBkughY+0DxtZ+FH2AssoUKwAAAAAA7OYzHsPCTB6ujQSyzFH0dXAhhcK2G2Os8SS0DwAAAAAAAAAApBNhYQCA/BcvOMuXj78OM5D8kypj5LfNCR3yTvGBMh6CzxJxyECjF6909NOXQvrXF9LhQ41uPNWotCjJeUrK41+YEycI65SDjBZ829E9v1qhjeu368jaV3TjhhvC/haDNv7FYcV2Vx17DZT2GRW3f8b1H+qtX7denoPFpnT/RAvXdY2wMElaVnyQPgoM0dCmj1sbGur0f0tCineOHjpIGtW/XVjY//y/Dn28BMhFc+3xRjecEj5/JsLCJu2b/jEBAAAAAACAbDDGSIFg61cSAUepvt1mW1qkpsgQssjAsShBZbvabNv+iOPah5O17xMZVmZTjZVCXmppkep2tH4lg7AwAAAAAEgbn/F56kdIEZA6x8QIC4u4eW5jjJt/BgjtAwAAAAAAAAAAaZSP6SgAAEQowLCweAFb0y/JTh0R/EosLOz2dddJuiPtdUzYx+j/9vG2YCqu0nJp60bXLuYbc+IOc/KBRicOf1x685ao+70EQxXbeqmkTOYHD6U9ZC0Zxhhp9qOyN3wtdqdAUOZH/yvjRF9QE6mqMiCtS1OBWbI6MED9m9dqxD7v6NPA3tKG+MecMKpdUJi10p+e7NCnLRwuAa+tOlITTvmzTCAY1p7usLDD95GKArl/DQIAAAAAAABdkfH5JF+pVFya3PEpzG2tlVqaw8PEGmIEkzVECSFrrJdta6+LElYWGXoWsb+pMYXq0amVdct1BQAAAACQN3zG25pHQoqA1DmKvraxRaGw7VhhYYT2AQAAAAAAAACAdMrDdBQAACLEC03y5+GvwziP2Uy7OEuFtJ/UKGCbEjrka1t/o0yEhaVVSXn8Pl8+29tYLoFZnsLCjjtD5tz/ken1JW/zZYGZcpa03xjZ+74nbd8ic/GPpSEHSK8skJoapCNOkenV1/N41d29hYp9qekzHV/0jrbvNVw7WgKqbfZre3NAO5r92rH7+5ZAsg8rIS3Gpz7D1minU+b5mD4VrX/apkbp2Qei9gnaxC+aM5K0tUaKeM49ZrV59ocr0jwgAAAAAAAAgKwwxkj+QOtXWWVyY6Qwvw2FWt87bgsjixY41i50rH2oWWODbFiIWfQ+HcbZvb+hTrI2herhqqJ7risAACDvGGMGSxot6UuSyiV9Lmm1pDesTXCBBgCgS/HJ240yCSkCUucz0c83a8PDwppirPEMEtoHAAAAAAAAAADSKA/TUQAAiBAvLMyXh78O44WFDR6ZpULC+W2z575LPj5MvVpqMlhNmpRWxO1iqvp4GsoYR7EuQ6pq2Rz3+OIjpsr06uZprmwye+8r85OnwxtPOj+psQ4baKW/x94/oOk/+m7NT3XJ5l0BW+/H7huS0U5Tqh1OuXY4ZdruVGiHU7Zru7xDe61Tru272nf/Wdtu/wZ/9L/ntf5+CQWFSVKfCiNb84XstdOkD9+O2sdLgFxU2zZ1DAtL5eq9CPMvcVRenMYBAQAAAAAAABQM4xfCeVIAACAASURBVDhSUUnrV/y33zsen8Lc1lqppbldUFl9x+9jhY7t6mMbYvRpqIseVNZ+f1PiN4joSszBR+a6BAAA8oYx5gxJV0maEKPLJmPMk5Kut9ZuzF5lAIBsiRVeFCloghmuBMh/TozzrUUtYduNoRhhYYT2AQAAAAAAAACANMrDdBQAACIQFhZu4H7Zq6M9Y+SXt7Cwyzfdq9EN72S4oDQpSSwEyo1tif389PQQnFZcHEhbLZ1V+YTJ0lOx93+0crjni8EcWZXbWpW31Cpi3U5Suu23XrVOeYf25ypOTnisPpWS/fl1MYPCJKk4VJ/wuEZW2trxtZTOsLBpYwgKAwAAAAAAAND1GGMkf6D1y8ONQqKOkcL8NhSSmhqiBJQ1tAscixVU1iDbWNfuuMhgsl1tbWNECSsLhVKoPo5DjpbGfTlz4wMAUCCMMeWSHpR0dpyuPSRdImm6MeZ8a+0fM14cACCrfMbbmkdCioDUOXKitlsb/l5KY4ybfwYN5yEAAAAAAACAwrNz50794x//0IoVK7Rx40bV19erpKRE1dXVGjZsmMaMGaNgkJueJOuoo47SK6+80rZtrc3IPIsWLdLRRx/dtj179mzNmTMnI3PBuzxMRwEAIFIBhoW5PeaybtkrI4LfegsLO3frbzJcSRolecFQVMtejbmrOMZd59orKsn/sDBTUaXKlk3a5uv4Oq5uXpfShVip8tnoiWMLkwgL61VupZeecO1TZBsTHtfISts2dWhPZ1gYAAAAAAAAACBxxnGkopLWryQ+ekj1bV7b3CyFBY5FCyarcwkri9InEJTZf7x04vkyQS6MBQAgFcYYn6QnJZ0YsWuDpLclbZW0j6Qx2vNPg2pJzxpjplhrX8tWrQCAzPMZn6d+hBQBqXNinG8tEXcobQxFX89HaB8AAAAAAACAQtHS0qLf/va3mjt3rv7yl7+ouTl2rkBxcbGmTp2qb3zjGzr55MSvwwYKWT6mowAAEM4UYFiY22Muq8xeHWGMAh7Cwu5Yd60Orl/WujFuSoZrSoOKqvSN9c/YYWFFMe46196+fb0tAuvqLtt0n27u/f0O7Zdu+mUOqtnDaxieF31WvRG3j5fXRCQjK22t6dCerrCw+75K6hgAAAAAAAAAdEXG75f8FUnfJIV3hwEAyLhbFR4U1iTpKkkPWLvnTlPGmJGSHpI0YVdTkaQFxphR1trPs1UsACCzfMbbmkdCioDUOYq+LjPU7uaiLbZZLYq+fjBoghmpCwAAAAAAAAA6kz//+c+65JJL9OGHH3rqX19fr2effVbPPvusxo4dq/vvv18HH3xwhqtM3KBBg7R69WpJ0sCBA/XJJ5/ktiBAkpPrAgAAyDjCwsKVd8teHRH8MRZD7Hbz+h/pyk33tm74fDKnX5qFqlLUvZf7/sEj0zKNl2Co7qWF8U+7c3ssU8/mjWFtvZvXa+a2J3NUUStfxJ0CU9HtuvhBeWVjJyY8bsywsARfOv0qop/L5xzK5WAAAAAAAAAAAAAAkE7GmCGSrohoPtNae2/7oDBJstYul3SspL+1a+4paXZmqwQAZJMvRnhRJMLCgNQ5JvriupBCbd83hhqj9pE4DwEAAAAAAADkvxtuuEFTpkzpEBRmjNHIkSN13HHHaebMmZoyZYqGDRvW4fglS5ZowoQJevDBB7NVMtCl5WE6CgAAEeKGhXlbONOluD3mqt7Zq6M9Y1Qcqnft0rf5C2ngftKA/WRO/YbM+KlZKi55pnsvWbcOoya47fWsyMZeTFJohh05Ti//6njd2eNKvV08WofUv61ran6qIU2f7OlUUhY/yC3NfO0W/6TKcX9VSZIGnjhVvt9ILQlMa2Rl33ldkT8h1m9LrL7Fl27S9xdV69dvttbZo0x6b46jyhLCwgAAAAAAAAAAAAAgzWZLCrTbnmetfTZWZ2ttnTHmAknvSgruav66Mea/rbUfZ65MAEC2+Iy3SwAChpAiIFWOYoSF2T03F210uRks5yEAAAAAAACAfHbllVfqrrvuCmurqKjQ97//fX31q1/VgAEDOhyzcuVKzZs3T3fccYcaGlrfX21sbNTFF1+s2tpaXXnllVmpHeiqCAsDAOS/uGFh+fjr0OUxl1Zmr4wIJbbOdX+3Gx+WM6aLhQ0Fi113m5Mv8j5WVR9p8/qou6qb17keOq5pmaRDvM/VlZWW6YCG5Zr7+cXR91f2kPO7z7NbkyT/rC/kIeMrrplbn/DUr2j0YRrwgrRqY4ITLH6hQ9N/NiU2RKC4SL/6uqNffT3BuQEAAAAAAAAAAAAAnhljSiSdEdF8W7zjrLUfGmMWSDprV5Nf0jmSbkpvhQCAXHCMtxukBk0wficArhwTKyxsz10+m0Kxw8KCDmFhAAAAAAAAAPLTI4880iEo7IgjjtDjjz+u/v37xzxu6NChuummm3Teeefp9NNP13vvvde27+qrr9bo0aN11FFHZarsvLBo0aJcl4Aciv7JBQAAeaUAw8LcAtJy9XiNUXGo3rVLRVdcEzH2GPf9+x3sfawjTo65K6Bm10PPb4x50+A8FOecjrE4J9N8JaVpGefizQ956mcqe6jSPauu4zE2eppZXVOC4wS74skKAAAAAAAAAAAAAF3OVEntP4z+m7X2Xx6PnRuxPT09JQEAcs3nNSyMkCIgZT5FP99C2hMW1mhdwsIM5yEAAAAAAACA/PPhhx/qO9/5TljbxIkT9Yc//ME1KKy9YcOG6eWXX9aIESPa2kKhkM4991xt3LgxrfUC+YSwMABA/nPi/LorsLAw4/O2UCgTim2csLAEg486hf5DXXebeK+/9n2nX+q6/5JN90dtn7jzDc2y8z3P0+W5heFJ8c/5DPGVlqVlnAl1b8btY+b+XZJUnuA6ohaPCwXjzh/siicrAAAAAAAAAAAAAHQ5x0dsL0rg2FelsDuTjTHGVKdcEQAg53zytuYxQEgRkDInxpq7FtvS9n1jyCUsjNA+AAAAAAAAAHnommuu0Y4dO9q2u3fvrqefflrl5eUJjdOnTx899dRTCgaDbW1r167VjTfemLZagXyTh+koAABEiBcsVGBhYXJyFBZmjEpsnWuXrhgWZoyRTddg+xwgnXSh9LvIm/u2umrT/+h3FSfoP4EBbW3H7nhZz605XaZ3Aa3njXdOm9yEhfkTOLVKQ7W6c911uqTvvW1txob04OeXyK8WlyN36bePpMTPmTqTnpPM5ydzGAAAAAAAAAAAAACy4ICI7b95PdBaW2uMeVfSmHbN+0tal47CAAC54/N4w0BCioDUOYq+Vs4q1PZ9o40dFhYwwZj7AAAAAAAAAKAr+te//qXnn38+rO3WW2/VXnvtldR4I0eO1DXXXKNbbrmlre3hhx/WnDlzVFVVlVKtnc3KlSv1zjvvaO3atdq+fbuMMSotLVV1dbUGDx6sUaNGqbS0NON1NDQ06JVXXtGqVau0adMm9enTR/3799ekSZMyMv/nn3+uN998U+vXr1dNTY3Ky8vVp08fjRs3TkOGDEn7fPkuD9NRAACIFCdYyB/IThlZ5fKYcxSkJEnFLndPk7pmWFg6GWOka++T9fukZx/qsH9w02q9/slRerzyLH0YHKZD6/6ur257XEW2UVr/aQ4qzpF4YWFObl7jvgSmPXX7Qn1zy/9qv4Z/a2HFSTKyOnX7Qh1et9jT8aakTJJUUWykBOLqap3W42xjg0ywqO37RP9bEO+vAAAAAAAAAAAAAACQFiMitlcmePxHCg8LGynpzylVBADIOZ/xttaHsDAgdU6McD4rq5ANyTGOGmKsjQ2YoJwcrtkFAAAAAAAAgEy46667ZO2ea5t79eqlCy+8MKUxr7zySt1+++1qamqSJNXW1urBBx/Utdde26HvBRdcoEceeaRte9WqVRo0aJCneRYtWqSjjz66bXv27NmaM2eO6/i7rV69ujULIIbzzz9f8+bN69De0NCgu+++Ww8++KBWrFjhWp/P59Po0aM1bdo0XXXVVTGDu4466ii98sorbdvt/z7cbN26Vddff73mzZunbdu2ddhfUVGhGTNm6IYbbtCXvvQlT2PG0tTUpIcfflj33Xef3n333Zj99t13X11zzTW66KKL5PcTg+UFzxIAIP/FS7Xx5eGvQ7fHnKMgJcmoxNa59ij0sDBJMo4jnfIN2ShhYZLUt/kLXbXp7ixX1cnEWzyTo9e4P4FpL9/0c0nS5LrXNbnu9aTnLE/wnKlzWv9TaI+tlD1tlkz1ANm5N0lDahIah6wwAAAAAAAAAAAAAMgsY0wPST0imv+T4DCR/fdNviIAQGfhixFeFCloghmuBMh/jmIvDAypRY4cNdnoYWFBQ2AfAAAAAAAAgPzzwgsvhG2fd955CgZT+0yid+/eOuWUUzR//vyweaKFhXUln376qaZOnaoPPvjAU/+WlhYtXbpUS5cu1dlnn62hQ4emrZZ//vOfOvHEE/XZZ5/F7LN9+3Y99NBDmj9/vp577rmk51q6dKnOOussffzxx3H7rlixQrNmzdIvfvELPf/88+rXr1/S8xaKPExHAQAgQpywMFNoYWHxwtMyqNjWu+4nLGyX3kkk7R5xSvrr6KzivYZzdCc+XwLTHlL/j7TMWZ7gWqID6t/bs/HM/fKWE91RzjIHAQAAAAAAAAAAAKBwdI/Y3mmtrU1wjPUR291SqAcA0En4PF4CEHQIKgJS5biE84VsSI22QQ99dnvU/QGHwD4AAAAAAAAA+WXNmjX65JNPwtqOO+64tIx93HHHhYWFLV68WE1NTQoEAmkZP9saGxt1/PHHdwgK69Gjh0aNGqXq6moFAgFt375dn3/+uZYvX67a2kSXBHizfPlyHXvssaqpqQlrr66u1pgxY9S9e3etW7dOixcvVl1dnTZt2qSTTz5Zt98e/f1vN88//7xmzJihnTt3hrX37dtXBx10kHr06KHa2lotX75cK1asaNu/bNkyjR8/XosXL1b//v2Te6AFIg/TUQAAiBAvWMjxdpe9vOHL0eM1RiUh97Awn5O7ILPOxPSoTjjEyXxjTgYq6aTintO5eR15DQt79tPpcpKO6QqXSMDe0MaV2rfpo7TMy5kKAAAAAAAAAAAAABlXHrFdl8QYkcdUJFlLG2NMH0m9Ezxsn1TnBQDs4XMJL9rNkeM5VAxAbD6Xm5eGFNLjX/wi5v6gIbAPAAAAAAAAhaHFtmhL88Zcl1EQuvt7efqcIFNef/31Dm1jx45Ny9iHHHJI2HZdXZ2WLVumcePGpWV8r+644w7NmTNHknTEEUdo7dq1kqR+/frptddei3lceXn4R/xz587V8uXL27YHDRqkn//85zr++OPlOB3fe7bWaunSpXr++ef18MMPp+GRtGpqatJXv/rVsKCwvn376q677tLpp58eVsuOHTt055136uabb9aWLVt07bXXJjTX8uXLdfbZZ4cFhR1//PG64YYbdOihh3bo//bbb+uKK67Qq6++Kklau3atZs6cqUWLFsmXq0yMLoBPAAEABSBesJDHhJ+uxC1MKYfhaMXWPSwMSZp5lcw+B+S6iiyKc067LM7JJL/HaU/Y8ce0zdmjzHvfx9aen7Z54+W1AQAAAAAAAAAAAABSFhkWlsyii8iwsMgxk3GppNlpGAcAkCQvFwEFnSIZFvkAKTOKvTCwIVSvZTsWx9wfdAgLAwAAAAAAQGHY0rxRP/p4Vq7LKAg3DrlfPQPVOZt/zZo1YdvV1dXq2bNnWsY+4ICO18qvWbMm62FhvXr1Uq9evSRJfv+eWCa/369BgwZ5HufZZ58NO/all17S0KFDY/Y3xmjs2LEaO3asfvSjHykUCiVefBT33HOPli1b1rbdt29fvfbaaxoyZEiHvuXl5Zo9e7YOOOAAnXXWWdq8ebPneUKhkGbMmKHa2tq2tjlz5mj27NjLC8aMGaM///nPmjFjhubPny9Jeu211/TYY4/pvPPO8zx3ocnDdBQAACLEW/CSj2FhbmFKuXq8xqgklMxNbgvUvgfF3GWuuFP6ytelky6UmbdUzqU/yWJhnUAnPad9HqYd2rhSjmza5tz/S94W9I2r+7sOqX87bfM6rCMEAAAAAAAAAAAAgGxL5sPm9H1ADQDoNHoF+sbt09tDHwDxuYXzbW7aqCbbGHN/78BemSgJAAAAAAAAAHJm06ZNYdtVVVVpG7u4uFhFReE3YYicrytZvXp12/cHHXSQa1BYJJ/Pp0AgkHINoVBI99xzT1jbAw88EDUorL3TTz9dl156aUJzzZ8/X++9917b9llnneUaFLab3+/XI488oj59+rS13XHHHQnNXWjyMR0FAIBw8YKF8vHueW6PyeTu139ATTmbu6sx/zU3+o6+g2TO+I6c794n53u/lNmnY0py3ot7TnfesLCVQe//kfPiiKFS99L4/R7+LL2J7Pn4YxMAAAAAAAAAAAAAOpkdEdslSYwReUzkmACALmhk2WiVOuWufcZWTs5SNUB+My6X3DS7BIVJ0tjKSekuBwAAAAAAAAByKjK8q3v37mkdP3K8mpqatI6fK+vXr8/JvH/961/1ySeftG2PGzdOJ598sqdjr7/++oQCy+6+++62740xuvXWWz0fW15erlmz9lwL/+6774bVjXCEhQEA8l8nDRbKKLfH7OTo8Roj8oW8M0P2l77y9fDGfkNk7n05NwV1JvHO6Ry9xv0epp1+UEta5ywrMvrJacb1KfnW5gc0svFfaZ2XcxkAAAAAAAAAAAAAMq6zhoXdJ+mABL9OTcO8AIBdSn3lunLvG9WvaFCHfSVOmab2OF1TqvjRC6SDz/hi7mt0CQs7oedZGlMxMRMlAQAAAAAAAEDeMvGuIe9Chg8f3vb9p59+qjvuuCPrNbz22mth2zNnzvR8bO/evXXcccd56ltbW6vFixe3bY8bN06DBw/2PJckHX300WHbr776akLHFxJ/rgsAACDz4oWF5c8/Gtu4PaYch6NVtmzVNl+3Du3TRuegmE7OXPNzafxU2Xdel+k3RDrqdJmq3rkuqxOIc862pDeQyyufh1NrQG+/VNlD2rYpfmePZh3paFR/q4X/tPL9+ieasHOxPg4O0arAQE3e+bpO2fF82ubazcnDH5sAAAAAAAAAAAAA0MlsjdguNcaUWWtrExijT8T2lhRrkrV2vaSEbnucTwu6AaCz6F88WD8c9D/a0bxN9aE6Sa3LBqv8veS4hBsBSIyj2OdTUyh2WNgxVadkohwAAAAAAAAAyKkePXqEbW/dGvmxdmq2bAn/SDtyvq7knHPO0fz589u2v/vd72rBggW68MILdeKJJ6pv374Zr2HJkiVh2+PHj0/o+PHjx+t3v/td3H6LFy9WU1NT2/aQIUP0ySefJDRXKBQK2/7oo48SOr6QEBYGAMh/8RYcOrkNz8oMl8fs5HYh0KnbF+rR7ud2bB/NwtBIxhhp8qkyk7nLY5h453RLk/v+DPESFlbkl8y9L8ueNyatc0/cx2jiPkahRx+Saj+TElkangTWcQMAAAAAAAAAAABAZllra4wxmyVVtWseIOmDBIYZGLG9IuXCAACdSrm/UuWqzHUZQN5yXG7Q22Rjr1X0GS7VAQAAAAAAAJB/IsO7Nm/enLax6+vrVV9fH9bWs2fPtI2fbdOnT9f06dPDAsNef/11vf7665KkoUOHauLEiTr88MM1adIkjRgxIu01rFu3Lmx73333Tej4YcOGeer36aefhm0/8cQTeuKJJxKaK9KmTZtSOj6f8QkEACD/xQ0Dy8PUG7ckn5yFo7XW9O3Nv9QzFadqh6+ibc/wphU6bcx+OaoLXU4nTaryewwLU/+hmSsiEMzc2O100r8CAAAAAAAAAAAAAMg3H0ia2G57qBILCxsSZTwAAAB45JjYN+htsg0x9/mU2xv7AgAAAAAAANnU3d9LNw65P9dlFITu/l45nb9fv35h21988YVqamrSEur1/vvvx52vKzHG6Mknn9Ts2bP105/+tEMQ2sqVK7Vy5Ur96le/ktQaHnbuuefqsssu6xDKlqzIMLfKysRuQNOtWzdP/WpqahIa14vt27enfcx8QVgYACDvGWNk3TrkLDwrg9ySfFzucpYNY+v/ob+sPk739fiW/hUcpvF1b+l7TXNVWfJuTutCFxIvqcr1hM8cn5ewsIBkAsHMlRgsztTIYRzCwgAAAAAAAAAAAAAgG95TeFjYBEkLvRxojCmTdGCU8QAAAOCRT7EXBjbZptjHuYSMAQAAAAAAAPnGZ3zqGajOdRnIgokTJ3ZoW7JkiaZOnZry2EuWLAnbLikp0ejRo1MeN5f8fr9uvvlmXX755fr1r3+tZ599Vm+99ZYaGjrejGLlypWaM2eOfvazn+n+++/XjBkzclBxchobG9M+prU5CgzoAvIwHQUAgChcw7PyMPXG7THlKhytXUljGv6pBz+/RK+uPlZ3rP++ejldPNn17CujNpvvPZDlQgpEvH/ch0LZqSOCp7Cw3VG9Bx+VmSJW/ysz40Yw+fhzEwAAAAAAAAAAAAA6nxcito9K4NhJCr+h7NvW2nUpVwQAAFBAjMsNeptC0S9+MjJyCAsDAAAAAAAAkIcGDBigAQMGhLW9+OKLaRn7pZdeCtseP368gsFgWsberaWlJa3jeVVdXa2rr75af/3rX7V161a98cYbuuOOO3TqqaeqvLw8rO/WrVs1c+ZMLViwIOV5q6qqwra3bduW0PFbt2711K9Xr15h27fccoustSl9zZs3L6FaCwlhYQCAwuAWkOXyQX6X5RqO1gkfr69rL4owU2ZIweLwxh7V0oTjc1NQvosXFmZzExbmd+IHaO0OCzNfv961n/n2bckV0X+fpA4b0fBBcvMBAAAAAAAAAAAAADLpj5Lq2m1PMMYM93jsBRHbz6SlIgAAgALiU+z1rU22IfoxBIUBAAAAAAAAyGPHHx9+/fyjjz6qpqamlMbcsGGDnnvuOdd5dvP7/WHbzc3NnufZvHlz4sWlWVFRkSZMmKCrr75aCxYsUE1NjZ544gkNGzasrY+1VpdffrlCodSuma+urg7bXrFiRULHf/jhh0nN4/U4JKcTpoUAAJABjssH727BWl2Wy2NyC07LJLfnuauHhe13sMxtz0gHHSGVd5PGHydz1x9lelTHPxiJixcWluJ/fJLl83BqtYWFHXh462smmr33lWZckVwRR56W1GFzNtzoua+HTDQAAAAAAAAAAAAAQBpYa3dKeiqi+bp4xxljhklq/wFys6TfpLE0AACAgmBcbtDbZKNf/OaTP2o7AAAAAAAAAOSDK664QqZdbsCGDRs0d+7clMa86667wgLHysrK9M1vfjNq38rKyrDtLVu2eJ7n/fffT6guk4UcimAwqBkzZujNN99Uv3792to//fRTLV26NKWxx44dG7a9ePHihI5/8803PfWbMGFC2HP10ksvycbLA0DSCAsDABQGlw/rXfd1VW7/8HQLTsuVzlhTgszYY+Tc+7LM79fJuWOhzKARuS4pj8X5z4HtvGFhDe3Cqc3EE2VufVoKFu1pDBbLXHZ763+ITrow6hjm27fGnsAf8FhtuJN3/F4nbf+9p755ma8IAAAAAAAAAAAAAJ3XHEntkyguMMZ8JVZnY0yxpLmSgu2aH7bWfpSZ8gAAAPKXT7HXtzaFGqO2O6brr4kFAAAAAAAAgFhGjhypE044Iaztuuuu07p165Iab/ny5br99tvD2i688EL16NEjav8+ffp0ON6r3//e27XUuxUV7bkGvKGhIaFjE9W9e3dNnz49rG3VqlUpjXnEEUeEbT/++OOej92wYYNefPFFT3179+6tMWPGtG2vXbtWf/jDHzzPhcTkYToKAABROG5hYXmYfOMaFpajX/9uNfny5y5q2UgILnihOGFg8fZniN/DqXXo4PDXhzn8ZJmHFstcfKPMrJtav5/Q+h9kc9S0jgMEgtKkmGu+ZXzJhYUV2Ub9du05+u2amXH78goHAAAAAAAAAAAAgOyx1n4s6a6I5qeMMd8xxrQPBJMxZoSklyVNbNdcI+mGzFYJAACQn9yCv5ps9LAwn8mfNbEAAAAAAAAAEM2dd96p0tLStu0tW7Zo+vTp2rFjR0LjbNiwQWeccYYaG/e839q3b19df/31MY85+OCDw7YXLlzoaa4//vGPeuuttxKqr3v37m3fb9y4UU1NTS69U+f3h7+/3D6sLBmTJ0/WoEGD2raXLFmi559/3tOxP/7xjxN6vN/5znfCtq+55pqEXw/whrAwAEBhcFzu0pWr8KxMcgusMp3w8br9/QCRrI2zPzdhYV5+lPQo7dhmBo+U+dq1Mud+V2bwiD3thx0vc+XPpPJuuw6ulvnJUzL99ok5vt2yPtGy2xTZRk3f/mzcfvn4IxMAAAAAAAAAAAAAOrnvSWp/292ApHskfWqM+YMx5rfGmCWS3ld4UFijpNOstZ9nr1QAAID84bhcchM7LIw1sQAAAAAAAADy2/Dhw3XPPfeEtb3xxhs64YQTtGbNGk9jrFixQscee6w++OCDtjbHcfToo4+qd+/eMY+bMGFCWFDZM888oyVLlsSd6/zzz/dUV3sjRuy57ru5uVl/+ctfPB23c+dO3XPPPdq+fbvnuXbs2KH58+fHnD8ZjuN0CPGaNWuWVq1a5Xrc/Pnzdd999yU013nnnafhw4e3bX/wwQc67bTTtHnz5oTG2bBhQ4fnAeG41B8AUBhc021cgrXyUc6SflyeZx93UUMi4oSFhXITFubzcGr1Kk9sTHP6pTILP5P57b9lFqyWGT/V/YCXnkxsgiQU2E9MAAAAAAAAAAAAAMg5a22LpLMkRX4o3EfS8ZLOlHSIwj/SXS/pVGvtq1kpEgAAIA8ZY2RiXHbTFIoRFibCwgAAAAAAAADkv4suukjf/va3w9pee+01jRw5Urfeeqs+/fTTqMetXLlS//Vf/6VRo0bp3XffDdt322236dhjj3WdTJBsJAAAIABJREFUt6KiQjNmzGjbbmlp0UknnaQXX3yxQ9/GxkY9+OCDOuyww7Ru3TpVVVV5fXiSpKOPPjps+8ILL9R9992npUuX6uOPP9Ynn3zS9rVx48aweS+//HL1799fF110kRYuXOgaHPbWW2/p2GOP1erVq9vaDjvsMA0bNiyheqO5/PLLddBBB7Vtf/bZZzr88MP11FNPKRRxTX5tba1+/OMf6+yzz1YoFEro+fL5fHrqqadUWVnZ1vanP/1JBx54oH7xi1+4Pv5NmzbpySef1MyZM7X33nvr7rvvTuARFh6SOQAAhcFx+eA9Z+FZGeQWlmQ6YdSPP5DrCtCV2DhhYfW12akjgt/Dj5JupYmff8bvl/oO8tY5WJzw+JFGNizX8qKRsevphD9CAAAAAAAAAAAAACDfWWt3SDrbGPOUpKslHRaj6ya1horNttZuyFZ9AAAA+cqRoxZ1XJfbZGOEhRku0wEAAAAAAABQGO69915VVVXp5ptvlt11/ff27dv1/e9/Xz/4wQ80cuRI7b333qqqqlJNTY1Wr16tf//73x3GCQQCuuuuu3TJJZd4mvfGG2/UM888oy1btkiS1q9fr6lTp2ro0KE68MADVVRUpHXr1unNN99UbW3rded77bWXbrvtNp1//vmeH9+ZZ56pH/7wh1qzZo2k1qCtyIC03c4//3zNmzcvrG3btm2aO3eu5s6dK2OMhg4dqiFDhqh79+7y+/2qqanRe++91zb+bqWlpXrggQc81+kmEAjoscce05FHHqmamhpJ0ueff64zzzxT1dXVOuSQQ9StWzetW7dOf/vb31RXVydJ6tatm2677TZdfPHFnufaf//99fTTT+uMM87Q1q1bJUlr1qzRpZdeqssuu0yjRo3SgAEDVFlZqZ07d2rLli368MMPOzx+uONTCABAYTAuKT75mHxjXcLCchWO5vY8B4LZqwNdX7ywsKboC3AyLRDnZoDdSrJQxNRzpN/cmdIQ39j8v7pqrzti7nfy8EcmAAAAAAAAAAAAAHQV1tqnJD1ljBks6WBJX5JUJukLSaslvW5tjOQKAAAAJMwxjlqiLFuMHRYWZzEhAAAAAAAAAOSRG2+8UUceeaQuvfRSrVixoq3dWqv3339f77//vuvxBx98sO6//36NHTvW85z9+vXT008/rWnTpmn79u1t7StXrtTKlSs79B88eLB+97vfad26dZ7nkKSSkhI988wzmjZtmtauXZvQsZGstVqxYkXYcxRNv379NH/+fI0aNSql+drbf//99ac//UknnniiPv/887b2devW6fe//32H/t27d9dzzz2nlpaWhOeaMmWKlixZopkzZ2rJkiVt7S0tLVq2bJmWLVsWd4yqqqqE5y0kOUoLAQAgy3wuH7y7BYl1VW7/8HI64SIEXyDXFaArcQvDy6FgnBjeg/pnvgbz5Zkpj1EUZ814PuYrAgAAAAAAAAAAAEBXY61dZa192lp7j7X2VmvtPGvtXwgKAwAASK9Y4V+NoVhhYXEWEwIAAAAAAABAnpkyZYqWL1+uxx57TMcee6z8fvf3SYuKinTKKafo2Wef1ZIlSxIKCtvtmGOO0VtvvaVTTz1VJsbFz71799Z3v/tdLVu2TCNGjEh4DkkaO3asli9frl/+8peaNm2ahg4dqsrKSvlc8iu6deumV155Rddee60OOeSQuM+HJO2333665ZZb9OGHH+rQQw9NqlY3o0eP1gcffKDLLrtMFRUVUfuUl5frggsu0DvvvKNJkyYlPdfQoUP11ltvaeHChZoyZYqKioriHjNixAhddtllevXVVzV//vyk5y4EfAoBACgMboFg+Zh84xam5Baclkluz3OAsDAkwEa5RV8nUBTnX9YVxVkoYp8DUh7Cd/l/S/8Xe38e/sQEAAAAAAAAAAAAAAAAACAqo+hrkJttU9R2nzrhTX0BAAAAAAAAIMP8fr/OOeccnXPOOaqtrdXSpUu1cuVKbdiwQY2NjSoqKlJ1dbWGDRumgw8+2FOAVDzDhw/XggULtHHjRr3yyitas2aNdu7cqerqag0ePFiTJk0KC+o66qijZJO4Tr2yslKzZs3SrFmzPPU3xmjy5MmaPHmyJKmurk7vv/++PvroI33xxReqra2VMUaVlZUaMGCADjzwQA0cONBzPYsWLUr4MUitIWZ33323br/9di1atEirVq3S5s2b1bt3b/Xv31+TJk1SWVlZW/9kny+p9Tk4+eSTdfLJJ6u+vl5vvvmmVq9erZqaGtXW1qqsrExVVVUaOnSoRowYoZ49eyY1TyEiLAwAUBjcArIclyCxrirkEhbmFpyWK37CwpCAThoWFowbFpb5mC1jjFJ5dswLGxRYViK5jLKjIYUJAAAAAAAAAAAAAAAAAADoQnwm+hrkJht9MZ3PcJkOAAAAAAAAgMJWVlYWFpaVab169dLpp5+elbmSUVJSorFjx2rs2LG5LkWSVFRUpKlTp2ZtvuLiYh155JFZmy/fdcK0EAAAMsA1ICvzAT5ZF2qJvS9X4WjG5Xn2sTACCYgXFlZcmp06IgTj3AywLPWAa29mXJH0oaasUj7+hwAAAAAAAAAAAAAAAAAAgCTJiXHZTZNtitoeK1wMAAAAAAAAAAAgVUQBAAAKg+MSVJWr8KxMCoVi73MNTssRfyDXFaBLiRMWNnladsqIUBQn866iODt1mKPPcO/QZ+/ox/1hvSTJ3wl/RAAAAAAAAAAAAAAAAAAAkAtOjPCvplBj1HbCwgAAAAAAAAAAQKbEiTQAACBPOC4fvBuXILGuyrqEhbk9F5nk9jz7+CcJEuAWhifJHBMnLCtDgp0kLEzBItfdztMrJUl25w7prZek0ZNkuvdq2+8jLAwAAAAAAAAAAAAAAAAAAEmSo+iL6hptjLAwLtMBAAAAAAAAAAAZwqcQAIDCYFzSb9z2dVVuYUpOJ3y8uQowQ9dkrfv+8cdlp44I8cLCyt0zvNLHH/TUzZSWS0ed1qH9gH5GUpznGAAAAAAAAAAAAAAAAACAAuDEWGfcHCMszDGsiQUAAAAAAAAAAJnRCdNCAADIAJ/LB++dMTwrVdYlLCxn4Wgm9i4f+aVIgEtYmJn9qIw/kMVi9iiK8zKuKs1OHQqk9viH75WmOgAAAAAAAAAAAAAAAAAA6OIcRV+D3BiKHhbmM6yJBQAAAAAAAAAAmZGH6SgAAESRs4CsHKkeEHtfn37Zq8Mrh7uoIQHGJXhu9BHZqyNCMM7LuLrSpe50CgRTOtznZKlOAAAAAAAAAAAAAAAAAAA6OSfGGuSQWqK2+wxrYgEAAAAAAAAAQGYUWHIKAKBguYVROfn369AMGCbtvW/HHUMOkNlrYPYLktwDnnzcRQ0JqKiKva+xIXt1RAj63UO2+lRkqRAR9gUAAAAAAAAAAAAAAAAAQDo4Siz8yyfWxAIAAAAAAAAAgMzIv3QUAACicQsEcwux6sLMd++Tikv3NJSUy1x9d+4KcuPjnyRIwMQTo5/TpRVSn/7Zr2eX4oD7/h5l2alDPffK0kQAAAAAAAAAAAAAAAAAAOQ3n0kwLCzB/gAAAAAAAAAAAF5xyxIAQGEwbmFh+RlUZcZMln71trT4hdbHeNhUmb0G5rAgl1A2H/8kgXemey/Z8VOlv/0hfMfkaTL+OIldGVQWjLO/KDt1GH9ANjtTAQAAAAAAAAAAAAAAAACQ10yC64wJCwMAAAAAAAAAAJlCMgcAoDD4XD54dwux6uJM30HSad/KdRnxOSyMQGLM9Y/I3nyR9LcXWs/vI0+TuebenNYULwysNE6YGAAAAAAAAAAAAAAAAAAA6Fx8SmyNq89wmQ4AAAAAAAAAAMgMPoUAABQGt7t6OYnd8QtJcgtl8/FPEiTGlHeT+cnTsg11UigkU1KW65LUt5v7/rIuFBZ2wUSjeW/YXJcBAAAAAAAAAAAAAAAAAEBOOW5rkKPwExYGAAAAAAAAAAAyhHQUAEBh8Lnd1cslxArZQVgYkmSKSjpFUJgk9aty/1kS8HednzUnjopd6//M6DqPAwAAAAAAAAAAAAAAAACAVDgJXnbjyG3NMgAAAAAAAAAAQPIICwMAFAa3u3o5/DrMOYeFEUBnctqY2PsunkxYGAAAAAAAAAAAAAAAAACgMDgmsTWuPsMNdAEAAAAAAAAAQGaQjgIAKAxuYVSG4JvscHmefSyMADoTn2P0gxM7nrPXHm9UHOBnJgAAAAAAAAAAAAAAAACgMDgJXnbjSzBcDAAAAAAAAAAAwCuSOQAAhcFx+aDekJ2Za8bHwgigs7nxVKOqUunxt6z8jnTGWKOrv0xQGAAAAAAAAAAAAAAAAACgcDgJhn/5DJfpAAAAAAAAAACAzOBTCABAYTAuATdu+5A+bs+zj3+SAJ2NMUZXH2d09XG5rgQAAAAAAAAAAAAAAAAAgNzwJRoWJm6gCwAAAAAAAAAAMsPJdQEAAGSFa1gYvw5zjrAw5Ikxe0dv71mW3ToAAAAAAAAAAAAAAAAAAEDqTIKX3fgMa2IBAAAAAAAAAEBmkI4CAIBbkBjSx+159nEXNeSHy46N/jq/ZTo/ZwAAAAAAAAAAAAAAAAAA6Gp8Cd6U2GdYEwsAAAAAAAAAADKDsDAAQGFwC6py+HWYcw4LI5Afpo8xGjswvG303tJZhxAWBgAAAAAAAAAAAAAAAABAV+MosTWuPuPPUCUAAAAAAAAAAKDQ8SkEAAAixCcr3ALb/IHs1QFkUGWJ0Uv/z9HcN6yWrpYO7C/NmmxUWcLPGQAAAAAAAAAAAAAAAAAAuhrHJHZTYp/hBroAAAAAAAAAACAzCAsDABQGt6AqJ7EP8ZGkUCj2PsLCkEe6lRpdOYVwMAAAAAAAAAAAAAAAAAAAujpHiYV/+RLsDwAAAAAAAAAA4BXpKAAAuAWJIX1ammPv8xEWBgAAAAAAAAAAAAAAAAAAgM7FMYldduMz/gxVAgAAAAAAAAAACh1hYQCAAuESCJbgh/hIUnNT7H1+wsIAAAAAAAAAAAAAAAAAAADQuTjyJdTfZxLrDwAAAAAAAAAA4BXpKAAAGJcgMaRPc3PsfYSFAQAAAAAAAAAAAAAAAAAAoJNxErwpsc/4M1QJAAAAAAAAAAAodISFAQAKg1sgmMOvw6woq4i9r3e/7NUBAAAAAAAAAAAAAAAAAAAAeODIl1B/X4L9AQAAAAAAAAAAvCIdBQAAuQSJIW1Mn/7SwP067ujZVxo1IfsFAQAAAAAAAAAAAAAAAAAAAC58JrHLbnzGn6FKAAAAAAAAAABAoSMsDABQGIxLIJjDr8NsMbNuknztFkEYI/Otm2Tc/n4AAAAAAAAAAAAAAAAAAACAHDAJXnbjGF+GKgEAAAAAAAAAAIWOW5YAAEBQVdaYSV+R7lsk+8ozUkuzzKSvyBx0RK7LAgAAAAAAAAAAAAAAAAAAADrwJRj+5TNcpgMAAAAAAAAAADKDTyEAADCJ3fELqTEjx8mMHJfrMgAAAAAAAAAAAAAAAAAAAABXTqJhYUqsPwAAAAAAAADkm//P3r2HSVbV98L/ru65MTDIAMPNAUa5HAW8BqKir2JQCJxovJ3ogTyJlxDjJZG8GJXEEwHR4zVHjJqL0dHXiDFGRTQmQY34KsQQRINc5CIgIELGYbgMMswMs88f3TRdNTM9XV3VVbV3fT7Psx5m7dpr7bV2rd+i96rq1b/4xS9y2WWX5brrrsvPf/7zbNiwITvttFP23nvvHHrooXnSk56URYsW9eRaN998c/76r/863/rWt3Lttddm3bp12bRp09Trq1evzstf/vJtlr3kkkuyevXqXHzxxbnlllty9913Z8uWLVOv33jjjVm1alWS5Jhjjsm3vvWtqdeqqupJ+6FTNgsDgFIG3QIAAAAAAAAAAAAAYMiMpbM/Sjze4eZiAAAAAABN8OCDD+bv//7vs3r16nzzm9/M5s2bt3vukiVLcvzxx+d3fud38mu/9mtzvuZHP/rR/P7v/34eeOCBjspt3rw5r33ta/PRj350zteGQensUwsAaKLif4cAAAAAAAAAAAAAQKuxDjf/Gi8L5qklAAAAAADD6V//9V9z2GGH5aSTTsrXvva1GTcKS5INGzbkS1/6Up73vOflqKOOymWXXdbxNb/61a/m1a9+dccbhSXJn/zJn9gojNryKQQAo6GUGV7rXzMAAAAAAAAAAAAAgHoYS2d/lHi8w83FAAAAAADq7Mwzz8yZZ56ZqqpajpdS8tjHPjYrV67MHnvskTVr1uTmm2/Otdde23LepZdemqc97Wn50Ic+lFNOOWXW1z399NNbrnnSSSflVa96Vfbff/8sXLhw6viee+7ZUu6OO+7IBz7wgan8okWL8pa3vCUnnnhiVqxYkbGxh9eEV65cOev2QL/YLAyAETHDjmBjnX2IDwAAAAAAAAAAAAA031iHm3+N+zUdAAAAAGBEnHrqqTnnnHNaji1btiynn356Tj755BxwwAFblbn++uvziU98Iu973/vywAMPJEk2btyY3/3d3819992XU089dYfXveaaa3L55ZdP5U888cR8+tOfnlWbzzvvvGzcuHEqf/bZZ+eP/uiPZlUWhoHdUQAYDcuWz/DiDBuJAQAAAAAAAAAAAAAjabzDX7sZ73BzMQAAAACAOvrkJz+51UZhz3jGM3LVVVfl9NNP3+ZGYUly8MEH5+yzz87ll1+eI444ouW10047LRdeeOEOr33ppZe25F/ykpfMut1zLXvhhRemqqqpBINiszAARsMuu27/tTH/OwQAAAAAAAAAAAAAWpXS6WZhC+apJQAAAAAAw+Haa6/N61//+pZjRx99dP7pn/4pK1eunFUdhx56aL7xjW/ksY997NSxLVu25Dd/8zfz85//fMayd9xxR0t+ttfstiwMA7ujADAaStn+azYLAwAAAAAAAAAAAADajGe8s/NLZ+cDAAAAANTNG9/4xqxfv34qv9tuu+Xzn/98dtlll47q2WuvvfIP//APWbRo0dSxn/70p3n7298+Y7np106ShQsXzvqa3ZSFYeBPlgBAZthIDAAAAAAAAAAAAAAYSWOlsz9KPF78mg4AAAAA0Fw/+tGP8pWvfKXl2Lve9a7ss88+c6rvsMMOyxvf+Ma8853vnDr2sY99LGeccUaWL1++zTJbtmyZ07W6LdsLV111VX74wx9m7dq1WbduXZYsWZIVK1bksY99bB7/+Mdn8eLFc6p38+bNueSSS3LDDTdkzZo1eeCBB7JixYqsWrUqT3/607NkyZIe94RB8SkEAIx19iE+AAAAAAAAAAAAANB8Y2W8o/PH09n5AAAAAAB1cs4556Sqqqn8nnvumVe84hVd1Xnqqafmve99bzZt2pQkue+++/LRj340b3rTm5IkN910Ux71qEdtt/yzn/3sbR5fvXp1kszYvlLKNo/feOONWbVq1VT+mGOOybe+9a2p/PR7sCO33HJL3vOe9+Rzn/tc7rjjju2et9NOO+XZz352fvu3fzsvfvGLMz6+4/Xmq6++OmeffXa+8pWv5J577tluvc9//vNz1lln5dBDD511uxlOdkcBgO38AAcAAAAAAAAAAAAAjK6xDjf/Gu9wczEAAAAAgDr553/+55b8b/3Wb2XRokVd1blixYo873nPm/E6dVRVVc4+++wcfPDB+dCHPjTjRmFJcv/99+erX/1qXvrSl+aWW26Z8dwHH3wwf/iHf5gjjjgi55577nY3Cnuo3s9+9rM5/PDDc84558ypLwyPBYNuAAD0xwwbghV7ZwIAAAAAAAAAAAAArcY6+J5xScmYzcIAAAAAgIa69dZbc9NNN7UcO+6443pS93HHHZcvfOELU/nvfve72bRpUxYuXNiT+vtt8+bNednLXpbPf/7zW722zz775HGPe1z23HPPPPDAA7njjjvyn//5n1m/fv2s6r7//vvzghe8IBdccEHL8YULF+aJT3xiVq5cmcWLF+f222/PJZdckl/84hdTbTr11FOzbt26nHHGGV33kcGwWRgAlBk2EgMAAAAAAAAAAAAARtJYZr/517iNwgAAAAAYQZsfrHLrukG3YjSsXJ4sGB/c3ggXXXTRVseOPPLIntT9S7/0Sy35+++/Pz/4wQ9y1FFHZeXKlbnxxhunXvvABz6Qc845Zyr/mc98Jk996lO3qnPPPfdMkhxzzDFTx172spfl3//936fy0+udbuXKlXPqx0NOO+20rTYKO/HEE3PGGWfkqKOO2ur8LVu25Lvf/W7+7u/+Lp/4xCdmrPt1r3tdy0Zhj3jEI3LGGWfkVa96VZYtW9Zy7v3335+PfOQjeetb35oNGzYkSc4666w85SlPyQknnDDH3jFINgsDYDTMtCFYB3/xCwAAAAAAAAAAAAAYDWMdfM943K/oAAAAADCCbl2XPPqPtwy6GSPhhneOZdWeg7v+rbfe2pLfe++9s8cee/Sk7iOOOGKb1zvqqKOyYMGCrFq1aur4brvt1nLePvvs0/J6u1122WXq30uWLGl5baZyc3XBBRfkgx/8YMuxd73rXXnzm9+83TJjY2M5+uijc/TRR+ess87aqp0P+dznPpfVq1dP5Q888MBceOGF2+3HTjvtlNNOOy1Pe9rTcuyxx2bDhg2pqip/8Ad/kGuuuSZjY/baqBvvGADMtJEYAAAAAAAAAAAAADCSxjr4tZuxMj6PLQEAAAAAGKw777yzJb98+fKe1b1kyZIsXrx4xuvVxVlnndWS/73f+70ZNwprt9tuu21zs7CqqlrqXrBgQc4///xZbXj20CZkD7n++utz3nnnzbpNDA+bhQGA3U4BAAAAAAAAAAAAgDbjHWwANl4WzGNLAAAAAAAGq33zrt12262n9bfXt3bt2p7W3w+XX355Lrrooqn8smXL8u53v7sndX/zm9/MFVdcMZU/+eST8/jHP37W5V/3ute1bEJ2/vnn96Rd9JfdUQAgZdANAAAAAAAAAAAAAACGzFgHv3bTycZiAAAAAAC0KqX++z584xvfaMmfdNJJ2XXXXXtS99e+9rWW/Etf+tKOyi9dujS//Mu/PJX/9re/3ZN20V/+bAkAo2GmHwzH7J0JAAAAAAAAAAAAALQa62ADsPHYLAwAAAAAaK7dd9+9JX/33Xf3tP677rprxuvVwcUXX9ySP+aYY3pW93e+852W/O67756bbrqpozqmb1x20003ZcuWLRmz30at2CwMABqwwywAAAAAAAAAAAAA0FsdbRZW/IoOAAAAANBc7Zt3rVu3rmd1b9iwIRs2bGg5tscee/Ss/n752c9+1pI//PDDe1b3Lbfc0pJ/6lOf2lV9W7ZsyV133VXLTdlGmU8iABgNM20IVux0CgAAAAAAAAAAAAC0Gsvsv2c83sHGYgAAAADQFCuXJze80+/r98PK5YO9/iMf+ciW/O233561a9f2ZFOvK6+8cofXq4O1a9e25Jcv792b1l53L9x77702C6sZm4UBwEwbiQEAAAAAAAAAAAAAI2msgw3Axotf0QEAAABg9CwYL1m156BbQT8cffTRWx279NJLc/zxx3dd96WXXtqS32mnnfLEJz6x63oHrfRwL4uNGzf2rK6HVFXV8zqZX7ZmBGA0PPjg9l9bsLB/7QAAAAAAAAAAAAAAamGsg1+7Gc/sNxYDAAAAAKibAw44IAcccEDLsQsuuKAndX/ta19ryT/lKU/JokWLelJ3P+25Z+vOeXfeeee81L1kyZJs2bIlVVV1lVatWtWz9tEfNgsDYDQ8uHn7r9ksDAAAAAAAAAAAAABoM1462CysLJjHlgAAAAAADN6v/uqvtuQ/9alPZdOmTV3VuWbNmpx//vkzXqcu9t1335b8VVdd1bO6995776l/b9iwITfffHPP6qY+bBYGwGh48MHtvzbug3kAAAAAAAAAAAAAoNVYxmd97niZ/bkAAAAAAHX0hje8IaWUqfyaNWuyevXqruo855xzWjYc23nnnXPKKad0VeegPP3pT2/JX3jhhT2r++ijj27JX3DBBT2rm/qwWRgAo2HL9jcLm/7DKAAAAAAAAAAAAABAkoyV2f/ajc3CAAAAAICmO+yww3LCCSe0HHvzm9+cO+64Y071XXXVVXnve9/bcuwVr3hFdt999zm3cZCe85zntOTPPffc3HvvvT2p+/jjj2/J/83f/E1P6qVebBYGwGiYYbMwAAAAAAAAAAAAAIB2Y5n9BmDjWTCPLQEAAAAAGA7vf//7s3Tp0qn8XXfdlRe96EVZv359R/WsWbMmL3nJS7Jx48apY/vuu2/+9E//tGdt7bfDDz88z3rWs6by99xzT04//fSe1H3CCSfkoIMOmspfcskl+fjHP96TuqkPm4UBMBp2ecSgWwAAAAAAAAAAAAAA1MhYmf2v3YyV2W8sBgAAAABQV495zGPy53/+5y3HLr744pxwwgm59dZbZ1XHddddl2OPPTZXX3311LGxsbF86lOfyooVK3ra3n5r3+zswx/+cN7//vfPuvzdd9+dDRs2bHV8wYIFOeuss1qOveY1r8kXvvCFjtv49a9/PTfccEPH5Rg8m4UBMBLKC1+97Ree8Iz+NgQAAAAAAAAAAAAAqIWxzH4DsPGyYB5bAgAAAAAwPF75ylfmda97Xcux73znOznssMPyrne9K7fccss2y11//fV561vfmsc97nH54Q9/2PLau9/97hx77LHz1uZ++ZVf+ZWcdtppLcfe+MY35vnPf36+973vbbPMli1b8m//9m95wxvekP333z+33377Ns876aST8spXvnIqv3Hjxrz4xS/OySefvN26k+TBBx/M97///Zx55pk57LDD8tznPjc333zzHHrHoPkkAoDRsP+hyRP+n+Q/v91yuPzaK7dTAAAAAAAAAAAAAAAYZWNlbNbnjpfZbywGAAAAAFB3H/rQh7J8+fK84x3vSFVVSZJ77703p59+ev74j/84hx12WPbff/8sX77r4kpmAAAgAElEQVQ8a9euzU9+8pNcc801W9WzcOHCnHPOOXnNa17T7y7Mm3e/+925+eab87nPfW7q2Je//OV8+ctfzn777ZfHPe5x2WOPPfLAAw/k9ttvz+WXX5577713VnX/5V/+ZdatW5cvfvGLU8fOPffcnHvuuVmxYkWe8IQnZI899sjY2Fjuueee3Hbbbbn66quzYcOGnveT/rNZGAAjoZSSvOeLqf78TcklX0v22CflBb+b8qsnD7ppAAAAAAAAAAAAAMAQGutgA7Bxv6IDAAAAAIyYt7/97XnWs56V1772tbnuuuumjldVlSuvvDJXXnnljOWf/OQn56/+6q9y5JFHzndT+2p8fDyf/exnc/jhh+cd73hHNm3aNPXabbfdlttuu23OdS9cuDCf//zn8973vjdve9vbWjYBW7NmTb7+9a/Pqo6dd955zm1gcGb/J04AoObK0mUZe/NfZOzz12fsr7+TcuJvDbpJAPPjf7x+m4fLKWf2uSEAAAAAAAAAAABQX7uML8vismRW5+6xcK95bg0AAAAAwPB5znOek6uuuiqf/vSnc+yxx2bBgpn/sMLixYvzvOc9L1/60pdy6aWXNm6jsIeUUvK2t70t11xzTU455ZTsvvvuM56/yy675AUveEHOO++8HHDAATus+01velNuvPHGvOUtb8mBBx64w/YsW7YsJ554Yj784Q/nZz/7WY466qiO+sNwKFVVDboNMFCllMOTXPFQ/oorrsjhhx8+wBYBAHSnuvziVK//lWT6z/oLF6V87JKURz12cA0DAAAAAADm3ZVXXpkjjjhi+qEjqqqa+U90AsA88h09AKDuVt/2f/If935rxnPGMpY3HfieHLDk4D61CgAAAAB6Z/Pmzbnuuutajh1yyCE73PQJtuW+++7L9773vVx//fVZs2ZNNm7cmMWLF2fvvffOoYcemic/+clZvHjxoJvZd1u2bMlll12WH/3oR/n5z3+e9evXZ+edd85ee+2VxzzmMXn84x+fhQsXzrn+G2+8MZdddlnWrFmTdevWZWxsLMuWLct+++2XxzzmMTnkkEMyPj7ewx4Nt/ma1wb9/TyzMgAANEx5/NHJW1en+vBbkjtvT/baP+W0D9ooDAAAAAAAAAAAADp08j6vzeZqYy5f/x95MJu3ev0R48vzP/Y+xUZhAAAAAABJdt555zzzmc/MM5/5zEE3ZaiMjY3lyCOPzJFHHjkv9T/qUY/Kox71qHmpm+FhszAAAGigctz/TJ77suTOO5Ld904pZdBNAgAAAAAAAAAAgNpZNLY4pzzyzXlgy4bcuWlNy2sLy6LssXAv39EDAAAAAADmnc3CAACgoUopyR77DLoZAAAAAAAAAAAAUHuLx5Zk38X7D7oZAAAAAADAiLJZGD1VSlmY5OlJDkiyb5L1SW5L8v2qqm4aYNMAAAAAAAAAAAAAAAAAAAAAAABqx2ZhI6yU8ndJXtp2+CdVVa2aQ10rkpw5Wd/u2znn4iR/VlXV5zutHwAAAAAAAAAAAAAAAAAAAAAAYBSNDboBDEYp5fnZeqOwudZ1QpIrkrwm29kobNLRSf6hlPK3pZSde3FtAAAAAAAAAAAAAAAAAAAAAACAJlsw6AbQf6WU3ZL8RY/qOibJeUkWTTtcJbksyQ1JdkvypCR7Tnv95CS7llJeUFXVll60AwAAAAAAAAAAAAAAAAAAAAAAoInGBt0ABuL9Sfab/Pe9c62klLIyyRfSulHYRUkOr6rqyKqqfqOqquOSrEzyhiSbpp33vCRnz/XaAAAAAAAAAAAAAAAAAAAAAAAAo8BmYSOmlPKcJK+czG5O8qddVHdmkuXT8hcneU5VVVdPP6mqqgeqqvpgkt9oK///llIO7OL6AAAAAAAAAAAAAAAAAAAAAAAAjWazsBFSStk5yUenHfqzJD+YY12HJPntaYc2Jnl5VVUbtlemqqrzknxy2qHFSd42l+sDAAAAAAAAAAAAAAAAAAAAAACMApuFjZb/nWTV5L9vSHJGF3WdlGR8Wv4LVVVdN4ty727L/0YpZUkX7QAAAAAAAAAAAAAAAAAAAAAAAGgsm4WNiFLK0UleN+3Qq6uqur+LKl/Yll89m0JVVV2d5N+nHdo5yXFdtAMAAAAAAAAAAAAAAAAAAAAAAKCxbBY2Akopi5N8PA+/35+squrrXdS3T5InTDu0OclFHVRxYVv+hLm2BQAAAAAAAAAAAAAAAAAAAAAAoMlsFjYazkjy3yb/vSbJaV3Wd0Rb/vKqqu7roPzFbfnDu2wPAAAAAAAAAAAAAAAAAAAAAABAI9ksrOFKKU9O8sZph06tqmptl9Ue1pa/vsPyP95BfQAAAAAAAAAAAAAAAAAAAAAAAMRmYY1WSlmQ5ONJFkwe+ueqqs7tQdUHt+Vv7rD8T9rye5RSlnfRHgAAAAAAAAAAAAAAAAAAAAAAgEayWVizvSXJEyb/fV+S1/So3t3a8v/VSeGqqtYn2dB2+BFdtQgAAAAAAAAAAAAAAAAAAAAA6EgpZatjVVUNoCUAvbFly5atjm1rrqubBYNuAPOjlHJYkrdOO/S/qqq6qUfV79KWv38OddyfZMm0/LK5N+dhpZS9kqzosNhBvbg2AAAAAAAAAAAAAAAAAAAAANTJ2NjYVsc2bdqUhQsXDqA1AN3bvHnzVse2NdfVjc3CGqiUMpbkY0kWTx76XpIP9vAS7ZuFbZhDHfcnWT5DnXP12iRv61FdAAAAAAAAAAAAAAAAAAAAANBYpZQsWrQoGzdunDq2fv36LF26dICtApi79evXt+QXLVqUUsqAWtM79d/ujG15Q5KnTv57c5LfqarqwXm8XtWnMgAAAAAAAAAAAAAAAAAAAABADy1btqwlf88996SqbA0C1E9VVbnnnntajrXPcXVls7CGKaU8OsnZ0w79WVVVP+jxZda35XeaQx3tZdrrBAAAAAAAAAAAAAAAAAAAAADmWftGOps2bcpPf/pTG4YBtVJVVX76059m06ZNLcd33XXXAbWotxYMugH0TimlJPlokqWTh25IcsY8XGqYNwv7SJLPdVjmoCRf6tH1AQAAAAAAAAAAAAAAAAAAAKA2lixZkoULF7ZssHPvvffmxz/+cXbdddfssssuWbBgQcbGxgbYSoCtbdmyJZs3b8769etzzz33bLVR2MKFC7N48eIBta63bBbWLKck+ZVp+VdXVXX/PFzn7rb8ik4Kl1J2ydabhd3VVYsmVVX1X0n+q8P29OLSAAAAAAAAAAAAAAAAAAAAAFA7pZTst99+ufnmm1NV1dTxTZs2Ze3atVm7du0AWwcwNw/NbU3ZX8hmYc1y5rR/fzXJ9aWUVTsos09bfsE2ytxWVdXGafnr2l4/cJbt2975d1ZVta7DOgAAAAAAAAAAAAAAAAAAAACAHli6dGkOOOCArTYMA6ijUkoOOOCALF26dNBN6RmbhTXLTtP+fWKSG+dQxyO3Ue5JSX4wLX912+sHd3iNR7flr+qwPAAAAAAAAAAAAAAAAAAAAADQQw9tGHbbbbdl06ZNg24OwJwsXLgw++23X6M2CktsFsbcXNGWf3wpZWlVVb+YZfmn76A+AAAAAAAAAAAAAAAAAAAAAKDPli5dmoMOOigPPPBA7rnnntx7773ZuHHjoJsFMKNFixZl2bJl2XXXXbN48eKUUgbdpJ6zWRgdq6rqZ6WUy5M8fvLQgiTPSHLBLKs4pi3/Tz1qGgAAAAAAAAAAAAAAAAAAAADQhVJKlixZkiVLlmSvvfZKVVXZsmVLqqoadNMAWpRSMjY21sjNwdrZLKxBqqrardMypZRjknxz2qGfVFW1ahZFv5iHNwtLkldkFpuFlVIek+Qp0w7dN5tyAAAAAAAAAAAAAAAAAAAAAED/lVIyPj4+6GYAjLSxQTeA2vp0kgen5V9USjlkFuXe3Jb/+6qqNvSuWQAAAAAAAAAAAAAAAAAAAAAAAM1hszDmpKqq65J8ctqhRUk+UUpZsr0ypZRfT/LyaYc2JjlzXhoIAAAAAAAAAAAAAAAAAAAAAADQADYLoxtvS7JuWv7oJF8vpTxm+kmllMWllN9P8rm28u+vquon89xGAAAAAAAAAAAAAAAAAAAAAACA2low6AZQX1VV3VpKeVGSf0myaPLw05NcVUr5XpIbkjwiyZOTrGgr/pUk/6tfbQUAAAAAAAAAAAAAAAAAAAAAAKgjm4XRlaqqLiylvDDJJ/LwhmAlyZGTaVs+k+SUqqoenP8WAgAAAAAAAAAAAAAAAAAAAAAA1NfYoBtA/VVV9dUkRyT5yyTrZjj1u0leUlXVSVVV3deXxgEAAAAAAAAAAAAAAAAAAAAAANTYgkE3gMGqqurCJKUH9fxXkteUUt6Q5OlJDkyyT5L7kvw0yferqrqx2+sAAAAAAAAAAAAAAAAAAAAAAACMEpuF0VNVVW1M8s1BtwMAAAAAAAAAAAAAAAAAAAAAAKAJxgbdAAAAAAAAAAAAAAAAAAAAAAAAAGDbbBYGAAAAAAAAAAAAAAAAAAAAAAAAQ8pmYQAAAAAAAAAAAAAAAAAAAAAAADCkbBYGAAAAAAAAAAAAAAAAAAAAAAAAQ8pmYQAAAAAAAAAAAAAAAAAAAAAAADCkbBYGAAAAAAAAAAAAAAAAAAAAAAAAQ8pmYQAAAAAAAAAAAAAAAAAAAAAAADCkFgy6ATAEFk3PXH/99YNqBwAAAAAAAABAV7bxvYdF2zoPAPrId/QAAAAAAAAAgNob9PfzSlVV/bweDJ1SyvOTfGnQ7QAAAAAAAAAAmAe/XlXV+YNuBACjy3f0AAAAAAAAAICG6uv388b6dSEAAAAAAAAAAAAAAAAAAAAAAACgMzYLAwAAAAAAAAAAAAAAAAAAAAAAgCFVqqoadBtgoEopj0jyrGmHbkmycUDNgfl0UJIvTcv/epIfD6gtQH+Jfxht5gCAejFvw2gzB8DoEv8wusQ/MB8WJdl/Wv5bVVXdPajGAIDv6DEiPN/BaDMHwOgS/wD1Yt6G0WYOgNEl/mG0mQOAXhvo9/MW9OtCMKwmA+78QbcD5lsppf3Qj6uqunIQbQH6S/zDaDMHANSLeRtGmzkARpf4h9El/oF59P1BNwAAHuI7eowCz3cw2swBMLrEP0C9mLdhtJkDYHSJfxht5gBgngzs+3ljg7owAAAAAAAAAAAAAAAAAAAAAAAAMDObhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADKkFg24AAH2zJsmZbXlgNIh/GG3mAIB6MW/DaDMHwOgS/zC6xD8AAEAzeL6D0WYOgNEl/gHqxbwNo80cAKNL/MNoMwcAjVKqqhp0GwAAAAAAAAAAAAAAAAAAAAAAAIBtGBt0AwAAAAAAAAAAAAAAAAAAAAAAAIBts1kYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADKkFg24AUB+llPEkByc5LMl+SR6R5IEk65L8OMmlVVXd1+NrLkzy9CQHJNk3yfoktyX5flVVN/XyWv1SSjk8yROTrEiyOMntSW5NclFVVRsG2bZ+KqUsT3J4kkOS7J5kSZK7kqxJ8r2qqn48wOZtpZTyqEy8b/sl2SXJz5L8JMnFVVVt6uF1DkzyS5kY749IsikT9+W6TNyXe3t1rQ7bJf57QPxPqFv8Yw7oFXPAhDrMAf0c83W4H9RPE+ftJvapV/r1rFIX7kcz46WJfeoVY76V9ZvmxUoT+9Qr4p/pmhgrTexTr4h/azcAADSXZ6He8Nn8hLo9z4z6+u5k28wBPWAOmFC3OWDUif/eEP8T6hD/1nipuybO203sU6/4bK6V+9HMeGlin3rFmG816us3TYyVJvapV8Q/7ZoYL03sU6+YA6zfwNCrqkqSJGm7KRM/bJ2a5CtJ7k5SzZA2J/mnJP+9B9ddkeQjSdbOcL2Lkry4y+s8OslLk7w3yYVJ7mm7xk09uo/LkvxJkp/O0J97knwqyUEDfL/n7X4kWZjk+CQfSnLFDsZSNXmvzkqyz4Bj4CVJLp6hnWsnx+qeXVxjaZI3Jbl2B/fkwST/mOS4PvVd/PfmPor/Gsb/fI+PWdyDHaVVfbgH5oDe3EdzQE3mgH6N+brcD6l+qYnzdhP71OP3vB/PKjsneUaSP0zy6Uw8s2xpu87LBz3+3Y9mxksT+2TM1/5+WL9pva74b/Z4r0X8Z8TXb5oYK03sU4/f85GO/36Nj1i7kSRJkiRJkvqcmv4sFJ/N9+1+1PV5JiO8vjvZNnNAb+6jOaCGc8B8j49Z3IMdpVXz3H/x35v7KP5rEv/9GvN1uR9S/VIT5+0m9qnH7/lIfzbnfmzVtsbFSxP7ZMzX/n4M5fpNE2OliX2q4XivRfxnxNduJtvYuHhpYp96/J6P9BzQr/ER6zeS1HUaeAMkSRrelOTcLn7I/nKSved43ROS3NHBtf42yc4d1H9Mkn/ZwQ+UPXlYmbzeUzKxq+1s+3Nfktf08X2e9/sxeQ/unONYWpfkNwcw/ndJ8pkO2nl7kuPncJ2nJblhDvfl3CRL57H/4l/8j1z893N8dBFfD6VV83wvzAHmgJGaA/o15utyP6T6pX6N4W1cd97m7Sb2qYfv97w/q2Tiw4sfZmLxfkf1v3zA43/k70cT46WJfTLm63s/Jq9j/aZPsdLEPtVpvNch/mP9prGx0sQ+9fD9Hvn479f4iLUbSZIkSZIkqc+pqc9C8dl83+9HHZ9nMuLru5NtMweYA0ZuDujn+Ogivh5Kq+bxPoh/8T9S8d+vMV+X+yHVL/VrDG/juj6b89lclRH4bs6w348mxksT+2TM1/d+TF5nKNdvmhgrTexTncZ7HeI/1m4aHS9N7FMP3++RnwP6NT5i/UaSepIWBGD7Dt3O8Z8muS4TP5gtyMTuwE9IMjbtnF9L8v+XUp5VVdXts71gKeWYJOclWTTtcJXkskw88O+W5ElJ9pz2+slJdi2lvKCqqi2zuMwTkxw32zZ1o5TynEzsnrq47aWfJLk8Ex86rszEDzYLJ19bmuQjpZSxqqo+3Idm9uN+rEiyfBvHN2biB9vbM7HD7B5Jjpz870N2S/KpUspeVVX92Ty3M0lSShlP8tkkJ7a9tCbJ9yfbelAmxmKZfG3vJF8qpTynqqrvzPI6T0tyQSYeIqa7N8l/ZCLGFic5OMkRaY2x/5lkr1LKiVVVbZxl1zoh/rsk/qfUKf77Nj5qwBzQJXPAlLrMAf0a83W5H9RPE+ftJvapa/16VklyUpJHdN/i+eV+TGlivDSxT10z5ltZv0nSzFhpYp+6Jv5bWL+Z0MRYaWKfuib+p1i7AQCgqZr6LOSz+VY+m29jfXeKOaBL5oApdZoDrPFOEP9dEv9T6hL/1nipuybO203sU9d8NtfK/ZjSxHhpYp+6Zsy3sn6TpJmx0sQ+dU38t7B287AmxksT+9Q1c8AU6zdQJ73efUySpOakJJfm4Z02L0vy+iQHbefcRyb5q2y9Q+e3k5RZXm9ltt4J9DtJHtt23uIkf5CJ/+lPP/eds7zOqdtoZ5VkQ5Lr247d1MX9W5Wtd0++Pslzt3Hu8iR/3nbug9s6dx7e53m/H5n4Ie+hOu5N8rEkxybZaRvnliQvzMSHte1tmvf7MdmG97Zdd+Pk+F/Udt5hSS5uO/fnSfadxTWWbOP+/mJybC/ZxvkHJTl/G/fk9Hm6B+Jf/I9c/PdrfExea3pd350cM52kBfN8L8wB5oCRmgP6Nebrcj+k+qUmzttN7FOP3ut5f1aZLH/XNu5nleTWbbz28gGOffejofHSxD4Z8/W8H7F+0/dYaWKf6jLeJ8sPffzH+k1jY6WJferRey3++zg+Yu1GkiRJkiRJ6nNq6rNQfDbf9/tRt+eZWN996JrmAHPAyM0B/Rofk9eaXpc1XvEv/n0/b2juh1S/1MR5u4l96tF77bM592Mk4qWJfTLm63k/MuTrN02MlSb2qS7jfbL80Md/rN00Ol6a2KcevdfmgD6Oj1i/kaSepIE3QJKk4U2Z2Hn7K0mO7KDMa7fxP9uXzbLsx9rKXZRtPNRPO/8FbedvSHLgLK5z6uQPat9P8tEkv5vkyZn4q0HHtNV5Uxf37zNtdV2XZK8dlHlTW5krk4zP8/s87/dj8ge3O5KclmTnWZbZI8lVbde/ekc/JPbgfjw6Wz9Q/PoM5++UrX+4/8tZXOflbWW2JDl+B2VKks+1lbs7bQ8cPboP4l/8j2L892V8TF5rel0Xzme/5tg+c4A5YKTmgH6N+brcD6l+qYnzdhP71IP3uS/PKpNl78rEX+P4xyRnTs5fe0++dmFbnS8f0Lh3Px5uX+PipYl9MubreT9i/abvsdLEPtVlvE+WrUP8W7+pmhkrTexTD95n8d/n8RFrN5IkSZIkSVKfU1OfheKz+b7fjzo9z8T67vTrmQPMAaM4B1jjrcS/+B+9+O/XmK/L/ZDql5o4bzexTz14n302536MTLw0sU/GfD3vR4Z8/aaJsdLEPtVlvE+WrUP8W7t5uH2Ni5cm9qkH77M5oM/jI9ZvJKknaeANkCRpeFOSVXMs9w9t/7P9x1mUOSTJ5mllHkhyyCzKfaLtWh+fRZnl2/thMr374O3RmfirQ9PresYsy/5rW7lXzvP73I/7sWK2P7C1lXvCNu7jUfN8Pz7Zdr3Vsyhz6OSYfajMpiSP3kGZz7dd54uzbN8+2frB4znzcB9WzbGc+Bf/7fXUKf7n/X5Mq296XRfOZ7/m2L5VcyxnDjAHtNdTizmgX2O+LvdDql9q4rzdxD714H3uy7PKZLnt/mWTDMGHEO7HVm1YNcdyQxsvTexTD95nY34A9yPWb6aXEf9z7FMP3mfx39oO6zdVM2OliX3qwfss/vs8PmLtRpIkSZIkSepzauqzUD+e3+Oz+fZ6avM806/n3Qz5+u7ktVbNsZw5wBzQXk+d5gBrvJX4F/+jF//9GvN1uR9S/VIT5+0m9qkH77PP5tyP7bVh1RzLDW28NLFPPXifjfkB3I8M+fpNE2OliX3qwfss/lvbYe3m4fatmmO5oY2XJvapB++zOaDP4yPWbySpJ2ksANtRVdVNcyz64bb8s2dR5qQk49PyX6iq6rpZlHt3W/43SilLZipQVdW6qqo2zKLubvz3pGWO/W5VVd+ZZdn3teVf0ZsmbVs/7kdVVWuqqrpvDuX+M0n7fZvNeJqTUspOSV7Sdrh9jG2lqqprk5w37dCCTIzpmTy6Lf/lHTZw4lq3J7mk7fAhsynbCfHfFfHfeo1axP/kNfsxPmrBHNAVc0DrNWoxB/RrzNflflA/TZy3m9inbvT5WSVVVf2sowb2mfvRqonx0sQ+dcOYb2X9puU6N82x6NDGShP71A3xvzXrNxOaGCtN7FM3xH8razcAADRVU5+FfDbfymfzD7O+u9W1bppjUXOAOaD9GrWYAyavaY034r9L4r/1GrWIf2u81F0T5+0m9qkbPptr5X60amK8NLFP3TDmW1m/abnOTXMsOrSx0sQ+dUP8b83azcOaGC9N7FM3zAGtrN9AvdgsDJgP32/L71RK2W0HZV7Yll89mwtVVXV1kn+fdmjnJMfNpuw8e2Zb/l86KPuNTOxs/pCjSyn7dt+k2mofT/vN47WOT7J0Wv7fqqr60SzLto/ZF+3g/J3b8rfO8jpJcktbfnkHZeeb+Bf/vdTP+Kc3zAHmgF6qwxwwlzHfq2sN4/2gfpo4bzexT0l/n1XqwP3ojSbGSxP7lBjz7azfdK+JsdLEPiXin95rYqw0sU+J+O8VazcAADRVU5+FOuGz+d7x/bytDfP6bmIOSMwBvWRNo17Ev/jvpTrEvzVe6q6J83YT+5T4bK6d+9EbTYyXJvYpMebbWb/pXhNjpYl9SsQ/86OJ8dLEPiXmgF6xfgMDYLMwYD5s3saxRds7uZSyT5IntJW/qIPrXdiWP6GDsvNlZVv+itkWrKrqgSTXTzs0luHo06C0j6ftjqUe+NW2/IUdlP12Wtv6pFLK3jOcf3tbvpOdjdvPvbODsvNN/Iv/Xupn/NMb5gBzQC/VYQ7oaMz3+FrDeD+onybO203sU9LfZ5U6cD96o4nx0sQ+JcZ8O+s33WtirDSxT4n4p/eaGCtN7FMi/nvF2g0AAE3V1GehTvhsvnd8P29rw7y+m5gDEnNAL1nTqBfxL/57qQ7xb42XumvivN3EPiU+m2vnfvRGE+OliX1KjPl21m+618RYaWKfEvHP/GhivDSxT4k5oFes38AA2CwMmA8Ht+U3J/n5DOcf0Za/vKqq+zq43sVt+cM7KDtfdm/L39Vh+fbzH9dFW+qufTz9bB6v1T4W/222BSfH7A/bDs80Fr/dln/ybK+1jXP/o4Oy8038i/9e6mf80xvmAHNAL9VhDuh0zPfyWsN4P6ifJs7bTexT0t9nlTpwP3qjiQNOiPoAAB9ASURBVPHSxD4lxnw76zfda2KsNLFPifin95oYK03sUyL+e8XaDQAATdXUZ6FO+Gy+d3w/b2vDvL6bmAMSc0AvWdOoF/Ev/nupDvFvjZe6a+K83cQ+JT6ba+d+9EYT46WJfUqM+XbWb7rXxFhpYp8S8c/8aGK8NLFPiTmgV6zfwADYLAyYDy9py19aVdWWGc4/rC1//TbP2r4f76C+QdjYll/cYfn284ehT31XStk1yXPbDl8yj5d8bFt+Psfi36R1nLyylLLTji5QSnlhkgOmHbqyqqrvzb6J8078i/+eGED8D9IBpZTVpZQrSynrSikbSyl3TOb/tpTyu6WU9i+4DCtzgDmgJ2o0B3Q65uekRveD+mnivN3EPiX9fVapA/ejN5oYL03sU2LMt7N+070mxkoT+5SI/2HSlPWbJsZKE/uUiP9esXYDAEBTNfVZqBM+m+8B38/bWg3WdxNzQGIO6IkRW9OwxjtB/Iv/JLWKf2u81F0T5+0m9inx2Vw796M3mhgvTexTYsy3s37TvSbGShP7lIj/YdKUtZukmfHSxD4l5oBesX4DA2CzMKCnSim7JHlV2+Ev7qBY+y6eN3d42Z+05fcopSzvsI5eW9uW37fD8u3n/7cu2lJnr06ydFr+7iTfnI8LTT4otj8sdjoW288/ZHsnVlV1Y5LTpx3aP8lnSilLt1MkpZSjMrEI9pAtSX6/wzbOG/E/Rfz3Rt/ifwg8KsnLM7EYsFuShUn2msyfnOSvktxcSvk/k3E2lMwBU8wBvTH0c8Acx/xcDf39oH6aOG83sU9J/59Vhp370RtNjJcm9ikx5ttZv+leE2OliX1KxP8Qqv36TRNjpYl9SsR/r1i7AQCgqZr6LDQHPpvvDd/Pa23jUK/vJuaAacwBvTFKaxrWeCeIf/H/kKGPf2u81F0T5+0m9inx2Vw796M3mhgvTexTYsy3s37TvSbGShP7lIj/IVT7tZukmfHSxD4l5oBesX4Dg2OzMKDX/neSfabl70rrw/e27NaW/69OLlhV1fokG9oOP6KTOubB1W35p862YCnlgCT7tR0edH/6rpSyKsn/ajt8TlVV7X8Rqlfax+Evqqq6r8M62sfujO9bVVV/luSPkmyaPPTrSa4qpbyllPKMUsohpZTDSykvKKWsTnJRHn742JTklVVVDdMPsuJ/gvjv0gDivw52TnJqku+VUg4fdGO2wxwwwRzQpRrNAXMZ8x2r0f2gfpo4bzexT8kAnlWGnPvRG02Mlyb2KTHm21m/6V4TY6WJfUrEfx0N+/pNE2OliX1KxH+vWLsBAKCpmvos1CmfzXfJ9/Nqub6bmAMeYg7okjWNbbLG20b8N1ON4t8aL3XXxHm7iX1KfDbXzv3ojSbGSxP7lBjz7azfdK+JsdLEPiXiv46Gfe0maWa8NLFPiTmgV6zfwIDYLAzomVLKC5O8vu3wn1RVdecOirbv4nv/HC7fXmbZHOropW+15V88047mbX5rG8cG3Z++KqUsSvLZtPb7piTvmcfLDmQcVlX1viRPSPLxJOuSHJiJH46/neTaJFdkYhfdl2diN+wk+XqSp1ZV9ck5tHFeiP8W4r8LA4r/Qdmc5MIkb03y/CRPzsTu4U/KxOL2+7L1gsGhSb5eSjmwf83cMXNAC3NAF+oyB3Qx5ju9Ti3uB/XTxHm7iX2apg5t7Cf3o0tNjJcm9mmaOrSxn6zfdKGJsdLEPk1ThzaOgkas3zQxVprYp2nq0MahZu0GAICmavizUKd8Nt8F38+r3/puYg5oYw7owoitaVjjbSX+tzbo/vRVXeLfGi9118R5u4l9mqYObewn96NLTYyXJvZpmjq0sZ+s33ShibHSxD5NU4c2joJGrN0kzYyXJvZpmjq0cahZv4HBslkY0BOllCck+f/aDl+Q5C9mUbz9B6r23V5no/0HqvY6++0fM7H76UN2S3LGjgqVUvZP8sZtvDReStmpN02rhb9J8svT8g8m+e057MrbiUGOwwVJtuThHfBn8skkf1hV1WWdNGw+if+tiP/uDCL+B+GtSR5ZVdWzq6p6R1VVX66q6vtVVV1fVdUPqqo6v6qqP8rEAve7klTTyu6T5AullDKIhrczB2zFHNCdoZ8DuhzznRr6+0H9NHHebmKfdlDfMLaxn9yPLjQxXprYpx3UN4xt7CfrN3PUxFhpYp92UN8wtrHpGrF+08RYaWKfdlDfMLZxaFm7AQCgqUbgWahTPpvvju/nbd//be/ug6a96vqAf09IQwpBsMRIxYGI4tsgDNSZGtHpM9Q4YEcUpEqZOklb6AtOx7Y604G20/oytDOtjE5rBVtbOhZfUAtFiYHaGmhxquIESyGlzkhooQZJhJZEkvBy+sfeT7K79+69e+29e+11zv35zFx/7HXv7nV+5zm/X+7rdz3PyeT6u4kasIIacD4Xpaehxyv/HyL/HzL5/NfjpXU91u0eY9rwfVMc45jMxzn0mC89xrTh+6Y4xjHp3+yox1zpMaYN3zfFMfaui95N0me+9BjThu+b4hgnS/8Gjs9mYcC5lVKelNmDt/lfYj6Y5M/XWuvqT51prM8cTK31E0l+ZOn095ZSvnvdZ0opX5jk1iSPXfe1exrepJVSfiDJdy6dfkWt9R0jD+Xg67CU8shSyj9N8ttJXprkui0+dlOS95RS3nyyZo5K/p8m/3c3ofw/uJMG1vKu9qved3+t9RVJ/vrSj56V5M8dZHADqAGnqQG7a6EGHGDNn3Wtyc8H7emxbvcY04Gu1/N/S8zHlnrMlx5jOtD1el7z+jdb6DFXeozpQNfrOf8Prof+TY+50mNMB7rehcx/vRsAAHp1Qe+FzuTZ/O4mdD+jv7slNeA0NWB3E6oBB6fHu5L8X/O1exrepLWQ/3q8tK7Hut1jTAe6Xs//LTEfW+oxX3qM6UDX63nN699socdc6TGmA12v5/w/uB56N0mf+dJjTAe63oWsAfo3MA1XHnsAQNtKKdcl+Q9Jnjh3+q4kN9ZaP7rl19y79HqX/zvP8meWv/MYXpXkeXl4t9KS5IdLKS9K8hNJ3p3ZrrFfcPK+v5aHfzH6UJL5RsX9tdZTu9KWUq7fdjC11jsHjf4ISil/I7PdoOe9utb6j7f8/PXbXmvFfIy6DkspVyZ5U5Lnzg8ryRsz293+XUnuTvLIJE9K8pzMbmafevLeb05yQynlxlrru3cY67nJ/zPJ/4GOnP+TV2v90VLKNyZ5/tzplyf5qSMNSQ04mxowUAs1YE9rfttrnWs+YJUe63ZLMbV0rzIG8zG+lvJlWy3FZM0vamk+9G8eMql12FJMLa33MfR2L7tsav2blnJlWy3FJP8X6d0AAMDuWroXOgLP5gfy9/Pa6u8masAGasBALfz9nGPS411L/m/QwnpvIf/1eGldj3W7pZhaulcZg/kYX0v5sq2WYrLmF7U0Hz30b1rKlW21FFNL630Mvd3LLpta7yZpK1+21VJMasAi/Ru4WGwWBuyslPLHkvxKki+dO313km+otf7OgK/q7heqJKm1PlhKeWGSW5I8fe5HX3dyrHNPkr+U5K1z5z6+5r0fGDCkMuC9oyulvCzJq5dO/1it9XsGfM155mPsdfj3stjI+mSSF9Vab1l634NJ3pvkvaWUH0/yz5P8xZOfXZvkl0opz6i13rPDeHcm/88m/4eZQP634h9msZn1NaWUx9Va162Rg1EDzqYGDNNCDdjjmt/mWvuYD1jQY91uMKaW7lXGYD5G1GC+bNRgTNb8opbmQ/9mZjLrsMGYWlrvY+jmXvYMk+jfNJgrGzUYk/xfpHcDAAA7aPBeaFSezQ8zgWfz+rsDqQFnUwOGmUANaIUe72nyf7NJr/cW8l+Pl9b1WLcbjKmle5UxmI8RNZgvGzUYkzW/qKX5aLp/02CubNRgTC2t9zF0cy97hkn0bpIm82WjBmNSAxbp38AFcsWxBwC0qZTy2CRvS/JVc6c/ltnOn+8d+HX/d+n15w0cyzU5/QvV6L/Yr1Jr/XCSr03y2iSf2uIjv5rkq5Pct3T+rj0PbVJKKd+Z5DVZ/OXyXyf5rhGHsbwOH1VKefTA77hu6fXKdXjyC/HyL6QvX9HIWlBrfSDJy5K8fe70E5O8cuA4z0X+b0f+b2ci+d+K38gs1y57RJKvHHsQasB21IDttFAD9rzmN11r8vNBe3qs2z3GtMFo9yqNMB8D9JgvPca0gTW/SP9mSz3mSo8xbSD/23T0/k2PudJjTBvI/wH0bgAA6NUFvBfaiWfz25nI/Yz+7gBqwHbUgO1MpAa0Qo93cSzyv3Et5L8eL63rsW73GNMGns0tMh8D9JgvPca0gTW/SP9mSz3mSo8xbSD/23T03k3SZ770GNMGasAA+jcwPTYLAwYrpTwmya1J/sTc6f+X5Lm11nfv8JXLu4U+eeDnl9//B7XWj6185xHUWu+rtf7VJF+W5O9k9rDxQ5ntdP6JJHck+TdJbkzyp2utdyb5iqWveddoAx5ZKeXFmf2SNv/fpNcneWmttY41jpOd45fXzZMGfs3yWly3E+43JZm/afhAZmtgo1rrZ5N8/9Lpm0opo+zkLf+Hkf9nm0r+t+Ik///X0ulBjZLzUgOGUQPO1kINOMCaP+tak58P2tNj3e4xpk1GvleZPPOxvR7zpceYNrHmF+nfbKfHXOkxpk3kf5uO3b/pMVd6jGkT+b89vRsAAHp1Ee+FzsOz+bNN5X5Gf3d7asAwasDZplIDWqHHe4r8b1gL+a/HS+t6rNs9xrSJZ3OLzMf2esyXHmPaxJpfpH+znR5zpceYNpH/bTp27ybpM196jGkTNWB7+jcwTVceewBAW052Rb0lydfMnb43yfNqrb+x49fesfT6SwZ+/ilLr9+34zgOqtb6gSSvOjk2uWHp9a+v+c7R/gLKIZRSvi3JT2a2e/NlP5fkppObtkH2MB93ZPZ/mbrsS3J6fZ5leS2u++wzll7/6sBfUt+R5MEkV528fnxmYz3ojYT83538P22C+d+KTy69Xt4h/WDUgN2pAae1UAMOtObXXWuv8wFJn3W75ZgaulcZhfk4vJbzZZ2WY7LmFzU0H/o3D5P/p8n/HbR+LzvAUfo3LefKOi3HJP8X6d0AAMD2Wr4XOjbP5k+b4LN5/d0N1IDdqQGnTbAGtEKP92Hyv1Et5L8eL63rsW63HFND9yqjMB+H13K+rNNyTNb8oobmo8n+Tcu5sk7LMTW03kfR+r3sAP595SI1YHdqwAb6NzBdV2x+C8BMKeWPJvmlJF83d/oPk/yZWuuvneOr//vS66eXUh414PPP3vB9TTnZwfw5S6fffoyxHFIp5flJfjqLG1e+KclLaq2fOc6oTq2d5QfCa538wvv0Dd932eOWXt+17XWSpNb66ST3LJ2+dsh3DCX/xyH/j5r/rVjO9bvHuKgaMA41YDo14IBrftW1Jj8ftKfHut1jTAONda/SCvNxhh7zpceYBrLmF+nfrNFjrvQY00Dyv02j9296zJUeYxpI/p9B7wYAgF65FxqHZ/P+ft4mx+jvJmrAWNQAPY0t6PE+TP43qIX81+OldT3W7R5jGsizuUXm4ww95kuPMQ1kzS/Sv1mjx1zpMaaB5H+b/PvKRWrA7tSAM+jfwLTZLAzYSinl6iRvTnJp7vT9SZ5fa33Heb671vp7Sf7b3Kkrs/iLwyaXll7/8nnGMwHPSXL93Ou311oP/n+kG1Mp5Zsy2831j8ydfkuS7zhp1BzLrUuvLw347Ndn8ZfQ22utH1nz3o8vvX70gOtcds3S63t3+I6tyP9RyX/WKqVcm9O7jf+fEa6rBoxHDZiAQ675Fdea/HzQnh7rdo8x7WCse5VWmI81esyXHmPagTW/SP9mhR5zpceYdiD/G3OM/k2PudJjTDuQ/2vo3QAA0Cv3QqPybP549HfXUANGpQawlh7vKZeWXsv/iWsh//V4aV2PdbvHmHbg2dwi87FGj/nSY0w7sOYX6d+s0GOu9BjTDuR/Y/z7ypUuLb1WA7anBqyhfwPTZ7MwYKNSylVJ/l2Sb5g7/UCSb621/sc9XeaNS6//wpZj+/Ikf3Lu1H1J3ranMR3L3156/dqjjOJASik3JvmFJFfNnX5bkm+rtT54nFE95K1JPjn3+oaTNbaNm5deL6/pecs3n8/c8hpJklLKU5M8Zun0oN3zB1xL/o9L/nOWF2fx9/ePJLnjkBdUA0anBhzZSGv+8rUmPx+0p8e63WNMOxrrXqUV5mOFHvOlx5h2ZM0v0r85fa3ucqXHmHYk/9szav+mx1zpMaYdyf8V9G4AAOiVe6HReTZ/PPq7q6+nBoxLDeAserwPj03+N6aF/NfjpXU91u0eY9qRZ3OLzMcKPeZLjzHtyJpfpH9z+lrd5UqPMe1I/rfHv69cHJsacD5qwAr6N9AGm4UBZyqlXJnkDUmeN3f6U0leVGt96x4v9fokn5l7/cKTG/ZNlh/avaHWev/+hjWuUspNSW6cO/XuzHZD7UIp5U8l+fdJrp47/Z8y+wXxgeOM6mG11j9M8vNLp5fX2CmllC9N8oK5U59O8lNnfOS2pdfPLqV85TZjPPFXll6/v9b60QGf34r8H5f85yyllM9P8neXTv9irbUe8JpqwIjUgOMbcc03MR+0p8e63WNMuxrxXqUJ5uO0HvOlx5h2Zc0v0r9Z1GOu9BjTruR/W8bu3/SYKz3GtCv5f5reDQAAvXIvNC7P5o9Lf/c0NWBcagBn0eM9Rf43pIX81+OldT3W7R5j2pVnc4vMx2k95kuPMe3Kml+kf7Oox1zpMaZdyf+2+PeVK6kB56AGnKZ/Aw2ptTocDsfKI8kjkvxskjp3fCrJCw50vZ9YutY7k1x9xvu/Zen9DyR58jnHcGnpO+885/ddOeC9L0zy4NJcP/PIa2Bv85HkhiSfWPq+tyd51DFjXDHOpyz9OdQkzz/j/VefrNX5979mwzVKkvcvfea3kjxmi/E9d8X4fvAA8yD/5f+Fy/8x5iPJlyX55oGfeUKS31yx5p9ywHjVADXgQtWAMdd8C/PhaO/osW73GNMexnjwe5Utx3Hb0nfefMi4zcdWY+guX3qMaQ9jtOZHno/o36y6nvyX/0fP/w1jvLQ0xjt3/J7J9296zJUeY9rDGOX/EdZH9G4cDofD4XA4HCMeF/FeaF/373Pf59n8w9/VxP3MGPe7aaC/e3ItNUANuHA1YIz5iB7vquvJf/l/1GPMNd/CfDjaO3qs2z3GtIcxejZnPtaNobt86TGmPYzRmh95PtJA/6bHXOkxphbW+5bjmET+bxjjpaUx3rnj90y+d3Nyze7ypceY9jBGNeAI6yP6Nw7HuY8rA7Dev0ry7UvnXpnk9lLK9QO/6666eefWv5/ZTqqfe/L6a5P8SinlpbXW/3H5TaWURyb5y0l+aOnzP1Rr/eA2gymlfGGysgY+Yen1lWfEem+t9e4Nl3pPKeUtSX4hya/XWj+7YixPS/KKJC9Z+tEra623b/j+vTj0fJRSnpnkl5NcM3f6/Um+K8l1pZQhw72/1nrXkA8MUWv93VLKjyT53rnTP19K+VtJfrzW+uDlk6WUr0jyLzNbq5fdk+T7NlyjllJekdm6uOxZSX7r5DpvqbXW+c+UUh6f5LszWyvzf1b3JPkn28Y3gPyX/xcu/5NR1scfT/LmUsp7kvzbJG+stf7OmrE8JslNme14//lLP/7BWuvvrrnGPqgBasBFqwGjrPmG5oP29Fi3e4zpXMa4V5n7/DVJrl3z46uXXl97xp/Jh2qtn97mmkOZjwU95kuPMZ2LNb9I/+YhPeZKjzGdi/w/Tf8mSZ+50mNM5yL/F+jdAADQq27vhTybPzUGz+ZP6O8uUAPUgAtXAxI93hPyX/5ftPzX46V1PdbtHmM6F8/mFpmPBT3mS48xnYs1v0j/5iE95kqPMZ2L/D9N7+YhPeZLjzGdixqwQP8GWlInsGOZw+GY5pHF3TjPe1za8pqXMtvpdf6zn81sx9+fTXJrkt9f8f2/mOQRA2K7cw8xvW6L69w99/5PJPm1zBoYr0/ytjPG8QMj/1kfdD6S/IM9rqXbRpiPRyS5ZcW1P5LZL6BvSPKuk7U5//MHknz9gOu8ek2Mdyd568k6+bmT9f+pFe+7P8lz5L/8l/9NzcelFe//eJL/kuRNSX4yyRszqzGr8r4mee0I86AGqAEXqgaMteZbmQ9He8dYa3jpmpdywLrdY0x7+rMe617l5j3N/fXm4/Dz0WO+9BiTNd/0fOjfyH/5P738v3MPY3zdhjWx/P5J9W96zJUeY5L/7a356N04HA6Hw+FwOEY+er4Ximfzo85Ha/cz0d9VA9SAi14DDj0fl1a8X49X/sv/I+b/WGu+lflwtHeMtYaXrnkpns0NimlPf9aezZmPC5EvPcZkzTc9H5Pt3/SYKz3G1Nh6v3lPc3/o/L9zD2N83YY1sfz+SfVues2XHmNSA9pb89G/cTj2cqza1RPgaGqtt5VSXpDkdUk+7+R0SfLVJ8cqP53kZbXWzxx+hOdyTZIbNrznY0leXmv9mRHGwxq11s+UUr49sx1+v2PuR9clee6aj/1+kptqrf95wKW+5+Rz35fkqrnzj0/yjRs++8EkN9dabxtwvUmT//L/Antskmdv8b77kvzNWuu/OPB4jkINUAOAtvRYt1uIacR7lSaYj+NpIV+GaiEma36R/s1xtJArQ7UQk/yfhAvfv2khV4ZqISb5DwAA7FsL90Ln4Nl8I/R3j0cNUAMuMD1e+S//gab0WLdbiMmzuUXm43hayJehWojJml+kf3McLeTKUC3EJP8n4cL3bpI28mWoFmJSA4AWXXHsAQAsq7XekuRpSV6T2YO5df5rkhfVWl9Sa71vlMEN98NJbs9st9iz/O8k35/kiz2EnIZa67211hcn+bOZrbV1/iDJjyV5Wq311oHXqLXWf5Tkq5L8s5y93i97X2ZNsKf11Mi6TP7L/wvgjiSvSvLOJJ/c8jP/M8krM9vxu8tG1mVqgBoAtKWzup2kjZjGuFdpifk4nhbyZagWYrLmF+nfHEcLuTJUCzHJ/1Hp36zRQq4M1UJM8h8AANi3Fu6FBvBsvlH6u8ejBqgBF4Ae7xryX/4DbemsbidpIybP5haZj+NpIV+GaiEma36R/s1xtJArQ7UQk/wfld7NGVrIl6FaiEkNAFpTaq3HHgPAWqWUqzLbDfjJSZ6Q2a6/H05ye631A8cc2xCllM9J8swkX5TZzrdXZ3YT8+Ekv11rfd8Rh8cWSilflORZSb4gyaOT3JXZ7vPvrLU+uKdrlCRfnuQZSa5N8jlJPp3k45mtlXfVWj+yj2u1QP7Tu1LKFUmemuSLkzwxyePy8Pr4WJLfS/KbtdaPHm2QR6QGALSll7o9r5WYxrhXaYn5OI5W8mWIVmKy5hfp34yvlVwZopWY5P849G/WayVXhmglJvkPAADsUyv3Qpt4Nt8+/d3jUAPonR7vevIfoC291O15rcTk2dwi83EcreTLEK3EZM0v0r8ZXyu5MkQrMcn/cejdnK2VfBmilZjUAGDqbBYGAAAAAAAAAAAAAAAAAAAAAAAAE3XFsQcAAAAAAAAAAAAAAAAAAAAAAAAArGazMAAAAAAAAAAAAAAAAAAAAAAAAJgom4UBAAAAAAAAAAAAAAAAAAAAAADARNksDAAAAAAAAAAAAAAAAAAAAAAAACbKZmEAAAAAAAAAAAAAAAAAAAAAAAAwUTYLAwAAAAAAAAAAAAAAAAAAAAAAgImyWRgAAAAAAAAAAAAAAAAAAAAAAABMlM3CAAAAAAAAAAAAAAAAAAAAAAAAYKJsFgYAAAAAAAAAAAAAAAAAAAAAAAATZbMwAAAAAAAAAAAAAAAAAAAAAAAAmCibhQEAAAAAAAAAAAAAAAAAAAAAAMBE2SwMAAAAAAAAAAAAAAAAAAAAAAAAJspmYQAAAAAAAAAAAAAAAAAAAAAAADBRNgsDAAAAAAAAAAAAAAAAAAAAAACAibJZGAAAAAAAAAAAAAAAAAAAAAAAAEyUzcIAAAAAAAAAAAAAAAAAAAAAAABgomwWBgAAAAAAAAAAAAAAAAAAAAAAABNlszAAAAAAAAAAAAAAAAAAAAAAAACYKJuFAQAAAAAAAAAAAAAAAAAAAAAAwETZLAwAAAAAAAAAAAAAAAAAAAAAAAAmymZhAAAAAAAAAAAAAAAAAAAAAAAAMFE2CwMAAAAAAAAAAAAAAAAAAAAAAICJslkYAAAAAAAAAAAAAAAAAAAAAAAATJTNwgAAAAAAAAAAAAAAAAAAAAAAAGCibBYGAAAAAAAAAAAAAAAAAAAAAAAAE2WzMAAAAAAAAAAAAAAAAAAAAAAAAJgom4UBAAAAAAAAAAAAAAAAAAAAAADARNksDAAAAAAAAAAAAAAAAAAAAAAAACbKZmEAAAAAAAAAAAAAAAAAAAAAAAAwUTYLAwAAAAAAAAAAAAAAAAAAAAAAgImyWRgAAAAAAAAAAAAAAAAAAAAAAABMlM3CAAAAAAAAAAAAAAAAAAAAAAAAYKJsFgYAAAAAAAAAAAAAAAAAAAAAAAATZbMwAAAAAAAAAAAAAAAAAAAAAAAAmCibhQEAAAAAAAAAAAAAAAAAAAAAAMBE2SwMAAAAAAAAAAAAAAAAAAAAAAAAJspmYQAAAAAAAAAAAAAAAAAAAAAAADBR/x+Xhcjgi63IuAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from apd.aggregation.analysis import interactable_plot_multiple_charts, configs\n", + "from apd.aggregation.utils import jupyter_page_file, profile_with_yappi, yappi_package_matches\n", + "import yappi\n", + "\n", + "with profile_with_yappi():\n", + " plot = interactable_plot_multiple_charts()\n", + " plot()\n", + "\n", + "with jupyter_page_file() as output:\n", + " yappi.get_func_stats(filter_callback=lambda stat:\n", + " yappi_package_matches(stat, [\"apd.aggregation\"])\n", + " ).print_all(output)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r\n", + "Clock type: WALL\r\n", + "Ordered by: totaltime, desc\r\n", + "\r\n", + "name ncall tsub ttot tavg \r\n", + "..futures\\thread.py:52 _WorkItem.run 7 0.000092 3.204091 0.457727\r\n", + "..tion\\analysis.py:373 run_in_thread 1 0.000053 1.844382 1.844382\r\n", + "..38\\Lib\\threading.py:859 Thread.run 2/1 0.000025 1.839877 0.919939\r\n", + "..rrent\\futures\\thread.py:66 _worker 2/1 0.000022 1.839852 0.919926\r\n", + "..lectorEventLoop.run_until_complete 1 0.000027 1.839745 1.839745\r\n", + "..ndowsSelectorEventLoop.run_forever 1 0.000088 1.839611 1.839611\r\n", + "..WindowsSelectorEventLoop._run_once 17 0.000408 1.839497 0.108206\r\n", + "..alysis.py:327 plot_multiple_charts 1 1.643447 1.839309 1.839309\r\n", + "..py:635 ThreadPoolExecutor.__exit__ 1 0.000005 1.837286 1.837286\r\n", + "..py:230 ThreadPoolExecutor.shutdown 1 0.000009 1.837281 1.837281\r\n", + "..8\\Lib\\threading.py:979 Thread.join 1 0.000006 1.837272 1.837272\r\n", + "..:1017 Thread._wait_for_tstate_lock 1 0.000011 1.837263 1.837263\r\n", + "..gation\\analysis.py:291 plot_sensor 1 0.000000 1.407986 1.407986\r\n", + "..query.py:88 get_data_by_deployment 1 1.397146 1.397188 1.397188\r\n", + "..d\\aggregation\\query.py:41 get_data 1 1.283592 1.375576 1.375576\r\n", + "..lchemy\\orm\\query.py:3232 Query.all 6 0.004333 1.362649 0.227108\r\n", + "..ctors.py:319 SelectSelector.select 17 0.000177 1.362418 0.080142\r\n", + "..tors.py:313 SelectSelector._select 17 0.000069 1.362216 0.080130\r\n", + "..y\\orm\\query.py:3400 Query.__iter__ 6 0.000054 0.958316 0.159719\r\n", + "..:3425 Query._execute_and_instances 6 0.000073 0.956631 0.159439\r\n", + "..ine\\base.py:916 Connection.execute 9 0.000062 0.740051 0.082228\r\n", + "..:589 PGDialect_psycopg2.do_execute 11 0.000042 0.738361 0.067124\r\n", + "..y:1159 Connection._execute_context 9 0.000307 0.734166 0.081574\r\n", + "..:291 Select._execute_on_connection 6 0.000047 0.731436 0.121906\r\n", + ".. Connection._execute_clauseelement 6 0.000127 0.731389 0.121898\r\n", + "..b\\asyncio\\events.py:79 Handle._run 29 0.000071 0.476528 0.016432\r\n", + "..lchemy\\orm\\loading.py:35 instances 10836 0.002535 0.400000 0.000037\r\n", + "..esult.py:1257 ResultProxy.fetchall 6 0.000339 0.363463 0.060577\r\n", + "..py:1217 ResultProxy._fetchall_impl 6 0.000013 0.359396 0.059899\r\n", + "..query.py:3440 Query._get_bind_args 6 0.000028 0.225079 0.037513\r\n", + "..419 Query._connection_from_session 6 0.000021 0.224996 0.037499\r\n", + "..session.py:1057 Session.connection 6 0.000029 0.224975 0.037496\r\n", + "..:1136 Session._connection_for_bind 6 0.000016 0.224937 0.037489\r\n", + "..onTransaction._connection_for_bind 6 0.000041 0.224921 0.037487\r\n", + "..py:2248 Engine._contextual_connect 1 0.000009 0.224836 0.224836\r\n", + "...py:2282 Engine._wrap_pool_connect 1 0.000003 0.223656 0.223656\r\n", + "..pool\\base.py:354 QueuePool.connect 1 0.000005 0.223653 0.223653\r\n", + "..alchemy\\pool\\base.py:770 _checkout 1 0.000011 0.223648 0.223648\r\n", + "..lalchemy\\pool\\base.py:490 checkout 1 0.000034 0.223632 0.223632\r\n", + "..pool\\impl.py:112 QueuePool._do_get 1 0.000011 0.223585 0.223585\r\n", + "..y:305 QueuePool._create_connection 1 0.000003 0.223563 0.223563\r\n", + "...py:434 _ConnectionRecord.__init__ 1 0.000013 0.223560 0.223560\r\n", + "..py:644 _ConnectionRecord.__connect 1 0.000043 0.223547 0.223547\r\n", + "..egation\\analysis.py:313 4 0.000024 0.186344 0.046586\r\n", + "..184 clean_temperature_fluctuations 4 0.000000 0.186293 0.046573\r\n", + "..gregation\\query.py:116 subiterator 4 0.000000 0.186226 0.046557\r\n", + "..sycopg2\\_json.py:164 typecast_json 10822 0.016073 0.181846 0.000017\r\n", + "..n38\\Lib\\json\\__init__.py:299 loads 10822 0.032198 0.165773 0.000015\r\n", + "..regation\\query.py:24 with_database 2 0.000043 0.140628 0.070314\r\n", + ".._GeneratorContextManager.__enter__ 141 0.000202 0.140299 0.000995\r\n", + "..ngine\\__init__.py:85 create_engine 1 0.000022 0.138392 0.138392\r\n", + "..s.py:52 PlainEngineStrategy.create 1 0.000087 0.138370 0.138370\r\n", + "..lib._bootstrap>:986 _find_and_load 10/2 0.000144 0.134169 0.013417\r\n", + "..strap>:956 _find_and_load_unlocked 10/2 0.000091 0.134084 0.013408\r\n", + "..lib._bootstrap>:650 _load_unlocked 10/2 0.000096 0.131844 0.013184\r\n", + "..>:777 SourceFileLoader.exec_module 9/2 0.000063 0.131659 0.014629\r\n", + "..y\\engine\\strategies.py:106 connect 1 0.000007 0.125748 0.125748\r\n", + "...py:488 PGDialect_psycopg2.connect 1 0.000005 0.125741 0.125741\r\n", + "..es\\psycopg2\\__init__.py:82 connect 1 0.000015 0.125737 0.125737\r\n", + "..rap>:211 _call_with_frames_removed 14/2 0.000022 0.122924 0.008780\r\n", + "..\\decoder.py:332 JSONDecoder.decode 10822 0.046535 0.121966 0.000011\r\n", + "..es\\psycopg2\\extras.py:686 10830 0.021009 0.119481 0.000011\r\n", + "..s\\postgresql\\psycopg2.py:735 dbapi 1 0.000004 0.113976 0.113976\r\n", + "..es\\psycopg2\\__init__.py:1 1 0.000046 0.102701 0.102701\r\n", + "..on38\\Lib\\uuid.py:130 UUID.__init__ 10830 0.069266 0.098473 0.000009\r\n", + "..lection.exec_once_unless_exception 1 0.000007 0.097685 0.097685\r\n", + "..y:316 _ListenerCollection.__call__ 2 0.000017 0.097680 0.048840\r\n", + "..ListenerCollection._exec_once_impl 1 0.000016 0.097677 0.097677\r\n", + "..ion\\database.py:77 from_sql_result 10822 0.019580 0.089918 0.000008\r\n", + "..ngine\\strategies.py:183 on_connect 2 0.000008 0.075679 0.037840\r\n", + "..tgresql\\psycopg2.py:847 on_connect 2 0.000013 0.075669 0.037834\r\n", + "..tgresql\\psycopg2.py:815 on_connect 2 0.000012 0.075598 0.037799\r\n", + "...py:903 PGDialect_psycopg2.oneshot 1 0.000013 0.075586 0.075586\r\n", + "..02 PGDialect_psycopg2._hstore_oids 1 0.000026 0.075573 0.075573\r\n", + "..ycopg2\\extras.py:909 type.get_oids 1 0.000038 0.075520 0.075520\r\n", + "..gregation\\analysis.py:63 draw_date 4 0.000031 0.072437 0.018109\r\n", + "..\\matplotlib\\__init__.py:1535 inner 4 0.000037 0.072405 0.018101\r\n", + "..axes.py:1651 AxesSubplot.plot_date 4 0.000035 0.072294 0.018074\r\n", + "..xes\\_axes.py:1412 AxesSubplot.plot 4 0.000082 0.071675 0.017919\r\n", + ".._collections.py:121 result._asdict 10826 0.061631 0.063835 0.000006\r\n", + "..nal>:849 SourceFileLoader.get_code 9 0.000243 0.063569 0.007063\r\n", + "..._bootstrap>:1017 _handle_fromlist 20/18 0.000074 0.061614 0.003081\r\n", + "..nal>:969 SourceFileLoader.get_data 9 0.000317 0.060499 0.006722\r\n", + "..b._bootstrap>:549 module_from_spec 10/9 0.000052 0.059592 0.005959\r\n", + ".. ExtensionFileLoader.create_module 1 0.000007 0.059071 0.059071\r\n", + ".._base.py:1842 AxesSubplot.add_line 4 0.000108 0.055449 0.013862\r\n", + "..68 AxesSubplot._update_line_limits 4 0.000106 0.053296 0.013324\r\n", + "..tlib\\lines.py:1018 Line2D.get_path 10 0.000046 0.052416 0.005242\r\n", + "..lotlib\\lines.py:664 Line2D.recache 10 0.001214 0.052370 0.005237\r\n", + "...py:168 AxesSubplot.convert_xunits 48 0.000078 0.048491 0.001010\r\n", + "..b\\axis.py:1562 XAxis.convert_units 12 0.000042 0.048443 0.004037\r\n", + "..s\\matplotlib\\dates.py:1911 convert 6 0.000028 0.048202 0.008034\r\n", + "..s\\matplotlib\\dates.py:401 date2num 6 0.000082 0.048174 0.008029\r\n", + "..on_base.py:2063 vectorize.__call__ 4 0.000117 0.047604 0.011901\r\n", + "...py:2154 vectorize._vectorize_call 4 0.003677 0.047487 0.011872\r\n", + "..\\figure.py:1259 Figure.add_subplot 1 0.000035 0.043835 0.043835\r\n", + "..ubplots.py:18 AxesSubplot.__init__ 1 0.000041 0.043601 0.043601\r\n", + "..tplotlib\\dates.py:210 _to_ordinalf 8467 0.029289 0.041988 0.000005\r\n", + "..oder.py:343 JSONDecoder.raw_decode 10822 0.037424 0.037424 0.000003\r\n", + "..\\_base.py:378 AxesSubplot.__init__ 1 0.000143 0.036550 0.036550\r\n", + "..chemy\\orm\\loading.py:83 6 0.013648 0.033343 0.005557\r\n", + "..\\psycopg2\\extensions.py:1 1 0.000186 0.025350 0.025350\r\n", + "..\\axes\\_base.py:948 AxesSubplot.cla 1 0.000154 0.024886 0.024886\r\n", + "..lchemy\\util\\langhelpers.py:1506 go 1 0.000010 0.021983 0.021983\r\n", + "..ne\\strategies.py:194 first_connect 1 0.000039 0.021972 0.021972\r\n", + "..:715 PGDialect_psycopg2.initialize 1 0.000026 0.021725 0.021725\r\n", + "..2456 PGDialect_psycopg2.initialize 1 0.000048 0.021698 0.021698\r\n", + "..l\\psycopg2.py:747 _psycopg2_extras 2 0.000024 0.020241 0.010120\r\n", + "..:779 PGDialect_psycopg2.on_connect 1 0.000012 0.020232 0.020232\r\n", + "..:307 PGDialect_psycopg2.initialize 1 0.000057 0.019880 0.019880\r\n", + "..53 _process_plot_var_args.__call__ 8 0.000061 0.015955 0.001994\r\n", + ".. _process_plot_var_args._plot_args 4 0.000148 0.015865 0.003966\r\n", + "..\\axis.py:884 XAxis.set_tick_params 8 0.000121 0.015507 0.001938\r\n", + "..\\axis.py:687 _LazyTickList.__get__ 6/4 0.000042 0.013303 0.002217\r\n", + "..tplotlib\\axis.py:56 XTick.__init__ 6 0.000433 0.013213 0.002202\r\n", + "..n\\query.py:76 get_deployment_by_id 4 0.010913 0.013115 0.003279\r\n", + "..function__ internals>:2 atleast_1d 24 0.000048 0.012936 0.000539\r\n", + "..y\\core\\shape_base.py:24 atleast_1d 24 0.000157 0.012825 0.000534\r\n", + "..b\\cbook\\__init__.py:1320 _check_1d 8 0.000033 0.012712 0.001589\r\n", + "..mpy\\core\\_asarray.py:88 asanyarray 72 0.000061 0.012631 0.000175\r\n", + "..xes\\_base.py:2716 AxesSubplot.grid 2 0.000022 0.012290 0.006145\r\n", + "..matplotlib\\axis.py:1456 XAxis.grid 4 0.000042 0.012264 0.003066\r\n", + "..ages\\psycopg2\\extras.py:1 1 0.000066 0.010984 0.010984\r\n", + "..chemy\\orm\\loading.py:84 10830 0.010873 0.010873 0.000001\r\n", + "..otlib\\lines.py:269 Line2D.__init__ 30 0.001371 0.010610 0.000354\r\n", + "..on-68gteq6k\\lib\\re.py:287 _compile 85 0.000336 0.010565 0.000124\r\n", + "..q6k\\lib\\sre_compile.py:759 compile 12 0.000126 0.009982 0.000832\r\n", + "..es\\_axes.py:299 AxesSubplot.legend 1 0.000023 0.009283 0.009283\r\n", + "..tlib\\legend.py:306 Legend.__init__ 1 0.000569 0.009178 0.009178\r\n", + "..ct_psycopg2._check_unicode_returns 1 0.000050 0.009017 0.009017\r\n", + "..portlib._bootstrap>:890 _find_spec 10 0.000165 0.009003 0.000900\r\n", + "..thon38\\Lib\\uuid.py:231 UUID.__eq__ 10834 0.006940 0.008965 0.000001\r\n", + "..y\\util\\_collections.py:112 __new__ 10830 0.004995 0.008821 0.000001\r\n", + "..my\\engine\\default.py:415 1 0.000011 0.008803 0.008803\r\n", + "..ngine\\default.py:378 check_unicode 2 0.000053 0.008793 0.004396\r\n", + "..bootstrap_external>:1334 find_spec 10 0.000027 0.008728 0.000873\r\n", + "..bootstrap_external>:1302 _get_spec 10 0.000084 0.008701 0.000870\r\n", + "..ib\\axis.py:967 XAxis.set_clip_path 2 0.000036 0.008564 0.004282\r\n", + "..e.py:1134 Connection._execute_text 3 0.000057 0.008541 0.002847\r\n", + "..es\\matplotlib\\pyplot.py:427 figure 1 0.000053 0.008060 0.008060\r\n", + "..xternal>:1431 FileFinder.find_spec 17 0.000331 0.007932 0.000467\r\n", + "..ion-68gteq6k\\lib\\re.py:248 compile 10 0.000012 0.007849 0.000785\r\n", + "..d_bases.py:3325 new_figure_manager 1 0.000026 0.007841 0.007841\r\n", + "..tlib\\figure.py:275 Figure.__init__ 1 0.000636 0.007679 0.007679\r\n", + ".._psycopg2._get_server_version_info 1 0.000022 0.007530 0.007530\r\n", + "..end.py:727 Legend._init_legend_box 1 0.000729 0.007464 0.007464\r\n", + ".._bootstrap_external>:80 _path_stat 40 0.000085 0.007435 0.000186\r\n", + "..py:1293 Connection._cursor_execute 2 0.000014 0.007370 0.003685\r\n", + "..8gteq6k\\lib\\sre_parse.py:937 parse 12 0.000138 0.007321 0.000610\r\n", + "..ation\\analysis.py:191 datapoint_ok 10826 0.007280 0.007280 0.000001\r\n", + "..rrent\\futures\\thread.py:158 submit 7 0.000144 0.007162 0.001023\r\n", + "..6k\\lib\\sre_parse.py:435 _parse_sub 59/12 0.000420 0.007081 0.000120\r\n", + "..s.py:129 AxesSubplot.update_params 1 0.000018 0.006972 0.006972\r\n", + "..ec.py:586 SubplotSpec.get_position 1 0.000379 0.006954 0.006954\r\n", + "..gteq6k\\lib\\sre_parse.py:493 _parse 75/14 0.002524 0.006897 0.000092\r\n", + "..dPoolExecutor._adjust_thread_count 7 0.000109 0.006843 0.000978\r\n", + "..kages\\psycopg2\\_json.py:1 1 0.000022 0.006798 0.006798\r\n", + ":1 Select. 8 0.000037 0.006789 0.000849\r\n", + "..sql\\elements.py:405 Select.compile 8 0.000033 0.006752 0.000844\r\n", + "..l\\elements.py:470 Select._compiler 8 0.000041 0.006719 0.000840\r\n", + "..y:527 PGCompiler_psycopg2.__init__ 8 0.000111 0.006678 0.000835\r\n", + "..otlib\\axis.py:1944 XAxis._get_tick 3 0.000021 0.006665 0.002222\r\n", + "..otlib\\axis.py:2231 YAxis._get_tick 3 0.000021 0.006593 0.002198\r\n", + "..y:274 PGCompiler_psycopg2.__init__ 8 0.000058 0.006562 0.000820\r\n", + ":1 DataPoint.__init__ 10822 0.006522 0.006522 0.000001\r\n", + "..py:349 PGCompiler_psycopg2.process 8 0.000029 0.006504 0.000813\r\n", + "..rs.py:86 Select._compiler_dispatch 97/8 0.000331 0.006475 0.000067\r\n", + "..5 PGCompiler_psycopg2.visit_select 8 0.000210 0.006430 0.000804\r\n", + "..ib\\axis.py:334 XTick._apply_params 14 0.000333 0.006152 0.000439\r\n", + "..\\artist.py:731 XAxis.set_clip_path 26 0.000415 0.005825 0.000224\r\n", + "..\\Lib\\threading.py:834 Thread.start 2 0.000033 0.005717 0.002858\r\n", + "..ib\\threading.py:270 Condition.wait 4 0.000112 0.005571 0.001393\r\n", + "..egation\\analysis.py:212 8613 0.005513 0.005513 0.000001\r\n", + "..tplotlib\\artist.py:1095 Line2D.set 70 0.000373 0.005507 0.000079\r\n", + "..38\\Lib\\threading.py:540 Event.wait 2 0.000027 0.005495 0.002747\r\n", + "..otlib\\axis.py:825 XAxis._set_scale 16 0.000049 0.005371 0.000336\r\n", + "..ap_external>:90 _path_is_mode_type 13 0.000052 0.005363 0.000413\r\n", + "..ootstrap_external>:99 _path_isfile 12 0.000029 0.005197 0.000433\r\n", + "..et_default_locators_and_formatters 16 0.000126 0.005196 0.000325\r\n", + "..base.py:553 AxesSubplot._init_axis 1 0.000047 0.005155 0.005155\r\n", + "...py:89 HandlerLine2D.legend_artist 4 0.000047 0.004979 0.001245\r\n", + "..lib\\artist.py:974 Rectangle.update 140 0.001036 0.004733 0.000034\r\n", + "..y:229 HandlerLine2D.create_artists 4 0.000094 0.004674 0.001168\r\n", + "..s\\matplotlib\\axis.py:841 XAxis.cla 12 0.000087 0.004533 0.000378\r\n", + "..my\\sql\\compiler.py:2127 8 0.000069 0.004473 0.000559\r\n", + "..iler_psycopg2._label_select_column 29 0.000356 0.004404 0.000152\r\n", + "..hes.py:260 Rectangle.get_transform 18 0.000077 0.004024 0.000224\r\n", + "..plotlib\\axis.py:744 XAxis.__init__ 2 0.000070 0.003973 0.001986\r\n", + "<__array_function__ internals>:2 dot 67 0.000177 0.003854 0.000058\r\n", + "..\\transforms.py:1986 Affine2D.scale 13 0.000153 0.003812 0.000293\r\n", + "..ib\\axis.py:229 XTick.set_clip_path 6 0.000032 0.003711 0.000619\r\n", + "..:776 Rectangle.get_patch_transform 18 0.000038 0.003626 0.000201\r\n", + ".. Rectangle._update_patch_transform 18 0.000235 0.003587 0.000199\r\n", + "..se.py:2873 AxesSubplot.tick_params 2 0.000242 0.003572 0.001786\r\n", + "..tlib\\artist.py:217 Rectangle.stale 171.. 0.002093 0.003507 0.000002\r\n", + "..sSelectorEventLoop.run_in_executor 6 0.000084 0.003206 0.000534\r\n", + "..\\__init__.py:1640 normalize_kwargs 74 0.002561 0.003200 0.000043\r\n", + "..icker.py:2848 AutoLocator.__init__ 16 0.000044 0.003190 0.000199\r\n", + "..icker.py:2051 AutoLocator.__init__ 16 0.000061 0.003118 0.000195\r\n", + "..t.py:1240 ResultProxy.process_rows 9 0.000037 0.003098 0.000344\r\n", + "..y\\engine\\result.py:1253 9 0.003062 0.003062 0.000340\r\n", + "..ker.py:2126 AutoLocator.set_params 16 0.000144 0.003058 0.000191\r\n", + "..gine\\base.py:908 Connection.scalar 2 0.000026 0.002811 0.001405\r\n", + "..es\\numpy\\core\\_methods.py:32 _amin 2 0.000005 0.002705 0.001352\r\n", + "..10 PGCompiler_psycopg2.visit_label 29 0.000329 0.002675 0.000092\r\n", + "..ges\\numpy\\core\\_methods.py:47 _all 1 0.000018 0.002555 0.002555\r\n", + "..matplotlib\\text.py:170 Text.update 65 0.000382 0.002549 0.000039\r\n", + "..b\\patches.py:42 Rectangle.__init__ 7 0.000199 0.002508 0.000358\r\n", + "..teq6k\\lib\\sre_compile.py:598 _code 12 0.000055 0.002475 0.000206\r\n", + "..ation-68gteq6k\\lib\\re.py:186 match 70 0.000140 0.002414 0.000034\r\n", + "..ages\\psycopg2\\_range.py:1 1 0.000042 0.002367 0.002367\r\n", + "..tplotlib\\text.py:121 Text.__init__ 24 0.000320 0.002354 0.000098\r\n", + "..ent\\base.py:295 dispatcher.__get__ 10 0.000075 0.002312 0.000231\r\n", + "..yncio\\events.py:756 new_event_loop 1 0.000022 0.002309 0.002309\r\n", + "..ib\\axis.py:485 XTick._get_gridline 3 0.000044 0.002301 0.000767\r\n", + "..ctorEventLoopPolicy.new_event_loop 1 0.000014 0.002285 0.002285\r\n", + ".._WindowsSelectorEventLoop.__init__ 1 0.000031 0.002271 0.002271\r\n", + ".. _GeneratorContextManager.__exit__ 142.. 0.000276 0.002267 0.000016\r\n", + "..arkers.py:222 MarkerStyle.__init__ 38 0.000106 0.002225 0.000059\r\n", + "..alect_psycopg2.get_isolation_level 1 0.000009 0.002224 0.002224\r\n", + "..otlib\\axes\\_base.py:363 4 0.000021 0.002202 0.000550\r\n", + "..\\orm\\session.py:1554 Session.query 6 0.000028 0.002200 0.000367\r\n", + "..1 _process_plot_var_args._makeline 4 0.000055 0.002180 0.000545\r\n", + "..y:930 AxesSubplot._gen_axes_spines 1 0.000012 0.002176 0.002176\r\n", + "..my\\orm\\query.py:164 Query.__init__ 6 0.000024 0.002172 0.000362\r\n", + "..lotlib\\axes\\_base.py:945 5 0.000015 0.002164 0.000433\r\n", + "..lib\\ticker.py:2103 _validate_steps 16 0.001337 0.002151 0.000134\r\n", + "..plotlib\\spines.py:517 linear_spine 4 0.000037 0.002150 0.000537\r\n", + "..m\\query.py:193 Query._set_entities 6 0.000089 0.002148 0.000358\r\n", + "..init__.py:791 RcParams.__getitem__ 1343 0.001641 0.002147 0.000002\r\n", + "..sSelectorEventLoop._make_self_pipe 1 0.000029 0.002112 0.002112\r\n", + "..\\numpy\\core\\_asarray.py:16 asarray 176 0.000180 0.002109 0.000012\r\n", + "..psycopg2\\_range.py:290 RangeCaster 1 0.000006 0.002101 0.002101\r\n", + "..py:133 GridSpec.get_grid_positions 1 0.000057 0.002062 0.002062\r\n", + "..lchemy\\event\\base.py:87 5 0.000156 0.002010 0.000402\r\n", + "..hon38\\Lib\\socket.py:579 socketpair 1 0.000134 0.001971 0.001971\r\n", + "..kers.py:289 MarkerStyle.set_marker 42 0.000327 0.001957 0.000047\r\n", + "..lib\\sre_parse.py:254 Tokenizer.get 1519 0.001009 0.001919 0.000001\r\n", + "..lotlib\\spines.py:36 Spine.__init__ 4 0.000116 0.001912 0.000478\r\n", + ".._axes.py:147 AxesSubplot.set_title 4 0.000101 0.001903 0.000476\r\n", + "..ap_external>:578 _compile_bytecode 9 0.000053 0.001885 0.000209\r\n", + "..ray_function__ internals>:2 cumsum 3 0.000009 0.001882 0.000627\r\n", + "..alchemy\\engine\\url.py:221 make_url 1 0.000009 0.001880 0.001880\r\n", + "..ine\\url.py:234 _parse_rfc1738_args 1 0.000020 0.001870 0.001870\r\n", + "..py\\core\\fromnumeric.py:2358 cumsum 3 0.000009 0.001860 0.000620\r\n", + "..y\\core\\fromnumeric.py:55 _wrapfunc 3 0.000014 0.001851 0.000617\r\n", + "..my\\util\\deprecations.py:115 warned 21/20 0.000099 0.001850 0.000088\r\n", + "..ery.py:4539 _ColumnEntity.__init__ 32/7 0.000771 0.001838 0.000057\r\n", + "..mpy\\core\\fromnumeric.py:42 _wrapit 3 0.000024 0.001835 0.000612\r\n", + "..otlib\\artist.py:74 Figure.__init__ 88 0.001132 0.001813 0.000021\r\n", + "..pg2\\extras.py:1007 CompositeCaster 1 0.000009 0.001811 0.001811\r\n", + "..py:1960 Affine2D.rotate_deg_around 18 0.000105 0.001796 0.000100\r\n", + "<__array_function__ internals>:2 any 76 0.000151 0.001772 0.000023\r\n", + "..q6k\\lib\\sre_compile.py:71 _compile 111.. 0.000776 0.001769 0.000016\r\n", + "..nContext_psycopg2.get_result_proxy 9 0.000073 0.001769 0.000197\r\n", + "..ib\\axis.py:603 YTick._get_gridline 3 0.000039 0.001746 0.000582\r\n", + "..ttr.py:227 _EmptyListener.__init__ 77 0.000409 0.001742 0.000023\r\n", + "..b\\axis.py:459 XTick._get_tick1line 3 0.000093 0.001732 0.000577\r\n", + "...py:1247 BboxTransformFrom.__add__ 78 0.000260 0.001679 0.000022\r\n", + "..result.py:767 ResultProxy.__init__ 9 0.000119 0.001671 0.000186\r\n", + "..ction__ internals>:2 unravel_index 1 0.000005 0.001658 0.001658\r\n", + "..s\\matplotlib\\colors.py:157 to_rgba 51 0.000440 0.001653 0.000032\r\n", + "..nction__ internals>:2 column_stack 12 0.000039 0.001614 0.000135\r\n", + "..forms.py:817 Bbox.update_from_path 4 0.000067 0.001561 0.000390\r\n", + "..ery.py:3929 Query._compile_context 6 0.000129 0.001552 0.000259\r\n", + "...py:793 ResultProxy._init_metadata 9 0.000094 0.001552 0.000172\r\n", + "..t.py:49 Spine._stale_axes_callback 302 0.000583 0.001530 0.000005\r\n", + "..s.py:880 memoized_property.__get__ 99/89 0.000358 0.001519 0.000015\r\n", + "..lib\\shape_base.py:597 column_stack 12 0.000149 0.001496 0.000125\r\n", + "..e\\fromnumeric.py:73 _wrapreduction 85 0.000478 0.001495 0.000018\r\n", + "..4 PGCompiler_psycopg2.visit_column 37 0.000844 0.001478 0.000040\r\n", + "..numpy\\core\\fromnumeric.py:2189 any 76 0.000191 0.001477 0.000019\r\n", + "..ycopg2\\extras.py:805 HstoreAdapter 1 0.000007 0.001458 0.001458\r\n", + "..ult.py:269 ResultMetaData.__init__ 9 0.000173 0.001445 0.000161\r\n", + "..res\\_base.py:517 Future.set_result 7 0.000077 0.001440 0.000206\r\n", + "..ger.py:619 FontProperties.__init__ 23 0.000332 0.001434 0.000062\r\n", + "..unction__ internals>:2 concatenate 29 0.000060 0.001405 0.000048\r\n", + "..y:2462 composite_transform_factory 78 0.000261 0.001376 0.000018\r\n", + "..sql\\operators.py:358 Column.__eq__ 10/5 0.000033 0.001365 0.000136\r\n", + "..sql\\elements.py:740 Column.operate 5 0.000015 0.001345 0.000269\r\n", + "..ansform.contains_branch_seperately 4 0.000037 0.001339 0.000335\r\n", + "..b\\axis.py:574 YTick._get_tick1line 3 0.000036 0.001315 0.000438\r\n", + "..teGenericTransform.contains_branch 4 0.000029 0.001287 0.000322\r\n", + ":1 Comparator. 5 0.000021 0.001285 0.000257\r\n", + "..\\sqlalchemy\\event\\api.py:34 listen 3 0.000015 0.001278 0.000426\r\n", + "..\\type_api.py:64 Comparator.operate 5 0.000039 0.001264 0.000253\r\n", + ".. QueryEventsDispatch._for_instance 8 0.000024 0.001262 0.000158\r\n", + "..se.py:325 Future._invoke_callbacks 7 0.000055 0.001261 0.000180\r\n", + "..b\\axis.py:589 YTick._get_tick2line 3 0.000027 0.001250 0.000417\r\n", + "..116 QueryEventsDispatch._for_class 8 0.000031 0.001238 0.000155\r\n", + "..ine\\base.py:69 Connection.__init__ 2 0.000042 0.001217 0.000608\r\n", + ".._comparator.py:41 _boolean_compare 5 0.000056 0.001207 0.000241\r\n", + "..py:77 QueryEventsDispatch.__init__ 8 0.000082 0.001206 0.000151\r\n", + "..cio\\futures.py:364 _call_set_state 6 0.000042 0.001206 0.000201\r\n", + ".. _ClsLevelDispatch.update_subclass 77 0.000399 0.001202 0.000016\r\n", + "..sycopg2\\extensions.py:146 make_dsn 1 0.000017 0.001179 0.001179\r\n", + "..ib\\axis.py:1504 XAxis.update_units 14 0.000096 0.001168 0.000083\r\n", + "..cbook\\__init__.py:1933 _setattr_cm 280 0.000727 0.001165 0.000004\r\n", + "..ctorEventLoop.call_soon_threadsafe 6 0.000037 0.001160 0.000193\r\n", + "..t\\registry.py:193 _EventKey.listen 4/3 0.000077 0.001157 0.000289\r\n", + "..xesSubplot._set_title_offset_trans 5 0.000122 0.001149 0.000230\r\n", + "..er.py:72 HandlerLine2D.update_prop 8 0.000034 0.001139 0.000142\r\n", + "..__init__.py:2073 _check_isinstance 94 0.000869 0.001139 0.000012\r\n", + "..offsetbox.py:783 TextArea.__init__ 5 0.000093 0.001137 0.000227\r\n", + "..MetaData._merge_cursor_description 9 0.000098 0.001134 0.000126\r\n", + "..py:1240 Line2D.set_markerfacecolor 30 0.000106 0.001118 0.000037\r\n", + "..5 CompositeGenericTransform.__eq__ 12/8 0.000035 0.001090 0.000091\r\n", + "..es.py:341 Rectangle._set_facecolor 20 0.000067 0.001055 0.000053\r\n", + "..ms.py:1639 TransformWrapper.__eq__ 4 0.000010 0.001052 0.000263\r\n", + ".._psycopg2._get_default_schema_name 1 0.000004 0.001048 0.001048\r\n", + "..y:163 TransformedBbox.set_children 149 0.000873 0.001042 0.000007\r\n", + "..rms.py:2093 BlendedAffine2D.__eq__ 4 0.000027 0.001042 0.000260\r\n", + "..\\sre_parse.py:233 Tokenizer.__next 1696 0.001032 0.001032 0.000001\r\n", + "..wsSelectorEventLoop._write_to_self 6 0.000028 0.001026 0.000171\r\n", + "..t_comparator.py:359 _check_literal 5 0.000066 0.001021 0.000204\r\n", + "..s.py:1709 IdentityTransform.__eq__ 9/8 0.000612 0.001013 0.000113\r\n", + "..\\spines.py:226 Spine.register_axis 4 0.000008 0.001009 0.000252\r\n", + "..b\\axis.py:470 XTick._get_tick2line 3 0.000027 0.000999 0.000333\r\n", + ".._api.py:527 NullType._dialect_info 26 0.000128 0.000985 0.000038\r\n", + "..matplotlib\\spines.py:238 Spine.cla 4 0.000004 0.000982 0.000246\r\n", + "..9 PoolEventsDispatch._for_instance 2 0.000005 0.000975 0.000488\r\n", + "..:116 PoolEventsDispatch._for_class 2 0.000007 0.000971 0.000485\r\n", + "...py:77 PoolEventsDispatch.__init__ 2 0.000046 0.000963 0.000482\r\n", + "..lements.py:4145 Column._bind_param 5 0.000049 0.000942 0.000188\r\n", + "..pe_api.py:450 VARCHAR.dialect_impl 34 0.000097 0.000924 0.000027\r\n", + "..arkers.py:244 MarkerStyle._recache 80 0.000208 0.000923 0.000012\r\n", + "..nsforms.py:1972 Affine2D.translate 36 0.000172 0.000893 0.000025\r\n", + "..ents.py:942 BindParameter.__init__ 5 0.000112 0.000893 0.000179\r\n", + "..6k\\lib\\abc.py:96 __instancecheck__ 141 0.000157 0.000879 0.000006\r\n", + ".._function__ internals>:2 full_like 4 0.000014 0.000867 0.000217\r\n", + "..ist.py:358 Rectangle.set_transform 85 0.000295 0.000867 0.000010\r\n", + "..umpy\\core\\numeric.py:341 full_like 4 0.000030 0.000839 0.000210\r\n", + "..GIdentifierPreparer_psycopg2.quote 105 0.000165 0.000838 0.000008\r\n", + "..tplotlib\\artist.py:1006 140 0.000107 0.000834 0.000006\r\n", + "..piler_psycopg2._setup_select_stack 8 0.000088 0.000830 0.000104\r\n", + "..ib\\transforms.py:727 Bbox.__init__ 41 0.000282 0.000827 0.000020\r\n", + "..text_psycopg2.get_result_processor 30 0.000083 0.000823 0.000027\r\n", + "..otlib\\axis.py:544 YTick._get_text1 3 0.000044 0.000805 0.000268\r\n", + "..ry.py:4056 Query._simple_statement 6 0.000093 0.000802 0.000134\r\n", + "..sforms.py:1940 Affine2D.rotate_deg 18 0.000166 0.000798 0.000044\r\n", + "..\\patches.py:704 Rectangle.__init__ 2 0.000027 0.000793 0.000396\r\n", + "..threading.py:394 Semaphore.acquire 7 0.000100 0.000787 0.000112\r\n", + "..function__ internals>:2 empty_like 4 0.000014 0.000772 0.000193\r\n", + ":1 select 8 0.000064 0.000770 0.000096\r\n", + "..otlib\\axis.py:559 YTick._get_text2 3 0.000038 0.000762 0.000254\r\n", + "..CompositeGenericTransform.__init__ 69 0.000255 0.000761 0.000011\r\n", + "..ernal>:1479 FileFinder._fill_cache 1 0.000077 0.000740 0.000740\r\n", + ".. NullType._cached_result_processor 30 0.000178 0.000739 0.000025\r\n", + "...py:978 Rectangle._update_property 42 0.000194 0.000726 0.000017\r\n", + "..my\\engine\\result.py:463 6 0.000119 0.000720 0.000120\r\n", + "..lib\\transforms.py:782 from_extents 20 0.000102 0.000710 0.000036\r\n", + ":1 Select.__init__ 8 0.000126 0.000706 0.000088\r\n", + "...py:3065 Select._get_display_froms 8 0.000363 0.000704 0.000088\r\n", + "..hon38\\Lib\\contextlib.py:238 helper 141 0.000235 0.000704 0.000005\r\n", + "..arse.py:164 SubPattern.__getitem__ 707 0.000520 0.000702 0.000001\r\n", + "..tplotlib\\ticker.py:2118 _staircase 16 0.000089 0.000697 0.000044\r\n", + "..ok\\__init__.py:2108 _check_in_list 449 0.000565 0.000690 0.000002\r\n", + "..lines.py:1143 Line2D.set_linestyle 34 0.000284 0.000683 0.000020\r\n", + "..orm\\session.py:1002 Session.commit 1 0.000010 0.000682 0.000682\r\n", + "..ult.py:924 ResultProxy._soft_close 9 0.000043 0.000679 0.000075\r\n", + "..n.py:500 SessionTransaction.commit 1 0.000042 0.000673 0.000673\r\n", + "..xternal>:1265 _path_importer_cache 19 0.000032 0.000670 0.000035\r\n", + "..sSelectorEventLoop._read_from_self 6 0.000062 0.000662 0.000110\r\n", + "..otlib\\axis.py:427 XTick._get_text1 3 0.000032 0.000661 0.000220\r\n", + "..hreading.py:249 Condition.__exit__ 61 0.000614 0.000660 0.000011\r\n", + "..b\\sre_compile.py:536 _compile_info 12 0.000120 0.000648 0.000054\r\n", + "..1254 Line2D.set_markerfacecoloralt 30 0.000080 0.000645 0.000021\r\n", + "..93 vectorize._get_ufunc_and_otypes 4 0.000076 0.000640 0.000160\r\n", + "..sql\\type_api.py:546 NullType.adapt 13 0.000055 0.000638 0.000049\r\n", + "..Preparer_psycopg2._requires_quotes 22 0.000133 0.000636 0.000029\r\n", + "..otstrap_external>:1252 _path_hooks 1 0.000024 0.000636 0.000636\r\n", + "..1333 Connection._safe_close_cursor 9 0.000021 0.000635 0.000071\r\n", + "..transforms.py:1924 Affine2D.rotate 18 0.000301 0.000632 0.000035\r\n", + "..ms.py:986 TransformedBbox.__init__ 21 0.000147 0.000625 0.000030\r\n", + "..hes.py:348 Rectangle.set_facecolor 12 0.000023 0.000619 0.000052\r\n", + "..>:1010 SourceFileLoader.path_stats 9 0.000024 0.000617 0.000069\r\n", + "..egation-68gteq6k\\lib\\re.py:201 sub 5 0.000024 0.000614 0.000123\r\n", + "..ray_function__ internals>:2 hstack 16 0.000025 0.000608 0.000038\r\n", + "..ing>:1 PGDialect_psycopg2.__init__ 2 0.000012 0.000593 0.000296\r\n", + "..\\matplotlib\\transforms.py:763 unit 19 0.000080 0.000585 0.000031\r\n", + "..nghelpers.py:1167 constructor_copy 13 0.000121 0.000583 0.000045\r\n", + "..ase.py:3767 AxesSubplot.xaxis_date 4 0.000017 0.000583 0.000146\r\n", + "..sion.py:3236 sessionmaker.__call__ 1 0.000014 0.000579 0.000579\r\n", + "..qlalchemy\\orm\\base.py:222 generate 6 0.000049 0.000578 0.000096\r\n", + "..nd.py:558 Legend._set_artist_props 9 0.000085 0.000576 0.000064\r\n", + "..iler_psycopg2._compose_select_body 8 0.000089 0.000575 0.000072\r\n", + "..otlib\\axis.py:1812 XAxis.axis_date 4 0.000045 0.000566 0.000141\r\n", + ":1 Session.__init__ 1 0.000005 0.000563 0.000563\r\n", + "..velDispatch._assign_cls_collection 77 0.000249 0.000561 0.000007\r\n", + "..atplotlib\\lines.py:632 Line2D.axes 42 0.000206 0.000552 0.000013\r\n", + "..rm\\session.py:655 Session.__init__ 1 0.000024 0.000551 0.000551\r\n", + "..y\\orm\\session.py:893 Session.begin 3 0.000013 0.000548 0.000183\r\n", + "..b\\artist.py:336 Rectangle.pchanged 373 0.000436 0.000548 0.000001\r\n", + "..selectable.py:2760 Select.__init__ 8 0.000175 0.000540 0.000068\r\n", + "..ansforms.py:1701 Affine2D.__init__ 165 0.000352 0.000537 0.000003\r\n", + "..py:220 SessionTransaction.__init__ 3 0.000029 0.000535 0.000178\r\n", + "..tist.py:804 Rectangle.get_animated 1714 0.000533 0.000533 0.000000\r\n", + "..nsforms.py:126 Affine2D.invalidate 76 0.000275 0.000533 0.000007\r\n", + "..38\\Lib\\socket.py:285 socket.accept 1 0.000037 0.000532 0.000532\r\n", + ".._psycopg2._setup_crud_result_proxy 3 0.000016 0.000524 0.000175\r\n", + "..\\patches.py:436 Rectangle.set_fill 7 0.000032 0.000523 0.000075\r\n", + "..nits.py:197 Registry.get_converter 24/14 0.000201 0.000520 0.000022\r\n", + "..otlib\\axis.py:444 XTick._get_text2 3 0.000025 0.000517 0.000172\r\n", + ".._bootstrap>:477 _init_module_attrs 10 0.000100 0.000517 0.000052\r\n", + "..is.py:1670 XAxis.set_minor_locator 16 0.000092 0.000517 0.000032\r\n", + "..py:663 PGDialect_psycopg2.__init__ 1 0.000027 0.000515 0.000515\r\n", + "..k\\lib\\abc.py:100 __subclasscheck__ 85/14 0.000067 0.000514 0.000006\r\n", + "..:382 WeakKeyDictionary.__getitem__ 248 0.000508 0.000508 0.000002\r\n", + "..\\lines.py:730 Line2D.set_transform 38 0.000085 0.000508 0.000013\r\n", + "..ckages\\cycler.py:349 Cycler.by_key 10 0.000223 0.000505 0.000051\r\n", + "..\\asyncio\\futures.py:351 _set_state 6 0.000023 0.000503 0.000084\r\n", + "..umpy\\core\\shape_base.py:285 hstack 16 0.000116 0.000487 0.000030\r\n", + ".._base.py:3093 AxesSubplot.set_xlim 1 0.000060 0.000483 0.000483\r\n", + "..artist.py:695 Rectangle.set_figure 95 0.000217 0.000482 0.000005\r\n", + "..es.py:2396 FancyBboxPatch.__init__ 1 0.000023 0.000480 0.000480\r\n", + "..on__ internals>:2 broadcast_arrays 10 0.000034 0.000478 0.000048\r\n", + "..e_parse.py:174 SubPattern.getwidth 138.. 0.000375 0.000478 0.000003\r\n", + "..lalchemy\\event\\base.py:243 _listen 3 0.000010 0.000476 0.000159\r\n", + "..__.py:138 CallbackRegistry.connect 33 0.000252 0.000473 0.000014\r\n", + "..ler_psycopg2._truncated_identifier 34 0.000151 0.000470 0.000014\r\n", + "..is.py:1654 XAxis.set_major_locator 17 0.000121 0.000470 0.000028\r\n", + "..gine\\default.py:753 _init_compiled 6 0.000166 0.000470 0.000078\r\n", + ".. _GeneratorContextManager.__init__ 141 0.000401 0.000469 0.000003\r\n", + "..istry.py:246 _EventKey.base_listen 3 0.000082 0.000467 0.000156\r\n", + "..:903 AxesSubplot._set_artist_props 7 0.000135 0.000464 0.000066\r\n", + "..py:913 AxesSubplot._gen_axes_patch 1 0.000004 0.000464 0.000464\r\n", + "..\\futures.py:315 _copy_future_state 6 0.000106 0.000461 0.000077\r\n", + "..lib\\transforms.py:82 Bbox.__init__ 306 0.000454 0.000454 0.000001\r\n", + "..ore\\numerictypes.py:365 issubdtype 4 0.000025 0.000451 0.000113\r\n", + "..lotlib\\colors.py:123 _is_nth_color 51 0.000107 0.000451 0.000009\r\n", + "..ansforms.py:1831 Affine2D.__init__ 49 0.000156 0.000449 0.000009\r\n", + "..offsetbox.py:175 TextArea.__init__ 16 0.000049 0.000449 0.000028\r\n", + ":1 Query.order_by 1 0.000002 0.000428 0.000428\r\n", + "..r.py:63 HandlerLine2D._update_prop 8 0.000011 0.000425 0.000053\r\n", + "..re\\numerictypes.py:293 issubclass_ 8 0.000019 0.000425 0.000053\r\n", + "..53 _ListenerCollection.__getattr__ 45/24 0.000285 0.000424 0.000009\r\n", + "..e_compile.py:276 _optimize_charset 34 0.000263 0.000415 0.000012\r\n", + "..HandlerLine2D._default_update_prop 8 0.000010 0.000414 0.000052\r\n", + "..y\\orm\\query.py:1856 Query.order_by 1 0.000007 0.000413 0.000413\r\n", + ".. Line2D._split_drawstyle_linestyle 64 0.000256 0.000413 0.000006\r\n", + "..ide_tricks.py:206 broadcast_arrays 10 0.000179 0.000412 0.000041\r\n", + "..s.py:424 Spine.get_spine_transform 28/24 0.000181 0.000406 0.000014\r\n", + "..query.py:329 Query._adapt_col_list 1 0.000003 0.000405 0.000405\r\n", + "..b\\lines.py:1327 Line2D.update_from 8 0.000061 0.000403 0.000050\r\n", + "..lchemy\\orm\\query.py:330 1 0.000009 0.000402 0.000402\r\n", + "..ine\\default.py:981 _init_statement 3 0.000233 0.000401 0.000134\r\n", + "..sql\\elements.py:4087 Column._label 10 0.000026 0.000394 0.000039\r\n", + "..y:4564 _literal_as_label_reference 3 0.000009 0.000390 0.000130\r\n", + "..es.py:315 Rectangle._set_edgecolor 20 0.000076 0.000387 0.000019\r\n", + "..array_function__ internals>:2 diff 16 0.000028 0.000387 0.000024\r\n", + "..pg2\\extras.py:303 NamedTupleCursor 1 0.000019 0.000382 0.000382\r\n", + "..py:120 ThreadPoolExecutor.__init__ 2 0.000074 0.000374 0.000187\r\n", + "..xis.py:1525 XAxis._update_axisinfo 13 0.000026 0.000368 0.000028\r\n", + "..elements.py:4099 Column._gen_label 10 0.000123 0.000368 0.000037\r\n", + "..rtist.py:937 Rectangle.set_visible 69 0.000142 0.000366 0.000005\r\n", + "..hreading.py:222 Condition.__init__ 13 0.000311 0.000361 0.000028\r\n", + "<__array_function__ internals>:2 all 9 0.000071 0.000355 0.000039\r\n", + "..zipimport>:63 zipimporter.__init__ 1 0.000016 0.000350 0.000350\r\n", + "..\\langhelpers.py:301 get_cls_kwargs 35/16 0.000206 0.000348 0.000010\r\n", + "...py:399 _ListenerCollection.append 3 0.000007 0.000345 0.000115\r\n", + "..atplotlib\\path.py:96 Path.__init__ 14 0.000076 0.000344 0.000025\r\n", + "...py:1624 FigureCanvasBase.__init__ 2 0.000173 0.000339 0.000170\r\n", + "..ry.py:267 _EventKey.append_to_list 3 0.000231 0.000338 0.000113\r\n", + ".._bootstrap_external>:62 _path_join 82 0.000138 0.000338 0.000004\r\n", + "..ap_external>:294 cache_from_source 18 0.000119 0.000335 0.000019\r\n", + "...py:1626 XAxis.set_major_formatter 17 0.000066 0.000330 0.000019\r\n", + "..ase.py:1731 RootTransaction.commit 1 0.000019 0.000326 0.000326\r\n", + "..._bootstrap>:376 ModuleSpec.cached 19 0.000049 0.000324 0.000017\r\n", + "..mpy\\lib\\function_base.py:1147 diff 16 0.000281 0.000320 0.000020\r\n", + "..er.py:512 ScalarFormatter.__init__ 16 0.000165 0.000317 0.000020\r\n", + "..422 WeakKeyDictionary.__contains__ 387 0.000313 0.000313 0.000001\r\n", + "..l\\selectable.py:3036 Select._froms 8 0.000141 0.000313 0.000039\r\n", + "..9 PGCompiler_psycopg2.visit_binary 5 0.000029 0.000312 0.000062\r\n", + "..tlib\\axis.py:1951 XAxis._get_label 1 0.000030 0.000311 0.000311\r\n", + "..base.py:563 AxesSubplot.set_figure 1 0.000026 0.000308 0.000308\r\n", + "..fierPreparer_psycopg2.format_label 29 0.000027 0.000306 0.000011\r\n", + "..py:1765 RootTransaction._do_commit 1 0.000012 0.000304 0.000304\r\n", + "..5 Rectangle._stale_figure_callback 134 0.000139 0.000303 0.000002\r\n", + "..otlib\\lines.py:645 Line2D.set_data 30 0.000098 0.000302 0.000010\r\n", + "..asyncio\\futures.py:377 wrap_future 6 0.000060 0.000301 0.000050\r\n", + "..tlib\\axis.py:2238 YAxis._get_label 1 0.000024 0.000300 0.000300\r\n", + "..py:4442 _anonymous_label.apply_map 7 0.000252 0.000300 0.000043\r\n", + "..ons.py:971 lightweight_named_tuple 6 0.000162 0.000300 0.000050\r\n", + "..my\\engine\\result.py:496 3 0.000020 0.000296 0.000099\r\n", + "...py:543 NullType._gen_dialect_impl 13 0.000038 0.000295 0.000023\r\n", + "..chemy\\orm\\loading.py:59 6 0.000037 0.000293 0.000049\r\n", + "..ase.py:746 Connection._commit_impl 1 0.000022 0.000292 0.000292\r\n", + "...py:1640 XAxis.set_minor_formatter 16 0.000053 0.000286 0.000018\r\n", + ".._init__.py:1610 safe_first_element 24 0.000070 0.000285 0.000012\r\n", + "..tionContext_psycopg2.create_cursor 9 0.000085 0.000276 0.000031\r\n", + "..ootstrap_external>:424 _get_cached 10 0.000043 0.000275 0.000027\r\n", + "..py:2408 CompositeAffine2D.__init__ 9 0.000044 0.000273 0.000030\r\n", + ".._.py:1309 _to_unmasked_float_array 34 0.000116 0.000273 0.000008\r\n", + "..py:3730 Select._columns_plus_names 8 0.000046 0.000270 0.000034\r\n", + "..y:542 PGDialect_psycopg2.do_commit 1 0.000014 0.000268 0.000268\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..hreading.py:388 Semaphore.__init__ 2 0.000014 0.000267 0.000134\r\n", + ".._psycopg2._generate_generic_binary 5 0.000033 0.000264 0.000053\r\n", + "..s.py:1398 Line2D.set_dash_capstyle 30 0.000145 0.000262 0.000009\r\n", + "..\\cbook\\__init__.py:1938 140 0.000205 0.000262 0.000002\r\n", + "..nal>:1520 path_hook_for_FileFinder 1 0.000022 0.000261 0.000261\r\n", + "..hes.py:330 Rectangle.set_edgecolor 12 0.000025 0.000260 0.000022\r\n", + "..es.py:768 Rectangle._convert_units 18 0.000084 0.000258 0.000014\r\n", + "..y:4696 _ColumnEntity.row_processor 27 0.000176 0.000257 0.000010\r\n", + "..k\\lib\\encodings\\utf_8.py:15 decode 48 0.000188 0.000257 0.000005\r\n", + "..PGDialect_psycopg2.type_descriptor 13 0.000030 0.000257 0.000020\r\n", + "..:136 Affine2D._invalidate_internal 90/76 0.000214 0.000256 0.000003\r\n", + "..:395 WeakKeyDictionary.__setitem__ 97 0.000253 0.000256 0.000003\r\n", + "..chemy\\orm\\query.py:4625 27 0.000065 0.000250 0.000009\r\n", + "..tplotlib\\lines.py:59 _scale_dashes 83 0.000123 0.000249 0.000003\r\n", + "..24 AxesSubplot.get_yaxis_transform 29/15 0.000047 0.000249 0.000009\r\n", + "..numpy\\core\\fromnumeric.py:2277 all 9 0.000041 0.000249 0.000028\r\n", + "..atplotlib\\artist.py:192 Spine.axes 831 0.000248 0.000248 0.000000\r\n", + "..b\\sre_parse.py:96 State.closegroup 27 0.000035 0.000243 0.000009\r\n", + "..s.py:266 MarkerStyle.set_fillstyle 38 0.000124 0.000241 0.000006\r\n", + "..ger.py:810 FontProperties.set_size 27 0.000167 0.000241 0.000009\r\n", + "..s\\_base.py:31 _process_plot_format 4 0.000033 0.000239 0.000060\r\n", + "..chemy\\sql\\elements.py:4327 __new__ 17 0.000109 0.000239 0.000014\r\n", + "..py:2644 ScaledTranslation.__init__ 17 0.000081 0.000238 0.000014\r\n", + "..r.py:774 FontProperties.set_weight 27 0.000211 0.000237 0.000009\r\n", + "...py:180 AxesSubplot.convert_yunits 48 0.000064 0.000233 0.000005\r\n", + "..units.py:58 _is_natively_supported 12 0.000072 0.000232 0.000019\r\n", + "..my\\sql\\type_api.py:1475 adapt_type 13 0.000077 0.000227 0.000017\r\n", + "..s.py:2544 BboxTransformTo.__init__ 20 0.000076 0.000226 0.000011\r\n", + "..48 AxesSubplot.get_xaxis_transform 29/15 0.000037 0.000223 0.000008\r\n", + "..b\\sre_parse.py:249 Tokenizer.match 311 0.000150 0.000222 0.000001\r\n", + "..py:1137 Text.set_verticalalignment 33 0.000098 0.000222 0.000007\r\n", + "..il\\_collections.py:775 unique_list 41 0.000166 0.000221 0.000005\r\n", + "..x.py:690 DrawingArea.get_transform 4 0.000006 0.000220 0.000055\r\n", + "..>:147 _ModuleLockManager.__enter__ 10 0.000027 0.000219 0.000022\r\n", + "..tlib\\text.py:535 Text.set_clip_box 15 0.000057 0.000216 0.000014\r\n", + "..sre_parse.py:172 SubPattern.append 182 0.000164 0.000209 0.000001\r\n", + "...py:523 YTick._get_text1_transform 3 0.000015 0.000208 0.000069\r\n", + "..800 AxesSubplot._update_transScale 2 0.000024 0.000206 0.000103\r\n", + "..indowsSelectorEventLoop._call_soon 23 0.000097 0.000204 0.000009\r\n", + "..xis.py:1969 XAxis._get_offset_text 1 0.000012 0.000204 0.000204\r\n", + "..b\\threading.py:761 Thread.__init__ 2 0.000128 0.000203 0.000101\r\n", + "..manager.py:855 FontProperties.copy 3 0.000012 0.000199 0.000066\r\n", + "..ootstrap_external>:104 _path_isdir 1 0.000003 0.000198 0.000198\r\n", + "..re_parse.py:160 SubPattern.__len__ 261 0.000148 0.000197 0.000001\r\n", + "..on.py:579 SessionTransaction.close 2 0.000022 0.000197 0.000098\r\n", + "..ib\\artist.py:719 Text.set_clip_box 23 0.000038 0.000195 0.000008\r\n", + "..xis.py:2258 YAxis._get_offset_text 1 0.000013 0.000195 0.000195\r\n", + "..lines.py:1092 Line2D.set_linewidth 30 0.000090 0.000192 0.000006\r\n", + "..sSubplot.get_yaxis_text1_transform 3 0.000033 0.000192 0.000064\r\n", + "...py:2266 blended_transform_factory 8 0.000033 0.000190 0.000024\r\n", + "..s.py:749 MarkerStyle._set_tickdown 3 0.000018 0.000189 0.000063\r\n", + "..xis.py:325 XTick._set_artist_props 30 0.000038 0.000188 0.000006\r\n", + "..til.py:368 surface_column_elements 54 0.000119 0.000185 0.000003\r\n", + "..setbox.py:661 DrawingArea.__init__ 4 0.000023 0.000184 0.000046\r\n", + "..lors.py:193 _to_rgba_no_colorcycle 8 0.000103 0.000183 0.000023\r\n", + ":1 __new__ 91 0.000108 0.000181 0.000002\r\n", + "..\\offsetbox.py:356 HPacker.__init__ 7 0.000017 0.000180 0.000026\r\n", + "..WindowsSelectorEventLoop.call_soon 17 0.000051 0.000178 0.000010\r\n", + "..lines.py:1058 Line2D.set_drawstyle 34 0.000088 0.000178 0.000005\r\n", + "..yncio\\futures.py:335 _chain_future 6 0.000060 0.000177 0.000029\r\n", + "...py:1352 Line2D.set_dash_joinstyle 30 0.000088 0.000176 0.000006\r\n", + "..y:4713 _ColumnEntity.setup_context 27 0.000148 0.000173 0.000006\r\n", + "..b._bootstrap>:157 _get_module_lock 18 0.000077 0.000172 0.000010\r\n", + ".._bootstrap_external>:64 82 0.000128 0.000171 0.000002\r\n", + "..pool\\impl.py:35 QueuePool.__init__ 1 0.000011 0.000171 0.000171\r\n", + "..y:2175 XAxis.set_default_intervals 1 0.000018 0.000170 0.000170\r\n", + "..y:949 Text.set_horizontalalignment 28 0.000075 0.000170 0.000006\r\n", + "..ib\\sre_parse.py:286 Tokenizer.tell 171 0.000133 0.000169 0.000001\r\n", + "..text.py:240 Text.set_rotation_mode 24 0.000106 0.000169 0.000007\r\n", + "..539 PGDialect_psycopg2.do_rollback 2 0.000010 0.000169 0.000085\r\n", + "..:220 Spine._ensure_position_is_set 28/24 0.000023 0.000169 0.000006\r\n", + ":1 Query.filter 5 0.000016 0.000169 0.000034\r\n", + "..\\lib\\function_base.py:257 iterable 97 0.000125 0.000168 0.000002\r\n", + "..68gteq6k\\lib\\weakref.py:44 __new__ 33 0.000135 0.000168 0.000005\r\n", + "...py:407 XTick._get_text1_transform 3 0.000009 0.000166 0.000055\r\n", + "..xesSubplot._set_lim_and_transforms 1 0.000026 0.000165 0.000165\r\n", + "...py:1412 Line2D.set_solid_capstyle 30 0.000083 0.000165 0.000006\r\n", + "..uture.set_running_or_notify_cancel 7 0.000124 0.000165 0.000024\r\n", + "..y\\util\\_collections.py:822 to_list 14 0.000064 0.000164 0.000012\r\n", + "..xternal>:1426 FileFinder._get_spec 10 0.000056 0.000162 0.000016\r\n", + "..sql\\elements.py:4451 _as_truncated 10 0.000028 0.000162 0.000016\r\n", + "..\\axis.py:1605 YAxis.set_label_text 5 0.000022 0.000161 0.000032\r\n", + "..es.py:375 FancyBboxPatch.set_alpha 1 0.000006 0.000160 0.000160\r\n", + "...py:526 YTick._get_text2_transform 3 0.000012 0.000159 0.000053\r\n", + "..GCompiler_psycopg2.visit_bindparam 5 0.000043 0.000159 0.000032\r\n", + "..045 AxesSubplot._process_unit_info 6 0.000020 0.000159 0.000026\r\n", + "..reading.py:246 Condition.__enter__ 61 0.000111 0.000158 0.000003\r\n", + "..py:1367 Line2D.set_solid_joinstyle 30 0.000079 0.000158 0.000005\r\n", + "..er.py:1712 AutoLocator.nonsingular 2 0.000009 0.000157 0.000078\r\n", + "..sSubplot.get_xaxis_text1_transform 3 0.000040 0.000156 0.000052\r\n", + "..asyncio\\tasks.py:653 ensure_future 2 0.000023 0.000154 0.000077\r\n", + "..axes.py:256 AxesSubplot.set_ylabel 4 0.000017 0.000150 0.000037\r\n", + "..q6k\\lib\\sre_compile.py:423 _simple 45 0.000051 0.000150 0.000003\r\n", + "..atplotlib\\legend.py:813 1 0.000026 0.000149 0.000149\r\n", + "..otlib\\axis.py:1579 XAxis.set_units 12 0.000039 0.000148 0.000012\r\n", + "..lib\\transforms.py:2779 nonsingular 2 0.000031 0.000148 0.000074\r\n", + "..b\\spines.py:381 Spine.set_position 4 0.000023 0.000147 0.000037\r\n", + "..sSubplot.get_yaxis_text2_transform 3 0.000019 0.000146 0.000049\r\n", + "..s.py:729 MarkerStyle._set_tickleft 3 0.000015 0.000146 0.000049\r\n", + "..\\lib\\enum.py:828 RegexFlag.__and__ 12 0.000068 0.000143 0.000012\r\n", + "..ts.py:724 ColumnClause.__getattr__ 9 0.000082 0.000143 0.000016\r\n", + "..lalchemy\\orm\\query.py:4148 __new__ 32 0.000063 0.000141 0.000004\r\n", + "..\\offsetbox.py:489 HPacker.__init__ 5 0.000012 0.000141 0.000028\r\n", + ".._base.py:2048 _process_single_axis 12 0.000029 0.000139 0.000012\r\n", + "..lib\\lines.py:1282 Line2D.set_xdata 39 0.000084 0.000139 0.000004\r\n", + ".._base.py:3484 AxesSubplot.set_ylim 1 0.000020 0.000137 0.000137\r\n", + "..ib\\path.py:188 Path._update_values 14 0.000068 0.000137 0.000010\r\n", + "..e-packages\\cycler.py:371 20 0.000137 0.000137 0.000007\r\n", + ":1 QueuePool.__init__ 1 0.000002 0.000136 0.000136\r\n", + "..er.py:755 FontProperties.set_style 23 0.000065 0.000136 0.000006\r\n", + "..tures\\_base.py:316 Future.__init__ 7 0.000034 0.000135 0.000019\r\n", + "..orm._iter_break_from_left_to_right 8 0.000027 0.000134 0.000017\r\n", + "..34 new_figure_manager_given_figure 1 0.000007 0.000134 0.000134\r\n", + "..ches.py:458 Rectangle.set_capstyle 11 0.000066 0.000134 0.000012\r\n", + "...py:1423 Figure._add_axes_internal 1 0.000015 0.000134 0.000134\r\n", + "..s.py:2221 BlendedAffine2D.__init__ 6 0.000039 0.000133 0.000022\r\n", + "..book\\__init__.py:1296 is_math_text 30 0.000081 0.000133 0.000004\r\n", + "..tlib\\lines.py:31 _get_dash_pattern 41 0.000103 0.000132 0.000003\r\n", + "..chemy\\sql\\base.py:38 _from_objects 21 0.000045 0.000131 0.000006\r\n", + "...py:410 XTick._get_text2_transform 3 0.000011 0.000129 0.000043\r\n", + "..py:1225 Line2D.set_markeredgewidth 30 0.000057 0.000129 0.000004\r\n", + "..033 PGCompiler_psycopg2.visit_cast 2 0.000013 0.000128 0.000064\r\n", + "..pool\\base.py:63 QueuePool.__init__ 1 0.000050 0.000128 0.000128\r\n", + "..re_compile.py:249 _compile_charset 34 0.000098 0.000127 0.000004\r\n", + "..plotlib\\scale.py:718 scale_factory 16 0.000053 0.000126 0.000008\r\n", + "..ib\\sre_parse.py:84 State.opengroup 27 0.000072 0.000125 0.000005\r\n", + "..ffsetbox.py:187 VPacker.set_figure 16/1 0.000045 0.000124 0.000008\r\n", + "...py:792 FontProperties.set_stretch 23 0.000090 0.000124 0.000005\r\n", + "...py:735 MarkerStyle._set_tickright 3 0.000013 0.000124 0.000041\r\n", + "..chemy\\sql\\elements.py:4279 __new__ 17 0.000095 0.000123 0.000007\r\n", + "..\\Lib\\socket.py:219 socket.__init__ 3 0.000122 0.000122 0.000041\r\n", + "..hes.py:402 Rectangle.set_linestyle 7 0.000053 0.000122 0.000017\r\n", + "...py:3168 BinaryExpression.__init__ 5 0.000064 0.000121 0.000024\r\n", + "..otlib\\text.py:1227 Text.set_usetex 24 0.000053 0.000120 0.000005\r\n", + "..ngine\\base.py:863 Connection.close 1 0.000008 0.000119 0.000119\r\n", + "..selectable.py:2169 Select.__init__ 8 0.000024 0.000118 0.000015\r\n", + "..lib\\sre_parse.py:295 _class_escape 30 0.000080 0.000118 0.000004\r\n", + "..ib\\artist.py:1037 Spine.set_zorder 18 0.000045 0.000118 0.000007\r\n", + "..ib\\lines.py:1196 Line2D.set_marker 4 0.000008 0.000117 0.000029\r\n", + "..sSubplot.get_xaxis_text2_transform 3 0.000017 0.000117 0.000039\r\n", + "..ndowsSelectorEventLoop.create_task 2 0.000057 0.000117 0.000058\r\n", + "..ide_tricks.py:185 _broadcast_shape 10 0.000112 0.000116 0.000012\r\n", + "...py:765 FontProperties.set_variant 23 0.000054 0.000115 0.000005\r\n", + "..lib\\text.py:1042 Text.set_fontsize 4 0.000013 0.000115 0.000029\r\n", + "..r.py:742 FontProperties.set_family 23 0.000047 0.000115 0.000005\r\n", + "..uery.py:4762 QueryContext.__init__ 6 0.000109 0.000115 0.000019\r\n", + "..\\sql\\selectable.py:3746 6 0.000021 0.000115 0.000019\r\n", + "..\\matplotlib\\dates.py:1893 axisinfo 2 0.000024 0.000114 0.000057\r\n", + "..umpy\\core\\getlimits.py:365 __new__ 2 0.000023 0.000113 0.000057\r\n", + "..teq6k\\lib\\sre_parse.py:355 _escape 30 0.000088 0.000113 0.000004\r\n", + "..essionTransaction._remove_snapshot 1 0.000037 0.000113 0.000113\r\n", + "..forms.py:1669 TransformWrapper.set 2 0.000009 0.000112 0.000056\r\n", + "..my\\util\\langhelpers.py:963 oneshot 21 0.000055 0.000112 0.000005\r\n", + "..ase.py:1009 _ConnectionFairy.close 1 0.000008 0.000111 0.000111\r\n", + "..\\result.py:1362 ResultProxy.scalar 3 0.000010 0.000110 0.000037\r\n", + "..threading.py:441 Semaphore.release 7 0.000035 0.000110 0.000016\r\n", + "..yncio\\events.py:32 Handle.__init__ 24 0.000093 0.000110 0.000005\r\n", + "..Subplot._validate_converted_limits 4 0.000026 0.000109 0.000027\r\n", + "..hes.py:382 Rectangle.set_linewidth 12 0.000039 0.000107 0.000009\r\n", + "..ndowsSelectorEventLoop._add_reader 1 0.000026 0.000106 0.000106\r\n", + "..b\\cbook\\__init__.py:2090 type_name 94 0.000106 0.000106 0.000001\r\n", + "..alchemy\\event\\api.py:23 _event_key 3 0.000022 0.000106 0.000035\r\n", + "..bootstrap_external>:68 _path_split 18 0.000082 0.000105 0.000006\r\n", + "..plotlib\\text.py:933 Text.set_color 24 0.000056 0.000104 0.000004\r\n", + "..ers.py:743 MarkerStyle._set_tickup 3 0.000012 0.000104 0.000035\r\n", + "..e.py:853 _ConnectionFairy._checkin 1 0.000008 0.000103 0.000103\r\n", + "..gistry.py:67 _stored_in_collection 3 0.000028 0.000103 0.000034\r\n", + "..y:556 String.coerce_compared_value 5 0.000019 0.000103 0.000021\r\n", + "..py:2249 BlendedAffine2D.get_matrix 4 0.000017 0.000103 0.000026\r\n", + "..lib\\legend.py:938 Legend.set_title 1 0.000008 0.000102 0.000102\r\n", + "..ql\\elements.py:895 Cast.anon_label 2 0.000018 0.000102 0.000051\r\n", + "..lib\\lines.py:1294 Line2D.set_ydata 39 0.000054 0.000101 0.000003\r\n", + "..e\\result.py:1335 ResultProxy.first 3 0.000030 0.000100 0.000033\r\n", + "..tstrap_external>:493 _classify_pyc 9 0.000056 0.000099 0.000011\r\n", + "..otlib\\artist.py:197 Rectangle.axes 117 0.000099 0.000099 0.000001\r\n", + "..:2165 FigureCanvasBase.mpl_connect 7 0.000012 0.000099 0.000014\r\n", + ":1 cast 2 0.000004 0.000098 0.000049\r\n", + "..\\artist.py:1074 Line2D.update_from 8 0.000065 0.000097 0.000012\r\n", + "..lotlib\\dates.py:1921 default_units 8 0.000033 0.000096 0.000012\r\n", + "..\\orm\\session.py:1288 Session.close 1 0.000011 0.000096 0.000096\r\n", + "..y\\pool\\base.py:667 _finalize_fairy 1 0.000012 0.000096 0.000096\r\n", + "..tist.py:1017 AxesSubplot.set_label 5 0.000025 0.000095 0.000019\r\n", + "..sql\\elements.py:2489 Cast.__init__ 2 0.000010 0.000094 0.000047\r\n", + "..compile.py:461 _get_literal_prefix 19/12 0.000068 0.000094 0.000005\r\n", + "..logging\\__init__.py:2003 getLogger 4 0.000010 0.000094 0.000023\r\n", + "..ql\\selectable.py:3735 name_for_col 27 0.000047 0.000094 0.000003\r\n", + "..ines.py:1268 Line2D.set_markersize 30 0.000057 0.000093 0.000003\r\n", + "..317 VARCHAR._has_column_expression 12 0.000092 0.000092 0.000008\r\n", + "..ernal>:629 spec_from_file_location 10 0.000070 0.000091 0.000009\r\n", + "..Context_psycopg2.should_autocommit 9 0.000058 0.000091 0.000010\r\n", + "..ngs\\__init__.py:70 search_function 1 0.000030 0.000089 0.000089\r\n", + "..Compiler_psycopg2._bind_processors 6 0.000020 0.000089 0.000015\r\n", + "..syncio\\base_futures.py:13 isfuture 37 0.000051 0.000089 0.000002\r\n", + "..nes.py:1035 Line2D.set_antialiased 30 0.000046 0.000089 0.000003\r\n", + "..ements.py:1946 ClauseList.__init__ 1 0.000012 0.000088 0.000088\r\n", + "..\\threading.py:341 Condition.notify 15 0.000069 0.000088 0.000006\r\n", + "..-68gteq6k\\lib\\enum.py:278 __call__ 26 0.000057 0.000087 0.000003\r\n", + "..e_parse.py:111 SubPattern.__init__ 135 0.000087 0.000087 0.000001\r\n", + "..\\axis.py:618 YTick.update_position 3 0.000022 0.000086 0.000029\r\n", + "..lalchemy\\sql\\base.py:39 21 0.000053 0.000086 0.000004\r\n", + "..lib\\artist.py:923 Line2D.set_alpha 7 0.000019 0.000085 0.000012\r\n", + "..piler_psycopg2._truncate_bindparam 5 0.000012 0.000085 0.000017\r\n", + "..ession.py:1333 Session._close_impl 1 0.000012 0.000085 0.000085\r\n", + "..y:2463 FancyBboxPatch.set_boxstyle 2 0.000023 0.000085 0.000042\r\n", + "..my\\sql\\compiler.py:2252 6 0.000017 0.000084 0.000014\r\n", + "..__init__.py:1272 Manager.getLogger 4 0.000024 0.000084 0.000021\r\n", + "..38\\Lib\\asyncio\\tasks.py:717 gather 1 0.000016 0.000083 0.000083\r\n", + ":1 VARCHAR.__init__ 9 0.000026 0.000083 0.000009\r\n", + "..\\core\\getlimits.py:398 finfo._init 1 0.000044 0.000082 0.000082\r\n", + "..\\legend.py:1215 _parse_legend_args 1 0.000010 0.000082 0.000082\r\n", + "..bootstrap>:58 _ModuleLock.__init__ 10 0.000026 0.000082 0.000008\r\n", + "..tlib\\axis.py:864 XAxis.reset_ticks 16 0.000077 0.000082 0.000005\r\n", + "..t\\futures\\_base.py:381 Future.done 6 0.000031 0.000082 0.000014\r\n", + "..bootstrap>:194 _lock_unlock_module 8 0.000018 0.000081 0.000010\r\n", + "..\\result.py:777 ResultProxy._getter 27 0.000037 0.000081 0.000003\r\n", + "..123 ConnectionEventsDispatch._join 1 0.000078 0.000080 0.000080\r\n", + "..ections.py:361 OrderedSet.__init__ 8 0.000050 0.000080 0.000010\r\n", + "..ges\\numpy\\core\\_methods.py:44 _any 4 0.000009 0.000079 0.000020\r\n", + "..elements.py:4692 _literal_as_binds 2 0.000005 0.000079 0.000040\r\n", + "..sSelectorEventLoop._process_events 17 0.000043 0.000079 0.000005\r\n", + "..otlib\\figure.py:111 _AxesStack.add 1 0.000033 0.000079 0.000079\r\n", + "..session.py:1588 Session._autoflush 6 0.000022 0.000079 0.000013\r\n", + "..xt.py:1214 Text.set_fontproperties 1 0.000004 0.000079 0.000079\r\n", + "..copg2\\extensions.py:171 1 0.000005 0.000078 0.000078\r\n", + "..e-packages\\cycler.py:227 110 0.000078 0.000078 0.000001\r\n", + "..qlalchemy\\inspection.py:38 inspect 16 0.000051 0.000076 0.000005\r\n", + "..py:1210 Line2D.set_markeredgecolor 30 0.000040 0.000075 0.000003\r\n", + "..tlib\\transforms.py:773 from_bounds 1 0.000008 0.000075 0.000075\r\n", + "..b\\text.py:1059 Text.set_fontweight 4 0.000009 0.000074 0.000019\r\n", + "..__init__.py:1632 sanitize_sequence 8 0.000015 0.000074 0.000009\r\n", + "..alchemy\\log.py:174 instance_logger 3 0.000011 0.000073 0.000024\r\n", + "..init__.py:1677 Logger.isEnabledFor 5 0.000041 0.000073 0.000015\r\n", + "..8gteq6k\\lib\\sre_parse.py:432 _uniq 22 0.000044 0.000073 0.000003\r\n", + "..g2\\extensions.py:180 _param_escape 3 0.000005 0.000073 0.000024\r\n", + "..ase.py:971 _ConnectionFairy.cursor 6 0.000013 0.000073 0.000012\r\n", + ".._range.py:297 RangeCaster.__init__ 6 0.000022 0.000072 0.000012\r\n", + "..y:2444 PGDialect_psycopg2.__init__ 1 0.000008 0.000072 0.000072\r\n", + "..lib\\offsetbox.py:199 TextArea.axes 16 0.000042 0.000072 0.000004\r\n", + "..emy\\orm\\query.py:1790 Query.filter 5 0.000032 0.000072 0.000014\r\n", + "..b._bootstrap>:222 _verbose_message 90 0.000071 0.000071 0.000001\r\n", + "..py:366 GridSpec.get_subplot_params 1 0.000011 0.000071 0.000071\r\n", + "..artist.py:841 TextArea.set_clip_on 16 0.000026 0.000071 0.000004\r\n", + "..\\orm\\session.py:2462 Session.flush 9 0.000021 0.000071 0.000008\r\n", + "..s.py:1642 _fix_ipython_backend2gui 2 0.000025 0.000071 0.000035\r\n", + "..alchemy\\events.py:328 _accept_with 3 0.000026 0.000071 0.000024\r\n", + "..re_parse.py:267 Tokenizer.getuntil 7 0.000040 0.000070 0.000010\r\n", + "..figure.py:199 SubplotParams.update 2 0.000018 0.000070 0.000035\r\n", + "..b\\cbook\\__init__.py:2088 188 0.000070 0.000070 0.000000\r\n", + "..\\axis.py:501 XTick.update_position 3 0.000018 0.000069 0.000023\r\n", + "..hemy\\sql\\compiler.py:650 6 0.000010 0.000069 0.000011\r\n", + "..\\core\\fromnumeric.py:74 85 0.000069 0.000069 0.000001\r\n", + "..my\\sql\\elements.py:1955 1 0.000009 0.000069 0.000069\r\n", + "..ist.py:371 Rectangle.get_transform 31 0.000050 0.000068 0.000002\r\n", + "..ctions.py:933 LRUCache.__setitem__ 3 0.000026 0.000068 0.000023\r\n", + "..lib\\lines.py:1047 Line2D.set_color 30 0.000032 0.000068 0.000002\r\n", + "..bootstrap>:103 _ModuleLock.release 18 0.000061 0.000068 0.000004\r\n", + "..t_manager.py:1043 get_default_size 22 0.000028 0.000067 0.000003\r\n", + "..lib\\axis.py:922 _translate_tick_kw 8 0.000058 0.000067 0.000008\r\n", + "..otlib\\axis.py:666 Ticker.formatter 33 0.000048 0.000067 0.000002\r\n", + "..p>:151 _ModuleLockManager.__exit__ 10 0.000020 0.000066 0.000007\r\n", + "..re_parse.py:224 Tokenizer.__init__ 13 0.000043 0.000065 0.000005\r\n", + "..aggregation\\query.py:82 4 0.000013 0.000065 0.000016\r\n", + "..eading.py:364 Condition.notify_all 7 0.000022 0.000065 0.000009\r\n", + "..\\lib\\sre_compile.py:411 _mk_bitmap 5 0.000029 0.000065 0.000013\r\n", + "..ImmutableColumnCollection.__iter__ 5 0.000030 0.000064 0.000013\r\n", + "..gure.py:168 SubplotParams.__init__ 1 0.000009 0.000064 0.000064\r\n", + ".._WindowsSelectorEventLoop.__init__ 1 0.000024 0.000064 0.000064\r\n", + "..plotlib\\text.py:1151 Text.set_text 46 0.000052 0.000064 0.000001\r\n", + "..k\\lib\\sre_parse.py:81 State.groups 80 0.000048 0.000064 0.000001\r\n", + "..ghelpers.py:281 _inspect_func_args 18 0.000064 0.000064 0.000004\r\n", + "..tstrap_external>:51 _unpack_uint32 27 0.000044 0.000064 0.000002\r\n", + "..GCompiler_psycopg2.order_by_clause 1 0.000003 0.000063 0.000063\r\n", + "..yEventsDispatch._event_descriptors 46 0.000040 0.000063 0.000001\r\n", + "..__.py:185 CallbackRegistry.process 26 0.000047 0.000062 0.000002\r\n", + ".._bootstrap>:78 _ModuleLock.acquire 18 0.000056 0.000061 0.000003\r\n", + "..py:834 XAxis.limit_range_for_scale 2 0.000019 0.000061 0.000031\r\n", + "..pes.py:2997 _resolve_value_to_type 5 0.000017 0.000061 0.000012\r\n", + ".. SessionTransaction._take_snapshot 3 0.000027 0.000061 0.000020\r\n", + "..tableColumnCollection.__contains__ 10 0.000041 0.000060 0.000006\r\n", + "..ib\\axis.py:529 YTick.apply_tickdir 3 0.000024 0.000059 0.000020\r\n", + "..ures\\_base.py:443 Future.exception 6 0.000042 0.000059 0.000010\r\n", + "..schema.py:1640 Column.get_children 27 0.000049 0.000059 0.000002\r\n", + "..hemy\\sql\\compiler.py:652 11 0.000017 0.000059 0.000005\r\n", + "..emy\\util\\langhelpers.py:1188 _next 7 0.000036 0.000058 0.000008\r\n", + "..futures\\_base.py:412 Future.result 7 0.000034 0.000058 0.000008\r\n", + "..\\session.py:2508 Session._is_clean 10 0.000041 0.000057 0.000006\r\n", + ".. interactable_plot_multiple_charts 1 0.000009 0.000057 0.000057\r\n", + "..matplotlib\\patches.py:1818 __new__ 2 0.000037 0.000057 0.000028\r\n", + "...py:1623 TransformWrapper.__init__ 2 0.000009 0.000057 0.000028\r\n", + "..ging\\__init__.py:1412 Logger.debug 2 0.000008 0.000057 0.000028\r\n", + "..ager.py:936 _normalize_font_family 46 0.000041 0.000057 0.000001\r\n", + "..elements.py:4483 _select_iterables 8 0.000017 0.000057 0.000007\r\n", + "..Python38\\Lib\\threading.py:81 RLock 8 0.000056 0.000056 0.000007\r\n", + "..packages\\psycopg2\\tz.py:1 1 0.000016 0.000056 0.000056\r\n", + "..se.py:392 Future.add_done_callback 6 0.000030 0.000056 0.000009\r\n", + "..ericTransform._invalidate_internal 4/3 0.000013 0.000055 0.000014\r\n", + "..py:193 PGDialect_psycopg2.__init__ 1 0.000024 0.000055 0.000055\r\n", + "..til\\_collections.py:779 41 0.000042 0.000055 0.000001\r\n", + "..Compiler_psycopg2.visit_clauselist 1 0.000004 0.000054 0.000054\r\n", + "..eral_and_labels_as_label_reference 3 0.000012 0.000054 0.000018\r\n", + "..my\\engine\\result.py:372 6 0.000054 0.000054 0.000009\r\n", + "..ResultMetaData._merge_cols_by_none 6 0.000022 0.000054 0.000009\r\n", + "..plotlib\\axis.py:653 Ticker.locator 33 0.000047 0.000054 0.000002\r\n", + "..rm\\query.py:418 Query._bind_mapper 6 0.000024 0.000054 0.000009\r\n", + "..s.py:1247 AutoDateLocator.__init__ 2 0.000023 0.000054 0.000027\r\n", + "..plotlib\\transforms.py:177 39 0.000031 0.000053 0.000001\r\n", + "..\\offsetbox.py:410 VPacker.__init__ 2 0.000003 0.000053 0.000027\r\n", + "..se.py:593 _column_stack_dispatcher 12 0.000030 0.000053 0.000004\r\n", + "..EventLoop._asyncgen_firstiter_hook 10 0.000023 0.000053 0.000005\r\n", + "..ation-68gteq6k\\lib\\re.py:323 _subx 3 0.000008 0.000052 0.000017\r\n", + "..on\\database.py:107 from_sql_result 4 0.000025 0.000052 0.000013\r\n", + "..t_psycopg2._use_server_side_cursor 9 0.000044 0.000052 0.000006\r\n", + "..hes.py:475 Rectangle.set_joinstyle 7 0.000030 0.000052 0.000007\r\n", + "..e.py:516 _ConnectionRecord.checkin 1 0.000008 0.000052 0.000052\r\n", + "..elements.py:724 Column.__getattr__ 3 0.000026 0.000051 0.000017\r\n", + "..e._process_projection_requirements 1 0.000008 0.000050 0.000050\r\n", + "..y\\orm\\base.py:353 _is_mapped_class 7 0.000026 0.000050 0.000007\r\n", + "..lEventsDispatch._event_descriptors 36 0.000030 0.000050 0.000001\r\n", + "..\\lib\\_weakrefset.py:81 WeakSet.add 14 0.000040 0.000050 0.000004\r\n", + "..Compiler_psycopg2.visit_typeclause 2 0.000008 0.000049 0.000025\r\n", + "..ernal>:526 _validate_timestamp_pyc 9 0.000023 0.000049 0.000005\r\n", + ".._.py:118 CallbackRegistry.__init__ 19 0.000049 0.000049 0.000003\r\n", + "..tgresql\\psycopg2.py:800 on_connect 2 0.000007 0.000049 0.000024\r\n", + "..quoted_name._memoized_method_lower 21 0.000041 0.000048 0.000002\r\n", + "..py:436 prefix_anon_map.__missing__ 7 0.000034 0.000048 0.000007\r\n", + "..ion\\analysis.py:367 wrap_coroutine 1 0.000014 0.000047 0.000047\r\n", + "..eq6k\\lib\\_weakrefset.py:38 _remove 11 0.000037 0.000046 0.000004\r\n", + "..kages\\numpy\\ma\\core.py:666 getdata 8 0.000036 0.000046 0.000006\r\n", + "..ib\\threading.py:505 Event.__init__ 2 0.000008 0.000046 0.000023\r\n", + "..emy\\sql\\compiler.py:1000 4 0.000005 0.000046 0.000011\r\n", + "..y:208 _arrays_for_stack_dispatcher 28 0.000026 0.000045 0.000002\r\n", + "..b\\transforms.py:909 Bbox.intervalx 3 0.000024 0.000045 0.000015\r\n", + "...py:2680 AxesSubplot.set_axisbelow 1 0.000010 0.000045 0.000045\r\n", + "..\\elements.py:4610 _literal_as_text 16 0.000021 0.000045 0.000003\r\n", + "..tras.py:657 UUID_adapter.getquoted 4 0.000022 0.000044 0.000011\r\n", + "...py:311 RangeCaster._create_ranges 6 0.000040 0.000044 0.000007\r\n", + "..b\\function_base.py:2164 4 0.000006 0.000044 0.000011\r\n", + "..gteq6k\\lib\\re.py:313 _compile_repl 1 0.000010 0.000044 0.000044\r\n", + "...py:235 SubplotParams._update_this 12 0.000021 0.000043 0.000004\r\n", + "..sult.py:700 ResultMetaData._getter 27 0.000043 0.000043 0.000002\r\n", + "..lib\\functools.py:33 update_wrapper 2 0.000026 0.000043 0.000022\r\n", + ":176 cb 10 0.000031 0.000043 0.000004\r\n", + "..is.py:197 XTick._set_labelrotation 6 0.000026 0.000043 0.000007\r\n", + "..ib\\axis.py:413 XTick.apply_tickdir 3 0.000017 0.000042 0.000014\r\n", + "..base.py:375 QueuePool._return_conn 1 0.000003 0.000042 0.000042\r\n", + "..:486 String._cached_bind_processor 5 0.000027 0.000042 0.000008\r\n", + "..b\\scale.py:97 LinearScale.__init__ 16 0.000035 0.000042 0.000003\r\n", + "..ycopg2\\extras.py:664 register_uuid 2 0.000027 0.000041 0.000021\r\n", + "..CompositeGenericTransform. 16/8 0.000035 0.000041 0.000003\r\n", + "..external>:1394 FileFinder.__init__ 1 0.000023 0.000041 0.000041\r\n", + "..init__.py:882 Grouper.get_siblings 6 0.000022 0.000041 0.000007\r\n", + "..iler.py:399 PGTypeCompiler.process 2 0.000006 0.000041 0.000021\r\n", + "..emy\\sql\\compiler.py:1002 4 0.000006 0.000041 0.000010\r\n", + "..tors.py:180 SelectSelector.get_key 1 0.000010 0.000041 0.000041\r\n", + "..s\\_base.py:597 AxesSubplot.viewLim 2 0.000005 0.000041 0.000020\r\n", + "..mpiler_psycopg2._add_to_result_map 29 0.000032 0.000040 0.000001\r\n", + "..ation-68gteq6k\\lib\\copy.py:66 copy 1 0.000013 0.000040 0.000040\r\n", + "..ib\\stride_tricks.py:262 10 0.000024 0.000040 0.000004\r\n", + "..654 _WindowsSelectorEventLoop.time 17 0.000028 0.000040 0.000002\r\n", + "..process_plot_var_args._getdefaults 4 0.000018 0.000040 0.000010\r\n", + "..tplotlib\\legend.py:1253 1 0.000006 0.000040 0.000040\r\n", + "..my\\sql\\elements.py:4488 8 0.000029 0.000039 0.000005\r\n", + "..ttr.py:269 _EmptyListener.__bool__ 17 0.000039 0.000039 0.000002\r\n", + "..l.py:103 QueuePool._do_return_conn 1 0.000005 0.000039 0.000039\r\n", + "..y:3229 BinaryExpression.self_group 5 0.000009 0.000039 0.000008\r\n", + "..r.py:234 _EmptyListener.for_modify 2 0.000013 0.000038 0.000019\r\n", + "..til\\_collections.py:981 3 0.000020 0.000038 0.000013\r\n", + "..util\\langhelpers.py:1175 46 0.000038 0.000038 0.000001\r\n", + "..arse.py:168 SubPattern.__setitem__ 48 0.000030 0.000038 0.000001\r\n", + "..y\\engine\\default.py:796 6 0.000020 0.000037 0.000006\r\n", + "..p>:867 _ImportLockContext.__exit__ 30 0.000026 0.000037 0.000001\r\n", + "..mportlib._bootstrap>:800 find_spec 10 0.000013 0.000037 0.000004\r\n", + "..tplotlib\\figure.py:1959 Figure.sca 1 0.000008 0.000037 0.000037\r\n", + "..ib\\figure.py:1070 Figure._make_key 1 0.000006 0.000037 0.000037\r\n", + "..pe_base.py:219 _vhstack_dispatcher 16 0.000014 0.000037 0.000002\r\n", + "..cbook\\__init__.py:1868 Text.method 5 0.000009 0.000036 0.000007\r\n", + "..ray_function__ internals>:2 copyto 4 0.000014 0.000036 0.000009\r\n", + "..ib\\figure.py:778 Figure.set_canvas 2 0.000008 0.000036 0.000018\r\n", + "..ql\\elements.py:2428 literal_column 2 0.000010 0.000036 0.000018\r\n", + "..y:583 AxesSubplot._unstale_viewLim 2 0.000010 0.000036 0.000018\r\n", + "..owsSelectorEventLoop._add_callback 6 0.000025 0.000036 0.000006\r\n", + "..38\\Lib\\socket.py:512 socket.family 1 0.000006 0.000035 0.000035\r\n", + "..768 IdentityTransform.is_separable 8 0.000031 0.000035 0.000004\r\n", + "..tplotlib\\figure.py:1651 Figure.clf 1 0.000016 0.000035 0.000035\r\n", + "..es\\numpy\\core\\_methods.py:28 _amax 2 0.000003 0.000034 0.000017\r\n", + "..ib\\sre_parse.py:969 parse_template 1 0.000016 0.000034 0.000034\r\n", + "..owsSelectorEventLoop.create_future 6 0.000031 0.000034 0.000006\r\n", + "..:4707 _interpret_as_column_or_from 29 0.000022 0.000034 0.000001\r\n", + "..tions.py:946 LRUCache._manage_size 3 0.000029 0.000034 0.000011\r\n", + "..b\\legend.py:701 get_legend_handler 8 0.000028 0.000034 0.000004\r\n", + "..ngine\\base.py:1869 Engine.__init__ 1 0.000005 0.000034 0.000034\r\n", + "..legend.py:1169 _get_legend_handles 5 0.000016 0.000034 0.000007\r\n", + "..lib\\lines.py:743 Line2D._is_sorted 3 0.000015 0.000034 0.000011\r\n", + "..py:2538 FigureManagerBase.__init__ 1 0.000012 0.000034 0.000034\r\n", + "..alchemy\\util\\queue.py:92 Queue.put 1 0.000018 0.000034 0.000034\r\n", + "..ib\\socket.py:97 _intenum_converter 2 0.000010 0.000034 0.000017\r\n", + "..ures\\_base.py:371 Future.cancelled 6 0.000017 0.000034 0.000006\r\n", + "..b\\sre_compile.py:65 _combine_flags 39 0.000033 0.000033 0.000001\r\n", + "...py:900 AutoDateFormatter.__init__ 2 0.000016 0.000033 0.000017\r\n", + "..m\\state.py:328 type._detach_states 2 0.000020 0.000033 0.000017\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..ession.py:1339 Session.expunge_all 1 0.000012 0.000033 0.000033\r\n", + "..lections.py:316 OrderedDict.values 5 0.000018 0.000032 0.000006\r\n", + "..\\core\\getipython.py:17 get_ipython 2 0.000022 0.000032 0.000016\r\n", + "..m\\query.py:345 Query._adapt_clause 35 0.000032 0.000032 0.000001\r\n", + "..y:528 Text._update_clip_properties 15 0.000032 0.000032 0.000002\r\n", + "..94 QueryEventsDispatch.__getattr__ 8 0.000027 0.000032 0.000004\r\n", + "..._bootstrap>:389 ModuleSpec.parent 14 0.000022 0.000032 0.000002\r\n", + "..etaData._colnames_from_description 6 0.000030 0.000032 0.000005\r\n", + "..\\elements.py:688 Column.self_group 13 0.000031 0.000031 0.000002\r\n", + "..ompat.py:61 inspect_getfullargspec 2 0.000019 0.000031 0.000016\r\n", + "..compile.py:492 _get_charset_prefix 10 0.000024 0.000031 0.000003\r\n", + "..ticker.py:224 AutoLocator.set_axis 67 0.000031 0.000031 0.000000\r\n", + "..kref.py:436 WeakKeyDictionary.keys 1 0.000015 0.000031 0.000031\r\n", + "..tbox.py:739 DrawingArea.add_artist 8 0.000023 0.000031 0.000004\r\n", + "..l\\sqltypes.py:412 Unicode.__init__ 2 0.000013 0.000031 0.000015\r\n", + "..s\\matplotlib\\axis.py:342 70 0.000031 0.000031 0.000000\r\n", + "..6k\\lib\\sre_compile.py:595 isstring 24 0.000025 0.000031 0.000001\r\n", + "..ase.py:867 _ConnectionFairy._reset 1 0.000012 0.000030 0.000030\r\n", + "..n-68gteq6k\\lib\\enum.py:557 __new__ 26 0.000030 0.000030 0.000001\r\n", + "..ool\\base.py:235 QueuePool._creator 1 0.000005 0.000030 0.000030\r\n", + "..s\\numpy\\core\\multiarray.py:707 dot 67 0.000030 0.000030 0.000000\r\n", + "..\\lib\\sre_compile.py:413 5 0.000030 0.000030 0.000006\r\n", + "..owsSelectorEventLoop._check_closed 34 0.000030 0.000030 0.000001\r\n", + "..hemy\\orm\\query.py:537 Query._clone 6 0.000021 0.000030 0.000005\r\n", + "..portlib._bootstrap>:35 _new_module 9 0.000030 0.000030 0.000003\r\n", + "..\\sql\\selectable.py:3079 8 0.000014 0.000029 0.000004\r\n", + "..sql\\operators.py:1497 is_precedent 5 0.000018 0.000029 0.000006\r\n", + "..\\log.py:59 Engine._should_log_info 2 0.000006 0.000029 0.000015\r\n", + "..py:69 _SelectorMapping.__getitem__ 1 0.000022 0.000029 0.000029\r\n", + "..iler.py:410 _CompileLabel.__init__ 29 0.000029 0.000029 0.000001\r\n", + "..:221 Query._set_entity_selectables 6 0.000025 0.000029 0.000005\r\n", + "..per._iter_break_from_left_to_right 8 0.000010 0.000029 0.000004\r\n", + "..:94 PoolEventsDispatch.__getattr__ 12 0.000023 0.000029 0.000002\r\n", + "..ne\\result.py:956 ResultProxy.close 3 0.000008 0.000029 0.000010\r\n", + "..ngine\\base.py:590 Connection.begin 1 0.000006 0.000029 0.000029\r\n", + "..l\\_collections.py:910 LRUCache.get 6 0.000018 0.000028 0.000005\r\n", + "..\\cbook\\__init__.py:1737 74 0.000028 0.000028 0.000000\r\n", + "..ion-68gteq6k\\lib\\weakref.py:51 _cb 2 0.000007 0.000028 0.000014\r\n", + "..y:4590 _expression_literal_as_text 5 0.000009 0.000028 0.000006\r\n", + "..b\\function_base.py:2144 4 0.000013 0.000028 0.000007\r\n", + "..romnumeric.py:2185 _any_dispatcher 76 0.000028 0.000028 0.000000\r\n", + "..n38\\Lib\\socket.py:496 socket.close 1 0.000004 0.000028 0.000028\r\n", + "..ors.py:298 SelectSelector.register 1 0.000009 0.000027 0.000027\r\n", + "..array_function__ internals>:2 tile 1 0.000003 0.000027 0.000027\r\n", + "..ts.py:4056 ColumnClause._get_table 49 0.000027 0.000027 0.000001\r\n", + "..:513 Figure.set_constrained_layout 1 0.000010 0.000027 0.000027\r\n", + "..it__.py:1323 Manager._fixupParents 3 0.000018 0.000027 0.000009\r\n", + "..reading.py:261 Condition._is_owned 11 0.000017 0.000027 0.000002\r\n", + "..>:863 _ImportLockContext.__enter__ 30 0.000019 0.000027 0.000001\r\n", + "..ib\\figure.py:104 _AxesStack.bubble 1 0.000009 0.000027 0.000027\r\n", + "..8 SessionTransaction._prepare_impl 1 0.000013 0.000027 0.000027\r\n", + "..q6k\\lib\\sre_parse.py:921 fix_flags 12 0.000024 0.000026 0.000002\r\n", + "..compiler.py:419 _CompileLabel.type 29 0.000026 0.000026 0.000001\r\n", + "..is.py:1048 XAxis._set_artist_props 4 0.000005 0.000026 0.000007\r\n", + "..utionContext_psycopg2._log_notices 9 0.000026 0.000026 0.000003\r\n", + "..ents.py:3947 ColumnClause.__init__ 2 0.000010 0.000026 0.000013\r\n", + "..\\core\\getlimits.py:239 _get_machar 1 0.000013 0.000026 0.000026\r\n", + "..s.py:302 Rectangle.set_antialiased 8 0.000012 0.000026 0.000003\r\n", + "..io\\coroutines.py:18 _is_debug_mode 1 0.000010 0.000026 0.000026\r\n", + "..ages\\cycler.py:225 Cycler.__iter__ 12 0.000021 0.000026 0.000002\r\n", + "..ine\\url.py:161 URL._get_entrypoint 1 0.000006 0.000026 0.000026\r\n", + "..orms.py:1652 TransformWrapper._set 4 0.000023 0.000025 0.000006\r\n", + "..e.py:1907 Figure._set_artist_props 1 0.000007 0.000025 0.000025\r\n", + "..\\cbook\\__init__.py:1742 74 0.000025 0.000025 0.000000\r\n", + "..etbox.py:303 TextArea.get_children 33 0.000025 0.000025 0.000001\r\n", + "..240 QueuePool._should_wrap_creator 1 0.000005 0.000025 0.000025\r\n", + "..\\elements.py:709 Column.comparator 4 0.000019 0.000025 0.000006\r\n", + "..rl.py:152 URL._instantiate_plugins 1 0.000007 0.000025 0.000025\r\n", + "..base.py:321 _inspect_mapped_object 4 0.000025 0.000025 0.000006\r\n", + "..b\\function_base.py:2120 4 0.000024 0.000024 0.000006\r\n", + "..urceFileLoader._check_name_wrapper 9 0.000020 0.000024 0.000003\r\n", + "..xt_psycopg2.should_autocommit_text 3 0.000008 0.000024 0.000008\r\n", + "..y\\sql\\elements.py:4594 _literal_as 16 0.000016 0.000024 0.000001\r\n", + "..y:355 _ListenerCollection.__init__ 2 0.000018 0.000024 0.000012\r\n", + "...py:343 WeakKeyDictionary.__init__ 13 0.000024 0.000024 0.000002\r\n", + "..b\\socket.py:492 socket._real_close 1 0.000009 0.000023 0.000023\r\n", + "..llections_abc.py:72 _check_methods 14 0.000023 0.000023 0.000002\r\n", + "..\\__init__.py:43 normalize_encoding 1 0.000017 0.000023 0.000023\r\n", + "..ase.py:3227 AxesSubplot.get_xscale 4 0.000017 0.000023 0.000006\r\n", + "..gging\\__init__.py:214 _acquireLock 7 0.000015 0.000023 0.000003\r\n", + "..e.py:1757 RootTransaction.__init__ 1 0.000008 0.000023 0.000023\r\n", + "..lalchemy\\util\\compat.py:148 raise_ 12 0.000023 0.000023 0.000002\r\n", + "..\\encodings\\utf_8.py:33 getregentry 1 0.000010 0.000022 0.000022\r\n", + "..langhelpers.py:344 get_func_kwargs 1 0.000003 0.000022 0.000022\r\n", + "..y\\log.py:221 echo_property.__set__ 1 0.000001 0.000022 0.000022\r\n", + "..tlib\\axis.py:2166 XAxis.get_minpos 1 0.000011 0.000022 0.000022\r\n", + "..my\\util\\queue.py:43 Queue.__init__ 1 0.000009 0.000022 0.000022\r\n", + "..rms.py:1632 TransformWrapper._init 2 0.000008 0.000022 0.000011\r\n", + "..b\\asyncio\\futures.py:269 _get_loop 8 0.000018 0.000022 0.000003\r\n", + "..ok\\__init__.py:2125 _check_getitem 4 0.000018 0.000022 0.000006\r\n", + "..ery._adjust_for_single_inheritance 6 0.000019 0.000022 0.000004\r\n", + "..psycopg2\\_json.py:94 register_json 2 0.000010 0.000022 0.000011\r\n", + "..sion.py:3188 sessionmaker.__init__ 1 0.000021 0.000021 0.000021\r\n", + "..y:102 WeakValueDictionary.__init__ 1 0.000013 0.000021 0.000021\r\n", + "..l\\sqltypes.py:141 VARCHAR.__init__ 9 0.000021 0.000021 0.000002\r\n", + "..syncio\\tasks.py:751 _done_callback 1 0.000012 0.000021 0.000021\r\n", + "..29 _process_plot_var_args.__init__ 2 0.000005 0.000021 0.000011\r\n", + "..y\\sql\\operators.py:1409 is_boolean 6 0.000011 0.000021 0.000003\r\n", + "..dates.py:1496 YearLocator.__init__ 2 0.000012 0.000021 0.000010\r\n", + "..ok\\__init__.py:601 _AxesStack.push 2 0.000011 0.000021 0.000010\r\n", + "..157 CallbackRegistry._remove_proxy 2 0.000017 0.000021 0.000010\r\n", + "..nts.py:709 ColumnClause.comparator 4 0.000012 0.000021 0.000005\r\n", + "..mn._render_label_in_columns_clause 10 0.000014 0.000020 0.000002\r\n", + "..alect_psycopg2.create_connect_args 1 0.000009 0.000020 0.000020\r\n", + "..\\matplotlib\\transforms.py:768 null 1 0.000004 0.000020 0.000020\r\n", + "..\\lines.py:547 Line2D.set_markevery 30 0.000020 0.000020 0.000001\r\n", + ".._json.py:133 register_default_json 1 0.000003 0.000020 0.000020\r\n", + "..lib\\stride_tricks.py:266 30 0.000020 0.000020 0.000001\r\n", + "..58 PGCompiler_psycopg2.visit_table 6 0.000012 0.000020 0.000003\r\n", + "..ctions_abc.py:271 __subclasshook__ 5 0.000009 0.000020 0.000004\r\n", + "..\\numpy\\lib\\shape_base.py:1155 tile 1 0.000007 0.000020 0.000020\r\n", + "..patches.py:491 Rectangle.set_hatch 7 0.000011 0.000019 0.000003\r\n", + "..idspec.py:200 GridSpec.__getitem__ 1 0.000011 0.000019 0.000019\r\n", + "..tlib\\axis.py:2466 YAxis.get_minpos 1 0.000017 0.000019 0.000019\r\n", + "..range.py:449 RangeCaster._register 6 0.000011 0.000019 0.000003\r\n", + "..pg2\\extras.py:790 _solve_conn_curs 1 0.000005 0.000019 0.000019\r\n", + "..59 WeakValueDictionary.__setitem__ 1 0.000013 0.000019 0.000019\r\n", + "..7 BlendedGenericTransform.__init__ 2 0.000007 0.000019 0.000010\r\n", + "..hon38\\Lib\\uuid.py:271 UUID.__str__ 4 0.000019 0.000019 0.000005\r\n", + "..tlib\\legend.py:569 Legend._set_loc 1 0.000007 0.000019 0.000019\r\n", + "..otlib\\axis.py:662 Ticker.formatter 65 0.000019 0.000019 0.000000\r\n", + "..lements.py:2553 Cast._from_objects 2 0.000005 0.000019 0.000009\r\n", + "..book\\__init__.py:833 Grouper.clean 8 0.000016 0.000019 0.000002\r\n", + "..tlib\\transforms.py:274 Bbox.frozen 1 0.000003 0.000019 0.000019\r\n", + "..ments.py:4065 Column._from_objects 10 0.000013 0.000019 0.000002\r\n", + "..ib\\axis.py:819 XAxis.get_transform 4 0.000005 0.000019 0.000005\r\n", + "..my\\engine\\result.py:322 9 0.000019 0.000019 0.000002\r\n", + "..er_psycopg2._get_operator_dispatch 5 0.000015 0.000019 0.000004\r\n", + "..elpers.py:355 get_callable_argspec 1 0.000004 0.000019 0.000019\r\n", + "..g\\__init__.py:1392 Logger.__init__ 3 0.000013 0.000018 0.000006\r\n", + "..\\gridspec.py:246 GridSpec.__init__ 1 0.000008 0.000018 0.000018\r\n", + "..s.py:1096 _importlater.__getattr__ 1 0.000005 0.000018 0.000018\r\n", + "..m\\query.py:3551 Query._select_args 6 0.000018 0.000018 0.000003\r\n", + "..ns.py:738 PopulateDict.__missing__ 5 0.000010 0.000018 0.000004\r\n", + "..my\\engine\\result.py:460 6 0.000018 0.000018 0.000003\r\n", + "..bootstrap_external>:36 _relax_case 17 0.000018 0.000018 0.000001\r\n", + "..ors.py:234 SelectSelector.register 1 0.000009 0.000018 0.000018\r\n", + "..Compiler_psycopg2.construct_params 6 0.000017 0.000017 0.000003\r\n", + "..rm\\query.py:398 Query._entity_zero 6 0.000013 0.000017 0.000003\r\n", + "..nctools.py:524 decorating_function 1 0.000005 0.000017 0.000017\r\n", + "..ctions_abc.py:392 __subclasshook__ 40 0.000017 0.000017 0.000000\r\n", + "..bootstrap_external>:1508 1 0.000012 0.000017 0.000017\r\n", + "..tplotlib\\text.py:554 Text.set_wrap 24 0.000017 0.000017 0.000001\r\n", + "..:171 DynamicClassAttribute.__get__ 4 0.000015 0.000017 0.000004\r\n", + "..packages\\cycler.py:138 Cycler.keys 12 0.000017 0.000017 0.000001\r\n", + "..ler_psycopg2.escape_literal_column 2 0.000013 0.000017 0.000008\r\n", + "..utableColumnCollection.__getattr__ 10 0.000017 0.000017 0.000002\r\n", + "..y\\sql\\type_api.py:1465 to_instance 9 0.000013 0.000017 0.000002\r\n", + "..\\matplotlib\\figure.py:1089 fixlist 1 0.000007 0.000017 0.000017\r\n", + "..ents.py:180 _run_until_complete_cb 1 0.000012 0.000016 0.000016\r\n", + "..ocess_plot_var_args.set_prop_cycle 2 0.000008 0.000016 0.000008\r\n", + "..56 WeakInstanceDict.check_modified 10 0.000016 0.000016 0.000002\r\n", + "...py:258 Condition._acquire_restore 4 0.000012 0.000016 0.000004\r\n", + "..ollections_abc.py:657 _Environ.get 1 0.000004 0.000016 0.000016\r\n", + "..d_inline.py:59 draw_if_interactive 1 0.000010 0.000016 0.000016\r\n", + "..lib\\sre_parse.py:76 State.__init__ 12 0.000016 0.000016 0.000001\r\n", + "..nghelpers.py:248 PluginLoader.load 1 0.000004 0.000016 0.000016\r\n", + "..ections.py:396 OrderedSet.__iter__ 8 0.000012 0.000016 0.000002\r\n", + "..ib\\figure.py:70 _AxesStack.as_list 2 0.000012 0.000016 0.000008\r\n", + "..ql\\elements.py:4475 _expand_cloned 6 0.000013 0.000015 0.000003\r\n", + "..ts.py:4059 ColumnClause._set_table 2 0.000007 0.000015 0.000008\r\n", + "..bootstrap>:342 ModuleSpec.__init__ 10 0.000015 0.000015 0.000002\r\n", + "..registry.py:154 _EventKey.__init__ 4 0.000012 0.000015 0.000004\r\n", + "..WindowsSelectorEventLoop.get_debug 33 0.000015 0.000015 0.000000\r\n", + "..276 PGDialect_psycopg2._type_memos 1 0.000009 0.000015 0.000015\r\n", + "..ler.py:161 HandlerLine2D.get_xdata 4 0.000011 0.000015 0.000004\r\n", + "..s.py:1059 AutoDateLocator.__init__ 4 0.000005 0.000015 0.000004\r\n", + "..tableColumnCollection.__contains__ 10 0.000015 0.000015 0.000001\r\n", + "..til\\_collections.py:317 5 0.000015 0.000015 0.000003\r\n", + "..type_api.py:60 Comparator.__init__ 8 0.000014 0.000014 0.000002\r\n", + "..uery.py:698 Query.is_single_entity 6 0.000012 0.000014 0.000002\r\n", + "..matplotlib\\text.py:1115 Text.set_y 6 0.000006 0.000014 0.000002\r\n", + "..gging\\__init__.py:223 _releaseLock 7 0.000010 0.000014 0.000002\r\n", + "..e.py:117 LinearScale.get_transform 4 0.000005 0.000014 0.000003\r\n", + "..elements.py:4056 Column._get_table 20 0.000014 0.000014 0.000001\r\n", + "..tionContext_psycopg2.no_parameters 4 0.000012 0.000014 0.000003\r\n", + "..ncio\\coroutines.py:177 iscoroutine 2 0.000011 0.000014 0.000007\r\n", + "..nal>:939 SourceFileLoader.__init__ 9 0.000013 0.000013 0.000002\r\n", + ".._api.py:436 Unicode._type_affinity 2 0.000009 0.000013 0.000007\r\n", + "..\\rcsetup.py:163 validate_axisbelow 1 0.000006 0.000013 0.000013\r\n", + "..\\__init__.py:631 _AxesStack.bubble 1 0.000006 0.000013 0.000013\r\n", + "..lib\\figure.py:453 Figure._get_axes 1 0.000004 0.000013 0.000013\r\n", + "..19 ResultProxy._cursor_description 9 0.000013 0.000013 0.000001\r\n", + "..:3361 PGTypeCompiler.visit_VARCHAR 2 0.000008 0.000013 0.000007\r\n", + "..:2053 IdentityTransform.get_matrix 23 0.000013 0.000013 0.000001\r\n", + "..n\\Python38\\Lib\\typing.py:255 inner 1 0.000007 0.000013 0.000013\r\n", + "..py:1202 ResultProxy._fetchone_impl 3 0.000008 0.000013 0.000004\r\n", + "..rs.py:330 MarkerStyle._set_nothing 30 0.000013 0.000013 0.000000\r\n", + "..tlib\\dates.py:174 _get_rc_timezone 6 0.000006 0.000013 0.000002\r\n", + "..b\\function_base.py:2115 4 0.000007 0.000013 0.000003\r\n", + "..es\\thread.py:46 _WorkItem.__init__ 7 0.000012 0.000012 0.000002\r\n", + "..ib\\transforms.py:969 Bbox.mutatedx 2 0.000012 0.000012 0.000006\r\n", + "..-68gteq6k\\lib\\codecs.py:94 __new__ 1 0.000011 0.000012 0.000012\r\n", + "..Figure.set_constrained_layout_pads 1 0.000006 0.000012 0.000012\r\n", + "..y:154 to_unicode_processor_factory 1 0.000012 0.000012 0.000012\r\n", + "..ctions_abc.py:349 __subclasshook__ 5 0.000007 0.000012 0.000002\r\n", + ".. SessionTransaction._assert_active 8 0.000012 0.000012 0.000002\r\n", + "..base.py:707 Connection._begin_impl 1 0.000010 0.000012 0.000012\r\n", + "..\\_internal.py:830 npy_ctypes_check 4 0.000012 0.000012 0.000003\r\n", + "..py:210 WeakInstanceDict.all_states 2 0.000011 0.000012 0.000006\r\n", + "..lib\\os.py:668 _Environ.__getitem__ 1 0.000005 0.000012 0.000012\r\n", + "..b\\figure.py:66 _AxesStack.__init__ 1 0.000006 0.000012 0.000012\r\n", + "..matplotlib\\text.py:1104 Text.set_x 6 0.000005 0.000012 0.000002\r\n", + "..lotlib\\axes\\_base.py:232 8 0.000009 0.000012 0.000001\r\n", + "..208 _EmptyListener._adjust_fn_spec 4 0.000008 0.000012 0.000003\r\n", + "..ib\\threading.py:1110 Thread.daemon 2 0.000010 0.000011 0.000006\r\n", + "..chemy\\orm\\query.py:4634 27 0.000011 0.000011 0.000000\r\n", + "..ql\\base.py:1142 TIMESTAMP.__init__ 1 0.000006 0.000011 0.000011\r\n", + "..ib\\sre_compile.py:453 _get_iscased 29 0.000011 0.000011 0.000000\r\n", + "..200 BinaryExpression._from_objects 5 0.000011 0.000011 0.000002\r\n", + "..\\psycopg2\\_ipaddress.py:1 1 0.000011 0.000011 0.000011\r\n", + "..core\\multiarray.py:145 concatenate 29 0.000011 0.000011 0.000000\r\n", + "..b\\threading.py:1306 current_thread 3 0.000009 0.000011 0.000004\r\n", + "..tions.py:906 LRUCache._inc_counter 6 0.000011 0.000011 0.000002\r\n", + "..ments.py:765 Cast._select_iterable 29 0.000011 0.000011 0.000000\r\n", + "..y\\dialects\\__init__.py:24 _auto_fn 1 0.000006 0.000011 0.000011\r\n", + "..plots.py:214 subplot_class_factory 1 0.000006 0.000011 0.000011\r\n", + "..\\__init__.py:1837 _str_lower_equal 4 0.000008 0.000011 0.000003\r\n", + "..elements.py:4080 Column._key_label 10 0.000010 0.000010 0.000001\r\n", + "..:536 ScalarFormatter.set_useOffset 16 0.000010 0.000010 0.000001\r\n", + "...py:193 URL.translate_connect_args 1 0.000006 0.000010 0.000010\r\n", + "..ql\\operators.py:1386 is_comparison 6 0.000010 0.000010 0.000002\r\n", + "..ger.py:835 FontProperties.set_file 23 0.000010 0.000010 0.000000\r\n", + "..ages\\psycopg2\\compat.py:1 1 0.000010 0.000010 0.000010\r\n", + "..set.py:26 _IterationGuard.__exit__ 1 0.000009 0.000010 0.000010\r\n", + "..stry.py:169 _EventKey.with_wrapper 5 0.000006 0.000010 0.000002\r\n", + "..py:2606 BboxTransformFrom.__init__ 1 0.000004 0.000010 0.000010\r\n", + "..artist.py:1052 Line2D.sticky_edges 32 0.000010 0.000010 0.000000\r\n", + "..m\\session.py:1429 Session.get_bind 6 0.000010 0.000010 0.000002\r\n", + "..Compiler_psycopg2.bindparam_string 5 0.000010 0.000010 0.000002\r\n", + "..my\\engine\\result.py:319 9 0.000010 0.000010 0.000001\r\n", + "..ler.py:396 PGTypeCompiler.__init__ 1 0.000010 0.000010 0.000010\r\n", + "..lements.py:365 Column.get_children 27 0.000010 0.000010 0.000000\r\n", + "..ist.py:605 FancyBboxPatch.set_snap 1 0.000007 0.000009 0.000009\r\n", + "..__init__.py:60 _StrongRef.__hash__ 6 0.000006 0.000009 0.000002\r\n", + "..ure.py:487 Figure.set_tight_layout 1 0.000005 0.000009 0.000009\r\n", + "..tion-68gteq6k\\lib\\re.py:268 escape 1 0.000005 0.000009 0.000009\r\n", + "..on._memoized_attr__exec_once_mutex 1 0.000003 0.000009 0.000009\r\n", + "..pes.py:295 String.result_processor 5 0.000009 0.000009 0.000002\r\n", + "..b\\gridspec.py:31 GridSpec.__init__ 1 0.000007 0.000009 0.000009\r\n", + "..\\elements.py:232 Table._cloned_set 2 0.000008 0.000009 0.000005\r\n", + "..:3418 PGTypeCompiler.visit_unicode 1 0.000004 0.000009 0.000009\r\n", + "..gistry.py:263 _EventKey._listen_fn 16 0.000009 0.000009 0.000001\r\n", + "..\\futures.py:357 _call_check_cancel 6 0.000008 0.000009 0.000002\r\n", + "..CompositeGenericTransform. 3 0.000009 0.000009 0.000003\r\n", + "..\\figure.py:152 _AxesStack.__call__ 2 0.000005 0.000009 0.000005\r\n", + "..teq6k\\lib\\copy.py:257 _reconstruct 1 0.000005 0.000009 0.000009\r\n", + "..on.py:159 _create_json_typecasters 2 0.000006 0.000009 0.000005\r\n", + ".._.py:1663 Logger.getEffectiveLevel 3 0.000009 0.000009 0.000003\r\n", + "..y:980 _ConnectionFairy.__getattr__ 2 0.000005 0.000009 0.000004\r\n", + "..lib\\patches.py:2146 Round.__init__ 2 0.000009 0.000009 0.000004\r\n", + "..abc.py:816 WeakKeyDictionary.clear 1 0.000005 0.000009 0.000009\r\n", + "..ttr.py:257 _EmptyListener.__call__ 8 0.000009 0.000009 0.000001\r\n", + "..ing.py:255 Condition._release_save 4 0.000007 0.000009 0.000002\r\n", + ".._base.py:20 _atleast_1d_dispatcher 24 0.000009 0.000009 0.000000\r\n", + "..ctions_abc.py:367 __subclasshook__ 4 0.000005 0.000009 0.000002\r\n", + "..ler_psycopg2.get_select_precolumns 8 0.000009 0.000009 0.000001\r\n", + "..extensions.py:103 register_adapter 12 0.000009 0.000009 0.000001\r\n", + "..tgresql\\psycopg2.py:807 on_connect 2 0.000004 0.000009 0.000004\r\n", + "..tplotlib\\pyplot.py:612 get_fignums 1 0.000005 0.000009 0.000009\r\n", + "..lchemy\\util\\queue.py:135 Queue.get 1 0.000007 0.000008 0.000008\r\n", + "...py:284 WeakValueDictionary.update 1 0.000007 0.000008 0.000008\r\n", + "..ors.py:293 SelectSelector.__init__ 1 0.000003 0.000008 0.000008\r\n", + ":1 Deployment.__init__ 4 0.000008 0.000008 0.000002\r\n", + "..tplotlib\\path.py:197 Path.vertices 16 0.000008 0.000008 0.000001\r\n", + ".._memoized_property.expire_instance 2 0.000006 0.000008 0.000004\r\n", + "...py:299 NullFormatter._set_locator 31 0.000008 0.000008 0.000000\r\n", + "..mportlib._bootstrap>:725 find_spec 10 0.000005 0.000008 0.000001\r\n", + "..ure.py:155 _AxesStack.__contains__ 1 0.000002 0.000008 0.000008\r\n", + "..p>:143 _ModuleLockManager.__init__ 10 0.000008 0.000008 0.000001\r\n", + "..uery.py:505 Query._no_limit_offset 6 0.000008 0.000008 0.000001\r\n", + "..\\util\\_collections.py:771 5 0.000008 0.000008 0.000002\r\n", + "...py:1689 TransformWrapper. 6 0.000008 0.000008 0.000001\r\n", + "..\\Lib\\threading.py:944 Thread._stop 1 0.000006 0.000008 0.000008\r\n", + "..py:275 SelectSelector._key_from_fd 6 0.000008 0.000008 0.000001\r\n", + "..romnumeric.py:2273 _all_dispatcher 9 0.000008 0.000008 0.000001\r\n", + "..ty.py:17 WeakInstanceDict.__init__ 2 0.000008 0.000008 0.000004\r\n", + "..lotlib\\figure.py:78 _AxesStack.get 2 0.000006 0.000008 0.000004\r\n", + "..chemy\\orm\\query.py:4642 27 0.000008 0.000008 0.000000\r\n", + "..my\\sql\\compiler.py:2125 8 0.000007 0.000007 0.000001\r\n", + "..xesSubplot._request_autoscale_view 8 0.000007 0.000007 0.000001\r\n", + "..\\base.py:364 Connection.connection 11 0.000007 0.000007 0.000001\r\n", + "..py:4065 ColumnClause._from_objects 2 0.000005 0.000007 0.000004\r\n", + "..on38\\Lib\\socket.py:518 socket.type 1 0.000002 0.000007 0.000007\r\n", + "..\\matplotlib\\axis.py:372 14 0.000007 0.000007 0.000001\r\n", + "..artist.py:827 Line2D.get_clip_path 4 0.000007 0.000007 0.000002\r\n", + "..on38\\Lib\\uuid.py:259 UUID.__hash__ 4 0.000006 0.000007 0.000002\r\n", + "..axis.py:215 XTick.get_tick_padding 6 0.000007 0.000007 0.000001\r\n", + "..py:4335 _truncated_label.apply_map 27 0.000007 0.000007 0.000000\r\n", + "..b\\transforms.py:914 Bbox.intervaly 1 0.000005 0.000007 0.000007\r\n", + "..otlib\\transforms.py:394 Bbox.width 1 0.000006 0.000007 0.000007\r\n", + ".. HandlerLine2D.adjust_drawing_area 4 0.000007 0.000007 0.000002\r\n", + "..b\\_pylab_helpers.py:109 set_active 1 0.000006 0.000007 0.000007\r\n", + "..rtist.py:350 Text.is_transform_set 15 0.000007 0.000007 0.000000\r\n", + "..60 ScalarFormatter.set_useMathText 16 0.000007 0.000007 0.000000\r\n", + "..n-68gteq6k\\lib\\os.py:738 encodekey 1 0.000004 0.000007 0.000007\r\n", + "..rms.py:1284 TransformWrapper.depth 24 0.000007 0.000007 0.000000\r\n", + "..215 SelectSelector._fileobj_lookup 2 0.000003 0.000007 0.000003\r\n", + "..\\matplotlib\\axis.py:361 14 0.000007 0.000007 0.000000\r\n", + "..esql\\json.py:177 _PGJSONB.__init__ 1 0.000005 0.000006 0.000006\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..teq6k\\lib\\copyreg.py:99 _slotnames 1 0.000004 0.000006 0.000006\r\n", + "..lotlib\\axis.py:822 XAxis.get_scale 5 0.000006 0.000006 0.000001\r\n", + "..\\matplotlib\\axis.py:383 14 0.000006 0.000006 0.000000\r\n", + "..ckages\\psycopg2\\_range.py:36 Range 1 0.000006 0.000006 0.000006\r\n", + "..:493 Query._no_statement_condition 6 0.000006 0.000006 0.000001\r\n", + "...py:56 QueuePool._should_log_debug 1 0.000005 0.000006 0.000006\r\n", + "..b\\artist.py:819 Line2D.get_clip_on 3 0.000006 0.000006 0.000002\r\n", + "..b\\scale.py:43 LinearScale.__init__ 16 0.000006 0.000006 0.000000\r\n", + "..ycopg2.py:741 _psycopg2_extensions 1 0.000003 0.000006 0.000006\r\n", + "..otlib\\__init__.py:1267 get_backend 1 0.000002 0.000006 0.000006\r\n", + "..json.py:146 register_default_jsonb 1 0.000001 0.000006 0.000006\r\n", + "..otlib\\rcsetup.py:123 validate_bool 1 0.000005 0.000006 0.000006\r\n", + "..my\\engine\\default.py:855 11 0.000006 0.000006 0.000001\r\n", + "..y\\util\\_collections.py:140 __new__ 1 0.000005 0.000006 0.000006\r\n", + "..ngine\\url.py:299 _rfc_1738_unquote 1 0.000005 0.000006 0.000006\r\n", + "..ping.py:717 _GenericAlias.__hash__ 1 0.000004 0.000006 0.000006\r\n", + "..f.py:385 WeakKeyDictionary.__len__ 2 0.000005 0.000006 0.000003\r\n", + "..ib\\__init__.py:1285 is_interactive 2 0.000002 0.000006 0.000003\r\n", + "..07 ExtensionFileLoader.exec_module 1 0.000003 0.000006 0.000006\r\n", + "..ib\\cbook\\__init__.py:1575 10 0.000006 0.000006 0.000001\r\n", + "..ates.py:593 DateFormatter.__init__ 2 0.000002 0.000006 0.000003\r\n", + "..:687 Legend.get_legend_handler_map 1 0.000005 0.000006 0.000006\r\n", + ".._init__.py:44 get_projection_class 1 0.000005 0.000006 0.000006\r\n", + ".._init__.py:573 _AxesStack.__init__ 1 0.000003 0.000006 0.000006\r\n", + "..tion_base.py:1143 _diff_dispatcher 16 0.000006 0.000006 0.000000\r\n", + "..ig\\configurable.py:426 initialized 2 0.000003 0.000006 0.000003\r\n", + "..bootstrap_external>:1400 8 0.000005 0.000005 0.000001\r\n", + "..y:202 _broadcast_arrays_dispatcher 10 0.000005 0.000005 0.000001\r\n", + "..ng.py:1177 _make_invoke_excepthook 2 0.000005 0.000005 0.000003\r\n", + "..idspec.py:508 SubplotSpec.__init__ 1 0.000005 0.000005 0.000005\r\n", + "..ent\\registry.py:165 _EventKey._key 3 0.000004 0.000005 0.000002\r\n", + "..s.py:697 _GatheringFuture.__init__ 1 0.000005 0.000005 0.000005\r\n", + "..eq6k\\lib\\sre_parse.py:978 addgroup 1 0.000004 0.000005 0.000005\r\n", + "...py:112 PoolEventsDispatch._listen 3 0.000005 0.000005 0.000002\r\n", + "..s\\_base.py:386 Future.__get_result 7 0.000005 0.000005 0.000001\r\n", + "..qltypes.py:2793 TIMESTAMP.__init__ 1 0.000004 0.000005 0.000005\r\n", + "..ors.py:209 SelectSelector.__init__ 1 0.000004 0.000005 0.000005\r\n", + "..k\\__init__.py:827 Grouper.__init__ 2 0.000004 0.000005 0.000002\r\n", + "..elpers.py:1079 _importlater.module 1 0.000004 0.000005 0.000005\r\n", + "..is.py:1412 XAxis.get_major_locator 2 0.000004 0.000005 0.000002\r\n", + "..68gteq6k\\lib\\weakref.py:345 remove 2 0.000005 0.000005 0.000002\r\n", + "..esql\\base.py:1226 _PGUUID.__init__ 2 0.000005 0.000005 0.000002\r\n", + "..PGTypeCompiler._render_string_type 2 0.000005 0.000005 0.000002\r\n", + "..matplotlib\\colors.py:225 4 0.000005 0.000005 0.000001\r\n", + "..entifierPreparer_psycopg2.__init__ 1 0.000005 0.000005 0.000005\r\n", + "..oop._set_coroutine_origin_tracking 2 0.000005 0.000005 0.000002\r\n", + "..onfig\\configurable.py:381 instance 2 0.000002 0.000005 0.000002\r\n", + "...py:96 _AxesStack._entry_from_axes 1 0.000003 0.000005 0.000005\r\n", + "..ile.py:432 _generate_overlap_table 2 0.000004 0.000005 0.000002\r\n", + "..ry.py:390 Query._query_entity_zero 6 0.000004 0.000004 0.000001\r\n", + "..copg2\\tz.py:36 FixedOffsetTimezone 1 0.000004 0.000004 0.000004\r\n", + "..py:352 PGCompiler_psycopg2.__str__ 8 0.000004 0.000004 0.000001\r\n", + "..lotlib\\axes\\_base.py:321 12 0.000004 0.000004 0.000000\r\n", + "..packages\\psycopg2\\_json.py:47 Json 1 0.000004 0.000004 0.000004\r\n", + "..ctions_abc.py:252 __subclasshook__ 1 0.000002 0.000004 0.000004\r\n", + "..plotlib\\gridspec.py:382 1 0.000003 0.000004 0.000004\r\n", + "..process_plot_var_args._setdefaults 4 0.000004 0.000004 0.000001\r\n", + "..9 _ConnectionRecord.get_connection 1 0.000004 0.000004 0.000004\r\n", + "..et.py:20 _IterationGuard.__enter__ 1 0.000003 0.000004 0.000004\r\n", + "..py:155 HandlerLine2D.get_numpoints 4 0.000004 0.000004 0.000001\r\n", + "..se.py:2960 AxesSubplot.set_axis_on 1 0.000002 0.000004 0.000004\r\n", + "..f.py:463 WeakKeyDictionary.popitem 1 0.000003 0.000004 0.000004\r\n", + "..elpers.py:1381 parse_user_argument 2 0.000003 0.000004 0.000002\r\n", + "..ore\\numerictypes.py:239 obj2sctype 1 0.000003 0.000004 0.000004\r\n", + "..:964 SourceFileLoader.get_filename 9 0.000004 0.000004 0.000000\r\n", + "..ib\\artist.py:1013 Line2D.get_label 8 0.000004 0.000004 0.000000\r\n", + "..ges\\psycopg2\\extras.py:157 DictRow 1 0.000004 0.000004 0.000004\r\n", + "..teq6k\\lib\\codecs.py:952 getencoder 1 0.000003 0.000004 0.000004\r\n", + "..xtras.py:650 UUID_adapter.__init__ 4 0.000004 0.000004 0.000001\r\n", + "..8gteq6k\\lib\\weakref.py:323 __new__ 1 0.000003 0.000004 0.000004\r\n", + "..y:886 AxesSubplot.set_axes_locator 1 0.000002 0.000004 0.000004\r\n", + "..tenerCollection._memoized_attr_ref 2 0.000004 0.000004 0.000002\r\n", + "..reading.py:1095 _MainThread.daemon 2 0.000004 0.000004 0.000002\r\n", + "..chemy\\util\\queue.py:199 Queue._put 1 0.000003 0.000004 0.000004\r\n", + "..k\\__init__.py:626 _AxesStack.clear 3 0.000004 0.000004 0.000001\r\n", + "..tlib\\artist.py:1201 Text.mouseover 7 0.000004 0.000004 0.000001\r\n", + "..lotlib\\axis.py:645 Ticker.__init__ 4 0.000004 0.000004 0.000001\r\n", + "..py:357 String._has_bind_expression 2 0.000004 0.000004 0.000002\r\n", + "..py:140 _AxesStack.current_key_axes 2 0.000003 0.000004 0.000002\r\n", + "..s.py:1355 AutoDateLocator.set_axis 1 0.000003 0.000004 0.000004\r\n", + "..se.py:1699 RootTransaction._parent 1 0.000004 0.000004 0.000004\r\n", + "..ib\\function_base.py:2116 8 0.000004 0.000004 0.000000\r\n", + "..kers.py:286 MarkerStyle.get_marker 8 0.000003 0.000003 0.000000\r\n", + "..xecutionContext_psycopg2.post_exec 6 0.000003 0.000003 0.000001\r\n", + "..ansaction._is_transaction_boundary 4 0.000003 0.000003 0.000001\r\n", + "..ker.py:2004 _Edge_integer.__init__ 2 0.000003 0.000003 0.000002\r\n", + "..til\\_collections.py:991 3 0.000003 0.000003 0.000001\r\n", + "..Lib\\selectors.py:21 _fileobj_to_fd 2 0.000003 0.000003 0.000002\r\n", + "..WindowsSelectorEventLoop.set_debug 1 0.000003 0.000003 0.000003\r\n", + "..b\\cbook\\__init__.py:886 6 0.000003 0.000003 0.000001\r\n", + "..b\\cbook\\__init__.py:836 8 0.000003 0.000003 0.000000\r\n", + "..lchemy\\orm\\query.py:4795 6 0.000003 0.000003 0.000001\r\n", + "..strap>:397 ModuleSpec.has_location 10 0.000003 0.000003 0.000000\r\n", + "..ylab_helpers.py:29 get_fig_manager 1 0.000002 0.000003 0.000003\r\n", + "..s.py:263 MarkerStyle.get_fillstyle 8 0.000003 0.000003 0.000000\r\n", + "..ckages\\psycopg2\\extras.py:698 Inet 1 0.000003 0.000003 0.000003\r\n", + "..ctable.py:1982 Table._from_objects 6 0.000003 0.000003 0.000001\r\n", + ".._weakrefset.py:36 WeakSet.__init__ 1 0.000003 0.000003 0.000003\r\n", + "..ctions_abc.py:302 __subclasshook__ 6 0.000003 0.000003 0.000001\r\n", + "..__init__.py:51 _StrongRef.__init__ 3 0.000003 0.000003 0.000001\r\n", + "..gine\\default.py:295 get_pool_class 1 0.000001 0.000003 0.000003\r\n", + "..lectorEventLoop._process_self_data 6 0.000003 0.000003 0.000000\r\n", + ".. _ClsLevelDispatch._adjust_fn_spec 4 0.000003 0.000003 0.000001\r\n", + "..ogging\\__init__.py:189 _checkLevel 3 0.000002 0.000003 0.000001\r\n", + "..hemy\\engine\\url.py:56 URL.__init__ 1 0.000003 0.000003 0.000003\r\n", + "..\\matplotlib\\axis.py:153 6 0.000003 0.000003 0.000000\r\n", + "..ections.py:151 immutabledict.union 6 0.000003 0.000003 0.000000\r\n", + "..b\\path.py:251 Path.should_simplify 4 0.000003 0.000003 0.000001\r\n", + "..774 SourceFileLoader.create_module 9 0.000003 0.000003 0.000000\r\n", + "..copg2._check_max_identifier_length 1 0.000003 0.000003 0.000003\r\n", + "..y\\sql\\selectable.py:2987 6 0.000003 0.000003 0.000000\r\n", + "..g2.py:558 _PGUUID.result_processor 2 0.000003 0.000003 0.000001\r\n", + "..stgresql\\psycopg2.py:711 4 0.000003 0.000003 0.000001\r\n", + "..\\Lib\\threading.py:513 Event.is_set 5 0.000003 0.000003 0.000001\r\n", + "..ython38\\Lib\\inspect.py:80 ismethod 2 0.000002 0.000003 0.000001\r\n", + "..d_bases.py:2556 notify_axes_change 1 0.000003 0.000003 0.000003\r\n", + "..b\\weakref.py:328 KeyedRef.__init__ 1 0.000003 0.000003 0.000003\r\n", + "..ffsetbox.py:240 VPacker.set_offset 1 0.000001 0.000003 0.000003\r\n", + "..ath.py:230 Path.simplify_threshold 4 0.000003 0.000003 0.000001\r\n", + "..y:330 _ListenerCollection.__bool__ 1 0.000003 0.000003 0.000003\r\n", + "..tlib\\transforms.py:400 Bbox.height 1 0.000002 0.000003 0.000003\r\n", + "..tlib\\units.py:81 AxisInfo.__init__ 2 0.000003 0.000003 0.000001\r\n", + "..on38\\Lib\\inspect.py:158 isfunction 3 0.000002 0.000003 0.000001\r\n", + "..i.py:279 NullType.result_processor 4 0.000002 0.000002 0.000001\r\n", + "..lib\\transforms.py:931 Bbox.minposx 1 0.000002 0.000002 0.000002\r\n", + "..hemy\\util\\queue.py:195 Queue._full 1 0.000002 0.000002 0.000002\r\n", + "..ExecutionContext_psycopg2.pre_exec 6 0.000002 0.000002 0.000000\r\n", + "..n-68gteq6k\\lib\\os.py:732 check_str 1 0.000002 0.000002 0.000002\r\n", + "..gure.py:2059 Figure.add_axobserver 1 0.000002 0.000002 0.000002\r\n", + "..py:843 TextArea.set_minimumdescent 1 0.000001 0.000002 0.000002\r\n", + "..e.py:1694 RootTransaction.__init__ 1 0.000002 0.000002 0.000002\r\n", + "..teq6k\\lib\\copyreg.py:90 __newobj__ 1 0.000002 0.000002 0.000002\r\n", + "..6k\\lib\\enum.py:659 RegexFlag.value 4 0.000002 0.000002 0.000001\r\n", + "..dConnectionEventsDispatch.__init__ 1 0.000002 0.000002 0.000002\r\n", + "..vents.py:719 get_event_loop_policy 1 0.000002 0.000002 0.000002\r\n", + "..68gteq6k\\lib\\functools.py:63 wraps 1 0.000002 0.000002 0.000002\r\n", + "...py:1006 Legend.set_bbox_to_anchor 1 0.000002 0.000002 0.000002\r\n", + "..ng\\__init__.py:772 Logger.__init__ 3 0.000002 0.000002 0.000001\r\n", + "..ycopg2\\extras.py:65 DictCursorBase 1 0.000002 0.000002 0.000002\r\n", + "..mpl.py:143 QueuePool._inc_overflow 1 0.000002 0.000002 0.000002\r\n", + "..postgresql\\base.py:2708 1 0.000002 0.000002 0.000002\r\n", + "..meric.py:337 _full_like_dispatcher 4 0.000002 0.000002 0.000001\r\n", + "..idspec.py:67 GridSpec.get_geometry 3 0.000002 0.000002 0.000001\r\n", + "..plotlib\\gridspec.py:204 _normalize 1 0.000002 0.000002 0.000002\r\n", + "..my\\sql\\elements.py:4480 6 0.000002 0.000002 0.000000\r\n", + "..\\matplotlib\\path.py:211 Path.codes 4 0.000002 0.000002 0.000000\r\n", + "..mpy\\core\\multiarray.py:1043 copyto 4 0.000002 0.000002 0.000000\r\n", + "..set.py:16 _IterationGuard.__init__ 1 0.000002 0.000002 0.000002\r\n", + "..nit__.py:1220 PlaceHolder.__init__ 4 0.000002 0.000002 0.000000\r\n", + "..e.py:3867 AxesSubplot.set_navigate 1 0.000002 0.000002 0.000002\r\n", + "..tlib\\axis.py:1559 XAxis.have_units 2 0.000002 0.000002 0.000001\r\n", + "..b\\sre_parse.py:98 State.checkgroup 1 0.000001 0.000002 0.000002\r\n", + "..ib\\weakref.py:73 WeakMethod.__eq__ 1 0.000002 0.000002 0.000002\r\n", + "..g2\\extras.py:405 LoggingConnection 1 0.000002 0.000002 0.000002\r\n", + "..\\psycopg2\\extensions.py:109 SQL_IN 1 0.000002 0.000002 0.000002\r\n", + "..2.py:540 _PGJSONB.result_processor 1 0.000002 0.000002 0.000002\r\n", + "..g2\\extras.py:538 ReplicationCursor 1 0.000002 0.000002 0.000002\r\n", + "..\\transforms.py:939 Bbox.get_points 3 0.000002 0.000002 0.000001\r\n", + "..hemy\\util\\queue.py:183 Queue._init 1 0.000002 0.000002 0.000002\r\n", + "..nit__.py:1974 _OrderedSet.__init__ 1 0.000002 0.000002 0.000002\r\n", + "..ase.py:3618 AxesSubplot.get_yscale 1 0.000001 0.000002 0.000002\r\n", + "..end.py:666 get_default_handler_map 2 0.000002 0.000002 0.000001\r\n", + "..plotlib\\patches.py:1833 2 0.000002 0.000002 0.000001\r\n", + "..\\psycopg2\\extras.py:132 DictCursor 1 0.000002 0.000002 0.000002\r\n", + "..ib\\_pylab_helpers.py:99 get_active 1 0.000001 0.000002 0.000002\r\n", + "..\\sql\\selectable.py:3751 2 0.000002 0.000002 0.000001\r\n", + "..e.py:737 _ConnectionFairy.__init__ 1 0.000002 0.000002 0.000002\r\n", + "..:1088 ExtensionFileLoader.__init__ 1 0.000002 0.000002 0.000002\r\n", + "..ib\\axes\\_subplots.py:229 2 0.000002 0.000002 0.000001\r\n", + "..lotlib\\axes\\_base.py:586 4 0.000002 0.000002 0.000000\r\n", + "..plotlib\\axis.py:649 Ticker.locator 3 0.000002 0.000002 0.000001\r\n", + "..ec.py:93 GridSpec.set_width_ratios 1 0.000002 0.000002 0.000002\r\n", + "..lib\\transforms.py:935 Bbox.minposy 1 0.000002 0.000002 0.000002\r\n", + "..ib\\widgets.py:34 LockDraw.__init__ 2 0.000002 0.000002 0.000001\r\n", + "..610 _WindowsSelectorEventLoop.stop 1 0.000002 0.000002 0.000002\r\n", + "..sqltypes.py:2182 _PGJSONB.__init__ 1 0.000001 0.000001 0.000001\r\n", + "..nsaction._iterate_self_and_parents 1 0.000001 0.000001 0.000001\r\n", + "..matplotlib\\axis.py:1486 4 0.000001 0.000001 0.000000\r\n", + "..numeric.py:2354 _cumsum_dispatcher 3 0.000001 0.000001 0.000000\r\n", + "..q6k\\lib\\functools.py:486 lru_cache 1 0.000001 0.000001 0.000001\r\n", + "..Python38\\Lib\\inspect.py:260 iscode 2 0.000001 0.000001 0.000001\r\n", + "..hon38\\Lib\\inspect.py:285 isbuiltin 1 0.000001 0.000001 0.000001\r\n", + "..types.py:256 String.bind_processor 1 0.000001 0.000001 0.000001\r\n", + "..ements.py:1315 TypeClause.__init__ 2 0.000001 0.000001 0.000001\r\n", + "..y\\core\\multiarray.py:77 empty_like 4 0.000001 0.000001 0.000000\r\n", + "..copg2\\extras.py:233 RealDictCursor 1 0.000001 0.000001 0.000001\r\n", + "..indowsSelectorEventLoop.is_running 2 0.000001 0.000001 0.000001\r\n", + "...py:635 Legend._approx_text_height 2 0.000001 0.000001 0.000001\r\n", + "..matplotlib\\figure.py:97 1 0.000001 0.000001 0.000001\r\n", + "..copg2\\extensions.py:164 1 0.000001 0.000001 0.000001\r\n", + "..s\\psycopg2\\tz.py:108 LocalTimezone 1 0.000001 0.000001 0.000001\r\n", + "..matplotlib\\figure.py:74 2 0.000001 0.000001 0.000001\r\n", + "..WeakKeyDictionary._commit_removals 1 0.000001 0.000001 0.000001\r\n", + "..lotlib\\axes\\_base.py:588 4 0.000001 0.000001 0.000000\r\n", + "..ctionRegistry.get_projection_class 1 0.000001 0.000001 0.000001\r\n", + "..as.py:472 MinTimeLoggingConnection 1 0.000001 0.000001 0.000001\r\n", + "..sycopg2\\_range.py:242 RangeAdapter 1 0.000001 0.000001 0.000001\r\n", + "..psycopg2\\extras.py:261 RealDictRow 1 0.000001 0.000001 0.000001\r\n", + "..sycopg2\\extras.py:643 UUID_adapter 1 0.000001 0.000001 0.000001\r\n", + "..matplotlib\\figure.py:1073 fixitems 1 0.000001 0.000001 0.000001\r\n", + "..ycopg2\\extras.py:456 LoggingCursor 1 0.000001 0.000001 0.000001\r\n", + "..3883 AxesSubplot.set_navigate_mode 1 0.000001 0.000001 0.000001\r\n", + "...py:113 GridSpec.set_height_ratios 1 0.000001 0.000001 0.000001\r\n", + "..copg2\\extras.py:125 DictConnection 1 0.000001 0.000001 0.000001\r\n", + "..plotlib\\patches.py:1832 2 0.000001 0.000001 0.000000\r\n", + "..matplotlib\\figure.py:76 2 0.000001 0.000001 0.000000\r\n", + "..opg2\\extensions.py:133 NoneAdapter 1 0.000001 0.000001 0.000001\r\n", + "..opg2.py:548 _PGUUID.bind_processor 1 0.000001 0.000001 0.000001\r\n", + "..365 _ListenerCollection.for_modify 2 0.000001 0.000001 0.000000\r\n", + "..y:632 ThreadPoolExecutor.__enter__ 1 0.000001 0.000001 0.000001\r\n", + "..:505 Figure.get_constrained_layout 2 0.000001 0.000001 0.000000\r\n", + ".. LinearScale.limit_range_for_scale 2 0.000001 0.000001 0.000000\r\n", + "..38\\Lib\\urllib\\parse.py:624 unquote 1 0.000001 0.000001 0.000001\r\n", + "..ib\\threading.py:1095 Thread.daemon 1 0.000001 0.000001 0.000001\r\n", + "..b\\cbook\\__init__.py:828 2 0.000001 0.000001 0.000000\r\n", + "..util\\langhelpers.py:1500 only_once 1 0.000001 0.000001 0.000001\r\n", + "..sqltypes.py:786 TIMESTAMP.__init__ 1 0.000001 0.000001 0.000001\r\n", + "..chemy\\util\\langhelpers.py:906 memo 2 0.000001 0.000001 0.000000\r\n", + "..rs.py:63 _SelectorMapping.__init__ 1 0.000001 0.000001 0.000001\r\n", + "..emy\\engine\\url.py:129 URL.password 1 0.000001 0.000001 0.000001\r\n", + "..b\\gridspec.py:532 SubplotSpec.num2 1 0.000001 0.000001 0.000001\r\n", + "..y\\dialects\\__init__.py:52 1 0.000001 0.000001 0.000001\r\n", + "..ages\\psycopg2\\errors.py:1 1 0.000001 0.000001 0.000001\r\n", + "..y\\lib\\shape_base.py:1227 2 0.000001 0.000001 0.000000\r\n", + "..6 PGCompiler_psycopg2.default_from 2 0.000001 0.000001 0.000000\r\n", + "..ions.py:145 immutabledict.__init__ 1 0.000001 0.000001 0.000001\r\n", + "..emy\\util\\queue.py:191 Queue._empty 1 0.000001 0.000001 0.000001\r\n", + "..tors.py:272 SelectSelector.get_map 1 0.000001 0.000001 0.000001\r\n", + "..extras.py:296 NamedTupleConnection 1 0.000001 0.000001 0.000001\r\n", + "..y:512 LogicalReplicationConnection 1 0.000001 0.000001 0.000001\r\n", + "..ist.py:961 Rectangle.set_in_layout 1 0.000001 0.000001 0.000001\r\n", + "..py:536 PGDialect_psycopg2.do_begin 1 0.000001 0.000001 0.000001\r\n", + "..opg2\\extras.py:526 StopReplication 1 0.000001 0.000001 0.000001\r\n", + "..b\\gridspec.py:528 SubplotSpec.num2 1 0.000001 0.000001 0.000001\r\n", + "..:519 PhysicalReplicationConnection 1 0.000001 0.000001 0.000001\r\n", + "..s\\matplotlib\\dates.py:225 2 0.000001 0.000001 0.000000\r\n", + "..b\\_pylab_helpers.py:115 1 0.000001 0.000001 0.000001\r\n", + "..2\\extras.py:226 RealDictConnection 1 0.000001 0.000001 0.000001\r\n", + "..extras.py:500 MinTimeLoggingCursor 1 0.000001 0.000001 0.000001\r\n", + "..py:2459 AxesSubplot._get_axis_list 1 0.000000 0.000000 0.000000\r\n", + ".. FontProperties.get_size_in_points 1 0.000000 0.000000 0.000000\r\n", + "..ool\\base.py:231 QueuePool._creator 1 0.000000 0.000000 0.000000\r\n", + "..sycopg2\\_range.py:457 NumericRange 1 0.000000 0.000000 0.000000\r\n", + "..re\\multiarray.py:990 unravel_index 1 0.000000 0.000000 0.000000\r\n", + "..ib\\artist.py:800 XAxis.get_visible 2 0.000000 0.000000 0.000000\r\n", + "..2\\_range.py:486 NumberRangeAdapter 1 0.000000 0.000000 0.000000\r\n", + "..ec.py:549 SubplotSpec.get_gridspec 1 0.000000 0.000000 0.000000\r\n", + "..py:117 AxesSubplot.get_subplotspec 1 0.000000 0.000000 0.000000\r\n", + "..hape_base.py:1151 _tile_dispatcher 1 0.000000 0.000000 0.000000\r\n", + "..n\\Python38\\Lib\\typing.py:1146 cast 1 0.000000 0.000000 0.000000\r\n", + "..ycopg2\\_range.py:471 DateTimeRange 1 0.000000 0.000000 0.000000\r\n", + "..lib\\legend.py:918 Legend.get_frame 1 0.000000 0.000000 0.000000\r\n", + "..e\\interfaces.py:901 engine_created 1 0.000000 0.000000 0.000000\r\n", + "..opg2\\_range.py:476 DateTimeTZRange 1 0.000000 0.000000 0.000000\r\n", + "...py:101 State.checklookbehindgroup 1 0.000000 0.000000 0.000000\r\n", + "..chemy\\engine\\url.py:156 1 0.000000 0.000000 0.000000\r\n", + "..s\\psycopg2\\_range.py:466 DateRange 1 0.000000 0.000000 0.000000\r\n", + "..\\interfaces.py:856 get_dialect_cls 1 0.000000 0.000000 0.000000\r\n", + "..ion\\utils.py:58 profile_with_yappi 1 0.000000 0.000000 0.000000\r\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACdsAAAUsCAYAAADFYdzDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdeZhkVX0//vcZhhmQRVDBDRQV0a8YURGMkQhGTdyCRBOXaCIuWYxmMcZoXNFo8jOJ+s3XJXvcSUjcFZfEfUHAFTdQZFdAZWeG2fv8/rjVTnd1VdfaXTU1r9fz9NNd5957zumqe6qYmTefU2qtAQAAAAAAAAAAALpbM+kJAAAAAAAAAAAAwLQTtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAACYMaWUU0opdeHX7jQ+AAAAAMBKELYDAAAAAAAAAACAHoTtAAAAgF1GaVzcXjWtlLK9lHL7Sc8PAAAAAIDZJWwHAAAA7EoemuSOHdr3SHLy6k4FxqOUckKHAOkJE5zPW9vmcvGk5gKzwJoCAACA2SFsBwAAAOxKnrHMsaeXUsqqzQQAAAAAgN2KsB0AAACwSyil3CLJScuccuckJ6zObAAAAAAA2N0I2wEAAAC7iqckWd/WVtseL1f5jlVSaz2l1loWfk16TgAAAAAAoxK2AwAAAHYVT297fH6S97a1PbaUcvNVmg8AAAAAALsRYTsAAABg6pVS7pfkqLbmtyd5W1vb3kl+c1UmBQAAAADAbkXYDgAAANgVtG8PW5O8I8lHk/ykx7kAAAAAADCytZOeAAAAAMBySil7J3lSW/Pnaq2XtI6fmuRPFhw7upRyVK31nBWe155Jjk1yjyS3bDX/OMnXBhm7lLJ/kmOS3C3JAUk2JrkyyRdrrT8c66SXjn3LJPdPcpck+ye5PsnlSc6ptV6wkmMPo5RySJoKhwe1vmqSnya5IsmZtdYbVmEOd01ydJLbJ1mf5Oo0z9kXaq3XrvT4s6iUcs8khyc5OM1auinN63pxki/XWret8PjW8vDjTsuaPCrJIUn2TbI1yRW11nf0ef3tk9w9yWFJbp6mQuoNSa5Jcmmae3Dz+Gc+20op65LcL816uFWa98sbkpxVaz1rgH4OT7M25++xLUmuSvLDNPfYpjFPHQAAAJYlbAcAAABMu19PE4BY6G1tP/9J2/GnJ/njYQYrpZyQ5NNtzQ+utX6mdfx2SV6c5LeS7Nelj+8nedVyYY9Syr2SvCTJiWlCCJ3O+VKS59davzjYb7G8UsrxSV6U5CFJ9uhyzteS/EOSf6u11gH7PyXJyxe21VrLkHM9OMlzk/xqkiOXOXV7KeWsJG9KclqtdW7Acdp/x1fUWk9pHVuT5KlJ/jTJPbt0saOU8pkkL6m1ntnHeKek7Tlq8+lSej5lb6u1ntzrpH6UUi5Ocscuh+/Y4fnp5GfrpI/x7pVm3f5Kktstc+qGUsonkrymn+e1bYwTsouv5V5raaXXcpf+pmFN7pPkD5P8TpI7d+mi42tWSrlVkl9L8tAkxye5dY+pbC2lnJnkjUne0+/vsVJrqtd9PYgOc+z5nlJKOTnJW9qa71Rrvbh1/Mgkf57kcUn26dDF25IsG7YrpdwpzfvtI9P99U2SzaWUzyd5fa31o8v1CQAAAONiG1kAAABg2rVvC3tTknfPP6i1fiPJN9vOeUoppWPoZRSllMcm+W6SP0iXcE7LEUneXkr5r/Z5lMbLknwtyW+kSzin5QFJPl9KedFoM//Z2HuUUt6Y5DNJfjldwjkt903yL0k+1wo+rKpSyrpSyiuTXJjkhVk+1JM0/1PpA5OcmuScVgBqHPM4JMkXkvx7ugftkua5fEiSL5VSXj2OsWdRKeW2pZR3JflGkqdl+aBd0lQqOynN8/r+UsotxjQPa3nwMadlTd4/zWv311k+iNXp2lPTVN375ySPT++gXZKsS/KgJP+V5NutMBkdlFJekmZt/3Y6B+16Xb9/677+XpLnpPfru1eShyX5SCnl86WUOww6JgAAAAxK2A4AAACYWq3t4x7U1vz+WuuNbW1va3t8izQBnXHO5SlpQn7tVfaW8xtpQlrzfZQ0oZdXZPlwzKKhk7y6lPKcAcZd2kkz9juTPHvAS49L8tlSykChllG0AlX/k+SlGSKwkSYU98VSyq+OOI87JzkzTVBqEC8qpbxqlLFnUSnlqCRnJ/nNNPf1oB6T5MxSyhEjzsNaHnzMaVmTD0oTMBw2VPULGW23l/+T5h586Ah9zKRWSO4vM+TzW0q5Y5Ivprmv9xyii+OSnF1K+flhxgcAAIB+2UYWAAAAmGZPz9JQTnuwLkneleRvsjj08owkp41pHvdL8lcL5nJdko+kCWL9JMneaUIYj09yWNu1v1lKeX+t9b/TbPe4sFLfJUk+nOTbSa5OckCSY1v97N/Wz2tKKR+e36pvCM9L8sQFj29M8oEkX07y49bYd0+z9d+hbdcemuRTpZR711qvG3L8vpRSDkgTuLh7h8PfTvLZJN9J8xokycFpwnCPzOIKZfsm+e9SygNrrV8dYir7Jfloktu3HtckZyT5RJJLk2xIclCayl2/lqbC0kJ/UUr5UK2123aJVyY5Z8Fc79J2/ILWGMu5tMfxQXw3O5/TOyQ5cMGxba3jvXSdbynlfmm2vty37dBcks+neW4vas1h7ySHpNnis3171LumqWJ1dK31+j7m1M5aHnAtT9GavE2S92bxWjs7TQjwkjTPw22T3CNNOLKXHWmqEn4nyXlpXrcb0twb+6e5134+zRpf+D+t75vkP0sp96m1XrZM/yu6pqbM72Rx+HNDkv9Nc9/8OM3zd0iSB6d53hdpBe3OSudKg2e3+vlekmvTVBq8bZrg5COyuKLkrZOcXkq5b631ktF+JQAAAOis1FonPQcAAACAJUope6QJEy3cZvLyJIfWWuc6nH96mnDHvLkkdx70H9xLKSekCQUttCU7/0H/DUle1imo0tpm8rVZWnHqe2m21ftSmtDBTWkCM/9Sa+0UPLhNkvekCRMs9M+11t/r43c4JcnL25o3Z2dI5S1J/rTL77AmyXOTvCpLA2RvrbU+bZjxa619VTIrpbwvS6sSntGab7fg2nwg6KVp5r5wrIuT3KtDNcT269v/kmzh83VWkj+otX6ty7WHpXm97tt26OO11ocvN27r+hOy9J57cK31M72uXQmllLcmeeqCpktqrYeN0N+BaUJN7X28JckptdauocFSyl2SvCnJr7Qdem+t9XE9xj0h1vJIa7nVz7SsyR3ZGbz8ZpLfr7V+qcu1e9VaN3do/36Sb6WpDPipfgKbrSDYXyd5Utuh02utj+51fauPt2ZMa2qc7xellIuT3HFB09tqrSf3uObkNPfdQgtfm39M8pJa69Vdrl/02pRS1qXZqvuYtlM/nOTPa63nLjOX2yT52yRPaTv05SQP6LQmAQAAYFS2kQUAAACm1SOyOGiXJO/sFLRraa94tybJyWOay3w4549rrX/UrSJUrXVLrfU5ST7eduhuST7UmtOGJL9Ua/3HbkGAWuuVSR6d5Kdth55YStl7yN9hPmzz/9Van77M7zBXa31tmspQ29sOn9zaxnFFlFJ+N0tDPW9OctxyoZ4kqbVeV2t9XhZXG0uagNcfDDGd+efrw0lO6Ba0a419cZKHpangtNDDSinDbnc5S96UxUG7HUme0roPl63OV2u9IM17QXu457GllPsPMRdrudHXWp6yNTkf5vpikl/sFrRrjb0kaNdyTK31cbXW9/VbGbHWekmt9TeTnNJ26JGllE7V/nZH86/N82qtz+oWtEs6vjanZGnQ7oW11l9dLmjX6uvKWutvpdnOeaFjkvx672kDAADA4ITtAAAAgGnVHtBIkrcvc/4HsnPLvnlPa1V3GodTa63/r89zX9qh7eDW9z/uFVJJklrrtWkqay20f5ZWyBrEZ2qtf9HPibXWD6epiNXuj0YYv6tSyto0W3Mu9LFa67PrAFsz1FrfkuRf25qf26pUNqiL04TCugV3Fo57TZYGPtakCeHttkopd0vyhLbmF9da39VvH63X//eStAdvXjjktKzlxrJreUrX5PVJnlBrvWGIazPk1sPzXpmmYtq8kmarcxrvqbW+bpALWlUv/7Ct+R9rra8ZpJ9a6ylptq1daNj3BwAAAFiWsB0AAAAwdUopByd5VFvz12qt3+l2Ta11S5LT2prvmOQhY5jSjiwNnXRVa/1ymi1w230vSyt0LefdHdratyodxKBBudck+WFb22NKKbcdYQ7dPDGLtzOsWRrC6NcrW9fPu3WSBwzRzysGDOf8Z5p7ZaGjhxh3ljw/i/8O8qIkfzdoJ7XWbUn+qq35EaWU9u1Re7GWd+q1lqdxTb6u1vqjIecwklbA8B1tzcdNYi5TaC7Jnw1x3bOT7Lvg8YYkLxhyDq9se3zv1hbfAAAAMFbCdgAAAMA0emqSPdva2reJ7aRT5btOFfIG9Yla6yUDXvONDm1vGbAi1AVJ2is43W3Aecw7s9b6rUEuaFV0aw+XrE3y0CHnsJz2Lf8+U2v9wTAd1VovS9L+ux4/YDcbk5w64LjXJjm/rXnY12uXV0opSR7b1vzWbluu9uEjbY/XJxl0K1lreadea3na1mRN8u/DjD9G7ev7vqWU9s+q3dGnWttpD6r9HvvvYasWJjkjS6vbDnqPAQAAQE/CdgAAAMA0at+ab3uS/+h1Ua31jCwNQ5xUSrnFiPP53BDXdAr0fH4M/RwwRB9J8v4hr3tvh7afH7KvjlqhrF9saz5jxG4vant8nwGvP7PWunWIcS9oe3zzIfqYFfdKcmBb29Cva2ur3vZKg4O+rtbyYh3X8pSuyR/UWtur842klLJvKeWRpZQXllLeXko5vZTy+VLK10op32j/SvLGti7Wp6nSt7v79KAXtLaQ/bm25lHeH+aydI0Neo8BAABAT2snPQEAAACAhUopD0xy97bmj9Zaf9pnF29P8pcLHq9P8uQkbxhhWsNUc7pxhfoZNrz11SGv+1aSbVlcaXDcW6P+nyTtgcinllIePUKfd2h7fKsBr28PbfarPQy2O4ftHtih7Q2llC0j9HmztseDvq7Wcn9reRrX5NdGGHuRUsrRabY4PjHJ3iN2d0CWbtG7uxnmtXlAlhYD+ItSynNGmMfhbY8HvccAAACgJ2E7AAAAYNp02va1ny1k570jySuTlLY+RwnbXTvENdtWqJ9htyz83jAX1Vq3lFIuTnLXBc0HDzmHbg7p0tapfVi3HPD8a4YcZ1yv1yzo9Pq1B2lHNejrai33t5ancU3+ZNQBW1u+vj7JszK+XV9250DtvGFem0730p1HnUibQe8xAAAA6Mk2sgAAAMDUKKXsm+Txbc3XJvlwv33UWi9J8pm25qNalYyG1SlsM7Ba61j6GVJ7xbVRrh12+8tuViMQMWj1qkm+VrNiZl/X3WAtT+Nrd8Mog7WCdv+d5NkZ79+L786B2nnDvDbTeI8BAABAT8J2AAAAwDR5YpJ92tpOq7UOuu1kp0p4nSrm7U42jvHa/UaZSAcHjrk/poPXdWWsxlqextdu+4jXvyDJYzq0/yjJm5M8Jc3WpoemCSHuVWstC7+SPHjEOcyqYV6babzHAAAAoCfbyAIAAADTpFMg7vdLKb8/hr6fVEp5Xq110xj62hXtk+ErQ7UHIG8ccS7tOr0mJ9VaPzDmcVhdnV7XA2ut1636TGbLaqzlmVqTpZSDk/xFW/P2JM9P8sZaa79hMZXSxqfTPXbvWus5qz4TAAAAGIDKdgAAAMBUKKXcI8nPr+AQByR57Ar2P+1uPsZrxx2WuqpD253GPAarr9PrethqT2IGrcZanrU1eWKSm7W1vaDW+n8HCNolyS3GOKdpMMktcGftHgMAAGA3IWwHAAAATIvV2OZ1d95K9ohhLiqlrMvSgNRPRp7NYj/u0HavMY/B6vO6rozVWMuz9to9rO3xtUneOEQ/dx7DXEa1rUPbsKG5SYYHZ+0eAwAAYDdhG1kAAABg4kopeyb5rbbmrUnOHbHrQ7M4THBCKeXOtdYLR+x3V3R0kk8Ocd29sjTI8dXRp7PIN5NsTrLXgraHj3kMVt/ZHdoekeTtqz2RGbMaa3nW1uShbY/PqrVuHaKfB4xjMiPqtIXw/oN2Uko5JItf39V2Voe2RyR55WpPBAAAAAahsh0AAAAwDU5MclBb2/tqrfce5SvJS9r6LEmetiq/0fQ5acjrOm29e+YoE2lXa92c5AttzbctpTxknONMsU7bWO6x6rPYqX0+w87ljCQb29oeVUo5cMj+aKz4Wp7BNXmrtsfXDNpBKeVWSR485PjjWlNJ561/h6m4d/wIcxhZrfWSJD9oaz62lDJU5UYAAABYLcJ2AAAAwDTotL3rO8fQ72lpKuQtdHIpZXf8O5EHlFKOHOSCUsr6LK04uD3JJ8Y2q50+0KHtlBUYZxrd2KFt31WfxU7t8xlqLq3KYR9ra94vyfOG6Y+fWa21PEtrsj302R6+68ezM3wluLGsqZYfJdnQ1nbsEP387ghzGJf2e2xNkpdNYiIAAADQr93xL5YBAACAKVJKuX2SX25r/mmWhnQGVmu9JslH25oPSfIro/a9i/r7Ac//8zTP10IfqLVeMab5LPRvSa5sazuulPKCFRhr2lzboW2YSlXj0j6fA0aoRvfqDm1/Xko5bsj+aKzGWp6lNdn+e/5CKWWffi9uhRv/YoTxx7amaq1zSb7R1vyoUsrN++2jlHJikgcNM/6YvTbNdsULPbmU8oRJTAYAAAD6IWwHAAAATNrTsnRLvdNqrZ221hxGpwp5nSrp7Q4eUkp5VT8nllIekeSlHQ79v/FOqVFr3ZTOway/KqU8Z9h+SykPL6W8efiZrYrLklzf1vbISUyk5Vsd2oaaT63160ne09a8Z5L3lVKGCvuUUtaXUn63lPLcYa6fESu+lmdsTX6+7fG+SV7ez4WllMOSfDDJ+hHGH9uaamkPke+dpN/74V5J3jLC2GPTCnu+qcOhfy+lPG6YPkspe5RSnlBK6XTvAgAAwMiE7QAAAICJKaWUNGG7duPYQnbeh7I0yHRiKeWgMY6xK5ivHvTiUsq/dKuCVEpZU0r5kyTvTROKWuittdbPreAc35TO2wq+oZTyvlLKUf10Ukq5UynlBaWUb6YJpUxDBaeuaq01yZfamh9aSvnrUsrBE5jSmUnm2tpeW0p5TCml/Z7ox+8luait7VZJPllK+dtSym366aSUcv9SymuTXJzkn5LcZYi5zILVXMuzsibfk6X39PNLKX9ZSlnb7aJSypPSrM35SpM3DDn+uNfUW5PsaGt7TinlFd1+n1YI7RlJvpDkFklqlm6zPgkvSXJ2W9vNkry7lPKvpZS+1nkp5Z6llFcm+X6S/0zS170JAAAAg+r6FwkAAAAAq+DBWbpd5vm11rPGNUCtdUsp5b+TPHNB855JnpLk9eMaZxfwsiR/0/r5mUkeX0p5f5IvJ/lJkgOS3D3J45LcocP1lyRZ0UpitdZaSnlKmjBIe1DipCQnlVLOSfKZJOcnubp17IA04a17JTk6k92CdVj/nuThbW0vTPLCUsoVSa5J0l7t8YO11peNeyK11itKKR/L4spbt07y/iRbSymXJdmYJqyz0DNrrV/p0N/VrW0rv5BkYTBsbZI/S/JHpZQvJflckh+m2XJzfZrX9bZJ7pPkfkl2t4BsN6u2lmdlTdZav19KeWeS32479JIkJ5dS3p3km0k2pAmi3S3JiVkc6LwpyQuS/MMQ4497TV1eSnlDkj9pO/SyNNuwvifJua053zLJzyV5VBbfD69J8qQkdxz09xmnWuvmUsqvpQkkHtp2+BlpXp+vJPlsmqDtNWmq4R6Q5OAk907z/nD71ZozAAAAuzdhOwAAAGCSOm3nOs6qdgv7fGZb2zOye4Xt/i5NIOHxrcf7pwmetIdPOvlhkl+qtV63QnP7mVrrhlLKL6bZ5rDTNoJHZTYrFr0nySeTPKTDsdu2vtp9YwXn8/wkxyfZp619XbpXlNu3W2e11m+XUo5JU2Xtnh36PL71RW+rupZnaE3+UZJj0wQRFzokS0Nr7bYl+Y004bVhjXVNJXlxkodm6Xq6S5I/7zGX01rXP6nHeauiFR48Ns282qse7pHk/q0vAAAAmDjbyAIAAAATUUo5IMljOxx61woM97kkl7a1HVlK2W3+8b61VemTk/zjgJd+McnxtdYLxz+rzmqtN9Zafz3Js5L8aMTuLk0TEppqtda5JL+e5NRJzyVJaq3fTfKwJD8YY5/npwnMvC5NFa9RfCXJR0ae1C5oEmt5FtZkrfX6NOG0Mwe89PIkD621jnS/jXtN1VpvSnJClm7BuuxlacKav9l6z5katdYr04SNX5Kmet0ozk3yXyNPCgAAADoQtgMAAAAm5clJ9mpr+1Kt9YJxD9QKp3QK8XWqrDezaq3ba63PShM4+VSS5cIWX0/yO0l+cTWDdgvVWv8xzfaTv5PkE+mvqtRcmrn/bZptig+rtb52xSY5RrXW62qtT05TeeuUJB9OckGabVW3TWA+X2rN5ZFJ3pxmK9HL02y1OVRQp9Z6U631eUkOS/M7fiXJjj4u3Zzmnn1RkiNrrceMGn7alU1qLe/qa7LW+qM0ldOek6TXc3FJkpcmuXut9XNjGn+sa6rWenWSB6YJQS732bkjyUeTPLDW+vxpC9rNa93Xr06zte3z0jw/W/u4dHuSM5K8MsmxtdZ71FrfvnIzBQAAYHdWmr9rBgAAAGB3U0q5VZKfT7Pt4L5JbkhyRZKvr0TocVSllHVJjk6z7eOtkhyYJmRxY5Krknw/yfdrrZsmNkkGVkq5eZJjkhyc5JZJbp5kU5rX9fIk30tyYa21n1DeTCmlnJLk5Qvbaq2lw3kTWcu7+pospRyRZmvZg9Js77oxzVa736y1fm+ScxtG6/c5Os1a2i/N63BBkjNqraNWi5uIUsrN0mybfLs07w8HJNmS5nf7SZr3hx/UWvsJ5QEAAMDIhO0AAAAAAKZQv2E7AAAAAFaHbWQBAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAeSq110nMAAAAAAAAAAACAqaayHQAAAAAAAAAAAPQgbAcAAAAAAAAAAAA9CNsBAAAAAAAAAABAD8J2AAAAAAAAAAAA0IOwHQAAAAAAAAAAAPQgbAcAAAAAAAAAAAA9CNsBAAAAAAAAAABAD8J2AAAAAAAAAAAA0IOwHQAAAAAAAAAAAPQgbAcAAAAAAAAAAAA9CNsBAAAAAAAAAABAD2snPQHoppRy8yTHL2i6LMnWCU0HAAAAAAAAAACYvHVJDl3w+LO11utXY2BhO6bZ8Uk+MOlJAAAAAAAAAAAAU+sxST64GgPZRhYAAAAAAAAAAAB6ELYDAAAAAAAAAACAHmwjyzS7bOGD97///Tn88MMnNRcAAAAAAAAAAGDCfvCDH+Skk05a2HRZt3PHTdiOabZ14YPDDz88Rx555KTmAgAAAAAAAAAATJ+tvU8ZD9vIAgAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAbDbqFs2pZ7zhdSf/mjSUwEAAAAAAAAAdjHCdgDsFuoXT0991G1Tn/OQ1MfeOXOvenrq9u2TnhYAAAAAAAAAsIsQtgNg5tVrf5r6kickWzbtbPz4u5J3v2FykwIAAAAAAAAAdinCdgDMvk+elmzftqS5nv62CUwGAAAAAAAAANgVCdsBMPPqf/595wMXn7u6EwEAAAAAAAAAdlnCdgDMvg5V7QAAAAAAAAAABiFsB8Ds27510jMAAAAAAAAAAHZxwnYAzL5twnYAAAAAAAAAwGiE7QCYfbaRBWiT9noAACAASURBVAAAAAAAAABGJGwHwOzbIWwHwGIf/VbNmt/d8bOvr15SJz0lAAAAAAAAppywHQCzb8eOSc8AgCny6fNqHvWGuUVtx7x6Lt+7UuAOAAAAAACA7oTtAACA3cpj3jTXsf05p3ZuBwAAAAAAgETYDgAA2M1s2NK5/ZPnre48AAAAAAAA2LWsnfQEAAAAuvnxDTXv/VrNpdckv3T3kofdo0x6SgAAAAAAAOymhO0AAICpdPFVNb/02rlcfHXz+DUfq3nRI0teddLKFejesq1m/Z4CfQAAAAAAACxlG1kAAGAqvebj9WdBu3l/9ZGaS6+uKzbmh7+5Yl0DAAAAAACwixO2AwAAptI/fbZzqO5fv7ByYbtPf2/l+gYAAAAAAGDXJmwHAABM3I65mq9cXPOhc2qu3bh84O0T565cIO6GTSvWNQAAAAAAALu4tZOeAAAAsHu7ekPNr/zfuXzt0ubx2jXJqb8zmf8v6MKrVLYDAAAAAACgM5XtAACAifrT/6o/C9olyfa55PH/NDeRuZxxwUSGBQAAAAAAYBcgbAcAAEzUh765etXkrumxRW2SbN2uuh0AAAAAAABLCdsBAAATs31HzXU3rd54V2/ofc6GLSs/DwAAAAAAAHY9wnYAAMDEbNq2uuNt29H7nE1bV34eAAAAAAAA7HqE7QAAgIm5aYhg25kXDj9eP2G7y64dvn8AAAAAAABml7AdAAAwMd+4bHXH2z7X+5z/+W5d+YkAAAAAAACwyxG2AwAAJmbjlsGvucMthh+vn8p2ZfjuAQAAAAAAmGHCdgDMtFpVJwKYZpu2Df4+vaOP6nTd9BO2e/kHa07/ps8PAAAAAAAAFhO2A2C27egjVQHAxGzaOsQ124Yfb3ufHwu/+sa5fPw7AncAAAAAAADsJGwHwGybE7YDmGbDBOeGCejN66ey3bxXfGiEEnoAAAAAAADMHGE7AGZbFZQAmGbDVrYbdpvwrQOE7c68cKghAAAAAAAAmFHCdgDMNtvIAky1YbeE3bJ9yPFGqIoHAAAAAADA7k3YDoDZZhtZgKl205Dht2FDczdtHa4iHgAAAAAAAAjbATDbhO0Aptqwle1W67pht6sFAAAAAABg9gjbATDbbCMLMNU2DxuaG7Ky3aDjbR1yu1oAAAAAAABmj7AdALNNZTuAqbZtyDDbsJXtBg3PDTsOAAAAAAAAs0fYDoDZJmwHMNW2Dfk2PWwIbsugYbshK+gBAAAAAAAwe4TtAJhtwnYAU23r9jrUdcOG4LYO+LGgsh0AAAAAAADzhO0AmG07hO0Aptmwle0220YWAAAAAACAVbZ20hMAgBVV5yY9AwCWMWiluXnDhuAGDtttTS66qmbbjmRNSQ67ZbJ2j5IbNtVctSG5062SUspwkwEAAAAAAGCXImwHwGxT2Q5gqg1b2W7T1ppk8JDboOG+Y/+qc2h7jzXJjrnk0AOTdzxjTR50hMAdAAAAAADArLONLACzbU7YDmCaDVppbt5qVbbrZkcrg3fZtckj/n4uV15fx9MxAAAAAAAAU0vYDoDZNmcbWYBpNnRluyHDdsOOt5xN25LTvyVsBwAAAAAAMOuE7QCYbSrbAUy1Qbd1nbdp65DjjamyXbtPnrsy/QIAAAAAADA9hO0AmG07hO0AptlqV7Y788KVqUD3kxtVtgMAAAAAAJh1wnYAzDaV7QCm2rCV5s4aIjR30VU1F1893Hi9fOq8pFaBOwAAAAAAgFkmbAfAbBO2A5hqw1a2+/h3Br/m37+4smG4z5+/ot0DAAAAAAAwYcJ2AMy2ubnux9b4GASYtGEr2x1/xODXvPr0lQ3bffp7KtsBAAAAAADMMikDAGbbcpXt1uyxevMAoKNhK9vtWCZLPSmXrNAWtQAAAAAAAEwHYTsAZttyYbtSVm8eAHS0dciw3bAhvW6OuPXofVxxvcp2AAAAAAAAs0zYDoDZtmPMaQwAxmrY0Nz2MVe2WzuGPxldes3ofQAAAAAAADC9hO0AmG3LVbarKhABTNrW7cNdN+6w3eOOHr3a6UVXJdVnCwAAAAAAwMwStgNgtgnbAUy1oSvbDXHdfe/Q/dhjjho9bLd5W3Ll9SN3s8S1G2ve/dWav/7oXN7yxblcdo3PLwAAAAAAgElYO+kJAMCKWnYbWWEFgEnaMVczN+Rb8XlXDn7NjZs7t5/8CyX3WSaIN4gLr0pue8B4+kqS866oecjr5nLFghDfurU17/79NXn0vUYPCAIAAAAAANA/le0AmG3LVbYDYKJ6VbW7y0HJSx7VOVC2ZYjtZ8//SfdxShlPcO2iq8Yb5H7OfywO2iXN1ru/9W9z2bZdaBwAAAAAAGA1CdsBMNuW2yrWNrIAE7V1mcDc2S9ak/NfvUduv0yVuO07xvM+Ps5PgwuvGl9fm7fVfO77nY9dvyn58iXjGwsAAAAAAIDehO0AmG1zc92PCdsBTNTmbd2P7b2u+b7P+u7n3LR1sPH23KNz+3yVvF+7z2D9dfKuM2uuunE8ny83bEq2L/MxdvWGsQwDAAAAAABAn4TtANh9CdsBTNSm5cJ2ezbf73OH7tu7Lnd9ux1zteu2tScc0Yzx3IeO/sej83+SHPy8uTz2zTuyaetonzMnvnGZpF2STdt8jgEAAAAAAKwmYTsAZptAHcDU2rRMZbr5sN3890Gvb/ftH3U/tt9ezffj7lpy1ovG80ek938j+bN3D/8Z9F9fmcvZFy9/zpd7HAcAAAAAAGC8hO0AmHHLBx2qMB7AxCxb2a61jexyYbvltqFt94Fzur/fLxzjmMO6V9Ib1Pu+NvxnzB/+R+9rz7vCZxgAAAAAAMBqErYDYLb1CtMJ2wFMTD/byM6H7ga9vt11N3U/dueDFj9+3H3773c5V96QbNs+3OfMT2/sfc6htxhfMBAAAAAAAIDehO0AmG3CdABTq9s2sKUk69Y2P++13DayA4Ttljt3n/WLQ2tP/YU1KWPKsQ0yx0Ft3bFyfQMAAAAAALCUsB0AuzdhPICJueL6zu/Be++ZlFbabf3adA2+dQvrdfJPn+081hOPWdr5o+9V8q5nlNzn0GYuD75b/+O0W8mw3bbtK9c3AAAAAAAAS62d9AQAYEXZRhZgan3qvM7tC6vZlVKy19rOobVxBNn226tz+xOPXZMnHpvUWlNKyTGv3pGvXjJ4/4MEAued/+P+Ppu2CtsBAAAAAACsKpXtAJhxvQILwnYAk3L7Azu3X7Nx8eO913U+r98gWxOY63xs45blr52vsPfY+w63r+zmIQKB37m8v/O27vAZBgAAAAAAsJqE7QCYbSrbAUyt7Tv6O2/vPTu3b9rW33v4lu3d3+6Pu2t/czjxqNI1sLecbX3+jsNcs2UFt6gFAAAAAABgKWE7AGabsB3A1PrWDzu/Bz/k7osfj1rZbrnz7n+n/hJ0R96u5J3PKNlnfX9jzts6RNiu34p1w/QNAAAAAADA8ITtAACAifjItzu3f7ttG9Xule36G+dH13U/1q3vTp507Jpc/fo1OetFa3LF363J0x7YO6i3dXv//c/rt7LdMH0DAAAAAAAwvLWTngAArCiV7QB2OT++YfHjUcN2F/60+7Fb7NNfH/PWrS055rDm5xs2zfU8fyW3kVXZDgAAAAAAYHWpbAfAbOsZphO2A5h2o24ju1x47eD9+9tGtpN+8trDVJ/r9xqV7QAAAAAAAFaXsB0AM05lO4BpdNWN/b//jlrZbtO2lXmv76fXYarP2UYWAAAAAABgOgnbATDbbCMLMJX+7n8HCNuNWNmuWyjvLgf1PYWO+vkIsY0sAAAAAADA7BC2A2D3JmwHMBGfPHeQynadt3rtt7LdTV1Ced0q5vXrqEN7b0G7ktvIblHZDgAAAAAAYFWtnfQEAGBF9QzTCdsBTMK1G7sfe/0TFofY9upS2W5zv9vIdgvbdem3X888ruQVH1r+c2TrjpqkdyhvoX4r2/Vb2W/jlpqvX5psn0v2XZ/ss37x93VrB5sfAAAAAADA7krYDoDZpnIdwFS68Krux57+wMXhr24V6DZt7e89vlsFvFEr293+wJJnnVDyD5/pPo9hKtv1HbbrI2z4z5+by7NPrdkx1/2cPffYGbxbFMZbl+y7V8k+65c/vm+X40J8AAAAAADArBG2A2DG9QhiCOMBrLovX9z9vfffnlqy3159hu36rGz3li92Hm/UynZJ8sYnldz/TsnJb+k8Rr/BuWGu6VXZ7uyLan7/nb0/57btSK67qflaavgKsWvXJPvutTCYtzikd7Mlba3v61shvy7H161NShHkAwAAAAAAVp+wHQCzrVeYTtgOYNW96L3dy6zdZv+lIapuobh+t1HtFl7bawx/Giql5LcfUPI3H9uR716x9PiWISrbbe0zbLd9Ltm2vWbPLhXkPvzNyX7GbZ9b2RDfzmDezp/3Wd9U4lvueHubEB8AAAAAANAvYTsAdm/CdgCr7pPndT/2c4csbRu1st0Rt05+fMPS9rMu6u/6fqzv8ierzX3OcaFBquFt2pbs2WXsy68ffOxdwUqG+Dpth7swxLfc8e7b6QrxAQAAAADArBC2A2C29QzTCdsBTJNDDhx/Zbtu5z38nuMLQHWb46Bhu+07av7hM/1/Nm3aluy/d+djO4bYwnZ3tn0uuX5T87XU8P89sceabgG9ZN+2EF+3452uF+IDAAAAAIDVJ2wHwGyzjSzAVLl24+Dvu6NWtusWeLv3oQNPpatR5zjvj08b7Pn5+qXJw+/Z+dggFfJYOTtWOMTXOYy3M8S33PFO168X4gMAAAAAgK6E7QCYccJ2ANPk499Z/bBdt/P26tLvMEatvpck27bXnHrWYM/PO86sXSv0bZ/rfM1T7l/y0keXbNiSbNySbGh9bdxSF/y883vzc207d+f3QQOFjMdqhfj2WZfsu9fCn0tutqRt/ueSfffqdI0QHwAAAAAAs0HYDoDZJkwHMFXOu3Lwa/ZeV9IpHNRvkG3r9s7tYw3b7dlljgME0c67sltwqrv/OLvmXc/sfGzbjs6fgQfsk9z11p1CT8MFoXbM1QWhvKVhvA2tEF/78Y3dAn5bkw2bhfgmZfkQX7J8kG/5EN988G6fda1qeot+3hniW3p8cYhv4XEhPgAAAAAAVpOwHQCzzTayu50zLqg57jU7yzm99Wklv/2ANROcEbDQ1mW2Nn3xozoHZrpVtrtxc39jdttOdc89+ru+H90q23XbwraTbpXohrW9y++9dsxviXusKdl/72T/vbudMXyI76ZW8G5hCG/jz9rqgp93tjfX1EVtQnyTt2MuuWFz89XZcCG+NWVpcG/x1ritLXM7Ht+5nW778b32FOIDAAAAAGApYTsAdm/CdjPl7IsWB+2S5OS31GzaOpffO17gDqZBtypzSfLKE7uE7boE2bbPJbXWnoGYbmG7tWvGF6TpViXvE+f2/zlzydVjmkzL/57buX2cIcOVtMeakv32Svbbq9sZo4f4Nm5tVdvbvDDMVxe3bVkc4ltyzRYhvkmaqysb4vvZdrqLAnw7g3qdj5e2c3d+F+IDAAAAANi1CdsBMNt6humE7WbJs0/tXBbqWe+q+b3jV3kyQEfdKtuddO/uAZRule2S5LtXJEfebvkxV6WyXZc5Xn5d/3386+fHW9quW1W9cVe229WsdIhvXNvpzv98U5/bJTNeKxniWxrcW1xt72Zdj5cuwT8hPgAAAACA1SJsB8CMs43s7uSrl3Q/tmVbzfo9/SM0TFq3ynbr1nZfn7fat3t/X7+05sjbDVfZbpxhu+s3dW6/zf799zHubWQPuFly3U1L239843jHobFSIb65+Up8XcJ4G7bUrgG/jV0CfhuE+CZmrjZbYHffBnv0EF/nMF9Zcnyfdc32ufuuLwt+Xnx873VCfAAAAAAACwnbATDbeoXpVihsV2vNJ85NPn9+zRG3Tk48qmT/vf1D5SR97DvJY+496Vkk126s+eA5NRf8NDn+iJJfurt/xGY4l19X84Fv1FyzMfmVI0vud9iucR91DdstE3w7/ODux7pVb1toNcJ2B+032NidnHfleOYyr9suube7+XjHYWWtWVOaENQKhvg6h/U6V9u7aZmAnxDf5KxUiK+U9mDezp+b763tdDseb22nu9fS40J8AAAAAMCuSthuQkopeyQ5PMk9ktwuyc2TbElybZILknyl1rpxzGPumeSBSe6Q5LZJNiS5PMnXa60Xj3MsgKkxgbBdrTV/fFrNGz+1s++jDqn5n+euyUH7+UfFSfm1N8/lxY8q+cvHTG7/xCuvr3no6+by3Suax686veZ5v1zyt7/uvmAw515R8+C/m8tPWhXKXvbBmn94csnvPmj69wftGnxb5k8mywUyru1QuW2hWmvXinHjDNsdd3jJ33586WfK1X3+F/0ZF9Rces1wY++Yq9mjQ7Ku23N99B2957DyIb6NW5MNm1thvIU/z1fbazu+cfPiEN+S41uG/lUZQV0Y4ruh4xnLXd31SCmtAN7CMN76xSG+m3U93rad7oLjQnwAAAAAwEoTtltFpZQ7JHlskocm+cUky20qtaOU8r9J3lhrPX3EcQ9K8ookT0hyiy7nnJHkdbXW94wyFgDJOT/MoqDdfNubPl1zyon+8W+SXn16zTOPq7njLSfzOrz+E/VnQbt5r/2fZk53u417g/696L07g3ZJE4b4k9NqnnL/mputn+57acu2zuGL9T3+ZHL0HTtvFX3qWTXP///Zu/Mwuaoyf+DfU11dXdWdfSUJkJAQVtmRHVlF0BHBDUVRQUZHBweH8aeijsLM6LggboMO4AKKouiALLIkskPYCQGSACEhCQnZ916qqqvr/f1RXd236p5z7rlVt5bu/n6ep59U33PvubfWdN361vu+y7xdzlJZLsqwXarVPCYigeGPE75XeQ/Znqw+MGW67lFeb6Jy3hDfVO073mhCfF3F1rrFy+nSEF9xvCsNdGXFF/zr8lT1o/oTGayGWKsQn2s73cHLSrsNQ3xERERERERERETkxbBdnSil/gDgoyE2aQFwJoAzlVJ3AbhYRDZUsN+zANwAwNJ8CwBwHIDjlFK/B/DZqKvqERE1TGDluugr213zoH7O/7hLcMXZke+OQrp/qeCiExrzYamu6hUA/O/Dgh+dxw9wyd3ti/zL0r3Azc8IPt2gx7errCEAlgh4Z5I3ZNGmj7NvZ2vjGmXorM0StnttA7Dvbubxnmx1/xf19OrDdqbrHm/+AohEPrUM8fX0lgX3vK1x0+Jf5mmnq92GIb6GKQnx6dewbW0cKYb4TGG8YohPP24O+LUzxEdERERERERERDTkMGxXP/sYlq8FsAzABhTuj9kADgHg/QjsHwA8opQ6SUTWu+5QKXUygL8CSHgWC4DnAawAMA7AYQAmecY/BmCMUuocEam8vAYRUdOofxvZPz9rnnNnj+DZVcCWTmDRGsGtzwtaYsBPPxLDyfvywzZXmV7BkysK4ZYjZwLxFvfbbUdPtMciIli+CVj0JnDw7sDeU8Lfj9c+IvjRedEeF41MC5YDnz6h0Udhl83plycCgm8L39Qvb0/olxeZWsgC0Ybt9reE6Xal7dtWG8pZtwOYPLp0Wb3a5xINdbHYYEiqViG+rowujCclwbziv12Z0na6uu2p/rwhPv23IKMJ8emq7bVbAn6mCn4M8REREREREREREdUOw3aNsRDArwHcIyLLyweVUjMAfBPAZzyL9wHwZ6XUO0SCkyFKqd0B3IrSoN3jAP5RRJZ61msD8FkAVwEo1uN4L4D/AvC1MFeKiKgpBb1k1iBs12eZctyl+uTDaVcXlu/6WQwdTd4CstGeWyU488d5bOmvwbrXJGD+v8Ywe7Lb7dbTG92xZHoFH/tlHrcuHFx29iHAHz8TQ7LV/X5M9wKX35rHd85V/GCUqvKbxwVXni3YfXzzPo4qrWz3kbcr/PEZ/wvs8k327WyV7eIRhs7Gpsxjmzvt26YNAUQv0/UHgEP/I48bLlT4xLGD39fps4QMo7zeRKTnDfHpVRfiM4fxRBvQ67IE/IrtdWvwZzEFqGWIr73YTjdRqAhZenkwxOcfLw3xecdTrYXHNhERERERERER0UjGsF39CIC/AbhCRJ61riiyFsBnlVKLAFzjGToBwHkA/uiwvysBjPf8vgDA6SJSUldDRDIAfqqUWg3gNs/QZUqpa0VklcO+iIiaVwPCdtVUKDrpB3k8+w2mIEzyecE51wwG7QDgjc3Ax3+Vx6NfduuLGGXY7qp5UhK0A4A7FgHfvUdwxdnhPoj83r2CY2crnH1odMdHI9Onb8jjvn9t3tcRY2W7gHcme03SL3/BUPGuqF5tZG0Bto9en8e2n5hX2N5tn/sv/xTDKfvCGLYDgAtvEJywtwwEj+tV0Y+I6ssb4puiXaOyIJSIoCdrrqZnqrbXnS202tW10WWIr3FEBislGtawbW2duzyE19Ef6itcVuhImsaVNvjXkSgEAxniIyIiIiIiIiKioYJhu/r5kIisDLOBiPxcKXUqgA94Fl+AgLCdUmougE96FmUBfKo8aFe2r78qpW70bNcG4FsALgpzzEREQ09zffr3/OpGH0FzW/gmsHa7f/mTK4C3NMt1erLRHc9dL+ofP3e9KLji7PDz/e0lwdmH8oNGqs4DrxaqFzVrlUxT2C4oAJZsNY91ZwTthutbr7CdrSplUPvq51eb/y86Zjbw/sMVMr32/69EgD89K7j8rMJxWCv6uWWTiWgEUapQ6ay9hiG+rizQmS4P48ngMs94McRXsk3ZZYb4GqOWIb5iME/XTrcjaRpXnrCfv50uQ3xERERERERERBQ1hu3qJGzQzuMalIbtTnHY5nwA3o8ObxWRZQ7bfQ+lIb0PK6U+bwvpERE1PcuncAJga5eCoVhSxca3A9sCqhRRZV5aa74/12xzm6M7wrDdU2/ol+tCkw5d4HH9o4JrL6jyoGjE68sDW7tsrQsbyxQCSwQE30YnzWNbuwsBkTD7A5qnwpstBnDZOwvJuDaH1tRX3CG4/KzC5bSliqctuEhEFCVviM+wRkXzFkN8XcVqfOnBMF5hmXguDy4vaaerGe/MMMTXKMUQ38ZdutHKQ3zFdrolrXEHwnqD7XT948oQ/GOIj4iIiIiIiIhopGPYrvmVNadDSik1TkRs9XvOLfv9Ny47EpGlSqmnABzdv6gDwBkA7nA6UiKiZqT5tEwAfHfi/8PPJnweG787FXMm9+H7H4zh3MOi+cBkzmTgWTbhrgnbPRTUhrHIFkCppYyhmhdRWC7BzShDpVEzhd+Cgm/vOUjhslv0191WsXIohO1s99e7DnSfx3tduzdtBTBOu16KYTsiGuK8Ib7Jo7VrVDSviCDd62+H6w3xadvlekJ8unGG+BqnO1v4qVWITxfG62hTvmCfN+Cn36ZQmY8hPiIiIiIiIiKi5sewXfPTfTSfMK2slNoNwCFl2z8eYn8PYTBsBwBngWE7IhrS/B+SXDfuYvz7lCsHfl++CfjwtXk8/pUYjtqr+g83bMEOp+1zgtY4P2TRWbnFPHbFnXmnOaJsI2sjIiVtJeu1Xxr+XD6s72lQqNRFzvBUjQcE38a3m8ds17dZwna5PkG8Rf/abjr+yaOB0cnBbT51nMINC9zSGl3fvQTATdqxlPHdBBHRyKaUQipReJ2sVYhPH8aTkuBecbw7Yw74FS/nGeJriGKIDzUI8WnDeAlgVLIQ1NOPK4xK6gOADPEREREREREREUWLYbvmt3fZ7zkAmy3rv63s9xdFpCvE/haU/R6ilgYRURPSpFJ+P/YjvmV9eeBPz0okYTtTkMRVTy/Qyv+htZ5+w/zh1DMr3ebo6a3PJ5KL1gCH7uHdb112SyOAyyO4mcOdlVa2swXEhkJluzc2A3On6sdMrw97TSz93aX965ptghndK9CzYjkwW78OK9sREdVXrUN85jCevtpelyXgV7zMEF9jFEN8myIO8aVaMRjGS5RfVoVKfdrxQojPvw1DfEREREREREQ0cvGj/Ob3wbLfnxURW4zjgLLfXw+5v+UB8xERDXkL2o/TLv/N44Iffqj6+autbNfTC4xJVX8cw9FekxTcokZmUYWQcn3243h9Y2nYjm1kKSp5h0BvM4c7jZXtYvbtbAGxZqlsZ6s8t36nJWxneF0qDxjOmRx8DMs3AtMfvhE9saRxnXZWtiMiGha8Ib5JNQzxdWULrXQ7PUG9kja6/eMl7XS923guM8TXGD29hZ9ahfg6+tvqei8PtNPVjnva6ZaNtyeAFob4iIiIiIiIiKiJMWzXxJRSowB8umzxbQGblVfCWx1yt6vKfp+olBovIttCzkNE1Bxc+i32294dzS5zVYbtpn2pNIkyZzLwrgMVvvVehcmjR/aHDt0RBOWimGPjTsGX/8/+2PrwtXnMmgh851yFjxwVQ9YhbHfUrOqPjYa/kVrZLhZTSMShfS7Zrq+t2mhQwC+sfz7FHLZLWwKBprBgecDwfYcqfOOvYg3vdmcB5PN4PVH+tqBAKSDBd4FERGRRyxBfJtcfzMv2V9NLe8N4Mhjc84x3Z4HOdGmIzzvOEF/jDIT4tKPVhfh07XK9IT79+GCIz9dOt40hPiIiIiIiIiKKBj9maW7/DWA3z+/bAfwyYJtxZb9vDLNDEelUSqUBeEthjAVQVdhOKTUFgEMtjhJzqtknERGAUGG7qFRb2a7c8k3Azx8SPPSq4MnLYxiVHLkfENjCKq4eL6/hGtKutOCUH+axdF3wuiu3AOf/UtCZyeNohxbFT6+s7thoZHD5MLmpK9sZXiNdgm+pVkPYzlbZzhJMi7qy3REzzc/zLZ0CUzjBtbLd3lMU7rwkhs/elMcbm/Xb3LBAcGS+AxdNv14/Z6tAqZH7/wgRETWOUgrJ1kJb9En6NSqaVxfiG2iNmwa6slIa7PO2002LP/jn2b7PoaIwRa8Y4tvcqRuNJsTnUFNSuAAAIABJREFUD+uVhvjKA376bRjiIyIiIiIiIhqJGLZrUkqpcwFcUrb46yKyNWDTUWW/91Sw+x6Uhu2032MO6fMAvhXBPEREVVmc2L/m+4g6bFe0ZB0wfylw7mG1mX8o6M42vmTFvS/DKWjn9eO/C268iB/AUDRcMsQ9WXOwq9HMle2CjzfVCuzQ/HXb02u+vqb9xVShWl7UJo3SfzB872LgI0fptzFXtvMf3+kHKCz/Tgtin9FfsT8/J3jXXub/62zteImIiIaiWof4BoJ73ta5una6mbIgn2GcIb7GqVWIL9lqCvAVQnztloBfeXBvFEN8RERERERERE2PYbsmpJQ6BMBvyxbPA/ALh83Lw3bpCg6hB8B4y5xERENHWSrlheQhxlWjOo+drVHYDgAee11w7mEj94R7VK0x+/JS8QcXz64KH/hbss6tTTGLTZGLIV/ZzvDhctyhylx5pbci22tDpW1rK6X/8BaYNta8jalqZ9JwfQFgTBLYqflLXyng31a/07hdqrXxoWUiIqKhwBvim6g9M1Z5iC+bMwX4+tvpGgJ+XZZxhvgaJ91b+Kl1iK8jAYxKlrbT1Y+rsnUHxzvagLjDl1yIiIiIiIiIyIxhuyajlNoTwN9QGnBbBeDjIhX1QqzXNkRETeumMR/FIx0nog8tuHHcBcb1Zk2sfl9vbhVs7ap+HpNMEwdo6qE7orBdNmcO7dTqGHTVuMqJVBcEpJFhKIftnlgu2GX4KohL+M1Ulc3aRrbOYbuwxwEUKxH62arQHbw78Njr/uUiwI6+pH+gXzvDdkRERA2llEJbK9BWwxCfPqwn2oBe18CPf7wrC+xKM8TXKLUM8RXDeB2J/mp6xcvJ/na62nFVtu7gOEN8RERERERENJIwbNdElFJTAMwHMMOzeD2Ad4rIJsdpyk+/pCo4lPJtDPU5Qvk5gD+H3GYOgNsj2DcRjWQieKz9ePx63KcCV622/esr6wQHfKu2n0K8sXlkhySiChBVE7Z7/PXK7oMHXnHbLt1b+KCCyMTl6xdXzxNcelrtjyWMXz+Wxz/+znzw8VjwHKbn7WsbzNvUO2x3xgHAvCX+5U+/Yb7uphCvLWz3X+fEcPJV4f/PScVH9v8jREREw1WtQ3xdWaAzPRjC60wX/5WSZd7L3QHjporHVFvFEN8W7RcFKw/xtcXLgnve1rhJhfbyYJ+hnS5DfERERERERNTsGLZrEkqpCQD+DmAfz+LNAE4XkWUhpmrKsJ2IbASwMcw2ir30iCgKImiBW4qu2vavX7ut9p8U3PNyzXfR1CIL21VxX7/wZmXb/fwht4BLT5ZhO7JzqWz35rbaH0cYuT7Bl/4i1qCgUxtZQ/jsmgcFP/uofqy3T7/TWoXtJo9W0H0QqatCV2R6bbOFgidpP0QPlnd5ABERERH184b4JnRo16h47myuv5peMbiXKQ3x+ZZlSkN8pnGG+Bojkyv81CrENxDG87bG1bXTHVhPGbYp/MsQHxEREREREVWKYbsmoJQaC2AegIM8i7ehUNFuccjpdpT9PjnksYyCP2y3PeQxEBE1EUGLOIbtctXt6a8vVLe9i5kRtLodyqJsI9usorqONHy5VLYDgOUbBXOmNMcHSC+uAbZ329dxCb+ZqtTZ2oDXu7JdJVVS06awnaWy3dhKvlID4KUNlkmJiIiI6igRV5gQr12IL6p2ugzxNVYtQ3zmMF5/O13LuC4A2JEAWuPN8R6MiIiIiIiIaodhuwZTSo0GcC+AIzyLdwI4U0QqiW2UV8GbGXL78vW3ikiT1UYhIgqhjpXt6iGqcIiI4NX1wEtrgaP3AvacqCAiWPwW8Mp64Lg5wPRx9hPExfWfWSmYOkbhxLnA6GT0J5XzecFLa4HnVglWbYlmzkyFYbucoUJWlKKq3jecpXsFNy4QPP46cNkZCofuMbI+zHAtTLZxFzBnSm2PxdWOnuB1XNrIbjbUW7a9NprCby6V9CoxKmnYn+X6mQLACcu7tenj3I+JiIiIaCSpZYhPF+Dzhvj0AT/z+C6G+BqmGOLbGjrEZx9PxP0BPW9Ir10T4CsJ+SUK7ylKAn4M8RERERERETUVhu0aSCnVAeBuAMd4FncCOEtEnq5w2qVlv+8dcvvZZb8vqfA4iIiaRqxOle3Cmj4OeCtk7dCeCKqe9eUFn71J8OvHBk8Of+u9CovXCv7y/OB615yv8LmT9emQbE7w8V/mPesLxrUD914aw1F7RXcCON0rOO/aPO58MbIpAVR+X3dmoj0OHYbt7F7fKNjnG4OfRt30lODY2cBjX4mNmBb0rpXtmqlZ6HWPBB+NS5j4n09RuOwW/1zLNpq3MX14WavKdh8+QpW8vnqPI9cn2nZVlVTfU0rhohP0+yIiIiKi6CXiCok4ML6GIT5/WE98wb3ieHf/uCkAWEnFZapeNgdsrWGIrySM13+5I6HQkbSPj2orXi4dZ4iPiIiIiIgoPIbtGkQplQJwF4ATPIu7AbxHRBZUMfXLZb8frJRqF5GAxl0Djg+Yj4hoaAlR2a63r1CtrZLATp9DqakrzlZYvRWY2AGceaDC9h7gA78I9xX2KFqM3vy0+MIZV97pP/5//oPg9P0Fc6f6b4//fbg0mAcUWkR++No83vjv6EJPP71fIg/aAZVXMbzmwdqHWlZvAQ7do+a7GbK8QbuiJ1YA85cAZxzYgANqANfKdvkmqZDx1nbBn54NPmiXSnMzximYPoDasLNQZbNcvdvI6j98LXh0GXDKfv7llR7jhwzBPiIiIiIaOmod4uvKFtrglobxPAE/73gW6Erbx+v9RUUqqGWIryOB0jBeW2mIzzZeUqHPM84QHxERERERDWcM2zWAUioJ4A4AJ3sWpwGcLSKPVDO3iKxTSr0I4OD+RXEUAn3zHKc4uez3e6o5HiKihhNBi2NlO6AQeLC17TNxqTh32ekKozxtVu9bHD4gEUXVs1+FCGbc9JTgyrP9J0jveVk/x+qtwNJ1wAHTKz68Ene/VJsQSaUfDvz77bUPtSxeJzj7UJ6U1tnZY779L7oxjzXfr1F6qsm4hu2apTW262udSxvZ9oR5bN5iwQXHNj5sZzvGexcLTtnP/RgTAceYag1xYP1aY3kAI+O5QkRERDSS1SvEVxrGk5Jg3sB4phDis40zxNcY2VzhZ5v2q/rRhPi07XKTAeOGdrsM8RERERERUTNg2K7OlFIJALcCON2zOAPgHBG5P6Ld3IbBsB0AXAiHsJ1Saj8AR3sWdblsR0TU3AQtcC/vlM1VGLZzCMF5g3YAcPiegFLuLSEBIN1befW9oodfc1/3P+8SXPFewdrtwPSxQCymsGGn4L7F5m027gIOqPjoSi1dH9FEZTJNfBK/kvDMSLGjxzwWtiVzJUQEq7YUnoeNtKnTbb0o2k5HYeMut/WSDo/9w/cMv596h+3mTjGPmaqTVnqMlfx/9ZOTVwOYE35DIiIiIiLULsTXm5OB4J03xFdYJqXBPU07XdM4Q3yNUasQX2uLKaBXCOm1awJ63vEOw3iCIT4iIiIiIgqBYbs6UkrFAdwC4CzP4l4AHxSR+yLc1e8BfAODJSver5SaKyLLArb7Stnvt4hIOsLjIiKqOxFBLEzYrsJKUJWEWiaPVvjksQo3LAhXLS3dC6QslZOi1vLZcL0oowj4bNwpOO+6PDY5hnTCquRke961nFiVoqheOFzV6S7Q+utCwSU35+sS6otKszyWXG8zl6DptHHmD0BM17feYTvbhzSvrdc/iE3/9wQdYyXX4QOzNoFhOyIiIiJqNq1xhXFxYFy7bjSaEN9Aa1xNO93y8a6A8Wb+Et9w1ttXCPDVOsRXGsbzh/TKx8uDfcV/GeIjIiIiIhqeGLarE6VUCwohuPd5FucAnCcid0W5LxFZppS6EcBF/YsSAG5QSp1mCs8ppd4H4FOeRVkAV0Z5XEREjRKmjWyl33gOCrXEDOfWrv+Ewr67AX97UfDY62776s5WHraTMGX0KvTqBsFZB1V3MvGcn+fx5IqIDkijklDlD+bVKWzXJNXImlEdHr5ai94UfOjaPPrC5U4bricrqOZDqaj87AG3O86lsh0AnLSPvkLnnYsE33iPf3m9w3YAcOHxCr953H+95y/VVyc1H6P9/nNpves1O7sCk3Kbwm1ERERERDSE1TrEZwrjdWbEV2Wva+BHDNswxNcotQzxDQTwEsCopPdyIcRnGx9lGGeIj4iIiIiosRi2q59fA/hw2bKvAViolJoVcq71DhXnvgXgXADj+38/DsDflVIXi8grxZWUUm0APgPgh2Xb/1BEVoU8LiKi5iOCFrgnqyo9qRkUtpugba8CtMQUvnKmwlfOLPye/8HngTt+hdcSe+OAOS9WtC+bF96sfFtX1YbkVm2RmgbtACBTwW14yzOsbNdojapsd+tCGXJBO8DcsrSeNu1yv9NcWyiPatMvX27IkDUibNduCUS/8CZwWFk7XNMxBrWJDXsd5mSXQ15+EuqE94bbkIiIiIiISthDfEClQb5cn7manq0aX3cW6EzrA34M8TVObx+wvbvw41d5iC8eKw/m9f/bVgjptfuCe6Xj/mBf4d9EHL4vhxERERERkR/DdvXzCc2y7/f/hHUKgIdsK4jIGqXU+wHch0JlOwA4HsASpdRzAFYAGAvgcACTyza/C8C/V3BcRETNRyRUZbt0hUGnoPDW+w93PFF1x68AAKl8j3GVaiqfrahDQaPp46rbvh7HmM6Fr/i1YnNtjqUcK9uZNSpst7JO933UmiG4uXKL+7quFTsXGkLDh+yuX24KsoWtChfGPlPNYys2uYftgsJ08ZBhuy9v+SHU2LPCbURERERERHUTb1EY2w6MrWGIrysLdKbLwnxZGVzmGS+G+Eq28VxmiK8xcvnahvgGg3mDlwfa6ZYs07TT1YwzxEdEREREww3DdsOYiDyklDoXwA0YDNQpAEf2/+jcDOAfRUIkU4iImlq4ynaVhlNyAVWvPvr2cCeU2sUStqsiQNPTW/u0UrUBn3oEhCoJtNmOa9IoYHNn6bKT9wEWrwM27YpuPyOdLWxnqnZWjb684D/vEvzuyQal/KrUDI+lMM811xPvR84E7tjuX761y7+sNyf4wX36+6+Wle3ed4jCpX/U77fwOuzaRta+n7DX4fjuJ4DMKeE2IiIiIiKiIa/WIb6ubH81vfRgGK+wTDyXB5eXtNPVjFf6ZViqTi1DfKXBPO+/pe10deP+YB9DfERERETUWAzbDXMicrdS6m0ArgRwHgbbypZ7EsBVIvJ/dTs4IqJ6CFnZbldQk24DU1ACAP5wscJJ+4Y78WOrbFdNa0hTm8UopauszLZ2e7hg07SxwIadwFF7ubewDRtC6ssLsoZvax+9F/Dol2P44p8ENz8tyOSA9xyk8MtPKqzfAbzjB3ls2Om+L55QNhPLQyNshS8X/3ST4FePDc2gHQDctUhweYOLmJWHUE3OPNB9znfso3DHIv/9smiNf91P3WC+/2oZtttzovk1v7xKZl9ejI/twMp2IarzXbblR0igF/LyExV+jEZERERERFSqliG+7qy/Ha43xGdqt1sM8enGec6lMXJ5YEdP4cev8hBfS8wfwDOF+Ezjuu0Z4iMiIiKiIAzb1YmINOwvcxHZCOBzSqlLUWglOxPAbgC6AKwFsFBE3mjU8RER1VqYynYPvCI4cW74l+ycYRcxBXzkKLc0hKx5feByUsypv2rajN6pCahErZowIADc/aL7Mf7tCzGc+bbCydJUQiH2Gbf7OuxtaDsZ+5OPxBBvUfif8xV+8hFBXx5IxAuPodFJYN1VLehMF070JlsLp5njLcBXbxVc86D/uvZkh264q9Zsle2CWjmHtbNH8Nsn7PfFhccrfPucxp98/cSv8/j7Uv/yJxzDp7V072K3x3NHiMqEqVbz2OsbBXtPKdwnm3YJ/viMLWxX2/vuwOnA4rf8y//2ouCb/zD4uynIC0Rb2e6AzCuFC0/Nc9+IiIiIiIioAeItCmNSwJiUaY3K3s/15aUkmOcL82X0490Zc8CPIb7G6atxiE9bbS8BjEpaqvElFEYl9du3McRHRERENGwwbDeCiEgWwIONPg4ioroSwdTcRufVwwQ+vCptAVhi2aKBizEI2vJpZGJJ32rVtIY8aIbC86trG+aqtlXtrEkKwSfECqaNK5ykSiUKv196msJP7g/eNuxtaDtpmvQEf1piCi2abOWoZOFEm1eq1dRiMtyxjSTWsJ0lsFSJJevsFSuBwjeddxvb+JOkWwzV42ZPqu9x6Ewd47beOYe5347TxppfI55fPRi2e3GNvRpiLSvbAeZKogdOd2shCxQeYzZjjR88+U3NbShcOPh4942IiIiIiIiGkZZYbUN8pjCeqdpelyXg15XhOaJGsYf4APt5S3uIrxDW8wb3SkN87cbxwrlF3fYM8RERERHVH8N2REQ0vIng1K6HEJde5JSlHFK/Sr+JGknYbmNpD8SU9CADf9iuO50DEHxddHb01L5qWjWV9zK9gp8+4HaMe4wHDtm9dNlFx9cmbGerPNVW4V9TxYBguWpuv+HOFpzKC/Dde/JYthE4YibwiWMURiUrP9H45Irgx9EB0yqePlJ7TQIWvulfHlRlcuNOwW+fFPz33YJt3cC5hwHnHqZw/lEKsVg0J2ldH89nHui+v9P2d9tf0PWvddjO9P/J5s7Sx5YtbBd0jKmE++12UvejhQvZCvulExERERERkVa9Qnxd2UIr3U5PUK9TM+5tp6sbZ4ivMfrywM504Uev+hBfR6K/ml7J5cEQn3/c0063bJwhPiIiIiIzhu2IiGh4E8HUvo24Zc3H8NEZv9VWivN6Y3Nlu8nl9cvjjmEO2b4Z8j9fLlnWnu/B9pbxvnW7u3pRSdgumxP89YXQm4VWaRvZbE5wzs/z1kBV0eTRwO2XxHwnfA7aXeG6CxQ+9/tCO1eTsIG2bBWVp0xMrTB5wtPMVtkOAL52W2GF3zwO/PFpwbx/jSHZGv6k4EOvCi67JfiBeNCM5jjh+JGjYrh1of8Bv34nICLaE6PrtgtOvqoQTiy6bSFw20LBA68Av/pkNCdUXR7PN31aYeIo932NtoQor54v+ORxhcvbu+33oevrc6U+d7LCLx7yH8NdLwK70jJwPaoJ2wHA+Ucp/OFp+3X9r43fRLv0fyX/leeCJyUiIiIiIqKGq2WIr9sb3CuG9AaWSemyTOFyYRvxb5NhiK+RahXiiylzO93CZXM7XW+Ir3w82coQHxEREQ19DNsREdEwVzhhcHbnXdj02gwsSB2DpKTx7UlfxfxR7/St/ZvHBb/6ZPi99PbpT0y4Vk6SX13pW5YSfa+Cnp4sgHbXQxvw4KuhN6lIpSfWHngFuG+x27pvfi+GRFx/UubiE2P48JGCZ1YCV9yRx+PLqz9GW2W7RIWBHVa2Cy8obOf12OvArc8Lzj86/Mm7K++0JDU9TIHJerMdx4trgEP28C+//jEpCdp53bBA8KUzFA6YXv2x2R7P/3O+wiePVehoC38fHbx74bqVe2kt0JsTtMYV7lhkf8DUurLdKEtb8tsWCj5xbDRhu1kO7YLP7JxX8rvkclBxvhUkIiIiIiIaiVpiCqOTwGjjd5KrD/EVQ3gDrXHTQFdWPJfL2ummpSS45x2v9Iu9VJ281CfE5w/rlYb4ygN+5cG+4r8M8REREVE98RMWIiIa3jxl0tqlB6d3PwgA6DW0lD16r8p2Y6ps5xzm+Ot1vkWpvD5sl+6xJL8sbnk22hayx8wGnlzhX15pWGz+UrfjO+ttMAbtisakFE7bH7hxgcLjy/3zNnNlu3Rld++IkHfLwA14dhVw/tFh9yF4+DW3dU2ByXobZ8nePrJMcMge/ufLn56xP98eWSY4YHr1JyhNrVQvPlHh8yfHKp7XFmR7aS1w+ExgQoeC7eRurSvb2e8X4BPHFi5XG+a17adobH5H6YI3FgNzDwnekIiIiIiIiMhRrUN8A8E9b2tcTTtdb4hP2063/1+G+BqjliE+c4CvEOJrtwT8TAFAhviIiIhIh2E7IiIakVa37qldHqvwfbOpMlG88iwJkqI/49BTYRrrnpeiDdu95yCFJ1f456z0RNX2brf13nuI+53UavhLx1ZJSqcmle1MbWR5os8o7CPYdr+ZhHlsNEtluyNnmsfe3KpfvnSdfc7OTOXH49Wd1d9r1d52p+6nsEATpAUGjz3oPGitK9uduq857NfleXmvtrLdafvZQ4UzetdiVu+q0oXdu4InJiIiIiIiImoCtQrx5YuV+AxhvM6MaAN+3ZaAH0N8jZMXYFe68KMXXYivIwGMSpa209WPq7J1B8dTCYb4iIiIhjKG7YiIaHgT/RvlT27/Hb415Vu+5ZW2QDWFJaoJc7Tn9emz7p6QSbEauPJshb2n6McqvQ0Nd1WJU/cDLjjG/SSEqepc2BCWNWxXaWW7hD4gU+ntNxKEaSMLhA/nAfYqhuXam6SyXVur+Tlx1TzBBccIDto93Mm7dTuC13FhCo9WWxXw0tMU/utv+nt4xWbBO/ZRxqp6RbUO2719lnnspbWDx15t2O7QPYAvnKrwswf0t8e16z7v/9gho6+cSkRERERERDRSxGKqEIKqYYhPX43PX23PG+LTbcMQX+PUKsSnlCa413+58G9/O13vsrbiZeW5XDrOEB8REVF9MGxHRETDmyHBNSG/Tbu80qpiuRqE7VKmynbbdwCYUfnEAa67QGHlFuCt7cCYFLClE9jZI9hzosLEDuD0/RVOmKtw5yJBlGGxTEAA7oS9gTsvifWH1Ny0GcN24WJYtWgjm2Rlu9DCtpGtRJggZrO0kQUK7ZXveVk/dvFv83jqa+FejH40X/DDD1V/XKbXg2or200cpaCU/iX+0j8KPnVc8HOp1mG7WEzhS2coXDXPf5BLPJUFqw3bKaXw4/OAsw9RuOdlwZ/uXoO1rTPwye2/w1e2/AD7ZF/3b8SwHREREREREVFN1DrE15UFOtP9Ybz+y4V/pWRZ8XJXGujKim+bgfGIuhtQOOIN8e3UrmHb2jiiVHkwr6w1blKh3TiuytZliI+IiMiEYTsiIhrmDC0M8/qgQdSV7VzayIohEGg8xu2drodVIuZwLBM7gItPdOt9awrLdGcL1ynsm+8eQ7vJovOPVqGCdoC5xWuY6mWAOYAVU4VWFpUwtpHtrez2GwmibYSsF6aNbLNUtgMKJ75MnlkJbO0STOgoPKZcwqbVtMD2qlXYDgDGtwNbu/zLi9807um1X8+orqONLYyb7hUkW5X1Meca5lVK4bT9gVNnZ/D9n84N3oBhOyIiIiIiIqIhxRvimzpGt0blIb6e3v4KesXgXqY0xOdblikN8WnHGeJrCJHBaoi1CvENhPG8rXE17XS9IT7dNgzxERHRUMawHRERDW+mIJtEG7bLGSpuOVVO6tWXXzIeo2pzPKpSc6cUqtXZhAkzmap6iRTCaW0hwzRBFcUqCefUuo1spVXtJJ9Hcu0rAPbVjmdy5sp3I1noNrIVpPNcHxuzJgJJS/vWejt6tsJfnjdf4a1dwISOwuXFbwXPN3l0NMdlqi4XRVDRFoIVkcDKdsfNqf39N77dPLYrXXie28K/oavvde9yWk2WPgvMPQSItQAt8f6f/sveZQOXW3jik4iIiIiIiGgYisX625W21S7EF2U7XYb4GqMkxKdfw7a1caQY4tMH+AaDeqaAny7A19FWOPfIc1lERFRLDNsREdGIlMobWrRW0MIznxd86c/6N4xOQQlDhaF2Q2W7LZnKUlhRv7VMPXs3gDO1Yz294cN2QRXF2kNWtQMsYbuwle0M65sq59nIgrshXzkXybZDgNlPaNfpyTJsV5TpFby0FnhulWD+ktrWttvRLTjlh269ar9zbnOdrDn/KIUr7xTjCa/uLLBsg+Ccn+exdJ1+nfL1o2CaJ4oWvJe/W+Hrt/kfE3kpvJ7YwtPHzwHe4VAArlrvPkjh//1F/7jd0VMINdpe+1rCVt/LOlasu+WnkFt+GmpqicXMYbx48XJZYC/WUhgrC+65hfxajOPKO1eL5nh8x1W+X12gsGxd3XFptlMuZWOJiIiIiIiIRhhviE+vuhCfOYwn2oBeV1mIT7c91Z83xLdBv4Zta+OIUhhsl2uottduqLbXUd5O13OZIT4iIipi2I6IiIY3Q2mrZISV7X58v/lNXdwljLXhTe1iU2W7O7bpq6EFqbRqn44seQbJX14OzNaH7bqzwDhLRSedoLBdJeEcYxvZkJXtMoa2m2Er28n6VZCvnAvAfP8ChftqfLiph4V0r+DFNcDzqwXPrQKeXyV4+a1wrV29wkbzLv5tHm9sDl7vb1+I4ayDmuukyrRxCs98PYb9v6kPC27YCXz2d3ms3OI2X1Rhu1q2kT3jAH3YDgBufd5c2a6jDbj70hja6lCZcGzKPPalP+fx139uMT6+W1sqOHn3zP3h1g8jnwfyET0wqlSPltKuBLCG8QqXYw4hP0Nw0Bf4M4Qe43GoksBhzOG4HPZrDCwa5mU1RCIiIiIiIqohb4hvinaNaEJ8/jCelFXm8wb5/FX6Bv7NVtZ9g6ojMhiyrFWIryNRaOtcenkwxOcfV4ZtCudKYzGeRyEiGkoYtiMiouHN1EbWUDWuLw/05gStcfc3Nv/3nPnNl1Nlu6fnaRdvbplo3KQvL2gJ+eYr0rDdI7cj1ddt3lcFeYzAsF2EbWQzjWoju+DugYumxyBQ2e031PRkC8G65zzBusVvmVsy11q6V/C3l4LX++hRqumCdkVz9WcYAQC/eMg9aAcUno9hXwt1TI/lVAWVKn1zWF4T/vycGF/zvvcBhdHJ+tyHtmO888XCv7awXVjieY2hOurLFX4arNnO3Ys38GcM8VkqCIYO+ZkrFwZWQwwTLgyqhuhbzmqIREREREREza5WIT6RwhdCTWG8kmp7WaAz3d8jHaF4AAAgAElEQVRONwt0psUX3CuOM8TXGN4Qn2EN29bWuTuKAby2Qgiv9LJCh29Z8fJgiK98vD3BEB8RUa0wbEdERMOcIWwn+jayAJDOAa0h/od8YoV5bIlDu0bk9ImQv3ecatxka1eh/WAYLgEu57ddzz+IpJhr64dt0woEh+322y38nFFVtksbQjttYSvbPXHvwGXbYzDKYGQz6MkKFq0ptIJ9blWhct3itwrh1mbx6nrz/exVSevgerGdOHl+dfj5urPA2CrfLdSyst0scx4Zu9KWFrZ1bNFsq2zX0n93mV77Qod5gUI1M6JmUayG2Nv4BHkzff4gSjm0NNZUJgzRallbDVHT4lmVBwOdWi0H7DeuWddxXlZDJCIiIiKi4UapQqWz9hqG+IohvNIwnpQE84rjXZlCiK88uDewfYYhvkYphvg27tKNRhPi07XT9Yb4dO10R2nGGeIjImLYjoiIhruQle2AQihtdDKa3b/7bcFvOCSjPxZbmK2StprLNgavY33Lls1AfnE58PhdwLpVSMTGGdcNG2YD7NfpnfsDM8a7vXkTEchX3w8suBuJcRcC067xH1/I288Uwgod2ukdvE+D2sgOVd2ZwWDd86sL/y5Z15hgXZgTQ04tn1FhAKoJrN4afpvuLDA2ZDtor1yfGJ/X7RW0hfbN0WZ+TXjgFSBpeH7WM2wXiykcNwdYsNw/lssXbyP9A7WSynbo6apgIyKqKxFWQzQIrIboDQRaqx06VEMMCBeqksBgQDXEMPt1qbJYFlJkNUQiIiIiIirnDfEZ1qho3mKIrxi884b4CsukJJinbaerGWeIr3FqFeJrNwb4ytrpagJ+3uXecYb4iGgoGaIfFxIREVUnGVFVMQl4h/jOAxwmef5h7eIo24yu3Vb9O1n5z08BD9068HurmG+oqCvb/eVz7h8yyhUfH2jXmhD9DRU2DPjiWv1yU5jH6LkHBy4Ohzay3RnBC8Vg3arCv0vX1y9YN74duORUhVfWFdqGViPu+BBr9rDdyfsAD70WzVymynCubK+lqQjCdgDw7XMVvn6b/77Pi6WyXQQtbMP44YdiOPa7+ifFMyvNVQcrCts9Pb+CjYiImgSrIWqVVkM0VRXUVEMM0Wo5sBpi/3bmaoghqjBqqiyaqyHa52U1RCIiIiKiaHlDfPrOOpWH+NK9bu10vcu7+8fKg3ve7fPN9AZuBOnO9p9/rXGIr7zaXvlyb8BPF/wrVvZjiI+IotbkHxcSERFVyVTZzhK2e+FNYKalPaHX4rfs406hjpef0G8bYeWz2xZW945Ttm0CHr6tZJkpyAZUVnnPtM015yuMTjpWtcvngQf+MvB7VGG7+UsMj6MqKmTF0Ye49CKn/JM0Y2W7rozghTdLK9YtXVe/kxmpVuDQPYDDZyocMRM4Yk+F/acB8RaFj16nDzKF+bak6/VYv6O5z95EFWIDIgjbWbaPqrrcmAqqkNazsh1QOKFj8qvHBQ+9Ek1lO8mZX9jUZ/4T+PC/AH29hWpauRyQ7ytcLv7blyskZYuXvcsHLnuXedbt08xVsk3hsvSZ9tvnn8M3rtlvvq/0ugxs1xd8XPkm6mNNRGTDaohGYqp2qKuGaG1p7NLy2B4uVKZwYYStlgOrIfYvZzVEIiIiImo2SimkEoVzl7UK8enDeOJb5g3xmQJ8nQzxNUwtQ3wDAbxEoT3u4OVCUE8/rgYvl40zxEc0sjFsR0REw5shbTOhz9xTsTsrcH1z9/Ja+x/wTqGOtx0DvPykb/GXt/wQH59xo3YTU1tTk5cDQoFF3/wHw/VeucR3W7bCUtkuwjayoQIna0t7NbYZwnbpkMf39pnAqi3+5a9uCDcPdp8DrBk8xlS+B7ta/A+S7p4+NPLPtM50f7Bu9WDFulfW1+8EQ3vCE6zbEzhipsJ+uxWCdTpRFDVxDYi+ur76fdVSRdXQDGpa2S6iwNvu4xXCfvQ/Y3w0+3Y1bax5bN12wb67ASs2+8d0rzlWW9aZx1paoNqSACLqkV6hZjr1JCJlIT7HkF8x4OcQLtSPe0OA+dIQonHePv2xVrTfvuDjIiIaKoqva6yGWMJYDbGkqmBANcSSdWwhQIdqiKFaPDvstySk6NJamtUQiYiIiIarWof4zGE8fbW9LkvAjyG+xiqG+DZFHOJLtZYH9/r/bSuE+Np9wb7iuBq8XDbengBaGOIjanoM2xER0TCn/0M4KRnjFmGCbEGhLVugRDJpyC+/pQ3aAcCZnfOM24atHOeyfiIOfPAIwx/wGX+VPQUYK7M1LGxX9kFb0tCqNWyb1kdf1y9vCVs0oq/0SqakB7swxrdaT08W9fozTUTw+6cE37m7EKgDCuG1MFXhqtGeAA7zVqzrD9bV+81kzvE51dfkJ0P23U0Bi6I5yJpWtouoAt9p+4Xf5oBp0ezb1cRR5sfy6xuB3Q3hv9CvL5rX6QFHnhZysuFPKVWoLhRv/FviZjp1JiL9rTzLgnvaCoIu1RD94UJ/kLE8JGiohhgqXBhQDdG3X9125dUWWQ2RiIYIVkM0ElO1w8BqiCFCfkHVEIsVCOvQahnx8sAhqyESERERufCG+CZFHOLL5IDOdH8AL+u5XKy2l/WPe0N8unGG+Bqnp7fwU6sQ32Bwb/DyQDtd7binnW7ZOEN8RNFq/CcLREREtWRJDE3JbcDG+FTf8jABk6DQlilQIrleyKePBla9Ytx29NEnAtv1Y2HDdkFBotFJ4OZ/jGH6OFPYTt92t9UQtouyjWyosF3ZB+GmVryZHJDPi1OJ7wdeEWzYqR+76PiQb0zKbsdUXn+79tSxj+z/+4vg6vmlz5NaBe062jzBuv6KdfvWMFgX5mq4PmZdQ3mN8i+nKvzgvuYI2+mqtRW1RxS2G+XYYtqrERVNPneywi8e8t8vyzYWfnT+3VRp1OStFeax3fYMNxeNWEqpwVaFrRH2pa70eBp9AB7GaohhWi0HhAuDqywWKhNKYAtnh1bKzvt1aPFMRDRUsBqilijl0NK4JWDcUDFRF16MG1pA66ohOrVa7t+vU7gw5lYNsX9dVkMkIiKiKCmlkGwFkq21C/F1Zfur6aW9YbzBEJ93vDtb6HLj2ybDEF+jDYT4tKPVhfgGwnje1rhtg0E9/bjyLSte7mhjiI9GJobtiIhoxJqRW6cN24XJOQWta6xst+gxa9AOAFo6OhDb1oe88qfNoqps98HDgS+fGcMhuwOtccsfw4aKSQnJogftvuXZSMN2If5IX/Fyya+mMBsAbOsGJo4KnvLrt5kr2YQODGVLb0dTGDAdts9thbZ0Cn7899q8Wx7VBhy2J3D4noMV6/aZWps3XVF8/pFzLFjU7CcXbC1Lw6o2bHfdI+YbNao2smEdOL0x+917cvhtRreFW19uv9482JYKfwBEVILVEPV81RC9FQSrbbVc0vbYFnR0qYboqcSoG/ceb1A1xJJ1LMfFaohENFSIALleAPX70pfxUBp9AGWM1RAHQnoO1RCdQ34O1RBr3Gq5JLBoCTqyGiIREVFzKQnx6deoaN5iiE/XDrcQzDO30/WG+HTb9/Etc0MUQ3ybO3WjlYf4kq3+gJ43xNeuCfB5Q3ymACBDfNTMGn+WmIiIqJYsJbpS+W7t8jABk6CWs+M7DAMvPh48uVJolV5kNGG7sG1ac4bel5PHKBw5y+GPVUvYTqe3TxD2DVwkle06S0sBjssbSgMCWLIOOHFu8JRPvWEeM96/JpnysJ2psl19wna/e1IiCY+NTpa1gt2zEKxzqRxYS2Eq9Lk+p857e3O/uYvyNu/Khn8el2xv7taNRIPeheywdFqtpQlhXytQKPgRSrf2DElBIhn+AIiIHLAaopkMhBAdw4VB1RA14cLgKouGaoiVtFJ23q9Di2cioqGC1RC1/NUQQ7RSDqqG6AsBllVDLJtDhW7xbKiGaAwXxgLGWQ2RiIiGL2+IT1+4IJoQnz+MVxri6yoP8mVEHwBkiK9h0r2Fn1qF+EzV9josAb+ORKF9rm6cIT6KAsN2REQ0vFnDdvrURVBrWC9bhbn9dgN2H6//g012mUNgRWrOQWhd1YsM/CGJbMgwW9VBtow+mNgq+g/LwoYBgdq0kd0nu8y4aiaCL+2/c3/3+0A0J+iTpsdguj69SpeuC7/N6CRw+J6lrWDnTql/sE5WLgWefQCycyuw/GwAb6tqPteKlhceN3LehFVb2c4W5IzyA4j3HQLcvsht3TXbItttKKftrxD247FjZ4e8jSz/3/EDHyKi+lOxWOED+niDyrl6j6XRB+BhrYYYUatlf5DR3GpZrPPmzfvNlR1j4H41YUpWQySioYrVEI2kPNynq4ZoHQ8T8rO3WvZVQ4y01XJ/ANIYWCwNOrIaIhERedUyxJfNmavpeUN62mp8hnGG+BqnliG+kjBeSTCvv51uovB52LGzFU7dD2hrbaazK9QMGLYjIqJhzvwHVbuhhWeYNrK2sN21F+hPJEm6G/jzz4InnzzDWDkum80DcD9RZTrOuOsUnTu1i43H16CwnWxaW/K77U9fl06t+YCyb3OnhvjjWlMd0NRGdtW2+pyEdKlqd8q+wGGeVrB7T26CinV3/BJy1SWD4aLps4Gx/rCdhCht5xIs+/a5CnOmjJw3VNWG7V5co1/+iWOjvQ1/c2EME77odrbj40c35v7bfbzC9HHAW8E56wGzJobcyYrF+uVnXhByIiIiotphNUQzXzXEUOHCoGqItvChNzzoUA3RtZWyUzVET6jRVv2RiGioKL72NYFmCiJaqyE6tlL2V0w0VRhscauGGCZcGFgN0Rsu1AUlzVUW+eU4IqLoKKXQ1gq01SHE15UttNItLBNfsK843mUZ35VmiK9RiiG+LV260fK/ogQnzgXu+kIMo5P8f5sGMWxHRETDWwWV7cIETEwBsQOnAyfONfzRdeev3CZvH4VW6BNhvb19CPPfeM7wB7trkE3u+o1+e9EnE20hRO38IlUfIwDgDz/0LZqQ24KtcX9qxaWCoemYKtLtDyym8vo2sr9eMhm/jHDXJvMW20+9PvP1GI6Y2VxvHmTnVsjV/+LWI3bTWgB7Os07f4l9vjMOAC4/a/h9E/s/Nl6Bb065QjtWbdhO/0YVOHj36uYtN65d4WvvVvjO3cGPid3GRrvvML7+boV//oP7xx2hXvsAYMdm7WI19+CQExEREVEjsBqinnM1xDAhv7JwobWFc1A1xJLLmmqI3uMNqoZYst+A1tKshkhEQwmrIRr5qiH6qhUGjduqIZaH/Oytlq3VEKtuteyphhhU3ZHVEImoydQ6xFcS3CuG9LJAZ1r8yzKFy90B45F+tkV4dBnw84cEXzmzmd4tU6MxbEdERCNWSvRBp56Me9U4U6jMVpFInrnfaW50jDFXjtu0EcAebvPAUtnONcwxYSqwYbVvsfH4Qobtcpb1QwVORo0DOktLRxnv597gVrxhQ4NWy1/yLWqBfgetsTyAsEmb8Eb7OxSXaG98sRG/5x/2fUtcmU6VblkP17BdUDXGt+81dN5EnbA38NjrwetdtP0GfG3L9/FI+wn4+6jTfePVhO1sVQVrURhx8mi39VINfEyPagu3vvPrc5Bc4z/MICIiIqoUqyGaWash+toxV9ZqObiVcuF3Cayy6NBK2aUKY1CLZ1ZDJKKhhtUQtZyrIbqG/FyqIRpCgNpqiGHChUHVEL3H6FBlkdUQiYYPb4hvQod2jYrnzuZkIHhXDOENtMZNS0kwzzveZRkf6SG+eYsFXzmz0UdBzYRhOyIiGt5MgY9YDO35bu1QT9q9apxr61NZ/Rrw0gLglA8Cu7YFTzz3UGCfw9AqG/T7TWecji/scRqN0peDShi+kRo2pGZbP1zYbqwmbKevYJh2yJ/YQoD7TwtxXADQ608ubW7RpzLHtfYCqH1Fi8P2VFiyznwqLdn4ohp+O7c6ryo5937GY9vt46lmvC0M3neowmOvB58iPa77CQBAh+hfC6sJ29meX+3xPOSVhcCY8VDTZ1e+E4/j5ii4nBaO8n6UTA/w6kJg8nSoabMC13c9xqLQle1MUtozNUREREQ0xLEaot5ANURTC+ZqWy1rg4zmVsvWaoi5Pn1g0Fe90aEaoktraZcK8UREzYDVEI3s1RDjQIumPXIlLY8dWi2rmrZaNlRD1AUdWQ2RyCcRV5gQr12IbyC4522Nq2mX6w3xadvpZgrtdIdCiG/TrkYfATUbhu2IiGh4M70bnnMQkjv0Iaw1W93fQptCYol44Y9V2bUN8u7dBge++9ngSVtaoD55OdA+Gq2yRr/frPuJhk27xFjlyiXMISLAM3/XjsUNbWSDqoSV+8kD5ts8VOBk/SrfIlO74B6Hm9AWAgxdLjrjr7D3qe2/w4L243zLe/rqc3KgM21/rDdlwCzrvz+Nle1CCAqINuVtYfDxYxSufUTw+kbzOgenX8Q5u+4AAGPwuJqwne35deTVZ0C2PQ4AkP2PhPreX6HGT658ZwCOcCtgGFm1Rrn9eshP/w3IFoLPcuDRUN+7DWqsuazpnCnhXjPiIV4GbJUEMWv/UPslIiIiIhrKSqohNoGmCiK6VkOsotVycCvl8mqIpqCjQytll/0GtXhmNUQiGmpYDVFroBqiteqgvX2xr9KgKTyoq4bouRxcDTFEuDCoGmJQlUVWQ6SI1TLEpw/wAZ0Zc8CvO2A8yu5Vho+UaQRj2I6IiIY3UwChrd3YXvTpNe6pmqCKcXLR0c5zAQDecyHUu86HOuwdAIAE9Km13oz7X4gX/sb8lRCnMMejdxiHomgj+9gywddviyhsp9Em+iqAdy4SXHqafVvbH+JHzQr3xkHm3+xbtntOH6bs6avPhwK3L7KPN2PATBbc7b5uiHltVQyBQin3oWLqGIWHvxTDtY8InlslOHh3hfEdwMLVwLYuwXETN+Ofrj8L4/I7AADtpkBqNWE7y7btXZ6KnUufhXz7Iqir7qx8ZwBiMYWj9wKeesO+XhRtZGXxU5CrLilduPgpyH//I9R3b7Vuu/80YOm64H3EVOE6OXvlOcsgT6gRERERERGrIZoEVkMME/ILrIYYHC4Ua5XFPv1yXTXEwCqMDq2lWQ2RiIaKYjXEHKshlnOuhhgm5BdUDdEQAlS6cGFkrZZdqiEObscQYnNJxBUScWB8DUN8/jCePuD3yjrB/KX+uRi2o3IM2xER0TBneGuTTBmrOQGFcsYdbcF/wJkCOq0tgPRmtZXWTNTl10O9+xOl8yj9Dnodv46xKy24+2XnQ9CSx+4yjrUaKtuF+bbI7Yvsbz9dw3bSuUO73FTZbuPO4DltpatDhwBXvepbZDq2PomhNydojTf2DV8UwaTIbfG3VlYRnPwNesxG1tKzTqaNU7jibP3jR+67H5IfbGfdbmgj25Wp/Ha1VbbzPe6ffQDSvQuqfXTF+wOAMcngdaIIkIopgPz0fEi6Gypp7knc4ficiod8vMkjt4fbgIiIiIiIiACwGqLNYDXESsOFQa2WLS2cc6Xraqshhm2l7GnxHFjt0BZ6bJKqYkRETlgNUUtfDTFcK+WSkF9gK2Vzi2cVusWza7gwoBqi93iHaTXESkJ8f18imL/U/+HgzjTQlxe0hPmSPA1rDNsREdHwZgrhJDswOt9p3GzTLqCjLXh6U0An3gKgc3vwBF5z3uZbZArbZR1Lxy15yz6+3Zw3HLTxTeNQIoI2sg++Ek3YDlv9ISwAeLTjRO3yuVODp7QFsMKEYUQEmDwDWFPaz7ddzF+F6ekFWmv8l9qEDmBrl3k80eCwn9aM2cAKxwRpiHfvQZXtjpzZhLdFpcreLKdq0EY2Y3kNSJZXm+zLAds2AlWG7d62u8L8pfY7/aAZEdyPix7TL+/NAju2AJawnWuANeg1VHK9hf/fiv/H/fU688rD6OQIERERERER1Q+rIeqFqoboGvJzqYZYEnTUVEPUBiEN1RB9QUeX/Tq0lmY1RCIaKlgN0Ui0LYkDqiGGCfmFaLWsrYYYWavlsuX9643NtwHQf1axKw2MM5/+pxGGYTsiIhrejGG7dpzVeS8uxdXaYVtVJq9sTj9/awuATMiawvsc5p9H6UuruVa2C/ojPebSRva5B41DUVS2ywccpHPYzvDtrBO6H8Nj7Sf4lrsEAqutbCddOyFXXwo8cQ+wa5tv3FTZDigEncakgvdRqZfXijVo9+1zm+k0pkeI51WYN6k3PWVe+4iZwKF7hJisycmyF0p+N4U+Kw3bdaYF519vfvJo209n9G29w/j40Qo/mm+/1w/everdFE4eG8gXTgd+fA/U9Nna8c+8Q+HRZcGPzNmTDPM//FfIr//TPXBKRERERERERJFiNUSzwGqIYcKFQdUQja2U+6shRtFK2aUKY3k1RF3osUmqihERORmohpgJXLXWGhFEHNM6B9j7Je3Yjh6G7WgQw3ZERDS8mcJ28VZMgLmPaI9jyMQUKmttARCmrd/7/0lbmrk1pg+sZLZscpo2ExAaDKrmJXf/1jquDc0AmLc4uj+B3cN2+it7fPcTFYftbKFBp7Dd5R8EFj5sHE8FVLarlQ07BQdfaQ5DHTUL+OqZzXSqzuPp+b5Fqsq3XDc9aUlVApj3xeFTOl12bAH++OOSZaaW2pWG7T7wizxeWmse175urHkdmH1gZTvsd9ie9vtozwmI5n5c+qx5bN1KyCWnAzct0rbFPeMABZdTBF883X+c8tyDkG9+tHCiN4xh8tglIiIiIiIioubGaoh6JdUQa9RqObjK4mC4UFsNcWDesv0Z53XZb0Br6SaoKEZEVG5s3vzZ8Y6QNVZoeGPYjoiIhjlTqEEh1Wp+y+0adLKF7eTOG9wmAaAmzdAuTxjCdr3r1znN+9Qb9lBHUAbDGrbbcx8kcvo0zhK3w3PiHrbTp+fayltW9rO1uSyyhRHjAVUB5a03rEE7AEjlzdW8XAOflbhzkf1xcfV5wyNc5hrBu2GBec0vnKowvmPo3xYDnrjHt6jdUGGxkrDd2m2C+Uvt6+jCdvLI7VDveF/4HZZ55/4w7n/6uKqnL3xDO8imtcAz9wMnneMbSjmea27XtJuVe38fPmhHREREREREREQNVVoNsa3Rh9NcQcQw1RC91QhDtFo2zttXuq4YxwOqIYbZb1A1RG9QkYgaYmx+h3GMYTvyYtiOiIiGN1NlO6WQaGuBkjxE+VNTkVS2C2OKvrdha9dWoEOz3/HTnKbVBTa83rl/wFvrRY+ax8ZMxLLOudqho2bZp/WKBRyC822Z06fnTNX3sg7vV6upbCf33hQ4f6Mq233hZnsMbY/xtdt31RJJIFsaUqy2st0Dr1h2N8z+WpY3lviWdYi+n3AlYbsFy+3jLZJDCzSBsWQ0tddtz5uN5i+kudux2W29lUu1Ybug1+SilG69lf77zskwCM4SEREREREREdHww2qIeuZqiNG1Wg6e11sN0VZlMajFsm2/QdUQy/bLaohUB22SRVs+jUws6Rtj2I68htnHh0RERGVMYbtYDKothZT0oFv502xRVLZDJsRfXUefYZ5Ht1+HqmyAPSwGAMfvPXhZFj8FuesGYPlLcKoJNmY89tr2Bp5PHeYbSjseHwCkA27ratvIGsN2VbaRjZ0xFvli1bxYDNj38MLlyTOgTnwf0Lk9cP6UoaIYUF1lu7XbBD+5X/D0G4J9dlO4+ASFo/YaPF0QVNVvjwnNdGqhjKGaYq24ViJrdrJyKeS2a4Fbf+Ebi7KNbF/e/tphej5i1zbIb78HWfgQoBTUEacCH/oCVCLct31P21/hsdf1x3DM7Age146v65Lp0Z6gi8UU4jEgF1CgTlt5tXuX076JiIiIiIiIiIho6GI1RLPSaohBrZb7HEKAusqFAdUQ+9c1VkP0hgdDtHgOrHaY01VJZDXEWhib34GNmrDdti5Bcz0jqJEYtiMiouFNTIkGBbQl0Z7vRndMF7Zz+4PJGrZbu8LpENWX/gdq3CTtWGLaDGCbZr/r1zrNHRToSMQL11EWPgz50tm+imFWYybi1K6H8H9j3u8benGN+zRBwcZq28hWE7az3X6t4jnwfB5Y+mzh8tJnIY/cHjw5gFb0IiZ9yCv/ldwZ4q7w2rBTcNIP8ljRX4DrkWWC3z8puPeLMZw4N/gx/efPBvTHbSDp6wvVRrO6encF2gpjQ4y8sRTyhdOAHVu046bQZyVhu9YWBdstbwzbPfAXyAN/GfhVnrkfeOER4Pu3h2pp/J6DFK68U7//Dx1Zv7Cdbb1rL1D49I32R2f5405EgNWvue3bh2/+iYiIiIiIiIiIaOhjNUQ9ESkN7kUR8itrtRw8r6Eaoq/Koq0aYoj9BlVDLP5UYGzfTmyMT/Ut37m9G8CoKu8tGi4YtiMiouHN0kYWiRRSok80uYZMjGG7MHklQ1U7AGht0U+UVW5vJIIq2xXJH38cLmgHAKPHISVbjcM9WUEqEfx2I6iCW7zqsJ0+zRdU3Q0IqGyna4UZkkKhlWyX8v9xPm+J4N0HhX+7dvPTMhC0K+rpBX7y9zxOnBt8Y86ZEnqX9WOoalfNm9qebEDoqfHv2asmd1xvDNoBQLvoK9ulewuV6lqCej17BOXijGE7nSfvA15bOFg1skqRnPzIOL5OWl5PJ3bYA4mA5nG3ytLrOAjbyBIRERERERERERENW0opIB5HIf7DaohexmqI2lbLfcC2Dfje17+OXhXH2L4dGJvfibH5HRjbtxMTZt0F4JBGXyVqEgzbERHR8GYM2wHo3IZUSl99yLWFpzFs1xPcQrRwHAoYPd44nDCEATMtKafpbZXZLjnV8+fu4qed5isxaizG9b1hHF60BjhmdvA0tsp27Qm4V7XK6SdqK7Z6LZN1CCLmTPevZCN7s9AV038LZrS/QrWTm5/WP+ZvXei2/UR/ocfm0Ruu1JpI8L306gb7+KTh8CWlxU9Zh9sD2hmPCvFYzAW0kW0LE7YDgJefDBW227Yof1sAACAASURBVHOCeeyA6eF2reVc2c4StnN4TPme/5W8RhMRERERERERERERjWBhqyHKnvvg7J73aAt8qM2rwLAdFTVvnzAiIqIo2CrbQRkr2wW1Ni0yhu369AEvnwOPgeoYYxxOjdKH6tJoK5SFDmCrzPae1ucKbTkBIN0VOFc5tc+hOLn7YeN4l+NNYLut3/02/zLZuRVy3x+Qv+6bkEduhxRDLTVoI2u8fw3V8kLb/0jjkCnoF+SZlcHr2IJ8e0xopu8clTGE7VQVDWMzAXfl6fs38e3hqsf+/DZVtgPCt5INetyGqmwHAOluyKsLITf9AHLb/0LWr7KuPmWMwtF7+ZcfMA3Ye0pztJE9albw5geWBwMreI0ewMp2RERERERERERERESBVEsLMGWGfnDDm/U9GGpqDNsREdEwZw7bqY98EUlDRadqK9vFXQIlE6ZCffnn1lXaJ+qr3v294xRjJTcvW9jutB+fCPn2pyG5nHuAxGv0eIzJ7zIOb3XIhvTlxRp6u/q80j9VZMObkM+eAPmvC4HffQ/y9Q9DvnIOpKerUOJZwxTuWbcj+PhMlQHj4pDUC7LXAVCnfABH9egrVr3lWByxEmMNhRE/d3KTh3IMbWSrYXuO/M/5CruNbfLbxMXKpdbh9nx0Ybug1tVhw3Zyy88gFx8DufYbkKsvhXzqSMhLT1i3ue6CGKaMHvx9fDvwmwsjetvj+lqZNa/XGlc4aR/75ol46eNO1q82rzxtltsxERERERERERERERGR3dSZ2sXCsB15sI0sERENb8bqbwoYMwEpMYTtqq1slzcHStTFVwCz9gcOPwnK0kIWAFJt+oBIV2wUkOkEWhPW7U1Vps7qvBcxCDD/ZuDQE61zGCXbgVgME3JbsDU+0Td844I8PnRki3WKtOV2vv+yGHYfXxY4+e1/A2uWl6743IPAvD8Y2/EmLFXoMr2CtlZzmKomle0OPxnq/MuAt78TuP16zOxdjadTR/lW+92Tghsvqnw3Or05QWtcGa/XCXtHu7/IhW0j6zKlJRz2uZOGftBOHEK5tjayoSvbWVpXAxVUttu6vvT3rp2Qn1wG9Utz4O6g3RWW/kcMD74K9PYJTttPYdLoiO7LrLk9bImAUN4HDld4+LUQFRn/+CPjkLrhOWDhQ5CvfsCwwtB/HBMRERERERERERER1cVh7wDGTgCm7AE1dQ9gt5nA1D2AGbMbfWTURBi2IyKi4c0UtovFgESyhm1kDYGMWAz4xFehHMMPK3a1G8fe2pTBjFEVHp8nLCY/+LzTsfiMmWAddrkNbUGeSbrr9uid2nXl0Tug3vUx7VjKUrXrmZXACXPNx5Dr0z9+4qiwxyuA2E/uG7gsbYYScwBmT6p4F0aL1wGH7mFuodva0uShHENlu2rayGYNd2UiDufnaVN77YXAVTrEXIYy6sp2KUuwz9mrz0N2bbOGlcd3KLz/cACI+D5Mm19PSmTsoTxbK2et8VOAbRv9yw86Dqp9FESxYDkRERERERERERERUbViF/17ow+BhgCG7YiIaHgTQ5klpYC2FFL5ndrhatvItuYz+oG2VKgAz5pOc+W6dVuymLGXffuatUGduS/UtFmQfF5b1Q4A2u1F9wDYb+eUbntd2AQAnpoHnPZh7dBR6WeN+9gekPupSWU7r3grlrfO0Q51tFU25R7jgTe36cc6+/M/xuvVvRXy2AIgH1CerFE2WFppahgLW3oYbwt7UcahozO4H7EtABe6sl1A2O6EnsfDTWjStdNYzbKmXNvIBqx34lyFoNqLIlJoAbz8JfNrX3nlP61hEBolIiIiIiIiIiIiIiJqEgzbERHR8GZrI9uWQko2aEd7MnkAwZWCzJXtTGE7c6U6nWTC0uI0Exz4qlVYTF18ZeFC+2i8Z9fd+Nvod/vWcalsZ1sn1RryoPr0AcIx+V3GTTrTAlsQxXT7VRxWPPPjZRO14rydt+D51GG+Vd/YXNkubFnOYnDKeL2+/SlI17zKdtxAVVW2M9yViWEStpP7/xy4Thx9SOQzyMb8Cc8oK9vt2bsan9t2XbgJTVxDb1Fz3e+GN63DsycrfOYdCtc94n/sPvhvMcj2zZAvvRd49XnrPOqcz7odDxEREREREREREREREUWC/YaIiGh4M4Xt+ivbtRsqOvVk3NqEmoIliVUv6wcsbUN1Um3mxM/WTZ2B25uqTMVRRWW7Uz8EdfK5hcuHn4Sjep7RruZSHdAatiurbCdBZcpy5slm9K7VLr96vn1OU2VAX1hxt5nWeYrUgUeXLmiJY0rfJu26nYa8ZhDbbVocM7VOjaxiX5MQh4pevYZWwcOhsp1sWQ/cfaPTuu2ib4/67KpwQUbTcwYAHl55Gmb1hqtOaJRuTNhOHrndbcXt+ue11y8+pvC7Tysk+4PFo5PAU1+L4aR9FeSqSwKDdgCA6QHlTQF7ApeIiIiIiIiIiIiIiIhCYdiOiIiGN1vYLtmOlOgDG93p6sJ28R36inlIhOsN2p40/1f90qvB7SFNYbvWKtrIqqNOH/wlkTLehk6V7WxtZMsr2/UGpPcMle0AIClp7fIVAdXjjPdvWVhRnX+ZfaKiUWPLJopbW3h2ZcJXbLPdpj1ZQV9ejE+LhIQsYzYMGCvbDYf6z0+5VylM5fXPkWWGlzIT03Pm6O6nsEdOH3qtSKMq23WbK2WWk6w9MauUwseOjqH7mhbkr2vBjp+24O2zFCTXCzx1n9tO2pLOx0NERERERERERERERETVY9iOiIiGNNmxpdBur/izbRMk503P2CrbJZE0VrZzCzkZ27S2G9rFvrnMad6iNktlu9FtwcdYkzayR5wyePm1hUgZgmzVVrZLloft0l32ybL64wCA5Yk52uXTxmoXD+7ScHxt5aG0A44CZu5rnwwAjj2r9PeWODry5uu1NeAqlxMRa9vPnl57m89WDM3Kdiqo6qGF8TkyDCrbYct651XXtU7TLp80OtwujdUgyx9b73hfuInLZRsUtnOsYgkA6AwORGt17QTS+kqDPnMOrmwfREREREREREREREREVBGG7YiIaEiT898Gee+MwZ+zd4ec0oH8xw+GZNKWynax/qps+oBWt0PYri8vyBtWa33mHv3A1D0D53WVyVr6NfbLGQ4wXmllu0QSyhs2Oe7dxspsb+0Ins4UDEu1Fqo+AYD09SH/0y9B3qMPAxXJzT8yjn1w5/9ply9dZz8+UxjQF9Lc5zCoc//JPlnHGKiOMaXL4q04KLM49P5NevtgfEwW5zNVcgOAxHBrI+uQwTO21B0GYTtxqcIWK7wdaDNUtnMJzRbduCCPK+5we81R/3IVMNH+nLZqVGW7MPu1BIAj2cdJ50BNquI2JCIiIiIiIiIiIiIiotAYtiMiouFp1auQfz0LyBsCaUoBbSljUOyJtanAXVgrhJlCS8eeGTivq4dWVX6MLhXM1P9n776jJbnKc/8/+3Q4fc7MmZyzRqNRlkYRJZRFkJAsIcAiWbbwxTY22NjGXF/jCzZOF9YPJ0zwta9tAbYMNhhMEkgIAUIBhAIKKI3izGjyzMmhu+v3R/fp06H2rl1d3X3CfD9rsaa6au+q3dXVrfGax+/7yx+q3bFsjczXa3tKmo3HWdvIDnjkTGxBnp7s1HbwqT+QvvC30Sc7uMd66OqBr4XuLwbSeN6eyPr2Y+HHat7z0tUyxshc/y6Z930i/EQbj5X5akiyL5W23j8pXtDJZ/zIeBPP7fxFM/d/J50r8/5PyazbHO9GVbHdj+wcCNvpsx+xH9t4nPSW35H58C2SpDcMfDF0mK26Y72v/zTQL/2z/btU82yl0jIrN8h8/Dbp0jf4XaBO8OAPmpqXWJwAXbOBwL0e7XZveK/M/765ufMDAAAAAAAAAACgaenpXgAAAIm4Wov+9IfStgvDj02G7SyV7aRSS87J6mph3KElS/mw7uiAXDX71aUfj0ZXybOtMeVT2e7t71fXjb/vHpPNqcdSEUuSntkT6OgV9ncxMmEJs5VbyAbFovStf4tcahRXoO17T0qXnxB+7IEXLOerfs9LVlQ2zTXvkLnmHf4LS2XUW7S3i4xb2e7Z/e7jUZXt6sN25sO3yFx8XbxFTIfbvxO626e5rO1+zPbKdoEtaCxJF12nrj8pheyC+++QJPXaWmp7Bj7/9V733U6r6sdo5XpJklm3ReaPPif90ecU7N2h4PUxQpP33ir9+l/4j2+VOAG6seYq2wV3WyqjVumajvcOAAAAAAAAAAAAKtsBAGa58TH38d3PWw4YKZPVSJc9/OYK00nSmCMIlQ0sCZWYYbtfv8QeVDut+8XI+WOWIJFPu1DT5fHXBGO0aeI56+End1sPSfKobDc8IB14OXodEY4af8567Mk99pDQ2UeF73+s+/ipF0891OSqJK3aoJwj8Glrs2tzwJE9laIr2zU8t6s3xVvANHGFUqNYK9vN9v+XlMFD9mNBVRCv/JtkC6QOj/tEFqV/vc897pHuE6de7Hy2cUDM38ZWtuSOJU7Ybqi/uWu4gpKSdPVN8c7nCI0DAAAAAAAAAAAgntn+z4gAALiNWoIRxsgYo3PyD1qnjoy7AzeuKmK2amUmZqDk1HX2Y8PF6P+M28JsrmpqkqRM1n180vFn6OSxR+zXj8j02Y5PVrZrug1jnW1j9kCcq3KX7dgx409NvZi/qMlVSWbFOhlJueKIRkOCn3HbyEYFREcmYrSRXXe0tHVbvAXMQuOW+5F+ebuKN71NWrtZ5qobZc5pXQvodgqGBxXc/BfSt/7VOsa88pqpF+XfpJytsl3M6oo2R41XBeyWrGocEDdsF6edq0XwtX9RcMd/SLuekxavKH3GN7xXJu34bR2N+O2sNnCwuYVF/O6ZS66Pd77ALzAJAAAAAAAAAACAaFS2AwDMbbbKQuVKP0vT9lCDq6rYwaFAr/gze/Uha3vabM5+0hDGGP3yyvCg2J3FUyPnW8NsjraqkmT+792R5y6daL6zqtjOQ+6QR2TYbsczfuuIYCStndgReuz2x+1rvHt7+P4rhm6fenHVjQlWJqm3z/p5PLE7XkjmyYjxIxP2cJkkZVQuhXjs6TIf+7qzjfKMYllm4FHzzlrZbt/z0lMPSt/9ooL3X6fge19OsMDOCPJ5Bb/zOulzH5X2hj/vkqTTLpra7i79Jtl+s257vDVre+3grZVt88bfaBwQ87cxaRA3+MxHFPzFO6V7vyW98KT00A8UfPoDCv4sog10nNawzYbt7vhP6yHzvr+TOevy5s4LAAAAAAAAAACAxAjbAQBmt20Xuo/bqh+VQ0SVUFeIp/faj335IXeoyRpmi1u9SdLxC+ytCPMF9zpsgUFrGHBS7/yoZZXkeiVJm8fDU2lfibhP1sp75cJ6wddv9luHzY2/X9k8dvyJ0CHffDR86kTevvaa+9fEZ1pj+Vr1FMM/j5vvjhe2+6e7ou+3TxvZrn+4W2aWtJCVHG1kPSp6jVtaLWeCqgPFooLP/23sdXXcI3eX/hel+pmdbCNrqWznI/C4zzW/id2NwbrYwc4EYbugUFDw738dfvDbtyhwBRXHY1y3/0C8hU2yXf+KN8tc88vNnRMAAAAAAAAAAAAtQdgOADCrmbf8dpMTS/8JXJKxh8522zNu+pcfRoTtbMGVJoJZuaz9P9fPOAKBUoI2sguWRKyqLFt6P7vSIW0hJW1e7g7QWMOAk11sBw/7rcPC9C2ubB9ILQ0dsyl8t57aYz9vzeebcI3KZLUzsyb00PrFobutHnzRfXx0wh4uk+rayM4BiSrbBXUP50Pfb8GK2uzxH/mN6+2b2u4rfdeHu3qbvuyegegxY6Z76sX4WNPXmjphgsp2u56VDu+zH3/8xy25btDfZGU7W5W/0SH7nNlShRIAAAAAAAAAAGCWI2wHAJjdmm2nVw4mLOi2t4Idd1Q2u/NJ9+lztspxTYTtLlltr45ka8MadTyqipWZtyBqWSXZbskYjViCOq5gl2RfX27PdhX/7v3SnV/yW4dNVWhwWT48mThoyf242ghfPHxnZdus3tjU0ioyWeshVxW6ZuQLgVdlu9nGKF4FwGqHLLnTWRk8HI0I0ZaZ7FTwzZSrWJ4wZu8X66ryKLm/K5NOGqsqIXnUCdETosRp51pvNCIwZ6mIGhQK0kSM78hA/Mp2QRBIE5YfpQ1bY58PAAAAAAAAAAAArUXYDgAwq5l0RuYvv97ExHIVIEf4LSrIZpMrjqjLFv4JaZ8YZeNieyDQVrmuctwWtotqI+vJGCNlc3rz4VtCjz++q7k2sj1P3Svd8ldJlyctmCoNd9Ohfwkdsm9QGp1oXKcrQLR2YufUiy2nNr08SVI6q/fuD3+vd4d35w01FvIe6uWL7ipkmWBCuvad/hed5fpHAv2zpUrlbAweBk8/HDnG3PSHofs3TTxvnTMaFZr1uFXrJqpao67cED0hSpLKdoOHIo5bqlXa2pLbNFPZbmLc2v7YnHdV/PMBAAAAAAAAAACgpQjbAQBmPXPmZfEn9ZcrDnX36HhLRSefAEkYa1W78vXi6u7pth77yQv2gFUQBNb3kAscQZW4Vae6e7SssD/00L3PuqeOWivvtSYMONkiU5LmFwetw74aklG6Z3v4vU0HE8qoKn2Ua779piQpk9XyQnhLy4EYt+ErD0WPmShIf/+98PCmCYpKqSizdLX/RWeM8BaaUfHDm++2jwirbBdYQlAzxve+HD1mw7GN+zaf5Kx2edDRvVSSntwdfdme6t+cXPzfwQZxg29VgoiKmcEd/xl+IG7Arz9+ZTvnNZr47wcAAAAAAAAAAABai7AdAODI9PVylbNszhrsslWFi6ogdii12H6wibCEcQRT9tvzYxrPS0XLUnuLjnaT2ZjV97p7lFc69NCiiBzayHj4AntcYcA4lq6sbC4o9luH3fFE4zr6LVmevMnU7sjNa2ppFemMii34K9mdT3pUtivYn5nAlNfQNfv+ethsG9kvPeAI2ymknFvRXmVyRsjag7kVPSHPayGvvqK95OFju9ynfOFA9P2vqabZ2xc5PtJ4gt+IwxEhuIVLw/fHDdsNRFTQi3uNJiqjAgAAAAAAAAAAoLXC/2UcAIC5bnys9Geu11rlzRa2GxxLcN1mKhM55pQCQdnQY642uM42snHX2J3TaCE8BNId8TeNIVvlPUeVrVjWbK5snjn6E+uw/pDLZVKe19h0fMxF1V8oq0UFS9tKSYVioFRXeOW2akMez+VEQerORAxK+n6mg7FVtnPftzuesB8LrfT28F0Kdr8QZ2WdsXqTdMLZUjo79dsWJpWSTj6vcf+u57Q+b/9NyEdkDD0ez5r7aRaviJ4QpVBQkJ+QSUc90CFSET9MGUtoMW7YrplWt64QYbOV7WZ6RUYAAAAAAAAAAIBZhLAdAODI1t1jbZ84aMmeuEJskbLNhe3mFwY0mGqsBjU4bA/bvWzPbzlbRsaunpTt0av3fkv/tOjGhkO77cXkNDQW6LbwDr7qbVFlO2OMgoXLpMP7lAvsIaTP3RvoM++o3bfHUuhreX5P7TXSCf86lc7q9NEHrIdHxqX5Hh/JeCF6zERBuuuZ8GPX93+xtHHC2dEnmmGarWznEhbCDd5zRcuv0zIr1kvD9up0kmRu+qBM36LGAzf8lszNf2GdNzQWyNaqV/L7TXRW05z02l+QvnFz9LhJYyNSM2G7w+Ftm2vOGyZu69pmWt2OOeYkbVkNAAAAAAAAAACAxGZfnzAAAFqpO2et8vbxO8IDPCOWamy+12tmzvkjd4ce+uRd9qDJez9vL0flbNMat3pSrlfzi45+thZ/8jV7QMoZBpSkVRujL7ByQ+nPV7yqsuu9+//KOvyJl2vX88nvhq/v3JF7p170OVoG+8pk1RvYg0jPRuSCJk3kowNntqCdJF0wfFdpYy4FehJU9LK1l56x9rxoP3bs6TIf+5rML7w/9LBZe7Qkae3EjtDj/3SX+z76hO0yKg/aeJx90Mr10Seq1kzlOEm6+xvNnTd2ZbsmnqG94Z+BpOYr2wEAAAAAAAAAAKBlCNsBAI5s3T3qtlQ8W2TJNUQFSzKBI43XTFgi16ucJRDY12Wv1nbnk/ZT9rrCbHGr72W6reuTpB0Hw4M6X33YEbZzhQHXbpa59p3R65oMNmanAo6u9/2NR/yCWTXPi63dZBzprLPq1+0/81uXT2U7l+7J5zbbRCB02jXXRtbF+QzOMuZ3Py5z1uX2AdnSc2z7Ldx5yH1+nwBy5ZNw/AaaqPau9ZoN20WxVaSLez1XS1ibpx+2H2umMioAAAAAAAAAAABairAdAOCIZD58S2kj26P7c6eHjtmwJHzucESw5F0HPmU/2EzYbvk6/Th3Ruih9fPsYQ5XUa/lhb32g3HX+ND3tXHiBethWzvWR3faT2mrNihJ2rFdOu2i6HUdW75nY1NBtjMc7Vrr17nAkjnbk1o+9eLAy9HriNLd7bx/43m/00wkDNsdO/6EJMlkWxAg7DB7G9nmK9udMfqTpufOOJuOdx/vLbWo3p7dHHp45QL39LGIZ/TCoe9NvXBUTgwO7rEeC79wk2G7hUubO2/ssF0Tle0c37/ELasBAAAAAAAAAACQGGE7AMCR6ZxXS5JMd4+uHfhy6BBbBTtXFaf5hQH90uGb7QOaCNuZri5dZ1nj4bFU6P5iMbAGYF438DV3va+4YasLrtbqvD105tNisp6zjezqTdJxZ0y1iQ2T7Za59n9Iksxlb6zsvnzoduuUQ3XF5Wzrfkv/v0+9aEVbx2yPUrK3/PW9f76hPJtzRu5LdoLpZHmghwL3s7x6of3YRUPfT7CgmcVEtQbefKIk6fLB20IPDw65E8auZ68rKOjdBz85tcPRStucdZnzOg2aadMqSYf3R5zXFraLeb3xMQVF+3e7JdeYZJqv4ggAAAAAAAAAAAB/lEcAABxxzFdemgqfdOe0dfzp0HHWsJ0j/HTbC6/VSWOPhR/s6pLSmRgrnXJsbl/o/kf7w9NC/Y68xv/c9xH3xWIGyMyxp6v7B/9tPe7TYrKes7LdWZfJdHVJNz+g4ENvk+7+Ru3xi66VecNvyJxyfun1ivWVQ73BiC4e+q6+O+/ihtN+6s5An3hrabtQDKyV4rZUPy8XXO3xbiKU7/flg7fptvmNrT4/9u1AH/S4TNLKdtlgXLryxmQnmSa2mNGtoyc75+UtOahP7Hq3svJIOWZz0qLl0eNarZCX9u/yG7v1tOgx5WfwiqHbQ5/Be1/MKggCGUugy9XC+D9fukFXD36t4VqhFljKido0UdkuOLC7+fM+93js62moX+pb5D08uO/b4QdOvSD+tQEAAAAAAAAAANByhO0AAEeW86+SWVwVjsn1qicID1bYQmK2/YsKB3Wmq/Vkd481rBKlN2VPsxSKgVJdtef95iP29pm9lvdbEbdaW3dORlJvcUjDXfMaDoeFE3f3u9t79hSH7QfL6zO982U+8l9e66u2fuIl69CJfKBM2jgDgj3FqiBgCyrbme4eBbJ/LgOeha5cgSevdUjOqmOz1fBYoN5uS0jMUpFtZd6vnan56k6ZnsZnvt2CPS8puP5ov8E+6ys/x86Q67OPVSrg1Zuw3Me3H/psbdBOkrKO70zc79N4E21kHcHgCkt1ueDRe+Nf78e3S5dc7z/eFujLzr3vJgAAAAAAAAAAwGxEG1kAwJFloi5FNTZibVk6Mh4eCBuZCN9fE8IK4wqZRAj229u0Hg5Z/of+2x5mc7ZoVSn8FctkUMdy3uGQ+/jCAfcpjx7fbj8Y9z4uX1fzMi17Km3fYOlPV/XCmnDmi0/FW0uYcsBtR3pt6OFVC/xOk7SynSRpnqOv6gzWa+zpyJ2H7fNsYbtM4FmOMao960zg84yWv1NDxv5+Jv7jk9ZjtqBnNgj5Ij1nqfwpSas2liqA+mqmst3uF5s/7+qNsa+nQ+FVSa22nBK+/8kH418bAAAAAAAAAAAALUfYDgBwRDEXXVe74+TzlLNUczowHF4NyxbEslXIq0hQBe3s4k+tx8KqsE2GxsI4q1dJ8aubRVTFClufq3LcttGHdMzEM9bjccOA9ZXHruu3V8Ob/Gzdle2qPucTzoq1llDl93Pp0Heca4piC475WFeu9mfiVOCaQa6Z97D1mO2zLBYD673Neobtmq1U2VHbXhk5xKTTUiqtc0fusY4Zyaesx8bz4eHe0Pt47Bn2dSxcKp39KvtC61kq0DmNe8wZm6qsGXzlH1X8jctVfP1m6Uufjn+9uIHA8bHw/UefFP/aAAAAAAAAAAAAaDnCdgCAI8vpF9W+nr/QWektCBpDJLbwTq+r9amUqEVn38WvsR7bGxKsOzBkP1fLQ4ERle3uCsnNPb3HXnnv6y9cE3G9Ju5jb19l84zRB6zDdveX/nRXtpsK65hjtsVfS73y/btw+Aehh33Ddkkq231g35+XNjYd3/xJptHJ2Z3WY7b79+5b7M+gV9juihuix8wA5oKr/QZ292hR0V4GcKTgCtuF7w+rEGhOPNu5DPOhz0gX/pyU7S7tmO+otthEZTs9FP49qzFa+i0PbvlLBR99l/TQ96W9O+zjX3eTtcVu8Mwj8db34PdCd5uzLo93HgAAAAAAAAAAALQFYTsAwJGlPkjW3eMMnz30UuO+YUsOx1Yhz3rtGHpyaeuxrzxkDw2FniuijayyMcNs5fG2+/jZexrX92/3ha+5r9CvFYW97us1cx8XLqlsuj7vLz1QWtePn/dswxv3XoWpVAYMX9d4XioUoz/jJJXteovDkjFSJtv8SaZRT5c9kRgWjh0aC/TJ7yYM2/XO91lae8SpqOf7fcn1On8bnhpfZj1mbyMbch8j1mPmLVDXn35e5uu7Zf7jKZmv7pLWbQkf3EzY7vEfew0LBg8r+MLf+Z2zOyctWh5+7Af/7bmwCJPhQwAAAAAAAAAAAEwrwnYAgCNL3+La1909WpXfbR3+dhpawwAAIABJREFU05dCKtvZ2shGhdgShO0W9NjDNWMh61m5wH6ulocCy5XmdqTXhB4+ZW3jvhULwt/PQMqx8Mr1mriPualWsvOK9rJ/k5k2V3Ctrzgw9SJlr/blzZT+OtbreH5GParbJals1x2MSUEwO9qihkiZQNliePvNsO/rNyOKjWXlccMPRoRCZ4rFK/zGZXNaXthnPbw3P896zPZ9Cb2Pnt9f090js3KDTCpln9NM2O6YU/3GPXqPtOdFv7G5Xmn3C+HHTnqF3zkUXkm1YjSicioAAAAAAAAAAAA6grAdAOCIYnK9tTu6e7R54jnr+NGQEImtjWxPGyvbdffYqxqFrfHE8NybJKlLEVXSYle2K72vvmJIP1tJYyHrG52IV42vRjP3sSpwlFLROmwy1OYKt2VU9Ya2nBJ/LfW2llrRuiru2aopVrNVF/ORDhJMngmM/f6F3buDw+7nLxN4hO2WOb5kM8nxZ/mNy2S1oDpIWmes2Bgs3XUo0Me+XdQdT4TPCa1s10yFNtt3fjw8YOk0HvE7Pan/oPcpTXePVLR8h+Ks0bW2o0/2P0+DBL+3AAAAAAAAAAAAqEHYDgBw5Dj29MZ95RCHCcIDWB+9NUZlO0dYSlKylqO5Hp03/MPQQ997snGN3/lZ+GnefcCjLWLsynal8b914G9CD4e14rUFFn/l4P/1vl4sS1fVvLx88LbQYZ8pt7z92cvhp1mVrzvQ2xd/LfXmL5Tkroxou1/VklS2SynfmuDgNLKFXV862Pj9KNjzlpL82siaba/0Wtd0M2l7C+oaES2EDxRqg8ov7A90wUeK+t0vxGzH28z31/LbGdiqybk8b0kG1p/76Yf9z5nNyVz5i+HHfvJd//O4KvWtWOd/HgAAAAAAAAAAALQNYTsAwJFj7dENu0w6I6XSOmP0gdApT+9prMI2HW1kle3RUZYKfPc/73+a9RMebRGbDNvZKttJ0kTe7x4uy9vbWE5dr4nQYl0rzQ35kASgpIHRUivHv/1OeIBo43jdzU4SoJxUvn+uyogvehTZcrW+jZIKCg2BxNnG9v371J2Nn+Xd293n8gnbteSzb5Zvu99ykNNLuhS2O3YsPIz2hZHaCnl/e0egZyO+ruGV7Zr4HbR95//7H+Ofy9e//n/+Y7t7pFyC3/dJB+wtzZv63QMAAAAAAAAAAEDLEbYDABw58pYATXePFhQPW6fVh9lGLafpbWdlO0kTyniNCwJ7pam88ahyFXed5UDPfEfY7uEdta/trXgj7qHUVFjHLFtd89rVJvTFA9LmZeHHxrrq7k2SAOWk8vtZUOy3Dnl2X3QbyGSV7QrNteScKYzRmAlvT7o8pPjggoiPLevTRrYVn327pTyr2kmVyna2+7imqzbxGVZRs17ofWzmvtmeTd8WuWXBIY8wbzOKBalg/wK6fpNrvPCk/di8GMFJAAAAAAAAAAAAtA1hOwDAkcPW8rO7R5cM3WmdNlBXcGx4PDw4EVnZLk7wpd7azVpesAdFisWpNY06ckJrJ3ZGXysbHraxKrc3vHD4B9Yh/XW3punqgFJzYZ2zX1Xz8qyRH1uHDoxJKcvfkPq7ap8hk0rFX0sdk05LqbSzMqBPVmc8QdguHeSll55u/gQzwM7MmtD9qZAicAsi8qQ5R5XBqUG90WOmW5zfnHJlu+eym8JPFdQ+YPW/i2FyxZBBzVRosz2bcX9ThwfiX9vHqo3SsvDnT5J/kNUR2DOzvPIkAAAAAAAAAADAXEHYDgBwxDCXvTH8QHeP3nnI3o6wPlTywoHwcbmoqmxdCf6zu3qjru//ovVwdcDOFmSTpBPHHou+Vtqvgt4kU25p6QoD1q/ppzvCx7laqVY0EbYzR59U8/qaga9ax/aPSE/tCT/2Gwc+EfvaXiLe00uH3NMLxcArkGeTUkG68sbmTzDdjNGvH/hk6KG7nmncly+6T9e20GfLeLaRjfNdzpTGXtf/X6GHf1aoDZO5Qr2TQitVNnPfrvrF8P1jHp9TkvG+1h8jHXWC/fi453WTrM+3tTAAAAAAAAAAAAASIWwHADhy9C0O39+d09LCAc2zVBb7f3fVJnN+8kL4aXrCqjhV60pQBS3bo4WONqPVYbZhS4tWSeoNhqOvVW4nGcvKDZKkxYXwJOI92/2SYF4VxZqpjCVJ2y6sbLpatn7qTvta1+R3Tb04+bzm1hGmHEDaPL499PAffMl9/8bzyS6fCgoyi5YmO8k0s927sPa6US132/ocdlKcyovlynYbJ54PPXx/YUvNa1eod1JoeLaZsOxCy7MZN5y215LyTao7534e7rvN7zy2UN7azfHXBAAAAAAAAAAAgLYgbAcAOHLYQh7lkMlSS1Bsn727Z41s4Ei5SfbepD66e8KrRJVVB19GHMvwqtiVbiJsVw6aZIPwBM6uw1PbQ2P24FjkPZSaryiWmarylVZBJggvb3bX0671Vb2/VoatygHH7dnmQjVR4bEo6SCfLAw6A+QCe6vO5/fXfqZR96tLHuHQaa1s5ylOm9XyM+j6Do5NTN0X1+/MpFzY700z9802J27Y7rnH41/bR7ZHys2zHg4esLcpr2F7P7PhWQMAAAAAAAAAADhCELYDABw5Nh4Xvv+Zn0qSXshsCD28pLf2dcaSSRrqsoctJCULM3X3OINy1cEXV8Wp3qhWt1Jzle3KYZDd6ZWhhxdV3cODjuJ6y/L2VrQVme44K5uyq7ZiV2DC/xo06qgStzZfVRmrlQGYPS8lmu5TZcwlpWLz93VGMDp+zB6kqg/M5hOGEyXNjvvV0+c/tvy9X1AcsA6ZbKmdLwTq9yj+17I2stawncciqjXz2+aju0davtZ+vOj5wNneT9LfmiQ9pgEAAAAAAAAAAFCDsB0A4IhhbEGLk86VJL1q8Nuhhx+t6hxaKAbWqliXDt0RsYAE/9nNZNXraG3p20bWq7JdU2G7UppuSX5/6OGaMKBjfceNPxl9rXQmekwIc9Uv1rx+xfC9oeN2HrKfY+NEVQ/hVobtTr84ckjgCMz4VBlzSakgbd2W7CTT7JyR+6zH6u9P0kqAktoX3PJhjN+4vkX+5yxXtLxq8BvWIZO/M4c8ulFLIa21UymZZr6/tu/agZfjnSduOM9Xrlemy/H77tm+NrBVtstS2Q4AAAAAAAAAAGCmIGwHADgyLFxqP3bi2ZLsYbmdh6RisRR0coWa+ooR/WZTzVe2M8aox5Ht+a8Hp4JYLx20j8s5AnsVCdrIvnooPLD499+bWp+rsp2rVW5FsyGnTbWVDW/o/3zsU/QWqxbfwgCMOePSyDHjjop7SSvbpYO8lGouxDhTZGW/CT+oaw38zz9sQaWv2XC/+hb7jy1/r5YU7D8gT+8p/bl/yO+UDd/nZr8zLWrZHNwX/vuUSFfXVAD4ul8JH3PPrX7nsraRbWHLagAAAAAAAAAAACRC2A4AcGQ4HF5xTVKlalKPI4j2k3JBM1eoKTIolqSNrKRc1l7N6puPTIWH7tkeHiTKFUfUJY+QUYI2srlgLPRwvji1bVuf5Fl5r9mQU111LNfnbVMTVmxlACYb3ZL0qT32Y4kr2wUFKZVOdpLpVK70Nr8Q3gL1zidrn7lCMXRYPE1WWOyoOGG78vtxfQdvfax0Hw/4hu3qz9VsNUjHvODgXv/zvPR0c9d36e6Rmaw06FrnIY8W2dawHZXtAAAAAAAAAAAAZgrCdgCAI54pBxmOHXvCOua5clbPFWqKDIolaSMrqeuwPawxvyqrtbg3fMxol2dgo5nQ1ZMPSpKeyB4TeviE1VPbWcfpIwOLxjRfIXDD1pqXayZ2xpreXRytDSu2MAATDJdCYn+36z3WMfschROTVrZLqZCo8uJMMZjqC92/dF5tUHXbevs5fm/fR/0uNp1hO982sju3+5+zHPhcVLT3Ue4qX9Y7bFcfaPUIlYZastJ+zLNFqyRp0/HNXd+lqlqfWbrKPm7PS9HnsrW5Tfpb4/u8AAAAAAAAAAAAIBJhOwAAsqUKZRcO/8A6ZGS83EbWWdkuolJaC8JM3cXwawxVFZRLFLzKZKeqNMVRbsV7wfBdoYcPVWXoXIHFyCunM82tT5JZuaHm9SXDd8aa3xAEbGHYzpx6gSTp5/u/YB3jum9JK9ulg/zsqNRmE/FM/PCZ2sp2EwX72Df1/2f09VIpma6Z/9don/bEFd2llK6r+uXkc3ZgyK8Nb0MAudnqias22Y/ZqsElHeur+nfgouvs48Y9KmmOt6myXdCCtskAAAAAAAAAAACQRNgOAHCk2Hyi/ViuFDLJakKZIDy1NBlgc4btoirbJWwjq0vfoA/t/XDooburCljZ1vjawW9GXyPdRAtZSebk8yRJJ489Gnp8Z1WxLNv6zhz5cfSFmlxfxcKllc1czDayPXVBR9PK1o4LlkiSFhUPW4c8+JI9MPOpO5P1RS1VtpvFbWTLfnv/X4buf26/9NTuqfuXt4Ttfm7gK9o29nD0hZI+h52yPrzSZJjq5/m6/v8KHfPtyTayw37nbPiONfuMuSrixQnQ/eS7obvNOz4ovfV98dY0KVf1O7Bqo31c/4Hoc1nbyLawZTUAAAAAAAAAAAASIWwHAEBVyOTYsSdDh4xOhu1cbWSjWqAmDdtle5zXGJ0oBWGGLWvsLXokZDJNhojK99BV3W/XIXd1wPlFR5/USUmrrx3eX9k0kub5XLOs4d432xIzTFWYZlX+5dAhn/+RPWz3xQeSXT4VFGZ3Zbuy+kBktVuq7l/ekk187eCtfheaLfcqTkiraqztu/jYrtKf+z2/Ng1huybvmzHGXt2tFdXqcj3q+tU/aa6CXNUcY0ylUmq94P47os9ley/ZFgZ7AQAAAAAAAAAAkAhhOwDAEcG8+XfsB4tTyZtcMBY6xKeyXWSltKRtJ4f71ecIhz2zt/TnqCVsF1l5T2q+Ytey1ZKk1RO7rEMe3lH60xYGjGzDKzUfBrQY6prvPbbh/rWyst3ilZXNl9OrQodsWGKfnk1YlC6tWR62K7eRXZO3P38PvRgdtksHeb/rTXdlO99WynGe0aqxL2TWhw45dV3pzyHPtsUNLWmTVE+0vRef9qySAlcr1ZGh0p/NBPdefsFrPaaqqqbVmOW9tPK3BgAAAAAAAAAAAIkQtgMAzH3Zbun8K+3Hjz2tspmzVI6brGg3agnb5Yojioq/mISV7cwJZ+uyIXt1pMk12gKBXmG2ZtsVnn6JJOnM0futQyrrSxQGnL5AWMP9a2EAxvQtihxje/YKxUDjnhkxm1RQmBOBHler5Or7N2FpI5sJHGnaarMlmNhk2G5dfkfokMnfFlsb3khJ7lu53XcD34DceHiQWpK09TT7sShLVngNC3xCgZb30tKW1QAAAAAAAAAAAEiEsB0AYM4zf/6fMn2L7QPmL6xs2gJff/zVcgtUa1U2j8BH0jayp11kbTEqTVWMGxkPr+DktUZboCWC6S1ViEvJUjJM0oGh0rpsoTGv9SWpjBXissHbvcc2BDHbFID5n/s+Err/24+Hj7fdzzhSKljbX84OpajrhvxLOm7sZ6EjqkOotrBYWr6V7eZ22O6SoTtDhzy5u1QhzlYZMFKS76/t+Tyw22/+uOP3Zfna0p+nXxxrSZJkrv/12h3bLgwfePNfRJ/s8R+F7/cKQXtWOwQAAAAAAAAAAEAihO0AAHOeOfsK94CqkImr+tt4PtDIhCXIVvSoWpS0jWyuV2kVlAnCE3+TYSJrm1afynFJAmSbT5QkbRp/LvTwlx6ICCz63MMWt5FdUjzoPba3/v61Opy27mhJ0qLCoVjTbPczjnQmJZP0+Zwh3nL4ltD91aHExG1kM7MkbJft9h9b9d13tcR+eo9UaDZslySkaPltCm7/gt98VwW8yTDbAkevZpueulbUtnaxQaDAVV3Phcp2AAAAAAAAAAAAM8bc+FdVAACSqAoy7E7ZWwJ+6zFXi1afynYJ/7NbbjVqC80NR7aRbXPYrjx3sGte6OGVC0uVl6yBRZ/1Ja0odvTJNS9NEL6WMA3ra3UAZnhIkjRu4gUKh1oQtktlWxti7LiBqYCi7Tka8Wgjmw48+6Ompjts51nFLM4zWlV1zhX4vOuZaapsNzwQvn/9MZ7zB+3HJit6erRzbtC3sPb1vAX2sU89ZD0UuMKARY/ncvVG+7Hla6LnAwAAAAAAAAAAwAthOwAAslOBFFcbyef3B9YqYjmvynbJ2siacqtDW/W9yfax9spxHmG2JNXayvdxX3q5c5j9HvqE7ZKFwswNv1XzetuYPfxSr+H+tTpsd6DUInh9/iXrkIl8YzjwwFDyS8/6sN341HciF4RXD6t+7qzPoE/gU2p5hcW2ifOMbjq+snn+yN3WYSPjUrHpynYJwna7nmt+rlQTyGxQbjNuzrws/nlPfWXNS3OW4xyjji/riOPY+q2RyzAbjpXWbWk8sPkkmZUbIucDAAAAAAAAAADAD2E7AMARz6TTUqoUhHtT/39axwWBq2qcR9gulSxsN6m3OBy6/0fPlf584MXweV5rnKzw1IxyK8bXDXwt9PCjO8phQMs97O1EZbtTzqt5+fOHPVtQKuT+tTpsd9G1kqTjx35mHRLWIni/o2CXr3R3ghDUDGAuuLqybQuVPrG79Ge+YK/MZvtuNUj6HHZKnGe0qqpbX9H+UO0blPKeBQAbJKls9+q3hu9/8gG/+f37w/en0lOtYF95TeV76MvMr6tsd9F19sGH9tmPuSrbrVzvt5bf+2Ttb3hvn8zvftxrLgAAAAAAAAAAAPzM7n9ZBQCgVbI90sigsoG9J+ePnpOOWhZ+zKsilmlBxn3VRmubzL++PdBf/rx9qldluyQBsnLIY8NEeNrv3mdLf1oDiz7rS1pRLFfb4nZB0dKaMkTbK9utWBd+nSpfeSjQ28+tbSF6YNi/Fa5Nqrs78TmmVc/U55pzhEr3DgTKOXJyXoFUKXGFxcSMZxvZbIxn1HPsn3490OtP87x+vSQhxaWrwve/+JTf/P6D4fsXLJEp30+TyUof+px0/3cU/PRuaXxUZsESBZ/+gPcyTSaroGe+NNIYWAw+91GZy94YPtEVtvP8rTGnXSh95kHp7m+W2paf8xoZz6AeAAAAAAAAAAAA/BC2AwBAqlRcWp3fZR0yNBZoZCI8ZOIVFGtFZbtUSpnA3up2T789eJWSRzmqJG1ky/fQ1Yq3ULS34vWrDpjwry51YbvewLOSmUIClbkWh+3K722+o6rYD56W3n5u7b6DLWgj2zXbw3ZV7UnnOarT3f54oMuOtwfFXEG92uvNgsp2qXSpaqevrN8zMJ6XCh5tZLeNhrRoTvL9dbThDsZGZKICaQO2sN3impcmnZZe8SqZV7xq6vy2sF25tXeDbC40bKfDlup6Uk0r5AYxgr1m1Ubpul/xHg8AAAAAAAAAAIB4aCMLAIAkDR6SJF0xdLt1yFHLTbI2so6wiLcd27Umv9N6+EVLnkSSVuT3RJ8/Tjin3jM/leRuxTkyLo1bMn/dwVj0NRKGnEzv/LprjmtlfrfX3J5i3We8alOitTQ4uFeStCFv6QMsaSLk3oW1lpWkBYXDXpdNBXmZOBXQZqLVR1U2zx75kXXY/qHwezjJVdmyRmYWhO1iVl40vtXyJOWL0dUUP7j3Txp3ppq/b2aRpayoJA17VKi0VY7rmR++v/rav/4X4ft/9U/DJxy2tIudt8B+kRZUtgMAAAAAAAAAAED7EbYDAECSFiyRVApf2ew4KHtVNp/Kdq1oI3vMNv3m/r+1Hj7sWMaW8Weiz59gjebyUg/bawa+ah0zMlGqjBXGK+iUtI1siD/a+8de4+rb95qu1v41ypz72tKfjjEHhhpDTrYA6KaJ572umwoKUneCioYzwbLVlc2VBXuodGTCXZUtFXhUf5QShcY6po0BrXzEbTp75D5dHhZcTlLZrqrSXANXUK0ssI3xuU9XvFlac1Ttvi2nSOdfFT7+yhvD9z/7mP0arveQpOIoAAAAAAAAAAAAWoqwHQAAknTmpZXNNx++JXTILT8KNJqksl0r2siecJa2jT1sPbzb0UbWq3JckgBZuaXiksIB65Dn9ktjScJ2rWjfufW0mpdvsXze9WoClSvWJ19Hvb5Flc3fOPCJ0CFfCenM+YUfh3/miwqHvC6bVl7K9XqNnbHqAlPnDN8TOuzLDwTKu8J2Pq2WpelvI+tTha6ZsN2WU7yG7Xe0Lv7Q3j/WrS+8Lvw3Mcl9m7/QfmwoQWU7jyCbWbpK5uO3S299n3TOq6Vf/AOZv75VxlKpzpx+sfVcwT3fjL2+Vgd7AQAAAAAAAAAA0LwE5SUAAJhDqtpo9jqq1O0dCA82eVW2a0Ub2WzOea0fPO2YGliSgtWSVN8rh3t6A/v6vvVokKyyXSsqitWFa3I+QUnVBSrbUQmuKvDW42jFWywG6uqaClsdsASfeoMRdRdHNdblXmupst0sb1NZ95nOK4bflJf73ZXt0r6V7aY7bOejmWc00+017IeWIpm/t++j+sC+8JarkpJVtnM9oz+7Xzr6JPf8JJXtJJnla2V+NaQ1bsxzBnd+Weac1zQeGE22PgAAAAAAAAAAAHQGZRIAAJCk7Y9UNhcW7RXBntsfvj/nCJhVtCJst3O7egN7EMvFK8yWpIJSORSyMr/bOiRflMYteaaMTxiwFW1kjzq+5mWX7NUAq42YqvBSOwIwVeecMPYwV33b2ONXh4/7fu/5kUE7qVzNzTNkNVOZukpvd/eeEzpu68qINrKzpbKdj2Y+08d/VNm8vv+Lsaen5Li5kpROELabv8h+zKdq6JglVNuO73Ldb0yNPS+G708YBgQAAAAAAAAAAEBnELYDAECSzriksnlD/xesw2xVxLzayLagFaA54xK5Gkj2OzJ/XmG7JJXtsqVwjytwc3BYCSvbJS/Ka1791qbmnTty79SLdgRgqqorvm7w69ZhI3W3acKSD7t46Htel00H+da0OJ5BXjl8V+j+wTG528j6VrZL8j1pBZ82ss0EAk85v7L5vv0fiz09HVi+3JMSBI7rA5U1bEE1nzHt+C5vONZ+7ODe8P3jtvW1oYomAAAAAAAAAAAAmkbYDgAASWbTVCWirWNPWcftGwzf37E2sis3SJLOGPlJ6OG7nrZXaetUZTtJumogPCz2N7cH1nCYX9gu+T00p14gveZtNfveefAfIufVtJttS2W7qVDN2omd1mH1le1s4bEzR+/XJUN3RF42peLsqNQW5bSLKpsXWMJ2338qqo1sRFhs0mwIJ6abqAJ5wtmVzTNHw39jnJeMun9J79vmE0N3B/fcGj23g2E2Y4z0tt8LP/jUg+H7qWwHAAAAAAAAAAAwKxC2AwBAqgk09Pi0hK3jNacVYbvyOnssrWRtbW5NUFRaHkGiRJXtpu7hvKKlBKBreocq20mSufj1Na8HuuZHzqlZX7YN1aZqnkF7pcQH67pQ2sKL6SCvrEdr3lRQaNl9nVZVoSnX93FozH4K7zayrfgut1szAcq64JktNGsTef+S3rfu3vD9P/xa9NwOh9nM0pXWY8GLIYHuTra5BQAAAAAAAAAAQNMI2wEAIEkr1lU2XW1QbXqKnWkjqxXrJUlPZLeGHs5aMlPZYNzZfrYiSeWpZasqmy9k1see3t3BsJ165tW8fC6zMXJKpjq4Nn9ha9ZRbcGSyuaywj7rsJGJ2uqFeUu+KRNMeAUY08rPjcp2+3ZVNuc7wp7P7LVXf5w1bWR9pON/V0xdiHRpwZLetV0yqrJd0vv28vPh+4/ZFj133JKybFeYbYXjN/DZxxp2BbYwYJawHQAAAAAAAAAAwEwyC/6lEACADqhqnyhJS/P2sFMYv8p2LfjP7qbjJEkLi/2hh8ctWRevqnFSsjBMVbhk29jDsad3srKdNp8Ue0r1+uor47WCyUy1/cwF9vJrI3W3yVrZTnmvezpnKtttObWyecXgbdZhA45crFf1R0lKTfNfoY1HdLaZAGW2u+bl6wf+K9b0yPuX9Ddw7ebw/bagmscY064w25mXxluL7T3kCNsBAAAAAAAAAADMJITtAACQZOoquv3N7t+ONb+n2Jk2ssYYaeOxesvhW2LN8w7bJQjDmKoA0HnDd8ee39GwXc7SjtIhU12164KrW7OOeqdeUNlcnt8TOmTn4drXtrBdJvAM26kwJyrbmQuvqWyvLITfO0n6lx+2oLLdrGgjm40eU6+ust1Vg9+INT3y/iW8b+bKG8MPPPd49ORH7w3fXxcwbBXT22c9Ftx/R+PODre5BQAAAAAAAAAAQHMI2wEAMGn52srm4sLBWFNzgUcb2SQtWqsddaJfuK9KtroFqkvSNo8LlzU9taNhu7pQkdeUyfWlMw3hzJZZsrKyuTr/cuiQz/+oro2spetxOsh7fe7pIC8zFyrbVYWSuoMxmSD8xtz3nP0UKfmG7WbBX6GbCVBmaoNnRlKvoyVvwyWj7l/S740jeBYE9hBls+dMbONx4fu/9s+N+8Ys/w0hbAcAAAAAAAAAADCjzIJ/KQQAoEMGpgJ2SwsHYk31Cr8lDbJNGjwUe32dqGwnSRos3cOTxh6NPdUrENiiUJipe59v6P9i5JyMyuvLewYXm1EVrDmYWhw65PjVtS1Eba2DM8FEjDays7+ynRYurWwaSUHM75sJiuqSZ2BrVlS2a+IzXXd0w67hrnne0yMr2yX9DXS1zz1kb/0d5B3tbX1a0DZrxBJUnL+ocd+4ZR3tanMLAAAAAAAAAACAphC2AwBg0uhwZXPb6EOxpvYEHoGNVlVDGxvV5UO3x5ritT5JJmkYplAK25w89kjsqT5rbFcFtjf3fz5yTMa3OmASVWG7FzPrQ4cU6gq2jViW1ROM+LeRbVelvk7acmrNyxNH4wU+vavaSTMgbOcInU1qpo3syefFn1Ml6jtikt63zSfZj406KvDlHd+DDVubX0+URZZKn8WQZ63qvz81uuMrzsapAAAgAElEQVRX4QQAAAAAAAAAAED7ELYDAGDSua+tbKZk6c1pkQvGoge1KKBjLn+TNuRfijWn17ftbNLKdlffJKkUBTp19OFYU72qA7YybPf6X6tsrijsjRxeCRJddG3r1lCvKmz3joP/FDrkid211ddGLDminmBUGY+wXTooNFcFbYapb+37l7t/N9b8yKps1eZoG1mTztR8LyTpzJH7/S8pRwU5KXmos6p6YQNXhbqCY11LVzW/ngjmbe8LPzA80Nj21rZ+2sgCAAAAAAAAAADMKLPgXwoBAOiQ5WtqXl7b/2XvqR1tI9vbJ0k6evwZ7yk5z8p2SddoVm6obN9w+N9jzc0Fo9GDWliBzWw8tub17+z/mH1sUJwKYK5tbLXZMlXBmmWF8LaYD9flLG2V7XJFv8p2XSq0NsQ4nTafWNk8dvypWFMjg2LVpr2ynYd0c5+pueT6mtdHTTzrf8kg4h4mvW+u4NnLz9uPucJ27WyhvGi5/dgzP619PWb5/SNsBwAAAAAAAAAAMKMQtgMAYFJd0MwosAxs1NE2suXASqz1daqyXdU9zMi/7Wp3cVRdPu+nlaGwus87V7RXJwyqxxqPFp7Nqgoj+Xy+xWKgCUtBtlIb2ejPIDVHKtuVTH0284uDsWbGq2w3zWE7n2ew2c+0LtwVGaCrEnkPk353cr32Yy86wpXOsF0bg6a98+3H7vt27evx8LCdIWwHAAAAAAAAAAAwoxC2AwBg0rwFNS+HuxzBjjo+oaaWBXRWrJMkPZ3d4j2lx6dqnJQ8DFMVKDxu7Anvab3BsN/AJqt1haprSXn26I/85llCMa1gVm+sbE+Y8Pfam53aLji6HaeDvFe1wLTyc6ey3fZHKpsLi/2xpqY019rIZqPHhJm/sOblxokX/C/Z5jayJuN4T65nOO/4fW5htcwGm0+yHgqG68KgeUsVStd7BgAAAAAAAAAAQMfNgn8pBACgM8yFP1fz+hcOf9Z7bqaTYbvVmyRJ/+PgP3pP8aq8JyUPEZ18XmXzFSOe4TVJPUXPAFsrQ2FVLUcl6YrB272mmTMva90a6p1xSWXz0qHvhg4ZHpeCoFT1ruAofpcKCl4VDedUZbvzr6p5eenQd7ynxqngNu2V7Xw0+5kuWFLz8q2H/83/klGV7dp434Jdz9kPuirbtfHZd4YDf/Ld2tcTlrDdXPluAgAAAAAAAAAAzBGE7QAAmNS3uObl6old3lOzgSUoUa1V1bDKbQVPHX3Ye4p3G1mTcI1VbR69A35xxrYybFfXnjHr2/a2t691a6jXM9V20tUGtb98u4qOynZdCrwqGs6pynabjq95+dbDt3hPTclxM+uYuRy2m7+o5uWq/G7vqamoynatuG8nnRu+/5a/ss+ZrjaykvTKa8L3//SHCsaqvp+26nuE7QAAAAAAAAAAAGYUwnYAAEyqC195t15VhyvbldcZL8zm+V6SBgK7c1ObwZj3NO8wYBvDdm2f5yM7df9cn9l3yh16nZXtVFBvMbo971yqbGfqv8O+z5XK98HXdLeR9Wj37Kyq5pqXStW0ko3zOxNZHbAV9y3bbT0UDFlaBzvbyLY5bOf6vXjwzqlta9iONrIAAAAAAAAAAAAzCWE7AAAmLVtT8/K48Se8p3qF7ZoMvzQoV487ZfSn/lN8Q0dJwzCrj6psRseBpnT7VAaUWhuMWbS8uXkbj23dGupVVQY8duxJ67CDQ6WUnbOyXVD0CkqlVJwzle2CA7VV2FoaFKs2GyrbJflMBw9XNnMxQrPRYbsW3Le6Nrc1Du4J3z/ueA+O8F4rmKNPth/cV1U9lcp2AAAAAAAAAAAAswJhOwAAykyqNgjS52jjWS/j04K0RRXRjDFSOqNtYw95z/GubJewjaxpMriSmYawnWkyWGja2EbWVFUsmxfYq9KNlB+3qMp2OZ82skFeSs+NsJ056/Ka13FaLac0iyrb+WhhSMs3rJvuQBtZc/VN9oNjlud9zLH+dlaqlKRL32A9FHzqAwqC8pd4wvIb2KqQNgAAAAAAAAAAAFpiFvxLIQAAHbTmqJqX/7jznZFTUkHer4pbC0Md5sb/JSPpssHbvcZ7t9NsRYhoyarK5q8d+LTXFK/KgFLrK7BtPC7e+C2ntPb6YV791srmKZaw2P/5ZnRlu1RQ8PrcUyrMmcp2Wri05mVvjMp2c62NbKKQVl1A7Pf3fcRrWmRlu1QLKtudfJ792P3fCd/vCttVtW5uB7PmKPvzcmiv9NmPlrYLVLYDAAAAAAAAAACYDQjbAQBQrS4Q11cciJziHRRrZQWlXOlcqwq7IwaW9AQj0vpjogcmrGxXuthUK9ScZ9gpOx1tZKWatq1e2ljVrqJ7Kvwz31Jd8aWDpT9dle265NlGNijMnUBP3XfMO2Qqj6ps1WZDG9kkn2m27j56fo/TUYHFVvy+OH5Hg9s+H37AFrbr7qmpJtk2J7zCeij4xs2lDVtlu7ny3QQAAAAAAAAAAJgjCNsBAOaGay0V6N72e/HO88KTNS83TrwQOcUrKLZgidQzP95aHILhUgjrmcxmr/G5YEza+Wz0wFZU7NqxvbK5vLDPa0rWpw2v1JrKWNUO74833uceJvXy1DN3MLU4dEhPOX/jrGynglbnX468XDrIz53KdivX17z0DYlJMSvbtfo5bIckn+nO7TUvN0087zWtI21kXb9RPfPC99vay7a7heykwUP2Yy8+paBYlPJUtgMAAAAAAAAAAJgNCNsBAOYEc8UNja0VUymZy94Y70Qbtta8PG30wcgpXpXtLrxWpoUBHXPi2ZKkE8Z/5jU+G4xLm0/yOHFr/2pwXf+XvcZNWxvZ0y6KN37rttZeP0xVq9rLhu4IHTIyIQVB4K5sFxS9wqKlNrJzI9BjFq+oed2lQD3FYa+5acUI27X4e9IWST7To46veXn5kKU9a52OtJF1GW8M1QWH9yv4698OH9+psN1Zl7mPj49KBcu9I2wHAAAAAAAAAAAwo8yCfykEACCaOeV8mfd/WuorVwJbuEzmg5+RqQoueZ2nrkJelxxpprJMWDWnbLkVaFeXdNF1Mr/1sVjriLSoFCo6b/hur+GZYELmmndEh11a0R7zdTdVNrdMPOM1ZbrayJorfyHe+Mve1NLrh15j62mV7Tf1f8E6bjwfXdnOnHRO5PVSQWHuVLaTpOVra15+4uX3eE2rrmxn/uqb0tU32QdPextZj9an6eY/U3P82TWvF3i005bKwU3niVvzf3qYd344/MAj99S8DIYHFLznVdL+XeHjq1o2t5O57OfdA1yV79LZ1i4GAAAAAAAAAAAAicyhf1kFABzpzFU3Sq95m7T7BWnVRne7QZvu3oZdG8ef1/PZjdYpYVXZzDf2SC88UVrH/IXx1xElV6rI1OtZtSsbjEu53lKoquAIxLSijWxuqlqUkTS/MKDBVJ9zyrRVtss1ft5OnaiEVRUAygVj1mF7BhRZ2U59i7V4/wEdTC2xjkurMLeqZ61cL+3dUXm5qOAIMlXpmgyKGSOdfrF0z632wbOhjWySQGDIc755fLu2Z91tqyMr27Xi90WS5i+wHgryEzKTz/Pd35S2P2I/T7ZDle2ifjd+7KgcOJe+mwAAAAAAAAAAAHMAle0AAHOKSaVk1hzVXNBOkoLGUmHzgiHnlIag2Dmvlsl2y2w5pT1BO0lasFSStLSw32t4JpgoBT6iwmqtqDw1UBtuWuaxxux0he0WLq15eamlXeYvHfqX0kYnKmFVBXOW5fdZhz21Ryo4K9sVpQVLNGrca55zle0O7K552e0ILFarBMWCQMYYd0BqVrSRTfCZ1rfkll+wNzps16KQYm6e/djzT1Q2g09/wH2eTrWRXbTUeTh44Un7wQyV7QAAAAAAAAAAAGaSWfAvhQAAdFBI29krBm9zTqkP25nzrmzpksKYxcslSeeP+LWRzfqG7VpReWrRspqXrxpy3z9p+irbmdWbal6/ZvBboeOuGfjv0kZHKttNXWND/iXrsLEJqeiqbKeitGCxRrrc1ftSKiRqOTrj7NtZ8/KUUUdlsyr1LVCN67Oe9jayHpJU39tycsOuS4fuiJyWDmupXa1Vle1Ov9h+bLQqFLjrOfd5OhS2M8vWSJtPtA8YdQS6qWwHAAAAAAAAAAAwoxC2AwCgWl1QTJL+974/c07JBuNTLy66VnrdTa1eVbiFy5QLxrQkH105Lt3BsJ055fya13+8948i59TcQ5c2V2B718FP68qBb9Ts+9WDf6+rBsv7OtF20jMA9MzewF3ZLijILFiq6/u/6DxPOsjPrcp2r39Xzcu+4oDXtFRQDtttOr70p6uK4XS3kQ2pPNcgyWfat7hh1x/u+/PIaenA0aJaat19W77WfuzZR/3P04lKlWXmD/6f/eAXPm4/RtgOAAAAAAAAAABgRiFsBwBAtZCg08Jiv1KO9oiZyWPrtsj80b/KdKrt3/FnSpLeOOAOU0nlMFun2sjW3cNlhf1aXDjgnJKerjayklQVDswFY/rSS2/U3c++Un+/89f04PYz9bcv/5a6VC4hl3NXiWuJuvu3Kv9y6LA//XrgVdnu6PFnnJcrVbabO4Ge+tbNPcGI17xKC9TJaodHchvZkPe+uHgoZGCtyDayLbpvpqvL2l41+PQf+p+oU21kJZmt26STzo0/cQ59NwEAAAAAAAAAAOaCOVTGBACAFuiZH7o7FRRUMOH/2UyrHBQ79QKZTla8CkplzbqLo5FDM5qQcvM600Y22914/YgwnX9luzbc32JtebiUijpr9H6dNXp/49je8OejpXr7al4WZa9iFlXZTguWaknhOefluoLC3KpsV/d5VoKSEVIqzyt/r5zV4/Ke4dDplChsFx4q7QoKKhr7dzCyjezS1c2vqV7R8vAPHfY/h+V9ts2KdfHnELYDAAAAAAAAAACYUWZBWQ4AADrHWCqXjXc1BsgmVYJkHWxJKEmaKAXUQkNhdbLBuHTUCZ2pbDfZhrPKnvRK55RMVEhnUlcbwnZxAnSrNrb++vXqWmTa7l1PRl6V7eYFw87LpZWfW4GekLCnj0pVtud/VvrTFYwqeD6v7eLTRjbBd8Wkw38nXEE7KaKy3Yr10tZtTa+pQWAJ202MK7AF8ep1sLKdJJltF8SflO5QpVQAAAAAAAAAAAB4IWwHAEC9485o2HXR0J3W4ZWwXbbDwY2rflGSdPXA1yLHZoJ8qepeVOW6VlS261vcsOuMkZ84p3hXtvMJGcVkXv+r/mPbcP3Qa6w/pvL6D/b+eei45/ZHVLZTQVqwRD1FdxvV1FyrbHfC2Q27Lh+8LXJapSrba95e+nPdllauqvOSfqanXdSwa2l+n3PKZNjOvPujtdfv6pL5tT9r6ffHvOND1mPBL5+j4PD+6JN0OiB9+Q3x58ylICwAAAAAAAAAAMAcQNgOAIA65vzXNew7Z+Q+6/gxU66k1eEqSVpSqng2LxiKHJrtLa8tsrJd8jCMSWca2r2eOvawc05Um9mpk7ch7LZyg9+4Fetbf20Lc/27KtvbHPfOWdkuKFW26wkiwnYqzq1AT0h1yp8b/GrktFRQkCSZ8vdKmVleUSxh2M684lUN+84fuds5pxJYvOIGmU98V3rL70g3vFfm49+RufxNidbT4ORz7ceeekjBx94TfY5OV7brWySdcUm8SbP9OQQAAAAAAAAAAJhj5lAZEwAAWiSkDWVv0d6K8+7eUujDZDtcJakcFDGSeotDGu6aZx2ayZbDb1EBnFZUtpOkbE4amQoBuu6fFKOyXavWV3Nxz8+tk1WwqtbUXRy1Dts3YD9FSgWpb4l6HPOlcjWyuVTZLiRAFfX8SVVBsUz5++9q39m3qJmVdZalFay3kPvoVSWxPNeccJbMCWclW4NLVFDuO/+R/BztsMTdUrvBXArCAgAAAAAAAAAAzAFUtgMAoF5IGOK00QcjpwWDh9qxGrvNJ1Y2XUE7ScpmyhXhIivbteivBiO11faWFdztJ70r26kNle3WHOU3rpPBnHVHVzZXFPZah73cby9t15XJSPMXKhdZ2a4wtwI9a49u2OXz/Z1sgVqpJLZkpbR6Y+PAbLd0zmuSrDA5nwqPSQOUIc/7ttGH3JdUuTpgb1+ya/vYdHziU5hpCNuZrdv8B3d1za0gLAAAAAAAAAAAwBxA2A4AgHpnXtaw65LhOyOnmbMa57WTmbegsn3joc84x2YzHa5sV2fL+DPO41nfsF0b1md8g2adDOaceE5lc/P4s9ZhQ2P2U6SyWRlj/KqRzaFAjwmpQHjy2COR8yphu+POKJ3HGJnXv6tx4JU3yvS4w60zQhvCdj/f/wXnlC45+hq3mOmdn7zFaierVU669I3+Y7t7ZNrROhsAAAAAAAAAAABNI2wHAEC9qhDbpJ7A3YqzNG9hGxYTYeNxkqS3Hf6cc1imuxwo61RluwuurnkZFbarVLarqtYXql3Bk2Vrosd0MmxXFSLqcVSm++Yjjsp23aV2qD3rNjgvlTbFuRfo6Vtc89JIes3grc4pKRVLG1Wfs7nht2Te93fSqRdIx50h8z/+WOa9f93q1bZHKpVsfsjzviH/UvS8clixE8z7P53sBNlpqGy3Yl2c0W1bBwAAAAAAAAAAAJozd8qYAADQKs2GqqahJaF650tSZPWybLbDle3q7sUx4087h2eDcen0i2Vu+kMFv+GoENiqMGC9nMdnl+1cFSxjjIKeedLIkHKOoOfXLQXbTFCsVHjryUqTObIwKdO5amQdk+uVBg7W7FqWd7cyrlS2q3t2zTW/LHPNL7d0ecl5hLC6kobtmnzeO/k7mLTCYNLKeM1aulravyt63Mhg+9cCAAAAAAAAAACAWKhsBwBAHdNs4CxWxaIW6T8gSTpq4nnnsEx3OWQXFS5pVZjt0N6alwuL/c7h3cFYKaQTdf02tbn1qnDV6TDlyJAkd6zKVpAupUIpcCZpfbf73meMI4k3W+3d0bDrQGqJc0pa5bDd/EXtWFHnJW0ju/bo5ub97P5k141jzeZk89cf05p1xLWuyXsLAAAAAAAAAACAaUfYDgCAFjF90xDSOfe1kqSVhT3OYdnJNrJR1apaFGYzZzZWpztr5EfW8blgtBy2i6jY1a52pz5BuumoXBghsBSl6wqKlfUuiPjIe8x4i1c1Ayxc2rDr8qHbnVMmK9uZ9Bwp/JwwbGeaDaKtOSrRdWM5+iRp0/HNzV29STr+rJYux5e57I3Tcl0AAAAAAAAAAAAkR9gOAIAwJ50bb3y2uz3riGAue1Nl+5TRh63jMt3linZRgbFWVbY76ZyGXX+094+twythu6iwX7vayHqF7TrXRlaSdN6Vlc0/3fOHsaamVJiq1tfdo5t3/JJ1bE9XvqnlzWTmTe9p2HfmqLviWirIT1+ls3ZIWtlOktKZ+HMu/Lnk1/VkjJH52NfiTzzhbJm/vlUmlbDVbrOu/ZXpuS4AAAAAAAAAAAASI2wHAECYnnnxxi9a0Z51RKkKia3I26vbdU0GxaLapbaqTWtIeC0b2CuopYJCKcwWFaZrW2U7jyBdpyvbldvAStL84lCsqV0qTr2n7l4tK+yzjp2Tle2yjZ9nT3HUOSWlwuxpIevzPWhF2G7VxthTjE9L5hYyy9dKb32f/4TTLlLXp78vs3pT29YUxRgjvfHd03Z9AAAAAAAAAAAANI+wHQAAYQ7vb9h1+sgDoUPfc+Djna96Nmnx8srmGwa+FDpkeX6PtOfF0ouDu93n62pRpacljeHDdRM7rMPX5XdIB/dOX2W7xSujx4Q8E50yZrKxxpfCi5OV7XLqKY5Yx6bn4t8GxxuDdVGtltNBfka2Cm5aK8J2+3Y27PrN/X8TOvSVQ98vbUxDlU8T8ntjH9ymwG5MZonHb86lb2j/QgAAAAAAAAAAABDLXPznVQAAklu2umHXrx38dOjQXzx0c2glrU4wy9ZUtq8a/IZMUGwY89rBW6XF5TDKvIXuE7aosp1ZuaFh39ET27V17MmG/VvGn9Yx40+XAnpRQZg2BWXMOa+OHrRiXVuubWNOOb+yfcroT2PNrQmOdfcoF4zZB7eqmuFMsvnEhl1r8rucU9IqTF9oth1a0SI1CBp2XTX4jdChlf3TEVj0+f5OWrO5feuIw2PN5twrI8cAAAAAAAAAAACgs+bgv64CAJCcufLGhn2/cPizuvHQZ2r2/eXLv6NTxh6Z3opYJ5wtSVqdf1n/svMdSgX5yqHTRx7QR/f8vsxpF0qSzHkR4Y1WVo6ruydG0r/teLuW5fdW9i3L79UtL71NRpI5/ZLo67crGHbJ9ZFDzImvaM+1bS78ucpmVFCsXlq1YTujxtDUpLCA5qwXEvaUpLcc/jfrFCrbNTI3/q+GfZcM36kP7P2zmn3X9n9Z7znwd6UX03APzYZj/cde8vo2rsSf2XKKzLs/ah/wupukV725cwsCAAAAAAAAAACAlxb0lwIAYA7K9TbsSqmof9j1K/r9ff9Hj3afqFeM3KdVhXJb1ukM6WzdJj12nyTpLf3/rlcN3aYf9J6vtRM7dProA0qpKKUzfutsZZjtuDOkh35Qs+vUsZ9q+9PH6a7ecyVJ5w/frd6g3OK0OzdtbWRNV5eCo06Qnn3MPijkmWirqs+qJ7C3gQ2TDqaqtJmIzzw4uC/+2mY6S4W600Yf1L8uDA8w1bTenel8Kjy2oo3s/MZKmEbSh/b9id5x6J90T88rdOLYYzp+/GeqrGi67uFr3iZ987PR4zr9PXYwb3qPdOkbpYfvkoYHpInx0v075Txp7dEyM6TlLQAAAAAAAAAAAKYQtgMAIEy2O3S3kbRlYru2TGyvPTCd7SfrKpMtK+zXtQNfqR0zGbyJWmcrw2zzFoTu7g1GdMXQdxoPpDPR129n+CSkZWaNToeIcvMqmwuKA7GmZoIJKVtab/DS01qZ320du37ixebWN5NZ2iWngoJ1ysvpVdLEU+1aUed1taCNrOOZX5/fofUDX2w8MF0BMcvvTYMZFqg0y1ZLl75hupcBAAAAAAAAAAAAT7SRBQAgzKYT4o2fxgCHWbY2etA0VLabbF3rbdMJ0UGddrWRlaS1m93HO/wZm6rA59LCgVhz08pPBUYP79f6/A6dOPpow7j1Ey9q29hDidY5E5mlq0L3nzb6oHXOuMlKB/daj88qXV0yrfiunHJe/Dkbtia/bhPMaRf5DczOrLAdAAAAAAAAAAAAZhfCdgAAhOlbFG98dhor2513ZfSYSmW7iBaKraxsd+WN8cYvWOJx/fZVzTI3vNc9YJpDOpvHt0cPKksHeZl0tvSiHBL8yJ7fV644UjVmQh/b/XttvKMzz9bxp63HjAKZS6/v4GoSiAqltqKFrCStiQighlmysjXXjuvc1/qNm84qpAAAAAAAAAAAAJj1CNsBABDCpDNSKkYbxukMYs3rix5TCdt1sLLdgiVS32L/Cd09Utc0VrZbvcl9fDpCOsefWdl83cDXvKelg7yUqQ3bvXroNt377AX68J4P6oN7P6x7nn2lrhv4ckuXO6OEVCpMyd5G1iiI97zOZC0K25muLmtLbatcRKC3TUy2W+aDn4keOMPayAIAAAAAAAAAAGB2aVHZCwAA5qBMt1QY9hybae9aXKKq1UlSuvyf/FznwnaSpEXLpIGD0eMyWZmuLgVRFbtaWXmvXlRIaDpCRJmpoFN3MOY9La1CpXWw2bBVQXn/ieOP68T9j7dyhTNXpjEk1hUUrcONgrkTxOqKERSOkumWxv2fvWkNHvctjB4zTWFAAAAAAAAAAAAAzA1UtgMAwGbUM2gnSTuead86oixdFT1mMgCz9mj3uHVbkq+n2p6X/MZNBqOiwnRRYbwkFiyxV7dbsV5avKJ917YZ6q9s7sis9Z5WU9nuyl9o9apmh+caQ4WRle3mSovRVoZmq57BSKm0THoa/395tp7m/o1Yf4zMvAWdWw8AAAAAAAAAAADmHMJ2AADYrFjvPdSc/7o2LiTi2sZ4tEAthe1M2l2BL+p4bNe/y2/c5HWjQkJtbCNrjJF583vDj93wm6X73GHm2ndWtl8z+C3veSlNhe3MsjXuwRdM37PbVpe+oWFXKogI22VnS9gu6lls4bO6Yav/2GmuDGgWr5Be83b78Z//zQ6uBgCA/5+9Ow+z9KrrBP49VdV7d/ZOOk12spBASAiLgbAm7MhiDMIICo4OoojKICMgIIoo4jrOiKKjgDqgoiCLgmwyLBKWsCRsIfva2ZdOr9VV9c4f1Z2u6rrvvbdu3aXq1ufzPPepW+d33vf8qrq6q5L7rXMAAAAAgGEkbAcAdZ50YftzDz+6d320obz4Nc0nDCgEU855YnsT94XtWh4T29vAW/mRl6e86T3JuU9Pjnlgcu7TUt7wrpTnv7Kn69Y69WH3Pz1s8q62LxurJpKxlfsHmu3Kd/zpnXS26JWHnjdnrOnOdlU12CNQu6mbodTHP6/9uYvgGN7yq3+e8vK3Jg89b/rv8DEPTB79jJRf/9uU5/63QbcHAAAAAADAEjfAc54AYJGbT3Bk0MdPtgoJDaq/dj+H+4JhrXaP6+HOdvuUp7ww5Skv7Pk6bZmx09qaamfbl806RjZJ1qxL7q6Z3IfP6UA0+NprubPdIgiLdUUXd2Esq9akanfyIvj8ldHR5EW/kvKiXxl0KwAAAAAAAAyhIX11FQC6oOUuazMMOmRy7CnN66vX3v+0vOqPG8+58OVdbGivY05ub97Y3vx/q+DXfP5MhsGMkOQp41e1fdlYDtjZ7uZr6iePjHbS2eLX4O/ESKaaX7NyZfP6YtEyTNfFHSBb/dsy06BDxwAAAAAAANBjy+wVawBoX3n009ufPOiw3emPaF6f2d9jn52sWT+7PjKScsELut5WOaLN43XbPUa2izt2LQkz/tw2T2xp+7KxanJ2cOy4U+snD+vOdg8+d85Qs2NkRzK1/+twqevmn+kPPbX9uavWtp4DAJMLjsUAACAASURBVAAAAAAAS9iQvroKAF1w5DHtzx1w2K6MjDQPCs04ZrYceUzKH30sOeWs6fDaMSenvPn/pjz0Mb1prp3P4/1hu8EfI7uoHPB1tWnilrYuG6tm72xXnvXS2rllSHcLLGNjybqDZo81m58qGR2SsF03j5Fdf/D0McTtGHToGAAAAAAAAHpsOF9dBYBuWD2PXZpWLoLjE486tr62ctWsd8uDH5WRv/5Kyifvycj7vpPypAt719dhR7Wesy8Y1iL4VZbxznZJsmni1rYuG8tEsmLGznbNvpaHOcDYbEe/A5RUw7OzXTePkU2SU89pb55jZAEAAAAAABhyQ/zqKgAs0JoN7c9dDCGTJ13UePywTbUhtdKPvm+7qfWcfSGnYQ5+deKAEOcNYw9o67IDd7bL+K7audXkREetLQk3Xd321Ofc95GlE7br9w6Q7f47sRhCxwAAAAAAANBDXtEGgBplbKz9yStWtZ7TY+W8ZzUunPfM/jZyoEM3tp5z/zGyfjSZqRwQmjps8u62rhurJmbvinfqw+on7xnvpLWlYee2OUM/ffe75owdNXFrHrfji0snbNdKt3eAbPd42Jm7KQIAAAAAAMAQ8oo2ADTz7P/a3rxFEDIpDzk35RfePjtoc9ZjU17xu4NrKkm58OdaT7o/bLfMjoltx/Nfef/TX7z7T9u6ZCwTs3cjO7TJUb4TQxy2a/C193u3vTaP3fGF+98/fOKOfPiGCzOaKWG7Ou2G7UaH5PMHAAAAAAAANeaxZQ8ALD/lyGNTtTNxbPBhuyQpL/il5Bk/kXzny8nmE5PjTqs9QrZv1qxrPccxsrXKxs33fw2un5q7U1sjc3a2W9Vk58Xx3Z03t9itXjtn6KCp+/If1z01P1h5Su4YPTyP3HlJVmbPdHFYwmLd3iHSznYAAAAAAACQRNgOAJobGW1v3iIKmZSDDkse/YxBt7HfuoNaz3GMbL2JiXlfMpbJZOWMne3WHVw7t2w+sZOulojGQdOS5LTxK3JarphdGG3z7/ugtQrQdjtg2+7nZVh2BgQAAAAAAIAaXtEGgGZOe1h780bl12ud9djWc+xsV++Io+9/etruH7R1yVg1MSsAWg4+PDn5oY0nn/u0BbW3mJW6j7mRsRWD3wWyW7r8YZQHPaK9iWP+HQQAAAAAAGC4eUUbAJo57ZzWc1asHJ6QTg+Uee1s5/M4xwmn3//06IktbV2yotozZ5ex8kt/mKxZP3vii16THHfagltctB78qPbnDtOubN3eIfJxz2lv3iI5ThsAAAAAAAB6xfYTANDMqjWt5wiYtHbokcndt9XX930OHSM714yvwTXVrrYuGa0mktEDwnZnPy5591eT//xYqnvvTDnnicnZjxvuoOjqte3PXUJhu1JKquYTurvg2g3tzVtCn0MAAAAAAADohLAdADTTTthuhbBdSytWNa87RrbejMDY6qn2wnZjmWgYfCqbT0ouekW3TxldvFbNI2w3TEdBdzts1+6/cYLHAAAAAAAADDmvaANAE6Wd8JeASWvHtziqdGxf0GnZxMDat+n4+5+ur7a3dclYNSG4mKSsbBHynGl0iHZl6/IOkW3vfmhnOwAAAAAAAIacV2EBYKEETFoqL35N8wl2tqvVVuDzAGOlGu7jYefj2FPamzdMf4978Wd/0GGtl7XLJwAAAAAAAEPOK9oA0Mo5T2xeXzFEIZ1eOfvxzev7dgfs8o5cw+jNt/9myzljI1UfOlkayjN+sr2JY46Rber8i1rPGabAIgAAAAAAADTgFW0AaGXl6uZ1x8i2VEZGkmZHetrZrm1rpna2nDNWhO3ut6rF3999hiko1ovQ6qo1reeMDlFgEQAAAAAAABrwijYAtHLCg5rXm4XI2G98d31tX9DJ0aeNPe459z990PjlLafb2W6GE05vb95Qhe26//eoHHpk60mOkQUAAAAAAGDICdsBQAvlyS9oPmHV2v40stRtPrG2VPbuDliE7RoqT3/x/c/P3/7ZlvPtbDdDqyOM9xldYmG7Zn9XevH36Ek/2nrOMAUWAQAAAAAAoAFhOwBooZx2TvMJ7R5TucyVH391fVFIp6ny+Ocme3cWW1Ptajnfznb7lZWr2jueeJi+BntxjOym41vPcaQ2AAAAAAAAQ07YDgAWatWaQXewNDT7PI2O9q+PpeqZL2l7qrDdAY45ufWcoQrb9eAY2ZGR1kdmD9PnEAAAAAAAABoQtgOAdpxydn1t4+b+9bGUTU3Vlqqd2/vYyBJ15y33P/2hHV9uOnVMdnG2yYnWc4YpKNar45jHdzevr7CzHQAAAAAAAMNN2A4A2lBe+fb62mOf3cdOlrBmx/FOTfavjyWqnPCg+5+/4Y7faTp3rEdZqyXrEee3njM21vs+uqlZoK4Xx8gmybGnNK8PU2ARAAAAAAAAGhC2A4A2lIc9IXnWS+eO/+xvpZz79P43tBStP6i+Nils19KJZ9z/9BnbP9F0qmNkZysvfFXrSaNDFBTr0c525ZW/13zC6BILLAIAAAAAAMA8eUUMANo08tp3pvrF308++ffJxgckZz8uZe2GQbe1dKxcXV+zs11rB3z+ztj93Xx31RkNpzpG9gCr17WeM0y7svXqGNkNhzavO0YWAAAAAACAISdsNyCllJOSPDLJI/a+PSfJzMTGdVVVndDhvRe6nc2JVVVdu8B7AAylsnZD8tz/Nug2lqYmwcRy6tl9bGSJWjM7MLZ1pH6nwLER58jOsq7Jror7DFXYrkebVx/UImw3TJ9DAAAAAAAAaEDYro9KKU9M8rpMB+wOG2w3ANBfZdWaVGc/Pvnm52YXRkaSRz1lME0tJSc+eNa7N644pnaqne1mK2vWpeVvIiy1oFiz3et6tbPdsac2r69a05t1AQAAAAAAYJHo0bYX1Dg7yVMjaAfAMlV+6Q+TQzbOHnv1/0o5yLfGllavnfXui+59b+1UYbsGfvTnm9dHh+h3UHoUtiulJI98cv2EVWvrawAAAAAAADAEhuhVxSVtd5IbkzywB/f+cpIXzvOaG3vQBwCknHxm8jdfT778yeS+u5JHXJBy4hmDbmtJKCMjs3Zn2zRxS+3cMb9OMUd58A+l+ud31E9YajvbNdOrY2STlEdekOqrn2pcXLW6Z+sCAAAAAADAYiBs1397knwnydeSfHXv28uSnJfkP3qw3q6qqq7twX0BoCPl0COTp79o0G0seaPVZG1tbLRHx4guZWvWNa/fc3t/+uiaARwjmySHbaqvtfocAwAAAAAAwBInbNdf70ny51VV7TqwUHr5oigAMHS2jWyorY2N+blijgf/UPP6zu396aMfevlz5aOeMn3/qpo9fvTxyeFH925dAAAAAAAAWAQcMtZHVVXd3ShoBwDQlp96w/1Pn7z9M7XT7Gw3Vzn0yOT8i+onTNbvFLjk9PIY2UM3Jhe94oDBkvJTb/TLIwAAAAAAAAw9O9sBACwR5REXpHrXbyVJ1lQ76ueNjvarpSWlvOFdqT7zT42LkxP9baaXehx6K6/8/eSUs1Nd/PFkzfqU8y9KedRTeromAAAAAAAALAbCdgAAS8WqNfc/XT1Vv1luNbKiH90sOWXFylR1xakltrNds0Bdr8N2pSTP+ImUZ/xET9cBAAAAAACAxcYxsgAAS8WxJ9//9KG7v52xas+cKaPVRM5au6WfXQ0HO9sBAAAAAAAALQjbDb/jSinvKqV8p5RydyllvJRy6973/66U8rJSymGDbhIAaK2s3ZAcMx24O3hqa16w9f1z5ly09QM5eOUS26VtMRC2AwAAAAAAAFpwjOzwO3HvY6Yj9z7OSPKiJH9YSvnLJG+sqmpbL5oopRyZZOM8L3tgL3oBgKWsvPHdqX72sUmSv7z553LExB350IbnpErJc7d9JG+79deSsZ8bcJdLkGNkAQAAAAAAgBaE7UiSdUl+OckzSykXVlX1nR6s8fNJfr0H9wWA5WXdhvufrsye/MFtr80f3Pba2XPGVvS5qSFgZzsAAAAAAACgBcfIDq+JJJ9N8oYkz0lyTpJTkjwsyXOT/H6S2w645tQknyqlHN+/NgFgtvKytzQuPP3F/W1ksTr86NZzhO3qPfS8hsPlZ36jz430UPEjPgAAAAAAAPSCV+KG0xuSPKCqqidVVfXWqqo+UlXVN6qqurKqqm9WVfXhqqpek+T4JG9LUs24dlOSD5RiSxQABuSJP5KMzt18tzzxwgE0s/iU9Qe3niNsV6s8+QVzB9esTx7+pP430yt+jAMAAAAAAICeELYbQnsDdgfuWtdo3q6qql6X5JUHlM5J8l+63NY7kjxkno/ndrkHAJaAcuwpKW95X7Lh0OmB1WtTXvG2lPOeNdjGFpOTHtK8PipsV+t5L0te+Kr9u/8dfnTKH3w0ZcMhg+1rvpoF6oTtAAAAAAAAoCfmbhvDslNV1Z+WUp6a6eNm9/n5JO/t4hq3Ze6xtU3ZXA9g+SqPe07ymGclN16RHH1iyspVg25pcTnyAcnV366vj/kRr04pJeUVb0v1029KbrsxOfaU4fuZwzGyAAAAAAAA0BNeiWOf3zng/XNLKUtsixcAhkkZHU05/kGCdo0cfETzumNkWyqr16Ycd+rwBe0SO9sBAAAAAABAjwjbsc9Xktw94/3RJGcMqBcAoInyyCc3nyBst7wJ2wEAAAAAAEBPCNuRJKmqairJ9QcMbxxELwBACxc8v3l91DGyw69JoM4xsgAAAAAAANATXoljpp0HvL9mIF0AAE2VsRXJC3+5foKd7ZY3O9sBAAAAAABATwjbMdMRB7x/x0C6AABaW72uvjYqbDf0mgXqhO0AAAAAAACgJ4TtSJKUUo5IctIBwzcPohcAoLWyem19cZXNaYdes90LHSMLAAAAAAAAPeGVOPZ5YWZ/Pdya5HsD6gUAaGXV6s5qDIexlfU1O9sBAAAAAABATwjbkVLKUUnecMDwR6qqqgbRDwDQhpXNwnZ2tht6K4TtAAAAAAAAoN+E7YZIKeW0Usqz53nNpiQfTXLUjOHxJL/Tzd4AgC5rtrOZsN3wW9HsGFlhOwAAAAAAAOiFsUE3sNyUUo5J48/7pgPeHyulnFBzm21VVd3RYPzoJB8upVyW5O+SfLCqqitq+tiQ5CWZ3tHuqAPKv1VV1dU1awMAi8Hpj2g8PrYiOfGM/vZC/zULW476ER8AAAAAAAB6wStx/feFJMe3Me8BSa6pqb0nyUubXHtmkt9N8rullHuTfDvJHUnuS7I+ybFJzkrjP/+/qKrqLW30BwAM0gmnJ2c/Pvnm52aPP+1FKesOGkxP9E+zY2RHm+x6BwAAAAAAAHRM2G74HZzkvDbmbU/yqqqq/rLH/QAAXVBKSX73g6ne+YbkK59IVq5OHvfclJf+2qBbox9WrKqvjY72rw8AAAAAAABYRoTthsv3kvx2kickOSfJmjau+UGSdyf5y5qjaQGARaqsXZ/yqj8edBsMwrZ76muXf71/fQAAAAAAAMAyImzXZ1VVndDDe9+a5NeSpJQykuSUJA/M9JG0hyRZnWRnkruTbEny1aqqbu9VPwAA9MhNV9fXrry0f30AAAAAAADAMiJsN6SqqppKcvneBwAAAAAAAAAAAAswMugGAAAAAAAAAAAAYLETtgMAAAAAAAAAAIAWhO0AAGCpueDH6muPfkb/+gAAAAAAAIBlRNgOAACWmPLEC+trL39rHzsBAAAAAACA5UPYDgAAlprHPzd55AVzx897VspJD+5/PwAAAAAAALAMjA26AQAAYH7KyEjyB/+aXHlpqrf9bLJzW8pb/j7lgQ8ZdGsAAAAAAAAwtITtAABgCSqlJKeclfJXFw+6FQAAAAAAAFgWHCMLAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALYwNugGArtt9Z7LjxmRqT7LhlGTlwYPuCAAAAAAAAACAJU7YDhgeu+9MPn9RcttnZ4+v2Zw8+4pkbO1A2gIAAAAAAAAAYOlzjCwwPL7wgrlBuyTZeXPyxRf2vR0AAAAAAAAAAIaHsB0wHHbdkdz6mfr6TR+ZPlYWAAAAAAAAAAA6IGwHDIcdNySpWsy5sS+tAAAAAAAAAAAwfITtgOEwuXPQHQAAAAAAAAAAMMSE7YDhsPX7redMjfe+DwAAAAAAAAAAhpKwHTAcrvuH1nPu/Frv+wAAAAAAAAAAYCgJ2wHDYfXG1nOqyd73AQAAAAAAAADAUBK2A4bDTR9tPefilyS3/2fvewEAAAAAAAAAYOgI2wFL35X/J9lzb3tzP3lecvPHe9sPAAAAAAAAAABDR9gOWNqqqeTSN87vms8+oze9AAAAAAAAAAAwtITtgKVt29XJrlvmf1011f1eAAAAAAAAAAAYWsJ2wNK2577OrttxY3f7AAAAAAAAAABgqAnbAUvblo93dt11f9/dPgAAAAAAAAAAGGrCdsDSVVXJt17f2bXf/NXu9gIAAAAAAAAAwFATtgOWrq2XL+z6nbd2pw8AAAAAAAAAAIbe2KAbAGhq27XJHf+ZrD0mSdk/PjWeXPkXC7v3+F3JmqMWdg8AAAAAAAAAAJYFYTtgcdqzLXn/hs6vf9jvJZe9OZnYXj9nYlvn9wcAAAAAAAAAYFlxjCywOH1w08KuP/1XkqdenJz4k/VzLvuNha0BAAAAAAAAAMCyIWwHLD7VVPMd6VpZdfj020Mekpz77sw6fnamWz/T+RoAAAAAAAAAACwrwnbA4rNn68KuP/jB+5+XkqRqPG/FAo6pBQAAAAAAAABgWRG2AzpXVcn3/yj56BnJBzcnF//0wnak23fP775tYfc46b/Ofv/IJzSet+u25J+PTLZ8YmHrAQAAAAAAAAAw9ITtgM5d/ifJ1/97svV7yc4tydV/nXzuwgXe838m3/3dzq5dcVDyqHcmJ71k9vgZr6u/ZvftyX88Lbnjy52tCQAAAAAAAADAsiBsB3Tu6r+aO3bLJ5Lt13V+z6v+T+fXPvuK5OSXzR0fW9P62mv/rvN1AQAAAAAAAAAYesJ2QOfuuazx+JV/0dn9qiq59zud97PikMbja49tfe2tn+18XQAAAAAAAAAAhp6wHdB9u+/o7LrJXa3nPPxPGo8f+fhkdGXj2voTk0POWvjaAAAAAAAAAAAsW8J2QPdtu6az6675m+b18z+ZnPoLydFPm1t7/IebX/uEDzWvb7uyeR0AAAAAAAAAgGVtbNANAEPolk92dt2lb6ivPet7ycEPmn7+pI8ne7YmN/1rsvG8ZN1xre+97vhk3QnJ9mvr50yO1++OBwAAAAAAAADAsmZnO6AzU5P1tZWHzv9+E9ubHz+76vDZ7684KDnhv7QXtNtn87Oa1+/9Tvv3AgAAAAAAAABgWbGzHdCZqd31tTI6//vt2VZfG1mRrN44/3se6AHPTq740/r6xPaFrwEALA+7bktu/niy9XvT7x90WnL0M5I1Rw22LwAAAAAAAHpG2A7ozOSu7t2rmkr+9fT6+mP+b3fWOfopyckvT67888b1yZ3dWQcAGG73fjf59PnJrltnj6/amFzw6eSQMwfTFwAAAAAAAD3lGFmgM90M2932+WT87vr6xsd2Z50ykjzyHfX1yR3dWQcAGG6XvGpu0C5Jdt+efO0X+98PAAAAAAAAfSFsB3RmqlnYrprfva55T/P62Lr53a+ZUqZ3nWlkws52AEALU5PJ7Z+rr9/xxWRyvH/9AAAAAAAA0DfCdkBn7vhKfa2aZ9ju6nfV18Y2JCsOmt/9Whld03jcMbIAQCvVRPMdfqf2JFO7+9cPAAAAAAAAfSNsB3Tme79bXxu/q3vrPKzJOp0aE7YDADpUTbUxZ7L3fQAAAAAAANB3wnZAZ5rt6DIfu+9sXj/+x7uzzkx2tgMAOiZsBwAAAAAAsFwJ2wGdWXV48/rE9vbuc8unmtdHV7V3n/kQtgMAOtXWznZtzAEAAAAAAGDJEbYDOnPQg5rXd9/R3n12bmleH13d3n3mQ9iOxWZqcvoBwOBNTSYTO5LJ3cmercme+2bXHSMLAAAAAACwbI0NugFgSE20GVzbc2997YzXdqeXA42ubTx+3xW9WQ/qTOxMvvYLyY0fnA5mPODZySP/PFmxftCdASw/E9uTf6z593f9Sclpr0pO+4U4RhYAAAAAAGD5ErYDOjOysnm93V3iLntzfe3s32m7nXkZq9nZ7vr3J1N7kpEVvVkXDnTxS6a/7va59v8mu+9MnvSxwfUEsFzVBe2SZNvVySWvnA5DP+DZre9173eTtQ/oXm8AAAAAAAAsCo6RBTrzyHckL2gSqGsnbLfrtu71Mx/Njn+7/Qv964Plbfze5IYPzh3f8vFk5y397wdgOWv3Z5Kr39PeMbLX/f3C+gEAAAAAAGBRErYDOjeyKklpXGsnbHfvd7raTttu+VR97Y4v968Plrf7rkiqica1u77e314Alrsb/6W9eVu/194Rsde8e0HtAAAAAAAAsDgJ2wGdKyUZXd24Nrmr9fXbru1qO23bcHJ9bWq8f310w84tySX/PXlvmf349lsH3RmtTO2ur7UT5ACge/Zsa2/erluTfzuz9bxqKvn3RycTbfzyAQAAAAAAAEuGsB2wMKNrGo+3s7Pd9mu72krbDj27vrb9uv71sVC770w+9YTk8j+aW7v0Dcmlb+p/T7Rv+/VNatf2rQ0Aknzj1e3P3X1He/PuvDj5x7XtHTsLAAAAAADAkiBsByzMUgzbNXP9+wfdQftu+Ofpo0jrfPst/euF+bvyz+trV7+rf30ALHe72gzPderOr/T2/gAAAAAAAPSNsB2wMCvWNx7fdWvra5vtInfkEzrrpx2bf7i+tvExvVu329p58b7dY/Hov7qgapKs3tS/PgCWu7su6e39v/v23t4fAAAAAACAvhG2AxZm3QmNx5vtuLbP1u/V105+WUfttGXzM+prO27s3brddvO/tZ7zyfOS95bpx1denmy/ofd90Z77rqyvVXv61wfActfOLwgshJ3tAAAAAAAAhoawHbAwG05pPN4qbDd+T7Lrtsa1VYcnx71gYX01M7oqOfxRjWv3fie576rerd0tl/56snNL63n3XLr/+ZXvTD50XHL3N3vXF+2Z2Jlsa/J11s4xzAAs3K47kotf0ts1dt6UTO7q7RoAAAAAAAD0hbAdsDCdhu2++7v1tfM/k4yMdt5TO5qF+b79lt6uvVDbr0++/ZudX//N13evFzpz1f9pXp8QtgPoiyv+rHn9se9PzvuH5Jw/Tk55Refr3Pihzq8FAAAAAABg0RgbdAPAElcXtttxYzKxIxlb27jeLIy3/oQFt9XSioPqa7d+uvfrL8St/7Gw67d8LKmqpJTu9MP8bbumeX1yR3/6AFjubvpI8/pxF+1/vvOW5Io/7WydWz6dHN/DXXsBAAAAAADoC2E7YGHqwnbJ9DGZh5zZuLbnvvrrmgXhuuXIx9fXxu/t/frt2LMtue59ycT25KDTk/G7p8evfOfC7z01Pn2cLoOxp8XXmGNkAfpj25Xtz12zafrnnla79zZy3XuTR74jGfGfXwAAAAAAAEuZV3uAhVl3QlLGkmpibm3rD+rDdrd8ovH4EY/pWmtNHXRqsu74ZPt1c2sT9w1+57cbP5x87rm9u//kTmG7Qbr7683rjb4uAeiu8bv3B9kbWfOAuWNnvy35wgsa/9zTzMT25O9XJD/8g+SgJr+oAAAAAAAAwKI2MugGgCVuZCxZf2LjWt3OL7d/qf5+xzxn4T2169z31Ndu/GD/+jjQ+D29DdolyS2f6u39ae7ubw66AwC21AT/91l/0tyxYy9MnvLF5IxfTY69aPpxxuuSp301ecGu1mv+64M66xUAAAAAAIBFYaA725VSSpLXJFk9Y/hvqqq6doH3PTHJT8wY2lFV1e8v5J5AE3VHqtWF7W7+aP29Rtd0p6d2jK2rr93wL9MvqA/CTR/p/RpbPpEcd1Hv12Gudnet23V7snpjb3sBWM46OQ42SY541PSjkTN/M7nsTfXXVlPJ9huSdcd2tjYAAAAAAAADNehjZH88yduSVHvf/8BCg3ZJUlXVNaWUM5Pcn5QppVxdVdUHFnpvoIENpyb5t7njdS9i79xSf6/DHt6Vltpy8On1tWbHyvXSrtuTb76us2uPe35y/fvbm1vt6WwNFm7nLe3N23Z1suqIwR5nDDDMJnZ0/56HndN6zl1fFbYDAAAAAABYogZ2jGwpZSTJb+57N8kVSV7SxSVemuSqvfcuSd7axXsDM204pfF4Xdjuhia518PPXXg/7Wq2s92O6/vXR5Jc/e7kvSX5wJHJzpvmf/2Kg5Mzf6P9+RM7578G3THZZrjjE+cmHzouueKdve0HYLnac0/373nU+cnBZzSfs6OD7/MAAAAAAAAsCgML2yV5cpITM72rXZXkdVVVdW17iaqqtid57YyhU0sp53fr/sAMdWG7Xbcke7bOHrvnsmTPvY3nn/iTychod3tr5cw3Nx6/59L+9XDb55KLf2p+16w+Mll9VLL2mOTYi5ILPjO9U98Ldidrj2t9/fX/0FmvLNxlv9l6zj47bky++vLpY40B6K4r/qz79xxbk1zw2eZzLvnF6eNkAQAAAAAAWHIGGbZ78Yznl1RV9cFuL7D32NhLZgy9qNtrAKkPc8IFfwAAIABJREFU2yXJfVfOfv/6f6qfu3pTd/qZj2a72239QX96uPrd85s/ujq58NbkwluS592QPO79+4+tG12ZPO+65Mer6ccZv9r1dlmg2z47/2uEIwG6a3K8d/devTE58onN59x1SfM6AAAAAAAAi9Igw3ZPn/H8r3q4zr57lyTP7OE6sHytPTYZWdm4duBRsnVHyybJhgd2r6d2rW+y5oFBwV65+l3zm9+s5wPt3NJ4fPWR81uT7hldM/9rrvv77vcBsJzturW39z/mec3r/foZAwAAAAAAgK4aSNiulHJ8kiNmDH20h8vNvPeRpZRje7gWLE8jo/UBsAPDdduvrb/P5h/uWktt2/SU+trk9t6vP7l7/tcc/8L25x7x6Mbj43fPf10WrqqSyZ2D7gKAdv4tLqXz+x/z3Ob1+exYOrkr+davJR9/RPKhE/c/PvzA5PMXTR9HDwAAAAAAQF8Mame7s/a+rZJcVVXVTb1aqKqqG5PM3Dri7F6tBcta3VGyl75x//M9W5M7vtR43sbHJms3d7+vVlasr6994cd6v/7nL5rf/NNelTz49e3PX39S4/GpPfNbl+4QtANYHLZ+v7f3X39Ccv6n6+s3fii5/v2t71NVyecuTL7z29NHz26/dv9j29XJDf+cfOapAncAAAAAAAB9MjagdTfOeH5zH9a7OcnJe587OxF6oS5sN9PNH6+vHXVB93qZr1Ubk923N65N7kpGV/dm3a1XJDe32Njz6ZckZTQZW5esOz4ZWTG/NZodWXrvd5ODz5jf/ViY2z4/6A4ASJKr/qr3a2w6Pzn0Ycnd32hcv/xPkuOe3/weWy9Ptnys+Zyp3ckVf5Yc+fjO+gQAAAAAAKBtg9rZ7tAZz2/pw3oz1zikD+vB8tMs1DU1Of32rq/Vz1k9wBxsXdAumQ6k9cpdl7Sec9g5yaFnJRtOnn/QLklWH9Vk/ZoX/+mdbVe2ngNAH1Stp5zwEwtfptnPN3d+tfX1zX52mu+9AAAAAAAAWLBBhe1W9rmHmWus6sN6sPwc8ej62tSu6bc7mpwYvfnp3e2nWyZ39e7e93yreX3zMxe+RrMdB6d6+LHRWC+/ngBo39R48/rIita7zrXj6Gc06WF3sv265tff3uaOqNuuar8nAAAAAAAAOjaosN2OGc831s7qnplr7KidBXRu3bH1tW3XJrtuT657b/2c9Sd1vaW2Hf6o+tonz+vNmndcnHz3bc3nnPvuha9TSpMevrTw+zM/l75p0B0AkCSTO+trIyuSx/5TsvLgha9z6s8na4+rr3/ohOTe7zeuXf/PyZV/0f5a3/jVebUGAAAAAADA/A0qbDfzWNfj+7DezDVu7cN6sPw0O0b28j9OrvrL+voDf6b7/czH6Orm9Z09OO36W29oXn/hnmR1l7LIhz288fhVf9Wd+9Oe8XuSSXlvgEVhoiZst/G85MLbkmOe0511RlYkT/hQ8zn/+aK5Y1WVfOPV81vre29Ppibndw0AAAAAAADzMqiw3b5zjkqS40spJ/dqoVLKA5Oc0GBtoJtWHFRfu+ey5NbPdnZtPxx1fvP65X/c3fWqqeS2/1dfP/KJychY99ab2tO9e9G527846A4A2Gdye+PxY5+frDyku2utaLFD3t1fnzu2/brWR8w2cttn538NAAAAAAAAbRtU2O5bScaTVHvf79LWEQ09b8bzPUm+2cO1YPlafWR9rZpM9mytrx/1pO73Mx8P/Onm9S3/3t31Jncl1UR9vdufj7owY+lioI/Wmv0dAKC/xu9uPL7y0O6vte6E5kfJNtLp94yr/trudgAAAAAAAD00kLBdVVXjSf5fpne2K0n+RyllXbfX2XvP12Q61Fcl+dzetYFe2PzMxuN3fS2588v11216am/6adfaY+qPWk2S3Xd1d72JFkeJnvLy7q532i83Hq8m7HrXT5f9+qA7ACCZPqJ1952Na6sO6/56pSQP/5/N5xz4s8FkzTG3rVz33uRfNid77uvsegAAAAAAAJoa1M52SfK+vW+rJBuTvL0Ha7wtyZGZDvQlyXt7sAawzzE/Mv9rHv6/ktGV3e9lvp7w0frajuu7u9bNTdZ62lea7xLYibXH1teu+ZvurkVjd38zue+KxrW1xw5+d0eA5WRyRzJV8/s3Kw/vzZrHPq95/Yo/n/3+fT+on/uw32t+r123Jd9+S3t9AQAAAAAAMC+DDNu9N8mWvc9LkpeXUl7frZuXUl6b5BXZf1TtrRG2g94aXTP/a1Ye3P0+OjHSx8DfrZ+tr63Z3P31xtbW127+ePfXY66r/qq+trIHuygBUK9uV7ukNzvbteO6981+f+v3G88rY8mGU1rf73stAnkAAAAAAAB0ZGBhu73Hub4u00G7au/bt5RS/r6Ucmin9y2lHFJKeW+St864b5Xk9Y6QhR5rdhRr7TWP7H4fnWj14vpdlyTj93ZnrWqyvtaLsN2GU+trE9u7vx5z/eB/19fu+Vb2b8AKQM+NNzkevpcB6Ic0OU78vitnvz+2rvG8aiLZ9NTu9QQAAAAAAMC8DHJnu1RV9TdJPpTZgbvnJ7milPL2Ukob2zZMK6WcXEp5e5Irkrwg+5MLVZKPVFX17m72DjRw8IPmf81Bp3W/j06taLLL3scfkfzTIcmnnpCM37Owda79u/pa6UHoqtkxvXd8qfvrMT8n/dSgOwBYXnY3C9t1/Ds/rZ38M/W1Pfck3/md6edVlVz2G/Vzx9Ykh5zV3d4AAAAAAABoy0DDdnv9RJKvZXbg7rAkr07y/VLKjaWUD5RS3lpKeU0p5b/tffxKKeW3Sin/XEq5Icnle685/IB7fT3JiwfwcQGtbP7h3oTLOvXIP2s957bPJV98YedrXPu++tppr+r8vq2c9dbG43vuSfbc17t1aW3jeQsPcALQvjv+s/H4ioOTkbHerbv2mOSCz9bXv/X65OaPJdf9QzJVsyH30U+ffvuMbySbn9V8vakmO+kCAAAAAADQkR6+mtSeqqq2lVIuSPLuJD+S6ZBcsn9nus1Jnrv3UWdmWmfm9R9K8pKqqrZ1rWGge1YeMugOZhtd0968Lf8+vStOq6NnG7n+H+prY22u34nRtfW1LZ9IjvvR3q1Nc6Nrkru/PuguAJaPu2r+zV11eO/XPvJx0//uT+5sXL/+H5OdW+qv3/ezSinJEz6SvK/J707defF0oBsAAAAAAICuWQw726WqqvuqqvrRTO9MtzP7d6bb98jesUaPHDC3JNmV5H9UVfUjVVVt7dfHAczThlMH3cFsB82jnx3Xd7bGtqvra738fDS7d7Oe6L31Jw26A4DlZdURjcf78f2wjDQ/Anbb1ck9l9bXZ/6sUsr0bnx1tl83//4AAAAAAABoalGE7fapquqPkhyf5K1J7snsUF1V85g555691x5fVdXv97t/IMkZr21/7nEX9a6PThx0evtzP/aw5NPnJ9e/f35r3HNZfW3zM+d3r/k46kn1tbrddei5Las35C93/7+87syn5jVnPT1vOeNJ+cADzsiesqi+PQMMl7suaTzebBfYbjr5ZfW127/YfGe7435s9vunv6Z+rmPiAQAAAAAAum7RvZpfVdWdVVW9McmmJI9P8sYkH0/y7SQ3J9m997Fl79i/J3lTkickObqqqjdWVXXHIHoHkpz9O0kZbW/uwfMIt/VDKcnpv9L+/Fv/I/nCjyXX/WN78y//3/W1016VrN7Y/trzNbYmWXdC49r3fq9361LrzpVr8oennZdvbPtS7l25JtvHVmXLmoPyqU2n5K9PfMSg2wMYTtuvqz+6+6SX9KeHk16arD22ca2arL/u4f8zOeyc2WMPfn39/K++fN6tAQAAAAAA0NzYoBuoU1XVniRf2PsAlpInfSL5zAWD7qIza4+f/zVXvCM5/sfamNckbLfxMfNfd74OOTPZfu3c8YltvV+bOS459AHZPraqYe1bhx6de1asziF7dvW5K4Ah1ywg36+d7UpJHvKG5Cs/O49rxpJTfr7xvQ57eP1ufTu3JGuO7qxPAAAAAAAA5lh0O9sBQ6CdF3XPfnvv++hEJy9I3/2N1nMmdyVbL6+vr940/3Xna3J3k5pQV7/dsPbgpvUb1xzUp04AlpFm37PX9OF78T6r5/nzRjWRjNT8nlSze91Vs4sfAAAAAAAAHRG2A7rvoAcl609qPuekn+pPL/O16cnJSOPdxmrt2Zrc8MGkqurnTOxofo8jzp3fmp3Y+Nj62uTO3q+/nB0+9893fKT5cctVKb3qBmD5avb9bvOz+tfHpvPnN3/9A+trD/jh+tp9V85vHQAAAAAAAJoStgO6r5Tk8R+q363tEf87WX1Ef3tq18qDk8f/y/yPkvv8hcmlb6ivT2yvr537nvrdarrpuOfX1yaE7XqqQbBuvMWfeRVhO4CuqwvbrdqYHHx6//oYW5cc8tD25z+kyc8YD/yZ+tp3f7v9NQAAAAAAAGipD+kOYFk65CHJ865P7vxactclyR1fSg59aHLKK5IV6wfdXXObn5786B3TPU/cl3zuee1d9923JQ/678mqw+fWbvts/XVHPbGTLudvbE19bcoxsj3VYGfDVjvbTfWqF4DlrC5sd8rP9bePZHonvXsubW/uygY/W+wzMpqc/LLkyr+YW9t12/TOu3ZLBQAAAAAA6AphO6B3RlYkGx89/TjtFwbdzfyMrZk+4m1yHiG0aiq5/T+TY549t3bfFfXXrTh4/v11YmR1fc3Odr01ftfcIcfIAvRf3fe70SaB9F5Zecg85rb4WWH1UfW1nVuStZvbXwsAAAAAAIBajpEFaGZ0dbJmHi9QT9zXeLyarL+m1Qvo3WJnu8GY3JVsv37OcMuwXa/6AVjO6na2G0TY7qjz25s3ti45/FHN52x8XH1tYlv7PQEAAAAAANCUsB1AK0/4cPtzG4SqktTvpLNiHrvaLFSzIMH43f3rY7nZdnUaRefGR5pvLmtnO4AeuPfbjcebBdJ75bCHJ6e22Pm3jCSP+NPp8H/Te51TX7v9C/PvDQAAAAAAgIYcIwvQymEPT553Q/KN1yQ3/1uy6anJDf/UeO63Xpc8+LVzx+t20tn05O712UoZm37RvpqaW/v+H/e3l+Wk5gjh1jvbCdsB9M0gdrYrJXn4nyTHPC+59bNzd8ddvSnZ/PTk0LNb36tZ/1/+6eSB/3VBrQIAAAAAADBN2A6gHWuPSc573/73/+2s5J5L279+MRxbV0pSViTV7rm1bVf3r4/lZvt1DYfHRx0jC9BXe2qOek+mA+mDUEqy6YLpx0K02vlux43TP8sAAAAAAACwII6RBejEnq2Nx8fWNx6f3FEzf213+mnXVIOgXVLfNws3sW3O0GRKJkvzb8FTjpEF6K7xe+pra47uXx+9UEaSDafU13ff2b9eAAAAAAAAhpiwHUAnTvulxuMT25Lxu+eO1+2m0+9j6zY/s/H4tqv628dyMjF3V8NWR8gmjpEF6Lq64HuSbDi5f330ypm/UV+baPKxAwAAAAAA0DZhO4BOHPaI+toX/8vcsS0fbzy332G7Y57beHz8rv72sZxc+7dzhtoK28naAXTX5X9SX+v39+NeOP6F9bVr/qZ/fQAAAAAAAAwxYTuATow1eVF+y78ne+YeHdpQv1/cb7be9hv618dy0uDoPjvbAQzAzR+rrw1D2K6UZHR149pt/9HfXgAAAAAAAIaUsB1AJ9a3OG5u1y2z3x9b13je7tu600+7mvW94/r+9bGcHHLmnKHdo2MtL6t60QvAcja6skltCMJ2STK5q/H4ikP72wcAAAAAAMCQErYD6MTKg5Ojzq+vT+zY/7yqkontjecd9aTu9tXKET9UX5vc2b8+lpM9984dausY2QN2tqumutURwPK09fLG4+uOn94VbhisO7Hx+J0X+z4CAAAAAADQBcJ2AJ167Pvra9//g/3Pp8br560+qnv9tKM0+Wd/QtiuJ+797pyhdo6RnTrwGNm63YoAaG3nlvraWb/Tvz567Yz/UV/7RpMaAAAAAAAAbRm6sF0p5eGllItKKc8upbQ45xFgAVYeUl+75m/2P9/e5HjWQRxbt+rwxuN2tuu+8XsaDu9ua2e7Awa2XdWFhgCWqRv/pb5Wd9T7UtTs54or/0KwHgAAAAAAYIEWbdiulLK6lHLSjEfTZEIp5TmllGuTfCXJPyT5lySXl1K+UEo5ow8tA8tNs13iZtp5U31tzdHd6WU+6l6It3Na9937vYbD7exsVx24s92OJl9HADR3zd/W10ZW9q+PXlt7TH1t4r7kviv61wsAAAAAAMAQGht0A028Oslv7n1+Y5IT6iaWUn4syXuTlL2PmR6T5MullCdWVXVJD/oEaOy9JTn83GRqd/2cxRS2237N9Nvxu5Mr/iy565Lk0IclJ788WX1E//obJlONA4x7Rlp/+50Tthu/qxsdASxP93y7vtb8d3qWlo2PTVYclOzZ2rh++R8l576rvz0BAAAAAAAMkUW7s12S52V/cO6vqqqqGk0qpRya5J3Z/7HMnFftfaxL8oFSyuoe9QrQ2J0XJ3d/Y9BdzDZa80/hZW9Otl6efPr85Fu/ltzwgeTSNyafflKyW9CrIzVhh46Okb33O11oCGAZ2rN1ele3Ou3uVLsUjK5Kzv9Uff3qd08/AAAAAAAA6MiifGWplLImydnZH5z7aJPpr0xy8N65JcnNSf5Xkj9Kcn32B/aOSfKLvegXoCOD2NUuqd/ZLkk+9yPJ3d+cPXbvt5Pr/7G3PQ2rLZ9oODy+Yn3LS+fsbHe1nYgAOnLDB1tMODDdvMQd/shk05Pr6xf/VP96AQAAAAAAGDKLMmyX5Mwko5l+5Wt7VVVfbzL3xdkftLs8yUOqqvqlqqpevfc+X907ryR5ac86BpanQ87s/NqVh3avj3mte1h9bev3Go9//dW96WXYrdjQcHi8Gm956dSB2Y9DzupCQwDL0O1fHHQH/bfh1Ob13Xf2pw8AAAAAAIAhMzboBmqcuPdtleS7dZNKKQ9KcnL2Hxf7pqqq7t1Xr6pqWynllUku3jt0Winl2KqqbuhN28Cy84h3JJ96XGfXbnpKd3tpe90nJ1s+Pr9rJnf0ppdhV001HB5v5xjZA3damtzVjY4Alp+7vtp6zrA55nnJFe+or3/r15K1xyalJBlp8bbsPWq3nbcNrq+bW3efbq5d10u792t37Vm9AwAAAAAAw2yxhu2OmvF8S5N5+xIuJcl9SeacEVVV1VdKKTdm+hjZJHloEmE7oDs2ntf5tQ9+fff6mI+Tfzb5xq8MZu3lZuvlDYfH125ueemcsN2Bx/sC0No1f7s8//3cdEHz+pXv7E8fy1Kr4N8ggoMLCBA2DEEu5TBkN8KlbXwM7X4svfja6PjPZ99bAAAAAACaWaxhu7Uznt/XZN6+lEuV5NNVVU3UzPt29oftjltgbwD7lZKc+ebksjfP77ojHp2sPrIXHbW2Yn1y1lund7Wht276cMPh8ZUHJZlseml14Gude+7pTk8Ay8XURPKlnxx0F4NRRgbdwTJWJVWVZGr6v1JhqVmMQcyFBhIXtMPmIglDzvfPpR9/PvMN/fb8a0NYFAAAAID+WKxhu5n/h2xFk3mPmfH8803m3Tnj+UEddQRQZ+0xreccaPVRref00uja1nPomfE2Xgeas7NdMn0srQAFQHvu+NKgOwBYeqqpvW+b/2IILE49DmJ2uitl13fYnMfHNNAwZJc/lnmFS7v8sfTq8zlrPgAAALBULNaw3czd7BomUkopm5KcPGPoP5vcb+bH6f9eAN21+Znzv2Yhx892w+iawa6/HFRVUkYbvlA5XlpvdTNnZ7skmdyVjAlKArRl2zWD7mCwNpya3PeDQXcBAH1U7f/vL7uLsuS0Cv51KUA43+BguztsDnIH1Hl9TB18LIsxKNvTHWXne799bwEAAJaPxRq2u2nv25LkzJo5M9Mtu5N8vcn9DpnxfPsC+gKYa83RyYkvSa55T3vz15+cnPDi3vbUyuGPGuz6y8HUntodQcbXHJVMbml+eaNs+MQOYTuAdu24YdAdDNZj35987KxBdwEAQFscRc8StxiDmI6ib39uP/98OgqX9vJrQ1gUAID5W6xhu0tnPD+slPK0qqr+/YA5P7X3bZXkK1VV7Wlyv5NmPL+lGw0CzHLuu5JDH5Z8/Zdnjx/28GRs/fTzkZXJEY9OTnl5smZT/3ucqZOd7e79XnLw6d3vZVjtqv92M15GWl7e8BjZq/4iefDrF9IVwPJx6RsG3cFgHfrQ5Bnfmh24G12bHHZOpl/Mndr7gu7e5+28nXVd3dt53K/VfQAAgKXBUfQsaT0OYna6K+Vi3mGzb2HIJR6U7dXnc9Z8AGAQFmXYrqqqq0opV2T6mNiS5B2llCdXVXVNkpRSXp1k5hmMH6q7VyllfWYfN3tVD1oGlrtSkgf90vRjKRjrIGx300eE7eZjyydqS+P5/+zdd5xkVZn/8e+pzmF6ch4mAkPOSJYM4ioIKiAmzO4aWVdXXVcU/RlWMaBiREURQQyYkBwEhjggzMBEYHLOMz2d6/z+qO7p6up7Tt1bdau7wuftq19ddc655zxdXV09Uk8/T/b/8BjYRnbNX0m2A4AwOraFX1vO/2Fy9BHSFSWctGYDEv2yJe/FmjgYJYEw4LpsZ2d+jvPsuJIhoz6eeX8tEb6mqM+NbN+XuL8/AAAAAEqEFa3oUbqyJf7FlAwZNXGwIBU2SzEZssgSZWlFDwCxKcpku14/k/R1pf5pO0vSYmPMc5ImSNqvd9xIapd0k2efM3rXSVK3pBcKFC8AlI6GqdGvqfR2fFF173ZOdSqZ9fLAynb8dTAAhNO2Lvxay39JL1rGSKZquKMAcrMvGW8YkyFDJQzGlAwZNXkx1wqbsT+eMXwtxZgom+1ryroPAAAAgNKQ/v8BhjsWIAexJGLGnTiY575DVmGzgMmQsSbKxvS15JRcGvPjaKp61wPFnWz3XaVaxc5V6p8HNZKOlfZlH/T+10F9y1q72bPPxWnrn7PWdhQmXAAoIYlqqWWutGtJ+GuWfl/a+pR05FekSWcVLrZy0b3XOdXp7XyeYoP+oqenNZ+IAKBybLh3uCMAUOn2/Qc9SSJpFCVmQLJokSRDDnlyaYivIVKFzQhnh/oahisRM+LXEulriuu5xrvMAAAAQMno+4Mvik2gFJz+d2nqa4c7ChSJok22s9Z2GmPOl3SnpL6+hUap/2LS+1+t9QdJV7v26G0h+0b1/1eW+woWMACUmmO/Jz1wXrRrtj4hPfha6fwnpNFHFiaucvH854LHx5+mzhB534H1JHa+mFdIAFARdi6Wnrkq/HraFQAAMNCAZFGgBJV6MuSQVdiMkigbcb+oiZhD+bVEfW6E/Zri+v4AAAAAKE68l4A0RZtsJ0nW2tXGmKMkvVvShZJm9E4tlnSztfaPWba4UlJL2v2/xx4kAJSq6qbcrkt2SCtvIdnOx9OS0NaMUGeyPfsWrne2kj1SguooAOC06tbhjgAAAADDiVb0KGWDkvGKIBmSVvTh9i2HRNm8vz8AAADljBay6FfUyXaSZK3tkvTj3o+obpD067S9dsYVFwCUvKbpuV/74teko74aXyzlpsfdQranp0NJ1WTdwrr+OKJzq1Q/IcfAAKACRK0COvqYwsQBAAAAAFHtqy7KG3koQbSiD/c1Ra2wWRaJmDl+LaG+Lzk+N2hFDwCIisp2SFP0yXb5sNa2SWob7jgAoCg1ThvuCMpXt/tXT+eU8yTNy7qFs7JdD7/WAMBr3R3h105+jVQ7snCxAAAAAABQKWhFj1JXrq3oIyWXxpzYGenxzCERM7ZE2bi/lghfk/e5FeFrAVB4/EEM0pR1sh0AAMOie5dzqnPy2dLGEMl2rr+O8CTyAUDFW/MXqXtPuLUTXi2d/JvCxgMAAAAAAIDSQCt6lLJcWtEXOhmykFUp86qwGXMiZlm2oh/q70+p4C8K0I9kOwAA4rb+HudUZ8i/enD+HRKV7QDA7cWvu+dmXymd8HOpfaMkKzVMHqqoAAAAAAAAAKBwaEWPUjagFX2RJEMGzY06bGgfFxS1kky2M8ZMkzRb0hhJIyQZa+2vhjcqAChBM66QVt483FGUn/aNzqnO6rpQWyRdfx3RvimXiACg/FkrbX3cPT/muNR/dGqYNHQxAQAAAAAAAAAAtwGt6KkwitJQMsl2xpgZkq6SdKGkGQFLBiXbGWNOk3Rm793t1trvFS5CAChB09+Ue7Ld9uek0UfGG0+5SHYNGuoyCb3QMkH3bw3XstC6KhHvWS7p/NxjA4Bylezwl5yfdN7QxQIAAAAAAAAAAICyVPTJdsaYhKQvSfqkUmmsQekHrm57WyR9oW/eGHOHtfalAoQJAKVp6oW5X/uPo6RTbpFmXBZfPOVi1+IBdzsSVfrRnBO0pGW81PZCqC2sq7Ld8h9LB34o3wgBoPzsecU9N/NtUssBQxcLAAAAAAAAAAAAylJRN+02xtRIulPSpxWcGOhKsktNWrtI0gPqT9C7ItYAAaDUJaqkA/JI3Hryg4FV3Cre6t8PuPvUmGmpRLsIrHEk2+1YkGtUAFDeFnzBPXfoZ4csDAAAAAAAAAAAAJSvok62k3SDpHN6b1ulkuYelnSNpM8puMpdpj+k3aZ3FABkGnV47td27ZC2PRtfLOXCVA24u3hEtEQ7KUs2+d61kfcDgLK39Un3XHXz0MUBAAAAAAAAAACAslW0yXbGmLMlvU39SXYvSXqVtfZ0a+0XJP0m5FZ/79tS0vHGmPq4YwWAkjbjskHJYZF07YgvlnKRkdSxt7om8hbONrKS1MljDgCSpGSPtPVpaccL/kqrjdOGLiYAAAAAAAAAAACUraJNtpN0de9nI2mlpJOttU9H3cRau1JSX1ZCjaSD4gkPAMpE7aj82uv98yKppzO+eMpB184BdzsT0ZMZk642spK0/q7I+wG0xh1nAAAgAElEQVRA2dm9XPrrHOmu46U7DpPaHFU/p10s+V5TAQAAAAAAAAAAgJCKMtnOGDNG0slKVbWzkj5mrd2Sx5Yvpt0+MJ/YAKAsHf5F6bQ/SdPfLFU1RLu2p11a/M3CxFWKkj2DhnJJtvO2kX32E6nHHQAq2cNvlFpXZl83592FjwUAAAAAAAAAAAAVoSiT7SSdqlRsRtJma+1f8twvPVFvQp57AUD5MUba7w3Sqb+TLtsb/fo1f40/plK1e+mgoc5EdeDSyyd+UKeMPDdwzmarwrTpn5FDA4Cysfslacfz4dZGTSIHAAAAAAAAAAAAHIo12W5y72crKXLr2AC70243x7AfAJS3w6+Jtn7X4sLEUYo6tg4aclW2qzV1Mo5fxd7KdpLUtj5iYBH0tEtde6TutsBKfQAw7KIkHI86onBxAAAAAAAAAAAAoKIUa7LdmLTb22PYL72cRVcM+wFAeZv5FqlmVPj1XTukvx0krf5T4WIqFT2DKwN2uZLtEnUyjgp2Vlkq2wWck7e2jdLNRrq1QbpthPS7RumWaumJ90vJ7vjPA4ChUD9+uCMAAAAAAAAAAABAmSjWZLtdabdHxLDfxLTb22LYDwDK24j9pXMekKZdLDXNkiZfIE06x3/NriXSI2+WNj82NDEWqz0vDxpyV7arVcJV2S5bG9mFX44cmpe10p8mBc+99FPp2U/Gex4A5CPba2Sfo68tbBwAAAAAAAAAAACoKMWabLc57fYB+WxkjKmSdHTaUAH77gFAGRl9lPTqP0oXvSydeYd01j3SGXf6r7E90srfDk18xWrTQwPuJpWlsp2jgl2y78bYE4PPaVuXW3wuO1/0zy//ES1lARSRkMl2NS2FDQMAAAAAAAAAAAAVpViT7Rb0fjaS5hpjpuWx1wWSGntvW0mP5xMYAFS05tnZ1+xaUvg4ilnjwF9ZrkQ7Sao1njayfeOdjoKsibqcwnNa/hP/fE+71L4x3jMBoNCaZw13BAAAAAAAAAAAACgj1cMdQBBr7SJjzFpJU5VKuPuEpKui7mOMSUj6bN+2kp6z1u6ILVAAqDQtIYqN9rQVPg6fjQ9Kj18pta7sH5vyWmnmW6WZVxT+/K49A+66WshKfZXtHG1k+25MPl/avXTwgmSHZJOSySNvvnNHqh3tpoekbU9nX7/9WalxSu7nlbuND0gPvEZKdvaPjTpcmniWtPWpVLLqgR+SxjmqFQKI3/jThjsCAAAAAAAAAAAAlJFirWwnSb/p/WwkfdgYc24Oe3xFUvo72j/NOyoAqHSHftY/v/nhoYkjyIZ7pfvOHJhoJ0nr7pDmvVVacl3hY1j+owF3vcl2xt1G1vaNz3iL+6z2ze65bHo6pPvPkRZfGy7RTpIeep20Z0XuZ5azDfdK9501MNFOknYskJZ8V9oyT1pxk3Tf2dIWiuwC+QvRRnbaG6Sq2sKHAgAAAAAAAAAAgIpRzMl2/ydpl1LFfaok/dkY8/4wFxpjxhljfinpk+ovDrRB0s8LECcAVJbmOdnXJLsLH0eQbMl0i76RqgZXKG2D26z6ku1qEp5ku742stUN7vPW/DFSeANsfEDaNj/6df/6VO5nlrPF3w23rmevtOyHhY0FQMroo4c7AgAAAAAAAAAAAJSZok22s9Zuk/RRpcpWWEn1kn5ojFlmjPmqpAvT1xtjXmWMebsx5teSXpL09t5rjaQeSe+y1maUmwEARFY/IfuaPS8VPo4g6+/yz+9dI7WtK9z5K349aKgrS2W7hKMN7L42snWex3vXkgjBZdj6ZG7Xrbot9zPL2aYHw6995VcFCwOoGCZEZbv68YWPAwAAAAAAAAAAABWlergD8LHW/soYs7+kzymVd2AkzZGUWVbHSHos475Nu+Yz1tq7Cx8xAFSACWdIiTop2eFe091amLO3PJ5qCVs7JtUesHnmwPnMFp5BOrZJjdMKEp5aVw8a8raRTdQ6K9sl+xJJGqe4z+vxfA+y6dmb+7UYrHvPcEcAVJgQyXaTzy98GAAAAAAAAAAAAKgoRVvZro+19vOS3iWpvW+o93N6Ql1fUp1JW2MkdUp6p7X2m0MWMACUu5pm6dRb/WvmvS3+dq3LfyLdfZK08EvSM1dJdx4jbXs2bf5n4fbZ8Xy8cWXhSrarUrWqTLWM41exTU8kGX1U8Oab/5l7YLm0kO3TviX3a8tR24bhjgBAkObZwx0BAAAAAAAAAAAAykzRJ9tJkrX2RkkHS7peqaS7vgwEo4FJdn1jSUm/knSwtXZwTz8AQH6mXSRdstk9v2uRtO2Z+M7raZfmf2zgWOd26bnP9s53SE9/ONxez38uvrhC6EgEF5GtTdRKkoyjFaJNvzP2hODNd76Ye2Ab7nXPjTjAf+1LP8393HK0+NvDHQGATA2ThzsCAAAAAAAAAAAAlKGibiObzlq7StKHjTGfknRq78d+ksZKqpW0RdJGSfMk3Wet3TFcsQJARagfJ9WMlLp2Bs9vfEAae1w8Z63+YyrhLtP6O1Oftz3tb2ubztTEE1OQgMQ6V2W7WlOXCsfRCtEaI1U3997xVAm0ScnEmDu/35uk026Tbva0aNz4gHToZ+I7s9RtenC4IwCQyfYMdwQAAAAAAAAAAAAoQyWTbNfHWrtX0t29HwCA4TThdGntX4Ln/vUpac3t0kFXSdMulhxJZ6HsWOCf79oVfq/2jbnHkU3duEFDXa5ku0Qq2S7hbCMr6djvpu7UT3Sf2dMhVTdEiTIlURecoFhVn/o8533uCnauBMtK1d0a/ZotT0pjj5cclQ0BZJPlZyfg9RgAAAAAAAAAAADIV0m0kQUAFKnDr/bPb5knPfJm6ZZqqX1L4eLwtUTN1L1bWv6TwsTRvWfQkKuyXU1fZTtXG9makdL0S1N3pl3oPrOnLVqMUqoanqsS4Iy3pD4f9VX39VuflHo6o59bjnrapZ0vRL/u7hOk34+Wkl3xxwRAOuzzwx0BAAAAAAAAAAAAyhDJdgCA3I05Rhp1ZLi1f55emBiS3dLib0W75skPSLuWxB/Lsh8NGnK2kU3428gmRx4i1fS2ka1pcZ/Z10o3ii2Pu+fqxvR+Hisd9TX3uqXfj35uOVr0zdyv7dqZ3/VAJctWFXLUEUMTBwAAAAAAAAAAACoKyXYAgPyMOizculwqsO3jSarY+kRuW677R27X+dSMGDSUPdnO0UY2PZGkqtF95ob7wsfXZ90d7rmqtJa0DVNz26OS5Ps4PPfZeOIAKk6W/xtTlUN7bQAAAAAAAAAAACCL6uEOIApjTI2kkySdJmmOpDGSRkiStfbsYQwNACrXmGOlFb8JtzbZIyWqUq0ze9oDk9MC+SoYtW0It0emvWtyu86ncZrUunLAkDPZzvgr21nZtH09SW+2O1qMktS1yz3XMrf/9phj3et2vRj93OHUtUvqCGhlnOySqkdIjVNy2zfX51+6vWtSiY3ZKnUB6FdV556rGy817jd0sQAAAAAAAAAAAKBilESynTGmSdJVkj4saXzmtJSekTDgurdI+n+9d7dJOt5aG7gWAJCj6ZdKz/xnuLWbHpRW/0l65cZUpbsJp0sn3yw1TMz9/Mff5Z5rmCy1rQ+eW3yt1L1HOu77UiKmX4cBSWzuyna1kiRjHJXtbLL/jmONJGnnC+Hj69O9xz1XVd9/u+Ug97q29dLNRjr/KWnscdFjGCptG6V5b5U2PSClP6ZBzn5Qmnh6+L3X/FlqfSWv8CRJt++XStQ8+pvSjMvy3w+oBJseds/N/WgqsRsAAAAAAAAAAACIWdG3kTXGHCFpvqQvSpogby/BQf4qaaykmZKOlnRu3PEBQMXzVV3LdP850rIfpJK9bI+08X7poX/L7/zu3e65i1b5r13+Y+lfn87v/HQ7Fgwa6nQk8vVVtkuEqWwnSXM/HnzmtvlSMmJ1u5d/ETw++8qB942RXvUT/153HS+1B1SMKxYPXyxtvC97op0k3XeG1JrlOdNn+7+kh9/knj/5t9JJvw63l5SqbjfvCmnL4+GvASrV3rXSkm+75w/9n6GLBQAAAAAAAAAAABWlqJPtjDGHSHpI0gEaWMHOKETSnbV2j6Tb0obeGHeMAIA8bZsv7X4p/n1bDk5VrJv1Tv+6lbdIcRQ9dSRzdTmqK9UksrWRzdivutF99uZHs8cXRlXT4LHaMdmvW3dHPOfHbeciactj0a5Z85dw61b9wd/Ct3akNOtt0nE/CH+2TUorfxd+PVCp1v7VPVc3npbMAAAAAAAAAAAAKJiiTbYzxtRL+pukkWnDCyS9R9JsSQcrXJW7P6fdPju2AAEA/ea8J7/rX/5lLGEM0Lkt9XnE/v51bWulZEf+5wW0kJU8bWR7K9u52sgmMxMAmz1fx54IyYrJLvdcT+vgsWyPnyQ9+4nw5w+lHc9Hv2ZtyGS7Pcv9833fr5YDo50f5XsJVKrdnp+/5jlDFwcAAAAAAAAAAAAqTtEm20n6qFLtX/uyDa6TdIy19hfW2hWS2kPu80DvHkbSLGPMhJjjBAAckmcrVtuTZUEOVYqmvDb1eb8QRU07d0bfP1NPW/DWrmS7rJXtMpLtpnra7ToS/QI54pQkTQk4Y9QR2ffsKNI2shvuzeGae6T2zdnXbX3KPTfmOKnlgNTtCadLjdPCn+/7/gBI2bXYPTfj8qGLAwAAAAAAAAAAABWnmJPtPqL+RLvbrbUft9bRo8+jt5XsirShg2OIreQYY2qMMWcYY95hjPlvY8yHjDEXG2NmDndsAMrAiP2lU24p4AE5JNvt/4HU55EHS+NP9a99+OLo+2eKmmxnIraRrffkij9zVfb4+qy6zT3XEvAr0hjpjBBtYvesCB/DUGjfJL30s9yuve8MqXuve37Py/4KdGf8vf92okY65yFp7Inhzt5wT7h1QKVq3yyt+7t7fu5Hhy4WAAAAAAAAAAAAVJyiTLYzxhwiaar6sys+meeW6e+Iz85zr1gYY2YbYy4zxnzDGPOgMWaXMcamfayI6ZzxxpjrJW1QqsrfjZK+Jun7kv4o6RVjzKPGmBClnwDAY8Zl0hVWuniddNHK8MlFUiqhK241aV3Ip17oX7vlMWnvmvzO2/Zs4HDWynaONrKDKttJ0riT3Oe3rffH12fRN91z1Q3B480hfnWu/G2484fK6j+652rH+K/d+aK04T73/LIfuecOu3pwYmTzbOn8x/xnAghnzZ/dc3PeW5jfJwAAAAAAAAAAAECvoky2k3RU72craaG19uU899uRdnukc1WB9VaWu8sYs1WpBMBbJP2XpNMljSjAeRdIWijp3yX5MgtOlvR7Y8xNxpimuOMAUGEaJktN0/2JYUMSx8S025Oyr9/2TH7n9QRXQstW2S7hqmxnA5Lt6j1fhyPZb5D2Te65unGO8fHZ9902P9z5Q8X3/TzgP7Jfv91z/aJvuOdcj6EkHfW17Oc6ki8B9PL9bPpeIwEAAAAAAAAAAIAYFOs7uunv6i+LYb+OtNuNMeyXq6MknSd/4lssjDFnSLpdUnp5HStpvqTbJN0jaUvGZW+V9FvjKrMEAFFM/bfwa1/4ihSUXJarCWdItaP77086TzLBSW/75J1s1x443JWtsp3jV/GgNrKSNPV1nvOD29gOXhccpySppiV4vG6MNO5k/76r/yBtuDdcDEPBkfwoSZr7sRDXh3w8M/m+R3Pem/16m5SSXbmdDfTp3CktvV6a93bpkcukRy5Pvc7uyffvV4qAr8XzlNcOXRwAAAAAAAAAAACoSMWaVFWfdrvDuSq89Gp2u2PYL24dGtjqNi/GmGlKtYitTRt+VNKh1trjrLWXWmvPkzRN0sckpb+r/3pJX44rFgAVbOJZ0dbfdXw855pq6cRfDBxrmCidcov/uoVflDbPy/3ctg2Bw52J6sDxvsp2xtHyMBnURnbWO93nPxui47q17iS0E27wX3vyTdn3v/9cacl12dcNhRW/CR6vGyfVj5NetzjL9Tm2xW2e6Z6rGysd853se3TuzO1sQJI6t0v3nSU9/SFpxU3Sqt9Jq26Vnvsf6a4TpB0LhjvC/Lxyo3tu/DBXVAUAAAAAAAAAAEDZK9Zku/SKa55+bKHNTru9NYb98tEl6V+SfibpA5KOVaqFbIhyN6F9UVJaSSfNk3SOtXZR+iJrbYe19jpJl2Zc/5/GmBkxxgOgEhkjNe8ffv22+c6EtVDmflw69xHpsrbghKfpb5LetGPweLoFV+d+fkACiJWnjey+ynauNrIBle0SVVLz7MHjktT6itSeWbA0g6/aW8tc/7XNs6TLO6VJ5/rXzf+Y1BNHnnwefM+jvoTFlrnSZR1S7/dhkL2r4q222Oegj0lv2iZNv8y9Zu2f4z8XleOVm9ytVju2SC98dWjjiVPQ62KfMBUrAQAAAAAAAAAAgDwVa7Jd37vkRtLR+WxkjBkr6eC0oeX57JenGyW1WGuPtta+z1r7E2vtM9ba2PrFGWMOkJRe+qhT0pXWWmffQGvt7b2x9amTlEfGCQD0ap4Vbf3SHwSPO6q/7TP2BOnYb0vjT5EcleQkSbUjU2tdNj2Ue4JVQLJajzFKOmLfV9nO2UbWEUfNyOBxSdryqD/GHQvdc9XN/mslKVEjTbso+7r1d2ZfU0ibH3bPpT9+VbXSrHe417aujC+mdLWjpWOudc/n29IYlW3TQ1nm/zk0cRTCbs8/4xO17jkAAAAAAAAAAAAgJsWabDdPUl/pirHGmIi9CAd4t7SvbFCrpKfzCSwf1trtvqS3mFwhKb2M0h+ttctCXPf1jPuXGmPqA1cCQFhT/i3a+vV3OSayJNtVNYQ/Y+KZ7rlkl5TsDL/XAIN/pbqq2kkhKtu5ku188Xdl6ZTe0+aeG3mo/9ow5/fZtSTcXoXiexwmZfyTYuyr3Gv3BCT2JHtyiylT41T3nO2O5wxUpvaN+c0Xs27Pz/b4U4cuDgAAAAAAAAAAAFSsoky2s9Zul/RU2tCXjMlW1mgwY8xUSZ9WqpOflXSPDezLV1Yuzrj/izAX9baYfSJtqEnSeXEFBaBCzb5SGndS+PXbnpK6Pa1OXaIk22VrNdi1K/r5ktS6YtBQp6fKXl+yXcLx68356+qgT7hj2LvKPSf5H1tfRcB0LQdnfwz3rg23V6FsuNc9l/l8nPV299plPxo81rHJvf7k3/rjylQ/MXh819Jo+wB99rwibX7Ev8Z2S61ZXiuKle+1ZTL/bAUAAAAAAAAAAEDhFWWyXa/vpt0+UVLAO95uxpiJkv4iabT6SyJ9K57QipMxZpKkI9OGuiVl6Sk4wIMZ9y/INyYAFa52pHTm3dLJv5FGHRHumkWe9pou1RGS7RomSefOc88v/X708yVp5+AWrb7KdjUm1fIwchvZxilSw5Tguef+xx/jlsccwYzyX5fOGOmYb/vXLL0u/H5xs1Za6Uh6G3WkZDIe76o6aczxwetX/0FKZlSZ8z3GIw8JH6ckTcvMj++16cFo+wB9nvr3cOue/VRh4yiUf/23Y8JIVRRkBgAAAAAAAAAAQOEVbbKdtfYWSf/qvWskvdcY87Ax5jTfdcaYJmPMB3uvPUr9Ve3uttZGSTwrRYdl3H/eWtsa4frM7JOQPQUBwKOmWZp5hfTa56QrrHRJlhaGrkQpn90vRVvva+EZY6JTPm1kk65kO0mqn5RbQG3rgseraqPtE6bYrPXEX0gBSY/7VDcGj/uS5LY+OfD+xvuj7++S8DzucbWrReXo6ZA2PhBu7apbpZ5cW2YPoz2O13oS7QAAAAAAAAAAADBEQvaMGzZvkvS4pLG990+R9KAxZoOk5ekLjTE/lHSgpJMk1SmVoGd7P6+V5OkTVzYyswWWB65yy3wHM2KJHgAIoX6Cf37Xouh77ngu2vrGae45m0OSk7WpimkZrV+7fMl2pjfZLrPSWt+W8nQ9d7W6zZZwUuuoYNfuaY2aq2TH8CTAtG92z409IXh8/KnSKzcGz3VsGXi/p8O9f9Msf2yZfEmOPW1Sojnafqg83W2pJNqaEZKMlIyQQLfsemm/N6ZeF2pGFCzEWFU3S53bB4/3tOW1rbVWm7s2qCMZvE9jVZPGVE+QCZNoDAAAAAAAAAAAgLJW1Ml21tqXjTGvk/QnSZPVnzw3WVJ6WR8j6f1pt5W2do2k11lrM94tL0v7Z9xfFfH6lRn3xxpjRltrA97VBIA8zLhCWnmze/7pj0jHfEfal6yWJcGheXa0800i1Yo1qNLb5hyKoCa7BiXaSWHbyAZ/bdZXGW7uR6X5Hx083tPem/jneLxcCSl149xnuZz8G2neW93zHVv8SY2F4ku62f99weMzLpeedMx1ZxSIde0/9sS052tI0y6RFn0zeK6nLVUVEpXLJqW2DdLe1dLeVVJr78feVamx1lVShye5NJtnrkp9SNL0N0sn/ar4K8QFJdpJ0gEfynnLJXsX6Mb139GO7q3edeNqJuo9Uz6pGfWZ/9wGAAAAAAAAAABAJSnqZDtJstY+aYw5RtLPJV3QN5zxecAlSmVlGEn3SHqntXZDwQMtDpkliyKVKrLW7jHGtEtKf6d1pKS8k+2MMRMkjY942Zx8zwVQpI77nj/Zbun3U8lwh34mdT9bNaGmGdFjOOQz0vyPBM+1bZAaIrRq7QxO0thc1xQ4Xmvq9lVIcibb+SrbjTnOPbf+TmnKBcFzy34YPD7Zsd5n5hXSriXSwmuC5x97p3T2fdH3zdeS69xzrnaxNc1SVaPUs3fw3ItflWa+pf++K9nu8M+Hj7FPvefXYts6/zxKX9fuwclzffdbV0lta1KJvENh1W1S7WjpVT8emvNy0bbePTf9jTltuaNrq65f8yV12ewVAbd0bdR3V39eX5lzg+oTDTmdBwAAAAAAAAAAgNJX9Ml2kmSt3Sjp34wxx0r6mKSzlapuF2SnpPskfc9a+9AQhVgsMkvg5NJTq00Dk+3i6iv2H5KujmkvAKUuTPWkVbf1J9tlUz8x3hjW/V2a857we62/J3B4ZWNw29baRN2+2wlnG1lPZTtf7CtvcSfbuVTnmDgy573uZLuN96cShRI1ue2dq82PBI83TPFf17RfKnkw044F/beTPe42nVWN4eIbcI3ncV9/tzT6yOh7ojgku1MJk+nJc3tXSa1pVeq6dgx3lAOt/oN0/A9TlT+L0Zo/u+d8P0seC1qfDpVo16c9uVeLWp/V0SNOzuk8AAAAAAAAAAAAlL6SSLbrY62dL+kdkmSMmS1pP0ljJdVK2iJpo6QXrA3o5VcZMpPt2nPYo03SaM+eAJC/MIkRrSvC73fwJ6PH0HKQe25PhLMlZ9JMc3dwEseenl37bufURtbXNrfD0zW9ZW5wQlnQWBjZqv91bJMackiEzEfDFGnP8sHjQS2D07U6Oq83pOX2+1rU5pLs40sStd3R98PQsDbVzjQzeS79c9u6wNbSRa1jq9S1M1Xhrhj5foabc2vturUrUhFoSdKWHK4BAAAAAAAAAABA+SjKZDtjzAhJs9KGXrLWtqavsda+LOnlIQ2s9HgyNWK9BgCiMUY67H+lhV9yr+mM0MF69NHRYxh3kntuxW+kIz2xZXIkYXUlsleIciXbJX1tZGtHuud8j5srqW7C6e5rfBI10uTzpfV3Bc8HtWUtpKc+HJxoJ0kTz/ZfO+3i4NbG6a0rfcl2uVQHTHj+Gda9J/p+KKyVt0pLvydte8b/XCg2Iw5MJW/uCfHP5t+PkSaeKR3/I6nlwMLHFkXbBvdc/bictuxMdkS+piuHawAAAAAAAAAAAFA+irRPlN4i6dnejycl1fmXo1fmO/O59NTKvCaud/uvl3RYxI+LYjobQDE6/AvS/h/wr1n+sxAbmVTyXlSJKnfCXesr0tq/hd9r1W2Bw52NwR3Pj0lrQWhyaSMrSYd+Nnh8y2PB475ElZaD/Wf5nOD5Hi25Lvd9o3r2U9KyH7jnD/ig//pZb3PPdfcmVnV62n7m2MZSk84JHn/hK7nth8JYdZv06OXS5kdLK9FOko7+pnT2/dkTTvtsfEC69zSpbWNh44rCJqWXfho8N/n8nLftstET5zpsLoWjAQAAAAAAAAAAUC6KNdlunCTT+/GUtXbbMMdTKoo22c5au8la+0KUD0kvxXE2gCJlEtKrfiSdO8+9Zsl3su/TPCv7GpcRB7jnljsSO4Jsmx843FVVHzheY/pzyHNqIytJtWPcc60rB4+t+ZN7vSPOUGpa3HNLhzDZbtE3/PPZkuF88xvuTX1e/4/c93ep9nRr79qd256I37IfD+/5VQ2pNtCTzpXmvCda62yTkJpmSGffG/6a9k3Smtujx1ko255xz9XlVtVOcle2O37E6Tqs6bhI1wAAAAAAAAAAAKAyFGUbWUk7ez9bSWuGM5ASszPj/vgoFxtjmjU42c5TxgcAYtA41T23r+2pp3JdmNaILg1T3HM7ngu/T9OMwAS3rmS7pKZB47VpyXYJR9679bWRlfyxb38+FdOAsX/ltlc2VYO/vn2sTX3kUnkwbtm+Rt/8zgXStNdL3a3uNb7kR5+6se65XUukscEJPxhiUV4PIjOp51/TdKlxv97P0wd+rh0z8OeofUv2BNM+Y9KeQ2NfJW19Mtx1Bf2aIyrQ61eno7JdY1WT82WrI0llOwAAAAAAAAAAgEpWrMl269Nu1w5bFKVnWcb9GYGr3DLXb7PWbs8jHgDIrmm6e852S8keeZPt8jH1QunFrwXPRakqFlRJTlJnzQgpIGmuJtH/q81Z2S5bG9nJ57nnevYGBJOZj51mzLH+s3wSVamEoL2rAiatlOySqgr8qzzZ5Z9v3E8afaR/ja/KYV8bWV/70OocK9tNu1h66YbguVJrV1rOugN+psKqHpFKft2XPLffwGS6xqlSoibano7204EaJvbfPuQz0sMXh7uumJ5/vlimXpjztl3JzsDxGlOrHtMTONdJG1kAAAAAAAAAAICKVqzJdgvTbufRH7DiLMq4v3/E63EHdDMAACAASURBVGdn3H8xj1gAILyTb5bmXRE8t/UJ/7Wz3pH7ueNPkiaeJW28f/Bc5zbJJrMntbQGJZmldDVMlJLrB43XmLRkO0f5JCsra61z3lsR7Yn3STMu67+f7JJW3Rq8duyJqYS5fJx4g3T/ucFzW5+QJpyW3/7ZZKvUdfrfsn8fjZGaZwdXStzdW2Hxha8EXzv6mOwxukz9N/fczoWFf+yQnbXBCax9mmZkVKLLSKarHRl/TGGT7U769cD70y6S9nujtPoP2a99+ZfSib+IHFpBvORp6z3h1Jy3dVW2q03UOauLdtBGFgAAAAAAAAAAoKJFKIsxdKy1SyU9r1QpoyOMMZ4eg0izMOP+EcaYxgjXn5JlPwAojFGHu+cWftl/bVWOFcX6HPLf7rmtT2W/fvmPnVOdJrg6Xe2AynbuX8VZq9u1zA0e794t7V3Xf3/Tw+49xp/sPyOMBs+v6YVfyn//bLI9R0YfEW6f0UcHj6+6TerplGxwpatBLXujqh4RPL7o2vz2RTy6PFUhz3lYumiFdO4/pZNvko76inTAv6eSKEcdXphEOyl8sl3jfhnXGem030uXbJaODtGGtm1j9NjiZq20Y0Hw3PjcE+0kqdOROFdr6lSbqAuc66SNLAAAAAAAAAAAQEUrymS7Xt/r/WwkXTOcgZQKa+16pZIU+1RLivIu5BkZ9/+Rb0wAEErtaPfcjuelak/ecMtBhTt7sydJbd+aR5xTXY7KSLWmP4nD1UZWCpFsV+OL/ZHg24P2GOU/IwzfY7jzhfz3z8aViCNJs94Zfh8b/P3S6KOknZ4zqpvDnxGke0/weKLA7XcRzk5PoV/fc7+gQv4T3tWmu36cdPB/SZMcFSn7bHk0WliFsHeNe87kV5XTV9mu1tQHznU4rgEAAAAAAAAAAEBlKNpkO2vtDZL+rlSy3ZXGmE8Nc0il4k8Z998V5iJjzEGSTkgbapV0d1xBAYBXo6cyWk+bP6Fl2kX5ne2qZiZJXY4kqHTdrc6pzkRwt/aBbWR9le0cyV99Jp3tiSst9u7dnj3O8Z8RRsMk95yvKlhckp3uucOvDr9Pu6OKV0+H1OV5DCefF/6MQI6kSlclPQytnjb33MiDhy6OdGEr2zXP8s9ne/3sHIKf32xcyaiSNO6kvLZ2VrZLUNkOAAAAAAAAAAAAwYo22a7XW5RKHjOSvmqMucsYc+Ywx1TsfiMp/d35S4wxB4S4LrOP4u+stbybCGDoHPjR4PHObf5Ep2zJJNk4EuIkSetDFPjcNj94fMLp6rLBSWA1aRXLEr7KdjZLZbuDrnLPbXm8//bqP7rXjTvBPRfFXEcs3a1S24Z4znDp2Oyei/L8mPPu4PFdi/xnTH9z+DOCHPb54PHdS6VkV357I3++52/YpLe4hTn3lFuzr5l9pTTxLPf8E+8e/uegL9nxwA/ltXWn4zW61tSpLhFc2c6VoAcAAAAAAAAAAIDKULTJdsaYn0u6TtIuSbuVSrg7R9K9xpgdxpiHjDG3GWN+HuHjhuH8moaCtXaZpBvThmol/dIYRy8sScaYiyRdmTbUKemLBQkQAFymXOCee+mnweNNeSba9XFVd9r6pORLePNVfZr5NmeyXWxtZOvGSiMODJ7re8yS3dKel4PXzLgivmShyee7557/XDxnBPFUFtSZd0Xbq95Toe+5/wker26SqoIrYIXWMtc9t+Lm/PZG/hY6/klUO2Zo4xjA/bqxz4xLs6+pbpLOuMO/Zrifg+s9hZbrxue1dZevsp2zjSx/iwIAAAAAAAAAAFDJPOV8ht2VGthXzar/ncUWSadG3M/07vGevCPLgzFmmoIf98x3+KuNMTMd2+yx1m7xHHO1pIsl9fVdPFmpJMX3WmsXp8VSJ+n9kq7NuP5aa+1Kz/4AEL/qJvfczheCx02IhJMwqhrcc7sWSSMPCZ7b+ID7uuomdXYGJ3KkV7bztZFNZmsjK/lb7HZsk3Yvd8/7HvOofHv5kmXytemf7rmoX58veWr3suDxKmcue3i+ODfcI81+Z/5nIHed24PHfVUxCy1bkmyU535VXaod65bHgufX3z28z8HdS91zaa+lUVlrnZXtakytTCL49wuV7QAAAAAAAAAAACpbMSfbBclS4qckPCJpRoh1UyW94pi7UQMr0Q1grV1jjLlE0l1KVbaTpFMkvWiMmS/pZUkjJR0jKbMkyN8k/W+I+AAgXqOPzuGimJLtxp4grbwleK5jq/u6TvecHXuiutb9LnAudGW7bG1kJalpprT1ieC5ji3eGDX+5Oz7hzXG8/3r3BbfOYP2diRCSdGfU6OPjH6+7/kR1lhPK9849kd+qkekfpYytW8a+lj2yZJsN/ZV0bbzJdv5XkOGQsJTOTKPhOtu2y3rSGiuNXVKmKrAuS7bqaTtcc4DAAAAAAAAAACgvBVtG9leJsaPimKtfVCp6nab04aNpOMkXSrpfA1OtPutpMuttT1DESMADFDTLI05LuJFMb28z3yre65tnXtu7xrnVHfTNGcb2JpE2DayISrbzf2oe+5vc6VnPuGen/aG7PuHVd3kTvDpbpV6CtB60VrpMU/FrerGaPtFXS9Js98d/ZpMDZ72tevvlLr25H8Gctfq+NuHAz8ytHGky1bZ7lBH22OX/T/gntuxINpecds2P3jcV9UzhC7rrlBXm6hTnXEn+bkq4gEAAAAAAAAAAKD8FXOy3awCfMwe0q9gmFlr75B0mKQfSfKU/tHjkt5krb3CWts6JMEBQJBTHNXlXOJqI1ufmXuc5tHL3XMLvhA8PvoofyKHSWsj6/lV7ErWG2DU4f75XYuCxxM1Uu2o7PtHcXRmV/I0vqS/XL38c8l2B8+1HJTbnqOOiLZ+4lm5nZPpyP/nnnv6Q/GcgeisJ+F14hlDFsYg2V77Jp0dbb+WA92Jo23rUomtwyHZI217Knhu+pvz2trXDrY2UafahLtFNK1kAQAAAAAAAAAAKlfRtpG11q4c7hgKwVo7c4jP2yTp340xH1OqlewMSZMktUpaK+lZa62rXS0ADK2m6ZKpkkIX2IyxcGndeKljc/Bc997BVc981caqm7yVj2rSku0SnqSZUG1kqxqyrwnSMC2363x8leFW3Sod/4N4z1txs3su18cl6nXVOZ4z6Nwm99yav6SSjhK0rRxy2591z+X6HCtWvkTTnQuzJ/YWgivRTsr78e/0JETXmFpVG3eiZWeyAJU6AQAAAAAAAAAAUBKKNtkO8bLWdkp6YLjjAACvRI006khp+zPh1u9eGt/Z1c3uZLv2TVLzzIyxDe69akapy1P5qCYRtrJdiDayiWqpZa60a0n2tekaC5BsN2J/91zH1lR1rLiqEUrSxvvdc2mPcSQjD5W2PhFtfRxGefbp2iH17JUSI+I5C+G1rnLPxfW9Lxa+52Dr6uFJttu72j038rC8ts5W2c6X7NxhSbYDAAAAAAAAAACoVMXcRhYAUIkOjNAys8pTSS3yuf/hntv86OCxnjb3+jnv9VZNqjV1+24bT3W+ZJg2sr3nRRblcQ6rpkVqmuWeH8rWi/u/L7frZr0j2vqWubmdk2n8q/3zoas9IhatK6WbjfTwJe41TdOHLp6h4HsOtm8cujjS7XjBPTf19Xlt3eWpPlpr6lRHG1kAAAAAAAAAAAAEINkOAFBc5rxbqp8Ubu2My2M815Ow9tjbpD0ZHbef/1/3+knnqCvpaSObXtnO10Y2bLLdQZ8Ity7d9EujXxPGKb91z218KL5z2rIk/0x5XW77TjxdGndyuLVTL8ztjCBVtdIZd7jnN9wb31nw62mX/jzTv6Zu/JCEkpMxx+d2XZWnGuQT785tz3x07pQWftE93zAxv+191UdN7YB235k6aCMLAAAAAAAAAABQsUi2AwAUn4OuCreuqiG+M7PttfoP/betldb82btXp7dqUsg2sjZEG1kp1Zp19FHh1kpSdVO87VzT1Yx0z730s/jOWf4T/3x1Hs+NsImI9fkl+wzSuJ977uVfxHsW3NbdmX2NqSp8HLmqac792ubZ7rmorarztd7zfYihpa2r+miNqZUxRsaYAVVIw1wLAAAAAAAAAACA8keyHQCg+PiSjtLlk1CVKVEr1U9wz+9Y2H/b10JWkhJVzhaF1aZaibREnYSnjWzoynaSNPHs8GvDPr65aJjsnuvcGt85Cz7vn69qyn3vppCPT9yPoy+Ba52n6h3iFaaKW/uGwseRTfP+weOz35X7nr7n9E5PS9dCSH/NzRTDz56rsl1toi7tdnArWSrbAQAAAAAAAAAAVK7q4Q7AxRjzjhi3s5J2S9opaYOkxdbaCBkMAIAhNfn8cOvirGxnjDTtDe6Kaa/cKB1xjdQ0Xere695n/KmS3Ikcma0J/W1kQ1a2k6T9LpYWXxtu7bSLw+8bVa2nst2OBYU7N93Mt0mJPCqPTTonVf2vu9WzyEjTYmwjKxV3tbRS0NMp/evT0pJv94+d85A04dXR9uncHm9chTLtQmnxtwaOJeqkyRfksefF0iZHu+fuLEnGcbJWeuHL7vn9Lsn7CFd1uvRqdnWJOu3pCbjW04IWAAAAAAAAAAAA5a1ok+0k/VKKUtInklZjzFOSbpR0q7X0ggKAolI3Rpr6emntX/3r4ky2k6Rjvu1vT3rPqdK5j0qbHnSvOe4HkuSsbFeT0ZbQ30Y2wq/B8adIx31fevrDnkVGmnG5dPgXwu+bi0P+W3rx64PHO7ZIu5ZKLQcW9vzjr8/v+poW6cy7Ut9vl5N+JY0+Mr9zMmVLtmtb768cWMlsUrr31dLWJwaO33u6dPb90sQz4z2v5aB498vFkV+RWlf1tri2Uu0Y6dTbpPpxue859yPSMx8PnhvKynbz3uqfnx2i+mAWoSrbGUdlO0tlOwAAAAAAAAAAgEpVzMl2fdwlf3LXLOmM3o+vGmPeZa29uwDnAAByNfk1Q59sV90oHfJp6cWvBc/vXS29/EvplV+596gbI0nqSjqS7RIZle08v+aSUXPOD/yQNOe90vq7pZ0LpXEnal/HeGOkkYdKdWOj7ZmLxunuuWU/ko79lns+jLYsLTxrRuS3v5RKXvSZ9bb8z8iULdnulZukQz4Z/7nlYMfzgxPt+tx3lnRFzH+/UdUY7345xVAnnXab1L5FalsrjTwsv4qOkmQS0shDpJ0vDp5b9kPpqK/kt38YHduklb91z898a+r1LE+uhOjMynZBOmkjCwAAAAAAAAAAULGKPdku/Z006xjPlPluatBamzY3WdI/jDEftdb+IHqIAICCCJMUVohWftnO3TJPalvjnq9JtVEN06JQkozxVLaL0ka2T1WdNO31qY/hUjvGPbdlXv77b3k8/z3CmHyBtP4fg8fHnVSY8zzPBUnxPHblaqieE31mvX1oz/OpH5dfNbtMrja6ha5I2Wfrk/553+tLBKEq2yUcle1oIwsAAAAAAAAAAFCxijnZ7l29n0dI+ryksUolxyUlPS7pKUmrJO2SVCtpjKTDJZ0maVLvtVbSrZLulNQgaZSkQ3rXzNDApLtvG2MWWWvvL+hXBQAIZ+JZ2dcUopXjpPMkeaqHrb/Tf31vVbU4KttFaiNbTCZ5vnfdrfntba2/4uGYY/PbP92BHw5Otpv7sfjOGCDL9zvfx66cJbvi26uqQepp86+Z/c74zis2rudZ+6bhPb/PpHNjOabT2eq7/zU6Mzm6T5cjmRoAAAAAAAAAAADlL0sJleFjrb1R0jxJH1Iq0U6SfipplrX2FGvtx62137LW/sxae7219svW2sskTZP0RkmvKJVE92ZJM6y1P7LWfs1a+w5r7SxJr5P0cu8aq1Ti4bVD+kUCANzqx2df0zQr/nNHHS4ddnVu1x5//b6b7sp2A5PtEr5ku6htZItF/QR30tvOhamEuVxYKz39Yenln7vXnHlXbnsHmfKaVFvedDOukPZ7Y3xnpMv2uGy4pzDnlgObpQrk1qfD75Ut0e7gT0q1o8PvV2oO+XTweOsKac/LhT3bWumZq/xrprw2lqPCVLarc1a2o40sAAAAAAAAAABApSraZDtjTKOk2yXNldQt6S3W2g9Ya1f7rrPWJq21f5J0hKRHlPoarzbGXJmx7g5Jx0h6Nm34CGNMPOUyAACFV9UQ/57GSEd8QZrznujXjjl+301nIkdmG1nPr+Kc2sgWC1/1t03/zG3PHc9Ly653zzfvH679cFgmIb3qx9J5j0vHfV869xHppF9JiUIVBi7h7/ewy5Ko+PRHwm2T7HHPmUTquXD0/4UPqxTVT3DPPfe5wp69c6G01/NP/REHSomqWI5yVadLf41OT7xL53p9BwAAAAAAAAAAQPkr2mQ7SddIOlipd0+/bq39XZSLrbWtki6RtE2p6nXfN8aMz1izW9KblErm63uX9rw84wYAxCVbK9nqpsKdPe6U6NdUN++72eVqUZjZRta4K9slS7WNrDTgsRhkzZ9z23P5j/3zYaohRmUS0rgTpAM/JI0/JbZEn0BVIZ7Pe9cW7vySluVnZevjUtfu7NvsWuSeO+eR1HOh3Pl+djfcW9izs+0//tTYjnIlzKW/RtcZR2U7S2U7AAAAAAAAAACASlWUyXbGmGpJ7+i92yHp67nsY63dIqnvnfkGSVcErHlF0m3Svj5+OWRXAAAK4rDP++cbJhfu7FySOkYcsO+mM9kuo42s8baRLeFKZ+NOds/tXprbnst+6J+PMRFnWDRMlEYe6l/TuX1oYik12drISlLXrvzWjMryvSkX4z3/FO7YXNizsz2/fRUzox4VqrJdcLIdle0AAAAAAAAAAAAqV1Em20k6VdI4pcqUPNlbpS5Xd6fdfoNjzV29n42kaXmcBQCIky/p44QbUi1fC6XlAGn2leHX108cUPWsKxmcbJfZltDfRraEK9s1THTPrfu7tHNx+L16OqS7Tsq+7oB/D79nsTriGv/8poeGJo6SE+JnZd0/sq/p9vyTs3pE+HBKWeM0aeRh7vn5/ykVqurm+rvcc6OOkEYdHttRYV6j6xxtZDuSVLYDAAAAAAAAAACoVMWabDc97fa6PPdan3Z7hmNNes+w0XmeBwCIS6JauqxDmvGWgeNn3CHNeXfhzz/hhvBrD7pqwF1X1aRBle08CYMlnWwnSafc4p77+8Hh91n45VQb0GyaZ4Xfs1jtd4l0jieh7ukPSz3BSUIVLUzy15Pvy95Kdsl3g8erGgqb3FtsfK99S74trfxt/Gd2t0pbn3TPv2Z+rN+DUJXtTHCynetaAAAAAAAAAAAAlL9iTbZL7wvYlOdejb2fjaRJjjXpPauC31UDAAyPqlrplJulK2z/x5QLhuZsE+HXZEa7QVfVpMxku4Svsl2Y1pjFbMT+/vk9K8Lts/R7eYdSUia8WkrUuOe3PDp0sZSMkD8rG+71z29/Nni8KridaNmqbvTPr/lz/GduuN89N+OKVPJ1jFytYNNfo91tZKlsBwAAAAAAAAAAUKmKNdluV9rtQ/Lc69C023sca9LfSWvL8zwAQCUafeSAu502bBvZMq5s13KQf37jA+H26dqZfU1TGVS1SzfqSPfc3nyL/pahsG1N27I8dnVjg8c7twePl6sR+0tVnoS7bI9jLtrWuudGe34ecuSsbJfIXtmuw5GoBwAAAAAAAAAAgPJXrMl2a3o/G0mzjTEn5LHX23s/27R9M01KW7M5j7MAAOXm2JBV1cafMuBumBaFkr+NbLLUk+2qmyRPMqG2P+O/fvdy6eaQbSOP/0HosErCAR90z/XwdwGDhfxZefHr/vkdC4LHJ5wRKZqSV1Uvzb7SPb/5kfAJjmH5ntfTL433LLkr26Un29W5KttZKtsBAAAAAAAAAABUqmJNtntIUpdS75waSdcbY7L0sxrMGHOZpPPU/w7sPY6lx6TdXhH1HABAGZv7YX+FJ0k65+FBbT+dbWQTA9vImnJuIytJx1zrnlv6fWmvo5pV1x7prweEO+PEG4eutfBQmfMe99ya24cujlIR9mdl72rppZ8Hzy35vvu62e+KHlOpO/Y6qXa0e37JdfGet+Ca4PGqeql5ZrxnyVN9NC0hOrMSaZ+OZIds3MmGAAAAAAAAAAAAKAlFmWxnrd0l6W9KJdpZSUdJussYs1/YPYwx75V0o/oT9qykmxzLz0+7/VwuMQMAytiRX/bP148fNNTlqGxXYzKT7cq4jawkmWr//Nq/BI9vcOXHB5j9jvBrS8mYY4PHozw2FSPCz8orNwaPz/+I+5qq4ApnZS1RJR39Dff8y46kxVx17QgeH5tPgWvPcWEq25ng77tVUt22qyBxAQAAAAAAAAAAoLgVZbJdr/+SlN6j6RRJLxpjfmiMOcsY05J5gTHmQGPMB4wxT0n6saRa9Sfa3WCtHdQbrDeB7wz1v0v7cLxfBgCg5E272D/fNGvQUKejsl1mpSR/sl0ZVLab9gb//M7FweO7HOOZjvxqtHhKye7lweMjDxvaOEpBlCpjYZ9b6ZpmRL+mHDTNdM/tWhRfK1nfPl274zljwHE2r8p2krtVOAAAAAAAAAAAAMpblnIzw8da+4ox5t2Sfq1UUqCV1CTp/b0fMsbskrRbqaS6kb2fJe3LXOiraveEpP90HPVp9ScdtsvdahYAUKl8LQyb95eqagcNh65sZ4yMTGAVu7JoU9iUpShtx5aB9/e8Ii3+VqrFbBjTLsotrlIw6nBp8yODx7t2DX0sRS9CYmr7pujbjz0++jXlYPxp7rlkl9T6itQ8O/9zHFXmJEmTz3fPebT17NXd2/6gl9sWa2LtNJ05+nVqrhqhu7f9SUv2Pu9MZq5Jr2yXcFc0vHbVZ1RlqjWqeqyOaj5RJ488Ry+0ztfjux7Qxs7+9tjVpkaz6ufqnDEXaUzN4CqoAAAAAAAAAAAAKC1Fm2wnSdbaW4wxSUk/kdSi/upzfcl0I3s/Bl2atu4uSZdba1sdx/xa0u96b+/xrAMAVLI3rJZuD0gcu+DZwOVtyb2B47VmcGKeM9muHNrIStIb1ki3TwueW3mzdNIvpUSN1Lpauuc0qW1t8NpMp/1BGnlwbGEWndlXBifb7VmeqgRm3FURK07UxNR1d0pTXtN//5Wb/OtNMReDLqCqWum0P0oPXxI8f8cRqZ/v2lH5nbPuDvfcjEsjb9eV7NR1a67WyvZlkqRlbS9o3s57ZHv/55P+Gl3rSbbb0LlGkrS2Y4VeaJ2vu7f9QVu6Ngbuv7J9mZ7f84Q+OePrGlk9JvLXAwAAAAAAAAAAgOJR9O8cWmt/J+kwpRLiejSwal3mRx8jaYWk91prL7DW7vTs/7i19qHej/kF+BIAAOWgcZp0hZUufFk6/a/SG7ek7tc0D1ra6anSVBPQltA4fh0ny6GNrCQ1TpUO+A/3fF9C2YqbwiXaJWqlt/RI+zkSgMpFVYN7bteSoYujJERMtlv4pYH3F/1ffKGUG191u+5Wae3f8j/jBU876KrGyNst2fv8vkS7PkklQyUwp7eOrTPuNrKZNndt8O6/rXuz5u8KSJ4FAAAAAAAAAABASSn6ZDtJstausdZeLmmGpI9JulXSEklblUrA2ytpraRHJV0r6QJJ+1trfz48EQMAylbzLGnq66S6sc4l6S0EM9UHVEoyjgplZVPZTpLqxrnntjyR+rz1yXB7Hf2Nyqg05nvMtj4xdHGUhIg/K1vm9d/ubpN2LHCvbSnj6olh1I6SqtwV3mJ5Lrau9JwfvRLcHVt/l32RQ1NixL7bdYn6Qa2/87EiIwEQAAAAAAAAAAAApaeo28hmstaul/S93g8AAIqSr7Ld5NoZg8aMHMl2tkwq20nS5NdIC68JnnvuM1L7JmnN7eH2mnF5fHEVM19FsZ7gNsUVK5+fle49/vnjr89973KQqE79/Lp+Pjt35L735sekVb+TOja719R7kk4dVrQvzSmc6fX7q7m6Zd/9hKnSQY1HakHrUzntl6kj2R7LPgAAAAAAAAAAABg+FVAWBgCAodVp3cl21WZwnnvC8eu4rCrbjTvRP7/k2+H2OfEXUv2E/OMpBdWeNrLr/jF0cZSEHH5Wts2Xkj3SP452r6kbK004PfewysWx33HPrbhJ6skhiWzxt6V7TpaWePY++pvR981RS9UovWPSRwaNXzrxfRpfMymWM3y/GwAAAAAAAAAAAFAaSqqyHQAApcBV2a4+0RDYMtYYE5grVFbJdsZI0y6W1vwp9z0mny/NvjK2kErC2BOC23Su/evQx1LMbA4/K/M/Lh1xjdTmbvus1zybeu5WuqYZ0ux3Sy//PHh+zV+kGZeG369zu/TsJ7OvG3Nc+D1zlFCV3j/1v3VAw2FqqGocND+2ZoL+Z+Z3tbztRW3oXCNJunfb7drRvTXyWb6qpwAAAAAAAAAAACgNJNsBABAzV/WiWlMXOO5qI5sspzayklTTkn2NT8sh8cRRSkyVe65ja6ryGiTl8LOy+RFpdZbWxTUjcgunHNVPdM9tvC9ast2K30q2J/u6qvrwe+bo/LFv1BHNr/KuqU3U6ZCmo3VIU6oK4oI9T+aUbNdFZTsAAAAAAAAAAICSV3JtZI0xNcaYU4wx7zDGfNwY87/GmM8Pd1wAAPRxVS+qSbiS7SqgjawkTXh1ftdPrMB2niMPds917fRfm+yRtj0jrf1bqpJYOculsp0kLb3OP187Krd9y5Hv57czy3Mx08YHwq1rOTDavjlwJUH7NFeNzOmszmRnTtcBAAAAAAAAAACgeJRMZTtjzKmS/kvSeZKC3hW7JuCa10jqK7OxzVr7X4WLEACAlMiV7RxtKssu2W76m6XlP5W2Ph792knnptrIVpoDPyq9dEPwnC/BqW2j9MC50o4FqfsmIb3qJ9Kc98QfY1Eos5+VYjTxLPfcqlsl+9twLXc7t0urfx/uTFMTbl0eah1J0D7NVblV6XT9bgAAAAAAAAAAAEDpKPrKdsaYJmPMbyQ9JOn1kuolmYwPlxckfoLv6gAAIABJREFUvV3SOyVdZYw5ssDhAgCgLkf1IldSh7OyXdm1kR0hnXV39OsO/Ih0+l+GpKVk0Wme6Z5b+CX33FMf7E+0kySblJ54r7RzcWyhFZVy+1kpRlW10tyr3PNr/xZun2c+Ef7MMMl7eaoxtZGvGZFzZTuS7QAAAAAAAAAAAEpdUSfbGWNaJM2T/j97dx4na17Xh/7zVG9nnX3fGBgGGIYd2RQVQQORmGjQRG80JuqNV3LRJGoSREWNJt5cgyt6oy+D0ShGRWMStgEuhEVWQZB1gGGYfeYwyzlzzszpperJH30O02dO/Z6up6q6uqr7/X69zut017P9urrrqZlXf87nm29P/1BdY41JXdc3J3nDhmO/fawLBIA+ys12/UMdnUJufMc12yXrgbtHfne7Yx7zst0ZtEuSub3lbXe/v//jvdXk9jf133bb60df01Taga+VadQ0VnfQn61BQ3lJmv9NzXgM02y3f+7gUNfSbAcAAAAAADD7pn2M7J8keWIe+g3qSpI/SvL2JL0kvzPAOf4s6414SfINSV4+3iUCwKlK7UXlZrtS2G6HtnU99oeSL/znwfZdOKu53W2n6zSM0SwFEFePJN3j/bfd8ZbkmoZmsd5qcvzOwdc3LVaPbPcKdodznlbedvyOzY9fOZwsH2pxwQmE7QrjvZscnB+u2W6tXk2v7qZTzQ11PAAAAAAAANtvasN2VVV9a5Kvz0NBu/cm+ft1Xd9yYvsjBjzVyWqXKsmTq6o6UNf10bEuFgA2KDfbFcJ2Vf+i2V69Q9u6zn5Kcv5XJ4fetfm+j3lpc+BsN7jga5K73nn640dv6L//J/5t+VzLd/d/vLucfPAHkpv+KFk71n6N7A4XvqC87ZY/T+54W3JRn33u+Ujy/u9J7v2rdtcr3BvHaZhmuwNzZwx9vdV6NUvCdgAAAAAAADNrmsfI/tiGjz+e5BtOBu3aqOv6jiR3nfi0k+SaMawNAIpKzXYLrZvtdmjYrqqS571hveGuZPGc5GmvSp70s5Nb17R6zMvK29YeOPXzG343+fSryvvf86H+j3/wpckNrxG0o9n83uTql5a3v+PFyZHrT31s+e7kbc9vH7RLMplmu/7jvZscmBuu2S4pvz8AAAAAAAAwG6ay2a6qqouTPGXDQy+r6/qB0v4D+HSSC058fHWSD45wLgBo1LrZbreNkU2ShQPJ039p/Q/N5vaWt93xtuSyb3ro8y/+webnO3pDcuBRD33eXUlu+uPh18fusv+K8rbecnLz65JrX/7QY7e9MVm9b7hrVe3Ddt2622r/STfbld4fAAAAAAAAmA3T2mz3nBN/10luruu6z+y0Vu7Z8PG5I54LABqVmotKoY7SGNkd22xHOweuKm87+rlTP7/9zZuf78bXnvr58l3J2v3t18Xu1PTzmCT3P+xn8iM/PMLF2oft2jbHLRRC0E32zx1sfcxJmu0AAAAAAABm27SG7S7a8PFHx3C+oxs+PjCG8wFA0WrLZrtOqdmuFrYjyRmPLW/78L9I2v6cHL/z1M8fPop2pyiEWBnRxX8jWTy7vP2G//TQz9QX/kty/K4RLjZE2K4+3mr/YZrt5qq57O8MF7grvT8AAAAAAAAwG6b1t5Bnbvj4yBjOtzFg1+43cADQ0kpvpe/ji53Fvo9XhbfjHT1GlsFVVXLG48rb3/Hi9b+v//XBznf9r66Pjj3p8789/Nqm1d5Lk+f83navYmdaOCN5wdub9/mj/es/j+/9rtGuNcQY2bbNcaUQ9GYOzA83SlazHQAAAAAAwGyb3+4FFNy74eMzi3sN7pINH99T3AsAxmClZbNdVQiU9IyR5aT9j0yOfLr/ttvfmKw9mHz6VYOf79C7kotesP7xp/59eb+/+dFkft/g550GncVk3+XrQa2/+Af997ns7yTP+I31VsD/cXXS3aHtflvl7Ccn1/xo8qn/t7zPh/7pGC7UPmy33HaMbCEEvZkDc2fkztza+riVun8YGwAAAAAAgNkwrWG7Qxs+vnaUE1VVtZTkKRseumWU8wHAZkrNRaVxhVVxjKxmO05YONC8/eY/SY5+fvDz3fCa9bDdZiNoz3rCzh3HuvfiEx8ItQ5lz4Vbf41hmu3ajpGthg/bDUOzHQAAAAAAwGyb1t+efvjE31WSK6uqapidtqmXJDn5W7S1JO8bZWEAsJlSs91CqdmuOEZWCIgTLn5R8/YHbm53vht/PznymaQp+LPvsp0btGN0l3zjeM6zdO54znNCmzDbfLWQTjU31HWGDtsV3h8AAAAAAACYDVP5G9S6rr+Q5HMbHnr5MOc50Wr3ipOnTfLBuq6Pjbg8AGg0tmY7YTtOeuQ/bN5+0+van/NNz0iuf3V5+7N+u/052T3OvCZ5wk+Odo4rvys5/7njWc8JbcJspdHegzgwd+ZQx2m2AwAAAAAAmG1TGbY74TUn/q6SfGdVVd/d5uCqqjpJfivJNRsebviNMgCMx2oh7FEK23UKoxKNkeXLOvPN2+/9cPP2ftbuTz7yI+Xt+x/R/pzsLtf88GjHP+EVm+/T0nJv8DGypXvyIDTbAQAAAAAA7E7THLb75SR3Zb2Rrkry21VV/duqqvZtdmBVVY9Pcl2Sf3Di+DrrTXl/uHXLBYCkW3ezVq/13bZkjCyzZGG4MBG7yNze0Y5fPHs869igTXPcaM12Q4btNNsBAAAAAADMtKkN29V1/UCS707Sy3pYrpPkXyW5vaqq1yZ56cb9q6r6+1VV/URVVe9K8rEkX5f1kF6VZDnJd9R1LbUAwJZarVeK29qOke0J27HRec+Z7PX2XjzZ622b/q8/BtBZGP7Ys5+a7LlgfGs5Yblu02y3OPR1Ds4PN0a21HwKAAAAAADAbJjasF2S1HX95qyH6k4G7pLkYJK/l2Tj3LMqyR8k+akkX5lTv661JN9b1/UQ89UAoJ2m1qKFUrNdVWi2M0aWjZ75m5O71tUv3XwfSJLnvbH9MXN7k6f+wvjXknbNcaV78iA02wEAAAAAAOxOUx22S5K6rn8ryQuzPlK2Sk6p+ak3/Kke9niV5EtJXljX9Wsns1oAdrumIEXbZjtjZDnFWU9I/uZfTeZal79kMtdh9l3youRFLf5NyxN/OnnRXyYXPX9LltNqjGzhnjyI4cN25fZTAAAAAAAApt/Uh+2SpK7r/z/Jo5P8yyQ356HxsBv/ZMPHdyf5mSRX1XX99okvGIBda6VhROBiqdmuGLbTbMfDnPHYyVxnft9krjMVhFpHds5TB9/32lckZ16zZUtZaTFGdqEafozs0GE7Y2QBAAAAAABm2vx2L2BQdV0fS/ILSX6hqqrHJHluksuTnJtkMestdncm+YskH67r2m9OAZi4YZrtOqUxskJAPNzcnslc58wnTOY67CAPL6Au7ba1/9ZnuTd42G6UZrvFzlKWqj1ZbhHuS4yRBQAAAAAAmHUzE7bbqK7r65Ncv93rAICHa2otKrUoFZvt5MbZDnN7k4UD270KZs1X/2nyrm/ZfL+q//1uXNqMaS21jQ7qwPwZWV5tGbbTbAcAAAAAADDTZmKMLADMitVCa9FCtVhssCuF7XrGyNLPgau29vzP+P+29vzTQJB1/C7/5uSSb9zuVbQaIztKs12SHJg7s/Uxmu0AAAAAAABmm7AdAIxRqbWoqUGpMkaWNhbP3trzz+/d2vNPna1tWttVrvmXQxw03ue/1RjZUZvt5g62PmZVsx0AAAAAAMBME7YDgDEqtRYtdPqPkE2MkaWlJ75yuOMKoc7THHzMcOeHM69NqrltXUKb5jjNdgAAAAAAALQ1v90LaFKtV/08IcmTk1yR5Pwke5PUSR5McleSm5J8NMknaqkEALbZSr3S9/HGZrtS2M4YWfq58PnDHbfnwmTfFcnd7y/vc/Dq5KwnDXd+2HNecvnfTW76421bQqldtJ/Rm+3OaH1Mm/UBAAAAAAAwfaYybFdV1dck+f4kfzPJoJUR91ZV9fokv1XX9bu3bHEA0KDUWtTUoNQpFM0aI0tf8/uSv/WZ5H8+tt1xdZ08/7rkuuckhz95+vYDj06+/l1JZawqI3j2a1qG7cZ7n2vTHNfUODqIg0M12/UPZAMAAAAAADAbpipsV1XV45O8OsnXnHyoxeHnJPnOJN9ZVdXbk7y0ruvrx7xEAGhUai1qbLYrhJt6tWY7Cs4YctTrwhnJiz+RdFeS3vH1x+o66Swm83vHt76ZItQ6VvP7k0u+MbntDdty+eX6+MD7jtpst3/uYOtjNNsBAAAAAADMtv5VOtugqqq/l+QDWQ/aVSf+1H3+nNRv28njnp/kL6uqesmk1g8AyXDNdpVmOybhmh956OO5xfXg3cIZyeKZOzhoV/h3G4/8zskug4lZ6bUI243abDc/TLOdsB0AAAAAAMAsm4qwXVVV35bkD5Lsy6khu5PhuSQ5lOT6JO/Leijvs0m+tGGfjcclyf4kr62q6lsm81UAQLJSaFVqDtv1DwQJ29HojMcNvm81nzzi27duLdNqY8DwpPkDySV/a8MDxuZur/E+/23GtC6M2Gx3YO6M1sf00k23XhvpugAAAAAAAGyfbQ/bVVX12CSvObGWjSG7I0l+KcmLk5xX1/VFdV1fU9f1V9Z1/ey6rh9X1/WFSc5P8k1JfiXJ/Tk1dDef5D9XVXX1pL8uAHanYrPdEGNk6xgjS4MXfnCw/TpLyXP/a7Lv0q1dzzR64k+vjzQ9aeGM5Hmv38FNfrtbt15LN4MH2ZpC0IM4MNe+2S7RbgcAAAAAADDL5rd7AUl+LeuNdidDdr0kP5PkP9R1fXSzg+u6vjvJ65O8vqqqn0jyI0lekYdqMg4k+dUkLxr/0gHgVKVWpYWGcYXFMbK1ZjsaLBxIrvyu5MbfK+/zvDckF3xNMr9/cuuaJvN718N1R29IHrglOfdZydxoASsGsE33ruUWI2ST5hD0IA7MHRzquJV6OXuzS1+TAAAAAAAAM25bm+2qqvqqJC/IQ0G7+5O8sK7rnx4kaPdwdV3fX9f1K7MerDuWh0bKfkNVVV85pmUDQNFK3b7ZrmOMLMNaPKu8rbOYXPzC3Ru02+jAo9ZDh/2Cdpd98+TXs9Nd+LzB9z3/uWO7bNvGuFGb7fZ2hnttabYDAAAAAACYXds9RvalJ/4+Ofr1++u6ftuoJ63r+q1Jvn/DeZPkB0Y9LwBsZrU0RrYh1FEaI9szRpbNXPj8hm0vSKrt/k+9GXDND/d//En/ZrLr2Eke9T1JvxDxVd/bZ99/3H/fR373QJc6unYkHzry7rz1nv+Wd9z3hlbLHLXZrnTv3szb7v3vuX35Zu2lAAAAAAAAM2jbfgNbVdVSkm/KehiuTvK6uq7/cFznr+v6tUlel/Xf3lVJ/nZVVeUZfgAwBsM02xkjy9AufXFy+bee/vjS+clTfn7y65lFZz81eewPnfrYOV+RPOb/3p717AR7zkue9h9OfezAo5In/OTp+y6dkzz9l059bP+VyRN/atPLfP7BT+cnbvgn+U+3/0L+9NDv5Lp7XtdqmaM22w3rnfe9Mf/mxpflv3/p993nAQAAAAAAZsz8Nl772UkOnPi4TvKqLbjGf0jykhMfH0jynCT/awuuAwBJyuMBG5vtimNkNduxic5C8lWvTW7/R8mhdyfdB5MzH59c8uJk36XbvbrZUFXJ034xuezvJHe9Kznjcckl35gsHNj8WMoe98+T874qufOtyd7L1oOhS+f23/exP5ic95zkjrckey9d//ndc17j6eu6zn+67ReyXB8feomjNtuN6s33/EmesP/puWrfNdu6DgAAAAAAAAa3nWG755z4u07yqbqu3zfuC9R1/b6qqj6Z5PEbrilsB8CWKTXbLTSUqxab7aLxiAF05teDTJe+eLtXMruqKrnw69b/MD7nPXP9zyDOfcb6nwEdWr0j9659aciFrRtHs12Vqu+9+uz583Kse3/xPeGkzzzwMWE7AAAAAACAGbJtY2STXLvh4/ds4XXeXbgmAIxdt17r+/h8tVA8pqoKzXbGCwL09UD36EjHX7p05VjCdt92wff1ffyF57wkj9z7mE2Pf6B3bOQ1AAAAAAAAMDnbGba7asPH79/C62w891XFvQBgDLp1t+/jc9Vc8ZiOMbIAE1Olyt845++O5VxfcfCrc/7CRac8dsHCJXnawa/K15/zLZnb1iJxAAAAAAAAxm07f/tz4YaPv7iF19l47ouKewHAGJSa7eaq8ltuaYxszxhZgILy/fGypStTpZOLl67IZUtX5q6V23LT8g2p614uXLw0zzrjebn2wNPHsooD82fkh6/4+bzlnj/NLctfyBV7Hp2vO/ubcmD+jFw7/7T84OU/nfcefmved+Ttrb8OAAAAAAAAps92hu3O3fDxfVt4nZPnrpKcs4XXAYB0U2i2S7nZzhhZgHaa7o4/csX/M5YRsYM6Y/6svOSC7+m77ep91+bqfdfmgd6xfOzoB07bXgvbAQAAAAAAzJTtHCO78TdgWxm2O7zh4z1beB0AGLLZzhhZgHZ2RkhNphoAAAAAAGC2TEvYbnULr7Mx9bCwhdcBgHTrQrNd1dBsV3g71ngE0N+s3R9LoeqdEhoEAAAAAADYLbYzbAcAO045bNfQbFcaI6vZDqCvpohaOdi2nUr3eWE7AAAAAACAWSJsBwBjUtd1uimMkU252a5TarYzXxCgv8b74/SF7aZvRQAAAAAAAAxD2A4AxqTX0ETXPEa2fwyjp/EIoLVCWei2ms62PQAAAAAAANoqz7SbjJMpgmdXVXXlFl3joi06LwCcolv3b7VLjJEFGKem8auzFGwzRhYAAAAAAGC2bHfYLlmfqvTaLb5GHdObANhi3bpb3NbcbGeMLEA7szVGtrQmYTsAAAAAAIDZMg1hu0kE4fwWC4At10252a7T8JZbamESwgDob+aidqVFuc0DAAAAAADMlGkI2yV+zQTADjB8s50xsgBtzF4YWagaAAAAAABgJ9jOsN1NEbIDYAfp1uVmu7mq/JbbqYyRBWhntrrtSqFq/zsEAAAAAAAwW7YtbFfX9ZXbdW0A2Aq9MTfb9TTbAfTVHLWbnbCdZjsAAAAAAIDZ0r9KBwBorZumsF05314V3o6FMADaq6rpC9sBAAAAAACwMwjbAcCYNI6RTUOzXSEYImwHUGDMNgAAAAAAANtA2A4AxqQ75jGydW2MLEA/pTDyNI6QTYyRBQAAAAAA2CmE7QBgTBqb7RrGyHaMkQUYk+kM25XW5T4PAAAAAAAwW4TtAGBM1hrDdsbIAoxLudluOhVu83GbBwAAAAAAmC3CdgAwJt00jJFNudmuNF6wZ4wsQF+zF0YWqgYAAAAAANgJhO0AYExKY2Q7mSu21yVJZYwswJhMZ7ddKVQNAAAAAADAbBG2A4Ax6db9m+2aRsgm5RCGsB1AO7MXanOfBwAAAAAAmCXCdgAwJqVmu7mqPEI2Saqq0GxnjCxAX6UwckOJ6LYqLUvUDgAAAAAAYLYI2wHAmPQyXLNdR7MdQDt16f44pWk793kAAAAAAIAdQdgOAMak2GyXTZrtiiEMzXYA/RSb7aY0bFdel7AdAAAAAADALBG2A4Ax6dbDNduVxsj2is1NALvbzN0dC1k7t3kAAAAAAIDZImwHAGMydNjOeEGAlmbr/qjZDgAAAAAAYGcQtgOAMSmOka2MkQWYhNkbIwsAAAAAAMAsEbYDgDHpptBsl+HGyGq2A+ivdH+ctVCb+zwAAAAAAMBsEbYDgDEZttmuU2q2q4UwAAAAAAAAAGBaCNsBwJh060KzXbVJs13h7dgYWYD+SmHkqprOZrvyuHChagAAAAAAgFkibAcAYzJss10pHNITwgDoqxxSm86wXWldwnYAAAAAAACzRdgOAMakm/7Ndp1s1mxXGiOr2Q6gjemN2pVWJmwHAAAAAAAwS4TtAGBMxj9GVggDoJ+Za7YrLKswDRcAAAAAAIApJWwHAGMy9BhZ4wUBdrRysx0AAAAAAACzRNgOAMZk2Ga7TmWMLEA7/cPIsxdqE6oGAAAAAACYJcJ2ADAm3RSa7bJZs50xsgBtlIfITmfYToMpAAAAAADAziBsBwBj0huy2a4UwugJYQAUFO6P05m1Kxr2Lr/aWx3rOgAAAAAAABhMc9UOADCwtbrQbFdt0mxX9c++H+0ezqeO/VWu2f+UkdcGsFP06l7+/NDv9d02a812Hz36vhxeuzdnzp890Hned/jtecPdf5i7Vw/lEXsene+86J/mkqVHjHOpAAAAAAAANNBsBwBj0i2G7YZrtkuS37j153Lb8hdHWhfATvKmu/84h1bvKGydzrBd07p+5eZXpq4377j7xNG/zO/e8cv50uqdqdPLjcevzy/e/ON5oHt0nAsFAAAAAACggbAdAIxJtzRGdpMi2aaw3Vq9mo/c/96R1gWwk7z/yDuK26Y2atewsNtXbsrNyzdseo4PHPlfpz12rHt/PnHsw6MsDQAAAAAAgBaE7QBgTLoZrtnu3IULGrfftXLb0GsC2El6dS+HVm8vbj9nk/vpdjlnfvT7/Afvf2ffx//bod8dak0AAAAAAAC0J2wHAGNSbLbbJGx36dKVOX/h4vJ5CyE+gN1mtV5p3P7UA8+Z0EraecKBp2e+WihuX6mXhz73se79Qx8LAAAAAABAO8J2ADAm3brUbFcOWCRJp+rkBy//qYbz9g/xAew2K71yKO2afU/J15/zzRNczeAuXLw033/py4vbm74uAAAAAAAApoewHQCMybDNdkly7sKFef7Zf7vVeQF2m6YGuO+48P9Kp5re/725dv/TcsWeR/fdNkrYrk499LEAAAAAAAC0M72/jQKAGdNLIWyXzcN2STmUV2rMA9htmkJpC52lCa5kOEtV/zWOMkYWAAAAAACAyRG2A4AxKY+RnR/o+Ln0369bCPEB7Dar9Upx22IhyDZNSoHAzZrt6lp7HQAAAAAAwDQQtgOAMRlljGzTfprtANY1hdIWO4sTXMlwFqv+a2wKESbJWr26FcsBAAAAAACgJWE7ABiTkZvtimE7zXYASXnc6lzmB77XbqfFIZvtmsbMVqlGWhMAAAAAAACDE7YDgDEpjXudy6DNdoUxsprtAJKUQ2kLM9Bql5RH3TaF6ZLNw3gAAAAAAABMhrAdAIzJyM12hVCeZjuAdauFUFopxDZttqLZDgAAAAAAgMkRtgOAMSmF4krjYU/fr9BsV2jMA9htVnorfR9fnJFmuwXNdgAAAAAAADNN2A4AxmSrwnY9Y2QBkpRDaTu/2a5/yBAAAAAAAIDJErYDgDHpZsQxsoVQnjGyAOtWi812MxK2K4QCS+Nxv7y9IYzX034KAAAAAAAwMcJ2ADAmpVBcJyOOkdVsB5Ck3GxXGs86bcrNds3Ndcu948Vta/VaekLZAAAAAAAAEyFsBwBjUgrFDdxsVwjldbUWASQpj1udnWa7xb6Pl0KEg283ZhYAAAAAAGAShO0AYExKzXal8bCn76fZDqBJKXRWCrFNm3Kz3SZhuk22N42ZBQAAAAAAYHyE7QBgDOq6Tq/QQDdws10hlFcK8QHsNqXQ2cLMNNsVwnYjN9sJ2wEAAAAAAEyCsB0AjEE35fa50njY0/YrNtsJ2wEkTc12sxG2K4UC1+rV9Bru9au95jGxK5tsBwAAAAAAYDyE7QBgDJoCcQM32xVCed2spa7rodYFsJOUQmel8azTpikUuFKXA3Oa7QAAAAAAAKaDsB0AjEG3bmi2K4yHbbNfL73WawLYaWa92a4pFNjUXlcanzvodgAAAAAAAMZD2A4AxqC52W60MbLr5y+H+QB2i1KobLGzOOGVDKe52a4cmNu02a53fOg1AQAAAAAAMDhhOwAYg24awnYZcIxsQyivKcwHsFusFkJnCzPSbLfQEApsaqfbtNnOGFkAAAAAAICJELYDgDEYxxjZTkMorxvNdgArhVGrTeNZp0lTs10pSJgM0mwnbAcAAAAAADAJwnYAMAbNY2Q12wGMQyl0tljNyBjZLWu26x9CBAAAAAAAYLyE7QBgDMbRbNcUyms6P8BusTrjzXZz1XxxtHhTYK6p9S7RbAcAAAAAADApwnYAMAaNzXYN42FP2a+x2U7YDqDcbDcbYbuk3G7XFJhb3rTZTtgOAAAAAABgEoTtAGAMemlqths0bNfUbGeMLLC79epeVgvtbwsz0myXlIOBTYG5TcfIarYDAAAAAACYCGE7ABiDxma7QcfIpqHZriHMB7AblIJ2SbJY9W+Lm0alkbdNgbnNxshuth0AAAAAAIDxELYDgDFoGvM6eLNd0xhZzXbA7tYURisF2KbRgmY7AAAAAACAmSVsBwBj0BSG6wz4dmuMLEBZUxitNJp1Gg3TbNf0tQ+yHQAAAAAAgPEQtgOAMeimfxhuLvOpqmqgc8w3hu2MkQV2t6Yw2sIMNduVwnZNo2BXeuURuuvbhe0AAAAAAAAmQdgOAMagFIZrGg37cJ00jJEthPkAdovVuhw4m6lmu9IY2UJgrluvpZvmwPVKw3MDAAAAAADA+AjbAcAYlMa8tgnbVVVVDNxptgN2u6b2tsXO4gRXMprSWkvtdZu12q3vo9kOAAAAAABgEoTtAGAMys125dGw/fcvhe002wG720phzOpc5lvfa7dTsdmu8PWVHm+7DwAAAAAAAKMTtgOAMSiNeZ1rGA3bd/9CYESzHbDbldrbFmao1S5JFjrtxsiuDtBaN8g+AAAAAAAAjE7YDgDGYKub7XqFMB/AbrFaaG8rNcVNK812AAAAAAAAs0vYDgDGoDTmtRSeK5mLZjuAflZ6K30fX5yxZrvFls12pcc3WtZsBwAAAAAAMBHCdgAwBqUwXGdMzXalMB/AblFqb5u1ZruFqn84sNTctzxAa50xsgAAAAAAAJMhbAcAY1AcI5uWzXbCdgB9rRab7WYrbLcVzXYr9XLquh5pXQAAAAAAAGwQFdyCAAAgAElEQVSuXd0OAHCKL63cmfceeVveePcf9d3eeoxsoQnv9+98df762AfzqD2Py3PP+hvZN3eg9Vp3sy88eH0+dP87c+fKbUmSSxavyDPP+NpctueRI597pbecdx++Ljc+eH0uXroiX3XmN2Tf3P6857635PMPfioXLV6W55z5gpy9cN7I14Ldqlf38r/ue0PfbQsz1mxXauI7tHpHfu2Wnznt8SNr9256zjp1fu2Wn05Vlf8t1TMOfnWedebXDb5QAAAAAAAATiNsBwBDunPl1vziTa/Ike59xX1K4bni/g1NeB87+oF87OgH8qH735l/dvnPCtwN6K+Pfii/eevPp5uH2gc/eezDedd9b8o/vewn8+h9jx/63Ku9lbz6lp/JZx/8xPoD9yfvPfzW7O3sz83LN3x5v784/Nb88yt+LucuXDD0tWA3+/07X517177Ud9tip/9Y1mlVarZbrVfyyWMfHvq8n3rgrxq3X7nn6qHPDQAAAAAAwDpjZAFgSO+49/WNQbtkfM12G92yfGM+fP97Wp13N3vD3f/1lKDdScv18bz5nteNdO5PPfBXDwXtTvjS6p2nBO2S5J61Q3n3fdeNdC3Yre5auS3vPfy24vZSU9y0mrX1AgAAAAAA8BBhOwAY0ucf/OSm++zp7Gt1zkHDeZ8b4Nqsj3j94vHPFrd/7oFPFLcN4o13//HA+775nj8Z6VqwW33+wU81bp+1ls99c/u3ewkAAAAAAAAMSdgOAIZ0vPfgpvs8dt8TW51z0LGzy73jrc67W630lhu3L9fHU9f10OdvCvIB47HZvfax+548oZWMxyP3PDZL1Z7tXgYAAAAAAABDELYDgCGt9FYatz967+Pz3LNe2OqcnQzWbLdZiIx1K/Xmz9NavTqBlQDDWm241z75wLPzlIPPmuBqRrfQWcx3XPQD6fhfMQAAAAAAgJkzWH0OAHCaUpDr4sXL83fO/648bt+Ts9hZanXOQcfIDhIiY7BQ4kq9nIUsTmA1wDCa7nffd8mPDnzfnCbPPONrc/nSo/LJYx/Jke69Ax/XSSdX7Hl0Llq8LJ9/8JM5tHrHwMc+au/jhlkqAAAAAAAAGwjbAcCQSkGul1zwPXn8/qcOdc5Bx8hqthvMIKHEld5y9s8dnMBqgGGU7nfX7n/aTAbtTrp46fJcvHT5SMcDAAAAAAAwWWYXAcAQuvVaeun23bZU7Rn6vIM32zWPsGXdoM12wPQqvUYXKo2UAAAAAAAATJawHQAMoSnE1XZ07EZzA5bOrmq2G8igzXaT0qt7E7sW7BSl1+go91oAAAAAAAAYhrAdAAyhKcQ1SgBkftAxstrYBjJYs93kWgLX6tWJXQt2itL9brEStgMAAAAAAGCyhO0AYAjLDSGuUUYbDjpGdrVnjOwgVgcIJU6yJXCSLXqwU2i2AwAAAAAAYFoI2wHAELZsjGyLZru6roe+zm6xMkAocZItgRoJob1SaHZBsx0AAAAAAAATJmwHAENoakwbZbRhZ8Bmuzq1kaQDGCTcNsm2udUJjqyFnaIUmtVsBwAAAAAAwKQJ2wHAEJoCWiONkc1gzXaJlrRBDBKkm2iznTGy0Fop3DxKsBkAAAAAAACGIWwHAEMoBbQWq6VUVTX0eecGbLZLBLcGMUiQbnWAUbP9dOu11sf4nkF7mu0AAAAAAACYFsJ2ADCEUmhq1PDHXKXZbpy2stmuFADaimvBblZ63YzSIgoAAAAAAADDELYDgCE0NduNQrPdeA0Sbhv2eRwmOOd7Bu1tVbgZAAAAAAAA2hK2A4AhlMIfC6M226VF2K4ebvzpbrK6hc12g5x7XNeC3awcbtZsBwAAAAAAwGQJ2wHAEErhj6WRm+0GHyM7TNhrt1keJGw3wWa7VQFJaKVXd7NWr/bdptkOAAAAAACASRO2A4AhbNVYw1ZjZLWkbWqgMbJDPo/DhPSMkYV2mho8Rx3bDQAAAAAAAG0J2wHAEMpjDSfXbCe4tblBnqPV3nBtc8OM8fU9g3aaGjw12wEAAAAAADBpwnYAMIRSaGph1Ga7aLYbp9UtbLYbZoyv7xm0o9kOAAAAAACAaSJsBwBD0Gw3GwZ5joZ9HocJzvmeQTtNr5mFzuIEVwIAAAAAAADCdgAwlNLo0cURwx9zVYtmO8GtTQ0SiFsdYhxsMtzzP+y1YLdqaqfUbAcAAAAAAMCkCdsBwBCKzXajjpFtE7YzknRTK4VQ5Kn7DNts1z44JyAJ7TS9Zka93wIAAAAAAEBbwnYAMIRSAMQY2ekySCBx2NCiZjvYeqVQaydzre6XAAAAAAAAMA7CdgAwhGLYbsSmpU4Gb7YT3NrcIIG44Zvt2h+njRDa2ap7LQAAAAAAAAxD2A4AhrBSH+/7uGa76dGt19JLd9P9Jtls53sG7RRHdo94rwUAAAAAAIBhCNsBwBBWev1b5RZGbFuaqwZvttOS1mzQYNuwAbjVYZrthO2glXKz3eKEVwIAAAAAAADCdgAwlK1qW5rXbDc2g4YRV+uV9Ope+/MP02wnIAmtlMZla7YDAAAAAABgOwjbAcAQSkGrpVGb7dIibCe41ahNGG6tXm1/fs12sOVKr5lRW0QBAAAAAABgGMJ2O1BVVT9VVVU9wp/f2e6vAWDabVWzXasxsoJbjdqE4YZqqdNsB1uufK81RhYAAAAAAIDJE7YDgJZ6dbfYhDZq29JcizGyq4JbjVZ6/cdP9t13mJa6wnjLJqWRmEB/pVDromY7AAAAAAAAtoGwHQC01BSymmyzneBWkzYBumFCcJNqw4PdbKtaRAEAAAAAAGAYg9fnMMu+I8n7Wux/dKsWArATrDYEpkZtW2rTbGckabM2wbZJjYRdrVfSq3vpVP69AwyidL8dtUUUAAAAAAAAhiFstzvcUdf1jdu9CICdYrkpbDdqs13aNNsJ2zVpM2Z3mOeyKXTZZK1e1coFA9JsBwAAAAAAwDRRqwIALTU1mo3abNdpM0ZWs12j5d7xgfcd5rlsGifceJyQJAysNC571HstAAAAAAAADEPYDgBaagpLTXKM7Fq9ml7dHel6O9lWj5EdttlOSBIGV3q9LFSLE14JAAAAAAAACNsBQGtNYalRAyBzLZrt1tcyXLvabtDmuRmu2W640Nyq7xkMbFWzHQAAAAAAAFNE2A4AWio1ms1X863Dcg83l8Gb7ZrWQrvnpm2zXV3XQ4+DNUYWBlcKtS5WwnYAAAAAAABMnrAdALRUHms4evijfbOd4FZJm+em7fPYzVp66bVd0vq1hO1gYKXXi2Y7AAAAAAAAtkO7+hxm1fdXVfXjSa5Jcm6S1SR3J/likncneVNd1+/axvUBzJRS+GOps2fkc89V7d6aP3z/e3PW/DlJkipVLll6RC5evDxVVQ10/JdW7sgXj38uvfRy/sJFuWLPVemM2M43Le7vHh5439KoypLl3vG2y/myjx/7UO5ZO/Tlz3fa8z5r7lk9lBuPfzbdei3nzJ+fK/de3fp1yPj06m5uOv75HFq9I0lyrHt/3/0WRxzZDQAAAAAAAMPwm8Td4dsf9vlSkgNJHpHka5L8WFVVH0ry8rqu3zrpxQHMmpW6fzBrHGMNOy1LZ//s0O+c9tij916bl17249nT2Vs8rluv5Xdv/5V88P53nvL4BQuX5Acv/+mcs3B+q3VMm08f+2jee/htA+/fptnuge7R/Lsb/8Uwy0qSvPme15322IWLl+UHL/upnL1w3tDnpZ1e3c0f3vkf8+7D153y+Nnz5+WHLv+ZXLB4yTatbPe6Z/VQfuXmV+au1ds23VezHQAAAAAAANvBGFlO+ook11VV9XPVoHVILVRVdUFVVde2+ZPkqnGvA2AcymMNR29aGsct+HMPfiL/7dDvNu7zzvvedFrQLknuWr0tv3fHr468hu200lvOf7z137U+ZlCvu+s1pzTTjcOdK7fkv9zxa2M9J83ed+TtpwXtkuTetS/lt2/7hW1YEf/ljl8bKGiXjCfcDAAAAAAAAG1pttvZbk3yhiQfSPKpJPck6WV9lOzTkvytJC/csH+V5MeyHsJ8+ZjX8tIkrxzzOQG2RakFbWGKwh+fPPbhxu1/ffSDxW2ffeATOd57sLEZb5p99oGPZ7luN+Z1tdBW2M/Hj32o7ZIGcv0DH89y7/hYxhGzub8+Wv4+3rx8Qw6v3ZMzT4xoZust947n+gc+PvD+C2MINwMAAAAAAEBbwnY70weyHqJ7S13XdWGfv0jya1VVfUWSP0hy9YZt/7qqqvfVdf3nW7xOgJnUrdf6Pj5Xjedt9aq91+TzD35qpHMc7R5p3H5k7b7itl66Oda9f2bDdoe797Y+ZtBmu17dzf3dw63PP4hu1nKse7+w3YQcWWv+OTmydp+w3QQd696fXroD7dtJJ5cuXbm1CwIAAAAAAIA+jJHdgeq6fkNd19c1BO027vuhJM9Ocv3DNv18VVVzW7JAgBnXq3t9H5+rxvO2+rVnvThVRhsnu9lbwGqhne+kNmNVp81yr12rXVJuKzx9v8Eb8IYxy8/7rNn0NbDF32tO1eZn/5lnPC/75w5u4WoAAAAAAACgP812pK7re6qq+o4kH0q+nO54XJKvS/LWMV3m15P8cctjrkqiXQ+YOr30D9tVY8qwf8UZz81c1cm777su93cP5/H7n5oXn/sd+djR9+c9h9+S25Zv+vK+q/VKHuwda32NzYItmwWRplnT1/bUA8/JR46+t9UxG6027HfuwoW5cPHS3Hr8C6mTnLtwQfbN7U+VTm5evmFDALLOkW7/ZsFBQ3+MbqXXHKZr+l4zfk0/+wfnzkyVTs6cPztPOvDMvOjcb5vgygAAAAAAAOAhwnYkSeq6/nBVVddlffzsSS/KmMJ2dV3fleSuNsdU1WitTgBbpVf3H3XYGWMh6FMPfmWeevArT3ns6Wc8N08/47mnPPbXRz+Y37j151qff7NQ1yw3rK3U/Zvtrt57bS5YvLRwzKDNduX9fuiyn8l5ixdueo5uvZaXXf+t/c8/RCsfw9n0NSD4OFFN95x/e9Vvj21MNwAAAAAAAIzCGFk2etPDPn/StqwCYMqVmu062/K22j+YXKd5jOxmrV6zPEKzFNpZ7OzJYmex1TGn71d+XhY7SwOdY66az1zh3zssC3hNzGbf81kOnM6iUrhxLvOCdgAAAAAAAEwNYTs2uvFhn5+/HYsAmHa9uhC2q6bnbbUpbNet19LNWuPxsxw0Wi6sfamzlMWqfyBu0LG5TfsNGrZr2neWn/dZo9luupRDsv0DsgAAAAAAALAdpicVwDR48GGf792WVQBMuXqKmu2GGbg9SKBrloNGpTGyi9VSFooht8Ga/Jqeu4Vq8FDQUmdP4fzGyE5Cr+5mrV5t3EfwcbJK95xSQBYAAAAAAAC2g7AdG533sM+/tC2rAJhy3brb9/HtaLarhhgjO0iQbnXA8Nk0KjXbLXb2FIM7g4YLS+N156v5zFVzgy0w5QCRMbKTMciYZGG7ySo32wnbAQAAAAAAMD2E7djoWQ/7/LZtWQXAlCs32w0ethqbqtRt1xC22+nNdoV2uMVqqRjcGTRcWHruFlq2b5XXMbvP+ywZ5Hme5dfALCo9321fWwAAAAAAALCVhO1IklRVtSfJ333Yw+/YhqUATL1eXQjbTVOzXTlrN1CIaJZbvUpf31JnTxYLo14Hb7YrjbocfITsybX0s2yM7ETs9NfALNJsBwAAAAAAwCwQtuOkf5Xk0g2fd5O8fpvWAjDVuimMkZ2it9XGMbIDtLjNcqtXObSzp9woV68UQ5SDnbtdIGhhxNAfoxnkNbA6wKhZxme1FGQVtgMAAAAAAGCKTE8qgLGoquq7qqq6sOUx/2eSVz7s4d+p6/qL41sZwM5RF5vtJj9GttRs1zhGdoe3epXa4ZaqpSw2jKQcJFw1rlGXmu22105/DcyiYpDVGFkAAAAAAACmiLDdzvO9Sb5QVdV/rqrqxVVV7S/tWFXVV1RV9adJfjM5Ja1xa5If3+J1AsysXgphu214Wy2OkW04ZpAQ0Sw3rBVHvXaWGluyBnpextRst1j1D9vN8vM+S1Z3+GtgFpXaBhc77UY0AwAAAAAAwFaa3+4FsCX2JvmHJ/70qqr6bJIbkxzO+njYc5M8OUm/Brx7kryorus7JrNUgNlTGjdaVdOUYS/H7UrjGk/ZZ4ZbvUrtcIudPY0tWYOEq8Y16rIUINKmNhkrg7QY+l5MVDEkq9kOAAAAAACAKSJst/N1kjz2xJ/NvC3JP6rr+patXRLAbOul2/fxuUzTGNmynd5sVwrELVVLWdiqZjtjZGfKTn8NzKLS96TpNQsAAAAAAACTJmy38/xy1sfAflWSRwyw/7Ek1yV5dV3Xb9vKhQHsFKVmu852NNtVpTGy5Wa7wUJlmzd/TaNu3c1avdZ323qzXXkk5SCNf6VGtLajLktjZAdZA6MbJEin2W6yNNsBAAAAAAAwC4Ttdpi6rv8syZ8lSVVVZyW5NsnlWR8Zuy/rTXf3Jbk3yaeSfKyu6/4VTQD01UthjGwmH7Zr32s3YNBoRkNfKw3NcEudpcZxr4OEq0rjddsGgkrrWBbwmoiBvtcz+hqYVcXWSM12AAAAAAAATBFhux2sruv7krxnu9cBsNP0ChnlbWm2a1DXdao+zXejjEuddssNAanFak/mqvl0Mtd3FHCpte7UfcYz6rIUIGoKCzI+gzXbzWa746wqhRs12wEAAAAAADBNpisVAAAzoNRs18nchFeSNHXblUbJDhQqm9GwXVNY7WTArRx0Gz6A1TSetp+lwhjZWW0UnDUDfa99LyZKsx0AAAAAAACzQNgOAFrq1YWw3TY021WNg2QLYbsB2tNmdYTm8iBhu0JT1iBfcymA1TYQNErgj9EN9L32vZioUiulZjsAAAAAAACmibAdALTUbwRpknS24W21fdRu0BGasxk0amrtO9kmt9jp30I3yNjQ0vOy0DIQVAoQNYUFGR/NdtNntdhs1641EgAAAAAAALaSsB0AtFRutpuuMbLlZrtBgkabB8+mUam1r0on89VCknLQbZQQYttmu6VOaYzsSuq6FJNkXAYJVq7Vq+nV/YO1jF+xNbIwchkAAAAAAAC2g7AdALRUpxC225Zmu3LYri6F7QYIle20MbJLnaVU1fpzNcoI19Lz0nbUZWkNdXpZq1dbnYv2Bm2tm9XQ6ayp63psQVYAAAAAAADYSsJ2ANBSt9B21am24W21agjbFQrSBgmVrdVrxa9zmg3SjlUa+TrJZrumcN5ybZTsVht0THJptCnj1c1aeoUQc9sgKwAAAAAAAGwlYTsAaKncbDf5MbJNQ2RLY2RXB2zrGnS/aVIaI7vYWdzw8fDNduUwX9tmu/JozEGDYAxv8GY734tJaPqZ12wHAAAAAADANBG2A4CWenUhbLcNzXZDjZEdMMw1i6GvYvPchma7xWqx7z6DNdv1DyC2DQQtNew/i8/7rBn8NTB7gdNZ1DSuV9gOAAAAAACAaSJsBwAtlcYddrblbbW5266fgVu9ZjD0tVz42pY2NMktFMI7m40M7dbddLPWd1spwFfS1IS3YozsllvVbDdVmu41Cy1fWwAAAAAAALCVhO0AoKVys920jZHtb+BWrxkMGpXHyD4UbisF3ZratZLmsbqlAF9J0xjZ5RkMOc6andzuOIuMkQUAAAAAAGBWCNsBQEu9dPs+Pm3NdsUxsju52a6w5o3NdqXwzmZfb2MgqKGprp+5ai7z1Xz/68xgyHHWDPwa8L2YiKamwbavLQAAAAAAANhKwnYA0FK52W663laLYbud3GxXGMG6MbBTCu9sNlq0uX2r/ajLxap/u12pnY/xWek1txg+tN/svQZmkTGyAAAAAAAAzIrpSgUAwAzopX/YrtqGt9WqajdItlf3GsehbrQ6g0GjUmjnlDGyhWDcZgGspvDhMO1bpYY9Y2S33k5ud5xFpe/HYrXU+h4HAAAAAAAAW0nYDgBaKjXbzW1Ds11TDKWuT2+2W6tXBz73bDbblUI7G8bIFoJxm329je1bheBck2HXwegGDdFt1nbIeAwSkgUAAAAAAIBpIGwHAC2Vm+3mJryS9auWnR62W24xonQWW71KX9/SKc12hZDbJl9vc7Nd+1GXSx1jZLdDt15LL92B9p3F18Asamq2AwAAAAAAgGkibAcALfXq/kGdzrY025XDdnWfsF2b1rSVAcfNTpNyQ9ZDwbaFIRvlSmN156uFdKr2QcthQ3+Mps3zq2VwMkrfk2EaIwEAAAAAAGArCdsBQEulZrvODLyttgoazWDoq9hsV21ds92w7VvGyG6PVoHT3uwFTmdR+bXVvjESAAAAAAAAttL0pwIAYMrUdSFsNwPNdqutmu1mL/RV+vo2NtuVAjybPTfl1rwhw3aFMbJtRv3Snma76TPu1xYAAAAAAABsFWE7AGhpuprtWo6RbRE0Wp3BVq/lAUI7pdGUa/VacURwUh6ruzBk+1ax2W4GGwVnSbtmO9+LSRh3ayQAAAAAAABsFWE7AGipWwhkdaq5Ca8kqcpZu/TJ2hUDY/3MYqvXSt2/FW5jaKcpwNP0/KyOuX1rqXDccuFrYDzahEhn8TUwizTbAQAAAAAAMCuE7QCgpXqKmu2axsj202qE5oy1etV1XWy2W9o4RrYhwFMK1CXjb98qjZGdted91rQJ0DX9PDA+5ddW/9cIAAAAAAAAbJf57V4AAMySXt3rO541STrVdI2R/def/8epUuW8xQvzjINfkxee+6153aHXDHzm9xy+Lu89/LZUVZXLlx6VbzjnW/KUg88ex6LH6t7VL+VP7vrtfPLYR4pByI3BtqZw3Ms//73FAGNpfPBiZ7xjZD9+7EN52We+NVWVXLL4iHzt2d+Y55z5gk3P96773px33/fm3LZ805cfW+gs5qq9j8s3n/8Pc+nSlUOtc9o80D2aN9/zuvzlkXdnqbMnzz/7b+crz/z6VBtqHj997KN50z1/ki88+Jn06lO/b92sDXytjxx9b172mW/98ufz1XwesffqvOT8f5zL9zxq9C+GHF07kvceflvfbcO+tgAAAAAAAGCrCNsBQAulMFcyfc12vayPu71z5db8z7tfm/9592tbnbtOvR5MqpMvHP9Mfuu2f5+XXvbjuXb/00Za8zgt947nVTe/Inev3tm439LGMbINzXYnn7M2FoZutisfd/J5v2n58/m9O341VTp59plfV9z/3fe9Oa+98zdOP09vLZ849uHcePyzefkjXpVzFs4faq3T4vDavfmVm1+Z21ceChT+/p2vzmq9kued/eIkyRcevD6/fuvPZq1eHcs1N4bzuvVarn/gr/PLN/9kfvzKX85ZC+eO5Rq7Va/u5pdu/onidmNkAQAAAAAAmDbGyAJACw9vydqoU81NcCWTV6eXv7jvLdu9jFN8+thHNw3aJQ9rthtzgGfY8y0Vxsj2857D1zVuf/fh5u/Lse79+ejR9w98vWl03+rd+cWbXnFK0O6kt93756nr9cbJDxx5x9iCdiUP9Nbb9RjNFx68PretfLG4fdgRzQAAAAAAALBVhO0AoIXSKNFke5rtDs6f2dhuN263LpeDMdvh1uUbN92nk7kcnDvzy58vVkvZ29k/tjWcNT9cu1mb4zZ73m8b4PsyyD7T6p7VQ/nFm1+Ru1Zv67v97tW7cqR7X5Lk9pWbJ7Kmvzj81hztHpnItXaqWxuCdsnwry0AAAAAAADYKsJ2ANBCry6PGe1Uk39bPTB3Rh6193ETu95KvTyxaw1ipV7ZdJ/H7XtS9s7t+/LnnaqTJx54xtjW8OQDzxrquMfte/LAzV2rveavs9vwc9lmn2n0pZU78qqbfiyHVu9o3O/OlVuSJHVD++Q4rdYreee9b5zItXaq1V75ftJJJ0848PQJrgYAAAAAAAA2J2wHAC00N9ttzxjZ773kR3PJ4iOGPv6rzvyGfN8lPzpQ8Guz0NekrTSEdZLkiqWr8t0X/9Bpj//9C/5JHrPviSNdey7z+bYLvi9X77t2qOP3zu3LSy/7iezvHNx0327W0q3X+m7r1b3UDT+XXz7HDIbt7ly5Na+6+RW5Z+3QpvvesXwibDfC9fZ29m2+0wbvuO8Nm/4MUtYU3v2+S/5lzl24cIKrAQAAAAAAgM3Nb/cCAGCW9Bpas7aj2S5Jzpo/J6+48pdy1+ptuXv1rvTqbn791p8d+Pj/48KXpqqqPHH/M3PT8uez3HswXzz+ufyPL/3+aftOW7PdamE9+zsH86OP+Pc5f+GiVNXpY3b3zu3LP7v83+Se1UO540QjWhsL1WKu2HNVljp7Wh+70WP2PSE//+jfyc3Hb8gDvaM5tHJ7/utdv9l335XeSvbOnf6fboOG6LrpH9abVrcv35xfvvknc6R770D737Fy64mPhovbPX7fU/MDl73ixPfi2CnbPn70Q3nHfa8/7Zij3cP5wJF35LlnvXCoa+52paDio/dem6ccfPaEVwMAAAAAAACbE7YDgBZ6KQebqm0sjK2qKhcuXpoLFy9NXdfppNPYwnfSUrXny2G0hc5Crjoxkna+6v+fCKv1Snp1b9uChQ9XCus86eAzc8HixZsef87C+Tln4fxxL6uVuWouV+69Okly+/x5xf1W6uXszenNa4OG6Gap2e6W4zfmV255ZY52Dw98zB0rNydJ6iHDdgudpcxV87ly72NO23bl/2bv3sOjqu99j3/WTGZyIVdIIFwLiIpQFVG2iEEBRa1atdXaum3dtR63Vdt6OdrqtijWVmttS9sj3V6OVrp1e9zd3ahUi4qCilRBvFZECwoB5RIMhEtCZjKzzh9KzJD1m6w1t6zJvF/P4/O4Zt1+ycwQ43z4fEsO1N9anlW7vbfbvkXNj2lK1UzfvCfyiSm8Wxbsl+OVAAAAAAAAAAAAAO7wqSAAAB4ka7YLWr0zRnZ/lmUpHOh5JKwk43HJRlWNPk4AACAASURBVMpGbf+Mko0Y1uJmJK4fJXveooZgYdxts51hDK3fNO5dq99umOUpaCcppYbCroqTfO/LguU6tnqm476t0Y/11u7lad27UJnCsiErnOOVAAAAAAAAAAAAAO4QtgMAwINkbXEBH/1YdRs2M4btkgSPTAGZ3mAKoLkNG/pNsufNqVVNch+icxvK600ftr2v326YpT3xXcZjKoM1jo/v6PhEe+Ntsu3Umu3CVvKRwNNrvmx8jy9qfjSlexa6SLxvhWUBAAAAAAAAAADQ9/knFQAAQB6wkzTbWT4aIxly22xnCLUkC7uYRj/2BtNa8jWskzzk6BxMcjse1u242d6ypnWVfrfhRrXFW43HHFj6Rf1g+Gzj/i2Rj1IeI9tTQHNAaKAmVhzruO+Dvau1tm11SvctZMb3b56GZQEAAAAAAAAAAND3+ScVAABAHojJHGwKyh9jZCX3YTNTKC9ZWM9PzXZ9bQxlsnWbgkluQ3RuQ3m94b09b+nOjTcb2/skaWzZ4bp82CzVh4cbv0+b21MfJZtsjOw+M/t/xbiPdjvvTM2U+fr+BQAAAAAAAAAAQN9H2A4AAA/iedJs5yY4JKXWbBfNh2a7PG3GClgBY9DIFCx03Wzn07Ddqj2v6/cf/TRpY+L4fkfq0qE3KBwoVsAKaFB4iONxmyOph+16GiMrScNLRuvgssMc9721+xVtiXyU8v0LUV97/wIAAAAAAAAAAKDv808qAACAPGDLHLYL+OjHashls50plBcOJGlYy4Nmu3wO65iCjqaQo/uwnf/GyL69e4Xu+uhnitrOI3Il6fDyo3XJ0OsU6vKarA8Pdzx2S2Rj1sbI7mNqt7Nl67nmBSndu1AZ3795OgYaAAAAAAAAAAAAfZ9/UgEAAOSBZMGmgI+a7dwGh0yhlqBVpKCKHPdFkgSjcs0U0srnsE7IEHQ0N9u5HCObZARyb3h91990z0e3qyPJ+idWHKv/NeRaFVmhhMcHhYc6Hv9ps12KYTuXr5lDyiZoSPgLjvte3vmcdnXsSOn+hcj4/s3jsCwAAAAAAAAAAAD6Nv+kAgAAyAPJm+2COVxJcm6DQ6EkoRZTux3Ndtlleu6MYTuXITo/Ndu9uvNF3ffxHYrJvKZ/qjxeFw6+WkGre+izPjzM8ZymyOaUx+UWB3oeIytJlmXpxP5nOe6L2hE9v+OvKd2/EDFGFgAAAAAAAAAAAPmGsB0AAB7E7SRhuz7UbJdsnykgk2u2bRtb9vK52c703Jm+766b7VIMoWXayy2L9YdNcxRPElw9puoEXVD/AwUt5wDrIEPYLqYONUU3p7QuLwGvoyobVF00wHHf8zue9FUg1c8YIwsAAAAAAAAAAIB8459UAAAAeSCWtNnOPz9W3YZVkgWMjKEvnwSJOuwOY9NgssY+v/PcbOcyROeHZruXdjyj/9j8u6QNkVOrT9H5gy5XwBC0k6RB4SGyZDnu2xtvTWltXgJeRVZI02tOd9y3J7ZLf2t5NqU1FJq+2EwJAAAAAAAAAACAvs0/qQAAAPKAnSTYlCwclGumEbD7K04Sagn5vNkummQdYcvd1+9H5mY75xY/1812LsfNZsvz25/UQ1vmypZtPGZGzZf1jYGX9NgSGQqENSA0MKPrcztGdp+GqpNUEih13Pfc9scV90mToF/11WZKAAAAAAAAAAAA9G2E7QAA8CDZ6EtfNdu5bIYyBeqSXcMvzXbJ1pHPzVhev+9uQ3S9OUb22ebH9cjWe5Iec1L/r+rsuu/Ispwb6/ZXHx6eiaV1SvZecFIa7KeGqpMd9zVFN+uN3a9kYll9Vl9tpgQAAAAAAAAAAEDf5p9UAAAAeSBuO4dDLFmuQ0K5ELbctXSlMkY2WaNcLiVr2Avlc7OdIfRl+r67brbrpTGyCz/5b/256f6kx5w64Os6s/Zbnt5Dg8JD011agmQtjybTa05XQM6Nloua58u2zS1+ha6vNlMCAAAAAAAAAACgbyNsBwCAB6ZmO1Pgpre4bXZLNq7RtM8/zXbOIyil/G62CxlGABub7Vw21uV6rKlt2/rLtof1+LYHkx53Ru35Or32PM9h1frwsHSW103Y4xhZSaoJ1eqoyqmO+9bt/YfWtq1Kd1l9Vl9tpgQAAAAAAAAAAEDfRtgOAAAPTIGlgOWvH6nJQnQJxyVttjOFvswht1xK3oyVv2EdY8jR2GzncoysctdsZ9u2Htv2oJ785JGkx3217ts6ZcDXUrpHfXFmx8im+po5seYs475nmh9NdTl9XrJmynx+/wIAAAAAAAAAAKBv81cyAAAAnzM32/nrR6opKNftuFSa7fwyRjZJM1Zej5E1BCDNzXZux8jmptnOtm39uekPerr5z0mPO3fgxTqxvzmo1pN6H4yRlaRhJSM1ruwIx31v71mhTe0b0llWn0WzHQAAAAAAAAAAAPKRv5IBAAD4XNw2hO181mwXykCzXchj6CvXTKG/kBX2PJLUT7yGHONyF6KzZWd9lGzcjuuRrffoue2PG4+xZOmfB12qaTWnpXWvfsEKVQSr0rrGPkVWSAEr9VHQyUKDyb4XhYxmOwAAAAAAAAAAAOQjfyUDAADwOXOzXepBnWxw2wzVF5vt8r0VK1vNdp8em72wXdyO6+Et/64XdvzVeIylgL5V/301VJ+ckXsOCg/LyHXSDXcdXHaYhhWPctz3ys7FaunYntb1+yLT69mSpSIrlOPVAAAAAAAAAAAAAO4QtgMAwANTs53ls2Y7t+GhZME0r6GvXDOF/vK9Fcsccow4Pu4lQBdz2YLnVcyO6Y+bf6eXWp4xHhNQQN8efKUmV83I2H3rMxW2SzOgaVmWZhra7TrsDi3Z/kRa1++L+mozJQAAAAAAAAAAAPo2fyUDAADwOdPIzoDPfqQWB0pcHZdKs13UJ8120bhz+KyvNttFM9Js5/5YL9d8YNMcLd+5xHhMQEFdNOQaTao8LqP3rg8Pzch13L5fkplYcaz6F9U57ntxx0LtjbelfY++JNJH378AAAAAAAAAAADo2/yVDAAAwOdMzXYBvzXbuR0jS7Od73gd3+ulrS7TY2Q77Kj+78e/1MpdS43HFFlF+tehP9IRFVMyem9Jqi8enpHrZOI1E7SKNL3my477WuO79beWZ9O+R19iCu3m+/sXAAAAAAAAAAAAfVtRby8AAIB8YssQtvNZfj1khV0dlzRs5zH0lWum0F++N2N5DTn2VrNdNB7RvR//Qn/f86rxmJAV1r8OvU7j+03M2H27GpShZrtMvWaOrZ6pJz/5f2qLt3bb99z2x3Vc9ZcUtIIZuVe+M72eQ3n+/gUAAAAAAACAbLJtW/F4XLZt9/ZSAKAby7IUCARkWVZvLyWrCNsBAOCBqRksb5vtko2RDTgH9kzjH3MtYjuvw23Q0K+ShRxt2+72H6de2uoy1WwXibfr7o9u07utbxiPCVvF+u7Qf9PYfodn5J5OaopqFbaK0w6AFlvpj5GVpJJAqaZWf0lPN/+5275Polv1+q5lOqpyakbule9M799wnr9/AQAAAAAAACDTotGoWlpa1NLSomg0StAOgK9ZlqVQKKSqqipVVVUpFAr19pIyzl/JAAAAfC5ubLbzV1uV21GMyYJpIWPoa29Ka8q0Qmu2k6SoQ0Ap7mWMrNJvttsbb9PvP/pp0qBdsVWi7w27MatBO+nTkGsm2u0y2aY2reY0BQ1/n+WZ5vn8T5DPRPvo+xcAAAAAAAAAMqW9vV2NjY1as2aNmpqaFIlE+H/MAHzPtm1FIhE1NTVpzZo1amxsVHu7PyanZQphOwAAPLBtQ9jOZ812btrdwlZx0grfZONM/fDLXNTQZuY2aOhXppCj5DzCN5fNdm2xVs3d+BO93/q28ZiSQJm+P3y2xpSNT+tebtWHh6V9jeIMBryqi/rrnyqPd9y3of0Dvd/294zdK5+Z2gjz/f0LAAAAAAAAAJkQjUbV2NioPXv29PZSACAte/bsUWNjo6LRaG8vJWP8lQwAAMDnzM12/vqRallWj6GVcCD56EzT+XHFM9KQli5Ts13IMP42XyRr9nL6mmO2++fCy7H7a43t1v/ZOFtr2941HlMWKNcVw3+i0aVjU76PV5lotgtnaIzsPif0P9O4b1Hz/IzeK1/11WZKAAAAAAAAAEhXLBbThg0b1NHR+5/FAEAmdHR0aMOGDYrF0isG8QvnGVcAAMBR3NAMFrD8NUZW+jRMF4mZK3nDPbTf9RT6KgqGUl5bJkQcRqpK+d+M5XWMbC6a7XbHdur/bJitDe0fGI8pD1bqB8Nu1rCSUSndI1X1xcNdHWfJki3nRsZMB7yGFI/Q+H5H6p09K7vte2fPa/q4fb2GFH8ho/fMNzTbAQAAAAAAAICzTZs2dRu5GAgEVFlZqcrKSoVCIQUC/iqBAABJisfjikaj2rlzp3bu3Kl4/PMim/b2dm3atEnDhqU/taq3EbYDAMCDfGm2k9IL0316frJxphGVpbSqzIn20WasZM+bc7Odh7CdvIftdnXs0G833KSPI+uNx1QGq/WD4T/RkOIRnq+frnqXzXZhq1jt9l7HfZkcI7vPzP5nOYbtJGlR82O6YPAPMn7PfEKzHQAAAAAAAAB0F4vFtGvXroTHwuGwvvCFL6ioiHgHAP8Lh8Pq16+f6urqtH79ekUin5eJ7Nq1S7FYTMGg/4psvPBfMgAAAB+L24awneW/H6nphOl6Ot8UlMmlvtqM5XmMrIeRvl7HyLZ0NGvOhh8nDdpVFfXXVSN+1itBO0mqCw2R5eI/aYuTjE3O9BhZSTqw9IsaUTLGcd+KnS9oR/STjN8zn5jev6E8f/8CAAAAAAAAQDr27NmTsG1ZloYPH07QDkDeKSoq0vDhw2VZVsLj+/85l4/8lwwAAMDH4oZmMDdhn1xLJ0zX0/m+CNsZ1hDqodHP74IqMjYlOgWUvDTbmcYgO9ke3aY5jT/W5shG4zH9i+p09fCfaZDLdrlsCAVCqgvV93hcstd7NtrULMvSzJqzHPfF1KHFO/6S8XvmE5rtAAAAAAAAAKC7/VvtysrKFA7n9+ceAApXOBxWWVnivLTdu3f30moyx3/JAAAAfMzUbBe0/Fd122OYLknTV0/nRw2tVLlkbLbL87COZVnGr8F5jGzmm+0+iW7RrzfcoK3Rj43H1IYG6aoRP1NdeLDr+2eLm7Bfsva6bLUhTqg4RgNCAx33vbjjKbXFWrNy33wQtSOOj/c0/hoAAAAAAAAA+rL9G58qKip6aSUAkBnl5eUJ24TtAAAoMHE5h+3ystmuh1BLkRUy7vNzs12+h+0k83MXsfd2e8xLs13M0MzY1dbIJs1p/LE+iW4xHjMwNERXDf+ZMUiWa/XFw3o8JtkY2WT70hG0gppRc4bjvr3xVi1reSYr980Hffn9CwAAAAAAAACpsG1bsVji/8cvLS3tpdUAQGbs32wXi8Vk23YvrSYz/JcMAADAx0xjOAOW/36khnpstku+P2AFjCNZTa1yuWRuxsr/sI7puYvEu3/NMWWu2W5z+0bN2XCDmjuajMcMDg/XVSN+qppQrev7Zlt9uOewXa7HyO4zpepElQXKHfc9t32Bp2bCvsTYTNkH3r8AAAAAAAAAkIp4vHvhQzDov8lKAOCF059jTn/e5RP/JQMAAPAxU7NdUP77ZafnZrueQy1expnmWl9uxjI32zmNkfXQbJfk2I/b1+s3G36slo5m4zFDi0fqyuE/VVVRf9f3zAU3YTtTcFTKbsCrOFCi46q/5Lhve8c2rdz1Utbu7Wd9+f0LAAAAAAAAAKlwanqyLKsXVgIAmeP051i+N9sV9fYCAADIJ3HbMEbWh812xWk220mfhpD2aFe3x5/f8Ve92/qGwlaxDig9RBMqJitoZf8/K+J2XG/tXq41be+o3WGkqtQ3mrFMz83ync/ro/Z1CY+9s2el6+v+cfNvtbr1Tcd9b+1ert2xncZzhxeP1veHz1Z5sNL1/XJlUHhoj8cka5/M1hjZfabVnKZF2x9Vhx3ttm9R83xNqjgurf9hYtu23tmzUu+1vq22+B7P55cFyjWu3xEa2+/wlNfglbGZkrAdAAAAAAAAAAAAfIywHQAAHtiGZruAD8tiewqthK2eA0ama6xpe0dr2t6RJC3Z8YQO33W0LhpyjYqskPeFuhS343pw8516eedzSY9L1mCWL8KGr2H93n9o/d5/pHzdDrtDy1oWeT5vZMlB+t6wG1UWdB6H2tvKguWqDNZoZ2x7SudnOyhaWVStoyun6aWWZ7rt29i+Tqtb39Qh/SakdG3btvWnrfdpyY6/pLXGRdsf1ZcGnKsv1/5zWtdxy9RsF+oDYVkAAAAAAAAAAAD0Xf5LBgAA4GOmMZwBy39jZHsKrYQDPYfS3LbEvbn7Fb27x7kxLVPW7/1Hj0E7qW80Y/npazig9BD9YPjNvg3a7eOm3c7EUvZr+E/sf5Zx3zPN81O+7ubIxrSDdvv89ZP/0o4kY4QzxbZtx5HIkjloCgAAAAAAAAAAAPgBYTsAADyI51GzXWmgLOn+kh72f3pMqev7vd/6tutjU/Gey+t7WbNfuXlucuHgskP1vWE35cX3tL54WNL9ycJ4/YIVmV6O4/0PK/8nx32rW9/Uxr0fpnTdf7T+PZ1lZf16TkwjZCUp5CIEDAAAAAAAAAAAAPQW/yUDAADwMds2hO0s//1IPbDsi0n3H1R2aI/XcHPMPnvjra6PTYWb69cU1ao2VJ/VdeRCT89dLowrO0KXDv2xigM9jxv2g/H9JibdP73my6oq6t/t8cHhEeofqsvWshKcWGNut1u0/dGUrtmW4ffd3nhbRq/nxNQQKklFWR7pCwAAAAAAAAAAAKTDf8kAAAB8LCbDGFn5b4zsF0rG6J8qj3fcd2zVTA0OD+/xGg3VJ6s+nLwxbJ9I3HksZKb0dP2AAvpq3bdlWdkfCZptkyqmamTJQb12/8PLj9YlQ6/31Tjbnnyx35EaV3aE476T+5+j6qL+OrvuwoQWyiIrpK/UXZCrJeqA0kM0quRgx32v7lyq5miT52uaxrGmKtvvY0mKqcO4LyDCdgAAAAAAAAAAAPAvPs0CAMCDfGq2C1gBXVD/Ax3ab5Leb/u79sbaVBbsp4PKDtWE8smuQmlVRTW6esStWrlzqdbv/YdidlyN7Wu0JfJRt2MzHfrxcv1T+n9Nh1ccrS+UjMnqGnKlNNhPPxh+s1buXKoP9q5WRzwxnLQrtkOrW99M+fpBFWlixbHdHi8JlOqgsi9qYsWxeRdaDFhBXTrsx1q+c4k+aFutSDyi8qIKjSs7QuM+a707qnKqakOD9Obu5QpaQU0on6xhJaNytkbLsnRi/zN178e/6LYvrpgWb/+Lzh54oadrmsJxVUX9dVCpuZny3dY3tDvW0v16WX4fS8mb7YKW/4LLAAAAAAAAAAAAwD6E7QAA8CAuQ9jOp2WxASuoIysbdGRlQ8rXKA9W6viaUzu35zfN0zPN87sd11vNdsdWzdQZdedn9d69oSRQqmOrZ+pYzey274O21VrdmHrYrjxYoQuHXJXO8nwpaAV1TNUJOqbqBOMxI0sP0sjS3m0NrAsNVlN0U7d9L7U8rVMHnKvSYD/X1zOF40aXHJz0Of7thhv1Xutb3a+Xi2Y729xsF2SMLAAAAAAAAAAAAHzMn8kAAAB8Kp5HzXbZEracR4v2VrNdyLCevixslaR3fh6Nh+1rAlZQJ9Sc4bhvb7xNL+54ytP1ooZwXKiH59j0Po7aEU/3T0WcZjsAAAAAAAAAAADkqcJJBgAAkAFxOYdEAiqcgIgpqNVbzXaFGBwrTvNrLsSAop9Mrpqh8mCl477FO/6iDjvq+lqmEKopTLdPKBB2vl4umu0Mf45KNNsBAAAAAAAAAODWyJEjZVlW5z9Llizp7SUBBYGwHQAAHtBsl6zZLruNWKbGrbDlHBrqy8IBmu3yWThQrOOqv+S4r6WjWa/ufNH1tSJxw/vCEKbr3N9LDZVSD2NkCyi4DAAAAAAAAAAAgPxTOMkAAAAyIC7nsJ1VQD9STUEt0zjLTKHZ7nM9tZb1eH4Bfs/85vjqUxUyBEUXNT8q27ZdXSea4njl3nofS1KMMbIAAAAAAAAAAADIU4WTDAAAIANMzXbBAmq2M4V4st2Ileq4zL4o3TGyhfg985uKoipNrprhuO/jSKNW7XnN1XXMzXY9hO382mzHGFkAAAAAAAAAAAD4WOEkAwAAyACa7czjKU3Nc5lCs93nAlZQRVYo5fN7GjGK3Dih5gxZshz3Ldr+qKtrpBpCDRnfx9kdBy3RbAcAAAAAAAAAAID8VTjJAAAAMiBuCIkECiggkqwRy+3oy1QYQ0UFGLaTpGKrJOVzabbzh4HhITq8/GjHfe+1vq3GvWt7vEaqIVTTa8A0ljaTYkrSbCea7QAAAAAAAAAAAOBfhO0AAPDA1GxXSGNkk4V4onb2WrFMoSLTWNu+ztRM5u7cwvye+dHM/l8x7lvU3HO7nbnZLvnrw/Q+znZDpWRutgsoIMtybvoDAAAAAAAAAAAA/IDqCAAAPIjbjJFN1ooWsdsVVuaDXHE7bgzyFWyzXYBmu75gVOnBOqD0EK1te7fbvtd2vaQzo9/UgNAg4/lRw9jXngKVyRoqsy1mOzfbBS1+NQEAAAAAAAAAwG9s29Zrr72m1atXa+vWrWpvb1ddXZ2GDh2qhoYGlZeX9/YSU7ZhwwatWLFCGzduVFtbm2pra3XooYfqqKOOUiCQ3ue/W7du1YsvvqiPP/5YbW1tGjJkiEaPHq3JkyenfW0nq1at0ttvv62mpibt3LlT/fv31+DBg9XQ0KABAwZk/H6FjE+0AADwwDY02wUKKWyXJMQTibdLWZio22FHzesp0OBYOl93oQYU/erEmrMcw3ZxxfXc9gX62sD/ZTw39WY75/2m8F4mmZrtggU0jhsAAAAAAAAAAL/btm2bbr31Vj344INqampyPCYcDmvGjBmaPXu2jj76aFfX/fa3v6158+Z1bn/44YcaOXKkq3OXLFmi6dOnd27fdNNNmj17tvH4rhN1jj/+eC1ZskSStGzZMt1000167rnnFI93//x30KBBuuGGG3T55Zd7Dsa9/vrruvbaa7V48WLHaw8bNkyXXHKJrrvuOhUVFWn27Nm6+eabO/cvXrxY06ZNc3WvTz75RHfccYcefPBBffTRR47HBAIBTZkyRTfddJNOPPFET18LnBVOMgAAgAwwjj8soJBIspBXtsbIJhttaQoN9XU02/Udh5ZP0qDwUMd9y3YsUmtst+O+uB0zBlF7ClSaxi/npNlOhrAdfw8IAAAAAAAAAABfePTRRzV69GjNmTPHGLSTpEgkooULF2ry5Mm65JJL1NHhPN3GT2699VYdd9xxWrRokWMYTpK2bNmiH/zgBzrnnHMUibj//PPXv/61Jk2apGeffdZ47Y0bN2rWrFk6/vjjtWXLlpS+Bkn64x//qNGjR+v22283Bu0kKR6Pa+nSpZo5c6a+9a1vefp64IxPtAAA8CBOs13PzXZZkCwAVKjBMZrt+o6AFdAJNWfqP7f8vtu+dnuvXtjxV50y4Gvd9kWShFt7en2YXgORnDTbmcbIFk5oGQAAAAAAAAAyze7okJo29vYy+r66YbKK+nbU5v7779fFF1/cLSx2wAEHaNy4cSorK1NjY6OWL1+uWOzzv2B/zz33qLGxUQsWLFCRT79Hv/zlL3XDDTd0bh988ME6+OCD1a9fP23atEkvv/yy9u7d27l//vz5mjVrlm6//fYer/2rX/1K11xzTbfHx40bpwMPPFDFxcVqbGzUihUrFIvFtGzZMp177rk67rjjPH8dN954o2655ZaExyzL0sEHH6wDDzxQFRUV2r59u1599dWEsOSDDz6oTZs2aeHChb59jvIB3zkAADywbUPYziqcsJ2pEUvKYtguabNdYQbH0vm6CzWg6GdHV07Tgm0PaVespdu+Jduf0Ak1Zyq0X4tjNI33hWnMbEwditkdClrZ+zWBhlAAAAAAAAAAyIKmjbLPPbi3V9HnWf/1njR4ZG8vI2veeOMNXXrppQlBuwkTJmju3LmaMmVKwrFNTU2aNWuW7r777s7HFi5cqBtvvFG33nprztbs1ttvv60XX3xRknTWWWfptttu09ixYxOO2b59u66++mo98MADnY/96le/0qWXXpp01O3KlSt13XXXJTw2bdo03XnnnRo/fnzC401NTbrxxht111136YUXXtCqVas8fR3z5s1LCNoFAgFdfvnluuaaazRixIiEY23b1mOPPaYrrrhCjY2NkqRnn31Ws2bN0m233ebpvvhc4SQDAADIAGNIpIB+pBZZRbIMX2+2RlDSbNddOJ0xsgU6etfPQoGwptWc5rhvZ2yHlu98vtvj2Wi2k7LfbmdutuPvAQEAAAAAAAAA0JsuuuiihDGjDQ0Neumll7oF7SSprq5Od911l+64446Ex2+//Xa9/fbbWV+rV83NzYrH4/rhD3+o+fPndwvaSVJNTY3+8Ic/6Mwzz+x8LBaL6b777kt67csvvzxhhO5Xv/pVPfPMM92CdtKn37d///d/1y9+8QtJ0rZt21x/DevXr9ell17auV1cXKwnnnhCv/vd77oF7aRP2+7OOussrVixQmPGjOl8/I477tCHH37o+r5IVDjJAAAAMsA2jZEtoEYmy7KMrVg02+VOsZV62C5ZOyF6z9TqU4whuUXbH1N8v2bNZO+L/Vvwuu1P8hqIJgnxZUJMzqHloArnz1EAAAAAAAAAAPxm8eLFeu211zq3Kysr9cgjj6isrCzpeddcc41OP/30zu14PK45c+ZkbZ3paGhocNXo9rOf/Sxh+7nnnjMeu2LFCr3yyiud24MHD9b999/f45jWa6+9VieddFKPa+nqjjvuUFtbW+f2nDlzdMopp/R43sCBA/Wf//mfnduxWMy3z1E+IGwHpzTaMAAAIABJREFUAIAHcVPYrsB+pJoCbrlutgsoWLBtWOm00xVqQNHvyoOVOqbqBMd9WyIb9fc9ryY8Fk2j8THZ6ydbodl9aLYDAAAAAAAAAMB/5s2bl7B9+eWXa8iQIa7O/fnPf56w/fDDD6u9PbufN6TihhtuUCDQ8+e648ePTxgb+8YbbxiPffjhhxO2v/e976mqqsrVembNmuXqOEnas2eP7r///s7t0aNH65JLLnF9/qRJkzR16tTO7ccff9z1uUhUWMkAAADSFDeNkbUK60eqMWyX42a7Qg6NpTVGlmY73zqh5kzjmOZFzY8lbKfT+JjsNZCt0Ow+pj9HgwXUEAoAAAAAAAAAgN8sXbo0Yfub3/ym63PHjx+viRMndm7v3btXK1euzNjaMqG0tFQzZsxwffwhhxzS+e+tra3avXu343HLli1L2D733HNd36OhocF1oHHp0qUJrXbnnHOOq+BgV9OnT+/89/Xr16uxsdHT+fgU9REAAHhgbLYrsJCIKaiTrZCOqcGrkENj6YyRLeSQot/VhgfpiIpj9Nqul7rtW9P2jta1va+RpQdJkiKGca9uGh9DSV4D2W+2M4Xt+NUEAAAAAAAAAIDesH37dq1du7Zzu7q6OiFs5saUKVMSxtCuWLFCU6ZMydga03XAAQcoHHY/OaqmpiZhu6WlReXl5d2Oe/PNNzv/vbq6WmPGjPG0rqOOOspVy9z+YcghQ4Zo3bp1nu61/9f/wQcfaMSIEZ6uAcJ2AAB4ErcZIyuZgzrRuHP4J10Rw3XTGaWa70LpjJEt4JBiPpjZ/yuOYTtJeqb5UV089IeS0mt8DFvm10/UEOLLlJgMY2RVWKFlAAAAAAAAAMioumGy/uu93l5F31c3rLdXkBVNTU0J2wceeKAsy/J0jbFjxyZsb926Ne11ZdL+4bmehEKhhO1oNNrtmD179mjv3r2d26kE19yes2HDhoTtK6+8UldeeaXn+3XV3Nyc1vmFirAdAAAemJrtTGMf+6pcN9uZrlvIobHidMbI0mzna18oGaMDS8frH23vdNv3xu6X1RTZpLrw4CSNjz0HMQNWUEVWkTrs7sG3bI+RNTfbEbYDAAAAAAAAgFRZRUXS4JG9vQzkqe3btydsV1VVeb7G/uf4LcjldeSqGzt27EjYrqio8HyNyspKV8d98sknnq/dk127dmX8moWgsJIBAACkKU5IRJI5rJWt8ZPpNHj1VeF0xsgWcEgxX5zY/yuOj9uK67ntCySZGx+TjYhNOM4Ums36GFlDsx1jZAEAAAAAAAAA6BW2bSdse221c5KJa/hdcXHiZy2RiPfpQW7PSeXaPdn/eYc7hO0AAPDA1GwXsArrR6qpOSvXzXamsFAhKE4jaFjIIcV8Mb7fRA0OD3fct6xlkXZ37Ey78THXodl9aLYDAAAAAAAAAMBf+vfvn7Dd0tLi+Rr7n+N1bKsbsZjzZwy9Zf+vcf+GQDfcNgDW1tYmbC9btky2baf1z7e//W3P6wVhOwAAPInbjJGVaLbzg3Ta6YqsUAZXgmwIWAGd0P9Mx31RO6IXdvw17feF6TUUtTP/N6O6iolmOwAAAAAAAAAA/KSuri5h+/333/d8jffeey9he+DAgY7HFRUlfh7Q0eH8uYGTVMJs2RQMBjV06NDO7Q8++ECtra2ervH222+7Om7QoEEJ26k8R8iMwkoGAACQJtMY2UCB/Ug1hXRy3WxXyONQw4HUxsiGrHDBNTHmq0kVx6sq6Py3vpbseFJ7Yrsc95maJ7sdZwrNZul9vI+x2U402wEAAAAAAAAA0Btqamp0wAEHdG7v2LFD7777rqdrLFu2LGF70qRJjsdVVlYmbO/YscP1Pd555x1Pa8qFyZMnd/57PB7X888/7/rc5uZmvfnmm66OnTJlSsL2008/7fo+yCw+aQUAwAPzGNnCConkutkuSrNdN6mOkS3k71m+CQVCmlZzuuO+3bEWvbJzseM+t89xyDQOOutjZGm2AwAAAAAAAADAbxoaGhK2H3roIdfnvvvuu1q5cmXndklJiY488kjHY/dvvFu1apXr+zz55JOuj82VE088MWH73nvvdX3uvHnzFIm4mzh0wgknKBj8/DPpxx9/XFu3bnV9L2QOYTsAADywjWG7wvqRGjKOn8xOSKfdFLYr5GY7K/VmO+SPqdUnq9jwXO+KtTg+7vY5NoXysvU+3sfUbFdooWUAAAAAAAAAAPzkggsuSNi+8847tXnzZlfnXn/99Qnb3/jGN1Rc7Pw5xMSJExO2FyxY4OoeTz31lJYvX+7q2Fw6//zzVVFR0bk9f/58PfXUUz2e99FHH+knP/mJ6/vU1NTo/PPP79zevXu3rrnmGm+LRUYUVjIAAIA0xWxD2K7AfqSam+3c/c0Lr4xjZAOFGxxLtaGO9rD8UhYs17HVMz2d4/a1YRwHnfVmO8MYWcJ2AAAAAAAAAAD0mhkzZmjChAmd2y0tLTrvvPPU1taW9Lw5c+boscce69y2LEtXXXWV8fhjjjlGZWVlndvz58/Xq6++mvQe//jHP/Qv//IvPX0JvaKiokJXXHFFwmPnnnuuFi92nlAkSevWrdPMmTM9jdCVpNmzZyeEGP/jP/5DP/rRjxSLOX/2YrJq1Sq98MILns7B5worGQAAQBps207SbFdYIRFjSCdLjVim8E8hj0RNOWynwnqt9gXTa77sKdDrtvHRFFaN2NkJze4Tk2GMrAiCAgAAAAAAAACQqs2bN2vdunUp/bPPfffdp3D4888PlixZoqlTp+qVV17pdr9t27bp8ssv19VXX53w+A9/+EMddthhxnVWVFTo61//eud2LBbTaaedpqeffrrbsZFIRPfee68mT56sLVu2qKamxsu3JGdmzZqlQw89tHN7586dOuGEE3Tuuefqv//7v/XWW29p9erVevrpp3XllVdq/Pjxevfdd1VSUqIzzzzT9X1GjRqle+65J+GxX/ziF2poaNCCBQvU0eH8GYz0acBv7ty5mjFjhsaPH6/nnnvO+xcKSeITLQAA3DIF7SSa7fbJViOWaaylaZxtIUh1hC7NdvlnQGigjqxo0Ipd7v6GkdsgpnEcNM12AAAAAAAAAADknfPOOy/lc23blvTpiNc777xT3/3udxWPf/rZ6MqVKzV58mSNGTNG48ePV0lJiTZs2KDly5d3C3fNnDlTt9xyS4/3u+WWWzR//vzOZretW7fq5JNP1pgxY3TYYYepuLhYW7Zs0SuvvKI9e/ZIkurr63X77bf7suEuHA7riSee0IwZM7RmzRpJn35P//SnP+lPf/qT4zmWZWnu3LlqbGzs1gyYzAUXXKDNmzfr+uuv73yOXn75ZZ1xxhkqKyvTEUccoUGDBqm0tFS7du3Stm3btGrVKs8tejDj01YAAFyKE7brFLZMjVg02+VKwErtNUegKT+d2P8s12E7tyHUXDdU7hOzDc12vDYBAAAAAAAAAOh1F198sWpqanThhRdq9+7dnY+vWbOmM0jm5Dvf+Y7uuusuhUKhHu8xdOhQ/fnPf9ZZZ52lXbt29XiPUaNG6YknntCWLVs8fjW5M3z4cL344ou67LLLNH/+/KTHDhgwQPPmzdNpp52mH/3oRwn7KioqerzXvvbACy+8UJs3b+58vLW1VS+99JKr9fq1JTAfFFYyAACANMTtJGG7AguJ5LrZzhT+SbXdrZDRbJefhpeM1sFl5sr1rtyGUI1jZOPZHSMbNzTbBRhxDAAAAAAAAACAL5xzzjlau3atrrjiCtXW1hqPC4VCOumkk/TSSy/pvvvucxW022fGjBlavny5zjzzTGObW11dna699lq98cYbOuSQQzx/HblWX1+v//mf/+kM3Y0bN07V1dUqKSnR6NGjdeKJJ+ruu+/W2rVrddppp0lSt8a5qqoqV/c65ZRT9OGHH2ru3LmaMGFCj414oVBIU6ZM0ezZs/X+++/riiuuSO2LBM12AAC4lbTZLsWWsXxlCrmZxr2myxT+KeRmu1QFCTTlrZn9v6L3Wt/q8ThT82S34wzvn2y9j/eJydRsx68mAAAAAAAAAAC4tW7duqxef+DAgfrNb36jX//611q5cqVWr16tpqYmtbe3q7a2VsOGDVNDQ4OrJjaTsWPH6tFHH9W2bdv0/PPPa+PGjWptbdWgQYM0atQoTZ06VUVFn39+MG3atM6Rt254OXZ/DzzwgB544IGUzm1oaFBDQ4OrY1etWtX575ZlaeDAga7vU1JSossuu0yXXXaZmpub9fLLL2vTpk1qbm5WNBpVeXm5Bg4cqIMOOkhjx45VWVmZ568F3fGJFgAALpnamKTCGyMbMoR0OuwOxexYxsdB0myXOYzqzF+HlE3QkPAX9HFkfdLjTO/PbseZxshmudkuZvizlNcmAAAAAAAAAAD+EwgENGnSJE2aNClr96itrdXZZ5+dtev71Z49e/Taa691bh900EEphxf79++vU089NVNLQxKFlQwAACANycfIFtaP1GQht6id+aCOaTwtzXbe0R6WvyzL0on9z+rxOLchVFMDnincminmsB2vTQAAAAAAAAAAUDjmzZun1tbWzu1jjjmmF1cDt/hECwAAg9bYbn3cvl52l22TQIGN5kwWcntvz1sqC5Z3bg8KD1VlUbWkT6uam6Kb1NKxXUVWSMOKRykUCCW9V8zuUFzO4Ry34zLxOdrD8ttRlQ16fNuD2tHxifEYtyFU03Efta/T1sjHqgsNlmVZKa0zmZhtGCNbYH+OAgAAAAAAAACAwrVx40bNmjUr4bELLrigl1YDLwjbAQCwn5gd00Ob5+qVnUtky9xm1xXNdp+7++Pbuj32xX5H6Yzab+q+TXdoS+SjzsdDVlhfrfu2jq9xrjS2bVsPb7nLvA6a7TyjPSy/FVkhTa/5suY3PWA8xm0I1TRGVpJmf3iZBoWH6rKhP1ZdeLDXZSZlCs/y2gQAAAAAAAAAAPnqz3/+s1auXKmrrrpKdXV1SY99/fXXdfbZZ6u5ubnzscMPP1zTp0/P9jKRAXyiBQDAfp765L/18s7nPJ1jFdhkdq8ht7/veVV/3/Nqt8ejdkSPbL1H9cXDdXDZod32v9TytJa1LDJeN1lYCM5oD8t/DVUz9ddPHtHeeJvj/nSb7fbZEvlIczfeoptGzc1ow515jCyvTQAAAAAAAAAAkJ927dql2267Tb/85S91yimn6IQTTtDhhx+ugQMHqqioSM3NzXr77bf1l7/8RQsWLJBt253nhsNhzZs3rxdXDy8I2wEAsJ83dr/s+ZwAYbu0vLX7Fcew3Ru7kj8XNNt5V/HZSF/kr9JgPzVUnaxF2x913O82hOqmAW9r9GNtjmzU4OLhntaYjDlsx68mAAAAAAAAAAAgv0WjUS1YsEALFixwdXxpaan++Mc/6vDDD8/yypAphZUMAADAhe0d2zwdXxIoVU1oQJZW40/FVon6FyWvP/ZiR7TZ8fFkz0VpoJ+qi/pnbA356Ct1/+L4+OkDztPA0BDHfRMrjs3mkpAj02tOV8ChpTCgoAaFnZ/7/Q0uHuHquJYO5/dnqmLqcHycZjsAAAAAAAAAAJCvqqurFQx6+6zj2GOP1QsvvKBzzjknS6tCNhC2AwBgP5F4u6fj/6lyWsE1MlmWpSlVJ2bseqbwTcQ2PxeTq6YX3Pd9f0eUT1FJoCzhsWKrRBMrjnV8fgaFh+qA0kNytTxkUU2oVqcM6P6L18SKKSoLlru6Rv9QncaW5f5vSRmb7RhxDAAAAAAAAAAA8tRZZ52lLVu26MEHH9Sll16qhoYGDR8+XP369VMwGFR5eblGjBihqVOn6t/+7d+0dOlSLV26VEcddVRvLx0eFfYn1AAA7CduxxW1I66O7V9UpyMrG3Rm7TezvCp/+tKAc2VZAb3Sslhbox+ndS1T+MYUfBwQGqiz6y5M6559QW14kK4cfov+p+kBNe5dq+HFo3RG7TdVXzxMg8JDJUl/2/msdnZs19iyw/X1QZfQHtaHnDrg6woooL/tfFaS9MV+R+nsgd7eF/869Dr9acv/1d/3vKpdsRbHY2zZaa+1q5htarbjVxMAAAAAAAAAAJC/BgwYoPPPP1/nn39+by8FWcQnWgAAdNFhR437/veIn2tUyUGd25YsWZaVi2X5kmVZ+tKAr+lLA76muB3vfHxnx3b92wcXebqWKXxjCtudU3eRAoTGJEkjSg7QlcNvkW3bCa9Hy7J00oCv6qQBX+22D31DwAro1Nqv69Tar6d8jZJAqb41+PuybVvfe/9s2Yp3OybzYTtDsx3vaQAAAAAAAAAAAPgcYTsAALpINkK22CpRwGICu5Ou35fiQInn853CdrZtK2JoGQwHij3fo69LFqYjaIeeWJalgAKKOYTtMo1mOwAAAAAAAAAAAOQrEgMAAHQRsc1hOwJe7qTyfXJquuqwOxxbtiQpbPFcAJlmymRmvNlOhmY70WwHAAAAAAAAAAAAfyNsBwBAF0mb7QjbuRK0ihTwGJpxCt9ECT4COWZK2+VqjCzNdgAAAAAAAAAAAPA3wnYAAHSRtNmONjXXvIbhnMZKJgs+ErYDMs8yhO0y2WwXt+PGxsqARbMdAAAAAAAAAAAA/I2wHQAAXRDwygyvwUSnpqtkwceQFfa8JgC9z9RqJ9FsBwAAAAAAAAAAAP8jbAcAQBemgFdAQYIgHoQD3sJwNNsB/pXJIbIxdX+v7xP0OH4aAAAAAAAAAAAAyDXCdgAAdGEKeBHu8sZzs528Ndsx0hfIPNMY2UzG7eJJm+0I2wEAAAAAAAAAAMDfCNsBANBF1BDwItzljddwotdmO8bIAplnCtvZGQzbOb3X96E9FAAAAAAAAAAAAH5H2A4AgC4i8Yjj417Hoha6kMdwolPblanZLmwVy7JMDVwA/CxGsx0AAAAAAAAAAADyGGE7AAC6SBbwgnvem+0cwnbG4CPPBZANphCrbWew2U5Jmu1Esx0AAAAAAAAAAAD8jbAdAABdmEaXEvDyxms40SmAw0hfINdyMUaWZjsAAAAAAAAAAADkL8J2AAB0YWq28zoWtdBlptnO8FwQfASyIhfDmZOH7Wi2AwAAAAAAAAAAgL8RtgMAoAua7TLDe9iue7OdeaRvOKU1AehJ9uN2Tu/1fWi2AwAAAAAAAAAAgN8RtgMAoAtj2I5mO0+8fr/iisu2E0dVEnwE/CGjY2RFsx0AAAAAAAAAAADyF2E7AAC6MLapEfDyJJXvV0yJjVfmZjueCyAbLGOzXQbDdsma7USzHQAAAAAAAAAAAPyNsB0AAF3QbJcZqXy/YnZi4xXNdkBumcJ2mYvadX+fd8UYWQAAAAAAAAAAAPgdYTsAALowN9uFc7yS/JZSs51Nsx3Qq0zFdjlotrNkKUDYDgAAAAAAAAAAAD5H2A4AgC5oU8uMTDTbReMR52vzXABZYWy2szMYtpNzsx2tdgAAAAAAAAAAAMgHhO0AAOgiamhTC9Gm5kkqTYD7h3BMzXY8F0C25GKMrHOzXVBFGbwLAAAAAAAAAAAAkB2E7QAA6IJmu8xIJRDXbYwszwWQU8Ypshm0f4PlPoyQBQAAAAAAAACgMDU2NurHP/6xpk6dqkGDBikcDsuyrM5/Hnjggd5eIpCACgkAALowtamlMha1kKUSiOs2RtY2jJG1vLfmAeiZaYxsJrvtTGE7xsgCAAAAAAAAAODNyJEjtX79+s7txYsXa9q0ab23oBTce++9+v73v6/2dufPaAE/otkOAIAuInFDwIs2NU9SCSfSbAf4k53RsJ1pjCxhOwAAAAAAAAAACsmTTz6pSy65xHXQbsmSJQmNd7Nnz87uAgEDmu0AAOiCZrvMyESzHc8FkGvZb7aLy9Rsx68lAAAAAAAAAAAUkuuvv162/flnEP/8z/+siy66SMOHD1coFOp8vLa2tjeWBxjxqRYAAF3QppYZqQTi4qLZDuhN2Y/aJWm2Y4wsAAAAAAAAAAAF47333tNbb73VuX3qqafqoYce6sUVAe4xRhYAgM/E7A5j61LYCud4Nfktq812hO2A7LCc43Zd/1ZZuvZ/n+8ToNkOAAAAAAAAAICC8eqrryZsn3POOb20EsA7wnYAAHzG1KQmEfDyKpXvV4ftrtkuxBhZICusHHTbGZvtRLMdAAAAAAAAAACFYsuWLQnbw4YN66WVAN4RtgMA4DOmJjWJgJdXqYyR7RrCidtxRe2I87UJPgJ5K2ZoD2WMLAAAAAAAAAAAhWP37t0J26FQqJdWAnjHvCYAAD5Ds13mhFIYu9s1hNNhR43HpRLkA9AzU7Nd5nrtkjTbMUYWAAAAAAAAAABfsm1br732mlavXq2tW7eqvb1ddXV1Gjp0qBoaGlReXu75mvF4PAsrBXKDT7UAAPhMsmY7Al7eWJalsFWc9Hu6v64hnOTBR+9BPgA9y80YWZrtAAAAAAAAAADIB9u2bdOtt96qBx98UE1NTY7HhMNhzZgxQ7Nnz9bRRx9tvNa6des0atQo4/7p06c7Pv6HP/xBF154oeO+m2++WTfffLPxmosXL9a0adOM+4FUMUYWAIDPROLOY0slmu1S4fV71jWEQ/AR8A87J2E7/g4QAAAAAAAAAAB+8eijj2r06NGaM2eOMWgnSZFIRAsXLtTkyZN1ySWXqKPDecIN0JfwqRYAAJ9JFvBKZSxqofMaiksI2zHSF+iTYjKMkRXNdgAAAAAAAACQlniH1Lqxt1fR95UNkwJ9O2pz//336+KLL+426vWAAw7QuHHjVFZWpsbGRi1fvlyx2Oef791zzz1qbGzUggULVFTUt79HKGy8ugEA+Iwp4BWywgpYlMF6FfLcbNdljCzNdkDOWZbzGFma7QAAAAAAAAAgD7RulB43j+lEhpzxoVQ+srdXkTVvvPGGLr300oSg3YQJEzR37lxNmTIl4dimpibNmjVLd999d+djCxcu1I033qhbb7014dhhw4bpww8/7Nz+zW9+o9/+9red2w8//LAmT57cbT21tbWdo2BffvllnXfeeZ37rrjiCl155ZXGr6W+vr6HrxZIDZ9qAQDwmagh4EWTWmrCHtsA46LZDuhdhrCdncmwnaHZzqLZDgAAAAAAAACA3nbRRRcpEol0bjc0NOipp55SWVlZt2Pr6up01113acyYMbr22ms7H7/99tt13nnn6dBDD+18rKioSCNHjuzcrq6uTrhWfX19wv6uysvLJUnr1q1LeLy6utp4DpBN1PQAAPAZU8CLJrXUeA3FuWm2CyhIAxaQJc5Ru8wyN9sRtgMAAAAAAAAAoDctXrxYr732Wud2ZWWlHnnkEcegXVfXXHONTj/99M7teDyuOXPmZG2dQG8jbAcAwGeMYTua1FLiNaTYNYTDcwHknpWDuF1MhmY7CrcBAAAAAAAAAOhV8+bNS9i+/PLLNWTIEFfn/vznP0/Yfvjhh9Xebp5kBeQzPtUCABSMJ7c9omUti4z798bbHB+n2S41qTTbrWl9R4u3/0Wv7/6b8zV5LoAscg7bPdr0R/31k/9KemZ9eJiOrpqmSZXHG4+JxNv1t5ZnHffRbAcAAAAAAAAAQO9aunRpwvY3v/lN1+eOHz9eEydO7GzG27t3r1auXKkpU6ZkdI2AHxC2AwAUjNb4bjV3NHk+jza11IStEk/Hv9/2dz267T/UYUfN1wyE010WAANTs92e+C7tie9Kem5zR5NWtb6u9vheNVSf3G2/bdv6949+Zjyf8dAAAAAAAAAAAPSe7du3a+3atZ3b1dXVOuSQQzxdY8qUKQljaFesWEHYDn0Sn2oBANCDkEXAKxVeg3Fv7V7e8zVptgN87bntCxzDdh+1r9d7rW8ZzwvQbAcAAAAAAAAA6SkbJp3xYW+vou8rG9bbK8iKpqbEwpIDDzxQluX8l/RNxo4dm7C9devWtNcF+BFhOwAAelARrO7tJeSlyqLMf98qiqoyfk0An+oXrJDMxZKubI5sVCTe3q0RtLF9TdLzKoK8twEAAAAAAAAgLYEiqXxkb68CeWr79u0J21VV3v+//f7nNDc3p7UmwK8Cvb0AAAD87ovlE3t7CXlpfL8j8+KaAD51SL8JGblOXPFuj0Xi7UnPGdfviIzcGwAAAAAAAAAAeGfbdsK211Y7J5m4BuBHhO0AAEhiavUpOrJiam8vIy+NLh2rM2u/lbHrHVE+RdNqTsvY9QAkOrn/2RrfL/1wcdyOdXssWdjuzNpvaXTpWON+AAAAAAAAAACQXf3790/Ybmlp8XyN/c+pqalJa02AXzFGFgBQMI6qmKqhxSNdHVtkFWlUycGqDddnd1F93MkDztbRVdO1tnWVIna7yoNVeqZ5vta0veP6GkdWNOi0Ad/QoPBQ/gYMkEWhQFiXDZ2lTZENaty7VrZDQ90+OzqatWDbQ477Yk5hO9s5bFcXGqyTB5yd2oIBAAAAAAAAAEBG1NXVJWy///77nq/x3nvvJWwPHDgwrTUBfkXYDgBQMEaWHqSRpQf19jIKTnVRfx1Z2dC5vaxlkafzG6pPVn3xsEwvC4ADy7I0pHiEhhSPSHrcpvYNxrCdlzGydeHB3hcJAAAAAAAAAAAyqqamRgcccIDWrl0rSdqxY4feffddHXLIIa6vsWzZsoTtSZMmZXSNlHLALxgjCwAAcipoBT0dH7aKs7QSAKlK9j52GiMbtSOOx4atcMbWBAAAAAAAAAAAUtfQ0JCw/dBDzn/p3sm7776rlStXdm6XlJToyCOPzNjaJKm4OPEzw/Z257/oD2QbYTsAAJBTQY/FuuEAYRzAbwJKErbz0GwXDhCmBQAAAAAAAADADy644IKE7TvvvFObN292de7111+fsP2Nb3yjWzguXdXV1QnbmzZtyuj1AbcI2wEAgJyi2Q7IfwHL/GuEU7NdxDaE7Xh/AwAAAAAAAADgCzNmzNCECRM6t1taWnTeeeepra0t6Xlz5szRY4891rltWZauuuqqjK9v9OhI9A+jAAAgAElEQVTRCoc/L+lYvHixotFoxu8D9MRbtQwAAECaPIftaL4CfCeQbIwszXYAAAAAAAAAAOTc5s2btW7dupTOHTlypCTpvvvu0zHHHKNIJCJJWrJkiaZOnaq5c+fq6KOPTjhn27Ztuummm/T73/8+4fEf/vCHOuyww1JaRzLhcFjHHnusFi9eLElqbGzUGWecoe9+97s68MADVVZWlnB8fX29SkpKMr4OgLAdAADIqaDlcYwszVeA7wSSFGTHbYewnb3X8dgQ728AAAAAAAAAADLivPPOS/lc27YlSRMnTtSdd96p7373u4rHP/3//StXrtTkyZM1ZswYjR8/XiUlJdqwYYOWL1+ujo6OhOvMnDlTt9xyS+pfRA+uvvrqzrCdJC1cuFALFy50PHbx4sWaNm1a1taCwkXYDgAA5BTNdkD+SzZGNuY0RjYecTyW9zcAAAAAAAAAAP5y8cUXq6amRhdeeKF2797d+fiaNWu0Zs0a43nf+c53dNdddykUCmVtbaeffrp++tOf6qabblIs1v3zCCAXzJ+SAQAAZEHQQ9Y/oKDnJjwA2ReUOTRrO42RtQ1jZGm2AwAAAAAAAADAd8455xytXbtWV1xxhWpra43HhUIhnXTSSXrppZd03333ZTVot88NN9ygt956S9ddd52OO+441dfXq7S0NOv3Bfbh02sAAJBTXprtaL0C/Mny3GxnCNvxHgcAAAAAAAAAICXr1q3L6vUHDhyo3/zmN/r1r3+tlStXavXq1WpqalJ7e7tqa2s1bNgwNTQ0qKKiwvO1Z8+erdmzZ6e8tnHjxum2225L+XwgHYTtAABATnlpqqP1CvCnZM12cTmE7YzNduGMrQkAAAAAAAAAAGReIBDQpEmTNGnSpN5eCuALjJEFAAA55a3ZjiAO4EeBJM12cdthjCzNdgAAAAAAAAAAAOgDCNsBAICcCnoo1qXZDvAnK8mvEU7NdlFjsx3vcQAAAAAAAAAAAOQPwnYAACCnvDTbhWi9AnwpYAWMgbv9m+1idkwddofjsbzHAQAAAAAAAAAAkE8I2wEAgJwKeBkjazFGFvCrgClsp8SwXdSOGK9Bsx0AAAAAAAAAAADyCWE7AACQU0HLwxhZWq8A3wpYzr9KxOzEMbKRuPMIWYn3OAAAAAAAAAAAAPILYTsAAJBTQXlptiOIA/iVaSS0vV+zXdKwHe9xAAAAAAAAAAAA5BHCdgAAIKe8NNuFaL0CfMsy/CrRrdnOptkOAAAAAAAAAAAAfQNhOwAAkFOmNiwntF4B/mV6L8cZIwsAAAAAAAAAAIA+irAdAADIKS/NdgRxAP8KGH6ViO8/RjZJs13ICmd0TQAAAAAAAAAAAEA2EbYDAAA5FRTNdkBfEHDZbBc1NNsVWUWemi4BAAAAAAAAAACA3kbYDgAA5JSnMbIBWq8Av0q32S5EmBYAAAAAAAAAAAB5hrAdAADIKU9jZAnjAL4VsAxhO3u/sJ2h2a44UJLxNQEAAAAAAAAAAADZRNgOAADklLdmO8J2gF8FDCOhY0ocIxuxI47HEaYFAAAAAAAAAABAvnFfLYM+wbKsUZImSBoiqVzSJknrJS2zbTvam2sDABSGoBVyfSxjJgH/MjXb2S6b7RgTDQAAAAAAAAAAgHxD2K5AWJZ1jqSrJR1jOKTZsqxHJN1o2/a23K0MAFBogoY2LCc02wH+5b7ZzjlsR5gWAAAAAAAA/5+9O4+yqyzzxf/dVUkqhCRkDkiIAUOahEHARAQZG5qppaUBZXIp2K1eUZRuEBsnRllwwV4dQbuV9gavP1RaQKZWWxxCiwjcgDSQoCTKEKYYQkIGyFj790dCmVOp6VSdqkpVPh/WXuR9z36Hvc85u2qf89TzAgD0NZaR7eeKohhaFMX3kvwgrQfaJcmoJB9P8kRRFMf0yOQA2CZZRhb6h9bey41ls2C7VjPbeX8DAAAAAADQtwi268eKoqhPcnOS05o9tDjJT7MxAO+RJOVmj41PckdRFAf3yCQB2ObUFx1PrDtI5ivYahWtLCPb2GwZ2XWtZLbz/gYAAAAAAKCvEWzXv12V5PjNyuuSnJtkQlmWx5Rl+f6yLN+RZK8kv9lsv4YktxdFsVPPTRWAbYXMdtA/tLYkdGPzZWRltgMAAAAAAKCfEGzXTxVFsVuSTzerfl9ZlteXZbl288qyLOclOTKVAXejk1zcvbMEYFtUH5ntoD+o62Bmu7Uy2wEAAAAAANBPCLbrvy5OMnCz8o1lWd7R2s5lWb6R5Kwkmwfi/d2moD0AqJnqMtsN6saZAF1R18qtRGOaBdvJbAcAAAAAAEA/IdiuHyqKYrskpzSrvrq9dmVZPpXk9s2qBiQ5o4ZTA4DUFzLbQX9Q10rg7Iay2TKylUmVmwwsBNMCAAAAAADQtwi265+OSTJks/JvyrL8XQfbzmpWPqk2UwKAjarJbDdQ5ivYarWW2a6U2Q4AAAAAAIB+SrBd/3Rss/LsKtr+Ksn6zcr7FUUxvsszAoBNqstsJ/MVbK06ntmulWA7mSsBAAAAAADoYwTb9U97NSv/pqMNy7JcleTxZtV7dnlGALBJfTqW2W5AMbDVYB6g97WWpbJ5Zrt1MtsBAAAAAADQTwi265+mNisvqLL9H5qVp3VhLgBQoaPLyMp6BVu3opVbiQ5nthNsBwAAAAAAQB8j2K6fKYpiVJJRzaqfq7Kb5vvv3vkZAUCluqI+RYp29xOIA1u3+qLlW4nG8s+Z7dY0rs6SdX9qcT8BtQAAAAAAAPQ1gu36nxHNyq9vWhq2Gs2/Ed2hC/MBgC10JLudQBzYutW1siR0YzZmtlu5YXn++bnPtdpeQC0AAAAAAAB9zYDengA1N7RZ+Y1O9NG8zbBOzqVJURTjkoytstnbujouAFun+gzI+qxvc59BdYN6aDZAZ9S1k9nuv5bcmoVr/thqewG1AAAAAAAA9DWC7fqf5sF2qzvRR/Ngu+Z9dsY5SS6uQT8A9AMD6wZlzYa2f0QNKgb30GyAzmg9s93GYLunXn+8zfYNdd7jAAAAAADQXV5//fU88sgjmT9/fl555ZWsXr062223XcaPH58pU6Zkv/32y6BBkl901uGHH5577723qVyWZbeMM3v27BxxxBFN5YsvvjiXXHJJt4xFxwi26/86827unisAAGyy6+C/yOOr/l+b+7xtyNQemg3QGa1nttu4jOzrjatabTuoaMiEhl27ZV4AAAAAALCt2rBhQ/7jP/4js2bNyi9/+cusX9/6SlODBw/OMccck7//+7/Pe97znh6cJfRtLX9DRl+2sll5u0700bxN8z4BoEuOHnVSGtrIXLfDgFE5eIeje3BGQLVay2y3IRuD7TaUrd/AHzP6lAy0VDQAAAAAANTML37xi0ybNi1nnHFG7rnnnjYD7ZJk9erVueOOO3LCCSdkxowZeeSRR3poptWZNGlSiqJIURSZNGlSb08HZLbrh7bWYLuvJ/lBlW3eluSOGowNwFbmbUOm5h8nXpkHl/8yz695pimtcn1Rn7cOnpx373B0xgwa38uzBNrSWma7sty4jOybGe6a23fou3Lc6Pd127wAAAAAAGBbc+mll+bSSy/dYinToigyderUTJgwIaNHj87ixYvz3HPP5amnnqrYb86cOTnwwANz/fXX5yMf+UhPTh36HMF2/c9rzcpDiqLYvizL1tfx2tK4ZuVlXZxTyrL8U5I/VdOmKIquDgvAVmyXwbtll8G79fY0gE5qP7Ndy8F204cf2m1zAgAAAACAbc15552XmTNnVtQNGzYsF110Uc4888xMnDhxizYLFizIjTfemGuvvTZr1qxJkqxduzYf/ehHs2rVqpx33nk9Mnfoiywj28+UZbkkydJm1VteOdv21mbl+Z2fEQAA/VF9K5ntGjdlttuQltPT17cSpAcAAAAAAFTn29/+9haBdgcffHDmzZuXiy66qMVAuySZPHlyrrjiijz22GPZa6+9Kh47//zzM3v27O6acr8xe/bslGXZtLHtEGzXPz3ZrDy5yvbN0ww17w8AgG1c0cqtRGM2Bdu1ktmuvhBsBwAAAAAAXfXUU0/lk5/8ZEXdQQcdlB//+MeZMGFCh/qYMmVKfv7zn2fq1KlNdY2NjfnABz6QV155pabzhf5CsF3/9ESz8oEdbVgUxfZJ9mmnPwAAtnGtBc01lm8uI9tKZrtiQLfNCQAAAAAAthUXXHBBVq5c2VQeMWJEbr311gwdOrSqfsaNG5dbbrklgwYNaqp74YUXcvnll9dsrtCf+Karf/pJko9uVj68iraHpPJ18duyLBfVYlIAAPQfda0F26UxZVk2ZbhrTmY7AAAAAADomt/97ne5++67K+quuuqq7Ljjjp3qb9q0abngggty5ZVXNtV961vfyiWXXJKRI0d2aa5bmwULFuSxxx7LCy+8kBUrVqQoigwZMiTjx4/Prrvumr333jtDhgzp9nmsWbMm9957b55++um8+uqrGTduXCZMmJBDDjmkW8Z/6aWX8uCDD+ZPf/pTlixZkqFDh2bcuHGZMWNGdtut+QKYtEWwXf/0X0neSLLdpvKBRVHsUZbl7zrQ9qxm5R/WcmIAAPQPda0tI1tuyIa0nNUuSerdggAAAAAAQJfMnDkzZVk2lceMGZOzzz67S32ed955ueaaa7Ju3bokyapVq3LDDTfkwgsv3GLfs846K9/+9rebyk8//XQmTZrUoXFmz56dI444oql88cUX55JLLmmz/zc9++yzKYqi1b4/9KEP5cYbb9yifs2aNfnqV7+aG264IfPnz29zfvX19dl3331z4okn5h//8R9bDXw7/PDDc++99zaVN38+2vLaa6/lS1/6Um688cYsX758i8eHDRuWU089NZdeemne8pa3dKjP1qxbty7f+ta38vWvfz2PP/54q/vtvvvuueCCC/LhD384Awb4Hqc9lpHth8qyfD3JLc2qP9teu6IopiT5282q1if5bg2nBgBAP9FaZrsN5YZs2LSUbEtktgMAAAAAgK75yU9+UlH+4Ac/WLEMbGeMHTs2J5xwQpvj9EULFy7MfvvtlwsvvLDdQLsk2bBhQx5++OF88YtfzIsvvljTufzP//xPpk2blq9+9astBtolyYoVK/Lv//7v2XvvvfPrX/+602M9/PDD2WOPPfLxj3+8zUC7JJk/f34+9rGPZcaMGXnhhRc6Pea2Qjhi/3VJktOSDNxUPqsoih+WZXlnSzsXRTE4yawkm199v1WW5R+6dZYAAPRJrWW2K9OYDWUbme0KtyAAAAAAALW2odyQZetf6e1p9HsjBozp9T8qf/755/PMM89U1B199NE16fvoo4/Obbfd1lR+4IEHsm7dugwcOLCNVluvtWvX5thjj82TTz5ZUT9q1KjsvffeGT9+fAYOHJgVK1bkpZdeyrx587Jq1apumcu8efNy5JFHZsmSJRX148ePz3777ZcRI0Zk0aJFeeCBB/LGG2/k1VdfzXve855cc801VY91991359RTT83rr79eUb/TTjvl7W9/e0aNGpVVq1Zl3rx5FQGIjz76aA444IA88MADmTBhQucOdBvgm65+qizLPxZFMTPJBZtV31IUxT8m+WZZlmvfrCyKYmqSf09y0Gb7LklyaY9MFgCAPkdmOwAAAACArcey9a/ki3/8WG9Po9+7fLdvZPTA8b06h5aynU2fPr0mfb/jHe+oKL/xxht59NFHM2PGjJr031HXXntt09KyBx98cFO2tZ133jn33Xdfq+2GDh1aUZ41a1bmzZvXVJ40aVK+9rWv5dhjj01d3ZZJBcqyzMMPP5y777473/rWt2pwJButW7cuZ555ZkWg3U477ZSZM2fm5JNPrpjLypUr85WvfCVf/vKXs2zZshaX8W3LvHnzctppp1UE2h177LG59NJL8853vnOL/X/729/m05/+dH71q18lSV544YWcfvrpmT17durrfafTEsF2/ds/JdkzyXGbygOTXJfki0VRPJJkRZLdkuyfZPNFrdcm+duyLF/qwbkCANCH1LeV2S5tBdu5BQEAAAAAgM56/vnnK8rjx4/P6NGja9L3Xnvt1eJ4PR1sN2bMmIwZMyZJMmDAn79XGDBgQCZNmtThfu64446Ktvfcc08mT57c6v5FUWT69OmZPn16vvjFL6axsbH6ybfguuuuy6OPPtpU3mmnnXLfffdlt91222LfoUOH5uKLL85ee+2V97///Vm6dGmHx2lsbMypp55akZ3vkksuycUXX9xqm/322y+/+MUvcuqppzZlNbzvvvty00035YMf/GCHx96WtPwNGf1CWZYbkrw/yc3NHhqX5Ngk70vyjlQG2v0pyXvLsvxVj0wSAIA+qShavpXYULazjGz8FRQAAAAAAHTWq6++WlEeOXJkzfoePHhwGhoa2hyvL3n22Web/v32t7+9zUC75urr62uyfG5jY2Ouu+66irpvfvObLQbabe7kk0/OOeecU9VYt912W5544omm8vvf//42A+3eNGDAgHz729/OuHHjmuquvfbaqsbelgi26+fKslxZluVp2RhY90Abu76a5F+T7FWW5U96ZHIAAPRZrQXNNabtZWRbW34WAAAAAABoX/PgtxEjRtS0/+b9bb70aV/2pz/9qVfG/e///u8888wzTeUZM2bkPe95T4fafulLX6oq4O+rX/1q07+LoshVV13V4bZDhw7Nxz7256WoH3/88Yp582eC7bYRZVneUpblgdm4bOwpST6V5KIkZyf5yyQ7lWV5TlmWi3txmgAA9BF1rWS2a2wvs51lZAEAAAAAYKtVFEX7O/URe+yxR9O/Fy5c2CvZ2u67776K8umnn97htmPHjs3RRx/doX1XrVqVBx74cw6uGTNmZNddd+3wWElyxBFHVJR/9SuLYrbEN13bmLIsn07ydG/PAwCAvq21DHXtZbarl9kOAAAAAAA6bdSoURXl1157rab9L1u2rM3x+pIzzjgjt912W1P5M5/5TG6//facffbZOf7447PTTjt1+xzmzJlTUT7ggAOqan/AAQfkP//zP9vd74EHHsi6deuayrvttlvVmekaGxsryn/4wx+qar+tEGwHAABUra61ZWTLxjSmjcx2bkEAAAAAAGpuxIAxuXy3b/T2NPq9EQPG9PYUtgh+W7p0ac36Xr16dVavXl1RN3r06Jr139NOOumknHTSSRUBd7/+9a/z61//OkkyefLkHHTQQXn3u9+dQw45JFOnTq35HBYtWlRR3n333atqP2XKlA7tt3Dhwory97///Xz/+9+vaqzmmi9ZzEa+6QIAAKrW+jKyMtsBAAAAAPS0+qI+oweO7+1p0AN23nnnivLLL7+cJUuW1CQobu7cue2O15cURZGbb745F198cf75n/95i0DCBQsWZMGCBfm///f/JtkYfPeBD3wg5557bs0y+jUPhhw+fHhV7XfYYYcO7bdkyZKq+u2IFStW1LzP/qDlb8gAAADa0Fpmuw1pzIayjcx2hb/3AQAAAACAzjrooIO2qGu+VGlnNe9nu+22y7777luTvnvLgAED8uUvfznPPPNMrr322hxyyCFpaGhocd8FCxbkkksuyW677Zabb765h2faNWvXrq15n2VZ1rzP/kCwHQAAULXWMtuVZWObme3q3IIAAAAAAECnTZw4MRMnTqyo++lPf1qTvu+5556K8gEHHJBBgwbVpO83bdjQ+ncI3Wn8+PE5//zz89///d957bXXcv/99+faa6/Ne9/73gwdOrRi39deey2nn356br/99i6PO3LkyIry8uXLq2r/2muvdWi/MWMqlzi+8sorU5Zll7Ybb7yxqrluK3zTBQAAVK21oLkNm/5rSX0GpCiK7pwWAAAAAAD0e8cee2xF+Tvf+U7WrVvXpT4XL16cO++8s81x3jRgQOUqNuvXt77iTXPNl1XtDQ0NDTnwwANz/vnn5/bbb8+SJUvy/e9/P1OmTGnapyzLfOpTn0pjY2OXxho/vnJ55/nz51fV/qmnnurUOB1tR/UE2wEAAFWrL1peRrax3NDqMrKttQEAAAAAADru05/+dMUfty9evDizZs3qUp8zZ86sCNjbfvvt85GPfKTFfYcPH15RXrZsWYfHmTt3blXz6ok/4h80aFBOPfXUPPjgg9l5552b6hcuXJiHH364S31Pnz69ovzAAw9U1f7BBx/s0H4HHnhgxbm65557LAPbTQTbAQAAVWsts11jWl9GVrAdAAAAAAB03bRp03LcccdV1H32s5/NokWLOtXfvHnzcs0111TUnX322Rk1alSL+48bN26L9h31ox/9qKq5NTQ0NP17zZo1VbWt1ogRI3LSSSdV1D399NNd6vPggw+uKH/ve9/rcNvFixd3eIngsWPHZr/99msqv/DCC/nxj3/c4bHoOMF2AABA1eo6ldluQIv1AAAAAABAdb7yla9kyJAhTeVly5blpJNOysqVK6vqZ/HixTnllFOydu3aprqddtopX/rSl1pts//++1eU77rrrg6N9V//9V956KGHqprfiBEjmv79yiuvdHm53PY0XyJ382C/zjj00EMzadKkpvKcOXNy9913d6jtZZddVtXxfvKTn6woX3DBBVW/HmifYDsAAKBqrQbbpTEb0kpmu8hsBwAAAAAAtbDHHnvkuuuuq6i7//77c9xxx+X555/vUB/z58/PkUcemSeffLKprq6uLt/5zncyduzYVtsdeOCBFYF+P/zhDzNnzpx2x/rQhz7UoXltburUqU3/Xr9+fX75y192qN3rr7+e6667LitWrOjwWCtXrsxtt93W6vidUVdXt0UQ3Mc+9rF2M+bddttt+frXv17VWB/84Aezxx57NJWffPLJ/O3f/m2WLl1aVT+LFy/e4jzwZ4LtAACAqrW2jGySrGtc22K9zHYAAAAAAFA7H/7wh/OJT3yiou6+++7LtGnTctVVV2XhwoUttluwYEG+8IUvZO+9987jjz9e8djVV1+dI488ss1xhw0bllNPPbWpvGHDhvz1X/91i0uerl27NjfccEPe9a53ZdGiRRk5cmRHDy9JcsQRR1SUzz777Hz961/Pww8/nD/+8Y955plnmrZXXnmlYtxPfepTmTBhQj784Q/nrrvuajPw7qGHHsqRRx6ZZ599tqnuXe96V6ZMmVLVfFvyqU99Km9/+9ubyi+++GLe/e5355ZbbkljY2PFvqtWrcpll12W0047LY2NjVWdr/r6+txyyy0ZPnx4U93Pfvaz7LPPPvnXf/3XNo//1Vdfzc0335zTTz89u+yyS7761a9WcYTbFt92AQAAVWsts12SrC9bTmle30YbAAAAAACgetdff31GjhyZL3/5yynLMkmyYsWKXHTRRfnc5z6XadOmZZdddsnIkSOzZMmSPPvss/n973+/RT8DBw7MzJkz8/GPf7xD415++eX54Q9/mGXLliVJ/vSnP+WYY47J5MmTs88++6ShoSGLFi3Kgw8+mFWrViVJdtxxx1x99dVVZbh73/vel89//vNN2fpefPHFLQIM3/ShD30oN954Y0Xd8uXLM2vWrMyaNStFUWTy5MnZbbfdMmLEiAwYMCBLlizJE088sUU2wCFDhuSb3/xmh+fZloEDB+amm27KYYcdliVLliRJXnrppbzvfe/L+PHj8453vCM77LBDFi1alN/85jd54403kiQ77LBDrr766nz0ox/t8Fh77rlnbr311pxyyil57bXXkiTPP/98zjnnnJx77rnZe++9M3HixAwfPjyvv/56li1blqeeeqrD2RARbAcAAHRCW5nt1pYtZ7ark9kOAAAAAABq7vLLL89hhx2Wc845J/Pnz2+qL8syc+fOzdy5c9tsv//+++cb3/hGpk+f3uExd95559x666058cQTKzKmLViwIAsWLNhi/1133TX/+Z//mUWLFnV4jCTZbrvt8sMf/jAnnnhiXnjhharaNleWZebPn19xjlqy884757bbbsvee+/dpfE2t+eee+ZnP/tZjj/++Lz00ktN9YsWLcqPfvSjLfYfMWJE7rzzzmzYsKHqsY466qjMmTMnp59+esXyvhs2bMijjz6aRx99tN0+qs1AuC2xjCwAAFC1+qL1W4n1rQTb1UdmOwAAAAAA6A5HHXVU5s2bl5tuuilHHnlkBgxo+w/gGxoacsIJJ+SOO+7InDlzqgq0e9Nf/uVf5qGHHsp73/veFEXR4j5jx47NZz7zmTz66KOZOnVq1WMkyfTp0zNv3rz827/9W0488cRMnjw5w4cPT31969877LDDDrn33ntz4YUX5h3veEe75yNJ/uIv/iJXXnllnnrqqbzzne/s1Fzbsu++++bJJ5/Mueeem2HDhrW4z9ChQ3PWWWflscceyyGHHNLpsSZPnpyHHnood911V4466qg0NDS022bq1Kk599xz86tf/Sq33XZbp8fu74o3U0jC1qYoij2TPPFm+Yknnsiee+7ZizMCAOBNz69+Olc++w8tPnbMqFPyX6/eskX9Lg275aJJ/9zdUwMAAAAA6HPWr1+/Rbat3XffvUMBQtCSVatW5eGHH86CBQuyePHirF27Ng0NDRk/fnymTJmS/fffv0MBWB31yiuv5N57783zzz+f119/PePHj8+uu+6aQw45ZKt4Hb/xxhuZO3du/vCHP+Tll1/OqlWrUhRFhg8fnokTJ2afffbJW9/61h6bz5o1azJ79uw8/fTTWbp0acaOHZsJEybkkEMOyfbbb1/z8VavXp0HH3wwzz77bJYsWZJVq1Zl++23z8iRIzN58uRMnTo1o0ePrvm43XVtmzt3bvbaa6/Nq/Yqy7LtFI410vuvZgAAoM+payOz3brWMttZRhYAAAAAAHrE9ttvn0MPPTSHHnpoj4w3ZsyYnHzyyT0yVmdst912mT59eqcy+HWHhoaGHHPMMT023uDBg3PYYYf12Hj9mWVkAQCAqtW1sSRs69rj1N4AACAASURBVMF2lpEFAAAAAACg7xJsBwAAVK3NzHaNMtsBAAAAAADQ/wi2AwAAqtapzHZttAEAAAAAAICtnWA7AACgam1mtmt1GVmZ7QAAAAAAAOi7BNsBAABVqyvayGzX6jKyMtsBAAAAAADQdwm2AwAAqlbfxq3EunJdy20E2wEAAAAAANCHCbYDAACq1mZmu9aWkY1lZAEAAAAAAOi7BNsBAABVq2srs13jmhbrZbYDAAAAAACgLxNsBwAAVK3tzHatLSMrsx0AAAAAAAB9l2A7AACgam1mtmtlGdm2AvQAAAAAAABgayfYDgAAqFrbme1aDrarj8x2AAAAAAAA9F2C7QAAgKq1mdmusZVgO5ntAAAAAAAA6MME2wEAAFUriiJFK7cTrWa2K2S2AwAAAAAAoO8SbAcAAHRKfdHy7USZspX9ZbYDAAAAAACg7xJsBwAAdEprme1aUx/BdgAAAAAAAPRdgu0AAIBOqTZTnWVkAQAAAAAA6MsE2wEAAJ1SV2WmOsvIAgAAAAAA0JcJtgMAADqlrqhyGVmZ7QAAAAAAAOjDBNsBAACdUnVmuyr3BwAAAAAAgK2JYDsAAKBTZLYDAAAAAABgWyLYDgAA6JS6Km8n6guZ7QAAAAAAAOi7BNsBAACdUm3wnGA7AAAAAAAA+jLBdgAAQKcUVWe2s4wsAAAAAAAAfZdgOwAAoFOqzVRXF5ntAAAAAAAA6LsE2wEAAJ1SV/UysjLbAQAAAAAA0HcJtgMAADqlruplZGW2AwAAAAAAoO8SbAcAAHSKzHYAAAAAAABsSwTbAQAAnVJ1ZrvIbAcAAAAAAEDfJbUEAADQKXVFtcvIuv0AAAAAAICe8Prrr+eRRx7J/Pnz88orr2T16tXZbrvtMn78+EyZMiX77bdfBg0aVJOxnnvuuXzzm9/Mvffem6eeeipLly7NunXrmh6fNWtWzjrrrBbbPvTQQ5k1a1buv//+LFy4MK+99loaGxubHn/66aczadKkJMnhhx+ee++9t+mxsixrMn+ohm+7AACATqmrMlNdfZXLzgIAAAAAAB23YcOG/Md//EdmzZqVX/7yl1m/fn2r+w4ePDjHHHNM/v7v/z7vec97Oj3mDTfckHPPPTdr1qypqt369etzzjnn5IYbbuj02NAbLCMLAAB0SvWZ7QTbAQAAAABAd/jFL36RadOm5Ywzzsg999zTZqBdkqxevTp33HFHTjjhhMyYMSOPPPJI1WP+6Ec/ysc+9rGqA+2S5POf/7xAO/okme0AAIBOqa82s53bDwAAAAAAqLlLL700l1566RbLqhZFkalTp2bChAkZPXp0Fi9enOeeey5PPfVUxX5z5szJgQcemOuvvz4f+chHOjzuRRddVDHmGWeckb/7u7/LLrvskoEDBzbVjxkzpqLdokWL8i//8i9N5UGDBuWf/umfcvzxx2fs2LGpq/vzH/tPmDChw/OBnuDbLgAAoFMKme0AAAAAAKBXnXfeeZk5c2ZF3bBhw3LRRRflzDPPzMSJE7dos2DBgtx444259tprm7LSrV27Nh/96EezatWqnHfeee2O+/vf/z6PPfZYU/n444/PTTfd1KE533777Vm7dm1T+YorrshnPvOZDrWF3mYZWQAAoFOqDZ6rL/ytDwAAAAAA1Mq3v/3tLQLtDj744MybNy8XXXRRi4F2STJ58uRcccUVeeyxx7LXXntVPHb++edn9uzZ7Y49Z86civIpp5zS4Xl3tu3s2bNTlmXTBr1BsB0AANApdVXeTshsBwAAAAAAtfHUU0/lk5/8ZEXdQQcdlB//+McdXnp1ypQp+fnPf56pU6c21TU2NuYDH/hAXnnllTbbLlq0qKJczXKvXWkLvU2wHQAA0Cl11S4jG5ntAAAAAACgFi644IKsXLmyqTxixIjceuutGTp0aFX9jBs3LrfccksGDRrUVPfCCy/k8ssvb7Pd5mMnycCBAzs8ZlfaQm/zbRcAANApdal2GVmZ7QAAAAAAoKt+97vf5e67766ou+qqq7Ljjjt2qr9p06blggsuyJVXXtlU961vfSuXXHJJRo4c2WKbxsbGTo3V1ba1MG/evDz++ONZsmRJli5dmsGDB2fs2LGZOnVq9tlnnzQ0NHSq3/Xr1+ehhx7KH//4xyxevDhr1qzJ2LFjM2nSpLz73e/O4MGDa3wk9AbBdgAAQKdUndmucPsBAAAAAABdNXPmzJRl2VQeM2ZMzj777C71ed555+Waa67JunXrkiSrVq3KDTfckAsvvDBJ8swzz2TXXXdttf0RRxzRYv2sWbOSpM35FUXRYv3TTz+dSZMmNZUPP/zw3HvvvU3lzc9BexYuXJj//b//d37wgx9ssYzt5rbbbrscccQR+dCHPpSTTz459fXtJxJ48sknc8UVV+Tuu+/O8uXLW+33b/7mb3LZZZdlypQpHZ43Wx/LyAIAAJ0isx0AAAAAAPS8n/zkJxXlD37wgxXLwHbG2LFjc8IJJ7Q5Tl9UlmWuuOKKTJ48Oddff32bgXZJ8sYbb+RHP/pRTj311CxcuLDNfTds2JB/+Id/yF577ZXvfve7rQbavdnvzTffnD333DMzZ87s1LGwdZBaAgAA6JRqg+eqDc4DAAAAAKBj1m8o8/zS3p5F/zdhZDKgvuUsbD3l+eefzzPPPFNRd/TRR9ek76OPPjq33XZbU/mBBx7IunXrMnDgwJr039PWr1+f0047LbfeeusWj+24447Ze++9M2bMmKxZsyaLFi3K//zP/2TlypUd6vuNN97IiSeemJ/+9KcV9QMHDsy+++6bCRMmpKGhIS+//HIeeuihvP76601zOu+887J06dJccsklXT5Gep5gOwAAoFOKKhJl16W+1TTwAAAAAAB0zfNLk90+19jb0+j3/nhlXSaN6d05/PrXv96ibvr06TXp+x3veEdF+Y033sijjz6aGTNmZMKECXn66aebHvuXf/mXigxt3/ve9/Kud71riz7HjNl4wg4//PCmutNOOy0PPvhgU3nzfjc3YcKETh3Hm84///wtAu2OP/74XHLJJZkxY8YW+zc2NuaBBx7I97///dx4441t9v2JT3yiItBuhx12yCWXXJK/+7u/y7Bhwyr2feONN/L1r389X/jCF7J69eokyWWXXZYDDjggxx13XCePjt4i2A4AAOiUajLbWUIWAAAAAAC67vnnn68ojx8/PqNHj65J33vttVeL482YMSMDBgzIpEmTmupHjBhRsd+OO+5Y8XhzQ4cObfr34MGDKx5rq11n/fSnP81Xv/rVirqrrroqn/3sZ1ttU1dXl4MOOigHHXRQLrvssi3m+aYf/OAHmTVrVlP5rW99a2bPnt3qcWy33XY5//zzc+CBB+bII4/M6tWrU5ZlPvWpT+X3v/996uo6ntyA3ufZAgAAOqWu6PjtRH3h73wAAAAAAKCrXn311YryyJEja9b34MGD09DQ0OZ4fcVll11WUf5f/+t/tRlo19yIESNaDLYry7Ki7wEDBuTOO+/sUMDgm0F8b1qwYEFuv/32Ds+JrYNgOwAAoFPqqridkNkOAAAAAAC6rnnwW/MMc13VvL8lS5bUtP+e8Nhjj1Ustzts2LBcffXVNen7l7/8ZZ544omm8plnnpl99tmnw+0/8YlPVATx3XnnnTWZFz1HsB0AANApddUsIxuZ7QAAAAAAYGtXFEVvT6HLfv7zn1eUzzjjjAwfPrwmfd9zzz0V5VNPPbWq9kOGDMk73/nOpvKvfvWrmsyLnuMbLwAAoFNktgMAAAAAgJ41atSoivJrr71W0/6XLVvW5nh9wf33319RPvzww2vW93333VdRHjVqVJ555pmq+tg88O+ZZ55JY2Nj6urkS+srBNsBAACdUlVmO8F2AAAAAADdZsLI5I9XCtbpbhNG9vYMtgx+W7p0ac36Xr16dVavXl1RN3r06Jr131NeeumlivKee+5Zs74XLlxYUX7Xu97Vpf4aGxuzbNmyPhnUuK0SbAcAAHRKfaoJtnPrAQAAAADQXQbUF5k0prdnQU/YeeedK8ovv/xylixZUpOguLlz57Y7Xl+wZMmSivLIkbWLkmzedy2sWLFCsF0fIqwZAADolKKoYhnZKgLzAAAAAACAlh100EFb1M2ZM6cmfTfvZ7vttsu+++5bk757U1EUNetr7dq1NevrTWVZ1rxPuo9gOwAAoFNktgMAAAAAgJ41ceLETJw4saLupz/9aU36vueeeyrKBxxwQAYNGlSTvnvSmDGVaR5fffXVbul78ODBaWxsTFmWXdomTZpUs/nR/QTbAQAAnVJVZrtCZjsAAAAAAKiFY489tqL8ne98J+vWretSn4sXL86dd97Z5jh9xU477VRRnjdvXs36Hj9+fNO/V69eneeee65mfdM3CLYDAAA6pb6K2wmZ7QAAAAAAoDY+/elPVyyNunjx4syaNatLfc6cObMiYG/77bfPRz7ykS712Vve/e53V5Rnz55ds76bL+Nbq6yC9B2C7QAAgE7Zrn77ju9b1/F9AQAAAACA1k2bNi3HHXdcRd1nP/vZLFq0qFP9zZs3L9dcc01F3dlnn51Ro0Z1eo696aijjqoof/e7382KFStq0vcxxxxTUf73f//3mvRL3yHYDgAA6JS/GLJPh/fdo4p9AQAAAACAtn3lK1/JkCFDmsrLli3LSSedlJUrV1bVz+LFi3PKKadk7dq1TXU77bRTvvSlL9Vsrj1tzz33zGGHHdZUXr58eS666KKa9H3cccflbW97W1P5oYceyv/5P/+nJn3TNwi2AwAAOmXUwLF537i/b3e/aUP2y8Ejjml3PwAAAAAAoGP22GOPXHfddRV1999/f4477rg8//zzHepj/vz5OfLII/Pkk0821dXV1eU73/lOxo4dW9P59rTmwYJf+9rX8pWvfKXD7V977bWsXr16i/oBAwbksssuq6j7+Mc/nttuu63qOf7sZz/LH//4x6rb0bsE2wEAAJ12xMj35EuTrs+p4z6aE8acWbGdOOaDOW+Xy/PxCZ/PoLqG3p4qAAAAAAD0Kx/+8IfziU98oqLuvvvuy7Rp03LVVVdl4cKFLbZbsGBBvvCFL2TvvffO448/XvHY1VdfnSOPPLLb5txT/vIv/zLnn39+Rd0FF1yQv/mbv8nDDz/cYpvGxsb85je/yac//enssssuefnll1vc74wzzsiHP/zhpvLatWtz8skn58wzz2y17yTZsGFDfvvb3+bSSy/NtGnT8ld/9Vd57rnnOnF09KYBvT0BAACgb9uxYUJ2bJjQ29MAAAAAAIBtzvXXX5+RI0fmy1/+csqyTJKsWLEiF110UT73uc9l2rRp2WWXXTJy5MgsWbIkzz77bH7/+99v0c/AgQMzc+bMfPzjH+/pQ+g2V199dZ577rn84Ac/aKq76667ctddd+Utb3lL9t5774wePTpr1qzJyy+/nMceeywrVqzoUN//9m//lqVLl+aHP/xhU913v/vdfPe7383YsWPz9re/PaNHj05dXV2WL1+eF198MU8++WSL2fLoWwTbAQAAAAAAAABAH3X55ZfnsMMOyznnnJP58+c31Zdlmblz52bu3Llttt9///3zjW98I9OnT+/uqfao+vr63Hzzzdlzzz3z5S9/OevWrWt67MUXX8yLL77Y6b4HDhyYW2+9Nddcc00uvvjiiiC6xYsX52c/+1mH+th+++07PQd6h2VkAQAAAAAAAACgDzvqqKMyb9683HTTTTnyyCMzYEDb+bcaGhpywgkn5I477sicOXP6XaDdm4qiyMUXX5zf//73+chHPpJRo0a1uf/QoUNz4okn5vbbb8/EiRPb7fvCCy/M008/nX/6p3/KW9/61nbnM2zYsBx//PH52te+lpdeeikzZsyo6njofcWbKSRha1MUxZ5Jnniz/MQTT2TPPffsxRkBAAAAAAAAQO2tX7++IiNZkuy+++7tBkxBa1atWpWHH344CxYsyOLFi7N27do0NDRk/PjxmTJlSvbff/80NDT09jR7XGNjYx555JH87ne/yyuvvJKVK1dm++23z7hx47LHHntkn332ycCBAzvd/9NPP51HHnkkixcvztKlS1NXV5dhw4blLW95S/bYY4/svvvuqa+vr+ERbd2669o2d+7c7LXXXptX7VWWZdspHGvEVRkAAAAAAAAAAPqR7bffPoceemgOPfTQ3p7KVqWuri7Tp0/vtkx+u+66a3bddddu6Zutg2VkAQAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAHpRURRb1JVl2QszAaidxsbGLepaut71JYLtAAAAAAAAAAB6UV3dluEb69at64WZANTO+vXrt6hr6XrXl/Tt2QMAAAAAAAAA9HFFUWTQoEEVdStXruyl2QDURvPr2KBBg2S2AwAAAAAAAACga4YNG1ZRXr58uaVkgT6rLMssX768oq75da4vEmwHAAAAAAAAANDLmgehrFu3Li+88IKAO6DPKcsyL7zwwhbLYQ8fPryXZlQ7A3p7AgAAAAAAAAAA27rBgwdn4MCBFcEpK1asyB/+8IcMHz48Q4cOzYABA1JXJ68SsPVpbGzM+vXrs3LlyixfvnyLQLuBAwemoaGhl2ZXO4LtAAAAAAAAAAB6WVEUectb3pLnnnuuIpvdunXrsmTJkixZsqQXZwfQeW9e34qi6O2pdJlwZwAAAAAAAACArcCQIUMyceLEfhGQApBsDLSbOHFihgwZ0ttTqQnBdgAAAAAAAAAAW4k3A+4GDhzY21MB6JKBAwf2q0C7xDKyAAAAAAAAAABblSFDhuRtb3tb1qxZk+XLl2fFihVZu3Ztb08LoF2DBg3KsGHDMnz48DQ0NPS7TJ2C7QAAAAAAAAAAtjJFUWTw4MEZPHhwxo0bl7Is09jYmLIse3tqAFsoiiJ1dXX9LriuOcF2AAAAAAAAAABbuaIoUl9f39vTANim1fX2BAAAAAAAAAAAAGBrJ9gOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoxoLcnAG0YtHlhwYIFvTUPAAAAAAAAAABgK9BCDNGglvbrDkVZlj01FlSlKIq/SXJHb88DAAAAAAAAAADYar23LMs7e2Igy8gCAAAAAAAAAABAOwTbAQAAAAAAAAAAQDssI8tWqyiKHZIctlnVwiRre2k60Be8LZVLL783yR96aS5A/+Q6A3Q31xkAusrPEqC7uc4A3c11BuhurjNAfzAoyS6ble8ty/K1nhh4QE8MAp2x6U3QI+spQ39QFEXzqj+UZTm3N+YC9E+uM0B3c50BoKv8LAG6m+sM0N1cZ4Du5joD9CO/7Y1BLSMLAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0QbAcAAAAAAAAAAADtEGwHAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0QbAcAAAAAAAAAAADtEGwHAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0QbAcAAAAAAAAAAADtEGwHAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0Y0NsTAKBmFie5tFkZoJZcZ4Du5joDQFf5WQJ0N9cZoLu5zgDdzXUGoAuKsix7ew4AAAAAAAAAAACwVbOMLAAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtEOwHQAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtEOwHQAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtEOwHQAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtGNAb08A2HoURVGfZHKSaUnekmSHJGuSLE3yhyRzyrJcVeMxByZ5d5KJSXZKsjLJi0l+W5blM7Ucq6cURbFnkn2TjE3SkOTlJM8n+XVZlqt7c249qSiKkUn2TLJ7klFJBidZlmRxkofLsvxDL05vC0VR7JqNz9tbkgxN8lKSZ5PcX5bluhqO89Yk78jG1/sOSdZl43mZn43nZUWtxtoauc7UhuvMRn3tOkPPcJ2pDdeZjfrCdaYnX/N94XxALfTHnyX98ZhqpafuBfsK56Nn9Mf3ZH88plrxvqrkM7ie0R/fk/3xmGrFdYbe0B/fk/3xmGrFdcZncEAzZVnabLZteMvGX97OS3J3kteSlG1s65P8OMlf12DcsUm+nmRJG+P9OsnJXRxntySnJrkmyewky5uN8UyNzuOwJJ9P8kIbx7M8yXeSvK0Xn+9uOx9JBiY5Jsn1SZ5o57VUbjpXlyXZsZffA6ckub+NeS7Z9Fod04UxhiS5MMlT7ZyTDUn+M8nRvXlOuuEcu87U5jy6zvTB60x3vz46cA7a2yb11rmp8Xl2nanNeXSd6SPXmZ56zfeV82Gz1WLrjz9L+uMx1fg574l7we2THJzkH5LclI33hI3Nxjmrt1//zkePneN+957sj8dU4+fc+6rnz4fP4PrZe7I/HlONn3PXmT/P02dwPXOe+917sj8eU42f8236OtNTr4/4DM5m63Nbr0/AZrP13pbku124MbgryfhOjntckkVVjPX/Jdm+iv4PT/Jf7fyCWpMbrE3jHZCNf2XS0eNZleTjPfg8d/v52HQOXu3ka2lpkg/0wut/aJLvVTHPl5Mc04lxDkzyx06cl+8mGdLT56UbzrPrjOvMNned6cnXRxfeX29uk3rqvHTj+XadcZ3Zpq4zPfWa7yvnw2arxdZT76sWxu22nyX98Zhq+Hx3+71gNn7Z9Hg2ftnSXv9n9fLr3/nomfPc796T/fGYvK/67vnYNI7P4PrZe7I/HlNfel/1hetMfAbX0+e7370n++Mx1fD53uavMz31+ojP4Gy2PrlZRha2bVNaqX8hG9PpL8rG5aZ3S/L2JHWb7fOeJP9dFMVhZVm+3NEBi6I4PMntSQZtVl0meSQbPwwZkWS/JGM2e/zMJMOLojixLMvGDgyzb5KjOzqnriiK4qhs/GuGhmYPPZvksWz8InpCNv6iNHDTY0OSfL0oirqyLL/WA9PsifMxNsnIFurXZuMvyi9n4198jE4yfdP/3zQiyXeKohhXluU/d/M8kzSler45yfHNHlqc5Leb5vq2bHwtFpseG5/kjqIojirL8r4OjnNgkp9m403J5lYk+X/Z+B5ryMa003ul8j12epJxRVEcX5bl2g4e2tbIdaaLXGea9KXrTI+9PkjiOtNlrjNN+sp1pqde833lfEAt9MefJf3xmLqsp+4Fk5yRjUsKbdWcjx7VH9+T/fGYusz7qpLP4HpUf3xP9sdj6jLXmQo+g+tZ/fE92R+PqctcZ5r4DA5oXW9H+9lstt7bkszJnyPfH0nyybSyJFiSnZN8I1tGzP8qSdHB8SZky8j8+5JMbbZfQ5JPZeMvEZvve2UHxzmvhXmWSVYnWdCs7pkunL9J2fIvphYk+asW9h2Z5Lpm+25oad9ueJ67/Xxk4y+Nb/axIsm3khyZZLsW9i2S/G02foHffE7dfj42zeGaZuOu3fT6H9Rsv2nZMj32K0l26sAYg1s4v69vem0PbmH/tyW5s4VzclFPnJNuPNeuM64z29x1pqdeH5vG2ryvBza9ZqrZBnT3+eiB8+064zqzTV1neuo131fOh81Wi60//izpj8dUo+e62+8FN7Vf1sL5LJM838JjZ/Xia9/56Llz3e/ek/3xmGr0XHtf9fD5iM/g3jyufvee7I/HVKPn2nXmz3P0GVzPnu9+957sj8dUo+fadaYHXx/xGZzN1ie3Xp+AzWbrvS0b/6rv7iTTq2hzTgs/vE/rYNtvNWv367Twgcdm+5/YbP/VSd7agXHO2/SL32+T3JDko0n2z8ZMLIc36/OZLpy/5umT5ycZ106bC5u1mZukvpuf524/H5t+EVyU5Px0PD336CTzmo3/ZHu/dNbgfOyWLW9Q3tvG/ttly5uFf+vAOGc1a9OYdlJob/ol+Qf/f3v3HjVJUd5x/PfICstNFkFYQGFZXbyhBKIJKEkWAwT0eAGJGhKzK94SjEeNehK8nKgxahIkehKDGhVJvESjYsBFMCiLBC8ILsrNW2RRiCC7LIRF9gZP/uh52Z56Z6a7Z3q6u2q+n3P6j+q3q7uqpurp6Xq7e4J8dyu4gIlpIc4QZ2Y0zjTSP3rHyu9r9TTr1dWFOEOcmbU401Sfj6U9WFjqWFI8l6RYpxo+50auBXt571L29oFVkt7ei6n79v62Otjnypb6Pe3RbHsnNyZTrFMNnzPjqoX2EHNwc3VKbkymWKcaPmfiTH8ZmYNrtr2TG5Mp1qmGz5k403D/EHNwLCxRLq0XgIWFpb1F0pIx830uOHmvKpFnmaRtuTybJS0rke/jwbE+ViLPnsO+nKq+f8YuVfYml/y+ji6Z92tBvtOm/Dk30R6PKPsFMMh32IB2fOqU2+Pc4HjnlMhzSK/PzuXZKmlpQZ7PB8c5r2T5Fmv+hcyx02yTKbf3kjHzEWeIM+F+YoozU2+P3P7y+1o9zXp1dSHOEGdmLc401edjaQ8WljqWFM8lKdaphs+5kWvBXr6hjyZEhAAAGD9JREFUb3JQB/5pRHu00t5LxszX2TGZYp1q+JwZVy20h5iDm6vPkjHzdXZMplinGj5n4kx/OZiDa7a9l4yZr7NjMsU61fA5E2ca7h9iDo6FJcol/7vRAGaMu68dM+sHgvQxJfKcKmmHXPoL7v7jEvn+Nki/wMwWjsrg7hvcfVOJfU/iWVJfDP2Wu/93ybxnBumX1FOkwZpoD3e/w93vHSPf95S9IjuvTH8ai5ntLOmUYHXYx+Zx9x9J+mJu1QJlfXqUpUH6gsICZse6TdKVweplZfJ2EXFmIsSZ/mNEEWd6x2yif6CHODMR4kz/MaKIM031+VjaA6hDiueSFOs0iYavBeXuv6hUwIbRHs1LcUymWKdJMK76MQfXvBTHZIp1mgRxZj7m4JqV4phMsU6TIM70Yw4OwCjcbAdgHGuC9M5mtqggz0lB+pwyB3L3GyV9O7dqV0nHl8k7Zb8dpC+ukPeryp6anPM0M9tv8iJFK+xP+0/xWL8naZdc+pvu/oOSecM+e3LB9rsG6VtKHkeSfh6k96yQNxXEGeJMnZqMM4gHcYY4U6cY4sw4fb6uY3WxPYA6pHguSbFOUrPXgjGgPeKR4phMsU4S4yrEHFw8UhyTKdZJIs4gXimOyRTrJBFn6sIcHDADuNkOwDi2DVi347CNzWyxslfZ5vNfUeF4q4P0iRXyTssjg/R1ZTO6+2ZJP8mteoi6Uae2hP1paF+qwQlBenWFvJerv6yHm9m+I7a/LUhXedIo3PbOCnlTQZwhztSpyTiDeBBniDN1iiHOVOrzNR+ri+0B1CHFc0mKdZKavRaMAe0RjxTHZIp1khhXIebg4pHimEyxThJxBvFKcUymWCeJOFMX5uCAGcDNdgDG8ZggvU3SuhHbHxqkv1/xdbjfCNJPrJB3Wh4epO+qmD/c/kkTlCV2YX+a5mujw774zbIZe3322mD1qL54eZA+ouyxBmz7nQp5U0GcIc7Uqck4g3gQZ4gzdYohzlTt83Ueq4vtAdQhxXNJinWSmr0WjAHtEY8Ux2SKdZIYVyHm4OKR4phMsU4ScQbxSnFMplgniThTF+bggBnAzXYAxnFKkL7K3R8Ysf0TgvRPBm413P8U7K8NW4L0ThXzh9t3oU6NM7OHSTouWH3lFA/5+CA9zb74EfX3k9PMbOeiA5jZSZIOzK263t2vLl/EZBBniDO1aCHOtOlAMzvHzK43sw1mtsXMbu+lP2FmrzCz8OaqWUacIc7UIqI4U7XPjyWi9gDqkOK5JMU6Sc1eC8aA9ohHimMyxTpJjKsQc3DxSHFMplgniTjTJczBVZPimEyxThJxpi7MwQEzgJvtAFRiZrtJemmw+ryCbOFd9T+reNibg/ReZrZnxX3UbX2Q3q9i/nD7x05Qlpi9UtIuufTdki6dxoF6F7fhBW7Vvhhuv2zYhu5+k6QzcqseJenTZrbLkCwys6cqmyCc84CkV1csY/SIMw8iztSjsTjTAQdLWqlsEmORpIdK2qeX/kNJH5L0MzP7h944m1nEmQcRZ+rR+TgzZp8fV+fbA6hDiueSFOskNX8t2HW0RzxSHJMp1kliXIWYg4tHimMyxTpJxJkOYg6upBTHZIp1kogzdWEODpgd3GwHoKp3S1qcS9+l/omJQRYF6V9WOaC7b5S0KVi9R5V9TMGNQfrIshnN7EBJ+wer265P48xsiaS3Bqvf7+7hW3bqEvbDX1V8Tbc0v++O/Nzc/SxJb5S0tbfquZJuMLO/NLOjzWyZmT3RzJ5nZudIukLbL2a2SjrN3WfxizFxJkOcmVALcSYGu0p6raSrzWxWX+MvEWfmEGcmFFGcGafPVxZRewB1SPFckmKdpBauBTuO9ohHimMyxTpJjKsQc3DxSHFMplgniTgTI+bgMimOyRTrJBFn6sIcHDAjuNkOQGm9V+v/WbD6ze5+Z0HW8Mmd+8Y4fJhn9zH2UafLgvTzRz0tGfjjAevark+jzGxHSZ9Rf73XSvq7KR62lX7o7mdKOkzSxyRtkHSQsi/bl0v6kaTrlD3VslLZE3CSdImkI9393DHKGDXiTB/izARaijNt2SZptaS3SHqOpCOUPTV4uLJ/MJyp+RMdh0i6xMwOaq6Y3UCc6UOcmUAscWaCPl/1OFG0B1CHFM8lKdYpJ4YyNon2iECKYzLFOuXEUMYmMQcXgRTHZIp1yomhjLOAObgKUhyTKdYpJ4YydhpzcMBs4WY7AKWY2WGS/jVY/RVJZ5fIHn5BC5++KCP8gtb2q7dXKXsaYc4iSW8rymRmj5L0hgF/2sHMdq6naFH4iKTfyKXvl7RijKdkqmizHy5Q9nMUW4s2lHSupNe5+3erFCwFxJl5iDOTaSPOtOEtkg5w92Pc/W/c/QJ3X+PuP3H3a9z9fHd/o7J/MrxHkufyLpb0BTOzNgreBuLMPMSZyXQ+zkzY56vqfHsAdUjxXJJinQr218UyNon26LgUx2SKdSrYXxfL2CTm4DouxTGZYp0K9tfFMqaOObgKUhyTKdapYH9dLGNnMQcHzB5utgNQqPczYavU/6XoZkl/5O4+ONdITeWZGne/R9L7g9VvMLPXDMtjZo+UdJGGvza5U3WcFjP7a0kvDlaf4e5fb7goU++HZraTmf2jpO9JepmkfUpkWyHpWjM7v9dnZgJxZj7izPg6FGemrje5V/izA+6+yd3PkPTq4E9HSPqDqRSuY4gz8xFnxhdDnJlCnx91rM63B1CHFM8lKdZpSsdL+fxGe3RIimMyxTpN6Xgpjyvm4DokxTGZYp2mdLyU48zUMQdXXopjMsU6Tel4MxlnmIMDZtOCtgsAoNvMbB9J/yXpgNzq2yQd5+53lNzNxiA9zhtPwjzhPtvwLkknavvTAybpfWZ2iqSPSrpG2VMc+/e2+1Nt/6J1i6T8JM4md5/3lIiZLSlbGHdfW6n0LTCz1yp7AizvLHf/+5L5l5Q91oD2aLQfmtkCSV+UdEK+WMp+ruJcSVdJWidpJ0kHSnqGsgvwZb1tny3pKDM7zt2vGaOs0SDOjEScqajlONN57v4BMzte2U9dzDld0qdaKlIjiDMjEWcqiiHO1NTnyx5rovYAYpHiuSSmOsV0LdgE2iNNMY3JsmKqE+OqX0ztwRxceTGNybJiqlNM46oJqc0VhJiD6/6YLCumOhFn+jEHB2CauNkOwFBm9nBJl0g6JLd6naRj3f3HFXaV3Bc0SXL3LWZ2sqQLJT0596eje8sw6yW9VNLFuXV3Ddn2pgpF6vQryM3s5ZLOClaf7e6vr7CbSdqj6X74VvVP8t0n6RR3vzDYbouk6yVdb2YflvTPkk7r/W1vSV8ys8Pcff0Y5e084sxoxJlqOhBnYvFu9U/0HWlmi9x9WB+JGnFmNOJMNTHEmRr7fJlj1dEeQOeleC6JsE4xXQs2gfZITIRjslCEdWJc9YupPZiDKyHCMVkowjrFNK6akMxcwQjMwXV7TBaKsE7EmX7MwQGYGn5GFsBAZraHst+Sf1Ju9QZld+JfX3F3dwfpR1Qsy26a/wWtExcj7n6rpKdJ+pCkrSWyXCrpKZLuDdbfVnPROsXMXizpg+r/snqOpFc1WIywH+5iZrtW3Ef4ExQD+2HvC3b4Bff0AZN8fdx9s6SXS7ost/oASW+qWM4oEGfKIc6U05E4E4srlY21OTtIekJLZZkq4kw5xJlyYogzNff5omN1vj2AOqR4LkmxTgUauxaMBO3RMSmOyRTrVIBx1Y85uI5JcUymWKcCxJk4MQcX8ZhMsU4FiDMVMAcHgJvtAMxjZrtLukjSr+dW/5+kE8Z8lX549/5BFfOH29/p7hsGbtkCd7/X3f9E0mMlvVnZP6BvUfYU5T2SblT2kwXHSfrd3quIHx/s5qrGCtwwM3uRsi99+XPOJyW9zN29qXL0nkoN+82BFXcT9sVhT6Y8U1L+IuQmZX2gkLs/IOkdweoVZhbr03sDEWeqIc6M1pU4E4tenPlZsLrSBE8MiDPVEGdGiyHOTKHPjzpW59sDqEOK55IU61Sk4WvBzqM9uiXFMZlinYowrvoxB9ctKY7JFOtUhDgTJ+bg4h2TKdapCHGmPObgAEj8jCyAQO8phQslHZlbvVHSie5+5Zi7vTFIP6Zi/qVB+oYxyzFV7n6TpHf1liJHBelvD9ln1JM7ZvZ8Sf+m7ImtOf8haUXvQrOSGtrjRmVv7pnzGM3vn6OEfXFY3sOC9KUVv/R+XdlPW+zYS++lrKxJXJgQZ8ZHnJmvg3EmFvcF6XF+FqCziDPjI87MF0OcmVKfH3asWtsD6KoUzyUx1ymia8FG0B5piHlMDhNznRhX/SJqD+bgRoh5TA4Tc50iGleNiH2uoALm4KojzsxHnBkDc3AApok32wF4kJntLOlLko7Orf6VpGe5+zcm2PV1QfrJZrZLhfxPL9hfVHpPRz4jWH3ZoG1jZmbPkfRp9d/Y/UVJp7r7/e2Ual7fCW8SGKr3BfrJBfubsyhIV/pZPXffJml9sHrvKvvoKuJMM4gzrcaZWIQxZV0rpZgC4kwziDPdiTNT7PODjtX59gDqkOK5JMU6VdTUtWAsaI+WpTgmU6xTRYyrfszBtSzFMZlinSoizsSJObjqiDPzEWc6gDk4AHncbAdAkmRmCyWdL2l5bvUmSc9x969Psm93/4Wk7+dWLVD/F5Eiy4P0lycpTwc8Q9KSXPoyd0/iack5ZvZMZU9XPDS3epWkF/YmsdpyUZBeXiHvb6n/S+0ad799yLZ3BeldB2412m5BeuMY++gU4kyjiDMYysz21vynDP+3jbLUjTjTKOJMB0yzzw84VufbA6hDiueSFOs0hqauBWNBe7QoxTGZYp3GwLjqxxxci1IckynWaQzEmcgwBzce4sxAy4M0caZhzMEBCHGzHQCZ2Y6SviDp2NzqzZKe5+5frekw5wXpl5Qs2+Mk/WZu1b2SvlJTmdryF0H6Q62UYkrM7DhJn9f2n1+Qss/s+e6+pZ1SPehi9b+2/aheHytjZZAO+3ReeMF8eMljSJLMbJmk3YPVlZ7M7RriTOOIMxjlReq/DrhdCfz0F3GmccSZljXU5+eO1fn2AOqQ4rkkxTqNqalrwVjQHi1JcUymWKcxMa76MQfXkhTHZIp1GhNxJj7MwY2POLO9bMSZljEHB2AQbrYDZpyZLZD0WUkn5lZvlXSKu19c46E+KSn/WtuTe5MZRcJ/5H7W3TfVV6xmmdkKScflVl2j7OmEJJjZ70j6T0kLc6u/puwL5+Z2SrWdu/9K0ueC1WEfm8fMDpF0Um7VNkmfGpFldZB+upk9oUwZe14ZpH/o7ndUyN8pxJlmEWcwipntK+ktweoL3N3bKE9diDPNIs60r8E+H0V7AHVI8VySYp3G1eC1YBRoj3akOCZTrNO4GFf9mINrR4pjMsU6jYs4Exfm4CZGnNmOONMi5uAADOXuLCwsM7pI2kHSZyR5btkq6aQpHe+jwbGukLRwxPbPDbbfLOmgCcuwPNjn2gn3t6DCtidL2hK09eEt94Ha2kPSUZLuCfZ3maRd2qzjgHIuDT4HV/aa52HbL+z11fz2Hyw4hkn6YZDnakm7lyjfCQPK9862222C9ibOEGdmLs400R6SHivp2RXzLJb0nQF9fmnb7TJhmxJniDMzFWea7PMxtAcLSx1LiueSFOtUQxmnfi1Yshyrg32unGa9aY9uLCmOyRTrVEMZGVcNt4eYg8vXJ7kxmWKdaigjcaZ8GZcHZVw75n6Yg9ter+TGZIp1qqGMxJkW+oeYg2NhiW7J/242gNnzMUkvCNa9SdIaM1tScV+3efGTFH+l7MmGPXvpp0m6xMxe5u4/mNvIzHaS9ApJ7w3yv9fdby5TGDN7pDQwxi0O0gtG1HWju68rONS1ZrZK2St9v+3uDwwoy6GSzpB0avCnN7n7moL912La7WFmh0v6sqTdcqt/KOlVkvYxsyrF3eTuU/u5Bnf/qZm9X9Ibcqs/Z2Z/LunDnnsNs5k9XtJHlPXVOeslvb3gGG5mZyjrF3OOkHR17zir3N3zecxsL0mvUdZX8p/Veklnlq1fBxFniDMzF2ekRvrHfpLON7NrJX1C0nnu/uMhZdld0gplT9PuG/z5ne7+0yHHiAVxhjgza3GmkT4fUXsAdUjxXJJinSbSxLVgLv9ukvYe8ueFQXrvEZ/JLe6+rcwxq6I9GpfimEyxThNhXPVjDq5xKY7JFOs0EeLMfMzBNSrFMZlinSZCnOnDHByAoSy4zgAwQ8yszgBwjLuvLnHM5ZIuVv9vzc89cfhTSXsomxB5RJD1S8pek3u/SjCztZIOKrPtCOe6+8qC46yTtFcvuVHStZJ+IWmTsjocMqQc73T3t05YvtKm3R5m9jZlFwl1uMzdl9e0r4HMbAdJF6j/tc+S9EtJ31X29MhSZX0x/y12i6Rj3f3yksc5S9LrBvxpvbI+v07ZWFgi6dc0f1Jgs6RnuvvXyhyvi4gzhYgz/VKKM2s13fZYLunSYPXdkq5TFlvuUXZx/ihJh2nwpOOH3T38yZzoEGcKEWf6RR9nmurzsbQHUIcUzyUp1qkODV4LrpR0zqTllXSwu6+tYT8D0R7NSXFMplinOjCu+jEH15wUx2SKdaoDcaYfc3DNSXFMplinOhBnMszBARiFN9sBaJS7rzazkyR9XNu/KJqkp/SWQT4t6eVNfIGc0G7KXvM7ygZJp7v7vzdQHgzh7veb2QuUPXHzwtyf9lH2ExKD/FLSirIXCT2v7+V7u/ovnPaSdHxB3puVvRZ7dYXjQcQZEWdm2R6Snl5iu3slvc7d/2XK5UkWcYY4AwCTSvFcEkOdGrwWjALtkbYYxmRVMdSJcdWPObi0xTAmq4qhTsSZTmAOriExjMmqYqgTcQYAij2k7QIAmD3ufqGkQyV9UNk/a4f5lqRT3P1Ud7+3kcJV9z5JayTN+7m1wM8lvUPSo/nHdDe4+0Z3f5Gk31fW14a5U9LZkg5194sqHsPd/T2SniTpnzS6v8+5QdkE4aFM8o2POEOcmQE3SnqXpCsk3Vcyz4+UveZ+CZN8kyPOEGcAYFKJnUskxVGnJq4FY0J7pC2GMVlVDHViXPVjDi5tMYzJqmKoE3GmUczBtSyGMVlVDHUizgDAaPyMLIBWmdmOyp4AOkjSYmVP+twqaY2739Rm2aows4dJOlzSwcqeRFmo7MLrVknfc/cbWiweSjCzg5W98np/SbtKuk3Zk61XuPuWmo5hkh6n7HXye0t6mKRtku5S1leucvfb6zgWtiPOIHVm9hBJyyQ9WtIBkhZpe//YoOznQL/j7ne0VsjEEWcAAJNK5VySF0udmrgWjAntka5YxmQVsdSJcdWPObh0xTImq4ilTsSZZjAH175YxmQVsdSJOAMA/bjZDgAAAAAAAAAAAAAAAACAAvyMLAAAAAAAAAAAAAAAAAAABbjZDgAAAAAAAAAAAAAAAACAAtxsBwAAAAAAAAAAAAAAAABAAW62AwAAAAAAAAAAAAAAAACgADfbAQAAAAAAAAAAAAAAAABQgJvtAAAAAAAAAAAAAAAAAAAowM12AAAAAAAAAAAAAAAAAAAU4GY7AAAAAAAAAAAAAAAAAAAKcLMdAAAAAAAAAAAAAAAAAAAFuNkOAAAAAAAAAAAAAAAAAIAC3GwHAAAAAAAAAAAAAAAAAEABbrYDAAAAAAAAAAAAAAAAAKAAN9sBAAAAAAAAAAAAAAAAAFCAm+0AAAAAAAAAAAAAAAAAACjAzXYAAAAAAAAAAAAAAAAAABTgZjsAAAAAAAAAAAAAAAAAAApwsx0AAAAAAAAAAAAAAAAAAAW42Q4AAAAAAAAAAAAAAAAAgALcbAcAAAAAAAAAAAAAAAAAQAFutgMAAAAAAAAAAAAAAAAAoAA32wEAAAAAAAAAAAAAAAAAUICb7QAAAAAAAAAAAAAAAAAAKMDNdgAAAAAAAAAAAAAAAAAAFOBmOwAAAAAAAAAAAAAAAAAACnCzHQAAAAAAAAAAAAAAAAAABbjZDgAAAAAAAAAAAAAAAACAAtxsBwAAAAAAAAAAAAAAAABAAW62AwAAAAAAAAAAAAAAAACgADfbAQAAAAAAAAAAAAAAAABQgJvtAAAAAAAAAAAAAAAAAAAowM12AAAAAAAAAAAAAAAAAAAU4GY7AAAAAAAAAAAAAAAAAAAKcLMdAAAAAAAAAAAAAAAAAAAFuNkOAAAAAAAAAAAAAAAAAIAC3GwHAAAAAAAAAAAAAAAAAEABbrYDAAAAAAAAAAAAAAAAAKAAN9sBAAAAAAAAAAAAAAAAAFDg/wFRlxEKZVemhQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import yappi\n", + "\n", + "from apd.aggregation.analysis import interactable_plot_multiple_charts, Config\n", + "from apd.aggregation.analysis import clean_temperature_fluctuations, get_one_sensor_by_deployment\n", + "from apd.aggregation.utils import profile_with_yappi\n", + "\n", + "yappi.set_clock_type(\"wall\")\n", + "\n", + "filter_in_db = Config(\n", + " clean=clean_temperature_fluctuations,\n", + " title=\"Ambient temperature\",\n", + " ylabel=\"Degrees C\",\n", + " get_data=get_one_sensor_by_deployment(\"Temperature\"),\n", + ")\n", + "\n", + "with profile_with_yappi():\n", + " plot = interactable_plot_multiple_charts(configs=[filter_in_db])\n", + " plot()\n", + "\n", + "yappi.get_func_stats().print_all()" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r\n", + "Clock type: CPU\r\n", + "Ordered by: totaltime, desc\r\n", + "\r\n", + "name ncall tsub ttot tavg \r\n", + "..futures\\thread.py:52 _WorkItem.run 7 0.000000 9.515625 1.359375\r\n", + "..lchemy\\orm\\query.py:3232 Query.all 6 0.187500 6.390625 1.065104\r\n", + "..lchemy\\orm\\loading.py:35 instances 67353 0.046875 6.140625 0.000091\r\n", + "..esult.py:1257 ResultProxy.fetchall 6 0.000000 5.109375 0.851562\r\n", + "..py:1217 ResultProxy._fetchall_impl 6 0.000000 5.078125 0.846354\r\n", + "..38\\Lib\\threading.py:859 Thread.run 2/1 0.000000 3.125000 1.562500\r\n", + "..rrent\\futures\\thread.py:66 _worker 2/1 0.000000 3.125000 1.562500\r\n", + "..b\\asyncio\\events.py:79 Handle._run 29 0.000000 3.125000 0.107759\r\n", + "..WindowsSelectorEventLoop._run_once 17 0.000000 3.125000 0.183824\r\n", + "..lectorEventLoop.run_until_complete 1 0.000000 3.125000 3.125000\r\n", + "..ndowsSelectorEventLoop.run_forever 1 0.000000 3.125000 3.125000\r\n", + "..gation\\analysis.py:291 plot_sensor 1 0.031250 3.046875 3.046875\r\n", + "..egation\\analysis.py:313 4 0.015625 2.703125 0.675781\r\n", + "..and_clean_temperature_fluctuations 4 0.046875 2.687500 0.671875\r\n", + "..184 clean_temperature_fluctuations 4 0.062500 2.640625 0.660156\r\n", + "..sycopg2\\_json.py:164 typecast_json 67339 0.312500 2.562500 0.000038\r\n", + "..-input-1-879b7ebf06b8>:7 4 0.234375 2.515625 0.628906\r\n", + "..gregation\\query.py:116 subiterator 4 0.390625 2.281250 0.570312\r\n", + "..n38\\Lib\\json\\__init__.py:299 loads 67339 0.515625 2.250000 0.000033\r\n", + "..es\\psycopg2\\extras.py:686 67347 0.156250 1.796875 0.000027\r\n", + "..on38\\Lib\\uuid.py:130 UUID.__init__ 67347 1.000000 1.640625 0.000024\r\n", + "..\\decoder.py:332 JSONDecoder.decode 67339 0.718750 1.546875 0.000023\r\n", + "..d\\aggregation\\query.py:41 get_data 1 0.312500 1.531250 1.531250\r\n", + "..ion\\database.py:77 from_sql_result 67339 0.468750 1.218750 0.000018\r\n", + "..chemy\\orm\\loading.py:83 6 0.328125 0.984375 0.164062\r\n", + ".._collections.py:121 result._asdict 67343 0.375000 0.515625 0.000008\r\n", + "..thon38\\Lib\\uuid.py:231 UUID.__eq__ 67351 0.281250 0.359375 0.000005\r\n", + "..chemy\\orm\\loading.py:84 67347 0.343750 0.343750 0.000005\r\n", + "..y\\util\\_collections.py:112 __new__ 67347 0.234375 0.312500 0.000005\r\n", + "..\\matplotlib\\__init__.py:1535 inner 4 0.000000 0.296875 0.074219\r\n", + "..axes.py:1651 AxesSubplot.plot_date 4 0.000000 0.296875 0.074219\r\n", + "..xes\\_axes.py:1412 AxesSubplot.plot 4 0.000000 0.296875 0.074219\r\n", + "..gregation\\analysis.py:63 draw_date 4 0.000000 0.296875 0.074219\r\n", + ".._base.py:1842 AxesSubplot.add_line 4 0.000000 0.281250 0.070312\r\n", + "..oder.py:343 JSONDecoder.raw_decode 67339 0.265625 0.265625 0.000004\r\n", + "..s\\matplotlib\\dates.py:1911 convert 6 0.000000 0.265625 0.044271\r\n", + "..on_base.py:2063 vectorize.__call__ 4 0.000000 0.265625 0.066406\r\n", + "..b\\axis.py:1562 XAxis.convert_units 12 0.000000 0.265625 0.022135\r\n", + "...py:168 AxesSubplot.convert_xunits 48 0.000000 0.265625 0.005534\r\n", + "..lotlib\\lines.py:664 Line2D.recache 10 0.000000 0.265625 0.026562\r\n", + "..s\\matplotlib\\dates.py:401 date2num 6 0.000000 0.265625 0.044271\r\n", + "..tlib\\lines.py:1018 Line2D.get_path 10 0.000000 0.265625 0.026562\r\n", + "..68 AxesSubplot._update_line_limits 4 0.000000 0.265625 0.066406\r\n", + "...py:2154 vectorize._vectorize_call 4 0.046875 0.265625 0.066406\r\n", + ":1 DataPoint.__init__ 67339 0.234375 0.234375 0.000003\r\n", + "..tplotlib\\dates.py:210 _to_ordinalf 8467 0.140625 0.218750 0.000026\r\n", + "..alysis.py:327 plot_multiple_charts 1 0.000000 0.078125 0.078125\r\n", + "..ine\\base.py:916 Connection.execute 9 0.000000 0.062500 0.006944\r\n", + "..:291 Select._execute_on_connection 6 0.000000 0.062500 0.010417\r\n", + "..y\\orm\\query.py:3400 Query.__iter__ 6 0.000000 0.062500 0.010417\r\n", + ".. Connection._execute_clauseelement 6 0.000000 0.062500 0.010417\r\n", + "..:3425 Query._execute_and_instances 6 0.000000 0.062500 0.010417\r\n", + "..y:1159 Connection._execute_context 9 0.000000 0.046875 0.005208\r\n", + "..:589 PGDialect_psycopg2.do_execute 11 0.000000 0.046875 0.004261\r\n", + "..t.py:1240 ResultProxy.process_rows 9 0.000000 0.031250 0.003472\r\n", + "..y\\engine\\result.py:1253 9 0.031250 0.031250 0.003472\r\n", + "..\\_base.py:378 AxesSubplot.__init__ 1 0.000000 0.031250 0.031250\r\n", + "..ubplots.py:18 AxesSubplot.__init__ 1 0.000000 0.031250 0.031250\r\n", + "..ation\\analysis.py:191 datapoint_ok 10826 0.031250 0.031250 0.000003\r\n", + "..s.py:52 PlainEngineStrategy.create 1 0.000000 0.031250 0.031250\r\n", + "..regation\\query.py:24 with_database 2 0.000000 0.031250 0.015625\r\n", + ".._GeneratorContextManager.__enter__ 141 0.000000 0.031250 0.000222\r\n", + "..\\figure.py:1259 Figure.add_subplot 1 0.000000 0.031250 0.031250\r\n", + "..ngine\\__init__.py:85 create_engine 1 0.000000 0.031250 0.031250\r\n", + "..lib\\sre_parse.py:254 Tokenizer.get 1519 0.000000 0.015625 0.000010\r\n", + "..y:527 PGCompiler_psycopg2.__init__ 8 0.000000 0.015625 0.001953\r\n", + "..my\\util\\langhelpers.py:963 oneshot 21 0.000000 0.015625 0.000744\r\n", + "..rs.py:86 Select._compiler_dispatch 94/8 0.000000 0.015625 0.000166\r\n", + "..Preparer_psycopg2._requires_quotes 22 0.000000 0.015625 0.000710\r\n", + "..\\sre_parse.py:233 Tokenizer.__next 1696 0.015625 0.015625 0.000009\r\n", + "..on-68gteq6k\\lib\\re.py:287 _compile 84 0.000000 0.015625 0.000186\r\n", + ":1 Select. 8 0.000000 0.015625 0.001953\r\n", + "..iler_psycopg2._label_select_column 29 0.000000 0.015625 0.000539\r\n", + "..y:274 PGCompiler_psycopg2.__init__ 8 0.000000 0.015625 0.001953\r\n", + "..fierPreparer_psycopg2.format_label 29 0.000000 0.015625 0.000539\r\n", + "..my\\sql\\compiler.py:2127 8 0.000000 0.015625 0.001953\r\n", + "..gteq6k\\lib\\sre_parse.py:493 _parse 75/14 0.000000 0.015625 0.000208\r\n", + "..GIdentifierPreparer_psycopg2.quote 103 0.000000 0.015625 0.000152\r\n", + "..10 PGCompiler_psycopg2.visit_label 29 0.000000 0.015625 0.000539\r\n", + "..py:349 PGCompiler_psycopg2.process 8 0.000000 0.015625 0.001953\r\n", + "..8gteq6k\\lib\\sre_parse.py:937 parse 12 0.000000 0.015625 0.001302\r\n", + "..5 PGCompiler_psycopg2.visit_select 8 0.000000 0.015625 0.001953\r\n", + "..quoted_name._memoized_method_lower 21 0.000000 0.015625 0.000744\r\n", + "..q6k\\lib\\sre_compile.py:759 compile 12 0.000000 0.015625 0.001302\r\n", + "..sql\\elements.py:405 Select.compile 8 0.000000 0.015625 0.001953\r\n", + "..6k\\lib\\sre_parse.py:435 _parse_sub 59/12 0.000000 0.015625 0.000265\r\n", + "..._bootstrap>:1017 _handle_fromlist 20/18 0.000000 0.015625 0.000781\r\n", + "..l\\elements.py:470 Select._compiler 8 0.000000 0.015625 0.001953\r\n", + "..rrent\\futures\\thread.py:158 submit 7 0.000000 0.015625 0.002232\r\n", + "..dPoolExecutor._adjust_thread_count 7 0.000000 0.015625 0.002232\r\n", + "..\\Lib\\threading.py:834 Thread.start 2 0.000000 0.015625 0.007812\r\n", + "..>:777 SourceFileLoader.exec_module 9/2 0.000000 0.015625 0.001736\r\n", + "..\\artist.py:731 XAxis.set_clip_path 26 0.000000 0.015625 0.000601\r\n", + "..s\\postgresql\\psycopg2.py:735 dbapi 1 0.000000 0.015625 0.015625\r\n", + ".. _process_plot_var_args._plot_args 4 0.000000 0.015625 0.003906\r\n", + "..icker.py:2848 AutoLocator.__init__ 16 0.000000 0.015625 0.000977\r\n", + "..es\\_axes.py:299 AxesSubplot.legend 1 0.000000 0.015625 0.015625\r\n", + "..b\\cbook\\__init__.py:1320 _check_1d 8 0.000000 0.015625 0.001953\r\n", + "..53 _process_plot_var_args.__call__ 8 0.000000 0.015625 0.001953\r\n", + "..lib._bootstrap>:650 _load_unlocked 10/2 0.000000 0.015625 0.001563\r\n", + "..plotlib\\axis.py:744 XAxis.__init__ 2 0.000000 0.015625 0.007812\r\n", + "..ib\\axis.py:967 XAxis.set_clip_path 2 0.000000 0.015625 0.007812\r\n", + "..tlib\\artist.py:217 Rectangle.stale 171.. 0.015625 0.015625 0.000009\r\n", + "..__init__.py:2073 _check_isinstance 94 0.000000 0.015625 0.000166\r\n", + "..sSelectorEventLoop.run_in_executor 6 0.000000 0.015625 0.002604\r\n", + "..y\\core\\shape_base.py:24 atleast_1d 24 0.000000 0.015625 0.000651\r\n", + "..et_default_locators_and_formatters 16 0.000000 0.015625 0.000977\r\n", + "..ine\\url.py:234 _parse_rfc1738_args 1 0.000000 0.015625 0.015625\r\n", + "..end.py:727 Legend._init_legend_box 1 0.000000 0.015625 0.015625\r\n", + "..otlib\\axis.py:825 XAxis._set_scale 16 0.000000 0.015625 0.000977\r\n", + "..alchemy\\engine\\url.py:221 make_url 1 0.000000 0.015625 0.015625\r\n", + "..\\psycopg2\\extensions.py:1 1 0.000000 0.015625 0.015625\r\n", + "..mpy\\core\\_asarray.py:88 asanyarray 72 0.000000 0.015625 0.000217\r\n", + "..otlib\\axis.py:2231 YAxis._get_tick 3 0.000000 0.015625 0.005208\r\n", + "...py:89 HandlerLine2D.legend_artist 4 0.000000 0.015625 0.003906\r\n", + "..icker.py:2051 AutoLocator.__init__ 16 0.015625 0.015625 0.000977\r\n", + "..tplotlib\\axis.py:56 XTick.__init__ 6 0.000000 0.015625 0.002604\r\n", + "..b\\axis.py:589 YTick._get_tick2line 3 0.000000 0.015625 0.005208\r\n", + "..\\axis.py:687 _LazyTickList.__get__ 6/4 0.000000 0.015625 0.002604\r\n", + "..ines.py:1268 Line2D.set_markersize 30 0.000000 0.015625 0.000521\r\n", + "..ages\\psycopg2\\_range.py:1 1 0.000000 0.015625 0.015625\r\n", + "..y:229 HandlerLine2D.create_artists 4 0.000000 0.015625 0.003906\r\n", + "..otlib\\lines.py:269 Line2D.__init__ 30 0.000000 0.015625 0.000521\r\n", + "..tlib\\legend.py:306 Legend.__init__ 1 0.000000 0.015625 0.015625\r\n", + "..ms.py:986 TransformedBbox.__init__ 21 0.000000 0.015625 0.000744\r\n", + "..function__ internals>:2 atleast_1d 24 0.000000 0.015625 0.000651\r\n", + ".._function__ internals>:2 full_like 4 0.015625 0.015625 0.003906\r\n", + "..strap>:956 _find_and_load_unlocked 10/2 0.000000 0.015625 0.001563\r\n", + "..\\axes\\_base.py:948 AxesSubplot.cla 1 0.000000 0.015625 0.015625\r\n", + "..base.py:553 AxesSubplot._init_axis 1 0.000000 0.015625 0.015625\r\n", + "..rap>:211 _call_with_frames_removed 14/2 0.000000 0.015625 0.001116\r\n", + "..lib._bootstrap>:986 _find_and_load 10/2 0.000000 0.015625 0.001563\r\n", + "..ion-68gteq6k\\lib\\re.py:248 compile 10 0.000000 0.015625 0.001563\r\n", + "..es\\psycopg2\\__init__.py:1 1 0.000000 0.015625 0.015625\r\n", + "...py:343 WeakKeyDictionary.__init__ 13 0.000000 0.000000 0.000000\r\n", + "..pool\\impl.py:112 QueuePool._do_get 1 0.000000 0.000000 0.000000\r\n", + "..6k\\lib\\abc.py:96 __instancecheck__ 141 0.000000 0.000000 0.000000\r\n", + "..py:3730 Select._columns_plus_names 8 0.000000 0.000000 0.000000\r\n", + "..y:330 _ListenerCollection.__bool__ 1 0.000000 0.000000 0.000000\r\n", + "..yncio\\events.py:32 Handle.__init__ 24 0.000000 0.000000 0.000000\r\n", + "..py:4065 ColumnClause._from_objects 2 0.000000 0.000000 0.000000\r\n", + "..ions.py:145 immutabledict.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..ections.py:396 OrderedSet.__iter__ 8 0.000000 0.000000 0.000000\r\n", + "..qltypes.py:2793 TIMESTAMP.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..ib\\sre_parse.py:286 Tokenizer.tell 171 0.000000 0.000000 0.000000\r\n", + "..q6k\\lib\\sre_parse.py:921 fix_flags 12 0.000000 0.000000 0.000000\r\n", + "..\\sql\\selectable.py:3079 8 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\result.py:496 3 0.000000 0.000000 0.000000\r\n", + "..opg2.py:548 _PGUUID.bind_processor 1 0.000000 0.000000 0.000000\r\n", + "..es\\psycopg2\\__init__.py:82 connect 1 0.000000 0.000000 0.000000\r\n", + "..ib\\sre_parse.py:84 State.opengroup 27 0.000000 0.000000 0.000000\r\n", + "..gging\\__init__.py:223 _releaseLock 7 0.000000 0.000000 0.000000\r\n", + "..ql\\elements.py:2428 literal_column 2 0.000000 0.000000 0.000000\r\n", + "..dConnectionEventsDispatch.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..y\\engine\\strategies.py:106 connect 1 0.000000 0.000000 0.000000\r\n", + "..tras.py:657 UUID_adapter.getquoted 4 0.000000 0.000000 0.000000\r\n", + "..hemy\\sql\\compiler.py:652 10 0.000000 0.000000 0.000000\r\n", + "..query.py:3440 Query._get_bind_args 6 0.000000 0.000000 0.000000\r\n", + "..b\\sre_parse.py:96 State.closegroup 27 0.000000 0.000000 0.000000\r\n", + "..ctions.py:933 LRUCache.__setitem__ 3 0.000000 0.000000 0.000000\r\n", + "..eq6k\\lib\\sre_parse.py:978 addgroup 1 0.000000 0.000000 0.000000\r\n", + "..yEventsDispatch._event_descriptors 46 0.000000 0.000000 0.000000\r\n", + "..tgresql\\psycopg2.py:815 on_connect 2 0.000000 0.000000 0.000000\r\n", + "..ne\\strategies.py:194 first_connect 1 0.000000 0.000000 0.000000\r\n", + "..sult.py:700 ResultMetaData._getter 27 0.000000 0.000000 0.000000\r\n", + "..ry.py:4056 Query._simple_statement 6 0.000000 0.000000 0.000000\r\n", + "..elements.py:4692 _literal_as_binds 2 0.000000 0.000000 0.000000\r\n", + "...py:56 QueuePool._should_log_debug 1 0.000000 0.000000 0.000000\r\n", + "..session.py:1057 Session.connection 6 0.000000 0.000000 0.000000\r\n", + "..xecutionContext_psycopg2.post_exec 6 0.000000 0.000000 0.000000\r\n", + "..y:3229 BinaryExpression.self_group 4 0.000000 0.000000 0.000000\r\n", + "..py:4335 _truncated_label.apply_map 27 0.000000 0.000000 0.000000\r\n", + "..68gteq6k\\lib\\weakref.py:345 remove 2 0.000000 0.000000 0.000000\r\n", + "..123 ConnectionEventsDispatch._join 1 0.000000 0.000000 0.000000\r\n", + "..lalchemy\\pool\\base.py:490 checkout 1 0.000000 0.000000 0.000000\r\n", + "..y\\engine\\default.py:796 6 0.000000 0.000000 0.000000\r\n", + "..ctable.py:1982 Table._from_objects 6 0.000000 0.000000 0.000000\r\n", + "..emy\\sql\\compiler.py:1000 4 0.000000 0.000000 0.000000\r\n", + "..\\encodings\\utf_8.py:33 getregentry 1 0.000000 0.000000 0.000000\r\n", + "..ery._adjust_for_single_inheritance 6 0.000000 0.000000 0.000000\r\n", + "..ler_psycopg2.get_select_precolumns 8 0.000000 0.000000 0.000000\r\n", + "..ycopg2\\extras.py:664 register_uuid 2 0.000000 0.000000 0.000000\r\n", + "..:3418 PGTypeCompiler.visit_unicode 1 0.000000 0.000000 0.000000\r\n", + "..on._memoized_attr__exec_once_mutex 1 0.000000 0.000000 0.000000\r\n", + "..ngs\\__init__.py:70 search_function 1 0.000000 0.000000 0.000000\r\n", + "..uture.set_running_or_notify_cancel 7 0.000000 0.000000 0.000000\r\n", + "..lalchemy\\sql\\base.py:39 20 0.000000 0.000000 0.000000\r\n", + "..422 WeakKeyDictionary.__contains__ 386 0.000000 0.000000 0.000000\r\n", + "..4 PGCompiler_psycopg2.visit_column 36 0.000000 0.000000 0.000000\r\n", + "..py:536 PGDialect_psycopg2.do_begin 1 0.000000 0.000000 0.000000\r\n", + ".. _ClsLevelDispatch.update_subclass 77 0.000000 0.000000 0.000000\r\n", + ":1 VARCHAR.__init__ 9 0.000000 0.000000 0.000000\r\n", + "..tions.py:946 LRUCache._manage_size 3 0.000000 0.000000 0.000000\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..g2\\extensions.py:180 _param_escape 3 0.000000 0.000000 0.000000\r\n", + "..\\elements.py:232 Table._cloned_set 2 0.000000 0.000000 0.000000\r\n", + "..419 Query._connection_from_session 6 0.000000 0.000000 0.000000\r\n", + "..my\\sql\\type_api.py:1475 adapt_type 13 0.000000 0.000000 0.000000\r\n", + "..y\\sql\\elements.py:4594 _literal_as 14 0.000000 0.000000 0.000000\r\n", + "..94 QueryEventsDispatch.__getattr__ 8 0.000000 0.000000 0.000000\r\n", + ".._.py:1663 Logger.getEffectiveLevel 3 0.000000 0.000000 0.000000\r\n", + "..ngine\\strategies.py:183 on_connect 2 0.000000 0.000000 0.000000\r\n", + "..e.py:737 _ConnectionFairy.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..lalchemy\\util\\compat.py:148 raise_ 12 0.000000 0.000000 0.000000\r\n", + "..sre_parse.py:172 SubPattern.append 182 0.000000 0.000000 0.000000\r\n", + ":1 cast 2 0.000000 0.000000 0.000000\r\n", + "..\\langhelpers.py:301 get_cls_kwargs 35/16 0.000000 0.000000 0.000000\r\n", + "..ler_psycopg2._truncated_identifier 33 0.000000 0.000000 0.000000\r\n", + "..ler_psycopg2.escape_literal_column 2 0.000000 0.000000 0.000000\r\n", + "..s.py:880 memoized_property.__get__ 97/87 0.000000 0.000000 0.000000\r\n", + "..nts.py:709 ColumnClause.comparator 4 0.000000 0.000000 0.000000\r\n", + "..\\orm\\session.py:2462 Session.flush 9 0.000000 0.000000 0.000000\r\n", + "..gine\\default.py:753 _init_compiled 6 0.000000 0.000000 0.000000\r\n", + "..n-68gteq6k\\lib\\enum.py:557 __new__ 26 0.000000 0.000000 0.000000\r\n", + "..y\\util\\_collections.py:140 __new__ 1 0.000000 0.000000 0.000000\r\n", + "..WindowsSelectorEventLoop.get_debug 33 0.000000 0.000000 0.000000\r\n", + "..indowsSelectorEventLoop._call_soon 23 0.000000 0.000000 0.000000\r\n", + "..:715 PGDialect_psycopg2.initialize 1 0.000000 0.000000 0.000000\r\n", + "..t_psycopg2._use_server_side_cursor 9 0.000000 0.000000 0.000000\r\n", + "..lection.exec_once_unless_exception 1 0.000000 0.000000 0.000000\r\n", + "..iler_psycopg2._compose_select_body 8 0.000000 0.000000 0.000000\r\n", + "..sqltypes.py:2182 _PGJSONB.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..ements.py:1315 TypeClause.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..tionContext_psycopg2.no_parameters 5 0.000000 0.000000 0.000000\r\n", + "..:395 WeakKeyDictionary.__setitem__ 97 0.000000 0.000000 0.000000\r\n", + "..xt_psycopg2.should_autocommit_text 3 0.000000 0.000000 0.000000\r\n", + "..ts.py:724 ColumnClause.__getattr__ 9 0.000000 0.000000 0.000000\r\n", + "..qlalchemy\\inspection.py:38 inspect 16 0.000000 0.000000 0.000000\r\n", + "..ons.py:971 lightweight_named_tuple 6 0.000000 0.000000 0.000000\r\n", + "..m\\query.py:3551 Query._select_args 6 0.000000 0.000000 0.000000\r\n", + "..sycopg2\\extensions.py:146 make_dsn 1 0.000000 0.000000 0.000000\r\n", + "..chemy\\sql\\base.py:38 _from_objects 20 0.000000 0.000000 0.000000\r\n", + "..er_psycopg2._get_operator_dispatch 4 0.000000 0.000000 0.000000\r\n", + "..ine\\base.py:69 Connection.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..l\\psycopg2.py:747 _psycopg2_extras 2 0.000000 0.000000 0.000000\r\n", + "..tionContext_psycopg2.create_cursor 9 0.000000 0.000000 0.000000\r\n", + "..til\\_collections.py:779 41 0.000000 0.000000 0.000000\r\n", + "..\\base.py:364 Connection.connection 11 0.000000 0.000000 0.000000\r\n", + "..my\\sql\\compiler.py:2252 6 0.000000 0.000000 0.000000\r\n", + "..033 PGCompiler_psycopg2.visit_cast 2 0.000000 0.000000 0.000000\r\n", + "..ngine\\default.py:378 check_unicode 2 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\result.py:319 9 0.000000 0.000000 0.000000\r\n", + "..chemy\\sql\\elements.py:4327 __new__ 16 0.000000 0.000000 0.000000\r\n", + "..mpiler_psycopg2._add_to_result_map 29 0.000000 0.000000 0.000000\r\n", + ":1 Select.__init__ 8 0.000000 0.000000 0.000000\r\n", + "..py:4442 _anonymous_label.apply_map 6 0.000000 0.000000 0.000000\r\n", + "..py:2248 Engine._contextual_connect 1 0.000000 0.000000 0.000000\r\n", + "..:307 PGDialect_psycopg2.initialize 1 0.000000 0.000000 0.000000\r\n", + "..\\log.py:59 Engine._should_log_info 2 0.000000 0.000000 0.000000\r\n", + "..pg2\\extras.py:790 _solve_conn_curs 1 0.000000 0.000000 0.000000\r\n", + "..k\\lib\\encodings\\utf_8.py:15 decode 48 0.000000 0.000000 0.000000\r\n", + "..tions.py:906 LRUCache._inc_counter 6 0.000000 0.000000 0.000000\r\n", + "..ctorEventLoop.call_soon_threadsafe 6 0.000000 0.000000 0.000000\r\n", + "..y\\sql\\selectable.py:2987 6 0.000000 0.000000 0.000000\r\n", + ".._psycopg2._get_default_schema_name 1 0.000000 0.000000 0.000000\r\n", + "..ns.py:738 PopulateDict.__missing__ 5 0.000000 0.000000 0.000000\r\n", + "..tgresql\\psycopg2.py:847 on_connect 2 0.000000 0.000000 0.000000\r\n", + "..e\\result.py:1335 ResultProxy.first 3 0.000000 0.000000 0.000000\r\n", + ".._psycopg2._generate_generic_binary 4 0.000000 0.000000 0.000000\r\n", + "..se.py:325 Future._invoke_callbacks 7 0.000000 0.000000 0.000000\r\n", + "..\\sql\\selectable.py:3751 2 0.000000 0.000000 0.000000\r\n", + "..:4707 _interpret_as_column_or_from 29 0.000000 0.000000 0.000000\r\n", + "..compile.py:461 _get_literal_prefix 19/12 0.000000 0.000000 0.000000\r\n", + "..ts.py:4059 ColumnClause._set_table 2 0.000000 0.000000 0.000000\r\n", + "..317 VARCHAR._has_column_expression 12 0.000000 0.000000 0.000000\r\n", + "..my\\sql\\elements.py:4488 8 0.000000 0.000000 0.000000\r\n", + "..emy\\util\\queue.py:191 Queue._empty 1 0.000000 0.000000 0.000000\r\n", + "..tgresql\\psycopg2.py:800 on_connect 2 0.000000 0.000000 0.000000\r\n", + "..9 PGCompiler_psycopg2.visit_binary 4 0.000000 0.000000 0.000000\r\n", + "..ery.py:3929 Query._compile_context 6 0.000000 0.000000 0.000000\r\n", + "..til\\_collections.py:981 3 0.000000 0.000000 0.000000\r\n", + "..i.py:279 NullType.result_processor 4 0.000000 0.000000 0.000000\r\n", + "..1333 Connection._safe_close_cursor 9 0.000000 0.000000 0.000000\r\n", + "..ation-68gteq6k\\lib\\re.py:186 match 70 0.000000 0.000000 0.000000\r\n", + "..my\\sql\\elements.py:1955 1 0.000000 0.000000 0.000000\r\n", + "..276 PGDialect_psycopg2._type_memos 1 0.000000 0.000000 0.000000\r\n", + "..mn._render_label_in_columns_clause 10 0.000000 0.000000 0.000000\r\n", + "..sqltypes.py:786 TIMESTAMP.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..ments.py:765 Cast._select_iterable 29 0.000000 0.000000 0.000000\r\n", + "..200 BinaryExpression._from_objects 4 0.000000 0.000000 0.000000\r\n", + "..extensions.py:103 register_adapter 12 0.000000 0.000000 0.000000\r\n", + "..y\\util\\_collections.py:822 to_list 14 0.000000 0.000000 0.000000\r\n", + "..res\\_base.py:517 Future.set_result 7 0.000000 0.000000 0.000000\r\n", + "..ngine\\base.py:590 Connection.begin 1 0.000000 0.000000 0.000000\r\n", + "..eading.py:364 Condition.notify_all 7 0.000000 0.000000 0.000000\r\n", + "..ase.py:971 _ConnectionFairy.cursor 6 0.000000 0.000000 0.000000\r\n", + "..gine\\base.py:908 Connection.scalar 2 0.000000 0.000000 0.000000\r\n", + "..rm\\query.py:418 Query._bind_mapper 6 0.000000 0.000000 0.000000\r\n", + "..result.py:767 ResultProxy.__init__ 9 0.000000 0.000000 0.000000\r\n", + "..:3361 PGTypeCompiler.visit_VARCHAR 2 0.000000 0.000000 0.000000\r\n", + "..l\\sqltypes.py:141 VARCHAR.__init__ 9 0.000000 0.000000 0.000000\r\n", + "..my\\sql\\elements.py:4480 6 0.000000 0.000000 0.000000\r\n", + "..e_parse.py:174 SubPattern.getwidth 138.. 0.000000 0.000000 0.000000\r\n", + "..ResultMetaData._merge_cols_by_none 6 0.000000 0.000000 0.000000\r\n", + "...py:488 PGDialect_psycopg2.connect 1 0.000000 0.000000 0.000000\r\n", + "...py:2282 Engine._wrap_pool_connect 1 0.000000 0.000000 0.000000\r\n", + "..session.py:1588 Session._autoflush 6 0.000000 0.000000 0.000000\r\n", + "..\\threading.py:341 Condition.notify 15 0.000000 0.000000 0.000000\r\n", + "..ections.py:361 OrderedSet.__init__ 8 0.000000 0.000000 0.000000\r\n", + "..ql\\operators.py:1386 is_comparison 5 0.000000 0.000000 0.000000\r\n", + "..6 PGCompiler_psycopg2.default_from 2 0.000000 0.000000 0.000000\r\n", + "..58 PGCompiler_psycopg2.visit_table 6 0.000000 0.000000 0.000000\r\n", + "..elements.py:4483 _select_iterables 8 0.000000 0.000000 0.000000\r\n", + "..b\\sre_compile.py:65 _combine_flags 39 0.000000 0.000000 0.000000\r\n", + "..lchemy\\util\\langhelpers.py:1506 go 1 0.000000 0.000000 0.000000\r\n", + "..utionContext_psycopg2._log_notices 9 0.000000 0.000000 0.000000\r\n", + "..ation-68gteq6k\\lib\\re.py:323 _subx 3 0.000000 0.000000 0.000000\r\n", + "..py:486 UUID._cached_bind_processor 4 0.000000 0.000000 0.000000\r\n", + "..ttr.py:227 _EmptyListener.__init__ 77 0.000000 0.000000 0.000000\r\n", + "..ghelpers.py:281 _inspect_func_args 18 0.000000 0.000000 0.000000\r\n", + "..re_compile.py:249 _compile_charset 34 0.000000 0.000000 0.000000\r\n", + "..nContext_psycopg2.get_result_proxy 9 0.000000 0.000000 0.000000\r\n", + "..uery.py:4762 QueryContext.__init__ 6 0.000000 0.000000 0.000000\r\n", + "..gging\\__init__.py:214 _acquireLock 7 0.000000 0.000000 0.000000\r\n", + "..type_api.py:60 Comparator.__init__ 8 0.000000 0.000000 0.000000\r\n", + "..hon38\\Lib\\uuid.py:271 UUID.__str__ 4 0.000000 0.000000 0.000000\r\n", + "..velDispatch._assign_cls_collection 77 0.000000 0.000000 0.000000\r\n", + "..e_parse.py:111 SubPattern.__init__ 135 0.000000 0.000000 0.000000\r\n", + "..compile.py:492 _get_charset_prefix 10 0.000000 0.000000 0.000000\r\n", + "..arse.py:164 SubPattern.__getitem__ 707 0.000000 0.000000 0.000000\r\n", + "..2456 PGDialect_psycopg2.initialize 1 0.000000 0.000000 0.000000\r\n", + "..hreading.py:249 Condition.__exit__ 61 0.000000 0.000000 0.000000\r\n", + ".. NullType._cached_result_processor 30 0.000000 0.000000 0.000000\r\n", + "..116 QueryEventsDispatch._for_class 8 0.000000 0.000000 0.000000\r\n", + "..compiler.py:419 _CompileLabel.type 29 0.000000 0.000000 0.000000\r\n", + "..m\\session.py:1429 Session.get_bind 6 0.000000 0.000000 0.000000\r\n", + "..\\elements.py:4610 _literal_as_text 14 0.000000 0.000000 0.000000\r\n", + "..Compiler_psycopg2.bindparam_string 4 0.000000 0.000000 0.000000\r\n", + "..53 _ListenerCollection.__getattr__ 45/24 0.000000 0.000000 0.000000\r\n", + ".._psycopg2._get_server_version_info 1 0.000000 0.000000 0.000000\r\n", + "..teq6k\\lib\\sre_compile.py:598 _code 12 0.000000 0.000000 0.000000\r\n", + "..sql\\operators.py:1497 is_precedent 4 0.000000 0.000000 0.000000\r\n", + "..\\sql\\selectable.py:3746 6 0.000000 0.000000 0.000000\r\n", + "..Compiler_psycopg2.visit_clauselist 1 0.000000 0.000000 0.000000\r\n", + "..ExecutionContext_psycopg2.pre_exec 6 0.000000 0.000000 0.000000\r\n", + "..\\elements.py:688 Column.self_group 11 0.000000 0.000000 0.000000\r\n", + "..init__.py:1677 Logger.isEnabledFor 5 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\default.py:415 1 0.000000 0.000000 0.000000\r\n", + "..ql\\base.py:1142 TIMESTAMP.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..l\\_collections.py:910 LRUCache.get 6 0.000000 0.000000 0.000000\r\n", + "..ttr.py:269 _EmptyListener.__bool__ 17 0.000000 0.000000 0.000000\r\n", + "..pes.py:295 String.result_processor 5 0.000000 0.000000 0.000000\r\n", + "..b\\sre_parse.py:249 Tokenizer.match 311 0.000000 0.000000 0.000000\r\n", + "..copg2._check_max_identifier_length 1 0.000000 0.000000 0.000000\r\n", + "..gteq6k\\lib\\re.py:313 _compile_repl 1 0.000000 0.000000 0.000000\r\n", + "..lchemy\\orm\\query.py:4795 6 0.000000 0.000000 0.000000\r\n", + "..ult.py:269 ResultMetaData.__init__ 9 0.000000 0.000000 0.000000\r\n", + "..iler.py:399 PGTypeCompiler.process 2 0.000000 0.000000 0.000000\r\n", + "..GCompiler_psycopg2.order_by_clause 1 0.000000 0.000000 0.000000\r\n", + "..y:305 QueuePool._create_connection 1 0.000000 0.000000 0.000000\r\n", + "..sql\\type_api.py:546 NullType.adapt 13 0.000000 0.000000 0.000000\r\n", + "..rm\\query.py:398 Query._entity_zero 6 0.000000 0.000000 0.000000\r\n", + "..py:1202 ResultProxy._fetchone_impl 3 0.000000 0.000000 0.000000\r\n", + ".._psycopg2._setup_crud_result_proxy 3 0.000000 0.000000 0.000000\r\n", + "..esql\\base.py:1226 _PGUUID.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..nghelpers.py:1167 constructor_copy 13 0.000000 0.000000 0.000000\r\n", + "..piler_psycopg2._setup_select_stack 8 0.000000 0.000000 0.000000\r\n", + "..MetaData._merge_cursor_description 9 0.000000 0.000000 0.000000\r\n", + "..ttr.py:257 _EmptyListener.__call__ 8 0.000000 0.000000 0.000000\r\n", + "..wsSelectorEventLoop._write_to_self 6 0.000000 0.000000 0.000000\r\n", + "..q6k\\lib\\sre_compile.py:423 _simple 45 0.000000 0.000000 0.000000\r\n", + "..\\result.py:777 ResultProxy._getter 27 0.000000 0.000000 0.000000\r\n", + "..ycopg2\\extras.py:909 type.get_oids 1 0.000000 0.000000 0.000000\r\n", + "..arse.py:168 SubPattern.__setitem__ 48 0.000000 0.000000 0.000000\r\n", + "..text_psycopg2.get_result_processor 30 0.000000 0.000000 0.000000\r\n", + "..k\\lib\\sre_parse.py:81 State.groups 80 0.000000 0.000000 0.000000\r\n", + "..l\\sqltypes.py:412 Unicode.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..alchemy\\pool\\base.py:770 _checkout 1 0.000000 0.000000 0.000000\r\n", + ".. SessionTransaction._assert_active 8 0.000000 0.000000 0.000000\r\n", + ":1 select 8 0.000000 0.000000 0.000000\r\n", + ".. QueryEventsDispatch._for_instance 8 0.000000 0.000000 0.000000\r\n", + "..elements.py:4080 Column._key_label 10 0.000000 0.000000 0.000000\r\n", + "..ine\\default.py:981 _init_statement 3 0.000000 0.000000 0.000000\r\n", + "..\\lib\\enum.py:828 RegexFlag.__and__ 12 0.000000 0.000000 0.000000\r\n", + "..py:644 _ConnectionRecord.__connect 1 0.000000 0.000000 0.000000\r\n", + "..GCompiler_psycopg2.visit_bindparam 4 0.000000 0.000000 0.000000\r\n", + "..emy\\util\\langhelpers.py:1188 _next 7 0.000000 0.000000 0.000000\r\n", + "..py:77 QueryEventsDispatch.__init__ 8 0.000000 0.000000 0.000000\r\n", + "..\\__init__.py:43 normalize_encoding 1 0.000000 0.000000 0.000000\r\n", + "..util\\langhelpers.py:1175 46 0.000000 0.000000 0.000000\r\n", + "..ql\\elements.py:895 Cast.anon_label 2 0.000000 0.000000 0.000000\r\n", + "..y\\sql\\operators.py:1409 is_boolean 5 0.000000 0.000000 0.000000\r\n", + "..-68gteq6k\\lib\\codecs.py:94 __new__ 1 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\result.py:460 6 0.000000 0.000000 0.000000\r\n", + "..selectable.py:2169 Select.__init__ 8 0.000000 0.000000 0.000000\r\n", + "..ry.py:390 Query._query_entity_zero 6 0.000000 0.000000 0.000000\r\n", + "..re_parse.py:224 Tokenizer.__init__ 13 0.000000 0.000000 0.000000\r\n", + "..teq6k\\lib\\sre_parse.py:355 _escape 30 0.000000 0.000000 0.000000\r\n", + "..uery.py:698 Query.is_single_entity 6 0.000000 0.000000 0.000000\r\n", + "..19 ResultProxy._cursor_description 9 0.000000 0.000000 0.000000\r\n", + "..y:4696 _ColumnEntity.row_processor 27 0.000000 0.000000 0.000000\r\n", + "..ents.py:3947 ColumnClause.__init__ 2 0.000000 0.000000 0.000000\r\n", + "...py:543 NullType._gen_dialect_impl 13 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\default.py:855 10 0.000000 0.000000 0.000000\r\n", + "..lements.py:2553 Cast._from_objects 2 0.000000 0.000000 0.000000\r\n", + "..til\\_collections.py:991 3 0.000000 0.000000 0.000000\r\n", + "..PGTypeCompiler._render_string_type 2 0.000000 0.000000 0.000000\r\n", + "..reading.py:261 Condition._is_owned 11 0.000000 0.000000 0.000000\r\n", + "..ult.py:924 ResultProxy._soft_close 9 0.000000 0.000000 0.000000\r\n", + "..Compiler_psycopg2.construct_params 6 0.000000 0.000000 0.000000\r\n", + "..l\\selectable.py:3036 Select._froms 8 0.000000 0.000000 0.000000\r\n", + "..ging\\__init__.py:1412 Logger.debug 2 0.000000 0.000000 0.000000\r\n", + "..9 _ConnectionRecord.get_connection 1 0.000000 0.000000 0.000000\r\n", + "..Compiler_psycopg2.visit_typeclause 2 0.000000 0.000000 0.000000\r\n", + "..etaData._colnames_from_description 6 0.000000 0.000000 0.000000\r\n", + "..postgresql\\base.py:2708 1 0.000000 0.000000 0.000000\r\n", + "..ct_psycopg2._check_unicode_returns 1 0.000000 0.000000 0.000000\r\n", + "...py:434 _ConnectionRecord.__init__ 1 0.000000 0.000000 0.000000\r\n", + ".._api.py:527 NullType._dialect_info 25 0.000000 0.000000 0.000000\r\n", + "..lib\\sre_parse.py:76 State.__init__ 12 0.000000 0.000000 0.000000\r\n", + "..lchemy\\util\\queue.py:135 Queue.get 1 0.000000 0.000000 0.000000\r\n", + "..py:352 PGCompiler_psycopg2.__str__ 8 0.000000 0.000000 0.000000\r\n", + "..alect_psycopg2.get_isolation_level 1 0.000000 0.000000 0.000000\r\n", + "..owsSelectorEventLoop._check_closed 34 0.000000 0.000000 0.000000\r\n", + "..\\session.py:2508 Session._is_clean 10 0.000000 0.000000 0.000000\r\n", + "..q6k\\lib\\sre_compile.py:71 _compile 111.. 0.000000 0.000000 0.000000\r\n", + "..e.py:1694 RootTransaction.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..eral_and_labels_as_label_reference 3 0.000000 0.000000 0.000000\r\n", + "...py:903 PGDialect_psycopg2.oneshot 1 0.000000 0.000000 0.000000\r\n", + "..ql\\selectable.py:3735 name_for_col 27 0.000000 0.000000 0.000000\r\n", + "...py:3065 Select._get_display_froms 8 0.000000 0.000000 0.000000\r\n", + "..e.py:1134 Connection._execute_text 3 0.000000 0.000000 0.000000\r\n", + "..tgresql\\psycopg2.py:807 on_connect 2 0.000000 0.000000 0.000000\r\n", + "..chemy\\sql\\elements.py:4279 __new__ 16 0.000000 0.000000 0.000000\r\n", + "..copg2\\extensions.py:171 1 0.000000 0.000000 0.000000\r\n", + "..2.py:540 _PGJSONB.result_processor 1 0.000000 0.000000 0.000000\r\n", + "...py:793 ResultProxy._init_metadata 9 0.000000 0.000000 0.000000\r\n", + "..ts.py:4056 ColumnClause._get_table 48 0.000000 0.000000 0.000000\r\n", + "..\\util\\_collections.py:771 5 0.000000 0.000000 0.000000\r\n", + "..hemy\\sql\\compiler.py:650 6 0.000000 0.000000 0.000000\r\n", + "..pool\\base.py:354 QueuePool.connect 1 0.000000 0.000000 0.000000\r\n", + "..cio\\futures.py:364 _call_set_state 6 0.000000 0.000000 0.000000\r\n", + "..365 _ListenerCollection.for_modify 2 0.000000 0.000000 0.000000\r\n", + "..Context_psycopg2.should_autocommit 9 0.000000 0.000000 0.000000\r\n", + "..xtras.py:650 UUID_adapter.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..ne\\result.py:956 ResultProxy.close 3 0.000000 0.000000 0.000000\r\n", + "..y\\sql\\type_api.py:1465 to_instance 8 0.000000 0.000000 0.000000\r\n", + "..threading.py:441 Semaphore.release 7 0.000000 0.000000 0.000000\r\n", + "..ib\\sre_parse.py:969 parse_template 1 0.000000 0.000000 0.000000\r\n", + "..il\\_collections.py:775 unique_list 41 0.000000 0.000000 0.000000\r\n", + "..56 WeakInstanceDict.check_modified 10 0.000000 0.000000 0.000000\r\n", + "..m\\query.py:345 Query._adapt_clause 34 0.000000 0.000000 0.000000\r\n", + "..my\\util\\deprecations.py:115 warned 21/20 0.000000 0.000000 0.000000\r\n", + "..-68gteq6k\\lib\\enum.py:278 __call__ 26 0.000000 0.000000 0.000000\r\n", + "..:1136 Session._connection_for_bind 6 0.000000 0.000000 0.000000\r\n", + "..b\\sre_compile.py:536 _compile_info 12 0.000000 0.000000 0.000000\r\n", + "..539 PGDialect_psycopg2.do_rollback 2 0.000000 0.000000 0.000000\r\n", + ".._memoized_property.expire_instance 2 0.000000 0.000000 0.000000\r\n", + "..ections.py:151 immutabledict.union 6 0.000000 0.000000 0.000000\r\n", + "..ListenerCollection._exec_once_impl 1 0.000000 0.000000 0.000000\r\n", + "..reading.py:246 Condition.__enter__ 61 0.000000 0.000000 0.000000\r\n", + "..chemy\\util\\langhelpers.py:906 memo 2 0.000000 0.000000 0.000000\r\n", + "..g2.py:558 _PGUUID.result_processor 2 0.000000 0.000000 0.000000\r\n", + "..piler_psycopg2._truncate_bindparam 4 0.000000 0.000000 0.000000\r\n", + "..ql\\elements.py:4475 _expand_cloned 6 0.000000 0.000000 0.000000\r\n", + "..02 PGDialect_psycopg2._hstore_oids 1 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\result.py:463 6 0.000000 0.000000 0.000000\r\n", + "..ements.py:1946 ClauseList.__init__ 1 0.000000 0.000000 0.000000\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..copg2\\extensions.py:164 1 0.000000 0.000000 0.000000\r\n", + "..ent\\base.py:295 dispatcher.__get__ 10 0.000000 0.000000 0.000000\r\n", + "..6k\\lib\\sre_compile.py:595 isstring 24 0.000000 0.000000 0.000000\r\n", + "..:382 WeakKeyDictionary.__getitem__ 245 0.000000 0.000000 0.000000\r\n", + "..py:1293 Connection._cursor_execute 2 0.000000 0.000000 0.000000\r\n", + "..onTransaction._connection_for_bind 6 0.000000 0.000000 0.000000\r\n", + "..e_compile.py:276 _optimize_charset 34 0.000000 0.000000 0.000000\r\n", + "..pe_api.py:450 VARCHAR.dialect_impl 33 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\result.py:322 9 0.000000 0.000000 0.000000\r\n", + "..selectable.py:2760 Select.__init__ 8 0.000000 0.000000 0.000000\r\n", + "..my\\sql\\compiler.py:2125 8 0.000000 0.000000 0.000000\r\n", + "..sql\\elements.py:2489 Cast.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..PGDialect_psycopg2.type_descriptor 13 0.000000 0.000000 0.000000\r\n", + "..Compiler_psycopg2._bind_processors 6 0.000000 0.000000 0.000000\r\n", + "..\\result.py:1362 ResultProxy.scalar 3 0.000000 0.000000 0.000000\r\n", + "..mpl.py:143 QueuePool._inc_overflow 1 0.000000 0.000000 0.000000\r\n", + "..e.py:1757 RootTransaction.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..emy\\sql\\compiler.py:1002 4 0.000000 0.000000 0.000000\r\n", + "..y:357 _PGUUID._has_bind_expression 1 0.000000 0.000000 0.000000\r\n", + "..esql\\json.py:177 _PGJSONB.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..lchemy\\event\\base.py:87 5 0.000000 0.000000 0.000000\r\n", + "..base.py:707 Connection._begin_impl 1 0.000000 0.000000 0.000000\r\n", + "..ib\\sre_compile.py:453 _get_iscased 29 0.000000 0.000000 0.000000\r\n", + "..iler.py:410 _CompileLabel.__init__ 29 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\result.py:372 6 0.000000 0.000000 0.000000\r\n", + "..re_parse.py:160 SubPattern.__len__ 261 0.000000 0.000000 0.000000\r\n", + "..y:4713 _ColumnEntity.setup_context 27 0.000000 0.000000 0.000000\r\n", + "..chemy\\orm\\loading.py:59 6 0.000000 0.000000 0.000000\r\n", + "..py:436 prefix_anon_map.__missing__ 6 0.000000 0.000000 0.000000\r\n", + "..y:316 _ListenerCollection.__call__ 2 0.000000 0.000000 0.000000\r\n", + "..py:635 ThreadPoolExecutor.__exit__ 1 0.000000 0.000000 0.000000\r\n", + "..rs.py:63 _SelectorMapping.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..reading.py:1095 _MainThread.daemon 2 0.000000 0.000000 0.000000\r\n", + "..b\\threading.py:1306 current_thread 3 0.000000 0.000000 0.000000\r\n", + "..tors.py:180 SelectSelector.get_key 1 0.000000 0.000000 0.000000\r\n", + "..\\lib\\_weakrefset.py:81 WeakSet.add 22 0.000000 0.000000 0.000000\r\n", + "..n-68gteq6k\\lib\\os.py:732 check_str 1 0.000000 0.000000 0.000000\r\n", + "..hreading.py:222 Condition.__init__ 13 0.000000 0.000000 0.000000\r\n", + "..ctorEventLoopPolicy.new_event_loop 1 0.000000 0.000000 0.000000\r\n", + "..8\\Lib\\threading.py:979 Thread.join 1 0.000000 0.000000 0.000000\r\n", + "..y:632 ThreadPoolExecutor.__enter__ 1 0.000000 0.000000 0.000000\r\n", + "..ion\\analysis.py:367 wrap_coroutine 1 0.000000 0.000000 0.000000\r\n", + "..ib\\threading.py:1110 Thread.daemon 2 0.000000 0.000000 0.000000\r\n", + "..tures\\_base.py:316 Future.__init__ 7 0.000000 0.000000 0.000000\r\n", + "..ors.py:209 SelectSelector.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..y:102 WeakValueDictionary.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..futures\\_base.py:412 Future.result 7 0.000000 0.000000 0.000000\r\n", + "..b\\threading.py:761 Thread.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..\\Lib\\socket.py:219 socket.__init__ 3 0.000000 0.000000 0.000000\r\n", + "..lib\\os.py:668 _Environ.__getitem__ 1 0.000000 0.000000 0.000000\r\n", + "..b\\socket.py:492 socket._real_close 1 0.000000 0.000000 0.000000\r\n", + "..\\Lib\\threading.py:513 Event.is_set 5 0.000000 0.000000 0.000000\r\n", + "..ib\\threading.py:270 Condition.wait 4 0.000000 0.000000 0.000000\r\n", + "..n38\\Lib\\socket.py:496 socket.close 1 0.000000 0.000000 0.000000\r\n", + "...py:284 WeakValueDictionary.update 1 0.000000 0.000000 0.000000\r\n", + "..hreading.py:388 Semaphore.__init__ 2 0.000000 0.000000 0.000000\r\n", + ".._weakrefset.py:36 WeakSet.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..38\\Lib\\socket.py:285 socket.accept 1 0.000000 0.000000 0.000000\r\n", + "..215 SelectSelector._fileobj_lookup 2 0.000000 0.000000 0.000000\r\n", + ":1 __new__ 91 0.000000 0.000000 0.000000\r\n", + "..tion\\analysis.py:373 run_in_thread 1 0.000000 0.000000 0.000000\r\n", + ".. interactable_plot_multiple_charts 1 0.000000 0.000000 0.000000\r\n", + "..ib\\socket.py:97 _intenum_converter 2 0.000000 0.000000 0.000000\r\n", + "..indowsSelectorEventLoop.is_running 2 0.000000 0.000000 0.000000\r\n", + "..WindowsSelectorEventLoop.set_debug 1 0.000000 0.000000 0.000000\r\n", + "..ing.py:255 Condition._release_save 4 0.000000 0.000000 0.000000\r\n", + "..\\Lib\\threading.py:944 Thread._stop 1 0.000000 0.000000 0.000000\r\n", + "..ors.py:298 SelectSelector.register 1 0.000000 0.000000 0.000000\r\n", + "..lib\\functools.py:33 update_wrapper 2 0.000000 0.000000 0.000000\r\n", + "..ng.py:1177 _make_invoke_excepthook 2 0.000000 0.000000 0.000000\r\n", + "..Lib\\selectors.py:21 _fileobj_to_fd 2 0.000000 0.000000 0.000000\r\n", + "..on38\\Lib\\socket.py:518 socket.type 1 0.000000 0.000000 0.000000\r\n", + "..n\\Python38\\Lib\\typing.py:1146 cast 1 0.000000 0.000000 0.000000\r\n", + "..ion\\utils.py:58 profile_with_yappi 1 0.000000 0.000000 0.000000\r\n", + "..68gteq6k\\lib\\functools.py:63 wraps 1 0.000000 0.000000 0.000000\r\n", + "..ollections_abc.py:657 _Environ.get 1 0.000000 0.000000 0.000000\r\n", + "..38\\Lib\\threading.py:540 Event.wait 2 0.000000 0.000000 0.000000\r\n", + "..py:230 ThreadPoolExecutor.shutdown 1 0.000000 0.000000 0.000000\r\n", + "..:1017 Thread._wait_for_tstate_lock 1 0.000000 0.000000 0.000000\r\n", + "..ndowsSelectorEventLoop._add_reader 1 0.000000 0.000000 0.000000\r\n", + "...py:258 Condition._acquire_restore 4 0.000000 0.000000 0.000000\r\n", + ".._WindowsSelectorEventLoop.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..ors.py:293 SelectSelector.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..eq6k\\lib\\_weakrefset.py:38 _remove 19 0.000000 0.000000 0.000000\r\n", + "..38\\Lib\\socket.py:512 socket.family 1 0.000000 0.000000 0.000000\r\n", + "..vents.py:719 get_event_loop_policy 1 0.000000 0.000000 0.000000\r\n", + "..n-68gteq6k\\lib\\os.py:738 encodekey 1 0.000000 0.000000 0.000000\r\n", + ".._WindowsSelectorEventLoop.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..py:120 ThreadPoolExecutor.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..yncio\\events.py:756 new_event_loop 1 0.000000 0.000000 0.000000\r\n", + "..io\\coroutines.py:18 _is_debug_mode 1 0.000000 0.000000 0.000000\r\n", + "..threading.py:394 Semaphore.acquire 7 0.000000 0.000000 0.000000\r\n", + "..py:69 _SelectorMapping.__getitem__ 1 0.000000 0.000000 0.000000\r\n", + "..es\\thread.py:46 _WorkItem.__init__ 7 0.000000 0.000000 0.000000\r\n", + "..ib\\threading.py:505 Event.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..ors.py:234 SelectSelector.register 1 0.000000 0.000000 0.000000\r\n", + "..hon38\\Lib\\socket.py:579 socketpair 1 0.000000 0.000000 0.000000\r\n", + "..sSelectorEventLoop._make_self_pipe 1 0.000000 0.000000 0.000000\r\n", + "..s\\_base.py:386 Future.__get_result 7 0.000000 0.000000 0.000000\r\n", + "..tors.py:272 SelectSelector.get_map 1 0.000000 0.000000 0.000000\r\n", + "..Python38\\Lib\\threading.py:81 RLock 8 0.000000 0.000000 0.000000\r\n", + ".. _GeneratorContextManager.__exit__ 142.. 0.000000 0.000000 0.000000\r\n", + "..1254 Line2D.set_markerfacecoloralt 30 0.000000 0.000000 0.000000\r\n", + "..HandlerLine2D._default_update_prop 8 0.000000 0.000000 0.000000\r\n", + "..y:980 _ConnectionFairy.__getattr__ 2 0.000000 0.000000 0.000000\r\n", + "..\\axis.py:618 YTick.update_position 3 0.000000 0.000000 0.000000\r\n", + "..y:583 AxesSubplot._unstale_viewLim 2 0.000000 0.000000 0.000000\r\n", + "..py:133 GridSpec.get_grid_positions 1 0.000000 0.000000 0.000000\r\n", + "..lib\\transforms.py:782 from_extents 20 0.000000 0.000000 0.000000\r\n", + "..istry.py:246 _EventKey.base_listen 3 0.000000 0.000000 0.000000\r\n", + "..copg2\\tz.py:36 FixedOffsetTimezone 1 0.000000 0.000000 0.000000\r\n", + "..y\\orm\\session.py:893 Session.begin 3 0.000000 0.000000 0.000000\r\n", + "..ok\\__init__.py:2108 _check_in_list 449 0.000000 0.000000 0.000000\r\n", + "...py:556 UUID.coerce_compared_value 4 0.000000 0.000000 0.000000\r\n", + "..:1088 ExtensionFileLoader.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\colors.py:225 4 0.000000 0.000000 0.000000\r\n", + "..otlib\\axes\\_base.py:363 4 0.000000 0.000000 0.000000\r\n", + "..__.py:185 CallbackRegistry.process 26 0.000000 0.000000 0.000000\r\n", + "..array_function__ internals>:2 tile 1 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:229 XTick.set_clip_path 6 0.000000 0.000000 0.000000\r\n", + "..xesSubplot._set_title_offset_trans 5 0.000000 0.000000 0.000000\r\n", + "..plotlib\\spines.py:517 linear_spine 4 0.000000 0.000000 0.000000\r\n", + "..:776 Rectangle.get_patch_transform 18 0.000000 0.000000 0.000000\r\n", + "..rtist.py:350 Text.is_transform_set 15 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\figure.py:76 2 0.000000 0.000000 0.000000\r\n", + "..gistry.py:67 _stored_in_collection 3 0.000000 0.000000 0.000000\r\n", + "..set.py:16 _IterationGuard.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..nits.py:197 Registry.get_converter 24/14 0.000000 0.000000 0.000000\r\n", + "..tenerCollection._memoized_attr_ref 2 0.000000 0.000000 0.000000\r\n", + "..ler.py:396 PGTypeCompiler.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..lotlib\\dates.py:1921 default_units 8 0.000000 0.000000 0.000000\r\n", + "..base.py:563 AxesSubplot.set_figure 1 0.000000 0.000000 0.000000\r\n", + "..k\\lib\\abc.py:100 __subclasscheck__ 85/14 0.000000 0.000000 0.000000\r\n", + "..lib\\axis.py:922 _translate_tick_kw 8 0.000000 0.000000 0.000000\r\n", + "..manager.py:855 FontProperties.copy 3 0.000000 0.000000 0.000000\r\n", + "..pool\\impl.py:35 QueuePool.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..y:2462 composite_transform_factory 78 0.000000 0.000000 0.000000\r\n", + "..ctions_abc.py:252 __subclasshook__ 1 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:334 XTick._apply_params 14 0.000000 0.000000 0.000000\r\n", + "..t_manager.py:1043 get_default_size 22 0.000000 0.000000 0.000000\r\n", + "...py:1624 FigureCanvasBase.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..owsSelectorEventLoop.create_future 6 0.000000 0.000000 0.000000\r\n", + "..b\\_pylab_helpers.py:109 set_active 1 0.000000 0.000000 0.000000\r\n", + "..y:930 AxesSubplot._gen_axes_spines 1 0.000000 0.000000 0.000000\r\n", + "..es.py:375 FancyBboxPatch.set_alpha 1 0.000000 0.000000 0.000000\r\n", + "..x.py:690 DrawingArea.get_transform 4 0.000000 0.000000 0.000000\r\n", + "..ase.py:867 _ConnectionFairy._reset 1 0.000000 0.000000 0.000000\r\n", + "..ycopg2\\extras.py:805 HstoreAdapter 1 0.000000 0.000000 0.000000\r\n", + "..:536 ScalarFormatter.set_useOffset 16 0.000000 0.000000 0.000000\r\n", + "..emy\\orm\\query.py:1790 Query.filter 4 0.000000 0.000000 0.000000\r\n", + "..text.py:240 Text.set_rotation_mode 24 0.000000 0.000000 0.000000\r\n", + "..ages\\psycopg2\\errors.py:1 1 0.000000 0.000000 0.000000\r\n", + "..lEventsDispatch._event_descriptors 36 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\text.py:170 Text.update 65 0.000000 0.000000 0.000000\r\n", + "..py:913 AxesSubplot._gen_axes_patch 1 0.000000 0.000000 0.000000\r\n", + "..set.py:26 _IterationGuard.__exit__ 1 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:544 YTick._get_text1 3 0.000000 0.000000 0.000000\r\n", + "..rms.py:1632 TransformWrapper._init 2 0.000000 0.000000 0.000000\r\n", + "..:221 Query._set_entity_selectables 6 0.000000 0.000000 0.000000\r\n", + "..\\__init__.py:631 _AxesStack.bubble 1 0.000000 0.000000 0.000000\r\n", + "..6k\\lib\\enum.py:659 RegexFlag.value 4 0.000000 0.000000 0.000000\r\n", + "..CompositeGenericTransform.__init__ 69 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:603 YTick._get_gridline 3 0.000000 0.000000 0.000000\r\n", + "..stry.py:169 _EventKey.with_wrapper 5 0.000000 0.000000 0.000000\r\n", + "..langhelpers.py:344 get_func_kwargs 1 0.000000 0.000000 0.000000\r\n", + "..lib\\patches.py:2146 Round.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..b\\path.py:251 Path.should_simplify 4 0.000000 0.000000 0.000000\r\n", + "..ges\\numpy\\core\\_methods.py:44 _any 4 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:559 YTick._get_text2 3 0.000000 0.000000 0.000000\r\n", + "..xis.py:1969 XAxis._get_offset_text 1 0.000000 0.000000 0.000000\r\n", + "..base.py:375 QueuePool._return_conn 1 0.000000 0.000000 0.000000\r\n", + "..qlalchemy\\orm\\base.py:222 generate 5 0.000000 0.000000 0.000000\r\n", + "..orm._iter_break_from_left_to_right 8 0.000000 0.000000 0.000000\r\n", + "..ngine\\base.py:863 Connection.close 1 0.000000 0.000000 0.000000\r\n", + "..py:1240 Line2D.set_markerfacecolor 30 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:662 Ticker.formatter 65 0.000000 0.000000 0.000000\r\n", + "..7 BlendedGenericTransform.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..lchemy\\orm\\query.py:330 1 0.000000 0.000000 0.000000\r\n", + "..legend.py:1169 _get_legend_handles 5 0.000000 0.000000 0.000000\r\n", + "..tlib\\figure.py:275 Figure.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..t.py:49 Spine._stale_axes_callback 302 0.000000 0.000000 0.000000\r\n", + "..py:834 XAxis.limit_range_for_scale 2 0.000000 0.000000 0.000000\r\n", + "..otlib\\artist.py:74 Figure.__init__ 88 0.000000 0.000000 0.000000\r\n", + ".._base.py:3093 AxesSubplot.set_xlim 1 0.000000 0.000000 0.000000\r\n", + "..774 SourceFileLoader.create_module 9 0.000000 0.000000 0.000000\r\n", + "..34 new_figure_manager_given_figure 1 0.000000 0.000000 0.000000\r\n", + "..xis.py:1525 XAxis._update_axisinfo 13 0.000000 0.000000 0.000000\r\n", + "..ngine\\url.py:299 _rfc_1738_unquote 1 0.000000 0.000000 0.000000\r\n", + "..lotlib\\axis.py:645 Ticker.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..sSubplot.get_xaxis_text1_transform 3 0.000000 0.000000 0.000000\r\n", + "..y:2463 FancyBboxPatch.set_boxstyle 2 0.000000 0.000000 0.000000\r\n", + "..24 AxesSubplot.get_yaxis_transform 29/15 0.000000 0.000000 0.000000\r\n", + "..psycopg2\\_range.py:290 RangeCaster 1 0.000000 0.000000 0.000000\r\n", + "..owsSelectorEventLoop._add_callback 6 0.000000 0.000000 0.000000\r\n", + "..l.py:103 QueuePool._do_return_conn 1 0.000000 0.000000 0.000000\r\n", + "..e-packages\\cycler.py:227 110 0.000000 0.000000 0.000000\r\n", + "..ure.py:487 Figure.set_tight_layout 1 0.000000 0.000000 0.000000\r\n", + "..nal>:1520 path_hook_for_FileFinder 1 0.000000 0.000000 0.000000\r\n", + "..ib\\transforms.py:727 Bbox.__init__ 41 0.000000 0.000000 0.000000\r\n", + "..s.py:1247 AutoDateLocator.__init__ 2 0.000000 0.000000 0.000000\r\n", + "...py:1640 XAxis.set_minor_formatter 16 0.000000 0.000000 0.000000\r\n", + "..:171 DynamicClassAttribute.__get__ 4 0.000000 0.000000 0.000000\r\n", + "..nal>:939 SourceFileLoader.__init__ 9 0.000000 0.000000 0.000000\r\n", + "..610 _WindowsSelectorEventLoop.stop 1 0.000000 0.000000 0.000000\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..b\\function_base.py:2120 4 0.000000 0.000000 0.000000\r\n", + "...py:1423 Figure._add_axes_internal 1 0.000000 0.000000 0.000000\r\n", + "..mportlib._bootstrap>:800 find_spec 10 0.000000 0.000000 0.000000\r\n", + "..:94 PoolEventsDispatch.__getattr__ 12 0.000000 0.000000 0.000000\r\n", + "..axes.py:256 AxesSubplot.set_ylabel 4 0.000000 0.000000 0.000000\r\n", + "..lines.py:1058 Line2D.set_drawstyle 34 0.000000 0.000000 0.000000\r\n", + "..sforms.py:1940 Affine2D.rotate_deg 18 0.000000 0.000000 0.000000\r\n", + "..>:1010 SourceFileLoader.path_stats 9 0.000000 0.000000 0.000000\r\n", + "..b\\cbook\\__init__.py:836 8 0.000000 0.000000 0.000000\r\n", + "..lib\\lines.py:743 Line2D._is_sorted 3 0.000000 0.000000 0.000000\r\n", + "..\\elements.py:709 Column.comparator 4 0.000000 0.000000 0.000000\r\n", + "..tlib\\axis.py:1951 XAxis._get_label 1 0.000000 0.000000 0.000000\r\n", + "..ore\\numerictypes.py:365 issubdtype 4 0.000000 0.000000 0.000000\r\n", + "..\\axis.py:1605 YAxis.set_label_text 5 0.000000 0.000000 0.000000\r\n", + "..copg2\\extras.py:125 DictConnection 1 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\transforms.py:768 null 1 0.000000 0.000000 0.000000\r\n", + "..lib\\offsetbox.py:199 TextArea.axes 16 0.000000 0.000000 0.000000\r\n", + "..nction__ internals>:2 column_stack 12 0.000000 0.000000 0.000000\r\n", + "..ap_external>:90 _path_is_mode_type 13 0.000000 0.000000 0.000000\r\n", + ".._base.py:20 _atleast_1d_dispatcher 24 0.000000 0.000000 0.000000\r\n", + "..py:193 PGDialect_psycopg2.__init__ 1 0.000000 0.000000 0.000000\r\n", + "...py:765 FontProperties.set_variant 23 0.000000 0.000000 0.000000\r\n", + "...py:523 YTick._get_text1_transform 3 0.000000 0.000000 0.000000\r\n", + "..ath.py:230 Path.simplify_threshold 4 0.000000 0.000000 0.000000\r\n", + "..sql\\operators.py:358 Column.__eq__ 8/4 0.000000 0.000000 0.000000\r\n", + "..\\core\\fromnumeric.py:74 85 0.000000 0.000000 0.000000\r\n", + "..sql\\elements.py:4087 Column._label 10 0.000000 0.000000 0.000000\r\n", + "..WeakKeyDictionary._commit_removals 1 0.000000 0.000000 0.000000\r\n", + "..elements.py:724 Column.__getattr__ 3 0.000000 0.000000 0.000000\r\n", + "..k\\__init__.py:626 _AxesStack.clear 3 0.000000 0.000000 0.000000\r\n", + "..ool\\base.py:235 QueuePool._creator 1 0.000000 0.000000 0.000000\r\n", + "..s.py:302 Rectangle.set_antialiased 8 0.000000 0.000000 0.000000\r\n", + "..tlib\\transforms.py:773 from_bounds 1 0.000000 0.000000 0.000000\r\n", + "..68gteq6k\\lib\\weakref.py:44 __new__ 33 0.000000 0.000000 0.000000\r\n", + "..ction__ internals>:2 unravel_index 1 0.000000 0.000000 0.000000\r\n", + "..ycopg2\\_range.py:471 DateTimeRange 1 0.000000 0.000000 0.000000\r\n", + "..asyncio\\futures.py:377 wrap_future 6 0.000000 0.000000 0.000000\r\n", + "..sion.py:3188 sessionmaker.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..07 ExtensionFileLoader.exec_module 1 0.000000 0.000000 0.000000\r\n", + "..\\interfaces.py:856 get_dialect_cls 1 0.000000 0.000000 0.000000\r\n", + "..es.py:341 Rectangle._set_facecolor 20 0.000000 0.000000 0.000000\r\n", + ":1 Session.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..nsaction._iterate_self_and_parents 1 0.000000 0.000000 0.000000\r\n", + "..e\\fromnumeric.py:73 _wrapreduction 85 0.000000 0.000000 0.000000\r\n", + "..\\legend.py:1215 _parse_legend_args 1 0.000000 0.000000 0.000000\r\n", + "..2\\extras.py:226 RealDictConnection 1 0.000000 0.000000 0.000000\r\n", + "..ches.py:458 Rectangle.set_capstyle 11 0.000000 0.000000 0.000000\r\n", + "..chemy\\util\\queue.py:199 Queue._put 1 0.000000 0.000000 0.000000\r\n", + "..as.py:472 MinTimeLoggingConnection 1 0.000000 0.000000 0.000000\r\n", + "..y\\dialects\\__init__.py:52 1 0.000000 0.000000 0.000000\r\n", + "..idspec.py:200 GridSpec.__getitem__ 1 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\text.py:121 Text.__init__ 24 0.000000 0.000000 0.000000\r\n", + "..lotlib\\axes\\_base.py:586 4 0.000000 0.000000 0.000000\r\n", + "..n\\Python38\\Lib\\typing.py:255 inner 1 0.000000 0.000000 0.000000\r\n", + "..extras.py:296 NamedTupleConnection 1 0.000000 0.000000 0.000000\r\n", + "..tion_base.py:1143 _diff_dispatcher 16 0.000000 0.000000 0.000000\r\n", + "..s\\psycopg2\\_range.py:466 DateRange 1 0.000000 0.000000 0.000000\r\n", + "..plotlib\\transforms.py:177 39 0.000000 0.000000 0.000000\r\n", + "..ger.py:835 FontProperties.set_file 23 0.000000 0.000000 0.000000\r\n", + "..py:210 WeakInstanceDict.all_states 2 0.000000 0.000000 0.000000\r\n", + "..8gteq6k\\lib\\sre_parse.py:432 _uniq 22 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\figure.py:74 2 0.000000 0.000000 0.000000\r\n", + "..b\\spines.py:381 Spine.set_position 4 0.000000 0.000000 0.000000\r\n", + "..ib\\function_base.py:2116 8 0.000000 0.000000 0.000000\r\n", + "..mportlib._bootstrap>:725 find_spec 10 0.000000 0.000000 0.000000\r\n", + "..ernal>:629 spec_from_file_location 10 0.000000 0.000000 0.000000\r\n", + ":1 QueuePool.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..:519 PhysicalReplicationConnection 1 0.000000 0.000000 0.000000\r\n", + "..ures\\_base.py:371 Future.cancelled 6 0.000000 0.000000 0.000000\r\n", + ".._init__.py:1610 safe_first_element 24 0.000000 0.000000 0.000000\r\n", + "..cbook\\__init__.py:1933 _setattr_cm 280 0.000000 0.000000 0.000000\r\n", + "..ool\\base.py:231 QueuePool._creator 1 0.000000 0.000000 0.000000\r\n", + "..ker.py:2126 AutoLocator.set_params 16 0.000000 0.000000 0.000000\r\n", + "..\\offsetbox.py:410 VPacker.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..se.py:1699 RootTransaction._parent 1 0.000000 0.000000 0.000000\r\n", + "..__init__.py:60 _StrongRef.__hash__ 6 0.000000 0.000000 0.000000\r\n", + "..lors.py:193 _to_rgba_no_colorcycle 8 0.000000 0.000000 0.000000\r\n", + "..es\\matplotlib\\pyplot.py:427 figure 1 0.000000 0.000000 0.000000\r\n", + "..s.py:1355 AutoDateLocator.set_axis 1 0.000000 0.000000 0.000000\r\n", + "..s.py:263 MarkerStyle.get_fillstyle 8 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\axis.py:1456 XAxis.grid 4 0.000000 0.000000 0.000000\r\n", + "..hes.py:330 Rectangle.set_edgecolor 12 0.000000 0.000000 0.000000\r\n", + "..portlib._bootstrap>:35 _new_module 9 0.000000 0.000000 0.000000\r\n", + "..tlib\\transforms.py:274 Bbox.frozen 1 0.000000 0.000000 0.000000\r\n", + "..plotlib\\text.py:933 Text.set_color 24 0.000000 0.000000 0.000000\r\n", + "..s.py:2221 BlendedAffine2D.__init__ 6 0.000000 0.000000 0.000000\r\n", + ".. HandlerLine2D.adjust_drawing_area 4 0.000000 0.000000 0.000000\r\n", + "..b\\lines.py:1327 Line2D.update_from 8 0.000000 0.000000 0.000000\r\n", + "..ocess_plot_var_args.set_prop_cycle 2 0.000000 0.000000 0.000000\r\n", + "..alchemy\\log.py:174 instance_logger 3 0.000000 0.000000 0.000000\r\n", + "..pe_base.py:219 _vhstack_dispatcher 16 0.000000 0.000000 0.000000\r\n", + "..s\\psycopg2\\tz.py:108 LocalTimezone 1 0.000000 0.000000 0.000000\r\n", + "..mpy\\lib\\function_base.py:1147 diff 16 0.000000 0.000000 0.000000\r\n", + "..lib\\transforms.py:82 Bbox.__init__ 306 0.000000 0.000000 0.000000\r\n", + "..nctools.py:524 decorating_function 1 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\axis.py:1486 4 0.000000 0.000000 0.000000\r\n", + "..emy\\engine\\url.py:129 URL.password 1 0.000000 0.000000 0.000000\r\n", + "..sSelectorEventLoop._process_events 17 0.000000 0.000000 0.000000\r\n", + "..lib\\lines.py:1294 Line2D.set_ydata 39 0.000000 0.000000 0.000000\r\n", + ".._.py:1309 _to_unmasked_float_array 34 0.000000 0.000000 0.000000\r\n", + "..>:147 _ModuleLockManager.__enter__ 10 0.000000 0.000000 0.000000\r\n", + "..\\sqlalchemy\\event\\api.py:34 listen 3 0.000000 0.000000 0.000000\r\n", + "..gure.py:2059 Figure.add_axobserver 1 0.000000 0.000000 0.000000\r\n", + "..teq6k\\lib\\copy.py:257 _reconstruct 1 0.000000 0.000000 0.000000\r\n", + "..artist.py:827 Line2D.get_clip_path 4 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\legend.py:1253 1 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\figure.py:1073 fixitems 1 0.000000 0.000000 0.000000\r\n", + "..r.py:742 FontProperties.set_family 23 0.000000 0.000000 0.000000\r\n", + "..ap_external>:294 cache_from_source 18 0.000000 0.000000 0.000000\r\n", + "..forms.py:1669 TransformWrapper.set 2 0.000000 0.000000 0.000000\r\n", + "..tlib\\units.py:81 AxisInfo.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..ncio\\coroutines.py:177 iscoroutine 2 0.000000 0.000000 0.000000\r\n", + "..\\psycopg2\\extensions.py:109 SQL_IN 1 0.000000 0.000000 0.000000\r\n", + "..plotlib\\gridspec.py:382 1 0.000000 0.000000 0.000000\r\n", + "..xternal>:1265 _path_importer_cache 19 0.000000 0.000000 0.000000\r\n", + "..kages\\psycopg2\\_json.py:1 1 0.000000 0.000000 0.000000\r\n", + "..process_plot_var_args._setdefaults 4 0.000000 0.000000 0.000000\r\n", + "..b\\axis.py:459 XTick._get_tick1line 3 0.000000 0.000000 0.000000\r\n", + "..y\\lib\\shape_base.py:1227 2 0.000000 0.000000 0.000000\r\n", + "..ages\\psycopg2\\extras.py:1 1 0.000000 0.000000 0.000000\r\n", + "..\\transforms.py:939 Bbox.get_points 3 0.000000 0.000000 0.000000\r\n", + "..tlib\\legend.py:569 Legend._set_loc 1 0.000000 0.000000 0.000000\r\n", + "..tlib\\axis.py:2466 YAxis.get_minpos 1 0.000000 0.000000 0.000000\r\n", + "..s.py:1398 Line2D.set_dash_capstyle 30 0.000000 0.000000 0.000000\r\n", + "..on38\\Lib\\uuid.py:259 UUID.__hash__ 4 0.000000 0.000000 0.000000\r\n", + "..otlib\\artist.py:197 Rectangle.axes 117 0.000000 0.000000 0.000000\r\n", + "..py:2459 AxesSubplot._get_axis_list 1 0.000000 0.000000 0.000000\r\n", + "..\\orm\\session.py:1288 Session.close 1 0.000000 0.000000 0.000000\r\n", + "..\\offsetbox.py:356 HPacker.__init__ 7 0.000000 0.000000 0.000000\r\n", + "..ion-68gteq6k\\lib\\weakref.py:51 _cb 2 0.000000 0.000000 0.000000\r\n", + "..opg2\\_range.py:476 DateTimeTZRange 1 0.000000 0.000000 0.000000\r\n", + "..ycopg2\\extras.py:65 DictCursorBase 1 0.000000 0.000000 0.000000\r\n", + "..lectorEventLoop._process_self_data 6 0.000000 0.000000 0.000000\r\n", + "..y:154 to_unicode_processor_factory 1 0.000000 0.000000 0.000000\r\n", + "..:116 PoolEventsDispatch._for_class 2 0.000000 0.000000 0.000000\r\n", + "..hemy\\engine\\url.py:56 URL.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..otlib\\rcsetup.py:123 validate_bool 1 0.000000 0.000000 0.000000\r\n", + "..b\\scale.py:97 LinearScale.__init__ 16 0.000000 0.000000 0.000000\r\n", + "..b._bootstrap>:157 _get_module_lock 18 0.000000 0.000000 0.000000\r\n", + "..ping.py:717 _GenericAlias.__hash__ 1 0.000000 0.000000 0.000000\r\n", + "..y:512 LogicalReplicationConnection 1 0.000000 0.000000 0.000000\r\n", + "..r.py:774 FontProperties.set_weight 27 0.000000 0.000000 0.000000\r\n", + "..er.py:72 HandlerLine2D.update_prop 8 0.000000 0.000000 0.000000\r\n", + "..til\\_collections.py:317 5 0.000000 0.000000 0.000000\r\n", + "..ig\\configurable.py:426 initialized 2 0.000000 0.000000 0.000000\r\n", + "..t\\registry.py:193 _EventKey.listen 4/3 0.000000 0.000000 0.000000\r\n", + "..otlib\\transforms.py:394 Bbox.width 1 0.000000 0.000000 0.000000\r\n", + "..s\\matplotlib\\axis.py:841 XAxis.cla 12 0.000000 0.000000 0.000000\r\n", + "..ootstrap_external>:99 _path_isfile 12 0.000000 0.000000 0.000000\r\n", + "..d_bases.py:3325 new_figure_manager 1 0.000000 0.000000 0.000000\r\n", + "..sSubplot.get_yaxis_text2_transform 3 0.000000 0.000000 0.000000\r\n", + "..nit__.py:1974 _OrderedSet.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..lotlib\\axis.py:822 XAxis.get_scale 5 0.000000 0.000000 0.000000\r\n", + "..s\\_base.py:597 AxesSubplot.viewLim 2 0.000000 0.000000 0.000000\r\n", + "..f.py:385 WeakKeyDictionary.__len__ 2 0.000000 0.000000 0.000000\r\n", + "...py:526 YTick._get_text2_transform 3 0.000000 0.000000 0.000000\r\n", + "..bootstrap_external>:1508 1 0.000000 0.000000 0.000000\r\n", + "..plotlib\\axis.py:649 Ticker.locator 3 0.000000 0.000000 0.000000\r\n", + "..y:528 Text._update_clip_properties 15 0.000000 0.000000 0.000000\r\n", + "..lotlib\\axes\\_base.py:232 8 0.000000 0.000000 0.000000\r\n", + "..ing>:1 PGDialect_psycopg2.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..hes.py:260 Rectangle.get_transform 18 0.000000 0.000000 0.000000\r\n", + "..bootstrap>:103 _ModuleLock.release 18 0.000000 0.000000 0.000000\r\n", + "..lib\\artist.py:974 Rectangle.update 140 0.000000 0.000000 0.000000\r\n", + "..py:2249 BlendedAffine2D.get_matrix 4 0.000000 0.000000 0.000000\r\n", + "..tlib\\dates.py:174 _get_rc_timezone 6 0.000000 0.000000 0.000000\r\n", + "..e.py:117 LinearScale.get_transform 4 0.000000 0.000000 0.000000\r\n", + "..ase.py:746 Connection._commit_impl 1 0.000000 0.000000 0.000000\r\n", + "..ges\\numpy\\core\\_methods.py:47 _all 1 0.000000 0.000000 0.000000\r\n", + "..sSubplot.get_xaxis_text2_transform 3 0.000000 0.000000 0.000000\r\n", + "..ib\\axes\\_subplots.py:229 2 0.000000 0.000000 0.000000\r\n", + "..egation\\analysis.py:212 8613 0.000000 0.000000 0.000000\r\n", + "..mpy\\core\\fromnumeric.py:42 _wrapit 3 0.000000 0.000000 0.000000\r\n", + "..lib\\transforms.py:935 Bbox.minposy 1 0.000000 0.000000 0.000000\r\n", + "...py:2266 blended_transform_factory 8 0.000000 0.000000 0.000000\r\n", + "..93 vectorize._get_ufunc_and_otypes 4 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\artist.py:1006 140 0.000000 0.000000 0.000000\r\n", + "..py:2538 FigureManagerBase.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..json.py:146 register_default_jsonb 1 0.000000 0.000000 0.000000\r\n", + "..chemy\\engine\\url.py:156 1 0.000000 0.000000 0.000000\r\n", + ":1 Comparator. 4 0.000000 0.000000 0.000000\r\n", + "..ib\\stride_tricks.py:262 10 0.000000 0.000000 0.000000\r\n", + "..b\\sre_parse.py:98 State.checkgroup 1 0.000000 0.000000 0.000000\r\n", + "..extras.py:500 MinTimeLoggingCursor 1 0.000000 0.000000 0.000000\r\n", + "..syncio\\base_futures.py:13 isfuture 37 0.000000 0.000000 0.000000\r\n", + "..lalchemy\\event\\base.py:243 _listen 3 0.000000 0.000000 0.000000\r\n", + "..ok\\__init__.py:601 _AxesStack.push 2 0.000000 0.000000 0.000000\r\n", + "..s.py:2544 BboxTransformTo.__init__ 20 0.000000 0.000000 0.000000\r\n", + "..ist.py:961 Rectangle.set_in_layout 1 0.000000 0.000000 0.000000\r\n", + "..opg2\\extras.py:526 StopReplication 1 0.000000 0.000000 0.000000\r\n", + "..nghelpers.py:248 PluginLoader.load 1 0.000000 0.000000 0.000000\r\n", + "..1 _process_plot_var_args._makeline 4 0.000000 0.000000 0.000000\r\n", + "..ation-68gteq6k\\lib\\copy.py:66 copy 1 0.000000 0.000000 0.000000\r\n", + "..entifierPreparer_psycopg2.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..asyncio\\tasks.py:653 ensure_future 2 0.000000 0.000000 0.000000\r\n", + "..yncio\\futures.py:335 _chain_future 6 0.000000 0.000000 0.000000\r\n", + "..alchemy\\util\\queue.py:92 Queue.put 1 0.000000 0.000000 0.000000\r\n", + "..48 AxesSubplot.get_xaxis_transform 29/15 0.000000 0.000000 0.000000\r\n", + "..romnumeric.py:2185 _any_dispatcher 76 0.000000 0.000000 0.000000\r\n", + "...py:77 PoolEventsDispatch.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..b._bootstrap>:222 _verbose_message 90 0.000000 0.000000 0.000000\r\n", + "..mpy\\core\\multiarray.py:1043 copyto 4 0.000000 0.000000 0.000000\r\n", + "..\\lib\\sre_compile.py:411 _mk_bitmap 5 0.000000 0.000000 0.000000\r\n", + "..ctors.py:319 SelectSelector.select 17 0.000000 0.000000 0.000000\r\n", + "..ffsetbox.py:240 VPacker.set_offset 1 0.000000 0.000000 0.000000\r\n", + ".._comparator.py:41 _boolean_compare 4 0.000000 0.000000 0.000000\r\n", + "...py:1352 Line2D.set_dash_joinstyle 30 0.000000 0.000000 0.000000\r\n", + "..ase.py:3767 AxesSubplot.xaxis_date 4 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:485 XTick._get_gridline 3 0.000000 0.000000 0.000000\r\n", + "..\\numpy\\lib\\shape_base.py:1155 tile 1 0.000000 0.000000 0.000000\r\n", + "..s\\matplotlib\\dates.py:225 2 0.000000 0.000000 0.000000\r\n", + "..y:2175 XAxis.set_default_intervals 1 0.000000 0.000000 0.000000\r\n", + "..tstrap_external>:493 _classify_pyc 9 0.000000 0.000000 0.000000\r\n", + "..external>:1394 FileFinder.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..py:140 _AxesStack.current_key_axes 2 0.000000 0.000000 0.000000\r\n", + "..y:355 _ListenerCollection.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:444 XTick._get_text2 3 0.000000 0.000000 0.000000\r\n", + "..copg2\\extras.py:233 RealDictCursor 1 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\path.py:197 Path.vertices 16 0.000000 0.000000 0.000000\r\n", + "..t_comparator.py:359 _check_literal 4 0.000000 0.000000 0.000000\r\n", + "..ctions_abc.py:271 __subclasshook__ 5 0.000000 0.000000 0.000000\r\n", + "..es\\numpy\\core\\_methods.py:28 _amax 2 0.000000 0.000000 0.000000\r\n", + "..nal>:969 SourceFileLoader.get_data 9 0.000000 0.000000 0.000000\r\n", + "..ib\\weakref.py:73 WeakMethod.__eq__ 1 0.000000 0.000000 0.000000\r\n", + "..e.py:853 _ConnectionFairy._checkin 1 0.000000 0.000000 0.000000\r\n", + "..artist.py:841 TextArea.set_clip_on 16 0.000000 0.000000 0.000000\r\n", + "..e\\interfaces.py:901 engine_created 1 0.000000 0.000000 0.000000\r\n", + "..b\\weakref.py:328 KeyedRef.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..\\lines.py:730 Line2D.set_transform 38 0.000000 0.000000 0.000000\r\n", + "..s.py:1709 IdentityTransform.__eq__ 9/8 0.000000 0.000000 0.000000\r\n", + "..\\cbook\\__init__.py:1737 74 0.000000 0.000000 0.000000\r\n", + "..\\spines.py:226 Spine.register_axis 4 0.000000 0.000000 0.000000\r\n", + "..ng\\__init__.py:772 Logger.__init__ 3 0.000000 0.000000 0.000000\r\n", + "..Figure.set_constrained_layout_pads 1 0.000000 0.000000 0.000000\r\n", + "..nal>:849 SourceFileLoader.get_code 9 0.000000 0.000000 0.000000\r\n", + "...py:235 SubplotParams._update_this 12 0.000000 0.000000 0.000000\r\n", + "..y\\log.py:221 echo_property.__set__ 1 0.000000 0.000000 0.000000\r\n", + "..s\\matplotlib\\axis.py:342 70 0.000000 0.000000 0.000000\r\n", + "..:136 Affine2D._invalidate_internal 90/76 0.000000 0.000000 0.000000\r\n", + "..n.py:500 SessionTransaction.commit 1 0.000000 0.000000 0.000000\r\n", + "..b\\transforms.py:914 Bbox.intervaly 1 0.000000 0.000000 0.000000\r\n", + "...py:311 RangeCaster._create_ranges 6 0.000000 0.000000 0.000000\r\n", + "...py:1689 TransformWrapper. 6 0.000000 0.000000 0.000000\r\n", + "..ents.py:942 BindParameter.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..ib\\artist.py:800 XAxis.get_visible 2 0.000000 0.000000 0.000000\r\n", + "..ib\\threading.py:1095 Thread.daemon 1 0.000000 0.000000 0.000000\r\n", + "..e._process_projection_requirements 1 0.000000 0.000000 0.000000\r\n", + "..b._bootstrap>:549 module_from_spec 10/9 0.000000 0.000000 0.000000\r\n", + ".. Rectangle._update_patch_transform 18 0.000000 0.000000 0.000000\r\n", + "..\\cbook\\__init__.py:1742 74 0.000000 0.000000 0.000000\r\n", + "..book\\__init__.py:1296 is_math_text 30 0.000000 0.000000 0.000000\r\n", + "..ray_function__ internals>:2 copyto 4 0.000000 0.000000 0.000000\r\n", + "..is.py:1048 XAxis._set_artist_props 4 0.000000 0.000000 0.000000\r\n", + "..59 WeakValueDictionary.__setitem__ 1 0.000000 0.000000 0.000000\r\n", + "..hes.py:402 Rectangle.set_linestyle 7 0.000000 0.000000 0.000000\r\n", + "..y\\pool\\base.py:667 _finalize_fairy 1 0.000000 0.000000 0.000000\r\n", + ".._bootstrap>:477 _init_module_attrs 10 0.000000 0.000000 0.000000\r\n", + ".._bootstrap_external>:80 _path_stat 40 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\dates.py:1893 axisinfo 2 0.000000 0.000000 0.000000\r\n", + "..tbox.py:739 DrawingArea.add_artist 8 0.000000 0.000000 0.000000\r\n", + "..lib\\lines.py:1047 Line2D.set_color 30 0.000000 0.000000 0.000000\r\n", + "..py:2606 BboxTransformFrom.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..\\offsetbox.py:489 HPacker.__init__ 5 0.000000 0.000000 0.000000\r\n", + "..bootstrap_external>:68 _path_split 18 0.000000 0.000000 0.000000\r\n", + "..teGenericTransform.contains_branch 4 0.000000 0.000000 0.000000\r\n", + "..elements.py:4056 Column._get_table 20 0.000000 0.000000 0.000000\r\n", + "..y\\core\\multiarray.py:77 empty_like 4 0.000000 0.000000 0.000000\r\n", + "..offsetbox.py:175 TextArea.__init__ 16 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:529 YTick.apply_tickdir 3 0.000000 0.000000 0.000000\r\n", + "..nsforms.py:126 Affine2D.invalidate 76 0.000000 0.000000 0.000000\r\n", + "...py:792 FontProperties.set_stretch 23 0.000000 0.000000 0.000000\r\n", + "..ib\\__init__.py:1285 is_interactive 2 0.000000 0.000000 0.000000\r\n", + "..it__.py:1323 Manager._fixupParents 3 0.000000 0.000000 0.000000\r\n", + "..sycopg2\\_range.py:457 NumericRange 1 0.000000 0.000000 0.000000\r\n", + "..ib\\artist.py:1037 Spine.set_zorder 18 0.000000 0.000000 0.000000\r\n", + "...py:399 _ListenerCollection.append 3 0.000000 0.000000 0.000000\r\n", + "..lements.py:4145 Column._bind_param 4 0.000000 0.000000 0.000000\r\n", + ".._axes.py:147 AxesSubplot.set_title 4 0.000000 0.000000 0.000000\r\n", + "..tlib\\transforms.py:400 Bbox.height 1 0.000000 0.000000 0.000000\r\n", + "..ler.py:161 HandlerLine2D.get_xdata 4 0.000000 0.000000 0.000000\r\n", + "..e.py:3867 AxesSubplot.set_navigate 1 0.000000 0.000000 0.000000\r\n", + "..bootstrap_external>:36 _relax_case 17 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\axis.py:361 14 0.000000 0.000000 0.000000\r\n", + "..\\axis.py:884 XAxis.set_tick_params 8 0.000000 0.000000 0.000000\r\n", + "..800 AxesSubplot._update_transScale 2 0.000000 0.000000 0.000000\r\n", + "..b\\patches.py:42 Rectangle.__init__ 7 0.000000 0.000000 0.000000\r\n", + "..ib\\path.py:188 Path._update_values 14 0.000000 0.000000 0.000000\r\n", + "..ages\\cycler.py:225 Cycler.__iter__ 12 0.000000 0.000000 0.000000\r\n", + "..er.py:512 ScalarFormatter.__init__ 16 0.000000 0.000000 0.000000\r\n", + "..:220 Spine._ensure_position_is_set 28/24 0.000000 0.000000 0.000000\r\n", + "..function__ internals>:2 empty_like 4 0.000000 0.000000 0.000000\r\n", + "..lib\\legend.py:918 Legend.get_frame 1 0.000000 0.000000 0.000000\r\n", + "..ide_tricks.py:185 _broadcast_shape 10 0.000000 0.000000 0.000000\r\n", + "..tlib\\artist.py:1201 Text.mouseover 7 0.000000 0.000000 0.000000\r\n", + "..y:202 _broadcast_arrays_dispatcher 10 0.000000 0.000000 0.000000\r\n", + "..lib\\shape_base.py:597 column_stack 12 0.000000 0.000000 0.000000\r\n", + "..init__.py:882 Grouper.get_siblings 6 0.000000 0.000000 0.000000\r\n", + "..045 AxesSubplot._process_unit_info 6 0.000000 0.000000 0.000000\r\n", + "..ap_external>:578 _compile_bytecode 9 0.000000 0.000000 0.000000\r\n", + "..y:542 PGDialect_psycopg2.do_commit 1 0.000000 0.000000 0.000000\r\n", + "..ile.py:432 _generate_overlap_table 2 0.000000 0.000000 0.000000\r\n", + "<__array_function__ internals>:2 all 9 0.000000 0.000000 0.000000\r\n", + "..alchemy\\event\\api.py:23 _event_key 3 0.000000 0.000000 0.000000\r\n", + "..._bootstrap>:376 ModuleSpec.cached 19 0.000000 0.000000 0.000000\r\n", + "...py:1247 BboxTransformFrom.__add__ 78 0.000000 0.000000 0.000000\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..plotlib\\gridspec.py:204 _normalize 1 0.000000 0.000000 0.000000\r\n", + "..figure.py:199 SubplotParams.update 2 0.000000 0.000000 0.000000\r\n", + ".._json.py:133 register_default_json 1 0.000000 0.000000 0.000000\r\n", + "..p>:143 _ModuleLockManager.__init__ 10 0.000000 0.000000 0.000000\r\n", + "..:513 Figure.set_constrained_layout 1 0.000000 0.000000 0.000000\r\n", + ".. FontProperties.get_size_in_points 1 0.000000 0.000000 0.000000\r\n", + "..60 ScalarFormatter.set_useMathText 16 0.000000 0.000000 0.000000\r\n", + "..er.py:755 FontProperties.set_style 23 0.000000 0.000000 0.000000\r\n", + "...py:900 AutoDateFormatter.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..ok\\__init__.py:2125 _check_getitem 4 0.000000 0.000000 0.000000\r\n", + "..py:1210 Line2D.set_markeredgecolor 30 0.000000 0.000000 0.000000\r\n", + "..psycopg2\\extras.py:261 RealDictRow 1 0.000000 0.000000 0.000000\r\n", + "...py:978 Rectangle._update_property 42 0.000000 0.000000 0.000000\r\n", + "..rm\\session.py:655 Session.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..per._iter_break_from_left_to_right 8 0.000000 0.000000 0.000000\r\n", + "..stgresql\\psycopg2.py:711 4 0.000000 0.000000 0.000000\r\n", + "..lotlib\\spines.py:36 Spine.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..b\\asyncio\\futures.py:269 _get_loop 8 0.000000 0.000000 0.000000\r\n", + "..dates.py:1496 YearLocator.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..\\type_api.py:64 Comparator.operate 4 0.000000 0.000000 0.000000\r\n", + "..b\\figure.py:66 _AxesStack.__init__ 1 0.000000 0.000000 0.000000\r\n", + "...py:299 NullFormatter._set_locator 31 0.000000 0.000000 0.000000\r\n", + "..\\axis.py:501 XTick.update_position 3 0.000000 0.000000 0.000000\r\n", + "..re\\numerictypes.py:293 issubclass_ 8 0.000000 0.000000 0.000000\r\n", + "..init__.py:791 RcParams.__getitem__ 1343 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\axis.py:383 14 0.000000 0.000000 0.000000\r\n", + "..b\\transforms.py:909 Bbox.intervalx 3 0.000000 0.000000 0.000000\r\n", + "..ase.py:1731 RootTransaction.commit 1 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:1579 XAxis.set_units 12 0.000000 0.000000 0.000000\r\n", + "..sql\\elements.py:740 Column.operate 4 0.000000 0.000000 0.000000\r\n", + "..se.py:593 _column_stack_dispatcher 12 0.000000 0.000000 0.000000\r\n", + "..tlib\\axis.py:864 XAxis.reset_ticks 16 0.000000 0.000000 0.000000\r\n", + "..bootstrap_external>:1334 find_spec 10 0.000000 0.000000 0.000000\r\n", + "..\\gridspec.py:246 GridSpec.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..is.py:197 XTick._set_labelrotation 6 0.000000 0.000000 0.000000\r\n", + "..__.py:138 CallbackRegistry.connect 33 0.000000 0.000000 0.000000\r\n", + "..ib\\figure.py:70 _AxesStack.as_list 2 0.000000 0.000000 0.000000\r\n", + "..b\\artist.py:819 Line2D.get_clip_on 3 0.000000 0.000000 0.000000\r\n", + "..\\rcsetup.py:163 validate_axisbelow 1 0.000000 0.000000 0.000000\r\n", + "..ession.py:1333 Session._close_impl 1 0.000000 0.000000 0.000000\r\n", + "..ib\\figure.py:778 Figure.set_canvas 2 0.000000 0.000000 0.000000\r\n", + "...py:1623 TransformWrapper.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..otlib\\lines.py:645 Line2D.set_data 30 0.000000 0.000000 0.000000\r\n", + "..er.py:1712 AutoLocator.nonsingular 2 0.000000 0.000000 0.000000\r\n", + "..is.py:1654 XAxis.set_major_locator 17 0.000000 0.000000 0.000000\r\n", + "..y\\dialects\\__init__.py:24 _auto_fn 1 0.000000 0.000000 0.000000\r\n", + "..240 QueuePool._should_wrap_creator 1 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\text.py:1115 Text.set_y 6 0.000000 0.000000 0.000000\r\n", + "..plotlib\\scale.py:718 scale_factory 16 0.000000 0.000000 0.000000\r\n", + "..\\__init__.py:1837 _str_lower_equal 4 0.000000 0.000000 0.000000\r\n", + "..se.py:392 Future.add_done_callback 6 0.000000 0.000000 0.000000\r\n", + "..hemy\\util\\queue.py:195 Queue._full 1 0.000000 0.000000 0.000000\r\n", + "..on\\database.py:107 from_sql_result 4 0.000000 0.000000 0.000000\r\n", + ".. _GeneratorContextManager.__init__ 141 0.000000 0.000000 0.000000\r\n", + "..\\lib\\function_base.py:257 iterable 97 0.000000 0.000000 0.000000\r\n", + "..tion-68gteq6k\\lib\\re.py:268 escape 1 0.000000 0.000000 0.000000\r\n", + "..ger.py:619 FontProperties.__init__ 23 0.000000 0.000000 0.000000\r\n", + "..ments.py:4065 Column._from_objects 10 0.000000 0.000000 0.000000\r\n", + "..xis.py:325 XTick._set_artist_props 30 0.000000 0.000000 0.000000\r\n", + "..xternal>:1426 FileFinder._get_spec 10 0.000000 0.000000 0.000000\r\n", + "..py:1137 Text.set_verticalalignment 33 0.000000 0.000000 0.000000\r\n", + ".._bootstrap_external>:64 82 0.000000 0.000000 0.000000\r\n", + "..hes.py:475 Rectangle.set_joinstyle 7 0.000000 0.000000 0.000000\r\n", + "..py:843 TextArea.set_minimumdescent 1 0.000000 0.000000 0.000000\r\n", + "..s.py:1059 AutoDateLocator.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..ges\\psycopg2\\extras.py:157 DictRow 1 0.000000 0.000000 0.000000\r\n", + "..til.py:368 surface_column_elements 54 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\pyplot.py:612 get_fignums 1 0.000000 0.000000 0.000000\r\n", + "..teq6k\\lib\\copyreg.py:90 __newobj__ 1 0.000000 0.000000 0.000000\r\n", + ".. LinearScale.limit_range_for_scale 2 0.000000 0.000000 0.000000\r\n", + "..b\\scale.py:43 LinearScale.__init__ 16 0.000000 0.000000 0.000000\r\n", + "..umpy\\core\\getlimits.py:365 __new__ 2 0.000000 0.000000 0.000000\r\n", + "..psycopg2\\_json.py:94 register_json 2 0.000000 0.000000 0.000000\r\n", + "..hes.py:348 Rectangle.set_facecolor 12 0.000000 0.000000 0.000000\r\n", + ".. Line2D._split_drawstyle_linestyle 64 0.000000 0.000000 0.000000\r\n", + "..\\orm\\session.py:1554 Session.query 6 0.000000 0.000000 0.000000\r\n", + "..\\__init__.py:1640 normalize_kwargs 74 0.000000 0.000000 0.000000\r\n", + "..\\core\\getlimits.py:398 finfo._init 1 0.000000 0.000000 0.000000\r\n", + "..lib\\sre_parse.py:295 _class_escape 30 0.000000 0.000000 0.000000\r\n", + "..xesSubplot._set_lim_and_transforms 1 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\figure.py:97 1 0.000000 0.000000 0.000000\r\n", + "..q6k\\lib\\functools.py:486 lru_cache 1 0.000000 0.000000 0.000000\r\n", + "..y:4564 _literal_as_label_reference 3 0.000000 0.000000 0.000000\r\n", + "..\\figure.py:152 _AxesStack.__call__ 2 0.000000 0.000000 0.000000\r\n", + "..\\core\\getipython.py:17 get_ipython 2 0.000000 0.000000 0.000000\r\n", + "..on__ internals>:2 broadcast_arrays 10 0.000000 0.000000 0.000000\r\n", + "..:779 PGDialect_psycopg2.on_connect 1 0.000000 0.000000 0.000000\r\n", + "..ec.py:549 SubplotSpec.get_gridspec 1 0.000000 0.000000 0.000000\r\n", + "..ages\\psycopg2\\compat.py:1 1 0.000000 0.000000 0.000000\r\n", + "..s.py:129 AxesSubplot.update_params 1 0.000000 0.000000 0.000000\r\n", + "..tableColumnCollection.__contains__ 10 0.000000 0.000000 0.000000\r\n", + "..chemy\\orm\\query.py:4634 27 0.000000 0.000000 0.000000\r\n", + "..lib\\legend.py:938 Legend.set_title 1 0.000000 0.000000 0.000000\r\n", + "..essionTransaction._remove_snapshot 1 0.000000 0.000000 0.000000\r\n", + "..\\asyncio\\futures.py:351 _set_state 6 0.000000 0.000000 0.000000\r\n", + "..units.py:58 _is_natively_supported 12 0.000000 0.000000 0.000000\r\n", + "..my\\orm\\query.py:164 Query.__init__ 6 0.000000 0.000000 0.000000\r\n", + "..ray_function__ internals>:2 hstack 16 0.000000 0.000000 0.000000\r\n", + "..b\\gridspec.py:31 GridSpec.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..ython38\\Lib\\inspect.py:80 ismethod 2 0.000000 0.000000 0.000000\r\n", + "..tist.py:804 Rectangle.get_animated 1714 0.000000 0.000000 0.000000\r\n", + "..ericTransform._invalidate_internal 4/3 0.000000 0.000000 0.000000\r\n", + "..plotlib\\axis.py:653 Ticker.locator 33 0.000000 0.000000 0.000000\r\n", + "..query.py:88 get_data_by_deployment 1 0.000000 0.000000 0.000000\r\n", + "..otlib\\__init__.py:1267 get_backend 1 0.000000 0.000000 0.000000\r\n", + "...py:407 XTick._get_text1_transform 3 0.000000 0.000000 0.000000\r\n", + "..bootstrap>:58 _ModuleLock.__init__ 10 0.000000 0.000000 0.000000\r\n", + "...py:635 Legend._approx_text_height 2 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:1812 XAxis.axis_date 4 0.000000 0.000000 0.000000\r\n", + "..on.py:579 SessionTransaction.close 2 0.000000 0.000000 0.000000\r\n", + "..ures\\_base.py:443 Future.exception 6 0.000000 0.000000 0.000000\r\n", + "..ompat.py:61 inspect_getfullargspec 2 0.000000 0.000000 0.000000\r\n", + "..aggregation\\query.py:82 4 0.000000 0.000000 0.000000\r\n", + "..patches.py:491 Rectangle.set_hatch 7 0.000000 0.000000 0.000000\r\n", + "...py:410 XTick._get_text2_transform 3 0.000000 0.000000 0.000000\r\n", + "..zipimport>:63 zipimporter.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..__init__.py:1632 sanitize_sequence 8 0.000000 0.000000 0.000000\r\n", + "..es.py:768 Rectangle._convert_units 18 0.000000 0.000000 0.000000\r\n", + "..numpy\\core\\fromnumeric.py:2189 any 76 0.000000 0.000000 0.000000\r\n", + "..base.py:321 _inspect_mapped_object 4 0.000000 0.000000 0.000000\r\n", + "..re\\multiarray.py:990 unravel_index 1 0.000000 0.000000 0.000000\r\n", + "<__array_function__ internals>:2 any 76 0.000000 0.000000 0.000000\r\n", + "..registry.py:154 _EventKey.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..ist.py:605 FancyBboxPatch.set_snap 1 0.000000 0.000000 0.000000\r\n", + "..s.py:697 _GatheringFuture.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..38\\Lib\\asyncio\\tasks.py:717 gather 1 0.000000 0.000000 0.000000\r\n", + "..elpers.py:1381 parse_user_argument 2 0.000000 0.000000 0.000000\r\n", + "..kers.py:289 MarkerStyle.set_marker 42 0.000000 0.000000 0.000000\r\n", + "..s.py:424 Spine.get_spine_transform 28/24 0.000000 0.000000 0.000000\r\n", + "..chemy\\orm\\query.py:4642 27 0.000000 0.000000 0.000000\r\n", + "..ib\\lines.py:1196 Line2D.set_marker 4 0.000000 0.000000 0.000000\r\n", + "..sSubplot.get_yaxis_text1_transform 3 0.000000 0.000000 0.000000\r\n", + "..portlib._bootstrap>:890 _find_spec 10 0.000000 0.000000 0.000000\r\n", + "..__init__.py:51 _StrongRef.__init__ 3 0.000000 0.000000 0.000000\r\n", + "..b\\legend.py:701 get_legend_handler 8 0.000000 0.000000 0.000000\r\n", + "..py:155 HandlerLine2D.get_numpoints 4 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\axis.py:372 14 0.000000 0.000000 0.000000\r\n", + "..orms.py:1652 TransformWrapper._set 4 0.000000 0.000000 0.000000\r\n", + "..opg2\\extensions.py:133 NoneAdapter 1 0.000000 0.000000 0.000000\r\n", + "..kers.py:286 MarkerStyle.get_marker 8 0.000000 0.000000 0.000000\r\n", + ".._bootstrap>:78 _ModuleLock.acquire 18 0.000000 0.000000 0.000000\r\n", + "..nsforms.py:1972 Affine2D.translate 36 0.000000 0.000000 0.000000\r\n", + "..hape_base.py:1151 _tile_dispatcher 1 0.000000 0.000000 0.000000\r\n", + "..r.py:63 HandlerLine2D._update_prop 8 0.000000 0.000000 0.000000\r\n", + "..arkers.py:244 MarkerStyle._recache 80 0.000000 0.000000 0.000000\r\n", + "..y:163 TransformedBbox.set_children 149 0.000000 0.000000 0.000000\r\n", + "..EventLoop._asyncgen_firstiter_hook 18 0.000000 0.000000 0.000000\r\n", + "..packages\\psycopg2\\tz.py:1 1 0.000000 0.000000 0.000000\r\n", + "..b\\function_base.py:2144 4 0.000000 0.000000 0.000000\r\n", + "..b\\cbook\\__init__.py:886 6 0.000000 0.000000 0.000000\r\n", + "..syncio\\tasks.py:751 _done_callback 1 0.000000 0.000000 0.000000\r\n", + "...py:2680 AxesSubplot.set_axisbelow 1 0.000000 0.000000 0.000000\r\n", + "..plotlib\\patches.py:1832 2 0.000000 0.000000 0.000000\r\n", + "..ib\\figure.py:104 _AxesStack.bubble 1 0.000000 0.000000 0.000000\r\n", + "..lotlib\\axes\\_base.py:321 12 0.000000 0.000000 0.000000\r\n", + "..Subplot._validate_converted_limits 4 0.000000 0.000000 0.000000\r\n", + "..romnumeric.py:2273 _all_dispatcher 9 0.000000 0.000000 0.000000\r\n", + "..ates.py:593 DateFormatter.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..CompositeGenericTransform. 3 0.000000 0.000000 0.000000\r\n", + "..hemy\\orm\\query.py:537 Query._clone 5 0.000000 0.000000 0.000000\r\n", + "..ase.py:3227 AxesSubplot.get_xscale 4 0.000000 0.000000 0.000000\r\n", + "...py:735 MarkerStyle._set_tickright 3 0.000000 0.000000 0.000000\r\n", + "..is.py:1670 XAxis.set_minor_locator 16 0.000000 0.000000 0.000000\r\n", + "..>:863 _ImportLockContext.__enter__ 30 0.000000 0.000000 0.000000\r\n", + "..etbox.py:303 TextArea.get_children 33 0.000000 0.000000 0.000000\r\n", + "...py:113 GridSpec.set_height_ratios 1 0.000000 0.000000 0.000000\r\n", + "..ry.py:267 _EventKey.append_to_list 3 0.000000 0.000000 0.000000\r\n", + "..umpy\\core\\numeric.py:341 full_like 4 0.000000 0.000000 0.000000\r\n", + "..alect_psycopg2.create_connect_args 1 0.000000 0.000000 0.000000\r\n", + "..lib\\lines.py:1282 Line2D.set_xdata 39 0.000000 0.000000 0.000000\r\n", + "..atplotlib\\artist.py:192 Spine.axes 831 0.000000 0.000000 0.000000\r\n", + "..py:275 SelectSelector._key_from_fd 6 0.000000 0.000000 0.000000\r\n", + "..lotlib\\figure.py:78 _AxesStack.get 2 0.000000 0.000000 0.000000\r\n", + "..._bootstrap>:389 ModuleSpec.parent 14 0.000000 0.000000 0.000000\r\n", + "..sion.py:3236 sessionmaker.__call__ 1 0.000000 0.000000 0.000000\r\n", + "..util\\langhelpers.py:1500 only_once 1 0.000000 0.000000 0.000000\r\n", + "..book\\__init__.py:833 Grouper.clean 8 0.000000 0.000000 0.000000\r\n", + "..ib\\cbook\\__init__.py:1575 10 0.000000 0.000000 0.000000\r\n", + "..s\\numpy\\core\\multiarray.py:707 dot 67 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:819 XAxis.get_transform 4 0.000000 0.000000 0.000000\r\n", + "..g\\__init__.py:1392 Logger.__init__ 3 0.000000 0.000000 0.000000\r\n", + "..5 CompositeGenericTransform.__eq__ 12/8 0.000000 0.000000 0.000000\r\n", + "..otlib\\text.py:1227 Text.set_usetex 24 0.000000 0.000000 0.000000\r\n", + "..ents.py:180 _run_until_complete_cb 1 0.000000 0.000000 0.000000\r\n", + "..\\lines.py:547 Line2D.set_markevery 30 0.000000 0.000000 0.000000\r\n", + ".. _ClsLevelDispatch._adjust_fn_spec 4 0.000000 0.000000 0.000000\r\n", + "..se.py:2873 AxesSubplot.tick_params 2 0.000000 0.000000 0.000000\r\n", + "..b\\function_base.py:2164 4 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:427 XTick._get_text1 3 0.000000 0.000000 0.000000\r\n", + "..ist.py:358 Rectangle.set_transform 85 0.000000 0.000000 0.000000\r\n", + "..core\\multiarray.py:145 concatenate 29 0.000000 0.000000 0.000000\r\n", + "..re_parse.py:267 Tokenizer.getuntil 7 0.000000 0.000000 0.000000\r\n", + "..ms.py:1639 TransformWrapper.__eq__ 4 0.000000 0.000000 0.000000\r\n", + "..tableColumnCollection.__contains__ 10 0.000000 0.000000 0.000000\r\n", + "..b\\function_base.py:2115 4 0.000000 0.000000 0.000000\r\n", + "..ide_tricks.py:206 broadcast_arrays 10 0.000000 0.000000 0.000000\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + ":176 cb 10 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\artist.py:1095 Line2D.set 70 0.000000 0.000000 0.000000\r\n", + "..ogging\\__init__.py:189 _checkLevel 3 0.000000 0.000000 0.000000\r\n", + "..k\\__init__.py:827 Grouper.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..tlib\\axis.py:2166 XAxis.get_minpos 1 0.000000 0.000000 0.000000\r\n", + "..lalchemy\\orm\\query.py:4148 __new__ 32 0.000000 0.000000 0.000000\r\n", + "..abc.py:816 WeakKeyDictionary.clear 1 0.000000 0.000000 0.000000\r\n", + "..lections.py:316 OrderedDict.values 5 0.000000 0.000000 0.000000\r\n", + "..lements.py:365 Column.get_children 27 0.000000 0.000000 0.000000\r\n", + ".. ExtensionFileLoader.create_module 1 0.000000 0.000000 0.000000\r\n", + "..d_inline.py:59 draw_if_interactive 1 0.000000 0.000000 0.000000\r\n", + "..157 CallbackRegistry._remove_proxy 2 0.000000 0.000000 0.000000\r\n", + "..768 IdentityTransform.is_separable 8 0.000000 0.000000 0.000000\r\n", + "..hon38\\Lib\\contextlib.py:238 helper 141 0.000000 0.000000 0.000000\r\n", + "..29 _process_plot_var_args.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..ession.py:1339 Session.expunge_all 1 0.000000 0.000000 0.000000\r\n", + "..ent\\registry.py:165 _EventKey._key 3 0.000000 0.000000 0.000000\r\n", + "..lib\\stride_tricks.py:266 30 0.000000 0.000000 0.000000\r\n", + "..ib\\transforms.py:969 Bbox.mutatedx 2 0.000000 0.000000 0.000000\r\n", + "..ist.py:371 Rectangle.get_transform 31 0.000000 0.000000 0.000000\r\n", + "..end.py:666 get_default_handler_map 2 0.000000 0.000000 0.000000\r\n", + "..tlib\\axis.py:2238 YAxis._get_label 1 0.000000 0.000000 0.000000\r\n", + "..Python38\\Lib\\inspect.py:260 iscode 2 0.000000 0.000000 0.000000\r\n", + "..egation-68gteq6k\\lib\\re.py:201 sub 4 0.000000 0.000000 0.000000\r\n", + "..ers.py:743 MarkerStyle._set_tickup 3 0.000000 0.000000 0.000000\r\n", + ".._bootstrap_external>:62 _path_join 82 0.000000 0.000000 0.000000\r\n", + "..teq6k\\lib\\copyreg.py:99 _slotnames 1 0.000000 0.000000 0.000000\r\n", + "..py:663 PGDialect_psycopg2.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\text.py:554 Text.set_wrap 24 0.000000 0.000000 0.000000\r\n", + "..onfig\\configurable.py:381 instance 2 0.000000 0.000000 0.000000\r\n", + "..ctions_abc.py:367 __subclasshook__ 4 0.000000 0.000000 0.000000\r\n", + "..ansforms.py:1831 Affine2D.__init__ 49 0.000000 0.000000 0.000000\r\n", + "..ycopg2\\extras.py:456 LoggingCursor 1 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\figure.py:1959 Figure.sca 1 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\patches.py:1818 __new__ 2 0.000000 0.000000 0.000000\r\n", + "..ImmutableColumnCollection.__iter__ 5 0.000000 0.000000 0.000000\r\n", + "..ckages\\psycopg2\\extras.py:698 Inet 1 0.000000 0.000000 0.000000\r\n", + "..py:1367 Line2D.set_solid_joinstyle 30 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:413 XTick.apply_tickdir 3 0.000000 0.000000 0.000000\r\n", + "..offsetbox.py:783 TextArea.__init__ 5 0.000000 0.000000 0.000000\r\n", + "..orm\\session.py:1002 Session.commit 1 0.000000 0.000000 0.000000\r\n", + "..ker.py:2004 _Edge_integer.__init__ 2 0.000000 0.000000 0.000000\r\n", + ".._range.py:297 RangeCaster.__init__ 6 0.000000 0.000000 0.000000\r\n", + "..urceFileLoader._check_name_wrapper 9 0.000000 0.000000 0.000000\r\n", + ".._base.py:3484 AxesSubplot.set_ylim 1 0.000000 0.000000 0.000000\r\n", + "..p>:867 _ImportLockContext.__exit__ 30 0.000000 0.000000 0.000000\r\n", + "..es.py:315 Rectangle._set_edgecolor 20 0.000000 0.000000 0.000000\r\n", + "..8 SessionTransaction._prepare_impl 1 0.000000 0.000000 0.000000\r\n", + ".. SessionTransaction._take_snapshot 3 0.000000 0.000000 0.000000\r\n", + "..pool\\base.py:63 QueuePool.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..b\\cbook\\__init__.py:2088 188 0.000000 0.000000 0.000000\r\n", + "..y:886 AxesSubplot.set_axes_locator 1 0.000000 0.000000 0.000000\r\n", + "..ckages\\cycler.py:349 Cycler.by_key 10 0.000000 0.000000 0.000000\r\n", + "..kages\\numpy\\ma\\core.py:666 getdata 8 0.000000 0.000000 0.000000\r\n", + "..rl.py:152 URL._instantiate_plugins 1 0.000000 0.000000 0.000000\r\n", + "..es.py:2396 FancyBboxPatch.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..utableColumnCollection.__getattr__ 9 0.000000 0.000000 0.000000\r\n", + "..plotlib\\patches.py:1833 2 0.000000 0.000000 0.000000\r\n", + "..y\\orm\\query.py:1856 Query.order_by 1 0.000000 0.000000 0.000000\r\n", + "..ngine\\base.py:1869 Engine.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..\\psycopg2\\_ipaddress.py:1 1 0.000000 0.000000 0.000000\r\n", + "..\\psycopg2\\extras.py:132 DictCursor 1 0.000000 0.000000 0.000000\r\n", + "..p>:151 _ModuleLockManager.__exit__ 10 0.000000 0.000000 0.000000\r\n", + ":1 Deployment.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..is.py:1412 XAxis.get_major_locator 2 0.000000 0.000000 0.000000\r\n", + "..axis.py:215 XTick.get_tick_padding 6 0.000000 0.000000 0.000000\r\n", + "..b\\axis.py:574 YTick._get_tick1line 3 0.000000 0.000000 0.000000\r\n", + "..bootstrap>:194 _lock_unlock_module 8 0.000000 0.000000 0.000000\r\n", + "..lib\\transforms.py:931 Bbox.minposx 1 0.000000 0.000000 0.000000\r\n", + "..setbox.py:661 DrawingArea.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..ootstrap_external>:424 _get_cached 10 0.000000 0.000000 0.000000\r\n", + "..\\core\\getlimits.py:239 _get_machar 1 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:1504 XAxis.update_units 14 0.000000 0.000000 0.000000\r\n", + "..elpers.py:1079 _importlater.module 1 0.000000 0.000000 0.000000\r\n", + "..gine\\default.py:295 get_pool_class 1 0.000000 0.000000 0.000000\r\n", + "..xt.py:1214 Text.set_fontproperties 1 0.000000 0.000000 0.000000\r\n", + "..ec.py:586 SubplotSpec.get_position 1 0.000000 0.000000 0.000000\r\n", + "..\\numpy\\core\\_asarray.py:16 asarray 176 0.000000 0.000000 0.000000\r\n", + "..ndowsSelectorEventLoop.create_task 2 0.000000 0.000000 0.000000\r\n", + ".._init__.py:573 _AxesStack.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..lib\\figure.py:453 Figure._get_axes 1 0.000000 0.000000 0.000000\r\n", + "..s\\_base.py:31 _process_plot_format 4 0.000000 0.000000 0.000000\r\n", + "..packages\\cycler.py:138 Cycler.keys 12 0.000000 0.000000 0.000000\r\n", + "..numeric.py:2354 _cumsum_dispatcher 3 0.000000 0.000000 0.000000\r\n", + "..atplotlib\\lines.py:632 Line2D.axes 42 0.000000 0.000000 0.000000\r\n", + "..logging\\__init__.py:2003 getLogger 4 0.000000 0.000000 0.000000\r\n", + "..\\_internal.py:830 npy_ctypes_check 4 0.000000 0.000000 0.000000\r\n", + "..ckages\\psycopg2\\_range.py:36 Range 1 0.000000 0.000000 0.000000\r\n", + "..:687 Legend.get_legend_handler_map 1 0.000000 0.000000 0.000000\r\n", + "..ger.py:810 FontProperties.set_size 27 0.000000 0.000000 0.000000\r\n", + "..lib\\transforms.py:2779 nonsingular 2 0.000000 0.000000 0.000000\r\n", + "..unction__ internals>:2 concatenate 29 0.000000 0.000000 0.000000\r\n", + "..b\\_pylab_helpers.py:115 1 0.000000 0.000000 0.000000\r\n", + "..m\\state.py:328 type._detach_states 2 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\lines.py:59 _scale_dashes 83 0.000000 0.000000 0.000000\r\n", + "..\\futures.py:357 _call_check_cancel 6 0.000000 0.000000 0.000000\r\n", + "..b\\cbook\\__init__.py:2090 type_name 94 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\path.py:211 Path.codes 4 0.000000 0.000000 0.000000\r\n", + "..py:1765 RootTransaction._do_commit 1 0.000000 0.000000 0.000000\r\n", + "..s.py:749 MarkerStyle._set_tickdown 3 0.000000 0.000000 0.000000\r\n", + "..ffsetbox.py:187 VPacker.set_figure 16/1 0.000000 0.000000 0.000000\r\n", + "..pes.py:2997 _resolve_value_to_type 4 0.000000 0.000000 0.000000\r\n", + "..cbook\\__init__.py:1868 Text.method 5 0.000000 0.000000 0.000000\r\n", + "..rtist.py:937 Rectangle.set_visible 69 0.000000 0.000000 0.000000\r\n", + "..artist.py:1052 Line2D.sticky_edges 32 0.000000 0.000000 0.000000\r\n", + "..xesSubplot._request_autoscale_view 8 0.000000 0.000000 0.000000\r\n", + "..b\\axis.py:470 XTick._get_tick2line 3 0.000000 0.000000 0.000000\r\n", + "..e-packages\\cycler.py:371 20 0.000000 0.000000 0.000000\r\n", + "..ore\\numerictypes.py:239 obj2sctype 1 0.000000 0.000000 0.000000\r\n", + "..t\\futures\\_base.py:381 Future.done 6 0.000000 0.000000 0.000000\r\n", + "..ase.py:3618 AxesSubplot.get_yscale 1 0.000000 0.000000 0.000000\r\n", + "..bootstrap_external>:1400 8 0.000000 0.000000 0.000000\r\n", + "..elpers.py:355 get_callable_argspec 1 0.000000 0.000000 0.000000\r\n", + "..nit__.py:1220 PlaceHolder.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..lotlib\\colors.py:123 _is_nth_color 51 0.000000 0.000000 0.000000\r\n", + "..rms.py:1284 TransformWrapper.depth 24 0.000000 0.000000 0.000000\r\n", + "..py\\core\\fromnumeric.py:2358 cumsum 3 0.000000 0.000000 0.000000\r\n", + "..xis.py:2258 YAxis._get_offset_text 1 0.000000 0.000000 0.000000\r\n", + "..uery.py:505 Query._no_limit_offset 5 0.000000 0.000000 0.000000\r\n", + "..strap>:397 ModuleSpec.has_location 10 0.000000 0.000000 0.000000\r\n", + "..py:2644 ScaledTranslation.__init__ 17 0.000000 0.000000 0.000000\r\n", + "..sycopg2\\extras.py:643 UUID_adapter 1 0.000000 0.000000 0.000000\r\n", + "..hon38\\Lib\\inspect.py:285 isbuiltin 1 0.000000 0.000000 0.000000\r\n", + "..b\\cbook\\__init__.py:828 2 0.000000 0.000000 0.000000\r\n", + "..ycopg2.py:741 _psycopg2_extensions 1 0.000000 0.000000 0.000000\r\n", + "..s.py:1096 _importlater.__getattr__ 1 0.000000 0.000000 0.000000\r\n", + "..lib\\artist.py:923 Line2D.set_alpha 7 0.000000 0.000000 0.000000\r\n", + "..654 _WindowsSelectorEventLoop.time 17 0.000000 0.000000 0.000000\r\n", + "...py:3168 BinaryExpression.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..e.py:1907 Figure._set_artist_props 1 0.000000 0.000000 0.000000\r\n", + "..9 PoolEventsDispatch._for_instance 2 0.000000 0.000000 0.000000\r\n", + "..packages\\psycopg2\\_json.py:47 Json 1 0.000000 0.000000 0.000000\r\n", + "..py:117 AxesSubplot.get_subplotspec 1 0.000000 0.000000 0.000000\r\n", + ":1 Query.order_by 1 0.000000 0.000000 0.000000\r\n", + "..tlib\\lines.py:31 _get_dash_pattern 41 0.000000 0.000000 0.000000\r\n", + "..b\\text.py:1059 Text.set_fontweight 4 0.000000 0.000000 0.000000\r\n", + "<__array_function__ internals>:2 dot 67 0.000000 0.000000 0.000000\r\n", + "..se.py:2960 AxesSubplot.set_axis_on 1 0.000000 0.000000 0.000000\r\n", + "..py:1960 Affine2D.rotate_deg_around 18 0.000000 0.000000 0.000000\r\n", + ".._base.py:2048 _process_single_axis 12 0.000000 0.000000 0.000000\r\n", + "..pg2\\extras.py:303 NamedTupleCursor 1 0.000000 0.000000 0.000000\r\n", + ":1 Query.filter 4 0.000000 0.000000 0.000000\r\n", + "..m\\query.py:193 Query._set_entities 6 0.000000 0.000000 0.000000\r\n", + "..nd.py:558 Legend._set_artist_props 9 0.000000 0.000000 0.000000\r\n", + "..hemy\\util\\queue.py:183 Queue._init 1 0.000000 0.000000 0.000000\r\n", + "..idspec.py:508 SubplotSpec.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:666 Ticker.formatter 33 0.000000 0.000000 0.000000\r\n", + "...py:112 PoolEventsDispatch._listen 3 0.000000 0.000000 0.000000\r\n", + "..\\patches.py:704 Rectangle.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..s.py:266 MarkerStyle.set_fillstyle 38 0.000000 0.000000 0.000000\r\n", + ".._init__.py:44 get_projection_class 1 0.000000 0.000000 0.000000\r\n", + "...py:101 State.checklookbehindgroup 1 0.000000 0.000000 0.000000\r\n", + "..llections_abc.py:72 _check_methods 14 0.000000 0.000000 0.000000\r\n", + "..\\futures.py:315 _copy_future_state 6 0.000000 0.000000 0.000000\r\n", + "..nes.py:1035 Line2D.set_antialiased 30 0.000000 0.000000 0.000000\r\n", + "..kref.py:436 WeakKeyDictionary.keys 1 0.000000 0.000000 0.000000\r\n", + "..elements.py:4099 Column._gen_label 10 0.000000 0.000000 0.000000\r\n", + "..atplotlib\\path.py:96 Path.__init__ 14 0.000000 0.000000 0.000000\r\n", + "..b\\artist.py:336 Rectangle.pchanged 373 0.000000 0.000000 0.000000\r\n", + "..y\\core\\fromnumeric.py:55 _wrapfunc 3 0.000000 0.000000 0.000000\r\n", + "..5 Rectangle._stale_figure_callback 134 0.000000 0.000000 0.000000\r\n", + "..process_plot_var_args._getdefaults 4 0.000000 0.000000 0.000000\r\n", + "..ansaction._is_transaction_boundary 4 0.000000 0.000000 0.000000\r\n", + "..gure.py:168 SubplotParams.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..ure.py:155 _AxesStack.__contains__ 1 0.000000 0.000000 0.000000\r\n", + "..ib\\widgets.py:34 LockDraw.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..atplotlib\\legend.py:813 1 0.000000 0.000000 0.000000\r\n", + "..ansforms.py:1701 Affine2D.__init__ 165 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:1944 XAxis._get_tick 3 0.000000 0.000000 0.000000\r\n", + "...py:1626 XAxis.set_major_formatter 17 0.000000 0.000000 0.000000\r\n", + "..plots.py:214 subplot_class_factory 1 0.000000 0.000000 0.000000\r\n", + "..xes\\_base.py:2716 AxesSubplot.grid 2 0.000000 0.000000 0.000000\r\n", + "..:903 AxesSubplot._set_artist_props 7 0.000000 0.000000 0.000000\r\n", + "..8gteq6k\\lib\\weakref.py:323 __new__ 1 0.000000 0.000000 0.000000\r\n", + "...py:1412 Line2D.set_solid_capstyle 30 0.000000 0.000000 0.000000\r\n", + "..gistry.py:263 _EventKey._listen_fn 16 0.000000 0.000000 0.000000\r\n", + "..es\\numpy\\core\\_methods.py:32 _amin 2 0.000000 0.000000 0.000000\r\n", + "..xternal>:1431 FileFinder.find_spec 17 0.000000 0.000000 0.000000\r\n", + "..s\\matplotlib\\colors.py:157 to_rgba 51 0.000000 0.000000 0.000000\r\n", + "..lotlib\\axes\\_base.py:588 4 0.000000 0.000000 0.000000\r\n", + "..otlib\\figure.py:111 _AxesStack.add 1 0.000000 0.000000 0.000000\r\n", + "..2\\_range.py:486 NumberRangeAdapter 1 0.000000 0.000000 0.000000\r\n", + "..:505 Figure.get_constrained_layout 2 0.000000 0.000000 0.000000\r\n", + "..my\\util\\queue.py:43 Queue.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..on.py:159 _create_json_typecasters 2 0.000000 0.000000 0.000000\r\n", + "..bootstrap>:342 ModuleSpec.__init__ 10 0.000000 0.000000 0.000000\r\n", + "..tlib\\axis.py:1559 XAxis.have_units 2 0.000000 0.000000 0.000000\r\n", + "..ctions_abc.py:302 __subclasshook__ 6 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\figure.py:1651 Figure.clf 1 0.000000 0.000000 0.000000\r\n", + "..array_function__ internals>:2 diff 16 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\transforms.py:763 unit 19 0.000000 0.000000 0.000000\r\n", + "..schema.py:1640 Column.get_children 27 0.000000 0.000000 0.000000\r\n", + "..ib\\artist.py:719 Text.set_clip_box 23 0.000000 0.000000 0.000000\r\n", + "..umpy\\core\\shape_base.py:285 hstack 16 0.000000 0.000000 0.000000\r\n", + "..pg2\\extras.py:1007 CompositeCaster 1 0.000000 0.000000 0.000000\r\n", + "..on38\\Lib\\inspect.py:158 isfunction 3 0.000000 0.000000 0.000000\r\n", + "..rs.py:330 MarkerStyle._set_nothing 30 0.000000 0.000000 0.000000\r\n", + "..y\\orm\\base.py:353 _is_mapped_class 7 0.000000 0.000000 0.000000\r\n", + "..et.py:20 _IterationGuard.__enter__ 1 0.000000 0.000000 0.000000\r\n", + "..f.py:463 WeakKeyDictionary.popitem 1 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\axis.py:153 6 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\spines.py:238 Spine.cla 4 0.000000 0.000000 0.000000\r\n", + "..ray_function__ internals>:2 cumsum 3 0.000000 0.000000 0.000000\r\n", + "...py:1006 Legend.set_bbox_to_anchor 1 0.000000 0.000000 0.000000\r\n", + "..lotlib\\axes\\_base.py:945 5 0.000000 0.000000 0.000000\r\n", + "...py:96 _AxesStack._entry_from_axes 1 0.000000 0.000000 0.000000\r\n", + "..tstrap_external>:51 _unpack_uint32 27 0.000000 0.000000 0.000000\r\n", + "..ernal>:526 _validate_timestamp_pyc 9 0.000000 0.000000 0.000000\r\n", + "..\\cbook\\__init__.py:1938 140 0.000000 0.000000 0.000000\r\n", + "..g2\\extras.py:405 LoggingConnection 1 0.000000 0.000000 0.000000\r\n", + "..__init__.py:1272 Manager.getLogger 4 0.000000 0.000000 0.000000\r\n", + "..bootstrap_external>:1302 _get_spec 10 0.000000 0.000000 0.000000\r\n", + ".._.py:118 CallbackRegistry.__init__ 19 0.000000 0.000000 0.000000\r\n", + "..numpy\\core\\fromnumeric.py:2277 all 9 0.000000 0.000000 0.000000\r\n", + "..CompositeGenericTransform. 16/8 0.000000 0.000000 0.000000\r\n", + "..lines.py:1092 Line2D.set_linewidth 30 0.000000 0.000000 0.000000\r\n", + "..ib\\_pylab_helpers.py:99 get_active 1 0.000000 0.000000 0.000000\r\n", + "..38\\Lib\\urllib\\parse.py:624 unquote 1 0.000000 0.000000 0.000000\r\n", + "..ty.py:17 WeakInstanceDict.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..tist.py:1017 AxesSubplot.set_label 5 0.000000 0.000000 0.000000\r\n", + "..ansform.contains_branch_seperately 4 0.000000 0.000000 0.000000\r\n", + "..\\patches.py:436 Rectangle.set_fill 7 0.000000 0.000000 0.000000\r\n", + "..ticker.py:224 AutoLocator.set_axis 67 0.000000 0.000000 0.000000\r\n", + "..sycopg2\\_range.py:242 RangeAdapter 1 0.000000 0.000000 0.000000\r\n", + "..s.py:729 MarkerStyle._set_tickleft 3 0.000000 0.000000 0.000000\r\n", + "..s.py:1642 _fix_ipython_backend2gui 2 0.000000 0.000000 0.000000\r\n", + "..b\\gridspec.py:528 SubplotSpec.num2 1 0.000000 0.000000 0.000000\r\n", + "..py:1225 Line2D.set_markeredgewidth 30 0.000000 0.000000 0.000000\r\n", + "..ager.py:936 _normalize_font_family 46 0.000000 0.000000 0.000000\r\n", + "..oop._set_coroutine_origin_tracking 2 0.000000 0.000000 0.000000\r\n", + "..arkers.py:222 MarkerStyle.__init__ 38 0.000000 0.000000 0.000000\r\n", + "..ylab_helpers.py:29 get_fig_manager 1 0.000000 0.000000 0.000000\r\n", + "..alchemy\\events.py:328 _accept_with 3 0.000000 0.000000 0.000000\r\n", + "..:2053 IdentityTransform.get_matrix 23 0.000000 0.000000 0.000000\r\n", + "..n\\query.py:76 get_deployment_by_id 4 0.000000 0.000000 0.000000\r\n", + "..query.py:329 Query._adapt_col_list 1 0.000000 0.000000 0.000000\r\n", + "..py:2408 CompositeAffine2D.__init__ 9 0.000000 0.000000 0.000000\r\n", + "..meric.py:337 _full_like_dispatcher 4 0.000000 0.000000 0.000000\r\n", + "..ine\\url.py:161 URL._get_entrypoint 1 0.000000 0.000000 0.000000\r\n", + "..d_bases.py:2556 notify_axes_change 1 0.000000 0.000000 0.000000\r\n", + "..ctions_abc.py:392 __subclasshook__ 40 0.000000 0.000000 0.000000\r\n", + "..otstrap_external>:1252 _path_hooks 1 0.000000 0.000000 0.000000\r\n", + "...py:180 AxesSubplot.convert_yunits 48 0.000000 0.000000 0.000000\r\n", + "..g2\\extras.py:538 ReplicationCursor 1 0.000000 0.000000 0.000000\r\n", + "..sql\\elements.py:4451 _as_truncated 10 0.000000 0.000000 0.000000\r\n", + "..y:4590 _expression_literal_as_text 4 0.000000 0.000000 0.000000\r\n", + "..idspec.py:67 GridSpec.get_geometry 3 0.000000 0.000000 0.000000\r\n", + "..y:949 Text.set_horizontalalignment 28 0.000000 0.000000 0.000000\r\n", + "..ernal>:1479 FileFinder._fill_cache 1 0.000000 0.000000 0.000000\r\n", + "..ootstrap_external>:104 _path_isdir 1 0.000000 0.000000 0.000000\r\n", + "..:964 SourceFileLoader.get_filename 9 0.000000 0.000000 0.000000\r\n", + "..py:366 GridSpec.get_subplot_params 1 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\ticker.py:2118 _staircase 16 0.000000 0.000000 0.000000\r\n", + "..forms.py:817 Bbox.update_from_path 4 0.000000 0.000000 0.000000\r\n", + "..lines.py:1143 Line2D.set_linestyle 34 0.000000 0.000000 0.000000\r\n", + "..ctionRegistry.get_projection_class 1 0.000000 0.000000 0.000000\r\n", + "..b\\gridspec.py:532 SubplotSpec.num2 1 0.000000 0.000000 0.000000\r\n", + "..:2165 FigureCanvasBase.mpl_connect 7 0.000000 0.000000 0.000000\r\n", + "..e.py:516 _ConnectionRecord.checkin 1 0.000000 0.000000 0.000000\r\n", + "..rms.py:2093 BlendedAffine2D.__eq__ 4 0.000000 0.000000 0.000000\r\n", + "..artist.py:695 Rectangle.set_figure 95 0.000000 0.000000 0.000000\r\n", + "..:493 Query._no_statement_condition 5 0.000000 0.000000 0.000000\r\n", + "..y:208 _arrays_for_stack_dispatcher 28 0.000000 0.000000 0.000000\r\n", + "..lib\\ticker.py:2103 _validate_steps 16 0.000000 0.000000 0.000000\r\n", + "..WindowsSelectorEventLoop.call_soon 17 0.000000 0.000000 0.000000\r\n", + "..tors.py:313 SelectSelector._select 17 0.000000 0.000000 0.000000\r\n", + "..ase.py:1009 _ConnectionFairy.close 1 0.000000 0.000000 0.000000\r\n", + "..range.py:449 RangeCaster._register 6 0.000000 0.000000 0.000000\r\n", + "..3883 AxesSubplot.set_navigate_mode 1 0.000000 0.000000 0.000000\r\n", + "..ib\\figure.py:1070 Figure._make_key 1 0.000000 0.000000 0.000000\r\n", + "..\\artist.py:1074 Line2D.update_from 8 0.000000 0.000000 0.000000\r\n", + "...py:193 URL.translate_connect_args 1 0.000000 0.000000 0.000000\r\n", + "..chemy\\orm\\query.py:4625 27 0.000000 0.000000 0.000000\r\n", + "..r.py:234 _EmptyListener.for_modify 2 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\figure.py:1089 fixlist 1 0.000000 0.000000 0.000000\r\n", + "..teq6k\\lib\\codecs.py:952 getencoder 1 0.000000 0.000000 0.000000\r\n", + "..plotlib\\text.py:1151 Text.set_text 46 0.000000 0.000000 0.000000\r\n", + "..ib\\artist.py:1013 Line2D.get_label 8 0.000000 0.000000 0.000000\r\n", + "..transforms.py:1924 Affine2D.rotate 18 0.000000 0.000000 0.000000\r\n", + "..py:220 SessionTransaction.__init__ 3 0.000000 0.000000 0.000000\r\n", + "..hes.py:382 Rectangle.set_linewidth 12 0.000000 0.000000 0.000000\r\n", + "..208 _EmptyListener._adjust_fn_spec 4 0.000000 0.000000 0.000000\r\n", + "..tlib\\text.py:535 Text.set_clip_box 15 0.000000 0.000000 0.000000\r\n", + "..y:2444 PGDialect_psycopg2.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..lib\\text.py:1042 Text.set_fontsize 4 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\text.py:1104 Text.set_x 6 0.000000 0.000000 0.000000\r\n", + "..ec.py:93 GridSpec.set_width_ratios 1 0.000000 0.000000 0.000000\r\n", + "..\\transforms.py:1986 Affine2D.scale 13 0.000000 0.000000 0.000000\r\n", + "..sSelectorEventLoop._read_from_self 6 0.000000 0.000000 0.000000\r\n", + "..ctions_abc.py:349 __subclasshook__ 5 0.000000 0.000000 0.000000\r\n", + "..ery.py:4539 _ColumnEntity.__init__ 32/7 0.000000 0.000000 0.000000\r\n", + "..\\lib\\sre_compile.py:413 5 0.000000 0.000000 0.000000\r\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACdsAAAUsCAYAAADFYdzDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdeZhkVX0//vcZhhmQRVDBDRQV0a8YURGMkQhGTdyCRBOXaCIuWYxmMcZoXNFo8jOJ+s3XJXvcSUjcFZfEfUHAFTdQZFdAZWeG2fv8/rjVTnd1VdfaXTU1r9fz9NNd5957zumqe6qYmTefU2qtAQAAAAAAAAAAALpbM+kJAAAAAAAAAAAAwLQTtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAACYMaWUU0opdeHX7jQ+AAAAAMBKELYDAAAAAAAAAACAHoTtAAAAgF1GaVzcXjWtlLK9lHL7Sc8PAAAAAIDZJWwHAAAA7EoemuSOHdr3SHLy6k4FxqOUckKHAOkJE5zPW9vmcvGk5gKzwJoCAACA2SFsBwAAAOxKnrHMsaeXUsqqzQQAAAAAgN2KsB0AAACwSyil3CLJScuccuckJ6zObAAAAAAA2N0I2wEAAAC7iqckWd/WVtseL1f5jlVSaz2l1loWfk16TgAAAAAAoxK2AwAAAHYVT297fH6S97a1PbaUcvNVmg8AAAAAALsRYTsAAABg6pVS7pfkqLbmtyd5W1vb3kl+c1UmBQAAAADAbkXYDgAAANgVtG8PW5O8I8lHk/ykx7kAAAAAADCytZOeAAAAAMBySil7J3lSW/Pnaq2XtI6fmuRPFhw7upRyVK31nBWe155Jjk1yjyS3bDX/OMnXBhm7lLJ/kmOS3C3JAUk2JrkyyRdrrT8c66SXjn3LJPdPcpck+ye5PsnlSc6ptV6wkmMPo5RySJoKhwe1vmqSnya5IsmZtdYbVmEOd01ydJLbJ1mf5Oo0z9kXaq3XrvT4s6iUcs8khyc5OM1auinN63pxki/XWret8PjW8vDjTsuaPCrJIUn2TbI1yRW11nf0ef3tk9w9yWFJbp6mQuoNSa5Jcmmae3Dz+Gc+20op65LcL816uFWa98sbkpxVaz1rgH4OT7M25++xLUmuSvLDNPfYpjFPHQAAAJYlbAcAAABMu19PE4BY6G1tP/9J2/GnJ/njYQYrpZyQ5NNtzQ+utX6mdfx2SV6c5LeS7Nelj+8nedVyYY9Syr2SvCTJiWlCCJ3O+VKS59davzjYb7G8UsrxSV6U5CFJ9uhyzteS/EOSf6u11gH7PyXJyxe21VrLkHM9OMlzk/xqkiOXOXV7KeWsJG9KclqtdW7Acdp/x1fUWk9pHVuT5KlJ/jTJPbt0saOU8pkkL6m1ntnHeKek7Tlq8+lSej5lb6u1ntzrpH6UUi5Ocscuh+/Y4fnp5GfrpI/x7pVm3f5Kktstc+qGUsonkrymn+e1bYwTsouv5V5raaXXcpf+pmFN7pPkD5P8TpI7d+mi42tWSrlVkl9L8tAkxye5dY+pbC2lnJnkjUne0+/vsVJrqtd9PYgOc+z5nlJKOTnJW9qa71Rrvbh1/Mgkf57kcUn26dDF25IsG7YrpdwpzfvtI9P99U2SzaWUzyd5fa31o8v1CQAAAONiG1kAAABg2rVvC3tTknfPP6i1fiPJN9vOeUoppWPoZRSllMcm+W6SP0iXcE7LEUneXkr5r/Z5lMbLknwtyW+kSzin5QFJPl9KedFoM//Z2HuUUt6Y5DNJfjldwjkt903yL0k+1wo+rKpSyrpSyiuTXJjkhVk+1JM0/1PpA5OcmuScVgBqHPM4JMkXkvx7ugftkua5fEiSL5VSXj2OsWdRKeW2pZR3JflGkqdl+aBd0lQqOynN8/r+UsotxjQPa3nwMadlTd4/zWv311k+iNXp2lPTVN375ySPT++gXZKsS/KgJP+V5NutMBkdlFJekmZt/3Y6B+16Xb9/677+XpLnpPfru1eShyX5SCnl86WUOww6JgAAAAxK2A4AAACYWq3t4x7U1vz+WuuNbW1va3t8izQBnXHO5SlpQn7tVfaW8xtpQlrzfZQ0oZdXZPlwzKKhk7y6lPKcAcZd2kkz9juTPHvAS49L8tlSykChllG0AlX/k+SlGSKwkSYU98VSyq+OOI87JzkzTVBqEC8qpbxqlLFnUSnlqCRnJ/nNNPf1oB6T5MxSyhEjzsNaHnzMaVmTD0oTMBw2VPULGW23l/+T5h586Ah9zKRWSO4vM+TzW0q5Y5Ivprmv9xyii+OSnF1K+flhxgcAAIB+2UYWAAAAmGZPz9JQTnuwLkneleRvsjj08owkp41pHvdL8lcL5nJdko+kCWL9JMneaUIYj09yWNu1v1lKeX+t9b/TbPe4sFLfJUk+nOTbSa5OckCSY1v97N/Wz2tKKR+e36pvCM9L8sQFj29M8oEkX07y49bYd0+z9d+hbdcemuRTpZR711qvG3L8vpRSDkgTuLh7h8PfTvLZJN9J8xokycFpwnCPzOIKZfsm+e9SygNrrV8dYir7Jfloktu3HtckZyT5RJJLk2xIclCayl2/lqbC0kJ/UUr5UK2123aJVyY5Z8Fc79J2/ILWGMu5tMfxQXw3O5/TOyQ5cMGxba3jvXSdbynlfmm2vty37dBcks+neW4vas1h7ySHpNnis3171LumqWJ1dK31+j7m1M5aHnAtT9GavE2S92bxWjs7TQjwkjTPw22T3CNNOLKXHWmqEn4nyXlpXrcb0twb+6e5134+zRpf+D+t75vkP0sp96m1XrZM/yu6pqbM72Rx+HNDkv9Nc9/8OM3zd0iSB6d53hdpBe3OSudKg2e3+vlekmvTVBq8bZrg5COyuKLkrZOcXkq5b631ktF+JQAAAOis1FonPQcAAACAJUope6QJEy3cZvLyJIfWWuc6nH96mnDHvLkkdx70H9xLKSekCQUttCU7/0H/DUle1imo0tpm8rVZWnHqe2m21ftSmtDBTWkCM/9Sa+0UPLhNkvekCRMs9M+11t/r43c4JcnL25o3Z2dI5S1J/rTL77AmyXOTvCpLA2RvrbU+bZjxa619VTIrpbwvS6sSntGab7fg2nwg6KVp5r5wrIuT3KtDNcT269v/kmzh83VWkj+otX6ty7WHpXm97tt26OO11ocvN27r+hOy9J57cK31M72uXQmllLcmeeqCpktqrYeN0N+BaUJN7X28JckptdauocFSyl2SvCnJr7Qdem+t9XE9xj0h1vJIa7nVz7SsyR3ZGbz8ZpLfr7V+qcu1e9VaN3do/36Sb6WpDPipfgKbrSDYXyd5Utuh02utj+51fauPt2ZMa2qc7xellIuT3HFB09tqrSf3uObkNPfdQgtfm39M8pJa69Vdrl/02pRS1qXZqvuYtlM/nOTPa63nLjOX2yT52yRPaTv05SQP6LQmAQAAYFS2kQUAAACm1SOyOGiXJO/sFLRraa94tybJyWOay3w4549rrX/UrSJUrXVLrfU5ST7eduhuST7UmtOGJL9Ua/3HbkGAWuuVSR6d5Kdth55YStl7yN9hPmzz/9Van77M7zBXa31tmspQ29sOn9zaxnFFlFJ+N0tDPW9OctxyoZ4kqbVeV2t9XhZXG0uagNcfDDGd+efrw0lO6Ba0a419cZKHpangtNDDSinDbnc5S96UxUG7HUme0roPl63OV2u9IM17QXu457GllPsPMRdrudHXWp6yNTkf5vpikl/sFrRrjb0kaNdyTK31cbXW9/VbGbHWekmt9TeTnNJ26JGllE7V/nZH86/N82qtz+oWtEs6vjanZGnQ7oW11l9dLmjX6uvKWutvpdnOeaFjkvx672kDAADA4ITtAAAAgGnVHtBIkrcvc/4HsnPLvnlPa1V3GodTa63/r89zX9qh7eDW9z/uFVJJklrrtWkqay20f5ZWyBrEZ2qtf9HPibXWD6epiNXuj0YYv6tSyto0W3Mu9LFa67PrAFsz1FrfkuRf25qf26pUNqiL04TCugV3Fo57TZYGPtakCeHttkopd0vyhLbmF9da39VvH63X//eStAdvXjjktKzlxrJreUrX5PVJnlBrvWGIazPk1sPzXpmmYtq8kmarcxrvqbW+bpALWlUv/7Ct+R9rra8ZpJ9a6ylptq1daNj3BwAAAFiWsB0AAAAwdUopByd5VFvz12qt3+l2Ta11S5LT2prvmOQhY5jSjiwNnXRVa/1ymi1w230vSyt0LefdHdratyodxKBBudck+WFb22NKKbcdYQ7dPDGLtzOsWRrC6NcrW9fPu3WSBwzRzysGDOf8Z5p7ZaGjhxh3ljw/i/8O8qIkfzdoJ7XWbUn+qq35EaWU9u1Re7GWd+q1lqdxTb6u1vqjIecwklbA8B1tzcdNYi5TaC7Jnw1x3bOT7Lvg8YYkLxhyDq9se3zv1hbfAAAAMFbCdgAAAMA0emqSPdva2reJ7aRT5btOFfIG9Yla6yUDXvONDm1vGbAi1AVJ2is43W3Aecw7s9b6rUEuaFV0aw+XrE3y0CHnsJz2Lf8+U2v9wTAd1VovS9L+ux4/YDcbk5w64LjXJjm/rXnY12uXV0opSR7b1vzWbluu9uEjbY/XJxl0K1lreadea3na1mRN8u/DjD9G7ev7vqWU9s+q3dGnWttpD6r9HvvvYasWJjkjS6vbDnqPAQAAQE/CdgAAAMA0at+ab3uS/+h1Ua31jCwNQ5xUSrnFiPP53BDXdAr0fH4M/RwwRB9J8v4hr3tvh7afH7KvjlqhrF9saz5jxG4vant8nwGvP7PWunWIcS9oe3zzIfqYFfdKcmBb29Cva2ur3vZKg4O+rtbyYh3X8pSuyR/UWtur842klLJvKeWRpZQXllLeXko5vZTy+VLK10op32j/SvLGti7Wp6nSt7v79KAXtLaQ/bm25lHeH+aydI0Neo8BAABAT2snPQEAAACAhUopD0xy97bmj9Zaf9pnF29P8pcLHq9P8uQkbxhhWsNUc7pxhfoZNrz11SGv+1aSbVlcaXDcW6P+nyTtgcinllIePUKfd2h7fKsBr28PbfarPQy2O4ftHtih7Q2llC0j9HmztseDvq7Wcn9reRrX5NdGGHuRUsrRabY4PjHJ3iN2d0CWbtG7uxnmtXlAlhYD+ItSynNGmMfhbY8HvccAAACgJ2E7AAAAYNp02va1ny1k570jySuTlLY+RwnbXTvENdtWqJ9htyz83jAX1Vq3lFIuTnLXBc0HDzmHbg7p0tapfVi3HPD8a4YcZ1yv1yzo9Pq1B2lHNejrai33t5ancU3+ZNQBW1u+vj7JszK+XV9250DtvGFem0730p1HnUibQe8xAAAA6Mk2sgAAAMDUKKXsm+Txbc3XJvlwv33UWi9J8pm25qNalYyG1SlsM7Ba61j6GVJ7xbVRrh12+8tuViMQMWj1qkm+VrNiZl/X3WAtT+Nrd8Mog7WCdv+d5NkZ79+L786B2nnDvDbTeI8BAABAT8J2AAAAwDR5YpJ92tpOq7UOuu1kp0p4nSrm7U42jvHa/UaZSAcHjrk/poPXdWWsxlqextdu+4jXvyDJYzq0/yjJm5M8Jc3WpoemCSHuVWstC7+SPHjEOcyqYV6babzHAAAAoCfbyAIAAADTpFMg7vdLKb8/hr6fVEp5Xq110xj62hXtk+ErQ7UHIG8ccS7tOr0mJ9VaPzDmcVhdnV7XA2ut1636TGbLaqzlmVqTpZSDk/xFW/P2JM9P8sZaa79hMZXSxqfTPXbvWus5qz4TAAAAGIDKdgAAAMBUKKXcI8nPr+AQByR57Ar2P+1uPsZrxx2WuqpD253GPAarr9PrethqT2IGrcZanrU1eWKSm7W1vaDW+n8HCNolyS3GOKdpMMktcGftHgMAAGA3IWwHAAAATIvV2OZ1d95K9ohhLiqlrMvSgNRPRp7NYj/u0HavMY/B6vO6rozVWMuz9to9rO3xtUneOEQ/dx7DXEa1rUPbsKG5SYYHZ+0eAwAAYDdhG1kAAABg4kopeyb5rbbmrUnOHbHrQ7M4THBCKeXOtdYLR+x3V3R0kk8Ocd29sjTI8dXRp7PIN5NsTrLXgraHj3kMVt/ZHdoekeTtqz2RGbMaa3nW1uShbY/PqrVuHaKfB4xjMiPqtIXw/oN2Uko5JItf39V2Voe2RyR55WpPBAAAAAahsh0AAAAwDU5MclBb2/tqrfce5SvJS9r6LEmetiq/0fQ5acjrOm29e+YoE2lXa92c5AttzbctpTxknONMsU7bWO6x6rPYqX0+w87ljCQb29oeVUo5cMj+aKz4Wp7BNXmrtsfXDNpBKeVWSR485PjjWlNJ561/h6m4d/wIcxhZrfWSJD9oaz62lDJU5UYAAABYLcJ2AAAAwDTotL3rO8fQ72lpKuQtdHIpZXf8O5EHlFKOHOSCUsr6LK04uD3JJ8Y2q50+0KHtlBUYZxrd2KFt31WfxU7t8xlqLq3KYR9ra94vyfOG6Y+fWa21PEtrsj302R6+68ezM3wluLGsqZYfJdnQ1nbsEP387ghzGJf2e2xNkpdNYiIAAADQr93xL5YBAACAKVJKuX2SX25r/mmWhnQGVmu9JslH25oPSfIro/a9i/r7Ac//8zTP10IfqLVeMab5LPRvSa5sazuulPKCFRhr2lzboW2YSlXj0j6fA0aoRvfqDm1/Xko5bsj+aKzGWp6lNdn+e/5CKWWffi9uhRv/YoTxx7amaq1zSb7R1vyoUsrN++2jlHJikgcNM/6YvTbNdsULPbmU8oRJTAYAAAD6IWwHAAAATNrTsnRLvdNqrZ221hxGpwp5nSrp7Q4eUkp5VT8nllIekeSlHQ79v/FOqVFr3ZTOway/KqU8Z9h+SykPL6W8efiZrYrLklzf1vbISUyk5Vsd2oaaT63160ne09a8Z5L3lVKGCvuUUtaXUn63lPLcYa6fESu+lmdsTX6+7fG+SV7ez4WllMOSfDDJ+hHGH9uaamkPke+dpN/74V5J3jLC2GPTCnu+qcOhfy+lPG6YPkspe5RSnlBK6XTvAgAAwMiE7QAAAICJKaWUNGG7duPYQnbeh7I0yHRiKeWgMY6xK5ivHvTiUsq/dKuCVEpZU0r5kyTvTROKWuittdbPreAc35TO2wq+oZTyvlLKUf10Ukq5UynlBaWUb6YJpUxDBaeuaq01yZfamh9aSvnrUsrBE5jSmUnm2tpeW0p5TCml/Z7ox+8luait7VZJPllK+dtSym366aSUcv9SymuTXJzkn5LcZYi5zILVXMuzsibfk6X39PNLKX9ZSlnb7aJSypPSrM35SpM3DDn+uNfUW5PsaGt7TinlFd1+n1YI7RlJvpDkFklqlm6zPgkvSXJ2W9vNkry7lPKvpZS+1nkp5Z6llFcm+X6S/0zS170JAAAAg+r6FwkAAAAAq+DBWbpd5vm11rPGNUCtdUsp5b+TPHNB855JnpLk9eMaZxfwsiR/0/r5mUkeX0p5f5IvJ/lJkgOS3D3J45LcocP1lyRZ0UpitdZaSnlKmjBIe1DipCQnlVLOSfKZJOcnubp17IA04a17JTk6k92CdVj/nuThbW0vTPLCUsoVSa5J0l7t8YO11peNeyK11itKKR/L4spbt07y/iRbSymXJdmYJqyz0DNrrV/p0N/VrW0rv5BkYTBsbZI/S/JHpZQvJflckh+m2XJzfZrX9bZJ7pPkfkl2t4BsN6u2lmdlTdZav19KeWeS32479JIkJ5dS3p3km0k2pAmi3S3JiVkc6LwpyQuS/MMQ4497TV1eSnlDkj9pO/SyNNuwvifJua053zLJzyV5VBbfD69J8qQkdxz09xmnWuvmUsqvpQkkHtp2+BlpXp+vJPlsmqDtNWmq4R6Q5OAk907z/nD71ZozAAAAuzdhOwAAAGCSOm3nOs6qdgv7fGZb2zOye4Xt/i5NIOHxrcf7pwmetIdPOvlhkl+qtV63QnP7mVrrhlLKL6bZ5rDTNoJHZTYrFr0nySeTPKTDsdu2vtp9YwXn8/wkxyfZp619XbpXlNu3W2e11m+XUo5JU2Xtnh36PL71RW+rupZnaE3+UZJj0wQRFzokS0Nr7bYl+Y004bVhjXVNJXlxkodm6Xq6S5I/7zGX01rXP6nHeauiFR48Ns282qse7pHk/q0vAAAAmDjbyAIAAAATUUo5IMljOxx61woM97kkl7a1HVlK2W3+8b61VemTk/zjgJd+McnxtdYLxz+rzmqtN9Zafz3Js5L8aMTuLk0TEppqtda5JL+e5NRJzyVJaq3fTfKwJD8YY5/npwnMvC5NFa9RfCXJR0ae1C5oEmt5FtZkrfX6NOG0Mwe89PIkD621jnS/jXtN1VpvSnJClm7BuuxlacKav9l6z5katdYr04SNX5Kmet0ozk3yXyNPCgAAADoQtgMAAAAm5clJ9mpr+1Kt9YJxD9QKp3QK8XWqrDezaq3ba63PShM4+VSS5cIWX0/yO0l+cTWDdgvVWv8xzfaTv5PkE+mvqtRcmrn/bZptig+rtb52xSY5RrXW62qtT05TeeuUJB9OckGabVW3TWA+X2rN5ZFJ3pxmK9HL02y1OVRQp9Z6U631eUkOS/M7fiXJjj4u3Zzmnn1RkiNrrceMGn7alU1qLe/qa7LW+qM0ldOek6TXc3FJkpcmuXut9XNjGn+sa6rWenWSB6YJQS732bkjyUeTPLDW+vxpC9rNa93Xr06zte3z0jw/W/u4dHuSM5K8MsmxtdZ71FrfvnIzBQAAYHdWmr9rBgAAAGB3U0q5VZKfT7Pt4L5JbkhyRZKvr0TocVSllHVJjk6z7eOtkhyYJmRxY5Krknw/yfdrrZsmNkkGVkq5eZJjkhyc5JZJbp5kU5rX9fIk30tyYa21n1DeTCmlnJLk5Qvbaq2lw3kTWcu7+pospRyRZmvZg9Js77oxzVa736y1fm+ScxtG6/c5Os1a2i/N63BBkjNqraNWi5uIUsrN0mybfLs07w8HJNmS5nf7SZr3hx/UWvsJ5QEAAMDIhO0AAAAAAKZQv2E7AAAAAFaHbWQBAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAeSq110nMAAAAAAAAAAACAqaayHQAAAAAAAAAAAPQgbAcAAAAAAAAAAAA9CNsBAAAAAAAAAABAD8J2AAAAAAAAAAAA0IOwHQAAAAAAAAAAAPQgbAcAAAAAAAAAAAA9CNsBAAAAAAAAAABAD8J2AAAAAAAAAAAA0IOwHQAAAAAAAAAAAPQgbAcAAAAAAAAAAAA9CNsBAAAAAAAAAABAD2snPQHoppRy8yTHL2i6LMnWCU0HAAAAAAAAAACYvHVJDl3w+LO11utXY2BhO6bZ8Uk+MOlJAAAAAAAAAAAAU+sxST64GgPZRhYAAAAAAAAAAAB6ELYDAAAAAAAAAACAHmwjyzS7bOGD97///Tn88MMnNRcAAAAAAAAAAGDCfvCDH+Skk05a2HRZt3PHTdiOabZ14YPDDz88Rx555KTmAgAAAAAAAAAATJ+tvU8ZD9vIAgAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAbDbqFs2pZ7zhdSf/mjSUwEAAAAAAAAAdjHCdgDsFuoXT0991G1Tn/OQ1MfeOXOvenrq9u2TnhYAAAAAAAAAsIsQtgNg5tVrf5r6kickWzbtbPz4u5J3v2FykwIAAAAAAAAAdinCdgDMvk+elmzftqS5nv62CUwGAAAAAAAAANgVCdsBMPPqf/595wMXn7u6EwEAAAAAAAAAdlnCdgDMvg5V7QAAAAAAAAAABiFsB8Ds27510jMAAAAAAAAAAHZxwnYAzL5twnYAAAAAAAAAwGiE7QCYfbaRBWiT9noAACAASURBVAAAAAAAAABGJGwHwOzbIWwHwGIf/VbNmt/d8bOvr15SJz0lAAAAAAAAppywHQCzb8eOSc8AgCny6fNqHvWGuUVtx7x6Lt+7UuAOAAAAAACA7oTtAACA3cpj3jTXsf05p3ZuBwAAAAAAgETYDgAA2M1s2NK5/ZPnre48AAAAAAAA2LWsnfQEAAAAuvnxDTXv/VrNpdckv3T3kofdo0x6SgAAAAAAAOymhO0AAICpdPFVNb/02rlcfHXz+DUfq3nRI0teddLKFejesq1m/Z4CfQAAAAAAACxlG1kAAGAqvebj9WdBu3l/9ZGaS6+uKzbmh7+5Yl0DAAAAAACwixO2AwAAptI/fbZzqO5fv7ByYbtPf2/l+gYAAAAAAGDXJmwHAABM3I65mq9cXPOhc2qu3bh84O0T565cIO6GTSvWNQAAAAAAALu4tZOeAAAAsHu7ekPNr/zfuXzt0ubx2jXJqb8zmf8v6MKrVLYDAAAAAACgM5XtAACAifrT/6o/C9olyfa55PH/NDeRuZxxwUSGBQAAAAAAYBcgbAcAAEzUh765etXkrumxRW2SbN2uuh0AAAAAAABLCdsBAAATs31HzXU3rd54V2/ofc6GLSs/DwAAAAAAAHY9wnYAAMDEbNq2uuNt29H7nE1bV34eAAAAAAAA7HqE7QAAgIm5aYhg25kXDj9eP2G7y64dvn8AAAAAAABml7AdAAAwMd+4bHXH2z7X+5z/+W5d+YkAAAAAAACwyxG2AwAAJmbjlsGvucMthh+vn8p2ZfjuAQAAAAAAmGHCdgDMtFpVJwKYZpu2Df4+vaOP6nTd9BO2e/kHa07/ps8PAAAAAAAAFhO2A2C27egjVQHAxGzaOsQ124Yfb3ufHwu/+sa5fPw7AncAAAAAAADsJGwHwGybE7YDmGbDBOeGCejN66ey3bxXfGiEEnoAAAAAAADMHGE7AGZbFZQAmGbDVrYbdpvwrQOE7c68cKghAAAAAAAAmFHCdgDMNtvIAky1YbeE3bJ9yPFGqIoHAAAAAADA7k3YDoDZZhtZgKl205Dht2FDczdtHa4iHgAAAAAAAAjbATDbhO0Aptqwle1W67pht6sFAAAAAABg9gjbATDbbCMLMNU2DxuaG7Ky3aDjbR1yu1oAAAAAAABmj7AdALNNZTuAqbZtyDDbsJXtBg3PDTsOAAAAAAAAs0fYDoDZJmwHMNW2Dfk2PWwIbsugYbshK+gBAAAAAAAwe4TtAJhtwnYAU23r9jrUdcOG4LYO+LGgsh0AAAAAAADzhO0AmG07hO0Aptmwle0220YWAAAAAACAVbZ20hMAgBVV5yY9AwCWMWiluXnDhuAGDtttTS66qmbbjmRNSQ67ZbJ2j5IbNtVctSG5062SUspwkwEAAAAAAGCXImwHwGxT2Q5gqg1b2W7T1ppk8JDboOG+Y/+qc2h7jzXJjrnk0AOTdzxjTR50hMAdAAAAAADArLONLACzbU7YDmCaDVppbt5qVbbrZkcrg3fZtckj/n4uV15fx9MxAAAAAAAAU0vYDoDZNmcbWYBpNnRluyHDdsOOt5xN25LTvyVsBwAAAAAAMOuE7QCYbSrbAUy1Qbd1nbdp65DjjamyXbtPnrsy/QIAAAAAADA9hO0AmG07hO0AptlqV7Y788KVqUD3kxtVtgMAAAAAAJh1wnYAzDaV7QCm2rCV5s4aIjR30VU1F1893Hi9fOq8pFaBOwAAAAAAgFkmbAfAbBO2A5hqw1a2+/h3Br/m37+4smG4z5+/ot0DAAAAAAAwYcJ2AMy2ubnux9b4GASYtGEr2x1/xODXvPr0lQ3bffp7KtsBAAAAAADMMikDAGbbcpXt1uyxevMAoKNhK9vtWCZLPSmXrNAWtQAAAAAAAEwHYTsAZttyYbtSVm8eAHS0dciw3bAhvW6OuPXofVxxvcp2AAAAAAAAs0zYDoDZtmPMaQwAxmrY0Nz2MVe2WzuGPxldes3ofQAAAAAAADC9hO0AmG3LVbarKhABTNrW7cNdN+6w3eOOHr3a6UVXJdVnCwAAAAAAwMwStgNgtgnbAUy1oSvbDXHdfe/Q/dhjjho9bLd5W3Ll9SN3s8S1G2ve/dWav/7oXN7yxblcdo3PLwAAAAAAgElYO+kJAMCKWnYbWWEFgEnaMVczN+Rb8XlXDn7NjZs7t5/8CyX3WSaIN4gLr0pue8B4+kqS866oecjr5nLFghDfurU17/79NXn0vUYPCAIAAAAAANA/le0AmG3LVbYDYKJ6VbW7y0HJSx7VOVC2ZYjtZ8//SfdxShlPcO2iq8Yb5H7OfywO2iXN1ru/9W9z2bZdaBwAAAAAAGA1CdsBMNuW2yrWNrIAE7V1mcDc2S9ak/NfvUduv0yVuO07xvM+Ps5PgwuvGl9fm7fVfO77nY9dvyn58iXjGwsAAAAAAIDehO0AmG1zc92PCdsBTNTmbd2P7b2u+b7P+u7n3LR1sPH23KNz+3yVvF+7z2D9dfKuM2uuunE8ny83bEq2L/MxdvWGsQwDAAAAAABAn4TtANh9CdsBTNSm5cJ2ezbf73OH7tu7Lnd9ux1zteu2tScc0Yzx3IeO/sej83+SHPy8uTz2zTuyaetonzMnvnGZpF2STdt8jgEAAAAAAKwmYTsAZptAHcDU2rRMZbr5sN3890Gvb/ftH3U/tt9ezffj7lpy1ovG80ek938j+bN3D/8Z9F9fmcvZFy9/zpd7HAcAAAAAAGC8hO0AmHHLBx2qMB7AxCxb2a61jexyYbvltqFt94Fzur/fLxzjmMO6V9Ib1Pu+NvxnzB/+R+9rz7vCZxgAAAAAAMBqErYDYLb1CtMJ2wFMTD/byM6H7ga9vt11N3U/dueDFj9+3H3773c5V96QbNs+3OfMT2/sfc6htxhfMBAAAAAAAIDehO0AmG3CdABTq9s2sKUk69Y2P++13DayA4Ttljt3n/WLQ2tP/YU1KWPKsQ0yx0Ft3bFyfQMAAAAAALCUsB0AuzdhPICJueL6zu/Be++ZlFbabf3adA2+dQvrdfJPn+081hOPWdr5o+9V8q5nlNzn0GYuD75b/+O0W8mw3bbtK9c3AAAAAAAAS62d9AQAYEXZRhZgan3qvM7tC6vZlVKy19rOobVxBNn226tz+xOPXZMnHpvUWlNKyTGv3pGvXjJ4/4MEAued/+P+Ppu2CtsBAAAAAACsKpXtAJhxvQILwnYAk3L7Azu3X7Nx8eO913U+r98gWxOY63xs45blr52vsPfY+w63r+zmIQKB37m8v/O27vAZBgAAAAAAsJqE7QCYbSrbAUyt7Tv6O2/vPTu3b9rW33v4lu3d3+6Pu2t/czjxqNI1sLecbX3+jsNcs2UFt6gFAAAAAABgKWE7AGabsB3A1PrWDzu/Bz/k7osfj1rZbrnz7n+n/hJ0R96u5J3PKNlnfX9jzts6RNiu34p1w/QNAAAAAADA8ITtAACAifjItzu3f7ttG9Xule36G+dH13U/1q3vTp507Jpc/fo1OetFa3LF363J0x7YO6i3dXv//c/rt7LdMH0DAAAAAAAwvLWTngAArCiV7QB2OT++YfHjUcN2F/60+7Fb7NNfH/PWrS055rDm5xs2zfU8fyW3kVXZDgAAAAAAYHWpbAfAbOsZphO2A5h2o24ju1x47eD9+9tGtpN+8trDVJ/r9xqV7QAAAAAAAFaXsB0AM05lO4BpdNWN/b//jlrZbtO2lXmv76fXYarP2UYWAAAAAABgOgnbATDbbCMLMJX+7n8HCNuNWNmuWyjvLgf1PYWO+vkIsY0sAAAAAADA7BC2A2D3JmwHMBGfPHeQynadt3rtt7LdTV1Ced0q5vXrqEN7b0G7ktvIblHZDgAAAAAAYFWtnfQEAGBF9QzTCdsBTMK1G7sfe/0TFofY9upS2W5zv9vIdgvbdem3X888ruQVH1r+c2TrjpqkdyhvoX4r2/Vb2W/jlpqvX5psn0v2XZ/ss37x93VrB5sfAAAAAADA7krYDoDZpnIdwFS68Krux57+wMXhr24V6DZt7e89vlsFvFEr293+wJJnnVDyD5/pPo9hKtv1HbbrI2z4z5+by7NPrdkx1/2cPffYGbxbFMZbl+y7V8k+65c/vm+X40J8AAAAAADArBG2A2DG9QhiCOMBrLovX9z9vfffnlqy3159hu36rGz3li92Hm/UynZJ8sYnldz/TsnJb+k8Rr/BuWGu6VXZ7uyLan7/nb0/57btSK67qflaavgKsWvXJPvutTCYtzikd7Mlba3v61shvy7H161NShHkAwAAAAAAVp+wHQCzrVeYTtgOYNW96L3dy6zdZv+lIapuobh+t1HtFl7bawx/Giql5LcfUPI3H9uR716x9PiWISrbbe0zbLd9Ltm2vWbPLhXkPvzNyX7GbZ9b2RDfzmDezp/3Wd9U4lvueHubEB8AAAAAANAvYTsAdm/CdgCr7pPndT/2c4csbRu1st0Rt05+fMPS9rMu6u/6fqzv8ierzX3OcaFBquFt2pbs2WXsy68ffOxdwUqG+Dpth7swxLfc8e7b6QrxAQAAAADArBC2A2C29QzTCdsBTJNDDhx/Zbtu5z38nuMLQHWb46Bhu+07av7hM/1/Nm3aluy/d+djO4bYwnZ3tn0uuX5T87XU8P89sceabgG9ZN+2EF+3452uF+IDAAAAAIDVJ2wHwGyzjSzAVLl24+Dvu6NWtusWeLv3oQNPpatR5zjvj08b7Pn5+qXJw+/Z+dggFfJYOTtWOMTXOYy3M8S33PFO168X4gMAAAAAgK6E7QCYccJ2ANPk499Z/bBdt/P26tLvMEatvpck27bXnHrWYM/PO86sXSv0bZ/rfM1T7l/y0keXbNiSbNySbGh9bdxSF/y883vzc207d+f3QQOFjMdqhfj2WZfsu9fCn0tutqRt/ueSfffqdI0QHwAAAAAAs0HYDoDZJkwHMFXOu3Lwa/ZeV9IpHNRvkG3r9s7tYw3b7dlljgME0c67sltwqrv/OLvmXc/sfGzbjs6fgQfsk9z11p1CT8MFoXbM1QWhvKVhvA2tEF/78Y3dAn5bkw2bhfgmZfkQX7J8kG/5EN988G6fda1qeot+3hniW3p8cYhv4XEhPgAAAAAAVpOwHQCzzTayu50zLqg57jU7yzm99Wklv/2ANROcEbDQ1mW2Nn3xozoHZrpVtrtxc39jdttOdc89+ru+H90q23XbwraTbpXohrW9y++9dsxviXusKdl/72T/vbudMXyI76ZW8G5hCG/jz9rqgp93tjfX1EVtQnyTt2MuuWFz89XZcCG+NWVpcG/x1ritLXM7Ht+5nW778b32FOIDAAAAAGApYTsAdm/CdjPl7IsWB+2S5OS31GzaOpffO17gDqZBtypzSfLKE7uE7boE2bbPJbXWnoGYbmG7tWvGF6TpViXvE+f2/zlzydVjmkzL/57buX2cIcOVtMeakv32Svbbq9sZo4f4Nm5tVdvbvDDMVxe3bVkc4ltyzRYhvkmaqysb4vvZdrqLAnw7g3qdj5e2c3d+F+IDAAAAANi1CdsBMNt6humE7WbJs0/tXBbqWe+q+b3jV3kyQEfdKtuddO/uAZRule2S5LtXJEfebvkxV6WyXZc5Xn5d/3386+fHW9quW1W9cVe229WsdIhvXNvpzv98U5/bJTNeKxniWxrcW1xt72Zdj5cuwT8hPgAAAACA1SJsB8CMs43s7uSrl3Q/tmVbzfo9/SM0TFq3ynbr1nZfn7fat3t/X7+05sjbDVfZbpxhu+s3dW6/zf799zHubWQPuFly3U1L239843jHobFSIb65+Up8XcJ4G7bUrgG/jV0CfhuE+CZmrjZbYHffBnv0EF/nMF9Zcnyfdc32ufuuLwt+Xnx873VCfAAAAAAACwnbATDbeoXpVihsV2vNJ85NPn9+zRG3Tk48qmT/vf1D5SR97DvJY+496Vkk126s+eA5NRf8NDn+iJJfurt/xGY4l19X84Fv1FyzMfmVI0vud9iucR91DdstE3w7/ODux7pVb1toNcJ2B+032NidnHfleOYyr9suube7+XjHYWWtWVOaENQKhvg6h/U6V9u7aZmAnxDf5KxUiK+U9mDezp+b763tdDseb22nu9fS40J8AAAAAMCuSthuQkopeyQ5PMk9ktwuyc2TbElybZILknyl1rpxzGPumeSBSe6Q5LZJNiS5PMnXa60Xj3MsgKkxgbBdrTV/fFrNGz+1s++jDqn5n+euyUH7+UfFSfm1N8/lxY8q+cvHTG7/xCuvr3no6+by3Suax686veZ5v1zyt7/uvmAw515R8+C/m8tPWhXKXvbBmn94csnvPmj69wftGnxb5k8mywUyru1QuW2hWmvXinHjDNsdd3jJ33586WfK1X3+F/0ZF9Rces1wY++Yq9mjQ7Ku23N99B2957DyIb6NW5MNm1thvIU/z1fbazu+cfPiEN+S41uG/lUZQV0Y4ruh4xnLXd31SCmtAN7CMN76xSG+m3U93rad7oLjQnwAAAAAwEoTtltFpZQ7JHlskocm+cUky20qtaOU8r9J3lhrPX3EcQ9K8ookT0hyiy7nnJHkdbXW94wyFgDJOT/MoqDdfNubPl1zyon+8W+SXn16zTOPq7njLSfzOrz+E/VnQbt5r/2fZk53u417g/696L07g3ZJE4b4k9NqnnL/mputn+57acu2zuGL9T3+ZHL0HTtvFX3qWTXP///Zu/Mwuaoyf+DfU11dXdWdfSUJkJAQVtmRHVlF0BHBDUVRQUZHBweH8aeijsLM6LggboMO4AKKouiALLIkskPYCQGSACEhCQnZ916qqqvr/f1RXd236p5z7rlVt5bu/n6ep59U33PvubfWdN361vu+y7xdzlJZLsqwXarVPCYigeGPE75XeQ/Znqw+MGW67lFeb6Jy3hDfVO073mhCfF3F1rrFy+nSEF9xvCsNdGXFF/zr8lT1o/oTGayGWKsQn2s73cHLSrsNQ3xERERERERERETkxbBdnSil/gDgoyE2aQFwJoAzlVJ3AbhYRDZUsN+zANwAwNJ8CwBwHIDjlFK/B/DZqKvqERE1TGDluugr213zoH7O/7hLcMXZke+OQrp/qeCiExrzYamu6hUA/O/Dgh+dxw9wyd3ti/zL0r3Azc8IPt2gx7errCEAlgh4Z5I3ZNGmj7NvZ2vjGmXorM0StnttA7Dvbubxnmx1/xf19OrDdqbrHm/+AohEPrUM8fX0lgX3vK1x0+Jf5mmnq92GIb6GKQnx6dewbW0cKYb4TGG8YohPP24O+LUzxEdERERERERERDTkMGxXP/sYlq8FsAzABhTuj9kADgHg/QjsHwA8opQ6SUTWu+5QKXUygL8CSHgWC4DnAawAMA7AYQAmecY/BmCMUuocEam8vAYRUdOofxvZPz9rnnNnj+DZVcCWTmDRGsGtzwtaYsBPPxLDyfvywzZXmV7BkysK4ZYjZwLxFvfbbUdPtMciIli+CVj0JnDw7sDeU8Lfj9c+IvjRedEeF41MC5YDnz6h0Udhl83plycCgm8L39Qvb0/olxeZWsgC0Ybt9reE6Xal7dtWG8pZtwOYPLp0Wb3a5xINdbHYYEiqViG+rowujCclwbziv12Z0na6uu2p/rwhPv23IKMJ8emq7bVbAn6mCn4M8REREREREREREdUOw3aNsRDArwHcIyLLyweVUjMAfBPAZzyL9wHwZ6XUO0SCkyFKqd0B3IrSoN3jAP5RRJZ61msD8FkAVwEo1uN4L4D/AvC1MFeKiKgpBb1k1iBs12eZctyl+uTDaVcXlu/6WQwdTd4CstGeWyU488d5bOmvwbrXJGD+v8Ywe7Lb7dbTG92xZHoFH/tlHrcuHFx29iHAHz8TQ7LV/X5M9wKX35rHd85V/GCUqvKbxwVXni3YfXzzPo4qrWz3kbcr/PEZ/wvs8k327WyV7eIRhs7Gpsxjmzvt26YNAUQv0/UHgEP/I48bLlT4xLGD39fps4QMo7zeRKTnDfHpVRfiM4fxRBvQ67IE/IrtdWvwZzEFqGWIr73YTjdRqAhZenkwxOcfLw3xecdTrYXHNhERERERERER0UjGsF39CIC/AbhCRJ61riiyFsBnlVKLAFzjGToBwHkA/uiwvysBjPf8vgDA6SJSUldDRDIAfqqUWg3gNs/QZUqpa0VklcO+iIiaVwPCdtVUKDrpB3k8+w2mIEzyecE51wwG7QDgjc3Ax3+Vx6NfduuLGGXY7qp5UhK0A4A7FgHfvUdwxdnhPoj83r2CY2crnH1odMdHI9Onb8jjvn9t3tcRY2W7gHcme03SL3/BUPGuqF5tZG0Bto9en8e2n5hX2N5tn/sv/xTDKfvCGLYDgAtvEJywtwwEj+tV0Y+I6ssb4puiXaOyIJSIoCdrrqZnqrbXnS202tW10WWIr3FEBislGtawbW2duzyE19Ef6itcVuhImsaVNvjXkSgEAxniIyIiIiIiIiKioYJhu/r5kIisDLOBiPxcKXUqgA94Fl+AgLCdUmougE96FmUBfKo8aFe2r78qpW70bNcG4FsALgpzzEREQ09zffr3/OpGH0FzW/gmsHa7f/mTK4C3NMt1erLRHc9dL+ofP3e9KLji7PDz/e0lwdmH8oNGqs4DrxaqFzVrlUxT2C4oAJZsNY91ZwTthutbr7CdrSplUPvq51eb/y86Zjbw/sMVMr32/69EgD89K7j8rMJxWCv6uWWTiWgEUapQ6ay9hiG+rizQmS4P48ngMs94McRXsk3ZZYb4GqOWIb5iME/XTrcjaRpXnrCfv50uQ3xERERERERERBQ1hu3qJGzQzuMalIbtTnHY5nwA3o8ObxWRZQ7bfQ+lIb0PK6U+bwvpERE1PcuncAJga5eCoVhSxca3A9sCqhRRZV5aa74/12xzm6M7wrDdU2/ol+tCkw5d4HH9o4JrL6jyoGjE68sDW7tsrQsbyxQCSwQE30YnzWNbuwsBkTD7A5qnwpstBnDZOwvJuDaH1tRX3CG4/KzC5bSliqctuEhEFCVviM+wRkXzFkN8XcVqfOnBMF5hmXguDy4vaaerGe/MMMTXKMUQ38ZdutHKQ3zFdrolrXEHwnqD7XT948oQ/GOIj4iIiIiIiIhopGPYrvmVNadDSik1TkRs9XvOLfv9Ny47EpGlSqmnABzdv6gDwBkA7nA6UiKiZqT5tEwAfHfi/8PPJnweG787FXMm9+H7H4zh3MOi+cBkzmTgWTbhrgnbPRTUhrHIFkCppYyhmhdRWC7BzShDpVEzhd+Cgm/vOUjhslv0191WsXIohO1s99e7DnSfx3tduzdtBTBOu16KYTsiGuK8Ib7Jo7VrVDSviCDd62+H6w3xadvlekJ8unGG+BqnO1v4qVWITxfG62hTvmCfN+Cn36ZQmY8hPiIiIiIiIiKi5sewXfPTfTSfMK2slNoNwCFl2z8eYn8PYTBsBwBngWE7IhrS/B+SXDfuYvz7lCsHfl++CfjwtXk8/pUYjtqr+g83bMEOp+1zgtY4P2TRWbnFPHbFnXmnOaJsI2sjIiVtJeu1Xxr+XD6s72lQqNRFzvBUjQcE38a3m8ds17dZwna5PkG8Rf/abjr+yaOB0cnBbT51nMINC9zSGl3fvQTATdqxlPHdBBHRyKaUQipReJ2sVYhPH8aTkuBecbw7Yw74FS/nGeJriGKIDzUI8WnDeAlgVLIQ1NOPK4xK6gOADPEREREREREREUWLYbvmt3fZ7zkAmy3rv63s9xdFpCvE/haU/R6ilgYRURPSpFJ+P/YjvmV9eeBPz0okYTtTkMRVTy/Qyv+htZ5+w/zh1DMr3ebo6a3PJ5KL1gCH7uHdb112SyOAyyO4mcOdlVa2swXEhkJluzc2A3On6sdMrw97TSz93aX965ptghndK9CzYjkwW78OK9sREdVXrUN85jCevtpelyXgV7zMEF9jFEN8myIO8aVaMRjGS5RfVoVKfdrxQojPvw1DfEREREREREQ0cvGj/Ob3wbLfnxURW4zjgLLfXw+5v+UB8xERDXkL2o/TLv/N44Iffqj6+autbNfTC4xJVX8cw9FekxTcokZmUYWQcn3243h9Y2nYjm1kKSp5h0BvM4c7jZXtYvbtbAGxZqlsZ6s8t36nJWxneF0qDxjOmRx8DMs3AtMfvhE9saRxnXZWtiMiGha8Ib5JNQzxdWULrXQ7PUG9kja6/eMl7XS923guM8TXGD29hZ9ahfg6+tvqei8PtNPVjnva6ZaNtyeAFob4iIiIiIiIiKiJMWzXxJRSowB8umzxbQGblVfCWx1yt6vKfp+olBovIttCzkNE1Bxc+i32294dzS5zVYbtpn2pNIkyZzLwrgMVvvVehcmjR/aHDt0RBOWimGPjTsGX/8/+2PrwtXnMmgh851yFjxwVQ9YhbHfUrOqPjYa/kVrZLhZTSMShfS7Zrq+t2mhQwC+sfz7FHLZLWwKBprBgecDwfYcqfOOvYg3vdmcB5PN4PVH+tqBAKSDBd4FERGRRyxBfJtcfzMv2V9NLe8N4Mhjc84x3Z4HOdGmIzzvOEF/jDIT4tKPVhfh07XK9IT79+GCIz9dOt40hPiIiIiIiIiKKBj9maW7/DWA3z+/bAfwyYJtxZb9vDLNDEelUSqUBeEthjAVQVdhOKTUFgEMtjhJzqtknERGAUGG7qFRb2a7c8k3Azx8SPPSq4MnLYxiVHLkfENjCKq4eL6/hGtKutOCUH+axdF3wuiu3AOf/UtCZyeNohxbFT6+s7thoZHD5MLmpK9sZXiNdgm+pVkPYzlbZzhJMi7qy3REzzc/zLZ0CUzjBtbLd3lMU7rwkhs/elMcbm/Xb3LBAcGS+AxdNv14/Z6tAqZH7/wgRETWOUgrJ1kJb9En6NSqaVxfiG2iNmwa6slIa7PO2002LP/jn2b7PoaIwRa8Y4tvcqRuNJsTnUFNSuAAAIABJREFUD+uVhvjKA376bRjiIyIiIiIiIhqJGLZrUkqpcwFcUrb46yKyNWDTUWW/91Sw+x6Uhu2032MO6fMAvhXBPEREVVmc2L/m+4g6bFe0ZB0wfylw7mG1mX8o6M42vmTFvS/DKWjn9eO/C268iB/AUDRcMsQ9WXOwq9HMle2CjzfVCuzQ/HXb02u+vqb9xVShWl7UJo3SfzB872LgI0fptzFXtvMf3+kHKCz/Tgtin9FfsT8/J3jXXub/62zteImIiIaiWof4BoJ73ta5una6mbIgn2GcIb7GqVWIL9lqCvAVQnztloBfeXBvFEN8RERERERERE2PYbsmpJQ6BMBvyxbPA/ALh83Lw3bpCg6hB8B4y5xERENHWSrlheQhxlWjOo+drVHYDgAee11w7mEj94R7VK0x+/JS8QcXz64KH/hbss6tTTGLTZGLIV/ZzvDhctyhylx5pbci22tDpW1rK6X/8BaYNta8jalqZ9JwfQFgTBLYqflLXyng31a/07hdqrXxoWUiIqKhwBvim6g9M1Z5iC+bMwX4+tvpGgJ+XZZxhvgaJ91b+Kl1iK8jAYxKlrbT1Y+rsnUHxzvagLjDl1yIiIiIiIiIyIxhuyajlNoTwN9QGnBbBeDjIhX1QqzXNkRETeumMR/FIx0nog8tuHHcBcb1Zk2sfl9vbhVs7ap+HpNMEwdo6qE7orBdNmcO7dTqGHTVuMqJVBcEpJFhKIftnlgu2GX4KohL+M1Ulc3aRrbOYbuwxwEUKxH62arQHbw78Njr/uUiwI6+pH+gXzvDdkRERA2llEJbK9BWwxCfPqwn2oBe18CPf7wrC+xKM8TXKLUM8RXDeB2J/mp6xcvJ/na62nFVtu7gOEN8RERERERENJIwbNdElFJTAMwHMMOzeD2Ad4rIJsdpyk+/pCo4lPJtDPU5Qvk5gD+H3GYOgNsj2DcRjWQieKz9ePx63KcCV622/esr6wQHfKu2n0K8sXlkhySiChBVE7Z7/PXK7oMHXnHbLt1b+KCCyMTl6xdXzxNcelrtjyWMXz+Wxz/+znzw8VjwHKbn7WsbzNvUO2x3xgHAvCX+5U+/Yb7uphCvLWz3X+fEcPJV4f/PScVH9v8jREREw1WtQ3xdWaAzPRjC60wX/5WSZd7L3QHjporHVFvFEN8W7RcFKw/xtcXLgnve1rhJhfbyYJ+hnS5DfERERERERNTsGLZrEkqpCQD+DmAfz+LNAE4XkWUhpmrKsJ2IbASwMcw2ir30iCgKImiBW4qu2vavX7ut9p8U3PNyzXfR1CIL21VxX7/wZmXb/fwht4BLT5ZhO7JzqWz35rbaH0cYuT7Bl/4i1qCgUxtZQ/jsmgcFP/uofqy3T7/TWoXtJo9W0H0QqatCV2R6bbOFgidpP0QPlnd5ABERERH184b4JnRo16h47myuv5peMbiXKQ3x+ZZlSkN8pnGG+Bojkyv81CrENxDG87bG1bXTHVhPGbYp/MsQHxEREREREVWKYbsmoJQaC2AegIM8i7ehUNFuccjpdpT9PjnksYyCP2y3PeQxEBE1EUGLOIbtctXt6a8vVLe9i5kRtLodyqJsI9usorqONHy5VLYDgOUbBXOmNMcHSC+uAbZ329dxCb+ZqtTZ2oDXu7JdJVVS06awnaWy3dhKvlID4KUNlkmJiIiI6igRV5gQr12IL6p2ugzxNVYtQ3zmMF5/O13LuC4A2JEAWuPN8R6MiIiIiIiIaodhuwZTSo0GcC+AIzyLdwI4U0QqiW2UV8GbGXL78vW3ikiT1UYhIgqhjpXt6iGqcIiI4NX1wEtrgaP3AvacqCAiWPwW8Mp64Lg5wPRx9hPExfWfWSmYOkbhxLnA6GT0J5XzecFLa4HnVglWbYlmzkyFYbucoUJWlKKq3jecpXsFNy4QPP46cNkZCofuMbI+zHAtTLZxFzBnSm2PxdWOnuB1XNrIbjbUW7a9NprCby6V9CoxKmnYn+X6mQLACcu7tenj3I+JiIiIaCSpZYhPF+Dzhvj0AT/z+C6G+BqmGOLbGjrEZx9PxP0BPW9Ir10T4CsJ+SUK7ylKAn4M8RERERERETUVhu0aSCnVAeBuAMd4FncCOEtEnq5w2qVlv+8dcvvZZb8vqfA4iIiaRqxOle3Cmj4OeCtk7dCeCKqe9eUFn71J8OvHBk8Of+u9CovXCv7y/OB615yv8LmT9emQbE7w8V/mPesLxrUD914aw1F7RXcCON0rOO/aPO58MbIpAVR+X3dmoj0OHYbt7F7fKNjnG4OfRt30lODY2cBjX4mNmBb0rpXtmqlZ6HWPBB+NS5j4n09RuOwW/1zLNpq3MX14WavKdh8+QpW8vnqPI9cn2nZVlVTfU0rhohP0+yIiIiKi6CXiCok4ML6GIT5/WE98wb3ieHf/uCkAWEnFZapeNgdsrWGIrySM13+5I6HQkbSPj2orXi4dZ4iPiIiIiIgoPIbtGkQplQJwF4ATPIu7AbxHRBZUMfXLZb8frJRqF5GAxl0Djg+Yj4hoaAlR2a63r1CtrZLATp9DqakrzlZYvRWY2AGceaDC9h7gA78I9xX2KFqM3vy0+MIZV97pP/5//oPg9P0Fc6f6b4//fbg0mAcUWkR++No83vjv6EJPP71fIg/aAZVXMbzmwdqHWlZvAQ7do+a7GbK8QbuiJ1YA85cAZxzYgANqANfKdvkmqZDx1nbBn54NPmiXSnMzximYPoDasLNQZbNcvdvI6j98LXh0GXDKfv7llR7jhwzBPiIiIiIaOmod4uvKFtrglobxPAE/73gW6Erbx+v9RUUqqGWIryOB0jBeW2mIzzZeUqHPM84QHxERERERDWcM2zWAUioJ4A4AJ3sWpwGcLSKPVDO3iKxTSr0I4OD+RXEUAn3zHKc4uez3e6o5HiKihhNBi2NlO6AQeLC17TNxqTh32ekKozxtVu9bHD4gEUXVs1+FCGbc9JTgyrP9J0jveVk/x+qtwNJ1wAHTKz68Ene/VJsQSaUfDvz77bUPtSxeJzj7UJ6U1tnZY779L7oxjzXfr1F6qsm4hu2apTW262udSxvZ9oR5bN5iwQXHNj5sZzvGexcLTtnP/RgTAceYag1xYP1aY3kAI+O5QkRERDSS1SvEVxrGk5Jg3sB4phDis40zxNcY2VzhZ5v2q/rRhPi07XKTAeOGdrsM8RERERERUTNg2K7OlFIJALcCON2zOAPgHBG5P6Ld3IbBsB0AXAiHsJ1Saj8AR3sWdblsR0TU3AQtcC/vlM1VGLZzCMF5g3YAcPiegFLuLSEBIN1befW9oodfc1/3P+8SXPFewdrtwPSxQCymsGGn4L7F5m027gIOqPjoSi1dH9FEZTJNfBK/kvDMSLGjxzwWtiVzJUQEq7YUnoeNtKnTbb0o2k5HYeMut/WSDo/9w/cMv596h+3mTjGPmaqTVnqMlfx/9ZOTVwOYE35DIiIiIiLULsTXm5OB4J03xFdYJqXBPU07XdM4Q3yNUasQX2uLKaBXCOm1awJ63vEOw3iCIT4iIiIiIgqBYbs6UkrFAdwC4CzP4l4AHxSR+yLc1e8BfAODJSver5SaKyLLArb7Stnvt4hIOsLjIiKqOxFBLEzYrsJKUJWEWiaPVvjksQo3LAhXLS3dC6QslZOi1vLZcL0oowj4bNwpOO+6PDY5hnTCquRke961nFiVoqheOFzV6S7Q+utCwSU35+sS6otKszyWXG8zl6DptHHmD0BM17feYTvbhzSvrdc/iE3/9wQdYyXX4QOzNoFhOyIiIiJqNq1xhXFxYFy7bjSaEN9Aa1xNO93y8a6A8Wb+Et9w1ttXCPDVOsRXGsbzh/TKx8uDfcV/GeIjIiIiIhqeGLarE6VUCwohuPd5FucAnCcid0W5LxFZppS6EcBF/YsSAG5QSp1mCs8ppd4H4FOeRVkAV0Z5XEREjRKmjWyl33gOCrXEDOfWrv+Ewr67AX97UfDY62776s5WHraTMGX0KvTqBsFZB1V3MvGcn+fx5IqIDkijklDlD+bVKWzXJNXImlEdHr5ai94UfOjaPPrC5U4bricrqOZDqaj87AG3O86lsh0AnLSPvkLnnYsE33iPf3m9w3YAcOHxCr953H+95y/VVyc1H6P9/nNpves1O7sCk3Kbwm1ERERERDSE1TrEZwrjdWbEV2Wva+BHDNswxNcotQzxDQTwEsCopPdyIcRnGx9lGGeIj4iIiIiosRi2q59fA/hw2bKvAViolJoVcq71DhXnvgXgXADj+38/DsDflVIXi8grxZWUUm0APgPgh2Xb/1BEVoU8LiKi5iOCFrgnqyo9qRkUtpugba8CtMQUvnKmwlfOLPye/8HngTt+hdcSe+OAOS9WtC+bF96sfFtX1YbkVm2RmgbtACBTwW14yzOsbNdojapsd+tCGXJBO8DcsrSeNu1yv9NcWyiPatMvX27IkDUibNduCUS/8CZwWFk7XNMxBrWJDXsd5mSXQ15+EuqE94bbkIiIiIiISthDfEClQb5cn7manq0aX3cW6EzrA34M8TVObx+wvbvw41d5iC8eKw/m9f/bVgjptfuCe6Xj/mBf4d9EHL4vhxERERERkR/DdvXzCc2y7/f/hHUKgIdsK4jIGqXU+wHch0JlOwA4HsASpdRzAFYAGAvgcACTyza/C8C/V3BcRETNRyRUZbt0hUGnoPDW+w93PFF1x68AAKl8j3GVaiqfrahDQaPp46rbvh7HmM6Fr/i1YnNtjqUcK9uZNSpst7JO933UmiG4uXKL+7quFTsXGkLDh+yuX24KsoWtChfGPlPNYys2uYftgsJ08ZBhuy9v+SHU2LPCbURERERERHUTb1EY2w6MrWGIrysLdKbLwnxZGVzmGS+G+Eq28VxmiK8xcvnahvgGg3mDlwfa6ZYs07TT1YwzxEdEREREww3DdsOYiDyklDoXwA0YDNQpAEf2/+jcDOAfRUIkU4iImlq4ynaVhlNyAVWvPvr2cCeU2sUStqsiQNPTW/u0UrUBn3oEhCoJtNmOa9IoYHNn6bKT9wEWrwM27YpuPyOdLWxnqnZWjb684D/vEvzuyQal/KrUDI+lMM811xPvR84E7tjuX761y7+sNyf4wX36+6+Wle3ed4jCpX/U77fwOuzaRta+n7DX4fjuJ4DMKeE2IiIiIiKiIa/WIb6ubH81vfRgGK+wTDyXB5eXtNPVjFf6ZViqTi1DfKXBPO+/pe10deP+YB9DfERERETUWAzbDXMicrdS6m0ArgRwHgbbypZ7EsBVIvJ/dTs4IqJ6CFnZbldQk24DU1ACAP5wscJJ+4Y78WOrbFdNa0hTm8UopauszLZ2e7hg07SxwIadwFF7ubewDRtC6ssLsoZvax+9F/Dol2P44p8ENz8tyOSA9xyk8MtPKqzfAbzjB3ls2Om+L55QNhPLQyNshS8X/3ST4FePDc2gHQDctUhweYOLmJWHUE3OPNB9znfso3DHIv/9smiNf91P3WC+/2oZtttzovk1v7xKZl9ejI/twMp2IarzXbblR0igF/LyExV+jEZERERERFSqliG+7qy/Ha43xGdqt1sM8enGec6lMXJ5YEdP4cev8hBfS8wfwDOF+Ezjuu0Z4iMiIiKiIAzb1YmINOwvcxHZCOBzSqlLUWglOxPAbgC6AKwFsFBE3mjU8RER1VqYynYPvCI4cW74l+ycYRcxBXzkKLc0hKx5feByUsypv2rajN6pCahErZowIADc/aL7Mf7tCzGc+bbCydJUQiH2Gbf7OuxtaDsZ+5OPxBBvUfif8xV+8hFBXx5IxAuPodFJYN1VLehMF070JlsLp5njLcBXbxVc86D/uvZkh264q9Zsle2CWjmHtbNH8Nsn7PfFhccrfPucxp98/cSv8/j7Uv/yJxzDp7V072K3x3NHiMqEqVbz2OsbBXtPKdwnm3YJ/viMLWxX2/vuwOnA4rf8y//2ouCb/zD4uynIC0Rb2e6AzCuFC0/Nc9+IiIiIiIioAeItCmNSwJiUaY3K3s/15aUkmOcL82X0490Zc8CPIb7G6atxiE9bbS8BjEpaqvElFEYl9du3McRHRERENGwwbDeCiEgWwIONPg4ioroSwdTcRufVwwQ+vCptAVhi2aKBizEI2vJpZGJJ32rVtIY8aIbC86trG+aqtlXtrEkKwSfECqaNK5ykSiUKv196msJP7g/eNuxtaDtpmvQEf1piCi2abOWoZOFEm1eq1dRiMtyxjSTWsJ0lsFSJJevsFSuBwjeddxvb+JOkWwzV42ZPqu9x6Ewd47beOYe5347TxppfI55fPRi2e3GNvRpiLSvbAeZKogdOd2shCxQeYzZjjR88+U3NbShcOPh4942IiIiIiIiGkZZYbUN8pjCeqdpelyXg15XhOaJGsYf4APt5S3uIrxDW8wb3SkN87cbxwrlF3fYM8RERERHVH8N2REQ0vIng1K6HEJde5JSlHFK/Sr+JGknYbmNpD8SU9CADf9iuO50DEHxddHb01L5qWjWV9zK9gp8+4HaMe4wHDtm9dNlFx9cmbGerPNVW4V9TxYBguWpuv+HOFpzKC/Dde/JYthE4YibwiWMURiUrP9H45Irgx9EB0yqePlJ7TQIWvulfHlRlcuNOwW+fFPz33YJt3cC5hwHnHqZw/lEKsVg0J2ldH89nHui+v9P2d9tf0PWvddjO9P/J5s7Sx5YtbBd0jKmE++12UvejhQvZCvulExERERERkVa9Qnxd2UIr3U5PUK9TM+5tp6sbZ4ivMfrywM504Uev+hBfR6K/ml7J5cEQn3/c0063bJwhPiIiIiIzhu2IiGh4E8HUvo24Zc3H8NEZv9VWivN6Y3Nlu8nl9cvjjmEO2b4Z8j9fLlnWnu/B9pbxvnW7u3pRSdgumxP89YXQm4VWaRvZbE5wzs/z1kBV0eTRwO2XxHwnfA7aXeG6CxQ+9/tCO1eTsIG2bBWVp0xMrTB5wtPMVtkOAL52W2GF3zwO/PFpwbx/jSHZGv6k4EOvCi67JfiBeNCM5jjh+JGjYrh1of8Bv34nICLaE6PrtgtOvqoQTiy6bSFw20LBA68Av/pkNCdUXR7PN31aYeIo932NtoQor54v+ORxhcvbu+33oevrc6U+d7LCLx7yH8NdLwK70jJwPaoJ2wHA+Ucp/OFp+3X9r43fRLv0fyX/leeCJyUiIiIiIqKGq2WIr9sb3CuG9AaWSemyTOFyYRvxb5NhiK+RahXiiylzO93CZXM7XW+Ir3w82coQHxEREQ19DNsREdEwVzhhcHbnXdj02gwsSB2DpKTx7UlfxfxR7/St/ZvHBb/6ZPi99PbpT0y4Vk6SX13pW5YSfa+Cnp4sgHbXQxvw4KuhN6lIpSfWHngFuG+x27pvfi+GRFx/UubiE2P48JGCZ1YCV9yRx+PLqz9GW2W7RIWBHVa2Cy8obOf12OvArc8Lzj86/Mm7K++0JDU9TIHJerMdx4trgEP28C+//jEpCdp53bBA8KUzFA6YXv2x2R7P/3O+wiePVehoC38fHbx74bqVe2kt0JsTtMYV7lhkf8DUurLdKEtb8tsWCj5xbDRhu1kO7YLP7JxX8rvkclBxvhUkIiIiIiIaiVpiCqOTwGjjd5KrD/EVQ3gDrXHTQFdWPJfL2ummpSS45x2v9Iu9VJ281CfE5w/rlYb4ygN+5cG+4r8M8REREVE98RMWIiIa3jxl0tqlB6d3PwgA6DW0lD16r8p2Y6ps5xzm+Ot1vkWpvD5sl+6xJL8sbnk22hayx8wGnlzhX15pWGz+UrfjO+ttMAbtisakFE7bH7hxgcLjy/3zNnNlu3Rld++IkHfLwA14dhVw/tFh9yF4+DW3dU2ByXobZ8nePrJMcMge/ufLn56xP98eWSY4YHr1JyhNrVQvPlHh8yfHKp7XFmR7aS1w+ExgQoeC7eRurSvb2e8X4BPHFi5XG+a17adobH5H6YI3FgNzDwnekIiIiIiIiMhRrUN8A8E9b2tcTTtdb4hP2063/1+G+BqjliE+c4CvEOJrtwT8TAFAhviIiIhIh2E7IiIakVa37qldHqvwfbOpMlG88iwJkqI/49BTYRrrnpeiDdu95yCFJ1f456z0RNX2brf13nuI+53UavhLx1ZJSqcmle1MbWR5os8o7CPYdr+ZhHlsNEtluyNnmsfe3KpfvnSdfc7OTOXH49Wd1d9r1d52p+6nsEATpAUGjz3oPGitK9uduq857NfleXmvtrLdafvZQ4UzetdiVu+q0oXdu4InJiIiIiIiImoCtQrx5YuV+AxhvM6MaAN+3ZaAH0N8jZMXYFe68KMXXYivIwGMSpa209WPq7J1B8dTCYb4iIiIhjKG7YiIaHgT/RvlT27/Hb415Vu+5ZW2QDWFJaoJc7Tn9emz7p6QSbEauPJshb2n6McqvQ0Nd1WJU/cDLjjG/SSEqepc2BCWNWxXaWW7hD4gU+ntNxKEaSMLhA/nAfYqhuXam6SyXVur+Tlx1TzBBccIDto93Mm7dTuC13FhCo9WWxXw0tMU/utv+nt4xWbBO/ZRxqp6RbUO2719lnnspbWDx15t2O7QPYAvnKrwswf0t8e16z7v/9gho6+cSkRERERERDRSxGKqEIKqYYhPX43PX23PG+LTbcMQX+PUKsSnlCa413+58G9/O13vsrbiZeW5XDrOEB8REVF9MGxHRETDmyHBNSG/Tbu80qpiuRqE7VKmynbbdwCYUfnEAa67QGHlFuCt7cCYFLClE9jZI9hzosLEDuD0/RVOmKtw5yJBlGGxTEAA7oS9gTsvifWH1Ny0GcN24WJYtWgjm2Rlu9DCtpGtRJggZrO0kQUK7ZXveVk/dvFv83jqa+FejH40X/DDD1V/XKbXg2or200cpaCU/iX+0j8KPnVc8HOp1mG7WEzhS2coXDXPf5BLPJUFqw3bKaXw4/OAsw9RuOdlwZ/uXoO1rTPwye2/w1e2/AD7ZF/3b8SwHREREREREVFN1DrE15UFOtP9Ybz+y4V/pWRZ8XJXGujKim+bgfGIuhtQOOIN8e3UrmHb2jiiVHkwr6w1blKh3TiuytZliI+IiMiEYTsiIhrmDC0M8/qgQdSV7VzayIohEGg8xu2drodVIuZwLBM7gItPdOt9awrLdGcL1ynsm+8eQ7vJovOPVqGCdoC5xWuY6mWAOYAVU4VWFpUwtpHtrez2GwmibYSsF6aNbLNUtgMKJ75MnlkJbO0STOgoPKZcwqbVtMD2qlXYDgDGtwNbu/zLi9807um1X8+orqONLYyb7hUkW5X1Meca5lVK4bT9gVNnZ/D9n84N3oBhOyIiIiIiIqIhxRvimzpGt0blIb6e3v4KesXgXqY0xOdblikN8WnHGeJrCJHBaoi1CvENhPG8rXE17XS9IT7dNgzxERHRUMawHRERDW+mIJtEG7bLGSpuOVVO6tWXXzIeo2pzPKpSc6cUqtXZhAkzmap6iRTCaW0hwzRBFcUqCefUuo1spVXtJJ9Hcu0rAPbVjmdy5sp3I1noNrIVpPNcHxuzJgJJS/vWejt6tsJfnjdf4a1dwISOwuXFbwXPN3l0NMdlqi4XRVDRFoIVkcDKdsfNqf39N77dPLYrXXie28K/oavvde9yWk2WPgvMPQSItQAt8f6f/sveZQOXW3jik4iIiIiIiGgYisX625W21S7EF2U7XYb4GqMkxKdfw7a1caQY4tMH+AaDeqaAny7A19FWOPfIc1lERFRLDNsREdGIlMobWrRW0MIznxd86c/6N4xOQQlDhaF2Q2W7LZnKUlhRv7VMPXs3gDO1Yz294cN2QRXF2kNWtQMsYbuwle0M65sq59nIgrshXzkXybZDgNlPaNfpyTJsV5TpFby0FnhulWD+ktrWttvRLTjlh269ar9zbnOdrDn/KIUr7xTjCa/uLLBsg+Ccn+exdJ1+nfL1o2CaJ4oWvJe/W+Hrt/kfE3kpvJ7YwtPHzwHe4VAArlrvPkjh//1F/7jd0VMINdpe+1rCVt/LOlasu+WnkFt+GmpqicXMYbx48XJZYC/WUhgrC+65hfxajOPKO1eL5nh8x1W+X12gsGxd3XFptlMuZWOJiIiIiIiIRhhviE+vuhCfOYwn2oBeV1mIT7c91Z83xLdBv4Zta+OIUhhsl2uottduqLbXUd5O13OZIT4iIipi2I6IiIY3Q2mrZISV7X58v/lNXdwljLXhTe1iU2W7O7bpq6EFqbRqn44seQbJX14OzNaH7bqzwDhLRSedoLBdJeEcYxvZkJXtMoa2m2Er28n6VZCvnAvAfP8ChftqfLiph4V0r+DFNcDzqwXPrQKeXyV4+a1wrV29wkbzLv5tHm9sDl7vb1+I4ayDmuukyrRxCs98PYb9v6kPC27YCXz2d3ms3OI2X1Rhu1q2kT3jAH3YDgBufd5c2a6jDbj70hja6lCZcGzKPPalP+fx139uMT6+W1sqOHn3zP3h1g8jnwfyET0wqlSPltKuBLCG8QqXYw4hP0Nw0Bf4M4Qe43GoksBhzOG4HPZrDCwa5mU1RCIiIiIiIqohb4hvinaNaEJ8/jCelFXm8wb5/FX6Bv7NVtZ9g6ojMhiyrFWIryNRaOtcenkwxOcfV4ZtCudKYzGeRyEiGkoYtiMiouHN1EbWUDWuLw/05gStcfc3Nv/3nPnNl1Nlu6fnaRdvbplo3KQvL2gJ+eYr0rDdI7cj1ddt3lcFeYzAsF2EbWQzjWoju+DugYumxyBQ2e031PRkC8G65zzBusVvmVsy11q6V/C3l4LX++hRqumCdkVz9WcYAQC/eMg9aAcUno9hXwt1TI/lVAWVKn1zWF4T/vycGF/zvvcBhdHJ+tyHtmO888XCv7awXVjieY2hOurLFX4arNnO3Ys38GcM8VkqCIYO+ZkrFwZWQwwTLgyqhuhbzmqIREREREREza5WIT6RwhdCTWG8kmp7WaAz3d8jHaF4AAAgAElEQVRONwt0psUX3CuOM8TXGN4Qn2EN29bWuTuKAby2Qgiv9LJCh29Z8fJgiK98vD3BEB8RUa0wbEdERMOcIWwn+jayAJDOAa0h/od8YoV5bIlDu0bk9ImQv3ecatxka1eh/WAYLgEu57ddzz+IpJhr64dt0woEh+322y38nFFVtksbQjttYSvbPXHvwGXbYzDKYGQz6MkKFq0ptIJ9blWhct3itwrh1mbx6nrz/exVSevgerGdOHl+dfj5urPA2CrfLdSyst0scx4Zu9KWFrZ1bNFsq2zX0n93mV77Qod5gUI1M6JmUayG2Nv4BHkzff4gSjm0NNZUJgzRallbDVHT4lmVBwOdWi0H7DeuWddxXlZDJCIiIiKi4UapQqWz9hqG+IohvNIwnpQE84rjXZlCiK88uDewfYYhvkYphvg27tKNRhPi07XT9Yb4dO10R2nGGeIjImLYjoiIhruQle2AQihtdDKa3b/7bcFvOCSjPxZbmK2StprLNgavY33Lls1AfnE58PhdwLpVSMTGGdcNG2YD7NfpnfsDM8a7vXkTEchX3w8suBuJcRcC067xH1/I288Uwgod2ukdvE+D2sgOVd2ZwWDd86sL/y5Z15hgXZgTQ04tn1FhAKoJrN4afpvuLDA2ZDtor1yfGJ/X7RW0hfbN0WZ+TXjgFSBpeH7WM2wXiykcNwdYsNw/lssXbyP9A7WSynbo6apgIyKqKxFWQzQIrIboDQRaqx06VEMMCBeqksBgQDXEMPt1qbJYFlJkNUQiIiIiIirnDfEZ1qho3mKIrxi884b4CsukJJinbaerGWeIr3FqFeJrNwb4ytrpagJ+3uXecYb4iGgoGaIfFxIREVUnGVFVMQl4h/jOAxwmef5h7eIo24yu3Vb9O1n5z08BD9068HurmG+oqCvb/eVz7h8yyhUfH2jXmhD9DRU2DPjiWv1yU5jH6LkHBy4Ohzay3RnBC8Vg3arCv0vX1y9YN74duORUhVfWFdqGViPu+BBr9rDdyfsAD70WzVymynCubK+lqQjCdgDw7XMVvn6b/77Pi6WyXQQtbMP44YdiOPa7+ifFMyvNVQcrCts9Pb+CjYiImgSrIWqVVkM0VRXUVEMM0Wo5sBpi/3bmaoghqjBqqiyaqyHa52U1RCIiIiKiaHlDfPrOOpWH+NK9bu10vcu7+8fKg3ve7fPN9AZuBOnO9p9/rXGIr7zaXvlyb8BPF/wrVvZjiI+IotbkHxcSERFVyVTZzhK2e+FNYKalPaHX4rfs406hjpef0G8bYeWz2xZW945Ttm0CHr6tZJkpyAZUVnnPtM015yuMTjpWtcvngQf+MvB7VGG7+UsMj6MqKmTF0Ye49CKn/JM0Y2W7rozghTdLK9YtXVe/kxmpVuDQPYDDZyocMRM4Yk+F/acB8RaFj16nDzKF+bak6/VYv6O5z95EFWIDIgjbWbaPqrrcmAqqkNazsh1QOKFj8qvHBQ+9Ek1lO8mZX9jUZ/4T+PC/AH29hWpauRyQ7ytcLv7blyskZYuXvcsHLnuXedbt08xVsk3hsvSZ9tvnn8M3rtlvvq/0ugxs1xd8XPkm6mNNRGTDaohGYqp2qKuGaG1p7NLy2B4uVKZwYYStlgOrIfYvZzVEIiIiImo2SimkEoVzl7UK8enDeOJb5g3xmQJ8nQzxNUwtQ3wDAbxEoT3u4OVCUE8/rgYvl40zxEc0sjFsR0REw5shbTOhz9xTsTsrcH1z9/Ja+x/wTqGOtx0DvPykb/GXt/wQH59xo3YTU1tTk5cDQoFF3/wHw/VeucR3W7bCUtkuwjayoQIna0t7NbYZwnbpkMf39pnAqi3+5a9uCDcPdp8DrBk8xlS+B7ta/A+S7p4+NPLPtM50f7Bu9WDFulfW1+8EQ3vCE6zbEzhipsJ+uxWCdTpRFDVxDYi+ur76fdVSRdXQDGpa2S6iwNvu4xXCfvQ/Y3w0+3Y1bax5bN12wb67ASs2+8d0rzlWW9aZx1paoNqSACLqkV6hZjr1JCJlIT7HkF8x4OcQLtSPe0OA+dIQonHePv2xVrTfvuDjIiIaKoqva6yGWMJYDbGkqmBANcSSdWwhQIdqiKFaPDvstySk6NJamtUQiYiIiIarWof4zGE8fbW9LkvAjyG+xiqG+DZFHOJLtZYH9/r/bSuE+Np9wb7iuBq8XDbengBaGOIjanoM2xER0TCn/0M4KRnjFmGCbEGhLVugRDJpyC+/pQ3aAcCZnfOM24atHOeyfiIOfPAIwx/wGX+VPQUYK7M1LGxX9kFb0tCqNWyb1kdf1y9vCVs0oq/0SqakB7swxrdaT08W9fozTUTw+6cE37m7EKgDCuG1MFXhqtGeAA7zVqzrD9bV+81kzvE51dfkJ0P23U0Bi6I5yJpWtouoAt9p+4Xf5oBp0ezb1cRR5sfy6xuB3Q3hv9CvL5rX6QFHnhZysuFPKVWoLhRv/FviZjp1JiL9rTzLgnvaCoIu1RD94UJ/kLE8JGiohhgqXBhQDdG3X9125dUWWQ2RiIYIVkM0ElO1w8BqiCFCfkHVEIsVCOvQahnx8sAhqyESERERufCG+CZFHOLL5IDOdH8AL+u5XKy2l/WPe0N8unGG+Bqnp7fwU6sQ32Bwb/DyQDtd7binnW7ZOEN8RNFq/CcLREREtWRJDE3JbcDG+FTf8jABk6DQlilQIrleyKePBla9Ytx29NEnAtv1Y2HDdkFBotFJ4OZ/jGH6OFPYTt92t9UQtouyjWyosF3ZB+GmVryZHJDPi1OJ7wdeEWzYqR+76PiQb0zKbsdUXn+79tSxj+z/+4vg6vmlz5NaBe062jzBuv6KdfvWMFgX5mq4PmZdQ3mN8i+nKvzgvuYI2+mqtRW1RxS2G+XYYtqrERVNPneywi8e8t8vyzYWfnT+3VRp1OStFeax3fYMNxeNWEqpwVaFrRH2pa70eBp9AB7GaohhWi0HhAuDqywWKhNKYAtnh1bKzvt1aPFMRDRUsBqilijl0NK4JWDcUDFRF16MG1pA66ohOrVa7t+vU7gw5lYNsX9dVkMkIiKiKCmlkGwFkq21C/F1Zfur6aW9YbzBEJ93vDtb6HLj2ybDEF+jDYT4tKPVhfgGwnje1rhtg0E9/bjyLSte7mhjiI9GJobtiIhoxJqRW6cN24XJOQWta6xst+gxa9AOAFo6OhDb1oe88qfNoqps98HDgS+fGcMhuwOtccsfw4aKSQnJogftvuXZSMN2If5IX/Fyya+mMBsAbOsGJo4KnvLrt5kr2YQODGVLb0dTGDAdts9thbZ0Cn7899q8Wx7VBhy2J3D4noMV6/aZWps3XVF8/pFzLFjU7CcXbC1Lw6o2bHfdI+YbNao2smEdOL0x+917cvhtRreFW19uv9482JYKfwBEVILVEPV81RC9FQSrbbVc0vbYFnR0qYboqcSoG/ceb1A1xJJ1LMfFaohENFSIALleAPX70pfxUBp9AGWM1RAHQnoO1RCdQ34O1RBr3Gq5JLBoCTqyGiIREVFzKQnx6deoaN5iiE/XDrcQzDO30/WG+HTb9/Etc0MUQ3ybO3WjlYf4kq3+gJ43xNeuCfB5Q3ymACBDfNTMGn+WmIiIqJYsJbpS+W7t8jABk6CWs+M7DAMvPh48uVJolV5kNGG7sG1ac4bel5PHKBw5y+GPVUvYTqe3TxD2DVwkle06S0sBjssbSgMCWLIOOHFu8JRPvWEeM96/JpnysJ2psl19wna/e1IiCY+NTpa1gt2zEKxzqRxYS2Eq9Lk+p857e3O/uYvyNu/Khn8el2xv7taNRIPeheywdFqtpQlhXytQKPgRSrf2DElBIhn+AIiIHLAaopkMhBAdw4VB1RA14cLgKouGaoiVtFJ23q9Di2cioqGC1RC1/NUQQ7RSDqqG6AsBllVDLJtDhW7xbKiGaAwXxgLGWQ2RiIiGL2+IT1+4IJoQnz+MVxri6yoP8mVEHwBkiK9h0r2Fn1qF+EzV9josAb+ORKF9rm6cIT6KAsN2REQ0vFnDdvrURVBrWC9bhbn9dgN2H6//g012mUNgRWrOQWhd1YsM/CGJbMgwW9VBtow+mNgq+g/LwoYBgdq0kd0nu8y4aiaCL+2/c3/3+0A0J+iTpsdguj69SpeuC7/N6CRw+J6lrWDnTql/sE5WLgWefQCycyuw/GwAb6tqPteKlhceN3LehFVb2c4W5IzyA4j3HQLcvsht3TXbItttKKftrxD247FjZ4e8jSz/3/EDHyKi+lOxWOED+niDyrl6j6XRB+BhrYYYUatlf5DR3GpZrPPmzfvNlR1j4H41YUpWQySioYrVEI2kPNynq4ZoHQ8T8rO3WvZVQ4y01XJ/ANIYWCwNOrIaIhERedUyxJfNmavpeUN62mp8hnGG+BqnliG+kjBeSTCvv51uovB52LGzFU7dD2hrbaazK9QMGLYjIqJhzvwHVbuhhWeYNrK2sN21F+hPJEm6G/jzz4InnzzDWDkum80DcD9RZTrOuOsUnTu1i43H16CwnWxaW/K77U9fl06t+YCyb3OnhvjjWlMd0NRGdtW2+pyEdKlqd8q+wGGeVrB7T26CinV3/BJy1SWD4aLps4Gx/rCdhCht5xIs+/a5CnOmjJw3VNWG7V5co1/+iWOjvQ1/c2EME77odrbj40c35v7bfbzC9HHAW8E56wGzJobcyYrF+uVnXhByIiIiotphNUQzXzXEUOHCoGqItvChNzzoUA3RtZWyUzVET6jRVv2RiGioKL72NYFmCiJaqyE6tlL2V0w0VRhscauGGCZcGFgN0Rsu1AUlzVUW+eU4IqLoKKXQ1gq01SHE15UttNItLBNfsK843mUZ35VmiK9RiiG+LV260fK/ogQnzgXu+kIMo5P8f5sGMWxHRETDWwWV7cIETEwBsQOnAyfONfzRdeev3CZvH4VW6BNhvb19CPPfeM7wB7trkE3u+o1+e9EnE20hRO38IlUfIwDgDz/0LZqQ24KtcX9qxaWCoemYKtLtDyym8vo2sr9eMhm/jHDXJvMW20+9PvP1GI6Y2VxvHmTnVsjV/+LWI3bTWgB7Os07f4l9vjMOAC4/a/h9E/s/Nl6Bb065QjtWbdhO/0YVOHj36uYtN65d4WvvVvjO3cGPid3GRrvvML7+boV//oP7xx2hXvsAYMdm7WI19+CQExEREVEjsBqinnM1xDAhv7JwobWFc1A1xJLLmmqI3uMNqoZYst+A1tKshkhEQwmrIRr5qiH6qhUGjduqIZaH/Oytlq3VEKtuteyphhhU3ZHVEImoydQ6xFcS3CuG9LJAZ1r8yzKFy90B45F+tkV4dBnw84cEXzmzmd4tU6MxbEdERCNWSvRBp56Me9U4U6jMVpFInrnfaW50jDFXjtu0EcAebvPAUtnONcwxYSqwYbVvsfH4Qobtcpb1QwVORo0DOktLRxnv597gVrxhQ4NWy1/yLWqBfgetsTyAsEmb8Eb7OxSXaG98sRG/5x/2fUtcmU6VblkP17BdUDXGt+81dN5EnbA38NjrwetdtP0GfG3L9/FI+wn4+6jTfePVhO1sVQVrURhx8mi39VINfEyPagu3vvPrc5Bc4z/MICIiIqoUqyGaWash+toxV9ZqObiVcuF3Cayy6NBK2aUKY1CLZ1ZDJKKhhtUQtZyrIbqG/FyqIRpCgNpqiGHChUHVEL3H6FBlkdUQiYYPb4hvQod2jYrnzuZkIHhXDOENtMZNS0kwzzveZRkf6SG+eYsFXzmz0UdBzYRhOyIiGt5MgY9YDO35bu1QT9q9apxr61NZ/Rrw0gLglA8Cu7YFTzz3UGCfw9AqG/T7TWecji/scRqN0peDShi+kRo2pGZbP1zYbqwmbKevYJh2yJ/YQoD7TwtxXADQ608ubW7RpzLHtfYCqH1Fi8P2VFiyznwqLdn4ohp+O7c6ryo5937GY9vt46lmvC0M3neowmOvB58iPa77CQBAh+hfC6sJ29meX+3xPOSVhcCY8VDTZ1e+E4/j5ii4nBaO8n6UTA/w6kJg8nSoabMC13c9xqLQle1MUtozNUREREQ0xLEaot5ANURTC+ZqWy1rg4zmVsvWaoi5Pn1g0Fe90aEaoktraZcK8UREzYDVEI3s1RDjQIumPXIlLY8dWi2rmrZaNlRD1AUdWQ2RyCcRV5gQr12IbyC4522Nq2mX6w3xadvpZgrtdIdCiG/TrkYfATUbhu2IiGh4M70bnnMQkjv0Iaw1W93fQptCYol44Y9V2bUN8u7dBge++9ngSVtaoD55OdA+Gq2yRr/frPuJhk27xFjlyiXMISLAM3/XjsUNbWSDqoSV+8kD5ts8VOBk/SrfIlO74B6Hm9AWAgxdLjrjr7D3qe2/w4L243zLe/rqc3KgM21/rDdlwCzrvz+Nle1CCAqINuVtYfDxYxSufUTw+kbzOgenX8Q5u+4AAGPwuJqwne35deTVZ0C2PQ4AkP2PhPreX6HGT658ZwCOcCtgGFm1Rrn9eshP/w3IFoLPcuDRUN+7DWqsuazpnCnhXjPiIV4GbJUEMWv/UPslIiIiIhrKSqohNoGmCiK6VkOsotVycCvl8mqIpqCjQytll/0GtXhmNUQiGmpYDVFroBqiteqgvX2xr9KgKTyoq4bouRxcDTFEuDCoGmJQlUVWQ6SI1TLEpw/wAZ0Zc8CvO2A8yu5Vho+UaQRj2I6IiIY3UwChrd3YXvTpNe6pmqCKcXLR0c5zAQDecyHUu86HOuwdAIAE9Km13oz7X4gX/sb8lRCnMMejdxiHomgj+9gywddviyhsp9Em+iqAdy4SXHqafVvbH+JHzQr3xkHm3+xbtntOH6bs6avPhwK3L7KPN2PATBbc7b5uiHltVQyBQin3oWLqGIWHvxTDtY8InlslOHh3hfEdwMLVwLYuwXETN+Ofrj8L4/I7AADtpkBqNWE7y7btXZ6KnUufhXz7Iqir7qx8ZwBiMYWj9wKeesO+XhRtZGXxU5CrLilduPgpyH//I9R3b7Vuu/80YOm64H3EVOE6OXvlOcsgT6gRERERERGrIZoEVkMME/ILrIYYHC4Ua5XFPv1yXTXEwCqMDq2lWQ2RiIaKYjXEHKshlnOuhhgm5BdUDdEQAlS6cGFkrZZdqiEObscQYnNJxBUScWB8DUN8/jCePuD3yjrB/KX+uRi2o3IM2xER0TBneGuTTBmrOQGFcsYdbcF/wJkCOq0tgPRmtZXWTNTl10O9+xOl8yj9Dnodv46xKy24+2XnQ9CSx+4yjrUaKtuF+bbI7Yvsbz9dw3bSuUO73FTZbuPO4DltpatDhwBXvepbZDq2PomhNydojTf2DV8UwaTIbfG3VlYRnPwNesxG1tKzTqaNU7jibP3jR+67H5IfbGfdbmgj25Wp/Ha1VbbzPe6ffQDSvQuqfXTF+wOAMcngdaIIkIopgPz0fEi6Gypp7knc4ficiod8vMkjt4fbgIiIiIiIiACwGqLNYDXESsOFQa2WLS2cc6Xraqshhm2l7GnxHFjt0BZ6bJKqYkRETlgNUUtfDTFcK+WSkF9gK2Vzi2cVusWza7gwoBqi93iHaTXESkJ8f18imL/U/+HgzjTQlxe0hPmSPA1rDNsREdHwZgrhJDswOt9p3GzTLqCjLXh6U0An3gKgc3vwBF5z3uZbZArbZR1Lxy15yz6+3Zw3HLTxTeNQIoI2sg++Ek3YDlv9ISwAeLTjRO3yuVODp7QFsMKEYUQEmDwDWFPaz7ddzF+F6ekFWmv8l9qEDmBrl3k80eCwn9aM2cAKxwRpiHfvQZXtjpzZhLdFpcreLKdq0EY2Y3kNSJZXm+zLAds2AlWG7d62u8L8pfY7/aAZEdyPix7TL+/NAju2AJawnWuANeg1VHK9hf/fiv/H/fU688rD6OQIERERERER1Q+rIeqFqoboGvJzqYZYEnTUVEPUBiEN1RB9QUeX/Tq0lmY1RCIaKlgN0Ui0LYkDqiGGCfmFaLWsrYYYWavlsuX9643NtwHQf1axKw2MM5/+pxGGYTsiIhrejGG7dpzVeS8uxdXaYVtVJq9sTj9/awuATMiawvsc5p9H6UuruVa2C/ojPebSRva5B41DUVS2ywccpHPYzvDtrBO6H8Nj7Sf4lrsEAqutbCddOyFXXwo8cQ+wa5tv3FTZDigEncakgvdRqZfXijVo9+1zm+k0pkeI51WYN6k3PWVe+4iZwKF7hJisycmyF0p+N4U+Kw3bdaYF519vfvJo209n9G29w/j40Qo/mm+/1w/everdFE4eG8gXTgd+fA/U9Nna8c+8Q+HRZcGPzNmTDPM//FfIr//TPXBKRERERERERJFiNUSzwGqIYcKFQdUQja2U+6shRtFK2aUKY3k1RF3osUmqihERORmohpgJXLXWGhFEHNM6B9j7Je3Yjh6G7WgQw3ZERDS8mcJ28VZMgLmPaI9jyMQUKmttARCmrd/7/0lbmrk1pg+sZLZscpo2ExAaDKrmJXf/1jquDc0AmLc4uj+B3cN2+it7fPcTFYftbKFBp7Dd5R8EFj5sHE8FVLarlQ07BQdfaQ5DHTUL+OqZzXSqzuPp+b5Fqsq3XDc9aUlVApj3xeFTOl12bAH++OOSZaaW2pWG7T7wizxeWmse175urHkdmH1gZTvsd9ie9vtozwmI5n5c+qx5bN1KyCWnAzct0rbFPeMABZdTBF883X+c8tyDkG9+tHCiN4xh8tglIiIiIiIioubGaoh6JdUQa9RqObjK4mC4UFsNcWDesv0Z53XZb0Br6SaoKEZEVG5s3vzZ8Y6QNVZoeGPYjoiIhjlTqEEh1Wp+y+0adLKF7eTOG9wmAaAmzdAuTxjCdr3r1znN+9Qb9lBHUAbDGrbbcx8kcvo0zhK3w3PiHrbTp+fayltW9rO1uSyyhRHjAVUB5a03rEE7AEjlzdW8XAOflbhzkf1xcfV5wyNc5hrBu2GBec0vnKowvmPo3xYDnrjHt6jdUGGxkrDd2m2C+Uvt6+jCdvLI7VDveF/4HZZ55/4w7n/6uKqnL3xDO8imtcAz9wMnneMbSjmea27XtJuVe38fPmhHREREREREREQNVVoNsa3Rh9NcQcQw1RC91QhDtFo2zttXuq4YxwOqIYbZb1A1RG9QkYgaYmx+h3GMYTvyYtiOiIiGN1NlO6WQaGuBkjxE+VNTkVS2C2OKvrdha9dWoEOz3/HTnKbVBTa83rl/wFvrRY+ax8ZMxLLOudqho2bZp/WKBRyC822Z06fnTNX3sg7vV6upbCf33hQ4f6Mq233hZnsMbY/xtdt31RJJIFsaUqy2st0Dr1h2N8z+WpY3lviWdYi+n3AlYbsFy+3jLZJDCzSBsWQ0tddtz5uN5i+kudux2W29lUu1Ybug1+SilG69lf77zskwCM4SEREREREREdHww2qIeuZqiNG1Wg6e11sN0VZlMajFsm2/QdUQy/bLaohUB22SRVs+jUws6Rtj2I68htnHh0RERGVMYbtYDKothZT0oFv502xRVLZDJsRfXUefYZ5Ht1+HqmyAPSwGAMfvPXhZFj8FuesGYPlLcKoJNmY89tr2Bp5PHeYbSjseHwCkA27ratvIGsN2VbaRjZ0xFvli1bxYDNj38MLlyTOgTnwf0Lk9cP6UoaIYUF1lu7XbBD+5X/D0G4J9dlO4+ASFo/YaPF0QVNVvjwnNdGqhjKGaYq24ViJrdrJyKeS2a4Fbf+Ebi7KNbF/e/tphej5i1zbIb78HWfgQoBTUEacCH/oCVCLct31P21/hsdf1x3DM7Age146v65Lp0Z6gi8UU4jEgF1CgTlt5tXuX076JiIiIiIiIiIho6GI1RLPSaohBrZb7HEKAusqFAdUQ+9c1VkP0hgdDtHgOrHaY01VJZDXEWhib34GNmrDdti5Bcz0jqJEYtiMiouFNTIkGBbQl0Z7vRndMF7Zz+4PJGrZbu8LpENWX/gdq3CTtWGLaDGCbZr/r1zrNHRToSMQL11EWPgz50tm+imFWYybi1K6H8H9j3u8benGN+zRBwcZq28hWE7az3X6t4jnwfB5Y+mzh8tJnIY/cHjw5gFb0IiZ9yCv/ldwZ4q7w2rBTcNIP8ljRX4DrkWWC3z8puPeLMZw4N/gx/efPBvTHbSDp6wvVRrO6encF2gpjQ4y8sRTyhdOAHVu046bQZyVhu9YWBdstbwzbPfAXyAN/GfhVnrkfeOER4Pu3h2pp/J6DFK68U7//Dx1Zv7Cdbb1rL1D49I32R2f5405EgNWvue3bh2/+iYiIiIiIiIiIaOhjNUQ9ESkN7kUR8itrtRw8r6Eaoq/Koq0aYoj9BlVDLP5UYGzfTmyMT/Ut37m9G8CoKu8tGi4YtiMiouHN0kYWiRRSok80uYZMjGG7MHklQ1U7AGht0U+UVW5vJIIq2xXJH38cLmgHAKPHISVbjcM9WUEqEfx2I6iCW7zqsJ0+zRdU3Q0IqGyna4UZkkKhlWyX8v9xPm+J4N0HhX+7dvPTMhC0K+rpBX7y9zxOnBt8Y86ZEnqX9WOoalfNm9qebEDoqfHv2asmd1xvDNoBQLvoK9ulewuV6lqCej17BOXijGE7nSfvA15bOFg1skqRnPzIOL5OWl5PJ3bYA4mA5nG3ytLrOAjbyBIRERERERERERENW0opIB5HIf7DaohexmqI2lbLfcC2Dfje17+OXhXH2L4dGJvfibH5HRjbtxMTZt0F4JBGXyVqEgzbERHR8GYM2wHo3IZUSl99yLWFpzFs1xPcQrRwHAoYPd44nDCEATMtKafpbZXZLjnV8+fu4qed5isxaizG9b1hHF60BjhmdvA0tsp27Qm4V7XK6SdqK7Z6LZN1CCLmTPevZCN7s9AV038LZrS/QrWTm5/WP+ZvXei2/UR/ocfm0Ruu1JpI8L306gb7+KTh8CWlxU9Zh9sD2hmPCvFYzAW0kW0LE7YDgJefDBW227Yof1sAACAASURBVHOCeeyA6eF2reVc2c4StnN4TPme/5W8RhMRERERERERERERjWBhqyHKnvvg7J73aAt8qM2rwLAdFTVvnzAiIqIo2CrbQRkr2wW1Ni0yhu369AEvnwOPgeoYYxxOjdKH6tJoK5SFDmCrzPae1ucKbTkBIN0VOFc5tc+hOLn7YeN4l+NNYLut3/02/zLZuRVy3x+Qv+6bkEduhxRDLTVoI2u8fw3V8kLb/0jjkCnoF+SZlcHr2IJ8e0xopu8clTGE7VQVDWMzAXfl6fs38e3hqsf+/DZVtgPCt5INetyGqmwHAOluyKsLITf9AHLb/0LWr7KuPmWMwtF7+ZcfMA3Ye0pztJE9albw5geWBwMreI0ewMp2RERERERERERERESBVEsLMGWGfnDDm/U9GGpqDNsREdEwZw7bqY98EUlDRadqK9vFXQIlE6ZCffnn1lXaJ+qr3v294xRjJTcvW9jutB+fCPn2pyG5nHuAxGv0eIzJ7zIOb3XIhvTlxRp6u/q80j9VZMObkM+eAPmvC4HffQ/y9Q9DvnIOpKerUOJZwxTuWbcj+PhMlQHj4pDUC7LXAVCnfABH9egrVr3lWByxEmMNhRE/d3KTh3IMbWSrYXuO/M/5CruNbfLbxMXKpdbh9nx0Ybug1tVhw3Zyy88gFx8DufYbkKsvhXzqSMhLT1i3ue6CGKaMHvx9fDvwmwsjetvj+lqZNa/XGlc4aR/75ol46eNO1q82rzxtltsxERERERERERERERGR3dSZ2sXCsB15sI0sERENb8bqbwoYMwEpMYTtqq1slzcHStTFVwCz9gcOPwnK0kIWAFJt+oBIV2wUkOkEWhPW7U1Vps7qvBcxCDD/ZuDQE61zGCXbgVgME3JbsDU+0Td844I8PnRki3WKtOV2vv+yGHYfXxY4+e1/A2uWl6743IPAvD8Y2/EmLFXoMr2CtlZzmKomle0OPxnq/MuAt78TuP16zOxdjadTR/lW+92Tghsvqnw3Or05QWtcGa/XCXtHu7/IhW0j6zKlJRz2uZOGftBOHEK5tjayoSvbWVpXAxVUttu6vvT3rp2Qn1wG9Utz4O6g3RWW/kcMD74K9PYJTttPYdLoiO7LrLk9bImAUN4HDld4+LUQFRn/+CPjkLrhOWDhQ5CvfsCwwtB/HBMRERERERERERER1cVh7wDGTgCm7AE1dQ9gt5nA1D2AGbMbfWTURBi2IyKi4c0UtovFgESyhm1kDYGMWAz4xFehHMMPK3a1G8fe2pTBjFEVHp8nLCY/+LzTsfiMmWAddrkNbUGeSbrr9uid2nXl0Tug3vUx7VjKUrXrmZXACXPNx5Dr0z9+4qiwxyuA2E/uG7gsbYYScwBmT6p4F0aL1wGH7mFuodva0uShHENlu2rayGYNd2UiDufnaVN77YXAVTrEXIYy6sp2KUuwz9mrz0N2bbOGlcd3KLz/cACI+D5Mm19PSmTsoTxbK2et8VOAbRv9yw86Dqp9FESxYDkRERERERERERERUbViF/17ow+BhgCG7YiIaHgTQ5klpYC2FFL5ndrhatvItuYz+oG2VKgAz5pOc+W6dVuymLGXffuatUGduS/UtFmQfF5b1Q4A2u1F9wDYb+eUbntd2AQAnpoHnPZh7dBR6WeN+9gekPupSWU7r3grlrfO0Q51tFU25R7jgTe36cc6+/M/xuvVvRXy2AIgH1CerFE2WFppahgLW3oYbwt7UcahozO4H7EtABe6sl1A2O6EnsfDTWjStdNYzbKmXNvIBqx34lyFoNqLIlJoAbz8JfNrX3nlP61hEBolIiIiIiIiIiIiIiJqEgzbERHR8GZrI9uWQko2aEd7MnkAwZWCzJXtTGE7c6U6nWTC0uI0Exz4qlVYTF18ZeFC+2i8Z9fd+Nvod/vWcalsZ1sn1RryoPr0AcIx+V3GTTrTAlsQxXT7VRxWPPPjZRO14rydt+D51GG+Vd/YXNkubFnOYnDKeL2+/SlI17zKdtxAVVW2M9yViWEStpP7/xy4Thx9SOQzyMb8Cc8oK9vt2bsan9t2XbgJTVxDb1Fz3e+GN63DsycrfOYdCtc94n/sPvhvMcj2zZAvvRd49XnrPOqcz7odDxEREREREREREREREUWC/YaIiGh4M4Xt+ivbtRsqOvVk3NqEmoIliVUv6wcsbUN1Um3mxM/WTZ2B25uqTMVRRWW7Uz8EdfK5hcuHn4Sjep7RruZSHdAatiurbCdBZcpy5slm9K7VLr96vn1OU2VAX1hxt5nWeYrUgUeXLmiJY0rfJu26nYa8ZhDbbVocM7VOjaxiX5MQh4pevYZWwcOhsp1sWQ/cfaPTuu2ib4/67KpwQUbTcwYAHl55Gmb1hqtOaJRuTNhOHrndbcXt+ue11y8+pvC7Tysk+4PFo5PAU1+L4aR9FeSqSwKDdgCA6QHlTQF7ApeIiIiIiIiIiIiIiIhCYdiOiIiGN1vYLtmOlOgDG93p6sJ28R36inlIhOsN2p40/1f90qvB7SFNYbvWKtrIqqNOH/wlkTLehk6V7WxtZMsr2/UGpPcMle0AIClp7fIVAdXjjPdvWVhRnX+ZfaKiUWPLJopbW3h2ZcJXbLPdpj1ZQV9ejE+LhIQsYzYMGCvbDYf6z0+5VylM5fXPkWWGlzIT03Pm6O6nsEdOH3qtSKMq23WbK2WWk6w9MauUwseOjqH7mhbkr2vBjp+24O2zFCTXCzx1n9tO2pLOx0NERERERERERERERETVY9iOiIiGNNmxpdBur/izbRMk503P2CrbJZE0VrZzCzkZ27S2G9rFvrnMad6iNktlu9FtwcdYkzayR5wyePm1hUgZgmzVVrZLloft0l32ybL64wCA5Yk52uXTxmoXD+7ScHxt5aG0A44CZu5rnwwAjj2r9PeWODry5uu1NeAqlxMRa9vPnl57m89WDM3Kdiqo6qGF8TkyDCrbYct651XXtU7TLp80OtwujdUgyx9b73hfuInLZRsUtnOsYgkA6AwORGt17QTS+kqDPnMOrmwfREREREREREREREREVBGG7YiIaEiT898Gee+MwZ+zd4ec0oH8xw+GZNKWynax/qps+oBWt0PYri8vyBtWa33mHv3A1D0D53WVyVr6NfbLGQ4wXmllu0QSyhs2Oe7dxspsb+0Ins4UDEu1Fqo+AYD09SH/0y9B3qMPAxXJzT8yjn1w5/9ply9dZz8+UxjQF9Lc5zCoc//JPlnHGKiOMaXL4q04KLM49P5NevtgfEwW5zNVcgOAxHBrI+uQwTO21B0GYTtxqcIWK7wdaDNUtnMJzRbduCCPK+5we81R/3IVMNH+nLZqVGW7MPu1BIAj2cdJ50BNquI2JCIiIiIiIiIiIiIiotAYtiMiouFp1auQfz0LyBsCaUoBbSljUOyJtanAXVgrhJlCS8eeGTivq4dWVX6MLhXM1P9n776jJbnKc/8/+3Q4fc7MmZyzRqNRlkYRJZRFkJAsIcAiWbbwxTY22NjGXF/jCzZOF9YPJ0zwta9tAbYMNhhMEkgIAUIBhAIKKI3izGjyzMmhu+v3R/fp06H2rl1d3X3CfD9rsaa6au+q3dXVrfGax+/7yx+q3bFsjczXa3tKmo3HWdvIDnjkTGxBnp7s1HbwqT+QvvC30Sc7uMd66OqBr4XuLwbSeN6eyPr2Y+HHat7z0tUyxshc/y6Z930i/EQbj5X5akiyL5W23j8pXtDJZ/zIeBPP7fxFM/d/J50r8/5PyazbHO9GVbHdj+wcCNvpsx+xH9t4nPSW35H58C2SpDcMfDF0mK26Y72v/zTQL/2z/btU82yl0jIrN8h8/Dbp0jf4XaBO8OAPmpqXWJwAXbOBwL0e7XZveK/M/765ufMDAAAAAAAAAACgaenpXgAAAIm4Wov+9IfStgvDj02G7SyV7aRSS87J6mph3KElS/mw7uiAXDX71aUfj0ZXybOtMeVT2e7t71fXjb/vHpPNqcdSEUuSntkT6OgV9ncxMmEJs5VbyAbFovStf4tcahRXoO17T0qXnxB+7IEXLOerfs9LVlQ2zTXvkLnmHf4LS2XUW7S3i4xb2e7Z/e7jUZXt6sN25sO3yFx8XbxFTIfbvxO626e5rO1+zPbKdoEtaCxJF12nrj8pheyC+++QJPXaWmp7Bj7/9V733U6r6sdo5XpJklm3ReaPPif90ecU7N2h4PUxQpP33ir9+l/4j2+VOAG6seYq2wV3WyqjVumajvcOAAAAAAAAAAAAKtsBAGa58TH38d3PWw4YKZPVSJc9/OYK00nSmCMIlQ0sCZWYYbtfv8QeVDut+8XI+WOWIJFPu1DT5fHXBGO0aeI56+End1sPSfKobDc8IB14OXodEY4af8567Mk99pDQ2UeF73+s+/ipF0891OSqJK3aoJwj8Glrs2tzwJE9laIr2zU8t6s3xVvANHGFUqNYK9vN9v+XlMFD9mNBVRCv/JtkC6QOj/tEFqV/vc897pHuE6de7Hy2cUDM38ZWtuSOJU7Ybqi/uWu4gpKSdPVN8c7nCI0DAAAAAAAAAAAgntn+z4gAALiNWoIRxsgYo3PyD1qnjoy7AzeuKmK2amUmZqDk1HX2Y8PF6P+M28JsrmpqkqRM1n180vFn6OSxR+zXj8j02Y5PVrZrug1jnW1j9kCcq3KX7dgx409NvZi/qMlVSWbFOhlJueKIRkOCn3HbyEYFREcmYrSRXXe0tHVbvAXMQuOW+5F+ebuKN71NWrtZ5qobZc5pXQvodgqGBxXc/BfSt/7VOsa88pqpF+XfpJytsl3M6oo2R41XBeyWrGocEDdsF6edq0XwtX9RcMd/SLuekxavKH3GN7xXJu34bR2N+O2sNnCwuYVF/O6ZS66Pd77ALzAJAAAAAAAAAACAaFS2AwDMbbbKQuVKP0vT9lCDq6rYwaFAr/gze/Uha3vabM5+0hDGGP3yyvCg2J3FUyPnW8NsjraqkmT+792R5y6daL6zqtjOQ+6QR2TYbsczfuuIYCStndgReuz2x+1rvHt7+P4rhm6fenHVjQlWJqm3z/p5PLE7XkjmyYjxIxP2cJkkZVQuhXjs6TIf+7qzjfKMYllm4FHzzlrZbt/z0lMPSt/9ooL3X6fge19OsMDOCPJ5Bb/zOulzH5X2hj/vkqTTLpra7i79Jtl+s257vDVre+3grZVt88bfaBwQ87cxaRA3+MxHFPzFO6V7vyW98KT00A8UfPoDCv4sog10nNawzYbt7vhP6yHzvr+TOevy5s4LAAAAAAAAAACAxAjbAQBmt20Xuo/bqh+VQ0SVUFeIp/faj335IXeoyRpmi1u9SdLxC+ytCPMF9zpsgUFrGHBS7/yoZZXkeiVJm8fDU2lfibhP1sp75cJ6wddv9luHzY2/X9k8dvyJ0CHffDR86kTevvaa+9fEZ1pj+Vr1FMM/j5vvjhe2+6e7ou+3TxvZrn+4W2aWtJCVHG1kPSp6jVtaLWeCqgPFooLP/23sdXXcI3eX/hel+pmdbCNrqWznI/C4zzW/id2NwbrYwc4EYbugUFDw738dfvDbtyhwBRXHY1y3/0C8hU2yXf+KN8tc88vNnRMAAAAAAAAAAAAtQdgOADCrmbf8dpMTS/8JXJKxh8522zNu+pcfRoTtbMGVJoJZuaz9P9fPOAKBUoI2sguWRKyqLFt6P7vSIW0hJW1e7g7QWMOAk11sBw/7rcPC9C2ubB9ILQ0dsyl8t57aYz9vzeebcI3KZLUzsyb00PrFobutHnzRfXx0wh4uk+rayM4BiSrbBXUP50Pfb8GK2uzxH/mN6+2b2u4rfdeHu3qbvuyegegxY6Z76sX4WNPXmjphgsp2u56VDu+zH3/8xy25btDfZGU7W5W/0SH7nNlShRIAAAAAAAAAAGCWI2wHAJjdmm2nVw4mLOi2t4Idd1Q2u/NJ9+lztspxTYTtLlltr45ka8MadTyqipWZtyBqWSXZbskYjViCOq5gl2RfX27PdhX/7v3SnV/yW4dNVWhwWT48mThoyf242ghfPHxnZdus3tjU0ioyWeshVxW6ZuQLgVdlu9nGKF4FwGqHLLnTWRk8HI0I0ZaZ7FTwzZSrWJ4wZu8X66ryKLm/K5NOGqsqIXnUCdETosRp51pvNCIwZ6mIGhQK0kSM78hA/Mp2QRBIE5YfpQ1bY58PAAAAAAAAAAAArUXYDgAwq5l0RuYvv97ExHIVIEf4LSrIZpMrjqjLFv4JaZ8YZeNieyDQVrmuctwWtotqI+vJGCNlc3rz4VtCjz++q7k2sj1P3Svd8ldJlyctmCoNd9Ohfwkdsm9QGp1oXKcrQLR2YufUiy2nNr08SVI6q/fuD3+vd4d35w01FvIe6uWL7ipkmWBCuvad/hed5fpHAv2zpUrlbAweBk8/HDnG3PSHofs3TTxvnTMaFZr1uFXrJqpao67cED0hSpLKdoOHIo5bqlXa2pLbNFPZbmLc2v7YnHdV/PMBAAAAAAAAAACgpQjbAQBmPXPmZfEn9ZcrDnX36HhLRSefAEkYa1W78vXi6u7pth77yQv2gFUQBNb3kAscQZW4Vae6e7SssD/00L3PuqeOWivvtSYMONkiU5LmFwetw74aklG6Z3v4vU0HE8qoKn2Ua779piQpk9XyQnhLy4EYt+ErD0WPmShIf/+98PCmCYpKqSizdLX/RWeM8BaaUfHDm++2jwirbBdYQlAzxve+HD1mw7GN+zaf5Kx2edDRvVSSntwdfdme6t+cXPzfwQZxg29VgoiKmcEd/xl+IG7Arz9+ZTvnNZr47wcAAAAAAAAAAABai7AdAODI9PVylbNszhrsslWFi6ogdii12H6wibCEcQRT9tvzYxrPS0XLUnuLjnaT2ZjV97p7lFc69NCiiBzayHj4AntcYcA4lq6sbC4o9luH3fFE4zr6LVmevMnU7sjNa2ppFemMii34K9mdT3pUtivYn5nAlNfQNfv+ethsG9kvPeAI2ymknFvRXmVyRsjag7kVPSHPayGvvqK95OFju9ynfOFA9P2vqabZ2xc5PtJ4gt+IwxEhuIVLw/fHDdsNRFTQi3uNJiqjAgAAAAAAAAAAoLXC/2UcAIC5bnys9Geu11rlzRa2GxxLcN1mKhM55pQCQdnQY642uM42snHX2J3TaCE8BNId8TeNIVvlPUeVrVjWbK5snjn6E+uw/pDLZVKe19h0fMxF1V8oq0UFS9tKSYVioFRXeOW2akMez+VEQerORAxK+n6mg7FVtnPftzuesB8LrfT28F0Kdr8QZ2WdsXqTdMLZUjo79dsWJpWSTj6vcf+u57Q+b/9NyEdkDD0ez5r7aRaviJ4QpVBQkJ+QSUc90CFSET9MGUtoMW7YrplWt64QYbOV7WZ6RUYAAAAAAAAAAIBZhLAdAODI1t1jbZ84aMmeuEJskbLNhe3mFwY0mGqsBjU4bA/bvWzPbzlbRsaunpTt0av3fkv/tOjGhkO77cXkNDQW6LbwDr7qbVFlO2OMgoXLpMP7lAvsIaTP3RvoM++o3bfHUuhreX5P7TXSCf86lc7q9NEHrIdHxqX5Hh/JeCF6zERBuuuZ8GPX93+xtHHC2dEnmmGarWznEhbCDd5zRcuv0zIr1kvD9up0kmRu+qBM36LGAzf8lszNf2GdNzQWyNaqV/L7TXRW05z02l+QvnFz9LhJYyNSM2G7w+Ftm2vOGyZu69pmWt2OOeYkbVkNAAAAAAAAAACAxGZfnzAAAFqpO2et8vbxO8IDPCOWamy+12tmzvkjd4ce+uRd9qDJez9vL0flbNMat3pSrlfzi45+thZ/8jV7QMoZBpSkVRujL7ByQ+nPV7yqsuu9+//KOvyJl2vX88nvhq/v3JF7p170OVoG+8pk1RvYg0jPRuSCJk3kowNntqCdJF0wfFdpYy4FehJU9LK1l56x9rxoP3bs6TIf+5rML7w/9LBZe7Qkae3EjtDj/3SX+z76hO0yKg/aeJx90Mr10Seq1kzlOEm6+xvNnTd2ZbsmnqG94Z+BpOYr2wEAAAAAAAAAAKBlCNsBAI5s3T3qtlQ8W2TJNUQFSzKBI43XTFgi16ucJRDY12Wv1nbnk/ZT9rrCbHGr72W6reuTpB0Hw4M6X33YEbZzhQHXbpa59p3R65oMNmanAo6u9/2NR/yCWTXPi63dZBzprLPq1+0/81uXT2U7l+7J5zbbRCB02jXXRtbF+QzOMuZ3Py5z1uX2AdnSc2z7Ldx5yH1+nwBy5ZNw/AaaqPau9ZoN20WxVaSLez1XS1ibpx+2H2umMioAAAAAAAAAAABairAdAOCIZD58S2kj26P7c6eHjtmwJHzucESw5F0HPmU/2EzYbvk6/Th3Ruih9fPsYQ5XUa/lhb32g3HX+ND3tXHiBethWzvWR3faT2mrNihJ2rFdOu2i6HUdW75nY1NBtjMc7Vrr17nAkjnbk1o+9eLAy9HriNLd7bx/43m/00wkDNsdO/6EJMlkWxAg7DB7G9nmK9udMfqTpufOOJuOdx/vLbWo3p7dHHp45QL39LGIZ/TCoe9NvXBUTgwO7rEeC79wk2G7hUubO2/ssF0Tle0c37/ELasBAAAAAAAAAACQGGE7AMCR6ZxXS5JMd4+uHfhy6BBbBTtXFaf5hQH90uGb7QOaCNuZri5dZ1nj4bFU6P5iMbAGYF438DV3va+4YasLrtbqvD105tNisp6zjezqTdJxZ0y1iQ2T7Za59n9Iksxlb6zsvnzoduuUQ3XF5Wzrfkv/v0+9aEVbx2yPUrK3/PW9f76hPJtzRu5LdoLpZHmghwL3s7x6of3YRUPfT7CgmcVEtQbefKIk6fLB20IPDw65E8auZ68rKOjdBz85tcPRStucdZnzOg2aadMqSYf3R5zXFraLeb3xMQVF+3e7JdeYZJqv4ggAAAAAAAAAAAB/lEcAABxxzFdemgqfdOe0dfzp0HHWsJ0j/HTbC6/VSWOPhR/s6pLSmRgrnXJsbl/o/kf7w9NC/Y68xv/c9xH3xWIGyMyxp6v7B/9tPe7TYrKes7LdWZfJdHVJNz+g4ENvk+7+Ru3xi66VecNvyJxyfun1ivWVQ73BiC4e+q6+O+/ihtN+6s5An3hrabtQDKyV4rZUPy8XXO3xbiKU7/flg7fptvmNrT4/9u1AH/S4TNLKdtlgXLryxmQnmSa2mNGtoyc75+UtOahP7Hq3svJIOWZz0qLl0eNarZCX9u/yG7v1tOgx5WfwiqHbQ5/Be1/MKggCGUugy9XC+D9fukFXD36t4VqhFljKido0UdkuOLC7+fM+93js62moX+pb5D08uO/b4QdOvSD+tQEAAAAAAAAAANByhO0AAEeW86+SWVwVjsn1qicID1bYQmK2/YsKB3Wmq/Vkd481rBKlN2VPsxSKgVJdtef95iP29pm9lvdbEbdaW3dORlJvcUjDXfMaDoeFE3f3u9t79hSH7QfL6zO982U+8l9e66u2fuIl69CJfKBM2jgDgj3FqiBgCyrbme4eBbJ/LgOeha5cgSevdUjOqmOz1fBYoN5uS0jMUpFtZd6vnan56k6ZnsZnvt2CPS8puP5ov8E+6ys/x86Q67OPVSrg1Zuw3Me3H/psbdBOkrKO70zc79N4E21kHcHgCkt1ueDRe+Nf78e3S5dc7z/eFujLzr3vJgAAAAAAAAAAwGxEG1kAwJFloi5FNTZibVk6Mh4eCBuZCN9fE8IK4wqZRAj229u0Hg5Z/of+2x5mc7ZoVSn8FctkUMdy3uGQ+/jCAfcpjx7fbj8Y9z4uX1fzMi17Km3fYOlPV/XCmnDmi0/FW0uYcsBtR3pt6OFVC/xOk7SynSRpnqOv6gzWa+zpyJ2H7fNsYbtM4FmOMao960zg84yWv1NDxv5+Jv7jk9ZjtqBnNgj5Ij1nqfwpSas2liqA+mqmst3uF5s/7+qNsa+nQ+FVSa22nBK+/8kH418bAAAAAAAAAAAALUfYDgBwRDEXXVe74+TzlLNUczowHF4NyxbEslXIq0hQBe3s4k+tx8KqsE2GxsI4q1dJ8aubRVTFClufq3LcttGHdMzEM9bjccOA9ZXHruu3V8Ob/Gzdle2qPucTzoq1llDl93Pp0Heca4piC475WFeu9mfiVOCaQa6Z97D1mO2zLBYD673Neobtmq1U2VHbXhk5xKTTUiqtc0fusY4Zyaesx8bz4eHe0Pt47Bn2dSxcKp39KvtC61kq0DmNe8wZm6qsGXzlH1X8jctVfP1m6Uufjn+9uIHA8bHw/UefFP/aAAAAAAAAAAAAaDnCdgCAI8vpF9W+nr/QWektCBpDJLbwTq+r9amUqEVn38WvsR7bGxKsOzBkP1fLQ4ERle3uCsnNPb3HXnnv6y9cE3G9Ju5jb19l84zRB6zDdveX/nRXtpsK65hjtsVfS73y/btw+Aehh33Ddkkq231g35+XNjYd3/xJptHJ2Z3WY7b79+5b7M+gV9juihuix8wA5oKr/QZ292hR0V4GcKTgCtuF7w+rEGhOPNu5DPOhz0gX/pyU7S7tmO+otthEZTs9FP49qzFa+i0PbvlLBR99l/TQ96W9O+zjX3eTtcVu8Mwj8db34PdCd5uzLo93HgAAAAAAAAAAALQFYTsAwJGlPkjW3eMMnz30UuO+YUsOx1Yhz3rtGHpyaeuxrzxkDw2FniuijayyMcNs5fG2+/jZexrX92/3ha+5r9CvFYW97us1cx8XLqlsuj7vLz1QWtePn/dswxv3XoWpVAYMX9d4XioUoz/jJJXteovDkjFSJtv8SaZRT5c9kRgWjh0aC/TJ7yYM2/XO91lae8SpqOf7fcn1On8bnhpfZj1mbyMbch8j1mPmLVDXn35e5uu7Zf7jKZmv7pLWbQkf3EzY7vEfew0LBg8r+MLf+Z2zOyctWh5+7Af/7bmwCJPhQwAAAAAAAAAAAEwrwnYAgCNL3+La1909WpXfbR3+dhpawwAAIABJREFU05dCKtvZ2shGhdgShO0W9NjDNWMh61m5wH6ulocCy5XmdqTXhB4+ZW3jvhULwt/PQMqx8Mr1mriPualWsvOK9rJ/k5k2V3Ctrzgw9SJlr/blzZT+OtbreH5GParbJals1x2MSUEwO9qihkiZQNliePvNsO/rNyOKjWXlccMPRoRCZ4rFK/zGZXNaXthnPbw3P896zPZ9Cb2Pnt9f090js3KDTCpln9NM2O6YU/3GPXqPtOdFv7G5Xmn3C+HHTnqF3zkUXkm1YjSicioAAAAAAAAAAAA6grAdAOCIYnK9tTu6e7R54jnr+NGQEImtjWxPGyvbdffYqxqFrfHE8NybJKlLEVXSYle2K72vvmJIP1tJYyHrG52IV42vRjP3sSpwlFLROmwy1OYKt2VU9Ya2nBJ/LfW2llrRuiru2aopVrNVF/ORDhJMngmM/f6F3buDw+7nLxN4hO2WOb5kM8nxZ/mNy2S1oDpIWmes2Bgs3XUo0Me+XdQdT4TPCa1s10yFNtt3fjw8YOk0HvE7Pan/oPcpTXePVLR8h+Ks0bW2o0/2P0+DBL+3AAAAAAAAAAAAqEHYDgBw5Dj29MZ95RCHCcIDWB+9NUZlO0dYSlKylqO5Hp03/MPQQ997snGN3/lZ+GnefcCjLWLsynal8b914G9CD4e14rUFFn/l4P/1vl4sS1fVvLx88LbQYZ8pt7z92cvhp1mVrzvQ2xd/LfXmL5Tkroxou1/VklS2SynfmuDgNLKFXV862Pj9KNjzlpL82siaba/0Wtd0M2l7C+oaES2EDxRqg8ov7A90wUeK+t0vxGzH28z31/LbGdiqybk8b0kG1p/76Yf9z5nNyVz5i+HHfvJd//O4KvWtWOd/HgAAAAAAAAAAALQNYTsAwJFj7dENu0w6I6XSOmP0gdApT+9prMI2HW1kle3RUZYKfPc/73+a9RMebRGbDNvZKttJ0kTe7x4uy9vbWE5dr4nQYl0rzQ35kASgpIHRUivHv/1OeIBo43jdzU4SoJxUvn+uyogvehTZcrW+jZIKCg2BxNnG9v371J2Nn+Xd293n8gnbteSzb5Zvu99ykNNLuhS2O3YsPIz2hZHaCnl/e0egZyO+ruGV7Zr4HbR95//7H+Ofy9e//n/+Y7t7pFyC3/dJB+wtzZv63QMAAAAAAAAAAEDLEbYDABw58pYATXePFhQPW6fVh9lGLafpbWdlO0kTyniNCwJ7pam88ahyFXed5UDPfEfY7uEdta/trXgj7qHUVFjHLFtd89rVJvTFA9LmZeHHxrrq7k2SAOWk8vtZUOy3Dnl2X3QbyGSV7QrNteScKYzRmAlvT7o8pPjggoiPLevTRrYVn327pTyr2kmVyna2+7imqzbxGVZRs17ofWzmvtmeTd8WuWXBIY8wbzOKBalg/wK6fpNrvPCk/di8GMFJAAAAAAAAAAAAtA1hOwDAkcPW8rO7R5cM3WmdNlBXcGx4PDw4EVnZLk7wpd7azVpesAdFisWpNY06ckJrJ3ZGXysbHraxKrc3vHD4B9Yh/XW3punqgFJzYZ2zX1Xz8qyRH1uHDoxJKcvfkPq7ap8hk0rFX0sdk05LqbSzMqBPVmc8QdguHeSll55u/gQzwM7MmtD9qZAicAsi8qQ5R5XBqUG90WOmW5zfnHJlu+eym8JPFdQ+YPW/i2FyxZBBzVRosz2bcX9ThwfiX9vHqo3SsvDnT5J/kNUR2DOzvPIkAAAAAAAAAADAXEHYDgBwxDCXvTH8QHeP3nnI3o6wPlTywoHwcbmoqmxdCf6zu3qjru//ovVwdcDOFmSTpBPHHou+Vtqvgt4kU25p6QoD1q/ppzvCx7laqVY0EbYzR59U8/qaga9ax/aPSE/tCT/2Gwc+EfvaXiLe00uH3NMLxcArkGeTUkG68sbmTzDdjNGvH/hk6KG7nmncly+6T9e20GfLeLaRjfNdzpTGXtf/X6GHf1aoDZO5Qr2TQitVNnPfrvrF8P1jHp9TkvG+1h8jHXWC/fi453WTrM+3tTAAAAAAAAAAAAASIWwHADhy9C0O39+d09LCAc2zVBb7f3fVJnN+8kL4aXrCqjhV60pQBS3bo4WONqPVYbZhS4tWSeoNhqOvVW4nGcvKDZKkxYXwJOI92/2SYF4VxZqpjCVJ2y6sbLpatn7qTvta1+R3Tb04+bzm1hGmHEDaPL499PAffMl9/8bzyS6fCgoyi5YmO8k0s927sPa6US132/ocdlKcyovlynYbJ54PPXx/YUvNa1eod1JoeLaZsOxCy7MZN5y215LyTao7534e7rvN7zy2UN7azfHXBAAAAAAAAAAAgLYgbAcAOHLYQh7lkMlSS1Bsn727Z41s4Ei5SfbepD66e8KrRJVVB19GHMvwqtiVbiJsVw6aZIPwBM6uw1PbQ2P24FjkPZSaryiWmarylVZBJggvb3bX0671Vb2/VoatygHH7dnmQjVR4bEo6SCfLAw6A+QCe6vO5/fXfqZR96tLHuHQaa1s5ylOm9XyM+j6Do5NTN0X1+/MpFzY700z9802J27Y7rnH41/bR7ZHys2zHg4esLcpr2F7P7PhWQMAAAAAAAAAADhCELYDABw5Nh4Xvv+Zn0qSXshsCD28pLf2dcaSSRrqsoctJCULM3X3OINy1cEXV8Wp3qhWt1Jzle3KYZDd6ZWhhxdV3cODjuJ6y/L2VrQVme44K5uyq7ZiV2DC/xo06qgStzZfVRmrlQGYPS8lmu5TZcwlpWLz93VGMDp+zB6kqg/M5hOGEyXNjvvV0+c/tvy9X1AcsA6ZbKmdLwTq9yj+17I2stawncciqjXz2+aju0davtZ+vOj5wNneT9LfmiQ9pgEAAAAAAAAAAFCDsB0A4IhhbEGLk86VJL1q8Nuhhx+t6hxaKAbWqliXDt0RsYAE/9nNZNXraG3p20bWq7JdU2G7UppuSX5/6OGaMKBjfceNPxl9rXQmekwIc9Uv1rx+xfC9oeN2HrKfY+NEVQ/hVobtTr84ckjgCMz4VBlzSakgbd2W7CTT7JyR+6zH6u9P0kqAktoX3PJhjN+4vkX+5yxXtLxq8BvWIZO/M4c8ulFLIa21UymZZr6/tu/agZfjnSduOM9Xrlemy/H77tm+NrBVtstS2Q4AAAAAAAAAAGCmIGwHADgyLFxqP3bi2ZLsYbmdh6RisRR0coWa+ooR/WZTzVe2M8aox5Ht+a8Hp4JYLx20j8s5AnsVCdrIvnooPLD499+bWp+rsp2rVW5FsyGnTbWVDW/o/3zsU/QWqxbfwgCMOePSyDHjjop7SSvbpYO8lGouxDhTZGW/CT+oaw38zz9sQaWv2XC/+hb7jy1/r5YU7D8gT+8p/bl/yO+UDd/nZr8zLWrZHNwX/vuUSFfXVAD4ul8JH3PPrX7nsraRbWHLagAAAAAAAAAAACRC2A4AcGQ4HF5xTVKlalKPI4j2k3JBM1eoKTIolqSNrKRc1l7N6puPTIWH7tkeHiTKFUfUJY+QUYI2srlgLPRwvji1bVuf5Fl5r9mQU111LNfnbVMTVmxlACYb3ZL0qT32Y4kr2wUFKZVOdpLpVK70Nr8Q3gL1zidrn7lCMXRYPE1WWOyoOGG78vtxfQdvfax0Hw/4hu3qz9VsNUjHvODgXv/zvPR0c9d36e6Rmaw06FrnIY8W2dawHZXtAAAAAAAAAAAAZgrCdgCAI54pBxmOHXvCOua5clbPFWqKDIolaSMrqeuwPawxvyqrtbg3fMxol2dgo5nQ1ZMPSpKeyB4TeviE1VPbWcfpIwOLxjRfIXDD1pqXayZ2xpreXRytDSu2MAATDJdCYn+36z3WMfschROTVrZLqZCo8uJMMZjqC92/dF5tUHXbevs5fm/fR/0uNp1hO982sju3+5+zHPhcVLT3Ue4qX9Y7bFcfaPUIlYZastJ+zLNFqyRp0/HNXd+lqlqfWbrKPm7PS9HnsrW5Tfpb4/u8AAAAAAAAAAAAIBJhOwAAsqUKZRcO/8A6ZGS83EbWWdkuolJaC8JM3cXwawxVFZRLFLzKZKeqNMVRbsV7wfBdoYcPVWXoXIHFyCunM82tT5JZuaHm9SXDd8aa3xAEbGHYzpx6gSTp5/u/YB3jum9JK9ulg/zsqNRmE/FM/PCZ2sp2EwX72Df1/2f09VIpma6Z/9don/bEFd2llK6r+uXkc3ZgyK8Nb0MAudnqias22Y/ZqsElHeur+nfgouvs48Y9KmmOt6myXdCCtskAAAAAAAAAAACQRNgOAHCk2Hyi/ViuFDLJakKZIDy1NBlgc4btoirbJWwjq0vfoA/t/XDooburCljZ1vjawW9GXyPdRAtZSebk8yRJJ489Gnp8Z1WxLNv6zhz5cfSFmlxfxcKllc1czDayPXVBR9PK1o4LlkiSFhUPW4c8+JI9MPOpO5P1RS1VtpvFbWTLfnv/X4buf26/9NTuqfuXt4Ttfm7gK9o29nD0hZI+h52yPrzSZJjq5/m6/v8KHfPtyTayw37nbPiONfuMuSrixQnQ/eS7obvNOz4ovfV98dY0KVf1O7Bqo31c/4Hoc1nbyLawZTUAAAAAAAAAAAASIWwHAEBVyOTYsSdDh4xOhu1cbWSjWqAmDdtle5zXGJ0oBWGGLWvsLXokZDJNhojK99BV3W/XIXd1wPlFR5/USUmrrx3eX9k0kub5XLOs4d432xIzTFWYZlX+5dAhn/+RPWz3xQeSXT4VFGZ3Zbuy+kBktVuq7l/ekk187eCtfheaLfcqTkiraqztu/jYrtKf+z2/Ng1huybvmzHGXt2tFdXqcj3q+tU/aa6CXNUcY0ylUmq94P47os9ley/ZFgZ7AQAAAAAAAAAAkAhhOwDAEcG8+XfsB4tTyZtcMBY6xKeyXWSltKRtJ4f71ecIhz2zt/TnqCVsF1l5T2q+Ytey1ZKk1RO7rEMe3lH60xYGjGzDKzUfBrQY6prvPbbh/rWyst3ilZXNl9OrQodsWGKfnk1YlC6tWR62K7eRXZO3P38PvRgdtksHeb/rTXdlO99WynGe0aqxL2TWhw45dV3pzyHPtsUNLWmTVE+0vRef9qySAlcr1ZGh0p/NBPdefsFrPaaqqqbVmOW9tPK3BgAAAAAAAAAAAIkQtgMAzH3Zbun8K+3Hjz2tspmzVI6brGg3agnb5Yojioq/mISV7cwJZ+uyIXt1pMk12gKBXmG2ZtsVnn6JJOnM0futQyrrSxQGnL5AWMP9a2EAxvQtihxje/YKxUDjnhkxm1RQmBOBHler5Or7N2FpI5sJHGnaarMlmNhk2G5dfkfokMnfFlsb3khJ7lu53XcD34DceHiQWpK09TT7sShLVngNC3xCgZb30tKW1QAAAAAAAAAAAEiEsB0AYM4zf/6fMn2L7QPmL6xs2gJff/zVcgtUa1U2j8BH0jayp11kbTEqTVWMGxkPr+DktUZboCWC6S1ViEvJUjJM0oGh0rpsoTGv9SWpjBXissHbvcc2BDHbFID5n/s+Err/24+Hj7fdzzhSKljbX84OpajrhvxLOm7sZ6EjqkOotrBYWr6V7eZ22O6SoTtDhzy5u1QhzlYZMFKS76/t+Tyw22/+uOP3Zfna0p+nXxxrSZJkrv/12h3bLgwfePNfRJ/s8R+F7/cKQXtWOwQAAAAAAAAAAEAihO0AAHOeOfsK94CqkImr+tt4PtDIhCXIVvSoWpS0jWyuV2kVlAnCE3+TYSJrm1afynFJAmSbT5QkbRp/LvTwlx6ICCz63MMWt5FdUjzoPba3/v61Opy27mhJ0qLCoVjTbPczjnQmJZP0+Zwh3nL4ltD91aHExG1kM7MkbJft9h9b9d13tcR+eo9UaDZslySkaPltCm7/gt98VwW8yTDbAkevZpueulbUtnaxQaDAVV3Phcp2AAAAAAAAAAAAM8bc+FdVAACSqAoy7E7ZWwJ+6zFXi1afynYJ/7NbbjVqC80NR7aRbXPYrjx3sGte6OGVC0uVl6yBRZ/1Ja0odvTJNS9NEL6WMA3ra3UAZnhIkjRu4gUKh1oQtktlWxti7LiBqYCi7Tka8Wgjmw48+6Ompjts51nFLM4zWlV1zhX4vOuZaapsNzwQvn/9MZ7zB+3HJit6erRzbtC3sPb1vAX2sU89ZD0UuMKARY/ncvVG+7Hla6LnAwAAAAAAAAAAwAthOwAAslOBFFcbyef3B9YqYjmvynbJ2siacqtDW/W9yfax9spxHmG2JNXayvdxX3q5c5j9HvqE7ZKFwswNv1XzetuYPfxSr+H+tTpsd6DUInh9/iXrkIl8YzjwwFDyS8/6sN341HciF4RXD6t+7qzPoE/gU2p5hcW2ifOMbjq+snn+yN3WYSPjUrHpynYJwna7nmt+rlQTyGxQbjNuzrws/nlPfWXNS3OW4xyjji/riOPY+q2RyzAbjpXWbWk8sPkkmZUbIucDAAAAAAAAAADAD2E7AMARz6TTUqoUhHtT/39axwWBq2qcR9gulSxsN6m3OBy6/0fPlf584MXweV5rnKzw1IxyK8bXDXwt9PCjO8phQMs97O1EZbtTzqt5+fOHPVtQKuT+tTpsd9G1kqTjx35mHRLWIni/o2CXr3R3ghDUDGAuuLqybQuVPrG79Ge+YK/MZvtuNUj6HHZKnGe0qqpbX9H+UO0blPKeBQAbJKls9+q3hu9/8gG/+f37w/en0lOtYF95TeV76MvMr6tsd9F19sGH9tmPuSrbrVzvt5bf+2Ttb3hvn8zvftxrLgAAAAAAAAAAAPzM7n9ZBQCgVbI90sigsoG9J+ePnpOOWhZ+zKsilmlBxn3VRmubzL++PdBf/rx9qldluyQBsnLIY8NEeNrv3mdLf1oDiz7rS1pRLFfb4nZB0dKaMkTbK9utWBd+nSpfeSjQ28+tbSF6YNi/Fa5Nqrs78TmmVc/U55pzhEr3DgTKOXJyXoFUKXGFxcSMZxvZbIxn1HPsn3490OtP87x+vSQhxaWrwve/+JTf/P6D4fsXLJEp30+TyUof+px0/3cU/PRuaXxUZsESBZ/+gPcyTSaroGe+NNIYWAw+91GZy94YPtEVtvP8rTGnXSh95kHp7m+W2paf8xoZz6AeAAAAAAAAAAAA/BC2AwBAqlRcWp3fZR0yNBZoZCI8ZOIVFGtFZbtUSpnA3up2T789eJWSRzmqJG1ky/fQ1Yq3ULS34vWrDpjwry51YbvewLOSmUIClbkWh+3K722+o6rYD56W3n5u7b6DLWgj2zXbw3ZV7UnnOarT3f54oMuOtwfFXEG92uvNgsp2qXSpaqevrN8zMJ6XCh5tZLeNhrRoTvL9dbThDsZGZKICaQO2sN3impcmnZZe8SqZV7xq6vy2sF25tXeDbC40bKfDlup6Uk0r5AYxgr1m1Ubpul/xHg8AAAAAAAAAAIB4aCMLAIAkDR6SJF0xdLt1yFHLTbI2so6wiLcd27Umv9N6+EVLnkSSVuT3RJ8/Tjin3jM/leRuxTkyLo1bMn/dwVj0NRKGnEzv/LprjmtlfrfX3J5i3We8alOitTQ4uFeStCFv6QMsaSLk3oW1lpWkBYXDXpdNBXmZOBXQZqLVR1U2zx75kXXY/qHwezjJVdmyRmYWhO1iVl40vtXyJOWL0dUUP7j3Txp3ppq/b2aRpayoJA17VKi0VY7rmR++v/rav/4X4ft/9U/DJxy2tIudt8B+kRZUtgMAAAAAAAAAAED7EbYDAECSFiyRVApf2ew4KHtVNp/Kdq1oI3vMNv3m/r+1Hj7sWMaW8Weiz59gjebyUg/bawa+ah0zMlGqjBXGK+iUtI1siD/a+8de4+rb95qu1v41ypz72tKfjjEHhhpDTrYA6KaJ572umwoKUneCioYzwbLVlc2VBXuodGTCXZUtFXhUf5QShcY6po0BrXzEbTp75D5dHhZcTlLZrqrSXANXUK0ssI3xuU9XvFlac1Ttvi2nSOdfFT7+yhvD9z/7mP0arveQpOIoAAAAAAAAAAAAWoqwHQAAknTmpZXNNx++JXTILT8KNJqksl0r2siecJa2jT1sPbzb0UbWq3JckgBZuaXiksIB65Dn9ktjScJ2rWjfufW0mpdvsXze9WoClSvWJ19Hvb5Flc3fOPCJ0CFfCenM+YUfh3/miwqHvC6bVl7K9XqNnbHqAlPnDN8TOuzLDwTKu8J2Pq2WpelvI+tTha6ZsN2WU7yG7Xe0Lv7Q3j/WrS+8Lvw3Mcl9m7/QfmwoQWU7jyCbWbpK5uO3S299n3TOq6Vf/AOZv75VxlKpzpx+sfVcwT3fjL2+Vgd7AQAAAAAAAAAA0LwE5SUAAJhDqtpo9jqq1O0dCA82eVW2a0Ub2WzOea0fPO2YGliSgtWSVN8rh3t6A/v6vvVokKyyXSsqitWFa3I+QUnVBSrbUQmuKvDW42jFWywG6uqaClsdsASfeoMRdRdHNdblXmupst0sb1NZ95nOK4bflJf73ZXt0r6V7aY7bOejmWc00+017IeWIpm/t++j+sC+8JarkpJVtnM9oz+7Xzr6JPf8JJXtJJnla2V+NaQ1bsxzBnd+Weac1zQeGE22PgAAAAAAAAAAAHQGZRIAAJCk7Y9UNhcW7RXBntsfvj/nCJhVtCJst3O7egN7EMvFK8yWpIJSORSyMr/bOiRflMYteaaMTxiwFW1kjzq+5mWX7NUAq42YqvBSOwIwVeecMPYwV33b2ONXh4/7fu/5kUE7qVzNzTNkNVOZukpvd/eeEzpu68qINrKzpbKdj2Y+08d/VNm8vv+Lsaen5Li5kpROELabv8h+zKdq6JglVNuO73Ldb0yNPS+G708YBgQAAAAAAAAAAEBnELYDAECSzriksnlD/xesw2xVxLzayLagFaA54xK5Gkj2OzJ/XmG7JJXtsqVwjytwc3BYCSvbJS/Ka1791qbmnTty79SLdgRgqqorvm7w69ZhI3W3acKSD7t46Htel00H+da0OJ5BXjl8V+j+wTG528j6VrZL8j1pBZ82ss0EAk85v7L5vv0fiz09HVi+3JMSBI7rA5U1bEE1nzHt+C5vONZ+7ODe8P3jtvW1oYomAAAAAAAAAAAAmkbYDgAASWbTVCWirWNPWcftGwzf37E2sis3SJLOGPlJ6OG7nrZXaetUZTtJumogPCz2N7cH1nCYX9gu+T00p14gveZtNfveefAfIufVtJttS2W7qVDN2omd1mH1le1s4bEzR+/XJUN3RF42peLsqNQW5bSLKpsXWMJ2338qqo1sRFhs0mwIJ6abqAJ5wtmVzTNHw39jnJeMun9J79vmE0N3B/fcGj23g2E2Y4z0tt8LP/jUg+H7qWwHAAAAAAAAAAAwKxC2AwBAqgk09Pi0hK3jNacVYbvyOnssrWRtbW5NUFRaHkGiRJXtpu7hvKKlBKBreocq20mSufj1Na8HuuZHzqlZX7YN1aZqnkF7pcQH67pQ2sKL6SCvrEdr3lRQaNl9nVZVoSnX93FozH4K7zayrfgut1szAcq64JktNGsTef+S3rfu3vD9P/xa9NwOh9nM0pXWY8GLIYHuTra5BQAAAAAAAAAAQNMI2wEAIEkr1lU2XW1QbXqKnWkjqxXrJUlPZLeGHs5aMlPZYNzZfrYiSeWpZasqmy9k1see3t3BsJ165tW8fC6zMXJKpjq4Nn9ha9ZRbcGSyuaywj7rsJGJ2uqFeUu+KRNMeAUY08rPjcp2+3ZVNuc7wp7P7LVXf5w1bWR9pON/V0xdiHRpwZLetV0yqrJd0vv28vPh+4/ZFj133JKybFeYbYXjN/DZxxp2BbYwYJawHQAAAAAAAAAAwEwyC/6lEACADqhqnyhJS/P2sFMYv8p2LfjP7qbjJEkLi/2hh8ctWRevqnFSsjBMVbhk29jDsad3srKdNp8Ue0r1+uor47WCyUy1/cwF9vJrI3W3yVrZTnmvezpnKtttObWyecXgbdZhA45crFf1R0lKTfNfoY1HdLaZAGW2u+bl6wf+K9b0yPuX9Ddw7ebw/bagmscY064w25mXxluL7T3kCNsBAAAAAAAAAADMJITtAACQZOoquv3N7t+ONb+n2Jk2ssYYaeOxesvhW2LN8w7bJQjDmKoA0HnDd8ee39GwXc7SjtIhU12164KrW7OOeqdeUNlcnt8TOmTn4drXtrBdJvAM26kwJyrbmQuvqWyvLITfO0n6lx+2oLLdrGgjm40eU6+ust1Vg9+INT3y/iW8b+bKG8MPPPd49ORH7w3fXxcwbBXT22c9Ftx/R+PODre5BQAAAAAAAAAAQHMI2wEAMGn52srm4sLBWFNzgUcb2SQtWqsddaJfuK9KtroFqkvSNo8LlzU9taNhu7pQkdeUyfWlMw3hzJZZsrKyuTr/cuiQz/+oro2spetxOsh7fe7pIC8zFyrbVYWSuoMxmSD8xtz3nP0UKfmG7WbBX6GbCVBmaoNnRlKvoyVvwyWj7l/S740jeBYE9hBls+dMbONx4fu/9s+N+8Ys/w0hbAcAAAAAAAAAADCjzIJ/KQQAoEMGpgJ2SwsHYk31Cr8lDbJNGjwUe32dqGwnSRos3cOTxh6NPdUrENiiUJipe59v6P9i5JyMyuvLewYXm1EVrDmYWhw65PjVtS1Eba2DM8FEjDays7+ynRYurWwaSUHM75sJiuqSZ2BrVlS2a+IzXXd0w67hrnne0yMr2yX9DXS1zz1kb/0d5B3tbX1a0DZrxBJUnL+ocd+4ZR3tanMLAAAAAAAAAACAphC2AwBg0uhwZXPb6EOxpvYEHoGNVlVDGxvV5UO3x5ritT5JJmkYplAK25w89kjsqT5rbFcFtjf3fz5yTMa3OmASVWG7FzPrQ4cU6gq2jViW1ROM+LeRbVelvk7acmrNyxNH4wU+vavaSTMgbOcInU1qpo3syefFn1Ml6jtikt63zSfZj406KvDlHd+DDVubX0+URZZKn8WQZ63qvz81uuMrzsapAAAgAElEQVRX4QQAAAAAAAAAAED7ELYDAGDSua+tbKZk6c1pkQvGoge1KKBjLn+TNuRfijWn17ftbNLKdlffJKkUBTp19OFYU72qA7YybPf6X6tsrijsjRxeCRJddG3r1lCvKmz3joP/FDrkid211ddGLDminmBUGY+wXTooNFcFbYapb+37l7t/N9b8yKps1eZoG1mTztR8LyTpzJH7/S8pRwU5KXmos6p6YQNXhbqCY11LVzW/ngjmbe8LPzA80Nj21rZ+2sgCAAAAAAAAAADMKLPgXwoBAOiQ5WtqXl7b/2XvqR1tI9vbJ0k6evwZ7yk5z8p2SddoVm6obN9w+N9jzc0Fo9GDWliBzWw8tub17+z/mH1sUJwKYK5tbLXZMlXBmmWF8LaYD9flLG2V7XJFv8p2XSq0NsQ4nTafWNk8dvypWFMjg2LVpr2ynYd0c5+pueT6mtdHTTzrf8kg4h4mvW+u4NnLz9uPucJ27WyhvGi5/dgzP619PWb5/SNsBwAAAAAAAAAAMKMQtgMAYFJd0MwosAxs1NE2suXASqz1daqyXdU9zMi/7Wp3cVRdPu+nlaGwus87V7RXJwyqxxqPFp7Nqgoj+Xy+xWKgCUtBtlIb2ejPIDVHKtuVTH0284uDsWbGq2w3zWE7n2ew2c+0LtwVGaCrEnkPk353cr32Yy86wpXOsF0bg6a98+3H7vt27evx8LCdIWwHAAAAAAAAAAAwoxC2AwBg0rwFNS+HuxzBjjo+oaaWBXRWrJMkPZ3d4j2lx6dqnJQ8DFMVKDxu7Anvab3BsN/AJqt1haprSXn26I/85llCMa1gVm+sbE+Y8Pfam53aLji6HaeDvFe1wLTyc6ey3fZHKpsLi/2xpqY019rIZqPHhJm/sOblxokX/C/Z5jayJuN4T65nOO/4fW5htcwGm0+yHgqG68KgeUsVStd7BgAAAAAAAAAAQMfNgn8pBACgM8yFP1fz+hcOf9Z7bqaTYbvVmyRJ/+PgP3pP8aq8JyUPEZ18XmXzFSOe4TVJPUXPAFsrQ2FVLUcl6YrB272mmTMva90a6p1xSWXz0qHvhg4ZHpeCoFT1ruAofpcKCl4VDedUZbvzr6p5eenQd7ynxqngNu2V7Xw0+5kuWFLz8q2H/83/klGV7dp434Jdz9kPuirbtfHZd4YDf/Ld2tcTlrDdXPluAgAAAAAAAAAAzBGE7QAAmNS3uObl6old3lOzgSUoUa1V1bDKbQVPHX3Ye4p3G1mTcI1VbR69A35xxrYybFfXnjHr2/a2t691a6jXM9V20tUGtb98u4qOynZdCrwqGs6pynabjq95+dbDt3hPTclxM+uYuRy2m7+o5uWq/G7vqamoynatuG8nnRu+/5a/ss+ZrjaykvTKa8L3//SHCsaqvp+26nuE7QAAAAAAAAAAAGYUwnYAAEyqC195t15VhyvbldcZL8zm+V6SBgK7c1ObwZj3NO8wYBvDdm2f5yM7df9cn9l3yh16nZXtVFBvMbo971yqbGfqv8O+z5XK98HXdLeR9Wj37Kyq5pqXStW0ko3zOxNZHbAV9y3bbT0UDFlaBzvbyLY5bOf6vXjwzqlta9iONrIAAAAAAAAAAAAzCWE7AAAmLVtT8/K48Se8p3qF7ZoMvzQoV487ZfSn/lN8Q0dJwzCrj6psRseBpnT7VAaUWhuMWbS8uXkbj23dGupVVQY8duxJ67CDQ6WUnbOyXVD0CkqlVJwzle2CA7VV2FoaFKs2GyrbJflMBw9XNnMxQrPRYbsW3Le6Nrc1Du4J3z/ueA+O8F4rmKNPth/cV1U9lcp2AAAAAAAAAAAAswJhOwAAykyqNgjS52jjWS/j04K0RRXRjDFSOqNtYw95z/GubJewjaxpMriSmYawnWkyWGja2EbWVFUsmxfYq9KNlB+3qMp2OZ82skFeSs+NsJ056/Ka13FaLac0iyrb+WhhSMs3rJvuQBtZc/VN9oNjlud9zLH+dlaqlKRL32A9FHzqAwqC8pd4wvIb2KqQNgAAAAAAAAAAAFpiFvxLIQAAHbTmqJqX/7jznZFTUkHer4pbC0Md5sb/JSPpssHbvcZ7t9NsRYhoyarK5q8d+LTXFK/KgFLrK7BtPC7e+C2ntPb6YV791srmKZaw2P/5ZnRlu1RQ8PrcUyrMmcp2Wri05mVvjMp2c62NbKKQVl1A7Pf3fcRrWmRlu1QLKtudfJ792P3fCd/vCttVtW5uB7PmKPvzcmiv9NmPlrYLVLYDAAAAAAAAAACYDQjbAQBQrS4Q11cciJziHRRrZQWlXOlcqwq7IwaW9AQj0vpjogcmrGxXuthUK9ScZ9gpOx1tZKWatq1e2ljVrqJ7Kvwz31Jd8aWDpT9dle265NlGNijMnUBP3XfMO2Qqj6ps1WZDG9kkn2m27j56fo/TUYHFVvy+OH5Hg9s+H37AFrbr7qmpJtk2J7zCeij4xs2lDVtlu7ny3QQAAAAAAAAAAJgjCNsBAOaGay0V6N72e/HO88KTNS83TrwQOcUrKLZgidQzP95aHILhUgjrmcxmr/G5YEza+Wz0wFZU7NqxvbK5vLDPa0rWpw2v1JrKWNUO74833uceJvXy1DN3MLU4dEhPOX/jrGynglbnX468XDrIz53KdivX17z0DYlJMSvbtfo5bIckn+nO7TUvN0087zWtI21kXb9RPfPC99vay7a7heykwUP2Yy8+paBYlPJUtgMAAAAAAAAAAJgNCNsBAOYEc8UNja0VUymZy94Y70Qbtta8PG30wcgpXpXtLrxWpoUBHXPi2ZKkE8Z/5jU+G4xLm0/yOHFr/2pwXf+XvcZNWxvZ0y6KN37rttZeP0xVq9rLhu4IHTIyIQVB4K5sFxS9wqKlNrJzI9BjFq+oed2lQD3FYa+5acUI27X4e9IWST7To46veXn5kKU9a52OtJF1GW8M1QWH9yv4698OH9+psN1Zl7mPj49KBcu9I2wHAAAAAAAAAAAwo8yCfykEACCaOeV8mfd/WuorVwJbuEzmg5+RqQoueZ2nrkJelxxpprJMWDWnbLkVaFeXdNF1Mr/1sVjriLSoFCo6b/hur+GZYELmmndEh11a0R7zdTdVNrdMPOM1ZbrayJorfyHe+Mve1NLrh15j62mV7Tf1f8E6bjwfXdnOnHRO5PVSQWHuVLaTpOVra15+4uX3eE2rrmxn/uqb0tU32QdPextZj9an6eY/U3P82TWvF3i005bKwU3niVvzf3qYd344/MAj99S8DIYHFLznVdL+XeHjq1o2t5O57OfdA1yV79LZ1i4GAAAAAAAAAAAAicyhf1kFABzpzFU3Sq95m7T7BWnVRne7QZvu3oZdG8ef1/PZjdYpYVXZzDf2SC88UVrH/IXx1xElV6rI1OtZtSsbjEu53lKoquAIxLSijWxuqlqUkTS/MKDBVJ9zyrRVtss1ft5OnaiEVRUAygVj1mF7BhRZ2U59i7V4/wEdTC2xjkurMLeqZ61cL+3dUXm5qOAIMlXpmgyKGSOdfrF0z632wbOhjWySQGDIc755fLu2Z91tqyMr27Xi90WS5i+wHgryEzKTz/Pd35S2P2I/T7ZDle2ifjd+7KgcOJe+mwAAAAAAAAAAAHMAle0AAHOKSaVk1hzVXNBOkoLGUmHzgiHnlIag2Dmvlsl2y2w5pT1BO0lasFSStLSw32t4JpgoBT6iwmqtqDw1UBtuWuaxxux0he0WLq15eamlXeYvHfqX0kYnKmFVBXOW5fdZhz21Ryo4K9sVpQVLNGrca55zle0O7K552e0ILFarBMWCQMYYd0BqVrSRTfCZ1rfkll+wNzps16KQYm6e/djzT1Q2g09/wH2eTrWRXbTUeTh44Un7wQyV7QAAAAAAAAAAAGaSWfAvhQAAdFBI29krBm9zTqkP25nzrmzpksKYxcslSeeP+LWRzfqG7VpReWrRspqXrxpy3z9p+irbmdWbal6/ZvBboeOuGfjv0kZHKttNXWND/iXrsLEJqeiqbKeitGCxRrrc1ftSKiRqOTrj7NtZ8/KUUUdlsyr1LVCN67Oe9jayHpJU39tycsOuS4fuiJyWDmupXa1Vle1Ov9h+bLQqFLjrOfd5OhS2M8vWSJtPtA8YdQS6qWwHAAAAAAAAAAAwoxC2AwCgWl1QTJL+974/c07JBuNTLy66VnrdTa1eVbiFy5QLxrQkH105Lt3BsJ055fya13+8948i59TcQ5c2V2B718FP68qBb9Ts+9WDf6+rBsv7OtF20jMA9MzewF3ZLijILFiq6/u/6DxPOsjPrcp2r39Xzcu+4oDXtFRQDtttOr70p6uK4XS3kQ2pPNcgyWfat7hh1x/u+/PIaenA0aJaat19W77WfuzZR/3P04lKlWXmD/6f/eAXPm4/RtgOAAAAAAAAAABgRiFsBwBAtZCg08Jiv1KO9oiZyWPrtsj80b/KdKrt3/FnSpLeOOAOU0nlMFun2sjW3cNlhf1aXDjgnJKerjayklQVDswFY/rSS2/U3c++Un+/89f04PYz9bcv/5a6VC4hl3NXiWuJuvu3Kv9y6LA//XrgVdnu6PFnnJcrVbabO4Ge+tbNPcGI17xKC9TJaodHchvZkPe+uHgoZGCtyDayLbpvpqvL2l41+PQf+p+oU21kJZmt26STzo0/cQ59NwEAAAAAAAAAAOaCOVTGBACAFuiZH7o7FRRUMOH/2UyrHBQ79QKZTla8CkplzbqLo5FDM5qQcvM600Y22914/YgwnX9luzbc32JtebiUijpr9H6dNXp/49je8OejpXr7al4WZa9iFlXZTguWaknhOefluoLC3KpsV/d5VoKSEVIqzyt/r5zV4/Ke4dDplChsFx4q7QoKKhr7dzCyjezS1c2vqV7R8vAPHfY/h+V9ts2KdfHnELYDAAAAAAAAAACYUWZBWQ4AADrHWCqXjXc1BsgmVYJkHWxJKEmaKAXUQkNhdbLBuHTUCZ2pbDfZhrPKnvRK55RMVEhnUlcbwnZxAnSrNrb++vXqWmTa7l1PRl6V7eYFw87LpZWfW4GekLCnj0pVtud/VvrTFYwqeD6v7eLTRjbBd8Wkw38nXEE7KaKy3Yr10tZtTa+pQWAJ202MK7AF8ep1sLKdJJltF8SflO5QpVQAAAAAAAAAAAB4IWwHAEC9485o2HXR0J3W4ZWwXbbDwY2rflGSdPXA1yLHZoJ8qepeVOW6VlS261vcsOuMkZ84p3hXtvMJGcVkXv+r/mPbcP3Qa6w/pvL6D/b+eei45/ZHVLZTQVqwRD1FdxvV1FyrbHfC2Q27Lh+8LXJapSrba95e+nPdllauqvOSfqanXdSwa2l+n3PKZNjOvPujtdfv6pL5tT9r6ffHvOND1mPBL5+j4PD+6JN0OiB9+Q3x58ylICwAAAAAAAAAAMAcQNgOAIA65vzXNew7Z+Q+6/gxU66k1eEqSVpSqng2LxiKHJrtLa8tsrJd8jCMSWca2r2eOvawc05Um9mpk7ch7LZyg9+4Fetbf20Lc/27KtvbHPfOWdkuKFW26wkiwnYqzq1AT0h1yp8b/GrktFRQkCSZ8vdKmVleUSxh2M684lUN+84fuds5pxJYvOIGmU98V3rL70g3vFfm49+RufxNidbT4ORz7ceeekjBx94TfY5OV7brWySdcUm8SbP9OQQAAAAAAAAAAJhj5lAZEwAAWiSkDWVv0d6K8+7eUujDZDtcJakcFDGSeotDGu6aZx2ayZbDb1EBnFZUtpOkbE4amQoBuu6fFKOyXavWV3Nxz8+tk1WwqtbUXRy1Dts3YD9FSgWpb4l6HPOlcjWyuVTZLiRAFfX8SVVBsUz5++9q39m3qJmVdZalFay3kPvoVSWxPNeccJbMCWclW4NLVFDuO/+R/BztsMTdUrvBXArCAgAAAAAAAAAAzAFUtgMAoF5IGOK00QcjpwWDh9qxGrvNJ1Y2XUE7ScpmyhXhIivbteivBiO11faWFdztJ70r26kNle3WHOU3rpPBnHVHVzZXFPZah73cby9t15XJSPMXKhdZ2a4wtwI9a49u2OXz/Z1sgVqpJLZkpbR6Y+PAbLd0zmuSrDA5nwqPSQOUIc/7ttGH3JdUuTpgb1+ya/vYdHziU5hpCNuZrdv8B3d1za0gLAAAAAAAAAAAwBxA2A4AgHpnXtaw65LhOyOnmbMa57WTmbegsn3joc84x2YzHa5sV2fL+DPO41nfsF0b1md8g2adDOaceE5lc/P4s9ZhQ2P2U6SyWRlj/KqRzaFAjwmpQHjy2COR8yphu+POKJ3HGJnXv6tx4JU3yvS4w60zQhvCdj/f/wXnlC45+hq3mOmdn7zFaierVU669I3+Y7t7ZNrROhsAAAAAAAAAAABNI2wHAEC9qhDbpJ7A3YqzNG9hGxYTYeNxkqS3Hf6cc1imuxwo61RluwuurnkZFbarVLarqtYXql3Bk2Vrosd0MmxXFSLqcVSm++Yjjsp23aV2qD3rNjgvlTbFuRfo6Vtc89JIes3grc4pKRVLG1Wfs7nht2Te93fSqRdIx50h8z/+WOa9f93q1bZHKpVsfsjzviH/UvS8clixE8z7P53sBNlpqGy3Yl2c0W1bBwAAAAAAAAAAAJozd8qYAADQKs2GqqahJaF650tSZPWybLbDle3q7sUx4087h2eDcen0i2Vu+kMFv+GoENiqMGC9nMdnl+1cFSxjjIKeedLIkHKOoOfXLQXbTFCsVHjryUqTObIwKdO5amQdk+uVBg7W7FqWd7cyrlS2q3t2zTW/LHPNL7d0ecl5hLC6kobtmnzeO/k7mLTCYNLKeM1aulravyt63Mhg+9cCAAAAAAAAAACAWKhsBwBAHdNs4CxWxaIW6T8gSTpq4nnnsEx3OWQXFS5pVZjt0N6alwuL/c7h3cFYKaQTdf02tbn1qnDV6TDlyJAkd6zKVpAupUIpcCZpfbf73meMI4k3W+3d0bDrQGqJc0pa5bDd/EXtWFHnJW0ju/bo5ub97P5k141jzeZk89cf05p1xLWuyXsLAAAAAAAAAACAaUfYDgCAFjF90xDSOfe1kqSVhT3OYdnJNrJR1apaFGYzZzZWpztr5EfW8blgtBy2i6jY1a52pz5BuumoXBghsBSl6wqKlfUuiPjIe8x4i1c1Ayxc2rDr8qHbnVMmK9uZ9Bwp/JwwbGeaDaKtOSrRdWM5+iRp0/HNzV29STr+rJYux5e57I3Tcl0AAAAAAAAAAAAkR9gOAIAwJ50bb3y2uz3riGAue1Nl+5TRh63jMt3linZRgbFWVbY76ZyGXX+094+twythu6iwX7vayHqF7TrXRlaSdN6Vlc0/3fOHsaamVJiq1tfdo5t3/JJ1bE9XvqnlzWTmTe9p2HfmqLviWirIT1+ls3ZIWtlOktKZ+HMu/Lnk1/VkjJH52NfiTzzhbJm/vlUmlbDVbrOu/ZXpuS4AAAAAAAAAAAASI2wHAECYnnnxxi9a0Z51RKkKia3I26vbdU0GxaLapbaqTWtIeC0b2CuopYJCKcwWFaZrW2U7jyBdpyvbldvAStL84lCsqV0qTr2n7l4tK+yzjp2Tle2yjZ9nT3HUOSWlwuxpIevzPWhF2G7VxthTjE9L5hYyy9dKb32f/4TTLlLXp78vs3pT29YUxRgjvfHd03Z9AAAAAAAAAAAANI+wHQAAYQ7vb9h1+sgDoUPfc+Djna96Nmnx8srmGwa+FDpkeX6PtOfF0ouDu93n62pRpacljeHDdRM7rMPX5XdIB/dOX2W7xSujx4Q8E50yZrKxxpfCi5OV7XLqKY5Yx6bn4t8GxxuDdVGtltNBfka2Cm5aK8J2+3Y27PrN/X8TOvSVQ98vbUxDlU8T8ntjH9ymwG5MZonHb86lb2j/QgAAAAAAAAAAABDLXPznVQAAklu2umHXrx38dOjQXzx0c2glrU4wy9ZUtq8a/IZMUGwY89rBW6XF5TDKvIXuE7aosp1ZuaFh39ET27V17MmG/VvGn9Yx40+XAnpRQZg2BWXMOa+OHrRiXVuubWNOOb+yfcroT2PNrQmOdfcoF4zZB7eqmuFMsvnEhl1r8rucU9IqTF9oth1a0SI1CBp2XTX4jdChlf3TEVj0+f5OWrO5feuIw2PN5twrI8cAAAAAAAAAAACgs+bgv64CAJCcufLGhn2/cPizuvHQZ2r2/eXLv6NTxh6Z3opYJ5wtSVqdf1n/svMdSgX5yqHTRx7QR/f8vsxpF0qSzHkR4Y1WVo6ruydG0r/teLuW5fdW9i3L79UtL71NRpI5/ZLo67crGHbJ9ZFDzImvaM+1bS78ucpmVFCsXlq1YTujxtDUpLCA5qwXEvaUpLcc/jfrFCrbNTI3/q+GfZcM36kP7P2zmn3X9n9Z7znwd6UX03APzYZj/cde8vo2rsSf2XKKzLs/ah/wupukV725cwsCAAAAAAAAAACAlxb0lwIAYA7K9TbsSqmof9j1K/r9ff9Hj3afqFeM3KdVhXJb1ukM6WzdJj12nyTpLf3/rlcN3aYf9J6vtRM7dProA0qpKKUzfutsZZjtuDOkh35Qs+vUsZ9q+9PH6a7ecyVJ5w/frd6g3OK0OzdtbWRNV5eCo06Qnn3MPijkmWirqs+qJ7C3gQ2TDqaqtJmIzzw4uC/+2mY6S4W600Yf1L8uDA8w1bTenel8Kjy2oo3s/MZKmEbSh/b9id5x6J90T88rdOLYYzp+/GeqrGi67uFr3iZ987PR4zr9PXYwb3qPdOkbpYfvkoYHpInx0v075Txp7dEyM6TlLQAAAAAAAAAAAKYQtgMAIEy2O3S3kbRlYru2TGyvPTCd7SfrKpMtK+zXtQNfqR0zGbyJWmcrw2zzFoTu7g1GdMXQdxoPpDPR129n+CSkZWaNToeIcvMqmwuKA7GmZoIJKVtab/DS01qZ320du37ixebWN5NZ2iWngoJ1ysvpVdLEU+1aUed1taCNrOOZX5/fofUDX2w8MF0BMcvvTYMZFqg0y1ZLl75hupcBAAAAAAAAAAAAT7SRBQAgzKYT4o2fxgCHWbY2etA0VLabbF3rbdMJ0UGddrWRlaS1m93HO/wZm6rA59LCgVhz08pPBUYP79f6/A6dOPpow7j1Ey9q29hDidY5E5mlq0L3nzb6oHXOuMlKB/daj88qXV0yrfiunHJe/Dkbtia/bhPMaRf5DczOrLAdAAAAAAAAAAAAZhfCdgAAhOlbFG98dhor2513ZfSYSmW7iBaKraxsd+WN8cYvWOJx/fZVzTI3vNc9YJpDOpvHt0cPKksHeZl0tvSiHBL8yJ7fV644UjVmQh/b/XttvKMzz9bxp63HjAKZS6/v4GoSiAqltqKFrCStiQighlmysjXXjuvc1/qNm84qpAAAAAAAAAAAAJj1CNsBABDCpDNSKkYbxukMYs3rix5TCdt1sLLdgiVS32L/Cd09Utc0VrZbvcl9fDpCOsefWdl83cDXvKelg7yUqQ3bvXroNt377AX68J4P6oN7P6x7nn2lrhv4ckuXO6OEVCpMyd5G1iiI97zOZC0K25muLmtLbatcRKC3TUy2W+aDn4keOMPayAIAAAAAAAAAAGB2aVHZCwAA5qBMt1QY9hybae9aXKKq1UlSuvyf/FznwnaSpEXLpIGD0eMyWZmuLgVRFbtaWXmvXlRIaDpCRJmpoFN3MOY9La1CpXWw2bBVQXn/ieOP68T9j7dyhTNXpjEk1hUUrcONgrkTxOqKERSOkumWxv2fvWkNHvctjB4zTWFAAAAAAAAAAAAAzA1UtgMAwGbUM2gnSTuead86oixdFT1mMgCz9mj3uHVbkq+n2p6X/MZNBqOiwnRRYbwkFiyxV7dbsV5avKJ917YZ6q9s7sis9Z5WU9nuyl9o9apmh+caQ4WRle3mSovRVoZmq57BSKm0THoa/395tp7m/o1Yf4zMvAWdWw8AAAAAAAAAAADmHMJ2AADYrFjvPdSc/7o2LiTi2sZ4tEAthe1M2l2BL+p4bNe/y2/c5HWjQkJtbCNrjJF583vDj93wm6X73GHm2ndWtl8z+C3veSlNhe3MsjXuwRdM37PbVpe+oWFXKogI22VnS9gu6lls4bO6Yav/2GmuDGgWr5Be83b78Z//zQ6uBgCA/5+9Ow+z9KrrBP49VdV7d/ZOOk12spBASAiLgbAm7MhiDMIICo4OoojKICMgIIoo4jrOiKKjgDqgoiCLgmwyLBKWsCRsIfva2ZdOr9VV9c4f1Z2u6rrvvbdu3aXq1ufzPPepW+d33vf8qrq6q5L7rXMAAAAAgGEkbAcAdZ50YftzDz+6d320obz4Nc0nDCgEU855YnsT94XtWh4T29vAW/mRl6e86T3JuU9Pjnlgcu7TUt7wrpTnv7Kn69Y69WH3Pz1s8q62LxurJpKxlfsHmu3Kd/zpnXS26JWHnjdnrOnOdlU12CNQu6mbodTHP6/9uYvgGN7yq3+e8vK3Jg89b/rv8DEPTB79jJRf/9uU5/63QbcHAAAAAADAEjfAc54AYJGbT3Bk0MdPtgoJDaq/dj+H+4JhrXaP6+HOdvuUp7ww5Skv7Pk6bZmx09qaamfbl806RjZJ1qxL7q6Z3IfP6UA0+NprubPdIgiLdUUXd2Esq9akanfyIvj8ldHR5EW/kvKiXxl0KwAAAAAAAAyhIX11FQC6oOUuazMMOmRy7CnN66vX3v+0vOqPG8+58OVdbGivY05ub97Y3vx/q+DXfP5MhsGMkOQp41e1fdlYDtjZ7uZr6iePjHbS2eLX4O/ESKaaX7NyZfP6YtEyTNfFHSBb/dsy06BDxwAAAAAAANBjy+wVawBoX3n009ufPOiw3emPaF6f2d9jn52sWT+7PjKScsELut5WOaLN43XbPUa2izt2LQkz/tw2T2xp+7KxanJ2cOy4U+snD+vOdg8+d85Qs2NkRzK1/+twqevmn+kPPbX9uavWtp4DAJMLjsUAACAASURBVAAAAAAAS9iQvroKAF1w5DHtzx1w2K6MjDQPCs04ZrYceUzKH30sOeWs6fDaMSenvPn/pjz0Mb1prp3P4/1hu8EfI7uoHPB1tWnilrYuG6tm72xXnvXS2rllSHcLLGNjybqDZo81m58qGR2SsF03j5Fdf/D0McTtGHToGAAAAAAAAHpsOF9dBYBuWD2PXZpWLoLjE486tr62ctWsd8uDH5WRv/5Kyifvycj7vpPypAt719dhR7Wesy8Y1iL4VZbxznZJsmni1rYuG8tEsmLGznbNvpaHOcDYbEe/A5RUw7OzXTePkU2SU89pb55jZAEAAAAAABhyQ/zqKgAs0JoN7c9dDCGTJ13UePywTbUhtdKPvm+7qfWcfSGnYQ5+deKAEOcNYw9o67IDd7bL+K7audXkREetLQk3Xd321Ofc95GlE7br9w6Q7f47sRhCxwAAAAAAANBDXtEGgBplbKz9yStWtZ7TY+W8ZzUunPfM/jZyoEM3tp5z/zGyfjSZqRwQmjps8u62rhurJmbvinfqw+on7xnvpLWlYee2OUM/ffe75owdNXFrHrfji0snbNdKt3eAbPd42Jm7KQIAAAAAAMAQ8oo2ADTz7P/a3rxFEDIpDzk35RfePjtoc9ZjU17xu4NrKkm58OdaT7o/bLfMjoltx/Nfef/TX7z7T9u6ZCwTs3cjO7TJUb4TQxy2a/C193u3vTaP3fGF+98/fOKOfPiGCzOaKWG7Ou2G7UaH5PMHAAAAAAAANeaxZQ8ALD/lyGNTtTNxbPBhuyQpL/il5Bk/kXzny8nmE5PjTqs9QrZv1qxrPccxsrXKxs33fw2un5q7U1sjc3a2W9Vk58Xx3Z03t9itXjtn6KCp+/If1z01P1h5Su4YPTyP3HlJVmbPdHFYwmLd3iHSznYAAAAAAACQRNgOAJobGW1v3iIKmZSDDkse/YxBt7HfuoNaz3GMbL2JiXlfMpbJZOWMne3WHVw7t2w+sZOulojGQdOS5LTxK3JarphdGG3z7/ugtQrQdjtg2+7nZVh2BgQAAAAAAIAaXtEGgGZOe1h780bl12ud9djWc+xsV++Io+9/etruH7R1yVg1MSsAWg4+PDn5oY0nn/u0BbW3mJW6j7mRsRWD3wWyW7r8YZQHPaK9iWP+HQQAAAAAAGC4eUUbAJo57ZzWc1asHJ6QTg+Uee1s5/M4xwmn3//06IktbV2yotozZ5ex8kt/mKxZP3vii16THHfagltctB78qPbnDtOubN3eIfJxz2lv3iI5ThsAAAAAAAB6xfYTANDMqjWt5wiYtHbokcndt9XX930OHSM714yvwTXVrrYuGa0mktEDwnZnPy5591eT//xYqnvvTDnnicnZjxvuoOjqte3PXUJhu1JKquYTurvg2g3tzVtCn0MAAAAAAADohLAdADTTTthuhbBdSytWNa87RrbejMDY6qn2wnZjmWgYfCqbT0ouekW3TxldvFbNI2w3TEdBdzts1+6/cYLHAAAAAAAADDmvaANAE6Wd8JeASWvHtziqdGxf0GnZxMDat+n4+5+ur7a3dclYNSG4mKSsbBHynGl0iHZl6/IOkW3vfmhnOwAAAAAAAIacV2EBYKEETFoqL35N8wl2tqvVVuDzAGOlGu7jYefj2FPamzdMf4978Wd/0GGtl7XLJwAAAAAAAEPOK9oA0Mo5T2xeXzFEIZ1eOfvxzev7dgfs8o5cw+jNt/9myzljI1UfOlkayjN+sr2JY46Rber8i1rPGabAIgAAAAAAADTgFW0AaGXl6uZ1x8i2VEZGkmZHetrZrm1rpna2nDNWhO3ut6rF3999hiko1ovQ6qo1reeMDlFgEQAAAAAAABrwijYAtHLCg5rXm4XI2G98d31tX9DJ0aeNPe459z990PjlLafb2W6GE05vb95Qhe26//eoHHpk60mOkQUAAAAAAGDICdsBQAvlyS9oPmHV2v40stRtPrG2VPbuDliE7RoqT3/x/c/P3/7ZlvPtbDdDqyOM9xldYmG7Zn9XevH36Ek/2nrOMAUWAQAAAAAAoAFhOwBooZx2TvMJ7R5TucyVH391fVFIp6ny+Ocme3cWW1Ptajnfznb7lZWr2jueeJi+BntxjOym41vPcaQ2AAAAAAAAQ07YDgAWatWaQXewNDT7PI2O9q+PpeqZL2l7qrDdAY45ufWcoQrb9eAY2ZGR1kdmD9PnEAAAAAAAABoQtgOAdpxydn1t4+b+9bGUTU3Vlqqd2/vYyBJ15y33P/2hHV9uOnVMdnG2yYnWc4YpKNar45jHdzevr7CzHQAAAAAAAMNN2A4A2lBe+fb62mOf3cdOlrBmx/FOTfavjyWqnPCg+5+/4Y7faTp3rEdZqyXrEee3njM21vs+uqlZoK4Xx8gmybGnNK8PU2ARAAAAAAAAGhC2A4A2lIc9IXnWS+eO/+xvpZz79P43tBStP6i+Nils19KJZ9z/9BnbP9F0qmNkZysvfFXrSaNDFBTr0c525ZW/13zC6BILLAIAAAAAAMA8eUUMANo08tp3pvrF308++ffJxgckZz8uZe2GQbe1dKxcXV+zs11rB3z+ztj93Xx31RkNpzpG9gCr17WeM0y7svXqGNkNhzavO0YWAAAAAACAISdsNyCllJOSPDLJI/a+PSfJzMTGdVVVndDhvRe6nc2JVVVdu8B7AAylsnZD8tz/Nug2lqYmwcRy6tl9bGSJWjM7MLZ1pH6nwLER58jOsq7Jror7DFXYrkebVx/UImw3TJ9DAAAAAAAAaEDYro9KKU9M8rpMB+wOG2w3ANBfZdWaVGc/Pvnm52YXRkaSRz1lME0tJSc+eNa7N644pnaqne1mK2vWpeVvIiy1oFiz3et6tbPdsac2r69a05t1AQAAAAAAYJHo0bYX1Dg7yVMjaAfAMlV+6Q+TQzbOHnv1/0o5yLfGllavnfXui+59b+1UYbsGfvTnm9dHh+h3UHoUtiulJI98cv2EVWvrawAAAAAAADAEhuhVxSVtd5IbkzywB/f+cpIXzvOaG3vQBwCknHxm8jdfT778yeS+u5JHXJBy4hmDbmtJKCMjs3Zn2zRxS+3cMb9OMUd58A+l+ud31E9YajvbNdOrY2STlEdekOqrn2pcXLW6Z+sCAAAAAADAYiBs1397knwnydeSfHXv28uSnJfkP3qw3q6qqq7twX0BoCPl0COTp79o0G0seaPVZG1tbLRHx4guZWvWNa/fc3t/+uiaARwjmySHbaqvtfocAwAAAAAAwBInbNdf70ny51VV7TqwUHr5oigAMHS2jWyorY2N+blijgf/UPP6zu396aMfevlz5aOeMn3/qpo9fvTxyeFH925dAAAAAAAAWAQcMtZHVVXd3ShoBwDQlp96w/1Pn7z9M7XT7Gw3Vzn0yOT8i+onTNbvFLjk9PIY2UM3Jhe94oDBkvJTb/TLIwAAAAAAAAw9O9sBACwR5REXpHrXbyVJ1lQ76ueNjvarpSWlvOFdqT7zT42LkxP9baaXehx6K6/8/eSUs1Nd/PFkzfqU8y9KedRTeromAAAAAAAALAbCdgAAS8WqNfc/XT1Vv1luNbKiH90sOWXFylR1xakltrNds0Bdr8N2pSTP+ImUZ/xET9cBAAAAAACAxcYxsgAAS8WxJ9//9KG7v52xas+cKaPVRM5au6WfXQ0HO9sBAAAAAAAALQjbDb/jSinvKqV8p5RydyllvJRy6973/66U8rJSymGDbhIAaK2s3ZAcMx24O3hqa16w9f1z5ly09QM5eOUS26VtMRC2AwAAAAAAAFpwjOzwO3HvY6Yj9z7OSPKiJH9YSvnLJG+sqmpbL5oopRyZZOM8L3tgL3oBgKWsvPHdqX72sUmSv7z553LExB350IbnpErJc7d9JG+79deSsZ8bcJdLkGNkAQAAAAAAgBaE7UiSdUl+OckzSykXVlX1nR6s8fNJfr0H9wWA5WXdhvufrsye/MFtr80f3Pba2XPGVvS5qSFgZzsAAAAAAACgBcfIDq+JJJ9N8oYkz0lyTpJTkjwsyXOT/H6S2w645tQknyqlHN+/NgFgtvKytzQuPP3F/W1ksTr86NZzhO3qPfS8hsPlZ36jz430UPEjPgAAAAAAAPSCV+KG0xuSPKCqqidVVfXWqqo+UlXVN6qqurKqqm9WVfXhqqpek+T4JG9LUs24dlOSD5RiSxQABuSJP5KMzt18tzzxwgE0s/iU9Qe3niNsV6s8+QVzB9esTx7+pP430yt+jAMAAAAAAICeELYbQnsDdgfuWtdo3q6qql6X5JUHlM5J8l+63NY7kjxkno/ndrkHAJaAcuwpKW95X7Lh0OmB1WtTXvG2lPOeNdjGFpOTHtK8PipsV+t5L0te+Kr9u/8dfnTKH3w0ZcMhg+1rvpoF6oTtAAAAAAAAoCfmbhvDslNV1Z+WUp6a6eNm9/n5JO/t4hq3Ze6xtU3ZXA9g+SqPe07ymGclN16RHH1iyspVg25pcTnyAcnV366vj/kRr04pJeUVb0v1029KbrsxOfaU4fuZwzGyAAAAAAAA0BNeiWOf3zng/XNLKUtsixcAhkkZHU05/kGCdo0cfETzumNkWyqr16Ycd+rwBe0SO9sBAAAAAABAjwjbsc9Xktw94/3RJGcMqBcAoInyyCc3nyBst7wJ2wEAAAAAAEBPCNuRJKmqairJ9QcMbxxELwBACxc8v3l91DGyw69JoM4xsgAAAAAAANATXoljpp0HvL9mIF0AAE2VsRXJC3+5foKd7ZY3O9sBAAAAAABATwjbMdMRB7x/x0C6AABaW72uvjYqbDf0mgXqhO0AAAAAAACgJ4TtSJKUUo5IctIBwzcPohcAoLWyem19cZXNaYdes90LHSMLAAAAAAAAPeGVOPZ5YWZ/Pdya5HsD6gUAaGXV6s5qDIexlfU1O9sBAAAAAABATwjbkVLKUUnecMDwR6qqqgbRDwDQhpXNwnZ2tht6K4TtAAAAAAAAoN+E7YZIKeW0Usqz53nNpiQfTXLUjOHxJL/Tzd4AgC5rtrOZsN3wW9HsGFlhOwAAAAAAAOiFsUE3sNyUUo5J48/7pgPeHyulnFBzm21VVd3RYPzoJB8upVyW5O+SfLCqqitq+tiQ5CWZ3tHuqAPKv1VV1dU1awMAi8Hpj2g8PrYiOfGM/vZC/zULW476ER8AAAAAAAB6wStx/feFJMe3Me8BSa6pqb0nyUubXHtmkt9N8rullHuTfDvJHUnuS7I+ybFJzkrjP/+/qKrqLW30BwAM0gmnJ2c/Pvnm52aPP+1FKesOGkxP9E+zY2RHm+x6BwAAAAAAAHRM2G74HZzkvDbmbU/yqqqq/rLH/QAAXVBKSX73g6ne+YbkK59IVq5OHvfclJf+2qBbox9WrKqvjY72rw8AAAAAAABYRoTthsv3kvx2kickOSfJmjau+UGSdyf5y5qjaQGARaqsXZ/yqj8edBsMwrZ76muXf71/fQAAAAAAAMAyImzXZ1VVndDDe9+a5NeSpJQykuSUJA/M9JG0hyRZnWRnkruTbEny1aqqbu9VPwAA9MhNV9fXrry0f30AAAAAAADAMiJsN6SqqppKcvneBwAAAAAAAAAAAAswMugGAAAAAAAAAAAAYLETtgMAAAAAAAAAAIAWhO0AAGCpueDH6muPfkb/+gAAAAAAAIBlRNgOAACWmPLEC+trL39rHzsBAAAAAACA5UPYDgAAlprHPzd55AVzx897VspJD+5/PwAAAAAAALAMjA26AQAAYH7KyEjyB/+aXHlpqrf9bLJzW8pb/j7lgQ8ZdGsAAAAAAAAwtITtAABgCSqlJKeclfJXFw+6FQAAAAAAAFgWHCMLAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALYwNugGArtt9Z7LjxmRqT7LhlGTlwYPuCAAAAAAAAACAJU7YDhgeu+9MPn9RcttnZ4+v2Zw8+4pkbO1A2gIAAAAAAAAAYOlzjCwwPL7wgrlBuyTZeXPyxRf2vR0AAAAAAAAAAIaHsB0wHHbdkdz6mfr6TR+ZPlYWAAAAAAAAAAA6IGwHDIcdNySpWsy5sS+tAAAAAAAAAAAwfITtgOEwuXPQHQAAAAAAAAAAMMSE7YDhsPX7redMjfe+DwAAAAAAAAAAhpKwHTAcrvuH1nPu/Frv+wAAAAAAAAAAYCgJ2wHDYfXG1nOqyd73AQAAAAAAAADAUBK2A4bDTR9tPefilyS3/2fvewEAAAAAAAAAYOgI2wFL35X/J9lzb3tzP3lecvPHe9sPAAAAAAAAAABDR9gOWNqqqeTSN87vms8+oze9AAAAAAAAAAAwtITtgKVt29XJrlvmf1011f1eAAAAAAAAAAAYWsJ2wNK2577OrttxY3f7AAAAAAAAAABgqAnbAUvblo93dt11f9/dPgAAAAAAAAAAGGrCdsDSVVXJt17f2bXf/NXu9gIAAAAAAAAAwFATtgOWrq2XL+z6nbd2pw8AAAAAAAAAAIbe2KAbAGhq27XJHf+ZrD0mSdk/PjWeXPkXC7v3+F3JmqMWdg8AAAAAAAAAAJYFYTtgcdqzLXn/hs6vf9jvJZe9OZnYXj9nYlvn9wcAAAAAAAAAYFlxjCywOH1w08KuP/1XkqdenJz4k/VzLvuNha0BAAAAAAAAAMCyIWwHLD7VVPMd6VpZdfj020Mekpz77sw6fnamWz/T+RoAAAAAAAAAACwrwnbA4rNn68KuP/jB+5+XkqRqPG/FAo6pBQAAAAAAAABgWRG2AzpXVcn3/yj56BnJBzcnF//0wnak23fP775tYfc46b/Ofv/IJzSet+u25J+PTLZ8YmHrAQAAAAAAAAAw9ITtgM5d/ifJ1/97svV7yc4tydV/nXzuwgXe838m3/3dzq5dcVDyqHcmJ71k9vgZr6u/ZvftyX88Lbnjy52tCQAAAAAAAADAsiBsB3Tu6r+aO3bLJ5Lt13V+z6v+T+fXPvuK5OSXzR0fW9P62mv/rvN1AQAAAAAAAAAYesJ2QOfuuazx+JV/0dn9qiq59zud97PikMbja49tfe2tn+18XQAAAAAAAAAAhp6wHdB9u+/o7LrJXa3nPPxPGo8f+fhkdGXj2voTk0POWvjaAAAAAAAAAAAsW8J2QPdtu6az6675m+b18z+ZnPoLydFPm1t7/IebX/uEDzWvb7uyeR0AAAAAAAAAgGVtbNANAEPolk92dt2lb6ivPet7ycEPmn7+pI8ne7YmN/1rsvG8ZN1xre+97vhk3QnJ9mvr50yO1++OBwAAAAAAAADAsmZnO6AzU5P1tZWHzv9+E9ubHz+76vDZ7684KDnhv7QXtNtn87Oa1+/9Tvv3AgAAAAAAAABgWbGzHdCZqd31tTI6//vt2VZfG1mRrN44/3se6AHPTq740/r6xPaFrwEALA+7bktu/niy9XvT7x90WnL0M5I1Rw22LwAAAAAAAHpG2A7ozOSu7t2rmkr+9fT6+mP+b3fWOfopyckvT67888b1yZ3dWQcAGG73fjf59PnJrltnj6/amFzw6eSQMwfTFwAAAAAAAD3lGFmgM90M2932+WT87vr6xsd2Z50ykjzyHfX1yR3dWQcAGG6XvGpu0C5Jdt+efO0X+98PAAAAAAAAfSFsB3RmqlnYrprfva55T/P62Lr53a+ZUqZ3nWlkws52AEALU5PJ7Z+rr9/xxWRyvH/9AAAAAAAA0DfCdkBn7vhKfa2aZ9ju6nfV18Y2JCsOmt/9Whld03jcMbIAQCvVRPMdfqf2JFO7+9cPAAAAAAAAfSNsB3Tme79bXxu/q3vrPKzJOp0aE7YDADpUTbUxZ7L3fQAAAAAAANB3wnZAZ5rt6DIfu+9sXj/+x7uzzkx2tgMAOiZsBwAAAAAAsFwJ2wGdWXV48/rE9vbuc8unmtdHV7V3n/kQtgMAOtXWznZtzAEAAAAAAGDJEbYDOnPQg5rXd9/R3n12bmleH13d3n3mQ9iOxWZqcvoBwOBNTSYTO5LJ3cmercme+2bXHSMLAAAAAACwbI0NugFgSE20GVzbc2997YzXdqeXA42ubTx+3xW9WQ/qTOxMvvYLyY0fnA5mPODZySP/PFmxftCdASw/E9uTf6z593f9Sclpr0pO+4U4RhYAAAAAAGD5ErYDOjOysnm93V3iLntzfe3s32m7nXkZq9nZ7vr3J1N7kpEVvVkXDnTxS6a/7va59v8mu+9MnvSxwfUEsFzVBe2SZNvVySWvnA5DP+DZre9173eTtQ/oXm8AAAAAAAAsCo6RBTrzyHckL2gSqGsnbLfrtu71Mx/Njn+7/Qv964Plbfze5IYPzh3f8vFk5y397wdgOWv3Z5Kr39PeMbLX/f3C+gEAAAAAAGBRErYDOjeyKklpXGsnbHfvd7raTttu+VR97Y4v968Plrf7rkiqica1u77e314Alrsb/6W9eVu/194Rsde8e0HtAAAAAAAAsDgJ2wGdKyUZXd24Nrmr9fXbru1qO23bcHJ9bWq8f310w84tySX/PXlvmf349lsH3RmtTO2ur7UT5ACge/Zsa2/erluTfzuz9bxqKvn3RycTbfzyAQAAAAAAAEuGsB2wMKNrGo+3s7Pd9mu72krbDj27vrb9uv71sVC770w+9YTk8j+aW7v0Dcmlb+p/T7Rv+/VNatf2rQ0Aknzj1e3P3X1He/PuvDj5x7XtHTsLAAAAAADAkiBsByzMUgzbNXP9+wfdQftu+Ofpo0jrfPst/euF+bvyz+trV7+rf30ALHe72gzPderOr/T2/gAAAAAAAPSNsB2wMCvWNx7fdWvra5vtInfkEzrrpx2bf7i+tvExvVu329p58b7dY/Hov7qgapKs3tS/PgCWu7su6e39v/v23t4fAAAAAACAvhG2AxZm3QmNx5vtuLbP1u/V105+WUfttGXzM+prO27s3brddvO/tZ7zyfOS95bpx1denmy/ofd90Z77rqyvVXv61wfActfOLwgshJ3tAAAAAAAAhoawHbAwG05pPN4qbDd+T7Lrtsa1VYcnx71gYX01M7oqOfxRjWv3fie576rerd0tl/56snNL63n3XLr/+ZXvTD50XHL3N3vXF+2Z2Jlsa/J11s4xzAAs3K47kotf0ts1dt6UTO7q7RoAAAAAAAD0hbAdsDCdhu2++7v1tfM/k4yMdt5TO5qF+b79lt6uvVDbr0++/ZudX//N13evFzpz1f9pXp8QtgPoiyv+rHn9se9PzvuH5Jw/Tk55Refr3Pihzq8FAAAAAABg0RgbdAPAElcXtttxYzKxIxlb27jeLIy3/oQFt9XSioPqa7d+uvfrL8St/7Gw67d8LKmqpJTu9MP8bbumeX1yR3/6AFjubvpI8/pxF+1/vvOW5Io/7WydWz6dHN/DXXsBAAAAAADoC2E7YGHqwnbJ9DGZh5zZuLbnvvrrmgXhuuXIx9fXxu/t/frt2LMtue59ycT25KDTk/G7p8evfOfC7z01Pn2cLoOxp8XXmGNkAfpj25Xtz12zafrnnla79zZy3XuTR74jGfGfXwAAAAAAAEuZV3uAhVl3QlLGkmpibm3rD+rDdrd8ovH4EY/pWmtNHXRqsu74ZPt1c2sT9w1+57cbP5x87rm9u//kTmG7Qbr7683rjb4uAeiu8bv3B9kbWfOAuWNnvy35wgsa/9zTzMT25O9XJD/8g+SgJr+oAAAAAAAAwKI2MugGgCVuZCxZf2LjWt3OL7d/qf5+xzxn4T2169z31Ndu/GD/+jjQ+D29DdolyS2f6u39ae7ubw66AwC21AT/91l/0tyxYy9MnvLF5IxfTY69aPpxxuuSp301ecGu1mv+64M66xUAAAAAAIBFYaA725VSSpLXJFk9Y/hvqqq6doH3PTHJT8wY2lFV1e8v5J5AE3VHqtWF7W7+aP29Rtd0p6d2jK2rr93wL9MvqA/CTR/p/RpbPpEcd1Hv12Gudnet23V7snpjb3sBWM46OQ42SY541PSjkTN/M7nsTfXXVlPJ9huSdcd2tjYAAAAAAAADNehjZH88yduSVHvf/8BCg3ZJUlXVNaWUM5Pcn5QppVxdVdUHFnpvoIENpyb5t7njdS9i79xSf6/DHt6Vltpy8On1tWbHyvXSrtuTb76us2uPe35y/fvbm1vt6WwNFm7nLe3N23Z1suqIwR5nDDDMJnZ0/56HndN6zl1fFbYDAAAAAABYogZ2jGwpZSTJb+57N8kVSV7SxSVemuSqvfcuSd7axXsDM204pfF4Xdjuhia518PPXXg/7Wq2s92O6/vXR5Jc/e7kvSX5wJHJzpvmf/2Kg5Mzf6P9+RM7578G3THZZrjjE+cmHzouueKdve0HYLnac0/373nU+cnBZzSfs6OD7/MAAAAAAAAsCgML2yV5cpITM72rXZXkdVVVdW17iaqqtid57YyhU0sp53fr/sAMdWG7Xbcke7bOHrvnsmTPvY3nn/iTychod3tr5cw3Nx6/59L+9XDb55KLf2p+16w+Mll9VLL2mOTYi5ILPjO9U98Ldidrj2t9/fX/0FmvLNxlv9l6zj47bky++vLpY40B6K4r/qz79xxbk1zw2eZzLvnF6eNkAQAAAAAAWHIGGbZ78Yznl1RV9cFuL7D32NhLZgy9qNtrAKkPc8IFfwAAIABJREFU2yXJfVfOfv/6f6qfu3pTd/qZj2a72239QX96uPrd85s/ujq58NbkwluS592QPO79+4+tG12ZPO+65Mer6ccZv9r1dlmg2z47/2uEIwG6a3K8d/devTE58onN59x1SfM6AAAAAAAAi9Igw3ZPn/H8r3q4zr57lyTP7OE6sHytPTYZWdm4duBRsnVHyybJhgd2r6d2rW+y5oFBwV65+l3zm9+s5wPt3NJ4fPWR81uT7hldM/9rrvv77vcBsJzturW39z/mec3r/foZAwAAAAAAgK4aSNiulHJ8kiNmDH20h8vNvPeRpZRje7gWLE8jo/UBsAPDdduvrb/P5h/uWktt2/SU+trk9t6vP7l7/tcc/8L25x7x6Mbj43fPf10WrqqSyZ2D7gKAdv4tLqXz+x/z3Ob1+exYOrkr+davJR9/RPKhE/c/PvzA5PMXTR9HDwAAAAAAQF8Mame7s/a+rZJcVVXVTb1aqKqqG5PM3Dri7F6tBcta3VGyl75x//M9W5M7vtR43sbHJms3d7+vVlasr6994cd6v/7nL5rf/NNelTz49e3PX39S4/GpPfNbl+4QtANYHLZ+v7f3X39Ccv6n6+s3fii5/v2t71NVyecuTL7z29NHz26/dv9j29XJDf+cfOapAncAAAAAAAB9MjagdTfOeH5zH9a7OcnJe587OxF6oS5sN9PNH6+vHXVB93qZr1Ubk923N65N7kpGV/dm3a1XJDe32Njz6ZckZTQZW5esOz4ZWTG/NZodWXrvd5ODz5jf/ViY2z4/6A4ASJKr/qr3a2w6Pzn0Ycnd32hcv/xPkuOe3/weWy9Ptnys+Zyp3ckVf5Yc+fjO+gQAAAAAAKBtg9rZ7tAZz2/pw3oz1zikD+vB8tMs1DU1Of32rq/Vz1k9wBxsXdAumQ6k9cpdl7Sec9g5yaFnJRtOnn/QLklWH9Vk/ZoX/+mdbVe2ngNAH1Stp5zwEwtfptnPN3d+tfX1zX52mu+9AAAAAAAAWLBBhe1W9rmHmWus6sN6sPwc8ej62tSu6bc7mpwYvfnp3e2nWyZ39e7e93yreX3zMxe+RrMdB6d6+LHRWC+/ngBo39R48/rIita7zrXj6Gc06WF3sv265tff3uaOqNuuar8nAAAAAAAAOjaosN2OGc831s7qnplr7KidBXRu3bH1tW3XJrtuT657b/2c9Sd1vaW2Hf6o+tonz+vNmndcnHz3bc3nnPvuha9TSpMevrTw+zM/l75p0B0AkCSTO+trIyuSx/5TsvLgha9z6s8na4+rr3/ohOTe7zeuXf/PyZV/0f5a3/jVebUGAAAAAADA/A0qbDfzWNfj+7DezDVu7cN6sPw0O0b28j9OrvrL+voDf6b7/czH6Orm9Z09OO36W29oXn/hnmR1l7LIhz288fhVf9Wd+9Oe8XuSSXlvgEVhoiZst/G85MLbkmOe0511RlYkT/hQ8zn/+aK5Y1WVfOPV81vre29Ppibndw0AAAAAAADzMqiw3b5zjkqS40spJ/dqoVLKA5Oc0GBtoJtWHFRfu+ey5NbPdnZtPxx1fvP65X/c3fWqqeS2/1dfP/KJychY99ab2tO9e9G527846A4A2Gdye+PxY5+frDyku2utaLFD3t1fnzu2/brWR8w2cttn538NAAAAAAAAbRtU2O5bScaTVHvf79LWEQ09b8bzPUm+2cO1YPlafWR9rZpM9mytrx/1pO73Mx8P/Onm9S3/3t31Jncl1UR9vdufj7owY+lioI/Wmv0dAKC/xu9uPL7y0O6vte6E5kfJNtLp94yr/trudgAAAAAAAD00kLBdVVXjSf5fpne2K0n+RyllXbfX2XvP12Q61Fcl+dzetYFe2PzMxuN3fS2588v11216am/6adfaY+qPWk2S3Xd1d72JFkeJnvLy7q532i83Hq8m7HrXT5f9+qA7ACCZPqJ1952Na6sO6/56pSQP/5/N5xz4s8FkzTG3rVz33uRfNid77uvsegAAAAAAAJoa1M52SfK+vW+rJBuTvL0Ha7wtyZGZDvQlyXt7sAawzzE/Mv9rHv6/ktGV3e9lvp7w0frajuu7u9bNTdZ62lea7xLYibXH1teu+ZvurkVjd38zue+KxrW1xw5+d0eA5WRyRzJV8/s3Kw/vzZrHPq95/Yo/n/3+fT+on/uw32t+r123Jd9+S3t9AQAAAAAAMC+DDNu9N8mWvc9LkpeXUl7frZuXUl6b5BXZf1TtrRG2g94aXTP/a1Ye3P0+OjHSx8DfrZ+tr63Z3P31xtbW127+ePfXY66r/qq+trIHuygBUK9uV7ukNzvbteO6981+f+v3G88rY8mGU1rf73stAnkAAAAAAAB0ZGBhu73Hub4u00G7au/bt5RS/r6Ucmin9y2lHFJKeW+St864b5Xk9Y6QhR5rdhRr7TWP7H4fnWj14vpdlyTj93ZnrWqyvtaLsN2GU+trE9u7vx5z/eB/19fu+Vb2b8AKQM+NNzkevpcB6Ic0OU78vitnvz+2rvG8aiLZ9NTu9QQAAAAAAMC8DHJnu1RV9TdJPpTZgbvnJ7milPL2Ukob2zZMK6WcXEp5e5Irkrwg+5MLVZKPVFX17m72DjRw8IPmf81Bp3W/j06taLLL3scfkfzTIcmnnpCM37Owda79u/pa6UHoqtkxvXd8qfvrMT8n/dSgOwBYXnY3C9t1/Ds/rZ38M/W1Pfck3/md6edVlVz2G/Vzx9Ykh5zV3d4AAAAAAABoy0DDdnv9RJKvZXbg7rAkr07y/VLKjaWUD5RS3lpKeU0p5b/tffxKKeW3Sin/XEq5Icnle685/IB7fT3JiwfwcQGtbP7h3oTLOvXIP2s957bPJV98YedrXPu++tppr+r8vq2c9dbG43vuSfbc17t1aW3jeQsPcALQvjv+s/H4ioOTkbHerbv2mOSCz9bXv/X65OaPJdf9QzJVsyH30U+ffvuMbySbn9V8vakmO+kCAAAAAADQkR6+mtSeqqq2lVIuSPLuJD+S6ZBcsn9nus1Jnrv3UWdmWmfm9R9K8pKqqrZ1rWGge1YeMugOZhtd0968Lf8+vStOq6NnG7n+H+prY22u34nRtfW1LZ9IjvvR3q1Nc6Nrkru/PuguAJaPu2r+zV11eO/XPvJx0//uT+5sXL/+H5OdW+qv3/ezSinJEz6SvK/J707defF0oBsAAAAAAICuWQw726WqqvuqqvrRTO9MtzP7d6bb98jesUaPHDC3JNmV5H9UVfUjVVVt7dfHAczThlMH3cFsB82jnx3Xd7bGtqvra738fDS7d7Oe6L31Jw26A4DlZdURjcf78f2wjDQ/Anbb1ck9l9bXZ/6sUsr0bnx1tl83//4AAAAAAABoalGE7fapquqPkhyf5K1J7snsUF1V85g555691x5fVdXv97t/IMkZr21/7nEX9a6PThx0evtzP/aw5NPnJ9e/f35r3HNZfW3zM+d3r/k46kn1tbrddei5Las35C93/7+87syn5jVnPT1vOeNJ+cADzsiesqi+PQMMl7suaTzebBfYbjr5ZfW127/YfGe7435s9vunv6Z+rmPiAQAAAAAAum7RvZpfVdWdVVW9McmmJI9P8sYkH0/y7SQ3J9m997Fl79i/J3lTkickObqqqjdWVXXHIHoHkpz9O0kZbW/uwfMIt/VDKcnpv9L+/Fv/I/nCjyXX/WN78y//3/W1016VrN7Y/trzNbYmWXdC49r3fq9361LrzpVr8oennZdvbPtS7l25JtvHVmXLmoPyqU2n5K9PfMSg2wMYTtuvqz+6+6SX9KeHk16arD22ca2arL/u4f8zOeyc2WMPfn39/K++fN6tAQAAAAAA0NzYoBuoU1XVniRf2PsAlpInfSL5zAWD7qIza4+f/zVXvCM5/sfamNckbLfxMfNfd74OOTPZfu3c8YltvV+bOS459AHZPraqYe1bhx6de1asziF7dvW5K4Ah1ywg36+d7UpJHvKG5Cs/O49rxpJTfr7xvQ57eP1ufTu3JGuO7qxPAAAAAAAA5lh0O9sBQ6CdF3XPfnvv++hEJy9I3/2N1nMmdyVbL6+vr940/3Xna3J3k5pQV7/dsPbgpvUb1xzUp04AlpFm37PX9OF78T6r5/nzRjWRjNT8nlSze91Vs4sfAAAAAAAAHRG2A7rvoAcl609qPuekn+pPL/O16cnJSOPdxmrt2Zrc8MGkqurnTOxofo8jzp3fmp3Y+Nj62uTO3q+/nB0+9893fKT5cctVKb3qBmD5avb9bvOz+tfHpvPnN3/9A+trD/jh+tp9V85vHQAAAAAAAJoStgO6r5Tk8R+q363tEf87WX1Ef3tq18qDk8f/y/yPkvv8hcmlb6ivT2yvr537nvrdarrpuOfX1yaE7XqqQbBuvMWfeRVhO4CuqwvbrdqYHHx6//oYW5cc8tD25z+kyc8YD/yZ+tp3f7v9NQAAAAAAAGipD+kOYFk65CHJ865P7vxactclyR1fSg59aHLKK5IV6wfdXXObn5786B3TPU/cl3zuee1d9923JQ/678mqw+fWbvts/XVHPbGTLudvbE19bcoxsj3VYGfDVjvbTfWqF4DlrC5sd8rP9bePZHonvXsubW/uygY/W+wzMpqc/LLkyr+YW9t12/TOu3ZLBQAAAAAA6AphO6B3RlYkGx89/TjtFwbdzfyMrZk+4m1yHiG0aiq5/T+TY549t3bfFfXXrTh4/v11YmR1fc3Odr01ftfcIcfIAvRf3fe70SaB9F5Zecg85rb4WWH1UfW1nVuStZvbXwsAAAAAAIBajpEFaGZ0dbJmHi9QT9zXeLyarL+m1Qvo3WJnu8GY3JVsv37OcMuwXa/6AVjO6na2G0TY7qjz25s3ti45/FHN52x8XH1tYlv7PQEAAAAAANCUsB1AK0/4cPtzG4SqktTvpLNiHrvaLFSzIMH43f3rY7nZdnUaRefGR5pvLmtnO4AeuPfbjcebBdJ75bCHJ6e22Pm3jCSP+NPp8H/Te51TX7v9C/PvDQAAAAAAgIYcIwvQymEPT553Q/KN1yQ3/1uy6anJDf/UeO63Xpc8+LVzx+t20tn05O712UoZm37RvpqaW/v+H/e3l+Wk5gjh1jvbCdsB9M0gdrYrJXn4nyTHPC+59bNzd8ddvSnZ/PTk0LNb36tZ/1/+6eSB/3VBrQIAAAAAADBN2A6gHWuPSc573/73/+2s5J5L279+MRxbV0pSViTV7rm1bVf3r4/lZvt1DYfHRx0jC9BXe2qOek+mA+mDUEqy6YLpx0K02vlux43TP8sAAAAAAACwII6RBejEnq2Nx8fWNx6f3FEzf213+mnXVIOgXVLfNws3sW3O0GRKJkvzb8FTjpEF6K7xe+pra47uXx+9UEaSDafU13ff2b9eAAAAAAAAhpiwHUAnTvulxuMT25Lxu+eO1+2m0+9j6zY/s/H4tqv628dyMjF3V8NWR8gmjpEF6Lq64HuSbDi5f330ypm/UV+baPKxAwAAAAAA0DZhO4BOHPaI+toX/8vcsS0fbzy332G7Y57beHz8rv72sZxc+7dzhtoK28naAXTX5X9SX+v39+NeOP6F9bVr/qZ/fQAAAAAAAAwxYTuATow1eVF+y78ne+YeHdpQv1/cb7be9hv618dy0uDoPjvbAQzAzR+rrw1D2K6UZHR149pt/9HfXgAAAAAAAIaUsB1AJ9a3OG5u1y2z3x9b13je7tu600+7mvW94/r+9bGcHHLmnKHdo2MtL6t60QvAcja6skltCMJ2STK5q/H4ikP72wcAAAAAAMCQErYD6MTKg5Ojzq+vT+zY/7yqkontjecd9aTu9tXKET9UX5vc2b8+lpM9984dausY2QN2tqumutURwPK09fLG4+uOn94VbhisO7Hx+J0X+z4CAAAAAADQBcJ2AJ167Pvra9//g/3Pp8br560+qnv9tKM0+Wd/QtiuJ+797pyhdo6RnTrwGNm63YoAaG3nlvraWb/Tvz567Yz/UV/7RpMaAAAAAAAAbRm6sF0p5eGllItKKc8upbQ45xFgAVYeUl+75m/2P9/e5HjWQRxbt+rwxuN2tuu+8XsaDu9ua2e7Awa2XdWFhgCWqRv/pb5Wd9T7UtTs54or/0KwHgAAAAAAYIEWbdiulLK6lHLSjEfTZEIp5TmllGuTfCXJPyT5lySXl1K+UEo5ow8tA8tNs13iZtp5U31tzdHd6WU+6l6It3Na9937vYbD7exsVx24s92OJl9HADR3zd/W10ZW9q+PXlt7TH1t4r7kviv61wsAAAAAAMAQGht0A028Oslv7n1+Y5IT6iaWUn4syXuTlL2PmR6T5MullCdWVXVJD/oEaOy9JTn83GRqd/2cxRS2237N9Nvxu5Mr/iy565Lk0IclJ788WX1E//obJlONA4x7Rlp/+50Tthu/qxsdASxP93y7vtb8d3qWlo2PTVYclOzZ2rh++R8l576rvz0BAAAAAAAMkUW7s12S52V/cO6vqqqqGk0qpRya5J3Z/7HMnFftfaxL8oFSyuoe9QrQ2J0XJ3d/Y9BdzDZa80/hZW9Otl6efPr85Fu/ltzwgeTSNyafflKyW9CrIzVhh46Okb33O11oCGAZ2rN1ele3Ou3uVLsUjK5Kzv9Uff3qd08/AAAAAAAA6MiifGWplLImydnZH5z7aJPpr0xy8N65JcnNSf5Xkj9Kcn32B/aOSfKLvegXoCOD2NUuqd/ZLkk+9yPJ3d+cPXbvt5Pr/7G3PQ2rLZ9oODy+Yn3LS+fsbHe1nYgAOnLDB1tMODDdvMQd/shk05Pr6xf/VP96AQAAAAAAGDKLMmyX5Mwko5l+5Wt7VVVfbzL3xdkftLs8yUOqqvqlqqpevfc+X907ryR5ac86BpanQ87s/NqVh3avj3mte1h9bev3Go9//dW96WXYrdjQcHi8Gm956dSB2Y9DzupCQwDL0O1fHHQH/bfh1Ob13Xf2pw8AAAAAAIAhMzboBmqcuPdtleS7dZNKKQ9KcnL2Hxf7pqqq7t1Xr6pqWynllUku3jt0Winl2KqqbuhN28Cy84h3JJ96XGfXbnpKd3tpe90nJ1s+Pr9rJnf0ppdhV001HB5v5xjZA3damtzVjY4Alp+7vtp6zrA55nnJFe+or3/r15K1xyalJBlp8bbsPWq3nbcNrq+bW3efbq5d10u792t37Vm9AwAAAAAAw2yxhu2OmvF8S5N5+xIuJcl9SeacEVVV1VdKKTdm+hjZJHloEmE7oDs2ntf5tQ9+fff6mI+Tfzb5xq8MZu3lZuvlDYfH125ueemcsN2Bx/sC0No1f7s8//3cdEHz+pXv7E8fy1Kr4N8ggoMLCBA2DEEu5TBkN8KlbXwM7X4svfja6PjPZ99bAAAAAACaWaxhu7Uznt/XZN6+lEuV5NNVVU3UzPt29oftjltgbwD7lZKc+ebksjfP77ojHp2sPrIXHbW2Yn1y1lund7Wht276cMPh8ZUHJZlseml14Gude+7pTk8Ay8XURPKlnxx0F4NRRgbdwTJWJVWVZGr6v1JhqVmMQcyFBhIXtMPmIglDzvfPpR9/PvMN/fb8a0NYFAAAAID+WKxhu5n/h2xFk3mPmfH8803m3Tnj+UEddQRQZ+0xreccaPVRref00uja1nPomfE2Xgeas7NdMn0srQAFQHvu+NKgOwBYeqqpvW+b/2IILE49DmJ2uitl13fYnMfHNNAwZJc/lnmFS7v8sfTq8zlrPgAAALBULNaw3czd7BomUkopm5KcPGPoP5vcb+bH6f9eAN21+Znzv2Yhx892w+iawa6/HFRVUkYbvlA5XlpvdTNnZ7skmdyVjAlKArRl2zWD7mCwNpya3PeDQXcBAH1U7f/vL7uLsuS0Cv51KUA43+BguztsDnIH1Hl9TB18LIsxKNvTHWXne799bwEAAJaPxRq2u2nv25LkzJo5M9Mtu5N8vcn9DpnxfPsC+gKYa83RyYkvSa55T3vz15+cnPDi3vbUyuGPGuz6y8HUntodQcbXHJVMbml+eaNs+MQOYTuAdu24YdAdDNZj35987KxBdwEAQFscRc8StxiDmI6ib39uP/98OgqX9vJrQ1gUAID5W6xhu0tnPD+slPK0qqr+/YA5P7X3bZXkK1VV7Wlyv5NmPL+lGw0CzHLuu5JDH5Z8/Zdnjx/28GRs/fTzkZXJEY9OTnl5smZT/3ucqZOd7e79XnLw6d3vZVjtqv92M15GWl7e8BjZq/4iefDrF9IVwPJx6RsG3cFgHfrQ5Bnfmh24G12bHHZOpl/Mndr7gu7e5+28nXVd3dt53K/VfQAAgKXBUfQsaT0OYna6K+Vi3mGzb2HIJR6U7dXnc9Z8AGAQFmXYrqqqq0opV2T6mNiS5B2llCdXVXVNkpRSXp1k5hmMH6q7VyllfWYfN3tVD1oGlrtSkgf90vRjKRjrIGx300eE7eZjyydqS+P5/+zdd5xkVZn/8e+pzmF6ch4mAkPOSJYM4ioIKiAmzO4aWVdXXVcU/RlWMaBiREURQQyYkBwEhjggzMBEYHLOMz2d6/z+qO7p6up7Tt1bdau7wuftq19ddc655zxdXV09Uk8/T/b/8BjYRnbNX0m2A4AwOraFX1vO/2Fy9BHSFSWctGYDEv2yJe/FmjgYJYEw4LpsZ2d+jvPsuJIhoz6eeX8tEb6mqM+NbN+XuL8/AAAAAEqEFa3oUbqyJf7FlAwZNXGwIBU2SzEZssgSZWlFDwCxKcpku14/k/R1pf5pO0vSYmPMc5ImSNqvd9xIapd0k2efM3rXSVK3pBcKFC8AlI6GqdGvqfR2fFF173ZOdSqZ9fLAynb8dTAAhNO2Lvxay39JL1rGSKZquKMAcrMvGW8YkyFDJQzGlAwZNXkx1wqbsT+eMXwtxZgom+1ryroPAAAAgNKQ/v8BhjsWIAexJGLGnTiY575DVmGzgMmQsSbKxvS15JRcGvPjaKp61wPFnWz3XaVaxc5V6p8HNZKOlfZlH/T+10F9y1q72bPPxWnrn7PWdhQmXAAoIYlqqWWutGtJ+GuWfl/a+pR05FekSWcVLrZy0b3XOdXp7XyeYoP+oqenNZ+IAKBybLh3uCMAUOn2/Qc9SSJpFCVmQLJokSRDDnlyaYivIVKFzQhnh/oahisRM+LXEulriuu5xrvMAAAAQMno+4Mvik2gFJz+d2nqa4c7ChSJok22s9Z2GmPOl3SnpL6+hUap/2LS+1+t9QdJV7v26G0h+0b1/1eW+woWMACUmmO/Jz1wXrRrtj4hPfha6fwnpNFHFiaucvH854LHx5+mzhB534H1JHa+mFdIAFARdi6Wnrkq/HraFQAAMNCAZFGgBJV6MuSQVdiMkigbcb+oiZhD+bVEfW6E/Zri+v4AAAAAKE68l4A0RZtsJ0nW2tXGmKMkvVvShZJm9E4tlnSztfaPWba4UlJL2v2/xx4kAJSq6qbcrkt2SCtvIdnOx9OS0NaMUGeyPfsWrne2kj1SguooAOC06tbhjgAAAADDiVb0KGWDkvGKIBmSVvTh9i2HRNm8vz8AAADljBay6FfUyXaSZK3tkvTj3o+obpD067S9dsYVFwCUvKbpuV/74teko74aXyzlpsfdQranp0NJ1WTdwrr+OKJzq1Q/IcfAAKACRK0COvqYwsQBAAAAAFHtqy7KG3koQbSiD/c1Ra2wWRaJmDl+LaG+Lzk+N2hFDwCIisp2SFP0yXb5sNa2SWob7jgAoCg1ThvuCMpXt/tXT+eU8yTNy7qFs7JdD7/WAMBr3R3h105+jVQ7snCxAAAAAABQKWhFj1JXrq3oIyWXxpzYGenxzCERM7ZE2bi/lghfk/e5FeFrAVB4/EEM0pR1sh0AAMOie5dzqnPy2dLGEMl2rr+O8CTyAUDFW/MXqXtPuLUTXi2d/JvCxgMAAAAAAIDSQCt6lLJcWtEXOhmykFUp86qwGXMiZlm2oh/q70+p4C8K0I9kOwAA4rb+HudUZ8i/enD+HRKV7QDA7cWvu+dmXymd8HOpfaMkKzVMHqqoAAAAAAAAAKBwaEWPUjagFX2RJEMGzY06bGgfFxS1kky2M8ZMkzRb0hhJIyQZa+2vhjcqAChBM66QVt483FGUn/aNzqnO6rpQWyRdfx3RvimXiACg/FkrbX3cPT/muNR/dGqYNHQxAQAAAAAAAAAAtwGt6KkwitJQMsl2xpgZkq6SdKGkGQFLBiXbGWNOk3Rm793t1trvFS5CAChB09+Ue7Ld9uek0UfGG0+5SHYNGuoyCb3QMkH3bw3XstC6KhHvWS7p/NxjA4Bylezwl5yfdN7QxQIAAAAAAAAAAICyVPTJdsaYhKQvSfqkUmmsQekHrm57WyR9oW/eGHOHtfalAoQJAKVp6oW5X/uPo6RTbpFmXBZfPOVi1+IBdzsSVfrRnBO0pGW81PZCqC2sq7Ld8h9LB34o3wgBoPzsecU9N/NtUssBQxcLAAAAAAAAAAAAylJRN+02xtRIulPSpxWcGOhKsktNWrtI0gPqT9C7ItYAAaDUJaqkA/JI3Hryg4FV3Cre6t8PuPvUmGmpRLsIrHEk2+1YkGtUAFDeFnzBPXfoZ4csDAAAAAAAAAAAAJSvok62k3SDpHN6b1ulkuYelnSNpM8puMpdpj+k3aZ3FABkGnV47td27ZC2PRtfLOXCVA24u3hEtEQ7KUs2+d61kfcDgLK39Un3XHXz0MUBAAAAAAAAAACAslW0yXbGmLMlvU39SXYvSXqVtfZ0a+0XJP0m5FZ/79tS0vHGmPq4YwWAkjbjskHJYZF07YgvlnKRkdSxt7om8hbONrKS1MljDgCSpGSPtPVpaccL/kqrjdOGLiYAAAAAAAAAAACUraJNtpN0de9nI2mlpJOttU9H3cRau1JSX1ZCjaSD4gkPAMpE7aj82uv98yKppzO+eMpB184BdzsT0ZMZk642spK0/q7I+wG0xh1nAAAgAElEQVRA2dm9XPrrHOmu46U7DpPaHFU/p10s+V5TAQAAAAAAAAAAgJCKMtnOGDNG0slKVbWzkj5mrd2Sx5Yvpt0+MJ/YAKAsHf5F6bQ/SdPfLFU1RLu2p11a/M3CxFWKkj2DhnJJtvO2kX32E6nHHQAq2cNvlFpXZl83592FjwUAAAAAAAAAAAAVoSiT7SSdqlRsRtJma+1f8twvPVFvQp57AUD5MUba7w3Sqb+TLtsb/fo1f40/plK1e+mgoc5EdeDSyyd+UKeMPDdwzmarwrTpn5FDA4Cysfslacfz4dZGTSIHAAAAAAAAAAAAHIo12W5y72crKXLr2AC70243x7AfAJS3w6+Jtn7X4sLEUYo6tg4aclW2qzV1Mo5fxd7KdpLUtj5iYBH0tEtde6TutsBKfQAw7KIkHI86onBxAAAAAAAAAAAAoKIUa7LdmLTb22PYL72cRVcM+wFAeZv5FqlmVPj1XTukvx0krf5T4WIqFT2DKwN2uZLtEnUyjgp2Vlkq2wWck7e2jdLNRrq1QbpthPS7RumWaumJ90vJ7vjPA4ChUD9+uCMAAAAAAAAAAABAmSjWZLtdabdHxLDfxLTb22LYDwDK24j9pXMekKZdLDXNkiZfIE06x3/NriXSI2+WNj82NDEWqz0vDxpyV7arVcJV2S5bG9mFX44cmpe10p8mBc+99FPp2U/Gex4A5CPba2Sfo68tbBwAAAAAAAAAAACoKMWabLc57fYB+WxkjKmSdHTaUAH77gFAGRl9lPTqP0oXvSydeYd01j3SGXf6r7E90srfDk18xWrTQwPuJpWlsp2jgl2y78bYE4PPaVuXW3wuO1/0zy//ES1lARSRkMl2NS2FDQMAAAAAAAAAAAAVpViT7Rb0fjaS5hpjpuWx1wWSGntvW0mP5xMYAFS05tnZ1+xaUvg4ilnjwF9ZrkQ7Sao1njayfeOdjoKsibqcwnNa/hP/fE+71L4x3jMBoNCaZw13BAAAAAAAAAAAACgj1cMdQBBr7SJjzFpJU5VKuPuEpKui7mOMSUj6bN+2kp6z1u6ILVAAqDQtIYqN9rQVPg6fjQ9Kj18pta7sH5vyWmnmW6WZVxT+/K49A+66WshKfZXtHG1k+25MPl/avXTwgmSHZJOSySNvvnNHqh3tpoekbU9nX7/9WalxSu7nlbuND0gPvEZKdvaPjTpcmniWtPWpVLLqgR+SxjmqFQKI3/jThjsCAAAAAAAAAAAAlJFirWwnSb/p/WwkfdgYc24Oe3xFUvo72j/NOyoAqHSHftY/v/nhoYkjyIZ7pfvOHJhoJ0nr7pDmvVVacl3hY1j+owF3vcl2xt1G1vaNz3iL+6z2ze65bHo6pPvPkRZfGy7RTpIeep20Z0XuZ5azDfdK9501MNFOknYskJZ8V9oyT1pxk3Tf2dIWiuwC+QvRRnbaG6Sq2sKHAgAAAAAAAAAAgIpRzMl2/ydpl1LFfaok/dkY8/4wFxpjxhljfinpk+ovDrRB0s8LECcAVJbmOdnXJLsLH0eQbMl0i76RqgZXKG2D26z6ku1qEp5ku742stUN7vPW/DFSeANsfEDaNj/6df/6VO5nlrPF3w23rmevtOyHhY0FQMroo4c7AgAAAAAAAAAAAJSZok22s9Zuk/RRpcpWWEn1kn5ojFlmjPmqpAvT1xtjXmWMebsx5teSXpL09t5rjaQeSe+y1maUmwEARFY/IfuaPS8VPo4g6+/yz+9dI7WtK9z5K349aKgrS2W7hKMN7L42snWex3vXkgjBZdj6ZG7Xrbot9zPL2aYHw6995VcFCwOoGCZEZbv68YWPAwAAAAAAAAAAABWlergD8LHW/soYs7+kzymVd2AkzZGUWVbHSHos475Nu+Yz1tq7Cx8xAFSACWdIiTop2eFe091amLO3PJ5qCVs7JtUesHnmwPnMFp5BOrZJjdMKEp5aVw8a8raRTdQ6K9sl+xJJGqe4z+vxfA+y6dmb+7UYrHvPcEcAVJgQyXaTzy98GAAAAAAAAAAAAKgoRVvZro+19vOS3iWpvW+o93N6Ql1fUp1JW2MkdUp6p7X2m0MWMACUu5pm6dRb/WvmvS3+dq3LfyLdfZK08EvSM1dJdx4jbXs2bf5n4fbZ8Xy8cWXhSrarUrWqTLWM41exTU8kGX1U8Oab/5l7YLm0kO3TviX3a8tR24bhjgBAkObZwx0BAAAAAAAAAAAAykzRJ9tJkrX2RkkHS7peqaS7vgwEo4FJdn1jSUm/knSwtXZwTz8AQH6mXSRdstk9v2uRtO2Z+M7raZfmf2zgWOd26bnP9s53SE9/ONxez38uvrhC6EgEF5GtTdRKkoyjFaJNvzP2hODNd76Ye2Ab7nXPjTjAf+1LP8393HK0+NvDHQGATA2ThzsCAAAAAAAAAAAAlKGibiObzlq7StKHjTGfknRq78d+ksZKqpW0RdJGSfMk3Wet3TFcsQJARagfJ9WMlLp2Bs9vfEAae1w8Z63+YyrhLtP6O1Oftz3tb2ubztTEE1OQgMQ6V2W7WlOXCsfRCtEaI1U3997xVAm0ScnEmDu/35uk026Tbva0aNz4gHToZ+I7s9RtenC4IwCQyfYMdwQAAAAAAAAAAAAoQyWTbNfHWrtX0t29HwCA4TThdGntX4Ln/vUpac3t0kFXSdMulhxJZ6HsWOCf79oVfq/2jbnHkU3duEFDXa5ku0Qq2S7hbCMr6djvpu7UT3Sf2dMhVTdEiTIlURecoFhVn/o8533uCnauBMtK1d0a/ZotT0pjj5cclQ0BZJPlZyfg9RgAAAAAAAAAAADIV0m0kQUAFKnDr/bPb5knPfJm6ZZqqX1L4eLwtUTN1L1bWv6TwsTRvWfQkKuyXU1fZTtXG9makdL0S1N3pl3oPrOnLVqMUqoanqsS4Iy3pD4f9VX39VuflHo6o59bjnrapZ0vRL/u7hOk34+Wkl3xxwRAOuzzwx0BAAAAAAAAAAAAyhDJdgCA3I05Rhp1ZLi1f55emBiS3dLib0W75skPSLuWxB/Lsh8NGnK2kU3428gmRx4i1fS2ka1pcZ/Z10o3ii2Pu+fqxvR+Hisd9TX3uqXfj35uOVr0zdyv7dqZ3/VAJctWFXLUEUMTBwAAAAAAAAAAACoKyXYAgPyMOizculwqsO3jSarY+kRuW677R27X+dSMGDSUPdnO0UY2PZGkqtF95ob7wsfXZ90d7rmqtJa0DVNz26OS5Ps4PPfZeOIAKk6W/xtTlUN7bQAAAAAAAAAAACCL6uEOIApjTI2kkySdJmmOpDGSRkiStfbsYQwNACrXmGOlFb8JtzbZIyWqUq0ze9oDk9MC+SoYtW0It0emvWtyu86ncZrUunLAkDPZzvgr21nZtH09SW+2O1qMktS1yz3XMrf/9phj3et2vRj93OHUtUvqCGhlnOySqkdIjVNy2zfX51+6vWtSiY3ZKnUB6FdV556rGy817jd0sQAAAAAAAAAAAKBilESynTGmSdJVkj4saXzmtJSekTDgurdI+n+9d7dJOt5aG7gWAJCj6ZdKz/xnuLWbHpRW/0l65cZUpbsJp0sn3yw1TMz9/Mff5Z5rmCy1rQ+eW3yt1L1HOu77UiKmX4cBSWzuyna1kiRjHJXtbLL/jmONJGnnC+Hj69O9xz1XVd9/u+Ug97q29dLNRjr/KWnscdFjGCptG6V5b5U2PSClP6ZBzn5Qmnh6+L3X/FlqfSWv8CRJt++XStQ8+pvSjMvy3w+oBJseds/N/WgqsRsAAAAAAAAAAACIWdG3kTXGHCFpvqQvSpogby/BQf4qaaykmZKOlnRu3PEBQMXzVV3LdP850rIfpJK9bI+08X7poX/L7/zu3e65i1b5r13+Y+lfn87v/HQ7Fgwa6nQk8vVVtkuEqWwnSXM/HnzmtvlSMmJ1u5d/ETw++8qB942RXvUT/153HS+1B1SMKxYPXyxtvC97op0k3XeG1JrlOdNn+7+kh9/knj/5t9JJvw63l5SqbjfvCmnL4+GvASrV3rXSkm+75w/9n6GLBQAAAAAAAAAAABWlqJPtjDGHSHpI0gEaWMHOKETSnbV2j6Tb0obeGHeMAIA8bZsv7X4p/n1bDk5VrJv1Tv+6lbdIcRQ9dSRzdTmqK9UksrWRzdivutF99uZHs8cXRlXT4LHaMdmvW3dHPOfHbeciactj0a5Z85dw61b9wd/Ct3akNOtt0nE/CH+2TUorfxd+PVCp1v7VPVc3npbMAAAAAAAAAAAAKJiiTbYzxtRL+pukkWnDCyS9R9JsSQcrXJW7P6fdPju2AAEA/ea8J7/rX/5lLGEM0Lkt9XnE/v51bWulZEf+5wW0kJU8bWR7K9u52sgmMxMAmz1fx54IyYrJLvdcT+vgsWyPnyQ9+4nw5w+lHc9Hv2ZtyGS7Pcv9833fr5YDo50f5XsJVKrdnp+/5jlDFwcAAAAAAAAAAAAqTtEm20n6qFLtX/uyDa6TdIy19hfW2hWS2kPu80DvHkbSLGPMhJjjBAAckmcrVtuTZUEOVYqmvDb1eb8QRU07d0bfP1NPW/DWrmS7rJXtMpLtpnra7ToS/QI54pQkTQk4Y9QR2ffsKNI2shvuzeGae6T2zdnXbX3KPTfmOKnlgNTtCadLjdPCn+/7/gBI2bXYPTfj8qGLAwAAAAAAAAAAABWnmJPtPqL+RLvbrbUft9bRo8+jt5XsirShg2OIreQYY2qMMWcYY95hjPlvY8yHjDEXG2NmDndsAMrAiP2lU24p4AE5JNvt/4HU55EHS+NP9a99+OLo+2eKmmxnIraRrffkij9zVfb4+qy6zT3XEvAr0hjpjBBtYvesCB/DUGjfJL30s9yuve8MqXuve37Py/4KdGf8vf92okY65yFp7Inhzt5wT7h1QKVq3yyt+7t7fu5Hhy4WAAAAAAAAAAAAVJyiTLYzxhwiaar6sys+meeW6e+Iz85zr1gYY2YbYy4zxnzDGPOgMWaXMcamfayI6ZzxxpjrJW1QqsrfjZK+Jun7kv4o6RVjzKPGmBClnwDAY8Zl0hVWuniddNHK8MlFUiqhK241aV3Ip17oX7vlMWnvmvzO2/Zs4HDWynaONrKDKttJ0riT3Oe3rffH12fRN91z1Q3B480hfnWu/G2484fK6j+652rH+K/d+aK04T73/LIfuecOu3pwYmTzbOn8x/xnAghnzZ/dc3PeW5jfJwAAAAAAAAAAAECvoky2k3RU72craaG19uU899uRdnukc1WB9VaWu8sYs1WpBMBbJP2XpNMljSjAeRdIWijp3yX5MgtOlvR7Y8xNxpimuOMAUGEaJktN0/2JYUMSx8S025Oyr9/2TH7n9QRXQstW2S7hqmxnA5Lt6j1fhyPZb5D2Te65unGO8fHZ9902P9z5Q8X3/TzgP7Jfv91z/aJvuOdcj6EkHfW17Oc6ki8B9PL9bPpeIwEAAAAAAAAAAIAYFOs7uunv6i+LYb+OtNuNMeyXq6MknSd/4lssjDFnSLpdUnp5HStpvqTbJN0jaUvGZW+V9FvjKrMEAFFM/bfwa1/4ihSUXJarCWdItaP77086TzLBSW/75J1s1x443JWtsp3jV/GgNrKSNPV1nvOD29gOXhccpySppiV4vG6MNO5k/76r/yBtuDdcDEPBkfwoSZr7sRDXh3w8M/m+R3Pem/16m5SSXbmdDfTp3CktvV6a93bpkcukRy5Pvc7uyffvV4qAr8XzlNcOXRwAAAAAAAAAAACoSMWaVFWfdrvDuSq89Gp2u2PYL24dGtjqNi/GmGlKtYitTRt+VNKh1trjrLWXWmvPkzRN0sckpb+r/3pJX44rFgAVbOJZ0dbfdXw855pq6cRfDBxrmCidcov/uoVflDbPy/3ctg2Bw52J6sDxvsp2xtHyMBnURnbWO93nPxui47q17iS0E27wX3vyTdn3v/9cacl12dcNhRW/CR6vGyfVj5NetzjL9Tm2xW2e6Z6rGysd853se3TuzO1sQJI6t0v3nSU9/SFpxU3Sqt9Jq26Vnvsf6a4TpB0LhjvC/Lxyo3tu/DBXVAUAAAAAAAAAAEDZK9Zku/SKa55+bKHNTru9NYb98tEl6V+SfibpA5KOVaqFbIhyN6F9UVJaSSfNk3SOtXZR+iJrbYe19jpJl2Zc/5/GmBkxxgOgEhkjNe8ffv22+c6EtVDmflw69xHpsrbghKfpb5LetGPweLoFV+d+fkACiJWnjey+ynauNrIBle0SVVLz7MHjktT6itSeWbA0g6/aW8tc/7XNs6TLO6VJ5/rXzf+Y1BNHnnwefM+jvoTFlrnSZR1S7/dhkL2r4q222Oegj0lv2iZNv8y9Zu2f4z8XleOVm9ytVju2SC98dWjjiVPQ62KfMBUrAQAAAAAAAAAAgDwVa7Jd37vkRtLR+WxkjBkr6eC0oeX57JenGyW1WGuPtta+z1r7E2vtM9ba2PrFGWMOkJRe+qhT0pXWWmffQGvt7b2x9amTlEfGCQD0ap4Vbf3SHwSPO6q/7TP2BOnYb0vjT5EcleQkSbUjU2tdNj2Ue4JVQLJajzFKOmLfV9nO2UbWEUfNyOBxSdryqD/GHQvdc9XN/mslKVEjTbso+7r1d2ZfU0ibH3bPpT9+VbXSrHe417aujC+mdLWjpWOudc/n29IYlW3TQ1nm/zk0cRTCbs8/4xO17jkAAAAAAAAAAAAgJsWabDdPUl/pirHGmIi9CAd4t7SvbFCrpKfzCSwf1trtvqS3mFwhKb2M0h+ttctCXPf1jPuXGmPqA1cCQFhT/i3a+vV3OSayJNtVNYQ/Y+KZ7rlkl5TsDL/XAIN/pbqq2kkhKtu5ku188Xdl6ZTe0+aeG3mo/9ow5/fZtSTcXoXiexwmZfyTYuyr3Gv3BCT2JHtyiylT41T3nO2O5wxUpvaN+c0Xs27Pz/b4U4cuDgAAAAAAAAAAAFSsoky2s9Zul/RU2tCXjMlW1mgwY8xUSZ9WqpOflXSPDezLV1Yuzrj/izAX9baYfSJtqEnSeXEFBaBCzb5SGndS+PXbnpK6Pa1OXaIk22VrNdi1K/r5ktS6YtBQp6fKXl+yXcLx68356+qgT7hj2LvKPSf5H1tfRcB0LQdnfwz3rg23V6FsuNc9l/l8nPV299plPxo81rHJvf7k3/rjylQ/MXh819Jo+wB99rwibX7Ev8Z2S61ZXiuKle+1ZTL/bAUAAAAAAAAAAEDhFWWyXa/vpt0+UVLAO95uxpiJkv4iabT6SyJ9K57QipMxZpKkI9OGuiVl6Sk4wIMZ9y/INyYAFa52pHTm3dLJv5FGHRHumkWe9pou1RGS7RomSefOc88v/X708yVp5+AWrb7KdjUm1fIwchvZxilSw5Tguef+xx/jlsccwYzyX5fOGOmYb/vXLL0u/H5xs1Za6Uh6G3WkZDIe76o6aczxwetX/0FKZlSZ8z3GIw8JH6ckTcvMj++16cFo+wB9nvr3cOue/VRh4yiUf/23Y8JIVRRkBgAAAAAAAAAAQOEVbbKdtfYWSf/qvWskvdcY87Ax5jTfdcaYJmPMB3uvPUr9Ve3uttZGSTwrRYdl3H/eWtsa4frM7JOQPQUBwKOmWZp5hfTa56QrrHRJlhaGrkQpn90vRVvva+EZY6JTPm1kk65kO0mqn5RbQG3rgseraqPtE6bYrPXEX0gBSY/7VDcGj/uS5LY+OfD+xvuj7++S8DzucbWrReXo6ZA2PhBu7apbpZ5cW2YPoz2O13oS7QAAAAAAAAAAADBEQvaMGzZvkvS4pLG990+R9KAxZoOk5ekLjTE/lHSgpJMk1SmVoGd7P6+V5OkTVzYyswWWB65yy3wHM2KJHgAIoX6Cf37Xouh77ngu2vrGae45m0OSk7WpimkZrV+7fMl2pjfZLrPSWt+W8nQ9d7W6zZZwUuuoYNfuaY2aq2TH8CTAtG92z409IXh8/KnSKzcGz3VsGXi/p8O9f9Msf2yZfEmOPW1Sojnafqg83W2pJNqaEZKMlIyQQLfsemm/N6ZeF2pGFCzEWFU3S53bB4/3tOW1rbVWm7s2qCMZvE9jVZPGVE+QCZNoDAAAAAAAAAAAgLJW1Ml21tqXjTGvk/QnSZPVnzw3WVJ6WR8j6f1pt5W2do2k11lrM94tL0v7Z9xfFfH6lRn3xxpjRltrA97VBIA8zLhCWnmze/7pj0jHfEfal6yWJcGheXa0800i1Yo1qNLb5hyKoCa7BiXaSWHbyAZ/bdZXGW7uR6X5Hx083tPem/jneLxcCSl149xnuZz8G2neW93zHVv8SY2F4ku62f99weMzLpeedMx1ZxSIde0/9sS052tI0y6RFn0zeK6nLVUVEpXLJqW2DdLe1dLeVVJr78feVamx1lVShye5NJtnrkp9SNL0N0sn/ar4K8QFJdpJ0gEfynnLJXsX6Mb139GO7q3edeNqJuo9Uz6pGfWZ/9wGAAAAAAAAAABAJSnqZDtJstY+aYw5RtLPJV3QN5zxecAlSmVlGEn3SHqntXZDwQMtDpkliyKVKrLW7jHGtEtKf6d1pKS8k+2MMRMkjY942Zx8zwVQpI77nj/Zbun3U8lwh34mdT9bNaGmGdFjOOQz0vyPBM+1bZAaIrRq7QxO0thc1xQ4Xmvq9lVIcibb+SrbjTnOPbf+TmnKBcFzy34YPD7Zsd5n5hXSriXSwmuC5x97p3T2fdH3zdeS69xzrnaxNc1SVaPUs3fw3ItflWa+pf++K9nu8M+Hj7FPvefXYts6/zxKX9fuwclzffdbV0lta1KJvENh1W1S7WjpVT8emvNy0bbePTf9jTltuaNrq65f8yV12ewVAbd0bdR3V39eX5lzg+oTDTmdBwAAAAAAAAAAgNJX9Ml2kmSt3Sjp34wxx0r6mKSzlapuF2SnpPskfc9a+9AQhVgsMkvg5NJTq00Dk+3i6iv2H5KujmkvAKUuTPWkVbf1J9tlUz8x3hjW/V2a857we62/J3B4ZWNw29baRN2+2wlnG1lPZTtf7CtvcSfbuVTnmDgy573uZLuN96cShRI1ue2dq82PBI83TPFf17RfKnkw044F/beTPe42nVWN4eIbcI3ncV9/tzT6yOh7ojgku1MJk+nJc3tXSa1pVeq6dgx3lAOt/oN0/A9TlT+L0Zo/u+d8P0seC1qfDpVo16c9uVeLWp/V0SNOzuk8AAAAAAAAAAAAlL6SSLbrY62dL+kdkmSMmS1pP0ljJdVK2iJpo6QXrA3o5VcZMpPt2nPYo03SaM+eAJC/MIkRrSvC73fwJ6PH0HKQe25PhLMlZ9JMc3dwEseenl37bufURtbXNrfD0zW9ZW5wQlnQWBjZqv91bJMackiEzEfDFGnP8sHjQS2D07U6Oq83pOX2+1rU5pLs40sStd3R98PQsDbVzjQzeS79c9u6wNbSRa1jq9S1M1Xhrhj5foabc2vturUrUhFoSdKWHK4BAAAAAAAAAABA+SjKZDtjzAhJs9KGXrLWtqavsda+LOnlIQ2s9HgyNWK9BgCiMUY67H+lhV9yr+mM0MF69NHRYxh3kntuxW+kIz2xZXIkYXUlsleIciXbJX1tZGtHuud8j5srqW7C6e5rfBI10uTzpfV3Bc8HtWUtpKc+HJxoJ0kTz/ZfO+3i4NbG6a0rfcl2uVQHTHj+Gda9J/p+KKyVt0pLvydte8b/XCg2Iw5MJW/uCfHP5t+PkSaeKR3/I6nlwMLHFkXbBvdc/bictuxMdkS+piuHawAAAAAAAAAAAFA+irRPlN4i6dnejycl1fmXo1fmO/O59NTKvCaud/uvl3RYxI+LYjobQDE6/AvS/h/wr1n+sxAbmVTyXlSJKnfCXesr0tq/hd9r1W2Bw52NwR3Pj0lrQWhyaSMrSYd+Nnh8y2PB475ElZaD/Wf5nOD5Hi25Lvd9o3r2U9KyH7jnD/ig//pZb3PPdfcmVnV62n7m2MZSk84JHn/hK7nth8JYdZv06OXS5kdLK9FOko7+pnT2/dkTTvtsfEC69zSpbWNh44rCJqWXfho8N/n8nLftstET5zpsLoWjAQAAAAAAAAAAUC6KNdlunCTT+/GUtXbbMMdTKoo22c5au8la+0KUD0kvxXE2gCJlEtKrfiSdO8+9Zsl3su/TPCv7GpcRB7jnljsSO4Jsmx843FVVHzheY/pzyHNqIytJtWPcc60rB4+t+ZN7vSPOUGpa3HNLhzDZbtE3/PPZkuF88xvuTX1e/4/c93ep9nRr79qd256I37IfD+/5VQ2pNtCTzpXmvCda62yTkJpmSGffG/6a9k3Smtujx1ko255xz9XlVtVOcle2O37E6Tqs6bhI1wAAAAAAAAAAAKAyFGUbWUk7ez9bSWuGM5ASszPj/vgoFxtjmjU42c5TxgcAYtA41T23r+2pp3JdmNaILg1T3HM7ngu/T9OMwAS3rmS7pKZB47VpyXYJR9679bWRlfyxb38+FdOAsX/ltlc2VYO/vn2sTX3kUnkwbtm+Rt/8zgXStNdL3a3uNb7kR5+6se65XUukscEJPxhiUV4PIjOp51/TdKlxv97P0wd+rh0z8OeofUv2BNM+Y9KeQ2NfJW19Mtx1Bf2aIyrQ61eno7JdY1WT82WrI0llOwAAAAAAAAAAgEpWrMl269Nu1w5bFKVnWcb9GYGr3DLXb7PWbs8jHgDIrmm6e852S8keeZPt8jH1QunFrwXPRakqFlRJTlJnzQgpIGmuJtH/q81Z2S5bG9nJ57nnevYGBJOZj51mzLH+s3wSVamEoL2rAiatlOySqgr8qzzZ5Z9v3E8afaR/ja/KYV8bWV/70OocK9tNu1h66YbguVJrV1rOugN+psKqHpFKft2XPLffwGS6xqlSoibano7204EaJvbfPuQz0sMXh7uumJ5/vlimXpjztl3JzsDxGlOrHtMTONdJG1kAAAAAAAAAAICKVqzJdgvTbufRH7DiLMq4v3/E63EHdDMAACAASURBVGdn3H8xj1gAILyTb5bmXRE8t/UJ/7Wz3pH7ueNPkiaeJW28f/Bc5zbJJrMntbQGJZmldDVMlJLrB43XmLRkO0f5JCsra61z3lsR7Yn3STMu67+f7JJW3Rq8duyJqYS5fJx4g3T/ucFzW5+QJpyW3/7ZZKvUdfrfsn8fjZGaZwdXStzdW2Hxha8EXzv6mOwxukz9N/fczoWFf+yQnbXBCax9mmZkVKLLSKarHRl/TGGT7U769cD70y6S9nujtPoP2a99+ZfSib+IHFpBvORp6z3h1Jy3dVW2q03UOauLdtBGFgAAAAAAAAAAoKJFKIsxdKy1SyU9r1QpoyOMMZ4eg0izMOP+EcaYxgjXn5JlPwAojFGHu+cWftl/bVWOFcX6HPLf7rmtT2W/fvmPnVOdJrg6Xe2AynbuX8VZq9u1zA0e794t7V3Xf3/Tw+49xp/sPyOMBs+v6YVfyn//bLI9R0YfEW6f0UcHj6+6TerplGxwpatBLXujqh4RPL7o2vz2RTy6PFUhz3lYumiFdO4/pZNvko76inTAv6eSKEcdXphEOyl8sl3jfhnXGem030uXbJaODtGGtm1j9NjiZq20Y0Hw3PjcE+0kqdOROFdr6lSbqAuc66SNLAAAAAAAAAAAQEUrymS7Xt/r/WwkXTOcgZQKa+16pZIU+1RLivIu5BkZ9/+Rb0wAEErtaPfcjuelak/ecMtBhTt7sydJbd+aR5xTXY7KSLWmP4nD1UZWCpFsV+OL/ZHg24P2GOU/IwzfY7jzhfz3z8aViCNJs94Zfh8b/P3S6KOknZ4zqpvDnxGke0/weKLA7XcRzk5PoV/fc7+gQv4T3tWmu36cdPB/SZMcFSn7bHk0WliFsHeNe87kV5XTV9mu1tQHznU4rgEAAAAAAAAAAEBlKNpkO2vtDZL+rlSy3ZXGmE8Nc0il4k8Z998V5iJjzEGSTkgbapV0d1xBAYBXo6cyWk+bP6Fl2kX5ne2qZiZJXY4kqHTdrc6pzkRwt/aBbWR9le0cyV99Jp3tiSst9u7dnj3O8Z8RRsMk95yvKlhckp3uucOvDr9Pu6OKV0+H1OV5DCefF/6MQI6kSlclPQytnjb33MiDhy6OdGEr2zXP8s9ne/3sHIKf32xcyaiSNO6kvLZ2VrZLUNkOAAAAAAAAAAAAwYo22a7XW5RKHjOSvmqMucsYc+Ywx1TsfiMp/d35S4wxB4S4LrOP4u+stbybCGDoHPjR4PHObf5Ep2zJJNk4EuIkSetDFPjcNj94fMLp6rLBSWA1aRXLEr7KdjZLZbuDrnLPbXm8//bqP7rXjTvBPRfFXEcs3a1S24Z4znDp2Oyei/L8mPPu4PFdi/xnTH9z+DOCHPb54PHdS6VkV357I3++52/YpLe4hTn3lFuzr5l9pTTxLPf8E+8e/uegL9nxwA/ltXWn4zW61tSpLhFc2c6VoAcAAAAAAAAAAIDKULTJdsaYn0u6TtIuSbuVSrg7R9K9xpgdxpiHjDG3GWN+HuHjhuH8moaCtXaZpBvThmol/dIYRy8sScaYiyRdmTbUKemLBQkQAFymXOCee+mnweNNeSba9XFVd9r6pORLePNVfZr5NmeyXWxtZOvGSiMODJ7re8yS3dKel4PXzLgivmShyee7557/XDxnBPFUFtSZd0Xbq95Toe+5/wker26SqoIrYIXWMtc9t+Lm/PZG/hY6/klUO2Zo4xjA/bqxz4xLs6+pbpLOuMO/Zrifg+s9hZbrxue1dZevsp2zjSx/iwIAAAAAAAAAAFDJPOV8ht2VGthXzar/ncUWSadG3M/07vGevCPLgzFmmoIf98x3+KuNMTMd2+yx1m7xHHO1pIsl9fVdPFmpJMX3WmsXp8VSJ+n9kq7NuP5aa+1Kz/4AEL/qJvfczheCx02IhJMwqhrcc7sWSSMPCZ7b+ID7uuomdXYGJ3KkV7bztZFNZmsjK/lb7HZsk3Yvd8/7HvOofHv5kmXytemf7rmoX58veWr3suDxKmcue3i+ODfcI81+Z/5nIHed24PHfVUxCy1bkmyU535VXaod65bHgufX3z28z8HdS91zaa+lUVlrnZXtakytTCL49wuV7QAAAAAAAAAAACpbMSfbBclS4qckPCJpRoh1UyW94pi7UQMr0Q1grV1jjLlE0l1KVbaTpFMkvWiMmS/pZUkjJR0jKbMkyN8k/W+I+AAgXqOPzuGimJLtxp4grbwleK5jq/u6TvecHXuiutb9LnAudGW7bG1kJalpprT1ieC5ji3eGDX+5Oz7hzXG8/3r3BbfOYP2diRCSdGfU6OPjH6+7/kR1lhPK9849kd+qkekfpYytW8a+lj2yZJsN/ZV0bbzJdv5XkOGQsJTOTKPhOtu2y3rSGiuNXVKmKrAuS7bqaTtcc4DAAAAAAAAAACgvBVtG9leJsaPimKtfVCp6nab04aNpOMkXSrpfA1OtPutpMuttT1DESMADFDTLI05LuJFMb28z3yre65tnXtu7xrnVHfTNGcb2JpE2DayISrbzf2oe+5vc6VnPuGen/aG7PuHVd3kTvDpbpV6CtB60VrpMU/FrerGaPtFXS9Js98d/ZpMDZ72tevvlLr25H8Gctfq+NuHAz8ytHGky1bZ7lBH22OX/T/gntuxINpecds2P3jcV9UzhC7rrlBXm6hTnXEn+bkq4gEAAAAAAAAAAKD8FXOy3awCfMwe0q9gmFlr75B0mKQfSfKU/tHjkt5krb3CWts6JMEBQJBTHNXlXOJqI1ufmXuc5tHL3XMLvhA8PvoofyKHSWsj6/lV7ErWG2DU4f75XYuCxxM1Uu2o7PtHcXRmV/I0vqS/XL38c8l2B8+1HJTbnqOOiLZ+4lm5nZPpyP/nnnv6Q/GcgeisJ+F14hlDFsYg2V77Jp0dbb+WA92Jo23rUomtwyHZI217Knhu+pvz2trXDrY2UafahLtFNK1kAQAAAAAAAAAAKlfRtpG11q4c7hgKwVo7c4jP2yTp340xH1OqlewMSZMktUpaK+lZa62rXS0ADK2m6ZKpkkIX2IyxcGndeKljc/Bc997BVc981caqm7yVj2rSku0SnqSZUG1kqxqyrwnSMC2363x8leFW3Sod/4N4z1txs3su18cl6nXVOZ4z6Nwm99yav6SSjhK0rRxy2591z+X6HCtWvkTTnQuzJ/YWgivRTsr78e/0JETXmFpVG3eiZWeyAJU6AQAAAAAAAAAAUBKKNtkO8bLWdkp6YLjjAACvRI006khp+zPh1u9eGt/Z1c3uZLv2TVLzzIyxDe69akapy1P5qCYRtrJdiDayiWqpZa60a0n2tekaC5BsN2J/91zH1lR1rLiqEUrSxvvdc2mPcSQjD5W2PhFtfRxGefbp2iH17JUSI+I5C+G1rnLPxfW9Lxa+52Dr6uFJttu72j038rC8ts5W2c6X7NxhSbYDAAAAAAAAAACoVMXcRhYAUIkOjNAys8pTSS3yuf/hntv86OCxnjb3+jnv9VZNqjV1+24bT3W+ZJg2sr3nRRblcQ6rpkVqmuWeH8rWi/u/L7frZr0j2vqWubmdk2n8q/3zoas9IhatK6WbjfTwJe41TdOHLp6h4HsOtm8cujjS7XjBPTf19Xlt3eWpPlpr6lRHG1kAAAAAAAAAAAAEINkOAFBc5rxbqp8Ubu2My2M815Ow9tjbpD0ZHbef/1/3+knnqCvpaSObXtnO10Y2bLLdQZ8Ity7d9EujXxPGKb91z218KL5z2rIk/0x5XW77TjxdGndyuLVTL8ztjCBVtdIZd7jnN9wb31nw62mX/jzTv6Zu/JCEkpMxx+d2XZWnGuQT785tz3x07pQWftE93zAxv+191UdN7YB235k6aCMLAAAAAAAAAABQsUi2AwAUn4OuCreuqiG+M7PttfoP/betldb82btXp7dqUsg2sjZEG1kp1Zp19FHh1kpSdVO87VzT1Yx0z730s/jOWf4T/3x1Hs+NsImI9fkl+wzSuJ977uVfxHsW3NbdmX2NqSp8HLmqac792ubZ7rmorarztd7zfYihpa2r+miNqZUxRsaYAVVIw1wLAAAAAAAAAACA8keyHQCg+PiSjtLlk1CVKVEr1U9wz+9Y2H/b10JWkhJVzhaF1aZaibREnYSnjWzoynaSNPHs8GvDPr65aJjsnuvcGt85Cz7vn69qyn3vppCPT9yPoy+Ba52n6h3iFaaKW/uGwseRTfP+weOz35X7nr7n9E5PS9dCSH/NzRTDz56rsl1toi7tdnArWSrbAQAAAAAAAAAAVK7q4Q7AxRjzjhi3s5J2S9opaYOkxdbaCBkMAIAhNfn8cOvirGxnjDTtDe6Kaa/cKB1xjdQ0Xere695n/KmS3Ikcma0J/W1kQ1a2k6T9LpYWXxtu7bSLw+8bVa2nst2OBYU7N93Mt0mJPCqPTTonVf2vu9WzyEjTYmwjKxV3tbRS0NMp/evT0pJv94+d85A04dXR9uncHm9chTLtQmnxtwaOJeqkyRfksefF0iZHu+fuLEnGcbJWeuHL7vn9Lsn7CFd1uvRqdnWJOu3pCbjW04IWAAAAAAAAAAAA5a1ok+0k/VKKUtInklZjzFOSbpR0q7X0ggKAolI3Rpr6emntX/3r4ky2k6Rjvu1vT3rPqdK5j0qbHnSvOe4HkuSsbFeT0ZbQ30Y2wq/B8adIx31fevrDnkVGmnG5dPgXwu+bi0P+W3rx64PHO7ZIu5ZKLQcW9vzjr8/v+poW6cy7Ut9vl5N+JY0+Mr9zMmVLtmtb768cWMlsUrr31dLWJwaO33u6dPb90sQz4z2v5aB498vFkV+RWlf1tri2Uu0Y6dTbpPpxue859yPSMx8PnhvKynbz3uqfnx2i+mAWoSrbGUdlO0tlOwAAAAAAAAAAgEpVzMl2fdwlf3LXLOmM3o+vGmPeZa29uwDnAAByNfk1Q59sV90oHfJp6cWvBc/vXS29/EvplV+596gbI0nqSjqS7RIZle08v+aSUXPOD/yQNOe90vq7pZ0LpXEnal/HeGOkkYdKdWOj7ZmLxunuuWU/ko79lns+jLYsLTxrRuS3v5RKXvSZ9bb8z8iULdnulZukQz4Z/7nlYMfzgxPt+tx3lnRFzH+/UdUY7345xVAnnXab1L5FalsrjTwsv4qOkmQS0shDpJ0vDp5b9kPpqK/kt38YHduklb91z898a+r1LE+uhOjMynZBOmkjCwAAAAAAAAAAULGKPdku/Z006xjPlPluatBamzY3WdI/jDEftdb+IHqIAICCCJMUVohWftnO3TJPalvjnq9JtVEN06JQkozxVLaL0ka2T1WdNO31qY/hUjvGPbdlXv77b3k8/z3CmHyBtP4fg8fHnVSY8zzPBUnxPHblaqieE31mvX1oz/OpH5dfNbtMrja6ha5I2Wfrk/553+tLBKEq2yUcle1oIwsAAAAAAAAAAFCxijnZ7l29n0dI+ryksUolxyUlPS7pKUmrJO2SVCtpjKTDJZ0maVLvtVbSrZLulNQgaZSkQ3rXzNDApLtvG2MWWWvvL+hXBQAIZ+JZ2dcUopXjpPMkeaqHrb/Tf31vVbU4KttFaiNbTCZ5vnfdrfntba2/4uGYY/PbP92BHw5Otpv7sfjOGCDL9zvfx66cJbvi26uqQepp86+Z/c74zis2rudZ+6bhPb/PpHNjOabT2eq7/zU6Mzm6T5cjmRoAAAAAAAAAAADlL0sJleFjrb1R0jxJH1Iq0U6SfipplrX2FGvtx62137LW/sxae7219svW2sskTZP0RkmvKJVE92ZJM6y1P7LWfs1a+w5r7SxJr5P0cu8aq1Ti4bVD+kUCANzqx2df0zQr/nNHHS4ddnVu1x5//b6b7sp2A5PtEr5ku6htZItF/QR30tvOhamEuVxYKz39Yenln7vXnHlXbnsHmfKaVFvedDOukPZ7Y3xnpMv2uGy4pzDnlgObpQrk1qfD75Ut0e7gT0q1o8PvV2oO+XTweOsKac/LhT3bWumZq/xrprw2lqPCVLarc1a2o40sAAAAAAAAAABApSraZDtjTKOk2yXNldQt6S3W2g9Ya1f7rrPWJq21f5J0hKRHlPoarzbGXJmx7g5Jx0h6Nm34CGNMPOUyAACFV9UQ/57GSEd8QZrznujXjjl+301nIkdmG1nPr+Kc2sgWC1/1t03/zG3PHc9Ly653zzfvH679cFgmIb3qx9J5j0vHfV869xHppF9JiUIVBi7h7/ewy5Ko+PRHwm2T7HHPmUTquXD0/4UPqxTVT3DPPfe5wp69c6G01/NP/REHSomqWI5yVadLf41OT7xL53p9BwAAAAAAAAAAQPkr2mQ7SddIOlipd0+/bq39XZSLrbWtki6RtE2p6nXfN8aMz1izW9KblErm63uX9rw84wYAxCVbK9nqpsKdPe6U6NdUN++72eVqUZjZRta4K9slS7WNrDTgsRhkzZ9z23P5j/3zYaohRmUS0rgTpAM/JI0/JbZEn0BVIZ7Pe9cW7vySluVnZevjUtfu7NvsWuSeO+eR1HOh3Pl+djfcW9izs+0//tTYjnIlzKW/RtcZR2U7S2U7AAAAAAAAAACASlWUyXbGmGpJ7+i92yHp67nsY63dIqnvnfkGSVcErHlF0m3Svj5+OWRXAAAK4rDP++cbJhfu7FySOkYcsO+mM9kuo42s8baRLeFKZ+NOds/tXprbnst+6J+PMRFnWDRMlEYe6l/TuX1oYik12drISlLXrvzWjMryvSkX4z3/FO7YXNizsz2/fRUzox4VqrJdcLIdle0AAAAAAAAAAAAqV1Em20k6VdI4pcqUPNlbpS5Xd6fdfoNjzV29n42kaXmcBQCIky/p44QbUi1fC6XlAGn2leHX108cUPWsKxmcbJfZltDfRraEK9s1THTPrfu7tHNx+L16OqS7Tsq+7oB/D79nsTriGv/8poeGJo6SE+JnZd0/sq/p9vyTs3pE+HBKWeM0aeRh7vn5/ykVqurm+rvcc6OOkEYdHttRYV6j6xxtZDuSVLYDAAAAAAAAAACoVMWabDc97fa6PPdan3Z7hmNNes+w0XmeBwCIS6JauqxDmvGWgeNn3CHNeXfhzz/hhvBrD7pqwF1X1aRBle08CYMlnWwnSafc4p77+8Hh91n45VQb0GyaZ4Xfs1jtd4l0jieh7ukPSz3BSUIVLUzy15Pvy95Kdsl3g8erGgqb3FtsfK99S74trfxt/Gd2t0pbn3TPv2Z+rN+DUJXtTHCynetaAAAAAAAAAAAAlL9iTbZL7wvYlOdejb2fjaRJjjXpPauC31UDAAyPqlrplJulK2z/x5QLhuZsE+HXZEa7QVfVpMxku4Svsl2Y1pjFbMT+/vk9K8Lts/R7eYdSUia8WkrUuOe3PDp0sZSMkD8rG+71z29/Nni8KridaNmqbvTPr/lz/GduuN89N+OKVPJ1jFytYNNfo91tZKlsBwAAAAAAAAAAUKmKNdluV9rtQ/Lc69C023sca9LfSWvL8zwAQCUafeSAu502bBvZMq5s13KQf37jA+H26dqZfU1TGVS1SzfqSPfc3nyL/pahsG1N27I8dnVjg8c7twePl6sR+0tVnoS7bI9jLtrWuudGe34ecuSsbJfIXtmuw5GoBwAAAAAAAAAAgPJXrMl2a3o/G0mzjTEn5LHX23s/27R9M01KW7M5j7MAAOXm2JBV1cafMuBumBaFkr+NbLLUk+2qmyRPMqG2P+O/fvdy6eaQbSOP/0HosErCAR90z/XwdwGDhfxZefHr/vkdC4LHJ5wRKZqSV1Uvzb7SPb/5kfAJjmH5ntfTL433LLkr26Un29W5KttZKtsBAAAAAAAAAABUqmJNtntIUpdS75waSdcbY7L0sxrMGHOZpPPU/w7sPY6lx6TdXhH1HABAGZv7YX+FJ0k65+FBbT+dbWQTA9vImnJuIytJx1zrnlv6fWmvo5pV1x7prweEO+PEG4eutfBQmfMe99ya24cujlIR9mdl72rppZ8Hzy35vvu62e+KHlOpO/Y6qXa0e37JdfGet+Ca4PGqeql5ZrxnyVN9NC0hOrMSaZ+OZIds3MmGAAAAAAAAAAAAKAlFmWxnrd0l6W9KJdpZSUdJussYs1/YPYwx75V0o/oT9qykmxzLz0+7/VwuMQMAytiRX/bP148fNNTlqGxXYzKT7cq4jawkmWr//Nq/BI9vcOXHB5j9jvBrS8mYY4PHozw2FSPCz8orNwaPz/+I+5qq4ApnZS1RJR39Dff8y46kxVx17QgeH5tPgWvPcWEq25ng77tVUt22qyBxAQAAAAAAAAAAoLgVZbJdr/+SlN6j6RRJLxpjfmiMOcsY05J5gTHmQGPMB4wxT0n6saRa9Sfa3WCtHdQbrDeB7wz1v0v7cLxfBgCg5E272D/fNGvQUKejsl1mpSR/sl0ZVLab9gb//M7FweO7HOOZjvxqtHhKye7lweMjDxvaOEpBlCpjYZ9b6ZpmRL+mHDTNdM/tWhRfK1nfPl274zljwHE2r8p2krtVOAAAAAAAAAAAAMpblnIzw8da+4ox5t2Sfq1UUqCV1CTp/b0fMsbskrRbqaS6kb2fJe3LXOiraveEpP90HPVp9ScdtsvdahYAUKl8LQyb95eqagcNh65sZ4yMTGAVu7JoU9iUpShtx5aB9/e8Ii3+VqrFbBjTLsotrlIw6nBp8yODx7t2DX0sRS9CYmr7pujbjz0++jXlYPxp7rlkl9T6itQ8O/9zHFXmJEmTz3fPebT17NXd2/6gl9sWa2LtNJ05+nVqrhqhu7f9SUv2Pu9MZq5Jr2yXcFc0vHbVZ1RlqjWqeqyOaj5RJ488Ry+0ztfjux7Qxs7+9tjVpkaz6ufqnDEXaUzN4CqoAAAAAAAAAAAAKC1Fm2wnSdbaW4wxSUk/kdSi/upzfcl0I3s/Bl2atu4uSZdba1sdx/xa0u96b+/xrAMAVLI3rJZuD0gcu+DZwOVtyb2B47VmcGKeM9muHNrIStIb1ki3TwueW3mzdNIvpUSN1Lpauuc0qW1t8NpMp/1BGnlwbGEWndlXBifb7VmeqgRm3FURK07UxNR1d0pTXtN//5Wb/OtNMReDLqCqWum0P0oPXxI8f8cRqZ/v2lH5nbPuDvfcjEsjb9eV7NR1a67WyvZlkqRlbS9o3s57ZHv/55P+Gl3rSbbb0LlGkrS2Y4VeaJ2vu7f9QVu6Ngbuv7J9mZ7f84Q+OePrGlk9JvLXAwAAAAAAAAAAgOJR9O8cWmt/J+kwpRLiejSwal3mRx8jaYWk91prL7DW7vTs/7i19qHej/kF+BIAAOWgcZp0hZUufFk6/a/SG7ek7tc0D1ra6anSVBPQltA4fh0ny6GNrCQ1TpUO+A/3fF9C2YqbwiXaJWqlt/RI+zkSgMpFVYN7bteSoYujJERMtlv4pYH3F/1ffKGUG191u+5Wae3f8j/jBU876KrGyNst2fv8vkS7PkklQyUwp7eOrTPuNrKZNndt8O6/rXuz5u8KSJ4FAAAAAAAAAABASSn6ZDtJstausdZeLmmGpI9JulXSEklblUrA2ytpraRHJV0r6QJJ+1trfz48EQMAylbzLGnq66S6sc4l6S0EM9UHVEoyjgplZVPZTpLqxrnntjyR+rz1yXB7Hf2Nyqg05nvMtj4xdHGUhIg/K1vm9d/ubpN2LHCvbSnj6olh1I6SqtwV3mJ5Lrau9JwfvRLcHVt/l32RQ1NixL7bdYn6Qa2/87EiIwEQAAAAAAAAAAAApaeo28hmstaul/S93g8AAIqSr7Ld5NoZg8aMHMl2tkwq20nS5NdIC68JnnvuM1L7JmnN7eH2mnF5fHEVM19FsZ7gNsUVK5+fle49/vnjr89973KQqE79/Lp+Pjt35L735sekVb+TOja719R7kk4dVrQvzSmc6fX7q7m6Zd/9hKnSQY1HakHrUzntl6kj2R7LPgAAAAAAAAAAABg+FVAWBgCAodVp3cl21WZwnnvC8eu4rCrbjTvRP7/k2+H2OfEXUv2E/OMpBdWeNrLr/jF0cZSEHH5Wts2Xkj3SP452r6kbK004PfewysWx33HPrbhJ6skhiWzxt6V7TpaWePY++pvR981RS9UovWPSRwaNXzrxfRpfMymWM3y/GwAAAAAAAAAAAFAaSqqyHQAApcBV2a4+0RDYMtYYE5grVFbJdsZI0y6W1vwp9z0mny/NvjK2kErC2BOC23Su/evQx1LMbA4/K/M/Lh1xjdTmbvus1zybeu5WuqYZ0ux3Sy//PHh+zV+kGZeG369zu/TsJ7OvG3Nc+D1zlFCV3j/1v3VAw2FqqGocND+2ZoL+Z+Z3tbztRW3oXCNJunfb7drRvTXyWb6qpwAAAAAAAAAAACgNJNsBABAzV/WiWlMXOO5qI5sspzayklTTkn2NT8sh8cRRSkyVe65ja6ryGiTl8LOy+RFpdZbWxTUjcgunHNVPdM9tvC9ast2K30q2J/u6qvrwe+bo/LFv1BHNr/KuqU3U6ZCmo3VIU6oK4oI9T+aUbNdFZTsAAAAAAAAAAICSV3JtZI0xNcaYU4wx7zDGfNwY87/GmM8Pd1wAAPRxVS+qSbiS7SqgjawkTXh1ftdPrMB2niMPds917fRfm+yRtj0jrf1bqpJYOculsp0kLb3OP187Krd9y5Hv57czy3Mx08YHwq1rOTDavjlwJUH7NFeNzOmszmRnTtcBAAAAAAAAAACgeJRMZTtjzKmS/kvSeZKC3hW7JuCa10jqK7OxzVr7X4WLEACAlMiV7RxtKssu2W76m6XlP5W2Ph792knnptrIVpoDPyq9dEPwnC/BqW2j9MC50o4FqfsmIb3qJ9Kc98QfY1Eos5+VYjTxLPfcqlsl+9twLXc7t0urfx/uTFMTbl0eah1J0D7NVblV6XT9bgAAAAAAAAAAAEDpKPrKdsaYJmPMbyQ9JOn1kuolmYwPlxckfoLv6gAAIABJREFUvV3SOyVdZYw5ssDhAgCgLkf1IldSh7OyXdm1kR0hnXV39OsO/Ih0+l+GpKVk0Wme6Z5b+CX33FMf7E+0kySblJ54r7RzcWyhFZVy+1kpRlW10tyr3PNr/xZun2c+Ef7MMMl7eaoxtZGvGZFzZTuS7QAAAAAAAAAAAEpdUSfbGWNaJM2T/j97dx4na17Xh/7zVG9nnX3fGBgGGIYd2RQVQQORmGjQRG80JuqNV3LRJGoSREWNJt5cgyt6oy+D0ShGRWMStgEuhEVWQZB1gGGYfeYwyzlzzszpperJH30O02dO/Z6up6q6uqr7/X69zut017P9urrrqZlXf87nm29P/1BdY41JXdc3J3nDhmO/fawLBIA+ys12/UMdnUJufMc12yXrgbtHfne7Yx7zst0ZtEuSub3lbXe/v//jvdXk9jf133bb60df01Taga+VadQ0VnfQn61BQ3lJmv9NzXgM02y3f+7gUNfSbAcAAAAAADD7pn2M7J8keWIe+g3qSpI/SvL2JL0kvzPAOf4s6414SfINSV4+3iUCwKlK7UXlZrtS2G6HtnU99oeSL/znwfZdOKu53W2n6zSM0SwFEFePJN3j/bfd8ZbkmoZmsd5qcvzOwdc3LVaPbPcKdodznlbedvyOzY9fOZwsH2pxwQmE7QrjvZscnB+u2W6tXk2v7qZTzQ11PAAAAAAAANtvasN2VVV9a5Kvz0NBu/cm+ft1Xd9yYvsjBjzVyWqXKsmTq6o6UNf10bEuFgA2KDfbFcJ2Vf+i2V69Q9u6zn5Kcv5XJ4fetfm+j3lpc+BsN7jga5K73nn640dv6L//J/5t+VzLd/d/vLucfPAHkpv+KFk71n6N7A4XvqC87ZY/T+54W3JRn33u+Ujy/u9J7v2rdtcr3BvHaZhmuwNzZwx9vdV6NUvCdgAAAAAAADNrmsfI/tiGjz+e5BtOBu3aqOv6jiR3nfi0k+SaMawNAIpKzXYLrZvtdmjYrqqS571hveGuZPGc5GmvSp70s5Nb17R6zMvK29YeOPXzG343+fSryvvf86H+j3/wpckNrxG0o9n83uTql5a3v+PFyZHrT31s+e7kbc9vH7RLMplmu/7jvZscmBuu2S4pvz8AAAAAAAAwG6ay2a6qqouTPGXDQy+r6/qB0v4D+HSSC058fHWSD45wLgBo1LrZbreNkU2ShQPJ039p/Q/N5vaWt93xtuSyb3ro8y/+webnO3pDcuBRD33eXUlu+uPh18fusv+K8rbecnLz65JrX/7QY7e9MVm9b7hrVe3Ddt2622r/STfbld4fAAAAAAAAmA3T2mz3nBN/10luruu6z+y0Vu7Z8PG5I54LABqVmotKoY7SGNkd22xHOweuKm87+rlTP7/9zZuf78bXnvr58l3J2v3t18Xu1PTzmCT3P+xn8iM/PMLF2oft2jbHLRRC0E32zx1sfcxJmu0AAAAAAABm27SG7S7a8PFHx3C+oxs+PjCG8wFA0WrLZrtOqdmuFrYjyRmPLW/78L9I2v6cHL/z1M8fPop2pyiEWBnRxX8jWTy7vP2G//TQz9QX/kty/K4RLjZE2K4+3mr/YZrt5qq57O8MF7grvT8AAAAAAAAwG6b1t5Bnbvj4yBjOtzFg1+43cADQ0kpvpe/ji53Fvo9XhbfjHT1GlsFVVXLG48rb3/Hi9b+v//XBznf9r66Pjj3p8789/Nqm1d5Lk+f83navYmdaOCN5wdub9/mj/es/j+/9rtGuNcQY2bbNcaUQ9GYOzA83SlazHQAAAAAAwGyb3+4FFNy74eMzi3sN7pINH99T3AsAxmClZbNdVQiU9IyR5aT9j0yOfLr/ttvfmKw9mHz6VYOf79C7kotesP7xp/59eb+/+dFkft/g550GncVk3+XrQa2/+Af997ns7yTP+I31VsD/cXXS3aHtflvl7Ccn1/xo8qn/t7zPh/7pGC7UPmy33HaMbCEEvZkDc2fkztza+riVun8YGwAAAAAAgNkwrWG7Qxs+vnaUE1VVtZTkKRseumWU8wHAZkrNRaVxhVVxjKxmO05YONC8/eY/SY5+fvDz3fCa9bDdZiNoz3rCzh3HuvfiEx8ItQ5lz4Vbf41hmu3ajpGthg/bDUOzHQAAAAAAwGyb1t+efvjE31WSK6uqapidtqmXJDn5W7S1JO8bZWEAsJlSs91CqdmuOEZWCIgTLn5R8/YHbm53vht/PznymaQp+LPvsp0btGN0l3zjeM6zdO54znNCmzDbfLWQTjU31HWGDtsV3h8AAAAAAACYDVP5G9S6rr+Q5HMbHnr5MOc50Wr3ipOnTfLBuq6Pjbg8AGg0tmY7YTtOeuQ/bN5+0+van/NNz0iuf3V5+7N+u/052T3OvCZ5wk+Odo4rvys5/7njWc8JbcJspdHegzgwd+ZQx2m2AwAAAAAAmG1TGbY74TUn/q6SfGdVVd/d5uCqqjpJfivJNRsebviNMgCMx2oh7FEK23UKoxKNkeXLOvPN2+/9cPP2ftbuTz7yI+Xt+x/R/pzsLtf88GjHP+EVm+/T0nJv8DGypXvyIDTbAQAAAAAA7E7THLb75SR3Zb2Rrkry21VV/duqqvZtdmBVVY9Pcl2Sf3Di+DrrTXl/uHXLBYCkW3ezVq/13bZkjCyzZGG4MBG7yNze0Y5fPHs869igTXPcaM12Q4btNNsBAAAAAADMtKkN29V1/UCS707Sy3pYrpPkXyW5vaqq1yZ56cb9q6r6+1VV/URVVe9K8rEkX5f1kF6VZDnJd9R1LbUAwJZarVeK29qOke0J27HRec+Z7PX2XjzZ622b/q8/BtBZGP7Ys5+a7LlgfGs5Yblu02y3OPR1Ds4PN0a21HwKAAAAAADAbJjasF2S1HX95qyH6k4G7pLkYJK/l2Tj3LMqyR8k+akkX5lTv661JN9b1/UQ89UAoJ2m1qKFUrNdVWi2M0aWjZ75m5O71tUv3XwfSJLnvbH9MXN7k6f+wvjXknbNcaV78iA02wEAAAAAAOxOUx22S5K6rn8ryQuzPlK2Sk6p+ak3/Kke9niV5EtJXljX9Wsns1oAdrumIEXbZjtjZDnFWU9I/uZfTeZal79kMtdh9l3youRFLf5NyxN/OnnRXyYXPX9LltNqjGzhnjyI4cN25fZTAAAAAAAApt/Uh+2SpK7r/z/Jo5P8yyQ356HxsBv/ZMPHdyf5mSRX1XX99okvGIBda6VhROBiqdmuGLbTbMfDnPHYyVxnft9krjMVhFpHds5TB9/32lckZ16zZUtZaTFGdqEafozs0GE7Y2QBAAAAAABm2vx2L2BQdV0fS/ILSX6hqqrHJHluksuTnJtkMestdncm+YskH67r2m9OAZi4YZrtOqUxskJAPNzcnslc58wnTOY67CAPL6Au7ba1/9ZnuTd42G6UZrvFzlKWqj1ZbhHuS4yRBQAAAAAAmHUzE7bbqK7r65Ncv93rAICHa2otKrUoFZvt5MbZDnN7k4UD270KZs1X/2nyrm/ZfL+q//1uXNqMaS21jQ7qwPwZWV5tGbbTbAcAAAAAADDTZmKMLADMitVCa9FCtVhssCuF7XrGyNLPgau29vzP+P+29vzTQJB1/C7/5uSSb9zuVbQaIztKs12SHJg7s/Uxmu0AAAAAAABmm7AdAIxRqbWoqUGpMkaWNhbP3trzz+/d2vNPna1tWttVrvmXQxw03ue/1RjZUZvt5g62PmZVsx0AAAAAAMBME7YDgDEqtRYtdPqPkE2MkaWlJ75yuOMKoc7THHzMcOeHM69NqrltXUKb5jjNdgAAAAAAALQ1v90LaFKtV/08IcmTk1yR5Pwke5PUSR5McleSm5J8NMknaqkEALbZSr3S9/HGZrtS2M4YWfq58PnDHbfnwmTfFcnd7y/vc/Dq5KwnDXd+2HNecvnfTW76421bQqldtJ/Rm+3OaH1Mm/UBAAAAAAAwfaYybFdV1dck+f4kfzPJoJUR91ZV9fokv1XX9bu3bHEA0KDUWtTUoNQpFM0aI0tf8/uSv/WZ5H8+tt1xdZ08/7rkuuckhz95+vYDj06+/l1JZawqI3j2a1qG7cZ7n2vTHNfUODqIg0M12/UPZAMAAAAAADAbpipsV1XV45O8OsnXnHyoxeHnJPnOJN9ZVdXbk7y0ruvrx7xEAGhUai1qbLYrhJt6tWY7Cs4YctTrwhnJiz+RdFeS3vH1x+o66Swm83vHt76ZItQ6VvP7k0u+MbntDdty+eX6+MD7jtpst3/uYOtjNNsBAAAAAADMtv5VOtugqqq/l+QDWQ/aVSf+1H3+nNRv28njnp/kL6uqesmk1g8AyXDNdpVmOybhmh956OO5xfXg3cIZyeKZOzhoV/h3G4/8zskug4lZ6bUI243abDc/TLOdsB0AAAAAAMAsm4qwXVVV35bkD5Lsy6khu5PhuSQ5lOT6JO/Leijvs0m+tGGfjcclyf4kr62q6lsm81UAQLJSaFVqDtv1DwQJ29HojMcNvm81nzzi27duLdNqY8DwpPkDySV/a8MDxuZur/E+/23GtC6M2Gx3YO6M1sf00k23XhvpugAAAAAAAGyfbQ/bVVX12CSvObGWjSG7I0l+KcmLk5xX1/VFdV1fU9f1V9Z1/ey6rh9X1/WFSc5P8k1JfiXJ/Tk1dDef5D9XVXX1pL8uAHanYrPdEGNk6xgjS4MXfnCw/TpLyXP/a7Lv0q1dzzR64k+vjzQ9aeGM5Hmv38FNfrtbt15LN4MH2ZpC0IM4MNe+2S7RbgcAAAAAADDL5rd7AUl+LeuNdidDdr0kP5PkP9R1fXSzg+u6vjvJ65O8vqqqn0jyI0lekYdqMg4k+dUkLxr/0gHgVKVWpYWGcYXFMbK1ZjsaLBxIrvyu5MbfK+/zvDckF3xNMr9/cuuaJvN718N1R29IHrglOfdZydxoASsGsE33ruUWI2ST5hD0IA7MHRzquJV6OXuzS1+TAAAAAAAAM25bm+2qqvqqJC/IQ0G7+5O8sK7rnx4kaPdwdV3fX9f1K7MerDuWh0bKfkNVVV85pmUDQNFK3b7ZrmOMLMNaPKu8rbOYXPzC3Ru02+jAo9ZDh/2Cdpd98+TXs9Nd+LzB9z3/uWO7bNvGuFGb7fZ2hnttabYDAAAAAACYXds9RvalJ/4+Ofr1++u6ftuoJ63r+q1Jvn/DeZPkB0Y9LwBsZrU0RrYh1FEaI9szRpbNXPj8hm0vSKrt/k+9GXDND/d//En/ZrLr2Eke9T1JvxDxVd/bZ99/3H/fR373QJc6unYkHzry7rz1nv+Wd9z3hlbLHLXZrnTv3szb7v3vuX35Zu2lAAAAAAAAM2jbfgNbVdVSkm/KehiuTvK6uq7/cFznr+v6tUlel/Xf3lVJ/nZVVeUZfgAwBsM02xkjy9AufXFy+bee/vjS+clTfn7y65lFZz81eewPnfrYOV+RPOb/3p717AR7zkue9h9OfezAo5In/OTp+y6dkzz9l059bP+VyRN/atPLfP7BT+cnbvgn+U+3/0L+9NDv5Lp7XtdqmaM22w3rnfe9Mf/mxpflv3/p993nAQAAAAAAZsz8Nl772UkOnPi4TvKqLbjGf0jykhMfH0jynCT/awuuAwBJyuMBG5vtimNkNduxic5C8lWvTW7/R8mhdyfdB5MzH59c8uJk36XbvbrZUFXJ034xuezvJHe9Kznjcckl35gsHNj8WMoe98+T874qufOtyd7L1oOhS+f23/exP5ic95zkjrckey9d//ndc17j6eu6zn+67ReyXB8feomjNtuN6s33/EmesP/puWrfNdu6DgAAAAAAAAa3nWG755z4u07yqbqu3zfuC9R1/b6qqj6Z5PEbrilsB8CWKTXbLTSUqxab7aLxiAF05teDTJe+eLtXMruqKrnw69b/MD7nPXP9zyDOfcb6nwEdWr0j9659aciFrRtHs12Vqu+9+uz583Kse3/xPeGkzzzwMWE7AAAAAACAGbJtY2STXLvh4/ds4XXeXbgmAIxdt17r+/h8tVA8pqoKzXbGCwL09UD36EjHX7p05VjCdt92wff1ffyF57wkj9z7mE2Pf6B3bOQ1AAAAAAAAMDnbGba7asPH79/C62w891XFvQBgDLp1t+/jc9Vc8ZiOMbIAE1Olyt845++O5VxfcfCrc/7CRac8dsHCJXnawa/K15/zLZnb1iJxAAAAAAAAxm07f/tz4YaPv7iF19l47ouKewHAGJSa7eaq8ltuaYxszxhZgILy/fGypStTpZOLl67IZUtX5q6V23LT8g2p614uXLw0zzrjebn2wNPHsooD82fkh6/4+bzlnj/NLctfyBV7Hp2vO/ubcmD+jFw7/7T84OU/nfcefmved+Ttrb8OAAAAAAAAps92hu3O3fDxfVt4nZPnrpKcs4XXAYB0U2i2S7nZzhhZgHaa7o4/csX/M5YRsYM6Y/6svOSC7+m77ep91+bqfdfmgd6xfOzoB07bXgvbAQAAAAAAzJTtHCO78TdgWxm2O7zh4z1beB0AGLLZzhhZgHZ2RkhNphoAAAAAAGC2TEvYbnULr7Mx9bCwhdcBgHTrQrNd1dBsV3g71ngE0N+s3R9LoeqdEhoEAAAAAADYLbYzbAcAO045bNfQbFcaI6vZDqCvpohaOdi2nUr3eWE7AAAAAACAWSJsBwBjUtd1uimMkU252a5TarYzXxCgv8b74/SF7aZvRQAAAAAAAAxD2A4AxqTX0ETXPEa2fwyjp/EIoLVCWei2ms62PQAAAAAAANoqz7SbjJMpgmdXVXXlFl3joi06LwCcolv3b7VLjJEFGKem8auzFGwzRhYAAAAAAGC2bHfYLlmfqvTaLb5GHdObANhi3bpb3NbcbGeMLEA7szVGtrQmYTsAAAAAAIDZMg1hu0kE4fwWC4At10252a7T8JZbamESwgDob+aidqVFuc0DAAAAAADMlGkI2yV+zQTADjB8s50xsgBtzF4YWagaAAAAAABgJ9jOsN1NEbIDYAfp1uVmu7mq/JbbqYyRBWhntrrtSqFq/zsEAAAAAAAwW7YtbFfX9ZXbdW0A2Aq9MTfb9TTbAfTVHLWbnbCdZjsAAAAAAIDZ0r9KBwBorZumsF05314V3o6FMADaq6rpC9sBAAAAAACwMwjbAcCYNI6RTUOzXSEYImwHUGDMNgAAAAAAANtA2A4AxqQ75jGydW2MLEA/pTDyNI6QTYyRBQAAAAAA2CmE7QBgTBqb7RrGyHaMkQUYk+kM25XW5T4PAAAAAAAwW4TtAGBM1hrDdsbIAoxLudluOhVu83GbBwAAAAAAmC3CdgAwJt00jJFNudmuNF6wZ4wsQF+zF0YWqgYAAAAAANgJhO0AYExKY2Q7mSu21yVJZYwswJhMZ7ddKVQNAAAAAADAbBG2A4Ax6db9m+2aRsgm5RCGsB1AO7MXanOfBwAAAAAAmCXCdgAwJqVmu7mqPEI2Saqq0GxnjCxAX6UwckOJ6LYqLUvUDgAAAAAAYLYI2wHAmPQyXLNdR7MdQDt16f44pWk793kAAAAAAIAdQdgOAMak2GyXTZrtiiEMzXYA/RSb7aY0bFdel7AdAAAAAADALBG2A4Ax6dbDNduVxsj2is1NALvbzN0dC1k7t3kAAAAAAIDZImwHAGMydNjOeEGAlmbr/qjZDgAAAAAAYGcQtgOAMSmOka2MkQWYhNkbIwsAAAAAAMAsEbYDgDHpptBsl+HGyGq2A+ivdH+ctVCb+zwAAAAAAMBsEbYDgDEZttmuU2q2q4UwAAAAAAAAAGBaCNsBwJh060KzXbVJs13h7dgYWYD+SmHkqprOZrvyuHChagAAAAAAgFkibAcAYzJss10pHNITwgDoqxxSm86wXWldwnYAAAAAAACzRdgOAMakm/7Ndp1s1mxXGiOr2Q6gjemN2pVWJmwHAAAAAAAwS4TtAGBMxj9GVggDoJ+Za7YrLKswDRcAAAAAAIApJWwHAGMy9BhZ4wUBdrRysx0AAAAAAACzRNgOAMZk2Ga7TmWMLEA7/cPIsxdqE6oGAAAAAACYJcJ2ADAm3RSa7bJZs50xsgBtlIfITmfYToMpAAAAAADAziBsBwBj0huy2a4UwugJYQAUFO6P05m1Kxr2Lr/aWx3rOgAAAAAAABhMc9UOADCwtbrQbFdt0mxX9c++H+0ezqeO/VWu2f+UkdcGsFP06l7+/NDv9d02a812Hz36vhxeuzdnzp890Hned/jtecPdf5i7Vw/lEXsene+86J/mkqVHjHOpAAAAAAAANNBsBwBj0i2G7YZrtkuS37j153Lb8hdHWhfATvKmu/84h1bvKGydzrBd07p+5eZXpq4377j7xNG/zO/e8cv50uqdqdPLjcevzy/e/ON5oHt0nAsFAAAAAACggbAdAIxJtzRGdpMi2aaw3Vq9mo/c/96R1gWwk7z/yDuK26Y2atewsNtXbsrNyzdseo4PHPlfpz12rHt/PnHsw6MsDQAAAAAAgBaE7QBgTLoZrtnu3IULGrfftXLb0GsC2El6dS+HVm8vbj9nk/vpdjlnfvT7/Afvf2ffx//bod8dak0AAAAAAAC0J2wHAGNSbLbbJGx36dKVOX/h4vJ5CyE+gN1mtV5p3P7UA8+Z0EraecKBp2e+WihuX6mXhz73se79Qx8LAAAAAABAO8J2ADAm3brUbFcOWCRJp+rkBy//qYbz9g/xAew2K71yKO2afU/J15/zzRNczeAuXLw033/py4vbm74uAAAAAAAApoewHQCMybDNdkly7sKFef7Zf7vVeQF2m6YGuO+48P9Kp5re/725dv/TcsWeR/fdNkrYrk499LEAAAAAAAC0M72/jQKAGdNLIWyXzcN2STmUV2rMA9htmkJpC52lCa5kOEtV/zWOMkYWAAAAAACAyRG2A4AxKY+RnR/o+Ln0369bCPEB7Dar9Upx22IhyDZNSoHAzZrt6lp7HQAAAAAAwDQQtgOAMRlljGzTfprtANY1hdIWO4sTXMlwFqv+a2wKESbJWr26FcsBAAAAAACgJWE7ABiTkZvtimE7zXYASXnc6lzmB77XbqfFIZvtmsbMVqlGWhMAAAAAAACDE7YDgDEpjXudy6DNdoUxsprtAJKUQ2kLM9Bql5RH3TaF6ZLNw3gAAAAAAABMhrAdAIzJyM12hVCeZjuAdauFUFopxDZttqLZDgAAAAAAgMkRtgOAMSmF4krjYU/fr9BsV2jMA9htVnorfR9fnJFmuwXNdgAAAAAAADNN2A4AxmSrwnY9Y2QBkpRDaTu/2a5/yBAAAAAAAIDJErYDgDHpZsQxsoVQnjGyAOtWi812MxK2K4QCS+Nxv7y9IYzX034KAAAAAAAwMcJ2ADAmpVBcJyOOkdVsB5Ck3GxXGs86bcrNds3Ndcu948Vta/VaekLZAAAAAAAAEyFsBwBjUgrFDdxsVwjldbUWASQpj1udnWa7xb6Pl0KEg283ZhYAAAAAAGAShO0AYExKzXal8bCn76fZDqBJKXRWCrFNm3Kz3SZhuk22N42ZBQAAAAAAYHyE7QBgDOq6Tq/QQDdws10hlFcK8QHsNqXQ2cLMNNsVwnYjN9sJ2wEAAAAAAEyCsB0AjEE35fa50njY0/YrNtsJ2wEkTc12sxG2K4UC1+rV9Bru9au95jGxK5tsBwAAAAAAYDyE7QBgDJoCcQM32xVCed2spa7rodYFsJOUQmel8azTpikUuFKXA3Oa7QAAAAAAAKaDsB0AjEG3bmi2K4yHbbNfL73WawLYaWa92a4pFNjUXlcanzvodgAAAAAAAMZD2A4AxqC52W60MbLr5y+H+QB2i1KobLGzOOGVDKe52a4cmNu02a53fOg1AQAAAAAAMDhhOwAYg24awnYZcIxsQyivKcwHsFusFkJnCzPSbLfQEApsaqfbtNnOGFkAAAAAAICJELYDgDEYxxjZTkMorxvNdgArhVGrTeNZp0lTs10pSJgM0mwnbAcAAAAAADAJwnYAMAbNY2Q12wGMQyl0tljNyBjZLWu26x9CBAAAAAAAYLyE7QBgDMbRbNcUyms6P8BusTrjzXZz1XxxtHhTYK6p9S7RbAcAAAAAADApwnYAMAaNzXYN42FP2a+x2U7YDqDcbDcbYbuk3G7XFJhb3rTZTtgOAAAAAABgEoTtAGAMemlqths0bNfUbGeMLLC79epeVgvtbwsz0myXlIOBTYG5TcfIarYDAAAAAACYCGE7ABiDxma7QcfIpqHZriHMB7AblIJ2SbJY9W+Lm0alkbdNgbnNxshuth0AAAAAAIDxELYDgDFoGvM6eLNd0xhZzXbA7tYURisF2KbRgmY7AAAAAACAmSVsBwBj0BSG6wz4dmuMLEBZUxitNJp1Gg3TbNf0tQ+yHQAAAAAAgPEQtgOAMeimfxhuLvOpqmqgc8w3hu2MkQV2t6Yw2sIMNduVwnZNo2BXeuURuuvbhe0AAAAAAAAmQdgOAMagFIZrGg37cJ00jJEthPkAdovVuhw4m6lmu9IY2UJgrluvpZvmwPVKw3MDAAAAAADA+AjbAcAYlMa8tgnbVVVVDNxptgN2u6b2tsXO4gRXMprSWkvtdZu12q3vo9kOAAAAAABgEoTtAGAMys125dGw/fcvhe002wG720phzOpc5lvfa7dTsdmu8PWVHm+7DwAAAAAAAKMTtgOAMSiNeZ1rGA3bd/9CYESzHbDbldrbFmao1S5JFjrtxsiuDtBaN8g+AAAAAAAAjE7YDgDGYKub7XqFMB/AbrFaaG8rNcVNK812AAAAAAAAs0vYDgDGoDTmtRSeK5mLZjuAflZ6K30fX5yxZrvFls12pcc3WtZsBwAAAAAAMBHCdgAwBqUwXGdMzXalMB/AblFqb5u1ZruFqn84sNTctzxAa50xsgAAAAAAAJMhbAcAY1AcI5uWzXbCdgB9rRab7WYrbLcVzXYr9XLquh5pXQAAAAAAAGwQFdyCAAAgAElEQVSuXd0OAHCKL63cmfceeVveePcf9d3eeoxsoQnv9+98df762AfzqD2Py3PP+hvZN3eg9Vp3sy88eH0+dP87c+fKbUmSSxavyDPP+NpctueRI597pbecdx++Ljc+eH0uXroiX3XmN2Tf3P6857635PMPfioXLV6W55z5gpy9cN7I14Ldqlf38r/ue0PfbQsz1mxXauI7tHpHfu2Wnznt8SNr9256zjp1fu2Wn05Vlf8t1TMOfnWedebXDb5QAAAAAAAATiNsBwBDunPl1vziTa/Ike59xX1K4bni/g1NeB87+oF87OgH8qH735l/dvnPCtwN6K+Pfii/eevPp5uH2gc/eezDedd9b8o/vewn8+h9jx/63Ku9lbz6lp/JZx/8xPoD9yfvPfzW7O3sz83LN3x5v784/Nb88yt+LucuXDD0tWA3+/07X517177Ud9tip/9Y1mlVarZbrVfyyWMfHvq8n3rgrxq3X7nn6qHPDQAAAAAAwDpjZAFgSO+49/WNQbtkfM12G92yfGM+fP97Wp13N3vD3f/1lKDdScv18bz5nteNdO5PPfBXDwXtTvjS6p2nBO2S5J61Q3n3fdeNdC3Yre5auS3vPfy24vZSU9y0mrX1AgAAAAAA8BBhOwAY0ucf/OSm++zp7Gt1zkHDeZ8b4Nqsj3j94vHPFrd/7oFPFLcN4o13//HA+775nj8Z6VqwW33+wU81bp+1ls99c/u3ewkAAAAAAAAMSdgOAIZ0vPfgpvs8dt8TW51z0LGzy73jrc67W630lhu3L9fHU9f10OdvCvIB47HZvfax+548oZWMxyP3PDZL1Z7tXgYAAAAAAABDELYDgCGt9FYatz967+Pz3LNe2OqcnQzWbLdZiIx1K/Xmz9NavTqBlQDDWm241z75wLPzlIPPmuBqRrfQWcx3XPQD6fhfMQAAAAAAgJkzWH0OAHCaUpDr4sXL83fO/648bt+Ts9hZanXOQcfIDhIiY7BQ4kq9nIUsTmA1wDCa7nffd8mPDnzfnCbPPONrc/nSo/LJYx/Jke69Ax/XSSdX7Hl0Llq8LJ9/8JM5tHrHwMc+au/jhlkqAAAAAAAAGwjbAcCQSkGul1zwPXn8/qcOdc5Bx8hqthvMIKHEld5y9s8dnMBqgGGU7nfX7n/aTAbtTrp46fJcvHT5SMcDAAAAAAAwWWYXAcAQuvVaeun23bZU7Rn6vIM32zWPsGXdoM12wPQqvUYXKo2UAAAAAAAATJawHQAMoSnE1XZ07EZzA5bOrmq2G8igzXaT0qt7E7sW7BSl1+go91oAAAAAAAAYhrAdAAyhKcQ1SgBkftAxstrYBjJYs93kWgLX6tWJXQt2itL9brEStgMAAAAAAGCyhO0AYAjLDSGuUUYbDjpGdrVnjOwgVgcIJU6yJXCSLXqwU2i2AwAAAAAAYFoI2wHAELZsjGyLZru6roe+zm6xMkAocZItgRoJob1SaHZBsx0AAAAAAAATJmwHAENoakwbZbRhZ8Bmuzq1kaQDGCTcNsm2udUJjqyFnaIUmtVsBwAAAAAAwKQJ2wHAEJoCWiONkc1gzXaJlrRBDBKkm2iznTGy0Fop3DxKsBkAAAAAAACGIWwHAEMoBbQWq6VUVTX0eecGbLZLBLcGMUiQbnWAUbP9dOu11sf4nkF7mu0AAAAAAACYFsJ2ADCEUmhq1PDHXKXZbpy2stmuFADaimvBblZ63YzSIgoAAAAAAADDELYDgCE0NduNQrPdeA0Sbhv2eRwmOOd7Bu1tVbgZAAAAAAAA2hK2A4AhlMIfC6M226VF2K4ebvzpbrK6hc12g5x7XNeC3awcbtZsBwAAAAAAwGQJ2wHAEErhj6WRm+0GHyM7TNhrt1keJGw3wWa7VQFJaKVXd7NWr/bdptkOAAAAAACASRO2A4AhbNVYw1ZjZLWkbWqgMbJDPo/DhPSMkYV2mho8Rx3bDQAAAAAAAG0J2wHAEMpjDSfXbCe4tblBnqPV3nBtc8OM8fU9g3aaGjw12wEAAAAAADBpwnYAMIRSaGph1Ga7aLYbp9UtbLYbZoyv7xm0o9kOAAAAAACAaSJsBwBD0Gw3GwZ5joZ9HocJzvmeQTtNr5mFzuIEVwIAAAAAAADCdgAwlNLo0cURwx9zVYtmO8GtTQ0SiFsdYhxsMtzzP+y1YLdqaqfUbAcAAAAAAMCkCdsBwBCKzXajjpFtE7YzknRTK4VQ5Kn7DNts1z44JyAJ7TS9Zka93wIAAAAAAEBbwnYAMIRSAMQY2ekySCBx2NCiZjvYeqVQaydzre6XAAAAAAAAMA7CdgAwhGLYbsSmpU4Gb7YT3NrcIIG44Zvt2h+njRDa2ap7LQAAAAAAAAxD2A4AhrBSH+/7uGa76dGt19JLd9P9Jtls53sG7RRHdo94rwUAAAAAAIBhCNsBwBBWev1b5RZGbFuaqwZvttOS1mzQYNuwAbjVYZrthO2glXKz3eKEVwIAAAAAAADCdgAwlK1qW5rXbDc2g4YRV+uV9Ope+/MP02wnIAmtlMZla7YDAAAAAABgOwjbAcAQSkGrpVGb7dIibCe41ahNGG6tXm1/fs12sOVKr5lRW0QBAAAAAABgGMJ2O1BVVT9VVVU9wp/f2e6vAWDabVWzXasxsoJbjdqE4YZqqdNsB1uufK81RhYAAAAAAIDJE7YDgJZ6dbfYhDZq29JcizGyq4JbjVZ6/cdP9t13mJa6wnjLJqWRmEB/pVDromY7AAAAAAAAtoGwHQC01BSymmyzneBWkzYBumFCcJNqw4PdbKtaRAEAAAAAAGAYg9fnMMu+I8n7Wux/dKsWArATrDYEpkZtW2rTbGckabM2wbZJjYRdrVfSq3vpVP69AwyidL8dtUUUAAAAAAAAhiFstzvcUdf1jdu9CICdYrkpbDdqs13aNNsJ2zVpM2Z3mOeyKXTZZK1e1coFA9JsBwAAAAAAwDRRqwIALTU1mo3abNdpM0ZWs12j5d7xgfcd5rlsGifceJyQJAysNC571HstAAAAAAAADEPYDgBaagpLTXKM7Fq9ml7dHel6O9lWj5EdttlOSBIGV3q9LFSLE14JAAAAAAAACNsBQGtNYalRAyBzLZrt1tcyXLvabtDmuRmu2W640Nyq7xkMbFWzHQAAAAAAAFNE2A4AWio1ms1X863Dcg83l8Gb7ZrWQrvnpm2zXV3XQ4+DNUYWBlcKtS5WwnYAAAAAAABMnrAdALRUHms4evijfbOd4FZJm+em7fPYzVp66bVd0vq1hO1gYKXXi2Y7AAAAAAAAtkO7+hxm1fdXVfXjSa5Jcm6S1SR3J/likncneVNd1+/axvUBzJRS+GOps2fkc89V7d6aP3z/e3PW/DlJkipVLll6RC5evDxVVQ10/JdW7sgXj38uvfRy/sJFuWLPVemM2M43Le7vHh5439KoypLl3vG2y/myjx/7UO5ZO/Tlz3fa8z5r7lk9lBuPfzbdei3nzJ+fK/de3fp1yPj06m5uOv75HFq9I0lyrHt/3/0WRxzZDQAAAAAAAMPwm8Td4dsf9vlSkgNJHpHka5L8WFVVH0ry8rqu3zrpxQHMmpW6fzBrHGMNOy1LZ//s0O+c9tij916bl17249nT2Vs8rluv5Xdv/5V88P53nvL4BQuX5Acv/+mcs3B+q3VMm08f+2jee/htA+/fptnuge7R/Lsb/8Uwy0qSvPme15322IWLl+UHL/upnL1w3tDnpZ1e3c0f3vkf8+7D153y+Nnz5+WHLv+ZXLB4yTatbPe6Z/VQfuXmV+au1ds23VezHQAAAAAAANvBGFlO+ook11VV9XPVoHVILVRVdUFVVde2+ZPkqnGvA2AcymMNR29aGsct+HMPfiL/7dDvNu7zzvvedFrQLknuWr0tv3fHr468hu200lvOf7z137U+ZlCvu+s1pzTTjcOdK7fkv9zxa2M9J83ed+TtpwXtkuTetS/lt2/7hW1YEf/ljl8bKGiXjCfcDAAAAAAAAG1pttvZbk3yhiQfSPKpJPck6WV9lOzTkvytJC/csH+V5MeyHsJ8+ZjX8tIkrxzzOQG2RakFbWGKwh+fPPbhxu1/ffSDxW2ffeATOd57sLEZb5p99oGPZ7luN+Z1tdBW2M/Hj32o7ZIGcv0DH89y7/hYxhGzub8+Wv4+3rx8Qw6v3ZMzT4xoZust947n+gc+PvD+C2MINwMAAAAAAEBbwnY70weyHqJ7S13XdWGfv0jya1VVfUWSP0hy9YZt/7qqqvfVdf3nW7xOgJnUrdf6Pj5Xjedt9aq91+TzD35qpHMc7R5p3H5k7b7itl66Oda9f2bDdoe797Y+ZtBmu17dzf3dw63PP4hu1nKse7+w3YQcWWv+OTmydp+w3QQd696fXroD7dtJJ5cuXbm1CwIAAAAAAIA+jJHdgeq6fkNd19c1BO027vuhJM9Ocv3DNv18VVVzW7JAgBnXq3t9H5+rxvO2+rVnvThVRhsnu9lbwGqhne+kNmNVp81yr12rXVJuKzx9v8Eb8IYxy8/7rNn0NbDF32tO1eZn/5lnPC/75w5u4WoAAAAAAACgP812pK7re6qq+o4kH0q+nO54XJKvS/LWMV3m15P8cctjrkqiXQ+YOr30D9tVY8qwf8UZz81c1cm777su93cP5/H7n5oXn/sd+djR9+c9h9+S25Zv+vK+q/VKHuwda32NzYItmwWRplnT1/bUA8/JR46+t9UxG6027HfuwoW5cPHS3Hr8C6mTnLtwQfbN7U+VTm5evmFDALLOkW7/ZsFBQ3+MbqXXHKZr+l4zfk0/+wfnzkyVTs6cPztPOvDMvOjcb5vgygAAAAAAAOAhwnYkSeq6/nBVVddlffzsSS/KmMJ2dV3fleSuNsdU1WitTgBbpVf3H3XYGWMh6FMPfmWeevArT3ns6Wc8N08/47mnPPbXRz+Y37j151qff7NQ1yw3rK3U/Zvtrt57bS5YvLRwzKDNduX9fuiyn8l5ixdueo5uvZaXXf+t/c8/RCsfw9n0NSD4OFFN95x/e9Vvj21MNwAAAAAAAIzCGFk2etPDPn/StqwCYMqVmu062/K22j+YXKd5jOxmrV6zPEKzFNpZ7OzJYmex1TGn71d+XhY7SwOdY66az1zh3zssC3hNzGbf81kOnM6iUrhxLvOCdgAAAAAAAEwNYTs2uvFhn5+/HYsAmHa9uhC2q6bnbbUpbNet19LNWuPxsxw0Wi6sfamzlMWqfyBu0LG5TfsNGrZr2neWn/dZo9luupRDsv0DsgAAAAAAALAdpicVwDR48GGf792WVQBMuXqKmu2GGbg9SKBrloNGpTGyi9VSFooht8Ga/Jqeu4Vq8FDQUmdP4fzGyE5Cr+5mrV5t3EfwcbJK95xSQBYAAAAAAAC2g7AdG533sM+/tC2rAJhy3brb9/HtaLarhhgjO0iQbnXA8Nk0KjXbLXb2FIM7g4YLS+N156v5zFVzgy0w5QCRMbKTMciYZGG7ySo32wnbAQAAAAAAMD2E7djoWQ/7/LZtWQXAlCs32w0ethqbqtRt1xC22+nNdoV2uMVqqRjcGTRcWHruFlq2b5XXMbvP+ywZ5Hme5dfALCo9321fWwAAAAAAALCVhO1IklRVtSfJ333Yw+/YhqUATL1eXQjbTVOzXTlrN1CIaJZbvUpf31JnTxYLo14Hb7YrjbocfITsybX0s2yM7ETs9NfALNJsBwAAAAAAwCwQtuOkf5Xk0g2fd5O8fpvWAjDVuimMkZ2it9XGMbIDtLjNcqtXObSzp9woV68UQ5SDnbtdIGhhxNAfoxnkNbA6wKhZxme1FGQVtgMAAAAAAGCKTE8qgLGoquq7qqq6sOUx/2eSVz7s4d+p6/qL41sZwM5RF5vtJj9GttRs1zhGdoe3epXa4ZaqpSw2jKQcJFw1rlGXmu22105/DcyiYpDVGFkAAAAAAACmiLDdzvO9Sb5QVdV/rqrqxVVV7S/tWFXVV1RV9adJfjM5Ja1xa5If3+J1AsysXgphu214Wy2OkW04ZpAQ0Sw3rBVHvXaWGluyBnpextRst1j1D9vN8vM+S1Z3+GtgFpXaBhc77UY0AwAAAAAAwFaa3+4FsCX2JvmHJ/70qqr6bJIbkxzO+njYc5M8OUm/Brx7kryorus7JrNUgNlTGjdaVdOUYS/H7UrjGk/ZZ4ZbvUrtcIudPY0tWYOEq8Y16rIUINKmNhkrg7QY+l5MVDEkq9kOAAAAAACAKSJst/N1kjz2xJ/NvC3JP6rr+patXRLAbOul2/fxuUzTGNmynd5sVwrELVVLWdiqZjtjZGfKTn8NzKLS96TpNQsAAAAAAACTJmy38/xy1sfAflWSRwyw/7Ek1yV5dV3Xb9vKhQHsFKVmu852NNtVpTGy5Wa7wUJlmzd/TaNu3c1avdZ323qzXXkk5SCNf6VGtLajLktjZAdZA6MbJEin2W6yNNsBAAAAAAAwC4Ttdpi6rv8syZ8lSVVVZyW5NsnlWR8Zuy/rTXf3Jbk3yaeSfKyu6/4VTQD01UthjGwmH7Zr32s3YNBoRkNfKw3NcEudpcZxr4OEq0rjddsGgkrrWBbwmoiBvtcz+hqYVcXWSM12AAAAAAAATBFhux2sruv7krxnu9cBsNP0ChnlbWm2a1DXdao+zXejjEuddssNAanFak/mqvl0Mtd3FHCpte7UfcYz6rIUIGoKCzI+gzXbzWa746wqhRs12wEAAAAAADBNpisVAAAzoNRs18nchFeSNHXblUbJDhQqm9GwXVNY7WTArRx0Gz6A1TSetp+lwhjZWW0UnDUDfa99LyZKsx0AAAAAAACzQNgOAFrq1YWw3TY021WNg2QLYbsB2tNmdYTm8iBhu0JT1iBfcymA1TYQNErgj9EN9L32vZioUiulZjsAAAAAAACmibAdALTUbwRpknS24W21fdRu0BGasxk0amrtO9kmt9jp30I3yNjQ0vOy0DIQVAoQNYUFGR/NdtNntdhs1641EgAAAAAAALaSsB0AtFRutpuuMbLlZrtBgkabB8+mUam1r0on89VCknLQbZQQYttmu6VOaYzsSuq6FJNkXAYJVq7Vq+nV/YO1jF+xNbIwchkAAAAAAAC2g7AdALRUpxC225Zmu3LYri6F7QYIle20MbJLnaVU1fpzNcoI19Lz0nbUZWkNdXpZq1dbnYv2Bm2tm9XQ6ayp63psQVYAAAAAAADYSsJ2ANBSt9B21am24W21agjbFQrSBgmVrdVrxa9zmg3SjlUa+TrJZrumcN5ybZTsVht0THJptCnj1c1aeoUQc9sgKwAAAAAAAGwlYTsAaKncbDf5MbJNQ2RLY2RXB2zrGnS/aVIaI7vYWdzw8fDNduUwX9tmu/JozEGDYAxv8GY734tJaPqZ12wHAAAAAADANBG2A4CWenUhbLcNzXZDjZEdMMw1i6GvYvPchma7xWqx7z6DNdv1DyC2DQQtNew/i8/7rBn8NTB7gdNZ1DSuV9gOAAAAAACAaSJsBwAtlcYddrblbbW5266fgVu9ZjD0tVz42pY2NMktFMI7m40M7dbddLPWd1spwFfS1IS3YozsllvVbDdVmu41Cy1fWwAAAAAAALCVhO0AoKVys920jZHtb+BWrxkMGpXHyD4UbisF3ZratZLmsbqlAF9J0xjZ5RkMOc6andzuOIuMkQUAAAAAAGBWCNsBQEu9dPs+Pm3NdsUxsju52a6w5o3NdqXwzmZfb2MgqKGprp+5ai7z1Xz/68xgyHHWDPwa8L2YiKamwbavLQAAAAAAANhKwnYA0FK52W663laLYbud3GxXGMG6MbBTCu9sNlq0uX2r/ajLxap/u12pnY/xWek1txg+tN/svQZmkTGyAAAAAAAAzIrpSgUAwAzopX/YrtqGt9WqajdItlf3GsehbrQ6g0GjUmjnlDGyhWDcZgGspvDhMO1bpYY9Y2S33k5ud5xFpe/HYrXU+h4HAAAAAAAAW0nYDgBaKjXbzW1Ds11TDKWuT2+2W6tXBz73bDbblUI7G8bIFoJxm329je1bheBck2HXwegGDdFt1nbIeAwSkgUAAAAAAIBpIGwHAC2Vm+3mJryS9auWnR62W24xonQWW71KX9/SKc12hZDbJl9vc7Nd+1GXSx1jZLdDt15LL92B9p3F18Asamq2AwAAAAAAgGkibAcALfXq/kGdzrY025XDdnWfsF2b1rSVAcfNTpNyQ9ZDwbaFIRvlSmN156uFdKr2QcthQ3+Mps3zq2VwMkrfk2EaIwEAAAAAAGArCdsBQEulZrvODLyttgoazWDoq9hsV21ds92w7VvGyG6PVoHT3uwFTmdR+bXVvjESAAAAAAAAttL0pwIAYMrUdSFsNwPNdqutmu1mL/RV+vo2NtuVAjybPTfl1rwhw3aFMbJtRv3Snma76TPu1xYAAAAAAABsFWE7AGhpuprtWo6RbRE0Wp3BVq/lAUI7pdGUa/VacURwUh6ruzBk+1ax2W4GGwVnSbtmO9+LSRh3ayQAAAAAAABsFWE7AGipWwhkdaq5Ca8kqcpZu/TJ2hUDY/3MYqvXSt2/FW5jaKcpwNP0/KyOuX1rqXDccuFrYDzahEhn8TUwizTbAQAAAAAAMCuE7QCgpXqKmu2axsj202qE5oy1etV1XWy2W9o4RrYhwFMK1CXjb98qjZGdted91rQJ0DX9PDA+5ddW/9cIAAAAAAAAbJf57V4AAMySXt3rO541STrVdI2R/def/8epUuW8xQvzjINfkxee+6153aHXDHzm9xy+Lu89/LZUVZXLlx6VbzjnW/KUg88ex6LH6t7VL+VP7vrtfPLYR4pByI3BtqZw3Ms//73FAGNpfPBiZ7xjZD9+7EN52We+NVWVXLL4iHzt2d+Y55z5gk3P96773px33/fm3LZ805cfW+gs5qq9j8s3n/8Pc+nSlUOtc9o80D2aN9/zuvzlkXdnqbMnzz/7b+crz/z6VBtqHj997KN50z1/ki88+Jn06lO/b92sDXytjxx9b172mW/98ufz1XwesffqvOT8f5zL9zxq9C+GHF07kvceflvfbcO+tgAAAAAAAGCrCNsBQAulMFcyfc12vayPu71z5db8z7tfm/9592tbnbtOvR5MqpMvHP9Mfuu2f5+XXvbjuXb/00Za8zgt947nVTe/Inev3tm439LGMbINzXYnn7M2FoZutisfd/J5v2n58/m9O341VTp59plfV9z/3fe9Oa+98zdOP09vLZ849uHcePyzefkjXpVzFs4faq3T4vDavfmVm1+Z21ceChT+/p2vzmq9kued/eIkyRcevD6/fuvPZq1eHcs1N4bzuvVarn/gr/PLN/9kfvzKX85ZC+eO5Rq7Va/u5pdu/onidmNkAQAAAAAAmDbGyAJACw9vydqoU81NcCWTV6eXv7jvLdu9jFN8+thHNw3aJQ9rthtzgGfY8y0Vxsj2857D1zVuf/fh5u/Lse79+ejR9w98vWl03+rd+cWbXnFK0O6kt93756nr9cbJDxx5x9iCdiUP9Nbb9RjNFx68PretfLG4fdgRzQAAAAAAALBVhO0AoIXSKNFke5rtDs6f2dhuN263LpeDMdvh1uUbN92nk7kcnDvzy58vVkvZ29k/tjWcNT9cu1mb4zZ73m8b4PsyyD7T6p7VQ/nFm1+Ru1Zv67v97tW7cqR7X5Lk9pWbJ7Kmvzj81hztHpnItXaqWxuCdsnwry0AAAAAAADYKsJ2ANBCry6PGe1Uk39bPTB3Rh6193ETu95KvTyxaw1ipV7ZdJ/H7XtS9s7t+/LnnaqTJx54xtjW8OQDzxrquMfte/LAzV2rveavs9vwc9lmn2n0pZU78qqbfiyHVu9o3O/OlVuSJHVD++Q4rdYreee9b5zItXaq1V75ftJJJ0848PQJrgYAAAAAAAA2J2wHAC00N9ttzxjZ773kR3PJ4iOGPv6rzvyGfN8lPzpQ8Guz0NekrTSEdZLkiqWr8t0X/9Bpj//9C/5JHrPviSNdey7z+bYLvi9X77t2qOP3zu3LSy/7iezvHNx0327W0q3X+m7r1b3UDT+XXz7HDIbt7ly5Na+6+RW5Z+3QpvvesXwibDfC9fZ29m2+0wbvuO8Nm/4MUtYU3v2+S/5lzl24cIKrAQAAAAAAgM3Nb/cCAGCW9Bpas7aj2S5Jzpo/J6+48pdy1+ptuXv1rvTqbn791p8d+Pj/48KXpqqqPHH/M3PT8uez3HswXzz+ufyPL/3+aftOW7PdamE9+zsH86OP+Pc5f+GiVNXpY3b3zu3LP7v83+Se1UO540QjWhsL1WKu2HNVljp7Wh+70WP2PSE//+jfyc3Hb8gDvaM5tHJ7/utdv9l335XeSvbOnf6fboOG6LrpH9abVrcv35xfvvknc6R770D737Fy64mPhovbPX7fU/MDl73ixPfi2CnbPn70Q3nHfa8/7Zij3cP5wJF35LlnvXCoa+52paDio/dem6ccfPaEVwMAAAAAAACbE7YDgBZ6KQebqm0sjK2qKhcuXpoLFy9NXdfppNPYwnfSUrXny2G0hc5Crjoxkna+6v+fCKv1Snp1b9uChQ9XCus86eAzc8HixZsef87C+Tln4fxxL6uVuWouV+69Okly+/x5xf1W6uXszenNa4OG6Gap2e6W4zfmV255ZY52Dw98zB0rNydJ6iHDdgudpcxV87ly72NO23bl/2bv3sOjqu99j3/WTGZyIVdIIFwLiIpQFVG2iEEBRa1atdXaum3dtR63Vdt6OdrqtijWVmttS9sj3V6OVrp1e9zd3ahUi4qCilRBvFZECwoB5RIMhEtCZjKzzh9KzJD1m6w1t6zJvF/P4/O4Zt1+ycwQ43z4fEsO1N9anlW7vbfbvkXNj2lK1UzfvCfyiSm8Wxbsl+OVAAAAAAAAAAAAAO7wqSAAAB4ka7YLWr0zRnZ/lmUpHOh5JKwk43HJRlWNPk4AACAASURBVMpGbf+Mko0Y1uJmJK4fJXveooZgYdxts51hDK3fNO5dq99umOUpaCcppYbCroqTfO/LguU6tnqm476t0Y/11u7lad27UJnCsiErnOOVAAAAAAAAAAAAAO4QtgMAwINkbXEBH/1YdRs2M4btkgSPTAGZ3mAKoLkNG/pNsufNqVVNch+icxvK600ftr2v326YpT3xXcZjKoM1jo/v6PhEe+Ntsu3Umu3CVvKRwNNrvmx8jy9qfjSlexa6SLxvhWUBAAAAAAAAAADQ9/knFQAAQB6wkzTbWT4aIxly22xnCLUkC7uYRj/2BtNa8jWskzzk6BxMcjse1u242d6ypnWVfrfhRrXFW43HHFj6Rf1g+Gzj/i2Rj1IeI9tTQHNAaKAmVhzruO+Dvau1tm11SvctZMb3b56GZQEAAAAAAAAAAND3+ScVAABAHojJHGwKyh9jZCX3YTNTKC9ZWM9PzXZ9bQxlsnWbgkluQ3RuQ3m94b09b+nOjTcb2/skaWzZ4bp82CzVh4cbv0+b21MfJZtsjOw+M/t/xbiPdjvvTM2U+fr+BQAAAAAAAAAAQN9H2A4AAA/iedJs5yY4JKXWbBfNh2a7PG3GClgBY9DIFCx03Wzn07Ddqj2v6/cf/TRpY+L4fkfq0qE3KBwoVsAKaFB4iONxmyOph+16GiMrScNLRuvgssMc9721+xVtiXyU8v0LUV97/wIAAAAAAAAAAKDv808qAACAPGDLHLYL+OjHashls50plBcOJGlYy4Nmu3wO65iCjqaQo/uwnf/GyL69e4Xu+uhnitrOI3Il6fDyo3XJ0OsU6vKarA8Pdzx2S2Rj1sbI7mNqt7Nl67nmBSndu1AZ3795OgYaAAAAAAAAAAAAfZ9/UgEAAOSBZMGmgI+a7dwGh0yhlqBVpKCKHPdFkgSjcs0U0srnsE7IEHQ0N9u5HCObZARyb3h91990z0e3qyPJ+idWHKv/NeRaFVmhhMcHhYc6Hv9ps12KYTuXr5lDyiZoSPgLjvte3vmcdnXsSOn+hcj4/s3jsCwAAAAAAAAAAAD6Nv+kAgAAyAPJm+2COVxJcm6DQ6EkoRZTux3Ndtlleu6MYTuXITo/Ndu9uvNF3ffxHYrJvKZ/qjxeFw6+WkGre+izPjzM8ZymyOaUx+UWB3oeIytJlmXpxP5nOe6L2hE9v+OvKd2/EDFGFgAAAAAAAAAAAPmGsB0AAB7E7SRhuz7UbJdsnykgk2u2bRtb9vK52c703Jm+766b7VIMoWXayy2L9YdNcxRPElw9puoEXVD/AwUt5wDrIEPYLqYONUU3p7QuLwGvoyobVF00wHHf8zue9FUg1c8YIwsAAAAAAAAAAIB8459UAAAAeSCWtNnOPz9W3YZVkgWMjKEvnwSJOuwOY9NgssY+v/PcbOcyROeHZruXdjyj/9j8u6QNkVOrT9H5gy5XwBC0k6RB4SGyZDnu2xtvTWltXgJeRVZI02tOd9y3J7ZLf2t5NqU1FJq+2EwJAAAAAAAAAACAvs0/qQAAAPKAnSTYlCwclGumEbD7K04Sagn5vNkummQdYcvd1+9H5mY75xY/1812LsfNZsvz25/UQ1vmypZtPGZGzZf1jYGX9NgSGQqENSA0MKPrcztGdp+GqpNUEih13Pfc9scV90mToF/11WZKAAAAAAAAAAAA9G2E7QAA8CDZ6EtfNdu5bIYyBeqSXcMvzXbJ1pHPzVhev+9uQ3S9OUb22ebH9cjWe5Iec1L/r+rsuu/Ispwb6/ZXHx6eiaV1SvZecFIa7KeGqpMd9zVFN+uN3a9kYll9Vl9tpgQAAAAAAAAAAEDf5p9UAAAAeSBuO4dDLFmuQ0K5ELbctXSlMkY2WaNcLiVr2Avlc7OdIfRl+r67brbrpTGyCz/5b/256f6kx5w64Os6s/Zbnt5Dg8JD011agmQtjybTa05XQM6Nloua58u2zS1+ha6vNlMCAAAAAAAAAACgbyNsBwCAB6ZmO1Pgpre4bXZLNq7RtM8/zXbOIyil/G62CxlGABub7Vw21uV6rKlt2/rLtof1+LYHkx53Ru35Or32PM9h1frwsHSW103Y4xhZSaoJ1eqoyqmO+9bt/YfWtq1Kd1l9Vl9tpgQAAAAAAAAAAEDfRtgOAAAPTIGlgOWvH6nJQnQJxyVttjOFvswht1xK3oyVv2EdY8jR2GzncoysctdsZ9u2Htv2oJ785JGkx3217ts6ZcDXUrpHfXFmx8im+po5seYs475nmh9NdTl9XrJmynx+/wIAAAAAAAAAAKBv81cyAAAAnzM32/nrR6opKNftuFSa7fwyRjZJM1Zej5E1BCDNzXZux8jmptnOtm39uekPerr5z0mPO3fgxTqxvzmo1pN6H4yRlaRhJSM1ruwIx31v71mhTe0b0llWn0WzHQAAAAAAAAAAAPKRv5IBAAD4XNw2hO181mwXykCzXchj6CvXTKG/kBX2PJLUT7yGHONyF6KzZWd9lGzcjuuRrffoue2PG4+xZOmfB12qaTWnpXWvfsEKVQSr0rrGPkVWSAEr9VHQyUKDyb4XhYxmOwAAAAAAAAAAAOQjfyUDAADwOXOzXepBnWxw2wzVF5vt8r0VK1vNdp8em72wXdyO6+Et/64XdvzVeIylgL5V/301VJ+ckXsOCg/LyHXSDXcdXHaYhhWPctz3ys7FaunYntb1+yLT69mSpSIrlOPVAAAAAAAAAAAAAO4QtgMAwANTs53ls2Y7t+GhZME0r6GvXDOF/vK9Fcsccow4Pu4lQBdz2YLnVcyO6Y+bf6eXWp4xHhNQQN8efKUmV83I2H3rMxW2SzOgaVmWZhra7TrsDi3Z/kRa1++L+mozJQAAAAAAAAAAAPo2fyUDAADwOdPIzoDPfqQWB0pcHZdKs13UJ8120bhz+KyvNttFM9Js5/5YL9d8YNMcLd+5xHhMQEFdNOQaTao8LqP3rg8Pzch13L5fkplYcaz6F9U57ntxx0LtjbelfY++JNJH378AAAAAAAAAAADo2/yVDAAAwOdMzXYBvzXbuR0jS7Od73gd3+ulrS7TY2Q77Kj+78e/1MpdS43HFFlF+tehP9IRFVMyem9Jqi8enpHrZOI1E7SKNL3my477WuO79beWZ9O+R19iCu3m+/sXAAAAAAAAAAAAfVtRby8AAIB8YssQtvNZfj1khV0dlzRs5zH0lWum0F++N2N5DTn2VrNdNB7RvR//Qn/f86rxmJAV1r8OvU7j+03M2H27GpShZrtMvWaOrZ6pJz/5f2qLt3bb99z2x3Vc9ZcUtIIZuVe+M72eQ3n+/gUAAAAAAACAbLJtW/F4XLZt9/ZSAKAby7IUCARkWVZvLyWrCNsBAOCBqRksb5vtko2RDTgH9kzjH3MtYjuvw23Q0K+ShRxt2+72H6de2uoy1WwXibfr7o9u07utbxiPCVvF+u7Qf9PYfodn5J5OaopqFbaK0w6AFlvpj5GVpJJAqaZWf0lPN/+5275Polv1+q5lOqpyakbule9M799wnr9/AQAAAAAAACDTotGoWlpa1NLSomg0StAOgK9ZlqVQKKSqqipVVVUpFAr19pIyzl/JAAAAfC5ubLbzV1uV21GMyYJpIWPoa29Ka8q0Qmu2k6SoQ0Ap7mWMrNJvttsbb9PvP/pp0qBdsVWi7w27MatBO+nTkGsm2u0y2aY2reY0BQ1/n+WZ5vn8T5DPRPvo+xcAAAAAAAAAMqW9vV2NjY1as2aNmpqaFIlE+H/MAHzPtm1FIhE1NTVpzZo1amxsVHu7PyanZQphOwAAPLBtQ9jOZ812btrdwlZx0grfZONM/fDLXNTQZuY2aOhXppCj5DzCN5fNdm2xVs3d+BO93/q28ZiSQJm+P3y2xpSNT+tebtWHh6V9jeIMBryqi/rrnyqPd9y3of0Dvd/294zdK5+Z2gjz/f0LAAAAAAAAAJkQjUbV2NioPXv29PZSACAte/bsUWNjo6LRaG8vJWP8lQwAAMDnzM12/vqRallWj6GVcCD56EzT+XHFM9KQli5Ts13IMP42XyRr9nL6mmO2++fCy7H7a43t1v/ZOFtr2941HlMWKNcVw3+i0aVjU76PV5lotgtnaIzsPif0P9O4b1Hz/IzeK1/11WZKAAAAAAAAAEhXLBbThg0b1NHR+5/FAEAmdHR0aMOGDYrF0isG8QvnGVcAAMBR3NAMFrD8NUZW+jRMF4mZK3nDPbTf9RT6KgqGUl5bJkQcRqpK+d+M5XWMbC6a7XbHdur/bJitDe0fGI8pD1bqB8Nu1rCSUSndI1X1xcNdHWfJki3nRsZMB7yGFI/Q+H5H6p09K7vte2fPa/q4fb2GFH8ho/fMNzTbAQAAAAAAAICzTZs2dRu5GAgEVFlZqcrKSoVCIQUC/iqBAABJisfjikaj2rlzp3bu3Kl4/PMim/b2dm3atEnDhqU/taq3EbYDAMCDfGm2k9IL0316frJxphGVpbSqzIn20WasZM+bc7Odh7CdvIftdnXs0G833KSPI+uNx1QGq/WD4T/RkOIRnq+frnqXzXZhq1jt9l7HfZkcI7vPzP5nOYbtJGlR82O6YPAPMn7PfEKzHQAAAAAAAAB0F4vFtGvXroTHwuGwvvCFL6ioiHgHAP8Lh8Pq16+f6urqtH79ekUin5eJ7Nq1S7FYTMGg/4psvPBfMgAAAB+L24awneW/H6nphOl6Ot8UlMmlvtqM5XmMrIeRvl7HyLZ0NGvOhh8nDdpVFfXXVSN+1itBO0mqCw2R5eI/aYuTjE3O9BhZSTqw9IsaUTLGcd+KnS9oR/STjN8zn5jev6E8f/8CAAAAAAAAQDr27NmTsG1ZloYPH07QDkDeKSoq0vDhw2VZVsLj+/85l4/8lwwAAMDH4oZmMDdhn1xLJ0zX0/m+CNsZ1hDqodHP74IqMjYlOgWUvDTbmcYgO9ke3aY5jT/W5shG4zH9i+p09fCfaZDLdrlsCAVCqgvV93hcstd7NtrULMvSzJqzHPfF1KHFO/6S8XvmE5rtAAAAAAAAAKC7/VvtysrKFA7n9+ceAApXOBxWWVnivLTdu3f30moyx3/JAAAAfMzUbBe0/Fd122OYLknTV0/nRw2tVLlkbLbL87COZVnGr8F5jGzmm+0+iW7RrzfcoK3Rj43H1IYG6aoRP1NdeLDr+2eLm7Bfsva6bLUhTqg4RgNCAx33vbjjKbXFWrNy33wQtSOOj/c0/hoAAAAAAAAA+rL9G58qKip6aSUAkBnl5eUJ24TtAAAoMHE5h+3ystmuh1BLkRUy7vNzs12+h+0k83MXsfd2e8xLs13M0MzY1dbIJs1p/LE+iW4xHjMwNERXDf+ZMUiWa/XFw3o8JtkY2WT70hG0gppRc4bjvr3xVi1reSYr980Hffn9CwAAAAAAAACpsG1bsVji/8cvLS3tpdUAQGbs32wXi8Vk23YvrSYz/JcMAADAx0xjOAOW/36khnpstku+P2AFjCNZTa1yuWRuxsr/sI7puYvEu3/NMWWu2W5z+0bN2XCDmjuajMcMDg/XVSN+qppQrev7Zlt9uOewXa7HyO4zpepElQXKHfc9t32Bp2bCvsTYTNkH3r8AAAAAAAAAkIp4vHvhQzDov8lKAOCF059jTn/e5RP/JQMAAPAxU7NdUP77ZafnZrueQy1expnmWl9uxjI32zmNkfXQbJfk2I/b1+s3G36slo5m4zFDi0fqyuE/VVVRf9f3zAU3YTtTcFTKbsCrOFCi46q/5Lhve8c2rdz1Utbu7Wd9+f0LAAAAAAAAAKlwanqyLKsXVgIAmeP051i+N9sV9fYCAADIJ3HbMEbWh812xWk220mfhpD2aFe3x5/f8Ve92/qGwlaxDig9RBMqJitoZf8/K+J2XG/tXq41be+o3WGkqtQ3mrFMz83ync/ro/Z1CY+9s2el6+v+cfNvtbr1Tcd9b+1ert2xncZzhxeP1veHz1Z5sNL1/XJlUHhoj8cka5/M1hjZfabVnKZF2x9Vhx3ttm9R83xNqjgurf9hYtu23tmzUu+1vq22+B7P55cFyjWu3xEa2+/wlNfglbGZkrAdAAAAAAAAAAAAfIywHQAAHtiGZruAD8tiewqthK2eA0ama6xpe0dr2t6RJC3Z8YQO33W0LhpyjYqskPeFuhS343pw8516eedzSY9L1mCWL8KGr2H93n9o/d5/pHzdDrtDy1oWeT5vZMlB+t6wG1UWdB6H2tvKguWqDNZoZ2x7SudnOyhaWVStoyun6aWWZ7rt29i+Tqtb39Qh/SakdG3btvWnrfdpyY6/pLXGRdsf1ZcGnKsv1/5zWtdxy9RsF+oDYVkAAAAAAAAAAAD0Xf5LBgAA4GOmMZwBy39jZHsKrYQDPYfS3LbEvbn7Fb27x7kxLVPW7/1Hj0E7qW80Y/npazig9BD9YPjNvg3a7eOm3c7EUvZr+E/sf5Zx3zPN81O+7ubIxrSDdvv89ZP/0o4kY4QzxbZtx5HIkjloCgAAAAAAAAAAAPgBYTsAADyI51GzXWmgLOn+kh72f3pMqev7vd/6tutjU/Gey+t7WbNfuXlucuHgskP1vWE35cX3tL54WNL9ycJ4/YIVmV6O4/0PK/8nx32rW9/Uxr0fpnTdf7T+PZ1lZf16TkwjZCUp5CIEDAAAAAAAAAAAAPQW/yUDAADwMds2hO0s//1IPbDsi0n3H1R2aI/XcHPMPnvjra6PTYWb69cU1ao2VJ/VdeRCT89dLowrO0KXDv2xigM9jxv2g/H9JibdP73my6oq6t/t8cHhEeofqsvWshKcWGNut1u0/dGUrtmW4ffd3nhbRq/nxNQQKklFWR7pCwAAAAAAAAAAAKTDf8kAAAB8LCbDGFn5b4zsF0rG6J8qj3fcd2zVTA0OD+/xGg3VJ6s+nLwxbJ9I3HksZKb0dP2AAvpq3bdlWdkfCZptkyqmamTJQb12/8PLj9YlQ6/31Tjbnnyx35EaV3aE476T+5+j6qL+OrvuwoQWyiIrpK/UXZCrJeqA0kM0quRgx32v7lyq5miT52uaxrGmKtvvY0mKqcO4LyDCdgAAAAAAAAAAAPAvPs0CAMCDfGq2C1gBXVD/Ax3ab5Leb/u79sbaVBbsp4PKDtWE8smuQmlVRTW6esStWrlzqdbv/YdidlyN7Wu0JfJRt2MzHfrxcv1T+n9Nh1ccrS+UjMnqGnKlNNhPPxh+s1buXKoP9q5WRzwxnLQrtkOrW99M+fpBFWlixbHdHi8JlOqgsi9qYsWxeRdaDFhBXTrsx1q+c4k+aFutSDyi8qIKjSs7QuM+a707qnKqakOD9Obu5QpaQU0on6xhJaNytkbLsnRi/zN178e/6LYvrpgWb/+Lzh54oadrmsJxVUX9dVCpuZny3dY3tDvW0v16WX4fS8mb7YKW/4LLAAAAAAAAAAAAwD6E7QAA8CAuQ9jOp2WxASuoIysbdGRlQ8rXKA9W6viaUzu35zfN0zPN87sd11vNdsdWzdQZdedn9d69oSRQqmOrZ+pYzey274O21VrdmHrYrjxYoQuHXJXO8nwpaAV1TNUJOqbqBOMxI0sP0sjS3m0NrAsNVlN0U7d9L7U8rVMHnKvSYD/X1zOF40aXHJz0Of7thhv1Xutb3a+Xi2Y729xsF2SMLAAAAAAAAAAAAHzMn8kAAAB8Kp5HzXbZEracR4v2VrNdyLCevixslaR3fh6Nh+1rAlZQJ9Sc4bhvb7xNL+54ytP1ooZwXKiH59j0Po7aEU/3T0WcZjsAAAAAAAAAAADkqcJJBgAAkAFxOYdEAiqcgIgpqNVbzXaFGBwrTvNrLsSAop9Mrpqh8mCl477FO/6iDjvq+lqmEKopTLdPKBB2vl4umu0Mf45KNNsBAAAAAAAAAODWyJEjZVlW5z9Llizp7SUBBYGwHQAAHtBsl6zZLruNWKbGrbDlHBrqy8IBmu3yWThQrOOqv+S4r6WjWa/ufNH1tSJxw/vCEKbr3N9LDZVSD2NkCyi4DAAAAAAAAAAAgPxTOMkAAAAyIC7nsJ1VQD9STUEt0zjLTKHZ7nM9tZb1eH4Bfs/85vjqUxUyBEUXNT8q27ZdXSea4njl3nofS1KMMbIAAAAAAAAAAADIU4WTDAAAIANMzXbBAmq2M4V4st2Ileq4zL4o3TGyhfg985uKoipNrprhuO/jSKNW7XnN1XXMzXY9hO382mzHGFkAAAAAAAAAAAD4WOEkAwAAyACa7czjKU3Nc5lCs93nAlZQRVYo5fN7GjGK3Dih5gxZshz3Ldr+qKtrpBpCDRnfx9kdBy3RbAcAAAAAAAAAAID8VTjJAAAAMiBuCIkECiggkqwRy+3oy1QYQ0UFGLaTpGKrJOVzabbzh4HhITq8/GjHfe+1vq3GvWt7vEaqIVTTa8A0ljaTYkrSbCea7QAAAAAAAAAAAOBfhO0AAPDA1GxXSGNkk4V4onb2WrFMoSLTWNu+ztRM5u7cwvye+dHM/l8x7lvU3HO7nbnZLvnrw/Q+znZDpWRutgsoIMtybvoDAAAAAAAAAAAA/IDqCAAAPIjbjJFN1ooWsdsVVuaDXHE7bgzyFWyzXYBmu75gVOnBOqD0EK1te7fbvtd2vaQzo9/UgNAg4/lRw9jXngKVyRoqsy1mOzfbBS1+NQEAAAAAAAAAwG9s29Zrr72m1atXa+vWrWpvb1ddXZ2GDh2qhoYGlZeX9/YSU7ZhwwatWLFCGzduVFtbm2pra3XooYfqqKOOUiCQ3ue/W7du1YsvvqiPP/5YbW1tGjJkiEaPHq3JkyenfW0nq1at0ttvv62mpibt3LlT/fv31+DBg9XQ0KABAwZk/H6FjE+0AADwwDY02wUKKWyXJMQTibdLWZio22FHzesp0OBYOl93oQYU/erEmrMcw3ZxxfXc9gX62sD/ZTw39WY75/2m8F4mmZrtggU0jhsAAAAAAAAAAL/btm2bbr31Vj344INqampyPCYcDmvGjBmaPXu2jj76aFfX/fa3v6158+Z1bn/44YcaOXKkq3OXLFmi6dOnd27fdNNNmj17tvH4rhN1jj/+eC1ZskSStGzZMt1000167rnnFI93//x30KBBuuGGG3T55Zd7Dsa9/vrruvbaa7V48WLHaw8bNkyXXHKJrrvuOhUVFWn27Nm6+eabO/cvXrxY06ZNc3WvTz75RHfccYcefPBBffTRR47HBAIBTZkyRTfddJNOPPFET18LnBVOMgAAgAwwjj8soJBIspBXtsbIJhttaQoN9XU02/Udh5ZP0qDwUMd9y3YsUmtst+O+uB0zBlF7ClSaxi/npNlOhrAdfw8IAAAAAAAAAABfePTRRzV69GjNmTPHGLSTpEgkooULF2ry5Mm65JJL1NHhPN3GT2699VYdd9xxWrRokWMYTpK2bNmiH/zgBzrnnHMUibj//PPXv/61Jk2apGeffdZ47Y0bN2rWrFk6/vjjtWXLlpS+Bkn64x//qNGjR+v22283Bu0kKR6Pa+nSpZo5c6a+9a1vefp64IxPtAAA8CBOs13PzXZZkCwAVKjBMZrt+o6AFdAJNWfqP7f8vtu+dnuvXtjxV50y4Gvd9kWShFt7en2YXgORnDTbmcbIFk5oGQAAAAAAAAAyze7okJo29vYy+r66YbKK+nbU5v7779fFF1/cLSx2wAEHaNy4cSorK1NjY6OWL1+uWOzzv2B/zz33qLGxUQsWLFCRT79Hv/zlL3XDDTd0bh988ME6+OCD1a9fP23atEkvv/yy9u7d27l//vz5mjVrlm6//fYer/2rX/1K11xzTbfHx40bpwMPPFDFxcVqbGzUihUrFIvFtGzZMp177rk67rjjPH8dN954o2655ZaExyzL0sEHH6wDDzxQFRUV2r59u1599dWEsOSDDz6oTZs2aeHChb59jvIB3zkAADywbUPYziqcsJ2pEUvKYtguabNdYQbH0vm6CzWg6GdHV07Tgm0PaVespdu+Jduf0Ak1Zyq0X4tjNI33hWnMbEwditkdClrZ+zWBhlAAAAAAAAAAyIKmjbLPPbi3V9HnWf/1njR4ZG8vI2veeOMNXXrppQlBuwkTJmju3LmaMmVKwrFNTU2aNWuW7r777s7HFi5cqBtvvFG33nprztbs1ttvv60XX3xRknTWWWfptttu09ixYxOO2b59u66++mo98MADnY/96le/0qWXXpp01O3KlSt13XXXJTw2bdo03XnnnRo/fnzC401NTbrxxht111136YUXXtCqVas8fR3z5s1LCNoFAgFdfvnluuaaazRixIiEY23b1mOPPaYrrrhCjY2NkqRnn31Ws2bN0m233ebpvvhc4SQDAADIAGNIpIB+pBZZRbIMX2+2RlDSbNddOJ0xsgU6etfPQoGwptWc5rhvZ2yHlu98vtvj2Wi2k7LfbmdutuPvAQEAAAAAAAAA0JsuuuiihDGjDQ0Neumll7oF7SSprq5Od911l+64446Ex2+//Xa9/fbbWV+rV83NzYrH4/rhD3+o+fPndwvaSVJNTY3+8Ic/6Mwzz+x8LBaL6b777kt67csvvzxhhO5Xv/pVPfPMM92CdtKn37d///d/1y9+8QtJ0rZt21x/DevXr9ell17auV1cXKwnnnhCv/vd77oF7aRP2+7OOussrVixQmPGjOl8/I477tCHH37o+r5IVDjJAAAAMsA2jZEtoEYmy7KMrVg02+VOsZV62C5ZOyF6z9TqU4whuUXbH1N8v2bNZO+L/Vvwuu1P8hqIJgnxZUJMzqHloArnz1EAAAAAAAAAAPxm8eLFeu211zq3Kysr9cgjj6isrCzpeddcc41OP/30zu14PK45c+ZkbZ3paGhocNXo9rOf/Sxh+7nnnjMeu2LFCr3yyiud24MHD9b999/f45jWa6+9VieddFKPa+nqjjvuUFtbW+f2nDlzdMopp/R43sCBA/Wf//mfnduxWMy3z1E+IGwHpzTaMAAAIABJREFUAIAHcVPYrsB+pJoCbrlutgsoWLBtWOm00xVqQNHvyoOVOqbqBMd9WyIb9fc9ryY8Fk2j8THZ6ydbodl9aLYDAAAAAAAAAMB/5s2bl7B9+eWXa8iQIa7O/fnPf56w/fDDD6u9PbufN6TihhtuUCDQ8+e648ePTxgb+8YbbxiPffjhhxO2v/e976mqqsrVembNmuXqOEnas2eP7r///s7t0aNH65JLLnF9/qRJkzR16tTO7ccff9z1uUhUWMkAAADSFDeNkbUK60eqMWyX42a7Qg6NpTVGlmY73zqh5kzjmOZFzY8lbKfT+JjsNZCt0Ow+pj9HgwXUEAoAAAAAAAAAgN8sXbo0Yfub3/ym63PHjx+viRMndm7v3btXK1euzNjaMqG0tFQzZsxwffwhhxzS+e+tra3avXu343HLli1L2D733HNd36OhocF1oHHp0qUJrXbnnHOOq+BgV9OnT+/89/Xr16uxsdHT+fgU9REAAHhgbLYrsJCIKaiTrZCOqcGrkENj6YyRLeSQot/VhgfpiIpj9Nqul7rtW9P2jta1va+RpQdJkiKGca9uGh9DSV4D2W+2M4Xt+NUEAAAAAAAAAIDesH37dq1du7Zzu7q6OiFs5saUKVMSxtCuWLFCU6ZMydga03XAAQcoHHY/OaqmpiZhu6WlReXl5d2Oe/PNNzv/vbq6WmPGjPG0rqOOOspVy9z+YcghQ4Zo3bp1nu61/9f/wQcfaMSIEZ6uAcJ2AAB4ErcZIyuZgzrRuHP4J10Rw3XTGaWa70LpjJEt4JBiPpjZ/yuOYTtJeqb5UV089IeS0mt8DFvm10/UEOLLlJgMY2RVWKFlAAAAAAAAAMioumGy/uu93l5F31c3rLdXkBVNTU0J2wceeKAsy/J0jbFjxyZsb926Ne11ZdL+4bmehEKhhO1oNNrtmD179mjv3r2d26kE19yes2HDhoTtK6+8UldeeaXn+3XV3Nyc1vmFirAdAAAemJrtTGMf+6pcN9uZrlvIobHidMbI0mzna18oGaMDS8frH23vdNv3xu6X1RTZpLrw4CSNjz0HMQNWUEVWkTrs7sG3bI+RNTfbEbYDAAAAAAAAgFRZRUXS4JG9vQzkqe3btydsV1VVeb7G/uf4LcjldeSqGzt27EjYrqio8HyNyspKV8d98sknnq/dk127dmX8moWgsJIBAACkKU5IRJI5rJWt8ZPpNHj1VeF0xsgWcEgxX5zY/yuOj9uK67ntCySZGx+TjYhNOM4Ums36GFlDsx1jZAEAAAAAAAAA6BW2bSdse221c5KJa/hdcXHiZy2RiPfpQW7PSeXaPdn/eYc7hO0AAPDA1GwXsArrR6qpOSvXzXamsFAhKE4jaFjIIcV8Mb7fRA0OD3fct6xlkXZ37Ey78THXodl9aLYDAAAAAAAAAMBf+vfvn7Dd0tLi+Rr7n+N1bKsbsZjzZwy9Zf+vcf+GQDfcNgDW1tYmbC9btky2baf1z7e//W3P6wVhOwAAPInbjJGVaLbzg3Ta6YqsUAZXgmwIWAGd0P9Mx31RO6IXdvw17feF6TUUtTP/N6O6iolmOwAAAAAAAAAA/KSuri5h+/333/d8jffeey9he+DAgY7HFRUlfh7Q0eH8uYGTVMJs2RQMBjV06NDO7Q8++ECtra2ervH222+7Om7QoEEJ26k8R8iMwkoGAACQJtMY2UCB/Ug1hXRy3WxXyONQw4HUxsiGrHDBNTHmq0kVx6sq6Py3vpbseFJ7Yrsc95maJ7sdZwrNZul9vI+x2U402wEAAAAAAAAA0Btqamp0wAEHdG7v2LFD7777rqdrLFu2LGF70qRJjsdVVlYmbO/YscP1Pd555x1Pa8qFyZMnd/57PB7X888/7/rc5uZmvfnmm66OnTJlSsL2008/7fo+yCw+aQUAwAPzGNnCConkutkuSrNdN6mOkS3k71m+CQVCmlZzuuO+3bEWvbJzseM+t89xyDQOOutjZGm2AwAAAAAAAADAbxoaGhK2H3roIdfnvvvuu1q5cmXndklJiY488kjHY/dvvFu1apXr+zz55JOuj82VE088MWH73nvvdX3uvHnzFIm4mzh0wgknKBj8/DPpxx9/XFu3bnV9L2QOYTsAADywjWG7wvqRGjKOn8xOSKfdFLYr5GY7K/VmO+SPqdUnq9jwXO+KtTg+7vY5NoXysvU+3sfUbFdooWUAAAAAAAAAAPzkggsuSNi+8847tXnzZlfnXn/99Qnb3/jGN1Rc7Pw5xMSJExO2FyxY4OoeTz31lJYvX+7q2Fw6//zzVVFR0bk9f/58PfXUUz2e99FHH+knP/mJ6/vU1NTo/PPP79zevXu3rrnmGm+LRUYUVjIAAIA0xWxD2K7AfqSam+3c/c0Lr4xjZAOFGxxLtaGO9rD8UhYs17HVMz2d4/a1YRwHnfVmO8MYWcJ2AAAAAAAAAAD0mhkzZmjChAmd2y0tLTrvvPPU1taW9Lw5c+boscce69y2LEtXXXWV8fhjjjlGZWVlndvz58/Xq6++mvQe//jHP/Qv//IvPX0JvaKiokJXXHFFwmPnnnuuFi92nlAkSevWrdPMmTM9jdCVpNmzZyeEGP/jP/5DP/rRjxSLOX/2YrJq1Sq98MILns7B5worGQAAQBps207SbFdYIRFjSCdLjVim8E8hj0RNOWynwnqt9gXTa77sKdDrtvHRFFaN2NkJze4Tk2GMrAiCAgAAAAAAAACQqs2bN2vdunUp/bPPfffdp3D4888PlixZoqlTp+qVV17pdr9t27bp8ssv19VXX53w+A9/+EMddthhxnVWVFTo61//eud2LBbTaaedpqeffrrbsZFIRPfee68mT56sLVu2qKamxsu3JGdmzZqlQw89tHN7586dOuGEE3Tuuefqv//7v/XWW29p9erVevrpp3XllVdq/Pjxevfdd1VSUqIzzzzT9X1GjRqle+65J+GxX/ziF2poaNCCBQvU0eH8GYz0acBv7ty5mjFjhsaPH6/nnnvO+xcKSeITLQAA3DIF7SSa7fbJViOWaaylaZxtIUh1hC7NdvlnQGigjqxo0Ipd7v6GkdsgpnEcNM12AAAAAAAAAADknfPOOy/lc23blvTpiNc777xT3/3udxWPf/rZ6MqVKzV58mSNGTNG48ePV0lJiTZs2KDly5d3C3fNnDlTt9xyS4/3u+WWWzR//vzOZretW7fq5JNP1pgxY3TYYYepuLhYW7Zs0SuvvKI9e/ZIkurr63X77bf7suEuHA7riSee0IwZM7RmzRpJn35P//SnP+lPf/qT4zmWZWnu3LlqbGzs1gyYzAUXXKDNmzfr+uuv73yOXn75ZZ1xxhkqKyvTEUccoUGDBqm0tFS7du3Stm3btGrVKs8tejDj01YAAFyKE7brFLZMjVg02+VKwErtNUegKT+d2P8s12E7tyHUXDdU7hOzDc12vDYBAAAAAAAAAOh1F198sWpqanThhRdq9+7dnY+vWbOmM0jm5Dvf+Y7uuusuhUKhHu8xdOhQ/fnPf9ZZZ52lXbt29XiPUaNG6YknntCWLVs8fjW5M3z4cL344ou67LLLNH/+/KTHDhgwQPPmzdNpp52mH/3oRwn7KioqerzXvvbACy+8UJs3b+58vLW1VS+99JKr9fq1JTAfFFYyAACANMTtJGG7AguJ5LrZzhT+SbXdrZDRbJefhpeM1sFl5sr1rtyGUI1jZOPZHSMbNzTbBRhxDAAAAAAAAACAL5xzzjlau3atrrjiCtXW1hqPC4VCOumkk/TSSy/pvvvucxW022fGjBlavny5zjzzTGObW11dna699lq98cYbOuSQQzx/HblWX1+v//mf/+kM3Y0bN07V1dUqKSnR6NGjdeKJJ+ruu+/W2rVrddppp0lSt8a5qqoqV/c65ZRT9OGHH2ru3LmaMGFCj414oVBIU6ZM0ezZs/X+++/riiuuSO2LBM12AAC4lbTZLsWWsXxlCrmZxr2myxT+KeRmu1QFCTTlrZn9v6L3Wt/q8ThT82S34wzvn2y9j/eJydRsx68mAAAAAAAAAAC4tW7duqxef+DAgfrNb36jX//611q5cqVWr16tpqYmtbe3q7a2VsOGDVNDQ4OrJjaTsWPH6tFHH9W2bdv0/PPPa+PGjWptbdWgQYM0atQoTZ06VUVFn39+MG3atM6Rt254OXZ/DzzwgB544IGUzm1oaFBDQ4OrY1etWtX575ZlaeDAga7vU1JSossuu0yXXXaZmpub9fLLL2vTpk1qbm5WNBpVeXm5Bg4cqIMOOkhjx45VWVmZ568F3fGJFgAALpnamKTCGyMbMoR0OuwOxexYxsdB0myXOYzqzF+HlE3QkPAX9HFkfdLjTO/PbseZxshmudkuZvizlNcmAAAAAAAAAAD+EwgENGnSJE2aNClr96itrdXZZ5+dtev71Z49e/Taa691bh900EEphxf79++vU089NVNLQxKFlQwAACANycfIFtaP1GQht6id+aCOaTwtzXbe0R6WvyzL0on9z+rxOLchVFMDnincminmsB2vTQAAAAAAAAAAUDjmzZun1tbWzu1jjjmmF1cDt/hECwAAg9bYbn3cvl52l22TQIGN5kwWcntvz1sqC5Z3bg8KD1VlUbWkT6uam6Kb1NKxXUVWSMOKRykUCCW9V8zuUFzO4Ry34zLxOdrD8ttRlQ16fNuD2tHxifEYtyFU03Efta/T1sjHqgsNlmVZKa0zmZhtGCNbYH+OAgAAAAAAAACAwrVx40bNmjUr4bELLrigl1YDLwjbAQCwn5gd00Ob5+qVnUtky9xm1xXNdp+7++Pbuj32xX5H6Yzab+q+TXdoS+SjzsdDVlhfrfu2jq9xrjS2bVsPb7nLvA6a7TyjPSy/FVkhTa/5suY3PWA8xm0I1TRGVpJmf3iZBoWH6rKhP1ZdeLDXZSZlCs/y2gQAAAAAAAAAAPnqz3/+s1auXKmrrrpKdXV1SY99/fXXdfbZZ6u5ubnzscMPP1zTp0/P9jKRAXyiBQDAfp765L/18s7nPJ1jFdhkdq8ht7/veVV/3/Nqt8ejdkSPbL1H9cXDdXDZod32v9TytJa1LDJeN1lYCM5oD8t/DVUz9ddPHtHeeJvj/nSb7fbZEvlIczfeoptGzc1ow515jCyvTQAAAAAAAAAAkJ927dql2267Tb/85S91yimn6IQTTtDhhx+ugQMHqqioSM3NzXr77bf1l7/8RQsWLJBt253nhsNhzZs3rxdXDy8I2wEAsJ83dr/s+ZwAYbu0vLX7Fcew3Ru7kj8XNNt5V/HZSF/kr9JgPzVUnaxF2x913O82hOqmAW9r9GNtjmzU4OLhntaYjDlsx68mAAAAAAAAAAAgv0WjUS1YsEALFixwdXxpaan++Mc/6vDDD8/yypAphZUMAADAhe0d2zwdXxIoVU1oQJZW40/FVon6FyWvP/ZiR7TZ8fFkz0VpoJ+qi/pnbA356Ct1/+L4+OkDztPA0BDHfRMrjs3mkpAj02tOV8ChpTCgoAaFnZ/7/Q0uHuHquJYO5/dnqmLqcHycZjsAAAAAAAAAAJCvqqurFQx6+6zj2GOP1QsvvKBzzjknS6tCNhC2AwBgP5F4u6fj/6lyWsE1MlmWpSlVJ2bseqbwTcQ2PxeTq6YX3Pd9f0eUT1FJoCzhsWKrRBMrjnV8fgaFh+qA0kNytTxkUU2oVqcM6P6L18SKKSoLlru6Rv9QncaW5f5vSRmb7RhxDAAAAAAAAAAA8tRZZ52lLVu26MEHH9Sll16qhoYGDR8+XP369VMwGFR5eblGjBihqVOn6t/+7d+0dOlSLV26VEcddVRvLx0eFfYn1AAA7CduxxW1I66O7V9UpyMrG3Rm7TezvCp/+tKAc2VZAb3Sslhbox+ndS1T+MYUfBwQGqiz6y5M6559QW14kK4cfov+p+kBNe5dq+HFo3RG7TdVXzxMg8JDJUl/2/msdnZs19iyw/X1QZfQHtaHnDrg6woooL/tfFaS9MV+R+nsgd7eF/869Dr9acv/1d/3vKpdsRbHY2zZaa+1q5htarbjVxMAAAAAAAAAAJC/BgwYoPPPP1/nn39+by8FWcQnWgAAdNFhR437/veIn2tUyUGd25YsWZaVi2X5kmVZ+tKAr+lLA76muB3vfHxnx3b92wcXebqWKXxjCtudU3eRAoTGJEkjSg7QlcNvkW3bCa9Hy7J00oCv6qQBX+22D31DwAro1Nqv69Tar6d8jZJAqb41+PuybVvfe/9s2Yp3OybzYTtDsx3vaQAAAAAAAAAAAPgcYTsAALpINkK22CpRwGICu5Ou35fiQInn853CdrZtK2JoGQwHij3fo69LFqYjaIeeWJalgAKKOYTtMo1mOwAAAAAAAAAAAOQrEgMAAHQRsc1hOwJe7qTyfXJquuqwOxxbtiQpbPFcAJlmymRmvNlOhmY70WwHAAAAAAAAAAAAfyNsBwBAF0mb7QjbuRK0ihTwGJpxCt9ECT4COWZK2+VqjCzNdgAAAAAAAAAAAPA3wnYAAHSRtNmONjXXvIbhnMZKJgs+ErYDMs8yhO0y2WwXt+PGxsqARbMdAAAAAAAAAAAA/I2wHQAAXRDwygyvwUSnpqtkwceQFfa8JgC9z9RqJ9FsBwAAAAAAAAAAAP8jbAcAQBemgFdAQYIgHoQD3sJwNNsB/pXJIbIxdX+v7xP0OH4aAAAAAAAAAAAAyDXCdgAAdGEKeBHu8sZzs528Ndsx0hfIPNMY2UzG7eJJm+0I2wEAAAAAAAAAAMDfCNsBANBF1BDwItzljddwotdmO8bIAplnCtvZGQzbOb3X96E9FAAAAAAAAAAAAH5H2A4AgC4i8Yjj417Hoha6kMdwolPblanZLmwVy7JMDVwA/CxGsx0AAAAAAAAAAADyGGE7AAC6SBbwgnvem+0cwnbG4CPPBZANphCrbWew2U5Jmu1Esx0AAAAAAAAAAAD8jbAdAABdmEaXEvDyxms40SmAw0hfINdyMUaWZjsAAAAAAAAAAADkL8J2AAB0YWq28zoWtdBlptnO8FwQfASyIhfDmZOH7Wi2AwAAAAAAAAAAgL8RtgMAoAua7TLDe9iue7OdeaRvOKU1AehJ9uN2Tu/1fWi2AwAAAAAAAAAAgN8RtgMAoAtj2I5mO0+8fr/iisu2E0dVEnwE/CGjY2RFsx0AAAAAAAAAAADyF2E7AAC6MLapEfDyJJXvV0yJjVfmZjueCyAbLGOzXQbDdsma7USzHQAAAAAAAAAAAPyNsB0AAF3QbJcZqXy/YnZi4xXNdkBumcJ2mYvadX+fd8UYWQAAAAAAAAAAAPgdYTsAALowN9uFc7yS/JZSs51Nsx3Qq0zFdjlotrNkKUDYDgAAAAAAAAAAAD5H2A4AgC5oU8uMTDTbReMR52vzXABZYWy2szMYtpNzsx2tdgAAAAAAAAAAAMgHhO0AAOgiamhTC9Gm5kkqTYD7h3BMzXY8F0C25GKMrHOzXVBFGbwLAAAAAAAAAAAAkB2E7QAA6IJmu8xIJRDXbYwszwWQU8Ypshm0f4PlPoyQBQAAAAAAAACgMDU2NurHP/6xpk6dqkGDBikcDsuyrM5/Hnjggd5eIpCACgkAALowtamlMha1kKUSiOs2RtY2jJG1vLfmAeiZaYxsJrvtTGE7xsgCAAAAAAAAAODNyJEjtX79+s7txYsXa9q0ab23oBTce++9+v73v6/2dufPaAE/otkOAIAuInFDwIs2NU9SCSfSbAf4k53RsJ1pjCxhOwAAAAAAAAAACsmTTz6pSy65xHXQbsmSJQmNd7Nnz87uAgEDmu0AAOiCZrvMyESzHc8FkGvZb7aLy9Rsx68lAAAAAAAAAAAUkuuvv162/flnEP/8z/+siy66SMOHD1coFOp8vLa2tjeWBxjxqRYAAF3QppYZqQTi4qLZDuhN2Y/aJWm2Y4wsAAAAAAAAAAAF47333tNbb73VuX3qqafqoYce6sUVAe4xRhYAgM/E7A5j61LYCud4Nfktq812hO2A7LCc43Zd/1ZZuvZ/n+8ToNkOAAAAAAAAAICC8eqrryZsn3POOb20EsA7wnYAAHzG1KQmEfDyKpXvV4ftrtkuxBhZICusHHTbGZvtRLMdAAAAAAAAAACFYsuWLQnbw4YN66WVAN4RtgMA4DOmJjWJgJdXqYyR7RrCidtxRe2I87UJPgJ5K2ZoD2WMLAAAAAAAAAAAhWP37t0J26FQqJdWAnjHvCYAAD5Ds13mhFIYu9s1hNNhR43HpRLkA9AzU7Nd5nrtkjTbMUYWAAAAAAAAAABfsm1br732mlavXq2tW7eqvb1ddXV1Gjp0qBoaGlReXu75mvF4PAsrBXKDT7UAAPhMsmY7Al7eWJalsFWc9Hu6v64hnOTBR+9BPgA9y80YWZrtAAAAAAAAAADIB9u2bdOtt96qBx98UE1NTY7HhMNhzZgxQ7Nnz9bRRx9tvNa6des0atQo4/7p06c7Pv6HP/xBF154oeO+m2++WTfffLPxmosXL9a0adOM+4FUMUYWAIDPROLOY0slmu1S4fV71jWEQ/AR8A87J2E7/g4QAAAAAAAAAAB+8eijj2r06NGaM2eOMWgnSZFIRAsXLtTkyZN1ySWXqKPDecIN0JfwqRYAAJ9JFvBKZSxqofMaiksI2zHSF+iTYjKMkRXNdgAAAAAAAACQlniH1Lqxt1fR95UNkwJ9O2pz//336+KLL+426vWAAw7QuHHjVFZWpsbGRi1fvlyx2Oef791zzz1qbGzUggULVFTUt79HKGy8ugEA+Iwp4BWywgpYlMF6FfLcbNdljCzNdkDOWZbzGFma7QAAAAAAAAAgD7RulB43j+lEhpzxoVQ+srdXkTVvvPGGLr300oSg3YQJEzR37lxNmTIl4dimpibNmjVLd999d+djCxcu1I033qhbb7014dhhw4bpww8/7Nz+zW9+o9/+9red2w8//LAmT57cbT21tbWdo2BffvllnXfeeZ37rrjiCl155ZXGr6W+vr6HrxZIDZ9qAQDwmagh4EWTWmrCHtsA46LZDuhdhrCdncmwnaHZzqLZDgAAAAAAAACA3nbRRRcpEol0bjc0NOipp55SWVlZt2Pr6up01113acyYMbr22ms7H7/99tt13nnn6dBDD+18rKioSCNHjuzcrq6uTrhWfX19wv6uysvLJUnr1q1LeLy6utp4DpBN1PQAAPAZU8CLJrXUeA3FuWm2CyhIAxaQJc5Ru8wyN9sRtgMAAAAAAAAAoDctXrxYr732Wud2ZWWlHnnkEcegXVfXXHONTj/99M7teDyuOXPmZG2dQG8jbAcAwGeMYTua1FLiNaTYNYTDcwHknpWDuF1MhmY7CrcBAAAAAAAAAOhV8+bNS9i+/PLLNWTIEFfn/vznP0/Yfvjhh9Xebp5kBeQzPtUCABSMJ7c9omUti4z798bbHB+n2S41qTTbrWl9R4u3/0Wv7/6b8zV5LoAscg7bPdr0R/31k/9KemZ9eJiOrpqmSZXHG4+JxNv1t5ZnHffRbAcAAAAAAAAAQO9aunRpwvY3v/lN1+eOHz9eEydO7GzG27t3r1auXKkpU6ZkdI2AHxC2AwAUjNb4bjV3NHk+jza11IStEk/Hv9/2dz267T/UYUfN1wyE010WAANTs92e+C7tie9Kem5zR5NWtb6u9vheNVSf3G2/bdv6949+Zjyf8dAAAAAAAAAAAPSe7du3a+3atZ3b1dXVOuSQQzxdY8qUKQljaFesWEHYDn0Sn2oBANCDkEXAKxVeg3Fv7V7e8zVptgN87bntCxzDdh+1r9d7rW8ZzwvQbAcAAAAAAAAA6SkbJp3xYW+vou8rG9bbK8iKpqbEwpIDDzxQluX8l/RNxo4dm7C9devWtNcF+BFhOwAAelARrO7tJeSlyqLMf98qiqoyfk0An+oXrJDMxZKubI5sVCTe3q0RtLF9TdLzKoK8twEAAAAAAAAgLYEiqXxkb68CeWr79u0J21VV3v+//f7nNDc3p7UmwK8Cvb0AAAD87ovlE3t7CXlpfL8j8+KaAD51SL8JGblOXPFuj0Xi7UnPGdfviIzcGwAAAAAAAAAAeGfbdsK211Y7J5m4BuBHhO0AAEhiavUpOrJiam8vIy+NLh2rM2u/lbHrHVE+RdNqTsvY9QAkOrn/2RrfL/1wcdyOdXssWdjuzNpvaXTpWON+AAAAAAAAAACQXf3790/Ybmlp8XyN/c+pqalJa02AXzFGFgBQMI6qmKqhxSNdHVtkFWlUycGqDddnd1F93MkDztbRVdO1tnWVIna7yoNVeqZ5vta0veP6GkdWNOi0Ad/QoPBQ/gYMkEWhQFiXDZ2lTZENaty7VrZDQ90+OzqatWDbQ477Yk5hO9s5bFcXGqyTB5yd2oIBAAAAAAAAAEBG1NXVJWy///77nq/x3nvvJWwPHDgwrTUBfkXYDgBQMEaWHqSRpQf19jIKTnVRfx1Z2dC5vaxlkafzG6pPVn3xsEwvC4ADy7I0pHiEhhSPSHrcpvYNxrCdlzGydeHB3hcJAAAAAAAAAAAyqqamRgcccIDWrl0rSdqxY4feffddHXLIIa6vsWzZsoTtSZMmZXSNlHLALxgjCwAAcipoBT0dH7aKs7QSAKlK9j52GiMbtSOOx4atcMbWBAAAAAAAAAAAUtfQ0JCw/dBDzn/p3sm7776rlStXdm6XlJToyCOPzNjaJKm4OPEzw/Z257/oD2QbYTsAAJBTQY/FuuEAYRzAbwJKErbz0GwXDhCmBQAAAAAAAADADy644IKE7TvvvFObN292de7111+fsP2Nb3yjWzguXdXV1QnbmzZtyuj1AbcI2wEAgJyi2Q7IfwHL/GuEU7NdxDaE7Xh/AwAAAAAAAADgCzNmzNCECRM6t1taWnTeeeepra0t6Xlz5szRY4891rltWZauuuqqjK9v9OhI9A+jAAAgAElEQVTRCoc/L+lYvHixotFoxu8D9MRbtQwAAECaPIftaL4CfCeQbIwszXYAAAAAAAAAAOTc5s2btW7dupTOHTlypCTpvvvu0zHHHKNIJCJJWrJkiaZOnaq5c+fq6KOPTjhn27Ztuummm/T73/8+4fEf/vCHOuyww1JaRzLhcFjHHnusFi9eLElqbGzUGWecoe9+97s68MADVVZWlnB8fX29SkpKMr4OgLAdAADIqaDlcYwszVeA7wSSFGTHbYewnb3X8dgQ728AAAAAAAAAADLivPPOS/lc27YlSRMnTtSdd96p7373u4rHP/3//StXrtTkyZM1ZswYjR8/XiUlJdqwYYOWL1+ujo6OhOvMnDlTt9xyS+pfRA+uvvrqzrCdJC1cuFALFy50PHbx4sWaNm1a1taCwkXYDgAA5BTNdkD+SzZGNuY0RjYecTyW9zcAAAAAAAAAAP5y8cUXq6amRhdeeKF2797d+fiaNWu0Zs0a43nf+c53dNdddykUCmVtbaeffrp++tOf6qabblIs1v3zCCAXzJ+SAQAAZEHQQ9Y/oKDnJjwA2ReUOTRrO42RtQ1jZGm2AwAAAAAAAADAd8455xytXbtWV1xxhWpra43HhUIhnXTSSXrppZd03333ZTVot88NN9ygt956S9ddd52OO+441dfXq7S0NOv3Bfbh02sAAJBTXprtaL0C/Mny3GxnCNvxHgcAAAAAAAAAICXr1q3L6vUHDhyo3/zmN/r1r3+tlStXavXq1WpqalJ7e7tqa2s1bNgwNTQ0qKKiwvO1Z8+erdmzZ6e8tnHjxum2225L+XwgHYTtAABATnlpqqP1CvCnZM12cTmE7YzNduGMrQkAAAAAAAAAAGReIBDQpEmTNGnSpN5eCuALjJEFAAA55a3ZjiAO4EeBJM12cdthjCzNdgAAAAAAAAAAAOgDCNsBAICcCnoo1qXZDvAnK8mvEU7NdlFjsx3vcQAAAAAAAAAAAOQPwnYAACCnvDTbhWi9AnwpYAWMgbv9m+1idkwddofjsbzHAQAAAAAAAAAAkE8I2wEAgJwKeBkjazFGFvCrgClsp8SwXdSOGK9Bsx0AAAAAAAAAAADyCWE7AACQU0HLwxhZWq8A3wpYzr9KxOzEMbKRuPMIWYn3OAAAAAAAAAAAAPILYTsAAJBTQXlptiOIA/iVaSS0vV+zXdKwHe9xAAAAAAAAAAAA5BHCdgAAIKe8NNuFaL0CfMsy/CrRrdnOptkOAAAAAAAAAAAAfQNhOwAAkFOmNiwntF4B/mV6L8cZIwsAAAAAAAAAAIA+irAdAADIKS/NdgRxAP8KGH6ViO8/RjZJs13ICmd0TQAAAAAAAAAAAEA2EbYDAAA5FRTNdkBfEHDZbBc1NNsVWUWemi4BAAAAAAAAAACA3kbYDgAA5JSnMbIBWq8Av0q32S5EmBYAAAAAAAAAAAB5hrAdAADIKU9jZAnjAL4VsAxhO3u/sJ2h2a44UJLxNQEAAAAAAAAAAADZRNgOAADklLdmO8J2gF8FDCOhY0ocIxuxI47HEaYFAAAAAAAAAABAvnFfLYM+wbKsUZImSBoiqVzSJknrJS2zbTvam2sDABSGoBVyfSxjJgH/MjXb2S6b7RgTDQAAAAAAAAAAgHxD2K5AWJZ1jqSrJR1jOKTZsqxHJN1o2/a23K0MAFBogoY2LCc02wH+5b7ZzjlsR5gWAAAAAAAA/5+9O4+yqyzzxf/dVUkqhCRkDkiIAUOahEHARAQZG5qppaUBZXIp2K1eUZRuEBsnRllwwV4dQbuV9gavP1RaQKZWWxxCiwjcgDSQoCTKEKYYQkIGyFj790dCmVOp6VSdqkpVPh/WXuR9z36Hvc85u2qf89TzAgD0NZaR7eeKohhaFMX3kvwgrQfaJcmoJB9P8kRRFMf0yOQA2CZZRhb6h9bey41ls2C7VjPbeX8DAAAAAADQtwi268eKoqhPcnOS05o9tDjJT7MxAO+RJOVmj41PckdRFAf3yCQB2ObUFx1PrDtI5ivYahWtLCPb2GwZ2XWtZLbz/gYAAAAAAKCvEWzXv12V5PjNyuuSnJtkQlmWx5Rl+f6yLN+RZK8kv9lsv4YktxdFsVPPTRWAbYXMdtA/tLYkdGPzZWRltgMAAAAAAKCfEGzXTxVFsVuSTzerfl9ZlteXZbl288qyLOclOTKVAXejk1zcvbMEYFtUH5ntoD+o62Bmu7Uy2wEAAAAAANBPCLbrvy5OMnCz8o1lWd7R2s5lWb6R5Kwkmwfi/d2moD0AqJnqMtsN6saZAF1R18qtRGOaBdvJbAcAAAAAAEA/IdiuHyqKYrskpzSrvrq9dmVZPpXk9s2qBiQ5o4ZTA4DUFzLbQX9Q10rg7Iay2TKylUmVmwwsBNMCAAAAAADQtwi265+OSTJks/JvyrL8XQfbzmpWPqk2UwKAjarJbDdQ5ivYarWW2a6U2Q4AAAAAAIB+SrBd/3Rss/LsKtr+Ksn6zcr7FUUxvsszAoBNqstsJ/MVbK06ntmulWA7mSsBAAAAAADoYwTb9U97NSv/pqMNy7JcleTxZtV7dnlGALBJfTqW2W5AMbDVYB6g97WWpbJ5Zrt1MtsBAAAAAADQTwi265+mNisvqLL9H5qVp3VhLgBQoaPLyMp6BVu3opVbiQ5nthNsBwAAAAAAQB8j2K6fKYpiVJJRzaqfq7Kb5vvv3vkZAUCluqI+RYp29xOIA1u3+qLlW4nG8s+Z7dY0rs6SdX9qcT8BtQAAAAAAAPQ1gu36nxHNyq9vWhq2Gs2/Ed2hC/MBgC10JLudQBzYutW1siR0YzZmtlu5YXn++bnPtdpeQC0AAAAAAAB9zYDengA1N7RZ+Y1O9NG8zbBOzqVJURTjkoytstnbujouAFun+gzI+qxvc59BdYN6aDZAZ9S1k9nuv5bcmoVr/thqewG1AAAAAAAA9DWC7fqf5sF2qzvRR/Ngu+Z9dsY5SS6uQT8A9AMD6wZlzYa2f0QNKgb30GyAzmg9s93GYLunXn+8zfYNdd7jAAAAAADQXV5//fU88sgjmT9/fl555ZWsXr062223XcaPH58pU6Zkv/32y6BBkl901uGHH5577723qVyWZbeMM3v27BxxxBFN5YsvvjiXXHJJt4xFxwi26/86827unisAAGyy6+C/yOOr/l+b+7xtyNQemg3QGa1nttu4jOzrjatabTuoaMiEhl27ZV4AAAAAALCt2rBhQ/7jP/4js2bNyi9/+cusX9/6SlODBw/OMccck7//+7/Pe97znh6cJfRtLX9DRl+2sll5u0700bxN8z4BoEuOHnVSGtrIXLfDgFE5eIeje3BGQLVay2y3IRuD7TaUrd/AHzP6lAy0VDQAAAAAANTML37xi0ybNi1nnHFG7rnnnjYD7ZJk9erVueOOO3LCCSdkxowZeeSRR3poptWZNGlSiqJIURSZNGlSb08HZLbrh7bWYLuvJ/lBlW3eluSOGowNwFbmbUOm5h8nXpkHl/8yz695pimtcn1Rn7cOnpx373B0xgwa38uzBNrSWma7sty4jOybGe6a23fou3Lc6Pd127wAAAAAAGBbc+mll+bSSy/dYinToigyderUTJgwIaNHj87ixYvz3HPP5amnnqrYb86cOTnwwANz/fXX5yMf+UhPTh36HMF2/c9rzcpDiqLYvizL1tfx2tK4ZuVlXZxTyrL8U5I/VdOmKIquDgvAVmyXwbtll8G79fY0gE5qP7Ndy8F204cf2m1zAgAAAACAbc15552XmTNnVtQNGzYsF110Uc4888xMnDhxizYLFizIjTfemGuvvTZr1qxJkqxduzYf/ehHs2rVqpx33nk9Mnfoiywj28+UZbkkydJm1VteOdv21mbl+Z2fEQAA/VF9K5ntGjdlttuQltPT17cSpAcAAAAAAFTn29/+9haBdgcffHDmzZuXiy66qMVAuySZPHlyrrjiijz22GPZa6+9Kh47//zzM3v27O6acr8xe/bslGXZtLHtEGzXPz3ZrDy5yvbN0ww17w8AgG1c0cqtRGM2Bdu1ktmuvhBsBwAAAAAAXfXUU0/lk5/8ZEXdQQcdlB//+MeZMGFCh/qYMmVKfv7zn2fq1KlNdY2NjfnABz6QV155pabzhf5CsF3/9ESz8oEdbVgUxfZJ9mmnPwAAtnGtBc01lm8uI9tKZrtiQLfNCQAAAAAAthUXXHBBVq5c2VQeMWJEbr311gwdOrSqfsaNG5dbbrklgwYNaqp74YUXcvnll9dsrtCf+Karf/pJko9uVj68iraHpPJ18duyLBfVYlIAAPQfda0F26UxZVk2ZbhrTmY7AAAAAADomt/97ne5++67K+quuuqq7Ljjjp3qb9q0abngggty5ZVXNtV961vfyiWXXJKRI0d2aa5bmwULFuSxxx7LCy+8kBUrVqQoigwZMiTjx4/Prrvumr333jtDhgzp9nmsWbMm9957b55++um8+uqrGTduXCZMmJBDDjmkW8Z/6aWX8uCDD+ZPf/pTlixZkqFDh2bcuHGZMWNGdtut+QKYtEWwXf/0X0neSLLdpvKBRVHsUZbl7zrQ9qxm5R/WcmIAAPQPda0tI1tuyIa0nNUuSerdggAAAAAAQJfMnDkzZVk2lceMGZOzzz67S32ed955ueaaa7Ju3bokyapVq3LDDTfkwgsv3GLfs846K9/+9rebyk8//XQmTZrUoXFmz56dI444oql88cUX55JLLmmz/zc9++yzKYqi1b4/9KEP5cYbb9yifs2aNfnqV7+aG264IfPnz29zfvX19dl3331z4okn5h//8R9bDXw7/PDDc++99zaVN38+2vLaa6/lS1/6Um688cYsX758i8eHDRuWU089NZdeemne8pa3dKjP1qxbty7f+ta38vWvfz2PP/54q/vtvvvuueCCC/LhD384Awb4Hqc9lpHth8qyfD3JLc2qP9teu6IopiT5282q1if5bg2nBgBAP9FaZrsN5YZs2LSUbEtktgMAAAAAgK75yU9+UlH+4Ac/WLEMbGeMHTs2J5xwQpvj9EULFy7MfvvtlwsvvLDdQLsk2bBhQx5++OF88YtfzIsvvljTufzP//xPpk2blq9+9astBtolyYoVK/Lv//7v2XvvvfPrX/+602M9/PDD2WOPPfLxj3+8zUC7JJk/f34+9rGPZcaMGXnhhRc6Pea2Qjhi/3VJktOSDNxUPqsoih+WZXlnSzsXRTE4yawkm199v1WW5R+6dZYAAPRJrWW2K9OYDWUbme0KtyAAAAAAALW2odyQZetf6e1p9HsjBozp9T8qf/755/PMM89U1B199NE16fvoo4/Obbfd1lR+4IEHsm7dugwcOLCNVluvtWvX5thjj82TTz5ZUT9q1KjsvffeGT9+fAYOHJgVK1bkpZdeyrx587Jq1apumcu8efNy5JFHZsmSJRX148ePz3777ZcRI0Zk0aJFeeCBB/LGG2/k1VdfzXve855cc801VY91991359RTT83rr79eUb/TTjvl7W9/e0aNGpVVq1Zl3rx5FQGIjz76aA444IA88MADmTBhQucOdBvgm65+qizLPxZFMTPJBZtV31IUxT8m+WZZlmvfrCyKYmqSf09y0Gb7LklyaY9MFgCAPkdmOwAAAACArcey9a/ki3/8WG9Po9+7fLdvZPTA8b06h5aynU2fPr0mfb/jHe+oKL/xxht59NFHM2PGjJr031HXXntt09KyBx98cFO2tZ133jn33Xdfq+2GDh1aUZ41a1bmzZvXVJ40aVK+9rWv5dhjj01d3ZZJBcqyzMMPP5y777473/rWt2pwJButW7cuZ555ZkWg3U477ZSZM2fm5JNPrpjLypUr85WvfCVf/vKXs2zZshaX8W3LvHnzctppp1UE2h177LG59NJL8853vnOL/X/729/m05/+dH71q18lSV544YWcfvrpmT17durrfafTEsF2/ds/JdkzyXGbygOTXJfki0VRPJJkRZLdkuyfZPNFrdcm+duyLF/qwbkCANCH1LeV2S5tBdu5BQEAAAAAgM56/vnnK8rjx4/P6NGja9L3Xnvt1eJ4PR1sN2bMmIwZMyZJMmDAn79XGDBgQCZNmtThfu64446Ktvfcc08mT57c6v5FUWT69OmZPn16vvjFL6axsbH6ybfguuuuy6OPPtpU3mmnnXLfffdlt91222LfoUOH5uKLL85ee+2V97///Vm6dGmHx2lsbMypp55akZ3vkksuycUXX9xqm/322y+/+MUvcuqppzZlNbzvvvty00035YMf/GCHx96WtPwNGf1CWZYbkrw/yc3NHhqX5Ngk70vyjlQG2v0pyXvLsvxVj0wSAIA+qShavpXYULazjGz8FRQAAAAAAHTWq6++WlEeOXJkzfoePHhwGhoa2hyvL3n22Web/v32t7+9zUC75urr62uyfG5jY2Ouu+66irpvfvObLQbabe7kk0/OOeecU9VYt912W5544omm8vvf//42A+3eNGDAgHz729/OuHHjmuquvfbaqsbelgi26+fKslxZluVp2RhY90Abu76a5F+T7FWW5U96ZHIAAPRZrQXNNabtZWRbW34WAAAAAABoX/PgtxEjRtS0/+b9bb70aV/2pz/9qVfG/e///u8888wzTeUZM2bkPe95T4fafulLX6oq4O+rX/1q07+LoshVV13V4bZDhw7Nxz7256WoH3/88Yp582eC7bYRZVneUpblgdm4bOwpST6V5KIkZyf5yyQ7lWV5TlmWi3txmgAA9BF1rWS2a2wvs51lZAEAAAAAYKtVFEX7O/URe+yxR9O/Fy5c2CvZ2u67776K8umnn97htmPHjs3RRx/doX1XrVqVBx74cw6uGTNmZNddd+3wWElyxBFHVJR/9SuLYrbEN13bmLIsn07ydG/PAwCAvq21DHXtZbarl9kOAAAAAAA6bdSoURXl1157rab9L1u2rM3x+pIzzjgjt912W1P5M5/5TG6//facffbZOf7447PTTjt1+xzmzJlTUT7ggAOqan/AAQfkP//zP9vd74EHHsi6deuayrvttlvVmekaGxsryn/4wx+qar+tEGwHAABUra61ZWTLxjSmjcx2bkEAAAAAAGpuxIAxuXy3b/T2NPq9EQPG9PYUtgh+W7p0ac36Xr16dVavXl1RN3r06Jr139NOOumknHTSSRUBd7/+9a/z61//OkkyefLkHHTQQXn3u9+dQw45JFOnTq35HBYtWlRR3n333atqP2XKlA7tt3Dhwory97///Xz/+9+vaqzmmi9ZzEa+6QIAAKrW+jKyMtsBAAAAAPS0+qI+oweO7+1p0AN23nnnivLLL7+cJUuW1CQobu7cue2O15cURZGbb745F198cf75n/95i0DCBQsWZMGCBfm///f/JtkYfPeBD3wg5557bs0y+jUPhhw+fHhV7XfYYYcO7bdkyZKq+u2IFStW1LzP/qDlb8gAAADa0Fpmuw1pzIayjcx2hb/3AQAAAACAzjrooIO2qGu+VGlnNe9nu+22y7777luTvnvLgAED8uUvfznPPPNMrr322hxyyCFpaGhocd8FCxbkkksuyW677Zabb765h2faNWvXrq15n2VZ1rzP/kCwHQAAULXWMtuVZWObme3q3IIAAAAAAECnTZw4MRMnTqyo++lPf1qTvu+5556K8gEHHJBBgwbVpO83bdjQ+ncI3Wn8+PE5//zz89///d957bXXcv/99+faa6/Ne9/73gwdOrRi39deey2nn356br/99i6PO3LkyIry8uXLq2r/2muvdWi/MWMqlzi+8sorU5Zll7Ybb7yxqrluK3zTBQAAVK21oLkNm/5rSX0GpCiK7pwWAAAAAAD0e8cee2xF+Tvf+U7WrVvXpT4XL16cO++8s81x3jRgQOUqNuvXt77iTXPNl1XtDQ0NDTnwwANz/vnn5/bbb8+SJUvy/e9/P1OmTGnapyzLfOpTn0pjY2OXxho/vnJ55/nz51fV/qmnnurUOB1tR/UE2wEAAFWrL1peRrax3NDqMrKttQEAAAAAADru05/+dMUfty9evDizZs3qUp8zZ86sCNjbfvvt85GPfKTFfYcPH15RXrZsWYfHmTt3blXz6ok/4h80aFBOPfXUPPjgg9l5552b6hcuXJiHH364S31Pnz69ovzAAw9U1f7BBx/s0H4HHnhgxbm65557LAPbTQTbAQAAVWsts11jWl9GVrAdAAAAAAB03bRp03LcccdV1H32s5/NokWLOtXfvHnzcs0111TUnX322Rk1alSL+48bN26L9h31ox/9qKq5NTQ0NP17zZo1VbWt1ogRI3LSSSdV1D399NNd6vPggw+uKH/ve9/rcNvFixd3eIngsWPHZr/99msqv/DCC/nxj3/c4bHoOMF2AABA1eo6ldluQIv1AAAAAABAdb7yla9kyJAhTeVly5blpJNOysqVK6vqZ/HixTnllFOydu3aprqddtopX/rSl1pts//++1eU77rrrg6N9V//9V956KGHqprfiBEjmv79yiuvdHm53PY0XyJ382C/zjj00EMzadKkpvKcOXNy9913d6jtZZddVtXxfvKTn6woX3DBBVW/HmifYDsAAKBqrQbbpTEb0kpmu8hsBwAAAAAAtbDHHnvkuuuuq6i7//77c9xxx+X555/vUB/z58/PkUcemSeffLKprq6uLt/5zncyduzYVtsdeOCBFYF+P/zhDzNnzpx2x/rQhz7UoXltburUqU3/Xr9+fX75y192qN3rr7+e6667LitWrOjwWCtXrsxtt93W6vidUVdXt0UQ3Mc+9rF2M+bddttt+frXv17VWB/84Aezxx57NJWffPLJ/O3f/m2WLl1aVT+LFy/e4jzwZ4LtAACAqrW2jGySrGtc22K9zHYAAAAAAFA7H/7wh/OJT3yiou6+++7LtGnTctVVV2XhwoUttluwYEG+8IUvZO+9987jjz9e8djVV1+dI488ss1xhw0bllNPPbWpvGHDhvz1X/91i0uerl27NjfccEPe9a53ZdGiRRk5cmRHDy9JcsQRR1SUzz777Hz961/Pww8/nD/+8Y955plnmrZXXnmlYtxPfepTmTBhQj784Q/nrrvuajPw7qGHHsqRRx6ZZ599tqnuXe96V6ZMmVLVfFvyqU99Km9/+9ubyi+++GLe/e5355ZbbkljY2PFvqtWrcpll12W0047LY2NjVWdr/r6+txyyy0ZPnx4U93Pfvaz7LPPPvnXf/3XNo//1Vdfzc0335zTTz89u+yyS7761a9WcYTbFt92AQAAVWsts12SrC9bTmle30YbAAAAAACgetdff31GjhyZL3/5yynLMkmyYsWKXHTRRfnc5z6XadOmZZdddsnIkSOzZMmSPPvss/n973+/RT8DBw7MzJkz8/GPf7xD415++eX54Q9/mGXLliVJ/vSnP+WYY47J5MmTs88++6ShoSGLFi3Kgw8+mFWrViVJdtxxx1x99dVVZbh73/vel89//vNN2fpefPHFLQIM3/ShD30oN954Y0Xd8uXLM2vWrMyaNStFUWTy5MnZbbfdMmLEiAwYMCBLlizJE088sUU2wCFDhuSb3/xmh+fZloEDB+amm27KYYcdliVLliRJXnrppbzvfe/L+PHj8453vCM77LBDFi1alN/85jd54403kiQ77LBDrr766nz0ox/t8Fh77rlnbr311pxyyil57bXXkiTPP/98zjnnnJx77rnZe++9M3HixAwfPjyvv/56li1blqeeeqrD2RARbAcAAHRCW5nt1pYtZ7ark9kOAAAAAABq7vLLL89hhx2Wc845J/Pnz2+qL8syc+fOzdy5c9tsv//+++cb3/hGpk+f3uExd95559x666058cQTKzKmLViwIAsWLNhi/1133TX/+Z//mUWLFnV4jCTZbrvt8sMf/jAnnnhiXnjhharaNleWZebPn19xjlqy884757bbbsvee+/dpfE2t+eee+ZnP/tZjj/++Lz00ktN9YsWLcqPfvSjLfYfMWJE7rzzzmzYsKHqsY466qjMmTMnp59+esXyvhs2bMijjz6aRx99tN0+qs1AuC2xjCwAAFC1+qL1W4n1rQTb1UdmOwAAAAAA6A5HHXVU5s2bl5tuuilHHnlkBgxo+w/gGxoacsIJJ+SOO+7InDlzqgq0e9Nf/uVf5qGHHsp73/veFEXR4j5jx47NZz7zmTz66KOZOnVq1WMkyfTp0zNv3rz827/9W0488cRMnjw5w4cPT31969877LDDDrn33ntz4YUX5h3veEe75yNJ/uIv/iJXXnllnnrqqbzzne/s1Fzbsu++++bJJ5/Mueeem2HDhrW4z9ChQ3PWWWflscceyyGHHNLpsSZPnpyHHnood911V4466qg0NDS022bq1Kk599xz86tf/Sq33XZbp8fu74o3U0jC1qYoij2TPPFm+Yknnsiee+7ZizMCAOBNz69+Olc++w8tPnbMqFPyX6/eskX9Lg275aJJ/9zdUwMAAAAA6HPWr1+/Rbat3XffvUMBQtCSVatW5eGHH86CBQuyePHirF27Ng0NDRk/fnymTJmS/fffv0MBWB31yiuv5N57783zzz+f119/PePHj8+uu+6aQw45ZKt4Hb/xxhuZO3du/vCHP+Tll1/OqlWrUhRFhg8fnokTJ2afffbJW9/61h6bz5o1azJ79uw8/fTTWbp0acaOHZsJEybkkEMOyfbbb1/z8VavXp0HH3wwzz77bJYsWZJVq1Zl++23z8iRIzN58uRMnTo1o0ePrvm43XVtmzt3bvbaa6/Nq/Yqy7LtFI410vuvZgAAoM+payOz3brWMttZRhYAAAAAAHrE9ttvn0MPPTSHHnpoj4w3ZsyYnHzyyT0yVmdst912mT59eqcy+HWHhoaGHHPMMT023uDBg3PYYYf12Hj9mWVkAQCAqtW1sSRs69rj1N4AACAASURBVMF2lpEFAAAAAACg7xJsBwAAVK3NzHaNMtsBAAAAAADQ/wi2AwAAqtapzHZttAEAAAAAAICtnWA7AACgam1mtmt1GVmZ7QAAAAAAAOi7BNsBAABVqyvayGzX6jKyMtsBAAAAAADQdwm2AwAAqlbfxq3EunJdy20E2wEAAAAAANCHCbYDAACq1mZmu9aWkY1lZAEAAAAAAOi7BNsBAABVq2srs13jmhbrZbYDAAAAAACgLxNsBwAAVK3tzHatLSMrsx0AAAAAAAB9l2A7AACgam1mtmtlGdm2AvQAAAAAAABgayfYDgAAqFrbme1aDrarj8x2AAAAAAAA9F2C7QAAgKq1mdmusZVgO5ntAAAAAAAA6MME2wEAAFUriiJFK7cTrWa2K2S2AwAAAAAAoO8SbAcAAHRKfdHy7USZspX9ZbYDAAAAAACg7xJsBwAAdEprme1aUx/BdgAAAAAAAPRdgu0AAIBOqTZTnWVkAQAAAAAA6MsE2wEAAJ1SV2WmOsvIAgAAAAAA0JcJtgMAADqlrqhyGVmZ7QAAAAAAAOjDBNsBAACdUnVmuyr3BwAAAAAAgK2JYDsAAKBTZLYDAAAAAABgWyLYDgAA6JS6Km8n6guZ7QAAAAAAAOi7BNsBAACdUm3wnGA7AAAAAAAA+jLBdgAAQKcUVWe2s4wsAAAAAAAAfZdgOwAAoFOqzVRXF5ntAAAAAAAA6LsE2wEAAJ1SV/UysjLbAQAAAAAA0HcJtgMAADqlruplZGW2AwAAAAAAoO8SbAcAAHSKzHYAAAAAAABsSwTbAQAAnVJ1ZrvIbAcAAAAAAEDfJbUEAADQKXVFtcvIuv0AAAAAAICe8Prrr+eRRx7J/Pnz88orr2T16tXZbrvtMn78+EyZMiX77bdfBg0aVJOxnnvuuXzzm9/Mvffem6eeeipLly7NunXrmh6fNWtWzjrrrBbbPvTQQ5k1a1buv//+LFy4MK+99loaGxubHn/66aczadKkJMnhhx+ee++9t+mxsixrMn+ohm+7AACATqmrMlNdfZXLzgIAAAAAAB23YcOG/Md//EdmzZqVX/7yl1m/fn2r+w4ePDjHHHNM/v7v/z7vec97Oj3mDTfckHPPPTdr1qypqt369etzzjnn5IYbbuj02NAbLCMLAAB0SvWZ7QTbAQAAAABAd/jFL36RadOm5Ywzzsg999zTZqBdkqxevTp33HFHTjjhhMyYMSOPPPJI1WP+6Ec/ysc+9rGqA+2S5POf/7xAO/okme0AAIBOqa82s53bDwAAAAAAqLlLL700l1566RbLqhZFkalTp2bChAkZPXp0Fi9enOeeey5PPfVUxX5z5szJgQcemOuvvz4f+chHOjzuRRddVDHmGWeckb/7u7/LLrvskoEDBzbVjxkzpqLdokWL8i//8i9N5UGDBuWf/umfcvzxx2fs2LGpq/vzH/tPmDChw/OBnuDbLgAAoFMKme0AAAAAAKBXnXfeeZk5c2ZF3bBhw3LRRRflzDPPzMSJE7dos2DBgtx444259tprm7LSrV27Nh/96EezatWqnHfeee2O+/vf/z6PPfZYU/n444/PTTfd1KE533777Vm7dm1T+YorrshnPvOZDrWF3mYZWQAAoFOqDZ6rL/ytDwAAAAAA1Mq3v/3tLQLtDj744MybNy8XXXRRi4F2STJ58uRcccUVeeyxx7LXXntVPHb++edn9uzZ7Y49Z86civIpp5zS4Xl3tu3s2bNTlmXTBr1BsB0AANApdVXeTshsBwAAAAAAtfHUU0/lk5/8ZEXdQQcdlB//+McdXnp1ypQp+fnPf56pU6c21TU2NuYDH/hAXnnllTbbLlq0qKJczXKvXWkLvU2wHQAA0Cl11S4jG5ntAAAAAACgFi644IKsXLmyqTxixIjceuutGTp0aFX9jBs3LrfccksGDRrUVPfCCy/k8ssvb7Pd5mMnycCBAzs8ZlfaQm/zbRcAANApdal2GVmZ7QAAAAAAoKt+97vf5e67766ou+qqq7Ljjjt2qr9p06blggsuyJVXXtlU961vfSuXXHJJRo4c2WKbxsbGTo3V1ba1MG/evDz++ONZsmRJli5dmsGDB2fs2LGZOnVq9tlnnzQ0NHSq3/Xr1+ehhx7KH//4xyxevDhr1qzJ2LFjM2nSpLz73e/O4MGDa3wk9AbBdgAAQKdUndmucPsBAAAAAABdNXPmzJRl2VQeM2ZMzj777C71ed555+Waa67JunXrkiSrVq3KDTfckAsvvDBJ8swzz2TXXXdttf0RRxzRYv2sWbOSpM35FUXRYv3TTz+dSZMmNZUPP/zw3HvvvU3lzc9BexYuXJj//b//d37wgx9ssYzt5rbbbrscccQR+dCHPpSTTz459fXtJxJ48sknc8UVV+Tuu+/O8uXLW+33b/7mb3LZZZdlypQpHZ43Wx/LyAIAAJ0isx0AAAAAAPS8n/zkJxXlD37wgxXLwHbG2LFjc8IJJ7Q5Tl9UlmWuuOKKTJ48Oddff32bgXZJ8sYbb+RHP/pRTj311CxcuLDNfTds2JB/+Id/yF577ZXvfve7rQbavdnvzTffnD333DMzZ87s1LGwdZBaAgAA6JRqg+eqDc4DAAAAAKBj1m8o8/zS3p5F/zdhZDKgvuUsbD3l+eefzzPPPFNRd/TRR9ek76OPPjq33XZbU/mBBx7IunXrMnDgwJr039PWr1+f0047LbfeeusWj+24447Ze++9M2bMmKxZsyaLFi3K//zP/2TlypUd6vuNN97IiSeemJ/+9KcV9QMHDsy+++6bCRMmpKGhIS+//HIeeuihvP76601zOu+887J06dJccsklXT5Gep5gOwAAoFOKKhJl16W+1TTwAAAAAAB0zfNLk90+19jb0+j3/nhlXSaN6d05/PrXv96ibvr06TXp+x3veEdF+Y033sijjz6aGTNmZMKECXn66aebHvuXf/mXigxt3/ve9/Kud71riz7HjNl4wg4//PCmutNOOy0PPvhgU3nzfjc3YcKETh3Hm84///wtAu2OP/74XHLJJZkxY8YW+zc2NuaBBx7I97///dx4441t9v2JT3yiItBuhx12yCWXXJK/+7u/y7Bhwyr2feONN/L1r389X/jCF7J69eokyWWXXZYDDjggxx13XCePjt4i2A4AAOiUajLbWUIWAAAAAAC67vnnn68ojx8/PqNHj65J33vttVeL482YMSMDBgzIpEmTmupHjBhRsd+OO+5Y8XhzQ4cObfr34MGDKx5rq11n/fSnP81Xv/rVirqrrroqn/3sZ1ttU1dXl4MOOigHHXRQLrvssi3m+aYf/OAHmTVrVlP5rW99a2bPnt3qcWy33XY5//zzc+CBB+bII4/M6tWrU5ZlPvWpT+X3v/996uo6ntyA3ufZAgAAOqWu6PjtRH3h73wAAAAAAKCrXn311YryyJEja9b34MGD09DQ0OZ4fcVll11WUf5f/+t/tRlo19yIESNaDLYry7Ki7wEDBuTOO+/sUMDgm0F8b1qwYEFuv/32Ds+JrYNgOwAAoFPqqridkNkOAAAAAAC6rnnwW/MMc13VvL8lS5bUtP+e8Nhjj1Ustzts2LBcffXVNen7l7/8ZZ544omm8plnnpl99tmnw+0/8YlPVATx3XnnnTWZFz1HsB0AANApddUsIxuZ7QAAAAAAYGtXFEVvT6HLfv7zn1eUzzjjjAwfPrwmfd9zzz0V5VNPPbWq9kOGDMk73/nOpvKvfvWrmsyLnuMbLwAAoFNktgMAAAAAgJ41atSoivJrr71W0/6XLVvW5nh9wf33319RPvzww2vW93333VdRHjVqVJ555pmq+tg88O+ZZ55JY2Nj6urkS+srBNsBAACdUlVmO8F2AAAAAADdZsLI5I9XCtbpbhNG9vYMtgx+W7p0ac36Xr16dVavXl1RN3r06Jr131NeeumlivKee+5Zs74XLlxYUX7Xu97Vpf4aGxuzbNmyPhnUuK0SbAcAAHRKfaoJtnPrAQAAAADQXQbUF5k0prdnQU/YeeedK8ovv/xylixZUpOguLlz57Y7Xl+wZMmSivLIkbWLkmzedy2sWLFCsF0fIqwZAADolKKoYhnZKgLzAAAAAACAlh100EFb1M2ZM6cmfTfvZ7vttsu+++5bk757U1EUNetr7dq1NevrTWVZ1rxPuo9gOwAAoFNktgMAAAAAgJ41ceLETJw4saLupz/9aU36vueeeyrKBxxwQAYNGlSTvnvSmDGVaR5fffXVbul78ODBaWxsTFmWXdomTZpUs/nR/QTbAQAAnVJVZrtCZjsAAAAAAKiFY489tqL8ne98J+vWretSn4sXL86dd97Z5jh9xU477VRRnjdvXs36Hj9+fNO/V69eneeee65mfdM3CLYDAAA6pb6K2wmZ7QAAAAAAoDY+/elPVyyNunjx4syaNatLfc6cObMiYG/77bfPRz7ykS712Vve/e53V5Rnz55ds76bL+Nbq6yC9B2C7QAAgE7Zrn77ju9b1/F9AQAAAACA1k2bNi3HHXdcRd1nP/vZLFq0qFP9zZs3L9dcc01F3dlnn51Ro0Z1eo696aijjqoof/e7382KFStq0vcxxxxTUf73f//3mvRL3yHYDgAA6JS/GLJPh/fdo4p9AQAAAACAtn3lK1/JkCFDmsrLli3LSSedlJUrV1bVz+LFi3PKKadk7dq1TXU77bRTvvSlL9Vsrj1tzz33zGGHHdZUXr58eS666KKa9H3cccflbW97W1P5oYceyv/5P/+nJn3TNwi2AwAAOmXUwLF537i/b3e/aUP2y8Ejjml3PwAAAAAAoGP22GOPXHfddRV1999/f4477rg8//zzHepj/vz5OfLII/Pkk0821dXV1eU73/lOxo4dW9P59rTmwYJf+9rX8pWvfKXD7V977bWsXr16i/oBAwbksssuq6j7+Mc/nttuu63qOf7sZz/LH//4x6rb0bsE2wEAAJ12xMj35EuTrs+p4z6aE8acWbGdOOaDOW+Xy/PxCZ/PoLqG3p4qAAAAAAD0Kx/+8IfziU98oqLuvvvuy7Rp03LVVVdl4cKFLbZbsGBBvvCFL2TvvffO448/XvHY1VdfnSOPPLLb5txT/vIv/zLnn39+Rd0FF1yQv/mbv8nDDz/cYpvGxsb85je/yac//enssssuefnll1vc74wzzsiHP/zhpvLatWtz8skn58wzz2y17yTZsGFDfvvb3+bSSy/NtGnT8ld/9Vd57rnnOnF09KYBvT0BAACgb9uxYUJ2bJjQ29MAAAAAAIBtzvXXX5+RI0fmy1/+csqyTJKsWLEiF110UT73uc9l2rRp2WWXXTJy5MgsWbIkzz77bH7/+99v0c/AgQMzc+bMfPzjH+/pQ+g2V199dZ577rn84Ac/aKq76667ctddd+Utb3lL9t5774wePTpr1qzJyy+/nMceeywrVqzoUN//9m//lqVLl+aHP/xhU913v/vdfPe7383YsWPz9re/PaNHj05dXV2WL1+eF198MU8++WSL2fLoWwTbAQAAAAAAAABAH3X55ZfnsMMOyznnnJP58+c31Zdlmblz52bu3Llttt9///3zjW98I9OnT+/uqfao+vr63Hzzzdlzzz3z5S9/OevWrWt67MUXX8yLL77Y6b4HDhyYW2+9Nddcc00uvvjiiiC6xYsX52c/+1mH+th+++07PQd6h2VkAQAAAAAAAACgDzvqqKMyb9683HTTTTnyyCMzYEDb+bcaGhpywgkn5I477sicOXP6XaDdm4qiyMUXX5zf//73+chHPpJRo0a1uf/QoUNz4okn5vbbb8/EiRPb7fvCCy/M008/nX/6p3/KW9/61nbnM2zYsBx//PH52te+lpdeeikzZsyo6njofcWbKSRha1MUxZ5Jnniz/MQTT2TPPffsxRkBAAAAAAAAQO2tX7++IiNZkuy+++7tBkxBa1atWpWHH344CxYsyOLFi7N27do0NDRk/PjxmTJlSvbff/80NDT09jR7XGNjYx555JH87ne/yyuvvJKVK1dm++23z7hx47LHHntkn332ycCBAzvd/9NPP51HHnkkixcvztKlS1NXV5dhw4blLW95S/bYY4/svvvuqa+vr+ERbd2669o2d+7c7LXXXptX7VWWZdspHGvEVRkAAAAAAAAAAPqR7bffPoceemgOPfTQ3p7KVqWuri7Tp0/vtkx+u+66a3bddddu6Zutg2VkAQAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAHpRURRb1JVl2QszAaidxsbGLepaut71JYLtAAAAAAAAAAB6UV3dluEb69at64WZANTO+vXrt6hr6XrXl/Tt2QMAAAAAAAAA9HFFUWTQoEEVdStXruyl2QDURvPr2KBBg2S2AwAAAAAAAACga4YNG1ZRXr58uaVkgT6rLMssX768oq75da4vEmwHAAAAAAAAANDLmgehrFu3Li+88IKAO6DPKcsyL7zwwhbLYQ8fPryXZlQ7A3p7AgAAAAAAAAAA27rBgwdn4MCBFcEpK1asyB/+8IcMHz48Q4cOzYABA1JXJ68SsPVpbGzM+vXrs3LlyixfvnyLQLuBAwemoaGhl2ZXO4LtAAAAAAAAAAB6WVEUectb3pLnnnuuIpvdunXrsmTJkixZsqQXZwfQeW9e34qi6O2pdJlwZwAAAAAAAACArcCQIUMyceLEfhGQApBsDLSbOHFihgwZ0ttTqQnBdgAAAAAAAAAAW4k3A+4GDhzY21MB6JKBAwf2q0C7xDKyAAAAAAAAAABblSFDhuRtb3tb1qxZk+XLl2fFihVZu3Ztb08LoF2DBg3KsGHDMnz48DQ0NPS7TJ2C7QAAAAAAAAAAtjJFUWTw4MEZPHhwxo0bl7Is09jYmLIse3tqAFsoiiJ1dXX9LriuOcF2AAAAAAAAAABbuaIoUl9f39vTANim1fX2BAAAAAAAAAAAAGBrJ9gOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoxoLcnAG0YtHlhwYIFvTUPAAAAAAAAAABgK9BCDNGglvbrDkVZlj01FlSlKIq/SXJHb88DAAAAAAAAAADYar23LMs7e2Igy8gCAAAAAAAAAABAOwTbAQAAAAAAAAAAQDssI8tWqyiKHZIctlnVwiRre2k60Be8LZVLL783yR96aS5A/+Q6A3Q31xkAusrPEqC7uc4A3c11BuhurjNAfzAoyS6ble8ty/K1nhh4QE8MAp2x6U3QI+spQ39QFEXzqj+UZTm3N+YC9E+uM0B3c50BoKv8LAG6m+sM0N1cZ4Du5joD9CO/7Y1BLSMLAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0QbAcAAAAAAAAAAADtEGwHAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0QbAcAAAAAAAAAAADtEGwHAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0QbAcAAAAAAAAAAADtEGwHAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0Y0NsTAKBmFie5tFkZoJZcZ4Du5joDQFf5WQJ0N9cZoLu5zgDdzXUGoAuKsix7ew4AAAAAAAAAAACwVbOMLAAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtEOwHQAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtEOwHQAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtEOwHQAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtGNAb08A2HoURVGfZHKSaUnekmSHJGuSLE3yhyRzyrJcVeMxByZ5d5KJSXZKsjLJi0l+W5blM7Ucq6cURbFnkn2TjE3SkOTlJM8n+XVZlqt7c249qSiKkUn2TLJ7klFJBidZlmRxkofLsvxDL05vC0VR7JqNz9tbkgxN8lKSZ5PcX5bluhqO89Yk78jG1/sOSdZl43mZn43nZUWtxtoauc7UhuvMRn3tOkPPcJ2pDdeZjfrCdaYnX/N94XxALfTHnyX98ZhqpafuBfsK56Nn9Mf3ZH88plrxvqrkM7ie0R/fk/3xmGrFdYbe0B/fk/3xmGrFdcZncEAzZVnabLZteMvGX97OS3J3kteSlG1s65P8OMlf12DcsUm+nmRJG+P9OsnJXRxntySnJrkmyewky5uN8UyNzuOwJJ9P8kIbx7M8yXeSvK0Xn+9uOx9JBiY5Jsn1SZ5o57VUbjpXlyXZsZffA6ckub+NeS7Z9Fod04UxhiS5MMlT7ZyTDUn+M8nRvXlOuuEcu87U5jy6zvTB60x3vz46cA7a2yb11rmp8Xl2nanNeXSd6SPXmZ56zfeV82Gz1WLrjz9L+uMx1fg574l7we2THJzkH5LclI33hI3Nxjmrt1//zkePneN+957sj8dU4+fc+6rnz4fP4PrZe7I/HlONn3PXmT/P02dwPXOe+917sj8eU42f8236OtNTr4/4DM5m63Nbr0/AZrP13pbku124MbgryfhOjntckkVVjPX/Jdm+iv4PT/Jf7fyCWpMbrE3jHZCNf2XS0eNZleTjPfg8d/v52HQOXu3ka2lpkg/0wut/aJLvVTHPl5Mc04lxDkzyx06cl+8mGdLT56UbzrPrjOvMNned6cnXRxfeX29uk3rqvHTj+XadcZ3Zpq4zPfWa7yvnw2arxdZT76sWxu22nyX98Zhq+Hx3+71gNn7Z9Hg2ftnSXv9n9fLr3/nomfPc796T/fGYvK/67vnYNI7P4PrZe7I/HlNfel/1hetMfAbX0+e7370n++Mx1fD53uavMz31+ojP4Gy2PrlZRha2bVNaqX8hG9PpL8rG5aZ3S/L2JHWb7fOeJP9dFMVhZVm+3NEBi6I4PMntSQZtVl0meSQbPwwZkWS/JGM2e/zMJMOLojixLMvGDgyzb5KjOzqnriiK4qhs/GuGhmYPPZvksWz8InpCNv6iNHDTY0OSfL0oirqyLL/WA9PsifMxNsnIFurXZuMvyi9n4198jE4yfdP/3zQiyXeKohhXluU/d/M8kzSler45yfHNHlqc5Leb5vq2bHwtFpseG5/kjqIojirL8r4OjnNgkp9m403J5lYk+X/Z+B5ryMa003ul8j12epJxRVEcX5bl2g4e2tbIdaaLXGea9KXrTI+9PkjiOtNlrjNN+sp1pqde833lfEAt9MefJf3xmLqsp+4Fk5yRjUsKbdWcjx7VH9+T/fGYusz7qpLP4HpUf3xP9sdj6jLXmQo+g+tZ/fE92R+PqctcZ5r4DA5oXW9H+9lstt7bkszJnyPfH0nyybSyJFiSnZN8I1tGzP8qSdHB8SZky8j8+5JMbbZfQ5JPZeMvEZvve2UHxzmvhXmWSVYnWdCs7pkunL9J2fIvphYk+asW9h2Z5Lpm+25oad9ueJ67/Xxk4y+Nb/axIsm3khyZZLsW9i2S/G02foHffE7dfj42zeGaZuOu3fT6H9Rsv2nZMj32K0l26sAYg1s4v69vem0PbmH/tyW5s4VzclFPnJNuPNeuM64z29x1pqdeH5vG2ryvBza9ZqrZBnT3+eiB8+064zqzTV1neuo131fOh81Wi60//izpj8dUo+e62+8FN7Vf1sL5LJM838JjZ/Xia9/56Llz3e/ek/3xmGr0XHtf9fD5iM/g3jyufvee7I/HVKPn2nXmz3P0GVzPnu9+957sj8dUo+fadaYHXx/xGZzN1ie3Xp+AzWbrvS0b/6rv7iTTq2hzTgs/vE/rYNtvNWv367Twgcdm+5/YbP/VSd7agXHO2/SL32+T3JDko0n2z8ZMLIc36/OZLpy/5umT5ycZ106bC5u1mZukvpuf524/H5t+EVyU5Px0PD336CTzmo3/ZHu/dNbgfOyWLW9Q3tvG/ttly5uFf+vAOGc1a9OYdlJob/ol+Qf/f3v3HjVJUd5x/PfICstNFkFYQGFZXbyhBKIJKEkWAwT0eAGJGhKzK94SjEeNehK8nKgxahIkehKDGhVJvESjYsBFMCiLBC8ILsrNW2RRiCC7LIRF9gZP/uh52Z56Z6a7Z3q6u2q+n3P6j+q3q7uqpurp6Xq7e4J8dyu4gIlpIc4QZ2Y0zjTSP3rHyu9r9TTr1dWFOEOcmbU401Sfj6U9WFjqWFI8l6RYpxo+50auBXt571L29oFVkt7ei6n79v62Otjnypb6Pe3RbHsnNyZTrFMNnzPjqoX2EHNwc3VKbkymWKcaPmfiTH8ZmYNrtr2TG5Mp1qmGz5k403D/EHNwLCxRLq0XgIWFpb1F0pIx830uOHmvKpFnmaRtuTybJS0rke/jwbE+ViLPnsO+nKq+f8YuVfYml/y+ji6Z92tBvtOm/Dk30R6PKPsFMMh32IB2fOqU2+Pc4HjnlMhzSK/PzuXZKmlpQZ7PB8c5r2T5Fmv+hcyx02yTKbf3kjHzEWeIM+F+YoozU2+P3P7y+1o9zXp1dSHOEGdmLc401edjaQ8WljqWFM8lKdaphs+5kWvBXr6hjyZEhAAAGD9JREFUb3JQB/5pRHu00t5LxszX2TGZYp1q+JwZVy20h5iDm6vPkjHzdXZMplinGj5n4kx/OZiDa7a9l4yZr7NjMsU61fA5E2ca7h9iDo6FJcol/7vRAGaMu68dM+sHgvQxJfKcKmmHXPoL7v7jEvn+Nki/wMwWjsrg7hvcfVOJfU/iWVJfDP2Wu/93ybxnBumX1FOkwZpoD3e/w93vHSPf95S9IjuvTH8ai5ntLOmUYHXYx+Zx9x9J+mJu1QJlfXqUpUH6gsICZse6TdKVweplZfJ2EXFmIsSZ/mNEEWd6x2yif6CHODMR4kz/MaKIM031+VjaA6hDiueSFOs0iYavBeXuv6hUwIbRHs1LcUymWKdJMK76MQfXvBTHZIp1mgRxZj7m4JqV4phMsU6TIM70Yw4OwCjcbAdgHGuC9M5mtqggz0lB+pwyB3L3GyV9O7dqV0nHl8k7Zb8dpC+ukPeryp6anPM0M9tv8iJFK+xP+0/xWL8naZdc+pvu/oOSecM+e3LB9rsG6VtKHkeSfh6k96yQNxXEGeJMnZqMM4gHcYY4U6cY4sw4fb6uY3WxPYA6pHguSbFOUrPXgjGgPeKR4phMsU4S4yrEHFw8UhyTKdZJIs4gXimOyRTrJBFn6sIcHDADuNkOwDi2DVi347CNzWyxslfZ5vNfUeF4q4P0iRXyTssjg/R1ZTO6+2ZJP8mteoi6Uae2hP1paF+qwQlBenWFvJerv6yHm9m+I7a/LUhXedIo3PbOCnlTQZwhztSpyTiDeBBniDN1iiHOVOrzNR+ri+0B1CHFc0mKdZKavRaMAe0RjxTHZIp1khhXIebg4pHimEyxThJxBvFKcUymWCeJOFMX5uCAGcDNdgDG8ZggvU3SuhHbHxqkv1/xdbjfCNJPrJB3Wh4epO+qmD/c/kkTlCV2YX+a5mujw774zbIZe3322mD1qL54eZA+ouyxBmz7nQp5U0GcIc7Uqck4g3gQZ4gzdYohzlTt83Ueq4vtAdQhxXNJinWSmr0WjAHtEY8Ux2SKdZIYVyHm4OKR4phMsU4ScQbxSnFMplgniThTF+bggBnAzXYAxnFKkL7K3R8Ysf0TgvRPBm413P8U7K8NW4L0ThXzh9t3oU6NM7OHSTouWH3lFA/5+CA9zb74EfX3k9PMbOeiA5jZSZIOzK263t2vLl/EZBBniDO1aCHOtOlAMzvHzK43sw1mtsXMbu+lP2FmrzCz8OaqWUacIc7UIqI4U7XPjyWi9gDqkOK5JMU6Sc1eC8aA9ohHimMyxTpJjKsQc3DxSHFMplgniTjTJczBVZPimEyxThJxpi7MwQEzgJvtAFRiZrtJemmw+ryCbOFd9T+reNibg/ReZrZnxX3UbX2Q3q9i/nD7x05Qlpi9UtIuufTdki6dxoF6F7fhBW7Vvhhuv2zYhu5+k6QzcqseJenTZrbLkCwys6cqmyCc84CkV1csY/SIMw8iztSjsTjTAQdLWqlsEmORpIdK2qeX/kNJH5L0MzP7h944m1nEmQcRZ+rR+TgzZp8fV+fbA6hDiueSFOskNX8t2HW0RzxSHJMp1kliXIWYg4tHimMyxTpJxJkOYg6upBTHZIp1kogzdWEODpgd3GwHoKp3S1qcS9+l/omJQRYF6V9WOaC7b5S0KVi9R5V9TMGNQfrIshnN7EBJ+wer265P48xsiaS3Bqvf7+7hW3bqEvbDX1V8Tbc0v++O/Nzc/SxJb5S0tbfquZJuMLO/NLOjzWyZmT3RzJ5nZudIukLbL2a2SjrN3WfxizFxJkOcmVALcSYGu0p6raSrzWxWX+MvEWfmEGcmFFGcGafPVxZRewB1SPFckmKdpBauBTuO9ohHimMyxTpJjKsQc3DxSHFMplgniTgTI+bgMimOyRTrJBFn6sIcHDAjuNkOQGm9V+v/WbD6ze5+Z0HW8Mmd+8Y4fJhn9zH2UafLgvTzRz0tGfjjAevark+jzGxHSZ9Rf73XSvq7KR62lX7o7mdKOkzSxyRtkHSQsi/bl0v6kaTrlD3VslLZE3CSdImkI9393DHKGDXiTB/izARaijNt2SZptaS3SHqOpCOUPTV4uLJ/MJyp+RMdh0i6xMwOaq6Y3UCc6UOcmUAscWaCPl/1OFG0B1CHFM8lKdYpJ4YyNon2iECKYzLFOuXEUMYmMQcXgRTHZIp1yomhjLOAObgKUhyTKdYpJ4YydhpzcMBs4WY7AKWY2WGS/jVY/RVJZ5fIHn5BC5++KCP8gtb2q7dXKXsaYc4iSW8rymRmj5L0hgF/2sHMdq6naFH4iKTfyKXvl7RijKdkqmizHy5Q9nMUW4s2lHSupNe5+3erFCwFxJl5iDOTaSPOtOEtkg5w92Pc/W/c/QJ3X+PuP3H3a9z9fHd/o7J/MrxHkufyLpb0BTOzNgreBuLMPMSZyXQ+zkzY56vqfHsAdUjxXJJinQr218UyNon26LgUx2SKdSrYXxfL2CTm4DouxTGZYp0K9tfFMqaOObgKUhyTKdapYH9dLGNnMQcHzB5utgNQqPczYavU/6XoZkl/5O4+ONdITeWZGne/R9L7g9VvMLPXDMtjZo+UdJGGvza5U3WcFjP7a0kvDlaf4e5fb7goU++HZraTmf2jpO9JepmkfUpkWyHpWjM7v9dnZgJxZj7izPg6FGemrje5V/izA+6+yd3PkPTq4E9HSPqDqRSuY4gz8xFnxhdDnJlCnx91rM63B1CHFM8lKdZpSsdL+fxGe3RIimMyxTpN6Xgpjyvm4DokxTGZYp2mdLyU48zUMQdXXopjMsU6Tel4MxlnmIMDZtOCtgsAoNvMbB9J/yXpgNzq2yQd5+53lNzNxiA9zhtPwjzhPtvwLkknavvTAybpfWZ2iqSPSrpG2VMc+/e2+1Nt/6J1i6T8JM4md5/3lIiZLSlbGHdfW6n0LTCz1yp7AizvLHf/+5L5l5Q91oD2aLQfmtkCSV+UdEK+WMp+ruJcSVdJWidpJ0kHSnqGsgvwZb1tny3pKDM7zt2vGaOs0SDOjEScqajlONN57v4BMzte2U9dzDld0qdaKlIjiDMjEWcqiiHO1NTnyx5rovYAYpHiuSSmOsV0LdgE2iNNMY3JsmKqE+OqX0ztwRxceTGNybJiqlNM46oJqc0VhJiD6/6YLCumOhFn+jEHB2CauNkOwFBm9nBJl0g6JLd6naRj3f3HFXaV3Bc0SXL3LWZ2sqQLJT0596eje8sw6yW9VNLFuXV3Ddn2pgpF6vQryM3s5ZLOClaf7e6vr7CbSdqj6X74VvVP8t0n6RR3vzDYbouk6yVdb2YflvTPkk7r/W1vSV8ys8Pcff0Y5e084sxoxJlqOhBnYvFu9U/0HWlmi9x9WB+JGnFmNOJMNTHEmRr7fJlj1dEeQOeleC6JsE4xXQs2gfZITIRjslCEdWJc9YupPZiDKyHCMVkowjrFNK6akMxcwQjMwXV7TBaKsE7EmX7MwQGYGn5GFsBAZraHst+Sf1Ju9QZld+JfX3F3dwfpR1Qsy26a/wWtExcj7n6rpKdJ+pCkrSWyXCrpKZLuDdbfVnPROsXMXizpg+r/snqOpFc1WIywH+5iZrtW3Ef4ExQD+2HvC3b4Bff0AZN8fdx9s6SXS7ost/oASW+qWM4oEGfKIc6U05E4E4srlY21OTtIekJLZZkq4kw5xJlyYogzNff5omN1vj2AOqR4LkmxTgUauxaMBO3RMSmOyRTrVIBx1Y85uI5JcUymWKcCxJk4MQcX8ZhMsU4FiDMVMAcHgJvtAMxjZrtLukjSr+dW/5+kE8Z8lX549/5BFfOH29/p7hsGbtkCd7/X3f9E0mMlvVnZP6BvUfYU5T2SblT2kwXHSfrd3quIHx/s5qrGCtwwM3uRsi99+XPOJyW9zN29qXL0nkoN+82BFXcT9sVhT6Y8U1L+IuQmZX2gkLs/IOkdweoVZhbr03sDEWeqIc6M1pU4E4tenPlZsLrSBE8MiDPVEGdGiyHOTKHPjzpW59sDqEOK55IU61Sk4WvBzqM9uiXFMZlinYowrvoxB9ctKY7JFOtUhDgTJ+bg4h2TKdapCHGmPObgAEj8jCyAQO8phQslHZlbvVHSie5+5Zi7vTFIP6Zi/qVB+oYxyzFV7n6TpHf1liJHBelvD9ln1JM7ZvZ8Sf+m7ImtOf8haUXvQrOSGtrjRmVv7pnzGM3vn6OEfXFY3sOC9KUVv/R+XdlPW+zYS++lrKxJXJgQZ8ZHnJmvg3EmFvcF6XF+FqCziDPjI87MF0OcmVKfH3asWtsD6KoUzyUx1ymia8FG0B5piHlMDhNznRhX/SJqD+bgRoh5TA4Tc50iGleNiH2uoALm4KojzsxHnBkDc3AApok32wF4kJntLOlLko7Orf6VpGe5+zcm2PV1QfrJZrZLhfxPL9hfVHpPRz4jWH3ZoG1jZmbPkfRp9d/Y/UVJp7r7/e2Ual7fCW8SGKr3BfrJBfubsyhIV/pZPXffJml9sHrvKvvoKuJMM4gzrcaZWIQxZV0rpZgC4kwziDPdiTNT7PODjtX59gDqkOK5JMU6VdTUtWAsaI+WpTgmU6xTRYyrfszBtSzFMZlinSoizsSJObjqiDPzEWc6gDk4AHncbAdAkmRmCyWdL2l5bvUmSc9x969Psm93/4Wk7+dWLVD/F5Eiy4P0lycpTwc8Q9KSXPoyd0/iack5ZvZMZU9XPDS3epWkF/YmsdpyUZBeXiHvb6n/S+0ad799yLZ3BeldB2412m5BeuMY++gU4kyjiDMYysz21vynDP+3jbLUjTjTKOJMB0yzzw84VufbA6hDiueSFOs0hqauBWNBe7QoxTGZYp3GwLjqxxxci1IckynWaQzEmcgwBzce4sxAy4M0caZhzMEBCHGzHQCZ2Y6SviDp2NzqzZKe5+5frekw5wXpl5Qs2+Mk/WZu1b2SvlJTmdryF0H6Q62UYkrM7DhJn9f2n1+Qss/s+e6+pZ1SPehi9b+2/aheHytjZZAO+3ReeMF8eMljSJLMbJmk3YPVlZ7M7RriTOOIMxjlReq/DrhdCfz0F3GmccSZljXU5+eO1fn2AOqQ4rkkxTqNqalrwVjQHi1JcUymWKcxMa76MQfXkhTHZIp1GhNxJj7MwY2POLO9bMSZljEHB2AQbrYDZpyZLZD0WUkn5lZvlXSKu19c46E+KSn/WtuTe5MZRcJ/5H7W3TfVV6xmmdkKScflVl2j7OmEJJjZ70j6T0kLc6u/puwL5+Z2SrWdu/9K0ueC1WEfm8fMDpF0Um7VNkmfGpFldZB+upk9oUwZe14ZpH/o7ndUyN8pxJlmEWcwipntK+ktweoL3N3bKE9diDPNIs60r8E+H0V7AHVI8VySYp3G1eC1YBRoj3akOCZTrNO4GFf9mINrR4pjMsU6jYs4Exfm4CZGnNmOONMi5uAADOXuLCwsM7pI2kHSZyR5btkq6aQpHe+jwbGukLRwxPbPDbbfLOmgCcuwPNjn2gn3t6DCtidL2hK09eEt94Ha2kPSUZLuCfZ3maRd2qzjgHIuDT4HV/aa52HbL+z11fz2Hyw4hkn6YZDnakm7lyjfCQPK9862222C9ibOEGdmLs400R6SHivp2RXzLJb0nQF9fmnb7TJhmxJniDMzFWea7PMxtAcLSx1LiueSFOtUQxmnfi1Yshyrg32unGa9aY9uLCmOyRTrVEMZGVcNt4eYg8vXJ7kxmWKdaigjcaZ8GZcHZVw75n6Yg9ter+TGZIp1qqGMxJkW+oeYg2NhiW7J/242gNnzMUkvCNa9SdIaM1tScV+3efGTFH+l7MmGPXvpp0m6xMxe5u4/mNvIzHaS9ApJ7w3yv9fdby5TGDN7pDQwxi0O0gtG1HWju68rONS1ZrZK2St9v+3uDwwoy6GSzpB0avCnN7n7moL912La7WFmh0v6sqTdcqt/KOlVkvYxsyrF3eTuU/u5Bnf/qZm9X9Ibcqs/Z2Z/LunDnnsNs5k9XtJHlPXVOeslvb3gGG5mZyjrF3OOkHR17zir3N3zecxsL0mvUdZX8p/Veklnlq1fBxFniDMzF2ekRvrHfpLON7NrJX1C0nnu/uMhZdld0gplT9PuG/z5ne7+0yHHiAVxhjgza3GmkT4fUXsAdUjxXJJinSbSxLVgLv9ukvYe8ueFQXrvEZ/JLe6+rcwxq6I9GpfimEyxThNhXPVjDq5xKY7JFOs0EeLMfMzBNSrFMZlinSZCnOnDHByAoSy4zgAwQ8yszgBwjLuvLnHM5ZIuVv9vzc89cfhTSXsomxB5RJD1S8pek3u/SjCztZIOKrPtCOe6+8qC46yTtFcvuVHStZJ+IWmTsjocMqQc73T3t05YvtKm3R5m9jZlFwl1uMzdl9e0r4HMbAdJF6j/tc+S9EtJ31X29MhSZX0x/y12i6Rj3f3yksc5S9LrBvxpvbI+v07ZWFgi6dc0f1Jgs6RnuvvXyhyvi4gzhYgz/VKKM2s13fZYLunSYPXdkq5TFlvuUXZx/ihJh2nwpOOH3T38yZzoEGcKEWf6RR9nmurzsbQHUIcUzyUp1qkODV4LrpR0zqTllXSwu6+tYT8D0R7NSXFMplinOjCu+jEH15wUx2SKdaoDcaYfc3DNSXFMplinOhBnMszBARiFN9sBaJS7rzazkyR9XNu/KJqkp/SWQT4t6eVNfIGc0G7KXvM7ygZJp7v7vzdQHgzh7veb2QuUPXHzwtyf9lH2ExKD/FLSirIXCT2v7+V7u/ovnPaSdHxB3puVvRZ7dYXjQcQZEWdm2R6Snl5iu3slvc7d/2XK5UkWcYY4AwCTSvFcEkOdGrwWjALtkbYYxmRVMdSJcdWPObi0xTAmq4qhTsSZTmAOriExjMmqYqgTcQYAij2k7QIAmD3ufqGkQyV9UNk/a4f5lqRT3P1Ud7+3kcJV9z5JayTN+7m1wM8lvUPSo/nHdDe4+0Z3f5Gk31fW14a5U9LZkg5194sqHsPd/T2SniTpnzS6v8+5QdkE4aFM8o2POEOcmQE3SnqXpCsk3Vcyz4+UveZ+CZN8kyPOEGcAYFKJnUskxVGnJq4FY0J7pC2GMVlVDHViXPVjDi5tMYzJqmKoE3GmUczBtSyGMVlVDHUizgDAaPyMLIBWmdmOyp4AOkjSYmVP+twqaY2739Rm2aows4dJOlzSwcqeRFmo7MLrVknfc/cbWiweSjCzg5W98np/SbtKuk3Zk61XuPuWmo5hkh6n7HXye0t6mKRtku5S1leucvfb6zgWtiPOIHVm9hBJyyQ9WtIBkhZpe//YoOznQL/j7ne0VsjEEWcAAJNK5VySF0udmrgWjAntka5YxmQVsdSJcdWPObh0xTImq4ilTsSZZjAH175YxmQVsdSJOAMA/bjZDgAAAAAAAAAAAAAAAACAAvyMLAAAAAAAAAAAAAAAAAAABbjZDgAAAAAAAAAAAAAAAACAAtxsBwAAAAAAAAAAAAAAAABAAW62AwAAAAAAAAAAAAAAAACgADfbAQAAAAAAAAAAAAAAAABQgJvtAAAAAAAAAAAAAAAAAAAowM12AAAAAAAAAAAAAAAAAAAU4GY7AAAAAAAAAAAAAAAAAAAKcLMdAAAAAAAAAAAAAAAAAAAFuNkOAAAAAAAAAAAAAAAAAIAC3GwHAAAAAAAAAAAAAAAAAEABbrYDAAAAAAAAAAAAAAAAAKAAN9sBAAAAAAAAAAAAAAAAAFCAm+0AAAAAAAAAAAAAAAAAACjAzXYAAAAAAAAAAAAAAAAAABTgZjsAAAAAAAAAAAAAAAAAAApwsx0AAAAAAAAAAAAAAAAAAAW42Q4AAAAAAAAAAAAAAAAAgALcbAcAAAAAAAAAAAAAAAAAQAFutgMAAAAAAAAAAAAAAAAAoAA32wEAAAAAAAAAAAAAAAAAUICb7QAAAAAAAAAAAAAAAAAAKMDNdgAAAAAAAAAAAAAAAAAAFOBmOwAAAAAAAAAAAAAAAAAACnCzHQAAAAAAAAAAAAAAAAAABbjZDgAAAAAAAAAAAAAAAACAAtxsBwAAAAAAAAAAAAAAAABAAW62AwAAAAAAAAAAAAAAAACgADfbAQAAAAAAAAAAAAAAAABQgJvtAAAAAAAAAAAAAAAAAAAowM12AAAAAAAAAAAAAAAAAAAU4GY7AAAAAAAAAAAAAAAAAAAKcLMdAAAAAAAAAAAAAAAAAAAFuNkOAAAAAAAAAAAAAAAAAIAC3GwHAAAAAAAAAAAAAAAAAEABbrYDAAAAAAAAAAAAAAAAAKAAN9sBAAAAAAAAAAAAAAAAAFDg/wFRlxEKZVemhQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import yappi\n", + "\n", + "from apd.aggregation.analysis import interactable_plot_multiple_charts, Config, clean_temperature_fluctuations, get_data_by_deployment\n", + "from apd.aggregation.utils import profile_with_yappi\n", + "\n", + "async def filter_and_clean_temperature_fluctuations(datapoints):\n", + " filtered = (item async for item in datapoints if item.sensor_name==\"Temperature\")\n", + " cleaned = clean_temperature_fluctuations(filtered)\n", + " async for item in cleaned:\n", + " yield item\n", + "\n", + "filter_in_python = Config(\n", + " clean=filter_and_clean_temperature_fluctuations,\n", + " title=\"Ambient temperature\",\n", + " ylabel=\"Degrees C\",\n", + " get_data=get_data_by_deployment,\n", + ")\n", + "\n", + "with profile_with_yappi():\n", + " plot = interactable_plot_multiple_charts(configs=[filter_in_python])\n", + " plot()\n", + "\n", + "yappi.get_func_stats().print_all()" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from apd.aggregation.utils import yappi_package_matches\n", + "import yappi\n", + "\n", + "yappi.get_func_stats().save(\"callgrind.filter_in_python\", \"callgrind\") " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "apd.aggregation", + "language": "python", + "name": "apd.aggregation" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Ch11/apd.aggregation-chapter11/pyproject.toml b/Ch11/apd.aggregation-chapter11/pyproject.toml new file mode 100644 index 0000000..4d3bb67 --- /dev/null +++ b/Ch11/apd.aggregation-chapter11/pyproject.toml @@ -0,0 +1,5 @@ +[build-system] +requires = [ + "setuptools", +] +build-backend = "setuptools.build_meta" diff --git a/Ch11/apd.aggregation-chapter11/pytest.ini b/Ch11/apd.aggregation-chapter11/pytest.ini new file mode 100644 index 0000000..8c26fbc --- /dev/null +++ b/Ch11/apd.aggregation-chapter11/pytest.ini @@ -0,0 +1,4 @@ +[pytest] +markers = + functional: these tests are significantly slower as they start a HTTP server + performance: very slow tests that provide performance guarantees \ No newline at end of file diff --git a/Ch11/apd.aggregation-chapter11/setup.cfg b/Ch11/apd.aggregation-chapter11/setup.cfg new file mode 100644 index 0000000..3ee0436 --- /dev/null +++ b/Ch11/apd.aggregation-chapter11/setup.cfg @@ -0,0 +1,83 @@ +[mypy] +namespace_packages = True +mypy_path = src +plugins = sqlmypy + +[mypy-alembic] +ignore_missing_imports = True + +[mypy-alembic.config] +ignore_missing_imports = True + +[mypy-alembic.script] +ignore_missing_imports = True + +[mypy-alembic.runtime.environment] +ignore_missing_imports = True + +[mypy-matplotlib] +ignore_missing_imports = True + +[mypy-matplotlib.axes._base] +ignore_missing_imports = True + +[mypy-matplotlib.figure] +ignore_missing_imports = True + +[mypy-matplotlib.pyplot] +ignore_missing_imports = True + +[mypy-IPython.core] +ignore_missing_imports = True + +[mypy-yappi] +ignore_missing_imports = True + +[mypy-pint] +ignore_missing_imports = True + +[mypy-pytest] +ignore_missing_imports = True + +[flake8] +max-line-length = 120 +ignore = E501 + +[metadata] +name = apd.aggregation +version = attr: apd.aggregation.VERSION +description = A programme that queries apd.sensor endpoints and aggregates their results. +long_description = file: README.md, CHANGES.md, LICENCE +long_description_content_type = text/markdown +keywords = +license = BSD +classifiers = + Programming Language :: Python :: 3 + Programming Language :: Python :: 3.7 + +[options] +zip_safe = False +include_package_data = True +package_dir = + =src +packages = find_namespace: +install_requires = + sqlalchemy + aiohttp + pint + psycopg2 + alembic + click + + +[options.extras_require] +jupyter = ipywidgets +yappi = yappi + +[options.packages.find] +where = src + +[options.entry_points] +console_scripts = + collect_sensor_data = apd.aggregation.cli:collect_sensor_data + sensor_deployments = apd.aggregation.cli:deployments diff --git a/Ch11/apd.aggregation-chapter11/setup.py b/Ch11/apd.aggregation-chapter11/setup.py new file mode 100644 index 0000000..6068493 --- /dev/null +++ b/Ch11/apd.aggregation-chapter11/setup.py @@ -0,0 +1,3 @@ +from setuptools import setup + +setup() diff --git a/Ch11/apd.aggregation-chapter11/src/apd/aggregation/__init__.py b/Ch11/apd.aggregation-chapter11/src/apd/aggregation/__init__.py new file mode 100644 index 0000000..3277f64 --- /dev/null +++ b/Ch11/apd.aggregation-chapter11/src/apd/aggregation/__init__.py @@ -0,0 +1 @@ +VERSION = "1.0.0" diff --git a/Ch11/apd.aggregation-chapter11/src/apd/aggregation/alembic/README b/Ch11/apd.aggregation-chapter11/src/apd/aggregation/alembic/README new file mode 100644 index 0000000..97a87d5 --- /dev/null +++ b/Ch11/apd.aggregation-chapter11/src/apd/aggregation/alembic/README @@ -0,0 +1,12 @@ +Generic single-database configuration. + + +# Database setup + +To generate the required database tables you must create an alembic.ini file, as follows: + + [alembic] + script_location = apd.aggregation:alembic + sqlalchemy.url = postgresql+psycopg2://apd@localhost/apd + +and run `alembic upgrade head`. This should also be done after every upgrade of the software. \ No newline at end of file diff --git a/Ch11/apd.aggregation-chapter11/src/apd/aggregation/alembic/env.py b/Ch11/apd.aggregation-chapter11/src/apd/aggregation/alembic/env.py new file mode 100644 index 0000000..4c8a2c2 --- /dev/null +++ b/Ch11/apd.aggregation-chapter11/src/apd/aggregation/alembic/env.py @@ -0,0 +1,80 @@ +from logging.config import fileConfig + +from sqlalchemy import engine_from_config +from sqlalchemy import pool +from alembic import context + +from apd.aggregation.database import metadata + + +# this is the Alembic Config object, which provides +# access to the values within the .ini file in use. +config = context.config + +# Interpret the config file for Python logging. +# This line sets up loggers basically. +if config.config_file_name: + fileConfig(config.config_file_name) + +target_metadata = metadata + + +def include_object(object, name, type_, reflected, compare_to): + if object.info.get("is_view", False): + return False + return True + + +def run_migrations_offline(): + """Run migrations in 'offline' mode. + + This configures the context with just a URL + and not an Engine, though an Engine is acceptable + here as well. By skipping the Engine creation + we don't even need a DBAPI to be available. + + Calls to context.execute() here emit the given string to the + script output. + + """ + url = config.get_main_option("sqlalchemy.url") + context.configure( + url=url, + include_object=include_object, + target_metadata=target_metadata, + literal_binds=True, + dialect_opts={"paramstyle": "named"}, + ) + + with context.begin_transaction(): + context.run_migrations() + + +def run_migrations_online(): + """Run migrations in 'online' mode. + + In this scenario we need to create an Engine + and associate a connection with the context. + + """ + connectable = engine_from_config( + config.get_section(config.config_ini_section), + prefix="sqlalchemy.", + poolclass=pool.NullPool, + ) + + with connectable.connect() as connection: + context.configure( + connection=connection, + target_metadata=target_metadata, + include_object=include_object, + ) + + with context.begin_transaction(): + context.run_migrations() + + +if context.is_offline_mode(): + run_migrations_offline() +else: + run_migrations_online() diff --git a/Ch11/apd.aggregation-chapter11/src/apd/aggregation/alembic/script.py.mako b/Ch11/apd.aggregation-chapter11/src/apd/aggregation/alembic/script.py.mako new file mode 100644 index 0000000..2c01563 --- /dev/null +++ b/Ch11/apd.aggregation-chapter11/src/apd/aggregation/alembic/script.py.mako @@ -0,0 +1,24 @@ +"""${message} + +Revision ID: ${up_revision} +Revises: ${down_revision | comma,n} +Create Date: ${create_date} + +""" +from alembic import op +import sqlalchemy as sa +${imports if imports else ""} + +# revision identifiers, used by Alembic. +revision = ${repr(up_revision)} +down_revision = ${repr(down_revision)} +branch_labels = ${repr(branch_labels)} +depends_on = ${repr(depends_on)} + + +def upgrade(): + ${upgrades if upgrades else "pass"} + + +def downgrade(): + ${downgrades if downgrades else "pass"} diff --git a/Ch11/apd.aggregation-chapter11/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py b/Ch11/apd.aggregation-chapter11/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py new file mode 100644 index 0000000..ef671bd --- /dev/null +++ b/Ch11/apd.aggregation-chapter11/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py @@ -0,0 +1,32 @@ +"""Add indexes to datapoints + +Revision ID: 4b2df8a6e1ce +Revises: 6d2eacd5da3f +Create Date: 2019-12-02 16:07:41.123116 + +""" +from alembic import op + + +# revision identifiers, used by Alembic. +revision = "4b2df8a6e1ce" +down_revision = "6d2eacd5da3f" +branch_labels = None +depends_on = None + + +def upgrade(): + op.create_index( + op.f("ix_datapoints_collected_at"), + "datapoints", + ["collected_at"], + unique=False, + ) + op.create_index( + op.f("ix_datapoints_sensor_name"), "datapoints", ["sensor_name"], unique=False, + ) + + +def downgrade(): + op.drop_index(op.f("ix_datapoints_sensor_name"), table_name="datapoints") + op.drop_index(op.f("ix_datapoints_collected_at"), table_name="datapoints") diff --git a/Ch11/apd.aggregation-chapter11/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py b/Ch11/apd.aggregation-chapter11/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py new file mode 100644 index 0000000..eb02455 --- /dev/null +++ b/Ch11/apd.aggregation-chapter11/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py @@ -0,0 +1,38 @@ +"""Add daily summary view + +Revision ID: 6962f8455a6d +Revises: 4b2df8a6e1ce +Create Date: 2019-12-03 11:50:24.403402 + +""" +from alembic import op + + +# revision identifiers, used by Alembic. +revision = "6962f8455a6d" +down_revision = "4b2df8a6e1ce" +branch_labels = None +depends_on = None + + +def upgrade(): + create_view = """ + CREATE VIEW daily_summary AS + SELECT + datapoints.sensor_name AS sensor_name, + datapoints.data AS data, + count(datapoints.id) AS count + FROM datapoints + WHERE + datapoints.collected_at >= CAST(CURRENT_DATE AS DATE) + AND + datapoints.collected_at < CAST(CURRENT_DATE AS DATE) + 1 + GROUP BY + datapoints.sensor_name, + datapoints.data; + """ + op.execute(create_view) + + +def downgrade(): + op.execute("""DROP VIEW daily_summary""") diff --git a/Ch11/apd.aggregation-chapter11/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py b/Ch11/apd.aggregation-chapter11/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py new file mode 100644 index 0000000..b4a3545 --- /dev/null +++ b/Ch11/apd.aggregation-chapter11/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py @@ -0,0 +1,31 @@ +"""Create datapoints table + +Revision ID: 6d2eacd5da3f +Revises: N/A +Create Date: 2019-09-29 13:43:21.242706 + +""" +from alembic import op +import sqlalchemy as sa +from sqlalchemy.dialects import postgresql + +# revision identifiers, used by Alembic. +revision = "6d2eacd5da3f" +down_revision = None +branch_labels = None +depends_on = None + + +def upgrade(): + op.create_table( + "datapoints", + sa.Column("id", sa.Integer(), nullable=False), + sa.Column("sensor_name", sa.String(), nullable=True), + sa.Column("collected_at", postgresql.TIMESTAMP(), nullable=True), + sa.Column("data", postgresql.JSONB(astext_type=sa.Text()), nullable=True), + sa.PrimaryKeyConstraint("id"), + ) + + +def downgrade(): + op.drop_table("datapoints") diff --git a/Ch11/apd.aggregation-chapter11/src/apd/aggregation/alembic/versions/d8cdc709086b_add_deployment_table.py b/Ch11/apd.aggregation-chapter11/src/apd/aggregation/alembic/versions/d8cdc709086b_add_deployment_table.py new file mode 100644 index 0000000..204e096 --- /dev/null +++ b/Ch11/apd.aggregation-chapter11/src/apd/aggregation/alembic/versions/d8cdc709086b_add_deployment_table.py @@ -0,0 +1,32 @@ +"""Add deployment table + +Revision ID: d8cdc709086b +Revises: d8d4cf6a178f +Create Date: 2019-12-17 16:28:58.585616 + +""" +from alembic import op +import sqlalchemy as sa +from sqlalchemy.dialects import postgresql + +# revision identifiers, used by Alembic. +revision = "d8cdc709086b" +down_revision = "d8d4cf6a178f" +branch_labels = None +depends_on = None + + +def upgrade(): + op.create_table( + "deployments", + sa.Column("id", postgresql.UUID(as_uuid=True), nullable=False), + sa.Column("uri", sa.String(), nullable=True), + sa.Column("name", sa.String(), nullable=True), + sa.Column("colour", sa.String(), nullable=True), + sa.Column("api_key", sa.String(), nullable=True), + sa.PrimaryKeyConstraint("id"), + ) + + +def downgrade(): + op.drop_table("deployments") diff --git a/Ch11/apd.aggregation-chapter11/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py b/Ch11/apd.aggregation-chapter11/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py new file mode 100644 index 0000000..88d5219 --- /dev/null +++ b/Ch11/apd.aggregation-chapter11/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py @@ -0,0 +1,34 @@ +"""Add deployment id to DataPoint + +Revision ID: d8d4cf6a178f +Revises: 6962f8455a6d +Create Date: 2019-12-03 20:58:11.285509 + +""" +from alembic import op +import sqlalchemy as sa +from sqlalchemy.dialects import postgresql + +# revision identifiers, used by Alembic. +revision = "d8d4cf6a178f" +down_revision = "6962f8455a6d" +branch_labels = None +depends_on = None + + +def upgrade(): + op.add_column( + "datapoints", + sa.Column("deployment_id", postgresql.UUID(as_uuid=True), nullable=True), + ) + op.create_index( + op.f("ix_datapoints_deployment_id"), + "datapoints", + ["deployment_id"], + unique=False, + ) + + +def downgrade(): + op.drop_index(op.f("ix_datapoints_deployment_id"), table_name="datapoints") + op.drop_column("datapoints", "deployment_id") diff --git a/Ch11/apd.aggregation-chapter11/src/apd/aggregation/analysis.py b/Ch11/apd.aggregation-chapter11/src/apd/aggregation/analysis.py new file mode 100644 index 0000000..eeb4ab2 --- /dev/null +++ b/Ch11/apd.aggregation-chapter11/src/apd/aggregation/analysis.py @@ -0,0 +1,401 @@ +from __future__ import annotations + +import asyncio +import collections +from concurrent.futures import ThreadPoolExecutor +import dataclasses +import datetime +import functools +import math +import typing as t +from uuid import UUID +import warnings + +import matplotlib.pyplot as plt +from matplotlib.axes._base import _AxesBase +from matplotlib.figure import Figure +from pint import _DEFAULT_REGISTRY as ureg + +from apd.aggregation.query import ( + get_data, + get_data_by_deployment, + with_database, + get_deployment_by_id, +) +from apd.aggregation.database import DataPoint, deployment_table +from .utils import merc_x, merc_y, convert_temperature +from .typing import IntermediateMapData, T_key, T_value, CleanerFunc, Cleaned +from .typing import ( + CLEANED_COORD_FLOAT, + CLEANED_DT_FLOAT, + COORD_FLOAT_CLEANER, + DT_FLOAT_CLEANER, +) + +# Static UUID to represent aggregation of other deployments +GLOBAL = UUID("bd02526e-7619-4a59-b04b-1fafd1c262d1") + + +@dataclasses.dataclass +class Config(t.Generic[T_key, T_value]): + title: str + clean: CleanerFunc[Cleaned[T_key, T_value]] + draw: t.Optional[ + t.Callable[ + [t.Any, t.Iterable[T_key], t.Iterable[T_value], t.Optional[str]], None + ] + ] = None + get_data: t.Optional[ + t.Callable[..., t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]] + ] = None + ylabel: t.Optional[str] = None + sensor_name: dataclasses.InitVar[str] = None + + def __post_init__(self, sensor_name: t.Optional[str] = None) -> None: + if self.draw is None: + self.draw = draw_date # type: ignore + if sensor_name is not None: + warnings.warn( + DeprecationWarning( + f"The sensor_name parameter is deprecated. Please pass " + f"get_data=get_one_sensor_by_deployment('{sensor_name}') " + f"to ensure the same behaviour. The sensor_name= parameter " + f"will be removed in apd.aggregation 3.0." + ), + stacklevel=3, + ) + if self.get_data is None: + self.get_data = get_one_sensor_by_deployment(sensor_name) + if self.get_data is None: + raise ValueError("You must specify a get_data function") + + +def draw_date( + plot: _AxesBase, + x: t.Iterable[datetime.datetime], + y: t.Iterable[float], + colour: t.Optional[str], +) -> None: + plot.plot_date(x, y, color=colour, linestyle="-", marker="", xdate=True) + + +def draw_map( + plot: _AxesBase, + x: t.Iterable[t.Tuple[float, float]], + y: t.Iterable[float], + colour: t.Optional[str], +) -> None: + lon = [merc_y(coord[0]) for coord in x] + lat = [merc_x(coord[1]) for coord in x] + + for axis in "x", "y": + plt.tick_params( + axis=axis, + which="both", + bottom=False, + top=False, + left=False, + right=False, + labelbottom=False, + labelleft=False, + ) + + plot.tricontourf(lat, lon, y) + plot.plot(lat, lon, "wo", ms=3) + plot.set_aspect(1.0) + + +def get_map_cleaner_for(sensor_name: str,) -> COORD_FLOAT_CLEANER: + """Given a sensor_name that represents a float, return a coroutine that acts as a cleaner + extracting that sensor's data keyed by the value of a Location sensor.""" + + async def clean_latest_coord_and_value( + datapoints: t.AsyncIterator[DataPoint], + ) -> CLEANED_COORD_FLOAT: + + # We will iterate over data points and build an entry in cleaned_data + # for each deployment. This lets newer data replace older data, as + # datapoints is assumed to be in date order + # IntermediateMapData is a typing hint for a dictionary with specific key/values + cleaned_data: t.Dict[UUID, IntermediateMapData] = {} + async for datapoint in datapoints: + # Get the existing data for this deployment, if we've seen it before + row_data = cleaned_data.get(datapoint.deployment_id, None) + if row_data is None: + # This is the first time we've seen this deployment + row_data = {"coord": None, "value": None} + if datapoint.sensor_name == "Location": + # Coord is a 2-tuple of floats + row_data["coord"] = ( + float(datapoint.data[0]), + float(datapoint.data[1]), + ) + elif datapoint.sensor_name == sensor_name: + # Value is a single float + row_data["value"] = float(datapoint.data) + # Store the info about this deployment back into the cleaned_data set + cleaned_data[datapoint.deployment_id] = row_data + + for data in cleaned_data.values(): + if data["coord"] is None or data["value"] is None: + # We only got a partial record, don't plot this + continue + yield data["coord"], data["value"] + + # Return the set up cleaner coroutine + return clean_latest_coord_and_value + + +async def clean_watthours_to_watts( + datapoints: t.AsyncIterator[DataPoint], +) -> CLEANED_DT_FLOAT: + last_watthours = None + last_time = None + async for datapoint in datapoints: + if datapoint.data is None: + continue + time = datapoint.collected_at + if datapoint.data["unit"] == "watt_hour": + watt_hours = datapoint.data["magnitude"] + else: + watt_hours = ( + ureg.Quantity(datapoint.data["magnitude"], datapoint.data["unit"]) + .to(ureg.watt_hour) + .magnitude + ) + if last_watthours: + seconds_elapsed = (time - last_time).total_seconds() + hours_elapsed = seconds_elapsed / (60.0 * 60.0) + additional_power = watt_hours - last_watthours + power = additional_power / hours_elapsed + yield time, power + last_watthours = watt_hours + last_time = datapoint.collected_at + + +async def clean_magnitude(datapoints: t.AsyncIterator[DataPoint],) -> CLEANED_DT_FLOAT: + async for datapoint in datapoints: + if datapoint.data is None: + continue + yield datapoint.collected_at, datapoint.data["magnitude"] + + +def convert_temperature_system( + cleaner: DT_FLOAT_CLEANER, temperature_unit: str, +) -> DT_FLOAT_CLEANER: + async def converter(datapoints: t.AsyncIterator[DataPoint],) -> CLEANED_DT_FLOAT: + results = cleaner(datapoints) + async for date, temp_c in results: + yield date, convert_temperature(temp_c, "degC", temperature_unit) + + return converter + + +async def clean_temperature_fluctuations( + datapoints: t.AsyncIterator[DataPoint], +) -> CLEANED_DT_FLOAT: + allowed_jitter = 2.5 + allowed_range = (-40, 80) + window_datapoints: t.Deque[DataPoint] = collections.deque(maxlen=3) + + def datapoint_ok(datapoint: DataPoint) -> bool: + """Return False if this data point does not contain a valid temperature""" + if datapoint.data is None: + return False + elif datapoint.data["unit"] != "degC": + # This point is in a different temperature system. While it could be converted + # this cleaner is not yet doing that. + return False + elif not allowed_range[0] < datapoint.data["magnitude"] < allowed_range[1]: + return False + return True + + async for datapoint in datapoints: + if not datapoint_ok(datapoint): + # If the datapoint is invalid then skip directly to the next item + continue + + window_datapoints.append(datapoint) + if len(window_datapoints) == 3: + # Find the temperatures of the datapoints in the window, then average + # the first and last and compare that to the middle point. + window_temperatures = [dp.data["magnitude"] for dp in window_datapoints] + avr_first_last = (window_temperatures[0] + window_temperatures[2]) / 2 + diff_middle_avr = abs(window_temperatures[1] - avr_first_last) + if diff_middle_avr > allowed_jitter: + pass + else: + yield window_datapoints[1].collected_at, window_temperatures[1] + elif len(window_datapoints) == 1: + # The item in the iterator can't be compared to both neighbours + # so should be yielded + yield datapoint.collected_at, datapoint.data["magnitude"] + else: + # Otherwise, let the window fill up, it will be yieleded later + pass + # When the iterator ends the final item is not yet in the middle + # of the window, so the last item must be explicitly yielded. + if len(window_datapoints) > 1 and datapoint_ok(datapoint): + yield datapoint.collected_at, datapoint.data["magnitude"] + + +async def clean_passthrough( + datapoints: t.AsyncIterator[DataPoint], +) -> CLEANED_DT_FLOAT: + async for datapoint in datapoints: + if datapoint.data is None: + continue + else: + yield datapoint.collected_at, datapoint.data + + +def get_one_sensor_by_deployment( + sensor_name: str, +) -> t.Callable[..., t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]]: + return functools.partial(get_data_by_deployment, sensor_name=sensor_name) + + +def get_all_data() -> t.Callable[ + ..., t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]] +]: + async def get_all_data_inner( + *args: t.Any, **kwargs: t.Any + ) -> t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]: + yield GLOBAL, get_data(*args, **kwargs) + + return get_all_data_inner + + +configs = ( + Config( + sensor_name="SolarCumulativeOutput", + clean=clean_watthours_to_watts, + title="Solar generation", + ylabel="Watts", + ), + Config( + sensor_name="RAMAvailable", + clean=clean_passthrough, + title="RAM available", + ylabel="Bytes", + ), + Config( + sensor_name="RelativeHumidity", + clean=clean_passthrough, + title="Relative humidity", + ylabel="Percent", + ), + Config( + sensor_name="Temperature", + clean=clean_temperature_fluctuations, + title="Ambient temperature", + ylabel="Degrees C", + ), +) + + +def get_known_configs() -> t.Dict[str, Config[t.Any, t.Any]]: + return {config.title: config for config in configs} + + +async def plot_sensor( + config: Config[t.Any, t.Any], + plot: _AxesBase, + location_names: t.Dict[UUID, str], + **kwargs: t.Any, +) -> _AxesBase: + locations = [] + if config.get_data is None: + raise ValueError("You must provide a get_data function") + async for deployment_id, query_results in config.get_data(**kwargs): + if deployment_id == GLOBAL: + name = "Global" + else: + try: + deployment = await get_deployment_by_id(deployment_id) + except IndexError: + name = str(deployment_id) + colour = None + else: + name = deployment.name or str(deployment_id) + colour = deployment.colour + # Mypy currently doesn't understand callable fields on datatypes: https://github.com/python/mypy/issues/5485 + points = [dp async for dp in config.clean(query_results)] # type: ignore + if not points: + continue + locations.append(name) + x, y = zip(*points) + plot.set_title(config.title) + plot.set_ylabel(config.ylabel) + if config.draw is None: + raise ValueError("You must provide a get_data function") + config.draw(plot, x, y, colour) + plot.legend(locations) + return plot + + +async def plot_multiple_charts(*args: t.Any, **kwargs: t.Any) -> Figure: + # These parameters are pulled from kwargs to avoid confusing function + # introspection code in IPython widgets + location_names = kwargs.pop("location_names", None) + configs = kwargs.pop("configs", None) + dimensions = kwargs.pop("dimensions", None) + db_uri = kwargs.pop("db_uri", "postgresql+psycopg2://apd@localhost/apd") + + with with_database(db_uri) as session: + loop = asyncio.get_running_loop() + coros = [] + if configs is None: + # If no configs are supplied, use all known configs + configs = get_known_configs().values() + if dimensions is None: + # If no dimensions are supplied, get the square root of the number + # of configs and round it to find a number of columns. This will + # keep the arrangement approximately square. Find rows by multiplying + # out rows. + total_configs = len(configs) + columns = round(math.sqrt(total_configs)) + rows = math.ceil(total_configs / columns) + if location_names is None: + location_query = session.query( + deployment_table.c.id, deployment_table.c.name + ) + location_data = await loop.run_in_executor(None, location_query.all) + location_names = dict(location_data) + + figure = plt.figure(figsize=(10 * columns, 5 * rows), dpi=300) + for i, config in enumerate(configs, start=1): + plot = figure.add_subplot(columns, rows, i) + coros.append(plot_sensor(config, plot, location_names, *args, **kwargs)) + await asyncio.gather(*coros) + return figure + + +_Coroutine_Result = t.TypeVar("_Coroutine_Result") + + +def wrap_coroutine( + f: t.Callable[..., t.Coroutine[t.Any, t.Any, _Coroutine_Result]] +) -> t.Callable[..., _Coroutine_Result]: + """Given a coroutine, return a function that runs that coroutine + in a new event loop in an isolated thread""" + + @functools.wraps(f) + def run_in_thread(*args: t.Any, **kwargs: t.Any) -> _Coroutine_Result: + loop = asyncio.new_event_loop() + wrapped = f(*args, **kwargs) + with ThreadPoolExecutor(max_workers=1) as pool: + task = pool.submit(loop.run_until_complete, wrapped) + # Mypy can get confused when nesting generic functions, like we do here + # The fact that Task is generic means we lose the association with + # _CoroutineResult. Adding an explicit cast restores this. + return t.cast(_Coroutine_Result, task.result()) + + return run_in_thread + + +def interactable_plot_multiple_charts( + *args: t.Any, **kwargs: t.Any +) -> t.Callable[..., Figure]: + with_config = functools.partial(plot_multiple_charts, *args, **kwargs) + return wrap_coroutine(with_config) diff --git a/Ch11/apd.aggregation-chapter11/src/apd/aggregation/cli.py b/Ch11/apd.aggregation-chapter11/src/apd/aggregation/cli.py new file mode 100644 index 0000000..64b1246 --- /dev/null +++ b/Ch11/apd.aggregation-chapter11/src/apd/aggregation/cli.py @@ -0,0 +1,184 @@ +import asyncio +import typing as t +import uuid + +import aiohttp +import click +from sqlalchemy import create_engine +from sqlalchemy.orm import sessionmaker + +from . import collect +from .database import Deployment, deployment_table + + +@click.command() +@click.argument("server", nargs=-1) +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +@click.option("--api-key", metavar="", envvar="APD_API_KEY") +@click.option( + "--tolerate-failures", + "-f", + help="If provided, failure to retrieve some sensors' data will not abort the collection process", + is_flag=True, +) +@click.option("-v", "--verbose", is_flag=True, help="Enables verbose mode") +def collect_sensor_data( + db: str, server: t.Tuple[str], api_key: str, tolerate_failures: bool, verbose: bool +): + """This loads data from one or more sensors into the specified database. + + Only PostgreSQL databases are supported, as the column definitions use + multiple pg specific features. The database must already exist and be + populated with the required tables. + + The --api-key option is used to specify the access token for the sensors + being queried. + + You may specify any number of servers, the variable should be the full URL + to the sensor's HTTP interface, not including the /v/2.0 portion. Multiple + URLs should be separated with a space. + """ + if tolerate_failures: + attempts = [(s,) for s in server] + else: + attempts = [server] + success = True + for attempt in attempts: + try: + collect.standalone(db, attempt, api_key, echo=verbose) + except ValueError as e: + click.secho(str(e), err=True, fg="red") + success = False + return success + + +@click.group() +def deployments(): + pass + + +@deployments.command() +@click.argument("uri") +@click.argument("name") +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +@click.option("--api-key", metavar="", envvar="APD_API_KEY") +@click.option("--colour") +def add( + db: str, uri: str, name: str, api_key: t.Optional[str], colour: t.Optional[str], +): + """This creates a record of a new deployment in the database. + """ + deployment = Deployment(id=None, uri=uri, name=name, api_key=api_key, colour=colour) + + async def http_get_deployment_id(): + async with aiohttp.ClientSession() as http: + collect.http_session_var.set(http) + return await collect.get_deployment_id(uri) + + deployment.id = asyncio.run(http_get_deployment_id()) + insert = deployment_table.insert().values(**deployment._asdict()) + + engine = create_engine(db) + sm = sessionmaker(engine) + Session = sm() + Session.execute(insert) + Session.commit() + return True + + +@deployments.command() +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +def list(db: str): + """This creates a record of a new deployment in the database. + """ + engine = create_engine(db) + sm = sessionmaker(engine) + Session = sm() + deployments = Session.query(deployment_table).all() + for deployment in deployments: + click.secho(deployment.name, bold=True) + click.echo(click.style("ID ", bold=True) + deployment.id.hex) + click.echo(click.style("URI ", bold=True) + deployment.uri) + click.echo(click.style("API key ", bold=True) + deployment.api_key) + click.echo(click.style("Colour ", bold=True) + str(deployment.colour)) + click.echo() + Session.rollback() + return True + + +@deployments.command() +@click.argument("id") +@click.option("--uri") +@click.option("--name") +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +@click.option("--api-key", metavar="", envvar="APD_API_KEY") +@click.option("--colour") +def edit( + db: str, + id, + uri: t.Optional[str], + name: t.Optional[str], + api_key: t.Optional[str], + colour: t.Optional[str], +): + """This creates a record of a new deployment in the database. + """ + update = {} + if uri is not None: + update["uri"] = uri + if name is not None: + update["name"] = name + if api_key is not None: + update["api_key"] = api_key + if colour is not None: + update["colour"] = colour + deployment_id = uuid.UUID(id) + + update_stmt = ( + deployment_table.update() + .where(deployment_table.c.id == deployment_id) + .values(**update) + ) + + engine = create_engine(db) + sm = sessionmaker(engine) + Session = sm() + Session.execute(update_stmt) + deployments = Session.query(deployment_table).filter( + deployment_table.c.id == deployment_id + ) + Session.commit() + + for deployment in deployments: + click.secho(deployment.name, bold=True) + click.echo(click.style("ID ", bold=True) + deployment.id.hex) + click.echo(click.style("URI ", bold=True) + deployment.uri) + click.echo(click.style("API key ", bold=True) + deployment.api_key) + click.echo(click.style("Colour ", bold=True) + str(deployment.colour)) + click.echo() + + return True diff --git a/Ch11/apd.aggregation-chapter11/src/apd/aggregation/collect.py b/Ch11/apd.aggregation-chapter11/src/apd/aggregation/collect.py new file mode 100644 index 0000000..1d9ea08 --- /dev/null +++ b/Ch11/apd.aggregation-chapter11/src/apd/aggregation/collect.py @@ -0,0 +1,112 @@ +import asyncio +from contextvars import ContextVar +import datetime +import typing as t +import uuid + +import aiohttp +from sqlalchemy import create_engine +from sqlalchemy.orm import sessionmaker +from sqlalchemy.orm.session import Session + +from .database import DataPoint, datapoint_table, Deployment, deployment_table + +http_session_var: ContextVar[aiohttp.ClientSession] = ContextVar("http_session") + + +async def get_deployment_id(server): + http = http_session_var.get() + if not server.endswith("/"): + server += "/" + url = server + "v/2.1/deployment_id" + async with http.get(url) as request: + if request.status != 200: + raise ValueError(f"Error loading deployment id from {server}") + result = await request.json() + return uuid.UUID(result["deployment_id"]) + + +async def get_data_points(server: str, api_key: t.Optional[str],) -> t.List[DataPoint]: + if not server.endswith("/"): + server += "/" + url = server + "v/2.1/sensors/" + headers = {} + if api_key: + headers["X-API-KEY"] = api_key + http = http_session_var.get() + + # Get the deployment ID in parallel to the sensor data + deployment_id = asyncio.create_task(get_deployment_id(server)) + + async with http.get(url, headers=headers) as request: + result = await request.json() + ok = request.status == 200 + now = datetime.datetime.now() + if ok: + points = [] + for value in result["sensors"]: + points.append( + DataPoint( + sensor_name=value["id"], + collected_at=now, + data=value["value"], + deployment_id=await deployment_id, + ) + ) + return points + else: + raise ValueError( + f"Error loading data from {server}: " + result.get("error", "Unknown") + ) + + +def handle_result(result: t.List[DataPoint], session: Session) -> t.List[DataPoint]: + for point in result: + insert = datapoint_table.insert().values(**point._asdict()) + sql_result = session.execute(insert) + point.id = sql_result.inserted_primary_key[0] + return result + + +async def add_data_from_sensors( + session: Session, servers: t.Iterable[Deployment] +) -> t.List[DataPoint]: + tasks: t.List[t.Awaitable[t.List[DataPoint]]] = [] + points: t.List[DataPoint] = [] + async with aiohttp.ClientSession() as http: + http_session_var.set(http) + tasks = [get_data_points(server.uri, server.api_key) for server in servers] + for results in await asyncio.gather(*tasks): + points += results + loop = asyncio.get_running_loop() + await loop.run_in_executor(None, handle_result, points, session) + return points + + +def standalone( + db_uri: str, servers: t.Tuple[str], api_key: t.Optional[str], echo: bool = False +) -> None: + engine = create_engine(db_uri, echo=echo) + sm = sessionmaker(engine) + Session = sm() + deployments: t.Iterable[Deployment] + if servers: + deployments = tuple( + Deployment(id=None, name=None, colour=None, api_key=api_key, uri=server) + for server in servers + ) + else: + deployment_data = Session.query(deployment_table).all() + deployments = tuple( + Deployment.from_sql_result(deployment) for deployment in deployment_data + ) + asyncio.run(add_data_from_sensors(Session, deployments)) + Session.commit() + + +if __name__ == "__main__": + standalone( + db_uri="postgresql+psycopg2://apd@localhost/apd", + servers=("http://pvoutput:8080/",), + api_key="h3hdfjksfhwkjehnwekj", + ) diff --git a/Ch11/apd.aggregation-chapter11/src/apd/aggregation/database.py b/Ch11/apd.aggregation-chapter11/src/apd/aggregation/database.py new file mode 100644 index 0000000..f28b469 --- /dev/null +++ b/Ch11/apd.aggregation-chapter11/src/apd/aggregation/database.py @@ -0,0 +1,129 @@ +from __future__ import annotations + +from dataclasses import dataclass, field, asdict +import datetime +import typing as t +import uuid + +import sqlalchemy +from sqlalchemy.dialects.postgresql import JSONB, DATE, TIMESTAMP, UUID +from sqlalchemy.ext.hybrid import ExprComparator, hybrid_property +from sqlalchemy.orm import sessionmaker +from sqlalchemy.schema import Table + + +metadata = sqlalchemy.MetaData() + +deployment_table = Table( + "deployments", + metadata, + sqlalchemy.Column("id", UUID(as_uuid=True), primary_key=True), + sqlalchemy.Column("uri", sqlalchemy.String, index=False), + sqlalchemy.Column("name", sqlalchemy.String, index=False, nullable=True), + sqlalchemy.Column("colour", sqlalchemy.String, index=False, nullable=True), + sqlalchemy.Column("api_key", sqlalchemy.String, index=False), +) + +datapoint_table = Table( + "datapoints", + metadata, + sqlalchemy.Column("id", sqlalchemy.Integer, primary_key=True), + sqlalchemy.Column("sensor_name", sqlalchemy.String, index=True), + sqlalchemy.Column("collected_at", TIMESTAMP, index=True), + sqlalchemy.Column("deployment_id", UUID(as_uuid=True), index=True), + sqlalchemy.Column("data", JSONB), +) + +daily_summary_view = Table( + "daily_summary", + metadata, + sqlalchemy.Column("sensor_name", sqlalchemy.String), + sqlalchemy.Column("data", JSONB), + sqlalchemy.Column("count", sqlalchemy.Integer), + info={"is_view": True}, +) + + +class DateEqualComparator(ExprComparator): + def __init__(self, fallback_expression, raw_expression): + # Do not try and find update expression from parent + super().__init__(None, fallback_expression, None) + self.raw_expression = raw_expression + + def __eq__(self, other): + """ Returns True iff on the same day as other """ + other_date = sqlalchemy.cast(other, DATE) + return sqlalchemy.and_( + self.raw_expression >= other_date, self.raw_expression < other_date + 1, + ) + + def operate(self, op, *other, **kwargs): + other = [sqlalchemy.cast(date, DATE) for date in other] + return op(self.expression, *other, **kwargs) + + def reverse_operate(self, op, other, **kwargs): + other = [sqlalchemy.cast(date, DATE) for date in other] + return op(other, self.expression, **kwargs) + + +@dataclass +class DataPoint: + sensor_name: str + data: t.Any + deployment_id: uuid.UUID + id: t.Optional[int] = None + collected_at: datetime.datetime = field(default_factory=datetime.datetime.now) + + @classmethod + def from_sql_result(cls, result) -> DataPoint: + return cls(**result._asdict()) + + def _asdict(self) -> t.Dict[str, t.Any]: + data = asdict(self) + if data["id"] is None: + del data["id"] + return data + + @hybrid_property + def collected_on_date(self): + return self.collected_at.date() + + @collected_on_date.comparator # type: ignore + def collected_on_date(cls): + return DateEqualComparator( + fallback_expression=sqlalchemy.cast(datapoint_table.c.collected_at, DATE), + raw_expression=datapoint_table.c.collected_at, + ) + + +@dataclass +class Deployment: + id: t.Optional[uuid.UUID] + uri: str + name: t.Optional[str] + colour: t.Optional[str] + api_key: t.Optional[str] + + @classmethod + def from_sql_result(cls, result) -> Deployment: + return cls(**result._asdict()) + + def _asdict(self) -> t.Dict[str, t.Any]: + data = asdict(self) + return data + + +def main() -> None: + engine = sqlalchemy.create_engine( + "postgresql+psycopg2://apd@localhost/apd", echo=True + ) + sm = sessionmaker(engine) + Session = sm() + if False: + metadata.create_all(engine) + print(Session.query(DataPoint).all()) + pass + + +if __name__ == "__main__": + main() diff --git a/Ch11/apd.aggregation-chapter11/src/apd/aggregation/query.py b/Ch11/apd.aggregation-chapter11/src/apd/aggregation/query.py new file mode 100644 index 0000000..f3a8c95 --- /dev/null +++ b/Ch11/apd.aggregation-chapter11/src/apd/aggregation/query.py @@ -0,0 +1,148 @@ +import asyncio +import contextlib +from contextvars import ContextVar +import datetime +import typing as t +from uuid import UUID + +from sqlalchemy import create_engine +from sqlalchemy.orm import sessionmaker +from sqlalchemy.orm.session import Session + + +from apd.aggregation.database import ( + datapoint_table, + DataPoint, + deployment_table, + Deployment, +) + + +db_session_var: ContextVar[Session] = ContextVar("db_session") + + +@contextlib.contextmanager +def with_database(uri: t.Optional[str] = None) -> t.Iterator[Session]: + """Given a URI, set up a DB connection, and return a Session as a context manager """ + if uri is None: + uri = "postgresql+psycopg2://localhost/apd" + engine = create_engine(uri) + sm = sessionmaker(engine) + Session = sm() + token = db_session_var.set(Session) + try: + yield Session + Session.commit() + finally: + db_session_var.reset(token) + Session.close() + + +async def get_data( + sensor_name: t.Optional[str] = None, + deployment_id: t.Optional[UUID] = None, + collected_before: t.Optional[datetime.datetime] = None, + collected_after: t.Optional[datetime.datetime] = None, +) -> t.AsyncIterator[DataPoint]: + db_session = db_session_var.get() + loop = asyncio.get_running_loop() + query = db_session.query(datapoint_table) + if sensor_name: + query = query.filter(datapoint_table.c.sensor_name == sensor_name) + if deployment_id: + query = query.filter(datapoint_table.c.deployment_id == deployment_id) + if collected_before: + query = query.filter(datapoint_table.c.collected_at < collected_before) + if collected_after: + query = query.filter(datapoint_table.c.collected_at > collected_after) + query = query.order_by( + datapoint_table.c.deployment_id, + datapoint_table.c.sensor_name, + datapoint_table.c.collected_at, + ) + + rows = await loop.run_in_executor(None, query.all) + for row in rows: + yield DataPoint.from_sql_result(row) + + +async def get_deployment_ids() -> t.List[UUID]: + db_session = db_session_var.get() + loop = asyncio.get_running_loop() + query = db_session.query(datapoint_table.c.deployment_id).distinct() + return [row.deployment_id for row in await loop.run_in_executor(None, query.all)] + + +async def get_deployment_by_id(deployment_id: UUID) -> Deployment: + db_session = db_session_var.get() + loop = asyncio.get_running_loop() + query = db_session.query(deployment_table).filter( + deployment_table.c.id == deployment_id + ) + return [ + Deployment.from_sql_result(row) + for row in await loop.run_in_executor(None, query.all) + ][0] + + +async def get_data_by_deployment( + *args: t.Any, **kwargs: t.Any +) -> t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]: + """Return an Async Iterator that contains two-item pairs. + These pairs are a string (deployment_id), and an async iterator that contains + the datapoints with that deployment_id. + + Usage example: + + async for deployment_id, datapoints in get_data_by_deployment(): + print(deployment_id) + async for datapoint in datapoints: + print(datapoint) + print() + """ + # Get the data, using the arguments to this function as filters + data = get_data(*args, **kwargs) + + # The two levels of iterator share the item variable, initialise it with the + # first item from the iterator. Also set last_deployment_id to None, so the + # outer iterator knows to start a new group. + last_deployment_id: t.Optional[UUID] = None + try: + item = await data.__anext__() + except StopAsyncIteration: + # There were no items in the underlying query, return immediately + return + + async def subiterator(group_id: UUID) -> t.AsyncIterator[DataPoint]: + """Using a closure, create an iterator that yields the current + item, then yields all items from data while the deployment_id matches + group_id, leaving the first that doesn't match as item in the enclosing + scope.""" + # item is from the enclosing scope + nonlocal item + while item.deployment_id == group_id: + # yield items from data while they match the group_id this iterator represents + yield item + try: + # Advance the underlying iterator + item = await data.__anext__() + except StopAsyncIteration: + # The underlying iterator came to an end, so end the subiterator too + return + + while True: + while item.deployment_id == last_deployment_id: + # We are trying to advance the outer iterator while the underlying iterator + # is still part-way through a group. Speed through the underlying until we + # hit an item where the deployment_id is different to the last one (or, is not + # None, in the case of the start of the iterator) + try: + item = await data.__anext__() + except StopAsyncIteration: + # We hit the end of the underlying iterator: end this iterator too + return + last_deployment_id = item.deployment_id + # Don't yield an iterator for unclassified deployments + if last_deployment_id is not None: + # Instantiate a subiterator for this group + yield last_deployment_id, subiterator(last_deployment_id) diff --git a/Ch11/apd.aggregation-chapter11/src/apd/aggregation/typing.py b/Ch11/apd.aggregation-chapter11/src/apd/aggregation/typing.py new file mode 100644 index 0000000..5db1337 --- /dev/null +++ b/Ch11/apd.aggregation-chapter11/src/apd/aggregation/typing.py @@ -0,0 +1,48 @@ +import datetime +import typing as t +from typing_extensions import Protocol + +from apd.aggregation.database import DataPoint + + +# Aliases for common types +# These type variables allow for generic functions. T_key represents the place +# in a chart that an item will be placed, and T_value the kind of data that is plotted. +T_key = t.TypeVar("T_key") +T_value = t.TypeVar("T_value") + +# Cleaned is a placeholder type, representing an async iterator of key and value functions +# Cleaned[float, float] is equivalent to typing.AsyncIterator[Tuple[builtins.float, builtins.float]] +Cleaned = t.AsyncIterator[t.Tuple[T_key, T_value]] + +# T_cleaned represents a placeholder for the result of a cleaner function, and is *covariant* +# because it can accept compatible types (such as ints where floats were declared). +# It is bound to Cleaned, so only items that match the specification for Cleaned (for any values +# of T_key or T_value) are valid +T_cleaned = t.TypeVar("T_cleaned", covariant=True, bound=Cleaned) + + +# CleanerFunc is a generic protocol, it matches any Callable that converts an async iterator +# of datapoints to its type. So, CleanerFunc[float] would be equivalent to t.Callable[[t.AsyncIterator[DataPoint]], float] +class CleanerFunc(Protocol[T_cleaned]): + def __call__(self, datapoints: t.AsyncIterator[DataPoint]) -> T_cleaned: + ... + + +# CLEANED_DT_FLOAT is a Cleaned represents datetime/float pairs, for simple charts +CLEANED_DT_FLOAT = Cleaned[datetime.datetime, float] +# and CLEANED_COORD_FLOAT represents (lat/lon), float pairs +CLEANED_COORD_FLOAT = Cleaned[t.Tuple[float, float], float] + +# The _CLEANER variants are functions that return their matching iterators from above +DT_FLOAT_CLEANER = CleanerFunc[CLEANED_DT_FLOAT] +COORD_FLOAT_CLEANER = CleanerFunc[CLEANED_COORD_FLOAT] + + +# When drawing a map we will be building a dictionary of UUID to dictionary +# That inner dictionary should contain coord (float, float) +# and value (float) only. Either or both can be None. +# This class is abstract, it's just for type checking. +class IntermediateMapData(t.TypedDict): + coord: t.Optional[t.Tuple[float, float]] + value: t.Optional[float] diff --git a/Ch11/apd.aggregation-chapter11/src/apd/aggregation/utils.py b/Ch11/apd.aggregation-chapter11/src/apd/aggregation/utils.py new file mode 100644 index 0000000..75bf6b3 --- /dev/null +++ b/Ch11/apd.aggregation-chapter11/src/apd/aggregation/utils.py @@ -0,0 +1,100 @@ +from __future__ import annotations + +import contextlib +import functools +import importlib +import io +import logging +import math +import os +import typing as t + +from pint import _DEFAULT_REGISTRY as ureg + + +# Set up mercator transform from https://wiki.openstreetmap.org/wiki/Mercator#Python +# Thanks to Paulo Silva and the OSM contributors +def merc_x(lon: float) -> float: + r_major = 6378137.000 + return r_major * math.radians(lon) + + +def merc_y(lat: float) -> float: + if lat > 89.5: + lat = 89.5 + if lat < -89.5: + lat = -89.5 + r_major = 6378137.000 + r_minor = 6356752.3142 + temp = r_minor / r_major + eccent = math.sqrt(1 - temp ** 2) + phi = math.radians(lat) + sinphi = math.sin(phi) + con = eccent * sinphi + com = eccent / 2 + con = ((1.0 - con) / (1.0 + con)) ** com + ts = math.tan((math.pi / 2 - phi) / 2) / con + y = 0 - r_major * math.log(ts) + return y + + +@functools.lru_cache +def convert_temperature(magnitude: float, origin_unit: str, target_unit: str) -> float: + # if origin_unit == "degC" and target_unit == "degF": + # return (magnitude * 1.8) + 32 + temp = ureg.Quantity(magnitude, origin_unit) + return temp.to(target_unit).magnitude + + +@contextlib.contextmanager +def jupyter_page_file() -> t.Iterator[io.StringIO]: + from IPython.core import page + + output = io.StringIO() + yield output + output.seek(0) + page.page(output.read()) + + +@contextlib.contextmanager +def profile_with_yappi() -> t.Iterator[None]: + import yappi + + yappi.clear_stats() + yappi.start() + try: + yield None + finally: + yappi.stop() + + +@functools.lru_cache +def get_package_prefix(package: str) -> str: + mod = importlib.import_module(package) + prefix = mod.__file__ + if prefix.endswith("__init__.py"): + prefix = os.path.dirname(prefix) + return prefix + + +def yappi_package_matches(stat, packages: t.List[str]): + """ This object can be passed to yappi's filter_callback to limit + by Python package.""" + for package in packages: + prefix = get_package_prefix(package) + if stat.full_name.startswith(prefix): + return True + return False + + +class AddSensorNameDefault(logging.Filter): + def filter(self, record): + if not hasattr(record, "sensorname"): + record.sensorname = "none" + return True + + +class SensorNameStreamHandler(logging.StreamHandler): + def __init__(self, *args, **kwargs): + super().__init__() + self.addFilter(AddSensorNameDefault()) diff --git a/Ch11/apd.aggregation-chapter11/tests/__init__.py b/Ch11/apd.aggregation-chapter11/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/Ch11/apd.aggregation-chapter11/tests/conftest.py b/Ch11/apd.aggregation-chapter11/tests/conftest.py new file mode 100644 index 0000000..328e95f --- /dev/null +++ b/Ch11/apd.aggregation-chapter11/tests/conftest.py @@ -0,0 +1,124 @@ +import datetime +from uuid import UUID + +from apd.aggregation.database import datapoint_table + +from alembic.config import Config +from alembic.script import ScriptDirectory +from alembic.runtime.environment import EnvironmentContext +import pytest + + +@pytest.fixture +def db_uri(): + return "postgresql+psycopg2://apd@localhost/apd-test" + + +@pytest.fixture +def db_session(db_uri): + from sqlalchemy import create_engine + from sqlalchemy.orm import sessionmaker + + engine = create_engine(db_uri, echo=True) + sm = sessionmaker(engine) + Session = sm() + yield Session + Session.close() + + +@pytest.fixture +def migrated_db(db_uri, db_session): + config = Config() + config.set_main_option("script_location", "apd.aggregation:alembic") + config.set_main_option("sqlalchemy.url", db_uri) + script = ScriptDirectory.from_config(config) + + def upgrade(rev, context): + return script._upgrade_revs(script.get_current_head(), rev) + + def downgrade(rev, context): + return script._downgrade_revs(None, rev) + + with EnvironmentContext(config, script, fn=upgrade): + script.run_env() + + try: + yield + finally: + # Clear any pending work from the db_session connection + db_session.rollback() + + with EnvironmentContext(config, script, fn=downgrade): + script.run_env() + + +@pytest.fixture +def populated_db(migrated_db, db_session): + datas = [ + { + "id": 1, + "sensor_name": "Test", + "data": "1", + "collected_at": datetime.datetime(2020, 4, 1, 12, 0, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 2, + "sensor_name": "Test", + "data": "2", + "collected_at": datetime.datetime(2020, 4, 1, 12, 1, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 3, + "sensor_name": "Test", + "data": "3", + "collected_at": datetime.datetime(2020, 4, 1, 12, 2, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 4, + "sensor_name": "Test", + "data": "4", + "collected_at": datetime.datetime(2020, 4, 1, 12, 3, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 5, + "sensor_name": "OtherTest", + "data": "5", + "collected_at": datetime.datetime(2020, 4, 1, 12, 4, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 6, + "sensor_name": "Test", + "data": "1", + "collected_at": datetime.datetime(2020, 4, 1, 12, 0, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + { + "id": 7, + "sensor_name": "Test", + "data": "1", + "collected_at": datetime.datetime(2020, 4, 1, 12, 1, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + { + "id": 8, + "sensor_name": "Test", + "data": "2", + "collected_at": datetime.datetime(2020, 4, 1, 12, 2, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + { + "id": 9, + "sensor_name": "OtherTest", + "data": "3", + "collected_at": datetime.datetime(2020, 4, 1, 12, 3, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + ] + for data in datas: + insert = datapoint_table.insert().values(**data) + db_session.execute(insert) diff --git a/Ch11/apd.aggregation-chapter11/tests/test_analysis.py b/Ch11/apd.aggregation-chapter11/tests/test_analysis.py new file mode 100644 index 0000000..4bce248 --- /dev/null +++ b/Ch11/apd.aggregation-chapter11/tests/test_analysis.py @@ -0,0 +1,525 @@ +import collections.abc +import datetime +import functools +import uuid +import warnings + +import pytest + +from apd.aggregation import analysis +from apd.aggregation.database import DataPoint, datapoint_table +from apd.aggregation.query import db_session_var + + +async def generate_datapoints(datas): + deployment_id = uuid.uuid4() + for i, (time, data) in enumerate(datas, start=1): + yield DataPoint( + id=i, + collected_at=time, + sensor_name="TestSensor", + data=data, + deployment_id=deployment_id, + ) + + +@functools.singledispatch +def consume(input_iterator): + items = [item for item in input_iterator] + + def inner_iterator(): + for item in items: + yield item + + return inner_iterator() + + +@consume.register +async def consume_async(input_iterator: collections.abc.AsyncIterator): + items = [item async for item in input_iterator] + + async def inner_iterator(): + for item in items: + yield item + + return inner_iterator() + + +class TestPassThroughCleaner: + @pytest.fixture + def cleaner(self): + return analysis.clean_passthrough + + @pytest.mark.asyncio + async def test_float_passthrough(self, cleaner): + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 65.0), + (datetime.datetime(2020, 4, 1, 13, 0, 0), 65.5), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == data + + @pytest.mark.asyncio + async def test_Nones_are_skipped(self, cleaner): + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), None), + (datetime.datetime(2020, 4, 1, 13, 0, 0), 65.5), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 13, 0, 0), 65.5), + ] + + +class TestTemperatureCleaner: + @pytest.fixture + def cleaner(self): + return analysis.clean_temperature_fluctuations + + @pytest.mark.asyncio + async def test_window_not_full(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [(datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0)] + + @pytest.mark.asyncio + async def test_window_exactly_full(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 1), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 21.0), + ] + + @pytest.mark.asyncio + async def test_window_overfilled(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 3), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 4), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 1), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 3), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 4), 21.0), + ] + + @pytest.mark.asyncio + async def test_outlier_dropped(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 61.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 21.0), + ] + + @pytest.mark.asyncio + async def test_limited_to_DHT22_range(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 91.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 91.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 91.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [] + + @pytest.mark.asyncio + async def test_Nones_dropped(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 31.0, "unit": "degC"}, + ), + (datetime.datetime(2020, 4, 1, 12, 0, 1), None,), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 32.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 31.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 32.0), + ] + + +class TestWattHourCleaner: + @pytest.fixture + def cleaner(self): + return analysis.clean_watthours_to_watts + + @pytest.fixture(scope="class") + def huge_data_set(self): + date = datetime.datetime(2020, 4, 1, 12, 0, 0) + power = 500 + data = [] + for i in range(50_000): + date += datetime.timedelta(hours=1) + power += i + data.append((date, {"magnitude": power, "unit": "watt_hour"},)) + return data + + @pytest.mark.asyncio + async def test_one_entry_insufficient_to_find_diff(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [] + + @pytest.mark.asyncio + async def test_two_entries_provides_diff_with_second_time(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 13, 0, 0), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 1 + assert output[0][0] == datetime.datetime(2020, 4, 1, 13, 0, 0) + assert output[0][1] == pytest.approx(9.0, 0.0001) + + @pytest.mark.asyncio + async def test_nonstandard_units_can_be_used(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 13, 0, 0), + {"magnitude": 10000.0, "unit": "joule"}, + ), + ( + datetime.datetime(2020, 4, 1, 14, 0, 0), + {"magnitude": 3.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 2 + assert output[0][0] == datetime.datetime(2020, 4, 1, 13, 0, 0) + assert output[0][1] == pytest.approx(1.7777, 0.001) + assert output[1][0] == datetime.datetime(2020, 4, 1, 14, 0, 0) + assert output[1][1] == pytest.approx(0.22222, 0.001) + + @pytest.mark.asyncio + async def test_fractional_hour(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 23, 42), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 1 + assert output[0][0] == datetime.datetime(2020, 4, 1, 12, 23, 42) + assert output[0][1] == pytest.approx(22.7848, 0.001) + + @pytest.mark.asyncio + async def test_diff_happens_pairwise(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 23, 42), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 13, 23, 42), + {"magnitude": 13.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 2 + assert output[0][0] == datetime.datetime(2020, 4, 1, 12, 23, 42) + assert output[0][1] == pytest.approx(22.7848, 0.001) + assert output[1][0] == datetime.datetime(2020, 4, 1, 13, 23, 42) + assert output[1][1] == pytest.approx(3, 0.001) + + @pytest.mark.asyncio + async def test_None_ignored(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + (datetime.datetime(2020, 4, 1, 12, 58, 0), None,), + ( + datetime.datetime(2020, 4, 1, 13, 0, 0), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 1 + assert output[0][0] == datetime.datetime(2020, 4, 1, 13, 0, 0) + assert output[0][1] == pytest.approx(9.0, 0.0001) + + @pytest.mark.asyncio + @pytest.mark.performance + async def test_performance_of_cleaner(self, cleaner, huge_data_set): + import cProfile + + # Generate data point objects before profiling starts + datapoints = await consume(generate_datapoints(huge_data_set)) + profiler = cProfile.Profile() + profiler.enable() + + # Run the cleaner to completion + await consume(cleaner(datapoints)) + + profiler.disable() + cleaner_stat = [ + stat for stat in profiler.getstats() if stat.code == cleaner.__code__ + ][0] + # Assert that the cleaner may take no more than 0.5 seconds to process + # these 50k data points + assert cleaner_stat.totaltime < 0.5 + + +class TestTemperatureMap: + @pytest.fixture + def temperature_data(self): + return { + (53.8667, -1.3333): -1, + (53.35, -2.2833): 1, + (52.45, -1.7333): 3, + (51.5, -0.1333): 6, + (51.55, -2.5667): 5, + (54.9667, -1.6167): -1, + (55.9667, -3.2167): -1, + (54.7667, -1.5833): 0, + (53.7667, -0.3): 1, + (53.7667, -3.0167): 0, + (51.4833, -3.1833): 4, + (53.2667, -3.5167): 2, + (52.0833, -2.8): 2, + (52.0167, -0.6): 2, + (52.6667, 1.2667): 5, + (50.4333, -4.9833): 9, + (50.35, -4.1167): 10, + (50.5167, -2.45): 9, + (50.8333, -1.1667): 9, + (56.45, -5.4333): 4, + (57.5333, -4.05): -2, + (54.5167, -3.6167): 3, + (53.0833, 0.2667): 4, + (51.35, 1.3333): 7, + (50.8833, 0.3167): 8, + (58.45, -3.1): 3, + (50.1, -5.6667): 9, + (58.2167, -6.3333): 4, + (55.6833, -6.25): 7, + } + + @pytest.fixture + def temperature_datapoints(self, migrated_db, db_session, temperature_data): + datas = [] + now = datetime.datetime.now() + for (coord, temp) in temperature_data.items(): + deployment_id = uuid.uuid4() + datas.append( + DataPoint( + sensor_name="Location", + deployment_id=deployment_id, + collected_at=now, + data=coord, + ) + ) + datas.append( + DataPoint( + sensor_name="Temperature", + deployment_id=deployment_id, + collected_at=now, + data=temp, + ) + ) + return datas + + @pytest.fixture + def populated_db(self, migrated_db, db_session, temperature_datapoints): + for data in temperature_datapoints: + insert = datapoint_table.insert().values(**data._asdict()) + db_session.execute(insert) + + @pytest.fixture + def cleaner(self): + return analysis.get_map_cleaner_for("Temperature") + + @pytest.fixture + def get_data(self, db_session): + db_session_var.set(db_session) + return analysis.get_all_data() + + @pytest.mark.asyncio + async def test_latest_coord_temp_cleaner( + self, temperature_data, populated_db, get_data, cleaner + ): + data = get_data() + deployments = 0 + async for deployment, data_points in data: + deployments += 1 + cleaned = {a async for a in cleaner(data_points)} + # There should only be one deployment + assert deployments == 1 + expected = set(temperature_data.items()) + assert cleaned == expected + + @pytest.mark.asyncio + async def test_newer_items_superceed_older( + self, db_session, temperature_datapoints, populated_db, get_data, cleaner + ): + # Pick any of the deployment ids and find the pair of DataPoints in that deployment id + deployment_1 = temperature_datapoints[0].deployment_id + existing = [ + datapoint + for datapoint in temperature_datapoints + if datapoint.deployment_id == deployment_1 + ] + old_location = [ + datapoint for datapoint in existing if datapoint.sensor_name == "Location" + ][0] + old_temperature = [ + datapoint + for datapoint in existing + if datapoint.sensor_name == "Temperature" + ][0] + + new_location = DataPoint( + sensor_name="Location", + deployment_id=deployment_1, + collected_at=datetime.datetime(2031, 4, 1, 12, 0, 0), + data=(-10.5, 150.1), + ) + new_temperature = DataPoint( + sensor_name="Temperature", + deployment_id=deployment_1, + collected_at=datetime.datetime(2031, 4, 1, 12, 0, 0), + data=21, + ) + for data in [new_location, new_temperature]: + insert = datapoint_table.insert().values(**data._asdict()) + db_session.execute(insert) + + data = get_data() + deployments = 0 + async for deployment, data_points in data: + deployments += 1 + cleaned = {a async for a in cleaner(data_points)} + # There should only be one deployment + assert deployments == 1 + + # We expect the newer one, not the older + assert (new_location.data, new_temperature.data) in cleaned + assert (old_location.data, old_temperature.data) not in cleaned + # The cleaner converts two data points to one plottable + assert len(cleaned) == len(temperature_datapoints) / 2 + + +def test_deprecation_warning_raised_by_config_with_no_getdata(): + with warnings.catch_warnings(record=True) as captured_warnings: + warnings.simplefilter("always", DeprecationWarning) + analysis.Config( + sensor_name="Temperature", + clean=analysis.clean_passthrough, + title="Temperaure", + ylabel="Deg C", + ) + assert len(captured_warnings) == 1 + deprecation_warning = captured_warnings[0] + assert deprecation_warning.filename == __file__ + assert deprecation_warning.category == DeprecationWarning + assert str(deprecation_warning.message) == ( + "The sensor_name parameter is deprecated. Please pass " + "get_data=get_one_sensor_by_deployment('Temperature') " + "to ensure the same behaviour. The sensor_name= parameter " + "will be removed in apd.aggregation 3.0." + ) diff --git a/Ch11/apd.aggregation-chapter11/tests/test_cli.py b/Ch11/apd.aggregation-chapter11/tests/test_cli.py new file mode 100644 index 0000000..5cab441 --- /dev/null +++ b/Ch11/apd.aggregation-chapter11/tests/test_cli.py @@ -0,0 +1,155 @@ +from unittest import mock +import uuid + +from click.testing import CliRunner +import pytest + +import apd.aggregation.cli +from apd.aggregation.database import Deployment, deployment_table + + +@pytest.mark.functional +def test_sensors_are_passed_to_get_data_points(db_uri): + runner = CliRunner() + with mock.patch("apd.aggregation.collect.get_data_points") as get_data_points: + runner.invoke( + apd.aggregation.cli.collect_sensor_data, + [ + "http://localhost", + "http://otherhost", + "--db", + db_uri, + "--api-key", + "key", + ], + ) + calls = get_data_points.call_args_list + assert len(calls) == 2 + details = {call[0] for call in get_data_points.call_args_list} + assert details == { + ("http://localhost", "key"), + ("http://otherhost", "key"), + } + + +@pytest.mark.functional +def test_add_deployment_to_db(db_uri, db_session, migrated_db): + runner = CliRunner() + deployment_id = uuid.UUID("76587cdd42dc489ea1d220e9b0bc62ca") + with mock.patch("apd.aggregation.collect.get_deployment_id") as get_deployment_id: + get_deployment_id.return_value = deployment_id + runner.invoke( + apd.aggregation.cli.deployments, + ["add", "http://otherhost", "Other", "--db", db_uri, "--api-key", "key"], + ) + deployments = db_session.query(deployment_table).all() + assert len(deployments) == 1 + deployment = Deployment.from_sql_result(deployments[0]) + assert deployment.uri == "http://otherhost" + assert deployment.api_key == "key" + assert deployment.id == deployment_id + + +@pytest.mark.functional +def test_use_stored_deployments(db_uri, migrated_db): + runner = CliRunner() + + deployment_id = uuid.UUID("76587cdd42dc489ea1d220e9b0bc62ca") + with mock.patch("apd.aggregation.collect.get_deployment_id") as get_deployment_id: + get_deployment_id.return_value = deployment_id + runner.invoke( + apd.aggregation.cli.deployments, + [ + "add", + "http://specifiedhost", + "Specified", + "--db", + db_uri, + "--api-key", + "an_api_key", + ], + ) + + with mock.patch("apd.aggregation.collect.get_data_points") as get_data_points: + runner.invoke( + apd.aggregation.cli.collect_sensor_data, ["--db", db_uri], + ) + calls = get_data_points.call_args_list + assert len(calls) == 1 + details = {call[0] for call in get_data_points.call_args_list} + assert details == { + ("http://specifiedhost", "an_api_key"), + } + + +@pytest.mark.functional +def test_list_deployments(db_uri, migrated_db): + runner = CliRunner() + + deployment_id = uuid.UUID("76587cdd42dc489ea1d220e9b0bc62ca") + with mock.patch("apd.aggregation.collect.get_deployment_id") as get_deployment_id: + get_deployment_id.return_value = deployment_id + runner.invoke( + apd.aggregation.cli.deployments, + [ + "add", + "http://specifiedhost", + "Specified", + "--db", + db_uri, + "--api-key", + "an_api_key", + ], + ) + + result = runner.invoke(apd.aggregation.cli.deployments, ["list", "--db", db_uri],) + expected = """Specified +ID 76587cdd42dc489ea1d220e9b0bc62ca +URI http://specifiedhost +API key an_api_key +Colour None + +""" + assert result.output == expected + + +@pytest.mark.functional +def test_edit_deployment(db_uri, migrated_db): + runner = CliRunner() + return + deployment_id = uuid.UUID("76587cdd42dc489ea1d220e9b0bc62ca") + with mock.patch("apd.aggregation.collect.get_deployment_id") as get_deployment_id: + get_deployment_id.return_value = deployment_id + runner.invoke( + apd.aggregation.cli.deployments, + [ + "add", + "http://specifiedhost", + "Specified", + "--db", + db_uri, + "--api-key", + "an_api_key", + ], + ) + + result = runner.invoke( + apd.aggregation.cli.deployments, + [ + "edit", + "--db", + db_uri, + deployment_id.hex(), + "--colour", + "red" "--name", + "New name", + ], + ) + expected = """New name +ID 76587cdd42dc489ea1d220e9b0bc62ca +URI http://specifiedhost +API key an_api_key +Colour red + +""" + assert result.output == expected diff --git a/Ch11/apd.aggregation-chapter11/tests/test_http_get.py b/Ch11/apd.aggregation-chapter11/tests/test_http_get.py new file mode 100644 index 0000000..df575c6 --- /dev/null +++ b/Ch11/apd.aggregation-chapter11/tests/test_http_get.py @@ -0,0 +1,188 @@ +from concurrent.futures import ThreadPoolExecutor +import datetime +import typing as t +from unittest.mock import patch, MagicMock +import wsgiref.simple_server + +import aiohttp +from apd.sensors.base import Sensor +from apd.sensors.sensors import PythonVersion, ACStatus +from apd.sensors.wsgi import set_up_config +import flask +import pytest + +from apd.sensors.wsgi import v21 + +from apd.aggregation import collect +from apd.aggregation.database import Deployment + +pytestmark = [pytest.mark.functional] + + +@pytest.fixture +def sensors() -> t.Iterator[t.List[Sensor[t.Any]]]: + """ Patch the get_sensors method to return a known pair of sensors only """ + data: t.List[Sensor[t.Any]] = [PythonVersion(), ACStatus()] + with patch("apd.sensors.cli.get_sensors") as get_sensors: + get_sensors.return_value = data + yield data + + +def get_independent_flask_app(name: str) -> flask.Flask: + """ Create a new flask app with the v20 API blueprint loaded, so multiple copies + of the app can be run in parallel without conflicting configuration """ + app = flask.Flask(name) + app.register_blueprint(v21.version, url_prefix="/v/2.1") + return app + + +def run_server_in_thread( + name: str, config: t.Dict[str, t.Any], port: int +) -> t.Iterator[str]: + # Create a new flask app and load in required code, to prevent config conflicts + app = get_independent_flask_app(name) + flask_app = set_up_config(config, app) + server = wsgiref.simple_server.make_server("localhost", port, flask_app) + + with ThreadPoolExecutor() as pool: + pool.submit(server.serve_forever) + yield f"http://localhost:{port}/" + server.shutdown() + + +@pytest.fixture(scope="module") +def http_server(): + yield from run_server_in_thread( + "standard", + { + "APD_SENSORS_API_KEY": "testing", + "APD_SENSORS_DEPLOYMENT_ID": "a46b1d1207fd4cdcad39bbdf706dfe29", + }, + 12081, + ) + + +@pytest.fixture(scope="module") +def bad_api_key_http_server(): + yield from run_server_in_thread( + "alternate", + { + "APD_SENSORS_API_KEY": "penny", + "APD_SENSORS_DEPLOYMENT_ID": "38cf2bae9adb445fad946c82e290487a", + }, + 12082, + ) + + +class TestGetDataPoints: + @pytest.fixture + def mut(self): + return collect.get_data_points + + @pytest.mark.asyncio + async def test_get_data_points( + self, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + # Get the data from the server, storing the time before and after + # as bounds for the collected_at value + async with aiohttp.ClientSession() as http: + collect.http_session_var.set(http) + time_before = datetime.datetime.now() + results = await mut(http_server, "testing") + time_after = datetime.datetime.now() + + assert len(results) == len(sensors) == 2 + + for (sensor, result) in zip(sensors, results): + assert sensor.from_json_compatible(result.data) == sensor.value() + assert result.sensor_name == sensor.name + assert time_before <= result.collected_at <= time_after + + @pytest.mark.asyncio + async def test_get_data_points_fails_with_bad_api_key( + self, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + with pytest.raises( + ValueError, + match=f"Error loading data from {http_server}: Supply API key in X-API-Key header", + ): + async with aiohttp.ClientSession() as http: + collect.http_session_var.set(http) + await mut(http_server, "incorrect") + + +class TestAddDataFromSensors: + @pytest.fixture + def mut(self): + return collect.add_data_from_sensors + + @pytest.fixture + def mock_db_session(self): + return MagicMock() + + @pytest.mark.asyncio + async def test_get_get_data_from_sensors( + self, mock_db_session, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + results = await mut( + mock_db_session, + [ + Deployment( + id=None, colour=None, name=None, uri=http_server, api_key="testing" + ) + ], + ) + assert mock_db_session.execute.call_count == len(sensors) + assert len(results) == len(sensors) + + @pytest.mark.asyncio + async def test_get_get_data_from_sensors_with_multiple_servers( + self, mock_db_session, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + results = await mut( + mock_db_session, + [ + Deployment( + id=None, colour=None, name=None, uri=http_server, api_key="testing" + ), + Deployment( + id=None, colour=None, name=None, uri=http_server, api_key="testing" + ), + ], + ) + assert mock_db_session.execute.call_count == len(sensors) * 2 + assert len(results) == len(sensors) * 2 + + @pytest.mark.asyncio + async def test_data_points_not_added_if_only_partial_success( + self, + mock_db_session, + sensors: t.List[Sensor[t.Any]], + mut, + http_server: str, + bad_api_key_http_server: str, + ) -> None: + with pytest.raises( + ValueError, + match=f"Error loading data from {bad_api_key_http_server}: Supply API key in X-API-Key header", + ): + await mut( + mock_db_session, + [ + Deployment( + id=None, + colour=None, + name=None, + uri=http_server, + api_key="testing", + ), + Deployment( + id=None, + colour=None, + name=None, + uri=bad_api_key_http_server, + api_key="testing", + ), + ], + ) + assert mock_db_session.execute.call_count == 0 diff --git a/Ch11/apd.aggregation-chapter11/tests/test_query.py b/Ch11/apd.aggregation-chapter11/tests/test_query.py new file mode 100644 index 0000000..9b6e0aa --- /dev/null +++ b/Ch11/apd.aggregation-chapter11/tests/test_query.py @@ -0,0 +1,111 @@ +import datetime +from uuid import UUID + +import pytest + +from apd.aggregation.query import ( + get_data, + get_deployment_ids, + get_data_by_deployment, + db_session_var, +) + + +class TestGetData: + @pytest.fixture + def mut(self): + return get_data + + @pytest.mark.asyncio + @pytest.mark.parametrize( + "filter,num_items_expected", + [ + ({}, 9), + ({"sensor_name": "Test"}, 7), + ({"deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd")}, 5), + ({"collected_after": datetime.datetime(2020, 4, 1, 12, 2, 1)}, 3), + ({"collected_before": datetime.datetime(2020, 4, 1, 12, 2, 1)}, 4), + ( + { + "collected_after": datetime.datetime(2020, 4, 1, 12, 2, 1), + "collected_before": datetime.datetime(2020, 4, 1, 12, 3, 5), + }, + 2, + ), + ], + ) + async def test_iterate_over_items( + self, mut, db_session, populated_db, filter, num_items_expected + ): + db_session_var.set(db_session) + points = [dp async for dp in mut(**filter)] + assert len(points) == num_items_expected + + @pytest.mark.asyncio + async def test_empty_db(self, mut, db_session, migrated_db): + db_session_var.set(db_session) + points = [dp async for dp in mut()] + assert len(points) == 0 + + +class TestGetDeployments: + @pytest.fixture + def mut(self): + return get_deployment_ids + + @pytest.mark.asyncio + async def test_get_all_deployments(self, mut, db_session, populated_db): + db_session_var.set(db_session) + deployment_ids = await mut() + assert set(deployment_ids) == { + UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + } + + @pytest.mark.asyncio + async def test_empty_db(self, mut, db_session, migrated_db): + db_session_var.set(db_session) + deployment_ids = await mut() + assert deployment_ids == [] + + +@pytest.mark.usefixtures("populated_db") +class TestGetDataByDeployment: + @pytest.fixture + def mut(self): + return get_data_by_deployment + + @pytest.mark.asyncio + @pytest.mark.parametrize( + "filter,num_items_expected", [({}, 9), ({"sensor_name": "Test"}, 7)] + ) + async def test_iterate_over_all_items( + self, mut, db_session, filter, num_items_expected + ): + db_session_var.set(db_session) + num_items = 0 + num_deployments = 0 + async for deployment_id, items in mut(**filter): + num_deployments += 1 + async for item in items: + num_items += 1 + assert num_deployments == 2 + assert num_items == num_items_expected + + @pytest.mark.asyncio + @pytest.mark.parametrize( + "filter,num_items_expected", [({}, 5), ({"sensor_name": "Test"}, 4)] + ) + async def test_skip_first_deployment( + self, mut, db_session, filter, num_items_expected + ): + db_session_var.set(db_session) + num_items = 0 + num_deployments = 0 + async for deployment_id, items in mut(**filter): + num_deployments += 1 + if num_deployments == 2: + async for item in items: + num_items += 1 + assert num_deployments == 2 + assert num_items == num_items_expected diff --git a/Ch11/apd.aggregation-chapter11/tests/test_sensor_aggregation.py b/Ch11/apd.aggregation-chapter11/tests/test_sensor_aggregation.py new file mode 100644 index 0000000..311dd19 --- /dev/null +++ b/Ch11/apd.aggregation-chapter11/tests/test_sensor_aggregation.py @@ -0,0 +1,199 @@ +from __future__ import annotations + +import contextlib +from dataclasses import dataclass +import json +import typing as t +from unittest.mock import patch, Mock + +import pytest +import sqlalchemy + +import apd.aggregation.collect +from apd.aggregation.database import Deployment + + +@pytest.fixture +def data() -> t.Any: + return { + "sensors": [ + { + "human_readable": "3.7", + "id": "PythonVersion", + "title": "Python Version", + "value": [3, 7, 2, "final", 0], + }, + { + "human_readable": "Not connected", + "id": "ACStatus", + "title": "AC Connected", + "value": False, + }, + ] + } + + +@dataclass +class FakeAIOHttpClient: + responses: t.Dict[str, str] + + @contextlib.asynccontextmanager + async def get( + self, url: str, headers: t.Optional[t.Dict[str, str]] = None + ) -> t.AsyncIterator[FakeAIOHttpResponse]: + if url in self.responses: + yield FakeAIOHttpResponse(body=self.responses[url]) + else: + yield FakeAIOHttpResponse(body="", status=404) + + +@dataclass +class FakeAIOHttpResponse: + body: str + status: int = 200 + + async def json(self) -> t.Any: + return json.loads(self.body) + + +@pytest.fixture +def mockclient(data) -> FakeAIOHttpClient: + return FakeAIOHttpClient( + { + "http://localhost/v/2.1/sensors/": json.dumps(data), + "http://localhost/v/2.1/deployment_id": json.dumps( + {"deployment_id": "b29ba0ee10f14552b6b21327bb96d3fb"} + ), + } + ) + + +class TestGetDataPoints: + @pytest.fixture + def mut(self): + return apd.aggregation.collect.get_data_points + + @pytest.mark.asyncio + async def test_get_data_points( + self, mut, mockclient: FakeAIOHttpClient, data + ) -> None: + token = apd.aggregation.collect.http_session_var.set(mockclient) + try: + datapoints = await mut("http://localhost", "") + finally: + apd.aggregation.collect.http_session_var.reset(token) + + assert len(datapoints) == len(data["sensors"]) + for sensor in data["sensors"]: + assert sensor["value"] in (datapoint.data for datapoint in datapoints) + assert sensor["id"] in (datapoint.sensor_name for datapoint in datapoints) + + +class TestAddDataFromSensors: + @pytest.fixture + def mut(self): + return apd.aggregation.collect.add_data_from_sensors + + @pytest.fixture(autouse=True) + def patch_aiohttp(self, mockclient): + with patch("aiohttp.ClientSession") as ClientSession: + ClientSession.return_value.__aenter__.return_value = mockclient + yield ClientSession + + @pytest.fixture + def db_session(self): + session = Mock() + sql_result = session.execute.return_value + sql_result.inserted_primary_key = [1] + return session + + @pytest.mark.asyncio + async def test_datapoints_are_added_to_the_session(self, mut, db_session) -> None: + assert db_session.execute.call_count == 0 + datapoints = await mut( + db_session, + [ + Deployment( + id=None, colour=None, name=None, uri="http://localhost", api_key="" + ) + ], + ) + assert db_session.execute.call_count == len(datapoints) + + +@pytest.mark.usefixtures("migrated_db") +class TestDatabaseConnection: + @pytest.fixture(autouse=True) + def patch_aiohttp(self, mockclient): + with patch("aiohttp.ClientSession") as ClientSession: + ClientSession.return_value.__aenter__.return_value = mockclient + yield ClientSession + + @pytest.fixture + def table(self): + return apd.aggregation.database.datapoint_table + + @pytest.fixture + def daily_summary_view(self): + return apd.aggregation.database.daily_summary_view + + @pytest.fixture + def model(self): + return apd.aggregation.database.DataPoint + + @pytest.fixture + def mut(self): + return apd.aggregation.collect.add_data_from_sensors + + @pytest.mark.asyncio + async def test_datapoints_are_added_to_the_session(self, db_session, table) -> None: + datapoints = await apd.aggregation.collect.add_data_from_sensors( + db_session, + [ + Deployment( + id=None, colour=None, name=None, uri="http://localhost", api_key="" + ) + ], + ) + num_points = db_session.query(table).count() + assert num_points == len(datapoints) == 2 + + @pytest.mark.asyncio + async def test_datapoints_can_be_mapped_back_to_DataPoints( + self, mut, db_session, table, model + ) -> None: + datapoints = await mut( + db_session, + [ + Deployment( + id=None, colour=None, name=None, uri="http://localhost", api_key="" + ) + ], + ) + db_points = [ + model.from_sql_result(result) for result in db_session.query(table) + ] + assert db_points == datapoints + + @pytest.mark.asyncio + async def test_daily_summary_view_matches_query( + self, db_session, model, table, daily_summary_view + ) -> None: + await apd.aggregation.collect.add_data_from_sensors( + db_session, + [ + Deployment( + id=None, colour=None, name=None, uri="http://localhost", api_key="" + ) + ], + ) + + headers = table.c.sensor_name, table.c.data + value_counts = ( + db_session.query(*headers, sqlalchemy.func.count(table.c.id)) + .filter(model.collected_on_date == sqlalchemy.func.current_date()) + .group_by(*headers) + ) + + daily_summary_view = db_session.query(daily_summary_view) + assert value_counts.all() == daily_summary_view.all() diff --git a/Ch11/apd.sensors-chapter11-ex01/.pre-commit-config.yaml b/Ch11/apd.sensors-chapter11-ex01/.pre-commit-config.yaml new file mode 100644 index 0000000..d3b6ec7 --- /dev/null +++ b/Ch11/apd.sensors-chapter11-ex01/.pre-commit-config.yaml @@ -0,0 +1,26 @@ +repos: + +- repo: local + hooks: + - id: black + name: black + entry: pipenv run black + args: [--quiet] + language: system + types: [python] + + - id: mypy + name: mypy + exclude: (?x)^( + (.*)/setup.py + )$ + entry: pipenv run mypy + args: ["--follow-imports=skip"] + language: system + types: [python] + + - id: flake8 + name: flake8 + entry: pipenv run flake8 + language: system + types: [python] diff --git a/Ch11/apd.sensors-chapter11-ex01/CHANGES.md b/Ch11/apd.sensors-chapter11-ex01/CHANGES.md new file mode 100644 index 0000000..b2f6115 --- /dev/null +++ b/Ch11/apd.sensors-chapter11-ex01/CHANGES.md @@ -0,0 +1,44 @@ +## Changes + +### 2.2 (2020-01-17) + +* Add ability to store data points on query (Matthew Wilkes) +* Add v3.0 API to distinguish sensor errors and include historical data (Matthew Wilkes) + +### 2.1.1 (2020-01-06) + +* Cache DHT sensor connections (Matthew Wilkes) +* Force use of bitbang interface for DHT sensors, to improve reliability on Linux (Matthew Wilkes) + +### 2.1.0 (2019-12-09) + +* Add optional APD_SENSORS_DEPLOYMENT_ID parameter and v2.1 API which allows + users to find a unique identifier for a webapp sensor deployment (Matthew Wilkes) + +### 2.0.0 (2019-09-08) + +* Add `to_json_compatible` and `from_json_compatible` methods to Sensor + to facilitate better HTTP API (Matthew Wilkes) + +* HTTP API is now versioned. The API from 1.3.0 is available at /v/1.0 + and an updated version is at /v/2.0 (Matthew Wilkes) + +### 1.3.0 (2019-08-20) + +* WSGI HTTP API support added (Matthew Wilkes) + +### 1.2.0 (2019-08-05) + +* Add external plugin support through `apd.sensors.sensors` entrypoint (Matthew Wilkes) + +### 1.1.0 (2019-07-12) + +* Add --develop argument (Matthew Wilkes) + +### 1.0.1 (2019-06-20) + +* Fix broken 1.0.0 release (Matthew Wilkes) + +### 1.0.0 (2019-06-20) + +* Added initial sensors (Matthew Wilkes) diff --git a/Ch11/apd.sensors-chapter11-ex01/LICENCE b/Ch11/apd.sensors-chapter11-ex01/LICENCE new file mode 100644 index 0000000..053f694 --- /dev/null +++ b/Ch11/apd.sensors-chapter11-ex01/LICENCE @@ -0,0 +1,19 @@ +Copyright (c) 2019 Matthew Wilkes + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. diff --git a/Ch11/apd.sensors-chapter11-ex01/Pipfile b/Ch11/apd.sensors-chapter11-ex01/Pipfile new file mode 100644 index 0000000..44bfe74 --- /dev/null +++ b/Ch11/apd.sensors-chapter11-ex01/Pipfile @@ -0,0 +1,34 @@ +[[source]] +name = "pypi" +url = "https://pypi.org/simple" +verify_ssl = true + +[[source]] +name = "piwheels" +url = "https://piwheels.org/simple" +verify_ssl = true + +[dev-packages] +ipykernel = "*" +remote-ikernel = "*" +pytest = "*" +pytest-cov = "*" +mypy = "*" +flake8 = "*" +black = "*" +pre-commit = "*" +wheel = "*" +twine = "*" +webtest = "*" +sqlalchemy-stubs = "*" + +[packages] +apd-sensors = {editable = true,extras = ["scheduled", "webapp", "storedapi"],path = "."} +apd-sunnyboy-solar = {editable = true,path = "./plugins/apd.sunnyboy_solar"} +waitress = "*" +pint = "==0.10.1" + +[requires] + +[pipenv] +allow_prereleases = true diff --git a/Ch11/apd.sensors-chapter11-ex01/Pipfile.lock b/Ch11/apd.sensors-chapter11-ex01/Pipfile.lock new file mode 100644 index 0000000..ce04ef4 --- /dev/null +++ b/Ch11/apd.sensors-chapter11-ex01/Pipfile.lock @@ -0,0 +1,1092 @@ +{ + "_meta": { + "hash": { + "sha256": "8099f56a327cfc41360e2cbc7ff56ad2bab9f24325f631df83cc94d9f9196469" + }, + "pipfile-spec": 6, + "requires": {}, + "sources": [ + { + "name": "pypi", + "url": "https://pypi.org/simple", + "verify_ssl": true + }, + { + "name": "piwheels", + "url": "https://piwheels.org/simple", + "verify_ssl": true + } + ] + }, + "default": { + "alembic": { + "hashes": [ + "sha256:035ab00497217628bf5d0be82d664d8713ab13d37b630084da8e1f98facf4dbf", + "sha256:ba2d8937aef1ee14ffc983f9ab00a6f8e48907e46c7788218b561c100175025f" + ], + "version": "==1.4.2" + }, + "apd-sensors": { + "editable": true, + "extras": [ + "scheduled", + "webapp", + "storedapi" + ], + "path": "." + }, + "apd-sunnyboy-solar": { + "editable": true, + "path": "./plugins/apd.sunnyboy_solar" + }, + "click": { + "hashes": [ + "sha256:8a18b4ea89d8820c5d0c7da8a64b2c324b4dabb695804dbfea19b9be9d88c0cc", + "sha256:e345d143d80bf5ee7534056164e5e112ea5e22716bbb1ce727941f4c8b471b9a" + ], + "version": "==7.1.1" + }, + "flask": { + "hashes": [ + "sha256:4efa1ae2d7c9865af48986de8aeb8504bf32c7f3d6fdc9353d34b21f4b127060", + "sha256:8a4fdd8936eba2512e9c85df320a37e694c93945b33ef33c89946a340a238557" + ], + "version": "==1.1.2" + }, + "flask-sqlalchemy": { + "hashes": [ + "sha256:0078d8663330dc05a74bc72b3b6ddc441b9a744e2f56fe60af1a5bfc81334327", + "sha256:6974785d913666587949f7c2946f7001e4fa2cb2d19f4e69ead02e4b8f50b33d" + ], + "version": "==2.4.1" + }, + "itsdangerous": { + "hashes": [ + "sha256:321b033d07f2a4136d3ec762eac9f16a10ccd60f53c0c91af90217ace7ba1f19", + "sha256:b12271b2047cb23eeb98c8b5622e2e5c5e9abd9784a153e9d8ef9cb4dd09d749" + ], + "version": "==1.1.0" + }, + "jinja2": { + "hashes": [ + "sha256:39cbce1ffc25cbf4860b09195654763be95b9e4900475b24d5c345d3e0948c53", + "sha256:c10142f819c2d22bdcd17548c46fa9b77cf4fda45097854c689666bf425e7484", + "sha256:c922560ac46888d47384de1dbdc3daaa2ea993af4b26a436dec31fa2c19ec668" + ], + "version": "==3.0.0a1" + }, + "mako": { + "hashes": [ + "sha256:3139c5d64aa5d175dbafb95027057128b5fbd05a40c53999f3905ceb53366d9d", + "sha256:8e8b53c71c7e59f3de716b6832c4e401d903af574f6962edbbbf6ecc2a5fe6c9", + "sha256:e20f2dcad807217874cad8119eec86254afee47ba8159adb3808449040ddcaac" + ], + "version": "==1.1.2" + }, + "markupsafe": { + "hashes": [ + "sha256:06358015a4dee8ee23ae426bf885616ab3963622defd829eb45b44e3dee3515f", + "sha256:0b0c4fc852c5f02c6277ef3b33d23fcbe89b1b227460423e3335374da046b6db", + "sha256:267677fc42afed5094fc5ea1c4236bbe4b6a00fe4b08e93451e65ae9048139c7", + "sha256:303cb70893e2c345588fb5d5b86e0ca369f9bb56942f03064c5e3e75fa7a238a", + "sha256:3c9b624a0d9ed5a5093ac4edc4e823e6b125441e60ef35d36e6f4a6fdacd5054", + "sha256:42033e14cae1f6c86fc0c3e90d04d08ce73ac8e46ba420a0d22d545c2abd4977", + "sha256:4e4a99b6af7bdc0856b50020c095848ec050356a001e1f751510aef6ab14d0e0", + "sha256:4eb07faad54bb07427d848f31030a65a49ebb0cec0b30674f91cf1ddd456bfe4", + "sha256:63a7161cd8c2bc563feeda45df62f42c860dd0675e2b8da2667f25bb3c95eaba", + "sha256:68e0fd039b68d2945b4beb947d4023ca7f8e95b708031c345762efba214ea761", + "sha256:8092a63397025c2f655acd42784b2a1528339b90b987beb9253f22e8cdbb36c3", + "sha256:841218860683c0f2223e24756843d84cc49cccdae6765e04962607754a52d3e0", + "sha256:888d45d90cef0c9f32e01d5beb7b5dafe6d1076cc23977e39944cfca73888907", + "sha256:94076b2314bd2f6cfae508ad65b4d493e3a58a50112b7a2cbb6287bdbc404ae8", + "sha256:9d22aff1c5322e402adfb3ce40839a5056c353e711c033798cf4f02eb9f5124d", + "sha256:b0e4584f62b3e5f5c1a7bcefd2b52f236505e6ef032cc508caa4f4c8dc8d3af1", + "sha256:b1163ffc1384d242964426a8164da12dbcdbc0de18ea36e2c34b898ed38c3b45", + "sha256:beac28ed60c8e838301226a7a85841d0af2068eba2dcb1a58c2d32d6c05e440e", + "sha256:c29f096ce79c03054a1101d6e5fe6bf04b0bb489165d5e0e9653fb4fe8048ee1", + "sha256:c58779966d53e5f14ba393d64e2402a7926601d1ac8adeb4e83893def79d0428", + "sha256:cfe14b37908eaf7d5506302987228bff69e1b8e7071ccd4e70fd0283b1b47f0b", + "sha256:e834249c45aa9837d0753351cdca61a4b8b383cc9ad0ff2325c97ff7b69e72a6", + "sha256:eed1b234c4499811ee85bcefa22ef5e466e75d132502226ed29740d593316c1f" + ], + "version": "==2.0.0a1" + }, + "pint": { + "hashes": [ + "sha256:d5b5bcb570b2a8e0a598621fc41684497ff248f418bbfe00f69bd6e13caa14b8", + "sha256:d739c364b8326fe3d70773d5720fa8b005ea6158695cad042677a588480c86e6" + ], + "index": "pypi", + "version": "==0.10.1" + }, + "psutil": { + "hashes": [ + "sha256:002bd856770037221256765a472f50d677074ad207276a39e2bccdb7394e333b", + "sha256:1413f4158eb50e110777c4f15d7c759521703bd6beb58926f1d562da40180058", + "sha256:298af2f14b635c3c7118fd9183843f4e73e681bb6f01e12284d4d70d48a60953", + "sha256:60b86f327c198561f101a92be1995f9ae0399736b6eced8f24af41ec64fb88d4", + "sha256:685ec16ca14d079455892f25bd124df26ff9137664af445563c1bd36629b5e0e", + "sha256:73f35ab66c6c7a9ce82ba44b1e9b1050be2a80cd4dcc3352cc108656b115c74f", + "sha256:75e22717d4dbc7ca529ec5063000b2b294fc9a367f9c9ede1f65846c7955fd38", + "sha256:833b2b19c04fc0aecad22daa3e35108d6ee2e4f92061a4a8f2dd77c6fa9154f5", + "sha256:a02f4ac50d4a23253b68233b07e7cdb567bd025b982d5cf0ee78296990c22d9e", + "sha256:d008ddc00c6906ec80040d26dc2d3e3962109e40ad07fd8a12d0284ce5e0e4f8", + "sha256:d84029b190c8a66a946e28b4d3934d2ca1528ec94764b180f7d6ea57b0e75e26", + "sha256:e2d0c5b07c6fe5a87fa27b7855017edb0d52ee73b71e6ee368fae268605cc3f5", + "sha256:f344ca230dd8e8d5eee16827596f1c22ec0876127c28e800d7ae20ed44c4b310", + "sha256:f3e7f183162622eae9fbdee44ff19b226edec68b94ae7cba47f9afcf4c3ec66c" + ], + "version": "==5.7.0" + }, + "python-dateutil": { + "hashes": [ + "sha256:73ebfe9dbf22e832286dafa60473e4cd239f8592f699aa5adaf10050e6e1823c", + "sha256:75bb3f31ea686f1197762692a9ee6a7550b59fc6ca3a1f4b5d7e32fb98e2da2a" + ], + "version": "==2.8.1" + }, + "python-editor": { + "hashes": [ + "sha256:1bf6e860a8ad52a14c3ee1252d5dc25b2030618ed80c022598f00176adc8367d", + "sha256:51fda6bcc5ddbbb7063b2af7509e43bd84bfc32a4ff71349ec7847713882327b", + "sha256:5f98b069316ea1c2ed3f67e7f5df6c0d8f10b689964a4a811ff64f0106819ec8" + ], + "version": "==1.0.4" + }, + "six": { + "hashes": [ + "sha256:236bdbdce46e6e6a3d61a337c0f8b763ca1e8717c03b369e87a7ec7ce1319c0a", + "sha256:8f3cd2e254d8f793e7f3d6d9df77b92252b52637291d0f0da013c76ea2724b6c" + ], + "version": "==1.14.0" + }, + "sqlalchemy": { + "hashes": [ + "sha256:083e383a1dca8384d0ea6378bd182d83c600ed4ff4ec8247d3b2442cf70db1ad", + "sha256:09e83c304c7f2eb236ecb9830268b8e5aa20e8f90fba1758fb2a0a8ccc33e1ce", + "sha256:0a690a6486658d03cc6a73536d46e796b6570ac1f8a7ec133f9e28c448b69828", + "sha256:114b6ace30001f056e944cebd46daef38fdb41ebb98f5e5940241a03ed6cad43", + "sha256:128f6179325f7597a46403dde0bf148478f868df44841348dfc8d158e00db1f9", + "sha256:13d48cd8b925b6893a4e59b2dfb3e59a5204fd8c98289aad353af78bd214db49", + "sha256:211a1ce7e825f7142121144bac76f53ac28b12172716a710f4bf3eab477e730b", + "sha256:2dc57ee80b76813759cccd1a7affedf9c4dbe5b065a91fb6092c9d8151d66078", + "sha256:3e625e283eecc15aee5b1ef77203bfb542563fa4a9aa622c7643c7b55438ff49", + "sha256:43078c7ec0457387c79b8d52fff90a7ad352ca4c7aa841c366238c3e2cf52fdf", + "sha256:598355efdc17c8df2940dab1d81c6d2c2ef54f9e104fd18b772307813e63a37e", + "sha256:5b1bf3c2c2dca738235ce08079783ef04f1a7fc5b21cf24adaae77f2da4e73c3", + "sha256:6056b671aeda3fc451382e52ab8a753c0d5f66ef2a5ccc8fa5ba7abd20988b4d", + "sha256:68d78cf4a9dfade2e6cf57c4be19f7b82ed66e67dacf93b32bb390c9bed12749", + "sha256:7025c639ce7e170db845e94006cf5f404e243e6fc00d6c86fa19e8ad8d411880", + "sha256:7224e126c00b8178dfd227bc337ba5e754b197a3867d33b9f30dc0208f773d70", + "sha256:7d98e0785c4cd7ae30b4a451416db71f5724a1839025544b4edbd92e00b91f0f", + "sha256:8d8c21e9d4efef01351bf28513648ceb988031be4159745a7ad1b3e28c8ff68a", + "sha256:a9493755ebe89992dd3ce48b05630a26e7bd3d3ab2edc3ff97947e4a45c9be70", + "sha256:bbb545da054e6297242a1bb1ba88e7a8ffb679f518258d66798ec712b82e4e07", + "sha256:d00b393f05dbd4ecd65c989b7f5a81110eae4baea7a6a4cdd94c20a908d1456e", + "sha256:e18752cecaef61031252ca72031d4d6247b3212ebb84748fc5d1a0d2029c23ea" + ], + "version": "==1.3.16" + }, + "waitress": { + "hashes": [ + "sha256:045b3efc3d97c93362173ab1dfc159b52cfa22b46c3334ffc805dbdbf0e4309e", + "sha256:77ff3f3226931a1d7d8624c5371de07c8e90c7e5d80c5cc660d72659aaf23f38" + ], + "index": "pypi", + "version": "==1.4.3" + }, + "werkzeug": { + "hashes": [ + "sha256:2de2a5db0baeae7b2d2664949077c2ac63fbd16d98da0ff71837f7d1dea3fd43", + "sha256:6c80b1e5ad3665290ea39320b91e1be1e0d5f60652b964a3070216de83d2e47c" + ], + "version": "==1.0.1" + } + }, + "develop": { + "appdirs": { + "hashes": [ + "sha256:9e5896d1372858f8dd3344faf4e5014d21849c756c8d5701f78f8a103b372d92", + "sha256:d8b24664561d0d34ddfaec54636d502d7cea6e29c3eaf68f3df6180863e2166e" + ], + "version": "==1.4.3" + }, + "async-generator": { + "hashes": [ + "sha256:01c7bf666359b4967d2cda0000cc2e4af16a0ae098cbffcb8472fb9e8ad6585b", + "sha256:6ebb3d106c12920aaae42ccb6f787ef5eefdcdd166ea3d628fa8476abe712144" + ], + "version": "==1.10" + }, + "atomicwrites": { + "hashes": [ + "sha256:03472c30eb2c5d1ba9227e4c2ca66ab8287fbfbbda3888aa93dc2e28fc6811b4", + "sha256:75a9445bac02d8d058d5e1fe689654ba5a6556a1dfd8ce6ec55a0ed79866cfa6" + ], + "markers": "sys_platform == 'win32'", + "version": "==1.3.0" + }, + "attrs": { + "hashes": [ + "sha256:08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c", + "sha256:f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72" + ], + "version": "==19.3.0" + }, + "backcall": { + "hashes": [ + "sha256:1fac21e6861f538700a5d498620153f38407a4bacf9e1d5047b3d717f10bc4ab", + "sha256:38ecd85be2c1e78f77fd91700c76e14667dc21e2713b63876c0eb901196e01e4", + "sha256:bbbf4b1e5cd2bdb08f915895b51081c041bac22394fdfcfdfbe9f14b77c08bf2" + ], + "version": "==0.1.0" + }, + "beautifulsoup4": { + "hashes": [ + "sha256:594ca51a10d2b3443cbac41214e12dbb2a1cd57e1a7344659849e2e20ba6a8d8", + "sha256:a4bbe77fd30670455c5296242967a123ec28c37e9702a8a81bd2f20a4baf0368", + "sha256:d4e96ac9b0c3a6d3f0caae2e4124e6055c5dcafde8e2f831ff194c104f0775a0" + ], + "version": "==4.9.0" + }, + "black": { + "hashes": [ + "sha256:1b30e59be925fafc1ee4565e5e08abef6b03fe455102883820fe5ee2e4734e0b", + "sha256:c2edb73a08e9e0e6f65a0e6af18b059b8b1cdd5bef997d7a0b181df93dc81539" + ], + "index": "pypi", + "version": "==19.10b0" + }, + "bleach": { + "hashes": [ + "sha256:cc8da25076a1fe56c3ac63671e2194458e0c4d9c7becfd52ca251650d517903c", + "sha256:e78e426105ac07026ba098f04de8abe9b6e3e98b5befbf89b51a5ef0a4292b03" + ], + "version": "==3.1.4" + }, + "certifi": { + "hashes": [ + "sha256:1d987a998c75633c40847cc966fcf5904906c920a7f17ef374f5aa4282abd304", + "sha256:51fcb31174be6e6664c5f69e3e1691a2d72a1a12e90f872cbdb1567eb47b6519" + ], + "version": "==2020.4.5.1" + }, + "cfgv": { + "hashes": [ + "sha256:1ccf53320421aeeb915275a196e23b3b8ae87dea8ac6698b1638001d4a486d53", + "sha256:c8e8f552ffcc6194f4e18dd4f68d9aef0c0d58ae7e7be8c82bee3c5e9edfa513" + ], + "version": "==3.1.0" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:8a18b4ea89d8820c5d0c7da8a64b2c324b4dabb695804dbfea19b9be9d88c0cc", + "sha256:e345d143d80bf5ee7534056164e5e112ea5e22716bbb1ce727941f4c8b471b9a" + ], + "version": "==7.1.1" + }, + "colorama": { + "hashes": [ + "sha256:7d73d2a99753107a36ac6b455ee49046802e59d9d076ef8e47b61499fa29afff", + "sha256:e96da0d330793e2cb9485e9ddfd918d456036c7149416295932478192f4436a1" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.3" + }, + "coverage": { + "hashes": [ + "sha256:00f1d23f4336efc3b311ed0d807feb45098fc86dee1ca13b3d6768cdab187c8a", + "sha256:01333e1bd22c59713ba8a79f088b3955946e293114479bbfc2e37d522be03355", + "sha256:0cb4be7e784dcdc050fc58ef05b71aa8e89b7e6636b99967fadbdba694cf2b65", + "sha256:0e61d9803d5851849c24f78227939c701ced6704f337cad0a91e0972c51c1ee7", + "sha256:1601e480b9b99697a570cea7ef749e88123c04b92d84cedaa01e117436b4a0a9", + "sha256:2742c7515b9eb368718cd091bad1a1b44135cc72468c731302b3d641895b83d1", + "sha256:2d27a3f742c98e5c6b461ee6ef7287400a1956c11421eb574d843d9ec1f772f0", + "sha256:402e1744733df483b93abbf209283898e9f0d67470707e3c7516d84f48524f55", + "sha256:512f4e0a9bf45f0c983c820b46f759bbe8bb224c727a26e3b347d3bd4e6340e1", + "sha256:5c542d1e62eece33c306d66fe0a5c4f7f7b3c08fecc46ead86d7916684b36d6c", + "sha256:5f2294dbf7875b991c381e3d5af2bcc3494d836affa52b809c91697449d0eda6", + "sha256:6402bd2fdedabbdb63a316308142597534ea8e1895f4e7d8bf7476c5e8751fef", + "sha256:66460ab1599d3cf894bb6baee8c684788819b71a5dc1e8fa2ecc152e5d752019", + "sha256:782caea581a6e9ff75eccda79287daefd1d2631cc09d642b6ee2d6da21fc0a4e", + "sha256:79a3cfd6346ce6c13145731d39db47b7a7b859c0272f02cdb89a3bdcbae233a0", + "sha256:7a5bdad4edec57b5fb8dae7d3ee58622d626fd3a0be0dfceda162a7035885ecf", + "sha256:8fa0cbc7ecad630e5b0f4f35b0f6ad419246b02bc750de7ac66db92667996d24", + "sha256:9e3892bbf2423b6d2691b98f5c3bf7e9cd134d0671c8ae063903380093709e16", + "sha256:a027ef0492ede1e03a8054e3c37b8def89a1e3c471482e9f046906ba4f2aafd2", + "sha256:a3f3654d5734a3ece152636aad89f58afc9213c6520062db3978239db122f03c", + "sha256:a82b92b04a23d3c8a581fc049228bafde988abacba397d57ce95fe95e0338ab4", + "sha256:acf3763ed01af8410fc36afea23707d4ea58ba7e86a8ee915dfb9ceff9ef69d0", + "sha256:adeb4c5b608574a3d647011af36f7586811a2c1197c861aedb548dd2453b41cd", + "sha256:b83835506dfc185a319031cf853fa4bb1b3974b1f913f5bb1a0f3d98bdcded04", + "sha256:bb28a7245de68bf29f6fb199545d072d1036a1917dca17a1e75bbb919e14ee8e", + "sha256:bf9cb9a9fd8891e7efd2d44deb24b86d647394b9705b744ff6f8261e6f29a730", + "sha256:c317eaf5ff46a34305b202e73404f55f7389ef834b8dbf4da09b9b9b37f76dd2", + "sha256:dbe8c6ae7534b5b024296464f387d57c13caa942f6d8e6e0346f27e509f0f768", + "sha256:de807ae933cfb7f0c7d9d981a053772452217df2bf38e7e6267c9cbf9545a796", + "sha256:dead2ddede4c7ba6cb3a721870f5141c97dc7d85a079edb4bd8d88c3ad5b20c7", + "sha256:dec5202bfe6f672d4511086e125db035a52b00f1648d6407cc8e526912c0353a", + "sha256:e1ea316102ea1e1770724db01998d1603ed921c54a86a2efcb03428d5417e489", + "sha256:f90bfc4ad18450c80b024036eaf91e4a246ae287701aaa88eaebebf150868052" + ], + "version": "==5.1" + }, + "decorator": { + "hashes": [ + "sha256:41fa54c2a0cc4ba648be4fd43cff00aedf5b9465c9bf18d64325bc225f08f760", + "sha256:e3a62f0520172440ca0dcc823749319382e377f37f140a0b99ef45fecb84bfe7" + ], + "version": "==4.4.2" + }, + "defusedxml": { + "hashes": [ + "sha256:6687150770438374ab581bb7a1b327a847dd9c5749e396102de3fad4e8a3ef93", + "sha256:f684034d135af4c6cbb949b8a4d2ed61634515257a67299e5f940fbaa34377f5" + ], + "version": "==0.6.0" + }, + "distlib": { + "hashes": [ + "sha256:2e166e231a26b36d6dfe35a48c4464346620f8645ed0ace01ee31822b288de21", + "sha256:8a041060c5a140131768a2e2450813f5577f7e4c68a4585824c5585502dcfbea" + ], + "version": "==0.3.0" + }, + "docutils": { + "hashes": [ + "sha256:0c5b78adfbf7762415433f5515cd5c9e762339e23369dbe8000d84a4bf4ab3af", + "sha256:c2de3a60e9e7d07be26b7f2b00ca0309c207e06c100f9cc2a94931fc75a478fc" + ], + "version": "==0.16" + }, + "entrypoints": { + "hashes": [ + "sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19", + "sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451" + ], + "version": "==0.3" + }, + "filelock": { + "hashes": [ + "sha256:18d82244ee114f543149c66a6e0c14e9c4f8a1044b5cdaadd0f82159d6a6ff59", + "sha256:929b7d63ec5b7d6b71b0fa5ac14e030b3f70b75747cef1b10da9b879fef15836" + ], + "version": "==3.0.12" + }, + "flake8": { + "hashes": [ + "sha256:45681a117ecc81e870cbf1262835ae4af5e7a8b08e40b944a8a6e6b895914cfb", + "sha256:49356e766643ad15072a789a20915d3c91dc89fd313ccd71802303fd67e4deca" + ], + "index": "pypi", + "version": "==3.7.9" + }, + "identify": { + "hashes": [ + "sha256:23c18d97bb50e05be1a54917ee45cc61d57cb96aedc06aabb2b02331edf0dbf0", + "sha256:88ed90632023e52a6495749c6732e61e08ec9f4f04e95484a5c37b9caf40283c" + ], + "version": "==1.4.15" + }, + "idna": { + "hashes": [ + "sha256:7588d1c14ae4c77d74036e8c22ff447b26d0fde8f007354fd48a7814db15b7cb", + "sha256:a068a21ceac8a4d63dbfd964670474107f541babbd2250d61922f029858365fa" + ], + "version": "==2.9" + }, + "ipykernel": { + "hashes": [ + "sha256:003c9c1ab6ff87d11f531fee2b9ca59affab19676fc6b2c21da329aef6e73499", + "sha256:2937373c356fa5b634edb175c5ea0e4b25de8008f7c194f2d49cfbd1f9c970a8" + ], + "index": "pypi", + "version": "==5.2.1" + }, + "ipython": { + "hashes": [ + "sha256:1807adeae64502fcaa491cd93405644faa055b646efb40c1e48648ad66f65a75", + "sha256:ca478e52ae1f88da0102360e57e528b92f3ae4316aabac80a2cd7f7ab2efb48a", + "sha256:eb8d075de37f678424527b5ef6ea23f7b80240ca031c2dd6de5879d687a65333" + ], + "version": "==7.13.0" + }, + "ipython-genutils": { + "hashes": [ + "sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8", + "sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8" + ], + "version": "==0.2.0" + }, + "jedi": { + "hashes": [ + "sha256:cd60c93b71944d628ccac47df9a60fec53150de53d42dc10a7fc4b5ba6aae798", + "sha256:df40c97641cb943661d2db4c33c2e1ff75d491189423249e989bcea4464f3030" + ], + "version": "==0.17.0" + }, + "jinja2": { + "hashes": [ + "sha256:39cbce1ffc25cbf4860b09195654763be95b9e4900475b24d5c345d3e0948c53", + "sha256:c10142f819c2d22bdcd17548c46fa9b77cf4fda45097854c689666bf425e7484", + "sha256:c922560ac46888d47384de1dbdc3daaa2ea993af4b26a436dec31fa2c19ec668" + ], + "version": "==3.0.0a1" + }, + "jsonschema": { + "hashes": [ + "sha256:4e5b3cf8216f577bee9ce139cbe72eca3ea4f292ec60928ff24758ce626cd163", + "sha256:c8a85b28d377cc7737e46e2d9f2b4f44ee3c0e1deac6bf46ddefc7187d30797a" + ], + "version": "==3.2.0" + }, + "jupyter-client": { + "hashes": [ + "sha256:3a32fa4d0b16d1c626b30c3002a62dfd86d6863ed39eaba3f537fade197bb756", + "sha256:cde8e83aab3ec1c614f221ae54713a9a46d3bf28292609d2db1b439bef5a8c8e" + ], + "version": "==6.1.3" + }, + "jupyter-core": { + "hashes": [ + "sha256:394fd5dd787e7c8861741880bdf8a00ce39f95de5d18e579c74b882522219e7e", + "sha256:a4ee613c060fe5697d913416fc9d553599c05e4492d58fac1192c9a6844abb21" + ], + "version": "==4.6.3" + }, + "jupyterlab-pygments": { + "hashes": [ + "sha256:19a0ccde7daddec638363cd3d60b63a4f6544c9181d65253317b2fb492a797b9", + "sha256:c9535e5999f29bff90bd0fa423717dcaf247b71fad505d66b17d3217e9021fc5" + ], + "version": "==0.1.1" + }, + "keyring": { + "hashes": [ + "sha256:197fd5903901030ef7b82fe247f43cfed2c157a28e7747d1cfcf4bc5e699dd03", + "sha256:8179b1cdcdcbc221456b5b74e6b7cfa06f8dd9f239eb81892166d9223d82c5ba", + "sha256:dcb7f54f06c868526b97f9825b558e5199661f9647849acf9204c2d6028501dc" + ], + "version": "==21.2.0" + }, + "markupsafe": { + "hashes": [ + "sha256:06358015a4dee8ee23ae426bf885616ab3963622defd829eb45b44e3dee3515f", + "sha256:0b0c4fc852c5f02c6277ef3b33d23fcbe89b1b227460423e3335374da046b6db", + "sha256:267677fc42afed5094fc5ea1c4236bbe4b6a00fe4b08e93451e65ae9048139c7", + "sha256:303cb70893e2c345588fb5d5b86e0ca369f9bb56942f03064c5e3e75fa7a238a", + "sha256:3c9b624a0d9ed5a5093ac4edc4e823e6b125441e60ef35d36e6f4a6fdacd5054", + "sha256:42033e14cae1f6c86fc0c3e90d04d08ce73ac8e46ba420a0d22d545c2abd4977", + "sha256:4e4a99b6af7bdc0856b50020c095848ec050356a001e1f751510aef6ab14d0e0", + "sha256:4eb07faad54bb07427d848f31030a65a49ebb0cec0b30674f91cf1ddd456bfe4", + "sha256:63a7161cd8c2bc563feeda45df62f42c860dd0675e2b8da2667f25bb3c95eaba", + "sha256:68e0fd039b68d2945b4beb947d4023ca7f8e95b708031c345762efba214ea761", + "sha256:8092a63397025c2f655acd42784b2a1528339b90b987beb9253f22e8cdbb36c3", + "sha256:841218860683c0f2223e24756843d84cc49cccdae6765e04962607754a52d3e0", + "sha256:888d45d90cef0c9f32e01d5beb7b5dafe6d1076cc23977e39944cfca73888907", + "sha256:94076b2314bd2f6cfae508ad65b4d493e3a58a50112b7a2cbb6287bdbc404ae8", + "sha256:9d22aff1c5322e402adfb3ce40839a5056c353e711c033798cf4f02eb9f5124d", + "sha256:b0e4584f62b3e5f5c1a7bcefd2b52f236505e6ef032cc508caa4f4c8dc8d3af1", + "sha256:b1163ffc1384d242964426a8164da12dbcdbc0de18ea36e2c34b898ed38c3b45", + "sha256:beac28ed60c8e838301226a7a85841d0af2068eba2dcb1a58c2d32d6c05e440e", + "sha256:c29f096ce79c03054a1101d6e5fe6bf04b0bb489165d5e0e9653fb4fe8048ee1", + "sha256:c58779966d53e5f14ba393d64e2402a7926601d1ac8adeb4e83893def79d0428", + "sha256:cfe14b37908eaf7d5506302987228bff69e1b8e7071ccd4e70fd0283b1b47f0b", + "sha256:e834249c45aa9837d0753351cdca61a4b8b383cc9ad0ff2325c97ff7b69e72a6", + "sha256:eed1b234c4499811ee85bcefa22ef5e466e75d132502226ed29740d593316c1f" + ], + "version": "==2.0.0a1" + }, + "mccabe": { + "hashes": [ + "sha256:ab8a6258860da4b6677da4bd2fe5dc2c659cff31b3ee4f7f5d64e79735b80d42", + "sha256:dd8d182285a0fe56bace7f45b5e7d1a6ebcbf524e8f3bd87eb0f125271b8831f" + ], + "version": "==0.6.1" + }, + "mistune": { + "hashes": [ + "sha256:59a3429db53c50b5c6bcc8a07f8848cb00d7dc8bdb431a4ab41920d201d4756e", + "sha256:88a1051873018da288eee8538d476dffe1262495144b33ecb586c4ab266bb8d4" + ], + "version": "==0.8.4" + }, + "more-itertools": { + "hashes": [ + "sha256:5dd8bcf33e5f9513ffa06d5ad33d78f31e1931ac9a18f33d37e77a180d393a7c", + "sha256:b1ddb932186d8a6ac451e1d95844b382f55e12686d51ca0c68b6f61f2ab7a507" + ], + "version": "==8.2.0" + }, + "mypy": { + "hashes": [ + "sha256:15b948e1302682e3682f11f50208b726a246ab4e6c1b39f9264a8796bb416aa2", + "sha256:219a3116ecd015f8dca7b5d2c366c973509dfb9a8fc97ef044a36e3da66144a1", + "sha256:3b1fc683fb204c6b4403a1ef23f0b1fac8e4477091585e0c8c54cbdf7d7bb164", + "sha256:3beff56b453b6ef94ecb2996bea101a08f1f8a9771d3cbf4988a61e4d9973761", + "sha256:7687f6455ec3ed7649d1ae574136835a4272b65b3ddcf01ab8704ac65616c5ce", + "sha256:7ec45a70d40ede1ec7ad7f95b3c94c9cf4c186a32f6bacb1795b60abd2f9ef27", + "sha256:86c857510a9b7c3104cf4cde1568f4921762c8f9842e987bc03ed4f160925754", + "sha256:8a627507ef9b307b46a1fea9513d5c98680ba09591253082b4c48697ba05a4ae", + "sha256:8dfb69fbf9f3aeed18afffb15e319ca7f8da9642336348ddd6cab2713ddcf8f9", + "sha256:a34b577cdf6313bf24755f7a0e3f3c326d5c1f4fe7422d1d06498eb25ad0c600", + "sha256:a8ffcd53cb5dfc131850851cc09f1c44689c2812d0beb954d8138d4f5fc17f65", + "sha256:b90928f2d9eb2f33162405f32dde9f6dcead63a0971ca8a1b50eb4ca3e35ceb8", + "sha256:c56ffe22faa2e51054c5f7a3bc70a370939c2ed4de308c690e7949230c995913", + "sha256:f91c7ae919bbc3f96cd5e5b2e786b2b108343d1d7972ea130f7de27fdd547cf3" + ], + "index": "pypi", + "version": "==0.770" + }, + "mypy-extensions": { + "hashes": [ + "sha256:090fedd75945a69ae91ce1303b5824f428daf5a028d2f6ab8a299250a846f15d", + "sha256:2d82818f5bb3e369420cb3c4060a7970edba416647068eb4c5343488a6c604a8" + ], + "version": "==0.4.3" + }, + "nbclient": { + "hashes": [ + "sha256:193731fd5039061dbd7d6d3f765a2fa59d23012594d68b1798deea9c3eae4a01", + "sha256:44dde0356def1d9345908c8f58dc604a434f2fe61c49ac13fac6e2da2ae429de", + "sha256:4589b7d656adfb90397ffe34b19e16fab74f0e732bbda7828f96d1f3111744ac" + ], + "version": "==0.2.0" + }, + "nbconvert": { + "hashes": [ + "sha256:4b2eff78c254a85d1668af70fca1cab4cecb077324ca72a1ac8959af08e78e3d", + "sha256:b327e1e75673fa4e76659396a0a012cb144bf3adc7aba3b55756de9497a2215e", + "sha256:fa440adb42328e35ee904c948932086744c23881883afc9630f81514fcbd4c3d" + ], + "version": "==6.0.0a1" + }, + "nbformat": { + "hashes": [ + "sha256:049af048ed76b95c3c44043620c17e56bc001329e07f83fec4f177f0e3d7b757", + "sha256:276343c78a9660ab2a63c28cc33da5f7c58c092b3f3a40b6017ae2ce6689320d" + ], + "version": "==5.0.6" + }, + "nest-asyncio": { + "hashes": [ + "sha256:14e194b72144052a82173ca9109bd07c57813a320f42c7acfad1e4d329988350", + "sha256:b4cdd08655e2848098d204a26590cbfa39fcbc4ad1811c568678ffc8a0c8e279" + ], + "version": "==1.3.2" + }, + "nodeenv": { + "hashes": [ + "sha256:5b2438f2e42af54ca968dd1b374d14a1194848955187b0e5e4be1f73813a5212" + ], + "version": "==1.3.5" + }, + "notebook": { + "hashes": [ + "sha256:3edc616c684214292994a3af05eaea4cc043f6b4247d830f3a2f209fa7639a80", + "sha256:47a9092975c9e7965ada00b9a20f0cf637d001db60d241d479f53c0be117ad48" + ], + "version": "==6.0.3" + }, + "packaging": { + "hashes": [ + "sha256:3c292b474fda1671ec57d46d739d072bfd495a4f51ad01a055121d81e952b7a3", + "sha256:82f77b9bee21c1bafbf35a84905d604d5d1223801d639cf3ed140bd651c08752" + ], + "version": "==20.3" + }, + "pandocfilters": { + "hashes": [ + "sha256:41a309da81cba5509389b19d96b0ee49551cee8165a6406754f2565e95429860", + "sha256:b3dd70e169bb5449e6bc6ff96aea89c5eea8c5f6ab5e207fc2f521a2cf4a0da9" + ], + "version": "==1.4.2" + }, + "parso": { + "hashes": [ + "sha256:158c140fc04112dc45bca311633ae5033c2c2a7b732fa33d0955bad8152a8dd0", + "sha256:908e9fae2144a076d72ae4e25539143d40b8e3eafbaeae03c1bfe226f4cdf12c" + ], + "version": "==0.7.0" + }, + "pathspec": { + "hashes": [ + "sha256:7d91249d21749788d07a2d0f94147accd8f845507400749ea19c1ec9054a12b0", + "sha256:da45173eb3a6f2a5a487efba21f050af2b41948be6ab52b6a1e3ff22bb8b7061" + ], + "version": "==0.8.0" + }, + "pexpect": { + "hashes": [ + "sha256:0b48a55dcb3c05f3329815901ea4fc1537514d6ba867a152b581d69ae3710937", + "sha256:fc65a43959d153d0114afe13997d439c22823a27cefceb5ff35c2178c6784c0c" + ], + "version": "==4.8.0" + }, + "pickleshare": { + "hashes": [ + "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca", + "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56" + ], + "version": "==0.7.5" + }, + "pkginfo": { + "hashes": [ + "sha256:7424f2c8511c186cd5424bbf31045b77435b37a8d604990b79d4e70d741148bb", + "sha256:a6d9e40ca61ad3ebd0b72fbadd4fba16e4c0e4df0428c041e01e06eb6ee71f32" + ], + "version": "==1.5.0.1" + }, + "pluggy": { + "hashes": [ + "sha256:15b2acde666561e1298d71b523007ed7364de07029219b604cf808bfa1c765b0", + "sha256:966c145cd83c96502c3c3868f50408687b38434af77734af1e9ca461a4081d2d" + ], + "version": "==0.13.1" + }, + "pre-commit": { + "hashes": [ + "sha256:979b53dab1af35063a483bfe13b0fcbbf1a2cf8c46b60e0a9a8d08e8269647a1", + "sha256:df6cc19403b4ce6f8003e7657bcf6566150558070ee2363429f24033c09158bc", + "sha256:f3e85e68c6d1cbe7828d3471896f1b192cfcf1c4d83bf26e26beeb5941855257" + ], + "index": "pypi", + "version": "==2.3.0" + }, + "prometheus-client": { + "hashes": [ + "sha256:09b5750fd1c153420dccd35881116e853c730081bea0dbf0ea6649103bcb8445", + "sha256:71cd24a2b3eb335cb800c7159f423df1bd4dcd5171b234be15e3f31ec9f622da" + ], + "version": "==0.7.1" + }, + "prompt-toolkit": { + "hashes": [ + "sha256:563d1a4140b63ff9dd587bda9557cffb2fe73650205ab6f4383092fb882e7dc8", + "sha256:df7e9e63aea609b1da3a65641ceaf5bc7d05e0a04de5bd45d05dbeffbabf9e04" + ], + "version": "==3.0.5" + }, + "ptyprocess": { + "hashes": [ + "sha256:923f299cc5ad920c68f2bc0bc98b75b9f838b93b599941a6b63ddbc2476394c0", + "sha256:d7cc528d76e76342423ca640335bd3633420dc1366f258cb31d05e865ef5ca1f" + ], + "version": "==0.6.0" + }, + "py": { + "hashes": [ + "sha256:5e27081401262157467ad6e7f851b7aa402c5852dbcb3dae06768434de5752aa", + "sha256:c20fdd83a5dbc0af9efd622bee9a5564e278f6380fffcacc43ba6f43db2813b0" + ], + "version": "==1.8.1" + }, + "pycodestyle": { + "hashes": [ + "sha256:95a2219d12372f05704562a14ec30bc76b05a5b297b21a5dfe3f6fac3491ae56", + "sha256:e40a936c9a450ad81df37f549d676d127b1b66000a6c500caa2b085bc0ca976c" + ], + "version": "==2.5.0" + }, + "pyflakes": { + "hashes": [ + "sha256:17dbeb2e3f4d772725c777fabc446d5634d1038f234e77343108ce445ea69ce0", + "sha256:d976835886f8c5b31d47970ed689944a0262b5f3afa00a5a7b4dc81e5449f8a2" + ], + "version": "==2.1.1" + }, + "pygments": { + "hashes": [ + "sha256:647344a061c249a3b74e230c739f434d7ea4d8b1d5f3721bc0f3558049b38f44", + "sha256:aa931c0bd5daa25c475afadb2147115134cfe501f0656828cbe7cb566c7123bc", + "sha256:ff7a40b4860b727ab48fad6360eb351cc1b33cbf9b15a0f689ca5353e9463324" + ], + "version": "==2.6.1" + }, + "pyparsing": { + "hashes": [ + "sha256:67199f0c41a9c702154efb0e7a8cc08accf830eb003b4d9fa42c4059002e2492", + "sha256:700d17888d441604b0bd51535908dcb297561b040819cccde647a92439db5a2a" + ], + "version": "==3.0.0a1" + }, + "pyrsistent": { + "hashes": [ + "sha256:28669905fe725965daa16184933676547c5bb40a5153055a8dee2a4bd7933ad3", + "sha256:3217696df78f9222a3d1179b119c27be346b969a9e4d617de2a215a87d9aa456", + "sha256:9324b762b52e5a901611b25f50f9cdf8789c61ece3ff7c24dc872603c4faca62", + "sha256:c11415790cc5803e173de7d71d54f94c66a9154f81a72ffdf45a70096916f226" + ], + "version": "==0.16.0" + }, + "pytest": { + "hashes": [ + "sha256:0e5b30f5cb04e887b91b1ee519fa3d89049595f428c1db76e73bd7f17b09b172", + "sha256:84dde37075b8805f3d1f392cc47e38a0e59518fb46a431cfdaf7cf1ce805f970" + ], + "index": "pypi", + "version": "==5.4.1" + }, + "pytest-cov": { + "hashes": [ + "sha256:cc6742d8bac45070217169f5f72ceee1e0e55b0221f54bcf24845972d3a47f2b", + "sha256:cdbdef4f870408ebdbfeb44e63e07eb18bb4619fae852f6e760645fa36172626" + ], + "index": "pypi", + "version": "==2.8.1" + }, + "python-dateutil": { + "hashes": [ + "sha256:73ebfe9dbf22e832286dafa60473e4cd239f8592f699aa5adaf10050e6e1823c", + "sha256:75bb3f31ea686f1197762692a9ee6a7550b59fc6ca3a1f4b5d7e32fb98e2da2a" + ], + "version": "==2.8.1" + }, + "pywin32": { + "hashes": [ + "sha256:300a2db938e98c3e7e2093e4491439e62287d0d493fe07cce110db070b54c0be", + "sha256:31f88a89139cb2adc40f8f0e65ee56a8c585f629974f9e07622ba80199057511", + "sha256:371fcc39416d736401f0274dd64c2302728c9e034808e37381b5e1b22be4a6b0", + "sha256:47a3c7551376a865dd8d095a98deba954a98f326c6fe3c72d8726ca6e6b15507", + "sha256:4cdad3e84191194ea6d0dd1b1b9bdda574ff563177d2adf2b4efec2a244fa116", + "sha256:7c1ae32c489dc012930787f06244426f8356e129184a02c25aef163917ce158e", + "sha256:7f18199fbf29ca99dff10e1f09451582ae9e372a892ff03a28528a24d55875bc", + "sha256:9b31e009564fb95db160f154e2aa195ed66bcc4c058ed72850d047141b36f3a2", + "sha256:a929a4af626e530383a579431b70e512e736e9588106715215bf685a3ea508d4", + "sha256:c054c52ba46e7eb6b7d7dfae4dbd987a1bb48ee86debe3f245a2884ece46e295", + "sha256:f27cec5e7f588c3d1051651830ecc00294f90728d19c3bf6916e6dba93ea357c", + "sha256:f4c5be1a293bae0076d93c88f37ee8da68136744588bc5e2be2f299a34ceb7aa" + ], + "markers": "sys_platform == 'win32'", + "version": "==227" + }, + "pywin32-ctypes": { + "hashes": [ + "sha256:24ffc3b341d457d48e8922352130cf2644024a4ff09762a2261fd34c36ee5942", + "sha256:9dc2d991b3479cc2df15930958b674a48a227d5361d413827a4cfd0b5876fc98" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.2.0" + }, + "pywinpty": { + "hashes": [ + "sha256:1e525a4de05e72016a7af27836d512db67d06a015aeaf2fa0180f8e6a039b3c2", + "sha256:2740eeeb59297593a0d3f762269b01d0285c1b829d6827445fcd348fb47f7e70", + "sha256:2d7e9c881638a72ffdca3f5417dd1563b60f603e1b43e5895674c2a1b01f95a0", + "sha256:33df97f79843b2b8b8bc5c7aaf54adec08cc1bae94ee99dfb1a93c7a67704d95", + "sha256:5fb2c6c6819491b216f78acc2c521b9df21e0f53b9a399d58a5c151a3c4e2a2d", + "sha256:8fc5019ff3efb4f13708bd3b5ad327589c1a554cb516d792527361525a7cb78c", + "sha256:b358cb552c0f6baf790de375fab96524a0498c9df83489b8c23f7f08795e966b", + "sha256:dbd838de92de1d4ebf0dce9d4d5e4fc38d0b7b1de837947a18b57a882f219139", + "sha256:dd22c8efacf600730abe4a46c1388355ce0d4ab75dc79b15d23a7bd87bf05b48", + "sha256:e854211df55d107f0edfda8a80b39dfc87015bef52a8fe6594eb379240d81df2" + ], + "markers": "os_name == 'nt'", + "version": "==0.5.7" + }, + "pyyaml": { + "hashes": [ + "sha256:06a0d7ba600ce0b2d2fe2e78453a470b5a6e000a985dd4a4e54e436cc36b0e97", + "sha256:240097ff019d7c70a4922b6869d8a86407758333f02203e0fc6ff79c5dcede76", + "sha256:4f4b913ca1a7319b33cfb1369e91e50354d6f07a135f3b901aca02aa95940bd2", + "sha256:589929630502f3b0e87daee190b399f98401b6bccea87ed634a73fe5da43d3d4", + "sha256:69f00dca373f240f842b2931fb2c7e14ddbacd1397d57157a9b005a6a9942648", + "sha256:6e8383720b2127b09dba5b323ac896c702cf02bc5786fce16cd6791825d92d16", + "sha256:73f099454b799e05e5ab51423c7bcf361c58d3206fa7b0d555426b1f4d9a3eaf", + "sha256:74809a57b329d6cc0fdccee6318f44b9b8649961fa73144a98735b0aaf029f1f", + "sha256:7739fc0fa8205b3ee8808aea45e968bc90082c10aef6ea95e855e10abf4a37b2", + "sha256:95f71d2af0ff4227885f7a6605c37fd53d3a106fcab511b8860ecca9fcf400ee", + "sha256:b8eac752c5e14d3eca0e6dd9199cd627518cb5ec06add0de9d32baeee6fe645d", + "sha256:cc8955cfbfc7a115fa81d85284ee61147059a753344bc51098f3ccd69b0d7e0c", + "sha256:d13155f591e6fcc1ec3b30685d50bf0711574e2c0dfffd7644babf8b5102ca1a" + ], + "version": "==5.3.1" + }, + "pyzmq": { + "hashes": [ + "sha256:07bfbf192f22ef1dde65b6046efff191e3201e74da6d47098e68958469ecbe48", + "sha256:0bbc1728fe4314b4ca46249c33873a390559edac7c217ec7001b5e0c34a8fb7f", + "sha256:1e076ad5bd3638a18c376544d32e0af986ca10d43d4ce5a5d889a8649f0d0a3d", + "sha256:242d949eb6b10197cda1d1cec377deab1d5324983d77e0d0bf9dc5eb6d71a6b4", + "sha256:26f4ae420977d2a8792d7c2d7bda43128b037b5eeb21c81951a94054ad8b8843", + "sha256:32234c21c5e0a767c754181c8112092b3ddd2e2a36c3f76fc231ced817aeee47", + "sha256:3f12ce1e9cc9c31497bd82b207e8e86ccda9eebd8c9f95053aae46d15ccd2196", + "sha256:4557d5e036e6d85715b4b9fdb482081398da1d43dc580d03db642b91605b409f", + "sha256:4f562dab21c03c7aa061f63b147a595dbe1006bf4f03213272fc9f7d5baec791", + "sha256:54ecd00daa474885bbf318108401d318614425a05dfeae917611dd93f99f2678", + "sha256:5e071b834051e9ecb224915398f474bfad802c2fff883f118ff5363ca4ae3edf", + "sha256:5e1f65e576ab07aed83f444e201d86deb01cd27dcf3f37c727bc8729246a60a8", + "sha256:5f10a31f288bf055be76c57710807a8f0efdb2b82be6c2a2b8f9a61f33a40cea", + "sha256:6aaaf90b420dc40d9a0e1996b82c6a0ff91d9680bebe2135e67c9e6d197c0a53", + "sha256:75238d3c16cab96947705d5709187a49ebb844f54354cdf0814d195dd4c045de", + "sha256:7f7e7b24b1d392bb5947ba91c981e7d1a43293113642e0d8870706c8e70cdc71", + "sha256:84b91153102c4bcf5d0f57d1a66a0f03c31e9e6525a5f656f52fc615a675c748", + "sha256:944f6bb5c63140d76494467444fd92bebd8674236837480a3c75b01fe17df1ab", + "sha256:a1f957c20c9f51d43903881399b078cddcf710d34a2950e88bce4e494dcaa4d1", + "sha256:a49fd42a29c1cc1aa9f461c5f2f5e0303adba7c945138b35ee7f4ab675b9f754", + "sha256:a99ae601b4f6917985e9bb071549e30b6f93c72f5060853e197bdc4b7d357e5f", + "sha256:ad48865a29efa8a0cecf266432ea7bc34e319954e55cf104be0319c177e6c8f5", + "sha256:b08e425cf93b4e018ab21dc8fdbc25d7d0502a23cc4fea2380010cf8cf11e462", + "sha256:bb10361293d96aa92be6261fa4d15476bca56203b3a11c62c61bd14df0ef89ba", + "sha256:bd1a769d65257a7a12e2613070ca8155ee348aa9183f2aadf1c8b8552a5510f5", + "sha256:cb3b7156ef6b1a119e68fbe3a54e0a0c40ecacc6b7838d57dd708c90b62a06dc", + "sha256:d2f64994f9628f621e0f636f9532055887defc9fa5213aaeceb770d9c579f9ac", + "sha256:e8e4efb52ec2df8d046395ca4c84ae0056cf507b2f713ec803c65a8102d010de", + "sha256:f37c29da2a5b0c5e31e6f8aab885625ea76c807082f70b2d334d3fd573c3100a", + "sha256:f4d558bc5668d2345773a9ff8c39e2462dafcb1f6772a2e582fbced389ce527f", + "sha256:f5b6d015587a1d6f582ba03b226a9ddb1dfb09878b3be04ef48b01b7d4eb6b2a" + ], + "version": "==19.0.0" + }, + "readme-renderer": { + "hashes": [ + "sha256:302f50d694158d6fbd5db1ab549999ade0669b8386b09dafa9c54861e0571b75", + "sha256:cbe9db71defedd2428a1589cdc545f9bd98e59297449f69d721ef8f1cfced68d", + "sha256:cc4957a803106e820d05d14f71033092537a22daa4f406dfbdd61177e0936376" + ], + "version": "==26.0" + }, + "regex": { + "hashes": [ + "sha256:08119f707f0ebf2da60d2f24c2f39ca616277bb67ef6c92b72cbf90cbe3a556b", + "sha256:0ce9537396d8f556bcfc317c65b6a0705320701e5ce511f05fc04421ba05b8a8", + "sha256:1cbe0fa0b7f673400eb29e9ef41d4f53638f65f9a2143854de6b1ce2899185c3", + "sha256:2294f8b70e058a2553cd009df003a20802ef75b3c629506be20687df0908177e", + "sha256:23069d9c07e115537f37270d1d5faea3e0bdded8279081c4d4d607a2ad393683", + "sha256:24f4f4062eb16c5bbfff6a22312e8eab92c2c99c51a02e39b4eae54ce8255cd1", + "sha256:295badf61a51add2d428a46b8580309c520d8b26e769868b922750cf3ce67142", + "sha256:2a3bf8b48f8e37c3a40bb3f854bf0121c194e69a650b209628d951190b862de3", + "sha256:4385f12aa289d79419fede43f979e372f527892ac44a541b5446617e4406c468", + "sha256:5635cd1ed0a12b4c42cce18a8d2fb53ff13ff537f09de5fd791e97de27b6400e", + "sha256:5bfed051dbff32fd8945eccca70f5e22b55e4148d2a8a45141a3b053d6455ae3", + "sha256:7e1037073b1b7053ee74c3c6c0ada80f3501ec29d5f46e42669378eae6d4405a", + "sha256:9016fe9da2a10642e25543c9ffaa2466dac697d87d42653666ec84007e4d37d3", + "sha256:90742c6ff121a9c5b261b9b215cb476eea97df98ea82037ec8ac95d1be7a034f", + "sha256:a58dd45cb865be0ce1d5ecc4cfc85cd8c6867bea66733623e54bd95131f473b6", + "sha256:c087bff162158536387c53647411db09b6ee3f9603c334c90943e97b1052a156", + "sha256:c162a21e0da33eb3d31a3ac17a51db5e634fc347f650d271f0305d96601dc15b", + "sha256:c9423a150d3a4fc0f3f2aae897a59919acd293f4cb397429b120a5fcd96ea3db", + "sha256:ccccdd84912875e34c5ad2d06e1989d890d43af6c2242c6fcfa51556997af6cd", + "sha256:e04db93ad8072c40ce03e5ea074fe811e483a2fc5b539f481264e09bf6522559", + "sha256:e91ba11da11cf770f389e47c3f5c30473e6d85e06d7fd9dcba0017d2867aab4a", + "sha256:ea4adf02d23b437684cd388d557bf76e3afa72f7fed5bbc013482cc00c816948", + "sha256:fa4c724fc5b867d3a2461d4d78e0feb6adfeee5f2976071aba4b2325fae71045", + "sha256:fb95debbd1a824b2c4376932f2216cc186912e389bdb0e27147778cf6acb3f89" + ], + "version": "==2020.4.4" + }, + "remote-ikernel": { + "hashes": [ + "sha256:5253216e87a8c31f1b0ca9305454f223147518b580e853b7635a3d8b9c88c295", + "sha256:740b80a57fa1af40cadef541c5a4eb293675b504092ecf00c57dd2f0011bd840" + ], + "index": "pypi", + "version": "==0.4.6" + }, + "requests": { + "hashes": [ + "sha256:43999036bfa82904b6af1d99e4882b560e5e2c68e5c4b0aa03b655f3d7d73fee", + "sha256:b3f43d496c6daba4493e7c431722aeb7dbc6288f52a6e04e7b6023b0247817e6" + ], + "version": "==2.23.0" + }, + "requests-toolbelt": { + "hashes": [ + "sha256:380606e1d10dc85c3bd47bf5a6095f815ec007be7a8b69c878507068df059e6f", + "sha256:968089d4584ad4ad7c171454f0a5c6dac23971e9472521ea3b6d49d610aa6fc0" + ], + "version": "==0.9.1" + }, + "send2trash": { + "hashes": [ + "sha256:60001cc07d707fe247c94f74ca6ac0d3255aabcb930529690897ca2a39db28b2", + "sha256:f1691922577b6fa12821234aeb57599d887c4900b9ca537948d2dac34aea888b" + ], + "version": "==1.5.0" + }, + "six": { + "hashes": [ + "sha256:236bdbdce46e6e6a3d61a337c0f8b763ca1e8717c03b369e87a7ec7ce1319c0a", + "sha256:8f3cd2e254d8f793e7f3d6d9df77b92252b52637291d0f0da013c76ea2724b6c" + ], + "version": "==1.14.0" + }, + "soupsieve": { + "hashes": [ + "sha256:e914534802d7ffd233242b785229d5ba0766a7f487385e3f714446a07bf540ae", + "sha256:f24cabf0197b86c6d5e3fb96fd11a1c0739618375d95de91a477aa9652282150", + "sha256:fcd71e08c0aee99aca1b73f45478549ee7e7fc006d51b37bec9e9def7dc22b69" + ], + "version": "==2.0" + }, + "sqlalchemy-stubs": { + "hashes": [ + "sha256:a3318c810697164e8c818aa2d90bac570c1a0e752ced3ec25455b309c0bee8fd", + "sha256:ca1250605a39648cc433f5c70cb1a6f9fe0b60bdda4c51e1f9a2ab3651daadc8" + ], + "index": "pypi", + "version": "==0.3" + }, + "terminado": { + "hashes": [ + "sha256:4804a774f802306a7d9af7322193c5390f1da0abb429e082a10ef1d46e6fb2c2", + "sha256:a43dcb3e353bc680dd0783b1d9c3fc28d529f190bc54ba9a229f72fe6e7a54d7" + ], + "version": "==0.8.3" + }, + "testpath": { + "hashes": [ + "sha256:60e0a3261c149755f4399a1fff7d37523179a70fdc3abdf78de9fc2604aeec7e", + "sha256:bfcf9411ef4bf3db7579063e0546938b1edda3d69f4e1fb8756991f5951f85d4" + ], + "version": "==0.4.4" + }, + "toml": { + "hashes": [ + "sha256:229f81c57791a41d65e399fc06bf0848bab550a9dfd5ed66df18ce5f05e73d5c", + "sha256:235682dd292d5899d361a811df37e04a8828a5b1da3115886b73cf81ebc9100e" + ], + "version": "==0.10.0" + }, + "tornado": { + "hashes": [ + "sha256:0fe2d45ba43b00a41cd73f8be321a44936dc1aba233dee979f17a042b83eb6dc", + "sha256:22aed82c2ea340c3771e3babc5ef220272f6fd06b5108a53b4976d0d722bcd52", + "sha256:2c027eb2a393d964b22b5c154d1a23a5f8727db6fda837118a776b29e2b8ebc6", + "sha256:503700d85d9a2c2aa737fb16df58bfa2ac0d5ec501881fea2acceae64ce17858", + "sha256:5217e601700f24e966ddab689f90b7ea4bd91ff3357c3600fa1045e26d68e55d", + "sha256:5618f72e947533832cbc3dec54e1dffc1747a5cb17d1fd91577ed14fa0dc081b", + "sha256:5f6a07e62e799be5d2330e68d808c8ac41d4a259b9cea61da4101b83cb5dc673", + "sha256:7182a9285e364e55e6902b5fb4d4a219efd8d7818d9000b419a0eaf3909fc0bc", + "sha256:c58d56003daf1b616336781b26d184023ea4af13ae143d9dda65e31e534940b9", + "sha256:c952975c8ba74f546ae6de2e226ab3cc3cc11ae47baf607459a6728585bb542a", + "sha256:c98232a3ac391f5faea6821b53db8db461157baa788f5d6222a193e9456e1740" + ], + "version": "==6.0.4" + }, + "tqdm": { + "hashes": [ + "sha256:00339634a22c10a7a22476ee946bbde2dbe48d042ded784e4d88e0236eca5d81", + "sha256:ea9e3fd6bd9a37e8783d75bfc4c1faf3c6813da6bd1c3e776488b41ec683af94" + ], + "version": "==4.45.0" + }, + "traitlets": { + "hashes": [ + "sha256:70b4c6a1d9019d7b4f6846832288f86998aa3b9207c6821f3578a6a6a467fe44", + "sha256:d023ee369ddd2763310e4c3eae1ff649689440d4ae59d7485eb4cfbbe3e359f7" + ], + "version": "==4.3.3" + }, + "twine": { + "hashes": [ + "sha256:c1af8ca391e43b0a06bbc155f7f67db0bf0d19d284bfc88d1675da497a946124", + "sha256:d561a5e511f70275e5a485a6275ff61851c16ffcb3a95a602189161112d9f160" + ], + "index": "pypi", + "version": "==3.1.1" + }, + "typed-ast": { + "hashes": [ + "sha256:0666aa36131496aed8f7be0410ff974562ab7eeac11ef351def9ea6fa28f6355", + "sha256:0c2c07682d61a629b68433afb159376e24e5b2fd4641d35424e462169c0a7919", + "sha256:249862707802d40f7f29f6e1aad8d84b5aa9e44552d2cc17384b209f091276aa", + "sha256:24995c843eb0ad11a4527b026b4dde3da70e1f2d8806c99b7b4a7cf491612652", + "sha256:269151951236b0f9a6f04015a9004084a5ab0d5f19b57de779f908621e7d8b75", + "sha256:3791f73e5d75aa9a95274679ab4821bd9d16de623c4ecf4900a77a29864ee144", + "sha256:4083861b0aa07990b619bd7ddc365eb7fa4b817e99cf5f8d9cf21a42780f6e01", + "sha256:498b0f36cc7054c1fead3d7fc59d2150f4d5c6c56ba7fb150c013fbc683a8d2d", + "sha256:4e3e5da80ccbebfff202a67bf900d081906c358ccc3d5e3c8aea42fdfdfd51c1", + "sha256:6daac9731f172c2a22ade6ed0c00197ee7cc1221aa84cfdf9c31defeb059a907", + "sha256:715ff2f2df46121071622063fc7543d9b1fd19ebfc4f5c8895af64a77a8c852c", + "sha256:73d785a950fc82dd2a25897d525d003f6378d1cb23ab305578394694202a58c3", + "sha256:8c8aaad94455178e3187ab22c8b01a3837f8ee50e09cf31f1ba129eb293ec30b", + "sha256:8ce678dbaf790dbdb3eba24056d5364fb45944f33553dd5869b7580cdbb83614", + "sha256:aaee9905aee35ba5905cfb3c62f3e83b3bec7b39413f0a7f19be4e547ea01ebb", + "sha256:bcd3b13b56ea479b3650b82cabd6b5343a625b0ced5429e4ccad28a8973f301b", + "sha256:c9e348e02e4d2b4a8b2eedb48210430658df6951fa484e59de33ff773fbd4b41", + "sha256:d205b1b46085271b4e15f670058ce182bd1199e56b317bf2ec004b6a44f911f6", + "sha256:d43943ef777f9a1c42bf4e552ba23ac77a6351de620aa9acf64ad54933ad4d34", + "sha256:d5d33e9e7af3b34a40dc05f498939f0ebf187f07c385fd58d591c533ad8562fe", + "sha256:df74880bdb70f34304ccc52b0c99d3e578f96a906b86f3ae172a1f1c2edef2bc", + "sha256:fc0fea399acb12edbf8a628ba8d2312f583bdbdb3335635db062fa98cf71fca4", + "sha256:fe460b922ec15dd205595c9b5b99e2f056fd98ae8f9f56b888e7a17dc2b757e7" + ], + "version": "==1.4.1" + }, + "typing-extensions": { + "hashes": [ + "sha256:6e95524d8a547a91e08f404ae485bbb71962de46967e1b71a0cb89af24e761c5", + "sha256:79ee589a3caca649a9bfd2a8de4709837400dfa00b6cc81962a1e6a1815969ae", + "sha256:f8d2bd89d25bc39dabe7d23df520442fa1d8969b82544370e03d88b5a591c392" + ], + "version": "==3.7.4.2" + }, + "urllib3": { + "hashes": [ + "sha256:3018294ebefce6572a474f0604c2021e33b3fd8006ecd11d62107a5d2a963527", + "sha256:88206b0eb87e6d677d424843ac5209e3fb9d0190d0ee169599165ec25e9d9115" + ], + "version": "==1.25.9" + }, + "virtualenv": { + "hashes": [ + "sha256:5021396e8f03d0d002a770da90e31e61159684db2859d0ba4850fbea752aa675", + "sha256:ac53ade75ca189bc97b6c1d9ec0f1a50efe33cbf178ae09452dcd9fd309013c1" + ], + "version": "==20.0.18" + }, + "waitress": { + "hashes": [ + "sha256:045b3efc3d97c93362173ab1dfc159b52cfa22b46c3334ffc805dbdbf0e4309e", + "sha256:77ff3f3226931a1d7d8624c5371de07c8e90c7e5d80c5cc660d72659aaf23f38" + ], + "index": "pypi", + "version": "==1.4.3" + }, + "wcwidth": { + "hashes": [ + "sha256:cafe2186b3c009a04067022ce1dcd79cb38d8d65ee4f4791b8888d6599d1bbe1", + "sha256:ee73862862a156bf77ff92b09034fc4825dd3af9cf81bc5b360668d425f3c5f1" + ], + "version": "==0.1.9" + }, + "webencodings": { + "hashes": [ + "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", + "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923" + ], + "version": "==0.5.1" + }, + "webob": { + "hashes": [ + "sha256:a3c89a8e9ba0aeb17382836cdb73c516d0ecf6630ec40ec28288f3ed459ce87b", + "sha256:aa3a917ed752ba3e0b242234b2a373f9c4e2a75d35291dcbe977649bd21fd108" + ], + "version": "==1.8.6" + }, + "webtest": { + "hashes": [ + "sha256:71114cd778a7d7b237ec5c8a5c32084f447d869ae62e48bcd5b73af211133e74", + "sha256:da9cf14c103ff51a40dee4cac7657840d1317456eb8f0ca81289b5cbff175f4b" + ], + "index": "pypi", + "version": "==2.0.34" + }, + "wheel": { + "hashes": [ + "sha256:8788e9155fe14f54164c1b9eb0a319d98ef02c160725587ad60f14ddc57b6f96", + "sha256:df277cb51e61359aba502208d680f90c0493adec6f0e848af94948778aed386e" + ], + "index": "pypi", + "version": "==0.34.2" + } + } +} diff --git a/Ch11/apd.sensors-chapter11-ex01/README.md b/Ch11/apd.sensors-chapter11-ex01/README.md new file mode 100644 index 0000000..cd96353 --- /dev/null +++ b/Ch11/apd.sensors-chapter11-ex01/README.md @@ -0,0 +1,96 @@ +# Advanced Python Development Sensors + +This is the data collection package that forms part of the running example +for the book [Advanced Python Development](https://advancedpython.dev). + +## Usage + +This installs a console script called `sensors` that returns a report on +various aspects of the system. The available sensors are: + +* Python version +* IP Addresses +* CPU Usage +* RAM Available +* Battery charging state +* Ambient Temperature +* Ambient Humidity + +There are no command-line options, to view the report run `sensors` on the +command line. + +## Caveats + +The Ambient Temperature and Ambient Humidity sensors are only available on +RaspberryPi hosts and assume that a DHT22 sensor is connected to pin `D20`. + +The location and type of the sensor can be controlled by setting a pair of +environment variables: `APD_SENSORS_TEMPERATURE_BOARD` and +`APD_SENSORS_TEMPERATURE_PIN`. + +If there is an entry in `/etc/hosts` for the current machine's hostname that +value will be the only result from the IP Addresses sensor. + +## Installation + +You can install with `pip3 install apd.sensors` under Python 3.7 or higher. + +We recommend using pipenv to manage your environment, in which case you would +install using `pipenv --three install apd.sensors` and run the programme using +`pipenv run sensors`. + +## API server + +There is an optional API server shipped with apd.sensors. To use this you +should install the `apd.sensors[webapp]` extra. The API can then be started +with the non-production quality wsgiref server using: + + python -m apd.sensors.wsgi.serve + +or through Waitress (if installed) using: + + waitress-serve --call apd.sensors.wsgi:set_up_config + +Other WSGI servers will also work, you should use set_up_config as a factory +function. + +An environment variable is required to use the API server, `APD_SENSORS_API_KEY` +should be set to the API key required to gain access. One can be generated +using: + + python -c "import uuid; print(uuid.uuid4().hex)" + +The following endpoints are supported: + +* /v/3.0/sensors +* /v/3.0/sensors/sensorid +* /v/3.0/deployment_id + +## Historical data + +You can install optional functionality to periodically store sensor +values using the `apd.sensors[scheduled]` extra. In this case, +`sensors --save` will store the recorded data to `sensor_data.sqlite` +in the current working directory. + +The database connection can be specified with `--db sqlite:////var/sensors.sqlite`, +for example. It can also be specified with the `APD_SENSORS_DB_URI` +environment variable. + +The database must be migrated to contain the correct data first. This can be +done by running `alembic upgrade head` with the following alembic.ini file +in the current working directory. + + [alembic] + script_location = apd.sensors:alembic + sqlalchemy.url = sqlite:///sensor_data.sqlite + +### Historical data API + +An API to extract historical data is also available if installed with `apd.sensors[webapp,scheduled,storedapi]`. + +This provides the following three URIs, where start and end are a date/time in ISO format. + +* /v/3.0/historical +* /v/3.0/historical/start +* /v/3.0/historical/start/end diff --git a/Ch11/apd.sensors-chapter11-ex01/plugins/apd.sunnyboy_solar/pyproject.toml b/Ch11/apd.sensors-chapter11-ex01/plugins/apd.sunnyboy_solar/pyproject.toml new file mode 100644 index 0000000..4d3bb67 --- /dev/null +++ b/Ch11/apd.sensors-chapter11-ex01/plugins/apd.sunnyboy_solar/pyproject.toml @@ -0,0 +1,5 @@ +[build-system] +requires = [ + "setuptools", +] +build-backend = "setuptools.build_meta" diff --git a/Ch11/apd.sensors-chapter11-ex01/plugins/apd.sunnyboy_solar/setup.cfg b/Ch11/apd.sensors-chapter11-ex01/plugins/apd.sunnyboy_solar/setup.cfg new file mode 100644 index 0000000..0f5db10 --- /dev/null +++ b/Ch11/apd.sensors-chapter11-ex01/plugins/apd.sunnyboy_solar/setup.cfg @@ -0,0 +1,33 @@ +[mypy] +ignore_missing_imports = True + +[flake8] +max-line-length = 88 + +[metadata] +name = apd.sunnyboy_solar +version = attr: apd.sunnyboy_solar.VERSION +description = APD Sensor for reading data from Sunnyboy inverters +long_description = file: README.md, CHANGES.md, LICENCE +long_description_content_type = text/markdown +keywords = iot solar +license = MIT +classifiers = + Programming Language :: Python :: 3 + Programming Language :: Python :: 3.7 + +[options] +zip_safe = False +include_package_data = True +package_dir = + =src +packages = find_namespace: +install_requires = + apd.sensors + +[options.packages.find] +where = src + +[options.entry_points] +apd.sensors.sensors = + SolarCumulativeOutput = apd.sunnyboy_solar.sensor:SolarCumulativeOutput diff --git a/Ch11/apd.sensors-chapter11-ex01/plugins/apd.sunnyboy_solar/setup.py b/Ch11/apd.sensors-chapter11-ex01/plugins/apd.sunnyboy_solar/setup.py new file mode 100644 index 0000000..6068493 --- /dev/null +++ b/Ch11/apd.sensors-chapter11-ex01/plugins/apd.sunnyboy_solar/setup.py @@ -0,0 +1,3 @@ +from setuptools import setup + +setup() diff --git a/Ch11/apd.sensors-chapter11-ex01/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/Pipfile b/Ch11/apd.sensors-chapter11-ex01/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/Pipfile new file mode 100644 index 0000000..e69de29 diff --git a/Ch11/apd.sensors-chapter11-ex01/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/__init__.py b/Ch11/apd.sensors-chapter11-ex01/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/__init__.py new file mode 100644 index 0000000..3277f64 --- /dev/null +++ b/Ch11/apd.sensors-chapter11-ex01/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/__init__.py @@ -0,0 +1 @@ +VERSION = "1.0.0" diff --git a/Ch11/apd.sensors-chapter11-ex01/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/sensor.py b/Ch11/apd.sensors-chapter11-ex01/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/sensor.py new file mode 100644 index 0000000..190159a --- /dev/null +++ b/Ch11/apd.sensors-chapter11-ex01/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/sensor.py @@ -0,0 +1,73 @@ +import os +import subprocess +import typing as t + +from pint import _DEFAULT_REGISTRY as ureg + +from apd.sensors.base import Sensor +from apd.sensors.exceptions import ( + PersistentSensorFailureError, + IntermittentSensorFailureError, +) + + +class SolarCumulativeOutput(Sensor[t.Any]): + name = "SolarCumulativeOutput" + title = "Solar panel cumulative output" + + def __init__( + self, path: t.Optional[str] = None, bt_addr: t.Optional[str] = None + ) -> None: + self.path = os.environ.get( + "APD_SUNNYBOYSOLAR_PATH", "/home/pi/opensunny-master/opensunny" + ) + self.bt_addr = os.environ.get("APD_SUNNYBOYSOLAR_BT_ADDRESS", None) + + def value(self) -> t.Optional[t.Any]: + if self.bt_addr is None: + raise PersistentSensorFailureError("Inverter address not configured") + try: + output: bytes = subprocess.check_output( + [self.path, "-i", self.bt_addr], stderr=subprocess.STDOUT, timeout=15 + ) + except subprocess.CalledProcessError as err: + raise IntermittentSensorFailureError( + "Failure communicating with inverter" + ) from err + except FileNotFoundError as err: + raise PersistentSensorFailureError( + "Inverter control software not installed" + ) from err + + lines = filter(None, output.split(b"\n")) + found = {} + for line in lines: + start, value = line.rsplit(b"=", 1) + start, key = start.rsplit(b" ", 1) + found[key] = value + + try: + yield_total = float(found[b"yield_total"][:-3].replace(b".", b"")) + power_dc_1 = int(found[b"power_dc_1"][:-1]) + power_dc_2 = int(found[b"power_dc_2"][:-1]) + if power_dc_1 > 1500 or power_dc_2 > 1500: + raise IntermittentSensorFailureError( + "Received corrupt data from inverter" + ) + except (ValueError, IndexError, KeyError) as err: + raise IntermittentSensorFailureError( + "Received incomplete data from inverter" + ) from err + return ureg.Quantity(yield_total, "watt") + + @classmethod + def format(cls, value: t.Any) -> str: + return "{:~P}".format(value.to(ureg.kilowatt)) + + @classmethod + def to_json_compatible(cls, value: t.Any) -> t.Dict[str, t.Union[str, float]]: + return {"magnitude": value.magnitude, "unit": str(value.units)} + + @classmethod + def from_json_compatible(cls, json_version: t.Any) -> t.Any: + return ureg.Quantity(json_version["magnitude"], ureg[json_version["unit"]]) diff --git a/Ch11/apd.sensors-chapter11-ex01/pytest.ini b/Ch11/apd.sensors-chapter11-ex01/pytest.ini new file mode 100644 index 0000000..0b96d0d --- /dev/null +++ b/Ch11/apd.sensors-chapter11-ex01/pytest.ini @@ -0,0 +1,5 @@ +[pytest] +markers = + functional: these tests are significantly slower as they run the whole CLI script +addopts = + --ignore plugins \ No newline at end of file diff --git a/Ch11/apd.sensors-chapter11-ex01/setup.cfg b/Ch11/apd.sensors-chapter11-ex01/setup.cfg new file mode 100644 index 0000000..9fa1056 --- /dev/null +++ b/Ch11/apd.sensors-chapter11-ex01/setup.cfg @@ -0,0 +1,83 @@ +[mypy] +namespace_packages = True +mypy_path = src +plugins = sqlmypy + +[mypy-psutil] +ignore_missing_imports = True + +[mypy-alembic] +ignore_missing_imports = True + +[mypy-adafruit_dht] +ignore_missing_imports = True + +[mypy-board] +ignore_missing_imports = True + +[mypy-flask_sqlalchemy] +ignore_missing_imports = True + +[mypy-pint] +ignore_missing_imports = True + +[mypy-pytest] +ignore_missing_imports = True + +[mypy-webtest] +ignore_missing_imports = True + +[flake8] +max-line-length = 88 + +[metadata] +name = apd.sensors +version = attr: apd.sensors.VERSION +description = APD Sensor package +long_description = file: README.md, CHANGES.md, LICENCE +long_description_content_type = text/markdown +keywords = iot +license = MIT +classifiers = + Programming Language :: Python :: 3 + Programming Language :: Python :: 3.7 + +[options] +zip_safe = False +include_package_data = True +package_dir = + =src +packages = find_namespace: +install_requires = + psutil + click + pint + adafruit-circuitpython-dht ; 'arm' in platform_machine + +[options.package_data] +apd.sensors = py.typed + +[options.packages.find] +where = src + +[options.entry_points] +console_scripts = + sensors = apd.sensors.cli:show_sensors +apd.sensors.sensors = + PythonVersion = apd.sensors.sensors:PythonVersion + IPAddresses = apd.sensors.sensors:IPAddresses + CPULoad = apd.sensors.sensors:CPULoad + RAMAvailable = apd.sensors.sensors:RAMAvailable + ACStatus = apd.sensors.sensors:ACStatus + Temperature = apd.sensors.sensors:Temperature + RelativeHumidity = apd.sensors.sensors:RelativeHumidity + +[options.extras_require] +webapp = flask +scheduled = + sqlalchemy + alembic +storedapi = + flask-sqlalchemy + python-dateutil + \ No newline at end of file diff --git a/Ch11/apd.sensors-chapter11-ex01/setup.py b/Ch11/apd.sensors-chapter11-ex01/setup.py new file mode 100644 index 0000000..6068493 --- /dev/null +++ b/Ch11/apd.sensors-chapter11-ex01/setup.py @@ -0,0 +1,3 @@ +from setuptools import setup + +setup() diff --git a/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/__init__.py b/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/__init__.py new file mode 100644 index 0000000..127c148 --- /dev/null +++ b/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/__init__.py @@ -0,0 +1 @@ +VERSION = "2.1.0" diff --git a/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/alembic/README b/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/alembic/README new file mode 100644 index 0000000..98e4f9c --- /dev/null +++ b/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/alembic/README @@ -0,0 +1 @@ +Generic single-database configuration. \ No newline at end of file diff --git a/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/alembic/env.py b/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/alembic/env.py new file mode 100644 index 0000000..f508d4c --- /dev/null +++ b/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/alembic/env.py @@ -0,0 +1,77 @@ +from logging.config import fileConfig + +from sqlalchemy import engine_from_config +from sqlalchemy import pool + +from alembic import context + +import apd.sensors.database + +# this is the Alembic Config object, which provides +# access to the values within the .ini file in use. +config = context.config + +# Interpret the config file for Python logging. +# This line sets up loggers basically. +fileConfig(config.config_file_name) + +# add your model's MetaData object here +# for 'autogenerate' support +# from myapp import mymodel +# target_metadata = mymodel.Base.metadata +target_metadata = apd.sensors.database.metadata + +# other values from the config, defined by the needs of env.py, +# can be acquired: +# my_important_option = config.get_main_option("my_important_option") +# ... etc. + + +def run_migrations_offline(): + """Run migrations in 'offline' mode. + + This configures the context with just a URL + and not an Engine, though an Engine is acceptable + here as well. By skipping the Engine creation + we don't even need a DBAPI to be available. + + Calls to context.execute() here emit the given string to the + script output. + + """ + url = config.get_main_option("sqlalchemy.url") + context.configure( + url=url, + target_metadata=target_metadata, + literal_binds=True, + dialect_opts={"paramstyle": "named"}, + ) + + with context.begin_transaction(): + context.run_migrations() + + +def run_migrations_online(): + """Run migrations in 'online' mode. + + In this scenario we need to create an Engine + and associate a connection with the context. + + """ + connectable = engine_from_config( + config.get_section(config.config_ini_section), + prefix="sqlalchemy.", + poolclass=pool.NullPool, + ) + + with connectable.connect() as connection: + context.configure(connection=connection, target_metadata=target_metadata) + + with context.begin_transaction(): + context.run_migrations() + + +if context.is_offline_mode(): + run_migrations_offline() +else: + run_migrations_online() diff --git a/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/alembic/script.py.mako b/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/alembic/script.py.mako new file mode 100644 index 0000000..2c01563 --- /dev/null +++ b/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/alembic/script.py.mako @@ -0,0 +1,24 @@ +"""${message} + +Revision ID: ${up_revision} +Revises: ${down_revision | comma,n} +Create Date: ${create_date} + +""" +from alembic import op +import sqlalchemy as sa +${imports if imports else ""} + +# revision identifiers, used by Alembic. +revision = ${repr(up_revision)} +down_revision = ${repr(down_revision)} +branch_labels = ${repr(branch_labels)} +depends_on = ${repr(depends_on)} + + +def upgrade(): + ${upgrades if upgrades else "pass"} + + +def downgrade(): + ${downgrades if downgrades else "pass"} diff --git a/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/alembic/versions/0eeb2a54fea8_add_initial_sensor_table.py b/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/alembic/versions/0eeb2a54fea8_add_initial_sensor_table.py new file mode 100644 index 0000000..bb38e90 --- /dev/null +++ b/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/alembic/versions/0eeb2a54fea8_add_initial_sensor_table.py @@ -0,0 +1,45 @@ +"""Add initial sensor table + +Revision ID: 0eeb2a54fea8 +Revises: base +Create Date: 2020-01-16 17:43:37.298379 + +""" +from alembic import op +import sqlalchemy as sa + + +# revision identifiers, used by Alembic. +revision = "0eeb2a54fea8" +down_revision = None +branch_labels = None +depends_on = None + + +def upgrade(): + op.create_table( + "recorded_values", + sa.Column("id", sa.Integer(), nullable=False), + sa.Column("sensor_name", sa.String(), nullable=True), + sa.Column("collected_at", sa.TIMESTAMP(), nullable=True), + sa.Column("data", sa.JSON(), nullable=True), + sa.PrimaryKeyConstraint("id"), + ) + op.create_index( + op.f("ix_recorded_values_collected_at"), + "recorded_values", + ["collected_at"], + unique=False, + ) + op.create_index( + op.f("ix_recorded_values_sensor_name"), + "recorded_values", + ["sensor_name"], + unique=False, + ) + + +def downgrade(): + op.drop_index(op.f("ix_recorded_values_sensor_name"), table_name="recorded_values") + op.drop_index(op.f("ix_recorded_values_collected_at"), table_name="recorded_values") + op.drop_table("recorded_values") diff --git a/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/base.py b/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/base.py new file mode 100644 index 0000000..e822f4b --- /dev/null +++ b/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/base.py @@ -0,0 +1,59 @@ +#!/usr/bin/env python +# coding: utf-8 +import datetime +import typing as t + + +T_value = t.TypeVar("T_value") + + +class Sensor(t.Generic[T_value]): + name: str + title: str + + def value(self) -> T_value: + raise NotImplementedError + + @classmethod + def format(cls, value: T_value) -> str: + raise NotImplementedError + + def __str__(self) -> str: + return self.format(self.value()) + + @classmethod + def to_json_compatible(cls, value: T_value) -> t.Any: + raise NotImplementedError() + + @classmethod + def from_json_compatible(cls, json_version: t.Any) -> T_value: + raise NotImplementedError() + + +class JSONSensor(Sensor[T_value]): + @classmethod + def to_json_compatible(cls, value: T_value) -> t.Any: + return value + + @classmethod + def from_json_compatible(cls, json_version: t.Any) -> T_value: + return t.cast(T_value, json_version) + + +class HistoricalSensor(Sensor[T_value]): + def historical( + self, start: datetime.datetime, end: datetime.datetime + ) -> t.Iterable[t.Tuple[datetime.datetime, T_value]]: + raise NotImplementedError + + +version_info_type = t.NamedTuple( + "version_info_type", + [ + ("major", int), + ("minor", int), + ("micro", int), + ("releaselevel", str), + ("serial", int), + ], +) diff --git a/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/cli.py b/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/cli.py new file mode 100644 index 0000000..576c487 --- /dev/null +++ b/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/cli.py @@ -0,0 +1,118 @@ +import enum +import importlib +import sys +import pkg_resources +import traceback +import typing as t + +import click + +from .database import store_sensor_data +from .sensors import Sensor +from .exceptions import DataCollectionError, UserFacingCLIError + + +class ReturnCodes(enum.IntEnum): + OK = 0 + BAD_SENSOR_PATH = 17 + + +def get_sensor_by_path(sensor_path: str) -> Sensor[t.Any]: + try: + module_name, sensor_name = sensor_path.split(":") + except ValueError as err: + raise UserFacingCLIError( + "Sensor path must be in the format dotted.path.to.module:ClassName", + return_code=ReturnCodes.BAD_SENSOR_PATH, + ) from err + try: + module = importlib.import_module(module_name) + except ImportError as err: + raise UserFacingCLIError( + f"Could not import module {module_name}", return_code=ReturnCodes.BAD_SENSOR_PATH + ) from err + try: + sensor_class = getattr(module, sensor_name) + except AttributeError as err: + raise UserFacingCLIError( + f"Could not find attribute {sensor_name} in {module_name}", return_code=ReturnCodes.BAD_SENSOR_PATH + ) from err + if ( + isinstance(sensor_class, type) + and issubclass(sensor_class, Sensor) + and sensor_class != Sensor + ): + return sensor_class() + else: + raise UserFacingCLIError( + f"Detected object {sensor_class!r} is not recognised as a Sensor type", + return_code=ReturnCodes.BAD_SENSOR_PATH, + ) + + +def get_sensors() -> t.Iterable[Sensor[t.Any]]: + sensors = [] + for sensor_class in pkg_resources.iter_entry_points("apd.sensors.sensors"): + class_ = sensor_class.load() + sensors.append(t.cast(Sensor[t.Any], class_())) + return sensors + + +@click.command(help="Displays the values of the sensors") +@click.option( + "--develop", required=False, metavar="path", help="Load a sensor by Python path" +) +@click.option("--verbose", is_flag=True, help="Show additional info") +@click.option("--save", is_flag=True, help="Store collected data to a database") +@click.option( + "--db", + metavar="", + default="sqlite:///sensor_data.sqlite", + help="The connection string to a database", + envvar="APD_SENSORS_DB_URI", +) +def show_sensors(develop: str, verbose: bool, save: bool, db: str) -> None: + sensors: t.Iterable[Sensor[t.Any]] + if develop: + try: + sensors = [get_sensor_by_path(develop)] + except UserFacingCLIError as error: + if verbose: + tb = traceback.format_exception(type(error), error, error.__traceback__) + click.echo("".join(tb)) + click.secho(error.message, fg="red", bold=True) + sys.exit(error.return_code) + else: + sensors = get_sensors() + + db_session = None + if save: + from sqlalchemy import create_engine + from sqlalchemy.orm import sessionmaker + + engine = create_engine(db) + sm = sessionmaker(engine) + db_session = sm() + + for sensor in sensors: + click.secho(sensor.title, bold=True) + try: + value = sensor.value() + except DataCollectionError as error: + if verbose: + tb = traceback.format_exception(type(error), error, error.__traceback__) + click.echo("".join(tb)) + continue + click.echo(error) + else: + click.echo(sensor.format(value)) + if save and db_session is not None: + store_sensor_data(sensor, value, db_session) + db_session.commit() + + click.echo("") + sys.exit(ReturnCodes.OK) + + +if __name__ == "__main__": + show_sensors() diff --git a/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/database.py b/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/database.py new file mode 100644 index 0000000..a90ffba --- /dev/null +++ b/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/database.py @@ -0,0 +1,30 @@ +from __future__ import annotations + +import datetime +import typing as t + +import sqlalchemy +from sqlalchemy.schema import Table +from sqlalchemy.orm.session import Session + +from apd.sensors.base import Sensor + + +metadata = sqlalchemy.MetaData() + +sensor_values = Table( + "recorded_values", + metadata, + sqlalchemy.Column("id", sqlalchemy.Integer, primary_key=True), + sqlalchemy.Column("sensor_name", sqlalchemy.String, index=True), + sqlalchemy.Column("collected_at", sqlalchemy.TIMESTAMP, index=True), + sqlalchemy.Column("data", sqlalchemy.JSON), +) + + +def store_sensor_data(sensor: Sensor[t.Any], data: t.Any, db_session: Session) -> None: + now = datetime.datetime.now() + record = sensor_values.insert().values( + sensor_name=sensor.name, data=sensor.to_json_compatible(data), collected_at=now + ) + db_session.execute(record) diff --git a/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/exceptions.py b/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/exceptions.py new file mode 100644 index 0000000..725a0ad --- /dev/null +++ b/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/exceptions.py @@ -0,0 +1,32 @@ +import dataclasses + + +class APDSensorsError(Exception): + """An exception base class for all exceptions raised by the + sensor data collection system.""" + + +class DataCollectionError(APDSensorsError, RuntimeError): + """An error that represents the inability of a Sensor instance + to retrieve a value""" + + +class IntermittentSensorFailureError(DataCollectionError): + """A DataCollectionError that is expected to resolve itself + in short order""" + + +class PersistentSensorFailureError(DataCollectionError): + """A DataCollectionError that is unlikely to resolve itself + if retried.""" + + +@dataclasses.dataclass(frozen=True) +class UserFacingCLIError(APDSensorsError, SystemExit): + """A fatal error for the CLI""" + + message: str + return_code: int + + def __str__(self): + return f"[{self.return_code}] {self.message}" diff --git a/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/py.typed b/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/py.typed new file mode 100644 index 0000000..e69de29 diff --git a/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/sensors.py b/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/sensors.py new file mode 100644 index 0000000..c577dbf --- /dev/null +++ b/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/sensors.py @@ -0,0 +1,189 @@ +#!/usr/bin/env python +# coding: utf-8 +import math +import os +import socket +import sys +import typing as t + +import psutil +from pint import _DEFAULT_REGISTRY as ureg + +from .base import Sensor, JSONSensor, version_info_type +from .exceptions import ( + PersistentSensorFailureError, + IntermittentSensorFailureError, + DataCollectionError, +) + + +class PythonVersion(JSONSensor[version_info_type]): + name = "PythonVersion" + title = "Python Version" + + def value(self) -> version_info_type: + return version_info_type(*sys.version_info) + + @classmethod + def from_json_compatible(cls, json_version: t.Any) -> version_info_type: + return version_info_type(*json_version) + + @classmethod + def format(cls, value: version_info_type) -> str: + if value.micro == 0 and value.releaselevel == "alpha": + return "{0.major}.{0.minor}.{0.micro}a{0.serial}".format(value) + return "{0.major}.{0.minor}".format(value) + + +class IPAddresses(JSONSensor[t.Iterable[t.Tuple[str, str]]]): + name = "IPAddresses" + title = "IP Addresses" + FAMILIES = {"AF_INET": "IPv4", "AF_INET6": "IPv6"} + + def value(self) -> t.List[t.Tuple[str, str]]: + hostname = socket.gethostname() + addresses = socket.getaddrinfo(hostname, None) + address_info: t.List[t.Tuple[str, str]] = [] + for address in addresses: + family, ip = (address[0].name, address[4][0]) + if family not in self.FAMILIES: + continue + value = (family, ip) + if value not in address_info: + address_info.append(value) + return address_info + + @classmethod + def format(cls, value: t.Iterable[t.Tuple[str, str]]) -> str: + return "\n".join( + "{0} ({1})".format(address[1], cls.FAMILIES.get(address[0], "Unknown")) + for address in value + ) + + +class CPULoad(JSONSensor[float]): + name = "CPULoad" + title = "CPU Usage" + + def value(self) -> float: + return float(psutil.cpu_percent(interval=3)) / 100.0 + + @classmethod + def format(cls, value: float) -> str: + return "{:.1%}".format(value) + + +class RAMAvailable(JSONSensor[int]): + name = "RAMAvailable" + title = "RAM Available" + UNITS = ("B", "KiB", "MiB", "GiB", "TiB", "PiB", "EiB") + UNIT_SIZE = 2 ** 10 + + def value(self) -> int: + return int(psutil.virtual_memory().available) + + @classmethod + def format(cls, value: int) -> str: + magnitude = math.floor(math.log(value, cls.UNIT_SIZE)) + max_magnitude = len(cls.UNITS) - 1 + magnitude = min(magnitude, max_magnitude) + scaled_value = value / (cls.UNIT_SIZE ** magnitude) + return "{:.1f} {}".format(scaled_value, cls.UNITS[magnitude]) + + +class ACStatus(JSONSensor[bool]): + name = "ACStatus" + title = "AC Connected" + + def value(self) -> bool: + battery = psutil.sensors_battery() + if battery is not None: + value = battery.power_plugged + if value is None: + raise IntermittentSensorFailureError("Can't find AC status") + else: + return bool(value) + else: + raise PersistentSensorFailureError("No charging circuit installed") + + @classmethod + def format(cls, value: bool) -> str: + if value: + return "Connected" + else: + return "Not connected" + + +class DHTSensor: + def __init__(self) -> None: + self.board = os.environ.get("APD_SENSORS_TEMPERATURE_BOARD", "DHT22") + self.pin = os.environ.get("APD_SENSORS_TEMPERATURE_PIN", "D20") + + @property + def sensor(self) -> t.Any: + try: + import adafruit_dht + import board + + # Force using legacy interface + adafruit_dht._USE_PULSEIO = False + + sensor_type = getattr(adafruit_dht, self.board) + pin = getattr(board, self.pin) + return sensor_type(pin) + except (ImportError, NotImplementedError, AttributeError) as err: + # No DHT library results in an ImportError. + # Running on an unknown platform results in a + # NotImplementedError when getting the pin + raise PersistentSensorFailureError( + "Unable to initialise sensor interface" + ) from err + + +class Temperature(Sensor[t.Any], DHTSensor): + name = "Temperature" + title = "Ambient Temperature" + + def value(self) -> t.Any: + try: + return ureg.Quantity(self.sensor.temperature, ureg.celsius) + except DataCollectionError: + # This is one of our own exceptions, we don't need to re-wrap it + raise + except (RuntimeError, AttributeError) as err: + raise IntermittentSensorFailureError( + "Couldn't determine temperature" + ) from err + + @classmethod + def format(cls, value: t.Any) -> str: + return "{:.3~P} ({:.3~P})".format(value, value.to(ureg.fahrenheit)) + + @classmethod + def to_json_compatible(cls, value: t.Any) -> t.Any: + return {"magnitude": value.magnitude, "unit": str(value.units)} + + @classmethod + def from_json_compatible(cls, json_version: t.Any) -> t.Any: + return ureg.Quantity(json_version["magnitude"], ureg[json_version["unit"]]) + + def __str__(self) -> str: + return self.format(self.value()) + + +class RelativeHumidity(JSONSensor[float], DHTSensor): + name = "RelativeHumidity" + title = "Relative Humidity" + + def value(self) -> float: + try: + return float(self.sensor.humidity) + except DataCollectionError: + # This is one of our own exceptions, we don't need to re-wrap it + raise + except (TypeError, AttributeError) as err: + raise IntermittentSensorFailureError("Couldn't determine humidity") from err + + @classmethod + def format(cls, value: float) -> str: + return "{:.1%}".format(value) diff --git a/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/utils.py b/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/utils.py new file mode 100644 index 0000000..24f912b --- /dev/null +++ b/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/utils.py @@ -0,0 +1,20 @@ +from apd.sensors.base import Sensor, T_value +from apd.sensors.exceptions import IntermittentSensorFailureError + + +def get_value_with_retries(sensor: Sensor[T_value], retries: int = 3) -> T_value: + for i in range(retries): + try: + return sensor.value() + except IntermittentSensorFailureError: + if i == (retries - 1): + # This is the last retry, reraise + raise + else: + continue + # It shouldn't be possible to get here, but it's better to + # fall through with an appropriate exception rather than a + # None + raise IntermittentSensorFailureError( + f"Could not find a value after {retries} retries" + ) diff --git a/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/wsgi/__init__.py b/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/wsgi/__init__.py new file mode 100644 index 0000000..fbd2a91 --- /dev/null +++ b/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/wsgi/__init__.py @@ -0,0 +1,31 @@ +import flask + +try: + from flask_sqlalchemy import SQLAlchemy +except ImportError: + sql_support = False +else: + sql_support = True + + +from .base import set_up_config +from . import v10 +from . import v20 +from . import v21 +from . import v30 + + +__all__ = ["app", "set_up_config", "db"] + +app = flask.Flask(__name__) +app.register_blueprint(v10.version, url_prefix="/v/1.0") +app.register_blueprint(v20.version, url_prefix="/v/2.0") +app.register_blueprint(v21.version, url_prefix="/v/2.1") +app.register_blueprint(v30.version, url_prefix="/v/3.0") + +if sql_support: + from apd.sensors.database import metadata + + db = SQLAlchemy(app, metadata=metadata) +else: + db = None diff --git a/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/wsgi/base.py b/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/wsgi/base.py new file mode 100644 index 0000000..b3c73cb --- /dev/null +++ b/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/wsgi/base.py @@ -0,0 +1,47 @@ +from hmac import compare_digest +import functools +import os +import typing as t + +import flask + + +ViewFuncReturn = t.TypeVar("ViewFuncReturn") +ErrorReturn = t.Tuple[t.Dict[str, str], int] +REQUIRED_CONFIG_KEYS = {"APD_SENSORS_API_KEY"} + + +def require_api_key( + func: t.Callable[..., ViewFuncReturn] +) -> t.Callable[..., t.Union[ViewFuncReturn, ErrorReturn]]: + @functools.wraps(func) + def wrapped(*args, **kwargs) -> t.Union[ViewFuncReturn, ErrorReturn]: + api_key = flask.current_app.config["APD_SENSORS_API_KEY"] + headers = flask.request.headers + supplied_key = headers.get("X-API-Key", "") + if not compare_digest(api_key, supplied_key): + return {"error": "Supply API key in X-API-Key header"}, 403 + return func(*args, **kwargs) + + return wrapped + + +def set_up_config( + environ: t.Optional[t.Dict[str, str]] = None, + to_configure: t.Optional[flask.Flask] = None, +) -> flask.Flask: + if environ is None: + environ = dict(os.environ) + if to_configure is None: + from apd.sensors.wsgi import app + + to_configure = app + missing_keys = REQUIRED_CONFIG_KEYS - environ.keys() + if missing_keys: + raise ValueError("Missing config variables: {}".format(", ".join(missing_keys))) + data_file = os.path.join(os.getcwd(), "sensor_data.sqlite") + environ["SQLALCHEMY_DATABASE_URI"] = environ.get( + "APD_SENSORS_DB_URI", f"sqlite:///{data_file}" + ) + to_configure.config.from_mapping(environ) + return to_configure diff --git a/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/wsgi/serve.py b/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/wsgi/serve.py new file mode 100644 index 0000000..0b1f684 --- /dev/null +++ b/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/wsgi/serve.py @@ -0,0 +1,10 @@ +from . import app +from .base import set_up_config + +if __name__ == "__main__": + import wsgiref.simple_server + + set_up_config(None, app) + + with wsgiref.simple_server.make_server("", 8000, app) as server: + server.serve_forever() diff --git a/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/wsgi/v10.py b/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/wsgi/v10.py new file mode 100644 index 0000000..f3ae5da --- /dev/null +++ b/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/wsgi/v10.py @@ -0,0 +1,30 @@ +import json +import typing as t + +import flask + +from apd.sensors import cli +from apd.sensors.exceptions import DataCollectionError +from .base import require_api_key + +version = flask.Blueprint(__name__, __name__) + + +@version.route("/sensors/") +@require_api_key +def sensor_values() -> t.Tuple[t.Dict[str, t.Any], int, t.Dict[str, str]]: + headers = {"Content-Security-Policy": "default-src 'none'"} + data = {} + for sensor in cli.get_sensors(): + try: + value = sensor.value() + except DataCollectionError: + value = None + try: + json.dumps(value) + except TypeError: + # This value isn't JSON serializable, skip it + continue + else: + data[sensor.title] = value + return data, 200, headers diff --git a/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/wsgi/v20.py b/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/wsgi/v20.py new file mode 100644 index 0000000..4ab1522 --- /dev/null +++ b/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/wsgi/v20.py @@ -0,0 +1,40 @@ +import typing as t + +import flask + +from apd.sensors import cli +from apd.sensors.exceptions import DataCollectionError +from .base import require_api_key + +version = flask.Blueprint(__name__, __name__) + + +@version.route("/sensors/") +@version.route("/sensors/") +@require_api_key +def sensor_values(sensor_id=None) -> t.Tuple[t.Dict[str, t.Any], int, t.Dict[str, str]]: + headers = {"Content-Security-Policy": "default-src 'none'"} + sensors = [] + for sensor in cli.get_sensors(): + if sensor_id and sensor_id != sensor.name: + continue + try: + try: + value = sensor.value() + except DataCollectionError: + human_readable = "Unknown" + json_value = None + else: + json_value = sensor.to_json_compatible(value) + human_readable = sensor.format(value) + sensor_data = { + "id": sensor.name, + "title": sensor.title, + "value": json_value, + "human_readable": human_readable, + } + sensors.append(sensor_data) + except NotImplementedError: + pass + data = {"sensors": sensors} + return data, 200, headers diff --git a/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/wsgi/v21.py b/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/wsgi/v21.py new file mode 100644 index 0000000..16cbb72 --- /dev/null +++ b/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/wsgi/v21.py @@ -0,0 +1,47 @@ +import typing as t + +import flask + +from apd.sensors import cli +from apd.sensors.exceptions import DataCollectionError +from .base import require_api_key + +version = flask.Blueprint(__name__, __name__) + + +@version.route("/sensors/") +@version.route("/sensors/") +@require_api_key +def sensor_values(sensor_id=None) -> t.Tuple[t.Dict[str, t.Any], int, t.Dict[str, str]]: + headers = {"Content-Security-Policy": "default-src 'none'"} + sensors = [] + for sensor in cli.get_sensors(): + if sensor_id and sensor_id != sensor.name: + continue + try: + try: + value = sensor.value() + except DataCollectionError: + human_readable = "Unknown" + json_value = None + else: + json_value = sensor.to_json_compatible(value) + human_readable = sensor.format(value) + sensor_data = { + "id": sensor.name, + "title": sensor.title, + "value": json_value, + "human_readable": human_readable, + } + sensors.append(sensor_data) + except NotImplementedError: + pass + data = {"sensors": sensors} + return data, 200, headers + + +@version.route("/deployment_id") +def deployment_id() -> t.Tuple[t.Dict[str, t.Any], int, t.Dict[str, str]]: + headers = {"Content-Security-Policy": "default-src 'none'"} + data = {"deployment_id": flask.current_app.config["APD_SENSORS_DEPLOYMENT_ID"]} + return data, 200, headers diff --git a/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/wsgi/v30.py b/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/wsgi/v30.py new file mode 100644 index 0000000..549af12 --- /dev/null +++ b/Ch11/apd.sensors-chapter11-ex01/src/apd/sensors/wsgi/v30.py @@ -0,0 +1,117 @@ +import datetime +import typing as t + +import flask + +from apd.sensors import cli +from apd.sensors.base import HistoricalSensor +from apd.sensors.exceptions import DataCollectionError + +from .base import require_api_key + +version = flask.Blueprint(__name__, __name__) + + +@version.route("/sensors/") +@version.route("/sensors/") +@require_api_key +def sensor_values(sensor_id=None) -> t.Tuple[t.Dict[str, t.Any], int, t.Dict[str, str]]: + headers = {"Content-Security-Policy": "default-src 'none'"} + sensors = [] + errors = [] + for sensor in cli.get_sensors(): + now = datetime.datetime.now() + if sensor_id and sensor_id != sensor.name: + continue + try: + try: + value = sensor.value() + except DataCollectionError as err: + error = { + "id": sensor.name, + "title": sensor.title, + "collected_at": now.isoformat(), + "error": str(err), + } + errors.append(error) + continue + sensor_data = { + "id": sensor.name, + "title": sensor.title, + "value": sensor.to_json_compatible(value), + "human_readable": sensor.format(value), + "collected_at": now.isoformat(), + } + sensors.append(sensor_data) + except NotImplementedError: + pass + data = {"sensors": sensors, "errors": errors} + return data, 200, headers + + +@version.route("/historical") +@version.route("/historical/") +@version.route("/historical//") +@require_api_key +def historical_values( + start: str = None, end: str = None +) -> t.Tuple[t.Dict[str, t.Any], int, t.Dict[str, str]]: + try: + import dateutil.parser + from apd.sensors.database import sensor_values + from apd.sensors.wsgi import db + except ImportError: + return {"error": "Historical data support is not installed"}, 501, {} + + db_session = db.session + headers = {"Content-Security-Policy": "default-src 'none'"} + + query = db_session.query(sensor_values) + if start: + start_dt = dateutil.parser.parse(start) + query = query.filter(sensor_values.c.collected_at >= start_dt) + else: + start_dt = dateutil.parser.parse("1900-01-01") + if end: + end_dt = dateutil.parser.parse(end) + query = query.filter(sensor_values.c.collected_at <= end_dt) + else: + end_dt = datetime.datetime.now() + + known_sensors = {sensor.name: sensor for sensor in cli.get_sensors()} + sensors = [] + for data in query: + if data.sensor_name not in known_sensors: + continue + sensor = known_sensors[data.sensor_name] + sensor_data = { + "id": sensor.name, + "title": sensor.title, + "value": data.data, + "human_readable": sensor.format(sensor.from_json_compatible(data.data)), + "collected_at": data.collected_at.isoformat(), + } + sensors.append(sensor_data) + for sensor in known_sensors.values(): + if isinstance(sensor, HistoricalSensor): + for date, value in sensor.historical(start_dt, end_dt): + sensor_data = { + "id": sensor.name, + "title": sensor.title, + "value": value, + "human_readable": sensor.format(sensor.from_json_compatible(value)), + "collected_at": date.isoformat(), + } + sensors.append(sensor_data) + data = {"sensors": sensors} + try: + return data, 200, headers + finally: + db_session.close() + + +@version.route("/deployment_id") +def deployment_id() -> t.Tuple[t.Dict[str, t.Any], int, t.Dict[str, str]]: + headers = {"Content-Security-Policy": "default-src 'none'"} + data = {"deployment_id": flask.current_app.config["APD_SENSORS_DEPLOYMENT_ID"]} + return data, 200, headers diff --git a/Ch11/apd.sensors-chapter11-ex01/tests/__init__.py b/Ch11/apd.sensors-chapter11-ex01/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/Ch11/apd.sensors-chapter11-ex01/tests/test_acstatus.py b/Ch11/apd.sensors-chapter11-ex01/tests/test_acstatus.py new file mode 100644 index 0000000..4f0e6ed --- /dev/null +++ b/Ch11/apd.sensors-chapter11-ex01/tests/test_acstatus.py @@ -0,0 +1,58 @@ +from unittest import mock + +import pytest + +from apd.sensors.sensors import ACStatus +from apd.sensors.exceptions import ( + PersistentSensorFailureError, + IntermittentSensorFailureError, +) + + +@pytest.fixture +def sensor(): + return ACStatus() + + +class TestACStatusFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_True(self, subject): + assert subject(True) == "Connected" + + def test_format_False(self, subject): + assert subject(False) == "Not connected" + + +class TestACStatusValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def sensors_battery(self): + with mock.patch("psutil.sensors_battery") as sensors_battery: + yield sensors_battery + + def test_sensors_battery_called(self, subject, sensors_battery): + sensors_battery.return_value.power_plugged = True + assert subject() is True + assert sensors_battery.call_count == 1 + + def test_sensor_but_battery_unknown(self, subject, sensors_battery): + sensors_battery.return_value.power_plugged = None + with pytest.raises(IntermittentSensorFailureError): + subject() + assert sensors_battery.call_count == 1 + + def test_no_sensor(self, subject, sensors_battery): + sensors_battery.return_value = None + with pytest.raises(PersistentSensorFailureError): + subject() + + def test_str_representation_is_formatted_value(self, sensor, sensors_battery): + sensors_battery.return_value.power_plugged = True + assert str(sensor) == "Connected" + assert sensors_battery.call_count == 1 diff --git a/Ch11/apd.sensors-chapter11-ex01/tests/test_api_server.py b/Ch11/apd.sensors-chapter11-ex01/tests/test_api_server.py new file mode 100644 index 0000000..8aa4cea --- /dev/null +++ b/Ch11/apd.sensors-chapter11-ex01/tests/test_api_server.py @@ -0,0 +1,332 @@ +import datetime +import os +import typing as t +import uuid +from unittest import mock + +import flask +import pytest +from webtest import TestApp + +from apd.sensors.base import HistoricalSensor, JSONSensor +from apd.sensors.sensors import PythonVersion +from apd.sensors.wsgi import set_up_config +from apd.sensors.wsgi import v10 +from apd.sensors.wsgi import v20 +from apd.sensors.wsgi import v21 +from apd.sensors.wsgi import v30 + + +class HistoricalBoolSensor(HistoricalSensor[bool], JSONSensor[bool]): + + title = "Sensor which has past data" + name = "HistoricalBoolSensor" + + def value(self) -> bool: + return True + + def historical( + self, start: datetime.datetime, end: datetime.datetime + ) -> t.Iterable[t.Tuple[datetime.datetime, bool]]: + date = start + while date < end: + yield date, True + date += datetime.timedelta(hours=1) + + @classmethod + def format(cls, value: bool) -> str: + return "Yes" if value else "No" + + +@pytest.fixture(scope="session") +def api_key(): + return uuid.uuid4().hex + + +def test_api_key_is_required_config_option(): + app = mock.MagicMock() + with pytest.raises( + ValueError, match="Missing config variables: APD_SENSORS_API_KEY" + ): + set_up_config({"APD_SENSORS_DEPLOYMENT_ID": ""}, to_configure=app) + + +def test_os_environ_is_default_for_config_values(api_key): + app = mock.MagicMock() + os.environ["APD_SENSORS_API_KEY"] = api_key + os.environ["APD_SENSORS_DEPLOYMENT_ID"] = "8f1b57faa04b430c81decbbeee9e300c" + try: + assert app.config.from_mapping.call_count == 0 + set_up_config(None, to_configure=app) + assert app.config.from_mapping.call_count == 1 + for key, value in os.environ.items(): + # There may be keys in the config not from the environment + assert app.config.from_mapping.call_args[0][0][key] == value + finally: + del os.environ["APD_SENSORS_API_KEY"] + del os.environ["APD_SENSORS_DEPLOYMENT_ID"] + + +class CommonTests: + @pytest.mark.functional + def test_sensor_values_fails_on_missing_api_key(self, api_server): + response = api_server.get("/sensors/", expect_errors=True) + assert response.status_code == 403 + assert response.json["error"] == "Supply API key in X-API-Key header" + + @pytest.mark.functional + def test_sensor_values_require_correct_api_key(self, api_server): + response = api_server.get( + "/sensors/", headers={"X-API-Key": "wrong_key"}, expect_errors=True + ) + assert response.status_code == 403 + assert response.json["error"] == "Supply API key in X-API-Key header" + + +class Testv10API(CommonTests): + @pytest.fixture + def subject(self, api_key): + app = flask.Flask("testapp") + app.register_blueprint(v10.version) + set_up_config( + { + "APD_SENSORS_API_KEY": api_key, + "APD_SENSORS_DEPLOYMENT_ID": "8f1b57faa04b430c81decbbeee9e300c", + }, + to_configure=app, + ) + return app + + @pytest.fixture + def api_server(self, subject): + return TestApp(subject) + + @pytest.mark.functional + def test_sensor_values_returned_as_json(self, api_server, api_key): + value = api_server.get("/sensors/", headers={"X-API-Key": api_key}).json + python_version = PythonVersion().value() + + sensor_names = value.keys() + assert "Python Version" in sensor_names + assert value["Python Version"] == list(python_version) + + @pytest.mark.functional + def test_unserializable_sensor_is_omitted(self, api_server, api_key): + value = api_server.get("/sensors/", headers={"X-API-Key": api_key}).json + sensor_names = value.keys() + assert "Temperature" not in sensor_names + + @pytest.mark.functional + def test_erroring_sensor_shows_None(self, api_server, api_key): + from .test_utils import FailingSensor + + with mock.patch("apd.sensors.cli.get_sensors") as get_sensors: + # Ensure failing sensor is first, to test that subsequent sensors + # are still processed + get_sensors.return_value = [FailingSensor(10), PythonVersion()] + value = api_server.get("/sensors/", headers={"X-API-Key": api_key}).json + assert value["Sensor which fails"] is None + assert "Python Version" in value.keys() + + +class Testv20API(CommonTests): + @pytest.fixture + def subject(self, api_key): + app = flask.Flask("testapp") + app.register_blueprint(v20.version) + set_up_config( + { + "APD_SENSORS_API_KEY": api_key, + "APD_SENSORS_DEPLOYMENT_ID": "8f1b57faa04b430c81decbbeee9e300c", + }, + to_configure=app, + ) + return app + + @pytest.fixture + def api_server(self, subject): + return TestApp(subject) + + @pytest.mark.functional + def test_sensor_values_returned_as_json(self, api_server, api_key): + value = api_server.get("/sensors/", headers={"X-API-Key": api_key}).json + sensors = value["sensors"] + + python_version = [ + sensor for sensor in sensors if sensor["id"] == "PythonVersion" + ][0] + assert python_version["title"] == "Python Version" + assert python_version["value"] == list(PythonVersion().value()) + + @pytest.mark.functional + def test_erroring_sensor_shows_None(self, api_server, api_key): + from .test_utils import FailingSensor + + with mock.patch("apd.sensors.cli.get_sensors") as get_sensors: + # Ensure failing sensor is first, to test that subsequent sensors + # are still processed + get_sensors.return_value = [FailingSensor(10), PythonVersion()] + value = api_server.get("/sensors/", headers={"X-API-Key": api_key}).json + sensors = value["sensors"] + + failing = [sensor for sensor in sensors if sensor["id"] == "FailingSensor"][0] + python_version = [ + sensor for sensor in sensors if sensor["id"] == "PythonVersion" + ][0] + + assert failing["title"] == "Sensor which fails" + assert failing["value"] is None + assert python_version["title"] == "Python Version" + + +class Testv21API(Testv20API): + @pytest.fixture + def subject(self, api_key): + app = flask.Flask("testapp") + app.register_blueprint(v21.version) + set_up_config( + { + "APD_SENSORS_API_KEY": api_key, + "APD_SENSORS_DEPLOYMENT_ID": "8f1b57faa04b430c81decbbeee9e300c", + }, + to_configure=app, + ) + return app + + @pytest.mark.functional + def test_deployment_id(self, api_server, api_key): + value = api_server.get("/deployment_id", headers={"X-API-Key": api_key}).json + assert value == {"deployment_id": "8f1b57faa04b430c81decbbeee9e300c"} + + @pytest.mark.functional + def test_erroring_sensor_shows_None(self, api_server, api_key): + from .test_utils import FailingSensor + + with mock.patch("apd.sensors.cli.get_sensors") as get_sensors: + # Ensure failing sensor is first, to test that subsequent sensors + # are still processed + get_sensors.return_value = [FailingSensor(10), PythonVersion()] + value = api_server.get("/sensors/", headers={"X-API-Key": api_key}).json + sensors = value["sensors"] + + failing = [sensor for sensor in sensors if sensor["id"] == "FailingSensor"][0] + python_version = [ + sensor for sensor in sensors if sensor["id"] == "PythonVersion" + ][0] + + assert failing["title"] == "Sensor which fails" + assert failing["value"] is None + assert python_version["title"] == "Python Version" + + +class Testv30API(CommonTests): + @pytest.fixture + def api_server(self, subject): + return TestApp(subject) + + @pytest.fixture + def subject(self, api_key): + app = flask.Flask("testapp") + app.register_blueprint(v30.version) + set_up_config( + { + "APD_SENSORS_API_KEY": api_key, + "APD_SENSORS_DEPLOYMENT_ID": "8f1b57faa04b430c81decbbeee9e300c", + "APD_SENSORS_DB_URI": "sqlite://", + }, + to_configure=app, + ) + return app + + @pytest.fixture + def db(self, subject): + from flask_sqlalchemy import SQLAlchemy + from apd.sensors.database import metadata + from apd.sensors import wsgi + + db = SQLAlchemy(subject, metadata=metadata) + db.create_all() + + wsgi.db = db + yield db + wsgi.db = None + + @pytest.fixture + def store_sensor_data(self): + from apd.sensors.database import store_sensor_data + + return store_sensor_data + + @pytest.mark.functional + def test_historical_with_no_data(self, api_key, api_server, db): + value = api_server.get("/historical", headers={"X-API-Key": api_key}).json + assert value == {"sensors": []} + + @pytest.mark.functional + def test_historical_with_data(self, api_key, api_server, db, store_sensor_data): + store_sensor_data(PythonVersion, [3, 9, 0, "final", 1], db.session) + value = api_server.get("/historical", headers={"X-API-Key": api_key}).json + assert len(value["sensors"]) == 1 + assert value["sensors"][0]["human_readable"] == "3.9" + + def test_historical_sensor(self, api_key, api_server, db): + with mock.patch("apd.sensors.cli.get_sensors") as get_sensors: + # Ensure failing sensor is first, to test that subsequent sensors + # are still processed + get_sensors.return_value = [HistoricalBoolSensor()] + value = api_server.get( + "/historical/2020-01-01/2020-01-02", headers={"X-API-Key": api_key} + ).json + assert len(value["sensors"]) == 24 + assert value["sensors"][0] == { + "collected_at": "2020-01-01T00:00:00", + "human_readable": "Yes", + "id": "HistoricalBoolSensor", + "title": "Sensor which has past data", + "value": True, + } + + @pytest.mark.functional + def test_sensor_values_returned_as_json(self, api_server, api_key): + value = api_server.get("/sensors/", headers={"X-API-Key": api_key}).json + sensors = value["sensors"] + + python_version = [ + sensor for sensor in sensors if sensor["id"] == "PythonVersion" + ][0] + assert python_version["title"] == "Python Version" + assert python_version["value"] == list(PythonVersion().value()) + + @pytest.mark.functional + def test_erroring_sensor_excluded_but_reported(self, api_server, api_key): + from .test_utils import FailingSensor + + with mock.patch("apd.sensors.cli.get_sensors") as get_sensors: + # Ensure failing sensor is first, to test that subsequent sensors + # are still processed + get_sensors.return_value = [FailingSensor(2), PythonVersion()] + value = api_server.get("/sensors/", headers={"X-API-Key": api_key}).json + second_attempt_value = api_server.get( + "/sensors/", headers={"X-API-Key": api_key} + ).json + + sensors = value["sensors"] + failing = [sensor for sensor in sensors if sensor["id"] == "FailingSensor"] + assert len(failing) == 0 + errors = value["errors"] + failing = [sensor for sensor in errors if sensor["id"] == "FailingSensor"] + assert len(failing) == 1 + + python_version = [ + sensor for sensor in sensors if sensor["id"] == "PythonVersion" + ] + assert len(python_version) == 1 + + sensors = second_attempt_value["sensors"] + assert second_attempt_value["errors"] == [] + failing = [sensor for sensor in sensors if sensor["id"] == "FailingSensor"] + assert len(failing) == 1 + python_version = [ + sensor for sensor in sensors if sensor["id"] == "PythonVersion" + ] + assert len(python_version) == 1 diff --git a/Ch11/apd.sensors-chapter11-ex01/tests/test_cpuusage.py b/Ch11/apd.sensors-chapter11-ex01/tests/test_cpuusage.py new file mode 100644 index 0000000..445f4e5 --- /dev/null +++ b/Ch11/apd.sensors-chapter11-ex01/tests/test_cpuusage.py @@ -0,0 +1,45 @@ +from unittest import mock + +import pytest + +from apd.sensors.sensors import CPULoad + + +@pytest.fixture +def sensor(): + return CPULoad() + + +class TestCPULoadFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_simple_percentage(self, subject): + assert subject(0.05) == "5.0%" + + def test_format_multiple_decimal_places(self, subject): + assert subject(0.031415926) == "3.1%" + + def test_format_multiple_decimal_places_int(self, subject) -> None: + assert subject(1) == "100.0%" + + +class TestCPULoadValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def cpuload(self): + with mock.patch("psutil.cpu_percent") as cpu_percent: + cpu_percent.return_value = 50.1 + yield cpu_percent + + def test_cpu_percent_called_With_interval(self, subject, cpuload): + assert subject() == 0.501 + assert cpuload.call_count == 1 + assert tuple(cpuload.call_args) == ((), {"interval": 3}) + + def test_str_representation_is_formatted_value(self, sensor, cpuload): + assert str(sensor) == "50.1%" diff --git a/Ch11/apd.sensors-chapter11-ex01/tests/test_dht.py b/Ch11/apd.sensors-chapter11-ex01/tests/test_dht.py new file mode 100644 index 0000000..85c3e34 --- /dev/null +++ b/Ch11/apd.sensors-chapter11-ex01/tests/test_dht.py @@ -0,0 +1,61 @@ +import pytest + +from apd.sensors.sensors import Temperature, RelativeHumidity, ureg + + +@pytest.fixture +def temperature_sensor(): + return Temperature() + + +@pytest.fixture +def humidity_sensor(): + return RelativeHumidity() + + +class TestTemperatureFormatter: + @pytest.fixture + def subject(self, temperature_sensor): + return temperature_sensor.format + + @staticmethod + def to_degc(magnitude): + return ureg.Quantity(magnitude, "degree_Celsius") + + def test_format_21c(self, subject): + assert subject(self.to_degc(21.0)) == "21.0 °C (69.8 °F)" + + def test_format_negative(self, subject): + assert subject(self.to_degc(-32.0)) == "-32.0 °C (-25.6 °F)" + + +class TestTemperatureSerializer: + @pytest.fixture + def serialize(self, temperature_sensor): + return temperature_sensor.to_json_compatible + + @pytest.fixture + def deserialize(self, temperature_sensor): + return temperature_sensor.from_json_compatible + + @staticmethod + def to_degc(magnitude): + return ureg.Quantity(magnitude, "degree_Celsius") + + def test_serialize_21c(self, serialize): + assert serialize(self.to_degc(21.0)) == {"magnitude": 21.0, "unit": "degree_Celsius"} + + def test_serialize_negative(self, serialize): + assert serialize(self.to_degc(-32.3)) == {"magnitude": -32.3, "unit": "degree_Celsius"} + + def test_deserialize_21c(self, deserialize): + assert deserialize({"magnitude": 21.0, "unit": "degree_Celsius"}) == self.to_degc(21.0) + + +class TestHumidityFormatter: + @pytest.fixture + def subject(self, humidity_sensor): + return humidity_sensor.format + + def test_format_percentage(self, subject): + assert subject(0.035) == "3.5%" diff --git a/Ch11/apd.sensors-chapter11-ex01/tests/test_ipaddresses.py b/Ch11/apd.sensors-chapter11-ex01/tests/test_ipaddresses.py new file mode 100644 index 0000000..bd61d85 --- /dev/null +++ b/Ch11/apd.sensors-chapter11-ex01/tests/test_ipaddresses.py @@ -0,0 +1,59 @@ +import socket +from unittest import mock + +import pytest + +from apd.sensors.sensors import IPAddresses + + +@pytest.fixture +def sensor(): + return IPAddresses() + + +class TestIPAddressFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_single_ipv4(self, subject): + ips = [("AF_INET", "192.0.2.1")] + assert subject(ips) == "192.0.2.1 (IPv4)" + + def test_format_single_ipv6(self, subject): + ips = [("AF_INET6", "2001:DB8::1")] + assert subject(ips) == "2001:DB8::1 (IPv6)" + + def test_format_mixed_list(self, subject): + ips = [("AF_INET", "192.0.2.1"), ("AF_INET6", "2001:DB8::1")] + assert subject(ips) == "192.0.2.1 (IPv4)\n2001:DB8::1 (IPv6)" + + def test_unusual_protocols_are_marked_as_unknown(self, subject): + ips = [("AF_IRDA", "ffff")] + assert subject(ips) == "ffff (Unknown)" + + +class TestIPAddressesValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def gethostname(self): + with mock.patch("socket.gethostname") as gethostname: + gethostname.return_value = "localhost" + yield gethostname + + @pytest.fixture + def getaddrinfo(self, gethostname): + with mock.patch("socket.getaddrinfo") as getaddrinfo: + yield getaddrinfo + + def test_getaddrinfo_used_for_value_collection(self, getaddrinfo, subject): + getaddrinfo.return_value = [(socket.AF_INET, 0, 0, "", ("192.0.2.1", 0))] + assert subject() == [("AF_INET", "192.0.2.1")] + assert getaddrinfo.call_count == 1 + + def test_str_representation_is_formatted_value(self, getaddrinfo, sensor): + getaddrinfo.return_value = [(socket.AF_INET6, 0, 0, "", ("2001:DB8::1", 0))] + assert str(sensor) == "2001:DB8::1 (IPv6)" diff --git a/Ch11/apd.sensors-chapter11-ex01/tests/test_pythonversion.py b/Ch11/apd.sensors-chapter11-ex01/tests/test_pythonversion.py new file mode 100644 index 0000000..43ad806 --- /dev/null +++ b/Ch11/apd.sensors-chapter11-ex01/tests/test_pythonversion.py @@ -0,0 +1,61 @@ +from collections import namedtuple +from unittest import mock + +import pytest + +from apd.sensors.sensors import PythonVersion + + +@pytest.fixture +def version(): + return namedtuple( + "sys_versioninfo", ("major", "minor", "micro", "releaselevel", "serial") + ) + + +@pytest.fixture +def sensor(): + return PythonVersion() + + +class TestPythonVersionFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_py38(self, subject, version): + py38 = version(3, 8, 0, "final", 0) + assert subject(py38) == "3.8" + + def test_format_large_version(self, subject, version): + large = version(255, 128, 0, "final", 0) + assert subject(large) == "255.128" + + def test_alpha_of_minor_is_marked(self, subject, version): + py39 = version(3, 9, 0, "alpha", 1) + assert subject(py39) == "3.9.0a1" + + def test_alpha_of_micro_is_unmarked(self, subject, version): + py39 = version(3, 9, 1, "alpha", 1) + assert subject(py39) == "3.9" + + +class TestPythonVersionValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def python_version(self): + import sys + + return sys.version_info + + def test_data_value_is_sys_versioninfo(self, python_version, subject): + assert subject() == python_version + + +class TestPythonVersionSensor: + def test_str_representation_is_formatted_value(self, sensor, version): + with mock.patch("sys.version_info", new=version(3, 4, 1, "final", 1)): + assert str(sensor) == "3.4" diff --git a/Ch11/apd.sensors-chapter11-ex01/tests/test_ramusage.py b/Ch11/apd.sensors-chapter11-ex01/tests/test_ramusage.py new file mode 100644 index 0000000..197ad06 --- /dev/null +++ b/Ch11/apd.sensors-chapter11-ex01/tests/test_ramusage.py @@ -0,0 +1,47 @@ +from unittest import mock + +import pytest + +from apd.sensors.sensors import RAMAvailable + + +@pytest.fixture +def sensor(): + return RAMAvailable() + + +class TestRAMAvailableFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_bytes(self, subject): + assert subject(15) == "15.0 B" + + def test_format_kibibytes(self, subject): + assert subject(15000) == "14.6 KiB" + + def test_format_mibibytes(self, subject): + assert subject(15000000) == "14.3 MiB" + + def test_format_gibibytes(self, subject): + assert subject(15000000000) == "14.0 GiB" + + +class TestRAMAvailableValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def virtual_memory(self): + with mock.patch("psutil.virtual_memory") as virtual_memory: + virtual_memory.return_value.available = 1024 + yield virtual_memory + + def test_virtual_memory_called(self, subject, virtual_memory): + assert subject() == 1024 + assert virtual_memory.call_count == 1 + + def test_str_representation_is_formatted_value(self, sensor, virtual_memory): + assert str(sensor) == "1.0 KiB" diff --git a/Ch11/apd.sensors-chapter11-ex01/tests/test_sensors.py b/Ch11/apd.sensors-chapter11-ex01/tests/test_sensors.py new file mode 100644 index 0000000..0f74084 --- /dev/null +++ b/Ch11/apd.sensors-chapter11-ex01/tests/test_sensors.py @@ -0,0 +1,126 @@ +import json +from unittest import mock + +from click.testing import CliRunner + +import pytest + +import apd.sensors.cli +from apd.sensors.exceptions import UserFacingCLIError +import apd.sensors.sensors + + +def test_sensors(): + assert hasattr(apd.sensors.sensors, "PythonVersion") + + +class TestCLI: + @pytest.mark.functional + def test_first_sensor_is_first_two_lines_of_cli_output(self): + runner = CliRunner() + with mock.patch("apd.sensors.cli.get_sensors") as get_sensors: + get_sensors.return_value = [apd.sensors.sensors.PythonVersion()] + result = runner.invoke(apd.sensors.cli.show_sensors) + python_version = str(apd.sensors.sensors.PythonVersion()) + assert ["Python Version", python_version] == result.stdout.split("\n")[:2] + + def test_failing_sensor_shows_error(self): + from .test_utils import FailingSensor + + runner = CliRunner() + with mock.patch("apd.sensors.cli.get_sensors") as get_sensors: + get_sensors.return_value = [ + FailingSensor(10), + apd.sensors.sensors.PythonVersion(), + ] + result = runner.invoke(apd.sensors.cli.show_sensors) + assert ["Sensor which fails", "Failing 9 more times"] == result.stdout.split( + "\n" + )[:2] + assert "Python Version" in result.stdout + + def test_mocked_failing_sensor_shows_error(self): + from apd.sensors.base import Sensor + from apd.sensors.exceptions import IntermittentSensorFailureError + + FailingSensor = mock.MagicMock(spec=Sensor) + FailingSensor.title = "Sensor which fails" + FailingSensor.name = "FailingSensor" + FailingSensor.value.side_effect = ( + FailingSensor.__str__.side_effect + ) = IntermittentSensorFailureError("Failing sensor") + + runner = CliRunner() + with mock.patch("apd.sensors.cli.get_sensors") as get_sensors: + get_sensors.return_value = [ + FailingSensor, + apd.sensors.sensors.PythonVersion(), + ] + result = runner.invoke(apd.sensors.cli.show_sensors) + assert ["Sensor which fails", "Failing sensor"] == result.stdout.split("\n")[:2] + assert "Python Version" in result.stdout + + +class TestSensorFromPath: + @pytest.fixture + def subject(self): + return apd.sensors.cli.get_sensor_by_path + + def test_get_sensor_by_path(self, subject): + assert isinstance( + subject("apd.sensors.sensors:PythonVersion"), + apd.sensors.sensors.PythonVersion, + ) + + def test_invalid_format(self, subject): + with pytest.raises(UserFacingCLIError, match="dotted.path.to.module:ClassName"): + subject("apd.sensors.sensors.PythonVersion") + + def test_invalid_module(self, subject): + with pytest.raises(UserFacingCLIError, match="Could not import module"): + subject("apd.nonsense.sensor:FakeSensor") + + def test_missing_sensor(self, subject): + with pytest.raises(UserFacingCLIError, match="Could not find attribute"): + subject("apd.sensors.sensors:FakeSensor") + + def test_invalid_sensor(self, subject): + with pytest.raises(UserFacingCLIError, match="is not recognised as a Sensor"): + subject("apd.sensors.sensors:Sensor") + + +@pytest.mark.functional +def test_develop_option_finds_sensor_by_path(): + runner = CliRunner() + result = runner.invoke( + apd.sensors.cli.show_sensors, ["--develop", "apd.sensors.sensors:PythonVersion"] + ) + python_version = str(apd.sensors.sensors.PythonVersion()) + assert ["Python Version", python_version, "", ""] == result.stdout.split("\n") + + +class TestDefaultSerializer: + @pytest.fixture + def python_version(self): + return apd.sensors.sensors.PythonVersion() + + @pytest.fixture + def serialize(self, python_version): + return python_version.to_json_compatible + + @pytest.fixture + def deserialize(self, python_version): + return python_version.from_json_compatible + + def test_serialize_deserialize_is_symmetric( + self, python_version, serialize, deserialize + ): + value = python_version.value() + serialized = serialize(value) + json_version = json.dumps(serialized) + assert ( + json_version == f"[{value.major}, {value.minor}, {value.micro}," + f' "{value.releaselevel}", {value.serial}]' + ) + deserialized = deserialize(serialized) + assert deserialized == value diff --git a/Ch11/apd.sensors-chapter11-ex01/tests/test_utils.py b/Ch11/apd.sensors-chapter11-ex01/tests/test_utils.py new file mode 100644 index 0000000..34a82f8 --- /dev/null +++ b/Ch11/apd.sensors-chapter11-ex01/tests/test_utils.py @@ -0,0 +1,57 @@ +import typing as t + +import pytest + +from apd.sensors.base import JSONSensor +from apd.sensors.exceptions import ( + IntermittentSensorFailureError, + PersistentSensorFailureError, +) +from apd.sensors.utils import get_value_with_retries + + +class FailingSensor(JSONSensor[bool]): + + title = "Sensor which fails" + name = "FailingSensor" + + def __init__( + self, + n: int = 3, + exception_type: t.Type[Exception] = IntermittentSensorFailureError, + ): + self.n = n + self.exception_type = exception_type + + def value(self) -> bool: + self.n -= 1 + if self.n: + raise self.exception_type(f"Failing {self.n} more times") + else: + return True + + @classmethod + def format(cls, value: bool) -> str: + return "Yes" if value else "No" + + +class TestRetry: + def test_default_retries(self): + sensor = FailingSensor(3) + value = get_value_with_retries(sensor) + assert value is True + + def test_n_retries(self): + sensor = FailingSensor(5) + value = get_value_with_retries(sensor, retries=5) + assert value is True + + def test_insufficient_retries(self): + sensor = FailingSensor(5) + with pytest.raises(IntermittentSensorFailureError): + get_value_with_retries(sensor, retries=4) + + def test_permanent_failures_not_retried(self): + sensor = FailingSensor(3, PersistentSensorFailureError) + with pytest.raises(PersistentSensorFailureError): + get_value_with_retries(sensor) diff --git a/Ch11/apd.sensors-chapter11/.pre-commit-config.yaml b/Ch11/apd.sensors-chapter11/.pre-commit-config.yaml new file mode 100644 index 0000000..d3b6ec7 --- /dev/null +++ b/Ch11/apd.sensors-chapter11/.pre-commit-config.yaml @@ -0,0 +1,26 @@ +repos: + +- repo: local + hooks: + - id: black + name: black + entry: pipenv run black + args: [--quiet] + language: system + types: [python] + + - id: mypy + name: mypy + exclude: (?x)^( + (.*)/setup.py + )$ + entry: pipenv run mypy + args: ["--follow-imports=skip"] + language: system + types: [python] + + - id: flake8 + name: flake8 + entry: pipenv run flake8 + language: system + types: [python] diff --git a/Ch11/apd.sensors-chapter11/CHANGES.md b/Ch11/apd.sensors-chapter11/CHANGES.md new file mode 100644 index 0000000..b2f6115 --- /dev/null +++ b/Ch11/apd.sensors-chapter11/CHANGES.md @@ -0,0 +1,44 @@ +## Changes + +### 2.2 (2020-01-17) + +* Add ability to store data points on query (Matthew Wilkes) +* Add v3.0 API to distinguish sensor errors and include historical data (Matthew Wilkes) + +### 2.1.1 (2020-01-06) + +* Cache DHT sensor connections (Matthew Wilkes) +* Force use of bitbang interface for DHT sensors, to improve reliability on Linux (Matthew Wilkes) + +### 2.1.0 (2019-12-09) + +* Add optional APD_SENSORS_DEPLOYMENT_ID parameter and v2.1 API which allows + users to find a unique identifier for a webapp sensor deployment (Matthew Wilkes) + +### 2.0.0 (2019-09-08) + +* Add `to_json_compatible` and `from_json_compatible` methods to Sensor + to facilitate better HTTP API (Matthew Wilkes) + +* HTTP API is now versioned. The API from 1.3.0 is available at /v/1.0 + and an updated version is at /v/2.0 (Matthew Wilkes) + +### 1.3.0 (2019-08-20) + +* WSGI HTTP API support added (Matthew Wilkes) + +### 1.2.0 (2019-08-05) + +* Add external plugin support through `apd.sensors.sensors` entrypoint (Matthew Wilkes) + +### 1.1.0 (2019-07-12) + +* Add --develop argument (Matthew Wilkes) + +### 1.0.1 (2019-06-20) + +* Fix broken 1.0.0 release (Matthew Wilkes) + +### 1.0.0 (2019-06-20) + +* Added initial sensors (Matthew Wilkes) diff --git a/Ch11/apd.sensors-chapter11/LICENCE b/Ch11/apd.sensors-chapter11/LICENCE new file mode 100644 index 0000000..053f694 --- /dev/null +++ b/Ch11/apd.sensors-chapter11/LICENCE @@ -0,0 +1,19 @@ +Copyright (c) 2019 Matthew Wilkes + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. diff --git a/Ch11/apd.sensors-chapter11/Pipfile b/Ch11/apd.sensors-chapter11/Pipfile new file mode 100644 index 0000000..b08bc1b --- /dev/null +++ b/Ch11/apd.sensors-chapter11/Pipfile @@ -0,0 +1,34 @@ +[[source]] +name = "pypi" +url = "https://pypi.org/simple" +verify_ssl = true + +[[source]] +name = "piwheels" +url = "https://piwheels.org/simple" +verify_ssl = true + +[dev-packages] +ipykernel = "*" +remote-ikernel = "*" +pytest = "*" +pytest-cov = "*" +mypy = "*" +flake8 = "*" +black = "*" +pre-commit = "*" +wheel = "*" +twine = "*" +webtest = "*" +sqlalchemy-stubs = "*" + +[packages] +apd-sensors = {editable = true,extras = ["scheduled", "webapp", "storedapi"],path = "."} +apd-sunnyboy-solar = {editable = true,path = "./plugins/apd.sunnyboy_solar"} +waitress = "*" +pint = "==0.9" + +[requires] + +[pipenv] +allow_prereleases = true diff --git a/Ch11/apd.sensors-chapter11/Pipfile.lock b/Ch11/apd.sensors-chapter11/Pipfile.lock new file mode 100644 index 0000000..1304857 --- /dev/null +++ b/Ch11/apd.sensors-chapter11/Pipfile.lock @@ -0,0 +1,872 @@ +{ + "_meta": { + "hash": { + "sha256": "34faaa40acc9d73922634e8c6bef3e8cdeffc6728a1c907283b70297d90b514b" + }, + "pipfile-spec": 6, + "requires": {}, + "sources": [ + { + "name": "pypi", + "url": "https://pypi.org/simple", + "verify_ssl": true + }, + { + "name": "piwheels", + "url": "https://piwheels.org/simple", + "verify_ssl": true + } + ] + }, + "default": { + "apd-sensors": { + "editable": true, + "path": "." + }, + "apd-sunnyboy-solar": { + "editable": true, + "path": "./plugins/apd.sunnyboy_solar" + }, + "click": { + "hashes": [ + "sha256:2335065e6395b9e67ca716de5f7526736bfa6ceead690adf616d925bdc622b13", + "sha256:5b94b49521f6456670fdb30cd82a4eca9412788a93fa6dd6df72c94d5a8ff2d7" + ], + "version": "==7.0" + }, + "psutil": { + "hashes": [ + "sha256:028a1ec3c6197eadd11e7b46e8cc2f0720dc18ac6d7aabdb8e8c0d6c9704f000", + "sha256:503e4b20fa9d3342bcf58191bbc20a4a5ef79ca7df8972e6197cc14c5513e73d", + "sha256:863a85c1c0a5103a12c05a35e59d336e1d665747e531256e061213e2e90f63f3", + "sha256:954f782608bfef9ae9f78e660e065bd8ffcfaea780f9f2c8a133bb7cb9e826d7", + "sha256:968b1d0ad79ee376f52875b9cf3a204ebb099da50a3567daba8fb890679ce6b9", + "sha256:b6e08f965a305cd84c2d07409bc16fbef4417d67b70c53b299116c5b895e3f45", + "sha256:b99cf995f4ab9b36faff05615c24e3b05418234312d1335485423e43f2297326", + "sha256:bc96d437dfbb8865fc8828cf363450001cb04056bbdcdd6fc152c436c8a74c61", + "sha256:cf49178021075d47c61c03c0229ac0c60d5e2830f8cab19e2d88e579b18cdb76", + "sha256:cfc9ddeb293e469d19918d8a379e09731b430f5d009bb38915683f41b59c9ddf", + "sha256:d5350cb66690915d60f8b233180f1e49938756fb2d501c93c44f8fb5b970cc63", + "sha256:eba238cf1989dfff7d483c029acb0ac4fcbfc15de295d682901f0e2497e6781a" + ], + "version": "==5.6.3" + } + }, + "develop": { + "apd-sensors": { + "editable": true, + "path": "." + }, + "appdirs": { + "hashes": [ + "sha256:9e5896d1372858f8dd3344faf4e5014d21849c756c8d5701f78f8a103b372d92", + "sha256:d8b24664561d0d34ddfaec54636d502d7cea6e29c3eaf68f3df6180863e2166e" + ], + "version": "==1.4.3" + }, + "aspy.yaml": { + "hashes": [ + "sha256:463372c043f70160a9ec950c3f1e4c3a82db5fca01d334b6bc89c7164d744bdc", + "sha256:e7c742382eff2caed61f87a39d13f99109088e5e93f04d76eb8d4b28aa143f45" + ], + "version": "==1.3.0" + }, + "atomicwrites": { + "hashes": [ + "sha256:03472c30eb2c5d1ba9227e4c2ca66ab8287fbfbbda3888aa93dc2e28fc6811b4", + "sha256:75a9445bac02d8d058d5e1fe689654ba5a6556a1dfd8ce6ec55a0ed79866cfa6" + ], + "version": "==1.3.0" + }, + "attrs": { + "hashes": [ + "sha256:69c0dbf2ed392de1cb5ec704444b08a5ef81680a61cb899dc08127123af36a79", + "sha256:f0b870f674851ecbfbbbd364d6b5cbdff9dcedbc7f3f5e18a6891057f21fe399" + ], + "version": "==19.1.0" + }, + "backcall": { + "hashes": [ + "sha256:1fac21e6861f538700a5d498620153f38407a4bacf9e1d5047b3d717f10bc4ab", + "sha256:38ecd85be2c1e78f77fd91700c76e14667dc21e2713b63876c0eb901196e01e4", + "sha256:bbbf4b1e5cd2bdb08f915895b51081c041bac22394fdfcfdfbe9f14b77c08bf2" + ], + "version": "==0.1.0" + }, + "beautifulsoup4": { + "hashes": [ + "sha256:05668158c7b85b791c5abde53e50265e16f98ad601c402ba44d70f96c4159612", + "sha256:25288c9e176f354bf277c0a10aa96c782a6a18a17122dba2e8cec4a97e03343b", + "sha256:f040590be10520f2ea4c2ae8c3dae441c7cfff5308ec9d58a0ec0c1b8f81d469" + ], + "version": "==4.8.0" + }, + "black": { + "hashes": [ + "sha256:09a9dcb7c46ed496a9850b76e4e825d6049ecd38b611f1224857a79bd985a8cf", + "sha256:68950ffd4d9169716bcb8719a56c07a2f4485354fec061cdd5910aa07369731c" + ], + "index": "pypi", + "version": "==19.3b0" + }, + "bleach": { + "hashes": [ + "sha256:213336e49e102af26d9cde77dd2d0397afabc5a6bf2fed985dc35b5d1e285a16", + "sha256:3fdf7f77adcf649c9911387df51254b813185e32b2c6619f690b593a617e19fa" + ], + "version": "==3.1.0" + }, + "certifi": { + "hashes": [ + "sha256:046832c04d4e752f37383b628bc601a7ea7211496b4638f6514d0e5b9acc4939", + "sha256:945e3ba63a0b9f577b1395204e13c3a231f9bc0223888be653286534e5873695" + ], + "version": "==2019.6.16" + }, + "cfgv": { + "hashes": [ + "sha256:edb387943b665bf9c434f717bf630fa78aecd53d5900d2e05da6ad6048553144", + "sha256:fbd93c9ab0a523bf7daec408f3be2ed99a980e20b2d19b50fc184ca6b820d289" + ], + "version": "==2.0.1" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:2335065e6395b9e67ca716de5f7526736bfa6ceead690adf616d925bdc622b13", + "sha256:5b94b49521f6456670fdb30cd82a4eca9412788a93fa6dd6df72c94d5a8ff2d7" + ], + "version": "==7.0" + }, + "colorama": { + "hashes": [ + "sha256:05eed71e2e327246ad6b38c540c4a3117230b19679b875190486ddd2d721422d", + "sha256:f8ac84de7840f5b9c4e3347b3c1eaa50f7e49c2b07596221daec5edaabbd7c48" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.1" + }, + "coverage": { + "hashes": [ + "sha256:108efa19b676e62590a7a13084098e35183479c0d9608131c20b0921c5a72dc0", + "sha256:16fe3ef881eff27bab287f91dadb4ff0ce4388b9e928d84cbf148a83cc70b3a1", + "sha256:1d0bbc11421827d1100da82ac8dc929532b97ad464038475a0f6505cbf83d6ea", + "sha256:23a8ca5b3c9673f775cc151e85a737f1a967df2ec02b09e8c5a3b606ff2050bf", + "sha256:24b890e51455276762b55cb06fa1c922066e8fc18d1deb1a6399b4d24dfa8ea2", + "sha256:2f0041757ca4801f3c6a74d1660862fdb18a25aea302dd0ce9b067ddbb06b667", + "sha256:3169aba03baddfccdab7cc04cf0878dbf76fc06d300bc35639129a6b794d6484", + "sha256:35845f6415b297bc52bbb774a74c7216db6e39d632afbcf929daa8cf93f21c3c", + "sha256:364fb1bf0f999af2e7f4b1a1e614b2af8c3e0017d11af716aad25f911b7cd0c7", + "sha256:3d5ce16de7afa15516088450eeff5e3abd74b20034b97ba235cd950911f012d3", + "sha256:5256856d23f3e45959e7e3a8f9d4cbad3d1613e5660cb8117cd1417798efc395", + "sha256:5b26daa1e1a1147455bf62cd682e504e68f1d1e04235374d50a5248a3c792b1c", + "sha256:60247c8f0c756732e2cfe21f03e6847b923b9a9eaff61f04dc64d3047ec1b669", + "sha256:6463d51507308eb3973340d903537f17ece2ee1e6513aa0c27548fc3a09b0471", + "sha256:64cbadf7a884b299794238bc4391752130e74f71e919993b50c1c431786ef2a2", + "sha256:6de85748ea39ce819ad6d90e660da43964457a1f5cd25262e962a7c7c87945b3", + "sha256:6f95b4794bd84f64aeca25087d8e3abc416aad76842afcac34fa6c3a6f61c62e", + "sha256:778fa184aa3079fa3cbd240e2f5b36771c3382db26bc7bf78aea9d06212c6c66", + "sha256:790a9c5e2dbdf6c41eec9776ed663e99bd36c1604e3bf2e8ae3b123181bfee9f", + "sha256:7d97c1aec0b68b4ea5e3c9edb9fc3f951e8a52360f4bad3aacab9a77defe5b17", + "sha256:93cefddcc0b541d3c52981a232947bf085a38092b0812317f1adb56f02869bcb", + "sha256:95e49867ac616ec63ecd69ea005e65e4b896a48b8db7f9f3ad69f37be29324b7", + "sha256:aca423563eafba66a7c15125391b267befd1e45238de5e1a119ae1fb4ea83b5c", + "sha256:baef7c35e7fce738d9637e9c7a6aa79cb79085e4de49c2ec517ce19239a660f6", + "sha256:c10ccf0797ffce85e93a40aff3a96a3adb63c734f95b59384a7c9522ed25c9e2", + "sha256:ca39704a05bba1886c384a4d7944fda72c53fe5e61979cd933d22084678ad4c1", + "sha256:f6e96d5eee578187f5b7e9266bf646b73de29e2dd7adca8bd83e383680ce1f4c", + "sha256:fc6524511fa664cb4e91401229eedd0dad4ba6ded9c4423fee2f698d78908d9c", + "sha256:fdf2e7e5f074495ad6ea796ca0d245aa6a8b9e4c546ffbf8d30aaaee6601af0f" + ], + "version": "==5.0a6" + }, + "decorator": { + "hashes": [ + "sha256:86156361c50488b84a3f148056ea716ca587df2f0de1d34750d35c21312725de", + "sha256:f069f3a01830ca754ba5258fde2278454a0b5b79e0d7f5c13b3b97e57d4acff6" + ], + "version": "==4.4.0" + }, + "defusedxml": { + "hashes": [ + "sha256:6687150770438374ab581bb7a1b327a847dd9c5749e396102de3fad4e8a3ef93", + "sha256:f684034d135af4c6cbb949b8a4d2ed61634515257a67299e5f940fbaa34377f5" + ], + "version": "==0.6.0" + }, + "docutils": { + "hashes": [ + "sha256:6c4f696463b79f1fb8ba0c594b63840ebd41f059e92b31957c46b74a4599b6d0", + "sha256:84f558c26fd6d63e0cb6d0d36b538a670396db28cd176cd623be1f7220831db6", + "sha256:9e4d7ecfc600058e07ba661411a2b7de2fd0fafa17d1a7f7361cd47b1175c827", + "sha256:a2aeea129088da402665e92e0b25b04b073c04b2dce4ab65caaa38b7ce2e1a99" + ], + "version": "==0.15.2" + }, + "entrypoints": { + "hashes": [ + "sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19", + "sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451" + ], + "version": "==0.3" + }, + "flake8": { + "hashes": [ + "sha256:19241c1cbc971b9962473e4438a2ca19749a7dd002dd1a946eaba171b4114548", + "sha256:8e9dfa3cecb2400b3738a42c54c3043e821682b9c840b0448c0503f781130696" + ], + "index": "pypi", + "version": "==3.7.8" + }, + "flask": { + "hashes": [ + "sha256:13f9f196f330c7c2c5d7a5cf91af894110ca0215ac051b5844701f2bfd934d52", + "sha256:45eb5a6fd193d6cf7e0cf5d8a5b31f83d5faae0293695626f539a823e93b13f6" + ], + "version": "==1.1.1" + }, + "identify": { + "hashes": [ + "sha256:9aba2d08a82aa8e6f58810d4887ed3cf103a1befeb1eaf632d9c6fd2d6642542", + "sha256:b50ffad180b3a93b33a58b42597ef22493240d406ba07cc5058daf70f44b8d7c" + ], + "version": "==1.4.6" + }, + "idna": { + "hashes": [ + "sha256:c357b3f628cf53ae2c4c05627ecc484553142ca23264e593d327bcde5e9c3407", + "sha256:ea8b7f6188e6fa117537c3df7da9fc686d485087abf6ac197f9c46432f7e4a3c" + ], + "version": "==2.8" + }, + "importlib-metadata": { + "hashes": [ + "sha256:23d3d873e008a513952355379d93cbcab874c58f4f034ff657c7a87422fa64e8", + "sha256:80d2de76188eabfbfcf27e6a37342c2827801e59c4cc14b0371c56fed43820e3" + ], + "markers": "python_version < '3.8'", + "version": "==0.19" + }, + "ipykernel": { + "hashes": [ + "sha256:167c3ef08450f5e060b76c749905acb0e0fbef9365899377a4a1eae728864383", + "sha256:b503913e0b4cce7ed2de965457dfb2edd633e8234161a60e23f2fe2161345d12" + ], + "index": "pypi", + "version": "==5.1.2" + }, + "ipython": { + "hashes": [ + "sha256:1d3a1692921e932751bc1a1f7bb96dc38671eeefdc66ed33ee4cbc57e92a410e", + "sha256:537cd0176ff6abd06ef3e23f2d0c4c2c8a4d9277b7451544c6cbf56d1c79a83d" + ], + "version": "==7.7.0" + }, + "ipython-genutils": { + "hashes": [ + "sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8", + "sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8" + ], + "version": "==0.2.0" + }, + "itsdangerous": { + "hashes": [ + "sha256:321b033d07f2a4136d3ec762eac9f16a10ccd60f53c0c91af90217ace7ba1f19", + "sha256:b12271b2047cb23eeb98c8b5622e2e5c5e9abd9784a153e9d8ef9cb4dd09d749" + ], + "version": "==1.1.0" + }, + "jedi": { + "hashes": [ + "sha256:786b6c3d80e2f06fd77162a07fed81b8baa22dde5d62896a790a331d6ac21a27", + "sha256:ba859c74fa3c966a22f2aeebe1b74ee27e2a462f56d3f5f7ca4a59af61bfe42e" + ], + "version": "==0.15.1" + }, + "jinja2": { + "hashes": [ + "sha256:065c4f02ebe7f7cf559e49ee5a95fb800a9e4528727aec6f24402a5374c65013", + "sha256:14dd6caf1527abb21f08f86c784eac40853ba93edb79552aa1e4b8aef1b61c7b" + ], + "version": "==2.10.1" + }, + "jsonschema": { + "hashes": [ + "sha256:5f9c0a719ca2ce14c5de2fd350a64fd2d13e8539db29836a86adc990bb1a068f", + "sha256:8d4a2b7b6c2237e0199c8ea1a6d3e05bf118e289ae2b9d7ba444182a2959560d" + ], + "version": "==3.0.2" + }, + "jupyter-client": { + "hashes": [ + "sha256:73a809a2964afa07adcc1521537fddb58c2ffbb7e84d53dc5901cf80480465b3", + "sha256:98e8af5edff5d24e4d31e73bc21043130ae9d955a91aa93fc0bc3b1d0f7b5880" + ], + "version": "==5.3.1" + }, + "jupyter-core": { + "hashes": [ + "sha256:2c6e7c1e9f2ac45b5c2ceea5730bc9008d92fe59d0725eac57b04c0edfba24f7", + "sha256:f4fa22d6cf25f34807c995f22d2923693575c70f02557bcbfbe59bd5ec8d8b84" + ], + "version": "==4.5.0" + }, + "markupsafe": { + "hashes": [ + "sha256:00bc623926325b26bb9605ae9eae8a215691f33cae5df11ca5424f06f2d1f473", + "sha256:09027a7803a62ca78792ad89403b1b7a73a01c8cb65909cd876f7fcebd79b161", + "sha256:09c4b7f37d6c648cb13f9230d847adf22f8171b1ccc4d5682398e77f40309235", + "sha256:1027c282dad077d0bae18be6794e6b6b8c91d58ed8a8d89a89d59693b9131db5", + "sha256:19536834abffb3fa155017053c607cb835b2ecc6a3a2554a88043d991dffb736", + "sha256:24982cc2533820871eba85ba648cd53d8623687ff11cbb805be4ff7b4c971aff", + "sha256:29872e92839765e546828bb7754a68c418d927cd064fd4708fab9fe9c8bb116b", + "sha256:3d61f15e39611aacd91b7e71d903787da86d9e80896e683c0103fced9add7834", + "sha256:43a55c2930bbc139570ac2452adf3d70cdbb3cfe5912c71cdce1c2c6bbd9c5d1", + "sha256:46c99d2de99945ec5cb54f23c8cd5689f6d7177305ebff350a58ce5f8de1669e", + "sha256:500d4957e52ddc3351cabf489e79c91c17f6e0899158447047588650b5e69183", + "sha256:535f6fc4d397c1563d08b88e485c3496cf5784e927af890fb3c3aac7f933ec66", + "sha256:62fe6c95e3ec8a7fad637b7f3d372c15ec1caa01ab47926cfdf7a75b40e0eac1", + "sha256:6dd73240d2af64df90aa7c4e7481e23825ea70af4b4922f8ede5b9e35f78a3b1", + "sha256:717ba8fe3ae9cc0006d7c451f0bb265ee07739daf76355d06366154ee68d221e", + "sha256:7952deddf24b85c88dab48f6ec366ac6e39d2761b5280f2f9594911e03fcd064", + "sha256:79855e1c5b8da654cf486b830bd42c06e8780cea587384cf6545b7d9ac013a0b", + "sha256:7c1699dfe0cf8ff607dbdcc1e9b9af1755371f92a68f706051cc8c37d447c905", + "sha256:88e5fcfb52ee7b911e8bb6d6aa2fd21fbecc674eadd44118a9cc3863f938e735", + "sha256:8defac2f2ccd6805ebf65f5eeb132adcf2ab57aa11fdf4c0dd5169a004710e7d", + "sha256:98c7086708b163d425c67c7a91bad6e466bb99d797aa64f965e9d25c12111a5e", + "sha256:9add70b36c5666a2ed02b43b335fe19002ee5235efd4b8a89bfcf9005bebac0d", + "sha256:9bf40443012702a1d2070043cb6291650a0841ece432556f784f004937f0f32c", + "sha256:ade5e387d2ad0d7ebf59146cc00c8044acbd863725f887353a10df825fc8ae21", + "sha256:b00c1de48212e4cc9603895652c5c410df699856a2853135b3967591e4beebc2", + "sha256:b1282f8c00509d99fef04d8ba936b156d419be841854fe901d8ae224c59f0be5", + "sha256:b2051432115498d3562c084a49bba65d97cf251f5a331c64a12ee7e04dacc51b", + "sha256:ba59edeaa2fc6114428f1637ffff42da1e311e29382d81b339c1817d37ec93c6", + "sha256:c8716a48d94b06bb3b2524c2b77e055fb313aeb4ea620c8dd03a105574ba704f", + "sha256:cd5df75523866410809ca100dc9681e301e3c27567cf498077e8551b6d20e42f", + "sha256:e249096428b3ae81b08327a63a485ad0878de3fb939049038579ac0ef61e17e7" + ], + "version": "==1.1.1" + }, + "mccabe": { + "hashes": [ + "sha256:ab8a6258860da4b6677da4bd2fe5dc2c659cff31b3ee4f7f5d64e79735b80d42", + "sha256:dd8d182285a0fe56bace7f45b5e7d1a6ebcbf524e8f3bd87eb0f125271b8831f" + ], + "version": "==0.6.1" + }, + "mistune": { + "hashes": [ + "sha256:59a3429db53c50b5c6bcc8a07f8848cb00d7dc8bdb431a4ab41920d201d4756e", + "sha256:88a1051873018da288eee8538d476dffe1262495144b33ecb586c4ab266bb8d4" + ], + "version": "==0.8.4" + }, + "more-itertools": { + "hashes": [ + "sha256:409cd48d4db7052af495b09dec721011634af3753ae1ef92d2b32f73a745f832", + "sha256:92b8c4b06dac4f0611c0729b2f2ede52b2e1bac1ab48f089c7ddc12e26bb60c4" + ], + "version": "==7.2.0" + }, + "mypy": { + "hashes": [ + "sha256:0107bff4f46a289f0e4081d59b77cef1c48ea43da5a0dbf0005d54748b26df2a", + "sha256:07957f5471b3bb768c61f08690c96d8a09be0912185a27a68700f3ede99184e4", + "sha256:10af62f87b6921eac50271e667cc234162a194e742d8e02fc4ddc121e129a5b0", + "sha256:11fd60d2f69f0cefbe53ce551acf5b1cec1a89e7ce2d47b4e95a84eefb2899ae", + "sha256:15e43d3b1546813669bd1a6ec7e6a11d2888db938e0607f7b5eef6b976671339", + "sha256:352c24ba054a89bb9a35dd064ee95ab9b12903b56c72a8d3863d882e2632dc76", + "sha256:437020a39417e85e22ea8edcb709612903a9924209e10b3ec6d8c9f05b79f498", + "sha256:49925f9da7cee47eebf3420d7c0e00ec662ec6abb2780eb0a16260a7ba25f9c4", + "sha256:6724fcd5777aa6cebfa7e644c526888c9d639bd22edd26b2a8038c674a7c34bd", + "sha256:7a17613f7ea374ab64f39f03257f22b5755335b73251d0d253687a69029701ba", + "sha256:cdc1151ced496ca1496272da7fc356580e95f2682be1d32377c22ddebdf73c91" + ], + "index": "pypi", + "version": "==0.720" + }, + "mypy-extensions": { + "hashes": [ + "sha256:37e0e956f41369209a3d5f34580150bcacfabaa57b33a15c0b25f4b5725e0812", + "sha256:b16cabe759f55e3409a7d231ebd2841378fb0c27a5d1994719e340e4f429ac3e" + ], + "version": "==0.4.1" + }, + "nbconvert": { + "hashes": [ + "sha256:427a468ec26e7d68a529b95f578d5cbf018cb4c1f889e897681c2b6d11897695", + "sha256:48d3c342057a2cf21e8df820d49ff27ab9f25fc72b8f15606bd47967333b2709" + ], + "version": "==5.6.0" + }, + "nbformat": { + "hashes": [ + "sha256:b9a0dbdbd45bb034f4f8893cafd6f652ea08c8c1674ba83f2dc55d3955743b0b", + "sha256:f7494ef0df60766b7cabe0a3651556345a963b74dbc16bc7c18479041170d402" + ], + "version": "==4.4.0" + }, + "nodeenv": { + "hashes": [ + "sha256:ad8259494cf1c9034539f6cced78a1da4840a4b157e23640bc4a0c0546b0cb7a", + "sha256:ae768ef7f4a047bae646c4da47fc984b78d651d8eb2c30c3c85ffba2804427a0" + ], + "version": "==1.3.3" + }, + "notebook": { + "hashes": [ + "sha256:0be97e939cec73cde37fc4d2a606a6f497a9addf3afcf61a09a21b0c35e699c5", + "sha256:5c16dbf4fa824db19de43637ebfb24bcbd3b4f646e5d6a0414ed3a376d6bc951" + ], + "version": "==6.0.0" + }, + "packaging": { + "hashes": [ + "sha256:a7ac867b97fdc07ee80a8058fe4435ccd274ecc3b0ed61d852d7d53055528cf9", + "sha256:c491ca87294da7cc01902edbe30a5bc6c4c28172b5138ab4e4aa1b9d7bfaeafe" + ], + "version": "==19.1" + }, + "pandocfilters": { + "hashes": [ + "sha256:41a309da81cba5509389b19d96b0ee49551cee8165a6406754f2565e95429860", + "sha256:b3dd70e169bb5449e6bc6ff96aea89c5eea8c5f6ab5e207fc2f521a2cf4a0da9" + ], + "version": "==1.4.2" + }, + "parso": { + "hashes": [ + "sha256:63854233e1fadb5da97f2744b6b24346d2750b85965e7e399bec1620232797dc", + "sha256:666b0ee4a7a1220f65d367617f2cd3ffddff3e205f3f16a0284df30e774c2a9c" + ], + "version": "==0.5.1" + }, + "pexpect": { + "hashes": [ + "sha256:2094eefdfcf37a1fdbfb9aa090862c1a4878e5c7e0e7e7088bdb511c558e5cd1", + "sha256:9e2c1fd0e6ee3a49b28f95d4b33bc389c89b20af6a1255906e90ff1262ce62eb" + ], + "version": "==4.7.0" + }, + "pickleshare": { + "hashes": [ + "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca", + "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56" + ], + "version": "==0.7.5" + }, + "pkginfo": { + "hashes": [ + "sha256:7424f2c8511c186cd5424bbf31045b77435b37a8d604990b79d4e70d741148bb", + "sha256:a6d9e40ca61ad3ebd0b72fbadd4fba16e4c0e4df0428c041e01e06eb6ee71f32" + ], + "version": "==1.5.0.1" + }, + "pluggy": { + "hashes": [ + "sha256:0825a152ac059776623854c1543d65a4ad408eb3d33ee114dff91e57ec6ae6fc", + "sha256:b9817417e95936bf75d85d3f8767f7df6cdde751fc40aed3bb3074cbcb77757c" + ], + "version": "==0.12.0" + }, + "pre-commit": { + "hashes": [ + "sha256:21ce389ea3a480170804208baff8ceaac815ecf6b9bd6c6797de5584ad69cff8", + "sha256:3b0e901f442b966444833f1924e9bf9a7c10c79741b21520f68bc87639220f5e" + ], + "index": "pypi", + "version": "==1.18.2" + }, + "prometheus-client": { + "hashes": [ + "sha256:09b5750fd1c153420dccd35881116e853c730081bea0dbf0ea6649103bcb8445", + "sha256:71cd24a2b3eb335cb800c7159f423df1bd4dcd5171b234be15e3f31ec9f622da" + ], + "version": "==0.7.1" + }, + "prompt-toolkit": { + "hashes": [ + "sha256:11adf3389a996a6d45cc277580d0d53e8a5afd281d0c9ec71b28e6f121463780", + "sha256:2519ad1d8038fd5fc8e770362237ad0364d16a7650fb5724af6997ed5515e3c1", + "sha256:977c6583ae813a37dc1c2e1b715892461fcbdaa57f6fc62f33a528c4886c8f55" + ], + "version": "==2.0.9" + }, + "psutil": { + "hashes": [ + "sha256:028a1ec3c6197eadd11e7b46e8cc2f0720dc18ac6d7aabdb8e8c0d6c9704f000", + "sha256:503e4b20fa9d3342bcf58191bbc20a4a5ef79ca7df8972e6197cc14c5513e73d", + "sha256:863a85c1c0a5103a12c05a35e59d336e1d665747e531256e061213e2e90f63f3", + "sha256:954f782608bfef9ae9f78e660e065bd8ffcfaea780f9f2c8a133bb7cb9e826d7", + "sha256:968b1d0ad79ee376f52875b9cf3a204ebb099da50a3567daba8fb890679ce6b9", + "sha256:b6e08f965a305cd84c2d07409bc16fbef4417d67b70c53b299116c5b895e3f45", + "sha256:b99cf995f4ab9b36faff05615c24e3b05418234312d1335485423e43f2297326", + "sha256:bc96d437dfbb8865fc8828cf363450001cb04056bbdcdd6fc152c436c8a74c61", + "sha256:cf49178021075d47c61c03c0229ac0c60d5e2830f8cab19e2d88e579b18cdb76", + "sha256:cfc9ddeb293e469d19918d8a379e09731b430f5d009bb38915683f41b59c9ddf", + "sha256:d5350cb66690915d60f8b233180f1e49938756fb2d501c93c44f8fb5b970cc63", + "sha256:eba238cf1989dfff7d483c029acb0ac4fcbfc15de295d682901f0e2497e6781a" + ], + "version": "==5.6.3" + }, + "ptyprocess": { + "hashes": [ + "sha256:923f299cc5ad920c68f2bc0bc98b75b9f838b93b599941a6b63ddbc2476394c0", + "sha256:d7cc528d76e76342423ca640335bd3633420dc1366f258cb31d05e865ef5ca1f" + ], + "version": "==0.6.0" + }, + "py": { + "hashes": [ + "sha256:64f65755aee5b381cea27766a3a147c3f15b9b6b9ac88676de66ba2ae36793fa", + "sha256:dc639b046a6e2cff5bbe40194ad65936d6ba360b52b3c3fe1d08a82dd50b5e53" + ], + "version": "==1.8.0" + }, + "pycodestyle": { + "hashes": [ + "sha256:95a2219d12372f05704562a14ec30bc76b05a5b297b21a5dfe3f6fac3491ae56", + "sha256:e40a936c9a450ad81df37f549d676d127b1b66000a6c500caa2b085bc0ca976c" + ], + "version": "==2.5.0" + }, + "pyflakes": { + "hashes": [ + "sha256:17dbeb2e3f4d772725c777fabc446d5634d1038f234e77343108ce445ea69ce0", + "sha256:d976835886f8c5b31d47970ed689944a0262b5f3afa00a5a7b4dc81e5449f8a2" + ], + "version": "==2.1.1" + }, + "pygments": { + "hashes": [ + "sha256:71e430bc85c88a430f000ac1d9b331d2407f681d6f6aec95e8bcfbc3df5b0127", + "sha256:881c4c157e45f30af185c1ffe8d549d48ac9127433f2c380c24b84572ad66297" + ], + "version": "==2.4.2" + }, + "pyparsing": { + "hashes": [ + "sha256:6f98a7b9397e206d78cc01df10131398f1c8b8510a2f4d97d9abd82e1aacdd80", + "sha256:d9338df12903bbf5d65a0e4e87c2161968b10d2e489652bb47001d82a9b028b4" + ], + "version": "==2.4.2" + }, + "pyrsistent": { + "hashes": [ + "sha256:34b47fa169d6006b32e99d4b3c4031f155e6e68ebcc107d6454852e8e0ee6533", + "sha256:44bd536028d023466d579cb95b7d090e48da4a44fcc76662e861151362f59e3e", + "sha256:4675b7efae98bb55067563c80ef072742a895647c32120e09489ddf12ae3103d", + "sha256:b03dcf0690ca57ceb5fdaa27bbdca77d48852fcf730efe401b43d59207909451" + ], + "version": "==0.15.4" + }, + "pytest": { + "hashes": [ + "sha256:3805d095f1ea279b9870c3eeae5dddf8a81b10952c8835cd628cf1875b0ef031", + "sha256:abc562321c2d190dd63c2faadf70b86b7af21a553b61f0df5f5e1270717dc5a3" + ], + "index": "pypi", + "version": "==5.1.0" + }, + "pytest-cov": { + "hashes": [ + "sha256:2b097cde81a302e1047331b48cadacf23577e431b61e9c6f49a1170bbe3d3da6", + "sha256:e00ea4fdde970725482f1f35630d12f074e121a23801aabf2ae154ec6bdd343a" + ], + "index": "pypi", + "version": "==2.7.1" + }, + "python-dateutil": { + "hashes": [ + "sha256:7e6584c74aeed623791615e26efd690f29817a27c73085b78e4bad02493df2fb", + "sha256:c89805f6f4d64db21ed966fda138f8a5ed7a4fdbc1a8ee329ce1b74e3c74da9e" + ], + "version": "==2.8.0" + }, + "pywinpty": { + "hashes": [ + "sha256:0e01321e53a230233358a6d608a1a8bc86c3882cf82769ba3c62ca387dc9cc51", + "sha256:333e0bc5fca8ad9e9a1516ebedb2a65da38dc1f399f8b2ea57d6cccec1ff2cc8", + "sha256:3ca3123aa6340ab31bbf9bd012b92e72f9ec905e4c9ee152cc997403e1778cd3", + "sha256:44a6dddcf2abf402e22f87e2c9a341f7d0b296afbec3d28184c8de4d7f514ee4", + "sha256:53d94d574c3d4da2df5b1c3ae728b8d90e4d33502b0388576bbd4ddeb4de0f77", + "sha256:c3955f162c53dde968f3fc11361658f1d83b683bfe601d4b6f94bb01ea4300bc", + "sha256:cec9894ecb34de3d7b1ca121dd98433035b9f8949b5095e84b103b349231509c", + "sha256:dcd45912e2fe2e6f72cee997a4da6ed1ad2056165a277ce5ec7f7ac98dcdf667", + "sha256:f2bcdd9a2ffd8b223752a971b3d377fb7bfed85f140ec9710f1218d760f2ccb7" + ], + "markers": "os_name == 'nt'", + "version": "==0.5.5" + }, + "pyyaml": { + "hashes": [ + "sha256:0113bc0ec2ad727182326b61326afa3d1d8280ae1122493553fd6f4397f33df9", + "sha256:01adf0b6c6f61bd11af6e10ca52b7d4057dd0be0343eb9283c878cf3af56aee4", + "sha256:2e47139cc7a6599dee11e1e799a9a42c3039bbf840f70f7df39b412728e489f1", + "sha256:5124373960b0b3f4aa7df1707e63e9f109b5263eca5976c66e08b1c552d4eaf8", + "sha256:5ca4f10adbddae56d824b2c09668e91219bb178a1eee1faa56af6f99f11bf696", + "sha256:66d998cbe162f3240144b1ea848a1d55d76f66c006f1c00752d0b2dd0288c95f", + "sha256:7907be34ffa3c5a32b60b95f4d95ea25361c951383a894fec31be7252b2b6f34", + "sha256:7ec9b2a4ed5cad025c2278a1e6a19c011c80a3caaac804fd2d329e9cc2c287c9", + "sha256:87ae4c829bb25b9fe99cf71fbb2140c448f534e24c998cc60f39ae4f94396a73", + "sha256:9de9919becc9cc2ff03637872a440195ac4241c80536632fffeb6a1e25a74299", + "sha256:a5a85b10e450c66b49f98846937e8cfca1db3127a9d5d1e31ca45c3d0bef4c5b", + "sha256:ade41f6b19edc1b3d9dd536e7e065f2cc3dfac05dfac6d9bbf5918f8cd414e6f", + "sha256:b0997827b4f6a7c286c01c5f60384d218dca4ed7d9efa945c3e1aa623d5709ae", + "sha256:b631ef96d3222e62861443cc89d6563ba3eeb816eeb96b2629345ab795e53681", + "sha256:bf47c0607522fdbca6c9e817a6e81b08491de50f3766a7a0e6a5be7905961b41", + "sha256:f81025eddd0327c7d4cfe9b62cf33190e1e736cc6e97502b3ec425f574b3e7a8" + ], + "version": "==5.1.2" + }, + "pyzmq": { + "hashes": [ + "sha256:01636e95a88d60118479041c6aaaaf5419c6485b7b1d37c9c4dd424b7b9f1121", + "sha256:021dba0d1436516092c624359e5da51472b11ba8edffa334218912f7e8b65467", + "sha256:0463bd941b6aead494d4035f7eebd70035293dd6caf8425993e85ad41de13fa3", + "sha256:05fd51edd81eed798fccafdd49c936b6c166ffae7b32482e4d6d6a2e196af4e6", + "sha256:1fadc8fbdf3d22753c36d4172169d184ee6654f8d6539e7af25029643363c490", + "sha256:22efa0596cf245a78a99060fe5682c4cd00c58bb7614271129215c889062db80", + "sha256:260c70b7c018905ec3659d0f04db735ac830fe27236e43b9dc0532cf7c9873ef", + "sha256:2762c45e289732d4450406cedca35a9d4d71e449131ba2f491e0bf473e3d2ff2", + "sha256:2fc6cada8dc53521c1189596f1898d45c5f68603194d3a6453d6db4b27f4e12e", + "sha256:343b9710a61f2b167673bea1974e70b5dccfe64b5ed10626798f08c1f7227e72", + "sha256:41bf96d5f554598a0632c3ec28e3026f1d6591a50f580df38eff0b8067efb9e7", + "sha256:56dc8f72f0ce67a9be1782a0d016602abd3e7bf1a39cda003edd492e55b54f13", + "sha256:7b2a856a3f880869cb6ce0938c3e6433d5c3a8119530830cc9f91dd814a4ea40", + "sha256:856b2cdf7a1e2cbb84928e1e8db0ea4018709b39804103d3a409e5584f553f57", + "sha256:85b869abc894672de9aecdf032158ea8ad01e2f0c3b09ef60e3687fb79418096", + "sha256:875e1d33dd464fd86cded15eb4e3e41bf674acfd623cfa3f7326d2ca8bbe3cdf", + "sha256:93f44739db69234c013a16990e43db1aa0af3cf5a4b8b377d028ff24515fbeb3", + "sha256:98fa3e75ccb22c0dc99654e3dd9ff693b956861459e8c8e8734dd6247b89eb29", + "sha256:9a22c94d2e93af8bebd4fcf5fa38830f5e3b1ff0d4424e2912b07651eb1bafb4", + "sha256:a7d3f4b4bbb5d7866ae727763268b5c15797cbd7b63ea17f3b0ec1067da8994b", + "sha256:b645a49376547b3816433a7e2d2a99135c8e651e50497e7ecac3bd126e4bea16", + "sha256:cf0765822e78cf9e45451647a346d443f66792aba906bc340f4e0ac7870c169c", + "sha256:dc398e1e047efb18bfab7a8989346c6921a847feae2cad69fedf6ca12fb99e2c", + "sha256:dd5995ae2e80044e33b5077fb4bc2b0c1788ac6feaf15a6b87a00c14b4bdd682", + "sha256:e03fe5e07e70f245dc9013a9d48ae8cc4b10c33a1968039c5a3b64b5d01d083d", + "sha256:ea09a306144dff2795e48439883349819bef2c53c0ee62a3c2fae429451843bb", + "sha256:f4e37f33da282c3c319849877e34f97f0a3acec09622ec61b7333205bdd13b52", + "sha256:fa4bad0d1d173dee3e8ef3c3eb6b2bb6c723fc7a661eeecc1ecb2fa99860dd45" + ], + "version": "==18.1.0" + }, + "readme-renderer": { + "hashes": [ + "sha256:bb16f55b259f27f75f640acf5e00cf897845a8b3e4731b5c1a436e4b8529202f", + "sha256:c8532b79afc0375a85f10433eca157d6b50f7d6990f337fa498c96cd4bfc203d" + ], + "version": "==24.0" + }, + "remote-ikernel": { + "hashes": [ + "sha256:5253216e87a8c31f1b0ca9305454f223147518b580e853b7635a3d8b9c88c295", + "sha256:740b80a57fa1af40cadef541c5a4eb293675b504092ecf00c57dd2f0011bd840" + ], + "index": "pypi", + "version": "==0.4.6" + }, + "requests": { + "hashes": [ + "sha256:11e007a8a2aa0323f5a921e9e6a2d7e4e67d9877e85773fba9ba6419025cbeb4", + "sha256:9cf5292fcd0f598c671cfc1e0d7d1a7f13bb8085e9a590f48c010551dc6c4b31" + ], + "version": "==2.22.0" + }, + "requests-toolbelt": { + "hashes": [ + "sha256:380606e1d10dc85c3bd47bf5a6095f815ec007be7a8b69c878507068df059e6f", + "sha256:968089d4584ad4ad7c171454f0a5c6dac23971e9472521ea3b6d49d610aa6fc0" + ], + "version": "==0.9.1" + }, + "send2trash": { + "hashes": [ + "sha256:60001cc07d707fe247c94f74ca6ac0d3255aabcb930529690897ca2a39db28b2", + "sha256:f1691922577b6fa12821234aeb57599d887c4900b9ca537948d2dac34aea888b" + ], + "version": "==1.5.0" + }, + "six": { + "hashes": [ + "sha256:3350809f0555b11f552448330d0b52d5f24c91a322ea4a15ef22629740f3761c", + "sha256:d16a0141ec1a18405cd4ce8b4613101da75da0e9a7aec5bdd4fa804d0e0eba73" + ], + "version": "==1.12.0" + }, + "soupsieve": { + "hashes": [ + "sha256:8662843366b8d8779dec4e2f921bebec9afd856a5ff2e82cd419acc5054a1a92", + "sha256:a5a6166b4767725fd52ae55fee8c8b6137d9a51e9f1edea461a062a759160118" + ], + "version": "==1.9.3" + }, + "terminado": { + "hashes": [ + "sha256:d9d012de63acb8223ac969c17c3043337c2fcfd28f3aea1ee429b345d01ef460", + "sha256:de08e141f83c3a0798b050ecb097ab6259c3f0331b2f7b7750c9075ced2c20c2" + ], + "version": "==0.8.2" + }, + "testpath": { + "hashes": [ + "sha256:46c89ebb683f473ffe2aab0ed9f12581d4d078308a3cb3765d79c6b2317b0109", + "sha256:b694b3d9288dbd81685c5d2e7140b81365d46c29f5db4bc659de5aa6b98780f8" + ], + "version": "==0.4.2" + }, + "toml": { + "hashes": [ + "sha256:229f81c57791a41d65e399fc06bf0848bab550a9dfd5ed66df18ce5f05e73d5c", + "sha256:235682dd292d5899d361a811df37e04a8828a5b1da3115886b73cf81ebc9100e" + ], + "version": "==0.10.0" + }, + "tornado": { + "hashes": [ + "sha256:33e962c5857767326202b6405a51149b3dbf323d145dbde7e845d0094b8cc641", + "sha256:349884248c36801afa19e342a77cc4458caca694b0eda633f5878e458a44cb2c", + "sha256:398e0d35e086ba38a0427c3b37f4337327231942e731edaa6e9fd1865bbd6f60", + "sha256:4e73ef678b1a859f0cb29e1d895526a20ea64b5ffd510a2307b5998c7df24281", + "sha256:559bce3d31484b665259f50cd94c5c28b961b09315ccd838f284687245f416e5", + "sha256:abbe53a39734ef4aba061fca54e30c6b4639d3e1f59653f0da37a0003de148c7", + "sha256:c845db36ba616912074c5b1ee897f8e0124df269468f25e4fe21fe72f6edd7a9", + "sha256:c9399267c926a4e7c418baa5cbe91c7d1cf362d505a1ef898fde44a07c9dd8a5", + "sha256:e573a3591f29be3136ba79ec6d975f37a730f986098e576de8d80cbd687d89ce" + ], + "version": "==6.0.3" + }, + "tqdm": { + "hashes": [ + "sha256:438d6a735167099d75e5fd9a55175c6727c4dbba345ae406b2886c2728fe3e80", + "sha256:ebc205051d79b49989140f5f6c73ec23fce5f590cbc4d9cd6e4c47f168fa0f10" + ], + "version": "==4.34.0" + }, + "traitlets": { + "hashes": [ + "sha256:9c4bd2d267b7153df9152698efb1050a5d84982d3384a37b2c1f7723ba3e7835", + "sha256:c6cb5e6f57c5a9bdaa40fa71ce7b4af30298fbab9ece9815b5d995ab6217c7d9" + ], + "version": "==4.3.2" + }, + "twine": { + "hashes": [ + "sha256:0fb0bfa3df4f62076cab5def36b1a71a2e4acb4d1fa5c97475b048117b1a6446", + "sha256:d6c29c933ecfc74e9b1d9fa13aa1f87c5d5770e119f5a4ce032092f0ff5b14dc" + ], + "index": "pypi", + "version": "==1.13.0" + }, + "typed-ast": { + "hashes": [ + "sha256:18511a0b3e7922276346bcb47e2ef9f38fb90fd31cb9223eed42c85d1312344e", + "sha256:262c247a82d005e43b5b7f69aff746370538e176131c32dda9cb0f324d27141e", + "sha256:2b907eb046d049bcd9892e3076c7a6456c93a25bebfe554e931620c90e6a25b0", + "sha256:354c16e5babd09f5cb0ee000d54cfa38401d8b8891eefa878ac772f827181a3c", + "sha256:3fe142e6c113dc390479a21f363464ddee2ae48d20f7ff23e41ac19465761c32", + "sha256:4e0b70c6fc4d010f8107726af5fd37921b666f5b31d9331f0bd24ad9a088e631", + "sha256:630968c5cdee51a11c05a30453f8cd65e0cc1d2ad0d9192819df9978984529f4", + "sha256:66480f95b8167c9c5c5c87f32cf437d585937970f3fc24386f313a4c97b44e34", + "sha256:71211d26ffd12d63a83e079ff258ac9d56a1376a25bc80b1cdcdf601b855b90b", + "sha256:95bd11af7eafc16e829af2d3df510cecfd4387f6453355188342c3e79a2ec87a", + "sha256:a9abe531ff65a6aeedb69d2475b15082470f2b4778b7d1bbb8108861bb3a004d", + "sha256:bc6c7d3fa1325a0c6613512a093bc2a2a15aeec350451cbdf9e1d4bffe3e3233", + "sha256:cc34a6f5b426748a507dd5d1de4c1978f2eb5626d51326e43280941206c209e1", + "sha256:d755f03c1e4a51e9b24d899561fec4ccaf51f210d52abdf8c07ee2849b212a36", + "sha256:d7c45933b1bdfaf9f36c579671fec15d25b06c8398f113dab64c18ed1adda01d", + "sha256:d896919306dd0aa22d0132f62a1b78d11aaf4c9fc5b3410d3c666b818191630a", + "sha256:f9aadde5abd3225e4d94a9fafe3ce6f15fe607b2305a989be7ab4b7938cd96d1", + "sha256:ffde2fbfad571af120fcbfbbc61c72469e72f550d676c3342492a9dfdefb8f12" + ], + "version": "==1.4.0" + }, + "typing-extensions": { + "hashes": [ + "sha256:2ed632b30bb54fc3941c382decfd0ee4148f5c591651c9272473fea2c6397d95", + "sha256:b1edbbf0652660e32ae780ac9433f4231e7339c7f9a8057d0f042fcbcea49b87", + "sha256:d8179012ec2c620d3791ca6fe2bf7979d979acdbef1fca0bc56b37411db682ed" + ], + "version": "==3.7.4" + }, + "urllib3": { + "hashes": [ + "sha256:b246607a25ac80bedac05c6f282e3cdaf3afb65420fd024ac94435cabe6e18d1", + "sha256:dbe59173209418ae49d485b87d1681aefa36252ee85884c31346debd19463232" + ], + "version": "==1.25.3" + }, + "virtualenv": { + "hashes": [ + "sha256:5e4d92f9a36359a745ddb113cabb662e6100e71072a1e566eb6ddfcc95fdb7ed", + "sha256:b6711690882013bc79e0eac55889d901596f0967165d80adfa338c5729db1c71" + ], + "version": "==16.7.3" + }, + "waitress": { + "hashes": [ + "sha256:4e2a6e6fca56d6d3c279f68a2b2cc9b4798d834ea3c3a9db3e2b76b6d66f4526", + "sha256:90fe750cd40b282fae877d3c866255d485de18e8a232e93de42ebd9fb750eebb" + ], + "version": "==1.3.0" + }, + "wcwidth": { + "hashes": [ + "sha256:3df37372226d6e63e1b1e1eda15c594bca98a22d33a23832a90998faa96bc65e", + "sha256:f4ebe71925af7b40a864553f761ed559b43544f8f71746c2d756c7fe788ade7c" + ], + "version": "==0.1.7" + }, + "webencodings": { + "hashes": [ + "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", + "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923" + ], + "version": "==0.5.1" + }, + "webob": { + "hashes": [ + "sha256:05aaab7975e0ee8af2026325d656e5ce14a71f1883c52276181821d6d5bf7086", + "sha256:36db8203c67023d68c1b00208a7bf55e3b10de2aa317555740add29c619de12b" + ], + "version": "==1.8.5" + }, + "webtest": { + "hashes": [ + "sha256:41348efe4323a647a239c31cde84e5e440d726ca4f449859264e538d39037fd0", + "sha256:f3a603b8f1dd873b9710cd5a7dd0889cf758d7e1c133b1dae971c04f567e566e" + ], + "index": "pypi", + "version": "==2.0.33" + }, + "werkzeug": { + "hashes": [ + "sha256:87ae4e5b5366da2347eb3116c0e6c681a0e939a33b2805e2c0cbd282664932c4", + "sha256:a13b74dd3c45f758d4ebdb224be8f1ab8ef58b3c0ffc1783a8c7d9f4f50227e6" + ], + "version": "==0.15.5" + }, + "wheel": { + "hashes": [ + "sha256:10c9da68765315ed98850f8e048347c3eb06dd81822dc2ab1d4fde9dc9702646", + "sha256:f4da1763d3becf2e2cd92a14a7c920f0f00eca30fdde9ea992c836685b9faf28" + ], + "index": "pypi", + "version": "==0.33.6" + }, + "zipp": { + "hashes": [ + "sha256:4970c3758f4e89a7857a973b1e2a5d75bcdc47794442f2e2dd4fe8e0466e809a", + "sha256:8a5712cfd3bb4248015eb3b0b3c54a5f6ee3f2425963ef2a0125b8bc40aafaec" + ], + "version": "==0.5.2" + } + } +} diff --git a/Ch11/apd.sensors-chapter11/README.md b/Ch11/apd.sensors-chapter11/README.md new file mode 100644 index 0000000..cd96353 --- /dev/null +++ b/Ch11/apd.sensors-chapter11/README.md @@ -0,0 +1,96 @@ +# Advanced Python Development Sensors + +This is the data collection package that forms part of the running example +for the book [Advanced Python Development](https://advancedpython.dev). + +## Usage + +This installs a console script called `sensors` that returns a report on +various aspects of the system. The available sensors are: + +* Python version +* IP Addresses +* CPU Usage +* RAM Available +* Battery charging state +* Ambient Temperature +* Ambient Humidity + +There are no command-line options, to view the report run `sensors` on the +command line. + +## Caveats + +The Ambient Temperature and Ambient Humidity sensors are only available on +RaspberryPi hosts and assume that a DHT22 sensor is connected to pin `D20`. + +The location and type of the sensor can be controlled by setting a pair of +environment variables: `APD_SENSORS_TEMPERATURE_BOARD` and +`APD_SENSORS_TEMPERATURE_PIN`. + +If there is an entry in `/etc/hosts` for the current machine's hostname that +value will be the only result from the IP Addresses sensor. + +## Installation + +You can install with `pip3 install apd.sensors` under Python 3.7 or higher. + +We recommend using pipenv to manage your environment, in which case you would +install using `pipenv --three install apd.sensors` and run the programme using +`pipenv run sensors`. + +## API server + +There is an optional API server shipped with apd.sensors. To use this you +should install the `apd.sensors[webapp]` extra. The API can then be started +with the non-production quality wsgiref server using: + + python -m apd.sensors.wsgi.serve + +or through Waitress (if installed) using: + + waitress-serve --call apd.sensors.wsgi:set_up_config + +Other WSGI servers will also work, you should use set_up_config as a factory +function. + +An environment variable is required to use the API server, `APD_SENSORS_API_KEY` +should be set to the API key required to gain access. One can be generated +using: + + python -c "import uuid; print(uuid.uuid4().hex)" + +The following endpoints are supported: + +* /v/3.0/sensors +* /v/3.0/sensors/sensorid +* /v/3.0/deployment_id + +## Historical data + +You can install optional functionality to periodically store sensor +values using the `apd.sensors[scheduled]` extra. In this case, +`sensors --save` will store the recorded data to `sensor_data.sqlite` +in the current working directory. + +The database connection can be specified with `--db sqlite:////var/sensors.sqlite`, +for example. It can also be specified with the `APD_SENSORS_DB_URI` +environment variable. + +The database must be migrated to contain the correct data first. This can be +done by running `alembic upgrade head` with the following alembic.ini file +in the current working directory. + + [alembic] + script_location = apd.sensors:alembic + sqlalchemy.url = sqlite:///sensor_data.sqlite + +### Historical data API + +An API to extract historical data is also available if installed with `apd.sensors[webapp,scheduled,storedapi]`. + +This provides the following three URIs, where start and end are a date/time in ISO format. + +* /v/3.0/historical +* /v/3.0/historical/start +* /v/3.0/historical/start/end diff --git a/Ch11/apd.sensors-chapter11/plugins/apd.sunnyboy_solar/pyproject.toml b/Ch11/apd.sensors-chapter11/plugins/apd.sunnyboy_solar/pyproject.toml new file mode 100644 index 0000000..4d3bb67 --- /dev/null +++ b/Ch11/apd.sensors-chapter11/plugins/apd.sunnyboy_solar/pyproject.toml @@ -0,0 +1,5 @@ +[build-system] +requires = [ + "setuptools", +] +build-backend = "setuptools.build_meta" diff --git a/Ch11/apd.sensors-chapter11/plugins/apd.sunnyboy_solar/setup.cfg b/Ch11/apd.sensors-chapter11/plugins/apd.sunnyboy_solar/setup.cfg new file mode 100644 index 0000000..0f5db10 --- /dev/null +++ b/Ch11/apd.sensors-chapter11/plugins/apd.sunnyboy_solar/setup.cfg @@ -0,0 +1,33 @@ +[mypy] +ignore_missing_imports = True + +[flake8] +max-line-length = 88 + +[metadata] +name = apd.sunnyboy_solar +version = attr: apd.sunnyboy_solar.VERSION +description = APD Sensor for reading data from Sunnyboy inverters +long_description = file: README.md, CHANGES.md, LICENCE +long_description_content_type = text/markdown +keywords = iot solar +license = MIT +classifiers = + Programming Language :: Python :: 3 + Programming Language :: Python :: 3.7 + +[options] +zip_safe = False +include_package_data = True +package_dir = + =src +packages = find_namespace: +install_requires = + apd.sensors + +[options.packages.find] +where = src + +[options.entry_points] +apd.sensors.sensors = + SolarCumulativeOutput = apd.sunnyboy_solar.sensor:SolarCumulativeOutput diff --git a/Ch11/apd.sensors-chapter11/plugins/apd.sunnyboy_solar/setup.py b/Ch11/apd.sensors-chapter11/plugins/apd.sunnyboy_solar/setup.py new file mode 100644 index 0000000..6068493 --- /dev/null +++ b/Ch11/apd.sensors-chapter11/plugins/apd.sunnyboy_solar/setup.py @@ -0,0 +1,3 @@ +from setuptools import setup + +setup() diff --git a/Ch11/apd.sensors-chapter11/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/Pipfile b/Ch11/apd.sensors-chapter11/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/Pipfile new file mode 100644 index 0000000..e69de29 diff --git a/Ch11/apd.sensors-chapter11/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/__init__.py b/Ch11/apd.sensors-chapter11/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/__init__.py new file mode 100644 index 0000000..3277f64 --- /dev/null +++ b/Ch11/apd.sensors-chapter11/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/__init__.py @@ -0,0 +1 @@ +VERSION = "1.0.0" diff --git a/Ch11/apd.sensors-chapter11/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/sensor.py b/Ch11/apd.sensors-chapter11/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/sensor.py new file mode 100644 index 0000000..190159a --- /dev/null +++ b/Ch11/apd.sensors-chapter11/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/sensor.py @@ -0,0 +1,73 @@ +import os +import subprocess +import typing as t + +from pint import _DEFAULT_REGISTRY as ureg + +from apd.sensors.base import Sensor +from apd.sensors.exceptions import ( + PersistentSensorFailureError, + IntermittentSensorFailureError, +) + + +class SolarCumulativeOutput(Sensor[t.Any]): + name = "SolarCumulativeOutput" + title = "Solar panel cumulative output" + + def __init__( + self, path: t.Optional[str] = None, bt_addr: t.Optional[str] = None + ) -> None: + self.path = os.environ.get( + "APD_SUNNYBOYSOLAR_PATH", "/home/pi/opensunny-master/opensunny" + ) + self.bt_addr = os.environ.get("APD_SUNNYBOYSOLAR_BT_ADDRESS", None) + + def value(self) -> t.Optional[t.Any]: + if self.bt_addr is None: + raise PersistentSensorFailureError("Inverter address not configured") + try: + output: bytes = subprocess.check_output( + [self.path, "-i", self.bt_addr], stderr=subprocess.STDOUT, timeout=15 + ) + except subprocess.CalledProcessError as err: + raise IntermittentSensorFailureError( + "Failure communicating with inverter" + ) from err + except FileNotFoundError as err: + raise PersistentSensorFailureError( + "Inverter control software not installed" + ) from err + + lines = filter(None, output.split(b"\n")) + found = {} + for line in lines: + start, value = line.rsplit(b"=", 1) + start, key = start.rsplit(b" ", 1) + found[key] = value + + try: + yield_total = float(found[b"yield_total"][:-3].replace(b".", b"")) + power_dc_1 = int(found[b"power_dc_1"][:-1]) + power_dc_2 = int(found[b"power_dc_2"][:-1]) + if power_dc_1 > 1500 or power_dc_2 > 1500: + raise IntermittentSensorFailureError( + "Received corrupt data from inverter" + ) + except (ValueError, IndexError, KeyError) as err: + raise IntermittentSensorFailureError( + "Received incomplete data from inverter" + ) from err + return ureg.Quantity(yield_total, "watt") + + @classmethod + def format(cls, value: t.Any) -> str: + return "{:~P}".format(value.to(ureg.kilowatt)) + + @classmethod + def to_json_compatible(cls, value: t.Any) -> t.Dict[str, t.Union[str, float]]: + return {"magnitude": value.magnitude, "unit": str(value.units)} + + @classmethod + def from_json_compatible(cls, json_version: t.Any) -> t.Any: + return ureg.Quantity(json_version["magnitude"], ureg[json_version["unit"]]) diff --git a/Ch11/apd.sensors-chapter11/pyproject.toml b/Ch11/apd.sensors-chapter11/pyproject.toml new file mode 100644 index 0000000..4d3bb67 --- /dev/null +++ b/Ch11/apd.sensors-chapter11/pyproject.toml @@ -0,0 +1,5 @@ +[build-system] +requires = [ + "setuptools", +] +build-backend = "setuptools.build_meta" diff --git a/Ch11/apd.sensors-chapter11/pytest.ini b/Ch11/apd.sensors-chapter11/pytest.ini new file mode 100644 index 0000000..861f3d0 --- /dev/null +++ b/Ch11/apd.sensors-chapter11/pytest.ini @@ -0,0 +1,3 @@ +[pytest] +markers = + functional: these tests are significantly slower as they run the whole CLI script \ No newline at end of file diff --git a/Ch11/apd.sensors-chapter11/setup.cfg b/Ch11/apd.sensors-chapter11/setup.cfg new file mode 100644 index 0000000..008e2fd --- /dev/null +++ b/Ch11/apd.sensors-chapter11/setup.cfg @@ -0,0 +1,80 @@ +[mypy] +namespace_packages = True +mypy_path = src +plugins = sqlmypy + +[mypy-psutil] +ignore_missing_imports = True + +[mypy-alembic] +ignore_missing_imports = True + +[mypy-adafruit_dht] +ignore_missing_imports = True + +[mypy-board] +ignore_missing_imports = True + +[mypy-flask_sqlalchemy] +ignore_missing_imports = True + +[mypy-pint] +ignore_missing_imports = True + +[mypy-pytest] +ignore_missing_imports = True + +[mypy-webtest] +ignore_missing_imports = True + +[flake8] +max-line-length = 88 + +[metadata] +name = apd.sensors +version = attr: apd.sensors.VERSION +description = APD Sensor package +long_description = file: README.md, CHANGES.md, LICENCE +long_description_content_type = text/markdown +keywords = iot +license = MIT +classifiers = + Programming Language :: Python :: 3 + Programming Language :: Python :: 3.7 + +[options] +zip_safe = False +include_package_data = True +package_dir = + =src +packages = find_namespace: +install_requires = + psutil + click + pint + adafruit-circuitpython-dht ; 'arm' in platform_machine + +[options.packages.find] +where = src + +[options.entry_points] +console_scripts = + sensors = apd.sensors.cli:show_sensors +apd.sensors.sensors = + PythonVersion = apd.sensors.sensors:PythonVersion + IPAddresses = apd.sensors.sensors:IPAddresses + CPULoad = apd.sensors.sensors:CPULoad + RAMAvailable = apd.sensors.sensors:RAMAvailable + ACStatus = apd.sensors.sensors:ACStatus + Temperature = apd.sensors.sensors:Temperature + RelativeHumidity = apd.sensors.sensors:RelativeHumidity + +[options.extras_require] +webapp = flask +scheduled = + sqlalchemy + alembic +storedapi = + flask-sqlalchemy + python-dateutil + \ No newline at end of file diff --git a/Ch11/apd.sensors-chapter11/setup.py b/Ch11/apd.sensors-chapter11/setup.py new file mode 100644 index 0000000..6068493 --- /dev/null +++ b/Ch11/apd.sensors-chapter11/setup.py @@ -0,0 +1,3 @@ +from setuptools import setup + +setup() diff --git a/Ch11/apd.sensors-chapter11/src/apd/sensors/__init__.py b/Ch11/apd.sensors-chapter11/src/apd/sensors/__init__.py new file mode 100644 index 0000000..127c148 --- /dev/null +++ b/Ch11/apd.sensors-chapter11/src/apd/sensors/__init__.py @@ -0,0 +1 @@ +VERSION = "2.1.0" diff --git a/Ch11/apd.sensors-chapter11/src/apd/sensors/alembic/README b/Ch11/apd.sensors-chapter11/src/apd/sensors/alembic/README new file mode 100644 index 0000000..98e4f9c --- /dev/null +++ b/Ch11/apd.sensors-chapter11/src/apd/sensors/alembic/README @@ -0,0 +1 @@ +Generic single-database configuration. \ No newline at end of file diff --git a/Ch11/apd.sensors-chapter11/src/apd/sensors/alembic/env.py b/Ch11/apd.sensors-chapter11/src/apd/sensors/alembic/env.py new file mode 100644 index 0000000..f508d4c --- /dev/null +++ b/Ch11/apd.sensors-chapter11/src/apd/sensors/alembic/env.py @@ -0,0 +1,77 @@ +from logging.config import fileConfig + +from sqlalchemy import engine_from_config +from sqlalchemy import pool + +from alembic import context + +import apd.sensors.database + +# this is the Alembic Config object, which provides +# access to the values within the .ini file in use. +config = context.config + +# Interpret the config file for Python logging. +# This line sets up loggers basically. +fileConfig(config.config_file_name) + +# add your model's MetaData object here +# for 'autogenerate' support +# from myapp import mymodel +# target_metadata = mymodel.Base.metadata +target_metadata = apd.sensors.database.metadata + +# other values from the config, defined by the needs of env.py, +# can be acquired: +# my_important_option = config.get_main_option("my_important_option") +# ... etc. + + +def run_migrations_offline(): + """Run migrations in 'offline' mode. + + This configures the context with just a URL + and not an Engine, though an Engine is acceptable + here as well. By skipping the Engine creation + we don't even need a DBAPI to be available. + + Calls to context.execute() here emit the given string to the + script output. + + """ + url = config.get_main_option("sqlalchemy.url") + context.configure( + url=url, + target_metadata=target_metadata, + literal_binds=True, + dialect_opts={"paramstyle": "named"}, + ) + + with context.begin_transaction(): + context.run_migrations() + + +def run_migrations_online(): + """Run migrations in 'online' mode. + + In this scenario we need to create an Engine + and associate a connection with the context. + + """ + connectable = engine_from_config( + config.get_section(config.config_ini_section), + prefix="sqlalchemy.", + poolclass=pool.NullPool, + ) + + with connectable.connect() as connection: + context.configure(connection=connection, target_metadata=target_metadata) + + with context.begin_transaction(): + context.run_migrations() + + +if context.is_offline_mode(): + run_migrations_offline() +else: + run_migrations_online() diff --git a/Ch11/apd.sensors-chapter11/src/apd/sensors/alembic/script.py.mako b/Ch11/apd.sensors-chapter11/src/apd/sensors/alembic/script.py.mako new file mode 100644 index 0000000..2c01563 --- /dev/null +++ b/Ch11/apd.sensors-chapter11/src/apd/sensors/alembic/script.py.mako @@ -0,0 +1,24 @@ +"""${message} + +Revision ID: ${up_revision} +Revises: ${down_revision | comma,n} +Create Date: ${create_date} + +""" +from alembic import op +import sqlalchemy as sa +${imports if imports else ""} + +# revision identifiers, used by Alembic. +revision = ${repr(up_revision)} +down_revision = ${repr(down_revision)} +branch_labels = ${repr(branch_labels)} +depends_on = ${repr(depends_on)} + + +def upgrade(): + ${upgrades if upgrades else "pass"} + + +def downgrade(): + ${downgrades if downgrades else "pass"} diff --git a/Ch11/apd.sensors-chapter11/src/apd/sensors/alembic/versions/0eeb2a54fea8_add_initial_sensor_table.py b/Ch11/apd.sensors-chapter11/src/apd/sensors/alembic/versions/0eeb2a54fea8_add_initial_sensor_table.py new file mode 100644 index 0000000..bb38e90 --- /dev/null +++ b/Ch11/apd.sensors-chapter11/src/apd/sensors/alembic/versions/0eeb2a54fea8_add_initial_sensor_table.py @@ -0,0 +1,45 @@ +"""Add initial sensor table + +Revision ID: 0eeb2a54fea8 +Revises: base +Create Date: 2020-01-16 17:43:37.298379 + +""" +from alembic import op +import sqlalchemy as sa + + +# revision identifiers, used by Alembic. +revision = "0eeb2a54fea8" +down_revision = None +branch_labels = None +depends_on = None + + +def upgrade(): + op.create_table( + "recorded_values", + sa.Column("id", sa.Integer(), nullable=False), + sa.Column("sensor_name", sa.String(), nullable=True), + sa.Column("collected_at", sa.TIMESTAMP(), nullable=True), + sa.Column("data", sa.JSON(), nullable=True), + sa.PrimaryKeyConstraint("id"), + ) + op.create_index( + op.f("ix_recorded_values_collected_at"), + "recorded_values", + ["collected_at"], + unique=False, + ) + op.create_index( + op.f("ix_recorded_values_sensor_name"), + "recorded_values", + ["sensor_name"], + unique=False, + ) + + +def downgrade(): + op.drop_index(op.f("ix_recorded_values_sensor_name"), table_name="recorded_values") + op.drop_index(op.f("ix_recorded_values_collected_at"), table_name="recorded_values") + op.drop_table("recorded_values") diff --git a/Ch11/apd.sensors-chapter11/src/apd/sensors/base.py b/Ch11/apd.sensors-chapter11/src/apd/sensors/base.py new file mode 100644 index 0000000..75e7e27 --- /dev/null +++ b/Ch11/apd.sensors-chapter11/src/apd/sensors/base.py @@ -0,0 +1,61 @@ +#!/usr/bin/env python +# coding: utf-8 +import typing as t + + +JSON_0 = t.Union[str, int, float, bool, None] +JSON_1 = t.Union[t.Dict[str, JSON_0], t.Iterable[JSON_0], JSON_0] +JSON_2 = t.Union[t.Dict[str, JSON_1], t.Iterable[JSON_1], JSON_1] +JSON_3 = t.Union[t.Dict[str, JSON_2], t.Iterable[JSON_2], JSON_2] +JSON_4 = t.Union[t.Dict[str, JSON_3], t.Iterable[JSON_3], JSON_3] +JSON_5 = t.Union[t.Dict[str, JSON_4], t.Iterable[JSON_4], JSON_4] +JSON_like = JSON_5 + + +T_value = t.TypeVar("T_value") +JSONT_value = t.TypeVar("JSONT_value", bound=JSON_like) + + +class Sensor(t.Generic[T_value]): + name: str + title: str + + def value(self) -> T_value: + raise NotImplementedError + + @classmethod + def format(cls, value: T_value) -> str: + raise NotImplementedError + + def __str__(self) -> str: + return self.format(self.value()) + + @classmethod + def to_json_compatible(cls, value: T_value) -> JSON_like: + raise NotImplementedError() + + @classmethod + def from_json_compatible(cls, json_version: JSON_like) -> T_value: + raise NotImplementedError() + + +class JSONSensor(Sensor[JSONT_value]): + @classmethod + def to_json_compatible(cls, value: JSONT_value) -> JSONT_value: + return value + + @classmethod + def from_json_compatible(cls, json_version: JSON_like) -> JSONT_value: + return t.cast(JSONT_value, json_version) + + +version_info_type = t.NamedTuple( + "version_info_type", + [ + ("major", int), + ("minor", int), + ("micro", int), + ("releaselevel", str), + ("serial", int), + ], +) diff --git a/Ch11/apd.sensors-chapter11/src/apd/sensors/cli.py b/Ch11/apd.sensors-chapter11/src/apd/sensors/cli.py new file mode 100644 index 0000000..8d99eeb --- /dev/null +++ b/Ch11/apd.sensors-chapter11/src/apd/sensors/cli.py @@ -0,0 +1,111 @@ +import importlib +import pkg_resources +import traceback +import typing as t + +import click + +from .database import store_sensor_data +from .sensors import Sensor +from .exceptions import DataCollectionError, UserFacingCLIError + + +def get_sensor_by_path(sensor_path: str) -> Sensor[t.Any]: + try: + module_name, sensor_name = sensor_path.split(":") + except ValueError as err: + raise UserFacingCLIError( + "Sensor path must be in the format dotted.path.to.module:ClassName", + return_code=17, + ) from err + try: + module = importlib.import_module(module_name) + except ImportError as err: + raise UserFacingCLIError( + f"Could not import module {module_name}", return_code=17 + ) from err + try: + sensor_class = getattr(module, sensor_name) + except AttributeError as err: + raise UserFacingCLIError( + f"Could not find attribute {sensor_name} in {module_name}", return_code=17 + ) from err + if ( + isinstance(sensor_class, type) + and issubclass(sensor_class, Sensor) + and sensor_class != Sensor + ): + return sensor_class() + else: + raise UserFacingCLIError( + f"Detected object {sensor_class!r} is not recognised as a Sensor type", + return_code=17, + ) + + +def get_sensors() -> t.Iterable[Sensor[t.Any]]: + sensors = [] + for sensor_class in pkg_resources.iter_entry_points("apd.sensors.sensors"): + class_ = sensor_class.load() + sensors.append(t.cast(Sensor[t.Any], class_())) + return sensors + + +@click.command(help="Displays the values of the sensors") +@click.option( + "--develop", required=False, metavar="path", help="Load a sensor by Python path" +) +@click.option("--verbose", is_flag=True, help="Show additional info") +@click.option("--save", is_flag=True, help="Store collected data to a database") +@click.option( + "--db", + metavar="", + default="sqlite:///sensor_data.sqlite", + help="The connection string to a database", + envvar="APD_SENSORS_DB_URI", +) +def show_sensors(develop: str, verbose: bool, save: bool, db: str) -> int: + sensors: t.Iterable[Sensor[t.Any]] + if develop: + try: + sensors = [get_sensor_by_path(develop)] + except UserFacingCLIError as error: + if verbose: + tb = traceback.format_exception(type(error), error, error.__traceback__) + click.echo("".join(tb)) + click.secho(error.message, fg="red", bold=True) + return error.return_code + else: + sensors = get_sensors() + + db_session = None + if save: + from sqlalchemy import create_engine + from sqlalchemy.orm import sessionmaker + + engine = create_engine(db) + sm = sessionmaker(engine) + db_session = sm() + + for sensor in sensors: + click.secho(sensor.title, bold=True) + try: + value = sensor.value() + except DataCollectionError as error: + if verbose: + tb = traceback.format_exception(type(error), error, error.__traceback__) + click.echo("".join(tb)) + continue + click.echo(error) + else: + click.echo(sensor.format(value)) + if save and db_session is not None: + store_sensor_data(sensor, value, db_session) + db_session.commit() + + click.echo("") + return 0 + + +if __name__ == "__main__": + show_sensors() diff --git a/Ch11/apd.sensors-chapter11/src/apd/sensors/database.py b/Ch11/apd.sensors-chapter11/src/apd/sensors/database.py new file mode 100644 index 0000000..a90ffba --- /dev/null +++ b/Ch11/apd.sensors-chapter11/src/apd/sensors/database.py @@ -0,0 +1,30 @@ +from __future__ import annotations + +import datetime +import typing as t + +import sqlalchemy +from sqlalchemy.schema import Table +from sqlalchemy.orm.session import Session + +from apd.sensors.base import Sensor + + +metadata = sqlalchemy.MetaData() + +sensor_values = Table( + "recorded_values", + metadata, + sqlalchemy.Column("id", sqlalchemy.Integer, primary_key=True), + sqlalchemy.Column("sensor_name", sqlalchemy.String, index=True), + sqlalchemy.Column("collected_at", sqlalchemy.TIMESTAMP, index=True), + sqlalchemy.Column("data", sqlalchemy.JSON), +) + + +def store_sensor_data(sensor: Sensor[t.Any], data: t.Any, db_session: Session) -> None: + now = datetime.datetime.now() + record = sensor_values.insert().values( + sensor_name=sensor.name, data=sensor.to_json_compatible(data), collected_at=now + ) + db_session.execute(record) diff --git a/Ch11/apd.sensors-chapter11/src/apd/sensors/exceptions.py b/Ch11/apd.sensors-chapter11/src/apd/sensors/exceptions.py new file mode 100644 index 0000000..725a0ad --- /dev/null +++ b/Ch11/apd.sensors-chapter11/src/apd/sensors/exceptions.py @@ -0,0 +1,32 @@ +import dataclasses + + +class APDSensorsError(Exception): + """An exception base class for all exceptions raised by the + sensor data collection system.""" + + +class DataCollectionError(APDSensorsError, RuntimeError): + """An error that represents the inability of a Sensor instance + to retrieve a value""" + + +class IntermittentSensorFailureError(DataCollectionError): + """A DataCollectionError that is expected to resolve itself + in short order""" + + +class PersistentSensorFailureError(DataCollectionError): + """A DataCollectionError that is unlikely to resolve itself + if retried.""" + + +@dataclasses.dataclass(frozen=True) +class UserFacingCLIError(APDSensorsError, SystemExit): + """A fatal error for the CLI""" + + message: str + return_code: int + + def __str__(self): + return f"[{self.return_code}] {self.message}" diff --git a/Ch11/apd.sensors-chapter11/src/apd/sensors/py.typed b/Ch11/apd.sensors-chapter11/src/apd/sensors/py.typed new file mode 100644 index 0000000..e69de29 diff --git a/Ch11/apd.sensors-chapter11/src/apd/sensors/sensors.py b/Ch11/apd.sensors-chapter11/src/apd/sensors/sensors.py new file mode 100644 index 0000000..c577dbf --- /dev/null +++ b/Ch11/apd.sensors-chapter11/src/apd/sensors/sensors.py @@ -0,0 +1,189 @@ +#!/usr/bin/env python +# coding: utf-8 +import math +import os +import socket +import sys +import typing as t + +import psutil +from pint import _DEFAULT_REGISTRY as ureg + +from .base import Sensor, JSONSensor, version_info_type +from .exceptions import ( + PersistentSensorFailureError, + IntermittentSensorFailureError, + DataCollectionError, +) + + +class PythonVersion(JSONSensor[version_info_type]): + name = "PythonVersion" + title = "Python Version" + + def value(self) -> version_info_type: + return version_info_type(*sys.version_info) + + @classmethod + def from_json_compatible(cls, json_version: t.Any) -> version_info_type: + return version_info_type(*json_version) + + @classmethod + def format(cls, value: version_info_type) -> str: + if value.micro == 0 and value.releaselevel == "alpha": + return "{0.major}.{0.minor}.{0.micro}a{0.serial}".format(value) + return "{0.major}.{0.minor}".format(value) + + +class IPAddresses(JSONSensor[t.Iterable[t.Tuple[str, str]]]): + name = "IPAddresses" + title = "IP Addresses" + FAMILIES = {"AF_INET": "IPv4", "AF_INET6": "IPv6"} + + def value(self) -> t.List[t.Tuple[str, str]]: + hostname = socket.gethostname() + addresses = socket.getaddrinfo(hostname, None) + address_info: t.List[t.Tuple[str, str]] = [] + for address in addresses: + family, ip = (address[0].name, address[4][0]) + if family not in self.FAMILIES: + continue + value = (family, ip) + if value not in address_info: + address_info.append(value) + return address_info + + @classmethod + def format(cls, value: t.Iterable[t.Tuple[str, str]]) -> str: + return "\n".join( + "{0} ({1})".format(address[1], cls.FAMILIES.get(address[0], "Unknown")) + for address in value + ) + + +class CPULoad(JSONSensor[float]): + name = "CPULoad" + title = "CPU Usage" + + def value(self) -> float: + return float(psutil.cpu_percent(interval=3)) / 100.0 + + @classmethod + def format(cls, value: float) -> str: + return "{:.1%}".format(value) + + +class RAMAvailable(JSONSensor[int]): + name = "RAMAvailable" + title = "RAM Available" + UNITS = ("B", "KiB", "MiB", "GiB", "TiB", "PiB", "EiB") + UNIT_SIZE = 2 ** 10 + + def value(self) -> int: + return int(psutil.virtual_memory().available) + + @classmethod + def format(cls, value: int) -> str: + magnitude = math.floor(math.log(value, cls.UNIT_SIZE)) + max_magnitude = len(cls.UNITS) - 1 + magnitude = min(magnitude, max_magnitude) + scaled_value = value / (cls.UNIT_SIZE ** magnitude) + return "{:.1f} {}".format(scaled_value, cls.UNITS[magnitude]) + + +class ACStatus(JSONSensor[bool]): + name = "ACStatus" + title = "AC Connected" + + def value(self) -> bool: + battery = psutil.sensors_battery() + if battery is not None: + value = battery.power_plugged + if value is None: + raise IntermittentSensorFailureError("Can't find AC status") + else: + return bool(value) + else: + raise PersistentSensorFailureError("No charging circuit installed") + + @classmethod + def format(cls, value: bool) -> str: + if value: + return "Connected" + else: + return "Not connected" + + +class DHTSensor: + def __init__(self) -> None: + self.board = os.environ.get("APD_SENSORS_TEMPERATURE_BOARD", "DHT22") + self.pin = os.environ.get("APD_SENSORS_TEMPERATURE_PIN", "D20") + + @property + def sensor(self) -> t.Any: + try: + import adafruit_dht + import board + + # Force using legacy interface + adafruit_dht._USE_PULSEIO = False + + sensor_type = getattr(adafruit_dht, self.board) + pin = getattr(board, self.pin) + return sensor_type(pin) + except (ImportError, NotImplementedError, AttributeError) as err: + # No DHT library results in an ImportError. + # Running on an unknown platform results in a + # NotImplementedError when getting the pin + raise PersistentSensorFailureError( + "Unable to initialise sensor interface" + ) from err + + +class Temperature(Sensor[t.Any], DHTSensor): + name = "Temperature" + title = "Ambient Temperature" + + def value(self) -> t.Any: + try: + return ureg.Quantity(self.sensor.temperature, ureg.celsius) + except DataCollectionError: + # This is one of our own exceptions, we don't need to re-wrap it + raise + except (RuntimeError, AttributeError) as err: + raise IntermittentSensorFailureError( + "Couldn't determine temperature" + ) from err + + @classmethod + def format(cls, value: t.Any) -> str: + return "{:.3~P} ({:.3~P})".format(value, value.to(ureg.fahrenheit)) + + @classmethod + def to_json_compatible(cls, value: t.Any) -> t.Any: + return {"magnitude": value.magnitude, "unit": str(value.units)} + + @classmethod + def from_json_compatible(cls, json_version: t.Any) -> t.Any: + return ureg.Quantity(json_version["magnitude"], ureg[json_version["unit"]]) + + def __str__(self) -> str: + return self.format(self.value()) + + +class RelativeHumidity(JSONSensor[float], DHTSensor): + name = "RelativeHumidity" + title = "Relative Humidity" + + def value(self) -> float: + try: + return float(self.sensor.humidity) + except DataCollectionError: + # This is one of our own exceptions, we don't need to re-wrap it + raise + except (TypeError, AttributeError) as err: + raise IntermittentSensorFailureError("Couldn't determine humidity") from err + + @classmethod + def format(cls, value: float) -> str: + return "{:.1%}".format(value) diff --git a/Ch11/apd.sensors-chapter11/src/apd/sensors/utils.py b/Ch11/apd.sensors-chapter11/src/apd/sensors/utils.py new file mode 100644 index 0000000..24f912b --- /dev/null +++ b/Ch11/apd.sensors-chapter11/src/apd/sensors/utils.py @@ -0,0 +1,20 @@ +from apd.sensors.base import Sensor, T_value +from apd.sensors.exceptions import IntermittentSensorFailureError + + +def get_value_with_retries(sensor: Sensor[T_value], retries: int = 3) -> T_value: + for i in range(retries): + try: + return sensor.value() + except IntermittentSensorFailureError: + if i == (retries - 1): + # This is the last retry, reraise + raise + else: + continue + # It shouldn't be possible to get here, but it's better to + # fall through with an appropriate exception rather than a + # None + raise IntermittentSensorFailureError( + f"Could not find a value after {retries} retries" + ) diff --git a/Ch11/apd.sensors-chapter11/src/apd/sensors/wsgi/__init__.py b/Ch11/apd.sensors-chapter11/src/apd/sensors/wsgi/__init__.py new file mode 100644 index 0000000..fbd2a91 --- /dev/null +++ b/Ch11/apd.sensors-chapter11/src/apd/sensors/wsgi/__init__.py @@ -0,0 +1,31 @@ +import flask + +try: + from flask_sqlalchemy import SQLAlchemy +except ImportError: + sql_support = False +else: + sql_support = True + + +from .base import set_up_config +from . import v10 +from . import v20 +from . import v21 +from . import v30 + + +__all__ = ["app", "set_up_config", "db"] + +app = flask.Flask(__name__) +app.register_blueprint(v10.version, url_prefix="/v/1.0") +app.register_blueprint(v20.version, url_prefix="/v/2.0") +app.register_blueprint(v21.version, url_prefix="/v/2.1") +app.register_blueprint(v30.version, url_prefix="/v/3.0") + +if sql_support: + from apd.sensors.database import metadata + + db = SQLAlchemy(app, metadata=metadata) +else: + db = None diff --git a/Ch11/apd.sensors-chapter11/src/apd/sensors/wsgi/base.py b/Ch11/apd.sensors-chapter11/src/apd/sensors/wsgi/base.py new file mode 100644 index 0000000..b3c73cb --- /dev/null +++ b/Ch11/apd.sensors-chapter11/src/apd/sensors/wsgi/base.py @@ -0,0 +1,47 @@ +from hmac import compare_digest +import functools +import os +import typing as t + +import flask + + +ViewFuncReturn = t.TypeVar("ViewFuncReturn") +ErrorReturn = t.Tuple[t.Dict[str, str], int] +REQUIRED_CONFIG_KEYS = {"APD_SENSORS_API_KEY"} + + +def require_api_key( + func: t.Callable[..., ViewFuncReturn] +) -> t.Callable[..., t.Union[ViewFuncReturn, ErrorReturn]]: + @functools.wraps(func) + def wrapped(*args, **kwargs) -> t.Union[ViewFuncReturn, ErrorReturn]: + api_key = flask.current_app.config["APD_SENSORS_API_KEY"] + headers = flask.request.headers + supplied_key = headers.get("X-API-Key", "") + if not compare_digest(api_key, supplied_key): + return {"error": "Supply API key in X-API-Key header"}, 403 + return func(*args, **kwargs) + + return wrapped + + +def set_up_config( + environ: t.Optional[t.Dict[str, str]] = None, + to_configure: t.Optional[flask.Flask] = None, +) -> flask.Flask: + if environ is None: + environ = dict(os.environ) + if to_configure is None: + from apd.sensors.wsgi import app + + to_configure = app + missing_keys = REQUIRED_CONFIG_KEYS - environ.keys() + if missing_keys: + raise ValueError("Missing config variables: {}".format(", ".join(missing_keys))) + data_file = os.path.join(os.getcwd(), "sensor_data.sqlite") + environ["SQLALCHEMY_DATABASE_URI"] = environ.get( + "APD_SENSORS_DB_URI", f"sqlite:///{data_file}" + ) + to_configure.config.from_mapping(environ) + return to_configure diff --git a/Ch11/apd.sensors-chapter11/src/apd/sensors/wsgi/serve.py b/Ch11/apd.sensors-chapter11/src/apd/sensors/wsgi/serve.py new file mode 100644 index 0000000..0b1f684 --- /dev/null +++ b/Ch11/apd.sensors-chapter11/src/apd/sensors/wsgi/serve.py @@ -0,0 +1,10 @@ +from . import app +from .base import set_up_config + +if __name__ == "__main__": + import wsgiref.simple_server + + set_up_config(None, app) + + with wsgiref.simple_server.make_server("", 8000, app) as server: + server.serve_forever() diff --git a/Ch11/apd.sensors-chapter11/src/apd/sensors/wsgi/v10.py b/Ch11/apd.sensors-chapter11/src/apd/sensors/wsgi/v10.py new file mode 100644 index 0000000..f3ae5da --- /dev/null +++ b/Ch11/apd.sensors-chapter11/src/apd/sensors/wsgi/v10.py @@ -0,0 +1,30 @@ +import json +import typing as t + +import flask + +from apd.sensors import cli +from apd.sensors.exceptions import DataCollectionError +from .base import require_api_key + +version = flask.Blueprint(__name__, __name__) + + +@version.route("/sensors/") +@require_api_key +def sensor_values() -> t.Tuple[t.Dict[str, t.Any], int, t.Dict[str, str]]: + headers = {"Content-Security-Policy": "default-src 'none'"} + data = {} + for sensor in cli.get_sensors(): + try: + value = sensor.value() + except DataCollectionError: + value = None + try: + json.dumps(value) + except TypeError: + # This value isn't JSON serializable, skip it + continue + else: + data[sensor.title] = value + return data, 200, headers diff --git a/Ch11/apd.sensors-chapter11/src/apd/sensors/wsgi/v20.py b/Ch11/apd.sensors-chapter11/src/apd/sensors/wsgi/v20.py new file mode 100644 index 0000000..4ab1522 --- /dev/null +++ b/Ch11/apd.sensors-chapter11/src/apd/sensors/wsgi/v20.py @@ -0,0 +1,40 @@ +import typing as t + +import flask + +from apd.sensors import cli +from apd.sensors.exceptions import DataCollectionError +from .base import require_api_key + +version = flask.Blueprint(__name__, __name__) + + +@version.route("/sensors/") +@version.route("/sensors/") +@require_api_key +def sensor_values(sensor_id=None) -> t.Tuple[t.Dict[str, t.Any], int, t.Dict[str, str]]: + headers = {"Content-Security-Policy": "default-src 'none'"} + sensors = [] + for sensor in cli.get_sensors(): + if sensor_id and sensor_id != sensor.name: + continue + try: + try: + value = sensor.value() + except DataCollectionError: + human_readable = "Unknown" + json_value = None + else: + json_value = sensor.to_json_compatible(value) + human_readable = sensor.format(value) + sensor_data = { + "id": sensor.name, + "title": sensor.title, + "value": json_value, + "human_readable": human_readable, + } + sensors.append(sensor_data) + except NotImplementedError: + pass + data = {"sensors": sensors} + return data, 200, headers diff --git a/Ch11/apd.sensors-chapter11/src/apd/sensors/wsgi/v21.py b/Ch11/apd.sensors-chapter11/src/apd/sensors/wsgi/v21.py new file mode 100644 index 0000000..16cbb72 --- /dev/null +++ b/Ch11/apd.sensors-chapter11/src/apd/sensors/wsgi/v21.py @@ -0,0 +1,47 @@ +import typing as t + +import flask + +from apd.sensors import cli +from apd.sensors.exceptions import DataCollectionError +from .base import require_api_key + +version = flask.Blueprint(__name__, __name__) + + +@version.route("/sensors/") +@version.route("/sensors/") +@require_api_key +def sensor_values(sensor_id=None) -> t.Tuple[t.Dict[str, t.Any], int, t.Dict[str, str]]: + headers = {"Content-Security-Policy": "default-src 'none'"} + sensors = [] + for sensor in cli.get_sensors(): + if sensor_id and sensor_id != sensor.name: + continue + try: + try: + value = sensor.value() + except DataCollectionError: + human_readable = "Unknown" + json_value = None + else: + json_value = sensor.to_json_compatible(value) + human_readable = sensor.format(value) + sensor_data = { + "id": sensor.name, + "title": sensor.title, + "value": json_value, + "human_readable": human_readable, + } + sensors.append(sensor_data) + except NotImplementedError: + pass + data = {"sensors": sensors} + return data, 200, headers + + +@version.route("/deployment_id") +def deployment_id() -> t.Tuple[t.Dict[str, t.Any], int, t.Dict[str, str]]: + headers = {"Content-Security-Policy": "default-src 'none'"} + data = {"deployment_id": flask.current_app.config["APD_SENSORS_DEPLOYMENT_ID"]} + return data, 200, headers diff --git a/Ch11/apd.sensors-chapter11/src/apd/sensors/wsgi/v30.py b/Ch11/apd.sensors-chapter11/src/apd/sensors/wsgi/v30.py new file mode 100644 index 0000000..b623218 --- /dev/null +++ b/Ch11/apd.sensors-chapter11/src/apd/sensors/wsgi/v30.py @@ -0,0 +1,101 @@ +import datetime +import typing as t + +import flask + +from apd.sensors import cli +from apd.sensors.exceptions import DataCollectionError + +from .base import require_api_key + +version = flask.Blueprint(__name__, __name__) + + +@version.route("/sensors/") +@version.route("/sensors/") +@require_api_key +def sensor_values(sensor_id=None) -> t.Tuple[t.Dict[str, t.Any], int, t.Dict[str, str]]: + headers = {"Content-Security-Policy": "default-src 'none'"} + sensors = [] + errors = [] + for sensor in cli.get_sensors(): + now = datetime.datetime.now() + if sensor_id and sensor_id != sensor.name: + continue + try: + try: + value = sensor.value() + except DataCollectionError as err: + error = { + "id": sensor.name, + "title": sensor.title, + "collected_at": now.isoformat(), + "error": str(err), + } + errors.append(error) + continue + sensor_data = { + "id": sensor.name, + "title": sensor.title, + "value": sensor.to_json_compatible(value), + "human_readable": sensor.format(value), + "collected_at": now.isoformat(), + } + sensors.append(sensor_data) + except NotImplementedError: + pass + data = {"sensors": sensors, "errors": errors} + return data, 200, headers + + +@version.route("/historical") +@version.route("/historical/") +@version.route("/historical//") +@require_api_key +def historical_values( + start: str = None, end: str = None +) -> t.Tuple[t.Dict[str, t.Any], int, t.Dict[str, str]]: + try: + import dateutil.parser + from apd.sensors.database import sensor_values + from apd.sensors.wsgi import db + except ImportError: + return {"error": "Historical data support is not installed"}, 501, {} + + db_session = db.session + headers = {"Content-Security-Policy": "default-src 'none'"} + + query = db_session.query(sensor_values) + if start: + query = query.filter( + sensor_values.c.collected_at >= dateutil.parser.parse(start) + ) + if end: + query = query.filter(sensor_values.c.collected_at <= dateutil.parser.parse(end)) + + known_sensors = {sensor.name: sensor for sensor in cli.get_sensors()} + sensors = [] + for data in query: + if data.sensor_name not in known_sensors: + continue + sensor = known_sensors[data.sensor_name] + sensor_data = { + "id": sensor.name, + "title": sensor.title, + "value": data.data, + "human_readable": sensor.format(sensor.from_json_compatible(data.data)), + "collected_at": data.collected_at.isoformat(), + } + sensors.append(sensor_data) + data = {"sensors": sensors} + try: + return data, 200, headers + finally: + db_session.close() + + +@version.route("/deployment_id") +def deployment_id() -> t.Tuple[t.Dict[str, t.Any], int, t.Dict[str, str]]: + headers = {"Content-Security-Policy": "default-src 'none'"} + data = {"deployment_id": flask.current_app.config["APD_SENSORS_DEPLOYMENT_ID"]} + return data, 200, headers diff --git a/Ch11/apd.sensors-chapter11/tests/__init__.py b/Ch11/apd.sensors-chapter11/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/Ch11/apd.sensors-chapter11/tests/test_acstatus.py b/Ch11/apd.sensors-chapter11/tests/test_acstatus.py new file mode 100644 index 0000000..50c524d --- /dev/null +++ b/Ch11/apd.sensors-chapter11/tests/test_acstatus.py @@ -0,0 +1,58 @@ +from unittest import mock + +from apd.sensors.sensors import ACStatus +from apd.sensors.exceptions import ( + PersistentSensorFailureError, + IntermittentSensorFailureError, +) + +import pytest + + +@pytest.fixture +def sensor(): + return ACStatus() + + +class TestACStatusFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_True(self, subject): + assert subject(True) == "Connected" + + def test_format_False(self, subject): + assert subject(False) == "Not connected" + + +class TestACStatusValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def sensors_battery(self): + with mock.patch("psutil.sensors_battery") as sensors_battery: + yield sensors_battery + + def test_sensors_battery_called(self, subject, sensors_battery): + sensors_battery.return_value.power_plugged = True + assert subject() is True + assert sensors_battery.call_count == 1 + + def test_sensor_but_battery_unknown(self, subject, sensors_battery): + sensors_battery.return_value.power_plugged = None + with pytest.raises(IntermittentSensorFailureError): + subject() + assert sensors_battery.call_count == 1 + + def test_no_sensor(self, subject, sensors_battery): + sensors_battery.return_value = None + with pytest.raises(PersistentSensorFailureError): + subject() + + def test_str_representation_is_formatted_value(self, sensor, sensors_battery): + sensors_battery.return_value.power_plugged = True + assert str(sensor) == "Connected" + assert sensors_battery.call_count == 1 diff --git a/Ch11/apd.sensors-chapter11/tests/test_api_server.py b/Ch11/apd.sensors-chapter11/tests/test_api_server.py new file mode 100644 index 0000000..0f450b3 --- /dev/null +++ b/Ch11/apd.sensors-chapter11/tests/test_api_server.py @@ -0,0 +1,286 @@ +import os +import uuid +from unittest import mock + +import flask +import pytest +from webtest import TestApp + +from apd.sensors.sensors import PythonVersion +from apd.sensors.wsgi import set_up_config +from apd.sensors.wsgi import v10 +from apd.sensors.wsgi import v20 +from apd.sensors.wsgi import v21 +from apd.sensors.wsgi import v30 + + +@pytest.fixture(scope="session") +def api_key(): + return uuid.uuid4().hex + + +def test_api_key_is_required_config_option(): + app = mock.MagicMock() + with pytest.raises( + ValueError, match="Missing config variables: APD_SENSORS_API_KEY" + ): + set_up_config({"APD_SENSORS_DEPLOYMENT_ID": ""}, to_configure=app) + + +def test_os_environ_is_default_for_config_values(api_key): + app = mock.MagicMock() + os.environ["APD_SENSORS_API_KEY"] = api_key + os.environ["APD_SENSORS_DEPLOYMENT_ID"] = "8f1b57faa04b430c81decbbeee9e300c" + try: + assert app.config.from_mapping.call_count == 0 + set_up_config(None, to_configure=app) + assert app.config.from_mapping.call_count == 1 + for key, value in os.environ.items(): + # There may be keys in the config not from the environment + assert app.config.from_mapping.call_args[0][0][key] == value + finally: + del os.environ["APD_SENSORS_API_KEY"] + del os.environ["APD_SENSORS_DEPLOYMENT_ID"] + + +class CommonTests: + @pytest.mark.functional + def test_sensor_values_fails_on_missing_api_key(self, api_server): + response = api_server.get("/sensors/", expect_errors=True) + assert response.status_code == 403 + assert response.json["error"] == "Supply API key in X-API-Key header" + + @pytest.mark.functional + def test_sensor_values_require_correct_api_key(self, api_server): + response = api_server.get( + "/sensors/", headers={"X-API-Key": "wrong_key"}, expect_errors=True + ) + assert response.status_code == 403 + assert response.json["error"] == "Supply API key in X-API-Key header" + + +class Testv10API(CommonTests): + @pytest.fixture + def subject(self, api_key): + app = flask.Flask("testapp") + app.register_blueprint(v10.version) + set_up_config( + { + "APD_SENSORS_API_KEY": api_key, + "APD_SENSORS_DEPLOYMENT_ID": "8f1b57faa04b430c81decbbeee9e300c", + }, + to_configure=app, + ) + return app + + @pytest.fixture + def api_server(self, subject): + return TestApp(subject) + + @pytest.mark.functional + def test_sensor_values_returned_as_json(self, api_server, api_key): + value = api_server.get("/sensors/", headers={"X-API-Key": api_key}).json + python_version = PythonVersion().value() + + sensor_names = value.keys() + assert "Python Version" in sensor_names + assert value["Python Version"] == list(python_version) + + @pytest.mark.functional + def test_unserializable_sensor_is_omitted(self, api_server, api_key): + value = api_server.get("/sensors/", headers={"X-API-Key": api_key}).json + sensor_names = value.keys() + assert "Temperature" not in sensor_names + + @pytest.mark.functional + def test_erroring_sensor_shows_None(self, api_server, api_key): + from .test_utils import FailingSensor + + with mock.patch("apd.sensors.cli.get_sensors") as get_sensors: + # Ensure failing sensor is first, to test that subsequent sensors + # are still processed + get_sensors.return_value = [FailingSensor(10), PythonVersion()] + value = api_server.get("/sensors/", headers={"X-API-Key": api_key}).json + assert value["Sensor which fails"] is None + assert "Python Version" in value.keys() + + +class Testv20API(CommonTests): + @pytest.fixture + def subject(self, api_key): + app = flask.Flask("testapp") + app.register_blueprint(v20.version) + set_up_config( + { + "APD_SENSORS_API_KEY": api_key, + "APD_SENSORS_DEPLOYMENT_ID": "8f1b57faa04b430c81decbbeee9e300c", + }, + to_configure=app, + ) + return app + + @pytest.fixture + def api_server(self, subject): + return TestApp(subject) + + @pytest.mark.functional + def test_sensor_values_returned_as_json(self, api_server, api_key): + value = api_server.get("/sensors/", headers={"X-API-Key": api_key}).json + sensors = value["sensors"] + + python_version = [ + sensor for sensor in sensors if sensor["id"] == "PythonVersion" + ][0] + assert python_version["title"] == "Python Version" + assert python_version["value"] == list(PythonVersion().value()) + + @pytest.mark.functional + def test_erroring_sensor_shows_None(self, api_server, api_key): + from .test_utils import FailingSensor + + with mock.patch("apd.sensors.cli.get_sensors") as get_sensors: + # Ensure failing sensor is first, to test that subsequent sensors + # are still processed + get_sensors.return_value = [FailingSensor(10), PythonVersion()] + value = api_server.get("/sensors/", headers={"X-API-Key": api_key}).json + sensors = value["sensors"] + + failing = [sensor for sensor in sensors if sensor["id"] == "FailingSensor"][0] + python_version = [ + sensor for sensor in sensors if sensor["id"] == "PythonVersion" + ][0] + + assert failing["title"] == "Sensor which fails" + assert failing["value"] is None + assert python_version["title"] == "Python Version" + + +class Testv21API(Testv20API): + @pytest.fixture + def subject(self, api_key): + app = flask.Flask("testapp") + app.register_blueprint(v21.version) + set_up_config( + { + "APD_SENSORS_API_KEY": api_key, + "APD_SENSORS_DEPLOYMENT_ID": "8f1b57faa04b430c81decbbeee9e300c", + }, + to_configure=app, + ) + return app + + @pytest.mark.functional + def test_deployment_id(self, api_server, api_key): + value = api_server.get("/deployment_id", headers={"X-API-Key": api_key}).json + assert value == {"deployment_id": "8f1b57faa04b430c81decbbeee9e300c"} + + @pytest.mark.functional + def test_erroring_sensor_shows_None(self, api_server, api_key): + from .test_utils import FailingSensor + + with mock.patch("apd.sensors.cli.get_sensors") as get_sensors: + # Ensure failing sensor is first, to test that subsequent sensors + # are still processed + get_sensors.return_value = [FailingSensor(10), PythonVersion()] + value = api_server.get("/sensors/", headers={"X-API-Key": api_key}).json + sensors = value["sensors"] + + failing = [sensor for sensor in sensors if sensor["id"] == "FailingSensor"][0] + python_version = [ + sensor for sensor in sensors if sensor["id"] == "PythonVersion" + ][0] + + assert failing["title"] == "Sensor which fails" + assert failing["value"] is None + assert python_version["title"] == "Python Version" + + +class Testv30API(CommonTests): + @pytest.fixture + def api_server(self, subject): + return TestApp(subject) + + @pytest.fixture + def subject(self, api_key): + app = flask.Flask("testapp") + app.register_blueprint(v30.version) + set_up_config( + { + "APD_SENSORS_API_KEY": api_key, + "APD_SENSORS_DEPLOYMENT_ID": "8f1b57faa04b430c81decbbeee9e300c", + "APD_SENSORS_DB_URI": "sqlite://", + }, + to_configure=app, + ) + return app + + @pytest.fixture + def db(self, subject): + from flask_sqlalchemy import SQLAlchemy + from apd.sensors.database import metadata + + db = SQLAlchemy(subject, metadata=metadata) + db.create_all() + return db + + @pytest.fixture + def store_sensor_data(self): + from apd.sensors.database import store_sensor_data + + return store_sensor_data + + @pytest.mark.functional + def test_historical_with_no_data(self, api_key, api_server, db): + value = api_server.get("/historical", headers={"X-API-Key": api_key}).json + assert value == {"sensors": []} + + @pytest.mark.functional + def test_historical_with_data(self, api_key, api_server, db, store_sensor_data): + value = api_server.get("/historical", headers={"X-API-Key": api_key}).json + store_sensor_data(PythonVersion, [3, 9, 0, "final", 1], db.session) + assert value == {"sensors": []} + + @pytest.mark.functional + def test_sensor_values_returned_as_json(self, api_server, api_key): + value = api_server.get("/sensors/", headers={"X-API-Key": api_key}).json + sensors = value["sensors"] + + python_version = [ + sensor for sensor in sensors if sensor["id"] == "PythonVersion" + ][0] + assert python_version["title"] == "Python Version" + assert python_version["value"] == list(PythonVersion().value()) + + @pytest.mark.functional + def test_erroring_sensor_excluded_but_reported(self, api_server, api_key): + from .test_utils import FailingSensor + + with mock.patch("apd.sensors.cli.get_sensors") as get_sensors: + # Ensure failing sensor is first, to test that subsequent sensors + # are still processed + get_sensors.return_value = [FailingSensor(2), PythonVersion()] + value = api_server.get("/sensors/", headers={"X-API-Key": api_key}).json + second_attempt_value = api_server.get( + "/sensors/", headers={"X-API-Key": api_key} + ).json + + sensors = value["sensors"] + failing = [sensor for sensor in sensors if sensor["id"] == "FailingSensor"] + assert len(failing) == 0 + errors = value["errors"] + failing = [sensor for sensor in errors if sensor["id"] == "FailingSensor"] + assert len(failing) == 1 + + python_version = [ + sensor for sensor in sensors if sensor["id"] == "PythonVersion" + ] + assert len(python_version) == 1 + + sensors = second_attempt_value["sensors"] + assert second_attempt_value["errors"] == [] + failing = [sensor for sensor in sensors if sensor["id"] == "FailingSensor"] + assert len(failing) == 1 + python_version = [ + sensor for sensor in sensors if sensor["id"] == "PythonVersion" + ] + assert len(python_version) == 1 diff --git a/Ch11/apd.sensors-chapter11/tests/test_cpuusage.py b/Ch11/apd.sensors-chapter11/tests/test_cpuusage.py new file mode 100644 index 0000000..aa8a66a --- /dev/null +++ b/Ch11/apd.sensors-chapter11/tests/test_cpuusage.py @@ -0,0 +1,45 @@ +from unittest import mock + +from apd.sensors.sensors import CPULoad + +import pytest + + +@pytest.fixture +def sensor(): + return CPULoad() + + +class TestCPULoadFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_simple_percentage(self, subject): + assert subject(0.05) == "5.0%" + + def test_format_multiple_decimal_places(self, subject): + assert subject(0.031415926) == "3.1%" + + def test_format_multiple_decimal_places_int(self, subject) -> None: + assert subject(1) == "100.0%" + + +class TestCPULoadValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def cpuload(self): + with mock.patch("psutil.cpu_percent") as cpu_percent: + cpu_percent.return_value = 50.1 + yield cpu_percent + + def test_cpu_percent_called_With_interval(self, subject, cpuload): + assert subject() == 0.501 + assert cpuload.call_count == 1 + assert tuple(cpuload.call_args) == ((), {"interval": 3}) + + def test_str_representation_is_formatted_value(self, sensor, cpuload): + assert str(sensor) == "50.1%" diff --git a/Ch11/apd.sensors-chapter11/tests/test_dht.py b/Ch11/apd.sensors-chapter11/tests/test_dht.py new file mode 100644 index 0000000..ab1b380 --- /dev/null +++ b/Ch11/apd.sensors-chapter11/tests/test_dht.py @@ -0,0 +1,61 @@ +from apd.sensors.sensors import Temperature, RelativeHumidity, ureg + +import pytest + + +@pytest.fixture +def temperature_sensor(): + return Temperature() + + +@pytest.fixture +def humidity_sensor(): + return RelativeHumidity() + + +class TestTemperatureFormatter: + @pytest.fixture + def subject(self, temperature_sensor): + return temperature_sensor.format + + @staticmethod + def to_degc(magnitude): + return ureg.Quantity(magnitude, "degC") + + def test_format_21c(self, subject): + assert subject(self.to_degc(21.0)) == "21.0 celsius (69.8 fahrenheit)" + + def test_format_negative(self, subject): + assert subject(self.to_degc(-32.0)) == "-32.0 celsius (-25.6 fahrenheit)" + + +class TestTemperatureSerializer: + @pytest.fixture + def serialize(self, temperature_sensor): + return temperature_sensor.to_json_compatible + + @pytest.fixture + def deserialize(self, temperature_sensor): + return temperature_sensor.from_json_compatible + + @staticmethod + def to_degc(magnitude): + return ureg.Quantity(magnitude, "degC") + + def test_serialize_21c(self, serialize): + assert serialize(self.to_degc(21.0)) == {"magnitude": 21.0, "unit": "degC"} + + def test_serialize_negative(self, serialize): + assert serialize(self.to_degc(-32.3)) == {"magnitude": -32.3, "unit": "degC"} + + def test_deserialize_21c(self, deserialize): + assert deserialize({"magnitude": 21.0, "unit": "degC"}) == self.to_degc(21.0) + + +class TestHumidityFormatter: + @pytest.fixture + def subject(self, humidity_sensor): + return humidity_sensor.format + + def test_format_percentage(self, subject): + assert subject(0.035) == "3.5%" diff --git a/Ch11/apd.sensors-chapter11/tests/test_ipaddresses.py b/Ch11/apd.sensors-chapter11/tests/test_ipaddresses.py new file mode 100644 index 0000000..e8a9690 --- /dev/null +++ b/Ch11/apd.sensors-chapter11/tests/test_ipaddresses.py @@ -0,0 +1,59 @@ +from unittest import mock +import socket + +from apd.sensors.sensors import IPAddresses + +import pytest + + +@pytest.fixture +def sensor(): + return IPAddresses() + + +class TestIPAddressFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_single_ipv4(self, subject): + ips = [("AF_INET", "192.0.2.1")] + assert subject(ips) == "192.0.2.1 (IPv4)" + + def test_format_single_ipv6(self, subject): + ips = [("AF_INET6", "2001:DB8::1")] + assert subject(ips) == "2001:DB8::1 (IPv6)" + + def test_format_mixed_list(self, subject): + ips = [("AF_INET", "192.0.2.1"), ("AF_INET6", "2001:DB8::1")] + assert subject(ips) == "192.0.2.1 (IPv4)\n2001:DB8::1 (IPv6)" + + def test_unusual_protocols_are_marked_as_unknown(self, subject): + ips = [("AF_IRDA", "ffff")] + assert subject(ips) == "ffff (Unknown)" + + +class TestIPAddressesValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def gethostname(self): + with mock.patch("socket.gethostname") as gethostname: + gethostname.return_value = "localhost" + yield gethostname + + @pytest.fixture + def getaddrinfo(self, gethostname): + with mock.patch("socket.getaddrinfo") as getaddrinfo: + yield getaddrinfo + + def test_getaddrinfo_used_for_value_collection(self, getaddrinfo, subject): + getaddrinfo.return_value = [(socket.AF_INET, 0, 0, "", ("192.0.2.1", 0))] + assert subject() == [("AF_INET", "192.0.2.1")] + assert getaddrinfo.call_count == 1 + + def test_str_representation_is_formatted_value(self, getaddrinfo, sensor): + getaddrinfo.return_value = [(socket.AF_INET6, 0, 0, "", ("2001:DB8::1", 0))] + assert str(sensor) == "2001:DB8::1 (IPv6)" diff --git a/Ch11/apd.sensors-chapter11/tests/test_pythonversion.py b/Ch11/apd.sensors-chapter11/tests/test_pythonversion.py new file mode 100644 index 0000000..dff6bb0 --- /dev/null +++ b/Ch11/apd.sensors-chapter11/tests/test_pythonversion.py @@ -0,0 +1,61 @@ +from collections import namedtuple +from unittest import mock + +from apd.sensors.sensors import PythonVersion + +import pytest + + +@pytest.fixture +def version(): + return namedtuple( + "sys_versioninfo", ("major", "minor", "micro", "releaselevel", "serial") + ) + + +@pytest.fixture +def sensor(): + return PythonVersion() + + +class TestPythonVersionFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_py38(self, subject, version): + py38 = version(3, 8, 0, "final", 0) + assert subject(py38) == "3.8" + + def test_format_large_version(self, subject, version): + large = version(255, 128, 0, "final", 0) + assert subject(large) == "255.128" + + def test_alpha_of_minor_is_marked(self, subject, version): + py39 = version(3, 9, 0, "alpha", 1) + assert subject(py39) == "3.9.0a1" + + def test_alpha_of_micro_is_unmarked(self, subject, version): + py39 = version(3, 9, 1, "alpha", 1) + assert subject(py39) == "3.9" + + +class TestPythonVersionValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def python_version(self): + import sys + + return sys.version_info + + def test_data_value_is_sys_versioninfo(self, python_version, subject): + assert subject() == python_version + + +class TestPythonVersionSensor: + def test_str_representation_is_formatted_value(self, sensor, version): + with mock.patch("sys.version_info", new=version(3, 4, 1, "final", 1)): + assert str(sensor) == "3.4" diff --git a/Ch11/apd.sensors-chapter11/tests/test_ramusage.py b/Ch11/apd.sensors-chapter11/tests/test_ramusage.py new file mode 100644 index 0000000..2a368c1 --- /dev/null +++ b/Ch11/apd.sensors-chapter11/tests/test_ramusage.py @@ -0,0 +1,47 @@ +from unittest import mock + +from apd.sensors.sensors import RAMAvailable + +import pytest + + +@pytest.fixture +def sensor(): + return RAMAvailable() + + +class TestRAMAvailableFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_bytes(self, subject): + assert subject(15) == "15.0 B" + + def test_format_kibibytes(self, subject): + assert subject(15000) == "14.6 KiB" + + def test_format_mibibytes(self, subject): + assert subject(15000000) == "14.3 MiB" + + def test_format_gibibytes(self, subject): + assert subject(15000000000) == "14.0 GiB" + + +class TestRAMAvailableValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def virtual_memory(self): + with mock.patch("psutil.virtual_memory") as virtual_memory: + virtual_memory.return_value.available = 1024 + yield virtual_memory + + def test_virtual_memory_called(self, subject, virtual_memory): + assert subject() == 1024 + assert virtual_memory.call_count == 1 + + def test_str_representation_is_formatted_value(self, sensor, virtual_memory): + assert str(sensor) == "1.0 KiB" diff --git a/Ch11/apd.sensors-chapter11/tests/test_sensors.py b/Ch11/apd.sensors-chapter11/tests/test_sensors.py new file mode 100644 index 0000000..f083e27 --- /dev/null +++ b/Ch11/apd.sensors-chapter11/tests/test_sensors.py @@ -0,0 +1,125 @@ +import json +from unittest import mock + +from click.testing import CliRunner +import pytest + +import apd.sensors.cli +from apd.sensors.exceptions import UserFacingCLIError +import apd.sensors.sensors + + +def test_sensors(): + assert hasattr(apd.sensors.sensors, "PythonVersion") + + +class TestCLI: + @pytest.mark.functional + def test_first_sensor_is_first_two_lines_of_cli_output(self): + runner = CliRunner() + with mock.patch("apd.sensors.cli.get_sensors") as get_sensors: + get_sensors.return_value = [apd.sensors.sensors.PythonVersion()] + result = runner.invoke(apd.sensors.cli.show_sensors) + python_version = str(apd.sensors.sensors.PythonVersion()) + assert ["Python Version", python_version] == result.stdout.split("\n")[:2] + + def test_failing_sensor_shows_error(self): + from .test_utils import FailingSensor + + runner = CliRunner() + with mock.patch("apd.sensors.cli.get_sensors") as get_sensors: + get_sensors.return_value = [ + FailingSensor(10), + apd.sensors.sensors.PythonVersion(), + ] + result = runner.invoke(apd.sensors.cli.show_sensors) + assert ["Sensor which fails", "Failing 9 more times"] == result.stdout.split( + "\n" + )[:2] + assert "Python Version" in result.stdout + + def test_mocked_failing_sensor_shows_error(self): + from apd.sensors.base import Sensor + from apd.sensors.exceptions import IntermittentSensorFailureError + + FailingSensor = mock.MagicMock(spec=Sensor) + FailingSensor.title = "Sensor which fails" + FailingSensor.name = "FailingSensor" + FailingSensor.value.side_effect = ( + FailingSensor.__str__.side_effect + ) = IntermittentSensorFailureError("Failing sensor") + + runner = CliRunner() + with mock.patch("apd.sensors.cli.get_sensors") as get_sensors: + get_sensors.return_value = [ + FailingSensor, + apd.sensors.sensors.PythonVersion(), + ] + result = runner.invoke(apd.sensors.cli.show_sensors) + assert ["Sensor which fails", "Failing sensor"] == result.stdout.split("\n")[:2] + assert "Python Version" in result.stdout + + +class TestSensorFromPath: + @pytest.fixture + def subject(self): + return apd.sensors.cli.get_sensor_by_path + + def test_get_sensor_by_path(self, subject): + assert isinstance( + subject("apd.sensors.sensors:PythonVersion"), + apd.sensors.sensors.PythonVersion, + ) + + def test_invalid_format(self, subject): + with pytest.raises(UserFacingCLIError, match="dotted.path.to.module:ClassName"): + subject("apd.sensors.sensors.PythonVersion") + + def test_invalid_module(self, subject): + with pytest.raises(UserFacingCLIError, match="Could not import module"): + subject("apd.nonsense.sensor:FakeSensor") + + def test_missing_sensor(self, subject): + with pytest.raises(UserFacingCLIError, match="Could not find attribute"): + subject("apd.sensors.sensors:FakeSensor") + + def test_invalid_sensor(self, subject): + with pytest.raises(UserFacingCLIError, match="is not recognised as a Sensor"): + subject("apd.sensors.sensors:Sensor") + + +@pytest.mark.functional +def test_develop_option_finds_sensor_by_path(): + runner = CliRunner() + result = runner.invoke( + apd.sensors.cli.show_sensors, ["--develop", "apd.sensors.sensors:PythonVersion"] + ) + python_version = str(apd.sensors.sensors.PythonVersion()) + assert ["Python Version", python_version, "", ""] == result.stdout.split("\n") + + +class TestDefaultSerializer: + @pytest.fixture + def python_version(self): + return apd.sensors.sensors.PythonVersion() + + @pytest.fixture + def serialize(self, python_version): + return python_version.to_json_compatible + + @pytest.fixture + def deserialize(self, python_version): + return python_version.from_json_compatible + + def test_serialize_deserialize_is_symmetric( + self, python_version, serialize, deserialize + ): + value = python_version.value() + serialized = serialize(value) + json_version = json.dumps(serialized) + assert ( + json_version == f"[{value.major}, {value.minor}, {value.micro}," + f' "{value.releaselevel}", {value.serial}]' + ) + deserialized = deserialize(serialized) + assert deserialized == value diff --git a/Ch11/apd.sensors-chapter11/tests/test_utils.py b/Ch11/apd.sensors-chapter11/tests/test_utils.py new file mode 100644 index 0000000..34a82f8 --- /dev/null +++ b/Ch11/apd.sensors-chapter11/tests/test_utils.py @@ -0,0 +1,57 @@ +import typing as t + +import pytest + +from apd.sensors.base import JSONSensor +from apd.sensors.exceptions import ( + IntermittentSensorFailureError, + PersistentSensorFailureError, +) +from apd.sensors.utils import get_value_with_retries + + +class FailingSensor(JSONSensor[bool]): + + title = "Sensor which fails" + name = "FailingSensor" + + def __init__( + self, + n: int = 3, + exception_type: t.Type[Exception] = IntermittentSensorFailureError, + ): + self.n = n + self.exception_type = exception_type + + def value(self) -> bool: + self.n -= 1 + if self.n: + raise self.exception_type(f"Failing {self.n} more times") + else: + return True + + @classmethod + def format(cls, value: bool) -> str: + return "Yes" if value else "No" + + +class TestRetry: + def test_default_retries(self): + sensor = FailingSensor(3) + value = get_value_with_retries(sensor) + assert value is True + + def test_n_retries(self): + sensor = FailingSensor(5) + value = get_value_with_retries(sensor, retries=5) + assert value is True + + def test_insufficient_retries(self): + sensor = FailingSensor(5) + with pytest.raises(IntermittentSensorFailureError): + get_value_with_retries(sensor, retries=4) + + def test_permanent_failures_not_retried(self): + sensor = FailingSensor(3, PersistentSensorFailureError) + with pytest.raises(PersistentSensorFailureError): + get_value_with_retries(sensor) diff --git a/Ch11/listing11-01-get_with_default.py b/Ch11/listing11-01-get_with_default.py new file mode 100644 index 0000000..9a2036a --- /dev/null +++ b/Ch11/listing11-01-get_with_default.py @@ -0,0 +1,12 @@ +def get_item(variable, key, default=None): + try: + return variable[key] + except (KeyError, IndexError): + # Key is invalid for variable, the error raised depends on the type of variable + return default + except TypeError: + if hasattr(variable, "__getitem__"): + return default + else: + raise + diff --git a/Ch11/listing11-02-new_exceptions.py b/Ch11/listing11-02-new_exceptions.py new file mode 100644 index 0000000..b41db66 --- /dev/null +++ b/Ch11/listing11-02-new_exceptions.py @@ -0,0 +1,16 @@ +class APDSensorsError(Exception): + """An exception base class for all exceptions raised by the + sensor data collection system.""" + +class DataCollectionError(APDSensorsError, RuntimeError): + """An error that represents the inability of a Sensor instance + to retrieve a value""" + +class IntermittentSensorFailureError(DataCollectionError): + """A DataCollectionError that is expected to resolve itself + in short order""" + +class PersistentSensorFailureError(DataCollectionError): + """A DataCollectionError that is unlikely to resolve itself + if retried.""" + diff --git a/Ch11/listing11-03-retry_sensor.py b/Ch11/listing11-03-retry_sensor.py new file mode 100644 index 0000000..dc1b2cf --- /dev/null +++ b/Ch11/listing11-03-retry_sensor.py @@ -0,0 +1,19 @@ +from apd.sensors.base import Sensor, T_value +from apd.sensors.exceptions import IntermittentSensorFailureError + + +def get_value_with_retries(sensor: Sensor[T_value], retries: int=3) -> T_value: + for i in range(retries): + try: + return sensor.value() + except IntermittentSensorFailureError as err: + if i == (retries - 1): + # This is the last retry, reraise the underlying error + raise + else: + continue + # It shouldn't be possible to get here, but it's better to + # fall through with an appropriate exception rather than a + # None + raise IntermittentSensorFailureError(f"Could not find a value after {retries} retries") + diff --git a/Ch11/listing11-04-exception_with_metadata.py b/Ch11/listing11-04-exception_with_metadata.py new file mode 100644 index 0000000..6559c24 --- /dev/null +++ b/Ch11/listing11-04-exception_with_metadata.py @@ -0,0 +1,32 @@ +import dataclasses + + +class APDSensorsError(Exception): + """An exception base class for all exceptions raised by the + sensor data collection system.""" + + +class DataCollectionError(APDSensorsError, RuntimeError): + """An error that represents the inability of a Sensor instance + to retrieve a value""" + + +class IntermittentSensorFailureError(DataCollectionError): + """A DataCollectionError that is expected to resolve itself + in short order""" + + +class PersistentSensorFailureError(DataCollectionError): + """A DataCollectionError that is unlikely to resolve itself + if retried.""" + + +@dataclasses.dataclass(frozen=True) +class UserFacingCLIError(APDSensorsError, SystemExit): + """A fatal error for the CLI""" + message: str + return_code: int + + def __str__(self): + return f"[{self.return_code}] {self.message}" + diff --git a/Ch11/listing11-05-dht_baseclass.py b/Ch11/listing11-05-dht_baseclass.py new file mode 100644 index 0000000..1337f58 --- /dev/null +++ b/Ch11/listing11-05-dht_baseclass.py @@ -0,0 +1,26 @@ +import os +import typing as t + +from .exceptions import PersistentSensorFailureError + + +class DHTSensor: + def __init__(self) -> None: + self.board = os.environ.get("APD_SENSORS_TEMPERATURE_BOARD", "DHT22") + self.pin = os.environ.get("APD_SENSORS_TEMPERATURE_PIN", "D20") + + @property + def sensor(self) -> t.Any: + try: + import adafruit_dht + import board + sensor_type = getattr(adafruit_dht, self.board) + pin = getattr(board, self.pin) + return sensor_type(pin) + except (ImportError, NotImplementedError, AttributeError) as err: + # No DHT library results in an ImportError. + # Running on an unknown platform results in a + # NotImplementedError when getting the pin. + # An unknown sensor type causes an AttributeError + raise PersistentSensorFailureError("Unable to initialise sensor interface") from err + diff --git a/Ch11/listing11-06-cli_exceptions.py b/Ch11/listing11-06-cli_exceptions.py new file mode 100644 index 0000000..40b8edb --- /dev/null +++ b/Ch11/listing11-06-cli_exceptions.py @@ -0,0 +1,40 @@ +import sys +import traceback +import typing as t + +import click + + +@click.command(help="Displays the values of the sensors") +@click.option( + "--develop", required=False, metavar="path", help="Load a sensor by Python path" +) +@click.option( + "--verbose", is_flag=True, help="Show additional info" +) +def show_sensors(develop: str, verbose: bool) -> int: + sensors: t.Iterable[Sensor[t.Any]] + if develop: + try: + sensors = [get_sensor_by_path(develop)] + except UserFacingCLIError as error: + if verbose: + tb = traceback.format_exception(type(error), error, error.__traceback__) + click.echo("".join(tb)) + click.secho(error.message, fg="red", bold=True) + sys.exit(error.return_code) + else: + sensors = get_sensors() + for sensor in sensors: + click.secho(sensor.title, bold=True) + try: + click.echo(str(sensor)) + except DataCollectionError as error: + if verbose: + tb = traceback.format_exception(type(error), error, error.__traceback__) + click.echo("".join(tb)) + continue + click.echo(error) + click.echo("") + return 0 + diff --git a/Ch11/listing11-07-failing_test_sensor.py b/Ch11/listing11-07-failing_test_sensor.py new file mode 100644 index 0000000..2bbb5b5 --- /dev/null +++ b/Ch11/listing11-07-failing_test_sensor.py @@ -0,0 +1,24 @@ +from apd.sensors.base import JSONSensor +from apd.sensors.exceptions import IntermittentSensorFailureError + + +class FailingSensor(JSONSensor[bool]): + + title = "Sensor which fails" + name = "FailingSensor" + + def __init__(self, n: int=3, exception_type: Exception=IntermittentSensorFailureError): + self.n = n + self.exception_type = exception_type + + def value(self) -> bool: + self.n -= 1 + if self.n: + raise self.exception_type(f"Failing {self.n} more times") + else: + return True + + @classmethod + def format(cls, value: bool) -> str: + raise "Yes" if value else "No" + diff --git a/Ch11/listing11-08-compatibility_test.py b/Ch11/listing11-08-compatibility_test.py new file mode 100644 index 0000000..f775429 --- /dev/null +++ b/Ch11/listing11-08-compatibility_test.py @@ -0,0 +1,12 @@ + @pytest.mark.functional + def test_erroring_sensor_shows_None(self, api_server, api_key): + from .test_utils import FailingSensor + + with mock.patch("apd.sensors.cli.get_sensors") as get_sensors: + # Ensure the failing sensor is first, to test that subsequent sensors + # are still processed + get_sensors.return_value = [FailingSensor(10), PythonVersion()] + value = api_server.get("/sensors/", headers={"X-API-Key": api_key}).json + assert value['Sensor which fails'] == None + assert "Python Version" in value.keys() + diff --git a/Ch11/listing11-09-mock-failingsensor.py b/Ch11/listing11-09-mock-failingsensor.py new file mode 100644 index 0000000..98a9e82 --- /dev/null +++ b/Ch11/listing11-09-mock-failingsensor.py @@ -0,0 +1,9 @@ +from apd.sensors.base import Sensor +from apd.sensors.exceptions import IntermittentSensorFailureError + +FailingSensor = mock.MagicMock(spec=Sensor) +FailingSensor.title = "Sensor which fails" +FailingSensor.name = "FailingSensor" +FailingSensor.value.side_effect = IntermittentSensorFailureError("Failing sensor") +FailingSensor.__str__.side_effect = IntermittentSensorFailureError("Failing sensor") + diff --git a/Ch11/listing11-10-deprecationwarning.py b/Ch11/listing11-10-deprecationwarning.py new file mode 100644 index 0000000..a204d6d --- /dev/null +++ b/Ch11/listing11-10-deprecationwarning.py @@ -0,0 +1,33 @@ +@dataclasses.dataclass +class Config(t.Generic[T_key, T_value]): + title: str + clean: CleanerFunc[Cleaned[T_key, T_value]] + draw: t.Optional[ + t.Callable[ + [t.Any, t.Iterable[T_key], t.Iterable[T_value], t.Optional[str]], None + ] + ] = None + get_data: t.Optional[ + t.Callable[..., t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]] + ] = None + ylabel: t.Optional[str] = None + sensor_name: dataclasses.InitVar[str] = None + + def __post_init__(self, sensor_name: t.Optional[str] = None) -> None: + if self.draw is None: + self.draw = draw_date # type: ignore + if sensor_name is not None: + warnings.warn( + DeprecationWarning( + f"The sensor_name parameter is deprecated. Please pass " + f"get_data=get_one_sensor_by_deployment('{sensor_name}') " + f"to ensure the same behaviour. The sensor_name= parameter " + f"will be removed in apd.aggregation 3.0." + ), + stacklevel=3, + ) + if self.get_data is None: + self.get_data = get_one_sensor_by_deployment(sensor_name) + if self.get_data is None: + raise ValueError("You must specify a get_data function") + diff --git a/Ch11/listing11-11-test_for_deprecation_warnings.py b/Ch11/listing11-11-test_for_deprecation_warnings.py new file mode 100644 index 0000000..9357d30 --- /dev/null +++ b/Ch11/listing11-11-test_for_deprecation_warnings.py @@ -0,0 +1,20 @@ +def test_deprecation_warning_raised_by_config_with_no_getdata(): + with warnings.catch_warnings(record=True) as captured_warnings: + warnings.simplefilter("always", DeprecationWarning) + config = analysis.Config( + sensor_name="Temperature", + clean=analysis.clean_passthrough, + title="Temperaure", + ylabel="Deg C" + ) + assert len(captured_warnings) == 1 + deprecation_warning = captured_warnings[0] + assert deprecation_warning.filename == __file__ + assert deprecation_warning.category == DeprecationWarning + assert str(deprecation_warning.message) == ( + "The sensor_name parameter is deprecated. Please pass " + "get_data=get_one_sensor_by_deployment('Temperature') " + "to ensure the same behaviour. The sensor_name= parameter " + "will be removed in apd.aggregation 3.0." + ) + diff --git a/Ch11/listing11-12-logging_config.py b/Ch11/listing11-12-logging_config.py new file mode 100644 index 0000000..d6399d4 --- /dev/null +++ b/Ch11/listing11-12-logging_config.py @@ -0,0 +1,21 @@ +import logging + +def set_logger_format(logger, format_str): + """Set up a new stderr handler for the given logger + and configure the formatter with the provided string + """ + logger.propagate = False + formatter = logging.Formatter(format_str, None, "{") + + std_err_handler = logging.StreamHandler(None) + std_err_handler.setFormatter(formatter) + + logger.handlers.clear() + logger.addHandler(std_err_handler) + return logger + +logger = set_logger_format( + logging.getLogger(__name__), + format_str="{asctime}: {levelname} - {message}", +) + diff --git a/Ch11/listing11-13-log_adapter.py b/Ch11/listing11-13-log_adapter.py new file mode 100644 index 0000000..7fe11ef --- /dev/null +++ b/Ch11/listing11-13-log_adapter.py @@ -0,0 +1,24 @@ +import copy +import logging + +class ExtraDefaultAdapter(logging.LoggerAdapter): + def process(self, msg, kwargs): + extra = copy.copy(self.extra) + extra.update(kwargs.pop("extra", {})) + kwargs["extra"] = extra + return msg, kwargs + +def set_logger_format(logger, format_str): + """Set up a new stderr handler for the given logger + and configure the formatter with the provided string + """ + logger.propagate = False + formatter = logging.Formatter(format_str, None, "{") + + std_err_handler = logging.StreamHandler(None) + std_err_handler.setFormatter(formatter) + + logger.handlers.clear() + logger.addHandler(std_err_handler) + return logger + diff --git a/Ch11/listing11-14-log_factory.py b/Ch11/listing11-14-log_factory.py new file mode 100644 index 0000000..297b9b2 --- /dev/null +++ b/Ch11/listing11-14-log_factory.py @@ -0,0 +1,21 @@ +from contextvars import ContextVar +import functools +import logging + +sensorname_var = ContextVar("sensorname", default="none") + +def add_sensorname_record_factory(existing_factory, *args, **kwargs): + record = existing_factory(*args, **kwargs) + record.sensorname = sensorname_var.get() + return record + +def add_record_factory_wrapper(fn): + old_factory = logging.getLogRecordFactory() + wrapped = functools.partial(fn, old_factory) + logging.setLogRecordFactory(wrapped) + +add_record_factory_wrapper(add_sensorname_record_factory) +logging.basicConfig( + format="[{sensorname}/{levelname}] - {message}", style="{", level=logging.INFO +) + diff --git a/Ch11/listing11-15-log_filter.py b/Ch11/listing11-15-log_filter.py new file mode 100644 index 0000000..2145608 --- /dev/null +++ b/Ch11/listing11-15-log_filter.py @@ -0,0 +1,25 @@ +import logging + +class AddSensorNameDefault(logging.Filter): + def filter(self, record): + if not hasattr(record, "sensorname"): + record.sensorname = "none" + return True + +def set_logger_format(logger, format_str, filters=None): + """Set up a new stderr handler for the given logger + and configure the formatter with the provided string + """ + logger.propagate = False + formatter = logging.Formatter(format_str, None, "{") + + std_err_handler = logging.StreamHandler(None) + std_err_handler.setFormatter(formatter) + + logger.handlers.clear() + logger.addHandler(std_err_handler) + if filters is not None: + for filter in filters: + std_err_handler.addFilter(filter) + return logger + diff --git a/Ch11/listing11-16-log_handler.py b/Ch11/listing11-16-log_handler.py new file mode 100644 index 0000000..84f8667 --- /dev/null +++ b/Ch11/listing11-16-log_handler.py @@ -0,0 +1,13 @@ +import logging + +class AddSensorNameDefault(logging.Filter): + def filter(self, record): + if not hasattr(record, "sensorname"): + record.sensorname = "none" + return True + +class SensorNameStreamHandler(logging.StreamHandler): + def __init__(self, *args, **kwargs): + super().__init__() + self.addFilter(AddSensorNameDefault()) + diff --git a/Ch11/listing11-17-log_config.ini b/Ch11/listing11-17-log_config.ini new file mode 100644 index 0000000..1a66098 --- /dev/null +++ b/Ch11/listing11-17-log_config.ini @@ -0,0 +1,21 @@ +[loggers] +keys=root + +[handlers] +keys=stderr_with_sensorname + +[formatters] +keys=sensorname + +[logger_root] +level=INFO +handlers=stderr_with_sensorname + +[handler_stderr_with_sensorname] +class=apd.aggregation.utils.SensorNameStreamHandler +formatter = sensorname + +[formatter_sensorname] +format = {asctime}: [{sensorname}/{levelname}] - {message} +style = { + diff --git a/Ch11/listing11-18-local_data_cache.py b/Ch11/listing11-18-local_data_cache.py new file mode 100644 index 0000000..d55370c --- /dev/null +++ b/Ch11/listing11-18-local_data_cache.py @@ -0,0 +1,31 @@ +from __future__ import annotations + +import datetime +import typing as t + +import sqlalchemy +from sqlalchemy.schema import Table +from sqlalchemy.orm.session import Session + +from apd.sensors.base import Sensor + + +metadata = sqlalchemy.MetaData() + +sensor_values = Table( + "recorded_values", + metadata, + sqlalchemy.Column("id", sqlalchemy.Integer, primary_key=True), + sqlalchemy.Column("sensor_name", sqlalchemy.String, index=True), + sqlalchemy.Column("collected_at", sqlalchemy.TIMESTAMP, index=True), + sqlalchemy.Column("data", sqlalchemy.JSON), +) + + +def store_sensor_data(sensor: Sensor[t.Any], data: t.Any, db_session: Session) -> None: + now = datetime.datetime.now() + record = sensor_values.insert().values( + sensor_name=sensor.name, data=sensor.to_json_compatible(data), collected_at=now + ) + db_session.execute(record) + diff --git a/Ch11/listing11-19-local_data_cache_cli.py b/Ch11/listing11-19-local_data_cache_cli.py new file mode 100644 index 0000000..e29d3a0 --- /dev/null +++ b/Ch11/listing11-19-local_data_cache_cli.py @@ -0,0 +1,55 @@ +@click.command(help="Displays the values of the sensors") +@click.option( + "--develop", required=False, metavar="path", help="Load a sensor by Python path" +) +@click.option("--verbose", is_flag=True, help="Show additional info") +@click.option("--save", is_flag=True, help="Store collected data to a database") +@click.option( + "--db", + metavar="", + default="sqlite:///sensor_data.sqlite", + help="The connection string to a database", + envvar="APD_SENSORS_DB_URI", +) +def show_sensors(develop: str, verbose: bool, save: bool, db: str) -> None: + sensors: t.Iterable[Sensor[t.Any]] + if develop: + try: + sensors = [get_sensor_by_path(develop)] + except UserFacingCLIError as error: + if verbose: + tb = traceback.format_exception(type(error), error, error.__traceback__) + click.echo("".join(tb)) + click.secho(error.message, fg="red", bold=True) + sys.exit(error.return_code) + else: + sensors = get_sensors() + + db_session = None + if save: + from sqlalchemy import create_engine + from sqlalchemy.orm import sessionmaker + + engine = create_engine(db) + sm = sessionmaker(engine) + db_session = sm() + + for sensor in sensors: + click.secho(sensor.title, bold=True) + try: + value = sensor.value() + except DataCollectionError as error: + if verbose: + tb = traceback.format_exception(type(error), error, error.__traceback__) + click.echo("".join(tb)) + continue + click.echo(error) + else: + click.echo(sensor.format(value)) + if save and db_session is not None: + store_sensor_data(sensor, value, db_session) + db_session.commit() + + click.echo("") + sys.exit(ReturnCodes.OK) + diff --git a/Ch11/listing11-20-v3_api_additions.py b/Ch11/listing11-20-v3_api_additions.py new file mode 100644 index 0000000..5653190 --- /dev/null +++ b/Ch11/listing11-20-v3_api_additions.py @@ -0,0 +1,46 @@ +@version.route("/historical") +@version.route("/historical/") +@version.route("/historical//") +@require_api_key +def historical_values( + start: str = None, end: str = None +) -> t.Tuple[t.Dict[str, t.Any], int, t.Dict[str, str]]: + try: + import dateutil.parser + from sqlalchemy import create_engine + from sqlalchemy.orm import sessionmaker + from apd.sensors.database import sensor_values + from apd.sensors.wsgi import db + except ImportError: + return {"error": "Historical data support is not installed"}, 501, {} + + db_session = db.session + headers = {"Content-Security-Policy": "default-src 'none'"} + + query = db_session.query(sensor_values) + if start: + query = query.filter( + sensor_values.c.collected_at >= dateutil.parser.parse(start) + ) + if end: + query = query.filter( + sensor_values.c.collected_at <= dateutil.parser.parse(end) + ) + + known_sensors = {sensor.name: sensor for sensor in cli.get_sensors()} + sensors = [] + for data in query: + if data.sensor_name not in known_sensors: + continue + sensor = known_sensors[data.sensor_name] + sensor_data = { + "id": sensor.name, + "title": sensor.title, + "value": data.data, + "human_readable": sensor.format(sensor.from_json_compatible(data.data)), + "collected_at": data.collected_at.isoformat(), + } + sensors.append(sensor_data) + data = {"sensors": sensors} + return data, 200, headers + diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/.coveragerc b/Ch12/apd.aggregation-chapter12-ex01-complete/.coveragerc new file mode 100644 index 0000000..e766c69 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/.coveragerc @@ -0,0 +1,3 @@ +[run] +branch = True +omit = tests/* diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/.pre-commit-config.yaml b/Ch12/apd.aggregation-chapter12-ex01-complete/.pre-commit-config.yaml new file mode 100644 index 0000000..995b49f --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/.pre-commit-config.yaml @@ -0,0 +1,25 @@ +repos: + +- repo: local + hooks: + - id: black + name: black + entry: pipenv run black + args: [--quiet] + language: system + types: [python] + + - id: mypy + name: mypy + exclude: (?x)^( + (.*)/setup.py + )$ + entry: pipenv run mypy + language: system + types: [python] + + - id: flake8 + name: flake8 + entry: pipenv run flake8 + language: system + types: [python] diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/CHANGES.md b/Ch12/apd.aggregation-chapter12-ex01-complete/CHANGES.md new file mode 100644 index 0000000..bd0d9b6 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/CHANGES.md @@ -0,0 +1,8 @@ +## Changes + +### 1.0.0 (2020-01-27) + +* Added management of known sensor endpoints +* Added CLI script to collate data +* Added analysis tools for Jupyter +* Added long-running data synthesis and actions system diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/Connect to database.ipynb b/Ch12/apd.aggregation-chapter12-ex01-complete/Connect to database.ipynb new file mode 100644 index 0000000..98a74f0 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/Connect to database.ipynb @@ -0,0 +1,577 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "53635\n" + ] + } + ], + "source": [ + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.database import datapoint_table\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " print(session.query(datapoint_table).count())" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "53635\n" + ] + } + ], + "source": [ + "from apd.aggregation.query import with_database, get_data\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " count = 0\n", + " async for datapoint in get_data():\n", + " count += 1\n", + " print(count)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nO2df5RV5Xnvv88czuAZIhnGAMWJk1FK8cYMMOmk4KXXaiwlkahHIyFW1vKu5uptb1dbSjvtULnFZEEgkhC6bu+695L+olcWRQ0dTTASitqueoUuzIDERIpGRUcKNDhRYYRheO4fZ+9hz56999m/z95zvp+1Zp05++wfz373u9/nfd/neZ9HVBWEEEKIGw21FoAQQki2oaIghBDiCRUFIYQQT6goCCGEeEJFQQghxJMJtRYAAD7ykY9oe3t7rcUghJBc8cILL/y7qk5N+jqZUBTt7e04cOBArcUghJBcISJvpHEdTj0RQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+qej2JyF8B+ByAk6r6CWNbC4AdANoBvA7gC6r6jvHbKgBfAjAM4HdVdXcikhOSIr19/XjwiZcwMDgU6TxNxUrf7OzQRQDAlKYi1tx6HcqdrSPX2bj7CN4eGMSVzSV0L5498htJjiDlbq8LU5qKWDJnBp55+RTeHhjEh0tFnL8wPPKM/WCvB1lDqkWPFZEbALwP4G8tiuIhAKdVdYOI9ACYoqp/LCIfB7AdwC8BuBLAPwD4BVUd9rpGV1eX0j2WZJXevn50P3oIQxeTibRcLAg23jUXALBq52EMDl16XUrFAtbf2ZHZBmQ80NvX77vck6wLZj0I8qxF5AVV7YpdGBtVp55U9Z8AnLZtvh3AVuP/rQDKlu1/p6rnVPU1AK+gojQIyS0bdx9JTEkAwNCwYuPuI9i4+8ioxgoABoeGsXH3kcSuTRCo3JOsC2Y9yCJhF9xNV9XjAKCqx0VkmrG9FcA+y35vGdvGICL3A7gfANra2kKKQUjyvD0wWNNrpHH9esatfJ22J/0ssvqs4zZmi8M2R/WrqltUtUtVu6ZOTXwFOiGhubK5lMo13K6TxvXrmSDlnvSzyOqzDqsoTojIDAAwPk8a298CcJVlv48CeDu8eITUnu7Fs1FscOoDxUOxIOhePBvdi2ejVCyM+q1ULKB78ezErk0QqNyTrAtmPcgiYRXFEwDuNf6/F8Djlu1fFJGJInI1gFkA/iWaiITUlnJnKzYunYvmUjHyuZqKDSOeT0DF28U0YJY7W7H+zg60NpcgAFqbSzRkp0CQcneqC1Oaili+oG3k+OZScdQz9oO1HmQRP15P2wHcCOAjAE4AWAOgF8AjANoAHAOwVFVPG/s/AOA3AFwAsEJVv1dNCHo9EUJIcNLyeqpqzFbVu11+utll/3UA1kURihBCSHbgymxCCCGeUFEQQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhCRUEIIcQTKgpCCCGeUFEQQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhSNR8FIWHp7evHg0+8hIHBoTG/TWosYN0d/rO39fb1Y+PuI3h7YBBXNpfQvXh2bNnAvOQ0mdJUxJpbr0O5szWwLOb+/QODKIhgWBXNpSLOXxjG2aGLsdwDUElYXywIzg9fSkY2pamIJXNm4JmXT43I235FCft+8g6GVVEQwd3zr8LackdscvjFXu7WMq4FTvXA/tyr1RMrbveTZF1OiqoZ7tKAGe7GH719/eh+9BCGLrrXr0KD4BtLq6d/7O3rx6qdhzE4NDyyrVQsxJIm1I+cJsWCYNmnrsK3X+j3LYuT7Flk+YK2VJWFW7kXC1KTlKBe9cB87jv+5U1f9cR+rPV+4q7LaWW449QTSYSNu49UfamGLyo27j7i61z2hnZwaNjXsX7O7fflHxpWbN//ZiBZnGTPItv3v5nq9dzKfWjYX51ISx7g0nMPqiTMY633k2RdThIqCpIIbw8Mxraf2z5+rxH1+laGXUbgScqYBm73lRRe5VKLMqt2zSjlYz13XusJFQVJhCubS7Ht57aP32tEvb6Vgkig88QhYxq43VdSeJVLLcqs2jWjlI/13HmtJ1QUJBG6F89GscH75So0CLoXz/Z1rlKxMGpbqVjwdayfc1eT06RYqBh+g8jiJHsWuXv+Valez63ciwV/dSIteYBLz91vPbEfa72fJOtyklBRkEQod7Zi49K5aC4VHX+f1FjwZcg2z7X+zg60NpcgAFqbS7EYsv3IaTKlqYiNd83F2nJHIFmssgOXeqbNpSKaivG+fgKgsTC6MZvSVMTyBW2j5F04s2VEjoJI6oZswLnczTKuhQeQWz2wPnc/9cTpWOv9JFmXk4ReT4QQklPo9UQIISQTUFEQQgjxJJKiEJHfE5EfishLIrLC2NYiIntE5KjxOSUeUQkhhNSC0IpCRD4B4D4AvwRgLoDPicgsAD0A9qrqLAB7je+EEEJySpQRxX8AsE9Vz6rqBQD/COAOALcD2GrssxVAOZqIhBBCakkURfFDADeIyBUi0gTgFgBXAZiuqscBwPic5nSwiNwvIgdE5MCpU6ciiEEIISRJQisKVf0xgK8B2APgKQCHAFwIcPwWVe1S1a6pU6eGFYMQQkjCRDJmq+pfquonVfUGAKcBHAVwQkRmAIDxeTK6mIQQQmpFVK+nacZnG4A7AWwH8ASAe41d7gXweJRrEEIIqS1RExd9W0SuADAE4LdV9R0R2QDgERH5EoBjAJZGFZLUH1lLakNIPRNJUajqf3LY9lMAN0c5L6lvnJLIvHN2CN2PHQIAKgtCUoYrs0nmyFpSG0LqHebMJqlizR8tAOzqwGmblf6BQXz8v38vUK7pKU1FfHzG5Xju1dO+9rVOccU1Bba69zC2739zTJ5qr/zJ1t8+XCpCBBg4O+S436qdL2LQKJMGAa6/pgUvvf3emPzPZv5st/JvEODX56cfTdYtX/WSOTPw3UPHazIFubr3MLbtO+ZYH1tzkus6Lhg9lqRGXvJHm3mOAcSS13l172E8vO/YmO0LZ7bgB8d+5pg/GYBnWVn3W7njIPyrTX+kGXo8SN5yIJ282m7PzEpcedujkFb0WCoKkhoLNzyN/oynfDQx80e4ydvaXMJzPZ/2da6Zq54MlEqz2rWD7heGggheXX9L7Od1Iky9CFL+YfD7zJKWoxppKQpOPZFYqPQKD8JpRmhSYwHr7ujIfF5gK9VkDXIvQfMtx5lvPCxp5tAOcx9J1yW/95+nOh0FGrNJZHr7+rFih7OSAIAz54fxB48eQnOT/+xgtebK5lJseZ2D5luudu2g+4UhzRzaYe4h6RzTfu8/67mu44KKgkTGjyfS8EWFKnKRP9rMcxxXXme3fNQLZ7a45k+ulmvbul8SL3GaObSD5C0H0smr7ef+85DrOi6oKEhk/A6/fzY4NCp/tFPTYM/73FRsGJVb2v7dD1Oailg4s8X3vqahNK68zmvLHVi+oG1Mnupt913vmj/Znlu5uVTElKai436bls1DyVImDVJRQk75n8382YBz+TdIuoZswDtf9fIFbTXJq20+Mzf1lZdc13FBYzaJjF9jZK0Nf4SMN5gzm+QGP8PvQkPy0wWEkGSgoiCRKXe2YvOyeXCbEZrUWMA3liY/XUAISQa6x5JYMOfLCSHjD44oCCGEeEJFQQghxBMqCkIIIZ5QURBCCPGEioIQQognVBSEEEI8oXssyQT2JDFmxFm63BJSe6goSM1xShJjRpwFmCObkFrDqSdSc7bvf9Nx+/BF5sgmJAtwREFSx54L2itJjDUyrT3v9IJrpozKC91UbMDEYmEkr/RN104dlW8ZSDfncpbwys1t/h5HbvCgctifkVOebDNasD1Per0+y1rA6LEkVYLmzTYjzvrJYeyXNHIuZwmnMrfme3bLWR13OSWRM73enqUdRo8l45KNu4/4biisEWfdpqfCMDRcX1NaTmU+ODQ8UgYbdx8ZoySA+MspyLP3S709y1oRSVGIyO+LyEsi8kMR2S4il4lIi4jsEZGjxueUuIQl+cdvkiN7xNm4czjXS65jwP1eze1eZRFnOSVV5vX0LGtFaEUhIq0AfhdAl6p+AkABwBcB9ADYq6qzAOw1vhMCwF+O4dbmEl76ymdGTSfEncO5XnIdA+73am6PKzd4WDmyel5yiahTTxMAlERkAoAmAG8DuB3AVuP3rQDKEa9BxhF+c0HbiTOHcxo5l7OEU5lbyzmu3OBh5IhKvT3LWhFaUahqP4CvAzgG4DiAn6nq9wFMV9Xjxj7HAUyLQ1AyPvCbC9qOU95pe17opmLDqHPZ8y0D6eVczhL2MreXc1y5wcPI4ZQT277NLU96PT7LWhHa68mwPXwbwDIAAwAeBfAYgD9X1WbLfu+o6hg7hYjcD+B+AGhra/vFN954I5QchBBSr+TB6+lXAbymqqdUdQjATgD/EcAJEZkBAMbnSaeDVXWLqnapatfUqVMjiEEIISRJoiiKYwAWiEiTiAiAmwH8GMATAO419rkXwOPRRCSEEFJLQq/MVtX9IvIYgB8AuACgD8AWAB8C8IiIfAkVZbI0DkEJIYTUhkghPFR1DYA1ts3nUBldEEIIGQdwZTYhhBBPqCgIIYR4QkVBCCHEEyoKQgghnlBREEII8YSKghBCiCdUFIQQQjyhoiCEEOIJc2YTUidUy5udNfIm73iGioKQOsCer7p/YBCrdh4GgEw2vnmTd7zDqSdC6oBqebOzRt7kHe9QURBSB1TLm5018ibveIeKgpA6oFre7KyRN3nHO1QUhNQB1fJmZ428yTveoTGbkDrANADnxYsob/KOd0LnzI6Trq4uPXDgQK3FIISQXJGHnNmEEELqACoKQgghntBGYeGebz2P5149PfJ94cwWbLvv+hpKRAghtYcjCgO7kgCA5149jUWbnq2NQIQQkhHqZkRxdc8uWM32AuC1DUtGvtuVhMnRk2fQ29dPbwtCSN1SFyOKdpuSAAA1tvth1c4XY5eJEELywrhXFPd863nP3+ev21P1HINDF+MShxBCcse4VhS9ff2uU0omJ947n5I0hBCST8a1ovjjb/ubMpqz5qmEJSGEkPwSWlGIyGwROWj5e1dEVohIi4jsEZGjxueUOAUOwrkL/qaM3j03XH0nQgipU0IrClU9oqrzVHUegF8EcBbA3wPoAbBXVWcB2Gt8J4QQklPimnq6GcCrqvoGgNsBbDW2bwVQjukaNaW3r7/WItQVvX39WLjhaVzdswsLNzzN8iekhsSlKL4IYLvx/3RVPQ4Axuc0pwNE5H4ROSAiB06dOhWTGKOZNW1SbOdiZq30WLTpWazYcRD9A4NQVNJgrthxkMqCkBoRecGdiDQCuA3AqiDHqeoWAFuASvTYqHI4cfZ8fG6tWcisVQ/J5u/51vM4evKM428rHzmYi/uth+dEorO69zC2738Tw6ooiODu+Vdhbbmj1mI5EsfK7M8C+IGqnjC+nxCRGap6XERmADgZwzVCEWfj/uFSMbZzhWHOmqdGGd3Ha7J5L3fmi7WPiF+VRZueHaXozNEQML6eE4mGvZ4Mq+LhfccAIJPKIo6pp7txadoJAJ4AcK/x/70AHo/hGqFonBCf9++7g0OxnSso89ftcfTMGm/J5q994MlaixAJr9HQih0Hcc2qXZw+I1jde9i1npjKImtEGlGISBOARQD+q2XzBgCPiMiXABwDsDTKNcLS29fv2z3WD0mvzXaKXLu0qw0bdx/xXBTYn4EpsThY3XsYHwznYMjgQbXFnRcVHF2QzCoDLyIpClU9C+AK27afouIFVVO6Hz1YaxEccZq/fvTAMcfItdUaHqAS3DCvWMsi3yoiGH/02CEqijplde/hWosQinEbPbZaeKZJjQWcOZ/uQrvevn78/o6DI41i/8DgqO9hyGsD29vXj1U7D2NwqP4WO57P+ciJBKe3r39kNOlFVjt+uVYUUbxL1t3RMaahKhULng1Xe8+uSN4Jf/TYIccotvXIxt1HAiuJgmT1NQrO6t7DmTRaEm/CeCr5VRIAcM+CtjjEjJ3cKorevn50P3oIQ4YrTP/AILofPQQAOPCG95RNqdgwolDsiqbaA3XyTvCrsNiTvEQY28qwjp/ye3jfMSqKnBHWU+nBJ17yfY2s1oncKooHn3hpREmYDF1UPPjESxio4qG0/s45ACoGRXuD7lfzbzNedHtvge6Q/hAEH021NpeSEIWQqlTzVPJq4Ku1RyaTJxZCyZYGuVUUboXv56F4NeClYoOv/BNmI+emWFbsGL04jG6RowkzNmi/Il5FYe8hzpo2CXtW3hjqXEk8X7sn3MQJDfja5yudHC7oS5ft+98MdVy1fDhWXvzyZ0JdIw1yqyiSYv2dc3yPKqphTaGa5HqHepnvfu7V07GlpbUrCaCS9nbRpmerKguneeowLo/tPbuwfEGb47NzyuF+7sLFMXXTHMH+ae/hTDc0Tlz7wJNjXKInTyxk8j6qTXs6vYNOdcyNUjHbGR9EMzDv29XVpQcOHAh0jN80pnYmNAhe+eotnvvMXv09X2swFs5s8eXCmgavW/J/54Gwz880Z1frSVezG3ld36ssV/ceTsQP3q4wwpTPZQXBy+u863ZWcFISVtKsz15u2hMEeGX9Esxc9WRVZWGVOYgBGwA2L5sXqgMkIi+oalfgAwOSbTWWAF9fOrfqPubwvhppKYnNy+alcp08oMafGcLEacrHdL21BhX8/R0HY/FhT2qx1MP7jkWW74NhzY2ffrXFlVeH7EgExV5X7FzQitJecE2wtDpf/o5/A/bCmS2ZnzqsK0WxfEGbrweSlYfW2lwK3dPIMkHmbb1wC2Hi5HqrqDTGfmwJ7T27atLgxqGE8rjq1wlF+FFnEPy6afvpFFqV2ztn/Rmwly9ow7b7rve1by3JraJoLAT3qc/TPP5lBcFzPZ8eURILZ7bUWKJ4WN17uOpL1xDg0Tq52XoFg/TrqhhHDz8M7T27Umkg80LSSjvOwKGK4Cuv89Im5VZRTJoYzA4fdPomzlwWYbDPNVfrdeQl0Y+fHu+mLwR7VvZ79YoF6ddVEYindz5r2iQsz+giqlpyWYCOXpJK+8qYXa7NOtPsI9q0n32yQm4Vhd+hnUnQ6Zs9K2+sibKYPLEQypC38pHRiX7c5u+TIG4lFfRZ2UcJ1bybg8j386su9e4XbXo2iFgAKvVobbmDdiYbG+6qbiu08vC+Y7i6J/7ou92LZ8d6PqAyCvLTIXnwtutiv3ZS5NY9tiCS+ErdPStvxMINTyceoTUODw97rgZz/j5p+0aQBYdJ9QqDjBKAimJpbS75eq4XtGJTeeXk+55RfJ2YfnnjyP9mWcTlep13wriLKyrl94ePHsLXl87Nte1u1rRJuZI/tyOKtMI5JNHjsBIkflFTQF9r+/xrEtNTKz0WHNrZ5mMqx2xcJ8aYS8TOwOBQoOf63KunAysJANj/wKJR38udramMLPLg+RTFNnDhomLFjoNo79mF2au/F6ke1yKfS5SFnbUit4oiCFHmiMudrYnOMd89/yrf+371Tn9uuybWrHxOLqNxTE95zfK0WxRSb19/1dXY0y9vHGlc/booO+FnyjDpnr3bKLHc2Zr4GoGwtpVrH3hyxJje3rMr0URScdkGzl24iJWPhM+nXot8LnlTEkCdKIqongXmHHPcsYYWzmwJJFvQoap1sOLkBjg4NDzSM3P6i6Nnak5FVWuYly9oG9UDjzIs//f3g/f+42LWtEmZWPw4f92eQPtf3bNrzNqGD4Y1MWVx07VTYzvXRQ0/MhhPEYmTJLeKIu0HXO5sxXM9n8brG5Zg+YK2Mdf3WoK/edm8EUUjuLQ+Imn/aavBP0zPKU0X0ajK3JRzde/hwI4OcbF52TzfvcVJjcEDwF1WkJH6V40T750fZYj3YnXvYdfRXlJZB595+ZTj9rChLMJOZXlNYdMB4RK5NWb7ja+TxLTR2nKHY8O2uvcwtu07NvLSTWosYN0dHSO947SNV0HWI7hRLTLm9MsbQ83f24kaw+nhfcfQ9bGWmi04a7KErvfDujs6Ak9/mS7Ta8sdvu7zglZGCq9VGeHUoszcGvYPfATkdCLsVJabU0Nrc2kkuvScNU855qw3FUk9OCjkVlGsLXfgtVPvV128leaCFjcFUivsnlBh8WrEJxTiCY0ch4dWrV5YQXD7URAvKKvtxqSp2ICzPqMcz1+3Z+R4p4CGteBKlwb6yuYSbrp2amDlFdbppHvxbMcEZtbzVQtSeOCN0+NmRbwbuVUUQGURGlexJs+qnS+6NuJxrWx1Ok+YnBVpM6WpiDW3XhdKyZk91jCZGr8aIMqxOeL7+VW7cMFSoNbEO2nj1UCb924qND+E7WS4JTALcj6zc+inLPM6nZVrRQEAxQb3BVb1viI2rsjFg0MXMWfNU449K7eeYVCcpg7uWdCWekM2QTCqMfVi8sQC+v701yJf0ymBlp9j/vDRQ7jgc9gYtkOVVMNWrYE2R+dpdATDlL+dteUOPPPyKdd3oTXneUNya8w22bjUuSIH9SjKC1Oa/C/7H7oYX0Kdd88NY86ap8Zs7148G6VitOkn+1DfZG25I1VlP3liAa+sX+I7wX2t8yZ8fencWOxQXiTZsJkOIq9tWDIqrpkVPz4rWekQOr0LpWIBm5fNc72/vJB7RWEuYkrbo6hWrLn1OhQDxMl58ImXsHDD07Fc+91zw2MUT7mzFXoxuAFyQoOMPK/1d3a4vkRryx2hAkAGZfrljSMN/2sbloxaVW0nbJiVuCl3tmLTF+J3284S98yvrgSy0iEsd7Zi/Z0do9oir7qdJ3KbuKie6e3r95UbPAlam0t4rufTgbJ3AZWeVdiX5uqeXZFtFW6Z5LywZ5lbOLMl0x2QuKdpzGdda7ySHGU1I15apJW4iIoixzilywzLpMYCzpyvHpcf8O8S29pciiWvc9R4W+Mxp4cTQbOqVSNL5TZ/3Z4xda7elQSQE0UhIs0A/gLAJ1BxUPkNAEcA7ADQDuB1AF9Q1Xe8zkNFEZ6oqTmtaz06v/L9WBerxTU909vXj+5HD2EohL+vmcqyXohrVJH10ROpkJdUqH8G4ClVvRbAXAA/BtADYK+qzgKw1/hOEiLq/GxzU+NIr3HNrdclbhwNQ7mzFR+6LJyDXj0piTihkiBWQisKEZkM4AYAfwkAqnpeVQcA3A5gq7HbVgDlqEISb6I07tb1C6ZxNA4mT4xnIZ7JQIiRTpDkOOOFOAzbWfEiItkhyojiGgCnAPy1iPSJyF+IyCQA01X1OAAYn9OcDhaR+0XkgIgcOHXKOe4L8UeUFdj29QtxhcKOe+74wwGzgV1WkDFZAuuB7sWzfbv3OiHIjhcRyQ5RFtxNAPBJAL+jqvtF5M8QYJpJVbcA2AJUbBQR5Kh7/CbhccJp/UK5szWSUTQJ19GhYW8X3Cy4q2aBcmdr6JAS9apcSXWiKIq3ALylqvuN74+hoihOiMgMVT0uIjMAnIwqJPGme/Hs0A173F4tSTXYfj2ySGVE0PWxFnQ/etA1akHeVwrXgjChVsYLoRWFqv6biLwpIrNV9QiAmwH8yPi7F8AG4/PxWCQlrmQlzWaW4tg4Bb+rpymVOMJSkEuYib/M2FRm4i8g/ajQtSCq19PvANgmIi8CmAfgq6goiEUichTAIuM7SZhyZ6uvcAdW4ooFBSTvc98cwEZhugybAeXM4Hd5SBFKsolb4q9apFKtBZGaClU9qKpdqjpHVcuq+o6q/lRVb1bVWcZnPCvCSFX8hDuw4hYnKyiTJxYS71U9eNt1rr/ZkwBt3/+m435u2wmphluU5FqkUq0FuY/1RC6xttzhK180UHGB9Grcg3iWprE61ktWu/3CLTS135DVhNhp9gjGGVfgzSxDRTHO2LPyRixf0DbKRbKxIJjSVBwVNLHafP03fK6nSNPn3k131d9qCZI2Xn2Meph+yn0+CjKWODLtmT14a/DBYgMwrJV1G7UwELu9q2HHCfbAhrOmTfKd85rUFz/zCMBZD9NPVBTEFb+eM1nzMCqIOE4zWUceTtFvj548g0WbnqWyIGPwStBVCOpFkkM49UQikUUPIzdbhOLSfLJbiPQgodNJ/eCVk7sebF9UFCQS21xWALttTwOveEf1MJ9M4qfc2eoaU40jCkKqELfdICxWzxOv3p+bmyMh1XCLqcYRBSEJ0tvXj4UbnsbVPbuwcMPTVd0MvaLkWkcK5c5W19zi9iCIhJDq0JhNakJvXz9WPnJwpJfWPzCIlY9UQpC4GdC9ouTaDY1L5sxwDIx307VTfckWdgFh3tKnEuIHjihIYniNEP5k54tjGv6LWtnuhpftwT7YeOZl59D15na3EQdQcQkOg1Nq2udePY17vvV8qPMRkhU4oiCRcHNFBSrTQW4987MuYU3dtgPeUXLtEri5Mprb19x6neu5Bjx85r1wy18eNq951tyOawnLorZQUZBI3D3/KtfcB2EXIkWZ+jFpEOepKtNDJWrOjaAEvSd7LnTT7RgAuj7WUlfhrr3KIk1lIXB20nAznY0n5capJxKJteUOzxAafozUdpymn8wwz37o7etP1ENlde9hzFz1JNp7dmHmqid9rRkJ6pbrpnwf3ncMq3YeRv/AIBSXwl2P53hDXmWRJkE8/LK4vigKVBQkMl5Nr1tDZo/4asVp+skpzLMbXo1ykHDlToRtAOIM81DP4a7zwniLYExFQSJTrfF1asjW3RFsCB5k/YPXvlHXRnk1ACWPBB9JL8mqh3hDeWK8RTCmoiCROX+hek/f2pDNWfNUVfuAvYfuZ/3Dok3PVt134GzFUB12qsarAfjAwxCfRvMwnqef8obXau08PicqChIZL08lK6t7D6O9ZxfePVddsdhDgHQvno1S0X26CqjEabrnW8979q4/bIx+kpiqiWsxX9h57LBuvVlngstKS7ftWeDu+Ve5/pbHaUJ6PZHUCGJ8VADtPbtGvi+c2YL1d3ZUHYlUc0U1O3pJhPLwct8NQlgjbVi33jQJ4wl0wcUzwW17Flhb7nB9jnkMI0NFQXKBqQAmNRbGZLQLwjGz98wAAA/USURBVDvG1JNX2Og06e3rH+PqOl7JiptrEji5PzeXio7K+8MRHSpqAaeeSG547tXTgY3gdsy542oNcnvPrsBTQEGnFHr7+rFyx8FRrq4rU1zbkTZJeAKlOd8fdDW/m5liYHAolNt4LaGiIJFIu7JHndoxjdF+FqgF9XsPOqWwaueLsFt3/Fl78omXI0B7zy7MX7fH8fckwq2EYc2t17n+5jRyMEevTuRt/QsVBYlE3gxzQc2fQewFQY3Zgz6dAIJijco778vfR+dXvu87Qm8tOfHeeUdlEbSBToqgq9+r5akYHBrOjQMCbRQkMFaDZN6IKrFXmlU/xuw5a57y5fUVFqsDADC6Ie0fGET3o4cABG/00uLEe+fHbEs73EoUrDYnP3VtYHAolpA1SUNFQQLhFCE1r7jFg7Jz7QNP4orLL/N8+f00CkkrCT8MXVSs2vliphsmJwO/27PKkoesGWbGbwQBkxU7DuLAG6czbdCPNPUkIq+LyGEROSgiB4xtLSKyR0SOGp9T4hGV1Jrevv5xoyQA4Nfnt/na74NhHTE4e1FtGqHWSsJkcOhipqegVtgM/Ct2HHRV6HF5yAZNouVEkDAzdrIeByoOG8VNqjpPVbuM7z0A9qrqLAB7je9kHJCX4b9f4u7B5WEdg8kfPJL+s5w4IX6TaBz5qs2RQNRAi1HdrbMcByoJY/btALYa/28FUE7gGiRlstwDDYo1kdDyBf5GFX7x8tDJEsM1MC997fNzYp8qisNO5jQSCBNoMeq9ZdnmF9VGoQC+LyIK4P+o6hYA01X1OACo6nERmRZVSFJ78ubd5IU5fbZo07M4evJMrOf2conMGnbDt5VJjQWsu6MjVluGea6Nu4/EttgxajRgoHqSK79keKF4ZKKOKBaq6icBfBbAb4vIDX4PFJH7ReSAiBw4dco5bSXJDmmHHZg80TuuU1Tae3bFriTGE2fOD2PFjoOZH0nGMPMUCK/w+HGQ1fKOpChU9W3j8ySAvwfwSwBOiMgMADA+T7ocu0VVu1S1a+rU6gnvSW2JK+BdNVqbS3h9wxK8+OXPpHI94k2cdimrLSAukh7B2RvuqJEBqpHVdRWhFYWITBKRy83/AfwagB8CeALAvcZu9wJ4PKqQpPakEYOoVCyMuk7c9gNSW6J4BbkRhzHbi1WWbIs/v2pX4g4dWXWIiDKimA7gn0XkEIB/AbBLVZ8CsAHAIhE5CmCR8Z3knHJnKxbObIntfJuXzcPmZfPQ2lyCoDKSWH/n6DnxLPuVk+AkMX2ZtAHYXD3f3rMLF8axDaIaoY3ZqvoTAHMdtv8UwM1RhCLZZNt918eyKnvhzJYRhVDNWOqW0J7kj8YJDTh3If6wJUmvbM7y+oa0YKwnEoi15Q68uv4WvL5hSajjZ02bhG33Xe97/3sCTj8tX9CG1zcswfTLG4OKVhM2L5tXaxE8mRDjzE4SSgJIfk1I2PwgYfBKp1tLsikVyQVBlYUA2LPyxkDH+J1+EkMec/9F1/1coOvUiiyH0sgLUdaEZM3L6LIqWRxrBRUFSY3XQo5CqjF5YmHMudPsBY5n8jIvH7bBz5qX0UBG1+FQUZDQBHk5Gwvh5zCqhX5I2pV28sRCrIZ8k1nTJgHI/vRTHvjyd8I1+FnzMspq9jsqChKaIKu1H7prjN+Db772+TmuvyXtQrtwZgte/PJnsO2+62NVFtMvbxyZhit3tkZSpOMJQfCcIUC+VsR7kfYCQr9QUZDQ+HV3XL6gLdJcfLmzFZuXzRtl6GuQynnDuNCWig2jXHObS0XHF2H5grZRhvcwysLJDXjzsnnY/8CiUfs9dNdc11hB5jFhlGJrc2lk5JIHrmwu4Zt1PMLK6tQT81GQ0FzZXPJcZdtq5BKIw2Bb7mz1fZ5qU2Lr75wT6HxWtt13vWeMJDt+3YCtcZCseRisx5U7W0cUox8ZrM4GQWS2Eue02PIFbZ62I3PBZZiYUHHEfMoCaUVACAoVBQnNTddO9Xzxn+v5dIrSXKLalFhankZBG9kgymtSYwFnzruvcraPfESAoEtfNi+bF2tZmUrOXIcjAJoaCzh7fniMYjTLwm+irAdvc0+Xmiduujab4YyoKEhonnnZPZhjaw17RmkHMLQzpamINbdel6hCWndHh2c4CftalXvme/fmnUhC/rXljkDThX5GcFEUmt8sh2mxff+xTEYkoI2ChMarQa5lz8hr+J50bCAA6PvTX0t81OJ1fqc7XFvuCGTjSDp6b5xEKessKQmgNnlC/EBFQULj1SB7jTaSxiuAYdKxgdI0HLuN2tyey9pyh6/psMkTC3UTvbeWI988QUVBQuM1aqj19I8bcTQMXpnMgq48j0L34tko2Vby2iPw2jE9yOxeWK9vWDLyVy9KAog3KvKUpuK4jXhMGwUJjdeooZbeG27GbEE8DUNWpiv8eEq5HcfQIRXKna2xhA4vFmTELrVt/7HAjgMmWXVlpqIgofFyXUwjf4UbbqMZxfiLrVTvjX4aUyJOMc16+/pdFXQYxwFg9CLMrEFFQUJTEHGd869l4+W2viOu+Wi30OcZXVSbe7zq2aaEF+e5TSV5Kei15Y5AimJCg+DrS+dmWuFTUZDQeBmGk84R4EX34tlYtfPwqGxq1ebug+B21xmZkRp33D3/KseG15rXJCnCuqq6LS4MG02g1tCYTULj1UMPEgcqbsqdrVh/Z4dn9rwouLnYpuF6W4+Yrr1m+RZExoRXyRpuMudRSQAcUZAIdC+e7WoI9Bt6ISmSnLt3G0kl7XpbzwRdqBeEhTNbHFd/Rw0CmaTMacMRBQlNludUk8RtJEWf/HziFOxx4cyWTI9Y0oYjCkICkrQNhKQPlYI3VBQkEvXoARR2/QIheYWKgkSicUIDzl246Lh9PFPv6xdIdbzWWuQNKgoSCScl4bWdkHqgt69/1PRk/8AgVu08DCCftr3x3e0jhJAasHH3kVE2LAAYHBquqdt4FKgoSCTcMouNl4xjhITBLYxMVoNlViOyohCRgoj0ich3je8tIrJHRI4an1Oii0myyoO3XYeiLZxqsUHGTcYxQsLgFhQzq6lOqxHHiOL3APzY8r0HwF5VnQVgr/GdjFPKna3YuHTuqFXQGzMet4aQpAkTAj7LRDJmi8hHASwBsA7ASmPz7QBuNP7fCuBZAH8c5Tok29ADiJDRjDcX6qheT5sB/BGAyy3bpqvqcQBQ1eMiMs3pQBG5H8D9ANDWNj6TfRBC6pfx1IEKPfUkIp8DcFJVXwhzvKpuUdUuVe2aOrV2+ZUJIYR4E2VEsRDAbSJyC4DLAEwWkYcBnBCRGcZoYgaAk3EISgghpDaEHlGo6ipV/aiqtgP4IoCnVXU5gCcA3Gvsdi+AxyNLSQghpGYksY5iA4BFInIUwCLjOyGEkJwSSwgPVX0WFe8mqOpPAdwcx3kJIYTUHtEMJFsRkVMA3jC+fgTAv9dQnLBQ7nSh3OlCudPFr9wfU9XEvYEyoSisiMgBVe2qtRxBodzpQrnThXKnS9bkZqwnQgghnlBREEII8SSLimJLrQUICeVOF8qdLpQ7XTIld+ZsFIQQQrJFFkcUhBBCMgQVBSGEEG9U1fMPwFUAnkEl58RLAH7P2N4CYA+Ao8bnFGP7Fcb+7wP4c9u5lgF40TjPQx7XXAfgTQDv27avBPAj4xx7UfEhdjp+IiqhRM4CGATwrxa5hwG8B+AcKnGoMi83gJsAHLbIPQzgnqzLbfz2Z4Zs54zzZKm8bzDK9SKAtzC6fu8FMATgDLJXvx3lBvAxAAct9eTHeZA7B++lW3ln/b28AcAPAFwAcJftt68B+KHxt8xNhpH9q+4AzADwSeP/y1FpBD4O4CEAPcb2HgBfM/6fBOCXAfymtYCMgjsGYKrxfSuAm12uucC4rr2AbgLQZPz/WwB2uBz/3wD8LYBPohKH6tsWuc/nVO6HDHlbUGmQv5EDuX8TwOsA/sSQ8y0A38yQ3O0APg3guwDuwuj6/XcA/sb4LWv1xE3uuQC+Ycj7IQDvAPifOZA76++ll9xZfi/bAcxB5d28y7J9CSqdnwmGnAcATHY6h/lXdepJVY+r6g+M/99DpZfSikqCoq3GblsBlI19zqjqPwP4wHaqawD8q6qeMr7/A4DPu1xznxo5LWzbn1HVs8bXfQA+6iL27QD+lyH3YwB+xSL3hJzKbZb3XQC+B+BzOZD7k6hUxL9W1TMA/gmV3lQm5FbV11X1aRgrYG31uxOVURKQsXriIfc0VOrFVlRGeWcALM6B3Jl+L6vIndn30pD7RVRGQlY+DuAfVfWC8V4eAvAZp3OYBLJRiEg7Ki/QftgSFKFSSb14BcC1ItIuIhNQqQhXBbm+jS+h8mCcaEVlyAZVvYDKC/OLhtwC4Dsisg/A/BzJbZb3FwH8dU7kfhLAFAA/E5GPoNJDas6Q3KOw128Ap4FM1u9R2OT+OQC7UXke61HpwXqRFbmz/F6OwqUdzOJ76cYhAJ8VkSbjvbypmgy+gwKKyIdQmVJYoarvikggyVT1HRH5LQA7UNFw/w8V7RoYEVkOoAuVnqvjLja5fw7AfYbc76pql4hcA+BpVFGWGZIbRn6PDlQaAk8yIneviAwZ1z4F4HkAd2RIbiuXIT/124pdblXVOSJyJYBeWJ5NxuXO8nvpJXeW30s3Gb4vIp/C6PfygtcxvkYUIlJEpXC2qepOY/MJo4DMgqqaoEhVv6Oq81X1egBHABwVkYKIHDT+vuJDll8F8ACA21T1nLFtnXkOY7e3AFxlyL0TFaPk/zV++zcjsdJPUOkRvJ8TuU8A+C8A/h6VgGF5Ke9jAD6rqosAlGD00jMi98juAP4QtvqNyrxzFuu3p9xG/X4bwE9QGd3lQe4sv5decmf5vfSSYZ2qzjPeS0HFKcnzAM8/4yR/C2CzbftGjDY+PWT7/T9jrLV/mvE5BRXvjF+ocm27EacTwKsAZlU57rcB/G9D7icBPGK57iZDXjM6419mXW5LeR9DZZiYl/IuAPgfhrxzAPwbgI1ZkdtSv18B8F2H+r0Fl4zZmSlvN7lRmav+piHvFFR6i3+VA7kz/V76qCeZfC8t+/8NRhuzCwCuMP6fg4rn0wTPc/i4yC8DUFRcsQ4af7egMve5FxVNtBdAi+WY11HpOb6PSm/z48b27ai4df0IwBc9rvmQcZzpjvagsf0fUNHgphxPuBx/GSrDV0XFE+FHxv5/YPxvurP9KCdy3wJgHiqGsTyV9+2o9JjOoOI2uz9jcn8KlR6gojL0HrSU9/OoeOJcNMr9rhzI/QAqLpdW99g8lHfW30uvepLl9/JTxnFnAPwUwEuW99W8/j4A87x0gKoyhAchhBBvuDKbEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhCRUEIIcQTKgpCCCGe/H9DmsqiQBIg1AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from apd.aggregation.query import with_database, get_data\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "async def plot():\n", + " points = [(dp.collected_at, dp.data) async for dp in get_data() if dp.sensor_name==\"RelativeHumidity\"]\n", + " x, y = zip(*points)\n", + " plt.plot_date(x, y, \"o\", xdate=True)\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " await plot()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nO2df5RV5Xnvv88czuAZIhnGAMWJk1FK8cYMMOmk4KXXaiwlkahHIyFW1vKu5uptb1dbSjvtULnFZEEgkhC6bu+695L+olcWRQ0dTTASitqueoUuzIDERIpGRUcKNDhRYYRheO4fZ+9hz56999m/z95zvp+1Zp05++wfz373u9/nfd/neZ9HVBWEEEKIGw21FoAQQki2oaIghBDiCRUFIYQQT6goCCGEeEJFQQghxJMJtRYAAD7ykY9oe3t7rcUghJBc8cILL/y7qk5N+jqZUBTt7e04cOBArcUghJBcISJvpHEdTj0RQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+qej2JyF8B+ByAk6r6CWNbC4AdANoBvA7gC6r6jvHbKgBfAjAM4HdVdXcikhOSIr19/XjwiZcwMDgU6TxNxUrf7OzQRQDAlKYi1tx6HcqdrSPX2bj7CN4eGMSVzSV0L5498htJjiDlbq8LU5qKWDJnBp55+RTeHhjEh0tFnL8wPPKM/WCvB1lDqkWPFZEbALwP4G8tiuIhAKdVdYOI9ACYoqp/LCIfB7AdwC8BuBLAPwD4BVUd9rpGV1eX0j2WZJXevn50P3oIQxeTibRcLAg23jUXALBq52EMDl16XUrFAtbf2ZHZBmQ80NvX77vck6wLZj0I8qxF5AVV7YpdGBtVp55U9Z8AnLZtvh3AVuP/rQDKlu1/p6rnVPU1AK+gojQIyS0bdx9JTEkAwNCwYuPuI9i4+8ioxgoABoeGsXH3kcSuTRCo3JOsC2Y9yCJhF9xNV9XjAKCqx0VkmrG9FcA+y35vGdvGICL3A7gfANra2kKKQUjyvD0wWNNrpHH9esatfJ22J/0ssvqs4zZmi8M2R/WrqltUtUtVu6ZOTXwFOiGhubK5lMo13K6TxvXrmSDlnvSzyOqzDqsoTojIDAAwPk8a298CcJVlv48CeDu8eITUnu7Fs1FscOoDxUOxIOhePBvdi2ejVCyM+q1ULKB78ezErk0QqNyTrAtmPcgiYRXFEwDuNf6/F8Djlu1fFJGJInI1gFkA/iWaiITUlnJnKzYunYvmUjHyuZqKDSOeT0DF28U0YJY7W7H+zg60NpcgAFqbSzRkp0CQcneqC1Oaili+oG3k+OZScdQz9oO1HmQRP15P2wHcCOAjAE4AWAOgF8AjANoAHAOwVFVPG/s/AOA3AFwAsEJVv1dNCHo9EUJIcNLyeqpqzFbVu11+utll/3UA1kURihBCSHbgymxCCCGeUFEQQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhCRUEIIcQTKgpCCCGeUFEQQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhSNR8FIWHp7evHg0+8hIHBoTG/TWosYN0d/rO39fb1Y+PuI3h7YBBXNpfQvXh2bNnAvOQ0mdJUxJpbr0O5szWwLOb+/QODKIhgWBXNpSLOXxjG2aGLsdwDUElYXywIzg9fSkY2pamIJXNm4JmXT43I235FCft+8g6GVVEQwd3zr8LackdscvjFXu7WMq4FTvXA/tyr1RMrbveTZF1OiqoZ7tKAGe7GH719/eh+9BCGLrrXr0KD4BtLq6d/7O3rx6qdhzE4NDyyrVQsxJIm1I+cJsWCYNmnrsK3X+j3LYuT7Flk+YK2VJWFW7kXC1KTlKBe9cB87jv+5U1f9cR+rPV+4q7LaWW449QTSYSNu49UfamGLyo27j7i61z2hnZwaNjXsX7O7fflHxpWbN//ZiBZnGTPItv3v5nq9dzKfWjYX51ISx7g0nMPqiTMY633k2RdThIqCpIIbw8Mxraf2z5+rxH1+laGXUbgScqYBm73lRRe5VKLMqt2zSjlYz13XusJFQVJhCubS7Ht57aP32tEvb6Vgkig88QhYxq43VdSeJVLLcqs2jWjlI/13HmtJ1QUJBG6F89GscH75So0CLoXz/Z1rlKxMGpbqVjwdayfc1eT06RYqBh+g8jiJHsWuXv+Valez63ciwV/dSIteYBLz91vPbEfa72fJOtyklBRkEQod7Zi49K5aC4VHX+f1FjwZcg2z7X+zg60NpcgAFqbS7EYsv3IaTKlqYiNd83F2nJHIFmssgOXeqbNpSKaivG+fgKgsTC6MZvSVMTyBW2j5F04s2VEjoJI6oZswLnczTKuhQeQWz2wPnc/9cTpWOv9JFmXk4ReT4QQklPo9UQIISQTUFEQQgjxJJKiEJHfE5EfishLIrLC2NYiIntE5KjxOSUeUQkhhNSC0IpCRD4B4D4AvwRgLoDPicgsAD0A9qrqLAB7je+EEEJySpQRxX8AsE9Vz6rqBQD/COAOALcD2GrssxVAOZqIhBBCakkURfFDADeIyBUi0gTgFgBXAZiuqscBwPic5nSwiNwvIgdE5MCpU6ciiEEIISRJQisKVf0xgK8B2APgKQCHAFwIcPwWVe1S1a6pU6eGFYMQQkjCRDJmq+pfquonVfUGAKcBHAVwQkRmAIDxeTK6mIQQQmpFVK+nacZnG4A7AWwH8ASAe41d7gXweJRrEEIIqS1RExd9W0SuADAE4LdV9R0R2QDgERH5EoBjAJZGFZLUH1lLakNIPRNJUajqf3LY9lMAN0c5L6lvnJLIvHN2CN2PHQIAKgtCUoYrs0nmyFpSG0LqHebMJqlizR8tAOzqwGmblf6BQXz8v38vUK7pKU1FfHzG5Xju1dO+9rVOccU1Bba69zC2739zTJ5qr/zJ1t8+XCpCBBg4O+S436qdL2LQKJMGAa6/pgUvvf3emPzPZv5st/JvEODX56cfTdYtX/WSOTPw3UPHazIFubr3MLbtO+ZYH1tzkus6Lhg9lqRGXvJHm3mOAcSS13l172E8vO/YmO0LZ7bgB8d+5pg/GYBnWVn3W7njIPyrTX+kGXo8SN5yIJ282m7PzEpcedujkFb0WCoKkhoLNzyN/oynfDQx80e4ydvaXMJzPZ/2da6Zq54MlEqz2rWD7heGggheXX9L7Od1Iky9CFL+YfD7zJKWoxppKQpOPZFYqPQKD8JpRmhSYwHr7ujIfF5gK9VkDXIvQfMtx5lvPCxp5tAOcx9J1yW/95+nOh0FGrNJZHr7+rFih7OSAIAz54fxB48eQnOT/+xgtebK5lJseZ2D5luudu2g+4UhzRzaYe4h6RzTfu8/67mu44KKgkTGjyfS8EWFKnKRP9rMcxxXXme3fNQLZ7a45k+ulmvbul8SL3GaObSD5C0H0smr7ef+85DrOi6oKEhk/A6/fzY4NCp/tFPTYM/73FRsGJVb2v7dD1Oailg4s8X3vqahNK68zmvLHVi+oG1Mnupt913vmj/Znlu5uVTElKai436bls1DyVImDVJRQk75n8382YBz+TdIuoZswDtf9fIFbTXJq20+Mzf1lZdc13FBYzaJjF9jZK0Nf4SMN5gzm+QGP8PvQkPy0wWEkGSgoiCRKXe2YvOyeXCbEZrUWMA3liY/XUAISQa6x5JYMOfLCSHjD44oCCGEeEJFQQghxBMqCkIIIZ5QURBCCPGEioIQQognVBSEEEI8oXssyQT2JDFmxFm63BJSe6goSM1xShJjRpwFmCObkFrDqSdSc7bvf9Nx+/BF5sgmJAtwREFSx54L2itJjDUyrT3v9IJrpozKC91UbMDEYmEkr/RN104dlW8ZSDfncpbwys1t/h5HbvCgctifkVOebDNasD1Per0+y1rA6LEkVYLmzTYjzvrJYeyXNHIuZwmnMrfme3bLWR13OSWRM73enqUdRo8l45KNu4/4biisEWfdpqfCMDRcX1NaTmU+ODQ8UgYbdx8ZoySA+MspyLP3S709y1oRSVGIyO+LyEsi8kMR2S4il4lIi4jsEZGjxueUuIQl+cdvkiN7xNm4czjXS65jwP1eze1eZRFnOSVV5vX0LGtFaEUhIq0AfhdAl6p+AkABwBcB9ADYq6qzAOw1vhMCwF+O4dbmEl76ymdGTSfEncO5XnIdA+73am6PKzd4WDmyel5yiahTTxMAlERkAoAmAG8DuB3AVuP3rQDKEa9BxhF+c0HbiTOHcxo5l7OEU5lbyzmu3OBh5IhKvT3LWhFaUahqP4CvAzgG4DiAn6nq9wFMV9Xjxj7HAUyLQ1AyPvCbC9qOU95pe17opmLDqHPZ8y0D6eVczhL2MreXc1y5wcPI4ZQT277NLU96PT7LWhHa68mwPXwbwDIAAwAeBfAYgD9X1WbLfu+o6hg7hYjcD+B+AGhra/vFN954I5QchBBSr+TB6+lXAbymqqdUdQjATgD/EcAJEZkBAMbnSaeDVXWLqnapatfUqVMjiEEIISRJoiiKYwAWiEiTiAiAmwH8GMATAO419rkXwOPRRCSEEFJLQq/MVtX9IvIYgB8AuACgD8AWAB8C8IiIfAkVZbI0DkEJIYTUhkghPFR1DYA1ts3nUBldEEIIGQdwZTYhhBBPqCgIIYR4QkVBCCHEEyoKQgghnlBREEII8YSKghBCiCdUFIQQQjyhoiCEEOIJc2YTUidUy5udNfIm73iGioKQOsCer7p/YBCrdh4GgEw2vnmTd7zDqSdC6oBqebOzRt7kHe9QURBSB1TLm5018ibveIeKgpA6oFre7KyRN3nHO1QUhNQB1fJmZ428yTveoTGbkDrANADnxYsob/KOd0LnzI6Trq4uPXDgQK3FIISQXJGHnNmEEELqACoKQgghntBGYeGebz2P5149PfJ94cwWbLvv+hpKRAghtYcjCgO7kgCA5149jUWbnq2NQIQQkhHqZkRxdc8uWM32AuC1DUtGvtuVhMnRk2fQ29dPbwtCSN1SFyOKdpuSAAA1tvth1c4XY5eJEELywrhXFPd863nP3+ev21P1HINDF+MShxBCcse4VhS9ff2uU0omJ947n5I0hBCST8a1ovjjb/ubMpqz5qmEJSGEkPwSWlGIyGwROWj5e1dEVohIi4jsEZGjxueUOAUOwrkL/qaM3j03XH0nQgipU0IrClU9oqrzVHUegF8EcBbA3wPoAbBXVWcB2Gt8J4QQklPimnq6GcCrqvoGgNsBbDW2bwVQjukaNaW3r7/WItQVvX39WLjhaVzdswsLNzzN8iekhsSlKL4IYLvx/3RVPQ4Axuc0pwNE5H4ROSAiB06dOhWTGKOZNW1SbOdiZq30WLTpWazYcRD9A4NQVNJgrthxkMqCkBoRecGdiDQCuA3AqiDHqeoWAFuASvTYqHI4cfZ8fG6tWcisVQ/J5u/51vM4evKM428rHzmYi/uth+dEorO69zC2738Tw6ooiODu+Vdhbbmj1mI5EsfK7M8C+IGqnjC+nxCRGap6XERmADgZwzVCEWfj/uFSMbZzhWHOmqdGGd3Ha7J5L3fmi7WPiF+VRZueHaXozNEQML6eE4mGvZ4Mq+LhfccAIJPKIo6pp7txadoJAJ4AcK/x/70AHo/hGqFonBCf9++7g0OxnSso89ftcfTMGm/J5q994MlaixAJr9HQih0Hcc2qXZw+I1jde9i1npjKImtEGlGISBOARQD+q2XzBgCPiMiXABwDsDTKNcLS29fv2z3WD0mvzXaKXLu0qw0bdx/xXBTYn4EpsThY3XsYHwznYMjgQbXFnRcVHF2QzCoDLyIpClU9C+AK27afouIFVVO6Hz1YaxEccZq/fvTAMcfItdUaHqAS3DCvWMsi3yoiGH/02CEqijplde/hWosQinEbPbZaeKZJjQWcOZ/uQrvevn78/o6DI41i/8DgqO9hyGsD29vXj1U7D2NwqP4WO57P+ciJBKe3r39kNOlFVjt+uVYUUbxL1t3RMaahKhULng1Xe8+uSN4Jf/TYIccotvXIxt1HAiuJgmT1NQrO6t7DmTRaEm/CeCr5VRIAcM+CtjjEjJ3cKorevn50P3oIQ4YrTP/AILofPQQAOPCG95RNqdgwolDsiqbaA3XyTvCrsNiTvEQY28qwjp/ye3jfMSqKnBHWU+nBJ17yfY2s1oncKooHn3hpREmYDF1UPPjESxio4qG0/s45ACoGRXuD7lfzbzNedHtvge6Q/hAEH021NpeSEIWQqlTzVPJq4Ku1RyaTJxZCyZYGuVUUboXv56F4NeClYoOv/BNmI+emWFbsGL04jG6RowkzNmi/Il5FYe8hzpo2CXtW3hjqXEk8X7sn3MQJDfja5yudHC7oS5ft+98MdVy1fDhWXvzyZ0JdIw1yqyiSYv2dc3yPKqphTaGa5HqHepnvfu7V07GlpbUrCaCS9nbRpmerKguneeowLo/tPbuwfEGb47NzyuF+7sLFMXXTHMH+ae/hTDc0Tlz7wJNjXKInTyxk8j6qTXs6vYNOdcyNUjHbGR9EMzDv29XVpQcOHAh0jN80pnYmNAhe+eotnvvMXv09X2swFs5s8eXCmgavW/J/54Gwz880Z1frSVezG3ld36ssV/ceTsQP3q4wwpTPZQXBy+u863ZWcFISVtKsz15u2hMEeGX9Esxc9WRVZWGVOYgBGwA2L5sXqgMkIi+oalfgAwOSbTWWAF9fOrfqPubwvhppKYnNy+alcp08oMafGcLEacrHdL21BhX8/R0HY/FhT2qx1MP7jkWW74NhzY2ffrXFlVeH7EgExV5X7FzQitJecE2wtDpf/o5/A/bCmS2ZnzqsK0WxfEGbrweSlYfW2lwK3dPIMkHmbb1wC2Hi5HqrqDTGfmwJ7T27atLgxqGE8rjq1wlF+FFnEPy6afvpFFqV2ztn/Rmwly9ow7b7rve1by3JraJoLAT3qc/TPP5lBcFzPZ8eURILZ7bUWKJ4WN17uOpL1xDg0Tq52XoFg/TrqhhHDz8M7T27Umkg80LSSjvOwKGK4Cuv89Im5VZRTJoYzA4fdPomzlwWYbDPNVfrdeQl0Y+fHu+mLwR7VvZ79YoF6ddVEYindz5r2iQsz+giqlpyWYCOXpJK+8qYXa7NOtPsI9q0n32yQm4Vhd+hnUnQ6Zs9K2+sibKYPLEQypC38pHRiX7c5u+TIG4lFfRZ2UcJ1bybg8j386su9e4XbXo2iFgAKvVobbmDdiYbG+6qbiu08vC+Y7i6J/7ou92LZ8d6PqAyCvLTIXnwtutiv3ZS5NY9tiCS+ErdPStvxMINTyceoTUODw97rgZz/j5p+0aQBYdJ9QqDjBKAimJpbS75eq4XtGJTeeXk+55RfJ2YfnnjyP9mWcTlep13wriLKyrl94ePHsLXl87Nte1u1rRJuZI/tyOKtMI5JNHjsBIkflFTQF9r+/xrEtNTKz0WHNrZ5mMqx2xcJ8aYS8TOwOBQoOf63KunAysJANj/wKJR38udramMLPLg+RTFNnDhomLFjoNo79mF2au/F6ke1yKfS5SFnbUit4oiCFHmiMudrYnOMd89/yrf+371Tn9uuybWrHxOLqNxTE95zfK0WxRSb19/1dXY0y9vHGlc/booO+FnyjDpnr3bKLHc2Zr4GoGwtpVrH3hyxJje3rMr0URScdkGzl24iJWPhM+nXot8LnlTEkCdKIqongXmHHPcsYYWzmwJJFvQoap1sOLkBjg4NDzSM3P6i6Nnak5FVWuYly9oG9UDjzIs//f3g/f+42LWtEmZWPw4f92eQPtf3bNrzNqGD4Y1MWVx07VTYzvXRQ0/MhhPEYmTJLeKIu0HXO5sxXM9n8brG5Zg+YK2Mdf3WoK/edm8EUUjuLQ+Imn/aavBP0zPKU0X0ajK3JRzde/hwI4OcbF52TzfvcVJjcEDwF1WkJH6V40T750fZYj3YnXvYdfRXlJZB595+ZTj9rChLMJOZXlNYdMB4RK5NWb7ja+TxLTR2nKHY8O2uvcwtu07NvLSTWosYN0dHSO947SNV0HWI7hRLTLm9MsbQ83f24kaw+nhfcfQ9bGWmi04a7KErvfDujs6Ak9/mS7Ta8sdvu7zglZGCq9VGeHUoszcGvYPfATkdCLsVJabU0Nrc2kkuvScNU855qw3FUk9OCjkVlGsLXfgtVPvV128leaCFjcFUivsnlBh8WrEJxTiCY0ch4dWrV5YQXD7URAvKKvtxqSp2ICzPqMcz1+3Z+R4p4CGteBKlwb6yuYSbrp2amDlFdbppHvxbMcEZtbzVQtSeOCN0+NmRbwbuVUUQGURGlexJs+qnS+6NuJxrWx1Ok+YnBVpM6WpiDW3XhdKyZk91jCZGr8aIMqxOeL7+VW7cMFSoNbEO2nj1UCb924qND+E7WS4JTALcj6zc+inLPM6nZVrRQEAxQb3BVb1viI2rsjFg0MXMWfNU449K7eeYVCcpg7uWdCWekM2QTCqMfVi8sQC+v701yJf0ymBlp9j/vDRQ7jgc9gYtkOVVMNWrYE2R+dpdATDlL+dteUOPPPyKdd3oTXneUNya8w22bjUuSIH9SjKC1Oa/C/7H7oYX0Kdd88NY86ap8Zs7148G6VitOkn+1DfZG25I1VlP3liAa+sX+I7wX2t8yZ8fencWOxQXiTZsJkOIq9tWDIqrpkVPz4rWekQOr0LpWIBm5fNc72/vJB7RWEuYkrbo6hWrLn1OhQDxMl58ImXsHDD07Fc+91zw2MUT7mzFXoxuAFyQoOMPK/1d3a4vkRryx2hAkAGZfrljSMN/2sbloxaVW0nbJiVuCl3tmLTF+J3284S98yvrgSy0iEsd7Zi/Z0do9oir7qdJ3KbuKie6e3r95UbPAlam0t4rufTgbJ3AZWeVdiX5uqeXZFtFW6Z5LywZ5lbOLMl0x2QuKdpzGdda7ySHGU1I15apJW4iIoixzilywzLpMYCzpyvHpcf8O8S29pciiWvc9R4W+Mxp4cTQbOqVSNL5TZ/3Z4xda7elQSQE0UhIs0A/gLAJ1BxUPkNAEcA7ADQDuB1AF9Q1Xe8zkNFEZ6oqTmtaz06v/L9WBerxTU909vXj+5HD2EohL+vmcqyXohrVJH10ROpkJdUqH8G4ClVvRbAXAA/BtADYK+qzgKw1/hOEiLq/GxzU+NIr3HNrdclbhwNQ7mzFR+6LJyDXj0piTihkiBWQisKEZkM4AYAfwkAqnpeVQcA3A5gq7HbVgDlqEISb6I07tb1C6ZxNA4mT4xnIZ7JQIiRTpDkOOOFOAzbWfEiItkhyojiGgCnAPy1iPSJyF+IyCQA01X1OAAYn9OcDhaR+0XkgIgcOHXKOe4L8UeUFdj29QtxhcKOe+74wwGzgV1WkDFZAuuB7sWzfbv3OiHIjhcRyQ5RFtxNAPBJAL+jqvtF5M8QYJpJVbcA2AJUbBQR5Kh7/CbhccJp/UK5szWSUTQJ19GhYW8X3Cy4q2aBcmdr6JAS9apcSXWiKIq3ALylqvuN74+hoihOiMgMVT0uIjMAnIwqJPGme/Hs0A173F4tSTXYfj2ySGVE0PWxFnQ/etA1akHeVwrXgjChVsYLoRWFqv6biLwpIrNV9QiAmwH8yPi7F8AG4/PxWCQlrmQlzWaW4tg4Bb+rpymVOMJSkEuYib/M2FRm4i8g/ajQtSCq19PvANgmIi8CmAfgq6goiEUichTAIuM7SZhyZ6uvcAdW4ooFBSTvc98cwEZhugybAeXM4Hd5SBFKsolb4q9apFKtBZGaClU9qKpdqjpHVcuq+o6q/lRVb1bVWcZnPCvCSFX8hDuw4hYnKyiTJxYS71U9eNt1rr/ZkwBt3/+m435u2wmphluU5FqkUq0FuY/1RC6xttzhK180UHGB9Grcg3iWprE61ktWu/3CLTS135DVhNhp9gjGGVfgzSxDRTHO2LPyRixf0DbKRbKxIJjSVBwVNLHafP03fK6nSNPn3k131d9qCZI2Xn2Meph+yn0+CjKWODLtmT14a/DBYgMwrJV1G7UwELu9q2HHCfbAhrOmTfKd85rUFz/zCMBZD9NPVBTEFb+eM1nzMCqIOE4zWUceTtFvj548g0WbnqWyIGPwStBVCOpFkkM49UQikUUPIzdbhOLSfLJbiPQgodNJ/eCVk7sebF9UFCQS21xWALttTwOveEf1MJ9M4qfc2eoaU40jCkKqELfdICxWzxOv3p+bmyMh1XCLqcYRBSEJ0tvXj4UbnsbVPbuwcMPTVd0MvaLkWkcK5c5W19zi9iCIhJDq0JhNakJvXz9WPnJwpJfWPzCIlY9UQpC4GdC9ouTaDY1L5sxwDIx307VTfckWdgFh3tKnEuIHjihIYniNEP5k54tjGv6LWtnuhpftwT7YeOZl59D15na3EQdQcQkOg1Nq2udePY17vvV8qPMRkhU4oiCRcHNFBSrTQW4987MuYU3dtgPeUXLtEri5Mprb19x6neu5Bjx85r1wy18eNq951tyOawnLorZQUZBI3D3/KtfcB2EXIkWZ+jFpEOepKtNDJWrOjaAEvSd7LnTT7RgAuj7WUlfhrr3KIk1lIXB20nAznY0n5capJxKJteUOzxAafozUdpymn8wwz37o7etP1ENlde9hzFz1JNp7dmHmqid9rRkJ6pbrpnwf3ncMq3YeRv/AIBSXwl2P53hDXmWRJkE8/LK4vigKVBQkMl5Nr1tDZo/4asVp+skpzLMbXo1ykHDlToRtAOIM81DP4a7zwniLYExFQSJTrfF1asjW3RFsCB5k/YPXvlHXRnk1ACWPBB9JL8mqh3hDeWK8RTCmoiCROX+hek/f2pDNWfNUVfuAvYfuZ/3Dok3PVt134GzFUB12qsarAfjAwxCfRvMwnqef8obXau08PicqChIZL08lK6t7D6O9ZxfePVddsdhDgHQvno1S0X26CqjEabrnW8979q4/bIx+kpiqiWsxX9h57LBuvVlngstKS7ftWeDu+Ve5/pbHaUJ6PZHUCGJ8VADtPbtGvi+c2YL1d3ZUHYlUc0U1O3pJhPLwct8NQlgjbVi33jQJ4wl0wcUzwW17Flhb7nB9jnkMI0NFQXKBqQAmNRbGZLQLwjGz98wAAA/USURBVDvG1JNX2Og06e3rH+PqOl7JiptrEji5PzeXio7K+8MRHSpqAaeeSG547tXTgY3gdsy542oNcnvPrsBTQEGnFHr7+rFyx8FRrq4rU1zbkTZJeAKlOd8fdDW/m5liYHAolNt4LaGiIJFIu7JHndoxjdF+FqgF9XsPOqWwaueLsFt3/Fl78omXI0B7zy7MX7fH8fckwq2EYc2t17n+5jRyMEevTuRt/QsVBYlE3gxzQc2fQewFQY3Zgz6dAIJijco778vfR+dXvu87Qm8tOfHeeUdlEbSBToqgq9+r5akYHBrOjQMCbRQkMFaDZN6IKrFXmlU/xuw5a57y5fUVFqsDADC6Ie0fGET3o4cABG/00uLEe+fHbEs73EoUrDYnP3VtYHAolpA1SUNFQQLhFCE1r7jFg7Jz7QNP4orLL/N8+f00CkkrCT8MXVSs2vliphsmJwO/27PKkoesGWbGbwQBkxU7DuLAG6czbdCPNPUkIq+LyGEROSgiB4xtLSKyR0SOGp9T4hGV1Jrevv5xoyQA4Nfnt/na74NhHTE4e1FtGqHWSsJkcOhipqegVtgM/Ct2HHRV6HF5yAZNouVEkDAzdrIeByoOG8VNqjpPVbuM7z0A9qrqLAB7je9kHJCX4b9f4u7B5WEdg8kfPJL+s5w4IX6TaBz5qs2RQNRAi1HdrbMcByoJY/btALYa/28FUE7gGiRlstwDDYo1kdDyBf5GFX7x8tDJEsM1MC997fNzYp8qisNO5jQSCBNoMeq9ZdnmF9VGoQC+LyIK4P+o6hYA01X1OACo6nERmRZVSFJ78ubd5IU5fbZo07M4evJMrOf2conMGnbDt5VJjQWsu6MjVluGea6Nu4/EttgxajRgoHqSK79keKF4ZKKOKBaq6icBfBbAb4vIDX4PFJH7ReSAiBw4dco5bSXJDmmHHZg80TuuU1Tae3bFriTGE2fOD2PFjoOZH0nGMPMUCK/w+HGQ1fKOpChU9W3j8ySAvwfwSwBOiMgMADA+T7ocu0VVu1S1a+rU6gnvSW2JK+BdNVqbS3h9wxK8+OXPpHI94k2cdimrLSAukh7B2RvuqJEBqpHVdRWhFYWITBKRy83/AfwagB8CeALAvcZu9wJ4PKqQpPakEYOoVCyMuk7c9gNSW6J4BbkRhzHbi1WWbIs/v2pX4g4dWXWIiDKimA7gn0XkEIB/AbBLVZ8CsAHAIhE5CmCR8Z3knHJnKxbObIntfJuXzcPmZfPQ2lyCoDKSWH/n6DnxLPuVk+AkMX2ZtAHYXD3f3rMLF8axDaIaoY3ZqvoTAHMdtv8UwM1RhCLZZNt918eyKnvhzJYRhVDNWOqW0J7kj8YJDTh3If6wJUmvbM7y+oa0YKwnEoi15Q68uv4WvL5hSajjZ02bhG33Xe97/3sCTj8tX9CG1zcswfTLG4OKVhM2L5tXaxE8mRDjzE4SSgJIfk1I2PwgYfBKp1tLsikVyQVBlYUA2LPyxkDH+J1+EkMec/9F1/1coOvUiiyH0sgLUdaEZM3L6LIqWRxrBRUFSY3XQo5CqjF5YmHMudPsBY5n8jIvH7bBz5qX0UBG1+FQUZDQBHk5Gwvh5zCqhX5I2pV28sRCrIZ8k1nTJgHI/vRTHvjyd8I1+FnzMspq9jsqChKaIKu1H7prjN+Db772+TmuvyXtQrtwZgte/PJnsO2+62NVFtMvbxyZhit3tkZSpOMJQfCcIUC+VsR7kfYCQr9QUZDQ+HV3XL6gLdJcfLmzFZuXzRtl6GuQynnDuNCWig2jXHObS0XHF2H5grZRhvcwysLJDXjzsnnY/8CiUfs9dNdc11hB5jFhlGJrc2lk5JIHrmwu4Zt1PMLK6tQT81GQ0FzZXPJcZdtq5BKIw2Bb7mz1fZ5qU2Lr75wT6HxWtt13vWeMJDt+3YCtcZCseRisx5U7W0cUox8ZrM4GQWS2Eue02PIFbZ62I3PBZZiYUHHEfMoCaUVACAoVBQnNTddO9Xzxn+v5dIrSXKLalFhankZBG9kgymtSYwFnzruvcraPfESAoEtfNi+bF2tZmUrOXIcjAJoaCzh7fniMYjTLwm+irAdvc0+Xmiduujab4YyoKEhonnnZPZhjaw17RmkHMLQzpamINbdel6hCWndHh2c4CftalXvme/fmnUhC/rXljkDThX5GcFEUmt8sh2mxff+xTEYkoI2ChMarQa5lz8hr+J50bCAA6PvTX0t81OJ1fqc7XFvuCGTjSDp6b5xEKessKQmgNnlC/EBFQULj1SB7jTaSxiuAYdKxgdI0HLuN2tyey9pyh6/psMkTC3UTvbeWI988QUVBQuM1aqj19I8bcTQMXpnMgq48j0L34tko2Vby2iPw2jE9yOxeWK9vWDLyVy9KAog3KvKUpuK4jXhMGwUJjdeooZbeG27GbEE8DUNWpiv8eEq5HcfQIRXKna2xhA4vFmTELrVt/7HAjgMmWXVlpqIgofFyXUwjf4UbbqMZxfiLrVTvjX4aUyJOMc16+/pdFXQYxwFg9CLMrEFFQUJTEHGd869l4+W2viOu+Wi30OcZXVSbe7zq2aaEF+e5TSV5Kei15Y5AimJCg+DrS+dmWuFTUZDQeBmGk84R4EX34tlYtfPwqGxq1ebug+B21xmZkRp33D3/KseG15rXJCnCuqq6LS4MG02g1tCYTULj1UMPEgcqbsqdrVh/Z4dn9rwouLnYpuF6W4+Yrr1m+RZExoRXyRpuMudRSQAcUZAIdC+e7WoI9Bt6ISmSnLt3G0kl7XpbzwRdqBeEhTNbHFd/Rw0CmaTMacMRBQlNludUk8RtJEWf/HziFOxx4cyWTI9Y0oYjCkICkrQNhKQPlYI3VBQkEvXoARR2/QIheYWKgkSicUIDzl246Lh9PFPv6xdIdbzWWuQNKgoSCScl4bWdkHqgt69/1PRk/8AgVu08DCCftr3x3e0jhJAasHH3kVE2LAAYHBquqdt4FKgoSCTcMouNl4xjhITBLYxMVoNlViOyohCRgoj0ich3je8tIrJHRI4an1Oii0myyoO3XYeiLZxqsUHGTcYxQsLgFhQzq6lOqxHHiOL3APzY8r0HwF5VnQVgr/GdjFPKna3YuHTuqFXQGzMet4aQpAkTAj7LRDJmi8hHASwBsA7ASmPz7QBuNP7fCuBZAH8c5Tok29ADiJDRjDcX6qheT5sB/BGAyy3bpqvqcQBQ1eMiMs3pQBG5H8D9ANDWNj6TfRBC6pfx1IEKPfUkIp8DcFJVXwhzvKpuUdUuVe2aOrV2+ZUJIYR4E2VEsRDAbSJyC4DLAEwWkYcBnBCRGcZoYgaAk3EISgghpDaEHlGo6ipV/aiqtgP4IoCnVXU5gCcA3Gvsdi+AxyNLSQghpGYksY5iA4BFInIUwCLjOyGEkJwSSwgPVX0WFe8mqOpPAdwcx3kJIYTUHtEMJFsRkVMA3jC+fgTAv9dQnLBQ7nSh3OlCudPFr9wfU9XEvYEyoSisiMgBVe2qtRxBodzpQrnThXKnS9bkZqwnQgghnlBREEII8SSLimJLrQUICeVOF8qdLpQ7XTIld+ZsFIQQQrJFFkcUhBBCMgQVBSGEEG9U1fMPwFUAnkEl58RLAH7P2N4CYA+Ao8bnFGP7Fcb+7wP4c9u5lgF40TjPQx7XXAfgTQDv27avBPAj4xx7UfEhdjp+IiqhRM4CGATwrxa5hwG8B+AcKnGoMi83gJsAHLbIPQzgnqzLbfz2Z4Zs54zzZKm8bzDK9SKAtzC6fu8FMATgDLJXvx3lBvAxAAct9eTHeZA7B++lW3ln/b28AcAPAFwAcJftt68B+KHxt8xNhpH9q+4AzADwSeP/y1FpBD4O4CEAPcb2HgBfM/6fBOCXAfymtYCMgjsGYKrxfSuAm12uucC4rr2AbgLQZPz/WwB2uBz/3wD8LYBPohKH6tsWuc/nVO6HDHlbUGmQv5EDuX8TwOsA/sSQ8y0A38yQ3O0APg3guwDuwuj6/XcA/sb4LWv1xE3uuQC+Ycj7IQDvAPifOZA76++ll9xZfi/bAcxB5d28y7J9CSqdnwmGnAcATHY6h/lXdepJVY+r6g+M/99DpZfSikqCoq3GblsBlI19zqjqPwP4wHaqawD8q6qeMr7/A4DPu1xznxo5LWzbn1HVs8bXfQA+6iL27QD+lyH3YwB+xSL3hJzKbZb3XQC+B+BzOZD7k6hUxL9W1TMA/gmV3lQm5FbV11X1aRgrYG31uxOVURKQsXriIfc0VOrFVlRGeWcALM6B3Jl+L6vIndn30pD7RVRGQlY+DuAfVfWC8V4eAvAZp3OYBLJRiEg7Ki/QftgSFKFSSb14BcC1ItIuIhNQqQhXBbm+jS+h8mCcaEVlyAZVvYDKC/OLhtwC4Dsisg/A/BzJbZb3FwH8dU7kfhLAFAA/E5GPoNJDas6Q3KOw128Ap4FM1u9R2OT+OQC7UXke61HpwXqRFbmz/F6OwqUdzOJ76cYhAJ8VkSbjvbypmgy+gwKKyIdQmVJYoarvikggyVT1HRH5LQA7UNFw/w8V7RoYEVkOoAuVnqvjLja5fw7AfYbc76pql4hcA+BpVFGWGZIbRn6PDlQaAk8yIneviAwZ1z4F4HkAd2RIbiuXIT/124pdblXVOSJyJYBeWJ5NxuXO8nvpJXeW30s3Gb4vIp/C6PfygtcxvkYUIlJEpXC2qepOY/MJo4DMgqqaoEhVv6Oq81X1egBHABwVkYKIHDT+vuJDll8F8ACA21T1nLFtnXkOY7e3AFxlyL0TFaPk/zV++zcjsdJPUOkRvJ8TuU8A+C8A/h6VgGF5Ke9jAD6rqosAlGD00jMi98juAP4QtvqNyrxzFuu3p9xG/X4bwE9QGd3lQe4sv5decmf5vfSSYZ2qzjPeS0HFKcnzAM8/4yR/C2CzbftGjDY+PWT7/T9jrLV/mvE5BRXvjF+ocm27EacTwKsAZlU57rcB/G9D7icBPGK57iZDXjM6419mXW5LeR9DZZiYl/IuAPgfhrxzAPwbgI1ZkdtSv18B8F2H+r0Fl4zZmSlvN7lRmav+piHvFFR6i3+VA7kz/V76qCeZfC8t+/8NRhuzCwCuMP6fg4rn0wTPc/i4yC8DUFRcsQ4af7egMve5FxVNtBdAi+WY11HpOb6PSm/z48b27ai4df0IwBc9rvmQcZzpjvagsf0fUNHgphxPuBx/GSrDV0XFE+FHxv5/YPxvurP9KCdy3wJgHiqGsTyV9+2o9JjOoOI2uz9jcn8KlR6gojL0HrSU9/OoeOJcNMr9rhzI/QAqLpdW99g8lHfW30uvepLl9/JTxnFnAPwUwEuW99W8/j4A87x0gKoyhAchhBBvuDKbEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhCRUEIIcQTKgpCCCGe/H9DmsqiQBIg1AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from apd.aggregation.query import with_database, get_data\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "async def plot():\n", + " points = [(dp.collected_at, dp.data) async for dp in get_data(sensor_name=\"RelativeHumidity\")]\n", + " x, y = zip(*points)\n", + " plt.plot_date(x, y, \"o\", xdate=True)\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " await plot()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nO2de5wU1ZX4v3eaAQbUGZHXgOBoQsQX8pgoRFeTEDUKyMQH6C/+Vo0/XROzwbg+cEUZIsTnGtk1a1Y3UbLJqmgMChOTuGRN1kTMAhpMJEZFfM3wiDqjwgDzuL8/qmqmu6equp7dVdPn+/n0p7tv1+P0rap77j333HOU1hpBEARBcKKi1AIIgiAIyUYUhSAIguCKKApBEATBFVEUgiAIgiuiKARBEARXBpRaAIDhw4frurq6UoshCIKQKjZs2PBXrfWIuM+TCEVRV1fH+vXrSy2GIAhCqlBKvVmM84jpSRAEQXBFFIUgCILgiigKQRAEwRVRFIIgCIIroigEQRAEVwp6PSmlfgDMBnZorY82y4YBjwB1wFZgntb6A/O364FLgC7gG1rrX8QiuSAUkaYtTdzy/C207WsLdZyqTBUA7V3tANQMqmHhcQuZddisnvMs37icbbu2MXroaBZMXdDzmxAffuo9/16oGVTDaXWn8Zt3fsO2Xds4YOAB7Ova13ONvZB/HyQNVSh6rFLqJOBj4IdZiuJ24H2t9a1KqYXAgVrr65RSRwIPAccBY4D/Aj6lte5yO0d9fb0W91ghqTRtaWLRs4vo1J2xHL+yopKbT7gZgMbfNbKna0/Pb4Mzg2n8TGNiG5D+QNOWJs/1Hue9YN0Hfq61UmqD1ro+cmHyKGh60lr/Bng/r3gusML8vAJoyCp/WGu9V2v9BvAahtIQhNSyfOPy2JQEQEd3B8s3Lmf5xuU5jRXAnq49LN+4PLZzC/iq9zjvBes+SCJBF9yN0lq3AGitW5RSI83yscC6rO3eMcv6oJS6DLgMYPz48QHFEIT42bZrW0nPUYzzlzNO9WtXHve1SOq1jnoyW9mU2dq2tNb3aa3rtdb1I0bEvgJdEAIzeujoopzD6TzFOH8546fe474WSb3WQRXFdqVULYD5vsMsfwcYl7XdwUBzcPEEofQsmLqAASq+aDeVFZUsmLqABVMXMDgzOOe3wZnBLJi6ILZzC/iq9zjvBes+SCJB//GTwIXAreb7E1nl/6mUugtjMnsC8PuwQgpCKbEmF4vh9QSI11ORserXS73b3Qvi9QQopR4CPgsMB7YDi4FVwEpgPPAWcK7W+n1z+xuArwCdwJVa66cKCSFeT4IgCP4pltdTwRGF1vp8h59mOmy/DFgWRihBEAQhOcjKbEEQBMEVURSCIAiCK6IoBEEQBFdEUQiCIAiuiKIQBEEQXBFFIQiCILgiikIQBEFwRRSFIAiC4IooCkEQBMEVURSCIAiCK6IoBEEQBFdEUQiCIAiuiKIQBEEQXBFFIQiCILgiikIQBEFwJb78jkLZ07SlyTEr3JABQ7hpxk2eM3o1bWmKLfObm5wW2RnI/Mpibd+yq4UKVUG37qZ6YLXvLGheqFSVdOiOHLmzs6+NHjqaQ/Y/hN9v/z3dupsKVcG5nzqXRdMXRSqHF/LrvdRZ3uzug/zr7ifLodP/ifNejouCGe6KgWS46380bWli0bOL6NSdjttkVIZlJy4r+JA0bWmi8XeN7Ona01M2ODOYxs80hn7AvMhpUVlRyVkTzuKJ157wLIud7Elk/uHzi6osnOq9sqKSm0+4uegNp9t9YF33n/zlJ57uk/x9s/9P1PdysTLciaIQYuHUx06lZVdLwe1qh9byy3N+GehYXvYthFc5LawRgVdZ/B6/VFSoCv7wt38o2vnc6iWK6xqlPOB83b2Q/X+ivpeLpShkjkKIhW27tkW2ndM2Xs8R9vzZODUWccpYDII2gkFxq5dS1Fmhc4apn+xjp/U+EUUhxMLooaMj285pG6/nCHv+bCqU/SMTp4zFwOl/xYVbvZSizgqdM0z9ZB87rfeJKAohFhZMXcAA5e4rkVEZFkxd4OlYgzODc8oGZwZ72tfLsQvJaVFZUcm5nzrXlyx2sieRcz91blHP51TvlRWVkVzXqOSB3uvu9T7J3zf7/8R5L8eJeD0JsWBNzEXh9WRtE4enSCE5LbI9WKaMnOJZlmzZxeupF7t6L6XXk9N9kH/dw3o9xXkvx4lMZguCIKQUmcwWBEEQEoEoCkEQBMGVUIpCKbVAKfVHpdSflFJXmmXDlFJPK6VeNd8PjEZUQRAEoRQEVhRKqaOBS4HjgGOB2UqpCcBCYK3WegKw1vwuCIIgpJQwI4ojgHVa691a607g18CXgLnACnObFUBDOBEFQRCEUhJGUfwROEkpdZBSaghwBjAOGKW1bgEw30fa7ayUukwptV4ptX7nzp0hxBAEQRDiJLCi0FpvBm4DngZ+DvwB8BwxS2t9n9a6XmtdP2LEiKBiCIIgCDETajJba/19rfVUrfVJwPvAq8B2pVQtgPm+I7yYgiAIQqkI6/U00nwfD5wFPAQ8CVxobnIh8ESYcwiCIAilJWwIj58opQ4COoArtNYfKKVuBVYqpS4B3gKKG0RG6BckLamNIJQzoRSF1vpvbMreA2aGOa5Q3tglkWnd28qNv70RQJSFIBQZWZktJI7lG5fbZhLr6O5g+cblJZBIEMobiR4rFJXs/NFBaNnVwnE/Os5X1NWaQTVMPHAi67at87RttokrKhPY0nVLefQvj/aJ2OqWPzn7twMGHoBSira9bbbbLfndkp46USiOH308m9/f3CcSqhVJ1qn+FYp5h88rejRZp3zVp9Wdxs/f+HlJTJBL1y3lkVcesf2tdmhtKqK+RoVEjxWKRlryR1t5joFI8jo7NTjTR0/nxZ0v2uZPBlzrKnu76//nejTRPsfFzKHtJ285FCevtpuSsIgqb3sYJGe20O9IS/5oMHqMQCR5nY/94bG+UmkWOrff7YJQzBzaQe6LuPNqe71mpcjvnU2xFIWYnoRIaNrSxI3P3piTNMfCSlKU9LzA2RSS1c9/8ZtvOcp840EpZg7tIP8j7nvJ6/9P0z0dBpnMFkLTtKWJhf+z0FZJAOzu3M0Nz95A9aDqIksWnNFDR0eW19lvvuVC5/a7XRCKmUM7yH+IO8e01/+f9FzXUSGKQgiNF0+kLt2F1joV+aOtPMdR5XV2ykc9ffR0x/zJhXJtZ2+nUJ5l8Uoxc2j7yVsOxcmr7eX/pyHXdVSIohBC43X4/eG+D2n8TGOPbd2JSlXZ87kqU0VVpsrxuxdqBtUwffR0z9taE6WzDpvF0hOXUj2w2vZ3ryyavoj5h8/v6aVWqArmHz6f+0+7v6c+FIraobU9k6OzDpuV81v1wGpqBtXYbnfL39ySUycKxfTR03PktmSff/h81/pXqKJOZAO29Qy98oat/yBY18yJ7GtQDshkthAar5ORpZ74E4T+huTMFlKDl+F3RmXKZpguCP0NURRCaGYdNotb/+bWHJNRNkMGDGHZicvKZpguCP0NcY8VIsGylwuC0P+QEYUgCILgiigKQRAEwRVRFIIgCIIroigEQRAEV0RRCIIgCK6IohAEQRBcEfdYIRHkx/+3Is6Ky60glB4ZUQglxy5JjBVxtmlLU4mkEgTBQhSFUHIe/cujtuVduktyZAtCAhDTk1B08nNBuyWJyY5Mm593+rhRx+Xkha7KVDFowKCevNInHXxSTr5lKG7O5SThlpvb+j2K3OB+5ci/RnZ5sq3IuPl50sv1WpYCiR4rFBW/ebOtiLNechh7pRg5l5OEXZ1n53t2ylkddT3FkTO93K5lPhI9VuiXLN+43HNDkR1x1sk8FYSO7o6yMmnZ1fmerj09dbB84/I+SgKiryc/194r5XYtS0UoRaGU+qZS6k9KqT8qpR5SSg1WSg1TSj2tlHrVfD8wKmGF9OM1yVF+xNmocziXS65jcP6vVrlbXURZT3HVeTldy1IRWFEopcYC3wDqtdZHAxngPGAhsFZrPQFYa34XBMBbjuHaobU8/+Xnc8wJUedwLpdcx+D8X63yqHKDB5UjqccVegn79A0AqpRSA4AhQDMwF1hh/r4CaAh5DqEf4TUXdD5R5nAuRs7lJGFX59n1HFVu8CByhKXcrmWpCKwotNbvAncCbwEtQJvW+pfAKK11i7lNCzAyCkGF/oHXXND52OWdzs8LXZWpyjlWfr5lKF7O5SSRX+f59RxVbvAgctjlxM4vc8qTXo7XslQE9noy5x5+AswHWoFHgceAe7TWNVnbfaC17jNPoZS6DLgMYPz48dPefPPNQHIIgiCUK2nwevoC8IbWeqfWugN4HPgMsF0pVQtgvu+w21lrfZ/Wul5rXT9ixIgQYgiCIAhxEkZRvAVMV0oNUUopYCawGXgSuNDc5kLgiXAiCoIgCKUk8MpsrfXzSqnHgI1AJ/ACcB+wH7BSKXUJhjKJbhZSEARBKDqhQnhorRcDi/OK92KMLgRBEIR+gKzMFgRBEFwRRSEIgiC4IopCEARBcEUUhSAIguCKKApBEATBFVEUgiAIgiuiKARBEARXRFEIgiAIroiiEIQyoWlLE6c+diqTVkzi1MdOpWlLU6lFciVt8vZnQq3MFgQhHeTnq27Z1ULj7xoBEhmmO23y9ndkRCEIZUChvNlJI23y9ndEUQhCGVAob3bSSJu8/R1RFIJQBhTKm5000iZvf0cUhSCUAYXyZieNtMnb35HJbEEoA6wJ4OUbl7Nt1zZGDx3NgqkLEjsxnDZ5+zuBc2ZHSX19vV6/fn2pxRAEQUgVaciZLQiCIJQBoigEQRAEV2SOIpsVZ8Ibv+79fujJcOGTpZNHEAQhAciIwiJfSYDx/Z7jSyOPIAhCQiifEUXjgUB3VkEFNH7Q+zVfSVj89c+waSVMmhendIIgCImlPEYUjdXkKgmM743V3vZffWXUEgmCIKSG/q8oVpzp/vudEwsfo2NXNLIIgiCkkP6tKDatdDYpWXzcUhxZBEEQUkr/VhRPfN3bdreMj1cOQRCEFBNYUSilDldKvZj1+lApdaVSaphS6mml1Kvm+4FRCuyLrr3ettvbFq8cgiAIKSawotBav6K1nqy1ngxMA3YDPwUWAmu11hOAteZ3QRAEIaVEZXqaCbyutX4TmAusMMtXAA0RnaO0bFpZagnKi00r4TtHQ2ON8S71LwglIypFcR7wkPl5lNa6BcB8H2m3g1LqMqXUeqXU+p07d0YkRh7DPXg0eWXtt6I7luDOPcfD45dC29uANt4fv1SUhSCUiNCKQik1EDgTeNTPflrr+7TW9Vrr+hEjRoQVw54o3Vrb3onuWEEph172ijONRY52/PTviitLUMrhOgnhWXMVLBlmrOdaMsz4nlCiWJl9OrBRa73d/L5dKVWrtW5RStUCOyI4RzCibNyrSjcnDxieWdmT7m1vw+pvGJ/706pxN3dmnb9oMoHcc3yuorNGQ9C/rpMQjvz7RHfB+u8bn2ffVRqZXIjC9HQ+vWYngCeBC83PFwJPRHCOYGQGRnes9hJ6Rt050d4zq6O9f5nEbk55mku30dDjl8KSA2V0IRgjB6f7xFIWCSPUiEIpNQQ4Bci2CdwKrFRKXQK8BZwb5hyB2bTSu3usJ7oiPJYNdpFrp1xgKAK3RYFtb8crV7FYcxV0tZdainAUWtypu2V0ISRWGbgRSlForXcDB+WVvYfhBVVaVl1Ragns2bTSaPzb3oHqg2HmTfDCj+wj1xZqeABQsYhZFLLrgtJnWiwaT1whiqJcSfA8hBv9N3ps9z733wcOhX1FjuG0aSU8fhk9jWLb27nfA5HSBnbTSmOOpSPlo4ggdBW4N4X+R/6z70gyO37pDuERxrtk9t1QWZVblv89n7DeCU9cQd8bJaUNfVjWfsu/klCZeGQpBSntWZY9QTyVNq00TY4envX6r4QWMQ7Sqyg2rYRVX8v1tV/1NaO80MWrHGoM/ef8M1SPA5TxPuefC5/X8k7IPodXhSU9yV6CzK3omOeJikkK7dRlzz3HG9fNug/t2gI7nrrO+zkS6PEEaTY9PXUddHfklnV3GOXt77vvO+du433SvL62YmuysRDrf2Bc1J7egom4Q3pE4Xs0VT0uFkkEoSCFPJXcGvhC7ZHFII/5cUpAehWFU+V7uShuDXjlUI8L9cxGzkmxPH5p7nnELTKPACa3YYdFK0K+L/vwifD154MdK47rm+8JlxkEc+8xPuc7REinJF42PBhsv0L5cLK5/q1g5ygC6TU9xYU12oiC7MYjzvUO5WLvfuPX0TXI+UoCjO9ecqTb2am9jkSzaax2vnZ2Ody79hrnsQtvksZQ+TePNuog+5XU/1HI7Gl3He853qPnIkYHNcEorUs/mVpfX6/Xr1/vbyevaUzzqRgAN73nvs3NI72twTj0ZO83Qtw0pixUetDrZ3mFFOpJ27khZ2/rdn63ulxzVTzzC/WX5JovgtRPpgpu3BadTHFy82j3dTPFvJ/d3LRVJSz+q9EhKKQssmXON0kX4qz7A40KlVIbtNb1vnf0SfmNKBruLbyNNbwvRLGUxFn3F+c8qUDT05Ne/Q37EYblepvT674smpFXXJPQXiZFC9HVnp7RZaHFlY1FCpmTf6/kozsMpV13or/j+pnAPvTkxJsOy0tR1F/i7YIk5aJVjwvc00g0fuy2bjiFMLF1vdVGY+zFdOVmEoqTKJRQv/Gm6g4x6vSBVzdtL53CbOXmdQK7/hK48Elv25aQ9CqKIHGcEup6ZkumCr75x14lcejJpZUnKtZcVfih87News7N1i0YpNeeXhQ9/CBYtnrBIG6lHWlU6G7/sqakTUqvohi4n7/t/ZpvosxlEYR8W3OhXkdaQlt76fF+6Xv+jpn/Xysqnbf12tODaHrnwycavUYhl0yBxa3ZxKm0qw+O9njWPVM1rPC2XrZJCOlVFH4eePBvvvn686VRFoOqg03k/fTvcm3yTvb7OIhaSfm9VvmjhELhW/zIt2R472cvHlH5fP15o9co80y5zPWwuDWb9d837q+o7+mZN0V7PDBGQV7ap9Nvi/7cMZHedRQqE/9K3a8/bzR8cUdojcLDIz9Xg2W/j3t+w8+Cw7h6hX47DU9dZ8z/eLmuusOYU9n5F/covnbsV9v72aqLIG60/ZFA7uLaqL9VXzWcUtI8dzd8YqrkT++IoljhHOLocWTjxx7v19c63/4ah3nq8csdym0axPU/KHw8q3HNDAouUyHa3/d3Xd/4tX8lAXB13jqNSfOKM7JIg+dTmLmB7k7j/mqsNlzZw9zHpcjnEmZhZ4lIr6LwQxgb8aR58dqYp13kfVu/iwGzs/LZuYxGYp5yUdiN1b0KadNKCq7G3q+2t3H16qJshxeTYdw9e6dR4qR58a8RCDq3kr8ALs5EUlHNDXTtNcyuQe/jUuRzSZmSgHJRFGE9Cywbc9Sxhg492Z9sYYaqdm6AHe29PTO7VxQ9U8sUVahhrr8ktwce5r/uKl32XYZPTMbixzt9zq81Hth3bUNXe3zKYsKp0R1LdwcfGfSniMQxkl5FUewLPGme4a7a2GY0avnndzMLnXV/lqJRvesj4vafzrbdB+k5FdNFNKwyt+Rcc5X/OYuoOOt+773FgQFCNmSqeu+/QnzckjsR78aaqwCHfORxZR189Zf25UFDWQQ1ZbmZsMUBoYf0TmZPu8jbEDsOs9Hsu+wbtjVXmXZ408QycKiR98LqHRd78kpF0A8oFBlzv9pg9vt8Nq0sWD9tW6vYsWl/OndnGDCki5GTPqK6rr1XzvHTS7fgzApd75XZd/s3f1ku07Pv8vY/dYcxUmj8wH27UtSZU8PesTvY8YKaspycGqrH9UaXvmW8fc56S5GUgYNCehXF7LvgvdcKL94q5oIWJwVSKvI9oYLi1ohnIrqFCnhotW2touX3NehuI9ZT5+4BtPy+BqBXWZTsgVX+54/8eEFlz91YeI5y3G2Yoaz911xlRELVXcao2M8cWZRUH+zQQB9smKX8Kq+gTiczb+qbabGyKvd4haK6vrWuH62Itye9pidIxdL3fsHqK51/i2plq+1xetNCbt94QI+SsNDdiu0bD4jm/EGpGgZn3RdstGhNbNuZJRvbel/5SgL8KSZrxLdkuH3inVIw8yb7DJMzbzI6W3bmXTeCjtadEpj5Gh3e5d1ykVJzVnpHFBYVA50XWJX7itiKAGFO7OjYZQy/7XpWTj1Dv9iZDuq/0tOQde2z79M4lQdGVRomGy8Mqobr3gh/TrsEWl72WfVVw1XUC0HDgsTVsFn/1ynCrzU6L0Y4kyD1n8/su4x5F6dnoXpcqvOGpHtEAdDwXWwTkvv1KEoLfpb9d++LbiXr3jb7XAF2PUO/5A/1Lfz01KJgULURUtrrY1HqRDMN90YzD+VGnA1bj4NIa25cs2y8/L+kdAidRkln3e/8/1JC+hXFpHnG0L/YHkWl4vTb/AVEfOo6Yy1DFOxt66t4Js1zdJhxpWIAnob6s++CzEBUpf1JnMp9s19tb8Pf+EHuqup8goZZiZpJ8+BL/9a/U8ROu7jwNknpEEZhxkoo6U1cVM5sWuktN3gcVI8zekd2GeLcqKwK/tA01tC2dTDNz1eDzurbqG7GHN/WO5ntRn5iIC/kZ5k79ORkd0CiNtNY17rUuCU5GlRd+pFdCSlW4iJRFGnGLl1mUAYOhX1evGjw7hJbPS6avM5mvK2W/z2A1i1DDe9jBTWH7aL20x8W3r8/5vSww29WtUIkqd7unNj3nitzJQEpURRKqRrg34GjMR7frwCvAI8AdcBWYJ7W2tWRWxRFCMKm5sxe63HbodGOUqIyz2xaSdvyf6Bl3RB0V7a1VFPziQLKwkplWS5ENapI+uhJANKTCnU58HOt9UTgWGAzsBBYq7WeAKw1vwtxEdY+WzWst9d4+m3JDGkwaR47XhmbpyQAFK2vD6Vtq8tkejkpiSgRJSFkEVhRKKUOAE4Cvg+gtd6ntW4F5gIrzM1WAA1hhRQKEMbzJXv9wqR5/pMGOTEoWnt553tOowZFywaHtRR+kuP0F6KY2E6KF5GQGMKMKA4DdgIPKKVeUEr9u1JqKDBKa90CYL6PtNtZKXWZUmq9Umr9zp07Q4ghhFqBnb9+IapQ2BHbjlW1s+LRHTa3caaqb5bAcmDmTdi6i3umIjleREJiCLPgbgAwFfh7rfXzSqnl+DAzaa3vA+4DY44ihByC1yQ8dtitX5g0L9ykaByuo/vcstapZLirJoFJ84KHlChX5SoUJMyI4h3gHa21FS7zMQzFsV0pVQtgvpcw5nOZECa5UtReLTE12Hp3wGBx5YgVFt9tZb5dqBBREq60rV7Nq5+fyeYjjuTVz8+kbfXqUotUNAKPKLTW25RSbyulDtdavwLMBF42XxcCt5rvT0QiqeBMUtJsJiiOTcuSJbSufBS6uiCToWbeudQuXlxqsYpHFGEphB7aVq+m5cab0Hv2ANDZ3EzLjUYHrXrOnFKKVhTCej39PfBjpdQmYDLwbQwFcYpS6lXgFPO7EDeT5vmf1I4qFhTE7nOvamo8b9uyZAmtDz1sKAmAri5aH3qYliVLYpJO6O/s+M7dPUrCQu/Zw47v+IwanFJCKQqt9Yta63qt9SStdYPW+gOt9Xta65la6wnme4myyJQhXsIdZNPw3WjOO6g69t5r7Q3/6PibGjIk53vrykdtt3MqF4RCdLbYLzDtbG4usiSlIf2xnoReZt/lLV80GC6Qbo27n/UURVgd6za87zN/YY0k8nEqF4QCZFy87sphrkIURX/j68+bfvBZLpKZgWbU2aygiYVcIL2upyimz71ycPt0KheEiHBzQC8H81P681EIfYki05412sgOPlgxEHSnsW7Dyo5WTJ97p3AzAcPQvDZ7Nh2vvd7zvfKTn+CTa9YEOpbQv9Ftzt585WB+EkUhOOPRcyZxHkaZjL2ZKWvkka8kADpee53XZs8WZSH0YUBtrbNCyCQw7E3EiOlJCEUiPYyc5iK07rEn5ysJC6dyobwZ+U2XdMBlMPclikIIRevDj/gqLwYDxoxx/K0c7MlC9FTPmeM8FyYjCkEoQMTzBkHJ9jxx6/05uTkKQkGc7mkZUQhCfPgOieDi3ZQ9UqieM4eMwwK9AbUuKU4FQbBFFIVQEtpWr6b5uoXGBKHWdDY303zdQndl4TJKyZ9o3P/0L9put9/JJ3mSLShbL76YzROP6HltvdjnIkhBSCCiKITYcGtwW25aDN153und3Ua5A25zD/mjjY9//RvbzaxypxEHQMuybzufx4WtF19M+3Prcsran1snykJIPaIohHC4TOS5TRzr9nZf5VDA8yRvtOHkymiVj3IJCaJbW53P40K+kihUXoiWJUvYfNTRxujkqKPLOlaV1EVpEUUhhKJm3rmOvwVZiKSJKCRCAQ+VYkf89Puf3NyOyy3cdWJcsH1GBuhPyk0UhRCK2sWLXSeZ/TZkCnhryc19yq0wz15oW706Vg+VIA2AX7fc1ocedixvufGmnLmdlhtv6tfKwq0uiooPD7/EKLeIEEUhhKfAJLNdQ5Yf8TWbzMcf9SmzC/PshFuj7CdcuR1BG4AowzyUc7jrtNDfIhiLohBCU6jxtWvIapc04melhZ/1D27bhr3hXRuAqirnHWMOXFgO8YZSRT+LYCyKQgjP3r0FN8luyDZ/+jiar7nWdftFq17K+e5l/cNrs2cX3LbLDO4W2FTj1gC4jXiKsACxP5ufUoeLk0car5MoCiE0bp5K2bQsWcLmiUfAR4ZpyamPrYEfr8vNcTHym1eiBg92PX7Ha6+z9eKLXXvXyswrEIepJqrFfEHt2EHdehPPAIfYpU7lCcDNySONZkJRFELR8Dr5qDCURd3Cpp7X17YNp/bmbxXct5ArqnXDxxHKw9V91wdBJ2mDuvUWk0CeQJ2d/soTgFv05DSGkRFFISSSplVX8+AvlvLZtzcA8NvX3+dr24a7ToJ7octsTJMSyqOcXF37mydQNnbXzWnuTrlky0sqoiiExKEwbsxR7a1cu+EhfrbqappWXU3lM09Tu6Qx3MFN23Gh3v/miUf4bsD8mhTaVq+m+drrchv9cwIAABT/SURBVMOYXHudr2OkiTg8gYqpWP2u5ndqXHVra+o6BaIohFDEfbMrehXHtRseKjgJXhCzN+tlwZ3f3q5fk0LzTYv7TnIXOepuUXFxBNg88QheOelk25/jCLcSBL+r+btcTIFpW/8iikIIRTEn5iJxMPXppupnvsC3OcujE4Bfss1Zf54+g79Mn5EK01b3jh22yiKOcCtB8L2av0CeCr1nT2ocEJLrNiAklkWrXuKh59+mS2uampvT1dsI22N3SbM68ptXFhzxbP70cT1eX3GweeIROd91ayuWtJ3NzTRfbzS6xQ5h4pXuHTv6lFXPmRN+JFkk2lavZsd37jZGlx7uNd3aStvq1Ym9HhaiKARffPn+5/jt6+/3fN9ZVcOo9uR729iilKeHefOxkxlw0EHuD7+X48SsJDzR2UnzTYsT3TBlN7YDamuN+SSnaxXzQkY/WGFmvEYQsGi+5lp2b9xY2jzzBQjVGVRKbVVKvaSUelEptd4sG6aUelop9ar5fmA0ogqlZtUL7+YoCYAHjzydPZlK1/20+YqSKI5Xc958b+fau7dnwtmNgmaEUisJi/b2RJug3r3m2pwJ/reuvT72TIqrXniXE279FYcubOKEW3/Fqhfe9X0MP2Fm8km691cUVoPPaa0na63rze8LgbVa6wnAWvO70A+48pEX+5Q9M24ayyef49hwa+CMhjtpzwyMVBYFdONfYWRv77UH57XPmoZ1DBbN1xX/sVQDvd0D+fU9QHc5X+cI8lWveuFdrn/8Jd5tbUcD77a2c/3jL/lWFmHDqCQ5DlQc5uW5wArz8wqgIYZzCEXG7aH5wpv/W3D/f5l8duSjigrgw8oq3wrj/sX/2vO55vzzIpNH4+6hkyjyk0YVgdplS6EiWJPjqKwjiJ10xy9eob0j9zjtHV3c8YtX/B0orBkswXGgwioKDfxSKbVBKXWZWTZKa90CYL6PDHkOIQE4PTRLn/0eU//6WsFe9zPjpvk6n1dz1QEd7cxquNPzcRUw4cn/AODbV93FK6t+3qNowioyDXQWaVQRhdLNTtma//rz1GmRm6eq58xhzG23umcq9EnYaMBgjCD8lDvSj12bwyqKE7TWU4HTgSuUUoUTEpsopS5TSq1XSq3fuXNnSDGEuGl2eGjclIQGNg7/ZM53N3TWq+PAg7h92vmBzEuFGNneyssTj6DhZ/czqr2VCnrDhoQ5l7XmIw0UvBa7d9N8zbWJnsuA4vv3h40MUIik1neoetZaN5vvO4CfAscB25VStQDme19/N2Of+7TW9Vrr+hEjRoQRQygCY2pcQmjbYCmJRSde3lO2pm6G61zGh5lBXHrRdznyz5s59rlneWbcNM+jhR2D9vfcyCvsG/WwjU4QJRFUMRU6V6HjepU1SrdUyyso25YfthPgtqgtCvJNrqEjAxQgqesqAj8bSqmhSqn9rc/AqcAfgSeBC83NLgSeCCukUHquOe1w3/tkKwmAeyefzeq6GXQplTN6sJTKxWfdmnOeC6aP93yui05f3KMssl9+icNDy+1caTpuWOy8gqyRXGAimMx24/rHN/V83nzU0bGv50iqQ0SYdRSjgJ8qYwJnAPCfWuufK6X+F1iplLoEeAtwjrcrpIaGKWN5dP1bfdxj39hvJId+vCOnh6rNcjvunXw2904+m7vnTwaMuY/m1nbG1FRxy2mH0zBlbM+2SxuO4Ud54cbzyW5kLjo914vpZ6uuLvi/8tlZVcODR57ONRseSpUpKZ8uIEOy5HcKcWJdw0CyxjwB3N5hTPrnL2QsNwIrCq31FuBYm/L3gJlhhBKSyY8vnZGzKhtgaNe+Pg+4MsudOOETw3oUQrZisENhr4zAaGDW1M3w9R/c0BjrQp4ZN41nxk3rmai35IgSaxT1yQ+bqd63u+C2fs7/YWUV5826mTWrru6Zf0kCrfsNo+aj9/qU76yqYf89H1GljUbfr7xxr2xO8vqGYpGq6AtC6VnacAyv33IGW2+dBcAIh1XZTuUTRg7lx5d6b9y/PH08V3zhWt7Yb2Qfs9LquhncO/nsnO0vmD6erbfOYtT+/tdtaHK9sxadeDln+PCo8suiEy/niGWNBWXyQzfwvUmGR/rskLJriNS082+fOrXP4sw9mUoePPJ0zp57W+C6jntNSND8IIFwS6dbQiSEhxCYrbfO4plfLLUN4bGzqq/bogKevuqzvs5hmZ+u+IK7bVgBb5jKC+CUo0azY9D+jNz7kaceqgbumHa+L9miwEsco43DP1nQBVkDnaqCu6bOz1F2Hw4cUnDE4sacM2/jtcB752LJddHLTzGivbXHzJctr0ah/KrHEGtCVr3wLp99e4OjTEuf/V7gYwchM2hQUc/nFRlRCKGwC+Fh9RLzyW7Io+SAQZk+x/7RurccJ7jzmyFrdOK01mPj8E9GOjHuNodjx6ITL3edZLeOd+bc2/v8h+8dMzfwZHG3UnRGPDP+zLhpXHTaImY13MlFpy3qI++auumBVtsHdSv9zb/+BwtefKzHTXpUeyvXmDlQfrbq6h7TY7GwcronDVEUQmBWvfBuTwiP7VU1dAPbq2pYPvmcPg3AwExwS/mgAe636aYlX3T87aLTF3NGw505r9unnZ8j7+3Tzu9jwsrm9plXMGTG9ECyf5gZ1EdJvbHfSK74wrVMGDkUgDF33F7wOLMa7rRdU2K5FTuNuPwudMw+btMhwf5zGO6dfLbvOQoFvHlbMLPVmeufYHBXR06ZNa9TyJkhDg+5pGa/E9OTEBhrtbY1+evG7ef08XvwzG1nT7KNMwX+XGgtvMhrccInhplzKl9k68UXs/u5db4asvPmLLMtH7X/wB4zXPWcOTT/4w3Q0dFnu/as0drshjv56os/Ydab66jQmm6laDpkuquSC0Ncx3VDgeeovtkM+Kvtcq2COM2lecUyb4K/SXgnB4Wk9tyTKpeQApxWa+dzwfTxBb2b3GiYMpa750+mqrL3dq1QxnGXNhzj+3hVlRXcPX8yY2uqUEBNVaXtg3DB9PE5E+91DzzAkBn+TCN3z5+cc66xNVXcPX8yz99wSs52Y769rE8cpE4U90w+p2efC6aP597JZzN77h2c0XAns+feUbAxH1tTxa6jpzqawJLGmJoqxtx+m+/9dtjMiXnho8rgk8ea3hGr3/2cSKrpSUYUQmDG1FS5xsMZW1PFNXlrI4LSMGWs5+MUivp5y1mTfB0vm7oHHuBlDz71GvjroP09uwFb7p3ZeRjGfPNKHshy+2yYMrZHMdYtbCoow9aeeZvP86MT5+TY2/dVDGBgd2fBY1jrXaLggunjXdfFVFVmuOa0w6k262rHd+5mX3NzQRNQF4on6+fy2SBCBQzkl++a7XUS3jI9Du3aZ+sE4jtLYpEQRSEE5nMTR7g++L9d+PkiStNLoaifUSguJ6ymYseg/Wl98Ke+9q2eM8fzeoChAzPs2ue82OyETwzL+X7j31zex5pTaEHi3fMnR1pXlpKz1uEoYMjADLv3dTEmr1Nh1cWX73+Oa/7pEgai+yzqBEPh3T3lXBq+9n8DybR/CI+w7NHcmrrpzNn6nCfz0xVfuJbPvr2BBS8+ljM/sidTyftfupAJgSWKD1EUQmD++8/OwRzH+owNFSVeTWJx8eX/s5zFc46KVSEt+9IxjvM2QJ+1Kl8+vm9v3sl92PICuy4G+Zc2HOPLXPjjS2dQ9/odrnMzYRSaqqjw7V6rMeoum3snn82crc952hecXYX/p/kgXvclTXEQRSEExq1B/tzE0gV6dDOJZSJIndmtFBmHyVYFvHDTqaHPUYiGKWMdFYXdP7Qa52xlcdHpi3nwqSU9k7EWq+tm8OPj53FdZNKGxwr9YkcYhawKKAm7q7xj0P59wsVY2xbykspeq2PrVJHEiSNEUQghcGuQ3UYbcXPNaYc7NqJdEeQMaDrE3syggYGf/ETo43tlrEP9O0X6XdpwDPWHDMupG7sG74BBGVeX4/7EgDFjCmam8zpZvaZuhqP5qdBanaQjikIIjNscRanNP05EYRL7tylGz3Z2XqPwxn4jmbVmTejje+Wa0w7n+sdfysnOZk0IO2H1vrODMUblcJBGRn7zysgiwj78mfP42xmH8N7Dj1CR1SHZYbMCPW2IohAC4zZq8Ju/IkqcJrMVwcKl59OtnU0h8aw9tydoox/U46s/4iWEihcqM4rFc46idsqpfGZPfeBkd9YizKQhikIIjJtrbBQNclCcRjOaeD2eSkG5N/pxLwRTZLsZ97LqhXcdFbSd44AXshdhJg1RFEJgMko52vxL2Xg5zZ1E5YnllGwnKeG8+xtu99ldEa7zsKPm/PNsy90UtJc8KtkMqFDcee6xiVb4oiiEwLhNDK964d2S3fhBbPd+cAvOJ0TP+cePs214s/OaxEXt4r6T/V5wWlwYNJpAqZEQHkJg3HrohRa9xUnDlLHcctYxOWEzbjnrmMgaFScX2yhcb4W+LG04hgumj++p34xSfcKrJA0nmdOoJACUjsBdMCz19fV6/fr1pRZD8MmqF951XfRlZ9vtD7iFz+iv/7k/s/Xii2l/bl2f8qoZ06l74IESSOQdpdQGrXV93OeREYUQmCTbVOPEaSRVytXoQnDqHniAqrww8mlQEsVE5igEwSdxz4EIxUeUgjuiKIRQlKMHkCxaE8oNURRCKAYOqGBvZ994OQMLZKVLO+W+fkEojNtai7QhikIIhZ2ScCsXhHJg1Qvv5pgn321t5/rHXwLSObfXv7t9giAIJeCOX7ySM4cF0N7RVVK38TCIohBCUVNV6atcEMoBpzAySQ2WWYjQikIplVFKvaCUWmN+H6aUelop9ar5fmB4MYWk0njmUVRW5E5dV1YoGs88qkQSCULpcQqKWcpgmWGIYkSxANic9X0hsFZrPQFYa34X+ikNU8Zyx7nH5qyCviPhcWsEIW6uOe1wqiozOWVpdqEONZmtlDoYI7LyMuAqs3gu9OQ5XwE8A4lKliVEjHgACUIu/c2FOqzX093AtUB2AtlRWusWAK11i1JqpN2OSqnLgMsAxo8fH1IMQRCEZNGfOlCBTU9KqdnADq31hiD7a63v01rXa63rR4woXX5lQRAEwZ0wI4oTgDOVUmcAg4EDlFI/ArYrpWrN0UQtsCMKQQVBEITSEHhEobW+Xmt9sNa6DjgP+JXW+gLgSeBCc7MLgSdCSykIgiCUjDjWUdwKnKKUehU4xfwuCIIgpJRIQnhorZ/B8G5Ca/0eMDOK4wqCIAilJxGJi5RSO4E3za/Dgb+WUJygiNzFReQuLiJ3cfEq9yFa69i9gRKhKLJRSq0vRsamqBG5i4vIXVxE7uKSNLkl1pMgCILgiigKQRAEwZUkKor7Si1AQETu4iJyFxeRu7gkSu7EzVEIgiAIySKJIwpBEAQhQYiiEARBENzRWru+gHHAf2PknPgTsMAsHwY8Dbxqvh9olh9kbv8xcE/eseYDm8zj3O5yzmXA28DHeeVXAS+bx1iL4UNst/8gjFAiu4F24C9ZcncBHwF7MeJQJV5u4HPAS1lydwFfTrrc5m/LTdn2msdJUn2fZNZrN/AOuff3WqAD2EXy7m9buYFDgBez7pPNaZA7Bc+lU30n/bk8CdgIdALn5P12G/BH8zXfSYae7QtuALXAVPPz/hiNwJHA7cBCs3whcJv5eShwInB5dgWZFfcWMML8vgKY6XDO6eZ58yvoc8AQ8/NXgUcc9v8a8ENgKkYcqp9kyb0vpXLfbso7DKNB/qcUyH05sBX4R1POd4DvJEjuOuDzwBrgHHLv74eBB83fknafOMl9LPBPprz7AR8A302B3El/Lt3kTvJzWQdMwng2z8kqn4XR+RlgyrkeOMDuGNaroOlJa92itd5ofv4Io5cyFiNB0QpzsxVAg7nNLq31s8CevEMdBvxFa73T/P5fwNkO51ynzZwWeeX/rbXebX5dBxzsIPZc4F5T7seAk7PkHpBSua36Pgd4CpidArmnYtyID2itdwG/wehNJUJurfVWrfWvMFfA5t3fUzBGSZCw+8RF7pEY98UKjFHeLuC0FMid6OeygNyJfS5NuTdhjISyORL4tda603wu/wB80e4YFr7mKJRSdRgP0PPkJSjCuEndeA2YqJSqU0oNwLgRxvk5fx6XYFwYO8ZiDNnQWndiPDDTTLkVsFoptQ44PkVyW/V9HvBASuT+GXAg0KaUGo7RQ6pJkNw55N/fwPuQyPs7hzy5RwO/wLget2D0YN1IitxJfi5zcGgHk/hcOvEH4HSl1BDzufxcIRk8BwVUSu2HYVK4Umv9oVLKl2Ra6w+UUl8FHsHQcL/D0K6+UUpdANRj9FxtN8mTezRwqSn3h1rreqXUYcCvKKAsEyQ3Zn6PYzAaAlcSIvcqpVSHee6dwHPAlxIkdzaDSc/9nU2+3FprPUkpNQZYRda1SbjcSX4u3eRO8nPpJMMvlVKfJve57HTbx9OIQilViVE5P9ZaP24WbzcryKqoggmKtNartdbHa61nAK8AryqlMkqpF83XtzzI8gXgBuBMrfVes2yZdQxzs3eAcabcj2NMSv6H+ds2M7HSFowewccpkXs78P+An2IEDEtLfb8FnK61PgWowuylJ0Tuns2Bq8m7vzHszkm8v13lNu/vZmALxuguDXIn+bl0kzvJz6WbDMu01pPN51JhOCW57uD6Mg/yQ+DuvPI7yJ18uj3v94voO9s/0nw/EMM741MFzp0/iTMFeB2YUGC/K4DvmXL/DFiZdd67THmt6IzfT7rcWfX9FsYwMS31nQH+xZR3ErANuCMpcmfd368Ba2zu7/voncxOTH07yY1hq/6OKe+BGL3FH6RA7kQ/lx7uk0Q+l1nbP0juZHYGOMj8PAnD82mA6zE8nOREQGO4Yr1ovs7AsH2uxdBEa4FhWftsxeg5fozR2zzSLH8Iw63rZeA8l3Pebu5nuaM1muX/haHBLTmedNh/MMbwVWN4Irxsbv8P5mfLne3llMh9BjAZY2IsTfU9F6PHtAvDbfb5hMn9aYweoMYYerdn1fdzGJ443Wa9n5MCuW/AcLnMdo9NQ30n/bl0u0+S/Fx+2txvF/Ae8Kes59U6/zpgspsO0FpLCA9BEATBHVmZLQiCILgiikIQBEFwRRSFIAiC4IooCkEQBMEVURSCIAiCK6IoBEEQBFdEUQiCIAiu/H8KgxuCBe2ajgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import collections\n", + "\n", + "from apd.aggregation.query import with_database, get_data\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "async def plot():\n", + " legends = collections.defaultdict(list)\n", + " async for dp in get_data(sensor_name=\"RelativeHumidity\"):\n", + " legends[dp.deployment_id].append((dp.collected_at, dp.data))\n", + "\n", + " for deployment_id, points in legends.items():\n", + " x, y = zip(*points)\n", + " plt.plot_date(x, y, \"o\", xdate=True)\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " await plot()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nO2de5hU1ZXof6u7C+juIA3ysJuHRHQQFVDTRtQEJ2HUSQAlGRW8yTfEyeBkXtHkXhJUFFBUlEnUezPf3Gsmk5A7+QxqDLEhGXVIJsmMaXPxBWpLUIOK3QpRQYVG+rHvH+dUU1V9zqnzrDrVtX7f11917TqPVfucOmvvtdZeS4wxKIqiKIobNeUWQFEURUk3qigURVEUT1RRKIqiKJ6oolAURVE8UUWhKIqieFJXbgEAxo4da6ZOnVpuMRRFUSqKJ5544g/GmHFJnycVimLq1Kls27at3GIoiqJUFCLySinOo6YnRVEUxRNVFIqiKIonqigURVEUT1RRKIqiKJ6oolAURVE8KRr1JCL/AiwA9hpjTrPbxgAbganAbuByY8w79mfXAl8E+oAvG2MeTkRyRSkhm556ndUPPcf+7p5Ix2nIWGOzQz39AIxuyLBq4aksOmPiwHnWP7yTzv3dtDTVs/yi6QOfKckRpN8L74XRDRnmz2rmFy/so3N/N6PqMxzp7Ru4xn4ovA/ShhTLHisic4H3ge/nKIo7gLeNMetEZAUw2hjzdRE5BbgX+CjQAvw78EfGmD6vc7S2thoNj1XSyqanXmf5/c/Q059MpuVMrbD+0tkAXPvgDrp7jv5c6jO13PbZmal9gAwFNj31uu9+T/JeyN4HQa61iDxhjGmNXZgCipqejDG/At4uaL4E2GD/vwFYlNP+Q2PMB8aY3wMvYikNRalY1j+8MzElAdDTZ1j/8E7WP7wz72EF0N3Tx/qHdyZ2boVA/Z7kvZC9D9JI2AV3E4wxXQDGmC4RGW+3TwTac7bbY7cNQkSuAq4CmDJlSkgxFCV5Ovd3l/UcpTh/NePWv07tSV+LtF7ruJ3Z4tDmqH6NMfcYY1qNMa3jxiW+Al1RQtPSVF+Sc7idpxTnr2aC9HvS1yKt1zqsonhTRJoB7Ne9dvseYHLOdpOAzvDiKUr5WX7RdDI1TmOgeMjUCssvms7yi6ZTn6nN+6w+U8vyi6Yndm6FQP2e5L2QvQ/SSFhF8RCw1P5/KfCTnPYlIjJcRD4MnAT8NpqIilJeFp0xkfWXzaapPhP5WA2ZmoHIJ7CiXbIOzEVnTOS2z85kYlM9AkxsqldHdgkI0u9O98LohgyfnzNlYP+m+kzeNfZD7n2QRvxEPd0L/DEwFngTWAVsAu4DpgCvApcZY962t78e+AugF7jGGPOzYkJo1JOiKEpwShX1VNSZbYy5wuWjeS7b3wLcEkUoRVEUJT3oymxFURTFE1UUiqIoiieqKBRFURRPVFEoiqIonqiiUBRFUTxRRaEoiqJ4oopCURRF8UQVhaIoiuKJKgpFURTFE1UUiqIoiieqKBRFURRPVFEoiqIonqiiUBRFUTxRRaEoiqJ4oopCURRF8aRoPQpFCcump15n9UPPsb+7Z9BnjcNqueUz/qu3bXrqddY/vJPO/d20NNWz/KLpsVUD85Izy+iGDKsWnsqiMyYGliW7/ev7u6kVoc8YmuozHOnt41BPfyzfAayC9Zla4Ujf0WJkoxsyzJ/VzC9e2Dcg79Rj62l/+R36jKFWhCvOnszaRTNjk8Mvhf2e28flwOk+KLzuxe6TXNy+T5L3clIUrXBXCrTC3dBj01Ovs/z+Z+jpd7+/amuEb1xWvPzjpqde59oHd9Dd0zfQVp+pjaVMqB85s2RqhcVnTeZHT7zuWxYn2dPI5+dMKamycOv3TK2UpSSo132Qve4bf/uar/ukcN/c7xP3vVyqCndqelISYf3DO4v+qPr6Desf3unrWIUP2u6ePl/7+jm23x9/T5/h3sdfCySLk+xp5N7HXyvp+dz6vafP3z1RKnng6HUPqiSy++Z+nyTv5SRRRaEkQuf+7ti2c9vG7zminj+XPpcZeJIylgK375UUXv1Sjj4rds4o/ZN77Eq9T1RRKInQ0lQf23Zu2/g9R9Tz51IrEug4cchYCty+V1J49Us5+qzYOaP0T+6xK/U+UUWhJMLyi6aTqfH+cdXWCMsvmu7rWPWZ2ry2+kytr339HLuYnFkytZbjN4gsTrKnkSvOnlzS87n1e6bW3z1RKnng6HX3e58U7pv7fZK8l5NEFYWSCIvOmMj6y2bTVJ9x/LxxWK0vR3b2WLd9diYTm+oRYGJTfSyObD9yZhndkGH9pbNZu2hmIFlyZYejI9Om+gwNmXh/fgIMq81/mI1uyPD5OVPy5D1v2pgBOWpFSu7IBud+z/ZxOSKA3O6D3Ovu5z5x2jf3+yR5LyeJRj0piqJUKBr1pCiKoqQCVRSKoiiKJ5EUhYhcLSLPishzInKN3TZGRB4VkV326+h4RFUURVHKQWhFISKnAcuAjwKzgQUichKwAthqjDkJ2Gq/VxRFUSqUKDOKGUC7MeaQMaYX+CXwGeASYIO9zQZgUTQRFUVRlHISRVE8C8wVkWNFpAH4NDAZmGCM6QKwX8c77SwiV4nINhHZtm/fvghiKIqiKEkSWlEYYzqA24FHgX8DngF6A+x/jzGm1RjTOm7cuLBiKIqiKAkTyZltjPmOMeZMY8xc4G1gF/CmiDQD2K97o4upKIqilIuoUU/j7dcpwGeBe4GHgKX2JkuBn0Q5h6IoilJeohYu+pGIHAv0AH9rjHlHRNYB94nIF4FXgcuiCqlUH2kraqMo1UwkRWGM+bhD21vAvCjHVaobpyIy7xzqYfkDzwCoslCUEqMrs5XUkbaiNopS7WjNbKWk5NaPFqBQHTi15fL6/m5OueFngWpNj27IcErzSP7rpbd9bZtr4orLBLZy0w7uffy1QXWqveon5342qj6DCOw/1OO43bUPbqfb7pMagXNOGMNzne8Nqv+crZ/t1v81Av/t7NJnk3WrVz1/VjObn+kqiwly5aYd/KD9Vcf7cWKF1LqOC80eq5SMSqkfna1zDMRS13nlph38a/urg9rPmzaGJ1894Fg/GfDsq9ztvrrxafyrTX+UMvV4kLrlUJq62m7XLJe46rZHoVTZY1VRKCXjvHU/5/WUl3zMkq0f4SbvxKZ6/mvFJ30da9q1Pw1USrPYuYNuF4ZaEV667dOxH9eJMPdFkP4Pg99rlrQcxSiVolDTkxIL1qjwaZwsQo3DarnlMzNTXxc4l2KyBvkuQestx1lvPCylrKEd5nskfS/5/f6VdE9HQZ3ZSmQ2PfU612x0VhIAB4/08d/vf4amBv/VwcpNS1N9bHWdg9ZbLnbuoNuFoZQ1tMN8h6RrTPv9/mmvdR0XqiiUyPiJROrrNxhDRdSPztY5jquus1s96vOmjXGtn1ys1nbudkn8iEtZQztI3XIoTV1tP9+/Empdx4UqCiUyfqffB7p78upHOz0aCus+N2Rq8mpLF773w+iGDOdNG+N726yjNK66zmsXzeTzc6YMqlP9g2XnuNZPLqyt3FSfYXRDxnG7by4+nfqcPqkRSwk51X/O1s8G5/6vkdI6ssG7XvXn50wpS13t7DVzU1+VUus6LtSZrUTGrzOy3I4/RRlqaM1spWLwM/2urUneXKAoSjKoolAis+iMidy1+HTcLEKNw2r5xmXJmwsURUkGDY9VYiFrL1cUZeihMwpFURTFE1UUiqIoiieqKBRFURRPVFEoiqIonqiiUBRFUTxRRaEoiqJ4ouGxSiooLBKTzTirIbeKUn5UUShlx6lITDbjLGiNbEUpN2p6UsrOvY+/5tje1681shUlDeiMQik5hbWgvYrE5GamLaw7PeeE0Xl1oRsyNQzP1A7Ulf7EyePy6i1DaWsupwmv2tzZz+OoDR5UjsJr5FQnO5stuLBOerVey3Kg2WOVkhK0bnY246yfGsZ+KUXN5TTh1Oe59Z7dalbH3U9J1EyvtmtZiGaPVYYk6x/e6ftBkZtx1s08FYaevuoyaTn1eXdP30AfrH945yAlAfH3U5Br75dqu5blIpKiEJGviMhzIvKsiNwrIiNEZIyIPCoiu+zX0XEJq1Q+foscFWacjbuGc7XUOgb375pt9+qLOPspqT6vpmtZLkIrChGZCHwZaDXGnAbUAkuAFcBWY8xJwFb7vaIA/moMT2yq57mb/jTPnBB3DedqqXUM7t812x5XbfCwcqT1uMpRopqe6oB6EakDGoBO4BJgg/35BmBRxHMoQwi/taALibOGcylqLqcJpz7P7ee4aoOHkSMq1XYty0VoRWGMeR34B+BVoAs4YIx5BJhgjOmyt+kCxschqDI08FsLuhCnutOFdaEbMjV5xyqstwylq7mcJgr7vLCf46oNHkYOp5rYhW1uddKr8VqWi9BRT7bv4UfAYmA/cD/wAPAtY0xTznbvGGMG+SlE5CrgKoApU6Z85JVXXgklh6IoSrVSCVFPfwL83hizzxjTAzwInAu8KSLNAPbrXqedjTH3GGNajTGt48aNiyCGoiiKkiRRFMWrwBwRaRARAeYBHcBDwFJ7m6XAT6KJqCiKopST0CuzjTGPi8gDwJNAL/AUcA/wIeA+EfkiljK5LA5BFUVRlPIQKYWHMWYVsKqg+QOs2YWiKIoyBNCV2YqiKIonqigURVEUT1RRKIqiKJ6oolAURVE8UUWhKIqieKKKQlEURfFEFYWiKIriiSoKRVEUxROtma0oVUKxutlpo9LkHcqoolCUKqCwXvXr+7u59sEdAKl8+FaavEMdNT0pShVQrG522qg0eYc6qigUpQooVjc7bVSavEMdVRSKUgUUq5udNipN3qGOKgpFqQKK1c1OG5Um71BHndmKUgVkHcCVEkVUafIOdULXzI6T1tZWs23btnKLoSiKUlFUQs1sRVEUpQpQRaEoiqJ4oj6KHHZfeSXdv2kfeF9/zhymfve7ZZRIURSl/OiMwqZQSQB0/6adFxcsKJNEiqIo6aBqZhQdM06BXMe9CDM6nh94W6gksvS8+BIH2toYtXBh0iIqiqKkkqqYUXScPCNfSQAYY7X7oPPGVQlIpSiKUhkMeUWx+8orPT/fOff84gfp1rQBiqJUL0NaURxoa3M1KWXp37u3RNIoiqJUJkNaUXRdv9LXdh1nfTRhSRRFUSqX0IpCRKaLyNM5f++KyDUiMkZEHhWRXfbr6DgFDoI5csTfhu+9l6wgiqIoFUxoRWGM2WmMOd0YczrwEeAQ8GNgBbDVGHMSsNV+ryiKolQocZme5gEvGWNeAS4BNtjtG4BFMZ2jrBxoayu3CFXFgbY2dn1yHh0zTmHXJ+dp/ytKGYlLUSwB7rX/n2CM6QKwX8c77SAiV4nINhHZtm/fvpjEyCdz4rTYjrX3zrtiO5bizYsLFtC5/Gv0dnaCMfR2dtK5/GuqLBSlTERWFCIyDLgYuD/IfsaYe4wxrcaY1nHjxkUVw/kch+ILa+3t6ortWGGphlH27iuvpOfFlxw/6/x6ZVgxq+E6KdHpWrOGjlNPo+PkGXScehpda9aUWyRX4liZ/SngSWPMm/b7N0Wk2RjTJSLNQNniT+N8uMuoUbEdKwwdZ300z+ne29lJ1w03AgypVeOe4cz9/aUTJCQvLliQp+iysyEYWtdJiUbhfUJfH/vv/SEAzavSt8A3DtPTFRw1OwE8BCy1/18K/CSGc4RCMpnYjmXefTe2YwVl59zzHSOzzOHDQ8ok1jH79HKLEAnP2dDyr9Fxyqk6u1DoWrPG9T7JKou0EWlGISINwAXAX+U0rwPuE5EvAq8Cl0U5R1gOtLX5D4/1Q8KjWafMtaM/+1n23nmX56LA3s7OROUqFV1r1sAHH5RbjEgUW9xJf7/OLpTUKgMvIikKY8wh4NiCtrewoqDKSud115dbBEcOtLWx98676O3qoq65mfFfuYZ3HnzQMXNt0QcPgEhCkiZPbl8MysU1hOm87npVFFVKmv0QXgzd7LE9PZ4fS0MD5tChEgljcaCtjc6vfX3godjb2Zn3PhQV+oA90NZG1w03Yg4fLrcopafIvakMPQ60tQ3MJj1J6cCvolN4RIkuaV6zGhkxIq+t8H0hUaMTOq+73jGLbTWy9867giuJ2tpkhCkDlTqyrHbCRCr5VhJA05LFUUVMhIpVFAfa2ui89rr8WPtrr7NGqsUuXn09oxYupPnmm6hraQER6lpaaL75puIntqMTcs/hW2HpSHKAUL6Vvr74BSkTlWinrnZeXLDAum7Z+9DhWeBE1y23+j5HGiOeoIIVRdctt0Jvb35jby9dt9xa9EfYcpN1YUctXMhJP9/KjI7nOennWwPZjff/cCNwdLSgi8MCEmKKXdfSkoAgilKcKJFKZv9+fycZOTKoWCWjYn0Ubp3v56J4KoT6en/1J2yTkduUsnP51/LOo4qjgBAmt8zxU2IVoTCWPXPiNE7cvDnUsZK4voWRcDJsGM23rAUYFBChzvFk2X9foPXEAxSrh5PLjP/321DnKAUVO6NIiuxsIw5yHx5JrneoFnt392/aY3sgD1rwhFX21k+NdCc7tV8bdC4dJ89wvXZONdzNkSN0Lv+a4wy2ElPld8w+3erD3L+0fo8iZk+n6/jiggX+IhfBGqCmGDEpcKa2traabdu2BdrHbxnTQdTVMePZHZ6bvDBrtq81GPXnzPF/IyTMjBc6yi1CIEJfP9tkVWwk7RSGnLut1/m9+rJrzZpE/AtNVyzJs0+H6p/hw5nxzNMxSpUcHbNP91w3U8r72TNMu7aWGc89S8eppxVVFrkyB3FgA7SsvyPUrFBEnjDGtAbeMSBVN6Noua24Yyk7vS9GqZREy/o7SnKeisCYgZF01w03Os4wsqG3haPuOGZeSTmh/ThFi/LBB5UzuyyyuLJjxiklEaPwXhlEXx8dJ8+g/qNnBTrumwEc2PXnzEm96bCqFEXTFUt8XZC0XLS6lpbQI400E8Ru64VbChO30Nv99/7Ql+nKyySUJHEooSETTWVM+FlnAPyGafsZFOYqtz6fDuymK5Yw9bvf9bVtOalcRREij1NaQ88cGT48LxKr/pw5ZRYoHrrWrCn+o6vxf1s6hdl6JYP0G6oYywg/BFlbvWKRtNKONSu0MYFlrZRnUsUqitrGxkDbBzXfxFnLIgyFtuZio45KSW3tZ8Tbcvu6QMcc9F3r3IP5fIcqEs/oPHPiNJquWBL5OEOO4cN9b5qk0q5rbo71eNl7Rpqaim7rZ5u0ULGKwu/ULktQ882JmzeXR1mMHBnKkdf59RV5Nnk3+30SxK2kgl6rQbOEIgsbg8jXceppA//7iYgq5MTNm2letUr9TAW0rL050Pb77/0hHTNOif2eHv+Va2I9HlizID8Dkubrr4v93ElRsYqiFOkcTty8uSSLvGa80HH0L2wsdUF221KlIA+y4DCpUWGQWQJYisX3de3rY/eVV7Jz7vmuC67cqBl/tLjjqIULVVnkEOreNMYKBT5tZmpnzH7JnDitonyPlasoSpTOIYkRRx4BFJ4EjLUutL8mYZ5yqzrnFBqYXc3uRfbhKsOGRRPMA7N/f6Dr2v2bds9U725M/9Uv896XSllUQuRTJN9Ab6+lME6ewQuzZke6j8tRzyXKws5yUbmKIgBRbMSjFi5M1MbcdLn/ch3NARcD5lblcwoZjcU85VGno+PkGQMK6UBbW9HV2DXjxw88XP2GKDvhx2QYZoFcENzMh6MWLkx8jUBY38qgBXAJFpKKyzdgjhyh8+srQt/H5ajnUmlKAqpEUUSNLMjamOM2Q9WfMyeQbEGnqrkX1ykM0Bw+PDAyc/qLY2SaNUUVezA3XbEkbwQeZVre/4e3Qu8blcyJ01Kx+HHn3PMDbd8x45TBaxs++CAxZfGh8+fGd7D+/vAzgyGUkThJKldRlPgCDyQQfKHDmmEUnt/DLNSy/o6jisbOVNuy/o7E46dzHf5hRk6lDBGNqsyzcnatWRM40CEuWtbf4Xu0KA0NwU8wfPjR+68I/Xv35jnivehas8Z9tpdQ1cH3f/kr5w9CprIIbcryMGGrT+koFaso/JpskjAbNa9axYznns13Qj/1pHWunKyo0tAwsGAuSqba0MRQBKWYGSPXYRuFqCaw7GK6ci04Ezt1vV+a16wOfI5syLRvpdrX52uFczn6zPXBHrKQVVhTlpuVoK6l5aiZ0CWra3YAWA1UbPbY5lWr+GD37qKLt0q5oKV51ap0LaCJKY/XgbY214dgTV0dcVQT33vnXZGVZ9J+B1dEAvuPst/Vj8y5vpuBU9bXY3xmOd459/yB/bvWrLEyofb1QW1tIB9ZnNQ1NzvOcuuam/nQ+XMDK6+wQSfjv3LNoEqLMmJE3vGKRSIeevLJobMi3oWKnVFA8UVoSjx03uiu/OJa2ep4nJSWhcyltqmJljtuD6XksiNWJ7Nk7my1UElAsMCGbMRWx6mnORbeKQfjv3KNY4XJ8V+5huZVq5zNux6EHWS4FTALNDvMyuuDSp2BVGz22CwdM2e5LrAqzMg5FAiU3iGTYcaO7cH3c2LkSMeR1a5PzoslcqSupYWTfr41ry2pTK2e1Nb6D7126ZNS0XHazMHFu2ImyVxjxTL8gv/7Ng0BBF6/hbqWlkTqhmj2WJ+03HqLY3vQiKJKoTbIsv+envgWJr33nmOtAKeRYVAKp/pZgozUYmHkSGY896zvmUy5C8203HZroLxYYUjSl+bLb+fjWqQlRYrbLKll/R2l80smRMUriuwiplJHFJWLCddfhwRIiNh1y63s+uS8eE7+3nuDFM+ohQsJNSutq/M11W9etSpUAsig1IwfP/Dgn9HxvLeTPmSalbgZtXAhLbevG9IlYpuWLC66TVoGhHGYsdJKxZueqpEDbW103XJr4NQVcZA1ETlViPNCRowI/aPpmHFKZMd8GDNkYZW5+nPmpHoAEnfWWSdzYDnwLHJUZvNfuSmV6UkVRQXjVC4zLNLQgDl0yNe2NePH+0ppUdfSEktd56h+kKFY08OJoFXVipGmfts59/zB91yVKwmoEEUhIk3APwOnAQb4C2AnsBGYCuwGLjfGvON1HFUU4Ynq8JWGBprXrGbUwoX8bs45sS5Wi8s8c6Ctja7rr8ccyQ1aMIAPX4JdyrJaiGtWkfbZk2JRKc7su4F/M8acDMwGOoAVwFZjzEnAVvu9khBR7bO1TU0Do8YJ11+XuHM0DKMWLqT5Y73UNfQCZuDV+vOmmpREnKiSUHIJveBORI4B5gJfADDGHAGOiMglwB/bm20A/gP4ehQhlSKIhLbh565fCLIIrCguq1nDMmp8J6Muzv+OHT88zv7PZWYRoDjOUKGupSVyuHJaooiU9BBl+HgCsA/4rog8JSL/LCKNwARjTBeA/eoYPiIiV4nINhHZtm/fvghiKFEcvYWpD+JKhR277bh+9OBzLHmDpmkHcZxZDB8+qEpgNRA5Lb5IaqKIlPQQRVHUAWcC/2SMOQM4SAAzkzHmHmNMqzGmddy4cRHEUKKERzo9WKI6MBMJHe1zjnppPutdZizpys+79UJHVSoJiJgWf/hwZnQ8H69AypAgiqLYA+wxxjxuv38AS3G8KSLNAPZr8IovSiCijCLjjmpJbH3BkYPJHHcIMlB61WP9iVOqkGpVrr7Zfh/ceRqsbrJet99XbolKRmgfhTHmDRF5TUSmG2N2AvOA5+2/pcA6+/UnsUiquBKrbyECqcpjs/mr8MT3wPSB1MJHvgALvlluqUpGNmOxEhPb74O2L0OPnYjxwGvWe4BZl5dPrhIRNcTl74EfiMh24HTgViwFcYGI7AIusN8rCTNq4cLgSfRiXPGceMx9/Rj/227+Kmz7jqUkwHrd9h2rXVHCsPWmo0oiS0+31V4FRFIUxpinbT/DLGPMImPMO8aYt4wx84wxJ9mvb8clrOKNn3QHubjlyQrMyJHJj14/dbv7Z8Ma898/8T3n7dzaFaUYB/a4tL9WWjnKRPqC5pXQNK9a5ateNFghkJ4P9wApnkuyOtZrel/ovzAu2V/d2hWlGA5RdwNUga9CFcUQ48TNmwdV2iOTsbLO5iRNLBYC2bLuNl/nK23MvZtpLf11K5QhTBWYnyq2wp3iThyV9rKzjbzkg5mMVf/AmIHqaKWNuXdbLxJyHcm3zoY/vHD0/diT4e8ed99eqV66PbIQVYH5SRWF4orvyJm0RRhJrYuZKWfmUagkwHr/rbNVWSiDGTXJXSGIfzNtpaKmJyUaaYwwcvVFmKP25EIlkcWtXalu5t3o/lkV+L5UUSjR2PYvwdpLwajJ7p9VgT1ZSYBZl4O4PC51RqEoxYjZbxCW3MgTr9GfW5ijohTD9Lu064xCUZIjaEoEtxEd5M8UZl3uvkBv1KTgcipKlaOKQikP2++DH3/JdhAa6/XHX/JWFm4jOhjsaDz1M87bnXShP9nCsuFiWD3q6N+Gi8MfS1FSgioKJTm8Hrht1wyesps+q90NL99D4VqKXY84b5Zt90oJ8rOQ5VM2XAy//2V+2+9/qcpCqXhUUSjR8HLkeTmOe1yywbq1g7fvodAn4hbKmG33SgnSHTLrTKGSKNZejM1fhTVjrJnJmjHVnatK+6KsqKJQovGRL7h/5mMh0pbGBi6c1MKsqZO5cFILWxob4kmJUCxCpdQZP4N+J6+w42pLd52aEOyAmQGGkHJTRaFEY8E38Uyh4fEg29LYwLXjjqUrU4cRoStTx7XjjmXLL64fvHE2zbMftt+XbIRKmAdA0LDcbd9xb2/7cr5vp+3LQ1tZePVFSQkQ4Zca5RYPqiiUGPAIhXV7kA1r5IaxYzAFqdGNCDccM2zwcZzSPLvh9VAOkq7cibAPgDjTPFRxuuuKYYhlMFZFoUSn2MPX6UG24C56XOpnOLYHWf+Q5FoJrwdAptH5MyDxxIVVkG+oohhiGYxVUSjR6XWuZ51H7oPstinw4DLPzde2r81v8LP+4VtnF982m9wtrKnG6wHQc8hrx3DnC8JQNj9VGl5BHhV4nVRRKNHxilTKZfNXLbv+Bwe8txNh486N+W3zboRMvfd+f3jBCkX1Gl1n6wokYaqJazFfWDt22HXEKREAABUoSURBVLDetFPjkrvUrT0NeAV5VKCZUBWFUjoCOh9nbpg58Les61FY+D+L7+Q3FDUJ85Rn+G4Awjppw4b1lpIwgQD9vcHa04BX9uQKTCOjikJJJybfVNP+RrulLArLngYl+zBNSyqPagp1HWKRQHk4XTc3351XtbyUoopCSScODu32N9phwV0Rj2vbjouN/lePCv4AC2pS2H4fPPhX+aGuD/5VsGNUEklEApVSsca1mr/77YobFKiiUKIR4GY/d3ILM6dOHvgLjDFFneDFj2GPZv0suAs62g1qUmi7Bihc7+GRz6rS8QoEWD0K/uFk58+TSLcShqCr+b1MgRW2/kUVhRINn6Pocye38F5trTVTyP0LyOnHO5uMHFd4OxLwnEH8BUHNWX6DAIKSa866/cPWXyWYtt7vclYWSaRbCUPQ1fzF6lT0dFdMAIIqCiUwa9vXMvv7s5m5YSazR8PaMU1F9xlQElEQoU+ERS0T8pq3NDawomCF94pxxzJz6mSWTRhbcJCIYaquP37x58y+bcrRzLJJsHqUNevKmrO637YfprZpa9PfpF9ZFFLqdCtRyFXSftZMdL+d7uthk+L4MiWNLHt4meUrsOkXYeMxI/lpYwOPvdbpuI/76D4EIrw0LH/l9oqxYwYrIft9e3098yY1s3WPwwNIarxTl2e5+Tj40FjbtBShUNNtU4qHBidNf49l8krzw3f7fdZM9cAea5Y270b3a+VVo6TUZNPM+M0gkOXBZfBqe3nrzBchUi+LyG4R2SEiT4vINrttjIg8KiK77NfKc/Erjmx5eUuekhhAhPdqaweN9LOsGHds9NlEoSy5ysfr2CLsratznvV85Epf51o7ajizR8PMqZOYPXWy+wyqmBkhR0kU+muyf26mtVjpOZjqUeyi9pXMtPt75mhY1H6DR+6ueHw6W17ewoUPXMisDbO48IEL2fLyluAHCZJmppCUR3/FoY4/YYw53RjTar9fAWw1xpwEbLXfK0OAFb/2uJQOI32AeZOaY1cSiLBi3LFcOKnFl9kLe9Yz6CHvYwS3dkwTG48ZSb/tU8nOoOZNah68sQ97+bxJzcycOtnZX2Ob1maWQln8+EvJn6OQ2uFFN5l5/CTrPsrpk5eGZVwHIXHUq97y8hZWP7aaroNdGAxdB7tY/djq4MoiahqVFOeBSmLedgmwwf5/A7AogXMoJcbvj+bs4yflOZT31kWwbhoPc47ti9h4zEh/iijnIb928xeOtrd+0XM3x+Pbs5R5k5qZbc8EBpSQR4TOzOMnWf3h5ci3P0tcWZQj59Al3/I0Fc08fpJz37gMQoBYvsfdT97N4b7DeW2H+w5z95N3BztQVDNYivNARfVRGOARETHA/zHG3ANMMMZ0ARhjukRkfFQhlfLj60cjwiH7R551KIfGS0kUnDMQImz8wzZWAsseWEj7+7+HnFDdpv5+Vrz1DvMPHnJwhOcfZ+ChjxXUuvGYkcB7rHSwPpw7ucV/pJe9zazjJ7H9FeeQ27Vjmrj/mJH0Y432Lnv3PVa+vX/QdssmjKW9Pj/1ybQjR9jU+aa3Q31Yo7VmJU5fRvZYW28aNPp2VRI5bGlsYP7BgnxaUbMBA10HHfxXHu2uxGQGSyNRZxTnGWPOBD4F/K2IzPW7o4hcJSLbRGTbvn37IoqhJM0bB98IvlOYEFhjaO7pZd17ffGbrHKY988nW0qiwPSzv7aW68cdy8zjJ1kP2CL+j8L3G48ZyZbGBs48flKe7yFw1JcIRsRRWbmZwwrNcOdObjn6HfJMOcPcTTlZjhy0nKwJ+zK2NDb4UhKIcMPY6EohMlEzAxQjpb6jSIrCGNNpv+4Ffgx8FHhTRJoB7Ne9LvveY4xpNca0jhs3LooYSgk4rvG4eA/oMmNo/lALj/xlB/P/viPe8+VSMBsopC/COg+wnPc9NTWR14wgQnt9PWvHNOWZuNzMYdaMxmLZhLHuysnLlFNI1AWOuWSjguzZRDasmWxfFcEx/XzC6ygGmVyjZgYoRkrXVYRWFCLSKCIjs/8DFwLPAg8BS+3NlgI/iSqkUn6uPvPqeA9oDCP686fqI2pH5J1n8fTF8Z4zl2IPpiizmZhnQoWzh2K0TplYfDZEzGHLfiiICoolGi4GZ7YXax5bk/NmrKfiXNQyIW8WWXTW5kRKEztGmVFMAP5TRJ4BfgtsMcb8G7AOuEBEdgEX2O+VCmf+CfOZc9yc2I637vw7WH3+HTQ3NiMIzY3NrD53NfNPmD+wzco5K2M7X8Xi4tx1Y+bxk/jAzwhdhBVjx0R/sAXhwB6WTRgbPoULDivzE3YAd/fZim31KDA9rtvNm9TsEK3lw8RXIYR2ZhtjXgZmO7S/BcyLIpSSTr590bdZ276W+393P/0RHHdzjpszoBByFYMTgmBKUfQnLkL4ZELv63Z+v8cp2PalYcMGHuAj+/pcF1CGZdnESbRnCP89RejDGrlv6nzzaPv2+5JdQFhkfcNAdF+QaK0KI0XLGpVKYOWclTzz58+wY+kOq8FvdJLNtGOm8e2Lvu17+8unB3sALJ6+mB1LdzB+xHhLtoDylZodZ97Ijt0xlTEN6gtxmqnYf+/V1tpO5kw8sgHtw8L7fQawH755+bySXhNSJN9XMRNaIBOfZznd8qGKQgnNgLLwiSBs+symQPv4NT8Jwo6lOwa2/8Txn7A/iMlfkJTSsUfC6/a9lS6lZiuM06eWoW5Hsb7Oyee1bMLYSOanUCuwcyi63sVeHJo1t3mGXAPUFV+UWA5UUSjRCPAg3r50eyIijKwbOejYG3dujNWpXGsMtYnNUIT5Bw8xsq8vdcqijzIsAguwhqa9vt56+IYMK727/baisjitws86rn3N4nJmagPyupGt6Z4yVFEooQkyGstEMGEMq/G28z72ucdCH9sPI+tG8nTNNJ5+ZU/wB7nH9tOOmWb989l7ACyfQAWYy5Jmxyt7GN7f768f7Ifvll+Hq0PddWTwIsXC4++tq2PW8ZPY0tjAbHt9TJ7jOgi2vK6ktPqdKgolNEFSHNz8sZtDn+em89wfAomG0GI53h/73GOw9CH48Pms+8PbwR7kLg+S8SPGHzXDzbocai1luCOrjOJUFhWkfAQBhG2vvh5gJ+Hu4eFmPr4e8/bixxXjjqU/d31MBD5SkOom7aiiUELjd7X24umLi0Y3eTH/hPms+/g66muPjsQEYfH0xaFCaOtr61n38XUDobmjho2ixuGnsHj64nzH+9KHmD/+LBr8PnSNYd3H1+Wdq7mxmXUfX8fWxVvzt73kHwfWBOx4ZQ/r9r1Fc28vAgP7hFGKzY3NrJPKWdB6XONxAzOsOd3dvhXcG3Xh1lP4Vp8xKIfcYx2pqRmonbJ67JijyiKlpietR6GE5rjG4zzz4TQ3NnP1mVdHUhJZ5p8w3/dxipnEVp27KtDx8lj6EIe+d5qvTTMG32HA+XmQ9jC/7ljmn3VjXtjn/BPmDyjGmRtmFj1/brDBCh/bO7Hu4/Etg1o8fbHlO3JhYMGl3Vff3noTMz2sNLkcN8xHFuGUcrimhuvsvGjz6yLkR0sQVRRKaOZOmuv5w3/k0kdKKM1RipnE4lBcxagxhpvP9yjh6cSsy32vB2ioa+BQ7yHXzwsXRwZej2IM6+beHmtfZZVc7jqchroGunu7Oa7xuPxBhd0Xcx5eRnvXb4qO5q+ec20omZr6+9lfG+PqbmNCzTz6bdMWUz9D8ndncNT0pITmV3t+5fpZc6NDvYYSESqBYRzYvoCm4U3cGvNDtpAbz/Euu1q4ViXoehREEpE/dx3OjqU7ePxzj7N96XYeufQRx/N9+6JvF33wrvv4utCyrnj7AJm4/DdRjyPCda88FI8sMaOKQgmN1wN57iTfiYRjxyuBYU3CpTN37H6NXy/5deKzFq/ji4OLduWclYF8HCPrRhbfKCVE8n+9/z4373uL5p5exBjwG22VEP2kM1W5KgolNF4PZK/ZRtJ4JTCMknpkAK8R7tiTox/fJ26zNrfrsnLOSl8+h5F1IxMPOU4NoyYz/+AhHtnTyfbdr7HjlT1MO3IkXKSYCIvffa9iIsyCoIpCCY3XrKFs5p8ixGEScxqxD7T/3eORj++Xq8+8mhG1I/LaCjPwFpKNICuMwsqagnYs3VE9SgJg3mAT3qbON9mx+zXG9/YGeug3DW9i5Ql/Fqd0qUGd2UpovGYNsdevCICXMzuOdOluTmGTXJ0lR7Iml7ufvJs3Dr4x2CHssV8pHPoVwazLXVOHb93TxaKWCbw0vHhajUxNhhUfXQEnzEc2zAqdyHJgEWbKUEWhhMYrNDb2+hUB8JrNDLUHZLU/9J3Wv8SJVTL2wKD2LS9vcVXQl0+/3DMa0I28RZgpQxWFEpoaqXG1+Zfz4eW2vqOckVhKeLzus1s/fmuyJ2/9omOzl4JeOWdlIEVRJ3Ws/djaVCt89VEoofFyDEfNyhmFMLZ7Jb1c9keXObbn1jVJjAXfDLWbW4RZNg1+7t9Tf/5UqpUEqKJQIuA1Qg+SBypu5p8wn9XnrvasnhcFtxDbpENvq5VsaG+2f2ukZnB6lZThJnOlVm0Uk4JQrtbWVrNt27Zyi6EEZMvLW1jx6xWunwetV1EpeKXPGKrfeUiz4WL4/S8Ht3/4fCsZZIoRkSeMMa1Jn0eHQEpo0j5dTgq3mZT6QCoUOzNwHhWgJEqJOrMVJSBXn3k1qx9bzeG+wwNt6gOpcFQpeKKKQlECEnb9gqJUKqoolEgMqxnGkf4jju1DmWpfv6AUx2utRaWhikKJhJOS8GpXlGpgy8tb8syTXQe7WP3YaqAyfXvqzFYURYmZu5+8O8+HBXC473BZw8ajoIpCicSoYaMCtStKNeCWRiatyTKLEVlRiEitiDwlIpvt92NE5FER2WW/jo4uppJWrj37Wuok34JZJ3Vce3a4imOKMhRwS4pZzmSZUYhjRnE10JHzfgWw1RhzErDVfq8MUeafMJ+1H1ubtwo67XlrFCVphloamUjObBGZBMwHbgG+ajdfAvyx/f8G4D+Ar0c5j5JuNAJIUfIZaiHUUaOe7gK+BuTWTZxgjOkCMMZ0ich4px1F5CrgKoApU6ZEFENRFCVdDKUBVGjTk4gsAPYaY54Is78x5h5jTKsxpnXcuHFhxVAURVESJsqM4jzgYhH5NDACOEZE/hV4U0Sa7dlEM7A3DkEVRVGU8hB6RmGMudYYM8kYMxVYAvzcGPN54CFgqb3ZUuAnkaVUFEVRykYS6yjWAReIyC7gAvu9oiiKUqHEksLDGPMfWNFNGGPeAubFcVxFURSl/KSicJGI7ANesd+OBf5QRnHConKXFpW7tKjcpcWv3McbYxKPBkqFoshFRLaVomJT3KjcpUXlLi0qd2lJm9ya60lRFEXxRBWFoiiK4kkaFcU95RYgJCp3aVG5S4vKXVpSJXfqfBSKoihKukjjjEJRFEVJEaooFEVRFG+MMZ5/wGTgF1g1J54DrrbbxwCPArvs19F2+7H29u8D3yo41mJgu32cOzzOeQvwGvB+QftXgeftY2zFiiF22n84ViqRQ0A38LscufuA94APsPJQpV5u4BPAjhy5+4DPpV1u+7O7bdk+sI+Tpv6ea/drP7CH/Pt7K9ADHCR997ej3MDxwNM590lHJchdAb9Lt/5O++9yLvAk0AtcWvDZ7cCz9t9iNxkGti+6ATQDZ9r/j8R6CJwC3AGssNtXALfb/zcCHwO+lNtBdse9Coyz328A5rmcc4593sIO+gTQYP//18BGl/3/Bvg+cCZWHqof5ch9pELlvsOWdwzWA/kbFSD3l4DdwHW2nHuAO1Mk91Tgk8Bm4FLy7+8fAt+zP0vbfeIm92zgG7a8HwLeAf6xAuRO++/SS+40/y6nArOwfpuX5rTPxxr81NlybgOOcTpG9q+o6ckY02WMedL+/z2sUcpErAJFG+zNNgCL7G0OGmP+EzhccKgTgN8ZY/bZ7/8d+DOXc7Ybu6ZFQfsvjDGH7LftwCQXsS8B/smW+wHg/By56ypU7mx/Xwr8DFhQAXKfiXUjftcYcxD4FdZoKhVyG2N2G2N+jr0CtuD+PgNrlgQpu0885B6PdV9swJrlHQQuqgC5U/27LCJ3an+XttzbsWZCuZwC/NIY02v/Lp8B/tTpGFkC+ShEZCrWD+hxCgoUYd2kXrwInCwiU0WkDutGmBzk/AV8EevCODERa8qGMaYX6wfzEVtuAdpEpB04u4Lkzvb3EuC7FSL3T4HRwAERGYs1QmpKkdx5FN7fwNuQyvs7jwK5jwMexroet2GNYL1Ii9xp/l3m4fIcTOPv0o1ngE+JSIP9u/xEMRl8JwUUkQ9hmRSuMca8KyKBJDPGvCMifw1sxNJwj2Fp18CIyOeBVqyRq+MmBXIfByyz5X7XGNMqIicAP6eIskyR3Nj1PWZiPQg8SYncm0Skxz73PuA3wGdSJHcuI6ic+zuXQrmNMWaWiLQAm8i5NimXO82/Sy+50/y7dJPhERE5i/zfZa/XPr5mFCKSweqcHxhjHrSb37Q7KNtRRQsUGWPajDFnG2POAXYCu0SkVkSetv9u8iHLnwDXAxcbYz6w227JHsPebA8w2Zb7QSyn5P+1P3vDLqz0MtaI4P0KkftN4C+BH2MlDKuU/n4V+JQx5gKgHnuUnhK5BzYH/gcF9zeW3TmN97en3Pb93Qm8jDW7qwS50/y79JI7zb9LLxluMcacbv8uBSsoyXMHzz/7IN8H7ipoX0++8+mOgs+/wGBv/3j7dTRWdMYfFTl3oRPnDOAl4KQi+/0t8L9tuX8K3Jdz3m/a8mazM34n7XLn9PerWNPESunvWuB/2fLOAt4A1qdF7pz7+0Vgs8P9fQ9Hndmp6W83ubFs1Xfa8o7GGi3+SwXInerfpY/7JJW/y5ztv0e+M7sWONb+fxZW5FOd5zF8nORjgMEKxXra/vs0lu1zK5Ym2gqMydlnN9bI8X2s0eYpdvu9WGFdzwNLPM55h71fNhxttd3+71gaPCvHQy77j8CavhqsSITn7e3/u/1/Npzt+QqR+9PA6ViOsUrq70uwRkwHscJmH0+Z3GdhjQAN1tS7O6e/f4MVidNv9/ulFSD39Vghl7nhsZXQ32n/XXrdJ2n+XZ5l73cQeAt4Luf3mj1/O3C6lw4wxmgKD0VRFMUbXZmtKIqieKKKQlEURfFEFYWiKIriiSoKRVEUxRNVFIqiKIonqigURVEUT1RRKIqiKJ78f6S57F/6hNcgAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import collections\n", + "\n", + "from apd.aggregation.query import with_database, get_data, get_deployment_ids\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "async def plot(deployment_id):\n", + " points = []\n", + " async for dp in get_data(sensor_name=\"RelativeHumidity\", deployment_id=deployment_id):\n", + " points.append((dp.collected_at, dp.data))\n", + "\n", + " if points:\n", + " x, y = zip(*points)\n", + " plt.plot_date(x, y, \"o\", xdate=True)\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " deployment_ids = await get_deployment_ids()\n", + " for deployment in deployment_ids:\n", + " await plot(deployment)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAE0YAAAUsCAYAAAC9bUPVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdd7x0Z1Uv8N9KBwIJEAJSQ+9NihSBBJAqIL2HkCCCXq5cURD13ovYr6BwQakGCKFKByHIRQOitCAogjSBCKEESEIPIWTdP/a8Zt79zilzzpwzb/l+P5/5kL32fp5nzZk5w+eds/Z6qrsDAAAAAAAAAAAAAAAAAAAAAAAAsEz7LTsBAAAAAAAAAAAAAAAAAAAAAAAAAI3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAEaq6qiq6tHjuGXntZ2q6tTR8z912Tntjfyc92xV9bTxZ8WesL73HQAAAAAAAAAAwO5jE7VgS61hm9ey63OXvT4AAACwfhqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMRoAAAAw0wq7oq32OLeqzqyqz1bVKVX1R1V1n6o6aNnPBQAAAAAAAAAAANiYPaWesKruuEI+pyxwjaPXeO5HL2idY9dY56hFrAMAAAAAuyON0QAAAIBFOTjJZZJcI8ldk/xmkjclOaOq/qSqDl1mcnu7qnrpqOjpi8vOCdi7VNUXR58zL112TgAAAAAAAAAA7JaWVU94wgrxn6uqK2/RmmPH72bzAAAAAMAeR2M0AAAAYKsdkeTJSf6tqm697GQAAAAAAAAAAACApdiyesKqOjzJ/VY4vV+S4xa53iruX1WX2MwEVXW1JLdfUD4AAAAAsMc5YNkJAAAAAHuU7yf53ArnLprkUkkuvcL5qyQ5paru0N0f24rkAAAAAAAAAAAAgG2xu9UTPjzJIaucf3RV/V5394LWW8lFkzw4yYs2McfxSWox6QAAAADAnkdjNAAAAGAep3X30atdUFVXTHKvJE9KcvXR6UskeV1VXbe7f7w1KbIIa73OQNLdT0vytCWnMTe/3wAAAAAAAAAALMDuVk94wui4s3NzsaOS3CnJ/1vAWmNnJ7nk1PHx2WBjtKraL8mjRuGzMjSaYy+1p9aiAQAAAGyV/ZadAAAAALB36e4vd/fzktw4yRtmXHL1JL+0vVkBAAAAAAAAAAAA22m76gmr6iZJbjoK/3mS80ax4ze71gpeneQnU8e3qqrrbnCuuya54tTxOUnesdHEAAAAAGBPpDEaAAAAsCW6+/tJHp7k32ecfuQ2pwMAAAAAAAAAAAAswTbUEz5mvGSSZyd52yh+v6q65ALWG/tKkr8dxTbahG087pVJzt3gXAAAAACwR9IYDQAAANgy3X1ukj+acermVXWp7c4HAAAAAAAAAAAA2H5bVU9YVYckedgofGp3/2eSl43iB2do0LYVThwdP7KqDphngqq6dJJ7rzEvAAAAAOz15vpiDQAAAGADTpkR2y/JtZO8f6OTVtV+SW6a5Kgkl0lyqSTfSfKNJJ9L8tHuvmCj8y9SVV0hyXUy5HpYkotkyPWsJP+Z5MOToi+2QFVdJMktk/xUkiOTHJrkWxneK//S3f+xxPTWpaouk+RWSa6WIf9vJzkzyQe7+/Rl5rbVquqwDM/9mhl+f85NckaS98/z3Kvq8klukeH38NAMv39fTvKe7v7OgtPekKo6OMltk1w5yeWS/CTJ15N8PMnHuruXmB4AAAAAAAAAAGzWVtQT3i/JJUexkyb/+/YMdWKXmTp3QpLnbnCt1bwlyTeTHDE5vmySe0zi6/WIJAdNHf9rd3+kqhaT4QJU1f4Z6tiuk+QKSS6RZP8kZ08en0ry8d2lfnMR9pUa0Ko6KMk1MjzXy2V4bZPheZ6V4XX99DblckCSmye5fobfqQuSfDXJF5J8oLt/sh15rNfeUKcKAAAAuxuN0QAAAIAt1d3fqKrv5MICiR2OmHX9Wqrqdkl+JcnPZWiGtpKzqurtSf6ouz+5kbU2qqqOSHLfJHdOcocMBU6rOa+qPpCh2Or16y0IqqovJrnKCqevUlXraaJ0THefOmPuUzPkvsN7uvvoFfL4eJIbTIW+keQK3f3jdaw/U1U9NMkrR+Ff6e6/XOf4/TLs7PmIJLdPcsgq134hyWuTPKO7v7mxjLdGVR2d5LeS3ClDAeCsaz6Z5A+TvHKexllVdVySl4zCV+3uL24gz/G6v9vdT1tjzNOS/O/pWHfX1PlbJPmdDMWBM7/HrKr3JPnN7v7AKuvcK8lTktwmyawKwfOq6o1JnjzZJXbd1noOc8xzVJKnZfjcGH9W7vC1qnp+kmd29/fmXWO03qlZx+/3JK8vrDLVo6rqUWutt+NnUlWXyNDU7tCp06d29zFrJr2Kqnp2kv8+Ct+ku/9lM/MCAAAAAAAAALBYi64nnDhhdPyDJK+brHd+Vb0yya9Onb9JVd20uz+6iTV30d3nVdUrRmsdn/kaox0/Oj5x04ktQFVdM0MDujtm2PjxYmsM+XZVvStDTd4H51hnt6hF3K4a0NGaT8sCatE2sO5NkvxCkmOS/EySg9e4/htJ3pbhtV14bW5VXTbJbyY5LsnhK1x2ZlW9NsnTu/sbi85hvfaWOlUAAADYXc28mRIAAABgwWY18Vmp+c9MVXWtSaOz9yZ5cFZvipbJ+Uck+XhVvbiqViw4WKRJEdVXk7wwyYOydkFMMuzwePsMRQ//VlXX37oMt8S4udZlktxzk3MeNzr+UZJXrWdgVd0tyccz7Pp5l6xSbDJx1QyNsz5fVb+6xrXboqoOrqoXJfn7DE0AV/se73pJTk5ySlWtVXC226vB7yX5QJJ7Z/XNHe6Q5J+q6tdnzHNYVb0+Q2HhbTO7KVoy/P49OMknq+rOm0p+AybvuU8keVRW/1y8XIbmaZ+oqpttQ2oL193fyfBenXZ0VV13o3NOdto8dhR+v6ZoAAAAAAAAAAC7rU3XE+5QVVfN0NBp2htGGw++bMbQcTO1Rfmr0fE9q+rI9QysqpsnudFU6LzsWmuzrarq0lX1z0k+k+SPM9TjradG7bAkD0jygap6c1Wt1OBqbOm1iPtKDWhVXaeqPp3koxkast0+azRFm7hMkkdneJ4vqqr1jFlvTvdI8skkT8zKTdGS5Mgk/y3Jv1fVQxa1/jz2hjpVAAAA2N1pjAYAAABsh1kFCt9Z7+CqulOSDya5+wbW3i9DEdN7JjvJbbXbZPVGTmu5boZioG1v0LQJJycZ78j46I1OVlVXzLDT4rQ3dffZ6xj760n+JkOzsHldPMmzJo30NvMabsqkid87kjxmzqF3SfL2qtp/8Vltq+cn+Z2s/7vLSvKnVfXY/woMhXTvzrBL6XpdLMlbquoWc4zZlKr6gyTPSnLROYZdOcPn2R7ZHC3Drqhjj9vEfA/Nrv8f87xNzAcAAAAAAAAAwNbaVD3hyPHZdcPEk6YPuvujGRoYTXv4Vmy22t0fT/KRqdABSR65zuHHj47f0t3fWkhiG3fxJDfd5Bz3TvKhSV3gWnaHWsR9pQb0ckmutYnxlaHG8b1VtaHGhjtNVnWvJG/O2psmT7t0kldO1w5uh72hThUAAAD2BP7hDAAAAGypqrp6Zjf9+fw6x98ryeuTHDg6dV6Sv8vQMO1LSb6d5NAkRyW5Y5Lbja6/ZZI3VdXtu3tcOLNVfpLkn5N8IsmnknwrQwFXZdjh8ppJbpXkttm5CdShSV5dVTft7i+tMv8nk5wz+e8rJ7nk1LkfT86vZdbum3Pp7jOr6u1J7jMVvkdVHdndZ25gymOza1OsE9caVFV/nGFHvbGzkrwrQ8HZmUl+kKG47vpJ7pbk2qPrT8jwc/31ubJenBOz8y6mn87QKO1TGZ7LYRmKze6fXXejvH2S/5HkGVuf5uJNdkKcLlI6Pclbk/xbhud+eJKfSfLA7LpL7LOq6p0ZPg9enWS6cdhHkpyS5AtJvpvh53bHDEV30++1iyR5UVXdvLvPX9DTmqmqfi3Jb8049aNJru9N8pUMDduumuH36waTay6W5E1JXreVOWb4nP2XqePrZefP4rOT/Oc8E3b3J6rq1CRHT4WPraqndvcPNpDj40fH30ry1xuYBwAAAAAAAACALbbZesLRXPslOW4UPiPDhopjJyX506njwzNsuvjKedddhxOzc+3S8UmeudqASZO2h86YZ3fzvSQfTvLvST6boW7zu0kOylC/eL0MtW/XHY27ZpLXVNUdVqvL2l1qEadsdQ3o7uTsXPja/keG5/m9DDV1R2Sot7xLhlrVabdM8uIkD9rE2ldN8pxceL9zJ/mnJG9P8uXJ8ZUybK582+zcDLGSPL+qvtXdr99EDuuyF9WpAgAAwG5PYzQAAABgq91/RuzsDMUTq6qqq2YoSJpuxHN+kj9P8qfd/Y0Vhj6tqm6SodhiusDoVkn+OMmT1pH3Rp2X5A0Zdi78u+7+9loDquoqSf4oOxc2XTrJ85L8/ErjuvseU3O8NMmjpk5/pbtvMlfmm3Nidi5GOiDJI5L82QbmOm50/OUk/2+1AVV13+xabHJ2kt9MclJ3n7vCuEryC0men+TIqVNPqqr3dvdb5sh7EX4myY6dSL+W5AndPbP5VVU9JclfZCjemvbbVfUX3f3DrUtzy/zJ5H9/kOH39EXd/ZPRNS+qqt/O0DDxtlPxi2RoNPbpJHedxD6f5LHdPavY8TlVdfMMOzdOv/Y3ztB47VWbeSKrqaprJ/mDGafekSHfL8849zuT9/nzMjR2u2KSX9qqHJOku7+S5L8+R6rqi0muMnXJW7r7uA1M/dzs3Bjt8CQPyZzFnFV1syQ3H4VfstLvOwAAAAAAAAAAS7fhesIZ7pqhhmbayd19wYxrT85QO7j/VOyEbE1jtFdmaIS2ow7selX1M939wVXG3C9DDc0OZyT52y3IbSPOyfDze12Sf1rPxrRVdZskz87OtT23SfLErL3p51JrEbONNaC7ga8leWmSNyY5bYXfnf8yqbe8e5JnZWgKt8MDq+oBK9U6rsOTc+Hvy6eSHLfC78sfVtUtJzlPN9+rJM+rqvd09zc3mMOa9qI6VQAAANgjjLvdAwAAACxMVf1UZu9m9qq1CigmXpGdi31+kOSu3f3kVZqiJUm6+2MZCmneNTr1hKq60jrW3qhbdPf9u/uN6ymISZLuPr27H5bkaaNT96iq6yw8w63x9iRfH8WOm3eSqrptdi6YSZKXrfZ+qaojk7xkFP5skht19wtXa5LUgzdmKMAaN6P6o0lBynbaUdzz+SS3Wq1QqLu/l+Fn/M7RqcMzu4BwT3Bwht/zO3f382c0RUuSdPfXMxSMjXcBfUSSp0/++xNJbr1CU7Qd85yW2T+rR8+b+Jyelwtf6x1em+TnV2iKliSZvFfvkAuf90W2Jr0t96bs+vv2+A3MMx7TSV6woYwAAAAAAAAAANhSC6gnHDthRuykWRd299eya6OxYyabty5Ud5+TodHUtLXqkcbP5WUr1U5ts68kuXx3P6G737OepmhJ0t3/lOR2SU4ZnfrvVXXAGsOXVos4sa/UgH4oyZW6+6nd/aH1/A5O6i3fnmED2I+OTv/aJnLZUUv3iSQ/u1oTwe7+UIb31idGpy6TCzdmXbi9rE4VAAAA9ggaowEAAABboqqunqGo5TKjUz/IsDPeWuN/LsmtR+Hju/vv1ptDd5+X5IFJpneAOzCbK8BYa811FcKs4OlJPjx1XEmO31xG26O7z8+wQ+K0G1bVzeacalYB2LiYZOxXkxw2dfyDJHdbrcHUWHd/KclDRuHrJbn3eudYoB8neVB3n77Whd3dmf1+vuvCs9o+T+zu96910aSAcLx76EWTXCzJuRl+huPGabPmeV92LcA7pqrGjcsWoqpumOSYUfhzSY5dZ3HZp5McuxW5bZdJ0ea4gdnNq+rms66fpaoOy847rCbJu7r7c5vNDwAAAAAAAACAxdpsPeGM+Y5Icq9R+LTu/uQqw142niZbt4HiiaPjh1TVzE0Qq+qo7FpPtFbN3Lbo7vO6+4cbHHtukkdleI13uFKSu6wxbpm1iPtMDWh3/2Dys97I2LOzaw3bravqeptI6bwk9+vub61j/W8lud9kzLSHTz4btsLeVqcKAAAAuz2N0QAAAICFqKpDquoKVXXPqnphkn9NcqMZl/7iOgsBnjI6/ofufs28eU2KVJ49Ct933nm2w6TJ1ctH4Z9dRi4bNC7mSubYqbGqLprkQaPwe7v7P1YZc2iSXx6Fn9ndn1/vujt09z8mefcovIz3yiu7+yPrvXhSzPfPo/C8RWC7i88kefEc179+hfjL1yhyHHvd6PiAJDecY/w8Hjcj9qTu/tF6J+judyZ56+JSWooXZtfCtMfPMf5RGRrhTXv+pjICAAAAAAAAAGAhtqCecOzYJAeNYietMebNScZNr46rqq24x/LdSaY3xjwsyf1XuPbRGRpo7fDevWVzwMnGluNNK9dTE7nttYiLsBfUgK5bd/9bdq1b3MxzfU53f2aO9T+T5Dmj8MGZ432yXntpnSoAAADs9jRGAwAAAOZxh6rqWY8kP0zy5SRvS/KL2bVhzQ+SPLy7X7nWIlV1qSR3HIXnaZY09jej46tU1VU2Md9W+uzo+Ker6sClZDKnSSOqD43CD6uqg9c5xf2TXHwUW2uHxjsnOXwU+6t1rjfL+L1yh03MtVEv2sCY8c/9WotIZAleMikOW5dJYdGsHTrnfQ98dEbs2nPOsV53Hx1/Nbu+79bjBQvIZWkmRY9/PQo/pKrGv88r+aXR8RnZ85vFAQAAAAB7kUkTgDtV1QlV9ZSq+tWqemBV3XjZuQEAACzIttQTruD40fGPk7xqtQHdfW6S147CV0pylw3msNpaneSlo/A450yasj1qFJ7VFGxPNq6JvNVaA5ZUi7goe2wN6AbM/dquYiN1ky+cERvX5y3C3linCgAAALu9A5adAAAAALDX+26S1yR5end/aZ1jbpedd0BMkn/aRA5fmBG7aXbekXFLTHaKu32G3S6vl+TSSS6R5GKZ3bT+0NHxwUkum6FIbE/wkiS3nDq+VJJ7Z9cGSLM8enT8vXWMGxeEnNHdm3ldx++Vo6rq8O4+ZxNzzuOH2bWgaz3GO1nuX1WHdvf3FpDTdnrvBsb8Z5IbTh3/IMlH5pzjizNi623QtW5VdWSSq47Cb+7un2xguncm+X6Gz5I91XOTPHzq+KIZdvP9v6sNqqo7ZPg8nfai7j5/sekBAAAAANulqq6W5BZJbj7535/Ozjcwn97dRy0htblV1Q2S/K8k90pyyArXfDbD31Se2d3nbWN6AAAAy7aResKdVNWtklx/FH57d39zHcNflqFR27Tjk5yykVzW8JIM/z7cUQt5dFVdtbuna9TunGR6k9fvJnndFuSyMFV1hSS3yVATea0kh2WoibxIdq37TJLLjY6vvM6ltrsWcaZ9qQa0qq6eobnZjZJcPcPzvESG5zDrtR2/lut9bcc+1d2fnndQd3+mqj6RnT8PblFV+3X3BRvMZZa9rU4VAAAA9ggaowEAAABb7bQkz5mziOm2M2Kvn+wkuShHLHCuXVTVzZL8RoZCnItscrrDswcUxUy8KsmfZefnfFzWKCqqqqskOXoUfm13f3+N9cbvlUtW1cfWTnNF46KkZHivbFfByend/eMNjPv2jNhhGQq69iSf28CY746OT99Ag6zxHMnw81u0m82IzdvELUnS3edX1b8mufXmUlqe7v5AVX0kO/9cHpc1GqMlefzo+PwkL15kbgAAAADA1quqo5M8NUMztEstN5vNq6pK8j+TPC2zbxaeds0kf5jkoVX1sO7+ty1ODwAAYHexkXrCsRNmxE5az8Du/seq+lySa0yF71NVR6yzsdq6dffpVfV3Se40CVWGWrr/PXXZ8aNhr1lHzdxSVNUDkvxyhiZRsxqCrdd6N6zc7lrE8Tz7RA1oVe2X4XfqFzM0q9+MjW5GuqEauol/zs6N0S6eoWHfpzYx59jeVqcKAAAAewSN0QAAAIB5fD+zGxcdmOSSSX5qxrljkny4qo7r7letc50rzojdaJ1j1+vSC54vSVJVByb58wyNezZT/DNtKxo0bYnu/nZVvTHJw6bCd62qn+rur64y9LjsepPQS9ax5Pi9ctEkN17HuHlcOhtr2LURZ21w3KxmagduJpElOXsDY8bPfe45uvvHw/1qO9mKn9+RM2Jz73Q55VPZgxujTTw3O/+uX7eqju7uU2ddXFVHJrnvKPyW7j5ji/IDAAAAALbOTZLcZdlJLNCLsuvN+RdkuOn/i0kOSnK9DDfn7nDDJO+uqlt39+e3I0kAAIAF2q56wv9SVRdL8uBR+Kwkb5tjmpOSPH3q+KAkj0jyrHnzWYcTc2FjtCQ5rqp+t7svqKpLJvmFGdfvVqrq8klenuSOC5pyXfWQS6hFTLJv1YBW1XWTvCLJTRc05Uaf52Zr6MaOXCG+UXtbnSoAAADsERb1xQwAAACwbzitu28y43H97r58hj/MH5ddCwoOSvLyqrrXOtfZkqZlI5vdwW8Xk4KYv07yK1ns9y57WoOrcRHR/kkeudLFNXSkOnYU/mx3v28da11qztw2YuHvlVXManC2z+juRTz/3flnOGtHzG9vYr7NjN1dvDrJt0axx61y/QkZ/j9l2vMWmhEAAAAAsGw/SvIfy05iHlX1hOzaFO3VSa7c3T/T3Q/u7vt297WT3DLJR6euOzLJO6rqkG1KFwAAYFG2q55w2oOSXHwUe3V3nzfHHCcl6VFs/G+6RXlDknOmjq+cCxulPTzJwVPnPtXd79+iPDakqq6Q5NQsrilakhwwx7XbWYu4T9WAVtUNkrwni2uKlmz8eS66hm5Wnd5m7G11qgAAALBH0BgNAAAAWJjuPqu7X5bkJhlu9pi2f5KTq+qodUx1yQWntl2ekuQ+M+JnJPnLDLtK3jrJlTIUXhzS3TX9yLAj5p7u3UlOH8Uevcr1d0hytVFszR0aq+qi2bkwDHZ346LMZNg5d6M2M3a30N3nJvmrUfh+VXXZ8bVVtV+Sx47Cn83wmQMAAAAA7Jl+nORjSV6c5JeS3CzDd6mPWWZS86iqSyf5w1H4Od390O4+Y3x9d384ye2TfGgqfK0kT9y6LAEAALbfAusJp81qYHbSnHmdnqEh1LQbVNUt58xlPWudm+RVo/COWrrjR/ETF73+Arw0yTVnxD+W5I+S3DfJTye5XJJLJDloRk3k725i/W2pRZyyT9SAThrAvTbJZWac/sckT0vy80lunKGh+8WTHDDjub5sQSktuoZuVp3ehqhTBQAAgOWZp7s+AAAAwLp094+q6pFJLpudizwukaEBzp1mDrzQD0fH53T3bt0sraqOTPLUUfj8JL+R5Lndff46p9rjd33r7q6qlyX5X1Ph61TVrbr7AzOGjAuVfpL1Faudm+SC7Nz8/03dfd+5Eobt890ZsYttYr7NjN2d/GWSX8+Fv8sHZihiHd9IePckR41iL+ju8Q6+AAAAAMCe4WVJnj+5SXwnVbWEdDbsCUkOnTr+9yRPWm1Ad3+vqh6e5JMZvhNNkqdW1Qu6++ytSRMAAGA5FlBPmCSpqmsnue2MUx9Y0L8jj8/OTawX5SVJHj91fN+qOibJTadi5yd5+RasvWFVdc8kdx6Fz0xybHe/c46pNlwTuY21iPtaDehjk1x3FPuPJA/p7tPmmGdRz3XRNXSz6vQ2Sp0qAAAALMl+a18CAAAAML9JEcixSb4zOnXHqnrwGsO/OTo+vKoOX1hyW+PeSS46ij2lu581R0FMklxqgTkt00uTjJsVHTe+qKoOTXL/Ufhvu/uMtRbo7guSnDMKX3X9KbIIk90jWZ/x+zVJDtvEfJsZu9uY7ML7tlH4sVU1/v768aPjczN81gAAAAAAe6DuPntWU7Q90L1Gx8/u7h+vNai7P5fkTVOhSyS53yITAwAA2F1ssp5whxMWm9UuHlpV4xrATevuDyf5+FTokCQnjy57e3d/bdFrb9JDR8c/SXKvOZuiJZuviXxptrgWcWJfqgEdv7bfTXLnOZuiJYt7rouuoZtVp7ch6lQBAABgeTRGAwAAALZMd385O+/Ut8MfrtFM6eszYjdaTFZb5udGx2cnee4G5rnaAnJZuu7+QpJTR+GHVNUho9iDsuuOfS+ZY6nxe+VaVXXwHOP3ZbNuytpIk7NLbzaRfciZM2LX3sR819nE2N3N+PPyKknuvuOgqnY6nnhtd39rqxMDAAAAAPY+VXVoVd21qh5dVU+uqidV1SOr6uYzNm1YbZ6LJ2JdggYAACAASURBVLnJKDzPDeKnjI4fMMdYAACAPcom6glTVQdkaKy2lS6Rrft32bgm7vKj4xO3aN3NGNdEntLdH9rAPJuqidzGWsR9ogZ00kDu1qPwSd39xQ1Mt6jneq1NjJ1VfzerTm8z1KkCAADAEmiMBgAAAGy15yX5/Ch2tay+e+Os4plxQ5zdzZVGxx/s7vM2MM+44GRPNi4qOizJfUex40bHZyV5yxxrjN8rF0ly9Bzj92Xj3VeTobhvXtfYbCL7kI/MiN1sIxNNij1394aR8/h/ST49ij1+6r8fm12/z37elmYEAAAAAOx1Js3Q/i7D3yNOyXDj+Z8keUaSk5J8OMnXq+qPq+qS65jy8tn5u8vvz3kj8cdHx3dyYy0AALCX20g9YZL8fJLLjmJfS/Ivm3yMrZXHRr08yUr1hGcm+ZstWndDquqgJEeOwv+wgXn2T3LLBaS0HbWI+0oN6Pi7jGRjr+2RWVxjtA3V0K0w9rtJPrOJ+WZRpwoAAABLoDEaAAAAsKUmhSFPn3Hqt1e5seNdM2IPnjQC2l0dMTo+a94JquqIJMdscP3zR8f7b3CeRXp9dm2+9egd/1FVV09yu9H5V3T3j+ZYY9Z75RFzjN+XnTMjtpFCpTtsNpF9RXefmeQLo/C9q2oj39PeNbvucLrVtuxzprs7yV+OwnevqqtMdgQeF51+rLs/sKj1AQAAAIC9W1UdUVXvytAM7ZgkB65y+RFJnpLks1V1+zWmvtToeNZ376sZX39gkuvMOQcAAMAeY4P1hMnshmWP7u6bbOaRXRse3b6qFr5RZHd/M8nbVjj98u4e1+Us27geMtlATWSSeyQ5dJO5JNtTi7jsGtDtsqjX9sGbTWTKdavq2vMOqqprJbn+KPzh7r5gMWn9F3WqAAAAsAQaowEAAADb4eTsugPbFZP84qyLu/uMJB8Zha+aXXf02518f3Q8q3hkLb+S5JANrv/d0fEiiok2pbt/kOQ1o/CdqmrHzorHzRg23tlxLe9Mcu4o9tCNFMnsgz49IzbX7pyTHT2PX0w6+4x3jI4vn+SeG5hn5ufnFtvqz5mXJvne1PF+SR6bYXfX8Y6/z1vw2gAAAADAXmpyQ/sHk9x5dOq7SU7N8LeM1yU5Lcn0jbOXTvKuqrrrKtOfNzpe7Sb+WWZdf7055wAAANjTzFVPWFU/leTuo/DXM7tZ0UZyGduqeqgT54wv07geMtlYTeSvbTaRZNtqEZddA7pdNv3aTja6fMJi0vkvj9nAmFmfGeP6vEVQpwoAAABLoDEaAAAAsOW6+ydJfm/GqadW1UpFIH8wI/aMyQ5vu6Ovjo5vU1UXW+/gqrp+kqduYv2zR8eHV9UlNzHfooyLi/ZLcmxV7Zfk2NG5f+nuj84z+WQnzReOwvsneWVVXWSuTPcx3X1mki+Pwg+aNDtbr19JcrXFZbVPeP6M2DOq6qD1TlBVd05yn8WltG7jz5mFvvbd/Z0kLx+FT8iuRXTfSfLKRa4NAAAAAOydquqiSd6Ynb/P/HSSByS5ZHcf090P6e4HdvctMtyI/6Kpaw9KcnJVXWGFJb41Or7kKn/7muWnZsTcVAsAAOzVNlBPeFyGmrBpr5rMs1mvTnL+KPaoOWuo1uvtGf4dOP24bHd/cgvW2pTu/naSH4zCd5lnjqp6TJKjF5VTtrgWMcuvAd0u4+eZzPnaJvnfSa65gFymPWHS3H5dJteO68p+lGFzzoVSpwoAAADLoTEaAAAAsF1emeRTo9jlkzxu1sXd/cYkp43ChyV5x6SAZG5VdfGq+o2qesRGxq/hH0bHh2Yo/lhTVR2V5C1JDt7E+h+fEbvHJuZbiO5+f3Z93Y9LcqckVx7FN7rz5R9l110MfzrJGzfaHK6qrlJVz6mqG2wwpz3FeHfEKyd54noGVtWdkvyfhWe0l+vujyf5+1H4WkleMinSW1VVXTO7Ng/bLuPPmRtM7bq6KM8dHV82yc+OYid39/cWvC4AAAAAsHf60yTT3/W/I8lNu/v1s26g7+6vdvdjkzxpKnxEZt+wnwwbkEx/X7l/kpvPkd+tZ8QOm2M8AADAnmqeesJHz4idvIgkuvsbSd45I4+7L2L+0Vrd3V8bPc5c9DoL9L7R8dFVta6axKq6W5L/u8hktqEWcdk1oNti8p77zCj88Kq68XrGV9WjszUN4A5O8ob11HxOrnlDdv15v3LSxGwrqFMFAACAbaYxGgAAALAtuvuCJL8749RvVtVFVxj20CRnjWJXS/LBqvrtqlrzxpCq2q+qjqmq5yf5zwyNnC43R+rr9fokF4xiv1FVv1dVB6yS30OTvD/D80qS72xw/Q/MWP+ZVXWfqjpwg3MuyninxmskefYodl6SV2xk8u7+WpJHJenRqbsm+UhVPWK112CHqrpYVT24qt6Q5HNJ/luSWTuQ7k1ePCP2J1X1S1VVswZU1SFV9ZQMN48dnOTcrUxwL/XL2fXn9rAkb6mqK6w0qKp+Icl7c+Fn2A+3Jr0V/dPoeL8kf11V89zkt6rJDrjjxnFjz1/UegAAAADA3quqLp/kMVOhLyZ5QHev+d1qd/9ZkrdPhR5eVbv8fam7z0/yj6PwI9eZXyWZtZnPxdczHgAAYE+23nrCqrpDkmuOrvlUd39kgenMarJ2wgLn31O9dkbsNVX1gJUGTGrL/leSNye5yCS80ZrIWbayFnHZNaDbafzaHpjklKo6eqUBVXV4VT07yV/lwvuSF/Vcd9TS3TDJ+6rqlqvkcYsMTexuODr1jSRPWVA+u1CnCgAAANtvzX9oAwAAACzQa5P8TpLrT8Uum6FJ0DPGF3f356rqQRluPDlo6tTFkvx+kqdW1fsy3HDy1STnJLloksOTXCnDbmw/PTneUt39mao6Ocmxo1O/k+S4qnpdkn9N8r0kl0py7ST3TnL1qWt/kKEw43kbWP+rVXVKkukdGS+b5E1JzquqL2XYrW5clPGY7j5t3vXm9PIkf5hk/6nYdUfXvLW7v7XRBbr79ZOCqt8bnbrqZP1nVNWpSU7LUADz/SSXyPDeuEaSmye5UfaAHRsXqbs/VFVvTnKfqfD+GRpP/UpVvTFD8c15SS6T5GYZ3mNHTl3/xGhUNZfu/lRV/XaSZ45O3TPJ56rqHRmKt76aoUDwahleo+lirjOS/HWGn/92eXOGZpWXmor9TJIPV9V3k3wlMxrldfdN5lznL5Ics8K593X3x+ecDwAAAADYNz0uO/996Xe7+wdzjH9mLvy7y0FJ7pbkpTOuOznDTbA7PLqqntfdH1tj/idk15v7E43RAACAfcd66glnNSh7+YLzeHOGBk+XmIrds6qO7O4zF7zWnuSkJE/NzjWOh2bYSPGfk7w1Q23ZjzPUk90syc8nufTU9Z+cXLeohlVbVou47BrQbfbnGRpyTdfWXi7J31fVe5O8M0OD+Qsm8dskuXuG13+Hd2eoYRv/vDbi/yT5tcn810vygUlt8DuSfGlyzZUyfDdzuyTjTV87yeO7+xsLyGVF6lQBAABge2mMBgAAAGyb7r6gqn43u+429+TJDSLfnzHm3VV1uySvy1DYMO1iGW40uet43JL89yS3THKdUfyKWbt50Y+TPDBDYcxG/UaSO2T4uUw7KDsX30w7dIX4wkw1bbvnKpeduIB1fr+qvpKhqdJ4B73LJnnw5MHOHpfkFkkuP4rfMLvuqjj2p939gqrSGG1O3f1nVXVEhuLBaYckue/ksZLvJ/mFDIWE26a7z62q/5HkZTNOXzxDsd8ivClDQdv4Mz/Z/YsGAQAAAIDdx89N/fdPMvytaR7vS3J+Lqy1vV1mN0Z7dZKn5cK/xRyY5K1Vdbfu/sSsiavqwZmxadDEBXPmCQAAsEdaq54wQ/Or+4+HJXnFgvP4YVW9IclxU+EDMzR8Wunfbnu97v5xVT0ww7+PLzo6vWPT2tWckaFm8LgF5rTVtYjLrgHdFt19VlU9PMlbsnOTuSS5/eSxmn/L8Fz/fEEpfSHJw5O8YZJPZfge5nbrGNtJHtfdr19QLqsvpk4VAAAAts1+y04AAAAA2Ofs2DVv2mWSPGGlAd39oQxFNC/JUDyyUZ3k1CT/sIk5Vp68+9tJ7pzkA3MO/UqSO3f32ze5/icz3OTzuc3Ms0VWKzb6aoYdBjetu09Mcuskf7fJqc7NcCPTf246qd1cd38tyc9mvvfNeUl+vbufvDVZ7Ru6+7eS/I/MVwz35STHdPdpW5PV6rr7pCSPSfLdLVzjJ0leMOPUN5JsSwEbAAAAALBnq6pDktxsKvSlJEdU1VHrfWTYUOScqTlmbkLT3ednuHn3vKnwFZP8c1X9ZVXdtaquU1U3rKoHV9XbMvwN4sDJtV8eTXlOAAAA9h2r1RM+LLs25Hpfd5++BXmcPCN2whass0fp7o9m2Lj2q3MO/UCSW3X3Fxee1BbWIi67BnQ7TXJ9YJLvzDn0bUlu191nLzift2TYLHSe70XOSvLw7n7hInNZizpVAAAA2B4aowEAAADbqrs7ydNmnPr1qrr4KuO+2d3HJ7lGhl0YP5Gh0dlavpvkbzI0H7pqdx/T3R+cO/F16u4zMuyW99+SfH6Ny09P8j+TXKe737ug9d+fYbfCeyT5ywy7NX4lyfeSXLCINTborUm+ucK5kyaNkBaiuz/W3XdKcqskJ2XXG4pW8tUMBW6PSnK57n5od5+5qLx2Z939hSQ3SvJbWb2I7bwkr0ly0+5+5nbktrfr7mcluX6Sl2X1IrMzk/x+kut394e3I7eVdPdfJblCkkcneXmSj2bI74cLXGZW47cTu/tHC1wDAAAAANh7XS4XNh5LkqOSfGEDjyOm5rjUSotN/vb0iAw3tO5wUJLHJzklyb9nuNH/1UnuOXXNm5K8dDSdxmgAAMA+Y7V6wiS/NCM+q4HZIvx9kjNGsetU1W22aL09Rne/L8mNk/yfrP1v1tMy1N/dtrvXW7c3ry2tRVx2Deh26u43ZqgbfEFWr/26IMOmxPfp7nt195Z8d9Hdb0tyvSR/kdVr6b6R5LkZfu6v2opc1qJOFQAAALZeDd8dAgAAAOx5quoySW6WYYfISyc5NMn3MzRD+3KSTyU5vZf4BUhVXSvJLSc5XmyS35eT/Gt3f3pZee1rquoaGQpmLj15HJShWdy3M9zY9CnFJReqqhtlKGY7IsOuq99O8ukk7+/u7y0zt71ZVR2c5GeTXDnDTXsXJPl6hpvlPtbdy2xuuK2q6pVJHjoV6iTX6O61ig0BAAAAgL1AVR2d4ab0HU7v7qPmGH+zzN6AYTO+2N1XXWPdm2fYuOYWa8z14yR/mOQPJtc/ZurcE7v72ZtJFAAAALZCVe2f5OYZNoI8IskBGeo1v5DktO7+2hLT2xL7Sg3opHbtZ5JcO0ON5X4ZGuH9R5IPd/dZ25zPgRm+X7n+JJ8LMjQV+0KGOsaFbca7KOpUAQAAYLE0RgMAAAAAYLcxaXr5pSQHT4VP6e67LyklAAAAAGCbLaAx2q2T/NOC01p3DlX1c0nuneR2SS6f5PAkZyU5PcnfJHl5d39hcu37ktx2avjPdvc/LjBvAAAAAAAAAIA9ygHLTgAAAAAAAKb8YnZuipYkf7GMRAAAAACAPdY3R8d/29133a7Fu/tdSd611nVVdWCSm02Fzk/yz1uVFwAAAAAAAADAnmC/ZScAAAAAAABJUlUXS/Kro/Dnkrx9CekAAAAAAHuur4+Or7WULNZ22ySHTB1/sLt/uKxkAAAAAAAAAAB2BxqjAQAAAACwu3h6kiNHsWd19wXLSAYAAAAA2DN193eSfGIqdFRVXXNZ+azihNHxi5eSBQAAAAAAAADAbkRjNAAAAAAAlqqqLlVVz0jya6NTpyd50RJSAgAAAAD2fO8cHf/iUrJYQVVdPckDpkLnJHnNktIBAAAAAAAAANhtaIwGAAAAAMC2qqoXV9XHJo8vJ/lmkifNuPQ3uvu8bU4PAAAAANg7PC/J+VPHT6iq6y8rmWlVtX+S5yc5ZCr8+939wyWlBAAAAAAAAACw29AYDQAAAACA7XaNJDeePK6QpGZcc1J3//W2ZgUAAAAA7DW6+3NJXjIVOiTJ26vqevPMU1UHV9Vxa1xzwBzzHZjk5UnuPBX+UJJnzZMXAAAAAAAAAMDeSmM0AAAAAAB2NycnecyykwAAAAAAtlZVXbGqjho/klxudOkBs66bPI5YZYlfS/KvU8dXTnJaVf1BVV1plbwuUlV3rqr/m+RL2bnB2ix3q6rTquqXV5p30mDtvpN8Hjp16uwkx3b3T9ZYAwAAAAAAAABgn1DdvewcAAAAAADYh1TVqUnuMBX6YZIzkrw/yYndfeoS0gIAAAAAtllVfTHJVTY5zcu6+7hV1rhSkr9Ncp0Zpz+f5FNJzklyQJLDkhyV5BpJ9p++sLtrlTV+Pslbp0JfTvLJJGclOTDJZZPcNMnFRkO/leSe3f3BleYGAAAAAAAAANjXHLDsBAAAAAAA2Ld099HLzgEAAAAA2Dd095eq6hZJnp/k4aPTV5s81nLOnMtecfJYzT8mOba7Pz/n3AAAAAAAAAAAe7X9lp0AAAAAAAAAAAAAAGyV7v5edz8iyY2TnJzk7HUM+0qSVyR5YJLLrXHtJ5K8LMnX1kolyXsnc95OUzQAAAAAAAAAgF1Vdy87BwAAAAAAAAAAAADYFlW1X5IbJblekkslOTzJuUm+k+SLSf69u7+0wbmPSnLDJFdKcliGTYy/k+Q/knywu7+1uewBAAAAAAAAAPZuGqMBAAAAAAAAAAAAAAAAAAAAAAAAS7ffshMAAAAAAAAAAAAAAAAAAAAAAAAA0BgNAAAAAAAAAAAAAAAAAAAAAAAAWDqN0QAAAAAAAAAAAAAAAAAAAAAAAICl0xgNAAAAAAAAAAAAAAAAAAAAAAAAWDqN0QAAAAAAAAAAAAAAAAAAAAAAAICl0xgNAAAAAAAAAAAAAAAAAAAAAAAAWDqN0QAAAAAAAAAAAAAAAPj/7N15fFT1vf/x93cykw0SCJCwIzsoihtUQVzAurfWqkWtrbWLWpeuV722FtFqtdaqvfdqa7Uu1K3WqiAu2F8VFMUFQZQWUVH2NZAEsicz8/39cSBkJufMQiaZYfJ6Ph55JN/v+S6fcxLwjMx5BwAAAAAAAAAAAEg7gtEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApJ0/3QUA6WaM6SHp+FZd6yU1pakcAAAAAAAAAAAAAACA9siVNLhV+3Vr7c50FQMAAO/RAwAAAAAAAAAAAAAAWYL353USgtEA5w1Xc9JdBAAAAAAAAAAAAAAAQAf4mqTn010EAKBL4z16AAAAAAAAAAAAAAAgG/H+vA7iS3cBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAwGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIC086e7ACADrG/dmD17tkaOHJmuWgAAAAAAAAAAAAAAAPbZqlWrdNZZZ7XuWu81FgCATsJ79AAAAAAAAAAAAAAAwH6P9+d1HoLRAKmpdWPkyJEaN25cumoBAAAAAAAAAAAAAABIpab4QwAA6FC8Rw8AAAAAAAAAAAAAAGQj3p/XQXzpLgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACEYDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkHYEowEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIO4LRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKQdwWgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0o5gNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABpRzAaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgLQjGA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA2hGMBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACDtCEYDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkHYEowEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIO4LRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKQdwWgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0o5gNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABp5093AUBXZK1VOByWtTbdpQBAG8YY+Xw+GWPSXQoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACALoRgNKATWGvV0NCg6upqVVdXq6mpKd0lAUBcubm5KioqUlFRkfLz8wlKAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANChCEYDOlhdXZ02bdqk5ubmdJcCAElpamrSjh07tGPHDgUCAQ0YMECFhYXpLgsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAlvKluwAgm9XV1WndunWEogHY7zU3N2vdunWqq6tLdykAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAshTBaEAH2ROKZq1NdykAkBLWWsLRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHQYf7oLALKRtVabNm1qE4oWCARUXFys7t27KxAIyBiTpgoBwJu1Vs3NzaqpqdGuXbvU3NwccWzTpk0aMWIEf4cBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASCmC0YAO0NDQEBEkJElFRUUaOHAgQUIA9guBQECFhYUqLS3Vxo0bVV1d3XKsublZjY2Nys/PT2OFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALKNL90FANmodYCQ5AQMEYoGYH9kjNHAgQMVCAQi+nft2pWmigAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkK4LRgA4QHYxWXFxMKBqA/ZYxRsXFxRF90X/PAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEB7EYwGpJi1Vk1NTRF93bt3T1M1AJAa0X+PNTU1yVqbpmoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZCOC0YAUC4fDbfoCgUAaKgGA1PH7/W363P6+AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB9RTAakGLW2jZ9xpg0VAIAqePztb1lcPv7DgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2FcFoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANKOYDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaUcwGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIC0IxgNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQNoRjAYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg7QhGAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJB2/nQXgM5hjAlIOkbSEEn9JdVI2iTpA2vtmhTvNUzSYZIGSOouabOktZIWWWubU7kXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsgPBaGlijBkuaaKkCbs/HyGpqNWQtdbaoSnYp1TSTZLOk9TLY8wiSXdZa59p517nSvq5pEkeQyqMMU9JusFau709ewEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACC7EIzWiYwxJ0j6hZwwNNeQshTvd5qkRySVxRk6WdJkY8zjki6z1tYmuU93SQ9IOj/O0F6SLpd0tjHmO9baV5LZBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANnLl+4CupjDJJ2szglFO0HSbEWGollJSyQ9Len/SdoeNe1CSU8aYxL+uTDG5Eh6Sm1D0col/XP3Xkt3771HX0lzjDFTEt0HyGZDhw6VMablY8GCBekuCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACATkcwWmZolPR5qhYzxgyS9Kyk3Fbdb0kaZ62dYK2dbq09WdIgST+R1Nxq3Fcl3ZLEdr+VdHqrdrOkH0kaZK09ZfdeR0o6WNLbrcblSZptjOmfxF4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIUgSjdb5mScsk/UXSZZKOlFQk6Qcp3OMmSSWt2oskfdla+3HrQdbaRmvt/0qaHjX/58aYA+JtYowZLidYrbVvWGvvsdY2Re21QtKJigxH6y1pZrx9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkP0IRutcsyQVW2sPt9ZeYq2931q71FrbnKoNjDGjJH2nVVeTpIuttQ1ec6y1s3fXtkeeEgssmykp0Kr9iLV2Tox96iVdvLumPb6/O2ANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXRjBaJ3IWlsZK6AsRb4pKadV+1lr7WcJzLs9qj3dGJPvNdgYUyDp3DhrtGGt/VTS7FZdfjk1AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoAsjGC37fD2q/XAik6y1H0t6t1VXN0knx5hyiqTCVu23rbUrE6qwbU1nJzgPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWYpgtCxijOkn6dBWXUFJbyWxxIKo9mkxxp4aZ24sC+XUtsfhxpi+ScwHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAlvGnuwCk1MFR7Y+stbVJzF8U1R6XxF5vJ7qJtbbWGLNc0uFRe21NdA0AybPWaunSpVq5cqW2bdumxsZGlZaWauDAgZoyZYq6d++e7hL32fr167V48WJt2LBB9fX16tOnjw455BBNmDBBPl/7MkC3bdumhQsXatOmTaqvr9eAAQM0fPhwHX300e1e282KFSu0fPlylZeXa9euXerVq5f69++vKVOmqHfv3infDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyBcFo01ZDSQAAIABJREFU2eWgqPaqJOd/Hme91g5MwV6tg9EOkvRakmsASMD27dt166236rHHHlN5ebnrmNzcXE2bNk033nijjjrqqITWvfjiizVr1qyW9urVqzV06NCE5i5YsEBTp05tac+cOVM33nij53hjTMvXxx9/vBYsWCBJWrRokWbOnKnXXntN4XC4zby+ffvq+uuv15VXXpl0iNkHH3yga665RvPnz3dde9CgQbrssst03XXXye/368Ybb9RNN93Ucnz+/Pk64YQTEtprx44duuOOO/TYY49p48aNrmN8Pp8mT56smTNn6stf/nJS5wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+wOC0bLLyKj2uiTnr41q9zbGlFhrK1t3GmN6SerVzr2ix49Kcj6ABMyePVsXXXSRqqurY45ramrSvHnzNG/ePF166aW699575fdn9n8ibr31Vt1www0KhUKeY7Zu3aof//jHmj9/vv72t78pNzc3obXvuusuXXvttTHX3rBhg2bMmKGXX35Zzz77bNL17/HXv/5VP/rRj7Rr166Y48LhsN58802ddNJJ+ta3vqUHH3ww4fMBAAAAkN3qQ3Va3fCJmsKNSc3rE+inAXlD5DOxg6RDNqT1DZ+rKljRnjKzRq4vT8PyR6sgp1vK164J7dLa+s/UbJvbHMvz5WtYwRjl+wpSvm+qNIebtbbhM5UEeqt3oG+6ywEAANgv1IR2aUvjevXLG6zuOcXpLicjVTSXa0PjaoVt219kU5TTQwcUjJTfBFK+785gpbY2bdSQ/BHtug9vCNdrTf2nagjXp7C6jtM3d6D65Q6K+MVFbpz7/09VE4r975CFOd01uvDgVJYIAACAfRUOSrtWSsFaqfdEKc6/DwAAAAAAAAAAAAAAAKRLZqfeIFk9o9rbkplsra0xxjRIym/V3UNSZdTQ6H3qrLW1yezlUluPJOcDiOOhhx7SJZdconA48iGRESNG6KCDDlJhYaHWrVun9957LyIA7P7779e6des0d+7cjA1H+/3vf6/rr7++pT1mzBiNGTNG3bp10+bNm/XOO++ooaGh5fhzzz2nGTNm6Pbbb4+79p133qmrr766Tf9BBx2kUaNGKS8vT+vWrdPixYsVCoW0aNEiTZ8+Xccdd1zS53HDDTfo5ptvjugzxmjMmDEaNWqUioqKVFlZqffff1/l5eUtYx577DFt3rxZ8+bNy9jvEQAAAIDO8XrlS3p6218UVtuAgEQMyB2iqwbfqJ7+6Ax8x+bG9fq/DTeqKrijHVVmH598ml52iY4rOS0l61lr9fKOv+vFHX+TlY2xb44u7HeFJvU4MSX7ptKndct138bb1BCukySN7/4lfb//1Qr4CPUGAADw8tL2pzSv4mkFbVBGRueWfV9TS76S7rIyRsgG9fDmu7W0+q2Y47r5inTFoF9pWMGYlOwbtmE9te1+LayaJ0nKkV8X9f+xJhYn/29B7+5coMe23KOQgimprbMckD9KVw6a4RnW90ndcv15460Jhb0NzR+law+4I9UlAgAAIBnBOum9S6U1j7sfP/Q30kHXEZQGAAAAAAAAAAAAAAAyBmkq2aV7VHtffuV0vSKD0Yo6cJ/W3PZJmjGmTFJpktNGpGLvVLHBoFS+Id1lZL/SQTJZHCi1bNkyXX755RGhaIcddpjuvfdeTZ48OWJseXm5ZsyYoT//+c8tffPmzdMNN9ygW2+9tdNqTtTy5cu1cOFCSdJZZ52l2267TWPHjo0YU1lZqZ///Od65JFHWvruvPNOXX755Ro6dKjn2kuWLNF1110X0XfCCSfonnvu0bhx4yL6y8vLdcMNN+i+++7TG2+8oRUrViR1HrNmzYoIRfP5fLryyit19dVXa8iQIRFjrbWaM2eOfvKTn2jdunWSpFdffVUzZszQbbfdltS+AAAAALLHuoZVemrb/e1aY1PTOj26+X/1o8E3tjlmrdWfN95GKJqLsML627Y/a1jBGA3OH97u9VbUfaAXdjyZwL4hPbrl/zQ0f7T65w1u976p0hRu1J82/EaNdm9I+Uc17+nlHU/rzNIL01gZAABA5lpeszjiHtDK6ultf9HQ/FEpC/ja3/2z4tm4oWiSVBuu1h833qLfjnhYOab9//739s5XW0LRJCmkoB7ZfLeG5Y9Rn9y+Ca+zrWmTZm35Q7vrSYe1DZ/pqa336/sD2v4yocZwg+6Luv8HAABABmuqlF47Wap433vMh9dLDdulI+/qvLoAAAAAAAAAAAAAAABiyN5UoK4pOrBsX96JXC+pJMaaqdwn1pr76gpJM1O0VnqUb5CdzsMOHc38/ROp/9B0l9Fhvv/976upqamlPWXKFL3yyisqLCxsM7a0tFT33XefRo4cqWuuuaal//bbb9cFF1ygQw45pFNqTlRFRYUk6dprr9Xtt9/uOqakpEQPP/ywKisrNWfOHElSKBTSgw8+GBFGFu3KK69UMBhsaZ999tl66qmn5HcJ0SstLdWf/vQnDR8+XNdee622b9+e8DmsXbtWl19+eUs7Ly9Ps2fP1qmnnuo63hijs846S5MnT9YxxxyjVatWSZLuuOMOXXrppRo2bFjCewMAAADIHv+uWZKSdT6pW66GcL3yfQUR/duaN2lb86aU7JGtPqp5LyXBaB9Vv5fU+OU1izMqGO2TuuWuoQgf1bxLMBoAAICHl3c87dq/rOYdgtF2S+Y1T22oWp/Xr9TowoPbve/y2sVt+qysltcu1tTcryS+Tk3bdfYn/655XyEbUo7Jiej/1OP+HwAAABnIWmnRRbFD0fZY9Wdp/K+lQKreygkAAAAAAAAAAAAAALDvfOkuAB3KZtkcAAmYP3++li5d2tIuLi7WU0895RqK1trVV1+tr3xl78Mc4XBYd999d4fV2R5TpkzRbbfdFnfcb37zm4j2a6+95jl28eLFevfdd1va/fv310MPPeQaitbaNddco5NPPjluLa3dcccdqq/fmw959913e4aitVZWVqYnnniipR0KhTL2ewQAAACg4+0MVqZknbBCqgnuatNf1bwjJetns53BipSsUxVM7lrvDKVm31TZ6VF/qn5GAQAAss26hlVa0/Cp67Gq5sy610un6lBVUuNTdn/u8Voo2fvbZO/zM02jbVBjOPr3nUlVKbrOAAAA6ARrnpA2vZDY2FCdtHNFx9YDAAAAAAAAAAAAAACQIILRsktNVLtgH9aInhO9ZmfuA2AfzJo1K6J95ZVXasCAAQnN/e1vfxvRfvLJJ9XY2Jiy2lLl+uuvl88X/z9h48aN09ChQ1vay5Yt8xz75JNPRrSvuuoq9ejRI6F6ZsyYkdA4SaqtrdVDDz3U0h4+fLguu+yyhOdPnDhRxx57bEv7+eefT3guAAAAgOwStM0pW6vRtn3YvcHlAXhEStU1arQNadk3VRrD7vW7/VwBAABAer3qZc9j3EPtlexv2vK6L02W1/25W0hYLJl2374v3M4h2esAAACANKnfKi35cXJzPr6jbZ8NSxVLndA0G05NbQAAAAAAAAAAAAAAAHH4010AUopgNOmPkp5Ocs4ISXNStD+Qdm+++WZE+1vf+lbCc8eNG6cjjjhCS5culSQ1NDRoyZIlmjx5ckprbI+CggJNmzYt4fEHHnig1qxZI0mqq6tTTU2Nunfv3mbcokWLItrTp09PeI8pU6ZowIAB2rRpU9yxb775purr9z4wcu655yYU8tba1KlTtXDhQknS2rVrtW7dOg0ZMiSpNQAAAADs/7yC0XLkV64vt02/ldQQrnOd0+ASIBArrKvAV5hYkVmi2TYpaINt+lMWvJDkOqnaN1W86gnaoIK2WX4T6OSKAAAAMldtqFrv71roeTzT7vXSK7lotFQFdnkFmqUqGM3rNVu6WNkY59z259FrrE8+5fny2/S79QEAAKAT7NqHILP1/5Cq/i31PHj3Gp9Kb3xN2rXSaZceKx3zpFQ4MLW1AgAAAAAAAAAAAAAARCEYLbvsjGqXJjPZGNNdbQPLqhLYp9AY081aW5vEdmUJ7JM0a+02SduSmWOMScXWQEaorKzU559/3tLu2bOnDjzwwKTWmDx5ckswmiQtXrw4o4LRRowYodzcxB8WKSkpiWjv3LnTNRjtww8/bPm6Z8+eGjlyZFJ1TZgwQc8//3zccdHBdQMGDGgJbktU9Pl/8cUXBKMBAAAAXZBbUJckTe75ZV3Q94dt+q21+tGn5yistg9CuT3g7/Wwe2mgv24a/qckq92/PV/+uOZVtM3i97pGyfIKWPAbf4cGsqVKrOvQGG6QP4dgNAAAgD3e3vmqmm2T5/FUhXtlA2uTDUbr2ODiZNf3CqY+oeR0nVP2vaTr6igN4Xr9/LMLXI+5/Tx6XYcDux2mKwfdkNLaAAAA0A59p0pfWSEtvkLaMDvxeS8d4nzuNkyqXR15rHyhNHuQNPa/pG5DpZ6HSH0mSbLSJ3+Qts6XcntLPcdJRWMkhSVfrlT+llS/WSo5TBp6oVTQz1nPWon3bwIAAAAAAAAAAAAAABcEo2WXz6LaByQ5P3p8hbW2MnqQtXaHMaZSUuu0oSGSPm7HXtG1A9gH5eXlEe1Ro0YlHf43duzYiPa2bUllDXa46KCzeAKByIevm5ub24ypra1VQ8Pehzj2JWQs0Tnr16+PaP/0pz/VT3/606T3a62ioqJd8wEAAADsn4K27esbSQoY9xAqY4zyfAWqD7fNtk/mYfd8X3SufvbzOudGm5rgBa9gseKcElUEy9v0Z1pYRqyAiMZwg7rlFHViNQAAAJkrbMNaWDUv5phMC8Hdn6QiuNham8JgNPd68jLsNVWuyZORkVXbIDq3c/Z6PZJp5wUAAABJBf2lY5+V1j0tvX+V1FguHTxTskHpP7+JPTc6FK21lXfGnrvWo3/NY9IHV7sf8+VJg8+RAt2ljXOdIDVJ6n+qNPhsKbdE6neSlNvD6d/+rrTxBcnkSMMvds5110opv0wyfim/VKr8SFr9V0nWCWTrdUTsuqPVbZCaq6XiMZLxeY+zVqr+VNr8T8mGnPPoNji5vQAAAAAAAAAAAAAAQASC0bJLdDDZyCTnD49qr4iz1+SovZIJRoveK5m52a10kMzfP0l3FdmvdFC6K+gQlZWRWYY9evRIeo3oOZkWuuXzxXiT2T6qqqqKaBcVJf/AdnFxcULjduzYkfTa8VRXV6d8TQAAAACZzysYLcd4/y+/PF++RzBaMg+75ydYYfbwOudUBZR5BSz08PfyCEbLrLCMRut9HTKtVgAAgHT6uPYDlTdviTmG+6e93IK6YknFtWu2TbIKux5LNnjNa3yBrzDpujqSz/iUa/Jcg5/dzsHrOnfF14oAAAD7BWOkA6ZLfadJK38vjfultGtF/GC0zhZulNY+0bZ/8zznI5Z/3xR//ZV3OZ8Hny2FGpwws8IB0ohLpD5HSTYsrX1KWnadVLfOfY0BX5E2vRB/r6U/k3IKpeHfkXIKpKYKKdBDGvZtqaFcqt8obX/bOdZ9pFQ2xelv3imVHSfteN/5uvQYqfuw+PsBAAAAAAAAAAAAAJCFCEbLLv+Oao83xhRaa+sSnH9MnPWij7UORpskaW4imxhjukkan8ReXYrx+6X+Q9NdBvZT1kY+IGKMafeaqVgj0+Xl5UW0m5qakl4j0Tn7snY80d93AAAAAF2DVzCa3wQ85+T5Clz7kwtGc18jmyVz3ZJlrfVcp9hf4tqfbCBDR4t1HTKtVgAAgHR6verluGMIRtvLKxjNJ5/CLuFlsQJ7ExUr/NgtOCwWr3vhTHxNlecrUGPI5XWhyzl7XYc8k3nnBQAAgFby+0iH/db5uuQwaeCZ0sbn01tTOqx/NrL9xcPS5CekiqXSx7+LPTeRULQ9QnXSZ3+K7PvkfxKfv0fJ4dLYn0sDv+q0a1ZJ9ZulDXOkHYudALXaNXvH9zhIKj1WChRLvlyp21Cp71SpaETyewMAAAAAAAAAAAAAkEYEo2URa+1mY8xH2hs65pc0RdI/E1zihKh2rHfmz5N0aYy5sRyryJ+9D6y1W5OYD8BDr169Ito7d+5Meo3oOSUl7g9ht0coFEr5mu0RfY6VlZVJr1FRUZHQuD59+kS0Fy1apEmTJiW9HwAAAAAEbdC1P1YwWr7HA/huD+x7P8Sfn0B12cXrnFMR+hW0QYXl/jq52N/TtT/TwjJi1RMrWAIAAKAr2d60Vf+pXRJ3XCrCvbJdnq9A9eHaNv2puE9O5b1tQ9j995fl+wqTWqcz5PsKtCvU9t/Hknmt6PV6EwAAABlq8qPS0z3SXUX62bD01vnprsJb5QfS299OfPzOFc6Hm27DpCPulAZ/PTW1AQAAAAAAAAAAAADQgXzpLgAp91xU+7uJTDLGjJV0VKuuWsUOVHtFUut3PE/avUYiLo5qR9cMYB+VlpZGtD/99NOk1/jkk08i2mVlZa7j/P7IbM1g0P2BfDf7EjzWkXJycjRw4MCW9hdffKG6OveHVbwsX748oXF9+/aNaO/L9wgAAAAAJClom137YwWjeQV8uT387xUI0BUfdvc658Zwg6y17Vo7VvBFjxz3sPJMCxuLFRCXaSFuAAAA6fJG1cuyin/vGLRBz3v9rsbreiUT+JysWGs0JHlv63Xfnp+BYdOpeK3YFUO0AQAA9muBYumbVjr2WalodLqrQWeoXS0tPFvaMDfdlQAAAAAAAAAAAAAAEBfBaNnncUmhVu2zjTGjEpj331Htv1trPd/Zba2tk/SPOGu0YYwZLan1r5sLSnoigfoAJKCkpEQjRoxoaVdVVenjjz9Oao1FixZFtCdOnOg6rri4OKJdVVWV8B7/+c9/kqqpMxx99NEtX4fDYb3++usJz62oqNCHH36Y0NjJkydHtP/5z1gZlAAAAADgLWjdA6r9xu/aLyUXIOAVCNAVH3b3OmersJptU7vWjhVy1sPfy32ObVDYhtu1byrFCj9LRTgFAADA/q4p3Ki3d76a8HjCZXfzCCGOFVzcXrHWSCaguDnc7PmaLd9XmHRdHc07GK3tOXtdh674WhEAACArDP669NVPpNOWSQPPlHwByd8t3VWhI33yh3RXAAAAAAAAAAAAAABAXN5PSWK/ZK39zBgzS9L3dnflSnrEGHOiV9CZMeZrki5u1dUk6aYEtrtR0vmSArvbFxtjnrPWPu+xT76kh3fXtMeD1trPE9gLQIKmTJmizz/f+8fq8ccf1y233JLQ3I8//lhLlixpaefn5+vII490HVtWVhbRXrFihSZMmJDQPi+99FJC4zrTl7/8ZT3zzDMt7QceeECnnXZaQnNnzZqlpqbEHoQ/8cQTlZOTo1DIybB8/vnntW3btjbXEwAAAADiCXkGowVc+yUpz3g87G7dHnZ3DwTwCiHIZrHOuSFcr1xf3j6vHSt4odjf0/NYk21UvsmM70WsgIhG79+9AAAA0GUsrX5LteHqhMc3hhvULaeoAyvaP7jHonkHi6UkGC3G/WuzbVLYhuQzOfHXiXGPnImvqfI8w+YSD9HOxPMCAABAEkoOlY6fE9lnw1K4WcrJk2rXS3OGxF6j/ylSbolUu06yIWnIuVLP8dL8UzqubiRv62vSwnOl5l1SToFU0E/K7S11Gyw1bJdkpQGnS4Fi5+uCAc7nQHGchQEAAAAAAAAAAAAASB1fugvoaowxg4wxQ6M/JPWLGup3G7f7o0+cbWZKqmzVnizpX8aYsVG15BljfiTp6aj5d1pr18Y7F2vtF5L+J6r7H8aYq4wxrcPPZIw5UNKru2vZY4cSC2ADkISLLrooon3PPfdoy5YtCc39xS9+EdE+//zzlZfn/nD3EUccEdGeO3duQnu88soreu+99xIa25kuvPBCFRXtfcjoueee0yuvvBJ33saNG/XrX/864X1KSkp04YUXtrRramp09dVXJ1csAAAAAEgK2mbXfr/x/l0IeT6PYDSXAAGvB/nzMiSMqzN5XTcpduBBImKFN/Twl3TYvqkUKzwiFeEUAAAA+7vXq15Oajz3UA6rsGu/9+ua9t8je4V+7d0jse9NrHW8gt3SKbnXiu7XINbrJgAAAOynjM8JRZOc0Cwv3YZJ37TS1HnSMU9KJ78lnfKOdODVUv+TY+/xTa9I5ASUneB9zN9NGnzOvq+d7dY/I235f9LG56VV90srbpMWXyEtv0FaPlN6ZaL0whjphbHS08XS0z2kJ4zzsegi6dUT97bfvlja+IIU3v0LfUKNUuMOKdQg1a6Vdn4shWL80tEQr4EBAAAAAAAAAAAAAG15PyWJjvKmpAMSGDdQ0mqPY7MkXew10Vq7wRhztqRXJO0JKDtG0gpjzBJJX0jqIekISaVR01+QNCOB+va4TtI4Saftbgck/Z+kGcaYpZKqJQ3fvZdpNa9J0tettZuT2AtAAqZNm6bDDjtMy5YtkyTt3LlTF1xwgV566SUVFHg/vH733Xdrzpy9v/XTGKOf/exnnuMnTZqkwsJC1dXVSXKCxN5//31NmDDBc85nn32m73znO8meUqcoKirST37yE91yyy0tfdOnT9fs2bM1depU1zlr1qzR6aefrqqqqqT2uvHGG/XUU0+psbFRkvToo4+qf//+uvXWW5WTk5PwOitWrND27dt13HHHJbU/AAAAgOzgHYwW8JyT53N/XegWIOAVdtUVH3b3um5S/OCEeLxCBYyMuuf0SHpeOsSqJZMC3AAAANJhTf1nWtvwWVJz2nuPmS284hHyPV/XtP8eOd79a2O4QQU53eKu0xCu8zzmVX86JRqMZq31DtHOwPMCAABAipVOkcrfbNs/7rrY83ofLe14p23/2J+3r55jnpSe6+9+7KS3pJJDpeZq6fO/OHXnlUr5/aR/t/P3+V4Qkj78pbTidvfjx78g9TxYKhwsrXpA2jBbatwulRwmjbhEUlj68FfS1lfbV0e6rHk0sr16lvMRS6Cnc/6VyyRfQCo7Xlr/j8gxg8+RRv3QGRusltY/J1UskYyRhl4ojbzMCetrzVop3LQ3wC8clHy8NR4AAAAAAAAAAAAAsgH/+pulrLULjDFfl/SI9oafGUkTdn+4eVLSJdbaUBL7hIwx0yX9RdJ5rQ6VSTrVY9o2Sd+x1i5MdB+gK9myZYvWrFmzT3OHDh0qSXrwwQc1adIkNTU5v2lxwYIFOvbYY3XvvffqqKOOipizfft2zZw5U3/84x8j+q+99lqNHz/ec6+ioiKdd955evjhhyVJoVBIZ5xxhh599FGdfHLkb/psamrSrFmzdN1116miokIlJSWqrKzcp3PsSDNmzNCcOXO0fPlySdKuXbt04okn6txzz9X06dM1evRo5ebmat26dXrppZf0wAMPqK6uTvn5+TrllFMiguViGTZsmO6///6IkLjf/e53euONN/TLX/5Sp512mvx+9/9Er1mzRi+++KKeeeYZzZ8/XzNnziQYDQAAAOiimj2D0bz/l1+iD7tL3mEMXfFh9zzjfc7tDV/wvs75MQMTMiUsI2SDniF9EsFoAAAAb1S9lPQc7qH2cI9Gy/cVuvY32vZft3j32V4B0smsk4mvqbxee0SfR9A2K6yw69hMPC8AAACk2OBz2gajGb806Oux5w35hnsw2gEXxJ6XUygN+5a06v62x0b+UCroJ/WaKFUsjjzW7QCp5yHO14EiaezPnA9Jql3bvmC0HuOccK6BX3UPRsvvKw08Y2971GXOR7TRV3kHo522zDmHf5R41zHkPGndU+7Heh8lfel+qXCg9Ewf7zU6U3OVtG3B3nZ0KJokrX/G+XBT/pa0+IrE9ys7Xhr/a+f7tXW+1LBVsmGp15FSQX/n5za/zAlUa65xAtv8hVK3oVJuiRPGVr5IWvJTyeQ434+Rl0h9pznHWmuscMYEitse26Opyvl5zsl1Pw4AAAAAAAAAAAAAaINgtCxmrX3JGHOwpJvkhJZ5vUviHUm/t9Z6vKMg7j41ks43xvxD0n9JOtpjaIWkpyTNtNaW78teQFdwwQVx3vAVg7XOAyJHHHGE7rnnHv3whz9UOOw8nLBkyRIdffTRGjlypMaNG6f8/HytX79e7733noLBYMQ6J510km6++ea4+91888167rnnVFVVJUnatm2bTjnlFI0cOVLjx49XXl6etm7dqnfffVe1tbWSpH79+un222+PCAXLFLm5uXrxxRc1bdo0rVq1SpJzTZ9++mk9/fTTrnOMMbr33nu1bt26iGA04/Ump90uuugibdmyRb/4xS9avkfvvPOOzjzzTBUWFurwww9X3759VVBQoOrqam3fvl0rVqxoudYAAAAAELJB136/CXjOSfRhd8k78CtWWFe2CvgCypFfIbW95u0NrfCan+cr8Ayyc+a1L5AtVeLVkSl1AgAApENNcJfer37T9djYwkO1uv4T16At7qEcNslgtODu0N5Yr4niiX9/m9j9f0O4zrXfb/wK+Pa9vo7iFQYd/fMZ6/rkGe/XLwAAAMgSo6+UKpZKax512jkF0uQnpPzS2PNG/kDa+Ly07fW9fWN+4oRUSdJBv5BW3NZ23vibpR4HuQejDTnH+Xzk3dKCrzjBW5KUky9NuMcJL3PT7QD3MLVEHXC+87nPJCdEq3ZN5PGh30psndLJTo02Kng4p0AqGuWEdBUOkuo2tJ2bWyId9YATIub2b0VT/i51G+J8PeIH0ud/SaymbLLtdelfx6duvR3veAfRtTb0207gmr9Qat4lrX9WqlsfOabvNOfntP9p0ojvSatnSQ3bpb5TpdJjnHC1UINU/ZnzvS4YIMl4h64BAAAAAAAAAAAAQJYiGK2TWWuHdvJ+2yRdboz5iaRjJB0gqZ+kWkkbJX1grV2dor3+Iekfxphhko6QNEBSN0lbJK2V9Ja1tikVewGI75JLLlFJSYm++93vqqampqV/1apVLaFfbr73ve/pvvvuUyAQ/6GMgQMH6plnntFZZ52l6urquHsMGzZML76U+kb1AAAgAElEQVT4orZu3Zrk2XSewYMHa+HChbriiiv03HPPxRzbu3dvzZo1S2eccYb++7//O+JYUVFR3L2uvfZajR8/Xt/97ne1ZcuWlv66ujq99dZbCdVbUhLjN4MCAAAAyGpB2+zaHysEIM8j1Cz64XZrrecD77HCurJZvq9AteHqNv1uQRbJ8LzOJl85xi+/Cbh+r93C7NIhXh2EegAAgK5s0c5/ed63H9fzNG1qXKfGkEswWjvvMbOGey5azLDmxnCD/DkdF4yW6H14g+frqcwMmva6ptHXI9b5d8UQbQAAgC7HF5Am/1U69DdS7Won2MzfLf68QLE09RVpy7+kXSudULHSyXuPD/u29On/SsHavX25JdLQC6T8ftKB10gf37H32EHXSX1PdL4uPUY6/SNp04tSuMkJmyoeFbueCf8nvfE1qSHOe9iOnyu99U0puPvfBgafK439L+dr45NOeMlZp/ozp2/IeU6YWyLyy6T+p0ubXojsP+A8J1RLkkZfJS27ru3cA6+RAkXSwDOkDXMij5UeszcUbc/YjXPjnytSY09oYCxbX3M+b3pJWvKjvf3L48zrNVE67llp+7tS5QdS4WAnNC1Q7PxZDHR3xlUslWq+kHp/KfJnAQAAAAAAAAAAAAD2MwSjdRG7A8nmd9JeqyWlJGwNQPuce+65Ou6443Trrbfq8ccf1/bt213HBQIBTZ06VTNnztTkyZNdx3iZNm2a3nvvPV133XV6/vnnZW3bp1RKS0t18cUX61e/+pWKi4szOhhNkvr166dnn31Wb775pp588kktWLBAmzZtUkNDgwYMGKDhw4frG9/4hs477zz16NFDklRVVRWxxp7+eE499VStXr1aDz30kB544AF9+OGHrtdwj0AgoIkTJ+rkk0/WN7/5TY0aFeeNfAAAAACyUtiGFFbY9VjsYDT3ULPoh92bbZOsx/pd9WH3PF++azBaewPKvEIv9nyv8n0Fqgm1DdPIlMCxVAVHAAAAZJuwDWnhznmux0r8fXRI94l6rnyWFGp7PFPu9dLNeiSjxQtG65YT/5fXeM9PTfBvQ7jOtT/fV5h0TZ3B67Vi9P18o/W+Pl01RBsAAKBL6jbY+UhGTp4T5DXwjLbHehwoTfuX9OGvpKoPnZCnI+6SCvo7xw//nTTqcqlymVRyqNR9eNt6Rv0w8Vr6HCWdtkx653vS5pfdxxSPlQZ+RTpnm7Tj/d3nfEDbur/yiVS9SsrrLeX1SrwGSZr8mPTOxU6om3zS4HOkCX/ce3zot6WP75Qay/f25fWRhl/sfP2lB6T6rdKOd5x2z0OkyU9Encdo6ZTF0vtXSRufT64+ZJaKxdLsJP/cSc7PUW5P589P+cK2x7uPdAL56jdKhQc4P8s9D94dtla8d5y1kg1Ltlmq3+z8+cxp9Tow1CD58iRjkq8RAAAAAAAAAAAAAFwQjAYAabZmzZoOXb+srEx/+MMfdNddd2nJkiVauXKlysvL1djYqD59+mjQoEGaMmWKior2/SGRsWPHavbs2dq+fbtef/11bdiwQXV1derbt6+GDRumY489Vn7/3v/knHDCCTHDv6IlMzbaI488okceeWSf5k6ZMkVTpkxJaOyKFStavjbGqKysLOF98vPzdcUVV+iKK65QRUWF3nnnHW3evFkVFRVqbm5W9+7dVVZWptGjR2vs2LEqLMzMh2YAAAAAdJ6gDXoe8xvv/+XnFSAQ/fB/rDCrrvqwe57ntWtfaIXX/D375fnyVRPa5TIvMwLH4p2/V/AbAABAtvtP7VLtaN7memxKz1OUY3ISDqPqqvY1GK094t7fJri+1/16pgZNe4doRwWjxTj/rvpaEQAAACnS52jpxH95H+8+zPlIlYJ+0uRHpWf6uB/P3R1ylpMvlcV4/5gxUvE+/mLL3B7Scc9JwTrJ+CJDpiSpcIB08iLpo5lS1TKp56HS+Jv3Bsbll0qnvC3VrJbCzVLRKPdQqm6DpePnOMFWf/M74VboOtY8Gvt4zSrpP7+JPab7SKn2i7Y/O7m9nJ/DXZ/sbpdIQ86Txv1Cyu8r7fyPVP6mFKqXBn5VKj5QsiHJl+TjC6EGKRyUAt2TmwcAAAAAAAAAAABgv0YwGgB0ET6fTxMnTtTEiRM7bI8+ffronHPO6bD1M1Vtba2WLl3a0h49evQ+B8316tVLp59+eqpKAwAAAJClgrbZ85jfBDyP5RmPh91tg8I2LJ/xOe2YwWiZ+SB/R+uo0Aqva71nvzyTWJhdusSro73BFAAAAPur16tedu3PkV/H9DhJUuLBxV2XezBarNck7b4/t7HnJ7p+fbjOtT9zg9ESC4L2On+ffAqY3JTXBQAAAHSoPeFnbnoc1Hl1+GP8ksyikdIxj8een2hgnDHSuOulf9+ceG3tMeQ8qe/xUvMuadl1nbMnOkbNKvf+pgrno6VdKa26z/mI5vYz0PdEJzQtv0ySdUL+6tY763jp/SVp0NelwoFS+VtSU5VU+YHU6wgnmK3yQ+fP9shLpV6HS43bpZovpK0LpGC1tOU1qfcEadjF0sAznD2DtVLxWCmH17UAAAAAAAAAAABAJiEYDQCAdpo1a5bq6vY+4DJp0qQ0VgMAAACgKwjaoOexmMFoMR7Cb7KNyt8dwhXrYX+vgLBs5x1a0b7gL69rvWc/r+vdaDMjcCxeHe0NpgAAANgflTdt1orapa7HjiiarGJ/T0kx7vUIl5XkFYvmXDcjI+syor2hcg1xrn2i3xuvOjI3GM3rZ7Fe1loZY3a33c8/z5ffMgYAAADYbxgj9ZooVSxue2zYtzu/ns4w8Ez3YLS83lLjjtTtU3KYNOVve9sjL5PW/k3auULqfZR0wPmSL0cKNUn/uUXa+KITVlU2Veo5TnppfOpqQeba+mryc3a853xEq/40sr3pBe816tZJ65+Ns5GRDrpWql7lhPvZkFR2nBQOOu1ug6URP3BC1XJ7OWvuXOEEuxUOkvpMkkyOZPxSTn7sAEQAAAAAAAAAAAAArghGAwCgHTZs2KAZM2ZE9F100UVpqgYAAABAVxG0zZ7Hcoz3//KLFWrWGK5veUg/1sP+mfogf0eLFRTQHrGCBWLtmymBY/HOv73XBwAAYH/0RtU8z2PHlZze8jXBaPG4R6MZGeX58l3vidt77VJ1f+sdgJyZD0J7hWiHFVbQNitgciXFev3SNV8nAgAAIAuM/IH0XlQwWvGBUumU9NTT0XodKQ3/nvTFQ3v7ig+Ujn5E+ufRcn0dNvbn0sq72vb3Ptr5vOOdtsfG/DSyndtTGvXDtuNycqXxv3Y+Itb+knv4VY+DpTOWS5XLpHXPSKE6acg3pD5HS6+fKW2c23aOJA38qjThXql8obToQvcx8XQfKdWs2re52A9ZacXtkV1bX4tsf3DNvi/vy5XCTVJ+mTTgDCmnUPL5ndC1vic6IWzGSPVbnIC1hi1SyRFS7Rpp10qpaLQTQGiDzkduyb7XAgAAAAAAAAAAAGQogtEAAGjlmWee0ZIlS/Szn/1MpaWlMcd+8MEHOuecc1RRUdHSd+ihh2rq1KkdXSYAAACALi5WMJp/n4PRGlp97f4Qf4788ptAAhVmH68H/Ts6GM0riC5TwjLi1ZEpdQIAAHSWpnCj3t75quuxQXnDNDx/TEs7z2T2vV66WesRjGaM8ky+GtT2Xry9AcLxrn2i63sHo2VmgFh+nNeKAd+eYDT38yIYDQAAAPutEZdIwVpp5R+kxnKp71TpqAcl40t3ZR3DGOmov0iDviaVvykVjZSGTN8bXPbZnyLHFwyUxt8irf2bVL8p8tiI7znXLjoYzZcnDTqzfXUO/ZZ7MNqYHzufSw5zPiJq7e+93uirpG6DpYJveAejTfyT9O9fS/Wb2x47+mFp+MXO1407pGCNlN9Pyslz+p4wMU/H1Zf+LIWbpfevSn4u9n/hJudzwzbpi4cjj0W3E+XLlWSlkiOlgn7ShtlOf06B1Hea1HO8ZJulpkopWO8EvTVskfqfJo28ROp/irR1vlS7VtrxrtTjIKnHOGnA6W3/TmyqlIxfChTtW60AAAAAAAAAAABAAghGAwCglerqat122236/e9/r1NPPVUnnniiDj30UJWVlcnv96uiokLLly/XCy+8oLlz50Y8lJObm6tZs2alsXoAAAAAXUXQBj2PBWIEl8V6CL/1g/uN1j0MIFMf4u8MXqFy7Q5e8LjWe0IyvAIG2rtvqsSrozHcIGutjNmHh4IAAAD2Q+9XL1RduMb12PE9T4+4L/IM37WZca+XyfJ8BVKosk2/1/11ouIFHye6/v4WjOYV0ic559JdxZLiBzsDAAAA+x1jpLE/k8b8VLIhydcF3lZtjBNcFh1eduT/OEFnax53rkX34dJxcyR/gfTl16VFu8PKckukA6+WRvxAskFp57+lzx901ggUS8f83RnTHkO/KX32R2nXyr19PQ6WDrjAe06fY6RV97sfKz7Q+ewLSH0mSdvfjjxucqSBZ0qVH0qr7os65neCo/bI6+18RKw/NrLWPcbf7JxHdNjaAedLIy91vo4VjHZB2Kn1oxukyqVSqEE6/PfS+1d6z0HXtSdsLTqsMFQvbXrR+XCz+WXnI5Z+Jzl/rk2OtPbJvf09xjmhgf1Pcf6MGiOFQ87Pa7BG+vwhqWGrVDRKOvC/nL9XJCkcdNbi3w8BAAAAAAAAAAAQQxf4F3wAAJLX3NysuXPnau7cuQmNLygo0F//+lcdeuihHVwZAAAAAEhB2+x5zB8jGM0reEGKfMDd6yH+rvywu1eAgVcwQKLiXeuO2jdV4tURVkhB26yAye2kigAAANLHWqvXK19yPVbgK9TE4uMi+rzur+OFc3UVYYVd+41MjGvX3mC02PMTXb8hXOfaH+s1WTrFeq3XOqjP8/WL6bqvFQEAAJAljHECsLoyX0D6/+zdd3wc5YH/8c9s0aoXq1hWsS33btwwNrYxxWBMTSCUQAIJBFIuR5IjdwdJCKRwyd3lF3IJKZBASMhBOpcQSiAB23SI6QkYjLtxl9ykXWm18/vjsZBWO88WWbJW0vf9es1rd59nnjKzK2lmV/PdBXfB7G9DWxMUNHSGFhWNg9OegbYDECgAx2fKnSDM/zHMvBkOboCyY8DfC58HhMrhlNUmVKzxJdPvpM9AsNDepv598I9vwr6/x5dXnwoF9Z2Pp34BVp1rQt06jP8E5NfA1Oth5+PxIWez/gvyhiefb/158PrXE8tHXgCVi2DVOdC235SVTodjvtG5Ts0Z3oFVkz5n9n/lQjj50fi6wjHw+OmJbQCmfRleu8m7rvw4WLbKPFfrfgzh7dCy3QTRlU6Hoglm+1eeZd/WslnQ+GLn41AlRHbZ15fBYfsj3uX7XocXP2+WVO3f+n7qcQIFJmhw5IVwcB3sfcEEshVNhBGngi8H8kbAgbehYJRZcGDnY9C6D8rnmt8XAM1bYcdj4A+Z3wM5Jd5jxtqg6VXzO7Bkaufvt65cd+iEZ4qIiIiIiIiIiIiIiGQRfTojIiLSRWlpKX6/n/b29rTbHH/88dxyyy3MnTu3D2cmIiIiIiLSKVkwmj/JhTt+x0/QyaHNbU2o63qBu+1i/2y9iP9osF3obwsGSJdtX3cEomV7WEY6wRCRWJigT8FoIiIiMvhtCK9lc+Qdz7oFJSeT4wvFlfVVuNfg51jPTY70ODl1MFp6/dvWy/PlZzyno8EWyAzx+6RrSFq67UVEREREZIAJDTOLl2CRd3lulVl6U24FTL8h/fWDRXDKKvjbZ2DrHyHWCjWnw/w74terPQNO/iu8cye0NkLNChh7pakrqIfTnoVtD0LLNhh+YmfIUjITr4FtD8QHhk29HoonmOWcjbBzJQRLoWI++Lu8H1B3rncwWv159vFyyux1hWNMwFPM47PEmV8zdcXjYdY3vdtXLbX3DXD6GnPb3mqCojq25R6PMCmRTEUPwd6/maWr7Y/CW7ceWd8l06BiAQQKYc8zsPvpxHVC5VBzJpROg2izCf1b+73O+rpzYe53ze+XgtEmRC3aYgIFw7tgxDIT3JZM2wE48JYJnAwWH9k2iYiIiIiIiIiIiIiIDHIKRhMREeni3HPPZceOHTz00EM8+eSTvPrqq2zcuJG9e/cSDofJy8tj2LBhjBo1isWLF7NixQqOP/74/p62iIiIiIgMMcmC0QJOMGnbkC+XtvbEYLSuF7vbwr5swQ1Dge1C/yMNrbAFJnTsa3vgQ3aEZaQVjOa2UIj+sV9EREQGv5VND1jrlpSenlCmYLTkXFzPch9OnwQIx9wYETdVMFp6z02L9Tg/OwPEAk4QHz5ixBLq0gvRHrrniiIiIiIikkVC5bDw5xCLghsDv+VLW6oWm8VLsBhGXZjZuLmVsGy1CVQ7+A5ULobKBZ31OaVQd45324ZLTZDb1j90lk38jAlwsgmW2Ovy62DE6fH9AYQqoHJR6m0JFpoAt7amxLqyWZ33bfu2u7FXQKgK/v4f3vVnHQ6I+l/H3scHXdixEv6y1Lt+8e+h/lxzv+VdE1K390UonmRCqtpbTIBVfp3Zd2/fZgKvgsWwczWUTIUtv09ve2Tg2veaWZKJ7IH1d9nrt9xnlmQqFpqgxncfTm9e026AwrFQs9wETLZHYMv/Qds+GH6SCWHDgZJJ4Lrw7p/Na9xtN+GN9e8zr2+xa3kX9rwApdNNmONL/wbrf2bqSqbAsqcgJ8nvVRERERERERERERER6TcKRhMREemmvLycSy65hEsuuaS/pyIiIiIiIuIp6kY9y3348aX4x+eQL5eD7fsTyiNpXOxuCwcbCqwBZW7PgxcgdbBAXwQ+9KZ0tt8WtCciIiIymByINrHmwJOedZPzj6Eqpyah3HZ8reOnDt7BaDjJgtF6HirX6kZSrpNu/7bj9Ww9p3IO79OWWHNCnUK0RURERERkwPH1w7/HBwpg5PmZt/PnwuLfwq4nYd/rUH4slM9N3qZovAlQCu/sNociqDgO8muh8UVo3mzKfSGY90Pwh9KbU+0ZsOEXieWjk/w/5egPwYafJ5Y3XGa2yyZvhLmtXAS7nvDuF0x4EQ6e7xVUzI/vb+wVMNY+JPNu9S53XRMIt/o82PGY9zonPQJls+HBWdC8yXudJfdBtNmEL3U8B12N/AD4crz3sQx8u5/KbP3XvtLzsd46/FquXmYC1JpegdZGUzbmcvM7Ia/G/F7w50L0IOx/E8K7gJgJcYtF4NBmKBgJtWeaELEdj0GgEIonwLqfwObfmfJjf2h+Jve/AXueMeGC1ctM+GM22v8WvHwdbP6tfZ19f4fflMKKV0xwmoiIiIiIiIiIiIiIZBUFo4mIiIiIiIiIiAwwUbfNszzoBFO2DTmWgK+4YDRd7N6dNRjtCIIXXNdNEoxmxgs53vs8W8Iy0pnHkewjERERkYHiyX2PWgOMTyhb4VneF8eYg4lry0XD6ZNQuXTCh9PtP+wRMAbZG4wG5vXoHYymEG0REREREZE+5QvA8BPMktb6fph4Dbz8hfjyCZ+EQD4UT4QVL8O7f4a2/VB9MhSOSX8+026Anavjg7/GfMSMaTPpGtjyO4ge6iyrOsEEnhWOgec/SUKoWdEEEygHMPJC72C0hkvNbW6l2Y7tj8bXDz+pM1ztSDkO5JTBmCu8g9EKx0H1KeZ++bH2YLSaM8xzOvpiaA+b7coZBiXTwJ/Tud6Cn0PTyyYUz58L/nzAgUAehKqgZRs4Ptj9DLz7sAmpKptl9ltbkwnA2vaACZ7rGpLnFZrXXd4IE3Qlg8P2RxLL3vlp74/zzEfM0t38O6D+/RA9APv+AWXHmJ/ZTLQ2waGNUDw5/uekJ8K7TeDcWz8Ay/u1CVaeBedsOLJxRURERERERERERESk1ykYTUREREREREREZICxBS74ndRv99nCzSJu5wXu9mC0oXuxu22/HUnwQtRtI0a7ZTyzr20BA12fr/6UTmiHgj1ERERksIu57TzR9LBn3bBAJdMK5njWWY/NdfwEgNv9guku+mLfpRf6m3qdtlib9ZwtmwPE0gnqSxXsLCIiIiIiIkfJlOtM2NaG/wViUH9+fHBZThmMurBnfRdPgOUvwNb7IbzdhIGVz0veZtgcOGU1rP0eHFoPlUtg6r+bsLH8Wqg/Dzb/Jr5N1/mO+TBsuteEhHUYeQEMP7nz8XE/hZVnQuNL5nHpDDjuzp5tYzK1Z5igsvZu58Bd92fDhxO3B0x4mq/L57X+3M4wte4cxwRIlR2TfD7174NZ3/Sum3ytuW3eCsEiCBabx02vwwPTvNvM/DpMvR7cGLz2Vdj0K2g7CJXHmyC7muWw6v0mtE0kHc9+1Cw2TiA+oMyfBxULoGQKHNwA2+6PXz9UDgWjoe0AlM+H9hY4tAGKxsG4q6DieHDbYPtfIbIbgoWw/S+w7zXY8xzEvL9kLqlDG6FlB+QNz7ytiIiIiIiIiIiIiIj0GQWjiYiIiIiIiIiIDDBR1/ufeQNOMGVb24X4XUMAbIEAtvCBocC236JuG+1uNK1Quu6ShTaEHLOv7YEPPQ9k603pBE8cSXiciIiIyEDw2qG/sTe6y7NucelyfI7fs67jmK+7dqJE3ba0ju8HN+9gNAeHkNP7AcJphf6m0X+yY/VcX35Gczqa0gmbs4doD91zRRERERERkX7hODD+42bpC7mVMPYjmbUZNguO+4l33cK74ZXRsPWPECyFsVfAuI911geL4cRHYMv/wb7XoXwu1J4Fjq9znfxaWL4G9r9hyosmmP3Q23JKYcHd8NQlEIuYsuplMOVfO9cZscxsR1tTfNtRF/T+fNKRX5v8cVdlhwP8HR9M/7JZulvxUuf9/Wvh6Q+ZwKlgqQljm3o9vPh5eONb9nFGXQzbH4WI93tmMoR0/wKB9hbY8VezeInsMQvAgbWd5XtfgI339s0cAVq2KBhNRERERERERERERCTLKBhNRERERERERERkgGnv/s/DhwXSCOdK72J374v9beFgQ0GyC/0jsTD5/sKM+4y4yQITcg/f2gLZsiMsI63wiDTWERERERnIVjY+4FkecAIsLDnF2i7VMWbAP7SD0bxj0UwwWjqBz5lK79g2df/J5pDN51Tp7FPbPgpl8XaJiIiIiIhIFvCHYNZ/mcUmkAejL0rej+NAyeTenZuXkefB8KWw6ynIr4PSGeDrEnzvz4UT/gCrzoXWvaas7n0w9Yt9P7d05JTCsLkmSKqrYCkMPyGzvoonwGnPQtt+CBR2htXlVdvbzPpvmPwvnY9dF5o3wY7HTWhb5SKzDwHeuQueudy7n1NWQ9lMaN4Mr9wAm39rykPlMOV68AXBnwfEYOv9sO8fcPDtzLZPpEPLu/09AxERERERERERERER6UbBaCIiIiIiIiIiIgNMm9vmWZ5OSJbtgvWuF7jbLuQPOfbghsEuWYBBONbSs2C0JMELHSEZyQIGWmORfg/LSCcYIp11RERERAaqHa1b+UfzS551s4sWURQosbZNdYxZ4C864vkNbLZotPQCnzOVTqhaOgHF4ViztS7Xl9+juR0NtvO9roHOOlcUERERERGRISNUDnVn2eurFsP7t8PeNZBXAwX1R29u6Zj5dVh1DrSH48v8PTyHDxbHP85Psr1lM+MfOw4UjIIxlyWuO2yOvZ+icRAsgpIpsPg30NpkgtD8ocR1x12VWLb3RXhotnff026AGTfBr8ugrcl7nfMb4Tdl9vmN/hA0roF9r9vXkYHjiQvgQvv7eiIiIiIiIiIiIiIicvQpGE1ERERERERERGSAiVqD0VK/3WcLX+h6gbstTCBZcMNgZwtegJ6HLyQPRstLOW5PA9l6UzrbfiThFCIiIiLZbnXTQ9a6E0pXJG2bLARXx1DgWoLRHJwkwWg9D+VNd5+nCihOFrCW7Dnvb7bzva77xbZ/h/K5ooiIiIiIiAxhviBUzO/vWXgbcSqc+ixs+hVEm6HubBi+tPf6r15mtj/W7XPr8uOg6sT0+ymZAgUNcGh9fPmweZBXHV+WU5rZHLu3j6sbcbjPEnswWrLxpl5vguZcF+7xea/jC8FFYWjeCut+AgfXmSC40ZdAeAf8aaq9/1AlRHbZ66X3tbdA20EI9u/n7yIiIiIiIiIiIiIi0snyKYyIiIiIiIiIiIhkq3Y36lkecOwX53dIJ0Ag4npf7J7NF/H3teShFT0LX7AFJjj4CDo5aYzb/2EZttdKpuuIiIiIDESRWJin9/3Fs64+NIbRueOTtu+L8N0hwXGsx8lHFoyWXttkwWemvtmzPOAECPpSn7P1F9vrsWN7Y26MVjeSUVsRERERERER6UdlM2Dm12DO/+vdUDSA0DCY/xNwulyOMmweLP4N+Pzp9+P4YN73wZ/fWZZTBnNu6YU5VkGo3LtuxHJzO+la7/qqpfHrdTfqInPrOPbxqxab2/xamH4DLLgLJv6zmVPJFHu7QAHMv91ef8pKWPaEvb5gNHzQ+wsH3rPileT1ACMvSL3OYNP0an/PQEREREREREREREREulAwmoiIiIiIiIiIyAATdds8y9MLRrMFCIQ976fTdijIcULWulTBCDb2/ZyLc/if6JMFDPR03N4SdduIWkL6ulKoh4iIiAxWz+9fRYslBOuEshXvHdPZBJ0cHLzXOZKAr8HAde0XbzokC3wOJ22bTLr7PNXxbXiAnk8l26cArW4EF+99m+3bJiIiIiIiIiJ9oOFDcPYGOO6ncOKfYdlqEwKWqZrlcMZrMPdWOPZ2E9pVufDI5+fzw+gPJZYPPwkKR5v79efGh7t1GHWhuZ38L9A96L7mTCid3mXdi7zHH/+J5PMbfYl3+fSboGy2pZEDJVMhL8l+Lhpnbid9zrt++Mlm/uOutvcRqkgezlZ+rJlHtprwaXj/DsgbkVm79kN9Mx8REREREREREREREekRBaOJiIiIiIiIiIgMMNZgtO7/lO3BfrF7ZwiALXArWUjXYDn/xKEAACAASURBVOdzfIQc7+3veTBa6v2c44SyNiyjNRZJaz0Fo4mIiMhg5Louq5oe8KzL9xUyt2hxyj58js8awNvfIbj9zRbAZTjWIK4YMev5UioRN73j1lTH4bb6XF9+xnM6mlKFaCc7rs9VMJqIiIiIiIjI0FRQD2MugxHLwG//oqmUChtgwidh3JWQX9d785v1nyagLFAEvhyoPRsW/6azPr8OFt4Dvi5zH/sxGHuluV99Cpz4CIy8ACoXm9Cyxb+NH2Pcx8Hxd9ueMSZALZmGDyeW+XJg1MVmvw6bl1g/4lQIlUPBKCgc591v+bHmttYy/qgLzG1ejX1uBaPMPrMpGt85jpeL2uCCZnj/Lvs6ODD7Fnv1pM/BnP8xz0cyoy6CqqVQdgwc+yM4ZxPM/R/IrYLxn/QYNsklVFEFo4mIiIiIiIiIiIiIZJNAf09AREREREREREREMtMWswSjpfF2ny3cqyMEoN2NWoMEhvrF7iFfHpH2xDCAngZ/2dp1fY46wjK8Qhr6Oywj3fH7e54iIiIifeGdljfYEtngWbeg5GRyfOldCJrby8eYg0WyYDQfDrlJQpvDsRaCvpyMx0x3n6c6vg3Hmj3Ls/18yh6M1nL41r5/hnKItoiIiIiIiIhkMV8Q5n0f5nwH3Hbwe7yHMeoCqD0D9rwAReMgvza+fvgJZrEZfgKccD/8/T/gwDqoPB7m3AL+FO9PjTjVBHm9fD1E9kD+SFhwF+QfDixbeDc8dhoc2mAel0yBeT809x0HZnwVnr7UbFeHYDE0XG7uV51gAt7W/bizvvpUGH3p4fGXw6tf9p5bzZlmjNIZ0PRKYv3YK8GNwjt3JtaVTANfwCyBJO+Hjb4EiifZ66dcB7kVsOFeWHe79zqnrIaqRfY+pn7BPOfv/BTaW6D2HJhxI/y6xHt9BaOJiIiIiIiIiIiIiGQVBaOJiIiIiIiIiIgMMO1EPcsDvmDKtraL8cO62D2lXF8e+9sbE8ojPQz+8go7g8T9nK1hGemO39/zFBEREekLq5oe9Cx3cFhSujztfkK+PPA6xrQcKw4d9mA0cAg59osqI7EwRVgubkwi3UDfVMe3tn6yPxjNEqJ9eHuTnfcM9XNFEREREREREclyviCQ5LP0QEHy8LNUapabJVPjrjIhY+FdkDc8vq54Apz1Fux9AXw5JqTM1+Xyn9EXmRC3f/yXCS8rnQHTb4Ti8abe8cGxt5kgtL3PQ/FkGHFaZx/l82DM5SY0rKthc2Hip839hg/Bi5+Pry8cB1VLwI1Bfj00b46vH3NZ/OOJ18Cb30nc9rFXmDn486G92xcNlM6AUPnh/TAxsW2HgpH2OjDhbpOvNUtXeTXQsi1x/Ve+BMPmQdFYs/96gxvrvb66a9kO+16Hg+9A234TSld2jKl75yemvvoUs5+aXjP7snwetOyAyE4oGA3BosR+Y20mrC+nDPyHvwCk7QDseBxatoAThOhBs7SHoWAUFI4xQXfdgwVFRERERERERERERI6AgtFEREREREREREQGmGjMEozmpH67L9XF7snCALL9Qv6+Zt13PQytSDcwIVvDMtINhOtpcJyIiIhIttofbWLNgac866YUzKIyZ0TafaU6Ph+q3CTBaA5O0iCuiNvD4OJ0g39THIeHY82e5dl+PmWbX+S9EG0Fo4mIiIiIiIiI9DrHlxiK1sEXgIrj7G2rFpvF2rdjAt+8Qt8cB+bfAbXnwD/+0wRrTfosjLoYAvlmnUn/ApG98Nb3IXoAKhbAwl+YOTs+OOkv8OSF0PiiCTib8CmY9Ln4ccZ/CjbeC+EdnWXVp5hwNccH074AL3+hy7wCJuDNcczjspmQVwstW+P7LZ1ugtl6ImeYdzDawXfg/gmdcxx5oQn/Wv8z2P8G1J5p9lfN6bDhbnjjFvDnmHalx0DJZBMq1vIu7Hw8vu+RH4C8Oqg9A4afmF5YmhuDt38EW/4Ptj9iHo+7Gvx58OYt6W3r2u+mtx5A7dmw9Q+J5cPmwN6/pd9PXg2MWA5T/s0E/LVHYNuDsP8f0NoEB9aaELXqU6B0JjS9DIUNsOcFE/SWVw117zc/F+2t5uegr8LlRERERERERERERCSrKRhNRERERERERERkgIm6bZ7lASfJt1wfZrvYPeq20e5Gk4YBDPWL3UOWfZcsTC4Z277uPo49LKN/A8fSDo4Y4qEeIiIiMvg8ue8R2vEOK15SuiKjvrL1WK+/ufZcNHCcpCFj4R4ef6Z7XJ9qPVu97XwiW4Qc79di+L1gNO/9GnACaZ2LioiIiIiIiIhIlnEcqD/XLLb6Y26GGV+B9jAEC+Pri8fD6WsgvBtySsDn8R5R8Xg49Wl4+3YTiFV5vAlL6wi6mnq9Ccna/HsIFsHoS8w6783BB3O+DU9+ENzD78n68+CY/+oMT8tUoCD1OtsfNUtXm35tFi97nzeLTUe7N79tbstmQ+UiGHEaVC2CYHFimxf+Cd76QXzZ2z9KPfee8gpFg8xC0cCEzr1zh1mS+fs37HXPfzL+ccEoOPFhaG+Bkqner7Wu2iNwaBP4/JA/EnBN6F5PXzMiIiIiIiIiIiIi0i8UjCYiIiIiIiIiIjLA2ILR/E7qt/uSXYwfiYWTBjBk+4X8fc0WvtDT4C/bvu4ejmHb7/0dOBZx0xu/p8FxIiIiItmo3W1nddNDnnXlweFMLZiVUX/2Y72hfgxlT0ZzMKHQPnzEiCXU93Tfpdsu1XG47fg3z5ef8ZyOJltIX6sbIebG7IFvztA+TxQRERERERERGfR8AfAV2utzK5K3L2wwAWs29e83i83ID0DReNjyB/DlQN05UDI5+ZjJBJJsy9HSuMYsa/+nv2cyMBzaCPdP6nxcPBH2v9n52J8HbjvEWlP3lVsF4Z3J1ymbBSXTTFBf8QTY9zps/KW5bXwRChpMYF/NitQhbSIiIiIiIiIiIiLSYwpGExERERERERERGWCiHd+E3E3ASf0Pl7aL3cFcwJ8sxCrHCaWe3CBm23c9D17wDlRIDEbzHre/A8fSHT/dADURERGRgeDVg8/TFN3jWbekdDk+x59Rf/ZjzKF9DOUmDUZzcByHkC+XllhzQn3Pg4vTa5fq+N8aIJblQdO2IGgXlza31Xpcn+wcU0REREREREREpFeUHWOW3pA3onf6kf7TNRQNoD2D/51IFYoGJvys8UXY8HPv+kPrYdW5nY8X3A1lMyBYDE4QcsrgnTth2wPQsg0mfRaqToCCkenPU0REREREREREREQUjCYiIiIiIiIiIjLQRN02z/JgWsFo9ovxI7GwPazLycXn+NKb4CBlCwro7eCF7sEC9nH7Nxgt/eCIoR3qISIiIoPLyqYHPMsDTpAFJSdn3J+C0XrCAcy5Te8Go6UZ/Jui/7DHnMB+XJ8tkp0rJgvRzvbANxERERERERERkTijLoQNd/f3LGQwefrSFPUf7rxfOh1CFRA9BIEiCL8L+CBYBKUzoO59MOJUcJz0xj60GZo3mwC2QxuheBLUrDDtY+3gtoH/8OcQrfsgUAA+XUooIiIiIiIiIiIiA4PezRQRERERERERERlgbMFofif123224AUwQQC62N3Otu9s+ywVW7vugQnZGpaRSXCE67o46f7jroiIiEiW2h7ZwpvNr3jWzS1aRKG/OOM+Q44lBNcd2sFoLq61ruOo0naO0tMA4XT3ear+bfXZH4yW7FwxSYh2knYiIiIiIiIiIiJZp+YMmPBPsPZ7/T0TGYqaXrXX7X4a3v6Rue/PhfbD78nm15vwMwBfEEJVMGw2bP1j5uMHCqByCdScDi1bIX8kFI6F4olQONqEqfn8qftxXdj/pumvoD7zeYiIiIiIiIiIiIikQcFoIiIiIiIiIiIiA4wtGC3gBFO2zXFCODieQQORWNgaBpDtF/EfDUcreKF7OIZt3/c0kK23pBvM5hKjzW0lxwn18YxERERE+taqpgetdUtKV/Soz94O3x0skgWjdUSj9XaAcLrtUq3XYg1Gy894TkdTsnO+SKzFut06VxQRERERERERkQHFcWDud6FiAWz+vQmH2v10f88qfTnDIFQBgXwoPxbevi2z9mWzoXiC6UPhcNmrvcv7sR2haACxNvOa3bq1Z/1GD8G7D5ollfyRMGwOVC6C3U+BP88sW/8I4e3x6467Gnb81cw1VGmC1/LqoGAUDJsF4Z0Q3gFFE0zZwXfg4DoIlpoQuGGzzLZFdpvAtZxh5n7Ty2ZflEyFkilQdowJhxMREREREREREZEhQcFoIiIiIiIiIiIiA0zUjXqWpxOM5nN85Dghz1CucKzFGvJlCx0YSkJO74ZW2IIFuu/r3g586C2ZjB+JtZDjUzCaiIiIDFzhWAvP7H/Ms25U7nhG543vUb+2UKn+PtbLZo5zOBjNcnwecXt2fJ7ucb0t4Pi9emswWnYHiCU754voXFFERERERERERAab0R80C0DLDvh9tfd6+XUw6Vpw26HxRWjeBDtXmZCm6tPgzW97tysYBedsgFgUNv4Snv0oxFp7Pt+8WtOfr9tlYMmC0U5/CUpnQNt+EyYV6PblDXO/C64LTa/Cuh9D9CDUrIB37oJt93v3Oe+H8PzHvesuOAS/KrDP58y1sP5n8Nat0NoIReOhcCyEymHDL+ztpH80bzLLlt+nXvftH3VptznzwL6eqFgIs79tXkst20xoWm4V4Jjb6AETvLbjL3BwPQyba15zzVuAGOQOh8heyBsOweLOft0YOL6+n7+IiIiIiIiIiIikpGA0ERERERERERGRASbqtnmWpxOMBhDy5RFpT7yYP+KGk4R1ZfdF/EdDb4dWpBssEHJs4/Ys8KG3ZBIIF461UERpH85GREREpG89t38l4VizZ90Jpaf3uF97CG7/Huv1N9d1rXXO4Vvb8XlPgovb3aj1PCvT/m2vk2wPRvM7AQJO0HM/RGLhJOcv2b1dIiIiIiIiIiIiKeVW2utqz4JJ19jrbcFo+fXm1heAhkvMEovCX5fBzsczm1/1Mljw88RQNICp18PrNyeW170Pymaa+zkl9r4dB8pmwNz/iS/3CkarXgYjTvPuZ+SFicFrXQVLoHg8zPwqzPjK4dCqLmFUde+DJ863txfpbvdT8Of5vdtnoACih8z9ykWQVwP7/m7Ky2aCEzBhiWXHQMk0EwIX3mley4ECwAF/jglr84XAHzLhg3k1JojN5+8cy3Wh5V0TWrj/H6a+eGLvbUtrE7Rsh6Jx3r87REREREREREREBgC9syUiIiIiIiIiIjLARN2oZ3nASe/tvlxfHvvbGxPKw7EW60X+tsCGoaS3QyvSDaGzjuv2LJCtt2QSCNfT8DgRERGRbOC6LqsaH/SsK/AXMadoUY/7th9jDvXjJ3swWkc0Wm/uu946to26bdbztWwPRgOzT6PticFo4VhLkvMXnSuKiIiIiIiIiMgA5/igbBY0vphYN+qi5G2rlsDOVYnlEz3C1HwBWPQruK8WYim+qOHi2OG5OcnXq3ufdzBa/XnJ2yVTe6YJaQrviC8fdzUUjoYJ/wxruwSphcpNQBtA+bGw57nEPqff2HnfceJD0QCGLzUBUd33S/5IOGc93OMnYyc9Cn89JfN2oUqI7Mq8nQx8HaFoALueiK/b8+zRmUPVEhM02NoIhzZCy1bw55twtWAh5NVC8SSIRWDz700428R/horjoHUfvHw9bLynsz9fCKbfAFOu6/x94rqw7U+w+bfQvAVqzjB9OD7zM7hztSkvm2FC4LpqbQTHb36GY+1AzPzsioiIiIiIiIiI9AEFo4mISK/YtGkTt912GytXrmTt2rU0NjbS1tb5weSdd97J5Zdf3n8TFBERERERGUSirvc/yAac9P7RLFmAgC3kayBcxN/XugeWdehJQJnrutZ93f35sY1rC7E7WiJu+uMr2ENEREQGsnUtf2db60bPuoUlpxD05fS4b+sx5hA/fnKTBKM5fRCMlsmxdbJg5GT95PryM5pTfwg5uRziQEJ5xA3bQ7QdBaOJiIiIiIiIiMggMPZKeOFT8WVF46EyxRdjjL40MRgtpwxqVnivn1sJx94Oz14Jli9ZACd1IFqHYXNgxtfglS92lo35CIy6IL32Xvy5cMpqePajsPtpE8Q07Qsw8nDY2pxbTHjT9j+buoYPQWGDqas71yMYzYH69yUfM1QODZfDutvjyyd9zoQ1+UImCCpdEz4NxRPTX78rpwchbEsfhIPrTJhU44sQKITqk+HVGyG8s2fzkKFp5yrvsMVk3n3IXheLwMtfMIvN9kdhzWfN767WxC/aTClQCBM/A9O+BP4caDtofg7y66DpFdj6J/NzPP6TUFBvgtdClVA+14SquW7877zuj0VEREREREREZMhSMJqISD8bPXo0Gzd2Xkzz2GOPsXTp0v6bUA/cfvvtfPrTnyYSyeDDRhEREREREemxdss/xwac9N7uswcItFhDBGxthhJbOFwkFsZ1XZwM/ikv6rYRI+ZZ1z0cI9m4/SmT8XsSHiciIiKSLVY2PehZ7uCwuGT5EfVtO84Ox1oyPsYcTNIJRrMdJ/ckQDiTY9tk/YfbkwWjZX/YdLJzD9s+GgjbJSIiIiIiIiIiktL4T0DbPnjzOxDZY4K/FtxlwnySGXulCcN641sQPWTCuI7/JQSSfFHCmMtMaNYfxkKsNbF+5s3pz9txTGjZ6Etg7/NQMhWKJx95qFDxeFi2GtpbTdBR9zFHntcZlNbVhE/Djsdg+yMdK8Oc70DBqNRjzvuBWW/LfWb/NXwYxl5h6qZ9EV75UmKbmjNMKJTbHl/e8GHIHW4Cm6IHE9vl15nnrbv680wY3prPpp5vh8pFUGP5rKDpdXjr1vT7EulPPQlFA/Mz9vrXzJLM2z9K3VegCIJFULHA/D5t3moCJX05Zn7tERPe2HAZVBxr76e10fTV+BJED0DJNNOPiIiIiIiIiIgMKApGExGRI/LAAw9w9dVX47r2C1S6evzxxznxxBPfe/zlL3+ZG2+8sY9mJyIiIiIiMjhF3TbP8oATTKt99+CtDpFYi/Uif13sbt9vLi6tboSQk354XLLghe792IPsMg9k6029FR4hIiIiks32Rffy4oGnPeumFsyhImf4EfWf63gfY8ZoJ+pGCaZ5jD/YJAtG43Awmv28JvNQ3oxCf5Osm+y4N9eX5ELILGHbp+Ek54q2NiIiIiIiIiIiIgOK48DU62DKv0PscPBOuu1m3GSCuyJ7IK86vXb5dbDk/+Dx07v154fRF2c2d4DC0Wbpbd1D0VIJFsLSB2DP83BwHVQuhMIx6bX1+U3I27QvJNY1fAhe/w9ob+6yfg7M+k8YdxU8/3FoeRdyq2DOd6F8rlmn/jxYf1d8X/l1cMpqeGgOtO6Nrxt7JRRP8A5Gm/pF2PQrOLA2vnzc1fZtKpthrwuWQltTYnnNGbD4N3BwPYTKzTZ1aHzFbE97BEZdBFWLOutcF8I7IVRh5vinKd7jTv0izPwq7H8TGl+G3c+YAMBD62Hz7+zzFTkaogfMsvm3ydd76/sw4nTzM/Duw7BzFebzoySfL+UMg1n/DcNPhO2Pwr7XoOk1aNkG+/9h6qtPgeplUDrd/B3Iq4Xcit7cQhERERERERERyYCC0URE5Ihcd911caFoH/zgB7niiiuor68nGOy8WKeiQh8GiIiIiIiI9JY2azBaem/3JQvailgvdk8/9GuwSrYPwrGWjPZRxE0WmJBeMJpLjDa3lRwnlPa4vcn2WjnSdUVERESyyZNNjxCj3bPuhLIVR9x/smPIiNtCkKEZjJbsupWOXGD7eU3mx56ZHdvaA4rDsWaPFsZACBBLeq7oegfC6VxRREREREREREQGFcdJPxStK18w/VC0DjXLYc534OUvQPSgCbRa8DMoGJX5+NnEF4DKBWbpLQWj4OTH4G//DI0vmdCiWf8NJVPMUnuWCQXLrep8Exlg3q0mfGzLHwAXyo+D439hQuSWrYZnr4Q9z5n+p99onhOAmf8BL1/X2U/5cTDpszDhk/DsVbDjr5BfC5M+Bw2X2uddcyaeYU3D5sGI0+D1ryW2GXe1eQ2WTE6sK5sBZd/yHstxIO/wl7nk19nnNHypuS2eaJZRF3TWRZvh7dth52OQOwImX2uC7e6rM+FRXurfb9rl15twurzhUNAA5cfCc1ebwDWRvvDug2Z5T7Iv3cEEIT770eT1m35lllTKZpvfAfkjTUhjyxbYvxaCxeZn5uA6KDvG/K6qOgECRbDtftjzgqkrbIDKxSb00fEl9u+6cGij+bnOr/deR0RERERERERkCFAwmoiI9Nibb77JK6+88t7jFStW8Itf/KIfZyQiIiIiIjI0tLtRz/KAk15oQq7lgvxwrIVIzHKxu5P9F/H3Ndt+A6z7rSfrdw9MSD5uCzm+/gpGS3+bM90/IiIiItmg3Y2yet/DnnWVwWom5x9zxGMkDUaLhSn0Fx/xGAORm+TiFQdzUZstaKwnx5620C8vMdqJum0EnRyPsb0D1vwECPqyP+TOvk/t54rJzldEREREREREREQkhYn/DOM/Ac1bTDiXwm/sKo6F054BN5a4n7qGgnUVKIAl95nQNBwTPtcRnFYyBU59Ctpbwd/t/d6p/w41K2DnKhNyNPxECBx+L3TpH73n4CW/BsZcDu/c2WWuPpjyr1A+H9b/DJo3ddZVLoKa01P3m0qwCCqPh11PxpeHys0YNoF8mHSNWbqqXGQPi1r8W3t/x/wHPHmRd90FB83zAxBrh1ir2cfrfwFPW8LmVrwCudXw4udh/V2mLFgKE/4Jqk+G7Y/C2u9B277ONgUNJrytcIwZr3weRA/Bw8fa5y2SSuMas3jZtfrw7RP29juAdT+BZy5Pb7z682HYHDjwJuAzr+WcUvP3I2+EWWfnE7DzcROMWHs2hIaZ8i1/MIGSuVUw6iLTrruOn8FDG2D3UxAsMeGNwaL05iciIiIiIiIi0kcUjCYiIj32wgsvxD0+//zz+2kmIiIiIiIiQ0vUbfMsTzcYzRa+EImFCVsu5E8W2DBUJA+t8N5vNrb97DVOsnHDsRaK8PiHtaMgk8CJZNsrIiIikq1ePvgc+6J7PesWly7H1wsXqNmCqCDzY8zBxR6MRkcwmmM7r8l8v2XaJhILE/QlBqO1WPrJ9Q+M8DD7uWKLdR/pXFFEREREREREROQI+YJQ2NDfsxg4evLefG6Vva57KFqHshlmOdI5HHu7CWHb+icTTDb2is7ws1Ofgrd/BPv+ARXzTcCXr5cu9Zv5DVh5BrTtPzxnP8z6Fvh78OV7Yz7iHYxWfUrydiNOBV8IYpH48vJjO0PRAHx+6Pi8pPJ47758QRNyFiyEBT81S3fDl8L0L0PLdrOvA/lJJueQ/LOIo2T0pbDh7sTyQIEJcBMB2Pwbs3T32lcz6+f5T2Q+dv355vfHvteheAJE9prgyNY9EG2GfX83v+NireDPM7e5VRCq7Lxta4I9z0P0IFQtgRHLzXoH10PpNGhtAlyzbkd4pYiIiIiIiIgICkYTEZEjsGPHjrjHdXV1/TQTERERERGRoSPmthMj5lmXdjCa431RfsQNE3G9w65ykwQ2DBW9GYxmCxVz8BF04v/pNnlYRvrhZL0t4qa/zf05TxEREZGeWtn4gGd50MlhQcnJvTJGsuPsoXwMlTwW7XAwmi3Ey3JOk0w4w30dcVsopDix3BaMNkDOp2z7tDl2iDa3NaM2IiIiIiIiIiIiIoIJ/Zp8rVm6y6+FGV/pm3GrFsHyNbDlPhOwVXsGDJvTs76qTzahZIfWx5ePuzp5u5wys92vf72zzBeEaV+ytykcDcPmwt4X4strVphQtFR8QSioT73e1Ovg9ZsTy3OrILwzdft0lEw1YVI252yEgpGw8OfmcdsBaN4CeSMgpxTW3QHPXuHd1uv56HDMN6F0Jjy+3D72yAth0y/t9Sf80Yy/5ff2dWRo6BrItu81c7vz8fh1dvwl/f7e/I69LlAE0QPmfv5IqFgAw2YDDrjtEGszgWrRQ3DwbTjwlglZG3UxVBwLbQdNefMWaNkGG+81ZXtfMKGU9edBjeXnwnUPh7tlEB4Zi/ZemKWIiIiIiIiIeNKZt4iI9NjBgwfjHgeD6V2ALyIiIiIiIj0XdaPWuoCT3tt9tovyw7EW64X8ycK5hoqAEyTgBDyfg3AvBaOFfLk43b750hZk15Nxe0vUbUv6WuxuKId6iIiIyMC0LbKJt1pe86ybW7yYAn9Rr4wTdHJwcHA9osCG8jGU1/7oznZeE4mFcV034bg6mUyDjm3H4eFYs2d5ri8/o/77i22fHojuy7iNiIiIiIiIiIiIiPSzorEw+V+OvB9fEJatgueuhh2PmzCvyZ+Hkeenbjvjq1AyDbb+EXJKYPSHoHJB8jbH3wuPn25Cj8AEpc370RFvRpzas7yD0cb/E2y4Gw6sTawLlkJbU/pjjLwQNt0L+/7uUemYALS4/ougZHLn48Kx9r6X/A4ePtYERcV1G4CxV0LLu/a2s75lgvJswWjjroLaM03g1L2Wa4TGfRxm3ASvfsWEp0X2QNE4qDwe9rwAjWvs44vYdISiATRvgk2bkgf4Aex/A968JXXf635sllRyq81teHt8efUy8zM57ipYfxds+AVEdpu6k/4CFfPNz+PB9eA4sHMVtIehaglUHJd6XBERERERERHxpGA0EZEhwnVd1qxZwxtvvMHOnTuJRCJUVlZSW1vLokWLKCxM49tzuonFYn0wUxEREREREUkm6rZZ6wJOeoHVIV+uZ3kk1mINX9DF7kbIl0e0/UBCeaahFfYAusTnJugL4idAO4lBZBG3f8Iyemt7RURERLLV6qaHrHUnlK7otXEcxyHky/UM2uqvENzsYA9GczCBZ7bwZheXVjdCyPE+7/GS+fGt9/q252ygnE/Z9tm+6F57mwGybSIiIiIiIiIiIiJyBPLrYOmf2bgopgAAIABJREFUwI2B40u/nePA6IvMkq6isXDmG9D0GvhDUDTB9NObyudDw2Um4KhD6QwY/3Fz/9Ub4tcvGAXH3QWPLzdhRx1qz4a8anj7tsQxRn8QfAF4+frEusrjTeBcMhXzvcPYChrMXOvPg433xtfVnQuhYcn7HTYbcofb632hw7cBKJ0OTa8mrjPqQsitgnnfM4uXlneheYvpw58L/5vkORx3NbxtCb+rOgF2rrS3FelN3QPROmx/BHgE3v5hYt1fT07db+ViyK+H4klQNvPwz7/PBEYWTYCcMmjZZoLV/LnmZzyyG1obIb8G2iMmPHHbA4f7W2TCFWNR87N6aBPgQttB2Pu8uR15vvn9JCIiIiIiIjKAKRhNRGSQ2717NzfffDN33303u3bt8lwnJyeHk046iRtvvJH58+db+9qwYQMNDQ3W+hNPPNGz/M477+QjH/mIZ91NN93ETTfdZO3zscceY+nSpdZ6ERERERGRoSbqJoZjdUg/GM37wvUD0X24lgACW5jaUBNycjlEYjBapqEVmQbQhXy5NMcOevTTP2EZGQdHuEM51ENEREQGmnCshWf3P+ZZ15A7kZG5Y3t1vJCTS5jE46VMj7kGE3ssmgmTg+TnKJFYOKNzmN46ng/Hmj3LB0wwmmWe+9sb7W0yCKATERERERERERERkQEuk1C0Ix2nbEYf9u/AcXeYcLHdT5lgopHnm+ChqddBeAes+zHEIlA6Exb9GorHw8mPw1s/gJatMPwkmHwtHNpowoqat3T2P/EaE/A2/uOw7UHYtbqzzpcDU7+Yeo7+XJh6Pbz0r10nDtNvMPvn2NvBdWHL701V3Tkw/w5zPzQMhs2FvS/E9xmqNKFsTgCCJdC2L3HckR/ovD/mCljzmfj6wnFQtST1/PNGmKVD5eL4/dBh+k0mZM1m3g/hT5NTj9fdol+b53TnE/DCJ03AW6jChFMNmwsH3oSK46G92Tx3oXLzOBYx+/fZKzMfU8TG67Xf1/72afN7pOEywDGv//J50NpkAtOiB83vgmFzTfhaV64bH0gZPQSO3/QnIiIiIiIichQpGE1EZBC77777+PCHP8yBA4kXbHfV2trKQw89xEMPPcRVV13FrbfeSiCgPxEiIiIiIiLZKOq2WesCTnrncraAAK/grc42A+NC/r5mCzSIuJmFVtiCF2yhAvZgtP4Jy8g4GG0Ih3qIiIjIwPPsvsesx2tLSk/v9fFCvjzwCJ7qrxDcrOAmi0YzkgWfhWMtFFOa9nCZHq/aXh/W4/wBcj5lO99JFtA9ULZNRERERERERERERCSO44O6s8zSlS8A874Hs/8bWvdB3vDOuor5ZumqaByc+ixs+pUJSRt+ItQe7jOnDE56BN65E3auMmFkYy6DiuPSm+OUz0NhA2z+nQlUG3Ux1Jxm6oKFsOheaA+bz1UC3d6vP+YbsPJsE/zVsb2z/hN8h794s+5cWH9XfJu8EVCxoPPxxH+G1kZY+10TolZ5PCz4ec8C8mrP8g6HGnkBuO3ebXw5ZvtrzoRt9yfWVy2B3c9ArDW+3PGZIDaAqkWw4hWIHR7D509vvhUL4I1bzPbXnA6jLzX77h7Ltte9D5b8zozz9o9gz3OQO9wEseWNgMaX4PWvpTe2SG9pD5vXY28ac7l5ne9/w/xeyBthAtZ2PWF+VvJHmqA1X44JWswph433mt83FcdBw+VQMikxfM11TQBboCC+XERERERERIY0pd6IZJtYNP5bQqRv5NeZDysGsTvuuIOPfexjxGKxuPKxY8cyZcoU8vPz2bRpE8899xzt7Z0fItx2221s2rSJP/7xjwpHExERERERyULJgtH8RxiM1tttBiPbRf+ZhlbYgtRs+9kWUGALXuhrGW+vgtFERERkgHBdl1VND3rWFfpLmF10fK+PaTsGzDR8dzBxsQejOZh/hLcdI0PfH6/a1rcdn+f58jPqv7/07Fwx1AczERERERERERERERHpZ/5cyEvzffP8Gpj0GUs/IRj/cbP0xMjzzWLjt8yx+mRY/gJs+g3EwiaYrGsg26z/gn2vw94XzOOcMlj06/hrrRwHZtwI028wAUuBI/i8Y/wn4N2HYcdfOstmfLUzIKl4kgla6qr+/Wb/jfyAdzDaxM9A3m9g4//Gl49YHh9oB+kHonUomQLzb0ssL5sNjWsSy8d+tHOcCZ8EPhlfP/I8eOv70Lo3s3l4Of0l+Ns1sHNlZ1mwBGpWwMZ7Mu/P8ZtwupKp5rb789ATBQ0Q2Q3RA0fel2SXd34a//jA2s77W+6Lr1vzufjHO1fC37/Zs3Fzh0N4Bww/CUZdCIFCE4pY0AD5taa+PWJec74cwIG86p4FOYqIiIiIiEjWUOKNSLZp3gJ/aOjvWQx+Z6+HwtH9PYs+89JLL/GJT3wiLhTtmGOO4dZbb2XhwoVx6+7atYsvfelL/OhHnd8A8dBDD3HDDTdw8803x61bV1fH+vXr33t8yy238J3vfOe9x/fccw/HHZf4zTUVFRUsXboUgGeeeYaLL774vbprrrmGz3zG8gEQUF1dnWJrRUREREREhpaoG7XWBZ1gWn0kCxDozTaDkS0oINOAMluQgi14zRqW0U/BaJlub38FuImIiIhk6q2W13i3dbNn3fElpxD0pXfMnQl7+K6C0bx0BKMlC/HKOOjMzfR43nt923Gv7TnONpkGowWdHHxOhhcSiYiIiIiIiIiIiIjI0VEyGaZ/ybsutxJOfQaaXoLWRig/DoKF3us6viMLRQPT94kPwq4nTZBSxQIonX64fwcW/xYeWw7Nhz+nK58Ps28x90d+ADb8Arb/ubO/unOg9kyoXmaC37b8H+BC9Wmw8O4jm2syDR9ODEbLq4ERp6VuO+ZyeOP/Hdn4/lwomwmnPG4etzZCsNTsQ4BNvzLhZl4+aP/8LUHbAfh1sb2+ZKoJ1vNyfiPklJr70RYTkObPhUABrH6/CcjriWFz4cDb0NbUs/YysIV3mNsdfzVLJsZeATNvhtyq3p+XiIiIiIiI9CkFo4mIDEJXXHEFra2t7z1etGgRDz/8MPn5iR9EVFZW8sMf/pBx48bx+c9//r3yb37zm1x88cVMnz79vbJAIMDo0aPfe1xaWhrXV3V1dVx9V4WF5gOSDRs2xJWXlpZa24iIiIiIiEiiqNtmrQukGYyW6cXuPW0zGPVWaIUtSMEWQJdtYRmZb+/QDfUQERGRgWVl44Oe5Q4+FpWmcUFDD2RbCG626whGCzhB/ARoJzE8OtN9l/n63se3mR7nZ5tMA9wGynaJiIiIiIiIiIiIiIgHnx+GzTmK4wVh+FKzdFcyBc5+B/augWARFE80gWwAgTw44Q+w7QFofAnKZkHtWWb+vqAJVYseglgUckr6dhsmftoENK39HzNm6Qw4/pdmHqlM+BRsvAda3u0sG34i1KyAFz9vb9fV9JviH+eUxT+e9iV49cbEdmM+ml7/HYJF5jnZ93fv+pxS73KAYJfnIJAHgfrOxyNOtwejTbsBXvuKd92pT0PFcfFl79wFL3waogc6yyZfC2M+YuYe3mnGanwZdj4Oe//WuZ4vxwTIdQ+Ry683z2+sFRlE1v0Edq42gYJ5I/p7NiIiIiIiIpIBBaOJiAwyjz32GGvWdH77SHFxMb/85S89Q9G6uvbaa1m5ciX3338/ALFYjG9/+9vccccdfTpfERERERERyUxvBKNlevF6wAmk3fdgZ9t34V4KUrCFYtjKMx23t0RcBaOJiIjI4NPUtoeXDz7jWTe9cC7lwb75BulsO9bLBi6xJLXOe/dyfXkcih1IWKOvj1cjrvdzE441e5YPlACx3AwDsRWgLSIiIiIiIiIiIiIivcYXgIpjvev8Iah/n1m8BAr6bl5dOT445maYcRO07oPcivTbFo4xAV9v3wYH3oKKBTD+UybY652fwr7XO9f150N7t8+d/Pkw+oPJxxh1sQkXc7t91tbw4fTn2WHyv8IzlyeWVyw08971ZGJdyTRwnMTyDjWnw5rPJJbn10PJVHu7glGJZWMuM9t7aKOp9+fE1+dWQcOHzGLjutC8CXDMHBwH2iPwS8tnYKFyOOF+eOajsP8f9n4l+xxYC2/fDtNv6O+ZiIiIiIiISAYUjCYiMsjcddddcY8/9alPUVNTk1bbb3zjG+8FowHcc889/OAHPyAUCvXqHEVERERERKTnkgWj+Z303u4LOZldlJ/p+oOZ7cL/TIMUbCEXtv5tQQr9FTiWcXDEEA71EBERkYHjiX1/JmYJ5FpSenqfjZttx3rZwHXtdV2vpQj5cr2D0Xrp+NzG1r+tn1xf8i8wyhahDAPcBkrgm4iIiIiIiIiIiIiISK/yBTMLRetQMApmfj2+zF8Oy1bDujth32swbC6M/ShsfxRe+jfY/waUzoR5P4T8uuT9F0+Axb+HZ6+EyC4IFsOsb8HwEzKfa93Z4M+F9m6fi428AGpWgC8EsUh8Xf15qedXdQLsXBlfPu4qGH4iOH5w2+Pr8usht9q7P38OFI9PvS02jpMYuuYPQV4NtGxLXH/u96HiOCieaA9Guzhm+o3sgT3PwY7HIVQBvhzIKYNDGyBQCLEwvPyFxPb158Pm30DZbGhc0/Ntk0Q7HlMwmoiIiIiIyACjYDQRkUHmiSeeiHt86aWXpt126tSpzJ49mzVrzBun4XCYv/3tbyxcuLBX5ygiIiIiIiI9F3WjnuU+/PgcX1p92MK3emv9wcweWtE7QQq2fW0Lp+uvwLGMt9cNE3Njab9GRURERI62qNvGE01/9qyrCtYwKX9mn43dW+G7g0uSZDQ6k9Fs+663gs5sbP3bg9EGRoBYpsFoma4vIiIiIiIiIiIiIiIiHnLKYPLn4stqzzRLrM0EsaWr7myo3Q7NmyGvDnz+ns9pyR/giQ9A2z5TNu5qmPBPps9Fv4YnL+gMTqs5E6b8a+p+l9wHz10N2x4wwW1jPwZTrwfHB6MvgfU/i19/0mfjvznpaKg7B976QXyZPw9GnGbuj70CttyX2K5sdudcQ+VQc7pZbKZcB1vvh0PrTSBeZbfr9/43yXZ/0E1ef2GLeW62PwprPmdeDx1GXwIb700MoRvsWhv7ewYiIiIiIiKSIQWjiYgMIo2Njaxbt+69x6WlpUyePDmjPhYuXPheMBrA888/r2A0ERERERGRLBJ12zzLg076//wUcIL48BMjvX9s0cXunWz7ItMghYhrCUazBKBlW1iGLfAh4AStr9FWN0KuZftERERE+tvLB55lf7v3P0IvKV3epwGv1hBcyzHjUOAmCUZz4oLR+ja4uMBXxKHYgbTXtx0nD5RzqpCTYYh2huuLiIiIiIiIiIiIiIhIhjIJRevg+KBg1JGPPWIZnLcLml6B/FGQW9FZV3cWvH8n7H4GCkZC0YT0AsxySmHRLyHWbubZtc38n0D+SBM6FiyChstg/NVHvh2ZmnYD7H4aGl8yj31BOPY2yCkxj6uXQagCIrvj2zVcmtk4jmP2o03DZbD+rsTyydea27FXwLqfJNZXnwr+XLOMPB9qz4bILhPW5j/8+d6Mr8IfxniPO/ULMOMr8Ms8iLV6r3Pac7BzlQkbe/3r9m1IV+5wCO848n6SaWvq2/5FRERERESk1ykYTSTb5NfB2ev7exaDX35df8+gT+zatSvu8fjx43Ey/FaMSZMmxT3euXPnEc9LREREREREek/UjXqW+5303+pzHIeQL5eW2KG01s8dIBfxHw22gDJbAIKNLUjB1r/tOeivsAzb/EsCZexp834vIRIL67UkIiIiWWtl04Oe5TlOiONKTurTsbMtBDcb2GPR4vXGvnNd13o8Xxwo5VBresFoUbfNGhKcN0COg0O+UIbrD4ztEhERERERERERERERkR7yBWHYHO+6YJEJT+tRv36PsgDM/KpZ+lNeNSx7CnathpbtULUECkd31vtDcNJf4Inz4cBb4MuB8Z+Cidf07jxGnu8djDbyAnNbc6Z3MNqYy+Mf+3Mgvza+LK/GPm71ySa0bs534PlPJNZXHg/l88ziuvZgtJIpZj8+dxVs+pX3OufvhZyyzsdt+8GfB4c2mr4LG8zrItYOe56Dtd+FPc9C82aItZlrRCd+1gTVOQ7seQHW/9T0013rPvs2i4iIiIiISFZSMJpItvEF4t8oE8lAY2Nj3OOSkpKM++jeZu/evUc0JxEREREREeldtgvtA05m3wyZ68tLOxjNFjYwFFkDyjIORvNe3xYs0FuBbL3FFjRR7E8WjNYClHnWiYiIiPSnrZENvN3yumfdvOIl5PsL+3T8bDvWyw72aDSHzi8F6o1gtKgbJUa7Z11xoIx3Wzd79J/43CR7vgZKgJjP8ZPjhGh1I2mtr3NFERERERERERERERERGZQCeTDiVHt92Qw4ay0c2mxCuQJ98HlgzRkw9Yvw+tfMY8cHs79tAsmA/8/encfHUR72H//O7C3r9CFfMsjGF+bwgc0NxpyOCwRCEiAHOZq7JKGE8kubNnZ+ISRpaBNISEgoDTQl9JcmpKQOkNJgm9MhmBsbbIMNvvAtWedqj/n9MdjSaueZ3ZVWK630eb9e85LmeeZ55pnZtfyMtPMdTf4LNyStZ+jY5EukKe/L3XcgIk1cKu16OLM8MkYae4b7fcN7pWf/SnLSmdtM+UD395Ylo4bLpHCNNP2z3sFo4dFSqDazLFTtfq2anlluB6Rxp7mLn6kflSZfLK3yeO0Sze6xWLZ/HwAAAACAIYMrOAAYRhwn8yYRy++Xi3kqRh8AAAAAgOJJOUnP8qBV2DMQCrmBvVxu4i+FiNX/4AV3e1Mwmnf/pteg0EC2YjEGowVrPcv92gAAAAy2xw4+bKxbXLtswPdfrPDd4cTJMxjNdO4KCZXzO881Qe9gX6/+O1PmfmJ2Rd7jGWyFXSsSjAYAAAAAAAAAAIARbNSUgQlFk9zQsbnflN63RzrvUemKfdKsL3XX2yHp9F9KS/4gzfuOtPj30lm/dUPP8jHvu1J0QmZ/C38sBcLuemyidPp9kh3u3qbxo9KMz2f2M+2T3v03ftT9Wn+WFBmXXX/UB/2D1foqbPoMoyO9tFzavabvfae6pMShvrcHAAAAABSksLslAQBD2ujRozPWm5ubC+6jd5u6Ou8bPgAAAAAAgyPhJDzLg1aooH4KCTvjZvduxtAKJ//gBcdxjCFh5mA07/LOQQobMx1vtSE4QhrZwR4AAGDo6ki16ZlDqz3rjokdq4bo1AEfg2muR7CsQY8Px0csU6hc/ufOby5fHfCe33r17xfGVk5h01E7ppZUfn9jNF0fAQAAAAAAAAAAACiS6DgpusS7zg5IEy90l0LVnSi95wVp10Nu2NfEi6TqWZnbHP1BadJ7pP3PSFXTpVFHZ/dz7FeknSulzj3dZdM+KdXMfneMIems+6U1l0iJJrds3FnS3G8VPuZ8hMwPd9WrN7lLxvY10ugFkh11g+5qTpAsW5pwgRQZLXXulcJ10ssrpC13S6m4G/Z22r+5561lszTmZKlicu6xpbqk9relQ6+721fNcvfVsVMa1ej+Lbz5NSnVJlVOl0JVbj0AAAAAjFAEowHAMDJuXObTEzZu3FhwH6+//nrGen19fb/GBAAAAAAorqQxGK2wX/VFCwg7Ixitm+lcJJ2kkk4ir4C6pJNQWmlD/97BAuawjMEJGzPtt8KuVNAKeb5P/YIiAAAABsvaQ6sUd7xDtM6uXVqSMZjmgPF0pxzHkTUQT8ke4hzHMdb1PBvGebLhNfXc1idErcYQ/OvVf2e63dhP1K7IezyDrZDrP64VAQAAAAAAAAAAgDIWGy9N+7j/NqEqacJ55vqaOdKFa6Utv3BDv+qXSI0fytym/kzp8p3S/rVSZJzbZqACv8I1hW2faJZ2ryqszZ7HpAcazfUVDVKqQ4rvdwPOWjcX1n9P486S5nzVfQ3ssJTukgIRKdEqBSskWZKTlKyg5KSk1jek2EQ3qK51izT6JDfgzUuixW0fqsx/PJ173Nc61SE1XC7VHtf3YwMAAACAHAhGA4BhpK6uTsccc4zeeOMNSVJTU5M2bNigY489Nu8+nnrqqYz1RYsWFXWMI/HmHQAAAAAopmTaFIyWO5CrJ1P4gpdoAdsOd37nLZ7uVDCQ+3XwC14wBdaZXoOE06WUk1LACuTcbzGZjiFiRxWxo0qmst+nfscNAAAwGBzH0WNND3vWVQVqNK/y9JKMI2J5zwHTSinpJBSywiUZx1DiyC8YrfsD8qZ5ciEBwn4BvtWmYDSPNqZ9BhRUyC7sem0wFXKtWMi2AAAAAAAAAAAAAIapyqnSCV/33yYYk8YvGfixhAoMRhsI7du7v+9PKJok7X1cWvN4//robfwSqe0td3FSbtnML0pdTVK03g0/2/oLqW6eNOkvpMkXSzv+W3r15sx+XvoHaeaXpOpZUstGKZ2UGi5120XrJceRvO4ldRwp1S5ZASnAw7gAAAAAmBGMBgDDzJlnnnkkGE2S7r33Xt100015td2wYYPWrVt3ZD0ajeqkk04q6vgikUjGejweL2r/AAAAADDcpZT0LC84GM0q4GZ3Q1DDSOR3439nukOjAlU5+4g75uAF0+vit9+udKdigVE591tMfsFoUTumtlRLdhuHYDQAADC0vN7+knZ3bfesO6PmwpKFWeUK3w3ZIy8YzU/Pj01HDMHChQSjmea2lmxVBqqNbRzHyXggUIdhn9FAeYWHEaINAAAAAAAAAAAAoGwFIlLFUVL724M9kqFr96rsso0/zC47+IK7vPotc18bb8tc33R7YWMZc7I0+VLJDrqBaWMWSvWLpTJ6+BgAAACAgUMwGgAMM9dcc43uueeeI+s/+tGPdO2112rChAk52/7t3/5txvpVV12VFWTWX7W1tRnru3btKmr/AAAAADDcJZ2EZ3mwwA8BmAIEvHCzeze/c2EKVOit0yekwfS65NrvUAlGi9oxY5Ce33EDAAAMhjVND3mWW7J1Zu2FJRtH1GduHnc6VCnvcK7hzJHjU9sdRmYORss/lDdX6K9pfAmnS2Gr++9opjC2crueKiQYu5DrSgAAAAAAAAAAAAAoiakfkV69ebBHgXzsf8Zdept8qRSulWqOk0LV0oFn3UC39m3SpL+QImOlQExqeK9Uf45kWZJll3z4AAAAAAYWwWgAMMyce+65mjdvnl544QVJUnNzs66++mo9+OCDisXMN158//vf1wMPPHBk3bIs/fVf/3XRxzdt2jSFw2F1dXVJklatWqVEIqFQiBR/AAAAAMhHIm0IRivwV32F3MAeKbMb+QeS33kzBSFkb2cOaTD17xdOMBiBY6Z9Ruyo8f1SSDgFAADAQDuY2KeXWj0+XCvpxMqTNTo0rmRj8Z9jjtQ5lDkYzcojGK2QObJp26gd870W6kx3KGxHMta9+6nIeyxDQUHXigWEqAEAAAAAAAAAAABASZzwf6VEq7TxtsEeCfpqx+/Mddv/q/v7jT/s/j5UK4XrpMho92vG0rusx3qo2g1WAwAAADDkEIwGAEPMO++8o61bt/apbWNjoyTprrvu0mmnnXYkfGz16tU666yzdPvtt+uUU07JaLNv3z4tX75cP/7xjzPKb7zxRp144ol9GoefcDisM844Q6tWrZIkvf3227r00kv1uc99TjNmzFBFRebNIRMmTFA0yk0VAAAAAHBYSknP8qBdWOB0tICwM4LRuoWtiCxZcjyCGvINrTBtZ8lWyAp71vm9BnGn9GEZpmOI2DFjkMLIDfUAAABD0RPNf5CjtGfd4tr3lHQsvnO9ETqHSjvmYLQeuWhFCeU1BRy7ob+5gpFrj6x3pts9tyvk2mso4FoRAAAAAAAAAAAAQFmzA9LCW6UFt0g7Vkr7nnbDtFo2DfbIMJASTe7StqWwdpb9bqiaR6BaVshar/VgJaFqAAAAwAAiGA0Ahpirr766z22dd28SWbBggX70ox/pc5/7nNJp96aedevW6dRTT9X06dN13HHHKRqNatu2bXrmmWeUTGbeVH/BBRfom9/8Zt8PIofrr7/+SDCaJD388MN6+OGHPbddtWqVzjnnnAEbCwAAAACUm2TaEIxmFfarPr8b/Puz7XBnWZYidlSdHuEJXmVeTCENUTsqy/ABiYgdMfaX736LJekkjAF9ESvqE05R2nECAACYJJ2Enmx6xLNufLhBsyqK/+AYPyErLEu2Z1Bbqed6Q4c5GM3qkYxmmnt2OXGlnZRsK5BzT8bQXytXMFpmO9NrVW7BaFwrAgAAAAAAAAAAABgW7JA05XJ3OeZT0spZ3tud9ENp+mek302TOnZ4bzN+idS6RWrbOmDDxSBx0lLXAXcplBXMDlPLK2CtTgpUEKoGAAAA5EAwGgAMU5/+9KdVV1enT3ziE2ptbT1SvnnzZm3evNnY7pOf/KTuuOMOhUKhARvbxRdfrJtuuknLly9XKpUasP0AAAAAwHCUdBKe5UGrsOu4Qm7OL7cb+QdaxI55hh7kG/xl2s4U6iBJthVQyAor4XT1eb/FYgqOkNxgBFM4AsFoAABgqHi+5WkdSjV51p1du9QYVjtQusN327Pq/OZew5mTbzCa5RdcFlcsUJFzX3HHPD/3uxbqfU3g9fod7qecFBaMVl7HBgAAAAAAAAAAAGCEGnWUZEekdDy7bsJ5UiAszfyC9OLXvNuf96jkONILX5U23ialOqW6+dIp/yKNXtC93S8NnzeITZQu39m9vv4fpRf+j/e2l213A7feus/dX88xh+uksadJHTul8BgpEJV2/t7d3unxwNvq2W5Z8yvZ/QdiUorPcxaFk5Tie92lUHY4d6CaKWQtwEPMAAAAMDIQjAYAw9j73/9+nX322br55pt17733at++fZ7bhUIhLVmyRMuXL9fpp59ekrF97Wtf0+WXX65f/OIXeuqpp7Rx40Y1Nzero4NfqgEAAACAH1MwWsAq7Fd9hd3szh+o44m2AAAgAElEQVTQezKFL3iFpRWyXa7zHLVjSqSGejBazCcYbWSGegAAgKHnsaaHPMsjVlSnVi8p8Wje3bcxGI2/m/jxCy6LO52KKY9gNMM8NWJHFbRCCiiolJJZ9XEns52pn5idewxDSSFhZ4RoAwAAAAAAAAAAACgLgag05X1u2FhPdfPcEDFJmnSxdzDajM+7Xy1Lmv9d6YSvS+kuKVQjWXbmtpGxUtzjHs5jPpO5PuECSR7BaMEqN0TNsqXZ17lLPtIp96sdyK7r3CPteUyqminVHi81b5AePN67n+rZ0qHXvOtq5kjLXpGeu156/Qf5jQtm6S6pc7e7FCoQLTBQrcd6IFz8YwEAAAAGCMFoADDItm7dOqD919fX6wc/+IH++Z//WevWrdNrr72mvXv3Kh6Pa+zYsWpoaNCZZ56pqqqqgvtesWKFVqxY0eexzZkzR9/+9rf73B4AAAAARqKkk31DviQFrVBB/XCze9+Zzke+wV/G4AVD4NqRejuqllRzn/dbLH4BcBE72u/zAwAAMJC2d27RGx0bPOtOrj5HscCoEo/IZZoLjtQ5lCPHWGep+wnbfuHC+YbKmc7x4XltxI6qPd2as12HR7Cd2768rqcKuf4jRBsAAAAAAAAAAABA2Vj4I6ljp7RnjbtePUs68z/dwDNJqjtRmvYJ6c2fd7eJTZZmfyWzn+AoSYbPFjR+xDs0rPHqzPW6eVLVDKllU2b50Vdlh63lwysQ7bBovXTU+7vXYxPM2055n/Tqzd51jR91z9VJ33eD3faskZykNOtL0qijpWc+L22+w9z3pW9KO/5bWvdl7/rj/s4Nldv8M3MfcKU6pY5d7lKoQIUbkBbpFZ4W8ijLCFirlezCPqsOAAAA9BfBaAAwQti2rUWLFmnRokWDPRQAAAAAQD8knYRneWgAg9G42T2T6XzEnTyDFxxDMFqO12SoBI757S9qx4yhHn6BagAAAKWypulBY93ZdUtLOJJM5jnmyAxGk08wmoocjGaapx7uO2rHDMFoHb7rh5Vb0HS+14qWLIWtyACPBgAAAAAAAAAAAACKJDJaOn+11LpVSnVI1bO7Q9EOO+UuaeJF0u7VUmWjGwZWMSn/fcy+XtqxUmrd3F026zo3hK0ny5LO/p205mKp9Q23bOJSacEthR9XocJ1UqhGSmQ/qFdT3iftXiXtezq7rme42uRl7tLT1I/4B6ONapQmnO9dV3GUNPdb7vdjT5fWftx7u6kfk7bc41034QJ3jPEDUtfBXkuPMq/jHklS7VJHu9Sxo/C2wcpeYWl5BqyFav3D+wAAAAADgtEAAAAAAACAMmIKRgsWGoxmCK/y3LbMbuQfaKbzkW9AmWm7XAF0pv2WOnDMFPhgyVLICpvPz4gN9QAAAENFe6pVfz70mGfd9NgcTY40lnZAPZjCs0ZquKxvLJrVMxjNfK3S2e/5eezdr/kF/3am2z23K79gtPyuFSN2NOO1AAAAAAAAAAAAAICyUNlorrMs6egr3aUvRk2RLlorbfuN1LpFql/sBq15qZktXbJJOrTBDSqrmNy3fRbKst0AsTfuyiyvminVLZBmf0V64gPK+Mv9lCukqun+/Y49XQpWScmW7Lrx57nntmaONO4sae/jmfUzr+3+flSjeR+1J5jrZn9FmmQ41z2lU1KiyT887fDSO2TN69hGkmSru7S/XXjbUE1mWFrvgDWvkLXwaClU7b5nAQAAMCIRjAYAAAAAAACUEVMwWsAq7Fd9hdycH7YiBfU93PU3tMIULJbrNelvIFuxmPYXtiKyLdt4HKbjBgAAKJW1zY+qy4l71p1du8yzvFSGylxvqHAcv2i0bgEroJAVVsLpyqrLP7jYf35uCgrr3b/peqDsgtHyDNEuJGwbAAAAAAAAAAAAAEaMyBhp+mfy2/ZwWFipLfi+1LZNeud/3PXKadLZD7jjOeoK9/vNP5Xie6WJS6Xj/z53n5YlvXeL9JuxmeV2SDr2b7rXF/9O+vPnpR2/d4Owpn9WOvaG7vqxp7ghWonmzH4qjpKqZpj3H6rKPUZJsgPuaxQZk9/2PaUTUlfvUDWPQLXeZfEDUsr7YWsjRqLZXdq2FtjQksK1PoFqPgFrwSr3fQkAAICyRTAaAAAAAAAAUEaSTtKzPGiFCurHdHN/1nZWVDZP2sqQbzCCiWm7XK+JKXgg30C2Yok7pvEXFhwBAABQSmknrceaHvasqw7UaV7VKSUeUSbzHGqkhsuag9FsZV6fROyoEimvYLT8zp1pPn34NTGH1mW2MwejVeQ1jqEi3yA303kBAAAAAAAAAAAAAAxxoSrp3D+44WiJQ1LNsVLPzwo3XOIuhYqMka5KSK/9k7TrD1J0ohsSN35x9zbhWumM+yQnnbnPwwJRac6N0otfyyw//mvSmJO992sFpJrjCh9voeyQFB3nLoVKdeUIVPMJWEuN5M/fOt3no1BWwH2/hXqEpfkFqvUsC44iVA0AAGAIIBgNAAAAAAAAKCNJJ+FZPmDBaNzsnsV0TvINKMsVvGDe79AIHMsdHDE0AtwAAAB6er39Je1J7PSsO7P2woLn08U2VOZ6Q4U5Fi1bxI6pNXUoq7zfwcWW//y2dzvzPLm8rqnyv1bMbzsAAAAAAAAAAAAAwBA1akrx+7SD0pz/4y5+/B7afNzfSaMapbd/LQUi0tFXSw2XunXjzpL2Pp65/cSLpHBNv4Y94AJhKTbeXQqV6nSDweI+4WmmsnT2g+ZGDCclxfe7S2uBbe2QFKp1A9VCdVLNbGn656WxhnC+QqTi0r6npMhYN9CPB5gDAAAYEYwGAAAAAAAAlJGkk/QsD1qF/aov35vzo2V2E38pmM5JPM/gL2PwQo5zbdyvU9rAMdP4D4/PFJCQcLqUdlKyrcCAjQ0AAMBkTdODnuW2bJ1Zc2GJR5ONcNnezNFoljKfyHs4wKy3vOfnjv/8PGKZ5v/d7ZJOwhhiHSuza6p8rxXLLfANAAAAAAAAAAAAAFBGGj/kLr2d8Utp9TKp6WV3ffQi6ZR/Le3YSi0QlWIT3aUQjiOlOrzD07JC1jy2MXxmfURIJ6T4XneRpP1rpTfvdt9v486QxpwiVc+UAjEpOEoKVrpf7bBkWeZ+3/qV9Nx1Useu7rKTbpUmXCDVHJvf2BIt0p7H3PC2qunS3qeldFxqfUOKTpQmLXXLAQAAhgGC0QAAAAAAAIAyYrrZPmiFCuonYAUUssJKOP5PAjMFNIxkpnNiCgzL2s4UvGAIdMi931IHo3nv7/D4/ML04um4YoGKARkXAACAyYHEXr3c+qxn3dzKU1UbGlPiEWUzh+/mN8ccbhyfYDT1DkbrZ6hcX+e3Pfv321e5BYjlG45NiDYAAAAAAAAAAAAAoOQqGqT3vCgdet0Nhqqc5h9ENZJZlhSscJeKhsLaOo6UbM0OS+sdoNY7YC1xOFQtPTDHNNgO/NldTKxgZlDaka+jpP3PuOevt3VfNvcXGSPFGqT4HindJcX35x7jOkkTzpfmfls6sE5q3ybVnihN/gt3HJL7+qbj0rb/csPfxp4qjVmU2U/63XsW7MLuUQAAACgmgtEAAAAAAACAMpIyPH0raBX+q76IHVMilSsYjZvdezOdk/yDFwzBaDlC6Ez7LXVYRq7x+71n4ukOgtEAAEDJPd70sBx5f+Bycd17SjwabxHLMNczhOoOd45jDkbr/XlmY6hcHufOcRzj/PZwv8aA4h79d6bM1wIxu7zmvyErLEtWjnA6QrQBAAAAAAAAAAAAAIPEsqSa2YM9iuHNsqRQlbuMOqqwtk5aSrSYw9RMZfEDUqJZyvF5hSHNSbrHkGguTn/x/fmFofX2zv+6S2+BmBQZJ7W/7d3uwrXS/j9Lr39fan3TLas5Tjr2b6SjPuAGEsqRaua43zdvkNKdUuUxbvjaroelZJtUv1iqOqbwcQMAAPRCMBoAAAAAAABQRpJOwrM8aBX+NKaIHVVryv8Pr9zsni1iGYIR8gwoixsC1HKF0Jlei3wD2YrFPP53g9EM50caucEeAABg8CTSCT3Z7PFBP0kTw1M0I3Z8iUfkzRi+VeIQ3KHCL5TLUmYyWn/OXcLpMu4rkisYrce82G9OXm5h05ZlKWJHc15ncK0IAAAAAAAAAAAAAACyWLYUrnEXNRbW1km7oWKHg9JyBqr1WE8cGoijGV5SHeZQNEn6n1Ozy5pfldZ+3F0KMXqhVDFZsoLue6JqphSuk2Z8QerYKb34Nent/+duG6yUjvs7KTrBfS2j46TJl0qpTskKSJExUvN6qe0tafQCKdUubf6Z+5pH6qX6s6Sxp0nBCslxsp+6CAAAyhbBaAAAAAAAAEAZSRiD0Qr/VZ9fgNVh0TK7ib8UTOfEFBiW73a5ggXM+y1tWIZpf93BEeb3TL7nCAAAoFiea3nSGAZ8du17ZA2RD8LlE741svg9/bd3MJr3/DOfAGH/QDP3Ncln/u/3OkXtipzjGGoidizn+eNaEQAAAAAAAAAAAAAAFJVlu+FZ4TqpclphbdNJN1Std6Bawitkrdd6snVgjmckO/Csu/T2/A3ZZclW6cW/K96+Q7Xueygy+t33U6+vkdHeZYEKQtUAABhiCEYDAAAAAAAAykjSGIwWKrivfG5kzxXWNRIZgxGcTqWdtGzLNrZ1HMcYLJbr9ehP4EMxxR1DMJp1OBgtYmxb6rECAAA81vSQZ3nEiurk6nNKOxgfBKNlyj8Wze/c5Q4Q9ju/h/vNp//OdLvnNgEFFbILv1YbbPmEaHOtCAAAAAAAAAAAAAAAhgw7KEXGuEuh0olewWkHpd2rpA3fK/44MfASTe7StqWwdnaoV2Da6DwD1mrdtgAAoOgIRgMAAAAAAADKSMpJepb3JRgtnxvZ8wlPG2n8zluXE1fUMp+zpJNQWumC+/Wrj6c75TiOrBI9ocoUHnF4fLYVUMgKK+F0ebTNHU4BAABQLG93vqEtna971p1Ss0SxQEWJR2RmCsEt9VxvqHAKiEYzBhfnESrnNz893G9+wWje+4oGyvN6Kp9rxYjPdQ8AAAAAAAAAAAAAAEDZsENStN5dDpv0HqnhMmndddKBPw/e2FA66YTUudtdChWsMoeo+QWrBaukEfa5MAAACkEwGgAAAAAAAFAm0k7KGKrVl2C0fELP8rkhfqQxhVZIbviC33n1C17Ida5NgWtppZR0EgpZYd/2xWI6hp7jj9oxJVIEowEAgMG1pulBY93Zte8p4UhyM80x00qXdK43dJiD0axewWj5BJeZmALNevbrF1qXq59yDZrmWhEAAAAAAAAAAAAAAIx4406Xlj4jtWyW9r/71Q5LkbFSxRSp7kQp2SYlW92viVYp1eZdlmiVNt8x2EeEgZJscZf2twtrZwXMoWm5AtYCkYE5luEgnZT2PSUdeF6qmSONPVUKVkrxvVKoJvvcOWnJst1/px27pIpJUnCUuW/73ZiedEpS2g1XBAAMCILRAAAAAAAAgDKRdJLGuqBV+K/68rmRPWII4xrJ/M5bZ7pDNT5tfYMXcpxrv/3G050K2aUJyzAdQ8/xReyoWlLNWdsQjAYAAEqlPdWqZw897lk3I3a8JkWOKvGI/EWsoTHXGyrMsWiS1espqaZzF/eZex/ZxvGenwYUPBI+bQxGczqVdtKyLds8Ry7T6ym/MOhCtgEAAAAAAAAAAAAAACh7VdPdpb+6Dkpv/7/s8tN/KbVskl5e7t1u4e3SqKPcMKxHzvTeZuJF0mm/kLY/ID3z6ez6iilS7Vxp58q+jx/F56Sk+D53KVSgwiNEzSdY7XB5qMYNARuuWt6QnvigdPA573orIMUmSe3b/PupniUd8xk3IK1jl/TO/0iHXpe6DnhvHxkjTVwqVU6T9j/rBihOeZ/UcGn3+U51Sa98Q9rzuBSulWZ8Xpr07gNe0ynJSbj76Njlth+9wG3rOFLbFrcuFZcOrXdfz4bLpNjEvp0nACgTBKMBAAAAAAAAZSLpJIx1h2/aL0R+N7vnDk8baaI+5y1X8Ffc8QlGy3GufffrdKhS1b7ti8V0jD3HZ3pv+QXDAQAAFNPTzX9UwunyrFtct6zEo8ktmiN8t1RzvSHD8Y5Gs2RllfkFl+ViCk/LmNv6hNZ1OXFFrZg60+2e9bFARc4xDEV+1x6FbAMAAAAAAAAAAAAAAIB3Tf+MtO0/JSfdXRabLE25XNq92txu2selYIXbLjbRDU3qrfZEKTpOmv4p6ZhPukFrbW9LdXOlaH33do4jHXjWDeSqOV4KVUrxA9LeJ92wpdp50thTpa33SnvWuPvc9uvMfY09TQpWuWFxiWZp1x+kZJuU4nPiJZVqlzrapY4dBTa03FAur9C0XAFrgZhkZX9+a8hItEqrlkqtm83bOKncoWiSG0L2/Ffy33d8v/vvpqetv3C/BiulUFX2v90d/52739gkqWOnd91LX5fOfkByklKyQxp3hiTH3ZfjSJ17pJaNUvVs9+dDvnY+JL349264XN0CaeFt7/YtN3iu/W0pOkGKTXDfFyZdze5YTEF8Tto9z21vuT9XwjX5jxHAiEEwGgAAAAAAAFAmkk7SWDdQwWjc7J7N77zlCv7yC07Lda79gtNKGThmOoZIHuERpuAJAACAYko7aT3W9JBnXU1wtOZWnlziEeXmN8f0C9cdrhx5B6OpkGC0HKHFftv0nHv7ByN3KGrHjPPxfK65hqJ8ArIJ0QYAAAAAAAAAAAAAACjAhHOls34rvfotqWWzGzS08EdSICrVL3bDxpItmW3GneWGokluuNCiO6THL88MV7PD0tSPda9btlQ9y116syxpzKLMsshoqeESSZd0l838grscluqS7KA54OiwfWul3Y9KrVul2uOlUVOldFx64gPmNstelg6+KMX3SVv+zQ1j6qtQrXTsV6TIOKnrgNR1sPtrvOf6ATfMbURy3j0PBwtvakd6BKb1Ck3zC1gL17rvn4H29q/8Q9EGS7LVXfrCFIomuf9mHjnDu86yM39OTL7E/fkRqpLsd+89CkSldEra+4S072k38Gzbb6XOd7rbHXxOeuTMvo29p+pjpeh4ac9q8zbRCdLs66TwGCkQkYKjpPadUmSMNP5cN4Rx/5/c91X92W7g3Fv3Sa1bpNEnSXP+xm0DYFghGA0AAAAAAAAoE0knYawLWoX/qi+/m93L80b+gRSwAgpZYSWcrqy6XOELpnpbds5wO9+wjDxCH4qlP+ERcad04wQAACPXhvYXtDfxjmfdWTUXKdCHufNA85ubl3KuN9R5PW/UdO7yCQ82B5pFPb/3al8jqTPd7llfrkHTBKMBAAAAAAAAAAAAAAAMgIZL3aW3YEya/13pzz3CyIKV0tybstsv+YP07JekQ6+54WPzvifVHjew4w6E89tu7Knukq/Ri9xjqD3eXZ/9ZTcIqWWjG6QUGy/9Z62UaM5uO+YU6aK17ved+6R0l1QxKf99p7q6A8Jyhaj1rvN54P2wlo67oVmd3p/N8xWqNoSo+QWr1bn/DiyvT415OPh84eMarnqGoknSjv92l8FyaIO7+Ol8R3rhq/n192qv9Z0rpTf/VTr3Ee9QSABla+h94hsAAAAAAACAJ79gtL6EO+RzI3u53sg/0CJ2VImUVzCaf/iCX6iYleMPdiErLEu2HKWz6vIJfSiGpJNQSt5/yI1YucMjSjVOAAAwsq05+KBnua2Azqi9oMSjyY/fXG8kBqM5cgw12XNm0zVL0kko5SR9r5VM8/eeocT5hNaZXqNyvZ7KJyC7XI8NAAAAAAAAAAAAAABgSJrxeanmeDe8KFQtHfUB74CfCedLF6+X0knJLpO4kPHnSrsfzS6f9cXssopJmQFnM6+VXv1W9nYzPt/9fXRs4WMKhN3gtdj4wto5jpRsywxMix/IL2AtcajwcQ4XiUPu0ra1sHZWMDsszRSm1vTSgAwdZaJ9m7RytjT1Y1JwlBsON+4MafRJUrhWik7IP2QPwJBRJjMdAAAAAAAAAEmfJwuFrFDB/eVzI3s+4WkjUcSOqTWV/YfJXKEVpmCwfIIHLMtSxI6qM91e8H6LxS/YrOd7xfS+GYmhHgAAoLT2de3Wq23rPOvmVZ2qmuDoEo8oP0NhrjeUmILRLI9gtFzBZRWBSt96L5lzW/Nc/XD7Do/XTZKidoWx7VDWM/TYuA3XigAAAAAAAAAAAAAAAMVVf5a75KNcQtEkN6iodzBaqEZquDx322M+Jb1xp9S5p7usepYbHDcYLEsKVbrLqKMKa5tOSl1NPiFqPgFr6fjAHM9Q5yTd177n6w/42XJP9/eb78isO+dBaeJSAtKAMlJGsx0AAAAAAABgZEs6CWNdsA/BaPnd7J47sGskMp07v+AwSYr3IxhNcsPsvMMy/PdbLH6hHD2D9kzHMxJDPQAAQGk93vywMVRrce2yEo+mMKZgtFxzzJHE6/NIfgFdnemOfgejBayAQlZYCafLs3+3H+/XKJ8w6qEon9CziFWexwYAAAAAAAAAAAAAAIASm/pRqWO7tP67UuKQG2x2+i/dcLFcKhulC56UNtwiNb8qjV4kHf/3UrAMH1hoB6XoWHcpVLIjMzAt7hOidmT9gBvEZvg8HTDirF4mHfOX0sIfS4HwYI8GQB4IRgMAAAAAAADKRLGD0fK5ST+fG+JHItO5yxVQlk/wgh/TdqUKHPPbTySvYDRCPQAAwMBJpLv0VPP/etZNCh+l6bE5JR5RYaJ2TM0e5SNxDuU4aUNNdjKa33VNrnmyKXSud58RO6pEKjsY7XD/XoF2ucY2lOV3rViexwYAAAAAAAAAAAAAAIASsyzpuL+Tjr3RDe2KjiusfdV06eQ7BmZs5SIYk4KTpYrJhbVz0lKi2SM0LY+AtZT3Z6LKzqKfSH/+vHdd9SzpL9ZLlu2upxPSyyuk12+VUh1S/RJp3nekPyzybj/3ZmnOV6WWTdKh16Snr3HPd19M/ZjUcJm0c6W080E3RDDZJgWiUt0CKVwrJVqkvY/3rX+43rjLfV2nfniwRwIgDwSjAQAAAAAAAGXCLxgtYBX+q758wrjK9Ub+gWY6d6ZghcPijiEYzco3GM0UODYUgtGint/n2x4AAKC/1rU8obZUi2fd2XXLZFnZoVpDiWlOOBLnUI7hKaWWRzCaX0BXrnNnDC62egejxdSaOuTR3p3/5xuwVi5yhZ7ZCijYh2tQAAAAAAAAAAAAAAAAjGB2sPBQNPSPZUvhOnepnFZY21Q8OyzNFKLWu8xJDczx9MXEC6VgpZRsza6bfEl3KJok2SFp7rekE2+SUp1uIJ0k1S+W9qzJbj/l/W7wX/VMdxmzSHrH++GuOuUu6U9/6V13ZYcbgCZJUy7zP57OPdJz10tb73XXq2dLoVp37O3bpcar3fJEq7TxNv++vDRcLm3/rbl+yvukjl3SvqcL7/sw0/ksle33E4wGlAk+qQoAAAAAAACUiaST9Cy3FZDd848xecp1s7u7TX6BXSONKeDAFHx2pN4QmJDveTaFZeQKZCsW0/gtWQpbkSPr5mC00owTAACMTI81PeRZHrUrdHL14hKPpnDGOVSOOeZw5B2L5q3nPLS3XPNPY3Bxr9fCHFp3OBjNu5+oXeG7/6Eq1/VJxI4O+aBBAAAAAAAAAAAAAAAAAP0QiEixCe5SCMeRki3mMDW/gLWk94NR+2z8uW4g3NSPSpt+klkXqJBm/JV3O8vqDkWTpGNvkPY+kRn4NuX9UvWMzHaTLzUHo02+WLIC2aFx9Wd3h6LlI1ovnf7v7uI47lhN5n9X2ni7G2LWsVMK1UgtG6XWN723P365dOIK6eGF0oF13tuc9Rsp2SH9yuezcSfdJq37kmH8E6TzVkn3+dwDFaqREs3edXULpOmfkbb9RnrnEXMffkzHD2DIIRgNAAAAAAAAKBNJJ+FZHrJCfeovVzBa0Aoq2Me+h7u+Bn/FjYEJuUPqfPfrlCZwzBTA1jsYoa/BcQAAAH31Vudmbe3c5Fl3avWSvOdbg8k0Px+Z4bLe0WiWsj/EZVu2IlbUc67Z1+Di3u+XXKF1nel2z/p8wqiHolz/Xsrh3xMAAAAAAAAAAAAAAACAQWBZUqjaXUYdXVjbdELqasoMSzOFqGWUHXDb9jT2dOn0e93vF/xActLS1n+X0klp3BnSop9IlY35jWvyxdKSh6VNP5U6d0sTL5Lm3Ji9XcNl0rovK+vzb0d/yA00m329tOF73eWBqBtG1le5Hm4ZiErHfiWzrH2n9F+TvbcfNcX9OvNaae0nsusnLnW/Bn0+Pzbjr6RZXzQHox31fv9xW7Z00q3S2o9715+zUopNdI+tr8Fo8X19aweg5AhGAwAAAAAAAMpE0kl6lvc1vMx0c/+Reoub3U3MoRW5ghe863O9FoeZAghMgWXFZhy/FfVdP6xU4wQAACPPmoMPGuvOrn1PCUfSd8Zw2RxzzOHIKSAYTXLn0/GURzBazuBic/BvT36vTdJJGEOsY2UaIJbzWjHP6xcAAAAAAAAAAAAAAAAAyJsdkqLj3KUQjiOl2rtD02ITM/sIhKWT75BOuk2yg274VqEmnO8ufkZNcYPINtzSXRatl477qvv9vO9KdfOlnb+XIuOkqddIo+cXPpb+iI6XImOk+P7susPH13CZFLxWSrZl1k/9WPf345dIu1dl9zH1o+7XY/5SeuMuj/pr/McXHi1NOE+SpayAuegEd/yHtzM5+U7pmU+b63uH6AEYsvrw0xoAAAAAAADAYDDdbB+w+vb8A9PN/Ydxs7uZKRgtV/CXqd7UX/Z23q9JqcIy4o4p2C3Wa31wxwkAAEaW1tQhrWt5wrNuVsWJmhBpKPGI+oY5VN+Zzl1nn4OL85vfdqY7fK8B8p3nDzW5g9HK87gAAAAAAAAAAAAAAAAADEOWJQVHSRUNUt2J5mC1QLhvoWiFmPeP0tkPSDOvleZ+W7roGan2hO5xNl4tnf7v0knfL30omkVmrdIAACAASURBVCTZgcyAs8PGnyuNOtr9PlwrnfuoVDndXQ9Vu8d19JXd28+8NruPMadKY052v591XXZ42eRLpdEL3e8b3us9vhO/6b6Oky/Orpvxue7XL1jh3V5yg/GqZ5vru5rMdQCGlL7dMQkAAAAAAACg5FJO0rM82MdgtJAVliVLTu+nqLyLm93Non0MrTAHL+QXQmcKs4vnCGQrlnzHbxpn0kko5ST7HOYHAADg5enmPyrhdHnWLa5dVuLR9J1f+NZI4zje1yiW4UNp5lC5vgYXR3utm+bhnb77yBVGPVTluhY0XQ8BAAAAAAAAAAAAAAAAwIhmWVLDpe4yVM37rpTukrb8m5SKS5PeI53688xtxp4sXbpJ6tgtRca6gWo9TXmfdOavpNdvk9p3SBPOlxbc4h6/JNUeL134tPTGnVLrFql+sTTj8931R10pbX8gs087JDVc5n5/xn9I677kbhOqlqZ+XDr+a93bBqvMxxetl475tPT8V7zr03GpdavU9LK0f60UHiNNvUaKjpWctOQ42ccLYFBw9xkAAAAAAABQJhJOwrM8aIX61J9t2QpbEcUd77Crcr2JvxTMwQj+wQum+oiVX7CAXyBDKRjHn2dwhNtHpyoClUUdFwAAGLnSTkqPNT3sWVcbHKMTKheVeER9Zw73Ks1cbygxhTdbhu37Ok/ub/BvPN2hjpRfMJrPUymHsIjlfy1IiDYAAAAAAAAAAAAAAAAAlCk7KC38obTgB5KTlAIR87ax8ea6oz7gLibVM6X53/OuO/oqqWWT9OrNblBZZKx0xn1SbIJbH6yQTvkX6eQ7u8PUeqqb6wamJQ5llodHS7VzpYoGczCaJP1uauZ6723Do6WKKVL92e6+Nv5Yan7FDZSb9WVpwffdcXXuk+L7pMho6dBGN5Qt1S4l26TRC/3PLYCcCEYDAAAAAAAAykTSGIzW91/zRe2Y4qn8wgDQzRyMkCN4wRBCl++5HuywDHMwWqzXuvl4OtMdBKMBAICiebXtee1P7PasO6v2IgWs8nlqnymMKlf47sjiHY1mCurq9Dl3aSelLifuWdd7vm+a33amO3xfn3INmw5aQdkKKK2UZ32+wc4AAAAAAAAAAAAAAAAAgCHKDkgapM9YWpZ0wtelOTdKbW9JVTMky/bezksgIs34grT+O5nlM6+VAmEpNlE69xHp0Qv6Nr6uA+7S9GJ23eu3uku+Kqa4gWqxiVKkXho1RWr8iNS6xQ2Fa3ivW1eIdEJ69ovSsX8jVR1TWFugjBCMBgBDXHt7u5577jlt2rRJ+/btU2dnp2KxmMaPH6+ZM2dq/vz5CofDgz3MsnXOOedozZo1R9YdxxmQ/axevVpLliw5sr58+XKtWLFiQPYFAAAAYPhKpk3BaKE+9xmxY1LqoLkOnvyCEfyYAszyDUzoS+BDMZnG3/t8+L13ShXiBgAARobHmh70LA8oqDNqLizxaPrHGIJrCNcdzhx5/73GMgWjGYK6/Oae8bR3KJqUf/BvPN2pznS7Z11AwX5dqw0my7IUtWNqT7d61nOtCAAAAAAAAAAAAAAAAADot0BUqp7Vt7Zzb5Yi46S3/kOyQ9LRV0ozv9hdP/a04oyxv9q3uV87ezwE+I27ur//8+f73vfmn0on3SbN/CvvYDmgzBGMBgBDUCqV0q9+9Sv9/Oc/16pVq5RMJo3bRqNRXXTRRfrUpz6liy++uISjBAAAAACUWkre14f9C0bzvsE/V91I5xdQ5jiOLMNTaeKGALN8gwX6EvhQTPkHo5nfOwSjAQCAYtnbtUvr2573rJtfdZqqg7UlHlH/mOaEI3P+VFgwmilo2DcYzSdwrve8228ebgopjtox43VBOYjYUZ9gNK4VAQAAAAAAAAAAAAAAAACDyLKkY693Fy+BCqlymtT6ZmnHVWrrviRt+4106r+6xwsMI8T9AcAQ8+ijj2rOnDn60Ic+pEceecQ3FE2SOjs79cADD+iSSy7RokWL9Nxzz5VopIVpbGyUZVmyLEuNjY2DPRwAAAAAKEtJJ+FZHrT7E4xmDuQyhQvAHIyQVkpJx/ta3nGcvIPFTMyBD95hDMVmCo+IWJnjClsRcx8lGisAABj+Hm/6gxxDgNbi2mUlHk3/meaEI3H+5P2qSoZcNPO5c8znzu+89p53G0PrnA5zMFqgvK+n/K4HuVYEAAAAAAAAAAAAAAAAAAxpliU1fmSwR1Eae9ZIvz9B2vHgYI8EKCqC0QBgCPnGN76h888/Xxs3bswotyxLc+bM0YUXXqirr75a559/vmbOnJnV/tlnn9Vpp52mO++8s1RDBgAAAACUUCJtCEZTsM99+gVy5RvWNRL5BQGYAhYSTpfSSnvW5XuuzYEPnUo73n0Xkyn0ofe4bMs2hseZwtUAAAAK0ZWO6+nmP3rWNUQaNS02u8Qj6j/TXK8z3SnHMUaFDVPex2sZktH6EirnV9e7P2MwWrrTPEe2yjs8jGtFAAAAAAAAAAAAAAAAAEBZm3OjVLdgsEdRGoGINHr+YI8CKKq+3zEJACiq6667TrfeemtGWVVVlf72b/9WH/7wh3XUUUdltdm8ebPuvvtu3XLLLYrH45Kkrq4ufeYzn1FbW5uuu+66kowdAAAAAFAaSSfpWR60Q33u0y/gy69upPMLAog7HapUdXZ52hwIlm+wgN9r0uXEFR3g8AXTMXiNK2LHFE9lb+8XQAEAAJCvdS1PqC3d4ll3du0yWZZ3gNZQZprrOUor4XQpbEVKPKLBkzYGwZmC0czBZSadPnXhrGA0U/BapzrT7Z51sUCFsf9y4B+MxrUiAAAAAAAAAAAAAAAAAGCIC46SzntUWv9tac/jUmySVL9YClVL8X1S1wGp9U0pXCvtXi2lu6TWNwZ71H1z0g+l2MTBHgVQVASjAcAQcM8992SFop155pm677771NDQYGw3ffp03XTTTbrmmmt0xRVX6JVXXjlS95WvfEXz5s3TOeecM1DDHhZWr1492EMAAAAAgLylTMFoVt9/zed7s7uVX1jXSOQXUNZpCP7yC2XIN4TOL4Agnu4Y8DA7U6iZ1/soYkelVPa2fgEUAAAA+XAcR2sOPuhZF7MrtKj67BKPqDh8w3fTnQrbIycYTfIORjPF3ZnOnWluLpnn5yErrIAVyCgzzbMTTpfa062GMZV3eJjf+KN5BjsDAAAAAAAAAAAAAAAAADCowjXSvO8U3s5xpPZt0tpPSodekyJjpOh46Z1Hij/G/mp4r9T4ocEeBVB09mAPAABGuo0bN+raa6/NKDv99NP10EMP+Yai9TRz5kz98Y9/1LHHHnukLJ1O6yMf+Yj27dtX1PECAAAAAAZP0kl4lgetUJ/79AvSKvcb+QeSf0CZd8BC3DGHMkSsfIPR/MMyBpppH8ZgNM8+zOcBAAAgH1s7N+ntuPcT+U6rOc93zjSU+c0JSzHXG0ocYzCadzSa6brG77yZQ3+z+/J7TzUnDxY0pnLh937kWhEAAAAAAAAAAAAAAAAAMKxZljTqKOm8/5Uu3y4te1E669d96+uiP0tzvy1V9MgPmfVl6dxHpOP+XrIjUqg6u11kTO6+Ry+STvlXd7zAMBMc7AEAwEh3ww03qLW1+0nytbW1+s1vfqPKysqC+qmvr9evf/1rzZ8/X11dXZKkHTt26Jvf/KZuvfXWoo4ZAAAAADA4TMFoAavvv+bzu8Gfm93NQlZYlmw5SmfVdRoCFvxCGfIN7/ALVzDtt5jMwWjZ4+pLOAUAAEA+1jQ9aKw7q3ZpCUdSXL4huD4hu8OTdzCaDMFopmsX/2C0/of+SlJz8oBnedkHo/ldK1rlGT4IAAAAAAAAAAAAAAAAAECfBavMdWNPl/Y9lV1eO1cas9Bdjvtqdv2E86W53zT3+0ufwLPFv5cmnCcFIuZtgDJGMBoADKLXXntNK1euzCj7zne+owkTJvSpvzlz5uiGG27QzTfffKTsrrvu0ooVK1RXV9evsQ41mzdv1ksvvaQdO3aopaVFlmWpoqJC48eP19SpU3XCCSeooqJiwMcRj8e1Zs0abdmyRQcOHFB9fb0aGhp01llnDcj+d+3apT/96U/as2eP9u/fr8rKStXX12vRokWaNm1a0fcHAAAAYGgxBaMFrVCf+4xY5pv1o3mGdY1ElmUpakfVkW7PqjMFLJiCy2zZeb+GvmEZAxw45jiO8RgKCY8oRYAbAAAYvlqSzXqu5QnPutkVczU+PLnEIyoev7le5wgLlzXGohmeaOg393Qcx7Nd3DAv9Qo08ws5MwejDfzfqQaS3zETog0AAAAAAAAAAAAAAAAAGHEsSxp/nrT7j9l1J/9MWnWh1LEzs3zaJ/q3z/Boqcvjc4oTl0qTl/Wvb2CIIxgNAAbRrbfeKsfpvrVj7Nix+sQn+jexue666/S9731PiYR7s3xbW5vuvPNO3XjjjVnbfvzjH9c999xzZH3Lli1qbGzMaz+rV6/WkiVLjqwvX75cK1as8O3/sLfeest444okfexjH9Pdd9+dVR6Px3Xbbbfpzjvv1KZNm3zHFwgENG/ePF122WW6/vrrjSFl55xzjtasWXNkvefr4ae5uVlf//rXdffdd+vQoUNZ9VVVVbryyiv1jW98Q5MmTcqrT5NEIqG77rpLP/7xj/Xyyy8bt5sxY4ZuuOEGffKTn1QwyH/xAAAAwHCUdJKe5aH+BKP5hC9ws7u/iB0zBKN5ByyYgssidsz3OrmngBVU0Ap5huQNdOBY0kkqrZRnXdQjYM/03hroADcAADC8PdX8v8Z58eLa8v6AR8gKy5attNJZdaY55nBl+nuNJUMwmuU990wrpaST9LxmMob+evTld23UnDzoWe4XLFYO/K8VCdEGAAAAAAAAAAAAAAAAAIxAs6+X9qyWnB731zRcLtUeJ537R+nJq6SmF6VAhTTrS9KsL/Zzf38tvfQP2eXTP9O/foEyQGoKAAyihx9+OGP9mmuuUTgc7lef48aN0yWXXKL7778/Yz9ewWjlZNu2bbrooou0YcOGvLZPpVJat26d1q1bp6uuukrTp08v2lhefPFFLVu2TDt37jRu09LSon/5l3/R/fffr9/97nd93te6dev0wQ9+UG+++WbObTdt2qTPfvaz+slPfqKVK1dq8uTJfd4vAADlpjl5UK+2rdM78e0Dup+QHda02GzNrpirgBUY0H2NVK3JQ3q1bZ0OpZo1Z9Q8TY40DvaQMEy0JJv0Sts67YpvG+yhZAhYQTVGZ2jOqPkK2bmvB73CsCQp2K9gNPPN+uV+I/9AM507U/CXORitsFCBiB1VMpX9Xniy+X+0qf0VSZJlWZoUPkrHVZ6kykC1sS/HcfR6+0t6o2NDzsAy0/vv8Jiyy7zPzxsd63X/nruPrNcER2vOqPmaGJniu//dXTv0aus6NSU9nnQj9/06veI4zYgd5xs0V6p5Q6HCduTIPMO27D71sb1zqza0P6+WZHPebYJWSFNjszRn1DwFrOL+yeBgYp/Wtz2vuNOp40ctVH14YlH73xHfqvVtLyiRjmt6xRzNiB2fd8gggNxy/R8RtEKaFpulWRVzFbL7PhcBCpF2Unq86WHPutHBcTqhcmGJR1RclmUpYkc9w3cfb3pYr7W96NvetmxNjhyt40ctVCwwaqCG2S97unbp1bZ1OpjY57vdrq7Crt38rl1+u/duz2umzR3rPbf3mtuGrYix/4TTZeinvK+nCEYDAAAAAAAAAAAAAAAAAKCXycukJQ9Lm34qdb4jTbhQOu6rbl3NbGnZC1LnXilcJ9lFuEfjmL+U3vy51Nojb2Ls6dKk8n6YMJAPgtGAISblpNSU9L8RAP1XGxw76EEW27dv19atWzPKLrzwwqL0feGFF2YEo61du1aJREKhUHnenNbV1aWlS5dmhaKNHj1aJ5xwgsaPH69QKKSWlhbt2rVL69evV1tb24CMZf369TrvvPO0f//+jPLx48dr/vz5qq2t1e7du7V27Vp1dHTowIEDuvjii/W9732v4H2tXLlSV155pdrbM2+AmjhxoubOnavRo0erra1N69ev16ZNm47Uv/DCCzrllFO0du1aNTQ09O1AAQAoIzvjb+m2bct1KNVUsn0uqDpdn5h4fdHDQ0a6PV07ddu25TqQ3CtJ+q+9lj484a90es35gzwylLt34tt12/blakruz73xIJlVcYI+N/lrOW8uNwVT9efnkV+AADe7+zOdn850h2d53FBeaGBC1I6pLdWSVf5S6zNZZaOD4/TlKf9X4zwCqdJOWr/c/WM91fy/Be3fi2cwmuV9XLu6tmUFXfx2b0CfnHS9FlSd4dnmhZa1umvnLUop6T+Q/dKSuov1/nF/6RmQNRjzhkItqlqsayZ+qeDfXT3Z9Ih+ufvHcuT0ab/Hj1qoT0+6Ma+Qxnxs7dio27d/U21p9736X9Y9+sykr+r4IgXWPN38R/37O7fLUdot2C8trl2mD9Z/mnA0oAgcx9F9u+/QE81/yLntnFEL9NlJXy3azw/Azytt645cM/Z2Zu1FsodBiHnEjnkGo73Y+qe8+5gQbtCXGr6h2tCYYg6t315pfVZ37vxHY5BYPix5/z/vd+2yuun3Be3D6xrJtmxFrKjijn+YcE+xMg9G87tWJEQbAAAAAAAAAAAAAAAAADBiTTjfXUyi44q3r9hE6YKnpM0/lZpflcacLM34ghQwP/AVGC64gxsYYpqS+/QPb352sIcx7H1z2k81JjR+UMfw5JNPZpUtXFicG0NPOumkjPWOjg698MILWrRoUVH6z9ctt9yiFStWSJLOPPNM7dixQ5I0efJkPfHEE8Z2lZWVGes///nPtX79+iPrjY2Nuv3227V06VLZtp3V3nEcrVu3TitXrtRdd91VhCNxJRIJffjDH84IRZs4caJuvfVWXXHFFRljaW1t1T/90z/pW9/6lpqamnTjjTcWtK/169frqquuyghFW7p0qb7xjW/o5JNPztr++eef15e//GU9/vjjkqQdO3bo6quv1urVqxUIlP+NYAAA+Pnt3ntKHm7yXMtTWlh1tuZVnVrS/Q53K/fdl3GDuyNH/7H7Di2oOoMbbtEvv9v370M6FE2SXm9/WX9qXqWz697ju13S8Q6FClp9D8L2CxAoNLBrpDH9bIqnvcMSTOWFBtBFrPy3P5Dcq5X7/kOfmPTXWXWbO9YXJRRN8n6vFHJcaaV03zt3aG7lqVmBYGknpV/u/knuULR3rTq4UqdWn6sp0WlZdb/d+29DOhRNkv7cskYn1yzWcaMW5N2mM92hX+25s8+haJL0StuzWtfypE6tWdLnPnr6zd6fHwlFk9yfX/e+c7tuPuZf+x1c1pWO6z92/7Q7FO1da5oe1CnVS9QYm9Gv/gFIWzpfzysUTZLWtz2nZw6t0Rm1FwzwqADpsYMPeZYHraDOqBke78FihBO/07Vdjxz8rT5Q/6kijKg4HMfRL3f/pF+haJJfMFrxrl1Mr0HEjiqeyj8Yrdyvp/yvFQnRBgAAAAAAAAAAAAAAAACgJGLjpRO+PtijAEouO00GAFAS27dvz1gfP368xowZU5S+jz/++Jz7K4WxY8eqsbFRjY2NCga7sziDweCRcq9l7NixGf088MADGW0feeQRLVu2zDMUTZIsy9LChQu1YsUKbd26VUcffXRRjueHP/yhXnjhhSPrEydO1BNPPKEPfOADWWOprKzU8uXLdd9998m2bR08eDDv/aTTaV155ZVqa2s7UrZixQo99NBDnqFokjR//nw9+uijet/73nek7IknntC9996b934BAChHaSel19tfGpR9b2h7IfdGKMiG9uxzmnSSerPjtUEYDYaTcvn3ur79+ZzbJJ2EZ3l/gtFidoWxjlBCf6aAss50h2d53PEuLyToTJJigVEFbe/181WSXmt7saB+/Hi9V/zeW17a0i16u/ONrPId8bfUmmouqK/1bdn/ntx5Q/GOeSBt8Bi/nzc6NvQ7ZKQv+zXpTHfojY4NWeXNqYPa3bWj3/37He+GPH6WAsjt5dZnC9p+U8crAzQSoNuerp3GOfOCqjNUFawp8YgGRqFzKJNXCvx3PNDe6dpelMDqgOX97LdiXrtEDa+BqdykWK/lYIna3tcdIStsfB0AAAAAAAAAAAAAAAAAAACAYiAYDQAGyYEDBzLW6+rqitZ3NBpVJBLx3V85eeutt458P3fuXE2fPj3vtoFAQKFQ3wMCDkun0/rhD3+YUfazn/1M06ZN8213xRVX6Atf+EJB+7r//vv1yivdNxJ+8IMf1PLly3O2CwaDuueee1RfX3+k7JZbbilo3wDw/9m79zA56/r+/6/PHHZmctzNgUAJMWCMBAQRQQUMAaFgUBRRi1C/IlrlVxWlFbXW1hNopdJ+C/qzVdofWmurVRBPUMEDQUSI0SIIKIST4RSSzW4OuzOzc/j8/lg22Z293/fe95x39/m4Lq4rc99z3/dnDvchS+7nAtNNsVpU2Zc7su2h6q6ObHemqvqKhiq7A+cVqsNtHg1mklJ1REVf6PQwIrH2gfGsY16qgZvSD8wcHBgRWJF5rjKJeMGu2cYKIxSNMFq+Ejw9l4wXTFiVOyzW84cqu+W9nzQ9bmzMsiK7Sj2JzKTpq+bEG6ckDVUmn1/3BEybej2T96ditdCx64a49kQ4Hkx4frk5n2U973WQoM9xTL4J5/Ww726zXgMw2+0obYv1/GK12KKRAPvcOvg/5rx1vWe0cSSt9dyY13qWgfJ2VX21KetqhrDrgzgOyR0aOL0nkdFzss9ryjZWzTncmB79s0koaY51ujgk93wlAv5JyfPmTP4FTQAAAAAAAAAAAAAAAAAAAEAzEUYDgA6pDZX19vY2df216+vv72/q+jvlmWee6ch2b731Vj366KN7Hx977LF69atfHWnZj370o7HibFddddXePzvn9JnPfCbysvPmzdOFF1649/E999wzYdwAAMw0VnimHfIVYl3NVKza4apStdTGkWCmmU5hvSjHlbIP3h9Srv4gdDqR1qsWv6lmfSm9asm5da9ztsgmJwflJPt7V6gOBa/HCKxZXt57uhallkZ+vldVI35ysKbQhPNoyqUmfX/GrMyu1pHzXhJrfUHRrHpCWvmA97oZQa52iXvsasZnKTXvPRquBH/XJfs4Fkc+5PUWjAAhgHgGyvHCaNLkACfQTCPVon6x88eB8w7KHKKV2dVtHlHrrOtdr97U4obXU/blpsXImiHs/B3V3OR8nbroteb8Vy0+p6FotCQ9N7dGL5j74sB5r+h7jeYlF0Raz2mLztac5LyGxtJpc5Pz9ceLXjdhWsZl9cpFr+/QiAAAAAAAAAAAAAAAAAAAADBbNPavggEAXcs51+khNM2hhx6q++67T5K0ZcsWXXHFFbrkkkvaOobbbrttwuNzz40eCFi6dKlOO+00/eAHP5jyuUNDQ7rjjjv2Pj722GN18MEHRx+opJNPPlmXXnrp3sc/+9nPtHLlyljrAABguih6O6b1/DlHNBQKGrNt5Gk9U3py0vRmBUgwKizE0oyACmavsO/W6jlHKN2E40Rcg+UdeqL46KTpUUJIFV8OnN7ozf+nLHqt9us5UHfvuVOZRFYvnr9WB+dmTlyiVXJG0Mz63lkxCGs9lsXp/fT+FX+nX+z8sR4rbFZVFUlSsVrU5vy9gcsUqsPKJLI14wmOVy1OL9P+PQdOOY5lPQeGflcSLqF3/NEHdfvOH+uB4XsmfMc3D98XeB4POr9a+0ba9WhecoEGytsbWo8kPX/OkQ3vR/V4ZuQpbSs9NWl63ACr9VnmEnN1SO75k6bvKG3XUyN/iLyeuMKOvSU/0vD6CyHvT7NeAzDbBR1bJckpIa/qpOmeMBpa7Je7bjWP8ev6zphR/09kSc/+umTFZ3THzp/o0cKDgfvceBVf0e+GfxM4b6Dcr/mp5v5innpZ12Ipl9Lz5xwZuqxTQgdlD9FLFqzTspDr1BfMO0Z/edCntWn3bdo68nis8fW4jJ6bW6MTek9TTyIT+Jw/yqzQJSsu1527fqothYcDP5v5yV69YN4xetG842Jtv1u9ZsmbdVD2EN2759eam5yvlyw4ScuzKzs9LAAAAAAAAAAAAAAAAAAAAMxwhNEAoEMWLVo04fHOnTubuv7BwcHQ7U0n5513nq677rq9jz/wgQ/o+uuv1wUXXKAzzjhDBxxwQMvHsGnTpgmPX/rSl8Za/qUvfWmkMNodd9yhUmlf+OOQQw7Ro48+Gmtb1erEG3EeeuihWMsDADCdFEPiZO/8o79SLjm34W38dOD7+uYz/zppepSAEaILi5gQRkMjwvbVd/7RhzQnOa+Noxn1692361+f/PtJ08NCQmOs/aEZIcgj5h2jI+Yd0/B6ZpNMIhc43YpnFoxjXTZmGE2S+tJLdMaScyZMGyzv0F8/9DZzTAsjjvO4Ba+YtO56JV1Ka3tP19re0ydM/7tH/1Jbig9Pen6+Mvk9siJYS9MHaM3cF+rHA9+dvEzA/mSF6STpzw/8iBnAaKWbd3xb3972lUnT415nWJ/lc7Kr9O7lH500/c6dP9VXnr5y0vS4QTZL0Oc4phnn9bDjJfFaoHFVX9FgaUfgvL7UYu0ob2vziDDbee+1YfCGwHlzEvN0zPy1bR5R6y1KL418PVb1Vb3vgT9RRZMjygOl7VqRfW6zh1cX6/zdl1oaeL1Sr5W51VrZwsjzfj0H6Mwl57Vs/d3GOaej55+go+ef0OmhAAAAAAAAAAAAAAAAAAAAYBYhjAZ0md7UEl16yBc7PYwZrze1pNNDmBQqGxgYaNq6C4WCCoXChGmLFy9u2vrb7eyzz9bZZ589IY7285//XD//+c8lSatWrdLxxx+vE044QWvXrtWaNWuaPoatW7dOePy85z0v1vKrV0e7CWfLli0THn/961/X17/+9VjbqrVjR/BNjAAAzARh4YtMItuUbeSMWE2U/1AGSQAAIABJREFUgBGiK1Tsz5IwGhoRFvnJGlGrVrO2W6jm5b2Xc85cttTCMBrisz/L4O+dFeayzjXNGo8UHKqy4lXt2DesGFzQud063+eSc2KuJ/hzSSiptOuxhtpS9vjjXWdYxzrrs7TisWGh0ljjCRl/2U+OtsQV9v5wjQY0bldlZ2BgSRqNNRFGQ7s9XPi9Hi8+EjjvuIWv6EjctJskXEK96UXqLz0zad5gub8DIwpmxW479fcyAAAAAAAAAAAAAAAAAAAAAN2LMBrQZZIuqcXpZZ0eBtrgwAMPnPD46aefVn9/f1MCZvfee++U25tOnHP6xje+oY997GP6x3/8x0nRt82bN2vz5s3693//d0mjobQ3v/nNuuiiiyYF6OpVG65bsGBBrOUXLlwY6Xn9/c2/SWn37t1NXycAAN2iWC0ETk+7HiVcsinbaFawBOHCQiwlP9LGkWCmsQI5GZdt2nEirlwiOEjkVVXRF5R1dhjACgWmHD/m6wQraGaFvFodg8i4rJycvHykMdnBseDvaDPlktHPr9Y5IpvImefp4BBc8PufS8wJDRK2kvXZWxE9i3VdYh1vrOklP6KyLzUcWww7rzcjeBoWP+MaDWjcQGm7OW9ReqkUcIjyfvK5B2iWWwduMOet7V3fxpF0r97U4sAw2kA3hdGM6xvreg4AAAAAAAAAAAAAAAAAAADA7JXo9AAAYLY6/vjjJ03btGlTU9Zdu55cLqejjjqqKevulFQqpU996lN69NFHdcUVV2jt2rXKZDKBz928ebM+/vGP65BDDtE3vvGNNo+0MSMjzY9+cFMiAGAms2+qbU5gRgqP3lR9pWnbme3CAidlX27jSDDTWIGcrBFlaoewY5QVzhpTMfaHRiNGqI8dzzTCaFa8qknfR+dcSGgrXnCs1cygWcA4zYBbYm5IYC0oBNd9xwP7OsMOiwWxzqPZZPBnaYXRJDsgF2s8AWG6Mc0Io4XFz5oxfmC2GyhvC5yedj2al4z3CyOARu0qD+rXu28PnHfY3KO1X88BbR5Rd+pLLQmcHhY6bLdWXwsDAAAAAAAAAAAAAAAAAAAAmDkIowFAh6xYsUIrVqyYMO2mm25qyrpvvvnmCY9f+tKXqqenpynrHlOpdCYCsmzZMr3//e/Xrbfeqp07d+r222/XFVdcode+9rWaN2/ehOfu3LlT5557rq6//vqGt9vX1zfh8a5du2Itv3PnzkjPW7Jk4s1Ln/70p+W9b+i/L3/5y7HGCgDAdFKsFgKnZxLZpm0jLJZibR/xWdEbqTkBFcxeVizIihG1Qy4ZEiQKif1UfUVVVQPnEUbrDCsgVqzmVfWTPyszXtXE76Mda5u4be99aHCs1ewgWFDAzXrfcjEDa9bxoPUhOIs1/rIvq1SNfv6zX1vwZxkWILGCeXGEraNUbTwKHxY/C4umAYjGCimNhpdc4DwvfjkDWuP2nTerouA48Lre9W0eTffqTS0OnD5Y7v4wWjuivAAAADOVcy7lnHuJc+4C59wHnXN/45y72Dn3RufcC51zqU6PEQAAAAAAAAAAAAAAAKgHYTQA6KBXvvKVEx5/9atfVanUWPRh27Zt+u53vxu6nTGp1MR//1guB99cFGRgYCD+4Josk8nouOOO0/vf/35df/316u/v19e//nWtXr1673O893rve9+rajU4HhDVsmXLJjx+8MEHYy3/wAMP1LWdqMsBADBbFY2gS6aJN9WGxZPCAkaIJ18JCaj4xgMqmL3sm+87GEYL2XZY0Kfs7b+zpbi/rSOs75GX14gvTphW9iXzeNbMUJ8dRpt4ziz6ghmxaUecIlbQzIhgZRNzzLEWqnl5P/H1tSNMF1dYoKwQI1AWFo8LMickfteM65vhkLGHHcuiCjtWjviiKk3YBjCbDRghpb70YiOLBrRGxVf0s8EfBs5bnN5Ph889us0j6l596SWB0639uRPyxs9wOnktBgAAEMQ5d4hz7hzn3Gedc7c453Y55/y4/x7tgjE+zzn3JUn9ku6U9P9JulzSpZL+r6T/lnSXpF3OuZucc6/r2GABAAAAAAAAAAAAAACAOhBGA4AOet/73ifn9t1Ktm3bNl1zzTUNrfPKK6+cEFebO3eu3vGOdwQ+d8GCBRMeDw4ORt7OvffeG2tc419nq/T09Oicc87RnXfeqQMPPHDv9C1btuhXv/pVQ+s+5phjJjy+4447Yi1/5513RnrecccdN+G9uvnmmyfdyA0AAPYpVguB05sZdAm7QTcsyoF4aoM945WrxE1Qv7wRVGpmiCquHpdRwvixXFiQqOztkHbKpRseF+ILO9/UxrwKFfs418wYhB0Kqx2P/V3LJe1oVrNY+2DQuMKiXzkj8OVVVdFPvE7oxlBi2LateEjgc43AqPX+ZBI5OSNvFBYrjSrs+xV2LIu8/imuwcKuKwBMbUdpW+D0vtRSiTQa2uiePb80w15rF75SCZds84i6V18qOIw2WO7vmv/HYEVfO/l3MwAAgDHOuZOccz90zvVLekjS1yVdImmdpPkdHdw4zrmUc+6Tku6T9A5JC6ZYJCfpjyWd0+qxAQAAAAAAAAAAAAAAAM1EGA0AOuiwww7T+vXrJ0z70Ic+pK1bt9a1vvvuu0+f/exnJ0y74IILtGjRosDn77fffpOWj+qGG26INbZMJrP3z8ViMdaycfX29urss8+eMO2RRx5paJ0vf/nLJzz+r//6r8jLbtu2TTfddFOk5y5dulQvetGL9j5+4okndOONN0beFgAAs40Vvci4bNO2ERa9iRMsQbi8cYO01JyACmavbgwhOefM7YfFfsrejgQSRuuMbDIsalUTIgv5bHMh64nLiprVRgLDInzNDIya2zBec9C4rPN9Ljk3PE5Xs5wVp+tkjCNs23ECrNZ7ZL0/CZdQxpgXdk6OarjF5/WprsGsKCaAaAbK/YHT+9LB4SVJ8uqO8BJmllsHg382nnJpHb/w1DaPprv1phYHTi/7svZUdrV5NMGs83cn/24GAAAwzlGSTpMU/A9suoBzLifpO5L+VlJq3Cwv6beSbpD0n5K+++xjfusMAAAAAAAAAAAAAAAApi3CaADQYf/wD/+gOXP23fQxODios88+W3v27Im1nm3btukNb3iDRkZG9k474IAD9NGPftRc5uijj57w+Hvf+16kbf3whz/Uxo0bY42vt7d375+3b9+uUqm1cYtUKjXh8fgwWz1OPPFErVy5cu/jTZs26fvf/36kZT/5yU/Ger3vec97Jjy+5JJLYn8fAACYLYrVQuB0K/RRj7TrUVKpwHlxgiUIFxboKfkRcx4wFTuo1Nmb761YUVjMJywmlHLBxym0VpwoV3iIrHnfR2tMtees0FBbIjiu1ky5iOO0pkmjrzU0LDYpBhcc6+pkjCM8wBrtOsN7b75HVihPkuYYn/NwpfEwWtjYmxFGK0wRb+MaDWjMQGl74PRFqaVycsZShNHQXFtHntDvhn8TOO+Y+S/XvNSCNo+ou4WFCwfKwft0u9Vem41pR5QXAACgAUVJD3V6EM45J+nrks4YN7kg6ZOSDvLeH+G9f5X3/k+996/13h8haaGks55drrW/wRAAAAAAAAAAAAAAAABoMsJoANBhhx56qD73uc9NmHb77bdr/fr1evzxxyOt48EHH9Qpp5yi+++/f++0RCKhr371q1q6dKm53HHHHTchyvbtb39bmzZtmnJb559/fqRxjbdmzZq9fy6Xy/rpT38aabnh4WF97nOf0+7duyNva8+ePbruuuvM7dcjkUhMCpZdeOGFeuSRR0KXu+666/SFL3wh1rbe8pa36NBDD937+P7779frXvc6DQwMxFrPtm3bJr0PAADMNFbwKJPINm0bzjllk/EDRognLGDSjIAKZq9uDCFJdqzIGq8Uvi8kCaN1RMZlzUBMsUNhNCsUFjXUllBCadfTtPFYrNccdG63xppNzFE2JHJYu5x13WCd59sh4ZLKuODrFiseUmvEF1VVNXBeWDjO/gwav77Jh8TVSg2e10vVksq+HL59wmhA3UrVknZVgn8OGRZeApptw8CN5rwTe9e3cSTTw/zkQjPqPljub/NogpnXYh3+uxkAAMA4JUl3SfpXSRdKerGk+ZL+rJODeta7JL1m3OOnJB3tvf+Y9/6JoAW898Pe++9478+V9PZ2DBIAAAAAAAAAAAAAAABoFsJoANAF3va2t+nd7373hGm33XabDjvsMH3mM5/Rli1bApfbvHmz/uZv/kZHHHGE7rnnngnzLr/8cp1yyimh250/f77OOeecvY8rlYpe9apX6aabbpr03JGREV199dV62ctepq1bt6qvry/qy5MknXzyyRMeX3DBBfrCF76gX/3qV3r44Yf16KOP7v1v+/btE7b73ve+V8uXL9fb3vY2fe973wuNpG3cuFGnnHKKHnvssb3TXvayl2n16tWxxhvkve99r174whfuffzkk0/qhBNO0Le+9S1VqxNvQB4aGtInP/lJvelNb1K1Wo31fiWTSX3rW9/SggUL9k770Y9+pCOPPFL//M//HPr6d+zYoW984xs699xzddBBB+mqq66K8QoBAJh+it66qba5gZNWhkMwKiwyN1X8BAhj3XwfFgtqB+s4ZY1XCg+jpV264TEhPuec+VlOjnIFH+d6XEZJl2zamBodTy4xV84Fx96aydoHS35kwne96quTInPj1xEWp6t9jfZr7vDxwIi7Rb3OqDe6N8cMNDYhjNbC4GmU94VrNKB+O0MCSn0pO4zmWzEYzFqFal537PpJ4LwV2VVamWv85/0zTcIl1JteFDhvoLQ9cHq7mddiIaFbAACANvqKpAXe+xd579/hvf+S9/7X3nf+N7c451ZI+sy4SQVJp3rv7zcWmcR7/kcLAAAAAAAAAAAAAAAAppfgXxsNAGi7z3/+8+rr69OnPvUpeT96G9nu3bv14Q9/WH/913+tww47TAcddJD6+vrU39+vxx57TL///e8nrSedTuvKK6/Un//5n0fa7qWXXqpvf/vbGhwclCQ988wzOv3007Vq1SodeeSRymQy2rp1q+68804NDQ1Jkvbff39dfvnlOv/88yO/vje+8Y36yEc+oscff1zSaFSsNgY35vzzz9eXv/zlCdN27dqla665Rtdcc42cc1q1apUOOeQQ9fb2KpVKqb+/X7/97W/3rn/MnDlz9KUvfSnyOMOk02l97Wtf07p169TfP3qD4FNPPaU3vvGNWrZsmV784hdr4cKF2rp1q37xi18onx+9cXvhwoW6/PLL9c53vjPytg4//HBde+21esMb3qCdO3dKkh5//HG9613v0kUXXaQjjjhCK1as0IIFCzQ8PKzBwUE98MADk14/AAAznRVKySSyTd2OFUxpRjgEo8ICJo0GVDC75StDgdPDYkHtkEtYQaLg8UrhkcAUYbSOySbmBJ4Pao9rVgCy2VGuqDFPazzZZHPjopawfbBQyWteavQ7PeKL8kZuJ5uYszdOF+kzMM41nT4eZBNztFM7Jk2Pep1RCImLhn2/rNc9bBw3o/Lem8deqfHzepT3hWs0oH47ytvMeX3pJXY805NGQ/P8ctet5t8R1/Wub/Nopo/e1GL1l56ZNH0gJHjYLhVf1ogvBs7r9LUYAACAJHnvBzo9hhAfkTRv3ONPee/v69RgAAAAAAAAAAAAAAAAgHYgjAYAXeTSSy/VunXr9K53vUsPPvjg3unee91777269957Q5c/+uij9cUvflHHHHNM5G0eeOCBuvbaa3XWWWdp9+7de6dv3rxZmzdvnvT8gw8+WD/4wQ+0devWyNuQpFwup29/+9s666yz9MQTT8Ratpb3Xg8++OCE9yjIgQceqOuuu05HHHFEQ9sb7/DDD9ePfvQjnXHGGXrqqaf2Tt+6datuuOGGSc/v7e3Vd7/7XVUqldjbOvXUU7Vp0yade+652rRp097plUpFd911l+66664p19HX1xd7uwAATCfFaiFweibR3KhL1MgM6hf2Xpb8SBtHgpmmYAQUc8lOh9GM40oleLxSeEyIMFrnZI1zTu13zzrOZZv8XbTPWdHG0+xQmyVsH8xXhzRPC0b/HBLYGluHFaernWYFxDod48iZ36Fo1xlhEbCw75cVaCyEBBqjKPkRVWSHHBsNo0V5X8JicQDCDZS2B07PJeYqm8jJyQijAU3ivdeGgck/a5ekuYn5evH8l7d5RNNHX2pJ4PTBcvB+3U7W38uk9l1/AgAATEfOufmSzhs3aUjSlR0aDgAAAAAAAAAAAAAAANA2iU4PAAAw0amnnqr77rtPX/va13TKKacolQpvWGYyGZ155pn6zne+o02bNsWKoo15xSteoY0bN+q1r32tnAu+sW3p0qX6wAc+oLvuuktr1qyJvQ1JOuaYY3TffffpX/7lX3TWWWdp1apVWrBggZLJpLnMwoULtWHDBn3wgx/Ui1/84infD0l6/vOfr09/+tN64IEH9JKXvKSusYY56qijdP/99+uiiy7S/PnzA58zb948vfWtb9Xdd9+ttWvX1r2tVatWaePGjfre976nU089VZlMZspl1qxZo4suukg/+9nPdN1119W9bQAApgPrxtpMItvU7djRG6IbzRIWdSl7O64CTCVvBH46HUKytm+NVwqPCSUdv/+gU6LGM63jXLNDEFHPWdZ42rVvhG1n/Pk9LKIx9lrt0GBNGM0KJXbt8SDadYZ1PeLklHH2NdGcZHAYbbjBMFrYcUySStXGwmhR3peo7x2AyQaMgNKi9NLQ5bx8K4aDWeih/P16cuSxwHnHLTxFPYmpf0Y+W/WmFgdOt4KH7RT28xPr+hUAAACSpHMkzRv3+Frv/W7ryQAAAAAAAAAAAAAAAMBMwR2TANCFUqmUzjvvPJ133nkaGhrSr371K23evFnbtm3TyMiIMpmMli1bptWrV+voo4+OFMuayqGHHqrrr79e27dv14YNG/T4449reHhYy5Yt08EHH6y1a9dOiJKddNJJ8j7+zW4LFizQhRdeqAsvvDDS851zOvHEE3XiiSdKkvL5vO6991499NBDevrppzU0NCTnnBYsWKAVK1boyCOP1HOe85zI47nllltivwZpNNh21VVX6bOf/axuueUWPfLIIxoYGNDSpUu1fPlyrV27VnPn7rvBuN73Sxp9D1796lfr1a9+tQqFgu6880499thj6u/v19DQkObOnau+vj6tWrVKa9as0eLFwTc/AQAwExWrhcDpzb6pNpcIDofkK0Q3miXsJumwGBQQxnvftSGkXNKKadkRKCsSmFBSCcfvP+gU65xTe46wPttmh8hyRuxq8ni6N4w2PmoVdn4YOz/bcbp973nFV1T0xnWDsT+2ix12s48H49mRu5wZwB+dbwTZGry+Ga6Eh9EaPa/XBu8Cn0MYDajbDiOg1Jda8uyfgo8rhNHQLLcO3hg43cnpxN71bR7N9NKXXhI4fbDc3+aRTJYPua7pdLQaAACgy51c8/jmjowCAAAAAAAAAAAAAAAAaDPCaADQ5ebOnTshDNZqS5Ys0etf//q2bKseuVxOxxxzjI455phOD0WSlMlkdPrpp7dte9lsVuvWrWvb9gAA6HZWZCbT5DBaNhm8PqIbzVGqjpjBp7H5QD2KvmBGOjp9870Z06ojEph26aaMCfWxvku18c58NTgW1eyYp7W+QnVY3vu9oSwrftWuaGDSJdXjMhrxxUnzxp9frX0ioYTSrkeSHTYbv2wxJDqYa/JnEJc1/qjXGdbzrLDrmDlGRK/R65uplm80jBZ2nIzzHADBBsrhYTQ7twg0bmd5QP+7+xeB8w6f+2It6VnW5hFNL72p4F+aMlDun3Ad2Alh1wed/rsZAABAl3tJzeNfSJJzLifpdZLeJOlwSX8kqShpu6T/1WhA7b+897vbN1QAAAAAAAAAAAAAAACgeRKdHgAAAAAAAPXw3k+KzoxpdmTGCotYYTbEM1W8pNGACmavghF+ktoXf7K3Hz9IZAUEU4TROipqPLNQCT5nTBWvisv6bldVVcnvC01a3zUr0tUKVgRjfLTNHGdizt64h/WaowTWRtfV3M8gLmv8UeNeVuRuqusha7vDRsQvqqmWb/S8HiXcRrwWqN9AaVvg9L70kjaPBLPRzwdvUkXB17zrete3eTTTz1jAsFbZl7SnsqvNo5nIOjenXErpBH+fAQAACOKc65W0atykEUkPO+fWSbpX0tcknSnpEElZSQslPVfSGyR9UdIjzrn3tnXQAAAAAAAAAAAAAAAAQJMQRgMAAAAATEtlX1ZVlcB5GZdt6rassEjUYAnCTRUvsWJQwFRCQ0htjD8Fbj9CEKqWFRNKulRTxoT6RI1a5Y1YlBVWq5f13aodk7V/tDMamDP2wwlBM2OfGL9slPN02Lkm1+SgalzWZxY17mU9L5cMD76ZgcaQ41AU+cpUYbTGzutRrr/CjqUAwg2UtwdO3xdccoHzvXyLRoTZouIrum3nTYHzlqSXac3cF7V5RNNPX3qxOW+w3N/GkUxmnb87HagFAADocvvXPH5S0tmSfiLp4AjLL5Z0pXPuq87xQ2QAAAAAAAAAAAAAAABML/yDFwAAAADAtFSs5s15mSYHTqxITNRgCcJNFTgp+ZE2jQQzTXgIqbNhNCsIZcWzJKlixIRS3NPWUdY5p1Bznqp9PMaKU9XLioSNjmFYC9W398/By7dv3zADgROCZsHv2/hl7bDYvmXDQlntfM1Bosb1LHZoJPx6yAqn5atD8t7LueD4Ub3jGdPoeT3K9RfxWqA++cqwuf/0pUfDaM4IowGNunvPnWa8a23veiUcv+9rKvOTvUooGRiRHyhv10E6pAOjGmVfC3c2UAsAANDlemsez5P0H9r3y3Afk/T/SrpNUr+kRZJeLundklaOW+7NkrZKuqRZA3PO7SdpaczFntus7QMAAAAAAAAAAAAAAGDm465JAAAAAMC0VPR2GC2byDZ1W2ZwJSSygujyFTsEJUllX2rTSDDTWGGPhBLqcZk2j2Yi67hS8iOq+LKSAbGzkrEvpFy6qWNDPHaUa7jmcfCxbqp4VbPGMzqGcaEwY/9oZzQwSnjUigWOf9/MsNi484sV00q5lNKJninH2kpRv0MW63lTRfes962qqoq+oKyr77vZ6vN6WORuDPFaoD4D5e3mvEWpqe53980dDGadDYM3Bk5Pux4dv/CUNo9mekq4hHpTi7SjvG3SvIGSvX+3QzdEeQEAAKah2jDaknF//qak872f9D/L7nDOfV7Sv0t647jp73fOfcd7/7Mmje1dkj7WpHUBAAAAAAAAAAAAAAAAk/CrtQEAAAAA09L4uEutTJMjM7mkEVwhutEUYZ+lJJV9Wd4TWkB8YTffO+faPJqJwuJT1rHFigkRRuusnHHOqf3+5Y1j3VTxqrgyIXHQ8UFPK+7ZzjiFFYUbvw9Y54jx71vWOE+PX9ZaTzfEOKz3oVAJPz+OsUJhU0X3wr57U8XNQsdjxOzGNBpGixI94xoNqI8VRnNy6k0vGv2zcQnF1Toa8VRxix4Yvidw3jHz12pucn6bRzR99aWXBE4fKPe3eSQT2X83a+7PbwAAAGYY6992/lLSeQFRNEmS974g6bxnnzfe3zRxbAAAAAAAAAAAAAAAAEBLEUYDAAAAAExLxWrBnBcWhamHdaPuiC+q4itN3dZsNFVAxauqqnifEV+9saB2CAujWTGkctUKo6WaMibUxwprFWrOU+2KQSRcIlJwzApHWTHQVjDfu8r4oNnU75u1PxUivN6uOB4kgwNl+epQpDCodR6dKvoW9lk3EhYbnjKMVq573dLUQdXR5xBGA+oxUNoWOH1BsndciLWzcVnMTLcO3mjOW9e3vo0jmf76UsFhtEEjfNgueePvON0QqQUAAOhie4zpl3gf/gOWZ+f/Zc3k05xz+zVlZAAAAAAAAAAAAAAAAECLcdckAAAAAGBasqIYTgmlXU9Tt5VLBAdLRscxrLnJ+U3d3mwTJXBS8iUliT8hJiuMY0WI2iksAGBFjioKvtdtX6gEnWCFtcZ//7z3ZqivFd/HbGJO4LF1bEwVX9GIL5rLtosV5hq/D9iBwzmBfx5v/GdgHg9CzvHtYn2Hqqqq5EfU4zKhy1vn0am+W2GvvZEwWsH4zMaUfXDkMaqpgqrS6PfGey/nCDgBcQwY4aS+dHBoabwoIUcgSKGa1527fho4b2V2tVZkV7V5RNNbb2px4PSBUn+bRzKRHbsljAYAABAiKIz2mPf+1igLe+9vc849LOmQcZPXSfpmE8b2hTrW81xJ32nCtgEAAAAAAAAAAAAAADALcEcxAAAAAGBaKlYLgdOziWzTIxhWsEQijNYM+crUgZPRiIr9OQBBrLBP2D7dLlYQSrIjR1ZMKJUgjNZJVsyh7EsqVUtKJ9Iq+RFVVTGWb/73MZeYo0FNjl+M7RNWmGJs2Xaxg2b5cX+eej+2xlyo5lX1VSVcItJ6OiU8UDaknkR4GK3eY13a9SipVGB0MV8Juu82muEpwmWl6kjd65aiBVWrqkSKygGYaKBkhNFS+8JoTtbftQijoT4bd95iHtvX9a5v82imPytkOGiED9vFul4J+3sRAAAANBgw7Y6Y67hTE8Noa+ofzj7e+2ckPRNnGQL2AAAAAAAAAAAAAAAAiCPR6QEAAAAAAFCPonHjdKYlgZmQYEll6jgHwlk3SI9XrgYHoYAwVggpbJ9ul6RLKe16AufljahQydgPUo4wWieFxafGzlVhx7lWfB+nCo51SxjNDpoNjftz8Hk2l9z3vlmfgZfXiC9KkvIVKx7W+RhHeIB16uuMeo91zrkJ7+N4Uc7NlqmCp2U/OcTWzPXvfV4DrwGYrXYY4aS+9NI2jwSzhfdeGwZvDJw3L7lAR88/oc0jmv56U4sDpw+U++V95wKGdqS289diAAAAXewxScWaaU/FXMeTNY+DLxgBAAAAAADVtCxFAAAgAElEQVQAAAAAAACALkMYDQAAAAAwLRWrhcDprQijha2zYASMEF1YoGdM2RNGQ3x2CKn5x4l6WFEoa9xWTCjlUk0bE+ILizmMHd/CjnOt+D5a6xwbh/UdG122fXEKa1v5cTEwO6KRG/fnkM+gEv4ZdEOMI2wMYZ/VmEIDxzr7OFT/9c1UQbKKyqr6at3rjxKLG30eYTQgroGSEUZLLZly2c7lljCdPZi/V0+N/CFw3vEL/1jpRHBIGLY+I4xW9iXtqexq82j2sc7f3fJ3MwAAgG7kva9I+n3N5NpQ2lRqn5+tf0QAAAAAAAAAAAAAAABA+xBGAwAAAABMS9ZNtZlE8+/pSCfSSrl04Lx8xDgHbFMFVCSpRBgNdbCiOLnE3DaPJJgVQ7LGXSGM1pWyybB45ug5IixulUs2//tofrcqz44nLNQW8nqazYpyjd8HrLGOXzaXDAmLjcXgjPN12LLtkklk5eQC500V96r6ioo+OBYb5btlhtEaiIrlI0RjrePZVLz3kYNnUaJyAPbx3mugHBxGW5TeF0azjlek0VCPWwdvCJzulNDa3tPbPJqZoS9thwwHy/1tHMlE9t/NOn8tBgAA0OXurnncG3P52ud37qIQAAAAAAAAAAAAAAAAiIEwGgAAAABgWipWgyMg2URrgi5R4i2oTyFCuKRMGA11sMI+7Qw/hckaQSZr3NZ+YIUb0R5h552xc4R1rnBy6nGZ5o/J+I6PBaus8aRdT1u/T+Y+UBmW96OBHWus4+NvVghu/PIFI9YVtmy7JFxCGeN7NFWgzArFSlIuwjWRFU+LEjez5CtTL1vyI3Wte8QXVVU10nO5RgPi2VPZaV5r9KWihNGAeAbLO3TX7jsD5x0x7xgtTu/X5hHNDPOTC5VQMnCeFT9sB+vv/a36GQ4AAMAMUlsTPjzm8i+oefx4A2MBAAAAAAAAAAAAAAAA2oYwGgAAAABgWrJCIBmXbcn2rHDKVMESTC3Ke0gYDfWwojhW6LDd7OBi8PHN2g+SLtW0MSG+lEsr7XoC5+Wf/Syt41wmkVPCNf9HtFN9t6zxtHvfsM6tVVVU8iOq+qq5P4wfa4/LKGH8qHvsteaN9XRLjKPeAGvYOTSbCI6eRdluPkK0NEjFV1T0wfHa8cq+XNf641x3cY0GxBMWTOpLLzHnjfHyzRwOZoHbBn+oqiqB807sXd/m0cwcCZdUb2pR4LyBUgfDaNY1nRFpBQAAwF7fl1Qc9/hY51zwBV8N51yfpJfUTP5ZswYGAAAAAAAAAAAAAAAAtBJhNAAAAADAtFT07Q2cWOst1BkOwT5TRV8kqUQYDXWwojhWjKnd7ODiUOB0K4yWcummjQn1Mc8Rz34H2x3ps75be8djnLvavW+Evf58dVhFI6AhSdnkvmWdcyGveXQd1mvullBivQHWsIBZLsI1kRUjsY5DU4m6XL3B0zjXXVGuLwDss8MIJiWV0vxkb5tHg5mu4sv6+eBNgfOWpg/QoXNe2OYRzSxWzHCw3N/mkYwKC6d2S6QWAACgW3nvd0v61rhJGUnvibj4eySN/21Cj0n6bZOGBgAAAAAAAAAAAAAAALQUYTQAAAAAwLRkxVIyiWzg9EbZ4RCiG42K8h7WG1DB7NbtISRrHIVK8PGt7MuB09OE0TrODqONfpbtjvSZ361nx2GOJ9nefSMshFGoDoeeH2qXtdaVrww9uz4rqNodx4N6A6xh8a9sIvjaZbyc8Zx6w2hRw2X1ntfjXHdxjQbEM1AODqP1phcr4fb970TnXLuGhBnsrt13aGdlIHDeib3rJ3znEF9vanHg9IEOhdFCY7ddci0GAADQLs45X/PfSREW+1tJI+Me/7Vz7rgptnOcpL+pmfx33nsfb8QAAAAAAAAAAAAAAABAZ6Q6PQAAAAAAAOpRrBYCp2dCIiuNsKM3RDcaFeU9JIyGerQ7RhVXzohQWUEiaz9IEUbrOOs7NXZ8a3ekzxpP/tkohXXczbXoHGqxolzSaMis4iqRl7U/g7E4XfB+Ze2H7VZvgNWan3IppRNTHxvmWGG0iIGzWsMRg2r1ntfjXHdFjbQBGDVQCg6jLUotibQ899Yjjg2DNwZOT7seHbfwFW0ezczTZ+y31n7eauGx2+64FgMAAJAk59xyBf97yv1rHqeccyuN1ezx3jf1wst7/4hz7u+1L3SWkXSTc+6Dkv7V+30/aHHOpSS9XdIVknrGrWajpGuaOS4AAAAAAAAAAAAAAACglQijAQAAAACmpbHQSa1MItuS7VnxFmsciKbqK5HeQ8JoiKviKxrxxcB53RJCmiqmVcvaD5KOH/F1mh3PHItyGZG+Fn0Xp4p52tFAO1TWCplEVk5OXpNjOvnKkCqJsrls7Wu09utCdVgVX1bJjxjr6ZbjQX0BVmt+1M/S+g5aIbmpTBVyG1Oq87wedf1xnwtA2lHeFji9L10bWHKBzws6lgNBniw+ps35ewPnvWTBOs1JzmvziGae3vTiwOmD5f42j2RU2PVMu8O8AAAAU7hN0nMiPO9ASY8Y874i6a3NGtA4H5X0fElvfPbxPElfkPRp59wdknZIWiTpZZJ6a5Z9QtLrvTd+QAYAAAAAAAAAAAAAAAB0Ie6aBAAAAABMS8VqIXC6FRZplLXeesMhGGV9jrVKVcJoiCfs5vtuCSHlYofRgiNRKZdu2phQn6kid9Znan0HGh6PFQmr5OW9DxlPe8MUCZdQJpELHE+hmldFleDllFTa9UyYZn0G+epwaICzVZ9BXPbxIDweasW/on6W1nbrjYrlK9Gui8p1ntenCsXV+1wA0kBpe+D0vlRtGA1ozIbBG815J/aub+NIZq6+lB1G897LueDAYasUKvb1TLf83QwAAKDbee+9c+7/aDSAduG4Wb2SXhmy6EZJr/PeP9nK8QEAAAAAAAAAAAAAAADNRhhtFnHOzZf0cknLJS2RtFvSk5J+671/oInbSUs6QdIKSQdI2vPsdv7Xe/9os7YDAAAAYHazglqZloXR6guWIFzU8ErZE0ZDPGFBnG4JIYWFnIJY+wFhtM4zzxHPRiCsz7R1Mc/g8VRUVsmPKF+xxjO3JeMJkzXCaPnqkCpGDDCXnDMp6BEWGrRe79j2u0Hc48GYgvlZRjvO5YzPPGrgbNJyEYOx9Z7XrdcbPBbCaEAcA2UjjJZeOuFxe3NKmGnylWFt3HlL4LxDsofqoOwh7R3QDGUFDUt+REOV3ZqXWtDW8VjXBymXUjrREzgPAAAAk3nvi5L+H+fcNyV9SNIrJCWNp/9W0hWS/sN7H/zbBwAAAAAAAAAAAAAAAIAuRhhtFnDOnSDpbyWdIuMzd879RtK/SPqi997XuZ2lkj4h6RxJi4zn3C7pH73319azDQAAAAAYUzSCZNlEtiXbM4MrMQIdmKzVARXMXuEhpO4Io9nHleDjW9mIRKUcP+LrtGwyOK41FvyyIppWlKpRuZDYV6GaN8OBOeN1tFIuMUeD6p80vVDNq+qqgcsE7cN2wHR4ilBi+2NwQeq9zrDiX7lktNdlPa/oC6r4ipLOurfWGE/EoFq95/U4sTPitUB0FV/RzvJA4LzJgaXgNJpXXf9rCbPMnbt+qqIPjpyv61vf5tHMXL3p4DCaNBpBbHcYzTond8vfywAAAMZ471e2YRsN96a99z+W9ONn/63eyzT6i0vHfknqVkm3e+8fb3Q7AAAAAAAAAAAAAAAAQCdx1+QM5pxLS/qcpAsjPP2Fkv5Z0rnOuTd777fE3NZ6SV+WtN8UTz1e0vHOua9JutB7H+1OOQAAAACoUawG30ydCYnBNCKbDL5hN06gA5NZAahahNEQV1gIqVtuwLePK0Py3su5iffIWftByqWbPjbEkzXOPWPnCCtuZS3X+Hjs73ihOmyeu7IdiIRZY81XhlRJBMcAg8Jv5mdQCQ+jteq6Ia56rzOs1xb1uzUn5DMvVIc1Nzk/0nrGDEcMnpbqPK+HfZa1okbaAEg7yzvkFRyjXBQSWALi8N7r1sEbA+fNTy7UUfOOb/OIZq4FyYVKKKmqKpPmDZS36yAd0tbxNHq9AgAAgGDe+22SvtfpcQAAAAAAAAAAAAAAAACtQBhthnLOpTT6D59Or5lVknSnpMclzdVoEG3FuPknSrrZOXeC974/4rZOknS9pJ5xk72kX0t6WFKvpBdp9DdTjvlTSQucc2d574PvtgEAAAAAQ9VXVfTtDaMFRVikeIEOTJaPHFAZafFIMNNYMaGUSyud6I6QWM4IQlVVVcmPqMdlJkyv+OBIVMrxI75Os+Jehepo/NH6PuaSrQmRWd+t0THZobCw5VrF2mahmlfViPQEBdxyRlisUM1P6+PBVNcZ5ncrYuQu7DPPV4Zih9GiXhfVGzyNE6Qd2/8ATG1HaZs5ry81MYzm5Ixn+iaOCDPRA8P36OmRxwPnHb/wj7vmnDwTJFxSvalF2lGevG8PliL979+myhvn5G4JVgMAAAAAAAAAAAAAAAAAAADoPolODwAtc7kmR9GukrTMe7/We3+u9/413vvnPPu8h8c97/mSrnPOWXe37OWcWy7pOk2Mov1c0uHe+2O893/ivT9N0nJJ79NomG3MmZIui/vCAAAAAGDEF815GZdtyTaDIiwS0Y1GRX3/ykYQCrB0U/jJEhYuCooGWiGhlCMi0WlZI55ZfPYYZ30freUalUnY58J8SCisE3GKrBk0swNuQe+bHafrrhCcJWz8YRr9boXF+eJEyMYMV6IFT+sNo8UJ0kaNrwKQBsrbA6dnXHbS9YoVRiOLhqlsGLwhcLpTQmt7a/+XJhrVm1ocON3a31vJvl7pnmsxAAAAAAAAAAAAAAAAAAAAAN2FMNoM5JxbI+nimsnv996/z3s/UPt87/1Nkk7QxDjaiZLOibC5T0jqG/f4dkmneu/vr9lG0Xt/laQ/qVn+L51zz4mwHQAAAADYKyymFRaDaUTOCIyU/EjdcQ9Ej67wHiOufKX7b74PCxcFjb9EGK1rWYGtsWOcdawLi+M1IuGSZig0XxlSoRJ8Hs0ZkbJWCnvvrP04aJnQ9RjXDd10PLDGX6jmVfVVczn7PYr23Qp7D4brCIu1+rxuvd4gxGuB6AZKwaGkRemlivA7dIApDZS26+49GwPnHTnvWC1KL23ziGa+vvSSwOkD5f42j6T9kWAAAAAAAAAAAAAAAAAAAAAA0x9htJnpQ5r42f7Ie/+PYQt475+W9LaayZ92ziWtZZxzz5N0/rhJI5Le6r0vhGzneklfGTcpI+ljYWMDAAAAgFrFkNBFq26szYYERqzADKaWr0SLrhBGQ1xWEMeKD3VCLhlyXAmIB1j7QcqlmjYm1MeKS41FrazzVitjEFkjcranslMVlY3xtH//sN6DQnU4JKIxeZz2ZzCsghlK7J4YhzUWL68RXzSXazQ0kpwiohdXPmJMzQo9TiVO7Kw4RVQOwD4D5eAwWl8qOKwUxMs3aziYgW7b+UNVFXxMXtd7RptHMzv0phYHTh/sQBit0ZArAAAAAAAAAAAAAAAAAAAAgNmHMNoM45xzkl5VM/mKKMt67zdI+uW4SQdLOilkkfMkjQ+nXee9fzDCpi6vefwnzhl33wEAAABAgLAwWibRmr9e5JJ2YCRqBASTRQ2clKqE0RCPtV9asahO6HEZObnAefmA2FHFB8esUi7d1HEhPitCVazmVazmzVhMK0Nk1rqt+I3UmXCgFcTIV4YD9wNJygXsx3ZgLa9h63gwTUKJYYEyK4wWtr6oz63n+qbVwdM4Y/LyKlbN3+EBYBwzjJaeHEYb/d9QATxhNAQr+5J+Pnhz4LxlPQfq+XOObPOIZoc+I4w2ULKvBVvFDLmG/JwFAAAAAAAAAAAAAAAAAAAAwOxGGG3mOUzS+DtVRiTdEmP5/6l5/IaQ576u5vE1UTbgvb9f0p3jJs2VdFqUZQEAAABAkgohkYuMEUZpVFg8JWrcC5NFDZzUG1DB7GXtl50IP1kSLhESc5oYD6j6iqqqBj6XMFrnWZ+jl9dgeYe5XFDgq1lyxpjCYhjW62ilsH3A2o+DlgkLge00PoNWvv9xhb33YdcZVjwuzmdpHRetdYdp9Xk97jUX8Vogmh2lbYHT+1KTw2hAXHftvkO7KoOB807sXW/H9tCQoLChJA2W++XbHDKcDn83AwAAAAAAAAAAAAAAAAAAANBdUp0eAJpuec3jB733xRjL31Pz+FVBT3LO7S/pheMmlSX9PMZ2bpH00nGP10v6bozlgVljeHhYv/71r/Xggw9q+/btKhQKyuVyWrZsmVavXq0XvehF6unpacq2/vCHP+hLX/qSNmzYoAceeEADAwMqlfbdqHrNNdforW99a+CyGzdu1DXXXKPbb79dW7Zs0c6dO1Wt7rtp/5FHHtHKlSslSSeddJI2bNiwd167b8IBAADTX9G4qTbtepR0yZZsMyyMVk84BKOivneE0RCXFcMJ25c7IZeYG7gf1E4r+7K5DsJonRf2vRos99e1XKOsdQ+EjCeXsONirWIFzQrVvCpGDDDotYWFwAbKwTG4bjoehAdY7XOlNS9OaMT63AuVOsJoEZep97yer8QLnRGvBaKxjpPBYaXgiJUXP+NFsA2DNwROz7isXrbg5DaPZvboNcKGJT+iocpuzUstaNtYrOuVTkR5AQAAAAAAAAAAAAAAAAAAAEwPhNFmnkU1j4N/Bbut9vkHOecWeu931kx/Qc3ju733ce5Ku73m8eExlgVmvEqlov/+7//WNddco5/+9Kcql+0b4LPZrE4//XT92Z/9mV796lfXvc2rr75aF110kYrFOC1FqVwu613vepeuvvrqurcNAAAQV7FaCJyeaeFNtUmXVI/LaCSgPR0WLEG4qO9dyY+0eCSYaawYTpxYUDtYMYDaIFFYRCjl+BFfp2WT9YXRWvl9tNY9UAqO3zg5ZRLZlo3HYu0D+eqQKqoEzgt6bWFhMes1d9PxoMdllFBC1YAYnBURLVVHzGhinOhbzvj+DhuBSYv33oxS1ipV44fRqr6iog++BrQQrwWmNlItaqiyO3DeotTSSdOCs2hAsMcLj+qh/P2B845dsM4MpKJxwWHDUQPl7W0No+WNv5t1U6QWAAAAAAAAAAAAAAAAAAAAQHdJdHoAaLraO8UzMZcPev5hEaZtjrmdhyJsA5iVfvKTn+iwww7Teeedp5tvvjk0iiZJhUJB3/nOd3TmmWfq2GOP1a9//evY27zhhht04YUXxo6iSdJHPvIRomgAAKDtrOBRq4Mu1k27+QrRjXpFfe+s8AtgyVeC4zzddvO9FYOojfmE7QMpl27qmBCfFfeS7ChXQkmlXU+rhmR+1wfKwePJJHJKuPb/uDiXCN4HCtX8pEDgmKDXFhY5s+J03XQ8cM6Z47EiomFxUSt2Fvhc4zOIGjkbU/SFwLBbkHrO61YYNwzxWmBq1nlBCg8rAVHcOniDOe/E3vVtHMnssyC5UAnjnwKEhXtbwTofd1OkFgAAAAAAAAAAAAAAAAAAAEB3SXV6AGi62n/JfkDM5YOe/3xJv6iZtqrm8R9ibuexmseLnXN93vuBmOsBZpRPfOIT+sQnPiHv/YTpzjmtWbNGy5cv1+LFi7Vt2zb94Q9/0AMPPDDheZs2bdJxxx2nz3/+83rHO94Rebsf/vCHJ2zzvPPO09vf/nYddNBBSqf33WC/ZMnEG+G2bt2qf/qnf9r7uKenR3/1V3+lM844Q0uXLlUise+mm+XLl0ceDwAAwFSsMEZYmKYZcsk52lWZ/NcWohv1i/relX2pxSPBTGMFFOPEgtrBOm7V7hth+0DK8SO+Tsu4rJycvPykeVZwJpecI+dcy8aUTQZ/t0q+9vcqPPv8Fp9DLdZ2vbyK3jjfB+zHadejhJKqqjJpnvWauy3GkUvO0XB1z6TpVkS0NqA4XpzomxlGMwKTFitkF6RsfCZhwl6vuQzxWmBKVsBTknpTiydNcwo+dwWdAzG7DVf2aOOuDYHznptbo+XZle0d0CyTcEktTC0KvBYN2+9bIU7sFgAAAAAAAAAAAAAAAAAAAAAkwmgz0e9qHh/onFvuvX884vLHBUxbGDCtt+bxMxHXL0ny3u9xzhUkZWu201AYzTm3n6SlMRd7biPbBJrl4osv1pVXXjlh2vz58/XhD39Yf/qnf6oVK1ZMWmbz5s368pe/rCuuuELFYlGSNDIyone+850aGhrSxRdfPOV2f//73+vuu+/e+/iMM87Q1772tUhjvv766zUysu9G1ssuu0wf+MAHIi0LAADQiKIRPMq4bOD0ZrFu2q0n1IFRUcNoVtQGsOSrwUGfbrv53gwSxQqjpc15aA/nnLKJXOD5YKBc+3sMRrX6uxh3/dZ3sdXqeR9yATE155xyiTkaqu6Ose3OxOAs1nthnSvDrj/iRN+sYGTc65th47gbpJ7gadg1Q4/LaMQXA5aJF3cDZqMd5W2B0+clF6onkQmY07qoJ2aWO3b9NPDYLEnres9o82hmp77UkuAwmnF92gpVX4kVuwUAAAAAAAAAAAAAAAAAAAAASUp0egBoLu/905J+XzP5/0RZ1jk3V9LZAbPmB0ybV/M4uEoQrnaZoO3E9S5Jv43533easF2gIV/5ylcmRdFe/vKX67777tOHP/zhwCiaJK1atUqXXXaZ7r77br3gBS+YMO/973+/brnllim3vWnTpgmP3/CGN0Qed73L3nLLLfLe7/0PAAAgroIRRmt14MRavzUeTC1qdKXsyy0eCWYaa7+MEwtqB+u4kq/ECaPxuw+6Qcb4LAdLk2MUUuu/i3GDY52KhFlRrjBZI+IWN65Rz7ZbyTweGOfKQsU+h8b5PM1AYyVeVCzO8+s5r9ceF8frSwf/row812jAlAaM81RfanHMNfFzXuxT9VXdOnBj4LwFyV4dNf9lbR7R7NSbDt6Pg2JprRL285Kg2C0AAAAAAAAAAAAAAAAAAAAASITRZqr/qHn8QefcgRGWu1TSwoDpUcJowb/qO1ztv4SvXScwKzzwwAN6z3veM2Ha8ccfrxtvvFHLly+PtI7Vq1frxz/+sdasWbN3WrVa1Zvf/GZt3x5+g8vWrVsnPI66zUaXBQAAaESxGvxXkEwi29LtWhGbfDVeOAT7FCKH0ewoFFDLe28GdDoVf7JY8arafSMsIpRy6aaOCfWxzhED5f7A6XHDZXHFDU3kksFxrFar532wXlvc19zqzyAuK1BmnSutYFrGZZVwyRjbta5vop2j9z0/+vVQqY7zuvU+JJXS/GTQj7WlAtdowJSsQNIiIzjojPWQRcN4vx++W8+Ungycd0LvaVy/tklfakng9EHj+rQVwsJo3XYtBgAAAAAAAAAAAAAAAAAAAKB7EEabmT4vaee4x72SbgyLoznn/lLSxcbsaoRt1nPPC/fJAJIuueQS7dmzZ+/j3t5eXXvttZo3L14rcL/99tO3vvUt9fT07J32xBNP6NJLLw1dbvy2JSmdjn5DUiPLAgAANKLog2+szbQ4eGQGjCr2jb6wlaojobGn2ucCUZV9SRUFf7es8FCnWDGq2iBRWByQsER3sM4RVizKilE1S9zQRKeigT0uo0TMH1Nbry3+a+6uGIf1GViBMisUFjdyF/U4NJU4YbR6gqfWeLLJnB134xoNmNKO0rbA6VZQSc5KowH73Dp4Y+D0hBJau/D0No9m9upLLQ6cPlhqZxjNvp7otmsxAAAAAAAAAAAAAAAAAAAAAN0j1ekBoPm894POubdJunbc5CMk3e+c+xdJN0p6UlJO0lGS3i7p5eOe+7ik5eMeDwZsZk/N43runKxdpnad9fiCpG/GXOa5kr7ThG0Dsf3ud7/T97///QnTPvOZz2j//feva32HHXaYLrnkEn3605/eO+3f/u3f9PGPf1x9fX2By1SrUdqHwRpZthnuu+8+3XPPPerv79fAwICy2ayWLl2qNWvW6Mgjj1Qmk6lrveVyWRs3btTDDz+sbdu2qVgsaunSpVq5cqVOOOEEZbPZJr8SAAAQV7FaCJyeSbT2PJ1LGmG0mOEQjIoTXKknoILZK+y7lU12Jv5ksUJItceVsH0g6fgRXzeIGxZrdQgibnit1aE2i3NO2cQcDVej/Wgw5VJKJ3oC58V9Tzv1mi1WuLFQCT6mmaGwmN9FOyo2JO+9XMQIUt4YZ5Cyjx88NUNwiTkh12jRY23AbDVQDg4k9aWNMJrBe34XDkbtKG3T3Xt+GTjvhfNeqt50cKwLzddr7McD5e2xzvGNCLs+6LZrMQAAAAAAAAAAAAAAAAAAAADdg7smZyjv/XXOufdJ+r+SEs9Oni/pA8/+Z7lK0kJJ54+bNm3CaN77ZyQ9E2eZdvyjf8By5ZVXTrhhbMmSJbrgggsaWufFF1+sz372syqVRm+aHxoa0tVXX60PfvCDkqRHH31UBx98sLn8ySefHDj9mmuukaTQ8Vn70yOPPKKVK1fufXzSSSdpw4YNex/HuWluy5Yt+vu//3t985vf1NatW83n5XI5nXzyyTr//PP1+te/Xslkcsp133///brsssv0/e9/X7t27TLX+5rXvEaf/OQntXr16sjjBgAAzVWo5gOnxw2BxGUFV+IEvrBPnKBc2ZdbOBLMNGHfLSs81CnWeGqPK9Y+kFBSCZcInIf2ih3lMkJOzRJ3PK0OtYXJJaOH0cLGGTeu0cnXHMQKN1rXGXYoLN5xLpecFzi9orJKfkQ9Llp4fjhGhKye87odgpsTco0WfM0IYJT3XgOlbYHz+lJLA6c7Wf9PhTAaRv1s8IfyCv6lKif2ndHm0cxufangMFrJj2ioulvzkgtaPgbreiWplFIu3fLtAwAAAAAAAAAAAAAAAAAAAJieuGtyBvPeXyVpvaTfR3j6HknvlnSxpANr5j0d8PydNY+D75AxOOfmaXIYLSjABsxo//M//zPh8Vve8hb19PQ0tM6lS5fqzDPPDN3OdOS915tUPcUAACAASURBVGWXXaZVq1bp85//fGgUTZLy+bxuuOEGnXPOOdqyZUvocyuViv7iL/5CL3jBC/Sf//mfZhRtbL3f+MY3dPjhh+vKK6+s67UAAIDGFauFwOmZRLal27WiG3ECX9gnTlCu7EstHAlmmrDvVqsDinFZ4ylUasNowftAmphA17CiVubzWxzlijueuFGxZorzXoTtw7FjcDHfo1azrzOC4175ihUKa95nn48RO4tzPVSq47xuh+DmmK+hEGP8wGw0XN2jEV8MnNeXDg4qAWFK1ZJ+vvPmwHkH9Byk1bkXtHlEs1tfarE5b7DU35YxWJHSbDLHL68CAAAAAAAAAAAAAAAAAAAAYEp1egBoLe/9Tc65wyW9VtIZko6XtEzSfEnPSHpE0vWSvua9f1qSnHOH1qxmU8CqH6x5/JyYQ6t9/g7v/UDMdQDT2uOPP65HH310wrTTTjutKes+7bTTdN111+19fMcdd6hUKimdnp43zJfLZb3pTW/StddeO2ne/vvvryOOOEJLlixRsVjU1q1b9Zvf/EZ79uyJtO58Pq+zzjpLN91004Tp6XRaRx11lJYvX65MJqOnn35aGzdu1PDw8N4xXXzxxRoYGNDHP/7xhl8jAACIp2jcWJtpcfDIjm4QRqtHbfgpTMmPtHAkmGnCvlvdFkbLJecGTi/6gqq+ooRLSpLKvhz4vBRhtK4R97vV6u9i/EhYJ8No0d+LXCJ4n5GkXMzX0MkYXBBrPFbs0QyFNfF9yFeGtTC1KNJ6hivRI2Tlavwwmh2Cm2N+360YC4BRA6Xt5rxFqXhhNN/oYDAj/O+e27WnUvu7lUad2LueEFabLUj1KqGEqqpOmjdQ3q7lOrjlY7CuV1odCQYAAAAAAAAAAAAAAAAAAAAwvRFGmwW89xX9/+zdfZQkdX34+09VVz/OzM70zC4Py7LsCioBAYVFYIHFCIjL+cXEh9zk4rm/E0n8/WLIifeGXP3pzxuQHHz4eTw3JOolud5o4g1Jfh4fovcnETHyrCgPigIiyOOygLOzPTtP3T3dXd/7xzLLTPf3U13VD9XVM+/XORy3q7qrvtVdXVUza71X5Ksv/xfIcZzjRWTbqknPG2Oetzz10abHJ0Uc1quaHj8S8fXrVr1hZB+JuL7bVhTxUoO9Aefuu+9umbZr166eLPuss85a87hcLsuPf/xjOfvss2Xbtm3y1FNPHZn3l3/5l3LDDTccefxP//RPcu6557Ysc/PmwzfCvelNbzoy7Xd/93fl3nvvPfJ49XJX27Ztm3V6WFdffXVLFO3yyy+Xa6+9Vs4+++yW5/u+Lz/4wQ/kn//5n+WLX/xi4LKvuuqqNVG08fFxufbaa+X3f//3ZWxsbM1zy+WyfO5zn5OPfOQjUqlURETkuuuuk3POOUf27t3b4dYBAIBOVP2KdfqgIjNasATBorxvWhQKsNH2rayTOxIaS4p8wHGr4pelkBoVEZG6sUeEUg6/3kuKqHGHfke5oi5/kJGwoNhZs6BzfZTrgLSTSdz3R9uHtKCIdqyLvC8qgcagddifGyGMphzTggSF4NR4bYQIK7ARHaxPW6e74sq4V7TOc0T7vTppNIjcXvqWdXrWyckbN70p3sFAXCcl496klOqtEcRSfSaWMajn74QFqwEAAAAAAAAAAAAAAAAAAAAkS7Lu/EISXNz0+DbleT9reny64zgFY0zYO83Ob7O8DWtfSeRVH279l9vRW09+zJUdmwc7hn379q15fPTRR8vU1FRPlv26173Our6zzz5bPM+THTt2HJk+MTGx5nnHHHPMmvnNRkdHj/w5l8utmRf0uk7dcsst8ld/9Vdrpn3iE5+QD37wg+prXNeV3bt3y+7du+W6665rGeeKL3/5y/KFL3zhyOMTTjhBbrvtNnU78vm8XH311XLeeefJxRdfLJVKRYwx8id/8ify2GOPieu60TcQAAB0pOKXrdOzrv283yvajbuVRlmMMeI4g43vDpsoARUjvjRMQ1IJi1ohmfR4Tvj4UlxyAUGosr/UNozmJSzstJFFjVFFfX5U2YixiX6PJ3jd4ccaNM4o2zDIEJwmatxLD41E27askxNXXPGl9XeSUc7V0YKn0cNoZeX6L+cWJJeKFpUDcFip1hpLEhEZ9ybVmKweRsNG91zlSXmq8ph13hvH3yR55ViN/prwpuxhNOX732va728Gee0JAAAAAAAAAAAAAAAAAAAAIPkouKDZ7zc9/rztScaYF0TkoVWTPBG5IMJ63tT0+OYIrwXWhYMHD655XCwWe7bsXC4n2Ww2cH3D4rrrrlvz+A//8A8Do2jNJiYmrGE0Y8yaZXueJ9/4xjdCxd1WgmsrnnjiCfn6178eekwAAKB7Vb9inR41AhNVTokqNaTeUeBjo9NukNbUzHKfRoL1RovzRIkvxSUoYFReFUOqm7r1OZ6T7vmY0Bktnqk+v89xkJSTkoyTbf/Elw0yFJYPCAQ2C4poRNmGJMY4tLhX1VTEN42W6WUlmBZ12xzHUT+DciNCGC3Cczu5bqookba8W1A/+yixNmAjssWSREQm01siL8uI6XY4GHK3z35LnXfRxOUxjgSrFdP2fyVotj4Ty/q1yGoSr8UAAAAAAAAAAAAAAAAAAAAAJAdhNBzhOM4FsjZu9pgx5raAl3yt6fF7Qq7nZBE5Z9WkRRG5JcxrgfWkOVQ2MTHR0+U3L29mJp6bXHrpoYcekrvvvvvI47GxMfnkJz/Zk2V/73vfk5/97GdHHr/73e+W008/PfTrr7rqqjXBtW984xs9GRcAAGiv5tekIfZAUNZpDaL2UlD0hvBGdFECKiKdRVSwMVWU72OU+FJcgoIAq7dD2/8JoyVH1LhDHDGIYQmF5VLho3JBQbko26BFyAYp6DrDFhPVj3XRt017P7SYSbfPrXVwTi8rQdWcW1A/+5pZ5voBCFCq2cNoRc8eUgpCFm1jW2osyI/m7rDOe3X+VNma3R7ziLCi6E1Zp88qYcReqzTs5+9BRnkBAAAAAAAAAAAAAAAAAAAAJB9hNIiIiOM4BRG5sWnyf23zsn8Ukcaqx+9wHOfVIVb3wabH/90YUwnxOgAROI4z6CF07bvf/e6ax1dccYVs2rSpJ8v+zne+s+bx7/zO70R6faFQkDe+8Y1HHt955509GRcAAGivauw31YqI5AKCIr0QNmCEcKLG5OrGHsQDmpUb9n2r38eITqTdtBo3W/0dqftaGM3ry7gQXdT9K44YRJT4V1BwrN8iBc0CnhtpexN4PMgFxBtt50ztPNpJ9K2grDvKuTpK8LSTWFkl4Nge9H3SgiwAREpKGKmY1sNojgz/753Re98/9F2pmWXrvIuKl8c8Gqw2oYQOS7V4/jEd7Xclg4zyAgAAAAAAAAAAAAAAAAAAAEg+7pxcpxzH8YwJd8e44zijIvJNETl11eSvGGO+EvQ6Y8zjjuP8vYhc+fKkjIh80XGci7XQmeM4vykiv7dq0rKIfDTMOIH1ZnJycs3jQ4cO9XT5s7OzgesbBvfcc8+ax29605t6tuy77rprzePJyUl5+umnIy1jdaTt6aefFt/3xXVpjgIA0G9VX49bZN1cX9cdFN2IGvlC9Jhc3bffaA800/atQYafguTcgiw0Wn8mXL0dDbH/mkeLqiF+iQyj9Sg41m9R3oug9zlK7CyJMY6g8duOa9q1Ryf7lvZ+LEWInS350cJoxphIYX/92D7SNl47Kr0J7QPrzcHatHV6UQkpBTPdDQZDyze+3DH7b9Z5496knDF6Tswjwmpa6LBUPxD5XNwJPeSavEgtAAAAAAAAAAAAAAAAAAAAgOQgjLZ+/WfHcd4pIv8gIv/DGNNyd8vLQbR3isj1InLcqllPi8gfhVzPNSLydhEpvvx4t4jc6jjOHxhjfr5qXVkR+U8i8umm13/aGPNMyHUB60pzqKxUKvVs2ZVKRSqVtX3Cqampni0/Li+88MKax6eeeqryzOiee+65NY/PPffcrpbn+77Mzs4OZYAOAIBhU/WtHWYRiR6liSoovFZpEEaLKmpMrmZqfRoJ1puKElBMYghJ5HDEyBZGW/0dqSv7v+cSRkuKqPtXLoZQX5TzYhyhNk2U9y5onDl3pCfLGZSg8Vcaa49rvvHVWGw+wvtw5DXK/hg2Ylo3NamZ8AFTI0Z8aUgqwl9RqGEVNx8YviReC9j5piGz9YPWeYFhNCWiZAxhtI3q50s/kenaC9Z5F4y/RVIOfx09SEXP/ndDNbMsi/68jKb6Gw8dtp/NAAAAAAAAAAAAAAAAAAAAACQD/0/09csRkV9/+T/jOM5TIvKYiJREpCAix4jImSKSaXrdUyLyFmPMr8KsxBizz3Gcd4jIt1ct63wRecRxnPtF5EkRGX95XVuaXv7/icj/EXG71r1tRZEnP+YOehjr3rZi++f023HHHbfm8YsvvigzMzM9CZg9/PDDbdc3DGZmZtY8LhZ798E1L7sX5ufnCaMBABAD7aZaEZFsn8NorpOSnJu3joHoRnRBn6WNFoYCmpX9Rev0JIaQRPR41ergYs1XwmgOYbSkiBp3iGN/DDsmV1KSdpp/TRifKO9F0DblI1wHJDHGkXbT4jme1E29ZV7zca3qV8SIPULUSSi2oMTUtONpy/M6CMTWTC10LCcovJZ3RwK3mWs0wG6ucUh8aVjnTaab/zrnFY7Yw2jYuG4vfcs63ZWUXDDxlphHg2YTShhNRGS2NhNDGM1+Hk7qz2YAAAAAAAAAAAAAAAAAAAAAkoEw2sbgiMirXv4vyDdE5A+MMdNRFm6Muc1xnLeLyBfllfiZIyK7Xv7P5p9E5L3GGPtdNxuYl3Jkx+ZBjwJx2L17d8u0++67Ty677LKul33fffeteZzP5+X1r39918sdNMfp3U13y8v2m2m7YYz9hmQAANBbVb9ine6IG0vUJecWrEEv7WZf6MqNcLGVFYTREJYW3UtiCElEJJ/SgkSvHFdsoSQRES9kVAj9l0uFj1GlnUzoIFQ3wobC8qlCT3/mjiqXCv/dzAc8N8p3PKnHg5xbkIXGXMv05uNa0HWHdkwJXq/9NUshz9WdxMcOn9fD7aOVhh5Tzbl5STmeZJysLJtq62u5RgOsSjX9r4KKHn9JgXBmai/Jzxbvs857/di5Mu7xD4kM2rhXFFdc8cVvmVeqz8g22dnX9WvXCEm9FgMAAAAAAAAAAAAAAAAAAACQDO6gB4C+uUtEviwipTbPq4vIzSJyqTHmN6NG0VYYY74lIq8TkRvbrPMHIvIuY8wVxphod8AD68z27dtl+/bta6bdcsstPVn2d77znTWPzznnHMlk+h8J6bXNm9fegHfw4MG+LDuXy4nv+2KM6eq/HTt29Gx8AABApwWPsm4ulqhLTonMdBIE2eiihkpqhNEQkhbdyyf05nttXKu/Iw3CaImnnR9s4toXwwYnBh2miPJ+BL3PaTcT+jsRFFgbJO29aL7OCLruiLIvrigoMbWw5+qyH/1XvVrwMeo48i9H3bT9uNzgGg2wKdUPWKennYyMpMbU12k/cRnhH43YiO6c/bb62V80cXnMo4GN66Rkk1e0ztOOA71UUc7DnVyvAAAAAAAAAAAAAAAAAAAAANg4CKOtU8aYHxtj/icRmRKRk0XkHSLyJyLyERH5ryJylYhcKiKTxpjLjTG39mCdvzLGvE9EjhGRN4vIe0TkQy+v950i8ipjzHnGmK90uy5gvXjrW9+65vGXvvQlqdW6iz1MT0/LN77xjcD1DItjjz12zeNHHnmkZ8s++uijj/y5UqnIs88+27NlAwCA/qr6Fev0uG6qXYlvNNOCbdBFjcnVCaMhJO37mEtoCEmN+az6jmj7v+ek+zImROc5aUk74aLkcYXIwsa/Bh0NjPJ+aOfhqMsadAxOo42rOQwWJhQWhbYPLCmhyWZakDJI3V8O/dzAEFzq8DWgtr9HDbECG8XBmv3fySl6m9sEp/sfo8ZwqPnLcveh71jnHZvZLiflT4l5RNAUvc3W6bO1mb6u1zcNqRr773AGff0JAAAAAAAAAAAAAAAAAAAAINkIo61z5rDHjDFfM8b8tTHmemPMx4wxnzPG3GqMme/DOpeNMd8zxnzRGPOJl9f7VWPMU71eFzDs3v/+96+5yWx6elq+8IUvdLXMG264YU1cbWRkRN773vd2tcxBOf/889c8vu2223q27N27d695fMstt/Rs2QAAoL+qSvAo6+ZiWb8WYOskCLLRRQ2VEEZDWGXf/n1M6s332rgqhNGGTjZkpDOuSN+wRMLyEeKm7UKoYUOpcQVVo9LG1XzO1EJhrrihA31r19tdVEw77gapRTivB4XRVo6hYSKTAF5Rqh+wTi+m7QGl9kzng8FQun/+blls2P+a8aKJvW0Ce4hTMT1lna4dB3pFC9uLJDdaDQAAAAAAAAAAAAAAAAAAACAZCKMBwACdcsopsnfv3jXTPvjBD8pLL73U0fIeeeQR+dSnPrVm2nve8x6ZnJzseIyDdMkll6x5fNNNN8n8fG96jpdddtmax5///Od7slwAANB/2o21YWM03corN+9WlGAb7HzTiPyeEUZDGMYYdd8adPxJo8Z8Gu3DaCnH68uY0Jmwga8oIbBuhN3nBx0NzLkjEZ4bPNZ8yGUNeps1+ZR9/KuPByIilYY99pV3RzoK0RSU9S6FDJ4tKYHYoM8rynldC7SlncyR42CYyCSAV5Rq9iDSpLcl8HWO2I8xhjDahnPH7Les03NuXt44/qZ4B4NAE549eDjb5zBaUJw0qZFaAAAAAAAAAAAAAAAAAAAAAMlAGA0ABuzTn/60FAqv3Lg5Ozsr73jHO2RhYSHScqanp+Vd73qXLC8vH5l27LHHyp//+Z/3bKxxO/XUU+Wiiy468nhubk4+9KEP9WTZe/fulRNPPPHI4x/+8Ifyd3/3dz1ZNgAA6K+qsQePsk4ulvVrgQ+iG9FogbsgNZ8wGtqrmooa5khuCKn9caVu6tbnpJ10X8aEzoQNkUUJgXUjbHBi0NHAtJsWL2Tkr91Yh2WbNdr4m68ztNBILtVZZEQLylX9svjGb/t67TpoLDWuvkY7rtk0h+FWrB639t4FRVmAjeygEkQqpu0BJWC1ZypPyNOVx63zztn060SvEqaohNFKtZm+rjfo9yRhY7YAAAAAAAAAAAAAAAAAAAAANibCaAAwYCeffLL89V//9Zpp99xzj+zdu1f27dsXahmPP/64XHzxxfLoo48emea6rnzpS1+SLVu29HS8cWsOu332s5+VT3/606Fff+jQIalUWqMbnufJddddt2ba+973PvnqV78aeYy33nqrPPnkk5FfBwAAOlPx7WG0uG681kIqRDei6eT9qhvCaGivosRzRJIbQtKCbWV/8ciftf3fI4yWKGHPRfkBn7OaaXG+OIWJxXlOWtJu8D4fPk43+G220SIhzedNLTTSaQAyn7Kv14iRqnLttdrSquPVapu8CfU1NbOszmumbe/q75z23gWdF4CNbLamhNGUgFI79iwt1qs7Sjer8/ZM7I1xJAijmJ6yTi/VD4gx/fv2lgOuIYjnAQAAAAAAAAAAAAAAAAAAAAhCGA0AEuDKK6+Uq666as20u+66S0455RT5xCc+Ic8995z1dU888YR85CMfkdNOO01++tOfrpn3yU9+Ui6++OK+jTkub37zm+Xqq69eM+3P/uzP5G1ve5vcf//91tf4vi/f//735f3vf78cf/zx8uKLL1qfd8UVV8iVV1555PHy8rK8853vlHe/+93qskVEGo2GPPjgg/LRj35UTjnlFLn00kvl2Wef7WDrAABAJ6p+a/RURCTr5mJZvxYc0YIdsAt6v0bcMet0wmgIIyi6l4T4k40WaFodgiSMNhzCR7naR8B6IWyALQmRsDBjDTPOsN/z5B4P7O9D83lTO9Z1+lkGBdW06Nma8SjxsYI7Kq7y1xBRzuva9q4OuuVS9veOeC3QqubXZK4xa51XTAeH0RzHUeaQRtsoFhpzct/8ndZ5ry2cJsdmj495RGhHCx7WzLIs+Qt9W6/2c78rKUk7mb6tFwAAAAAAAAAAAAAAAAAAAMDw8wY9AADAYZ/5zGekWCzK9ddfL8Ycvolsfn5ePvShD8mHP/xhOeWUU+T444+XYrEoMzMz8swzz8hjjz3Wspx0Oi033HCDvO9974t7E/rmk5/8pDz77LPy5S9/+ci0b37zm/LNb35Ttm7dKqeddppMTU1JtVqVF198UR566CGZn58Ptewbb7xRSqWSfO1rXzsy7aabbpKbbrpJtmzZImeccYZMTU2J67oyNzcn+/fvl0cffVQqFXuQBQAA9N/qUNBqWkik17TgiBYEgV3Q+zXqjcvicuv1HGE0hBEU3UtC/MlGCxKVG0tijBHHcaRu6tbnpBx+vZckYfexvBJw6rXQ40nAdyNU9CzEc4Zpm23U64ym6x/tWNd5GE2P9ZUbSyJtGoxlJZ6WT41I2slI1bT+HiXKeT3M9Z+2DcRrgVaz9QPqPC2gtMIRLYyGjeL7h/5dambZOm/PxOUxjwZhTHhT6rxS7YCMpOxx8m5VlJ/7824hILIIAAAAAAAAAAAAAAAAAAAAAITRACBR/uIv/kIuuugi+aM/+iN5/PHHj0w3xsjDDz8sDz/8cODrzzzzTPmbv/kb2bVrV7+HGqtUKiX/8i//Iqeeeqpcf/31Uqu9cuPs/v37Zf/+/R0vO51Oy1e+8hX51Kc+Jddcc82a4Nn09LTceuutoZYxMqLfQAwAAHqr6tsDpVk3F8v6tQAb0Y1otIBKSjw1VlMjjIYQysp30RVXMk425tGEo4WMGlKXuqlJ2smoASHPaVMrQqzCRjpzARGqXgobyYorLho8hjDRs/bjDLvN2QRss412DmwOi2iB0U6Db/mU/jrtnB3mOXm3IJ6TVsJo9uBjlOWv/ry5RgPCKwWF0dLBYTTNyj/2gfXNN77cOXuzdd6ENyWnj74x5hEhjE1eURxxxYjfMq9Un5FtsrMv61XDpjFFggEAAAAAAAAAAAAAAAAAAAAML3fQAwAArHXJJZfII488Iv/4j/8oF198sXhecMMym83Kb/zGb8i//uu/yn333bfuomgrHMeRa665Rh577DF573vfK5OTk4HPHx0dld/6rd+Sr3/967J9+/a2y/7ABz4gTz31lPyX//Jf5IQTTmg7nrGxMbn88svls5/9rLzwwgty9tlnR9oeAADQuapyY21cgZN8yh6z0W74hZ32fuVTBUkroSctDAWspgVwcm5BHMeJeTThBAeJDm+PFhDyHP7dgyQJG3nIx3bOChfJ0s5tcQoz1jDRszBhsKyTk5STCjWuuOWU96H52KYe60J+5s08Jy1pJ2OdFyqM1rA/p5AaUY9TUc7rlYZy3bDq884rwUEtmAlsZAdr9jBawR1NRCwTyfXI4gNyoPaSdd6FE5cl9vy60aWclIx7Reu82fpM39Yb9LMZAAAAAAAAAAAAAAAAAAAAAAThzkkASCDP8+SKK66QK664QhYXF+X++++XJ554Qqanp2V5eVmy2awcffTR8prXvEbOPPNMyWazHa/r2muvlWuvvbaj1952222xvk5EZOfOnfK3f/u3cuONN8oDDzwgP//5z+XAgQOysLAgIyMjctRRR8nJJ58sp59+uqTT9qCG5phjjpGPf/zj8vGPf1yeeuopeeCBB2R6elpKpZK4ritjY2OydetWOfnkk+XVr361pFLc5AUAwCBU/Yp1elxhNC0UUPGXxBiT2PBS0miRkrxbEI8wGrpQbij7VoexoDgEhQEq/pJskgl1/9e+LxiMsJGHnBJw6rWwcZskRHBCRc9CxdPab0sStlejhd2az5tB59HO1z0itcZy67qV6Nna8difk3dHxHPTIo3WeTW/dV1Rl796v1Gv0ZSoGrCRler2MNpkenPb1zrCzzsb2e2zN1unp8ST3eOXxjwaRFH0NlsjaCUllNgL/bheAQAAAAAAAAAAAAAAAAAAALAxEEYDgIQbGRmRPXv2yJ49ewY9lERxXVd27dolu3bt6svyd+7cKTt37uzLsgEAQHcqvj1ukXVzsaw/r8RsfPFl2VQl68QzjmGnRVZyhNHQpYpy833YYNUgBIUBVmICehiNX+8lSdjgVj6mMFfK8STtZKRmggNU2rktTmECGWG+x6GeM4ShxJpZloapS+rl77wWGunmWJdPFWSuUWqZrq0rzHPy7oh4TsY6L8p5Xbv+Wx3Ly6fs+3HZXyReCzQp1aat0ye89mE0jRHT8WsxHA4svyiPLD5gnfeGsfNk3CvGPCJEMeFNWafPKqHEXhjGn80AAAAAAAAAAAAAAAAAAAAAJIM76AEAAAAAABBF1a9Yp4eN0XQraD3aTb9opQVOgsJoNZ8wGtrT4zzJvfk+G3RcaRzenoapW+dr3xcMRtj9LKcEnPohXHAsnnNo8BjajzPMtuRDRM+SHOMI+ixWH99Wjg3NujnWaYG8MGG0JSV4mk+NSFoJONaV45pNxdeDqq/82f7ercRrAbyipISQiukwYTR7ZJAw2vp3x+y/qZ/znom9MY8GUWnfb+140At6yHXw154AAAAAAAAAAAAAAAAAAAAAko0wGgAAAABgqFSVoFbWycWy/qDgSFmJlKBVWQmc5FMFSbv20FPdEEZDe1qgMMkhJNdx1TjASkygpuz/hNGSJex+lo8xBhEuOBZfqE0fQ28Cbr0KrA1K0GexOobWj2Od9r6UlejZCt/4avA0HxA8jXJeLwcs/5U/B7x3xGuBNUo1ewhp0tvS9rX2LBrWu2W/Kt8/9F3rvOOyO+TE/K/FPCJEVfSmrNNLtZm+rbPS0IPoAAAAAAAAAAAAAAAAAAAAABCEMBoAAAAAYGj4xpeqqVjnhYml9EIupd/AS3QjPC2gkutRQAUblxYoTHIISUSPA6xEBLX933O8vo0J0YU9F8UZgwgVE0vFvHdLFwAAIABJREFUF2pTxxBinGECbr0KrA1K0GdRXnWdUVauOfIB1ynt5FP291eLma6o+hUx4tuX6Y705LxeUY7tq79LQZ8r8VpgrYN1exitmN4c80gwLO6fv0sW/XnrvIsm9orjkMxLOu37PVufEWNMX9aph1yTey0GAAAAAAAAAAAAAAAAAAAAIBkIowEAAAAAhsayqarzsm4uljFknZw4Yr/pW4uUoJUWWckTRkOX9Jvvkx1G02JOKxHBuqlb52vfFwxG2MhDnKG+oKDniiSEA8MEvUJF3kI9Z/Dbqwn6LFaOBw1Tl5pZtj6nm23T1t0ujBY0P5/Sz+u1kOd1Y0yoEJwWdhMhXgusVm4sqd+JohcmjGb/WchIf8JKSIbbZ2+2Ts+7BTl700UxjwadmPCmrNOXTVWW/IW+rFMLogedswEAAAAAAAAAAAAAAAAAAABAhDAaAAAAAGCIVJWbakVEsiFjNN1yHEeNrhDdCK/cUAIn7oikuwyoYGMLE89JIi1mVG4sim8aYsS3zieMlixho1RxxTxF2kfP0k5GUo4X02h0Yd67cJG39qGNJB8PUo4naSdjnbcSIAsKsXYTudPeO+2c3Twum4I70nXwtGaWxZeGdd7q/SbjZInXAiGU6gfUeZPp9mE0x7F/z7B+PV3+hTxbecI679zxN8d6XYPOaWE0EZFSbaYv69SuEcLGhAEAAAAAAAAAAAAAAAAAAABsXIO/4w0AAAAAgJAqgWG0OCMzI9bARtD41osfzd0h3z/0XTWoMJraJKePvlHeXHybpJyUuhwtIpdz82J8ewAqbEAFG1vQvpVkWsyo4pelburq6wijJUuYcFfOzYsbcHzstXbBsTAhsTiECXqF+R6HCaWGDdgNSt4tSK2x3DJ95TqjEhAq6yqMllLCaAHhM5HDAUdNLiB4Gva8HjYE5zqu5Ny8co1GGA1YUapNW6c74gSGk9oypvPXItFun71ZnbdnYm+MI0E3xr1JccS1Bpdn6wdkm+zo+Tq135F0c70CAAAAAAAAAAAAAAAAAAAAYGMgjAYAAAAAGBpVv6LOizN6pK0rKAyyHtxRuln++Vd/E/icl+R5+WX5UfnV8n559zFXqc/TAiX51IjUTGsMRoQwGsLRAjpJiT9ptKBW2V8M3Pc9h1/vJUmYc1HcUa52Y0pKNDDM+xLme5x20+I56cDvTdLDaDm3IHON2ZbpK9cZQaGwMHE+jRYpCVpf0Py0kznyediEPa8HRc2a99+cW7COp902ABuJFjje5BUlFeK6wlGmk0Vbnxbqc3L//F3WeScXzpCjM8fFPCJ0KuWkZNwrymx9pmVeyTKtF/RodbKvxQAAAAAAAAAAAAAAAAAAAAAMnjvoAQAAAAAAEFbFL6vzsrGG0ew38QaNb9jV/Jp888BNoZ9/96HvyEvLz6vztUBJzs1L2snYx0AYDSFUGvq+lWRakKjil6Vu6urrtOAQBiPr5MRRkzGHaZ91v7QLT+RTyYgG5kMEvcJ+j9u9x3F/BlFpcbOV64ygyFc326aF58rKcXXFkhKGXVmedpyq+eHO60Hrb95e9VjaZhuAjeRgzR5GK3qbQy4h+DyH9eWeQ7eqIcs9E3tjHg26pX3PZ5VgYjd846u/I0n6z2YAAAAAAAAAAAAAAAAAAAAABo8wGgAAAABgaFT9inV62slIyknFNg4t3hIUKhl2jyw+IIv+fKTX3D93lzqvorxXebcgnuNZ52k35AOrad/DpMSfNFq8quwvBe772vcFg+E4TttQZ7tQWa+1C2UlJUwR5n0JG/1qt6y4P4Oo9FDi0pr/bXb4eqjzY4J+fWMPn7Wbv7I8z7WH0cKe17XtFWkN4wYdSwEcVlICSOHDaBrT5euRNL5pyB2zN1vnFb3Nctro2TGPCN2a8Kas00tKMLEb2u9vRJJ/LQYAAAAAAAAAAAAAAAAAAABg8AijAQAAAACGhnZjbdbNxToO7SbeoHDHsPvR/B2RX3P/vD2MVvOXpW7q1nl5d0Q8p7uACjauhmnIsqla5yUl/qTRQkjlxmKbMJr9+4LBabevhY179UrSxqMJ8x3NKeGuqMvKJ/x40C7uVW7ocdFuFFx7QLJmlqXm68chNUj58vLSXZ7XteXn3Ly4ztq/4tDibuv5Gg2ISgujTabDhdEccazTDWG0dedni/fLwfq0dd6FE5fFGidHbxTTShitPtPzdQWFVbXzNQAAAAAAAAAAAAAAAAAAAACsIIwGAAAAABgaVb9snZ6NOXCiBozWaXSj4pflpws/ivy6F5afk/3VZyzL09+nXCovaTdjnVfzlyOPARtL0L6VV4I/SaEFnyp+uU0YzevXkNChdnGqXCrec1a7mJgW4YpbyvEk42QDnxM2cJhPBX/fc23mD5oWbls5xmnHum4/y1zAcbISEDcpN+zzVkJr3QZPo2xvu6gcAJFSzR66KnrhwmiihNGw/txRutk63XM8OX/80phHg17QvuezfQijVZTf34gk5/oTAAAAAAAAAAAAAAAAAAAAQHIRRgMAAAAADA01jObkYh2HdhNvpbE+oxs/mb9XasYeJbts8p3y20f9gThKIOG+ubtapgXFSfLuiBp6qpt6iNFiIwuM7sUcUIxKDy4uBu77WnAIg9Mu9BB3pK9dqC3fJpwWp6D3Lu1kQu/v7b7vWngsKbRAWfnl6wztPNougtdO0L4QdO4uK9G0lfF0G0bT1m3bt7X9Pej8AGwkvvGlpASQiuktXS3bdPVqJM2vlvfLI0sPWue9YfR8GfMmYh4RemHCm7JOL9UOiDG9/RYHR6uTc/0JAAAAAAAAAAAAAAAAAAAAIJkIowEAAAAAhkZFCaPFHTzS1hcUDRlm983faZ2+KTUhv7H5Cvn14n+QE/OnWJ9z//xdLTdYB4fRCl0HVLBxlQPihHHHqKJSg4t+OXDfJ4yWPO3OSfGfs4LDE+3mxykozBXlfRumbbbJp+zbuhIY0UIj3UZGCgHHyaWGPX4moofRVpanBU9rIc/rWnjW9jlqn23Q+QHYSBYac+p1RdHbHGoZ9hyyCGm09eXO2X9T511U3BvjSNBLE2n793zZVNXzeae039+44krayfR0XQAAAAAAAAAAAAAAAAAAAADWH8JoAAAAAIChUTUV6/Ssm4t1HPmUPRyi3fg7zObrh+TRxQet884cu0BcJyUiIrvGLrA+Z7r2gjxXfXLNNC1wInL4s9RCTzWzHGbI2MC0WJCISE4JDSWFFjSq+mWp+fq+n1KCQxicdtGtuCN97YJi3ca0einovYvyvrXbpiRts01QKFFED4x2u11ZNy+OkjwKOr5q0bGV7dDiJ2GDp1G2V4vrrcdrNKATpfoBdV5RCSZh41n2q3LPoe9a5x2ffZXszL025hGhV4relDrvYE0/PnRCu3bIuQVxHD2xCAAAAAAAAAAAAAAAAAAAAAAihNEAAAAAAENEi1rEHUbTIjNlfzHWccThwfl7xBffOu/sTXuO/PkNY+eJo/ya4f75u9Y81gInOTcvrpMKCKjUwwwZG5i2b6WdjBrcSwotuGjEyKI/b53nSkpch1/vJU27EFm7+b3WLpbVLuQWp6CxRnnf2m1T3NcNUWnvw8p1hhYY7fazdB23o2scbV7h5eOadvwNG0ZTwyqWCJr2HqzHazSgEyUlfOQ5noylxkMtQwsaGTEdjwvJ8qO5O9Tj5p6JvUSthti4N6n+3D4bEE7shB5OTXawGgAAAAAAAAAAAAAAAAAAAEAycOck0GO2G0KM4YYgAMPN91tjKNwABwAYhKpfsU6P+8ZaLbqhhduG2X3zd1qnb04fLTtyrz7yeMybkNcWTrM+9/65u9b8XKTdZL/yvnqOZ51vxJeGaYQaNzYmNZ4zBDffB41xvn7IOj2d8NjbRpVLtQmjWWJO/dQultUunBanoO9BlPctaJuyTk5cJxVpXHFrd52hRSDzPdi38q490rjU0MNi2ryVZXUfRrNfX9k+Z+2zX4/XaEAnDtanrdMnvKkIsVXld4L8Nci6YIyRO2Zvts7LuyNr4tgYPiknJeNe0Tpvtj7T03VpP5tpQWgAAAAAAAAAAAAAAAAAAAAAWI0wGtBjrtv6tarVwt3kBwBJVa/XW6bZjncAAPRbVYlaZGOOHmnRjapfFt+0BkWH1cHatDxRfsQ6b9fYnpZQ6lljF9iXU5+Wpyu/OPK4XeBEC6iIhI+oYGMqN5Sb75XQT5IEjXGhMWedHvRdweAkLUTW7hwZd6gtSNB7F+V961VgbVC0bS03lsQYExCB7EEYTYmVaOsMmreyLC14Wjetv2uw0UJwtu3V3oNyQNgN2EhKtQPW6UVvS8wjQVI9VXlMnqs+aZ133vjFknGzMY8IvTbhTVmnl+r240On9PN38qPVAAAAAAAAAAAAAAAAAAAAAAaPognQY47jSCaTWTNtYWFhQKMBgN5oPo5lMpmWEAoAAHGo+hXr9LjDaFp0w4hRxziM7p+/S523a9OFLdNeP3auuJJquywtTpI7EkbLWOeLiNTMsjoP0KJ7w3DzfdAY5xuHrNO12BAGq12cqhfxqijSbjowohd3qC1IPiBaFuV9C1pOkrZXo21rQ+pSNzU9RNaLMJqyjCVfD4tp81aCj9r+F/acXlGjl61jVeO1piK+aYRaH7CeaeGjYnpz6GVovxE0YjoYEZLm9tLN6rw9E2+NcSTol6IWRqvN9HQ9+s9myb8WAwAAAAAAAAAAAAAAAAAAADB4hNGAPhgbG1vzeG5uTozhpiAAw8kYI3Nzc2umNR/nAACIi3ZjbdbNxTqOoOCKFisZRj+au8M6/bjsDtma3d4yfSQ1Jr828nrrax6Yv0d844uI/jmuxEzSrh7wqZt64JixsZW1OE/AdzYp0k5GUmIPnS0oYbQUYbREyrcJ8Q0izBW0ziTFKYLGEiVwGLyc5GyvJpfSt7XiL0lZudboxbZpyygrcbKavyx1U7POe+W8bg+e1n3761rWrW2v5dhum7ZCu/4ANpJSTQmjeeHDaFoajTDa8Juvz8qDC3db551SeIMcldka84jQD1oIUQsndqqfIVcAAAAAAAAAAAAAAAAAAAAA6x9hNKAPmoNBtVpNnn/+eeJoAIaOMUaef/55qdXW3qy8adOmAY0IALDRVf2KdXqUWEovBIVH1kt044Xqc7Kv+pR13tlje9TXnTV2gXX6bH1Gniw/KiJ6vGolZuIFxJ7CRlSwMWnfv2EIITmOowbc5utz1umeo0cEMTjt9rdB7I9B60xSnCJoLHl3JPRyehVYG5SgbS37S1JpBAdGu1FI2dddUc7dWrRs9bK0Y1XY2GmUsErQe7BertGAbmjho8n0lphHgiS6+9B31GPznuLemEeDfpnwpqzTZ+szPV2Pdv4ehmsxAAAAAAAAAAAAAAAAAAAAAIOn32kMoGO5XE7S6fSakND8/Lz88pe/lE2bNsno6Kh4nieuS5sQQPL4vi/1el0WFhZkbm6uJYqWTqclm80OaHQAgI2uqgQtsm4u1nEERTe06NewuW/+TnXeWZvs8TMRkTNG3yie41lvqL9//m45qXCqGlFZeV89J6Muv2aW1XmA9v1LUvgpSM7Ny0KjNYJmmyZCGC2psm1iD1oAr5+CAhR5JYQ1CL0KmvUqsDYoQdta9pfaBka7ob0/S2oYTb/uybnBwdOG1MU3vrhO8O9ItesG2/sUtA8dHivxJ2xcDVOXQ/WD1nlFJZRk44ijzOEfhhlmDdOQO2e/bZ036W2R142cFfOI0C9Fb7N1+mxtRowx4jjadzwaLeQ6DNFqAAAAAAAAAAAAAAAAAAAAAINHGA3oA8dxZOvWrfLss8+KMa/cDFSr1WRmZkZmZnr7r64DQFxWjm+9ujkKAICoqn7FOj1KLKUX0k5GXEmJL42WeRUl3jZMjDFy39wd1nkn5n9NptJHqa/Np0bklJEz5aGFH7bMe2D+bnnXUb+vvkcrN0inA2JPdVNT5wHt9q2k04JE841D1ulabAiDlW9zThrE/qit0xFHMk5ywteBYbQI0a/g5cR7zdCJoOuaufqs+OJb5/UiAqkdh8oNe5ys3NDDaIXUqIgERxzrpha4D/rGV8O4trEGvQdaoAXYKGbrB8Uo8bLJdPfRQLJow+1nC/dJqX7AOm/PxF5xnVTMI0K/TKTtYbSqqUjZXzxy/u6WGkQfQCQYAAAAAAAAAAAAAAAAAAAAwPDh7kmgTwqFgmzfvr0ljgYAw8pxHNm+fbsUCty4BAAYHC16lHVysY7DcRzJuwVZ9Odb5gUFQkREDtUPyrOVJ8VYoiY5Ny87cq+RjNs+UjNbPyjPVZ6UozPHyZb0MR2HS33TkH3Vp2S2fvDItFLtgEzXXrQ+f9fYhW2XuWvsQmsYbb5xSP699E05WPuV9XUrMZPggEq97fpFDsfdpmsvyIvL+0I9f8Wm1IQcnztRUiFu/F/2q/J05ReRYniuuLI9d5Js8ibaPrfmL8vTlcel7AfvU82Oy+4IjNd1quKX5enyL2TZVHu+7F45sPySdfqw3HyvxZAWG63HGpHg7woGp134bBAhMu07kHPz4jpuzKPRBX1X2wXnVguKn/UiHtZvrpOSrJOTqmkNwj6y+ID6ul5E97TPoFSftp7b91Wesj7fEffI9Vnayajrq5uaZET/TlT9ihpysh0z025GPMezXi88uvRj67VbGCnHkxNyJ8loalNHrweSoFSzR69ERIqePZTUSw3TkOcqv5S5xmyk123NnCCbM0f3fDzGGHlh+Vk5ULNfPx6V3ipHZ47bMP9AxO2z37JO95y07B6/JObRoJ+K3pQ670dzd0hRCadFdWjV7xhWG5ZoNQAAAAAAAAAAAAAAAAAAAIDBIowG9NFKHG3//v1Sq9UGPRwA6Fg6nZatW7cSRQMADFTd1KQh9ihWNkIspVdyqbw1rqFFshqmITe99Dn5/qHvBi437WTkPcf+qbx+7Fx9OS9+Tr4/98pyXls4Tf7zcR9Wo0qal5afl8/s+6jMKKGyZq64cubY7rbPe93oLkk7GamZ5ZZ5X5v+ovq6fGpEREQ8R/91hW2ZzcqNRbnx+Y/J4+WH2z7XZjxVlKu2XSPbcjvU5zw4f4988YW/DDUemwsn3iq/c9R/UoNEDy/cL5/f/ylrFCeMM0bPkSuPvVrSrh6jieIHh/5d/vHFz6nfwaQblpvvV74DzWwhRRERzyWMlkTt9rdBBFa080PSvhtB48m59u+HTVD8LGnbrMmlClKtt54DtHCNSG+ib3nlfT5Qe0lufP5jEZZTOLKvdxM8rfhL+jqUY2bOLchCY65l+rdm/iVwXWG8dfK35Tc2X7FhQklYX0r1aev0nJtXv082jmj7v/4PxOyrPCWf2XedzDVKodez2qkjZ8ofbP2AZN3eBLEP1Q/KXz/3Udm//Ezg87ZnT5Q/3naNjHrrO4r40vLz8vOln1jnnTV2wbrf/o1m3CuKI671Z4x/+dXf9n39UX9vAQAAAAAAAAAAAAAAAAAAAGBjst99C6BnCoWCnHjiibJz506ZmpqSTKY3N6UDQL9lMhmZmpqSnTt3yoknnkgUDQAwcFpwTER6doN8FFp8RAt43DF7c9somsjh8Nfn9/83OVQ/qC9nbu1yHlv6qXz1V19su+xm//fz/y10FE1E5OSR18uYN9H2eTk3L6eN7oo8npUbpF0nJa6krM+pm/bR6a9Of7HjKJqIyKFGSW58/noxxh53OFiblv9n/6c7jqKJiNw5+29yz6FbrfOWGgvyN/s/3nEUTUTkJwv3ys0zX+749au9WN0n//DiXw1tFE2kN7GgOESNBATFhjA4uVTyYg9aDCxp342g8eQjfD9Sjidpx/47uKRts6aTcfYi+tar92d1ZCkoeNruvF4OCKNpx8x+fsb/dvDL8pOFe/u2fKCfSrUZ6/SityXScqKGAX3jy//1/PUdR9FERB5efEC+eeCmjl/f7O9fuKFtFE1E5NnqL+X/fekzPVtvUt0xe7M676KJvTGOBHFIOZ5sCvFzfb8MS6QWAAAAAAAAAAAAAAAAAAAAwGDpdyQB6BnHcSSXy0kul5OjjjpKjDHi+756kz0ADJLjOOK6buSbHAEA6Leqr0eiosaEekG7mVcLeDwUIaLhiy8/W7hfzp+4tGWeFuN4aOFeuULeF3od08svhIoBrLZr7MLQzz1r7AJ5YP6eSMvPu69EVNJOWqqm0fKcMGG0XgRLDtanZV/1KTk+96qWeY8u/lh8aR1bVA8t/FAumHhLy/SHFx+Quuk+QvaThXvlbVve3fVyHlr4YdfLGLRhufl+9XcgjKDYEAYn6Jw0qCiX9h1I2ncj6L2LOta8W5BaozVgmbRt1kQdpyNOT0Kxq4NmXS1n1fiDIo7tzutacFZkcPv1Qws/lNePndvXdQD9cLA+bZ1eTG/uyfK1v+/YV31SSvUDXS//Jws/kHcddWXXy6n4ZfnF0s9CP//niz+RhqlLap1ed1X9ivzg0L9b523PnSQ78q+JeUSIQ9GbUmPs/TYskVoAAAAAAAAAAAAAAAAAAAAAg7U+/1/8QMI5jiOpVGrQwwAAAACGSlAYLZugMJoW8CjVZiItX4sH/GLpp9bpc41ZqZtaYHwkzPI1aScjZ4yeE/r5p46cJTk3LxW/HPo127I7j/zZc9JSNa2febuASs2vyUJjLvQ6g8zWZ+R4aQ2jzTVme7R8+2cwW4+2r0RdfvTl9GY8g7R630qyqOMclu3aaDwnLcdmjpcXlp9rmXd6hONoL2n7yrZcsvahCW9SRlPjstA4tGZ62snIUZmtkZa1LbtTHll6sHV6wrZZsy27U56u/CLS813H7Xq9x2V3iCOOGOnuH3RoPqdraqY1Xrdmvq/PzzhZdd3PVZ9sM8LOrYfzIjamUs1+bTjp9SaMpq+3N9+ZUm1GjDFd/2MOi435SJHjZVOVql+RQmq0q/Um1Y/mblfj3hdN7I15NIjL9txJ8nTl8djX64gjW7MnxL5eAAAAAAAAAAAAAAAAAAAAAMOn+zulAAAAAACIQTUgsJUbQBgtr4TRyg37TeVRAmGHn29fThBt3TaLjYVIy7508u2ST9m32SbjZuWyyXeFfv4pI2fK5szRRx57rj2iUvODw2gVfzH0OtvRAgHSZSym3fKjfI5BKn5ZfOP3YDm9Gc+gvLZwmhyT3TboYYRyxug5Mu5Nhnpuzi3IrrEL+zwidGqPJSSSEk/OH79kAKMRed3oWTKVPmrNtLSTkfPGLx7IeDSuk5ILJy5rmb57/BLJuPYIlubCibeKI2vjOTtyr5Ht2RO7GmNcdo9fHDp2KmLf5zox7hXl9aPndbUMz/Hk/PFLjzxOuxn1uXVTD1yWFkT1HE+NI+2euFQ8p3//JsywnxexcWlh5GI6Whit+djaTq++M740ZNlUu15Ou9CyTbexyKQyxsjtszdb5424Y3LW2AUxjwhxuWD8LZJ29PNzv7xhbLds8iZiXy8AAAAAAAAAAAAAAAAAAACA4dO/u4MAAAAAAOihql+xTnfEHcgNvTklElZWwlzadE0ncayyvyhjMh7quUtKGM0RR7Ju7sjjordFzh3/dbm4+LbI47l08u2SdtJyz6HvysH6r6zPGUuNy6kju+S3tvwva6ZrMZh2IYNyQIAu6+SsEZWqX7HGDirKZ2CMPYzgiCtZS7inYRpSM8utY1WWr+0rrrjWMJBvfGskwoiRql+JFLSzj8c+zpR4klYCdkkwmtokp46cJb+15T8OeiihjXqb5OrjPyZfm/4H+WX5EevnmnI8eVXuZLl88+8MTfBtI7qoeLmknJTcc+i78qvl/bI9d6JcOvl2Oalw6kDGk3Pz8qfHf0y+Nv338mT553JM9nh56+Q75YTcSQMZT5D/MPU/S87Ny31zd0rd1OXMsd2yd+q3Iy/njLFz5A+2/u9yW+l/SKl+QF5bOF3eseU9akwraXbkXyN/vO0auWXmK/J05XHxpWF93rGZ7XLBxFt6Grl7z9b/Taamj5KHFn4oc41S6Nc54soJuZPkLZPvkBMLv3ZkelCkrN4meFpTw2j6td+J+ZPlquP+XL598CvyTOUJMdJZJLRu6tbrDj2cCiRbqaaE0bxoYTSNFg/TvjPNP3ccWY4xUjX2n/3K/pL1NVG0Cy3brNcw2i/Lj8rz1aet884bvzhylBTDY1tup/zJto/KzTP/XZ6pPCENCQ6Vdmvcm5TTRs6Wt215d1/XAwAAAAAAAAAAAAAAAAAAAGD9IIwGAAAAABgKFSV4lXXtsat+y7v22JRtnA1Tt4axRESOyWyTF5f3WZbTGhBoFwVbaoSPry359jDacdkd8uEd/2fo5QRxHVfePPk2efNk9Khap2E02/u24voTPy+F1GjL9E8882fybOWJlulaxEELI5yYP1n+dPvHWqY/svigfGbfR61jNca07L/avr5r0x75vWP/15bpLy0/Lx996irrayr+UtdhNO09vWTyN+U3m4J26N7mzDHy3uM+MOhhoAcumLhMLpi4bNDDOKKY3ixXbr160MNoy3EcuXTy7XLp5Nu7XtYbxnbLG8Z292BUg/GawuvkNYXXxb5ez0nLO476PXnHUb/Xk+WlAv4aot15vW7soRbtOmHFa0dOl9eOnN5+cAHuPfQ9+fsXb2iZroVTgSSr+hVZ9Oet84rpLRGXZv/ZS7tG1q4lT8idJB844VMt02frB+XDv7zS+ppyY1EmvMmQ47Rrd9yx0cLIw+6O2Zut0x1xZM/EW2MeDeJ2YuHX5I8L1wx6GAAAAAAAAAAAAAAAAAAAAABg5Q56AAAAAAAAhFENCKMNQk4Jo9liWlpgS0Sk6G0OvZxKw/4evPKa8GG0xYY9jDZiCYcNQrrDMFrQe51z89bpWuQuahhNi0Roy/fFl2VTtazX/jlqy9H2xcPL6j7eUlYCMHl3pOtlAwDWP8dxOg6e1pWwrOf0/998yafs57lenFuBuJVqB9R52s+qBbXHAAAgAElEQVQjmqhJai36q13Date8ItF+3tF0EkYT9fp/eB2ql+TB+e9b550ycqZszhwT84gAAAAAAAAAAAAAAAAAAAAAAHgFYTQAAAAAwFDQbqjPOoMJo6kxrUbrzfpBQbNiOnwYrV0IYEmJndmfO2+dXnCTEUbTAiq1NiGDihLxyjo5cZ2UdZ4WZahEDJ84SiYiargsaogsOB7RfbxFj1nYQ3MAADTTgqftzutawEhbXi9p57llU5WGafR9/UAvlepBYbSpvq5bv7a1X8NmnKy4Yr9ut/2sFVUnYbT1l0UTuefQd6Qhdeu8iyb2xjwaAAAAAAAAAAAAAAAAAAAAAADWIowGAAAAABgKVb9inT6oOJMe02qNSAUFtoqePYxme40WqFrRLpy22pJvj6gVUskOo7ULGWghsFxKj4fpkTv7soz41umOYw+jBYbLbCE9bRuUfT3tZNR4RNS4m422X+UD3lMAAFbr9LyuhdO05fVSUNi02uaaDEgaLYw2lhqXtJuJtCwtBmyUfJh+bWv/jjmOo15n9iL62y7IaKNt27BqmIbcOftt67zN6aPllJEzYx4RAAAAAAAAAAAAAAAAAAAAAABrEUYDAAAAAAyFqrEHKLJuLuaRHKbfrN8akQq6gb+YtofRbFGuduGzJUtkS7PYsIfRRlJjoZfRT+kOAypRwwtB87RlGaWLYE9EBEfZooT08qkR+3qD4hFK3C0KLcgX9J4CALBap2G0uqlHWl4vBYZNI8RogSQ4WJu2TtcizYGUGLBG+1koKLJbcO3XvUs9+O61O+7YrLcw2kMLP5TZ+ox13oUTe8V1+OtjAAAAAAAAAAAAAAAAAAAAAMBg8f9sBwAAAAAMhapfsU7PuvmYR3JYXrlZv2aWpdEU8dBCV2knI6OpTdZ5ttdogaoVUSIdS0oYreCOhl5GP3UaUFHDCwFxEz1yp4TRlDCCo/yaJevk1HlRQnqB26DG3bqLR9RNTWpm2TqPMBoAIKzOw2j2c1AcYbSg81y5EXxNBiRNqX7AOr2Y3tLDtdivkXsaLu5B9Fc7rgTSyshD6o7Zb1mnp52MnDf+5phHAwAAAAAAAAAAAAAAAAAAAABAK8JoAAAAAIChoEXBcgMKowWttzlspcUA8m5BXc6yqbYE1sqN4MjVUpQwmq+E0VLJDqPV2gRU9PCC/nnpUbFoYTSN4zjq+pvXYYyRshJ8CNoGLR5RbhPTa6cSEH4JCrUBALBap+d1LZw26DBat+FRIG6lmhJG8zZHXpYjjnW61g7r5Pq8kLJHqKP8vKOpN/2MFUbU6/8ke6H6nDy29FPrvLPGLlDD3QAAAAAAAAAAAAAAAAAAAAAAxIkwGgAAAABgKFT9inV61s3FPJLD8q79Zn0RkUpT2EoPXRUCl9McWGt+3PL8NuG01RYbyQ6jpV178KTuBwdUtPc66H3Wo2La+20PI2iRiMPrV9bRNN66qUlD7LGGoG3Q427dxSO0kIVIcDAGAIDV0krITAufragp531teb2UdtNqgK3b8CgQt1JdCaOlo4fRotK+L8HX5/Z55R6E0bQgoxvwV6brKYx2x+zN6ryLipfHOBIAAAAAAAAAAAAAAAAAAAAAAHSE0QAAAAAAQ6Gi3FCfdfMxj+SwfEqPQjUHtbSx59y85ALGX2msfV1QpEpEZClkKKBhGuqyRtxkhNG0EEm7gIq2XbmU/j7rUTH7snzjW6c7jv5rlnzKHndoXkdQ/C5on9OWr4Xiwup0PAAArNbpeb1u7LFQTwmo9poWAW13TQYkiTFGSjV7GG3S610YTYuHNUejVwT9HFTQwmgRQtAa7biTdjLqa9ZLGK3il+Xeue9Z5+3IvVpOyJ0U84gAAAAAAAAAAAAAAAAAAAAAALAjjAYAAAAAGApVv2KdHnRDfT8Frbc5JlVWgmX5VEHyyk3/ttcFRapEwocCgp5XSA13GE17j4Le55wS+Co3lsSY8BEEJ2Cetr+E3VcOL0MPkWnL7zbcErTPDeq7BwAYPlrIrH0YzT5fu07oNS2e2u6aDEiSRX9elk3VOq+Yjh5Gc9Sr3tbrZmOM+n3RrsFF9ABvL757dV8Jo7l6GM22bcPoh4duU6PdeyYuj3k0AAAAAAAAAAAAAAAAAAAAAADoCKMBAAAAAIZCVbmBO+vmYh7JYSnHk4yTtc5rjlFpN5/n3ILkUuEDa5WGfTkrlgKiWqst+vPqvKSH0WptAipaCCwo4qVFT3xpSM0st0w3ahhBT6NpYbaw+8rhZQTEI5TldxuP0N7PtJORlON1tWwAwMahnteVQNGKuuU8HLS8XlPDow3CaBgepdoBdd6ktyXy8vQwWquaWRZfGtZ5HV3bhgxBB+kkuBihlZxYxhi5Y/Zm67zR1CY5a+z8mEcEAAAAAAAAAAAAAAAAAAAAAICOO1gBAAAAAJH9wws3yHTtxVjX+eLyPuv0bEDwqt/ybkGWG9WW6eWmWIYWp8q5BfGctKSdjDXA1RylKrcJn4UNBSwFPG8kNRZqGf2WVsIEWshgRfN7vyIovJALmFf2lyTjrg3gaWG0oEiEtv6WfUX5bBxxAvd1bRu6DaPp76c9VgEAgI2nxDTbndfrpm6drl0n9Fo+pYVNg2O1QJKU6vYwmisp2eRN9Gw9tivkoGvRoGtw9dq5y2tbET20rEWvDxv+MtoT5Udk//Kz1nm7xy+RtJuJeUQAAAAAAAAAAAAAAAAAAAAAAOgIowEAAAAAIttXfUr2VZ8e9DBERCTr5Aa27lyqIIcapZbpzUGz5scrVm74z7sFqTVaw2jNUap2EY524bQVS41563RXUgN9P1fzOgyjae91J+GFleWNS7FpavQwmh4uW2x6bB9/1s2L67jq8rVtqChhs7D093NwQUIAwPBJO/bgTrvzuhYw0q4Tek0734W95gKSoFSzh9EmvElxnVQP19R6jaxdS4oEX09qUcJefPe0405QGMxfB2G022e/ZZ3uiCMXTlwW82gAAAAAAAAAAAAAAAAAAAAAAAim31ELAAAAAMAQGGSgSYtRtcSulDjVSixLi2Y1hwTahQBqZllqfmtgrdmSv2CdXkiNiuPoca84dR5Gs8fj8ik9fhYUTbN9dkYLowW8d9r6m8fbaYgspyxfC62Fpb1ei1UAAGDT6Xldmx9fGC3c+RtIslLdHkYrpjd3tLygGHCzoO9K3tWvJ7V55UYfw2iBx5XhDqMdqh+UH8//wDrvdSO7ZCp9dMwjAgAAAAAAAAAAAAAAAAAAAAAgGGE0AAAAAMBQG0mNDWzdYWMZWuxqJZYVNmoVJsKx1CaeJiKy2LCH0UZSo21fGxctTFALCKgYYwLCYnr8LOvm1MCDbXnGKGG0gEiEtv7mz1gNkQWEIw7P708YTdvnBhkkBAAMH8/xrNPrph74ukGH0cJGcIEkO1ibtk4vep2F0TS2eHBQyCzr5tR5WoS3airSMI3og1tFP65k1NdoYeRhcdfsLeKL/X27qHh5zKMBAAAAAAAAAAAAAAAAAAAAAKA9wmgAAAAAgKGVdwuyM/+aga7fptxoDpoFx7q05TS/LigsEOU5S0oYreAmJ4ymBU+0kIGIyLKpii++dZ72HouIuI6rhr5sYTE9jKCH0fR9Ze3nVWloYTR9/CJBkb7uwmha+KXdeAAAWE07rwcFT0X0874WUO21sBFcIMlK9QPW6ZPpLZ0t0NGveZsFRXZdR/8ryqBrzW6vb7XjTiYgjDbMGqYud81+2zpvS/pYOblwRswjAgAAAAAAAAAAAAAAAAAAAACgPcJoAAAAAICh5Dme/Mdj3i8pxxvYGHIpJXbVFJMqBwQBRAKiWX5zYK19hEMLWa225CthtFSCwmhu9DCaLWK2QgubtJsfJbwQlIgIG1bRtkHb11Zo+1Dd1KTmB0dnglQa2r5LGA0AEF5aCQ7VzXLg67SAkRZa6zU1XquETIEkKtXsYbSit7mj5YXPorUPRGsK7og6rzlCHZUaXHT1MJpv7PHlYfCThXvlUKNknbdn4q2BgToAAAAAAAAAAAAAAAAAAAAAAAZlcHePAwAAAACG1p6Jy2W+MTuw9W9KFeXkkTNkKn3UwMYgEhDLaIpdVZRY2crr1WjWqpv+jTGhIl1LIcJoiw17GG0kQWG0tBI8CYp8BUVKtM9q9XxbLsAWKvPFHkZwAvrz+ZARPe0zbjv+gHBaxV+UtDsR+Hr9tZ3FLAAAWE0LmQUFT0VE6sp534spjKtHcAmjYTj4piGz9RnrvGK6szBaEGOMOM4r6TTtu9Lu2jYoChwmBB1EDaMpAcdhd3vpW9bpaScj541fHPNoAAAAAAAAAAAAAAAAAAAAAAAIhzAaAAAAACCyCybeMughJIIWh1p9s37Nr0nd1ANfr0ezXgkJLJuqGuRa85pG+1DAkhJGK7jJCaN1ElAJipQExRVEwsXpjjD2ZaxqQIRefs0sS8PUJfVy4EULPbSNRwTML/tlGZPOwmhqzKLN+wkAwGpayEy7RnplvhJGc+MJGOXdvHV6mFgtkARz9Vn1Z4ii12kYTb/oNWLEWTW/08hu3h1R53UdRlODi/afP0QOb9cw2l99Rh4vP2ydd/amPVJIUBgbAAAAAAAAAAAAAAAAAAAAAIDV3EEPAAAAAACAYaXdsP//s3evQZKlaWHfn5OXqszq7umunu7dZXeBXeEFA+Ky2l2WhWUGDCzM2FgXK5AEtqyLwxC6IFsKhxwmwjYKO8L2B4fsT3bYDiFHOPzFJqQIxw7Cus0uC5JASIAkECIwIUBcZnaqZ3q6srrzcvyhJ6ezqt/n5MlLZVX3/H5ftuu855aXOufNGvLPyWy08O88nDGPS+X7ebRtU/Rr0XGLUMDxLAmjXaIvxq8TRsue6yo6sV8NGo+Xx+kefz7zMEIeiWgKmy2+tifTUXGd5fGIfPxkg3jEujELAFiU3dfHDff1iPy+328IGG3TIJmjtZ2XwUV7bfJKOnbYXy+MVjXMec8alSLDsTz626266fz9uEUIukl23ek3BhefzDDay3deSseev/HiDs8EAAAAAAAAAAAAAABWI4wGAAAAaxp0hsXlo4Uv6zeFM+ZxqXQ/p4JZ7QIcoxahgHvTu8XlV7rXWh1jF/pVOUzQFFDJnutBZxhV1RxwyEJfi5G7uTpmxXU7DX9myeJ3Eadf2+wxZOG2uew9FJEHKdpIz0cYDYAV9DpJ8HT2oHG7LIzWq3obn1Mbw+T+OqnHMZ41R93gMjgav1pcvlftx5XOecz9TwfE0shuN5+7zg27y+PR68iuK3vJ54+IiFn95IXRRtPj+Aev/93i2AcHXxZfOPhduz0hAAAAAAAAAAAAAABYgTAaAAAArCn7sv6poFnDF/fncaksmrW4bVNgbdHx7M3l6yTxtIOGeNeuZcGTOmYxrafFsey5bhPxytYZzZaH5tpoij+MTr3O5eNl4ba5TtWN/WqwdP+rSmMWwmgArCALnk7qSeN2WRC1V5VDa9s2aJgb3S/EU+GyOZqUw2iH/VtLw8GZpq3O5sNKkeGIdnPJbH5+vOH8PA8u5mG0xx/Z5fcP3vi7cb8+KY49f/jijs8GAAAAAAAAAAAAAABWI4wGAAAAa8q+rH8yG0VdP/zyfFOUatAZnvrfs0bTdoG109s0hwLquo7j2d3i2EH3Wqtj7EJT8CSLGSw+X4vahBeydU6mj8cc6iSMUDVkIpribKdDeuV4RKu4WxLqa/veOauu6/Q5HXaF0QBoLwueZvf0ZePNAaPtGTaGTbcTT4Xz9No4CaP1bm2w1/ZBteyzUJu5bT4/Xz/6G5FfV/Y6+XUlm/9fVnVdx8t3Pl0cu9q9Hh+++g07PiMAAAAAAAAAAAAAAFiNMBoAAACsKfuyfh2zuF+fRET+xf39ahCdqhsRzUGrNoG1RcdLIh0P6vsxqSfFsYPu1VbH2IWmMNq4flBcngXA2kS8snVKz/v8NTmrqvJIRLfqxV61XxxbPO8sbNcm7pYFJtq+d84a1w9iFtO1zwcA5rL7elMYra7rdM7Sb5gnbFPT/S6LmcJlcjRJwmj9TcJoTU7Pk7P5eZu55EHyGWnZ551lLjq4uAu/NPon8VsPfr049o3Xvz36nd1cQwEAAAAAAAAAAAAAYF3CaAAAALCmLEQV8SiIlscAhkv3M4tZPKjvR0QezDpr2XrH0zfTsSudyxNG63fyMEEWSckCYG3CC9k6pdevjnIYLSIPozUdY/6azerp20G9s7J4Xpv9Z+/BZZqCL8OF9y8ALJOF0cYNYbRZTKOOWbK/3lbOa5mmOcRowzgT7EIaRuutH0arGua8Z+fJoyQS3fQ56tE65fnvpr972XVnryGMll2LLqvPHH26uLyKTnzTje/Y8dkAAAAAAAAAAAAAAMDqhNEAAABgTcNuUyzj+NT/njVYCF01RzfmgbU8UnV6/eZQwL2mMFr38oTRmoInk1k5ZpAFwNqFF5JoWXGf5TBaUyQiIn+/tHmN24TI0seQBCmWaXovtYnNAcBcPwmjTRrCaE3RtCy0tm3dqht71X5xrO3cDC7S0fiV4vKb/dvr77RqnvMuSiPRDZ+j5tIwWstgdCa77jRdV7Is8mV0NH41fvbNv18c+6qrH93stQcAAAAAAAAAAAAAgB0RRgMAAIA1NcWhTt6OXWWxruHCvxvCaG998X9Z8GzueEko4HiWh9EOLlUYLQ8TjOsHxeVpeKFFVCx7LUv7nK0bRltyjCyi9/D8ymGIU+uk4bX14hHNoTZhNADay+7rk3ocdV2+rzZF03YVRovI5wjrhkdhV8azB3F3+npx7LB361yOefbXOY1EtwkXL4kKryu7tux19tJtsuvUZfTjr/9YzGJWHHv+xos7PhsAAAAAAAAAAAAAAFiPMBoAAACsaa/aj07y0Xr0dhitHJdajAFkQavF7ZsiVYuOl0SwjqflMNp+NYhu1Wt1jF3oV3mYIIsZZIGSVuGFNFo2ilk9PbN0vTBaGlaZh9EaAittQmRNj2Edo4bI3n6L2BwAzGUhszrqmMXZ++xDk3qS7q/fEDDatizOlAVZ4bI4mnw+HdskjNY84300T67rOp2HtpvblsPATXPUNrLPEr2Gzx/Z/P+ymdTj+NydHyuOvav/3viyg6/e8RkBAAAAAAAAAAAAAMB6hNEAAABgTVVVpV/YP1kSu1qMAexXg6jSwNq9U/+7zGh6L+o6/+L+vend4vKD7tVW+9+VLKASkYdS0vBCQ3iuzTpn95s+vc2ViDQAMX+PnDS8xm3ibsvCa6vKo37D6FT+pARAe0339XESKZrMHjTsb3cx123fX2FXjiavpmOH/U3CaEsmvW+5X59EHbPi2Cbh4k1+92b1LP0ssdcQRqufkDDaP7779+KN6Z3i2HOHL5jDAwAAAAAAAAAAAADwxPB/AQ8AAAAbGHSHxeWPYlflL+4vxgCqqopBp7yf+fYn03Kk6qxpTGJc5yGR4yS+deXShdHy4MkkCahk8bhNomIRhTBaEnjoLPkzyyCJr70d0UtCZL2qH/1OHpSZy8Nr7aJ6j223wfMJAIuag6fl+3oWTFu2v23L7q/ZHA8ui6NxOYx2pXMt9juDcznmYkAsi+xGRPrZZ9GwWw5Qtw1Gl0yTKFpERK/z5IfRPnPnpeLyvWo/vv6Zb9nx2QAAAAAAAAAAAAAAwPqE0QAAAGADaYzqrS/sj5JoxvBMJCuPWs2jWe0DAFn8LCLieHq3uPyge631/nehU3WjE93iWBZ+y+IL2XPbdp1N4gunj5HFHeYRvfJx2px/RFN4rV1Ur+12bc8HAOaaAp+TWTmAlgXTInYbRssCTtkcDy6Lo8krxeWH/Vsb7rlqtdbJNP8dyaJnp9Zp+HxU1+uFypquK3tVUxjt8vuN+78avzz6Z8Wxr3vm+Ti4ZCFsAAAAAAAAAAAAAABoIowGAAAAGxgkX9ifR6VOkmjG2e3y/cyjWe3jVqNpHvK6N32zuPwgiXZdpH4SPcmCBtnjzp7btuucTE8/93WSRqiW/JklC6vMX+NREo/IgmqPr9cc6VtV2/cuACzTFDLL7uuTepJu028IGG1bOkebrhcehV05Gr9aXH7Y2yyM1i6L1hwPzObFi4ZJyGsakzSUvMzawcU1Q2y79PLRS+nYczde3OGZAAAAAAAAAAAAAADA5oTRAAAAYANZLGMeo8rjUqdjAMNutp/jU//bxnFDCOt4Vg6jXelea73/XcniBKVQyqyexv36pLh+Fgxb1O/sRa/qFcfOhsXqmBXXq5ZkIrLA2TyIlsXv2oQjmvafvQeXyUNtwmgArKYpODROw2hNAaPyPfs85HO09cKjsCuvTZIwWn+zMFqTxYBwNgetohP71WDpvprmnOv+/mXXm4iIvc5+OpbN/y+L0fRe/NQbLxfHvmT45fH+wQd2e0IAAAAAAAAAAAAAALAhYTQAAADYQBqjmj6MXGVBs7PbLYtarRK3Op6W42dNYwfdq633vyu9TjmiMp49eGxZFhWLyIMmZ2WRu7P7ruviarGki5aex8nb8bty4KH9+ZcDaiezUczq1WMOadSv2y7UBgBz/YYwWhZAG9eP3+8jIjrRiU7V3cp5tdF2fgCXzdG4HEa72bu94Z7zSW+bMNqgM4yqWjJxjoiD5PNRRMTxdL0wWnNwMb9OZdP/y+LvvfF30kj08zde3PHZAAAAAAAAAAAAAADA5oTRAAAAYANZJGoeuZoH0h7b7kzEKotajaZvhdGm7cNoWWAroiGM1rmEYbQkTlAKGjTFSbKgyVnDZL3H43blNEJnyZ9ZsvOYv15ZRG/QEIVYNOzm691fI97SNuoHAMs0BYeyUFG2vGlf5yGbH6wSrYWLcDQph9EO+89utN82UbOIprlky+hvQxx43d+/pjDaXrWXjtWXOI1W13V85s5LxbFnujfia699/Y7PCAAAAAAAAAAAAAAANieMBgAAABvIIlGj2XHUdZ1Gys5GrLL9nMyOY1ZP43590vqcRtM8jHZvVg6jXek+2WG0phhc6/hCy/DJbM0wQh5WGUVd12ngYZhE89ruPyIPUzTJzieL+AFApilmNk7DaJOV93Ue8rCpMBqX12h6L53LHfZu7eQcsrBz27nkfjVIw8PHDXP/Jk1htF5DGC0LI18G//z45+K3H/xGcewbb3z7zq+ZAAAAAAAAAAAAAACwDcJoAAAAsIGm2NW4fhCzmBXHzwYBht08unEyG610Tk2hgOPp3eLyg0sYRutXveLyUtDgZJo/R1nQpO16o8eiDuUwQhVV4/6z90odddyvTwrHmZ9XOZr3+Hr548zCGE2y913b5xMA5jpVJzrRLY5loaJsef+ShNHWubfCrhxNXk3HDvu3N9p304y3rh/Nk7O55NlAdHqcqsoj1Mm8eZnxrCmMll9bFh/XZfPynU8Xl3eiE5+8/h07PhsAAAAAAAAAAAAAANgOYTQAAADYwNnA2dxoei9GDcGMs5GNdD+z48b9ZMcumdXTdF8HncsXRutVe8Xl41IYLXlcvaoX/U55P2flcbrTz2edhdGq5jBaU1Cs6f2Snddj6zXuf/V4RPY+ajoOAGSyoFkWQBvPHhSX9zq7DaOl84Pp8aWOJfHO9tr4leLyKqq40bu54d6b57xzZ+fQc9nnnpK28/O2sutNxMPPDVnoOJv/X7TXxq/Ez735U8Wxr776dXHYv7XjMwIAAAAAAAAAAAAAgO0QRgMAAIANDLtXistPZsdprCvi8bjUsJPvZ9WoVRYKOG4ICFzpXlvpGLvQWyGgkkXFmmJkbdc9mY1O/ZxFULKQwlxT4OxkNkrfL20fQ7+zF72qVxxbJx5x9nG/fT4tQ20AsCi/r0+S5eWAUbaf85Ldh2cxjXFdjrfBRTuafL64/HrvZnST+eJ2PJonp3PJFebn2WekLOC7TNN15WHkuF307bL48Ts/FnXMimPP33hxx2cDAAAAAAAAAAAAAADbI4wGAAAAGzgbOJsbLQmanQ0CDDrD8n6mzYG1kuPpmystj4g4SAJvFymLfJWCBtlzlL0+q6x7NipWRzmMtiykkIUd5sfI4m6rPIa2cbc2spjaKucDAHO9TjloNp6V42JZMG3XYbSm+94691fYhaPxq8Xlh71bG++7KQa8OE/extw2i1CvE/2NiBgvCS5mjy2f/1+c8Wwcn3v9x4pj79l7f3zpwVft+IwAAAAAAAAAAAAAAGB7hNEAAABgA1mIalw/iHuzu8WxKqrY7wxOLcu+9H8yO06jApnjJBTQGEbrXFvpGLvQr/aKy0thtOw5yl6fVdZtGz1pikREPHw8neRPMaPZcZwkIb3txN1Wew/VdZ0+7lWeUwCYy4Jmpft60/Jdh9GyeG3E+nEmOG+vTV4pLj/sP7uzc8jmtqvMJbc1t51bdl15ksJo//jNn4i709eLY8/deCGqqvmzCQAAAAAAAAAAAAAAXGbCaAAAALCBpmjV0fjV4vL9zjA61emP5Fkg4EF9P+5Ny4G1zGhajnTcm5XDaJ3oNEY/LkoWPhkXggYnWwijpeGFM89nHbPiesvCaFVVxbBTDuCNpnkAb9DdPO6WvScy9+uTNACxSqgNAOa2FUbr7ziM1nTfaxtPhV3LPocc9m7v7BzycHH7zx353Hm9KOGy60rWEruMYbSXj14qLt+vBvHxZ75lx2cDAAAAAAAAAAAAAADbJYwGAAAAGxg2RKuOJuUgQSkG0BhYS/aTGc3KoYDjaTmMdtC9GlVWAbhAqwRURtNyeKHp9TkrC5CdjZ5skkXIjnF3eidmMS2OrRIiy8Joq4ZbTpLns+kYANCkX/WKyyf1pLi8FEKNyOcH52W/IeK0bpwJztud5PPDYf/WxvtuigEvBsSy+eewW46dlddNor9JdG2ZLIz26LqSldEuVxjt105+JX7l5BeLY193/ZtX+gwEAAAAAAAAAAAAAACXkTAaAAAAbKApEnU0LgcJhp3HYwCNYbRkP5njVcNonasr7X9X+jPjmQsAACAASURBVJ0kjDZ7PGhwksQRShG6TPYaPBZeSMIInWr5n1mGyfm8Nn6lYZttxCNWC7c0xSayuBsANFkleNq0fNdhtE7VSecTq4ZHYRdm9SwNK9/s3d7ZeWTzz9Xm5+V58Kpz27llwcUs+lZvlEbevs/ceSkde/7GCzs8EwAAAAAAAAAAAAAAOB/CaAAAALCBxjDapBy7KsUAmmJTWdggM5rei7oQ77o3vVtc/6B7OcNoqwRUspDXKlGx7LU8G12bxSzZQzmkcPoY5fNpeo23E4/IQ2clWWju4TGE0QBYXa/aKy4f1w+Ky/MwWm9r59RW2zkCXAZvTt+IST0pjh32b23hCPmcdzEgloUDmz4/nZXObafrhdGWXVeehDDa8fTN+AdvvFwc+9eGXxnv3f/iHZ8RAAAAAAAAAAAAAABsnzAaAAAAbKBbdWOv2i+OHY0/X1xeCks1xaaOxuVo1vXuYXH5LGZxvz55bPnxrBwQuPKEhdHGhaBBFiZZLSpWfg0m9TjGs3JEYdHyLFp+jOw1jogYdleJu5Uf76rhliyk1olO+n4HgCZZ0CwLOGUBo34SWDtP2f171fAo7MJr43KcOSLisLd5GK1qmvS+1Q+b1bO4n4TRVonsHiTz4HV/95ZdV56EMNpPvv6306Dk8zde2PHZAAAAAAAAAAAAAADA+RBGAwAAgA2lsatJOXY16D6+frfqpaGPbD+H/dvpOR1P3ywsu1tc96BzLd3PReonYbRS0GA0LccRhp1VomJ5pOFkISqXhRGqFn9myY6RvcZVVLFfDZbudy57vNnzk8lDcwdRNdYwAKAsC55moaJsebaf85Tdv1cNj8IuZPPKXtWPq91ndnIO92cn6Zy5ac7ddt1REnxeJr2udHZ/XVnHrJ7FZ+68VBy73j2Mr7329Ts+IwAAAAAAAAAAAAAAOB/CaAAAALChQbccoxrXD4rLs5BaGrVKvvh/syGMVtrmXiGWFhFxkJz/RVsloHIyGxXXHXSGrY83LATr5kYL+0/DaC16YdkxXp+8Vlw+6AxXCpFl+1813JKF1FZ5PgFg0SrB04iI8ezyhNGyuduq4VHYhTSq3Hs2OtXm/1mwinxuOp8nN809m+bcZx0kn49OZqOY1dPW+5lbdl2pkuenrsvz/137xeOfjVfGv1kc+8Ybn4pu1dvxGQEAAAAAAAAAAAAAwPkQRgMAAIANDVeMRQ2SuMaq0ambvYYw2vTxMNrxrBxGu9K9ttJxd2WVMFoWj1slvJBFTyIiThb2n4cRlgfMsmNksbUslpfJ3lurhtHy0Fz75xMAFvWqveLyLCSbBdN6nd2Hfwbd8hxt1fsr7MLR+JXi8sOGqPJqmua88zBaeS4Zsdp8smku33SMTHpdeSsolj2ybK6+a5+581JxeSe68ckb37HjswEAAAAAAAAAAAAAgPMjjAYAAAAbWjUWlcWxht3VIljXetejn0RGjguhsONpOYx20L260nF3JQujjQtBg22EvJrCdKOF/WdhhKpFGG3V98q23lujFcMt2wjNAcCiLGg2mU3Ky9OAUXl+cJ7y8OjqYSY4b0eTV4vLD3u3dnYO2VwyojlG/Pi6+eejpmNksuvKo89U5fn8ZQijfX78O/Hzb/50cexrr308bvRu7viMAAAAAAAAAAAAAADg/AijAQAAwIaavrBfkgW4VokEPNzPQRwkxx5NVwijdS5nGK2fhE/OBg0m9TjG9YPiuqs8p52qG/vVoDh2+vlcP4y26mu8aogsDaNNj6Ou2wcdthGaA4BFWdAsCxUtDxjtTh4eXT3MBOfttfH5htGa5rzz2WY2l+xEZ6Xf4abPWceFzzvLLAsu5o/t4sNon73zN6KOWXHsuRsv7vhsAAAAAAAAAAAAAADgfAmjAQAAwIYG3XLoLDPslr/gnwXT0v10DtJ9HZ8JddR1Hfdm5TDale7lDKP1Ou0CKifTcnghYvWQ1yAJkS3GHepNwmgrhs5WPv9k/WlM0hBESRZ6WTXsBgBzbYOnc+M0YNTb2jm1ld1fs/gTXKSjSTmMdrO/nTBaGyez4+LyYedKVNXyOfPb6zfMnUfJMZosu65k53bRWbTx7EH8xOv/b3HsC/a+KD40/ModnxEAAAAAAAAAAAAAAJwvYTQAAADY0LBTjpNlsgDaOvvJthlNT4etxvWDNDxy0LmkYbQkoDKenQmjNUQRVg2RZeGvxVBYXSdhtBaRh1VDZ6uGyLYVj8hic6uePwDMZff1bH6SLc/2c57S+cG0HBKFizKtJ/HG5Kg4dtg7/zDaPCA8mpbnnasGpbtVL/aq/eLYOr9/y64rWei4rmcrH2ubfubu5+LN6RvFsedufOdKsTkAAAAAAAAAAAAAAHgSCKMBAADAhlaNV2VxqdUjXlfioFsOox3PTocCjqdvpvs56F7OMFq/ZUClKfi1asgrW/9k9igUNg8+PG55kGDl0NnKsbymMFr7eES27qrvUQCYS4OnT0AYbZDc/xbnB3AZ3Jl8Pp2rHvZvb+UYWTzsoYfHzsLF60R2h8nnnVWiv3PZdaVf7b31rySMtvKRtuvlOy8Vlw86w/j49W/Z8dkAAAAAAAAAAAAAAMD5E0YDAACADa36Bf8sjrVyxKs7TMNZo+npsNW92d10P1e611Y67q5k4ZPzDKNlr83Z57NkeRYtYrBq6Kw7XGn9pvDaKvGWbN11YhYAENH+vr5s+aOA0e5k9791wkxwno7Gr6Zjh71bWzlGVS2f9Wa/G6tGgpu2WSX6O7csuNhJZ/QXl0b7lye/HL968kvFsY8/8y0x6Kz2eQEAAAAAAAAAAAAAAJ4EwmgAAACwoWF3xaBZ8uX+VUMBw86VGHbLoa3jM6GA44aw10Gyj4vWNqBykoQX9qr96FbdlY6ZvTaLx6hjVlynavFnluEWQ2cl+51hVEnQoU3cbS57ToUXAFhXf+Uw2qS4vFf1tnZObWX345PZKOr64oJJcNbRpBxGG3QOVv7Mso75b0M+l1wnjNYuBN3GeJaF0ebXlfI8ur7AMNrLRy+lY8/deGGHZwIAAAAAAAAAAAAAALsjjAYAAAAbWjlolkQJVg0FDDrDOOhcLY6NzoTR7k3vFtfbrwZpgOyiZQGVWcxiWk/f/nk0LYcXVn1dIvLX5mQ2evvfWRYhC5KdPqfVInSrrt+pOrGfxMtGSaBilXVXPR8AmGsbPJ0b1w9W2s95yuZodczifn2y47OB3GvjchjtZu/Wbk7grVBgNpdcJ7KbhaDPft5pI7vezK8r2Wz+osJob07fiJ+++9ni2JcefFV8wf4X7viMAAAAAAAAAAAAAABgN4TRAAAAYEOrB83K62dRrnw/wzjIQgHT06GA49mbyTEvb+iqKXyyGDU4ycILKz6fEXlMbTG8sEkYYdUYxDrxiGyb7HkqrpvE5tY5HwCIWD2MNpk1B4x2qSm2uhhPhYt2NCmH0Q772wujtYkBn0zLvxfrRHbz+Xn7ue1cdr3pd/Ye/qMqP7a6vpgw2t97/W+nkcjnb7yw47MBAAAAAAAAAAAAAIDdEUYDAACADTXFMs7qRCf2qv3i2CqBtf1qEJ2qm8YFzobQjqflMNqV7rXWx9y1tmG0LIqwyusyl70Gi9GTup4V16mq5X9m6VTd2K8Grc9nnXBd9p5oG4+Y1dO4X59s7XwAICK/r4+zMFo9Ke+ns/swWlNs9WyMFi7Sa+NXissPe7d3cvx5QHgxKrxo0F09spvObdf43UuvK29dn/Lo2+7DaLN6Fp+986PFsRu9Z+Orr358x2cEAAAAAAAAAAAAAAC7I4wGAAAAG1olaDboHERVlb9wv0rIax6oOkhCVcdnQgH3kjDaQedq62PuWr+zl44tRlROkuDXKq/LXPYatAkvZBmFs5riKo+tu8XHcDJtF0ZbjMA9vu/VYxYAEBHRT4Jmk0IYbVbPYhrlgFG/IZx6XgYN97+m+ybs2p3Jq8Xlh/1bWzxKPuudh9Gy34t1wsXDZO7cNvq7aFw/KC7vVb2IyMNou8+iRfzCvX8Ur4x/qzj2yeufim7V3fEZAQAAAAAAAAAAAADA7gijAQAAwIayL+uXNIU1VgusPdzPsFMOo53MjmNWz97++TgLo3UvbxhtHigomcweRVSyKELTc53JomWLcYc6SSNkIYWzVgrgrRGPyB5D23hE03qD5P0GAMv0kqDZ4j397WWFWNqy/Zyn/WoQVfKfU0az5fFU2JWj8eeLyw972wujtZnx5vPzdaK/SQh6jd+97Noyv67kYbRZcfl5evnOS8XlnejGN9741I7PBgAAAAAAAAAAAAAAdksYDQAAADaUfVm/uG43X7dpLDtmduw66ri/EPM6npXDaFcudRgtD58sRg1OpuXwwiqvy6NtsqjYo/DCpmG0VYIQ64TRsm1OWobRmtYbrhGbA4CIhjBaPSksu1xhtKqq0uDqYjwVLtL92Uncm90tjt3sby+M1kY2n1wvjJbMbZPPAE2ya0u/2lt5X+fp1Qe/Hf/03j8sjn342ifieu9wx2cEAAAAAAAAAAAAAAC7JYwGAAAAG+pXe9Fp+RE7i2osG8vWPWgImx0vxLzuTcuRhIPOkxlGG9cP3v73KAsvdFePeGWxhpPZKOr6YRBt/r+PqdqF0VaJnQ2624tHLMbdmpxM88DLOjELAIjI7+vTmMSsnp1aVoqlLdvPeds0PArn7Wj8ajp22NteGK0pBjwPCOfh4tXnkgdJPPq45dx2UXZt6VW9iIioqvJnuiyMfF4+c+el9JjP33hhp+cCAAAAAAAAAAAAAAAXQRgNAAAANlRVVQw75S/sn9UUltqvBq0Da8O3glkHDccdTR/FArJwQFNY7aL1q710bDFqcDIrh7zaviantym/PnXUcb8+efunkqZIxKljrBA7WycekcbdGoJni7KAWq/qRb+TvyYA0KTfEDSb1OPGn9vu5zxl99dREoCCXXtt8ko6dmOLYbRYMued1dOFefNp60R/B8mc/mR2Lw8WF9R1fSquvGgeXMwe2SrH2dSD2f34ydf/VnHsvXtfHF8y/IqdnQsAAAAAAAAAAAAAAFwUYTQAAADYgrZf8m8KXVVV1RhOO3W8t9Zrimwdz9589O/p3eI6V7rXWh3vIvSqXjq2GEw5SUJeg85w5WM2Pf/z0Fy9YRit7Wvcr/ai2/AcZLL3xGjWLtyShebanjcAlPS2FEZr2s95yu6vJy3vr3DejsavFpc/070R/c6ufm/qdC4ZETFcY36ehaAn9SQNnZVMY5KOzYPM2Xw+m/+fh39498fj3qz82e35wxejqtp95gAAAAAAAAAAAAAAgCeZMBoAAABsQdsv+S+LS7WNec0Da92qF/vVoLjO8fRRMOze9M3iOllo4DLoVN3oJH+6WIwgjJL4wnCNx9YUmptHHjYNozXF8U6vt95rk73HRklA7vH1yoGXtucNACXNYbTTwaKm2NFFhdHy+6swGpfD0aQcRrvRv7XV4zR1ueo6j+xGRAy2PD9f5ffv7HVmUe/tcFz24HYXRnv5zkvF5YPOQXzsmed2dh4AAAAAAAAAAAAAAHCRhNEAAABgC9p+yX9Z+GzYbbufR4GAbJt5CGtWT+MkiQZc6V5rdbyL0q/2issn9fjtf59My4+tbWTu9DZN4YWHz+emWYS2wbN1zv/h/suPoSlScXq97PkURgNgff3GMNr4zM8NAaMLCqPl91dhNC6Ho3E5jHazt90wWh4Pe6gpxts2Jn16m3zuPJq2C/9GRExm43SsV/UiIg8d7yqL9qujfxH/8uSXi2Nf/8y/sfbnAwAAAAAAAAAAAAAAeNIIowEAAMAWZLGMx9ZbEj5rvZ/FMFoSC5iHAkaz46iTr/MfdK+2Ot5FyeIn82BKXdcxSoIkbSNzi/aq/egkfy6Zh8XqelYcr6p2f2YZdLfzXkn3n7yH2oYj8jCaEAMA62sKmo3rB6d+bg4YXUwYLbsPCqNxWRxNymG0w/62w2hN6jiZ5jHedUK7TXPi7HNAydnrzKL5daWqsjDabtJon7nz6XTs+cMXdnIOAAAAAAAAAAAAAABwGQijAQAAwBa0/ZL/srhU6/0sxLUOkljA8exhCOve9M10Pwedyx5G6xWXT+qHwZRx/SBmMS2us07Iq6qqpaG5dNsohxTOWid+t4osHnG/PolZXX6uFo2m2wvNAcBcU9Bsfl/Pfj69n/Lc4Lzl4VFhNC6H18avFJcf9rYbRmua89ZRp7HAXtWLfmdv5ePtV4Ookv+cOZq1C/9GNF9X+tX8vJIwWhJG3qY3J2/ET9/98eLYv37wNfHuvfed+zkAAAAAAAAAAAAAAMBlIYwGAAAAWzDsto1dNcel1olmpSGvt0IBxw1htCvdSx5GS+IJ49mDiIgYJeGFiOXPdWbQLQfVTmajiHgYfChpl0XbXkQvM2zYbv4YmmQxi3XPBwAiInqdpjDa5NTP4/pBeR9VP6qq7R13u7K5Xpt7K5y3uq7jaPJqcexm//ZOzyWbn7edA5/1MFychQlXCaNN0rF5uPFiri4P/cTrfzONtz1344Udnw0AAAAAAAAAAAAAAFwsYTQAAADYgrZBs2VxqbbBgMXo10G3HAA7fisUcDwrh9E60Vk7ULAr80jBWfNoQBbxitgkLJaEF94KzdUxK45XLf/M0j5+t2bYrWG7ppDcsnXWPR8AiIjoVb10bDI7HQPKAkbZvGAXsjnTfH4AF+ne7G4aFDzs3drZedRxPpHdYfJ5Z5Xfvyw6FvHo+pTN57Mw8rbM6ml89vUfLY4d9m7FV1392LkeHwAAAAAAAAAAAAAALhthNAAAANiC9kGz5vWG3dUDa1mwah4KOJ6Ww2jD7pWoqqrV8S5KP4mozIMpo2ke+soCCstkr+XJbBQRsXEWofV7peV74bHtGvbf9HzNnUfMAgC60YsqyvOOs8GiLGB0kWG07P46nx/ARToav5qOHfZvb/VY2e/xQ3WMkt+JTSK7ebh4+dx2LgvHRTy6tmSP7LzDaP/03s/E58e/Uxz75I3viG7VPdfjAwAAAAAAAAAAAADAZSOMBgAAAFuwLHj29npLYlfto1mPwgIHSQDsePowjHZverc4fqVzrdWxLlKv2isun4cNsohXFVXsVftrHTN7DeahuSyN1qna/ZmlffxuvTBa03bZ87Uoi6dtErMAgKqq0rDZ2WBRHkYrB1N3IQ+ntg8zwXk5mpTDaJ3oxjPd61s9VnMYLeLk7TnzaZtEdrN56PzzThvZdSViMbpYfmznHUZ7+c5LxeXd6MU3Xv/2cz02AAAAAAAAAAAAAABcRsJoAAAAsAWDLcWu2gbWFsMCWShgHvI6nr1ZHM+CapdJFlCZhw1GSYxk0Bm2DpWdlb0G82BYXW8WRmgbGGv7Xjir3+mnz1v2fC06mY2KyzeJWQBARB42m9STMz+XA0b9JJi6C9l9+WQ2ilk93fHZwGlH43IY7UbvZnSq7s7Oo446RtNsLrne3DYiDwuvEiY8e52Z60bv7c8NVZVE3zac/zf5nQe/Gf/s3s8Ux37PtW+IZ3o3zu3YAAAAAAAAAAAAAABwWQmjAQAAwBa0jVgtW69tMGAxrpWG0aZvhdGmWRjtWqtjXaRlAZUshrBJeCGL3M2PVUc5jFBFElI4u/+WgbGN4hFpvOXe0m3T57Rl/A8AMsuCp3PjJIyWbb8LTffB+7OTHZ4JPO61ySvF5Tf7t7d/sCwe9pZsLpnFzdo4WBKCbmM8e1Bcvvh5I5vPn18WLeKzd15Kx547fPEcjwwAAAAAAAAAAAAAAJeXMBoAAABsQdsw2rLYVZtgQCc60a/23v75oHu1uN7xW6GAe0kY7UqnvN1lkgdUHoYNRucQRstey9GWwmj9ai+6UQ6+nTqPbjkA0Ub2+Eez0dJts+e07XscADJtw2hnf360/fL753lpug9m907YlaPxq8Xlh71bWz/WshnveczPB0kY7XjaPoyWXlc6j65LeRht1vo4q3gwux8/+frfLo69f/+D8bsGX3YuxwUAAAAAAAAAAAAAgMtOGA0AAAC2oM0X/bvRS4Mgq+xn2LkSVfXoS/sHSSjgZHYcs3oax7NyGC0Lql0miwG4ReO3wgYn0+1HvLLX4OStqFgWRlueiXhrrapqFcAbdIat9leSPf7s+Zqb1OMYvxWde/x8hNEA2Myy+/pcHkZrnkedp6b74IkwGhfsaJKE0fq3d3oedV2nvw+bzCUPkmDwKr972XUluy4tymb/m/rpu59NP6s9f+PFU5/5AAAAAAAAAAAAAADgnUQYDQAAALagTehq2D1Y+uX2NkGvQfd0MGuYhAIiIkaz4ziePrlhtCyAMg8bjLLwQovXI5O9BqPpvYf/qMtphFXCBW2iZ8MkeNdq/8njH83uNW53Mh01nI8wGgCb6VW94vKzwaI0YNRZHjA6L0337tEsv3/CLhyNkzBa79lzOFo+562jfjsmfNYmc8ls2+Np89x20aSeFJcvXpeq9LFtP41W13W8fPTp4tiwcyU+9sxzWz8mAAAAAAAAAAAAAAA8KYTRAAAAYAvaRKy2FcM6GwY4aNhmNL0X95Iw2pXOExBG6yQBldnDYMpJEkbbJLwwSLadRx6yLEIeUnjcOq/zKrJts1DFo/Hy8xmRPy8A0Nay4OnceFYOo2Xb70K/2otulOclJyvEmWDbZvU07kw+Xxw77N/a+vGWzXlHye9Dm89CmSwE3TR3PWtcPyguX7yuVFX5P5vWSRh5E7968kvxa/d/pTj2ievfGnud/a0fEwAAAAAAAAAAAAAAnhTCaAAAALAF+y2+6N8mLDXorr6fLBQQEXE8uxfHs3IY7aB7+cNo/WqvuHweUBklMYTNwgvl12k0exh5qGNWHF8ljNbuvbD9MNr8MWSy5zMif14AoK22YbSzPz/avhwm24WqqtJ52mhJeBTO0+uTo5gl89Obvds7Pps8xLtJZDeb2x4vmdsuyq8rC2G0ZNs6TSOv7+U7n07HnrvxnVs/HgAAAAAAAAAAAAAAPEmE0QAAAGALulU39qtB4zrZF/pXXeexMFrDNqPpvTiePrlhtCygMn4rbJCFF4adPBa3TBZtGNcPYlpPGrII7cNobSJjbd4LmewxjKZ5+CyiOYy2SWwOACIi+p1Nw2jl7XcluzefNNw/4bwdTV5Nxw77t7Z+vKYZbx11+vuwSWQ3m9vfn41iVpejcGdl15XTIebyo9t2GO3u5E78zN3PFce+/OBr4117793q8QAAAAAAAAAAAAAA4EkjjAYAAABbMljyZf8sVrWoW/Vir9pvXOdslKNTddN9/+hr/1eM6wfFsYPOkxtGm4cNRtN7xfFNIl6NobnZcUQSRuhU7cNoy94LnegsfR80ycITy8It2Xi/2otu1Vv7fAAgoiF4OnsywmhpeFQYjQv02rgcRtuvBuc038/nvNN6Eg/q+8WxNp+FMsNuOYzWFGI7a1JPist7C3PcKn1s2w2jfe71v5mez/OHL271WAAAAAAAAAAAAAAA8CQSRgMAAIAtWfZl/yxWtep+SgG2g045FvDPj38u3c+V7rVW53OR+kvCaCezUXE8iye00RRGO5keR11nYYT2YbSmY0Q8fA9UK4TWHt++/PiXhVtG0/L4MNkfAKxiWfD00c/lYFA2L9iVbI7WNswE5+FoUg6j3ejf2mg+uY5sbh6xfP7bpGku2jZMmMWiF69LWRhtm1m0WT2NH7/zN4pjN3u343df+cgWjwYAAAAAAAAAAAAAAE8mYTQAAADYkjaxq1b7WRJQKx1nnRDYQffqytvs2rKAymh2rzg+6AzXPmYpPDc3mh1HnaQRVslObCuil26fPP5l4Ygs7LLJ8wkAc23DaG0CRhchm+tlYVHYhaNxOYx22Hv2XI6XxcMi8rl5xKZhtIb5+TQ/5qKz15m5U2G0JCRX17NWx2jj59/86Xht8kpx7JtufGd0qu7WjgUAAAAAAAAAAAAAAE8qYTQAAADYkq2F0dbYz5XutVb7nquiioPOkx9GO5mNiuPDzuqhuEfbrhtGa/9nlmWv8SbhiIiIQfL4s/DZXBZOWye8BwBntQ2jtQkYXYRsLrfs/grn6SiJbN3s3z6fAzbUgJsigW0/C5U0RYOXhX/nJrNJcXm/s9vryst3Pl1c3qt68Q3Xv22n5wIAAAAAAAAAAAAAAJeVMBoAAABsybIv+7eNXa2zny87+OpW+577kuFX7DwCsI5+EkAZ1+OY1bO4n4TRBp3h2sfsVr3oV3vFsZOGMNoqloXGNglHPNx/efvR9DjqOj//LDS3yfMJAHPZfX1ST878fDnDaNn9VRiNi3Q0frW4/LB3a8dn0vy7MOiuP5/sVf10fj6a3Wu1jzbXlSqpvm1j/h8R8dsPfiN+8fhni2O/59on41rv+laOAwAAAAAAAAAAAAAATzphNAAAANiSLJYx1zYutSygVopmffL6t8cX7H1Rq/3vV4P4rlvf02rdi9ZL4m2Tehz3ZydppGBZeGyZ7DUYTY8jkmNmIYWSZe+FTcNo2fazmMa4fpBul8UsNj0fAIjIw2Zn701nQ2lzWVhtV7L74UgYjQv02qQcRrvZv30ux2ua82aRsn61t3HYcNgpz+9H03ZhtGwOvMsw2mfv/Gg69vyNF7dyDAAAAAAAAAAAAAAAeBr0LvoEAAAA4GmxLB7VNi61bL1SgO1a70b8+S/6r+MfvvHj8asnvxTTelbc9j3774sPX/2GeM/++1udy0XLAgqT2TiNeEW0j9Dl2x/EG9M7jy0/mR1HXSdhtKp9GG1Z/C4LP2xj/6PZcex19stj0/Jzuux8AaCN9L5ej0/9PD7z87LtdyWbX5zMRjs+E3hoPHsQb05fL44d9m6dyzGbw2hZZHezuXnEw/DxG9Ojx5YfJzG2s85eZ+ZOX1fOL4x2f3YSP/n63yqOfdH+l8QHBh/a+BgAAAAAAAAAAAAAAPC0EEYDAACALVkauyoEzdZZLwunXeleorFgUAAAIABJREFUi+cOX4jn4oVWx3kSZAGUcT1OwwsRm4fFBt2DiEI7YTQ7TsMITZGIs5ad36C7WTyi6b14MjuO63GYjhXPRxgNgC1oG0abzB6Ut+9cbBgtu7+Opu3CTLBtR5PPp2OH/fMJozXJIrvbmEtmv39NseRFk3pSXN5fuC7loePNw2g/9cZn0s8vzx++uFJkGQAAAAAAAAAAAAAAnnadiz4BAAAAeFosC6O1DQIsW2/ZcZ4m/YaASlMEYdA5n7DYSUMYLVYIoy0Ln20cdmt4jzTFW7JYQ9uoHwA06Sdhs7PBoixglIXVdiW7v57MRjs+E3joaPxKOnbY230YLZufb+Pzy0EyPz5uGSY8G2CcW7yupFm0DbtodV3HZ+58ujh20LkaH7n2yc0OAAAAAAAAAAAAAAAATxlhNAAAANiSwZJ4VNsgwLL13klhtCyAMqnHacSrG73oV3sbHTd7jkcNYbTOCmG0ZeGzTV/j/c4gquR8muItWcyibdQPAJpk9/XxmWBRFjDKgqm7koVCm2KtcJ6OJq8Wl1/pXou9zv65HDObY0ZEjGblSNmyz0ltZPto+/s3rh8Ul58Oo5X/s2keRm7nV0a/GL9+/1eLY5+4/q3n9loBAAAAAAAAAAAAAMCTShgNAAAAtmRbQbNlEap3UqQqC6jMYhbH07vFsUF3GFXVPlJW3EfyHJ9MjyOyMMIKxzzv+F2n6sSgMyyOZcGKh2PlsMQ7KcYHwPlJg6ez08GiLIyWbb8r2fzgQX0/pvVkx2cDeRjtZu/2js/kodE0i+yW56WrOEjCwsfTfG67aJL8jra5rmwaRnv5zqeLy6uo4rkb37nRvgEAAAAAAAAAAAAA4GkkjAYAAABbMky+rD/XNmg27C7ZT3fzsMCTot8QKrg7faO4fBvhuGG3vI/R7DjqrIsW7cNo+51B4/ggOf4qsuchi59FRJwkY++kGB8A5ycNo50JFo3rB8X1LjqM1hQKPZmNdngm8NBr41eKyw/7t87xqPmcN4/sNn++aSOf27YNo5WDi4ufN/L5/PphtDcmd+If3f3J4thXXPlw3N77grX3DQAAAAAAAAAAAAAATythNAAAANiSQac5WNY2aNa0n361d+FRkF1qeqx3J68XlzdFS9rKwgsns+OoY1YcWyWM1qm6ja/zNh5Dto+TaTlYUdd1nEzLUZfhkvc2ALTRq3rF5WeDRWdDaY+2v7xhtFFyf4XzdDT5fHH5Ye/8wmhV1RRGK0fKln1OauMgiUc3RX8XZWG0XoswWr1BGO1zr/9YTKN8TXvuxotr7xcAAAAAAAAAAAAAAJ5mwmgAAACwJcPky/oRqwXNhp18P9sIZj1Jmp6zN6flMFoWNVtFGhWbHadZhFXCaBHN57mVMNqK8Yhx/SCNNgwa3tsA0Fa/2isuXwwW1XWdBoz6FxxGa7p3n7SMM8E2HY1fKS4/zzBak+z3oOnzTVvZPkbTcoztrPHsQXF5r7MQRkuib3W9XhhtWk/js3f+RnHs2f674yuvfHit/QIAAAAAAAAAAAAAwNNOGA0AAAC2ZFuhq6Z1txH9epL0O3kA5W4SRttGVCx7nh9GxdYLI5x13q/zoDMsLs/CaCezUbqvYbIvAFhFFjwd14+CRbOYRp3ca9tGZs/LoJvfD4XRuAhHk1eLyw/7FxVGK88ns3npKvLob7sw2qQuB4BPX1eSMNqa8/+ff/On4s7k88Wx5258Z3Sq7lr7BQAAAAAAAAAAAACAp50wGgAAAGzJtkJXg27DfhrGnkZNAZS7k3IYbRtRsey1PJmO0jBCVa32Z5bGkN4WXudhpxyPyMItTVGJd1qQD4Dz0at6xeWLwaJxPW7Y/mLDaL2qH/1qrziWhUfhvIym99IQ2WHvYsJomW18hsnm521/9ybJtaW/cF2pkjDaumHkl+98OjnmXnzi+reutU8AAAAAAAAAAAAAAHgnEEYDAACALelXe9GJbnFs0Bm23k9TYK1p7GnUFEB5c1oOo20jKpbFG5riYVlGITPslsNlEXnUbBVZzGw0LccjsrDGw/N5Z73vADgf2X19Uo+jrh+GhyazyxtGi8jndFl4FM7La5NX0rGb/dvndtw8Hpbbxlwymx9P6nGMZw+Wbj+uy+u0ua6sk0X7rfu/Hv/8+OeKYx+59sm42n1mjb0CAAAAAAAAAAAAAMA7Q++iTwAAAACeFlVVxbB7EPemdx8bWyXWtVftRyc6MYvZY2NZ7Opp1a/20rE3JneKy7fxHGXxhtJr8shqkYimWN7+CiG9Vfd/b3a3+B69M/58w/kMNj4fAMgCRHXUMYtpdKMXkzoPo/U7Fx9GG3auxN1CnPX1yVHx/grn5bfu/3pxeRWduN67eW7HXSeMtpX5ecPnqdcmr7wdGht0htGtHv/Pn5N6Utx28brUqcr//6TGswcr/37/nTv/Tzr23I0XVtoXAAAAAAAAAAAAAAC80wijAQAAwBYNOuUw2ioxgKqqYtA5iOPZm4+NZcGup1WvEDWYu1+fFJdv4zkadq6svE1nxUhEdp771SC6VXfl4z+2/275MfzS8c/Hf/LL/17r/Qw6w+hs4XwAoN/Jg6fjehzdqjmM1jQv2JUsPPojr/xw/MgrP7zbk4GC673Drcwlt2m4hehv0/z8h/6/P/32v/erQXzFlQ/H977nT8dB92pEREzradRJ4DgLNi767Os/Gp99/UdXPOOyLx58KD4w/NBW9gUAAAAAAAAAAAAAAE+r8v/rcwAAAGAtWexqlTBaRMSwu539POk6VTc6K/75IguWnP8+Vg2jleMOg+S1X9W2InrvtPccAOenKWw2mT0Moo0bw2h5WG1XtnWfhvNy2Lt10afwmMEa0eGz2oaL79cn8Y/e/Mn4n3/jv3l7WVNwsb8QRqtWnM+v4/kbL5z7MQAAAAAAAAAAAAAA4EknjAYAAABblEWkVo1Upft5B8Y4eguxgjaG3S2EF9bYx6ohhSy+tq0Q2bb2s63AGgA03dPn4aK2AaOL4r7IZXfYP98w2jrxsGF383DxfmcQ1Qr/WfNfjP5JfH78OxERMa4fpOudvi6dbxjtSvdafOTaJ8/1GAAAAAAAAAAAAAAA8DQQRgMAAIAtut1/T3H5s/13r7SfW8l+bq24n6fBqs/dquuX7FeDuNq9vtI2N/u3V1r/9t75vsbZe3FV23g+ASAiYq/aT8fu1ycR0RxGWzWWeh7eiXMxnizv2Xv/ue6/V/Xj2grz5H61F9e6NzY+bqfqrPz799sPfiMiIib1JF1n8bry7Irz+VV9w/Vvi35n71yPAQAAAAAAAAAAAAAATwNhNAAAANiijzzzyceW9apefO21j6+2n2uP72ev2o/ffeWja5/bk+rD1z7Ret2bvdvxwcGXbnzMqqriI9e+sfX6Hxh8KA77t1Y6xlde+UjsV4PHlpde+3V8cPilcbO3edzho8980xbOBgAiBp2DdGw0PY6IiHFjGK239XNa1e+59o1RRXXRpwFFVXTiY888d77HqKr42qvt5+dfc/XjsdfJo4irWHWefDJ7eF2ZzNoFF7/m6tef2+/3oHMQ33Lj3zqXfQMAAAAAAAAAAAAAwNNGGO0dpKqqYVVVn6iq6k9UVfUXqqr6waqq/mxVVX+oqqoPVVW1lW97VFXVr6rqm6uq+qNVVf3Fqqr+dFVVv7+qqg9sY/8AAACX2Vdc+XD84Xd9Xww7VyIi4nr3ML7/fT8Yz/bfvdJ+PvrMJ+P33fqjMegMI+Jh8OvPvv+/jGu961s/58vuxWe/O77pxneeihaUvG//A/EDX/iXolNt588df+D2H4+PXXs+OtFtXO9Lhl8e3/++H1x5/wfdq/EDX/iX3n5v7FeD+K5b3xMff+ab1zndx3SqbvzAF/5QvG//A2ttv18N4t++9b3xsWvnG9cA4J1jvzNIo0NvB4ySMFonOtGpmu/Ju/DB4ZfFH33Pn4sr3WsXfSpwytXu9fi+9/2n8e699537sf7gu/5kfPTaN0U38lhhFZ346qtfF9/znj+1teP+m7f+cHzy+qdaRxLnwcXsuhIR0e88+ozxoYOvjH/3PX8mrnaf2exEz7jRezb+w/f+xbjRf3ar+wUAAAAAAAAAAAAAgKdVu28O8ESrquoTEfEfRcTvi4i9hlV/o6qq/y0i/oe6rl9b4zi3I+KHIuIPRcTNZJ2fiIj/vq7r/3vV/QMAADwpnjt8IT5541NxZ/JaHPZuxbod6k89+wfiW2/+3nhjchQ3es+uvZ8nXafqxh959/fHv3P7j8cr49+Mun58nau9Z+JGr/hRdG39Tj/++Hv/4/gjs++PVx/8dnGd673DjWJ1Hxx+afylD/5PcWfy+XimdyO6LSMPbb1r773xgx/4y3Fn8lq8OXmj9XadqhPv3nvv1s8HgHe2TtWJ/c7w7QjaotGSMFq/avrT9m59/Po3x8eeeS5eGf9mjGd5cAl2Za+zF7f7X7Czzwv9Tj/+xHv/QpzMRuk8+dn+7Rh2r2z1uN2qG9/znj8Vf/Bdf/LU54L/9V/9d/E743/12Prza824fpDu82x8+RPXvzU+/sy3bO33e7+zH8/23721eDMAAAAAAAAAAAAAALwT+HbrU6yqql5E/OWI+FMR0ebbMO+LiP88Ir6vqqo/Vtf1j65wrBci4ocj4l1LVv2GiPiGqqr+j4j4vrqu77U9BgAAwJOkU3XjZv/2xvvpVt047N/awhk9+fY6+/G+/Q/s/LiDzjDePzi/41ZVde6v8Y3eza2H4wBgHcPOQTGMdrIkjHY2XnTRHkZE33fRpwEX6rznyZmznwuu9a4Xw2iPgouTdF+la4vfbwAAAAAAAAAAAAAAuFjCaE+pqqqqiPg/I+IPFoZ/MSJ+ISJGEXE7Ij4aEYcL4++OiL9eVdXvbRNHq6rqmyPir0XE3sLiOiJ+JiJ+JSJuRMSHI2LxW97fGxHPVFX1++q6nrV8WAAAAAAAPMEGnYPi8nnAaDzLwmj+cwZQNuxcKS5fFlyMuHzRRQAAAAAAAAAAAAAAIKJz0SfAufkP4vEo2mci4qvquv7yuq7/QF3X31vX9aci4l0R8Sci4vWFdfci4q9WVXW96SBVVb0/In4kTkfRPhcRX1nX9Ufruv7ut47x/oj4cxGx+O2T74qI/2qNxwYAAAAAwBNomITRTqbNAaNeR7wIKBt0hsXloyVhtE50olt1z+28AAAAAAAAAAAAAACA9QijPb3+szM/fyYivq2u639ydsW6rid1Xf+ViPi2iLi/MPSuiPj+Jcf5oYg4XPj5J946zi+cOcb9uq7/x4j47jPb//mqqr54yTEAAAAAAHgKDLrlMNqygFGv2isuBxh2rhSXz4OL4/pBcbxXCS4CAAAAAAAAAAAAAMBlJIz2FKqq6qsi4gNnFv9AXSffKHtLXdc/HRH/y5nF39VwnA9FxL+/sOhBRPyxuq5PGo7x1yLiry4s2o+I/6LpvAAAAAAAeDoMO+Uw2snbYbRJcbxf9c7tnIAn26A7LC4fLbmuCKMBAAAAAAAAAAAAAMDlJIz2dPpdZ37+tbquf7bltn/9zM8falj3eyKiu/Dzj9R1/S9aHOO/PfPzd1dVNWhzcgAAAAAAPLkGneaA0bh+UBwXMAIyeXBxFBERk+T/b1DfdQUAAAAAAAAAAAAAAC4lYbSn05UzP//6Ctv+2pmfDxvW/f1nfv4rbQ5Q1/UvRMTfX1h0JSI+1WZbAAAAAACeXMPO2T9fP7QsYCSMBmQGSRhtHlxMrysd1xUAAAAAAAAAAAAAALiMhNGeTr915ufBCtueXfe10kpVVb0nIr5mYdEkIj63wnH+7pmfX1hhWwAAAAAAnkCDzrC4fDS9FxERk3pSHBdGAzJZGO3krTDaePagOO66AgAAAAAAAAAAAAAAl5Mw2tPppyLi/sLPX15VVfnbZo/7SGFfJb/7zM8/V9f1vZbHiIj4iTM/f+UK2wIAAAAA8AQadq8Ul5/MRhERManHxXEBIyAzzMJo04dhNMFFAAAAAAAAAAAAAAB4sgijPYXqur4bEf/7wqJBRPzJZdtVVdWNiD/z/7N370G2ZXV9wL+/3af7njN3YAaZGWAQGRkUmBJ5WoIgD8dIElO+5ZEyajQ+sICglq8KAYZoKkS0EsoiRKPySAoJQQQJhDg8FA1ItBBmBJIBh3dgiscwj3vvzNzbK390X+6hp0/3OX37nN2n7+dT1XX2Xnvtdb63qFpVQ+/+7i3DL58w/Yot5x+eOuCGj+yyHgAAAAAAh8yw2/4dHsfXN967cUe7fdvrqwqMgAmGK9sXo93WTmS9nZpYuGhfAQAAAAAAAAAAAACAg0kx2uH1y0k+Onb+b6vq2ydNrqrVJL+d5GFjw29L8toJt9x/y/nHZ8z3sS3nd6+qu824BgAAAAAAS2TUHd12/MT68SSZWGA0UGAETDDqti9GSzb2FvsKAAAAAAAAAAAAAAAsF8Voh1Rr7QtJnpjkvZtDoyRvqapXV9UPVtWDq+r+VfWoqvrZJNck+bGxJd6T5Adaa23CV1y45fyGGfPdkuTEluELZlkDAAAAAIDlMuxG247ftn486209J9dPbntdgREwyXCHYrTj68dyh2I0AABgBlV1v6p6SlX9elW9o6puqqo29vPRvjNuVVXnVdVHtuRsVfWyvrMBAAAAAAAAAMBeDPoOwPy01j5aVd+c5EeT/GSSRyR58ubPJJ9P8ptJfr21CX8psuH8LefH9xDxeJLh2Pld9rDGV6iqS5JcPONtl5/t9wIAAAAAsLvRytFtx1tabls/kZOTCow6BUbA9kY7FKOdWD82eV9RjAYAAGyqqick+ZUkj0zyVf2m2ZNfS3K/vkMAAAAAAAAAAMB+UYx2+K1s/tyWpCWpHeZ+Islzk/zBLqVoyZ2L0U7sIdvxJHfbYc29+Jkkz9uHdQAAAAAA2GfDbjTx2vH1WycWGK0qMAImGO5QjHb81ORiNPsKAAAw5qFJvqPvEHtRVY9K8qy+cwAAAAAAAAAAwH7q+g7A/FTVY5J8MMl/SPKY7P6/932S/H6Sj1fVP5vx69rsCfd0DwAAAAAAS2rUHZ147cT68dzRbt/22kCBETDBarc6cY84sX7MvgIAAJyN25J8pO8Qk1TVWpLfzZnnAm/uMQ4AAAAAAAAAAOwbxWiHVFVdmeTqJJeNDX8qyS8neViSC5OsJblnkr+f5OVJTm7OuzjJ71TVb1dVTfiKW7acj/YQc+s9W9cEAAAAAOAQGXaT/6/k4+vHcrKd3PaaAiNgJ8PuvG3Hj68fy8l1+woAADCVO5L8TZL/lOSnkjwiyV2SzPqC0UV6bpIrNo8/luQ/9pgFAAAAAAAAAAD2zaDvAOy/qro4yauSDMeG/zjJD7XWbtoy/bNJ3pLkLVX10iRvTHL3zWs/kY03Xr5wm685qMVoL0nymhnvuTzJ6/fhuwEAAAAA2MFqrWUlg5zKnYuKTqwfy8l2x7b3DcqvM4DJRt0ot5z60p3GT6wf32FfUYwGAAB82cuTvLS1dmLrhcnvFe1XVT0kyS+NDT09yTf3FAcAAAAAAAAAAPaVvyQ6nH4uycVj5x9K8uTtHtwa11p7d1U9JcnVY8PPq6rfb63dsGX61r8uuTgzqKrzc+ditBtnWWM7mzm3Zt0ty9l+LQAAAAAAU6iqDFdGufXUzXe6dvzU5GK01VqbdzRgiQ2787YdP37q1sn7SqcYDQAA2NBa+2LfGWZRVYMkv5czz3++qrX25qpSjAYAAAAAAAAAwKHQ9R2AufjBLecv3K0U7bTW2luTvHNsaJTkqdtMvW7L+X2nj7ft/C8s2wNmAAAAAADMbjShwOjE+rHcMaHAaFAKjIDJJhWjnVg/njva7dtes68AAABL7BeSPHzz+AtJnt1jFgAAAAAAAAAA2HeK0Q6Zqjqa5PItw2+dcZmrt5xv9ybJD245v/+M33G/LecfmPF+AAAAAACW0KQCo+Prx3JSMRqwB6OVyYWLJ9vJba/ZVwAAgGVUVQ9I8ryxoZ9vrd3QVx4AAAAAAAAAAJgHxWiHz4XbjH1mxjW2zr9omznXbjn/xqra/q9OtveYXdYDAAAAAOAQGk0oRjuxYzHaYJ6RgCW3t8JF+woAALBcqqpL8rtJjmwOva219rL+EgEAAAAAAAAAwHwoRjt8btxm7OiMa5y/5fyWrRNaa/8vyfvHhgZJHjvDdzxhy/mbZ7gXAAAAAIAlNbHA6NTkAqPVbm2ekYAlt5fCxdWyrwAAAEvnGTnzQtLjSX6qxywAAAAAAAAAADA3itEOmdbarUlu2jL8sBmXecSW889MmPe6Lef/dJrFq+qBSb55bOjWJP9zumgAAAAAACyz0coOBUbr2xcYDWp1npGAJTexcHH9WO6YUIxmXwEAAJZJVV2W5F+PDV3VWvtwP2kAAAAAAAAAAGC+Bn0HYC7ekeS7xs5/Msnbp7mxqu655d4keeeE6f8lyXOSrGyef19VfV1r7bpdvuaXtpz/19baiWnyAQAAAACw3BQYAfttNGFfOXHqWE7aVwAAgMPhd5Ic3Tx+X5Lf6CtIVV2S5OIZb7t8HlkAAAAAAAAAADicFKMdTq/OV5abPaWq/ntr7T/vdFNVHUnyyiTnjw3fkuQt281vrV1XVS9P8mObQ2tJXlZVV04qOquq707yo2NDtye5aqdcAAAAAAAcHpMKjI6v35r1nNr22qD8OgOYbLgyuXBxcjGafQUAAFgOVfXjSb5983Q9yU+01k72GOlnkjyvx+8HAAAAAAAAAOCQ6/oOwFz8QTbeCnlaJXlFVf37qrrXdjdU1ROTvDtnHqA67YWttS/u8F3PSzJ+/VuSXF1VD9yy/pGqemaS12y5/zdaax/bYX0AAAAAAA6R4YRitFtOfmniPYNanVcc4BAYdaNtx0/sUIy22q3NMxIAAMC+qKpLk7xobOjFrbX/3VceAAAAAAAAAABYBK9CP4Raa+tV9QNJ/iLJJZvDleRZSZ5RVe9P8ndJjif5qiQPS3LPbZZ6U5IX7vJdn6yq70vyliSn/4LkMUk+UFV/vfk9FyR5eJKLt9z+xiT/crZ/HQAAAAAAy2w0oRjt5lOTi9FWS4ERMNmwO7rt+In14+kmvCdK4SIAALAkXpLkws3jjyV5To9ZAAAAAAAAAABgIRSjHVKttQ9X1eOTvDLJI8cudUkeuvkz8fYkv5Pk2a21O6b4rndU1fcmeVnOlJ/V5vc+csJtr0ryE621U7utDwAAAADA4TFc2b4Y7ZZTN0+8R4ERsJNRN9p2/I52eyq17TX7CgAAcNBV1VOTfPfY0NNba7f2lWfMS5K8ZsZ7Lk/y+jlkAQAAAAAAAADgEFKMdoi11j5UVY9O8o+T/HSSRyUT/vpjw/Ekf5jkt1pr757xu95UVd+Q5KokT0lytwlT353kRa21186yPgAAAAAAh8Oo274YrWV94j2D8usMYLJhd3TitZa27bh9BQAAOMiq6qIkLx4belVr7c195RnXWrshyQ2z3FO102OLAAAAAAAAAADwlTzxf8i11k4meUWSV1TVBUkemeRrk1yY5EiSm5N8Mcm1Sa7ZnL/X77ohydOr6p8neUyS+ya5Z5Jbk3wqyXtba9efxT8HAAAAAIAlN5xQjLaTQa3OIQlwWIxWRjPfs1prc0gCAACwb16c5OLN4y8keXaPWQAAAAAAAAAAYKEUo51DWmtfSvLWBXzP7UnePu/vAQAAAABg+YwUowH7bNQdnfke+woAAHBQVdUDkjxtbOjfJTmvqi7b5dYLt5yfv+We9dbax882HwAAAAAAAAAAzJtiNAAAAAAAYGGGeyhGW+3W5pAEOCyOdKOZ71GMBgAAHGBb/yPnBZs/s/r+zZ/TvpQ7l6cBAAAAAAAAAMCB0/UdAAAAAAAAOHeMVmYvRhuU97wAk63UStbqyEz32FcAAAAAAAAAAAAAAOBgUowGAAAAAAAszLAbzXzPShQYATsbdbOVLq7W2pySAAAAAAAAAAAAAAAAZ0MxGgAAAAAAsDArNchaHZl6/qBWU1VzTAQcBsOV2YrRBrU6pyQAAABnp7X2N621mvUnyVVblnr5ljkX9vHvAQAAAAAAAACAWSlGAwAAAAAAFmrYTV9gtKq8CJjCaIZ9JUkGnb0FAAAAAAAAAAAAAAAOIsVoAAAAAADAQo1Wpi8wGihGA6YwS+FikgxqMKckAAAA26uqtuXnCX1nAgAAAAAAAACAg8gT/wAAAAAAwELNUmCkGA2YxmiGfaVSWfFrUgAAYExVfXW2f57ynlvOB1V12YRlbmmtfW4/cwEAAAAAAAAAwLnIE/8AAAAAAMBCzVJgpBgNmMashYtVNcc0AADAEvrzJPedYt69k1w/4drLk/zofgUCAAAAAAAAAIBzVdd3AAAAAAAA4Nwy7EZTz1WMBkxjtDJLMZp3RwEAAAAAAAAAAAAAwEGlGA0AAAAAAFioUXd06rmritGAKQy7WYrR7CsAAAAAAAAAAAAAAHBQeR06AAAAAACwUMOV0dRzFRgB0xh20+8rq7U2xyQAAMAyaq1dtoDvqDmv//wkz5/ndwAAAAAAAAAAwCJ0fQcAAAAAAADOLaPu6NRzB51iNGB3M+0rChcBAAAAAAAAAAAAAODAUowGAAAAAAAs1LAbTT1XgREwjdn2lcEckwAAAAAAAAAAAAAAAGdDMRoAAAAAALBQo+7o1HNXFaMBUxitTL+vKFwEAAAAAAAAAAAAAICDSzEaAAAAAACwUMNuNPVcBUbANGbZV1a7tTkmAQAAAAAAAAAAAAAAzoZiNAAAAAAAYKFGK0ennqsYDZjGqJtlXxnMMQkAAAAAAAAAAAAAAHA2FKMBAAAAAAALNexGU89VYARMY7Z9ReEiAAAAAAAAAAAAAAAcVIrRAAAAAACAhRp1R6eeq8AImMawO2/qufYVAAAAAAAAAAAAAAA4uBSjAQAAAAAACzXsRlPPXa21OSYBDosYiZDCAAAgAElEQVQj3TCVmmqufQUAAAAAAAAAAAAAAA4uxWgAAAAAAMBCjVaOTj13UKtzTAIcFl11OTJl6eKgBnNOAwAAAAAAAAAAAAAA7JViNAAAAAAAYKHW6kgqNdVcBUbAtEbdeVPNU7gIAAAAAAAAAAAAAAAHl2I0AAAAAABgobrqMuxGU81VYARMazh1MdranJMAAAAAAAAAAAAAAAB7pRgNAAAAAABYuGkLjFY7BUbAdEZTF6MN5pwEAAAAAAAAAAAAAADYK8VoAAAAAADAwk1bjDao1TknAQ6L4cq0hYv2FQAAAAAAAAAAAAAAOKgUowEAAAAAAAs3mroYbTDnJMBhMf2+ohgNAAAAAAAAAAAAAAAOKsVoAAAAAADAwg1XFBgB+2vYjaaaN6i1OScBAAAAAAAAAAAAAAD2SjEaAAAAAACwcKNOMRqwv4ZT7yuDOScBAAAAAAAAAAAAAAD2SjEaAAAAAACwcMNuNNW8VcVowJSmLVy0rwAAAAAAAAAAAAAAwMGlGA0AAAAAAFi4UXd0qnkDBUbAlIYr0xWj2VcAAAAAAAAAAAAAAODgUowGAAAAAAAs3LAbTTVPgREwrVE3bTHa2pyTAAAAAAAAAAAAAAAAe6UYDQAAAAAAWLjRytGp5ilGA6Y1nLoYbTDnJAAAAAAAAAAAAAAAwF4pRgMAAAAAABZu2I2mmqcYDZjWaMpitFX7CgAAAAAAAAAAAAAAHFiK0QAAAAAAgIUbdUenmrfaKTACpjOcshhN4SIAAAAAAAAAAAAAABxcitEAAAAAAICFG3ajqeYpMAKmNVqZshitW5tzEgAAAAAAAAAAAAAAYK8UowEAAAAAAAs3Wjk61TzFaMC0ht10xWirNZhzEgAAAAAAAAAAAAAAYK8UowEAAAAAAAs37EZTzVtVjAZMaTRlMZrCRQAAAAAAAAAAAAAAOLgUowEAAAAAAAs36o5ONU+BETCt1VpLl5Vd59lXAAAAAAAAAAAAAADg4FKMBgAAAAAALNywG001T4ERMK2qyqg7b9d59hUAAAAAAAAAAAAAADi4FKMBAAAAAAALt1prWclgxzldVtKVX2UA0xuu7F6MtqoYDQAAAAAAAAAAAAAADix/TQQAAAAAACxcVWW4MtpxjvIiYFajbud9JUkG9hYAAAAAAAAAAAAAADiwFKMBAAAAAAC9GHXn7XhdeREwq2F3dNc59hYAAAAAAAAAAAAAADi4FKMBAAAAAAC9GO5WjNYpLwJmM+xGu85RjAYAAAAAAAAAAAAAAAeXYjQAAAAAAKAXo92K0ZQXATPafV8ZpKoWlAYAAAAAAAAAAAAAAJiVYjQAAAAAAKAXQ8VowD4brthXAAAAAAAAAAAAAABgmSlGAwAAAAAAejHapcBotQYLSgIcFiOFiwAAAAAAAAAAAAAAsNQUowEAAAAAAL0Y7lpgtLagJMBhsfu+ohgNAAAAAAAAAAAAAAAOMsVoAAAAAABAL0YKjIB9ttu+smpfAQAAAAAAAAAAAACAA00xGgAAAAAA0IvhrsVogwUlAQ6L3fcVxWgAAAAAAAAAAAAAAHCQKUYDAAAAAAB6MVJgBOyz0Yp9BQAAAAAAAAAAAAAAlpliNAAAAAAAoBfDXQqMVhUYATMaKlwEAAAAAAAAAAAAAIClphgNAAAAAADoxWjXAqO1BSUBDovd9xXFaAAAAAAAAAAAAAAAcJApRgMAAAAAAHox3K3AqBssKAlwWAy70Y7XVxWjAQAAAAAAAAAAAADAgaYYDQAAAAAA6MVot2I0BUbAjEbd0R2vDzr7CgAAAAAAAAAAAAAAHGSK0QAAAAAAgF4MdylGW1WMBsxouDLa8brCRQAAAAAAAAAAAAAAONgUowEAAAAAAL0YrexcjDaotQUlAQ6LQa1mdYe9QzEaAAAAAAAAAAAAAAAcbIrRAAAAAACAXgy70Y7XBzVYUBLgMNlpb1lVjAYAAAAAAAAAAAAAAAeaYjQAAAAAAKAXKzXIWh2ZeH2gwAjYg1F3dOI1+woAAAAAAAAAAAAAABxsitEAAAAAAIDeDLvzJl5bVWAE7MGwG028phgNAAAAAAAAAAAAAAAONsVoAAAAAABAb0Yrk4vRFBgBe2FfAQAAAAAAAAAAAACA5aUYDQAAAAAA6M2wU2AE7K+d9pVV+woAAAAAAAAAAAAAABxoitEAAAAAAIDejBSjAftM4SIAAAAAAAAAAAAAACwvxWgAAAAAAEBvht1o4rXVToERMLsdCxftKwAAAAAAAAAAAAAAcKApRgMAAAAAAHoz6o5OvDYoBUbA7IY7FaPZVwAAAAAAAAAAAAAA4EBTjAYAAAAAAPRmuDKaeE2BEbAXo5XJxWir9hUAAAAAAAAAAAAAADjQFKMBAAAAAAC9GXVHJ15TjAbsxbCbXIxmXwEAAAAAAAAAAAAAgINNMRoAAAAAANCbYTeaeG1VgRGwByPFaAAAAAAAAAAAAAAAsLQUowEAAAAAAL0ZdUcnXlNgBOzFToWL9hUAAAAAAAAAAAAAADjYFKMBAAAAAAC9UWAE7Ldhd97Ea6v2FQAAAAAAAAAAAAAAONAUowEAAAAAAL0ZrRydeE2BEbAXo5XJxWgKFwEAAAAAAAAAAAAA4GBTjAYAAAAAAPRm2I0mXlNgBOzFsFOMBgAAAAAAAAAAAAAAy0oxGgAAAAAA0JsLBnfbdrxLl+HK5HIjgEnOX7lrugm/Bj1/5a4LTgMAAAAAAAAAAAAAAMxCMRoAAAAAANCbu6/eI/dau8+dxi8fPSjDbtRDImDZHemG+frzHnyn8UtWL81Fa/foIREAAAAAAAAAAAAAADAtxWgAAAAAAECvfuRez875Kxd8+fxug4vyQ/d8Ro+JgGX31Hv8dO6+esmXz8/rzs+PXfrzPSYCAAAAAAAAAAAAAACmMeg7AAAAAAAAcG77muHlueprX5KPHP9gulrJ/UdXZK070ncsYIldsnavPOeyF+f64/8nt7fb8vXnPTjDbtR3LAAAAAAAAAAAAAAAYBeK0QAAAAAAgN6NVo7mG85/ZN8xgEPkSDfMA48+pO8YAAAAAAAAAAAAAADADLq+AwAAAAAAAAAAAAAAAAAAAAAAAAAM+g4wi6p62+ZhS/K01toNe1znHkledXqt1tqV+5EPAAAAAAAAAAAAAAAAAAAAAAAA2JulKkZL8oRslKIlyfAs1hlurpWx9QAAAAAAAAAAAAAAAAAAAAAAAICedH0H2IPqOwAAAAAAAAAAAAAAAAAAAAAAAACwv5axGA0AAAAAAAAAAAAAAAAAAAAAAAA4ZM7VYrTB2PHJ3lIAAAAAAAAAAAAAAAAAAAAAAAAASc7dYrSLxo5v7S0FAAAAAAAAAAAAAAAAAAAAAAAAkOTcLUZ73OZnS/LpPoMAAAAAAAAAAAAAAAAAAAAAAAAAyaDvAGehzTK5qlaT3CvJdyT5F2OXrtnPUAAAAAAAAAAAAAAAAAAAAAAAAMDsDlwxWlWdmmZako9W1Z6/Zuz4DXtdBAAAAAAAAAAAAAAAAAAAAAAAANgfB64YLV9ZWrYf87bTNu//UJL/dhbrAAAAAAAAAAAAAAAAAAAAAAAAAPug6zvABG3O61eSv0ryj1prd8z5uwAAAAAAAAAAAAAAAAAAAAAAAIBdDPoOsI0/y+RitMdvfrYk70lyYso1W5LbktyY5INJ3t5ae+fZhAQAAAAAAAAAAAAAAAAAAAAAAAD2z4ErRmutPWHStapaz5nStKe01j6+kFAAAAAAAAAAAAAAAAAAAAAAAADAXHV9B9iD6jsAAAAAAAAAAAAAAAAAAAAAAAAAsL8GfQeY0VVjxzf2lgIAAAAAAAAAAAAAAAAAAAAAAADYV0tVjNZau2r3WQAAAAAAAAAAAAAAAAAAAAAAAMCy6foOAAAAAAAAAAAAAAAAAAAAAAAAAKAYDQAAAAAAAAAAAAAAAAAAAAAAAOidYjQAAAAAAAAAAAAAAAAAAAAAAACgd4O+A5yNqnpikm9L8rAklyS5IMnqjMu01trl+50NAAAAAAAAAAAAAAAAAAAAAAAAmN5SFqNV1ZOSvDjJ/ceH97hcO/tEAAAAAAAAAAAAwLSq6qIkt7XWbu47CwAAAAAAAAAAcHB0fQeYVVX9QpI3ZaMUbbwMre3hBwAAAAAAAAAAAFiAqrpvVb2iqm5M8tkkN1bVJ6vqV6tq1Hc+AAAAAAAAAACgf4O+A8yiqp6U5IWbp6fLzU6Xox1LcmOSO3qIBgAAAAAAAAAAAOeUqvqRJP9q8/TmJA9vrd02Ye43Jrk6yd3zlS9FvTTJryT5nqp6Qmvtc3OMDAAAAAAAAAAAHHBLVYyW5N9sfp4uRPtENorS3tha+3hvqQAAAAAAAAAAAODc87QkX52NZ/peukMp2iDJq5NctDnUtk5JckWS1yZ5/HyiAgAAAAAAAAAAy2BpitGq6vIkD8mZB6L+Msl3tNZu7i8VAAAAAAAAAAAAnHuqqkvy2LGh1+0w/YeTPCBfWYh2bZKT2XguMNkoR3tsVT2ltfbq/cwKAAAAAAAAAAAsj67vADN49OZnZePhqB9WigYAAAAAAAAAAAC9uCLJeZvHdyT50x3m/vjmZyX5UpJHt9Ye0lp7RJKHJ/lszpSmPX0OWQEAAAAAAAAAgCWxTMVol2x+tiTvba1d12cYAAAAAAAAAAAAOIddvvnZklzXWrtju0lVdc8kj9qc15L8amvtPaevt9ben+RZ2ShNqySPraq7zTM4AAAAAAAAAABwcC1TMVqNHX+4txQAAAAAAAAAAADAvceOr99h3uNypvTsZJLf22bO65J8afO4kjx0PwICAAAAAAAAAADLZ5mK0T41drzSWwoAAAAAAAAAAADg/LHjm3aY99jNz5bkXa21G7dOaK2dSvLesaH7n308AAAAAAAAAABgGS1TMdrfjh3fp7cUAAAAAAAAAAAAwOqU8x49dvyOHeZ9Zuz4rjOnAQAAAAAAAAAADoWlKUZrrV2T5NokleQRVXW3niMBAAAAAAAAAADAueqWseNtn+erqqNJHjo29Bc7rHdq7PjIWeQCAAAAAAAAAACW2NIUo236jc3PlSQ/32cQAAAAAAAAAAAAOId9buz4QRPmfHs2nvdLkpbkL3dY78Kx42NnkQsAAAAAAAAAAFhiS1WM1lp7eZLXJqkkv1hV/6DnSAAAAAAAAAAAAHAuunbzs5Lct6q+YZs5T938bEmuba3dtMN69x47/vw+5AMAAAAAAAAAAJbQUhWjbfqRJG9IMkjy+qp6QVVduMs9AAAAAAAAAAAAwP65NhsFZm3z/DeravX0xap6bJIfGLv+5kkLVdUgyRVjQ9fvb1QAAAAAAAAAAGBZDPoOMIuqeu7m4fuSfEuSi5L8iyQ/V1XvSvKBJF9Msj7Luq21F+xnTgAAAAAAAAAAADjMWmunqupVSZ6RjfKzK5O8v6r+OMkl2ShF65LU5vVX7rDcNyVZGzv/27mEBgAAAAAAAAAADrylKkZL8vyceXtkNo8ryXlJvm3zZy8UowEAAAAAAAAAAMBsfjXJP0ly183zByT5+s3j04VoLclrW2sf2GGd79n8bEk+3Fr74hyyAgAAAAAAAAAAS6DrO8A+OP3g1F7UfgYBAAAAAAAAAACAc0Vr7YYk35/kRM4UoX358ubYR5I8fdIaVdUlefLYve+YR1YAAAAAAAAAAGA5LGMxWu3jDwAAAAAAAAAAALBHrbW3JXlIklcnOZYzz+d9PslvJXlUa+3zOyzxXUnumzPP9L1pfmkBAAAAAAAAAICDbtB3gBk9se8AAAAAAAAAAAAAwBmttQ8neVqSVNVFm2Ofm/L265N879j5W/Y3HQAAAAAAAAAAsEyWqhittfanfWcAAAAAAAAAAAAAtjdDIdrp+e9L8r45xQEAAAAAAAAAAJbMUhWjAXCI3XhN8n9/Kzl1IvmaH0wu/c6kqu9UAAAAAAAAAAAAAAAAAAAAAAAsiGI0APr3mauTtz8paesb59e/InnwVcmDn9tvLgAAAAAAAAAAAAAAAAAAAAAAFqbrOwAA57jWkr965plStNP+9teSY5/sJxMAAAAAAAAAAPuiqi6sqvtU1df0nQUAAAAAAAAAADj4FKMB0K8b35fc9KE7j6/fnnziDxefBwAAAAAAAACAPauq76mq36uq66rqjiSfT/LRJH83Yf5lVfW4zZ9HLDIrAAAAAAAAAABw8Az6DnC2qmo1yaOTfGuSy5N8VZK7JElr7coeowEwjU//j8nXPv6a5AHPWlwWAAAAAAAAAAD2pKqelOTFSe5/emjKWy9P8idJWpLbq+rS1toX5xARAAAAAAAAAABYAktbjFZVR5P8bJJnJLl46+VsPCS13X1PS/Jrm6dfSPJNrbVt5wKwADdeM/na596V3Pb55MjdF5cHAAAAAAAAAICZVNVzkzw3G8/ubX1+r2WHkrTW2lur6oNJHpRkLclTkrx0fmkBAAAAAAAAAICDrOs7wF5U1Tcm+eskVyW5JNO/WTJJ/jjJ3ZNcluRhSf7efucDYAY3fWjytXYq+dQbF5cFAAAAAAAAAICZVNWzkjw/X/k84m1J/izJGzPd832vHjv+zn0LBwAAAAAAAAAALJ2lK0arqiuS/GmSr8tXvlny9Jsmd9RauyXJa8aGvn+/MwIwpba+czFaknzyjxaTBQAAAAAAAACAmVTV1yV5UTae42vZKET7xSR3b609Ickzp1zqDaeXTPKtVTXLy1IBAAAAAAAAAIBDZKmK0apqmI03SF4wNnxNkh9Pcr8kD8p0b5d8/djxlfsWEIDZHP9McurYznM+978WkwUAAAAAAAAAgFm9IMkgG8/tnUhyZWvtRa214zOu8/7N+5PkLtl4cSoAAAAAAAAAAHAOWqpitCTPSnJZNt4smSQvTvLw1trvt9Y+mjMPRu3m7ZtrVJKvrapL9jknwN7d+onkz5+cvO7eydWPTz7ztr4Tzc/xT+0+58QNye03zj8LAAAAAAAAAABTq6ojSb4rG8/itSTPaa29ay9rtdbWk3xwbOiBZ58QAAAAAAAAAABYRstWjPbMnClF+6PW2rM3H4iaSWvtliQfHRt60D5kAzh7J48lf/LY5OOvSY5/Ornhz5K3XZlc/8qktd3vXzbHpihGS5Kbr5tvDgAAAAAAAAAAZvWYJKNsvKD0WJKXnOV6nx47vvQs1wIAAAAAAAAAAJbU0hSjVdUVSe6djYeokuQXznLJj4wd3+8s1wLYH598Q3Ls43cef9cPJ3/01ckN71x8pnk6PmUx2o3XzDcHAAAAAAAAAACzumzzsyV5T2vttrNc76ax47uc5VoAAAAAAAAAAMCSWppitCQP3fxsSa5trf3dWa5349jxBWe5FsD++NirJl87/unk6scl17wg+ezbk7a+uFzzcmzKYrRPvXG+OQAAAAAAAAAAmNXFY8ef2Yf1ugnHAAAAAAAAAADAOWTQd4AZjD9Edd0+rDf+dsrz9mE9gLP3mT/Zfc41z9v4vPQfJt/6umRlbb6Z5un4/2fvvsPsLOv8j7/vaUlIIYUSCL1X6cIKCAKCggIWUHRXEVzLFt1V17KuhdV1159tXde2gmVVRBGkCdKb9F4iUhISkgAJ6ckkmUz5/v44MztnJqefM+fMmbxf13Wu8zz3/b3v5zuUk0nyzOd5sbS6xbdABKQ0sv1IkiRJkiRJkiRJkiSpVNn34I2rwX4zso5X1GA/SZIkSZIkSZIkSZIkSU2omZ6qOD7ruCtvVem2zDpeU4P9JKl67VNKr33xWnjuhyPXSz30lPjx270K1r80sr1IkiRJkiRJkiRJkiSpHK9kHe9Qg/0OyrO3JEmSJEmSJEmSJEmSpM1IMwWjLc063qoG++2WdbysBvtJUvVaxxevyTb3JyPTR730rC+9dvWfR64PSZIkSZIkSZIkSZIklWtu/3sCDk4pTax0o5TSocDWWUMPV9OYJEmSJEmSJEmSJEmSpObVTMFoL/e/J+CQajZKKc0A9s0aeq6a/SSpJiKga2nxumwrHoEVj41MP/XQazCaJEmSJEmSJEmSJElSk7ofWA0E0A6cV8VeH8s6nh8R86tpTJIkSZIkSZIkSZIkSVLzaqZgtLuBvv7jGSmlE6rY6zwyAWsAncCD1TQmSTXRtQx6Ostfd93BmVC1ZtS7ofRag9EkSZIkSZIkSZIkSZJGjYjoBX5P5l68BFyQUtqx3H1SSm8B3kUmYC2AX9WyT0mSJEmSJEmSJEmSJEnNpWmC0SJiBfBA1tCXUkopX30+KaVZwKcZvInqxojoK7xKkupgzTOVr33igtr1UU+960uvfeY7I9eHJEmSJEmSJEmSJEmSKvElMg88DWAqcFtKaf9SF6eUzgUu7l+fgA3At2vfpiRJkiRJkiRJkiRJkqRm0TTBaP2yb3g6CvhBOYtTStsCVwHTyNxEBfDN2rQmSVVa82zla5+8ALpX166XeiknGA1g2YMj04ckSZIkSZIkSZIkSZLKFhF/Br5D5n68AHYFHk4pXZRSOgXYZvialNKOKaXzU0r3ABcB47LWfyEiltTtC5AkSZIkSZIkSZIkSZI06jRVMFpEXAI82n+agPenlO5MKR1baF1KaWJK6UP9aw8mcwNVADdExF0j2bMklWzNM9Wtf+Gy2vRRT+UGoz39nyPThyRJkiRJkiRJkiRJkir1ceBGBsPN2oFzgWuBe/vHAEgpdQLzgP8BXp21BuB3EfH1ejUtSZIkSZIkSZIkSZIkaXRqa3QDFXg7mZulZvSfHw3cllJ6GXguuzCl9H1gL+AvGPpUyQQsAv6qTj1L0qZWPwPP/y9sWALbnZw5z2XaIdC9CtbOLbzffefDLu+C1nG173WklBuMtuj30NcNLe0j048kSZIkSZIkSZIkSZLKEhF9KaUzgO+RCUQbCDpLAyVZYxOyl2bV/Rj40Mh2KkmSJEmSJEmSJEmSJKkZtDS6gXJFxFzgTcDLDA062w44Jqs0AR8AjgfGD6tdCJwWEUvr1rgkZVv2IFz/apj9bzDnR/DHs2DBb3PXznozvOlpeP1dRTYNuOl46Oupdbcjp9xgtO6VsOSOkelFkiRJkiRJkiRJkiRJFYmIDRFxHvAOYDaDoWiblDI0EG0O8O6IeH9ENNFNL5IkSZIkSZIkSZIkSZJGStMFowFExP3AocB1DH2q5MB79s1T2XMJuBF4dUQ8XodWJSm3J78E3atKq528F7S0wdavgTc/W7h22b3w/M+r769eejfkHj/6kvxrFl09Mr1IkiRJkiRJkiRJkiSpKhFxaUS8CjgR+A/gj8ALQCfQDbwEPAp8Fzgd2CciftWgdiVJkiRJkiRJkiRJkiSNQm2NbqBSEbEYOC2ldBjwUTI3Um2Xp3wVcDPwnYi4vU4tSlJu0QeLriq9fvKeWcd7wHFXw+1vzl8//xLY/X2V91cvfd0QvbnnJsyCnc6GF36z6dyq2SPblyRJkiRJkiRJkiRJkqoSEbcCtza6D0mSJEmSJEmSJEmSJEnNp2mD0QZExEPAewBSSrsBOwIzgA5gKbAYmB0RfQ1rUpKydb5Qeu24rWD6IUPHtjkO2iZBz9rcaxbfAhtXQsfUynush971+efaJsC0Q3IHo21cMXI9SZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIapumD0bJFxFxgbqP7kKSCFt9Seu0+H4eW9qFj7ZPh0G/A/R/MvSZ64MXrYJdzKu+xHnoKBKO1jM8f7LZx5cj0I0mSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJElqqDEVjKbRIaXUDhwN7ARsB6wFXgQeiYh5DWxNarzVz8B955dWu+V+sM/Hcs/t8QGYfhj84fDc8y/fNPqD0XoLBKO1TYD2PMFo3QajSZIkSZIkSZIkSZIkjQYppYEnBAZwTkQsqXCfbYFfDewVESfWoj9JkiRJkiRJkiRJkiRJzcdgtDEopfRT4L012m5+ROxS4nW3Bi4A3gFMz1NzN/DNiLisRv1JzeX+D5Ree/j3oLUj//z0w2DPD8Oz3990bu6PoXs1zHoz7PJuaGktv9daWf8yPPc/MOciWPcCzDodDv0m9G3Mv6Z1AnTkCUbbuBIiIKWR6VeSJEmSJEmSJEmSJEmlOp5MKBrA+Cr2Gd+/F1n7SZIkSZIkSZIkSZIkSdoMGYymYtaXUpRSeiPwU2CbIqWvAV6TUvol8MGI6KyuPamJdK+BV+4srXbGq2Hb44rXTTsk/9yC32Zei66CYy5tTJDY2nlww5GwIethwIuuyrwO/Vb+da0ToGNa7rnohZ5OaJ9U01YlSZIkSZIkSZIkSZJUkYRhZpIkSZIkSZIkSZIkSZJqpKXRDZQjpXRASumW/tfNKaViIVy59ti2f+3APnuNRK9jyGXFClJKxwNXMDQULYCHgEuBG4Glw5a9G/hVSqmp/huUqtK1DKKvtNoZR5ZWN2Wf4jULLoOl95S2X6098cWhoWjZHv7H/OvaJkHH1Pzz6xZW1ZYkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkafRptlCqDwLHA8cBGyMiT9pOfhGxGOjO2ueva9jfaPEJYNcKXmcN2yeAHxe6UEppB+ByoCNr+C5g/4g4PCLOjoiTgR2Aj5L5Zz/gzcCXK/j6pObUs6b02hlHlFY3ucRsx+d/Xvq1a6W3KxPKVq62ydDSBu0FgtFuOArCBw1LkiRJkiRJkiRJkiSNEW1Zxz0N60KSJEmSJEmSJEmSJElSwzVbMNoZWcc/q2KfgbUJeEsV+4xKEbE0IuaV+wJOGrbVrRExt8jlLgCmZZ3fDZwUEU8N66krIv4LOHvY+o+llHau4MuUmk93GcFo00sMRuuYVrwGYG7BjMORsfgW6Flb/rqO/kC0ji3z13SvghWPVNaXJEmSJEmSJEmSJEmSRputso47G9aFJEmSJEmSJEmSJEmSpIZrmmC0lNJuwA79p33ANVVsdxzVuxAAACAASURBVDXQ23+8a0ppp2p6GwtSShOAdw4bvqjImj2B92YNbQTOjYgN+dZExBUMDbUbB3yhvG6lJlVqMFr7FJiyV2m1Le1kMh6LKaWmxhZeUdm6gWC01vEwbqv8dcsfrmx/SZIkSZIkSZIkSZIkjTav7X8P4MVGNiJJkiRJkiRJkiRJkiSpsZomGA04oP89gKcjYm2lG/WvfTpr6MBqGhsj3g5smXW+Ari8yJp3Aa1Z55dHxLMlXOurw87PTimNL2Gd1Nx6SgxG2/VcSCV+PKeUCRArpq+rtP1qJfpg4VWVre2YNng86/T8dT0+HFiSJEmSJEmSJEmSJGkUiXKKU0rtKaWdUkrvBz6bNfVEbduSJEmSJEmSJEmSJEmS1EyaKRht56zjOTXYL3uPnWqwX7M7f9j5LyNiQ5E1bxl2/pNSLhQRTwH3ZQ1NBE4uZa3U1LpLCEbb9gQ48PPl7VtKMBrAytnl7VuNZffDhpcrW9s+dfD40K/nr+upOB9TkiRJkiRJkiRJkiRJJUop9eZ7ZZcB8wrV5li7AXge+CEwJWuvCp/GJ0mSJEmSJEmSJEmSJGksaKZgtMlZx6tqsN/qrOMpeas2Ayml3YHXDhu+qMiamcBBWUM9wF1lXPa2YedvLGOt1Jx68gSjTdwVTrgJTn0cXncDjJtR3r6lBqMtvKK8favxSjkfB8Ok1sHjjmmZsLhcejorv4YkSZIkSZIkSZIkSZJKlQq8Sq0r9or+Pf4M/HbkvhRJkiRJkiRJkiRJkiRJo10zBaOtzzquRZBZdtBab96qzcN5DL1J7eGIeLTImgOGnT8eEeWkFN097Hz/MtZKzak7TzDa+G1g5okw9UBoac1dU0hLicFonfPK37tSa57JPb7tiXDmosJrezcMPW+fnLuuZ235fUmSJEmSJEmSJEmSJKkSUbykKgl4EHhTRHSP8LUkSZIkSZIkSZIkSZIkjWJtjW6gDEuzjneuwX47ZR0vq8F+TSml1Aq8d9jwRSUs3W/Y+XNlXnpOkf2ksacnTzBavuCvUrWWGIy2rkggWS2tfjr3+Jb7ZYLgCtnqL4aet07MXddTThajJEmSJEmSJEmSJEmSKnQH+YPRjut/D+B+YEOeuuEC6AJWAk8Bt0bEndU0KUmSJEmSJEmSJEmSJGlsaKZgtBf63xNwYEppRkRUFGiWUpoBvCprqI5pQaPOG4BZWefrgYtLWLfHsPMXclblN3/Y+YyU0rSIWFHmPlLz6M4TjNZWp2C0l66r7jqlWng1LLk999zkvaClyC89s04det4+KXddz9rye5MkSZIkSZIkSZIkSVJZIuL4fHMppT4GQ9PeERHl3kcmSZIkSZIkSZIkSZIkSUM0UzDavWSeENlBJhztb4F/rXCvvwFa+o97gLuq7q55nTfs/LKIWFnCuqnDzpeUc9GIWJtS2gBkJzptCVQVjJZS2gbYusxlu1dzTalk+YLR2qsMRmsZV3rt6mdgyl7VXa+QlbPhjtPzz0/ZO/M+9VWw8vEcBQmmHTp0qHVi7r16OitqUZIkSZIkSZIkSZIkSTWVGAxHkyRJkiRJkiRJkiRJkqSqNE0wWkR0pZTuBE7qH/pESul3EfFEOfuklA4A/onBG7HuiojNMl0npbQ18OZhwxeVuHzSsPP1FbSwnqHBaFWmQwGZ0Lsv1GAfqfZ68gSjtVX5n370ll57zd5wTh+kVN0185l/cf65lnaY8erM8azTcwejvX3Zpr21D/+46deztrIeJUmSJEmSJEmSJEmSVCsXZB2X8kBOSZIkSZIkSZIkSZIkSSqopdENlOnr/e9BJpjrupTSUaUuTim9GrgWmEjmKZXZe26O3gO0Z53PAW4vce3wpKINFVx/eJhanvQjaYzozhOM1l5lMFpfmf/73XQcbFhS3TXzWfFo/rltjoeOLTPH+38GtnvD4FzrFnDsZdAxbdN1bRNz72cwmiRJkiRJkiRJkiRJUkNFxAVZr9WN7keSJEmSJEmSJEmSJElS82uqYLSIuAG4jUyoWQDbA3eklC5KKb06pZSGr0kZR6SULgTuBHYY2A64MyKurU/3o9L7hp3/OCKiwr0qWVfptaTm1DNCwWi9ZQajvXInXH8kdM6v7rrDda+BFwt8pO73ycHjti3g+Gvh1CfhddfDmQtgx7fmXteWJzNx+UNQ8UeWJEmSJEmSJEmSJEmSqpVSaqp7ECVJkiRJkiRJkiRJkiSNfm2NbqAC7wQeBrYjE6zVBpzb/+pMKT0NrOifmw7sBQyk6gwEqiVgAXB2HfseVVJKRwH7Zw31Aj8tY4u1w84nVNDG8DXD96zE94BLy1yzO3BlDa4tFdadJxitrc7BaACd8+COt8AbH67u2tk9XL5t/vnpR8DMk4aOpQRT98+8CmmbmH9u1ZMw9cDS+5QkSZIkSZIkSZIkSVItvZBS+hFwYUQsanQzkiRJkiRJkiRJkiRJkppf0wWjRcSSlNIbgKuAXcgEnUEm7GwScNiwsf9bymAo2nPAGRGxpB49j1LnDzu/LiJeLGP9qAxG6/93Wta/15RS8SKpFnryBKO1NyAYDWDFI/DyLTDzhNzzfb0QPbBxOfT1wLitgIDoha5lmZqWdpiwPdx+OvSuz3+tAz9fWY8A7VPzzy2+zWA0SZKkRupeDa0ToaW10Z1IkiRJkiRJkqTG2B74PPDZlNI1wA8i4oYG9yRJkiRJkiRJkiRJkiSpiTVdMBpARDyZUjoM+C5wNtDCYBjakNKs4wT0Ar8EPhoRq0a80VEqpTQReMew4YvK3Gb4P7+ty+xhEpsGo60sswepuXTnCUZra1AwGsAtJ8Lu74fD/xtaxw2OL7gC7nxLdX1lm7B95Wu3OTb/XE/VeYqSJEmqxJo5cPe7YNkD0DEN9v4oHPA5MHhakiRJkiRJkqTNVRtwBnBGSul54IfATyJiaWPbkiRJkiRJkiRJkiRJktRsWhrdQKUiYkVEvAvYD/gW8ET/VBr2AngM+Dqwd0ScuzmHovU7C8hOYloMXFPmHs8OO9+5zPXD65dHxIoy95CaRwT05AlGa68yGK2vimA0gDkXwsP/OHi+6s+1DUUDmFjuR0SWcTPyz1UTCidJkqTK9HXDzcfDsvuBgI3L4YkvwLPfb3RnkiRJkiRJkiSp/jaSuU9v4CGmCdgN+A9gQUrpFymlYxrVnCRJkiRJkiRJkiRJkqTm07TBaAMi4pmI+HhEHAxsCewJHNX/2gOYEhGHRsQnI2JuI3sdRc4fdv6/EdFT5h5PDTvfo8z1uw07/1OZ66Xm0rseoi/3XFuVwWgd0/LPvelp2Oms4ns8+31Y8Vjm+KmvVdfPcFP2LRxuVoqZJ+ce7+uqbl9JkiSVb8kdsG7hpuPzL65/L5IkSZIkSZIkqdG2Bz4JPMfgg0yj/3gccA5we0rpiZTS36SUqrxRRpIkSZIkSZIkSZIkSdJY1zTBaCmlmSml07Ne04fXRMTaiJgTEff3v+ZGRGcj+h2tUkp7AcOfwHlRBVs9Oez8VSmlLcpYf3SR/aSxpXtN/rn2Ku/3POgrucd3+SuYshcc8xuYelDxfa47GC5OMPfH1fUz3LGXV79H6/jc470bqt9bkiRJ5Xnq67nHX7mrvn1IkiRJkiRJkqSGi4jlEfH1iNgbeD1wOdA7MN3/noD9ge8AL6aUfphSOrT+3UqSJEmSJEmSJEmSJElqBk0TjAa8Ffhd/+uXQFdj22la5w07/2NEPF3uJhHxEvB41lAbmwauFXL8sPPryu1Baio9IxiMtv2p0JZjj13ePXi8199Wd41K7fMx2HKf6vfJG4zmLwWSJEl1t3F5ozuQJEmSJEmSJEmjUETcHBFvB3YEPg8sIBOKBpmQtARMBN4PPJBSui+ldG5KKc+NIZIkSZIkSZIkSZIkSZI2R80UjDaVzI1RCXggIjob3E/TSSm1Au8ZNnxRFVv+btj5+0rsYx/gyKyhTuCGKvqQRr+edfnnWidWt/eE7eCEG2DL/QfPj7wItj9lsGa38+Cgr1R3nXJtc3ztrtkyLvd434ba7C9JkqTC+nrgyS/D9X8By+7PXxdRv54kSZIkSZIkSdKoFBGLI+LLwK7A6cC1ZILRyHpPwBFk7l97MaX0rf77yiRJkiRJkiRJkiRJkiRt5popGG15/3sALzWykSZ2KrBd1vka4NIq9vsl0Jt1/taU0p4lrPvUsPPfRITpRhrbetfnn2ubUP3+Wx0Fpz0Jb18BZy6C3c8bOt/SCvt/Bt4VsM1x1V+vmJmvh5NuhdY8gWblas3zYOBePzokSZLq4t73weOfg2X3Fq4r9H2vJEmSJEmSJEnarETGNRHxJjIhaV8BXiYTigaZewETmYemfgSYnVK6NaV0VkqprSFNS5IkSZIkSZIkSZIkSWq4ZgpGyw5Dm9iwLprb+cPOL4mIzko3i4hngZ9lDXUAP00p5UkwgpTSGcC5WUMbgQsq7UFqGoUCIlprEIw2oGMqpFS4Zud31u56+Rx3VW33yxew1ttV2+tIkiRpU53zYd4vS6vtqfi3mJIkSZIkSZIkaQyLiAUR8S/ATsDZwM3DSlL/67XAJcCClNKXU0o717dTSZIkSZIkSZIkSZIkSY3WTMFoj5B5QiTAXo1spBmllLYFThs2fGENtv4CsCLr/DXATSmlfYZdf1xK6e+BS4et/0ZEzK9BH9Loli8YraUDUp0/ind9D0x9Ven1bWVkUU7aDc5cAK158xErk2+/3g21vY4kSZKGWjsPHvkUg78dL8JgNEmSJEmSJEmSVEBE9EbEbyPi9WTuA/wGsIzMX0YEgwFp2wKfAZ5LKV2eUjqmUT1LkiRJkiRJkiRJkiRJqq+mCUaLiBeAe8nc9LR3SslwtPK8F2jLOn8yIu6vdtOIWAi8FdiYNXw08KeU0gMppV+nlP4ALAD+C2jPqrsG+Fy1PUhNIV8wWuuE+vYB0LYFnPIAHPqfhet2OhuO+gmcMPwBvVm23A+Ovw72/Sc45Bvwxkdgix1q2y9Ay7jc431dtb+WJEmSIAKe+BJcvTu88OvS1xmMJkmSJEmSJEmSSjcF2BLIfmJeZL0AWoEzgNtTStellHavb4uSJEmSJEmSJEmSJEmS6q2teMmo8jXg8qzjMxrYS7N537Dzi2q1cUTcllJ6C/BTYOv+4QQc3v/K5VfAX0dEb636kEa1nlEUjAbQ2gH7fBR2OgtuPBo65w2df+2VsMPpmeOVs/PvEwHbvyHzGkmt43OP924Y2etKqo3u1TD/N7DmGdj6WJh1GqSmyeeVpM3T0nvgic+Xv65nbe17kSRJkiRJkiRJY0ZKaQJwDvBBct9bloDu/tcWDAakJeAU4LGU0jsi4vd1aFeSJEmSJEmSJEmSJElSAzRVIkVEXAH8mMxNTm9KKX03pdRs4W51l1I6Gtgna2gj8ItaXiMirgUOAH4ArChQei/w9oh4V0R01rIHaVTrHWXBaAO22B7e/ByccDPs9xk4+tfwtmWDoWgAbYV6jAJzNWQwmtS8NiyBG4+B+/8anvoa3HE63Pd+iL5GdyZJKmTexZWt6/G3eZIkSZIkSZIkaVMppf1SSv8FvAj8iEwoWhqY7n+9BHwR2BnYHvg7YHb/XPS/tgB+k1LavZ79S5IkSZIkSZIkSZIkSaqfZgwV+yCwBvgo8CHguJTSN4CrImJZQzsbpSLiLgZvIhvJ6ywBPpxS+ihwNJkb1GYCncAi4JGIeH6k+5BGpXzBaAVDx+qkpRVmnpB55VIwvK1OwWgt43KP93XV5/qSKvfsD2HlE0PH5v4E9vgAbHVUY3qSJBX34rWVrTMYTZIkSZIkSSseh9lfga6lMP0QOPCL0Dax0V1JkhogpdQBnEXmPr/XDAz3v0fW+W3A94DfRURv1hbfA76XUnoj8DVgv/7x8cA/kglOkyRJkiRJkiRJkiRJkjTGNFUwWkrplqzTNcBkMjc7Xdg/vxBY0j9XqoiIE2vWpIiIjcCtje5DGlXyBaMVDB0bJUZDj63jc4/3bqhvH5LK98Tnc4+/8FuD0SRpNOusMNPaYDRJo0FfL0QPtOYJ2ZYkSZIkjZzVz8INRw7+Pd7im2HxrXDK/ZBaGtubJKluUkp7knkA6nuB6QPDZMLQov94LfBz4LsR8VSh/SLiupTSrcAfgUP7179+ZLqXJEmSJEmSJEmSJEmS1GhNFYwGHM/gkyJh8CapgadI7tj/CkozcLOVJI2ssRqMFnX6CG3J88PsfV31ub6k2ptzERz69UZ3IUkaLgKe/3nl63sNRpPUQH3d8PAn4PmfZn4Af7tT4KifwLgZje5MkiRJkjYfj35q04cbLX8IXroetn9jY3qSJNVFSqkVeAvwIeB1A8P975F1Phv4PvC/EbG21P0jYkNK6d+BS/uHdqy6aUmSJEmSJEmSJEmSJEmjUrMFo+VisJmk0a+Zg9FaOgpM1ukjuHV87vF1C+tzfUmVib78cx1T69eHJKl0L90A97638vXdJf/8kiTVRgSsnQOrn4FHPwmrZg/OLboa7nwbnHRbw9qTJEmSpM3KxlWw8He55xbfZjCaJI1RKaWdgQ8A5wHbDAyTualk4MGnvcAVwHcj4vYqLvenrOM8T9mTJEmSJEmSJEmSJEmS1OyaMRgtFS+RpFGmp4mD0VKBj91CoUe1lC8YDeCJL8EB/1K4T0mN8dz/5J8zGE2SRqdnvlPd+t7O2vQhSaXo7YL73g/zfpG/ZsntmdC0KXvVry9JkiRJ2lw9/vn8cwsuh0O+Wr9eJEn1NIfMPX0DN24MPGUvAS8B/wP8T0S8VINrrRt2DUmSJEmSJEmSJEmSJEljUFMFo0VES6N7kKSK9DZxMFpBdbrPdNzW+eee+Dxs93rY6qj69CKpNF3L4YEP559v37J+vUiSCls5GxZeARuWwIu/L23N9MNg+UObjvcYjCapjuZcWDgUbcBLNxiMJkmSJEkjbc1z8Ox/Fyio0wOXJEmN0ELmBpJgMCDtDuC7wO8iomcErpkwHE2SJEmSJEmSJEmSJEkas5oqGE2SmtacH+Ueb9uivn3UWtTpHtPph0DbxPxBG8//wmA0abRZeGXh+baJ9elDklTYgivgrrOhr7v0Ncf/AZ79LmAwmqQGm3dxaXWd80a0DUmSJEkSmd+jRYHws8550NsFrePq1pIkqa4SsBb4OfC9iJg9EheJiPlkgtgkSZIkSZIkSZIkSZIkjWHeJCRJI617bf651gn162NE1CkYrXU8bH1s/vlnv1ufPiSV7tnvFZ7v3VCfPiRJ+UUfPPT3ZYSiJTji+7D9KfkDLg1Gk1RPS+8urW79opHtQ5IkSZJU/IEp0Qdrnq1PL5KkensK+HtgVkT87UiFokmSJEmSJEmSJEmSJEnafLQ1ugFJGvNeuTP/XPvk+vUxEmaeVL9rTZhZv2tJqs7838DyBwvXGJwjSY23+mlYt7C02ld9Gfb/DKT+fPW2SbnregqEAktSLXUtK7121VP55/p6YeOKzHH7pEwwtyRJkiSpPJ0LYMXDxetWPwVTDxj5fiRJdRUR+ze6B0mSJEmSJEmSJEmSJEljS0ujG5CkMW/xLfnntn5t/fqoxt4fzTP+kfr10DGj8HznC/XpQ1Jxs79SvMZgNElqvGX3lV67/z8PhqIBtE3MXefnu6R6Wf1M6bUrH4NLp8Kjn4bejZmx3o1w/4fhsulw+daZ16VT4OYTMz/QL0mSJEkq3cIr88+1tMOs02HfT8LkPevXkyRJkiRJkiRJkiRJkiRJkppWW6MbkKQxLfrgqa/nn595Uv16qcbeH4UFv4N1WeFju50LW9bxie7jtio8f/2R8NaX6tOLpPw2rsgETxTTu27ke5EkbaqvN/M53dcN976veH3HdDjhJkhp6LjBaJIabf2i8uq7V8GfvpoJRDvsm/DwP8BzPxha09edCTe//nA480XoWQPLH4It94cJM2vXuyRJkiSNNYvyBKNN2Rve9Of69iJJkiRJkiRJkiRJkiRJkqSm1/TBaCmlg4HTgWOB3YHpwGQgImKTry+lNBWY0n/aFRGL69WrpM3Q0nvzz+3+19DaUb9eqjFpVzj5Hpj/K1jzHGxzHOx89qYBGSMpX/jGgA0vw7qFsMUO9elHUm6rny6tzuAcSaq/zvlw22mwanZp9ft8DPb6W5i026ZzbZNyr/HzXVK9dC2rbN3T34Ldz4e5P8tfs2EJXNKe+T1v9GXG9vk4HPK1+v4+WJIkSZKawcaVsPi23HM7nV3XViRJo1tKaQZwFnAksC2wHlgI3ARcHxEbG9ieJEmSJEmSJEmSJEmSpFGkaYPRUkoHAt8CXpc9XMLS1wG/7T/uTCnNjIh1te5PkoiAP38r//yMI+rXSy1ssT3s+/EGNlDCR/yL18Eefz3yrUjK78U/lFZncI4k1d99Hyg9FG2398Gh38g/ny+0tmdt+X1JUiU2VhiMBnDtASUUReb39QP+/A3Y6kjY6azKrytJkiRJY82qp+CPZ0P05J7f4cz69iNJqpuU0lbAq4CtgS5gLvBkxMCTBobUJuAzwD8DE3Js93fA/JTS30REiX/hLEmSJEmSJEmSJEmSJGksa2l0A5VIKZ0L3Esm5Gx4Uk5ssmCoK4EX+tdNBN5W6/4kiQi473xY8Nv8NT4hvTwTti1e0+fDg6WGWngVPHlBabU9nUODJiRJI6trObx8Y+n1+/5T4fm8wWgGX0qqk64qgtEqtfDK+l9TkiRJkkarZ38Iv98fVj2Ze36LHWHaIfXtSZI04lJKB6eUbgReAm4ELgYuAx4BFqWUPpVSas2qT8DPgC8BW5C5Zy/7fr+B812Aq1NK767H1yFJkiRJkiRJkiRJkiRpdGu6YLSU0tuAixj69MgELAAeZdOgtCH6n0r566yh02vdoySx9B6Y+5P88y3t0LFl/foZC2aelPnnVkjrFvXpRaq13g3w+Bfg5hPg3vfB8oca3VH5etbBHWeUsSCge9WItSNJGmbVnyieI55ly30Lz7cajCapwTYur/815/2y/teUJEmSpNFo/cvwyCco+OdNs06HVPD2DUlSk0kpvRO4HzgBaGUw1GzgtS3wFeCqlNLAfYkfBf6y/zgY/MVjYE1kvVqBH6eU9hvxL0aSJEmSJEmSJEmSJEnSqNZUwWgppe3IPEESBm+S+h6we0TsAry1xK2uHNgSOK5mDUrSgBevKzy/3Rvr08dY0jENdn1P4ZpiwWnSaBQBt54CT/4rLL4V5v4UbjoOlj3Y6M7Kc80+5a/pWlb7PiRJuW14qfTaPT5YvKZ9Uu7xnjWlX0eSquH3kpIkSZLUOAsuh561hWt2KOdhKpKk0S6ldATwc6CNoYFmAwbOE/AG4OMppcnAFxkahvYScA1wMfAHYAVDH4TaDnx7pL4OSZIkSZIkSZIkSZIkSc2hqYLRgM8DW5C5GaoPODsi/i4inu+fL/A44iEeALr7j2eklHatbZuSNnuzv1x4vmNqffoYa474QeH5znl1aUOqqSW3w5I7ho71dMIz/92YfiqxZg6sW1D+OsMsJKl+1j5fvGbA9qcVr2nfMvd47wbo7Sr9WpJUKb+XlCRJkqTGmf2VwvPtU2Abn1EnSWPM94FWhgagrSRzH96D/ccpa+4fgXOAKf3rlwFnRMQOEXF6RPxlRJwKbAN8ENjA4L1/J6SUdq/LVyVJkiRJkiRJkiRJkiRpVGqaYLSUUiuZm6UGbq76akRcVsleEdED/DlraJ/qO5SkLK3jC8+3G4xWkZa2wvOPfw6i1IxMaZR45ju5x5//WX37GNC7AZbeDyufKPz/U/TB8kdg+cPwxBcru1bX0srWSZLKV06A7HYnF68pFPTbvar0a0lSpbpXNua6i65pzHUlSZIkabToXgvrFxWu2f5UaO2oTz+SpBGXUjoSOJTB0LOlwFuBrSLiyIh4NbAV8BZgSX/dtsDH+rfoBk6KiKuH7x0RfRHxIzL3BQ4EqwGcNXJfkSRJkiRJkiRJkiRJkqTRrmmC0YCjyDxBMpG5Wer/VbnfwqzjHavcS5KGaptceL5QkISqs+yBRncglWfB5Y3uYNArd8E1+8INR8K1r4JbT4aNKzatW7coM/+HQ+EPh8G8X1R2vY3LqutXklS6tfNKqzt9DrSOK17XMS3/XK5fOySp1no6i9cc+K+1v+4z36v9npIkSZLUTB75p+I1O5w58n1Ikurpbf3vA/ftnRwRV0QMPmkrMq4ETgF6+of3IhN09ouIeLzQBSLiKuDW/msAHF7D/iVJkiRJkiRJkiRJkiQ1mWYKRtuj/z2AByJidZX7Za+fUuVekjRUX3fh+egpPK/8Dvr3wvNzLqxPH1ItrH6m8Hz0jXwP616EZ38A938YbjwGOucNzr18Ezz6z5uuuee9sGp2afuPm5F/rstgNEmqi1fugpeuK153+H/DpN1K27O9QNDvxpWl7SFJ1ehZV7zmwM/Bdm+o7XVL+TyVJEmSpLGkrxfm/wae+kbm/bkfFK5vaa/978UkSY12aP97AL+JiMfyFfYHoF3CYMAZwGUlXie7bv+yOpQkSZIkSZIkSZIkSZI0pjRTMNrWWccLarBfdtJIWw32k6SM7rXQXSQMYtIeheeV345vLTy//sX69CHVwqJrCs8//ImRvf7yR+C6g+GBD+f/Qaa5P4buNYPnG1fCkltL2//Af4U3PQ3bvDb3fNfS8vqVJJXviQsywZfFpDbY629L37dtIqTW3HMGo0mqh57O0urGbVX7a/s5J0mSJGlz0bsx82dLd70DHvlE5r2Y3c6Dji1HvjdJUj3tlXVc5C+5Abh22PnjJV5nIHAtAQWewCVJkiRJkiRJkiRJkiRprGumYLTIOs7z09dlmZ517E8zSqqdNc8Ur5lx+Mj3MVZN2avwfPTUpw81r+7V8Nhn4eYT4YG/gzXPNa6X9YsKzz/9LVhXpGa46IOnvwPX7AMXp8zr0U/DxlWb1j72z9D1SuH9+jbCpVMyU3VtCgAAIABJREFU+9z3flh4VeYaxUzeCw74Fxg3Azry3LPetaz4PpKkys25CJ74Ymm1O59T3t4pQcfU3HMbV5S3lySVK/qgd11ptTNeXfvrryz15zglSZIkqck9/Z+w7N7S63d8Oxz81ZHrR5LUKNmJl0+XUD+8ptS/GM5+staUEtdIkiRJkiRJkiRJkiRJGoPaGt1AGbJTO7avwX4HZB2byiGpdlYXuQd062Nh6oH16WWsmn44LH8w91xfd317UXPp7YKbjocVj2TOF98CL/wGTr4HJu9e/3561havWXQN7PGBTADNgL5eaMmTE3v/h2DOj4aO/emr8MKlcNpsaB0PfT2ZIImXri+v3zkXZV6lOPCLgz2P2yp3zUa/BZOkvCKGfvaX6/lfZAItS5HaYM8Pln+N9mm5Qy67zR6XNMJ615deu/M5mZDIjcsL142fCa/5BdxyUvE9bzoOzumr7nNakiRJkkar7L+DmPuT0te9bRmMm168TpLUjCZlHed4ItcmVmefRMSGEq+TXdde4prNSkppArAvsA+wNZl/N2uB5cCTwBMRPlFQkiRJkiRJkiRJkiRJza+ZgtFe6H9PwCEppfaIqCj9JqW0FzAra+jxapuTpP+z+s/55/b8Gzjka/XrZazq68o/t2p2/fpQ83nx2sFQtAFdr8BzP4RD/l/9++npLF7zwIcyL4CdzoJlD8KGxTDzRDjyQhi/TWau8wW47dT8/w+snQu/nlCbvov5i1/ALucMno+bkbuua2nucUnanEUfPP65zK9NvRth1pvhsP+E8VuXsUdkQjFLsc3xcNCXYeujy++1Y2ru8Y0Go0kaYaV8Hz1g/Fbwhofg3vfCkjvy1237usz32G94EB77bPEQ4aV3V/bZKUmSJEmj1ZI74eGPwcrHYOrBsNffFf57z2w7vMVQNEka27KfENBbQn0pNaNWSmk34Ajg8P73Q4HJWSXzI2KXOvZzKHAmcALwagqHxnWmlH4NfDsivCdSkiRJkiRJkiRJkiRJTaul0Q2U4R5gPRDABOCcwuUFfSTreHFEPF1NY5I0ROe83OM7vg2O+C60bVHXdsak3gLBaBsWwyv3ZEJFpOGe+2Hu8acaFFhYTqADwAuXQufz0LsOFl0NNx6bCb/p64HrDh4dwYDH/BZ2fffQsbzBaMtGvh9JajZPXACzv5L5jOxZA/Mvhnvek/m8L9XGFbDqydJqT7q18mCf9im5x7tXV7afJJWqZ1159ZN2gZNuhzc8DLu/H1qHBQZ3TIP9Pp05nn4YvO4PcMJNhfec+9PyepAkSZKk0ahnHbx8Czz1TbjptbD8QejrhuUPZAKmS7Xl/iPXoyRJdZBSOj6ldH1KaRkwB7gE+ARwHEND0erZ0/iU0hzgIeBzwNEUDkUDmAicBzycUvqPlFKxekmSJEmSJEmSJEmSJGlUamt0A6WKiK6U0s3Am/qH/i2ldFVErCxnn5TS0cAHyQSsAVxewzYlCdYtyj0+cef69jGW9RUIRgO48TUwZW847vcweff69KTm8NL1je5gqJ611a1f80wmPGfFw5kQnEYbvy1s/4ZNx8dtlbveYDRJGioC5v540/GX/pD5odQZR5S2T9fS2vaVT8u43OPRXZ/rS9p8lRswPGD6IXDkj+CQr8H8X8GyBzPfw+72Ppiy59DamSfChO1h/Yu595pzYWYvSZIkSWpWz/8S7vnL2uw1Ybva7CNJUuMcDJzc6CaGaQN2yzEewNPAC8BSYBJwwLDaVuBTwJ4ppXdERM8I9ypJkiRJkiRJkiRJkiTVVEujGyjTv/W/BzALuCGltE2pi1NKrwOuIvN1J6AX+Hqtm5S0mVtyW+7xCdvXtY0xrbdIMBrA6qfLe5K9FH31v2algQ7ZHv8XWDBKcl6PvBDaJm463jEjd33X0kwIkCQpo3cDrFuYe272v+Uez6VewWitHbnHezfW5/qSNl/Vfh/dMRX2/DAcdREc/JVNQ9EGTD2o8D6r/lRdH5IkSZLUKGueq10oGsDkPL+vkiSp+XUBcxrdBJn7HK8D3glsExH7RsQpEfHuiDgjInYHDgfuGLburcAX69uqJEmSJEmSJEmSJEmSVL2mCkaLiPuAS8iEmgWZm3n+nFL6XEppb3J8PSml1pTSiSmlS4CbgGlZ678dEfPq1b+kzcDCqyF6c89NmFXfXsayUn+44pW7YO28EW1FY0jXsvpfsxbBaLW23SmVrdvmeJj1ptxz4/IEo/V15Q8AkqTNUc/a/HMLryx9n1KD0aYfUfqeubTkCUbrMxhN0gjrrdP30X1FQrl/vz/0ddenF0mSJEmqpQW/q91e42fCtq+r3X6SJDVON/AocCHwQeAwYDLw/gb21AV8F9glIk6NiF9HRM6/CIqIh4ATgF8Nm/qnlNLOI9ynJEmSJEmSJEmSJEmSVFNtjW6gAucDewOHkAk3m0rmqYZfBIb89HVK6SlgV6B9YKh/TQLuBj5dj4YlbSb6euG+8/LPb7F9/XoZ6/b7JNx+Z2m1y+6HSbuMaDtqEp3zC8+vXwTjt65PLwMKBeA0wgFfgAO/AE9/Gx7+x/LWzjot/9ykXfPPvXgN7Pnh8q4lSWNVscDMNXNg8u7F9yk1GG3vj5RWl0++YLQwJEjSCOtZV5/r9G4oXvPUN2B//4hRkiRJ0ii28EqY9yugD3Z8O0w/DB79ZG32Hr8tnHATtDTjrSeSpDJF//tRKaVditTOzD5JKR1L5n69YmYWLxkxPwN+EBGb/KFgSqW0PiI2AHtERMlPG4uI3pTS+cAxwI79wx3A2cDXat+iJEmSJEmSJEmSJEmSNDKa7u7UiFifUjoFuITMEw4HbrpKwDgGg88SmQC1/1uaNXcDcHZE9Narb0mbgVf+WDiEYoLBaDWz7QkweU9Y82zx2rveATufPfI9aXRb/xJce1DhmnULYdrB9elnQLEAnHra6+/hVV/MHO/6VzD7y9C1rLS1HdNh53fmn5+wHUw9EFY+sencikfLblWSxqxivy4svBL2/VjxfbpeKV4zYRbscGZpfeXT0p57vHdj7nFJqpXeOgWjbXcyLL27cM2T/wq7vAsm7lSfniRJkiSpHM/+EB740OD5C5fWbu8dzoRjL4fGhcVIkuovAb+qYM1tZdQP3N9XVxGxot7XLCYieoCSQ9Gy1q1PKf0E+HzW8OswGE2SJEmSJEmSJEmSJElNpKXRDVQiIpYCrwc+BSxl8GaoyHrPftFfswr4LHBaRKyuW8OSxr71L8PNxxeu6ZhWl1Y2C21bwIm3wc7nlFa/fvGItqMmMPen0L2qcM3tb4Ybj4XlD9elJQB61tbvWvlM2RsOvAAO/ebg2LgZ8Pp7YNbpxddv90Z4/Z2wxQ6F62YcmXt848rSe5Wksa7YrwsLryhhj3Xw6Kfzz0+YBTu+DU6+B9onldffcC0ducf7DEaTNMJ6N9TnOju9o3hN73p4+r9GvhdJkiRpLFnxGFx/FFw6DW54DSy+tdEdjU0RMPvfRmbvg/4djvmtoWiStPnJfmBpsVf2vXulrvEXltp5ZNi5T3OUJEmSJEmSJEmSJElSU2lrdAOViogAvpZS+g5wDpmgtGPI3MSTHfi2ArgbuB74eUQUSUWRpDJFH9xyYvG61i1GvpfNyRbbw9EXwy7vygRaFTL/Ytj7H/zhjM3ZsgdKq3vlj3DzCXDqEzBxx5HtKSITXjNS9vs0HPzvla+fsiccdyVcsTOse2HT+SMvhN3PL32/9im5x7vXVNafJI1FPZ2F51+5EzYsgfHb5J5fOxduOy3/+l3eDa/5ReX9DWcwmqRG6e2qz3W23Ad2OzcTtFzIgsvgkK/5e05JkiSpFOsWwQ1/kQkZBlh6T+bveU59Eibt0tDWxpw1z8K6BbXf99BvwT7/UPt9JUnNIoqX1GSNqtMz7DzPX+pIkiRJkiRJkiRJkiRJo1PTBqMNiIgNwE/6X6SUEjCNzM08yyKiu4HtSdocLLkdVv2peF3r+JHvZXM08ySYMAvWL8pf8/DHYMHlcNzV0DG1fr1p9Fj4u9Jru1dl6vf+yMj1A/0/9JXn/u9tjoONK2HlY5XtvddHqgtFy7bjW+Dpbw8da2mHHc4sb5+2ybnHe1ZX1pckjUU9a4vXXL4tnLkQtpg1ONa7Ae7+K1jw28Jrpx9eXX/DGYwmqVH66hSMBnDkRZnvz1++GeblCZfsnAcrH4dpB9WvL0mSJKlZzfvlYCjagJ5OmP3lzAM5VDul/FlTJWYcMTL7SpJGsxcw3KzZ7DHs/KWGdCFJkiRJkiRJkiRJkiRVaNQHo6WUDgJOBvYDtuofXgo8BdwYEY9k10dEAMvr2qSk8kXAK3dlwqzWLcw8HX59/+uw78D0QxrdYemWPVhaXUoj28fmqnU8HPkj+OPZhX/A45U/wqOfhlf/oPieq/4EL/4h84M5Wx8D27zWf3/Nrn0KdJcRwFVK2GG1etblnzvsv2DKPnDZ9MwPhJVr/09X3tcme30WltwJKx7OnKdWOOL7/H/27js8ivNe+/h3dlWQRG+miI7pxQ2DjSvYuANuiUuKE6cnTk+cN8mJneqT3k5OihM7iePesA1umGLjgjumY3rvIARqSLvz/jHmSEgzszO7M7O70v25Ll1in/pDoN3ZlZ57Ke7mb53Cjvbt9Yczq09EpDXxep//1pfgnCahn8t/nDoUDaB8enp1OYkV2rcnlU8uIiFLRBiMZsRg8E3Wx6m/h8d6gploOW7r4wpGExERERHx4uAS+/b1/4AJf4VYPNp6WjO75y6ZKu4O3SYFv66IiOQ00zQHZrsG8e2aZrffyEoVIiIiIiIiIiIiIiIiIiIiIiJpytlgNMMwTgF+C5zlMuwOwzBeAb5umqbHZCIRyRkLprV8R3iAI+vzKxhtybezXYH0uQQuXwXPnAR1+53HbboXJvyvdbDdyYZ/w+s3g9nQ2Db0M1YQlNs8yW0lff0Fo6UTRuZX0iXMIV4M8SIovwo23eN/7Xa90q+rxVo9YNorsPtFqNkGPc+FDs3fXNqDwg727QpGExFptPNZb+O2zbKChUv7WuFAa/7obV7ZoPRrsxMrsm9PHg12HxGR5tyupcNU3NW6Ht49v2XfnoWRlyMiIiIikpc23+/cd3gtdBoRXS2tXRg/6xjxDYXXiYiI5DjDMCYAk5s1P243VkREREREREREREREREREREQkV+VkMJphGDOA+4B2gNGkyzw2pEnbWcBLhmHcYJrmrIhKFJFMGYYVVHRkXcu+6u3R15Ou5T/NdgVyTGm5FV728oecxzQcgaot0H6gfX/tPlj88Zbt6/4GA26AE84NpNRImSZsvAe2PwmFHWHQR+GE87NdVfSaBt150XAknDqacg1Ga2d9nvAnOLofdjztb23DSD3Gj3g76HNRZmsUOASjNSgYTUTk/2z8t/exs8qtYDI/IWRBPz4oGE1EsiWRpWA0gL6X2wejVa6KvhYRERERkXxTtcW9v3aXgtGCFPTPOnqeByO+HuyaIiIiEijDMAqBvzZrXmSa5hsB79MT6OFz2pAgaxARERERERERERERERERERGR1i3ngtEMwxgB3I8VigbHh6HZhaTxwdj7DMM41TRNnUIUyRelDsFoNXkSjLbhX7D0+9muQprqOz31mMrVzsFoj7n8zubO5/IzGO2978HKOxpvb/w3TH4Q+l+dvZqyoaHK5/iQg9FM0z3MIVZsfS7sAOfNgdq9VpDavtfh5Wvc1x5wQ3B1BqnQIRitXsFoIiIAVO/wP8dPAFn5TP/rp6JgNBHJFreQ4WM6DAtn787j7Ntr90DdASjuGs6+IiIiIiL5rmYnzD3bfUzdvmhqaSv8/mzETdcJcMGC4NYTERGRsPwSOLnJ7XrgyyHs8wXgthDWFREREREREREREREREREREREBIJbtAmz8BSvozPzgwwAagNeAh4CHP/hzPY1BaeYHc5q/26GI5LLScvv26jwIRtu9EBbflO0qpLl4MczY7D7m0Ar79n0p3hy3bm96NWXT0QpY/Zvj28wErPhJdurJpoZqf+N3vQCvfgzqK4OtY92dMGc0PNIVXrzceVy8+Pjb7XpY95ll/VPv0fuizGoMi1MwWrIOEgrQERGheku46/f/UPBrxgrt25P1we8lItKUW8jwMeN/Fs7eHUc49x1aGc6eIiIiIiKtwfq7Ur/+4fQzHElPUG8CU9QVLlgYzFoiIiISGsMwPgl8pVnz7aZpLslGPSIiIiIiIiIiIiIiIiIiIiIimcipYDTDMMYA59AYiAbwa6CXaZqTTdO8zjTND5umORnohfUOh01NNgxjXHQVi0hGSvrat9fkeDDaoVUw7/xsVyFOyvpDpzHO/bvm2bdvech93aMV6deULTuft0Knmju4BOoPR19PNiWq/M/ZdA8svCy4Gjb+B974jBWWUF8BRzY4j40V27e7hTAAdBwJA65Lv8YwFXZ07tu7KLo6RERyVc2OcNfvd1Xwa8aK7NuTCrwUkZDZPc9pqsdk6HNJOHuX9IECh9Dfnc+Fs6eIiIiISGtw4O3UY5bdDqYZeiltRn1AwWgXvgIFpcGsJSIiIqEwDONirDekbWo2cEcWyhERERERERERERERERERERERyVhOBaMBV3/w2cAKR/uyaZrfMk3zYPOBpmlWmKZ5K/DFJuMBQjjtLSKhKHUIRqvaHG0dfphJmDMq21VIKm7BH7vnQ0OzkCzThG2z3Nesz8NgtEPLnfvCDl/JJcl66yMde1+GtX8Npo71//A+1ikYrdAhgOGYS96BuENITbY5hUcArP97dHWIiOSq6hDDgftOh7jDY0smFIwmItniFox28q/gvGfCO7RvGND9DPu+VM8rRURERETasm2Pexu358Vw62grTBPe+Wrm63QeC51SvGmLiIiIZJVhGJOBR4HCJs0vAx82zdBSZ/8XGOPzY0ZItYiIiIiIiIiIiIiIiIiIiIhIK5RrwWgTPvhsAotN0/xTqgmmaf4FeAUrHA3g9JBqE5Gglfa3b6/aBDW7Ii3Fs5euzHYF4sXwr4Dh8BCXrINdLxzfdmgFHFnvvubRFhmduc/t91sPvBNdHdnWPAjPrzc/B/WHM69jz0Jv44wCiMWd+/tcZt9+0n9DvJ3vsiJT0su5b9/i6OoQEclVNSEGo/WaGs66TsFoiZpw9hMROSbhEMA4+CYY+Y3UgcKZKnc4v3doORxeF+7eIiIiIiL5ql1Pb+O2PRFuHW3FlocyXyNeAhP+kvk6IiIiEhrDME4F5gBN3yniDeAy0zSrw9rXNM09pmmu8PMBpPjFHBERERERERERERERERERERGRRrkWjDayyZ//5WPev5v8WW9XLJIvuk1w7tu7KLo6vHrzi7D9yWxXIV4Ud4VrXYKs9r12/O09L6Ve88DbkExkVlfUjh5w7nv1BtjxXHS1ZFNDAL/rOzvDyws/b8IcL3bvH/zxlm1GHAbc4K+mqBWUOfdVbYL1d0dWiohITqreYd/u9dCwEyMO/T+U2RpOYoX27TU7INkQzp4iImAFXtuJpbiWDkr5dOc+hTiIiIiIiNjrPM7buM0P+HtNXextfTz1mME3WW825GT6BuhxZmAliYiISLAMwxgHPA90atL8LnCRaZqV2alKRERERERERERERERERERERCQYuRaM1rnJn9/xMe/YWKPZGiKSy0r7Qvsh9n07no62llTW/A+s/d/U44bdYt9+yu+CrUdSKyiFftfY99XtP/521WZva27PswPuO59173/jM5CojaaWbGqoynyNmh1w8L305/v5OqcKc+h3DYy9HYwC63ZhJzj7USjrl3Z5kRnzX859b34e6l0CDUVEWru6vfbtncamv2ZRFzh3NpT0Sn8NN7Ei575ts8LZU0TapqrN8M434MUZsPIXUH/IflxUwWil5dDVIez93W9GU4OIiIiISL4xPb75TO0uOLQi3Fragj0LUo8Zcxuc+AX7vs7jw3tNSURERDJmGMYo4AWga5Pm5cA00zQrslOViIiIiIiIiIiIiIiIiIiIiEhwci0Yrem7F+53HNXSwSZ/7hBQLSIShZ7n2rdvvAcOrYq2FidbHoa3HQLPmjrxC9ZHQdnx7UVdod9V4dQm7oo62bc3D8qq2eFtvc0PZFZPlPYthiMb3MdUb4Fd86KpJ5sS1cGss+k/6c91Cm6wE08R5mAYMPY2uLYCLl0GV++D8hnp1xal0v7Ofck62PZkdLWIiOSaun327Z1G+V9r7A9hxma4ajf0uTizuty4BqPpPl1EAnJ4PTw7AVb/BrY/CUtuhZ3P2Y9NdS0dpH4znfvW/CG6OkRERERE8oXXYDSwrv0lM7V73Pv7XAbtB0LHYXDClJb9J342lLJEREQkc4ZhDAfmAT2aNK8GLjBN0+EHTiIiIiIiIiIiIiIiIiIiIiIi+SXXgtGa1uPjN6OPG5trfycRcdN7mn27mYBN90Vbi51EHbz8IW9jT/kNdBoBU16AE6ZCcTfofRFMXQBl/cKtU+zFy+zbN98PidrG2zuf9bbeloczrykqS2/zNm777HDryAWJmmDWWfUreOFcOPC2/7l+gtFi7byNKyiDzmMgVuC/nmwp7Ojev2NONHWIiOQip2C0zmOg/VB/a5WWQ1l/iBVmXpcbt2C0TfeEu7eItB1rfg91e72NjUUYjFbuEoy29DYwzehqERERERHJB76C0drAzy7CVuDyfnKFneCsJj/zOucJGHIzlPSBzmPhtD/BiZ8Pv0YRERHxzTCMocB8oFeT5rXAFNM0d2enKhERERERERERERERERERERGR4OVRkoaItErlM6G4h/0h5/1vRF9Pc2/dknqMUQDnzIL4Bwewu0+CqS+EW5d4U+AQjAbw2sfhrAehdp9zEImdZEPuB1GZJux/3dvYw++HW0suaBqC19zMrTDLR3Dhnpfg2dOsA0MdhkGn0RCLp55X6zHIARrvS1qjQpeDWCIibZ3T9UhxDxj3Q3j1I4DHkB23a6AguQWjiYgE5f0/eh8b5bV0x5FQNhCqNrXsq6+Amh1Q2je6ekREREREcl2ywfvY/W+AmQRD74mWNrfA/JlboaCk8XZhe5j49/BrEhERkYwYhjEIKxStT5PmDVihaDuzU5WIiIiIiIiIiIiIiIiIiIiISDj0m8Qikl3xYuh7mX1f8mi0tTR39CCsv9N9TL+r4eI3nf8Okl1uoSBbH4GanbD2T/7WPLIhs5qiULsb6g95G7t7PiQT4daTbYka+/ZYMZSWQ8fh/td8+Vp4ZjzMKoe9r7mP3XgPvHC297VjrTgYrUDBaCIithK10HDEvq+4Gwy8AabMhUEfs9pSHQqOLBjN5YCtiEgQ/AQnQLTX0oZhvSbgpC2EUIuIiIiI+GH6+FmEmYBVvwqvltbONKG+0r7vzPv1JiYiIiJ5yDCM/lihaE3f+W0zVijatuxUJSIiIiIiIiIiIiIiIiIiIiISHgWjiUj2lQ106EhGWUVL2+e490/6F5z9CHQ5KZp6xD+3UBAzCQfehTW/97dm7Z7MaopC5Sp/49f+OZw6ckWi1r493s76PPFuiJc2tvsJ76rdBS9eDg0O4WsVy+C1j3lfD6zAyNYq5WErI5IyRERyTt1+577i7tbnXlPhjH/BDSZcn4Bzn3KeU9A+2PqcOIWPiogEpWKpv/FRX0uP+5Fz37wpsPVxSGQ59D0f1eyG9f+A9XfB6t/Cxnvh8LpsVyUiIiIimfITjAaw5FZdB4IVcLblYVh6O7z9det5Rv1h9znJOjAdgqbL+tm3i4iISM4yDKMPMA8Y2KR5O1Yo2uasFCUiIiIiIiIiIiIiIiIiIiIiErKCbBdgw/zg8yTDMAZ6nNOr6Q3DMM7GR7KGaZoveR0rImFwyGjck+VvzT0LnfsKOsBgn2FHEj23YDSAd74KRw/6W7PhSPr1RMXvQaGtD8PwL4VTSy5wCm05FozW4wyYsQm2zYJYEfS+CJ6bCNVbvK1/9ADsfAb6XdWyb8vD/uuNteFgtM33weR7o6lFRCSX1O1z7jsWjNaCS855ZI8lLk+7DeWwi0iGDq2GZ0/1Nyfqa+mCUuh2Oux/w75/0VXQ9TSYMheKOkdbW77a+yosuKjlc+94iRUQ2v/a7NQlIiIiIpnzG4wGsOleGHtb8LXki6rNMG8qHFnf2Lbmt9BpFJw7G9oPcpjn8vONwo7B1igiIiK+GIZhNms63zTNhS7je2KFog1t0rzzg3kbgq9QRERERERERERERERERERERCQ35GIwGlinq+/PYO5CH+NNcvfrINI2xOLOfQffgy7jo6vlGNOE9f9w7h/00ehqkfSlCkY7vNb/mg2H06slSvWV/sZnO4QwbIla+/Z4SeOf2/WAoZ9uvN3zHNj0H+97LLoaupwEB5ekV+NxdbXLfI1cVZAiGA2gaiuU9Qu/FhGRXNJQ5dyXzmFVw3NOeGa6T3LuM5NQ+T50HBZNLdK6HdlgPT/b/6Z1kL5sIAy4DnpfmO3KJExL/8v/nE6jg68jla6nOgejARx4Cx7pAsNugZHfhLL+0dWWj16/2T6QPFEDb34e+s6AeFFj+5GNsOrXUF8BJ5wPg25yf50pSGYS1t0Ju+dDSW8YcjN0HhvN3iIiIiL5KJ1gtD2Lgq8jnyz57vGhaMccWgnLfwKTHH6WufLnzmt6eZ1eRESkjTIMoxz73yPs1ex2gcsbvh4xTdPlHXF81dMZmAuMaNJcBdwM1Pt401kATNPcFERdIiIiIiIiIiIiIiIiIiIiIiJRyNVAMBMr4MzvnGMiOgUuIoFINjj3bX0sO8FoS2517x/2xWjqkMykCkZz0uVkqNsP1Vta9tXnQTBasi7bFeQWx2A0lwCy4V/2F4wGwYSiAcdf0rQyXsJ9nugP19VDLFcvU0VEQuD0WAUQK7Zvb9fDeU5h58zq8aowxUHauWfC1IXQeUwk5UgrVbkWXjgHancd377hbph0Fwy+KStlSci9gnImAAAgAElEQVQStbDtcX9zOo1yD2wMy5BPwbq/pQ55eP+PVsDfpe9Bh6HR1JZvqrdD5Wrn/rr9sPdl6DXFun1oFTxzcuNz4E33wu6FcOY9oZcKwOJPwMZ/N95efxdMeQG6nx7N/iIiIiL5xumauXwmbJtl37d7HtQfgcL24dWVy3Y+49y3/Unnvg13OfelE8IvIiLSdrwMDPAwri+w0aHvX8BNAdVzEjCuWVsZ8HSa6+l3KkVEREREREREREREREREREQkb8SyXYAL0+dHOnNFJBeYSee+Qyuiq+OYimWw6pfO/ePvsA5cS+5LNxit/4ecgz7yIRjNLVzFSUN18HXkikSNfXu8xHlOtwkwZV449aRS2Ck7+0Yh7hDu09zeV8KtQ0Qk17iFeBoOZ1S6nALterZsL+0PHYcHV1sqZ97n3Fe3H9b8IbpapHVa+78tQ9EAMGHpDyCZIoxK/Nn7Ksy7AGb1h/kXQuX72amjck3qoLFjjALofy1MXZCdcN2up8CEv3gbm6iGp06E+wvgiYHw7rchWR9qeXmlelvqMUfWwXvfh/sMmDOqZTD4pv9YffOmBBhebePQquND0QAaDru/niQiIiLS1jld4/e+GPpd4zxv0VXh1JPrErVw9KBzf90+++fEqZ4npwq6FxERERERERERERERERERERERERERyQFZOC3oagsKLBNpe0r7OPfV7IyuDgDThKebv9lqM4M/EU0tEoA08z+HfQm2zbLvaziSfjlRSdSlHtNc3T4o6B98LbnALWzGTa8pcIMJtfvgsR7B1+WkqHN0e2VD/w/Blofcx2y6B044N5p6RERyQdLhsSrm8lgVi8OYH8BbXzq+fewPnMPUwlDUxb1//Z0w8W/R1CKtk1tgavVWOLIeOg6Lrp7WrGoLLLio8TlP9VZ49jSYvh7aRXg9DLBvceoxZz0C/a+2nsdHeb9nZ+inoL4C3v2Wt/FmAqo2WyFa1Vth8v3h1pcv3ILzj3njs97W2r0A5p4Fl62Csn6Z1WVn07327VsfgcRRiBcFv6eISNSObICa3VDSC8oGZv/xVkTyX7LBvt2Iw+jvWtdSdnbNtUJvu5wUXm25qG5/6jENlS1fm6na5D4nVph2SSIiIiIiIiIiIiIiIiIiIiIiIiIiIlHJqWA00zQHZrsGEcmCXhc490UdQrVrrnt/9zOg5IRoapHMJev9zzlhKhS2h8IO9v0NhzOrKQrJNIPRylprMFqNfXu8xNv8dt2hx2T3UI4gnTA1mn2yZeS3Ugejrf8HjL8j+gAOEZFsSTfEc9gXobQfbHnECkrrdy30vTT4+twUlEa7n7Q9Ttdyx1SuVjBaUJb/pOVz8IbDsOk/MOJr0dRgJq1wsdW/cR939uPQb6b151wJaRn5Teg8HhZM8zdv8wNQ0AFO/wsYaYZ7txZBvwbUUAUb7oKxtwW7LsDWR537HiqF0++EIQrWF5E8VbML5p4NR9Y1tpUNhClzocPQrJUlIq2AmbBvjxVAl/Huc9f+xbpmbku8BKMdPdQyGK1ytfP4XhdmVpOIiEgrF8XvLpqm6fkFTdM0FwI58gKoiIiIiIiIiIiIiIiIiIiIiEi02vhpOxHJCe0HQ8eR9n01O6KtZeN/3PtP+V00dUgwup6K798R7THZ+lzgEIxWnwfBaIk0gtG2zwHTDL6WXJBu2ExTp/wWirsHUw9AcTe45gAM/Ojx7f2vhf7XBLdPLup2Goz+bupxb381/FpERHJFJo9V5dPhzH/DpLujD0UDiHsIRks2hF+HtF7Jo+79bge+xbtkAtbfad934O3o6lh3Z+pQtFP/0BiKlmt6XwhXrEs9rrn1d8KSW4OvJ980VAW/pluAWSbcXhswE/D6J+HlD8O2J9N7ji4ikk2vXHd8KBpA1SZ46kRYcAm8ciOs+Bls+CfU7MxGhSKSr5yC0Yy4FRJ8+l+d5+5/M5yaclndvtRj6g+1bKva7Dy+rYXLiYiIiIiIiIiIiIiIiIiIiIiIiIhI3lIwmojkhtP+YN9ety+6A6TV22DTPc79Az8C3U+PphYJRrvu0OMsf3MG3mh9LszjYLSkQ7iKm2U/gLe+CGYy+HqyzTFspsT7Gt0mwKXLrNCZCX/OvKaZ26GoC5zxT5i6EE7+NUydD2feB7HCzNfPdeN/Ct0muY/Z8gDU7o2mHhGRbAvisSpbCjwEox09GH4d0nolUzwfVDBaMA6/79y36d7o6th8n3t//2th+C3R1JKuDkPgqjSuY1f9yvpoy8IIRqtYBttnB7+ul1q3PAQvzYC5k6HuQPA1iIiEoe4A7HnRuX/ns9bj9Xvfg8WfgNmjYLfLeBGRptyC0QCGfsZ57uE1rffNXZx4CUY7WtGyrWa7/djOY603qxIREREREREREREREREREREREREREckDCkYTkdxQ0se5r3ZXNDW8+QX3/vKZ0dQhwZr8AJQN8Db2jHug4zDrzwXt7cdsugcWXg6vfwpeuQGenQD3GfDC+fD+nyDZEEzdmUg3THDtn2H3wkBLyQmJGvv2eDt/65T0gsE3wYmfg37XpF/PkE9DvNj6sxGDE86FkV+HE86HWEH66+abY99rTsxkOAEGIiK5yDEYzedjVTbEPQSjeTnIK+IkedS9f8PdUBPRc8bWrGaHc19pv+jq2POSe/+A66OpI1PtusM1FVA+w9+8d78Fc8bAyl9Ag8PzmNas4Ug46y6+Kfivp59A8gNvw4qfBbu/iEhYanb6G19fAW98GpIOYUciIk2lCkYDOOsR+zENVdYbHLUlXl5Pafoz1K2zYPEnna89O44Kpi4REREREREREREREREREREREREREZEIKBhNRHKDWzBaze5oajjwlnNfURf/B5olN5T2gekbU4+7fDUM+kjj7cIOzmN3zIH1/4DN9zf+v9mzEN76Eiy6Ckwzo5IzlkwzGA1g+1PB1ZErwgibOfHzgOF/nlEAI7+Z/r6tSddTU4/Z92r4dYiI5AKncJV8CEYr8BCMtuOZ8OuQ1itVMBrA02Ogcm34tbRmRw8499UfiqaGnc+nHtNpdPh1BKWoE5z9OMzcBuc/B+c/D6XlqecdWgFLboV550PCw///1qShKpx16/bD7nnBrddQ7fw808mme6zwZxGRXGfW+59zeC3sfz34WkSk9fESjNZrqvP8vYuCrSfXHVqeeswr11lvlrPiDlh0pRUe7qS0b3C1iYiIiIiIiIiIiIiIiIiIiIiIiIiIhEzBaCKSGwo7OvclQjoY21QyAbUuAWyXLoVYQfh1SDgMA3qe69zfbSJ0HH58W3HP9Pba/hTsmpve3KA4HdAe8fXUc9f8LthacsGWh+zb4yXpr9lrCpz9KLQfat8/6ONw9mPQ5SQwYtbBri6nwJQXoOOw9PdtTfpdlXpM5Zrw6xARyQVhhHhGpahb6jFLvx9+HdJ6eQmGqtsPq38Tfi2tWd1+5776Sqg/En4Ni1JcH5b0hvZDwq8jSIZhhQ/0nga9L4STfu597v7XYdkPGm8nG2D17+Cp4fDkEFj6g/CCxLIlzL9PkCGddfv8z6ndAweXBFeDiEhYkmkEowHMnQwPlsAzJ8OmB4KtSaQ1OloBi2+Gx8vhuYmw8V5/87c8as17sBQeaAcPd4b5F0KFhyCtbPISjFbUGcoG2Y979Uao3Rt8Xblqx7Pexr3xWXjvu6nHlSgYTURERERERERERERERERERERERERE8odSfkQkNxgxK6QoUdOyr6E6/P3rK8BM2vdN/DuUlodfg4Rr1Hdg36stD/cZMTjtjy3Hl2ZwQOSdr8FlK9Kfn6lEnX17rBj6ToftT7rPP7weOgQcONBQBZWrrQNOnUZDrDD1HNOEqs0QK4K6Pdbfy4hDxxFQ2N7bvrsXgNlg31fgcQ0n/a60Pkzzg3o/uA8xYlYAwrExyQbAgFjcdpk2y8v9auXq8OsQEckFTsFosTwIRvPy+FbYIbz9kwk4sg7KBkK8OLx98k3VFuvrXtQl25VkLulwbdvcTo8HxsWeWzAaWEFQXq/B01H5fupQrGG35P81df9rYcUdcMhjYMXKn8Pwr0BBB1h8E2x9tLFv+Y+tsK3T/xJKqVnREGIAX5ChZOkEowEcWgVdTwmuDhGRMCQ9hNI6SdRa97evXm+FPPebGVxdIq2JacLCS2Hfa9btmu3w2kes174HXpd6/rYn4eVrjm9L1sGuF6yQwivWQrs03/glbE6v1RvNrvP7Xgbv/4/92HnnwSVL8/+5QSrJBqja6G3sxn95G6efdYqIiIiIiIiIiIiIiIiIiIiIiIiISB6JZbsAEZH/U1Bq357qcHQQ3A619poW/v4Svj4Xw9QFMOTmxrZBH4dLlkC3CS3Hl2QQjHZoJay/O/35mXIKj4i38xZMsum+4GoxTVj2I3i4Ezx7GjxzMjzSBTakOKhzeD08PQ6eHASz+lrznp8Ez02ARzrBe99zDjM8JlEL86Y493ce5//vY8cwrI9Y3Po4Fop2TKyg9R/SStcpv3Pvr9sLdQeiqUVEJJucgtHieRCMBlbAsZuwgo63z4bHesDsEfBIV1j163D2ySdVm+Hpk+CJAfBIN1h0DTTYhE/nC9P0Hs5RtSm//67ZlioYLRFyYPnO5937O46EEd8It4YoxArhotdhzH95n/N4H3i4w/GhaMes+ysc2RBcfdkW5us/h9cEt1aq7xcnr30EEhkEDomIRKH5m0qka9GVUB9i4KVIPju0vDEUram1/5t67rYn4KUZzv31lbDG5o1gcoWZsG83mr2XW7lLsOKhlbBjTnA15SqnELlMdDst+DVFRERERERERERERERERERERERERERCUpB6iIhIROKlgM3h0rAPYIN7MFpxt/D3l2j0mGx9TPx76rGl5Znt9fonYdfz0OFEqN4KBe1h0Meg62ktg7OClnAKRiuGAg/BaLueh7E+Durbqa+0wg1W/Qr2v358X0MVLL4JijpDuc0hLtOEl2ZaB8TsmElY8TOoWA5nP2YfOnb0oBXE5sQogD6XeP7rSEi8fC9UroEeZ4Rfi4hINuV7MNqoW2HZ7c79DVXW43uQ10BHNlrXC8cOVSeq4d1vQodhUH5FcPvkE9OEhZc3uYYyrSCldj1hgocD9rnI70Hwg0t03ZCuoymCnsIKrDJN2D0flnzbfdzZj0G8KJwaolZQCuN+BKO+Aw+VZb7egovh7Eeh89jM18q2hMP/s4Efsf4Pbnu8Zd+wL0O3063nmG73GXX7Ye9rwdxHuL2GlMrKn2f+fFtEJExuobSxQn/BaQ93gEl3Q68LMn+tVaQ12XiPffveRdbnhmrYvQCqt4ERs15rNxNQtQXW/in1+it+Ah2GQlEX6D0tt15bcAxGa/Yaf89zoLAz1FfYj3/rFqjZCV1OtsK+jFb4XnDJgIPROo2B9oODXVNERERERERERERERERERERERERERCRErfC3hEUkbxWU2rc3RBCMtvcV+/Z4iXNd0rqV9Ml8jc0PwPIfw4Z/wvv/A8+dDm98FpIOh3+CknQIV4kVQ2HH1PP3vgzb56S//+F18PRJ8PK1LUPRmnppJmx9rGX7wXecQ9Ga2v4kzCq3Drg3VbEMnhoORzY4z+15thXMJtnldBCuqcNrwq9DRCTb8j0YbeCNKQaYzn/HdG191P5xZJvNtUVbcXit/TXUlkes8Kl85BT462TumVC1OZxaWrtUQU9hPC9vqIYXr4D5F0Cixnnc+J9BpxHB759tBaXBBLEfXgtPj4cVd2S+VrY5BfAVlMGQT7ZsjxXDsC/CoBvh0qVwyu/gpP92Xn/umbD2r5nXmUkw2sZ/Zb6/iEiYnILP4iVw2Uo49Q/+1lv8CZg9ErY/nXltIq2F27XEkU3w/CR48XJ483PwxmesEPAlt3oLRTtm8U3w0gzrZxJHNmVYcICcXg9u/uYnsUIY+hnndaq3WF+f5yda9zNBh4jlAr9B4amM+Fqw64mIiIiIiIiIiIiIiIiIiIiIiIiIiIRMwWgikjviDgFkiQiC0Zbcat9e3D38vSU3xYuCOaTe3Po7Yeczwa/blFOARLwYDI8P/S9/CKq2+tt36yxYfDM8dSJUbfQ2Z9HVUF95fNuOZ73vWbsLFl5+fNsbn4O6ve7zJj/ofQ8Jj5cDa5Wrw69DRCTbnEJN8yUYrcNQOOMe9zFOYTfpevdb9u0b/hnsPvlky8P27XV7gw+mi0ryqP85Cy4Jvo624Mh69/5558GCi+HQysz2aaiGlb+E+wx4qAx2eAhkHvGNzPbMZT3OCWghE5Z+Hyo8BEznMseg0BLocymMvR2MD0IzirrC6X+BjsOs251GwoivwMhvQ0F75z3e/Bwsvd3//WLVVlj2Q3j1I7D61/7mNnVkffCPiSIiQXIKRosVWtf9w2+BGVug6wTvazYcgRcvgwaXIFSRtsTtzUve/or1xh9BqVgGK34S3HqZME0wk/Z9Rrxl25jve1t3479h2xPp15WrnO6P0zX4pmDXExERERERERERERERERERERERERERCZmC0UQkdxSU2bc3hByM5ra+gtHatqIQgtEA1v0tnHWPSToEo8XaQf1hb2skqp0DR+ws+zEsuhI23OV9zjGP9z3+9lKPB56O2b+4MUztaAXse819/Cm/hXY9/O0h4Sjrn3rMkQ3h1yEikm1O4SyxPAlGAxj0Ebh0qXN/QiEwWZWvITzpBKNVrmqdh+LDlGyAwymC0QB2PgdzRsPuF9PbJ1EL8y+EJd/2Pue8Z6zQ6tZq+C3BrWUmYWOKkMpclyrke+xtcOUOuOQ9mLHRPtzBMKDjcPd9lv8QXrzCe9jEkY0w90xYdjtsuheqNnub56Ty/czmi4iEyen6K1bY+OeyfnDRYrhspfVYPejj3tZ+fmLm9Ym0BoWdnPu2Pxn8fpvudw4ki5JbDXbBaIUd4FqPP8/Y8XR6NeUy08Obinh1yRLvb5ojIiIiIiIiIiIiIiIiIiIiIiIiIiKSI/QbsCKSO+Kl9u2JkIPRKtc497UfEu7ekttiBeGsu/0peOOz3kPKjknUwrvfhgdL4D7D+nhxOhx4p+U4O/FiaPCx55YHoWZ36nH1lbDip97Xba7hCDzaEyrXetvPzsJLrINVdfsB033s8K+kt4cEr89lEEsRdHH0YDS1iIhEYetj8PxkmDUAXvs41B2w2hM19uPjeRSMBlDsEjxasSK6Otoqu4Pkx7z1Je8BQLkknWA0gDc+F2wdrV3VJn+H7t/5Wnr7bJ8N+171Pj5WCN0mpLdXvjjhfDjnCSvIK9V1sRerfpEboRfpcgz5Lm78c7ue0GUcFHZ0XqfDsNR77XoBHiiCF86HJd+BuWfB7JHwyo1Qu/f4se//Caq3pV7Tq8rVwa0lIhI0p2vG5o9TRgw6jYQ+F8Oku72tXbEs83BJkdbA7TomDIlquD9u/TzhqeEwfxrsez3aGgDMhHOf0/PZwvbQeVzqtTfcBfVH0qsrVyUDDEbrMj64tURERERERERERERERERERERERERERCKiYDQRyR0FDsFoDSEHo70007lv7A/C3VvarnV/gxcvB9MlxKuhCmp2QaLOChOZMxpW/fL44LPtT8H8C44PFEu4HCbvc5m/Or0EF+xb7HyA3au6vTB7GGx/Mv013v5K6uC3S5eDYaS/hwSrsD2MSBGscbQimlpERMK27SlYdI312Fq9BTb+G+adbwXYNA9gOSZeEm2NmSooc+578TL/obDij1sw2pYHYfHN0dUSFKfrWoBupzv31e6CyveDr6e1qtnhb/zBd/1/fU0T1v7F35yBN0JxN39z8lH5dLh8NVxXBx+uzTwg7dUbg6krG5zCEP1+TToO9z52z0JY+XPY+4oVWLb5Ppg7GZJNgjtW/9rf/qnUbA92PRGRIDndFxuFznMMA6avh4IOqdd/73vW65xBBv6IiHeH34ddc2H+1OiDCt3CmA2XN6mZ4PF5xCvX+asn1/kJr3bT5/Jg1hEREREREREREREREREREREREREREYmYgtFEJHfEHYLREiEGozXUWMEUdow4dB4b3t4ie16CimX2fWv+CLP6w+O94cF28PQYOLLBfuzRg7DiZ423nULK4u2g9zT3Q0bNpQpJ2PsKLLjI+3qpvPGZ9Oeu+yvU7XPuv2QJdB6d/voSjvF3wMS7nPsVjCYircXaPwHNAlErlsKuF+DwGvs57QeGXVWwnK7nj9l8fzR1tFVuwWhgff2dQvhylVMwB8DZj7vP3fFMsLW0Zsl6/3N2Pu997KGV8FhP2D3P3x4n/cLf+NYgXgxX7XIf0/0M6Hqqc/+Wh8MPmA+LUxhivNjfOt0mZlbH4bWZhXan0lAT3toiIpkyHa4LUoVUth8Ml7wLQz7tPm7TvdbrnI92g033pVejSL5L5/r7mLKBx//cqvsZ6a3TUAXLbk+/jnSYCec+t+ezPTz+HXfMgQPv+KsplwUVIHni54JZR0REREREREREREREREREREREREREJGIKRhOR3FHgEKQQ5oHeytXOfX31LuoSgbdvafw/3lBjBQwsuhre/jIcPeB9nff/AKYJdQcg4XDIuqA9FHWG0/7gfd3qrdbn+iNWuMTGe6Dmg4P6Rytg/jTva2Wq9yXW38FJsh62PWXfFyuGLuPDqUsyYxgw5BNwpsNh2PpD0dYjIhKGhirY+Zx934KLIFFr39dxZHg1hSEWt4JYnWz4Z2SltEmG4d5vNsDWR6KpJShuwWgFpXC1SyjuoeXB19NapRPM8O43YOfc4++/qrbAhn/Bqt/Ae/8FS38Ai66FOaPdA4ztDP4ktOvhv67WoKgLTN8Ipf2bNBpw8q/hBhOmvQoXvwXdJtnPNxOwe0EkpQbO6Xs+VRhPcyec7/7c0Yt9r0HFcnj32+nNL+7m3Of0nF1EJBc4XRfEClPP7TAEJv4Nrk+mHltfCa/eCK9/yrp2WPtXqFjhr1aRfJVuMFpxd5i+AS5dal0X3mDCBS9CvCS99Tb8M7jwLS/SDUYD6HWBtz1W3OG9nlxnBvBv0/9a6H1x5uuIiIiIiIiIiIiIiIiIiIiIiIiIiIhkQUG2CxAR+T9xh2C0RIjBaIffd+4bdFN4+0p+KBsEh1aGu8eel+C502HS3dZBwIql6a/1/p+sQBInHYZan0/8PHQ/A1b+EjY7hFEds/LnMOB6eOW6xiDBWBGc/TjU7fX+/dn7Ihj6OTi8BpZ8x9ucpkp6w/lPW8ELz57q/O+y/Un79sIO/veUaBV1tm+vr7BC/1KFvYiI5KojG2G+xwO8zXUcEWwtUYiXOAe97XstmD0aFChjyy1E7JgjG8KvI0huf6dYkRWONuRTsP7vLfvdQrDleOkEMySPwoJp0HUCnDcbdr0Ar308mMP7RgyGfSnzdfJZ+4Fw6RLY+pgVSN3zHOg24fgxJ34e9i+2n//i5XB9wvpa5pNknX17rNjfOvFi6+uz6pfp17Lql5nNv/hd67lr3d6WfQpGE5FcFkRIpWFYwU1Pj0s9dv0/mk6E8T+B0d/1vpdIPjLTDEYbcEPL10hjhdbr9xvuSm/Nfa9Bz7PTm+tXJsFoA2+0nnOksvURWPVrGPkNf7XlonSeW53yWyjqar3hTZeToc8lel1dRERERERERERERERERERERERERETyVp6djhORVq3AIRitIcxgtLXOfeXTw9tX8kNUh/EPrbDC0TIJRQN4+xZ48wv2fQUdoKRP4+0uJ8G4H3lb95mTjg+WSB6FV2+AQ8u91zbx79BvJoy6Fdr18j7vmP7XWZ/j7eCS95zHVW2yby/s6H9PiVahQzBasl7BASKS3+ZNSS+MqmwQFLYPvp6wHT3o3m+ame/RcCTzNVojL4FxtTYBPbnMKSQJGoOSup5i37/3Zag7APWHYdWv4OUPwRufg13zYevjsPhmeOUGWPsXSLjs0xZkEmZ24E1477uw+BPBhKIBnPJ76HpyMGvls6IuMORmK9SheSgawKCPuM/f8nA4dYXJ6Xsx7jMYDWDsbZnVkq54KZz1EJT1g57n2o9J9VgpIpJNToGpsUJ/63QaA+2H+tzchPe+DwczfI1UJNelE0zc+yIY/2P7vpN/kX4tL5wDb38VDryT/hpeZRSM9lHvP69595tQ4eNnF7kqmcbzqxFfhcEfgzHfg76XKhRNRERERERERERERERERERERERERETymoLRRCR3FJTZtzdUhbfn3pft28tngqG7yDbvhClQNiDbVQSj44iWh2Ccvue8qD8EWx/zNrbTKCgtb7w9/qf+9yvp3fjnWAGM/La/+QUd/O8p0SpyCEYDeCuikEIRkaBtvNc5tDOVPpcEWkpkOpzo3h9EGEyi1r0/ncPDrUEyxdcFoHZP+HUEKXnUvt2IQeyDg/MdRzjPf7QbzBkF737LCola91eYPxUWXQUb7oLN98Obn4cXp0PCYa+2IJ1ghqbW/8P538qvS5fDcF37eWLE4Mz7nPvX3xVdLUFx+n8UK/K/VkEZnPY/mdXjV69pcOUO6H+tdTteYj9u478UyCgiucvxvthnMJphwOjvpFGAad1PirRmfq+/p6+H855xfvOP4m4w+nvp17Pm9/D8JNjxTPpreJFJMFosDqf9ES72GOD29Fgwk95ry0V+g6ebvjGOiIiIiIiIiIiIiIiIiIiIiIiIiIhIK6DUHxHJHfFS+/ZEdTj7NVTB7vn2fZ3HhbOn5Jd4EVzwknW4Od/1PKdlW7sToP2Q9Nc8ssHbuH7XHn+79zT/wYM9zjr+dmlff/MLFYyW89yC0TbcHUyQjohI1N79evpzB3w4uDqi1ONs9/66fZnvkahx72+rQQoNKb4uAHV7w68jSE5hZU1DkjqPAwz7cQDV21Lvs+t55+eGbUGmwWhBOWEKdB6d7SryS5+Lnfv2LICjh6KrJQhJh7CwWHF660UdMtp9IhR1arxd4BCMBrBrXvj1iIikw+m6IJ2QysGfhFN+AyU+X8db/Ru4z0BjXxoAACAASURBVGj8mD0SNj/kf3+RXOXn+nvoZ6H94JZvetLcwBsyr2nhpZB0CS/LlFuIeapgtGO6nARlA72N3b3A27hc5Tf0fcwPwqlDREREREREREREREREREREREREREQkSxSMJiK5o8AhGK0hpGC0ihXOB1D6Xh7OnpJ/yvrDlOfguobUQR+5bNgXW7YZBoz+f+HuW1oOI7/Rsm3Ip7yvccIU6D7p+Da/ByoLO/obL9ErdAlGA9j9YjR1iIgEpXob1O5Jf36+XncM+5L7gebqrZnvkSoY7fVPtc3ghGRt6jH5FjSadAhGMwob/1zcreW1Yjp2Pp/5GvnKzIFgNCMOJ/8q21Xkn6Iu0PcK+75kPex8Ntp6MuX0PR9PMxit/WAYcH369fgVb9fstksw2prfh1uLiEi6nO6LY4X27W4MA0Z8Da7cBtcehlFpvg5ZuRpe+TBs+Gd680VyjZ/r7+Ff9jau0ygovzK9epp6+RrnvoZqqN6e/tqmS+harMDbGoYBo7/nbeyuud7G5SrTJRittP/xt9sPhf4u/3YiIiIiIiIiIiIiIiIiIiIiIiIiIiJ5SMFoIpI74g7BaImQgtH2OLxbfEEZdD01nD0lf8XicOLns11FegZ/EtoPsu8bcjOcMwv6XR38vn0uh4vfhsIOLfsm/BlO/SP0vhgG3ADDv2Id3OpycuPHCefDuB/DeXOsA09NlfTxV0uBTQ2SWwpKoKirc3/VpshKERHJiGnCsh/BrH7przF9fcvHvnzR9WTr8d/J/Avgve9bX6d0pQpGA1j7p/TXz1cNHr4uTsHQucrpIHjzYI5BH818rzW/haW3g5nMfK18k3Q5cB+WE6ZCt0nQ5zLr+cDF71j3H+LfOU84921z6ctFiTr79lhR+mue8W/ockr68/2I+QhG29WGwxhFJLc5XS9mcl8MUNgexv8UzviP9Zphl5OtN0/wY5VCVKWV8Pq8bPBNVuCZV2c9CCf9HHpdaM2d9hrM3A7DbrGuvb3YNguObGxWbwO89WV4pDPMKofZI6Fiufe6jnELRnMLWG9u6Kfg7Meh31WAy2snK3/ufc1c5Pb/ZNprMPxr1s9QRn4TLlxkhYaLiIiIiIiIiIiIiIiIiIiIiIiIiIi0Ih7ffllEJAIFDsFoDSEFoy35jn17hxPBUG6k2Oh3FfS9ArY/lb0aSvpCzXZ/c4bf4t5fPsP6qN6WWYhLU6NuhZP+27nfiMHwL1kf6Sjr7298Uef09pFoDfmk8yHXRG20tYiIpGvzA7DstvTnn/wraD84uHqyoct4K+Sgept9/4qfQtlA6zBzOrwEox14N72181nSw2Nl9RY4vB46DAm/niA4BXbFmr2cNeRT8OYXMt9v+Q+tQOHBH898rXxiRhyYd119y39DSZ9hWCHea//csm/HHEgchXiGYTZujlbA7gVQvRWMAivoptvpVri4H2bSJQyxOP36YgVw5r0wZ2T6a3gVbx6M1s5+nIhILnMMRiu0b/fDMGDQjdbHMXPPgb2LvM0/tALW3Wm9jtmuZ+b1iGSLl2C0bqfDKb/1t26sEEZ92/po6rQ/WJ9X3AHvfTf1Ok8OhusaGq/nVv8a3v9jY3/lanh6LFx31N99Q1DBaAD9ZlofAI/1gtrd9uMOr4MOQ/2tnSucro2NAijtA6f+Jtp6REREREREREREREREREREREREREREIqbkHxHJHXGHYLRECMFoK3/h3NdhWPD7SesQL4azHoFzn4KR33YY4/D/OCiT7/c3vvsZ0Hm8t7Gl5TB9o/+amps63z0ULQglfaxAFa/0fZ0fhn7Wua9uX3R1iIhkYrWHg8sT74IPHYFzZ8MJU63HqbG3w7TFMPIboZcYieLu7v1bHkp/7QYPwWgNh60woLbEy9cFYPZwWP7TcGsJitPBeaNZqFasEKavD2bPxTdB3YFg1soXXoIZgqRQtOCVz7Rvr6+EA2+Ht+/BJTBnNCy6Ct7+Crz1RZh7Jrw003/IfdLlPjuWYbBbx+HRPCdsEYxW4jw2iIAhEZEwON0fGyHdb534eX/j3/gMzB4Bu+aHU49IFJyuv0v6wtgfwuQHrNfYg36zj0Efh4IO3sZu/Ffjnzf8037Mwsv97R9kMFpTbgFyT50Ippn+2tnkNShcRERERERERERERERERERERERERESklVIwmojkjgKnYLRaMJPB7ZOogyW3Ovd3OTm4vaT1iRdB38vh5J/D1AVQ2LGxr/xKuOYA9PF5IMir8XdAj7P8zZn4DzAM7+NL+/pbvykjBhe/Ayecn/4anvcynA//2+k4IrxaJDgdhjr3KRhNRPLBrhfgwJvuYwZ/EoZ8AgrKoO9lMPUFuGINjL0Nuk+Mps4opApG2zU3/bUTHgPAju5Pf498lKz1Ns5MwLIfwP63wq0nCKbDQfDmwWhgheYW9whm30VXBrNOvogyGK3XtOj2akt6nmc9rtipXBXOnqYJr38Gana07NsxGx7vA5Xve18vUefcFy/2X19ThgHnPG6FjYTJTzCaW5+ISDaZDtcFmYZUOhnwYRj2ZX9zjh6E+VPbXhCytB5O32fl02HsD6zvC6dru0yU9oFJd0Fxt9RjX78ZXpwBCy6FytX2Y3Y9DxUrvO8fVjBaqp/p3R+DRVfDax+HdX+HpEsducTx+bACdkVEREREREREREREREREREREREREpG1QMJqI5I64QzAaeA8/8GL3Avf+QR8Lbi9p3U44D67aAxe+DDM2wTmPWQe2h9xsP37KPJixBU78vLf1J90NF78N5z0DV++D0d/xF3I2czt0Gul9PECsEAo6+JsDUNofPlwLXSMMFvQTjOb36yDZ43QYVsFoIpLr9r0O8y9MPa7PxeHXkguCCqiy4/W5QV0bC0ZLeAxGAyt4ev3fw6slKI4HwW0OzRsxOPFzwey75yXY83Iwa+UDp69zGIZ+Krq92pJ4EXQcZd/3usPz00wdWuEeBlp/CJ473XsIY9Il3CaWYTAaQKdRMGMzTFsMA67LfD07zYPRXMcqGE1EcpRT2FgspCAeIwan/d56zfTc2f7ecOHFK8KpSSRsTsHEUQRe9b8GrlgH0163fu7gZvuTsDPFmKfHeH9jo7CC0Tp5eFOUrY/Bxn/DG5+Gl6+xQn5zndPztJhNULiIiIiIiIiIiIiIiIiIiIiIiIiIiEgrpGA0EckdBWXOfQ3Vwe1zaKV7f2mf4PaS1i9eDD0mQ9mAxrZ+M2HiXdB+CBgF0PNcuPx96DUFyvpZt70YfBN0PcUKUCnu5r2mrqdagWrp/l8u7up/zoUvh3dA0kmPydDuhNTjSvsd/+8jua24u317lMFo22fD/GkwewS8+QWor4xubxHJX8t+mHpMQXvo3UaC0coGhre2gtHsuYUK2Vn3V+8H2LMl6fMg+JjbYNStwez9zteDWScfOAUzZOqcWdDzPOt5QtkgOP2v0P/acPYS6OgSCFGxIti99r8FT49NPa7+EKz4qX3fkU2w6Gp4ehwsugYOvOO8TqworTJbrhOH7hPhzHth9Pes55MFZdDvauf7jo7Drf/HntZvFozmFlipYDQRyVWmw3VBUPfFTsr6Qd/L4JTfeZ+z63l4ajhseyK8ukTC4HT9HdXr60Wdofvp1s8dTr8z8/Xuj0Pl2tTjjh5w7sskGA3gCg/7H7NtFtwfg/kXeQ/xzQan58OGgtFERERERERERERERERERERERERERKRt0G/OikjuKCh17ksEGIx29KBz36j/F9w+0rYN+YT1kaxveaDJS0hXpzHOfQM/Cpvuse+b9hp0n+S9TjtFXaBqs/fx3SZahxejFiuA8T+D1292Hzfm+2AoCzZvtHMIRqveGs3+O56Fl2aCmbBuV66Bg0us8D/9PxIRN3tfTj1m3I+hsEP4teSCbqeFt7Zb0ExTR9taMJrDoWk3+9+yDsTnKtPnQfBYHE76bxh/BzQchlhx43PJwk7WY/nq38E7X0u994E3oaHKPcC7tQgjGK3PZdB3OpTPsH9OJMHr5BKMtuUh6OwhwNOLw+vguQnex2+b1bKt7gA8OajxdsUy2Pqo8xrxYu/7eWHEYPxPrMdlM2E9t6w7ABv+CbW7G8e1HwoXvwsFJdbfe+5Zx/c3V9jx+NvJOuexCkYTkVzlFLYb1WN5l3HWNcT2J72NP/y+9TrOuU9B38vDrU0kKNkORmtq6Kfg0HJY8/vM1pk9DGZsafw5Qd0B6+9T2AFME6q3wLwpzvOdwq+96jDUCqLf+az3Obuehz0L4JKl7tfS2eL0fDjTr5WIiIiIiIiIiIiIiIiIiIiIiIiIiEieULqDiOSOuEswWkNVcPtsf8K5r//Vwe0jAvaHmbqeBiW93ecNcQn7Gvpp+/aBH808FA2gqKu/8Z1dQtzCNuST7v2TH4Chn4mmFglG2SD79podsOO58Pdf95fGULRj9r0GB98Nf28RyW9uQb5lA+Dsx2D4V6KrJ9u6eghGW/yJ9AKZEjXextW1sWA0M42v5fMToXp78LUEpflj8jGpDoIbhhVQFC+2Qn+LujQGnLoFcjf3UHvY8C/v4/NVkMFoPc+BcT+x7vMMw2pTKFo0+riEwSz/UXD/zsvSCFjb8Uzjn2v3wqPd/M2PFfnf0wvDaLw/Ke4Kly6FoZ+zQjVGfAOmvWqFooEVtnHhK1Babr9WQRl0axYY5xQuBApGE5HclXAKRgs4pNLN2Y9aQbcdh3ufs+z20MoRCZzTc7dsXTeP/n7LgNd0bLgLanbDvKnW9d4jXeDRHvBod3hioPtcI575/ufN8T8nWQ8rfpb53mFwCj93CgoXERERERERERERERERERERERERERFpZRSMJiK5w+2AeoNL0IQf9YehYplzf9dTg9lHxE2sAE7+tfOBwm6T3AO/ekyGwTcd39b9DDjtD8HU5zcYreOIYPZN16S77ds7joQBH462Fsmc2/+nhRdD7b5w99/mEJ658hfh7isi+c00nQOcup8BMzZBvysbQ4LagtJ+qcds+Ce8e6v/tb0Go9VX+l87nzkdmk5l0VXB1hGkMA6CuwVy21l8Exx4O/39ckn1dtj6OOxeYN1vHWM6fJ27nAQF7b2tXX4lXJ+EC16EMd+DeEhBVuKsy7jGAEA7b34x8z2SDbD9Kf/zFl5qBaIBvHK9//nxiMJ42vWE0/8M5z8Dp/wK2vU4vr/DEJixBfpfe3y7EYPT/tSyzvIrnfdy+7cSEcmmZJ19e5SP7bECGP0duHw13GBa1xipHHgbqrfZ9x1aaV0DHXgn2DpF0uUUWGtkKRitXXcYlcZz8+b2vgqzymH3fOu2mYC6fXD0QOq5QQThGjGY8oIVWOvHpntg6W3w5hdg84OQqM28FgAzCQffg3V3wvbZ1s8nfc1XMJqIiIiIiIiIiIiIiIiIiIiIiIiIiLRt+s1ZEckd8RLnvoaqYPZ49jTnvvF3BLOHiBcDr4fOY61DQsmjUNwTDq+FjsOh/zUQb+c814jBxH9A/w/Bvteg4ygov8L/gR8nRV38je9xTjD7pqt8JsS/0DIkZeAN2alHMlPW3/r/73QAbddc6/snajU7o99TRPKHUygawEltNFjRMKxriqMH3cdteQhO/Y2/tb0GoyWP+ls33zkdrk9l/xtQsRw6jwm2niA4HgSPp79mOtfMK38OZz2U/p65YP3d8NYXG79/ekyG856FwvbO/3dK+8HU+fCITXByn0thwA1QvQU6jYK+09tW+GOumr4Jnuhv37fzuczXr1gK9YfSm7vlYeh7Geye53+uU6h4NhgGTH4QBlxvPR8v6mx9P3Q5qeXYLuOd13EKHhIRyTan+6ds3hcbBly2CuaMdB839xyYseH4tiXf+SDs/oNQ2ME3wcS7dN0i2eV0/R3LUjAawPCvwrLbnWsrv9K69ncLjd71fHp7d5sUXGhsr6lwyXuw9TGr3kQtrP976nnLf2R9Xvtn6/MVa6HD0PTrSDbAqx+BLQ82tpUNgHPnQOfR3tZwej4c0693iIiIiIiIiIiIiIiIiIiIiIiIiIhI26DfnBWR3BErsMLR7IIO6isyX79yDRx+37m/k8fDCCJB6Twm/QAKIwZ9LrE+glZsE3zgpKQvdHMJHIxCUWeY/AC8cj0kqq228pkw4mvZrUvSY8SgXW+o2mjfX7EUyEIwmg7MiliqtsKm/0D1Vuh5HvS/Vt8f4B5I1ZYPrI74Biz9vvuYmu2w7QnYOReKu8HAG6HjMPc5DR6D0dwObLdGToemvdj8YJ4Fo2XwfeUWyO1ky8PweDmc8msrnDif7veSCVj6X7CyWRD43lfgtY/COY+7BzMUdYHLV8P8C637foDO4+D0O6G0T7i1i39l/aBdL6jd1bKvegscPQRFnVr2JROw6V44+C6U9IITv2iF5jV3aGX6tVWuscL20pHO922YDAP6XWl9uI6LwdDPwLq/texLKBhNRHJUwiFcOJ7lkMpOI+D0v8FbX3IOQK7aCAeXQpdx1u3dC6yA26b+P3v3HSdXXe9//DWzfdN7L6SSBEJCIPTeI12QoldRwAJX9HcB9VqxYMGuV7nqtcBVUBSkd6T3ngBJCCSk9142m+zM/P445GY3O2f6zM7uvp6Pxzyy862f3cycPWfgvDP/T8Fjn68Hx+j6IcWsWkquHIPRKuvhgF/DC5e27qsdAEfcGpwDLX8QHj2psHsPO7uw63UbDROv3v181EXw5DnJz5HD3DU2uPYbdVFu/w3mqXOCzzqa27oQ7t0HJn0FJn4p+fl2c/EiXA9LkiRJkiRJkiRJkiRJkiRJ7UiB/vllSSqQmj7J2xvX5r/2on+k7h9U4Js5pPaqOotgtH2/Edzs3daGng5nr4BjH4HT5sERt0Fll7auSrkafm5437YlpaujhXYUgCIVy6a58MB0eP3LMO96ePo8ePHTbV1VeVh6V3hfZ75hdWyGr48nzoR5v4I3vgUPHAhrnks9Pr49s3UX3wrLHshsbEeQTzDa1oWFq6OQwm4EzytwMJHbtIal8PT58OxH89i7xOIx+NdxrUPRdllyexCQlggJZoi8H8zQfTycPh9OfBZOeR1OfsVQtHI24arwvs3zWrclEvDkWfDcx2Duz+C1L8E9k2BHkoD6TXNyr6thCWyem/28cVe0rzDCPfU5OHl73GA0SWUq7PgUrS5tHcmMuRTOXAK9poaPmf/H3V/P+034uDe+BffuC+teKVx9UqbCzr/bMhgNghCwZOcuYz69+3xs0InQZa/C7VndKwgpLKZ+h8Hp78Bxj2U3b9Et8NgMmPXt7ObNvKZ1KFpzb14Ltw9Nfr7dXGiAXif+nEmSJEmSJEmSJEmSJEmSJEmdShkkmUhSM9VFDEZLFVhx2F+hogxu7pLKQXWvzMbt9z0YfXFxa8lGVTcYeCx0G9O+b5xX6mC02v6lq6MFX1MSs38E21e0bHvnt7BxdtvUUy4S8dQBcW19Y3NbqukTnGdnY+cmmHVN6jHxHZmvN/Mr2e3fnoXdNJ2JxjWFq6OQErHk7fkEDoaFrWXqvT/DqifyW6NUlt4Jqx5PPeb5SzILoItWQt+DoddkiFYUrkYV3vjPh/dtej+YrGkbvHIl3BSBm6OtPy/Ztgj+0ev9/gq4uTL4+s1rw9c++eXUdS2+DV69OrPvobn9f5z9nHJSUZO8PWYwmqQyFRqMFnI8K7XafjD9t+H9c38WXKPFm2DR31KvtWM9vPGd4OsVj8Ajx8J9+8PL/wGN6wpXs7Sn0MCrNv78IFoJR98NQ88KwhBr+sDE/4R9vtZy3OFp3luZqu4Nxz4E1T0Ks14qlV1gwFFw6M3Zz5319eD4sH1V+rHb16Q+Z95l58bgfHvJneFjwsLPO3MAvyRJkiRJkiRJkiRJkiRJkjoVg9EklZeakGC0HXkGozWuhbXPh/ePOC+/9aWOpLp3+jEnvQiTvgQRTyVUBH0OCO9r2rb76+2rgkcsi4CcVBKJ8D7D9iRYGHLj63t/Lm0d5WbVk8EN9WE6+w2rA47Jfs7yB1KHfGUTALbu5cxuXu4Iwm6azkTj6sLVUUhh31M0j/dV15HhfWMvy2yNhVkG/rWVpSlust9l0xzY8m7yvrYOZlBuohXQY5/kfSsfga0L4d59Yc5PMlsvEQ8PKdxln69B7/3hlNezqzWdvf8jv/d7OQgLEoo3Bp9VFepaRpIKJey4FBb02BZSfW4E8MSZsHleZmst+WcQ+P2v42Hlo7D+VZj7U3jyrNSfE0n5CLumjZTB+XdNHzjyNjh3M5y9GqZ8t3Uwcvfxua9f1QM+tBUuTMA5a6H3tPzqzdbwc6HX/tnPW/koPHoKxNOcF69+Irtr8yfOgCUh/6iTwWiSJEmSJEmSJEmSJEmSJEnq5EwzkVRewoLRGvMMRpv7y/C+g36f39pSR1OTJhitblBw07tUTCPOT97etBXWz4Sbq+C2AcHjbzXw6tVBaEM+UgY+eNqsTi6RgKbNyfvm31DaWsrNsrtT93f2YKGKutzmbZkf3hfPMgBs09u51dDeZBMYt6fGNYWro5DC/q4jFcnbM9FjH+gyonV7z33hgP+CYR9Mv8a863Pfv1Te/T3M/1NmY1c9nry9HIIZlJs+05O3z/8j3DEy9TE2n/16TYbJ3y7cuiMvLNxabSUsSGjHeri1L9zWD2Z90/AdSeUj3pi8PSzosa2ctTy8b+ld8NwnMl/rhU+1blv1BCxNc60n5Srs2q2cPj+oqA7/hyKquucWgg5B8G1lfe515StaAcc/CntfCb0PzG7u+ldgUcg/GrDLtiXZ1/TE6clDKcOuh8vpdSJJkiRJkiRJkiRJkiRJkiQVkQkPkspLdRGC0RJxeOOb4f29puS+ttQR1Q1N3T/tlxDxFEJFVt0reXvjGnj4CEjscWPY7B/BnJ/mt2eqQJmwGwGlzmLH+vC+sMC0zmLjnNT90crS1FGuKmpzm7cpxc81kWUAWKq1OpJsA+OaK9dgtD1/3+8SyeN9FYkE57PR6t1tFfWw/0+CvoP/2LIvzM4yPfZtWwKvfQmevyT/tTr78as9G3JaafdrHowx9IzCrDn+/0HvaYVZqy2lCxLauQlmXROEGUpSOQgNRsvg/KiU6gZC/6PC+9c+l/8eS25r+TyRgA1vwsJbYOvC/NdX5xXbmry93AIIU8klDLf73jDh6sLXkq2q7rD/j+DkF+C87dBrauZzF9+Wur9hWW41vXBp67aw62Gv0yRJkiRJkiRJkiRJkiRJktRJmGoiqbzU9E7enuuN+k0NcM8+qcdkc9OD1Bl0GwPdJyTvO/DXMPyDpa1HnVNFffL25fcF4QHJLPjf/PaM78hvvtSRNSwP79u5KQii7ay2zEvdH6kqTR3lKprj97/2pfC+VEGWyXSWYLRsA+Oaa9oCse2Fq6VQwsLe8r0RfOhpcMqrsN/3YOoP4ZRXYODxQV9VNxj54fRrbH47vxqKYcH/wp1j4K0fFGa9zn78as/6HlS6vQYeD5Vddj/vkeYzmGQmfhEmfAH2+mgQsnHswzDtJ4WrsS1lGhC68K/FrUOSMhUL+WykogwDm8Z8qrjrL7hx99fxpiB49t594Onz4I6R8Ma1xd1fHVM8Bo3rkvfV9i1tLfnodxicsSi8P1IJXUYGj65j4MDrYcZMqKwrVYWZqaiBk54PArIzsfjW1NfO23IMRlt2XxC+2FzY9XA+QeGSJEmSJEmSJEmSJEmSJElSO+L/OSupvNQOTN6+5d3c1nvkaNg0O7z/yNshEsltbamjikTg8Fvg0ZOgodmNPPt9D8Z+pu3qUufSPFwhUxteD24gy/W4njIYzTxhdXINaW7sXPM89DukNLWUk/hO2JzmPDXfAKfOaumdsN+3k/cZjJZc2E3TmWpcA/VDC1NLoSRiydsLcSN4j4nBI5kp34dNc2HNM+HzN86B3tPyr6NQGtfCC5+CeGPh1sw12FBtr3YgVHYNQg+LbcgZLZ9HIjDhKpj9o8zmV/UMrjU76mcz0QyDhFY+Utw6JClTYecSmR7PSmnE+fDMhcVbPxEPAqxqegcBlvP/0LJ/5ldh4AnQd3rxalDHs2MdkEjeV9OOgtEAugyDczbAk2fDyn8FbbUD4OAbYPBJbVtbNqJVMOoiGHBc8L2sSxHUDnD3BOgyArqOglgjJJpg0S3BP/QR25ZbDY2rYfsKqBu0uy1hMJokSZIkSZIkSZIkSZIkSZI6NxMeJJWXbuOStzcsg52bs1vrxctg7Qvh/T0mwtAzwvulzqznPnD6Ajj+ySBA8OxVMOlLbV2VOpPK+tzm7Vif+56pgtE6alCDlKntK1P3L72zNHWUm60Lw29U3cUbVnOzYSZsmZ+8L93PfE+dIRgtHiP05vpMNa4pSCkFFXojeEVx963tD8c/DienuCF+9VPFrSFbi2+DWENh1zQYrf2KRKDb2OLvUz80CJHY0/DzMl9j0Akd+1y7ogyDhCQpldBgtOrS1pGJSAROnVvcPe4eHwQz7xmKtsvSO4q7vzqeVNdd7S0YDaC6Bxz7MJz8cnANddq89hWK1lyXYXDS88F/E0ll63uw6nGY/0dYeFMQiga5h6LtsmmP41nYZ9XFvh6WJEmSJEmSJEmSJEmSJEmSyoR3aEsqL93Hh/dtnge9psDmd2Ddy8Fj/StBCE6XkTD5O9BzUjB20zyYd33qvUZcWLCypQ6pohr6H97WVaizqsgxGK1hKdT0zm1uqmA0OnBYg5SJdGE7S+6AKd8rTS3lZPvq9GMMFoJBJ8Py+7Oft/RuGH9F6/b4zuzW2boAYtuhojb7GtqLTMPijnsMHjk6ed99U2HkR2C/7wY3hJeD0GC0EnycFa2E3tNgr4/Cghtb97/z38H7e/8fl8f7fPFt6cd0GwfHPAB37pXZmgY7tm/9DoP1r+Y+P1IZvAe7joa6wbDupZbnA30PgQN+BVVdW8/tMQmqesLODen3GfbB3GtsD2r7Zz72latg4hehtl/x6pGkipK2bwAAIABJREFUVOIxSMST95Vr0GP3cTD6Ynj398VZv3ENLH8AVj6avP/N78J+1xZnbxVXIg6xxiAMcNef8R2t25L1terfkXxOsrk7UpwfVfcp3fdfSJEI9N6/rasojEg0+G8ip86Bu/cu/PoH/xGe+3jyvkeOgRkzoee+wfOwfwCkukfh65IkSZIkSZIkSZIkSZIkSZLKkHc4Siov9cMgWhPcILKnZy6EhuWwc1PrvvWvwfIH4dTZ0GU4LLs39T7RKhj374WpWZJUeJU5BqNtW7b75rFspQraiURzW1PqKGJJzs2a2zQ7CKbtPrY09ZSLxjXpxxgsBOM/Dysezjy8a5cNbyRvzzYYLRGHrYs79usz05/JgKOgujfsWJe8/70/w8pH4ANvQnWvwtWXq3jIayZawvfV4A8kD0YDePuX0LQ5uLm9LcUaMwsfPPnlIMRqxiy4N4Pzpcq6/GtT2xl7efDaTfYZCsDoS+Dd/wmff+6m4LOZ6p7Z711ZBxOuhJlfSz2u11QYdk7267cntQMzHzvnx7D6aTjhKYhWFK8mSQqT7DP5XaJlGowGQbhvJsFoIy6EQ/8cXB/sWAuvfgEW3JB+3tv/lX+NuzSuDc6zO9vnTPGm9IFh+fZlG1KW7fVpsVV28fy7nHQfD4f/A54q8LlqtDoIMF79dPL+eyfDic8G55ANy5KPqelb2JokSZIkSZIkSZIkSZIkSZKkMuUd2pLKS7QCuo2FjUlCEDbNTT03tg3e+A4c9FtY82zqsacv8F9Vl6RyVtElt3kNS3PfM74jvG/9q7mvK3UEqW6Q32XpHdD9quLXUk4yCUaLVhW/jnI3+CQ45j741wnZzduxPnl7tsFoEAQf0IGD0bK5qb+mb3gwGgRh1Av+DOM/m39d+UrEkreXMnBw8ClQ2RWatiTvn/8nIAIH/U/bBVwsuT39mIEnBqFoAD0mQddRsGV+6jndJ+Zfm9pOj73hhKfhretg3Uu7jxN1Q2DE+TDmk6mD0SrrgDzCOSZ9JQh0WPhX2L4CmrZCVbcgiKSyC/Q/Cva9puMHgEUi2Y1f+xws+juMPL849UhSKimD0apLV0e2Mg0JGnlhcFyOVEBtfxj7mcyC0ZY/kF99AOtegWc+EoSKV/WESV+GCVdl/3sinUQiuF5KGhjWCLEdSdqKGVL2fn8iXtjvsyMy7Kr8DDqp8GtGq6D39PBgNIAHD0m9hq8VSZIkSZIkSZIkSZIkSZIkdRIGo0kqP93HJw9Gy8TSOyDx3xDfHj5m6o+hfkhu60uSSqOyPrd5Dcty3zNVMFrDctixAap75r5+udqyIAh+630AdBne1tWoXKV6f+zy3l+CG7s7ungTrHocYtth4c3px5cywKmcDTweqnunDuTa084NyduzCQHbZfvq7Oe0J5mExQ09M/izth9sfjv12AU3lEkwWsjfdbSE76uqbjDhapj1jfAx8/8I/Q6D0ReXrq7mVj+Tfszkb+3+OhIJXg9zfhI+PloTvG/VvvXcBw69Mbx//Odh7s9at4/6RP57RyIw5pLg0dmNuCCzc4Zd3v6FwWiS2kYsxXVfRU3p6shWJiFBwz4Ig2e0bOt7EOz1sczC0fKxfTXcP233850b4LUvwOJbYdjZ4WFiuYaUqX2qH9rWFWhPVV1h7ythzo8Lt2akCoaeDnN/mvsaBqNJkiRJkiRJkiRJkiRJkiSpk/AObUnlp/v43OduXwXLH4Ald4SPGfnh3NeXJJVGuQWjASy5E0Z9NPf1y00iEdyIO/tHu9smfQUmfzsIspCaizWmH7P+NVh2Hww+pfj1tJUt8+Hx02Hjm5nPiVYUr572Jlqd3fgdIcFomYSA7alxTfZz2pNMwuJ2BR1lchP1upfzq6dQ4iHfV6TE76uJXwxCjTbNCR/z/CUw5AyobYOb1FMF3Y35NOz7dagb1LI9XTDaXv8WBAGoYxt+TvJgtKFnlL6Wjmz0J7ILRlvzbPFqkaRU4imu+6LlHIzWJ3X/gdfDmE8m/6zj4D8G50VPnpXb3pFo6v5Nb8PdIf+9Y+3zwUOC4FpC5WfqD4MQs0S8MOtFq6Df4dB9AmyandsaBqNJkiRJkiRJkiRJkiRJkiSpkzAYTVL56bV/fvMfmxHe1+9wqBuQ3/qSpOKr6JLbvG1Lc98zXTDaq1d1rGC0Zfe2DEUDePNa6H8UDDqhbWpS+Up1g3xzj82AC+IdM1wvth3uHN3WVbRvFVmGKax7KXl7wmC0VsICxHaZ8AUYcmrwdXWa4IhdXroChp0FA47Jva5Nb8N7N8Ha54KwtX6HQd3QYM1hZ6c/VoQFvkVK/HFWRQ0cfR/cuVfqcY+dAie/WJqamgsLRht4Iky/Pnlf30Ohph80rk7SGYH9vluw8lTG+h4Kk78DM7+6u23CVTDktLarqSMacFz2c9a+BH0OKHwtKr1ty2DBDbBpLpBo62qk1HZuDu/L9ly+lKJVqfvHfCr8vDMSgWFnwr7XwKxrctg7TfjzC5dmv6Y6n2EfhPFXtHUVSiYSgVNeC0Lyt76X/3rRKohWwiE3wKMnwY712a9hMJokSZIkSZIkSZIkSZIkSZI6CYPRJJWfoadD/VDYtiR8TCSa27/Q7s0lktQ+VNbnNq9hWe57xtME7SQNDmnH5oUEpcz/k8Foai1dcGBz8/8Eoz9etFLaRKwR7hjR1lW0f9EcwhTe/jWMu6xlW7rjdTIdPRgtVVjcCU9Dv0N3P8/05/f2L4PH1B8GQUnZWvUEPHoKxLbtbltyR/DnvF/B6EvhoN+mXiMs8K3UwWgAXUfCmUvh9iHhY9a9BCv+BQOPLVlZxJvCb9Df873TXLQC9vk6vPzZ1n3n7wz61fFFIrDPV2DURbD+Veg5GboMb+uqOp5IBOoGQcPyzOc8cCAcejOMPL94dan4Ns6Bh4/o+Och6hzSBYC1tV5Tg99le+qyV3GDu1P9XLavDs6J1b5FKoJr2YqaJH9WJ++L1kBFdbOvQ+ZW1EGfA6HbuI4ZMN9R9NwXPvAmPHoirH66df+hf4G3fgAbZqZfa1eQY58D4YxF8PCRyY9dqdRkGHYuSZIkSZIkSZIkSZIkSZIktXMGo0kqP9EqOPZhePYiWPcCEIEeE6HX/tB7WvDotR/cfyBsmp3d2n2mF6NiSVKhVbRFMFoWwU8dwbJ7krcvvAkO+0tpa1H5izVmPvb5T2QXjBZvCm4gXfFQEHY04UoYfEr2NRbTO7+F7avauor2L5cwhde+AMPPgdr+u9vCwrJS6eiBJKl+Jl32CPXbsS67tV+9GrqNh6Gntd5zwY3w5rWwZX7QVjcEGpZmtu67vwseu+qr6gEDjoPJ34KqrkFbIpZ8brSNPs6qHxwEzT10WPiY5y6CMxeVrCR2rA8PDa9PE3A19jPQuArm/CwIsBtwDBz0B0PROqP6IcFDxZPL767XvxT8DmyrY56yl4jDnJ/A4tuCa9OtC9u6Iqlwcgk5LqV9vgpPfrB1e78U522FkOr47jEge/8XNJYiVCxaHRI0lkVfxgFn1Z4bK1BZD8c9Bq9eBe/+AZo2Q1VP2PfrMOICGHoWvHolzP8jxLaHrxOp2v11Vdfg+vLVK8P/AYtWdXSD7nvn9a1IkiRJkiRJkiRJkiRJkiRJ7YV3VUkqT93Hw0nPBjcUxpuCG2H2VNM3uzWHn9c6FECSVJ4qcwxG274SEgmIRLKf29mC0TqCxnXQtAWqe+2+cVbFEc8iGA1g6yLokiaQZ5dnPwoLb979fOUjcNRdMOTU7PYspoV/besKOoaKHMIUmrbCkjtgzKW72xI7s19n+8rs57Qn8RQ/k2hVy+fDPhgejhnmidPh+Meh/5HB79n4Tph9Hcz8WstxmYaiNdc8MGLDTFj3UrBXJAKJkKCJSBt+nNXvUDjyzuBnksy2xbBxNlR2CR6x7VDTBypqC1dDvCm4Vq6ohsa14eNq+qReJ1oRBNHt87XgZ5rL+ZOkzAw9MwiDzMbWhcFxsduYIAQRgjCNyvogTNL3bPl5+fPw9i/bugqp8CJRqKhr6ypSG3pWEPK68tHdbdEaGPfZzOb3PiC3fWPbIB5LHp6VT3h/0UVSB4MVIogsVeBY0j2r/d2m8hathGk/g6k/CsLz6wYGx0eAyjo48Ncw7efwwidh/p9C1tjj+rz5vPumwMa3Utcw7t8Le20pSZIkSZIkSZIkSZIkSZIklTGD0SSVt0g0POQk22C0Q/83/3okSaVR2SW3eYlYEHCWS/iOwWjtx7pX4LmLYMOslu3jPwdTf5z8hmTlJ9v3x5I7YHwGN6AvubNlKNouj58GR94BQ0OCh0pp+xpY82xbV9ExRHM4NgMsub1lMFqqELAwZR1KUABhAWLQOkRs0Am57THz67D/T+DFz8DaF3JbIxOrn4TlD8Dgk1MEo7XxcX7oaVA/LAhBS+aeia3b9vooHPBfUNUt931jjfD6l4PQnfhOGHwqjLwgfHy6YLRd9rw5X1LhDZ6RfTAawP3TgAiQaN037edB4I8hMuVhw5uGoqnj6nto+QeRRyJwxK0w5+ew/H6oGwz7fh16Tcls/sDjoKo77NyU/d5NW6C6R+v2Wdekn1vVE3pMTB04lk/YWFifobhS7qKVUD84pK8quFYMnRty7RWtghOfh1evhHd+m3zMtF/CuMuzq1WSJEmSJEmSJEmSJEmSJElqxwxGk9R+ZROMdvyT3uwtSe1JRX3uc5u25haMFjMY7f8suRP6HZZ5oEo+Eokg4KxhGVT3hqZN0HVU8NjT5ndh/Svw1IeSrzX358FNxZOvKWrJnVKsMbvxyYLRdmyA1U9B47rgtdVrCjxxRvgaT5wBp86B7uOzr3f9a7DyseA1NeBo6DI8s3k7N8Ga56BhRXCja+0AmPsLkoaRKHu5no8vuxe2LYH6ocHzXILR1r8KO9ZDda/caih3qX4me/7c64fCxP+Et76X3R6rHn8/oKcEFv09CEaLhwSjRcvg46wTn4Pbh2Q+fsGNUFEL03+T+55v/QDm/GT382V3B49kojX5nU9JKqzBM2DgibDiwRwmh5yHvPw5qBsCwz+YV2kqkHv3aesKpOKo7AZTvt/WVWSmulfweUAunwlU1MKU6+DFT2c/N1kw2tJ7g2uQVPa7FiZ9Ofv9JJW5FKGDqT4XqeoaXC/22AdevmJ3e2WX4L9x9p5auBIlSZIkSZIkSZIkSZIkSZKkdqAM7iSVpBxlGoxW2RX6HlLcWiRJhRWtgkgFJGLZz23aCjW9s5+XyCBoJ5GASIqb2zqKJ84AInD432D4ucXbp2krPHcxLPpby/ZIZXBz8ORvBs8TcXj9q5mF+Cy40WC0YohnGYy26nGIbQ9uLocgKO2JM7Pf9+694YIYRKKZjY83wdPnw+JbW7ZP/RFMuDL13DXPw5NnQcPyzOsbcQH0PgBeTbO23pciYK6iNnjNhLl9WHCD8JhPQiIkLCudW/vCEbfB0BSBfO1Vqp9JJMlHP/tdC/2PgqV3wrxfF6+uXM3/Q/A7YPWTyfuTfU+lVj8YJlwNs3+Y+Zx3fw/7fTe34NGmBph9Xebja/p0jnMWqb2oqIaj74X3/gLPfaxw68673mC0crBhVnbjR11UlDKkguu+Nww9C7qPa+tKSmPsp6DnvvDQYdnNa9rauu3d/0k958Rnoe/B2e0jqf2LZBAYP/6zwX/TXPJPiNbCmEuhbmDxa5MkSZIkSZIkSZIkSZIkSZLKTBncSSpJOartl9m44R+CaEVxa5EkFVYkApVdYOem7OcmuyF1l3gMlj8AK/8F9UNg9MVQ1T39vF0STZndwNYhJODZj8HA46G6V2GX3jIf3rsZZn41ZOsmeONbsHNzEIi16O+wbVFma29dAPGdQbieCie+I3n7gGNg5aOt2xNNQQDQuMuD9/HT5+e+980V0H1C8HXfg6HLSBh2VnDD+i5bF8GsbwZhSsm8ehW8dxP0mtKsMQ6rn4Eek2DQiUG4UTahaOOugAN+/v76BqNlpMe+sOqJ1u3R6iAY4L6pqee/8KngmBTPIMgymUQcnjoPzl4J1T1yW6PcrHkBltwOy+4OH5PseBiJwOCTgkfD8uCG63Jz+7DwvmiZfJw16uPZBaMlYvDSv8NhN2e/18pHMjtX2SWX8DVJxRWtgFEfDQIp1z5fmDVXPhL8fss0RFbFsf71zMd+aEtwrSupPPU7FMZ9Ft7+ZeZzYttat6U6vx7//wxFkzqrTD+v7HNA8JAkSZIkSZIkSZIkSZIkSZI6sTK5k1SSclA3JLNxE79Q3DokScVRUZ9bMFosJDQkkYCXLod3frO7bc5P4KQXoW5gEMKVTnxH5wrcijXAkjth1McKt+bqZ+DRk6BpS/qxc3+a2x4Lb4G9PpzbXCUXa0ze3nsarHoyCELb00v/HoT4dBkJse357b9pdss/3/wuHH4LDD0dVj4Ojxydfo31rwSPPW1+O4dQqAiMuSTLOWLEh4IwGBIt24efF4TWfWgr3JImKGTRreHBaEfeEbzmnrkwfH68EVY8CMPPzar0sjT/T/D8xUEgTiqRNCHRmQZO52P674LwtiV3FGa9dN9zqXTfG7qNhc3zMp+z8K/Qa2r216lLbs9ufLXBaFLZGnFB4YLRADa/C93HFm49ZW/b4szGHfeooWhSe1A7ILvxe4bXNiUJSmuu+/js1pfUzkTCuzrT58qSJEmSJEmSJEmSJEmSJElSnqJtXYAk5axucPoxR/zTG40kqb2qqMtt3v0HwFPnw4ZZLdtf+0LLUDSAbUtg1jeCrxfelH7tsDCejmzjW/mvEdsB8/4bHjoCHjoss1C0fLxgYFXBxXckb6/sCt1Gh8977Yvw9HlFqKcRXr0K1r+eWShaoY29DHruW/p927v+R8Ih/wv1Q4Pn0eogHGb69cHzyvogaCqVNc/SKlhtl+qeMOJ86DYu9RrblmRVdllqXAvPfTyDULRKiKS4KRugpn/h6kpm/OeCIMEDfhXUUwgNywuzTr4iERh2TvbzZl0D21elH7f6GXjsVPhHb3j399nt0efA7OuSVBrjr4B9vla49e6fCg8dGfxe2LqwcOsqMzs2wutfTj2mpl8QEjrg6JKUJClPVd2zG79nMNrmt1OP7zEhu/UldRwGo0mSJEmSJEmSJEmSJEmSJEkZMxhNUvtVPyS8b9RFcH4TDDuzZOVIkgqsojr3uYv+Bg8cBFsWBM/n/gJm/yj52Hd+C/NvaB2klkxnDEbL5Oeyp9j2lj+r1/8TXvwMrH6qcHWl279hZWn26izijcnbozXpg6yKZfM8uG9K6fftsQ/sd23p9+0o9vownLEIzlwC526Ew26Cyi67+7uMSD1/e4r39q4QsAlXpl6jYUXm9ZaT2PYgEC3eBLf2zWxONIMgstoiB6PVvX/dVj8E9vpoYdbsMakw6xTCxKuDwJtsxBpg4V+Dv0sIAu4ScUgkIB4LfoeteiIIE112D+xYn31doz6R/RxJpRGJwORvBZ9bjb44//WatsLqJ2H+n+D+A3M7Zig38SZ45NjUY87dDGctC0JCJbUPVd2yG79nMNrGOanHt9U1tKTSSBVOHjEYTZIkSZIkSZIkSZIkSZIkScpUBnfISlKZqhuUuj9aUZo6JEnFEcnzVDXWAHeOgklfhXd+k3rscxdltmZnDEZbfj9sXwO1GYTw7NwCz18MS+6ASBSGnwsjPwJzflL8Ovf0xjfhwF+Xft+OKhYWjFYNg04O/s47g0EnwaF/geoebV1J+xaJhIccpwtGq6gL74u+f4PxmE9CZVd45sPJx82+DhbeHBwjhpyavt62tmM9PPcJWHJ79nMzuem6JsOQtVwNOnH319N/C93Hw7J7g+fjPwfrXoY3swwb7Htw4erLV3UvOOk5mPkNeO/Pmc97+XPwyn9AIhac8ySaClfT6Iuhh4EbUtmLVkC3sYVds3E13DsFzlxY2HWV3Mp/wfpXwvvHfAqqupauHkmFUZltMNq2ls+X/DN8bO9p2YfqSuo4ogajSZIkSZIkSZIkSZIkSZIkSZmKtnUBkpSzilqoqE/eN/z80tYiSSq8Qt0o9uZ3goCAQojvKMw6bS2eTfhKAmZ+LbOhz30MFt0C8cYgmG7BjfDoiennFcO862HNC22zd0cU9tqvqAnC7/oclP8e9cPg4D9BpEzDbSd9BY65H2r6tHUlHVu6YLRUx/PmvzdGXghjPh0+dttiePw02PBGdvW1hacvzC0UDTJ7vVaGXFMVwqiPQ6/9dj+PVsDEL8DxjwWPYWfBuM9mt+aYT0HPyYWsMn9dR8Gh/wsXJlo+zgsJldwlEXv/zwKGovWeBgf8qnDrSSquwTNS99cPg3PWw/FPZr7mtkWw8rG8ylKGFt+aur/HPqWpQ1JhVWUZjBbb2uzr7cHnImGmfD8IipbUORmMJkmSJEmSJEmSJEmSJEmSJGXMYDRJ7duoj7duq+wKA44qfS2SpMKq7NrWFbQW39nWFRRGbHt24xfcAE3bUo9pXAdL7si9pmKY86O2rqDjiIeE+0RroKorHPcoTLgq9/WHngGnvAajPganvJ77Osn0PyoIb9v1qKjLfO7Ij8C4K+Coe2C/7xS2LiXXZWTq/g0zw/silS2f1/RNv9+8X6cf05a2LoTl9+c+f9BJ6cdUZhn8kE7X0TD2cjj873DQ79OPrxsQhP6kUzsQjrwjCP1qL2ESFdVw8svFW3/az2H/n8Koi2DUJ+DAX8MJTwehlZLahx77QI9Jyfv2/wl84C2o7gn9D4dpv8h83Xd+V5j6FG7rQnjnt6nH1A8uTS2SCivb8+OmZsFoS+8KHzfsbBh4fG41SWo/9vxsojmD0SRJkiRJkiRJkiRJkiRJkqSMpfg/cyWpHdj3Glj/Cqx5NnheURvcgF9R26ZlSZIKoNBBLYWQ6CjBaA3Zj3/7lzDxi+Fj1r8GiVh+dWWjsmsQ+LP41vAxi/4OjWuhpk/p6uqoYmHBaNXBn5V1MPWH0GUveOny7Nbe5xsw+Zrdz3tOgt4HwroXcyoVCMLQjvsXRJJkgSduhBcvg3f+O/UaZy6G+qGZ7Tf9d/DCpa3bR12U2Xzt1mVEVsMXNIzkjjWns6GpJ6ct68q0ns06MwpGuz4IkypXKx7Ob/6U76cf0+fA4L0c35HfXgDjPw/7/zj5ey+V6p5wwlPwxFnQuHqPvt7BNd7AY/Ovry303j8IWXzvz4Vfe8QFUNuv8OtKKp1IBA7+IzxxBjQsD9q6jAzOY7ru1XLs0NPh5SsyW3fhTTDiPBhyWvsJk2xvXrws/Zi6IcWvQ1LhVWX5eVTjut1fr3s1fNyIC3OrR1L7MvLDMPOrrdvrh6YOTZMkSZIkSZIkSZIkSZIkSZLUgv/3raT2rbYvHP94cMPR9uXQ/0io7tXWVUmSCqGqa3jfgdfDi58pXS27FCI0phxkG4wG8NqXoOtoGH5O8v7Z1+VXU7ZGnAdDz04djAZwa184aznUDSxNXR1V2Gt/VzDaLuMuC8I3MgmKABh9cctQtF2yDVVqrtdUOP6x8P5IBKZfH7yGHjkm+ZizV0Jt/8z3HDwDKrtA09aW7cPOzXwNBbIIRntu40HMmHU3G5qC8/9v/zzBHy+K89FD3n/9ZBKMBjDr27Dv17KttPi2vAfPX5L7/LNXBoFj6VR1g6FnwqJbct8L4NS50H1c7vP7HQanzYXVT0PDiqCttj/0OxxqeudXW1ub+kNYeifs3FS4NcdeZiia1FH0ORBOnQNrng/OgfodDhU1rcfVD4OKuszP5Z84A0ZfCgf9trD1Cja/C8vuTT+ubnDxa5FUeNkGo735HZj0peCacNOc8HFDTs2vLkntQ9eR0Gc6rH2hZfvw8wyslSRJkiRJkiRJkiRJkiRJkrKQx93mklQmolXQdzoMPcNQNEnqSCpTBKMN+yCMu6J0tewS31n6PYth41u5zXv1CxCPtWzbuQlevByWP5BfTZXdoH54+nHRahj5YZj2SxgyIwjJS+e1L+VXm8Jf+xXVrdvGfgb2/xlU9Ui95t5XwvSQoI5cg9H2+igc90hmYwccDcc/AV1H7doU+hwEZ7yXXSgaQP1gOOZB6PZ+KFTtAJj+m+A1quzUDsp46FcWfOf/QtEAEokIn705wc6mRNDQ54DMFpr1ddgyP5sqi6thBTz/Sbhzr/zWyeZ1fNDvg9+t0argMfRMGHF+5vMHnZJfKNou1b2CwIgxlwSPoae3/1A0CMI5J3+ngAtGYMr3CriepDZX1R0GnQADj0seigbB+VHfQ7Jb993fwd/qYf4NkEjkX6cCS+/KbJzhzFL7VJllMBrAg4fATRFY8s/k/cPPCz++S+p4jroLBhwbnL9V1AdhtVO+39ZVSZIkSZIkSZIkSZIkSZIkSe1KZVsXIEmSJCWV6kbUaDWMvhjm/wGatpSupo4SjDb3Z7nN27oA1r+6O2wokYAnzoKV/8ptvaoecNrbEKmEqm4Qb4Jb6sPHz5gZhFhVdtndNvbTMOaT8OgpsOLB5PMW3RIEqFXW5VanIBHy2o9UJW/f+3NBQFp8R3Dzd3wHNK4N/u4iFVBRl+am8EjmtfXaH054Aohm/3fc/wg47R1oWA4VtfkFMPU7FE6bC9vXQE0fiGTxPWi3aEVGwxrj1Ty64ZhW7Zu3w2NvwwkTge7jM9934S0wqQxCFHduhvsPgIal+a3T+8Dsxld1hSP+AU3bIBEPnq97FRb+Nf3cSAWMb4Ow0vZm7Kfh9a9A0+b81uk6Gk6dHQTYSep89r4SVj0WHKszFWuA5y6C7atg4tXFqqxz2fhG+jG1AzxWS+1VVQ7BaBtmpe4f/sHcapHUPtX2D4L7d2wMPm8yGFGSJEmSJEmSJEmSJEmSJEnKWrStC5AkSZKSquoa3hetgl6T4diHS1cPdIxgtMZ1sOKh3Oc/cCDM+WkQirb0rtxC0bqMhGEfhJNeDG4UrOkd/J2mC7WqG9IyFG2XSBTGXBI+L9YAKx/Jvk7tFm87yJnlAAAgAElEQVRK3h5NkbVdUR28j6NVwd9bl+FBYFh1z/Q3hKYKFZv+W+h/JPTYByZ+EU54Klg/1+C7SATqB+cXitZcbV9D0fI19jNph2xs6hHaN2dFYveTkf+W2Z5Lbs9sXDHt2Ah/755dKFq/w5O3Dz0jtxoq63f//u09FU58Drrvvbt/4Akw4w0Y//ngPTjoFDjqHhh8cm77dSbRKtjrI9nNqR8a/J6sHQC9pwVBoCc8bdCO1JkNmQFH3gWDToK6wVA3KPO5r30Bti4uXm2dybu/Tz9m8AeKX4ek4ohWQb8jCrtmtyxCmyV1HNU9DEWTJEmSJEmSJEmSJEmSJEmScpTiLnZJkiSpDQ06Cd78bvK+itrgz74HwYSrYfYPS1NTfEdp9imm9a9AIp7fGq/8B2xfCeteyW7ePl+Dyd9KPSZaHf5zruoePm/QyRCpgEQsef+S22HIqZnVqdYSIaGARQvnSREsNvIjMObSIu2rsrD3f8CSO1MGhG1qCj8edG1+z3HdwMz2XPs8vP3rIFCsfkiGhRbYMx/Ofs6oTwTBgMsf2N3WfQKM+VRhaup7EJw6u3X7tJ8WZv3OZvJ3YP6fgsDO5iKVcNjNMPycNilLUjszZEbw2GXVU/DYDGjanH7u3XvDeVuLV1sxNTXAhplAAvoc1HZBtOtfTz+mbhBMuLL4tUgqnv2uhYePLNx63cYWbi1JkiRJkiRJkiRJkiRJkiRJkjqBaFsXIEmSJCXV73CoH9q6feiZEGl2GlvKsKt4SDhUe1Ko7+GtH8CKhzIbO/YyOOru9KFoEITDhImm6KvqBnt9NLx/xSPp91ZyiXh4mF6qv6+8pAi62BWMqI6r2xg46YWUr6+NsR6hfV2aB6NV98x835cuh9uHwutfhUQi83mFsG0JLLsn+3lV3YLj60F/gDGfhv1/Bic+A7V9C1+j8lfTG85eAZO+GhzLolVBwOtJzxmKJil3/Q+Hk1+ECVelHxvbBhuTBF6Wu3WvwH37wYMHw4OHwAPTYVt4gGpRzfpm6v6uY+CU16DHxNLUI6k4+h8BtRmGLKdT1RMq6wqzliRJkiRJkiRJkiRJkiRJkiRJnYTBaJIkSSpPkSgcenNwA+ku3cbBAb9qOa7fETDpyy3bRl9SnJoSHSEYral0e03+NlyYgAN/BUM+kNmcVOFn6Uy5Lrxv63ulDzrqKBKx8L5iBaNFUlyqRlKEpqnjqB8M+3w1tHtjU3gwWn11s9dIVRbBaLu8eS2seDj7efnY8EaOEyPBcXP0x2H69bD357ILg1PpVXWH/b4N5zXA+Ttg6nXQe1pbVyWpves+Hqb+EI66JzjOpDLz66WpqVASCXj+Utg8b3fbupfgpc+WvpblD8KSf6Yec9rbUNu/NPVIKq6+hxRmnQHHFGYdSZIkSZIkSZIkSZIkSZIkSZI6EYPRJEmSVL76Hw5nzIej7oLjHoUZs4KwnOYiEdjvWjjtnSBI7ZTXYfpvi1NPfEdx1i2lVCFXhTT4AylDjUL1PiD3PWv7wonPhvcvfyD3tTuzeIpAwGhVcfbsOro466p9iVaHdm1IEYzWIgMxVcheKgtvym1erhqW5zbPEDRJUnNDZsBp82Cfr4WPWfwPmP3j0tWUr3Uvw/pXWrcv+SdsXVy6OmZ9Gx49KfWYg35viK/UkRTqXHvcZYVZR5IkSZIkSZIkSZIkSZIkSZKkTsRgNEmSJJW36l4w5FQYcDRUhIfk0G00jDwfek0Obkaf+KXC15IqIKq9SDSVZp9cf/4TrkrevtfHMptf2z+874VLs69HqV8z0cri7Dnu35O3D55RnP1UnqI1oV0bUwSjNcWbPUnEQ8eltOjW3OblatuS7OdUdoG+hxa+FklS+1bbHyZ/C3pNDR/z6lWw+Z3S1ZSPtc+H9y27uzQ1LPgLzPp6+nFV3Ypfi6TSqSpAMNr038CA4/JfR5IkSZIkSZIkSZIkSZIkSZKkTsZgNEmSJHVMoy4q/JodIRgtnkEw2oBj8tujz8HQ77Dc5g48HnpMatkWrYExn8xsfk3f8L5tS2Dn5tzq6sxSve4jVcXZs9cU6HfEHntFYexnirOfylNFbsFoseZZaN3H57Z30+bSBsZkErayp9GfhMq6wtciSeoYDvtr6v67xpamjnytezm8b/1rxd9/8e3w7EcyG1tpMJrUoVTnGYw2+NTgs4xIpDD1SJIkSZIkSZIkSZIkSZIkSZLUiRiMJkmSpI4p1zCcVDpCMFoilrq/y0g45iGY8gOo6p79+v2PgmMfzP3G32gVHP84jL4k+Dsc/AE45n7od2hm89OFEWyel1tdnVmqML1oZXH2jETg6Hth3Gehx0QYeCIceQcMObU4+6k8RatDuzbGwoPRmmKJ3U/6HQFVOQYa3DUWEon04/K14Y3U/X2mw4QvwJTrguDJ3gfAlO/D/j8qfm2SpPar+7j058ZrXypNLflY+2J4X+Oa4u0ba4QXPgVPnpX5nCqD0aQOJd9gtNEXF6YOSZIkSZIkSZIkSZIkSZIkSZI6oSLdxS5JkiR1QPEdbV1B/hIpQq4ilbDf9yBaARO/AGM+Cf/old36R9yWfyBATR846He5zU0XyLb4Vti5CbqOhi7Dctujs0mkCASMVBVv36qucMAvire+yl+0JrRra6xLaF/zXDQqqmHK9+DFz7Rct/f+sObZ9DXMux7GXZZBsXlY9I/wvn2/Cft+fffziVcXtxZJUscy7jJ46wfh/cvvhz4HlK6eTDWshK0LoKYfbHorfFwxg9Fe+iy8m+U1SWXX4tQiqW3UDsx97oBjYfCMwtUiSZIkSZIkSZIkSZIkSZIkSVInYzCaJEmSlKl4ioCo9iIRC+874Unoe/Du51U9sl+/OssgtVJ787vBA2D0JXDgfwdBcAoXTxGmF/WSUkVUER6MFk9EQ/ua9jzMjf00dN8bltwBlfUw/FzoNQWW3Q+vfQk2vB5ew0uXQ91gGHZmlsVnYcVD4X1Di7ivJKnjG/Xx1MFoM78W/I4cfk7pakolkYC3fwWv/L/Ugc67FCsYbecWeO9/s58X8dxY6lAGnRC8r/c8HtUNgpEfgZ0b4Z3ftp4XqYSj7w1CmiVJkiRJkiRJkiRJkiRJkiRJUk7C7ySWJEmS2rsJVxd2vQ0zC7teWwgLGOg6pmUoGkAkAt3HZ7d+JJJbXYWUaZDQu/8ThC689QOY+wvYurC4dbVXqUIpDH9QMUXDgwRiVT3D++JJGgccDdN+CvtdG4SiAQw+GWa8Bqe8lrqOJ8+ChpXp683VlvnJ22v6Qa/JxdtXktTxdR8P036ResxT58JLV8DG2aWpKZUFN8DLn80sFA2KF4y2aQ7Etmc3p6IOuo4qTj2S2kZ1LzjkxpbXvX0PhQ/MhqnXwfTfwGF/g2izQOfeB8CZS1KGPEuSJEmSJEmSJEmSJEmSJEmSpPQMRpMkSVLHNewcoIBBXfP/AItvL9x6bSERS94eDQm4GnFh8WoplhEXZD727V/Ca1+Clz8H906B1U8Xr672Kr4zvC9aVbo61PlEw8MEYtGuoX1NyYLRUum1Hww/L/WY5fdnuWiG4jthe0jo2iE3FmdPSVLnMv6zMO6K1GPe/iXcNxUW/7M0NSUz/0Z47uPZzWlcC4lsf/FnYNOc7OcMOR0q6wpfi6S2NfICOGMhHPZXOOFpOP4xqO6xu3/Eh+D0d+HQm+G4R+GEp6BuQJuVK0mSJEmSJEmSJEmSJEmSJElSR2EwmiRJkjquvtPh0L9ATd+W7ZVdcg90eumy4tx8XyrxpuTtkZBgtElfgbGX7Q4o6rlf0JbM2Mvzr68QRnwIBhyb/bydG+DVqwtfT3uXCHnNQPjrRiqEivBgtHi0S2hfLJdD9MF/SN3fsCyHRVPY8h48fjr8tRpIJB9TP6Swe0qSOq8RaQJAAeKN8OTZEGssfj172rkpCCrOViIGT5wJa1/Mv4Y1z8EzH4F/nQTP/lv28w/6n/xrkFSe6gcHx9F+hyb/LKl+CIw8HwYcnfIaRpIkSZIkSZIkSZIkSZIkSZIkZc5gNEmSJHVsIy+As1fCmYvhgljw5zkbYcabUFHXcmzdEDjldeh/ZPh6DcthwxvFrbmYwkKuIhXJ26MVcOCv4NwNcNZymPEaTPrP4GfVXEUdjLm0sLXm4/Bbcpu35tkgsKi59hyEVwjxneF9uQYMSpmIVod2xaJ14X25vGUr6+Ho+8L7m7bksGiIhuVw1xhYelfqcXseZyVJylXfQ4JHJh4+qri1JLP0niCkOKe5dwU1r3429/2X3QcPHwnv/QVWPJj9/HFXQFXX3PeXJEmSJEmSJEmSJEmSJEmSJEmS1ILBaJIkSer4IlGoH7r7z2gFdB8LJz4Dg06GLnvBiAvg+Meg1+TWgWl7um8/eORY2PxuScovqEQseXu0MvW8ilqoGxh8XdkFTnoeRpwf/OwGfwCOfQR67VfYWvNR0yf3uXfuBbd0gyfPhbsnwl+r4b5psOKRwtXXnsRDwvQg/etGyke0JrQrFqkN7WvKNctw8MlAJHlfId//s74ZfizepaIWqnsVbk9JUucWicAxD2Q2du3zsHNTcevZ07J785sfa4C5P819/pyfpA4DTqeqW+5zJUmSJEmSJEmSJEmSJEmSJEmSJLViMJokSZI6r15T4Jj74Iz5cNhN0G1M0J4ijOf/rHwUHj4KmrYVt8ZCCwu5ilRkt079EDjs5uBnd/Td0O+Q/GsrtOHn5T63aQss/gdsmh0EGK1/BR4/HTbOKVx97UUiRUhEpKp0dajzqUgVjJaiL9dgNAgCH5NZ+zw0rs1j4ffFm+C9P6cfVzswCLGRJKlQqrrB6EsyG7vulcLvn0jAlgWw+mmIbW/Zt/nt/Ndf9Pfc61r1RH571/bPb74kSZIkSZIkSZIkSZIkSZIkSZKkFgxGkyRJkvZU0yezcQ1LYcUjxa2l0BKx5O2RytLWUQqjPlbY9WLbgrC0ziYsTA8g2gFfNyof0erQrkSKYLSmfILRKruG9839eR4Lv2/WNdC0Nf24vmUYNilJav8qu2U2blOBw4CbtsKTZ8Odo+Chw+G2gbDi4d39jWsKs08uIaZNWyC+I/24ab+Eqh7J+wadkv2+kiRJkiRJkiRJkiRJkiRJkiRJkkIZjCZJkiTtKdNgNIA3v1u8OoohERJy1REDrgadDL2mFnbNjW8Wdr32IOw1QwQiXlKqiKJVoV0xwoPRYnkFo3UJ73vj27DuVXjz+/DKlTD3v2DrwszX3rkF3rw2s7Ejzs98XUmSMlWVaTDa3MLu+9Z1sOT23c93boR/nQDLHgieFyoY7ZUrs5+T6d6jPgqH3AgVtS3b9/8pdB+b/b6SJEmSJEmSJEmSJEmSJEmSJEmSQnXA9ANJkiQpTzV9Mx+7Y23x6iiGRCx5e6SitHWUQiQCh94E90wo3JqL/g6H3Vy49dqD+M7k7SlCq6Rii0XrQ/ua8gpG65q6//79Wz6f+VU46m7of3j6te/dJ7Maeu4Lg0/JbKwkSdnINBht87zC7vveX5K3P3Yy7PUx2LmpMPssuAEO+VN2czIJRqvsBlXdYejpcPp8WPkoxLZD/6Og2+icSpUkSZIkSZIkSZIkSZIkSZIkSZIUzmA0SZIkaU/ZBKO1t3CoeFPy9kgHvTSo7lHY9RIxSCSC0LXOItHJXjMqH11HBcfjPQNLKuqJ1w4MnRbLKxitS3bjd26Eh4+A0+ZBtzHh4zbNha0L069XOxAOvbn9/W6RJLUPVd0zG7f+FXjuYpj/h+B5RT0c/ncYMiP5+KYGeOsHsOpxaNoctFV2gwFHw9jLYcu74XstuCHj8jPSuBZq+gTn7Av/Cgvf/7069jIYeFyS8RkEozUPlKsbBCMvLFy9kiRJkiRJkiRJkiRJkiRJkiRJklqJtnUBkiRJUtmp7p352Eg7C68JDbmqKG0dpVLVs/Brzvxq4dcsZ/GdydsNblKxRaIw5tOt20d/glgiPJivKZbHnpX1uc27ayxsfie8f/FtqefPeAPOWg5nLYOek3KrQZKkdKI1mY1rWL47FA0gtg0e/wAs+EvrsYkEPHoSvPFNWPUYrHs5eKx6DGZdA3eOKkDhWXjr+0FNs66BZy6EpXcFv4f/dTy8d3Pr8Y1r06/ZPBhNkiRJkiRJkiRJkiRJkiRJkiRJUtEZjCZJkiTtKRHPfGy0unh1FEMiJDEoEh4y1K5V1kHvA5L3jb08tzXn/ASaGnKvqb0JC9OLdtDXjMrL5G/BlOug5+Tgse83YdrPicUToVNi4V3pxUNe75m4ayw8cixsmd+6b9m94fNGXBCEodUNhEgk9/0lSUpn5+b85r/5ndZtS++G1U+Gz2nKc8/m6galHzP7R/C3GnjjW637nrkQmra1bGtck37NSoPRJEmSJEmSJEmSJEmSJEmSJEmSpFIyGE2SJEnaU++pmY+taGfBaGGhPx055Gryt1sH2E35ARz4X7mtF9sOKx/Nv672Yvvq5O2RqtLWoc4pEoGJV8OM14PHvl+HSJQUuWg0heQ/ZiSWZ+jhykfhocMh1tiyfcf68DlDz8xvT0mSMtVnen7zN81pGSy2fRXM/Gp+a2ZjwPGZjYvvDO+7b0rL51sXpl+vymA0SZIkSZIkSZIkSZIkSZIkSZIkqZQMRpMkSZL21GUv6D4hs7HtLRwqEZIYFKkobR2lNPhkOOFpGHcFjP0MHHUPTPxCfms2rilMbeUskYC3roOXLk/e35HD9FT2YvHc+tKKFOBjkoblsPjW3c8TCdi2OHz84Bn57ylJUiZ67w81ffJbY1cw2qxvwe1DYcPM/OvKVEU1jL44vzU2z4N1L+9+vmlu+jlh11CSJEmSJEmSJEmSJEmSJEmSJEmSisJgNEmSJGlPkQgc/MfMxkbbWzBaU/L2SAcPuepzABzwczjw1zCkWQjRpC/ntl5Vt8LUVc5WPQ6vfTG8v72FAqpDSRV+1pRPMNrQM/KY3MwzH4YXL4d7JsF9+8HOTcnHjb0cqroWZk9JktKJVsKhN0G0Jvc1Yg2w/EGY9Q2I7yxcbZmIVsO+10DPffNb5/4DYO2Lwdeb5qQfv3NzfvtJkiRJkiRJkiRJkiRJkiRJkiRJyorBaJIkSVIyfQ+Cg29IP669BYolYsnbIxWlraNcDD8XiGQ/L58wifbivb+k7o+2s9e+OpR4IrwvVWhaWt0nQI+JeSzQzLxfw8a3YMOs8DGTv1mYvSRJytSgE+HMRXDIjTD+89nPjzXAnJ8Uvq5MRKuhfiic+BwcfV9+az0wHWZ9C7a+l35sWMCpJEmSJEmSJEmSJEmSJEmSJEmSpKIwGE2SJEkK031c+jGJncWvo7mdW2D2j+DxM+DFy2DbkuzmJ5qSt3fWkKteU+DQm6CqR3bz4juKU085efd/Uve3t1BAdSipws+a8glGi0Tg6HuDY0Ox1fSDmj7F30eSpD3V9oe9/g2Gn5P93LvHw/IHCl9TJqJVwZ+V9TD4ZOi+d37rzfoGkCJtdZemLfntI0mSJEn/n737jo/sru+F/zmSthfvet3WvdtUY7BxsE1wgiFwSR5aKAkhIaSQkEuAkHvTHi6hPJc0SCMJISEO3HATjAOEJJRQQzHFlBgwLtjGhV23NdtXqzbn+UO7rHZ2yhlpRpqR3u/XSy/p/OpXs6NBZ/DvIwAAAAAAAAAAAKAjTrIDAEAzK45pP2Zqf+/rOKisJf/5o8n9/3mo7c53J0+5Lll7ZrU1ak2C0ZZyyNXpz09OfU7yzdcn33xttTmLPRitrBAQcTCYAhbAVIunaKvQtErWnJY89WvJ3ruT5Ucly9YnYw8me++cDpIZWp6MrEtu+N/JDW+Y/T5zDXMBgLkaXr3QFXRmaPnh16tOTHbd1Pt9T3567/cAAAAAAAAAAAAAAAAAvm8Jpx8sbUVRnJ/kgiQnJ1mVZH+S+5PcmuT6siz3zmHtZUkuS3Jqks1J9iTZmuRrZVneMbfKAQDmUb8Fo9159eGhaEky/r3klr9IHv2mamuUU43bi+G51TbohoaTs168OIPRtnww+fqrk313Jkc9LHns3ybrz2k959a/br/uUg7TY8G1Cj+bczDaQWtOOfT1ik3THzNd8Ppk5fHJV142u/VPeOLsawOAbhgZ8GC0NafNz76n/9T87AMAAAAAAAAAAAAAAAAkEYy2pBRFsSHJy5O8ONOhZc1MFUXxX0muKcvy9zpY/9gkr03yvCRHNxlzbZI3l2X5z5ULBwBYKMuOmj583yoEaz6D0W76o8bt932i+hrlZOP2IbcGWXNqcvYvJbe+tf3YQQlG23FD8plnJLWJ6ev7P5185LHJ0+9Ilh/VeM5d1yTX/XL7tZdv7FqZ0Kla2byva8FoVZz335PxB5Nv/G7nc89+SdfLAYCODC9wMNrQiung0dGtFccvO/z6tJ9Ibr+q+3XNdOLTkmMu7e0eAAAAAAAAAAAAAAAAwGGkHywRRVE8J8lfJdlUYfhwksckOTlJpWC0oiiemuTvkxzXZuilSS4tiuJdSV5SluXeKusDACyIokiOvijZdm3zMfMVjFaWyfe+0rhv+391sM5U4/ZiuPOaFqOL/zI59tLk1rclD3y2+bhBCUb7xv86FIp20MSO5O5rkrN+7vD22kTyhRcnd/xDtbVPeGJ3aoRZaBV+NtnkZa5nHvGaZMMjky0fSEbvTfbekey6qfWci96SrDphXsoDgKZGFjAY7bxXJme8INl4YXL7O5L7Pp6sPnX6d/AHPtN4ztDyw6+PvyJZd26y+5bu13faTyTHPT458+eSIfdKAAAAAAAAAAAAAAAAMJ8Eoy0BRVG8JsnvNui6K8ktSR5IsjLJ5iSPSLKmw/WvSPL+JDNPppVJvprk9iQbklyY5JgZ/S9Isr4oimeUZdniSDsAwAI78amtg9Fq8xSMNrGrdf/4zmT5Ue3XqU02bi/cGiSZDsM744XJKc9OrtlwZKjYQYMQjDa5L7n7vY37vvjzyfE/lKw9M9lze7L1w8mXf6X62sc/MTnv5d2pE2ahVTDaVK2cv0IOOuWZ0x8H3fKXyVdf0fg15PQXJOe8dP5qA4BmhhcoGO2kH0se8+ZD12f97PRHknzpl5sHoxXLDr8eWpZc8vbkY4/vbn2P+r3kob/R3TUBAAAAAAAAAAAAAACAyqQfLHJFUbwqR4ai/WOSN5Zl+Y0G44eSPC7Js5P8SIX1T07y3hweiva5JL9QluWNM8atSPKSJH+U5OAJth9L8oYkv13x2wEAmH8rT2jdPzUPwWhTY8kn2/xqtvfOZPkj269VNglGG3JrcJiR1cnmpyZbPtC4fxCC0T799Nb9HzgrOfNFyZ1XJ1P7qq/7xE8lx146HUQBC6RV9tnUAuSiHeHclyabn5w8cG0ytTcZWj4dcHn0Rcmxl0+HMALAQhteuTD7nvEzzfuGV7ToW35k23GXJz++I7n9quSrr5x7bUmy6sTurAMAAAAAAAAAAAAAAADMivSDRawoiguS/N6MpokkP1mW5TXN5pRlWct0sNnniqKo8vx4bZKNM66vTXJlWZaHJYSUZTmW5M+KorgryftmdP1aURR/XZblnRX2AgCYfyOrW/ePbUsm9iTL1vauhruuTh78Yusxe+9INlYJRptq3F4Md1zWovcDVyX/vKlx33wE4s3F/geSez/Wftztf9/Zuhe/NTn+CbMqCbppqta8b7LJy9y8W3f29AcA9KuiSDY8ItlxxN/PSIqhpGzxP7j1hpYnx12R3Psf7cee8szW63Tat/yo5PxXJJsuST56afv921m1ee5rAAAAAAAAAAAAAAAAALM2tNAF0BsHQs3+LoeH372kVShavbIsJ9vscU6Sn5nRNJ7kRfWhaHVrvj/JO2Y0rUjymqo1AQDMu+E2wWhJ8h+XJJOjSVn2poab/qT9mL0Vc2ZrTX7Fq5SJu8SsODo5rkkI2NdfPb+1dKpKKFqnVhybnPHC7q8Ls9AqGK1VHwBQ56xfPLJt81Or3QfN9OM7kkf8r/bjHvI/p0PXmhle2byvWNZ67WMuSTY+qn0N7aw6ae5rAAAAAAAAAAAAAAAAALMmGG3xek6SR8+4/nhZlld1eY+fTDI84/q9ZVl+u8K836+7fm5RFC1OvAEALKCRCoEAO7+VXL06uWZD8pnnJPvv724N27/afsyDX2w/Zu9dyX0fb9xXDDduX+qGljfv6/a/czftv7e76534o8lTrqv28wDzoNYih3JSMBoAVHfef08uekuy4YJk9anJ2b+UPP6aZHJP9TVWn5qMrEo2Xth+7KrNbfpPbN7X6nfzZDpw7Yc/lpz+wmTlCcnRFyWX/mPyzK3Jyc9IVh7fvr7Vpybrzm0/DgAAAAAAAAAAAAAAAOiZkYUugJ55Sd31/+7BHs+su64UvFaW5Y1FUXwxySUHmtYkeXKSD3SxNgCA7hheVX3sxK7k7muSB7+UPP070wfz56o2UW3cHe9KfuAdyVCTgLOpseSjlzWfX7g1aKhV+MKd707Oe1nr+VNjyc4bkvXnz2+o2Ni2ua9x/quSR//R3NeBHphqEX7Wqg8AaODcX5n+mKuR1cmKY5OxB5qPaReMtv785n2Tu9vXsGJTcuk7j2z/wfcd2faddyWf/6kZDUXyiP/V/J4KAAAAAAAAAAAAAAAAmBddSGqg3xRFcXaSJ8xouiPJJ7u8xwlJLpjRNJnkcx0s8am666fOtSYAgJ6YTZjVvruS9x6XTI3Pff89d1Qf+8Bnmvdt+UCy77vN+x3+b6Js3rX71tZTb39ncs2G5MOPSa7ZmNz4pu6W1spcg9Eu/b/JhX/YnVqgB1qFn00KRgOAhfO4BqFkM7UNRjuved/UaOf1tHLGC5InfyE582eTc34leeInkrN+rrt7AAAAAAAAAAAAAAAAAB0bWegC6Ikfqrv+eFmWLRIdZuXhdddfL8tybwfzr627ftgc6wEA6I3hWQSjJcnYg8k3X59c8Pq57T92fz91sfoAACAASURBVPWxD3wuOf6Kxn0PXtd67u7bqu+zlLQKX2gVmrf9+uQLP3PoujaefO3Xkw2PSDY/uXv1zbTzW8k9H03Gv5fc+rbZr/OI1yWn/0T36oIemGpxh9sqNA0AqOiclybf/svO522of9u4ztqzWvevPCFZtiGZ2HFk37GXd15PO8dcMv0BAAAAAAAAAAAAAAAA9I2hhS6Annhs3fXnk6SYdmVRFFcVRfGtoih2FkWxtyiKO4ui+FhRFL9ZFMXpFfd4aN31rR3WWJ+8Ub8eAEB/aBV+1c7d75n7/hO7q4/9+v+b7Pr2ke1lmdz4h63nHuXXsYYm9zXvG17VvO+772/cfvf75lZPM7f+bfLBRyZffUXyzdfNYaEiOeOnulYW9EqtRfjZxNT81QEAi9bJz6g+dt3Zh75efXJy/A83Hnfs45PVJ7VeqyiSs3/+yPY1pyUbH1W9JgAAAAAAAAAAAAAAAGBgCUZbnC6qu77xQODZx5J8NMmLkjwkyfokq5OcmuSJSd6Y5JaiKP6iKIp2CSBn113f1WGNd9ZdbyqKYmOHawAA9N7wHILR9twxHUrWiS3/nnz+RckXXpxs/Ugysauz+f92bvLZ5yYfvzL52v9Mdt+WbPtC+3nrz+9sn6ViapbBaN/43cbtt751TuU0tG9r8qVfSMoupEFdfnWy9oy5rwM9NtXipXX/xPzVAQCL1uYnJY9+c7X7oYf8+uHXj3tncvTFh7cd/Zjksn+qtvfDX5Oc+pxD1+vOSa74cFL4vzMAAAAAAAAAAAAAAABgKRhZ6ALoic1116uTXJfkmApzlyV5aZLHFUXxtLIs72kybkPd9f2dFFiW5Z6iKPYnWTmj+agk2ztZp15RFMclObbDaWfNZU8AYJEbmUMwWm0smdybLFtbbfy335pc98uHrm+/Kjn2ss73ves905/v+3jynXckx/5g6/HrzkmOe0Ln+ywFky2C0YaWzV8drbz/pO6s89y9c3u+wzyaqjXv2zs+f3UAwKJ2/iuTs38p2XNbsuvm5LM/fuSYtWclxz/x8LbVJyVP+dJ0UPS+u5PVpyRrT6++77K104G9Yw8mY9uSdecmRTGX7wQAAAAAAAAAAAAAAAAYIILRFqf60LKrcigUbW+Styb5UJLvJlmT5IIkL05y+Yw5Fyb556IonlCW5USDPerTPUZnUedoDg9GWzeLNeq9NMlrurAOAMC04VVzmz/+YLVgtLKWfOO1R7Y/8Lm57b///uTua5r3H/v45HF/Xz28bamZahGMdvOfJee/osGc/b2rp96DX57dvGIkSS0ZWZcc/0PJRW8RisZAqZXN+27tKLYbAGhpZFWy4eHTH497Z/L5nz7Ud8KVyQ+8Ixle3nju2tM7C0Srt2LT9AcAAAAAAAAAAAAAAACwpAhGW2SKoliRZEVd88kHPn8ryVPKsry7rv+rSa4qiuJVSf5oRvvjkvxGkjc02Ko+OWM26Q+jSTa2WBMAYOEVQ3ObP7YtWXNa+3EPfjnZf+/c9pqNJ316/vccJJMtgtH2fie57e+Ss158ePu1L+xtTTPd94nOxj/rvmTlcb2pBebRVK11/7uvq+V5F8/x9RsAONwZL5z+AAAAAAAAAAAAAAAAAOghp4QXn+Em7TvTOBTt+8qyfFOSP65rfmVRFFUCy8qK9c11DgDAYNm/rdq4sft7W0cjF75p/vccNGWb9KXb/vbw6/3bku++t/WcqfG51TTTDW+sPnb5xmTFsd3bGxZQu2C0t3/W7SYAAAAAAAAAAAAAAAAAAAwiwWiLTFmW+5I0OiL+5lahaDO8OtMhagcdneSpDcbtqbteVa3ClnPq15yNv0zy8A4/nt6FfQGAxWz9ebOfu++uauPKBQjxWX3S/O85aC78g9b92z5/+PWuG9uHqX38h5LRe+ZWV5LsvTuZ2FF9/KrNSVHMfV/oA7U2L5kfu3F+6gAAAAAAAAAAAAAAAAAAALpLMNritLdB2zurTCzLcm+S99Y1X9FgaF8Go5VleX9Zljd08pHktrnuCwAscqc+/8i25Ucnz96WXPL25NJ3JcvWN577pV9Mtn+9/R7l1NxqnI1VgtHaOrFRRnALE7vbj9l2bfLhxyQPXDu7mg667e2djT/uirntB31kqk3+IAAAAAAAAAAAAAAAAAAAMJhGFroAemJHknUzru8ry/KODuZ/IcnPzrh+SIMxO+uuj+1g/RRFsTZHBqPt6GQNAIB58/DfSfbcntzxD0nKZNWJyRM+kKzYlJz14ukxt7wl2fb5xvO/+PPJeS9Ptv57suKY5IyfTjZddPiYhQhGW3vm/O85aNaclgyvTKb2Nx9TlklRTH89WSEYLUlG70k+fkVy7suSYjjZe2dy/BXJWb+YDA1XW+Obr6027qCzfq6z8dDHBKMBAAAAAAAAAAAAAAAAAMDiJBhtcbolySkzru/pcP7WuutNDcZ8u+76tA73qB//vbIst3e4BgDA/Bhallz6zuQxfzwdaHXUQ5Ni6PAxI+saz02S712XfP6nDl3f9jfJE/41OeHKQ21To92tuZ2jHp6sPnF+9xxUpzw7ueNdzfvLyaRYNv31RMVgtCSpTSQ3vfnQ9V1XJ/d9Mrns3YeC1pr5+muq75Mkpz43OfrRnc2BPlYr24/5yA1lfuRhbX6WAAAAAAAAAAAAAAAAAACAvjLUfggD6Ia667EO59ePX9lgzI1112d3uMeZddff6nA+AMD8W7Ep2fDwI0PRkmRZi2C0elP7k088KXnfycmXXzZ9Pbm3e3VWsfnJ87vfIBta0bq/Nn7o68kOgtEaues9yc5vNu67+/3JBx+V/N8i+ebrmq/x1P9KHvNnydqzkpXHJee9Irn4r+ZWF/SZqVr7Ma9+f4VBAAAAAAAAAAAAAAAAAABAXxlZ6ALoia/XXW/ocH79+AcbjKlPa3hkURSry7LcV3GPy9qsBwAwWDoJRjtodEtyy1uSXTdPh1h14gfekdz8p8n2r3a+b5Ic9bDZzVuKhpa37p8aS0bWTH89sWvu+9329uQxf3J42z0fTT777KRsE/S04YJk44GP814291qgT1UJRvvynUmtVmZoqOh9QQAAAAAAAAAAAAAAAAAAQFcMLXQB9MSHkpQzrs8simJlB/MfXnf93foBZVnek8MD2EaSXN7BHlfUXX+og7kAAP1nZBbBaAfd+9Hk1rd2NmfFMclZL579nuvPm/3cpaacaN1fGzv09cTuue9370ePbLv1be1D0ZLkjJ+e+/4wAKbK9mOSZNue3tYBAAAAAAAAAAAAAAAAAAB0l2C0Ragsy61JPj+jaVmSJ3awxFPqrj/TZNz76q5/tsriRVGcn+SSGU17k/xHtdIAAPrUsjkEo83GimOSM180y8lFsv4h3axmcZscbd0/NSMYbbILwWg7v5WUdalPd19Tbe65L537/tDnyrI84kekmXt29rYWAAAAAAAAAAAAAAAAAACguwSjLV5X1V3/WpVJRVE8PsljZzTVknywyfB3JZmacf2soijOqbDNb9RdX12W5f4q9QEA9K1l6+d3v5XHJCNrkif8W+dzT3xasuLo7te0WE21CUarzQhGm2gTjHb0Y5Infbb9nl/8+aQ21X7cTFd+Jhle2dkcGEC1iqFoSbJ1R+/qAAAAAAAAAAAAAAAAAAAAuk8w2uJ1VZIbZ1z/cFEULcPRiqI4LkcGql1dluVtjcaXZfntJO+Y0bQ8yd8XRdE0jaEoiqcnedGMpvEkr21VFwDAQBhZN7/7Ld904POGzude8rbu1rLYtQtGm6oYjLb+/OTyq5NjL0tWbW695u1/l9z+9uTrr0k+/az2NT76T5LjLm8/DhaBqVr1sffs7CBFDQAAAAAAAAAAAAAAAAAAWHCC0Rapsiynkrw8ycwj428qiuJPi6LYWD++KIork3wuyVkzmrcn+e02W73mwLiDLk3ysaIozq9bf0VRFC9L8p66+W8qy/LONnsAAPS/opjf/Zatn/48vKqzeatPbh/KxeHaBaPVxg99Pf5g4zGnPjd52reStWdOXxfL2u/7pZck33xd8t33tR535ouT81/efj1YJGodZJ1t3dm7OgAAAAAAAAAAAAAAAAAAgO4bWegC6J2yLD9aFMXLk/z5jOZfTfLLRVF8IcmWJKuSPCrJaXXTx5P8RFmW32mzx3eLonhWko8kWX6g+bIk3yqK4itJbk9yVJJHJzm2bvq/JXl1x98YAEA/GmsSiNUrB4PYhld3Nq9dyBdHahuMNpbc9KfJ7X+X7Ph64zHH//Dh4XlDyxuPm43jfrB7a8EAmKq1H3PQPYLRAAAAAAAAAAAAAAAAAABgoAhGW+TKsnxLURRTSf4oycHUjGVJHt9i2n1JnlWW5bUV9/hUURTPTPL3ORR+ViS56MBHI/+Y5BfKspyqsgcAQN9bqHCqkQ6D0c791d7UsZid8uPJg19q3n/DG5Ot/956jfXnH3599i8k//Ubc68tSTb/SHfWgQHRSTDavTvL3hUCAAAAAAAAAAAAAAAAAAB03dBCF0DvlWX5V0kemeQfkuxuMfTeJL+b5LyqoWgz9vhgkocneWuS7S2GfiHJj5dl+ZNlWe7tZA8AgL626ZJkZN387LVs/aGvVx7X2dxTntXdWpaC057Xur9dKFqSrD+vbs3nz76emTY/NVl1QnfWggFR6yDrbOuO3tUBAAAAAAAAAAAAAAAAAAB038hCF8D8KMvytiQvLIpiVZLLkpyc5IQk40keSHJ9WZZfn+Me9yf55aIoXn5gj9MO7LE3yZYkXyvL8jtz2QMAoG8Nr0gu+Zvk2hck5VRv97rwTTP2XVl93kP+R3LUw7pfz2K35tTkgjcm1//W7OYv25CsPL7Bmv9fcv3vzK22i98yt/kwgKZq1cfes7N3dQAAAAAAAAAAAAAAAAAAAN0nGG2JKctyNMnHerzHeJJP9nIPAIC+dNrzko2PSr70S8n9n+rNHsOrk1OfXX384/852f3t5NjLk2MuTYqiN3Utdg/7zdkHox3/hMaP+8N+OznhSdPPl+1f7XzdTY9N1p45u5pggHUajFaWZQqvfQAAAAAAAAAAAAAAAAAAMBCGFroAAABYVNafl1zwht6svWx9cvl7kuUbq8855VnJQ38jOfYyoWhztfrk2c3b/NTmfZsuTp706WRoeefrPnSWQW0w4Gpl9bETU8n4ZO9qAQAAAAAAAAAAAAAAAAAAumtkoQsAAIBFZ/mmuc0fXp1c8W/JxguT5RuS0XuTfXcnRz08GVl15PgVxyZjDxzZvvqUudXB4WoTs5u37qzW/SNrkrVnJbturL7mpkuSk35sdvXAgCs7CEZLktGJZMWy3tQCAAAAAAAAAAAAAAAAAAB019BCFwAAAIvOimPaj9lwQfO+/3Z9cvwPTYeiJcmqE5JNFzcORUuSR76+cftDfr19HVQ3tm1281ad2H7MU75ScbEiOe0nk8vfnQwNz64eGHC1ToPRxntTBwAAAAAAAAAAAAAAAAAA0H2C0QAAoNuWb2w/5ke+lGx+yuFtw6un29ed3dl+pz03WXfO4W1rz0xOe35n69DapsfObt6qk9qPGVmVnPHTrccMrUh+Yiq57F3JmtNmVwssAh3momV0oidlAAAAAAAAAAAAAAAAAAAAPSAYDQAAum1oODnxv7UeM7w8+cF/SS54Y3Li05IzX5Q86TPJpos732/5xuRJ1yYP+R/JCVdOf77yM8nK42ZVPk0c/8Ozm7dsfbVxJz+jdf+KTUlRzK4GWERqtc7GC0YDAAAAAAAAAAAAAAAAAIDBMbLQBQAAwKL0qN9Ltn6wcd9RD5/+PLw8edhvdme/lcckF/5Bd9aisfNfOf1vuv1r1edseGT1MLPNT05SJCkb9y/fWH1fWMRqTX5Emhkd700dAAAAAAAAAAAAAAAAAABA9w0tdAEAALAobXhE8v/c1rjvlGfNby10x4pNyZX/2dmc03+q+tiRNcnGC5v3Lzuqs71hkeowFy2jEz0pAwAAAAAAAAAAAAAAAAAA6AHBaAAA0Ctrz0ye+KnDA61OeXbysN9asJKYo2Xrqo8982eTc3+ls/Wf8IHmfa1C02AJqdU6G79fMBoAAAD0jU/cVOZX/6mWX39PLV+8vdP4cwAAAAAAAAAAAABgKRhZ6AIAAGBRO/4JybPuT773lWT1ycmaUxa6IuZqeHUyta9x3+YfSR7x2mTVCcma0zpfe/VJybkvS27588Pbi+HkjJ/ufD1YhDo9Mj063pMyAAAAgA79zWdqecn/OXRn/+efKPPuXxzKMy4sFrAqAAAAAAAAAAAAAKDfDC10AQAAsOgNL0+OfZxQtMXiob/ZuH3FpuTyq5NjLpldKNpBj35Tct4rptdLkg2PSH7w/ckxj539mrCI1DpMRhud6DRKDQAAAOi2qVqZ33nf4ffoE1PJq/+ltkAVAQAAAAAAAAAAAAD9amShCwAAABgoZ/5McutfJaP3HGpb/5DkKdclI2vmvv7QsuQxf5w8+s3J1Ggysnrua8IiUuvwvPToRG/q6Gej42W270uOW5eMDBcLXQ4AAADkc7cm2/Yc2X7D1mTrjjInbnD/CgAAAAAAAAAAAABME4wGAADQiTWnJk/6XHLTHyc7vpFsujh56G92JxRtpqIQigYNlB2OHx3vSRl9648/Wsvr/q3MztFk81HJX79wKD/6SIfLAQAAWFh3Ptj8jn7XaHLihnksBgAAAAAAAAAAAADoa4LRAAAAOrX2jOSiP1voKmBJqnWYjDY60Zs6+tG/Xl/mVe859ADdszN53l/XcuPrhnLqJuFoAAAA9KepTlPQAQAAAAAAAAAAAIBFbWihCwAAAACoquw0GG28N3X0o2u+cuSDMzqR/OV/OmEOAADAwmp1Z7pvCd27AwAAAAAAAAAAAADtCUYDAAAABkat02C0id7U0Y+uu6Pxg/MHHxaMBgAAwMJqFXS+d2z+6gAAAAAAAAAAAAAA+p9gNAAAAGBgdBqMtm+8N3X0o5vubd63e79wNAAAABbO/hbB5YLRAAAAAAAAAAAAAICZBKMBAAAAA6PsMN9r+97e1NGP1qxo3reUHgcAAAD6z54W4WdLKdQcAAAAAAAAAAAAAGhPMBoAAAAwMGodBqNt29PhhAG2alnzvt0tDqADAABAr+1tEX62d3zp3LsDAAAAAAAAAAAAAO0JRgMAAAAGRtlxMFpv6uhHy0ea9+0anb86AAAAoN7eFoHdrfoAAAAAAAAAAAAAgKVHMBoAAAAwMGqC0ZoaLpr37d4/f3UAAABAvVbhZ/vG568OAAAAAAAAAAAAAKD/CUYDAAAABoZgtObGJpv37RKMBgAAwAJqFYzWqg8AAAAAAAAAAAAAWHoEowEAAAADo+wwGG3naDI+2eGkAdUqGG33/qXxGAAAANCf9o41vy/dOz6PhQAAAAAAAAAAAAAAfU8wGgAAADAwarPI93pwT/fr6Eetg9Hmrw4AAACot69F+FmrPgAAAAAAAAAAAABg6RGMBgAAAAyMchbBaDtGu19HvynLsmUw2i7BaAAAACygyVrzvomp+asDAAAAAAAAAAAAAOh/gtEAAACAgVGbTTDavu7X0W8mp1qHxu0WjAYAAMACanXPOikYDQAAAAAAAAAAAACYQTAaAAAAMDBaBaONNHmXYykEo41Ntu7fJRgNAACAPjVVW+gKAAAAAAAAAAAAAIB+IhgNAAAAGBhli2C0jWsat+8YbTFpkWgXjLZXMBoAAAALqNWd+aRgNAAAAAAAAAAAAABgBsFoAAAAwMCoNTlJXRTJhlWN+3bs6109/aJdMFq7fgAAAOilVkHnk1PzVwcAAAAAAAAAAAAA0P8EowEAAAADo9lB6qEi2bC6cd+O0d7V0y/aBZ/tn2hxAh0AAAB6rNVd6WSzFHQAAAAAAAAAAAAAYEkSjAYAAAAMjGZnpYskG1Y17tuxr2fl9I3xtsFo81MHAAAANNIs6DxJJqfmrw4AAAAAAAAAAAAAoP8JRgMAAAAGRrNgtKGhZMPqomHfUghGG2sXjNamHwAAAHqpVTDaLffNXx0AAAAAAAAAAAAAQP8TjAYAAAAMjGYHqYeK5KjVjft2jvaunn7RNhhtYn7qAAAAgE7dfF+ydUeL5DQAAAAAAAAAAAAAYEkRjAYAAAAMjFqTc9JFknUrG/ft3r/4D1ePtQk+E4wGAADAQmp3Z37NVxb/vTsAAAAAAAAAAAAAUI1gNAAAAGBgNDsmPTSUrG8ajNazcvrG+FTrfsFoAAAALKSyTe7ZK94tGA0AAAAAAAAAAAAAmCYYDQAAABgYtVrj9iLJuibBaLuWQDBas8flIMFoAAAALCSxZwAAAAAAAAAAAABAVYLRAAAAgIFRa3KSeqhoHoy2ewkEo021OWE+KhgNAACABVRKRgMAAAAAAAAAAAAAKhKMBgAAAAyMZueoh4aS9Us4GK1Wa92/XzAaAAAAC0gwGgAAAAAAAAAAAABQ1chCFwAAAABQVbMAsCLJupVFGkWn7VoCwWhTbQ6YD3ow2te/W+aNHyzzlbvKDBfJRacXef3Ti5x+TLHQpQEAAFCBXDQAAAAAAAAAAAAAoCrBaAAAAMDAaHaQeqhI1q1s3Dc+mYxPllk+snhDtJoFxh00WUsmp8qMDA/eY3DjPWUu//1a9owdarv5vjIfuaHMja8byqa1g/c9AQAAAAAAAAAAAAAAAADQ2NBCFwAAAABQVa1sHI1WFMn6JsFoSbJ7f48K6hNTzRLjZhib7H0dvfAXnywPC0U7aNue5E8/XuEbBwAAYME1uZ0HAAAAAAAAAAAAADiCYDQAAABgYNRqjduHimRdi2C0XYs9GK3J4zLT/one19EL197W/PT8e7/qZD0AAMAgcPcGAAAAAAAAAAAAAFQlGA0AAAAYGM0OUrcNRhvtSTl9o1a2P2I+iMFotVqZm+9t3v+te5Jv3+d4PQAAQL+rcNsKAAAAAAAAAAAAAJBEMBoAAAAVPbC7zJs/WsvvvK+WD33DaVYWRq3JU68okg2rms+7b1dv6ukXU7X2YwYxGO3u7clom7r/5XqvRwAAAP1OMBoAAAAAAAAAAAAAUNXIQhcAAABA/7vzwTKX/34tW3YcbCnziiuLvPm58raZX80OUg8VybKRIsetS+7ffWT/1p1lkqKntS2kZoFxM7ULGOtHtz/Qfsxnbinz60/ufS0AAADMXpVctInJMstGFu+9OwAAAAAAAAAAAABQjRPsAAAAtPWGfy9nhKJN+9OPl7n+7irHWqF7mgWAFQfOTZ+4oXH/lu29qadfTNXajxmf7H0d3bZvvP2Ym+7tfR0AAAD03iAGegMAAAAAAAAAAAAA3ScYDQAAgLY+d+uRaVRlmbzxQ4LRmF/NgtGGDgSjndQsGG1H4/bFotnjMtP4VO/r6LbJCoFvt29Lxie9FgEAAPSzssJtW5VwbAAAAAAAAAAAAABg8ROMBgAAQFs33du4/eovCyNifjU7SH0wGO3EDUXD/q07FvdzdapCgNj4ZO/r6LaJCmFuU7Xktgd6XwsAAACzV+WufHSi52UAAAAAAAAAAAAAAANAMBoAAAAwMGpNTlIXB/LQNh/VuH/bnt7U0y8WbzBatUC7Ox/scSEAAADMSbOg85l27+99HQAAAAAAAAAAAABA/xOMBgAAwJzs3l8tuAi6odlB6qEDwWhHrWrcv2esN/X0i2aBcTONT/W+jm6bqFjzlh1ehwAAAPqZYDQAAAAAAAAAAAAAoCrBaAAAALRUtjm5es/OeSoE0jwArDgQjLZ2ZeP+xX64eqrWfsz4ZO/r6LbJisFoW3f0tg4AAADmpkqc9a7RnpcBAAAAAAAAAAAAAAwAwWgAAAC0NNYmTOkegUTMo2Y5fUMHgtHWrWjcv9iD0ZoFxs00NlnlGHp/magYjLbF6xAAAEBfa5O7nyTZOTp4960AAAAAAAAAAAAAQPcJRgMAAKCl0fHW/ffsdGiV+dMsAOz7wWgri4b9e8Z6VFCfmKq1HzPeJuSwH1UNRrtnh9chAACAQbdrkYeaAwAAAAAAAAAAAADVCEYDAACgpdGJ1v337Z6fOiBpHoxWHMhDW7uicf/+iWRyavGGZ1UKRqsYMtZPqgajbdnR2zoAAACYmyp35ILRAAAAAAAAAAAAAIBEMBoAAABtjI637t81Oj91QJKUTU5SDx0IRlu3svnc3Yv4gHWzwLiZxid7X0e3TVYIfEuSrYLRAAAA+lqz+/mZvMcEAAAAAAAAAAAAACSC0QAAAGhjf5swpV2LOGyK/tMsAOxALlrLYLQ9Y10vp29MVQgQG5/qfR3dNlGx5vt2JxOTFU7ZAwAAsCAqBaN5jwkAAAAAAAAAAAAAiGA0AAAA2hgdb92/a3R+6oAkaXaOeujAOxxrVzSfu31f18vpG80C42YabxNy2I+qBqOV5XQ4GgAAAP2pSpS195gAAAAAAAAAAAAAgEQwGgAAAG2MTrTu371/fuqAJKnVGrcPFdOf161sPvcPP1LlGPZgmmryuMw0iMFokxW+r4O2bO9dHQAAAMxNWeGWfNfo4r1vBwAAAAAAAAAAAACqE4wGAABAS6PjrfsdWmU+1Zo83Q7komXNiqQoGo/5/G2L97na7HGZaWwAg9EmpqqP3bqzd3UAAAAwN1XuyHcJ3wcAAAAAAAAAAAAAIhgNAACANkYnWvc7tMp8anaQeujAOxxFUaRsMmjZcE9K6gtTtfZjxjsIGesXnQSjbduzeIPvAAAAloJdowtdAQAAAAAAAAAAAADQDwSjAQAA0NLoeOuwIcFozKdakwCwYsbXTzy/8Zgdi/iAdaVgtMne19FtnQWj9a4OAAAA5qZZiPlM3mMCAAAAAAAAAAAAABLBaAAAALSxv02Y0q5FHDZF/2l2jnpoRjLaK65s/HbHjn3dr6df1CocMB/EYLRJwWgAAACLQpVgtJ3eYwIAAAAAAAAAAAAAkowsdAEAAAD05I0k1wAAIABJREFUt7GJ1v279s9PHZA0DwAbmpGFtmF14zFjk8n+iTIrlxWNBwywqVr7MeMdhIz1i4kOan5QMBoAAEDfqpCL5j0mAIAOFEXx6CTnJDnpQNOWJLeUZfm1hasKAAAAAAAAAAC6QzAaAAAALTULojpo12hSlmWKYvGFTdF/ak0CwGY++5oFoyXJ9r3J5g1dLakvtPs5TZKJyd7X0W2THQWjVTlmDwAAwEIoK9yy7R1Lpmplhoe8xwQALJyiKM5McnGSiw58fnSSdTOG3FmW5ekLUFqKoliW5FVJfj7JWU3G3Jrkb5O8uSzLNn/+CAAAAAAAAAAA+pNgNAAAAFpqF7g0WUv2TySrls9PPSxtzZ6OM89Mb1jVfP6O0cUZjDbVJDBuprEBDEab6CAYbdue3tUBAADA3FSNst69v3XgOQBALxRFcUWS38p0GNrRC1tNY0VRnJPknzId1NbK2Ul+L8lziqJ4flmWt/a8OAAAAAAAAAAA6DLBaAAAALTULhgtSXaOCkZjfjR7PhYzg9FaHKDesa+79fSLKj+n45NVj6H3j8kKgW8HCUYDAAAYfLtGBaMBAAviUUmevNBFNFMUxQlJPprktLquW5PckKRI8rAkZ83oe0yS/yiK4gfKsrx/XgoFAAAAAAAAAIAuEYwGAABAS1MVgol27U9OOKr3tSx27/piLVdfV2aoSJ7/2CLPu3hooUvqO2WTbK+hGcFoq5cnI0ONQ7UWazBalZ/T8ane19FtE1PVw9wEowEAAPSvZvfz9XaO9rYOAIAOjSX5bg4PHJtXRVEMJXl/Dg9FuyfJi8qy/I+6sU9JclWSEw40nZHkfUVRXF6WVX8jAwAAAAAAAACAhScYDQAAgJZqFY5J7HJodc5+/8O1/NZ7Dz3Y/3J9ma07annlk4SjzdTs+TgzGK0oimxY3Tgo695dZZLiyI4BVyU/bP9E7+votokOwtx2jiYTk2WWjSy+f18AAIBBVzWGY9f+3tYBANDCRJIbknw5yXUHPn8jyWVJPrmAdb0gySUzrr+X5NKyLO+oH1iW5YeLorg0yVeSbDzQfGmS5yX5px7XCQAAAAAAAAAAXeN0NQAAAC1VCkZzaHVO9k+U+YMPH/lAv/FDZcYnK54cXiKaPR+Luiys0zc1Hnfzfd2tp1/Uau3H7BzAAMNOgtGS5Hv7elMHAAAAc1P13Q3h+wDAAnlHkvVlWV5YluUvlGX5trIsv1qW5YL+yZGiKIaTvLau+dcahaIdVJbld5L8Wl3zG4qi8N+KAgAAAAAAAAAwMPzHLgAAALRUJXDJodW5+dpdyfYGgU7b9iTf3DL/9fSzsslJ6qG6YLTzTygajrv5nsUZNDdV4dvaMYChYZMdBqNt29ObOuhvd2wrc/3dZXbsW5w/3wAAsBg0u5+vt2u/3+sBgPlXluX2siz78c8AXZ7kjBnXW5L8Q4V5/+fA2IPOSnJpF+sCAAAAAAAAAICeEowGAABAS7UK51EdWp2bm+9r/vjd0qJvKWr2fCzqctDOPaHxuJvu7W49/aJKgOGOAQwwnOg0GG13b+qgP9VqZX7pH2o5+3dqufD1tZz527X881e8ZgIAQD+q+pv6rn6MIwEAWDjPrLt+Z1mWbd85PzCmPkDtWV2rCgAAAAAAAAAAekwwGgAAAC1VCkYbwMClfnLr/c37bmnRtxSVTZ6PQ/XBaMc3Hnf39qRstsgAq/JzumPf4H3vHQej7elNHfSnq64t87ZPl99//u/Ylzznr2vZtnuwnucAALAUVL0d3ek9JgCAmZ5Sd/2pDubWj33qnCoBAAAAAAAAAIB5JBgNAACAlqoELjm0Oje3tQg/u/ne+atjEDR7PtYHo52ysWg4bt/44ny+1mrtx0xMJaPjva+lmzoPRhOItZT8ycca/3sf96rawIUAAgAA04TvAwBMK4piRZKz65q/0MES19Zdn1MUxfK5VQUAAAAAAAAAAPNDMBoAAAAtVQlG2ztgYUv9Zu948wf5pnuE+8zU7PlY1OWgnbih+RpbdnSvnn4xVfFpsmPADphPVgh8m2n7vt7UQf+588EyN2xt3v+l78xfLQAAQHtVs4t37e9tHQAAA+S8JMMzru8vy3JX1ckHxm6b0TSc5Nwu1QYAAAAAAAAAAD0lGA0AAICWahWCifaM9b6OxWxyqnnfzfcltSrpdEtEs4PUQ3XBaJuPar7Glu3dq6dfTFUMENsxYMFhEy1+NhoRjLZ0fHNL6/73/ZfXTQAA6CdVf0PfNWCB3gAAPXR23fVds1ijfs45s6wFAAAAAAAAAADm1chCFwAAAEB/m6pwcnWvYLQ5aRX+tG88uXt7ctqm+aunnzXLiCvqgtGWjxQ5bl1y/+4jx27ZUSYpjuwYYFXD83YO2AFzwWg0s2+8df/HvlUmz5qfWgAAgPaaBZ3X271fyDEAwAEb6q7vn8Ua9XNa/FmZ6oqiOC7JsR1OO6sbewMAAAAAAAAAsDQIRgMAAKClWq39GMFoczPZ5jG+Y5tgtIOaHaQeapBzdtKGxsFotz3Q3Zr6QZUAwyTZtb+3dXRbs2C04aFkqsHPzY69DtAvFeNtnvSjE/NUCAAAUEnVu7VBC/QGAOihtXXXs/lNqX7OulnWUu+lSV7TpbUAAAAAAAAAAOAIQwtdAAAAAP2tVuHk6t4xYURzMdkk/OmgLTs8vgc1ez42CkY75/gGjUluumfxPZ5VAgyTZGzAwqKa/WwcW38c7IAdDtAvGeOTrfvbva4CAADzq1nQeT3BaAAA31f/Tvhs/vRJ/W9XTd5dBwAAAAAAAACA/jKy0AUAAADQ36oFo/W+jsVsom0w2vzUMQiaPR+LBhlo55/QeOxN93avnn4xVfGA+f7JMknjwLh+1Oxn47j1yb27jmzfvq+39dA/xtoEo23ZkZRlmaLRiwMAwCzcen+Zj9xQZvlI8rRHFDlxg98zoBce2L3QFQAA9K3Z/NWXxfeXYgAAAAAAAAAAWBIEowEAANBSlWC0PYLR5mSy1rp/q2C07yubPB+HGmQSPGRz47Hfvj+ZnCozMrx4ggxqbZ5DB41N9LaObmsajLaucfv2vb2rhf4y3iYYbd/4dFDe0Wvmpx4AYHH71+vLPO9ttew/8Pv0xtVlPvKKoVx0+uK5p/j/2bvzODnqOv/j7+qZyT2TmyQT7isBRBQvZFlF8b5W8WQFj3VX/Hlf6wEKKKIoiAouIMqxIIeCgghyiBwLBJCbJCSTkJPMlbmnp+fsru/vj84wPTP1ra7q6e6p7n49Hw8e6a5vVfWn6/h2VZHvO0Ch2e7nJ2ruIeQYAABgj74J72fnsI6Jy0xcZ64ulnRjyGUOkvSXPH0+AAAAAAAAAAAAAAAAyhzBaAAAAAAAX0GC0RLDha+jnBGMFpztePQaLn3YCkfS5AVGUtKWNmnV8ryWNq1SAQeYD2UJk4oa27mxtNZ733b1F7YeRMewJTQv06ZW6ZgDC18LCuOxrUYX3WtkJL3jCOnkYxzCMQAA08J1jb5w3VgompS+7nztj125l1VNX2FAiQl426qhJCHHAAAAe0Q2GM0Ys1vS7jDL8GwPAAAAAAAAAAAAAAAAYcSmuwAAAAAAQLS5WUK7JKlvsPB1lLORLAE/Td1Bhw+XP9uWiMUmD6g5dJnkMVmStKE5fzVFQSrAeSppXJhDKbCdG0vmeU/vHkgHV6D8DQU4lhtaOBZK1V3rjV5/rqvr/ml0/T+NPnml0Xf+zP4EAEyPR7dJu7q8235yR8ALcQAyIS7nCIgHAACQJPVMeL80h3XsNeE9V1oAAAAAAAAAAAAAAAAoCQSjAQAAAAB8BckYSgwXvo5ylswSjNaRKE4dpcAW1OcVgDarxtEBS7zn31BmgUlBs8CGkoWtI99swWh71XpPN0bqJaixIgxn6TclaWNL4etA/hlj9KXrJ3f2F91r1B4vr74bAFAaHttq//05/WajFMG8QCBhzhSC0QAAACRJmye83y+HdUxcZuI6AQAAAAAAAAAAAAAAgEgiGA0AAAAA4CtlCaLK1DdU+DrKWTLLNm7vK04dpcCWOeB4BKNJ0mErvKfv7MxPPVER5DyVpMGRwtaRT8YYezBanX25rv7C1INoGQ4Q8tfYVfg6kH9P7ZRe2D15+uCI9PCW4tcDAEB/liDwtY3FqQModSZEMlpTD4GDo7a2GTW0EMIIAECFapCU+ZR8L8dxLP9syGSO49RJyvznY1IiGA0AAAAAAAAAAAAAAAAlgmA0AAAAAICvIOMuh5NSMsUAzVzZwp9GdSbEANg9bFshZglGW1bn3dBZZmFzQQ+PoQBhUlHh952WzrPscEndBKNVhOEs/aYkxQfpN0vRX56x77e1jexTAEDxZQsCb48Xpw6g1IUKRusuXB2lIj5o9JYLUjr4dFeHneHq8DNcPd/E9TAAAJXEGDMkaeI/FfD6EKs4dsL7zXvWCQAAAAAAAAAAAAAAAEQewWgAAAAAAF9BA5cSDKXIWTJLwI9rpK7mTpm7rpO56dcyL24uTmER5Lre020xWYvneU/vSJTXYOKUZbtMVErBaH6Bgbb9KkldBKNVhKGR7PPE+V0qSbc+a++ft7YVsRAAAPZoyxKqXErX2ECpaO6Z7gqm3xevM7p349j7zbulj13myoRJmAMAAOXgzgnvjw+x7MR575hSJQAAAAAAAAAAAAAAAEAREYwGAAAAAPAVNBitjwCanCUDhFq1f/WjMj/6tMyvviFzylEy/7ix8IWVkJjlCcfiud7TO7KEG5SaoOfpYIAwqajwC0abXSPVzvJu60oUph5Ey3CWQElJ6h0ofB3Ir94Bo+d22dsf304IBACg+Fq6/X9/yi10GSiUMGdKc5bzrtwZY3T72snbYF2T9OjWaSgIAABMp5snvD/FcZyqbAvtmefkLOsCAAAAAAAAAAAAAAAAIotgNAAAAACAr6CBS4nhwtZRzvwCoEa192Rs4FRK5rzPywxXXhqd7Xh0LPPbgtEaWvNSTmSkAoTrSdJQsrB15JPfeVFTJS2c493W1V/ZA+grxUiAYzk+WPg6kF8vdvm3r2+SGlqicY4/vt3o89e6+vClKf32QVfGRKMuAED+9We51y230GWgUMJcLjX1FK6OUjCSkjotod9XP8p1JwAAFeZBSdsy3u+tyYFnXk6WtDLj/RZJD+exLgAAAAAAAAAAAAAAAKCgCEYDAAAAAPhyAwYu9RFAk7NkgG3cVrXX+AmJXmn9Y4UpKMJsx6NjSUZbPM+7YXBE6imjAK2gAYbDJRSMlvQJRqv2DUYrTD2IluEAgZLxysuOLHmNWYLRJOmwMwJemBTQAw1GbzzP1aUPGP3pKenUa4w+f135/KYAAMbLdt3RYQkvAjBemKulHR0FK6Mk+IXIbdnNdScAAKXMcRwz4b/j/eY3xqQknTlh8gWO4+zv8xn7S/rFhMnfM8ZM/4M1AAAAAAAAAAAAAAAAICCC0QAAAAAAvvwGY2ZKDBe2jnLmFwA1qqlmxeSJax/JfzERZzscY5YnHIvm2td17p3lM5g4aIDh4Ehh68inEZ/zoqbKvm8JpqgMQyPZz984gZ0lp6knWL/81I7p7b9/dpc7qT+97P+MmrvL53cFADAmW7gw159AMEGfL0lSc4/UO1C511Z+4eebdxevDgAAKo3jOHs7jrP/xP8kLZ8wa7XXfHv+W1KA0q6VlPkv5SyStMZxnLd5fIe3S3pE0sKMyWsk/aEAdQEAAAAAAAAAAAAAAAAFQzAaAAAAAMCX32DMTImhwtZRzvwCoEY1VtdPnjhrdv6LiTjb8RhzvKevmG9f11+eKZ9B1qmAX2UoWTrfOVsw2mJbMFpfYeqpBMYYbWw2aukxMmFSC6bBcIB+Mz4ouUF/xBAJjV3B5rt/0/Tu1zvWTZ5mjHTZgxxvAFCOsl13dBOMBgQS9hajobUwdZQCv9uYlp7i1QEAQAV6SNI2j/+unzDfSst82ySdn++ijDGupA9I2pkxeYWkuxzH2eQ4zs2O49ziOM5mSXdqfJDbdkknmqg/8AUAAAAAAAAAAAAAAAAmIBgNAAAAAOAraKZMH8FoOXFdE2gbN1WvmDwx0Zv/giIu5XpPtwWjHbTUvq6NLVJjV3mMBXIt22WioZHC1pFP2YLRFs3z3uldifLYp8W2qdXo2HNdHX6mq/r/dvW+X7uR3pbDyWDzJYYLWwfyq7E72HwbWwpbR66eb5ruCgAAhZDtuiM+GN1rJiBKwp4pDS2Ve275xZYMBbwXAgAA5cUY0yzprZKentB0iKT3S/o3SQdPaHtK0luNMRUcOQsAAAAAAAAAAAAAAIBSRTAaAAAAAMCXLYhqosRQ+AGrfYNGtzxtdNG9rtbuqswBr0G3b2N1/aRpprstz9VEn2tJkbMFozmOo+v+09IoaUdnPqqafkEDDAdLaAB10ufcqI5Ji+d6t3UkClNPOXNdo89c5eqxbWPTbl8rfePG6PbLQYPR4oOFrQP5tWV3sGNuU0RDMoaT0awLADA1foG9khQnJBwoiLb4dFcwfYLe4wMAgMpijNkk6XWSvitpq8+sW/bMc4wx5oVi1AYAAAAAAAAAAAAAAADkW/V0FwAAAAAAiLaggzH7Qg4Gb+01escvXT27a3SK0S8+6ugrJ1RWhne2QfajmmtWTJ7Y3ZHfYkqA7Xi0BaNJ0kdf4+jff+e9YHuZDLQOep4OjRS2jnzyOzdqqqTF87zbOvoKU085e2Sr9PCWydNvetLo0pONZlT7nGDTZChgMFrvgFS/oLC1IH8aWoPNtyngfIVgC+iUgh+XAIDSki2QtY8gViAQEzLsKzFcmDpKQdhtBQAA8sMYs38RPmNKD1uNMSOSzpV0ruM4r5J0qKTRf1mnSdImY8yTU6sSAAAAAAAAAAAAAAAAmH4EowEAAAAAfPkFgGRKhAxG++mdJiMULe0bfzT66KuNls+PXghPoSTdYPN1xzySfXra81tMCbAdjlU+eXqO42jvhdKurslt7X1GUukfb4GD0UootCdrMNpc77aORGHqKWcX/sP7AOobktr7ohksNhwwVLKlV1rtkSuJ6EkMGe3sDDZva1waSRrVTENon1/fFPS4BACUlmz9ezzkvTBQqcJmfYV9zlROgt7jAwCAyrYnAI0QNAAAAAAAAAAAAAAAAJQln2HDAAAAAAAEH4zZF3LA6m8emLxi10i3PFNZoz/9AlYyxWPzJk/sastvMSXAdjzGsmTjLPHYfFI69KkcBD1PB0cKW0c+ZQ1Gm+e909v7JGMqqx+Zqq3t9u3VEdFzZDhgyF9TN8dCqdi8O/i8xqRD76aDXzjOUAn1sQCA4LJdd8QHi1MHUOpst2nVlr+xEPY5UzkhGA0AAAAAAAAAAAAAAAAAAACVjmA0AAAAAICvoIMxE8Ph1jtgCQ+56uHKGv2ZdIPNF6+qk6sJQVAdzfkvKOKswWhZnnAstQSjbQoRxBNlbsDjyHbeRVHSJ3yoOibtVevdNpKSOhOFqalc1VTZ26IaHjgUMBitsbuwdSB/NjaH+/2frn3rF47jF5oGAChd2fp3gtGAYGzBaPNmeU9PVHAwWras72Sqsp6dAQAAAAAAAAAAAAAAAAAAoPIQjAYAAAAA8BU0GK1nIPg6E0P2lWYLuCo3fuFPEyVic8dP6OmQGa6skcK2ALCY4z191JJa7xmueMjIZBtxXAKCnqf9IQMMp9OIXzBalbRivr29uSf/9ZSzlE+wXkdEQ+b8wqkyNRGMVjIaWsPNP1371q9vCnpcAgBKi1/fL6WvsVNBL8iBCmY7S+bN9J5eSvev+ZatS6nk0DgAAAAAAAAAAAAAAAAAAABUhgobbg4AAAAACCvo+O7OvuADwVt77W1VWQKuyk22QfaZemN1kye2N+WvmBJgOx6zBaMtnmdve3Bz7vVERdDztJQGT9vOjeqY5DiOlnmcDqMIRgtnwCdwoD1E315MwwH7ToLRSsemkMFojd3Tc2z6hZ8NEYwGAGXHGBMo+LKUrrOBqKmd5T29bzCa9yLFkO2bV3JoHAAAAAAAAAAAAAAAAAAAACoDwWgAAAAAAF+uG2y+tnjwdfoGo1XYnWoy4PaVpHjMI92rvTl/xZSAXIPRDlhsbzvr1hA7IaKCBqOV0uBp27lRXZX+c0a1oyWWwLvmnsodQJ+LQZ+wj/a+4tURRpCAEklqi3MslIqOkCF8nYkCFZKFXygfwWgAUH6SAcNY44OFrQMoB8ZyuTdvpvf0RAndv+ZbtmdxlbxtAAAAAAAAAAAAAAAAAAAAUBkqbLg5AAAAACCsoIFLYcJzdvuEqFVaqEjQgfaSFI/VTp64e1f+iikBuQajfeCV9hnu3ySdWeLhaEHP06QrjSRLIyhqxHJu1FSNvV4x33ue5p7811POBnwG1XdENBgt6G9FxzSFZyG8sL//0xVAY+ubpOCBfQCA0uEXiJmJYDQgO9udqDUYbahgpURetnv8St42AAAAAAAAAAAAAAAAAAAAqAwEowEAAAAAfKUC5kW1hQjPae21j/CstBAbv4CViXq9gtEat+SvmBJgDUbL8oRj/yWO3neUvf3s24ye3lkagWFe3BC5bv0+IVhRYut7qjP29fI673nCBDVCGhyxt0U1GC1oAFWl/aaUMr/j0Mt0BdD4HXuN3dLQSOn+lgAAJgt6zVEq19jAdDKWyyRbMFpfBYd/ZbuiTNDnAAAAAAAAAAAAAAAAAAAAoMwRjAYAAAAA8GULopqoq19KpoLN3Nprb9veLnX3V06oSDJEoFWfRzCaeXFzHquJPlsAWMzJvuxZ7/N/DPK/j5TucRf0PJVKJ7TB9p2cjH29pNZ7x0c1zCuqBn0CPzoS0TsvjDEaDhgq2dGXnh/RNxQweGbUtAWjZTn2TrzE5ZgDgDISNMh6IGTAJ1CJrMFos7zv6xIVHIyWLfy8krcNAAAAAAAAAAAAAAAAAAAAKgPBaAAAAAAAX0EDl4xJh6MFsTtub0u60h3rSj9Q5KkdRm8+P6W6L6W077dT+uofXA0MT/5eYYLReqsmB6Op0oLRLIdGkGC0Q/fyb7/k/tI97lIhjqPSCUbz3h+Z+3rxPO9l2/tKd18WmzFGAz7HRHsEQ+ZSrj1UYaKhZOkc85XOFoxWU+U9PT44Ped5toCcO9ZJtzxTnFoAAIUXNIyV6w0gO9vV29yZ3tMTFXxeZbvS9buHAwAAAAAAAAAAAAAAAAAAAMoBwWgAAAAAAF9Bg9EkqTMRbL7dvf7tv7zHyARNvYmghhajV5/j6v5NUt+QtKtLuvAfRp+9ZvJ3yhawkqmjatHkic3bc66zFE0lGG3OTEf7Lba3j6SkxFBpHndhztNSCW2wdQGZ+3qJJRitI4JhXlGVTPkfP1EMRrMFaNlwPJSGoRHv6Us9MkElKT5YuFr8DAc4/s66NURaJQAg0oL0+xIhRUAQtnu82lne03sGpFSYm90yku1r93sE7wMAAAAAAAAAAAAAAAAAAADlhGA0AAAAAICvMGNQE0PB5rvxSf+VPr5detlZrja3ltZAT9c1+tZNrg47wzsQ5drHjLbsHv+dkiGC0Zqrl0+e2N0mkwyZElTCphKMJkn/9gr/GZ/cEbKgiCjHYLQg+9oWjBbFMK+oGrCEUY2KYqhY0ICSUS1ZwjgRDbbAO9t5HuVgtLWNKumAVwDAmKDXHYQUAblbMd97esqV2uLFrSUq3Cw5u6VyXw8AAAAAAAAAAAAAAAAAAADkimA0AAAAAICvbIMxMyWyDMw0xui6x4KtcEOztOr7rjY0l84A8yseNjr/bv96b3lmQjBaiO3bXL1i8kRjpK7W4CspcSnL9ooFfMLxrbc7OsxjM456z0UhdkiEVFQwWsa+XjzXex6C0YIbzBKM1jsoDSej1Q8PhwiUlKT7GqJVP8Zbu8vo8odcNXZ7t1uD0QKGsebbSMDjL4qhggCA8IJed2QLmwUg2a7K915gX6bJco1Y7rLdwZTKfT0AAAAAAAAAAAAAAAAAAACQK4LRAAAAAAC+wgQuJXxCSgaGjT7yG1cnXx4uoOaIM11dfH9phFVd/Uj273bfxvHzBA1YkaQmr2A0SWpvDr6SEmcNy3KCLV+/wNGj37U/DukbkoZGSi9EqSyD0WwheBn7esk87x3f1R+9MK+oyhaMJkmdicLXEcZwMtz8D23mWIiqs29zddQPXf3X1fZ9tNRynvcOFKoqf0EDcpp6ClsHAKA4gt6vlco1NjCdjOWSb2mto2rLbbotPLfcZbvHp88BAAAAAAAAAAAAAAAAAABAuSMYDQAAAADgK0zg0ieucPWPDd4L/PEJoz89lVsNX7zOTAoUixpjjNY2Zp9vQ8v498lQwWj13g0dBKMFDUaTpNpZjt59pL39hbZwNRWKMUa/f9TVKZe7+u+bXD3fZD8HbCFiXkplAHWQfb1ivn35LRHZj1E3ECAYrb2v8HWEMRQyGK0tXpg6MDVP7zT6wV+z/7Yvnuc9PT6Y54ICChq62NhV4EIAAEURNJA1yDUVAG9VMfu9XVN3tJ8FFYotRG4UfQ4AAAAAAAAAAAAAAAAAAADKHcFoAAAAAABfqRCBS+190tt+6eqKhyYvdNOTUxvMesIFrh7fHt0Bsa29Us9A9vm2d0iDI2PfIxli+zZVr/Bu6Gjxnl6GbAFgYYLRJOnrb7U/EtkQkZy5L11v9IkrjK59zOjndxsd8xNXj271PgfCBBgmhqN7HmUKEox20FL7vt9YOafFlAyWYDBa0ICSUfGhwtSBqblyjQnUdy2t9Z4+MCL1DhS/PxsJGGjaWKEhHgBQboJed5RK+DAwXUyWpK+VC72nN/cUoJgSkO06mT4HAAAAAAAAAAAAAAAAAAAA5Y5gNAAAAACArzCBS5JkjHTGrUbJ1PgFb1879Vq+9ocQKWJ50Dtg9L1bXB10WkqvPSflGfg2KmgIkzHSptax90EDViSpr6pW8di8yetsj0iSVxEECcsK4k2r7Qtc7rN+Ln3tAAAgAElEQVSfi+XFTqOL7x//ZfuGpGPPdT0HlIc5T+ODU62uOGzfycnYdTNrHB241Hu+jS2EEgUxECAYrSNqwWgh+k2pdI75SvO7B4Odo4cus7c9uytPxYQQNCCnqUJDPACg3AS9zh4gpAjw5ZeL5khaOvlRhySpO0AAfTkiGA0AAAAAAAAAAAAAAAAAAACVjmA0AAAAAICvsMFoktTULW0ImdV1w2ezJ1ut2ZIOjCqWL11v9OO/GW1rl57YIf3n1Ub/c593aNa29uB1vdg59npigFw2TdUrJk/sIBitKocnHO9/hff0u9ZLm1unN1Tr7uftn//zv1d2MNrEELxVltCkrW35radcDQUIRmvvi1bIXJCaM/VWaJhClCWGjAYD7sdDlzlaMMe77amdxT82gwbzbaMPAoCyEPQ6m5AiwJ/fqeQ40oI53s+EevoLU0/U+QXJSfQ5AAAAAAAAAAAAAAAAAAAAKH8EowEAAAAAfOUSjCZJG1rGFhwY9l/J8jrpA69w9LbDs693v++42t1b+CCUZ180uubRyZ9z8f3en93YHXzdPQNj60h656xZNVbXT57YTjDaxLCsIFavsC+06vuu3FwP/jy453l722l/NjITRkmHKbW3VILRLOfGxH2972Lv/djcHa0wr6gKcux0JApfRxhBg6lG9Q1p0jmD6dUU4jdzdo109L7ebU/vzE89YYwEPP4apjlgEwCQH0EvIQZCBrcCGOM4Ut1s77bu/sq8psp2nzZAMBoAAAAAAAAAAAAAAAAAAADKHMFoAAAAAABftnCibDZkZHWdfbv/iM6LToqpptrRrz4W01612dd9xJljoVWPbTW67jFX/9yW38Gyv7jHe30bmqX+ocltYUJeegbGXgcNWBnVXL1i8sSOlnArKWHWYLQcnnActty//bIHp28A9rxZ9rakK8Uzws2MMYEDG6Txy0aZ7StNDEZbucB7vjBhhZUsSDBae1/h6whjOBluftdI/QQHREqY38yZ1dIr9/UOQHxqR/H76aDHX0MLgXwAiqO7P30/dMvTRh199Dv5FnSLElIE+PO7LHIkLZjj3dY94D293GW7jMz2DxAAAAAAAAAAAAAAAAAAAAAApa56ugsAAAAAAERbkNAcL5tax17f9qx9JU+cHtPR+6UDT1Ytd7T5nJhe/SNXm3fb192RkI7+kasj6h1d/8/RdRt95jhHl53iyHG8A1TCuHu9veaOhDRn5vhpTd3BN1TmwN5kyOC5Jq9gtKatMsmknOryv823BfVNDMsK4rAVjvyiDq591Ohzbwy/3nzoyxJe1pmQ6manX4fN3YmXyMDyoCF4tmC0pp781lOughw/HSUejCalAwHnzsw+H4qjqSd4xzWzRjp6X++2DS3ScNJoRvXUf/eDGg4YaNrVL7XFpb3qClsPgMr2xHajEy5w9wTfGtUvkG79wtj9FaYu6P1wPyFFgC/fYDRHWjDbu627vzD1RF22vofgZwAAAAAAAAAAAAAAAAAAAJS7WPZZAAAAAACVLNdgtBc7xxYc9AmxmThov3aWo3VnxfThV/kP5n9ulzJC0dIuf8io6lRXH/+dq9884CqVa/GShnxqbvcICWrqDr7unoxgqpGAASujmms8gtH6eqS1a8KtaAqM68rc9ye5554q99LvyXS0FO2zrWFZOWQ/HL5CmuGTJffwFsmETR3Lk2yhQV0Zg8PDHubxwdIIbQgagle/wHvnt8WloZHS+K7TKcjx0zMQre3o1z/b9GYJG0RxNYb4zZxZLR250vs8T7lSS5FDEFMhAk0bWrPPAwBTccrlo6FoaU3d0lduCJm8DF9BbwfiXGsAvrKdSgvmeE/vLpFg73wjGA0AAAAAAAAAAAAAAAAAAACVjmA0AAAAAICvXLPFMkNPeiwDWV9W7z29ptrRH06N6Ten5JB2pXRg2v+71ujDl7o5B1v5BZ94BaPt7Ay+7sztkQwZjNY0Y2/P6WbN7eFWNAXmZ/9P5ox/l26/Srr2PJlPHi2zY2NRPjufwWhzZjr6/PH+C976bPj15kO242lKwWhD4euZDkH39coF9nW09OavnnIV5PjpjVgYwXDKu+hqnyedhJVES5gw0ZnV/ud5c5GD0cL0uRtbohUqCKC8NHUbzwDGh7dIW3bT/+RL0H6/uz/7PEAl83s04zjSgtne9+aVem5le5RFMBoAAAAAAAAAAAAAAAAAAADKHcFoAAAAAABftoHgPznR0YeOti/X1K2XQslswWg/PtH/tvS//jWm1+wfoEiLW56Rqk51dcjpKX3rJleDI8FGtSdTRr0+ITodfePX05Uw2h0PXldmyFDSJ4DNy721J3g3PPTXnEPgwjD3/CEdiJapp0Pm+l8U/LOl/AajSdK5Jzr6zHH2hT9wsavz73bl5poQmIP+IZM9GC0x9tovxM9L1EKubILu63qfwKTGEOFLlSpQMFrEQsVsx/yCOfZlSuW4rxTNIc7NWTXpfTurxru9qdjBaCH63IaWwtUBAH7XOY9uIxgtX4LeYnVzrQH48juVHNmv5XsHVdT78ajI9pUJRgMAAAAAAAAAAAAAAAAAAEC5IxgNAAAAAODLFkCzZJ70x89V6eFve99aDiWljj5pcMRoOOm9jgWzs3/+3V+d+q3rljbp/LuN/uVcV+ubjJ7bZfR8k1Ey5T3StDPhOfkl7X3j3ze0hqunp3/sc0dS4ZbtNLVqq1oyuWHXFmlnQ7iVBWTiXTKbnpF59iGZH3zCe6ZH7izIZ09kDcvK8TCZUe3ot5+IaWmtfZ5v3WR09u3FG4i9eXf2AIaujGMo7BjxeMRCrmyCBqPNny3NmeE9bxPBaFmVYjCareYZ1dK8md5t/9xeeWEKUdbYHXx/1FRJjuOofr53e1OIdeVDmE97MUvIJQBMxWxLYKQkbQ55fwK7oNfa3f2FrQMoZ45jD0YzJvszmnKU7ZnAwEhx6gAAAAAAAAAAAAAAAAAAAACmC8FoAAAAAABf2cKJ9l1kX7axW+oZsLfPDxCMNn+Oo+bz83P7+vSL0pFnuXrFD1297CxXS77m6ppHJie/7Y77r6dtQjDac7vChbJ0Z2yTZMhgNEm6cNEXvBseuzv8ynyYRK/cM0+Weddymc+8TuaLJ9hn7myRiRc+hcq1BPVNDMsK6/hD/Vfwg78avbC7OOE7G1uyf05XRvBC2GC0qIVc2di+l+NMfO+ofoH3vGHClyqV7ZzK1OvTj08HW81VjnTU3t5td6zlWIiSoKGFc2emz3FJWmEJRmvuyVNRAYXpc+ODHHcACsevP3phd/HqKHfZwolGdfVLJujMQAXyOz0cScvr7O1NRb7ei4Js15z9w8WpAwAAAAAAAAAAAAAAAAAAAJguBKMBAAAAAHxlC6JaVmcPpcoWjLZgTrAaltU5evr7+b+F7R2UPnml0X9c5eo7f3Z18u9c/eQOVy//gX9S0I6O8e//FjJwpy0jeC1p+aiFqU7r8n9ecpLndLN1fag6bIwxMs88KPOOpdK9NwZfcOemvHy+n2xBfbk694PZV/CqHwVIkMqDiceXl87E2OsgwVaZSiW0IUwI3kpLMFrQ8KVKFiTkKWphetZ+ICa99yjvc3ltY2kc94XSO2B04xNGtz5j1JmY3u1gjAkcbjF3xtjr+gXe+7bY53mYPjcesXMHQHnx+w1v6a3c37x8CxqImXKlxFBhawFKmW8wmuP/bKkS7+sIRgMAAAAAAAAAAAAAAAAAAEClIxgNAAAAAODLNhizas8dZXWVo+XzvefZ1WV8Q57mzw5ex1H7ONrww8Lcxl61xuhndxpd90+j02/OPvK9oWVsHmOM7m/wnm+/xd7TG7vHAnpGUt7zvGLwWfvna1+1VC2b3LDDUkgIZmRY5jsnynzpLeEX3rFxyp+fTaGC0Q5Y4ui0d/mvJD4obWwufMhEY4BB3139Y6+DhjWMGhwpjdCGMPs6KoFJpSjI4TM4Ig0noxOwkvIJzTvmQO9joatfau8rYFER9vROowO+6+qjl7l6/8Xp8M+ndkzf/uxMpI+pIObNHHu9whKA2NxT3O8Sps+NWqgggPJi+z2UxofoYmrC/Mp0+4SCA5Uu27lUXeVoWZ13W2N3dO5FiiVbpnP/cGUHPwMAAAAAAAAAAAAAAAAAAKD8EYwGAAAAAPAVJJxob0tYSWO3dPrN3iP2HWd84EkQq5Y7uuurMS2eG265fGtoHRuAmhiyB5985jjvgJ7+Yal3z6D5pCXQoMYk9bed77XW0FhTP3nijo2hB8Y+ttXoC9e5+tZlzXr2Z+fLvLlWWvO3UOsYZXZOPZgtG79ApKn6/rsdffx1/is6/ExXL+wOt40f2mz0lRtcffkGVw9uzr5sU4BB391TCEaTpLYSCIiyfa2Yx9OseksfdO1jhsHiWbg+oSqZeiMU9OH3u7R6uX25jS2FqSfqPnmFOy5Msalb+vINAXd8AWxqDT7v3IzrhHpLCGtzz9TqCStMnxsnGA1AAfn1R5n9PqYm6LWSNP4aHcB4frdlzp7bcNt9XSUGXge55gwaNgwAAAAAAAAAAAAAAAAAAACUIoLRAAAAAAC+ggSjrVzoPU9jt7SlzbutbpYUyyHN6q2HO9p+bkz3fzOmWz4f07qzYhq+JKa1Z6Xf//zDeUjIyqK7X2qLp1+3+wRMHXOAvZbGPQN7kynv9mqT1FsS91qXb6taMnlivEvavsFe0AS/fdDV6891dcn9Ruc/sZeO2fT/dNu8dwZefpIdG3NfNiDr8ZiHJxwzaxxd/R+Obv+S/8pe9SNXT+8Mloxz7WOujj/f1UX3Gv36XqM3ne/q6kf80xUaAwz67kqMfX4uwWi7e8MvU2y2EAqvbmOlZQC9JH3rTwSj+Ql6/NgCIKeDreaqmLS0Vlowx7t9S1vlHQvN3UbrmiZPX7NF2tY+PdujoTX452ae7ysswWjFDsogGA1AVPgFdnUlildHuQvza9nJdges/M6l0Us+231dU5GDcKMgSL73AMFoAAAAAAAAAAAAAAAAAAAAKGMEowEAAAAAfAUJoqpf4B0A1tRl5FiywXoGcq9p7kxHbzjU0fte4ejwekfVVY6OqE+//9pbY7r1izGtWpb7+oNoaE3/6ReMduTe9rbRIJcRWzCakorJaK9kq2d7e81S7wUfus3+oRkau4xOvWb8zh2KzdKZS88MNfh/nBChbLmyB/XlJxDPcRy980hHbz3MPk98MB2O1hb331LJlNFpfzbjanaNdPrNRsmU97LGGD26NXudXf3j1xlWm89xGxVBQhlH1fsEo/38bqMlX0vpw5emtL5p/Ep39xp94TpXR5yZ0nE/TenOdZUXnOUGGXGv0ghGiznpc3gfS1hnJYbE7Oy0tz26dXqO940twedNZoT+2K412vuk4WTxvkuoYLShwtUBAJbLSUnp320T8Dce/sJsxuYetjlg43cujd7Or/B5tlRpglxz9g8Xvg4AAAAAAAAAAAAAAAAAAABguhCMBgAAAADw5bre0zODqFZaQole7Bof4JTpW+/IT5CVl/e83NGGs6vkXlalR79bmFvfhpb0KFVbMFpVTFo6T1pa692+rSO9fNKyfWvMiCRpabLds71t79d4TjcNT1kqHm+fb3t/8LOzXq7m6hXeCzmOnGuekfOd32jAmaX1Mw7TgDNrrH3XFpmmbYE+P1dhwrKm4n8+nv24WfYNV/FB+2jlDc3pc2Cixm5pfZP3Mv95dbAB350ZAU+2c9RPtlC3KAizr1daBtCP6kxIf3pKetP5rjr60it2XaMPXOzqkvuNNjRLa7ZI77rQ1QMN0d82+RQ05Kl3CmGW+Zbt2Fg4x7vd9ntUzvz274s+oWmFtN37Z81Talwwmn2+HR251xNWmD53OCkNjVRWnwKgeLL1R1MJosaYoCGyUvo6H0B4o3dztmdLTT1FKyUyCEYDAAAAAAAAAAAAAAAAAABApSMYDQAAAADgK0g4kW3w6vomyTaO/KOvLlwwWqbXHuDoye/F9KGjx0+vnSUdtbf/sm89zN7W0Jr+0xYwtWSeFIs5Omip9/Kb9yyfTHm3V5tkej0p7wSZ9mUv815wZ4P39Az/c59/ikLDjEMmT3z3p+X8YaOSe6/W5xpP1OJDm3XUQU9q4apWfWuvc5RUVXq+h2/L+vlTYQ/qy+/nHLyXo6oAT03mf9nVbx/0Lmp9k30k8zqPtmTK6MYnggUvZAY8+Q2YnjvTe3pbPNDHTKswwWh+gUmZ2vukn92VXvHX/mj0yNbJ87zp564GKyjIKHAw2mBh6wgjlaUfWGAJRuuuwICYxJC9bXsRw8QyNfcEP78yw0P3Xyw5lr5+9De5GML2DvEInTsAyku23/Bv3GhkQoR6wVuYTUgwGmDndy6NXuPVz/dub/QIHC93QfoegtEAAAAAAAAAAAAAAAAAAABQzghGAwAAAAD4yhZAI0krF4ZPpVoyL8eCcvDKfR398XNVci8b+6/nwio9fUaVei+M6Yj68fN/9g2O3MuqdNfXqnTKMd7fbVdn+s/2Pu/PHP1+h+zlvfzm1vQo1xFbMJpGg9G8k2vaZ9Z7Tte252WSSe82SfFBoy9d7z/CdtOMQ8e9d367RrHvXCpnxf764e1Gv31iroZj6cStpFOjCxZ/TbMOi+v3dSep78G/+657qsKEZU1V0FWeeo3R2be5Gk6OL25Lm32ZrR5tW9qkPp8Qo0zdA5K7Z2P4hWIsq/We3mY5bqPE9r28gpFsA+i9nHeXUWuv0UX32jfct/5UOSEitrDBiXoHorNNrP3AniedC+Z4n73diQIVFGF+YQmbWqdnnzb3BJ83Mzx09gxH+y3ynm9jS/G+S9AwwVHxgP06AISVrT+68mGjm58uTi3lLEy/30wwGmDldyq9FIy2wPs6vjWeDhKvJEH6nqkEo7mu0VM7jK59zNXWtsratgAAAAAAAAAAAAAAAAAAACgNBKMBAAAAAHwFCaJauSD8ehfPza2efJs3y9FT34vpik85+smJju7+akyXnjx2u1xv+W5NPekNszvu3f5SMNoy7/bNu9N/2oLnakw63Gxpqt2zfVtqqfeCknTNudam6399t325PRpmHDL25u0fl7P6VS+9/f2j9gGzn1p5ueYP3qzH14dIvQnJdjxWFeAJxxsPzT7PqDNvNXrDz1x19I0VOLqPvTyxffIX2dAc/POMkXoH0699g9HqvKe3W47bKLEFdnmF4M2scTRnRvB1/+QO/4Hf1z9mKmbgfdBv2TNQ0DJCsR0bVXuOjQVzvNu7IxTuViyJYft33thSxEL2MMaoKURoTHLCvl613Hu+hiJ+l6BhgqOidO4AKC+2+4hM594RstPCJGGuHhq7K+9aAwjKBDg9bM+WjAkXrlsOgvQm/TkG8A4njU76rdGrz3F1yuVGB5/u8nsBAAAAAAAAAAAAAAAAAACAyCEYDQAAAADgyzbgPjOIKmww2pwZ0pyZHulG06Sm2tGnjo3p2++I6S2Hj69rxXzvZUYH5W7Z7T1cdXldej37L/ZeviOR/nNi6Muo6j3BaPuO7PRsf7BxrnpqFnm2mSvOlhmanMRitqzTrU8lvT8wwyWLTk2/eP075Xz9Vy9N7+k32tGRdXH911UjSvmldU1BkKC+fPnE68Ot9J/bpaVfd18KPWuL27fB3zdI/UPj2ze2hNtmXf3pP3MJRvOrLSrC7usz3hN8f134D//v35GQ1mwJvLqSFvRUHQ3iiwLrsbHnd2nBbO/2rkRh6omyhE9YQlO31FvksLj4oNQ/HHz+idcgB+/lfZ43dhXve4T9edvaVpg6ACBIf/TEDqmJsK4pCROIWYnXGkBQfj3R6BXePt6POCT5B4+XoyB9z8BIbuu+8mGjG58cv0dOu9nomRf5vQAAAAAAAAAAAAAAAAAAAEB0EIwGAAAAAPBlDe6qGns9b5aj+ZYgGi9L5k2tpmJasfUBz+nN3UbGGG1s8V5u1fL0n/O7t3u298TTyTAjSe+Bp9VKB5idkLjPs30k5eifh3/SUrWkJ+6dNMn96xVaM/t19mVG1+3M0IVf2i7npzfLmVP7Up37fzdYKsBzPQv16NZAs4aWLRApnz54tJPTsfraH7u6+Wmj7n77PIMj0lMTMu8aLMeSTeee4AVbeKEk7VXnHSLU1hfus6ZD2H196hvym453yzOVMSg8aNhH7+SsxWljO+ZHQ/MWzvVu747QdyiWRJYQsi1FDu1a1xRu/tfsP/69LYi1qSencnISNhgtbOglAAQVtD+6fS390FSE2XpdPtf/QKUzPieTs+c6fsEcR0trvec59ZoQKYVlIEgfnxjKrX//n/u8l/v9o/xeAAAAAAAAAAAAAAAAAAAAIDoIRgMAAAAA+LIF0FRPuKO0hZV4KZVgNDMyrOV3XejZlhh21BVPatNu72VX7wlGq7vvas/2QTNDg2v+bg2eqzEjkqSjB5/W0qT3hzx1wAfsxW/fMO6teeE5td5yk7qrFtqXyfDd+/dS31D6dWLIaM4XXfWECBX6+h/Hf7G71xu9+fyU6r+Z0ht+ltK1j+U2qNkW4hTLbyaWJGnOTEf/998xvf7A8Mt+8BJXj2QJh5sYlnPD4+EGIXftCUbzGzC9rM57+u54qI+aFraB87Z9PX+Oox+9P38Hwi/vMXLDJiCVoKBfsXewsHWEYQ3NGw1UsAR1VmJYSX+WYLS2IvcFd6wLd0599S3jLzbqLdcajV25VhRe2G5hU2th6gAAv3DcTH97rvyvZwopTL9fiSGsQD5k3sWNPkuZaEub1BavnP4syDcN8oxmzRajt/8i/Sxm2TdSOvrslDWs+IK/V872BQAAAAAAAAAAAAAAAAAAQPQRjAYAAAAAsHJdYx0IXgnBaNqyVvWd663ND/z0NxpOeretWu7IGKP56++1Lt992qc1kvTewFUmvWJH0uFDGzznOb3h1TJKD5iNx+Zp0Jn5UpvZ0TD2unm7zKdfo4/tfY21lomGktI1jxo932R05Flu4OCFUY9vTw/ANf1x3ft0n97xK1f3b5JaeqWHXpBOudzoqjXple7uNdrVFWwAbrZApHxbvcLRw9+p0uDFMX3lhPx+yMaWsdebWo2GLMeSzWjIky0sTpKWW4LRih2GlItc9vXHXpPfffSBi3ML8CslQcM+4iUQjFa153dp0Vzv42B3r6x9brlKDPm3t/cVd3us2+X9eXsvlOpmjZ927EHScQePn7Zygfe+7UhIQyPF+S5hg9F2dFTWMQegeIL2R0/uDL/uzoTRhmajrW1GxpZWWyHCfP3EUOVdawBB+Z1LTsYl3qHL7Pd0f322cs4vv/v8UdmCn5950eiN57n6+4b0s5i2uPTMi/mpDwAAAAAAAAAAAAAAAAAAACg0gtEAAAAAAFZ+YVhVE4PRFgYPJFo8r0ApVvm2o0F7jzSq2ox4Nt+62Z7wdugySR3Nmp9oss7TE6vTyBbv0LNqM5aStXp4k3UdFx57lQ4+aIMWrtqt/Q/epIsXnppu2LJWkmSM0baPv1Wv3/8BPTTnOOt6vHzxOqOXneVqe0eoxV5y3E9dDb1rb73lktme7Z/7vdGrzk5p+Tdd7fttVwefltKjW/0HOhc7GG3UjGpHF3zE0UUnOZpZnZ91NrSMfZmL7g0/wLurP72MXyjGsjrvDdM/LPUPRXtQeS77er/F+a3hr89JPf3R3k5TFTRUpXcgOtsh27Gxv+U4SLrSthz7s1K0vd3ox3/z32/tfUUqZo/Gbu/pnznO0f3/HdOn/8XRvx4infYuR3d+JabqqvEnfL1PCOuNTxYpGC1kXmJHkbcxgMoRtD/a1SX1DQbrIxu7jI4/L6UlX3N1xJmuDj7d1fJvuvpTkfrYKAobiNkzUJg6gFLndyplBqO95+X2G74711VOXxTkm3Zn6W/OuT18yD0AAAAAAAAAAAAAAAAAAAAQFXkaygsAAAAAKEdJnwGU1VXj3/uFlUy02J4nFilmZ4NqlNTBw1u0cebqSe1/qX2P53L7LpLmznRk1jVovttrXX9P1Xwl21ukuYdPaqvRWDDaEUPPW9fxja6PSDPSr9url+rLy3+h1UMb9eZND8jc/r9yXVdv3/d2bZlxkHUdhTT3kHZr23BSevrFsfdb26W3XOBq509jWjR38mBoY+xDgwsdjCZJjuPoC29y9IU3Sade4+q3D05tUPbGlozXzfZ17b9YnuF0Xf3pP/2D0extbX3SfjOzFDmNcglGq4o5elm9tM6eRxja3zdIH3pV/tYXNYGD0QYLW0cYtsH9o8fGIcvS4QpeXcbG5j3BlWXOGKN3X5Q9BaHYwWhNPd7TVy6QXrGPo8s/6d+Z77MwHczqdQycfZvRx19n5DiF/UHw+Sny1JEoTB0AECaw6+s3Gh29r/8CxkhfuG7yPG1x6cO/cfXsGTEduXeJBFznUdh+v3tAWlJbmFqAUhb0XHr3kfa2zbvzU0spCNLHd/fb2wZHjO5YF+4zi/FcBQAAAAAAAAAAAAAAAAAAAAgqNt0FAAAAAACiyxY+I0nVE+4oV4YIRltSIsFo2tEgSVo1vMmzubtqoef0VfPSYWjmzI+rzu2VY7w3ZE+sTiOq8WyrNmPBaCf23hK4ZEn68ZJvpz//3M/qtCt3T1somiQZJ9yjh/5h6eanvUcA+w0MjhX5CcdvTonpzq/E9I235T5yeFt7erCyZA8LkqSDlnpP79wTtpNzMFo8S4HTzBqMlmVff+y1+R3Nfe/GqQXgRZ2bPTtLktQ7UNg6wsgWmjerxtEBi73naWgt7/056vRbjDY0Z5+vmMFoKdeoxRqMFuy8nTfL0VsO827bvFt6YkeOxYVgO4Js1zadCf9gTwDIld+92kS/e9Do89f6/+cVipbpqkcqsy8LE0An+QcVAZXM71TKvBKsrrKH5frdN5ebIPdpfv3N49vTz1fCqOJvjgAAAAAAAAAAAAAAAAAAACBC+OutAAAAAACrpF8wWtX490FDTaPm5OkAACAASURBVKQSCkbbmQ5GO3xoQ6jF9t9xn8yWdVJPh2IyqnW9E6h6q+Yr6VR7ttWYkZdeL0+1hvr8++cer46qRdo441Cdt+SbWef/9b/nHiT12cX/1LWNn8h5eS8bW7yn+w0MjuU3CyuQtx3h6LwPxeReVpVTQJprpBd2p183WwZ4n/MBRwvneLd19Y+tx2bRXPvg5sgHo1n2d7Yt/dUTHJ34yvzV8djW8g4BCfrtekogGC3zWD/QEijY2pv/eqKmd8Do3DuC7dmOIgajtfba9119iHDVs95rf6T93K7Cn6+2vmlprff0oWT4UAoACCJsYNdUPbipvK+JbMJmWxKMBnjzO5ecCTd5+yz0vutri0tDI5XRFwX5lt399rnWN4XfTpnPVZ550ej7f3H17T+5WrOlMrY5AAAAAAAAAAAAAAAAAAAAooVgNAAAAACAVTJlb6uecEe5cmHw9ZZCMJpJpaRdL0iS3py4L9SydZ1bZK4656X3813vJJ6u2AKNODWebdVKjnv/kZeFSyVaM/sYfX75hVnn++dpMZ38uvChXld+ytH2n8R0yVf31msHHg+9vJ+mbu/pKZ+xuNMRjJbpvA/F9Kljwxfx0AtGA8PGGqDw+gMdLZjrvd6uRHqD+AXGVcfs51tbX7QHN9vCPrLt6zkzHd34uZgazo7pxlNj+peDgn3em1Z5T3/6xbFtXY6Chqr0Dha2jjBsx3zmsbFknveB0pkoQEER88qzfTqFCXIJTMiVrW+XwgWjve5AR4ev8G5rsARr5pPtnFnqc21TzAA6AJXDDZvYNUVP7JA6In79WAhhv3F3hMJkgSjxDUab8N7v+VJLBQQdS8H6eL8gRlvgvJ/RfwDhjrVGx/zE1Tm3G513l9Ebfubq948Gv8cAAAAAAAAAAAAAAAAAAAAA8oFgNAAAAACAVdJn3GPVhDvKvUMEo61cMM0pVkG0bJdGhiVJx/Wv0Uw3eCpQrdsn3f/nl94vTbZ7f0T1MiVicz3b5rrjR7gurg13C/+BfW7S/819g+88f/hsTK/e31HdbEcXfCT7PnEc6V8Okjb8MKZPHhvTvosdOcv2Uf3b3h6qtmwau7wHAPsFgE13MJokXXqyo2+8zVHtrODL3PqMUXOPvX3FfHuw2WjQjl+wVcyxh/XsjgercbpYg9EC7GzHcXTIMkcffJWjTwYMrPvSm+3n2PHnl+8gcL/zKlNvhEI+7MfG2OtF3l1r2Qa67Ogw+vffuop9NqVt3j85np5vlra2FWeb2ILRaqqkxZb9ZfPq/b3P64aWwn8X2/HnF/ra6RNaMd2MMfrD466O+2lKrzknpXPvcDU4Em47/v5RV286P738mbe6SvolmQLIm6Dhpvn0q39U3vkddjv3DVXeNgKmyplwaVc/3z6vX9huOQmSfdnlc42Zy3Vx1Z798J0/uxrOyOp3jfTfNxm50/HDAwAAAAAAAAAAAAAAAAAAgIpVPd0FAAAAAACiyy8YrXpChtDSeelwk5FU9vWuXj61uopiR8NLL2uU1MHDW7R+1hGBFq1L9Y57vzzZ4jlfS/Vy9cbqvNfhjl/H4vn5u4V3ZDR0SZWqq8ZGH3/lBEd/W2t0z4bJ81/wEUcnvdbRvJnS3JmTw2hmfeGHWvqVNrVVL81LfY2Wgc6+AWARiH6fUe3ovA85+umJRv+3WXrzz7MnTt3bIK1ttLf7BaO1Bw1Gq/VuayvVYLSQIXjvOtKR5D+A+/PHO3rVfvb2tY3SI1uMXn9QBBL48izo2PaBEWkkaVRTPf3bIGU5tTKPjcWW86Yzkf96pltPv9ExP3HV2pt9Xi9P7DA6cGnh92tjt/fBVr8gWOBhpkOXeU9vaA1bVXi2c2bRPEeOYzxDLBq7pFfsU9i6ghoYNoo56fNlJCX98Umj/7hqrOgndxhtaZN+/mGpdlY6aNLP7x509dlrxi+/rU26+jPT31cA5c72e1hID22uvFCcIOFEmRJDhakDKHV+p9LEy4262dLcmd7n0/aO8rwvmyjIfVq3T3j1hubwn1kVk1p6jOczitZeac0W6bhDwq8XAAAAAAAAAAAAAAAAAAAAyAXBaAAAAAAAK7/B9tVV49/HYo5WzJd2dvqvc2mttHheCQxi3dkw7u0hwy8EDkardfvGvV9hCUZrrl6u3ph3alVdanxq1eK6amULdwqq7SubVF11+LhpjuPoL1+I6Zy/Gd3zvFHPgHTQUunUN8b03qP895dTu1Bvn3GXfu++JS/1NXZ7BzBlCwCLiljM0fGrpGfOiOmc212tf3yLulJz1FyzYtK8w0npl/d4n2hLa6W62Y6WzPP+4oGC0WLS0lrvYLCoB6PZQijC7uv6BY5WLfMPTLropPRK62ZJvYPe83z/L67u+XqVd2MJCxqMJknxIWlRBJ4m2mquyghIXDzXe56OMgxG+5/7Tc6haJLU4P0TlXdNPd7T6+eHX9fq5d792pY2aThpNKOAAX6u5QCsqZL2Weh9HdTQavRuTe8PlTFG5/zN6Iy/ZD/pL3/I6PKHjF69n3TRSTG97kB77Rf+Y/L6rvun0U8/aLRiQYR+nIEyZPs93KtWOvWNjv7+vFFXDr97RtImy3XT5t3h11fqwlwrSVIfwWiAJ7+QwYlXDI7j6MAl3iHitv6p3AQJZezuT1/jTQyyTQyZrM/mvFTFpB6fsLUdnUbHTfM1LQAAAAAAAAAAAAAAAAAAACpHBIYyAgAAAACiKpmyt1XHJk9buSB7MNrq5VOrqVjM1ufHvT90eFPgZWvd8YlTyy3BaI019YpX1VnWkZFyM2uO9lnkHQITxkx3UE8ffokWHfFNz/bZMxz96P2OfvT+8Os+7bMH6/eXTqm8lwyOSA++IL159fjppRKMNurlezu64aQemd8fKVeO9j94s5pq6ifN94Dl0Bo9V5bM89737X3pQdDZtsuSed5t7X35CdorFNv3ymVff+JYR6ff7L3Cx06LvTSQ/LJPOPrYZd7z3btRuuVpo9kzpDev0qTgvlIVJuyjd0BaZAkcK6Ygx8Ziy3Ef1WC0jj6j53ZJ65uMDljiaN9FUmdC2rzbqG62dOxBjvZeOPmY60wYfe+WYDvxA6+Ubn568vRiBaM1dnlPr18Qfl2rLNcSKVfa2iatnpxDmTd+x9/q5d7XQRuLtI39/PzvwULRMj2xQ/rwb1ytOyumutmTj7+RpNG6psnLuUb645NGXzmhPPpJIKps/dHsGdIP3hfTD96X+7q//kdXv7xn8gc0dkt9g0bzZlXO+R0knChTgmA0wFPYu89Dl3kHo20ukWC0+KDRA5ukBbOl1+wvzawJ128GuU8bSUn9w9LcmeOn5xoe194n3fSk/YNdn388AQAAAAAAAAAAAAAAAAAAAMg3j2HsAAAAAACkJX0GPVZZgtGy+ddDoj+I3vR0SHdcPW7acf1rAi8/MRhthSUYbdOMQ6zrqMtcx8w5euvhgT/e6qup67T6696haFO1+uiDtGvV2frB7h/kZX1/f37yYNxSC0aTJLWlE2NiMnpv3+2hFl21PP2lbMFmSTcdVOU3ODnmSEtrLaXFvadHhS2EIpbD06xPHONo3szJ0z9znKPX7D928Hzk1THtZdleknTiJa7e+StXq89w9XxTtIPlggoVjDZYuDrCCBSMNte7U+hMSG6YL10EDzQYHXGmqxMucPXlG4ze+2tXR/3Q1Zt+7uqz1xh97DKjg093ddWa8Sf7/Q1GS74WLJ3gxZ/GdOgy723S0Fqc7dHc4/059QvCd+AHL7X3+w0FDsvwO/4OXe5d1KaW6T3mrnzY1bduyq2GXV3SlWu8l437hP/kGsgBILiU5ScgH9fFX3yTfSXPeQQVlbOwlw2J4cLUAZQ6v5BBx6PLOcRy7bqpSNeuU/HwC0b7fMvV+37t6g3nuXrtj101dYerO2jf090/eVrDFK49v+8TpBux2ygAAAAAAAAAAAAAAAAAAACUOYLRkFeO49Q4jnO84zifcBzn247jfMFxnA84jrP/dNcGAAAAlCvT0yFz9blyf/k1ud85Ue7F35W581qZVGrK6/YLRqv2uKOsX5h9FP67j4xqglWacV2ZEw+cNP3N/fdrjpsItI6JwWgrk97pAd1VC63rqHN7x97MmqPaWY5OfePUtt0pb5w9peWzWfHl03T6ERt1Us8NU17XhmaPYLQsAWCR1N700sv3xf8aatEDnXSgni3YTJIeekH6xBX2DVMVkzXoK+rBaEHCr4JaudDRZac4mp9xCrzvKOnXJ01e2VPfz/64bFu79F9XuzJ+o/tLRJiv0DNQuDrCCBIEYztvUq7U3pf/mnLlukafvsrV7izn43BS+o+rjGKfTekVP0zp33/r6s0/zx6KNmeGdO1/Olq50NHq5d7zNLSoKMdyh2W7L6sLv66ZNY72WeTd1tpb2O/i1zfZtvFG73zUvNnYbPTD21x9+kpX59/tqisxVuTd640+879T2yY//Kv38n0+YYnxiPQXQDnL57XSRPstlmbXeLfdsa70r3/CCPsT6dc3ApXMNxjNY9qhy7znbWgtzrVrrlzX6MOXuuNCpdc2St+8MVzNQb9it8c1V6HudwhGAwAAAAAAAAAAAAAAAAAAQDFVT3cByD/Hcc6SdOYUVvG/xphPhfzMpZJ+IOmjkjyHJTqOs0bSBcaYP02hNgAAAAAZTNM2mf98vRTvGpv48O0yknTPDdJ5t8pxch8ZbwufkaTqqsnTVi7Ivs5D9sq5nIIzxsiccZI0PHk0+ywzpLf13aNb6v4t63pq3fGjUFcPNYSupS6VkZIzK53mdNHHHP3mgdxGoh46tEmrD7OMLM4Tp2aGnHP+qO88sknXXzm1dXmFyPgNwo1FNfo9Ixjt+P7/U22qV/GqYClAC2/6icwB79CSV73LOs97f+0fjOQ4zp6AqMkbry1C4VBe/ILwcvGx18b0lsOM1jZKC+dKr9jHu2+sX+Do7UdId633X98jW6VnXpReuW9+6yy2MIPbu/sLV0cYQYJg6ufbl2/slvbKIYyrEB7bJm3vCLfMc7uk53Zl33G3fjGmYw6QltSmN8yq5Y68+oK+IampW1ppz+rMiy7L8bNwTm7rWzpP2uGx7QodfGcLqYjFpFXLvLfx7rjUlTBaODf/KZ73Nxi999euEkNj0359r9Gj342poUV6x6+m3pl29aevkSZeU8aHLAtI6h0kOQMoNNu1UlUerourYo6OXyXdsW5y25oXKuv8DhsE1D9cmDqAUud3Knk9tjrUcl0VH5Rae6XlPtf70+npF6WW3snTb3jc6PefMYoFTK8M2vd0eeT39xYooJFgNAAAUIqMMXLd8vhHTgCUFsdxFIvFpvR3NQAAAAAAAAAAAACg0hGMhilzHOedkq6SlC3e4FhJxzqOc62kU40xHn9VGwAAAEAY5uLvjg9Fy/TY3dK9N0knfDjn9SdT9rZqjwH32YLRZlRLi+flXE5BmVRK5vwvSg/cYp3nfTMe1y0KEowWH/f+gJHtqjHDGnFmBK6nzs0YSTsznRpTXeXols/H9P6Lw4ecfHDgr3Je9rnQy+XiyNcfqptmGn3o0tzDWDa1Sv1DRnNmjv1lcb9BuFVR/TvlbWPBaDPNsE5I3BcoXE+SFg63yVxymuZe/U4tq0sP/g5jdLz1Uss5Fx+UBkeMZtVEc+NZw6+mEPaxpNbRm1Znn+9lKx3dtT77QKmbnjR65b7R3H5BhRnc3txjJE3/97XVXJURMrBXXToYxivgs6k7OoF2Da2FGZB35nsdvefl4/fVKp9szI0tpReMtsTStxU6GM0vmG/1cvtyDa3SMQfmv57Tbx4fiiZJOzul4893tak1f5/T1S8tmjt+Wp9P6EbvQP4+G4C3IEGhU/GWwxzdsW7yh9zXIPUOGNXNLu41wTWPuLpqjdHgiPSeoxx9++1O4IChqQj7S91HMCQQmmcwms//dd7UGt1gNK9+c1RnQlpSG2w9QXM7uj2uuQhGAwAAlcwYo8HBQcXjccXjcQ0Pk14NYHrNmDFDtbW1qq2t1axZswhKAwAAAAAAAAAAAIAQ8vDvxqOSOY5zvKRbND4UzUh6UtKNkv4uqX3CYh+XdL3jOBx/AAAAwBSYvh7p4dv857n7uil9RtIn16rK44p+74X+f5G3fr6i+5d9b7xQuu0K31neffK/BgoaqHXHp7JUK6VDhl8IVc5s8//Zu+/wKKr9DeDvmU0DQgoJhA7Su14EVEQFARuKyvXaC9ixYa8/FRuK2JVrV7Bju4IdUVAQEZEi0ovUhISE9J6d7++PJZBk58zObDbJAu/nefIkO6fM2dnZKZucN1Vmt8bsT40ZfYTCBYOsBxHfCNj4mIE4T/WElJYVu3DbcSVQTeJcjaE2xvRX8L5qoPy0t7BrfTvkr22GMXn/c9VH34eq74B2k3BrE5ZVlyQztdrj3qWrHbeNN3OBrWuhdm3ByZ3dZ4vvC0azmXidVccBQrVR12EfduzCjapyEp4W7kwX+YWpOXU3Djd0Y656HPAYCq00YQk7c8LnddtTB/82oEVT4KYT/d8oiU0UWmiOB3UV0FbJNAU5umC0JsG9qZNjrdvVxTatyu7Y1DoBiI22Lt+8O7TbuMIryMgT/LbZujyUoWgAkJbrvyzfJnQjI983EXVPoUCcJnsQkStW4Z9A6K6V+rTRd9TiNhOFpfX33n7lZxOXvS2Yuw74bTNw3/8E49+vn/W7uVYCgELOuSeyZHc5YHW0SW6q/EJZK62v42vX2oi2+bd0u13cfzsNIcsp8q+YW0cBtU6Ph6Xlgp3ZvAYkIiKi+ldUVIRNmzZhy5YtyMrKYigaEYWFsrIyZGVlYcuWLdi0aROKijS/LCEiIiIiIiIiIiIiIiIiIj9hOm2YQuwCAIe5+LrdSadKqbYAPgcQVWXxrwB6i8gAETlXRE4C0BbABADlVeqdAeDRWjwnIiIiIiJa/ANQUW5fZ+E3kKL8oFdhF4wWYXFH2beN/UT8NglBD6VOybZ1kKl321dKaoXmJ52Gw9vaVzPEiwSvf3rQgOI/XY2p2maMblStbNpYhYfPVGhZJefs9H7AmocNdGqusOLRRhjbYTOGGH9jrPE9Fp74IxJvuN/V+kNBKQWjzWFI9mahkZRgdL59kF9N/2QC/2Tun0hrG4wWpnl7qBGM1qNsneOmCV5fCo2c1xNnfHml61VXhkTFN9LXsQu1aWgNGYx2cm9lGf5Y09JtwC/rD+zJ3k4n3APAzjAJRvM63Dd055xweR6AddhUbaTEAX/cZ2jDxnShf2t3hXYcNeWX6Pe1xMbWywNJirVenplfxyFvmu6V8p332jezLg/Va71ul+CYx72IGm+i5e0u03pqIc3ifVNQ6r+s0uo0oM0dJpJvMdHhbhNf/XVgHyuJwpHueOTkGsYJu6DYsgqg6Y0mLnjNREFJ3b+/n5vjv45pCwVZBXW/brdrsDs2Eh3Kgnm3dkuxXh7qANhQionUl2XkOe/H6X1atsV8+nxNMNqxnZ2v34ruPqxSSbngsrdMNLvZRLu7TLS/y8QHv9ff9SoREREd2oqKirBt2zaUlwf4vSkRUQMqLy/Htm3bGI5GREREREREREREREREROQQg9EODbtEZIuLr0yH/T4EILHK44UARojImqqVRKRURF4AcG6N9rcqpToE/7SIiIiIiA4NYpqQVYshi76rFnImCxyGTM35OOh1V3j1ZREe/2WJTRSO76pv0zYx/NKrRARyUb+A9dQrPwMAerayfw7NvHvggf/Ez9EFXzseU8/SNdUXxFRPjYmMUPi/UQZSn/LAfM33NesGD1rG+8bWIUnhrfu64pdXDsdbr5yGjhdfCqUaaNu3777vx3PzPsXgooWumn+xrEowms182nAMRhMR4I851Zb1KHUTjLY/hWZkwRxEm+5SzCq3SZxNMFpeGAejSQMGo7VNVLjnVGcrGvqUCa+bdLEgFJcJvlkpmLdOUFYR2nW5GXpqTngEG+mOBTX3jbaJ1vW2OP3kqx7sCnEwWuoUA+2a6ffdbi2ty9bvqtvX1iqwoVKwwWjJmmC0P7cF159Tgfa/lvHW5YGC0QpLBT+sFrz/u4nVqdavR0m5oOcDJn7/x+FgXYj0AEfafFKblus/pvwAYUi79oZ/7MgGzpqqf15EFJy6DpFtkwA0jbGvM2OJ4Nr36va9XVAiliFI5V7gf8vq/rji9jKvkMFoRJZ093eAL2DWSrcUzbVrevheU5RV6Mt2Fzjvx257VevT4n8h5Gmu0Y7sqHDT8OBPEqUBMkZu+FDw7iJB8d56O3OAS94SzN8Qvq8XERERHRwqQ9HE6UUUEVEDEhGGoxERERERERERERERERERORTR0AOgA5NSqiuAy6osKgMwVkS0U6pF5Aul1PQq7aIBPAjg8jobKBERERHRAU6yd0MmXgwsnedbEJ8E3PsG1ODTgGU/O+tjynVAcitfG5e8QQRRnfUvhXnrrScfHNPZ9RDqnLz5UMA66pbnoFr60kK6tbSvm+zNslw+smAOYjxelHgtEuVqOKXg++oLYoJMjQkHLdoCjZoAxYWIQjnmbj0J0+MvwaTku5DricO4nOloYhbhkeb3WTafs0Zwy0jfz3ahBOEWjCalJZDHrwLKqicj9CldhQRvNnI8msSmKhLM/Sk6sVKIC/I+xrSESx2PoXKbNInS18kP42A0UzOJqb5e64fPNDDoMMHol2wOhHtd977g1UvqZmB/bBGc8py5L1iqT2tg5g0GDksOzfrchH3szAlcpz7o5rd5avwLiE7NFQD/yuEUpLB5d+jG8s/jRsAQzB6ac9iy7YBpCow6eoPVRTBakiYYLT0PeOYHE7eOrJv/CRIoiKhVvPV+ZxeCt2K74MypJrbtqVwiuOo4hVcuVvte04w8QcvbAx+PnDi6E3DUYQptEn3nAQXgkqMVOrdQMK62TsXdbBEoWOAi/McU4O2FginnhNkJm+gAprtXC9Wh3DAUzh2g8OYC+3PVJ38KXrpQkNC4bt7fhWX6sg0ZdbLKatzOq3dzbCQ6lNgGo2mWd21hvXz5dt9E8gYLgLdhd4+dkS/QP9vqnN6npVpcY+YVW9eNbwRMPEPhpF4Kp7/o/rqy1Cb0rbxC8OkS/0GLADP+EBzXNfxeKyIiIjo4iAhSU1P9QtEiIyMRFxeH2NhYREZGhuW1IxEd3EQE5eXlKCgoQF5eHsrLy6uVpaamonPnzjw+ERERERERERERERERERHZYDAaBetCAFVn838uIhsctJuM6oFq5yqlrrMLVCMiIiIiOpTJczfvD0UDgNwsyF1nA7e/BGSmOu/nrrOBb9Khmia4Wn+FZp5khAHtH+meeYTCzTOsZ3CeeUR4/WGvbFgBTH88cMUBJ+77sXcr68CTSkmaYLQm/x6HER4PvvrLflXHFv2Kibsfrb4w+sANRlNKQdp3B9YtBQB4YOLy3Om4PHd6tXq6YLTVaft/PpCC0fDNdODHj/0WR6ICpxTMxkfx5wXsIt5bfYbzYxkPYFV0T/zRaKCjIVRuE8NQaBpjPUE7L4zvxrXhQ3WTdWTp9H4KP99h4JxXTOzO19d7fb7g0bMEzZuGdkcUEfznFbNaqNTfqcBNH5r48sbAIYvO1uG87p7CkKyy1nT7Rs3TUrcU63rr0sMjSCG7UPDbZvs6bROBj642MHO54OnZYvncYyKBVy5W6JAU+Pn00pzDducDi7f4ArPqgl0wWkKQp7iWcfrz8e2fCIZ2E/TvEPrXOFAwWst46/K03OoNswsFb/4q2J0PTPnev9PX5wteny+4daTCfacpPDArdCF6C+/WHz9O7wfLa5XZqwQPnlF9mdtwzadnC6ac464NEenVx7XSo2cFDkYr9wLHPG7i9MMVTu6lMKJXaI+9RTbBaHl5pQAahXR9NbkNRrMbL9GhzO6tpLss76m5dt22B1iVCvRpE5KhhVS+TTii3T1lTU4PPWk5/jVzNcFocTG+z2hO6wv89yKF6953d4ArKdeXZRboP1/4cU34BFMTERHRwaekpKRa2BAANG3aFG3atGnwz3+JiCIjI9G4cWM0b94cO3fuRH7+/hvD8vJylJaWIiYmpgFHSEREREREREREREREREQU3upxKikdZM6u8fhtJ41EZA2A36ssagLgpFANioiIiIjoYCJ//Qr89Kl12VM3uO9vzGGu21R4rZd7bO4mOyQpXHaM/2SDS49xFtpSX2Ttn5DLBwWuePgQqPbd9z0c2t3++SdHWcyCHTUWxoRncKSDgJZ5W0eiidRIkIk+wP8gukOPgFVmbh9juXxrFlBY6ptEaxuMFmafcIhFKFql/iXLArZvbBYiCtUn86R4M/DLluGYv2Uo3k69Em+fss22j6phcU01u1B+SfhOUDY1wYz1HYJ3XFeF9Y8YeONS+xWn3KYZcC2sTvNN+q/p65XA9j2hee3s3lc15diEW9WnQMFUlbqlWL9mOUXAxowQDyoIgybp95mXLlSYfbOBtQ8bGNxZYfK/Dax52MDsm33ff7vbwPRxCp+PN7B5koFLj3F2EBzSBYjW/KuMmcvr7niQrQnVaxoDRHiCe1N3b2lfPuAxE+UVoX9Ogfa/VppgtB3Z+3/emCE44mETd34qlqFoVT3zgyDpFhOv/RKa55ISZ19+Qjfr12PRP0BmfvUxFNgEfxBR3dMdj4I8rFpKiVMomhr4HLMu3Rd+eNJzJh75KrTXRIU2x5rcn2dDMtP0FULAzbUSABQzGI3INV1ehd3nL7NWhOe9bJ4mlAwAMlwEo+nuh2tKzbEYgyagLK5KjmRCEJmSpRX6MrtQyEIeF4mIiKgOVQ0ZAnwhRAxFI6Jwo5RCmzZtEBkZWW15Xl5eA42IiIiIiIiIiIiIiIiIiOjAEGbThulAoJRqCeDwKosqAPzqoot5NR6fWtsxEREREREdjGTK9aHtsKQIsmWNqyYVmomYER77ds+cqzB2sIJSvgmuYwcreNMYbgAAIABJREFUPHNueExCkIwdMB8ZB7lqcODKR50E9chH1RYlxSoc31XfJPmoQcCxo3wPIqOA8yZA3foCAKB7iv3qLsz9EJZbKTI68FjDmOrQPWCdHqXrtGXr033fbYPRwmP32m/FAm1Rd2NnwObNKzItl0eiAscUL8YluR/gkj3TcctI/ROvGhYXpw1GCziUBuM0/Ko+xDdWuHyIgfFD7Vd+3fsmREI3Qd9qknslJ0EAO7IF49420ftBLwY/4cXTs014a2xYN2EfBaVAhbfhAwi8DkPzerfW9/HGgvp9HhVeweTvTLS90wvjat/Xpt3WddslAuNPUBjRS6Fx9P4n1TXFt6zbznkYOPUMXPTucJy5cjJSom3SF2qIjVEYrsmqrNNgtCLrvhMbB99n5+aB68xaEXz/Otpj095jbvtm1seJfzL3v3+mfC/Ynm1Zrc5dfqz9cWxUX+tyEeD71dWffHG5ZVVb4RzISXSgCXQ8CpWYSIUNjxoY0sVZ/Ue+EqTnhe69bhuMVhYBefeJkK3LittnUmITHER0KLO7TdJdnTRronBsZ+uyb1aG5zVFgc099ortzsfs9D4tLdd/mS6cLb5KGFpiE/c31iU21352wWghvEUmIiIi8lMzGC0uLo6haEQUlpRSiIur/p9Lah7DiIiIiIiIiIiIiIiIiIioOgajUTD61Hj8l4gUumi/sMbj3rUcDxERERHRQUcKcgGXIWaOLPreVXVd+ExEgLvJxCYKb401UDLV9/XWWAPNgph0GWqSkwkZNxCY/UHAuurrNBhPfQmV6J+8cuYR+ufSvEVTGE98DjW3AGp2NowbnoSK8gWb9WgVIIyk4FvrAk+AJLpw1z5wMFrH8q2INq1nEK/d5ZtFq9sfgfAKRpO5n9mW9xxxdMA+WlekBl7R/FloHqsvNqtsr6aaYLS8AzAYrSHnNL1wvv3KX/lZcM//JGThaHaTy5dssW+bWyToO9HE9N8Ea9KARZuBOz4V3PJx8MFoQHjsM7oxe2qcm5o1URjU0bruc3MEa9Lqb4b++PcF93wutmF3lU7rp7ST92TxD5CbTwEW/wCsXAh5/UHIY1f41zNNSJFvQo2U+3YkKS2GpG/HGZ2sB7F2F7A+vW62SY4mnKE2wWhREQpdW9jX+ebv0D8f3du78jzUTROCWmECW7J8P3/pINiwLiQ2DhyM1r0l0CnZuuzPrdUf24Vj6Pyy3n0bIrLmNCg0FDq3UPjlTg/O6Be4boUJ/LgmdMc5u+uhHCMe+OkziGlzo1BLbrsuq4BfEC2RU1JRASl1Hnp7IAn2XXHG4dYHtZWB88YbhF0I7MJNQIHDkFin2ysjHyiv2F9bRJCr2YXiYvZvy4RG1nXslNoEP9oGo7lfFREREZEjIoKysuoXIrGxNr80ISJqYDWPUWVlZSH9h0tERERERERERERERERERAcbBqMdGq5RSs1RSu1USpUopfKVUluUUj8rpR5TSh3nsr9eNR5vdNl+U4D+iIiIiIhoW92kRsjX01zVrwgyGK1SZIRCZEQYJVbNegPI2xOwmnr6K6i4ZtryMf0VoiKsy0b09D1fFREJFVG9Up/WQNtE63bx0V6cUjDbutCjWdmBoueRAat4YKJb2QbLsrW7fN/t8gXCKhjt+dv0hWPvw2HX3oDkAHNz2jgJRtu8Cn2LlmuLqwZYxWmC0fLDIORKR/d6N+Rr7TEUfrnD/gD45HeChAkmXvm59gEddpPq1/6+BrLbPw1gd77g6EleJN5sWk6If+knwZIt+/t1G/aRU+Sufl0wNTuH1b4xpr/1DlPuBW74wKzzCSemKbj6XRNvLnC+nvMG+I9ZigthPnYF5LbT/RvM+xwy83VfPRHI+09BRreFnJwM87hoyIlNfd9HJEDO6YLTn+6vXffM5XWzPbI1/1KhNsFoADDaJqgUAN7+NfTPJ9CxqYt/nuo+G9KBvGLBrryQDwsAEBsNtNNcZ1w4SOGXOw10bmG/zZRSOL6bdZ1Xfq7+5IMJRvt+NSd5EYWK06DQUBrWw9mF2MVvSrWgntootAnbSY9IAXJ2Axv018S1pXsWjaP0bYI5PtKhTbxemC/cBjmjNeSU5jBvOx2Sk9nQwwopu8tuu/Dr/u2tC/NLgApv+F1X5Jfal78419mY3dynVb22LCnXf5YXVyUMLSGI63C7Y5tdMJpdyD0RERFRbZgWF02RkZENMBIiImciIvx/5291LCMiIiIiIiIiIiIiIiIiIh8Gox0azgcwHEBrANEAYgF0AHA8gHsB/KKU+kMpNcJhf11qPN7mcjxbazxOUkpppuwRERERER2itq0Lrl3zNsCJ/9GXb1kDyc5w3J1ukmldTravS7J8fuBKY66FGjTStkrbRIWJZ/hPzv13f+CEbvp2ER6FJ/+t/ILllAImn5iJeFOTlHKAB6OplPZAl34B63Uvsw4EnL3Ktx/a/V14uASjSWYqkJVmXdg0Eery++HxGDi9n/2AW5dXCUaLTdDWG/b8UEfjaqoJRsuzCM4KF+EYjAYAQ7oqJDWxr5NfAlz3vmDc2yZScwJPfDdNwapUwYeLTSzavD9IpMBmUv268hSYF/XzC/b6zysmFm+xX9+gSfsDwewCB62ERTCabt+wODddc7xCSpx1/bnrgA8X122YwtsLBW/Md7eOod2r7+RSXAi54ijgu/e0beSpGyDFhcA370BeuQ/IzdLWbVWxC4OKF1uWBbM9TFMwf4Ng4SZBYal1+2zNfpMY4L0UyM3DFTol29epGgQYCrr9rzLQo3G00oagrs8QbHB+GebKqL5A7gsGtk72wHzN/+u9Kw30bu3sANo1xXp5STmwLUuqPXZrQ3r4BZgQHah018Z1ea10Wl/nnR92r4lXfzaxOrV273vduQUAUiNa+YLLNv1dq3XY0R33m0Tr2xTbBAQRWZE3JgKfvAQU5AIV5cDiHyB3j2noYYWUbTCaTTu7AK+8MAz6tgqnrurzpc6OiW6OnKk5+3+22yZVA9ObN3Wxgr3KKvRldsFoPCYSERFRXbH6pxfKLnWXiKiBGRa/yKrrf+BDRERERERERERERERERHQgO0CnslMdGABgtlLqMRX4L4Rqzsh2NZ1PRAoA1Pyz7Hg3fRARERERHexk/fLgGsY1g5r4LtB/qL7OrDcdd1ehmWwf4XE3rLDxxxz78q6HQ938nKOu7j7VwA+3GLh5hML4oQofXKnw0dUGPAGSCM4fZGDh3QbuPU3h0mMUbj9JYf6dBq4aqE8bUgd4MBoA4LjRAat0L7UORvv9H+Dhr0zbACerQKSGIA+P1RcOHL5vUs5ZR9jvJ21HDgcuvA1qwjNQX2wFeg60rBcjNslZVcQ1sl5ffhhOJK/UEGEfTm2a5GyHm/6boO2dJl6ep0/1KywVjHnZRN+JJi56QzD4CRNDnjSRliO2r0+OJxH/VCRDzuoIKfSFKm5IF/yywdlzWLI3tt51MFoYhOl5Xewb8Y0Vppyj32lu/0SQW1Q3k05yigRXveOu751PVt+3ZNkvkLM7AtsdvLA/fAj56i1H6xmd/5Xl8uXbgW9XOh/z1ixB/0dNnDDFxJDJJo542MTSrf7tdYF6CY1r94Zuk6iw7AEDZ9hkb776S4iD0Rzsf900wWIb0oGNGaEdzzUnKEwfp/DF9UbIJn52a6Hv56W5VYPR3D+XqsEdRFQ7mgzrOr1W6pai0Eaf2VtNag4w/n1Bn4kmrnzHDHqSZ2HGbm1ZidEIuUY8JNhgcQd0w24cpW9THERwJB3ifpzhv2zV75AdG+t/LHXE7ghgdwljF4wWDqHNNe0ptC//c6vvPiEQN/dpqbn7f7YLZotvtP/nZk0UurRwvg4AKLa59rMLRiss40R/IiIiIiIiIiIiIiIiIiIiIiIiIiJyL0ymDVMd2QngdQBXARgCoBeAHgCOBXAjgO9r1FcA7gUwKUC/sTUeBzMltmabIP4vtT+lVAulVG83XwA6h2LdREREREShIiLAr9aBJQE1bw2lFNSVE/X9L/jScXfaYLQD8G5SSgMnQKl7XncVKjK8p8Iz5xqYeqGB8wcFDkWrNKCjwqNnGZg2zsCT5xgY3FkBkTYz6w+CYDTlIBjt8NK/tGUTZwlW7NBPpI0Jg00kqZuBZT9ry9XNz+77eWQv+zCFHoP7wBg/Ceqc66GiY6COP1Nb992dYy2XD+q4/2fdZPKM/PCdnKwbWTgEo8U1UvjqRucHwus/EPSd6EXENV6cMMWLXzfuf3Yv/iSYtaJ6/T+2AG3uNHHXZ/avz5exo4A9u4DPXgYArNjheEhYvt3Xt9v56eEQPqALCdDtGxcdpXBCN+uyXXnAA7Pq5n1w68fO+20UCbx72lakfPYIzGcnQN5/CuYbEyE3jQT2Bt8FIlOuB/5e5KiuLhgNAEa9aMLrMIlhxDMm/qqy323aDVzznn/4TbYm/CHRJujCqaYxCm9epn8/rkoNcTCag/2viyZYbEO6IN3Zy+lI0VQDL19k4JJjnF+DOHF4O33ZrBVVg9Hc952WG7gOETnTUCGy/xngfgVvLRBMnev8eCy/z4Y59S6U3n42XpyRals3NaIVsM06YDkUdMd9BqNRqIjXC6RttS777r16Hk3dsbvvsA1Ga6QvC4d7k5qyHYxpp4OgWN0x3kpqzv6Nm2fzW/u4mOqPzwwQ2F5Tgc3HakVl+hfYawKlFa5WRURERERERERERERERERERERERERExGC0g9RiACcDaCciV4vIGyLyq4isEZF1IrJQRF4SkVMADASwoUb7u5VS+hnX/sFogdMF/NX8s+yafQbrOgB/u/yaGaJ1ExERERGFxuZVQOo/QTVV/Yf6fuhztL7S2j8hu3c66s97MAWjPXKZfYUjhwFd+tXPYKxERuvLjANwg9fUpR/QsoNtlVMKZiPRu0dbPn2h9UTbRpFA4+iGT8uSr6frC4eOgUpsse9hoyiF64Zaj7llHHBSrxoLTx+n7XpM/hfo2sh/ZvV5A/f33zreuu3ObP2QG5o2fChM3g6n9VX4doLzwaxK9T2n+RuA45408fBXvgPsjD+CD22a33gIAEC+9e17O3Oc97V2l++7w/yrfXI0AVf1STdmj+blUEph6oWG9tw1da5g2bbQP68fVjvr85NrDGwc+QUueK4PMO0x4PNXIK/cB0x/PORjqtSzbC26lG3Uli/cFLiPV342sWm3//I/t/r296qyC637CEUwGgAkN9WfA9btgl9QW204CUbrlmJdZ+NuIEuzLSrFRgPbJwc+tvx+r4GYyLo59+mC3QBgfTqwNs23EYIJRsssAErLG/44QnQwcHs+DJWbhwd37LnpI0FGXuD3v/nyvZDbz0DpjP/imIz7sSLG/h5te2RbYNu6oMbkhO4UYhuMVlY3Y6GDVIXNCbXg0EgUtTuqxNkFowXzr7vqUFmFoLA0cL3M/MB13FwtpVb5OCDP5rf2sTWC0W4YphDtImTebnsXBTjuOdkuREREREREREREREREREREREREREREVYXJVFIKJRH5RkRmi4MZfyKyBMDRANbXKHpCKeVxukq3YwyyDRERERHRoWH+rODbHjcagC8ERr0wW1/v168ddVfhtV4e4fRuIUzInI+Bn7/QV+g/FOr/3oZSDRiu5bGZjWpXdoBQSgHHnWFbp7EU49GMidryv3ZYL09WuTDHD4X5wIWQZT/XYpS19NU0fVnzNn6LHhqtcOVxCpFV3k//agfMvd1AVET1fVElJAP/ucGy62gpwyfld2JQR9/j2GjgrlMUbh6xv482idbD2plWAPPifjDvPAvyS3jlhpuaYEaj4TPw9jm5t8L7VyokBxH3PnGWwLjaixWa/dqJddHdfD/s2IT8vBLcMsP5xy3r9gYbuQ1GKwiDCe1Ogqlq6tVa4daTrCuYArz4U2g+qsotEtz1mYn+j3ix0z+vsJpLjlbYPcXE2cseRsrTFwJezUm3DigAZ+Xp3/OzVthvDxHB9R/o6/y9s3pZdpF1vcQmtqtx5csbrD/qzi4CdjsIn3DKyf53WLL1vpaaA2QV6PvulAzMusFAm0SF2TfrP7p/41KFgR3r9mC4cqJ+/ZX7R3EQwWgAsCsvuHZEVF0w58NQaJ+k8PWNwf16seXtJvJL/AcuInhzgYkTb9+EfosuQKcua9GkRw6WxxwesM9NUZ2Bresge8OlKryC+2eaMK72wrjaixa3evHVX8Gf53Xb2TYYLcjjIx2ivDY7TEmYJX/Vgt270O6jGI+h0DTGuixHc43ZUHTXvDXttrkerOTmPi2tSn5enmaXaRrj25ZVdUhS+N91Btrt/bwg0PnDbnszGI2IiIiIiIiIiIiIiIiIiIiIiIiIiEKNwWgEEdkD4AJU/5v0HgCGaZrU/HNtm//VrVWzjYM/ASciIiIiOjRIsMFox42Gattl30P1rxOAw3pZr2PBl/ZjKPHNdqzQBBN5griblNJiOMhvDjlZ8iPkoUv0FfoPhfH891DJrepvUFaiNDN9AaB9t/obRx1Se4P77FyZ85a2LKvQenly3j/A378Bcz+D3HY65M+5wQ4xKFJcCEn9B9izS1tH9TjSb1mjKIXXLjGQ94KBDY8a2P2MgT/v96B7S+vZyOr6J7X991n1AX4bn4WCFw2kP23g8TFGtaC/1vHWfWZLLIq3bQV++xZy37mQ7z/QrqO+NVTYh1sXDPJt8yfG1P/ANkZ1RjkiYELhpIkZrtpu2u37fiAGo3mDDM27f5TaN+m/pp/W1v78ZJqCk58zMeV7wfLt+nrPnqdQNNXA9MsNJD53BTB9Uq3XHYxb9ryoLVuyxX57bMkC7E7p62vsjtpgtMa2q3FlYEd92ebM0K1He2yqcm3UJsG6TmkFsDHDuoNT+wAbJ3kwtLtvRx7RS+HGE/136hcvULh8SN1/rN+7tcLgztZllftHSZDBP6kBQgOJyJlgz4ehcGpfhfJXDBS8aCD7OQN/3Of8uDTiGRNZBdWPhY9/K7jqHcG8vI5YHd0L2yLbO+5vY9Teg9WnLwEA/vOKice+3t9/ZgEw+iUT0xeaKC5zf77Xne9sg9ECBAQRVVNus8OUhlnyVy3U5uOgBM1vonOKwuv/cO3RfGZR07hpmgN4FW62V1ru/sq5xdYN4zQfOZ3SR2HLEwZ2PGkg61n7Y3mOTU5foGC0cLiPJCIiIiIiIiIiIiIiIiIiIiIiIiKiAwuD0QgAICJLAcyusfgUTfVwDkb7L4A+Lr/ODNG6iYiIiIhqTdK3AeuXBdVWTXjaf+GQM6wrL50HKcr3X/8Xr8E8+zDISc1gXns8KnanWzaPcHE3KTs3wbxuGOTkJMiYTpAZzztvHALy+kTbcjX6yvoZSACqUROg91H+BU0TgYEj6n9AdaHvsUCLtrZVPDBxccHHrrpNqqiSeFNeBvl0ajCjc03StsC8YTjk1OaQ83rYV7Z5DaMjFTq3UEiKtU+xUB4P1FRN6JtpQp67BY2jFRpF+ffTRhMGBQCpEftDAeXdybZjqE+68CEVZsFoAKCUwp2nGJj87/odXLmKwj9RHfFjk2H4vaCNq7Y79wYTuQ1GKwyDCe3BhuY1iVZ46EzrSrvyUOvwzts/FSzeErjejcMUYiIVZNPfwJwZtVpnbaR4M3DjHuvj5bo0+7CGtWn2fa9O3f+ziNgEo4XuPdO8KRATaV2Wlhuy1cB0EETUWhOMBgArd1ov79Xaf1tMOUfh2fMUBnUEju0MvH+lwvgT6u84M6yH9bo+Xer7rgtGu2KIwn+O1I8zlK8H0aFMdz4MJsQ6GB5DoXG0QnxjhSM7KPx6l4GTewdu98cWoPmtJtre6cWXKwQv/mTi/74I/hy8PqorAECmTcK6XYKZK6zrjZsmSJhg4rTnvcjIc74+XU2PAqIjrMuKgwyOpENUhc0OU3JoBKMFurpJ0ITpfrkivILRdNe8NRWWwi8gsiY392lVQ2fzSqzrxNn8Nl8phdYJvuO5nZwi/T1ToGC0QgZGEhERERERERERERERERERERERERGRSwxGo6q+q/G4n6Zezalrzd2sRCkVC/9gtByrum6JSIaIrHLzBWBTKNZNRERERBQS6duBVh1dN1N3vwaV0t5/uS4YrbwM+L16NrLM/Rzy9I1AZqpvxuqq31Hxv9ctmzsNRpOyUsiNI4GVCwGvF8hMhbx0J+S795x1EAQpKYIsnw9ZswTy9yJg9WL7BsP+XWdjcUtd8wgQU2XGr1JQ4ydBRWiSXg4wKiICasIzgEeTILBXi1JNaoxGsjer+oIFX7odmiuSuhky9zPIud2BFQt8+7ady+6FSnR166zX9xigbRfrsp8+haRutixqHa/vMj2ixf4HW9dCcrP0letRsOFXDemOkw08NLp+B7guqjt+bTTYdbuCUiC/RLQhTzoNPaG9wiv4/R/rMidBMD1bWr8+ZRVAbnHw40rNETw3J3B6Qf/2gGEoiAjk9QeCX2HbzsG1O+ZUqE837ns4Kv8by2q78g3kFOmfz9pd9s/1h9WCCq+vTkEp4NXsZ4makItgKKXQSnOsS8sNXWiGrqeqx6aWcfoQR10oWLMm/suiIhQmDDew6F4P5t/lwQWDDBj1eBDsnqIve/VnUxuAcdRhwIxrDHTWnPpSc8IrxIToQBVu10rHdFb4doIH301wdrOYmgOcOdXEhI9qd0zYF/JbUoQF6yts65Z7ge9WAWe85PwCyC6st1GUdVkxA4DIDbtgtNJaXKCGGbt3eqDw6+RY6+UzVwAfLzFRVhEe1xZ7Cp3XXbLVvjzoYDTNLhMX47w/nXKv/vgWKBgt5+DJ+CMiIiIiIiIiIiIiIiIiIiIiIiIionrCYDSqakuNx7pZ2xtqPO7gcj016+8RkWyXfRARERERHZRUv2OhZqyFmvYn1BUPAt3+FbhRoyZQoy6zLutxJJDUyrJI/vyp+uNvpvnVeTZmnGXbCE/gYQEA/loA7PYPuZIfPnLYgTuyfD7kwj6QG0dArj4WMv4E2/rqvRVQRvjcGqt/nQD12q9Qlz8AXHgb1Es/Qp1xeUMPK6TU8WdCvboAuOh24PgzLeskeDWpMRp+wWh1yJx6N+S8npAHLnTcxrjywZCtXykFHDdaWy7n9YSI/wzqJtFAjCZfL8uTXH3BtvW1GWLIhFvYh1P3n27gp9sMDNj76UenZPv6tbU2qhvWRXcLqu3ObF8OphsFpUGtKiR2ZAsGPGYiv8S63Mm+kRKnL0vPC25cADDjD2cb8tguCpKbBblxBPDr1+5XNHA41B1ToaYthZrwtKum6ooHoZ74HCqlHdTVjwAAupfp3+/rdun7Wr7dfl3ZRcD8vZ8gZtsERCRahIHVhi4Ybdby0IVl2AXkVIrwKKQ0dddvUoi3RSh0baF/U41/X7BFc/qtPN/oXo9Ud6d5ItLQXis18O3NSb0V1j9af4PI8iT5fvBWYPVGZyfzP7YAf+90dm7QXSsZCmikub4uLg+PkCY6QFTYJEr9Maf+xlHH7O47AgWjHdlBX+H81wTd7zfx++aGf9/tKXQ+hnd+s6/r5j4tqxAoLvM10IU9x9f8l2VBSs+3Xh4oGC2roOFfHyIiIiIiIiIiIiIiIiIiIiIiIiIiOrCEz+xvCgc1/1Ra9yfSa2o87uJyPZ1qPF7tsj0RERER0UFNKQXVuQ/U2HthvLkI6pbn7Ou/tVhfZhjA0adYF37/AczXHoD50p2Qn78AFn1frXhJTH+kRra2bOpxeDcpbz5sXbD4B2cduCAlRZDHrrAMYrOibn0eqkOPkI+jttRhvaDG3Qdj/CSofsc29HDqhOr+LxjXPgbjsY+Bwaf5lSeaOa76a12R6rdMvN6gx6djvnwv8NGz7hqdeE7Ix6E0gXL7fPmmfxulkBxrXT2zMkxiL1n4TbBDCynTtF4e7sFoADC0u8Li+zwwX/Ng4yQPXruk7ga9Lro71kXpg9GePU+/7tRcwO309MKCUsjnL8Mc0wnmdcMgv31rGcZXFyZ8ZOKvHfpyJ0EwLWzCqmoTjLYqzVm90W13QU5vDaxY4Hod6p7XYTzzDdToK6GiY4Ax1zlve+vzUGPv3R8GesGtwPBz0aYiFU3MAss2a6dMhnn5UTCfuh7y9qOQDSsAAF5T8M3KwK/5zBW+OtlF+jqJjR0/BUd0QVyzVwOmLkHIJafHpraJ7vptkxB+B7ceLYFIp2G4VcRE+p5La81zSnN3miciDW8YXyt1aaHw5mX1M5BMT9K+65nSHOcn8zlrnJ0X7AIx9cFojodBBFTY7zBSHiBx6iAQ6Ghxej/7GluzgLFvmyiraNjwLbvr3po+XCy216duL103Z/q+52lCpONinPUzcbT9tn70a+uBFQfYTTOtbzmIiIiIiIiIiIiIiIiIiIiIiIiIiIi0GIxGVSXXeJypqfd3jcf9lFJupjHWnNlfsz8iIiIiIqpq9FVAp97WZWdeCdXWPqtYtdOUlxQB704GZjwP+b/z/Iq/iz1J22eE07vJEhezQmvrt2+BXVud1R15PtTZ19bteMiZlh38FsV7c111MazwZ/+FxaGddSsfPQd88LTrdmrU2JCOAwDQ+yjbYplyPSQ7w2+502A0vPck5Nevgx1dyOgmgodD2IdbVx5nYNtkAy9fpHDTcIW7T9U/iZcuVPhugoHnz1d4bUw+Xkm7HlPS70JKRbpl/b+je2FjVGfLssfPNDFhuIFmTazXtW2PaEOedAp+nw959mZfCOXKhZA7z4JMvLjOw9EKSwWzVtjXcbJvNI5WiI22LsvIdz+uSqnZgZ9/35KVOOGemv8vwBn16Qao0y6tvswwoKb9Gbjx6Cv8znkqIgLqwXfgmfA0upVttGy2Nh3AhuXAzDcgbz0CueoYyPcfYH06kFUYeLULNgQORkvQ/VuGIKXE6XeCJQ4vEQJxemzq3tL5wSrCAI51+68n6kF8Y4WOSYHr1VQZFKQLqkvLbdjQEqKDhe545AmTi6XzBii0jAt23je8AAAgAElEQVRdf31LVlouLzViULT3V1Rp6c7vP52e93WXOIYCYnTBaAd/jhWFUkWFffkyi/vdA5Dd2V8FOGwNcXCdtC4d+KGB/xXXHgfXyFXZXZ+6vb1at8v3PV8TjNa0kbNzwzn97et9skQs7/0KS+0HzGA0IiIiImpoHTt29P1zsr1f8+bNa+ghERERERERERERERERERERUQAMRqOqas6sTrWqJCJpAP6qsigCwBAX6xla4/G3LtoSERERER1yVEQE1CMfAq06Vi849VKoCc8G7qB5m6DWm+FpoS37V3uHk+1tZnLKb6G9FZCnb3JcV51zQ0jXTcFTCTUzuoFSpUkt0hhQYhEMVBQ46UBS/4H5yDiYx0X7vq44GuZlR8KccDLMe86BrPrdV++XmZCpd7kaE2IToG5/CWrQSHftHFBKQb29xLaOjG4HqbENdMFouyP8XwP5790Qt4lZIaY7ehgH6KdZbRMVrjnBwHPnGZh0toGvbjTQOmF/eaNI4NGzFK49XuGk3go3nmjgip67cGXO27hlz4t4JGOiZb9LGg1AkWGdfDY4bgcAoEMz6zGtT9eHqugUVnj8F/70KfDrV+46cmlDBuANsEt6HO4bKZqQlvS84MOaUgPkOTYyi/Bm2jUwbCMhLBxxvC8ULaW9ZbHq3AfqwXeAFu20XajzJlgvVwo4+1p0F+tEhvVRXasv8Hohj47D9uXrHA196TbgkjdNjHnZ+oWLjQYiI0Ib3jOwo77snd9CE8blNBitW4rzPgcdBiQ0Do8go5oW3eP+oFsZFKR7r4VDMMY/mYLL3jJx7BNe3DzDRGoOw9rowKO7VAuTXDQ0jlb4+qbaXbhFG17cVvAyStY0xYydF2vrVQb9pu0pd9x3WYAsqkq6475SQBPNbUsRg9HIjYoAO8zWtfUzjjpWmxxlw1CYd3vg40morveCZRcIbGX7Hn2Z2/u0dem+BrlF1g3jYpz106u1wpc36Ld1QanvPrKmQMe9cLj+IyIiIiIiIiIiIiIiIiIiIiIiIiKiA8sBOpWUQk0pFQNgTI3F82ya/K/G43EO19MD1QPYCgHMdtKWiIiIiOhQptp3h/HxOqjvdkN9uhHqxzwY974OFRkVuHFyq6DWWab0fY8d7DQYTZ9iI3ePgcz9zO2wrPta8CWQm+ms8jGnQvUaGJL1UgjEJ/kt6la23nHzm7JehOXeGCAYTVL/gYwbCMz+YP/C9cuAzX8DS+cBC76EXHs85N0nIfed62gs6s6Xod7/C2rGGqiv06DOvMrx83BLdekLHDvKto7cMBzi9e57nBxr/b7N8vgHo2HbemCbs/CjuuIm7EPKSrX92JU1pNP6KmyfbGDL4wbWPWIg53kD955mwKj6BPdk7PvxyJKlrteR+M9iAECPVtav/bpd4nrCfYFhnbAn377rriOXrn03cFCf0yCYFk2tl6fnuRhQDf/YnII8UoE3U69B/5LlgTs65WKoX0qgPlkP9XUajBd/0IaiVVIjzoP6aDXU3a/5Fx59ClT77vq2Hg+6tbYIuwOwLrqb5fK0qZNtx1PV+78LcjQBEYmNHXfj2Jj++p3gv/MEi/+pfViGNiCnRuhdj5bOk4k6JoVJipGFxCYKL5zvbnyVwWhJmkDOrMJaDipI+SWCknLB3zsFRzxs4t1Fgt82Ay/8KBj+tIkcTZBIICIC0+3BlCgEvA6DGhvSv9orrJzo7leRL+y6BasHvI21jxjIfSkST753HSJnrELyhwu1bbIiklCqorBSDnO8nrQAoaaVdGFOCkATzS1zQXheflK4qrAP9JPtG+ppIHXLLhjNyWHr+G4K/9JnAQMAfl7fsOfkbJfXOFmF+rG6fRrrd/m+55VYl8c3ct7XqH4KD43WvyrLtvkPrjBAMFoWg9GIiIiIiIiIiIiIiIiIiIiIiIiIiMglBqNRpbsAtKny2Avga5v67++tU2mMUqqrw/VU9bGIaP5Em4iIiIiIalJN4qBS2kFFRTtvlNw6qHWVqUjL5d1SfBPcHdElG+0tkxnPBzGy/aSoAObk8ZB7znHW4D83QD3yYa3WSSEW7x/KNcBFANSjuydaFxQGCEb7dGrA8DQAkNfudzaQgcOhzrgcqn13qNadoIy6/8hFTfrUvsKGFZDXH9j3UBdQs9sqGG1v+4akmwheNexDvp4G89xukJEJMMefANmyZn/Z3M98ZSPiYV41GLL2zzoesXtKKbRPUuiaohAZ4X9clZfv3fdz79LVaGRqEqY0EpZ+BQDonmJdvnaX+wn3RYYmzeqXmZAAoQ7B2pUrWLwlcD2nQTApcdbLgwlGy8gTnPKcF/maT7c8UoGftwzHufnOgkDVeROglIJq2QEqrpnjcajIKKhRl0E98hFw5DCgUx/g/FugHp0RsG2P/tYhMhsjO6MC/qFpaREtHY/LTpcWIemmmqYxCsfbfEL54KzAAXuBaI9NU8bDPL0NzFfvh3i9GNDReZ9tEms9rDp1/TCFNy51nrQUHeH7ntREE8hZz8EYizYL+k30Iv4mE42vN9HvIdPvPbsuHZi53H2Qyp9bBcOeMhE13kS7O72Y8Uft9zEip9yEyDak3q0VFl6fi5YVu/zKUirS930NLlqIdzKvw/XjeqP7VVegW4pCVISCMgyo1ochMbmp9rllepLwW6OjUKgJcLWSmuPsPW93TRobY11WyGA0ciPQNfTBEoxmU6YcHreG97SvmJEPR/cNdSXbJujMil1YrF2QnJV16b4GumC0OBfBaABw/+n6zzR25vgvC3TcyyxgiCwREREREREREREREREREREREREREbkT0dADoNBSSl0CYLaIpLtocxWAB2ssniYiW3VtRGSDUmo6gMv3LooCME0pNVwXdKaUOhPA2CqLygA85HScREREREQUpBZtg2pWpqIslx/X1cVMewkQDrHqdxcjqtKtCLB9PeS6YUBuVuAGHg/UA+9AnegwQI3qT3yS36JoKcNxhfMxv8lxtk07lm1BYym2Lty5Ceg9yG+x7EkH1i0FPnkxqOFaatfVUfhQqCnDAJ74DHL3v/WV3n8K8p8boZJaonlT6yrbI62PEfLwZVAjzw/BSIOjC6FQq3+HRGUA2RmQp27YX/D3IshNJwEfrvKFwj1w4f6ytX9CbjkVeO8vqKTQhDqFgmTt8u2Ppf4fpcjiH4A1f+x7HAEvjihZgd8aH+O4/8SlsyAFueiasRKAf7ud2YLerazbRkcApRX+ywvsAke2bwQO6+l4fE61v8tZ0JDjYLR4Batohm173E3WFxFc8LqJuev0dVZu7o9uZRuddXjW1VBd+rkaQ01q6NlQQ8921ab7MX2AH/2fe5kRjS2RHdClfHO15btCFIw2oGPdJPcM7a7wywbr1/L7VUBOkSChcfDr1gYRmeVAbibw3pMQpXDY1Q+jVytgdVrgPtskBD2ceqGUwuVDFI7rKjh2sonMAMFmSXmbIX/tQrPNAHC0X3lBKVBaLoiOrLv0psJSwYodwKpUwTXvOntv/7EFuGyw83XkFgnOnGoidW84yM4c4ILXBS2aCob1UNhTKFi6FejeEmjXLMySquigoAvN8YTZv0SSjX9h0Cs3YseGRfYVz70Jxo2vaos9hkJiY+sgoT2eZihW7lJ/duU6q6c7giil0CTKukYBg9HIjfIy+/LtDq8lw5xd0JfTYLQeDi5DZy4XHN2pYc67e9zlWGOPTTCa2wDr9Xv/MiBP8xFJnCbI0c6InsCcNf7LV6UCc1YL+rYFUuJ827oowG6c7XLbEBERERERERERERERERERERERERERMRjt4HMFgFeVUp8A+BjAPBGx/LNqpdQAAPcCqDlbcieA/3Owrgf3tk3c+3gwgDlKqStFZG2V9UQDuBrA0zXaP20XvkZERERERKGhYhpDOvcFNq101a5cRVouj/S46MRu5mtlFa8XyuO8UykrhUy6EvjxY2cNzr8Zatg5UL0GOl4H1aOE5paL78l6MmAw2jl5n2nL5JGxQGEe1NnX7F/2+cuQF+8AKsqDGakldd3jwJlXQTXWpI7VMXXs6ZA+RwN/2wRNLPoeGHUZulhvaqyP6govDHjgn/YjmWlQyZrkrDrm1YQPqTkfQT55xbowOwNYPAfyyxf+ZQW5wK9fAaOvDN0ga0E+fgHy33sAr0X6mMbAkj8dB6NFmyVoJCWQSVcieVssYNEuv0RQYVqHBsQ1Anbn+y8vVI31K926NuTBaDuzBRXOctEcB8F01rwX1u1y1r7Skq2wDUVLqshE57LN+gpVqIfeB4bZhBzWoe4p1kFxALAuuptfMFpaqILROtRNYMV/Big8/JX++uOSN018eaObi5nqdD0bVcNgv30XcuVE/Ku9wuq0wNdCbRIOjNCsrikKy+438OavgrVpwEd/+D+3LmUb0f76fhAAzaJ7AZ2WWPaVVQi0rqNAuDmrBZe+ZWJXnrt2ny0VvHRh4HqVXpsv+0LRqpo618SGDIXrP5B957LxQxWeP08hwnNgvNZ0YNCGyIbJbiZFBZA7zwJWzA9ceeBwqBueDFgtKdY6GC3T4x+2HIhVP1a0gZgKaKIJGgoUEERUjTfA/Wn6NkhpMVS0u/C/cGN3ReT0sNW9pf66tdKsFYLHxzgdVWhlOzyuVMqyCZvVfZzWJBootAhf3FMIZOYLcjXBaPGN3J8cWidYb+9pCwXTFvqW3zdK4eHRCoUBjnvFofsYhoiIiIiIiIiIiIiIiIiIiIiIiIiIDhEMRjs4NQJw6d4vUym1AcAWALkAvACSABwOIMWi7R4Ap4hIwKmgIrJDKTUGwPcAovYuPhbAaqXUnwA2A4gH0B9AzSmnXwG4393TIiIiIiKioA053XUwWpmKslwe5eZO0vQGrlNRBnicT/CVaY85DkVTX+6ESkh23Dc1gOatLRfHee3TTI4t+hV37HnWto48cxNw5FCo9t0hG/+CPHtz0MP0k9QK6vPNUIbDJKY6pCZ9AhndTlsuOzZCAeihmUReasRga2R7dCrf4t9400qgnoLRSssFny8TLNnqmwS+Os26XqxpP9tcPnoWWL3Yuuy796EaOBhNVv8BefcJYMFXrtseWbzUcd1Ec29az/xZSIj5F3CYxVhgICe7GL6PkqqLjbYORisyAgSjhdjUeYFDpSoZDuf6d2th/V7YugcoLhM0inLW0RfL7Md2esG3loGD1StdDnXnf6EaMMWmcbRC+2bAtj3+ZeuiumEUvqu2LMOjSZZzaWDHkHTjp3drhUlnK9z7P+vX5+uVwLYsQfuk4La5Noio6j6VmQoU5qJVfLyjPusqIKwutElUeOB037a7b5TgjEfSscXr2ycSvNl4f+dl+8JNkiuytP1kFQR+3hl5gpkrfOFjJ/VSOKZz4Ncsv0Qwdpr7UDQA6G71abmNh7603hk+XwZ8XuP48PI8Qf/2wBVDwiSxivYxTV+AnVd8AVhe8YWzVvsKsMx03Ub827rswxRgyVbrfTAMLk8BADL5GmehaADUk7McnQuTY4H16f7LszxJiJESV+PbU+h7LTwBLiB0Z3ulgCbWt8woLHV+/ULkKLh7xyagc5+6H0sDcXop3Ls1EGHANjh5TRqwPl3QLaX+z7m68K/YaKDAMsxMf6zQXXP2bOkLaLayLh3I0xwK44LI1Wvl4FL2sa8FRx+mAgZCMjCSiIiIiIiIiIiIiIiIiIiIiIiIiIjcYjDawc8A0H3vVyA/AhgrIjucdi4i85RSZwOYhv3hZwrAgL1fVj4EcJWIOEhIICIiIiKiUFBnXgWZ/rirNtpgNI+LTswAgTCAbxJwtLMZmrJzE/DuZEd11d2vMRTtAKDikyCdegObV1VbHiv68Kv7B6Xi3umnIhIVAfuX2R8BY++DjBtY67FWpS6+PSxC0QBAJbYA5uRCRmhmLYvvfdjNJvBlfVRX62C07RuAo06q/SADKCgRnPaCiQUbA9ftUhagUobNxxqb/3Y3sBCTz/4Lef5WX/JbEHqWOQ8eS/Rm7/s5wZujrZedkQurYDRd0Eex0RgCwCpmQP7+zXJ5sMa/b+LVn0MfjNa9pfVyEWDTbqBPG2f9zFyuH5uC4KY9L9m2V09+AXXMqc5WVsd6tNQEo8X28/0bhSoyPbU/tyY1ATok1bobrbtPNTB/gxffat7y7y4S3DcqyGA0zaWNUTMELycTbRKdBaM1bxrUUBpcr1bAii1HYR6OQJmKxkkFP6CJFO0rb+a12Kn2yrLPuMSGdMHIZ819++VDXwqmnKNw20n2597PlvqC1Opaep64Dvi46h3BOf0F8Y3d7XsiYhm8VZtALb8yyzZiH/7lcL124/QfiyDgWB0sq9YuQP2DkScM8vdk1e/AT586qqum/QkV4ezXlUlNrJdneZKqXfs4YQqQUwQkxQauZ8VQQJNo6zKrACQirYrA97XYsfGAD0azuwVyethKaKwwpr/Cx0vs7xFmLhfccXL9Hwx155UWTa2PCxkWQdSVdMeeVvFA0xgg3yIAbdk20Y6haYx+XTptHIb3TltoojDAcY/BaERERER0qBARLF26FGvXrkVGRgZKS0vRvHlztGnTBkOGDEFsbIAPIsLY9u3b8ccff2DHjh0oLi5GcnIy+vbtiwEDBsCo5e9MMzIyMH/+fKSmpqK4uBitW7dGp06dcPTRR9e6byurV6/GypUrsXv3buTl5aFZs2Zo1aoVhgwZgqSkOvzlBRERERERERERERERERERucJgtIPP8wB2AjgWQAcH9QsBzAYwVUR+DGaFIvKNUqoPgIcAnAcgUVN1EYCnROSzYNZDRERERETBU83bQEaNA75+23GbMhVpuTzKzZ2kOEgbKA88O1IyUyHvTgY+f8XRatXlDwCnXuKoLoWBY071C0brVroB8d4c5Hqqz8RtGgPc0XO9o1A0AMCKBcB374ZqpD5HnwKcdW1o+6wlFR0Dad8N2Lbev9DryyWPjVFoFQ+k5fpX2RnpnwQlAF7/qxm+Tfe1v/FEA8N7Wk8uX7RZ8NT3JgrLgFP6KIw/QSEqwlf3l/WC134R/J0qEAG6tgCuH2ZgWI/9fb27SByFogFAjzKL51hVZqq+LEmTiBVi4vUC370HeeLq/QsTWwDZGbXqt1vpBsd14737X+gE0+JF32tPESyTCHRBHwBQqqIRIxYz3xd9DynKh2pc+5Snjxa7C0UDAKdzYzolAx7DOrhg3S5nwWjr0wWr0/Tl73SeicPXrLQubN4G6p7XoAaOcDbgetCtpcLs1f7be32/84H8e6vtu7sjah+MNqw7oFTdhlXcfpKBb/+2vg75coXgvlHO+yqvEEz/TfDJEsGuPOs6Rs1rntwstIrv7Kh/XdBPuJLtGyCTxwMr5qMJgFH4zrJeFMrR1JuHfE+cX1lmgf06HvtG/ML67v5cMHawIClWv+98tDi44EkAyC12Xvfrv4JbT+LNJjoluwv+0gWjEOk0dHavpG6GXHu8o7rq/96GchH25Hv/+78psjzNEGV1bRJAZkHgYDRdmJNSQKzmeilQQBBRNQ4+E8HunXU/jjoWZDa0n1cvViguE3y9Un+OvOszwR0nh2Z9bujG064ZsDnTf/mGdH1fuu1lKKB7CrBkq3/ZcpuMcN3xys6AjtbH3Jo+Wxq4LwajEREREdHBLjMzE5MmTcJ7772H3bt3W9aJiorCiSeeiIkTJ+Koo45y1O/YsWMxffr0fY//+ecfdOzY0VHbefPmYdiwYfseP/jgg5g4caK2ftXP7E844QTMmzcPALBw4UI8+OCD+Omnn2Ba/OeQlJQU3Hfffbj++utdh5gtW7YMd9xxB+bOnWvZd9u2bXHNNdfg7rvvRkREBCZOnIiHHnpoX/ncuXMxdOhQR+vKysrClClT8N5772HnTuv7bMMwMHjwYDz44IMYMSJ8fodDRERERERERERERERERHSoauDpERRqIvI/EblIRDrCF1A2BMAFAG4GcC+A/wNwA4CLAPQHEC8iY4INRauy3gwRGQ+gJYATAYwDcA+AmwD8G0AnETmGoWhERERERA1H3TEV6DnAcf3yUASjOUlyqLCfHSm5WZBrjnMeivbpRqhx90E1dCIAOaY6+YchRKEcV2e/4bd8/FCFJmU5zjvfsgYy+8PaDK+6Y06FMWUmVEQYZs2362q93PTu+7FNgnWVnRGt4YWBArU/nee2FpMxfte5mLUCmLUCGPmsiWkLTZRVCPKKBbJ3pvbXfwkGP2Hi82XA96uAW2YIrnrHV/bDasHIZ018sFjw1w5g5U7g82XAiGdNfLty//HhK4cBM80qspDszXJU11JC8+DbuiCv3V89FA2odSgaAMRKIdo1KnRUN9Hc/z6pGpJW0x6xTgOxC0YrVo20ZXLjyMCDC2BPoeDCN9wnJxiarKTKfVUqygEAkREKnRpZb5N16eLXzsrM5fqybZMNXBDzq3Vhp95Qn20Kq1A0AOihyQxcm2FAzVi777EJhSxPkmXdRzMegAdey7KqlALuOa3uz9FDu+vLFm8BduU638du+1Rw9buCH9bo6xioGYyWiXaJgcPfPAYQr39LhR1J2wK5sA+wYr6j+knePZbLswrst/87v/mXe03gC5v3XnGZYF6A7Ew7boLRZq0IPt1lcyawNQvYkQ2k5gDpeb5wpuwiIK/EF6hUUg6UexmKRsGJacDLVMnPgZzX01FdddNTUCdf6Kp/XYhZlqcZio3GlmWDOur7y3JwWWUXTqS7XipgMBq5sfca1Y7YhT8fIOxOaW7ycuMbK8y8wYPMZw3ceYq+4Ys/OQjqDzGr4GUA6NHKepxZhUBmvvWW0V0DKAV0b2nd35pU/VaOsf6Iz9ZRh7lvo1NUZn9/RURERER0IPviiy/QqVMnPPvss9pQNAAoKyvDd999h6OPPhrXXHMNKioc/hOoBjRp0iQcf/zxmDNnjmVwGQCkp6fjpptuwjnnnIOyMuepyM888wwGDhyIH3/8Udv3jh07cP/99+OEE05AerpNunQA77zzDjp16oTJkydrQ9EAwDRNLFiwACNHjsQll1zi6vkQEREREREREREREREREVHocZb4QUxEckTkVxH5SESeF5HHReQxEZkqIh+IyDIRCTxb0d06y0RkrohME5EnRORFEflcRP4J5XqIiIiIiMg95fFATf4COOtqoFMf4IjjoZ79FjjJejJ6mYqyXB7lcbFSJ5MeywP8QfG37wAZOwL3c+woqPdWQKW0czY2Ch/tu1kunrT7ATwR+yGOaAcM7Ag8eY7C42croEAf8uTHMByHtwAA+g8FDj/Of3mH7sBFt0M98pHzvuqb0nzMI/snE+iC0R5u/n+I7lmAhB670aHLBrwTfxFeTbzKr97l0wQx15lImGDCc83/s3ff8U3V+x/HX9+ke9CWtoyydwGZiiKCIkNRZAiK4p4o4h7g1qu/K6I4roqgXlCc14kILtyKqCiKomyQPbso3W3y/f0ROtKeb3LSpgP8PB8PHuSc70yanJyc9vuOG8ckF6OeqbpY4ZUfNSu2ah5b4qbY4sqD1nDX++Xt1ttcy9C34Dd7FU3y7YWK1YTeux1ef6x6jUPDIC6x/F9YhFexuu9lurSNNjT2luDKLLsdgosY10HLerkO64SRKOu3AADyHT5SnNb/hrZzzPbhuIeqF2LgrPAS0Hu3475nIu5B4egTIzz/nxyDe1A47ufvpfMe6+Cy9Zuy+Gy1xjHJVfYcd0xy8eVa7/czUzDace2gZYKP41THXqhAkh/qSJem1nPafxDSSqLghJEAZDoTcCnrxJ1huV/yqftGhqRCjxaefa0SyoMuHAqGpMKyaQ76tK79x0ApxYq7zZe/7QYyrt2tmfWV/7pVgtGy0jm6DcT4CBkESIwGhynVrwHSL9wfUH1jMJqPw7HbRxrY56vN7T5fA0U1WEtoNxituETzmY95CFHfTuhY+8cU/cf3uK8ahHtoHO7zjkL/8gU6cx/69Ka22qvbn4Ozrg143CRTMFpIErnKOhgttbki0hAIlGZ9euTF9JFWKfMxPleC0UQgXP6D0UjbXfvzqGW+Lg9V5/Q4PkpxUX9zw0c+qfsQLlMwWrfm5jZr91jvN83eoaCNdU4xm8z5C9UKzVRKccmA4LynaA2FDT/zQQghhBBCiIDNmzeP8ePHc/Cg90WGDh06MGrUKM455xyOP/54nE7vX7A///zzjBo1qkGHo82cOZO77roLl8vzi74uXbowevRoJk6cyODBg4mI8P4d1oIFC7jnnnts9f3YY49xyy23lPVdqlu3bowZM4YJEybQv3//ssdt2bJlTJgwoUp9O+69914uvvhisrOzy/YppUhNTWXUqFGcd955nHbaaSQne3+50quvvsrpp5/eoH9GQgghhBBCCCGEEEIIIYQQQghxpKvH740XQgghhBBCCFHXVEIy6panvXcefTK6uBC+etdrd7EhGC00oGA0G+E2Jb4XAeuV/kOt1H9/QHXpa3dWoqExBKMp4Nb9M5n6+AVe+3VuAMFoGTYTt0JCUR/uRkXF2u+7oXEaXpwVFgmkJCjMS6w9doa24LKUF2o8nXsXulniIzhm5XbYvF/TMgG2pNvr8/ScT2o2qZysmrW347uF1Wqmbn0GNaZqGF1lqWluPl/jf5F/gsv7vsa7D5DjtP/8jg4zP1cKlJ+kp+8+gPHX2B6rom/WaZ8L+n0pzZbSbjf6XxfBqmXWFV+ZQecmD/Ehp1cp+uS3Al5eVfW9a9jjblb/y0Fqc8XebM0Pm627HtP70CRMwWgxcf7uRr1IbWYuu/JlNwsGjUZ//yFpTkMKA5Bcsp9jNs7n5BdmNZjwtz6tFanNrAMnFv+hucIiB7Oy+T9oWzmvjsqvlwNphIUoZoxXTHnd3IEp5Kch0kWF8NkbAbVp7LI+wPsKRsvyEVAWYQg3Aljwm/lxdjpg8XUOTu2u+PQvzWn/qfo6zy4ArbXf5++OLMi3kWEjRH04uQuM7FG7Y+iMvXqme70AACAASURBVOgpQ8p3bN+Avqnqe6qJ+t9qVIsO1Ro70ZAPm+5sTJ7DOhgtKgwSY2BHZtWytByN51OHma9womhDkGyOBKOJQPgLiwfYv7P251HLfJ1OVffMsWtzaN0YtlnksO7Mgqw8TXxU3Z2XmrJdU+IUjSI02QVVy7ZmaAZaPAKmkDWlzIHn+3yEPfo6h/Kli4/PCYGa9ZXmllMaxucEIYQQQghdUgL7a/YFH8Km5JaokCPzz5RXrlzJ5MmTcbvLT+B79+7NrFmzGDBggFfd/fv3c8899/Dcc8+V7fvkk0+49957eeihh+psznatWrWK777z/I5+7NixTJ8+ndTUVK86mZmZ3Hzzzbz00ktl+x577DEmT55M27ZtjX2vWLGC22+/3Wvf4MGDeeaZZ+jevbvX/v3793PvvfcyZ84cvv32W1avDuwbK+bPn8+DDz5Ytu1wOJgyZQq33norrVu39qqrtWbhwoXccMMNbNu2DYAvvviCe+65h+nTpwc0rhBCCCGEEEIIIYQQQgghhBBCiOA4Mv/iQAghhBBCCCGEbUopuP9VdKVgtCKsV02GBfJJ0l3zYDS2rfdd3newhKId5lRUrHmR9JY16LyDXoFlOt1m2FkgBo87vEPRAJTDen+FgELTAura8PGf/uss+kMzorsyLvquKNKdx9kH36vZpExhVUGiC/LQ/7klsEb9hqIumIrqO9hW9S5N7XUbXykYLc51gB2hLW1PK8pH9lm+ivTZVq/6AVXNYLRHPrXxZDDIK82U+OULcyjaIV2KNlju3xdifoBnfa15eqLiizXmoKyx/oLRYuvwRRiAlHiICbcOcvngdyg5fwzOmGnsdyUZ+0h2pYEugW8Xwklja3G2gRnVS7F2T9Uf2GerIb9IExnmO5zhrV9spKIBjkphsDorDQVMHuzgh01uXv3Jup/EwykYbd4DAbdJMgSjpf29C7A+Jq3Zbe4v3BDqsStL89Iy88/ql7sc9Grl+VnHGQ5hLrfnNRAbYR4fIC3Hd7kQpZyOQ/9UhduH/jmUuczXPoehLDpccWJnOP845fe4VlN6TGv/lawMHoe66UlUY5snMxYSY6yDW9OcieQ6rFPTosM9IZTWwWj+x/T1kTY63Ho+uRKMJgLh75oIwM7NtsI7GzJfQbPVvVtKKUb1Usz6yrrzL9bA+KOr13d1mD7XOh3QqjH8tatq2U6LY5PvvhQt4v0HnldW3WC0lCDmOs/5RnPLKcHrTwghhBCiRvbvQE/oUt+z+EdQb62D5m3rexq14vLLL6eoqDzseuDAgXz66adERVUNb09OTmbOnDl07NiR2267rWz/jBkzmDhxIj161HLSfYAyMjwJ1FOnTmXGjBmWdRISEnjxxRfJzMxk4ULPlwa5XC7mzp3rFUZW2ZQpUygpKSnbHjduHG+++SYhFgF6ycnJzJ49m/bt2zN16lTS0tJs34etW7cyefLksu3w8HDef/99RowYYVlfKcXYsWMZMGAAJ5xwAhs3bgTg0UcfZdKkSbRr18722EIIIYQQQgghhBBCCCGEEEIIIYJDgtGEEEIIIYQQQqAcDvSQs+HLt8v2Fakwy7phzgA61jYCboqLjEX6YBZstw6vKaXOuzmACYmGSj3wOvre8yzL9BM3oe76b/mO5UuCO3j77qir/x3cPuuDw/DidLvKbtZlMJodN72paTPZ/yr4MHchz+y5keYle2o2YO4BtNuNchhC5GpA79uBPu8o+w0cDtSUGagJ1wc0Tmoze4vgE9zeK+wbuzICGifaVzCaw3cwGvnVSw06WKD5Ym21mgKw6e8DuGc/Cq8/5rduJ0Mwmi9LN3ged6tAA4BOTSC1eWkwWpZlHRUTxGSBIFJK0bMlLNtkXf793nhOmjqbtCfetSyPcucSpfMB0HefA1/noZyBnDDUnlE9FY9+WvU1k18MS1bDmN7BGUdVfl3u+rvs5sPjlTEYrUPy4RFwovNy4LWZAbdLNBx70n9bic6JtXxNTHndfP4YaQj1GDvL3ObdyeWhaOAJSDLZkgY9/GRIph30XX44Ucp/MFeVIK4AgrwclmXKO+grgPAvf/u82inzmJbzrEZIma/Hx+E4PF7bgdK/fFmtdurfb6FOHFPj8U2v3zxHNOnOxpZlUWHmdum5/sc0nXU5HJ5QUSv5xeBya5xH6PNABJmdYLS922DLGmjXrfbnUw9q8kqZMc4cjHb2c27cz9fdOanbcMBwOjyfxa0+R+wy5Cn7CllrmRD43KobjNYiIfAQNpNN+4PSjRBCCCGEEA3CV199xa+//lq23ahRI958803LULSKbr31Vr755hsWL14MgNvt5oknnmDevHm1Ot/qGDhwINOnT/db79///ndZMBrAl19+aQxG+/nnn/npp5/Ktps3b868efMsQ9Equu222/j8889ZssT+74gfffRR8vPzy7afeOIJYyhaRU2aNOH111/n2GOPBTxhb0888QRPPfWU7bGFEEIIIYQQQgghhBBCCCGEEEIEhwSjCSGEEEIIIYTwqBRgUqysV02GBfJJUttYPPnr19C5aiqJPpCOPiPFd9sufeGYYQFMSDRYx59mLvv1q7KbOjcbNv9V8/Hik1GX3AktO0DvE1HhfoKeDgemsC93+YrqlLjgLGgOpnGzzWE2T+y5hXj3AQblLaVt8baaD+Z2ewKrGlkHZ1SXXv0z+paRUJjvu+KZV6Fad4bIWOhxvOd2gFKb2asX7/JeYZ9SsjugcaKsszEByFcRvhunVy/AbslfUFRSraYANFv0CKQ/bqtul8LAg9F+3wFaa9btsX4dHdO2QqRDjiHhIKaBpRNWcN5ximWbrO/bwpWaweeMY3/eSbCwanlySZrXtn7oCtQ9L9bGNAN2fAdIjLYOvznzWTdFsx2EOM1xHBk2QnMAFJWOZdvWld1MiVdMOEbx1i9VH9+Jxx4moTnfWvzgbTCFMqY7G8M3C2DkJV773W7NHzvM/Vk9QwuKNb8b2kSEwimVMmTaNIZQJxS7qtZfu8dGMFpOYO+lY3t7jg/xUf6Cv5StUC5z+FfgIWVKHSbPP9Eg6MIC9E0+ztlNjhkSlFA08BzPTXaEWr94o1Z+RlLz4VgdQdJsZLmago4UvoNk84og1s8pkxCAvWA0gJXfHtbBaHYuD1VHVLjiqBT40xBePOcbN1efFPxgbCu+wsxS4q0DxnZlWj8wxr4UtAgwGE0pz7lPdaQ0zFxnIYQQQggh6t38+fO9tqdMmUJKip/fax/y8MMPlwWjAbzxxhvMnj2b8HAfFxrqwV133YXDxhcNde/enbZt27JlyxYAVq5caaz7xhtveG1fe+21xMXZ++Bxzz332A5Gy83N9Qqba9++PVdddZWttgD9+vVj0KBBfPfddwB88MEHEowmhBBCCCGEEEIIIYQQQgghhBD1QILRhBBCCCGEEEJ4OLxXSRYp61ScysFoWmtY9iF60TwIj0INPbt84bvbHHhU1n7WNNS5N3puf78Y/fGrkHcQfv7cd8Ou/VB3z0U5q7m6UzQoKiIKHRYBRQVVC/ftQBcVosLCIXNfcMa7aBpq/DVB6avBcBheCxVehy0auYDD4zUzPOczrsucHfyOl38Gw86pcTfa5YJ3Z6F/+Bh++dJvffWv11BDzqrxuCnxEBMOOYW+6yW4sry2mwcYjBYe4lnAb7UgP9/hJ0hw23q01gEH7iz6w39aQqsE2J5pXXZqzme2x2rq2kuboq1sDWtjuw3AvoOwxpD71uVQaJ3WGg4aJhndcJMFrj5Rce3r1j+DRb9rnjgH0kjAKtAh2eUdjMaS19FDxqNOOKMWZmpNp+1CP30bfPmOZ8ewc1DXP4YzIZmRPRUv/2B938ImuxnZA07prmgUAQt+0+w7CEe3Udw+QnHAT95hKYeu9GLZsRHtcpWdpzwzUZFToPnoT09xowiYPk4xvFvDDqbSBzPRL/4fvP1MtdqbgtEOOOPQSxejKgWjWQXYVZRrcezbsNc65Azg6NYQHe79GIeGKDoke0LQKlu3V+OJOzLzN8eKXrtCMfHYugljEaLWLZhTrWbq3peDNoWkGHPZnhDr9NioXz6i8elHA1WThNJtBB2awpyU8pyTmeQWSjCasEfv2Wqv3vYNft6hGjZfr7aa5nQe117x5y7rEa55TXPZCZqwkNp/9ExBig7l+RxnZZchT9l07HE6IDkG4iKxfZ4aEVL9MNRAQ9iEEEIIIYT4p1i6dKnX9gUXXGC7bffu3enbty+//vorAAUFBaxYsYIBAwYEdY41ERkZyZAhQ2zX79q1a1kwWl5eHjk5OcTEVL2Qs2zZMq/tCRMm2B5j4MCBpKSksGuXIRm7gqVLl5KfX/6h6ayzzrIV8lbRySefXBaMtnXrVrZt20br1q0D6kMIIYQQQgghhBBCCCGEEEIIIUTNSDCaEEIIIYQQQggP5f3HwEUq1LJamLPSYsr3n0c/fn3Zpv7ybbh+Jurs68BtSKmoRGfugx8+QU+/0t5cux2LmvNttRd2igZqwvXw6iPWZe/NhnNv9ITeBMMp5wWnn4bE9Af9FYPRYko4XILROhdtrJV+9b8ugl4DUcktatbPvy+Dz/5nq6669pGghKKBZ0F7ajP4xU9+QrzbO5irRYn/hSJe42hNZKh1AFuB8hOMlp8D6bshKSWgMZdtsl79f8UgxayJit0HoFVjWLgSxs32DqEakLeMHoV/2h5LAddkzmFa0+kBzfH1nzRrDBlzqaV5LKt/htxs60qxhkSEBsDhULx4ieLSl6r+HDanQdpBzf4c67aJrvQq+/Tt4+GpJag+JwV7qt7jFBdB+m702Z29Cz5/E/3jp/DmGkb1TDAGowF8uAo+XOVd/uNmzXPf+A/MKeWgUjBacRHs2QItOgCQFKtYfL2T9BzN3mxPkJ7T0bDPY3ReDvrSY2HvtsAaxiV5zgEPZhLvsk77yHLGe14rlezMsqhcQV5R1X3r9prrP3q29XtjajPrYLTN+32PD5BmeB1U1iYRzuzTsH/GQgRCfzQ/sAYxcaj3t6HCg5cO1jg68DbR7lwS9/wBVH0/svN69hV0FO0jGM1fiK0QcOhayMIX7FXevqF2J1PLTEFfUPNgtCknK+YuNQ/wzXoY3q1mY9hhFSoNnjAzUzDaHkMwmqkvh8Nz3n5qd8Vbv9g7V42wvrxnS2xEcM9lqhOgLYQQQgghREOTmZnJpk2byrbj4+Pp2rVrQH0MGDCgLBgN4Oeff25QwWgdOnQgLMz6S9SsJCR4pyofOHDAMhjt999/L7sdHx9Px44dA5rXMcccwwcffOC3XuXgupSUlLLgNrsq3//NmzdLMJoQQgghhBBCCCGEEEIIIYQQQtSxwL4CSwghhBBCCCHEkcvpHZZUpKz/2Dm0QjWdm42ec1eVOvq1x9AlJaANKzkry0pHvzLD9lTVuMmykPIIpC6921imZ01D5+XAso9qPs6tz6DiEmvcT4PjMASeVQgobBRWQozrYNCGjIuEHi3gkbMU718T3MtMvQt+91+puj55rdpN9bZ1uM9oYTsUDUCdc0O1x7PSp7X/419SiXdQVUqJIc3LQL0xk8gS6+dKvsNGwMnfqwMa72CBZuM+67JTuylCQxStExVKKcb2USy4xsGgTtA+CSYn/8wH28fjwH6IFUPO5hb9BvGuTP91K7jlbfMYR7dWaK3RVw+yrqAUdDgqoPHq2vBu5udWk1vczDMETiSXWKdJ6etPQW/8Iyhzq9L3ljW4rx2KHp5QNRStVE4WLPwvp3Sv3hglNk9jwCIYDWDruiq7EmMU3VJUgw9FA+DjlwMPRQPU+MmoZ76AgaOIi7M+nzzgaAQZe9A53mkgu/wEo+UWVn0Ort1jfl32b2/9OKfEW+/PyPV/HPEVpNQuCVrEw8RjFcumOYgIPQx+zkL4obdvwH1u18De29t3R72yMqihaAAhTkV8VGBtotx5JG1bbllmJxjNFOakFET7WB+cK8Fowo4lb9ivu2197c2jDvgMRqth371bKUb2MJef+3wAJ3U26MUv4j67M+7TmuK+eST60PmSy0eQYmPDsetAvvV+U1/OQx+7B3exP9+aBKMFW7G9708QQgghhBCiQdu/3/t6eKdOnQL+vXVqaqrX9r59hl+Q1JPKQWf+hIZ6f/AoLi6uUic3N5eCgoKy7eqEjNlts337dq/tG2+8kXbt2gX07+67vX9vnZGREfB8hRBCCCGEEEIIIYQQQgghhBBC1ExIfU9ACCGEEEIIIUQD4fAONTIFo4VV/CT57ULIswjOSd8NOzb4Xvla0YE02LHRXt0OPWDYOfbqisOKCgtHt+oE2zdYlutz/Xzb+plXwYLnfNcZPA415spqzrCBU4ZgMneFReCuEtoU7+AvZ2ApQZdlvcTzu69BTXoQkltAi/bQqRcqwnt19xc3Oxj6eM0XnSvt5vScT2rcj4l+/h5o3w2at4O2XVEOc6ibLimGdb9B1n7ISkM/PMn+QDHxqDnfBGHG3kb1Urzwne/ja6LLe4FGSvGugMZwFOQSWZAJobFVyvJVpN/2+qclqH7DbI+3aqe5rI/FOpfRqfmMDvkDMveh7zzb9jg4Q1D3vYI6eRxaa1YNaUuHDmsocoTb78NC1+bQoYlCvzbTXKnfMFRCkxqNU9uax0GjCMgusC7PMYS8JLnSjH3qS/vBR3tRsfEBz0cX5sPqn2HvdgiPhLDyn5O+fZy9Pj59ldgLpzJ5sGL21wGE5wXIYRUGu209DDi91sasCV1cBDs2eUJs23WrsnBPFxag33oq8I5btIdRl6OSmqOmv0PjDRoerfrY5DuiKFRhuDZt5PfovnRuCsmxip1Zvn9GVs/B9Xus647pZe4nMcZ6f0auz+EBSM+xnuMVgxTPXyjfRSOOHLqkBNb9ag78NGnSCvXSiloLsm4SC1l59utH6TwS9/4JLaqWpdsIRnMbPtM6FMT4yH3LLbI5QfGPpt/8j/3Ku/5G52ajohvV3oRqQV6h5uct8P0m83t8MA4Xb1zpoNH11p9FM/PgnoVupp6qiI2o2WB62UfoGVeX7/j5c/R1w9GvrzZeAnM6IC5SgUWQc3YBaK2rHDNdho/VpcFoLROs+7NS02C0/u3hx80166NUQXGl64pCCCGEEPUluSXqrapfaiBqQXLL+p5B0GVmen/hSlxcXMB9VG7T0EK3HD5+b1ZdWVne34oRG1v190/+NGpk7zNxenq6/0oBOngweF88JYQQQgghhBBCCCGEEEIIIYQQwh75s1MhhBBCCCGEEB4Op9dmsbJeORlWoZr+frG5v7RdkJtta2j946e26gGoF5ahnE7/FcXh6fjTjMFoZPr+tnQ1cBTaRzCauu1ZGHlJDSbXwDlNwWiu8tuuEkblfMhfEdbBaO2T4IyCz/h7tyd5Js51gGG5X3J+9hvAoUCxip74CHXM0LLNQZ2gQzJs2l+1767N4bUrHPR90H9w2mk5n9LU5fvnXVP69vGeGx17wsPvoZq2qlpn9c/oO86CDEPqji9xiaj//oBq1qaGM61qaCpEh0OuIaQKINHlvegjpWR3QGM4cBPpzrcsK1A+UkBKLf8soPFW7bBe1B8bAW0Tvffpbxei/+9SyLeRYFTqpDOhSUvUkLNQR/UHQClF8zHjuGLpizzb+Go/Hfg2upcnyEB//LKxzuEQyqiUIrUZLN8SWLtkH8FoACyeBxNvDqhP/e1C9F0TApuIla3rcD9+PU9f/wSzv655dyYOqh7b9LZ11E4sUM3ov1ej778QNv/p2dFrEPzrVVRiM0/5+pXoy4+z1Zea+xP89SN6zQpUmy4w4oKyfgDifOQoPh9/ObfP7kHhoQDP64cq4v3kLlod99busT5+dGlufvQbR1vvT7cVjGa9P8kQtibE4Ujv3uI5Bm/4PfDGp11Qa6FoAP3aKtbvtR90Ge3OJUSXWJYdyLcOJKrIFHSkgPAQT0Ca26LO5v2aAR0a4ruAaFD2+0gHtrLhd+gdYFhhPXrrFzcXz9MUWr8EywTjmBEToZh9vmLya9Yv2n9/qHnqC828ix2MP7r64+kX7qu6c/cW3Ms+AqwDcR0KGhnOcYpdUFhSNbzMZXVgAZyHpt4igMzhyBoGo13QX/Hj5uAEDBcUmx8LIYQQQoi6pEJCoHnb+p6GOEzpShcLgvGZpjavpTQU4eHeX1BTVBR4qrzdNtXp25/KP3chhBBCCCGEEEIIIYQQQgghhBC1L/hf6yWEEEIIIYQQ4vBUIWzMhQOXss7SDju0WxcXwS9fGrvTH79qf+zXHrVVTb2zARUaZr9fcdhRF99R/cbHDIVxFuFGkdGo6e+gRl9+ZIfqKcNlHl0hrKekmFvSn+SEvO+rVOuYUMSnNzp44p6+LNgxgQU7JvDS7iu5IPsNY7CPvul03LPvRKd7gsNCnIoXhm8lIaTAq975od/wx5Zj6fXLc6y4aCPNwwypMoc8vvc2n+Xqtlk4viuEo473Wc+WjX+gH72mym5dUoK++5zqhaIB6v1ttRKKBhAZphhhnW0HQKMICD3tPK99KaeeGtAYDtxE6gLLsnyHjWC03VsCWiSyLcN6/1Ep4HCUPwN15n70/RcEForWYwCO//sfjutnloWilVIXTOXhfXdxXN5PZftCdDGXZJkDzqyMPrgYvXc7bF1nXSEkFAaMDKjP+tKjZeALsJIHneizXD97B9rl8lnHq376nuCEopVa8Byc15Wvx6wKXp+VWAWjsW19rY1XHbqwAP3Jq+iL+pSHogH8/h16bBvcs25HvzbTdigaSkGbVNSZV+O48wXU+bd6haIBPoPObmr2GIXu8vflp77QPLDY93GjcjCa1pp1e63rdmlq7ifRFIzm++0JgDQJRhP/AHrmtdULRet5AirAIMxAndEzsPpR7nzi3Acsy0rckO9nnazpqORweBYtR4dbl180TxbLilqw/rf6noFtW9M1E1/wH4oWTOf0U4T4+OuHgwVw9nNulv9dvdene+fffL0rjocSp/JW7HjyVPmJjmut+WfjdHg+o5kcsMijdhnyxEvz0FMCCEarHLoWqEsHBC+goaA4aF0JIYQQQghRbxo3buy1feCA9XUHXyq3SUhIqNGcrLgCuCZfFyrfx8zMzID7yMgw/DKpkqSkJK/tZcuWobWu0b9LLrkk4PkKIYQQQgghhBBCCCGEEEIIIYSoGetV7kIIIYQQQggh/nkc5cEUxcq8arI0GI3Nf0Jutrm/Ja8HaWIe6p2NqKatgtqnaHhUo8Zw83/Qj98QeFuHA258Es64DNb8jN6zDZV6NHQ9BpXcohZm28CYQt8qLnxwlZDgzuKzrafzQ9RxrAzvhVs56Fy0gZPueJJGTdoBTdAXToNXZtgb9/XH0K8/BrO+gl1/c+LDk/iLBL6MHky6M5G+Bb/SP385CtCP30Av4A9HPGe0WsBPUVXDd3avb02yK808XngknDweAHXezeg7z7Y3T1+Wf4bOSkPFV1go8ft3sH9ntbpTc39ChdTuZbfRvRTv/mq9oD+7ABx3voAeOwl2/Q0tOxCdejQJN7rIzLPXv0IT4bZYoQ/kVwgAICwcigqrVirIg7yDEN3I1ni7DeuGWiZUWoT/zQIo9pNgUom6wBy0p5KaE33N/Xw3awhfRJ9MujORPgUraVW8g/lxF6BNgYMVNCvZQ7//TkD/10fAwugrav05ESyXDFDMXRpYWESToadC+A3w5n+MdfSkE+C5pbYeBz22FkIFd29l4MPHcd6AZbye2Tvo3Sur6JwGFIym03ahbzkDNv9lrvS/J4wBQJaatUGF+w5KjI8KpEP/DlY63OzN9oScWEltZg7xSIxWWMUdZeR6wtaUMrc1BaOZwtaEONzoXZth+We26qr7XoHIKM/5Rtuu0Gdwrb/f9W1t/fo1ida5ON3mhcBZ+RBlCDcDcBvCiUqPEqZjEEBeoSYqPHiBQuLIok1PLl9t1v1mDK1uaBau1ASQkxwU8VGKAR3g2w2+6/Wf7mbpNAcDOgT2aN40L4un23xatn10/q98tH00ia4MXCu+Ae6ybOdQEOcjLDY7H5pW+tjkLxgtOQZCnVBsI+egpsFokWGKt69ycPZzgT9nKyuow6A8IYQQQgghaktycrLX9vr1gV8HXrfO+0tWmjRpYlkvpNJ1lpIS+yfV1Qkeq01Op5MWLVqwc6fnd2+bN28mLy+PqCj7F5FXrbL35SdNm3p/a8b69es5/vggfNmSEEIIIYQQQgghhBBCCCGEEEKIOuV/ZZ8QQgghhBBCiH+GCuEvRSrMWC3k67dx3zYafUUd/vFwn5MkFO2fZOxV1W6qlEJ16oUafQWOSQ+gThzzzwhFA6/XsBddYfGyy7NgIoxiTspbyg2Zs7gp42lG5nxCbFR5sJoadk7Aw+spJ6P/fRm4Smji2s+52W8zJXMOxx8KRasowZ3F11uHc23Gszi1Z069Cv7gx78H+g5FA9TMRajYQ98qP3BUwPO0nryG377B/eRNuO8Yj/u5e9DvzAq8n6hY1J3/RXUOfuhSZSN7+l/Er7r1Qw2b4AkIBFrE2+8/0ZVBlLZOUct1VEj/adLS3EnaLtvj7T5gnZrQvMKcdV4O+rHrbPdZSg043XeFCdfjQDM890vOzX6bLkUbiNL5dCraaKv/Mw5+hMNPQIu69hG70613J3RUPH+hCihAITkW1OTp4OuxXv8bfPwyOn0P7gcuwT0o3PNvxmT0gfSyavrHT2owe/+e+fFUzuqY7r9igNxWl9oz9+G+9zz0ht+DPl6g9FtP+w5Fq45ux/qtEhPuCQMJln3ZnuCyUjuzzHU7JJvLEmOs95e4fYccaa2NwWhJMYdLVI0QZlpr9N3n2m/QuTfqhDNQZ1+H6jesTkJA2yaWBwPZEeXOI95tSGDFE8765OduRj/j4sqX3fyd5v2ebnqHt3NsMx0vhAAgc1/gbdb/Fvx51JKtGfUz7oJr7B0gBs5w45jkYshMJflFWQAAIABJREFUF2t3+09w+22b5untPb32rYjsy7MJnusX7gLrUGnwHLMa+QhGO2DR1F8wmsOhaJXgc8plahqMBhBlvkwYkILi4PQjhBBCCCFEfUpISKBDhw5l21lZWaxZsyagPpYtW+a13a9fP8t6jRp5pyhnZfm4IFrJX38F+XpwEPTv37/sttvt5ptvvrHdNiMjg99/t3etfcCAAV7bS5YssT2OEEIIIYQQQgghhBBCCCGEEEKIhkOC0YQQQgghhBBCeDjLQ5GKlXnVZOjrD8OPn9bFjMqoSQ/U6XiifimloN+wwBod1d9/nSOdw2m93+0qv+3y8U3yzvIgC9W+O5w0NkgTsxZKCU/uvZW961uxbUMHlv89gGMKfjU3aNYG9U0+qveg8nkqhXr9z6DMR997Hrz7LCxdDK8+AksX2W6r3l6Pmv8r6sPdqNMuDMp8/GkcrWjayLpsZA/r/SkBBKN1KVxHjDvXsizPEVW+0cRHaGX6Htvj7TKs5UmJ8/yvi4vQkwZYV/JBvfiL/zoOB+rWZ6rsn5I5x9YYo3IW+67QujMqNEhJAnXkikEOsp9y0NtmJmlSDCinE/Xwe9C4qbGefuNx9Pj28Nkb5TsXz0Of3wNd4Ani0x+9XL1JN24KJ53pt1oj90H+t6gV+2fC8ts1v0wtpmcQ8jOj3IYwjK/eRU8Zgl7j/7lYG3RxEbq4CL54K7gdO0NQ46/xW83hUMT5CAIJVH4xZFd4qE3HjlCn53lp0jjaXLbbnJ/EwQJPeJoVX+MJcbjQ/70fAglzTGlXa3MxCQ1RtEuyXz/anUe8y7xoeOhjLm5+S7P4D5i7VNPrX25W7yoPSXIb8pKUjWC0Ah+n3kLw10+Bt9m2Dl1UGPy51IJ0m8GA4UHOU0yIVsy92H5Y6dfrodt9bn7Zoskv8v7nqnAAeHuF9cHgg1hPWLdr51bjGE4HxEaY55BtEcrqMhx7KgZDdm1u7rOiiCA8xmFB+jlJMJoQQgghhDhSDBw40Gv7tddes912zZo1rFixomw7IiKCo48+2rJukyZNvLZXr15te5yPPvrIdt26MmyY9+9/X3jhBdtt58+fT1FRka26Q4cOxVnhbx8++OAD9u2rRkC5EEIIIYQQQgghhBBCCCGEEEKIeiXBaEIIIYQQQgghPCqEKhUpc4BLmLb3B8fBomYuQkno1T9P5z4BVVejLq+liRxGHIbLPO4KCS4ul3Ud8ApGA1B3vwhnTQnCxHyLdx8gpWQ3TgxJMwAjLkQ9vxRlcR9Vq06o57+vxRn6cfZ1qGZtUO27o0LMoZK14f/GWi/4H97Nen9KvP2AgC5FG4g2BKPlOCqk/0REQaPG1p3s22l7PFMQUfNDwWh88TZsXWe7PwB1+X2ojoaUuMpOOKPKLjvBaIklaQzN/cp3pXbd7M2hgQlxKm4cZu85kxzr+V8pBb7CAbdvsD4OHUhHD09AvzMLvno38MmOuQL1vzWoB99AXfeorSYJI6Poe3E0vS+NY9nSFG6JWEjbhOol2IS5C+lZuMpcIT8H/fbT1eq7uvSKr3Bfcgx6SCx6SCzs2xG8zvuchJr5AarH8baqm0IcqyvhRjd3LnCTX6TZmWWdGtI8zhPKZtIi3hxqtNHH+rg0HyEvEowm6ov+43vcU4bgPq0J7sv7o1f/XL1+CvLgf0/ab3DMkDo/9ynVt7X9c5oonUeELiDU8Dk2u8C7r5xCmLmk/NiiDeFEPg4xZfLq9qOzOMzoHz4JvJHbDTs3B38ytSA9x/DiqeT49sEf+5IBnnC0+Cj/dUsd+5Cb6Gu9/8Vd7yZ6iovkm1w8/LH1/fktojcacBWbE78cCpwORUy4dXm2Rb6uy/Dx2Fnh2NOlmb1jYUQQDtWhhhz2QOXLcVEIIYQQQhwhLrroIq/tZ555hj177H1ZzB133OG1fe655xIebv2BoW/fvl7bixbZ+1KfTz/9lOXLl9uqW5fOP/98YmNjy7YXLFjAp5/6/0K2nTt38sAD9r9ILSEhgfPPP79sOycnh1tvvTWwyQohhBBCCCGEEEIIIYQQQgghhKh3EowmhBBCCCGEEMKjYjAa5lWTdRmMpp5bijrulDobTzQcamDVkCKfThpbOxM5nDgMK5XdFUKIXD5CfyoFW6iIKBw3PI56dKE5dK2OqDtfQCU0MZd3PQbOv60OZ3RIYnPUpXfV/biHXDJAcUIH732pzeC8Y03BaPb6beQ6QJIrjWh3nmV5rqqQMOAMgaQUy3r696W2xssp0MawoZR4hS7MR7883VZfXkbbD0xUSc1Rkx6ssv/XzccS68o2tnt4391E6ELffQ8aY3seDU3X5v7DFsJCIC6yfFtNvLna4+n/BNhWKdRd83DcOgsVGY1SCjXherhwWkDdRBRkMeO3iWzc1ofHzvJd96zeLpzKOxjjX/sfIFIX+G74e90FOOrNf6FvHAGbfIS1VUf341Bf5+F4agnqmKG2m9k99gTi4Y81932g2bzfuryFnzEjwxSt4q0TR9bvNQe5bMsw9ynBaKI+6P070VPHwh/fQ84BWP8b+qqB6F3VCE7atAqK/BzLSkVGoy69O/AxguSMnvbrRrnzUEC8K8t2my/Xlh8H3IZDQmm44oju5n7yimBftmbVDk1Grr2QKPEPsmGlsUjd8Lj5M9j29bU0oZorLNYs/1vz7XrN32n+60eEwr2jgv9ZUynFpSc4yHjSya2n2A9SrCyvCPKLId06L7rMzpAWuH382YXzUFGjSOvyA/lVjw/GYLQKw3Rt7ntepSJCq/8YlOpo/jgekILq5RALIYQQQgjR4AwZMoTevXuXbR84cICJEyeSn2+RfFzBE088wcKFC8u2lVLcdNNNxvrHH388UVHlv5NZsGABv/zyi88xNmzYwMUXX+zvLtSL2NhYbrjhBq99EyZM4KuvzF9As2XLFoYPH05Wlv1rOwD333+/V+DcK6+8wrRp03D5+hIpC6tXr+bbb78NqI0QQgghhBBCCCGEEEIIIYQQQojgkGA0IYQQQgghhBAezvJQpQhdyLkH3mRc9gLOcPzIqd3h5Mh1nJD3vTEoJ+g69oTUo+tmLNHwdDvWdlX15Ceo6Ea1OJnDhGnhvLvCimpfwWjOEMvdqv8I1LyfYcwVNZhczSjlfyG3uqAOg9E69IBL7kK98hsqNqHuxq3E6VB8drOD2ecrLhmgeGCM4qc7HSTFWj9e/oKCSrUt3ooCot3WaWW5jugKkwiBrsdYd/TLF7bGW7/XXNZ+57foce1h+wZbfZXpNRDVuGlATdSFU1GPLYbWncv29Sz8k5//HsDN6U9w+sGPOS3nE07L+YQrM+fy2dYRXHrgZd+dxsTDCSMDm3sD0sXGQ9i1mfdrVMUlohbvqp0Jjb4cddm9MGg0jLkC9Z8lqBHnV6mmRlxQJezRlh2buOG3a2kUYV0c5i7k2cXdWd7paa7JmMPFWa+wcPs4bs14wn/fGXvQuvZDcfS639AX9w1+x6MuQz31GcppCOH0oUV8zcM4rMxcopm5xPox9RXGprVGv/hvOm23XmznKxht7R7rssRoiIuqnfsphC/6tZmQWzXAU5/TNfBjjq9QtA49UPe9AiMuhIk3o+Z8h+p5QoCzDZ5Bney93iLc+TjxnAvHuw7Y7n9bBqQd9Dx+poexdAYje5rncvu7btre4abXA25aT3Mzd6kh6Uj842itYds668LhE1FnTYHmba3LtzXMYLSlGzTt73TTf7qbwTPdrN5trjs0FW49RfH9NAeDu9Tu++eM8YrTjqrVIVgb1hmXMp8jOQ7dxThDMFq2xeHXTjBa68b2HruocP91/EmJVxzbtub9FBTXvA8hhBBCCCGCYc+ePWzZsqVa/0rNnTuXsLCwsu2vv/6aQYMG8dNPP1UZLy0tjSlTpnDzzd5fDjJ16lR69jQnwMfGxnLOOeeUbbtcLkaOHMmSJUuq1C0qKuKFF16gf//+7N27l4SE+vv9lS/33HMPPXr0KNvOzs5m6NChTJgwgXfeeYc//viDtWvXsmTJEm688Ua6d+/OmjVriIiIYMwY+19E065dO55//nmvfY888ggDBw5k0aJFlJSYf2e6ZcsWZs2axZAhQ+jevTtffvll4HdUCCGEEEIIIYQQQgghhBBCCCFEjVmveBVCCCGEEEII8c/jKF/E2dS1j1d3XerZSBqE44bPcT81D359us6mo6bNQZmCnsQRTzkc6IvvhPkP+a/cd3Ctz+ew4DAsxHZX+OZzH3/kbwpGA1AdjkLdOgtunYUuKUafHFPNSdYeFROHbtYG9mytvTEmP4Q675Za6786IkIVV52kuOok/3VT4hXgPyRl/q7LAYjW1kGYOZWC0VT/EegPX6pace82dEkxyk9AlSmEKDxE0/LxiXAww++cvSQ2R13/WGBtDlHHDke9tgoAveA59OPX07F4M4/su6t6/U2bg4qJq1bbhqBRpKJJLOw7aK7Tp3XVQAYVl4iecD289VRQ56POnIzq2AN/ERCqdWeY/BD62Tt8B0JaWTyPn09N4qitd1KswryKXtp1BY0PbqPxwtsJ+J6VFMOBdIhPCrSlTzptN/zwsSfQ6LhT0Ff0D2r/ADRvg2Pq7Oo3txnKGEytE308S75fjJ73AB2aPYVVfOOe7elAE8um6/ZYd9klIR/95lxIbAaDxqDCDel6QgSR1hrefdZc4aOXYeTF9jssLjIWqdueRXU/FjVsQgAzrD2tEiAyFPL9BOxEVQj1TnBnBjTG5fPdLLzWidtw6lT6UfWKgYrr3rCutHRj+e28Ipj0imZQJ03nphKk+I+3fyfk51oWqfGTPTdadYadm6uU623r/Z4L1bX8Is3EF9zstpE/+MaVinP61d21HqUUH1zr4NQn3Xy5tnbGWBfehR6FfxnLS8PMTOG72flV95mC0RwVfvh2g69jghCMBjDnQs/juP/QZ4OEKFhyk4NeLWHsLDcf/em/j4JiDQ3uGSyEEEIIIf6JJk6cWO22pWH0ffv25ZlnnuHqq6/GfehLilasWEH//v3p2LEj3bt3JyIigu3bt7N8+fIqQVzDhw/nwQcf9Dvegw8+yIIFC8jKygJg3759nHrqqXTs2JGePXsSHh7O3r17+emnn8jN9XzWbNasGTNmzODiiwO4NlRHwsLC+PDDDxkyZAgbN3ounmitefvtt3n77bct2yilmDVrFtu2bWPhwoVe+3256KKL2LNnD3fccUfZz+jHH39k9OjRREVF0adPH5o2bUpkZCQHDx4kLS2N1atXlz3WQgghhBBCCCGEEEIIIYQQQggh6pcEowkhhBBCCCGEAEAph3Vcjj60GjM7wGCamjjqeFTq0XU3nmiQ1BmXoP0Fo/Ub6veP3v8xTEGC7gorqn0FBPkIRqtIhYTCiz+jL+3nu96jCyEvBz3zWjhoCKJo1sYTNJafg559p63xfRpxAbz075r3Y2Xc1Q0uFC1QdhbOR7tzyhb1R7utwxpyKwWj0aqTdWdaQ8ZeaNLS55gb91vv7xiRifNgut85lwmPRN39IvQ5ERWXaL+dybBzYNY0KLRIKrBBTX8HNXBUzedRz/wFo/Vtbb1fjZ2EfvfZwIPJTNp2hQ5H2a6uJlwP/UfAqh/QD08KaKgOnz5CpvoPC2LH8F7sWAbk/8CE7HdpUbIr0Fl7S98T1GA0vfI79N3neALXapGa93ON2tsN7QimEzuZzw30d4sASHKlWZan787EFIy2wRDk2OXPt9CfTfVsdOoFj7yPSkqxP2EhqmPvNp/F+uFJcOJoVGyCvf58BaN1PzaQmdU6h0PRpRms3O67XsWQ15Ti3RBpf4zSUDNtCEYrPcqEhyoSoyHd+rTJi9Yw73vNw+Pk88s/3vYN5rLWncv///ETi7bra2dONbDoD81Om2vGk2Lq/vnvdCg+u8lBj/vdrN4d/P7Xh3XCpQxB5ZSHmZmC0Q5YBaMZjj3OCh/77Z5jRQcpGK13K8Xqfzn4eh2UuDXDuioSD/08F13n4Kt1sGm/pn87xRlPu9lucRmgwE+gpRBCCCGEEIebK6+8koSEBC699FJycnLK9m/cuLEs9MvKZZddxpw5cwgN9f3FMgAtWrTg3XffZezYsRw8WH6x3jRGu3bt+PDDD9m7d2+A96butGrViu+++45rrrmGBQsW+KybmJjI/PnzGTlyJNOmTfMqi42N9TvW1KlT6dmzJ5deeil79pR/80VeXh7ff/+9rfkmJNi8viaEEEIIIYQQQgghhBBCCCGEECKo6u7rmIUQQgghhBBCNGxOwyJOt8vzf3otrB41iYyqu7FEw9Wklf86ccELmDnsOUyv4QrBaKaAMl/tLaiOPVF3/te6sEV71H9/QPUfgRpyFmrRTnM/F92OOvOqoAWOqQunwekXQ2lYnum4Vp2+r388aH3Vly7Nyhflm/Qu+L3sdozdYLRkH+E/+/0HSWUYgkRa7QksjEn951PU4DODE4oGqNh41MxF/isOGg09BpRvh0eibnv2iAhFA0iK8V3et431k0q16oS6dz7ExNV8Eu2PQs1YEHAQpmrdGTXyYjjlvICHjNCFTMx+i7d3nsdNGU/bD0Xz9fwL4rmU1hp93bCghaKp+16Bxk29dzZuhnr6c1QNf4atG9d9AMrwrj4K164AIKnEEIyWZ/61iSn0pX3R5vKNDb+j35nlb4pC1Ny+Hf7rvPOs/f5MQZYx9ZBuaEOXpv6PLVHO8vuUUhLYMTgzD3ILNW5DOFHFc6pYQ9iRlc9XGzoU/yyZhmTgmPiyMENVGpBW2bb1aFNiXz355E/7dRP9nFvWFqUUS6c5GNUz+H2vDeuM28efXZSGmcUZwhmzC6ruc7mr7qvYF0CjSIgK8z+/mCAFowEkxijGH604p5+jLBQNPI/vkFTFlYMc9GipiDBkO0gwmhBCCCGEOBKdddZZbNq0iRtuuIGkJPPvLUNDQznllFP4/vvvmTt3rq1QtFJDhgxh+fLljBkzxnidPDk5mdtuu42VK1fStauvC6QNQ7NmzXjvvffKAtK6detGfHw8ERERtG/fnmHDhvHcc8+xadMmRo4cCUBWlvcF2rg4e9euR4wYwd9//82sWbPo3bu33981hIaGMmDAAO6//37Wr1/PDTfcUL07KYQQQgghhBBCCCGEEEIIIYQQokZC6nsCQgghhBBCCCEaCFMokutQMJqdhffBkrGv7sYSDZZyONAde8LGP8yVghSAdCRQyoHl8njtWVGtiwrRt4+zbuxwoByB5eer0y6EIWd5gn4y9wMKGiVAy45eCwqU0wlzvkNfPci7gzapMOKCgMb0O6ewcNQdz6OvexR2bITWndGjW0Fhfs36ffEXz/04zMVGKLqnwCpzVh2phevLbkfbDUaLTYCwCCiyWNGf5j9MKivPen+Cy0eQX2Vd+kK3Y+3Xt0n1HgTPfIG+dqi5zhmXogacjk7bDZn7oE0qKiyI6QP1zFcwmlLQs4WP8iFnwYljYMvaqq/DkFD0Z2/Am//xOb6a+xOqc+8AZmzRxyV3ope8XqM+bI1z+X1w/q3oIbHWFYJwLqVdLtAa/WSQF2INHuf5eW1bB7kHIToWWncJ+L3BSpem/usE05heEBXuY2HboeN5kss6VC5NN0Jrbbk4zhSM1rKk0oH1m/fh6n/bmq8Q1Za+x28V/eXbqEvvstdfcZH1/lAbqTv1oEsz/3WiW7eGnXGQc4AUuwGXFazfi/X5NeU5vGAvmKjUr9sCnoY4Eh2wDuckvsICelMwWnYG/L0a2ncP/ryq6fft9oPa/IXu1qb4KMXCa53szdbsyoIQB+RVOvS5NAycYUglM1gf3hmXjWC02EiF1VEl2+Ljqp1gNKUULeJhg59LaMEMRrPLGIxmyOAUQgghhBCitm3ZsqVW+2/SpAlPPvkkjz/+OCtWrGDt2rXs37+fwsJCkpKSaNmyJQMHDiQ21nDt2IbU1FTef/990tLS+Oabb9ixYwd5eXk0bdqUdu3aMWjQIEJCyv8kfPDgwQEFa9ckhPull17ipZdeqlbbgQMHMnDgQFt1V69eXXZbKUWTJk1sjxMREcE111zDNddcQ0ZGBj/++CO7d+8mIyOD4uJiYmJiaNKkCZ07dyY1NZWoKPkiNyGEEEIIIYQQQgghhBBCCCGEqG8SjCaEEEIIIYQQwsMUfOF2oUtKYNff5rbtu0OPAbDwheDMpcA6jEf886hL70bfNcFcHmf+5vV/HFNwV2m44YovfbSt3iUiFR4JKe09/3zV634szFyEnvsAZO2H7sehrnoQVUtBGyomDlKPBkD7+dZ3n47qj5r0AKpjjyDNrP4tv9NB5BTzQv8uRevKbhuD0VSFxSBOB0opdHIK7NxctfJ+Hylsh2TlWS+2iXcd8NsWgBEXoK5/zDLEKBhUr4HwwBvoeydWLYxLhKOHeOolNYek5rUyh/rUOMY6wAGgSSzERPh+3FVIKJheQ517Q/uj0NOvtG577SM1DkUDUK06wayv0LeOgvycGvdn1G8oKjQM3fUYWPNLlWL98+eoMy4NqEtdmI9+ZQbMn16zuTVrA8cMhcXzqpb1OQlVumCubdeajWOhfbInxMMU8BFs5/TzcywoKQYg0RCMlu5IwJ2+D2eSd6JbYbEmzfD0aV6823vHjo3GcLV/Iq2153zEXeGfy3Dba9t96F+AbUpva3fAbXTZuAGMU7FMuw1z9XM/vOZq6sNi258ta+z/oA6zYLRUG8FoyXFO1PPfo5++jZTN2QGP8dcujdtw7HJUeHmbAoCsKAW5hZpoXwGO4siXnWG9v2IwWseenus0Vk/C7z9sUMFoWQHkUCdG+69T25o2UjRtZC7fPdPBTXMz+XJVAQcccQC0Ld5K85LdfB09uEr97aGtyHaaOyw9XsRFWpdn51c91zYGo1U6dLRL8h+MFt2QgtGK63YeQgghhBBC1DWHw0G/fv3o169frY2RlJTE+PHja63/hio3N5dff/21bLtz587VDppr3Lgxp59+erCmJoQQQgghhBBCCCGEEEIIIYQQopZIMJoQQgghhBBCCA+HIVTJ7YK9W8tCJCpTL/6C6tgD7Xajv/sAMvbWeCpq7FU17kMcIQaN9l2eaCMR4Z9CGcINtRutNfq1mea21QxGC4Q67hTUcafU+jhVxj3/NvTcfwXebtKDqAun1sKM6ld4qOKSAYqXllkHXXUpWl922xSMluOIKd8ofe4kWQej6S2r8Rf7kZVnvT/ObQ5GUzMWoAbU3aIVdfI4uP159MOTvPdf+wgqPKLO5lEfkmLMZfGGcAe7lFJw+kXQbyj6oj6QU+FnPuB0mHB9zQaoOFbPAaglVYOw3E/fBm89FZxB2qR6/m/Z0TIYjS/fQd85N6DnjH7hPnjzP9WfU7djUbO/QR0KwHXHNYaK7wdhEaiL76h+/zaEhSg6JMP6mp8i2jLhGD9HnTxPulmSIRjNrZxkbdxMYqVgtN0+shpblOyqunP1cnTnPrDhd8jJsgj8MgRgGQOxyutqY/hWxW1TuJeP/f7m4TWujbmXbovDQ4khGC0kgNSvOpTa3BzcWSolXqFadUI98j5t1mp4PLCExs9Wm0eomHvo6/hQmdaefsf2CWgq4gijs9KsC+ISy26q2AR0jxPg9++qtl//m99z7Lp0sMBevagwiAxrSDP3pnOzYeMfNCkq4NX3RlYp3xzals4dV1u2XRfW2div89BH9UaGU8Bsi8fPGIxW6WN/p6aKJat9Hwtj6iGIUYLRhBBCCCGEEME2f/588vLKf6F0/PHH1+NshBBCCCGEEEIIIYQQQgghhBBC1AUJRhNCCCGEEEII4eE0BKO5XLBjo7ldyw4AKIcDfdqF3mEb1VUP4UmiYVJKwXub0ePaW1fof2rdTqghcxiC0bZvQJ93lO/XsSlU7Ugw4HSwCkYbNxnem21u161f7c2pnl18vHUwWrzKZcilI1HR49APTyJaWwejFToiKMFJCK7yYLT4ZOvBFv4X3aQVXDjN83quRO/dTtbag+DoUnU+rizLLtW85ahOvQz3rvaokRdDq07oj+YDCjXyYlSPI3/hjc9gtKjgjKGSW8Brq9D/exKy0lDd+sEZl1k+Z4JNXfsIeuMf8OvXNesooQkqJs7TZ6tO5qieL97yhMHZoDP3wTvP1Gha6unPy0LRANRV/wedeqN/+BgaNUadej6qS+2n86Q2q5tgtDUPOHA4/Dxv9m4DINEQjAawf/N2Evt7v753Wh+SAEgp2V1ln776RN/zEKKhKTYEo4WG1e08bOrW3H+dlPjy2yd0DHyMD1dpUg05zI5qBqMBfPynZmyfhhsOJerAAcN7UFyS93bvQZbBaHz9HnrvdlTTVsGfWzXkFNqrlxhdu/OoCf3us+hnphq/FACgTfE2wt0FFDqqJpytDu9qbFd6vGhkCBU+kF91n8twMlk5GK1LU+t6FUXXw2E8wvBXKBKMJoQQQgghhKiOHTt2cM8993jtu+gie9fZhRBCCCGEEEIIIYQQQgghhBBCHL6O4FWvQgghhBBCCCECYgpG0m5I22NdltgcFVGeiqIumApdj6nZNC67F9WuW436EEcWldwCdeszUCkgR133KKpJy3qaVQNkCkbLzvAdigaQnxP8+QTqkrus94+/pmb9duoFF0z13tdvqCccqEtf6zYx8dBrYM3GbcBO6qK4Yaj36yksBGZfEUP0hEkQFg5AI9dBYx9ZzkNJI2XBaInGuvqF++Dnz6vu37IGfVZHskrCLdvFu6umjKhP0+slFK1s/J4DcNz+HI7b5/wjQtEAkmPNZcEKRgNQjZviuGY6jjtfQI2dhAqpm+/0UEqhHv8IBp5RtTA2AfX05zBotP+OOvYov92uu7Ga/u4D23PTbz/jCaitjvZHoRZuQ4V5v76UUqihZ+O4ex6O62fWSSgaQOem1Q8AWrexO2dmv++33kNnKro08z2OXrqo7HaTkv3Gepu3VD3+bN5vnVAS7c6hkTvn4DNdAAAgAElEQVTb7/yEqC963W9oO8eSEkMwmjM0uBMKkrAQxYRjfL/mkyuEe4aFKO44LbBjUUYuLNtkXVaT7M6/dhnjM8U/xYE06/1x3ufUqk3V8OBS+v4LgjmjaitxadthV74Cd+uT/vNH9JM3+QxFA3DipkPxZsuynSEtzO0OfVSPMwSjZRdU3edy++6rVNfm/g9GMVVz3GpdpCGMTYLRhBBCCCGEEADvvvsud955J/v3m6/Rlvrtt9848cQTycjIKNvXq1cvTj755NqcohBCCCGEEEIIIYQQQgghhBBCiAagblaXCSGEEEIIIYRo+JxO6/1uF2SnW5fFJ3ltqpg4mPUVLF8CW9ZC01awYxN67r8sm6tpc+CU82Dlt7BzM/Q8AdXhqJrcC3GEUmOuhD4nwa9fe8L6+pyEatu1vqfVsDgMr+HDhDpxDHr+Q6C9gyLUSWNr1q9SqKseRJ88Hv76EVp2hD6DPaFLs75ED4uv2mbCdaiQhhkCEixPnOPg3H6aHzZrosNhWFdFu6RDi+oPJX0kuQyBDcA+ZzJJrvTyYLS4JGNdAP3BXNSxw8u3P3oZPf1KALKccZZt4l1ZXtvqmumoqAaapnAES4lTgHWAS/gRcnVZOZ3w0Duw4ivYsBKKiyE5BY4djkpsBgW5fgPN1KkVwkmOH2GuuPJbtNYoP4k6+qOX4ZUZgdwNjxEXoAaNhuNOQYUb0jfqQWqz6rftUPw3/9t5AW8fHM8FLeZXKe/ZEl6+zEHPlv6DQfQrj5TdjtL5tCjeyc7QqkEm67YVcHqlfRv2WffZqWgTNchHEqLW6Sv6Q1Qs+qj+qF4DoecJ0LUfKrxSUk6xIRgt1JBu0wDcPFzx1i/mkLG2id6vzv8bq/jfz5q/K53ixLmyKFah5DmibY9dsedOTczHCCtrdmPrvUAcwTKsnzCqUjAarc3BaPz5I3rfjnoPC88ptF83sQGeyuviIvTkk2zXTy7ZDxa5zvtCko1tHIde6o0irM+rD+RXbWM3GK1/e885eWGJcXii6+EwHhFqfV8LfMxTCCGEEEII8c9x8OBBpk+fzsyZMxkxYgRDhw6lV69eNGnShJCQEDIyMli1ahWLFy9m0aJF6Aq/OwwLC2P+/KrXiYUQQgghhBBCCCGEEEIIIYQQQhx5jpCla0IIIYT4f/buOzyqKv/j+OfMTHoggSSU0HuVJoiAIIK42FgLKthWdC3outZ117ViXV3Xsquua8Gy9rVXXAvqCvpDsaBrwUWaSi+hhbQ5vz8Gkgxz78ydSSb1/XoeHnLP+Z5zv0kmk5lJ7icAANSYW6hSRYVs0UbnuT0v2pVkUlKlMYeF/kmy3y6UnILROvaQDj0ldDF4tbAcwI3p3Fvq3Lu+22i4fL7YNQ2Y6TVYuvxB2Vt+IxVvkzKyZGbeKDPU+0XqUffvPUTqPSR8LC1D+scHsjf8Wlr+bSgQbPJJ0gm/q5VzNnQjuxuN7O4QyGFCt6WCKMFo6wL5Uqkqg9FMy9Yu0Vm7vPe8Xp/1Nz2de5xKUlvo1y88ovGSgjIq8jkHo+UEi8IHeuwV7QxIksLI7MBKO1wydBojY4w0fELo355G/kJm5g2y910llZeFz/n90vEXS5OmVe2VliGddb3sPZdF7rWtSNqwWspv79qL3bC6Mjgwrvfh0vtkDjk57nV1oU8794C9aJ5beawkya+gpm35lzKDxZpReK+K/LkK2DJd0f0TXf6HMZ7Chezm9dLXC8L7Kv3OMRht8cZU2c3rZaqFAC/+qVRSZGhmz9L/xfleAfVgx1ZpwZuyC94MHaekyvYdLg0aLTNojLTX6Mj7t90acDDaPt2M7phmdN6TkfcvxkhDOu05ZvTmBT6d8mBQH+z60j1062u6b9VMndX+Tr3U4nDP506vdncwY4zRH5/3fh+3aYe0dqvUtqXnJWhCbDAo/bTEeTJvj8cHXfqEvgbdggt/XirVczDa1p3eawtzG04YoK2okF68V/a28+Nal1/h/IcD1vrdg9F2h5m1ynSeLyqWyiusAv6qj49rMNoeH8KsNKMJfaXXv3I9vbLT3eeSJd0lZ7zE5VsNAAAAgOaprKxML7/8sl5++WVP9RkZGXrkkUc0ePDgJHcGAAAAAAAAAAAAAGgICEYDAAAAAIS4BaMFK6Qtzhd+qmXrmNuavnvLDhojLZoXPn7WDZ5CLAB45PY13IiYg6ZLE6ZKK7+XOvYMBS0m+5z9R0gPLZTWrpTSMmTy2iX9nA3erpC9dFuiFhVbtNUfmdqx3r8rLGhXMJpy8iNqqvt7qzN07k9nSz+Fjp/s8oZm/3y6Jm/7t6xxDvXLrdgjGK1rP+/vA2pNtGC07SV110d9MsZIx18kHXGGtHmdlFcobd0orflR6tZfJjM7ctGhp0hOwWiStOK76MFoR3SJv8fTr2mwoWiS1DfBu9b9d7wfdjxl2ytas7iTvkvtrW5ly5RZeJiM2c/bZt9+EtlXyWK9kxUZhvdDoEsoRG30IZVjy5YXSYq8r+tZ6hJug7rh94ceA/n8oe9fvmrH1ef80eb8oVDQsPE9j/d4O2KdL3qdzy9Tfc6Y2HtHvO0Lfx+r1dh/XCF99aH3j1tZqfTlfOnL+bKP3RLqJ8slpSvQcIPRJOncCT6VlAd1yTPhwWRTBkmd8yKfb3YvMHrvdz4t3yD5X39QHe6dKUkaWPLfuILRstKq3j6m/zb98fmsuPp+9zur40bwfLhZWrtSKil2nuvSJ+zQpGfKHjVTeuoO5/oNq2u5ufhti+PxYO+2yesjHtbaUDj2vx/3vqh9V5l/fq78+7dKX0ROrw20cV3q2/Wlnt/CrZ9QYGJBtXnXYDSHp06HDzZ6/Sv3cMbsNNeppElz+S2UnQSjAQAAAJCUm5srv9+viooKz2vGjBmj22+/XcOHD09iZwAAAAAAAAAAAACAhoRgNAAAAABAiGswWlDastF5rmUrT1ubm56XvfP30hfvS4FUmRMulsb9MsFGATjyOYdLNTYmkCJ161/H5wxIhd3q9JwNWrWgsoKK9Y7BaOv8BaHSXcFoL2/po8u7LdCaQBtN2P6url13tbqXLZMklZhUXZ//h4g9Ti28L2obnctWVh106iUVdIj3PUEtaJHuHtqyo7QOG2kATGYLKXNXYkVaoZRf6F6bmy+bkycVOYTLLvtGGjbecZ39vzfib+zQU6STLol/XR3KyzbKy5I2bPe+Zu/iT5UT3BIxHlCFBpR+EzpY/7P3DZd/FzHUsfxHx9IN/nxpxQdhwWg/r90ppUTWdi1b7r0HKXQb2jPEq3rwVayArLAAL5cwLsc99gjVclljItZEOY/jHj6XXj2u8e1a5yE0zDSRxz614ubnZQ+pQbirtdK2Iue5FIcbfgNz4YFGmanSX9+2MpIOGmB009Hu37+MMeqaL9kTZ8gu/0B64zH1Lvk+rnNmVcuL6/7xP3V8UY4ez5nuef30+6xOebBCfl8o6Ciw5/9+yW/C3w74w2sc11XOmbB1Ps/rInvYfd7IHkz0PV3Xxeil2vvu8zXB8DiH70eVOveOGDIzb5R1C0ZbsbiWmkrc1p3ea/u0rd/Pp138uewdF0YE90fVopU0bH+Z826VSctQfsc06YvIELI1UYLRdoeZ5Ttk6e62flt4MFrQJefM94/LZEuGyxxwdOXYYYOMzn7MPRitnUvuZTKlu3zr2Fnm3icAAACA5uOII47QmjVrNGfOHM2bN09ffvmlli9fro0bN2rnzp3KyMhQ69at1aVLF40dO1aHHHKIxowZU99tAwAAAAAAAAAAAADqGMFoAAAAAIAQt2CBYIVU5BaMludpa5OdI/OHexJsDIAnbuGGXvQaUnt9oPEzVYEF+RXr9YO6R5SsC+SH3vD59ebXVke8NVRKDw09lXOsvk7rpwVLxyhF5foqbYBWB+ILa2lVsVFtKtbuOodP5tdXy5gmGIzRSKQFpJLyyPEzxvE5iapzH+nL+RHD9uO3ZI6aGTleXiZ78ZT4znHUWfJd4BKW0sD0bSfNWxI53raldMxwozvfqQrKSLGlumL99bE3jSMYza6MDI/JL3cIrpO0PpAnu+I7lZRZfb5Syv3qTa0K7O9Y2758lXTkmdLz/4jZgzn9GpmTf++5Z8CzjBaxaxIVSI1dU898PqOzxxudPT6+dcYYmctnKyip/3v/jWttdlrV90D7zjM6oSgzrmA0yfl7a+2pi/Ch5J/DmERC4eIJd5MCPlNZ66tRGF2085qqt/8r+bImKC1YoiEli9QyuDX0zrZuJ5MVmWBl/H7ZoftLn70XMWdnXyMz47Ja/7gX7bD6abPUvUBKT4n+eG9bifd9+7WvYWM1YDeslj1tpPcF086X75ybIobdws12+LJct/LZoCS/8txLtH5b+HFF0LnOv36l7JW3Sre+KjPiQElSx1ZGQztJn62MrD9uuKmXgEH3YLS67QMAAABAw5WXl6cTTjhBJ5xwQn23AgAAAAAAAAAAAABooAhGAwAAAACEuIUqBYPSFufQCJPTOokNAYiLcQk39GKYc9gLmqlqAWQF5esdS9b5C0Jv+P26463Iq/a/TN9LT+Qcp5OLHtN3qb3jbqFPyWIZSTrkVzKTT5QZOi7uPVB7Lphk9KfXI8NPDhtEMFpUA/d1DEbTJ+/IlpfLBPZ4ef6dZ2JuaS57QPabT6QtG2XG/VLa/8haajb5jhpmNG9J5O3o1mONpo0wGt1devmNpWq56E2dWPSYRhUviL3p+p9lrY0ZnGhLiqUX748Yz69wCUbz5+nB/3XSuecHdwV4TJRcTtFh5kUyh4+VBu0ne/2pUnmUxI/0jKh9AokygUDyIqoCLuk2TYj54/0a2vsu6S3va7LSqh18OV99UjrXel+QrJXKrVTuEhJVS2dJ5uYO55godZ4oSQrYMv124526ae1l0V9fyXdPFLNLvpLpMbBWugwGrW56w+qKF6yCVmqfI912nNGxw92fa27Y5joVZlDHeg5GO7pHXPVOoWiSooabue41/xVp4i+VkWqUlSZtdwiTiwhGc7lZ+m2FJMnOvq4yGE2STt3P6NwnIhedul/9PF53C0YrJhgNAAAAAAAAAAAAAAAAAAAAHtXgilkAAAAAQJPidwtGq5A2rnWey8lPXj8A4uP2NRxLarrMry6t3V7QuPmqXjJ0Cw3a5M8NveEP6O1vnbc5tfA+HdHxX7ox/5K4WxhY8rXMqVfKd+m9hKI1ABceaDSia/jYLccYdWpNMFo0ZsyhzhM7d0hrlkcM2/dfiL7h8RfJTD5Rvgtul++qR2QOOFrG13he4v/1WKMJfcPHLpkcCkUzxmjaPj49ut/numv1ed5C0SSptETauil23bN3Ow63drmP2+HL0un6/a5QtOgKR4+UMUbmwGPlm7tN5t0dUka2c/FQgkiRRB17us/1GiLtO1nKzol/39ZtE++pkTA+n/zHnqvZLf7ueU32rmA0uysMsXPZSrWsKEpGe2jCyk2Kbs27QA/lnCylR0nc6uAe6mUfubHW+nl5kXTZ86FQNElaVSRNu9dq6Xr38Li3vokdLJefLd1+nC9mkGlts+Vlsm89reCMEVJFubdFuQUy9zkE2+5S0CL+98H3zxsq33YLVlu/LfzjWOESBuhXKBhNX30ou3FN5fiZ44x+MSC8duZ4o0n9G1YwmpfHVgAAAAAAAAAAAAAAAAAAAIAkBeq7AQAAAABAA+FzCVUqKZa2b3Gey2+fvH4AxMckFo5jXl0lk55Zy82gUasWWJBb4Rw4tMnfSpL0xY62KomSMfBKC5dgqBhOLHpMyvhlQmtR+/JbGL17sU/vfCstXW81vo/RwA6EosXUe6j73IrFYSEntmSn9F6UYLQDj5Nv5g3u841Ai3Sj13/r01vfSN+vtRrT02hYZ4WHpKSkxr/xsm+kQWOiltgnb3ccdwt/9Mpvy9WmdXjPxu+XPWia9OL94cVd+kg9B9XofEBU+x8pPfbnyPGMbJm/vyeTli5bUSEt/a/0xQeyi+ZJX8yTNqyKuq0Ze3iSGm54fjWxpc57dou2+lvGrM3aFYymNSskST5Z7b/jP3q5xWFJ7BBN1YstDteMjBWu82bCVNmHrneefOcZ2X4jZKadX+M+/vmhcxpXjz8GVfGPyGCzYNDqlUXOwWi/HCxNGWKUGpAm9jVql1PHoWib18uec0DoMZdH5re3SAceJ9OqjWtNYQL5kr4liyrfzs+WVmyMrFm/LfzYNRjNVpuY96p0+KmSpIDf6LXf+vTvr6WVG60GFBqN6lF/j9fTXX4LhWA0AAAAAAAAAAAAAAAAAAAAeEUwGgAAAAAgxC0YzS0UTZLyOySnFwDxc/sajubwUwlFQ6RqIXu5wSLHks2+UCLAtEWTav30bcrXaL/iD6X042t9byQuI9Xo0EGSRCCaVyYjS7ZNJ2ntysjJld/L7jtZev2fsnMelT57L/peR56VpC7rVkrA6OC9pIPdbkcpac7jUdj5r8lECUaz81+TNq11nKtpMFq77Ar5fJHvi5l5o+zan6QPXw8NdOolc+OzEYEyQG0yp10p+/MP0txnw8dveUkmLT30tt8fCujrOUjm6LNlrZVWLZW+mCf7xTxp0QfSyu9DC9MyZGZcLjPyF3X9rtSfUQfrzAfu1y15F8Yszd59d7Wt6vnyIz+fqlZ9nO9vOpWt1MqUTrXRJZqgn1I6SBlZrvOmW3/ZXkOk7z93nLd3/V4aNVmmS9+w8Y3brW75t9VD86xWb5H26Sp1yzc6clgooOrVRdL6baFgs06tjZ77zL1H/5lBnTLaaHwf6aR9jYwxWrhCWuX8dEEn7OvT1L3r5/ueLS2RPTy+16vMba/LDJ8Qs65Dq/j78Skoa62MMcrPdq7xGozmU9WEnfeKzK5gNCkUNvuLAVJDeLyenuI8TjAaAAAAAAAAAAAAAAAAAAAAvCIYDQAAAAAQ4vPFrtlTfvva7wNAYuL9Gs7IlvnVpcnpBY1btdtSq4pNjiVF/hztMBlauqNFrZ46PVisL3/YO3QQcLmaHmhMOvdyDEazKxZLd1woPXt37D16DZb2GpWE5hqg1PiD0fTV/7lO2X8/IXvtKa7zrSo2yRjJ2vhPK0mFrZ1DSU1WS5mbX5DdsFratlnq3IdQNCSdSUmVueZx2XU/ST/9ILVuK7XrIhPl68oYIxV2lwq7yxx8kiTJblorbV4v5bWTadm6rtpvEEyrAk1ps1y3VMSuzdr9YS0prhxrEdymx388Scd3/GdY7eCdi7Rg6WitDbTR9yk9VDH5JAUnn6KKoFQeDAUglVdIFdZWe3vX/9VqwuqDUeb2WB8M28s61tbWectdwpwQXbFJl9Ldg9EkyVz9iOwJg1zn7YmDpfd3Vn6/KdphNXhWUD9trqpZsExasMzqqU8cd4jZ50PzrR6aL/3fUumu441e+sJ5TWpAuwK66p61Vva8+AIdzT3vywwY6am2VaaUFpBKyj3ubYOhmLIdW6WslsrPNnL6WG/wHIxW7Q7q47dli7fLRAnVqy+uwWgeP24AAAAAAAAAAAAAAAAAAAAAwWgAAAAAgJB4Q5XSM6XsnOT0AiB+PudwFkeDx8qcMUumbefk9YPGq1p4T25FkWPJJn8rvZs5TmU2jttdFOnBYo0sXqA71lykvIqNtbIn0CB06iV98k7k+Iv3ed7C3D6n+YRqpabHv2blYsdhW14ue3f0AFD/6MnqkyZ9uzr+00pSu9bRf8Ri8tpJee0S2xxIkCnoIBV0SHx9qzZSqza12FHjMmpCX3V6baVWpnSKWpeVuuuN0uKw8WO2PqvinzN0U97FWhfI10Hb3tJf1vxefgXVvny12pevlp6fJz1/VmLh5I1AUEYV8qvC+FWuwB7/h8Yr5Fe5CVT9b3wRtVU1vsraisr/q/aqXLd7Tn6VG+fzO+0VeY7IfsP3ruo3GNGvw/smf2V9iUlTqS8yrLDYZEgZ2dE/sJ16S936S0u/dq95/C/SCRdLkm543YaFotWme9+3uuQXVi997hyMNqGP1CK99h+72OLtsg/Mkt57QZJkDj1FOvkPMtW+luzsa6WvPvS2YadeMr+52XMomhQKlCzMlZau91bv3x1kVrRBymqpPJdP84Zt4R/LCpecOr+tFoxWulP6+C1p3C+9NVOHXIPRyuq2DwAAAAAAAAAAAAAAAAAAADReBKMBAAAAAELiCVWSpNZtm09IB9AYeAxWMKddJXPKH5PcDBo1U3Vbygk6B6Nt9uXo8/TBCZ/ijtUX6pxN90gTj5XefjrhfYCGznTuLZdcC2/rr3tKpmXrWuunwUuJDIuJaeMa2a2bZFq0Ch//cr60YVXUpebkS3Xw10bfrk7ss1SYy2NhoKnxTfm1bn5whqZ3fDRqXdbuu6uS8GA0I+lXRY/qV0XR10uSgsHEmmzgfJJ8qpBLLlKz9mTLY3Rih4cjxot96VJGZtS1xhhp5g2ylxzhWmPvuUw6bIY+29xaf36jJo9AoqsISne/a/XlT87zhw9OzvdHe+0p0n9eqjp+YJZUViJz+izZYFD6eoH00PWe9jJXPCRz0PSE+ugQTzCarRaMVthN+S7BaOu3hR9XuNw9VAat7WLnvSrTIIPRjOTwKJhgNAAAAAAAAAAAAAAAAAAAAHjVNP8UOQAAAAAgfv44g9GyWianDwCJ8RpuOHRccvtA41ctZC+3YrNjyU5fhhal75XQ9nsXf6qzNt0rc+XDMmdck9AeQKPRqXfN1o84sHb6aCwSCUaTpBWLI4bsBy9HX3PA0TID9tE+XRM7pSQV5iS+FkDDZNLSdezlJ+nN5ZOj1gX8u4KfSnbWQVdoKjKCzreXYpMhpWfFXG9GHSxzzROu8xXy6eJbF2v49ckP3YsWvFbbwWg2GFTw8mlhoWiVXnpAdslXsoe0lZ25v6f9zG9vSTgUTZJ6tvH+/vm063OxeoUk1TwYzYYHo2n+a7IVFc7F9Sjd5c/zEYwGAAAAAAAAAAAAAAAAAAAArwhGAwAAAACE+F2uWnSTlpmcPgAkxufxZZ4ufZPbB5qAqgv9c4NFrlULMkY4jh+zt3tQQPfSH/TUT8cr8M9PZSZNkwo6SOku30+aWyAUmqYufRJfO/oQmUyX9IymKjU1sXXLv5Mk2fIy2bnPyr75pPT0X93r+wyTueAOSVKH3MTDW3oUJLwUQANmRh+iA3a8r72LP3Wc7+lfU3VQUlxHXaEpSLfOt5diX4ZMhrfv+eaAo6R9I4P7PksbrPFd3tRtq/apUY81Nayz1LFV7QWj2fJy2cuPk9573rlg8zrZU/aWtm/xtuGMy2WOObdGPfVu6712d5CZveE0SVJ+tvPHpnowWjDoHjrn1x4haJvXSf/9yHtDdSQ9xXm8pFyy1v39AwAAAAAAAAAAAAAAAAAAAHaL86p3AAAAAECTFYgziCI9Izl9AEiMl2C0nDyZ3Pzk94LGrdptqVXFZteyFSmdHcd/MUB68BSfZt/1np7+1Khr6XJ1LVuugSX/1YHb31GrZz6TKeggSTIpqbKjD5HeeSZ8kz7DZNp2qvn7AtS3tp2ldl2k1cvjXmqO/W0SGmrgUtISWmZXLJY2rpGdub/089LoxWOnyFz5sMyuUMbC3IROKUk6bFDtBb8AaFjMSz/q6Bm3amHGsIi5X256RrbsLJmUVILREJeMoPPtpdykqFw+uWRJRTA3/Et2QovK42vzL9WsgitqocOaO3xwLYaiFW2Q/c1Eadk3tbKf+dtbMkPG1nifvu2MJG/hXj4FQ2/s3CEbDLoGoxUVSzvLrNJTjF7/yn2/3UFrYT57Xxo0xlM/dcUtGE0KhaNFmwcAAAAAAAAAAAAAAAAAAAAkycMVswAAAACAZiEl3mC0zOT0ASAxxsPLPN0GJL8PNH7Vbkt5FRviXt63vVFmmtE5543Vu0Of0UOrz9DV66/TVL2rVrc+VRmKVnm6i++SBlcLKOjaT+a6JxNuH2hIjDHS6IPjX3jQ8TJ7H1D7DTV0qemJrVv+rexfL44diibJXPjXylA0SWqfk9gp92mxWi0zCEYDmirTqkAXHlChUzY/EjZ+9JbndM3Pl0mfvRcacAtG67GXzNPfSQNHJblTNCbptsR1bsfa9Z73MSmpMjf8S5J0R6tzaiUU7aXf+DR5gGRq+K3tl0OqNrClJbLP3KngVScoeP8s2TUrQuOb1yt45yUKjk0L/bvnMtnvv1Dw7ksVvOoE2RfulS0vk73vytoLRbvn/VoJRZOkoc750I78qhZktmVj1McdS9ZJO0qsTn046G2/Xey/7vTeUB3JiPIS486yuusDAAAAAAAAAAAAAAAAAAAAjVegvhsAAAAAADQQgTiD0dIIRgMaFL8/ZokZeVAdNIJGr1oaQobdqdblG7QxkOd5eZ+2u7bx+2Uu+pvsGddIq5ZL3QfKBCJfjjQtcmXufCsUlFCyU+rUKxQmBTQRZvShss/dE9+a8/6SpG4auNS0xNZ9+JpUERkUEsHvl1q3DRvKSDVqnWm1cUd89ztn9FkhqUPMOgCNV8rZ1+n+l/J109o/6su0AepX8p3aVqwNTf5vkbTPJKnUJegqLUOmfVfp7rnSysWhupKdUvG2OusfDU/m+nTpOee5km6D49rLjJ2iO3pfr4v8F3iq/2Dp/rqr9Uw9kTMtYi7bFOvQvbJ02CC/Nm63WvRj6DH94wusfveM9dzTwQOlIZ1C309tebnsH46SPn6rct6+/oh0w79kLzlS2ri6auFjt8g+dktV3TvPSB++Ln36rudzu0rPlHl9rUwgpeZ77dIlz2hiX+ntb2PX+my1kLMNq9W9S578PqnCIfvs21XS92ukdVvd9/Nbh4VF62VfekBmymmxG6ojXfOkJ88wSg8Ypaco7F92gg/3AAAAAAAAAAAAAAAAAAAA0LwQjAYAAAAACEmJMxgtnWA0oEExvtg1e41Kfh9o/Hzht6UO5T97DkbLz5byssPDhUyLVlKLVjHXmqpv4mMAACAASURBVLadvfcINCZD94+vvms/T18zTVJK9KQMc9pVsg/MipzwEoomSS3zZHyR3y+HdTF66xtvW+w2rhcBjkBTZ1JSZfuNUN4XH2j8jv+Ezdm//1EadbBsSbHz4rSM0B7GSJ37JLtVNBKZa630nEOwlaTiAePi2mtLsdWVqedIHr4FFn/TUikqlzbKMRjtwKJ/S990kvqPUOsso/G7brLnTQz97yUc7djhRv84sdr3xi/+ExaKJkla+6Ps2QdIpTtjNz3/tdg1HphTr6jVULTdbp7q097XOX8uq/NX/wRtWKWU/Pbq7ivR98G2EbXH/CPO/aqx914pHTbD8XFOfcjNNDp2OI+VAAAAAAAAAAAAAAAAAAAAkLiG8ZuxAAAAAID6F++Forsu9AbQQPj9sWuycpLfBxq/PUL2CstXeV7at11tNwM0fiY1TTrp997rf/XHUJBOcxTt8Wh2rjTt/Jo9Bs1xDnm84rD4flRyyuZH1KNH68T7ANB4+N3/xpQ9+wDpx/85T6alJ6khNGYZUb7N7cwpjGuv17+y2lYRO+D++ZXHhELRJO2782OdtPnRsPnM4HZdsuEv0oI3I9YG/EYXHeTTwsujf5+cOd7oyTN8ysmsevxin7zdudhLKFpt6dBdOurspGw9tLNRew9Pr32qFiq3YbXstaeo96aFCZ/Xb12S8IrWSz//kPC+AAAAAAAAAAAAAAAAAAAAQENDMBoAAAAAICQl9gW1YdIzk9MHgMQYDy/zZLVIfh9o/Hzht6UO5T97Xtq7XTMNcwJi8J1xjac6c9trMgcem+RuGi5jjLTvZOe555fKpGdK/fdJ/AQ5+Y7DY3sZjUv52nFu9I75mrV2liZte1OHb31Fd646T/euminlxxdgA6CRihY+vG2z9PbTznMEicNBRpSXXYrLvO9TEbSafp+NWde/5Gsdvu3VsLF7V52t+34+S0dseVG/3jRbnywdpX12fiL7wCzXfYZ2NjpqqPt57jre4bnoR3Ni9pdUx5wrc/9HMkkMKezXPnZN9SAz+84z0v/9W13KViR8Tr9cgtEkaevmhPcFAAAAAAAAAAAAAAAAAAAAGhr3P3MOAAAAAGhe4gxGMwSjAQ2LL0pow26ZBKPBi/Bws8Iy78FofdvVdi9A02Hu/1D216Pc5295WWb4xDrsqGEy594su/hzaePq0EBKqswfH6h67Nm5l/TZe4ltnpvnOvWvAa9o4kdBfZU+sHKsXflq3b36txpY8rW0oVpxVkuZzOzEegDQuHh5jO0klWA0RMpIcZ8rLvW2x6fLrU6eHfRUO2fF4RFjKSrXjKJHNKPokYg5u/J7mU69HPeafYpPyzcGtXB51Vh+tvTqbxvW32EzVzwkc9D0OjlX77ZG73wbPaAuLMhsV1hc+/JVCZ+zetBahO1FCe8LAAAAAAAAAAAAAAAAAAAANDQEowEAAAAAQgLxBaMpjQu9gQbF5+GCdILR4MUet6WCivWel/Zpa2IXAc2U6TNMUaMz8gvrqpUGzXTuIz28MBQesmOrtPcBMl36Vs136h394xhNjnswWn73TvrwyXF6scXh+jqtn7qWLtfh2151vg/Mb59oBwAaG3+CP0rl+TIcpEcLRiuLvf4PzwV18xxv3wUf+PkMFcYZwGWPHyi9v1PGRD6mb5lhNO/3Pr3wudVXP0mdWkuHDzJql9PAHv+PnVJnp+rdNnaNz0aG2HUo9x48vaewoLU9bduS8L4AAAAAAAAAAAAAAAAAAABAQ0MwGgAAAAAgJCXOYLT0zOT0ASAxJkYwWmqaTLxf52ie9ghGy48jGG0AuU5AdDl5UtEG5znuoyuZ3Hxp8onOk90HJL5vt/7uk90GKMPu1LQt/4q9UbfEewDQyCQcjJZeu32gSTDGKD1F2ukQglZcGn3th0us51A0Y4OatP3tBDqU7Lh02YnHygzbXzp0hozfXzmXGjA6drjRscMT2jrpzNk3ymRk1dn5QqHQ0T8nTkFm7eMMrKvOKkoQ3fai8Nr1P8v+/TLp34+HBg4/VWbyiTKDxiR+/s/el333WSkYlBl/lMzeByS8FwAAAAAAAAAAAAAAAAAAABBNjCtmAQAAAADNRiDOMI40gtGABqXaBeuOMlrUTR9oAsIvts8v9xaM1rut1C0/Gf0ATYgvyn01wWje7DVaSstIbO34o9zneg6Scgs8bWMOPzWx8wNofKLdb0eTSjAanGWkOI8XO4SlVffwh95C0STpsG2vqbAG4Vt6+2nZP58je9UJie9RHyafVKen6902do3PBiPGOpT9nPA5U2yUG8q2qmA0+/NS2SO7VYWiSdLLs2XPPVD2nWcSOrd980nZ838hPXeP9MK9shccLPvqwwntBQAAAAAAAAAAAAAAAAAAAMRCMBoAAAAAICTgcnWum3SC0YAGxcR4mSczu276QOPnC78t5Vds8LTsoAFGxpjYhUBzRjBajZn0TGn0IfGv+9NzMvmF7vN+v7T/EbE3atNRZp9JcZ8fQCPlDyS2jmA0uMh0+Xa/vcQ9+CwYtLr3/djBaC3TpVO6LdOj5jr3ouxcmQc/ibmXJOm95xUcmyb74HWy5eUxy+1n7yn4mwMVnN7f2/61KZAi5eTV6Sm75oc+5tH4VREx1r1sqVKDJXGfr035GnUrW+Y6bzdXBVrbv//RuSgYlL3qBNnS+M5vrZW97yopGKw+KHv/1bLWe2gfAAAAAAAAAAAAAAAAAAAA4BXBaAAAAAAASbvCIPxRwjr2lMaF3kCDEuvrN7NF3fSBxs8kFow20D1vCMBu0QJ2AgSjeWVmXBH/olEHx9735D9I2bnuBbkFMrMXxH9uAI1XPM+RqzGEXcJFdprz+PZS9zWH3xl0n5QU8ElvXuDTxtt9mn1pD7V4/GOZd7bKnH1jRK054xqZnntJIw703LOdfa3sPS5BW7trfviv7AWHSF/8R/pxiee941LQwX0ur72Mr25/9cHvMzooRgZcuo0MIEu3JZq4Y27Udf3bR45dtv4m+RQlhOzRmyVJdsdW6T8vRd3fHtNLdueOqDVhVn4vrVoWOb7+Z2nxZ973AQAAAAAAAAAAAAAAAAAAADwiGA0AAAAAUCWeQI60jOT1ASB+JsbLPFkt66YPNH7GhB3mV6z3tKxfexO7CGju/FHuq1NdklIQwXTrJ/Pwp94XTJrmKSzFtOko8+AC6YgzpIGjpH0mST0HSWOnSEefLfPgxzI5eTXoHECjEy3QMppASu32gSYjy+Xb/badzuNl5VbvLXbf74gh0vuX+DSxn5HPV/V43KSkStMukLn5BWn/I6T9j5S55SWZI88Mzd/ycnyNP3u37JaNrtP2vqukivL49oxHZgupZWv3+XyHJLE6MHV49OdAA3d+5Tg+ZesrUde9fZFPz870aZpvro7c8oL+9eN0nbPpnpj92PU/Sx/Oif252LhGdlIrBe/6g2wwevCeJCnK516b1sZeDwAAAKBWrFixQpdffrnGjh2rtm3bKjU1VcaYyn8PPfRQfbcIAAAAAAAAAAAAAECtSfC3+QEAAAAATVJKqlRS7K02NT25vQCIT6zQhszsuukDjd8e4UFptlStyzdoYyB6GFD/+skiABoXn999Lp6AWsh0HyCdfo3sfVdGL2zXReaUy7zv266LzEV/q2F3AJqMRIPRUrhPh7Nsl2C07aXO4ys3STtc5kZ2k5472/2xhTFGGnWwzKiDI+d8PumON2QvnSrt2Bqrbam8TPbP54RC1vqPkCnsXjllt26WPogzaK26vQ+QFs6NXpPfPnqIbOu2iZ+/Bo4aajSoo9WiH53nD9v2muv4TJc9jx1u1Lal0ZFDpV/6rpd+mu+9oS8/lH3/Re/1T94mW7xVGrK/VNhNpv8I5zpr3fcwBGQDAACg4evatauWL19eeTx37lyNHz++/hpKwH333adzzz1XJSUl9d0KAAAAAAAAAAAAAAB1whe7BAAAAADQbMQTyEEwGtCwBGIFo7Womz7Q+Dlc2D66+KOoSwYWSnnZXBAPxBQ1GC2l7vpoKk66ROrQPXK8dTuZs66XuewBmfs/lOncu+57A9A0+BL8UWpKlAAnNGtZbsFoLte1rypy3+vs8TV7/G2GjZd5eKHMebdKLVrFXvDuc7KzTpY9YZDsc3+XJNlNa2UPqVkomRn3S6lNx+hF+YXRv66ycmrUQ6ICfqO7jvfJ5/Cp6NiiTIedNNZxXfvy1Tqu6OmIcaOgHj2t2mYV5XH1Y688Xnr32bjW6MX7ZWedJHvmfgpePk02GIxvPQAAAICke+2113TmmWd6DkV79913ZYyp/Hf11Vcnt0EAAAAAAAAAAAAAAJKAYDQAAAAAQJUUgtGARivW129my7rpA42fQzDakVtfjLrkiKGEogGeRAlGM4mG7zRjxhiZ2+dI/fepGuw3XObud2ROuFhm8okyOXn11yCAxs8fI3zYTTzPrdGsZLncNLYlEIx24r41fwxu2nWRmXqOzF/f9L6ovEz2tvMVHJsmO6VTjXtQQQeZPz0XvabHQCk1SjBaZnbN+0jQmJ5Gj59ulF4t47Z9jvTEzDRlTj9H5qUfpaH7R6z7y5rfa9z29yuPB+z8rxam/UYBf+LBaJKkmgSbvfe89MrsyPGoffBcEAAAAEi2Sy+9VNbayuPjjz9eb7/9thYvXqylS5dW/ps6dWo9dgkAAAAAAAAAAAAAQO1K8Lf5AQAAAABNUiAlds1u0S5IBVD3/DG+fuvxQnE0MiYynOmwba/Jb8tVYZxfTjySYDTAm0QDduDKtOsi3fO+tOQrKTVVKuwuE89jWgCIJkqgZVQBgtHgLDvdSLIR4ztcg9EiayWpR0EoILS2mJ57yQ4eK33xn1rb07P8Qpleg6W3imR/O0n6ekH4vD8gM/kk2fuvdt8js0VSW4zl2OE+HT7I6uNlUmpAGtJJSk8JfX5MqwLp9jnSj99Lq5ZL3fpLc59Vuzsv0dsrJuvr1H4qMykaWPJfBTr3CN/YLZDM56tZAFoU9um/yUz5dfhgmcsNVEosvA0AAACAZ999950WLVpUeXzIIYfoscceq8eOAAAAAAAAAAAAAACoG5FXOQIAAAAAmq+UOC7eTk1PXh8A4hcrBKaeLxRHI+KLfMkwr2KjJm6f61jes03own8AHvgTDNhBVMYYmZ57yXTuQygagNqVaKBlPM+t0axkutw0tpc6B6CtLnKub59TSw1VY254WjrwOCknv/Y3j6agMHT+tHSZO96QjjxTys6VjJF6DZa5+QWZ3kOiBvSbBvB8NyPVaFxvo327m8pQtN2Mzxd6nDLyIJk2HaWCDqFxSQNKv9GQkkUKqEJasTh8U7fQsb0nJOE92GX5t7KrloWPle50ry+NEpoGAAAAoMY++eSTsOOpU6fWUycAAAAAAAAAAAAAANQtgtEAAAAAAFUCBKMBjVaM8AWTmV1HjaDRM8Zx+Jp1s5QaLIkovelon4zLGgB78BGMBgCNCsFoqGXZLi+lbHPJnVrlEozWrmXt9FOdadlavqseke+Vn2Se+rb2T+DEH5Bata3qIT1Tvgv/KvPqKpk3N8s3e4HMPpNCk6kZ7vs0tue7+e1dp+xn71cduASjmf0Ocwy0rjXffRZ+HC38rMx5zlZUyG5aK7t9Sy02BgAAADQ/a9asCTvu2LFjPXUCAAAAAAAAAAAAAEDdIhgNAAAAAFAlnou30whGAxqUQEr0+awkXDmPpsk4v2Q4fOenmr9sf524+TEN3/mpjtnb6N/n+3TkUELRAM8IRgOAxsWf4P12rMfmaLayXF522V7qPL66yDqOt8tN7mNwU9hNatOpdjbrOUgaMNJ5buRBMg5fZ8bnk9nzdadWBe7naGzPd/MLXafs3y+tOnAJRlNKmszjX9VyU9Us3yMYr8QluU+SSiPn7DefyJ42UnZKJ9nDChW88xLZiopabhIAAABoHrZt2xZ2nJLCaw4AAAAAAAAAAAAAgOYhwT9zDgAAAABoklLSvNemEowGNCj+GBdCZLaomz7Q+Pnc/5bCkJJFemjV6VJOnnxn/lyHTQFNgznmN7LX/CpyolOvum8GABCbP8EfpcYTOo5mJdvlZZdtJc7jq4qcx9vn1E4/0ZirHpY9Z0LNNsnOkTnnT1KPQbLnTpSWf1c117qtzOnXeO+noFDOMXFqfM938wul1DSp1OET/8N/ZXfukEnPlNzCxPwBqV3XUHhjEgLH7PLvFBa95xB+VjVXIrt1s/TxW1JmtjRgpOwZY6rmy8ukp+6Q/eBlaeo5MlN/U+v9AgAAAA2FtVaffvqpvv32W61du1YlJSUqKChQhw4dtN9++yk7OzvuPYPBYBI6BQAAAAAAAAAAAACg4SMYDQAAAABQxevF2z5f4heIA0iOQIxgtIz4L7ZAM2Xcg9EqpWclvw+gKRpzqJSWIZUUhw2bSdPrqSEAQFQ+f2Lr4gkdR7OS5RaM5pA7VV5h9cWPzvV1Eow2aIzsxGOlt5+Ob93jX0nzXpXS0qXRh8i07RyauO9D6Z1nZJd9I9OpV2guv733jfOi1GY2rue7JjVNtnMf6X+LIidLiqVvPpGGjpMqyp038Adk/H7ZvPbSWpcbSU2sXBx+HCUYzf7nJeneK6Vtm6Pv+dMPsndcRDAaAAAAmqT169frhhtu0KOPPqp169Y51qSmpmrChAm6+uqrNXLkSNe9li1bpm7durnOH3DAAY7jDz74oGbMmOE4N2vWLM2aNct1z7lz52r8+PGu8wAAAAAAAAAAAAAA1AeuYgcAAAAAVIkVrLRbarqMMcntBUBcjN8vG60gs0VdtYLGzsv9ewbBaEAiTGYL6abnZf94jLRja2jwgKOlE39Xv40BABwZfyD6Y2w3XkPH0ezkZDiPb9oROfb8Z+77tGtZN6/JmEv+Llu8TZr/mrcF+0wKhZ5NOz9yr4ws6dBfKeHOs6OkwXkJd25gzJ9fkj2yq/PkhlWh/6MEo0mSug9ITjBa0fqwQzvvFffaj9+q/fMDAAAAjcgLL7ygk08+WVu3bo1aV1paqjlz5mjOnDk644wzdNdddykQ4Fe4AQAAAAAAAAAAAABww0/VAQAAAABVvF68nZqe3D4A1D6C0eCVz0OoAMFoQMLM3gdIL/8kffep1KajTNtO9d0SAMCNP8EfpQYIRoOz/GwjOcTtbdohlVdYBfxVsWFPfRx03ad9lIyw2mQys2Vuel526TfSzu2hIK6iDdJn78teN2OPYiMz4/LkNZNf6D6X1TJ5500Sk99etmNP6cf/RU4WbQj9HyMYzRx2quxHb0Q/0fQLpSduja+5rUWVb9oHr5M+eSe+9W68PNcEAACoC8FyaUcSAmYRKbOj5Gu6v6Y8e/ZsnX766QoGw5+/9ejRQ/3791dmZqZWrFihBQsWqKKionL+3nvv1YoVK/Tyyy8TjgYAAAAAAAAAAAAAgAt+og4AAAAAqEIwGtB0ZWTWdwdoLIyXYLTs5PcBNGEmNU3aa1R9twEAiCXREB+vz63R7ORHeRi9cbvUplq+13Ofudf2bVd7PXlhuvWrOmjTUfrF8VLXvrK3Xyh9/7nUuq3MWdfLDNw3eU10HyjltZc2rAofb9FK6jk4eedNppw8x2A0u/ZHGSlKMJpfkmT2P0L2qLOk5+5xPYXJzZftPlD64SvvfW3brOCvR4WCfAEAAJqiHT9KL3Wr7y6ahylLpeyu9d1FUnz++eeaOXNmWCjakCFDdNddd2n06NFhtevWrdMVV1yhf/zjH5Vjc+bM0ZVXXqkbbrghrLZjx45aunRp5fHtt9+uO+64o/L4iSee0L77Rj73ys/P1/jx4yVJH330kaZPn145d9555+n88893fV/atavjJ5kAAAAAAAAAAAAAAHhAMBoAAAAAoErAazBaWnL7AFD70jLquwM0FsbErkknaA8AADQD/gR/lBpIqd0+0GREC0Zbv60qGO2zFda1rn97KS3Fw2P2JDN9hsn8/d26O5/fL514sewdF4WPH3+RTKCR/tpDy9bO44//Rfbgk6RtRc7z1e6bzIwrZKMEoykjW+bE38lee4pk3W9XEQhFAwAAAKI67bTTVFpaWnm833776Y033lBmZuTPTwoKCnTPPfeoZ8+e+t3vflc5ftNNN2n69Onaa6+9KscCgYC6du1aeZybmxu2V7t27cLmq8vODj3pXLZsWdh4bm6u6xoAAAAAAAAAAAAAABqqRvobwgAAAACApEjxGoyWntw+ANS+VILR4JHxxa7JiJLoAAAA0FT4/Ymt8/rcGs1OXoxgtN0ufS7oWvfQDA+P15soM/U3Uqu2su/8SyorlZlwjMzkE+q7rcTl5LlO2ZOGuK+rHgSXkxe6zykrda7NyJKZNE3Kain72sPSey8k2GwNtG4rtWoj+ZrvbRcAAABNy9y5c/Xpp1Vhwi1bttRTTz3lGIpW3cUXX6z33ntPr7zyiiQpGAzqtttu0+zZs5PaLwAAAAAAAAAAAAAAjRG/eQoAAAAAqBIgGA1ostIIRoNHXi5WzyQYDQAANAP+BP/GFMFocJGeYpSd5jy3OxittNzqwx+ca3xG6tMuOb01FmbiMfJd/7R8N7/QuEPRJGlbUWLrqoVZG2Ok/PbutbtCrc3oQ+S77imZ659O7JyJOnSGfC+ukO+hT+SbvaBuzw0AAAAkycMPPxx2fM4556iwsNDT2j/96U9hx0888YRKSkpqrTcAAAAAAAAAAAAAAJoKgtEAAAAAAFVSUrzVEYwGND4Eo8ErY2LX5BYkvw8AAID6lnAwmkvyFSAp3yVjeN1WK0n6z/fS1p3ONT0KpBbpHh6vo1EwvYcmttDnDz/O7+Bem54Zfpzo/VqCzCV31+n5AAAAgLrwwQcfhB2feOKJntcOGDBAw4YNqzzeuXOnFi5cWGu9AQAAAAAAAAAAAADQVBCMBgAAAACoEkj1VpfisQ5Ag2H8/thFgCSZ2C8Zmtz8OmgEAACgnu0ZPuQVz5kRRZ5LMNrm4tD/ryyyrmvfOJ8f7zcpPfdKbJ1vj9tB6zbutRl73OD6DfcWhl1T7bvKPPixzJ69AgAAAI3cpk2btGTJksrj3Nxc9evXL649Ro8eHXb88ccf10pvAAAAAAAAAAAAAAA0JXX754ABAAAAAA2b14u3AzydBIAmy8uF67kFye8DAACgvvkTfO7rNXQczVJuhvP45h2h/z9c4hyMdvQwqWt+HQRaoe7sOzmxdXuGWecXutdmZIUvbd1WduRB0kdvJHbuaG3NekzauUPq1EvqPVQmLb3WzwEAAFArMjtKU5bWdxfNQ2bH+u6g1q1bty7suFevXjJxhg/37ds37Hjt2rU17gsAAAAAAAAAAAAAgKaGK9kBAAAAAFW8BqP5U5LbBwCg/ni5gCc3P/l9AAAA1DefP7F1AZ4zw12OWzBasWSt1WKX6+En9ScUrakxKanSdU/JXn5cfAv3CLM2bTrKOU5PUmpa5HmvflT25rOlea9IJcXxndtJ594yt74q07ZzzfcCAACoC76AlN21vrtAI7Vp06aw45ycnLj32HPNxo0ba9QTAAAAAAAAAAAAAABNEcFoAAAAAIBKJpDqfiFldQGeTgJAk2V8sWtatUl+HwAAAPUtwee+xufh8RSarZxMIzm8+lK0Q1q/Tdq8w3ld//YEozVFZv8jZPedLH00J45Fe9wWBo5yr82JDLU2WS1lZj0qW1YqPf1X2Xsui33O7gPle3ihbHmZVLpTKi2RMrJl0tK99w0AAAA0AdaGP58zXv7YTAy1sQcAAAAAAAAAAAAAAE0Nv5UPAAAAAKiSkuqtzp+S3D4AAPXHS5BHbuTF9QAAAE2OP4FgtBETa78PNCm5mc7jm3dYLV7jvq532+T0g/pnbnwmzgV7PGcbMFJq3yWyrvsAmSjP3UxKqjRhqhSI/TqfmXJa6P9AikxmC5ncfELRAAAA0Cy1bt067LioqCjuPfZc06pVqxr1BAAAAAAAAAAAAABAU0QwGgAAAACgiocLIeOqAwA0QiZ2SQ7BaAAAoBnw+eNeYs65OQmNoCnJzXAeLyqWFq+xjnM5GVJBiyQ2hXplAikyLyyXuvbztmCPMGvj98v85s9SalrVYGq6zG//Evvc7bvKnHpl9KLeQ6WDT/LWGwAAANDEFRQUhB0vXrw47j2+++67sOM2bdrUqCcAAAAAAAAAAAAAAJqiBP7MOQAAAACgyUpJ9VZHMBoANF2+GH9LISdfpvoF9wAAAE2VP85gtBETZXoMTE4vaDJyM53HNxdLi9c4z/VuKxnjIcAYjZbJayfd/6Hs5AKpvCxGceRzNjPul9L9H0kfvi4Fg9L+R8h06uXt3CddIg0aLfvRG9Ibj0nrfgpNtOkk8+urpInH8hwQAAAA2KVVq1bq0aOHlixZIknavHmzvvnmG/Xr5zHoWNL8+fPDjkeMGFGrPfL8EQAAAAAAAAAAAADQFBCMBgAAAACoEvAYjObn6SQANFkOF9mHyW9fN30AAADUN198wWjmpN8nqRE0JbkZzuObd0jfr7GOc73bclF7c2DSMmRP+r304HXRC13CrE23/lK3/omde/B+MoP3k868NqH1AAAAQHOy3377VQajSdJjjz2m666L8Th+l2+++UYLFy6sPE5PT9fee+9dq/2lpYUHG5eUlNTq/gAAAAAAAAAAAAAA1IUYVzkCAAAAAJqVFI/BaAGC0QCgyTIxQhcKCuumDwAAgPoWTyh4597S4LHJ6wVNRm6m8+PtdVuleUscp9SrbRIbQoNicvI8FPFrHgAAAEB9Ovnkk8OO77zzTq1evdrT2ksvvTTseNq0aRFBZjWVm5sbdrxq1apa3R8AAAAAAAAAAAAAgLrAb8wCAAAAAKp4DkZLSW4fAID644vxkmEewWgAAKCZiBWMlpMfqhk2Xua212ViPY4CJBXmOo+XB6U1W5zn9uoQI7wYTUdOfuwa7msAAACAejVhwgQNGTKk8rioqEjTp09XFVSUYwAAIABJREFUcXFx1HW33XabXnzxxcpjY4wuuOCCWu+ve/fuSk2t+rn/3LlzVVZWVuvnAQAAtcdaq29XWd3xdlB/fiNY3+0AAAAAAAAAANAgxPFnzgEAAAAATV7AYzBarIvDAdSPbv2lpV9HjnfoXve9oNEyxshGK8hvX1etAAAA1K/UNPe5fSbJ/PklqaxUJi297npCo9enbXz1qQFpYt/k9IIGKKd17BpDMBoAAABQE6tXr9ayZcsSWtu1a1dJ0gMPPKBRo0aptLRUkvTuu+9q7NixuuuuuzRy5MiwNevXr9dVV12lu+++O2z8kksu0aBBgxLqI5rU1FSNGTNGc+fOlSStWLFCU6ZM0VlnnaVevXopMzMzrL5du3ZKT+e1DQAA6tqWYqs3v5be+Nrq3/+1WrExNJ6XJV04ycrv4w9mAAAAAAAAAACaN65kBwAAAABUSUnxVuf3WAegTpkTL5G99pTI8V9fXcedoNHz+aSg818hNtkt67gZAACAetK5j/tcRpaMzycRioY4ZacbdWwl/bjJW/3EvlLLDC6AazZy8mPX+AhGAwAAAGpi+vTpCa+1NvSnZYYNG6Y777xTZ511loK7fp6ycOFC7bvvvurZs6cGDBig9PR0rVy5UgsWLFB5eXnYPpMmTdK1116b+DsRw4UXXlgZjCZJc+bM0Zw5cxxr586dq/HjxyetFwAA4Gz+EumYf0T+XsaG7dKnK6QRXeu+JwAAAAAAAAAAGhJ+YxYAAAAAUCWQ6rGOYDSgQdr/SGnEgeFjIw6Uxk6pn37QeJkowQtpmXXXBwAAQD0yuflSx57Oc/1G1HE3aEr6tvNeO2UwoWjNSkGH6M/HpNjzAAAAAOrE6aefrqeeekrZ2dlh4//73//04osv6qmnntL8+fMjQtFOPfVUvfrqq0rx+kfLEnDYYYfpuuuuk9/vT9o5AABAzYzrJaUFnOfOeMT5D9kBAAAAAAAAANCcEIwGAAAAAKiS4jEYze/yW1kA6pVJS5e58VmZWY9Jx18kc/WjMn96TiYto75bQ2NjorxsmE4wGgAAaD7Mib9znhh5UN02gialTzvvwVajehCC1ZyYVgXSsPExirhNAAAAAA3F1KlTtWTJEp133nnKz893rUtJSdFBBx2kefPm6YEHHkhqKNpul112mRYtWqQ//OEPGjdunNq1a6eMDH5mCABAQ5GZZjSul/PcFz9KvjMqNPKGCp37RFAfLrGy1tZtgwAAAAAAAAAA1DOuZAcAAAAAVEnzFnZjAsn/RW0AiTFp6dKEqTITptZ3K2jMfASjAQAASJImnyQtmi+99nDo2B+Q+c1NMj0H1W9faNT6tvNe27MgeX2gYTIX/U32+IHuBdGerwEAAACIsGzZsqTu36ZNG91+++269dZbtXDhQn377bdat26dSkpKlJ+fr44dO2q//fZTixYt4t776quv1tVXX51wb/3799eNN96Y8HoAAJBcBw0wevMb98Czj5dJHy+z/8/enUfLddV32n92zXcepCvJlmTLxgg8QGyMwRiS2C95ISFkaKATArwMTQIhhMQdIAkdXmKMkyYJazUm6SyGJoZOdwhTAoSX0A6TAYMbTAPG4NmWZE1X0p2nqlvDfv/YV7rz1ZV0Bw3PZ61aVWefffb5nVOnbg23zrf4r1+NvP0XAzf/ij+aIEmSJEmSJEk6dxiMJkmSJEma1tG9vH4Go0nSWW6JL9MWm9auDEmSpHUWslnC2z5I/I3/CAd2wZOvJnRtWu+ydIZ78pYALH6y21Hbu6C56Ilu55qw/YlLHx3BYDRJkiTpdJTJZLjmmmu45ppr1rsUSZJ0hvj5KwJv/dTxPysGuOX/i7zqWZEnbPIzY0mSJEmSJEnSucFvzEqSJEmSpnVsWF6/bHZ165Aknb5KzetdgSRJ0poLOy4lPOsXDEXTinjaBRCWce7azs2rX4vOQBm/5iFJkiRJkiSdDS4/P/DkLcvv/7UHlxeiJkmSJEmSJEnS2cBvzEqSJEmSprV0LO/kylx+9WuRJK2f2uTi84oGo0mSJEmnoqslcOPPHT8Z7Ymbl5GepnNP8GsekiRJkiRJ0tnia29Z/ud9R0ZXsRBJkiRJkiRJkk4zfmNWkiRJknRMyGSgrev4HQ1Gk6SzW6Ox+LySwWiSJEnSqXrPS44ferZz8xoUojPPcn7UQJIkSZIkSdIZYVN74P53ZXhCz/H7Dk2sfj2SJEmSJEmSJJ0u/MasJEmSJGm29u7j98kajCZJ56xS03pXIEmSJJ3xQgg8//Kl++zcfPzwNJ2Dgl/zkCRJkiRJks4mOzcHfvLODN/9kwyf+93FP/8zGE2SJEmSJEmSdC7xG7OSJEmSpNk6Nhy/Tza3+nVIkk5Pxeb1rkCSJEk6K5zXsXjwWSbAtRevYTE6c2T8mockSZIkSZJ0tsnnAldfGHjhUwOvvm7hz46HDUaTJEmSJEmSJJ1D/MasJEmSJGm25rbj98nlV78OSdLpqWQwmiRJkrQSLtq4+LxrdkB3y+LBaTqHBb/mIUmSJEmSJJ3N2psWbh+aiGtbiCRJkiRJkiRJ68hvzEqSJEmSZisUj9/HYDRJOncZjCZJkiStiOdeunjw2b+7ylA0LSJ4bEiSJEmSJElns45Fg9HWtg5JkiRJkiRJktaTwWiSJEmSpNnyywhGy+ZWvw5J0mkpGI4pSZIkrYhrL4KtnQvP++WfMvxKi8j4NQ9JkiRJkiTpbGYwmiRJkiRJkiRJBqNJkiRJkuZaTjBazmA0SZIkSZKkU5HJBP7yJfMD0P7DcwJPPs9gNC0i+DUPSZIkSZIk6Wy2WDDa4Pja1iFJkiRJkiRJ0nryTHZJkiRJ0mzLCkbLr34dkiRJkiRJZ7mXXhNoLgRu/VKDcg1e9LTAm24wFE1LyBiMJkmSJEmSJJ3NOpoCEOe1949BjJEQ/AxZkiRJkiRJknT2MxhNkiRJkjRboXD8PlnfTkqSJEmSJJ2qEAK/ciX8ypXZ9S5FZ4pgMJokSZIkSZJ0NtvSvnD7aAUOj8CmReZLkiRJkiRJknQ28RuzkiRJkqTZ8sXj98nlV78OSZIkSZIkSbNl/JqHJEmSJEmSdDbbuXnxeQ/0rl0dkiRJkiRJkiStJ78xK0mSJEmaLV84fp+swWiSJEmSJEnSmgt+zUOSJEmSJEk6m/W0QWfzwvMe7I1rW4wkSZIkSZIkSevEb8xKkiRJkmbLF4/fJ5tb/TokSaeflvb1rkCSJEmSzm0Zv+YhSZIkSZIknc1CCOzctPC8Pf1rW4skSZIkSZIkSevFb8xKkiRJkmYJywlGy+VXvxBJ0umnvWu9K5AkSZKkc1vwax6SJEmSJEnS2a6jaeH2an1t65AkSZIkSZIkab34jVlJkiRJ0myFwvH7GIwmSeema35uvSuQJEmSpHNbxq95SJIkSZIkSWe7XHbh9prBaJIkSZIkSZKkc4TfmJUkSZIkzZYvHr9PLrf6dUiS1s8v/YcFm8PL3rzGhUiSJEmSZglhvSuQJEmSJEmStMpyi5ztVWusbR2SJEmSJEmSJK0Xg9EkSZIkSbMtJxgtazCaJJ3NwiveCj1bZze++HcIW5+wPgVJkiRJkpLg1zwkSZIkSZKks10uu3C7wWiSJEmSJEmSpHOFZ7JLkiRJkmYrLCMYLZdf/TokSesmnH8xfOAb8OVPEHsfJ1z1s/DTv7zeZUmSJEmSMgajSZIkSZIkSWe7XCYAcV57rb72tUiSJEmSJEmStB4MRpMkSZIkzZY3GE2SBKFnK7z0PxLWuxBJkiRJ0jEh+C5NkiRJkiRJOtvlsgu31xprW4ckSZIkSZIkSevFYDRJkiRJ0mz5wvH7ZH07KUmSJEmSJEmSpLNXCOEi4ErgfKAVOADsBr4VY6yuY13dwNOBi4BOIABDwF7guzHGg+tVmyRJkqSVkV3k9xFq9bWtQ5IkSZIkSZKk9eKZ7JIkSZKk2ZYTjJbLr34dkiRJkiRJkiRJ0hoLIbwE+APgWYt06Q8hfBx4R4zxyBrVFIBfB94IPOc4fb8PvB/4uxhjbQ3KkyRJkrTCctmF2+uNta1DkiRJkiRJkqT1klnvAiRJkiRJp5l88fh9sgajSZIkSZIkSZIk6ewRQmgNIXwM+CSLh6IBdANvAO4NITx/DeraAnwZ+BjHCUWbchXwAeCuEMIlq1mbJEmSpNWRXeRsr5rBaJIkSZIkSZKkc0RuvQuQJEmSJJ1mCssJRvPtpCRJkiRJkiRJks4OIYQs8HHgBXNmHQa+DwwBTyCFjoWpeZuBz4YQfi7G+M1VqqsH+Crw5DmzqlN17QYawDbgaqA0o8/VwFdDCM+JMe5ejfokSZIkrY5cduH2usFokiRJkiRJkqRzxCK/ISJJkiRJOmc1tx+/Ty6/+nVIkiRJkiRJkiRJa+PdzA5FqwJvArbFGJ8fY/y1GOPVwBXAt2f0KwKfCSGct0p1vZf5oWjvn6rrmVN1vTTG+BzgvKntmBmVsA34wCrVJkmSJGmV5BY526tWj2tbiCRJkiRJkiRJ68RgNEmSJEnSbBfshKaWxeeHQMgu8pOUkiRJkiRJkiRJ0hkkhHAx8Ptzmv99jPFvYoyTMxtjjD8BnsvscLQNwJ+uQl07gJfNaf7PMcY3xBgPze0fYxyMMb6N+dvy/BDCM1e6PkmSJEmrZ9FgtMbC7ZIkSZIkSZIknW0MRpMkSZIkzRIKRbjyZxbvkMuvXTGSJEmSJEmSJEnS6vpTYOY/wD4SY/zsYp1jjBPAq4GZoWmvnQpYW0m/NGe6F3jnMpb7r8A9xxlLkiRJ0mkst8jvltbqa1uHJEmSJEmSJEnrxWA0SZIkSdJ87d2Lz8vm1q4OSZIkSZIkSZIkaZWEEJqAl8xp/ovjLRdjfBD4zIymHPCyFSwNYG7Q2u0xxsrxFooxRuBf5jQ/ccWqkiRJkrTqcouc7fWFe+H7eyKTtbi2BUmSJEmSJEmStMY8m12SJEmSNF++uPi8XH7t6pAkSZIkSZIkSZJWz/OB5hnT344x3r/MZW8Dfm3G9IuAW1aqMKBlzvTeE1j28TnTXadYi3TWGh8f5//8n//DQw89xJEjRyiXyzQ1NbF582Z27tzJVVddRaFQWJF17dmzhw9+8IPccccdPPjggwwMDFCtVo/Nv+2223j1q1+94LLf+c53uO222/jWt77F448/ztDQEI1G49j8xx57jB07dgBw/fXXc8cddxybl/ISJUnSmSSXXXze1bc0aC3C+34j8OrrFklQkyRJkiRJkiTpDGcwmiRJkiRpvqW+2J01GE2SJEmSJEmSJElnhZ+fM/21E1j2G0CN6e9hXhVC2Bxj7F2JwoCDc6ZLJ7Ds3L79p1iLdFap1+t84hOf4LbbbuOrX/0qtVpt0b6lUonnP//5/OZv/iYvfOELT3qdH/rQh3jTm95EpVI5oeVqtRq/8zu/w4c+9KGTXrckSTrzZMPS80cr8NqPRn5qW+SqC47TWZIkSZIkSZKkM5DBaJIkSZKk+XJLBaP5VlKSJEmSJEmSJElnhSvmTH97uQvGGMdCCD8CrprRfDmwUsFo35gz/bQTWPbqOdPfPcVapLPGV77yFd7whjfw4IMPLqt/uVzms5/9LJ/97Gd5+tOfzgc+8AGe9rQTeTjCF77wBV7/+tcTYzzhev/kT/7EUDRJks5Btcbx+8QIV9/S4JZfDRRz0NUMEcgEKOagszkQIxwcjtQbsL0r0D+ebk/WoJBLbddeDE0Fw9UkSZIkSZIkSacXz2aXJEmSJM2XLy4+L5dfuzokSZIkSZIkSZKk1XPpnOmHT3D5R5gdjHYZ8JVTqmjal4EHgCdNTf90COGpMcZ7lloohLAVePGMpirwsRWqSTqjvfOd7+Sd73znvICyEAKXXnop27ZtY8OGDRw+fJg9e/bMC0+7++67edaznsXf/M3f8Fu/9VvLXu/b3va2Wet82ctexmtf+1q2b99OPj/9//eNGzfOWq63t5f3vve9x6YLhQJ//Md/zAte8AJ6enrIZDLH5m3btm3Z9UiSpNPfPXuXH6j69s8s1ndu+0L9Ils74V/elOHK7YajSZIkSZIkSZJOHwajSZIkSZLmyxcWn5fzraQkSZIkSZIkSZLObCGEbqB7TvOeExxmbv8nnnxFs8UYGyGE/0AKWisCGeBTIYTnxRh3LbRMCGEz8BmgeUbzLTHG/StVl3SmuvHGG7n11ltntbW1tfG2t72Nl7/85VxwwQXzlnn44Yf5yEc+wnve8x4qlQoAk5OTvO51r2NsbIwbb7zxuOt94IEHuOee6TzDF7zgBfzP//k/l1XzZz7zGSYnJ49N33LLLbz1rW9d1rKSJOnMdtUFgc/fs/xwtFOxbxBe9XcNfvCODCEYjiZJktZHoxEJAV+PSJIkSZKO8Wx2SZIkSdI8IV9c8PchAcj6VlKSJEmSJEmSJElnvM450+MxxrETHOPQnOmOU6hnnhjjt0IILwT+AeghBa/dE0L4MPBFYDcQgW3Ac4HXARtmDPEB4F0rWVMIYdNULSfiCStZg3SiPvrRj84LRXvOc57Dxz72MbZt27bocpdccgm33HILr3zlK3nxi1/Mvffee2zem9/8Zq688kquv/76Jdd99913z5p+yUtesuy6T3bZr33ta8tehyRJOj096+IAi3+Db8X9aB9c+58b/PwVgQDs6Yf//u1II8LPXw5HRqGrGbpaAs0FyGQgTpXXXoLmAkxUodaAfBZKORguw8GhyCWbApkAlRq0N8HeARiZgJ1b0vJjFSjkoKUAoxUo5uDaiwPPv9xgFEnS4sYrkb+/K/IvP4zs6YfJOjQi1BvpuqMJrtoeeO6lUMwFclnIBMhmYKwSOTAEh0dgfBLqESpVGByHliIcHonUG9BahHwuPTcCNBVgSwf0tKZxchkIIT1PDo6n9Y5PQu9w5JkXBTIZ6G6G7d2BzmZoNKB/DA4MRXb3Ty/fPPUcmMvA/sE0VqmQnhsv3AAHh2BgPG1bSzE93w6OwWQ98r3dabt+7rJwrKamPAxOpOfY0XJk7wA8eiQ9V+/YkPpM1tPz9fmdacx6A3b1wcRk2sZGAx45DDs3wyWbAyMTUK2n/ZL2RWCkHDk0AvsGoJSHC7rTfm/E9DqhMXUZKad1V2pQrUMg1ZfLpNcAlWqaPzSRXlc8ZSu0lVLb3oG0f7e0w9hk2qYQ0n4EuOJ8uPz8wK9cCT+1PTA8AZ3N0+NO1tN6K1Prz4R0P5anphsNGC5H7juQXv/0jUbK1VTno0fSvu5qTnU9chgOjaTbF26A8zrgkk2B8ztTrfsGoFaHwYnIdx5L+2THhvSaqDH1uqlWnz6W6o10HI2W0zFwxda0T/vH0vHQ1Qyb2gOXbErb31pM6+tpg/sPpnEu6UmvvfYPpX0yPhmPratcTcdOrQH3H0jHy2Xnh2P3TT6baizmUl2tpbRtMcKOjYHLz0/HY0dT6lPKw4GhtP8na+n20ERa57auwAXdaTvy2VT/WCWtZ3N76jtSTvf9ldtTv/sPphqbCulYyGamH1czr7OZtD0HprYFOPaYDGH6diaTbmdCas+E2bfnXs9qm7P8QmMZ2idJkiStD89mlyRJkiTNVygsPi+XX7s6JEmSJEmSJEmSpNXROmd64iTGmLtM20nWsqgY45dCCJcCNwIvBy6aun3jEovdD7wjxvjJla4H+B3gT1dhXGlVPPjgg/zu7/7urLbrrruOf/3Xf6W1de6fgYXt3LmTL3/5y1x//fXcd999ADQaDV7xilfwgx/8gI0bNy66bG9v76zppYLYVnJZSZJ0ZvvZnSno4979a7fO7+6C7+6aH8b2xR/PnDqZsLaTW6a9BC97ZqBcTSEzh0ciE1XY1AYXbgiMT6bwksMjKTylEVMISimXgk4KuRTusq070FZKAR6TdXjscDwW9HI0rCUToG8sBeRctDEF0mQzKXwjE1IQSXMBeochl03LDE2koI8t7bChJYW1DIxPh+7EqXCeo0EihVwad6Kawkc6m6dDP0r5dD1amQ4O6WhKASl/9ZLA1i5DOCRppsla5Pr3NLh799L97tkb+ei34dTCRk9u2X/+/szlVj/s9L99Y3nreHD2Rw0LvtZ4aMZPQRwchq8/tNDY89t29S2rhCUNl+HOR+a3Dy3yye29++He/ZGP371wTSth/+Ds6eFyCpX90T64/SdLr3NP//LX8/3Hl7OfT20bZx+XSznR9axdoO96WzBsjRSmdiIha4sGty0x1moFvmVCWHLMcFJjrmR9J7uvlt6uZdUyZ8yhien3JfksdDUHWoopZLE+9fr/aEDn9O04r32yDud3BJ53OZTygUYjjZnLQDGfXvvHGBmtpHUXsun4OzQV6NmIqR5I8za2pvcUY5XU1tEcODwSuXffVOhkU3ovUmtEelrT+6NsZvq9S72R3qd0NsElm9J7o3v3pfU8/cIUkD1TvRHZP5jq7WiCfYPpr8CevvQ3MpuBkXIkn4XWYmC4HGkrBdpLs0NMq3X40b5ItZ7e041Pwq4jaTuO1relI91+5BBUaik88pkXp/DGGFPAYrmW3vsdvR1jGq+9lLa9rRjS9ay2FAiZzfheS5Kk053BaJIkSZKk+XIGo0mSJEmSJEmSJOmsNjcRqXwSY8w9JW95KUsn7uh3PSvL6Pst4CbgS6tUi3RGectb3sLo6Oix6c7OTj796U8vOxTtqE2bNvGpT32Kq666isnJSQD27dvHu971Lm699dZFl5u5boB8fvn/bz+VZSVJ0pmtqRD419/P8I7PRb5yf2R7F7z9FzP83Z2RT9x9bgRPDJfh/Xcstq0nsg8W7vvI4YV7HxlduH0hI2V4+NDx+52MxwdS0MsdD0buvSkzL4xAks5l/+VL8bihaJK0GhoRiFBf70JW1Nn6/mIttmvlgzfbSymgeXzyFIY+ifUuJZ9NIWalPDTlUyD0ia9v5e6PhQM7l1PDfC3FqbC00lRw2lRoWntTCpCb3QbtpbBAWxonBN+zSZK0GgxGkyRJkiTNVyguPi/rW0lJkiRJkiRJkiSddU7mrIxVP7MmhPBbwH8BWpa5yHXA7cC9IYTfjjHeuWrFSae5+++/n89//vOz2t797nezZcuWkxrvsssu4y1veQt//ud/fqztwx/+MDfddBNdXV0LLtNoNE5qXae67Er4yU9+wo9+9CP6+voYGBigVCrR09PDpZdeylOf+lSKxSW+V7CEWq3Gd77zHR599FEOHz5MpVKhp6eHHTt28OxnP5tSqbTCWyJJ0plpa1fgw6+afWL1cy+FG54En/lB5Mf7oTZ1cvrYJLQWU1DD4ZF0En0+CyHAZG2dNkAr4sAQ/N2dkd+9AfrG0kn3gxOwuQ3yucBkLXJgKB0LG1vTm9QHDqa+h0ciTQV48pbAkdEUZpDLQDGXjpn+schoJbXHqWPnyChcfSF0NAXqDWjESLmajqULuwOVWjq+6g0Ymojcsy8da8MT8Hh/ZGAculugqzlQKkDfSCQCm9oDuQxkM9DRlLZttAIXbYRrLwp8b0/k8X44PAqDY+mt9iOHoVKD518eaMQURHdeBzQVIJDmPXYkHeMb21INh4bTNm1shV+5MvArVwYOjUD/1L5rRHiwFwo5ODIaGZqAickUZJDPpkC+GNM21hpQyqWxmgppfZO12dfDZegfhSduTmMf3TdHL0f75rKwbyBtVyEH3S2B8UqkuzVtW62e+hVyUMxDcyHtpyOjabsyIe3vah02tAQ2tMJEFXqHIk2FQDaT7sdyNVLMBc7vTPs6E9L9PVqByTp0N8P/fVng2ZcY2nCmiDEeC9mo1SMTVdh1JB1z5WoK6wikY3F8Mh2HMU5fl6spsGNwPIWYhJDaW4vp+Mpm0jFeb6TH10g5PQ7z2dSn3kiPhVo9HWMHhqBSi/S0pcd0vZHGmKimxxikdUCq6+h0tQ5jlVRPT1tapphLj830tyb9/ao30vPa8AR0Nqf2C7pTzRHYsSHV9uFvnq0hPpKkc93wyfyEzyqrTiUBlqvpcjYZq6TLgaG5c04spDuEFJR2NDTtWNBaCdpKgbZ5bSlkrb1pbtvU+x1D1iRJOsaz2SVJkiRJ8+WX+AJzzl+hliRJkiRJkiRJ0hlvdM5000mMMXeZuWOekhDCnwC3zGm+G/hb4BvAfqABbAGuBV4H3DDV7wrgjhDCa2OMH13Bsv4W+OQJLvME4LMrWIO0LLfeeisxTp+otHHjRl7zmtec0pg33ngjf/VXf0W1ms4AGxsb40Mf+hB/+Id/CMCuXbu46KKLFl3+hhtuWLD9tttuA1iyvsVOhnrsscfYsWPHsenrr7+eO+6449j0zH1wPI8//jh/+Zd/ySc/+Ul6e3sX7dfU1MQNN9zAq171Kl784heTzWaPO/Z9993HLbfcwuc//3mGh4cXHfeXf/mXufnmm9m5c+ey65Yk6WTFx34CBMJFl653KcuSzQRe/7OB1//s0v2qtUg+N/u1w8RkCtT54r2RV3zYQJkzyVs/FXnrp+bfZz1tKezoaFDB4lYqB/xExpnbd6lllx73/oMnd7z+yz2R3/zvp+uxHudcn8yyy52e7ebPp/ndLSkEAqZD00pToWwT1RSy1VKA5zwxheS1FNO8o8v0j8VjYVn7BlOIVXdLCngbraS2egMKWajH6bC4Yg62dEyHdzUiNBrTt+uNFM5VjynYraNpOpwL0nQuk8InxiqpfbSctnqylsYYLqfbT9qcQr8mqtPLj0/CoeEUONFegs3tsKktzZuoptoHxuD8Tnji5sBl58GmtsBIJdI7PB0Qdng07a9aPQXfNeXTOsu1FBgyOXU9PpkC+OpT69/cDtmQgg3HKpHzOgMTkzBaTqF+I2XYPwR9U2GGldM23PJ0fWxJkiStvTj1GnS4nF4Hz5m72FILtmYz88PS2pumgteawry2FK4WFmhLr70NWZMknekMRpMkSZIkzZcvLD4vazCaJEmSJEmSJEnrOTk3AAAgAElEQVSSznindTBaCOH/At41p/km4OY4P+Vo19TlH0MIrwPeDwQgC3w4hPBwjPHOlagrxngIOHQiy3jShdbLF7/4xVnTr3zlKykUlvhf+DL09PTwS7/0S/zTP/3TrPUcDUY7U8UY+bM/+zPe9a53MTk5edz+ExMTfOELX+ALX/jCvGC2uer1Om95y1t43/veR6PROO64H//4x/n0pz/Ne97zHn7/93//RDdFkqTjiof2wpc+TvzwzTBZhpZ2+MxuQql5vUtbMXND0QCaCoGmAvza0+F9X458Z9fa16WVdXhkvSvQmax/bPZ039jCfT72nZUPwNrVt/y+ewdOfj0P9KbLQobL0DsMDy3yCce9++H2n5xKgN3xrObYkiRJOlPVGykAe3B8obknFrKWz84IWJsRmtZeCrTOazsaxBam+88IaCss8DmDJElrwWA0SZIkSdJ8+eLi83K+lZQkSZIkSZIkSdIZb2jOdHMIoSXGuMCpwIvaNGd63u/An4I/I4WbHfXRGOM7j7dQjPGDIYTtwNunmrLArcDTV7C2M1atHk/ppGot37YuyGXX70SZvXv3smvXrlltz3ve81Zk7Oc973mzgtHuuusuqtUq+fyZ+SNjtVqNl770pXz605+eN2/Lli085SlPYePGjVQqFXp7e/nhD3/I6OjyciAnJib41V/9VW6//fZZ7fl8niuvvJJt27ZRLBY5ePAg3/nOdxgfHz9W04033sjAwAA33XTTKW+jJEkA8ftfJ952C/zg6zAza3hsmPjaZ8LffIXQ1bN+Ba6yODoEfQfIdm3iK2/u5NZ/a3DXrsDYZDpZenwSJmtQqcEPHp+97JM2w4ZW2NQGzYX0Gi8EKFcjvcNQyEEpBxNVKFehlIf9g2nMXDZNdzfD/qEU5rW9G2p1aCmm60aEnxxYh50iSTqrvP8VgU99L/Kl+2a3ZzPQWkxP//WYAkfyWbigO1329EPfaHpeuuw8uGBDIJ+FoQkYLUPvcKRSg7FKGqvemB6n3kiBIT1taf6djyyv1p426GlNz5sT1fS8el4HDIzBo0dm1z00kaafug22tKfn2KGJFIFSzKXn51oDmvLQVIBGAzqaoL05bUcpB90tabyxCoxW4J69keYC7NwcqMdUx8GhSC4DI2XIBOgdgc1tsKE1BaQU85AN6Xl7oppCUoq59FyeyaTXEZCWzYS0TZmQXge0ldIHnYdG0jYV89NhLYUcFHOB/rHInv70WqGtlO6P5gK0FKBcg919cGg4tT9yOPKNh07teAkBcplU4xN6YOdmaC0GNrWnfdtSSLX2jaX901RI+68RU11DE/B4f6RvNL3e2daZQmN29UWyGdjSHjivM61rU1va/7lM6lupputHDsMPH49pPzbggu5AMZ/uw/sOpM8x+8fS/p5bO8x+SduUT6/jGnF6+gk9qdbeEajW0/HT2QwTkzA4AcMT0NWc7oOBcXjsyIntw6OPB0nS6alaT89j80OQlwrnXXheMbdIkFpToHVeuBq0lcICbemynv87kiSdeTybXZIkSZI0X26JL2xnfSspSZIkSZIkSZKkM1uMsS+EMAB0zWi+ALhvkUUWcuGc6VM8HS8JIWwFrp3TfNxQtBneDbwZaJqavjqE8NQY4z0rUd+ZbO8AXPyfPFtvLTz65xl2bFy/9d95553z2p7+9JXJB7z66qtnTU9MTPCDH/yAa665hm3btvHYY48dm/fe976XW2+99dj0xz72Ma69du7DGzZuTDvr+uuvP9b20pe+lP/9v//3semZ4860bdu2k9qOo9785jfPC0V7wQtewE033cQ111wzr3+j0eCuu+7iH//xH/nIRz6y5NhvfOMbZ4WidXR0cNNNN/Ha176Wtra2WX0nJib427/9W97+9rdTLpcBuPnmm3nmM5/JL/zCL5zk1kmSNEO1At+/Y+F5ex4k/vI24q++DiYrMNwH9To0tcLAoZQ+0bWJ8LP/jnDDi1aspBgj3P89uPfbxEN74fB+woVPJpbHoNhEyOag1AytnTAyAK0d0LUJJkZhZBAGj0BXT0rFaGpJP4gaGzA6BCODxN7dcHAPPHYfHJpOOysBfwTQvQWe91LCb91MKCzxY6prZHdf5K/+V+SbD6cgkPM7UkjJ4AR88+EU0Lap7WhQSqC5yLHAl3ItBXMEUkjH4/2RpnxqbzRS4Ee9AQeGUrjIBd3Q1ZxO1K41oG80hbFsboNrLgqEkMJpKlMhL22lFDLTWkwBL8PlFCoyPpmCRNpKKVgEUttENQWq5LJToTeTKXTnyGhk55bAhpa03rEKHJkK47ntzki5uujukSQt4ZOvz/DiqwOv+5n0/HpgKD1HbGyFENY2fCPGeGydk7X0t/1oWFg2MxWQdZxAkEYjEoFs5lwKDjnxbe0djjzUm56HxyZT2FyY2s/F3OxLLguD4ynQbEsHlPJnzr6NMfJg7/Rrjgu60/F0eGR6W3vaTv1YjzHyo31w775IPhtoKqQgm3w2vY7a3D79+uVJW1LoTaMR2TeYgvFqjbSPJ6pw0cbUb/8gnNcJl/TAwWF49HAK6qnU0njbuqZCCxtp+ZnXR2/X6inQrbtlOgwuMuN2TNONmG7PvF6oLZJeH868PXf5BZc7qTHjiY85p6aF6lup5ZfalrjAWMeWm/obtS77fIWXnzvWyZj5933m7WxIwZFH/+QfHD658c9UIaR9Wsilx/3R/Xs0OPPofVLMpfDsXCb1a8rDvftT32IuhZbuH4Le4enlN7SkfqWpy8zbMcJIJQV9Dk+k924j5engSJ2cSi097xwemTtnsR27+A5vLswOS2svTYWulcKx8LTpNmifap/dlt6fZ86p10qSdG7ybHZJkiRJ0nxLfclpqdA0SZIkSZIkSZIk6cxxH3DdjOlLOLFgtIsXGG8lXDln+tEY42PLXTjGOBZCuAu4YUbzM4FzPhhN5469e/fOmt68eTMbNmxYkbGvuOKKBdd3zTXXkMvl2LFjx7H2zs7OWf22bNkya/5cra2tx26XSqVZ85Za7mTdfvvtvO9975vV9u53v5s/+qM/WnSZTCbDddddx3XXXcfNN988r86jPvnJT3Lbbbcdm77wwgv52te+tuh2NDU18eY3v5lnPetZPPe5z6VcLhNj5Pd+7/d44IEHyGQyJ76BkiTN9LQbUhBY/8HF+3zmg0sOEb/8CXj9LYRXvPWUy4nVSeI7Xwl3/PPs9kVur4r+g/CP7yX2HyL8v7cdv/8MsV6HRj19n3DwcApqO/9iGOmfDm4b7odiE2zeDhvOB6bSBvoPpvnjIzAxli7DfVzQd5C/zmThsrZ0f1102ZqH2aynZ17U4NW3eba+JJ2oi7O9vOAbt9L43L4UbprJsqXUDLkCcXyYODYCLe0wNgy1agoTLRThwG5o64Tx0XR99Lktm4Mj+4EI2TxUJ6HUlAJTi1MpmF09afrwXii1pOe7fAE6U/B5HBsm9Gwlf9kzyG/YAn0HoFKGoT4Y7p/9fD86lFJe6jVCezexPA7jI4Rsjgakeob70nNnow5NbSnwdbg/BaI2tabrfY/CxvOgrzfVkc1CrQZbnwAP/xAKpbR8rZqCVtu709gToylcNV+E8WHY+0ja9tzU9ux/DHbfn7bvBa9Mz+UT43B4H9RrKbi1tSPt4wO7UnBrvZa2iZCuj14KpdQvNqBjYwqALTal+6AynvZv34F0X1UraazKRKq5Vk1hsY36VOppkZ62LnrqNSiWpu+/Rn327UYd6g1iSxsdnT10bN4OIUPj6GuMRj3V25j6MYWRgVRnvQb33gXdm+Dya9P+nrr/UqpPBtq6p7ZzSiaT9sXYcNpf+WLax7XJdN1oTK+vfvS6loJsx4Zgw5a0b4+Oc8GTCBddBlsuYGf35rS/hmqwvwa1KheWJ2B0EM7bARvPIx7ck+prNGbs90xa/8Ah4lB6fFCZSP36DsL2S9J2VCZg4BBXVCa4oqkVymPp2C41pWVCSPfHwKH0+q86SWPqvt5ar6Vw4WolbUeukI7LEHjyxGjaHx0b2N7cyvZIegxOltNjIpOZPk4yIa1r41YolgjXvwg6NqT7vjqZjpsYob+XeGgvYdO2tM+6NqVxZqZaHbsdZ0/PvV5O37m3T3acuMAr/VOp61jKFBDmtGVOcp3H7bNAfae6nccbbznrnNEnHq/PQvt4xvWxQDgCjRiIMdIgEDM5stlAMZ+l0dSajslalWwum/7eZnPpsZHNTV9mTWfJ/v0vzt/uKR961j10jB+g0dJJpWUDBWpsyo/TnJmkQoFGtQqZDDtaxskXcsRaDRp1+icL9B4uM1ZpkG9ro5Zvolxop1TI8JSWw5yfH2GYZpoH99EysIdKI0ulPEnjyEHquSKN5g4aA0fIDRzksZYn0t9opVQe4MLKboY6L+CBrmugtYPYtZl97U+iXM9Ao0FbY4Se7AitXe3Q1Eq2VqaVca7oGCJfK1MsD5KrjlOu5yiWB2mQIVz0ZEJlgpDJQHsX5PLEzs3EiTEyI33pPjq8P/1tqlVhdJD4wPfTc9BkBZ74U4TLnwlbL05/b6qTMDZC3DX1r7lMBqoVQltX+tswI3Azxsh4PcdILcdwLc9wNc/IsescI7UCw7X81PwCI9Xc1PRUv1nXhUXvRy3P+FTIeO+8sMATD1lrzU7Snp2kLTtJey5dt2UnyYbIUK3IcL1AyOXpLlXZ1p3h4s4qV5b2siE7znjrFvbX2jk8UOWi2m66myOPNzYyXoXNrQ1am3I82lvl4GQrFErkMpFaI1Cv16k1MtTzTdQi1Kt1apk89RhoCxM0F+BArZ09IwU68jV+6RnNvOTqsO6fb8RGIz1PZ7LQ3JZei4wPp+fgkQHo2EhoaSdWJ9PrgnoNHn8ovSaA9JlPeze0tK/ptsRGI4X9T4ylv6f5ArR2Eto6j7+wpLOCwWiSJEmSpPnySwSjFZsWnydJkiRJkiRJkiSdOe5ldjDas4B/Wc6CIYQW4KkLjLcS5n6Te4nkhkXNXWbjSdYinZH6+/tnTXd1da3Y2KVSiWKxSKVSWXR9Z4qbb7551vRv//ZvLxmKNtfc4LejYoyzxs7lcnzuc59bVrjb0cC1P/zDPwTg4Ycf5jOf+QwvetGLll2XJEkLCbkc8bn/Hj7516c0TvzA24n9vYTOHigUoLk9BXlUJ1Nww8bz0wmmPefDob2pPZNNoSOH9hJ7H08nbH/lU7D34RXaulN0+z/QuP0fYMuFKVhi68WEHZcSa1VCNkccOpJqHTicTlQfPDQdHrJcISwcgHAc8eIr4NF7ob2b8Kq3QaNOHB8lNE+F0wz1pZNis7l00m6tmgJAzrsQrvxpQs/WE17nvBqG++HIAThvB6GpZeE+MaZ15/KzThCOjUYK/qhOpoCTo4b60v4MwKZthOY2uppPudQl5bORan3+ycuZAI0Zd01TPlLKQ4ZIvQFj1UCtDpFAJkSa85FcJjJYzh5bZmtnpCnXYFtH5NKtWcargdHhcfpG4fAIPLF1hGypyGQo8OhQkR8fzM6rA2BDC/S0waGhOhtKNTaWakyUazRqNbL1KiOhmdFajiJVag0gZNhSnGBLW51iU4GvP97Mkcnlf8d1e3uVbIBGJksx06CzNUuDQFMe7j8II2XY2AqFHBRz6bqQTbfzWegfh4ExqNRgSwec3wG5LGQDZDOQywYKWegfi0xUodZID51sBs7rCNQbMfXJpUOhfzxSyKZ91jeW9kc+CxtbA81FGC3DaCUei3hobwrks9P3X60OtUbkwBBU69BWgskafPM0+VOjs0Muk47llZTPQr0x+2/Rcm2u9XLbrt+geO9dK1vUCjiZqMtTjsd87Cfz275/x6mOmlQn4bP/bWXGOlnjI7OnD+5e/XWODMDuB1Z/PQCjQ7OnH75n9YNyv/ullR9zsjL/vhrqS5fl2PcoAPE7/7ZkN+NktRqmIh1Z6icaZs47kePwxk3/mfdu+P157ZdW7uM1f3ftCYw07Xxg/s94zHb0n0MRKExdFtK9QNtTTqqq6fUdPTNt0X2WyRAajeXtx4d+QPzCR5e13oU0T102L2ddS2gQGMu0MJxpZyTTynCmneFMG6PZNoYzbYxk0vVwpo3RTBvD2em2kaPLZNP1WKb1+CvUkkbrBUbrywyrO3D0xkKfE+xYmYLm/Ys3z//4QQQiT2I3bYzTzjhtjFNikjIF2sIEO3mcPHXy5WGuOng7143fRZ5aCmtt7YShIxwLrs0Xpl8zZDLTn8+EkM75bOuCXC71naykz6NGB2d/jpPLp88w5ohHx1nq85t8gdi1eToouDIBHd0paO2H30yfgeQL6fOxo0Gw2akQyfYNad7R0Nujl0Y9fUYyMZrW0dqRPp+arMCRfWmchWp92vWE17ydcOVPL+vekXRmMhhNkiRJkjRffokPBZvb1q4OSZIkSZIkSZIkafV8EXjdjOnrT2DZn2b2dzC/H2PsXYmigME50wufeb+0uWdTjJ5kLdIZaW5Q2WIBXiers7OT3t7ph3xf3zJP7DyN3HPPPdx5553Hptva2viLv/iLFRn7q1/9KvfeO50V+fKXv5ynPnVuluTi3vjGN/KOd7yDcrkMwOc+9zmD0SRJKyI87zeIpxiMBsAn//rsDGI4uDtd7vvuse1bse08iVA0IIWiAQz3E//6rdPDLXe1MB2clsunE3O7p06Fr9emw9TqtXQy78RYCrIbH0lBKAuNB+lE4YsuTyf8jgxMB320dhCLzVAemw5Em2mxk487e+huPBm2/q9Ft+WLu38RgH35reRjGiMQGcp0sLl+iAaBQpzkssp9bK/uJRCphjyD2U5aGmN0NIYhm6XcyBGIFPKBsdhES32Y0GikE65rkwuG3kWgRo4cNWZGqw1l2mlvDDM/bu349uXOZ3d+O531IXZUd9McJ9JJ3JWJkxhtWo0s95SewlCmndZslc1Pv4ruOExvpUh9cpLOyX56hh8h7HtkwfuCfCHti+zUieRtnel+e84LCa0dUK8T9z8Kux6E3j1pmUwG9k+d6J3NpeM9l0/HQK6QThZvbk3XE6NpvYeK6Vgrj0N/L4wMwuDhdCxCGmvTNqiU0zEbYzrxPGQgTiWsNRrpNgE2bEnL1Krp+JysQF85Hcu9u3hspMi3mp7FUOtWWijTUumnVBvhcNsT2M8Gzht5hCx1vld6Gn/f8TI21PvJ0CBPnQsyhxjPt1PMNBgPTWRqFY40WtnQGODi7GGqjUA15OkplOmoHKZ54ggtjXFaKaddUhkjW6+SaW7mUKabMiUyIZIZGyTT1UP2p64jU2oiMzpIGB2gqTIAITARC9TLZTK1KvlGhTFK9MZOamQphiq5WCOWJzhSbaapMU42l6VYyHA3TybbqLGxvI/O8YN05yboLNQglyOTzdCaq1PMRfZmtnB/ZTMxBFor/TTFCfLUOBK6uCt3JY9mtlOJOVoKkVIOMtlAUy6SpUFXrkxrZpKxWpZ8pkExGylm6hRr45RyDYotzZSydUpU6Qhj5GsTlAcGuH34idxduXDWIdccKjw99yjPiPfSGifozFdoClWKpRwjjRIj9QKhMk5LuZ8L9n+b3p4riG3dDOa72XzhZrqf/TNsKZVpG+slOzZAKBQI+QIBGKtliUB26DDnVQ/Qn+0m09YB+Tzn9TRRHR5i93gro9lW6mTY1Ohj71CGA+NFtrdN8qS2YXLNLeRCg3y9QmFigGyIVIutxI4ectsuZiQ0U29AcyEdepAO16N/9iu1yOBYpFgdZWOhTN+BAeoxUGnupqm7ky1dOTKZQLUW6RtLYY2lPNRrDe49GBgvR0Ym6jy4r8Zgvcjw0AQtP/w3Cnsf4JLJR3jJyD/R1vBjL0nS6e8vD/2nBYPRXjt42zpUc5o40cDt00CGSFtjdEVef9TIMpppPRawNh2aNiNgbSpEbWTRILbUVs4sPyBa6+MBLlx4xswPOIrAhW8B4Nnjd3J55T5GMy1szB2hFMucVzvIwdwWHuq4hEoo0tYYoRryfLo9/f/kZ8a+zrbaPrKxTrE6SQyBkdZWNjb10dYYmfp8YJRqKNCX7SYfa+RijR3VXWyop/+r1UKOC6p7yMUak6HIWKaZ/mw3dTKUMyWOZDcwmO2iMZyhZXCMWshR6J+kQYbHNr2BQKS1MUopVviZyjfYk99Oo5Gh0cgwOtBCjhqbaoe5oPo4hVilszFAV32QOu1Mlgo8WriIkUwb2ZE6IUa6mgeZCCVGM60MZDupkSOGQFt9hI5Hhhl/5z9x5AUXMNC2nVw2hVv2DsMjhyPDEzA+CQeGoLMZJiahuwU2t8P+wbTrWwop6HxrZyCbSWHNh4YjD/RCSxGa8ikcvZibfs/TiLC7D34yFbaXz8KmNtjWBWMVqE+9H2oupLDyYh62d6WQ6UMjsG8QJqrQVoQjoyk8/TXPDrQWU9h6/xgcnAo839ye+sYIwxPQNHXK7/gkPPdS2NAS2DcYeegQHBqGf3zdUtGe0pnJYDRJkiRJ0nz54uLzmv1FCkmSJEmSJEmSJJ0V/hcwARw9W+BZIYQnxxjvX8ayr54z/c8rWNf+OdNPCiE0xxjHT2CMp82ZPniKNUmaIYSTiX44vXz5y1+eNf2yl72M9vb2FRn73/7t32ZN//qv//oJLd/c3MwznvEMvv71rwPwjW98Y0XqkiSJJz0Nrr4BvvfV9a5Ea6k6OR1QNjoEu+479TFjnA5tm2l0KF0Ws1AQF8DgYc7LL34i+7PH7+Tnxk/8uM3HGs21GUFj9Tol6un2JLRSmZ43WV50nADkqc1r72gMn3BNR22t7Wdrbc7b31MMRQPIUedp5R9MN3z128D89PBFzTxeAPqn3k4/8qO1DUSs1+HA7qkaTj2H/SLgoupumHuXzTlcXzX0P3hf7x+c8vqW7RDwwNqt7kTUSSeUZ1m5wI6bp8b9cfEy+rNdPHHykfmPg+MZ/dfp298D/mn5i86NDC8Cl89pu+Q4Y0Rmn5TcDtDZkyYmy9PBfTFCbFBq1Omo14/13zyvqB4am7aRrUywqVpJy1cqMNDLs082VFOSpNNQhsijD+3kVed/mDubr6O9Mcwb+9/P7/X/1/UuTeskR53OxhCdjSFg3ymNVSWXwtSyM0LVMu2MHgtbmxGqNjV/5Fi42uwgtmoorMwG6pTc2fxs7mx+9gkt8/WWn1mlak7ORzv/n7VZ0XfheBH6vVPvhYfLsGvObx090Hv85ZdSraews31zf/pshu/tXnqMv/jiia//E3fD3Lo/8IpIR/OZ/z9MaSaD0SRJkiRJ8y0VjNZkMJokSZIkSZIkSZLOfDHG8RDCp4CZ38r+I+A1Sy0XQtgJ/LsZTTXgH1awtHuAAaBraro0VeMHlrNwCOGFwNY5zd9cseqkM0B3d/es6aGhJcIpTsLg4OyzG+au70zwrW99a9b09ddfv2Jjf/Obs//kdHd3s2vXrhMaY2ZI265du2g0GmQy/tK9JOnUhBDg7bcRX//TcOjx9S5HmmVHdQ9PLd/DPaWnzpu3c/LhdahIOretZCDa3HGfWlkgWPFMNnj41JY9leUlSTqDXFDby1f3PJ+x0ExTnCCzttG7OovlqdHdGKC7MXDKY1VCgeHMdJjayLFwtekAtWPX2dn9RqbC1Y621YNxNtJaeugQPH3HelchrSyfSSRJkiRJ8+Xzi84KzW1rWIgkSZIkSZIkSZK0qm4CXgoc/QfZq0MI/xxj/NxCnUMIJeA2YObPpX84xvjIUisJIcw9u+WGGOPXFuobY6xPBbb91ozmd4cQ7owxLnnmbAjhAuD9c5rvjDEeWGq5c8W2Lnj0zw1WWgvbuo7fZzXNDSobGDj1k4GOKpfLlMvlWW0bNmxYsfHXyoEDs/8sXH755Ss29uOPzw6aufbaa09pvEajweDg4BkZQCdJOv2EjecRPv0w8ch+4if/Bnofh0Z9ukO1ArsfgO7N8MN1yBfeeRXECBOjMDYM5fFUU74AxWYYHYRadbp/vgDVyXS71AzN7ZDNQjYHLe2w8yrCRZfCjkthw3lwz53EW/9g7bdLy/LHR/6Kl237+3ntLxn+9DpUI0mSJGk1tMTx9S5BWlQxTtJTP0JP/cgpjROBcigxnGmfClGbDlVLwWrToWujU0Fqaf5CbW3E4P/3pON5+FDk6TvCepchrSiD0SRJkiRJ8+ULi89ralm7OiRJkiRJkiRJkqRVFGN8NIRwK/CWGc2fCiH8AfDBGOPk0cYQwqXAfwOum9G3D3jnKpR2M/AKoGlquhP4VgjhPwF/F+Pss2ZCCAXgN4D3ABvnjPW2VajvjJTLBnbM3Ts6K23dunXW9MGDB+nr61uRALMf//jHx13fmaCvr2/WdFfXyqXZzR17JYyMjBiMJklaUWHj+YQ3/PmSfWJ1kvjqq2HPg2tT0++9h/Dv33TcfrFWhWyOENKJjnFkAAiEts7jr2TnlVCZIH7oT6FeO8WKV0A2l76TWGqBI/vXu5p192sjn6b/QDc3bnkPtZAnE+vcdPhdPG/sS+tdmiSd/i6+HPJF2HpxChONEWIjPdeUmiBXILR2EIf6YGwEQkjhqI06dPZMPy+2dqTn1EYDcvkUNFqZgLERYnkstQ8cgslyGhugUITxUTi8H+77bpo3UwiQyabrrk0pgDWTTfMq49B3MLXHmPr0bE31TIxCUyu0dUJ7d1rf+Ggav3tzClAd7oORIRgbSsvmCjB0JN3e9+hUfaXpmi57Blx2DQwPpPVVxtO8GKGlIwWstnWlgNbxEfjG59K6N22DzdvTvh0fhpHB1DY09RlAsQk6NqRlW9oJLe1AnLof0iX296Z9P3QkjX20tuZWGDyStrm9Gy6+nJArQPcmqNeIvY+n/Z4vpNdApea0bL2e2mpVyGTSPs1m0/XM20cOEI/uJ6Z+vyJOXTcaMHh4uv6WdqhNwoHdcHhfuk+fcAWcf3H68fkDu9Jx0dYNXT1puaPK42m/1ibTsh0b0kyITZMAACAASURBVDE5MpD2VS6f7sPMVIjtVH0hk0mv55paCe3d0NRCPLgH7r8bHvg+DPfPPp6y2VR/ozH/cVBqhtbO6f3OVL9MFto60ryBQ6nWYgk2X5iOs0IpLVsopuX6DqZjqrkdOrrT/Z7NQlMbtLan4N6Bw/8/e3ceZ9ld1wn/86u1u6v39JI0WToJwZAQNuMy4AMqKEYeZH1kBpwRQVScBR/hUXFhURllEJ8HBQcHWRwEZHBhGR1FeAgOZJAJwQlZYJIQkgnZOp2kt3R39fKbP051ddWt6u6quvfWrbr1fr9e59V9zj3n9/vdc3/3c6tOnfpWsnFLytk7m1N6163Na79xS7JlR/OaDI8277GHdyXjh1MPH0yOjKeMrErWb2rm3IkxHjua+oG3NOd4Nus3N18zpiZloJm3hx6Z/n6b+Pp48t9p/y/d3Wfqvp3a54x9Tmlu0cY1y/gWsk+n25vTPpm5fqp2pu5z8EDzfjh4oHlfP/xA817ZsKWZ30ePNPl1Yjl6pMmnaestj8/FwMDs7/NTWb22eT/PZt2mic+WI01+H9jbfLat3ZisWdfk1Oq1yWVXNu/3kVXJHV9LbvrS3PvvhpHRZPzwzO3DI02+DI80Yx1dlaQkd38j2Xx2k9cznKJQUOv8ON32U+27VNqeT3+nanu+bZym7ZLmh5yrk2yf3Hf/xDLlD7fMoe2a5EBdnX1lLHuzJnszln1ZM7nszdiMbUeO1mw5dE8GjhzMAwObc8Po5bl+1eNPMd4ze+Kh/5GRejhD9WgG67EM5cS/x1JSs2twS/YMbMhQjubm0ccuuB9oxy3393oE0HkKowEAADA/m7b3egQAAAAAAADQSb+U5PIkV02sDyf5/SS/Vkq5Lsm+JBcleXKm/5bAeJLn11qn3L3fGbXWu0opL03y0SQTvyWZdRPj+nellC8nuTvJ8SRnJ7kyydpZmvqVWut/7fT4YKl7ylOeMmPbtddem2c961ltt33ttddOW1+9enWe+MQntt1ur5VT/gLT/I2Pj595p3mqJ35hGQAWURkeSd7196nv+83kxi81v8S+Zl3zy+lHx5tfJN+zO9m/p/ll7D0PLLyvn3xj8vyfmdu+Q9N/ybusm1+B0/LS1ybf94Lk5i+n3vSllHMfnaQmD+9OPfxIcvO1yT23N4VLtpzTFPLYuC1lx87meW7ZkWx7VFPQ48h4UzxjYKI4xcatTdGKo0eaogHHjzeFNR6892RhjPWbm1/KX7MuZWR02tjqF/4q9Qv/ObnvfzV93fSlpqjAngeac3/2BU3BkgN7ThbBGBxufiF+aLh5LR5+INn/8LzOyVLyMw+/Oy/d++HcMHpZHnv469l4fE+vh9R7o6ub13j/nmaObd3RvPcOHmiKOAAr22XfmfIHV6cMDp5535yyvEhHj60HDzRFyY4fa4p7bdjSfF2xwi303HfiikXnrnp0R+v4pq7Xwweb/wwOTSuOmyT1wN5k9z3JkSPJ5m0pm7Z1faynMpdzfKZ9ynNe3lwD2r+nKZ47ONR8bTe2fsbXjbBc1WPHknu/2RQrW702ueV/NN9PXfS45nPjvjuT9WelbNqa+si+5PCh5v0wurr53mpgIGXz9tSjR5vvi8bWT36PWMcPJ1/7clNQ7MLLJnosKaOrFjbWWpMbvph867bm+7nVY82YR0ab7wUHBpvvk4eGJ4tXZmAwWbsh2bil+V5u9Vhy/11NQcXR1c2+j+xrCrQ9eF9TnG3jlpPFFA8fbL7OP/v8lA3NHzqpD9yTfPWa5nvJx313ytSilKwY6yeWhfyZmhPvl/27bsuRkbUZ2rw1I8cPZfTYoTxy4HDuGl+XgbF1Gd+zN2vGH865Zw2l1GMZGD+Ysmlrc/1h7DHNfB9Zlex7sCnat2pNM6dPFEfdd19zvePwzfnmdV/Pn9y0IffWTdkxciAbBg9n37Hh7Ds2kvvH1+Ta/dvz1QNbU5f8VyksJ7ft6vUIoPMURgMAAGCmrec2f3XqoZYy8SOjyXc+szdjAgAAAAAAgC6otR4rpfxokj9K8uIpD21L8kOnOOz+JD/ezaJjtda/LKU8N8l7MvHH1CesTvI9Zzj8QJJfqrW+o1vjg6Xs/PPPz/nnn58777xzctunPvWpjhRG+7u/+7tp69/1Xd+VkZHl98vNW7Zsmbb+4IMP5lGPWsivFM3e9t13350kWbVqVR555JGOFl4DgMVU1m1K+Tdvm9O+9fjx5hfZ9+9piqHU48l5lzS/rP7IgWTHhSlr1qbee0fyxb9tfoH2in+S8qiLu/wsZio7Lkp2XJTyjP9r+vZudLZpa5Ir5rRreeqzU5767La7rPffldx9e1Og7djRZnloV+rtNzav0eq1TfGAiQIjGRpullVjzes2uropxnbsWHLsaOo3v5Zy7qNTDx2YLIhXLrys+YX/E0XgNpyVPHBPUkpTxG10dfML08MjzS/873uoKRQ3PJqctb0pOHf0aFMU4f5vNfufe3FyYG/WHxnPU8YPNX0NDjW/WL1hSzK2bqLgwEThgYHBpnDCoUeacSRN20fGmzGMH0oOHZwoXHe4KVB38ECz35q1zfEDA0lKcnB/MydH1zRtD48mIyPJ0Ehz7+iJIgV7H0q+dm2yZ3fqoUeaQj/nPSZZt7E5H+OHmuWBe5rCBY9+fPLQrua81tqcgxNFD46ON30myV23Jvv3Jhs2N8dt3JKUgaYQ2qo1KQMDp3699+9p2l491jyXq/889SufS47Xpo/hkeb8jq5uiiisWpNsO68psLZmfVNI78jhk3Pl2LHk4IHUv/9Y89o9sr8Z84nzVQaStetTrnhqsv28Zk4dO3ry34OPpD50f8rGrc25O3igKWpxcH9z/k+0c2BP8vDu5jW74NLknjua12jz9qbAxYYtyeBQ6pHDzfMbP3Ty2InxlDKQ+sje5nU5fqyZZ+s2J2vXN/NvZFXK6rHmvA8ONoUskmbfgcFm3h/cn+zfk/rVa5JHXZxy0eMmCg0+3BTaSW2KbBx+pNn3kf1NkZodO1PO3pkMjzSFefbvaR7b9qiU9Zua99PAYPMaHDvWjCc19b9/JvnMf5r+Ig4OJWdNFGLctLUplHFw/8TrurbZtv28iRd8omjy+KFmXp91dsrY+tQ9u5tjJopFlo0T3/McGU/GD6c+eG8zF1KasRzc37x3Vq1O2X5+6u57k6/+t+Tm/z6/wJl4XkmasR4Zb4p9JM28WzXWzM39Dzf9DQ6dfD3H1ic7H9sUobzthuY9tPOxzRw7fqzZ98H7ki/+zcT7dt3Jtudr89nNa3hg78KOX4oGB5MnPi3l1z8056Joi6WsHksePbfPPjiT0xUAKmPrmyzpI6WU5uuKEzZt7d1goAvK4GAy9XvAy75j+g4XXHpy3zXrms//E7acc/KxoaHme5CpbY+MJo+f+UdDFjzWUpIr/kmztOPE13EnzLOIY9lyTvJ9L2xvDKxoJ94v66a9Z4aTrMvYpuTbTmzavjHJxhnHzzC6Y/r6+s3N9zJTXHjx4/JrZ2jm0JGakcFkYKDkjt01f/blmr+7qebevcna0eSsseT+fcmBw8ldDzfrG9ckj9lesnFN8tW7aj5/68n2HrM9+fYLSr56V80Nd0/v6zt3JoMDyQP7k90HktXDyc6zktHh5KEDyb7DybHjyaEjTZ8DJVk13Cyb1jT/JsnYSNPGbbuSi7YmOzYkR48nDz/S7HPdyR/LpZTk3I3Nv0eONf2OH03GRpM1I8neg8nho9PHOTyYnL85+ebuZjwnnLMh2bH2SEZuuTY1JfsG1mXf4LoczVBG6+FsOfZABurxjNUD2XZ0Vw4MjOXhgQ3ZeeSOlNQMpObSw19LTcn9Q1tTUrPu+P7sHViXvQMbcqQMZSA1ZWI5UNbkWBnMjiN3Z8ux3TlcRrNvYG2OlaEcK4O5ZvV3Z9vR+3PloetysKzKhuN7M1SPZuz4gQznaPYOrMv9g1tTy0BGjx/K/omxHi8D2Xx0d/YNrs8fbnrl5PMbrEez5djubBg4mNF6OAP1eIaPH87WI/fn9qHzc7CsTi0l/2vo3Kyqh3K4jGZ1PZiakk3HHs6jx2/NJUduy9Mf/WNpbiWA/qEwGgAAADOUgYHU57w8+Y+/Pf2BH3hJ88MzAAAAAAAA6CO11v1J/mkp5c+SvCbJd59i1weTfCTJG2qtXf+by7XWvyqlXJbkp5O8IsmZKibcl+QDSd5Ra72j2+ODpeyHfuiH8h/+w3+YXP/ABz6Q3/7t387w8PCC29y1a1c+8YlPzOhnOTrnnHOmrd9000254orO/NL29u3bJwujHTp0KHfeeWcuuOCCjrQNAEtZOVGsaOOWZjmh9ZfVz74ged5PLfLoVpay7dwZv5ScLLzwW2n5t6Muflx7x194WWfGMVfbzp0s9jPn8zHLazHDzscueEhl7YbpG5754pRnvnj2nefT7rNesvBjz7DeTlvzfbwT/XRyDOXZL0ve+IHUR/YnI6NNkcIOaHeMUx+v44eTe25vCrolTbGzA3tOFiYZP5xs3ZFyzs4Z7dRam0KFQ8MzCkTXWlNKafYZP9w8/wUUka4P3JNc89fJ+MHmj2FvP695nw0MNsXChkdPFpBLmrEMNwW967FjTVG4h+5vCjgceqQpvjY41LQzNlHg8PDBZp99DyUXXZ6sWZ8yONgcf/3nU//mg815WbU6Zdt5E8eub/ovAyeLCKY2+20+uykcNzTUFIzb+2DT7923p+76VlP4adO25jmU0hSTGxqeKCK4rykId9bZTZHILec0Bfe27GgKxgAAwDK0avjk9wIXnFXymh8sec0Pdqbtg+NNcbR1o8m3nZ1F/eM1d+6uTVG0TTP7PXqsZnCg2X7seM2ufU2xtGM12bwmWbsqGRxojnnoQM0D+5tCaaPDJfXo8dTve8aiPY9ue+e9r87+MpZDA6ty1rHdc/6++sR3erPtX7ZdmeRJnRkgLBEKowEAADCr8pNvTEbXpH7qg81finvac1N+8k29HhYAAAAAAAB0Ta31z5L8WSnlwiRPTrIjyViSe5PckeQLtdbxBbS74LvNa60PJvmtJL9VSjk3ybcnOSfNnywvSfYk2ZXkK7XWW0/ZEKwwr371q/Pud7+7+YXzNEXN3ve+9+WnfmrhRUje/va358iRI5PrY2NjeeUrX3maI5aupz71qfnoRz86uX711VfnxS9uv3hEkjzlKU/JV77ylcn1T33qU8v2PAEAAN1R1qzt9RBOqYyMJhdcurBjS0kmipDN+tiJf0dXLXx8W85JfuQVCzt2cDBZu6FZkqZ45/bzpu80tDZZszbZtHX245/09JQnPX1B/U+aUjBx8Uo0AADAyrB6pOQ7dvam7/PPOvVX+EODJx8bHCg5e8Mpd82msZJNYyfXy9Bw6tqNyf6HOzHMJWFtPZC1xw7M65jTfv/0zZuTb1MYjf4y0OsBAAAAsDSVUlL+xS9m4E+uz8CHbsjAz7w5ZUh9bQAAAADoqme/bPbtq8dm3w4AdEWt9fZa65/XWn+/1vrbtdb311o/u5CiaB0e11211o/XWt81Ma7fqrX+Qa31o4qiwXSXXXZZrrrqqmnbfvEXfzH33Xffgtq76aab8ta3vnXatp/4iZ/I5s2bFzzGXnrmM585bf1DH/pQ9u3b15G2n/WsZ01b/6M/+qOOtAsAAAAAAMAKtXNhBaxXinr7Tb0eAnScwmgAAAAAAAAAAEtEecGrZt/+8tcv8kgAAGD5e9vb3pY1a9ZMrj/88MN5wQtekP3798+rnV27duVFL3pRxsdP1kY855xz8vrXL9+v0y+//PI8/elPn1zfu3dvXve613Wk7auuuioXX3zx5PqXvvSlvPe97+1I2wAAAAAAAKw85ap/3ushLG133NzrEUDHDfV6AAAAAAAAAAAANMpjnpj6E7+avO83T278zh9Inv/TvRsUAAAsU5deeml+//d/P694xSsmt11zzTW56qqr8uEPfzjnnnvuGdu45ZZb8sIXvjA333zylwkGBgbygQ98IFu3bu3KuBfL61//+jzjGc+YXH/nO9+ZCy+8MK95zWvmdPyePXsyOjqaVatWTds+NDSUX//1X89LX/rSyW2vetWrsnHjxrzgBS+Y1xg//elP56KLLspFF100r+MAAAAAAADoI895Rcq+h1P/0+8lD96XlJJsPz85+4Lk7m8kA4PJhrOSoeHkyHjz+DdvTradm5z/mGTtxmTN2uSBe5KH7k+OH09WjyXrNycH9iaP7E/2PJAcPtg8tn5zctb25K7bknu+2YzhrHOafY4emT62gYHmmNkMDjaP1dq5czE0nIytb577zsem7Hxs8tgrO9c+LBEKowEAAAAAAAAALCEDL/+11Kc9L/nqNcnOxyZX/JOUoeFeDwsAAJall7/85bnuuuvyzne+c3Lb5z//+Vx22WX55V/+5bz0pS/NeeedN+O4W2+9Ne9///vzO7/zOzl8+PC0x97ylrdMKyi2XH3/939/XvOa1+Rtb3vb5LbXvva1+dznPpc3vOEN+fZv//YZxxw/fjz/8A//kD/90z/N+973vlx//fXZuXPnjP1e8pKX5DOf+Uze+973JknGx8fzwhe+MC95yUvy8z//87O2nSTHjh3L9ddfn0984hP5yEc+kptvvjmf/exnFUYDAAAAAABYwUopyUtfm7zkNcme3cn6zSkDA13vt9aa1DprX/X48eT4saYo25HDTYG1gcGmGNrAYDI8mjIymnr4ULLvwWTjtpShptRT3b8n+fwnm0JtQ8PJ8EgyPJqMjCZDI8mq1U3xsxNF1dZvbgq/bdqWMjLa9ecNS4HCaAAAAAAAAAAAS0x59BXJo6/o9TAAAKAvvOMd78imTZvy5je/ufnlhST79u3L6173uvzyL/9yLrvsspx33nnZtGlTdu/enTvuuCNf//rXZ7QzPDyct7/97XnVq1612E+ha97ylrfkzjvvzEc/+tHJbZ/85CfzyU9+Mjt27MgVV1yRs846K4cPH869996b66+/Pvv27ZtT2+9617vy0EMP5S//8i8nt33oQx/Khz70oWzdujVPeMITctZZZ2VgYCB79+7N3XffnZtvvjmHDh3q+PMEAAAAAABg+SulJBu3LG5/pcz+2MBAcqJg2ujqZpltv9FVyeiO6dvWbkh+6Mc6OlboNwqjAQAAAAAAAAAAAAB97Td+4zfy9Kc/PT/7sz+bW265ZXJ7rTU33nhjbrzxxtMe/+QnPzl/+Id/mCuvvLLbQ11Ug4OD+chHPpLLL788b37zm3PkyJHJx+6+++7cfffdC257eHg4f/7nf563vvWtecMb3jCt4NmuXbvy6U9/ek5tjI2NLXgMAAAAAAAAACw/A70eAAAAAAAAAAAAAABAtz3zmc/MTTfdlA9+8IN5xjOekaGh0/+N6dHR0TznOc/Jxz/+8Vx77bV9VxTthFJK3vCGN+TrX/96XvnKV2bz5s2n3X/t2rV53vOel4997GM5//zzz9j2L/zCL+T222/PL/3SL+WCCy4443jWrVuXH/7hH8473/nO3HPPPfmO7/iOeT0fAAAAAAAAAJa3Umvt9Rigp0oplye54cT6DTfckMsvv7yHIwIAAAAAAAAAWJgbb7wxj3vc46Zuelyt9cZejQcAOn2P3tGjR3PLLbdM23bJJZecscAVzObAgQP58pe/nFtvvTW7du3K+Ph4RkdHs3379jzmMY/Jk5/85IyOjvZ6mIvu+PHjue666/K1r30tDzzwQPbv35+xsbFs27Ytl156aR7/+MdneHh4we3ffvvtue6667Jr16489NBDGRgYyLp167Jjx45ceumlueSSSzI4ONjBZ9RbcgsAAAAAAAD6g/vzFo+fptJRpZThJE9Ncn6Sc5LsT3J3kq/UWr/Zw6EBAAAAAAAAAAAAwKSxsbE87WlPy9Oe9rReD2VJGRgYyJVXXpkrr7yyK+1feOGFufDCC7vSNgAAAAAAAADLn8JoK1gp5U+TvLhl8x211p0LaGtrkjdNtLf5FPtck+R3a61/Pt/2AQAAAAAAAAAAAAAAAAAAAAAA6G8DvR4AvVFK+ZHMLIq20LauSnJDklflFEXRJjwlyZ+VUv6klDLWib4BAAAAAAAAAAAAAAAAAAAAAADoD0O9HgCLr5SyMcm/71Bb35vkY0lGpmyuSa5L8o0kG5M8KcmWKY+/NMn6Usrzaq3HOzEOAAAAAAAAAAAAAAAAAAAAAAAAlreBXg+Annhbkh0T/9+30EZKKecm+YtML4r2hSSX11qvrLX+aK31B5Ocm+TVSY5M2e85SX5zoX0DAAAAAAAAAAAAAAAAAAAAAADQXxRGW2FKKc9M8vKJ1aNJXt9Gc29KsmnK+jVJnllrvXnqTrXWw7XW30vyoy3H/3wp5YI2+gcAAAAAAAAAAAAAAAAAAAAAAKBPKIy2gpRSxpK8e8qm303yjwts65IkPz5l03iSl9VaD53qmFrrx5L88ZRNo0nesJD+AQAAAAAAAAAAAAAAAAAAAAAA6C8Ko60sv5Vk58T/v5HkjW209ZIkg1PW/6LWesscjntLy/qPllJWtTEOAAAAAAAAAAAAAAAAAAAAAAAA+oDCaCtEKeUpSf7llE0/XWs92EaTz29Zf99cDqq13pzkH6ZsGkvyg22MAwAAAAAAAAAAAAAAAAAAAAAAgD6gMNoKUEoZTfLenHy9/7jW+uk22js7yROmbDqa5AvzaOLqlvWrFjoWAAAAAAAAAAAAAAAAAAAAAAAA+oPCaCvDG5N828T/dyV5TZvtPa5l/fpa64F5HH9Ny/rlbY4HAAAAAAAAAAAAAAAAAAAAAACAZU5htD5XSnlyktdO2fRztdbdbTZ7Wcv6rfM8/rYztAcAAAAAAAAAAAAAAAAAAAAAAMAKozBaHyulDCV5b5KhiU1/U2v9UAeafnTL+p3zPP6OlvWzSimb2hgPAAAAAAAAAAAAAAAAAAAAAAAAy9zQmXdhGfulJE+Y+P+BJK/qULsbW9bvn8/Btdb9pZRDSVZN2bwhyUPtDqyUsi3J1nkednG7/QIAAAAAAAAAAAAAAAAAAAAAANAehdH6VCnlsiS/OmXTr9Vav9mh5te2rB9cQBsHM70w2rqFD2ean03yhg61BQAAAAAAAAAAAAAAAAAAAAAAwCIZ6PUA6LxSykCS9yQZndj05SS/18EuWgujHVpAG63F1FrbBAAAAAAAAAAAAJimlDJjW621ByMBmJvjx4/P2DZblgEAAAAAAADQUBitP706yXdP/P9okp+stR7rYn8LuaPIXUgAAAAAAAAAAADAvAwMzLz19ciRIz0YCcDcHD16dMa22bIMAAAAAAAAgMZQrwdAZ5VSLkrym1M2/W6t9R873M3+lvXVC2ij9ZjWNhfqD5J8dJ7HXJzk4x3qHwAAAAAAAAAAAOiSUkpGRkYyPj4+uW3//v1Zs2ZND0cFcGr790+/TXpkZCSllB6NBgAAAAAAAGDpUxitj5TmJ+TvTnLi7p5vJHljF7pasoXRaq33J7l/Pse4sQAAAAAAAAAAAACWj3Xr1mX37t2T63v37s3WrVvdDwgsObXW7N27d9q2devW9Wg0AAAAAAAAAMvDQK8HQEe9Msn3T1n/6VrrwS70s6dlfet8Di6lrM3MwmgPtzUiAAAAAAAAAAAAYEVoLSp05MiRfOtb30qttUcjApip1ppvfetbOXLkyLTt69ev79GIAAAAAAAAAJaHoV4PgI5605T//3WSW0spO89wzNkt60OzHHN3rXV8yvotLY9fMMfxnWr/B2utD82zDQAAAAAAAAAAAGAFWrVqVYaHh6cVG9q3b19uu+22rF+/PmvXrs3Q0FAGBvz9YGBxHT9+PEePHs3+/fuzd+/eGUXRhoeHMzo62qPRAQAAAAAAACwPCqP1l9VT/v/DSW5fQBuPmuW4JyX5xynrN7c8/uh59nFRy/pN8zweAAAAAAAAAAAAWKFKKdmxY0fuvPPO1Fontx85ciS7d+/O7t27ezg6gNmdyK5SSq+HAgAAAAAAALCk+VN4LMQNLeuPL6WsmcfxTz1DewAAAAAAAAAAAACntGbNmpx//vkKDAHLQikl559/ftasmc8t1wAAAAAAAAArk8JozFut9Z4k10/ZNJTke+bRxPe2rP+XdscEAAAAAAAAAAAArCwniqMNDw/3eigApzQ8PKwoGgAAAAAAAMA8DPV6AHROrXXjfI8ppXxvks9O2XRHrXXnHA79yySPn7L+E0k+NYf+Lk3yXVM2HZjLcQAAAAAAAAAAAACt1qxZk4svvjiHDx/O3r17s2/fvoyPj/d6WMAKNzIyknXr1mX9+vUZHR1NKaXXQwIAAAAAAABYNhRGY6E+mORXkwxOrL+glHJJrfWWMxz3iy3r/6nWeqjjowMAAAAAAAAAAABWhFJKVq1alVWrVmXbtm2pteb48eOptfZ6aMAKU0rJwMCAQmgAAAAAAAAAbVAYjQWptd5SSvnjJC+f2DSS5P2llGecqtBZKeW5SV42ZdN4kjd1daAAAAAAAAAAAADAilJKyeDg4Jl3BAAAAAAAAABgyRno9QBY1t6Q5KEp609J8ulSyqVTdyqljJZS/nWSj7Yc/7Za6x1dHiMAAAAAAAAAAAAAAAAAAAAAAADLwFCvB8DyVWu9q5TygiR/m2RkYvNTk9xUSvlykm8k2ZDkyUm2thz+n5P82mKNFQAAAAAAAAAAAAAAAAAAAAAAgKVNYTTaUmu9upTy/CTvz8niZyXJlRPLbD6c5JW11mPdHyEAAAAAAAAAAAAAAAAAAAAAAADLwUCvB8DyV2v96ySPS/KuJA+dZtcvJnlRrfUltdYDizI4AAAAAAAAAAAAAAAAAAAAAAAAloWhXg+A3qq1Xp2kdKCd+5O8qpTy6iRPTXJBkrOTHEjyrSRfqbXe3m4/AAAAAAAAAAAAAAAAAAAAAAAA9CeF0eioWut4ks/2ehwAAAAANQ/O7gAAIABJREFUAAAAAAAAAAAAAAAAAAAsLwO9HgAAAAAAAAAAAAAAAAAAAAAAAACAwmgAAAAAAAAAAAAAAAAAAAAAAABAzymMBgAAAAAAAAAAAAAAAAAAAAAAAPScwmgAAAAAAAAAAAAAAAAAAAAAAABAzymMBgAAAAAAAAAAAAAAAAAAAAAAAPScwmgAAAAAAAAAAAAAAAAAAAAAAABAzymMBgAAAAAAAAAAAAAAAAAAAAAAAPScwmgAAAAAAAAAAAAAAAAAAAAAAABAzymMBgAAAAAAAAAAAAAAAAAAAAAAAPTcUK8HAEvAyNSVW2+9tVfjAAAAAAAAAABoyyz3PYzMth8ALCL36AEAAAAAAAAAy5778xZPqbX2egzQU6WUH0ny8V6PAwAAAAAAAACgC55ba/1ErwcBwMrlHj0AAAAAAAAAoE+5P69LBno9AAAAAAAAAAAAAAAAAAAAAAAAAACF0QAAAAAAAAAAAAAAAAAAAAAAAICeK7XWXo8BeqqUsiHJ06ds+l9Jxtto8uIkH5+y/twkt7XRHsB8ySFgKZBFQK/JIaDX5BDQa3IIWApkEdBrKzWHRpKcN2X9c7XWPb0aDAC4Rw/oQ3II6DU5BPSaHAJ6TQ4BS4EsAnpNDgG9tlJzyP15i2So1wOAXpsIl090qr1SSuum22qtN3aqfYAzkUPAUiCLgF6TQ0CvySGg1+QQsBTIIqDXVngOfaXXAwCAE9yjB/QbOQT0mhwCek0OAb0mh4ClQBYBvSaHgF5b4Tnk/rxFMNDrAQAAAAAAAAAAAAAAAAAAAAAAAAAojAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8pjAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8pjAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8pjAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8pjAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8N9XoA0Id2JXlTyzrAYpJDwFIgi4Bek0NAr8khoNfkELAUyCKg1+QQAPQnn/FAr8khoNfkENBrcgjoNTkELAWyCOg1OQT0mhyiq0qttddjAAAAAAAAAAAAAAAAAAAAAAAAAFa4gV4PAAAAAAAAAAAAAAAAAAAAAAAAAEBhNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnhno9AGYqpQwmeXSSy5LsSLIhyeEkDyW5Lcm1tdYDHe5zOMlTk5yf5Jwk+5PcneQrtdZvdrKvxVJKuTzJE5NsTTKa5N4kdyX5Qq31UC/HtphKKZuSXJ7kkiSbk6xK8nCSXUm+XGu9rYfDm6GUcmGa121HkrVJ7klyR5Jraq1Hejm2lUQOdYYcasghFkoWdYYsasiiU/ZjfpyGHOoM86yx3HKIpUEOdYYcasih6Uop56U5F+cm2ZJkdZLxJHuS3JnmnOzq3QiXBjnUGXKoIYdYKFnUGbKoIYtYCDnUGXKoIYdmZ34AveAzvjNkeGO5fca7N2ZpkEOdIYcacoiFkEOdIYcacuiU/ZgfpyGHOsM8ayy3HGJpkEOdIYcacmg69+fNnSzqDFnUkEUshBzqDDnUkEMshBzqDDnUkEOzW9bzo9ZqWQJLmsD8uST/Oc039/U0y9Ek/yXJszvQ79Ykf5Bk92n6+0KSF7bZz0VJXpzkrUmuTrK3pY9vdug8rkvyK0m+dZrnszfJB5Jc3MPXu2vnI8lwkmcleUeSG84wl+rEufr1JGf3+D3woiTXnGacuyfm6pYFtH2mc3CmZWcvz80ivgZyqDPnUQ7Joalt7uxABk1dXtbLc7RIr4Ms6sx5lEWyaNnPjx6+BnKoM+dxWcwzOdSz+TGW5HuS/N9JPpjkfyY53tLXy3p1Hnq9yCE5JIe6dj4uSfJvk3w2zQ81znQ+apLrkvzLJKO9Oic9eh3kUGfOoxySQ7O1P5fsOd2ys1fnpgevhSzqzHmURbJoars7O5BDU5eX9eocLdLrIIc6cx7lkBxa9vPDYrH01+IzfmVluM/4WcftHr0eL3JIDskh9+j1epFDckgOuT+v14sckkMrOYcWcX64P+/050cOdeY8yiE51Nq2+/Pmd75kUWfOoyySRbO1P5f8Od2ys1fnZpFfBznUmfMoh+TQ1HZ3diCDpi4v69U5WqTXQQ515jzKITm07OfHGZ9HrwdgqUnyoTY+0D6ZZPsC+70qyX3z6OtPkozNo/3vTfK3Z/hQ6NgbM8l3panCOdfncyDJqxbxde76+Zg4Bw8ucC49lOTHejD/1yb58DzGeW+SZ82zj4W+v04sOxf7vPTgdZBDckgOdSGH0vlvZF+82OdnkV8LWSSLZFEXsmg5zY9eL3JIDq3EHFrM+ZHmwvFX01yQPlNfL1usc7CUFjkkh+RQ9+ZHkp9s4/319STftVjnpJeLHJJDcqi786ON99eJZedinZdeLrJIFsmirp2PnR3IoalL316vjhySQ3Joxc8Pi8XSn4vP+JWR4T7jTzlm9+gtgUUOySE55B69Xi+RQ3JIDrk/r8eLHJJDKzGHFnN+xP15czlHckgOyaEuzY+4P28+50oWySJZ1MX50cb768Syc7HOS68WOSSH5FDXzsfODmTQ1MW1ajk0l/egHJJDy3J+zGcZCkvBY06x/VtJbkkTrkNpqv49IcnAlH3+zyR/X0p5eq313rl2WEr53iQfSzIyZXNNU2X9G0k2JnlSki1THn9pkvWllOfVWo/PoZsnJvnBuY6pHaWUZ6apBjra8tAdSa5P8yY8N82bd3jisTVJ/qCUMlBrfeciDHMxzsfWJJtm2T6e5uL2vWkqpp6V5MqJf0/YmOQDpZRttdbf7fI4kySllMEkH0nywy0P7UrylYmxXpxmLpaJx7Yn+Xgp5Zm11s8vxjhXCDnUJjk0SQ51zyNpKlr3M1nUJlk0SRbN3s9ymB+9JofatEzmmRyabtHmR5KXJNmwSH0tV3KoTXJokhw6s5rmIv+taX6w8Eiav5h7YZLLc3J+JM178zOllGfXWj+32ANdZHKoTXJokhyiHbKoTbJokizqnn6/Xi2H2iSHJsmhWSyT+QH0J5/xbVomGe4zvsUyuzem38mhNsmhSXKoe1zzkEOnJYcmyaHZ+1kO86PX5FCblsk8k0PTuT9vaZFDbZJDk+TQmbk/79RkUZtk0SRZxELJoTbJoUlyqHtcq5ZDpyWHJsmhWSyT+TF3va7MZqlJcm1OVtG7Lsm/SnLxKfZ9VJI/zMzqe/81SZljf+dmZtXDzyd5bMt+o0n+TZo3/dR9/+0c+/m5WcZZkxxKc0GjIxUL01RPba2KeGuSH5hl301Jfr9l32Oz7duF17nr5yPNB/mJNvYleU+SZyRZPcu+Jcnz04RX65i6fj4mxvDWln7HJ+b/SMt+lyW5pmXfB5KcM8d+ph73xYk5M59laDHORy+XyCE5JIe6kkNpvvE6U8acavl8S3/vX4xz0sslskgWyaKufU20XOZHrxc5JIdWYg4t1vyY6OvhU/R11yyPvazbz30pLnJIDsmhrs6PVyT5WpqvvZ6dZNNp9t2Y5OfT/ABkav/fSrKh2+ekl4sckkNyqOtfD01ty7XqU58nWSSLZFF3zofr1XM/V3JIDsmhFT4/LBZLfy4+41dGhvuMn3W87tFbIkvkkBySQ13JobjmMZ/XQg7JITnUpa+Hlsv86PUih+TQSsyhxZofE325P+/M50gOySE51L354f68uZ8rWSSLZFF3vyaa2pZr1bOfIzkkh+RQd86Ha9VzP1dySA7JoRU+P+b1nHo9AEtNkv+eptrelfM45mdnmfD/dI7HvqfluC8kWXWa/Z83yxvrgjn083MTof+VJO9O8lNJnpymYuD3dvCN+eGWtm5Jsu0Mx/xCyzE3Jhns8uvc9fMxEdz3JXlNkrE5HnNWkpta+r85c/xCoI3zcVFmflHw3NPsvzozf9D4rjn2NfWYq7v5vJbrIofkkBzqbg4tYGyPSnK0pa//o5vnYyksskgWyaLuZdFymR+9XuSQHFqhObQo82Oir4fT/KWFv0ryponztH3isatb+npZN5/3Ul3kkBySQ12dH8MLOOaJSfa3jOEXu3k+er3IITkkh7r+9dDUtq7u5vNazosskkWyqLtZtICxrbjr1XJIDskh88NisfTn4jN+ZWS4z/gZ/bpHbwktckgOyaHu5tACxuaax9yOkUMn+5FDJ/uQQ8t0fvR6kUNyaIXmkPvzltAih+SQHHJ/3lJYZJEskkXu0ev1IofkkBxyf16vFzkkh+SQ+TGv59TrAVhqkuxc4HF/1jK5/moOx1zS8sF4OMklczju/S19vXcOx2w61QdCB4PqojQVB6e29T1zPPb/bznu5V1+nRfjfGyda2C3HPeEWc7jd3T5fPxxS3/vm8Mxj5mYsyeOOZLkojkcN7Wfq7v5vJbrIofkkBzqbg4tYGy/0jK2/9nNc7FUFlkki2RRd7JoOc2PXi9ySA6t0Bzq+vmY0t4p/4Ju3Hh14jzsXOBxckgOtbYjhzo3vl9vGcMXF3sMi/x8dy7wODkkh1rbkUOztze1rau7+byW8yKLZJEs6s75aGNsK+56tRySQ3LI/LBYLP25+IxfGRnuM35Gn+7RW0KLHJJDcqi7ObSAsbnmMffj5JAcam1HDi3T+dHrRQ7JoRWaQ+7PW0KLHJJDcqg756PN8a2o+/MmnvPOBR4ni2RRazuyaPb2prZ1dTef13Jd5JAckkPdOR9tjM216rkfJ4fkUGs7cmiZzo/5LAOh52qt31zgoe9sWf++ORzzkiSDU9b/otZ6yxyOe0vL+o+WUlad7oBa60O11kNzaLsdz06mzeMv1lo/P8djf6dl/Sc6M6TZLcb5qLXuqrUeWMBx/yNJ63mby3xakFLK6iQvatncOsdmqLX+zyQfm7JpKM2cpk1yqC1yaHofcqhNpZSSmXPhPZ3sY6mSRW2RRdP7kEXTLZv50WtyqC3LZp7JoRl9Lsb8ONHXPYvRz3Imh9oih6b3IYc6569b1h/dk1EsEjnUFjk0vQ85xILJorbIoul9yKI2rdTr1XKoLXJoeh9yaLplMz+A/uQzvi3LJsN9xp+0lO+NWankUFvk0PQ+5FCbXPOYNzkkh1r7kEPTLZv50WtyqC3LZp7JoRl9uj9vCZFDbZFD0/uQQ52zou7PS2RRm2TR9D5kEQsih9oih6b3IYfa5Fr1vMkhOdTahxyabtnMj/lQGG15+0rL+upSysYzHPP8lvX3zaWjWuvNSf5hyqaxJD84l2O77Gkt6387j2M/k2R8yvpTSinntD+kZat1Pu3oYl/PSrJmyvp/q7V+bY7Hts7ZF3RmSCyQHJJDnSSHGk9PcvGU9aNp/mIdpyaLZFEn9WMWmR/dJ4fMs05azByif8ghOdRJcmi6B1vW1/VkFEufHJJDnSSHWChZJIs6SRY1XK+eHzkkhzqpH3PI/ACWK5/xMryT+vHn0XSfHJJDnSSHGq55zI8ckkOd1I85ZH50nxwyzzqpH6+90n1ySA51khyazv15cyeLZFEnySIWQg7JoU6SQw3XqudHDsmhTurHHOrL+aEw2vJ2dJZtI6fauZRydpIntBz/hXn0d3XL+lXzOLZbzm1Zv2GuB9ZaDye5dcqmgSyN59QrrfPplHOpA36oZf3qeRz7XzN9rE8qpWxve0QslBySQ50khxqvaFn/q1rrvR1svx/JIlnUSf2YReZH98kh86yTFjOH6B9ySA51khya7oKW9bt7MoqlTw7JoU6SQyyULJJFnSSLGq5Xz48ckkOd1I85ZH4Ay5XPeBneSf3482i6Tw7JoU6SQw3XPOZHDsmhTurHHDI/uk8OmWed1I/XXuk+OSSHOkkOTef+vLmTRbKok2QRCyGH5FAnyaGGa9XzI4fkUCf1Yw715fxQGG15e3TL+tEkD5xm/8e1rF9faz0wj/6uaVm/fB7HdsvmlvWH53l86/5XtDGW5a51Pt3Txb5a5+J/m+uBE3P2qy2bl8JcXKnkkBzqpBWfQ6WUDUle2LL5PZ1ou8/JIlnUSf2YReZH98kh86yTFjOH6B9ySA51khya7l+0rH+2J6NY+uSQHOokOcRCySJZ1EkrPotcr14QOSSHOqkfc8j8AJYrn/EyvJP68efRdJ8ckkOdtOJzyDWPBZFDcqiT+jGHzI/uk0PmWSf147VXuk8OyaFOkkPTuT9v7mSRLOokWcRCyCE51EkrPodcq14QOSSHOqkfc6gv54fCaMvbi1rWr621Hj/N/pe1rN86616ndtsZ2uuF8Zb10Xke37r/UnhOi66Usj7JD7Rs/lIXu3xsy/pizsXzSynvK6XcWEp5qJQyXkq5b2L9T0opP1VKaQ18Tk0OyaGOWGE5dDr/LMnqKev3JPkvHWq7n8kiWdQRfZxF5kf3ySHzrCN6kEP0DzkkhzpCDk1XSvmXSX5syqajSf6/Hg1nqZNDcqgjVlgOuVbdebJIFnXECsui03G9ev7kkBzqiD7OIfMDWK58xsvwjujjn0fPxnWPzpJDcqgjVlgOnY5rHvMnh+RQR/RxDpkf3SeHzLOO6ONrr3SfHJJDHSGHpnN/3rzJIlnUESssi1yr7iw5JIc6YoXl0Om4Vj1/ckgOdUQf51Bfzg+F0ZapUsraJK9o2fyXZzistWLhnfPs9o6W9bNKKZvm2Uan7W5ZP2eex7fu/21tjGU5++kka6as70mXqutPfJPY+o3ifOdi6/6XzOPYC5O8LE0Ib0wynGTbxPpLk/xhkjtLKf/vxPuMU5BDk+RQZ6ykHDqd1vfUH9daj3ao7b4kiybJos7o1ywyP7pIDk0yzzpj0XKI/iGHJsmhzljROVRKGSulfFsp5cdLKZ9L8o6WXV5Xa72+F2NbyuTQJDnUGSsph1yr7iBZNEkWdcZKyqLTcb16HuTQJDnUGf2aQ+YHsOz4jJ8kwzujX38ePRvXPTpEDk2SQ52xknLodFzzmAc5NEkOdUa/5pD50UVyaJJ51hn9eu2VLpJDk+RQZ6zoHHJ/3sLJokmyqDNWUha5Vt0hcmiSHOqMlZRDp+Na9TzIoUlyqDP6NYf6cn4ojLZ8/VaSs6esP5zkj85wzMaW9fvn02GtdX+SQy2bN8ynjS64uWX9u+d6YCnl/CQ7Wjb3+vksulLKziS/1rL57bXW1mqQndI6Dx+ptR6YZxutc7fTr9tYkp9L8uVSyuUdbrufyKGGHGqTHGqUUq5IcmXL5ve02+4KIIsasqhNfZ5F5kd3yaGGedamHuQQ/UMONeRQm1ZaDpVSNpZS6tQlyf4kX0vy/iRPm7L7/iQ/VWv9nR4MdTmQQw051KaVlkNz5Fr13MmihixqkyxquF69IHKoIYfa1Oc5ZH4Ay5HP+IYMb1Of/zx6oVz3mBs51JBDbZJDDdc8FkQONeRQm/o8h8yP7pJDDfOsTX1+7ZXukkMNOdSmlZZD7s/rOFnUkEVtWmlZNEeuVc+NHGrIoTbJoYZr1QsihxpyqE19nkN9OT8URluGSinPT/KvWjb/Sq31wTMc2lqt+OACum89Zt0C2uikz7Wsv7CUsmbWPWf6F7Ns6/XzWVSllJEkH8n05/3NJP+ui932ah4eTXJ1kl9N8iNJnpzmrzY9Kclzk/xOZn4x85gkny6lXLCAMfY1OTSNHGrDCsuhM2mtVP25WuutHWi3b8miaWRRG1ZAFpkfXSKHpjHP2tCjHKIPyKFp5FAb5NAp3ZfkV5JcWGt9d68HsxTJoWnkUBtWWA65Vt1hsmgaWdSGFZZFZ+J69TzIoWnkUBtWQA6ZH8Cy4jN+GhnehhXw8+ipXPfoIDk0jRxqwwrLoTNxzWMe5NA0cqgNKyCHzI8ukUPTmGdtWAHXXukSOTSNHGqDHDol9+fNgSyaRha1YYVlkWvVHSSHppFDbVhhOXQmrlXPgxyaRg61YQXkUF/OD4XRlplSyhOS/MeWzZ9K8u/ncHhrcLdWp5yL1uBubXOx/VWaap4nbEzyxjMdVEo5L8lrZ3losJSyujNDWxb+KMl3Tlk/luTHF/DXkOajF/PwV5M8qtb6fbXWN9daP1lr/Uqt9dZa6z/WWj9Ra/1/klyQ5LeT1CnHnp3kL0opZQHj7EtyaAY51J6VkkOnNfGF9I+1bFbd+zRk0QyyqD39nkXmRxfIoRnMs/b0IodY5uTQDHKoPXJodtuT/EySV5VS1vd6MEuNHJpBDrVnpeSQa9UdJotmkEXtWSlZdFquV8+PHJpBDrWn33PI/ACWDZ/xM8jw9vT7z6NPcN2jg+TQDHKoPSslh07LNY/5kUMzyKH29HsOmR9dIIdmMM/a0+/XXukCOTSDHGqPHJqd+/POQBbNIIvas1KyyLXqDpJDM8ih9qyUHDot16rnRw7NIIfa0+851JfzQ2G0ZaSUcn6aiTg1LO9I8mO11jr7Uae1WMd0Ta11X5K3t2x+bSnl1ac6ppRybpK/SbLhVM12aHhLWinlN5L885bNr6u1/v0iD6Xr83Dim9fW6t2z7Xeo1vq6JP+65aEnJ/ln8+mzX8mhmeTQwq2kHJqD5yY5a8r6nv/d3v3HWpMX9B3/fJctIIJSi0AVdSn+wlBSFFMBTTcUDNSAsqAQmoYVtLbYJrVt0pSadGsbTNNo7R+NUotiKdBSBEREQMSVVuOvZlGoW0oqawVd5JdF9vey3/5x7tN77px75sycHzNzzrxeyflj5p4zZ57zfJ/33Od7J9+b5A17fo+ToUWrtGh7c2iR8bF/OrTKONvehDrEEdGhVTq0vRl36NNJHr30eEwWc0DXJfnXST529rwvSfIDSd5XSvn6Ec5zknRolQ5tb04dMle9X1q0Sou2N6cWdWC+uiMdWqVD25tDh4wP4Fi4xq/S8O1N6BrvHr0jokOrdGh7c+pQB+Y8OtKhVTq0vTl0yPjYPx1aZZxtb0Id4ojo0Cod2t6MO+T+vB1p0Sot2t6cWmSuen90aJUObW9OHerAXHVHOrRKh7Y3hw6d6vi4euwToJtSysOT/EKSL17afWuSp9daP3b5q1Z8prG9zcp8zdc0jzmGlyd5Zs5XZixJfqSU8rwsVkd9bxYrcX7R2fP+ds4vfh9O8qilY91Za11Z6bOUck3Xk6m13tLr7EdQSvl7Wax6veyHa63/quPrr+n6Xpd8HpMfh7XWf1tK+eYkz17a/dIkr93n+xwbHWqlQz3p0IqXNLZfW2ttriJNtGgDLeppZi06+PiYCx1qpUM9jdwhjpQOtdKhnubcoVrrfUluueRLNyV5Uynl+5P8yyR/52z/lyZ5VynlKbXW9w9zltOkQ610qKc5d6gLc9XraVErLepJi1aYr+5Ah1rpUE8z65C5amDSXONbucb3NLOfR/dm3uNyOtRKh3rSoRXmPDrQoVY61NPMOmTOY090qJUO9TSzuVf2RIda6VBPc+6Q+/N2o0WttKinObeoC3PVl9OhVjrUkw6tMFfdgQ610qGeZtahk5urtjDaESilfEGSdyX5yqXdH0/ytFrrB3sc6iTDXWu9u5RyXZK3JXn80pe+8eyxziey+MbhHUv7/mTNcz/U45RKj+cOrpTy3Ul+uLH7R2ut/6DHYXb5PI5lHP5gLv5H9htKKQ+tta4bIydNh9rpUD86dFEp5UuSPL2x+5XbHu+UaVE7Lepnbi0aaHycPB1qp0P9TKBDHCEdaqdD/ehQu1rr7Un+binlniTfd7b785L8h1LK1235G4aOng6106F+dKgzc9UNWtROi/rRoovMV3ejQ+10qJ+5dchcNTBlrvHtXOP7mcA1/ljGoXmPJTrUTof60aGLzHl0o0PtdKifuXXInMd+6FA7HepnAh3iCOlQOx3qR4fauT9vPS1qp0X9aFFn5qqX6FA7HepHhy4yV92NDrXToX7m1qFTnKu+auwToF0p5fOTvDPJX1za/aksVrL8Hz0P938b21/Y81wenNVwT2Ig11o/kuTJSV6R5J4OL/mlJE9Mcltj/617PrVJKaX8jSQ/losx/ckk3zvgaTTH4YNKKZ/b8xgPb2wfYhz+Rhb/1q64X5KvOcD7TJ4OdaND3ejQpa7Pxe/JfrvW+t93ON5J0qJutKibubbI+NiNDnVjnHUzkQ5xZHSoGx3qRod6+SdJ/nBp+wlJnjbSuYxKh7rRoW50qBdz1Uu0qBst6kaLLnV9zFe30qFudKibuXbI+ACmyDW+Gw3vZiLX+KndG7OOeY8zOtSNDnWjQ5e6PuY8WulQNzrUzVw7ZHzsRoe6Mc66mUiHODI61I0OdaNDvbg/b4kWdaNF3WhRL+aqz+hQNzrUjQ5d6vqYq26lQ93oUDdz7dCpjQ8Lo01YKeUhSd6e5OuWdn86yTNqre/d4pDN1S+/rOfrm8//ZK31U5c+cwS11ttqrX8ryVdlMSHyS0k+nOSOJH+a5OYkP5XFKqp/tdZ6S5LHNg7zW4Od8MBKKS/IItLL/+5fk+S7hlxBv9b6iVz8D2KSfGnPwzTHYp+VXTuptd6X5P80dvf6ZucU6FA/OtROh1aVUkqS72zstrp3gxb1o0Xt5t4i42M7OtSPcdY3m3gKAAARjElEQVRuKh3iuOhQPzrUTof6qbXekeTNjd3PGONcxqRD/ehQOx3qx1z1OS3qR4vaadEq89Wb6VA/OtRu7h0yPoApcY3vR8PbTeUaP6V7Y9qY91jQoX50qJ0OrTLnsZkO9aND7ebeIeNjOzrUj3HWbiod4rjoUD861E6H+nF/3jkt6keL2mlRP+aqF3SoHx1qp0OrzFVvpkP96FC7uXfolMbH1WOfAJc7+200b0vyDUu7P5PkmbXW39jysDc3tr+85+v/QmP7d7c8j4OqtX4oycvPHps8qbH962uOWS7bfyxKKc9N8uosVqm+4r8kedHZf9h62cPncXMWK0xe8eVZHZ9tmmOxz2v7uKOx3VzR9aTp0PZ0aJUOrfXUJI9e2r4ri2+qOaNF29OiVVp07hDj41Tp0PZ0aNUEO8QR0KHt6dAqHdraBxrbff/NHDUd2p4OrdKhrc16rjrRol1o0SotWst8dQsd2p4OrdKhc+aqgbG5xm/PNX7VBK/xU7k3ZpNZz3vo0PZ0aJUOrWXOo4UObU+HVunQOXMe3enQ9nRo1QQ7xBHQoe3p0Cod2tqs789LtGgXWrRKi7ZmrlqHtqJDq3RoLXPVLXRoezq0SofOncJc9VWbn8LQSimfk+StSb5xafftSb6l1vqrOxz6/Y3tx5dSHtTj9U/ZcLyjcraq6lMbu395jHM5pFLKs5O8LhcXQnxzkhfWWj87zlmtjJ1mINc6+6bm8RuOty8Pa2x//EDvMzk6NAwd0qEkL25sv7HW+sktj3VytGgYWqRFG95nFuNjHR0axlzG2UQ7xMTp0DB0SIc6uKex/YBRzmIEOjQMHdKhDmY7V51o0VC0SItivnotHRqGDulQm7mMD2BYrvHDmEvDJ3qNn/zPo8/Mdt5Dh4ahQzoUcx5r6dAwdEiHNrzPLMbHOjo0jLmMs4l2iInToWHokA51MNv78xItGooWaVEH5qp16KB0SIdirnotHRqGDulQmymPDwujTUwp5YFJ3pLk2qXddyZ5dq31Pbscu9b6R0l+Z2nX1bl4cdjk2sb2z+9yPhPw1CTXLG3/cq31gyOdy0GUUv5aFitX/pml3T+X5Pm11nvHOaskydsb29f2eO035eJF6KZa60d3PqOGUsrDsrqK6x/u+32mSIcGpUPjGb1DpZSHJrmusfuVfY9zqrRoUFo0ntFb1MHJj491dGhQJz/OJtwhJkyHBqVDbPKoxvYhvu+aHB0alA6x1pznqhMtGpgWzZj56vV0aFA6RJuTHx/AsFzjB3XyDZ/wNX7yP4+e87yHDg1Kh8YzeofMeaynQ4PSofGM3qEOTn58rKNDgzr5cTbhDjFhOjQoHWKTWd6fl2jRwLSItcxV69BAdGjGzFWvp0OD0iHaTHZ8WBhtQkop90/yxiRPW9p9V5Jvq7X+4p7e5k2N7e/seG5fneQvL+26Lck793ROY/lHje1XjHIWB1JKeXqSn05y/6Xd70zy3Frr3eOc1f/3jiR3LG0/6WyMdXF9Y7s5pvflBbnYyI8muflA7zUZOjQ4HRrPFDr015M8cGn7liTv3vJYJ0WLBqdF45lCizY56fGxjg4N7qTH2cQ7xETp0OB0iE2+ubE9icn9Q9KhwekQbWY5V51o0Qi0aN7MV19ChwanQ7Q56fEBDMs1fnAn3fCJX+OP4efRs5z30KHB6dB4ptAhcx6X0KHB6dB4ptChTU56fKyjQ4M76XE28Q4xUTo0OB1ik9ndn5do0Qi0iDbmqs/p0OHo0LyZq76EDg1Oh2gz2fFhYbSJKKVcneT1SZ65tPueJM+rtb5jj2/1miSfXdq+rpTyFR1e1xzEr6+13rm/0xpWKeVFSZ6+tOu9Waz8eBJKKX8lyc/k4jdI787im4C7xjmrc7XW25O8obG7OcZWlFK+Mslzlnbdm+S1ezy1K+/ziCTf39j9s7XWuu/3mhIdGpYOjWsiHXpxY/snTr0zXWjRsLRoXBNpUdv7nPT4WEeHhnXq42zqHWKadGhYOsQmpZRvSfLExu6fGeNchqJDw9Ih2sx1rjrRoqFpETFfvUKHhqVDtDn18QEMyzV+WKfe8Klf44/g59GznPfQoWHp0Lgm0iFzHg06NCwdGtdEOtT2Pic9PtbRoWGd+jibeoeYJh0alg6xyRzvz0u0aGhaRBtz1To0BB0i5qpX6NCwdIg2Ux8fFkabgFLK/bII6rcu7b43yfNrrW/d53vVWj+Y5KeWdt0/yatKKQ9c85KUUr41F3/jzd1J/tk+z2tXZxe+rs+9LsmPL+26N8mLa6337v3ERlBKeVKStyb5nKXd70nyrFrrHZe/ahQ3ZPHNyRXXl1Keve7JZ2P0J3Nxhc5X1lr/d8trvqqU8qw+J1VKeWQWn98jlnbfneQH+xzn2OjQ7nTonA5tVkr5S0m+dmnXfUle1fc4p0aLdqdF57To0tcaHxvo0O6Ms3NH1CEmRId2p0PndOhcKeWJpZTnbH7myuu+PsmrG7vfU2t9337ObHp0aHc6dE6Hzpmr7keLdqdF57RoM/PVq3Rodzp0TodWGR/AWFzjd6fh547oGn9D3KM3GTq0Ox06p0ObmfNYpUO706FzOnTpa42PDXRod8bZuSPqEBOiQ7vToXM6dM79ef1o0e606JwWnTNX3Z0O7U6HzunQZuaqV+nQ7nTonA6tOrXx0fkPw0H9RJLvaOx7WZKbSinX9DzWrR1WmvynWfwGmz97tv3kJO8qpXxXrfV/XnlSKeUBSf5mkh9qvP6Haq2/3+VkSimPyuXj7JGN7atb/qyfqbV+fMNbva+U8nNJfjrJr9da77vkXB6X5B8neWHjSy+rtd604fh7cejPo5TyhCQ/n+TBS7s/kOR7kzy8lNLndO+std7a5wV91Fp/r5Tyb5L8w6Xdbyil/P0k/67WeveVnaWUxyb591mM1Ss+kc3fQPz5JG8ppbwvyX9M8qazb15WlFIekuRFWazs/YjGl/9FrfX3OvyxjpkO6ZAOLey7Q+u8pLH9jlrrH2x5rFOiRVqkRQuHatFRjI+R6ZAOza5DyXDjo5Ty4CQPW/Pl5oTyw1re68NTmlzbMx3SIR26aF/j41FJ3lhKeX8WP0B7c5IP1Hr5b1kqpXxNku9J8tLGed15tu+U6ZAO6dBF+xof5qr70SIt0qKL9j0+msxXr9IhHdKhi2Y5PoCT5Bo/k4a7xp9zj97k6JAO6dCCe/TGo0M6pEML7s8bjw7p0Ow6lLg/b2J0SId06CL3541Di7RIiy5yj97wdEiHdOgi9+cNT4d0SIcumuX46KzW6jHyI0nd4+Paju95bZK7Gq+9L8lvJvnPSd6e5I8vOf7PJrlfjz/bLXv4M72qw/t8fOn5f5rkV7P4R/qaJO9sOY9/PvDf9UE/jyx+o9G+xtKNA3we90vytkve+6NZXIBen+S3zsbm8tfvSvJNHcd589h/kuS/ZTHB9uokbzp7j3vWfA6vGLsRA41NHdIhHTpAh9a85wOyuFFi+XjPHbMBU3nscexokRbdsMexdOMAn8cgLTqW8THmY4/jRocmPs4O/Xnk+Do01Pi4fk+fyTVj9+KAfxc6pEM6dJjP49suef6nz8bHW7K4AeL1Sd6V5NY1x789ydPG7sQAfxc6pEM6dJjP49pLnm+uev3npUVapEUHHB+N9zRfffnnokM6pEPGh4eHxwk+9thk1/iJN/zQn0eO7xrvHr2JPPY4bnRIh27Y41i6cYDPwz16E3nscdzokA7dsMexdOMAn4f78yby2OO40aGJj7NDfx45vg4NNT6u39Nncs3YvTjg34UO6ZAOHebzcH9ev78PLdIiLTrM53HtJc83V335Z6VDOqRDBxwfjfc0V33556JDOqRDxkfnx2UryTEDtdYbSynPSfKqJF94trskeeLZ4zKvS/LdtdbPHv4Md/LgJE/a8JxPJXlprfU/DXA+rFFr/Wwp5Tuy+M1Kz1/60sOTPGPNy/44yYtqrf91y7f9/CRP6fC825J8X631x7d8HzbQIR2agpE69JwkX7C0/bEsJvoZgRZp0RSM1CLjYyJ0yDiDsemQDs3YQ7J5fFzxa0m+p9b6Owc8n9nSIR2aMXPVE6JFWjRj5qsnQod0aMaMD+CkucZr+BS4R2/edEiHpsA9evOmQzo0Be7PmzcdMs5gbDqkQzPm/rwJ0SItmjFz1ROhQzo0Y+aqJ0KHdGjGjn58XDX2CTCeWuvbkjwuyY9lMVDX+bUkz6u1vrDWetsgJ9ffjyS5KYtVOdv8QZIfSPKYqf6jnJta62dqrS9I8u1ZjLV1PpnkR5M8rtb69o6HvznJy5P8SpI7Or7mfyV5WRa/4cR/Yg9Mh3RoCg7cocu8pLH96lrrPTscjx1pkRZNwUAtMj4mSoeMMxibDunQDLw7i9+K+7okH+74mtuTvCHJs5I82U1Xh6VDOjQD5qqPgBZp0UyZr54QHdKhGTE+gFlxjdfwKXCP3rzpkA5NgXv05k2HdGgK3J83bzpknMHYdEiHZsD9eUdAi7RoBsxVT5wO6dBMmaueEB3SoRk5qfFRaq1jnwMTUEq5fxarHn9ZkkdmsbrxR5LcVGv90Jjn1kcp5fOSPCHJo7NYqfOBWfwH5iNJfrvW+rsjnh4dlFIeneRrk3xRks9NcmuS30/yK7XWu3c47lVJviLJY5J8cZKH5nx8fCrJHyX5zVrrx3b6A7A1HWIqDtUhjoMWMRWHbJHxMW06BIxNh5iDUsojkjw2i3H+55I8KMk9ST6d5BNJ3p/kA0fwm31Okg5x6sxVHwctAsamQ8yB8QHMkWs8U+EevfnSIabCPXrzpUNMhfvz5kuHgLHpEHPg/rzp0yJOnbnq6dMhYGw6xBycyviwMBoAAAAAAAAAAAAAAAAAAAAAAAAwuqvGPgEAAAAAAAAAAAAAAAAAAAAAAAAAC6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADC6/wfh0VgquWOTFwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 5), dpi=300)\n", + " configs = get_known_configs()\n", + " to_display = configs[\"Relative humidity\"], configs[\"RAM available\"]\n", + " for i, config in enumerate(to_display, start=1):\n", + " plot = figure.add_subplot(1, 2, i)\n", + " coros.append(plot_sensor(config, plot, {}))\n", + " await asyncio.gather(*coros)\n", + "\n", + "display(figure)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAE0YAAAUsCAYAAAC9bUPVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdd5h1Z1kv/u8dAqEEEnoRSIBIVUA6AiYRPDSlKr0EIgiCla6IAVEPR1DPQQRF6aKIQEDqT8HQu1IUBUKJEECQloSSEHL//lj7lXnX7Cl7z57Z8877+VzXXGQ9az1l773WzsXMN/dT3R0AAAAAAAAAAAAAAAAAAAAAAACAZTpk2QsAAAAAAAAAAAAAAAAAAAAAAAAAUBgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAYKSqjq6qHv2csOx17aSqOmX0+k9Z9pr2Iu/zga2qThp/VxwI87vvAAAAAAAAAAAObgdq7gUAAAAAODgojAYAAAAAAAAAAAAAAAAAAAAAAAAs3aHLXgAAAACwO1XV0Uk+M0OXs5OckeSbST6V5F+SvCfJG7r7nEWvDwAAAAAAAAAAAFaqqsqQeztqdOr7SY7q7tN3flUAAAAAAMzikGUvAAAAANgzDkty6STHJLltkscnOTnJ6VX1tKo6fJmL2+uq6gVV1St+PrvsNQF7S1V9dvQ984JlrwkAAAAAAAAAYOQ2WV0ULUnOl+SEnV0KLEZVHTfK7XRVHbfE9cgrwgJ5pgAAAGA1hdEAAACA7XapJI9N8q9VdfNlLwYAAAAAAAAAAIA968R1zj24qmrHVgIAAAAAwFwOXfYCAAAAgAPKt5Kcusa5Cye5RJJLrnH+qCRvrKpju/tD27E4AAAAAAAAAAAADk5VdYkkd1nnkqsmOS7JP+3IggAAAAAAmIvCaAAAAMAsPtDdx613QVVdMcnPJHlUkquNTl8syd9V1bW6+3vbs0QWYaPPGUi6+6QkJy15GTPzfAMAAAAAAAAAe9T9khw2auskteL4xCiMtnQHau4GAAAAANgZhyx7AQAAAMDe0t2f7+5nJ7lekldOueRqSX5hZ1cFAAAAAAAAAADAHvfg0fEnszrDdreqOmKH1gMAAAAAwBwURgMAAAC2RXd/K8l9k/z7lNP33+HlAAAAAAAAAAAAsEdV1Y0ybOa50ouSvHDUdqEk99mRRQEAAAAAMBeF0QAAAIBt093fTfL7U07dqKousdPrAQAAAAAAAAAAYE86cXTcSV6c5A1JvrzBtQAAAAAA7CKHLnsBAAAAwJ73xilthyS5RpJ3zztoVR2S5MeSHJ3k0kkukeSMJF9JcmqSf+nu8+Ydf5Gq6oeSXDPDWo/IsOvoGUm+luQ/k7x/UkSObVBVF0pykySXT3KZJIcn+WqGe+XD3f2pJS5vU6rq0kluluSqGdb/zQyBzfd292nLXNt2q6ojMrz2H87w/Hw3yelJ3j3La6+qKyS5cYbn8PAMz9/nk7y1u89Y8LLnUlWHJblFkisnuVyS7yf5ryQfTfKh7u4lLg8AAAAAAAAAYFea5IPuPWp+275sSVW9NMmvrjh3w6q6Xnd/eJvXdf4MuaVrJ7nkpPm/kvzzLHNX1cUy5F6ukeTIJN9K8qUk7+zuzy900avnvmSSmya5WpKLZcgtfSG7NHdVVVdMcr0MmcJLZyiQ95UkX0zynp3ICVXVDye5YZIfSnJYhqzaF5K8o7u/vt3z70VV9SNJjsmQ/7tkkm9n+Fw/myF/+b1tnt+zPP+8u+WZvF6SK2bIDp6T5Ivd/eJN9pcB3gZVdYEkN8rwPFwqw/flGRlyse+dYZxjMjyb++6xs5P8d4Z86Hu6+zsLXjoAAAA7RGE0AAAAYFt191eq6owMQYqVLjXPeFV1qySPSPJTGYqhreVrVfX6JL/f3R+bZ655VdWlktw1yW2SHJvksht0Oaeq3pPkT5K8YrMF3arqs0mOWuP0UVW1mSJKx3f3KVPGPiXD2vd5a3cft8Y6PprkR1Y0fSXJD20lbFRV907y0lHzI7r7TzfZ/5Ak901yvyQ/keSC61z7mSR/m+Tp3f3f8614e1TVcUl+I8mtMxQUnHbNx5L8XpKXzlI4q6pOSPL8UfNVuvuzc6xzPO+Tu/ukDfqclOS3V7Z1d604f+MkT0xyh6zxe8yqemuSx3f3e9aZ52eSPC7JjyepKZecU1WvSvLY7v7P9dY862uYYZyjk5yU4Xtj/F25z5eq6jlJntHdZ806x2i+U7KJ53uyrs+sM9QDq+qBG8237z2ZBPtOzxAu2+eU7j5+w0Wvo6r+b5JfHjVff7vDywAAAAAAAADArvGzGYrVrPTC0T//6uj8g5P8yjyTTTI9/zRq/p8c1mQDv99Mcv8kF11jjE8keep6hXmq6roZ8jN3ylAwZto1707ymO5+52yvYn1VdWx+kFs63xrX/HOSZyf5y1k3/FtU7mYy1mWS/FqSn0lynXUuPbeq3pvkWUleNuvGq+tlpCZ5tQcm+fXsn6Vb6fuT3M4T18s7rZjvpIzeo5F/qtrwLXthd5+w0UWbsZ15xTXmu26G5/a2Sa6wzqVnVdU/JnnaZt7X0RzH5QB/ljeRw9vWZ3mN8XbDM3mRJL+U5CEZNqSdZupndqBngDe6r2cxZY0bfqdslE2tquskeWySuye5yJQhXphk3cJoVXWVDN+3d8jan2+SfLeq3p7kj7r7DeuNCQAAwO4z9T+mBAAAAFiwaUV81ir+M1VVXX1S6OxtSe6Z9YuiZXL+fkk+WlV/UVVrFsZapMnuol9M8udJ7pGNAxFJcoEMxbv+Nsm/Tv7ofyAZBxguneSOWxzzhNHx2Un+ejMdq+p2ST6a5EVJ/lfWKYo2cZUMhbM+XVVzhR0XraoOq6rnZgin/FTW/z3etZO8JMkbJ2GeA1oNfifJezIEwdbb3OHYJO+qqkdPGeeIqnpFktckuUWmF0VLhufvnkk+VlW32dLi5zC55/4tQzByve/Fy2UonvZvVXXDHVjawk1293zJqPm4qrrWvGNOdnx+wKj53YqiAQAAAAAAAMBB5cTR8beT/N2+g+7+UJKPjK65X1VNLVC0FVV1tyQfS/KLWaOQ0sTVk7yoqv52vI5JfuZJSf45yc9ljUJKEzdP8vaq+o2trfx/5j5fVf1JklMyZK+mFlKauEGS5yZ526RIzY6qqgtU1VOSfDrJ47N+AaZkyCHdIsOGnR+eFKtaxDqumOQdSZ6XtYuiJcN7eesk766q313E3HtRVV2+qv4qyYeSPCjrF0VLhk0a75LhfT25qjbKlm52HZ7l2efcLc/kTTN8dr+f9YtmTet7MGaAd0xVPTHDs/2ATC+KtlH/i03u648neWQ2/nwvmCGD+/qqentVXXnWOQEAAFgehdEAAACAnXDklLYzNtu5qm6dYfev288x9yEZgm9vrarNBBS26sezfiGnjVwryXuWUaBpC16S5HujtgfNO9gkKDZ+/Sd399c30ffRSV6XoVjYrC6a5I8nhfS28hluyaSI3xuS/PyMXf9XhvDGegGmA8FzMuyOudnfXVaSP6iqh/5PQ9WRSd6c5G4zzHuRJK+pqhvP0GdLJgHHP05y4Rm6XTnD99kBWRwtw66YYw/bwnj3zup/xzx7C+MBAAAAAAAAAAeQqjomQ0GalU7u7jNHbS8cHV8iQzGlRa7lfhkKsh0xQ7efy1BQa98YlaFA0ZOzfiGj/aZO8rtV9cgZ5l09yDD3S5I8Ysaut8yQZ5mpANFWTIpf/X9JfitzFNfJUMDsnVX1M1tcx1UzbAB58xm7/kZVPXUrc+9FVXW9JO9Lcp+svRHmeu6cIX959S2uw7M8+5y75Zn8iQzF4OYtgHUwZoB3xKSg2e9kzve3qo5K8s4M9/X55xjilkneV1U3m2d+AAAAdt7S/gNPAAAA4OBQVVfL9KI/n95k/59J8oqs/iP2OUnekqFg2ueSfDPDzn9HJ/nJJLcaXX+TJCdX1U9097iI13b5foad/v4tyX8k+WqGgnCV5GJJfjjJzTLseLeyCNThSf6mqn6suz+3zvgfS/KNyT9fOcnFV5z73uT8Rs7axDXr6u4vV9XrM4SK9rlDVV2mu788x5APyOqiWM+bduFKVfW/kzxuyqmvJfmHJB9M8uUMO8IemWE3wtslucbo+hMzvK+PnmnVi/O8JMevOP54hkJp/5HhtRyR5MeS3D2rdyP8iSS/luTp27/MxauqX0ny0BVNpyX5+yT/muG1H5nkphlCZBcbdf/jqnpThu+Dv0mysnDYB5O8MclnkpyZ4X37ySR3yv732oWSPLeqbtTd5y7oZU1VVb+eZNrunmdP1vq2JF/IEBK7Sobna9+OshdJcnJW7Gy8Tc5J8uEVx9fO/t/FX0/yn7MM2N3/VlWnJDluRfMDquoJ3f3tOdb48NHxV5O8fI5xAAAAAAAAAIAD04OzuoDSuAhakvxVkv+T/QsUnZjkZQtax42S/N6KtXwjyeszFM36coZcyrWS3CNDxm2l+1TVyd398gx5khNXnDstyWsz5Ge+miE/c5PJOOP8zNOq6rXd/dk5X8OjktxrxfGZSV6d5P1J/msy9zUz5JauNOp7pSRvqarrd/c3so0mmya+c7KWsX9N8tYMmb1967hMhsJld8iweeY+hyd5eVXdors/OMdSLpoh1/VDk+NO8q4k/5ghU3NWkktnyAfeNckFR/2fUFV/393vXWP8L+UH2Z3Dk1xtdP5T2Tj/N1O2ZwPbmlesqhsl+acMr3Wl85K8PcN7+5nJGi6U5IpJjk1y6+z/XP9whg1Gb9jd39zEmsY8yzM+y7vombxckldm/2ftfRkKtp2W4X24fIYc3M9tYryDIgO8Qx6S/Qv1nZUh1/vODPfkIRme6eMzvO/7mRRFe29WZ2aT4TN+Z4as7deTXCDD5/zjGTbkPmzFtZdN8rqqukF3n7a1lwQAAMB2q+5e9hoAAACAXaiqjs4QIlnprd193IzjPDbJ00bNX09yqe4+b4O+V8kQKjhyRfO5Sf4oyR9091fW6Xv9JH+R/YsjJckfdvejNpj36Kx+7Q/q7hes12/S9xNJPppht723bCZYM/mD/e8nuffo1Ou6+6c36j8Z4wVJHrii6bTuPnozfdcY75QMoaF91v3sq+pOGYIzKz2qu/9wjrk/kSEwss/nkxy13v1SVXfNEGhZ6etJHp/kRd393TX6VYadX5+TIWyz0p27+zUzLn8mU97n7+YHoZwvJfml7p5a/KqqDk/yrAyF5Fb6RpIrdPd3Npj7hCTPHzVfZZ4wVVWNf8n45O4+aYM+JyX57VHz2RlCKN/OEM56bndPC7lcNkPBxFuMTv15hnDLMybHn07y0O5+8xpruFGS12X1Z3+f7v7r9da/1mvo7g13Kq2qayT5UFaHHd8wWe/n1+h31yTPzg/CPd/JELSbdf5TMsPzvaLfZ5MctaLphd19wkb9poxz96wu6nZid29YAHE0zg2TfGDU/PTufsysawIAAAAAAAAADjxVdb4MhZ+usKL5C0muNC1rVFWvy1CIZ5/zklx11uIoVXVchgJOK+3LvSTJM5M8aVpRoao6LEO25RGjUx/PkAN6d4YCMRvlZy6XIT/z46NTf97dv7CJ13BSVmd3VmaXnp/k19d4DYdk2LzxqVmdf3lBdz9onvk3k3uZ9H1VhszXSu+arHetImP7ijf9Voa1r5zrs0mu291nbjDvOCO18v16b5Jf7O5/XqPv0Rk+rxuMTr2pu2+33ryT/sdl9T13fHefslHf7bANecWLZ8iKjsd4fpKTunvNAm+TzXufleS2o1Ov7O67bzDvcfEsb+lZnoyzW57J7+cHRfI+kuRh3f3uNfpecFqudC9kgBf5fTFPZnCNbOrKz+Y5SZ7Y3V9do/9+n01VXSDJO5LceHTpa5M8trv/fZ21XC7JHyS53+jU+5PcfNozCQAAwO5xyMaXAAAAAMynqi6f5NFTTv31RkXRJv4q+xdF+3aS23b3Y9cripYk3f2hDEGRfxid+qWqGu9wt0g37u67d/erNrvbYHef1t33SXLS6NQdqmraDnq70esz7Nq20gmzDlJVt8j+RdGSIUixXlG0y2R1iOKTGYIxf75WUbQk6cGrMuzyOC5G9fuTwmk7aV+46NNJbrZWUbQk6e6zMrzHbxqdOjLDTo4Hon1F0W7T3c9ZK3TS3f+V5Kcz7MC50v2SPGXyz/+WIbgytSjaZJwPZPp7talA1xY8O6uDZH+b5KfXKoqWJJN79dj84HVfaK1rd7mTs/p5e/gc44z7dJI/m2tFAAAAAAAAAMCB6PbZvyhakrxknazRC0fHh2SOjNMa9hVS+pXu/uVpRYiSpLvP7u5HZnXm5xpJ/n6yprOS/OQG+ZkvZcjPjHN096qqeTMl+/Is/7u7H7zOazivu5+R5OcybHS60glV9RNzzr+hqnpoVhdg+tMkt1yvAFOSdPc3Jpuqnjg6dXSSX5xjOfver9cmOW6tomiTuT+b5KeyOmP3U1V15Tnm3muelf2Lon0/yf0m9+GaRdGSpLs/leG7YJwhvFtV3XSOtXiWB5t6lnfZM7mv8NY7k9xqraJok7nXypUerBng7bbvs3lUdz98raJoydTP5qSsLor2+O7+mfWKok3G+lJ33z/Jk0enbpzkZzdeNgAAAMukMBoAAACwLSa78L0xyaVHp76dYWe0jfr/VJKbj5of3N1v2ewauvucDIGN/17RfP4kv77ZMWa12SDEGp6SYReyfSrJg7e2op3R3edm2CFvpR+tqhvOONS0glTjwNLYryQ5YsXxt5Pcbr0CU2Pd/bkk9xo1XzvJnTY7xgJ9L8k9NrMTbXd3pt/P490vDyS/ul4gaZ9JWOvpo+YLJ7lIhh0v79Hd48Jp08Z5R4bvqpWOr6px4bKFqKofTXL8qPnUJA/YTMHI7t63o+gBaxLyGxcwu1FV3WizY1TVEVm9w+Y/dPepW10fAAAAAAAAAHDAGBfTSZIXrXP9q5OMCwQ9qKoW9d/YvbS7/98mr/2tKW2Xmfzvr2xUUChJuvvrSZ4xar5Yhg1F53VKdz9hMxd292uTPHXKqV/ewvxrqqpDk/zGqPmN3f2ISY5qU7r7+Un+YtT8a1V12LTrN/DZDAW81ty8c8W8X8vq4jyHZCiYdtCqqmskueeo+Te7+682O8bk8/+FJOMiSY+fc1me5cG6z/IufSa/meSe3X3GHH0P2gzwDnlFd//hLB2q6uJJfmnU/Jzuftos43T3SVm90fa83w8AAADsEIXRAAAAgIWoqgtW1Q9V1R2r6s+TfCTJdadc+pBNFqx63Oj47d39slnXNQkp/N9R811nHWcnTIIgLx4133IZa5nT86a0nbDZzlV14ST3GDW/bbKj41p9Ds/qnQGf0d2f3uy8+3T3O5O8edS8jHvlpd39wc1e3N0fSzLebXTWgnS7xSeyOuC0nles0f7iyfuyWX83Oj40yY/O0H8WD5vS9qjuPnuzA3T3mzLsKnog+/Mk54zaHj5D/wdmKIS30nO2tCIAAAAAAAAA4IBRVZdJcsdR8z9397+t1WeSzxhn0I5KcusFLOn7WV0gaE3d/f4k/znl1Mez8UaSK41zL0lygxn6j81a1OxpScZ5wDtX1eW3sIa13CvD57VPZ3XBnM16yqT/PpfN6o1cN+PJMxZS+psM98pKB2rWa1Eek/3/O9fPZPWGmRvq7u8l+b1R8+3n2CDTs/wDGz3Lu/GZ/MPuPn3ONWzJHsgAb6fzkjx6jn6PSHL4iuOzsjpfvllPGR1fv6qOnnMsAAAAdoDCaAAAAMAsjq2qnvaT5DsZQhGvTfKQrC5Y8+0k9+3ul240SVVdIslPjppnKZY09rrR8VFVddTUK5fvk6PjG1TV+ZeykhlNClG9b9R8nxl27bt7kouO2jYKBt0myZGjtr/c5HzTjO+VY7cw1ryeO0ef8ft+9UUsZAmeP+NOkZ/OsMPj2Kz3wL9MabvGjGNs1u1Hx1/M6vtuM/5sAWtZmu7+cpKXj5rvVVXj53ktvzA6Pj0HfrE4AAAAAAAAAGDzHphknKt64Sb6vWhK24lbX07+sbtPm7HPh6a0zZqf+VSSM0bN8+Ze3tPdH52lQ3d/N6sLAR2aIde1aD87Oj6lu0+dZ6Du/lyS8WudNSv2rSQb5iFH8349qzOC25VT2vWqqpLcbdT8gu4eF4/brNePjg9LctMZx/As/8BGz/JueyY70zf43UkHbAZ4m72luz87R7/xPfby7h4/J5v1riTfGLUtIyMMAADAJimMBgAAAGy3MzMUNbvmZoqiTdwqSY3a3rWFNXxmStuPbWG8Tauqw6vqDlX1+Kp6UVW9rqreXlX/XFUfGv8k+ZPREIdl2PnuQDEuZHaJJHfaZN8HjY7PyurCSWPjUMLpc4SSVhrfK0fPUKhpEb6T1UXONuNTo+PzVdXhU6/c3d42R5/xbpvfTvLBGcf47JS2hX/uk52KrzJqfvWcQb43ZQhXHsjG33cXTvKAjTpV1bFJrj1qfm53n7uohQEAAAAAAAAAu96DR8fnJvnrjTp197uyunDNXSabeW7FPLmXaTmnty9gnHlzLyfP2e+VU9puNudYU00KaN1q1LyVTGGyOis2a6bwPd19zhzzjrNeR8wxxl5x3SQXH7XN/bl299eyeqPNWT9Xz/L+pj7Lu/SZPLW7P7/FNeznIMwAb5d/mrVDVV08yY+Omrfy/XBeVj9jO5IlBwAAYD6HLnsBAAAAwJ73gSTPnOzmtlm3mNL2iqra9O55m3CpBY61SlXdMMljMhQFu9AWhzsyyULDGtvor5P8YfZ/zSdkgwJnVXVUkuNGzX/b3RsVfhrfKxefhEvmNa2Y2KWyepe47XJad39vjn7jMFcyBObO2uJ6dto8u0WeOTo+bY4CWeMxku0JHN5wStusRdySJN19blV9JMnNt7ak5enu91TVB7P/+/KwJP9vg64PHx2fm6EAJwAAAAAAAABwEKiqWyS55qj5Dd39lU0O8aIkv7Pi+LAk903yzC0saxG5l0WNM2/uZa4cS5KPJvlekvOvaJuWk9mKa2XYpHOlB1bVT29hzCuPjmfNFI4L7G3WOOt1MBdGm5YVfWZVnb2FMS88Op71c/Usb+5Z3o3P5D9vYe79HMQZ4O0yz2dz8ySHjNqeUFWP3MI6jhkdb2uWHAAAgK1RGA0AAACYxbcyPaxx/gy79l1+yrnjk7y/qk7o7g135Jy44pS2626y72ZdcsHjJUmq6vxJ/ihD4Z7xH+TndcAEn7r7m1X1qiT3WdF826q6fHd/cZ2uJySpUdvzNzHl+F65cJLrbaLfLC6Z+UJK8/janP2mFVM7/5S23e7rc/QZv/aZx+ju7w0bWO5nO96/y0xp+/gWxvuPHMCF0Sb+JPs/69eqquO6+5RpF1fVZZLcddT8mu4+fZvWBwAAAAAAAADsPidOaXvhDP1fnOQp2T+vdGK2VhhtEbmXRY0zb+5lrhxLd59dVZ9N8sMrmqflZLZiWqbwimu0z2vWTOGisl4HYs5rUaZ9fuOih1s16+fqWd7cs7wbn8kvb3XCgz0DvI3m+Wym3UtX3epCRrYlSw4AAMBiLOr/mAMAAAAHhw909/Wn/Fynu6+Q4Q/EJ2Qo1rPSBZK8uKp+ZpPz7MQfmre6g9sqk0DEy5M8Iov9vcuBFnwaFzQ7X5L7r3VxDRWpHjBq/mR3v2MTc413HNwOC79X1jEtIHXQ6O5FvP7d/B4eOaVtvAPsLLbSd7f4myRfHbU9bJ3rT8zw75SVnr3QFQEAAAAAAAAAu1ZVHZ7kHqPmryd57WbH6O7Tkpwyar5eVd1wC0tbSGZlQfmZeS0yxzItJ7MVuzFTuJtzSgeKPfu5HgTP8m787M7YymQywNtqns9mN95jAAAA7CCF0QAAAICF6e6vdfcLk1w/Q7Gblc6X5CVVdfQmhrr4gpe2Ux6X5M5T2k9P8qdJ7pfk5kmulCEscsHurpU/SY7fsdVunzcnOW3U9qB1rj82q3dxGxdXW6WqLpzksNmWBkt10Slt39rCeFvpuyt093eT/OWo+W5VddnxtVV1SJKHjpo/meE7BwAAAAAAAAA4ONwryUVGbS/r7rNnHOeFU9pOnG9Je8YicyzTcjJbcaBmClmfz3V77MSzvBs/u3O32F8GePvM89nsxnsMAACAHXToshcAAAAA7D3dfXZV3T/JZbP/H/kvlqEAzq03GOI7o+NvdPeu/gN3VV0myRNGzecmeUySP+nuzf5R/4Dffay7u6pemORJK5qvWVU36+73TOkyLpr2/SQv2sRU301yXvYv/ioagZ8AACAASURBVH9yd991pgXDzjlzSts4qDuLrfTdTf40yaPzg2f5/BmCxr83uu72SY4etf1Zd/e2rg4AAAAAAAAA2E2mFS97WFU9bAFj37uqHtXd4/zaweIiSc7YQt+VpuVktmLaZ3KX7n71gudhZ037XC/e3d/Y8ZXsLTvxLO+pZ1IGeFeado9dv7s/vOMrAQAAYCkO2fgSAAAAgNlNQgAPyOpwxU9W1T036P7fo+Mjq+rIhS1ue9wpyYVHbY/r7j+eIRCRJJdY4JqW6QVJxsWKThhfVFWHJ7n7qPn/6+7TN5qgu89LMg5AXWXzS2QRqur8y17DAWRaYO+ILYy3lb67RnefluS1o+aHVtX499cPHx1/N8N3DQAAAAAAAABwEKiqaye52TZOcWSSu23j+LvdInMsiy5sNc4UJrJie8G0z/XonV7EHrQTz/JeeyZlgKdbZj50r91jAAAAzEhhNAAAAGDbdPfnkzxpyqnf26CY0n9NabvuYla1bX5qdPz1JH8yxzhXXcBalq67P5PklFHzvarqgqO2e2T1DoPPn2Gq8b1y9ao6bIb+B7PvTWmbJ8Ryya0u5CDy5Slt19jCeNfcQt/dZvx9eVSS2+87qKr9jif+tru/ut0LAwAAAAAAAAB2jRP3yBy71dXn6VRVF8jqYlbTcjJbcSBmCtmYz3V77MSzvNc+u72UAV5UNjRZbqG3vXaPAQAAMCOF0QAAAIDt9uwknx61XTXrB8jeN6VtXBBnt7nS6Pi93X3OHOPcfBGL2SXGBc6OSHLXUdsJo+OvJXnNDHOM75ULJTluhv4HszOmtF1sjnGO2epCDiIfnNJ2w3kGqqpDs7dCPv+Y5OOjtoev+OeHZvXvs5+9rSsCAAAAAAAAAHaNyUac9x81n5Pkw1v8+dpozOOqajcUtlmGuXIsGTIs46I703IyW/GRJN8dtd1uwXOw8w7ErOiBYCee5b32TO6lDPBCsqFVdcUk482Qd9J7p7T5fgAAADiIKIwGAAAAbKtJMOApU079ZlUdtka3f5jSds9JIaDd6lKj43FgbkNVdakkx885/7mj4/PNOc4ivSKrAxYP2vcPVXW1JLcanf+r7j57hjmm3Sv3m6H/wewbU9rmCXUeu9WFHCy6+8tJPjNqvlNVzfN72tsmucjWVzWTbfue6e5O8qej5ttX1VGTYPO4mOaHuvs9i5ofAAAAAAAAANj17pTk0qO2V3X39bfyk+SJozErKzJOB5m7zNnvblPaFprr6O7vJnnHqPnyVXXrRc6zi41zO8lyM4KLyhG9K8m3Rm13rKqLzzkeg21/lvfgM7mXMsB7Ihva3aclOXXUfJOquvoy1gMAAMDOUxgNAAAA2AkvSfKJUdsVkzxk2sXdfXpW7zJ3lSQnLHxlizMO54xDEpvxiMy/u9qZo+PD5xxnYbr720leNmq+dVXt21nvhCndnj/jNG/K6l0H711V15hxnIPRx6e03WSWAarqfEkevJjlHDTeMDq+QpI7zjHO1O/Pbbbd3zMvSHLWiuNDkjw0yV2TXHZ07bMXPDcAAAAAAAAAsLuNN1VLhlzaVr0syTmjthPm3OjuQHfzqrrOLB0mm6Pef9R8bpJ/XNiqfuDVU9pO2oZ5dqNxbidZbkZwITmiyca7bxw1XzTJo+YZj/+xU8/yXnom91IG+PTsn8NLZsyGTjx0C2tYlPE9dkiSJy1jIQAAAOy8g/EXtAAAAMAO6+7vJ/mdKaeeUFVrhQB+d0rb03fxTl9fHB3/eFVdZLOdJyGUJ2xh/q+Pjo/cJbsmjgudHZLkAZPg4ANG5z7c3f8yy+Dd/d9J/nzUfL4kL62qC8200oNMd385yedHzfeYFDvbrEdkvp0ED2bPmdL29Kq6wGYHqKrbJLnz4pa0aePvmYV+9t19RpIXj5pPTPJLo7Yzkrx0kXMDAAAAAAAAALtXVf1Qkv81av5KVhdUmll3fy2rN7q7YpLbbnXsA9T/nfH6x2Z4v1Z6dXeP83SL8JdJvjRqu2VVPW4b5tptxrmdZLm5rUXmFadlRR9bVbecczwGO/Es76Vncs9kgLv7vCQfGjXfsaqO2OwYVXWnJD8xz/wL9oys3jz5vlV1z2UsBgAAgJ2lMBoAAACwU16a5D9GbVdI8rBpF3f3q5J8YNR8RJI3zLqT3T5VddGqekxV3W+e/ht4++j48CS/vZmOVXV0ktckOWwL8390StsdtjDeQnT3u7P6cz8hya2TXHnU/rw5p/n9rN6t7wZJXjVvMKSqjqqqZ1bVj8y5pgPFONR55SS/upmOVXXrJP9n4Sva47r7o0n+adR89STP38xOw1X1w1ldPGynjL9nfqSqrrTgOf5kdHzZJOOQ40u6e7yjJQAAAAAAAACwdz0ow2aJK72su89d0PgvmdJ24oLGPtDcuqqeupkLq+r2SX5ryqn/t9glDbr7O5leROv3quqR845bVberqj+df2U74nNJvjlqW2Y+cGF5xclmqq8YNZ8/Q/5vrsJMVXVYVT20qn5tnv57xLY/y3vsmdxrGeBxNvRCSTZ7P1w3qzdFXopJYb5nTTn1vKq6+zxjVtX5quqeVTXt3gUAAGAXURgNAAAA2BGTHciePOXU46vqwmt0u3eSr43arprkvVX1m5vZvayqDqmq46vqOUn+M0Mhp8vNsPTNekWS80Ztj6mq36mqQ9dZ372TvDs/2L3xjDnnf8+U+Z9RVXeuqvPPOeaijAMSx2T1boTnJPmreQbv7i8leWCSHp26bZIPVtX91vsM9qmqi0zCDq9McmqSRya54DxrOoD8xZS2p1XVL1RVTetQVRec7Oj4hgxBnvFufGzsF7P6fbtPktdMdjieqqrukuRt+cF32He2Z3lretfo+JAkL6+qGy1qgu7+WFYXjht7zqLmAwAAAAAAAAB2t0mG5UFTTk0rZjavv8/qolN3qqpLL3COA8G+PMtvVtVz18rnTTJ5v5rklRkKWK30gu5+2zau8VlJXj1qOyTJM6vqVVV1vc0MUlVXqarHVdVHMuSg5irAtVO6uzPkDFe6TVX9flVdZglLWnRe8ReSfGbUdqkkb66qP6iqTWU+q+qmVfWMJJ9N8mdJrjbHWvaCnXyW98ozudcywC9I8v1R2yOr6slrvZ5JwbATk7wjySUyZHLPmWPuRXtikveN2i6c5O+q6i+qalPPeVX9SFU9JcknkvxNkk3dmwAAACzPhv9BKAAAAMAC/W2GP1BfZ0XbZTMUCXr6+OLuPrWq7pHk9UkusOLURTLsXPaEqnpHkncm+WKSb2T4Y/eRSa6U5AaTnyMX/kpWr/UTVfWSJA8YnXpikhOq6u+SfCTJWRkCA9dIcqfsH7z5dpLHJXn2HPN/saremP13iLtskpOTnFNVn0vyrawuHvbz3f2BWeeb0YuT/F7237X1WqNr/r67vzrvBN39iqp6UpLfGZ26ymT+p1fVKUk+kOQrGd6Li2W4N45JcqMk183Wduw74HT3+6rq1UnuvKL5fBkKTz2iql6VoUjcOUkuneSGGe6xlWG6X41CVTPp7v+oqt9M8ozRqTsmObWq3pBhB8ovZtip8aoZPqMfXXHt6UlenuH93ymvzlCs8hIr2m6a5P1VdWaSL2RKobzuvv6M8zwryfFrnHtHd0/bHRMAAAAAAAAA2JuOzw8Kzuzzye5+76Im6O6zq+rlSX5+RfP5k9wvyR8tap4DwJMybDyaDO/FParq5CTvT/LlDFmraya5e5IrT+l/WpJf284FdndX1f0yFO4ZF7W5S5K7VNWHk5yS5JNJ9mXSjsxQaOu6GTJQ43vqQPC8JLcbtT0+w+a0X8yQ6zl3dP413f2kRS9k0XnF7v5qVd0pw+e6sojXoUkeneSXq+rdGTaV/HySr2fI+h2Z5PJJfixDBvBgK2a4lh17lvfKM7nXMsDd/YWqemZW5wuflOS+VfWKJP8+WfMlM2QT75j974enZdjg+qhZX88idfd3q+quGYrHXWl0+sQMn88Hkrw1Q1HEr2XIwR6ZIet6/QzfD2tuWgsAAMDupDAaAAAAsGO6+7yqenKGAmkrPbaqnt3d35rS581Vdaskf5fVf9C+SJLbTn52g19OcpMMgZGVrpiNixd9L8nPZQgZzOsxSY7N8L6sdIGsvfPh4VuYb1NWBDbuuM5lz1vAPE+tqi9kKKp0wdHpyya55+SH/T0syY2TXGHU/qPZvxDXNH/Q3X9WVQqjzai7/7CqLpXkCaNTF0xy18nPWr6VITT209u0vKkmAaNfS/LCKacvmiHstQgnJ/lcVn/nJ3OExgAAAAAAAACAA9qJU9pesg3zvCT7F0bbN/fBVBjt6RmKx9xjcnyxDEWCxoWCpvl8kp/s7m9s09r+R3efNckUPj9DYaex62V1gaa94BVJ3pzk1lPOXX7yM/ahbVzPQvOK3f2vVXXjJK9M8iNTxjx28sPGdvRZ3kPP5F7LAP9mkttk9fN0tSSP3WAtL5v0v/cG1+2ISaG3m2RY10+MTp8vwwavN93xhQEAALCtDln2AgAAAICDzr5d01a6dJJfWqtDd78vyQ0yhCa+t4W5O8Ouc2/fwhhrD979zQwhgvfM2PULSW7T3a/f4vwfS/JTSU7dyjjbZL3CZ19M8qZFTNLdz0ty8yRv2eJQ303yN0n+c8uL2uW6+0tJbpnZ7ptzkjy6uzcKx7CO7v6NDDtrzhKG+nyS46ft8rgTuvtFGULAZ27jHN9P8mdTTn0lQ8ATAAAAAAAAADgIVNWRSe425dRfbcN0b8vqrNB1quqgKbTS3Z3kvklm3STxnUmO7e5PL35V03X3md39s0kenuT0LQ73nxmyibtad5+X5GeTvHTZa0m2J6/Y3Z/MUNzoDzNsHrkVH0iypUzmgWoZz/JeeCb3Wga4u7+d5Lgk75ulW4bCeveZfOfsGpOs662TPDHJ17Y43L9n9SbfAAAA7DIKowEAAAA7ahK4OGnKqUdX1UXX6fff3f3gJMdk+KP7v2X4A/xGzkzyugzFh67S3cd393tnXvgmdffpGXYje2SSjcIhpyX5rSTX7O63LWj+d2fYre4OSf40yTsyhC7OSrLMkMLfJ/nvNc69aFIIaSG6+0PdfeskN0vyogyFpDbjixl2fn1gkst19727+8uLWtdu1t2fSXLdJL+R4X1YyzkZdtz7se5+xk6sba/r7j9Ocp0kL0xyxjqXfjnJU5Ncp7vfvxNrW0t3/2WSH0ryoCQvTvIvGdb3nQVOM63w2/O6++wFzgEAAAAAAAAA7G73TXLBUdu7u/tTi55okmubVnDtxEXPtZt197nd/fAMxYHekvUzZ/+S5CFJbrWTRdFW6u7nJLnqZB3/mM1tUHhehrX/QZLjkxx9oGShuvsb3X3fDBnBk5K8Nsmnknw9W9t0dt71LDyv2N3f7u5HJTk6w2v8QJLN5Au/m+Ge/Y0MGasbb7VQ1YFsWc/ygf5M7rUMcHd/NcktMhSsW+/fnd9P8oYkt+jux+y2omj7TO7r301yVJJHZXh/ztlE13OTvCvJU5LcpLuvPdkkFgAAgF2sht/ZAgAAABx4qurSSW6Y5NJJLpnk8Ay7BJ6ZoRjWfyQ5rZf4C5CqunqSm0zWeJHJ+j6f5CPd/fFlretgU1XHJLl2hvvkkkkukCEo8s0kn0nyHwdLEbTNqKrrJrlekksluXCG9+njGYKlZy1zbXtZVR2W5JZJrpzkchmCTP+V5CNJPrRbw0bboapemuTeK5o6yTHLCtECAAAAAAAAAByMqupSGTaovFqGfN4ZGTZe/JftKFC3VVV1gQyZwitmyD5dPENBnDMzbOz5iSSf6O5FbgDINquqI5LcOMllMuT/jsiwieOZGYpGfTzJpxe5QeuBoqpOSvLbK9u6u6Zct5Rn+UB/JvdaBnjyem6Y4Vm6aIbP4VNJ3tXdX1vm2uZVVRdOcqMkV8jw/XBkkrMzvLYvZ/h+OLW7N1NADQAAgF1EYTQAAAAAAHaNSdHLzyU5bEXzG7v79ktaEgAAAAAAAAAAwK6z2cJoAAAAAAeaQ5a9AAAAAAAAWOEh2b8oWpI8axkLAQAAAAAAAAAAAAAAAGBnKYwGAAAAAMCuUFUXSfIro+ZTk7x+CcsBAAAAAAAAAAAAAAAAYIcpjAYAAAAAwG7xlCSXGbX9cXeft4zFAAAAAAAAAAAAAAAAALCzFEYDAAAAAGCpquoSVfX0JL8+OnVakucuYUkAAAAAAAAAAAAAAAAALMGhy14AAAAAAAAHl6r6iyQ3mhxeKskVktSUSx/T3efs2MIAAAAAAAAAAAAAAAAAWCqF0QAAAAAA2GnHJLneBte8qLtfvhOLAQAAAAAAAAAAAAAAAGB3OGTZCwAAAAAAgJGXJPn5ZS8CAAAAAAAAAAAAAAAAgJ116LIXAAAAAADAQe87SU5P8u4kz+vuU5a7HAAAAAAAAAAAAAAAAACWobp72WsAAAAAAAAAAAAAAAAAAAAAAAAADnKHLHsBAAAAAAAAAAAAAAAAAAAAAAAAAAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdIcuewGwbFV1RJJjVzR9Lsk5S1oOAAAAAAAAAMBWXCDJlVYcv7W7v7msxQCAjB4AAAAAAAAAsEfI5+0QhdFgCFy9etmLAAAAAAAAAADYBndO8pplLwKAg5qMHgAAAAAAAACwF8nnbZNDlr0AAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgKU7dNkLgF3gcysPTj755BxzzDHLWgsAAAAAAAAAwNxOPfXU3OUud1nZ9Lm1ruX/Z+/Owyyr6nvh//bpmrrpEehmVJtJQKIiyhtoGkRARcwbjfGS+JKHaHzVKDF4fRH1GgbjjUOccm/kxuGiYDSGoIISofFGmVFB0NgJIIJAM3dDz0ONZ71/dHdRw9nn7FN1qs6pU5/P8/RD77X3GvbuemBteq3vBmCaWKMHAAAAAAAAAMx41udNH8FoENE/8uDQQw+No446qlljAQAAAAAAAABopP7alwDAlLJGDwAAAAAAAABoR9bnTZFSswcAAAAAAAAAAAAAAAAAAAAAAAAAIBgNAAAAAAAAAAAAAAAAAAAAAAAAaDrBaAAAAAAAAAAAAAAAAAAAAAAAAEDTCUYDAAAAAAAAAAAAAAAAAAAAAAAAmk4wGgAAAAAAAAAAAAAAAAAAAAAAANB0gtEAAAAAAAAAAAAAAAAAAAAAAACAphOMBgAAAAAAAAAAAAAAAAAAAAAAADSdYDQAAAAAAAAAAAAAAAAAAAAAAACg6QSjAQAAAAAAAAAAAAAAAAAAAAAAAE0nGA0AAAAAAAAAAAAAAAAAAAAAAABoOsFoAAAAAAAAAAAAAAAAAAAAAAAAQNMJRgMAAAAAAAAAAAAAAAAAAAAAAACaTjAaAAAAAAAAAAAAAAAAAAAAAAAA0HSC0QAAAAAAAAAAAAAAAAAAAAAAAICm62j2AGA2SilFuVyOlFKzhwIwTpZlUSqVIsuyZg8FAAAAAAAAAADqZo0e0KqszwMAAAAAAACoTTAaTIOUUvT29saWLVtiy5Yt0d/f3+whAdTU1dUVCxYsiAULFkRPT4+FWAAAAAAAAAAAtCRr9ICZxvo8AAAAAAAAgHyC0WCKbd++PZ544okYGBho9lAA6tLf3x/PPvtsPPvss9HZ2Rn7779/zJs3r9nDAgAAAAAAAACAYdboATOR9XkAAAAAAAAA+UrNHgC0s+3bt8eaNWssuAJmvIGBgVizZk1s37692UMBAAAAAAAAAICIsEYPaA/W5wEAAAAAAACMJhgNpsjuBVcppWYPBaAhUkoWXwEAAAAAAAAA0BKs0QPaifV5AAAAAAAAAM/paPYAoB2llOKJJ54Yt+Cqs7MzFi5cGPPnz4/Ozs7IsqxJIwTIl1KKgYGB2Lp1a2zevHnUF3V3//vtkEMO8e8wAAAAAAAAAACawho9YKayPg8AAAAAAACgNsFoMAV6e3tHLVSIiFiwYEEccMABFioAM0JnZ2fMmzcvli5dGo8//nhs2bJl+NzAwED09fVFT09PE0cIAAAAAAAAAMBsZY0eMJNZnwcAAAAAAABQXanZA4B2NHKBQsTOBQwWXAEzUZZlccABB0RnZ+eo8s2bNzdpRAAAAAAAAAAAzHbW6AHtwPo8AAAAAAAAgMoEo8EUGLvoauHChRZcATNWlmWxcOHCUWVj/z0HAAAAAAAAAADTxRo9oF1YnwcAAAAAAAAwnmA0aLCUUvT3948qmz9/fpNGA9AYY/891t/fHymlJo0GAAAAAAAAAIDZyho9oN1YnwcAAAAAAAAwmmA0aLByuTyurLOzswkjAWicjo6OcWWV/n0HAAAAAAAAAABTyRo9oN1YnwcAAAAAAAAwmmA0aLBKX2jLsqwJIwFonFJp/JTBFykBAAAAAAAAAJhu1ugB7cb6PAAAAAAAAIDRBKMBAAAAAAAAAAAAAAAAAAAAAAAATScYDQAAAAAAAAAAAAAAAAAAAAAAAGg6wWgAAAAAAAAAAAAAAAAAAAAAAABA0wlGAwAAAAAAAAAAAAAAAAAAAAAAAJpOMBoAAAAAAAAAAAAAAAAAAAAAAADQdILRAAAAAAAAAAAAAAAAAAAAAAAAgKbraPYAmB5ZlnVGxAkR8fyI2C8itkbEExHxi5TSww3u66CIODoi9o+I+RHxZEQ8EhG3p5QGGtkXAAAAAAAAAAAAAAAAAAAAAAAA7UEwWpNkWXZwRBwbEa/Y9c9jImLBiEseSSktb0A/SyPioxHxRxGxZ841t0fE51JK35lkX2+OiPdHxPE5l6zPsuyKiLgwpfTMZPoCAAAAAAAAAAAAAAAAAAAAAACgvQhGm0ZZlp0cER+OnWFoFUPKGtzf6yLisohYVuPSFRGxIsuyb0bEu1JK2+rsZ35EfCUi/rjGpXtGxLsj4k1Zlv1pSun6evoBAAAAAAAAAAAAAAAAAAAAAACgfZWaPYBZ5uiIeE1MTyjayRFxdYwORUsRcVdEXBkR/ycinhlT7ayI+FaWZYV/LrIsmxMRV8T4ULR1EfHDXX3dvavv3faJiO9lWbayaD/QzpYvXx5Zlg3/uvHGG5s9JAAAAAAAAAAAAJjxrM8DAAAAAAAAgJlHMFpr6IuIBxvVWJZlB0bEdyOia0TxbRFxVErpFSmlM1NKr4mIAyPi3IgYGHHd/x0R/72O7j4ZEWeMOB6IiPdGxIEppdfu6uvlEfE7EfGTEdd1R8TVWZbtV0dfAAAAAAAAAAAAAAAAAAAAAAAAtCnBaNNvICJ+GRH/OyLeFREvj4gFEfH/NrCPj0bEkhHHt0fEaSmle0delFLqSyn9z4g4c0z992dZ9oJanWRZdnDsDFYb6b+klL6QUuof09c9EXFqjA5H2ysiLqrVDwAAAAAAAAAAAAAAAAAAAAAAAO1PMNr0ujwiFqaUXpZSekdK6csppbtTSgON6iDLssMi4k9HFPVHxFtTSr15dVJKV+8a227dUSyw7KKI6BxxfFlK6XtV+tkREW/dNabd3r4rYA0AAAAAAAAAAAAAAAAAAAAAAIBZTDDaNEopbagWUNYg/09EzBlx/N2U0m8K1PvUmOMzsyzrybs4y7K5EfHmGm2Mk1K6PyKuHlHUETvHDAAAAAAAAAAAAAAAAAAAAAAAwCwmGK39/MGY468VqZRSujcifjaiaI+IeE2VKq+NiHkjjn+SUrqv0AjHj+lNBesBAAAAAAAAAAAAAAAAAAAAAADQpgSjtZEsy/aNiJeOKBqMiNvqaOLGMcevq3Lt6TXqVnNL7Bzbbi/LsmyfOuoDAAAAAAAAAAAAAAAAAAAAAADQZjqaPQAa6nfGHP8qpbStjvq3jzk+qo6+flK0k5TStizLVkfEy8b09XTRNoD6pZTi7rvvjvvuuy/Wrl0bfX19sXTp0jjggANi5cqVMX/+/GYPccIeffTRuPPOO+Oxxx6LHTt2xN577x0vfvGL4xWveEWUSpPLAF27dm3ccsst8cQTT8SOHTti//33j4MPPjiOO+64SbddyT333BOrV6+OdevWxebNm2PPPfeM/fbbL1auXBl77bVXw/sDAAAAAAAAAABgcqzPmxjr8wAAAAAAAACoRDBae3nRmOMH6qz/YI32RjqyAX2NDEZ7UUT8uM42gAKeeeaZ+PjHPx7f+MY3Yt26dRWv6erqilNOOSUuvvji+N3f/d1C7b71rW+Nyy+/fPj4oYceiuXLlxeqe+ONN8arXvWq4eOLLrooLr744tzrsywb/v0rX/nKuPHGGyMi4vbbb4+LLroofvzjH0e5XB5Xb5999omPfOQjcc4559S9SOoXv/hFfOADH4gbbrihYtsHHnhgvOtd74oPfehD0dHRERdffHF89KMfHT5/ww03xMknn1yor2effTY+/elPxze+8Y14/PHHK15TKpVixYoVcdFFF8Vpp51W170AAAAAAAAAAADQeNbnWZ8HAAAAAAAAQOMJRmsvh445XlNn/UfGHO+VZdmSlNKGkYVZlu0ZEXtOsq+x1x9WZ32ggKuvvjrOPvvs2LJlS9Xr+vv7Y9WqVbFq1ap45zvfGZdcckl0dLT2fyI+/vGPx4UXXhhDQ0O51zz99NPxl3/5l3HDDTfEP//zP0dXV1ehtj/3uc/F+eefX7Xtxx57LC644IK47rrr4rvf/W7d49/t61//erz3ve+NzZs3V72uXv0wVQAAIABJREFUXC7HrbfeGq9+9avjT/7kT+LSSy8tfD8AAEB72zG0PR7q/XX0l/vqqrd3576xf/fzo5RV36gylIbi0d4HY+Pg+skMs210lbrjoJ4Xxtw5ezS87a1Dm+ORHb+JgTQw7lx3qScOmnt49JTmNrzfRhkoD8Qjvb+JJZ17xV6d+zR7OAAAM8LWoc3xVN+jsW/382L+nIXNHk5LWj+wLh7reyjKafxG+QVzFsUL5h4aHVlnw/vdNLghnu5/PJ7fc8ik5uG95R3x8I77o7e8o4Gjmzr7dB0Q+3YdOCoYoZKd8//7Y+tQ9b+HnDdnfrxw3u80cogAANAyrM+zPg8AAAAAAICJGxxKcfeaiMXzIg5bFjXXrQGzS2v/rTr1WjzmeG09lVNKW7Ms642InhHFiyJiw5hLx/azPaW0rZ6+KoxtUZ31gRq++tWvxjve8Y5xX1M85JBD4kUvelHMmzcv1qxZE3fccceoBUZf/vKXY82aNXHNNde07OKrz3zmM/GRj3xk+Pjwww+Pww8/PPbYY4948skn46c//Wn09vYOn7/qqqviggsuiE996lM12/7sZz8b55133rjyF73oRXHYYYdFd3d3rFmzJu68884YGhqK22+/Pc4888w46aST6r6PCy+8MD72sY+NKsuyLA4//PA47LDDYsGCBbFhw4b4+c9/Puprot/4xjfiySefjFWrVrXsnxEAADA9btpwbVy59n9HOcYHBBSxf9fz4y+ed3Es7hibgb/Tk32Pxt8/dnFsHHx2EqNsP6UoxZnL3hEnLXldQ9pLKcV1z/5L/ODZf44UqUq/c+Ksfd8Txy86tSH9NtL921fHFx//RPSWt0dExEvm/1/x9v3Oi86STUMAAHmufeaKWLX+yhhMg5FFFm9e9vZ41ZLfa/awWsZQGoyvPfn5uHvLbVWv26O0IN5z4F/FQXMPb0i/5VSOK9Z+OW7ZuCoiIuZER5y931/GsQvr/7ugn226Mb7x1BdiKAYbMrbp8oKew+KcAy/IDev79fbV8aXHP14o7G15z2Fx/gs+3eghAgBA01mfZ30eAAAAAAAAE/cfj6d47d+V48lNO49XHhpxzV+UYtE84WjATv62tr3MH3M8kU9O74jRwWgLprCfkSr1U7csy5ZFxNI6qx3SiL4bJQ0ORqx7rNnDaH9LD4ysjRes/PKXv4x3v/vdoxZdHX300XHJJZfEihUrRl27bt26uOCCC+JLX/rScNmqVaviwgsvjI9//OPTNuaiVq9eHbfccktERLzxjW+MT3ziE3HEEUeMumbDhg3x/ve/Py677LLhss9+9rPx7ne/O5YvX57b9l133RUf+tCHRpWdfPLJ8YUvfCGOOuqoUeXr1q2LCy+8ML74xS/GzTffHPfcc09d93H55ZePWnRVKpXinHPOifPOOy+e//znj7o2pRTf+9734txzz401a9ZERMSPfvSjuOCCC+ITn/hEXf0CAADtY03vA3HF2i9Pqo0n+tfEPz75P+O9z7t43LmUUnzp8U8IRaugHOX457VfioPmHh7P6zl40u3ds/0X8a/PfqtAv0Pxj0/9fSzveWHs1/28SffbKP3lvviHx/4m+tJzm6B+tfWOuO7ZK+P3l57VxJEBALSu1VvvHDUHTJHiyrX/O5b3HNawgK+Z7ofrv1szFC0iYlt5S/yvx/97fPKQr8WcbPJ///eTTT8aDkWLiBiKwbjsyc/HQT2Hx95d+xRuZ23/E3H5U3836fE0wyO9v4krnv5yvH3/8WEFfeXe+OKY+T8AwExifd40auM1etbnWZ8HAAAAAADAxKWU4vf+/rlQtIiIWx+IOPeKFJe9TTAasFN7rjiYvcYGlk1kJfKOiFhSpc1G9lOtzYl6T0Rc1KC2mmPdY5HOtNlhqmX/8uuI/ZY3exhT5u1vf3v09/cPH69cuTKuv/76mDdv3rhrly5dGl/84hfj0EMPjQ984APD5Z/61KfiLW95S7z4xS+eljEXtX79+oiIOP/883O/MLlkyZL42te+Fhs2bIjvfe97ERExNDQUl1566bgvQI50zjnnxODg4PDxm970prjiiisqfvVx6dKl8Q//8A9x8MEHx/nnnx/PPPNM4Xt45JFH4t3vfvfwcXd3d1x99dVx+umnV7w+y7J44xvfGCtWrIgTTjghHnjggYiI+PSnPx3vfOc746CDDircNwAA0D7+Y+tdDWnn19tXR295R/SU5o4qXzvwRKwdeKIhfbSrX229oyHBaL/ackdd16/eemdLBaP9evvqiqEIv9r6M8FoAAA5rnv2yorlv9z6U8Fou9TzzrNtaEs8uOO+eOG835l0v6u33TmuLEWK1dvujFd1/V7xdraOb2cm+Y+tP4+hNBRzsjmjyu/Pmf8DAMwY1udNm3Zeo2d9nvV5AAAAAAAATNydD0esWT++/Os/SXHZ26Z9OECLKjV7AEyp1GZ1gAJuuOGGuPvuu4ePFy5cGFdccUXFRVcjnXfeefF7v/fcZo5yuRyf//znp2yck7Fy5cpCX2L8m7/5m1HHP/7xj3OvvfPOO+NnP/vZ8PF+++0XX/3qVysuuhrpAx/4QLzmNa+pOZaRPv3pT8eOHc/lQ37+85/PXXQ10rJly+Kf/umfho+HhoZa9s8IAACYepsGNzSknXIMxdbBzePKNw4825D229mmwQp/CzMBGwfre9abhhrTb6Nsyhl/o35GAQDazZreB+Lh3vsrnts40FpzvWbaMrSxrusbNj/PeReqd35b7zy/1fSl3ugrj/3eWcTGBj1nAACYqazPe471eQAwC6QUUR5o9igAAAAAaDM/WC1yBqhNMFp72TrmeO4E2hhbZ2yb09kPMAGXX375qONzzjkn9t9//0J1P/nJT446/ta3vhV9fX0NG1ujfOQjH4lSqfZ/wo466qhYvnz58PEvf/nL3Gu/9a1vjTr+i7/4i1i0aFGh8VxwwQWFrouI2LZtW3z1q18dPj744IPjXe96V+H6xx57bJx44onDx9///vcL1wUAANrLYGrcwtO+NH6ze2+FDfCM1qhn1Jd6m9Jvo/SVK4+/0s8VAAARN228LvecOdRz6l32lDcvrVfe/LxSSFg1rTZvn4hK91DvcwAAgHZjfd5zrM8DgDZ33/+I+P5BEf+yIOLHr43Y/lizRwQAAAAAwCxS/TNbzDSC0SL+V0RcWWedQyLiew3qH5ru1ltvHXX8J3/yJ4XrHnXUUXHMMccMf9Gyt7c37rrrrlixYkVDxzgZc+fOjVNOOaXw9UceeWQ8/PDDERGxffv22Lp1a8yfP3/cdbfffvuo4zPPPLNwHytXroz9998/nnjiiZrX3nrrraO+RvnmN7+50CKykV71qlfFLbfcEhERjzzySKxZsyae//zn19UGAAAw8+UFo82JjugqdY0rTxHRW95esU5vhQCBamFdc0vzig2yTQyk/hhMg+PKGxa8UGc7jeq3UfLGM5gGYzANREfWOc0jAgBoXduGtsTPN9+Se77V5nrNVV80WqMCu/ICzRoVjJb3ztYsKVKVex7/85h3bSlK0V3qGVdeqQwAAGYy6/NGsz4PANrUg1+LuPt9zx0/9cOIf3tVxO/dG1GyFQ0AAAAAgKnn/0a3l01jjpfWUznLsvkxPrBsY4F+5mVZtkdKaVsd3S0r0E/dUkprI2JtPXWyLGtE19ASNmzYEA8++ODw8eLFi+PII4+sq40VK1YML7yKiLjzzjtbauHVIYccEl1dxTeLLFmyZNTxpk2bKi68+vd///fh3y9evDgOPfTQusb1ile8otDXIccujNt///2HF4YVNfb+f/vb31p4BQAAs1CloK6IiBWLT4u37PPn48pTSvHe+/8wylEed67SBv+8ze5LO/eLjx78D3WOdmb7/rpvxqr147P4855RvfICFjqyjikNZGuUas+hr9wbHXMEowEA7PaTTT+KgdSfe75R4V7tIKV6g9GmNri43vbzgqlPXnJG/OGyP6t7XFOlt7wj3v+bt1Q8V+nnMe85HLnH0XHOgRc2dGwAANBqrM8bz/o8AGhTD39zfNnWByKevTNi6fHTPx4AAAAAAGYdwWjt5Tdjjl9QZ/2x169PKW0Ye1FK6dksyzZExMjVDM+PiHsn0dfYsQMTsG7dulHHhx12WN3hf0ccccSo47Vr68oanHJjF1LV0tk5evP1wMDAuGu2bdsWvb3PbeKYyCKmonUeffTRUcfve9/74n3ve1/O1cWsX79+UvUBAICZaTCNf7+JiOjMKodQZVkW3aW5saM8Ptu+ns3uPaWxufrtL++e+1JjghfygsUWzlkS6wfXjStvtbCMagERfeXe2GPOgmkcDQBA6yqnctyycVXVa1otBHcmaURwcUqpgcFolcfT3WLvVF1Zd2SRRYrxQXSV7jnvfaTV7gsAAKaC9XnjWZ8HAG3q6R9VLl99ccQp10/rUAAAAAAAmJ0Eo7WXscFk9X1OLeLgMcf31Ohr5CfqDq3Qfz191VO3vS09MLJ/+XWzR9H+lh7Y7BFMiQ0bRmcZLlq0qO42xtZptUU9pVKp4W1u3Lhx1PGCBfVv2F64cGGh65599tm6265ly5YtDW8TAABofXnBaHOy/P/l113qyQlGq2eze0/BEbaPvHtuVEBZXsDCoo49c4LRWissoy/lP4dWGysAQDPdu+0XsW7gqarXmD89p1JQVzWNeHYDqT9SlCueqzd4Le/6uaV5dY9rKpWyUnRl3RWDnyvdQ95zno3vigDADGV93vRpwzV61udNjPV5ANBG0mCzRwAAAAAAwCwhGK29/MeY45dkWTYvpbS9YP0TarQ39tzIYLTjI+KaIp1kWbZHRLykjr5mlayjI2K/5c0eBjNUSqM3iNT7NcpKGtFGq+vu7h513N/fX3cbRetMpO1axv65AwAAs0NeMFpH1plbp7s0t2J5fcFoldtoZ/U8t3qllHLbWdixpGJ5vYEMU63ac2i1sQIANNNNG6+reY1gtOfkBaOVohTlCuFl1QJ7i6oWflwpOKyavLlwK75TdZfmRt9QhffCCvec9xy6s9a7LwCASqzPYzKsz5sY6/MAAAAAAAAAqJdgtDaSUnoyy7JfxXOhYx0RsTIifliwiZPHHFdbmb8qIt5ZpW41J8bon71fpJSerqM+kGPPPfccdbxp06a62xhbZ8mSypuwJ2NoaKjhbU7G2Hsc+2XPIop+uXPvvfcedXz77bfH8ccfX3d/AAAAgzlf4a0WjNaTswG/0ob9/E38PQVG117y7rkRoV+DaTDKUfk9eWHH4orlrRaWUW081YIlAABmk2f6n47/3HZXzesaEe7V7rpLc2NHedu48kbMkxs5t+0tV/5+WU9pXl3tTIee0tzYPDT+78fqeVfMe98EAIB2Yn3exFifBwAAAAAAQFEppVnxcSGgtlKzB0DDXTXm+G1FKmVZdkRE/O6Iom1RPVDt+ogYueL5+F1tFPHWMcdjxwxM0NKlS0cd33///XW38etf/3rU8bJlyype19ExOltzcLDyhvxKJrKwaSrNmTMnDjjggOHj3/72t7F9e+XNKnlWr15d6Lp99tln1PFE/owAAAAiIgbTQMXyasFoeQFflTb/5wUCzMbN7nn33FfujZTSpNquFnyxaE7lzVCtFjZWLSCu1ULcAACa5eaN10WK2nPHwTSYO9efbfKeVz2Bz/Wq1kZvnXPbvHl7TwuGTTfiXXE2hmgDADD7WJ83MdbnAQAAAAAAAFAvwWjt55sRMfJTb2/KsuywAvU+OOb4X1JKuSu7U0rbI+LbNdoYJ8uyF0bEH4woGoyIfyowPqCAJUuWxCGHHDJ8vHHjxrj33nvrauP2228fdXzsscdWvG7hwoWjjjdu3Fi4j//8z/+sa0zT4bjjjhv+fblcjptuuqlw3fXr18e///u/F7p2xYoVo45/+MNqGZQAAAD5BlPlDTAdWUfF8oj6AgTyAgFm42b3vHtOUY6B1D+ptquFnC3q2LNyndQb5VSeVL+NVC38rBHhFAAAM11/uS9+sulHha8XLrtLTghxteDiyarWRj0BxQPlgdx3tp7SvLrHNdXyg9HG33Pec5iN74oAAMw+1udNnPV5AAAAAAAAANRDMFqbSSn9JiIuH1HUFRGXZVmWuwo5y7I3RMRbRxT1R8RHC3R3cUSM/Fz5W7Ms+/0q/fRExNd2jWm3S1NKDxboCyho5cqVo46/+c1vFq577733xl133TV83NPTEy9/+csrXjv2S5X33HNP4X6uvfbawtdOl9NOO23U8Ve+8pXCdS+//PLo7y+2Ef7UU0+NOXPmDB9///vfj7Vr1xbuCwAAYLeh3GC0ztw63Tn/i6gvVdrsXjkQIC+EoJ1Vu+fJBn9VC15Y2LE491x/6ptUv41ULSCiL//bCwAAs8bdW26LbeUtha8XjLZT5Vi0/GCxhgSjVZm/DqT+KKeh3POjx5I/R27Fd6ru3LC54iHarXhfAAAwFazPmxjr8wAAAAAAAACoh2C0aZZl2YFZli0f+ysi9h1zaUel63b92rtGNxdFxIYRxysi4t+yLDtizFi6syx7b0RcOab+Z1NKj9S6l5TSbyPif4wp/naWZX+RZdnI8LPIsuzIiPjRrrHs9mwUC2AD6nD22WePOv7CF74QTz31VKG6H/7wh0cd//Ef/3F0d3dXvPaYY44ZdXzNNdcU6uP666+PO+64o9C10+mss86KBQsWDB9fddVVcf3119es9/jjj8df//VfF+5nyZIlcdZZZw0fb926Nc4777z6BgsAABARg2mgYnlH1pFbp7uUE4xWIUAgbyN/dzb7NrvnPbeI6oEHRVQLb1jUsWTK+m2kauERQj0AACJu2nhdXdebQ+2UolyxPP+9ZvJz5FrBx0X/bKq1kxfs1kz1vStWfgbV3psAAKCdWJ83MdbnAQAAAAAAAFAPwWjT79aIeKjCr2+Nue6AnOseiojPVOsgpfRYRLwpIkZ+Hu2EiLgny7I7syy7IsuyVRHxaET8z4joHHHdv0bEBXXcz4ciYuRK/s6I+PuIeDTLsuuyLPuXLMt+HhH/GaND0foj4g9SSk/W0RdQwCmnnBJHH3308PGmTZviLW95S+zYUX0jx+c///n43ve+N3ycZVn81//6X3OvP/7442PevOc2blx11VXx85//vGofv/nNb+JP//RPa91CUyxYsCDOPffcUWVnnnlm3HDDDbl1Hn744Xj1q18dGzdurKuviy++eNSCtn/8x3+MD37wgzE0NFRXO/fcc0/cfPPNddUBAADaR34wWmfF8oiI7lLlULNKAQJ5YVezcbN73nOLqB2cUEteqEAWWcyfs6jues1QbSytFOAGANAMD+/4TTzS+5u66kx2jtkuUk55T+57zeTnyLXmr8WD0bbnnssbfzMVDUZLKeWHaLfgfQEAwFSwPm9irM8DAAAAAAAAoB6C0dpUSunGiPiDiFg3ojiLiFdExJkR8dqIWDqm2rci4o9TSoX/5n/XtWdGxBVjTi2LiNMj4r9ExMt39b3b2oh4Q0rplqL9wGzy1FNPxcMPPzyhX7tdeuml0dXVNXx84403xoknnhg/+9nPxvX3zDPPxDnnnBPvf//7R5Wff/758ZKXvCR3nAsWLIg/+qM/Gj4eGhqK17/+9fHDH/5w3LX9/f3xla98JY477rh4+umnY8mSJfU8kmlzwQUXxItf/OLh482bN8epp54aZ555Znz729+OX/3qV3HffffFD3/4w3jf+94XRx11VNx7773R09MTb3jDGwr3c9BBB8WXv/zlUWV/+7d/GytXroxrrrkmBgcHc+s+/PDDcckll8Qpp5wSRx11VPz4xz+u/0YBAIC2MJAbjNaRW6foZveI/DCG2bjZvTvLv+fJhi/kP+eeqoEJrRKWMZQGc0P6IgSjAQDcvPHauuuYQ+1WORqtpzSvYnlfmvxzqzXPzguQrqedVnynynv3GHsfg2kgylGueG0r3hcAAFRifV7zWJ8HAAAAAAAAQFH5uySZ8VJK12ZZ9jsR8dGI+KOIyFvp8NOI+ExK6TsT7GdrRPxxlmXfjoj/LyKOy7l0fewMULsopbQu5xqY9d7ylrdMuG5KOzeIHHPMMfGFL3wh/vzP/zzK5Z2bE+6666447rjj4tBDD42jjjoqenp64tFHH4077rhj3EKfV7/61fGxj32sZn8f+9jH4qqrrhr+IuPatWvjta99bRx66KHxkpe8JLq7u+Ppp5+On/3sZ7Ft27aIiNh3333jU5/6VEt+mbKrqyt+8IMfxCmnnBIPPPBAROx8pldeeWVceeWVFetkWRaXXHJJrFmzZtwXPas5++yz46mnnooPf/jDw39GP/3pT+P3f//3Y968efGyl70s9tlnn5g7d25s2bIlnnnmmbjnnnvq/volAADQvoZS5U0bHVlnbp2im90j8gO/qoV1tavOUmfMiY4YivHPfLKhFXn1u0tzc4PsdtabXCBbo9QaR6uMEwCgGbYObo6fb7m14rkj5r00Htrx64pBW+ZQO6U6g9EGd4X2VnsnqqX2/LbY/L+3vL1ieUfWEZ2liY9vquSFQY/9+az2fLqz/PcXAABoJdbnNY/1eQAAAAAAAAAUJRhtmqWUlk9zf2sj4t1Zlp0bESdExAsiYt+I2BYRj0fEL1JKDzWor29HxLezLDsoIo6JiP0jYo+IeCoiHomI21JK/Y3oC6jtHe94RyxZsiTe9ra3xdatW4fLH3jggeFFRZX82Z/9WXzxi1+Mzs7amzIOOOCA+M53vhNvfOMbY8uWLTX7OOigg+IHP/hBPP3003XezfR53vOeF7fccku85z3viauuuqrqtXvttVdcfvnl8frXvz4++MEPjjq3YMGCmn3t/urn2972tnjqqaeGy7dv3x633XZbofG26tc9AQCAqTeYBiqWVwsB6M4JNRu7uT2llLvhvVpYVzvrKc2NbeUt48orBVnUI/c5Zz0xJ+uIjqyz4p91pTC7Zqg1DqEeAMBsdvumf8udt5+0+HXxRN+a6BuqEIw2yTlm26ici1Y1rLmv3Bsdc6YuGK3oPLw3932qNYOm857p2OdR7f5nY4g2AACzm/V5E2N9HgAAAAAAANWkFFHjGznALFFq9gCYHiml/pTSDSmly1JKn0wp/X1K6buNCkUb09dDKaXv7Orjk7v6vEEoGky/N7/5zfHggw/GueeeG3vvvXfudZ2dnfGa17wmbrvttrj00ksLLbra7ZRTTok77rgj3vCGN+R+hXHp0qXxgQ98IH75y1/GkUceWfd9TLd99903vvvd7w4vwHrRi14Uixcvjp6enjj44IPjtNNOiy996Uvx4IMPxutf//qIiHFfily0aFGhvk4//fR46KGH4pJLLomjjz665pcsOzs7Y8WKFXHxxRfH/fffH+eee+7EbhIAAJjRymkoylGueK56MFrlULOxm90HUn+knPZn62b3vGc32YCyvNCL3f0VDSholkYFRwAAtJtyGopbNq2qeG5Jx97x4vnHFp6fz1YpJxmtVjDaZPQ1KPi3t7y9YnlPaV7dY5oORd93+lL+85mtIdoAAMxu1udNjPV5AAAAAAAAANTS0ewBAMx2Dz/88JS2v2zZsvi7v/u7+NznPhd33XVX3HfffbFu3bro6+uLvffeOw488MBYuXJloS8o5jniiCPi6quvjmeeeSZuuummeOyxx2L79u2xzz77xEEHHRQnnnhidHQ895+ck08+OVKqvJmlknquHeuyyy6Lyy67bEJ1V65cGStXrix07T333DP8+yzLYtmyZYX76enpife85z3xnve8J9avXx8//elP48knn4z169fHwMBAzJ8/P5YtWxYvfOEL44gjjoh581pz0wwAADB9BtNg7rmOLP9/+eWHbI3e3F4tzGq2bnbvnqKAsrz6u/vrLvXE1qHNFeq1RuBYrfvPC34DAGh3/7nt7nh2YG3FcysXvzbmZHOmLHy3XTQnGK3G/LZg+3nz9VYNms4P6RsTjFbl/mfruyIAAK3P+rzarM+zPg8AAAAAAACg1QhGA5glSqVSHHvssXHsscdOWR977713/OEf/uGUtd+qtm3bFnfffffw8Qtf+MIJL2Tbc88944wzzmjU0AAAgDY1mAZyz3VknbnnurOcze6pN8qpHKWstPO4ajBaa27kn2pTFVqR96x399edFQuza5Za45hsMAUAwEx108brKpbPiY44YdGrI6J4cPHsVXljfrV3kknPz1P1+kXb31HeXrG8dYPRigVB591/KUrRmXU1fFwAADCTWJ83dazPAwAAAAAAAJh9Ss0eAADMdJdffnls3/7cBpfjjz++iaMBAABmg8E0mHuuajBalU34/alv+PfVNvvnBYS1u/zQiskFf+U969395T3vvtQagWO1xjHZYAoAgJloXf+Tcc+2uyueO2bBiljYsTgiqsz1hMtGRF4s2s7nlkVW8dxkQ+V6azz7on82eeNo3WC0vJ/FHZFSGnFc+f67Sz2RZZX/TAAAACbL+jwAAAAAAACA2UcwGgBMwmOPPRYXXHDBqLKzzz67SaMBAABmi8E0kHtuTtaRe65aqNnIjfvVNvu36kb+qVYtKGAyqgULVOu3VQLHat3/ZJ8PAMBMdPPGVbnnTlpyxvDvBaPVUjkaLYtsyp5do+a3+QHI8+oe03TIC9EuR3nU+2f++8vsfE8EAACmnvV5AAAAAAAAALOTYDQAGOE73/lO/Lf/9t9i3bp1Na/9xS9+ESeddFKsX79+uOylL31pvOpVr5rKIQIAAFQNRuuYcDBa74jfV97EPyc6oiPrLDDC9pO30X+qg9HyguhaJSyj1jhaZZwAANOlv9wXP9n0o4rnDuw+KA7uOXz4uDtr7bles6WUE4yWZdGdTU2AcK1nX7T9/GC01gwQ65nku6JgNAAAoCjr8wAAAAAAAAAoIn+XJADMQlu2bIlPfOIT8ZnPfCZOP/30OPXUU+OlL31pLFu2LDolexdaAAAgAElEQVQ6OmL9+vWxevXq+Nd//de45pprRm3K6erqissvv7yJowcAAGaLwTSYe66zSnBZtU34Izfu96XKYQCtuol/OuSFyk06eCHnWe8OycgLGJhsv41Saxx95d5IKUWWZdM0IgCA5vr5lltie3lrxXOvXHzGqHlRbvhuao25XivrLs2NGNowrjxvfl1UreDjou3PtGC0vJC+iJ33Mj8WRkTtYGcAAIBarM8DAAAAAACgmsqfVAVmI8FoAFDBwMBAXHPNNXHNNdcUun7u3Lnx9a9/PV760pdO8cgAAAAiBtNA7rmOKsFoecELEaM3uOdt4p/Nm93zAgzyggGKqvWsp6rfRqk1jnIMxWAaiM6sa5pGBADQPCmluGnDtRXPzS3Ni2MXnjSqLG9+XSuca7YoR7lieRZZlWc32WC06vWLtt9b3l6xvNo7WTNVe9cbGdSX+/6Szd53RQAAYGKszwMAAAAAAACgmlKzBwAArWTx4sUxZ86cuuqccMIJcfPNN8eb3/zmKRoVAADAaNWC0eZk+d9CmJPNyQ2oGrnBPW+zf6tu4p8OeRv984IBisp71rsD0Vo9LKNIMESrhLgBAEy1h3vvj0f7flvx3PGLTo2uUveosqkK92p/We67yWTnybWD0Yq1n3fd3NK8usc0HfICmSNGP5ORIWlF6wMAAIxkfR4AAAAAAAAAReTvkgSAWeiNb3xjPP3007Fq1aq47bbbYvXq1fHII4/E+vXro7e3N+bOnRt77rlnvOAFL4gTTzwxzjjjjDjhhBOaPWwAAGCWqRaM1pF1Vq3bXeqJgaH+ceUjN7vnhX3lBTfMBnkb/ScbWpEXmLD7WecHPrRGWEahYLS0I+bHwmkYDQBAc9208drccyctft24MsFo1aVIFctLkU1JgHA5laMv1QpGK/ZnsyN3nt+aAWIdWWeUohTlKI87VyxEe/a+KwIAAPWxPg8AAAAAAACAIgSjAcAYe+21V5x11llx1llnNXsoAAAAFQ2mwYrlpZgTpaxUtW53qSe2Dm0eV95XYLN7XjjYbJAbUJYmHrwQUTtYYCoCHxqpyP3nBe0BALSTLYMb4+4tt1U8d+S8o2NZ1/7jyvPm1+ZPu1UORousWjDaxEPl+lNfzWuKtp83X2/Vd6ps1zPdUd4+7pwQbQAAoNGszwMAAAAAAACgluq7JAEAAACAljOYBiqWd2adNet2ZzkBX6OC0Wx2Hys3GG0SwQsppSrBaDv7684qP/NWCcsoMo7JPCMAgJnitk3/lhtg/MolZ1Qsn4o5ZjtJeblokU1JqFyR8OGi7fdWCBiLaN1gtIhqP49CtAEAAAAAAAAAAACYXoLRAAAAAGCGyQtcmJN11KybF27Wl57b4J4fjDZ7N7vnPbfJBC8MpoEox1BOfzufdV7AwMg/r2YqEtoh2AMAaHflNBS3bry+4rk9O5bG7+zx8orncufm5k8REZEiJxktpubZFQv9rX3NQHkg952tlQPEigT11Qp2BgAAAAAAAAAAAIBGEIwGAAAAADPMYBqoWN6Rddasm7cRf2QIQF4gQF74wGyQ99wG00AM5YQe1FIttKE72/ms8wMfJh7I1khFgicmEx4HADAT/Me2u2L94LqK505cfHqUsjkVz+2e8401FIO5c/7ZpXIwWhZZdGeNDxAuFPpboP1qc/We0ry6xjSdioTN5Ydoz953RQAAAAAAAAAAAAAaTzAaAAAAAMwweUFcHVlHzbrFNrtX3uyfFw42G1Tb6F8kQKFivVQtMKFn1z/zAtlaIyyjUHjEBJ8PAMBMcdOGayuWd2QdsWLRabn1pmKO2U4qx6LtDEYrEvhcr2Jz29rtVxtDK79TFXmmec+ou4XvCwAAAAAAAAAAgJkj5S0eBGYdwWgAAAAAMMMM5ARidWSdNevmbVgfucE9byN/d5Yf3NDuqgUYTDR8oVrwwu6QjGoBA/3lvgn120hFgiGKXAMAMFM93f943Lv9lxXPHbNgZSzoWJRbdyrmmO0lf3VTkcDnehV55kUCinvL23PP9ZTm1T2u6ZL3vjcy0Nm7IgAAAAAAAAAAAADTQTAaAAAAAMwweRvxO7KOmnXzwhdGbnDPCxOoFtzQ7vKCFyImHr5QPRhtbs1+WyEso8i9TyacAgCg1d2ycVXuuVcuPqNq3WohuOZQESknGC2LrEow2sTnyEWfea2A4mrz9Gp/5s2W97438rnkPd/Z/K4IAAAAAAAAAAAAQOMJRgMAAACAGWYoDVYs78g6a9YtEiDQlypvdm/lTfxTrXpoxcTCF/ICE7IoRWfWVaDf5odl5P2s1HsNAMBM1FfujZ9s+lHFc8/rPjiW9xxWtf5UhO/OClmWO0+eXDBasbq1Aop7y9srlndkHdFZqv3O1ix5P4+777ecytGfKofCVftZBgAAAAAAAAAAAIB6CUYDAAAAgBlmMA1ULC8WjJYXINBb8fdF6s4GXVl37rlawQh58p9zT2RZNvz7RvfbKINpIAZzQvpGEuoBALSrOzffHDtyQrBeueSM4Tldns6sK7KofM1kAr7aQUop91wW1QKfe6vWraboM681v+2doe9T1Z5pRER/6osUlZ9tq98bAAAAAAAAAAAAADOLYDQAAAAAmGFyg9FKRYLR8ja7PxcCkBe4VS2kq92VslJ0Z5Xvf+LBaLWfc1fW3bJhGf3lvkLXCUYDANpRSilu3nhtxXPzSvPjFQtOrNlGKSvlBvA2OwS32fICuHbKcoO4ylHOfV+qpS8Vm7fWmofnne8pzat7TNOpVoh2tXl9j2A0AAAAAAAAAAAAABpIMBoAAAAAzDAD5ZxgtOioWTcv3Gt3CMBQGswNEpjtm91rBQXUK6/eyD+jVg7LKNp/s8cJADAVfrvjvnis7+GK545fdGp0lSrP4cbKm2PP9nDZasFopciip0po88SDi4s981rt95a3Vyxv9fep/PedHbv+mf98ZnOINgAAAAAAAAAAAACNJxgNAAAAAGaYoRisWN5R6qxZN28zfq/N7jXlh1ZMMHgh5QSjjXnOrRqWUbT/Zo8TAGAq3LzxuorlWWRx0uLTC7eTG0aVM1ecPfKD0SKy6M7yQ8YmOv8sGqhWq/28dlo/GC0nRHvX/VZ775nt74oAAAAAAAAAAAA0Rqq2fBCYVQSjAQAAAMAMM1jOCUbLOmrWrbXZvVoYQKtv5J9quc9ugqEVRQMTWjUso2gg3ESD4wAAWtXmwY1x95bbK5570R4vi6Vd+xVuq9b8fLZKVYLRssiqBnH1pQkGFxcN/q0xD+8tb69Y3urvU7WCoAWjAQAAAAAAAAAAADBdBKMBAAAAwAwzmAYqlndknTXr5m12H0wDMZQGq4YBzPbN7nkBZdXC5KrJe9Zj+8kPy2hu4Fjh4IhZHuoBALSf2zb9nxiKymHFJy0+o662WnWu12xVv/iYZVVDxnonOP8sOq+vdV3e+bz3iVbRnVX+WewdDkar/Fw7so5C76IAAAAAAAAAAAAAUJRgNAAAAACYYfKC0eZkHTXrVtuM31furRrA0Oob+adaXvjCRIO/8p712HCMvOfe7MCxvlSs/4kGxwEAtKKhNBS3bFxV8dxenfvEUXu8rK728ud6s30OlZ+MlsXOUOhSznKHiT67ovVqzcPz5r9zS/PqHtN0ygvp6099UU7l/MC3bHa/JwIAAAAAAAAAAADQeILRAAAAAGCGGUyDFcs7ss6adfM2u0fs3MBfLcSqK+uuPbg2lvfsJh68UDlQYXwwWuV+mx04VrT/ogFqAAAzweqtd8bGwWcrnjtp8elRyubU1V7+HHN2z6FS1WC0LLIsa/izK1qv1vw/N0CsxYOm84KgU6QYSP258/pq75gAAAAAAAAAAAAAMBGC0QAAAABghhlMAxXLOwsFo+Vvxu8r9+aHdWU9Ucpm9/9OzAsKaHTwwthggfx+mxuMVjw4YnaHegAA7eWmjddWLO/IOuP4RafW3Z5gtInIIiL/3Wbi8/OCwb812u8tb69YnjevbxXV3hWrhWi3euAbAAAAAAAAAAAAADPP7N7JCAAAAAAzUF4w2pyso2bdvOCFiJ1BADa758t7dnnPrJa8emMDE1o1LKOe4IiU0hSPBgBg6j3V91j8evuvKp57xYKVMX/Owrrb7M5ywr3S7A5GS5E/f8x2/TM/GG1i8/Oiz7xW+3nnWz8Yrdq7YpUQ7Sr1AAAAAAAAAAAAAGAiBKMBAAAAwAyTF4zWkXXWrNuVdUc2HCUwWl+5NzcMoNU38U+H6QpeGBuOkffsJxrI1ihFg9lSlGMg9U/xaAAApt7NG6/LPXfS4jMm1Gajw3fbRbVgtN3RaI0OEC5ar9Z1O3KD0ebVPabpVO2dr6+8I/e+vSsCAAAAAAAAAAAA0GiC0QAAAABghhlMgxXLiwSjlbJSdGXdFc/1lnfkhnzlhQ7MJt1ZY0Mr8oIFxj7rRgc+NEo9/U80PA4AoFX0lnfETzffUPHcC3oOi+VzD5tQu3mhUs2e67WyLNsVjJYzP+9LE5t7Fp3X5wUcD5/PDUZr7QCxau98fd4VAQAAAAAAAAAAmAbVPqsKzC6C0QAAAABghhlMAxXLiwSjRUR054UvpN4qYV2tvYl/OjQ6tKJosEB3ltdvc8PG6gmEm2h4HABAq7hj803RW95e8dwrF79uwu3mh+DO7vlTSvlLm7Jd/8ybn09k7jmUBnPfs+ptP+/npNWD0eZkHbnvlH3l3irvL619XwAAAAAAAAAAAADMPILRAAAAAGCGGUyDFcs7so5C9asFCORt8s8LbJhNGh1aUTSELrffNLFAtkapJxBuouFxAACtIKUUN2+4ruK5PeYsiJcvWDnhtvPnmLN9/lTtm487o9Ea+ewaNbcdTAO572utHowWkf9Me8s7qry/eFcEAAAAAAAAAAAAoLEEowHQEGvWrIm/+qu/ihNPPDH22Wef6OrqiizLhn9ddtllzR4iAABA2xhMAxXLO7LOQvWrBQjkhXzNhE38U21sYNluEwkoSynlPuuxfz55/eaF2E2XvlS8f8EeAMBM9uCOe+KJ/kcqnlux6LToLHVNuO3cOeYsnz+lKsFo2RQEo9Uzt64WjFytnZ7SvLrG1AzdWX4oc26Idk4dAACgsazPAwAAAAAAAGA26Wj2AABmu+XLl8cjjzy3meaGG26Ik08+uXkDmoCvfOUr8d73vjf6+vqaPRQAAIBZYSgNVizvyIr97778AIEduSECeXVmk7xwuL5yb6SUIsuywm0NpoEoR7niubHhGNX6baZ6+p9IeBwAQKu4aeN1FcuzyOLERadPqu28eXZveUfdc8x2UiQYLW+ePJEA4XrmttXa7x2qFozW+mHT1d498p7RTLgvAABmN+vzAAAAAAAAAGDmKTV7AADMbNdee228613vKrzo6sYbbxz1pcqLL754agcIAADQhgbTQMXyjqyzUP2xwVu79ZV35G7yt9k9/7mlSNGf6tuMVC14oTsbHY6RH2S3M5CtWRoVHgEA0Mo2Da6PX2z5ScVzR+3x8ti7a59Jtd+TVZ5jlmMoBnMCkWeDasFosSsYLf+9pv5Q3rpCf6tcW23e21OaV9eYmiHvmfZWeVfMqwMAADSG9XkAAP8/e3ceJldx2Hv/V71M94xG0khoAwQIIbFjFiMQIDYvAhTsxEsMxH68hmAnuRdCiK95c21JFwfj1yQ2tnFsEwK8jzEh18bGwSDHxpJAYMAIsACJ1QgQCC1IM0gz0z291PuHNKPpnlOnz+npvb+f5+FBp+qcqurTrVGdmarfAAAAAAAAAADaUazeAwAANLerr766YBP2X/zFX+hzn/ucDjroIMXj+zbkT5s2rR7DAwAAAICWlHEGowX7dp9f0Fbaudnd+5p24ncPUvnBUPcobf0CE4IFo1nllbFD6jCJwP1WkuuzMt5zAQAAGslDvb9WXjnPurOnLBl3+35zyLQdVFzBwo9bjk8umtmTi+bzXBN+7hlubrsnoNgMD2SUVH7AeV0zBIj5Pita70A4nhUBAACA6mJ9HgAAAAAAAAAAAACgHRGMBgAo2/PPP69169aNHC9ZskS33357HUcEAAAAAO0hZ7Oe5TETLDQh6diQn8oPKp13bHY3jb+Jv9pc902S876Vc35xYIJ/v4PqiNQrGC34aw57fwAAABpBzmb1YN+vPOumx2fpqK4Txt2HbzBaPqXu6KRx99GMrE8ymtGeQDJX0Fg5c09X6JeXvHLK2ozipsOjb++AtahiikcaP+TOfU/dz4p+zysAAAAAxof1eQAAAAAAAAAAAACAdhWp9wAAAM3r8ccfLzj+6Ec/WqeRAAAAAEB7ydqMZ3nQYDRX+EI6n1LKsZHfL7ChXfiHVnjfNxfXffbqx69fv3aqLUzgRD3HCQAAUK4/7H5MfdkdnnVn9pyviBn/j9tdQVRS+Dlma3EHo2k4GM24nmvC37ew17jmwoOOdpLR5ggPcz8rDjrvEc+KAAAAQPWwPg8AAAAAAAAAAADtxvotHwTQVghGAwCUbcuWLQXHs2fPrtNIAAAAAKB95G1OeeU96wIHoxnvTflpm1Laem/wT/oENrSLSgajuYIUjCKKm46ifv3CMoKHk1Va2gZ/zfUcJwAAQLlW77zXszxuOnTa5PdWpA+/eXY7z6H8Y9H2BqO5QrwczzR+UiHvtWsu7HouaJbnKdc9Hcj3K2OHQl0DAAAAYPxYnwcAAAAAAAAAAAAAaFcEowEAyrZ79+6C43g82AZ8AAAAAED5sjbrrIuZWKA2XJvyU/lB50Z+v3CudhEzcec9TlUoGC0RScoYU1jmCLIrp99KydqM72exWDuHegAAgOb0Zvo1vTj4jGfdyZPO1IToxIr0EzcdI0Ffxdp5DmV9o9H2cD3XpPMp2ZC/MjJs0LFrHp7KD3iWJyNdodqvF9c93ZXtC30NAAAAgPFjfR4AAAAAAAAAAAAAoF0F2ykJAGh61lo98cQTeu6557R161al02lNnz5dBx54oBYtWqTu7u7Qbebz+SqMFAAAAADgJ2szzrqYCbYhJhFJepan84PO8AU2u++RiHQqm9s1pjxsaIU7gG7sexOPxBVVTDmNDSJL2/qEZVTq9QIAADSqB3tXOOvO7llSsX6MMUpEkp5BW/UKwW0M7mCz4SA5V3izldWQTSthvJ97vISf33qf73rPmuV5ynXP+rI73Nc0yWsDAAAAqo31eQAAAAAAAAAAAAAAVA7BaADQ4rZv365rr71WP/rRj7Rt2zbPczo6OvSe97xHy5Yt06mnnupsa+PGjTr00EOd9eeee65n+S233KLPfOYznnXLly/X8uXLnW2uXLlS55xzjrMeAAAAANpN1o4NxxoWPBjNe+P6rmyfrCOAwBWm1m4SJql+jQ1GCxtaETaALhFJaiC/26Od+oRlhA6OsO0c6gEAAJpNKj+oR99Z6Vl3aPIIHZw8rKL9JUxSKY2dL4Wdc7USdyzanjA5yf8ZJZ1PhXqGqdR8PpUf8CxvmmA0xzjfye10XxMigA4AAABoRazPAwAAAAAAAAAAAACg8iL1HgAAoHp+/vOfa+7cufrmN7/pXHQlSUNDQ1qxYoUWLlyoyy67TNmse5M9AAAAAKC+sjbjrIuZYL8HwRUQ4BW8te+a5tjIX22uQIO0DRda4QpecIUKuN6zeoVlhA5Ga+NQDwAA0Hwe7VvpnK+d1XNBxftzzbXrFYLbEKxfNNoefsFnlQo6C9u+c57fJM9Trucdv4DuZnltAAAAQDWwPg8AAAAAAAAAAAAAgOoItlMSQO3ks9LApnqPovV1zZYirf0l8N///d916aWXKp/PF5QfdthhOvroo9XV1aXXXntNjz32mHK53Ej9D3/4Q7322mv6r//6L8VirX2PAAAAAKAZ+QWjRccZjFbpa1pRpUIrXEFqrvvsCigIG/hQKaFfL8FoAACgSVhr9UDvfZ513dHJOmniGRXv0xmCGzJ8t5VYuYPRjIwk9xxZqv581XW+a37eGekK1X69lPesmKjCSAAAAKqI9Xm10+Jr9FifBwAAAAAAAAAAAABA9fATdaDRDGySfnFovUfR+j74itQ9p96jqJqnnnpKX/jCFwoWXZ1wwgm68cYbdfrppxecu23bNn35y1/WD37wg5GyFStW6Ctf+YquvfbagnNnz56tV155ZeT4W9/6lm644YaR4zvuuEMLFy4cM55p06bpnHPOkSQ98sgjuuSSS0bqLr/8cl1xxRXO1zJr1qwSrxYAAAAA2kvWZp11cRMP1IZfgEAlr2lFrqCAsAFlriAFV/CaMyyjTsFoYV9vvQLcAAAAwnpx8BltHnrds+6Mye9TPBJszh2GO3yXYDQvw8FofiFeoYPObNj5vPf5rnmv6z1uNGGD0eKmQxETrdJoAAAAqoT1ebXTwmv0WJ8HAAAAAAAAAAAAVId79SCAdkMwGgC0oM997nMaGhoaOV60aJF+9atfqatr7G+jnz59ur7//e9r3rx5+od/+IeR8q9//eu65JJLdNxxx42UxWIxzZkzZ+S4p6enoK1Zs2YV1I/W3d0tSdq4cWNBeU9Pj/MaAAAAAMBYWZtx1sUCBqOF3exe7jWtqFKhFa4gBVcAXaOFZYR/ve0b6gEAAJrL6p33eZYbRbSo57yq9NloIbiNbjgYLWbiiiqmnMaGR4e9d+HP957fhp3nN5qwAW7N8roAAACASmN9HgAAAAAAAAAAAAAA1RWp9wAAAJW1cuVKPfHEEyPHkyZN0p133um56Gq0q666ShdeeOHIcT6f1ze/+c2qjRMAAAAAUJ5KBKOF3bweM7HAbbc6171LVShIwRWK4SoP22+lpC3BaAAAoPX0Zt7WH3Y/4ll3XPfJ2i8+oyr9NtpcrxFY5X1qzcifXPPzas9X09b7vUnlBzzLmyVALBkyEJsAbQAAALQj1ucBAAAAAAAAAAAAAFB9BKMBQIu57bbbCo7/5m/+RgcccECga6+77rqC4zvuuEPpdLpiYwMAAAAAjJ9fMFrUxAK1kTDhNuWHPb+VuTb+hw1ScIVcuNp3Bj7UKXAsdHBEG4d6AACA5rGm77+VdwRyndVzQdX6bbS5XiOw1l1n9uWiVX1+7uJq39VOMuIfkNAoEiED3Jol8A0AAACoJNbnAQAAAAAAAAAAAABQfQSjAUCLWbNmTcHxJz7xicDXHnPMMTrppJNGjlOplNauXVuxsQEAAAAAxi9rs57lEUUVMcG+3ecKD6jU+a3MHVpRmSAF1712hdPVK3As9Ou1KeWtd8gIAABAI8jajNb0/rdn3Yz4ATqy6/iq9V2pcK/W4pOMpn3JaK57V6mgMxdX++5gtOYIEAsbjBb2fAAAAKAVsD4PAAAAAAAAAAAAAIDqIxgNAFrIzp079fLLL48c9/T06KijjgrVxumnn15w/Pvf/74iYwMAAAAAVEbWZjzL4yYeuI2YiSuiaODz2ey+j+tehA1SSFtHMJojAK3RwjJcgQ8xn8/hkE1XazgAAADj9oddj+qd3E7PurN6zg8cQlwOZwiuY87YDqxPMJopCEarbnDxhMjEUOe75snN8kyVMCFDtEOeDwAAADQ71ucBAAAAAAAAAAAAAFAbsXoPAECRrtnSB1+p9yhaX9fseo+gKrZt21ZwPH/+fBljHGd7O/LIIwuOt27dOu5xAQAAAAAqJ2uznuVRE/xbfcYYJSJJDeb7A52fbJJN/LXgCihzBSC4uIIUXO273oN6hWW4xj85NkVvZ7y/l5DOp/gsAQCAhrW69z7P8g6T0MLJ76lq340WgtsI3LFohSpx76y1zvn8pFiP+od2BWo/azPOIOvOJpkHJyKJkOc3x+sCAAAowPq82mnBNXqszwMAAAAAAAAAAAAAoDYIRgMaTSQmdc+p9yjQpHbu3FlwPHny5NBtFF+zY8eOcY0JAAAAAFBZro32MRMP1U4y0hk4GM0VNtCOnAFloYPRvM93BQtUKpCtUlxBE5OifsFog5KmVHFUAAAA5XkjvVEvDT7rWbdg0lnqinZXtf9Gm+s1Bnc0mtG+0IFKBKNlbVZ55TzrJsWmaPPQ6x7tj31v/N6vZgkQi5ioOkxCQzYd6HyeFQEAQFNifR7GgfV5AAAAAAAAAAAAAADURqTeAwAAVI61hZtEwv42Si+VaAMAAAAAUDk5m/Usj5lwvwMhzAb2ZtnEXwsJM/7ghT3nu4LRvNt3vQdhA9kqxRmMFusJfQ0AAEC9PbBzhbPu7J4lVe+/UuG7rcQGDEZz3bswoXJ+93lyzDvY16v9VM7dTmekK/B46i3csyLBaAAAAGgvrM8DAAAAAAAAAAAAqsu6lw8CaDMEowFAC5k6dWrBcV9fX+g2iq+ZMsV7wwcAAAAAoD4yNuNZHjPxUO2ECTtjs/s+ztAKGzx4wVrrDAlzB6N5l6fqFDbmer2THMERUnsHewAAgMY1mOvXY++s8qw7rPMozU4eWvUxuOZ6BMs6jAoNSBhXqFzwe+c3l58U9Z7ferXvF8bWTGHTrmee8Z4LAAAAtALW5wEAAAAAAAAAAAAAUBsEowFAC5k+fXrB8QsvvBC6jeeff77geMaMGeMaEwAAAACgsrLOYLRYqHaSIcLOCEbbx3UvsjbrfG/GnptRXnlH+97BAu6wjPqEjbn67Yp0O0P6/IIiAAAA6uWRd1Yqbb1DtM7qOb8mY3DNAdP5lGyb/upDv9dtRv3ZOU92vKee5/qEqE12BP96tZ/KDzjbSUa6Ao+n3sI8//GsCAAAgHbD+jwAAAAAAAAAAAAAAGqDYDQAaCFTpkzRYYcdNnLc29urDRs2hGrj4YcfLjhesGBBRcY2zBhT+iQAAAAAgFM27wpG8w6jcnGFL3hJhji31fndN79AhaDnuQLrXO9Bxg4pZ3OB+q0k12tIRJI+IW7BwykAAABqwVqrB3pXeNZNjE7WCd2n12QcCeM9f8orFzh8t9VY+QWj7Vvm4JonhwkQ9gvwneQKRvO4xtVnVDHFI65Z5bAAACAASURBVOGe1+opzLNimHMBAACAVsD6PAAAAAAAAAAAAAAAaoNgNABoMYsWLSo4vv322wNfu2HDBq1du3bkOJlM6t3vfnfFxiZJiUSi4DidTle0fQAAAABodTllPctDB6OZEJvdHUEN7chv479foMJoaes+z/W++PU7VIfAMb9gNGc4hSUYDQAANJbnB9Zpy9Amz7ozJi+uWZhVJcJ328noLf7uUN7gwWiue2wUUXd0kvMaawvD2wYdfSajzRUeRog2AAAA4I/1eQAAAAAAAAAAAAAAVB/BaADQYj75yU8WHH/3u9/VW2+9Fejaq6++uuD44osvHrNQarx6enoKjjdv3lzR9gEAAACg1WVtxrM8FjK0wRUg4IXN7vv43YugoRV+AWqu96US/VaSq89kpNMZpBc0OA4AAKBWVvfe51luFNGinsU1G0fSZ27uF6rbyqysT+2+aDR3MFrwOXI5ob9WVhk7VNSOIxityZ6nwgRjh3muBAAAAFoF6/MAAAAAAAAAAAAAAKg+gtEAoMW85z3v0QknnDBy3NfXp0suuUSDg/4bZ775zW/q7rvvHjk2xujv/u7vKj6+uXPnqqOjY+R45cqVymS8N/UDAAAAAMbK5B3BaIqFaifMBvZEk23krya/++YKQhh7njukwdW+XzhBPQLHXH0mIknn56UeAW4AAAAuOzPbtW73Y5517+o+RVPj02s2Fv85ZrvOodzBaCZAMFqYObLr3GSk0/dZqPg6dztdgcfSCEI9K4YIUQMAAABaBevzAAAAAAAAAAAAAACovnC7JQEAVffWW29p48aNZV07Z84cSdLNN9+s0047TUNDe35T/apVq3TmmWfqxhtv1Kmnnlpwzfbt27V06VJ973vfKyj/4he/qHe9611ljcNPR0eHzjjjDK1cuVKS9Nprr+mDH/ygPv/5z2v+/Pnq6ircHDJr1iwlk2yqAAAAAIBhOWU9y2OReKh2kiHCzghG26fDJGRkZD2CGoKGVrjOM4oobjo86/zeg7StfViG6zUkIp3OIIX2DfUAAACNaE3fr2SV96w7u+eCmo7Fd67XpnOovHUHo43KRatIKK8r4HhP6G+pYOSekeNUfsDzvDDPXo2AZ0UAAAC0OtbnsT4PAAAAAAAAAAAAAND4CEYDgAZzySWXlH2t3btJ5KSTTtJ3v/tdff7zn1c+v2dTz9q1a7Vw4ULNmzdPxxxzjJLJpF5//XU99thjymYLN9W///3v1zXXXFP+iyjhyiuvHFl4JUkrVqzQihUrPM9duXKlzjnnnKqNBQAAAACaTTbvCEYz4b7V57fBfzzntjpjjBKRpFIe4QleZV5cIQ3JSFLGGM+6RCThbC9ov5WStRlnQF/CJH3CKWo7TgAAAJeszeih3l971s3smK0juiq/Md1P3HTIKOIZ1FbruV7jcAejmVHJaK6555BNK29ziphoyZ6cob+mVDBa4XWu96rZgtF4VgQAAECrY31eIdbnAQAAAAAAAAAAoJH4/V5VAO0lUu8BAACq49JLL9Wdd96p7u7ugvKXXnpJd999t+688049/PDDYxZdffazn9Uvf/lLxePxqo3twgsv1Fe/+lVFo6U3owAAAAAACmVtxrM8ZsI9x4XZnN9sG/mrbbzBX67zXO1KUsREFTcd4+q3UlzBEdKeYARXOALBaAAAoFE8uet3eifX61l3Vs/5zrDaahkO3/XiN/dqZTZoMJrxCy5LB+orbd3zc79noeIgtFR+wNlOMwkXjNZcrw0AAACoJNbnAQAAAAAAAAAAAABQPQSjAUAL++hHP6qXX35Zl19+uaZNm+Y8Lx6Pa/HixXrooYd08803V3XR1bB//Md/1Lp16/SlL31JZ511lmbNmqXOTjZPAAAAAEAprmC0qImFaifcZvfg57YDV/hCcTCCi+u8UvfZFcrQWMFonYR6AACAhvdA732e5QmT1MJJ59Z4NHv7Jly2LH7BZWkbbP7pmqcmIknFTFxReT9rFbfvaqcz0hVoHI0iTNgZIdoAAABod6zPAwAAAAAAAAAAAACgOsLtlgQAVNzGjRur2v6MGTP0rW99S//yL/+itWvX6rnnntO2bduUTqc1bdo0zZ49W4sWLdLEiRNDt71s2TItW7as7LEdffTR+trXvlb29QAAAADQjrI261keM+E20bDZvXzugLJxBi84AtdG6iNJ7cr1ld1vpfgFwCUiyXHfHwAAgGralHpFLw9u8Kw7ZdI56oxOqPGI9nDNBdt1DmVlnXVGZuTPfuHCQUPlXPd4eF6biCQ1kN9d8rrB/IBnO2GevRpBmOc/QrQBAADQDFifx/o8AAAAAAAAAAAAAEDzIRgNANpEJBLRggULtGDBgnoPBQAAAAAwDlmb8SyPVzEYjc3uhVz3I20DBi9YRzBaifekUQLH/PpLRjqdoR5+gWoAAAC1srr3XmfdWVPOr+FICrnnmO0ZjCafYDRVOBjNNU8dbjsZ6XQEow36Hg9rtqDpoM+KRkYdJlHl0QAA0FyMMYdKOkHSAZK6JW2W9Kqkh611fGO3vH7iks6QdLCk/SXtlvSmpCettRsr1Q+AcFifBwAAAAAAAAAAAABA5RCMBgAAAAAAADQRVzBaLGwwmiO8yvPcJtvIX22u+xE0oMx1XqkAOle/tQ4ccwU+GBnFTYf7/rRtqAcAAGgUA7nd+v07D3jWzes8Wgcm5tR2QKO4wrPaNVzWNxbNjA5Gcz+rpMY9P+/c+/9gwb+p/IDnec0XjBbsWTERSRa8FwAABGWMmStpgaST9/7/JEkTR53yqrV2Tplt+00jgji0nGAxY8xHJV0p6TTHKTuMMXdK+oq1dnu5gzPGTJe0XNJFkqY6znlY0r9Ya39abj8AAAAAAAAAAAAAAABAvRGMBgAAAAAAADQRVzBa1IT7Vl+YzfkdJhGq7VY33tAKV7BYqfdkvIFsleLqr8MkFDER5+twvW4AAIBaeaTvtxqyac+6s3qW1Hg0hRplrtcorA2WaRI1UcVNhzJ2aExd8OBi//m5KyisuH3X80DTBaMFDNEOE7YNAIAx5hxJV2tPGJpnoFczMsZ0S7pJ0sUlTp0q6QuSPmyM+ZS19ldl9HWBpFslzShx6umSTjfG3C7pMmttf9i+AAAAAAAAAAAAAAAAgHojGA0AAAAAAABoIlmb9SyPmXiodlyb+8ecZ5KKmEiotltd0GAEF9d5pd4TV/BA0EC2Sklb1/jDBUcAAADUUt7m9UDvCs+6SdEpOmHiqTUeUSH3HKpdw2XdwWgRFT6fJCJJZXJewWjB7p1rPj38nrhD6wqvcwejdQUaR6MIGuTmui8AADicIGlxvQdRScaYqKQ7JRUn7G6T9KSkPkmHSTpRktlbN1PS3caY91lr14To6xxJP5fUMarYSnpC0h8l9eztZ9qo+o9LmmSM+TNrbT5oXwAAAAAAAAAAAAAA1FOwX6sKoB0QjAYAAAAAAAA0kazNeJZXLRiNze5juO5J0ICyUsEL7n4bI3CsdHBEYwS4AQAAjPb8wDptzbzpWbeoZ3Ho+XSlNcpcr1GEWdiUiHRqd+6dMeXjDi42/vPb4uvc8+TmeqYK/qwY7DwAAEpIS9qkPQFilfaopItDXrMpxLnXqTAULSPpSkk/tNaOpLYaY46W9G+STttblJD0c2PMcdbazaU6McbMlnSXCkPRHpJ0qbV2w6jzEpIuk3S9pOHJ7QckfVXS/xPidQEAAAAAAAAAAAAAAAB1RzAaAAAAAAAA0ESyNutZHjPhvtUXdHN+ssk28deC656kAwZ/OYMXStxrZ7+2toFjrvEPj88VkJCxQ8rbnCImWrWxAQAAuKzuvdezPKKIFk1eXOPRjEW4bDF3NJqRKTgeDjArFnh+bv3n5wnjmv/vuy5rM84Q684me6YK+qzYbIFvAICGkJH0rKTHJf1+7/+flnSGpJVV6C9lrd1YhXZljJkr6fKi4j+31t5dfK61dr0x5r2S7te+cLT9JC2V9PkA3S2XNGXU8cOS3mdt4STGWpuW9G1jzGuSfjaq6kpjzA+sta8G6AsAAAAAAAAAAAAAAABoCJF6DwAAAAAAAABAcK7N9jETD9VO1EQVNx0lz3MFNLQz1z1xBYaNOc8VvOAIdCjdb62D0bz7Gx6fX5heOp+uypgAAAD87Mhs09O7H/esO757oXri+9V4RGO5w3eDzTFbjfUJRlNxMNo4Q+XKnd+Obt+vr2YLEAsajk2INgAgpNskTbLWnmitvdRa+0Nr7RPWOr7Z2fiWShr9DdlbvULRhllrByV9WtLQqOLP7Q1YczLGzJf0qVFFQ5I+XRyKVtTXz7Xnfg9L7B0vAAAAAAAAAAAAAAAA0DQIRgMAAAAAAACaSM5mPctjJha6rSAb9JttE38tuO5J8OAFRzBaiRA6V7+1DssoNX6/z0ytQ9wAAAAk6cHeFbLKe9adPeWCGo/GW8I45nruzIuWZq07GM0U5qK5Q+UC3DtrrXN+O9yuM6B4VPupnHue2xnpKjmORhI3HTJF4XNeCNEGAIRhrd3pF+bVTIwxnZI+WlT89VLXWWtfkPTzUUUxSX9R4rK/kBQddXyXtfbFAMMsHs/HjCnxWxkAAAAAAAAAAAAAAACABkIwGgAAAAAAANBEsjbjWR4z8dBtBdnIzmb3sRKOPYRBA8pc4WClQuhc70XQQLZKcY9/bzCazx7Ldg32AAAA9ZPJZ/RQ32886/bvOEjzO4+t8Yi8OcO3ahyC2yisfILRikK7xnPvMnbI2VeiVDDaqHmx35y82cKmjTE8KwIA4O88SaOTT39nrX0u4LW3FB1/uMT5HypxvSdr7QZJj44qmiBpcZBrAQAAAAAAAAAAAAAAgEZAMBoAAAAAAADQRDLOYLRY6Lb8AqyGJZtsE38tuO6JKzAs6HmlggXc/dY2LMPV377gCPdnJug9AgAAqJQndj2k3bk+z7qzei6QMcazrtaChG+1F3cwmsYEo3nPP4MECPsHmu15T4LM//3ep2Sky1nXqIKEufGsCABoY+cXHa8Kce2DkrKjjk80xsz0OtEYM0vS8aOKspIeCtFX8bguCHEtAAAAAAAAAAAAAAAAUFcEowEAAAAAAABNJOsMRouHbivIRvZSYV3tyBmMYFPK27zvtdZaZ7BYqfdjPIEPlZS2jmA0MxyMlnBeW+uxAgAAPNB7n2d5wiR1yqRzajsYHwSjFQoei+Z370oHCPvd3+F2g7Sfyg94nhNVTPFI+Ge1egsSos2zIgCgjR1bdPy7oBdaa/slPV1UfEzAftbtvT6ohwP2AwAAAAAhNMYvGwEAAAAAAAAAtD6C0QAAAAAAAIAmkrNZz/JygtGCbGQPEp7Wbvzu25BN+16btRnl5R2eVur98AtksNYvOqKyXOERw+OLmKjipsNxbelwCgAAgEp5LfWyXkk971l36uRz1RntqvGI3FwhuLWe6zUKGyIazRlcHCBUzm9+OtxusGA0776S0eZ8ngryrDgcjAwAQAM72BhzizHmWWPMTmPMkDFmy97jHxlj/soYM7WMdo8qOn4p5PUvFx0f7TivuLxa/QAAAABACO33/WoAAAAAAADUVhsumQTgQDAaAAAAAAAA0CTyNucM1SonGC1I6FmQDfHtxhVaIZUOX/ALXih1r5OO4IG8csrajO+1leR6DaPH7w6nIBgNAADUzuree511Z/VcUMORlOaaY+aVr+lcr3G4VzaZomC0IMFlLq5As9Ht+oXWlWqnWYOmeVYEALSIQyV9WnsCwXokxSXN2Hv8cUk/kPSaMeabxpjuIA3uDVIrDlN7LeS4is+f7zhv3jj7ebXoeD9jzJSQbQAAAAAAAAAAAAAAAAB1Eav3AAAAAAAAAAAEk7VZZ13MhP9WX5CN7AlHGFc787tvqfygJvtc6xu8UOJe+/WbzqcUj3T4Xl8prtcwenyJSFK7cn1jziEYDQAA1MpAbrcef+dBz7r5ncfqgMTBNR6Rv4RpjLleo/D7hY/GFAWjOe5dqdBiSUpb7/lpVLGR8GlnMJpNKW/zipiIe47cpM9TfmHQYc4BAKAJTJB0haQlxpgPW2ufLXF+T9HxgLW2P2SfW4uOXd9OLO6r+Dpf1trdxpiUpNGTpcmSdoZpx4sxZoak6SEvO2y8/QIAAAAAAAAAAAAAAKB9EIwGAAAAAAAANImszTjrhjfthxFss3vp8LR2k/S5b6WCv9LWJxitxL327dcOqluTfK+vFNdrHD0+12fLLxgOAACgkn7Xd78ydsiz7uwpS2o8mtKSJcJ3azXXaxjWOxrNyIwp8wsuK8UVnlYwt/UJrRuyaSVNp1L5Ac/6zmhXyTE0Ir9njzDnAABQJ1lJayT9RtI6SZsk7ZLULelgSWdK+qSkGaOuOVzSb4wxC621r/q03V10XM43u4qvmVjlvkZPZlx9hfXXkpZWqC0AAAAAAAAAAAAAAABgDILRAAAAAAAAgCaRtVlnXbWC0djsPpbffSsV/OUXnFbqXvsFp9UycMz1GhIBwiNcwRMAAACVlLd5PdB7n2fd5NhUHd99So1HVJrfHNMvXLdVWXkHoylMMFqJ0GK/c0bPvf2DkQeVjHQ65+NBnrkaUZCAbEK0AQAN6n9Luslau9VR/5SkXxhjvqw9wV7/S/smGLMk3WWMOdlaR0rr2LCy0hOOsYonDsVtVrqvKQH6AgAAAAAAAAAAAAAAABpKpN4DAAAAAAAAABBM1macdTET/ncgBNvs3pwb+aspaqKKmw7PulLhC676iCIlw+18wzIChD5UynjCI9K2duMEAADta8PAU9qWecuz7szJ5ylaxty52vzm5rWc6zW6sbFo7nsXJDzYHWiW9Pyz6/pUfsCzvlmDpglGAwA0K2vtP/mEoo0+L2WtvVrS/yiqOknSJWG6DDO+cVxT674AAAAAAAAAAAAAAACAumq8Fd8AAAAAAAAAPPkFo5UT7hBkI3uzbuSvtkQkqUxuaEx5ukT4gl+omDFeMQ/7xE2HjCKyyo+pCxL6UAlZm1FOWc+6hCkdHlGrcQIAgPa2eue9nuURRXVGz/trPJpg/OZ67RiMZp0ZHmPnzK5nlqzNKGezvs9Krvn76FDiIKF1rveoWZ+nggRkN+trAwBgNGvtjcaYxZI+OKr4ryX92HHJ7qLjcv5BLL6muM169BXW9yT935DXHCbp7gr1DwAAAKBu/Nc1AAAAAAAAAABQKQSjAQAAAAAAAE0ia70DqSQpbuKh2wuykT1IeFo7SkQ6tTv3zpjyUqEVrmCwIMEDxhglIkml8gOh+60Uv2Cz0Z8V1+emHUM9AABAbW0f2qJn+9d61p0wcaEmx6bWeETBNMJcr5G4gtGMx6a7UsFlXdFu33ovhXNb91x9+PpBj/dNkpKRLue1jWx06LHzHJ4VAQCt42sqDEZbaIzpsdb2epxLMJoka+1WSVvDXFPql0IAAAAAaBauX2oBAAAAAAAAAEBlReo9AAAAAAAAAADBZG3GWRcrIxgt2Gb3cvbbtT7XvfMLDpOk9DiC0SR3mJ2r3UrzC+UYPTbX62nHUA8AAFBbD/atcIZqnd2zpMajCccVNFVqjtlOvPI0/AK6Ss/PSwejRU1UcdPh275rPh4kjLoRBQk9S5jmfG0AAHh4TNLOUcdRSUc7zu0rOu4yxkwI2d+MomOvADavvqaH6cQY062xwWiuvgAAAAAAAAAAAAAAaAhE8wMYRjAaAAAAAAAA0CQqHYwWZJN+kA3x7ajcgLIgwQt+XOfVKnDMr59EoGA0Qj0AAED1ZPJDerjvN551B3QcrHmdrnyLxlDvENxGYm3eUTM2Gc3vuabUPNkVnFbcZql5eCo/EKidZhHsWbE5XxsAAMXsnonHa0XFniFk1tq3VRiiJkkHh+zykKLjFx3nFZcXXxe2nx3W2uKxAwAAAAAAAAAAAAAAAA2JYDQAAAAAAACgSfgFo0VNLHR7QcK4mnUjf7W57p0rWGFY2jqC0UzQYDRXWEYjBKMlPf8c9HoAAIDxWrtrjfpzuzzrzpqyRMaMDdVqJK45YTvOoazjdz4aj2A0v4CuUvfOGVxsioPR/EPrggasNYtSoWcRRRUr4xkUAIAGVvyPud8/hhuKjueF7Gtuifaq1c/6kNcDAAAAAAAAAAAAAAAAdUMwGgAAAAAAANAksjbrWR5RVBET/lt9pTa77zknWGBXu3EFHLiCz0bqHYEJQe+zKyyjVCBbpbjGb2TUYRIjx+5gtNqMEwAAtKcHeu/zLE9GunTKpLNrPJrwnHOoEnPMVuQdi+Zt9Dy0WKn5pzO4uOi9cIfWDQejebeTjHT59t+oSj2fJCLJhg8aBAAgpGlFx9t9zn2m6Pi0oJ0YYyZIeleJ9lzl7zLGhJlcnBGwHwAAAAAAAAAAAAAAAKDhEIwGAAAAAAAANImszXiWx028rPZKBaPFTEyxMttudeUGf6WdgQmlQ+p8+7W1CRxzBbAVByOUGxwHAABQrldTL2lj6kXPuoWTzg0836on1/y8PcNlvaPRjMaGcUVMxB1cVmZwcfHnpVRoXSo/4FkfJIy6EZX6+9IMf58AAAjKGDNN0tyi4jd9LllRdHxOiO7OlBQbdfyktXaL14nW2s2S1o0qiklaFKKv4nF5pwgDAAAAAAAAAAAAAAAADYhgNAAAAAAAAKBJZG3Ws7zc8DLX5v6ResNmdxd3aEWp4AXv+lLvxTBXAIErsKzSnOMvCqJwBVPUapwAAKD9rN55r7PurJ4LajiS8jnDZUvMMVuRDRGMJo0nuNgd/Dua33uTtRlniHVnkwaIlXxWDPj8AgBAk7hYhesot0ja4HP+rySNnkScZow5MmBfny46/lmJ84vrPxOkk73jOXVUUb+k/w5yLQAAAAAAAAAAAAAAANAICEYDAAAAAAAAmoRrs33UxMpqz7W5fxib3d1cwWilgr9c9a72xp7nCnyoTVhG2rqC3TqLjus7TgAA0F52597R2l1rPOuO6HqXZiVm13hE5WEOVT7XvUuVHVwcbH6byg/6PgMEnec3mtLBaM35ugAAKGaMmSnpfxcV/5e11julVZK1dkDST4qK/1eAvg6X9KFRRVlJPy5x2e2ScqOOP2yMmV+qL4/x/Ke1jm/sAQAAAAAAAAAAAAAAAA2IYDQAAAAAAACgSeRs1rM8VmYwWtx0yMg469ns7pYsM7TCHbwQLITOFWaXLhHIVilBx+8aZ9ZmnJ9jAACAcv2u735l7JBn3dk9S2o8mvL5hW+1G1cWiTHeSxzcoXLlBhcni45d8/CUbx+lwqgbValnQdfzEAAA9WKMOcIY84GQ18ySdI+kmaOKhyR9LcDlyySN/i0WnzbGfNCnr6SkWyR1jCq+2Vr7sl8n1toXJd02qqhD0q1723P19aeSPj2qaEjScr9+AAAAAAAAAAAAAABoFO5fZQag3RCMBgAAAAAAADSJjM14lsdMvKz2IiaiDpNw1jfrJv5acAcj+AcvuOoT7r2MAfv1D2SrFOf4AwZH7GmjNmMFAADtIW9zeqB3hWddT2w/Hde9oMYjKp873Kv95k9WjmA0x/nlzpPHG/ybzg9qMOcXjNbl23+jShj/Z0FCtAEA5TDGzDbGzCn+T9KsolNjXuft/W+ao/n9Jf3CGLPOGPNFY8x8n3FMNMb8raSnJJ1cVP1Va+0fS72WvefcUFT8E2PM3xpjRoefyRhzlKT7JZ0+qvhtBQ8rWypp56jj0yX9xhhzZFE/CWPM/5D0f4uu/2dr7asB+wIAAAAAAAAAAAAAAAAaQqzeAwAAAAAAAAAQTNYZjFb+t/mSkU6lc8HCALCPOxihRPCCHd+9rndYhjsYrbPo2P16UvlBdUW7KzouAADQvp7tf1JvZ7Z41p3Zc56iJlrjEZXPFUZVKny3vXhHo7mCulI+9y5vcxqyac+64vm+a36byg/6vj/NGjYdMzFFFFVeOc/6oMHOAAAUWSPpkADnHSjpFUfdbZI+7XPtcZK+Lunrxpg+Sc9I2i5pl6RuSQdJOl7e6yZ/aK29JsD4hn1J0jGSLth7HJf0HUlfNsY8sbfPuZJOUuEkZkjSh6y1m4N0Yq3dZIz5sKRfSRoOXTtD0npjzFpJf5Q0eW8/04suv0fSl0O8JgAAAAAAAAAAAAAAAKAhEIwGAA1uYGBATzzxhF588UVt375dqVRKnZ2dmjlzpg4//HCdeOKJ6ujoKN0QPJ1zzjlavXr1yLG1tir9rFq1Sueee+7I8dKlS7Vs2bKq9AUAAACgdWXzrmC0eNltJiKdUm6nuw6e/IIR/LgCzIIGJpQT+FBJrvEX3w+/z06tQtwAAEB7eKD3Xs/yqGI6Y/LiGo9mfJwhuI5w3VZm5f3zGuMKRnMEdfnNPdN571A0KXjwbzqfUio/4FkXVWxcz2r1ZIxRMtKpgfxuz3qeFQEATWKy9gSIldIv6e+stTeFadxamzPGfEzSv0m6aFTVDEnnOy7bKulT1toHQ/a1yhjzIUm3al/4mZF08t7/vNwh6VJrrXfSKYARrM+rLtbnAQAAAAAAAAAAAADKQTAaADSgXC6n//zP/9Qtt9yilStXKpvNOs9NJpM677zz9Jd/+Ze68MILazhKAAAAAECt5eT9fDi+YDTvDf6l6tqdX0CZtVbGeAc2pB0BZkGDBcoJfKik4MFo7s8OwWgAAKBStg1t1vr+Jz3rTpx4mibFemo8ovFxzQnbc/4ULhjNFTTsG4zmEzhXPO/2m4e7QoqTkU7nc0EzSESSPsFoPCsCABrOBknXSjpb0kmSgnyz7QXtCRq7yVq7vZxOrbW7JV1sjPmJpL+XtNBx6g5Jd0paaq3dVmZf9xpjjpW0XHuC2KY4Tn1E0vXW2p+W0w/QLlifBwAAAAAAAAAAAABAYyMYDQAazG9/+1t94Qtf0AsvvBDo/FQqpbvvvlt33323Tj75ZP3gBz/QSSedVOVRhjdnzhy9+uqrkqRDDjlEGzdurO+AAAAAAKAJZW3GWIaAlgAAIABJREFUszwWGU8wmnuPoCtcAO5ghLxyytqs4h5hddbawMFiLu7AB+8whkpzhUckTOG4OkzC3UaNxgoAAFrfg72/knUEaJ3ds6TGoxk/15ywHedP3u+q5MhFc9876753fve1eN7tDK2zg+5gtGhzP0/5PQ/yrAgAKIe1dk4V294i6R8lyRgTkTRf0mGSDpTUIykpaVDSTkmbJf2+3IAyR/8/kfQTY8yh2hPMdoCkCZLekvSqpIestUMV6GerpC8YYy6XdIakQyTNktQv6Q1JT1prXxlvP0CrY30eAAAAAAAAAAAAAACNj2A0AGggy5cv1/Lly2Vt4XYPY4yOOuoozZ49W/vtt5+2bdum1157bczirMcff1ynnXaavvvd7+rSSy+t5dABAAAAADWQyTuC0cbxbT6/QK6gYV3tyC8IIJ0fVNwjrC5jh5RX3vOaoPfaHfiQUt7mFTGRQO2UyxX6UDyuiIkoYZKeQWqucDUAAIAwhvJp/a7vfs+62Yk5mtt5ZI1HNH6uuV4qn5K1VsY4UsFaknc0mnEko5UTKudXV9yeMxgtn3LPkU1zh4fxrAgAaFbW2ryk5/f+V+u+X5FU9WCyvSFrK6vdD9CKWJ8HAAAAAAAAAAAAAEBzIBgNABrEFVdcoRtuuKGgbOLEibr66qv18Y9/XAcffPCYa1566SXdeuutuv7665VOpyVJQ0ND+qu/+iv19/friiuuqMnYAQAAAAC1kbVZz/KYRwhXUH4BX3517c4vCCBtB9WtSWPL8+5AsKDBAn7vyZBNK1nl8AXXa/AaVyLSqXTOIxjNJ4ACAAAgqLW71qg/v8uz7qyeJU0ZIuaa61nllbFD6jCJGo+ofvLWOxhNzmA0d3CZS8qnrmNMMJoreC2lVH7As64z2uVsvxn4B6PxrAgAAIDmw/o8AAAAAAAAAAAAAACaR6TeAwAASLfddtuYRVeLFi3S+vXrdfXVV3suupKkefPm6atf/arWrVunY489tqDu7//+77Vq1apqDbllrFq1Stbakf8AAAAAoJHlXMFopvzff+C72d0EC+tqR34BZSlH8JdfKEPQEDq/AIJaBI65+vD6HLk+W34BFAAAAEFYa7V6572edZ2RLi2YdFaNR1QZvuG7bTeH8v6ZjSvuzj33dM+RXfc0bjoUNdGCMtd8PWOHNJDf7RhTc4eH+Y0/GTDYGQAAAGgUrM+rH9bnAQAAAAAAAAAAIAx+pARgGMFoAFBnL7zwgv72b/+2oOz000/Xfffdp9mzZwdq4/DDD9f999+vo446aqQsn8/rE5/4hLZv317R8QIAAAAA6idrM57lMRMvu02/QK5m38hfTf4BZd4BC2nrDmVImKDBaPUNy3D1ESYYrRYBbgAAoLVtTL2o19Ive9adNvm9vnOmRuY3J2y3YDTrDEbzjkZzPdf43Td36O/Ytvw+U33ZnaHG1Cz8Po88KwIAAKCZsD4PAAAAAAAAAAAAAIDmQzAaANTZVVddpd279/0m+Z6eHv30pz9Vd3d3qHZmzJihn/zkJ+ro6Bgpe+ONN3TNNddUbKwAAAAAgPpyBaNFTazsNv02+LPZ3S1uOmQc315NOQIW/EIZgoZ3+IUruPqtJHcw2thxlRNOAQAAEMTq3nuddWf2nF/DkVSWbwiuT8hua3L9ykfvYDTXs4t/MNr4Q38lqS+7w7O86YPR/J4VTXOGDwIAAKA9sT4PAAAAAAAAAAAAAIDmU/6OSQDAuD333HO65557Csquu+46zZo1q6z2jj76aF111VW69tprR8puvvlmLVu2TFOmTBnXWBvNSy+9pHXr1umNN97Qrl27ZIxRV1eXZs6cqUMPPVTHHXecurq6qj6OdDqt1atX65VXXtGOHTs0Y8YMzZ49W2eeeWZV+t+8ebMeffRRbd26VW+//ba6u7s1Y8YMLViwQHPnzq14fwAAAAAaiysYLWbiZbeZMO7N+smAYV3tyBijZCSpwfzAmDpXwIIruCyiSOD30Dcso8qBY9Za52sIEx5RiwA3AADQunZl+/TErjWedUd2Ha+ZHQfWeESV4zfXS7VZuKwzFs24gtHcc09rred1ace81CvQzC/kzB2MVv2fU1WT32smRBsAAADNgvV55WN9HuvzAAAAAAAAAAAAAKCeCEYDgDq64YYbZO2+rR3Tpk3TZz7zmXG1ecUVV+gb3/iGMpk9m+X7+/t100036Ytf/OKYcz/96U/rtttuGzl+5ZVXNGfOnED9rFq1Sueee+7I8dKlS7Vs2TLf9oe9+uqrzo0rkvSpT31Kt95665jydDqtb3/727rpppv04osv+o4vGo3qhBNO0J/92Z/pyiuvdC6COuecc7R69eqR49Hvh5++vj595Stf0a233qp33nlnTP3EiRN10UUXafny5TrggAMCtemSyWR0880363vf+56efvpp53nz58/XVVddpc9+9rOKxfgnHgAAAGhFWZv1LI+PJxjNJ3yBze7+EpFORzCad8CCK7gsEen0fU4eLWpiipm4Z0hetQPHsjarvHKedUmPgD3XZ6vaAW4AAKC1Pdz3G+e8+OyeJTUeTWXFTYciiiiv/Jg61xyzVbl+XmPkCEYz3nPPvHLK2qznM5Mz9NejLb9no77sTs9yv2CxZuD/rEiINgAAAJoD6/O8sT6vEOvzAAAAAAAAAAAAAKDx8FNZAKijFStWFBx/8pOfVEdHx7janD59uj7wgQ/orrvuKujHa+FVM3n99dd13nnnacOGDYHOz+VyWrt2rdauXauLL75Y8+bNq9hY/vCHP2jJkiV68803nefs2rVL//Zv/6a77rpLv/jFL8rua+3atfrYxz6mP/7xjyXPffHFF3XZZZfpX//1X3XPPffowAMPLLtfAACaTV92p57tX6u30puq2k880qG5nUfqyK7jFTXRqvbVrnZn39Gz/Wv1Tq5PR084QQcm5tR7SGgRu7K9eqZ/rTanX6/3UApETUxzkvN19IQTFY+Ufh70CsOSpNi4gtHcm/WbfSN/tbnunSv4yx2MFi5UIBFJKpsb+1l4qO+/9eLAM5IkY4wO6DhYx3S/W93RSc62rLV6fmCdXh7cUDKwzPX5Gx7T2DLv+/Py4HrdtfXWkePJsak6esKJ2j9xkG//W4be0LO716o3u8OzPhnp1LyuYzS/8xjfDV+1mjeE1RFJjMwzIiZSVhubUhu1YeBJ7cr2Bb4mZuI6tPMIHT3hBEVNZX9ksDOzXev7n1TapnTshJM1o2P/irb/Rnqj1vc/pUw+rXldR2t+57GBQwYBlFbq34iYiWtu5xE6out4xSPlz0WAMPI2pwd7V3jWTY1N13HdJ9d4RJVljFEikvQM332wd4We6/+D7/URE9GBiUN07IST1RmdUK1hjsvWoc16tn+tdma2+563eSjcs5vfs8vPtt3q+cz00uB6z/O95rYdJuFsP2OHHO009/MUwWgAAABoBazPC471eazPAwAgGH4eCwAAAAAAAACoDYLRgAaTszn1Zv03AmD8emLT6h5ksWnTJm3cuLGgbPHixRVpe/HixQULrx555BFlMhnF4825OW1oaEjnn3/+mEVXU6dO1XHHHaeZM2cqHo9r165d2rx5s9avX6/+/v6qjGX9+vV673vfq7fffrugfObMmTrxxBPV09OjLVu26JFHHtHg4KB27NihCy+8UN/4xjdC93XPPffooosu0sBA4Qao/fffX8cff7ymTp2q/v5+rV+/vuA3dD711FM69dRT9cgjj2j27NnlvVAAAJrIm+lX9e3Xl+qdXG/N+jxp4un6zP5XVjw8pN1tHXpT3359qXZkt0mSfr7N6OOz/kanT35fnUeGZvdWepO+vWmperNvlz65To7oOk6fP/AfS24udwVTjefrkV+AAJvd/bnuTyo/6FmedpSHDUxIRjrVn9s1pnzd7sfGlE2NTdflB/0fTfcIpMrbvH685Xt6uO83ofr34hmMZrxf1+ah18cEXfxsW1SfPeBKnTTxDM9rntr1iG5+83rllPUfyNvSuVMu1Eenf84zIKse84awFkw8W5/c/3+G/t7VQ72/1o+3fE9Wtqx+j51wsi494IuBQhqD2Dj4gm7cdI3683s+qz83t+mvDviSjq1QYM3v+u7Xj966UVb5PQVvS2f3LNHHZlxKOBpQAdZa3bHl+1rT96uS5x494SRddsCXKvb1A/DzTP/akWfGYot6zlOkBULME5FOz2C0P+x+NHAbszpm63/OXq6e+H6VHNq4PbP7cd305v/rDBILwjg23fk9u6zq/WWoPryekSImooRJKm39w4RH62zyYDS/Z0VCtAEAQDNjfV7t1HuNHuvzgmN9HuvzAAAIrryfRwMAAAAAAAAAEBY7uIEG05vdri//8bJ6D6PlXTP3B9ovPrOuY3jooYfGlJ18cmU2hr773e8uOB4cHNRTTz2lBQsWVKT9oK6//notW7ZMkrRo0SK98cYbkqQDDzxQa9ascV7X3d1dcHzLLbdo/fr1I8dz5szRjTfeqPPPP1+RSGTM9dZarV27Vvfcc49uvvnmCrySPTKZjD7+8Y8XLLraf//9dcMNN+gjH/lIwVh2796tf/7nf9Y//dM/qbe3N/RvBF2/fr0uvvjigkVX559/vpYvX65TTjllzPlPPvmkLr/8cj344IOSpDfeeEOXXHKJVq1apWi0+TeCAQDg52fbbqt5uMkTux7WyRPP0gkTF9a031Z3z/Y7Cja4W1n9x5bv66SJZ7DhFuPyi+0/auhQNEl6fuBpPdq3UmdNucD3vKz1DoWKmfI32vgFCIQN7Go3rq9N6bx3WIKrPGwAXcIEP39Hdpvu2f4f+swBfzem7qXB9RUJRZO8PythXldeOd3x1vd1fPfCMRvl8janH2/519KhaHut3HmPFk56jw5Kzh1T97Nt/19Dh6JJ0u93rdYpk8/WMRNOCnxNKj+o/9x6U9mhaJL0TP/jWrvrIS2cfG7ZbYz20223jISiSXu+ft3+1o269rB/H3dw2VA+rf/Y8oN9oWh7re69V6dOOldzOuePq30A0iup5wOFoknS+v4n9Ng7q3VGz/urPCpAemDnfZ7lMRPTGZNb4zNYiXDit4Y26dc7f6Y/n/GXFRhRZVhr9eMt/zquUDTJLxitcs8urvcgEUkqnQsejNbsz1P+z4qEaAMAgObF+rzaqfcaPdbnsT7PD+vzAAAAAAAAAAAAGhPR/ACGjf1pNQCgJjZt2lRwPHPmTO23334VafvYY48t2V8tTJs2TXPmzNGcOXMUi+3L4ozFYiPlXv9NmzatoJ2777674Npf//rXWrJkieeiK0kyxujkk0/WsmXLtHHjRh1yyCEVeT3f+c539NRTT40c77///lqzZo3+/M//fMxYuru7tXTpUt1xxx2KRCLauXNn4H7y+bwuuuiigt+quWzZMt13332ei64k6cQTT9Rvf/tbffjDHx4pW7NmjW6//fbA/QIA0IzyNqfnB9bVpe8N/U+VPgmhbBgYe0+zNqs/Dj5Xh9GglTTL39f1A0+WPCdrM57l4wlG64x0OesIJfTnCihL5Qc9y9PWuzxM0JkkdUYnhDrf6+urJD3X/4dQ7fjx+qz4fba89Od36bXUy2PK30i/qt25vlBtre8f+/dpz7yhcq+5mjZ4jN/Py4Mbxh0yUk6/Lqn8oF4e3DCmvC+3U1uG3hh3+36vd0OAr6UASnt69+Ohzn9x8JkqjQTYZ+vQm84580kTz9DE2OQaj6g6ws6hXJ4J+fe42t4a2lSRwOqo8f7db5V8dkk63gNXuUul3st6SUa8nzvipsP5PgAAAACNhPV5rM9zYX0eAAAAAAAAAAAAADQ+gtEAoE527NhRcDxlypSKtZ1MJpVIJHz7ayavvvrqyJ+PP/54zZs3L/C10WhU8Xj5AQHD8vm8vvOd7xSU/fCHP9TcuXN9r/vIRz6iv/7rvw7V11133aVnntm3kfBjH/uYli5dWvK6WCym2267TTNmzBgpu/7660P1DQBAs0nn08rabF367s+/U5d+W1Xe5tSf2+VZl8oPeJYDQWTyQ0rbVL2HEYjr78Borq95sXFsSj8wcahniMDBicOUiIQL7Go3rmCEtCMYbTDnXd4ZDReYMK/z6FDn9+d2ydqxvzMnbNiYy8HJeeqIJMaUz+sKN05J6s+N/fd1t0dZ6XbG/n1K51N1mzeEtTvA14OC87OVeS/LuddevN7HYYMV+Hfd77NbqdcAtLsdmW2hzk/n01UaCbDPA70rnHVn9yyp4Uiq67CQcz2Xndntytt8RdqqBL/5QRhzO4/0LO+IJHRIcn5F+pjXdYyjPPh7E1HUOdZmMbfzCEU8lpTM7xobAAEAAAA0ItbnBcf6PNbnAQAAAAAAAAAAAECjIRgNAOqkeCFUT09PRdsvbu/tt9+uaPv1snXr1rr0+8ADD2jjxo0jxwsWLNCFF14Y6NqvfOUroRZ/ffvb3x75szFG1113XeBru7u7ddlll40cP/300wXjBgCg1biCZ2phMEdYVyWl8+7gqkw+U8ORoNU0U7BekK8rWev99yFmyt9wEo/E9Sf7XVzUXkx/Mu2SsttsF8no2EA5yf25S+X7vdtxBKy5LOo5T1Nj0wOfb5XXkB0bWJOqwL+jMRMb8/kZNid5uN7VfUqo9rxCs8oJ0hr0uNeVCOSqlbBfuyrxXkqVu0cDOe/PuuT+OhbGoM/rTTkCCAGEszMbLhhNGhvACVTSUD6t3/Xd71l3UGKu5iQPr/GIqufsngvUE9tv3O1kbbZiYWSV4Pfvd1ATohP1vql/6qz/k/0uGldotCQd1nmUjp3wbs+690z5oLqjkwK1s3jqh9UV7R7XWOptQnSi3j/1QwVlCZPU+VM/UqcRAQAAAOGwPq88rM/zx/o8AAAAAAAAAAAAAKiN8a0KBgA0LGNMvYdQMUceeaTWr18vSXr99dd1/fXX66qrrqrpGNasWVNwfMklwQMCpk+frsWLF+uXv/xlyXP7+/v1yCOPjBwvWLBAhx56aPCBSjr33HN1zTXXjBw/+OCDmjNnTqg2AABoFmnrDtM6ouu4cQUFDds29Ja2Zt4cU16pABLs4RfEUokAFbQvv8/W4V3HKV6BrxNh9WZ36I30xjHlQYKQcjbrWT7ezf/vnfqnmtFxoNbtflSJSFLvnnimDu1snXCJaul0BJq5PneuMAhXOy77xWfo7w/+mn7Xd79eTb2kvHKSpHQ+rZcGn/W8JpUfUCKSLBqPd3jVfvGZmtVxYMlxzOw40PezEjERXXrAF/Vw3/16YeDpgs/4SwPrPf8d9/r31fV3I2461B2dpJ3Z7eNqR5KO6HrXuP8elWPr0GZty2weUx42gNX1XnZGJmhu5xFjyndktmvz0GuB2wnL72tvxg6Nu/2Uz/2p1GsA2p3X11ZJMorIKj+m3BKMhir7/TsPOL/Gnz1lSUv9TGRaxyxddfB1eqTvt9qYetHz79xoOZvTcwN/8KzbmX1bE2OV3fhfLtdcLGZiOqLrXb7XGkV0UHKuTpl0tmb6zFOP7T5ZVx50rR7ftUZbhjaFGl+HSeiwzqN0Rs9idUQSnucckDhYVx38df3/7N17mCRlfff/z92H6e49zuzBhbAgkg1hQVAR5LiAwUeyRCNBExT9RdFEEg1KHjzEmCdBRH8STX6BeBkTkwtMHhONgogGImhgUQiQ1RAUEFg5CArr7uzMsrvTPdOH+/fH7MxO99zf6qqePs3M+3VdXBdd1VV197FqZqvec+/zt+vp0uPB12Z5elAvXnaCXrbslETb71e/vuYtOjR/hB7c+30tTS/XK1acpfX5w3s9LAAAAKAvLKSfRTk/j/PzAAAAAAAAAAAAAKDfEEYDgB5ZtWpV3e3du3e3df2jo6OR25tPLrzwQt1www3Tt9///vfrxhtv1EUXXaRzzz1XBx98cMfHsHXr1rrbJ510UqLlTzrppFgnXt1zzz0qlw+EP4444ojEf1GyVqu/EOfHP/5xouUBAJhPxiPiZO/8hT9SIb10ztu4feQb+vLP/37W9DgBI8QXFTEhjIa5iPqsvvMXPqgl6WVdHM2k7++5W3//sz+fNT0qJDTF+jy0IwR57LITdOyyE+a8nsUklyoEp1vxzJLxXZdPGEaTpKHsGp275oK6aaOVXfrjH7/dHNPKmOM8ZcWvzFp3q9Iuo02D52jT4Dl10//fJ/+3nh5/fNb9i9XZz5EVwVqbPVgbl75E3x65afYygc+TFaaTpN8/5MNmAKOTbtv1VX11x+dnTU96nGG9li/Mb9C71//prOn37r5dn3/u6lnTkwbZLKHXcUo79utR35fEa4G5q/mqRsu7gvOGMqu1q7KjyyPCYue915bRm4PzlqSW6YTlm7o8os5blV0b+3is5mt676O/papmR5RHyjt1WP4X2z28llj776HM2uDxSqsOLxypwzsYeX7BwMF67ZoLO7b+fuOc0/HLT9Pxy0/r9VAAAACAxDg/Lz7Oz3sy0bY4Pw8AsLgtnDgsAAAAAAAAAKC/EUYD+sxgZo0+esTf9noYC95gZk2vhzDrRKiRkZG2rbtUKqlUKtVNW716ddvW323nn3++zj///LqTr+666y7dddddkqQNGzbo1FNP1WmnnaZNmzZp48aNbR/D9u3b627/0i/9UqLljzwy3kU4Tz/9dN3tL37xi/riF7+YaFuNdu0KX8QIAMBCEBW+yKXybdlGwYjVxAkYIb5S1X4tCaNhLqIiP3kjatVp1nZLtaK893LOPom03MEwGpKzX8vw+84Kc1n7mnaNRwqHqqx4VTc+G1YMLrRvt/b3hfSShOsJvy4ppZV1A9ZQO8oef7LjDOu7znotrXhsVKg00Xgixl/xs6MtSUU9PxyjAXP3fHV3MLAkTcaaCKOh2x4vPaJnxp8Izjtl5a/0JG7aT1IupcHsKg2Xfz5r3mhluAcjCrNit736uQwAAACLF+fndU+vz9Hj/Lz4OD+P8/MAAIjP93oAAAAAAAAAAIBFgjAa0GfSLq3V2XW9Hga64JBDDqm7/dxzz2l4eLgtJ0g9+OCDTbc3nzjn9KUvfUl/9md/pr/8y7+cdVLZtm3btG3bNv3jP/6jpMkTsd7ylrfokksuadtf4mw8MW7FihWJll+5cmWs+w0Pt/8ipT179rR9nQAA9IvxWik4PesGlHLptmyjXcESRIsKsZT9RBdHgoXGCuTkXL5t3xNJFVLhIJFXTeO+pLyzwwBWKDDj+DVfL1hBMyvk1ekYRM7l5eTkAyciJwuOhd+j7VRIx9+/WvuIfKpg7qfDIbjw819ILYkMEnaS9dpbET2LdVxifd9Y08t+QhVfnnNsMWq/3o7gaVT8jGM0YO5GyjvNeauya6XAV5T3XASDzrlz5GZz3qbBzV0cSf8azKwOhtFG+imMZhzfWMdzAAAAQKdwft7iwfl58XF+3txwfh4AAAAAAAAAAAAAtF+q1wMAgMXq1FNPnTVt69atbVl343oKhYJe+tKXtmXdvZLJZPSxj31MTz75pD71qU9p06ZNyuVywftu27ZNl19+uY444gh96Utf6vJI52Ziov3RDy5KBAAsZPZFte0JzEjR0Zuar7ZtO4tdVOCk4itdHAkWGiuQkzeiTN0Q9R1lhbOmVI3Pw1wjRmiNHc80wmhWvKpN70fnXERoK1lwrNPMoFlgnGbALbU0IrAWCsH13/eBfZxhh8VCrP1oPh1+La0wmmQH5BKNJxCmm9KOMFpU/Kwd4wcWu5HKjuD0rBvQsnSyC1KBuXq+Mqrv77k7OO/opcfrBQMHd3lE/WkosyY4PSp02G2dPhYGAAAAgEacn5cM5+e1jvPzAAAAAAAAAAAA2od/egEwhTAaAPTIYYcdpsMOO6xu2q233tqWdd922211t0866SQNDAy0Zd1TqtXeREDWrVunyy67THfeead2796tu+++W5/61Kf0ute9TsuWLau77+7du/WmN71JN95445y3OzQ0VHf7+eefT7T87t27Y91vzZr6i5c+/vGPy3s/p/+uu+66RGMFAGA+Ga+VgtNzqXzbthEVS7G2j+Ss6I3UnoAKFi8rFmTFiLqhkI4IEkXEfmq+qppqwXmE0XrDCoiN14qq+dmvlRmvauP70Y611W/bex8ZHOs0OwgWCrhZz1shYWDN+j7ofAjOYo2/4isq1+Lv/+zHFn4towIkVjAviah1lGtzv+gsKn4WFU0DEI8VUpoML7ngPC/OQEBn3L37NlUVjgOfObi5y6PpX4OZ1cHpo5X+D6N1I8oLAAAAYHHi/LzWcH4e5+cBAAAAAAAAAAAAQD8gjAYAPfSrv/qrdbf/6Z/+SeXy3KIPO3bs0E033RS5nSmZTKbudqUSvrgoZGRkJPng2iyXy+mUU07RZZddphtvvFHDw8P64he/qCOPPHL6Pt57vec971GtFo4HxLVu3bq624899lii5R999NGWthN3OQAAFqtxI+iSa+NFtVHxpKiAEZIpViMCKr79f7Ubi4d98X0Pw2gR244K+lS8/TNbxmXMeegc633k5TXhx+umVXzZ/D5rZ6jPDqPV7zPHfcmM2HQjTpEoaGZEsPKpJeZYS7WifMOfCepGmC6pqEBZKUGgLCoeF7IkIn7XjuObsYixR32XxRX1XTnhx1VtwzaAxWzECCkNZVcbWTSgM6q+qu+MfjM4b3X2BTpm6fFdHlH/GsquCU63Ps+9UDR+h9PLYzEAAAAACx/n580N5+cBAAAAAAAAAAAAAHqFMBoA9NB73/teOXfgUrIdO3bo2muvndM6r7766rqTt5YuXarf/d3fDd53xYoVdbdHR0djb+fBBx9MNK6Zj7NTBgYGdMEFF+jee+/VIYccMj396aef1ve+9705rfuEE06ou33PPfckWv7ee++Ndb9TTjml7rm67bbbZl3IDQAADhivlYLT2xl0ibpANyrKgWQagz0zVWrETdC6ohFUameIKqkBl1PK+LXBplxvAAAgAElEQVRcVJCo4u0LdTIuO+dxIbmo/U1jzKtUtb/n2hmDsENhjeOx32uFtB3NahfrMxgaV1T0q2AEvrxqGvf1xwn9GEqM2rYVDwne1wiMWs9PLlWQM/JGUbHSuKLeX1HfZbHX3+QYLOq4AkBzu8o7gtOHMmsl0mjooh/s/S8z7LVp5a8q5dJdHlH/GsqEw2ijleG++TcGK/ray5/NAAAAACx8nJ/XXpyfBwAAAAAAAAAAAADoFsJoANBDRx99tDZv3lw37YMf/KC2b9/e0voeeughffKTn6ybdtFFF2nVqlXB+7/gBS+YtXxcN998c6Kx5XK56f8fHx9PtGxSg4ODOv/88+umPfHEE3Na5+mnn153+1/+5V9iL7tjxw7deuutse67du1avexlL5u+/dOf/lS33HJL7G0BALDYWNGLnMu3bRtR0ZskwRJEKxoXSEvtCahg8erHEJJzztx+VOyn4u1IIGG03sino6JWDSGyiNe2ELGepKyoWWMkMCrC187AqLkN4zGHxmXt7wvppdFxuoblrDhdL2McUdtOEmC1niPr+Um5lHLGvKh9clxjHd6vNzsGs6KYAOIZqQwHpw9lw+ElSfLi4lG0352j4d+NZ1xWp658VZdH098GM6uD0yu+or3V57s8mjBr/93Ln80AAAAALHycn9cZnJ8HAMBixh/RAQAAAAAAAAB0B2E0AOixv/iLv9CSJQcu+hgdHdX555+vvXv3JlrPjh079IY3vEETExPT0w4++GD96Z/+qbnM8ccfX3f761//eqxtffOb39R9992XaHyDg4PT/79z5866v5rZCZlMpu72zBO/WnHGGWfo8MMPn769detWfeMb34i17BVXXJHo8f7BH/xB3e33ve99id8PAAAsFuO1UnC6FfpoRdYNKK1McF6SYAmiRQV6yn7CnAc0YweVenvxvRUrior5RMWEMi78PYXOShLlig6Rte/9aI2pcZ8VGWpLheNq7VSIOU5rmjT5WCPDYrNicOFYVy9jHNEB1njHGd578zmyQnmStMR4nceqcw+jRY29HWG0UpN4G8dowNyMlHcGp6/KrJUzL3YhjIb22j7xU/1o7H+C805YfrqWZVZ0eUT9LSpcOFIJf6a7rfHYbEo3orwAAAAAFjfOz+sMzs8DAGCx4t+EAAAAAAAAAADdQRgNAHrsqKOO0l//9V/XTbv77ru1efNmPfPMM7HW8dhjj+nss8/Www8/PD0tlUrpn/7pn7R27VpzuVNOOaXupK+vfvWr2rp1a9NtvfWtb401rpk2btw4/f+VSkW33357rOXGxsb013/919qzZ0/sbe3du1c33HCDuf1WpFKpWSdEXXzxxU3/0uUNN9ygz3zmM4m29du//ds66qijpm8//PDD+o3f+A2NjIwkWs+OHTtmPQ8AACw0VvAol8q3bRvOOeXTyQNGSCYqYNKOgAoWr34MIUl2rMgarxT9WUgTRuuJnMubgZjxHoXRrFBY3FBbSill3UDbxmOxHnNo326NNZ9aonxE5LBxOeu4wdrPd0PKpZVz4eMWKx7SaMKPq6ZacF5UOM5+DeZ+fFOMiKuV57hfL9fKqvhK9PYJowEtK9fKer4a/j1kVHgJaLctI7eY884Y3NzFkcwPy9Mrzaj7aGW4y6MJM4/FevyzGQAAAICFj/PzonF+HufnAQAAAAAAAAAAAEA/IowGAH3g7W9/u9797nfXTfvud7+ro48+Wp/4xCf09NNPB5fbtm2b/uRP/kTHHnusfvCDH9TNu+qqq3T22WdHbnf58uW64IILpm9Xq1X92q/9mm699dZZ952YmNDnPvc5nXzyydq+fbuGhobiPjxJ0itf+cq62xdddJE+85nP6Hvf+54ef/xxPfnkk9P/7dy5s26773nPe7R+/Xq9/e1v19e//vXIk7Duu+8+nX322Xrqqaemp5188sk68sgjE4035D3veY9e8pKXTN/+2c9+ptNOO01f+cpXVKvVX4C8b98+XXHFFXrjG9+oWq2W6PlKp9P6yle+ohUrVkxP+9a3vqXjjjtOf/M3fxP5+Hft2qUvfelLetOb3qRDDz1U11xzTYJHCADA/DPurYtq2xs46WQ4BJOiInPN4idAFOvi+6hYUDdY31PWeKXoMFrWZec8JiTnnDNfy9lRrvD33IDLKe3SbRvTXMdTSC2Vc+HYWztZn8Gyn6h7r9d8bVZkbuY6ouJ0jY/Rfsw9/j4w4m5xjzNaje4tMQONbQijdTB4Gud54RgNaN3uiIDSUMYOo/lODAaLVqlW1D3P/0dw3mH5DTq8MPff9y80KZfSYHZVcN5IeWdwereZx2IRoVsAAAAAaBfOz+P8vJk4Pw8AAAAAAAAAAAAA+l/4z0YDALru05/+tIaGhvSxj31M3k9eRrZnzx596EMf0h//8R/r6KOP1qGHHqqhoSENDw/rqaee0iOPPDJrPdlsVldffbV+//d/P9Z2P/rRj+qrX/2qRkdHJUk///nPdc4552jDhg067rjjlMvltH37dt17773at2+fJOmggw7SVVddlegvU/7mb/6mPvzhD0//lc2f/exns042m/LWt75V1113Xd20559/Xtdee62uvfZaOee0YcMGHXHEERocHFQmk9Hw8LB++MMfzvornkuWLNHf/d3fxR5nlGw2qy984Qs688wzNTw8eYHgs88+q9/8zd/UunXr9PKXv1wrV67U9u3b9Z//+Z8qFicv3F65cqWuuuoqvfOd74y9rWOOOUbXX3+93vCGN2j37t2SpGeeeUbvete7dMkll+jYY4/VYYcdphUrVmhsbEyjo6N69NFHY/8VUwAAFgorlJJL5du6HSuY0o5wCCZFBUzmGlDB4las7gtOj4oFdUMhZQWJwuOVoiOBGcJoPZNPLQnuDxq/16wAZLujXHFjntZ48un2xkUtUZ/BUrWoZZnJ9/SEH5c3cjv51JLpOF2s18DY1/T6+yCfWqLd2jVretzjjFJEXDTq/WU97jHjezMu77353SvNfb8e53nhGA1o3a7KDnPeUHaNHc/0pNHQPv/1/J3mz4hnDm7u8mjmj8HMag2Xfz5r+khE8LBbqr6iCT8enNfrYzEAAAAAiwfn5x3A+XmcnwcAAAAAAAAAANCvOCsZwBTCaADQRz760Y/qzDPP1Lve9S499thj09O993rwwQf14IMPRi5//PHH62//9m91wgknxN7mIYccouuvv17nnXde3V863LZtm7Zt2zbr/i960Yv0b//2b9q+fXvsbUhSoVDQV7/6VZ133nn66U9/mmjZRt57PfbYY3XPUcghhxyiG264Qccee+yctjfTMccco29961s699xz9eyzz05P3759u26++eZZ9x8cHNRNN92karWaeFuvetWrtHXrVr3pTW/S1q1bp6dXq1Xdf//9uv/++5uuI+lfDgUAYL4Zr5WC03Op9kZd4kZm0Lqo57LsJ7o4Eiw0JSOgWEj3OoxmfK9Uw+OVomNChNF6J2/scxrfe9b3XL7N70V7nxVvPO0OtVmiPoPF2j4t04rJ/48IbE2tw4rTNU6zAmK9jnEUzPdQvOOMqAhY1PvLCjSWIgKNcZT9hKqyQ45zDaPFeV6iYnEAoo2UdwanF1JLlU8V5GSE0YA28d5ry8js37VL0tLUcr18+eldHtH8MZRZE5w+Wgl/rrvJ+rlM6t7xJwAAAABInJ8XF+fncX4eAAAAAAAAAAAAAPRaqtcDAADUe9WrXqWHHnpIX/jCF3T22Wcrk4luWOZyOb32ta/V1772NW3dujXRSVdTfuVXfkX33XefXve618m58IVta9eu1fvf/37df//92rhxY+JtSNIJJ5yghx56SJ/97Gd13nnnacOGDVqxYoXS6bS5zMqVK7VlyxZ94AMf0Mtf/vKmz4ck/fIv/7I+/vGP69FHH9UrXvGKlsYa5aUvfakefvhhXXLJJVq+fHnwPsuWLdPb3vY2PfDAA9q0aVPL29qwYYPuu+8+ff3rX9erXvUq5XK5psts3LhRl1xyib7zne/ohhtuaHnbAADMB9aFtblUvq3bsaM3RDfaJSrqUvF2XAVopmgEfnodQrK2b41Xio4JpR1//6BX4sYzre+5docg4u6zrPF067MRtZ2Z+/eoiMbUY7VDgw1hNCuU2LffB/GOM6zjESennLOPiZakw2G0sTmG0aK+xySpXJtbGC3O8xL3uQMw24gRUFqVXRu5nOdvs6FNflx8WD+beCo475SVZ2sg1fx35IvVYGZ1cLoVPOymqN+fWMevAAAAANApnJ9Xj/PzOD8PAAAAAAAAAAAAAPoRV0wCQB/KZDK68MILdeGFF2rfvn363ve+p23btmnHjh2amJhQLpfTunXrdOSRR+r444+PdTJOM0cddZRuvPFG7dy5U1u2bNEzzzyjsbExrVu3Ti960Yu0adOmupOezjrrLHmf/GK3FStW6OKLL9bFF18c6/7OOZ1xxhk644wzJEnFYlEPPvigfvzjH+u5557Tvn375JzTihUrdNhhh+m4447TC1/4wtjjueOOOxI/BmnyhLBrrrlGn/zkJ3XHHXfoiSee0MjIiNauXav169dr06ZNWrr0wAXGrT5f0uRz8JrXvEavec1rVCqVdO+99+qpp57S8PCw9u3bp6VLl2poaEgbNmzQxo0btXp1+OInAAAWovFaKTi93RfVFlLhcEixSnSjXaIuko6KQQFRvPd9G0IqpK2Ylh2BsiKBKaWVcvz9g16x9jmN+wjrtW13iKxgxK5mj6d/w2gzo1ZR+4ep/bMdpzvwnFd9VePeOG4wPo/dYofd7O+DmezIXcG8wG5yvhFkm+PxzVg1Oow21/16Y/AueB/CaEDLdhkBpaHMmv3/F/5eIYyGdrlz9JbgdCenMwY3d3k088tQdk1w+mhluMsjma0YcVzT62g1AAAAgMWJ8/MO4Pw8zs8DACAZ+9+gAQAAAAAAAABoJ8JoANDnli5dWnfiUaetWbNGr3/967uyrVYUCgWdcMIJLf3lzU7I5XI655xzura9fD6vM888s2vbAwCg31mRmVybw2j5dHh9RDfao1ybMINPU/OBVoz7khnp6PXF92ZMq4VIYNZl2zImtMZ6LzXGO4u1cCyq3TFPa32l2pi899OhLCt+1a1oYNqlNeBymvDjs+bN3L9an4mUUsq6AUl22GzmsuMR0cFCm1+DpKzxxz3OsO5nhV2nLDEienM9vmm2/FzDaFHfk0nuAyBspBIdRuNSF3TS7sqI/nvPfwbnHbP05VozsK7LI5pfBjPhi7JHKsN1x4G9EHV80OufzQAAAACA8/PqcX4e5+cBABCNP5YDAAAAAAAAAOiOVK8HAAAAAABAK7z3s6IzU9odmbHCIlaYDck0i5fMNaCCxatkhJ+k7sWf7O0nDxJZAcEMYbSeihvPLFXD+4xm8aqkrPd2TTWV/YHQpPVesyJdnWBFMGZG28xxppZMxz2sxxwnsDa5rva+BklZ448b97Iid82Oh6ztjhkRv7iaLT/X/XqccBvxWqB1I+UdwelD2TVdHgkWo7tGb1VV4WPeMwc3d3k0889UwLBRxZe1t/p8l0dTz9o3Z1xG2RQ/zwAAAAAAAAAAAAAAAAAAAACoRxgNAAAAADAvVXxFNVWD83Iu39ZtWWGRuMESRGsWL7FiUEAzkSGkLsafgtuPEYRqZMWE0i7TljGhNXGjVkUjFmWF1Vplvbcax2R9ProZDSwYn8O6oJnxmZi5bJz9dNS+ptDmoGpS1msWN+5l3a+Qjg6+mYHGiO+hOIrVZmG0ue3X4xx/RX2XAog2UtkZnH4guOSC8718h0aExaLqq/ru7luD89Zk12nj0pd1eUTzz1B2tTlvtDLcxZHMZu2/ex2oBQAAAAAAAAAAAAAAAAAAANCfCKMBAAAAAOal8VrRnJdrc+DEisTEDZYgWrPASdlPdGkkWGiiQ0i9DaNZQSgrniVJVSMmlCGM1lPWPqfUsJ9qvD3FilO1yoqETY6heSgsKqzWbmYgsG6c4edt5rJ2WOzAslGhrG4+5pC4cT2LHRqJPh6ywmnF2j5533rgqNP79TjHX8RrgdYUq2Pm52coOxlGc0YYDZirB/bea8a7Ng1uVsrxz9rNLE8PKqV0cJ4VPewW+1i4t4FaAAAAAAAAAAAAAAAAAADQX+ZwOQOABYYzyAEAAAAA89K4t8No+VS+rdsygysRkRXEV6zaIShJqvhyl0aChcYKe6SU0oDLdXk09azvlbKfMANoZeOzkHHZto0LydlRrrGG2+HvumbxqnaNZ3IMM0Jhxuejm9HAOOFRKxY483kzw2Iz9i9WTCvjMsqmBpqOtZPivocs1v2aRfes562mmsZ9Kda2Qzq9X4+K3E0hXgu0JiqctCqztsnSnIGAudkyektwetYN6NSVZ3d5NPNTyqU0mFkVnDdS7nUYrfdRXgAAAAAAAAAAAAAAAAAAAADzB2E0AAAAAMC8NDPu0ijX5shMIW0EV4hutEXUaylJFV+R5089oAVRF98757o8mnpR8Snru8WKCRFG662Csc9pfP8Vje+6ZvGqpHIRcdCZQU8r7tnNOIUVhZv5GbD2ETOft7yxn565rLWefohxWM9DqRq9f5xihcKaRfei3nvN4maR4zFidlPmGkaLEz3jGA1ojRVGc3IazE7GlqxDKI7WMRfPjj+tR8d+EJx3wvJNWppe3uURzV9D2TXB6SOV4S6PpJ79s1l7f38DAAAAAAAAAAAAAAAAAAAAYGEgjAYAAAAAmJfGayVzXlQUphXWhboTflxVX23rthajZgEVr5pq4nlGcq3GgrohKoxmxZAqNSuMlmnLmNAaK6xVathPdSsGkXKpWMExKxxlxUA7wXzuqjODZs2fN+vzVIrxePvi+yAdDpQVa/tihUGt/Wiz6FvUaz2XsNhY0zBapeV1S82DqpP3IYwGtGKkvCM4fUV6cEaItbdxWSxMd47eYs47c2hzF0cy/w1lwmG0USN82C1F42ecfojUAgAAAAAAAACS4N+KAAAAAAAAAADdQRgNAAAAADAvWVEMp5SybqCt2yqkwsGSyXEQ3pirOIGTsg8HoYAo1ufTihB1U1QAwIocVRWOCR0IlaAXrLDWzPef994M9XXi/WjH2ibHUPVVTfjxRMt2ghXmmvkZsAOHS4L/P9PM18D8PojYx3eL9R6qqaayn2i6vLUfbfbeinrscwmjlYzXbEpljvv0ZkFVafJ9EycqB6DeiBFOGsqGQ0sz8ZlDq0q1ou59/vbgvMPzR+qw/IYuj2h+G8ysDk4fKQ93eST17NgtYTQAAAAAAAAAAAAAAAAAAAAAsxFGAwAAAADMS+O1UnB6PpWXc+39y5RWsEQijNYOxWrzwMlcIypYnKywT9RnulusIJRkR46sz0EmRRitl6yYQ8WXVa5NvmZlP6Gaqsby7X8/FowxTX0movZd1rKdYAfNijP+v/nn2BpzqVZUzddir6dXogNlMSJgLT62rBtQWpnwOqt7m27XMtZkzOVa89hblDhB1ZqqsaJyAOqNlI0wWuZAGM3J+lmLMBpac9/uO8zv9jMHN3d5NPOfFTIcNcKH3WIdr0T9XAQAAAAAAAAA6Ef8mxAAAAAAAAAAoDsIowEAAAAA5qVx48LpXEcCMxHBkmrzOAeiWRdIz1SpEUZDclYIKeoz3S1pl1HWDQTnWSGksvE5yDjCaL0UFZ+a2ldFfc914v3YLDjWL2E0O2i2b8b/h/ezhfSB5816Dby8Jvy4JKlYteJhvY9xRAdYmx9ntPpd55yrex5nirNvtjQLnlZ8peV1x1n/9P2I1wKJ7TLCSUPZtV0eCRYL7722jN4SnLcsvULHLz+tyyOa/wYzq4PTRyrD8r53F6vZkdreH4sBAAAAAAAAAAAAAAAAAAAA6D+E0QAAAAAA89J4rRSc3okwWtQ6S0bACPFFBXqmVDxhNCRnh5Da/z3RCisKZY3bigllXKZtY0JyUTGHqe+3qO+5TrwfrXVOjcN6j00u2704hbWt4owYmB3RKMz4/4jXoBr9GvRDjCNqDFGv1ZTSHL7r7O+h1o9vmgXJqqqo5mstrz9OLG7yfoTRgKRGykYYLbOm6bK9yy1hPnus+KCenfhJcN6pK/+XsqlwSBi2ISOMVvFl7a0+3+XRHGDtv/vlZzMAAAAAAAAAAAAAAAAAAAAA/YUwGgAAAABgXrIuqs2l8m3fVjaVVcZlg/OKMeMcsDULqEhSmTAaWmBFcQqppV0eSZgVQ7LGXSWM1pfy6ah45uQ+IipuVUi3//1ovreq+8cTFWqLeDztZkW5Zn4GrLHOXLaQjgiLTcXgjP111LLdkkvl5eSC85rFvWq+qnEfjsXGeW+ZYbQ5RMWKMaKx1vdZM9772MGzOFE5AAd47zVSCYfRVmUPhNGs7yvSaGjFnaM3B6c7pbRp8Jwuj2ZhGMraIcPRynAXR1LP/tms98diAAAAAAAAAAAAAAAAAACgf3hOSwawH2E0AAAAAMC8NF4LR0Dyqc4EXeLEW9CaUoxwSYUwGlpghX26GX6KkjeCTNa4rc+BFW5Ed0Ttd6b2Eda+wslpwOXaPybjPT4VrLLGk3UDXX0/mZ+B6pj8/n/JssY6M/5mheBmLl8yYl1Ry3ZLyqWUM95HzQJlVihWkgoxjomseFqcuJmlWG2+bNlPtLTuCT+ummqx7ssxGpDM3upu81hjKBMnjAYkM1rZpfv33Bucd+yyE7Q6+4Iuj2hhWJ5eqZTSwXlW/LAbrJ/7O/U7HAAAAAAAAAAAAAAAAAAAAADzG2E0AAAAAMC8ZIVAci7fke1Z4ZRmwRI0F+c5JIyGVlhRHCt02G12cDH8/WZ9DtIu07YxIbmMyyrrBoLzivtfS+t7LpcqKOXa/yvaZu8tazzd/mxY+9aaqir7CdV8zfw8zBzrgMspZfyqe+qxFo319EuMo9UAa9Q+NJ8KR8/ibLcYI1oaUvVVjftwvHamiq+0tP4kx10cowHJRAWThrJrzHlTvPjTbEjmu6PfVE3V4LwzBjd3eTQLR8qlNZhZFZw3Uu5hGM06pjMirQAAAAAAAAAAAAAAAAAAAAAWN8JoAAAAAIB5adx3N3BirbfUYjgEBzSLvkhSmTAaWmBFcawYU7fZwcV9welWGC3jsm0bE1pj7iP2vwe7Hemz3lvT4zH2Xd3+bEQ9/mJtTONGQEOS8ukDyzrnIh7z5Dqsx9wvocRWA6xRAbNCjGMiK0ZifQ81E3e5VoOnSY674hxfADhglxFMSiuj5enBLo8GC13VV3TX6K3BeWuzB+uoJS/p8ogWFitmOFoZ7vJIJkWFU/slUgsAAAAAAAAAiMv1egAAAAAAAAAAgEWCMBoAAAAAYF6yYim5VL4j27PDIUQ35irOc9hqQAWLW7+HkKxxlKrh77eKrwSnZwmj9ZwdRpt8Lbsd6TPfW/vHYY4n3d3PRlQIo1Qbi9w/NC5rratY3bd/fVZQtT++D1oNsEbFv/Kp8LHLTAXjPq2G0eKGy1rdryc57uIYDUhmpBIOow1mVyvlDvxzonNc7IK5u3/PPdpdHQnOO2Nwc917DskNZlYHp4/0KIwWGbvtk2MxAAAAAAAAAEBcvtcDAAAAAAAAAAAsEpleDwAAAAAAgFaM10rB6bmIyMpc2NEbohtzFec5JIyGVnQ7RpVUwYhQWUEi63OQIYzWc9Z7aur7rduRPms8xf1RCut7t9ChfajFinJJkyGzqqvGXtZ+DabidOHPlfU57LZWA6zW/IzLKJtq/t2wxAqjxQycNRqLGVRrdb+e5LgrbqQNwKSRcjiMtiqzJtby3nMRDOLbMnpLcHrWDeiUlb/S5dEsPEPG59b6nHdadOy2P47FAAAAAAAAAAAAAAAAAAAAAPQXwmgAAAAAgHlpKnTSKJfKd2R7VrzFGgfiqflqrOeQMBqSqvqqJvx4cF6/hJCaxbQaWZ+DtONXfL1mxzOnolxGpK9D78VmMU87GmiHyjohl8rLyckH/qJ0sbpP1VTFXLbxMVqf61JtTFVfUdlPGOvpl++D1gKs1vy4r6X1HrRCcs00C7lNKbe4X4+7/qT3BSDtquwITh/KNgaWXPB+oe9yIORn409pW/HB4LxXrDhTS9LLujyihWcwuzo4fbQy3OWRTIo6nul2mBcAAAAAAAAAAAAAAAAAAADA/JDq9QAAAAAAAGjFeK0UnG6FRebKWm+r4RBMsl7HRuUaYTQkE3Xxfb+EkAqJw2jhSFTGZds2JrSmWeTOek2t98Ccx2NFwqpFee8jxtPdMEXKpZSLiMpZYauU0sq6gbpp1mtQrI1FBjg79RokZX8fRMdDreco7mtpbbfVqFixGu+4qNLifr1ZKK7V+wKQRso7g9OHMo1hNGButozeYs47Y3BzF0eycA1l7DCa992PGJaq9vFMv/xsBgAAAAAAAAAAAAAAAAAAAKC/ZHo9AHSPc265pNMlrZe0RtIeST+T9EPv/aNt3E5W0mmSDpN0sKS9+7fz3977J9u1HQAAAACLmxXUsgIrc2VHb6KDJYgWN7xS8YTRkExUEKdfQkhRIacQ63NAGK33zH3E/giE9Zp2LuYZHk9VFZX9hIpVazxLOzKeKPlUIfh5Ldb2qWrEAAvpJXLO1U+LiNNZj3dq+/0g6ffBlJL5Wsb7nisYr3ncwNms5WIGY1vdr1uPNzwWwmhAEiMVI4yWXVt32wXvBcRTrI7pvt13BOcdkT9Kh+aP6O6AFigraFj2E9pX3aNlmRVdHY91fJBxGWVTA8F5AAAAAAAAAAAAAAAAAABgcer+n4AF0K8Ioy0CzrnTJP0fSWfLeM2dc/8j6bOS/ta3+KfCnXNrJX1E0gWSVhn3uVvSX3rvr29lGwAAAAAwZdwIkuVT+Y5szwyuJAh0YLZOB1SweEWHkPojjGZ/r4S/3ypGJCrj+BVfr+XT4bjWVPDLimhaUaq5KkTEvkq1ohkOLBiPo5MKqUEmqwYAACAASURBVCUa1fCs6aVaUTVXCy4T+gzbAdOxJqHE7sfgQlo9zrDiX4V0vMdl3W/cl1T1VaVdOtZ6pscTM6jW6n49SeyMeC0QX9VXtbsyEpw3O7AUTqN5TkFADPc+f7vGfThyfubQ5i6PZuEazIbDaNJkBLHbYTRrn9wvP5cBAAAAAAAAAAAAAAAAAAAA6D+pXg8AneOcyzrnPivpu5LOUXQI7yWS/kbSHc65Q1vY1mZJP5T0+zKiaPudKukrzrn/65zrj6sOAQAAAMxL47XwxdS5iBjMXOTT4Qt2kwQ6MJsVgGpEGA1JRYWQ+uUCfPt7ZZ9C3Xrrc5Bx2baOC8nljX3P1D7CiltZy819PPZ7vFQbM/dd+R5EwqyxFqv7zHhmKPxmvgbV6DBap44bkmr1OMN6bHHfW0siXvOo580yFjN4Wm5xv55kTHEjbQCk3ZVd8grHKFdFBJaAJLz3unP0luC85emVeumyU7s8ooVrRXqlUgrHTUcqO7s8mrkfrwAAAAAAAAAA+kn4j+gAAAAAAAAAANBuUaEszGPOuYykr2syiDZTWdK9kp6RtFSTQbTDZsw/Q9JtzrnTvPfDMbd1lqQbJQ3MmOwlfV/S45IGJb1M0syrZ94saYVz7jzvffhqGwAAAAAw1HxN4767YbRQhEVqLRqCA6zoTaOyn+jwSLDQWDGhjMsqm+qPkFjBCELVVFPZT2jA5eqmV30leP+M41d8vWbFvUq1yfij9X4spDsTIrPeW5NjskNhUct1irXNUq2omhHpCQXcCkZYrFQrzuvvg2bHGeZ7K2bkLuo1L1b3aWl6eaz1TIl7XNRq8DRJkHbq8weguV3lHea8oUx9GM2ZF7vMjroCMz069gM9N/FMcN6pK/9X3+yTF4KUS2sws0q7KrM/26PlWP/821ZFY5/cL8FqAAAAAAAAAEAS/JsQAAAAAAAAAKA7Ur0eADrmKs2Ool0jaZ33fpP3/k3e+1/33r9w//0en3G/X5Z0g3Ou6Z9ycc6tl3SD6qNod0k6xnt/gvf+t7z3r5a0XtJ7NRlmm/JaSVcmfWAAAAAAMOHHzXk5l+/INkMRFonoxlzFff4qRhAKsPRT+MkSFS4KRQOtkFDGEZHotbwRzxzf/x1nvR+t5eYql7L3hcWIUFgv4hR5M2hmB9xCz5sdp+uvEJwlavxR5vreiorzJYmQTRmrxguethpGSxKkjRtfBSCNVHYGp+dcftbxihVG4xIYNLNl9ObgdKeUNg02/pMm5mowszo43fq8d5J9vNI/x2IAAAAAAAAAAAAAAAAAAAAA+gthtAXIObdR0qUNky/z3r/Xez/SeH/v/a2STlN9HO0MSRfE2NxHJA3NuH23pFd57x9u2Ma49/4aSb/VsPz/ds69MMZ2AAAAAGBaVEwrKgYzFwUjMFL2Ey3HPRA/usJzjKSK1f6/+D4qXBQaf5kwWt+yAltT33HWd11UHG8uUi5thkKL1X0qVcP70YIRKeukqOfO+hyHlolcj3Hc0E/fB9b4S7Wiar5mLmc/R/HeW1HPwVgLYbFO79etxxtCvBaIb6QcDiWtyq5VjL+hAzQ1Ut6pB/beF5x33LITtSq7tssjWviGsmuC00cqw10eSfcjwQAAAAAAAAAAAAAAAAAAAADmP8JoC9MHVf/afst7/5dRC3jvn5P09obJH3fOpa1lnHO/JOmtMyZNSHqb974UsZ0bJX1+xqScpD+LGhsAAAAANBqPCF106sLafERgxArMoLliNV50hTAakrKCOFZ8qBcK6YjvlUA8wPocZFymbWNCa6y41FTUytpvdTIGkTciZ3uru1VVxRhP9z8f1nNQqo1FRDRmj9N+DcZUMkOJ/RPjsMbi5TXhx83l5hoaSTeJ6CVVjBlTs0KPzSSJnY03icoBOGCkEg6jDWXCYaUQL9+u4WAB+u7ub6qm8HfymYPndnk0i8NgZnVw+mgPwmhzDbkCAAAAAAAAAAAAAAAAAAAAWHwIoy0wzjkn6dcaJn8qzrLe+y2S/mvGpBdJOitikQslzQyn3eC9fyzGpq5quP1bzhlX3wEAAABAQFQYLZfqzI8XhbQdGIkbAcFscQMn5RphNCRjfS6tWFQvDLicnFxwXjEQO6r6cMwq47JtHReSsyJU47WixmtFMxbTyRCZtW4rfiP1JhxoBTGK1bHg50CSCoHPsR1YK2rM+j6YJ6HEqECZFUaLWl/c+7ZyfNPp4GmSMXl5jdfMv+EBYAYzjJadHUab/GeoAE8YDWEVX9Zdo7cF560bOES/vOS4Lo9ocRgywmgjZftYsFPMkGvE71kAAAAAAAAAAAAAAAAAAMDixGnJAKYQRlt4jpY080qVCUl3JFj+3xtuvyHivr/RcPvaOBvw3j8s6d4Zk5ZKenWcZQEAAABAkkoRkYucEUaZq6h4Sty4F2aLGzhpNaCCxcv6XPYi/GRJuVREzKk+HlDzVdVUC96XMFrvWa+jl9doZZe5XCjw1S4FY0xRMQzrcXRS1GfA+hyHlokKge02XoNOPv9JRT33UccZVjwuyWtpfS9a647S6f160mMu4rVAPLvKO4LThzKzw2hAUvfvuUfPV0eD884Y3GzH9jAnobChJI1WhuW7fMbQfPjZDAAAAAAAAAAAAAAAAAAAAEB/yfR6AGi79Q23H/PejydY/gcNt38tdCfn3EGSXjJjUkXSXQm2c4ekk2bc3izppgTLA4vG2NiYvv/97+uxxx7Tzp07VSqVVCgUtG7dOh155JF62ctepoGBgbZs6yc/+Yn+7u/+Tlu2bNGjjz6qkZERlcsHLlS99tpr9ba3vS247H333adrr71Wd999t55++mnt3r1btdqBi/afeOIJHX744ZKks846S1u2bJme1+2LcAAAwPw3blxUm3UDSrt0R7YZFUZrJRyCSXGfO8JoSMqK4UR9lnuhkFoa/Bw0Tqv4irkOwmi9F/W+Gq0Mt7TcXFnrHokYTyFlx8U6xQqalWpFVY0YYOixRYXARirhGFw/fR9EB1jtfaU1L0loxHrdS9UWwmgxl2l1v16sJgudEa8F4rG+J8NhpXDEyovf8SJsy+jNwek5l9fJK17Z5dEsHoNG2LDsJ7SvukfLMiu6NhbreKUXUV4AAAAACOH8PAAAgCT4gycAAAAAAAAAgO4gjLbwrGq4Hf4T7LbG+x/qnFvpvd/dMP3FDbcf8N4nuSrt7obbxyRYFljwqtWq/vVf/1XXXnutbr/9dlUq9gXw+Xxe55xzjn7nd35Hr3nNa1re5uc+9zldcsklGh9P0lKUKpWK3vWud+lzn/tcy9sGAABIarxWCk7PdfCi2rRLa8DlNBFoT0cFSxAt7nNX9hMdHgkWGiuGkyQW1A1WDKAxSBQVEco4fsXXa/l0a2G0Tr4frXWPlMPxGyenXCrfsfFYrM9AsbZPVVWD80KPLSosZj3mfvo+GHA5pZRSLRCDsyKi5dqEGU1MEn0rGO/fMSMwafHem1HKRuVa8jBazVc17sPHgBbitUBzE7Vx7avuCc5blVk7axqXuiCJZ0pP6sfFh4PzTlxxphlIxdyFw4aTRio7uxpGKxo/m/VTpBYAAADA4sP5eQAAAK0iuAoAAAAAAAAA6I5UrweAtmu8UjyXcPnQ/Y+OMW1bwu38OMY2gEXpP/7jP3T00Ufrwgsv1G233RZ50pUklUolfe1rX9NrX/tanXjiifr+97+feJs333yzLr744sQnXUnShz/8YU66AgAAXWcFjzoddLEu2i1WiW60Ku5zZ4VfAEuxGo7z9NvF91YMojHmE/UZyLhsW8eE5Ky4l2RHuVJKK+sGOjUk870+UgmPJ5cqKOW6/+viQir8GSjVirMCgVNCjy0qcmbF6frp+8A5Z47HiohGxUWt2FnwvsZrEDdyNmXcl4Jht5BW9utWGDcK8VqgOWu/IEWHlYA47hy92Zx3xuDmLo5k8VmRXqmUcSpAVLi3E6z9cT9FagEAAAAsLpyfBwAAAAAAAAAAAABA/8v0egBou8Yz2Q9OuHzo/r8s6T8bpm1ouP2ThNt5quH2aufckPd+JOF6gAXlIx/5iD7ykY/I+/q/pOSc08aNG7V+/XqtXr1aO3bs0E9+8hM9+uijdffbunWrTjnlFH3605/W7/7u78be7oc+9KG6bV544YV6xzveoUMPPVTZ7IEL7Nesqb8Qbvv27fqrv/qr6dsDAwP6oz/6I5177rlau3atUqkDF92sX78+9ngAAACascIYUWGadiikl+j56uwfW4hutC7uc1fx5Q6PBAuNFVBMEgvqBut7q/GzEfUZyDh+xddrOZeXk5MP/GVkKzhTSC+Rc65jY8qnw++tsm/8uwr779/hfajF2q6X17g39veBz3HWDSiltGqqzppnPeZ+i3EU0ks0Vts7a7oVEW0MKM6UJPpmhtGMwKTFCtmFVIzXJErU4zWXIV4LNGUFPCVpMLN61jSn8L4rtA/E4jZW3av7nt8SnPeLhY1anz+8uwNaZFIurZWZVcFj0ajPfSckid0CAAAAQKdxfh4AAAAAAAAAAAAAAPMDV00uPD9quH2Ic2699/6ZmMufEpi2MjBtsOH2z2OuX5Lkvd/rnCtJyjdsZ05hNOfcCyStTbjYL85lm0C7XHrppbr66qvrpi1fvlwf+tCH9OY3v1mHHXbYrGW2bdum6667Tp/61Kem/5rkxMSE3vnOd2rfvn269NJLm273kUce0QMPPDB9+9xzz9UXvvCFWGO+8cYbNTFx4ELWK6+8Uu9///tjLQsAADAX40bwKOfywentYl2020qoA5PihtGsqA1gKdbCQZ9+u/jeDBIlCqNlzXnoDuec8qlCcH8wUmn8OwaTOv1eTLp+673Yaa08D4VATM05p0JqifbV9iTYdm9icBbrubD2lVHHH0mib1YwMunxzZjxvRvSSvA06phhwOU04ccDyySLuwGL0a7KjuD0ZemVGkjlAnM6F/XEwnLP87cHv5sl6czBc7s8msVpKLMmHEYzjk87oeariWK3AAAAANBJnJ8HAAAAAAAAAAAAAMD8kWp+F8wn3vvnJD3SMPn/ibOsc26ppPMDs5YHpi1ruB2uEkRrXCa0naTeJemHCf/7Whu2C8zJ5z//+VknXZ1++ul66KGH9KEPfSh40pUkbdiwQVdeeaUeeOABvfjFL66bd9lll+mOO+5ouu2tW7fW3X7DG94Qe9ytLnvHHXfIez/9HwAAQFIlI4zW6cCJtX5rPGgubnSl4isdHgkWGutzmSQW1A3W90qxmiSMxt8+6Ac547UcLc+OUUidfy8mDY71KhJmRbmi5I2IW9K4Rivb7iTz+8DYV5aq9j40yetpBhqryaJiSe7fyn698XtxpqFs+G9lFDlGA5oaMfZTQ5nVCdfE73lxQM3XdOfILcF5K9KDeunyk7s8osVpMBv+HIdiaZ0S9fuSUOwWAAAAADqF8/MAAAAAAAAAAAAAAJhfCKMtTP+34fYHnHOHxFjuo5JWBqbHCaOF/9R3tMYz4RvXCSwKjz76qP7gD/6gbtqpp56qW265RevXr4+1jiOPPFLf/va3tXHjxulptVpNb3nLW7RzZ/QFLtu3b6+7HXebc10WAABgLsZr4R9Bcql8R7drRWyKtWThEBxQih1Gs6NQQCPvvRnQ6VX8yWLFqxo/G1ERoYzLtnVMaI21jxipDAenJw2XJZU0NFFIh+NYndbK82A9tqSPudOvQVJWoMzaV1rBtJzLK+XSCbZrHd/E20cfuH/846FyC/t163lIK6Pl6dCvtaUSx2hAU1YgaZURHHTGeri8FjM9MvaAfl7+WXDeaYOv5vi1S4Yya4LTR43j006ICqP127EYAAAAgIWL8/MAAAAAAAAAAACA+YPzkgFMIYy2MH1a0u4Ztwcl3RIVR3PO/W9JlxqzazG22cq+hf0RIOl973uf9u7dO317cHBQ119/vZYtS9YKfMELXqCvfOUrGhgYmJ7205/+VB/96Ecjl5u5bUnKZuNfkDSXZQEAAOZi3IcvrM11OHhkBoyq9oW+sJVrE5Gxp8b7AnFVfFlVhd9bVnioV6wYVWOQKCoOSFiiP1j7CCsWZcWo2iVpaKJX0cABl1Mq4a+prceW/DH3V4zDeg2sQJkVCksauYv7PdRMkjBaK8FTazz5dMGOu3GMBjS1q7wjON0KKslZaTTggDtHbwlOTymlTSvP6fJoFq+hzOrg9NFyN8No9vFEvx2LAQAAAFi4OD8PAACgnfi3IgAAAAAAAABAd2R6PQC0n/d+1Dn3dknXz5h8rKSHnXOflXSLpJ9JKkh6qaR3SDp9xn2fkTTzz8qNBjazt+F2K1dONi7TuM5WfEbSlxMu84uSvtaGbQOJ/ehHP9I3vvGNummf+MQndNBBB7W0vqOPPlrve9/79PGPf3x62j/8wz/o8ssv19DQUHCZWi1O+zBsLsu2w0MPPaQf/OAHGh4e1sjIiPL5vNauXauNGzfquOOOUy6Xa2m9lUpF9913nx5//HHt2LFD4+PjWrt2rQ4//HCddtppyufzbX4kAAAgqfFaKTg9l+rsfrqQNsJoCcMhmJQkuNJKQAWLV9R7K5/uTfzJYoWQGr9Xoj4Dacev+PpB0rBYp0MQScNrnQ61WZxzyqeWaKwW71eDGZdRNjUQnJf0Oe3VY7ZY4cZSNfydZobCEr4X7ajYPnnv5WJGkIrGOEMqPnnw1AzBpZZEHKPFj7UBi9VIJRxIGsoaYTSD9/wtHEzaVd6hB/b+V3DeS5adpMFsONaF9hs0PscjlZ2J9vFzEXV80G/HYgAAAAAWJs7PmxvOzwMAAAAAAAAAAAAA9ApXTS5Q3vsbnHPvlfT/SUrtn7xc0vv3/2e5RtJKSW+dMW3ehNG89z+X9PMky3TjpH/AcvXVV9ddMLZmzRpddNFFc1rnpZdeqk9+8pMqlycvmt+3b58+97nP6QMf+IAk6cknn9SLXvQic/lXvvKVwenXXnutJEWOz/o8PfHEEzr88MOnb5911lnasmXL9O0kF809/fTT+vM//3N9+ctf1vbt2837FQoFvfKVr9Rb3/pWvf71r1c6nW667ocfflhXXnmlvvGNb+j555831/vrv/7ruuKKK3TkkUfGHjcAAGivUq0YnJ40BJKUFVxJEvjCAUmCchVf6eBIsNBEvbes8FCvWONp/F6xPgMppZVyqeA8dFfiKJcRcmqXpOPpdKgtSiEdP4wWNc6kcY1ePuYQK9xoHWfYobBk33OF9LLg9KoqKvsJDbh4F7aNJYiQtbJft0NwSyKO0cLHjAAmee81Ut4RnDeUWRuc7mT9mwphNEz6zug35RW+aPuMoXO7PJrFbSgTDqOV/YT21fZoWXpFx8dgHa+klVHGZTu+fQAAAADg/LxJnJ8HAADah38TAgAAAAAAAAB0B1dNLmDe+2skbZb0SIy775X0bkmXSjqkYd5zgfvvbrgdvkLG4JxbptlhtFCADVjQ/v3f/73u9m//9m9rYGBgTutcu3atXvva10ZuZz7y3uvKK6/Uhg0b9OlPfzrypCtJKhaLuvnmm3XBBRfo6aefjrxvtVrVH/7hH+rFL36x/vmf/9k86WpqvV/60pd0zDHH6Oqrr27psQAAgLkbr5WC03Opzv7laCu6kSTwhQOSBOUqvtzBkWChiXpvdTqgmJQ1nlK1MYwW/gxkiQn0DStqZd6/w1GupONJGhVrpyTPRdRnOHEMLuFz1Gn2cUY47lWsWqGw9r32xQSxsyTHQ+UW9ut2CG6J+RhKCcYPLEZjtb2a8OPBeUPZcFAJiFKulXXX7tuC8w4eOFRHFl7c5REtbkOZ1ea80fJwV8ZgRUrz6QJ/vAoAAABAV3B+XnycnwcAAAAAAAAAAAAA6CeZXg8AneW9v9U5d4yk10k6V9KpktZJWi7p55KekHSjpC9475+TJOfcUQ2r2RpY9WMNt1+YcGiN99/lvR9JuA5gXnvmmWf05JNP1k179atf3ZZ1v/rVr9YNN9wwffuee+5RuVxWNjs/L5ivVCp64xvfqOuvv37WvIMOOkjHHnus1qxZo/HxcW3fvl3/8z//o71798Zad7FY1Hnnnadbb721bno2m9VLX/pSrV+/XrlcTs8995zuu+8+jY2NTY/p0ksv1cjIiC6//PI5P0YAAJDMuHFhba7DwSM7ukEYrRWN4acoZT/RwZFgoYl6b/VbGK2QXhqcPu5LqvmqUi4tSar4SvB+GcJofSPpe6vT78XkkbBehtHiPxeFVPgzI0mFhI+hlzG4EGs8VuzRDIW18XkoVse0MrMq1nrGqvEjZJVa8jCaHYJbYr7frRgLgEkj5Z3mvFWZZGE0P9fBYEH47713a2+18W8rTTpjcDMhrC5bkRlUSinVVJs1b6SyU+v1oo6PwTpe6XQkGAAAAAAkzs9LgvPzAAAAAAAAAAAAAAD9hjDaIuC9r0q6Yf9/kZxzh0paP2PST733Pw3c9eGG2xsSDuuIhtsPJVx+wapUvZ4hEddx64ekTLq3F+Dcdddds6adcMIJbVn3y1/+8rrbxWJR999/v0488UStX79eTzzxxPS8v/qrv6r7y4r/8i//opNPPnnWOtesmbwQ7qyzzpqe9sY3vlH33nvv9O2Z651p/fr1welxXXbZZbNOujr33HN1+eWX68QTT5x1/1qtpnvuuUdf/OIXdd1110Wu+93vfnfdSVcrV67U5Zdfrne84x1avnx53X2LxaI+85nP6E/+5E9UKpUkSVdccYVOOukkbd68ucVHBwAAWjFeKwWn9yoyYwVLEC3J82ZFoYAQ672Vc/np0Fi/KER8b5VqRS1JL5MkVXw4IpR2/HqvXySNO3Q6ypV0/b2MhEXFzhpF7euTHAdk3UDffX6s95AVFLG+6xK/F41AY9Q2wvdNEEYzvtOiRIXgzHhtgggrsBjtquwITk8ppZWZoeA8J+v36qTRIG0ZuTk4PefyesWKs7o7GCjl0lqZWaWRyuwI4khluCtjMPfffRasBgAAwOLC+Xnd0+tz9Dg/Lz7OzwMAAAAAAAAAAAAA9Jv+uvIL/eDshtt3GPf7YcPt45xzS7z3ca80O63J+hatZ0akI/549l9uR3s9/vGUDl/T2zE888wzdbfXrVun1atXt2XdL37xi4PbO/HEE5XJZHT44YdPTx8cHKy730EHHVQ3v9GyZcum/z+fz9fNi1quVbfeequuueaaummf+MQn9MEPftBcJpVK6dRTT9Wpp56qK664YtY4p3z5y1/WtddeO337hS98oe644w7zcRQKBV122WU65ZRTdPbZZ6tUKsl7r/e85z165JFHlEqlkj9AAADQklKtGJyeS4X3++1iXbhbqhblvZdzvY3vzjdJAipeNVV9Vek+i1qhP9nxnPjxpW7JRwShirWxpmG0TJ+FnRazpDGqpPdPKpcwNtHp8URvO/5Yo8aZ5DH0MgRnSRr3skMjyR5bzuWVUko1zf6dZJJ9dbLgafIwWtE4/sunliifThaVAzBppDw7liRJKzOrzJisHUbDYvd06XE9UXokOO8VK89SwfiuRmcNZlaHw2jG57/drN/f9PLYEwAAAOD8vO7p9Tl6nJ8XD+fnAQAAAAAAAAAAAAD6Ef9CjEbvaLj996E7ee+flfTAjEkZSacn2M5ZDbdvSbAssCDs2rWr7vbQ0FDb1p3P55XL5SK3N19cccUVdbd/7/d+L/Kkq0aDg4PBE6+893XrzmQyuummm2KdPDZ1QteUbdu26cYbb4w9JgAAMHfjtVJwetIITFJ5I6pUVaWlwMdiZ10gbSn7iQ6NBAuNFedJEl/qlqiAUXFGDKniK8H7ZFy27WNCa6x4pnn/DsdB0i6tAZdrfsf9ehkKK0QEAhtFRTSSPIZ+jHFYca9xX1LNV2dNLxrBtKSPzTlnvgbFaoIwWoL7tnLcVDIibYXUEvO1TxJrAxajUCxJklZl1yZel5ef63Awz20Zvdmcd+bguV0cCWYayoYLBKOV4a5s34qs9uOxGAAAAICFh/Pz4uH8PAAAkAx/RAcAAAAAAACd5TktGcB+hNEwzTl3uurjZo947++IWOSrDbcvirmdoySdNGPSPkm3xlkWWEgaT4Rq/MuQc9W4vuHh7lzk0k4PPPCA7rrrrunby5cv11VXXdWWdd9+++364Q9/OH37zW9+s4477rjYy7/73e+uO6Hrpptuasu4AABAc+VaWVWFA0E5F/5L1O0SFb0hvJFckoCK1FpEBYtTyfg8JokvdUtUEGDm47De/4TR+kfSuEM3YhDzJRSWT8ePykUF5ZI8BitC1ktRxxmhmKj9XZf8sVnPhxUzmet9yy3s04tGUDWfWmK+9mU/wfEDEGGkHA6jDWXCIaUonH+wuI1V9+q/nr8zOO+XCsfoF3KHdXlEmDKUWR2cPmqEEdutVA3vv3sZ5QUAAACweHB+XnOcnwcAAAAAAAAAAAAA6FeE0SBJcs4tkfTZhskfbrLYFyRVZ9w+3zn3SzE21/in5P7Ve1+KsRyABJyb/3+N6dvf/nbd7QsvvFArVqxoy7pvu+22utsXXHBBouWXLFmiV7ziFdO3v/Od77RlXAAAoLlxH76oVpLyEUGRdogbMEI8SWNyFR8O4gGNitXwe6vT3xGtyKayZtxs5mekUrPCaJmOjAvJJX1/dSMGkST+FRUc67REQbOI+yZ6vH34fZCPiDeG9pnWfrSV6NsSY9tJ9tVJgqetxMpKEd/tUZ8nK8gCQBoxwkhDWTuM5jT/f++M9vvP3d9W2U8E5505dG6XR4OZBo3Q4Ui5OxfrW78r6WWUFwAAAADahfPzonF+HgAACxV/LgcAAAAAAAAA0B1cOblAOecy3se7Ytw5t0zS1yUdM2Py9d7766OW894/5pz7vKS37580IOk659zZVujMOfc6SW+bMWlC0kfijBNYaFatWlV3e/fu3W1d/+joaOT25oO777677vZZZ53VtnV/97vfrbu9atUqPfnkCQR+aQAAIABJREFUk4nWMfMksCeffFK1Wk2pFM1RAAA6bbxmxy1yqbw5rx2iohtJI19IHpOr1MIX2gONrPdWL8NPUfKpJdpbnf0z4czHUVX41zxWVA3d15dhtDYFxzotyXMR9TwniZ31Y4wjavyh7zXr2KOV95b1fIwliJ2N1ZKF0bz3iS4ctL/blzaN1y5Tey7kAxaaXeUdwelDRkgpGhfBLFY1X9Odo/8enLcys0ovWXZSl0eEmazQ4UhlZ+J9cSvskGv/RWoBAAAALDycn9cc5+cBAAAAAAAAAAAAAPoVYbSF62Ln3Osl/aOkf/Pez7q6ZX8Q7fWSPibpkBmznpT0rpjb+TNJvyFpaP/tUyV9yzn3O977H83YVk7SOyX9RcPyf+G9fyrmtoAFpfFEqJGRkbatu1QqqVSq7xOuXr26bevvlmeffbbu9jHHHGPcM7mnn3667vbJJ588p/XVajWNjo7OyxPcAACYb8ZrwQ6zpORRmqSiwmulKmG0pJLG5Mq+3KGRYKEpGQHFfgwhSZMRo1AYbeZnpGK8/zMpwmj9Iun7K9+FUF+S/WI3Qm2WJM9d1DjzqaVtWU+vRI2/VK3/Xqv5mhmLLSR4HqaXMd6PcSOmFV9W2ccPmHp51VRVOsE/UZhhlVQhMnxJvBYIq/mqRiu7gvMiw2hGRMl7wmiL1Y/G/kc7ys8G552+8tVKO/45upeGMuF/Gyr7Ce2r7dGydGfjofPtZzMAAAAACwvn5zXH+XkAAAAAAAAAAAAAgH7FmegLl5P0yv3/eefcE5IekTQiaYmkgyQdL2mgYbknJL3ae//zOBvx3j/jnDtf0jdnrOs0SQ85574n6XFJK/dva23D4t+Q9H8SPq4Fb/2Q9PjH+Yt2nbZ+qPl9Ou2QQw6pu/3cc89peHi4LSdIPfjgg023Nx8MDw/X3R4aat8L17judtizZw8nXgEA0AXWRbWSlOtwGC3l0sqnCsExEN1ILuq1DLHCUECjYm1fcHo/hpAkO141M7hYrhlhNEcYrV8kjTt04/0Yd0wppZV1jb8m7J4kz0XUYyokOA7oxxhHNpVVxmVU8ZVZ8xq/18ZrJXmFI0T/P3t3HibJXd95/vOLzKzKrOrqrupDRyO1JCRAlhCHEAaE1LKRhGg9BnN5PBaPx4Y16wfjGWaN1zasxwJ7AWMW7zDGDHgZG5tBuwwPYJtdZAO2dSFA6DBgJIMEultHH1Xd1VWZWZkZv/2jVa2srN83MvKKzKx6v55HjzojMiN+eUZkVcS7ugnFThkxNevzdN31ugjE1nwtdSwnKbxWiqYT7zP7aEDY0cYRxWoE520vtP4652lO4TAaNq8b578cnB4pp0tmX5nxaNBq1gijSdJC7VAGYbTwdnhUv5sBAABgc+D4vOwM+xg9js9rj+PzAAAAAAAAAAAAAACjijDa5uAkPfOp/5L8raRf8d4f6GTh3vsbnHOvk/QpPR0/c5Iueuq/kP9b0lu99+GzbjaxfM7pzJ3DHgWycPHFF6+bdvvtt+uqq67qedm33377msulUkkveMELel7usDnXv5PuVlbCJ9P2wvvwCckAAKC/qnElON0pyiTqUoymgkEv62Rf2MqNdLGVVYTRkJYV3RvFEJIklXJWkOjpz5VQKEmS8imjQhi8Yi59jKrgJlIHoXqRNhRWyk319Tt3p4q59O/NUsJ1O3mPj+rnQTGa0rHG0XXTWz/XkvY7rM+U5PWGb7OcclvdTXzs+HY93Wu00rBjqsWopJzLa8JNasVX19+WfTQgaL5m/ypoLs8vKZDOodoT+pel24PzXjDzUm3Lc6LysG3LzylSpFjxunnz9UM6TWcNdP3WPsKo7osBAABgc+D4vM2D4/M6x/F5AAAAAAAAAAAAAIBRwZ+927hukfQ5SfNtrleXdL2kK733P9tpFG2V9/7Lkp4r6eNt1vlNSW/03l/jve/sDHhgg9mzZ4/27NmzZtpXvvKVviz7q1/96prLL3nJSzQxMfhISL/t3Ln2KMTDhw8PZNnFYlFxHMt739N/Z555Zt/GBwAAbFbwaDIqZhJ1KRqRmW6CIJtdp6GSGmE0pGRF90ojevK9Na7m90iDMNrIs7YPIVm9FtMGJ4Ydpujk8Uh6nAvRROr3RFJgbZisx6J1PyNpv6OT1+KqKSOmlnZbXY47/1GvFXzsdBylp6Ju1uu43GAfDQiZrx8MTi+4CU3nZszbWd+4vDgpdTO6eeHvzef+stmrMx4NQiKX09b8XHCe9TnQTxVjO9zN/goAAAAAdIrj89rj+DwAANC54f3RNQAAAAAAAGwO/K0cAKsIo21Q3vt/9t7/G0k7JJ0r6fWS/oOk35X0v0l6u6QrJW333l/tvf9aH9b5pPf+bZJOkfQKSW+W9K6n1vsGSc/03r/Me//5XtcFbBSvetWr1lz+9Kc/rVqtt9jDgQMH9Ld/+7eJ6xkXp5566prLd999d9+WffLJJ5/4d6VS0UMPPdS3ZQMAgMGqxpXg9KxOql2Nb7Sygm2wdRqTqxNGQ0rW+7E4oiEkM+bT9B6xXv95VxjImNC5vCuo4NKd9JRViCxt/GvY0cBOHg9rO9zpsoYdg7NY42oNg6UJhXXCeg0sG6HJVlaQMkk9Xkl93cQQXO74PqD1eu80xApsFodr4b+TM5ff2SY4zckuOK4Wr+jrR74anHfqxB6dUzov4xHBMpffGZy+UDs00PXGvqGqD/8MZ9j7nwAAAAA2D47PS8bxeQAAAAAAAAAAAACAUUUYbYPzx/3Ae/9F7/2feO/f571/v/f+Y977r3nvFwewzhXv/T957z/lvf/Dp9b7Be/9/f1eFzDu3vGOd6w5yezAgQP6i7/4i56W+ZGPfGTNwVvT09N661vf2tMyh+XlL3/5mss33HBD35Z98cUXr7ncr78GCgAABq9qBI8mo2Im67cCbN0EQTa7TkMlhNGQVjkOvx9H9eR7a1wVwmhjZzJlpDOrSN+4RMJKHcRN24VQ04ZSswqqdsoaV+s20wqFRYpSB/rWrre3qJj1uZuk1sF2PSmMtvoZmiYyCeBp8/WDwelzhXBAqT3+NNtmc8fi17XUCP+a8bLZfW0Ce8jSXGFHcLr1OdAvVtheGt1oNQAAAICNh+PzknF8HgAA6By/EwIAAAAAAAAAZIMwGgAM0Xnnnad9+/atmfbbv/3beuKJJ7pa3t13360PfehDa6a9+c1v1vbt27se4zBdccUVay5fd911WlzsT8/xqquuWnP5k5/8ZF+WCwAABs86sTZtjKZXJePk3YoRbENY7BsdP2aE0ZCG9958bQ07/mQxYz6N9mG0nMsPZEzoTtrAVychsF6kfc0POxpYjKY7uG7yWEsplzXs+2wp5cLjb/48kKRKIxz7KkXTXYVopoz1LqcMni0bgdik56uT7boVaCu4iROfg2kikwCeNl8LB5G253cl3s4p/BnjOQlm07lp4cvB6cWopJ/c9lPZDgaJZvPh4OHCgMNoSXHSUY3UAgAAANh4OD4vGcfnAQAAAAAAAAAAAABGFWE0ABiyD3/4w5qaevrEzYWFBb3+9a/XsWPHOlrOgQMH9MY3vlErKysnpp166qn6vd/7vb6NNWvnn3++LrvsshOXjx49qne96119Wfa+fft09tlnn7h822236c///M/7smwAADBYVR8OHk26YibrtwIfRDc6YwXuktRiwmhor+orZphjdENI7T9X6r4evE7BFQYyJnQnbYiskxBYL9IGJ4YdDSxEBeVTRv7ajXVc7rPFGn/rfoYVGinmuouMWEG5alxW7OO2t7f2g2Zy28zbWJ9rIa1huFXN47Yeu6QoC7CZHTaCSHOFcEAJaPZg5T49ULk3OO8lW3+a6NWImTPCaPO1QwNdb9LPSdLGbAEAAACgHzg+z8bxeQAAAAAAAAAAAACAUUUYDQCG7Nxzz9Wf/MmfrJl26623at++fXrkkUdSLePee+/V5ZdfrnvuuefEtCiK9OlPf1q7du3q63iz1nrg2J/+6Z/qwx/+cOrbHzlyRJXK+uhGPp/X7//+76+Z9ra3vU1f+MIXOh7j1772Nf34xz/u+HYAAKA7lTgcRsvqxGsrpEJ0ozPdPF51TxgN7VWMeI40uiEkK9hWjpdO/Nt6/ecJo42UtNui0pC3Wa2sOF+W0sTi8q6gQpT8mk8fpxv+fQ6xIiGt200rNNJtALKUC6/Xy6tq7Hs1W276vGq2NT9r3qbmV8x5raz72/yesx67pO0CsJkt1IwwmhFQaiecpcVGddP89ea8vbP7MhwJ0pgr7AhOn68flPeDe/eWE/YhiOcBAAAAyBLH5yXj+DwAAAAAAAAAAAAAwCgijAYAI+Atb3mL3v72t6+Zdsstt+i8887TH/7hH+rhhx8O3u6+++7T7/7u7+qCCy7Q9773vTXzPvjBD+ryyy8f2Jiz8opXvELvfOc710z7zd/8Tb3mNa/RHXfcEbxNHMf6xje+oXe84x06/fTT9fjjjwevd8011+gtb3nLicsrKyt6wxveoDe96U3msiWp0Wjorrvu0nvf+16dd955uvLKK/XQQw91ce8AAEA3qvH6g6olaTIqZrJ+KzhiBTsQlvR4TUczwemE0ZBGUnRvFOJPIVagqTkESRhtPKSPcrWPgPVD2gDbKETC0ow1zTjTvs9H9/Mg/Di0bjetz7pun8ukoJoVPVszHiM+NhVtUWT8GqKT7bp1f5uDbsVc+LEjXgusV4trOtpYCM6bKySH0ZxzxhzSaJvFscZR3b54c3Dec6Yu0KmTp2c8IrRjBQ9rfkXL8bGBrdf63h8pp4KbGNh6AQAAACCE4/NsHJ8HAAAAAAAAAAAAABhF+WEPAABw3Ec/+lHNzc3pfe97n7w/fhLZ4uKi3vWud+nd7363zjvvPJ1++umam5vToUOH9OCDD+oHP/jBuuUUCgV95CMf0dve9ras78LAfPCDH9RDDz2kz33ucyemfelLX9KXvvQl7d69WxdccIF27NiharWqxx9/XN/97ne1uLiYatkf//jHNT8/ry9+8Ysnpl133XW67rrrtGvXLj3/+c/Xjh07FEWRjh49qv379+uee+4J/pVLAACQjeZQUDMrJNJvVnDECoIgLOnx2pLfpqWV9ftzhNGQRlJ0bxTiTyFWkKjcWJb3Xs451X09eJ2c48d7oyTta6xkBJz6LfV4RuC9kSp6luI643SfQ8z9jJb9H+uzrvswmh3rKzeWpTYNxrIRTyvlplVwE6r69T9H6WS7nmb/z7oPxGuB9RbqB815VkBplZMVRsNm8Y0j/6iaXwnO2zt7dcajQRqz+R3mvPnaQU3nwnHyXlWM7/2laCohsggAAAAAg8PxeTaOzwMAAAAAAAAAAAAAjBrOnASAEfIHf/AHuuyyy/Rrv/Zruvfee09M997r+9//vr7//e8n3v7CCy/UJz7xCV100UWDHmqmcrmcPvvZz+r888/X+973PtVqT584u3//fu3fv7/rZRcKBX3+85/Xhz70IV177bVrDqg6cOCAvva1r6VaxvS0fQIxAADor2ocPgB6Mipmsn4rwEZ0ozNWQCWnvBmrqRFGQwpl470YKdKEm8x4NOlYIaOG6qr7mgpuwgwI5V2bWhEylTbSWUyIUPVT2khWVnHR5DGkiZ61H2fa+zw5Avc5xNoGtoZFrMBot8G3Us6+nbXNTnOdUjSlvCsYYbRw8LGT5Tc/3+yjAenNJ4XRCslhNMvqycTY2GIf6+aF64PzZvM79LwtP5nxiJDG1vycnCJ5xevmzdcP6TSdNZD1mmHTjCLBAAAAABDC8XlhHJ8HAADS4w9fAAAAAAAAYLA4KhnAqmjYAwAArHXFFVfo7rvv1mc+8xldfvnlyueTG5aTk5N69atfrb/5m7/R7bffvuEOulrlnNO1116rH/zgB3rrW9+q7du3J15/y5Yteu1rX6u//uu/1p49e9ou+7d+67d0//3363d+53d0xhlntB3PzMyMrr76av3pn/6pHnvsMb34xS/u6P4AAIDuVY0Ta7MKnJRy4QOurRN+EWY9XqXclApG6MkKQwHNrABOMZqSc6N5cGZykOj4/bECQnnH3z0YJWkjD6XMtlnpIlnWti1LacaaJnqWJgw26YrKuVyqcWWtaDwOrZ9t5mddyue8Vd4VVHATwXmpwmiN8HWmctPm51Qn2/VKw9hvaHq+S0Zw0ApmApvZ4Vo4jDYVbRmJWCZG191Ld+pg7YngvEtnrxrZ7etml3M5bcvPBect1A8NbL1J380AAAAAYJg4Pi+M4/MAAEA6nJYKAAAAAAAAAMgGZ04CwAjK5/O65pprdM0112hpaUl33HGH7rvvPh04cEArKyuanJzUySefrGc/+9m68MILNTk52fW63vOe9+g973lPV7e94YYbMr2dJJ111ln6sz/7M3384x/XnXfeqX/913/VwYMHdezYMU1PT+ukk07Sueeeq+c973kqFMJBDcspp5yiD3zgA/rABz6g+++/X3feeacOHDig+fl5RVGkmZkZ7d69W+eee66e9axnKZfjJC8AAIahGleC07MKo1mhgEq8LO/9yIaXRo0VKSlFU8oTRkMPyg3jtdVlLCgLSWGASrysrZo1X//W+wXDkTbyUDQCTv2WNm4zChGcVNGzVPG09vdlFO6vxQq7tW43k7aj3a97WrXGyvp1G9GzteMJX6cUTSsfFaTG+nm1eP26Ol1+8+vG3EczomrAZjZfD4fRthd2tr2tE993NrMbF64PTs8pr4u3XZnxaNCJufzOYARt3ggl9sMg9lcAAAAAoF84Ps/G8XkAAAAAAAAAAAAAgFFAGA0ARtz09LT27t2rvXv3DnsoIyWKIl100UUD+wucZ511ls4666yBLBsAAPSmEofjFpNRMZP1l4yYTaxYK76qSZfNOMadFVkpEkZDjyrGyfdpg1XDkBQGWI0J2GE0frw3StIGt0oZhblyLq+Cm1DNJweorG1bltIEMtK8j1NdZwxDiTW/ooavK/fUe94KjfTyWVfKTeloY37ddGtdaa5TiqaVdxPBeZ1s1639v+ZYXikXfh2X4yXitUCL+dqB4PTZfPswmsXLd31bjIeDK4/r7qU7g/NeOPMybcvPZTwidGI2vyM4fcEIJfbDOH43AwAAALA5cXxeGMfnAQAAAAAAAAAAAACGKRr2AAAAAAAA6EQ1rgSnp43R9CppPdZJv1jPCpwkhdFqMWE0tGfHeUb35PvJpM+VxvH70/D14Hzr/YLhSPs6KxoBp0FIFxzLZhuaPIb240xzX0opomejHONIei6aP99WPxta9fJZZwXy0oTRlo3gaSk3rYIRcKwbn2shldgOqj797/BjtxqvBfC0eSOENFdIE0YLRwYJo218Ny38nfk8753dl/Fo0Cnr/W19HvSDHXId/r4nAAAAAAAAAAAAAAAAAAAAgNFGGA0AAAAAMFaqRlBr0hUzWX9ScKRsREqwXtkInJRyUypE4dBT3RNGQ3tWoHCUQ0iRi8w4wGpMoGa8/gmjjZa0r7NShjGIdMGx7EJt9hj6E3DrV2BtWJKei+YY2iA+66zHpWxEz1bFPjaDp6WE4Gkn2/VywvKf/nfCY0e8FlhjvhYOIW3P72p723AWDRvdSlzVN478Q3DeMybP1Nmln8h4ROjUXH5HcPp87dDA1llp2EF0AAAAAAAAAAAAAAAAAAAAAEhCGA0AAAAAMDZiH6vqK8F5aWIp/VDM2SfwEt1IzwqoFPsUUMHmZQUKRzmEJNlxgNWIoPX6z7v8wMaEzqXdFmUZg0gVE8tlF2ozx5BinGkCbv0KrA1L0nNRbtrPKBv7HKWE/ZR2Srnw42vFTFdV44q84vAyo+m+bNcrxmd783sp6XklXgusdbgeDqPNFXZmPBKMizsWb9FSvBicd9nsPjlHMm/UWe/vhfohee8Hsk475Dq6+2IAAAAAAAAAAAAAAAAAAAAARgNhNAAAAADA2FjxVXPeZFTMZAyTriin8EnfVqQE61mRlRJhNPTIPvl+tMNoVsxpNSJY9/XgfOv9guFIG3nIMtSXFPRcNQrhwDRBr1SRt1TXGf79tSQ9F6ufBw1fV82vBK/Ty32z1t0ujJY0v5Szt+u1lNt1732qEJwVdpOI1wLNyo1l8z0xl08TRgt/F/IaTFgJo+HGheuD00vRlF689bKMR4NuzOZ3BKev+KqW42MDWacVRE/aZgMAAAAAAAAARh1/LAUAAAAAAACDNaC/9wpgDBFGAwAAAACMjapxUq0kTaaM0fTKOWdGV4hupFduGIGTaFqFHgMq2NzSxHNGkRUzKjeWFPuGvOLgfMJooyVtlCqrmKfUPnpWcBPKuXxGo7GleezSRd7ahzZG+fMg5/IquIngvNUAWVKItZfInfXYWdvs1nGFTEXTPQdPa35FsRrBec2vmwk3SbwWSGG+ftCct73QPozmHCe7bDYPlH+ohyr3Bee9dNsrMt2vQfesMJokzdcODWSd1j5C2pgwAAAAAAAAAAAAAAAAAAAAgM1r+Ge8AQAAAACQUiUxjJZlZGY6GNhIGt9G8e2jN+kbR/7BDCpsyW3V87b8pF4x9xrlXM5cjhWRK0Yl+TgcgEobUMHmlvTaGmVWzKgSl1X3dfN2hNFGS5pwVzEqKUr4fOy3dsGxNCGxLKQJeqV5H6cJpaYN2A1LKZpSrbGybvrqfkYlIVTWUxgtZ4TREsJn0vGAo6WYEDxNu11PG4KLXKRiVDL20QijAavmaweC051cYjipLf4024Z148L15ry9s/syHAl6sS2/XU5RMLi8UD+o03Rm39dp/Yykl/0VAAAAAAAAAMCw8TshAAAAAAAAAEA2CKMBAAAAAMZGNa6Y87KMHlnrSgqDbAQ3zV+v/+fJTyRe5wk9qh+V79GTK/v1plPebl7PCpSUctOq+fUxGIkwGtKxAjqjEn+yWEGtcryU+NrPO368N0rSbIuyjnK1G9OoRAPTPC5p3seFqKC8KyS+b0Y9jFaMpnS0sbBu+up+RlIoLE2cz2JFSpLWlzS/4CZOPB8habfrSVGz1tdvMZoKjqfdfQA2EytwvDU/p1yK/QpnTOcUmI3pWP2o7li8JTjv3Knn6+SJZ2Q8InQr53Lalp/TQv3QunnzgWn9YEerR3tfDAAAAAAAAAAAAAAAAAAAAMDwRcMeAAAAAAAAaVXisjlvMtMwWvgk3qTxjbtaXNOXDl6X+vpfP/JVPbHyqDnfCpQUo5IKbiI8BsJoSKHSsF9bo8wKElXisuq+bt7OCg5hOCZdUc5MxhxnPdeD0i48UcqNRjSwlCLolfZ93O4xzvo56JQVN1vdz0iKfPVy36zwXNn4XF21bIRhV5dnfU7V4nTb9aT1t95f87O0zX0ANpPDtXAYbS6/M+USkrdz2FhuPfI1M2S5d3ZfxqNBr6z3+YIRTOxF7GPzZySj/t0MAAAAAAAAAAAAAAAAAAAAwPARRgMAAAAAjI1qXAlOL7gJ5Vwus3FY8ZakUMm4u3vpTi3Fix3d5o6jt5jzKsZjVYqmlHf54DzrhHygmfU+HJX4k8WKV5Xj5cTXvvV+wXA459qGOtuFyvqtXShrVMIUaR6XtNGvdsvK+jnolB1KXF7z/1bH94e6/0yw92/C4bN281eXl4/CYbS023Xr/krrw7hJn6UAjps3Akjpw2gW3+PtMWpi39BNC9cH583ld+qCLS/OeETo1Wx+R3D6vBFM7IX18xtp9PfFAAAAAAAAAAAAAAAAAAAAAAwfYTQAAAAAwNiwTqydjIqZjsM6iTcp3DHuvr14U8e3uWMxHEarxSuq+3pwXimaVt71FlDB5tXwDa34anDeqMSfLFYIqdxYahNGC79fMDztXmtp4179MmrjsaR5jxaNcFenyyqN+OdBu7hXuWHHRXsxFYUDkjW/olpsfw6ZQcqnllfocbtuLb8YlRS5tb/isOJuG3kfDeiUFUbbXkgXRnNywemeMNqG8y9Ld+hw/UBw3qWzV2UaJ0d/zBWMMFr9UN/XlRRWtbbXAAAAAAAAAAAAAAAAAAAAALCKMBoAAAAAYGxU43Jw+mTGgRMzYLRBoxuVuKzvHft2x7d7bOVh7a8+GFie/TgVcyUVoongvFq80vEYsLkkvbZKRvBnVFjBp0pcbhNGyw9qSOhSuzhVMZftNqtdTMyKcGUt5/KacJOJ10kbOCzlkt/vxTbzh80Kt61+xlmfdb0+l8WEz8lKQtyk3AjPWw2t9Ro87eT+tovKAZDma+HQ1Vw+XRhNRhgNG89N89cHp+ddXi/fdmXGo0E/WO/zhQGE0SrGz2+k0dn/BAAAAAAAAAB0g98VAQAAAAAAAACyQRgNAAAAADA2zDCaK2Y6Dusk3kpjY0Y3vrP4LdV8OEp21fY36OdO+hU546C324/esm5aUpykFE2boae6r6cYLTazxOhexgHFTtnBxaXE174VHMLwtAs9ZB3paxdqK7UJp2Up6bEruInUr/d273crPDYqrEBZ+an9DGs72i6C107SayFp2102ommr4+k1jGatO/Tatl7vSdsHYDOJfax5I4A0V9jV07J9T7fGqHlyZb/uXr4rOO+FW16umfxsxiNCP8zmdwSnz9cOyvv+vouTo9Wjs/8JAAAAAAAAAAAAAAAAAABGC8clA1hFGA0AAAAAMDYqRhgt6+CRtb6kaMg4u33x5uD0rblZvXrnNfrpuZ/R2aXzgte5Y/GWdSdYJ4fRpnoOqGDzKifECbOOUXXKDC7G5cTXPmG00dNum5T9Nis5PNFufpaSwlydPG7jdJ9DSrnwfV0NjFihkV4jI1MJn5PLjXD8TLLDaKvLs4KntZTbdSs8G3oerec2afsAbCbHGkfN/Yq5/M5UywjnkCUOQdhYbl74O3PeZXP7MhwJ+mm2EH6fr/iquT3vlvXzm0iRCm6ir+sCAAAAAAAAAGSJ3wkBAAAAAAAAALJBGA0AAAAAMDaqvhKcPhkVMx1HKRcOh1g5YW0NAAAgAElEQVQn/o6zxfoR3bN0V3DehTOXKHI5SdJFM5cEr3Og9pgerv54zTQrcCIdfy6t0FPNr6QZMjYxKxYkSUUjNDQqrKBRNS6rFtuv/ZwRHMLwtItuZR3paxcU6zWm1U9Jj10nj1u7+zRK9zkkKZQo2YHRXu/XZFSSM5JHSZ+vVnRs9X5Y8ZO0wdNO7q8V19uI+2hAN+brB815c0YwCZvPSlzVrUf+ITjv9Mln6qziczIeEfplLr/DnHe4Zn8+dMPadyhGU3LOTiwCAAAAAAAAAAAAAAAAAAAAgEQYDQAAAAAwRqyoRdZhNCsyU46XMh1HFu5avFWx4uC8F2/de+LfL5x5mZzxY4Y7Fm9Zc9kKnBSjkiKXSwio1NMMGZuY9doquAkzuDcqrOCil9dSvBicFymnyPHjvVHTLkTWbn6/tYtltQu5ZSlprJ08bu3uU9b7DZ2yHofV/QwrMNrrcxm5qKt9HGve1FOfa9bnb9owmhlWCUTQrMdgI+6jAd2YN8JHeZfXTG5bqmVYQSMv3/W4MFq+ffQm83Nz7+w+olZjbFt+u/m9fSEhnNgNO5w62sFqAAAAAAAAAAAAAAAAAAAAAKOBMyeBPgudEOI9JwQBGG9xvD6GwglwAIBhqMaV4PSsT6y1ohtWuG2c3b54c3D6zsLJOrP4rBOXZ/Kzes7UBcHr3nH0ljXfi6yT7Fcf17zLB+d7xWr4RqpxY3My4zljcPJ90hgX60eC0wsjHnvbrIq5NmG0QMxpkNrFstqF07KU9D7o5HFLuk+TrqjI5ToaV9ba7WdYEchSH15bpSgcaVxu2GExa97qsnoPo4X3r0LPs/Xcb8R9NKAbh+sHgtNn8zs6iK0aPxPk1yAbgvdeNy1cH5xXiqbXxLExfnIup235ueC8hfqhvq7L+m5mBaEBAACATnGMHoCNhuPzAAAAAAAAAAAAAGAtwmhAn0XR+rdVrZbuJD8AGFX1en3dtNDnHQAAg1Y1ohaTGUePrOhGNS4r9usPWB5Xh2sHdF/57uC8i2b2rjsQ+0Uzl4SXUz+gByo/PHG5XeDECqhI6SMq2JzKDePkeyP0M0qSxniscTQ4Pem9guEZtRBZu21k1qG2JEmPXSePW78Ca8Ni3ddyY1ne+4QIZB/CaEasxFpn0rzVZVnB07pf/7OGECsEF7q/1mNQTgi7AZvJfO1gcPpcflfGI8Gour/yAz1c/XFw3su2Xa6JaDLjEaHfZvM7gtPn6+HPh27Z2+/Rj1YDAABgPHCMHoCNhuPzAAAAAAAAAAAAAGAtfmMK9JlzThMTE2umHTt2bEijAYD+aP0cm5iY4C9SAgCGohpXgtOzDqNZ0Q0vb45xHN2xeIs576Ktl66b9oKZlypSru2yrDhJ8UQYbSI4X5JqfsWcB1jRvXE4+T5pjIuNI8HpVmwIw9UuTtWPeFUnClEhMaKXdagtSSkhWtbJ45a0nFG6vxbrvjZUV93X7BBZP8JoxjKWYzssZs1bDT5ar7+02/SKGb1cP1YzXusrin0j1fqAjcwKH80VdqZehvUTQS/fxYgwam6cv96ct3f2VRmOBIMyZ4XRaof6uh77u9no74sBAABgPHCMHoCNhuPzAADjg+0TAAAAAAAAACAbhNGAAZiZmVlz+ejRo/Kek4IAjCfvvY4ePbpmWuvnHAAAWbFOrJ2MipmOIym4YsVKxtG3j94UnP6MyTO1e3LPuunTuRn9xPQLgre5c/FWxT6WZD+PqzGTQmQHfOp+/V/KBlaVrThPwnt2VBTchHIKh86OGWG0HGG0kVRqE+IbRpgraZ2jFKdIGksngcPk5YzO/bUUc/Z9rcTLKhv7Gv24b9YyykacrBavqO5rwXlPb9fDwdN6HL7dunVb9zfw2R6atsra/wA2k/maEUbLpw+jWSe7EEYbf4v1Bd117OvBeedNvVAnTezOeEQYBCuEaIUTuzXIkCsAAACwimP0AGwUHJ8HAAAAAAAAAAAAAOsRRgMGoPWAhFqtpkcffZQDrwCMHe+9Hn30UdVqa09W3rp165BGBADY7KpxJTi9k1hKPySFRzZKdOOx6sN6pHp/cN6LZ/aat3vRzCXB6Qv1Q/px+R5JdrxqNWaST4g9pY2oYHOy3n/jEEJyzpkBt8X60eD0vLMjghiedq+3Ybwek9Y5SnGKpLGUounUy+lXYG1Yku5rOV5WpZEcGO3FVC687oqx7baiZc3Lsj6r0sZOOwmrJD0GG2UfDeiFFT7aXtiV8Ugwir5+5KvmZ/PeuX0ZjwaDMpvfEZy+UD/U1/VY2+9x2BcDAADA+OAYPQAbAcfnAQDGD/vbAAAAAAAAGCx+5QtglX2mMYCuFYtFFQqFNQcqLC4u6kc/+pG2bt2qLVu2KJ/PK4poEwIYPXEcq16v69ixYzp69Oi6g64KhYImJyeHNDoAwGZXNYIWk1Ex03EkRTes6Ne4uX3xZnPei7aG42eS9PwtP6m8ywdPqL9j8es6Z+p8M6Ky+rjm3YS5/JpfMecB1vtvlMJPSYpRScca6yNooWkSYbRRNdkm9mAF8AYpKUBRMkJYw9CvoFm/AmvDknRfy/Fy28BoL6zHZ9kMo9n7PcUoOXjaUF2xjxW55J+RWvsNoccp6TV0fKzEn7B5NXxdR+qHg/PmjFBSiJMz5nAEwjhr+IZuXvj74Lzt+V167vSLMh4RBmUuvzM4faF2SN57OWe9xztjhVzHIVoNAACA8cExegDGFcfnAQAAAAAAAAAAAEB7hNGAAXDOaffu3XrooYfW/AXKWq2mQ4cO6dCh/v7VdQDIyurnW79OjgIAoFPVuBKc3kkspR8KbkKRcorVWDevYsTbxon3XrcfvSk47+zST2hH4STztqXctM6bvlDfPXbbunl3Ln5dbzzpfzIfo9UTpAsJsae6r5nzgHavrVFnBYkWG0eC063YEIar1GabNIzXo7VOJ6cJNzon1iSG0TqIfiUvJ9t9hm4k7dccrS8oVhyc148IpPU5VG6E42Tlhh1Gm8ptkZQccaz7WuJrMPaxGcYNjTXpMbACLcBmsVA/LG/Ey7YXeo8GkkUbb/9y7HbN1w8G5+2d3afI5TIeEQZlthAOo1V9ReV46cT2u1dmEH0IkWAAAABsXByjB2Aj4vg8AAAAAAAAAAAAADiOsyeBAZmamtKePXvWHXgFAOPKOac9e/ZoaooTlwAAw2NFjyZdMdNxOOdUiqa0FC+um5cUCJGkI/XDeqjyY/lA1KQYlXRm8dmaiNpHahbqh/Vw5cc6eeIZ2lU4pesDo2Pf0CPV+7VQP3xi2nztoA7UHg9e/6KZS9su86KZS4NhtMXGEf3j/Jd0uPZk8HarMZPkgEq97fql43G3A7XH9PjKI6muv2prblanF89WLsWJ/ytxVQ9UfthRDC9SpD3Fc7Q1P9v2urV4RQ9U7lU5Tn5NtXrG5JmJ8bpuVeKyHij/UCu+2vdl98vBlSeC08fl5HsrhrTUWP9ZIyW/VzA87cJnwwiRWe+BYlRS5KKMR2NLeq+2C841S4qf9SMeNmiRy2nSFVX164Owdy/dad6uH9E96zmYrx8IbtsfqdwfvL5TdGL/rOAmzPXVfU0Tst8T1bhihpxCn5mFaEJ5lw/uL9yz/M/Bfbc0ci6vM4rnaEtua1e3B0bBfC0cvZKkuXw4lNRPDd/Qw5Uf6WhjoaPb7Z44QzsnTu77eLz3emzlIR2shfcfTyrs1skTz9g0J6DeuPDl4PS8K+jibVdkPBoM0lx+hznv20dv0pwRTuvUkaafMTQbl2g1AAAAxgfH6AHYSDg+DwAAAAAAAAAAAACeRhgNGKDVA6/279+vWq027OEAQNcKhYJ2797NQVcAgKGq+5oaCkexJjuIpfRLMVcKxjWsSFbDN3TdEx/TN478Q+JyC25Cbz71N/SCmZfay3n8Y/rG0aeX85ypC/Srz3i3GVWyPLHyqD76yHt1yAiVtYoU6cKZi9te77lbLlLBTajmV9bN++KBT5m3K+WmJUl5Z/+4IrTMVuXGkj7+6Pt1b/n7ba8bsi03p7efdq1OK55pXueuxVv1qcf+c6rxhFw6+yr9/En/sxkk+v6xO/TJ/R8KRnHSeP6Wl+gtp75ThciO0XTim0f+UZ95/GPme3DUjcvJ96vvgVahkKIk5SPCaKOo3ettGIEVa/swau+NpPEUo/D7IyQpfjZq99lSzE2pWl+/DbDCNVJ/om8l43E+WHtCH3/0/R0sZ+rEa72X4GklXrbXYXxmFqMpHWscXTf9y4c+m7iuNF61/ef06p3XbJpQEjaW+fqB4PRiVDLfTyFO1uvfPvn8kcr9+ugjv6+jjfnU62l2/vSF+pXdv6XJqD9B7CP1w/qTh9+r/SsPJl5vz+TZ+vXTrtWW/MaOIj6x8qj+dfk7wXkvmrlkw9//zWZbfk5OUfA7xmef/LOBr7/Tn1sAAAAAaXCMHoCNgOPzAAAjhegwAAAAAAAAAGAEhM++BdA3U1NTOvvss3XWWWdpx44dmpjoz0npADBoExMT2rFjh8466yydffbZHHQFABg6KzgmqW8nyHfCio9YAY+bFq5vG0WTjoe/Prn/j3SkftheztG1y/nB8vf0hSc/1XbZrf6vR/8odRRNks6dfoFm8rNtr1eMSrpgy0Udj2f1BOnI5RQpF7xO3bc/oeULBz7VdRRNko405vXxR98nbxzkd7h2QP9t/4e7jqJJ0s0Lf6dbj3wtOG+5cUyf2P+BrqNokvSdY9/S9Yc+1/Xtmz1efUR/9fh/GdsomtSfWFAWOo0EJMWGMDzF3OjFHqwY2Ki9N5LGU+rg/ZFzeRVc+Gdwo3afLd2Msx/Rt349Ps2RpaTgabvtejkhjGZ9Zg7yOf67w5/Td459a2DLBwZpvnYoOH0uv6uj5XQaBox9rP/66Pu6jqJJ0veX7tSXDl7X9e1b/eVjH2kbRZOkh6o/0n9/4qN9W++oumnhenPeZbP7MhwJspBzeW1N8b1+UMYlUgsAAIDxwzF6AMYRx+cBAMYTf0QKAAAAAAAAAJAN+4wkAH3jnFOxWFSxWNRJJ50k773iODZPsgeAYXLOKYqijk9yBABg0KqxHYnqNCbUD9bJvFbA47sdRDRixfqXY3fo5bNXrptnxTi+e+xbukZvS72OAyuPpYoBNLto5tLU133RzCW6c/HWjpZfip6OqBRcQVXfWHedNGG0fgRLDtcP6JHq/Tq9+Mx18+5Z+mfFWj+2Tn332G26ZPaV66Z/f+lO1X3vEbLvHPuWXrPrTT0v57vHbut5GcM2LiffN78H0kiKDWF4krZJw4pyWe+BUXtvJD12nY61FE2p1lgfsBy1+2zpdJxOri+h2OagWU/LaRp/UsSx3XbdCs5Kw3tdf/fYbXrBzEsHug5gEA7XDwSnzxV29mX51u87Hqn+WPP1gz0v/zvHvqk3nvSWnpdTicv64fK/pL7+vy59Rw1fV26D7ndV44q+eeQfg/P2FM/RmaVnZzwiZGEuv8OMsQ/auERqAQAAMJ44Rg/AuOD4PAAAAAAAAAAAAABob2MexQ+MOOeccrncsIcBAAAAjJWkMNrkCIXRrIDHfO1QR8u34gE/XP5ecPrRxoLqvpYYH0mzfEvBTej5W16S+vrnT79IxaikSlxOfZvTJs868e+8K6jq1z/n7QIqtbimY42jqdeZZKF+SKdrfRjtaGOhT8sPPwcL9c5eK50uv/Pl9Gc8w9T82hplnY5zXO7XZpN3BZ06cboeW3l43bzndfA52k/Wa+W04mi9hmbz27Ult03HGkfWTC+4CZ00sbujZZ02eZbuXr5r/fQRu8+W0ybP0gOVH3Z0/chFPa/3GZNnysnJq7eTRVu36ZaaXx+vWzM/tudPuElz3Q9Xf9xmhN3bCNtFbE7ztfC+4fZ8f8Jo9nr7856Zrx2S977nk0WXGosdRY5XfFXVuKKp3Jae1juqvn30RjPufdnsvoxHg6zsKZ6jByr3Zr5eJ6fdk2dkvl4AAABsXhyjBwAAAAwC4WEAAAAAAAAMFn/7CsCq3s+UAgAAAAAgA9WEwFZxCGG0khFGKzfCJ5V3Egg7fv3wcpJY6w5ZahzraNlXbn+dSrnwfQ6ZiCZ11fY3pr7+edMXaufEyScu56NwRKUWJ4fRKvFS6nW2YwUC+nWAn7X8Tp7HJJW4rNjHfVhOf8YzLM+ZukCnTJ427GGk8vwtL9G2/PZU1y1GU7po5tIBjwjd2hsIieSU18u3XTGE0UjP3fIi7SictGZawU3oZdsuH8p4LJHL6dLZq9ZNv3jbFZqIwhEsy6Wzr5LT2njOmcVna8/k2T2NMSsXb7s8dexUCr/murEtP6cXbHlZT8vIu7xevu3KE5cL0YR53bqvJy7LCqLmXd6MI108e6XybnB/E2bct4vYvKww8lyhszBa62drO/16z8RqaMVXe15Ou9BySK+xyFHlvdeNC9cH501HM3rRzCUZjwhZuWTbK1Vw9vZ5UF44c7G25mczXy8AAAAAAAAAAAAAAAAAAACA8TO4s4MAAAAAAOijalwJTneKhnJCb9GIhJWNMJc13dJNHKscL2lG21Jdd9kIozk5TUbFE5fn8rv00m0/rcvnXtPxeK7c/joVXEG3HvkHHa4/GbzOTG6bzp++SK/d9YtrplsxmHYhg3JCgG7SFYMRlWpcCcYOKsZz4I0/O+EUaTIQ7mn4hmp+Zf1YjeVbr5VIUTAMFPs4GInw8qrGlY6CduHxhMeZU14FI2A3Crbktur86Rfptbv+3bCHktqW/Fa98/T364sH/ko/Kt8dfF5zLq9nFs/V1Tt/fmyCb5vRZXNXK+dyuvXIP+jJlf3aUzxbV25/nc6ZOn8o4ylGJf3G6e/XFw/8pX5c/ledMnm6XrX9DTqjeM5QxpPkZ3b8gopRSbcfvVl1X9eFMxdr346f63g5z595iX5l9/+qG+b/P83XD+o5U8/T63e92YxpjZozS8/Wr592rb5y6PN6oHKvYjWC1zt1Yo8umX1lXyN3b979v2jHgZP03WO36WhjPvXtnCKdUTxHr9z+ep099RMnpidFyuptgqc1M4xm7/udXTpXb3/G7+nvD39eD1buk1d3kdC6rwf3O+xwKjDa5mtGGC3fWRjNYsXDrPdM6/eOE8vxXlUf/u5XjpeDt+lEu9ByyEYNo/2ofI8erT4QnPeybZd3HCXF+DiteJb+w2nv1fWH/ocerNynhpJDpb3alt+uC6ZfrNfsetNA1wMAAAAAAAAAAAAAAAAAAABg4yCMBgAAAAAYCxUjeDUZhWNXg1aKwrGp0Dgbvh4MY0nSKROn6fGVRwLLWR8QaBcFW26kj68tx+Ew2jMmz9S7z/w/Uy8nSeQivWL7a/SK7Z1H1boNo4Uet1XvO/uTmsptWTf9Dx/8TT1UuW/ddCviYIURzi6dq9/Y8/510+9euksffeS9wbF679e9fq3X+kVb9+qXT/2P66Y/sfKo3nv/24O3qcTLPYfRrMf0iu0/q59tCdqhdzsnTtFbn/Fbwx4G+uCS2at0yexVwx7GCXOFnXrL7ncOexhtOed05fbX6crtr+t5WS+cuVgvnLm4D6MajmdPPVfPnnpu5uvNu4Jef9Iv6/Un/XJflpdL+DVEu+163YdDLdZ+wqrnTD9Pz5l+XvvBJfjWkX/SXz7+kXXTrXAqMMqqcUVL8WJw3lxhV4dLC3/3svaRrX3JM4rn6LfO+NC66Qv1w3r3j94SvE25saTZ/PaU4wxr97kTYoWRx91NC9cHpzs57Z19VcajQdbOnvoJ/frUtcMeBgAAAAAAAAAAAAAAAAAAAAAERcMeAAAAAAAAaVQTwmjDUDTCaKGYlhXYkqS5/M7Uy6k0wo/B07dJH0ZbaoTDaNOBcNgwFLoMoyU91sWoFJxuRe46DaNZkQhr+bFirfhqYL3h59FajvVaPL6s3uMtZSMAU4qme142AGDjc851HTytG2HZvBv833wp5cLbuX5sW4GszdcOmvOs7yOWTpPUVvTX2oe19nmlzr7vWLoJo8nc/x9fR+rzumvxG8F5501fqJ0Tp2Q8IgAAAAAAAAAAMDo23u9GAAAAAAAAAADjZ/BnDwEAAAAA0AfWCfWTbjhhNDOm1Vh/sn5S0GyukD6M1i4EsGzEzsLXXQxOn4pGI4xmBVRqbUIGFSPiNemKilwuOM+KMlQ6DJ84IxPRLlzWGvfrNESWHI/oPd5ixyzCoTkAAFoVXCEYI2q3XbcCRlZAtZ+s7dyKr6rhG8oZ+xXAKJqvJ4XRdgx03fa+bXgfdsJNKlJOsRqBZQ0njLYRT/259chX1VA9OO+y2X0ZjwYAAAAYDOfcnKTzJT1L0nZJRUkLkg5IusN7/6MhDq8nzrmCpJdL2iPpVEnHJO2XdJf3/oEhDg0AAADAhtfpn9EBAAAAAAAAAKA7hNEAAAAAAGOhGleC04cVZ7JjWusjUkmBrbl8OIwWuo0VqFrVLpzWbDkOR9SmcqMdRmsXMrBCYMWcHQ+zI3fhZXnFwenOhQ/8SwyXNZY0m9++Zpr1erFe6wU3YcYjOo27BcdovK5KCY8pAADNut2uW+E0a3n9lBQ2rcblkdlnAtKwwmgzuW0qRBMdLcuKAXsjH2bv24bfY845lXJTWgqEnPsR/W0XZAyx7tu4aviGbl74++C8nYWTdd70hRmPCAAAAJuNc+6Zkl4s6aKn/n+hpJmmqzzovT+zi+UWJL1C0qsl/ZSOR9GSrr9f0n+T9DHv/eMdrus9kq7tdIxN/tJ7/8ud3sg5t0vSeyX9vI7H3kLXuVXSH3vvP9/D+AAAAAAAAAAAAAAAAIChIowGAAAAABgLVR+Ogk1GxYxHcpwVhQpFpJJO4J8rhMNooShXu/DZciN9GG2pEQ6jTedmgtOzVugyoNJpeCFpnrUsb3QRrL+HmhRl6ySkV8pNh9ebFI8w4m6dsIJ8SY8pAADNug2j1X29o+X1U2LYNF4ijIaxcrh2IDjdijQnMmLAFuu7UFJkdyqaDu7bLncQgra0+9wJ2WhhtO8eu00L9UPBeZfO7lPkooxHBAAAgM3AOfdTkt6l4zG0YNCrx+W/RNL1kuY6uNluSf9J0r93zv177/1/7/e4+sk5t0/SpySd1OaqF0u62Dn3GUm/6r3v/csUAAAAAAAAAAAAAAAAkDHCaAAAAACAsVCNK8Hpk1Ep45EcV4rCkaqaX1HD15VzT3/ltkJXBTehLbmtwXmh21iBqlXtwmnNlo0w2lQ0GpGPbgMqZnghIW5iR+6MMJoRRnAKBwQmXVFOkbziwDrSh/QS70MUDqNVeoxH1H1NNb8SnEcYDQCQVvdhtPA2KIswWtJ2rtwoS4MfAtA38/WDwelzhV19XEt4H7mv4eI+RH+tz5VEVhl5TN208OXg9IKb0Mu2vSLj0QAAAGATeYGkVw5w+bsUjqKtSPqepMclHZG0Q8fjbDuarjMr6dPOuZO89388wDF27amw3F9Lmmia7CXdKenHOn4fXiipuYD9JklbnXOv9d6v/wUFAAAAAHRlY/3eBAAAAAAAAKOHn0ABWEUYDQAAAAAwFqwoWHFIYbSk9Zbj5TXBMysGUIqmzOWs+Oq6wFq5kRy5Wu4kjBYbYbTcaIfRam0CKnZ4wX6+rOCYtSwrjGZxzqkYlYIRtNZ1eO9VNoIPSffBikeU28T02qk07NsnhdoAAGjW7XbdCqcNO4zWa3gUyNp8zQij5XcGpydxcsHpVjusm/3zqVw4Qt3J9x1L3dc7vk2n+/+j7LHqw/rB8veC8140c4kZ7gYAAAAGqCrpEUln93GZxyT9D0nXSbrVe7/mB93OOSfptZL+s6Q9TbM+7Jz7nvf+q12s8xckfbPDMabinDtN0he0Nor2dUlv9d7f03S9SUm/Kun/0NNJ91dL+t8lvbuDsQEAAAAAAAAAAAAAAABDRxgNAAAAADAWqnElOH0yKmY8kuNKUfhkfUmqNNaG0ezQ1VTicloDa2UjKvD0etKHApYaox1GK0Th4Ek9Tg6oWI910uNsR8WsxzscRrAiEcfXPxUMo7WOt+5raigca0i6D3bcrbd4hBWykJKDMQAANCsYITMrfLaqZmz3reX1UyEqKO8KwTH2Gh4FsjZfN8Johc7DaJ2y3i/J++fheaH96U5ZQcZIkWLFwXkbKYx208L15rzL5q7OcCQAAADYpGqSvi/pdknffur/35P0ckn/1IflPynpjyR93HtvfoHw3ntJX3TO3STpZkk/0TT7vzjnznvqOp143Hv/QKcDTum9kuaaLt8q6Qrv/ZpfnHnvqzo+/ockfbFp1m845z7hvX9wQOMDAAAAAAAAAAAAAAAA+i4a9gAAAAAAAEijYpxQPxmVMh7JcaWcHYVqDWpZYy9GJRUTxl9prL1dUqRKkpZThgIavmEuazoajTBavsuAinW/ijn7cbajYuFlxT4cTHDO/jFLKReOO7SuIyl+l/Sas5ZvheLS6nY8AAA063a7XvfhWGjeCKj2mxUBbbdPBowS773ma+Ew2vZ8/8JoVjysYkai7f3zKSuM1kEI2mJ97hTchHmbjRJGq8RlfetouDVxZvFZOqN4TsYjAgAAwCbzl5K2eu9f6L1/q/f+z7z3d3rf5ocD6X1L0jO99x9OiqI1894fkvQL0ppK8rmSLurTmHrmnHuWpF9qmrQi6Zdbo2jNvPd/reOP96pJSdcOZoQAAAAANqSOW9EAAAAAAAAAAPQfYTQAAAAAwFioxuFzPJJOqB+kpPW2xqTKRrCslJtSyTjpP3S7pEiVlD4UkHS9qdx4h9GsxyjpcS4aga9yY1m+gwP9XMI86/WS9rVyfBl2iMxafq/hlqTX3LDeewCA8WOFzNqH0cLzrf2EfrPiqe32yYBRshQvasVXg/PmCp2H0Zy517t+v9l7b75frH1wyQ7w9uO9V4+NMFpkh9FC920c3XbkBjPavXf26oxHAwAAgM3Gez+fFPPqw/IPpA2itdzuO5JuadWc6psAACAASURBVJn80/0ZVV9cIynXdPkL3vt7U9zugy2X/41zrti/YQEAAADYvJKOkAIAAAAAAAAAoH8IowEAAAAAxkLVOIF7MhrOeRw5l9eEmwzOa41RWSefF6MpFXPpA2uVRng5q5YTolrNluJFc96oh9FqbQIqVggsKeJlRU9iNVTzK+umezOMYB/4Z4XZ0r5Wji8jIR5hLL/XeIT1eBbchHIu39OyAQCbh7ldNwJFq+qB7XDS8vrNDI82CKNhfMzXDprztud3dbw8O4y2Xs2vKFYjOK+rfduUIegk3QQXO2gljyzvvW5auD44b0tuq1408/KMRwQAAACMlLtaLu8eyijCXtdy+S/S3Mh7f4+kbzVNmpb0yn4NCgAAAAAAAAAAAAAAABg0zmAFAAAAAHTsrx77iA7UHs90nY+vPBKcPpkQvBq0UjSllUZ13fRySyzDilMVoynlXUEFNxEMcLVGqcptwmdpQwHLCdebzs2kWsagFYwwgRUyWNX62K9KCi8UE+aV42VNRGsDeFYYLSkSYa1/3WvFeG6cXOJr3boPvYbR7MczHKsAACAkb8Q0223X674enG7tJ/RbKWeFTZNjtcAoma+Hw2iRctqan+3bekJ7yEn7okn74Oa+c4/7tpIdWrai18eNfxntvvLd2r/yUHDexduuUCGayHhEAAAAwEhp/QHESOwgO+dOkfT8pkl1SV/vYBE3SHpJ0+V9kv6295EBAAAAAAAAAAAAAAAAg0cYDQAAAADQsUeq9+uR6gPDHoYkadIVh7buYm5KRxrz66a3Bs1aL69aPeG/FE2p1lgfRmuNUrWLcLQLp61abiwGp0fKDfXxbJbvMoxmPdbdhBdWl7dNcy1TOw+j2eGypZbL4fFPRiVFLjKXb92HihE2S8t+PIcXJAQAjJ+CC59P3G67bgWMrP2EfrO2d2n3uYBRMF8Lh9Fm89sVuVwf17R+H9nal5SS9yetKGE/3nvW505SGCzeAGG0Gxe+HJzu5HTp7FUZjwYAAAAYOee0XH5sKKNY77ktl7/rve/ki9GtLZfP73E8AAAAAKCN8AdlAAAAAAAAAADjwT6jFgAAAACAMTDMQJMVo1oXuzLiVKuxLCua1RoSaBcCqPkV1eL1gbVWy/Gx4PSp3BY5Z8e9stR9GC0cjyvl7PhZUjQt9Nx5K4yW8NhZ628db7chsqKxfCu0lpZ1eytWAQBASLfbdWt+dmG0dNtvYJTN18NhtLnCzq6WlxQDbpX0XilF9v6kNa/cGGAYLfFzZbxP8DlSP6x/XvxmcN5zpy/SjsLJGY8IAAAAGB3Oua2SrmyZfFsXi/pV59zXnHOPOucqzrlF59wDzrkbnXPvc85d2sUyz2u5fF+Ht/9Rm+UBAAAAAAAAAAAAADBy/HgfugugjwijAQAAAADG2nRuZmjrThvLsGJXq7GstFGrNBGO5TbxNElaaoTDaNO5LW1vmxUrTFBLCKh47xPCYnb8bDIqmoGH0PK88dPVpEiEtf7W59gMkSWEI47PH0wYzXrNDTNICAAYP3mXD06v+3ri7YYdRksbwQVG2eHageD0uXx3YTRLKB6cFDKbjIrmPCvCW/UVNXyj88E1sT9XJszbWGHkcXHLwlcUK/y4XTZ3dcajAQAAAEbOr0pq/gHAEUn/1MVy/q2kyyXtljQpaYukMyTtlfRuSTc5577tnLuig2We03L5oQ7H9GDL5R3OubkOlwEAAAAAAAAAAAAAAAAMBWE0AAAAAMDYKkVTOqv07KGuP6TcaA2aJce6rOW03i4pLNDJdZaNMNpUNDphNCt4YoUMJGnFVxUrDs6zHmNJilxkhr5CYTE7jGCH0ezXytrnq9Kwwmj2+KWkSF9vYTQr/NJuPAAANLO260nBU8ne7lsB1X5LG8EFRtl8/WBw+vbCru4W6Ox93lZJkd3I2b+iTNrX7HX/1vrcmUgIo42zhq/rloW/D87bVThV5049P+MRAQAAAKPDOXempP/UMvkj3vuVAa3yIklfcc69z7lUX65mWy4/2cnKvPfHJFVaJm/rZBkAAAAAAAAAAAAAAADAsOSHPQAAAAAAALqRd3n9u1PeoZwb3lfbYs6IXbXEpMoJQQApIZoVtwbW2kc4rJBVs+XYCKPlRiiMFnUeRgtFzFZZYZPm+aHbdxJeSDqLKW1YxboP1mttlfUaqvuaanFNBePxbKfSsF67hNEAAOkVjOBQvc15xlbAyAqt9ZsZrzVCpsAomq+Fw2hz+Z1dLS99Fq19INoyFU2b88qNZU3nZjoYxVpmcDGyw2ixD8eXx8F3jn1LRxrzwXl7Z1+VGKgDAAAANjLn3ISkz0pq/oLxgKQ/6nBRj0r6sqTbJN0j6bCkWNIOSRdK+hlJVzWvWtK7dfwP2r6rzbJbf2nTTam9LKnYdLn7L1RNnHMnSeq0uH12P9YNAAAAIAvWH40EAAAAAAAAACA7hNEAAAAAAB3bO3u1FhsLQ1v/1tyczp1+vnYUThraGKSEWEZL7KpixMpWb29Gs5qiG977VJGu5RRhtKVGOIw2PUJhtIIRPKnFdhgtKVJiPVfN80O5gFCoLFY4jOBkRwVKKSN61nPcdvwJ4bRKvKRCNJt4e/u23cUsAABoZoXMkoKnklQ3tvv5jMK4dgSXMBrGQ+wbWqgfCs6bK3QXRkvivZdzT6fTrPdKu33bpChwmhB0EjOMZgQcx92N818OTi+4Cb1s2+UZjwYAAAAYKZ+U9JNNlxuSfsl7n/ZLx206Hjz7qvfeKgbcKumjzrmLJF0n6VlN837HOfdN7/3fJKyj9Zc2lZRja1aWNJewzG79mqRr+7QsAAAAAGOlkz+jAwAAAAAAAABA9wijAQAAAAA6dsnsK4c9hJFgxaGaT9avxTXVfT3x9nY06+mQwIqvmkGuNbdptD9nZ9kIo01FoxNG6yagkhQpSYorSOnidCcYpzi5hOP+rOXX/Ioavq7cU4EXK/TQNh6RML8clzWj7sJoZsyizeMJAEAzK2Rm7SM9Pd8Io0XZBIxKUSk4PU2sFhgFR+sL5neIuXy3YTR7p9fLyzXN7zayW4qmzXk9h9HM4GL4+4d0/H6No/3VB3Vv+fvBeS/euldTIxTGBgAAALLknPsDSb/YMvld3vub0i7Dex+uEIeve7tz7qWSviHp2U2z/tA59/967xtpF5V2nT3eBgAAAAAAAAAAAAAAABi6aNgDAAAAAABgXFkn7FfictO/7XDGalzKXs7Tt02KfjVbThEKWI6NMNoInRjfTRjNeqydIk26YuL67Djd+sfTDiPYkYiksFnzc1tplIPXaR+PsOdXeohHdBuzAACgmbVdryVs1yV7u19ICBj1U9HYR0u7XwYM2+H6AXPeXKG7MJpL2OdtVQ5FhtU++ptzOXP/fTlFCDqJ9blTSAwujmdH4MaF6815l81eneFIAAAAgNHhnPuPkn63ZfIfe+8/NMj1eu8PS/oFrf2Cca6kn064Wesvc8IF92Sttwn/gggAAAAAUhvP35sAAAAAAAAAAMZPftgDAAAAAABgXBWj8Dko5aaT9ZPCGatxKXM5a4JZ6QIc5RShgKXGYnD6dG4m1TqyUHDhMEFSQMV6rItRSc4lBxys0Fdz5G6VVxy8bpTQn7fid9Lx53ZLbqsk+z5Y4bZV1mtIsoMUaZjjIYwGAOhAPjKCp/FK4u2sMFreZfOrjZKxfa37mmpxTQXjfgGjYr52MDh9wk1qOhrEvv/aE2HMyG6u/bn8pdy0qvXKuulJ4ek0rM+VCeP7hyTFfvxO8Ck3lnXbkRuC884qPkenF5+Z7YAAAACAEeCce6ukP26Z/F+99+/MYv3e+zudc1+RdFXT5FdJ+ppxk1EOo31M0uc6vM3Zkv6mT+sHAAAAAAAAAAAAAGxQ43fkLoBBIYwGAAAAAECXSrlw7GpN0CzhxP3VuJQVzWq+bVJgrdly3P6clmUjnjaVEO/KmhU88YrV8A3lXG7dPOuxThPxsq5TjtuH5tJIij+U1zzP4fVZ4bZVkctp0hVV9evjEWlfOyFmzIIwGgCgA1bwtO7ribezgqh5l02QrJiwb1SNy4TRMPLm6+Ew2lxhZ9twsCXpVq0HIYQiw1K6fclSNKUFHVo3fbnH/XM7uGiH0cbx8Irbjt4Q/G4gSZfNXZ3xaAAAAIDhc879oqSPa+3Xmr+Q9PaMh/J3WhtGe17CdY+0XN7VyYqcc1u0Poy20MkyLN77JyU92eF4+rFqAAAAAAAAAAAAAAAAbBLRsAcAAAAAAMC4smJalbgs74+fPJ8UpSpGpTX/b1VupAusrb1NcijAe6/leDE4byo3k2odWUgKnlgxg+bHq1ma8IJ1nUpjfczBG2EEl5CJSIqzrQ3pheMRqeJuRqgv7WunlffefExLOcJoAID0rOCptU1vNz85YNQ/pcSwaX/iqcAgHa4ZYbT8zh6Wmv5Eduu7UJp9W3v/vPvor2R/rkxE9ueKtf8/qrz3unHhy8F5W3Lb9MItF2c8IgAAAGC4nHP/VscjaM3HSn5G0q/41V/mZOeBlstJsbN7Wy6f0eG6Wq9/2Hs/3+EyAAAAAAAAAAAAAAAAgKEgjAYAAAAAQJesk/W9YlV9RZJ94v6kKypyOUnJQas0gbVmy20iHSu+qrqvB+dN5bakWkcWksJoNb8SnG4FwNJEvKzrhB536zwp5+xIRM7lNeEmg/Oax22F7dLE3azARNrXTquaX1GsRtfjAQBglbVdTwqjee/NfZZCwn5CPyVt76yYKTBK5utGGK3QSxgtydr9ZGv/PM2+5JTxHand9512hh1czMIPy/+ix1ceCc57+bYrVYiy+QwFAAAARoFz7g2SPi0p1zT5c5J+yXsfD2FIrT9QsKvs0j0tl8/pcF3PbLl8d4e3B/D/s3enQZLmeWHff08eVZnV09NdPd27y+4Ci/CCYLmWXViWXWbAwMKsjThEIAksDEISWEjIlsIhh7EtobAjbEfIIfmVFLZD4AhZEZKFpAhpZ8ESYvYAZC4BkjiNkGDFMbNTPdPdldWdx+MX1dmdnf38nnzyrOruzydiYjqfO68n/1lV+U0AgCfWo/WlMQAAAAAAPJ6E0QAAAGBFWYgq4n4QLY8B3P+sS7adSUziTnk7IvJg1rxFyx2Pb6bzLrTOTxit28rDBFkkJQuANQkvZMtU3X9l+sd/eRitbh/T+2xSju8F9eZl8bwm288eg4vUBV/6rbrPagHAg7Iw2rAmjDaJcZRR/fnkTtHZyHEtUjeGGKwZZ4JdSMNondXDaEXNmHd+nDxIItF176PuL1M9/l33uZedd/ZqwmjZuei8+tDRByqnF9GKL7n8VTs+GgAAODtFUfyBiPjbETH7g4R/EBHfXJZl9beCbN/8G7LqN26n/uXc5c8pimKZby15z4LtAQAArKD+76MAAAAAAGBThNEAAABgRf12XSzj+IH/z+vNhK7qoxvTwFoeqXpw+fpQwK26MFr7/ITR6oIno0l1zCALgDULLyTRssptVofR6iIREfnjpcl93CREll6HJEixSN1jqUlsDgCmukkYbVQTRquLpmWhtU1rF+3YK/Yr5zUdm8FZOhq+VDn9Svfa6hstmn/YJY1E17yPmkrDaA2D0ZnsvFN3XsmyyOfR0fDl+Lmb/7xy3mc/9c717nsAAHiEFEXx/oj4uxExO9j/xxHxh8oy+faV3XjX3OV/ny1YluVvR8TPz0zqRMR7l9jXl85dfmGJdQEAAAAAAAAA4EwJowEAAMCK6uJQJ/diV1msqz/z75ow2t0P/i8Knk0dLwgFHE/yMNrBuQqj5WGCYXmncnoaXmgQFcvuy6ptTlYNoy3YRxbROz2+6jDEA8uk4bXV4hH1oTZhNACay17XR+UwyrL6dbUumrarMFpEPkZYNTwKuzKc3Ikb41cr5x12rm5ln/NP5zQS3SRcvCAqvKrs3LLX2kvXyc5T59FHXv3hmMSkct5zl9+/46MBAICzURTFV0bE34uI2YH+D0fEHyzL5BcMO1AURS8ivmFu8o8uWO3vz13+9ob7+v3xYITtVpzeBgAAAGt6dH5vAgAAAADAo00YDQAAAFa0V+xHK3lrPbgXRquOS83GALKg1ez6dZGqWccLIljH4+ow2n7Ri3bRabSPXegWeZggixlkgZJG4YU0WjaISTmem7paGC0Nq0zDaDWBlSYhsrrrsIpBTWRvv0FsDgCmspBZGWVMYv519tSoHKXb69YEjDYtizNlQVY4L45GH0/nrRNGqx/x3h8nl2WZjkObjW2rw8B1Y9QmsvcSnZr3H4/KB3xG5TA+er26c/C67hvj0w8+Z8dHBAAAu1cUxXMR8Q8jojcz+Uci4uvKsrx9Nkd1z1+IiDfNXB5HxD9esM7furvc1DcURfHWhvua9XfKsjxpsB4AAAAAAAAAAJwLwmgAAACwoqIo0g/snyyIXc3GAPaLXhRpYO3WA/9fZDC+FWWZf3D/1vhG5fSD9lONtr8rWUAlIg+lpOGFmvBck2Xmt5vevPWViDQAMX2MnNTcx03ibovCa8vKo379aBV+pARAc3Wv68MkUjSa3KnZ3u5irpt+fYVdORq9nM477K4TRlsw6L3rdnkSZUwq560TLl7nuTcpJ+l7ib2aMFr5iITR/sWNn4jXxtcr5z17+LwxPAAAj72iKN4dEf8oIma/2eNDEfE1ZVmu9g0i1fv5o0VRvH7Jdf5ERPzFucnfX5blv61bryzLX42IH5iZtBcR318URS9ZJYqi+NqI+LaZSXci4vuWOV4AAAAAAAAAOCs1H40EnjC7+/QQAAAAPIZ67X7cmjwcG7sfu6r+4P5sDKAoiui1+pXxs+n6J+Nmn9kZxyiG5Z3YK/Yr5x8n8a0L5y6Mlv/IYpQEVLJ43DpRsYjTQNhsOC4LPLQW9Od7SXztXkQvCZF1im50W3lQZioPrzWL6j203hq3JwDMqg+eDuPBzyufyoJpi7a3adnrazbGg/PiaFgdRrvQuhj7rfTz82uZDYhlkd2I09DuIv12dYC6aTC6yjiJokVEdFqPfhjtQ9dfqJy+V+zHFz39ZTs+GgAAeFhRFG+O6r9XfMPc5U5RFG9JNnOzLMuH3vAURfH2iHghImZ/2fHLEfHdEfG6omgWeb7rpCzL36mZ/x0R8TeKovi7EfF3IuJHy7KsfLNSFMU7I+K/joivn5v1sYj4bxoez1+8u/7h3ctfHBH/pCiKP16W5S/N7Gs/Iv5kRPyVufX/yqIAGwAAAAAAAAAAnDfCaAAAALCGNEZ19wP7gySa0Z+LZPVbB5Uf8p8G1pYJABxPbsVeKwmjjR+OuEVEHLQvNt7+LrSKdrSiHZMYPzRvWN6pXCeLL2T3UdNlTm/7awu3sXgfWdxhGtGrvo+bHH9EXXitWVSv6XpNjwcApuoCn6PJMKJdMf2chNGygFM2xoPz4mj0UuX0w+7VNbfcLCZwMs6fI1n07IFl0ujvcZRlGUtGDSKi/ryyV9SF0c6/j93+jfi1wb+unPeFTz/3QOgZAADO0Eci4pMbLPemiPg3ybwfiIhvq5j+tRFxaW7ap0fELzQ9uBkvRsSXLlimHxHfeve/SVEUvxoRvxERr0bEOCKeiYjPjYjXV6z7SkR89YL42j1lWf5WURTfEBE/FBHTNy/viYh/XRTFT0fEr8fpdf/8ePiXGf8oIv7bJvsBAAC4p3wUfjsCAAAAAMDjThgNAAAA1tBLPrA/jUqdJNGM+fXy7UyjWc3jVoPxrbjcuVI579b4ZuX0gyTadZa6RTdulw+H0bKgwWBcHRbLbtumy5yMH7ztyySNUERrwT6qwyrT+3iQxCOyoNrDy9VH+pbV9LELAIvUhcyy1/VROUrX6dYEjDYtHaONVwuPwq4cDV+unH7YWS+M1jRHVhcPzMbFs/pJyGscoxiWd2KvqA5B11k5uPgIfPjnxaMX0nnPXn7/Do8EAACeSK04jbB9eoNl/2lEfFtZlr+1zA7KsvzRoii+PiK+P+7Hz4qIeOfd/6r87Yj4E2VZ8YsWAACAlS3/5TUAAAAAALCK+k/sAgAAALWyWMY0RpXHpR6MAfTb2XaOH/h/E8c1IazjSXUY7UL7YuPt70oWJ6gKpUzKcdwuTyqXz4Jhs7qtvegU1f34+bBYGZPK5YoFf/iXBc6mQbQsftckHFG3/ewxuEgeahNGA2A5dcGhYRpGqwsY7e47X/Ix2mrhUdiVV0ZJGK27XhitzmxAOBuDFtGK/aK3cFt1Y85Vn3/Z+SYiYq+Vh9ay8f95MRjfip987cXKeZ/a/4x4c+8tuz0gAAB4/P21iPi/IuLfNlz+VkT8/Yj4irIsv2LZKNpUWZYfiIjPioi/HhFHNYv+RER8Y1mW31yWpR9gAAAAAAAAAADwSNrdp4cAAADgMZTGqMankassaDa/3qKo1TJxq+Nxdfysbt5B+6nG29+VTqsbVQ2C4eTOQ9OyqFhEHjSZ12sdxM3xawu3XZYPLXJqwReiZsdxci9+V/35pObHXx1QO5kMYlJOolUs18dPo37tZqE2AJjq1oTRsgDasHz49T4iohWtaBXtjRxXE1kEt27sAefB0bA6jHalc23NLeeD3iZhtF6rH0WxYOAcEQfJ+6OIiOPxrbjUubJwG/Pqg4v5eSob/p8XP/HaP0sj0c9dfv+OjwYAAHJlWb5li9v+SxHxl7a1/bl9/f04DZ1FURSXI+JtEfGJEfH6iDiI0y+rvR6n8bJfjIifL8tyvKF9/15E/GdFUfzZiHhPRHxyRLwhTuNrH4uIny3L8t9sYl8AAAAAAAAAAHCWhNEAAABgDVkkahq5mgbSHlpvLmKVRa0G47thtHHzMFoW2IqoCaO1zmEYLYkTVAUN6uIkWdBkXj8Joz0ct6tOI7SiPjyWHcf0/soier2aKMSsfjtf7vZkUDu/+riaRf0AYJG64FAWKsqm121rG/ppGK352AzOwtGoOox22H1mre02iZpF1I0lG0Z/a+LAqz7/6sJoe8VeOq88x2m0sizjQ9dfqJz3dPtyfN7FL9rxEQEAwJOlLMvrEfHRM9jvnYj4Z7veLwAAwPn/ShkAAAAAAB4X9Z/YBQAAAGplkajB5DjKskwjZfORqmw7J5PjmJTjuF2eND6mwTgPo92aVIfRLrQf7TBaXQyucXyhYfhksuIf+OVhlUGUZZkGHvpJNK/p9iPyMEWd7HiyiB8AZOpiZsM0jDZaelvbkIdNhdE4vwbjW+lY7rBzdSfHkIWdm44l94teGh4+rhn716kLo3Vqwmjn+QM+v3z88/G7dz5WOe89l79y5+dMAAAAAAAAAAAAAFikPL9/ngucI8JoAAAAsIa62NWwvBOTmFTOnw8C9Nt5dONkMljqmOpCAcfjG5XTD85hGK1bdCqnVwUNTsb5bZQFTZouN3go6lD9k9ciitrtZ4+VMsq4XZ5U7Gd6XNXRvIeXy69nFsaokz3umt6eADDVKlrRinblvCxUlE3vnpMw2iqvrbArR6OX03mH3WtrbbtuxFvO/IVCNpacD0Sn+ymKPEKdjJsXGU7qwmj5uaU8x3958eL1D1ROb0Ur3nvpq3Z8NAAAAAAAAAAAAACwnnP8p7vAjgmjAQAAwBrmA2dTg/GtGNQEM+YjG+l2Jse128n2XWVSjtNtHbTOXxitU+xVTh9WhdGS69UpOtFtVW9nXh6ne/D2LLMwWlEfRqsLitU9XrLjemi52u0vH4/IHkd1+wGATBY0ywJow8mdyumd1m7DaOn4YHx8rmNJPNleGb5UOb2IIi53rqy59fox79T8GHoqe99Tpen4vKnsfBNx+r4hCx1n4/+z9srwpfj5mz9ZOe9znvrCOOxe3fERAQAAAAAAj4fz+bsRAAAAAB4fCz6GBxARwmgAAACwln77QuX0k8lxGuuKeDgu1W/l21k2apWFAo5rAgIX2heX2scudJYIqGRRsboYWdNlTyaDBy5nEZQspDBVFzg7mQzSx0vT69Bt7UWn6FTOWyUeMX+97x1Pw1AbAMzKX9dHyfTqgFG2nW3JXocnMY5hWR1vg7N2NPp45fRLnSvRTsaLm3F/nJyOJZcYn2fvkbKA7yJ155XTyPGj9RcWH7n+w1HGpHLec5ffv+OjAQAAAAAAngyP1u9TAAAAAAB4dAmjAQAAwBrmA2dTgwVBs/kgQK/Vr97OuD6wVuV4fHOp6RERB0ng7Sxlka+qoEF2G2X3zzLLzkfFyvRbUReE0ZKww3QfWdxtmevQNO7WRBZTW+Z4AGCq06oOmg0n1XGxLJi26zBa3eveKq+vsAtHw5crpx92rq697boY8Ow4eRNj2yxCvUr0NyJiuCC4mF23fPx/doaTYXz01R+unPeGvTfHpx189o6PCAAAAAAAAAAAAAAANkcYDQAAANaQhaiG5Z24NblROa+IIvZbvQemZR/6P5kcp1GBzHESCqgNo7UuLrWPXegWe5XTq8Jo2W2U3T/LLNs0elIXiYg4vT6t5Ecxg8lxnCQhvc3E3ZZ7DJVlmV7vZW5TAJjKgmZVr+t103cdRsvitRGrx5lg214ZvVQ5/bD7zM6OIRvbLjOW3NTYdmrReeVRCqP9i5s/FjfGr1bOe/by81EU9e9NAAAAAAAAAAAAAADgPBNGAwAAgDXURauOhi9XTt9v9aNVPPiWPAsE3Clvx61xdWAtMxhXRzpuTarDaK1o1UY/zkoWPhlWBA1ONhBGS8MLc7dnGZPK5RaF0YqiiH6rOoA3GOcBvF57/bhb9pjI3C5P0gDEMqE2AJjaVBitu+MwWt3rXtN4Kuxa9j7ksHNtZ8eQh4ubv+/Ix86rRQkXnVeylth5DKO9ePRC5fT9ohfvevrLdnw0AAAAAADAk+P8/d4EAAAAAIDHkzAaAAAArKFfE606GlUHCapiALWBtWQ7mcGkOhRwPK4Oox20n4oiqwCcoWUCKoNxdXih7v6ZlwXI5qMn6/x5X7aPG+PrMYlx5bxlQmRZGG3Z+5MAfQAAIABJREFUcMtJcnvW7QMA6nSLTuX0UTmqnF4VQo3Ixwfbsl8TcVo1zgTbdj15/3DYvbr2tutiwLMBsWz82W9Xx86ql02iv0l0bZEsjHb/vJKV0c7XB3x+8+TX49dPfqly3hde+tKl3gMBAAAAAAAAAAAAAMB5JIwGAAAAa6iLRB0Nq4ME/dbDMYDaMFqynczxsmG01lNLbX9Xuq0kjDZ5OGhwksQRqiJ0mew+eCi8kIQRWsXiH7P0k+N5ZfhSzTqbiEcsF26pi01kcTcAqLNM8LRu+q7DaK2ilY4nlg2Pwi5MykkaVr7Subaz48jGn8uNz6vHwcuObacWBRez6Fu5Vhp58z50/YV03nOXn9/hkQAAAAAAAAAAAADAZp2vv9wFzpIwGgAAAKyhNow2qo5dVcUA6mJTWdggMxjfirIi3nVrfKNy+YP2+QyjLRNQyUJey0TFsvtyPro2iUmyheqQwoP7qD6euvt4M/GIPHRWJQvNne5DGA2A5XWKvcrpw/JO5fQ8jNbZ2DE11XSMAOfBzfFrMSpHlfMOu1c3sId8zDsbEMvCgXXvn+alY9vxamG0ReeVRyGMdjy+Gf/vay9WzvsP+m+LN+5/8o6PCAAAAAAAePycn9+NAAAAAADw5BJGAwAAgDW0i3bsFfuV846GH6+cXhWWqotNHQ2ro1mX2oeV0ycxidvlyUPTjyfVAYELj1gYbVgRNMjCJMtFxarvg1E5jOGkOqIwa3EWLd9Hdh9HRPTby8Tdqq/vsuGWLKTWilb6eAeAOlnQLAs4ZQGjbhJY26bs9XvZ8CjswivD6jhzRMRhZ/0wWlE36L37GZlJOYnbSRhtmcjuQTIOXvW5t+i88iiE0X781R9Jg5LPXX5+x0cDAAAAAAA8eZr8hRQAAAAAAKxPGA0AAADWlMauRtWxq1774eXbRScNfWTbOexeS4/peHyzYtqNymUPWhfT7ZylbhJGqwoaDMbVcYR+a5moWB5pOJmJymVhhKLBj1myfWT3cRFF7Be9hdudyq5vdvtk8tDcQRS1NQwAqJYFT7NQUTY92842Za/fy4ZHYReycWWn6MZT7ad3cgy3JyfpmLluzN102UESfF4kPa+0dn9eWcWknMSHrr9QOe9S+zA+7+IX7fiIAAAAAAAAAAAAAABgO4TRAAAAYE29dnWMaljeqZyehdTSqFXywf8rNWG0qnVuVcTSIiIOkuM/a8sEVE4mg8ple61+4/31K4J1U4OZ7adhtAa9sGwfr45eqZzea/WXCpFl21823JKF1Ja5PQFg1jLB04iI4eT8hNGysduy4VHYhTSq3HkmWsX6vxYsIh+bTsfJdWPPujH3vIPk/dHJZBCTctx4O1OLzitFcvuUZfX4f9d+6fjn4qXhb1fOe8/l90W76Oz4iAAAAAAAAAAAAAAAYDuE0QAAAGBN/SVjUb0krrFsdOpKpyaMNn44jHY8qQ6jXWhfXGq/u7JMGC2Lxy0TXsiiJxERJzPbz8MIiwNm2T6y2FoWy8tkj61lw2h5aK757QkAszrFXuX0LCSbBdM6rd2Hf3rt6jHasq+vsAtHw5cqpx/WRJWXUzfmnYbRqseSEcuNJ+vG8nX7yKTnlbtBseyaZWP1XfvQ9Rcqp7eiHe+9/FU7PhoAAAAAAODJdD5+bwIAAAAAwONPGA0AAADWtGwsKotj9dvLRbAudi5FN4mMHFeEwo7H1WG0g/ZTS+13V7Iw2rAiaLCJkFddmG4ws/0sjFA0CKMt+1jZ1GNrsGS4ZROhOQCYlQXNRpNR9fQ0YFQ9PtimPDy6fJgJtu1o9HLl9MPO1Z0dQzaWjKiPET+8bP7+qG4fmey8cv89VfV4/jyE0T4+/L34hZs/VTnv8y6+Ky53ruz4iAAAAAAAAAAAAAAAYHuE0QAAAGBNdR/Yr5IFuJaJBJxu5yAOkn0PxkuE0VrnM4zWTcIn80GDUTmMYXmnctllbtNW0Y79olc578Hbc/Uw2rL38bIhsjSMNj6OsmwedNhEaA4AZmVBsyxUtDhgtDt5eHT5MBNs2yvD7YbR6sa809FmNpZsRWup53Dd+6zjivc7iywKLubX7ezDaB++/kNRxqRy3rOX37/jowEAAAAAAAAAAAAAgO0SRgMAAIA19drVobNMv139Af8smJZup3WQbut4LtRRlmXcmlSH0S60z2cYrdNqFlA5GVeHFyKWD3n1khDZbNyhXCeMtmTobOnjT5YfxygNQVTJQi/Lht0AYKpp8HRqmAaMOhs7pqay19cs/gRn6WhUHUa70t1MGK2Jk8lx5fR+60IUxeIx873la8bOg2QfdRadV7JjO+ss2nByJ37s1f+nct4n7H1SvLX/th0fEQAAAAAA8Fhb4ssXAQAAAGDT/HgKmBJGAwAAgDX1W9VxskwWQFtlO9k6g/GDYatheScNjxy0zmkYLQmoDCdzYbSaKMKyIbIs/DUbCiuTn642iTwsGzpbNkS2qXhEFptb9vgBYCp7Xc/GJ9n0bDvblI4PxtUhUTgr43IUr42OKucddrYfRpsGhAfj6nHnskHpdtGJvWK/ct4qz79F55UsdFyWk6X3tUk/c+OjcXP8WuW8Zy9/9VKxOQAAAAAAgPX4vQQAAAAAALshjAYAAABrWjZelcWllo94XYiDdnUY7XjyYCjgeHwz3c5B+3yG0boNAyp1wa9lQ17Z8ieT+6GwafDhYYv/8G/p0NnSsby6MFrzeES27LKPUQCYSoOnj0AYrZe8/s2OD+A8uD76eDpWPexe28g+snjYqdN9Z+HiVSK7/eT9zjLR36nsvNIt9u7+KwmjLb2nzXrx+guV03utfrzr0pft+GgAAAAAAAAAAAAAAGD7hNEAAABgTct+wD+LYy0d8Wr303DWYPxg2OrW5Ea6nQvti0vtd1ey8Mk2w2jZfTN/e1Zp8n2ovWVDZ+3+UsvXhdeWibdky64SswCAiOav64um3w8Y7U72+rdKmAm26Wj4cjrvsHN1I/soisWj3uy5sWwkuG6dZaK/U4uCi610RH92abR/d/Jr8Rsnv1I5711Pf1n0Wsu9XwAAAAAAAAAAAAAAgEeBMBoAAACsqd9eMmiWfLh/2VBAv3Uh+u3q0NbxXCjguCbsdZBs46w1DaicJOGFvWI/2kV7qX1m983sPsqYVC5TNPgxS3+DobMq+61+FEnQoUncbSq7TYUXAFhVd+kw2qhyeqfobOyYmspej08mgyjLswsmwbyjUXUYrdc6WPo9yyqmz4Z8LLlKGK1ZCLqJ4SQLo03PK9Xj6PIMw2gvHr2Qznv28vM7PBIAAAAAAICIs/xCGQAAAAAAnizCaAAAALCmpYNmSZRg2VBAr9WPg9ZTlfMGc2G0W+MblcvtF700QHbWsoDKJCYxLsf3Lg/G1eGFZe+XiPy+OZkM7v07+/O+LEj24DEtF6FbdvlW0Yr9JF42SAIVyyy77PEAwFTT4OnUsLyz1Ha2KRujlTGJ2+XJjo8Gcq8Mq8NoVzpXd3MAd0OB2VhylchuFoKef7/TRHa+mZ5XstH8WYXRbo5fi5+68eHKeZ928NnxCfufuOMjAgAAAAAAAAAAAACA3RBGAwAAgDUtHzSrXj6LcuXb6cdBFgoYPxgKOJ7cTPZ5fkNXdeGT2ajBSRZeWPL2jMhjarPhhXXCCMvGIFaJR2TrZLdT5bJJbG6V4wGAiOXDaKNJfcBol+piq7PxVDhrR6PqMNphd3NhtCYx4JNx9fNilchuPj5vPradys433dbe6T+K6utWlmcTRvuJV38kjUQ+d/n5HR8NAAAAAAAAAAAAAADsjjAaAAAArKkuljGvFa3YK/Yr5y0TWNsvetEq2mlcYD6EdjyuDqNdaF9svM9daxpGy6IIy9wvU9l9MBs9KctJ5TJFsfjHLK2iHftFr/HxrBKuyx4TTeMRk3Ict8uTjR0PAETkr+vDLIxWjqq309p9GK0utjofo4Wz9Mrwpcrph51rO9n/NCA8GxWe1WsvH9lNx7YrPPfS88rd81Mefdt9GG1STuLD1z9YOe9y55n4nKfeteMjAgAAAAAAnhxn86UxAAAAABDhp1PAfcJoAAAAsKZlgma91kEURfUH7pcJeU0DVQdJqOp4LhRwKwmjHbSearzPXeu29tJ5sxGVkyT4tcz9MpXdB03CC1lGYV5dXOWhZTd4HU7GzcJosxG4h7e9fMwCACIiuknQbFQRRpuUkxhHdcCoWxNO3ZZezetf3esm7Nr10cuV0w+7Vze4l3zUOw2jZc+LVcLF/WTs3DT6O2tY3qmc3ik6EZGH0c7ijyt+8dbPxkvD36mc995L74t20d7xEQEAAAAAAEQ0/wspAAAAAABYjzAaAAAArCn7sH6VurDGcoG10+30W9VhtJPJcUzKyb3Lx1kYrX1+w2jTQEGV0eR+RCWLItTd1pksWjYbdyiTNEIWUpi3VABvhXhEdh2axiPqlusljzcAWKSTBM1mX9PvTauIpS3azjbtF70okl+nDCaL46mwK0fDj1dOP+xsLozWZMSbj89Xif4mIegVnnvZuWV6XsnDaJPK6dv04vUXKqe3oh3vufy+HR8NAAAAAAAAAAAAAADsljAaAAAArCn7sH7lsu182bp52T6zfZdRxu2ZmNfxpDqMduFch9Hy8Mls1OBkXB1eWOZ+ub9OFhW7H15YN4y2TBBilTBats5JwzBa3XL9FWJzABBRE0YrRxXTzlcYrSiKNLg6G0+Fs3R7chK3Jjcq513pbi6M1kQ2nlwtjJaMbZP3AHWyc0u32Ft6W9v08p3fjX9166cr57394rvjUudwx0cEAAAAAAAAAAAAAAC7JYwGAAAAa+oWe9Fq+BY7i2osmpcte1ATNjueiXndGldHEg5aj2YYbVjeuffvQRZeaC8f8cpiDSeTQZTlaRBt+v+HFM3CaMvEznrtzcUjZuNudU7GeeBllZgFAETkr+vjGMWknDwwrSqWtmg727ZueBS27Wj4cjrvsLO5MFpdDHgaEM7DxcuPJQ+SePRxw7HtrOzc0ik6ERFRFNXv6bIw8rZ86PoL6T6fu/z8To8FAAAAAAAAAAAAAADOgjAaAAAArKkoiui3qj+wP68uLLVf9BoH1vp3g1kHNfsdjO/HArJwQF1Y7ax1i7103mzU4GRSHfJqep88uE71/VNGGbfLk3uXqtRFIh7YxxKxs1XiEWncrSZ4NisLqHWKTnRb+X0CAHW6NUGzUTmsvdx0O9uUvb4OkgAU7Noro5fSeZc3GEaLBWPeSTmeGTc/aJXoby8Z059MbuXB4gplWT4QV541DS5m12yZ/azrzuR2/Pir/7Ry3hv3Pjk+tf+ZOzsWAAAAAACAh+32C2UAAAAAAHhyCaMBAADABjT9kH9d6Kooitpw2gP7u7tcXWTreHLz/r/HNyqXudC+2Gh/Z6FTdNJ5s8GUkyTk1Wv1l95n3e0/Dc2Va4bRmt7H3WIv2jW3QSZ7TAwmzcItWWiu6XEDQJXOhsJoddvZpuz19aTh6yts29Hw5crpT7cvR7e1q+dNmY4lIyL6K4zPsxD0qBylobMq4xil86ZB5mw8n43/t+Gnb3wkbk2q37s9d/j+KIpm7zkAAAAAAAAAAAAAAOBRJowGAAAAG9D0Q/6L4lJNY17TwFq76MR+0atc5nh8Pxh2a3yzcpksNHAetIp2tJIfXcxGEAZJfKG/wnWrC81NIw/rhtHq4ngPLrfafZM9xgZJQO7h5aoDL02PGwCq1IfRHgwW1cWOziqMlr++CqNxPhyNqsNol7tXN7qfui5XWeaR3YiI3obH58s8/+bPM7M698Jx2ZXbXRjtxesvVE7vtQ7iC55+dmfHAQAAAAAAAAAAAAAAZ0kYDQAAADag6Yf8F4XP+u2m27kfCMjWmYawJuU4TpJowIX2xUb7OyvdYq9y+qgc3vv3ybj6ujWNzD24Tl144fT2XDeL0DR4tsrxn26/+jrURSoeXC67PYXRAFhdtzaMNpy7XBMwOqMwWv76KozG+XA0rA6jXelsNoyWx8NO1cV4m8akH1wnHzsPxs3CvxERo8kwndcpOhGRh453lUX7jcGvxr87+bXKeV/09H+48vsDAAAAAACA5ezuS2MAAAAAYF7px1PAXcJoAAAAsAFZLOOh5RaEzxpvZzaMlsQCpqGAweQ4yuQP1g7aTzXa31nJ4ifTYEpZljFIgiRNI3Oz9or9aCU/LpmGxcpyUjm/KJr9mKXX3sxjJd1+8hhqGo7Iw2hCDACsri5oNizvPHC5PmB0NmG07HVQGI3z4mhUHUY77G46jFanjJNxHuNdJbRbNybO3gdUmT/PzJqeV4oiC6Pt5q8rPnT9A+m85w6f38kxAAAAAAAA1Kv/Eh0AAAAAANgUYTQAAADYgKYf8l8Ul2q8nZm41kESCzienIawbo1vpts5aJ33MFqncvqoPA2mDMs7MYlx5TKrhLyKolgYmkvXbfiHf6vE75aRxSNulycxKatvq1mD8eZCcwAwVRc0m76uZ5cf3E712GDb8vCoMBrnwyvDlyqnH3Y2G0arG/OWUaaxwE7RiW5rb+n97Re9KJJfZw4mzcK/EfXnlW4xPa4kjJaEkTfp5ui1+KkbH6mc9/sPPjdev/emrR8DAAAAAAAAAAAAAACcF8JoAAAAsAH9dtPYVX1capVoVhryuhsKOK4Jo11on/MwWhJPGE7uRETEIAkvRCy+rTO9dnVQ7WQyiIjT4EOVpt+HuqmIXqZfs970OtTJYharHg8ARER0WnVhtNEDl4flneptFN0oirP5BvJsrNfktRW2rSzLOBq9XDnvSvfaTo8lG583HQPPOw0XZ2HCZcJoo3TeNNx4NmeXUz/26j9J423PXn5+x0cDAAAAAAAAAAAAAABnSxgNAAAANqBp0GxRXKppMGA2+nXQrg6AHd8NBRxPqsNorWitHCjYlWmkYN40GpBFvCLWCYsl4YW7obkyJpXzi4Y/Zmkev1sx7FazXl1IbtEyqx4PAEREdIpOOm80eTAGlAWMsnHBLmRjpun4AM7SrcmNNCh42Lm6s+MoYzuR3X7yfmeZ518WHYu4f37KxvNZGHlTJuU4PvzqByvnHXauxmc/9QVb3T8AAAAAAEBz2/29CQAAAAAATAmjAQAAwAY0D5rVL9dvLx9Yy4JV01DA8bg6jNZvX4iiKBrt76x0k4jKNJgyGOehryygsEh2X55MBhGx/p/3NX6sNHwsPLRezfbrbq+pbcQsAKAdnSiietwxHyzKAkZnGUbLXl+n4wM4S0fDl9N5h91rG91X9jw+VcYgeU6sE9nNw8WLx7ZTWTgu4v65Jbtm2w6j/atbPxMfH/5e5bz3Xv6qaBftre4fAAAAAAAAAAAAAADOG2E0AAAA2IBFwbN7yy2IXTWPZt0PCxwkAbDj8WkY7db4RuX8C62LjfZ1ljrFXuX0adggi3gVUcResb/SPrP7YBqay9JoraLZj1max+9WC6PVrZfdXrOyeNo6MQsAKIoiDZvNB4vyMFp1MHUX8nBq8zATbMvRqDqM1op2PN2+tNF91YfRIk7ujZkftE5kNxuHTt/vNJGdVyJmo4vV123bYbQXr79QOb0dnXjPpa/c6r4BAAAAAAAAAAAAAOA8EkYDAACADehtKHbVNLA2GxbIQgHTkNfx5Gbl/Cyodp5kAZVp2GCQxEh6rX7jUNm87D6YBsPKcr0wQtPAWNPHwrxuq5vebtntNetkMqicvk7MAgAi8rDZqBzNXa4OGHWTYOouZK/LJ5NBTMrxjo8GHnQ0rA6jXe5ciVbR3tlxlFHGYJyNJVcb20bkYeFlwoTz55mpdnTuvW8oiiT6tub4v87v3fnt+Ne3fqZy3udf/OJ4unN5a/sGAAAAAACotMXfjQAAAAAAQFPCaAAAALABTSNWi5ZrGgyYjWulYbTx3TDaOAujXWy0r7O0KKCSxRDWCS9kkbvpvsqo/uO/IpKQwvz2GwbG1opHpPGWWwvXTW/ThvE/AMgsCp5ODZMwWrb+LtS9Dt6enOzwSOBhr4xeqpx+pXtt8zvL4mF3ZWPJLG7WxMGCEHQTw8mdyumz7zey8fw2P/rz4esvpPOePXz/FvcMAAAAAACwimZ/HwUAAAAAq9LtB6aE0QAAAGADmobRFsWumgQDWtGKbrF37/JB+6nK5Y7vhgJuJWG0C63q9c6TPKByGjYYbCGMlt2Xgw2F0brFXrSjOvj2wHG0qwMQTWTXfzAZLFw3u02bPsYBINM0jDZ/+f76i18/t6XudTB77YRdORq+XDn9sHN14/taNOLdxvi8l4TRjsfNw2jpeaV1/7yUh9EmjfezjDuT2/Hjr/5I5bw3739K/L7ep29lvwAAAAAAAAAAAAAAcN4JowEAAMAGNPmgfzs6aRBkme30WxeiKO5/aP8gCQWcTI5jUo7jeFIdRsuCaufJbABu1vBu2OBkvPmIV3YfnNyNimVhtKbfiFoURaMAXq/Vb7S9Ktn1z26vqVE5jOHd6NzDxyOMBsB6Fr2uT+VhtPpx1DbVvQ6eCKNxxo5GSRite22nx1GWZfp8WGcseZAEg5d57mXnley8NGtbXzr3Uzc+nL5Xe+7y+x94zwcAAAAAAAAAAAAAAE8SYTQAAADYgCahq377YOGH25sEvXrtB4NZ/SQUEBExmBzH8fjRDaNlAZRp2GCQhRca3B+Z7D4YjG+d/qOsTiMsEy5oEj3rJ8G7RttPrv9gcqt2vZPxoOZ4hNEAWE+n6FROnw8WpQGj1uKA0bbUvXYPJvnrJ+zC0TAJo3We2cLe8jFvGeW9mPC8dcaS2brH4/qx7axROaqcPnteKtLrtvk0WlmW8eLRByrn9VsX4guefnbj+wQAAAAAAFjftr5SBgAAAAAAHiSMBgAAABvQJGK1qRjWfBjgoGadwfhW3ErCaBdaj0AYrZUEVCanwZSTJIy2Tnihl6w7jTxkf96XhxQetsr9vIxs3SxUcX9+9e0Zkd8uANDUouDp1HBSHUbL1t+FbrEX7agel5wsEWeCTZuU47g++njlvMPu1Y3vb9GYd5A8H5q8F8pkIei6seu8YXmncvrseaUoqn9tWiZh5HX8xsmvxG/e/vXKee++9OWx19rf+D4BAAAAAAAAAAAAAOBRIYwGAAAAG7Df4IP+TcJSvfby28lCARERx5NbcTypDqMdtM9/GK1b7FVOnwZUBkkMYb3wQvX9NJicRh7KmFTOXyaM1uyxsPkw2vQ6ZLLbMyK/XQCgqaZhtPnL99evDpPtQlEU6ThtsCA8Ctv06ugoJsn49Ern2o6PJg/xrhPZzca2xwvGtrPy88pMGC1Zt0zTyKt78foH0nnPXv7qje8PAAAAAAAAAAAAAAAeJcJoAAAAsAHtoh37Ra92mewD/csu81AYrWadwfhWHI8f3TBaFlAZ3g0bZOGFfiuPxS2SRRuG5Z0Yl6OaLELzMFqTyFiTx0Imuw6DcR4+i6gPo60TmwOAiIhua90wWvX6u5K9Np/UvH7Cth2NXk7nHXavbnx/dSPeMsr0+bBOZDcb29+eDGJSVkfh5mXnlQdDzNXXbtNhtBuj6/EzNz5aOe8zDj4vXrf3xo3uDwAAAAAAYDmb/9IYAAAAAABYljAaAAAAbEhvwYf9s1jVrHbRib1iv3aZ+ShHq2in2/7gK/93DMs7lfMOWo9uGG0aNhiMb1XOXyfiVRuamxxH9sd/raJ5GG3RY6EVrYWPgzpZeGJRuCWb3y32ol10Vj4eAIioCZ5OHo0wWhoeFUbjDL0yrA6j7Re9LY338zHvuBzFnfJ25bwm74Uy/XZ1GK0uxDZvVI4qp3dmxrhFet02++Gfj776T9Ljee7w/RvdFwAAAAAAwGY1//soAAAAAFiFbD8wJYwGAAAAG7Low/5ZrGrZ7VQF2A5a1bGAXz7++XQ7F9oXGx3PWeouCKOdTAaV87N4QhN1YbST8XGUZfbj1eZ/+Fe3j4jTx0CxRGjt4fWrr/+icMtgXD2/n2wPAJaxKHh6/3J1MCgbF+xKNkZrGmaCbTgaVYfRLnevrjWeXEU2No9YPP6tUzcWbRomzGLRs+elLIy2yT+umJTj+Mj1H6qcd6VzLT7rwjs2uDcAAAAAAAAAAAAAAHg0CaMBAADAhjSJXTXazoKAWtV+VgmBHbSfWnqdXVsUUBlMblXO77X6K++zKjw3NZgcR5mkEZbJTmwqopeun1z/ReGILOyyzu0JAFNNw2hNAkZnIRvrZWFR2IWjYXUY7bDzzFb2l8XDIvKxecS6YbSa8fk43+es+fPM1ANhtCQkV5aTRvto4hdu/lS8Mnqpct6XXP7qaBXtje0LAAAAAAAAAAAAAAAeVcJoAAAAsCEbC6OtsJ0L7YuNtj1VRBEHrUc/jHYyGVTO77eWD8XdX3fVMFrzH7Msuo/XCUdERPSS65+Fz6aycNoq4T0AmNc0jNYkYHQWsrHcotdX2KajJLJ1pXttOzusqQHXRQKbvheqUhcNXhT+nRpNRpXTu63dnldevP6ByumdohNffOkrdnosAAAAAAAAy6v+uykAAAAAANg0YTQAAADYkEUf9m8au1plO59+8DmNtj31qf3P3HkEYBXdJIAyLIcxKSdxOwmj9Vr9lffZLjrRLfYq553UhNGWsSg0tk444nT71esPxsdRlvnxZ6G5dW5PAJjKXtdH5Wju8vkMo2Wvr8JonKWj4cuV0w87V3d8JPXPhV579fFkp+im4/PB5FajbTQ5rxRJ9W0T4/+IiN+987H4peOfq5z3+RffGxc7lzayHwAAAAAAAAAAAAAAeNQJowEAAMCGZLGMqaZxqUUBtapo1nsvfWV8wt4nNdr+ftGLr7n6zY2WPWudJN42Kodxe3KSRgoWhccWye6Dwfg4sm8+zUIKVRY9FtYNo2XrT2Icw/JOul4Ws1j3eAAgIg+bzb82zYfSprKw2q5kr4cDYTTO0Cuj6jDale61reyvbsybRcq6xd7aYcN+q3p8Pxj094j4AAAgAElEQVQ3C6NlY+BdhtE+fP2D6bznLr9/I/sAAAAAAAAAAAAAAIDHQeesDwAAAAAeF4viUU3jUouWqwqwXexcjj/3Sf9D/PRrH4nfOPmVGJeTynXfsP+mePtTXxxv2H9zo2M5a1lAYTQZphGviOYRunz9g3htfP2h6SeT4yjLJIxWNA+jLYrfZeGHTWx/MDmOvdZ+9bxx9W266HgBoIn0db0cPnB5OHd50fq7ko0vTiaDHR8JnBpO7sTN8auV8w47V7eyz/owWhbZXW9sHnEaPn5tfPTQ9OMkxjZv/jwz9eB5ZXthtNuTk/jxV/9p5bxP2v/UeEvvrWvvAwAAAAAAYDM286UxAAAAAACwDmE0AAAA2JCFsauKoNkqy2XhtAvti/Hs4fPxbDzfaD+PgiyAMiyHaXghYv2wWK99EFHRThhMjtMwQl0kYt6i4+u114tH1D0WTybHcSkO03mVxyOMBsAGNA2jjSZ3qtdvnW0YLXt9HYybhZlg045GH0/nHXa3E0ark0V2NzGWzJ5/dbHkWaNyVDm9O3NeykPH63/45ydf+1D6/uW5w/cvFVkGAAAAAAA4O36nAQAAAADAbrTO+gAAAADgcbEojNY0CLBouUX7eZx0awIqdRGEXms7YbGTmjDaMn/4tyh8tnbYreYxUhdvyWINTaN+AFCnm4TN5oNFWcAoC6vtSvb6ejIZ7PhI4NTR8KV03mFn92G0bHy+ifcvB8n4+LhhmHA+wDg1e15Js2hrdtHKsowPXf9A5byD1lPxjovvXW8HAAAAAAAAAAAAAPCYWPdvd4HHhzAaAAAAbEhvQTyqaRBg0XJPUhgtC6CMymEa8WpHJ7rF3lr7zW7jQU0YrbVEGG1R+Gzd+3i/1YsiOZ66eEsWs2ga9QOAOtnr+nAuWJQFjLJg6q5kodC6WCts09Ho5crpF9oXY6+1v5V9ZmPMiIjBpDpStuh9UhPZNpo+/4blncrpD4bRqn9tmoeRm/n1wS/Fb93+jcp577705Vu7rwAAAAAAAAAAAAAA4FEljAYAAAAbsqmg2aII1ZMUqcoCKpOYxPH4RuW8XrsfRdE8Ula5jeQ2PhkfR2RhhCX2ue34XatoRa/Vr5yXBStO51WHJZ6kGB8A25MGTycPBouyMFq2/q5k44M75e0Yl6MdHw3kYbQrnWs7PpJTg3EW2a0ely7jIAkLH4/zse2sUfIcbXJeWTeM9uL1D1ROL6KIZy9/9VrbBgAAAAAAAAAAAACAx5EwGgAAAGxIP/mw/lTToFm/vWA77fXDAo+Kbk2o4Mb4tcrpmwjH9dvV2xhMjqPMumjRPIy23+rVzu8l+19Gdjtk8bOIiJNk3pMU4wNge9Iw2lywaFjeqVzurMNodaHQk8lgh0cCp14ZvlQ5/bB7dYt7zce8eWS3/v1NE/nYtmkYrTq4OPt+Ix/Prx5Ge210PX72xo9XzvvMC2+Pa3ufsPK2AQAAAAAAdm+9L5QBAAAAAICmhNEAAABgQ3qt+mBZ06BZ3Xa6xd6ZR0F2qe663hi9Wjm9LlrSVBZeOJkcRxmTynnLhNFaRbv2ft7Edci2cTKuDlaUZRkn4+qoS3/BYxsAmugUncrp88Gi+VDa/fXPbxhtkLy+wjYdjT5eOf2ws70wWlHUhdGqI2WL3ic1cZDEo+uiv7OyMFqnQRitXOMDPh999YdjHNXntGcvv3/l7QIAAAAAAAAAAAAAwONMGA0AAAA2pJ98WD9iuaBZv5VvZxPBrEdJ3W12c1wdRsuiZstIo2KT4zSLsEwYLaL+ODcSRlsyHjEs76TRhl7NYxsAmuoWe5XTZ4NFZVmmAaPuGYfR6l67TxrGmWCTjoYvVU7fZhitTvY8qHt/01S2jcG4OsY2bzi5Uzm905oJoyXRt7JcLYw2Lsfx4es/VDnvme7r420X3r7SdgEAAAAAALZqxd+NAAAAAADAJgmjAQAAwIZsKnRVt+wmol+Pkm4rD6DcSMJom4iKZbfzaVRsM3/8t+37udfqV07Pwmgnk0G6rX6yLQBYRhY8HZb3g0WTGEeZvNY2jcxuS6+dvx4Ko3EWjkYvV04/7J5VGK16PJmNS5eRR3+bhdFGZXUA+MHzShJGW3H8/ws3fzKujz5eOe/Zy18draK90nYBAAAAAADOznJfHAkAAAAAAKsSRgMAAIAN2VToqteu2U7NvMdRXQDlxqg6jLaJqFh2X56MB2kYoSiW+zFLbUhvA/dzv1Udj8jCLXVRiSctyAfAdnSKTuX02WDRsBzWrH+2YbRO0Y1usVc5LwuPwrYMxrfSENlh52zCaJlNvIfJxudNn3uj5NzSnTmvFOkHeVYLo714/QPJPvfi3Ze+fKVtAgAAAAAAAAAAAADAk0AYDQAAADakW+xFK9qV83qtfuPt1AXW6uY9juoCKDfH1WG0TUTFsnhDXTxs2e9D7berw2URedRsGVnMbDCujkdkYY3T43myHncAbEf2uj4qh1GWp+Gh0eT8htEi8jFdFh6FbXll9FI670r32tb2m8fDcpsYS2bj41E5jOHkzsL1h2X1Mk3OK6tk0X7n9m/FLx//fOW8d1x8bzzVfnqFrQIAAAAAAAAAAADA4221rzQGHkedsz4AAAAAeFwURRH99kHcGt94aN4ysa69Yj9a0YpJTB6al8WuHlfdYi+d99roeuX0TdxGWbyh6j65b7lIRF0sb3+JkN6y2781uVH5GL0+/HjN8fTWPh4AyAJEZZQxiXG0oxOjMg+jdVtnH0brty7EjYo466ujo8rXV9iW37n9W5XTi2jFpc6Vre13lTDaRsbnNe+nXhm9dC801mv1o108/OvPUTmqXHf2vNQqqr9Paji5s/Tz+59d/0fpvGcvP7/UtgAAAAAAAAAAAAAA4EkjjAYAAAAb1GtVh9GWiQEURRG91kEcT24+NC8Ldj2uOhVRg6nb5Unl9E3cRv3WhaXXaS0ZiciOc7/oRbtoL73/h7bfrr4Ov3L8C/Ff/tofbbydXqsfrQ0cDwB0W3nwdFgOo13Uh9HqxgW7koVHf/Cl748ffOn7d3swUOFS53AjY8lN6m8g+ls3Pv++f/Pd9/69X/TiMy+8Pb7lDd8dB+2nIiJiXI6jTALHWbBx1odf/WB8+NUPLnnE1T6599Z4S/+tG9kWAAAAAADA7pVnfQAAAAAAADwhqr/6HAAAAFhJFrtaJowWEdFvb2Y7j7pW0Y7Wkj++yIIl29/GsmG06rhDL7nvl7WpiN6T9pgDYHvqwmajyWkQbVgbRsvDaruyqddp2JbDztWzPoSH9FaIDs9rGi6+XZ7Ez9788fgbH/sf702rCy52Z8JoxZLj+VU8d/n5re8DAAAAAAAAAAAAAAAedcJoAAAAsEFZRGrZSFW6nScwxtGZiRU00W9vILywwjaWDSlk8bVNhcg2tZ1NBdYAoO41fRouahowOiteFznvDrvbDaOtEg/rt9cPF++3elEs8WvNXx38y/j48PciImJY3kmXe/C8tN0w2oX2xXjHxfdudR8AAAAAAADrK8/6AAAAAAAAQBgNAAAANula9w2V05/pvn6p7VxNtnN1ye08Dpa97ZZdvsp+0Yun2peWWudK99pSy1/b2+59nD0Wl7WJ2xMAIiL2iv103u3yJCLqw2jLxlK34Ukci/FoecPem7e6/U7RjYtLjJO7xV5cbF9ee7+torX08+9373wsIiJG5ShdZva88syS4/llffGlr4hua2+r+wAAAAAAANiu7X7RDAAAAAAATAmjAQAAwAa94+n3PjStU3Ti8y6+a7ntXHx4O3vFfnzWhXeufGyPqrdffHfjZa90rsWn9D5t7X0WRRHvuPiexsu/pffWOOxeXWofb7vwjtgveg9Nr7rvV/Ep/U+LK5314w7vfPpLNnA0ABDRax2k8wbj44iIGNaG0TobP6Zlff7F90Thj/05p4poxRc8/ex291EU8XlPNR+ff+5T74q9Vh5FXMay4+STyel5ZTRpFlz83Ke+aGvP717rIL7s8n+8lW0DAAAAAAAAAAAAAMDjRhjtCVIURb8oincXRfHHiqL480VRfG9RFH+mKIo/VBTFW4ui2MinPYqi6BZF8aVFUXxrURR/oSiK7y6K4uuLonjLJrYPAABwnn3mhbfHH37dd0a/dSEiIi61D+O73vS98Uz39Utt551Pvze+7uq3Rq/Vj4jT4NefefNfioudSxs/5vPu/c98U3zJ5a9+IFpQ5U37b4nv+cS/HK1iMz/u+IZr3x5fcPG5aEW7drlP7X9GfNebvnfp7R+0n4rv+cS/fO+xsV/04muufnO86+kvXeVwH9Iq2vE9n/h98ab9t6y0/n7Riz9w9VviCy5uN64BwJNjv9VLo0P3AkZJGK0VrWgV9a/Ju/Ap/U+Pb33Dn40L7YtnfSjwgKfal+I73/Rfxev33rT1fX3j674j3nnxS6IdeaywiFZ8zlNfGN/8hj+1sf3+R1f/cLz30vsaRxKnwcXsvBIR0W3df4/x1oO3xX/yhj8dT7WfXu9A51zuPBN/8o1/IS53n9nodgEAAAAAAAAAAADgcVOWZ30EwHnR7JMDPNKKonh3RPznEfF1EbFXs+jHiqL4PyLir5Vl+coK+7kWEd8XEX8oIq4ky/xYRPwvZVn+vWW3DwAA8Kh49vD5eO/l98X10Stx2Lkaq3ao3/fMN8SXX/naeG10FJc7z6y8nUddq2jHH3n9d8UfvPbt8dLwtyt/uPlU5+m43Kl8K7qybqsb3/7G/yL+yOS74uU7v1u5zKXO4Vqxuk/pf1r85U/563F99PF4unM52g0jD029bu+N8b1v+atxffRK3By91ni9VtGK1++9cePHA8CTrVW0Yr/VvxdBmzVYEEbrFnU/2t6td1360viCp5+Nl4a/HcNJHlyCXdlr7cW17ifs7P1Ct9WNP/bGPx8nk0E6Tn6mey367Qsb3W+7aMc3v+FPxTe+7jseeF/wv//7/zl+b/jvH1p+eq4ZlnfSbc7Hl9996cvjXU9/2cae3/ut/Xim+/qNxZsBAAAAAAAAAAAAAOBJ4NOtj7GiKDoR8Vcj4k9FRJNPw7wpIv67iPjOoii+rSzLDy6xr+cj4vsj4nULFv3iiPjioij+VkR8Z1mWt5ruAwAA4FHSKtpxpXtt7e20i3Ycdq9u4IgefXut/XjT/lt2vt9eqx9v7m1vv0VRbP0+vty5svFwHACsot86qAyjnSwIo83Hi87aaUT0TWd9GHCmtj1Ozsy/L7jYuVQZRrsfXByl26o6t3h+AwAAAAAAZCq+0RIAAAAAALZAGO0xVRRFERF/OyK+sWL2L0XEL0bEICKuRcQ7I+JwZv7rI+IfFkXxtU3iaEVRfGlE/IOI2JuZXEbEz0TEr0fE5Yh4e0TMfsr7WyLi6aIovq4sy0nDqwUAAAAAwCOs1zqonD4NGA0nWRjNrzOAav3Whcrpi4KLEecvuggAAAAAAAAAAAAAAES0zvoA2Jo/Hg9H0T4UEZ9dluVnlGX5DWVZfktZlu+LiNdFxB+LiFdnlt2LiB8oiuJS3U6KonhzRPxgPBhF+2hEvK0sy3eWZflNd/fx5oj4sxEx++mTr4mI/36F6wYAAAAAwCOon4TRTsb1AaNOS7wIqNZr9SunDxaE0VrRinbR3tpxAQAAAAAAPJrKsz4AAAAAAAAQRnuM/ddzlz8UEV9RluW/nF+wLMtRWZZ/MyK+IiJuz8x6XUR814L9fF9EHM5c/rG7+/nFuX3cLsvyf42Ib5pb/88VRfHJC/YBAAAAAMBjoNeuDqMtChh1ir3K6QD91oXK6dPg4rC8Uzm/UwguAgAAAAAALKc46wMAAAAAAOAJIYz2GCqK4rMj4i1zk7+nLJNPlN1VluVPRcT/Njf5a2r289aI+E9nJt2JiG8ry/KkZh//ICJ+YGbSfkT8xbrjAgAAAADg8dBvVYfRTu6F0UaV87tFZ2vHBDzaeu1+5fTBgvOKMBoAAAAAAAAAAAAAAJxPwmiPp983d/k3y7L8uYbr/sO5y2+tWfabI6I9c/kHy7L81Qb7+J/mLn9TURS9JgcHAAAAAMCjq9eqDxgNyzuV8wWMgEweXBxERMQo+d6grvMKAAAAAAAAAAAAAACcS8Joj6cLc5d/a4l1f3Pu8mHNsl8/d/lvNtlBWZa/GBH/fGbShYh4X5N1AQAAAAB4dPVb8z++PrUoYCSMBmR6SRhtGlxMzyst5xUAAAAAAAAAAAAAOE/K8qyPADgvhNEeT78zd7m3xLrzy75StVBRFG+IiM+dmTSKiI8usZ8fnbv8/BLrAgAAAADwCOq1+pXTB+NbERExKkeV84XRgEwWRju5G0YbTu5UzndeAQAAAAAAWJZPpQIAAAAAsBvCaI+nn4yI2zOXP6MoiupPmz3sHRXbqvJZc5d/vizLWw33ERHxY3OX37bEugAAAAAAPIL67QuV008mg4iIGJXDyvkCRkCmn4XRxqdhNMFFAAAAAAAAAAAAAAB4tAijPYbKsrwREf/nzKReRHzHovWKomhHxJ+em/wDyeKfOXf51xof4Kn/b8H2AAAAAAB4zPRa1d/hMZicfu/GsLxTOf//Z+/uo2W/6/rQvz+z9z6ZyQnkgSQECoaQgFBBwdDLIqlXEBaoqxcFEbiUXmJv1dorpVeWFttqROtawq3epe2yVsviwStoxSAtRdMFQos8yC1QkCb0hgBBeTAKCSYn5yTn4Xv/2HM8k8mevWf2mZnf7L1fr7Vmze/h+/t+Pr/FWt9wZs+8fxsCjIAJ+mtbB6Pd247lVDs5MXDRugIAAAAAAAAAAAAAAKtJMNr+9aoknxvZf21VPWvS4KraSPKrSZ48cvgPkvzOhEuuGtv//Iz93Ta2/5CqunDGOQAAAAAA2EMGvcNbHj926miSTAwwWhdgBEww6G0djJZsri3WFQAAAAAAgBm01nUHAAAAAACQ9a4bYDFaa1+tqmckuSGbYWeDJDdW1VuTvDXJp5IcTXJxkqcl+cEkXz8yxYeTvKC1iX/RuGBs//YZ+7u7qo4l6Y8cPj/JHbPMAwAAAADA3tHvDbY8fu+poznVTuXEqRNbnhdgBEzS3yYY7eipe3JcMBoAAAAAAMCcVNcNAAAAAABwQAhG28daa5+rqqcmuS7JDyS5OskLh69JvpLkF5L8X61N+KXIpvPG9o/uosWjuX8w2oN2Mcf9VNWlSS6Z8bIrz7YuAAAAAAA7G6wd3vJ4S8u9p47lxKQAo54AI2Brg22C0Y6dumfyuiIYDQAAAAAAAAAAAAAAVpJgtP1vbfi6N0nL9o9n+ZMkP5nkN3cIRUseGIx2bBe9HU1y4TZz7sY/SHL9HOYBAAAAAGDO+r3BxHNHTx2ZGGC0IcAImKC/TTDa0ZOTg9GsKwAAAAAAAAAAAACwWlrXDQAro9d1AyxOVV2b5OYk/zrJtdn5f+9HJnl9ks9X1d+bsdxu/tviv0cAAAAAAAfIoHd44rljp47meLtvy3PrAoyACTZ6GxPXiGOn7rGuAAAAAAAAAAAAAADAHiMYbZ+qqmcmeVeSR40c/kKSVyV5cpILkhxKclmSb0/yxiQnhuMuSfJrVfWrVVUTStw9tj/YRZvj14zPCQAAAADAPtLvTf4o+eipe3KindjynAAjYDv93rlbHj966p6cOGVdAQAAAAAAmI/WdQMAAAAAABwQ6103wPxV1SVJ3pKkP3L4PyR5aWvtL8eG/1mSG5PcWFW/kuQdSR4yPPf9SW5N8potyqxqMNovJ/ntGa+5Msnb51AbAAAAAIBtbNShrGU9J/PAoKJjp+7JiXZ8y+vWy58zgMkGvUHuPvm1Bxw/duroNuuKYDQAAAAAAAAAAAAAAFhFfkm0P/1IkktG9j+V5IWttWPbXdRa+1BVvSjJu0YOX19Vr2+t3T42fPzXJZdkBlV1Xh4YjHbnLHNsZdjneK879XK2ZQEAAAAAmEJVpb82yJGTdz3g3NGTk4PRNurQolsD9rB+79wtjx89eWTyutITjAYAAAAAAPBAresGAAAAAAAgva4bYCG+d2z/NTuFop3WWnt3kveNHBokefEWQ28Z2798+va2HP/V1todM84BAAAAAMAeM5gQYHTs1D05PiHAaL0EGAGTTQpGO3bqaI63+7Y8Z10BAAAAAACYVXXdAAAAAAAAB4RgtH2mqg4nuXLs8LtnnOZdY/tP3WLMzWP7V81Y49Fj+zfNeD0AAAAAAHvQpACjo6fuyQnBaMAuDNYmBy6eaCe2PGddAQAAAAAAAAAAAACA1SQYbf+5YItjX55xjvHxF28x5pNj+99YVVv/6mRr1+4wHwAAAAAA+9BgQjDasW2D0dYX2RKwx+0ucNG6AgAAAAAAAAAAAAAAq0gw2v5z5xbHDs84x3lj+3ePD2itfSnJJ0YOrSf5mzPUePrY/u/NcC0AAAAAAHvUxACjk5MDjDZ6hxbZErDH7SZwcaOsKwAAAAAAAAAAAACwSlrrugNgVQhG22daa0eS/OXY4SfPOM3VY/tfnjDubWP73zfN5FX1uCRPHTl0JMl/mq41AAAAAAD2ssHaNgFGp7YOMFqvjUW2BOxxEwMXT92T4xOC0awrAAAAAAAAs/KrVAAAAAAAlkMw2v703rH9H5j2wqq6LMlzxw6/b8Lw30hycmT/+VX1mCnK/OOx/X/XWjs2ZYsAAAAAAOxhAoyAeRtMWFeOnbwnJ6wrAAAAAAAAAAAAAACwpwhG259+a2z/RVX10p0uqqpzkvx6kvNGDt+d5MatxrfWbknyxpFDh5K8oar629T4riTXjRy6L8mrd+oNAAAAAID9YVKA0dFTR3Lqfs/iOGO91hfZErDH9dcmBy5ODkazrgAAAAAAADxAa113AAAAAAAAgtH2qd9M8vGR/Urypqr6xap62FYXVNUzknwoybPGTr2mtXbHNrWuTzJ6/pok76qqx43Nf05VvTzJb49d//Ottdu2mR8AAAAAgH2kPyEY7e4TX5t4zXptLKodYB8Y9AZbHj+2TTDaRu/QIlsCAAAAAADYh6rrBgAAAAAAOCA8Cn0faq2dqqoXJHl/kkuHhyvJP0zyw1X1iSSfSXI0yUVJnpzksi2memeS1+xQ60+r6vlJbkxy+hck1ya5qao+MqxzfpJvTnLJ2OXvSPITs90dAAAAAAB72WBCMNpdJycHo22UACNgsn7v8JbHj506mt6E50QJXAQAAAAAAAAAAAAAgNUkGG2faq19uqq+NcmvJ3nKyKlekicNXxMvT/JrSf5Ra+34FLXeW1XPS/KGnAk/q2Hdp0y47C1Jvr+1dnKn+QEAAAAA2D/6a1sHo9198q6J1wgwArYz6A22PH683ZdKbXnOugIAAAAAAAAAAAAAAKtp60eksy+01j6V5GlJXpbkg9kMPNvO0SS/keSa1toPttaOzlDrnUmekORXktyxzdAPJXlBa+0lrbUj084PAAAAAMD+MOhtHYzWcmriNevlOS/AZP3e4Ynn2oQ/j1lXAAAAAAAAAAAAAABgNfnG/z7XWjuR5E1J3lRV5yd5SpIrklyQ5Jwkd2UzyOyTSf54OH63tW5P8kNV9Yok1ya5PMllSY4k+UKSj7XWPnsWtwMAAAAAwB7XnxCMtp312lhAJ8B+MVgbzHzNRh1aQCcAAAAAAAD72dYPpAEAAACAefEJFHCaYLQDpLX2tSTvXkKd+5K8Z9F1AAAAAADYewaC0YA5G/QOz3yNdQUAAAAAAAAAAAAAAFZTr+sGAAAAAACAg6O/i2C0jd6hBXQC7Bfn9AYzXyMYDQAAAAAAYCut6wYAAAAAAEAwGgAAAAAAsDyDtdmD0dZrfQGdAPvFWq3lUJ0z0zXWFQAAAAAAgFlV1w0AAAAAAHBACEYDAAAAAACWpt8bzHzNWgQYAdsb9GYLXdyoQwvqBAAAAAAAAAAAAAAAOBuC0QAAAAAAgKVZq/UcqnOmHr9eG6ny5HFge/212YLR1mtjQZ0AAAAAAAAAAAAAAABnQzAaAAAAAACwVP3e9AFGG8KLgCkMZlhXkmS9Z20BAAAAAAAAAAAAAIBVJBgNAAAAAABYqsHa9AFG64LRgCnMEriYJOu1vqBOAAAAAAAA9qvWdQMAAAAA7HPNR1DAkGA0AAAAAABgqWYJMBKMBkxjMMO6UqmsRTAaAAAAAAAAAAAAAACsIsFoAAAAAADAUs0SYCQYDZjGrIGLVbXAbgAAAAAAAPaq1nUDAAAAAAAgGA0AAAAAAFiufm8w9VjBaMA0BmuzBKOtL7ATAAAAAACA/cqDZwAAAAAAWA7BaAAAAAAAwFINeoenHrshGA2YQr83SzCadQUAAAAAAAAAAAAAAFaVYDQAAAAAAGCp+muDqccKMAKm0e9Nv65s1KEFdgIAAAAAAAAAAAAAAJwNwWgAAAAAAMBSDXqHpx673hOMBuxspnVF4CIAAAAAAAAAAAAAAKwswWgAAAAAAMBS9XuDqccKMAKmMdu6sr7ATgAAAAAAAAAAAAAAgLMhGA0AAAAAAFiqQe/w1GM3BKMBUxisTb+uCFwEAAAAAADYjdZ1AwAAAADsc81HUMCQYDQAAAAAAGCp+r3B1GMFGAHTmGVd2egdWmAnAAAAAAAAe5hfngIAAAAAsAIEowEAAAAAAEs1WDs89VjBaMA0Br1Z1pX1BXYCAAAAAACwX1XXDQAAAAAAcEAIRgMAAAAAAJaq3xtMPVaAETCN2dYVgYsAAAAAAAAAAAAAALCqBKMBAAAAAABLNegdnnqsACNgGv3euVOPta4AAAAAAAAAAAAAAMDqEowGAAAAAAAsVb83mHrsRh1aYCfAfnFOr59KTTXWugIAAAAAAAAAAAAAAKtrvesGAAAAAACAg2Wwdnjqseu1scBOgP2iV72c0xvk2Kl7dhy7Xv5ECgAAB0VVbSS5NsnXJXlYkruTfDHJx1prn5tzrSuSPCnJw5Ocl+RLSW5L8oHW2vE51lnaPQEAAAAAAAAAQBd86yO3vQAAACAASURBVB8AAAAAAFiqQ3VOKpWWtuNYAUbAtAa9c6cMRhO4CAAAXamqRyf5G0meMnz/5iQPGhlyW2vtUXOoc0mSVyd5UZKLJoz5QJJfaK39zlnWekGSH0nytAlDvlpVv5XkJ1trf3EWdZZ2TwAAAFvb+e+7AAAAAAAwD35NBAAAAAAALFWveun3BjkqwAiYo37v3KnGrdehBXcCAACMqqqnJ/nxbIahbRnoNed635HkDUku3WHoNUmuqarfSPKDrbUjM9Y5L8mvJXnxDkMvSvJDSZ5fVS9rrd04S51hraXcEwAAgPAzAAAAALrk0yngNMFoAAAAAADA0vV7504VjLbRE2AETGcwdTCaP5ECAMCSPSnJs5dRaBjC9rtJRj9QaEk+muQzSS5I8uQkF4+c/9tJHlxV391aOzVlnbUkv5XkO8dO/XmSjyX5WpIrh7VqeO6hSd5eVc9qrf3hqt0TAADAzmrnIQAAAAAAMAe9rhsAAAAAAAAOnv7UAUYbC+4E2C/6a9OtKxs96woAAKyIe5PcOq/JquoRSW7I/QPE3p/kG1prT2mtvbC19uwkj0jyiiTHR8b9L0n++Qzlfi73D0U7nuTlSR7RWnvOsNbVSZ6Q5IMj485J8rtV9bAVvCcAAAAAAAAAAFgJgtEAAAAAAIClG0wdjLa+4E6A/WL6dUUwGgAAdOB4kv+W5N8m+cEkVyd5UJK/N8car05y4cj+B5I8q7V28+ig1tq9rbVfSvLCset/pKou36lIVT06myFko763tfavWmv3jdW6Kckzc/9wtIckuX6nOkNLuScAAAAAAAAAAFglgtEAAAAAAICl668JMALmq98bTDVuvQ4tuBMAAGDMG5M8uLX25Nba97fWfrW19tHW2vF5FaiqxyR52cih+5Jc11o7Numa1trvDns77ZxMF1h2fZLRDyze0Fp7+zZ1jia5btjTaf/7MGBtoiXfEwAAAAAAAAAArAzBaAAAAAAAwNINeoLRgPnqT72urC+4EwAAYFRr7Y7twrzm5CVJ1kb2b2it3TLFda8Z239hVfUnDa6qQZIX7DDHA7TW/r8kvztyaD2bPW9nKfcEAAAAAAAAAACrRjAaAAAAAACwdP3eYKpxG4LRgClNG7hoXQEAgH3peWP7r5/motbazUn+aOTQ4STP3uaS5yQZ/cfHB1trn5qqwwf29Pwdxi/rngAAAKbUum4AAAAAAIADQjAaAAAAAACwdIPe4anGrQswAqbUX5suGM26AgAA+0tVXZbkm0YOnUjy/hmmeO/Y/ndsM/bbd7h2O+/LZm+nPbmqHrrVwCXfEwAAAAAAAACshCabHxgSjAYAAAAAACxdvzeYapwAI2Bag960wWiHFtwJAACwZE8Y2/9Ea+3IDNd/YGz/G2ao9cFpiwx7+uMpay3zngAAAEb45SkAAAAAAN0TjAYAAAAAACzdYO3wVOMEowHT6k8djLa+4E4AAIAl++tj+5+e8fpbd5hv1OOXVGuZ9wQAADCl6roBAAAAAAAOCMFoAAAAAADA0vV7g6nGCUYDpjWYMhhtw7oCAAD7zVVj+5+f8frbxvYfUlUXjg+qqouSXHSWtcbHP2bCuKXcEwAAAAAAAAAArCKPQwcAAAAAAJZu0Ds81biNngAjYDr9KYPRBC4CAMC+c8HY/u2zXNxau7uqjiXpjxw+P8kdO9S5p7V2ZJZaW/R2/oRxy7qnmVXVpUkumfGyK8+2LgAAAAAAAAAAB4dgNAAAAAAAYOn6vcFU4wQYAdMarE0ZjNY7tOBOAACAJTtvbP/oLuY4mvuHiD1ogXVGbVVnnrV2uqfd+AdJrp/TXAAAAAAAAAAA8AC9rhsAAAAAAAAOnsHa4anGCUYDptXvTReMtlGeHQUAAPvMeIjYsV3MMR48Nj7nMussuxYAAMCUWtcNAAAAAABwQAhGAwAAAAAAlq7fG0w1bkMwGjClwZTBaAIXAQBg39vNL/VX+Zpl1wIAAAAAAAAAgE55HDoAAAAAALB0g97hqcYJMAKmtVGH0staTuXktuOsKwAAsO/cPbY/XRr79teMz7nMOsuuNatfTvLbM15zZZK3z6k+AACwSE3GMgAAAADd8ekUcJpgNAAAAAAAYOn6vel+zyvACJhWVWXQOzdHTt217TjrCgAA7DuC0c6u1kxaa7cnuX2Wa6pqHqUBAIDO+f/2AAAAAAAsR6/rBgAAAAAAgINnow5lbYfnt/Syll75UwYwvf7auTuO2RCMBgAA+83XxvYvmeXiqjovDwwRu3OKOudW1eFZaiW5dIo6W9Va1D0BAAAAAAAAAMDK8WsiAAAAAABg6aoq/bXx3+fen/AiYFaD3vbrSpKsW1sAAGC/uWVs//IZrx8f/9XW2h3jg1prX0kyfvzrzrLWeO+Tji/kngAAAAAAAAAAYBUJRgMAAAAAADox6J277XnhRcCs+r3DO46xtgAAwL5z89j+VTNe/+ix/ZuWWGt8vkXV2e6eAAAAAAAAAABgpQhGAwAAAAAAOtHfKRitJ7wImE2/N9hxjGA0AADYdz45tv+NVbX9hw73d+0O82137mnTFqmqw0m+ccpay7wnAAAAAAAAAABYKetdNwAAAAAAABxMg52C0YQXATPaeV1ZT1UtqRsAANhabf6f0h9N0h85/KbW2ufOct4rkvydkUP3tNb+xdnMuRe01r5UVZ/ImdCx9SR/M8l/mnKKp4/t/942Y38/yQ9sc+12viX3/87mx1prf7bVwCXfEwAAwJRa1w0AAAAAAHBACEYDAAAAAAA60ReMBsxZf826AgDAnvCSJD+XM78ov+FsQ9GSpLX22ap6YpLnnz5WVZ9prd1wtnPvAW/LmRCxJPm+TBEiVlWPS/LUkUNHdrjuxiRHkwyG+0+rqse11j41RY/Xje2/bYfxy7onAACAEcLPAAAAAADoXq/rBgAAAAAAgINpsEOA0UZ5vgswm4HARQAAVlxV9ZL89OndJLckedkcS1yX5Nbh3JXkZ+c49yr7jSQnR/afX1WPmeK6fzy2/+9aa8cmDW6t3ZPkrTvM8QBV9dgkzxs5dCLJm3e4bCn3BAAAML3qugEAAAAA9rkmtx8YEowGAAAAAAB0or9jgNGhJXUC7Bc7ryuC0QAA6NyzklyRpA1fPz4M25qL1tqRJK8aOfTYqvq2ec2/qlprtyR548ihQ0neUFX9SddU1XdlM0jutPuSvHqKcj+V5PjI/nVV9dxt6vSTvH7Y02mva63dul2RJd8TAAAAAAAAAACsDMFoAAAAAABAJwYCjIA522ld2bCuAADQvZeObH+ktfa2eRdord2Q5CMjh/72vGvMqqoeUVWPGn8luWxs6PpW44avi3coc32SO0b2r0nyrqp63Fgv51TVy5P89tj1P99au22ne2mtfSbJL44dfmtV/XDV/VPeq+rxSd497OW0r2T6sLKl3BMAAAAAAAAAAKyS9a4bAAAAAAAADqb+jsFo/owBzGbndUUwGgAAnfv2ke3XLbDO65JcnaSSfOcC60zrD5NcPsW4v5bksxPOvTHJdZMubK39aVU9P8mNSU4HlF2b5Kaq+kiSzyQ5P8k3J7lk7PJ3JPmJKfo77VVJviHJdwz3N5L8yyQ/UVUfTXJXkkcPa9XIdfcleV5r7UvTFFnyPQEAAAAAAAAAwErodd0AAAAAAABwMA0EGAFzNlizrgAAsLqq6vIkF48cescCy43OfWlVPXKBtVZGa+29SZ6X5M9HDleSpyR5YZLn5IEBYm9J8uLW2skZ6pwczvdbY6cuzWb43ffmTDDdabcn+a7W2vumrTOs9d4s4Z4AAAAAAAAAAGBVCEYDAAAAAAA60d8hwGhDgBEwo77ARQAAVts3Dd9bkltba19YVKHW2p8m+fTIoSctqtaqaa29M8kTkvxKkju2GfqhJC9orb2ktXZkF3Xubq29OJshaB/aZuhXk/zrJE9orf3+rHWGtZZyTwAAANtrXTcAAAAAAMABsd51AwAAAAAAwME02DHA6NCSOgH2i53XFcFoAAB06pKR7S8uod4Xk1w13L50CfUmaq09asn1bk/yQ1X1iiTXJrk8yWVJjiT5QpKPtdY+O6dab03y1qq6Isk3J3l4ksNJvpzktiTvb63dN4c6S7snAADgIBN+BgAAAABA9wSjAQAAAAAAnejvFGDU82cMYDb93mDb8xuC0QAA6NaFI9tfXkK90RoXLKHeyhkGkr1nSbU+m2ThwWTLvCcAAID7q64bAAAAAGCfa3L7gaFe1w0AAAAAAAAH02CnYDQBRsCMBr3D255f71lXAADo1KGR7WV8d2+0xjlLqAcAAAAAAAAAAHDWBKMBAAAAAACd6O8QjLYhGA2YUX9tsO15gYsAAHTsnpHtS5ZQb7TGPRNHAQAAAAAAAAAArBDBaAAAAAAAQCcGa9sHo63XoSV1AuwX67WRjW3WDsFoAAB07Msj25cvod5ojT9bQj0AAAAAAAAAAICzJhgNAAAAAADoRL832Pb8eq0vqRNgP9lubdkQjAYAQLduHb5Xksur6qpFFaqqK5M8aovaAAAAAAAAAAAAK00wGgAAAAAA0Im1Ws+hOmfi+XUBRsAuDHqHJ56zrgAA0LGPJ7kvSRvuP3eBtb57ZPt4kv+2wFoAAAAcCG3nIQAAAAAAMAeC0QAAAAAAgM70e+dOPLchwAjYhX5vMPGcYDQAALrUWrsvyX9OUsPXj1XV5GTfXRrO+aPZ/MV6S/JfhrUBAABge034GQAAAAAA3ROMBgAAAAAAdGawNjkYTYARsBvWFQAAVtxbhu8tySVJXruAGj+X5NJshq8lyZsXUAMAAIADp3YeAgAAAAAAcyAYDQAAAAAA6Ey/J8AImK/t1pUN6woAAN17c5IvDbcryd+vqn8yr8mr6lVJ/o9sBq8lyZ9FMBoAAAAAAAAAsAe0nYcAB4RgNAAAAAAAoDMDwWjAnAlcBABglbXW7kvy49kMRWvD95+pqt+sqgt3O29VXVBVb07ysyPztiT/ZFgTAAAAAAAAAABgTxCMBgAAAAAAdKbfG0w8t9ETYATMbtvAResKAAAroLX2piRvz/3D0b43yS1V9dqqesy0c1XVVVX12iS3JHnRcK4M5/0PrbU3zLN3AAAAAAAAAACARVvvugEAAAAAAODgGvQOTzy3XgKMgNn1twtGs64AALA6/k6SP0jylJwJR7soySuTvLKqvpTkw0luTnLn8JUk5ye5IMnjk/xPSR4+PD4aiFZJPpLkpQu/CwAAAAAAAAAAgDkTjAYAAAAAAHSmvzaYeE6AEbAbg7XJwWgb1hUAAFZEa+3uqnpmkjckeV42A82SMwFnD0/yXcPXJDWyPXr925O8rLV299waBgAAgL/6pycAAAAAACxWr+sGAAAAAACAg2vQOzzxnGA0YDf6vcnBaNYVAABWSWvtrtba9yR5ZZKj2Qw1ayOvDI9t9crY2EpyLMmPtdae11r7y2XdBwAAAPuJ8DMAAAAAALonGA0AAAAAAOhMvzeYeG5DgBGwCwPBaAAA7DGttf87yeVJfjbJnbl/AFqb8Bodc+fw2stba/9i2f0DAABwUNTOQwAAAAAAYA7Wu24AAAAAAAA4uAa9wxPPCTACdmO7wEXrCgAAq6q19pUkP1FVP53kqUm+Ncm1Sf5akouSPGQ49KtJvpLki0nen+Q/J/mj1tp9S28aAAAAAAAAAGCOWuu6A2BVCEYDAAAAAAA6I8AImLd+79yJ5zasKwAArLjW2vEkfzh8AQAAAAAAAAAAHDi9rhsAAAAAAAAOrsHa4YnnBBgBuzFYmxyMJnARAAAAAAAAAAAAAABWm2A0AAAAAACgM/3eYOI5AUbAbvR7gtEAAAAAAAAAAAAAAGCvEowGAAAAAAB05vz1C7c83ksv/bXJ4UYAk5y39uD0JvwZ9Ly1By+5GwAAAAAAAAAAAAAAYBaC0QAAAAAAgM48ZOOhedihRz7g+JWDx6ffG3TQEbDXndPr57HnPvEBxy/deHguPvTQDjoCAAAAAADYK1rXDQAAAAAAgGA0AAAAAACgWy972D/KeWvn/9X+hesX56WX/XCHHQF73Ysf+vfzkI1L/2r/3N55+bsPf2WHHQEAAAAAAAAAAAAAANNY77oBAAAAAADgYPu6/pV59RW/nFuP3pxereWqwV/Pod45XbcF7GGXHnpY/tmjfimfPfo/cl+7N48994np9wZdtwUAAAAAAAAAAAAAAOxAMBoAAAAAANC5wdrhPOG8p3TdBrCPnNPr53GHv6nrNgAAAAAAAAAAAACAKbSuGwBWRq/rBgAAAAAAAAAAAAAAAAAAAAAAAADWu25gFlX1B8PNluR/ba3dvst5HprkLafnaq09cx79AQAAAAAAAAAAAAAAAAAAAAAAALuzp4LRkjw9m6FoSdI/i3n6w7kyMh8AAAAAAAAAAAAAAAAAAAAAAADQkV7XDexCdd0AAAAAAAAAAAAAAAAAwMHRum4AAAAAAIADYi8GowEAAAAAAAAAAAAAAAAwT034GQAAAAAA3TuowWjrI9snOusCAAAAAAAAAAAAAAAAYOVV1w0AAAAAAHBAHNRgtItHto901gUAAAAAAAAAAAAAAAAAAAAAAACQ5OAGo/3Pw/eW5ItdNgIAAAAAAAAAAAAAAAAAAAAAAAdZa113AKyK9a4bOAszLWVVtZHkYUmeneSfjpz643k2BQAAAAAAAAAAAAAAAAAAAAAAAMxu5YLRqurkNMOSfK6qdl1mZPvf73YSAAAAAAAAAAAA6FpVXZ3kiiT3Jrm5tfbpjlsCAAAAAAAAAADYlZULRsv9Q8vmMW4rbXj9p5K89SzmAQAAAAAAAAAAgLmoqn6Sh48cuq21NvFho1X13CS/lOSRY8c/mOQHWms3LaRRAAAADqDWdQMAAAAAABwQva4bmGDRn5RXkv+a5G+11o4vuBYAAAAAAAAAAABM45VJbhm+3pPk1KSBVfXCJDdkMxStxl7XJPmjqrp60Q0DAACwnwg/AwAAAACge+tdN7CF/5LJn6J/6/C9JflwkmNTztmS3JvkziQ3J3lPa+19Z9MkAAAAAAAAAAAAzNl3ZzPYrCV5XWtty+/SVdWFSf5NNh+O2oavGp4+fc3hJDdU1de31qb9rh0AAABMUDsPAQAAAACAOVi5YLTW2tMnnauqUznzpa0XtdY+v5SmAAAAAAAAAAAAYIGqapDkSTnzHbl3bDP85UnOz5lAtC8kuSHJiSTPT3L5cNwjkvzDJK9dQMsAAAAAAAAAAABz1+u6gV3weBEAAAAAAAAAAAD2mycmWcvmd+SOtNY+us3Yl+ZMKNr/SPKE1torWmuvHM7z/w7HVZLrFtYxAAAAAAAAAMCctLbzGOBgWO+6gRm9emT7zs66AAAAAAAAAAAAgPm6Yvjektw0aVBVPS7JVcNxLclPtta+dvp8a+3uqnp5kg8ND319VT2ytfYni2kbAAAAAAAAAABgfvZUMFpr7dU7jwIAAAAAAAAAAIA956Ej21/aZty3DN8ryV1J3jY+oLX24ar60ySPGB76xiSC0QAAAAAAAAAAgJXX67oBAAAAAAAAAAAAIOeObN+1zbhrh+8tybtbaycmjPvkyPbXnU1jAAAAsPnPUAAAAAAAWDzBaAAAAAAAAAAAANC9Gtne2GbcNSPb79tm3FdGth+8q44AAAA4YISfAQAAAADQPcFoAAAAAAAAAAAA0L27RrYfutWAqrosyVUjhz6wzXzro5eeRV8AAAAQ/7QEAAAAAGBZ1ncesrqq6hlJvi3Jk5NcmuT8bP+kzK201tqV8+4NAAAAAAAAAAAAZvCF4XsleeKEMd85sn1vko9uM98FI9tHzqIvAAAAAAAAAACApdmTwWhV9Zwkv5T7P/lyt48daWffEQAAAAAAAAAAAJyVT4xsX1RVz2mt3Tg25vuG7y3Jh1trx7eZ79Ej21+eR4MAAAAAAAAAAACL1uu6gVlV1Y8meWc2Q9FGw9DaLl4AAAAAAAAAAADQudbarUluyeZ32yrJL1fVFafPV9Urk1w7csnbJ81VVefl/g8evXW+3QIAAAAAAAAAzJcwIOC09a4bmEVVPSfJa4a7p8PNToej3ZPkziTbPQETAAAAAAAAAAAAVtW/zeZ35FqSK5J8qqo+nuTSJI/Mme/MHUvy/2wzz9Nz5rt1J5L89wX1CwAAAAAAAAAAMFd7Khgtyc8N309/uetPsvklsHe01j7fWVcAAAAAAAAAAABw9n4xyfcl+fpsfk9uI8nVORNydvqBor/QWvvzbeZ53sj4j7fW7l1MuwAAAAAAAAAAAPO1Z4LRqurKJN+UzS9qJckfJXl2a+2u7roCAAAAAAAAAACA+Wit3VdVz0ny+0kePzxcOfMw0UryO0munzRHVZ2X5Hty5rt2715YwwAAAOwvre08BgAAAAAAFmzPBKMledrwvZKcSvK/CUUDAAAAAAAAAABgP2mt/UlVPSnJ303y3CSXD099KsmbW2s37DDFdUkePLL/H+feJAAAAAAAAAAAwILspWC0S4fvLcnHWmu3dNkMAAAAAAAAAAAALEJr7XiSfzN8zep1SX59ZK6vzasvAAAAAAAAAACARdtLwWg1sv3pzroAAAAAAAAAAACAFdVaO5rkaNd9AAAAAAAAAAAA7Eav6wZm8IWR7bXOugAAAAAAAAAAAAAAAAAAAAAAAADmbi8Fo/33ke1HdtYFAAAAAAAAAAAAAAAAAAAAAAAwN6113QGwKta7bmBarbU/rqpPJnlCkqur6sLW2h1d9wUAAAAAAAAAAACLVlWPSPLoJBcleVCSaq29qduuAAAAAAAAAAAA5mvPBKMN/XyS1ydZS/LKJP+s23YAAAAAAAAAAABgMarq8iT/Z5LnJrl8iyEPCEarqm9J8ozh7h2ttX+5uA4BAADYX1rXDQAAAAAAwN4KRmutvbGq/laS70nyY1X1/tba73XdFwAAAAAAAAAAAMxLVfWS/EySH83mg0Rri2GTfq3+F0l+6vT5qnpna+3WBbQJAAAAAAAAAAAwd72uG9iFlyX599kMdXt7Vf10VV3QcU8AAAAAAAAAAABw1qpqI8nvJ3lVtn746aRAtM2Trd2c5D05E6b2krk2CAAAAAAAAAAAsEBbfWlqZVXVTw43P57kmiQXJ/mnSX6kqj6Y5KYkdyQ5Ncu8rbWfnmefAAAAAAAAAAAAsEuvS/KsbAagtWwGnL0vm2Fn9yX551PM8TtJnjHcfnaSn5l/mwAAAAAAAAAAAPO3p4LRkvxU7v+0y9Nf+jo3ybcNX7shGA0AAAAAAAAAAIBOVdUzk7w0Z74b9+kkL2mt/dfh+cszXTDaf0zyr4Zz/I2q6rfWji2mawAAAAAAAAAAgPnpdd3AHJx+KuZu1DwbAQAAAAAAAAAAgLNw/fC9ktyW5JrToWizaK3dluTO4e5GksfNpz0AAAAAAAAAgMVou00QAvadvRiMVnN8AQAAAAAAAAAAQOeq6qIk1+TMw0Jf0Vr7i7OY8qaR7ceeTW8AAAAAAADA/8/enYfZWdd3H39/ZyYLBAgh7Ci7yC7ghkUKCIorWhdcerkA1qV1aa1a21oRa/WxdXnaurUa3K2KIiAF2UFEWWSRgAghEEgCSci+LzPzff44Z545OZlz5pw525zJ+3Vd93Xu33p/x+BJZuY+n1uSJEnt0tfpAup0WqcLkCRJkiRJkiRJkiRJkiSpBV7I8MNOl2TmZQ3uVxqqtmeDe0mSJEmStgeZna5AkiRJkiRJkqTuCkbLzJs6XYMkSZIkSZIkSZIkSZIkSS2wT/E1gd81Yb81Jec7NWE/SZIkSZIkSZIkSZIkSWq5rgpGkyRNYCtnw0NfhoGNsP8bYN9XQESnq5IkSZIkSZIkSZIkSWqX3UrOVzRhvx1Kzrc0YT9JkiRJkiRJkiRJkiRJajmD0SRJnbfoWrjhTMjBQvvR78IxF8Axn+hsXZIkSZIkSZIkSZIkSe2zuuR85ybst1fJ+fIm7CdJkiRJkiRJkiRJkiRJLdfT6QIkSdu5TPjd+4dD0Ybc/y+wfkFnapIkSZIkSZIkSZIkSWq/p0rOn9HIRhHRCxxf0vVkI/tJkiRJkiRJkiRJkiRJUrsYjCZJ6qyVv4fVf9y2f3AzzL+4/fVIkiRJkiRJkiRJkiR1xuziawDPjIinNbDXy4Adi+cJ3NpIYZIkSZIkSZIkSZIkSZLULl0fjBYRkyLiTyPiHyPiwoi4JCKui4jrOl2bJKkGT/yy8tjjF7WvDkmSJEmSJEmSJEmSpA7KzAeAhcVmAH87ln0iogf4h6Ftgd9n5srGK5QkSZIkSZIkSZIkSWqd7HQBksaNvk4XMFYRMQ34G+B9wB7lw1R4r4uINwP/UmwuB56bmb4vSlKnrJxdeWzpb2HTMpgys331SJIkSZIkSZIkSZIkdc4PgI9SuAfufRFxRWZeU+cenwFOLGl/o1nFSZIkSZK2Z378SpIkSZIkSZLUHj2dLmAsIuJY4E7gAmBPCjeB1eoXwEzgQOB44MXNrk+SVIfVf6w8lgOw8PL21SJJkiRJkiRJkiRJktRZ/wqspvBp817g0oh4Vy0LI2L3iPg28BGGP62+CLiwBXVKkiRJkiYkw88kSZIkSZIkSZ3XdcFoEXEkcBPwDAqBaEM/cQ9qCEjLzLXARSVdr2t2jZKkGuVg9WA0gAWXtKcWSZIkSZIkSZIkSZKkDsvM5cAHGL43birwtYiYExGfBc4qnR8Rz4uIt0bE94C5wFsZvpduADgnMze382uQJEmSJE1Uo35sS5IkSZIkSZKkpujrdAH1iIipwOXAdIYD0WYD/w7cAEwBHqhhq0uBc4vnpze5TElSrTYsgoH11ecs/U17apEkSZIkSZIkSZIkSRoHMvO7EXEo8HEK98kFcAjw0bKpAfy2rJ0la/4+M69ufcWSJEmSJEmSJEmSJEmS1Dw9nS6gTh8ADmQ4FO0/gBMy81uZOQ/Yipk/qAAAIABJREFUWOM+NzB889dBEbFnk+uUpLFbNx9+fTb8fD+49hRYdH2nK2qdDQtHn7NxCWxe2fpaJEmSJEmSJEmSJEmSxonM/ARwDsP3xA3dM1cafjZ0D1yUzAlgM/D2zPx82wqWJEmSJEmSJEmSJEmSpCbptmC09zN8g9clmfnXmTlY7yaZuRaYV9J1RBNqk6TG9a+Ha14Ij18EG56AJb+C60+HR78HmaOv7zbrawhGA1gzp7V1SJIkSZIkSZIkSZIkjTOZ+R0K97Z9lUJA2lAAWrB1INpQ3yDwXeCIzPxeG0uVJEmSJEmSJEmSJEmSpKbp63QBtYqII4H9is0EPtLglnOBg4rnBwM3NbifJDVuwWWw/vFt+3/7NrjnY3DSj2DPk9tfV6tsqDEYbeVsmPnc1tYiSZIkSZIkSZIkSZI0zmTm48D7IuKjwAuLx9OBmcBkYCmwGPgNcF1mruxUrZIkSZIkSZIkSZIkSaPJ7HQFkrpB1wSjAccVXxO4LzMfaXC/0hvApje4lyQ1x2P/U3lswxNw7Z/CMRcUwtH2PAWip321tcL6GoPRFl4Oh5zb2lokSZIkSZIkSZIkSZLGqcxcD1xdPCRJkiRJkiRJkiRJkiYcQ9MkDemmYLQ9Ss7nNGG/TSXnOzZhP0lq3KJrRp8z+/zC674vh5N/Dr2TW1tTK214orZ5i68v/As2orX1SJIkSZIkSZIkSZIkSZIkSZK03fKTp5IkSZIkSZKkzuvpdAF1mFpyvqnirNpNLzlf04T9JKlxk3apfe4TV8DD/9W6Wtqhv8a33y2rYMOTra1FkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJktRR3RSMtrTkfPcm7HdwyfmyJuwnSY3rnTr6nFKPfKs1dbRL/4ba567+Y+vqkCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiR1XF+nC6jDouJrAMc3slFEzASOKOl6uJH9JKkpMmHT0tHnlVpxN6z4Pcx4VmtqarWBOoPR9n5R62qRJEmSJEmSJEmSJEkahyJiEvAC4GTgEGA3YGeAzDy9g6VJkiRJkiRJkiRJkiRJUtN1UzDab4BBoAeYGREvyszrx7jXuRQC1gDWAb9rQn2S1JhNy6B/Xf3rrjwO3jwIEaPPHW8GNtY+d/UfW1eHJEmSJEmSJEmSJEnSOBMR04C/Ad4H7FE+DGSFdW8G/qXYXA48NzNHnCtJkiRJkiRJkiRJkiRJ401PpwuoVWauAO4o6frniPpTgCJiP+BjFG4KS+CazBxsTpWS1IA1D4197ewLmldHOw1sqH3uQ//ZujokSZIkSZIkSZIkSZLGkYg4FrgTuADYk+EHgdbiF8BM4EDgeODFza5PkiRJkiRJkiRJkiRJklqla4LRiv695PxE4Ov1LI6IvYDLgBkM3yj2xeaUJkkNWjNn7GvvuwC2rG5eLe1STzAawLLftaYOSZIkSZIkSZIkSZKkcSIijgRuAp5B4T63HBqihoC0zFwLXFTS9bpm1yhJkiRJksaBNQ/DrefBlcfDbX8Bax/tdEWSJEmSJEmjyjGOSdq+dFUwWmb+CLin2AzgnRFxc0ScXG1dREyLiPcU1x5H4X0wgasz85ZW1ixJNVvzUGPrH/9Zc+pop3qD0R78v62pQ5IkSZIkSZIkSZIkaRyIiKnA5cD0ku7ZwHnAwcAR1BCOBlxacn560wqUJEmSJI0sE+7/LFzxLPjfo2H2pyAHO11V/dKPnnaN9Qvh2lPhkQthxT0w95tw7Smw4clOVyZJ0taW3Aw3v67w76TffQA2ryz0b1wCt78X/vcY+PUbYdkdna1TkiRJkjSu9HW6gDF4PXArMLPYPgm4MSIWAQ+XToyIrwGHAS8ApjD89MwAFgJvbVPNkrSt1Q/Bo98t/ABvn5cU2iOZcTxsWQVrH6m+323nwYFvgd4pza+1VeoNRlv4vzC4BXomtaYeSZIkSZIkSZIkSZKkzvoAcCDDD0H+D+BDmYVP00fEATXucwPD98odFBF7ZuaSJtcqSZIkSRry+3+EP3x2uD37fNi8Ap79pc7VpInt8Ytgw8Kt+9bPh/k/h8P+sjM1SZJUbumtcMOZw58jXHkvLP0tnHYVXHcarPpDoX/VffDElfDiX8OMYztXryRJkjSerX0E7v4IPPUb2PVoOOofYa9TO12V1DI9nS6gXpn5CPBKYBFbB53tA7ywZGoA7wJOBaaWzV0AvCIzl7atcEkqtex3cNXz4P5/gbnfgF+/Aeb/dOS5+70KXvkgvPiWUTbNwtN+BvubXW3r1BuMtmUlLPlVa2qRJEmSJEmSJEmSJEnqvPczHIp2SWb+9VAoWj0ycy0wr6TriCbUJkmSJEkaSQ7C3P/etn/urMKDwaVWuOtvRu7/3V+1tw5Jkqp5+BvbfoZw+e/gvk8Ph6IN6V8Dj36nfbVJkiRJ3WTT8kKeyPyLYeMiWHQt3PhyWH5npyuTWqbrgtEAMvN24ATgSgpBZzB8M1iWHJSNBXAN8LzMvLcNpUrSyO77Z9iyqra5Ox8GPX2wx5/Aq+ZUn7vsVnj0e43X1y4DG0fuP+lHldcs/EVrapEkSZIkSZIkSZIkSeqgiDgS2I/he+I+0uCWc0vOD25wL0mSJElSJSt+D5uWbdvfv8YHg0uSpO3bIxeO3P/gl0bu/+MXW1eLJEmS1M2evArWz9+6b2ADPPqDztQjtUFXBqMBZObizHwF8Fzg+8AiCjeEjXSsBi4GTsvMMzNzUWeqliQKT4NaeFnt83d+Rsn5oXDKKMFgj1UJFRtPBrdADow8tsN+sP/ZI4+tur91NUmSJEmSJEmSJEmSJHXOccXXBO7LzEca3G9lyfn0BveSJEmSJFUyuHlsY5IkSZIkSZJUi9veOXJ/pdBhaQLo63QBjcrMO4G3AUTEwcDTgZnAZGApsBi4PzMHO1akJJVa93jtc6fsDrsdv3XfnqdA307Qv3bkNYuvh80rYfKuY6+xHQY2VB7r2wFmHA+P/2Tbsc0rWleTJEmSJEmSJEmSJElS5+xRcj6nCfttKjnfsQn7SZIkSZIkSZIkSZIkqd0G1ne6Aqntuj4YrVTxCZmNPiVTklpr8fW1zz38b6Fn0tZ9k3aGE74At7975DXZD09cCQe+eew1tkN/lWC0nqmVg902rxy5X5IkSZIkSZIkSZIkqbtNLTnfVHFW7aaXnK9pwn6SJEmSJEmSJEmSJEmS1HITKhhN40NETAJOAvYH9gHWAk8Ad2fmvA6WJnXe6ofgtvNqmzv9SDj8QyOPHfou2O3Z8MvnjDy+6NrxH4w2UCUYrW8HmFQhGG2LwWiSJEmSJEmSJEmSJGlCWlpyvnsT9ju45HxZE/aTJEmSJE142ekCJEmSJEmSNMFllR9BVRuTtH0xGG0CiohvA29v0naPZeaBNV53D+AC4I3AbhXm/Ab4Ymb+rEn1Sd3l9nfVPvc5X4XeyZXHd3s2POO9MOdr2449ciFsWQ37vQoO/HPo6a2/1mbZsAge/m+YOwvWPw77nQUnfBEGN1de07sDTK4QjLZ5ZeFfsxGtqVeSJEmSJEmSJEmSJKkzFhVfAzi+kY0iYiZwREnXw43sJ0mSJEmSJEmSJEmSJEnt0tPpAjTubahlUkS8DLgPeC8VQtGK/gT4aUR8PyKmNaE+qXtsWQNP3Vzb3JnPg71OGX3ejCr3wM7/Kdz6drjljZ2LxV07D658Fsw+vxCKBrDwMvjFofDkVZXX9e4Ak2eMPJYD0L+u6aVKkiRJkiRJkiRJkiR12G+AweL5zIh4UQN7nUshYA1gHfC7RgqTJEmSJEmSJEmSJEmSpHbpqmC0iDg6Iq4vHtdFxJ5j2GOv4tqhfQ5rRa0TyM9GmxARpwKXAKV/HgncCVwEXAMsLVv258D/RERX/TcoNWTTMsjB0ecBzHx+bfN2OXz0OfN/Bkt/W9t+zTb7k7Bxychjd/1N5XV9O8HkXSuPr1/QUFmSJEmSJEmSJEmSJEnjTWauAO4o6frniIhK8yuJiP2Aj1G4hyuBazJrvWlFkiRJkiRJkiRJkiRJkjqr20Kp3g2cCpwCbM7MCmk7lWXmYmBLyT5/0cT6xosPAweN4XhD2T4JXFjtQhHxNOBiYHJJ9y3AUZn5nMw8OzNfAjwN+CCF/+2HvAr49Bi+Pqk79a+pfe7M59Y2b+casx0f/V7t126WgU2FULZ69e0MPX0wqUow2tUnQubYa5MkSZIkSZIkSZIkSRqf/r3k/ETg6/Usjoi9gMuAGcBQqNoXm1OaJEmSJEmSJEmSJEmSJLVetwWjvbrk/DsN7DO0NoA/a2CfcSkzl2bmvHoP4IyyrW7IzEdGudwFFG6iG/Ib4IzMfKCspk2Z+R/A2WXrPxQRB4zhy5S6z5Y6gtF2qzEYbfKM0ecAPFI147A1Fl8P/WvrXze5GIg2eXrlOVtWwYq7x1aXJEmSJEmSJEmSJEnSOJWZPwLuKTYDeGdE3BwRJ1dbFxHTIuI9xbXHUXgoZgJXZ+YtraxZkiRJkiRJkiRJkiRJkpqpa4LRIuJg4GnF5iBweQPb/QIYKJ4fFBH7N1LbRBAROwBvKuueNcqaZwBvL+naDLwjMzdWWpOZl7B1qN0U4Pz6qpW6VK3BaJN2gV0Oq21uzySGH+5bTS1zmmzBJWNbNxSM1jsVpuxeed7yu8a2vyRJkiRJkiRJkiRJ0vj2emAZhWAzgJOAGyNiIfDd0okR8bWIuA54CvgKsNfQEPAE8Na2VCxJkiRJ27UcfYokSZIkSZIkSapZ1wSjAUcXXxN4MDPXjnWj4toHS7qOaaSwCeL1wPSS9grg4lHWvAXoLWlfnJlzarjW58raZ0fE1BrWSd2tv8ZgtIPeAVHj23NEIUBsNIObatuvWXIQFlw2trWTZwyf73dW5Xn968a2vyRJkiRJkiRJkiRJ0jiWmY8ArwQWUQg4y+LrPsALS6YG8C7gVGBq2dwFwCsyc2nbCpckSZIkTQCGvEmSJEmSJKm1ssqPoKqNSdq+dFMw2gEl53ObsF/pHvs3Yb9ud15Z+weZuXGUNX9W1v5WLRfKzAeA20q6pgEvqWWt1NW21BCMtteL4JhP1LdvLcFoACvvr2/fRiy7HTYuGtvaSbsOn5/w+crz+secjylJkiRJkiRJkiRJkjSuZebtwAnAlRSCzmD40+lZclA2FsA1wPMy8942lCpJkiRJ+v/ftkmSJEmSJEmSpGbopmC0nUvOVzVhv9Ul57s0Yb+uFRGHAH9a1j1rlDV7A88q6eoHbqnjsjeWtV9Wx1qpO/VXCEabdhC86Fp4+b1w2tUwZWZ9+9YajLbgkvr2bcRT9bwdlIne4fPJMwphcSPpXzf2a0iSJEmSJEmSJEmSJI1zmbk4M18BPBf4PrCIwqftRzpWAxcDp2XmmZk5xifaSZIkSZIkSZIkSZIkSVJn9XW6gDpsKDlvRpBZadDaQBP262bnsvXjae7KzHtGWXN0WfvezKwnpeg3Ze2j6lgrdactFYLRpu4Je58+9n17agxGWzdv7Neo15qHRu7f63R4wXfhkv0qrx3YuHV70s4jz+tfO7baJEmSJEmSJEmSJEmSukhm3gm8DSAiDgaeDswEJgNLgcXA/Zk52LEiJUmSJEmSJEmSJEmSJKlJuikYbWnJ+QFN2G//kvNlTdivK0VEL/D2su5ZNSw9sqz9cJ2XnjvKftLE018hGK1S8FetemsMRlu/sLHr1GP1gyP3Tz+yEARXze4v2LrdO23kef31ZDFKkiRJkiRJkiRJkiSNbxGxM3BQSdfc8odVZuYjwCNtLUySJEmSJEmSJEmSJEmS2qin0wXU4fHiawDHRMTMsW5UXHtsSVcb04LGnZcC+5W0NwA/rGHdoWXtx0ecVdljZe2ZETGjzj2k7rKlQjBaX5uC0Z68srHr1GrBL2DJTSOP7XwY9IySybnfy7duT9pp5Hn9a+uvTZIkSZIkSZIkSZIkafx6M3B38bgdmNLZciRJkiRJkiRJkiRJkiSp/UZJpxlXbgU2AZMphKP9FfCpMe71lwyHwvUDtzRcXfc6t6z9s8xcWcO6XcvaS+q5aGaujYiNQGmi03RgRT37lIuIPYE96lx2SCPXlGpWKRhtUoPBaD113AO7+iHY5bDGrlfNyvvhV2dVHt/lmYXXXY+FlfeOMCFgxglbd/VOG3mv/nUj90uSJEmSJEmSJEmSJHWn3SncGwdwR2Yu72QxkiRJkiRJkiRJkiRJktQJXROMlpmbIuJm4Ixi14cj4ueZObuefSLiaOAjQBa7bsnM7TJdJyL2AF5V1j2rxuU7lbU3jKGEDWwdjNZgOhRQCL07vwn7SM3XXyEYra/B//RzoPa5lz8T3jwIEaPPHYvHflh5rGcSzHxe4Xy/s0YORnv9sm1rm1T+dlPUv3ZsNUqSJEmSJEmSJEmSJI1Pq4qvCSzoZCGSJEmSpO1U5uhzJEmSJEmSJElqsZ5OF1Cnzxdfk0Iw15URcWKtiyPiecAVwDSGn6z5+corJry3AZNK2nOBm2pcW55UtHEM1y8PU6uQfiRNEFsqBKNNajAYbbDO//tdewpsXNLYNStZcU/lsT1PhcnTC+dH/T3s89Lhsd4d4eSfweQZ267rmzbyfgajSZIkSZIkSZIkSZKkieXJkvPJHatCkiRJkiRJkiRJkiSpRapF8xvbL2lIVwWjZebVwI0UQs0S2Bf4VUTMiojnRUSUr4mC50bEN4GbgacNbQfcnJlXtKf6cemcsvaFmWN+tMtY1vn3kbYv/S0KRhuoMxjtqZvhqufDuscau265LWvgiSpvqUd+dPi8b0c49Qp4+X1w2lXwmvnw9NeOvK6vQmbi8jt9GpUkSZIkSZIkSZIkSZpI7is5P6hjVUiSJEmSJEmSJEmSJElSB/V1uoAxeBNwF7APhWCtPuAdxWNdRDwIrCiO7QYcBgyl6gwFqgUwHzi7jXWPKxFxInBUSdcA8O06tlhb1t5hDGWUrynfcyy+ClxU55pDgEubcG2pui0VgtH62hyMBrBuHvzqz+BldzV27dIaLt6r8vhuz4W9z9i6LwJ2PapwVNM3rfLYqvtg12Nqr1OSJEmSJEmSJEmSJGmcysyHIuJe4Fjg2IjYLzMXdrouSZIkSdJofOC3JEmSJEmSJEnN1HXBaJm5JCJeClwGHMjwbw+CQgDas8v6/v9ShkPRHgZenZlL2lHzOHVeWfvKzHyijvXjMhit+Gda159rRIw+SWqG/grBaJM6EIwGsOJuWHQ97P2ikccHByD7YfNyGOyHKbsDCTkAm5YV5vRMgh32hZvOgoENla91zCfGViPApF0rjy2+0WA0SZKkTtqyGnqnQU9vpyuRJEmSJEmSJGmi+E/gGxTuc/sU297nJUmSJEmSJEmSJEmSJEkTWtcFowFk5n0R8WzgK8DZQA8jP16ltC+AAeAHwAczc1XLCx2nImIa8May7ll1blP+v98eddawE9sGo62sswapu2ypEIzW16FgNIDrT4dD3gnP+TL0Thnun38J3PxnjdVVaod9x752z5Mrj/U3nKcoSZKksVgzF37zFlh2B0yeAc/8IBz9T2DwtCRJkiRJkiRJDcnMWRHxGuAVwDsi4sHM/NdO1yVJkiRJqsb7piRJkiRJkiRJaqaeThcwVpm5IjPfAhwJfAmYXRyKsgPg98DngWdm5ju251C0ojcApUlMi4HL69xjTln7gDrXl89fnpkr6txD6h6Z0F8hGG1Sg8Fogw0EowHM/Sbc9TfD7VV/bG4oGsC0et8iSkyZWXmskVA4SZIkjc3gFrjuVFh2O5CweTnMPh/mfK3TlUmSJEmSJEmSNFG8Gfg5hfvfPhsRV0XEaR2uSZIkSZIkSZIkSZIkSZLaoq/TBTQqMx8C/hYgInYC9gKGUnSWAoszc12Hyhuvzitrfzcz++vc44Gy9qF1rj+4rP2HOtdL3WVgA+TgyGN9DQajTZ4BG5eMPPbKB+Hej8PjF1XfY87X4NB3w4xnwQP/1lg95XY5onq4WS32fgksunrb/sFNje0rSZKk+i35FaxfsG3/Yz+Ew/6y/fVIkiRJkiRJkjSBRMSFxdPVwBoKD8A8AzgjItZQeEjokuJYrTIzy+8ZkyRJkiRpBNnpAiRJkiRJkiRJ6p5gtIjYG3heSdevM3N56ZzMXAusBea2s7ZuEhGHAS8s6541hq3uK2sfGxE7Zub6GtefNMp+0sSypcq9qJMaDEZ71mfgtndu23/gW2GXw+CFP4ErjoOVv6++z5XHNVZHJSdf3PgevVNH7h/Y2PjekiRJqs8Dnx+5/6lb2luHJEmSJEmSJEkT0zvY+lPoCUTxfBe2vfdrNFHcw2A0SZIkSZIkSZIkSZIkSV2hp9MF1OG1wM+Lxw+ATZ0tp2udW9b+dWY+WO8mmfkkcG9JVx/13XR3aln7ynprkLpKfwuD0fZ9OfSNsMeBfz58fthfNXaNsTr8QzD98Mb3qRiM5l8FkiRJbbd5+ehzJEmSJEmSJElSM2XJIUmSJEmSJEmSJEmS1LWyyt0P1cYkbV+6KRhtVwpPrwzgjsxc1+F6uk5E9AJvK+ue1cCWPy9rn1NjHYcDzy/pWgdc3UAd0vjXv77yWO+0xvbeYR940dUw/ajh9vNnwb5nDs85+Fx41mcau0699jy1edfsmTJy/+DG5uwvSZKk6gb74b5Pw1UvgGW3V57nTx0lSZIkSZIkSWqGaOIhSZIkSWo575uSJEmSJEmSJKmZ+jpdQB2WF18TeLKThXSxlwP7lLTXABc1sN8PgI8DvcX2ayPiGZk5Z5R1f1fW/klmmm6kiW1gQ+Wxvh0a33/3E+EV98HmlTBpOkTZfa09vXDU3xeOa0+FJTc1fs1q9n5xIaytWXqnjtw/4FuHJElSW9x6Dsz7/ujzBjZA346tr0eSJEmSJEmSpInroE4XIEmSJEmSJEmSJEmSJEmd1E3BaKVhaNM6VkV3O6+s/aPMXDfWzTJzTkR8Bzi32DUZ+HZEnF4p6CwiXg28o6RrM3DBWGuQuka1YLTeJgSjDZm86+hzDnhT64PRTrmsufv1Thm5f2BTc68jSZKkba17DOb9oLa5/esMRpMkSZIkSZIkqQGZ+Vina5AkSZIk1StGnyJJkiRJkiRJkmrW0+kC6nA3kMXzwzpZSDeKiL2AV5R1f7MJW58PrChp/wlwbUQcXnb9KRHxfuCisvVf8GY+bRcqBaP1TIZo81vxQW+DXY+tfX5fHVmUOx0Mr5kPvVPrr6uaSvsNjJjBKEmSpGZZOw/u/juGvx0fRf+Ys7clSZIkSZIkSZIkSZIkSZIkSZIkSZIkib5OF1CrzHw8Im4FXgA8MyIOy8yHOl1XF3k7W/9535eZtze6aWYuiIjXAlcBk4vdJwF/iIg7gUeA6cAJwB5lyy8H/qnRGqSuUCkYrXeH9tYB0LcjnHkHzPka3PXXleftfzbs+zLY5Qi4+sSR50w/Eo7/Aiy+HqbuDYe+Eybt0vyae6aM3D+4qfnXkiRJEmTCfZ+G+z4JOVj7OoPRJEmSJEmSJEmSJEmSJG13anzwpCRJkiRJkiRJqknXBKMV/Rtwccn5qztYS7c5p6w9q1kbZ+aNEfFnwLcZDj8L4DnFYyT/A/xFZg40qw5pXOsfR8FoAL2T4fAPwv5vgGtOgnXzth7/00vhaWcVzlfeX3mfTNj3pYWjlXqnjtw/sLG115XUHFtWw2M/gTUPwR4nw36vgOjpdFWSpGqW/hZmf6L+df1rm1+LJEmSJEmSJEmSJEmSJKlNDHmTJEmSJEmSJHVeVwWjZeYlEXEhcC7wyoj4CvDBzOzvcGnjWkScBBxe0rUZ+H4zr5GZV0TE0cAFwBuBGRWm3gp8PjN/1szrS+PewDgLRhuy477wqodhyU2w6FqYcRzsfQZM2W14Tl+1Gtv0S0+D0aTutXEJXH8GrJxdaD/wb3DwOfD8bxqOJknj2bwfjm1d/7rm1iFJkiRJkiRJkqStRMRBwHHAvsBOwJPAY8BvMnNLJ2uTJEmStl/R6QIkSZIkSZKkrlEtpcLYfklDuioYrejdwBrgg8B7gFMi4gvAZZm5rKOVjVOZeQtt+C1LZi4B3hsRHwROAg4A9gbWAQuBuzPz0VbXIY1LlYLRqoaOtUlPL+z9osIxkqrhbW36Z2XPlJH7Bze15/qSxm7Ofw2Hog155Ftw6Ltg9xM7U5MkaXRPXDG2dQajSZIkSZIkacW9cP9nYNNS2O14OOaT0Det01VJkia4iPg28PYmbfdYZh5Y5VqN3jBzUGbOq3dRRLwe+BDwggpTlkfEj4FPZObSBuqTJEmSJEmSJEmSJEmSOqqrgtEi4vqS5hpgZ+BI4JvF8QXAkuJYrTIzT29akSIzNwM3dLoOaVypFIxWNXRsnBgPNfZOHbl/YGN765BUv9mfGLn/8Z8ajCZJ49m6MWZaG4wmaTwYHIDsh94KIduSJEmSpNZZPQeufv7w7/EWXweLb4Azb4fo6WxtktQlIuJtTdwuKdxLtwpYBPwxM3248ugq3OjTGRGxE/AN4E2jTN0NeC/w2oh4e2Ze1fLiJEmSJEmSJEmSJEmSpBboqmA04FQKN2sNSSCKB8DTi0etN29FHXMlaewmajBau+6V7anwYfbBTe25vqTmmzsLTvh8p6uQJJXLhEe/N/b1AwajSeqgwS1w14fh0W8XPoC/z5lw4rdgysxOVyZJkiRJ2497/m7bhxstvxOevAr2fVlnapKk7vNtWndP27qIuAP4DvDjzPTGi5H9rNMFDImIXuDHwMvLhp4C7qYQencIcDzD91HuBVwaEWdk5q/bVaskSZIkSZIkSZIkSZLULN0WjDYSg80kjX/dHIzWM7nKYJvegnunjty/fkF7ri9pbHKw8tjkXdtXhySpdk9eDbe+fezrt6xtXi2SVItMWDsXVj8E93wUVt0/PLbwF3Dz6+CMGztWniRJkiRtVzavggU/H3ls8Y0Go0lS/WL5V3KCAAAgAElEQVT0KXXbicLDSU8FPhsR52Tm1S24Tid8GPjkGNY9B7iopJ3AhXWsvw14U53XrOeGl//D1qFoW4APAf+dmZuHOiPiSOCbwAuKXVOASyLimMx8ss76JEmSJEmSJEmSJEmSpI7qxmC0VtzwJUmt1d/FwWhR5W23WuhRM1UKRgOY/c9w9Mer1ympMx7+78pjBqNJ0vj00H82tn5gXXPqkKRaDGyC294J875fec6Smwqhabsc1r66JEmSJGl7de8nKo/NvxiO/1z7apGk7ld6E0RW6C9X/nS7keZmydg+wJUR8YHM/Er9JY4vmbkUWFrvuoj4WFnXDZn5SB1bbMzMefVetxYRcTDwwbLuN2TmpeVzM/MPEXE6cB3D4WgzgfOB97SiPkmSJEml2vTAcUmSJEmSJEmSthNdFYyWmT2drkGSxmSgi4PRqmrTL3Cn7FF5bPYnYJ8Xw+4ntqcWSbXZtBzueG/l8UnT21eLJKm6lffDgktg4xJ44n9rW7Pbs2H5ndv29xuMJqmN5n6zeijakCevNhhNkiRJklptzcMw58tVJrTpgUuSNDGcU3zdGfgEhXCroPBmeitwB/A4sBqYDOwGHAOcDOxdXJvAj4FfAjsAuwJHFuccwNYBaV+KiAcy8/qWflXjUETsALyprHtWJ2qp4HxgUkn72yOFog3JzA0R8Q5gNoX/NgDOi4h/rTPsTZIkSdL2LA15kyRJkiRJkiR1XlcFo0lS15r7jZH7+3Zsbx3N1q5feu52PPRNqxy08ej3DUaTxpsFFe/FLuib1p46JEnVzb8EbjkbBrfUvubUX8KcrwAGo0nqsHk/rG3eunktLUOSJEmSROF7tKwSfrZuHgxsgt4pbStJkrpVZn4nIp4BXEYhFA3gG8CnM3N+pXUR0QO8Gvg8cBDwBuCBzPxU2byXA/8OHEIhIK0P+AJwfJO/lG7weqD0qV4rgIs7VMtWiqFtry/r/txo6zLzoYi4BDi72NUHvAX4dHMrlCRJkrS16HQBkiRJkiRJkiRNKD2dLkCSJrwtayuP9e7Qvjpaok3BaL1TYY+TK4/P+Up76pBUuzlfrT4+sLE9dUiSKstBuPP9dYSiBTz3a7DvmZUDLg1Gk9ROS39T27wNC1tbhyRJkiRp9Aem5CCsmdOeWiSpy0XEjsAlwDOBfuDNmfnuaqFoAJk5mJk/B44Ffk3h3sDzI+IdZfOuAE4A7i7pPjYiXty8r6JrnFfW/kFmjpdfZp8JlD5x8beZ+cca136rrP3a5pQkSZIkSZIkSZIkSVLjskpMRbUxSdsXg9EkqdWeurny2KSd21dHK+x9RvuutcPe7buWpMY89hNY/rvqcwzOkaTOW/0grF9Q29xjPw1v7odnvKfQ7ttp5Hn9VUKBJamZNi2rfe6qByqPDQ7AxqWFw/BeSZIkSRqbdfNhxV2jz1td5fszSVKpTwFHUHha3ecy8yf1LM7MdRSCsJYDAXw5IvYom7MGeD2F4LWhW4pf0mDdXSUiDgH+tKx7VidqqeClZe0b61h7M4U/2yHHR8ReDVckSZIkSZIkSZIkSZIktYnBaJLUaouvrzy2R/n9lePUMz9Yof8D7ath8szq4+seb08dkkZ3/2dGn2MwmiR13rLbap971D9AlPwIoW/ayPN8f5fULqsfqn3uyt/DRbvCPR+Dgc2FvoHNcPt74We7wcV7FI6LdoHrTi98oF+SJEmSVLsFl1Ye65kE+50FR3wUdn5G+2qSpC4VEX3A24rNTcDnxrJPZi4F/qvY3AF4ywhzHgUuohCeBnDSWK7Vxc5l+GsHuCsz7+lUMSM4uqz921oXFsPxZpd1H9VwRZIkSZIkSZIkSZIkSVKbGIwmSa2Ug/DA5yuP731G+2ppxDM/CDvuv3Xfwe+A6eX3YLbQlN2rj1/1/PbUIam6zSsKwROjGVjf+lokSdsaHIDld8HS2+DWc0afP3k3eOldELF1v8Fokjptw8L65m9ZBX/4XCEcDeCuv4aHvw5bVg/PGdxSCDe/6jmF98vNK2HRdbBhUfPqliRJkqSJaGGFYLRdnglv2gynXArHfw5mHNfeuiSpO70Q2B1I4PZiwNVYXV1y/poKc64qvgbwtAau1VUiohd4e1n3rDFut39EfCsi7o+IFRGxOSIWF9vfj4h3RcRuY9j3iLL2w3Wun1vWPnIMNUiSJEmSJEmSJEmSJEkd0dfpAhoVEccBZwEnA4cAuwE7A5mZ23x9EbErsEuxuSkzF7erVknboaW3Vh475C+gd3L7amnETgfBS34Lj/0PrHkY9jwFDjh724CMVqoUvjFk4yJYvwB23G7u05XGp9UP1jbP4BxJar91j8GNr4BV99c2//APwWF/BTsdvO1Y304jr/H9XVK7bFo2tnUPfgkOOQ8e+U7lORuXwI8mFb7nzcFC3+F/C8f/W3u/D5YkSZKkbrB5JSy+ceSx/c9uaymSNEGUPrXuiQb3erLk/IAKcx4oOZ/R4PW6yUuB/UraG4AfjnGvg4pHqT2Lx5HAnwNfjIhvAP+UmWtH27AYpFYepvZ4nXWVz39GneslSZIk1SU7XYAkSZIkSZIkSRNK1wajRcQxwJeA00q7a1h6GvDT4vm6iNg7M9c3uz5JIhP++KXK4zOf275ammHHfeGIv+1gATW8xT9xJRz6F60vRVJlT/yytnkG50hS+932rtpD0Q4+B074QuXxSqG1/aN+lkeSmmPzGIPRAK44uoZJWfi+fsgfvwC7Px/2f8PYrytJkiRJE82qB+DXZ0P2jzz+tNe0tx5Jmhj2KTkf5Qlyo9qx+BrA3hXmrCg5n9Lg9brJuWXtn2XmyhZebxrw18DLI+K1mTnaL2x2LWuvz8x6f8m+pKw9vc71FUXEnsAedS47pFnXlyRJktRqhrxJkiRJkiRJkjqvK4PRIuIdwFeAqRRu3Cr9qXtSPT3nUgpPQzyAwg1HrwO+15JCJW2/MuG282D+TyvP8Qnp9dlhr9HnDG5ufR2SKltwGdx3QW1z+9cV3iujllxbSVLDNi2HRdfUPv+Ij1QfrxiMZvClpDbZ1EAw2lgtuNRgNEmSJEkaMue/4I73UvFDkjs+HWYc39aSJGmCWF1yfmSDex1Vcl7pySZTS843NHi9rhARewCvKuueNYat+oFfA9cC9wILgDXATsD+wMnA24A9S9YcBlwbESdm5mNV9t6prD2WP5vyNTuPYY9K/hI4v4n7SZIkSROA98NKkiRJkiRJktRMPZ0uoF4R8ToKNyLtUNoNzAfuYZTfJmTmIPDjkq6zml2jJLH0t/DItyqP90yCyU17EOv2Ye8zCv+7VdO7Y/Vxabwa2Aj3ng/XvQhuPQeW39npiurXvx5+9eo6FiRsWdWyciRJZVb9gbqe5Dn9iOrjvQajSeqwzcvbf815P2j/NSVJkiRpPNqwCO7+MFV/3rTfWT4cRZLGZkHxNYCDI+L5Dez11uJrluxbbu+SOU81cK1u8jag9AaUucBNde7xcWC/zDwtM/8lM3+RmXdn5sOZeU9mXpaZH6Hw8Nb/w9Z/ae4NXBxR9S/K8mC0jXXWB9sGo5XvKUmSJEmSJEmSJEmSJI1bXRWMFhH7AN8pNoduFvoqcEhmHgi8tsatLh3aEjilaQVK0pAnrqw+vs/L2lPHRDJ5Bhz0tupzRgtOk8ajTLjhTLjvU7D4Bnjk23DtKbDsd52urD6XH17/mk3Lml+HJGlkG5+sfe6h7x59zqQKn53pX1P7dSSpEf5bUpIkSZI6Z/7F0L+2+pyn1fMwFUlSiZuALRTujQvgqxFR91PiIuKNwEsYvsfumgpTTyg5n1fvdbrUOWXtCzOzjqfLQDEMbUkN8zZm5t8D7y8bOgF4cz2XrKe+BtZIkiRJGjP/CS5JkiRJkiTVqtpv6ev7Db6kiayrgtGATwA7UrjpaxA4OzPfl5mPFsdrfXu7g8INZAAzI+Kg5pYpabt3/6erj0/etT11TDTP/Xr18XXz2lKG1FRLboIlv9q6r38dPPTlztQzFmvmwvr59a8zzEKS2mfto6PPGbLvK0afM2n6yP0DG2FgU+3XkqSx8t+SkiRJktQ593+m+vikXWBPn1EnSWORmauByyncH5fAccBVEfH0WveIiHdSePjoULhaAt+vMP3MkvPfj6XmbhIRJwJHlXQNAN9u9XUz8yvAZWXdf1llSXkC6Q5juGz5mlFSTevyVeDoOg9TUyVJkiRJkiRJkiRJklSzrglGi4heCk9JzOLxucz82Vj2ysx+4I8lXYc3XqEkleidWn18ksFoY9LTV3383n8yAljd56H/HLn/0e+0t44hAxth6e2wcvYocduDsPxuWH4XzP7k2K61aenY1kmS6ldPgOw+Lxl9TrWg3y2rar+WJI3VlpWdue7CyztzXUmSJEkaL7ashQ0Lq8/Z9+XQO7k99UjSxPRhYGNJ+yTgDxHxtYh4UUTsUr4gIg6LiHdHxB3AfwGTGQ5Fm5WZs0dY83TgVIYfRnpzc7+Mcem8svaVmflEm6792bL2iRFR6Rcu4zoYLTOXZOb99RzA3GZdX5IkSRqfotMFSJIkSZIkSZI0oXRNMBpwIrALhd8WbAH+tcH9FpSc1/xETUmqSd/O1cerBUmoMcvu6HQFUn3mX9zpCoY9dQtcfgRc/Xy44li44SWwecW289YvLIz/8gT45bNhXqWHi49i87LG6pUk1W7tvNrmnTUXeqeMPm/yjMpjI/3dIUnN1r9u9DnHfKr5133oq83fU5IkSZK6yd0fGX3O017T+jokaQLLzEeBc4HBoS5gGvAu4BpgRUSsiIjHI2JRRGwAHgC+Cjyb4UA0gNuAD1W41Mco3D8YwKbi3hNWREwD3ljWPauNJdwOlP4SpRc4ssLc8qfQ7Fisvx57lrU79LQJSZIkSZIkSZIkSZIkqX7dFIx2aPE1gTsyc3WD+5Wu3+YpmpLUkMEt1cezvz11TETPKn+Abpm532xPHVIzrH6o+ngOVh9vhvVPwJyvw+3vhWteCOvmDY8tuhbu+Ydt1/z27bDq/tr2nzKz8tgmg9EkqS2eugWevHL0ec/5Mux0cG17TqoS9LvZz9VIaoP+9aPPOeafYJ+XNve6tbyfSpIkSdJEMjgAj/0EHvhC4fXhr1ef3zOp+d+LSdJ2KDN/BPw5sIatg86ieEwHnkYh/GpKSX8WjwCuAl6WmZWeMvA94LTicXKVeRPFG4DSJx0uBi5v18UzcxB4vKx7jwpzl7F1iBrA/nVe8oCy9pw610uSJEnabuXoUyRJkiRJkiRJarFuCkYrvQlofhP2K00a6WvCfpJUsGUtbBklDGKnQ6uPq7Knv7b6+IYn2lOH1AwLR7nH+q4Pt/b6y++GK4+DO95b+YNMj1wIW9YMtzevhCU31Lb/MZ+CVz4Ie/7pyOObltZXrySpfrMvKARfjib64LC/qn3fvmkQvSOPGYwmqR36a/yM5pTdm39t3+ckSZIkbS8GNhd+tnTLG+HuDxdeR3PwuTB5eutrk6TtQGb+BDga+AkwQCHsDIbDz0qPIQHMA96ZmS/LzFVV9r81M28qHne24EsYb84ra383s+1PNtxQ1t6hytwHytr13mxU/jSc8v0kSZIkSZIkSZIkSZKkcaubgtFKb+Cq8OnruuxWcu6nGSU1z5qHRp8z8zmtr2Oi2uWw6uNtv2dVXWfLavj9P8J1p8Md74M1D3eulg0Lq48/+CVYP8qccjkID/4nXH44/DAKxz0fg80j3O/++3+ATU9V329wM1y0S2Gf294JCy4rXGM0Ox8GR38cpsyEyTNHnrNp2ej7SJLGbu4smP3J2uYe8Ob69o6AybuOPLZ5RX17SVK9chAG1tc2d+bzmn/9lfc2f09JkiRJGo8e/L+w7Nba5z/99XDc51pXjyRthzJzQWa+CTgA+CDwY+BBYBmFsLT1wELgFuALwMuAQzPzws5UPD5FxGFA+ZNkZnWglPInOVR7mth9Ze0X1HqRiJgGHDvKfpIkSZIkSZIkSZIkSdK41U3BaKWpHfs2Yb+jS85N5ZDUPKsfrD6+x8mw6zHtqWWi2q1KsNzglvbVoe4zsAmuPRXu/wwsvh7mfAWu/hNYM7cz9fSvHX3Owsshc+u+wYHK829/D9z5ga3fi/7wOfjlCTCwsbi+vxAQ9+RV9dU7dxb8P/buOzyO8l77+PdRtST33jEYXDBgmunV9N4J7QQSckIaSU4K5KSQHt4USM9JQghJCL33YmxjbIPpxtjYYNx7r2qWtM/7x1jRSp6Znd2dmS26P9elS7tP/UkYbZu5Z9a1wcYe+AMnNAegsuOx3bvt0lMwERFPHf/2p2vJv51AyyBMGex3Q/p7lPdyb29S9riIRKylPvjYva6Eit6px3UZCBNfCrbmSydm/3daREREREQkXyV/BrH4ruDzLtkExz8EFT3Cr0lERLDWrrHW/t5ae6W1dn9rbX9rbYW1tpu1dri19nhr7TettS9YqzevXHy6w/0Z1toUB/iEyxjTF9inQ/NqnynPd7h/UhrbHQ+UJd1/11q7Lo35IiIiIiKSNr0UExERERERERERCcrv3TS90yYirQopGG357u8GOMQYU57pQruvADkkqWlONoWJiLSzfYF3335fgJM7HrcoaUs0evdtmxdfHVJ4Vj8LW95t39a4AT7+S27qaa5NPebNz8F9JXCvgRmXwxP7wEPdYdr50LC+bVztcnjmAFh0h/s6OxfDA1XOOveXw0M9iOyl4dH/hhFXtt2v7OM+rtHv4tciIp2UTcB734FH+8GD3WHm1dCwIfW8dmtYJxQziP4nwakvQ79j060UKnq6t+9SMJqIRCzI8+hWXfrCmW9D/xP8xw04GQaeAme+BYPOSL3uxleD1yAiIiIiIlII1k+H5yfAg1Xw/BGw+F/+n3smG3oRVAYIpRYREckBY0wp8MkOzXfmoJQraH+85jpgvs/4F4Dkq0QcbYwZE3Cv6zrcfyzgPBERERERERERERERERERERGRvFBIwWiv4RzoY4Eq4Er/4b6+nHR7XdxXfxSRIle71L192CUw4Y9QVh1rOUWpxScYrWEdbHjNCRUR6cgrAG3+L+Oto1U6gQ4Ayx+C2iXQUgernoJJxzvhN4lmeO7g/AgGPO5h2Pvq9m2ewWiboq9HRKTQvP9DmPcz529k8w5Ydi+89knn731Qu7bAtrnBxp46NbNQNIDy7u7tTdszW09EJKjmuvTGdx0Bp06DM9+BkZ+B0qr2/RW9YP9vObd7H+YEmk98yX/Nxf9IrwYREREREZF81FwHa6fA/NvhpRNg81uQaILNb8Ksa4Ov02NcdDWKiIhk72xgUNL9HcBDcRZgjBkAfLdD81PWen8AZK2tAx7u0HxzgL1GARclNTUD9wYsVUREREREMmZyXYCIiIiIiIiIiIiISFEpmGA0a20jMBnn0wID/NQY0zPddYwxxwI34ASsWeDRMOsUEaFulXt7zV7x1lHMEj7BaACTjoFn9ocdi+KpRwrHmhdyXUF7zTuzm7/jIyc8Z+YnnBCcXOsyAAafuWd7ZV/38QpGExFpz1pY/Pc929c875yUGlTjxvBq8lNS6d5um+LZX0Q6r3QDhlv1PgSOvAMuWg0T/gT7fBr2/184/XXodVD7sQNPgarB3mst+ltmNYiIiIiIiOSLJffAgzUw5RR49+vZrVU1KPUYERGR3Lm+w/37rbUZvclojBltjDkvzTkDgaeBAUnNu4BbA0z/AZD8wct1xpjzffbqAtwFVCQ132mt1QE0IiIiIiIiIiIiIiIiIiIiIlJQCiYYbbef7v5ugSHAi8aY/kEnG2NOBp7E+bkN0AL8KuwiRaSTW/+ye7vfCdWSnpYUwWgA2z9M70r2IjYR/56ZBjokm/NdWJEnOa9H/g3KavZsr+jjPr5xoxMCJCIijpYGqFvp3jfvp+7tbuIKRiutcG9v2RXP/iLSeWX7PLqiJ+z3eTjqTjj4Z9B9P/dxPcf7r7Ptg+zqEBERERERyZUdH8Nr14S3XjeP11UiIhIqY0y5MeZYY8wnjTFfNcZ8zxhzS67rymfGmAHAOR2as7nqwSDgSWPMHGPMTcYYzwdBY0w3Y8yXgNnA4R26f2KtXZxqs91jftuh+WFjzJeMMe0+qDHGjMW58OwxSc2bgB+m2kdERERERMJQRMfD6theEREREREREREREckDZbkuIB3W2teNMfcDV+B8anA4sMAY82vgQZwrKbZjjCkFTgL+G7gMJxCN3fN/a61dGn3lItJprHwKbIt7X9WQeGspZt32g4a1qcdtmAk7l0LXEVFXJMWgcRN06RfvnmEEo4Vt0Bmw5oX05/U/CYac695X6RGMlmh0AoBqhqW/n4hIMWre6d238ong6wQNRus9Ifiabko8gtESCkYTkYi1xPQ8OpEilPuZcXDFLigpj6ceERERERGRsKx4LLy1ugyEASeHt56IiOzBGHMc8A3gdKDSZciPXOacCVy+++5ma+03oqswr11L+2Mk51pr3whh3QOBnwM/N8ZsA+YCG4EdQFdgGDAe9+Mz/2qt/XEae30LGAectft+OfB74HvGmHd277kPcChtx0aCcyzlRdbaNWnsJSIiIiIiIiIiIiIiIiIiIiKSF0pyXUAGrgfexTmIxwI9gR8AH+z++g9jzHygFniRtlC01kuXvIpz0JCISDgSLfD6p737qwfHV0ux2/+m4GM3hXE8qxSF2mX+/fWr4qkjmV8ATi4c8H046Tk49Nfpzx3S8SLbSbru7d23+un09xIRKVapAjN3LAq2TtBgtNFfDjbOi1cwmm3Kbl0RkVSa6+LZp6Uh9Zj5t0Vfh4iIiIiISDZWPgEzroAZl8OyB533mGan8Vmbny4DYOJLUFJQ1+QTESkYxpgaY8w9wDTgPKALzvFvyV9e5gH/hRMM9j/GmPERl5uvPtXh/p0R7NEDOBa4ALgGuBA4jD1D0WqBz1prb0hncWttC07I3QMduvoDZ+IcF3kY7f89rAcusNZOT2cvERERERHJht9LNBERERERERERERERSVfBBaNZa+uBM4AptA86MzhXxEy+PxqooO0TBrv79ovAObsPGhIRCceGGf4hFFUKRgvNgInQbb9gY2d+ItpapDDUr4FnUxznXbcynlqSpQrAidOoG+GgH4AxsPd/QWWf4HMresNeV3j3Vw2Cnge6922ZnVaZIiJFLdXjwsongq3TuCH1mKohMPTCYOt5KSl3b2/Zld26IiKptMQUjDbo9NRj5v4IapdHX4uIiIiIiEgmFv4FXrkQlj8Ayx9yPjd7at9w1h56IVy0BnqOC2c9ERFpxxjTHefCn1fgfna9dWlr67R2BfBs0lyfD3SLkzHmWGBMUtMu4N9ZLjsf+BkwE6gPOOcj4NvACGvtHZlsaq3daa29AicEbZbP0M3A/wEHWGufz2QvERERERHJlO/LNBERERERERERERERSVPBBaMBWGs3AqcBNwMbaR981vo9+YvdY7YB38EJRdseW8EiUvzq18Lkk/zHVPSKpZROoawaTnkZ9roy2Pj6dZGWIwVg8T+gaZv/mGnnwaTjYfM7sZQEQPPO+Pby0n00HPhDOPT2trbKPnDaazDk/NTzB50Fp02H6qH+4/oc6d6+a2vwWkVEil2qx4WVjwdYow5mf8u7v2oIDLsETn8NyrumV19HJRXu7QkFo4lIxFoa4tlneICg7ZZ6+PB30dciIiIiIlJMtrwHLxwFD/WCF4+BdVNzXVFxshbm/TSatcffCsc97FxsRUREovIwkHz1qV3A3cCngetwD0vr6LGk26eFVlmBsNbOtNaapK/K3ccdZrPmOmvtd6y1xwFdcYLXzgE+C9wE3AJ8E/jM7vb+1trR1tpbs9179/4PW2uPBvYBLgW+DPwv8ClgIjDIWvsFa22Aq+iIiIiIiIiIiIiIiIiIiIjkhvW5zoBfn4h0LmW5LiBT1loL/NIY83vgSpyDt44DBtM+8G0LztUzXwDuttamSEUREUmTTcCUU1KPK62OvpbOpHowHHsvjLjKCbTys+xeGP1VnZzRmW16M9i4DTNg8kQ4+32oGRZtTdY64TVR2f9bcPCtmc/vvh+c+AQ8vhfULd+z/8i/wcjrg69X3t29vWlHZvWJiBSj5lr//g3ToWE9dOnv3r9zMbx8jvf8EVfDMf/OvL6OFIwmIrnS0hjPPj3GwD7XOUHLflY8Aof8Uq85RURERESCqFsFLx7thAwDbHzN+Zzn7LnQdUROSys6OxZC3Yrw1z301zDmq+GvKyIi/2GMuRQ4lbYLgr4GfMJau3J3/14Bl3q+dUlgvDGmq7U2D67eVRystQngw91fce+9BFgS974iIiIiIuJHxwyIiIiIiIiIiIiIiISpJPWQ/GatbbDW3mWtvcpaOxwoB/riBKRVWmv7WGvPs9b+QaFoIhKJ9dNg2wepx5V2ib6WzmjgqVA1xH/MO1+Dl06AXVvjqUnyz8rHUo9p1bQtvfGZaqmn7Tj2DvqfCD3HZ772qC9nF4qWbNhFe7aVlMPQC9Nbp6ybe3vz9vRrEhEpVs0BzkV6dIBzAnGylgaYfhk8ORK2L/Ce2/vw7OrrSMFoIpIriZiC0QCOvBOOugtGXOM9pnYpbJ0TW0kiIiIiIgVt6T1toWitmmth3k9yU08xC/JeUyb6TIhmXRERSfbtpNtzgdNaQ9HSYa1dC6zffbcEGBtCbSIiIiIiIiIiIiIiIiIiIiIiIpHL+2A0Y8x4Y8w3jTF3GWOe2v11lzHmJmPMIR3HW8dma+1aa21TLmoWkQCshfUzYNkDMP82ePtrMOMTMOk42PxurqtLz6a3go0zugpUJEq7wJF3QFlX/3EbZsDsbwVbc9sHMP92mPtTWDfN+fcqha28e3rjg4QdZqu5zrvvsN/BGW9AWU1ma48L+G890FrfgV6Htt03pTDh/6CyT3rreP03aNqReW0iIsWmuTbYuLe+1P7+3KxeMQcAACAASURBVB/DiodTzxt6fvo1+Skpd29P6KW4iESsJcZgNFMC+1wHx9wNl2xyng+7WRFDuLKIiIiISDHYMtu9fdGdkGiJt5ZiZyP4fVb2hT5Hhb+uiIj8hzFmEHBwUtON1lqfD5dTSr6iyn5ZrCMiIiIiIiK+iul482L6WURERERERERERESkUJXlugAvxphDgV8Dx/kMu9UYMxP4mrU2YDKRiOSNqafveUV4gJ2LoPceuYf5a/ZNua5ABp8F586H5w6Gxk3e45beAxP+5JzY7mXxv+D168E2t7Xt+1knCMpvnuS3qiHQtD34+KDBNNlI+IQ5lFZCaQUMvRiW3p3+2l0GZl7XHmv1g9NnOiGB9Suh/4nQbd/01ynv5t6uYDQRkTZrng82buXjULcKqoc44UAf/j7YvJq9M6/NTUmFe3tiV7j7iIh05PdcOkqVvZ3nw+um7Nm3/uXYyxERERERKUjL7vPu27EQeoyJr5ZiF8VnHWO+DiUegdEiIhKWo3d/t8AKa+0rWa63Oel2mle/EhERERERERERERERERERERERyY28THgxxlwATMcJRTNJX/8ZkvR1HPCKMebCuOsUkSwY4wQVualbFW8t2Zj701xXIK2qhzrhZX6ad0Ltcu/+ho0w69r2oWgAH/8V1k/PvsZcsNYJe5t+Kcz6NKybmuuKcqPjf9NUmndGU0cy32C0Ls73CX+EwWenv7Yxqceko7QLDD4DRl6fWSgaQJlHMFqzgtFERP5jyb+Cj318KNxfCQ90Cf63NOzHBwWjiUiutOQoGA1gyLnu7dvnx1uHiIiIiEgh8vuMBqBhbTx1dBZhf9bR/yQY87Vw1xQRETfJV8F6L4T1kh8QuoawnoiIiIiIiLgK+dgsEREREREREREREZFOLu+C0YwxY4D7gCqcTwbs7i9oH5Bmk766APcaY8bGW62IZKXaIxitvkCC0Rb/E+Z8N9dVSLIh56ces32Bd9+j/bz71ryQfj354L3vOGFvKx6BxXfBlNNg+SO5rip+zbVpjo84GM1a/zCHkkrne3k3OOkZuHg9XLgCjns49dp7XRVOjWEr9whGa1IwmogIAHWr05+TTgDZ0AiyxBWMJiK54hcy3KrbqGj27nmQe3vDemjcHM2eIiIiIiLFoH4NTDref0zjxnhq6SzS/WzET+8JcOpUKPV4P0hERMLUI+n29hDWSw5DawhhPRERERERERERERERERERERERkcjlXTAa8GecoLPW0DMDNAOvAQ8CD+2+3UT7kLQuwF/iLlZEslA91L29rgCC0da9DLOuy3UV0lFpJVywzH/Mtnnu7Rvf8J/XuCGzmnJp11ZYcHv7NtsC836Sm3pyqbkuvfFrX4JXPwlNYRxnnuTjO+CZcfBwb5h2rve40sr297v0c/5m1gxPvcegM7KrMSpewWiJRmhRgI6ICHXLo11/+OXhr1lS7t6eaAp/LxGRZH4hw63G/yyavbuP8e7b9kE0e4qIiIiIFINFf0/9/ofXZziSmbAuAlPRG059OZy1REQkiC1Jt3t4jgpucNJtJfuLiIiIiIhExua6ABERERERERERkYKhd9NEJIi8CkYzxhwAnEBbIBrAbcBAa+2x1torrLWfsNYeCwwEftlhiWONMQfFV7GIZKVqiHt7fZ4Ho22bD5NPznUV4qVmOPQ4wLt/7WT39uUP+q+7a2vmNeXKmhed0KmOtsyGph3x15NLLbXpz1l6N7x8Tng1LPk3vPFZJyyhaSvsXOw9tqTSvd0vhAGg+1jY64rMa4xSeXfvvg3T46tDRCRf1a+Odv1hF4e/ZkmFe3tCgZciEjG31znJ+h0Lg8+KZu+qwVDmEfq75oVo9hQRERERKQab30495v0fgNXhTqFpCikY7bSZUFYdzloiIhJE8lXbxmWzkDGmEjg4qWllNuuJiIiIiIiIiIiIiIiIiIiIRE1HEYpIq7wKRgMu2f3d4Pyt+rK19pvW2i0dB1prt1prbwa+mDQeIIKzvUUkEtUewWi1y+KtIx02Ac/sn+sqJBW/4I91U6C5Q0iWtbDycf81mwowGG3bXO++qMNX8kmiyfnKxIYZsPAv4dSx6M7gY72C0co9AhhanfUOlHqE1OSaV3gEwKK/xVeHiEi+qoswHHjI+VDq8diSDQWjiUiu+AWjHfIrOOm56E7aNwb6Hu3el+p1pYiIiIhIZ7bysWDj1k+Lto7Owlp456vZr9PzQOiR4qItIiIStnd2fzfACGNMNn+ILwFa38xvBmZlU5iIiIiIiIj4MbkuQERERERERERERESkqORbMNqE3d8tMMta+8dUE6y1fwZm0vYpwhER1SYiYase7t5euxTq18ZaSmCvXJTrCiSI0V8B4/EQl2iEtS+1b9s2D3Yu8l9z1x4ZnfnP+uQhb37Hu6/YdAzCS9ebn4OmHdnXsf7lYONMGZSUevcPPse9/eD/B6Vd0i4rNlUDvfs26vh7ERHqIwxGG3hKNOt6BaO11Eezn4hIqxaPAMZ9roOxX08dKJytoRe4t2+bCzs+jnZvEREREZFC1aV/sHErn4i2js5i+YPZr1FaBRP+nP06IiKSFmvtEiD5Tab/zWQdY0wl8J3WZYE3rbVZfnguIiIiIiIi3nyO2y44xfSziIiIiIiIiIiIiEihyrdgtLFJt/+Zxrx/Jd3W5YpFCkWfCd59G6bHV0dQb34RVj2Z6yokiMrecJlPkNXG19rfX/9K6jU3vw2Jluzqituuzd59r14Fq1+Ir5Zcaq7Lfo2ns3x64RdS11FppX//Ptfu2WZKYa+r0qspbmU13n21S2HRXbGVIiKSl+pWu7cHPWnYiymF4Zdnt4aXknL39vrVkGiOZk8REXACr92UpHguHZah53v3KcRBRERERMRdz4OCjVt2f3rvqYu7FY+lHrPPdc7Fhrycvxj6HRNaSSIikpbWD08NcI0xxuVDYm/GmBLgDtofi5fyAqUiIiIiIiIiIiIiIiIiIiIiIiL5It+C0Xom3X4njXmtY02HNUQkn1UPga4j3ftWPxtvLal8+AdY+KfU40bd6N5+6G/CrUdSK6uGYZe69zVuan+/dlmwNVcV2Anua57373/js9DSEE8tudQcwkWv61fDlvcyn5/O7zlVmMOwS+HAH4Apc+6X94DjH4GaYRmXF5sDvufd9+bnockn0FBEpNg1bnBv73Fg5mtW9IITn4aqgZmv4aekwrtv5ePR7CkinVPtMnjn6zDtAvjgF9C0zX1cXMFo1UOht0fY+7vfiKcGEREREZFCYwNefKZhLWybF20tncH6qanHHPB92O8L7n09x0f3npKIiATxW2A9YHGOh7vTGPMzY0x1qonGmP2BF4Grd8+3wMfA/dGVKyIiIiIiIs7LNxERERERERERERERCUu+BaP1SLq9yXPUnrYk3e4WUi0iEof+J7q3L7kbts2PtxYvyx+Ctz0Cz5Lt9wXnq6ymfXtFbxh2cTS1ib+KHu7tHYOy6lcHW29ZAR0nvHEW7FzsP6ZuOaydHE89udRSF846S/+d+Vyv4AY3pSnCHIyBA78Pl22Fs9+HSzbC0Asyry1O1cO9+xKNsPLJ+GoREck3jRvd23vsn/5aB/4QLlgGF6+DwWdmV5cf32A0/U0XkZDsWATPT4AFt8OqJ2H2zbDmBfexqZ5Lh2nYhd59H/4uvjpERERERApF0GA0cJ77S3Ya1vv3Dz4Huo6A7qNgwMQ9+/e7IZKyREQkGGttHXAtkMAJNisBbgbWGGPuA9olWxpjPmGM+Z4xZjowBzgZ54x8AzQCV1prbYw/goiIiIiIiIiIiIiIiIiIiIiISFbyLRgtuZ40joxuNzbffiYR8TPodPd22wJL7423FjctjTDj8mBjD70deoyBiS/BgFOgsg8MOgNOmQo1w6KtU9yV1ri3L7sPWhra7q95Pth6yx/Kvqa4zPl+sHGrno62jnzQUh/OOvN/BS+dCJvfTn9uOsFoJV2CjSurgZ4HQElZ+vXkSnl3//7Vz8RTh4hIPvIKRut5AHTdN721qodCzXAoKc++Lj9+wWhL7452bxHpPD78LTRuCDa2JMZgtKE+wWhzvg86z1REREREpL20gtE6wWcXUSvzuZ5ceQ84LukzrxOegJHXQ9Vg6HkgHP5H2O/z0dcoIiK+rLUv4ASgtYajgXPB0MuBbyQNNcC9wA+AY2h/7FwzcL219p2o6xUREREREREdJyAiIiIiIiIiIiIiEqYCStIQkaI09EKo7Od+kvOmN+Kvp6O3bkw9xpTBCY9D6e4TsPseBae8FG1dEkyZRzAawGvXwnEPQMNG7yASN4nm/A+ishY2vR5s7I6Poq0lHySH4HV04Qp4PI3gwvWvwPOHOycMdRsFPcZBSWnqeQ0Bgxyg7W9JMSr3ORFLRKSz83o+UtkPDvohvHoNgQ+e83sOFCa/YDQRkbB89PvgY+N8Lt19LNSMgNqle/Y1bYX61VA9JL56RERERETyXaI5+NhNb4BNgNE10TLmF5h/4Qooq2q7X94Vjvxb9DWJiEjarLV3GGMWAfcAA2j/QUHybZN03+6+vxH4hLV2ahy1ioiIiIiIiIiIiIiIiIiIiARlfU6V9OsTkc5FRxKLSG6VVsKQc9z7ErviraWjXVtg0R3+Y4ZdAme+6f0zSG75hYKseBjq18DCP6a35s7F2dUUh4Z10LQt2Nh1UyDREm09udZS795eUgnVQ6H76PTXnHEZPDceHh8KG17zH7vkbnjp+OBrlxRxMFqZgtFERFy1NEDzTve+yj4w4iqYOAn2/qTTluqk4NiC0XxOsBURCUM6wQkQ73NpY5z3BLx0hhBqEREREZF02DQ+i7AtMP9X0dVS7KyFpu3ufcfcp4uYiIgUGGvtFGBf4CZgBU7oWccvkm5vAn4EjFQomoiIiIiISJxM6iEiIiIiIiIiIiIiIhJYWa4LEBGhZoRHRyLOKva06hn//qP+Cft8Mp5aJDN+oSA2AZvfhQ9/m96aDeuh+6js6ora9vnpjV/4fzD6S9HUkg9aGtzbS7s434+8C6acCi11zv2ybtC8I9jaDWth2rlw4Uooq9qzf+v78FqafydKizgYLeXJVjooREQ6qcZN3n2VfZ3vA09xvo7+p3N/1dMw7Tz3OWVdw63Pi1f4qIhIWLbOSW983M+lD/oRLLjNvW/yRDj+URh8DpRWxFtXoatfB6ufBowT+l3ZH/oeCd32zXVlIiIiIpKNdILRAGbfDMMu1vPApu2w5gXYOs+53f94GHiq//vtiUawHkHTNcOiqVNERCJlra0FfgX8yhgzCjgOGAb0ASqAjcA64FXgHWt17WQREREREZH46aWYiIiIiIiIiIiIiEiY8jEYrfXTgKOMMSMCzhmYfMcYczxpJGtYa18JOlZEolDi3rw+x/9rrn/Zu6+sm0LRCoFfMBrAO1+FXVvSW7N5Z+b1xGXHx+mNX/FQkQejeYS2tAaj9TsaLlgKKx+HkgoYdAa8cCTULQ+2/q7NsOY55wStjpY/lH69JZ04GG3ZvXDsPfHUIiKSTxo3eve1BqPtweM5NMT4WOLzstv41CciEsS2BfD8YenNifu5dFk19DkCNr3h3j/9Yuh9OEycBBU9462tUG14Faaesedr79IqJxx0+GW5qUtEREREspduMBrA0nvgwO+HX0uhqF0Gk0+BnYva2j78NfTYH058Grru7THP5/ON8u7h1igiIrGz1n4EfJTrOkRERERERCQdBXbhYOVti4iIiIiIiIiIiEgeyMdgNHDe9b8vi7kvpzHekr+/B5HOoaTUu2/Le9BrfHy1tLIWFt3p3b/3f8VXi2QuVTDajoXpr9m8I7Na4tS0Pb3xuQ4hjFpLg3t7aVXb7S79YN//brvf/wRY+u/ge0y/BHodDFtmZ1Zju7q6ZL9GvipLEYwGULsCaoZFX4uISD5prvXuy+RkVRPTgXR9j/LuswnY/hF0HxVPLVLcdi52Xp9tetM5kb5mBOx1BQw6LdeVSZTmfC/9OT3GhV9HKr0P8w5GA9j8FjzcC0bdCGO/ATXD46utEL1+vXsgeUs9vPl5GHIBlFa0te9cAvNvg6atMOBk2Ps6//eZwmQT8PEdsG4KVA2CkddDzwPj2VtERESkEGUSjLZ+evh1FJLZ324fitZq2wcw9ydwlMdnmR/83HvNIO/Ti4iIiIiIiIiISMgUNCYiIiIiIiIiIiIikq6SXBfgweIEnKXzZZO+0p0rIrmUaPbuW/FofHUkm32zf/+oL8ZTh2QnVTCal16HQLXHyepNBRCMlmjMdQX5xTMYzSeAbPSX098njFA0oKgPfggS7vPEcP/HBRGRYuT1WAVQUune3qWf95zyntnVE1R5ihNpJx0DW+fGU4sUr+0L4cVjYd7PYO0kJ4Bo8d9h6hmw+B+5rk6i0tIAKx9Lb06P/f0DG6My8jNgAgRxffR7eHos7Pg4+poKVd0q2L7Au79xE2yY0XZ/23znd7rwj7D0Hnj9MzDrusjL/I9Zn4I3PwfLH4QPf+v8rdroE5InIiIi0tl5BaMNvdB7zrrJ0OQSnNtZrHnOu2/Vk959i//u3ZdJCL+IiIiIiIiIiIgEoFOTRERERERERERERETClK/BaNA+6CzIVyZzRSQf2IR337Z58dXRauv7MP+X3v3jb3VOuJb8l2kw2vDLvYM+CiEYzS9cxUtzXfh15IuWevf20irvOX0mwMTJ0dSTSnmP3Owbh1KPcJ+ONsyMtg4RkXzjF+JpPA6Y63UodOm/Z3v1cOg+OrzaUjnmXu++xk3w4e/iq0WK08I/QcNalw4Lc26BhMeJ9ZKZDa/C5FPh8eEw5TTY/lFu6tj+oXdoQkemDIZfBqdMhZKyaOty0/tQmPDnYGNb6uCp/eC+MnhiBLx7EySaIi2voNStTD1m58fw3nfhXgPP7L9nMPjSfzt9kyeGGF7tYtt8WPKv9m3NO/zfTxIRERHp7Lye4w86E4Zd6j1v+sXR1JPvWhpg1xbv/saN7q+JU71OThV0LyIiIiIiIiIiIhnSKUoiIiIiIiIiIiIiImHKwdmCvpajTwNEOp/qwd599WviqwPAWnj2IP8x+3wqnlokBBnmf476Eqx83L2veWfm5cSlpTH1mI4aN0LZ8PBryQd+YTN+Bk6Eqyw0bIRH+4Vfl5eKnvHtlQvDL4flD/qPWXo3DDgxnnpERPJBwuOxqsTnsaqkFA64Bd76Uvv2A2/xDlOLQkUv//5Fd8CRf42nFilOfoGpdStg5yLoPiq+eopZ7XKYekbba566FfD84XD+IugS4/NhgI2zUo857mEYfonzOj7Ov3tu9v0MNG2Fd78ZbLxtgdplTohW3Qo49r5o6ysUfsH5rd64Idha66bCpOPgnPlQMyy7utwsvce9fcXD0LILSivC31NEJG47F0P9OqgaCDUjcv94KyKFL9Hs3m5KYdy3nedSbtZOckJvex0cXW35qHFT6jHN2/d8b6Z2qf+ckvKMSxIRkXgZY0qAA4DxwHCgH1CFc2xdPbAe51i794B51lodcyciIiIiIiIiIiIiIiIiIiIiIkUjr4LRrLUjcl2DiOTAwFO9++IOoVo7yb+/79FQNSCeWiR7iab05ww4Bcq7Qnk39/7mHdnVFIdEhsFoNcUajFbv3l5aFWx+l77Q71j/UI4wDTglnn1yZew3UwejLboTxt8afwCHiEiuZBriOeqLUD0Mlj/sBKUNuwyGnB1+fX7KquPdTzofr+dyrbYvUDBaWOb+ZM/X4M07YOm/Ycz/xFODTTjhYgtu9x93/GMw7ELndr6EtIz9BvQcD1NPT2/esvuhrBsc8WcwGYZ7F4uw3wNqroXFf4cDvx/uugArHvHue7AajrgDRipYX0QKVP1amHQ87Py4ra1mBEycBN32zVlZIlIEbIt7e0kZ9BrvP3fhn53nzJ1JkGC0Xdv2DEbbvsB7/MDTsqtJRERiYYw5AbgBOAvoEXDaFmPMM8Ad1toZkRUnIiIiIiIiPvLk+AUREREREREREZEC4Hf5N10aTkRadfKz7UQkL3TdB7qPde+rXx1vLUv+7d9/6G/iqUPC0fsw0v6Qud+xzvcyj2C0pgIIRmvJIBht1TPF+yoh07CZZIf+Gir7hlMPQGUfuHQzjPiv9u3DL4Phl4a3Tz7qcziM+3bqcW9/NfpaRETyRTaPVUPPh2P+BUfdFX8oGkBpgGC0RHP0dUjxSuzy7/c74VuCS7TAojvc+za/HV8dH9+ROhTtsN+1haLlm0GnwXkfpx7X0aI7YPbN4ddTaJprw1/TL8AsG37vDdgWeP3TMOMTsPLJzF6ji4jk0swr2oeiAdQuhaf2g6lnwcyrYd7PYPE/oH5NLioUkULlFYxmSp2Q4CP+4j1305vR1JTPGjemHtO0bc+22mXe4ztbuJyISIExxuxvjJkKTAWuAHriHPAQ5Ks3cA0wzRjzkjFGV5MQEREREREREREREREREREREZGCpmA0EckPh//Ovb1xY3wnkNathKV3e/ePuAb6HhFPLRKOLn2h33HpzRlxtfO9vICD0RIe4Sp+3r8F3voi2ET49eSaZ9hMVfA1+kyAs993Qmcm/F/2NV24Cip6wdH/gFNehkNug1OmwDH3Qkl59uvnu/E/hT5H+Y9Zfj80bIinHhGRXAvjsSpXygIEo+3aEn0dUrwSKV4PKhgtHDs+8u5bek98dSy7179/+GUw+sZ4aslUt5FwcQbPY+f/yvnqzKIIRtv6Pqx6Ovx1g9S6/EF45QKYdCw0bg6/BhGRKDRuhvXTvPvXPO88Xr/3HZj1KXh6f1jnM15EJJlfMBrAvp/1nrvjw+K9uIuXIMFou7bu2Va/yn1szwOdi1WJiEheMsZcDrwBnEBb2Jl1+Wrl1tc6byLwtjHmkrjqFxEREREREWj/sq3QFdPPIiIiIiIiIiIiIiKFSsFoIpIfqgZ79zWsjaeGN7/g3z/0wnjqkHAdez/U7BVs7NF3Q/fdF04u6+o+Zund8PK58PpnYOZV8PwEuNfASyfDR3+ERHM4dWcj0zDBhf8H614OtZS80FLv3l7aJb11qgbCPtfBfp+DYZdmXs/I/4bSSue2KYEBJ8LYr8GAk6GkLPN1C033FBcpt4loAgxERPKRZzBamo9VuVAaIBgtyIm8Il4Su/z7F98F9TG9Zixm9au9+6qHxVfH+lf8+/e6Mp46stWlL1y6FYZekN68d78JzxwAH/wCmj1exxSz5p3RrDvruvB/n+kEkm9+G+b9LNz9RUSiUr8mvfFNW+GN/4aER9iRiEiyVMFoAMc97D6muda5wFFnEuT9lOTPUFc8DrM+7f3cs/v+4dQlIiKhM8ZcBtwLVNM+EK016AxgA/ARMAsnQG0hsDFpTPI8gBrgPmPMRfH8FCIiIiIiIiIiIiIiIiIiIiIiIuFSMJqI5Ae/YLT6dfHUsPkt776KXumf0Cz5oXownL8k9bhzF8De17TdL+/mPXb1M7DoTlh2X9u/m/Uvw1tfgukXg83xVbISGQajAax6Krw68kUUYTP7fZ62Y9DTYMpg7Dcy37eY9D4s9ZiNr0Zfh4hIPvAKVymEYLSyAMFoq5+Lvg4pXqmC0QCePQC2L4y+lmK2a7N3X9O2eGpY82LqMT3GRV9HWCp6wPGPwYUr4eQX4OQXoXpo6nnb5sHsm2HyydAS4N9/MWmujWbdxk2wbnJ46zXXeb/O9LL0bif8WUQk39mm9OfsWAibXg+/FhEpPkGC0Qae4j1/w/Rw68l32+amHjPzCudiOfNuhekXOeHhXqqHhFebiIiExhgzGrgL5xi+5EC07cBvgHOAvtbagdbasdbaY6y1R1lrx1hrBwD9gPOA3wE7aB+QVgb80xizX9w/l4iIiIiISOeUwXHFIiIiIiIiIiIiIiLiScFoIpIfyrt797VEdGJsskQLNPgEsJ09B0rKoq9DomEM9D/Ru7/PkdB9dPu2yv6Z7bXqKVg7KbO5YfE6QXvM11LP/fA34daSD5Y/6N5eWpX5mgMnwvGPQNd93fv3vhaOfxR6HQymxDmxq9ehMPEl6D4q832LybCLU4/Z/mH0dYiI5IMoQjzjUtEn9Zg5342+DileQYKhGjfBgtujr6WYNW7y7mvaDk07o69heornh1WDoOvI6OsIkzFO+MCg02HQaXDwz4PP3fQ6vH9L2/1EMyz4DTw1Gp4cCXNuiS5ILFei/HnCDOls3Jj+nIb1sGV2eDWIiEQlkUEwGsCkY+GBKnjuEFh6f7g1iRSjXVth1vXw2FB44UhYck9685c/4sx7oBru7wIP9YQpp8HWAEFauRQkGK2iJ9Ts7T7u1auhYUP4deWr1c8HG/fGDfDet1OPq1IwmohInvoDUE1bIJoFfggMs9Z+zVr7nLV2i9dka+0ma+0z1tqvAsOAH+9eo1VX4PeRVS8iIiIiIiJJcnxhbRERERERERERERGRIqOUHxHJD6bECSlqqd+zr7ku+v2btoJNuPcd+TeoHhp9DRKt/b8FG1/d8+Q+UwKHuxwHXJ3FCSLv/A+cMy/z+dlqaXRvL6mEIefDqif95+9YBN1CDhxoroXtC5wTnHqMg5Ly1HOshdplUFIBjeudn8uUQvcxUN412L7rpoJtdu8rC7iGl2EXOV9294EMrX9DTIkTgNA6JtEMGCgpdV2m0wryd3X7gujrEBHJB17BaCUFEIwW5PGtvFt0+ydaYOfHUDMCSiuj26fQ1C53fu8VvXJdSfYSHs9tO1oT8IRxcecXjAZOEFTQ5+CZ2P5R6lCsUTcW/nPq4ZfBvFthW8DAig9+DqO/AmXdYNZ1sOKRtr65P3bCto74cySl5kRzhAF8YYaSZRKMBrBtPvQ+NLw6RESikAgQSuulpcH5e/vqlU7I87ALw6tLpJhYCy+fDRtfc+7Xr4LXrnHe+x5xRer5K5+EGZe2b0s0wtqXnJDC8xZClwwv/BI1r/fqTYfn+UPOgY/+iyAqkQAAIABJREFU4D528klw1pzCf22QSqIZapcEG7vkn8HG6bNOEZG8Y4w5FjiFtlC0HcDF1trJmaxnrd0BfN8YMx14FKjZve5pxphjrLWvhlO5iIiIiIiIpM/kugARERERERERERERkYJTkusCRET+o6zavT3VydFh8DupdeDp0e8v0Rt8JpwyFUZe39a297Vw1mzoM2HP8VVZBKNt+wAW3ZX5/Gx5hUeUdgkWTLL03vBqsRbe/xE81AOePxyeOwQe7gWLU5yos2MRPHsQPLk3PD7EmffiUfDCBHi4B7z3He8ww1YtDTB5ond/z4PS/3ncGON8lZQ6X6bDwQslZcV/klamDv2Nf3/jBmjcHE8tIiK55BWMVloAwWjgBBz7iSroeNXT8Gg/eHoMPNwb5t8WzT6FpHYZPHswPLEXPNwHpl8KzS7h04XC2uDhHLVLC/tnzbVUwWgtEQeWr3nRv7/7WBjz9WhriENJOZzxOhzwveBzHhsMD3VrH4rW6uO/wM7F4dWXa1G+/7Pjw/DWSvX/i5fXroGWLAKHRETi0PGiEpmafhE0RRh4KVLIts1tC0VLtvBPqeeufAJeucC7v2k7fOhyIZh8YVvc202Ha7kN9QlW3PYBrH4mvJrylVeIXDb6HB7+miIikq0v7P5ucMLRbsg0FC2ZtfYl4IakdQE+n+26IiIiIiIikg2beoiIiIiIiIiIiEgn4veOmd5NE5FWCkYTkfxR6hGMFvUJ2OAfjFbZJ/r9JR79joUj/wZXWefr6H9AzwPdx1YPzW6v1z8NM6+EObfArE/BWzfCpjedcIeotXgFo1VCWYBgtLUpQgmCaNoOyx+GF4+G97/f/oSn5lqYdZ1zEpcba+GVC50TxFz7EzDvZ/DKRZDwOJFq1xZ4Zpx3faYMBp8V6EeRCHUMkXOzPcQAAxGRfFXowWj73+zf31wb/nOgnUuc5wu7tjj3W+rg3W/AyqfC3aeQWAsvnwtb32ttcIKU3i3gMKl0TwTfMjuaOjqDXSmCnqIKrLIW1k6G2Tf5jzv+USitiKaGuJVVw0E/gstD+p1OPRO2vh/OWrnW4vE7GXENDL3IvW/Ul+Hof+8ZptFR4ybY4BJAkgm/95BS+eDn4dQgIhIVv1DakvL01nqoGyz+B9StzKokkaKz5G739g3Tne/NdbDqGVj4F/j4DicE/INfwJtfcl4HpzLvJ86FSVY+6f1+Q654BqN1uLBI/xOgvKf3Om/d6Px+Nr6R+gIqhSoRcjBajwOg6z7hrikiIlkxxlQC5+Ecy2uBR6y194e1vrX2PuARnHA0A5xvjCmSN9hERERERETyVYBjYkVEREREREREREREJDAFo4lI/ijzCEZrjiEYbcNM9/bSKu+6pLhVDc5+jWX3w9wfOycAfvQHeOEIeOMG7zCvsCQ8TnYqqYTy7qnnb5jhnHiVqR0fw7MHw4zLYNPr3uNeuRBWPLpn+5Z3vEPRkq16Eh4f6pzgnmzr+/DUaNi52Htu/+OhwufEKomH14lwyXYoGE1EOoFCD0YbcXWKATb8k7FXPOL+OLLS5blFZ7FjoftzqOUPxxPOGwWvwF8vk46B2mXR1FLsUgU9RfG6vLkOpp0HU06FlnrvceN/Bj3GhL9/rpVVhxPEvmMhPDse5t2a/Vq55hXAV1YDIz+9Z3tJJYz6Iux9NZw9Bw79DRz8/7zXn3SME6CRrWyC0Zb8M/v9RUSilGhyby+tgnM+gMN+l956sz4FT4+FVc9mX5tIsfB7LrFzKbx4FEw7F978HLzxWScEfPbNsPCPwfeYdR28coHzmcTOpVkWHCKv94NLOgSjlZTDvp/1XqduufP7efFI5+9M2CFi+SDdoPBUxvxPuOuJiEgYjgK60nbW/O0R7HFb0u2uwNER7CEiIiIiIiL/UaDH57gp1GONRERERERERERERKSoKBhNRPJHqUcAWUsMwWizb3Zvr+wb/d6Sn0orwjlJvaNFd8Ca58JfN5lXgERpJZiAD/0zLofaFentu+JxmHU9PLUf1C4JNmf6JdC0vX3b6ueD79mwFl4+t33bG5+Dxg3+8459IPgeEp0gJ6xtXxB9HSIiueYValoowWjd9oWj7/Yf4xV2k6l3v+nevvgf4e5TSJY/5N7euCH8YLq4JHalP2fqWeHX0RnsXOTfP/kkmHombPsgu32a6+CDX8K9Bh6sgdUBApnHfD27PfNZvxNCWsjCnO/C1gAB0/nMMyi0CgafDQf+AMzu0IyK3nDEn6H7KOd+j7Ew5isw9iYo6+q9x5ufgzk/SP/vYu0KeP+H8Oo1sOC21OO97FwU/mOiiEiYvILRSsqd5/2jb4QLlkPvCcHXbN4J086BZp8gVJHOxO/iJW9/xbnwR1i2vg/zfhLeetmwFmzCvc+U7tl2wHeDrbvkX7Dyiczryldef48ztc914a4nIiJhaA0ps8B8a+2ssDfYvWbyG3oKRhMRERERERERERERERERERERkYKhYDQRyR9lNe7tzREHo/mtr2C0zq0igmA0gI//Gs26rRIewWglXaBpR7A1Wuq8A0fcvP9jmH4RLP578DmtHhvS/v6cgCc8tdo0qy1MbddW2Pia//hDfw1d+qW3h0SjZnjqMTsXR1+HiEiueYWzlBRIMBrA3tfA2XO8+1sUApNThRrCk0kw2vb5xXlSfJQSzbAjRTAawJoX4JlxsG5aZvu0NMCU02D2TcHnnPScE1pdrEbfGN5aNgFLUoRU5rtUId8Hfh8uWg1nvQcXLHEPdzAGuo/232fuD2HaecHDJnYugUnHwPs/gKX3QO2yYPO8bP8ou/kiIlHyev5VUt52u2YYnDELzvnAeaze+9pga794ZPb1iRSD8h7efaueDH+/pfd5B5LFya8Gt2C08m5wWcDPM1Y/m1lN+cwGuKhIUGfNDn7RHBERidO4pNszI9xnhseeIiIiIiIiEjqT6wJERERERERERERERIqKjoAVkfxRWu3e3hJxMNr2D737uo6Mdm/JbyVl0ay76il444bgIWWtWhrg3ZvggSq41zhf086Hze/sOc5NaSU0p7Hn8gegfl3qcU3bYd5Pg6/bUfNOeKQ/bF8YbD83L5/lnFjVuAnnoto+Rn8lsz0kfIPPgZIUQRe7tsRTi4hIHFY8Ci8eC4/vBa9dC42bnfaWevfxpQUUjAZQ6RM8unVefHV0Vm4nkrd660vBA4DySSbBaABvfC7cOopd7dL0Trp/538y22fV07Dx1eDjS8qhz4TM9ioUA06GE55wgrxSPS8OYv4v8iP0IlOeId+Vbbe79IdeB0F5d+91uo1Kvdfal+D+CnjpZJj9LZh0HDw9FmZeDQ0b2o/96I9QtzL1mkFtXxDeWiIiYfN6ztjxccqUQI+xMPhMOOquYGtvfT/7cEmRYuD3PCYKLXVwX6nzecJTo2HK6bDx9XhrALAt3n1er2fLu0LPg1Kvvfjv0LQzs7ryVSLEYLRe48NbS0REwpR8MEqUD87Ja+sAGBERERERkUilOH5ZRERERERERERERETSomA0EckfZR7BaM0RB6O9cqF334G3RLu3dF4f/xWmnQvW50Pw5lqoXwstjU6YyDPjYP4v2wefrXoKppzaPlCsxedk8sHnpFdnkOCCjbO8T2APqnEDPD0KVj2Z+RpvfyV18NvZc8Hoimx5o7wrjEkRrLFrazy1iIhEbeVTMP1S57G1bjks+RdMPtkJsOkYwNKqtCreGrNVVuPdN+2c9ENhJT1+wWjLH4BZ18dXS1i8ntcC9DnCu69hLWz/KPx6ilX96vTGb3k3/d+vtbDwz+nNGXE1VPZJb04hGno+nLsArmiETzRkH5D26tXh1JULXmGI6f5Ouo8OPnb9y/DBz2HDTCewbNm9MOlYSCQFdyy4Lb39U6lfFe56IiJh8vpbbMq95xgD5y+Csm6p13/vO877nGEG/ohIcDs+grWTYMop8QcV+oUxG5+L1EwI+Dpi5hXp1ZPv0gmv9jP43HDWERGRKAxIuh3lA3Py2gMj3EdERERERER86dhlEREREREREREREZF0KRhNRPJHqUcwWkuEwWjN9U4whRtTCj0PjG5vkfWvwNb33fs+/D08PhweGwQPdIFnD4Cdi93H7toC837Wdt8rpKy0Cww63f8ko45ShSRsmAlTzwi+XipvfDbzuR//BRo3evefNRt6jst8fYnG+FvhyL979ysYTUSKxcI/ssdVQbfOgbUvwY4P3ed0HRF1VeHyej7fatl98dTRWfkFo4Hz+/cK4ctXXsEcAMc/5j939XPh1lLMEk3pz1nzYvCx2z6AR/vDusnp7XHwL9IbXwxKK+Hitf5j+h4NvQ/z7l/+UPQB81HxCkMsrUxvnT5HZlfHjoXZhXan0lwf3doiItmyHs8LUoVUdt0HznoXRv63/7il9zjvcz7SB5bem1mNIoUuk+ffrWpGtP/cqu/Rma3TXAvv/yDzOjJhW7z7/F7P9gv4M65+Bja/k15N+SysAMn9PhfOOiIiEoXkKwJE+YFo69oG6B3hPiIiIiIiIuLL50LaIiIiIiIiIiIiIiLiSsFoIpI/yjyCFKI8oXf7Au++IbqKusTg7Rvb/o031zsBA9Mvgbe/DLs2B1/no9+BtdC4GVo8TrIu6woVPeHw3wVft26F871ppxMuseRuqN99ov6urTDl9OBrZWvQWc7P4CXRBCufcu8rqYRe46OpS7JjDIz8FBzjcTJs07Z46xERiUJzLax5wb1v6hnQ0uDe131sdDVFoaTUCWL1svgfsZXSKZkUV5a1zbDi4XhqCYtfMFpZNVziE4q7bW749RSrTIIZ3v06rJnU/u9X7XJY/E+Yfzu89z2YcwtMvwyeGecfYOxmn09Dl37p11UMKnrB+UugenhSo4FDboOrLJz+Kpz5FvQ5yn2+bYF1U2MpNXRe/8+nCuPpaMDJ/q8dg9j4GmydC+/elNn8yj7efV6v2UVE8oHX84KS8tRzu42EI/8KVyZSj23aDq9eDa9/xnnusPAvsHVeerWKFKpMg9Eq+8L5i+HsOc7zwqssnDoNSqsyW2/xP8IL3woi02A0gIGnBttj3q3B68l3NoT/NsMvg0FnZr+OiIhEJTkJPspgtOQPW33ewBcRERERERERERERERERERGJj/W5loBfn4h0LmW5LkBE5D9KPYLRWiIMRtvxkXff3tdFt68Uhpq9YdsH0e6x/hV44Qg46i7nRMCtczJf66M/OoEkXrrt63zf7/PQ92j44JewzCOMqtUHP4e9roSZV7QFCZZUwPGPQeOG4P9/DjoD9v0c7PgQZn8r2JxkVYPg5Ged4IXnD/P+77LqSff28m7p7ynxqujp3t601XkFmyrsRUQkX+1cAlMCnsDbUfcx4dYSh9Iq76C3ja+Fs0ezAmVc+YWItdq5OPo6wuT3M5VUOOFoIz8Di/62Z79fCLa0l0kwQ2IXTD0dek+Ak56GtS/Ba9eGc/K+KYFRX8p+nULWdQScPRtWPOoEUvc/AfpMaD9mv8/Dplnu86edC1e2OL/LQpJodG8vqXRv91Ja6fx+5v8y81rm/zK7+We+67x2bdywZ5+C0UQkn4URUmmME9z07EGpxy66M3kijP8JjPt28L1ECpHNMBhtr6v2fI+0pNx5/37x3zNbc+Nr0P/4zOamK5tgtBFXO685UlnxMMy/DcZ+Pb3a8lEmr60O/TVU9HYueNPrEBh8lt5XFxHJb8lveGT4BCGQ5AeVAInHIiIiIiIikrGiOluzmH4WERERERERERERESlUBXZ2nIgUtTKPYLTmKIPRFnr3DT0/un2lMMR1Mv62eU44WjahaABv3whvfsG9r6wbVA1uu9/rYDjoR8HWfe7g9sESiV3w6lWwbW7w2o78Gwy7EPa/GboMDD6v1fArnO+lXeCs97zH1S51by/vnv6eEq9yj2C0RJOCA0SksE2emFkYVc3eUN41/HqitmuLf38YBwA278x+jWIUJDCuwSWgJ595hSRBW1BS70Pd+zfMgMbN0LQD5v8KZlwOb3wO1k6BFY/BrOth5lWw8M/Q4rNPZ5BNmNnmN+G9b8OsT4UTigZw6G+h9yHhrFXIKnrByOudUIeOoWgAe1/jP3/5Q9HUFSWv/xdL0wxGAzjw+9nVkqnSajjuQagZBv1PdB+T6rFSRCSXvAJTS9LMT+hxAHTdN83NLbz3XdiS5XukIvkuk2DiQWfA+B+79x3yi8xreekEePursPmdzNcIKqtgtP8K/nnNu9+ArWl8dpGvEhm8vhrzVdjnk3DAd2DI2QpFExERERERERERySt6v05EREREREREREREJF0KRhOR/FFW497eXBvdnhtmuLcPvRCM/kR2egMmQs1eua4iHN3H7HkSjNf/c0E0bYMVjwYb22N/qB7adn/8T9Pfr2pQ2+2SMhh7U3rzy7qlv6fEq8IjGA3grZhCCkVEwrbkHu/QzlQGnxVqKbHptp9/fxhhMC0N/v2ZnDxcDBIpfi8ADeujryNMiV3u7aYESnafON99jPf8R/rAM/vDu990QqI+/gtMOQWmXwyL/w7L7oM3Pw/TzocWj706g0yCGZItutP7v1W6zp4Lo/XcLxBTAsfc692/6O/x1RIWr39HJRXpr1VWA4f/Ibt60jXwdLhoNQy/zLlfWuU+bsk/FcgoIvnL829xmsFoxsC4b2VQgHX+TooUs3Sff5+/CE56zvviH5V9YNx3Mq/nw9/Ci0fB6ucyXyOIbILRSkrh8N/DmQED3J49EGwieG35KN3g6eQL44iIiIiIiIiIiEgeCuFikiIiIiIiIiIiIiIinYxSf0Qkf5RWu7e31EWzX3MtrJvi3tfzoGj2lMJSWgGnvuKc3Fzo+p+wZ1uXAdB1ZOZr7lwcbNywy9rfH3R6+sGD/Y5rf796SHrzyxWMlvf8gtEW3xVOkI6ISNze/Vrmc/f6RHh1xKnf8f79jRuz36Ol3r+/swYpNKf4vQA0boi+jjB5hZUlhyT1PAjfq+rWrUy9z9oXvV8bdgbZBqOFZcBE6Dku11UUlsFnevetnwq7tsVXSxgSHmFhJZWZrRd3yGjfI6GiR9v9Mo9gNIC1k6OvR0QkE17PCzIJqdzn03Do7VCV5vt4C26He03b19NjYdmD6e8vkq/Sef697w3QdZ89L3rS0Yirsq/p5bMh4RNeli2/EPNUwWiteh0MNSOCjV03Ndi4fJVu6PsBt0RTh4iIiIiIiIiIiIiIiIiIiIiIiIiISI4oGE1E8keZRzBac0TBaFvneZ+AMuTcaPaUwlMzHCa+AFc0pw76yGejvrhnmzEw7n+j3bd6KIz9+p5tIz8TfI0BE6HvUe3b0j2hsrx7euMlfuU+wWgA66bFU4eISFjqVkLD+sznF+rzjlFf8j+huW5F9nukCkZ7/TOdMzgh0ZB6TKEFjSY8gtFMedvtyj57PlfMxJoXs1+jUNk8CEYzpXDIr3JdReGp6AVDznPvSzTBmufjrSdbXv/Pl2YYjNZ1H9jryszrSVdplw73fYLRPvxttLWIiGTK629xSfn/Z+++49uq7/2PvyR5z9jZibP3TsgCwl6BkJCEUUZ7KWW1hZb2Fkq5LaW0QCfQ9Wtp6aXQCaVlBMIegbASRgIJIZNMZyfO9oot/f744uulc3SOdDT9fj4eesQ63/WxI8lHsr5vhT9ux+eD4f8NcyvhokMwMsrXIQ+ugrcuhvUPRTdeJNW4Of8edoOzfqUjoWJudPW09OaF1m0N1VC9Nfq5Qzaha/4sZ3P4fDDqe8767njJWb9UFbIJRivo2/p60WDoa/N/JyIiqSz02b/H+ny+k+JxAaYm8xsUERERERHpWEKRu4iIiIiIiIiIiIiIiGMO32UsIpIAAYtgtMY4BaPtsvi0+KxCKJ8YnzUlffkDMOSrsPuNZFfi3sAroWhA+LZBV0FuF9jwN9jymLfr9poJxz4A2cXt2ybfB6VjYNszkFMOeV3hyGY4srG5T04nE4o24iaz4aml/F7uaskKU4Oklqx8c1uorwrf3vK2ISKSykIh+PgOWP6D6Oc479P2v/vSRfkEOPsDeG58+PZXzzCbmMfeEf33GCkYDWDt76Df56KbP101OPi5WAVDpyqrjeBtgzkG/BfseSe2tVb/0oTpjrkNfB3scwSCNhvu46X76dBwxATbZZfCyO9A2djE15EJTpoHD1vcZivnQb+LE1tPLBrrwh/350Q/53F/hYOrYd+S6Odwyu8iGG1HBw5jFJHUZnW+GMtjMUB2EYy7C0pHwaZHoGYr1O02gdJOrbwbBl4RWx0iqcDp87KBV5jAM6dO+Bes+iXseBkKesPgL5sArU9+Cnvfg72LIs9R+SQc3tD67wnBBljyLVj3B1N7yXA44d/QabTz2sA+GM0uYL2twVebv2ls/BtseQLLjYaf/AzG/9RViSnF7nZy1jvmMXH/h+bvmcNvNM+tREQkXfmAh+O8RuizdURERERERERERERERERERERERNKGgtFEJHVkWQSjNcQpGO3DW8IfLx7S8TbCizN9zofes2Dr08mrIb+32TjoxrCv27dXzDaX6kp4sk/0tbU08jv2m458fhj2NXOJRmFfd/1zOkW3jiTWoCvNhq5wGmsTW4uISLQ2PRJbKNqEu6FooHf1JEPZOCiosA45WHEXFPY3m5mj4SQYrWppdHOns6CD35XVm+HQp1A8KP71eMEqsMvf5uWsQVfDe9fFvt7HPzQBAAO/GPtc6SSU4MC8S462/z+U6Pl8JsR77X3t27Y9A431EIgxzMZO/X7YuQCqt4AvC8omQOcpJlzcjVDQJgwxN/r6/Flw/D/gmRHRz+FUoG0wWl74fiIiqcwyGC07/HE3fD4Y8HlzafLSSc4/iOLAClj3J/M6Zl632OsRSRYnwWidp8Axv3Q3rz8bRt5sLi1N+o35d8VP4KPvRp7nqYFwSUPz+dyqe2DNb5vbD66CZ8fAJfXuHhu8CkYD6DPHXAAe7wG1O8P3O7QOige7mztVWJ0b+7KgoBdMvDex9YiISDwlIrTMIklUREREREREREREREREREREREQkdSn5R0RSR8AiGK0xDsFon/zcuq14qPfrSWYI5MIJ/4GTn4YRN1v0sbgde2Wayw+L7nIcdBrnrG9BBZy3wX1NbZ3+qn0omhfye5lAFad0v04Pg79s3Va3J3F1iIjEYpWDjctT/wyfOwwnz4fup5vfU2Nuh7MWwYgb415iQuR2sW/f/Gj0czc4CEZrOGTCgDoSJz8XgPnD4OO74luLV6w2zvvahGr5s+G8T71Zc9EVUFflzVzpwkkwg5cUiua9ijnhjx89CFUfxG/dfR/CM6PgjfPhg2/A+9fDS8fDwjnuQ+6DNo/Z/hiD3UqGJeY5YbtgtHzrvl4EDImIxIPV47EvTo9bQ77qrv+718L84bDj1fjUI5IIVuff+b1hzA9h2iPmNXavP+xjwBchq9hZ3w1/af56/UPh+7w20936XgajtWQXIPf0EAilaQ6M06BwERHJFKE4X0RERERERCQhMukpWCZ9LyIiIiIiIiIikorsXoHSq1Mi0kTvnBWR1JFlFYxWC6Eg+DzKcmysgw+/Y91eNsGbdSQzBXKg90xz6XUOLJxtNpsDVMw1wWVvXAjb5nu/9rifQNcT3I2Z+gD4XHzAdEFvd/O35PPD9PehPAH3IZ/PbP5f/Stn/UuGx7ce8UbxYOs2BaOJSDrY8TJUvWffZ+CVMOhL5uve55pLJooUjLbjpejnbnQYAFa/F/J7Rr9OugnWOusXaoTlt0HP6dB5UnxrilXIYiN422A0MKG5uV2hbnfs674xF854PfZ50kUig9F6nJW4tTqSbqdAViE0HGnfdnAldD3O+zVDIVh8LdRsa9+2bT480QumvwslDgPJGuus2wK50dXYxOeDk56AV8+Cmq2xzWXHTTCaXZuISDKFLM4LYg2ptNLvYtizCNb8xvmY+n3w6ulwcZ15rVYk3VjdzyrOgzG3xW/dgl5w7J/hva9A3V77vouvgsp55rnCwVXh++x4EfavgE6jnK0fr2C0SH/Te9gPfc6HrCLoeiIM/BL4Y1gvUSyfDytgV0Qkg2xG7+MVERERERHpQFy8lzvVuXlfuoiIiIiIiIiIiIhIDBSMJiKpI2ARjAYm/CCr0Jt1di6wbx9wuTfrSObrfgqcvwuq3oeCCijsZ44Puip8MNppr0DxEPjkJ7D2vsjzH/sgdBoLtbug82TI7eyuvjlbzWYnN/zZkFUMDYfcjSvoC+etM+MTxU0wWumI+NYi3hl6Q/jNsApGE5FUt2cxvHpm5H69zo5/Lakgt2v85nYajFbXwYLRGh0Go4EJnv70f9M4GC3MJnafH4Z8BT6+I/Z1dy2EXW9CN5ehxOnK6uccD4OvTtxaHUkgB0pGhg/nXHwVDLrS+zUPrLAPAz16AF6YAqe97OyxJlhv3eaPMRgNoHQkzN5knr+v/hVseiT2OdtqG4xm21fBaCKSohotHo/j9Zqfzw+Tfg0jboL9y2DVPZFfv2/y+iw47YX41CUST1bBxIkIvOp7IfQ4Aw6ugfoqeO0c675bn4o837Oj4dJGZx9sFK9gtFIHH4qy5XHz74a/wrZn4MTHU3/jntXzNL/e3iEikilCoVD/ZNcgIiIiIiIiiZRB2dihDPpeRERERERERERERCSlOXiXsohIgtgFnzVUe7fOgU/s290GSUnHFsiFrtOaQ9EA+syBqX+GokHgy4JuJ8PMNdDjNCjsY647MfAKKD/GBKi4CUUrnwhnfxD9bTm33P2YM99MbCgamJ97XvfI/Qr6tP7/kdSW2yX88UQGo22dD6+eBfOHw3vXwdGDiVtbRNLX8h9G7pNVBD07SDBaYf/4ze0mGK0jsQsVCmfdH01AWioLutwIPvoHMPI73qy95FvezJMOrIIZYnXSk9DtFPM8oXAATPkj9L0oPmsJlNgEQuxf4e1ae9+HZ8dE7ndnMFE6AAAgAElEQVT0AKy4K3zb4Y3wxgXw7Fh440KoWmI9jz8nqjLbzxOALlPh+H/AqO+Z55NZhdDnAuvHjpJh5nbsaP42wWh2gZUKRhORVBWyOC/w6rHYSmEf6H0uHOPwQxAAdrwITw+Dynnxq0skHqzOvxP1+npOJ+gyxfzdYcqfYp/v4QAcXBu5X32VdVsswWgAsxys36TySXjYD69ON+e1qcrq+bBPwWgiIiIiIiIiIiIiIiIiIiIiIiIiItIx6J2zIpI6sgqs2xo9DEar32fdNvJ/vFtHOrZBXzKX4NH2G5qchHSVjrZu6/9fsPFv4dvOege6HOu8znByyuDIJuf9O081mxcTzZ8F434Mi6+y7zf6VvApCzZt5FkEo1VvScz6256HhXMg1GiuH1wN+z404X+6HYmInd1vRu4z9g7ILo5/Lamg86T4zW0XNNNSfUcLRrPYNG1n7/tmQ3yqCrncCO4PwPifwrifQMMh8Oc2P5fMLjW/y1f9Cpb8d+S1q96DhiP2Ad6ZIh7BaL3Ohd7nQcXs8M+JxHulNsFomx+FTg4CPJ04tA5emOy8f+WT7Y/VVcFTA5qv718OWx6zniOQ63w9J3x+GHen+b0cajTPLeuqYP1DULuzuV/RYDh7KWTlm+/7pRNat7eVXdL6erDOuq+C0UQkVVmF7Sbqd3nZWHMOsfUpZ/0PrTGv45z8NPSeGd/aRLyS7GC0lgZfDQc+htW/jm2e+UNh9ubmvxPUVZnvJ7sYQiGo3gyvnGY93ir82qniwSaIfvvzzsfseBF2LYBzltmfSyeL1fPhWH9WIiIiIiIiIiIiEj+hULIrEBERERERERERERHJKEp3EJHUEbAJRms44t06W+dZt/W9wLt1RCD8ZqbySZDf037cIJuwr8HXhD/e/79iD0UDyCl317+TTYhbvA260r592iMw+NrE1CLeKBwQ/njNNtj2QvzXX/eH5lC0JnvegX1L47+2iKQ3uyDfwn5w4uMw7BuJqyfZyh0Eoy36UnSBTI01zvrVdbBgtFAUP8sXp0L1Vu9r8Urb38lNIm0E9/lMQFEg14T+5pQ1B5zaBXK39WgRrP+L8/7pystgtG4nwdg7zWOez2eOKRQtMXrZhMF8/CPv/p+XRxGwtu255q9rd8Njnd2N9+e4X9MJn6/58SS3HGYsg8FfMaEaw2+Es942oWhgwjbOfAsKKsLPlVUIndsExlmFC4GC0UQkdTVaBaN5HFJp58THTNBtyTDnY5bfHrdyRDxn9dwtWefNo25tH/AajfV/hpqd8Mrp5nzvP2XwWFd4rAvM628/1heIff1TnnE/JngUVvw49rXjwSr83CooXERERERERERERFKcL9kFiIiIiIiIiIiIiIikHQWjiUjqsNug3mATNOHG0UOwf7l1e/lEb9YRsePPggn3WG8o7HysfeBX12kw8IrWx7ocB5N+4019boPRSoZ7s260jn0w/PGSEdDv4sTWIrGzuz29djbU7onv+pUW4Zmf/Dy+64pIeguFrAOcuhwHszdCn7nNIUEdQUGfyH3WPwRLv+N+bqfBaEcPup87nVltmo7kjfO9rcNL8dgIbhfIHc6iK6Dqg+jXSyXVW2HLE7BzQetPKQ5Z/JzLxkNWkbO5K+bCpUE443UY/T0IxCnISqyVjW0OAAznvetjXyPYAFufdj/utRkmEA3grUvdjw8kKIwnrxtMuQ9OfQ6OuRvyurZuLx4EszdD34taH/f5YdLv2tdZMdd6Lbv/KxGRZArWhT+eyN/t/iwYdQvMXAWXhcw5RiRVH0B1Zfi2A5+Yc6CqJd7WKRItq8BaX5KC0fK6wMgonpu3tftteLICdr5qrocaoW4P1FdFHutFEK7PD6e9bAJr3dj4N1j2A3jvOtj0L2isjb0WgFAQ9n0E6/4EW+ebv0+6Gq9gNBERERERERERkcwSitxFRERERERERERERERa0TtnRSR1BPKt2xqOeLPG85Os28b9xJs1RJzofyl0GmM2CQXrIbcbHFoLJcOg74UQyLMe6/PD1Aeg7+dgzztQMhIqZrnf8GMlp8xd/64nebNutCrmQOC69iEp/S9LTj0Sm8K+5vZvtQFtx0vm/pNoNdsTv6aIpA+rUDSA8R00WNHnM+cU9fvs+21+FCbe625up8FowXp386Y7q831kex9F/Z/DJ1Ge1uPFyw3ggeinzOac+ZPfgYnPBr9mqng0wfh/eub7z9dp8Epz0N2kfVtp6APnP4q/CdMcHKvGdDvMqjeDKUjofd5HSv8MVWdtxHm9Q3ftv2F2OffvwyOHohu7OZ/Q+9zYecr7sdahYong88H0/4F/S41z8dzOpn7Q9n49n3LxlnPYxU8JCKSbFaPT8l8LPb54NyV8MwI+34vnQSz17c+9uEtn4Xdf7bZaOAVMPXPOm+R5LI6//YnKRgNYNg3Yfnt1rVVzDXn/nah0TtejG7tzsd6Fxrb43Q45yPY8ript7EWPv3fyOM+/pH5d+195t9Za6F4cPR1BBvg7S/A5n81HyvsByc/A51GOZvD6vmwX2/vEBERERERERERSV0ZFH4WyqDvRUREREREREREUpLdS1B6eUpEmuidsyKSOvxZJhwtXNDB0f2xz39wNRxaY91e6nAzgohXOo2OPoDC54de55iL13LDBB9Yye8NnW0CBxMhpxNMewTeuhQaq82xijkw/L+TW5dEx+eHvJ5wZEP49v3LgCQEo2nDrIhxZAts/DtUb4Fup0Dfi3T/APtAqo68YXX4jbDsVvs+NVuhch5sfwlyO0P/z0PJUPsxDQ6D0ew2bGciq03TTmz6V5oFo8Vwv7IL5Lay+d/wRAUcc48JJ06nx71gIyz7PnzSJgh891vwzn/BSU/YBzPklMHMVfDqmeaxH6DTWJjyJyjoFd/axb3CPpDXA2p3tG+r3gz1ByCntH1bsBE2/gP2LYX8HjDkehOa19aBT6Kv7eBqE7YXjWjut/Hk80GfueZi288Pg6+Fdfe3b2tUMJqIpKhGi3DhQJJDKkuHw5T74f2vWQcgH9kA+5ZB2VhzfecCE3Db0vqHzGX0beYxuqB3PKsWCS8Vg9GyCmDS7+Hda9q35XWHEx8z50DbX4QF071du8/53s5XPAhGfrv5+sAr4I0Lw58jW3l6iHnuN/CK6P4G8+aF5rWOlo5sgmdHw6jvwchbwp9vtxSMw/NhERERERERERERSaI0eq9JJOn0vhkRERERERERERERSWseffyyiIhHcjuHP163N/a5N//Hvr2nx5s5RNJVjotgtDE/MJu9k63iPDh/B5z2CsxaCyc+DlmFya5KotX3Iuu26srE1dGK3sghwsHV8MIU+Oi7sPY+eOtieO8rya4qNWx92rqtI29YHeLw9rFwDqz9HXz8I3hhMuxZZN8/WOts3i2PwbYXnPXNBLEEox3Z5F0dXrLaCB5T4GCUHxlSsxXeugTeuTyGtRMs2Aivnt4+FK1J5ZMmIC1kEczg+yyYoWQYnLceznoHzvkIzl6iULRUNuIm67ZDa9sfC4Xgjbmw6Iuw+lfw4S3wzCioDxNQf3BV9HXVVMKh1e7HDb0hvd9U3fnY8MeDCkYTkRRl9fjkz0lsHeEMvgbmVELZBOs+6x9s/nrtH637ffwjeHYMVC3xrj4Rp6zOv5MZjAYmBCzcucvgrzSfj/U8CwoHeLdmTpkJKYynrtPgvHVw+mvuxm1+FF6bAcvvcDdu2e3tQ9FaWnEXPFkR/ny7JcsAvQ78OpOIiIiIiIiIiEhai/L9KqkolEHfi4iIiIiIiIiIiIiktBRIMhERaSEnjsFodoEV0x6BQAps7hJJBTllzvqN+wkMuiq+tbiRXQw9ToPiwem9cV7sg9HyuiWujlZ0mxJh5d1Qu6P1sXX3w4GVyaknVYSC9gFxyd7YnEy5nc15thtHD8Ly2+37BOudz7fse+7WT2dWm6adqNvjXR1eCjWGPx5L4KBV2JpTG/8OuxbGNkeibH0Kdr1u32fx1c4C6PxZ0OVYKBsL/oB3NYr3hn3Tuu3gZ8FkDdWw5Eb4pw8e9rd/vaR6M/yn7LP2ADycZb5ecZf13Gd/YF/Xlsdh6bedfQ8tHXOP+zGpJJAb/nijgtFEJEVZBqNZPJ4lWl5XmHK/dfvqX5nnaMEG2Pwv+7nq98HHd5qvd7wCr5wGzx0DH3wL6qq8q1mkLcvAqyS/fuDPglPmQ8VcE4aY2xlG/g+M/n7rfidEuG85lVMOp70EOaXezGcnqxC6nwzHP+x+7PLbzOND7a7IfWv32J8zNzl6wJxvVz5l3ccq/LwjB/CLiIiIiIiIiIiIiIiIiIiIiIiIiEiHomA0EUktuRbBaPUxBqPV7YW9i63b+10c2/wimSSnPHKf6e/BqFvAp1MJiYPOk6zbGqqbv67dZS6NLgJy7Nh9ip3C9kRgk8XG141/T2wdqWbXG2ZDvZWOvmG1+6nux2x/wT7ky00AWNUHzjYvZwKrTdNO1O32rg4vWX1P/hjuV0X9rduGXOdsjk0uA/+SZavNJvsmB1fB4U/DtyU7mEGi4w9A6ejwbTtfgSOb4NkxsOpeZ/OFgtYhhU1Gfx/Kj4FzPnJXayTDvxXb/T0VWAUJBevMa1VePZcREfGK1eOSVdBjMti9bgSwcA4cWutsrsonTOD3q2fAzgWwbyms/iW8Mdf+dSKRWFg9p/WlwPl3bmc46XG46BCcvxvG/7h9MHLJsOjnzy6Fzx2By0Jw4V4onxhbvW71vQjKjnE/bucCWHAOBCOcF+9e6O65+cLZUGnxoU4KRhMREREREREREUlD+tuCiIiIiIiIiIiIiIiXlGYiIqnFKhitLsZgtNW/tW6b+kBsc4tkmtwIwWj5Pc2md5F46ndJ+OMNR2DfMng4Gx7vbi7/yoWl3zahDbGwDXzQabN0cKEQNBwK37b+L4mtJdVsm2/f3tGDhQL50Y07vN66LegyAOzgmuhqSDduAuPaqtvjXR1esvq/9gXCH3eidDQU9mt/vNMYmPT/oM8FkedYe1/06yfKpw/A+oec9d31evjjqRDMINHpPCX88fUPwrz+9o+xsaxXNhbG3uHdvP0v826uZLEKEqrfB491gce7wvIfKnxHRFJHsC78caugx2SZu926bevTsOhK53O9++X2x3YthK0RnuuJRMvquVsqvX4QyLH+oIjskuhC0MEE32YVRF9XrPwBOGMBDL8Ryie7G7tvCWy2+NCAJtWV7mtaeF74UEqr58OpdDsRERERERERERERF/ThvCIiIiIiIiIiIiIibinhQURSS04cgtFCQfj4h9btZeOjn1skE+VX2LdP/C34dAohcZZTFv543R54+UQItdkYtvJuWPXL2Na0C5Sx2ggo0lHU77NuswpM6ygOrLJv92clpo5UFciLbtxBm59ryGUAmN1cmcRtYFxLqRqM1vb3fRNfDPcrn8+cz/pzmo8FCuCYe03bsQ+2brNyNEUf+6or4cNbYPHVsc/V0R+/0lnvWYldr2UwRsVsb+Yc9t9QPtGbuZIpUpDQ0YOw/HYTZigikgosg9EcnB8lUn4P6HaydfveRbGvUfl46+uhEOxfAZsehSObYp9fOq7GI+GPp1oAoZ1ownBLhsOIb3tfi1vZJXDM3XD2u3BxLZRNcD52y+P27TXboqvp3WvaH7N6PqznaSIiIiIiIiIiImlKH5YlIiIiIiIiIiIiIuKWUk1EJLXkloc/Hu1G/YYaeGa0fR83mx5EOoLiwVAyInzb5N9D3wsSW490TIGC8Me3P2fCA8LZ8LfY1gzWxzZeJJPVbLduO3rQBNF2VIfX2rf7shNTR6ryR/n9733fus0uyDKcjhKM5jYwrqWGw9BY610tXrEKe4t1I3jFLDhnKYz7CUz4BZyzBHqcYdqyi6H/5yPPcWhNbDXEw4a/wVOD4ZOfeTNfR3/8SmddpiZurR5nQFZh8/XSCK/BhDPyOzDiZhhwuQnZOO1lmHivdzUmk9OA0E2PxLcOERGnGi1eGwmkYGDT4C/Hd/4Nf23+OthggmefHQ1vXQzz+sPHd8V3fclMwUaoqwrfltclsbXEous0mL3Zut2XBYX9zaVoMEy+D2Ysg6z8RFXoTCAXpi82AdlObHnM/rlzdZTBaNueM+GLLVk9H44lKFxERERERERERETEMQW5iYiIiIiIiIiIiEjy6Z2zIpJa8nqEP3740+jme+UUOLjSuv2kJ8Hni25ukUzl88EJj8KC6VDTYiPPuJ/AkK8mry7pWFqGKzi1/yOzgSzax3XbYDTlCUsHVxNhY+eexdD1uMTUkkqCR+FQhPPUWAOcOqqtT8G4O8K3KRgtPKtN007V7YGCCm9q8UqoMfxxLzaCl440l3DG/xQOroY9b1uPP7AKyifGXodX6vbCu1+GYJ13c0YbbCjJl9cDsopM6GG89Z7d+rrPByNugpV3Oxuf3ck818zU12b8DoOEdr4S3zpERJyyOpdw+niWSP0ugbcvi9/8oaAJsMotNwGW6//cun3ZrdDjTOgyJX41SOapr8JyM1luGgWjART2gQv3wxvnw85XzbG87nDsX6DX9OTW5oY/GwZeAd1PN99LlU1QO8D8EVDYD4oGQmMdhBpg86Pmgz4aq6OroW431O6A/J7Nx0IKRhMREREREREREUk7bT8AIVNl6t/3RUREREREREQkoexeTusoL7WJSGRKeBCR1FI8NPzxmm1w9JC7ud67Dva+a91eOhIqZlu3i3RknUbDeRvgjDdMgOD5u2DULcmuSjqSrILoxtXvi35Nu2A0vZFDOrranfbtW59KTB2p5sgm642qTbRhNTr7l8Hh9eHbIv3M2+oIwWjBRmL+pNa6PZ6U4inLjeCB+K6b1w3OeB3OttkQv/vN+Nbg1pbHobHG2zkVjJa+fD4oHhL/dQoqTIhEW30vdj5HzzMz+1w7kIJBQiIidiyD0XISW4cTPh/MXB3fNeYPM8HMbUPRmmydF9/1JfPYPe9Kt2A0gJxSOO1lOPsD8xxq1tr0CkVrqbAPTF9s/iZi58hG2PU6rH8QNv3ThKJB9KFoTQ62eTyzeq063s+HRUREREREREREJE4y6O/i2pUqIiIiIiIiIiIiIgmiHdoiklpKhlm3HVoLZePh0Dqo+sBc9i0xITiF/WHsndBplOl7cC2svc9+rX6XeVa2SEYK5EC3E5JdhXRUgSiD0Wq2Qm55dGPtgtEy6U0pItGIFLZTOQ/G/yQxtaSS2t2R+yhYCHqeDdufdz9u63wYdkP748Gj7uY5sgEaayGQ576GdOE0LO701+CVU8K3PTcB+n8Bxv3YbAhPBZbBaAl4OcufBeUTYcDlsOGv7dvX/cHcv4+5JzXu51sej9yneCic+gI8NcDZnAp2TG9dp8G+pdGP92WZ+2DRIMjvBVXvtz4f6HIcTPodZBe1H1s6CrI7wdH9kdfpc0H0NaaDvG7O+y65CUZ+B/K6xq8eERE7wUYIBcO3pWrQY8lQGHQVfPpAfOav2wPbX4CdC8K3r/gxjLsrPmtLfIWC0FhnwgCb/g3Wtz8Wrq1de334MeHG1tucH+V0Ttz37yWfD8qPSXYV3vD5zd9EZq6C+cO9n//YB2HRl8K3vXIqzFgGncaY61YfAJJT6n1dIiIiIiIiIiIikgAKExMRERERERERERERcUs7HEUktRT0AX+u2SDS1tuXQc12OHqwfdu+D2H7izBzJRT2hW3P2q/jz4ahX/OmZhER8V5WlMFo1duaN4+5ZRe04/NHN6dIpmgMc27W0sGVJpi2ZEhi6kkVdXsi91GwEAz7Jux42Xl4V5P9H4c/7jYYLRSEI1sy+/bp9GfS/WTIKYf6qvDtG/8OO1+Bc1dATpl39UUraHGb8SfwftXr3PDBaABrfgsNh8zm9mRqrHMWPnj2BybEasZyeNbB+VJWfuy1SfIMud7cdsO9hgIw6Gr49H+tx1900Lw2k9PJ/dpZ+TDiRlj2fft+ZROgz4Xu508neT2c9111D+x+C858E/yB+NUkImIl3GvyTfwpGowGJtzXSTBav8vg+L+b5wf1e2HpzbDhL5HHrfl/sdfYpG6vOc/uaK8zBRsiB4bF2uY2pMzt89N4yyrU+XcqKRkGJ/wH3vT4XNWfYwKMd78Vvv3ZsXDWO+YcsmZb+D65XbytSURERERERERERDyk8DMRERERERERERERES9ph7aIpBZ/AIqHwIEwIQgHV9uPbayGj++EqffDnnfs+563QZ+qLiKSygKF0Y2r2Rr9msF667Z9S6OfVyQT2G2Qb7J1HpTcFP9aUomTYDR/dvzrSHW9psOpz8GrZ7obV78v/HG3wWhggg/I4GA0N5v6c7tYB6OBCaPe8HcY9vXY64pVqDH88UQGDvY6B7KKoOFw+Pb1DwE+mPq/yQu4qHwycp8eZ5lQNIDSUVA0EA6vtx9TMjL22iR5SofDmW/BJz+HqvebHyfye0O/S2DwtfbBaFn5QAzhHKO+ZwIdNj0CtTug4QhkF5sgkqxC6HYyjLk98wPAfD53/fcugs3/hv6XxKceERE7tsFoOYmrwy2nIUH9LzOPy74A5HWDIV91Foy2/YXY6gOoWgJvf8GEimd3glHfhRE3uf89EUkoZJ4vhQ0Mq4PG+jDH4hlS9ll7KOjt95mJFHaVenpO935OfzaUT7EORgN48Tj7OXRbERERERERERERSVMe/01ARERERERERERERKQDUDCaiKSekmHhg9Gc2DoPQn+AYK11nwn3QEHv6OYXEZHEyCqIblzNtujXtAtGq9kO9fshp1P086eqwxtM8Fv5JCjsm+xqJFXZ3T+abPyH2did6YINsOt1aKyFTQ9H7p/IAKdU1uMMyCm3D+Rq6+j+8MfdhIA1qd3tfkw6cRIWVzHH/JvXFQ6tse+74S8pEoxm8X/tT+D9KrsYRnwblv/Aus/6B6HrNBh0VeLqamn325H7jP1R89c+n7k9rLrXur8/19xvJb11Gg3H/9W6fdg3YfWv2h8feGXsa/t8MPhqc+no+l3q7JyhyZrfKBhNRJKj0eZ5XyA3cXW45SQkqM8F0GtG62NdpsKALzoLR4tF7W54fmLz9aP74cObYctj0Od86zCxaEPKJD0VVCS7AmkruwiG3wir7vFuTl82VJwHq38Z/RwKRhMREREREREREUlToWQXICIiIiIiIiIiIiKSdrRDW0RST8mw6MfW7oLtL0DlPOs+/T8f/fwiIpIYqRaMBlD5FAy8PPr5U00oZDbirry7+dio78HYO0yQhUhLjXWR++z7ELY9B73OiX89yXJ4Pbx+HhxY4XyMPxC/etKNP8dd/3qLYDQnIWBt1e1xPyadOAmLawo6crKJuuqD2OrxStDi+/Il+H418jsm1OjgKus+i6+G3rMhLwmb1O2C7gZ/BcbcBvk9Wx+PFIw24L9MEIBktr4Xhg9Gq5id+Foy2aAr3QWj7XknfrWIiNgJ2jzv86dyMFpn+/bJ98Hga8O/1nHsg+a86I250a3t89u3H1wD8y3+3rF3sbmIgHkuIalnwi9MiFko6M18/mzoegKUjICDK6ObQ8FoIiIiIiIiIiIiIiIiIiIiIiIiIiLSQSgYTURST9kxsY1/bYZ1W9cTIL97bPOLiEj8BQqjG1e9Nfo1IwWjLb0ps4LRtj3bOhQNYMVd0O1k6HlmcmqS1GW3Qb6l12bApcHMDNdrrIWnBiW7ivQWcBmmUPV++OMhBaO1YxUg1mTEzdB7pvk6J0JwRJP3b4A+c6H7qdHXdXANbPwn7F1kwta6ToP8CjNnn/MjP1ZYBb75EvxyViAXTnkOnhpg3++1c+Ds9xJTU0tWwWg9zoIp94Vv63I85HaFut1hGn0w7seelScprMvxMPZOWHZr87ERN0HvWcmrKRN1P939mL3vQ+dJ3tciiVe9DTb8BQ6uRp8CLynv6CHrNrfn8onkz7ZvH/xl6/NOnw/6zIExt8Py26NYO0L487vXuJ9TOp4+F8CwG5JdhYTj88E5H5qQ/CMbY5/Pnw3+LDjuL7BgOtTvcz+HgtFERERERERERERSWCb9PTCTvhcRERERERERERERSVcKRhOR1FNxHhRUQHWldR+fP7pPaNfmEhGR9JBVEN24mm3RrxmMELQTNjgkja21CEpZ/5CC0aS9SMGBLa1/CAZ9KW6lJEVjHczrl+wq0p8/ijCFNb+Hode1Phbp8TqcTA9GswuLO/Mt6Hp883WnP781vzWXCb8wQUlu7VoIC86BxurmY5XzzL9rfweDroGp99vPYRX4luhgNICi/jBnKzzZ27pP1fuw41XocVrCyiLYYL1Bv+19pyV/AEbfBh98vX3bJUdNu2Q+nw9Gfw8GXgH7lkKnsVDYN9lVZR6fD/J7Qs1252NemAzHPwz9L4lfXRJ/B1bByydm/nmIdAyRAsCSrWyC+V3WVuGA+AZ32/1canebc2JJb76AeS4byA3zb074Nn8uBHJafG0xNpAPnSdD8dDMDJjPFJ3GwLkrYMFZsPut9u3H/wM++RnsXxZ5rqYgx86TYfZmePmk8I9ddnIdhp2LiIiIiIiIiIiIiIiIiIiIiIiIpDC7aH7F9otIEwWjiUjq8WfDaS/DO1dA1buAD0pHQtkxUD7RXMrGwfOT4eBKd3N3nhKPikVExGuBZASjuQh+ygTbngl/fNM/Ydo/EluLpL7GOud9F1/pLhgt2GA2kO54yYQdjbgRep3jvsZ4Wnc/1O5KdhXpL5owhQ9vhr4XQl635mNWYVl2Mj2QxO5nUtgm1K++yt3cS78NxcOgYlb7NTf8FVbcBYfXm2P5vaFmq7N5P/2TuTTVl10K3U+HsT+C7CJzLNQYfqw/SS9nFfQyQXMvTbPus+gKmLM5YSVRv886NLwgQsDVkK9C3S5Y9SsTYNf9VJj6Z4WidUQFvc1F4iea310f3WJ+BybrMU/cCwVh1b2w5XHz3PTIpmRXJOKdaEKOE2n0rfDGBYn/YfoAACAASURBVO2Pd7U5b/OC3eO7HgPc+7+gMZtQMX+ORdCYizbHAWc5OjcWI6sATn8Nlt4En/4ZGg5BdicYcxv0uxQq5sLSG2H9g9BYaz2PL7v56+wi8/xy6Y3WH2DRro5iKBke07ciIiIiIiIiIiIiSRLSVk4REREREREREREREbe0q0pEUlPJMJj+jtlQGGwwG2Hayu3ibs6+F7cPBRARkdSUFWUwWu1O8wYSn8/92I4WjJYJ6qqg4TDklDVvnJX4CLoIRgM4shkKIwTyNHnnctj0cPP1na/AyU9D75nu1oynTY8ku4LMEIgiTKHhCFTOg8HXNB8LHXU/T+1O92PSSdDmZ+LPbn29zwXW4ZhWFp4HZ7wO3U4yv2eDR2Hlz2HZ91v3cxqK1lLLwIj9y6DqfbOWzwchi6AJXxJfzup6PJz0lPmZhFO9BQ6shKxCc2mshdzOEMjzroZgg3muHMiBur3W/XI728/jD5ggutHfNz/TaM6fRMSZijkmDNKNI5vM42LxYBOCCCZMI6vAhEnqPpt6PvgmrPltsqsQ8Z7PD4H8ZFdhr2KuCXnduaD5mD8Xhn7d2fjySdGt21gNwcbw4VmxhPfHnc8+GMyLIDK7wLGwa+bod5ukNn8WTPwVTLjbhOfn9zCPjwBZ+TD59zDx1/DutbD+IYs52jw/bznuufFw4BP7GoZ+zdvnliIiIiIiIiIiIuIthZ+JiIiIiIiIiIiIiHhKwWgiktp8fuuQE7fBaMf/LfZ6REQkMbIKoxsXajQBZ9GE7ygYLX1ULYFFV8D+5a2PD/sGTLgn/IZkiY3b+0flPBjmYAN65VOtQ9GavD4LTpoHFRbBQ4lUuwf2vJPsKjKDP4rHZoDKJ1sHo9mFgFlJ6VACD1gFiEH7ELGeZ0a3xrLb4Jh74b2vwt53o5vDid1vwPYXoNfZNsFoSX6cr5gFBX1MCFo4z4xsf2zA5TDp/0F2cfTrNtbBR981oTvBo9BrJvS/1Lp/pGC0Jm0354uI93rNcB+MBvD8RMAHhHkD/cRfm8Afhcikhv0rFIommavL8akfRO7zwYmPwapfw/bnIb8XjLkNysY7G9/jdMgugaMH3a/dcBhyStsfX3575LHZnaB0pH3gWCxhY1ZtCsUViZ4/Cwp6WbRlm+eKlmMtnnv5s+GsxbD0Rlh3f/g+E38LQ693V6uIiIiIiIiIiIiIiIiIiIiIiIiIiEgaUzCaiKQvN8FoZ7yhzd4iIukkUBD92IYj0QWjNSoY7f9UPgVdpzkPVIlFKGQCzmq2QU45NByEooHm0tahT2HfEnjzc+HnWv1rs6l47O1xLblDaqxz1z9cMFr9ftj9JtRVmdtW2XhYONt6joWzYeYqKBnmvt59H8LO18xtqvspUNjX2bijB2HPIqjZYTa65nWH1b8hbBiJuBft+fi2Z6G6EgoqzPVogtH2LYX6fZBTFl0Nqc7uZ9L2515QASP/Bz75ibs1dr3+WUBPAmz+twlGC1oEo/lT4OWssxbBk72d99/wVwjkwZQ/Rr/mJz+DVfc2X98231zC8efGdj4lIt7qNQN6nAU7XoxisMV5yAffgPze0PeCmEoTjzw7OtkViMRHVjGM/2myq3Amp8y8HhDNawKBPBj/c3jvK+7HhgtG2/qseQ5iZ9xdMOq77tcTkRRnEzpo97pIdpF5vlg6Gj64ofl4VqH5G2f5BO9KFBERERERERERERERERERERERERERSQMpsJNURCRKToPRsoqgy3HxrUVERLzlzwZfAEKN7sc2HIHccvfjQg6CdkIh8NlsbssUC2cDPjjhX9D3ovit03AEFl0Fm//V+rgvy2wOHvtDcz0UhI9udRbis+GvCkaLh6DLYLRdr0NjrdlcDiYobeEc9+vOHw6XNoLP76x/sAHeugS2PNb6+IS7YcSN9mP3LIY35kLNduf19bsUyifB0ghzy2dsAuYCeeY2Y+XJPmaD8OBrIWQRlhXJY13gxMehwiaQL13Z/Ux8YV76GXcXdDsZtj4Fa38fv7qitf7P5nfA7jfCt4f7nhKtoBeM+Das/IXzMZ8+AON+HF3waEMNrPy58/65nTvGOYtIugjkwCnPwsZ/wKIvejfv2vsUjJYK9i9313/gFXEpQ8RzJcOhYi6UDE12JYkx5MvQaQy8NM3duIYj7Y99+r/2Y856B7oc624dEUl/PgeB8cO+bv6mWfkE+PNg8DWQ3yP+tYmIiIiIiIiIiEic6YM5RURERERERERERETcSoGdpCIiUcrr6qxf38+BPxDfWkRExFs+H2QVwtGD7seG25DaJNgI21+Ana9CQW8YdBVkl0Qe1yTU4GwDW0YIwTtfhB5nQE6Zt1MfXg8bH4Zlt1os3QAf/wiOHjKBWJv/DdWbnc19ZAMEj5pwPfFOsD788e6nws4F7Y+HGkwA0NDrzf34rUuiX/vhAJSMMF93ORYK+0OfuWbDepMjm2H5D02YUjhLb4KN/4Sy8S0OBmH321A6CnqeZcKN3ISiDb0BJv36s/kVjOZI6RjYtbD9cX+OCQZ4boL9+He/bB6Tgg6CLMMJBeHNi+H8nZBTGt0cqWbPu1D5JGybb90n3OOhzwe9pptLzXaz4TrVPNnHus2fIi9nDfySu2C0UCO8/zWY9rD7tXa+4uxcpUk04WsiEl/+AAy83ARS7l3szZw7XzG/35yGyEp87PvIed/PHTbPdUUkNXU9HoZ+Hdb81vmYxur2x+zOr4f9t0LRRDoqp69Xdp5kLiIiIiIiIiIiIpJmMij8LJRB34uIiIiIiIiIiIiIpK0U2UkqIhKF/N7O+o28Ob51iIhIfAQKogtGa7QIDQmF4P3rYd0fm4+tuhemvwf5PUwIVyTB+o4VuNVYA5VPwcAvejfn7rdhwXRoOBy57+pfRrfGpkdhwOejGyvhNdaFP14+EXa9YYLQ2nr/aybEp7A/NNbGtv7Bla3/XfFjOOFRqDgPdr4Or5wSeY59S8ylrUNrogiF8sHgq12OEfp9zoTBtH0TYN+LTWjd547AoxGCQjY/Zh2MdtI8c5t7+zLr8cE62PEi9L3IVekpaf1DsPgqE4hjxxchJNpp4HQspvzJhLdVzvNmvkjfc6KUDIfiIXBorfMxmx6Bsgnun6dWPumuf46C0URSVr9LvQtGAzj0KZQM8W4+ca96i7N+py9QKJpIOsjr7q5/2/DahjBBaS2VDHM3v4ikGZ91U0d6XVlEREREREREREQyl8/mdVARERERERERERGH7LL5ldsvIk38yS5ARCRq+b0i9znxCW00EhFJV4H86MY9PwnevAT2L299/MObW4eiAVRXwvIfmK83/TPy3FZhPJnswCexz9FYD2v/AC+dCC9NcxaKFot3FVjluWB9+ONZRVA8yHrch9+Bty6OQz11sPQm2PeRs1A0rw25DjqNSfy66a7bSXDc36Cgwlz355hwmCn3metZBSZoys6ed7D8dNWcTtDvEigeaj9HdaWrslNS3V5Y9CUHoWhZkd+MmNvNu7rCGfYNEyQ46XemHi/UbPdmnlj5fNDnQvfjlt8Otbsi99v9Nrw2E/5TDp8+4G6NzpPd1yUiiTHsBhj9fe/me34CvHSS+b1wZJN384oz9Qfgo+/a98ntakJCu5+SkJJEJEbZJe76tw1GO7TGvn/pCHfzi0jmUDCaiIiIiIiIiIhIB5ZBOzm1K1VEREREREREREREEkTBaCKSvgp6W7cNvAIuaYA+cxJWjoiIeCyQE/3Yzf+CF6bC4Q3m+urfwMq7w/dddz+s/0v7ILVwOmIwmpOfS1uNta1/Vh/9D7z3Vdj9pnd1RVq/Zmdi1uoognXhj/tzIwdZxcuhtfDc+MSvWzoaxt2V+HUzxYDPw+zNMKcSLjoA0/4JWYXN7YX97MfX2ty3m0LARtxoP0fNDuf1ppLGWhOIFmyAx7o4G+N3EESWF+dgtPzPnrcV9IYBl3szZ+kob+bxwshvm8AbNxprYNMj5v8STMBdKGjeOBpsNL/Ddi00YaLbnoH6fe7rGnil+zEikhg+H4z9kXndatBVsc/XcAR2vwHrH4LnJ0f3mCHRCTbAK6fZ97noEMzdZkJCRSQ9ZBe76982GO3AKvv+yXoOLSKJYRdO7lMwmoiIiIiIiIiIiIiIiIiIiIiIiIiIiFMOdsiKiKSo/J727f5AYuoQEZH48MV4qtpYA08NhFG3wro/2vdddIWzOTtiMNr256F2D+Q5COE5ehgWXwWV88Dnh74XQf8vwKp7419nWx//ECb/PvHrZqpGq2C0HOh5tvk/7wh6Tofj/wE5pcmuJL35fNYhx5GC0QL51m3+zzYYD74Wsorg7c+H77fy57DpYfMY0Xtm5HqTrX4fLLoSKp90P9bJputchyFr0ep5VvPXU+6HkmGw7Vlzfdg3oOoDWOEybLDLsd7VF6ucMpi+CJb9ADb+3fm4D74BS74FoUZzzhNq8K6mQVdBqQI3RFKePwDFQ7yds243PDse5mzydl4Jb+ersG+JdfvgL0N2UeLqERFvZLkNRqtufb3yCeu+5RPdh+qKSObwKxhNREREREREREQks4WSXYCIiIiIiIiIiIiISEbxJ7sAEZGoBfIgUBC+re8lia1FRES859VGsRV3moAALwTrvZkn2YJuwldCsOz7zrou+iJsfhSCdSaYbsNfYcFZkcfFw9r7YM+7yVk7E1nd9gO5Jvyu89TY1yjoA8c+BL4UDbcd9T049XnI7ZzsSjJbpGA0u8fzlr83+l8Gg79i3bd6C7w+C/Z/7K6+ZHjrsuhC0cDZ7TXL4jmVFwZ+CcrGNV/3B2DkzXDGa+bSZy4M/bq7OQd/GTqN9bLK2BUNhOP/BpeFWl8utgiVbBJq/OxfD0PRyifCpN95N5+IxFevGfbtBX3gwn1wxhvO56zeDDtfi6kscWjLY/btpaMTU4eIeCvbZTBa45EWX9ea10WsjP+pCYoWkY5JwWgiIiIiIiIiIiIiIiIiIiIiIiIiIiKOKRhNRNLbwC+1P5ZVBN1PTnwtIiLirayiZFfQXvBosivwRmOtu/4b/gIN1fZ96qqgcl70NcXDqruTXUHmCFqE+/hzIbsITl8AI26Kfv6K2XDOhzDwi3DOR9HPE063k014W9MlkO98bP8vwNAb4ORnYNyd3tYl4RX2t2/fv8y6zZfV+npul8jrrf195D7JdGQTbH8++vE9p0fuk+Uy+CGSokEw5Ho44d8w9YHI/fO7m9CfSPJ6wEnzTOhXuoRJBHLg7A/iN//EX8Mxv4SBV8DAK2Hy7+HMt0xopYikh9LRUDoqfNsx98K5n0BOJ+h2Akz8jfN51/3Jm/rE2pFNsO5++z4FvRJTi4h4y+35cUOLYLStT1v363M+9DgjuppEJH20fW2iJQWjiYiIiIiIiIiIdFyhULIrEBERERERERERERFJOzbvzBURSQNjbod9S2DPO+Z6IM9swA/kJbUsERHxgNdBLV4IZUowWo37/mt+CyO/Y91n34cQaoytLjeyikzgz5bHrPts/jfU7YXczomrK1M1WgWj5Zh/s/Jhwi+gcAC8f727uUf/AMbe3ny90ygonwxV70VVKmDC0E5/FXxhssBDf4X3roN1f7CfY84WKKhwtt6UP8G717Q/PvAKZ+OlWWE/V9031PRn3p7z2N/QiVnbipjYqUWjo2C0+0yYVKra8XJs48f/NHKfzpPNfTlYH9taAMO+CcfcE/6+ZyenE5z5JiycC3W727SVm+d4PU6Lvb5kKD/GhCxu/Lv3c/e7FPK6ej+viCSOzwfHPggLZ0PNdnOssL85jyka0LpvxXnwwQ3O5t30T+h3MfSelT5hkunmvesi98nvHf86RMR72S5fj6qrav66aql1v36XRVePiKSX/p+HZbe2P15QYR+aJiIiIiIiIiIiIukvo8LPMul7EREREREREREREZF0pXffikh6y+sCZ7xuNhzVboduJ0FOWbKrEhERL2QXWbdNvg/e+2riamniRWhMKnAbjAbw4S1QNAj6Xhi+feXPY6vJrX4XQ8X59sFoAI91gbnbIb9HYurKVFa3/aZgtCZDrzPhG06CIgAGXdU6FK2J21CllsomwBmvWbf7fDDlPnMbeuXU8H3O3wl53Zyv2WsGZBVCw5HWx/tc5HwOMVwEoy06MJUZy+ezv8Gc/9/x6xAPXhHk8uM+u/04CUYDWH4HjPm+20rj7/BGWHx19OPP32kCxyLJLoaKObD50ejXApi5GkqGRj++6zSYtRp2vwU1O8yxvG7Q9QTILY+ttmSb8AvY+hQcPejdnEOuUyiaSKboPBlmroI9i805UNcTIJDbvl9BHwjkOz+XXzgbBl0DU+/3tl6BQ5/Ctmcj98vvFf9aRMR7boPRVtwJo24xzwkPrrLu13tmbHWJSHoo6g+dp8Ded1sf73uxAmtFREREREREREQkM+i1ThERERERERERERFJkBh2m4uIpAh/NnSZAhWzFYomIpJJsmyC0fpcAENvSFwtTYJHE79mPBz4JLpxS2+GYGPrY0cPwnvXw/YXYqspqxgK+kbu58+B/p+Hib+F3jNMSF4kH94SW21ifdsP5LQ/NuSrcMyvILvUfs7hN8IUi6COaIPRBlwOp7/irG/3U+CMhVA0sGlR6DwVZm90F4oGUNALTn0Rij8LhcrrDlP+aG6j4k5eT8ddv7fhzv8LRQMIhXx8/eEQRxs++8TSzpOcTbT8Nji83k2V8VWzAxZfC08NiG0eN7fjqQ+Y363+bHOpmAP9LnE+vuc5sYWiNckpM4ERg682l4rz0j8UDUw459g7PZzQB+N/4uF8IpJ02SXQ80zocXr4UDQw50ddjnM376d/gn8VwPq/ZNinkyfZ1qed9VM4s0h6ynIZjAbw4nHwTx9UPhG+ve/F1o/vIpJ5Tn4aup9mzt8CBSasdvxPk12ViIiIiIiIiIiIiDf0t2cREREREREREfGA3atMIdtWEelIspJdgIiIiIhIWHYbUf05MOgqWP9naDicuJoyJRht9a+iG3dkA+xb2hw2FArBwrmw89Xo5ssuhVlrwJcF2cUQbIBHC6z7z1hmQqyyCpuPDfkKDL4WFpwDO14MP27zoyZALSs/ujoFQha3fV92+OPDv2EC0oL1ZvN3sB7q9pr/O18AAvkRNoW7+FTJsmPgzIWA3/3/cbcTYdY6qNkOgbzYApi6Hg+zVkPtHsjtrE/GjJY/4KhbXTCHBftPbXf8UC28tgbOHAmUDHO+7qZHYVQKhCgePQTPT4KarbHNUz7ZXf/sIjjxP9BQDaGguV61FDY9EnmsLwDDkhBWmm6GfAU++h40HIptnqJBMHOlCbATkY5n+I2w6zXzWO1UYw0sugJqd8HIb8erso7lwMeR++R112O1SLrKjiIYbf9y+/a+F0RXi4ikp7xuJri//oB5vUnBiCIiIiIiIiIiIqKNnCIiIiIiIiIiIiIirvmTXYCIiIiISFjZRdZt/mwoGwunvZy4eiAzgtHqqmDHS9GPf2EyrPqlCUXb+nR0oWiF/aHPBTD9PbNRMLfc/J9GCrXK7906FK2Jzw+Dr7Ye11gDO19xX6c0CzaEP+63ydoO5Jj7sT/b/L8V9jWBYTmdIm8ItQsVm3I/dDsJSkfDyO/AmW+a+aMNvvP5oKBXbKFoLeV1USharIZ8NWKXAw2llm2rdrR4I2H//3K2ZuWTzvrFU/0B+HeJu1C0rieEP14xO7oasgqaf/+WT4CzFkHJ8Ob2HmfCjI9h2DfNfbDnOXDyM9Dr7OjW60j82TDgC+7GFFSY35N53aF8ogkCPfMtBe2IdGS9Z8BJT0PP6ZDfC/J7Oh/74c1wZEv8autIPn0gcp9e58a/DhGJD382dD3R2zmLXYQ2i0jmyClVKJqIiIiIiIiIiEiHovAzEREREREREREREREv2exiFxERERFJop7TYcWPw7cF8sy/XabCiG/Dyl8kpqZgfWLWiad9SyAUjG2OJd+C2p1QtcTduNHfh7E/su/jz7H+OWeXWI/reTb4AhBqDN9e+ST0numsTmkvZBEKGLdwHptgsf5fgMHXxGldSQnDvwWVT9kGhB1ssH48KGq55zi/h7M19y6GNb83gWIFvR0W6rG3P+9+zMArTTDg9heaj5WMgMFf9qamLlNh5sr2xyf+0pv5O5qxd8L6h0xgZ0u+LJj2MPS9MClliUia6T3DXJrsehNemwENhyKPnT8cLj4Sv9riqaEG9i8DQtB5avKCaPd9FLlPfk8YcWP8axGR+Bl3F7x8knfzFQ/xbi4RERERERERERERERERERERERERERERkQ7An+wCRERERETC6noCFFS0P14xB3wtTmMTGXYVtAiHSidefQ+f/Ax2vOSs75Dr4OT5kUPRwITDWPHbtGUXw4DLrdt3vBJ5bQkvFLQO07P7/4qJTdBFUzCiZK7iwTD9Xdvb14HGUsu2wpbBaDmdnK/7/vXwZAV8dCuEEvwJrtWVsO0Z9+Oyi83j69Q/w+CvwDG/grPehrwu3tcoscsth/N3wKhbzWOZP9sEvE5fpFA0EYletxPg7PdgxE2R+zZWw4EwgZeprmoJPDcOXjwWXjwOXpgC1dYBqnG1/If27UWD4ZwPoXRkYuoRkfjodiLkOQxZjiS7E2TlezOXiIiIiIiIiIiIiIikqQS/F0lEREREREREREREJAMoGE1EREREUpPPD8c/bDaQNikeCpN+17pf1xNh1HdbHxt0dXxqCmVCMFpD4tYaewdcFoLJv4Pe5zobYxd+Fsn4n1u3HdmY+KCjTBFqtG6LVzCaz+apqs8mNE0yR0EvGH2rZfOBButgtIKcFreRbBfBaE1W3AU7XnY/Lhb7P45yoM88bg76Eky5D4Z/w10YnCRedgmMuwMuroFL6mHCz6F8YrKrEpF0VzIMJvwCTn7GPM7YWXZbYmrySigEi6+BQ2ubj1W9D+9/PfG1bH8RKp+w7zNrDeR1S0w9IhJfXY7zZp7up3ozj4iIiIiIiIiIiIiIpLaMen9iJn0vIiIiIiIiIiIiIpKuFIwmIiIiIqmr2wkwez2c/DScvgBmLDdhOS35fDDuLpi1zgSpnfMRTLk/PvUE6+MzbyLZhVx5qde5tqFGlsonRb9mXhc46x3r9u0vRD93Rxa0CQT0Z8dnzaJB8ZlX0os/x7Jpv00wWqv3GNqF7NnZ9M/oxkWrZnt04xSCJiIiLfWeAbPWwujvW/fZ8h9YeU/iaopV1Qewb0n745VPwJEtiatj+R2wYLp9n6kPKMRXJJN4da499Dpv5hEREREREREREREREUkF+puoiIiIiIiIiIiIiCSIgtFEREREJLXllEHvmdD9FAhYh+RQPAj6XwJlY80bL0be4n0tdgFR6SLUkJh1ov35j7gp/PEBX3Q2Pq+bddu717ivR+xvM/6s+Kw59Gvhj/eaEZ/1JDX5cy2bDtgEozUEW1wJBS372dr8WHTjolVd6X5MViF0Od77WkREJL3ldYOxP4KyCdZ9lt4Eh9YlrqZY7F1s3bZtfmJq2PAPWH5b5H7ZxfGvRUQSJ9uDYLQpf4Tup8c+j4iIiIiIiIiIiIiISKpo9amVIiIiIiIiIiIi0bF7mUkvQYlIEwWjiYiIiEhmGniF93NmQjBa0EEwWvdTY1uj87HQdVp0Y3ucAaWjWh/z58Lga52Nz+1i3VZdCUcPRVdXR2Z3u/dlx2fNsvHQ9cQ2a/lhyFfjs56kpkB0wWiNLbPQSoZFt3bDocQGxjgJW2lr0LWQle99LSIikhmmPWLf/vSQxNQRq6oPrNv2fRj/9bc8Ce98wVnfLAWjiWSUnBiD0XrNNK9l+Hze1CMiIiIiIiIiIv+fvfuOl7Os8///uk5NTnovhAQSQu9VAghSpLgrRVDBhthx7bvquiqiu2v5Ka5lbasifBcLIGADpCiKFKlK7ySUBEJCek6Sc2au3x+TbOZMZu65p50y5/V8POaRXP2TcHKYOXPP+5Ykaejyk5ySJEmSJEmSJFXMYDRJkiQ1p2rDcJI0QzBazCSPj9oBXnU97PtlaB9b+f5Tj4Sjr6v+g78t7XDsn2DeO3P/DWe+Bl51LUxZkG59uTCCNY9XV9dwlhSm19LWmDNDgKOuhp0/AON2h+mvhlf+Crb7h8acp8GppaPk0KpM6WC03kzehYRTjoD2KgMNfjO/fy5KXPlA8vikg2G3j8O+X8kFT048EPb9Euz/1cbXJkkausbuXP658fK7+qeWWiy/s/TYxmWNOzezEe54D9x8avo17QajSU2l1mC0ee+oTx2SJEmSJEmSJGmIMPxMkiRJkiRJkqR6atCn2CVJkqQmlN000BXULiaEXIU22OeL0NIKu38cdno3XD6hsv2PuKL2QIDOSXDI/1S3tlwg27O/hJ7VMHoejNq+ujOGm5gQCBjaG3du+2g48JuN21+DX0tnyaF1mVElx/Jz0WjtgH2/CHe+r+++E/eHZbeVr+Hx78LO56YotgbPXF56bK/zYa/Pbm3v/i+NrUWS1Fx2Phce+nLp8SXXwqQD+6+etLpfhHVPQ+cUWP1Q6XmNDEa76wPwZIWvSdpGN6YWSQNjxPTq1047GmaeVL9aJEmSJEmSJEmSJEmSJEmSJEkaZgxGkyRJktLKJgREDRUxU3rsuJth8iu2ttvHVb5/R4VBav3twf/MPQDmvRMO+l4uCE6lZRPC9Fp8SakGai0djJaNLSXHegu/zc1/L4zdFZ77FbR1wewzYMK+sPha+NsnYeXfS9dw1/th5EzY/pQKi6/AC9eXHpvVwHMlSc1v7tuTg9Hu+0zu/5GzT++/mpLECI/9N9zzkeRA5y0aFYzWsxYW/r/K1wWfG0tNZcZxuX/Xhd+PRs6AHd4MPavgiR9suy60wVFX50KaJUmSJEmSJEmSAIjlp0iSJEmSJEmSpD5Kf5JYkiRJGup2+5f67rfyvvruNxBKBQyM3qlvKBpACDB2l8r2D6G6uuophHMn4gAAIABJREFUbZDQkz/MhS489GV49JuwblFj6xqqkkIpDH9QI7WUDhLItI8vPZYt0jntKDjg67DPf+RC0QBmngAn/Q1O/FtyHTefCt0vlq+3WmufKt7fOQUm7N24cyVJzW/sLnDAN5Pn/OUMuOuDsOrh/qkpydMXwd0fSBeKBo0LRlv9CGQ2VLamdSSMntuYeiQNjI4JcOjFfV/3Tl4Ar3kY9vsKHPx9OOwX0JIX6DzxQDjlucSQZ0mSJEmSJEmSpEEvGuQmSZIkSZIkSRp4BqNJkiSpeW1/OlDHoK6nfgzPXlW//QZCzBTvbykRcDXnrMbV0ihzzkw/97Fvwd8+CXd/CK7eF166pXF1DVXZntJjLe39V4eGn5bSYQKZltElx3qLBaMlmbAPzH5D8pwl11a4aUrZHthQInTt0Isbc6YkaXjZ5QOw8weT5zz2LbhmP3j2yv6pqZinLobb317Zmo3LIVb6P/4UVj9S+ZrtXgttI+tfi6SBtcOZcPIiOOzncNwtcOxN0DFu6/ic18Nrn4QFP4Nj/gjH/QVGThuwciVJkiRJkiRJ0kAaJmFig+HmuZIkSZIkSZKkYcFgNEmSJDWvyQfDgkugc3Lf/rZR1Qc63XVuYz5831+yvcX7Q4lgtD3+DeafuzWgaPw+ub5i5r+/9vrqYc7rYdrRla/rWQn3/kv96xnqYomvGSj9dSPVQ2vpYLRsy6iSY5lqvkW/4sfJ492Lq9g0wdqF8KfXws87KHlRZNd29T1TkjR8zSkTAAqQ3Qg3nwaZjY2vp1DP6lxQcaViBv58Ciy/s/Yalt0Ot74Z/nA83PaWytcf8sPaa5A0OHXNzH0fnbKg+M+SuraDHd4I045KfA0jSZIkSZIkSZLUFOIwCYCTJEmSJEmSJA04g9EkSZLU3HY4E057EU55Fs7M5H49fRWc9CC0juw7d+R2cOLfYeorS+/XvQRWPtDYmhupVMhVaC3e39IKB/03nLESTl0CJ/0N9vjX3N9VvtaRsNO76ltrLQ6/tLp1y27LBRblG8pBePWQ7Sk9Vm3AoJRGS0fJoUzLyNJj1fyTbeuCo64pPd67topNS+heAr/ZCZ7/TfK8wu+zkiRVa/KhuUcaNxzZ2FqKef53uZDiqtb+JlfzS7dVf/7ia+CGV8LCS+CF6ypfv/MHoX109edLkiRJkiRJkiRJanKGiUmSJEmSJEn5kvL3zeaXtIXBaJIkSWp+oQW6Zm39taUVxs6HV98KM06AUTvCnDPh2Jtgwt7bBqYVumYfuPFoWPNkv5RfVzFTvL+lLXld6wgYOT33+7ZRcPxfYc4bc393M18DR98IE/apb6216JxU/dpf7wiXjoGbz4Df7g4/74BrDoAXbqxffUNJtkSYHpT/upFq0dJZcigTRpQc6602y3DmCUAoPlbPf//3n1/6e/EWrSOgY0L9zpQkDW8hwKt+n27u8r9Cz+rG1lNo8dW1rc90w6Nfr379IxckhwGX0z6m+rWSJEmSJEmSJEmSmoOf1pQkSZIkSZIkqa4MRpMkSdLwNWFfeNU1cPJTcNhPYcxOuf6EMJ7/8+If4YYjoXd9Y2ust1IhV6G1sn26toPDfpb7uzvqtzDl0Nprq7fZb6h+be9aePZyWP1wLsBoxT3wp9fCqkfqV99QERNCIkJ7/9Wh4ac1KRgtYazaYDTIBT4Ws/yvsHF5DRtvlu2Fhf9bft6I6bkQG0mS6qV9DMx7Z7q5L99T//NjhLVPw0u3QGZD37E1j9W+/zOXVV/X0j/XdvaIqbWtlyRJkiRJkiRJkiRJkiRJkiRJktSHwWiSJElSoc5J6eZ1Pw8v3NjYWuotZor3h7b+raM/zH1bfffLrM+FpQ03pcL0AFqa8OtGg0dLR8mhmBCM1ltLMFrb6NJjj36jho03u/9z0Luu/LzJgzBsUpI09LWNSTdvdZ3DgHvXwc2nwa/nwvWHwxXT4YUbto5vXFafc6oJMe1dC9lN5ecd8C1oH1d8bMaJlZ8rSZIkSZIkSZIkSZIkSZIkSZIkqSSD0SRJkqRCaYPRAB78z8bV0QixRMhVMwZczTgBJuxX3z1XPVjf/YaCUl8zBAi+pFQDtbSXHMpQOhgtU1Mw2qjSYw98AV6+Fx78EtzzMXj027BuUfq9e9bCg/+Rbu6cN6bfV5KktNrTBqM9Wt9zH/oKPHfV1nbPKvjDcbD497l2vYLR7vlY5WvSnj33rXDoxdA6om///l+HsfMrP1eSJEmSJEmSJEnS8BHjQFdQoaFWryRJkiRJkiSpGTVh+oEkSZJUo87J6eduWt64OhohZor3h9b+raM/hAALfgq/261+ez5zGRz2s/rtNxRke4r3J4RWSY2WaekqOdZbUzDa6OTxa/fv277v03Dkb2Hq4eX3vnrPdDWM3wtmnphuriRJlUgbjLbm8fqeu/CS4v03nQA7vg16VtfnnKcvgkN/UtmaNMFobWOgfSzMei289il48Y+Q2QBTj4Qx86oqVZIkSZIkSZIkSVKzGSZhYiEMdAWSJEmSJEmSpGHCYDRJkiSpUCXBaEMtHCrbW7w/NOlLg45x9d0vZnJ3bxxOF/fEYfY1o8Fj9Nzc9+PCwJLWLrIjppdclqkpGG1UZfN7VsENR8A/Pg5jdio9b/WjsG5R+f1GTIcFPxt6/2+RJA0N7WPTzVtxD9z+Dnjqx7l2axccfhlsd1Lx+b3d8NCXYemfoHdNrq9tDEw7Cua/H9Y+Wfqspy9KXX4qG5dD56Tcc/ZFP4dFm/+/Ov9cmH5MkfkpgtHyA+VGzoAdzqpfvZIkSZIkSZIkSZIkSZIkSZIkSZK20TLQBUiSJEmDTsfE9HPDEAuvKRly1dq/dfSX9vH13/O+T9d/z8Es21O83+AmNVpogZ3eu23/vHPIxNLBfL2ZGs5s66pu3W/mw5onSo8/e0Xy+pMegFOXwKmLYfwe1dUgSVI5LZ3p5nUv2RqKBpBZD396DTx9ybZzY4Q/Hg8PnA9Lb4KX7849lt4E938Ofj23DoVX4KEv5Wq6/3Nw61nw/G9y/x/+w7Gw8Gfbzt+4vPye+cFokiRJkiRJkiRJklSxONAF1E9soj+LJEmSJEmSJGlQMxhNkiRJKhSz6ee2dDSujkaIJRKDQumQoSGtbSRMPLD42Pz3V7fnIxdAb3f1NQ01pcL0Wpr0a0aDy96fh32/AuP3zj32Oh8O+AaZbOkL7DK1XHuXLfH1nsZv5sONR8Pap7YdW3x16XVzzsyFoY2cDiFUf74kSeX0rKlt/YP/vm3f87+Fl24uvaa3xjPzjZxRfs7DX4VfdMIDn9927NazoHd9376Ny8rv2WYwmiRJkiRJkiRJkqRyDAyTJEmSJEmS0kr6aZo/aZO0hcFokiRJUqGJ+6Wf2zrEgtFKhf40c8jV3l/YNsBu3y/DQd+ubr/MBnjxj7XXNVRseKl4f2jv3zo0PIUAu/8LnPT33GOvz0JoISEXjd4S+Y+pZGoMPXzxj3D94ZDZ2Ld/04rSa2adUtuZkiSlNeng2tavfqRvsNiGpXDfp2vbsxLTjk03L9tTeuyaffu21y0qv1+7wWiSJEmSJEmSJEmSJEmSJEmSJElSfzIYTZIkSSo0akcYu1u6uUMtHCqWSAwKrf1bR3+aeQIcdwvs/EGY/z448new+8dr23PjsvrUNpjFCA99Be56f/HxZg7T06CXyVY3Vlaow49JupfAs7/c2o4R1j9bev7Mk2o/U5KkNCbuD52TattjSzDa/Z+Hq2bByvtqryut1g6Y947a9ljzOLx899b26kfLryn1GkqSJEmSJEmSJEmSJEmSJEmSJElSQxiMJkmSJBUKAV5xYbq5LUMtGK23eH9o8pCrSQfCgd+Ag74D2+WFEO3xqer2ax9Tn7oGs6V/gr99ovT4UAsFVFNJCj/rrSUYbdbJNSzOc+ub4M73w+/2gGv2gZ7VxefNfz+0j67PmZIkldPSBgt+Ci2d1e+R6YYl18H950G2p361pdHSAXt9DsbvVds+1x4Iy+/M/X71I+Xn96yp7TxJkiRJkiRJkiRJw1wc6AIqNNTqlSRJkiRJkiQ1I4PRJEmSpGImHwKvuKj8vKEWKBYzxftDa//WMVjMPgMIla+rJUxiqFh4SfJ4yxD72ldTySZce5cUmlbW2N1g3O41bJDn8e/Aqodg5f2l5+x9fn3OkiQprRmvhlOegUMvhl0+XPn6TDc8ckH960qjpQO6ZsGrb4ejrqltr98fDPd/HtYtLD+3VMCpJEmSJEmSJEmSJG0RDROTJEmSJEmSJKmeDEaTJEmSShm7c/k5safxdeTrWQsPfxX+dDLceS6sf66y9bG3eP9wDbmasC8s+Cm0j6tsXXZTY+oZTJ78YfL4UAsFVFNJCj/rrSUYLQQ46urc94ZG65wCnZMaf44kSYVGTIUd3wKzT6987W93gSW/r39NabS0535t64KZJ8DYXWvb7/7zSHWn8961tZ0jSZIkSZIkSZIkSZIkSZIkSZIkqSJ+kl2SJEkqpXNy+TmZDY2vY4uYhT/9Ayz909a+Rb+AE+6E0XPT7ZEtEYw2nEOudngjzD4DHvgCPHB+ujXNHoyW5u6VW4IppAGQSfgSTQpNS2XUHDjxXlj3LHSMg/axsHE5rFuUC5Jp6YC2MfDgf8KD/179ObWGuUiSVKvWroGuoDItHX3bI2fC6kcaf+6skxt/hiRJkiRJkiRJkiQNCSmuLZQkSZIkSZIkqQ6GcfrB8BZC2BXYB5gFjAQ2AEuBJ4C/xxjX1bB3O3AYMBuYAawFFgP3xhgX1la5JElSPxpswWiLLu0bigaw6WV47L9h/6+l2yNmiveH1tpqG+paWmHeOc0ZjPb81XDfZ2D9Ihi3Bxz8Qxg7P3nNE98vv+9wDtPTgEsKP6s5GG2LUdtv/X3npNwj3z5fgBHT4O4PVLf/9GOqr02SpHpoG+LBaKPm9M+5O7y5f86RJEmSJEmSJEmS1JzS3KhUkiSpGfk8SJIkSSUkPVX0aaSkLfwk+zASQhgPfAg4h1xoWSmZEMLfgMtjjF+qYP8pwPnAG4CJJebcClwQY/xl6sIlSZIGSvu43Ifvk0Kw+jMY7ZGvFu9/8Q/p94i9xftbfGnAqNmw03vhie+VnztUgtFWPgg3nwLZnlx76Z/h9wfDyQuhY1zxNc9cDne+r/zeHRPqVqZUqWzCDzfrFoyWxi7/BJuWw/2fq3ztTu+pezmSJFWkdYCD0Vo6c8Gj3YtTzm/v255zJjx1Yf3ryjfzNTB5QWPPkCRJkiRJkiRJktQE/LSmJEmSJEmSJEn1ZPrBMBFCOAP4LjApxfRW4ABgFpAqGC2EcCLwE2BqmakLgAUhhEuA98QY16XZX5IkaUCEABMPhGW3lp7TX8FoMcLLdxcfW/G3CvbJFO8PrZXX1IwO+g5MWQBP/ABe+kvpeUMlGO3+z24NRduiZyU8eznMe0ff/mwP3H4OLPzfdHtPP6Y+NUpVSAo/6y3xba5h9joPxu8Nz/8aul+AdQth9SPJaw78Noyc3i/lSZJUUtsABqPt8hHY8U0wYT946iJ48Ubomp17Dv7SzcXXtHT0bU87CsbsDGseq399c86EqUfA3HdAi6+VJEmSJEmSJEmSJEmSJEmSJEmSpP5kMNowEEI4D/hckaFngMeAl4ARwAxgL2BUhfsfBVwF5H8yLQL3AE8B44H9gMl5428CxoYQTokxJnykXZIkaYDNPDE5GC3bT8FoPauTxzetgo5x5ffJ9hbvD740AHJheDu+BbZ/HVw+fttQsS2GQjBa73p49oriY399J0x7FYyeC2ufgsXXwl3vT7/3tGNglw/Vp06pCknBaJnsANx9dftTc48tHvsO3PPh4t9DdngTzD+3/2qTJKmU1gEKRtvuH+GAC7a257099wC4432lg9FCe992Szsc8iO44Yj61rfvl2D3T9R3T0mSJEmSJEmSJEnD2ABczyRJkjQo+DxIkiRJklQ90w+aXAjhY2wbivYz4IsxxvuLzG8BDgVeBxyfYv9ZwBX0DUW7BXhXjPHhvHmdwHuArwJbPsH2j8C/A59K+ceRJEnqfyOmJ49n+iEYLbMR/ljmqdm6RdCxd/m9YolgtBZfGvTR1gUzToTnf118fCgEo/355OTxX8+DuWfDokshsz79vsfcBFMW5IIopAGSlH2WGQzvn+98Lsx4Nbx0K2TWQUtHLuBy4oEw5fBcCKMkSQOtdcTAnLvj20qPtXYmjHVs2zf1cDh9JTx1IdzzkdprAxg5sz77SJIkSZIkSZIkSRpGBsNFS3USm+jPIkmSJEmSJEkaskw/aGIhhH2AL+V19QBnxRgvL7UmxpglF2x2SwghzdfH+cCEvPatwLExxj4JITHGjcA3QwjPAFfmDX00hPD9GOOiFGdJkiT1v7au5PGNy6BnLbSPblwNz1wKy/+aPGfdQpiQJhgtU7w/tFZcVtN7xYXwy0nFx/ojEK8WG16CF24oP++pn1S270Hfg2lHVlWSVE+ZbOmx3hLf5vrdmJ1yD0mSBqsQYPxesHKb+2dAaIGY8D/cQi0dMPUoeOG68nO3PzV5n0rHOsbBrh+GSYfA9QvKn1/OyBm17yFJkiRJkiRJkiRJkiRJkiRJkiSpai0DXYAaY3Oo2Y/pG373nqRQtEIxxt4yZ8wH3pbXtQk4uzAUrWDPq4CL8ro6gfPS1iRJktTvWssEowFcdwj0djfuLnmP/Ff5OetS5sxmSzzFS5WJO8x0ToSpJULA7vtM/9ZSqTShaJXqnAI7vqX++0pVSApGSxqTJEkF5r17274ZJ6Z7HZTv9JWw12fLz9vt47nQtVJaR5QeC+3Je08+BCbsW76GckZuV/sekiRJkiRJkiRJktSUGnSdrCRJkiRJkiRJBQxGa15nAPvntW+MMV5Y5zPOAlrz2lfEGB9Pse7LBe3XhxASPvEmSZI0gNpSBAKseggu7YLLx8PNZ8CGpfWtYcU95ecs/2v5OeuegRdvLD4WWov3D3ctHaXH6v3fuZ42vFDf/Wb+A5xwZ7p/D1I/yCZcX9drMJokSent8k9w4Ldh/D7QNRt2ei8ccTn0rk2/R9dsaBsJE/YrP3fkjDLjM0uPJT03h1zg2tE3wA5vgRHTYeKBsOBncOpimHUKjJhWvr6u2TBm5/LzJEmSJEmSJEmSJCmtRt10V5IkabDzeZAkSZIkqQZtA12AGuY9Be3/bMAZpxa0UwWvxRgfDiH8FThkc9co4NXAr+tYmyRJUn20jkw/t2c1PHs5LL8DTn4698H8WmV70s1beAm84iJoKRFwltkI1x9Wen3wpUFRSeELi34Bu3wgeX1mI6x6EMbu2r+hYhuX1b7Hrh+D/b9a+z5SA2QSws+SxiRJUhE7vz/3qFVbF3ROgY0vlZ5TLhht7K6lx3rXlK+hcxIsuHjb/ldeuW3f05fAbW/O6wiw12dLv6aSJEmSJEmSJEmSpFIM/ZAkSZIkSZJSS/ppmj9pk7SF6QdNKISwE3BkXtdC4I91PmM6sE9eVy9wSwVb3MTWYDSAEzEYTZIkDUbVhFmtfwaumAqnLIbWhGCtNNYuTD/3pZth2lHFx57/Nax/rvRaP/xfQsKPUNY8kbz0qYvhzvdAZkMuYG2f/4TdPlbf8kqpNRhtwU9hzhvrU4vUAEnhZ70Go0mSNHAOvRhuOrH0eNlgtF1Kj2W6q6uplB3fBGN2gie+D61dMPv00q+nJEmSJEmSygghtAOHAbOBGcBaYDFwb4xxYZ3P2hHYF5gJjAaWAIuAW2OMKe+8JUmSJEmSJEmSJEmSJA1eBqM1p1cVtG+Mse63n9mzoH1fjHFdBetvLWjvUWM9kiRJjdFaRTAawMbl8MAXYJ8v1Hb+xqXp5750S+kP8i+/M3ntmifTnzOcJIUvJIXmrfg73P62re3sJrj3n2H8XjDj1fWrL9+qh2DJ9bDpZXjiB9Xvs9fnYYcz61eX1ACZhFe4SaFpkiQppfnnwuPfqXzd+MIfGxcYPS95fMR0aB8PPSu3HZtyeOX1lDP5kNxDkiRJkiQ1hRDC54Dzatjiohjj2RWeOQU4H3gDMLHEnFuBC2KMv6yhNkIIpwMfBQ4tMeXlEMIvgM/GGGu8k5IkSZIkSZIkSZIkSZI0cFoGugA1xMEF7dsAQs6xIYQLQwgPhRBWhRDWhRAWhRBuCCF8MoSwQ8ozdi9oP1FhjYXJG4X7SZIkDQ5J4VflPHtZ7ef3rEk/975Pw+rHt+2PER7+/5LXjvPpWFG960uPtY4sPfbcVcX7n72ytnpKeeKHcPXecM+H4YHP17BRgB3fXLeypEbJJoSf9WT6rw5JkprWrFPSzx2z09bfd82CaUcXnzflCOjaLnmvEGCnd27bP2oOTNg3fU2SJEmSJEn9IIRwIvAA8D5KhKJttgC4PITwvyGEUVWcMzqE8DPgMkqHorG5hvcBD4QQjq/0HEmSJEm1SLjTY+LYYDTU6pUkSYOXzyskSZIkSdUzGK05HVjQfnhz4NkNwPXA2cBuwFigC5gNHAN8EXgshPDfIYRyCSA7FbSfqbDGRQXtSSGECRXuIUmS1HitNQSjrV2YCyWrxPO/g9vOhtvPgcW/h57Vla3/7c7wl9fDjcfCvR+HNU/CstvLrxu7a2XnDBeZKoPR7v9c8f4nvldTOUWtXwx3vAtiHdKgDr8URu9Y+z5Sg2USvrVu6Om/OiRJalozjoP9L0j3emi3f+7bPvRimHhQ376JB8BhP0939p7nwewztrbHzIejroXg2xmSJEmSJGnwCCEcBVwFTM3rjsDd5ALMrgeWFSx7E/CzENL/oCOE0Ar8AnhjwdBLwHWbz7qHvp8wnAb8KoRweNpzJEmSJEmSJEmSJEmSpMGkbaALUEPMKGh3AXcCk1OsbQfOBQ4NIbwmxrikxLzxBe2llRQYY1wbQtgAjMjrHgesqGSfQiGEqcCUCpfNq+VMSZLU5NpqCEbLboTeddA+Ot38x78Hd75va/upC2HKYZWf+8xluV9fvBGevgimvDJ5/pj5MPXIys8ZDnoTgtFa2vuvjiRXbVeffV6/rravd6kfZbKlx9Zt6r86JElqart+BHZ6L6x9ElY/Cn85fds5o+fBtGP69nVtByfckQuKXv8sdG0Po3dIf2776Fxg78blsHEZjNkZQqjlTyJJkiRJkoavM4EUd5H6P2vTTAohzAKuADryum8B3hVjfDhvXifwHuCr5K7LA/hH4N+BT6Ws6UvASXntHuCjwA9ijP/3rkgIYXfgh8Chm7s6gatCCHslXAMoSZIkSZWp9GbBkiRJkiRJkiRVyWC05lQYWnYhW0PR1gHfA64BngNGAfsA5wD5d4jcD/hlCOHIGGNPkTMK0z26q6izm77BaGOq2KPQucB5ddhHkiQpp3Vkbes3LU8XjBazcP/52/a/dEtt529YCs9eXnp8yhFw6E/Sh7cNN5mEYLRHvwm7frjImg2Nq6fQ8ruqWxfagCy0jYFpr4IDv20omoaUbML1dU9UFNstSZIStY2E8XvmHodeDLe9devY9GPhFRdBa0fxtaN3qCwQrVDnpNxDkiRJkiSpei/EGBc2YN/zgQl57VuBY2OMfd4ojDFuBL4ZQngGuDJv6KMhhO/HGBclHRJCmAt8qKD7jBjjrwrnxhgfCiEcA9zI1nC0SeSupXtvij+TJEmSpIYxTEySJA1XPg+SJEmSJFXPYLQms/kuk50F3bM2//oQcEKM8dmC8XuAC0MIHyN3d8otDgU+Qe4OlYUKkzOqSX/opu8FYqZxSJKkwSe01LZ+4zIYNaf8vOV3wYYXajurGsf9uf/PHEp6E4LR1j0NT/4Y5p3Tt//WtzS2pnwv/qGy+ae9CCOmNqYWqR9lssnjv7gzyxsOqvH7tyRJ6mvHt+QekiRJkiRJw1gIYT7wtryuTcDZhaFo+WKMV4UQLspb10kusOycUms2Ow9oz2v/pFgoWt453SGEs4H7gS1p9u8IIXwlxvhUmbMkSZIk1cTQD0mSJEmSJEmS6slPCTef1hL9qygeivZ/YoxfA75e0P2REEKawLJq3sXxnR9JktT8NixLN2/j0sbWUcx+X+v/M4eaWCZ96ckf9m1vWAbPXZG8JrOptpryPfjF9HM7JkDnlPqdLQ2gcsFoP/qLLzclSZIkSZIkSVJDnEXfa/SuiDE+nmLdlwvarw8hjCg1OYQwEji9zB7biDE+BlyV19VGrmZJkiRJkiRJkiRJkgaFmPDxv6QxScOLwWhNJsa4Hij2EfELkkLR8nyGXIjaFhOBE4vMW1vQHpmuwsQ1hXtW4zvAnhU+Tq7DuZIkqZmN3aX6teufSTdvIF6pd23X/2cONft9JXl82W1926sfLh+mduOroHtJbXUBrHsWelamnz9yBoRQ+7nSIJAt8y3zhof7pw5JkiRJkiRJkjTsnFrQvjDNohjjw8Bf87pGAa9OWHI80JXXvi3G+EiqCret6bSU6yRJkiRJkiRJkiRJkqRBwWC05rSuSN/FaRbGGNcBVxR0H1Vk6qAMRosxLo0xPljJA3iy1nMlSVKTm/3Gbfs6JsLrlsEhP4IFl0D72OJr73g3rLiv/BkxU1uN1RhpMFpZM4tlBCfoWVN+zrJb4doD4KVbq6tpiyd/VNn8qUfVdp40iGTK5A9KkiRJkiRJkiTVWwhhOrBPXlcvcEsFW9xU0E56M/KEMmuT3Eyuti32CyFMq2C9JEmSpHoaiBvn1mSo1StJkgatIfc8SJIkSZI0mBiM1pxWFrRfjDEurGD97QXt3YrMWVXQnlLB/oQQRrNtMFph3ZIkSYPDnv8GO7wFCLn2yJlw9HXQOQnmnQM7nAXj9ii9/q/vhKcvgVvOgrs+CMvv2nbOQASjjZ7b/2cONaPmQOuI5Dn5b9b1pghGA+heAjceBfd8DO79OPzlDfD4dyFbwdfBA+ennwsw7x2VzZcGMYPRJEmSJEmSJEnSANizoH3f5huRplV456Sk2cPnAAAgAElEQVSEN5m3Oeu2tIdsrun+Cs6SJEmSVCtDPyRJkiRJkiRJqqu2gS5ADfEYsH1ee0mF6xcXtCcVmfN4QXtOhWcUzn85xriiwj0kSZL6R0s7LLgYDvh6LtBq3O4QCjKG28aUXv/ynXDbm7e2n/wfOPI3MP3YrX2Z7vrWXM64PaFrZv+eOVRt/zpYeEnp8dgLoT33+56UwWgA2R545IKt7WcuhRf/CIf9AkJIXnvfeenPAZj9epi4f2VrpEEsm+I6wt8/GDl+jzL/liRJkiRJkiRJUjN7Twjh0+RuDDoJ6AGWA4uAvwDXxhhvrmC/3QvaT1RYz5Nl9stXeDPTas7ar+CsP1S4hyRJkiRJkiRJkiRJkjQgWspP0RD0YEF7Y4XrC+ePKDLn4YL2ThWeMbeg/VCF6yVJkvpf5yQYv+e2oWgA7QnBaIUyG+APx8GVs+CuD+TavZXcSLwOZry6f88bylo6k8ezm7b+vreCYLRinrkMVj1QfOzZq+DqfeGnAR74fOk9TvwbHPBNGD0PRkyFXT4MB323trqkQSaTLT/nM1elmCRJkiRJkiRJkprZG4FjgJlAJzCa3A09Xwl8CvhzCOHOEMKxpbfoo/AauWcqrGdRQXtSCGFC4aQQwkRgYo1nFc6fX+F6SZIkSSoixR0tJUmSJEmSJEmqg7aBLkANcV9Be3yF6wvnLy8ypzCtYe8QQleMcX3KMw4rs58kSdLQUkkw2hbdz8Nj34bVj+ZCrCrxiovg0W/AinsqPxdg3B7VrRuOWjqSxzMboW1U7vc9q2s/78kfwQH/1bdvyfXwl9dBLBP0NH4fmLD5scsHaq9FGqTSBKPdtQiy2UhLS2h8QZIkSZIkSZIkaag6ELguhPBF4NMxxqRP+RdeV7e0koNijGtDCBvoe6PSccCKMuesjzFWeqetwtrGVbi+pBDCVGBKhcsqfENckiRJGmqSXkoYJiZJkoYrnwdJkiRJkqpnMFpzuobcTwy2fPp7bghhRIxxQ8r1exa0nyucEGNcEkK4D9h7c1cbcDhwXcozjipoX5NynSRJ0uDUVkUw2hYvXA9cX9mazskw7xy4q8pgtLG7VLduOIo9yePZjVt/37Om9vNeKPK18MQPyoeiAez41trPl4aATMr3yJethaljG1uLJEmSJEmSJEkadJ4HrgbuAB4GXgaywCRgf+AfgOPz5gfgU0AL8K8J+44uaHdXUVs3fYPRir3RXK9z8tXwhvY2zgXOq+N+kiRJkiRJkiRJkqRhJOmWZYm3M5M0rLQMdAGqvxjjYuC2vK524JgKtjihoH1ziXlXFrTfnmbzEMKuwCF5XetIH6gmSZI0OLXX8zryFDonw9yzq1wcYOxu9aymufWW+ZxBJi8YrbcOwWirHtr2JzfPXp5u7c7n1n6+NMjFGFP/cHPJqsbWIkmSJEmSJEmSBpU7yAWebR9jfHeM8YcxxltijA/HGB+NMd4aY/x2jPEE4CDg8YL1nwwhnJywf2FgWdobleYrfPOxcM/+PEeSJEmSJEmSJEmSJEkalAxGa14XFrQ/mmZRCOEI4OC8riy5u2cWcwmQyWufFkKYn+KYTxS0L40xVnPxliRJ0uDRPrZ/zxsxGdpGwZG/rXztzNdA58T619SsMmWC0bJ5wWg9ZYLRJh4Ax/2l/Jl/fSdkM+Xn5Tv2ZmgdUX6eNMRlK7jjw+KVjatDkiRJkiRJkiQNLjHGq2OM18VY/hYrMca7gFcAjxUMfSmE0Jr2yEprHORrJEmSJDXEEHt6nvaulZIkSWX5vEKSJEmSVL22gS5ADXMhuTC03Ta3jw4hfDTGeEGpBSGEqWwbqHZpjPHJYvNjjI+HEC4Cztnc1QH8JIRwTKmgs8131Dw7r2sTcH65P4wkSdKg1zamf8/rmLT51/GVrz3kB/WtpdmVC0bLpAxGG7srHH4pjJ4LI2dA95LSc5/6MUw+BNY/DyvvL1/j/v8FUw8vP09qApls+rlLVkUgNKwWSZIkSZIkSZI0dMUYXw4hnAncxdY3FHYFXgXcUGTJ2oL2yCqOLVxTuGd/nlOt7wCXVbhmHvCrOtYgSZIkDTKGfkiSJEmSJEmSVE8GozWpGGMmhPAh4FqgZXP310IIc4DPxRhX5M8PIRwLfJfcBUhbrAA+Veao84BTgQmb2wuAG0II74wxPpK3fyfwbuBrBeu/FmNclP5PJkmSNEiFfg7eaR+b+7W1wmvgu2blQrmUXrlgtOymrb/ftLz4nNmvh8N+vvXrJLSXP/eO96Srb+45sOuH0s2VmkC2gmsIF69qXB2SJEmSJEmSJGnoizHeE0K4Djg+r/sEDEYrKca4FFhayZrQ3++nS5IkSZIkSZIkSZIkaUgzGK2JxRiv3xyO9q287g8C7wsh3A48T+4CqH2BOQXLNwFnxhifLnPGcyGE04DfAx2buw8DHgoh3A08BYwD9gemFCz/LfCZiv9gkiRJg9HGEoFYjbLlwvHWrsrWlQv50rbKBqNthEe+AU/9GFbeV3zOtKP7hue1dBSfV42pr6zfXtIQkMmmn7vEYDRJkiRJkiRJklTetfQNRtu7xLzCdx4Kr4dLFEIYzbaBZStTnNMVQhgVY1xXwXFTU5wjSZIkSRWq4K6WkiRJkiRJkiTVwGC0Jhdj/HYIIQN8FdiSmtEOHJGw7EXgtBjjrSnPuCmEcCrwE7Ze7BWAAzc/ivkZ8K4YYybNGZIkSYPeQIVTtVUYjLbzBxtTRzPb/nRYfkfp8Qe/CIt/l7zH2F37tnd6F/ztE7XXBjDj+PJzpCZSSTDaC6u8EE+SJEmSJEmSJJW1sKBdKvDs8YJ24c1Iyymc/3KMcUXhpBjj8hDCCmBCXvds4OEaziqsXZIkSVI9xYTrlJLGJEmSmpnPgyRJkiRJNWgZ6ALUeDHG75K7i+X/AmsSpr4AfA7YJW0oWt4ZVwN7At8DtrlYK8/twOkxxrMqvIOlJEnS4DbpEGgb0z9ntY/d+vsRhTf6LmP70+pby3Aw5w3J4+VC0QDG7lKw5xurryffjBNh5PT67CUNEdkK3h9fvLJxdUiSJEmSJEmSpKbRXdAeWWJeYTDZThWeM7eg/VDC3HqfVUmomiRJkiRJkiRJkiRJkjSg2ga6APWPGOOTwFtCCCOBw4BZwHRgE/AS8PcY4301nrEUeF8I4UObz5iz+Yx1wPPAvTHGp2s5Q5IkadBq7YRD/gdufRPETGPP2u9reeeOSL9ut3+BcXvUv55mN2o27PNF+Pu/Vre+fTyMmFZkz/+Av/9bbbUd9O3a1ktDUCabfu6SVY2rQ5IkSZIkSZIkNY3JBe1lJeY9UNDeO4TQFWNcn/Kcw8rsVzi2IK99KPCbNIeEEEaRu5Fq2rMkSZIkSZIkSZIkSRoU4kAXIGnQMBhtmIkxdgM3NPiMTcAfG3mGJEnSoDTnDTBhX7jjvbD0psac0doFs1+Xfv4Rv4Q1j8OUw2HyAgihMXU1uz0+WX0w2rQji/+97/EpmH5c7utlxT2V7zvpYBhdeKN3qflVGowWYyT4vU+SJEmSJEmSJJV2SEF7cbFJMcYlIYT72Bo61gYcDlyX8pyjCtrXJMy9Fnh3wtokR9D32tB7Y4wvVrBekiRJ0rDmR08lSVK9+LxCkiRJklS9loEuQJIkSWoqY3eBff69MXu3j4XDL4OOCenXbH8a7P4JmHKYoWi16ppV3boZJ5Yem3QQHPdnaOmofN/dqwxqk4a4bAXvj/dkYFNv42qRJEmSJEmSJElDWwhhBHBaQfdNCUuuLGi/PeU5u9I3gG0dyYFqvwe689qHbt4jjbML2oU1S5IkSaq7pIuaDASRJEmSJEmSJKlSBqNJkiRJ9dYxqbb1rV1wzB/g9BVwVoRTl8Dxd8CpL8B2J207v3NK8X26tq+tDvWV7alu3Zh5yeNto2B0mTmFJh0C2/1jdfVIQ1ys8DrB7ir/6UqSJEmSJEmSpGHhE8B2ee0M8LuE+ZdsnrPFaSGE+SnPyXdpjHFDqckxxvXA5WX22EYIYWfg1LyuXuCnKeqTJEmSJEmSJEmSJEmSBg2D0SRJkqR665xcfs74fUqPnfR3mPYq6Bifa4+cDpMOgraRxefv/YXi/bv9c/k6lN7GZdWtGzmz/JwT7k65WYA5Z8Hhv4CW1urqkYa4bKXBaJsaU4ckSZIkSZIkSRo8QghvCSFMq3DNu4DzCrp/EmNcVGpNjPFx4KK8rg7gJyGEEQnnnAycnde1CTg/RYmfA/JvAXN2COG1CeeMAC7cXNMWP4oxPpniLEmSJEkqr9K7WkqSJEmSJEmSVCWD0SRJkqR665hQfs7xd8CME/r2tXbl+sfsVNl5c14PYwpuQj56Lsx5Y2X7KNmkg6tbN3K78nPaRsKOb02e09IJZ2bgsEtg1JzqapGaQKWX1nX3lJ8jSZIkSZIkSZKGvHcAT4cQLgohvCaEMKrUxBDCgSGEK4AfACFv6Hng0ynOOg9YkddeANwQQti14JzOEMIHgMsK1n8tKXxtixjjU8A3CrovDyH8UwghP/yMEMJuwI2ba9liOekC2CRJkiQ1lGFikiRpuPJ5kCRJkiSpem0DXYAkSZLUdFpaYeZJsPjq0nNaO+CVv4JHLoCX/gIjpsDOH4CJ+1d+XscEOO5WePgrsOJemLAf7PJhGDG1+j+DtjXtaFh2W+Xr2semmzfrFHj64tLjnZMghNLj0jCRzVY232A0SZIkSZIkSZKGjZHAWzc/siGEx4GFwCogA0wC9gGmFVn7MnBCjPGFcofEGJ8LIZwG/B7YElB2GPBQCOFu4ClgHLA/MKVg+W+Bz1TwZ/oksAdw4uZ2O/At4DMhhHuANcDczWflv5m4CTg1xrikgrMkSZIkVSsa+iFJkiRJkiRJUj0ZjCZJkiQ1wr5fKh2MNm7P3K+tHbDHJ+tz3ojJsN9X6rOXitv1I7n/pivuTb9m/N7pw8xmvJrcZxVKXCDVMSH9uVITy1Z4DWH3psbUIUmSJEmSJEmSBrUWYJfNj3JuBM6OMT6XdvMY400hhFOBn7A1/CwAB25+FPMz4F0xxkwF52RCCK8Hfgi8IW9oKnBCiWVLgbfFGG9Oe44kSZIkSZIkSZIkSZI0mLQMdAGSJElSUxq/F7z2yeJj25/Wv7WoPjonwbF/qmzNDm9OP7dtFEzYr/R4+7jKzpaaVKX3Vu3uaUgZkiRJkiRJkiRpcPkG8FNgUcr564ArgWNjjMdWEoq2RYzxamBP4HvAioSptwOnxxjPijGuq+KctTHGNwJnbN6rlJeB7wJ7xhivrfQcSZIkSQIgVnqFliRJkiRJklSZpB9B+eMpSVu0DXQBkiRJUtMaPReOuQn+fDL0rMr1bf862ONfB7Qs1aB9TPq5c98OO7+/sv2P/DVcNav4WFJomjSMZLOVzd9gMJokSZIkSYPGHx6JXPW3SEcrnHFA4JC5YaBLkiRJTSLGeCW5oDNCCOOBPYDtgWlAF7mbyK4kF2D2MHBfjDFTh3OXAu8LIXwIOAyYA0wnF7z2PHBvjPHpWs/ZfNblwOUhhB2B/YGZwCjgBXKBcLfEGDfV4yxJkiRJlfKTnJIkSdvweZAkSZIkqQYGo0mSJEmNNO1IOG0pvHw3dM2CUdsPdEWqVWsXZNYXH5txPOx1PoycDqPmVL5313aw8wfgsW/17Q+tsONbK99PakKVvj3e7cd/JEmSJEkaFP7n5izv+X9bX9l/6w+RX7y7hVP2MxxNkiTVV4xxJXBLP5+5CfhjP531NFCXsDVJkiRJkiRJkiRJkiRpMGoZ6AIkSZKkptfaAVMONRStWez+yeL9nZPg8Eth8iHVhaJtsf/XYJcP5/YDGL8XvPIqmHxw9XtKTSRbYTJad493GpMkSZIkaaBlspF/u7Lva/SeDHzmV9kBqkiSJEmSJEmSVDmvxZIkSZIkSZIk9Y+2gS5AkiRJkoaUuW+DJ74L3Uu29o3dDU64E9pG1b5/Szsc8HXY/wLIdENbV+17Sk0kW+Hnpbt7GlPHYNa9KbJiPUwdA22tYaDLkSRJkiSJW56AZWu37X9wMSxeGZk53tevkiRJkiRJkiRJktRcDFWVJEmSJFXPYDRJkiRJqsSo2XDcLfDI12Hl/TDpINj9k/UJRcsXgqFoUhGVvj3evakhZQxaX78+y+d/G1nVDTPGwfff0sI/7O2HyyVJkiRJA2vR8tKv6Fd3w8zx/ViMJEmSJEmSJNVd0lVNBoJIkiRJkiRJklQpg9EkSZIkqVKjd4QDvznQVUjDUrbC6wS7expTx2D0m79HPnbZ1r+gJavgDd/P8vDnW5g9yXA0SZIkSdLglPEzgZIkSZIkSZIkSZIkSZIkSZLytAx0AZIkSZIkSWnFSoPRNjWmjsHo8ru3/cvp7oHv/MlPmEuSJEmSBlbSK9P1w+i1uyRJkiRJkiQNfl5rJEmSJEmSpMZK+gmUP52StIXBaJIkSZIkacjIVhqM1tOYOgajOxcW/8v5yrX+OFiSJEmSNLCSgs7Xbey/OiRJkiRJkiSpIRLv9ui1O5IkabjyeZAkSZIkqXoGo0mSJEmSpCGj0mC09ZsaU8dg9MgLpcfWbPDCAkmSJEnSwNmQEFxuMJokSZIkSZIkSZIkSZIkSZKkfAajSZIkSZKkISPx5qpFrFjXmDoGo1GdpceG09+DJEmSJGnwWZsQfjacQs0lSZIkSZIkSZIkSZIkSZIklWcwmiRJkiRJGjKyFQajLVtb4YIhbGR76bE1CR9AlyRJkiSp0dYlhJ+t2zR8XrtLkiRJkiRJ0tDmz3MlSZIkSZIkSf3DYDRJkiRJkjRkxIqD0RpTx2DU0VZ6bHV3/9UhSZIkSVKhdQmB3UljkiRJkiRJkjQ0JFzUVOkFT5IkSc3C50GSJEmSpBoYjCZJkiRJkoaMrMFoJbWG0mNrNvRfHZIkSZIkFUoKP1u/qf/qkCRJkiRJkiRJkiRJkiRJkjT4GYwmSZIkSZKGDIPRStvYW3pstcFokiRJkqQBlBSMljQmSZIkSZIkSZIkSZIkSZIkafgxGE2SJEmSJA0ZscJgtFXdsKm3wkVDVFIw2poNw+PvQJIkSZI0OK3bWPp16bpN/ViIJEmSJEmSJKkMrzOSJEn14vMKSZIkFZf0GcFKPz8oqXkZjCZJkiRJkoaMbBU/2Fy+tv51DEbJwWj9V4ckSZIkSYXWJ4SfJY1JkiRJkiRJ0tCQdFGTn+SUJEmSJEmSJKlSBqNJkiRJkqQho5o7Pqzsrn8dg02MMTEYbbXBaJIkSZKkAdSbLT3Wk+m/OiRJkiRJkiRJkiRJkiRJkiQNfgajSZIkSZKkISNbTTDa+vrXMdj0ZpJD49YYjCZJkiRJGkBJr1l7DUaTJEmSJEmSpKGhmrtaSpIkSZIkSZJUBYPRJEmSJEnSkJEUjNZW4qccwyEYbWNv8vhqg9EkSZIkSYNUJjvQFUiSJEmSJElSjRIDwwwTkyRJw5XPgyRJkiRJ1TMYTZIkSZIkDRlJ1xBOGFW8f2V387+pXi4YbZ3BaJIkSZKkAZT0yrzXYDRJkiRJkiRJkiRJkiRJkiRJeQxGkyRJkiRJQ0a2xCepQ4DxI4uPrVzfuHoGi3LBaOXGJUmSJElqpKSg895M/9UhSZIkSZIkSZIkSRrkkt5gliRJkqT/n707j5MkrevE/42q6pmenu6Zhjm7BxFW5VLExWN11/VC3V113RWXdf0puL91d3FFXFAXDxRQVA7RVTxAEGRBhlNADmFGLndgmIFhDmaG6Z6h566qvrvuMytj/6iu6equiMiIqsysyMz3+/Wa11THE5n5zbgy4sl4PsnAEIwGAAAA9Iy877mHkoi9u7LbJuY7V09dtAo+W1h2gwAAAADbp+iqtJGXgg4AAAAAQPcJIgEAAACgw4q6oHRPAWsEowEAAAA9I2+sdBIRey/IbpuY61g5tbHUMhitO3UAAABAlqIblRor3asDAAAAAKAzjOQEANjAeRAAAABbIBgNAAAA6Bl5wWhDQxF7dyWZbYMQjLbYKhitRTsAAAB0UtH97ncf6V4dAAAAAAAAAAAAAED9CUYDAAAAekbeQOqhJOLiXdltk/Odq6cuWgajLXenDgAAAKjq4JGIsQm/FA4AAAAAUH/6cgGAbnDOAQAAgGA0AAAAoIc0c77nTiJiz87stumF/v9yfLFF8JlgNAAAALZTqyvz936x/6/dAQAAAIB+po8TAGAj50gAAGxNs5nGTfen8abPNOOO0TTS1DkmDJKR7S4AAAAAoKy8rsuhoYiLcoPROlZObSytFLcLRgMAAGA7tboX6QXvSuMXn9GdWgAAAAAAustgTQAAAAB6S/rRt0X6sb+JmJuO5F/8SMSzfzWS4eGu1rDSTONn3pzG1Z9f619L41d+MIlX/XhEkiRdrQXYHoLRAAAAgJ7RbGZPTyJiT04w2tQABKPlLZc1gtEAAADYTob9AQAAAAAAAFBKmq7eHA4AwLZIP/CGSP/w+Wf+feCLEUcfiuRFr+tqHVffuD4UbdVrrk3jh56axPc8saulANtkaLsLAAAAACirmTOSeijJD0abHoBgtJUWI8znBaMBAACwjVLJaAAAAAAAPUKHLgAAAMAgS9/75xsn/v1bI52b7modr/hodj/V//6HZlfrALaPYDQAAACgZ+Tddjc0FHHRAAejNVv05y4IRgMAAGAbCUYDAAAAAPpaYSeoDlIAYED5ohgAoOekczMRDxzY2LDSiPjke9v3OiXaDhzObv/Ql9pWBlBzI9tdAAAAAEBZeQFgSUTs2ZlEVrfo1AAEo620uG+g14PRvvRwGq/4+zS++GAaw0nEtzwuiZf/uyQed2my3aUBAABQgtvdAQAAAAAAAABggKTNiEgiEuM+oKc0V/LbZqe6VwdACEYDAAAAekjeQOqhJGLPzuy2pUbEUiON80b698uUvMC4NY1mRGMljZHh3lsGd42n8Z2vasbM4plpB4+kcc2dadz1O0Nxye7ee08AAAAAAAAAANBzUj+DAQB0g3MOgJ7WmIu46XkRD38wYmRXxOOfE/GNL49Ihra7MgCgxzh7AAAAAHpGM+fmuiSJuCgnGC0iYnqhQwXVxEqJ7/8XG52voxP+/FPpWaFoa47PRPzJJ9z4AAAA0AuMlQMAAAAAAAAAgAHw2Z+MuPctEUsnI+Yejrjz9yO+9NLtrgoA6EGC0QAAAICe0WxmTx9KIvYUBKNN9XswWs5yWW9hufN1dML1h/JHz7/vZiPrAQAAeoGrNwAAAACgvxX0gvrlCABgYDkPAhg4iyciRj+0cfp9b3V9DABUJhgNAAAA6Bl5X4O0DEab70g5tdEs8QVRLwajNZtpHDyc3/7l8Yh7jvhyDAAAoO7c1wgAAAAAAAAAAH3ugXdF5sifuQcjlie6Xg7AwHCTJn1KMBoAAAClHJtO44/+oRkvfn8zPnq7jhK2RzNn00uSiL0X5D/uyFRn6qmLlWbreXoxGO2hUxHzLer+u9scjwAAAOrOPTcAAAAAAL1Chy4AsN2cjwD0rGbBABA3EAEAFY1sdwEAAADU3wMn0vjOVzVj9JEf50jjBd+fxB/9R3nbdFfe9yBDScSOkSQu3xNxdHpj+9hkGhFJR2vbTnmBceu1Chiro3uPtZ7nurvT+JUf7HwtAAAAbF6Z2xqXG2nsGOnfa3cAAAAAoJ8Z3A0AsJFzJAAAADbPCHYAAABa+t2PpOtC0Vb9ySfSuO0hX1bSXXkBYMnpcdP792a3j57qTD11sdJsPc9So/N1tNvcUut5DhzufB0AAAB0Xi8GegMAAAAAtOYeOwAAAHhk4A9ARKQFXWZFbeSx0OhPgtEAAABo6bNf2dgxkqYRr/ioDhO6Ky8Ybej09yNX5QWjTWRP7xd5y2W9pZXO19FujRKBb/cej1hqOBYBAADUWZkblcqEYwMAAAAAAADQ5yRhAAAAEILRAAAAKOHA4ezp777Jl450V9733GvBaPv3Zv+CzNhEf2+rKyUCxJYana+j3ZZLhLmtNCMOHet8LQAAAGxemavy+eWOlwEAAAAAwJb09z1YAAAAAADUh2A0AAAAoGc0c+6tS07noe27OLv9+Exn6qmL/g1GK3cz5QMnOlwIAAAAW1LmB72nFzpfBwAAAABARxR1gpbpIAUA6EfOgwAAANgCwWgAAABsyfSCLyzpnrzvx4dOB6NdfEF2+8xiZ+qpi7zAuPWWVjpfR7stl6x5dMJxCAAAoM4EowEAAAAAAAAAAAB0gFBi+pRgNAAAAAqlLTpFxie7VAhEfgBYcjoYbffO7PZ+H1y90mw9z1Kj83W0W6NkMNrYRGfrAAAAYGvK3HIzNd/xMgAAAAAAaMUgSgBg2zkfAQAAQDAaAAAALSy2CFMaF0hEF+Xddzd0Ohhtz/nZ7f0ejJYXGLfeYqP3bhJYLhmMNuo4BAAAUGtlxtFNzvfedSsAAAAAwCr9mwAAAAD0AaH5QI0IRgMAAKDQ/FJx+/ikzi66Jy8A7JFgtJ1JZvvMYocKqomVZut5llqEHNZR2WC08QnHIQAAgF431eeh5gAAAADAoHJfCwAwqJwHAbCOsCVgnaIjgqPFZlhq9CfBaAAAABSaXy5uPzLdnTogIj8YLTmdh7b7/Oz2heWIxkr/dvCVCkYrGTJWJ2WD0UYnOlsHAAAAW1PmilwwGgAAAAAAAABCHQAAtpNzMaA+BKMBAABQaH6puH1qvjt1QET+D8QMnQ5G27Mz/7HTfTzAOi8wbr2lRufraLdGicC3iIgxwWgAAAC1VuYHX/UxAQAAAADUnYGxAAAAAAB0h2A0AAAACi20CFOa6uOwKeonLwDsdC5aYTDazGLby6mNlRIBYksrna+j3ZZL1nxkOmK54cZLAACAuioVjKaPCQAAAADoWUWdoO5pAQAGlfMgAICeU+ZmP4AuEYwGAABAofml4vap+e7UARH5X48Pne7h2H1+/mNPzbW9nNrIC4xbb6lFyGEdlQ1GS9PVcL8/ECEAACAASURBVDQAAADqqcytUvqYAAAAAAAAAAAAAKoSaEd/EowGAABAofnl4vbphe7UARERzWb29KFk9f97duY/9g+u6d8OvpWc5bJeLwajNUq8rzWjpzpXBwAAAFtT5kckp+b797odAAAAAKB36KsFALZZmS+YAQDoDOdiQI0IRgMAAKDQ/FJxu0GrdFMzZ3M7nYsWF54fkSTZ83zuUP9uq3nLZb3FHgxGW14pP+/YZOfqAAAAYGvKXJFPCd8HAAAAAAAAAACA7SMYDagRwWgAAAAUml8ubjdolW7K61odOt3DkSRJbv/rjuGOlFQLK83W8yxVCBmriyrBaMdndLwDAAD0sqn57a4AAAAAAGCTigaMGkwKAAwq50EAAABsgWA0AAAACs0vFX8hKRiNbmrmBIAl6/5+xpOy55no4wHWpYLRGp2vo92qBaN1rg4AAAC2psz97vqYAAAAAAAAAACgXwnMhJ7QpXBbvzPQZhYafUowGgAAAIUWWoQpTfVx2BT1k9dFN7QuGe0F35/d3TEx1/566qJZou+yF4PRGoLRAAAA+kKZe24m9TEBAAAAANSbAZYAQFc45wDoWUmS3+aaEgCoSDAaAAAAhRaXi9unFrpTB0TkB4ANrevh2Lsre57FRsTCcn9+kbLSbD3PUoWQsbpYrlDzCcFoAAAAtVXmalwfEwAAAADQu/rzniQAAAAABo1+LqA+BKMBAABQKC+Ias3UfETqVzvokmZOANj635TJC0aLiDg129ZyaqPVfhoRsdzofB3t1qgUjOY4BAAAUFdluo5mFyNWylzgAgAAAAD0FP2eAMCgch4EwHo+FwA6xzGW/iQYDQAAgEKtxqM2mhELy92pBfI2x6F1yWh7L8h//MR8W8upjZWcwLj1FnswGG25QjDa8ZnO1QEAAMDWlL3lZnqho2UAAAAAAAAAUHtCHQAAtk2ZX0EF6BLBaAAAABRqFYwWETHZp2FT1E/e9pisD0bblf/4ibn21lMXZfbTpUbvdUw3SgS+rRGMBgAA0Pum9DEBAAAAAGyz3rvHCAAAgF7gehMAqGZkuwsAAACg3lZKBBNNLURceXHna+l3b7+xGe/+QhpDScR/+rYkfuJb5ZmfK+9HJ4bWBaPtOi9iZCg7VKtfg9HK7KdLK52vo92WV8p/8SUYDQAAoL7K/oik8H0AAAAAoDcVdYIa+A0ADCrnQQAAPafszX4AXSAYDQAAgELNEn1ZUwatbtmrPtaMX3/fmYX9d7elMTbRjBf+gHC09fK2x/XBaEmSxN5d2UFZh6fSiEg2NvS4MvlhC8udr6PdliuEuU3ORyw30tgx0n/rFwAAoNeVvVdqaqGzdQAAAAAAAAAAANtA2BJABznG0p+MrgYAAKBQqWA0g1a3ZGE5jVd/bOOCfsVH01hq6JRaL297TM7JwnrcJdnzHTzS3nrqotlsPc9kDwYYVglGi4g4OdeZOgAAANiasr0bwvcBAAAAAOrMvWwAQBcIzgEA2D5dOhcrehmng8AawWgAAAAUKhO4ZNDq1tzyYMSpjECn4zMRd4x2v546y+vYHDonGO1JVyaZ8x0c78+e0ZUSb2uiB0PDGhWD0Y7PdKYO6u3+42nc9lAaE3P9uX8DAEA/KHuj0tSC83oAAAAAoAcZrQkAAAAtuHaG3mBfBepjZLsLAAAAoN6aJfqyVgetZgdR0drBI/kL+e4jaTz9qy3bNXnbY3LOInrCldnzHTjc3nrqokyA4UQPBhguVw1Gm+5MHdRTs5nGz1+dxl9dl0Yzjdi7K+KNzx6KH/9mx0wAAKibsrdKTS10tAwAAAAAgO4TmgYADCrnQQCcxecCQMc496ZPDW13AQAAANRbqWC0HgxcqpOvHM1vu7ugbRDl9dENnRuMdkX2fA+dikj7sKOvzH46Mdd7771yMNpMZ+qgnv76+jTe8H/TR7b/ibmIZ/1lM45P99Z2DgAAg6Ds5eikPiYAAAAAAAAAAADYHj029gzob4LRAAAAKFQmcMmg1a05VBB+dvBw9+roBXnb47nBaF/1qCRzvrml/txem83W8yyvRMwvdb6WdqoejKbzfZD88cez1/flv9zsuRBAAABglfB9AAAAAIBt5p4LAGDbOR8B6EuuNwGAigSjAQAAUKhMMNpsj4Ut1c3sUv5CPjCu43+9vO0xOScHbf/e/OcYnWhfPXWxUnIzmeixAeaNEoFv652a60wd1M8DJ9K4cyy//fP3da8WAACgtbL3NU4tdLYOAAAAAIDOcI8XAAAAAH1AiCFQI4LRAAAAKNQsEUw0s9j5OvpZYyW/7eCRiGaZdLoBkde3OnROMNq+i/OfY/RU++qpi5WSAWITPRYctlywb2QRjDY47hgtbn//rY6bAABQJ2XP0Kd6LNAbAAAAAKA19zAAAIPKeRAA6/lcAOgcx1j6k2A0AAAACq2U6BOZFYy2JUXhT3NLEQ/1YZDXZuVlxCXnBKOdN5LE5Xuy5x2d6L+OvrLheZM9NsBcMBp55paK2z/+5f7bzwEAoJeV/RHJ6QXn8gAAAAAAAACDzffGAADbpuzNflt9mU22AYNFMBoAAACFms3W8whG25pGi2V8//Hu1NEL8vpWh5KN067amz3voWPtq6cuygQYRkRMLXS2jnbLC0YbzunRmpjV9T0ollps9PPLXSoEAAAopezVWq8FegMAAAAADBb35gAAALBZrikBgGoEowEAAFCoWaLfeXZR5/RWNHLCn9aMTli+a/K2x6xgtK+7ImNiRBwY77/lWSbAMCJiscfCovL2jct2Z0+fMIB+YCw1ittbHVcBAIDuKvsjkoLRAAAAAICeVNgJ2n/3KgEAlOM8CACg9ziHA+pjZLsLAAAAoN7KBaN1vo5+ttwyGK07dfSCvO0xychAe9KV2fMeONy+eupipWSf80IjjYjswLg6yts3Lr8o4vDUxumn5jpbD/Wx2CIYbXQiIk3TSLIODgAAm/CVo2lcc2ca541E/PBTk9i/13kGdMKx6e2uAAAAAAAAAAAAaLuyv6wIbC/7ao+y3uhPgtEAAAAoVCYYbUYw2pY0msXtY4LRHpHXtzqUkUnw5H3Z895zNKKxksbIcP8EGTRbbENrFpc7W0e75Qaj7cmefmq2c7VQL0stgtHmllaD8h59YXfqAQD624duS+Mn3tCMhdPn04/alcY1LxiKb3lc/1xTQKeVvVdqfFLIMQAAAADA9jKIEgDYZsI4APqU4zsAUM3QdhcAAABAvZUJRptd6nwd/UwwWnl522PWcOkn78seRL28EnHoWPtqqoOVkt8PLbYIk6qbvH3jsj3Z6/bUXAeLoVaWckLz1rv7SOfroHNuvDeNn/6rZvzUXzXjbZ9rRupGJwC2SbOZxvOuPhOKFrF63vltv18ynRiIiPK3NS42XNsBAAAAAL3Id9oAAAAA9AFjN4AaEYwGAABAoWaJsd4zC52vo58ttwj4GZvQobgmb0kMDW0MynrCFREZkyMi4q7x9tVUByslMxnWhzn0grx949Ld2dMn5leDK+h/iyW25YOHbQu96po70/iOVzbj6s+n8Y7Pp/Ezf53Gr73P+gRge9xwX8TDp7LbXvFR4WhQVpV7pQTEAwAAAAB9xWBSAGBQOQ8C4Cw+FwA6xrk3fUowGgAAAIXKZAzNLnW+jn7WaBGMdmK2O3X0grygvqwAtJ07knj8pdnz39VngUlls8AWG52to93ygtEu35M9PU0jpgQ1DoSlFsfNiIgDhztfB+2Xpmk8/x0bD/Z/+sk0jk/317EbgN5w4735nz8vfn8aK4J5oZQqe4pgNAAAAAAAAIBB5l4MAIBtI2ALqBHBaAAAABRayQmiWm9msfN19LNGi2V8fKY7dfSCvMyBJCMYLSLiyfuypz94sj311EWZ/TQiYmG5s3W0U5qm+cFoF+U/7tRcZ+qhXpZKhPyNnup8HbTfzQ9GfOXoxukLyxGfPdT9egBgrkUQ+O2j3akDel2Ve6XGJt1YtebeY2kcPCyEEQAAAACoCQNjAQAA2CzXlMA6RYcEhwtgjWA0AAAACpUZd7nUiGis6HHarLzwpzUnZ8MA2NPylsJQTjDaFRdlN5zss7C5spvHYokwqbooek+X7c5Z4RExIRhtICy1OG5GREwvOG72or+7NX+93T5qnQLQfa2CwI9Pd6cO6HWVgtEmOldHr5heSOP7/2glvvbFzXjyS5rxlJc048tjzocBAAAAoL703wEAbOQcCQCg9ziHA+pDMBoAAACFygYuzbYYLE6+RouAn2YacWr8ZKTXXB3pe/8s0ofu6U5hNdRsZk/Pi8m6ZHf29BOz/dVJu5KzXM7VS8FoRYGBees1IuKUYLSBsLjcep5pn0s96YO35R+f7z3WxUIA4LRjLUKVe+kcG3rF+OR2V7D9fuHqND554My/7zka8Z/e0IzUT2ECAAAAQA/SrwcAAACujwE6yTGW/jSy3QUAAABQb2WD0WYWIy7e1dla+lWjRKjV8Rf8RDz68HWr/xh+UcRv/Z9InvGszhbWQ4Zyot8vuTB7+okW4Qa9pux+ulAiTKouioLRLtgRsWdnxPTCxrZTs52rifpYahEoGRExNd/5Omivqfk0vvRwfvsX7vdFDQDdd3ii+PNnNXQ5L6oZWFPlTG68xX7X79I0jY/cvnEZ3DEWccO9Ed/xNdtQFAAAAAAwQAa7jxYAqAPnIwAA28aPdwI1kjNsGAAAAFaVDVyaXepsHf2sKABqzfHJdQt4ZSXSP/j5SJcWO1dUTeVtj3kxBHnBaAePtKWc2lgpEa4XEbHY6Gwd7VS0X+wYjnhUThDjqTkd8INgucS2nBWcR709dKq4/c6xiIOH67GPf+H+NH7+7c141utX4o3XNSP15R9A35prca3bb6HL0ClVTpfGJjtXRy9YXok4mRP6/dYbnHcCAAAAQC35zhgAAABacO0MPUE/F1AjgtEAAAAo1CwZuDQjgGbTGiWW8bHhy8+eMDsVceeNnSmoxvK2xyQnGe2S3dkNC8sRk30UoFU2wHCph4LRGgXBaCOFwWidqYd6WSoRKDk9eNmRPW+0RTBaRMSTX1LyxKSD/vFgGt/9B814/T+m8bc3Rzz3bWn8/NX985kCwNlanXecyAkvAs5W5WzpgRMdK6MnFN1Xduio804AAAAA6D369QCAQeU8CGDw5AzuiRC2BNBRjrH0J8FoAAAAFCrb7zy71Nk6+llRANSasR37Nk68/XPtL6bm8jbHoZwejkdfmP9cr/xY/3T4lQ0wXFjubB3ttFywX+wYzl+3gikGw+Jy6/13WmBnzxmbLHdcvvmB7T1+v/qa5obj6Rv+bxrjE/3zuQLAGa3ChZ1/QjlV7mscn4yYmh/cc6ui8PN7jnavDgAAAAAAAAAAAAaMEEOgRgSjAQAAUKhoMOZ6s4udraOfFQVArRkd2b9x4s4L2l9MzeVtj0M5Pyqz7+L85/q7W/uno3al5FtZbPTOe24VjHZJXjDaTGfqGQRpmsaB8TQOT6aR1vyLjKUSx83phYhm2Q8xamH0VLn5Pn339q7Xj96xcVqaRrzhOtsbQD9qdd4xIRgNSql6iXHwSGfq6AVFlzGHJ7tXBwAAAADARr4XBwC6oOb3sAKwWY7vwBl1H7cE1INgNAAAAAqVzZSZEYy2Kc1mWmoZj43s2zhxdqr9BdXcSjN7el4w2tdclv9cBw5HjJ7qj07UZs5yOdficmfraKdWwWiP3p290k/N9sc67ba7j6Txz1/ZjKe8tBn7/1czfvTPmrVelkuNcvPNLnW2DtprdKLcfAcOd7aOzfry2HZXAEAntDrvmF6o7zkT1EnVPeXg4cHdt4ru91oseS0EAAAAAHTb4PZpAgAAANBHahBYtv0VAHUhGA0AAIBCeUFU55pdrN7lNLOQxgduSeNPP9mM2x8ezC6rsst3dGT/hmnpxLE2V1N/zZwUubxgtCRJ4ur/mtMYEQ+cbEdV269sgOFCDw2gbhTsGyNDEZdcmN12YrYz9fSzZjONn31LM26878y0j9we8cvvqe9xuWww2vRCZ+ugvQ4dLbfN3V3TkIylRj3rAmBrigJ7IyKmhYRDRxyb3u4Ktk/Za3wAAAAAoEfUYDApAMC2cB4EwHo+FwA6xzGWPiUYDQAAgEJlB2POVBwMfmQqjX/56mY883XN+J/vTONpv9OMP/lEyZSwPtJqkP2a8R37Nk6cONHeYnpA3vaYF4wWEfET35rfeLxPBlqX3U8XlztbRzsV7Rs7hiMu2Z3ddmKmM/X0s8/dG/HZQxunv/eLaW2DnhZLBqNNzXe2Dtrr4JFy891dcr5OyAvojCi/XQLQW1oFss4IYoVSqt5zM7vUmTp6gfuTAAAAAIBtpZMSANh2zkcAALaPczGgPgSjAQAAUKgoAGS92YrBaK/6WBq3PXz2tF9+dxqHJwer86xRMgtuYmjvxomTx9tbTA/I2xyHC3o4kiSJxzwqu+34TH9sb6WD0XootKdlMNqF2W0nZjtTTz977SeyN6CZxYjjNQ2aWyoZKnl4qrN10D6zi2k8eLLcvEemI5a3KbSv6NhUdrsEoLe0Or5PV7wWhkFV9eytaj9TPyl7jQ8AAAAAAAAAAL3DTTEAQDWC0QAAAChUdjDmTMUBq3/5jxufuJlGfODWweroLgpYWW96aPfGiaeOtbeYHpC3PQ4lxY+7NGPxRdQ39KmqsvvpwnJn62inlsFou7NX+vGZiNQv11Zy7/H85XWipvvIUsmQv7EJ20KvuOdo+XnTdPtC74rCcRZ76BgLQHmtzjumF7pTB/S6vMu0kZw7Fqr2M/UTwWgAAAAA0It07AEAbOQcCWDwOPZDzzMmC6gRwWgAAAAUKjsYc3ap2vPO54SHvOWzg9V51miWm296+KJoxjlBUCfG219QzeUGo7Xo4bgsJxjt7gpBPHXWLLkd5e13ddQoCB8aGYq4fE922/JKxMnZztTUr3YM57fVNTxwsWQw2uhEZ+ugfQ6MV/v83651WxSOUxSaBkDvanV8F4wG5eTdK7V7Z/b02QEORmt1X1ljZbD6zgAAAACg9+nTAwAAANfHAJ3kGEt/EowGAABAobLBaJPz5Z9zdjH/SVsFXPWbovCnc80OXXj2hMkTkS4N1kjhvACwoSR7+ppL92TP8ObPpJH2wS9ZlN1P5yoGGG6n5aJgtOGIfRfnt49Ptr+efrZSEKx3oqYhc0XhVOuNCUbrGQePVJt/u9Zt0bGp7HYJQG8pOvZHrJ5jr5Q9IYcBlreX7D4/e3ovXb+2W6tDyiCHxgEAAAAA2813IgBAF/TBvd0Ag6tgcI/jO/QG+ypQIwM23BwAAICqyo7vPjlTvtPryFR+23CLgKt+02qQ/XpTQxdtnHh8rH3F9IC87bFVMNolu/Pbrrtn8/XURdn9tJcGT+ftGyNDEUmSxBUZu8MawWjVzBcEDhyvcGzvpqWSx07BaL3j7orBaKMT27NtFoWfLQpGA+g7aZqWCr7spfNsqJs9O7OnzyzU81qkG1q980EOjQMAAACA2jJgFAAAAIB+0KVurqKX0dUGrBGMBgAAQKFms9x8x6bLP2dhMNqAXak2Si7fiIjpoYx0r+Pj7SumB2w2GO3xl+S3veyDFVZCTZUNRuulwdN5+8bI8Or/zxtJ4tKcwLvxST3gVSwUhH0cn+leHVWUCSiJiDg2bVvoFScqhvCdnO1QIS0UhfIJRgPoP42SYazTC52tA/pB3o1Ku8/Pnj7bQ9ev7daqL26Qlw0AAAAA9Cb3LgAAA0qiBQBn8bkA0DmOsfSnARtuDgAAQFVlA5eqhOccLQhRG7RQkbID7SMipof2bJx49OH2FdMDNhuM9mP/NH+GT98d8dIeD0cru582mhHLjd7o6FzO2Td2DJ/5e9/F2fOMT7a/nn42XzCo/kRNg9HKflac2KbwLKqr+vm/XQE0ecemiPKBfQD0jqJAzPUEo0FreVeiucFoix0rpfZaXeMP8rIBAAAAALqhN+4tAgAAAKAT9A0B9SEYDQAAgEIrJfOijlUIzzkyld9BNmghNkUBK+eaygpGGz3UvmJ6QG4wWosejsddmsSPPi2//eUfTuOWB3u347ZZIddtriAEq07yjj0j69b1lRdlz1MlqJGIheX8troGo5UNoBq0z5ReVrQdZtmuAJqibW90ImJxuXc/SwDYqOw5R6+cY8N2yvsh8LxgtJkBDv9qdUY565gDAAAAAAAA9DX34QH0J8d3AKAawWgAAAAUyguiOtepuYjGSrmZj0zlt91/PGJibnA6uxsVAq1mMoLR0ofuaWM19ZcXADaUtH7sy360uBvk/3yud7e7svtpRO+ENuS9p2Tdur50T/aKr2uYV10tFAR+nJit336RpmkslQyVPDGzOj/1t1gyeGbNtgWjtdj2nvm6pm0OoI+UDbKerxjwCYMoNxhtZ/Z13ewAB6O1Cj8f5GUDAAAAAPXle2IAAAAA+oDxEECNCEYDAACgUNnApTRdDUcr4+h0flujGfHRO3q/A+3mB9L4vtesxEXPX4nH/upKvOBdzZhf2vi+qgSjTQ1vDEaLQQtGy9k0ygSjPeHy4vbXfbp3t7uVCttR7wSjZa+P9ev6kt3Zjz0+07vrstvSNI35gm3ieA1D5laa5b9nWWz0zjY/6PKC0XYMZ0+fXtie/bxVQM5H74j4wK3dqQWAzisbxup8A1rLO3u78Pzs6bMDvF+1OtMtuoYDAAAAAGrIYFIAYGA5DwJgHdfHAJ3jGEufEowGAABAobLBaBERJ2fLzXd0qrj9jz+eRtrDnTEHD6fxLb/XjE/fHTGzGPHwqYjXfiKN//62je+pVcDKeieGH71x4vj9m66zF20lGG3X+Ul89SX57csrEbOLvbndVdlPeyW0Ie8QsH5dX5oTjHaihmFeddVYKd5+6hiMlheglcf20BsWl7OnX5aRCRoRMb3QuVqKLJXY/l72wQpplQDUWpnjfoSQIigj7xpvz87s6ZPzEStVLnb7SKu3PZcRvA8AAAAAAADQP3wnCgCwbXp4TCfQfwSjAQAAUKjKGNTZxXLzveeLxU/6hfsjvuFlzbjnSG91pDWbabzovc148kuyA1HefmMah46e/Z4aFYLRxkeu3Dhx4likjYopQT1sK8FoERH/7puKZ/ziAxULqol+DEYrs67zgtHqGOZVV/M5YVRr6hgqVjagZM3hFmGc1ENe4F3efl7nYLTbR6OnA14BOKPseYeQIti8fRdnT19pRhyb7m4tddFskbPbK9f1AAAAADBYBuS7At+FAwAAsGmuKQGAagSjAQAAUKjVYMz1ZlsMzEzTNK6+sdwT3jUe8cTfasZd473T8f3mz6bxmmuL6/3ArecEo1VYvuMj+zZOTNOIU0fKP0mPW8lZXkMlezhe9K+SeHLGYlzzI39aYYXUyEAFo61b15dcmD2PYLTyFloEo00tRCw16nUcXqoQKBkR8amD9aqfs93+cBpv+kwzRiey23OD0UqGsbbbcsntr46hggBUV/a8o1XYLJB/W+Nj9uY/ZiznHLHftbqC6ZXregAAAAAAAGDQuX8TgPV8LkBP6FIwftHLyObfDAuN/iQYDQAAgEJVApdmC0JK5pfS+I9/2YyfflO1Tpavf2kz/uLTvRFW9dbPtX5vnzpw9jxlA1YiIsaygtEiIo6Pl3+SHpcblpWUe/z+vUnc8Ov53SEzixGLy73XEdiXwWh5IXjr1vWlu7NX/Km5+oV51VWrYLSIiJOzna+jiqVGtfk/c49toa5e/uFmPO13mvHf3pq/ji7L2c+n5jtVVbGyATljk52tA4DuKHu91ivn2LCd8m5UumxPEiM5l+l54bn9rtU1vmMOAAAAAPSaXrtvodfqBQAAAKB99A0B9SEYDQAAgEJVApee8+ZmfOKu7Ae8+6Y0/vbmzdXwC1enGwLF6iZN07h9tPV8dx0++9+NSsFo+7MbTghGKxuMFhGxZ2cSP/zU/PavHKtWU6ekaRp/c0Mznv2mZvyv9zbjy2P5+0BeiFiWXhlAXWZd77s4//GHarIe626+RDDa8ZnO11HFYsVgtGPTnamDrbnlwTR++0OtP9sv2Z09fXqhzQWVVDZ0cfRUhwsBoCvKBrKWOacCsg0P5V/bjU3Uuy+oU1r92qVjDgAAAAAAANDXWn1pCkBvcnwHACoSjAYAAEChlQqBS8dnIn7wj5vx5s9sfNB7v7i1Duxn/FEzvnB/fTvBj0xFTM63nu/+ExELy2feR6PC8h0b2ZfdcOJw9vQ+lBcAViUYLSLil34gv0vkrprkzD3/HWk8581pvP3GNP7w2jS+/RXNuOHe7H2gSoDh7FJ996P1ygSjfc1l+ev+wODsFluy0IPBaGUDStZML3amDrbmr69PSx27LtuTPX1+OWJqvvvHs+WSgaajAxriAdBvyp539Er4MGyXtMVNjVc9Knv6+GQHiukBrc6THXMAAAAAoIYM7gYAAACgH+jnAmpEMBoAAACFqgQuRaz2fb3kg2k0Vs5+4Edu33otL3xXhRSxNpiaT+M3P9CMr/mNlfi231vJDHxbUzaEKU0j7j5y5t9lA1YiImaG98T00O6Nz3m8JkleXVAmLKuM731S/gPeVLCeu+Whk2n8xafPfrMzixH//JXNzAHlVfbT6YWtVtcdee8pWbfqzt+RxD+5LHu+A4d1xJcxXyIY7UTdgtEqHDcjemebHzR/dV25ffQJV+S33fZwm4qpoGxAztiAhngA9Juy59nzQoqgUNF9UklEXLaxqyMiIiZKBND3I8FoAAAAANBnDCYFAAaV8yAAzuJzAaBjnHvTpwSjAQAAUKhqMFpExNhExF0Vs7re+d9bJ1tdf2g1MKpbnv+ONH7/79O473jETQ9E/Ne3pvHnn8oOzbrvePm6Hjp55u9zA+RaGRvZt3HiCcFow5vo4fj335Q9/Zo7I+45sr2dgdd+Of/1//AfBjsY7dwQvCfmhCbde6y99fSrxRLBlfGueQAAIABJREFUaMdn6tU5Xqbm9aYGNEyhzmYX01gouR6fcEUSe3dlt938YPe3zbLBfPc5BgH0hbLn2UKKoFjRrpQkEXt3ZfcJTc51pp66a3V/kmMOAAAAAAAA0N/qdd8qAMBAEbAF1IhgNAAAAAptJhgtIuKuw2ceOL9U/CRXXhTxY9+UxA8+pfXzfvWvNePoVOc72G57KI233bDxdf7i09mvPTpR/rkn5888RyM7Zy3X6Mj+jROPC0Y7NyyrjCfty3/QE3+rGc3Nbvxt8PEv57f9xvvSSM/pZK5S6lSvBKPl7BvnruvHXpK9HscndMSXUWbbOTHb+TqqKBtMtWZmMTbsM2yvsQqfmRfsiHj6Y7PbbnmwPfVUsVxy+zu4zQGbALRH2VOI+YrBrcAZSRJx0QXZbRNzg3lO1eo6bV4wGgAAAACwbQaz3xYAAIB2cE0JAFQjGA0AAIBCeeFErdy1Lqvr5R8p7rz+058cih0jSfzJfxqKy/e0fu6vf+mZ0Kob703j6hub8fn72ttB/r8/nv18d41HzC1ubKsS8jI5f+bvsgEra8ZH9m2ceOJwtSfpYbnBaJvo4XjylcXtb7hu+7502b0zv63RjJheF26WpmmlH+OY7pFgtLy3dG4w2lV7s+erElY4yMoEox2f6XwdVSw1qs3fTCPmBAfUSpXPzPNHIv7pY7MDEG9+oPvH6bLb38HDAvmA7piYW70e+sAtaZyYcdxpt7JLVEgRFCs6LUoiYu+u7LaJ+ezp/a7VaWSrHyAAAAAAALaDfjsAAAAA+kCXxkEUvYqeNmDNyHYXAAAAQL2VCc3JcveRM39/+Lb8J7npxUPx9K9eDTx54pVJ3PN7Q/Etv9uMe47mP/eJ2Yin/24zvn5/Eu/4/Npzp/Gz35nEG56dRJJkB6hUce2d+TWfmI3Ydf7Z08Ymyi+o9QN7GxWD58aygtHG7o200YhkpP8v8/OC+s4NyyrjyfuSKOoqffsNafzcd1d/3naYaRFednI24qILVv+u2t883SMDy8uG4OUFo41NtreeflVm+znR48FoEauBgBee33o+umNssvyB6/wdEU9/bHbbXYcjlhppnDey9c/9spZKBpqemos4Nh1x+UWdrQcYbDfdn8Yz/qh5Ovg2jf17Iz74vDPXV2xd2evhOSFFUKgwGC2J2HtBdtvEXGfqqbtWxx7BzwAAAADQa3yPAAAMKudBAKzjR6cBOsgxlv401HoWAAAABtlmg9EeOnnmgQsFITbnDtrfszOJO142FM/65uLB/F96ONaFoq1602fSGH5uM37qr5rxl//YjJXNFh8RiwU1H88ICRqbKP/ck+uCqZZLBqysGd+REYw2Mxlx+/XVnmgL0mYz0k/9bTRf+dxovv43Iz1xuGuvnRuWtYnsh6fsizivIEvus4ci0m364qVVaNCpdYPDq27m0wu90dFZNgRv/97slX9sOmJxuTfe63Yqs/1MztdrORYdn/NMtQgbpLtGK3xmnj8S8dSrsvfzlWbE4S6HIK5UCDQ9eKT1PABb8ew3rYWirRqbiPif76yYvEyhspcD0841oFCrXWnvruzpEz0S7N1ugtEAAAAAgG1loDoAsO2cjwD0rqLBPY7v0Bvsq0B9CEYDAACg0GazxdaHnkzmDGT9hv3Z03eMJPGu5w7FXz57E2lXsRqY9j/ensazXt/cdLBVUfBJVjDagyfLP/f65dGoGIw2dt5jMqen13+k2hNtQfrq/xHpS/6/iI+8JeLtfxDpzzw90gcOdOW12xmMtuv8JH7+e4of+MHbqj9vO7TanrYUjLZYvZ7tUHZdX7U3/zkOT7Wvnn5VZvuZqlkYwdJKdtEjBT2dwkrqpUqY6Pkjxfv5eJeD0aoccw8c9oUg0DljE2lmAONnD0UcOur40y5lj/sTc63ngUFW1DWTJBF7L8i+Nh/UfatVV5ZgNAAAAACoI9/PAAAAANAHhOYDNSIYDQAAgEJ5A8Ff8cwk/sPT8x83NhGPhJLlBaP9/jOLL0v/278cim99XIkic3zg1ojh5zbj6168Ei96bzMWlst1zDVW0pgqCNE5MXP285yaTePodPm61ocMNQoC2LJ8cs8zshs+86FNh8BVkX78XauBaOtNnoj0Hf+7468d0d5gtIiIVz4ziZ/9zvwH/9hfNOM11zajudmEwE2YW0xbB6PNnvm7KMQvS91CrvKUXdf7CwKTRiuELw2qUsFoNQsVy9vm9+7Kf0yvbPeDYrzCvrlzx+q63bkju32s28FoFY65Bw93rg6AovOcG+5zQ0K7lL3EmnCuAYWKdqUk8s/lpxaiq9fjddHqLQtGAwAAAAAAAHrD4H3fC0ARnwsAneMYS38SjAYAAEChvACaS3dHvPvnhuOzv5p9abnYiDgxE7GwnMZSI/s59l7Q+vWvfcHWL10PHYt4zbVp/ItXNuPOsTS+9HAaXx5Lo7GS3eFzcjZz8iOOz5z974NHqtUzOXfmdZdXqj32ZLonjg1furHh4UMRDx6s9mQlpdOnIr371khv+0ykv/2c7Jk+97GOvPa5csOyNrmZnDeSxBufMxSX7cmf50XvTePlH+le5+A9R1sHMJxatw1VHSM+XbOQqzxlg9EuviBi13nZ844JRmupF4PR8mo+byRi9/nZbZ+/Xwd/nYxOlF8fO4YjkiSJ/Rdnt49VeK52qPJqD7UIuQTYigtyAiMjIu6peH1CvrLn2hNzna0D+lmS5AejpWnrPpp+1KpPYH65O3UAAAAAAO3ingUAAAAAekTZXxUG6ALBaAAAABRqFU702EfnP3Z0ImJyPr/94hLBaBfvSmL8Ne25fL3loYinvqwZ3/Q7zfiGlzXj0hc2422f25j8dnS6+HmOnROM9qWHq3X4TaxbJo2KwWgREa999POyG268tvqTFUhnp6L50p+O9IeujPRn/1mkv/CM/JlPHo50uvMpVM2coL5zw7Kq+p4nFD/Bb38oja8c7U7H7oHDrV/n1LrgharBaHULucqT976S5Nx/J7F/b/a8VcKXBlXePrXeVMFxfDvk1TycRDztMdltH73dtlAnZUMLLzx/dR+PiNiXE4w2PtmmokqqcsydXrDdAZ1TdDz6ytHu1dHvyt7bcWouInUjCOQq2j2SiLjyovz2sS6f79VBq3POuaXu1AEAAAAAsJHvQwCALnAPBkB/cnwHACoSjAYAAEChVkFUV1yUH0rVKhht765yNVxxURK3/Fb7L2GnFiJ+5q/T+C9vacavva8ZP/1XzXjFR5vxjb9dnBT0wImz//33FQN3jq0LXmvkvNSjVk7mPv59l/5k5vT03jsr1ZEnTdNIb70u0n99WcQn31P+gQ/e3ZbXL9IqqG+zXvnjrZ/gm3+3RIJUG5y7fWU5OXvm7zLBVuv1SmhDlRC8q3KC0cqGLw2yMiFPdQvTyz0ODEX826dl78u3j/bGdt8pU/NpvOemND54axonZ7d3OaRpWjrc4sLzzvy9f2/2uu32fl7lmDtds30H6C9Fn+GHpwb3M6/dygZirjQjZhc7Wwv0ssJgtKS4b2kQr+sEowEAAABADxrgexIAAADgDNfH0PP0cwE1IhgNAACAQnmDMYdPX1GODCdx5cXZ8zx8Ki0Mebr4gvJ1PO2rkrjrdzpzGfuW69N49cfSuPrzabz4/a077w4ePjNPmqbx6YPZ8331JdnTRyfOBPQsr2TP800Lt+W/fjw2Dg9fsbHhgZxCKkiXlyL9tWdG+vzvr/7gBw5s+fVb6VQw2uMvTeI3fqj4SaYXIg6Md75zd7TEoO9Tc2f+LhvWsGZhuTdCG6qs67oEJvWiMpvPwnLEUqM+X2ysFITmffs/yd4WTs1FHJ/pYFE1dsuDaTz+15vxE29oxr//i9Xwz5sf2L71eXJ2dZsqY/f5Z/7elxOAOD7Z3fdS5Zhbt1BBoL/kfR5GnB2iy9ZU+ZSZKAgFh0HXal8aGU7iiouy20Yn6nMt0i2t7iubWxrs4GcAAAAA6Dn68+gE2xUAvcDnFQBn8bkAnFF0qug0chMsNPqUYDQAAAAKlQknekxOWMnoRMSL3589Yj9Jzg48KeOJVyZxzQuG4pILqz2u3Q4eOTMAdXYxP/jkZ78zO6Bnbili6vSg+UZOoMGOtBF//+C/za1hdMf+jRMfOFB5YOyN96bxvKub8aI3jMdtr35NpN+3J+L6v6/0HGvSB7cezNZKUSDSVv3WDyfxU/+s+Ime8tJmfOVotWX8mXvS+J/vbMYvvrMZ193T+rFjJQZ9T2whGC0i4lgPBETlva2hjN6s/TnHoLffmBos3kKzIFRlvakaBX0UfS496cr8xx043Jl66u5n3tw8K0xxbCLiF99ZcsV3wN1Hys974brzhP05Iazjk1urp6oqx9xpwWhABxUdj9Yf99masudKEWefowNnK7osS05fhudd1w1i4HWZc86yYcMAAAAAANW51wYA2G7ORwAAto1xWECNCEYDAACgUJlgtKselT3P6ETEoWPZbRftjBjaRJrVDzwliftfORSf/pWh+MDPD8UdLxuKpdcNxe0vW/33Hz6rDQlZLUzMRRybXv37eEHA1Lc/Pr+W0dMDexsr2e0jaSO+f/aTuY8/NnzpxonTpyLuvyu/oHO88bpmfMcrm/G6T6fxmpsuj2+/+3/Eh3f/m9KP3+CBA5t/bEm522MbejjO35HEW/9LEh95fvGTffPvNuOWB8t18r79xmZ8z2ua8aefTOPPPpnG976mGW/9XHG6wmiJQd+nZs+8/maC0Y5OVX9Mt+WFUGQdNq7KGUAfEfGiv9UhX6Ts9pMXALkd8moeHoq4bE/E3l3Z7YeODd62MD6Rxh1jG6dffyjivuPbszwOHin/uuv39305wWjdDsoQjAbURVFg16nZ7tXR76p8Wp603CFX0b60dsqXd1031uUg3Dooc1/ZvGA0AAAAAKiZwbsnAQAAACoRtgQAVCQYDQAAgEJlgqj2780OABs7lUaSkw02Ob/5mi48P4nvekISP/pNSTxlfxIjw0l8/f7Vf7/wB4big78wFE+8YvPPX8bBI6v/LwpGe+pj8tvWglyW84LRohFDkcbljSOZ7cd3XJb9wM98OP9F1xk9lcZz33b2yl0c2hkvveylm79Nr0Io22blB/W1JxAvSZL4N09N4geenD/P9MJqONqx6eIl1VhJ4zfel55VczONePH702isZD82TdO44d7WdZ6aO/s5qzpWsN3WRZlQxjX7C4LR/vDaNC594Uo86/UrcefY2U96dCqN513djK9/6Up856tW4mN3DN4Xbc2SXy72QjDaULK6D39VTljnIIbEPHgyv+2Ge7dnez9wuPy8jXWhP3nnGsdnIpYa3XsvlYLRFjtXB0DO6WRErH5up24gaosqi3F80jKHPEX70trl/L6CvqVBU+acc26p83UAAAAAAAAAAEA1RWN7Bu8+IOhN9tXeZL3RnwSjAQAAUKjZzJ6+PojqqpxQoodOnR3gtN6L/nV7gqyy/Mg3JnHXy4ej+YbhuOHXO3Ppe/DwamdRXjDa8FDEZbsjLtuT3X7fidXHN3KW7450OSIiLmscz2w/9phvzZyeHrw5p+KzfdWvZr/wbTu/McZH9mU/KEkiedutkfzaX8Z8sjPuPO/JMZ/sPNP+8KFIx+4r9fqbVSUsayv+/KdabzdX/HIzphfyOw3vGl/dB841OhFx51j2Y/7rW8t1Qp5cF/CUt48WaRXqVgdV1vVVOQPo15ycjfjbmyO+9zXNODGz+sTNZho/9hfNeN2n07hrPOL6QxE/9Npm/OPB+i+bdiob8jS1hTDLdmu1bTxqV3Z73udRPytavw8VhKZ10v3ZH2uZVs4KRsuf74ETm6+nqirH3KVGxOLyYB1TgO5pdTzaShA1Z5QNkY1YPc8Hqlu7msvrWxqb7FoptSEYDQAAAAD6je+N6QTbFQC9wOcVAAAAmycYDQAAgEJlwonyBq/eORaRN478J76lc8Fo633b45P44m8OxX94+tnT9+yMeNpjih/7A0/Obzt4ZPX/eQFTl+6OGBpK4msuy378Pacf31jJbh9JG6vPs5KdIHP8im/IfuCDB7Onr/PnnypOUTh43tdtnPjD/38k7zoQjcc8KX5u9JlxyRPG42lf88V41BOPxIsu/71oxPDqfJ/9cMvX34r8oL72vs7XXp7EcIlek4t/sRlvvC67qDvH8r/MvyOjrbGSxntuKncDwPqAp6IB0xeenz392HSpl9lWVYLRigKT1js+E/Hqa1af+IXvTuNz926c53v/sBkLAxRkVDoYbaGzdVSx0uI4sDcnGG1iAANiZhfz2+7vYpjYeuOT5fev9eGhj7skIsk51q99JndD1aPDdI32HaC/tPoM/+X3pJFWCPUiW5VFKBgN8hXtS2vnePsvzm4fzQgc73dljj2C0QAAAACAbeH7JwCgK5xzAPQnx3foCfp/gBoRjAYAAEChVgE0ERFXPap6KtWluzdZ0Cb808cm8e6fG47mG878N/na4bjlJcMx9dqh+Pr9Z8//378rieYbhuOaFw7Hs789+709fHL1/8dnsl9z7f193eXZj7/nyGon4XJeMFqsBaNlJ9ccP39/5vS478uRNhrZbRExvZDG899R3EF593lPOOvfyRuvj6Ffe30k+x4Xv/ORNN5404WxNLSauNVIdsQfXfLC2Pnk6fibi34yZq77h8Ln3qoqYVlbVfYpn/u2NF7+4WYsNc4u7tCx/Mfcm9F26FjETEGI0XoT8xHN0wujKBTjij3Z04/lbLd1kve+soKR8gbQZ/mDa9I4MpXGn34yf8G96G8HpxM/L2zwXFPz9VkmuceB0z2de3dl770Tsx0qqMaKwhLuPrI963R8svy868NDLzgvia9+dPZ8Bw53772UDRNcM13yuA5QVavj0V9/No3339KdWvpZleP+uGA0yFW0Kz0SjLY3+zz+yPRqkPggKXPs2UowWrOZxs0PpPH2G5tx77HBWrYAAAAA0Dn62gAAAADoA4LRgBoRjAYAAEChMkFUV+2t/ryXXLi5etpt984kbv7NoXjzf07iFc9M4toXDMXrf/rM5fL+nPc2Nrm6YI5OZ7c/Eox2RXb7PUdX/58XPLcjXQ03u2zleGb7fSuXZT8wIuJtr8xtesefXZv/uNMOnvd1Z/7xr34qkid98yP//Jsb8js3//NVb4qLF94fX7izQupNRXnb43AHeji++wmt51nz0g+m8V2vbsaJmTMFrq3jLDfdv/GN3DVe/vXSNGJqYfXvwmC0i7KnH8/ZbuskL7ArKwTv/B1J7Dqv/HO/4qPFnfTvuDEdmIH3Zd/l5HxHy6gkb9sYPr1t7N2V3T5Ro3C3bpldyn/PBw53sZDT0jSNsQqhMY1z1vUTr8ye72AX30vZMME1ddp3gP6Sdx2x3is/WvGgxQZVzh5GJwbvXAPKKnOfVF7fUppWC9ftB2WOJnObDOBdaqTxk29M41t+rxnPflMaX/vips8LAAAAAIBeZJAyAD3B5xUA67iOAeggx1j6k2A0AAAACuUNuF8fRFU1GG3XeRG7zs9IN9omO0aS+M//fCh+9V8Pxfc/5ey69l2c/Zi1QbmHjmZ3Gl150erzPO6S7MefmF39/7mhL2tGTgejPXb5wcz260YvjMkdj85sS9/88kgXNyaxpIfuiA/e3Mh+wXVe9+jnrv7xHf8mkl/6k0emT86l8cCJlg+P//aW5VgpSuvagjJBfe3ynO+o9qSfvz/isl9qPhJ6dmw6fxn8w10Rc4tntx84XG2ZnZpb/f9mgtGKaquLquv6JT9Sfn299hPF7//EbMT1h0o/XU8ru6uuBfHVQe62cfpzae8F2e2nZjtTT53NFoQljE1ETHU5LG56IWJuqfz8556DfO3l2fv56KnuvY+qH2/3HutMHQBljkc3PRAxJqxrS6oEYg7iuQaUVXQkWjvD+6rsLo6IKA4e70dljj3zy5t77r/+bBrv+eLZa+Q33p/GrQ/5vAAAAACAzumx/jcD1fuD9QgAAABsRpf6FIpeRq8GsEYwGgAAAIVyg7uGz/y9e2cSF+cE0WS5dPfWauqmfff+Y+b08Yk00jSNA4ezH/fEK1f/f/HE/Zntk9OryTDLjeyuupFYDTB7xuynMtuXV5L4/FN+JqfqiLjpkxsmNT/05rj+gn+W/5i1507Oi9c+//5IXvX+SHbteaTOx/16uVSAL00+Km64t9SslbUKRGqnH396sqlt9dt+vxnvvyWNibn8eRaWI24+J/PuYM62lOfk6eCFvPDCiIjLL8oOETo2U+21tkPVdf3c72pvOt4Hbh2MbvSyYR9TG7MWt03eNr8WmveoC7PbJ2r0HrpltkUI2aEuh3bdMVZt/m993Nn/zgtiHZvcVDmbUjUYrWroJUBZZY9HH7ndcWgrqiy9UwXn/zDoim5gSk6fx+/dlcRle7Lnee7bKqQU9oEyx/jZxc0d3//8U9mP+5sbfF4A0H+SJBlOkuSJSZL8WJIkz0uS5DeSJPnlJEn+S5Ik350kSU5PYm9IkuTx697bryZJ8pzT72vHdtcGAAAAALAlAj4B+pTjOwBQjWA0AAAACuUF0Iycc0WZF1aSpVeC0dLlpbjymtdmts0uJXFquhF3H81+7JNOB6Nd9Km3ZrYvpOfFwvX/kBs8tyNdjoiIpy/cEpc1sl/k5sf/WH7x99911j/Tr3wpjnzgvTEx/Kj8x6zz65++PGYWV/+eXUxj1y80Y7JCqNAvvfvsN3btnWl832tWYv+vrMR3vXol3n7j5gY154U4DbU3EysiInadn8T//V9D8R3/pPpjf/x1zfhci3C4c8Ny3vmFal/ynDodjFY0YPqKi7KnH52u9FLbIu+ehrx1ffGuJH7337dvQ/jjj6fRrJqA9P/Yu+/wKKr9DeDvmU2DkEAgkFAEpEvRaxdFRcEuqFy71+5Pr+1i16tXxYINe+/itVwLKmJBEQuCqKACSgu9hkAI6SFt5/v7YwnZ7M6ZndnsbjbJ+3keHjIzZ86cnZ2+e95thpy+xJLK6LbDDW1oXl2ggiaoszWGlVSECEbLj/GxYPpid/vUdaMbXmx001xrbC4Mt0XuuT0srNganXYQEdmF4/r78s+Wfz0TTW6O+60xhJUoEvzv4uqepQRanQ/kl7ae45mTV+rkGc3c1YLjnvA9i8m60Yv97vNqw4of/6b1rF8iImrZlFI9lVLXKaU+B7ADwHIAHwN4FsBEAI8CeA3ADwCKlVLTlVInhbksaeS/3mEu93Sl1FwAa/xe20MA3tz1uvKUUs8rpTLDqZ+IiIiIiMLE8A4iIiIiIiIiImoR+JyLiOIHg9GIiIiIiIhIyzRF2xG8NQSjYfVf6LZjiXbyrIdfQnWt9bSB2QoigvZLvtPOX3T7xaiptV7BHvFVrAAMrlpmWeaOnAMg8D1uLDXaoVIl754m63Pq/96yDnLxgTi7x1vatgSqqgXe+kWwNFcwbILpOHihzvx1vg64UlGK7xaU4finTPywAsgrAeasAs5/TTB5rq/SbSWCTYXOHpqGCkSKtEFdFX66zYPK5w2MHxXZhSzPq/97xVZBlWZb0qkLedKFxQFAtiYYLdZhSOEI570++8DIvkenPR9egF9z4jTso7QZBKN5dp2XOqZabwfbSqA95rZU5VX207eXxXZ9LN5kvbweGUB6SsNxh/YFRvRrOK57B+v3tqAcqKqJzWtxG4y2vqB1bXNEFDtOj0e/b3Bf945ywbItgjX5AmnlnXjcvPzyqtZ3rUHklN2+pPwu8QZk6e/pPlvUevYvu/v8OqGCnxduFBw5ycQ3y3zPYvJLgYUbI9M+IiKieKWUehfAegBPADgJgOYJ+W4eAMcD+Fwp9ZlSKivKTWwUpVQ7pdT/AHwIYLhN0Y4ArgSwWCl1XEwaR0RERERE9lr55y0ULdyuiIioGeB1EBERNcDzAhFR1PDam1ooBqMRERERERGRll0YlicwGC3DeSBRp3ZRSrGKtPU56FGzGQlSYzl52kp9wtuALAAFW9C+PFdbpthIR81q69CzBKlPyRpUvUJbx9OHTka/vsuQMXAbevdbgeczrvBNWP0XAEBEsPa8YzC89yzMaTtCW4+Va94VDJ1gYl2Bq9l2G/GwiaoTe2D0C20sp//zbcH+93mRfZOJnrea6He7F7+ssX8IF+tgtDpJCQqPn6nwzDkKyQmRqTMnr/7FPPOd+4ePhRW+eexCMbLSrVdMRTVQURXfDzzDea97dYpsGz77EyiuiO/11FhOQ1VKdsbPegi1bfTWbAe1JrA2zONZc7Ruu+CBL+3ft+1lMWrMLpuLrMdfOkLhh5sNXHyYwuH9gdtPVPhqvIEET8MdvptNCOuHv8coGM1lXmJBjNcxEbUeTo9HmwqBskpnx8jNhYKRk7zIvN7EkLtN9LvDRPZNJj6K0TE2HrkNxCzeGZ12EDV3druSfzDayXvrb/i+Wtx6jkVOXmlRiOPNxC/ch9wTERG1AAM04zcD+AHA+wA+ArAAQOCZ8mQAPyqlsqPWukZQSnnga//ZAZPyAcyALyztDzS8lMgC8KlSyt2HQ0RERERERNRCtJ7n6kRE1BLxPEZE1CIxtIeoeeC+SkRxJEJdeYmIiIiIiKglqrXpQJngaThsF1YSqJM+TyyuyIYcJKIW/apXY3nyoKDpn6adbDlfz45AarKCLM5Be7NEW3+xpz1qt+cBqYODpiWiPhhtSNVSbR03Fp4JJPn+3p7QGf/KfgKDqpbj6BWzIF+8CdM0cVzPL7A6qa+2jmhK7b9dO626FliwsX54zXZg9OMmNjxsoGNqcGdosXmwGu1gNABQSuHqoxSuPgq44i0Tr8xu3IPe5Xl+f2/R19W7EyzD6QorfP/bB6Ppp+WXAb2SQzSyCYUTjOYxFIZ2Axbr8whd+2YZcPr+kasv3jgORquMbjvc0HXur9s2+mf5whWsDhnLt+wKrmzhRAQnPRM6BSHh++xxAAAgAElEQVTWwWi5xdbju3cA/raHwmsX2h/M98jwBbNabQP3fS4472CBUtE9Ibj9jK+gPDrtICJyE9h1w4eC/XrazyACXP1ucJn8UuCMl0wsusvAsB7NJOA6gtwe94t2Aplp0WkLUXPmdF86aZh+2sptkWlLc+DkGF9UoZ9WWSOYvtjdMmPxXIWIiCjGFgB4HcB0EVkdOFEp1R3AXQAu9xs9AMCHSqkjxO4DCWu/Iji0LJRNLso+BOBEv+EaADcAeFlEqutGKqUGA3gVwPBdo5IBTFVKDRORLS7bR0RERERErrSWDqOt5XUSERERERERERERUVNjMBoRERERERFp6cJnACDBaDjc3UUwWmYzCUbD+hwAwMDqFZbBaEWeDMvZBrYrAZABufs8pJslUGJClBFUrthIRw0SLetIkPpgtHElU/Gv7CccN/uBzFtx9IZZkIcux+2d78XqzKYJRQNg+brtVFQDnywQXDoiuEeuXcdgw91iGu2l8w38fT/BN8sEj80I7wt/a7f7OiunJCptWBAA9O1sHYy2Y1fYTtjBaKVAr07O2toUtMFoId7rsw9S+M/UyH0J87vlgtP3b7k9xM3Q2VkAgJKd0W2HG6FC81ISFfbs5AtbDJSzVQC03Pezzh1TBcscdHOMZTCa1xTkaYPRnL0n7VIURu8FfL0keNrKbcBv64EDe4ffRid0R5fMdtbrc0e5L6gu2oFtRNT62N2rBXq1kYG+ADD5Z8FjZ7S+Y5mbADrAPqiIqDWz25X8jywJHl9Y7qVvBs9hd9/c0ji5T7M73sxf53u+4oYnxs9ViIiIokQAfAFggoj8ZltQZDOAK5RSiwA85zdpBICzALznctmVIrLO5TyOKKX6ABgfMPoMEfk0sKyILFVKjQLwLerD0ToBuBvAP6PRPiIiIiIiImoqDKkjIiIiIqLmhvcxRM2C698Ro/jA941aJn69lYiIiIiIiLRq7YLRPA2HnYaaAM0oGG2DLxhtcNUyV7P1Xv89ZPVioLgABgRpZqlluRJPe9Qq68zyRKnZ/Xe2d6ur5f+QOhIFno5YnjQAkzJvCln+2XPDDzi4vNM8vLP5grDnt7I8z3q8XcdgowkyGo4dojDpdAPmyx7ceKz7BpgCrNrm+3uLpoP3xNMUMtpaTyusqK9Hp2OqvnNzvvVmGTd073eoNX3dKIVx+0auHb+uadkPhp2+uuJmEIzmv6336WxdZmtJ5NsTb0p2Ch6a7uydLYhhMNrWEv17181FuOqEMfpH2n9uiv7+qjs2dU6zHl9V6z6UgojICbeBXY01e0XLvibScfvdDgajEVmz25cC82P3yLC+68svBapqWsexyMmrLKrQl1qS6349+T9XWbhRcOenJm79yMTc1a1jnRMRUYtxhoicHCoUzZ+IPA/go4DR50e2WY12N9DgV3YmW4Wi1RGRnQAuAuD/VOrSXQFrRERERETUJJrbc7bm1l6yxE7MREQUF3g+IiIiImp2YvRMwW4pfKxBRHUYjEZERERERERatV79tISAO8ruGc7rbQ7BaOL1AptWAQCOLv/e1bzpO1ZDJk/cPdzetE7iKTQ6oEYlWk5LQG2D4TOHukslmtvmEFyV/XTIcvNuN/CPg92Her1xkcK6Bw28cF0PHLRzvuv57eQWWY/32jzUbIpgNH+TTjdw0aHuGzFnlWBntWgDFIb3UeiQal1vYblvhdgFxiUY+v0tvyy+nxLrwj5CvddtkxU+/KeBnPsMfHiFgcP6OlveUQOtxy/YWL+uWyKnoSolldFthxu6bd5/28hsZ72h7CiPQoPizL732RwUAoQTmBAu3bEdcBeMdnAfhcFdraflaII1I0m3z3S2ubaJZQAdEbUeZow/8f9tPVAQ59eP0eD2FRfFUZgsUTyxDUYLGLZ7vpTXCoKOAWfHeLsgRl3gvJ26H0CY/pfgkAdNTPxCMOlrwRGPmHj7F+f3GERERE1JRNaFOetzAcNHNbIpEaOUagPg9IDRD4eaT0RWAJjqNyoBwLkRbBoRERERERERERFRFLW+76gQEbUOPL4TERGROwxGIyIiIiIiIq1am36PnoA7yh4ugtG6d2jiFCsn8tYBNdUAgBEVc5FsOk8FSjPLgB8+3j3cuXa79SISslBupFpOSzUb9nDtlObuFv60Pabgx9QjbMu8f7mBA3orpLdRePzM0O+JUsBhfYFl9xq48FADPTspqKw90O3Y41y1LZTNhdYfdtgFgDV1MBoAvPgPhRuPVUhLcT7PtIWCLcX66V3b64PN6oJ27IKtDKUP69lW6qyNTUUbjObgzVZKoX+Wwt/3V7jQYWDdtUfr97GRj7bcTuB2+5W/kjgK+dBvG/V/d7Q+tLbYQJf1BYJzXzFhXO7FWutTjqWlW4A1+bFZJ7pgtEQP0Enzfukc0Nt6v87Ji/5r0W1/dqGvO2xCK5qaiOD9+SZGPOzFgRO9eGi6icoad+vx7V9MHPWob/67p5motUsyJaKIcRpuGklPfdv69m+367msqvWtI6LGUgGXdt3a68vahe22JE6yLwttrjHDuS727HofbvvYRLVfVr8pwM1TBGZTnHiIiIhiZ0HAcBullIso/6g6DkBbv+GfRWS5w3nfCBgeF5kmERERERGRpRj/qA0REREREREREVF08DkXEcWPhKZuABEREREREcUvu2C0hIAMoc7tfOEmNd7Q9Q7Kbly7YmJ9zu4/E1GLftWrsSRliKNZ070lDYaza/Msy+UlZKPESLeuw2xYR6f2kbuFVxBUveBBgqe+9/H4UQpf/iWYuSy4/ONnKpxzkEK7ZCA1OTiMJuXqe9F5fD7yEzpHpH2bNR2dbQPA4iD6PSlBYdLpCg+PE/y4Ejj6sdCJU9/lAH9t1k+3C0bb7jQYLc16Wn5zDUZzGYJ34jCFUA/lrxqpsH8v/fS/NgM/rxYM7xsHCXwR5rRv+84aoKZWkJjQ9OvAq9m1/LeNTpr9Zkd55NvT1IorBIc8aGJrSeiyVn5bL+jTOfrv6+Yi642tWwdngYf+BmRZj8/Z6rZV7un2mY7tFJQSy++6by4E/rZHdNvl1M5qgaF8+0uNF/jgd8Elk+sb/ft6wep84LEzgLQUX9CknVdnm7j8rYbzr80H/ntp0x8riFo63fkwmuasbH1fdHDbh6m8KjrtIGru7HalwMuN9DZAarL1/rSuoGXelwVycp9WZBNevWyL+2V6DCCvWCyfUWwtAeauBkb0d18vERFRM1FrMS4p5q2wdnzA8A8u5p0N32ur+4BpX6VUlojE4CkaERERERERRR3D+IiIqFng+YqIiPzwPoaIKIp4jKWWicFoREREREREpGXX2T7B03DYMBS6tgc27LCvs3Ma0KldM+jEuiGnwWD/6lWOg9HSzLIGw101wWhbErJRYlinVqV7G6ZWdUpPQKQeUOWPX4EEz+AG45RS+PRqAxO/FMxcKijeCfTtDFxxpIEx+9i/XyotA8clfY23zdERad/mIusAplABYPHCMBRGDgQW3mVg4hcmlsxfjUJvW2xJ7BpUtroWeHKm9Y7WOQ1Ib6OQ2c76hTsKRjOAzmnWwWDxHoym+8zL7XvdrYPCwCz7wKRnzvFVmp4ClFRal7nzUxMzb/BYT2zGnAajAUBpFdAxDp4m6trs8QtI7JRqXaagBQajPfeDhB2KBgA51qeoiMstth7frb37ugZlWx/XVucD1bWCpCgG+JmaDTDRA+yRYX0dlLNVcBKa9kQlIpj4peCuT0Pv9K/NEbw2R3BAL+CZcwwc3Eff9qe/Da7v3XmCh/8u6Nohjk7ORC2Q7nzYJQ244kiFb5YKCsM47wmAFZrrppXb3NfX3Lm5VgKAMgajEVmy+05j4BWDUgp9Mq1DxHXHp5bGyXdAiyp813iBQbblVRLy2ZwVjwEU24Strd8hGNHE17RERERR1C9guBbA9qZoiIWhAcM/O51RRMqVUn8B2Ndv9BAAreSqioiIiIgonrBTIjUFbndERNSMMTiHiIiIqOnYXYvxOo2IYiwOujISERERERFRvKr16qclGMHjuncIHYw2KLtxbYoVWbO0wfCA6hWO500zGyZOZWuC0TYndkOpJ11Th1/KTUpb7NHROgTGjWSzEgsGv4COQ26ynN4mSeH+UxXuP9V93bdf3g9vv9io5u1WWQPMXgUcPajh+OYSjFZn7x4K751TDHl7GEwo9O63ErmJ3YLKzdJsWnX7SmY76/d+e5mvE3So9ZLZznra9rL4fhite13hvNcXHKpwxyfWFf56u7G7I/nLFyic/bJ1ue+WA1MXCNokAUcPRFBwX3PlJuyjZCfQURM4FktOto1Omu0+XoPRCsoEf24CluQK9sxU6NkR2FEOrNwmSG8DHNpXoUdG8Da3o1zwn6nO3sTT9gU+WRA8PlbBaJsLrcd36+C+roGaawmvCazJBwYF51BGjN32Nyjb+jpoeYzWsZ3HvnEWiubvt/XAGS+ZWDzBQHqb4O2vplawODd4PlOAD34XjB/VMo6TRPFKdzxqkwTcM9bAPWPDr/uGD0w8OTN4AZuLgLJKQbuU1rN/u/3+RjmD0Ygsub37HJBlHYy2splEeJRWCmatADq0AQ7sDSQnujtuOrlPq/ECFdVAanLD8eGGx20vA6b8rl+wafPjCURERC3A6QHDv4mI27NfT6XUGwAOAtANQCqAQvgC1hYA+BHAFBFxG2G6V8DwKpfzr0bDYLTBAL5zWQcRERERETkS39/DiZzW8jqJiIiIiIgo8nhPSURERO5YdGMnIiIiIiIi8qm16fbh0QSjhXJ4//jvRC/FBcD0/zYYN6JiruP5A4PRumqC0VYk9dfWke5fR3JbHDPY8eK1rvO+i0E3WIeiNdag/fpi08D7cM+2eyJS3zdLgz/waG7BaACAfF9ijAHBmLIvXM06MNv3onTBZrWmL6jKrnOyoYDOaZqmlVqPjxe6EAojjKdZFxyi0C45ePylIxQO7F2/8Zx5gIEumvUFAONeMHHCUyYG3WViaW7L+FDOVTBaZfTa4YajYLRU64PCjnLAdPOiY2BWjmDI3SZGPW7iX+8JxjxrYp97TRz1mInL3xKc/bKg3x0mJs9tuLP/kCPIvN5Z/8yNDxsYkGW9TnK2xmZ9bCm2Xk63Du4P4P0664/7OVEOy7Db/gZkWzdqRV7TbnNv/GTilinhtWFTIfDGXOt5S23Cf8IN5CAi57yaU0AkrouvOUpfyZ8WQUUtmdvLhvLq6LSDqLmzCxlUFoec/ppr1xUxunZtjJ9WCfa4xcTYZ00cMcnEQQ+YyC1y126nx56iiuBxOY249rzTJkg3zm6jiIiIIkYp1Q7ApQGjPwmjqj0BXARf8FgHAIkAuuwaPg/ASwA2KKWe2LVMJ23rCKBjwOgNLtsVWF7/wRQRERERERERERERERFRVPELKETNgu2vCnM/jltufw2aqJlgMBpFlFIqUSk1Uil1gVLqVqXU1Uqp05RSvZu6bURERERELZUUF0D++xDMJ6+Heds4mM//G/LVOxCvt9F12wWjJVjcUXbLCN0L/6Rh8Zpg5SOmCRnXJ2j80RU/oK1Z7qiOwGC07rXW6QFFngxtHelmSf1ASlukpShccWTj1t35R7Zp1PyhdP3X7bhjyHKcU/xeo+tatsUiGC1EAFhc2p67+8+xpZ+5mrWP8gXq6YLNAGDOKuCC1/UrxmNAG/QV78FoTsKvnOqeofDy+Qrt/XaBsfsAz54TXNkfd4Z+XLZ2O/B//zUhLeChsZuXULwzeu1ww0kQjG6/8ZrA9rLItylcpim4eLKJbSH2x+pa4JLJAuNyL/52rxfnvmLi6MdCh6K1TQLeuUyhe4bCoGzrMjl5iMm2XKBZ71np7utKTlTYI7BL6C5bS6L7WuyOTbp1vNw6HzVilm8R3Pu5iYvfMPHoDBOF5fWNnLFEcOmbjVsn935mPX+ZTVhiaZwcL4haskheKwXq1Qlok2g9bfri5n/944bbU6TdsZGoNbMNRrMYNyDLumzO1thcu4bLNAVnvGg2CJX+azNw04fu2uz0JRZZXHNF636HwWhERNSCPQjA/6lOEYBXo7SsVADXAfhdKTXEQfnAnyOqEBFnH1TV2xYw3N7l/EREREREFAlx/FzTWnNrb2sV6n3i+0hERHGg2V0HERERERERUTxJaOoGUOQppSYAuLsRVbwpIhe5XGZnAPcAOAvBv1RZV2YugMdF5KNGtI2IiIiIiPxI7lrIZcOB0sL6kT994ftKy8z3gEnToFT4PeN14TMAkOAJHtc9sIuGhf5dwm5O1IkI5K5zgOrg3uwpUoVjy2ZiavopIetJMxv2Qh1UleO6Lelev5ScFF+a0zNnK7w0K7wPiAdUrcCgvTQ9iyNEJSZBTfwAt/28Av97o3F1WYXI2HXCNeI1+t0vGG1kxY9I85ag1OMsBShjyoOQPY9H5v4nasuMedY+GEkptSsgKnjl5cdROJQVuyC8cJx9kIHRewn+2gxkpAJ/28P62Nitg8JxQ4Cvl9jX9/MaYOFGYN+ekW1nrLnp3F5UEb12uOEkCKabTfe+zUVAlzDCuKLh17XAugJ38/y5CfhzU+g3bto1Bg7ZE8hM862YgdkKVseCsiogtwjors/qjIhCzfaT0Ta8+jq3A9ZbrLtoB9/pvqdlGMDALOt1vK0UKCwXZKRGPsXzhxzBmGdNlFfVj3v2O8Ev/zaQkwcc/1TjD6aFFb5rpMBrytIqzQwASir5hTaiaNNdK3kicF3sMRRGDgSmLw6eNndV69q/3QYBVVRHpx1EzZ3drmT12GqA5rqqtBLYWgJkx2mcx4KNQF5J8Pj35gvevlRgOEyvdHrsKbSIRSmJUkAjg9GIiKglUkqdBuCagNF3iMgOF9XUApgDYCaAPwFsAlAKoB2AngAOB3ABAP9PxwYAmKmUOkRE1tvU3S5gOJwo+sB5bH6KxTmlVBcAnV3O1jcSyyYiIiIiIiIiIqLWgB9QEhE1XzbHcAZmEjUPdvtqBPfjGC2GiJq5eO02TM2IUuoEAIsBXAlNKNouhwKYopR6WymVGpPGERERERG1cPL8vxuGovn7dQbw3ZRG1V/r1U9LsLijDBWMlpQAdArsxhEnxOuFPHIVMGuqtszYpPmO6kozSxsM71mzDonirod8uunXkzbZlxqT4FGYelV4t/J/3/kZ1NCDw5rXrWHDB2DKPxv3yGHFVqCiquFTTLtOuJ7IZ81ERn59MFqyVGNU+feOZ82ozoe8cDtSkwRZYYQ41fW37qzZ50orgcqa+H1SrA2/asSmlZmmcNQgpQ1FqzO0u7MNasrv8bv+nHLTuX1LcXy8Xl2bPX4hA13S9cEwuUVRaFSYcrZGZ53ePUbh5L3V7lA0ABhok41pFUYZaZEORsvUHNuiHYxmF8w3KFs/X87W6LTnjk8ahqIBwIYdwMhHTRz1WOQSJq3evzKb0I2ScLrpEpErToJCG2P0XtYVfZ8DlOyM/TXBWz+bGPWYF4c95MWD002YMUrocbuUMgZDErlmGYxmE6q/IkrXVZEwfbH+GLDDIsRMx+mXuoosrrkYjEZEROSMUmofAP8NGD0DwAsuqvkPgO4icpSITBSRz0RkgYisEpGFIjJNRG4G0AvAQ2h4i5EN4GNl/+tGgU/AwjnTB14xROpTuqvg+76gm3+fRmjZRERERERxig/RiIiIiIiIiHh/TNQSMLGMiOIHg9GoUZRSIwFMRcNftRQAvwP4EMA3ALYHzHYegP8ppbj9ERERERE1gpQVAz99bl9mxruNWkatTZ6GVeBMjwz7Xvjd2gP2fTya0IdPA5+/blvkpH8c7ihoIM1smMqSAC/6V69y1Zw24tdXJaU+NWbs3xTOOci6Ee3bAKsmGkj3NExIya7Nw42HV0KlhpGuFaZx+yl4XzJQc+LryFuxB0qXd8S4kk9c1THsnoYboF0n3MaEZUWTbM9tMDykaqnjedubxcD65VB563BcXxc9qHfZHYyWpi9TEOUAocaIdtiHHbtwI39fL2n+D/RNF7lJ8RIopmuz/3HAYyh0bW9dbnNR/LxvbsIRnOqSBvzr6OAdJSNVoYvmeBCtgLY6piko0gWjpYa3U2e2s54vGuvUn92xqVsHoF2y9fQ1+ZFdx7VewbYSwc9rrKdHOjBkS3HwuFKbrrjbSgERwY5ygfDDT6Ko8OrOhxG6VrILiu1yo4nyqtjt2y/OMnHhG4Lvc4Cf1wB3fCK48p3YLN/NtRIAlLvLwyZqNewuB6yONplpCh01P7O1IsrXro2RnKCflu/i/ttpCFlRRXDB4igF1Do9HlbVCDYX8hqQiIjim1KqJ4Av0DAkbD2Af4iLk9iuMLRtDspVisi/AVwbMGk/AOc4XR7C60XCkzIREREREVGLxVs+IiIiIiJqbngfQ0QUPTzGUssUp92GKcLOAbCni383OalUKdUDwMcAkvxG/wRgiIgcICJnisixAHoAGA+gxq/cGAD3N+I1ERERERHRvG+A2hr7MnO/hFSUhr0Iu2C0BIs7ymHd7Tvid+8QdlOiSjbkQJ67zb5Qp67ofOyJ2KeHfTFDvOjgDU4POmDn767a1GA1JrdpMG3yRQr3nqKQ7ZdzdvLewLJ7DfTprLDo/ja4qNcajDAW4yLja8w9+ltkXHOnq+VHglIKRvc9kektQBupxNhS+yC/QGu3A2u31z+Usw1Gi9O8PQQEow2qznE8awevL4VGztoLYz67zPWi60Ki2rfRl7ELtWlqTRmMdtwQZRn+GOiPDcCPK5r3g2OnHe4BYHOcBKN5HW4bunNOvLwOwDpsqjGy0oH5dxjasDFd6N/yvMi2I1BppX5by2hrPT6UTu2sx28vjXLIm6Z6pXznvZ4dradH6r3OyRMMf9CLpCtNZN/kMq2nEbZY7DdlVcHj6izdAnS/2UTm9SZ63Wbi8z+b97GSKB7pjkdOrmGcsAuKra4F0q41cc7LJsoqo79/PzkzeBmT5woKyqK/bLdLsDs2ErVm4eytA7Ksx0c6ADaSUhL107aVOK/H6X1aoUX4cKkmGO2wvs6Xb0V3H1anskZw4esmOl5nYo9bTfS81cS7v8buepWIiMgppVQX+H7os7vf6DwAx4hIfjSXLSLPAZgWMPoqm1kCo1VtnvZrBc4Txz+XQkRERETUkvHzUmoC/AELIiKKCzwfERG1OrwXIWr+7PZj7uNEFGMMRmsd8kRknYt/2x3Wew+ADL/huQBGi8gy/0IiUiUiTwM4M2D+G5RSvcJ/WURERERErYOYJmTJPMgvXzUIOZM5DkOmZn4Q9rJrvfppCZ7gcRmpCkf018/TIyP+0qtEBHLe3iHLqRdnAQD26mr/Gjp6d8CD4I6fY8u+cNymvaqWNRyR0jA1JjFB4T8nGch91APzZd+/add4kN3e17ZenRRev6M/fnxxH7z+4ono/Y8LoFQTrfueA3f/eWbJFBxaMdfV7FMX+AWj2fSnjcdgNBEB5s9sMG5QlZtgtPoUmmPKZiLZdJdiVrdO0m26SpXEcTCa7ll5LN7rHhkK/z7B2YJGPmrC6yZdLAw7qwVf/iX4IUdQXRvZZblpem5RfHyAoTsWBG4bPTKsy61z+uQrBvIiHIyWO8nAHh312+6AbOtpK/Ki+95aBTbUCTcYLVMTjPb7hvDqcyrU9pfd3np6qGC08irBN0sF7/xqYmmu9ftRWSPY6y4Tv6512FgXEj3A/jZParcUB7epNEQYUt6u8I9NhcCpz+lfFxGFJ9ohst07AGkp9mXe/03wz7eju2+XVYplCFKNF/hkQfSPK24v88oZjEZkye67ULrHFQOyNNeuW+P3mqK6Vj8t30UEidPvjuVb/BZCieYabf/eCv8aFf5JoirEbzNc8z/BW78Idu4qt7kIOP91weyV8ft+ERFR66OU6ghgJoABfqO3w/d9t5UxasaDAcOHKKV0PysUz8FozwMY6vLfKRFaNhERERERNSV2fiUiIqKY4DUHEVHLxOM7ERERucNgNAqLUqo/gAv9RlUDuEhEtF2qRWQqgDf9RiUDuDs6LSQiIiIiahmkMB9y/QmQfx4OufkUyJkDIXO/9E1cMMtZHZOuqp/HJW8YQVSn7qvvZDm8b1jNiCp57Z6QZdT1T0Jl+9JCBmTbl830FliOP6ZsJlI8Nklzfo4v+7rhiJQwU2PiQZceQJtUAEASavD9+mPxcu6V6F29DhneHbih4AncmT9RO/vMZX7BaDafgcRbMJpUVULuuQCobpiMMLRqCTp4Cx3V0cGsT9FpJ+U4p8RdyGHdOklN0pcpjeNgNFPzRcpYvdf3nmJg2jXOHp1d9U70PqCbv07Q4xYTJz9j4ujHTBxwv4m12yO3PDdhH5uLQpeJBd13bD0Bb1efzvEfpLAmP3JtWfugETIEc5DmHLZgI2BGMeAvGsFonTTBaFtLgMe/sbmAaaRQQURd21u/B3YheIs2CobcbeK4J02c/5pg6AQTV7xl+gI2d9lWImh7dWRe1yF9gPGjFB45XeHOkxXuOllh6T0G5t9hkXq7yxqLQMEyF+E/pgBvzI2ffY+oJdDdq0XqWskwFM48IHRlH/4uKKqI3v5dXq2ftnJb1Ba7m9u+PW6OjUStiW0wmmZ8/y7W4xduRIPrpHhid4+9rdR5m51emudaXGOW7LQu274N8MSZCp9fG95XRKpsQt9qagVTfgtutAjw/vz4fK+IiKj1UUq1BzADwDC/0YUAjhGRJTFsyrxdy63jATBYUzbwbN9WKZXqcnmBV1URecorIttEZImbfwBWR2LZRERERERxK06fWxIRERERERHFFu+PiZo9PuciojjCYDQK17nwfTGrzscOfznz4YDhM5VSKZFrFhERERFRyyJPXgf88UP9iOICyK2nQT59Bdie67yeW0+DlLrv61Cr6WyfYEAbvnLK3/Sd5+2mNQVZuQh488HQBQ84evefQ7rav4ZOmmC01L9fjNFD9IEjdfrzLNQAACAASURBVA6r+AkT8u9vODK5+QajKaWAngN3D3tg4pLiN7Fq9WDkr+iBR7bdgbu364PRlm6p/7s5BaPhyzeBb4ODzBJRi+PLZjiqor23YZ+nidvuwoE75ztuQt06MQyFNM2dd0lcB6NZjzdi+DTr5L0VZt1soHOafblXZgvyXXRyd0pEcMaLZoNQqcW5wL/+F7nQJzefV+woj9hiG0W3bQSelgZkWZfL2RofQQqF5YKf19iX6ZEBzLnVwM3HKe1xLiURmHyxQq9OoQ+EgzXnsPxSYN66kLOHzS4YrUOYp7jsdP3rvelDwR/ro/MehwpGy25vPX1LccMZC8sFj84wcetHJva9z8SGHQ3LvzJb4LnCxE0fmigsF9w1LXKvZ+5tHjxxloGbjjVwz1gDE8Ya6NvF9wJO3tt6nhlLgpfvNlzzsRlNv98RtSSxuFa6/9TQ55YaLzD8QRM3TzExc2nk9/MKm2C0kpLop5C5vWSway9Ra2a3K+myfffSXLtu2AEscf5ILKZKbQ5L+aXO63F66NlSFFyyWBOMlp7ie0Zz4jCF589z/xClskY/bXuZ/vnCt8t4DUhERE1PKZUG4CsA+/uNLgFwvIgsjGVbRMQEsCFgdGdN2QI0DFEDgJ4uF9krYNjJ9/uIiIiIiKi1i4PvVJADId8nvo9ERBQPeD4iIiI/vN8kIooiHmOpZWIwGoXrtIDhN5zMJCLLAPzqNyoVwLGRahQRERERUUsif/4EfDfFetqj17ivb9yeruep9VqP99jcTfbqpHDh8OAOlhcMdxbaEiuy/HfIJQeFLrjPCCi/YK+RA+1ff2aSRS/Yky6CMf5x7N8r9Ov/Yf0xSJWABJnkZp4n3WtQyCKfbhxnOX59AVBe5XswZxuMFmdPOMQiFK3OfpULQs7f1ixHEhr2Os7ybsOP60Zh9rqReCP3MrxxfGDfqYb8Q5R0wWillfH70NPUZH/FOgTv8P4KK+4z8OoF9gvOujFyYWV1lm5BUFgSAHzxF7BxR2TeO7v9KlCRTbhVLIUKpqozIMv6PSuqAFZti3CjwnDQA/pt5tlzFWZcZ2D5vQYO7avw8N8NLLvXwIzrfP//fJuBNy9W+PhKA2seMHDBcGcHwRH9gOQE62mfLoze8aBQE6qXlgIkeMLbqQdm208/YKKJmtrIv6ZQ219XTTDaJr8urKu2Cf52r4lbpggmfW3fxse/EXS63sTLP0bmtWSl208/coD1+/HLWmB7QABkWfTziIjIhu54FOZh1VJWukLFc6HPMTlbfeGHxz5p4r7PI3tNVG5zrCmeNQOyfYu+QAS4uVYCgJ0MRiNyTReMZvf8Zdqi+LyXLdGEkgHANhfBaLr74UC5Fr+BoAsoS29T/3eHNtZl7FTV6qfZhUKW87hIRERNTCmVCuBLAIf4jS4DcIKIzGuaViHwqsHu7LwsYLify2X1CVEfERERERHFRHw+0yQiIiKKWwzOISJqxuyO4Ty+EzULdtdivE4johiLs27D1BwopbIB7OM3qhbATy6q+CFg+ITGtomIiIiIqCWSSVdHtsLKCsg6d/0dajUdMRM89vM9fqbCRYcqKOXr4HrRoQqPnxkfoWiybRPM+y6G/N+hoQsffCzUfe81GNWpncIR/fWzZB58EHDYSb6BxCTgrPFQNzwNABiYZb+4c4v/B8u1lJgcuq1xTPUaGLLMoKoc7bQVW33/2wajxcfmVW/RHO2kgcbmkLN3rt1uOT4RtRi+cx7OL34X5+94E9cfo3/h/mFx6dpgtJBNaTJOw69ioX1bhUtGGLhypP3Cr3rHhETwIb9VJ/c6ToIANhUKLn7DxJC7vTj0IS8em2HCG7Bi3YR9lFUBtd6m/xDD6zA0b0g3fR2vzont66j1Ch7+ykSPW7wwLvf9W51vXXaPDODKIxVGD1Zom1z/ovpn+cYN2PwDDnxuDM57axRO+ethZCXbpC8EaJeiMEqTVRnVYLQK67oz2oZfZ9/OoctMWxR+/TraY9OuY27PjtbHibXb6/efSV8LNhZaFou6Sw6zP46dNMx6ugjw9dKGL35njWVRW/EcyEnU3IQ6HkVKSqLCyvsNjHDY9f6+zwVbSyK3r9sGo1UnQN56KGLLsuL2lVTaBAcRtWZ2t0m6q5OOqQqH9bWe9uVf8XlNUWZzj71oo/M2O71P21IcPE4XztbeL24lI9X9jXWlzbWfXTAavwdHRERNSSnVBsDnAEb4ja4AcJKIzG2aVgEAMgOGrT8Q8FkcMDzc6UJ2hcLtHaI+IiIiIiKKGD4MIyIiIiIiIiIicooxikTkBIPRKBxDA4b/FJFyF/MHfrFsSCPbQ0RERETU4khZMeAyxMyRX752VVwXPpMQ4m4yI1Xh9YsMVD7n+/f6RQY6htHpMtKkaDvk4gOBGe+GLKu+2ALj0c+gMoKTV075m/61dO6SBuOhj6G+L4OaUQjjmkegknzBZoO6hggjKZtuPcETIoku3vUMHYzWu2Y9kk3rHsTL83yPM3XbIxBfwWjy/Ue20/cafUjIOrrV5oZe0Oxp6NxOP9n0W19pmmC0kmYYjKaa8L1++mz7hb84S/DvTyRi4Wh2nct/W2c/b3GFYNgEE2/+LFi2BfhlDXDzFMH1H4QfjAbExzaja7Mn4NzUMVXhoN7WZZ+cKVi2JXYflVz5juDfH4tt2F2dE/dWUJoNXeZ9A7nueGDeN8BfcyGv3A2ZeGlwOdOEVJT6/q7xbUhStROydSPG9LFuxPI8YMXW6KyTIk04Q2OC0ZISFPp3sS/z5eLIvx7d7l13HhqgCUGtNYF1Bb6/P3MQbBgNGW1DB6MNzAb6BHbN3eX39Q2H7cIxdH5c4X4eIrLmNCg0Evp2UfjxFg/GBHant1BrAt8ui9xxzu56qMhoD3z3EcS0uVFoJLdVV9ciKIiWyCmprYVUOQ+9bU7C3SvG7GN9UPsrdN54k7ALgZ27GihzGBLrdH1tKwVqautLiwiKNZtQekr9uuzQxrqMnSqb4EfbYDT3iyIiIooIpVQKgGkARvqNrgQwVkR+bJJGAVBKZQLoEzDa7gOBrwKGR7pY3OEAEvyGF4jIVhfzExERERERUVzjE1giIiIiIopDdn0p+At7RM0E9+Nmie8NtVAMRmsdrlBKzVRKbVZKVSqlSpVS65RSs5RSE5VSh7usb3DA8CqX868OUR8REREREW2ITmqEfDHZVfnaMIPR6iQmKCQmxFFi1bRXgZIdIYupxz6HSu+onT5uP4WkBOtpo/fyvV6VkAiV0LDQ0G5Ajwzr+done3F82QzriR7NwpqLvfYPWcQDEwOqV1pOW57n+98uXyCugtGeulE/8aI7sOc/r0GmTaAZAHR3Eoy2ZgmGVSzUTvYPsErXBKOVxkHIlY7u/W7K99pjKPx4s/0B8JGvBB3Gm3hxVuMDOuw61S//dRkkPzgNIL9UcMgDXmRcZ1p2iH/2O8Fv6+rrdRv2UVThrnw0mJqNw2rbGLef9QZT4wWuedeMWIidjmkKLn/LxGtznC/nrAOC2yw7y2FOvBRy48nBM/zwMeTTV3zlRCDvPAoZ2wNyXCbMw5MhR6f5/h/dAXJ6P5z82H7aZX+6MDrro1DzkwqNCUYDgLE2QaUA8MZPkX89oY5N/YLzVHdbuRUo2SnIK4l4swAA7ZKBPTTXGecepPDjLQb6drFfZ0opHDHAusyLsxq++HCC0b5eyg/biCLFaVBoJB01yNmF2D9ekwZBPY1RbhO2szUhCyjKB1bqr4kbS/cq2ibp5wnn+Eitm3i9MJ++ETKmG+T4zjBvPBlStL2pmxVRdpfdduHX+/W0nlhaCdR64++6orTKfvoz3ztrs5v7NP9ry8oa/bO8dL8wtA5hXIfbHdvsgtHsQu6JiIiiRSmVBOBjAKP9RlcBOFVEvm2aVu12Nhp+Z3MrALtfSvoagP+T3uFKqUEOl3VRwPAnDucjIiIiIqJIY6dEahLc7oiIKA7wOoiIiIiIiIgagcForcPZAEYB6AYgGUA7AL0AHAHgdgA/KqXmK6VG66tooF/A8AaX7VkfMNxJKaXpskdERERE1EptyAlvvs7dgaPP0E9ftwxSuM1xdbpOptHsbB9NsnB26ELj/gl10DG2RXpkKEwYE9w59+/7AUcO0M+X4FF45O8qKFhOKeDho7ejvalJSmnmwWgqqyfQb++Q5QZWWwcCzlji2w7tOgbHSzCabM8FCrZYT0zLgLrkTng8Bk7e277B3Wr8gtHaddCWO+qpkY7alaYJRiuxCM6KF/EYjAYAI/ordEq1L1NaCVz1juDiN0zkFoX+UodpCpbkCv43z8Qva+qDRMpsOtXn1GTBPG/voGCvM140MW+d/fIOeqA+EMwucNBKXASj6bYNi3PTFUcoZKVbl/8+B/jfvOh+6eaNuYJXZ7tbxsiBDTdy2VkOufRg4Ku3tfPIo9dAdpYDX/4X8uIdQHGBtmzX2jwctHOe5bRw1odpCmavFMxdLSivsp6/ULPdZITYl0K5bpRCn0z7Mv5BgJGg2/7qAj3aJittCOqKbYKVzi/DXDlpGFD8tIH1D3tgvhz87+3LDAzp5uwA2j/LenxlDbChQBoMu7VyK7/oRhQpumvjaF4rnTjMeeV73m7ipVkmluY2br/XnVsAIDehq687x+rFjVqGHd1xPzVZP89Om4AgIivy6gTgw2eBsmKgtgaY9w3ktnFN3ayIsg1Gs5nPLsCrJA6Dvq3Cqf19/IezY6KbI2duUf3fduvEPzC9c5qLBexSXaufZheMxmMiERHFmlIqAcAHAE7wG10D4HQR+bppWuWjlMoC8J+A0Z+Jza83iEgFgCkBo291sKwBAE7zG1UL4F2HTSUiIiIiIrLBz3yJiIgoFnjNQUTUfNkdw3l8J2oW7L7wx+BbIoqxZtqVnaLgAAAzlFITlbL7XW4AQGCPbFfd+USkDEDg17Lbu6mDiIiIiKilkxULw5sxvSPUhLeA/Ubqy0x7zXF1tZrO9gked82KG/Nn2k/vvw/UdU86quq2Ewx8c72B60YrXDlS4d3LFN673IAnRBLB2QcZmHubgdtPVLhguMJNxyrMvsXA/x2oTxtSzTwYDQBw+NiQRQZWWQej/boWuPdz0zbAySoQqSnIvRfpJx44CnW33Kf+zX476XHMKODcG6HGPw41dT2w14GW5VLEJjnLT3ob6+WVxmFH8jpNEfbh1OoHnG1wb/4s6HGLiRd+0Kf6lVcJxr1gYtgEE+e9Kjj0IRMjHjGxpUhs358iTwbW1mZCTu0NKfeFKq7cKvhxpbPX8Nuu2HrXwWhxEKbndbFttG+rMOl0/UZz04eC4orofDBTVCH4v/+6q3vzIw23LVnwI+S03sBGB2/sN/+DfP66o+WMLf3ccvzCjcD0v5y3eX2BYL/7TRw5ycSIh0387V4Tf6wPnl8XqNehbeN26O4ZCgvuMjDGJnvzpR8jHIzmYPsboAkWW7kVWLUtsu254kiFNy9WmHq1gdCPdZ0Z0EVfz7Pf+wejuX8t/sEdRNQ4mgzrqF4rDchS6K7P7G0gtwi48h3B0AkmLvuvGRTm6lT5tnzttEqjDYqN9pBwg8Ud0DW7bZJ+np1hBEdSK/ft+8HjlvwK2bQq9m2JErsjgN0ljF0wWjyENgfaUW4//ff1vvuEUNzcp+UW1/9tF8zWvk393x1TFfp1cb4MANhpc+1nF4xWXo2wzwFERERuKaU8AN4BcIrf6FoAZ4mI9QOx8JYzUCk1xuU82QA+B+D/5KgawIMOZp8AX7hbnYuUUtoPXZRSKQDeAOB/5/KaiKx23GAiIiIiIgoDn4MREREREREREVELYPt9Lz4DI6LYipNuwxQlmwG8AuD/AIwAMBjAIACHAbgWQOCvYCoAtwN4IES97QKGw+kSGzhPGL9LHUwp1UUpNcTNPwB9I7FsIiIiIqJIERHgpzD7Z3TuBqUU1GUT9PXP+cxxddpgtGZ4NylVoROg1L9fcRUqMmovhcfPNPDcuQbOPih0KFqdA3or3H+qgckXG3jkdAOH9lVAok3P+hYQjKYcBKPtU/WndtqEaYJFm/QPT1PiYBVJ7hpgwSztdHXdE7v/PmawfZjCoEOHwrjyAajTr4ZKToE64hRt2bc2X2Q5/qDe9X/rOpNvK43fB9K6lsVDMFp6G4XPr3V+ILz6XcGwCV4kXOHFkZO8+GlV/at75jvBtEUNy89fB3S/xcStH9m/P5+1OwnYkQd89AIAYNEmx03Cwo2+ut32T4+H8AFdSIBu2zjvYIUjB1hPyysB7poWnf3ghg+c19smEXjrxPXI+ug+mE+Mh7zzKMxXJ0D+dQywK/guFJl0NbD4F0dldcFoAHDSMya8DpMYRj9u4k+/7W51PnDF28HhN4Wa8IcMm6ALp9JSFF67UL8/LsmNcDCag+2vnyZYbOVWwVZnb6cjFc8ZeOE8A+cPd34N4sQ+e+inTVvkH4zmvu4txaHLEJEzTRUie8YB7hfw+hzBc987Px7LrzNgPncrqm46Dc+8n2tbNjehK7DBOmA5EnTHfQajUaSI1wtsWW897au3Y9ya6LG777ANRmujnxYP9yaBCh20abODoFjdMd5KblH9yi2x+dQ+PaXh8CkhAtsDldk8Vquo1r/BXhOoqnW1KCIiosZ4HcCZAeNuB7BAKdXb5b8Ui/rrdAUwTSn1p1LqFqVUf11BpVSaUuoaAAvh++FSf/eLyJpQL2pXmacCRk9RSl2jlGpwd6KU2gvAtwAO9RtdAOCeUMshIiIiIiKqF7/fJyJ/Id4n/mgFERHFBZ6PiIhaHwYqERE1DR5jqWVqhl3ZyYF5AI4DsIeIXC4ir4rITyKyTERyRGSuiDwrIscDOBDAyoD5b1NK6XtcBwejhU4XCBb4tezAOsN1FYDFLv99GqFlExERERFFxpolQO7asGZV+430/TH0EH2h5b9D8jc7qs/bkoLR7rvQvsD+RwH99o5NY6wkJuunGc1whQfqtzeQ3cu2yPFlM5Dh3aGd/uZc6wd0bRKBtslNn5YlX7ypnzhyHFRGl92DbZIUrhpp3ebsdODYwQEjT75YW/W40qno3ya4Z/VZB9bX36299bybC/VNbmra8KE42R1OHKYwfbzzxizJ9b2m2SuBwx8xce/nvgPs+/PDf/A8u+0IAIBM9217m4uc17U8z/e/w/yr3Yo0AVexpGuzR/N2KKXw3LmG9tz13PeCBRsi/7q+Weqszg+vMLDqmKk458mhwOSJwMcvQl68A3jzwYi3qc5e1cvRr3qVdvrc1aHreHGWidX5weN/X+/b3v0VllvXEYlgNADITNOfA3LyEBTU1hhOgtEGZFmXWZUPFGjWRZ12ycDGh0MfW3693UBKYnTOfbpgNwBYsRVYvsW3EsIJRtteBlTVNP1xhKglcHs+jJTrRoV37PnXe4JtJaH3f/OF2yE3jUHV+89j+LY7sSjF/h5tY2IPYENOWG1yQncKsQ1Gq45OW6iFqrU5oZa1jkRRu6NKul0wWjg/3RVF1bWC8qrQ5baXhi7j5mop1+9xQInNp/btAqJdrjlKIdlFyLzd+q4Icdxzsl6IiIgi5AKLcY8AWBvGP5sP2nYbBuBhACuUUkVKqTlKqalKqbeUUp8opX4DsAPAMwACnxi9LCL3uXhttwGY7jecuKvejUqp6UqpD3YtbwkahqJVAzhNRLa4WBYREREREUUcPyMlIiIiIiIiIqJmwq7/BYPYiSjG4qQrKUWSiHwpIjPEQY8/EfkNvi9yrQiY9JBSyuN0kW7bGOY8REREREStw+xp4c97+FgAvhAY9fQMfbmfvnBUXa3XenyC07uFOCEzPwBmTdUX2G8k1H/egFJNGK7lsemNajetmVBKAYePsS3TVnbi/m0TtNP/3GQ9PlMVw7xyJMy7zoUsmNWIVjbS55P10zp3Dxp1z1iFyw5XSPTbn/bdA/j+JgNJCQ23RdUhEzjjGsuqk6UaH9bcgoN6+4bbJQO3Hq9w3ej6OrpnWDdr85YymP/YG+Ytp0J+jK/ccFMTzGg0fQbebscNUXjnMoXMMOLeJ0wTGJd7sUizXTuRkzzA98em1SgtqcT17zt/3JKzK9jIbTBaWRx0aHcSTBVocDeFG461LmAK8Mx3kXlUVVwhuPUjE/vd58Xm4LzCBs4/RCF/konTFtyLrMfOBbyak24UKACnluj3+WmL7NeHiODqd/VlFm9uOK2wwrpcRqrtYlz57BrrR92FFUC+g/AJp5xsf3tmWm9ruUVAQZm+7j6ZwLRrDHTPUJhxnf7R/asXKBzYO7oHw78m6Jdft33sDCMYDQDySsKbj4gaCud8GAk9Oyl8cW14Hy9m32SitDK44SKC1+aYOPqm1dj7l3PQp99ypA4qwsKUfULWuTqpL7A+B7IrXKrWK7jzUxPG5V4Yl3vR5QYvPv8z/PO8bj3bBqOFeXykVsprs8FUxlnyVyPY7YV2j2I8hkJaivW0Is01ZlPRXfMGyre5Hqzj5j5ti19+Xolmk0lL8a1Lf706KXxylYE9dj0vCHX+sFvfDEYjIiICALQHcBiAUwD8A8CpAPYHEPgBTzmAy0XkCjeVi4gXwJkA3g+Y1AXA8QDO2LU8/7P6NgCniMhsN8siIiIiIqIwsVMoERERUeTw2oqIqPlioBIROcTDBRE5wWA0gojsAHAOGn4nfRCAozSzBH5d2+a3urUC53HwFXAiIiIiotZBwg1GO3wsVI9+uwfVvkcCew62Xsacz+zbUOnr7VirCSbyhHE3KVU74SC/OeLkt28h95yvL7DfSBhPfQ2V2TV2jbKSpOnpCwA9B8SuHVGkdgX32bms6HXttIJy6/GZJWuBxT8D338EufFkyO/fh9vEsMjOckjuWmBHnraMGrR/0Lg2SQovn2+g5GkDK+83kP+4gd/v9GBgtnVvZHX1I9r6hy55Fz9fWYCyZwxsfczAg+OMBkF/3dpb11ko7bBzw3rg5+mQO86EfP2udhmx1lRhH26dc5BvnT80LvYNW5XUFzVIgAmFYydsczXv6nzf/80xGM0bZmjenSep3Z3+A323vPHnJ9MUHPekiUlfCxZu1Jd74iyFiucMvHmJgYwnLwXefKDRyw7H9Tue0U77bZ39+lhXYP9B04qAzVEbjNbWdjGuHNhbP23N9sgtR3ts8rs26t7BukxVLbBqm3UFJwwFVj3gwciBvg159GCFa48O3qifOUfhkhHRf6w/pJvCoX2tp9VtH5VhBv/khggNJCJnwj0fRsIJwxRqXjRQ9oyBwicNzL/D+XFp9OMmCsoaHgsfnC74v/8KfijpjaXJg7Ehsafj+lYl7TpYTXkWAHDGiyYmflFf//YyYOyzJt6ca2Jntfvzve58ZxuMFiIgiKiBGpsNpirOkr8aoTGPgzpoPokuqoivbz7t0DyzCHTxZM0B3I+b9bWluL5w8U7rGdM1j5yOH6qw7iEDmx4xUPCE/bG8yCanL1QwWjzcRxIREUXYMgAPAPgJgNM02xUAbgfQW0ReCWehIlImImfDF4L2i03RHQBeADBURL4KZ1lERERERETUDIR8mBxfz9GJiIiIiIh4n0LUTDCxrJnie0MtE4PRCAAgIn8AmBEw+nhN8XgORnsewFCX/06J0LKJiIiIiBpNtm4AViwIa141/rHgkSPGWBf+4wdIRWnw8qe+DPO0PSHHdoT5zyNQm7/VcvYEF3eTsnk1zKuOghzXCTKuD+T9p5zPHAHyygTb6WrsZbFpSAiqTSow5ODgCWkZwIGjY9+gaBh2GNClh20RD0z8o+wDV9V2qvVLvKmphkx5LpzWuSZb1sG8ZhTkhM6QswbZF7Z5D5MTFfp2UejUzj7FQnk8UM9pQt9ME/Lk9WibrNAmKbie7powKADITagPBZS3HrZtQyzpwodUnAWjAYBSCrccb+Dhv8e2cTUqCWuTeuPb1KPwa1l3V/Nu3hVM5DYYrTwOOrSHG5qXmqxwzynWhfJK0OjwzpumCOatC13u2qMUUhIVZPViYOb7jVpmY2R5t+HaHdbHy5wt9mENy7fY1700t/5vEbEJRovcPtM5DUhJtJ62pThii4HpIIiomyYYDQD+2mw9fnC34HUx6XSFJ85SOKg3cFhf4J3LFK48MnbHmaMGWS9ryh++/3XBaJeOUDhjf307I/l+ELVmuvNhOCHW4fAYCm2TFdq3Vdi/l8JPtxo4bkjo+eavAzrfYKLHLV58tkjwzHcm/jM1/HPwiqT+AACZ/ABy8gSfLrIud/FkQYfxJk58yottJc6XpyvpUUBygvW0nWEGR1IrVWuzwVS2jmC0UFc3HTRhup8tiq8v8eiueQOVVyEoIDKQm/s0/9DZkkrrMuk2n+YrpdCtg+94bqeoQn/PFCoYrZyBkUREFCMioiL47web5WwVkTtEZASAdvD9AOlJAC4HcAuAuwDcDOCyXeO7iMhAEXlQRBod4S8iU0RkOIA+AE4H8C8A/wZwMYCjAXQVkatEJL+xyyIiIiIiokiJr+eZRERERDHD4AwiolaIx34iIiKKHAajkb/AX4jcW1MusOtaZzcLUUq1Q3AwWpFVWbdEZJuILHHzD8DqSCybiIiIiCgitm4EuvZ2PZu67WWorJ7B43XBaDXVwK8Ns5Hl+48hj10LbM/1fQi55FfUfmL9o/VOg9Gkugpy7THAX3MBrxfYngt59hbIV287qyAMUlkBWTgbsuw3yOJfgKXz7Gc46u9Ra4tb6or7gBS/Hr9KQV35AFSCJumlmVEJCVDjHwc8mgSBXbpUaVJjNDK9BQ1HzPnMbdNckdw1kO8/gpw5EFg0x7dt27nwdqgMV7fOesOGAz36WU/7bgokd43lpG7t9VVuTehSP7B+OaS4QF84hsINv2pKNx9n4J6xsW1gTtJA/NTmUNfzlVUBpZWiDXnSaeoO7bVewa9rrac5CYLZK9v6/amuBYp3ht+u3CLBkzNDf4i7X0/AMBREBPLKXeEvsEffri6bOgAAIABJREFU8OYbfgLUlFW7B08q/dKyWF6pgaIK/etZnmf/Wr9ZKqj1+sqUVQFezXaWoQm5CIdSCl01x7otxZH7gF1Xk/+xKTtdH+KoCwXrmBo8LilBYfwoA7/c7sHsWz045yADRgwPggOz9NNemmVqAzAO3hN4/woDfTWnvtwifuGBKBLi7VppeF+F6eM9+Gq8s5vF3CLglOdMjH+vcceE3SG/lRWYs6LWtmyNF/hqCTDmWecXQHZhvW2SrKftZAAQuWEXjFbViAvUOGO3p4cKv85sZz3+00XAB7+ZqK6Nj2uLHeXOy/623n562MFomk0mPcV5fTo1Xv3xLVQwWlHLyfgjIiIKIiKmiOSIyJci8oqITBKR+0TkURF5bdf4qASUichaEflIRJ4RkYdEZLKIfC8ivCshIiIiIiIiIiKiZi4+PgcmIqJI4/GdqHmw2VcZfEtEMcZgNPK3LmBY12t7ZcBwL5fLCSy/Q0QKXdZBRERERNQiqb0Pg3p/OdTk36EuvRsYsG/omdqkQp10ofW0QfsDnbpaTpLfv2s4/OXkoDJPpFxsOW+CJ3SzAAB/zgHyg0Ou5Jv3HFbgjiycDTl3KOTa0ZDLD4NceaRtefX2Iigjfm6N1b5HQr38E9QldwHn3gj17LdQYy5p6mZFlDriFKiX5gDn3QQccYplmQ5eTWqMRlAwWhSZz90GOWsvyF3nOp7HuOzuiC1fKQUcPlY7Xc7aC2LxkDk1GUjR5OsVeDIbjtiwojFNjJh4C/tw6s6TDXx3o4EDdj396JNpX76xlicNQE7ygLDm3Vzo/jOJsqqwFhURmwoFB0w0UVppPd3JtpGVrp+2tSS8dgHA+/OdrcjD+ilIcQHk2tHAT1+4X9CBo6Bufg5q8h9Q4x9zNau69G6ohz6GytoD6vL7AAADq/X7e06evq6FG+2XVVgBzN71BLHQJiAiwyIMrDF0wWjTFkbuwze7gJw6CR6FrDR39XaK8LqIhP5d9DvVle8I1mlOv3XnG937kevuNE9EGtprpSa+vTl2iMKK+2PXiAJPJ98f3losXeXsZD5/HbB4s7Nzg+5ayVBAG8319c4afumDXKi1yayYPzN27Ygyu/uOUMFo+/fSFzj7ZcHAO038uqbp97sd5c7b8N+f7cu6uU8rKAd2Vvtm0IU9tw/8ybIwbS21Hh8qGK2grOnfHyIiIiIiIiIiouhrLc/BWsvrJIoR0wvUlDV1K4iIiIiIIoj3jURERBQ58dP7m+JB4FeldV+RXhYw3M/lcvoEDC91OT8RERERUYumlILqOxTqotthvPYL1PVP2pd/fZ5+mmEAhxxvPfHrd2G+fBfMZ2+BzJoK/PJ1g8m/peyH3MRulrN6HN5Nymv3Wk+Y942zClyQygrIxEstg9isqBueguo1KOLtaCy152Coi++AceUDUHsf1tTNiQo1cF8Y/5wIY+IHwKEnBk3PMItc1detNjdonHi9YbdPx3zhduC9J9zNdPTpEW+H0gTK7fbZa8HzKIXMdtbFt9eFSewic78Mt2kRZZrW4+M9GA0ARg5UmHeHB+bLHqx6wIOXz49eo3OSByInSR+M9sRZ+mXnFrv/2LG8rAry8Qswx/WBedVRkJ+nW4bxRcP4/2fvvqOjqP42gD93Nj2BJIQapAjSBQTBgqIodqzYey9YsPdeXhV7w94rVn4o2LuIiCi9hd7SSEIS0pOd7/vHElJ27uzMZjdswvM5h0N25rYtc3dmd+bZKSYWbtKvdxIE09EmrKopwWhLspyVO363bMix6cCCma77ULe/BuOpr6GOvwQqNg4Yf6Xzujc8C3XBHXVhoGfeAIw9DV1rMpFoWp9cufzxSTAv2hfmE1dB3noIsnIBAMBrCr5eFPg5n7bAV2Zrmb5MaoLju+CILojr+6WAqUsQcsnp3LRbqrt2u6ZE3uTWvzMQ7TQMt564aN99Sdfcpyx3b/NEpOGN4H2lPToqvHF+8wwkz5O2Y3+mstD5m/mPy5y9L9gFYuqD0RwPgwiosX/BSHWAxKlWINBscewQ+xLr84EL3jJRVbNzT6q02+9t7KM5Yrt/6nbXdU2e7/9iTYh02zhn7dx3vP1j/dAM64GVB3iZ5vF6LiIiIiIiIiIiIqIwCPRhMsMImkVlATB3IvDNMODPM4E8/fm8DYgA824FPm8PfJYC/DgGKPM/D5KItsv+EfjlKN82893+wKpXd/aIiIiIKBjNdN0BETWR7bbK7ThicY6lVorBaFRf+0a38zTlFje6PUQp5eYyxsZX9jduj4iIiIiI6jv+UqDXIOt1J1wCtZt9VrHqpllfUQa8Nwn4+FnIXaf7rf426Qhtm1FOjyYrXFwV2lR/fQNkr3dW9vAzoE66IrzjIWc69/BblOwtctXEIaW/+S8sD+1VtzLlGeDDJ13XU+MuCOk4AACD9rVdLY9fBdma67fcaTAa3n8M8ueMYEcXMroLwSMh7MOtS0Yb2DDJwEtnK0wcq3Db0fo78cJZCt9ea+DZMxReHb8NL2ddhcdzbkWnmhzL8otjB2JVTG/LdY+cYOLasQbaJVr3taFAtCFPOiV//wF5+jpfCOWiWZBbToTcd07Yw9FKKwVfLrAv4+S1kRCrkBRrvS53m/tx1crcGvj+D65YhINvb/x7Ac6oz1ZCHXNew2WGAfX2v4ErH3+x33ueioqCuvddeK59En2rVllWW54DYOV8YNrrkDcfhFy6P+S7D5GRA+SXBu525srAwWgpup9lCFKntvoXwVyHuwiBOJ2b+nV2PllFGcABbn96ohkkJyj0TAtcrrHaoCBdUF1WEb9wIwoF3XzkiZCdpdNHKHRuG7r2BlcsslxeacShbPtXVFk5zo8/nb7v63ZxDAXE6YLRWn+OFYVSTY39+nkWx7stkN27vwowbR3oYD9pRQ7ww07+Ka4CB/vI9dntn7o9vFqR7ft/myYYrU28s/eGU4bbl/t0rlge+5VW2g+YwWhERERERERERLTLa3EXJba08RLtJDXlwM9jgYznga3zgfVTfLe3zg9cd+kkYNljQHUhIF4g9zfg58Na4HxB1AxyZwK/jgOyvgMq84H82cCcy4GMyTt7ZOQI5zUiol0O92mJWj6b7Tjc1w4RETXGYDSqr/GV1ZY/NSEiWQAW1lsUBeBAF/2MaXT7Gxd1iYiIiIh2OSoqCurBj4AuPRuuOPo8qGufDtxAh65B9Zvr6ahdN6y7w4vt7T4I+yu0hwLy5ETHZdUpV4e0bwqeSmmc0Q1UKk1qkcaICotgoLLASQeSuRbmgxfCHB3r+3fxfjDP3xvmtUfCvP0UyJK/feV+nwaZfKurMSEpBeqmF6D2OdxdPQeUUlBvzbUtI8d3gzR6DHTBaFui/J8DefE2iNvErBDTzR5GC/00a7dUhcsPNvDM6QYePsnA9GsMpKfUrY+PBh46UeGKgxSOGKRwzaEGLh6QjUsK38L1Bc/jwdz7LNudGz8CZYZ18tmotpsAAD3aWY8pI0cfqqJTWuPxX/jzZ8Cf09015NLKXMAb4CXpcfja6KQJackpDv4LmswAeY7xZhneyLochtuTfPY6yBeK1qm75WrVe0+oe98FOnbTNqFOv9Z6uVLASVegn1gnMmTE9Gm4wOuFPHQhNs5f4Wjo/20Azn3DxPiXrJ+4pFggOiq04T0je+rXvftXaL6AcxqM1reT8zb32R1ISYiMIKPGZt/uftKtDQrSbWuREIyxNk9w/psmDnjUi+s+NpFZyC9oqeXR7apFSC4aEmIVZkxs2o5brOHFjSUvoWJZG3y8+Rxtudqg36yCasdtVwXIoqqlm/eVAhI1hy1lDEYjN2oCvGDWL2+ecYRZU86FMgyFX28KPJ+Ean8vWHaBwFY2FujXuT1OW5Hjq1BUZl2xbZyzdgamK3x1tf6xLqn0HUc2Fmjei4T9PyIiIiIiIiIiIiKikMv9zT8EraYEWP1m4LobPvZfVrwMKFocmrERtSZr3gJMiy+kVr7c/GOhZsTzuYiIWifO70REROROC72UlEJNKRUHYHyjxb/aVJna6PaFDvvpj4YBbKUAvndSl4iIiIhoV6a694PxyQqob7dAfbYK6qdiGHe8BhUdE7hy+y5B9Vml9G1fMMppMJo+xUZuGw/55XO3w7Jua+ZXQFGes8L7Hw01cGRI+qUQSE7zW9S3KsNx9Yn5z8Py1RggGE0y10IuHAl8/2Hdwox5wJrFwH+/AjO/glxxEOS9xyB3nuZoLOqWl6A+WAj18TKoGVlQJ1zq+H64pfYYDBwwzraMXD0W4vXuuN0+yXq7zff4B6NhQwawwVn4Ubi4CfuQqkptO3brdqZjBitsnGRg3SMGVjxooPBZA3ccY8CofwcLcnf8uXfFf677SF07BwDQv4v1c78iW1xfcF9iWCfsyTfvuWvIpSveCxzU5zQIpmMb6+U5xS4G1Mham7cgj9TgjczLMbzCwa/BHnUO1O8VUJ9mQM3IgvH8D9pQtFrqsNOhpiyFuu1V/5X7HQXVvZ++rseDvukWYXcAVsT2tVyeNXmS7Xjq++BvQaEmICI1wXEzjo0frn8RvPirYM7apn+Zrg3IafRFff/OzpOJeqZFSIqRhdREhefOcDe+2mC0NE0gZ35pEwcVpG0VgopqweLNgr0eMPHebMFfa4DnfhKMfdJEoSZIJBARgel2MiUKAa/DoMadaVh3hUX3ufsq8rns67F0xFtY/qCBohei8dj7VyL64yVo/9EsbZ38qDRUqhgskt0d95MVINS0li7MSQFI1Bwyl0Tm7idFqhr7QD/ZuLKZBhJedsFoTqatg/oqDNNnAQMAfsvYue/JW13u4+SX6sfq9m5kZPv+L66wXp8c77ytcUMU7j9e/6zM2+A/uNIAwWj5DEYjIiIiIiIiIqJdAr8zpOYW4DXXlF8tIWfm3Wy9POP5wHUbB6rVWv5M8OMhaq3WT7FeXrTY9jx1IiIi2ll4LELU4tl9phDCzxtsuwlZL0TU0jEYjWrdCqBrvdteADNsyn+wvUyt8UqpPg77qe8TEdGcok1ERERERI2pxLZQnbpBxcQ6r9Q+Pai+qlS05fK+nXwXuDuiSzbavk4+fjaIkdWRshKYkyZAbj/FWYVTr4Z68KMm9UkhluwfyjXCRQDUQ1vus15RGiAY7bPJAcPTAEBevdvZQEaOhTruIqju/aDSe0EZ4f/IRT38mX2BlQsgr92z46YuoGaLVTDa9vo7k+5C8PphHzLjbZin9YUcngJzwsGQdcvq1v3yuW/dYckwLx0FWf5vmEfsnlIK3dMU+nRSiI7yn1flpTt2/D2ociniTU3ClEbKf9MBAP06Wa9fnu3+gvsyQ5Nm9fs0SIBQh2BlFwnmrAtczmkQTKe21suDCUbLLRYc9YwX2zSfbnmkBr+tG4vTtjkLAlWnXwulFFTnHlBt2zkeh4qOgRp3PtSDU4C9DwF67QmccT3UQxa/LttI/+HWITKronujBv6haVlRnR2Py84eHUPSTANt4hQOsvmE8t4vm34inHZuenwCzGO7wnzlbojXixE9nbfZNbXJwwqrqw5ReP0850lLsVG+/9MSNYGczRyMMXuNYMh9XiRPNJFwlYkh95t+2+yKHGDafPdfn/67XnDIEyZiJpjodosXH//Dky2p+bgJkd2ZBqUrzLqqCJ1rsv3WdarJ2fFvVNksvJt3Ja66cBD6XXox+nZSiIlSUIYBlb47Utu30d63PE8a/orfF6WaAFcrmYXOtnm7fdKkOOt1pQxGIzcC7UO3lmA0m3XK4bw1doB9wdxtcHTcEC5bbYLOrNiFxbo9d2xFjq+CLhitrYtgNAC4+1j9ZxqbC/2XBZr38kp4mhoRERERERERERERtUIla3b2CIh2DV6b8yYZAtkC8DkiIqL6+L5ARBQ+nGOpdYra2QOg0FJKnQvgexHJcVHnUgD3Nlr8tois19URkZVKqXcAXLR9UQyAt5VSY3VBZ0qpEwBcUG9RFYD7nY6TiIiIiIiC1HG3oKpVqRjL5aP7uLjSPtAvcS3528WI6jUrAmzMgFx5CFCUH7iCxwN1z7tQhzoMUKPmk5zmtyhWqjC69A/8kTjatmrPqnVIkHLrlZtXA4P28VssBTnAiv+ATx38KqNT3fo4Ch8KNWUYwKOfQ247WV/ogycgp14DldYZHdpYF9kYbT1HyAPnQx1+RghGGhxdCIVa+jckJhfYmgt54uq6FYtnQyYeAXy0xBcKd89ZdeuW/wu5/mjg/YVQaaEJdQoFyc/2vR4r/T9KkTk/AMv+2XE7Cl7sVbEAfyXs77j91P++hJQUoU/uIgD+9TZvFQzqYl03NgqorPFfXmIXOLJxFbD7AMfjc6r7rc6ChhwHoyUrWH3gv6HA3ZcAIoIzXzPxywp9mUVrhqNv1SpnDZ54GdQeQ1yNoTE15iSoMSe5qtNv/z2Bn/zve5URi3XRPbBHdcOTOLNDFIw2omd4knvG9FP4faX1c/ndEqCwTJCSEHzf2iAisxooygPefwyiFHa/7AEM7AIszQrcZteUoIfTLJRSuOhAhdF9BAdMMpEXINgsrXgNZGE22q0BgP381pdUApXVgtjo8KU3lVYKFmwClmQKLn/P2bb9zzrg/FHO+ygqE5ww2UTm9nCQzYXAma8JOrYRHNJfoaBU8N96oF9noFu7CEuqolZBd26vJ8J+EklWLcQ+L1+DTStn2xc8bSKMa17RrvYYCqkJ1kFCBZ52KFfuUn+yi5yV080gSikkxliXKGEwGrlRXWW/fqPDfckIZ3c9gtNgtP4OdkOnzRfs12vnvO8WuMuxRoFNMJrbAOuM7WcGFGs+ImmrCXK0c9gA4Mdl/suXZAI/LhUM3g3o1Nb3WJcFeBlvdfnYEBERERERERERtT68KJGIiCg8TMDixz+pFWDoHRFRC2Yzh3N+J2r5uB0TUTNjMFrrczGAV5RSnwL4BMCvImJ5WrVSagSAOwA0vlpyM4C7HPR17/a6qdtvjwLwo1LqEhFZXq+fWACXAXiyUf0n7cLXiIiIiIgoNFRcAqT3YGD1Ilf1qlW05fJoN98fO/iwS7xeKI/zRqWqEvLwJcBPnzircMZ1UIecAjVwpOM+qBmldLBcfHv+YwGD0U4p/ly7Th68ACgthjrp8rplX7wEef5moKY6mJFaUlc+ApxwKVSCJnUszNQBx0L23A9YbBM0Mfs7YNz52MP6oUZGTB94YcAD/7QfycuCaq9JzgozryZ8SP04BfLpy9Yrt+YCc36E/P4//3UlRcCf04HjLwndIJtAPnkO8uLtgNcifUxjZMW/joPRYs0KxEsF5OFL0H5DEmBRb1uFoMa0Dg1oGw9s2ea/vFQl6DtdvzzkwWibtwpqnOWiOQ6C6a3ZFlZkO6tfa+562IaipdXkoXeVs1+GVfd/ABxiE3IYRv06WQfFAcCK2L5+wWhZoQpG6xGewIpTRyg8MF2//3HuGya+uib4k+F0LRv1w2C/eQ9yyX0Y1l1haVbgfaGuKS0jNKtPJ4V5dxt440/B8ixgyj/+922PqlXoftUQCIB2sQOBXnMt28ovBdLDFAj341LBeW+ayC52V+/z/wQvnBW4XK1X/5AdoWj1Tf7FxMpchas+lB3vZRPGKDx7ukKUp2U819QyaENkI+RlJmUlkFtOBBb8EbjwyLFQVz8WsFhaknUwWp7HP2w5EKt2rGgDMRWQqAkaChQQRNSAN8Dxac4GSGU5VKy78L9IY7dH5HTa6tdZv99a68sFgkfGOx1VaG11OK/UyrcJm9V9nJYYC5RahC8WlAJ52wRFmmC05Hj3bw7pKdaP99uzBG/P8i2/c5zCA8crlAaY98pD9zEMERERERERERFR5NpVLgrdVe4nERG1DHxfIiIiijx8fyYiIqIQYjBa6xQP4Lzt/0yl1EoA6wAUAfACSAMwFEAni7oFAI4SkYCXgorIJqXUeADfAYjZvvgAAEuVUv8CWAMgGcBwAI0vOZ0O4G53d4uIiIiIiIJ24LGug9GqVIzl8hg3R5KmN3CZmirA4/wCX3n7/xyHoqmvNkOltHfcNu0EHdItF7f12qeZHFD2J24ueNq2jDw1Edh7DFT3fpBVCyFPXxf0MP2kdYH6Yg2U4TCJKYzUw59Cju+mXS+bVkEB6K+5iLzSiMP66O7oVb3Ov/LqRUAzBaNVVgu+mCeYu973XdjSLOtySab91eYy5Wlg6Rzrdd9+ALWTg9Fk6T+Q9x4FZk53XXfv8v8cl001t6f1/PElUuKGAbtbjAUGCreWw/dRUkNJsdbBaGVGgGC0EJv8q/MvRg2H1/r37Wi9LawvAMqrBPExzhr63zz7sR1b8o1l4GDDQhdB3fIi1E5MsUmIVejeDthQ4L9uRUxfjMO3DZblejTJci6N7BmSZvwMSld4+CSFO6ZaPz8zFgEb8gXd04J7zLVBRPVfU3mZQGkRuiQnO2ozXAFh4dA1VeGeY32P3Z3jBMc9mIN1Xt9rIsW7FR9sPn9HuEn7mnxtO/klge93brFg2gJf+NgRAxX27x34OdtWIbjgbfehaADQz+rTchv3f2X9YvhiHvBFo/nhpV8Fw7sDFx8YIYlVtINp+gLsvOILwPKKL5y1wb8Ay0zXdcS/rss2TAHmrrd+DUbA7ikAQCZd7iwUDYB67EtH74Xtk4CMHP/l+Z40xEmFq/EVlPqeC0+AHQjdu71SQKL1ITNKK3liF7ngJLh702qg957hH8tO4nRXeFA6EGXANjh5WRaQkSPo26n533N14V9JsUCJZZiZfq7Q7XMO6OwLaLayIgco1kyFbYPI1eviYFf2/2YI9ttdBQyEZGAkERERERERERERURgEDBvgd1ZEtCvgXEdERNSy8L2bqEWw/cyB23HEYjAltVIMRmv9DAD9tv8L5CcAF4jIJqeNi8ivSqmTALyNuvAzBWDE9n9WPgJwqYg4SEggIiIiIqJQUCdcCnnnEVd1tMFoHheNmAECYQDfRcCxzq7QlM2rgfcmOSqrbnuVoWgtgEpOg/QaBKxZ0mB5kujDr+7eJxN3vHM0olETsH35fgpwwZ2QC0c2eaz1qXNuiohQNABQqR2BH4sgh2muWhbfdtjXJvAlI6aPdTDaxpXAvkc0fZABlFQIjnnOxMxVgcvuURWgUK7NxxprFrsbWIjJ5y9Cnr0h6A+bB1Q5Dx5L9W7d8XeKt1BbbmtuEayC0XRBH+VGAgSAVcyALP7LcnmwJnxg4pXfQh+M1q+z9XIRYPUWYM+uztqZNl8/NgXBxIIXbOurx/4Htf/RzjoLs/6dNcFoSUN8P6NQT56n6e+taYlAj7QmN6N129EG/ljpxTeaTf692YI7xwUZjKbZtTEah+AV5qFrqrNgtA5tghrKTjewC7Bg3b74FXuhSsXiiJIfkChlO9a381q8qLbLt8+4xMocweFPmztel/d/JXj8FIUbj7B/7/38P1+QWrjlFIvrgI9L3xWcMlyQnODutScilsFbTQnU8ltnWUfsw78c9ms3Tv+xCAKO1cGyBvUClG+NPBGQvydL/gZ+/sxRWfX2v1BRzr6uTEu0Xp7vSWuw7+OEKUBhGZCWFLicFUMBibHW66wCkIi0agIf12LTqhYfjGZ3COR02kpJUBg/XOGTufbHCNPmC24+svknQ937Ssc21vNCrkUQdS3d3NMlGWgTB2yzCECbt0G0Y2gTp+9Lp6vD8N63Z5koDTDvMRiNiIiIiIiIiIh2eS3tosSWNl4iItqF8T0r4nG/gohoF8S5n4iIiEKHwWitz7MANgM4AEAPB+VLAXwPYLKI/BRMhyLytVJqTwD3AzgdQKqm6GwAT4jI58H0Q0REREREwVMdukLGXQjMeMtxnSoVbbk8xs2RpDhIG6gOfHWk5GVC3psEfPGyo27VRfcAR5/rqCxFgP2P9gtG61u5EsneQhR5Gl6J2yYOuHlAhqNQNADAgpnAt++FaqQ++x0FnHhFaNtsIhUbB+neF9iQ4b/S68slT4pT6JIMZBX5F9kc7Z8EJQBeW9gO3+T46l9zqIGxA6wvLp+9RvDEdyZKq4Cj9lSYcLBCTJSv7O8Zgld/FyzOFIgAfToCVx1i4JD+dW29N1schaIBQP8qi/tYX16mfl2aJhErxMTrBb59H/LoZXULUzsCW3Ob1G7fypWOyyZ7657oFNPiSd+uoAyWSQS6oA8AqFSxiBOLK99nfwcp2waV0PSUpylz3IWiAYDTrMJe7QGPYR1csCLbWTBaRo5gaZZ+/bu9p2HoskXWKzt0hbr9VaiRhzkbcDPo21nh+6X+j3fGkDOAbXc0eO1uiWp6MNoh/QClwhtWcdMRBr5ZbL0f8tUCwZ3jnLdVXSN45y/Bp3MF2cXWZYzG+zxF+eiS3NtR+7qgn0glG1dCJk0AFvyBRADj8K1luRhUo423GNs8bf3W5ZXY9/F/X4tfWN9tXwguGCVIS9K/dqbMCf5kiqJy52VnLAyun9TrTPRq7y74SxeMQqSzs7N7JXMN5IqDHJVVd70F5SLsybf9+28U+Z52iLHaNwkgryRwMJru/FylgCTN/lKggCCiBhx8JoItm8M/jjAL1bnur5yjUF4lmLFI/x556+eCm48MTX9u6MbTrR2wJs9/+cocfVu6x8tQQL9OwNz1/uvm22SE6+YrOyN6Ws+5jX3+X+C2GIxGREREREREREREREREYcHQrVaMzy0RUevE+Z2oRbDbz+Y+OBE1MwajtTIiMhXAVABQSqUAGASgG4BOABIAGAAKAWwFsAzAQhHxhqDfXAATlFLXoi6UrTN8wWubAcwTkbVN7YeIiIiIiIKnbp4MWbMIWDbXUfnqUASjOUlyqLG/OlKK8iGXjwZyba7wrEd9tgqqUzdHZSkyqF57+n29EYNqXLb1dTze/qYGyyeMUUisKnT+dci6ZZDvPwrFMH32PxrGY/8LXXuh1K2PdTCaWXfY3zVFE4wWlQ4vDJSreCRJKQDgxo6T8Fz2aUDBxMzBAAAgAElEQVS2r8yXC0y8eYHCWfsoVFT7QuqUUpixUHDcC3WBQN8tEfy3HnjnIoUflgqOfd5Edb1PHhZtBqbONzH9agNHD/aF20x3GDDTriYf7b35jspaSukQfF0X5NW7gQ+fbLiwiaFoAJAkpegWX4qN5YFTlFLNwh1/1w9Ja6xAklwHo5WreOtgNAByzeFQb8wOOD47BaWCs153/2WJoclKEhEopSA11VBR0YiOUugVX4SVpcl+ZVfkCGofkNp6VqbN149vwyQD6e/+ab2y1yCot/8NeyiYW/01mYHLcw2oj5dDjmgHADChkO9Jsyz7UO49uLfjvfDCY9uXUsDtx4Q/tWdMP/26OeuA7CJB52Rnz8ONnwle+Nn+NWmgcTBaHrp1Dhwm4TGA5HhHw4gIkrUOcpaLECNvgWUwWn5J3bZm5d2//B83rwn8b77g4gOt65VXCX4NkJ1px00w2pcLgv9C1yoYhSiU4nbiN3+yrRBy+gBHZdXEJ6COPMtV+7oQs3xPO20Q7D49ffO+Zb3SwH3ahRPp9pdKGIxGbtRUBywieZk275otg907p5td4+QEhWlXe1BYJnj0W8Fj31q3/PzPJq45tHmTIq2ClwGgfxeF3zIsQh1LgbxtgvZt/B8A3cdpSgH9OivMXe9fYFmm/lGOs/6Iz9a+u7uvo1NWZX98RURERERERERE1DrwolCKNHxNEtGugHMdERFRxGFoElHL10zBaJwtiMiJnfy78RROIlIoIn+KyBQReVZEHhGR/xORySLyoYjMC0UoWqM+q0TkFxF5W0QeFZHnReQLhqIREREREe18yuOBmvQ/4MTLgF57AnsdBPX0N8AR1hejV6kYy+Ux9nknDTn5sKvaPhgN37zrLBTtgHFQ7y9gKFpL1L2v5eKHt9yDR5M+wl7dgJE9gcdOUXjkJAWU6EOe/BgGsOAP5+WHjwGGjvZf3qMfcPZNUA9Ocd5Wc1Oaj3mk7ursrinWRR7ocBdiB5Qgpf8W9NhjJd5NPhuvpF7qV+6itwVxV5pIudaE53ITxmXeBqFotd6bLfh3veDJ7xuGou0YkgB3/q+uXkaO/V2rNbxinrOCOuUO0i+aSHI2+oeiORUdAySn1f2LiWuwWt37Lvr1DByKBgCp3q07/o6CF0nebZblSg3rhJEE67cAAEC5YZPilDEP4jDIUmffhzWJAgF46m0CkrMR5t1nwhwdCzkozvf/IUkwR8fCfPUe9M22Di7LWF2IH5YKjMu8O17jxmVe/Ly84fuZLhht392B3VJt5qk9hkZkGEC/TtZj2rINyKtJAA4YBwDY6kmFV1kn7hxW+jO+M6/Dof2BwV19y7ql1gVdGAo4tD8w61YDw7qH/zFQSuHfu/QffzsNZFyeJZj8S+CyfsFohfnYuweQZBMyCABpiYChS/WLQPLafa7Kp3kLLJfbhRGZNsG6Py7V1/txGVBV43Rk/pwGo1XXCH6wGQfRznbAHuGfU2ThnzAvHw1zbDLMs/aEzP0JsjUXckwnR/XVba8Ap1ztut/2umC0qPYoVQmW6/p3UYjXBALlWe8eNaA7pFVKP8eXMhiN3PAGDkZDXlb4xxFmdh8PBbN7nJKgcN5++oq6wLRw0gWjDeyir7M823q5bvSGAnpY5xRj9RZ9P8GEZiqlcMGo0LyniACVTdhPIyIiIiIiIiIiIiIrvHy4deLzSuQOtxkiIqIWhaFpROQQp4tg8EGj1mkn/m48ERERERERNTeV2gHqxucbLtz7EEh1JfDL5w0WV2uC0aJdBaM5CLepsb8IWOYHDrVSr/8F1W+401FRpNEEoykAN215Arc8dU6D5VLqIhitwGHiVlQ01IwsqIQ2ztuONB7NxumtSyZLT1UI9EHn5uiuuCj9tSYP555pJr63CY6ZvxFYs0WwWyqwLt9Zm8eUfNu0QZUUNq2+E39MC6qauukFqBP8w+ga659n4sdlgT+sTvU2vK8pZhFKPM5f34kx+tdKhQqQ9PTHl8DJVzruq77fVojtBf12arOlxDQh958HLJplXfC9Sejb8WHMwDF+q76dV4F3F/m/dx32lIml9xvo30Uhp1jw1xrrpk/Ya/sgdMFoScmB7sZO0b+zft2l75qYOvp4yJ8zkOfRpDAA6FCzBSNWvYNDXpscMeFvw7or9O9sHTgxfaHgEosczMbe+UscfalmNN5eivIQE6Uw6WSFqz7UN6AL+YlEUlUJ/PCRqzrtvNYTvF0wWqFNQFmcJtwIAKbO0z/OHgOYfo2BIwcpfLdEcPSz/tt5cQUgIgFfv5sKgXIHGTZEO8Mh/YBxg8PbhxTkQK46tG7BxpWQ6/3fU3XUlKVQXXsH1XeaJh8239MOZYZ1MFpCDJCWBGza6r8ur0TgO+rQswsnStQEyZYwGI3cCBQWDwBbNod/HGFmtzsV7J7jgC5A93bABosc1s2FQGGZICWh+fZLddmu6ckKbeMExRX+69YXCA60eAR0IWtK6QPPc23CHu32oez0szlOcGvyL4Ibj4iM4wQiIiIiIiIiIqLmx4sSiVonbttEOx3TEloAPkdERLsezv1ELZ/Ndsx9cCJqZgxGIyIiIiIi2sUppYD73oc0CkargvVVkzFujiTNpgejYUOG/frhYxiK1sKphDb6j0zXLYOUbWsQWCb5DsPO3BgzvmWHogGAMqyX1wso1F1AHQ7fLA5c5quFgqMGKe1F3/XFm2U4ddsXTRuULqwqRKSiDPLsje4qjRwLdc4tUMPHOCrer5OzZlMaBaMle4uwKXo3x8NKsMk+K1fxtnVl0V9QQQajPfadgxeDRlltpsTcn/ShaNv1q1ppuTw3Sv8AT/5V8PyZCj8t0wdlnRgoGK1NM26ELqSnAEmx1kEuXy4Aas4+AZ6kW7HF217bRgdvHiA1wO/TgINPDONo3TluqMLybP8n7IelQHmVID7GPpzhk7nOvrgzGoXBSmEeFIAJYwz8tdrE+39bt5PWkoLR3nzAdZ32mmC0vLWZAKznpGVZ+vZiNaEemYWCt2fpn6u5dxoY2s33XCdrpjCv6dsG2sTp+weAvBL79US1PMb2f6re39v/GUq/zm6ZoVmXGKtwUF/g7H1VwHmtqeSE7sFVHDMe6vpnoNo53JmxkJZkHdya50lDqWGdmpYY6wuhtA5GC9yn3SFtYqz1eEoZjEZuBPpMBAA2r3EU3hnJ7M6FCvZuKaVw3FCFyb9YN/7TMuDkvYNrOxi641qPAXRrByzJ9F+32WJusm9LoWtK4MDzxoINRksPYa7zy78JbjwidO0RERERERERERFFnl3lotBd5X4S7Swt9/sgop2D70utF59bIqLWifM7ERERucNgNCIiIiIiIoIyDMihpwI/f7pjWZWKsSwb43HRsDgIuKmu0q6SbYXARuvwmlrqrBtcDIgilXrgQ8g9Z1muk6evh7rz9boFc74Pbee9BkFd8X+hbXNnMDQbp+nd8WdzBqM5cf3Hgh4TAp/MFWNW4oXs69ClJrtpHZYWQUwTytCEyDWB5G6CnLWn8wqGAXXVJKjTJrrqp39nZxfBp5oNr7Bv5y1w1U+iXTCaYR+MhvLgUoO2VQh+Wh5UVQDA6rVFMF96HPjwyYBl+2iC0ezMXOl73K0CDQCgT0egf5faYLRCyzIqKYTJAiGklMKQ3YBZq63X/5mTgoNveQl5T39uuT7BLEWClAMA5K7TgV/LoDxudhjC57ghCo9/57/NlFcD3y8FTtgrNP2oxttl5todfz56stIGo/Xu0DJOaJWyEuCDJ1zXS9PMPfnz5kNK2lhuE1d9qN9/jNeEepw4WV/n8wl1oWiALyBJZ10eMDhAhmTeNvv1LYlSgYO5/IK4XAR5GZbrVMOgLxfhX4GWNain9H1ajjOIkDK7x8cwWsa27ZbM/Tmoeur/PoE66IQm96/bfsuMROR72lmuS4jR18svDdynbq/LMHyholbKqwGvKfC00tcBhZiTYLScDcC6ZcDuA8M/np2gKVvKpPH6YLRTXzFhvtp8+6SmZsLwGL5jcavjiExNnrJdyNpuqe7HFmwwWtdU9yFsOqu3hKQZIiIiIiIiIiIiItohwOe3dr9aQiHC7wOJdjon56kTERFRM7M7FuFxClGLYPeZAj9viGB8bqh1YjAaERERERER+TQKMKlW1ldNxrg5knTyYdd/vwJ9/VNJpCgfcmy6fd1+w4ERh7kYEEWs/Y/Wr/vvlx1/SmkxsGZJ0/tL6QB1wR3Abr2BvQ6Cig0Q9NQS6MK+zLoTP9KTI+9DzvEv6U9MeTr7RqSYRRhdNhM9qzc0vTPT9AVWtbUOzgiWLP0HcuM4oLLcvuBJl0N17wvEtwEG7+/726X+nZ2VS/E2vMI+vSbLVT8J1tmYAIByFWdfOT+4ALvvlwBVNUFVBQB0/uoxIP8pR2X7VboPRluwCRARrMi23o5G9Kx3smOJJuEgKcLSCes5a1+FWaut79u0+YIxp4/HlrKDgWn+6zvU5DW4LQ9fAnX3W+EYpmv79wbSEq3Db0560UTVSwaiPPoTVQschOYAgEKjuWzDih1/pqconDZC4ZO5/o/vmfu0kJNkf7d44h3QhTLme9oBv00Fxl3QYLlpChZu0rdn9QqtqBYs0NSJiwaOaJQh06MdEO0Bqr3+5ZdnOwhGK3H3XnriXr75ISUhUPCXchTKpQ//ch9SplQLef1RRJDKCsj1NvvsOiMODUkoGuCbz3U2RVtvvAnzf0D7LofDagbJc5Dlqgs6UrAPki2rAtoE2GUiAuAsGA0A5v/eooPRwnUuVEKswp7pwGJNePHLv5m44uDQB2NbsQszS0+xDhjL3Gr9wGjbUkBXl8FoSvn2fYKRHpm5zkRERERERERERBR2kXd+ERERkTW+Z0U+PkdEREREREQUPAajERERERERkY/R8CrJKmWditM4GE1EgFkzIF+9CcQmQI09te7CdzPwL3HJ5FuhzrjO9/ef0yHfvA+UbQP++dG+4oCRUHe9AeUJ8upOiigqLgESEwdUVfivzN0EqaqEiokFtuaGpr/zboU6+cqQtBUxDM22UG877NrWC6BlbDOHl/yAa7a+FPqG5/wAHHZ6k5sRrxf4fDLkr2+AuT8HLK/u/wDq0FOa3G96CpAUC5RU2pdL9RY2uN3FZTBabJTvAn6rC/LLjQBBghsyICKuA3e+Whj4BJhuqcDGrdbrjiz5wXFfnbw56FG1HutjejiuAwC524Blmty3fttD60QE2KYZZGLkJgtccZDC1R9aPwdfLRA8fTqQh1RYnajUwdswGA3ffwg59GSoA44Nw0itSV4m5PmbgZ8/8y047HSoiU/Ck9oB44YovPuX9X2LmWBi3GDgiEEKbeOAqfMEuduAvXso3HaUQlGAvMNaRuNfH920CuL17thPeeFMhZIKwdeLfavbxgGPjFc4fGBkB1PJtq2Qtx4CPn0hqPq6YLQiTzJk5nSoRsFoVgF29ZVazH0rc6xDzgBg7+5AYmzDxzg6SqF3B18IWmMrcgSBftE50Bjr++AShTP3aZ4wFqKwm/pyUNXUPe+GbAjtk/TrsqOs02MT5n6NdsfsDcA/SSjfQdChLsxJKd8+mU5pJYPRyBnJXu+s3MaVAd6hIpvd1tbUnM59eykszrTu4coPBBcdIIiJCv+jpwtSNJTvOM5KpiZPWTf3eAygQxKQHA/H+6lxUcGHoboNYSMiIiIiIiIiIiIdBoIQUT3h+kUZol0St6dWi3MlEVHLZTeHc34nahlst1Vux0TUvHhFDhEREREREfmohoeIVSrasliMp9HFlP97FXLbycCfM4CfP4XceRrk0+d960xNSkUjsjUX8vW7vnZ+mxo4FG3gPlCv/AHVvZ+j9qmFOG2ift0XvoAsef7m0PR1xFmhaSeSGJqPeeoHoyXVNNNgmq5v1aqwtCv3nwfZsrnp7fzfRb7Xo5NQtKsfC0koGuC7oL2/de5HAylmw2CurjWZ7voRQbz12wAqVIBgtPISIN9dEBsAzFpt/QXJJaMVKl80sO4RA+seNfDFBP/X+qiyWRhcudhxXwrAlVvdB7x8+Ldgmeau7Xhelv4DlBZbF2qjSUSIAIah8NYF1oEJa/KAvG2CLSXWddO8+X7L5LaTIfN+C+UQLUl1FSR7PeSk3etC0QDgx48hZ+0JKS7AcUPsgyBmLAKunSK48G3BlwuA2WuAyb8Idr89cMBrLQONylZXAdnrdtxs30Zh+kQPtjxlYPF9BvKfMTBhTGR/PC9lJZAL93EfipbcHmjjS9FI8VqnfRR6UnzbSiObCy0K11NW5b9sRY6+/OOnWj/Gunl0zRb7/gEgT7MdNNYjDThpWEuOsCFqSL5+x12FpGSoH4ugUjuEbAztEt3XSTRLkZa90HKdk+3ZLugo0SYYLVCILRHg+ywE015zVnjjyvAOJszszpNqajDaVYfYN/BbRtPad8oqVBrwhZnpgtGyNcFourYMw7fffuQg5w9anOa4zok2caHdlxGe3EpERERERERERK0ZP/+iiMPXZOTic0MUMnz/JSIiIiIiImrVIvvKKyIiIiIiImo+Hk+Dm1UqxrJYdL1iUloMeflOvzLywZOQmhpAHAaKFOZD3pvkeKhq/ASopl45SxFHXXiXdp1MvhVSVgLM+rrp/dz0AlRyWpPbiTiGx3p5vYDCtjE1SPJuC1mXyfHA4K7AY6co/O/K0H7MtFfFgpC218C3HwRdVTasgHlsV+CHKY7rqNOvDbo/K8O6B57/2tc0DKpKr3EXVKY+egLxNdavlXIjLnADa5e66m9bhWBVrvW6IwcqREcpdE9TUErhxGEKU680MLoP0Ks9MKHDP/hy48kw3Jw0eOipuFE+Qop3a+Cy9dz4qb6PvbsriAjkitHWBZQCeu/pqr/mdvhA/Wur440m3pxpff871FinScnEIyCrrMNomkrWLYN59VjI4amQU/taFyopBKa9jiMGBddHjfNcNP9gNABYv8JvUVqSwsB0BY/RAvZjvnkXyNngupo6eQLUCz8BBx6H5GTr/ckioy1QkA0paZgGkhkgGK200v81uDxbv13u18v6cU5PsV5eUBp4HrELUtq9PdA1BThzH4VZtxqIi24BzzNRALJxJcwzBrh7b+81COq9+VCxDvYZXIjyKKQkuKuTYJah/YY5luucBKPpzqFWCki0nuIAAKUMRiMnvv/IedkNzZTuFSa2wWhNbHuvbgrjBuvXn/Gqi506B2T6WzBP7Qvz6E4wbxgH2b6/5LUJUmynmbuKyq2X69rybD/sHuPidwKaEowWatXOfj+BiIiIiIiIiIiIiJxgGFDLxeeOKIS4PREREUUeu/dnvncTtQh2x60hPKZtpm52HXzQqJWK2tkDICIiIiIioghhNAw10gWjxdQ/kvx9GlBmEZyTnwVsWun8A5WiPGDTKmdlew8GDjvdWVlqUVRMLKRbH2DjSsv1csYA+wZOuhyY+op9mTHjoU64NMgRRjilCSYz610E7q1Bj+pNWOJxlxJ0UeHbeDXrSqjLHgQ6dAW69gL6DIWKa3h19083GBj7VNMvOldi4piSb5vcjo68ejfQayDQZXeg5wAoQx/qJjXVwIp5QOEWoDAP8uhlzjtKSoF6+bcQjLih44YqvPaH/fya5i1ocDu9OtNVH0ZFKeIrtgLRbfzWlav4gPXl7++hRh7muL9Fm/XrhnX3X3Z8/3IcH7UQ2JoLueNUx/3AEwV173tQh4yHiGDRoT3Ru/cyVBmxztuwMKAL0LujgnzwhL7QyMOgUjs2qZ9w65IMtI0Diius15doQl7ae/O0bcqFI4Gvc6DapLgej1SWA0v/AXI2ArHxQEzd8yS3jXfWxnfvo825t2DCGIWXfg3fFz2GVRjshgxg1DFh67MppLoK2LTaF2K7+0C/wFmprIB88pz7hrv2Ao67GKp9F6hHPkO7lQI87v/YlBsJqFQx8K5ehQWJw9G3E9ChjcLmQvvnyOo1mJFtXfaEofp20pKslxeU2nYPAMgvsR7jJaMVXj2Xv0VDrYfU1AAr/tMHfup07Ab19r9hC7Lu2AYoLHNePkHKkJazGOjqvy7fQTCaqTmmNRSQZJP7VlrlcIC0S5OPn3VeOHMtpLQYKrFt+AYUBmWVgn/WAX+u1r/Hh2K6+OhSA20nWh+Lbi0D7p5m4pYjFdrENa0zmfU1ZNIVdQv++RFyzeGQD5dqPwLzGEByvILViZ3FFYCI+M2ZXs1hdW0w2m6p1u1ZaWow2n69gNlrmtZGrYrqRp8rEhERERERERER7Sp4USIRNcA5gShk+B4b+fgcERERERERURPwtFMiIiIiIiLyMTwNblYr6ysnY+oVkz+n69vLywRKix11LbO/c1QOANRrs6A8nsAFqWXa/2htMBq25tpWVQceB7EJRlM3vwiMu6AJg4twHl0wmrfub28NjiuZgSVx1sFovdoDx1b8gLVZvuSZZG8RDiv9GWcXfwRge6BYfU9/DTVi7I6bo/sAvTsAq7f4tz2gC/DBJQaGPxg4OO3oku/QyWv/fDeV3Hay7489hgCPfgHVqZt/maX/QG4/BSjQpO7YSU6Dev0vqM49mjhSf2P7A4mxQKkmpAoA0rz5DW6n12S56sOAiXiz3HJdhbJJAak15wdX/S3aZH3yS5s4oGdaw2Xy+zTIQxcC5Q4SjGodfBLQcTeoQ0+B2nM/AIBSCl1OGI9LZr6FF9tdEaABe8cP9QUZyDfvasu0hFBGpRT6dwbmrHNXr4NNMBoAYPqbwJk3uGpTfp8GufM0dwOxsn4FzKcm4vmJT+OlX5venI4B/7lNNqxAeGKBmkbWLoXcdy6wZrFvwdDRwP3vQ6V19q3PmA+5eF9Hbak3/gaWzIYs+xeqRz/gqHN2tAMAyTY5iq+mXIzbXhqMyu0BnhPHKqQEyF20mveWZ1vPH/266B/9donWy/MdBaNZL2+vCVsjaokka51vDl65wH3lo88JWygaAIzsqZCR4/yk2USzFFFSY7muqNw6kKg+3fm5CkBslC8gzbQos2aLYFTvSHwXoIiyxSYd2MrKBcBeLsMKd6JP5po4/01BpfUmuEMo5oykOIWXzlaY8IH1Rvt/MwTP/SR483wDJ+8dfH/y2r3+C7PWwZz1NQDrQFxDAW01+zjVXqCyxj+8zGs1sQDwbB96VxeZw/FNDEY7Zz+F2WtCc7FCRbX+sSAiIiIiIiIiIqIWguEmRPUEuz3Y1eM2RuQOt5nWi88tEVHLZTOH85iSqIXgdkxEkUNzxSwRERERERHtcuqFjXlhwKuss7Rjti+W6ipg7s/a5uSb9533/cHjjoqpz1ZCRcc4b5daHHX+7cFXHjEWGG8RbhSfCPXIZ1DHX9y6Q/WU5mMeqRfWU1ONG/OfwQFlf/oV2yO1Ct9dZ+Dpu4dj6qbTMHXTaXg761KcU/yRNthHrj8G5kt3QPJ9wWFRHoXXDl+P1KiKBuXOjv4NC9ftg6FzX8G/561ClxhNqsx2T+XcbLte3TwZxh+VwJ7725ZzZNVCyONX+i2WmhrIXacHF4oGQP1vQ1hC0QAgPkbhKOtsOwBA2zgg+uizGixLP/JIV30YMBEvFZbryg0HwWhZ6yAuvvDYUGC9fM90wDDqXoGydQvkvnPchaINHgXjoSkwJj6xIxStljrnFjyaeyf2Lft7x7IoqcYFhfqAMyvHb5sOydkIrF9hXSAqGhg1zlWbO8vg3dwHRXQYfZDtennxdojXa1umQfn87NCEotWa+gpw1gD8esKi0LXZiFUwGjZkhK2/YEhlBeTb9yHnDasLRQOABX9ATuwBc/JtkA+ecByKBqWAHv2hTroCxh2vQZ19U4NQNAC2QWfXd34SlWbd+/JzPwkemG4/bzQORhMRrMixLtuvk76dNF0wmv3bEwAgj8FotAuQJ64OLhRtyAFQLoMw3Tp2iLvyCWY5ks0iy3U1JlBeZV9fNysZhi/MKTHWev15b/LEDwqDjHk7ewSOrc8XnPla4FC0UDp9pEKUzdkP2yqAU18xMWdtcNunuXktfs1MxsNpt+CTNiejTNXt6HiX658bj+E7RtMpssij9mryxGvz0NNdBKM1Dl1z68JRoQt5rKgOWVNEREREREREREQRiN8NUHML9JrjazJi8SJyohDi9kREREREFHJ2x608piWiZmZ9lTsRERERERHteoy6YIpqpb9qsjYYDWsWA6XF+va+/zBEA/NRn62C6tQtpG1S5FFt2wE3PAt56lr3dQ0DuO4Z4NiLgGX/QLI3QPXfGxgwAqpD1zCMNsLoQt/qhxF5a5BqFuKH9cfgr4R9MT92KExloG/VShx8+zNo23F3AB0h594KvDfJWb8fPgn58Elg8i9A5loc9OhlWIJU/Jw4BvmeNAyv+A/7lc+BAiBPXYuhABYaKTi221T8neAfvpOV0R0dvHn6/mLjgUNOBgCos26A3HGqs3HamfMDpDAPKqV93bIFfwBbNgfVnHrjb6io8H7sdvxQhc//s/5CobgCMO54DXLiZUDmWmC33kjsvzdSr/Nia5mz9hUEcabFFfoAyusFACAmFqiq9C9UUQaUbQMS2zrqL8s6rwS7pTa6CP+3qUB1gASTRtQ5+qA91b4LEq+8D39MPhQ/JR6CfE8ahlXMR7fqTXgn+RyILnCwns412Rj5+mmQ122+4Dn+krC/JkLlglEKb8x092VVx7FHArHXAh8/qy0jlx0AvDLT0eMgJ4YhVDBrPQ58dF+cNWoWPty6V8ibV1Yn2UVQMJrkZUJuPBZYs0RfaMrT7k4V7NwDKtY+KDElwU2DgW1rNN3kFPtCTqz076wP8UhLVLA6MbKg1Be2ppS+ri4YTRe2RtTSSOYaYM4Pjsqqe98D4hN8+xs9BwDDxoT9/W54d+vtVydRSuEx9eGcheVAgibcDABMTThR7Syhm4MAoKxSkBAbukAhal1E9+Kyq7Ninja0OtJMmy/Nfv5TSoLCqN7A7yvtyze4V0AAACAASURBVO33iImZtxoY1dvdo3n9m4V4vsd3O27vXf4fvt54PNK8BfD++xuAOy3rGQpItgmLLS4HOjU6bAoUjNYhCYj2ANUOsoebGowWH6Pw6eUGTn3F/Wu2sYpmDMojIiIiIiIiIiKipuAFrkThZfeZe0v5NogoQjCUgYiIKPLYvj/zvZuIKHw4x1Lr1DKuxiMiIiIiIqLwqxf+UqVitMWifv0U5kvvA7O/05YJuWEHMxRtV3Li5UAQwWgAfEEmfYYCfYbueqcI6QKcpN6JVF7fVcgxqMbBZTNxcNnMuuoJdcFq6rDTIU6D0Wq7ueqQHX93xBacUfyptmyqWYhf1x+Omzs9ipdSL4NXRWFoxUK8knWlfSgaAPXEV1BtUn03DjzO1Ri1RIB5v8FcMBPI2QD0HAisW+a+nYQ2UNc9DdU39KFLjY0bEjgURA0cCQwcueN21xQ4DkZL8xYgQawLlxr10n867gZsWm3dSF6mi2A06/vSJaXubykrgTx5jaP26lOjjrEvcNpEGJNvxeGlPzdY3KdqFTJi+wZs/9htX8MI9Fxc/VjAdiLFAXsovHquwsQpgopqZ3U6tAHUhEcgG1cCs762LpQxD/jmXcioYyCTbwN++Mi3/NiLoK54CCo5DQAgs78Nwb3Qe2H2kagatxSfrUoLabsmLObgrbkw7zkL6txbofoMDWl/bsknz9uHogVj4D4BiyTF+sJAzBB9x5Zb3DC4bHOhvmzvDvp1aUnWy2tMX8hRW014iYhog9HaJ+1yex7UCokI5K4znFfouxdU98DvlaHUM80XDKQLDWoswSxDvOjTy7KKgE/mmvh5uaBTW4U7jlHYvX3d9qybvgwHm3xeCdDdJnSNdnFbc93XyZgX+nGEyfqCndPv1CsNpF0feII4cJKvzJi+wItnG+jfxX6jnrdB8PzGIQ2W/Rs/HC+mXo678x6BWVEOaLZ3j6HftwCAIos86kDBaIah0C0VWGN/+Ayg6cFoAJCg/5jQFafHF0RERERERERERK0PL0okap2CPE+AQU5EIdT0H/ehcOOcR0RE9fF9gahFYMAhEUUQzRWzREREREREtMvx1IUiVSv9VZPRHz7avKFoANRlDzRrf7RzKaWAkYe5q7TnfuEZTEtieKyXm966v7cHo1ny1OXnq16DgINPDNHArEWjBs/k3IScjG7YsLI35qwdhREV/+krdO4B9Vs51F6j68apFNSHi0MyHrnnLODzF4GZ04H3HwNmfuW4rvo0A+qd/6BmZEEdfW5IxhNIu0SFTprMsXGDrZenp1gvt9KvcgWSzFLLdWVGQt2NjjahlfnZjvvL1IQbpSf7/pfqKshloxy3V0u9NTdwGcOAuukFv+VXbX3ZUR/HlUy3L9C9L1R0iJIEmsklow0UP2dgL4eZpO2TAOXxQD36BdCuk7acfPQU5ORedaFoADD9TcjZgyEVviA++frd4AbdrhNw8EkBi7U1t2HKV92w5Qlgzm2CubdUY0jX4LqsL8G0SLQAgF8+h1x1KGRZ4NdiOEh1FaS6Cvjpk9A27ImCOvnKgMUMQyHZJgjErfJqoLjeQ62bO6I9vtelTrtE/bqsIv26bRW+8DQrdv0RtRTy+n3AygXOK6TvHrax6ERHKeze3nn5RLMMKV59iuLYJ7244RPB9IXAGzMFQ+83sTSz7qQNXbCjcnCNQ4XNrjcRlvztvs6GFZCqytCPJQzyNUGijcWG+GfcUhMV3jjf+UVIv2YAA+81MXedoLyq4T9vvQng03+tJ4Mv2/jCur2b12v78BhAmzj9GIotshu9mrnHU+/sjgFd9G3WFxeCxzgmRM8Tg9GIiIiIiIiIiKh140WhFGEYvhXB+NwQhQznulaMzy0RUcvFOZyIiIhCh8FoRERERERE5FMvVKlK6QNcYqSqOUazg3riKyiGXu16+g5zVVwdd3GYBtKCGJqPecx6CS5er3UZoEEwGgCou94CTrkqBAOzl2IWIb0mCx67X+476lyoV2dCWdxH1a0P1Kt/hnGEAZx6DVTnHlC9BkFF6UMlw+GhE60v+D98oPXy9BTnAQH9qlYiUROMVmLUS/+JSwDatrNuJHez4/50QURdtgej4adPgfUrHLcHAOrie6H20KTENXbAsX6LnASjpdXkYWzpL/aFdh/obAwRJsqjcN1hzl4zHdr4/ldKAXbhgBtXWs9DRfmQw1Mhn00Gfvnc/WBPuARqyjKoBz+CuuZxR1VSxyVg+PmJ2OvCZMyamY4b46ahZ2pwCTYxZiWGVC7SFygvgXz6fFBtB0v+/QXmBSMgh7aBHNoGyN0UusaHHQz1xJdQg/d3VFwX4his1OtM3DHVRHmVYHOh9ckTXZJ9oWw6XVP0oUarcvV959mEvDAYjXYWWfgnzKsOhXl0R5gX7wdZ+k9w7VSUAVOecV5hxKHNvu9Ta3h35/s0CVKGOKlAtOY4triiYVsllcAT39fNLbpzqG2mmB3KmvfQmVoY+etb95VME9i8JvSDCYP8EmcnOO7fK/R9XzDKF46WkhC4bK19HjaReHXDf8kTTSRe5UWH67149Bvr+zMvbi8IAG+1PvHLUIDHUEiKtV5fbJGv69UcHnvqzT39OjubC+NCMFVHa3LY3SrnvEhEREREREREREQUOgwDasH43BGFDrcnIiKiFoXHMUQtg922yu04gvG5odaJwWhERERERETkUz8YDfqrJpszGE29MhNq3yOarT+KHOpA/5AiWwefGJ6BtCSG5kpls14Ikdcm9KdRsIWKS4Bx7VNQj0/Th641E3XHa1CpHfXrB4wAzr65GUe0XVoXqAvvbP5+t7tglMIBvRsu698ZOGsfXTCas3bbeovQ3puHRLPMcn2pqpcw4IkC2qdblpMFMx31V1Ih2rCh9BQFqSyHvPuIo7YaON55YKJq3wXqsgf9lv+3Zh+08RZr6z2aexfipNK+7dEnOB5HpBnQJXDYQkwUkBxfd1udeUPQ/cmzLusqBXXnmzBumgwVnwilFNRpE4Fzb3XVTFxFISbNOxOrNgzDk6fYlz1lLy88quEXRvdveQDxUmFfcUHzBTjKmiWQ644CVtuEtQVj0L5Qv5bBeO57qBFjHVdzOve48eg3gnu/FKzZYr2+a4A+42MUuqVYJ45k5Oi/ENxQoG+TwWi0M8iWzZBbTgQW/gmUFAEZ8yCXHwjJDCI4afUioCrAXFYrPhHqwrvc9xEixw5xXjbBLIMCkOItdFzn5+V184CpmRJqwxWPGqRvp6wKyC0WLNokKCjlyQbUyMr52lXq2qf0x2AbM8I0oKarrBbMWSv4PUOwNi9w+bho4J7jQn+sqZTChQcYKHjGg5uOcB6k2FhZFVBeDeRb50XvsDmqK0yb0y4821e1jbdeX1TuPz9og9HqdTOgi/24asVFB/8Y1NpDfzjuSkVwOcRERERERERERERERK0LLyInCiFuT5GPzxER0a6Hcz8ROWM3W3AmIaJaUTt7AERERERERBQhPHWhSnFSiTOKPkaVikFVShdUD9gPVWtWoCpfH5QTcnsMAfrv3Tx9UeQZuI/jouqZb6ES24ZxMC2E7sJ5s94V1XbBaB7rj4nUfkcBb/4DmfoSMO31JgwweEoFvpBbnXMz5IPHm2E0AHoPBkYfD3XaNVBtUpunTwseQ+GHGwy8M0vw91qgVwfg2rEKbeKsH69AQUG1elavhwKQaFqnlZUaifUGEQUMGAGsWexfcO5PjvrLyNGv67X5d8hNZwDFNmlEVoYeCNWuk6sq6txbgH7DfOFcG3yBE0MqF+OftaPwaurFWB7TH7L9tbhb9WacVvwpDin73b7RpBTggHHuxh5B+jl4CAd0briNquQ0YHom5FjrwLwmOf5iqPZdISvnA+06Qo09HWrYQX7F1FHnQD56Cqipdtf+ptW4dt7VuD/uBRRbZAPFmJV4cfpQ3H7olXhjdgxKjUSM3zYVx5R8G7jtgmyIiKP5rClkxTzIJfuFvuHjLoK67hkojyaE00bXFIVwfDX5xPf6Nu3C2EQEePth9Nk4EhuS/APe7ILRlmdbr0tLBJITwvvcElmRD54ASv0DPOX0AcDvFe7mHLtQtN6Doc65BfL390BqB6ijzoHqZZMIFmaj+zibV+LMcnjg2xdO8RZhS5SzZJ8NBUDeNkH7Nkp7TULtIztuiMK3S6wL3fa5ibnrgYpqICEGePYMhYsP5G9W0fb3og0rrFcefibUKVdBPnsB2GwRcrghMoPRZq4UnP6qiayiwGXH9geGdVc4cx+FYd3D+/456WSFJZmCbywOV0JleUxfDK3UB9Ia2+9icjyQaZHRaLXf6SQYrXs7Z3NhQmzAIgGlpyjs0xOYs65p7VS43D0nIiIiIiIiIiJqPXgpJxHVxzmBKGQYNNh68bklImqlOL8TtQh2+2LcTyOiZsZgNCIiIiIiIvIx6oIuOnlz8X7mhb4b7UfDuPZHmM+9Cfz3fLMNR936MpQu6IlaPWUYkPPvAN55OHDh4WPCPp4WwdCE1Zjeur9r3AejAYDqvSfUTZOBmyZDaqohhyQFOcjwUUnJkM49gOz14etjwsNQZ90YtvaDERetcPnBCpcfHLhsusNwoncyLwYAJIp1EGZJo2A0td9RkBlv+xfM2QCpqYaKirbtTxdCFBsl2O2pM4FtLkPR0rpATXzSXZ3t1D6HQ33gCzWQqa9AnpqIParX4LHcO4Nr79aXoZKSg6obCdrGq/9n777Do6jzP4C/P7ObnpCEJAQCoZPQixQFBRQsqKBiwQYKnqJYz3L208N6ep5n1xPFdnbsXRF7+WEFESlKlR4ggZC6u9/fH5u22ZnZmc3uZnfzfj0PD9n5lvkkszM7u5l5Bx0ygO17jfvohVlIZg7UtIuBl+4LaT0ydQ6k9yAEis+QrkXAnNugHrrGPBBSz9vz8d0RuRi4/lrUSqJP05Obz0b7vRvQ/o2rYfs7c9UCZTuBrFy7I02pki3AN+95A432Pzw8oWidukG78uHgh1sMZQylrjkmz5Kv3oaafxN6dbwPevGNWzfuBKAfnrRyq/6UxdmVUC8+DuR0BMYeC0lKtl0zkV1KKeCVh4w7vPs0cPSZ1iesrTFskr89BBkwCnLoNBsVhk9hNpCSAFQGCNhJbRLqne3ZbWsdf3nKgzcudMBjcOpU/1b17IMEFz2v3+nL3xu/rqgBZj+jMLaPQlE+gxTbvB2bgMp9uk1ywhzvF4VFusFoasOqgOdCkVZZo3DqPGuhaM+fIzh5ZOQ+6xERvHmhhiPu8WDRivCsY2VSMQZV/2rYXh9m1s7g9GBPpf8yo2A0rcnGtxp8nR6CYDQAeGSG9+e4o+69QXYq8OGlGoZ0AY570IN3LYTPVdUqIOqewURERERERERERCHSZm4KbSvfZywItC24rcIv2J+x2ThuNyJ7uM8QERFFnTbz/piIiIgigXeYExEREREREQBAxOAtoqq7G3OPzWCalhg4GtJ3eOTWR1FJJs8M3GnkRIjwploAjekMzXma3FFtFhBkEozWlDgTIE98F7jfv96AzH0WyMg27tSxG+Sy+yBzLATgWTFpemjm0XP8eVEXimaXlRvn0zzlDTf1p3n0wxr2NQtGQ2Ef/cmUAnZtC7jO33foL++dvBuOvTsDjm+QlAK5+QXIUz9AioZaH2fk0JOBpJSgh8vtCyAHT215Ha2sQ4Z5+35d9ZfLcbMtH1cs6d4P6DXQcneZdjHk6Z8gVz9qe1W9PrgTu1fm45lNMzF1z+v417arsH51b0zb+4rtuXzsNEjVCpL6+QuomcOh7pwDdc+lUKcOCOn89WR+4GO+GauhHaE0ro/xuYH64i0AQK67RLd95xbj8KTVBkGOxctegnrgSqi5Z0DNGQdVstlGtURB2rbBtFn9czbUXhthYGbBaANGWZ8nAjRNUNwxcL+mIa8FtVtsraM+1MzoGq36o0xSgiAnTb9Pc0oB87/iRV8EYONq47auRb7/+41dFfp6WuitpQqbSq31zU2P/Pt3hyb46FIN/TuFZ/5ViX3gFoOgcjSGmRkFo5XpBaMZHCocTd72Wz3HSgtRMNrQQsHyuRpePlfD8+cIVt2iYXg3gdMheOsiDQsv0/DfGYIlN2goNPgYoCpAoCURERERERERERFFCd7EThRe3MeIQoj7ExERUWzhazdRbDDZVyP4nlbx/bM9/HlRnGIwGhEREREREXk5DG7i9Li9/++0dyN5i6SkRm5dFL06FAbuk5kb/jpihWa0DzcJRjMLxzAar0N6D4Zc+5h+Y+eekMe+gRwwCTLhRMhbm4znOeNqyNRzQxY4JjOuAo46E6gPyzM6rgUz98V3h2yu1lLcsfGmfCNDq5Y0fJ1uNRgtr8B4wh2Bw4F26a8GhVvthTHJvR9ADp4KycyxNc5wvowsyF1vBe449hhg0JjGx0kpkL89BDloSkjqaG256ebt+3XTf1JJYR/IDU8B6ZktL6LnQMgdr9kOwpSuRZCjzwQOP832KpNVNU7d8xJe3nQaLt11Pzq7LAZdmT3/QngupZSCuuhQoMxGeKAJufEZoH2+78L2HSH3L4S0cBt2bR/5AJTD+pk0rvgBAJDrMghGqzD+tYlR6EvPmjWND1YvgVrwYKASiVpu+5+B+yx4yPp8RgG66a2QbmhBcX7gY0uqo/F7KnDZOwbvrgD2VSt4DK4RaHpOlWEQdqRn4XJedEAAdhskA6dnQeqCpcUoGG3Dqqi72Of9Zdb75gQ4twwXEcGXV2mYMjj0c69ILILH5LKL+jCzTIPM5T1V/svcHv9lTecCgHYpQGpi4PrSQxSMBgA56YIThgtOHqkhp0nInYhgQl/BOWM1DOoiSE7QH89gNCIiIiIiIiIiarOi7HNdImptPCYQhQxfY6MftxERURvEYz9RzDM9h+M+TkSR5WztAoiIiIiIiChKGIUiueuC0azceB8qu7ZHbl0UtUTToHoPBn5fatwpRAFI8UBE0/94WXnvqFY11VBXH68/WNMgmr38fDlyBjDhRG/Qz+4dAARolw106e0TXiQOB/DIF1DnjfWdoFtfYNJ0W+sMWFNiEuSaR6Eu+hfw5+9A1yKoYwqB6sqWzfvE997vI8ZlJAsGFAC/GGfVoW/1qoav06wGo2VkA4nJQI3OHf0lgcOkSiv0l2e7TYL8miveD+g/ynp/i2ToWOCBj6EunGjcZ/IsyJijoEq2ALu3A936QhJDmD7QysyC0USAwZ1N2iecCIw7Fli3wn8/dCZAffQ88OK9puuXx/8PUjTURsU6c8y8FurD51o0h6X1/OVG4PQroCZk6HcIwbmUcrsBpaDuuaTFc/k4+Hjv9tqwEti3F0jLALoW235t0FOcH7hPKB07BEhNMglMqjue57r1Q+VKVDsopXSD+IyC0bq4mh1YP3sdOO9WS/USBW3n1oBd1KKXIbOuszZfbY3+8gQLqTutoLhj4D5pXbsCmzKB8jIUWA24bGLVNuPLN5oeIqwEE9X7cYPtMigelemHcyKrSfC3UTDanl3A2uVAzwGhrytISzZav9ApUOhuOGWlCt640IFtexQ2lwJODahoduhzK+CgOwxSyQysSiqC20IwWkaKQO+oskfn7aqVYDQRQecsYHWAj9BCGYxmlWEwmkEGJxERERERERERUXzgTaEUZRhEEwFB/qE4Zfa7iMj/8Tmi2Gbvd3sUS/g6RkQUu0yO4XyfQkQ28JBBRACD0YiIiIiIiKieUfCFxw3lcgGb1xqP7TkAGDQGeGNeaGqp0g/jobZHZl0Pdd004/bMXMO2NscouKs+3PCHRSZjg/uISJJSgIKe3n9m/QaMAu56C+rxm4DSHcCA/SHn3gwJU9CGpGcCfYcDAJROsI1lAw+AzL4J0ntQiCprfYuv1ZBygfHFQMU1Kxu+NgxGk9TGBw4NIgKVVwBsWuPfeYdJClud0gr931ZkucsCjgUATJoOufjfuiFGoSBDDgJueh7qhlP9GzNzgOETvP1yOwG5ncJSQ2tqn64f4AAAHTKA9GTzn7s4EwCjfahoKNBzINTt5+iPvfDOFoeiAYAU9gEe/ATqiilAZXmL5zM0ciIkIRGq3wjgt+/9mtV3CyGTZ9maUlVXQj1zB/DU7S2rrWM3YMRE4O35/m3DxkOcda8D3fu1bD06euZ5QzyMAj5C7eSRAY4FrloAQI5BMNpOLRuendvhyPVNdKuuVSgxePp0qt3iu+DP3w3D1doipZT3fMTT5J/b4Gufx566fzbH1H+tPLbHqIb12lhP0zblMag1wPfhU6vRHDqPA1n3m/UNFWPBaH0tBKPlZTogj34Fdf/fULBmj+11/LpZwWNw7NKa7N5GAUB6RIB91QppZgGOFP/27NJf3jQYrfdg7+c0ek/Cr96JqmC0Uhs51DlpgfuEW347QX474/Ytd2m49PHdWPRLFcq0TABA99r16OTagk/TDvbrvzGhEHscxhPWHy8yU/Tb91T6n2sbBqM1O3T0yA0cjJYWTcFotZGtg4iIiIiIiIiIiCi+8e7g2MVtRxQyTEogIiKKMXztJooJZufZETwH5xHDLv7EKD4xGI2IiIiIiIi8NINQJY8b2La+IUSiOXnie0jvQVAeD9QXbwK7trW4FDnu3BbPQXFi7DHm7TkWEhHaCjEIN1QeKKWgnr3LeGyQwWh2yP6HQ/Y/POzr8Vvv6X+Denyu/XGzb4bMuDIMFbWupATBzDGCJ7/W/8C7uGZVw9dGwWjlWnrjg/rnTq5+MJpatzzg3zEtrdBfnukxDkaTO16DjDkqwMyhI4ccD1z9KNQ/Z/suv/BOSFJyxOpoDbnpxm1ZBuEOVokIcNQZwMiJUGcMA8qbbPMxRwHTLm7ZCpqua/AYyIf+QVie+/8GvHRfaFbSra/3/y69dYPRsGgB1LWP23rOqHk3Ai/eG3xN/UdBHv4MUheA68lsDzR9PUhMhpx5TfDzW5DoFPTKA1a1/BTRkmkjAhx1KrzpZrkGwWgecaD09zXIaRaMtsUkq7Gza7P/wuWLoYqGAauXAOWlOoFfBgFYhoFYjX2VYfhW08dG4V4mywPV4bNeC7XXP6bY4DIIRnPaSP2KoL6djIM76xVkCaSwD+TO19FthQLutpfQ+NFy4zU0zT00Oz40p5R33uOG2SqF4owqLdFvyMxp+FIysqEGHQgs+cJ//KqfAp5jR9LeKmv9UhOBlMRoqtyX2rcH+H0pOtRU4X+vHu3XviahO4p6L9cduzKxyHBeR91b9XYGp4B7dH5+hsFozd7298kXfLjc/FiY3gpBjAxGIyIiIiIiIiIiIiIywSAnohDi/kRERBR1eL5LRBZFSf4aEUU5BqMRERERERGRl8MgGM3tBv783Xhcl14AANE0qCNn+IZtBKsVwpMoOokI8OoaqON76nc44IjIFhTNNINgtI2roU4baL4fG4WqxYMxRwF6wWjHzwFefdh4XP+R4auplZ05Wj8YLUv2YcKsoyFpx0P9czbSlH4wWrWWDBcccMLdGIyWlae/sjceg+pQCMy4yrs/N6O2bUTpir2AVuxfj7tUd0qZvxjSZ4jBdxc+cvSZQGEfqHefAiCQo8+EDBod8ToizTQYLTU065C8zsCzv0C9cA9QWgLpPxKYfJbucybU5MI7oX5fCvz4acsmyu4ASc/0zlnYx/iSu49f8obBWaB2bwcWPNCisuT+hQ2haAAg594C9BkK9c17QLv2kCNOhxSHP52nb8fIBKP9dpMGTQvwvNm2AQCQYxCMBgA71mxEzgG++/cm/UMSAKDAtcVvmTpvnHkdRNGm1iAYLSExsnVY1L9T4D4FWY1fH9jb/jre+UWhr0EOsxZkMBoAvLdM4bhh0RsORRFQZvAalJnr+3joWN1gNHz6KtS2jZD8wtDXFoTyamv9ctLCW0dLqFcegnrgSsM/CgAA3Wo3IMlThWrNP+FseVI/w3H1x4t2BqHCZZX+y9wGJ5PNg9GK8/X7NZXWCofxZIOrUBiMRkREREREREREbRfv5KTWwOdd9OK2IQoZpiXEgGC3EbctEVF84vGdKCZESWIZT/eJCADi+K5XIiIiIiIissUoGEl5gJKt+m05nSDJjakoMv1KoN+IlpVx1g2QHv1bNAfFF8nrDLniAaBZQI5c9C9Ihy6tVFUUMgpG27PLPBQNACrLQ1+PXTOv019+wvktm7fPEGD6lb7LRk70hgMV76c/Jj0LGHJQy9YbxcYXCy6Z6Ls/JTqBh89OR9q02UBiEgCgnXuv4RyljrqkkYZgtBzDvmrejcB3C/2Xr/sN6sTeKHUl6Y7L8vinjMgHO1slFK1h/YPHQLv6v9CufqRNhKIBQF6GcVuogtEAQNrnQzv/dmjXzoMcNxvijMzf9BARyN3vAgdN9m/MyIbcvxAYe0zgiXoPavy6xwDDbuqLNy3Xpl5+wBtQG4yeAyFvbIAk+u5fIgKZeBK06+dDu/iuiISiAUBRfvABQCt/H4Cpe14P2O+2qYLijubrUV++1fB1B9cOw35r1vkff9bs0P/NapqnHO08ewLWR9Ra1MqfoKwcS1wGwWiOhNAWFCKJTsG0Eeb7fF6TcM9Ep+CaI+0di3btA77+Q7+tJdmdv27mlRptXlmJ/vJM33Nq6eYfHlxP/WN6KCsKmsutLIddmQXutia17Fuoey41DUUDAAc86FW7Rrdtk7Oz8bi6t+qZBsFoe6r8l7k95nPV69cp8MEo3T/HLexSDMLYGIxGRERERERERERxrc3cqdlWvs8Y0Gaec/GI244odLg/ERERRR++PhMREVHoRObuMiIiIiIiIop+Dof+co8b2LNTvy0r1+ehpGcCD34CLP4QWLcCyC8E/vwD6vG5usPlqkeAw08Dfv4c2LQGGHwgpNfAlnwXFKfk2HOAYeOBHz/1hvUNGw/p3q+1y4oumsE+HCNk3LFQT93md9GejD+uZfOKQM69GeqQE4BfvwW69AaGHewNXXpwEdShHzoXrAAAIABJREFUWf5jpl0EcUZnCEio/OdkDaeMVPhmjUJaEnBoP0GP3Lqb6uuSPnLdBoENALY78pDr3tkYjJaZa9gXANSbj0NGHdb4+N2noW4/BwBQ6sjUHZPlLvV5LOffDkmN0jSFOFaQKTD6BXVSnHy6LA4HcNsC4IdPgNU/A7W1QF4BMOowSE5HoGpfwEAzOaJJOMnoScYdf/4cSilIgEQd9e7TwDN32Pk2vCZNh4w9Btj/cEiSQfpGK+jbMfixvWrX4oVN0/Hy3hMwvfNTfu2DuwBPn6VhcJfAwSDqmTsbvk5VlehcuwmbEvyDTFZuqMJRzZat3q4/Z5+aP9CCfCSisFNnHwCkZkANPAAy5CBg8IFAv5GQpGZJObUGwWgJBuk2UeCywwQvfW98EVX3HN+985bjBC98p7C22SlOprsUtZKACi3N8rqbztyng/ExQs9vW2DptYDi2C79J4w0C0ZDV+NgNCz7Fmr7n60eFl5ebb1vThSeyqvaGqg54y33z3PtAHRynbc78wzHaHW7ertk/fPqskr/MVaD0Q7o6T0nr3YZrh5prXAYT07Q/16rTOokIiIiIiIiIiKiaMKb2ImsCXJfYagdUQhxfyIiIoopPBcmihEm+2oE92MeMuziD4ziU5zcukZEREREREQtZhSq5HZDle3Sb2t+0y4ASUgEDpzs/QdArfgB0AtG69ILOHqm92bwJmE5REakaxHQtai1y4hemha4TxSTPkOA65+AuutCoLIcSEmDzLkdMsz6Teqm8xcNBYqG+i5LSgH++yXUbWcD61d4A8EmzQBO/1tI1hnt9u8p2L+nTiCHeJ9LeSbBaDucuUANGoLRpF1784/QP3sN7829Hy9lnYzqxAyc/frTOBiAB4IyTT8YLdNT5rug1yCzNVCYFPhnBzaoMMjQiUUiAoyY4P3X3P5HQObcBjXvRsBV69vmcACnXQEcdkrjXEkpwHm3Qj1ynf9c5WXAzq1AbifDWtTOrQ3Bgba+h2vmQY46w/a4SCjuaBywZ+bVjdMAAA54cMqel5HqqcSsgkdR5siCU9Xi7z2/x/VXH2gpXEiVlgDLF/vWVbNSNxht1a5EqNISSJMQ4FWbagD4h2b2rvnd5ndF1Aoq9gKLP4Ja/JH3cUIiVN8RwOAxkMEHAoPG+B/f6kVxMNqoHoJ7TxFc8oL/8UUEGFrYfJngo0s1zHzCgy/rdt2j976LeVvm4LxOD+DNjCmW153c5HAw60DBta9ZP8btrgC27wXy21keQnFEeTzApj/0G3OanR90K/bug0bBhZvXAq0cjLa3ynrfgqzoCQNUbjfwxqNQ//mrrXG5bv0/HLDdYRyMVh9mlp2q315WCbjcCk5H48/HMBit2Y8wLUkwoS/w3jLD1SM92bgtXJINcsarDV5qiIiIiIiIiIiIiIjaFrPfLfImZiJbmJQQA7iNiIjaHh77iYiIKHQYjEZEREREREReRsFoHjewR//GT7RrH3Ba6TscavCBwNKvfJefd5ulEAsisshoH44hcvipwIQTgY2rgS69vUGL4V5n/5HAkz8A2zcCSSmQnI5hX2fUqwvZS1bVyHDvwV6Hf2pHiaMuLKguGA2ZuX59mno4ezYu2nQ+sMn7+IVuH2D+5nMwqfxDKNEP9ctyNwtG697P+vdAIWMWjLavOnJ1tCYRAU67HDhuNlC6A8gpAPbuArb9CfToD0lN9x909ExALxgNADasNA9GO66b/RrPuSlqQ9EAoG+Qh9bxFZ/7PD6m/G1sW1WIlYlF6FG7DqkFkyFykLXJVnzvX1f1KixK8w/DW+Ps5g1RG3NUw7J168sA+B/retcYhNtQZDgc3nMgzeF9/dKaPG7a5jBrc3hDQX2WN3/c7Gu/cZp5P80BadomEnhuv6813++xSR/1378Dy76x/nOrrQF++Rr45WuoZ+/y1pNmkNLljN5gNAC4aIKGapcHVy7wvZjqmMFA1xz/95s98wSf/U3D+p2A470n0PnROQCAgdW/2gpGS0tq/Pqk/uW49rU0W3V/ulLh5JF8P9wmbd8IVFfqt3Ur9nkoyalQx88BXrxXv//OrSEuzr5yG+eDRfnhq8MOpZQ3HPvD56wP6tQd8szPyH1sL7DEv3m7s4PhUK1uV8/NMKrHG5iY16TdMBhN563TlCGC95YZX1CanmTYFDZJBlehVDEYjYiIiIiIiIiI4hqDjija8HkXvbhtiEKH+1PcYugdEVGc4vGdKCaYnotFbj/mEYOIAAajERERERERUT3DYDQPsGeXflu7bEtTyx2vQT1wFbDkc8CZCDn9CmDcsUEWSkS6NP1wqVgjzgSgR/8Ir9MJFPSI6DqjWpOgsjx3iW4w2g5HnrdrXTDaW3uKcX2Pxdjm7IAJ+z7FzTv+gZ616wAA1ZKIW3Ov9pvjrIJ5pmV0rd3Y+KCwD5DX2e53QiGQkWwc2lJRE8FCooCkZgCpdYkVSQVAboFx36xcqMwcoEwnXHbdb8B+B+uOU//3gf3Cjp4JzLjS/rgIykkX5KQBO/dZHzO88kdkevb4LXfCjQE1v3kflGy2PuH6lX6Lurj+1O2605ELbPjSJxht8/YqIMG/b/fa9dZrALzPoeYhXk2DrwIFZPkEeBmEcenO0SxUy2CM+I0xWY/uHJpBrRbHaHXjLISGSZyc+4TEna9BHdWCcFelgPIy/bYEnSd+lLnsUEFqInDfxwoC4PABgjtOMH79EhF0zwXU9FlQ678EPngWRdWrba0zrUleXM/vnsFpZZl4LvNUy+NPnacw8wk3HJo36MjZ/H8H4BDfr50O3z664xraxGecZnmcfw316/WvQcznNBwXoJYm37umxWF4nM7rUYOuRX6LZM7tUEbBaBtWhaio4O2tst63OL91t6da9TPUvZf5BfebysgG9hsPueRuSFIKcrskAUv8L7faZhKMVh9mlquTpVuvpNw3GM1jcEWX9t/roKpHQA45oWHZ5MGC8581vgSso0HuZTglG7x0VNXyUjUiIiIiIiIiIiKi0OFnrq0vyN99MOyHKIS4PxEREUUdnu8SxT7ux0QURRiMRkRERERERF5GwQIeN1BmFIyWY2lqSc+EXP1IkIURkSVG4YZW9Bkaujoo9knjRXu57hKsQU+/Ljucud4vNAc+Wq5w3MJhQLJ30YuZ07A8qR8Wrz0QCXBhWdIAbHXaC2vJdu9CB/f2unVokLP/AZE4DMaIEUlOoNrlv3z2OG4TU12LgV++9lusvlsIOX6O/3JXLdQVx9hbx/HnQbvUICwlyvTtCHz1h//y/HbASSMEDyxq/AVqgqrB30tuDTypjWA0tdE/PCbXpRNcB6DEmQO1YSWqaxV+3ghkLfsIW5zjdft2cm0Bpp4LvPbfgDXIOTdBzrjKcs1ElqVkBO4TLGdi4D6tTNME5x8sOP9ge+NEBHL9fHgA9P/sV1tj05MaXwPVogU4vSzVVjAaoP/aGjqRuCgl/OsQCSYUzk64G+DUpKGv1qIwOrP1SuPXvwJa2gQkeaoxtHop2nn2er/Z9h0haf4JVuJwQA0bD/z0mV+bmn8TZNZ1If+5l1UobCoFeuYByQnm53vl1dbn7dephYW1gNq5Feov+1sfcMpfoV1wh99io3CzCi3NcCpNeQA4kGPcBSXlvo/dHv1+jpKNUDfcDdz9DmTkoQCALtmCYYXATxv9+588QlolYNA4GC2ydRARERERERERERERRSez37PxWhwiW5TBL9aIiIgoSjFsiSjmRTA0jflsNvEHRnGKwWhERERERETkZRSq5PEAe/RDIySzfRgLIiJbxCDc0Ir99MNeqI1qEkCW5yrR7bLDkef9wuHAvQv9Ly76JXkQns88GWeUPYuViUW2SyiuXuW9zO+oMyGTpkOGjbM9B4XOpYcJ/vme/y9JJg/mxZimBh6gG4yG7xdBuVwQZ7OP5xctCDilXPc41G/fA3t2QcYdC4yfGqJiw+/4/QRf/eH/PLp7muCUkYIxPYG3PliLdks/wvSyZzG6cnHgSUs2QykVMDhRVVcCbzzmtzzXbRCM5sjBE78X4qK/euoCPCYaXnvcec7lkCljgcEHQd16FuAySfxITjGtkyhY4nSG73Ihp0G6TRyRax/DsKIHgYXWx6QlNXnwy9coTuga8rrIe42GSwGusF7LHukQuYlA14kAAKeqxcW7HsAd268z/3wl1zhRTP2xDNJrYEiq9HgU7vhA4e+vK3gU0CkT+M/JgmkjjN9r7iw3bPIxuEsrB6Od0MtWf71QNACm4WaGc339NjDxWKQkCtKSgH06YXJ+wWgGT0uHcgMA1PxbGoLRAOCsgwQXPe8/6KyDWud83SgYrZLBaERERERERERE1FbxpkRqDXzeRS8GORGFEI91UY+vR0REbZDJsZ+vC0SxwWxfDeF+bLqakK2FiGJdC+6YJSIiIiIiorjiMApGcwO7tuu3ZeaGrx4issdoHw4kMRly5jWhrYVim9b4kaFRaNBuR5b3C4cTH6/Qn+asgnk4rsvLuD33StslDKxeDjnrBmjXPMpQtChw2aGCkd19l911kqCwPYPRzMiBR+s3VFUA29b7LVafv24+4WmXQyZNh3bpPdBufBpyyAkQLXY+4j97rGBCX99lV07yhqKJCE4ZpeF/B/2MB7deYi0UDQBqqoG9uwP3e+Uh3cXtDY5xFVoazsFVdaFo5grG7A8RgRw6Ddon5ZBPK4CUdP3OwxhESmHUpbdxW5+hwAGTgPRM+/O2zw++phghmgbHtIswP+Nhy2PS64LRVF0YYtfajWjnLgtHeRTHXJKAu3MuxZOZZwDJJolbnY1DvdTTt4esnreWAte95g1FA4AtZcApjyqsLTG+xGjhb4EvP8pNB+45WQsYZBpqylULtfAleGaNBNwua4Oy8iDzdIJt6+Rl2P8etGdua/jaKFitpNz35+g2uB/KAW8wGpZ9A7VrW8Pyc8cJjhjg23fOwYLD+kdXMJqVcysiIiIiIiIiIqLY1UZu1+RN7FGE2yJ2cdsRhQxfl+IYty0RERFRW8czQiICAGdrF0BERERERERRQjMIVaquBPbt0W/L7RS+eojIHgkuHEfe2QJJTg1xMRTTmgQWZLn1A4d2O7IBAEsq8lFtkjHwdoZBMFQA08ueBVKODWoshV5uhuDTKzQsWgGsLVE4uFgwsDND0QIqGmbctmGVT8iJqq4CPjMJRjv0ZGhzbjNujwEZyYL3Ltaw8Ddg9XaFA3sL9usK35CUhET7E6/7DRh8oGkX9cI9usuNwh+tcigXOrT3rVkcDqjDTwHeeMy3c7dioPfgFq2PyNT4qcCz//JfnpIOefgzSFIylNsNrP0VWPIl1NKvgCVfATu3mE4rY6eEqeDoc+bEdrjklT3Y62gXsG9aXTAatm0AAGhQGF/xBd7KmBzGCilevZExBbNSNhi2y4QToZ68Vb9x0QKofiMhp/y1xXU8841+Glevaz1w/9c/2MzjUXh7qf6lR8cOAY4ZKkh0AhP7CjpmRjgUrbQE6oJDvOdcFsnFdwGHngzJ7mDYpyCIfEntj6UNX+emAxt2+fcpKfd9bBiMppo0fPUOMOUsAIDTIXj3Yg0fLgc27lIYUCAY3av1zteTDa5CYTAaERERERERERFRrOBtp0ThxX2MKHS4PxEREUUd0+BSvnYTxQaTfZXhxFGM24biE4PRiIiIiIiIyMsoGM0oFA0AcjuHpxYiss9oHzYz5SyGopG/JiF7WZ4y3S6lmjcR4JSlh4V89R1c23BQ5TdA8mkhn5uCl5IoOHowADAQzSpJSYPqUAhs3+jfuHE11AGTgPeegXr/f8BPn5nPNfW8MFUZWQlOwZGDgCONnkcJSfrLTaiv34WYBKOpr98Fdm/XbWtpMFrHdDc0zf97kTm3Q23fBHzznndBYR/I7a/4BcoQhZL85QaozWuAT17xXX7Xm5CkZO/XDoc3oK/3YMgJ50MpBWxZCyz5CmrJV8DSL4GNq70Dk1Igs66H7H9EpL+V1jP6SJz7+GO4K+eygF3T6w9X5Y3vl5/efBayi/WPN4W1G7ExoTAUVVIc2pTQGUhJM2yXHv2h+gwFVv+s264evAoYPQnSra/P8l37FO76UOHJrxS27gFGdQd65Aqm7ucNqHpnKVBS7r0QprC94NWfjGt0nOvBzDGCg4uBGQcIRAQ/bAC26L9dwOkHaDhxeOu87qmaaqgp9j6vkv+8BxkxIWC/ztn269HggVIKIoLcdP0+VoPRNDQ2qK/ehtQFowHesNkjBgDRcL6enKC/nMFoRERERERERERERBRfgrzhmDeRE4UQ9yciIiIionjFt89EBDAYjYiIiIiIiOppWuA+zeV2Cn0dRBQcu/twSjrkzGvCUwvFtibPpWz3bt0uZY5MVEgK1lZkhHTVyZ5K/LJmuPeB0+BueqJY0rWPbjCa2rAKuPcy4JWHAs/RZwgwaHQYiotCifaD0bDs/wyb1IfPQ90807A9270bIsH/0rSgvX4oqaS1g9z5OtTOrUB5KdC1mKFoFHaSkAi56TmoHZuATWuA9vlAx24Qk/1KRICCnkBBT8iRMwAAavd2oLQEyOkIadc+UuVHBcnOwzEd1uMud+C+afU/1urKhmUZnnI89+cMnNblGZ++Q6qWYvHaMdju7IDVCb3gnjQDnkkz4fYALo83AMnlBtxKNfm67v8mfXz6e0zamo33+MyldPuGar0ugzAnMlcpyUCycTAaAMg/noY6fbBhu5o+BPi8quH1pqxCYchcDzaVNvZZvA5YvE7hxe91ZwhY55NfKzz5NfB/a4EHTxO8uUR/TKITdQFdkaeUgrrEXqCjPPI5ZMD+lvpmpwJJTqDaZXFu5fHGlFXsBdLaITddoPez3mk5GK3JAeq7j6Eq90FMQvVai2EwmsWfGxERERERERERUfzhXZzUGvi8i17cNkQhw6SEGBDsNuK2JSKKXWbHcB7fiWKC6Xk292MiiiwGoxEREREREZGX3VCl5FQgPTM8tRCRfZp+OIuuIWMhs+dC8ruGrx6KXU3Ce7LcZbpddjuy8WnqONQqG887E8meSuxfuRj3brscOe5dIZmTKCoU9gG+X+S//I15lqeQe95vO6Faicn2x2xcpbtYuVxQD5kHgDrGTEJxErBiq/3VAkDH9ua/YpGcjkBOx+AmJwqS5HUG8joHPz67A5DdIYQVxZbRE/qi8N2N2JhQaNovLbHui5pKn+Un7X0FlZtTcEfOFdjhzMXh5Qvx721XwQEPOrm2opNrK/DaV8Br5wUXTh4DPBC44YBbHHDB2ex/73I3HHCJs/F/0fz6NvbRGvq6G/5vnKthXH0bHHCJ/vr15vJfh3+9vnM31uvxq1fne4OjoX+1JKFG8w8rrJQUICXd/AdbWAT06A+sXW7c57l/A6dfAQC47T3lE4oWSo9+rnDlEQpv/qx/gdOEYiAjOfTnLqpyH9Tjc4HPXgcAyNEzgTOuhjTZl9T8m4Fl31ibsLAP5MI7LYeiAd5AyYIsYG2Jtf6O+iCzsp1AWjvkGGzmneW+P0u3wbVjDtUkGK2mCvhuITDuWGvFRJBhMFptZOsgIiIiIiIiIiKKKAazUKTxORfDeIM5UehwnyEiIiIiilf86IOIAAajERERERERUT07oUoA0D6/7YR0EMUCi8EK8pcbITOvDXMxFNOk8bmU6dEPRivVMvFz8pCgV3Hv1stwwe5HgInTgI9fCnoeomgnXYtadPmd3PIipF37kNUT9RL8w2IC2rUNau9uSEa27/JfvgZ2bjEdKmdcgyOXC1ZsDW4rFWTxXJgo3mjHnI07n5iFU7v8z7RfWv3hqto3GE0AnFn2P5xZZj4eAODxBFdklNMAaHDDIBepTXuh3UmY3vkpv+WVWjKQkmo6VkSAObdBXXmcYR/1yHXA5Fn4qbQ9/vVB+K4IcnuAhz5V+GWTfvuUIeF5fVQ3zwS+eLPx8eNzgdpqyDlzoTweYPli4MlbLc0lf38ScvipQdXR2U4wmmoSjFbQA7kGwWgl5b6P3QaHh4agtTrqq3cgURmMJtC7CYXBaERERERERERERERE4J3dRCHF/YmIiCj6mLw+81yYKDaY7avcj6MYtw3Fp/j8U+RERERERERkn8NmMFpau/DUQUTBsRpuOGxceOug2NckZC/LXarbpUpLwdLkQUFNP7zyR5y3+1HIDU9BZt8U1BxEMaOwqGXjRx4amjpiRTDBaACwYZXfIvXlW+ZjDjkBMmAURnUPbpUAUJAZ/Fgiik6SlIxp18/AR+snmfZzOuqCn6qrIlAVxYsUj/7zpVJSgOS0gONl9JGQm543bHdDwxV3r8KIW8MfumcWvBbqYDTl8cBz/Sk+oWgN3nwc6o9lUEflQ80Zb2k+ufiuoEPRAKB3B+vfn4a6bbF1AwC0PBhN+Qaj4et3odxu/c6tKNngz/MxGI2IiIiIiIiIiIgokngzbPgF+zsRbhuikGEoQwzgNiIiIiKi4PBMkogABqMRERERERFRPYfBXYtGklLDUwcRBUez+DFPt77hrYPiQONFe1meMsNei1NG6i4/abjxRX89a9bgxU2nwfnMj5DDTgHyOgPJBq8nbS0QiuJTt+Lgx445CpJqkJ4RrxITgxu3fiUAQLlqoT55BeqjF4CX7jPuX7wf5NJ7AQCds4IPb+mVF/RQIopiMuYoHFLxOYZX/qjb3tuxrfFBdWWEqqJ4kKz0ny+VWgokxdprvhxyPHCAf3DfT0lDcHC3j/CfLaNaVGNL7dcV6JIdumA05XJBXX8y8Nlr+h1Kd0DNHA7s22NtwlnXQ066qEU1FeVb71sfZKZu+wsAIDdd/2fTNBjN4zG+nMuBZiFopTuAX7+1XlCEJCfoL692AYo3pxARERERERERUdwy++wrnj4Xi6fvhaiVmH5WHto/QEMU91T4/2gUtRL+XpGIKHaZHsN5fCeKCWb7cQjP00yPFjxcEFEdm3e9ExERERERUdxy2gyiSE4JTx1EFBwrwWiZOZCs3PDXQrGtyXMp211q2G1DQlfd5UcMAJ6YqWH+g5/hpR8F3WvWo3vtegys/hWH7luE7AU/QfI6AwAkIRFqzFHAogW+kxTvB8kvbPn3QtTa8rsCHbsBW9fbHirTLg5DQVEuISmoYWrDKmDXNqg544HNa807jz0GcsNTkLpQxoKsoFYJAJg8mBckE8UrefNPnDDrbvyQsp9f27G7F0DVngdJSGQwGtmS4tF/vrgkAS5oMMiS8iO3vQw1IaPh8c2512Bu3t9DUGHLTRkSwlC0sp1QF04E1v0Wkvnk/oWQoWNbPE/fjgKrF2lqqLsRo6oCyuMxDEYrqwSqahWSEwTvLTOerz5ozcdPnwODD7RUT6QYBaMB3nA0s3YiIiIiIiIiIiIisop3CMcuBjkRhQ6PhURERLGFr91EscEsGC2CVfCQYQ9/YBSnLNwxS0RERERERG1Cgt1gtNTw1EFEwRELH/P0GBD+Oij2NXku5bh32h7et5MgNUlwwSVj8emwBXhy62z8o+QWnIhPkX33iw2haA2ru+JBYEiTgILu/SC3vBB0+UTRRESAMUfaH3j4aZDhh4S+oGiXmBzcuPUroO67InAoGgC57L6GUDQA6JQZ3CpHZWxFuxQGoxHFK8nOw2WHuDGz9Gmf5SfseRU3bb4O+Okz7wKjYLRegyAvrQQGjg5zpRRLklW1YVvF9hLL80hCIuS2lwEA92ZfEJJQtDcv1DBpACAtfGk7dmjjBKqmGmrBA/DceDo8j82F2rbBu7y0BJ4HroRnbJL33yPXQa1eAs9D18Bz4+lQrz8K5aqFmndD6ELRHvk8JKFoADBMPx9alwNNgsz27DI97/hjB1BRrXDWU8Y3Q/nMV0e9/ID1giIkxeQjxqrayNVBREREREREREREQeJNlEThxX2MKIS4PxEREUUfvj4TERFR6DhbuwAiIiIiIiKKEk6bwWhJDEYjiioOR8Ausv/hESiEYl6TNIQUVYX2rp3Y5cyxPLw4v24ahwNy+f1Qs28CtqwHeg6EOP0/jpSMLMgDC71BCdVVQGEfb5gUUZyQMUdDvfqIvTGX/DtM1US5xKTgxn3zLuD2Dwrx43AA7fN9FqUkCtqnKuyqsHfcmV28AUDngP2IKHYlnH8LHnszF3dsvxa/JA1Av+qVyHdv9zb+vhQYdRhQYxB0lZQC6dQdeOgTYOMqb7/qKqCyPGL1U/RJLUkGXtVvq+4xxNZcMvYY3Ft0Ky53XGqp/5drx+PB9nPwfOYpfm3pUomjB6Vh8mAHdu1TWPqn95z+ucUKf1tg/ULFIwcCQwu9r6fK5YK6+njgu4UN7eq9p4HbXoa6ciqwa2vjwGfvgnr2rsZ+ixYA37wH/Pip5XUbSk6FvLcd4kxo+Vx1uuUIJvYFPl4RuK+mmoSc7dyKnt1y4NAAt0722YotwOptwI69xvM5lM7AshKoNx+HHPOXwAVFSPcc4IXZgmSnIDkBPv/SgzzdIyIiIiIiIiIiimkMQaLWwOddBAT7M+a2IQoZHuuiH7cRERE1xdcFothgtq9GcD/mEYOIAAajERERERERUb0Em8FoyQxGI4oqogXuM2h0+Oug2Kf5Ppc6uzZbDkbLTQdy0n3DhSQjG8jIDjhW8rtar5Eolgwbb69/936W9pm4lGCelCF/uRHq8bn+DVZC0QCgXQ5E83+93K+bYOFv1qaoN64PAxyJ4p0kJEL1G4mcJV/i4IovfNrUw9cCo4+Eqq7UH5yU4p1DBOhaHO5SKUakblfAqzrBVgAqB4yzNdeeSoUbEi8ALLwEVv7WDglwAbugG4x2aNmHwG+FQP+RaJ8mOLjuKXvJRO//VsLRpo0Q/Hd6k9fGJV/4hKIBALb/CXX+IUBNVeCiv343cB8L5Ky/hzQUrd6dJ2oYfov+tmzK0XQD7dyChNxO6KlVY7Un36/vSf+1OV8T6tEbgMmzdM9zWkNWqmDaCJ4rERERERGML+8QAAAgAElEQVQRERFRW8NbNSnS+JyLXdx2RJYFDF3g/hS/uG2JiGIXj+FEFBrMUiQiAIiOK2OJiIiIiIio9dm9UbTuRm8iihIOR+A+aZnhr4NiX7OQvQLXFstD+3YMdTFEsU8Sk4AZV1nvf+a13iCdtsjsfDQ9Czjlry07B83UD3n8+2R7vyqZWfo0evVqH3wdRBQ7HMZ/Y0qdfwjw5+/6jUnJYSqIYlmKyctcVWaBrbneW6ZQ7g4ccP/axpO8oWgADqj6DjNK/+fTnurZhyt3/htY/JHfWKdDcPnhGn643vx1cs7Bghdma8hMbTx/US/co9/ZSihaqHTuCRx/flimHtZV0MnC22ut6YWeO7dC3TwTRbt/CHq9DmWQhFdWAmxeE/S8REREREREREREREQUQaZ3dvOubyJfDEYjIiKKL3ztJooJfN8ao7htKD4xGI2IiIiIiIi8EgLfUOsjOTU8dRBRcMTCxzxpGeGvg2Kf5vtc6uzabHloUcc2GuZEFIA2+yZL/eQ/70IOnRbmaqKXiAAHTNJve20tJDkV6D8q+BVk5uouHttHMC5huW7bmIqvMXf7XBxW/hGm7H0bD2y5BI9umQPk2guwIaIYZRY+XF4KfPySfhuDxElHisnHLpW11udxexROnRf4Apb+1csxpfwdn2WPbjkf8zafh+P2vIGzd8/H92tHY1TV91CPzzWcZ1hXwfHDjNfz4Gk670W/fT9gfWF10kWQx76FhDGksF+nwH2aBpmpRQuA//sQ3Wo3BL1OBwyC0QBgb2nQ8xIRERERERERERFRPOLNsK2KN5EThYbpvmShnYiIiCKPr89EFCI8nBARABj/mXMiIiIiIiJqW2wGowmD0Yiii2YS2lAvlcFoZIVvuFlBrfVgtL4dQ10LUfyQx76BOnu0cftdb0FGTIxgRdFJLroTatXPwK6t3gUJiZBrH2889+zaB/jps+Amz8oxbHp5wNuY+K0Hy5IHNizr6NqKh7ZejIHVy4GdTTqntYOkpgdXAxHFFivn2HoSGYxG/lISjNsqa6zN8eN6hTPmeyz1fX/DFL9lCXBhVtnTmFX2tF+b2rgaUthHd675MzWs3+XBD+sbl+WmA+9cHF1/h03+/iTk8FMjsq6ifMGiFeZXXvkEmdWFxXVybQl6nU2D1vzsKwt6XiIiIiIiIiIiIgoBhiARtUFmf0BSmbTzmEBkXaD9hftT9AtyGzEFg4gohpkcw3l8J4oNZvtqCPfjCK2GiGIcg9GIiIiIiIjIy2kvGA1JvNGbKKpoFm5IZzAaWdHsuZTnLrE8tDjf7II/orZNivczv8wrtyBSpUQ16VoMPPWDNzykYi8w/BBIt76N7YVFwV/SmGkcjJbbsxDfvDAOb2RMwfKkfuhesx5Tyt/RPwbmdgq2AiKKNY4gf5XK98ukI9ksGK028PirX/XgzvetvQo+vnk2CmwGcKnTBgKfV0HE/5y+XYrgq6s0vP6zwrJNQGF7YMpgQcfMKDv/H3tMxFZVlB+4j6b8Q+w6u6wHTzfnE7TWXPmeoOclIiIiIiIiIiIiso53pUYN3iEc3ZQyyUXjtiOyLsD+ovP7OCIiIiIiig9890xEAIPRiIiIiIiIqF6CzWC05NTw1EFEwZEAwWiJSRC7+zm1Tc2C0XJtBKMNYK4TkbnMHKBsp34bj9ENJCsXmDRdv7HngODn7dHfuLHHAKSoKpyy5+XAE/UIvgYiijFBB6Mlh7YOigsiguQEoEonBK2yxnzsN38oy6Foojw4bN/HQVQIqHHJUBOnQfYbDxw9C+JwNLQlOgXTRgimjQhq6rCT82+HpKRFbH3eUGjzbaIXZNbJZmBdU8rwDioA+8p8+5Zshnr4OuDD57wLppwFmTQdMvjA4Nf/0+dQn74CeDyQg4+HDD8k6LmIiIiIiIiIiIhiidqyDvjqHaC2Ghh9JKR7v1auKNx42ylRy5ntR2ZtUfZHaYhaW8DgM75mERERRZ9gz4WJKHqY7KsM+45i3DYUnxiMRkRERERERF5Om2EcSQxGI4oqTW5Y15WSEZk6KA74XmCX67IWjFaUD/TIDUc9RHFEMzlWMxjNmkFjgKQUoLrS/tiDjzdu6z0YyMoDSncEnEamnGV/3UQUm8yO22YSGYxG+lKMgtF0ljX11DfWL1iZXP4uCloQvoWPX4L6+CVg8ULILS8EP0+kTZoR0dUV5Qfuo+ncqNG5dnPQ60xQJk+U8sZgNLV5LdTJfX3b35oP9c6TwI3PQCacaHvd6qMXoG6ZBXi835N6Yx5w1X8hR59pey4iIiIiIiIiIqJYopZ9C3X5ZKBir3fBozcAt7wAOXBy6xZGFBBvhm1dZjeRBwp6IqJGgY5lPNZFPQZnxL23lii8uUQhMwU4dZRgeDeGfBKRGb4uEMUEs3O4CJ7f8VSSiABAa+0CiIiIiIiIKEo4E+z1T2YwGlFUkQAf86SmR6YOin2a73Mp173T0rDDBwhEeEEDkSkGo7WYJKcCY46yP+6fr0JyC4zbHQ5g/HGBJ+rQBTLqMNvrJ6IY5Qjyb0wxGI0MpBq83O+rNr6Cx+NRePTzwFf4tEsGZvZYh//JLcad0rMgT3wfcC4AwGevwTM2CeqJW6BcroDd1U+fwXPhofCc2t/a/KHkTAAycyK6yu653p+5GQfcfst61q5Foqfa9vo6uLahR+06w3ZV2hhorR6+Vr+TxwN14+lQNfbWr5SCmndjQyha3UKox/4BxavPiIiIiIiIiIgozqn7rmgMRQMAVy3UXRfpfDZm9lkZP0ejcODzqvUFe6M4tx2RZYF+F8XfVcUxbttYcMf7Hhz7oAePf6lw90cKB93hwcLl3HZEbR5fn4mIiCiEGIxGREREREREAOrCIBwmYR3NJfFGb6KoEmj/Tc2ITB0U+yS4YLSBxnlDRFTPLGDHyWA0q2TW3+0PGn1k4HnPuBpIzzLukJUHmb/Y/rqJKHbZeY/chDDskgykJ+kv31djPGbKAx7jRgBODfjoUg277tEw/5peyHjuO8iivZDzb/frK7NvgvQeBIw81HLNav7NUI8YBG3V91nzK9SlRwFLvgD+/MPy3LbkdTZuy+kE0SJ76YNDExweIAMuWfkHkCWrakys+MR0XP9O/suuK7kDmtnF//+7EwCgKvYCX7xpOr86qQ9UVYVpHx8bVwNb1vkvL9kMrPrJ+jxEREREREREREQxRu3ZBfz2nX9DyWbg1/+LfEFEFEMYjEYUGoH2F+5PRK2lskZh7lu++2C1C5j7lvk1DkTUxjE0jSg2REnYN48YNvEYS3GKwWhERERERETUyE4gR1JK+OogIvskwMc8ae0iUwfFPhGfh7nuEkvD+nWSwJ2I2jqHybE60SAphfxIj36Qp360PuCwUyyFpUiHLpAnFgPHzQYGjgZGHQb0HgyMPQY44XzIE99BMnNaUDkRxRyzQEszzoTQ1kFxI83g5b68Sn95rUvhs1XG8x03FPj8Sg0T+wk0rfF8XBISgVMuhdz5OjD+OGD8VMhdb0Kmnuttv+ste4W/8pD3BkADat6NgNtlb047UjOAdu2N23N1ksQi4MQR5u+BBlYt011+zN63Tcd9fLmGV+ZoOEX7BFP3vI6X/zwVF+x+JGA9qmQz8M37gbfFrm1Qh2XD8+DVUB4LF6WbbHvs3h54PBERERERERERUazau9u47c/fG7/2uICa0vDXQ2QHb4ZtZSY/f24bIhsYjEYUrV77SaGq1n/5V38ALjf3TaK2jccAIiIiCp0gr+YnIiIiIiKiuJSQCFRXWuubmBzeWojInkChDanpkamDYl+z8KAkVYP2rp3Y5TQPA+rfOlkERLFFcxi32QmoJUjPAcA5N0HNu8G8Y8dukJnXWZ+3YzfI5fe3sDoiihvBBqMl8JhO+tINgtH21egv37gbqDBo278H8Or5xucWIgKMPhIy+kj/Nk0D7v0A6poTgYq9gcoGXLVQ/7rAG7LWfySkoGdDk9pbCnxpM2itqeGHAD98Yt4nt5N5iGz7/ODX3wLHDxMM7qKw9E/99snl7xoun2Mw57QRgvx2gqnDgGO1W4FNX1sv6JdvoD5/w3r/F/4DVbkXGDoeKOgB6T9Sv5/ZDVrCgGwiIiIiIiIiImqrxPvZ2ZLrgNUPAbVlxl0ZgkTU9pju98G2EbVBgV5DW/s1tnYvsOVDYN86IH8C0H5Y69YTlYLdRjweRru1Jn9z2cPNR0SGeIAgiglm59kRPAdv7dN9IooOWuAuRERERERE1GbYCeRgMBpRdHEGCkbLiEwdFPt0bmwfU/mt6ZCBBUBOOm+IJwrINBgtIXJ1xIsZVwKde/ovb98Rct6tkOsehzz2DaRrUeRrI6L4oAX5q9QEkwAnatPSjILRqvWXbzG5j+78g1t2/i37HQx56gfIJXcDGdmBB3z6KtTcM6BOHwz16sMAALV7O9RRLQslk3HHAh26mHfKLTDfr9IyW1RDsJwOwYOnadB0NkWXjFpMnjFWd1wn11acXPaS33KBB//7S5PJ3C5b9agbTgM+fcXWGLzxGNTcGVDnHgTP9adAeTz2xhMREREREREREbVlK+8Blt9uHooWb3hHahThtohuJp+3cz8isiHQ/tKK+1PVduDD0cCXJwI/XQG8vx+w4j+tVw9RFOFLHVFbx4MAEVnD2HAisoLBaERERERERNQogcFoRDEr0P6b2i4ydVDs0wlGm7r3DdMhxw1jKBqRJSbBaBJs+E4bJiKQe94H+o9qXNhvBOShRZDTr4BMmg7JzGm9Aoko9jkChA8bsfPemtqUNIOnRnkQwWjTD2j5Obh07AY58QLIfR9ZH+SqhfrPX+EZmwR1TGGLa0BeZ8g/XzXv02sgkGgSjJaa3vI6gnRgb8Fz5wiSm2TcdsoEnp+ThNRTL4C8+ScwbLzfuH9vuwrj9n3e8HhA1a/4IelCOB3BB6MBAFoSbPbZa8Db8/2Xm9bB94JERERERERERNSGrff/Awjxgbeexgdux/Az+YzcNBGG24bIugD7S2umLy27FSj71XfZj5cBFZtbpx6iKOLhSx0RGeIBgigmmJ1nR/AcnGGrdvEHRvEpyKv5iYiIiIiIKC45EwL3qWd2QyoRRZ4jwP7bijeKU4wR/3CmyeXvwqFccIv+x4lTGYxGZE2wATtkSDp2Ax75HPhjGZCYCBT0hNg5pyUiMmMSaGnKyWA00peeLNC7+KTCMBhN/0KVXnnegNBQkd6DoIaMBZZ8EbI5LcstgPQZAiwsg7r4MGD5Yt92hxMyaQbUY/8wniM1I6wlBjJthIYpgxW+WwckOoGhhUBygnf7SHYecM/7wJ+rgS3rgR79gU9eQccHrsTHGyZheWI/1EoCBlb/CmfXXr4TGwWSaVrLAtBMqJfuhxxztu/CWoMnKBBceBsREREREREREVFcUMDOb1u7CCKKWsEGo/EaLCIfAZMQwvM7M0tW3ae//I/HgEE3RLYWoijjbsVdk4iiAJOMiIiIKIT873IkIiIiIiKitivBxs3bicnhq4OI7AsUAtPKN4pTDNH8PzLMce/CxH2f6Hbv3cF74z8RWeAIMmCHTIkIpPcgSNdihqIRUWgFG2hp5701tSmpBk+NfTX6FwRuLdPv3ykzRAU1Ibe9BBx6MpCZG/rJzeQVeNeflAy59wNg6rlAehYgAvQZArnzdUjRUNOAfomC97spiYJxRYIDekpDKFo90TTvecr+h0M6dAHyOnuXAxhQ8xuGVi+FE25gwyrfSY1Cx4ZPCMN3UGf9Cqgt63yX1VQZ968xCU0jIiIiIiIiIiKKdSH7AxW8KZzCgGEDUSDI8DNuOyIbAuwv0bg/bX6vtSuIMkFuo2jctmSZh5uPiIzw+E4UI6LjPS2PGEQEMBiNiIiIiIiImnIyGI0oZgUIX5DU9AgVQjHP4MLem3bMRaKn2q/rHSdokJBdDEwU5zQGoxERxRQGo1GIpRt8lFJukDu1xSAYrWO70NTTlLRrD+3Gp6G9vQny4orQr0CPwwlk5zfWkJwK7bL7IO9sgXxUCm3+Ysiow7yNiSnG88Ta+93cToZN6qfPGx8YBKPJQZN1A61DZuVPvo/Nws9q9duU2w21ezvUvj0hLIyIiIiIiIiIiIiIKEaY3ijOW7uJrAu0v0Tj/hSNNRFFFoPRiNo6ngsTxTyGGEanQNuF243iFIPRiIiIiIiIqJGdm7eTGIxGFFWcCebtaWG4c57ik+h/ZDii6kd8vW48ppc+ixFVP+Kk4YIP/6ph6jCGohFZxmA0IqLY4gjyuB3o3JzarDSDj1321egv31qmf6FKx6zwnoNLQQ+gQ2FoJus9GBiwv37b/odDdPYz0TRI88+dsvOM1xFr73dzCwyb1MPXND4wCEZDQhLkuWUhLqqJ9c2C8aoNkvsAoMa/Tf32PdRf9oc6phBqcgE8D1wJ5XaHuEgiIiIiIiIiIqII4M2EFNP4/G1dJj9/5YlcGUSxLuBrMY91RNGIwWhERETxLHIv9PxojogABqMRERERERFRUwlJ1vsmMhiNKKo4AoQvpGZEpg6KfZrxR4ZDq5fiyS3n4Ntdx+LFczVM7MdQNCI75KQL9RsK+0S2ECIissbhDG6cndBxalPSDT52Ka/WX76lTH95p8zQ1GNGbnyq5ZOkZ0Iu+Cfk9leAbsW+be3zIefcZL2ePOMwsZh7v5tbACQaPBnW/ApVVeH92ihMzOEEOnYPPrwxALV+pe8CnfCzxrZqqL2lUIsWQH37PtTe3VCzDwT++MXb7qoFXrwX6vSBUAseCEu9REREREREREREYeNheBERBcvs7m3e2U1kXYD9JSqTEnhNpY+o3EYUCmZb1s3TaKI2jufCRDHP7ByO53dEFGFBXs1PREREREREccnqzduaFvwN4kQUHs4AwWgp6ZGpg2KfWPhbCslp4a+DKB4deDSQlAJUV/oslsNObaWCiIjIlBZk6JCd0HFqU9KMgtF0cqdcboUlf+r3j0gw2uADoSZOAz5+yd6455YBX70DJCUDY46C5Hf1Nsz7Bli0AGrdb5DCPt623E7WJ84x6ZsaW+93JTEJqmsx8PtS/8bqSuC374Fh4wC3S38ChxPicEDldAK2GzxJWmLjKt/HJsFo6os3gUdvAMpLzefctAbq3sshJxoEBRMREREREREREUUjFapEh3i6YTSevpdYx20R1UxvFOe2I7IsYOgC96f4xW0byzzcfERERBQCPKUgIoDBaERERERERNRUoGCleonJEOFftCKKJuJwmH/om5oRqVIo1lk5vqcwGI3o/9m78zhZ9oK++99fbb3NPnPOnDnn7vdyd9Z4lYsQhAsRCUFF8EV4IAoxL01iXPCRPElMhMgrbnGL0fgQn4fogxrQKK5IAsqDyEXhEZDlwt3XM2ebfaanl6r6PX9Uz9Jzuqt7eqaX6f68X68+3V31q6rfdFX9qqpP/b7dCZMfl37y92T/9Ruk4kYy8GXfJr35h/tbMQBAQ8b1Oruxot3QcYycyVzj4SvFq4f93mebz+fMRG++kzHv+C+y25vSJ/+kvQm+9pVJ6Nkbf+DqeeUK0t//js5/H30sJQ2unXDnAWN++g9kv/WGxiOXFpPnlGA0SdJNd3UnGG3tSt1b+5d/1Lzspz9y/MsHAAAAAAAABkV8XMFoJ0zLEBqcCKzHPkv5/AlNAw6BYDRgUKX93/+onkYDqEk73+U6BTgZerQf01wcFtdHGE0EowEAAAAA9rTbeTvIdrceAI4fwWhol9NGqADBaEDHzN95mfSHz0hf/Rvp9DUy89f2u0oAgGbcDv8r1SMYDY3NjRk1uvlkpSiFkZXn7t06/P5PN79TeCElI+w4mfyYzE/+nuxjD0ilrSSIa21J+uzHZd/91gOFjcxbf6R7lZk723xcYaJ7y+0SM7cge80t0tMPXz1ybSl5bhGMZl7zNtlPfTh9Qf/w7dJv/ezhKrextvvSvvfd0mf+7HDTN9POtSYAAAAAAAAwSOiBCSBVSiSMTUuEoW0B2tdif+FYDQykmF0TAAAcg1an+9ZaGdObH5kF0D/ceQoAAAAA2EMwGjC8cvl+1wAnhWknGG2s+/UAhpgJMjLPvpdQNAAYdJ2G+LR7bY2RM5dyGr28Vf/+dz/bvOztZ46nPu0yN94hc8fXyGRyMqevkfnGN8n86v3S3fdKmZy0cIPMO98nc/cLu1eJm+6WZheuHj4+Ld3y3O4tt5smZxsOtpeeTl40DUZzJUnmpd8ive57UhdhpuaSz+4wNlcVf9e9il+Skf2/f+xw0wIAAAAAAADDJE4LNjoEQlvQFWxXgy1t/XQ6DhhBLY+h7DODr9N1xLo9yQhGA0Yd57vAUOvh91x8pQZAIhgNAAAAALCf124wWqa79QBw/DK5ftcAJ0U7v5iSJWgPAACMANfrbDrPP956YGikBaNd2dx7/dknm9/Rc+eClPH7/yuH5rYXyPkvH5PzkVU5H/iqzMtf393lua7Mm//3q4e/6YdkvA731X6bmGk8/Dd/RvbxB6TNtcbj97VN5q3/Nn0ZuTGZN/9we9d5+331bw5XHgAAAAAAABhGNiUYjZ6ZANJCHdLaiE7HASOpRUhp2rEaQFelHbEidk0AANADXEIDo+GE3iEMAAAAAOgKv91gtGx36wHg+AUEo6FNpo3fUsilJDoAAAAMC9ftbLp2r60xcmbbDEb7V7/b/C7h//bW0f3tM/P675Wm52X/7LelakXm5W+QedX/1u9qdW5ytuko+5bnNZ9ufxDc5GzS5lQrjcvmCjKvfKNUmJD9k1+T/t8PdljZI5iZl6ZPS87obrsAAAAAAAA4oWISHXCS0Tu4v9I+/07HASOoZdIB+wwwiGJ2TWDEcb4LnHip5+G9249pMQ7g+ggjimA0AAAAAMAej2A0YGhlCEZDm9rprJ4nGA0AAIwAt8P/SiUYDU1kfaOxjLRZvnrcTjBaJbS6/9HG0ztGuu1M9+p3Epj73iBz3xv6XY3jsbnW2XT7wqyNMbJzC9LiE43L1kKtzYteLfOiV8t+/Pdl/823d7bcTvz9t8r5P36ld8sDAAAAAAAAjlMcNR/XsiMigNHWYSdy2hbgADr+n3yso2FlUsYRjAagKc53ARwjWhRgNPCTvAAAAACAPb7fXjmC0YCTh2A0tMuk3a5QM3Wq+/UAAADot46D0TLHWw8MlbkmGcOXN5LbdP7iIWmj1LjMzaek8Wwb5+s4Ecytz+9sQsetfz93rnnZbL7+faftWofMO365p8sDAAAAAAAAjlUcp4w8TNfLYeqmOUx/ywlHoMBgS1s/9rjaFmAUtNgnaAuHF+v2RCMYDRhxtOHAyZd6Tdu7fZzmBIBEMBoAAAAAYD8vaK+c32Y5AAPDuG7rQoAkmdZfGZqpuR5UBAAAoM8Ohg+1i2tmpJhtEoy2up08/9HfNr+b58M/wH/vD5Vbnt3ZdM6B7WDmdPOyuQMb3B1f014Y9lEt3CDz3k/LHKwrAAAAAAAAcJKkhheljTvp6HU6HFiP/dVpJ3LWG1CnZRIC+wwwiFLzhQGMOI7dwInQo2C01MUccfrhRHA0RlNvfw4YAAAAADDY2u287XE5CQBDq52O61Onul8PAACAfnM7vPZtN3QcI2kq13j4ajF5vv+RxjenfNsLpBvmehBohd554as6m+5gmPXc2eZlc4X6SWfmZb/u70mf+nBny06r1rt+QyoVpWufJd36fJlM9tiXAQAAAAAAAPRUaqIDaQ8A0nQYfkYnZuAAOv4Dgypt74vYNYERRyMA4HjQmgCQJH6eFwAAAACwp91gNNfvbj0AAP1j2ghbmJrrfj0AAAD6zXE7m87jmhnNTTYLRtuWrLV68FLj8a+8k1C0YWP8QObd7z/8hAfCrM3pa5qXDTJXL/ed75Ne/gYp02RjPKzrbpX5nYdkXv56mVf/I5ln30soGgAAAAAAAIaDTQs/o2sm+o1tsP9S/u+m4/aD9QrUa7VPsM8MPMLrRlJqvjCA4Zfa9nNcAE6GkxHoPUBVAdBFHf7MOQAAAABgGBkvaO9rZo/LSQAYWqaN31KYPt39egAAAPRbh9e+xuG3qdDcZN6o0Y1Da0Xpyqa0Wmw83Z0LBKMNI/PSb5F94aukT/3pISY6sC3cfW/zspNXh1qbwoTMu94nW61IH/hPsr/yb1ov86a75fza/ycbVqVKSaqUpdwYAWgAAAAAAAAYbqmJDofoeUkvTWAEddiJPDVQDRhBLY+hHGOHF+t20KXdwRCz+gAAwDFodTnAKQcwGrgrHwAAAACwxw/aK+f63a0HAKB/2gnymLq6cz0AAMDQcTsIRrvnvuOvB4bKVL7x8NWi1YMXm09363x36oP+Mz/+O4ec4MA1211fJy1cf3W5m+6SSbl2M34gvfz1ktf6ez7z2n+cPHu+TH5cZmqOUDQAAAAAAAAMv7SAIsKLMOgI5OuBDsPPUrtus96Aeq2SEPp0PKaNBVIRjAaMuk7PkwEMjI6vadFdBEdjNBGMBgAAAADY00ZHyEOVAwCcQGm/41YzSTAaAAAYAY576EnMP/+pLlQEw2Qq13j42rb04MXGN6ZM5qRT412sFPrKeL7MB5+QbrijvQkOhFkb15X53p+WgszewCAr830/03rZCzfIvO3fpRe69fnSN72lvboBAAAAAAAAwyROC0aLelcPACcQwWjA8RjUjv/sq0AagtEAAMBxaJWlSNYiMBo6+JlzAAAAAMDQ8oP2yhGMBgDDy2nxWwqTczL7O9wDAAAMK/eQwWj33Cdz893dqQuGxlS+8fDVbenBi43H3TovGdNGgDFOLDN7RvrV+2VfdUoKqy0KX33NZv7uN0u/+inp/g8lnTVf+i0y1z6rvWW/5R3Sc14k+6kPSx/+DenyM8mI09fKfNePSvd9O9eAAAAAAAAAGE1xSvhZHB5iRvTSRBfQ+3fApayftHXHegXqDWoSgk0JT8UBna4j2sNBl7aGInYRYMQRBHO2JPEAACAASURBVAyceFy3AhggBKMBAAAAAPZ4bQajuVxOAsDQatDJvs7cQm/qAQAA0G/O4YLRzFv+ZZcqgmEylWs8fLUoPXSx8U1Dt84TijYKTCYn+5Z/Kb333ekFm4RZmxvvlG68s7NlP/fFMs99sfTdP9bR9AAAAAAAAMBQilMSHWxKaNqJR+fX4cC66qvUfYWgCKB9rfYJgtGAQRRzOAPQDNeUAA5hQK8G+qdlGzpynwhGRItejgAAAACAkeK3GYzmEYwGAEPLtAhdOHW2N/UAAADot8OEgl93q/Tcl3SvLhgaU/nG59uXN6S/fKTxNM+a72KFMFDM5GwbhbjNAwAAAAAAAOiJtNCTeJiD0QAcXVrAYFqgEp2YgToD2/GfYDQg7U5jgtGAEUf4GXDype3Hx7iPp8aG05QAqOGOWQAAAADAnraD0fzu1gMA0D9Oi68MZwlGAwAAI6JVMNrkXFLmBd8g83Mfkml1HgVIOjvVeHgYSxfXG4979rkW4cUYHpNzrcvQ1gAAAAAAAAC9EacFo4W9qweAkye1B3dvOpgDw6HFPtGvfcYSkNo+2rVRlHYaDWDUcVwATobBuG5ttSguoYHRcIifOQcAAAAADD2vzWC0Vp3DAfTHjXdKj3356uHnbup9XXBiGWPS/8txbqFXVQEAAOivINN83Ne+Uuan/0CqVmQy2d7VCSfebfOHKx940n23d6cuGECTM63LGILRAAAAAAAAgJ6wacFohwlEoZcmuoHtarClJcJ0GJoGjKRW+0S/gtFIfeo6Ui5OtJjVB4w4GgEAAHB8uGMWAAAAALDH99sr57ZZDkBPmTe/o/Hw73pnT+uBIeA0/9rQjE30sCIAAAB9dN1tzcflCjKOQygaDm0sa3TNdPvl77tdmsiZ7lUIg2VyrnWZlOs1AAAAAAAAAMcoTgk9sWHv6gF0gkCZHkj5/5u0zz91HGFLQJ2WbdkABqMZ/m8XoyFt74s4nAFoiusU4CSwqefhvduPW14NjFyT0uIPHr0PBCOCO2YBAAAAAHu8oM1yBKMBA+ml3yrd84r6Yfe8QnrJa/tTH5xcaTfnZPK9qwcAAEAfmak56ZpbGo+7454e1wbD5PYz7Zd97XO5cX6knDrXurMEnSkAAAAAAACA3kjrTBhHvasHgAHVaUfxwehgDpwMg9rxn9QnIE47VeZwBow4GgEAvUFrA4wGgtEAAAAAAHv8NoPRXK+79QDQEZPJyvz4/5B5129Ib/ohmXe+T+Ynflcmk+t31XDSmJSvDbMEowEAgNFh3vzDjUd83d/rbUUwVG47036w1b03E4I1Ssz0KekF39CiENsEAAAAAAAA0BNRSviZJRAF/Ub338HWYfhZ30KegEHVap/o0/GY84D2ddyu0R4OujhlNyAYDUBTnO8CJ0PavtrD/ZgmA4BEMBoAAAAAYL9Me2E3xvO7XBEAnTKZrMzLXy/nn/4HmfveIBNk+l0lnEQOwWgAAACSpFe9RXr1d+y9dz2Z7/8ZmVue07864cS7/Uz7ZW851b16YDCZH/rF9AJp12sAAAAAAAAAjk9a6EkcHmI+J6wXZ2p9T9jf0ivbF6Snflda+/IAre9BqceI6rgTOesNqNMqgKxfbW5avQbmOAB0V1r4GcFowIjjWAigR2hugNHg9bsCAAAAAIABMjnTXjmC0QBgyJnmozK53lUDAACgz4zryvyr98j+wx+UFh+Xbv87MtOn+10tnHC3nzFqp2PLtdNSPpNybo6hZK59VvrWYQhGAwAAAAAAAHoiTgs9iVJvrcAIefg90l9/9977a18vff1vSg73WI62TsPP6NUN1Gu1TwxgMBowIqK0DGF2EQBNcb6LPrIx9121q+Ow7+NdDMFnBw3o9RHQZbTcAAAAAIA9k7PtlXPd7tYDADC4svl+1wAAAKDnzA13yNz7TYSi4Vi84DrJtNFh7tb57tcFJ5DDbR4AAAAAAABAT6SFnpD2AEnaeLg+FE2Snvod6cFf7k99MEA67EROr2+gXst9ol/7DOcBQJyy+0UczoARRxAwBsz5D0t/eo/0gYL0kZdKK5/vd43QpkG9GgDQW9wxCwAAAADYU5hsr3Olx68ZAsBQCyvNx2UIRgMAAACOYrpg9AOvaJ2M9qz5NtLTMHr45VIAAAAAAACgN9LCz2x0iBnRTXNoPfprjYd/9ee7v2wCtAZb6vohKAJoX4t9ol9tYVp4Kg7odB3RHg66tGA0MoQBAANj6TPSx18rLX9GikrSpY9LH32ZVDzf75oNOAK9AQwO7pgFAAAAAOwyjiONT7cuSDAaAAy3tLsSsgSjAQAAAEf1H1/fOvTs1vkeVAQnTzs/agAAAAAAAADg6NJCTw4VjIah9dWfazx86/GeVqMxOir3V1on8rS0GNYbUK/VPkEwGtAvqcFoHM6AEUegEgbIE/9diiv1wyor0vk/6k99TooB2VdbVWNAqtk7Lf/gUftAMCq4YxYAAAAAUG9ipnUZl2A0ABhZ2Vy/awAAAACceMYYfeNd6WVunW8dnoYRZLjNAwAAAAAAAOiJlB+VszHBaABS/h+n0/CzkevVDbQwqEkIBKQCBKMBAE6Gr/xM4+F//d29rccw4boVQI9xxywAAAAAoN7kbOsyrtf9egAABlMm3+8aAAAAAENhYbJ5hxnHSC+8qYeVwcnhcJsHAAAAAAAA0BNpwUYEoqDv6Ijcf2nroNNxaYFqwChq1db1qy1kX20fx6thFaXsBmnjAIyA1NAkjgvAiTAg+3HLqwGaFGAkcMcsAAAAAKBefrx1Gc/vfj0AAIMpSzAaAAAAcBxunGs+7p4bpJlC8+A0jDDDbR4AAAAAAABAT0Qp4WeHCkYbpl6aw/S3DDl6B/dZyueftm5Yb8ABAxqMlhaeavg/3mNBezjw4pRVFLP+AAAAABwT7pgFAAAAANQLMq3LEIwGAKOLYDQAAADgWNx3R/Ob4r/1+dwwjyboTAEAAAAAAAD0RlroSXyYYLSThiAL4MhSA2E6HQeMoFbhSmnH6m7q13KBARKnnSpzOANGHOe7wIk3IIHeLS8HelONAdLqAxm9TwSjgWA0AAAAAEA9v41gNNfrfj0AAAPJEI4JAAAAHIsX3iidm2o87rXPJfwKTTjc5gEAAAAAAAD0RFragx3mYDQAR0cwGnA8Wu0TfdpnCEYDUsPPCEYDAADtOOrVMTlgwGjgjlkAAAAAQL12gtE8gtEAAAAAAACOwnGMfur1Vwegve3FRrcvEIyGJgy3eQAAAAAAAAA9kRZ6cphAFHppoisGNCwIibT9vtNxwChqtU/0bZ8hGK1tHa8j2sNBlxqMxi4CjDjOd4ETb0CuW2kyAEgSPdkBAAAAAPXaCkbzu18PAAAAAACAIffGe4zygdEvfCRWKZRe9wKjf/EyQtGQwiEYDQAAAAAAAOiJtEQHG/WuHgBOoLTe252OA0bRgIZAHiYgFRhSUcpuEHE4A9AUDQSA4zN6LcqAXh8BXUYwGgAAAACgXhC0LuNyOQkAAAAAAHBUxhh98/Okb36e2++q4KQwBKMBAAAAAAAAPZEWekIwGoBUBKMBx2NAO/6nniOwH2M0xCmbelq+MIARwLEQGAIp+3EP93FaEwCSxB2zAAAAAIB6fqZ1Gc/vfj0AAAAAAAAA1HO4zQMAAAAAAADoibREh7RAFKAXCBsYAKb5qNTQJAKVgLa12if6ts9wHgCk7X5poWkARgFBwAB6g0toYDRwxywAAAAAoJ4ftC7jEowGAAAAAAAA9JzhNg8AAAAAAACgJ1LDi6LDzOjIVRkY9Dg9QVhX3ddp4ANBEUD7Wu0TfdpnCEg9hE7XEe3hoEsLPyMYDQCAEy71+5/eHej5GgqARDAaAAAAAOAgP9O6jOt1vx4AgMFTmOh3DQAAAABgtDnc5gEAAAAAAAD0RJQSfjbMgSj0Om0fnxWaSds2UscNcdsCdGRQg9EOE5AKDKc45ZBFMBow6jo8FwYwODq9pu2xAapKb7T8g0ftA8Go4I5ZAAAAAEAd004wmud3vyIAgMEzMd3vGgAAAADAaDPc5gEAAAAAAAD0RGonUAJR0MLI9c5FvbT13+k4YAS1akv7FSZIiCGgKGX3jNhFAADAMeAKGYBEMBoAAAAA4KAgaF2GYDQAGE33vKLfNQAAAACA0eZwmwcAAAAAAADQE3FKogOBKJAkY5qP6/o20iosiO7D/dVh+BnrDTigVVvap32G84BDoF0bVmmnyjGrHRhtqee0NBDAiZD6YwHHtx8fdTG0KMBo4I5ZAAAAAEA9P9O6jOd1vx4AgP75B29rONi86Yd6XBEAAAAAQJ20jnYAAAAAAAAAjk9a6ImNDjOjI1cFJ5Ct9rsG6KeOe3fTXgB1WqUh9C1MMOUcgf/LOx4ERQ68tPAzgtEAAMBxGNjLAQA9RTAaAAAAAKBeO8FoLsFoADDMzJt/WDp1rn7gt/0zmXM396dCAAAAAICE4TYPAAAAAAAAoCfitGC0lHGAJMVhv2uAvuo0/Ixe3UC9VvtEn/YZzgMAxSlJJGmn0QBGAee7wMnXadg3uoukOIwmerIDAAAAAOoFbQSjeX736wEA6Btz9ibp//wL6aMfkL34lMzzXyq95LX9rhYAAAAAwCEYDQAAAAAAAOgFmxZ6QiAKpPQOp7bbwWh0du2/DgMfUrcb1itQb0A7/nMeAChK2Q1iDmcAmuF8F8AhtGoyaFGA0UAwGgAAAACgnk8wGgBAMqfOSW/8QZl+VwQAAAAAsMsYrtIAAAAAAACAnoiPKRiNjt+jKa72uQJsd13XccBZp+OAEdTyGNqvfSbtHIH9uE7Hnwef46BLCz9LC00DMAI4FgInH/sxgAHCTwkDAAAAAOr5QesyLjnbAAAAAAAAAAAAAAAAAIAhFUdpI3tWjd4jtOlY2LDfNUDXpe0PaW0E+xjQvgENRksNSB3mcwRgT1owWto4AKOOBgI9RLjXidfyamDkVvGAXh8BXUYwGgAAAACgXjvBaJ7f/XoAAAAAAAAAAAAAAAAAANAPcUqwiU0LTQMkxdV+1wDdlhaMlNY7O3U6ApWAei069vcrCYH9GEg9VSYYDRh1NAIYEASWdy71mrZ3+/joBZ8BaIRgNAAAAABAPT/TuoxLMBoAAAAAAAAAAAAAAAAAYEgReoKj6HYH7Ja9g+k93H1pn3E3xgEjaFDbOs4RgNTwM4LRADRFyhF6icDyzvUoGC11MUecHsDw8PpdAQAAAADAgAnaCUbjchIAAAAAAAAAAAAAAAAAMKTi4wo9ad5L05aK0sUnpZXL0ulz0vz1Mq57iHljYNEBewR02FG8Rx3MgeHQYp/oWwhZ2jlC1LtqnAgdtmu0hwMvStkNCEYDRh2NAAZEtwPL0XW0Ju2pxL6WqzNaupTXLbNWGd/0u0rAsaInOwAAAACgXn6idRnP7349AAAAAAAAAAAAAAAAAADoh9SwlaMFsdj7PyT7mz+rX3v8euWiol6z+SfK223pOV8vvfv9MtOnjjR/HI21VltlKfCkwOuwM2m81wHb1sJdjKFj6lBJDe3pxjjgZKqEVhfWpLGsVKpK41lpLFPfJpaqVuXqTrsruU5tXMtwrD7tM6nhZ/0KaxtO1loVK1LW37ddYCCkhZ+lhaYBGHWc76J3SuWq3NiT7xCQdngnI9B7cGrSuTCyurwhXdmUKpEURlIYJ+dTxYpU3rf5bhddPf3k2/VM5Zy+tHWXHtm+SVeqc9qIan2B75e++E7pzrN9+VOAriEYDQAAAABQ77pbpVxB2t5qPN4YfpUSAAAAAAAAAAAA6CNjzI2SnifprKQxSYuSnpD0SWtttZ91AwAAAIZCnJLokBqIkjJZHMv+zPdKf/B/KZKjH7nlvVr0FzQWbej5pc9pZnlF629/UCunjIwx8kwsV1aeiZVxIq1WfW2Fniqxo63IUyUymvCqunlsU+cKZc1kQ02PuZo/ldWZ+YLmZ7MaGws0kXN0ekLK+sMbKBLFVo9clr50XrqyaRXHUmST1RhbqRpJz6xKTy9bXd6U1rYl3036807nJWOSzqYX16Unl5POpzuMkRwjGVk5+1/b8zKyyjolZZ2SYusosq5iOYo+NaVYFYWx0VbFyGrvszeyMkYykhyz93qnlDF7rzNurNlMVVk32p1Wkow9LYWfrpWz9eOMlf4qK8WPSrXxxiYfhjFWMo528ohM7R+z7++c87Z17VhJ1+S3lR0f15lzE7r92oxuvWFM3vikHG847x+11uriurRZrh++XUm2ncsbSThPKZQ2S9Lywz8lx8SKraOVcEqr4bSsNXJNJPfSs2Xyse5/xKoUSi+7zShwpfWSldl8jdy165JyJpJnQmWdbW1HeYX+nKpPRAojq82SVdaXpnLJOt3te24lu6/7985wa+1ur3Bb+7d+GklxLBvV2i/XlY1jqVqRjW0SBmltMj6sJK9lJOPImuRZjpss29pkGlkpilSNjbZjX55j5TpJoODpSUc3zvu64ZqCnnU20JnJJNhoLCPlg+EOCiyWrRbXpNVtyXWStmbn8ZVF6W+fScY7RvIcyXOlTC0QbG1burwhrWwl6891kjAo10nKViOpWLGKk9UgqwPPbQxb207auiubSfu4U7esJ03lkzZxZ9NxjbS0lXTK99ykDq4j5fykztVap/1qlOw7lTApu9P+RnGs1W3nqs8o64SaDqqqxkbFyFMxqu/mPOaHOjse6WzhOTpb/nUtZBZ1Njivs5nzOhss1p7PK9e3YLS0c4TOEqGstXrokvTAorRatJodM6pG0nbFqlRN1teF9WTdrW8n20AYS3EYKYqlami1WZYiaxRb7W4jyevkCLEzfLtqtFxMxvuuFLhJYJ0knV8z8t3kc61GyX5ayEinx7V7DHSM5Dg7x7Fk2/3sU3vt0b03WnkmSgaUv17a+vPDfyBfuUXr4boeXs1oK/RkZDXnb2vGL6tiHW2EgULryDOxPMfKN7Gm/IrmM9tayG7rTLakhWlXZ07ndfrMhKbnp3V60tGp8SOEng65OLZaLyXrNR9IfovPKS0YLW1cM6Wq1fp20obEtv65EknLW8n52cFxca29ObjIRpkt9kCphmUaTtdZuZM0/7brMILzv7AufWXRqrhZlmtDZZ2qZr2STmUr8p1kq0qOs6b+GCxz4Bi8N16SrjuT1Rvum9P1c8N1bm2t1Xo5p+3yfHJdZF1F1lXFBnq6fI0WH3q+VtZizRSk2TEj1ySf0TOrybn40mYyn4mcNJFNjjPFSnIcvLKZfH7ezrmLn5TNeNJ2VVotJsfQAcpsQp9cWJc+84Rk7ZSkkiTJVSjHxHJNJEexPBNq8vORpgvJuW0+kM5MGmX95Jw38JLzI99Nzn8dU/9cCKRckGx/Gc+okEkCrXaCrWztemynHdg9f985T4utbFRVXKnIGkdPr3mKjaNrZoyscevP5WOruLwtWyrKRnHyPo5l41iVSqzl9arCyKrgx5rKxnpiK6/xnKOiNyZXkbxCQUE20KlxozOT0sKk0ZkJaWFSGssO9nlRq/35uPb3jZLVlc3kmsiY2jVN7bomiqX1benSRnJNX6pKG6XauflqrMvrsaphrCiKFYeR4p3zcRmVYk/lSqTxwGo6b3fPnSuR0VLR1cNLrhY3rr5eai4r6adSS1xZqUhnM0f6PIBBQzAaAAAAAKCOCTKyz/u70v0falzA83tbIQAAAAAAAAAAAACSJGPM6yW9XdK9TYosG2PeL+nfWWuv9K5mAAAAwMlgP/J+2Z9/e5Lo4bi1ZA+n9mz23j/9cPOZPPx56do2l/eF+2X/4LVSpSz9zcd2h/95/qVa9BckSZvuuP6i8JK9iVbb/3tWwqyeKI1LqWf/SUjLtNnUvL+lqUykuVxVp8akXD6QF/jyAk9e4CtXep7yV35IgVNRYCqa8NY1460o65QUZAvKPmFVCJLOwTshObkgCTvy3aOFHVlrtVpMQqieWZWeWbG7r8+vWi1v7XV6fexK0glVkm6blx5fSoLNusHapDOstP9vM0oyqqXNaPzqiVLiqndCEqQkwCbNZigtlYMmY0+lTnsk6/tef7Z+1HR8RePaVsZEKrhVzQYljfuR8hlH4zlH2SAJ4ZsaczU5ESiTDRTkA40VAs1MeMoVssoErrK+NDuWbDueIznO8XXILletLqzvbDvJ9nNxXdoqRVqrhSWslR0VK0bVMNbWdqSHrxitlA7T1fIHm4+6Iu2P2fjAZ/b31r6l9mjiGWknKq838t2Z7dOSvrTzpj4oylWkCaekca+qvG81HVQ1nalqMhNrvOArN5ZVNp/R9JiryQlP2cBVLpBmC0YTub0gp7FMEojh7wvH8Nzj+dyKZavza9IzK9L5Nbu7LW2UpHJV2qokQXnhvmCwpU1pcU1aLx1LFfbpbrpHJUweW+UkBO14Ne7kX4o9Labsb5tVTw8ue3pw+bSkNzUtV/jLonyzuRuONeaFyrp2d5vIebFybrR3nHONfE8az+yE0RnlMo7GxgJlMt7uuJmCUeDtBV+4+wLhJnPSVNFVWDkl31RVcLcUOHuNvo1jXVhN2qArm9KFteT10pZUqiZhi8tbVmtFq+1yrPVS8tlf3jLaKO//vNpd70cL1CmHyWNjXyjkTiDajq2y9NiB0Mg09z9mtNd1faH2OKS1+rdWRpereV2uNm+znipJX9hIm2nSFnkKNe6UNReUNeZHKvixxrJSNnCUDRzNTbo6NZ1RYTwj33eVqQWjFIIk9GQnJCXwktCemcLgBD5GcXK8u7QhLa4mYULFShLS+dhiRV96sqIrG1aKQimKJMfRetnR4nZGq9VA8b599oy7plsyS7p9cktnphzNz2Z05kxBC2cnNTOTT23rDuYLP7Fk9cdfsPrbp6wuX95UtL2tqFxRqRSqUol0sVrQQ9VTsk3aDGAwZGqPY/Il6R0flZ43u6pX3mmUy3rKZhwVcp6yWXc3jNRzpHxgNDuWBDFlakGzOX/vemznPOg426HNktXfPiM9uWT11EpyHuQ60qnx5PpocU26sCZd2tgLj96uSg9dki5vvL/F3O2BZ6D7InmKrFTdt9mtr0hPrewv1ek22el0fu3RzvxytcdRXL3vFZyKFrLbmshKhZyjsaxRoXhZk1++Q9Onfkw5W1LWljQeb6oQbykfF1WIr1fuAaup2mnZwe+IxrPJ46ht0lPL0m/9dfpn++MfsnrBdVanJ8zuddrimnR+Odb5K2UtrsRa3HAURlYZJ1beDZUzFYXVWNU4CShbrI5rLe70szVKzsfTzsl7G+m09JlPS3e9uKfLBLqNYDQAAAAAwNUmZpqPc7mUBAAAAAAAAAAAAHrJGDMm6b9KemOLojOS/qmk1xljvsNa++GuVw4AAAA4Scrb0toRM4QP07dzeVH61NWn5b812erU/vit2DGtVMakiqQNSZcalXpR7dHEX8XNx0nyTaSCFynrxfKcvY764zmjwDPyHFsbbjUWJK+LVaP1kvSli65Wyof/4davXjz0JDiCFWdaK5pO3sSSSrVHahjNQVdvR44iZVTVuCkpMJECJ1beqSrvhrvbjO9IWd8q7yfbl2uSzteB76gUSl9cyuvJ7YKuhIUmy20UuOI0GY5uieRqJS5opaKkPWoZxtV+eEbWCZVxIuWcUGNeKN/dCbUycl2jjCflfemjTyWBhm9+7paymSQksxK7euDJsh5a8rRabRZIiEGyFR8IyaocZW62yetGXiVpcfddxpSUd4sadzdUjMd05Q/Tj5WJnRAF9FooTyuxp5VSITl+pWp/uyg4FY25FQWuVeBYTWYiTWcjZfzkHCif8zSWkTImVN63Gg9iZTKOctNTGit4ygdGWV+azu8Fz07lkuOcWzvmuU7yvhDsBYo+sWT1p18I9Rsf39Zfnc+pGjc7pjULX2nsQjSpC8VJfaKo/Zt7W378Q1alxx+Uokh/fvGUPrc2vW/smHbCZQFIn1sa1+f+4uDQg+1N63Mg18TKuLECV8q4tTbGk3zPKBcYGSNN5aWxrCPPd+W7Ru6BoFlrpYcuShfXrT71aKxKxDkyMOy24kAPFwOpuH/omDR9Y/OJQkk/l36+65pYGScJL/aMVeBZjde+A/JcyfMcea7Rp59ufm7y6/e3bvt++WPNrhWNpGzL6YfRUgffqwGDjt7sAAAAAICr+Sm/ZOLxBQkAAAAAAAAAAADQK8YYV9L7Jb36wKjLkj4raU3SzZKer72IhnlJv2+MeYW19hO9qiuAAWZrHUPMYZJcAAAYQlHU7xpo22T1u+Pf3O9qdEXVulqtulL1wIjVvlQHJ0gsV9tytW2zSZ/mdnKFgANKsadS7GlNmbZCst73+YMhevmG5YA0ZZtVOcxqJUz5YXIMva040FYc7J0DFVOLH2DVTvDRDkeRxkxZZeurLF9JwGezUND++LkHbu53FYCREllHxdBRMUzeX2zZBrVqcwhFA9C5yDoqRo608xVcRbpwqHMjdGq5Qsg3hg/BaAAAAACAqwUpX4K4BKMBAAAAAAAAAAAAPfQTqg9Fq0p6u6T3WGt3u/kaY+6U9KuS7q0Nykj6oDHm2dbaxV5VFgNi6dPSY7++995aKSpKlVXJ8SR/UsrOS8G05GQkx5ecIHm4gWT8vdc7w/eXaTTMeNrtyGlt+6/3D4tKycPGko0k1Z5tLMWhFG4kzzaqHx+HUrgpxVVp7UvJ3xluSPlrJK+wN4+d6cJiEhAWVa6el42TR7SdPJIPsP6zbDps//AW0+y8bjhtq/H75x1J4VZ93RXvvd75u6Ni7e+sMY6SLEVTC0tzas9mb5xxJS+fvN75nGwkVVb25pO/LtkOjJs8HE/yxpLtYXc+Kc/GlTKzUvZ0Ml1cldys5I1LXi4Zr1q5nfJuNlmvO9ueV5DiSm3YvroYtzZ+rMHfWwuIIyju6OIwWW/7t5GdbS4q7dvX4/rng8PCrdr6tlJUrs38KPtRl/fRqLzXTpSXOjCgMwAAIABJREFUpNx80nZ2zErVjaRd9sdVv62afdvqwe34wDa98964yT7hZmvteXZv33S82j7q1fYZ9gOMGHsMaUtH7CP+R2Ov1oY7cfR6AAAAYOTEcrVuCXIEAABAvaUywWgYPgSjAQAAAACu5qUFo3EpCQAAAAAAAAAAAPSCMeYmSd9/YPAbrLW/f7CstfbLxpj7JH1Ue+Fos5J+VNL3dLWiGDzrD0oP/ud+1wKDbH8ojG1eTNW19PkUnzyW6vRfs6CpfQFqTpCEZNkwvbxxrh5XulS/uMINtWBBPwmBqwt085JlSUk4nBxdFeaVFvR1VchXs+HtlI2TILzS5b1wvf1Bg3FVisvCCeb4kltIQtT8CcnNJAFvXiEJLXQytSC1fdunP5YM391ePcnNJduD4+9tG9lTSYDcbmDjvgBHW5VKV6TylSSEM5jZW5YTSMGUlDmVhF5KybD9wZhxJQml8ydrgW8H9sVGYYh1w9zk7zDeXpm68QeCHB0/Caxzs5KbT/aHuFoLmHP36i1Hctxer8XREEfH99nGjYLRrORqr+lv9HBrD0kmn3bwPMCRlLG7mZCy0h3VB/Q9K+/Rb4+/TkveXMd/CgAAAAAAAIDh49mqcvG2zL7/0zkzdkELwQXdlHtEdxW+rOsyT2rOX9Ksv6Tpj61p7s6flnRX/yoNdAG92QEAAAAAV/Mzzcd5R/l1WwAAAAAAAAAAAACH8KOS9v8H3X9rFIq2w1q7bYz5TklfkLTza0j/2BjzU9baR7tXTQA46Wx92FijvJuodHyL23r8+OYFHEVcleJVqboqbT/T79oMB8fX1aGJOvB+X+hiXdkD5dys5GT3jWvBWinaSgLb3FwtqHF/yNtOcGPt2c0mgXOytWEHyu9M43i1ADp338NJnt1sEqQnSdsXpa1HpYk7pLEbDyzvwLydIAmZk62F59l9IXq196XL0pd/ItlObZgs48wrk2C8uJqE45UuSXFp7+/fbc93Hqp/b60UVWX+SXXvc9ufh9cF5gYr87Zq3bDn6PP6peif6ef0dv2v9VfpE6sv0lJlWjlTVN4pata9Is9ECq2r0PoqxVmV4qymnFVNOJvKmJKypqzACXW+sqDHSjfoSjij1XBSy+GMLoTzWgwXVFHKfYBDylGka92nlFFFjonlmlCOsXJMLM+t6obs43pW/mFNByuq2EBGVivhtBzFyjhlTXprujbzlBYy57XpZLTh5rTuZrXlZrTpBdp0s9p0M9p0M9pyM9pyMqpGGUWRJ+PEMrLJs4lljJUxsTyvLMdJAvmsTTa45LSj/nUyTpI1srX3YTWjcmlcsXX2NmkZyRpNV4q6c+2y5subu9Na7T3vvm4wbrfMgXHlOKPzlQU9Xb5W58sL2o5zerJ0nSK6IGrGLGnWWVbWKSnnbmsmvyxrjYyxmnTXNO0vyzdVRdZVJFer1WktVha0Fk4o55b0rNxDmvRWJUmRdRXLUWRdVeKMtuOcCu6WfFORZ0J5JlTWKasUZ7QRje92gt7fGdqYBsMavN4pVzfsYDkrGbsX4JgchkzyemeafcHKe/NJyjk2VsHZUhR5qlpPxSirJ6vX6vHKjXq0eqO27NgRP/3hci5+WneWH1BGZYXyFBpPRZNXxQQajzc0Fy9pzl6RZyNFxlUoV5FxVZWvkslqLl5SoFJtL689HCtjrYxN1vnucLPv2bEysVXObmtel3TKXlJgqqoaT1Xjq+jltWqmtGKmku3GSOvOhObskqbMqiK5Co2n0PG05RQUGXd3e/XcUDmnqJy7LVdRrf2N5CqSZ0L9TeUFqiijyPX0TZMf1mo8qY14TBm3oqzZ1nSwrLxXVNV4KjtZXaqe0vnyWZ0vn9ViZUHnK2d1vrygxcqC1qPJfq/Cvrjb/aLOOItacC5oxluW71blulHyMJFcJ9KYtynfrcpYK8fdOxY5iuXsvDaxfKeq2WBFgVNRJQ5UijPajMa0Gk7p+x/+haZ1ePP8+/TiyU/Iyii2jmI5+hcP/WLT8v/2+h+Ta6KO/2bHxrou84RuzD6urbigi9XT2ogmlHVKKrhbCkxFUewpjD2Vo4yuVE7rQnlei9UFXajM60J1XovhGa3FUx3XAYPFtaFcm7QtjmI5NparSEZWjr06/Hj/8a7ZsMZlrtawnO10/kcYZrs3/07/xiPN/xiXeaR12aIeRlZnwgvJcTpa0mV3TkverGI59cfj/Y/aedT+x1PeNfpc9rkNajU6Jpw1FapbqhpfK2Z6d3heRZ3TeU1rWTmVtKgFhcaTr6oyKmtaKzqly/JVVdX4qhpfm2ZMrkJVTKCcU9K4u6EZd1m+qo0X3uZXK313Eup5EuooyQ0i3Tr9oG7JPbJ7nRZZV7F1VLG+lp+a0Xo8qbLJaNWd1OXsKVUqvqoVX2Wb0ZYd25tOyXSRXIXytBkXVLYZlW1yPVeM8wpMRb6pyjXJcWr//u+Y+Ko2oRjntRQ3Dsufcy5r1l3am17xzjcIe++NlatIU86qPlJ6Repn8WL/E7oYz+tCPK8NO9GFT3v4OTbSdLSinC0pF29rLrqiM+FFzUeXlIuLchTLtZEc2dpzLN9WFdiK1t0JLbszsjIK5Sljy8rHW5qM13R3+cu6PnxCp8PLKtgteUrOdzwTykkuyvdkJOcfNWnjJMUFV8Zsdf/DAHqMbyUBAAAAAFfzg+bjPC4lAQAAAAAAAAAAgG4zxuQkvf7A4J9sNZ219kFjzAclfXttkCfpTZLefbw1BAAAwFXi5p3TRsblv+zevC/8ryPPwkgD0ZvKuFJGJb1m+oN6zfQHj33+1kqb0ZiKcV4r1WldqJzRYuWMLldPaSWc1uXKnJaqc6paX5F1FVpPVetrKyqoFGdUsYFKcVYr4bTWwklVbco9hV1gFOu0f0nnMs/oXOa8zmae0Zngot71+I82neZnb367vvvse5RzW4eZWkkrflZPFqZ1PjeuVT+nNT+jNT+nz/oZfdyfVbyblhdJKtYeiVzt0bgLc+9sSprfXNJrn3lAt24udWUZ5TjQA1t36JnKOVViXxUbaDvKqRRntRZNark6o2Kc01Y0ps1oTOU4o2KU13I4rY1oXNU4CfdbDadUttmu1DFNzinqXOYZnQ0WNeWtKu8mHZYnvVVNeBu7ndfng4u6Nf+Qbsw+Jkf14SpZp6RZf6ntnErsiayji5V5bcfJNrMeTmg9mtBaOKFilNdmNKalcFYr1SmtR5N129BSOKONcFxluxPaNN16gV0w5a3obHBe5zLnNesvKeuUlHW2NeZuyTdVeSaUb6oquFtaCBZ1NrOohWBRc/6VpOO79VSuBeDN+kua9Zf78nf00zfrD49tXpthQYuVBT1TPqfNaExV6ym0nio20EY4rooNVLW+qrGvrbig7SiXBFjUjnXlOKutqKBKHKhsk21tK8qran2V44zWokmtVKd3gzOsjpacOudf1kKwqNP+ZeXdojJOWVPeiqa9VRXcLY27Gyq4W/qeB3+l6Tz+53O+Ua+Y+eiR6tEuI6vve/g/NRz36pk/0RvnP1A3LOds67u++qtXlb0z/yW968Z3daWOhxXGrlbCaV2qntZydUZbUUFr0UTt+JXXRjietD020FZU0OXKaV2pzqlifVXiQNtxTuvRhLajnLbikxv0+Lyxz+o2/6u6LfOgAqeinZQNR5HOTTyj08FlzXpLUuxpKZzVI9s364ubd+h8ZUFL1RktVs5osbqgbZvvvA7B5/Q1wWfkmVCBEynvVRSMbSjrlHRz9nHd5l+W70ZyHCvXsbXnWK4Ta9pbVd4tSYolVZScn+0LnG52kG4QstXcYcoe1iDUo0t1ONRnfBiD8Jntm7cxkuPuvm68xbWux+VNV//PxTfrgeLtKsdZFaO8NqJxleOMSnFWG9GYqtZXaD1F1lXV+loPJ1SMC8f1Bx1KwdnUddkndW3maVkZXaqckiSdCS5qIbOo+eDibrBccoxb1d2FL+lscD4JSlUtwNNEmvTWNOmt9+XvABo61e8KSD/xxDv0rx/7D3XDfuT6d+vf3/jOQ83n3Cef1GLlbMNxB88lt6J88h1ROQmTvVQ9ra2ooM1oTBvRuLaivFbD6eQavnYdsx6Oqxgn12/FKN+Xa/v9vmHsY6paX8U4p0fLNymUp8BUFJiKTnuXteCd11lvUWe98zrrnlfO3VY5Ts7lKllPvlcLJS8GmgrPJwH52QuqWl/OTBLy7IRGrvHkulY5r6wZf1WOo9p5R60ipvaPkSQrlUtSaas+zGzntetK2bwUb8vs/ADEMXNeFsleV2xdEDhhBuCrfAAAAADAoDF+pvlX8i6XkgAAAAAAAAAAAEAPfKOk/T3N7rfWfqXNad+rvWA0SXqdCEYDAAAARoYx0ri3qXFtaj64pNsLXz3S/KxV0uk0yms7zimsBdFUra/NaEylOKtKnISpbUaF3c781VqoyEY0vjtsJyRoMyoosq62ojFl3W09u/BFPafwBd2Ue1QLwaJ85+qOon+9fo8+tPzqhnW86Zq/0eMT45LGG44vO66ezk/qyfyUnihMacPvb0fe4/LI2Kx+/rYXa7KyLefAnZ/GSjOVoq4vrur6rVVdV1zVqfJWXR9dK2nLDbQaZLXpBbINYh6yk+f1nPAxTVVLKoSVjmOCynGgShzsBhgthbMqxVlV42TbSALWCrsBRUlQX7Zue9uK8irbzG5YRGS9ZB7W143Zx3R34Yu6LvuUzgbndTZzXhPuOoFmfeSaWGczi8cyr8g6u21NOc5oI6qFYMX+brBjMc6rHCfhRltxobaNJIFYv/D09+nJ8vUN5z3urus1s3+sWf+KnlP4gp6Vf3h3Gyq4dCzvp5LjadXPat3PKNoNrFzTvNY0X3vnx5GmqiVNVkvybdxsVh2xVrvb0FZc0Fo4qZVwWhlTVmg9bUTj2ojGtRpO6lLltPJuUbfkHtFdhS9pxltueCxr5Oef/n59pXhHw3G+c3zBu7GkTS+jNT+rbdfTWFjRVLWkXFSVkTTlrTaddtrfG2clbbu+vvbcn8t/qKxqnKkr++2nf/vY6nxUnhPpVHBFp4IrR57XTju0P/RzJZyuBayNaTvO7YXLVqe1Fk3W2qxAxbiwex61Ewy5E8a2Ewq5FRU6Dhp5TuHzGnO39Mn1F9UNv2f807r/BS+SY44eHGWttB5N6Ep1To9s36xLlVM6Xzmr+9fulTFW096yilFh9zMoxVmdDc7r6yb+Sv9g7o90ffbJo1XgeHdv4PCio8/iVCC9/dqfP/R05Xhvv9oJAj14vZWcZ/vajnPajMbqzrslaaUWcpScR9dCRWvTVa2vxcoZXanO6ebso3rFzEf0mtk/1j3jnz6W9gNAY++47qd1Jrig/7r4T2Rl9NYz79XbFt576Pm4pnkDlQSi7im4Rd2ce1Q35x499HJ2FKOcyrXzv51r9qpNrstWwymthlO16/jkPDoJmC3sXsfvfC+0HM5oK8pruTqrDy2/Sp4J9ZLJT+gPll7bdNmPvfCmo59TdMoqPQPTUf3/7NeJpGjj2Kt0kMl0HmILDCp6swMAAAAArhak/Lqj5/euHgAAAAAAAAAAAMDoetWB9x87xLR/ISnU3n2izzfGzFtrLx5HxQAAAACMFmOkwFQVOGua0lpPlrnqZ/X5qTN6rDCjlSCnNT+rBx4/LS03Lv8/br9FhbHZntRtEK0FuYbDlzN5PTw+t/s+F1Z0zfaaQuNqrRY2FDpu28tx41iTtQCiiWMJISrXHpK0F7rjSpqJYy2UNvT1V56QF3e2nKqSv821sdzUHsytxZJC0/iz2nY9rflZrQVZrflZrfrJc7nJjxF7cayJsKyJ2uc4US1rslrSeFiWFx89fMLIHntAVL+5JlbBLe4GlZ3R4b7iyDol/fOHfqnhuD9/3n16wfhnj1zHYWclVY0jNQhQbKbqOFr3M1r3kvZm3c9qrfYcN0gtjGW06QVarbX7zfahZgphRZPVkqYq28lztaTJSklT1e3d17movbAySbt/qqNQ41rTeLCma9ReEIOVVFF77WujUMrdKjihKrW2xxqp7Hi7n+H+z3PL9WUbfKZV42jdz2q11j7F5up4Sz8ONVUp6TH3JqnJzzJ8/Loz+tLZr0/auCCrqpOsm5fm/rP+7E+/T3GU9DG4+fq/lvPyv9J7dI+8LrdD+bCqid1jUnn3+JSNQx1Hjo+jWJ7dm9FOO5Ss1jWdyRz/V63FKKfIurWwtXFFcndDHiPrqmp9LYcz2o6yCpyqCu6W7sg/oNPBZUnS/1x+pf794/9Wq+GkXjT1l/rRG9+l0Gkv0rTVsdIYadJb16S3fqQwFWBQ7M+32WmHrdn3WtLOgcDIyrPxIY6Ax6NqHFkZGTdSzt1STluaziwdej4H27M0SXCyr3U/q6/4c3XHkC2vcV8zY+1u2ObkvmPvRLUst83ldi5ZY461MrXX5CLjpHCM1Xcu/Lq+c+HXjzQfk3L8Dkyl6bhO5d1t5d3tY5/vju/56i/pPYvf3XDcmeBC15Y7iNK+h9jPs1HHIfbAoCMYDQAAAABwtSZfVifjCEYDAAAAAAAAAAAAeuDuA+/vb3dCa+2WMeYLkp6/b/Bd0iF7DePkKlwrXfu6+mFORgqmJRtK5SWpdFEKN6W4IkUVyVaT1/vfR2Wl//x5Hzi+ZFxJTvJsXKm62nIyLbxKcoKkvJuRbCy52b1hxtk3XycZ7uWT91LS+3PXvte7wxuMbzhNo2lbjW+xbK+QrF/j7NV/5yEnKefmkr9JVrK1bn823vc+3hu+M86GUriVLNO40iffpKae++OSPy7F1WS7slGT+cf1y4/LUulSsj1GpWTdhMVkHlG5Vj7am5+NkjpF3et0gwFgXPVkP2q2X6eNNyZpQ9OM3Zw+fr/NR5qP88Zqn8W+/VY68L7JOBvtGwYAJ4OVdCE7rs9PndHnpxb0RGH6qjKNQnR2ZDJbXazd8Nj2Aj00fqrj6SPH0XImr+VM/hhrle73rrnryPNIwhrKu8FIO+E5hbByVXCClVRy/STcrBYCsRMi1yhQaFDlwqqmqrVwqNrfPB6W5RxDOIXRXgDVzvwDGx290l1078Snmo67Ift47yrSIyXH2wvpC7Iquoe7/zsyjtb8jFaD3G7Q3/4wrEG15QXa8gKdz030uyqHcvHzY1Kx8bhfvPPr9N/nO2+321F1PF3OjulSvtC0zEPTU1rZF7S545bbP6lz131BlxZv1djEZc3MPaXzJq/z6t1xopsahe2NVSupASTHJ649qpIkz8b6/9m783jJ8ro++J9f3bpLr/d2T3fP9Cw9PdMzMMzgDMIExhlAlE0kiqABxW0QlxA1atBgngSRPGqSx0fNo9FHY1BMFMWgAhoVFyQoIxhZwi7MwGzAMFsv0/tdTv6o27fr1l36LlV17vJ+v16nb51T5/zOt06d+lTd6qrv3Tl+OteN3znTVPNcI7MjgyO5Z+tYTl96X1721Nfk3m1jOdEcyk/mlmXtcc+ZE7ni5NFcPj1dcepoRsdPpySZTMnRweEcHdySo0MjOdYcXvS1Wa+ca1ZVlY75ZHpZafsNuX29tmZX082vZjXFKud+y25fr8xtnlU69tm23sw+Z/bRUU/Hesl8jbgy0+Sw6lhv1j47jsF86y12DOZb78LHYP7btvgxmHvbltKM7EK3rX29C92uObd/Fedtc2oyA1WVZjWZ5lTr50BVpTk1mWZ1bn4qg1NTGaim0qym0pya/llNZaDtcvvyUs1ukfmJnXvzkbH9KVW1qnrbbZs4m9Gzp2aal42Nn87g1OT069zWa4Zjg8M5OjiyrMbJa1GZbpLWqDqaplVpWz7dRK2q0phzXfvyKq22sK11zi2bO98xdtt1jY7xZq/bXu+5/XTUNM/2i92mxWqYtd/FrutcPt/tXaimWTV01j+930Vuby+b202mzJznR4a21PZc1k0lydlFHrNDje43Ruu1b7r4zfM2Rrti+N4Mr8Pbs5gqyUPD23Lv1rE8PLx1+ne41mutI8t4H+J1H/2LXHzG+2JsTGv7XQgAAADqMTS88HXL/MtbAAAAAAAAwIo8oWP+zmVuf1dmN0a7Psk7V1UR68e+Z7ambpiaPN80bXK6cVo1fv7y1NlWM6xqPDn3lZVS5l6eb9msy2k192pua2tU1sispmUDW6abfXW4+3eSO75p8dvx5X+YrPEvcK95izVGu+a7k+Hd/avlXOOnyVOtRmoDQ62f1URr+dRk6/LUmVYjtfYmUue2n9NUquO6zuUTJ843zVto+87LD70n+dTPz38bDrw02XNrWyO5tulcQ7qpM20bdDbrKt1dvtB6ze3JyN5kcDQzzQjbp8HtSZluWNhoW94YaTUXbG/Qd+5naX2dcOZnSqtRYTXV2ufAIn/Qby04fnfy9qsWvv5rl/GU/dYrkpP3z3/d8+5Ixr5kWaXNqKpk8uT57J48Of1YOPfYmGxdN/HYdDPCx5Lx4+fzfvxYqwFcNZFMTZw/N6fOTjfVnGgba7w1dqPZug8nT08/Xkpbprc3tJz+OTSWDO9pbX/2yPS+p5tynnm4NTW3thpiVpPT2zbPjzcw3Npu6szcx965xoztj8v2ZVPj083jYG061mx9SbcuE9PNcI52NMM50RyaaTDQC6cGBvPI8MINWZIkZeEKmoP1fjm2JNmW4TTan9/aX/eeW6ltvlEGsiPDGX34AzMNpkbHT2fH+JkMVFXrefa230mSTFYTee+xd+bDx/+u3zdtQ6hKyWODI3lscCT3bYxePRd0qjmYU83BfKFPDaK2TJzN6PiZNHv8HDs4NTXT0GP07OmZ5m9bJ8bnbXJ3ojmUo4MjefTiU9nzyc/n4ROXzlrnyv0fzi/feOPM/NaJ8Vx+6miuPHEkV548kr1nTnSlMcN4aeTo4EhOLbNB2Xij0dbg7Hwun1jgD12PNwZydHAkp5e5H9auRqN/r1svueyT89cwMJ7RXQ8suN2WrY/lykPv71VZtVrLzfZKVWXbxNk0UuVYl147Pjy8LQ8Pb8sHd53Pyu3jZ9JIlceaw11r0ATr1URjIBNJzvSpRUc3H3MzeZbRro25VrUa8JVMiax1aznN7ea/bnbjtiQ50RzOscGN+Vx2ornw++lvPHRT/vSiC7+OGZmcyL4zJ/LMhz672FsvfXFg+KO5ePgL+eKZ/bOWf9Wlb8/9W3Zmz5mTGZmaqKm6CztbBnJkaCRn5vk/ySrJ4aEtuXvbrtyzbSz3bh3LyUXuP0BjNAAAAOYzuEhjtAX+Ix0AAAAAAADojlLK7iSdHYbuXeYwnetfu/KK2NQaA0kGWk2L1up/F1/ynAuvoylabzUv0MSk20ppNUhq7EgGd7SWDe3qbw1LcelXJ3f951ajqHaNoeSpv9JqDMX6M9CnZkWreVyda0qWPj8214uqajV5a2+YNt/PqkoylRz+UPJXz59/rC//o2T4ounH+bmma0tovjjrusxdt7253XKMH281k2sMtWpvvx0zP6enieOtBnNl4Pyymds+dX7dmSaTU9MN8dp+ThxL7n/bwvXsvrljzOp8A72p05ndOLExu3FiabTWO/6Z1lgH/kkyvLeVnWWw9Vgc2ddq4HjBBqznLmeB6xqtx0xjsK2hY1uj1jRa1zW3JZ3tccpAq4nf+GOt+YGRVnPBieOzj2P75clTycSpuefC9DH6u/GP5PfP/q/l3febxA03/lnu/czNc5bvHF24WctqNdLIzuaujDZ3Z7S5KzsHdmWsuXvWstHm7uwY2JlGGVj+Do7fnbxvgYabQ2eT7edv75N23JK7T30qf/jwm/KJkx9a2Q2CHjnVHMqpNf6F7qc+/w35s7f/SCYmWq/nRrYczc3P/m+5f+vs1+Wf2rl35vKWibOtBmmnT6SxjPaQZ6cblJ1raLZYswJItXCDjkajf00ftm47kv2XfyxfuP+GWcsPXPWBDA6eWWAr6lKVkuOLfe+jS/qxDwBop7ld9zy8bUsmti7t/yHu3LEnd+y5sscVLc0z9v10/vSt/yrHH2v9bnbVte9N9YL35KcGvyKNaipXH3801x97MDcc/WIuP3WsK82sO1VJHh3akvu2juX+LTsX/J3u9EAzR8/9YYHBLTnlu7fQVf6HHwAAgLkGF/nPd39BDAAAAAAAAHqt8xPqJ6uqOrHMMR7smB9dRT2wto3sSR7/Q8k//FzdlWxeDV/yn9fg9uTgtyZ3/ers5Vd+k6Zo69nAli4OtshXtgY0NeuZUloNwZbqkucmY1+SHPnI7OX7nplc9sLu1rYevWmR8/irNlFzr+bW85eHVvnS+9Gp5KFNdOyW4bIDH8ng4KmMj8/O4quued+Kx9w7uD/7h69oNTkbmN3sbLS5O9sHdqys4dlSNbcva/WDWx6X77/ix3PnyY/l7Q+/KXee+liPCoON58BVH8rLXvGDue/umzIwMJ4rDn4oW7cdXXSbU82hfHLnvnxyZ5+KhA6Ngf41RkuS57zwZ/Onb/1XeeiL1yRJ9l/28Tzreb/U1xoAAOiOfr+W7JY9++7JN3/Xq3L4kcszsuWxbN12ZOa6qdLInTv25M4de/L2y67PaIZzfS7KNRlLM6XtDxBUrT/4UBrJPW9eeGe7n5zsvC6ZOpvx8SP5fDmV+4YGc3/jTE5lvPc3thu+8i+S5t5kZO+F14V1RmM0AAAA5lrsr/o0/SoJAAAAAAAAPdb5zfhTKxijc5sdK6xlRillX5LlfqL60Gr3C0vy5J/RGK1OZZGmOJvdzf+p1YDpnt9JUiUHXpo82bm6rvWrMdrg8hrl0EOlJE/9L8m7vyY5Pd17dusVyc2/WG9dsAk1B8/meV/7/+Qdb/+XmZhujnb5gQ/nqbe+JY0s3ryspGS0uSsHRg7lypFrc+XINTkwcihbB2rO2xXm/TVbb8gPXfETeXj8gdxz+s5MVHO/7Hxy6njuO/2Z3HP60/ni2ftTLWHcRjWVlIEkjZllVaZSLWlrWPt27HygV20BAAAgAElEQVQo19/4F3WXwQrMn/NVpjLV91q6riycsQON/jaz2Lb9SL7+W16TY0f3ptGYzPYdj/Z1/wAAdE+jz68lu6mUKrv33HfB9Y7mTP42n8/f5vPTG+b8z3NvbVx98wVG+VRr3ZmvzZ5Zbrn12nZFMnRZ3VVAT/g2OwAAAHM1Bxe+bsCvkgAAAAAAANBjnd+MP72CMTobo3Xj2/7/LMnrujAOdJ/GXKxVA0PJzb+QPOXnk1RJaVxwE9a4xiKfq+mmrjZgY9X2PDX5x/+QPPjXSaOZ7H16MrjqvrPAElw6dGWesO2m7B7cl9Hm7owe2J3mrSfy8XuGcmD3YK7f/6SU8qa6y1y5xiJ/yHaxBppJSinZO7Q/e4f2X3A3pz//R7nv72/PPVvHcnhoS4anJjI6fjpjZ0+3fo6fzo7xMxlIldz628nBb5zZdqqazGOTx3J04tEcmXgkRycO58jEIzk+cSxVDxoSHZl4NB898fddH7cfGmlkZ3NXxpoXZbS5O9sHdqR03I9VqpyeOpVjE4dzdOJwjk0eyempkzVVDP2ztbE9O5tj2dncldGBXRlujMxeoaqS05/PyNkTGdv2uIzuvDGjzd3Tj6ddGWwMzTvu6alT0/n0aI6MPzJz+ejEI9M/W/NTmezDrey+xsD8zSxKGtkxMDpzTHcOjKZZ5v6uUtLIjubo9LHcPXNMtzS25bHJI+eP3UTr2J08+0hy+gvJnmay5ZKknP/uwNaB7TPjnMu5HQNjOfnR1+XoXb+UI0MjOTK4JUcHR3J8cChVSrL/q5JtB1Z3EO78z3MWTZaSx5rDOXbxbTk6eTiPTRzZGE3yANaYHQOt55DR5q7sGBhLs8z9Ttl4NZ5jE4dnnndPTh2voVJgPgMLvJYEWC98mx0AAIC5hhb5oM1iTdMAAAAAAACAXqj6tA0AvVJKLtTchHWim40YFxtLE721Z2gsufxr6q4CNrySkqu3XJebtj8tN25/WvYt0PTryif2ubBe6VOD35HmWK49/kiuPf7IhVdubp012ygDGW3uymhzVw7kUI8qnOvI+CM5MrGEei+gSnJq6kSOTjdqONfY7ejEozkzdWbebQbL4HQDiPONhEabu7JtnkZnSTJQmtON0HamsYLn8LNTZ3Js4nCOTz6Wbvw6f7Y6k6MTh9saRLWaHp2cPLHqsZNksprQ0G0d2dbYke3N0TSy9HOzJNneHJ3VAGuseVF2DoxloAwsfZzSyPaBndk5MLZgY7PVGmlsycjQZbl46LIF15mqpnJ8usHjZLWE5hBVlZy4Jzn7SDJ6QzIwcuFtVuHPB/flyALX/eCB12Zs2/mGXwOlmZ3NXdk+sHNZ98V8djf2Zvfg3lWNkSSjAzsyeupoDpw6OvfKa38uufgrVreDd37vwtc97b1JWvfxicljOTpxJBPV2cXHmziV/OWz5r9uZF/y5X+YJDkzdXomQ49OPpoj460sPT3V+fco+qHKqamTOTZxZNEmfxcN7suVI9fkyk/8aq44eSQjk/Oc789/3zyjJ0cnHs39Zz6b+898Nved/kwOTzy84H6a08+TQ2WxBq+LqKaSk/cmE23Nk4Z2J1v2ZynvnZTpf0sp5y+3XUopHUvaLpW29dqvWWCs8+MtbayZf0v7CB3rzbqubdwyd+kFryvz3JZzl0qZ97r2/c+ppMyz/jzXzRq3LDDWYvdFxzYL3xeN1rXz1HXB++GCdS10P8weKUmmMpWJajwT1Xgmq4npy7N/zl2+0HUTmWy7PFGNZ6qav7HjlsbWHNr6hHzp9i+b9/qlas+z9teGE9V4djbHZl7rjg6cf9072tydnc2xDMzTCO1Czk6dydGJR3Ni8rFV1b0UVVr3T1VNpUo163KVKlPVZNvlqVSZXq+aXntm3am2dapU1VRrrOnL58euZi0/f/nc8qk5l+fse7rGqentWkumZi7PqqOjxql51pl7m8/vq1XL5OwaZ7abezvbb8+5ujaqVT+XrQVHP5qJC/z+uVCTXdaWkpKLhy7LRYMXz2pmvFDD9U67mnv6VCn0n8ZoAAAAzDW4yJt6w/4aLQAAAAAAAPTY8Y75lfwnXec2nWMCAADMqzk1mdHx0xk7ezqjO56QsV1Py86BXSv6UvxyjDZ35/Fbn5gdzbGe7mdT6mh2tvi623pXxzKMDV6UscGL6i6jL4Yaw9kzdEn25JK6S1mW01Oncqyt0dxjk8dSVb3s017lZFuTuyMP/VWODo7k+GKfe06yY2B0TqO7LY2t6Wy+M5XJfOHMvbnn9J154Oz9qdZIz/nBMtTWnGz3TKOSRuY2xWqURnYMjE03NNudnc1dGWqs42YPXdIojexsjmXncp5ftj6+dwV1aC7S6Oqa7YeyfWSNN9lerCHHQH+eUxqlkR3NsaW9hqimkpMLtaLbnmx5XFdr66apaionJ4/n2OThHJ04nGMTh3OmOpOLmntzYOSa7GiOtlZ812sWHmSR2/ekHbfMXD4+eSz3n/5sHhp/IANlIGPNi2YyaGtj+0wzqpXfmPHkgXcmxz6e7P5Hyd7b+tYwFuitocZw9g7tz97M3+Sa9WVu87bOBmtzG8bNadDWNn++udu5y53N3dqbwc1u2DZfk7jFmtu1jz3c2DL9PHZRxgZ3Z1tjx+qfy+r2plb9bzx7asH/BH7J5/93Rpqnky/96WSe93Q+d+buvPfYO1PSSLWBG+GtNRcNXtxqZjtyba4cuSYHRg5lpOE7uzAfjdEAAACYa3CRv8i1dUf/6gAAAAAAAIDNaa02RvulJP99mdscSvK2LuwbADagdf7lO0iS0ScmRz86d/nup/S/lg3iy8demNtGn9vfnR75WPLntyVpJdPw1MT5hHrKS5N9r+xvPXTfwDIaoy1nXTa1kcaWjAxtyb6hS+sp4O6PJ/e+OROlZLy0NQm76KnJV/5ZkmSwMZRmGVz20KenTuW+05/JvafvzOfO3J0zU6eXtX0pjewc2DXTROjczx3N0TSySBOpecYZLiPrv2kDKza03r8FvpzGnMs1OLqy7RZr5LbGNUoj25s7s725M5cOX9nTfW0f2Jnrtt2U63JTb3bQGEwufX5rAmDNKqWkZKDVlNdL0rVl3zOTB9+96CrPf/gf0mxMJhe9ZMF1vm3/P8/41NlMVOPdrrDrHhl/KB8/8YF87MQHctepT2RqkQbD3bR3cH8uGbo8zXmayw2UZnY2d2X0+GRGf/EnM3rkTEaPnM7242dTzvXafvZL0/jh/zSzvubVsHTr/VdiAAAAemGxv5y2dXv/6gAAAAAAAIDN6WjH/NZSyraqqk4sY4x9HfNHVllTqqp6MMmDy9nGF3dhAynNpJqouwrYWK78xuTj/77uKmB1nvAjyXu/fe7y6364/7VsEIONwQxm+U18VmV4TzLleX7NOfAN3RtrOY1petnEBrrp0CuTe9+cZlWl2f67yqHvSQa2rWrokcaWXLv1hly79YZVFgmrMzhw4XVqV1ULX9dc3WMxSXLTv0v+97+au/xJ/2H1YwMArFfX/fAFG6MNlMlUD2+5YE+7wcZQBjPUvdp65PKBbbl85GCed9FLcmryZP7h5IfzsRPvz12nPpGTk4v8N/rpLyaZmv+6kf0zF0uSnc1duXz4qlw+clWuGL46lw0fzJYlNJCvpu5J9XffN/+VE400Vvk7KmxWGqMBAAAw12KN0bZojAYAAAAAAAC9VFXVI6WUw0l2tS0+kOQTyxjmyo75T6+6MGBzu/kXkv/1qrnLH/8D/a8FNopDr5y/Mdr1P9r/WmClDnx98plfTx581/llFz87ufxFtZXECgxsqbuCze2G/yv52E/NXX7tPK+9VmoJX+Jd0bpQp4u/Mjn0Xcldv3p+2eUvTq58WX01QZet+z860I3GaAdfnvzDf5xuaDFt25XJFS9Z/dhzrPPjfc7Wy5OT99ddBQDQS/uf13oPbjFTSfXpXRvlFc4sWwa25kk7bsmTdtxy4ZXf/XXJ/W+b/7qXL9Lkdzmaa7+xHKxHjboLAAAAYA0aXPivTZatO/pYCAAAAAAAAGxanU3Qrlnm9ldfYDyA5bn8RcnQrtnLGoPJwW+upx7YCHZckzzxtbOXjd2YXPdD9dQDK9Hcljzrj5NbfqPVLPPL/mvyrD9KmhptrSuDowtft/vJ/atjs3rc9yc7nzB72TXfnYzd1L19NJfR7Kwx0L39Qi81BpKn/kry3L9JnvxzybPfmTz9d5OBRf5ANNB9izU/60azzW0Hkuf8dXL1K5JdX9pqiPicv05G9q5+7E6X/ePuj1mHm/7d/Ms14QaAjWNguPUe3NDuBVep/qiZfHF7H4tao677F/MvP/TK7u1jyO+h0AvNugsAAABgDRpcpEP9li781SYAAAAAAADgQj6a5Na2+S9L8odL2bCUsi3JjfOMB7ByW/Ynz/6r5O+/P3nk75KxJyY3/kRy0T+quzJY3278t8n+r0oe/J/J9kPJpS9IBv3hQtaZ5pbk6m9L8m11V8JKNbcmF39l8sV3zl4+ckmy58vqqWkz2XJJq7HTfb+fPPapZO8zWo1ZSunePgZGlr7u0EXd2y/0WinJ3ttaE1CPK74+ef8/n7t86+WLN01bjp3XJrf8WnfGSpLrXp188mfmLr/2Vd3bR50u+5pk21XJic+eXzY4mlzl9ToAbCgDI0lzcOHrP99I9lf9q2et2nNbsufW5OE7zi9rbu/ua7/mIt/HBVZMYzQAAACWZ9fFdVcAAAAAAAAAm8GfJvnutvlnLWPbZ2T2Z0Q/WFXVF7tRFKxpo09Mjs7TA3DfM/tfy0a166bkue9OqqmkNOquBuqz43GtxjWdDn7Lysbbe2trAqjTU/5j8s7nJKcfbM03hpOnvcFzfr8M706u+c7ejV8aySXPTR7488XX2/uMZGi0d3UAsPFsvTS55DnJA38xe/lV39bdJp/d9PgfSO5/a3L8rvPLDn1n672ljWBoNHnuXycffm3yyPtat+v6H01Gn1B3ZQAA/dcYSL7iHcnHfip56N3J9muSx39/svsp3dvHoMZo0AsaowEAADDX3suTXfuSww/OXj40nDz1OfXUBAAAAAAAAJvLO5KcSrJlev7LSinXVVX1ySVse3vH/B90szBYs65/TfK33zp3+XWv7n8tG50GKWx2T3h18nffM3f5tf+0/7UAdMvYlyRf/ZHkC+9IJk4k+5+XbL+67qropht/Innk75Lxo/NfP7w3ufkX+lsTABvDM34ved93JZ//46S5Nbnq9uTG/7vuqha27YrkeXck9/xucvzOVlP9y1+8dhu5rcTWy5Jbfq3uKgAA1obB7cmTfqp34zcHezc2bGIaowEAADBHaTRSfc13JP/138++4rkvT9m2s56iAAAAAAAAYBOpqupkKeUtSdq7PL0mySsW266U8rgkL25bNJHkTd2vENagA/8kufd3k8/9YduylyWXvqC+moCN6apvTz73P5LPvf38suteney5tb6aALphZF9y1TyNZtkY9jw1+ar3J/f9fnL2cHLZC5OtB5IH/ixpjLSa4Y3srbtKANajwZ3J09+cTE0kZWB9NBgb2Zc8/vvqrgIAoLequgvYHEopixzqdfDaGNYojdEAAACYV/nOH0+Gt6b6s99KpqaSZ74o5TtfX3dZAAAAAAAAsJn8eJJvTHLuT0zfXkr5g6qq3j7fyqWUkSS/nmSobfEbqqq6q6dVwloxMJw84/eSL/x5cviDye6bk0uenTR8ZBrosnN58/AdyZGPJHtuSXY9eX18+R+AzW3HoeT6H5m97NAr66kFgI3HezAAAAB0SaPuAgAAAFibSikp3/aaNH7zw2m86aNp/NOfTGn6j0oAAAAA6KkX3j7/8i3b+loGALA2VFX1mST/X8fit5RSvq+U0t78LKWUJyT5yyS3ti1+JIm/fsTm0hhMLvvq5In/Orn0+b6QC/ROo5nse2byuO9Ndj9FUzQAAGBFXnHb/L9LjAzOuxgAAGZ8yy2Lvy9dvvVf9qkScsmV8y4uX/MdfS4ENg6N0QAAAAAAAAAA1ojyklfNv/w7fqzPlQAAa8iPJvmTtvnBJL+Q5L5Syp+UUn63lPL3ST6W2U3RziZ5cVVVX+hfqQAAAADAcnzrLWXePss/8nzNlwEAWNwrnz7/a8bXPvSTyeBQ8oyv7XNFm9izXzp32Z5Lkxue1v9aYIPQGA0AAAAAAAAAYI0oj3tS8op/M3vhU5+bvPh76ikIAKhdVVWTSV6a5M0dV+1L8lVJ/kmSpyRp/9T7g0leVFXVX/elSAAAAABgRfaPlfzat89ujvbs65LXaIwGAMAFXL235Ke/YfbrxltP3pEfOvlfUn7yd1N27aupss2nvPLHkud+U9KYbuV06VUpP/vHKQMD9RYG61iz7gIAAAAAAAAAADiv8R2vTfXMr0s+ckdy8AnJl3xZSnOw7rIAgBpVVXU8yTeWUt6S5NVJbllg1UfTaqD2uqqqHupXfQAAAADAyn37rY089/oq7/5UlUP7Sp58IBloaIwGAMCFvfp5jbzgiVXe/ekqh7YczTOGhjJ8/adThobrLm1TKYNDKT/2xlQ/9HPJkYeTy69JKV7Tw2pojAYAAAAAAAAAsMaUa74kueZL6i4DAFhjqqp6S5K3lFKuSvLkJJcm2ZbkgST3JHlPVVVnaywRAAAAAFiBS8dKvvGpGicAALB8119acv2lJcmuJE+ru5xNrezYlezYVXcZsCFojAYAAAAAAAAAAACwjlRV9dkkn627DgAAAAAAAAAA6LZG3QUAAAAAAAAAAAAAAAAAAAAAAAAAaIwGAAAAAAAAAAAAAAAAAAAAAAAA1K5ZdwFsLKWUwSS3JTmQZH+S40k+n+SDVVXdXWNpAAAAAAAAAAAAAAAAAAAAAAAArGEao21ipZTfSfKyjsX3VFV1cAVj7U3y+unxdi+wzh1Jfraqqt9b7vgAAAAAAAAAAAAAAAAAAAAAAABsbI26C6AepZSvzdymaCsd6wVJPprkVVmgKdq0W5O8pZTym6WUbd3YNwAAAAAAAAAAAAAAAAAAAAAAABtDs+4C6L9SyliS/79LYz0ryVuTDLUtrpJ8IMlnkowl+dIke9qu/+YkO0spX1dV1VQ36gAAAAAAAAAAAAAAAAAAAAAAAGB9a9RdALX4mSSXTl9+bKWDlFIuT/L7md0U7T1Jbqiq6uaqql5aVdXzklye5AeSjLet9zVJfmKl+wYAAAAAAAAAAAAAAAAAAAAAAGBj0RhtkymlPCfJd0zPTiT5sVUM9/oku9rm70jynKqqPtG+UlVVZ6qq+vkkL+3Y/l+UUq5cxf4BAAAAAAAAAAAAAAAAAAAAAADYIDRG20RKKduS/Grbop9N8qEVjnVtkm9vW3Q2ye1VVZ1eaJuqqt6a5DfaFg0ned1K9g8AAAAAAAAAAAAAAAAAAAAAAMDGojHa5vLvkhycvvyZJD++irFenmSgbf73q6r69BK2+w8d8y8tpYysog4AAAAAAAAAAAAAAAAAAAAAAAA2AI3RNolSyq1Jvrdt0fdUVXVqFUO+uGP+15eyUVVVn0jyvrZF25I8bxV1AAAAAAAAAAAAAAAAAAAAAAAAsAFojLYJlFKGk/xazt/fv1FV1V+sYrxLktzUtmgiyXuWMcS7OuZfsNJaAAAAAAAAAAAAAAAAAAAAAAAA2Bg0RtscfjzJ46cvP5Tk1asc74kd8x+uqurEMra/o2P+hlXWAwAAAAAAAAAAAAAAAAAAAAAAwDqnMdoGV0p5cpIfblv0g1VVPbLKYa/vmL9zmdvfdYHxAAAAAAAAAAAAAAAAAAAAAAAA2GQ0RtvASinNJL+WpDm96E+rqnpTF4a+pmP+3mVuf0/H/EWllF2rqAcAAAAAAAAAAAAAAAAAAAAAAIB1rnnhVVjHfjTJTdOXTyR5VZfGHeuYf3A5G1dVdbyUcjrJSNvi0SSHV1tYKWVfkr3L3OzQavcLAAAAAAAAAAAAAAAAAAAAAADA6miMtkGVUq5P8m/aFr22qqq7uzT89o75UysY41RmN0bbsfJyZvlnSV7XpbEAAAAAAAAAAAAAAAAAAAAAAADok0bdBdB9pZRGkjckGZ5e9P4kP9/FXXQ2Rju9gjE6m6l1jgkAAAAAAAAAAAAAAAAAAAAAAMAmojHaxvQDSW6ZvjyR5Durqprs4f6qPm0DAAAAAAAAAAAAAAAAAAAAAADABtWsuwC6q5RydZKfaFv0s1VVfajLuzneMb9lBWN0btM55kr9UpL/vsxtDiV5W5f2DwAAAAAAAAAAAAAAAAAAAAAAwApojLaBlFJKkl9NsnV60WeS/HgPdrVmG6NVVfVgkgeXs03rsAEAAAAAAAAAAAAAAAAAAAAAAFCnRt0F0FXfleQr2+a/p6qqUz3Yz9GO+b3L2biUsj1zG6MdWVVFAAAAAAAAAAAAAAAAAAAAAAAArGvNugugq17fdvmPk9xZSjl4gW0u6ZhvzrPN56uqOts2/+mO669cYn0Lrf9oVVWHlzkGAAAAAAAAAAAAAAAAAAAAAAAAG4jGaBvLlrbLX53ksysY47J5tvvSJB9qm/9Ex/XXLHMfV3fMf3yZ2wMAAAAAAAAAAAAAAAAAAAAAALDBNOougHXpox3zN5ZSti5j+9suMB4AAAAAAAAAAAAAAAAAAAAAAACbjMZoLFtVVV9I8uG2Rc0kT1/GEM/qmP+T1dYEAAAAAAAAAAAAAAAAAAAAAADA+qYx2gZSVdVYVVVlOVOSr+gY5p551vvQPLv7g475VyylxlLKdUme1rboRJI/W/KNBAAAAAAAAAAAAAAAAAAAAAAAYEPSGI2V+q0kk23zLymlXLuE7V7TMf+7VVWd7l5ZAAAAAAAAAAAAAAAAAAAAAAAArEcao7EiVVV9OslvtC0aSvLGUsrIQtuUUl6U5Pa2RWeTvL4nBQIAAAAAAAAAAAAAAAAAAAAAALCuaIzGarwuyeG2+VuT/EUp5br2lUopw6WU70/y3zu2/5mqqu7pcY0AAAAAAAAAAAAAAAAAAAAAAACsA826C2D9qqrq/lLKS5K8I8nQ9OLbkny8lPL+JJ9JMprkyUn2dmz+R0le269aAQAAAAAAAAAAAAAAAAAAAAAAWNs0RmNVqqp6VynlxUnemPPNz0qSm6en+fx2ku+qqmqy9xUCAAAAAAAAAAAAAAAAAAAAAACwHjTqLoD1r6qqP07yxCS/nOTwIqu+N8k3VFX18qqqTvSlOAAAAAAAAAAAAAAAAAAAAAAAANaFZt0FUK+qqt6VpHRhnAeTvKqU8gNJbktyZZJLkpxI8rkkH6yq6rOr3Q8AAAAAAAAAAAAAAAAAAAAAAAAbk8ZodFVVVWeT/FXddQAAAAAAAAAAAAAAAAAAAAAAALC+NOouAAAAAAAAAAAAAAAAAAAAAAAAAEBjNAAAAAAAAAAAAAAAAAAAAAAAAKB2GqMBAAAAAAAAAAAAAAAAAAAAAAAAtdMYDQAAAAAAAAAAAAAAAAAAAAAAAKidxmgAAAAAAAAAAAAAAAAAAAAAAABA7TRGAwAAAAAAAAAAAAAAAAAAAAAAAGqnMRoAAAAAAAAAAAAAAAAAAAAAAABQO43RAAAAAAAAAAAAAAAAAAAAAAAAgNppjAYAAAAAAAAAAAAAAAAAAAAAAADUrll3AbAGDLXP3HnnnXXVAQAAAAAAAACwKvN87mFovvUAoI98Rg8AAAAAAAAAWPd8Pq9/SlVVddcAtSqlfG2St9VdBwAAAAAAAABAD7yoqqq3110EAJuXz+gBAAAAAAAAABuUz+f1SKPuAgAAAAAAAAAAAAAAAAAAAAAAAAA0RgMAAAAAAAAAAAAAAAAAAAAAAABqV6qqqrsGqFUpZTTJl7ctui/J2VUMeSjJ29rmX5TkrlWMB7BccghYC2QRUDc5BNRNDgF1k0PAWiCLgLpt1hwaSnJF2/z/rKrqaF3FAIDP6AEbkBwC6iaHgLrJIaBucghYC2QRUDc5BNRts+aQz+f1SbPuAqBu0+Hy9m6NV0rpXHRXVVUf69b4ABcih4C1QBYBdZNDQN3kEFA3OQSsBbIIqNsmz6EP1l0AAJzjM3rARiOHgLrJIaBucgiomxwC1gJZBNRNDgF12+Q55PN5fdCouwAAAAAAAAAAAAAAAAAAAAAAAAAAjdEAAAAAAAAAAAAAAAAAAAAAAACA2mmMBgAAAAAAAAAAAAAAAAAAAAAAANROYzQAAAAAAAAAAAAAAAAAAAAAAACgdhqjAQAAAAAAAAAAAAAAAAAAAAAAALXTGA0AAAAAAAAAAAAAAAAAAAAAAAConcZoAAAAAAAAAAAAAAAAAAAAAAAAQO00RgMAAAAAAAAAAAAAAAAAAAAAAABqpzEaAAAAAAAAAAAAAAAAAAAAAAAAUDuN0QAAAAAAAAAAAAAAAAAAAAAAAIDaaYwGAAAAAAAAAAAAAAAAAAAAAAAA1K5ZdwGwAT2U5PUd8wD9JIeAtUAWAXWTQ0Dd5BBQNzkErAWyCKibHAKAjclzPFA3OQTUTQ4BdZNDQN3kELAWyCKgbnIIqJscoqdKVVV11wAAAAAAAAAAAAAAAAAAAAAAAABsco26CwAAAAAAAAAAAAAAAAAAAAAAAADQGA0AAAAAAAAAAAAAAAAAAAAAAAConcZoAAAAAAAAAAAAAAAAAAAAAAAAQO00RgMAAAAAAAAAAAAAAAAAAAAAAABqpzEaAAAAAAAAAAAAAAAAAAAAAAAAUDuN0QAAAAAAAAAAAAAAAAAAAAAAAIDaaYwGAAAAAAAAAAAAAAAAAAAAAAAA1E5jNAAAAAAAAAAAAAAAAAAAAAAAAKB2GqMBAAAAAAAAAAAAAAAAAAAAAAAAtdMYDQAAAAAAAAAAAAAAAAAAAAAAAKidxmgAAAAAAAAAAAAAAAAAAAAAAABA7TRGAwAAAAAAAAAAAAAAAAAAAAAAAGrXrLsA5iqlDCS5Jsn1SS5NMprkTHZQCE0AACAASURBVJLDSe5K8vdVVZ3o8j4Hk9yW5ECS/UmOJ/l8kg9WVXV3N/fVL6WUG5I8KcneJMNJHkhyf5L3VFV1us7a+qmUsivJDUmuTbI7yUiSI0keSvL+qqruqrG8OUopV6V1v12aZHuSLyS5J8kdVVWN11nbZiKHukMOtcghVkoWdYcsapFFC+7H+bEIOdQdzrOW9ZZDrA1yqDvkUIscmq2UckVax+LyJHuSbElyNsnRJPemdUweqq/CtUEOdYccapFDrJQs6g5Z1CKLWAk51B1yqEUOzc/5AdTBc3x3yPCW9fYc77Mxa4Mc6g451CKHWAk51B1yqEUOLbgf58ci5FB3OM9a1lsOsTbIoe6QQy1yaDafz1s6WdQdsqhFFrEScqg75FCLHGIl5FB3yKEWOTS/dX1+VFVlWgNTWoH5g0n+KK1f7qtFpokkf5LkhV3Y794kv5TkkUX2954kX7/K/Vyd5GVJfjrJu5Ic69jH3V06jjuS/Oskn1vk9hxL8t+SHKrx/u7Z8UgymOT5Sf5Tko9e4Fyqpo/Vv01ySc2PgW9IcscidT4yfa7uWcHYFzoGF5oO1nls+ngfyKHuHEc5JIfaxzzYhQxqn26v8xj16X6QRd05jrJIFq3786PG+0AOdec4rovzTA7Vdn5sS/L0JD+U5LeSfCrJVMe+bq/rONQ9ySE5JId6djyuTfJTSf4qrf/UuNDxqJJ8IMn3Jhmu65jUdD/Ioe4cRzkkh+YbfynZs9h0sK5jU8N9IYu6cxxlkSxqH/dgF3Kofbq9rmPUp/tBDnXnOMohObTuzw+TybSxJs/xmyvDPcfPW7fP6NU8ySE5JId8Rq/uSQ7JITnk83l1T3JIDm3mHOrj+eHzeYsfHznUneMoh+RQ59g+n7e84yWLunMcZZEsmm/8peTPYtPBuo5Nn+8HOdSd4yiH5FD7uAe7kEHt0+11HaM+3Q9yqDvHUQ7JoXV/flzwdtRdgKlKkjet4gntD5NcvML9viDJF5exr99Msm0Z4z8ryTsu8KTQtQdmkqel1YVzqbfnRJJX9fF+7vnxmD4Gj67wXDqc5FtqOP+3J/ntZdT5QJLnL3MfK318nZsO9vu41HA/yCE5JId6kEPp/i+yL+v38enzfSGLZJEs6kEWrafzo+5JDsmhzZhD/Tw/0nrj+CNpvSF9oX3d3q9jsJYmOSSH5FDvzo8k37mKx9c/JHlav45JnZMckkNyqLfnxyoeX+emg/06LnVOskgWyaKeHY+DXcih9mnDvl8dOSSH5NCmPz9MJtPGnDzHb44M9xy/YM0+o7cGJjkkh+SQz+jVPUUOySE55PN5NU9ySA5txhzq5/kRn89byjGSQ3JIDvXo/IjP5y3nWMkiWSSLenh+rOLxdW462K/jUtckh+SQHOrZ8TjYhQxqn7xXLYeW8hiUQ3JoXZ4fy5maYS143ALLP5fk02mFazOtrn83JWm0rfOPk7y7lPLlVVU9sNQdllKeleStSYbaFldpdVn/TJKxJF+aZE/b9d+cZGcp5euqqppawm6elOR5S61pNUopz0mrG+hwx1X3JPlwWg/Cy9N68A5OX7c1yS+VUhpVVf1iH8rsx/HYm2TXPMvPpvXm9gNpdUy9KMnN0z/PGUvy30op+6qq+tke15kkKaUMJHlzkq/uuOqhJB+crvVQWudimb7u4iRvK6U8p6qqv+lHnZuEHFolOTRDDvXOybQ6Wm9ksmiVZNEMWTT/ftbD+VE3ObRK6+Q8k0Oz9e38SPLyJKN92td6JYdWSQ7NkEMXVqX1Jv+daf3Hwsm0/mLuVUluyPnzI2k9Nv+ylPLCqqr+Z78L7TM5tEpyaIYcYjVk0SrJohmyqHc2+vvVcmiV5NAMOTSPdXJ+ABuT5/hVWicZ7jm+wzr7bMxGJ4dWSQ7NkEO94z0PObQoOTRDDs2/n/VwftRNDq3SOjnP5NBsPp+3tsihVZJDM+TQhfl83sJk0SrJohmyiJWSQ6skh2bIod7xXrUcWpQcmiGH5rFOzo+lq7szm6lKkr/P+S56H0jyfUkOLbDuZUl+JXO77/11krLE/V2euV0P/ybJEzrWG07yz9N60Lev+1NL3M8PzlNnleR0Wm9odKVjYVrdUzu7It6Z5LnzrLsryS90rDs537o9uJ97fjzSeiI/N8ZjSd6Q5NlJtsyzbkny4rTCq7Omnh+P6Rp+umO/Z6fP/6GO9a5PckfHug8n2b/E/bRv997pc2Y5U7Mfx6POKXJIDsmhnuRQWr94XShjFpr+pmN/b+zHMalziiySRbKoZ6+J1sv5Ufckh+TQZsyhfp0f0/s6ssC+7p/nutt7fdvX4iSH5JAc6un58cokn0zrtdcLk+xaZN2xJP8irf8Aad//55KM9vqY1DnJITkkh3r+eqh9LO9VL3ycZJEskkW9OR7er176sZJDckgObfLzw2QybczJc/zmyHDP8fPW6zN6a2SKHJJDcqgnORTveSznvpBDckgO9ej10Ho5P+qe5JAc2ow51K/zY3pfPp934WMkh+SQHOrd+eHzeUs/VrJIFsmi3r4mah/Le9XzHyM5JIfkUG+Oh/eql36s5JAckkOb/PxY1m2quwBTlST/K61uezcvY5t/Ns8J/41L3PYNHdu9J8nIIut/3TwPrCuXsJ8fnA79Dyb51STfneTJaXUMfFYXH5i/3THWp5Psu8A2/7Jjm48lGejx/dzz4zEd3F9M8uok25a4zUVJPt6x/09kiS8EVnE8rs7cFwUvWmT9LZn7H42/vMR9tW/zrl7ervU6ySE5JId6m0MrqO2yJBMd+3pGL4/HWphkkSySRb3LovVyftQ9ySE5tElzqC/nx/S+jqT1lxb+R5LXTx+ni6eve1fHvm7v5e1eq5MckkNyqKfnx+AKtnlSkuMdNbyml8ej7kkOySE51PPXQ+1jvauXt2s9T7JIFsmi3mbRCmrbdO9XyyE5JIecHyaTaWNOnuM3R4Z7jp+zX5/RW0OTHJJDcqi3ObSC2rznsbRt5ND5/cih8/uQQ+v0/Kh7kkNyaJPmkM/nraFJDskhOeTzeWthkkWySBb5jF7dkxySQ3LI5/PqnuSQHJJDzo9l3aa6CzBVSXJwhdu9pePk+h9L2ObajifGM0muXcJ2b+zY168tYZtdCz0hdDGork6r42D7WE9f4rbv7NjuO3p8P/fjeOxdamB3bHfTPMfxH/X4ePxGx/5+fQnbPG76nD23zXiSq5ewXft+3tXL27VeJzkkh+RQb3NoBbX9647aPtXLY7FWJlkki2RRb7JoPZ0fdU9ySA5t0hzq+fFoG2/Bv6AbH7w6dxwOrnA7OSSHOseRQ92r79921PDeftfQ59t7cIXbySE51DmOHJp/vPax3tXL27WeJ1kki2RRb47HKmrbdO9XyyE5JIecHyaTaWNOnuM3R4Z7jp+zT5/RW0OTHJJDcqi3ObSC2rznsfTt5JAc6hxHDq3T86PuSQ7JoU2aQz6ft4YmOSSH5FBvjscq69tUn8+bvs0HV7idLJJFnePIovnHax/rXb28Xet1kkNySA715nisojbvVS99OzkkhzrHkUPr9PxYztQItauq6u4VbvqLHfNfsYRtXp5koG3+96uq+vQStvsPHfMvLaWMLLZBVVWHq6o6vYSxV+OFyazz+L1VVf3NErf9fzvmX9GdkubXj+NRVdVDVVWdWMF2/ztJ53Fbyvm0IqWULUm+oWNx5zk2R1VVn0ry1rZFzbTOaVZJDq2KHJq9Dzm0SqWUkrnnwhu6uY+1ShatiiyavQ9ZNNu6OT/qJodWZd2cZ3Jozj77cX6c29cX+rGf9UwOrYocmr0POdQ9f9wxf00tVfSJHFoVOTR7H3KIFZNFqyKLZu9DFq3SZn2/Wg6tihyavQ85NNu6OT+Ajclz/Kqsmwz3HH/eWv5szGYlh1ZFDs3ehxxaJe95LJsckkOd+5BDs62b86NucmhV1s15Jofm7NPn89YQObQqcmj2PuRQ92yqz+clsmiVZNHsfcgiVkQOrYocmr0PObRK3qteNjkkhzr3IYdmWzfnx3JojLa+fbBjfkspZewC27y4Y/7Xl7Kjqqo+keR9bYu2JXneUrbtsWd2zL9jGdv+ZZKzbfO3llL2r76kdavzfLq0h/t6fpKtbfN/+3/au/dgafK6vuOfHyD3y6oIiAhLUAmKGhAT8RI3BiyIJcgl3pVVvF8qmphKoaRCNGIuXquSUqIoipdIEBQFgRBdMBqvtQgoElFBUZY74i677C788secfc6cnjNzpmd6unu6X6+q80f3M9PT5zzf5z3n+Z2uPrXWP9nyuc2ZfXw3p8SOdEiHuqRDC5+Z5AFL2zdn8RvrWE+LtKhLU2yR+Tg8HTJnXeqzQ0yHDulQl3TorHc2tu8yyFmMnw7pUJd0iF1pkRZ1SYsWrFe3o0M61KUpdsh8AMfKe7yGd2mKP4/m8HRIh7qkQwvWPNrRIR3q0hQ7ZD4OT4fMWZemuPbK4emQDnVJh85yfd72tEiLuqRF7EKHdKhLOrRgrbodHdKhLk2xQ5OcDzdGO243n7PvtuseXEq5V5JPbDz/N1u83lWN7Ue3eO6h3Kex/Zptn1hrfV+S1y/tulXG8TkNpTlPa2epA49qbF/V4rm/kbPn+pBSyj33PiN2pUM61CUdWnhyY/uFtdZrOjz+FGmRFnVpii0yH4enQ+asS312iOnQIR3qkg6ddb/G9t8Mchbjp0M61CUdYldapEVd0qIF69Xt6JAOdWmKHTIfwLHyHq/hXZriz6M5PB3SoS7p0II1j3Z0SIe6NMUOmY/D0yFz1qUprr1yeDqkQ13SobNcn7c9LdKiLmkRu9AhHeqSDi1Yq25Hh3SoS1Ps0CTnw43RjttHNbZvTvL2DY9/cGP7VbXW61q83m81tj+uxXMP5UMa2+9u+fzm4z9+j3M5ds15evMBX6s5i/932yeezOyrG7vHMItzpUM61KXZd6iUcrckT2jsfmYXx544LdKiLk2xRebj8HTInHWpzw4xHTqkQ13SobO+vLH964OcxfjpkA51SYfYlRZpUZdm3yLr1TvRIR3q0hQ7ZD6AY+U9XsO7NMWfR3N4OqRDXZp9h6x57ESHdKhLU+yQ+Tg8HTJnXZri2iuHp0M61CUdOsv1edvTIi3qkhaxCx3SoS7NvkPWqneiQzrUpSl2aJLz4cZox+2Jje3fr7V+YMPjP7ax/fpzH7Xen11wvCHc2Ni+XcvnNx8/hs+pd6WUuyZ5ZGP37x7wJR/U2O5zFu9bSvmJUsoflVLeVUq5sZTylpPtny6lfE0ppRl81tMhHerEzDq0yRclucPS9puT/GpHx54yLdKiTky4Rebj8HTInHVigA4xHTqkQ53QobNKKd+Y5EuXdt2c5AcHOp2x0yEd6sTMOmStuntapEWdmFmLNrFe3Z4O6VAnJtwh8wEcK+/xGt6JCf88+jzWPbqlQzrUiZl1aBNrHu3pkA51YsIdMh+Hp0PmrBMTXnvl8HRIhzqhQ2e5Pq81LdKiTsysRdaqu6VDOtSJmXVoE2vV7emQDnViwh2a5Hy4MdqRKqXcOcmTG7uff8HTmncs/MuWL/vGxvaHllI+uOUxuvaOxvaHt3x+8/EP3ONcjtnXJrnj0vbf5kB31z/5T2LzP4ptZ7H5+I9u8dz7J7kyiwhfluSDktzjZPtLkjwjyV+WUn7g5N8Za+jQJTrUjTl1aJPmv6mfrLXe3NGxJ0mLLtGibky1RebjgHToEnPWjd46xHTo0CU61I1Zd6iUcqdSygNLKU8qpbw8yX9tPOQptdZXDXFuY6ZDl+hQN+bUIWvVHdKiS7SoG3Nq0SbWq1vQoUt0qBtT7ZD5AI6O9/hLNLwbU/159Hmse3REhy7RoW7MqUObWPNoQYcu0aFuTLVD5uOAdOgSc9aNqa69ckA6dIkOdWPWHXJ93u606BIt6sacWmStuiM6dIkOdWNOHdrEWnULOnSJDnVjqh2a5Hy4Mdrx+p4k91rafneSH7vgOZc1tt/a5gVrrdcmuaGx+25tjnEAr21sf8q2Tyyl3DfJvRu7h/58eldKuTzJv23s/qFaa/NukF1pzuF7a63XtTxGc3a7/nu7U5JvSfIHpZSP6/jYU6JDCzq0Jx1aKKV8fJKHNXY/c9/jzoAWLWjRnibeIvNxWDq0YM72NECHmA4dWtChPc2tQ6WUy0opdfkjybVJ/iTJs5L846WHX5vka2qt3zvAqR4DHVrQoT3NrUNbsla9PS1a0KI9adGC9eqd6NCCDu1p4h0yH8Ax8h6/oOF7mvjPo3dl3WM7OrSgQ3vSoQVrHjvRoQUd2tPEO2Q+DkuHFszZnia+9sph6dCCDu1pbh1yfV7ntGhBi/Y0txZtyVr1dnRoQYf2pEML1qp3okMLOrSniXdokvPhxmhHqJTyuCTf1Nj9HbXWd17w1Obdiq/f4eWbz7nLDsfo0ssb208opdzx3Eeu+vJz9g39+fSqlHLbJD+fs5/3G5L85wO+7FBzeHOSq5I8Ncljkjw0i9/a9JAkj03yvVn9ZuZjkryslHK/Hc5x0nToDB3aw8w6dJHmnapfXmt9fQfHnSwtOkOL9jCDFpmPA9GhM8zZHgbqEBOgQ2fo0B50aK23JPmOJPevtf7o0CczRjp0hg7tYWYdslbdMS06Q4v2MLMWXcR6dQs6dIYO7WEGHTIfwFHxHn+Ghu9hBj+PXmbdo0M6dIYO7WFmHbqINY8WdOgMHdrDDDpkPg5Eh84wZ3uYwdorB6JDZ+jQHnRoLdfnbUGLztCiPcysRdaqO6RDZ+jQHmbWoYtYq25Bh87QoT3MoEOTnA83RjsypZRPTPJTjd0vTfLDWzy9Ge7m3Sm30Qx385h9e2EWd/O8xWVJnnbRk0opH5nk2875o1uXUu7QzakdhR9L8g+Xtt+f5Ek7/DakNoaYw6cm+Yha6z+ptX53rfWXa61X11pfX2t9Za31BbXWf53kfkn+Y5K69Nx7JXleKaXscJ6TpEMrdGg/c+nQRiffSH9pY7e7e2+gRSu0aD9Tb5H5OAAdWmHO9jNEhzhyOrRCh/ajQ+e7Z5KvS/L1pZS7Dn0yY6NDK3RoP3PpkLXqjmnRCi3az1xatJH16nZ0aIUO7WfqHTIfwNHwHr9Cw/cz9Z9H38K6R4d0aIUO7WcuHdrImkc7OrRCh/Yz9Q6ZjwPQoRXmbD9TX3vlAHRohQ7tR4fO5/q8C2jRCi3az1xaZK26Qzq0Qof2M5cObWStuh0dWqFD+5l6hyY5H26MdkRKKffNYhCXY/nGJF9aa63nP2ujvp5zMLXWv0vyQ43d31ZK+RfrnlNKuU+SFye527rDdnR6o1ZK+a4kX9bY/ZRa6yt6PpWDz+HJf16bd+8+73E31FqfkuSbG3/00CRf1OY1p0qHVunQ7ubUoS08NsmHLm3/bZLndvwak6FFq7Rod3Nokfnong6tMme7G1GHOCI6tEqHdjfjDr0nyf2XPh6QxRrQ45P8QJK3nTzuI5N8Z5JXl1I+eYDzHCUdWqVDu5tTh6xVd0uLVmnR7ubUoi1Yr96SDq3Sod3NoUPmAzgW3uNXafjuRvQe7xq9I6JDq3Rod3Pq0BaseWxJh1bp0O7m0CHz0T0dWmXOdjeiDnFEdGiVDu1uxh1yfd6etGiVFu1uTi2yVt0dHVqlQ7ubU4e2YK16Szq0Sod2N4cOTXU+bjP0CbCdUso9kvyvJB+xtPuaJI+stb7t/GetuLaxvcud+ZrPaR5zCE9P8uic3pmxJPnBUsoTs7g76iuzuBPnvU8e9/U5ffN7U5L7LB3rhlrryp0+SymXb3sytdY3tDr7AZRSviWLu14v+/5a63/Z8vmXb/ta53w9Rj+Htdb/Vkr57CSPWdr9DUl+tsvXOTY6tJEOtaRDK57c2P7ZWmvzLtJEiy6gRS3NrEUHn4+50KGNdKilgTvEkdKhjXSopTl3qNb6gSRvOOePrk7y/FLKU5P8pyTfdLL/vkleVkr5tFrra/o5y3HSoY10qKU5d2gb1qrX06KNtKglLVphvXoLOrSRDrU0sw5ZqwZGzXv8Rt7jW5rZz6Nbs+5xPh3aSIda0qEV1jy2oEMb6VBLM+uQNY+O6NBGOtTSzNZe6YgObaRDLc25Q67P248WbaRFLc25RduwVn0+HdpIh1rSoRXWqregQxvpUEsz69Dk1qrdGO0IlFI+JMnLknzM0u63J3lErfVPWxxqkuGutd5YSnl8khcl+YSlP/r0k4913pHFNw4vWdr37jWP/YsWp1RaPLZ3pZSvTvL9jd0/XGv9Vy0Os8/X41jm8Hty9j+yn1JKuazWum5GJk2HNtOhdnTorFLKRyZ5ZGP3M3c93pRp0WZa1M7cWtTTfEyeDm2mQ+2MoEMcIR3aTIfa0aHNaq3vTfLNpZSbknzrye67JvmpUson7fgbho6eDm2mQ+3o0NasVTdo0WZa1I4WnWW9ejs6tJkOtTO3DlmrBsbMe/xm3uPbGcF7/LHMoXWPJTq0mQ61o0NnWfPYjg5tpkPtzK1D1jy6oUOb6VA7I+gQR0iHNtOhdnRoM9fnradFm2lRO1q0NWvVS3RoMx1qR4fOsla9HR3aTIfamVuHprhWfauhT4DNSil3S/LSJB+/tPtdWdzJ8o9aHu5vG9sf1vJc7pzVcI9ikGutf53kU5M8I8lNWzzl15M8LMl1jf3XdHxqo1JK+bIkP5KzMf2JJN/Y42k05/COpZQ7tTzGPRrbh5jD383i39otbp3kYw/wOqOnQ9vRoe3o0LmuzNnvyf6w1voHexxvkrRoO1q0nbm2yHzsR4e2Y862M5IOcWR0aDs6tB0dauU7kvzN0vZDkjxioHMZlA5tR4e2o0OtWKteokXb0aLtaNG5roz16o10aDs6tJ25dsh8AGPkPX47Gr6dkbzHj+3amHWse5zQoe3o0HZ06FxXxprHRjq0HR3azlw7ZD72o0PbMWfbGUmHODI6tB0d2o4OteL6vCVatB0t2o4WtWKt+oQObUeHtqND57oy1qo30qHt6NB25tqhqc2HG6ONWCnlLklenOSTlna/J8mjaq2v3OGQzbtf3q/l85uPf2et9V3nPnIAtdbraq1fl+SBWSyI/HqSNyW5PsnfJXltkp/M4i6q/7TW+oYkD2oc5vd7O+GelVK+MItIL/+7/5kkX9XnHfRrre/I2f8gJsl9Wx6mOYtt7uy6lVrrB5L8ZWN3q292pkCH2tGhzXRoVSmlJPmKxm53927Qona0aLO5t8h87EaH2jFnm42lQxwXHWpHhzbToXZqrdcn+cXG7kcNcS5D0qF2dGgzHWrHWvUpLWpHizbTolXWqy+mQ+3o0GZz75D5AMbEe3w7Gr7ZWN7jx3RtzCbWPRZ0qB0d2kyHVlnzuJgOtaNDm829Q+ZjNzrUjjnbbCwd4rjoUDs6tJkOteP6vFNa1I4WbaZF7VirXtChdnRoMx1aZa36YjrUjg5tNvcOTWk+bjP0CXC+k99G86Ikn7K0+9okj661/u6Oh31tY/ujWj7/7zW2/3jH8zioWutfJHn6ycdFHt7Y/p01xyzn7T8WpZQnJHl2FnepvsX/TPKkk/+wtdLB1+O1Wdxh8hYfldX53KQ5i22e28b1je3mHV0nTYd2p0OrdGitz0py/6Xt92XxTTUntGh3WrRKi04dYj6mSod2p0OrRtghjoAO7U6HVunQzl7X2G77b+ao6dDudGiVDu1s1mvViRbtQ4tWadFa1qs30KHd6dAqHTplrRoYmvf43XmPXzXC9/ixXBtzkVmve+jQ7nRolQ6tZc1jAx3anQ6t0qFT1jy2p0O706FVI+wQR0CHdqdDq3RoZ7O+Pi/Ron1o0Sot2pm1ah3aiQ6t0qG1rFVvoEO706FVOnRqCmvVt7r4IfStlHKHJL+S5NOXdr83yefUWn9rj0O/prH9CaWUO7Z4/qddcLyjcnJX1c9q7H75EOdySKWUxyT5uZy9EeIvJvniWuv7hzmrldlpBnKtk29qPuGC43Xl7o3ttx/odUZHh/qhQzqU5Csb28+rtb5zx2NNjhb1Q4u06ILXmcV8rKND/ZjLnI20Q4ycDvVDh3RoCzc1tm83yFkMQIf6oUM6tIXZrlUnWtQXLdKiWK9eS4f6oUM6tMlc5gPol/f4fsyl4SN9jx/9z6NPzHbdQ4f6oUM6FGsea+lQP3RIhy54nVnMxzo61I+5zNlIO8TI6VA/dEiHtjDb6/MSLeqLFmnRFqxV69BB6ZAOxVr1WjrUDx3SoU3GPB9ujDYypZTbJ3lBkiuWdt+Q5DG11lfsc+xa65uTvGpp121y9s3hIlc0tn91n/MZgc9KcvnS9strrX860LkcRCnln2Vx58oPWtr9wiRfUGu9eZizSpK8uLF9RYvnfkbOvgldXWt9y95n1FBKuXtW7+L6N12/zhjpUK90aDiDd6iUclmSxzd2P7PtcaZKi3qlRcMZvEVbmPx8rKNDvZr8nI24Q4yYDvVKh7jIfRrbh/i+a3R0qFc6xFpzXqtOtKhnWjRj1qvX06Fe6RCbTH4+gH55j+/V5Bs+4vf40f88es7rHjrUKx0azuAdsuaxng71SoeGM3iHtjD5+VhHh3o1+TkbcYcYMR3qlQ5xkVlen5doUc+0iLWsVetQT3RoxqxVr6dDvdIhNhntfLgx2oiUUm6b5HlJHrG0+31JPq/W+r87epnnN7a/Ystz+/tJ/tHSruuSvLSjcxrKv2lsP2OQsziQUsojk/xCktsu7X5pkifUWm8c5qwueUmS65e2H34yY9u4srHdnOmufGHONvItSV57oNcaDR3qnQ4NZwwd+pIkt1/afkOSX9vxWJOiRb3TouGMoUUXmfR8rKNDvZv0nI28Q4yUDvVOh7jIZze2R7G4f0g61DsdYpNZrlUnWjQALZo369Xn0KHe6RCbTHo+gH55j+/dpBs+8vf4Y/h59CzXPXSodzo0nDF0yJrHOXSoxYhGTgAADKBJREFUdzo0nDF06CKTno91dKh3k56zkXeIkdKh3ukQF5nd9XmJFg1Ai9jEWvUpHTocHZo3a9Xn0KHe6RCbjHY+3BhtJEopt0nynCSPXtp9U5In1lpf0uFL/UyS9y9tP76U8tFbPK85xM+ptd7Q3Wn1q5TypCSPXNr1yizu/DgJpZTPTPJLOfsN0q9l8U3A+4Y5q1O11vcmeW5jd3PGVpRSPibJ45Z23ZzkZzs8tVte555JntrY/cu11tr1a42JDvVLh4Y1kg59ZWP7x6femW1oUb+0aFgjadGm15n0fKyjQ/2a+pyNvUOMkw71S4e4SCnlc5I8rLH7l4Y4l77oUL90iE3muladaFHftIhYr16hQ/3SITaZ+nwA/fIe36+pN3zs7/FH8PPoWa576FC/dGhYI+mQNY8GHeqXDg1rJB3a9DqTno91dKhfU5+zsXeIcdKhfukQF5nj9XmJFvVNi9jEWrUO9UGHiLXqFTrULx1ik7HPhxujjUAp5dZZBPWxS7tvTvIFtdZf6fK1aq1/muQnl3bdNsmzSim3X/OUlFIem7O/8ebGJP++y/Pa18kb37aPfXySH13adXOSr6y13tz5iQ2glPLwJL+S5A5Lu1+R5HNrrdef/6xBPC2Lb05ucWUp5THrHnwyoz+Rs3fofGat9c82POeBpZTPbXNSpZR7ZfH1u+fS7huTfE+b4xwbHdqfDp3SoYuVUv5Bkocu7fpAkme1Pc7UaNH+tOiUFp37XPNxAR3anzk7dUQdYkR0aH86dEqHTpVSHlZKedzFj1x53icneXZj9ytqra/u5szGR4f2p0OndOiUtep2tGh/WnRKiy5mvXqVDu1Ph07p0CrzAQzFe/z+NPzUEb3HPy2u0RsNHdqfDp3SoYtZ81ilQ/vToVM6dO5zzccFdGh/5uzUEXWIEdGh/enQKR065fq8drRof1p0SotOWaveng7tT4dO6dDFrFWv0qH96dApHVo1tfnY+pPhoH48yec39n17kqtLKZe3PNY1W9xp8t9l8RtsPvhk+1OTvKyU8lW11j+55UGllNsl+Zok39d4/vfVWt+4zcmUUu6T8+fsXo3t22z4XK+ttb79gpd6dSnlhUl+Icnv1Fo/cM65PDjJU5J8ceOPvr3WevUFx+/Eob8epZSHJPnVJHde2v26JN+Y5B6llDane0Ot9Zo2T2ij1vrnpZQfSvJtS7ufW0r5l0n+e631xlt2llIelOTHspjVW7wjF38D8eFJXlBKeXWSn07y/JNvXlaUUu6S5ElZ3Nn7no0//g+11j/f4tM6ZjqkQzq00HWH1nlyY/sltda/2vFYU6JFWqRFC4dq0VHMx8B0SIdm16Gkv/kopdw5yd3X/HFzQfnuG17rTWNaXOuYDumQDp3V1XzcJ8nzSimvyeIHaL+Y5HW1nv9blkopH5vka5N8Q+O8bjjZN2U6pEM6dFZX82Gtuh0t0iItOqvr+WiyXr1Kh3RIh86a5XwAk+Q9fiYN9x5/yjV6o6NDOqRDC67RG44O6ZAOLbg+bzg6pEOz61Di+ryR0SEd0qGzXJ83DC3SIi06yzV6/dMhHdKhs1yf1z8d0iEdOmuW87G1WquPgT+S1A4/rtjyNa9I8r7Gcz+Q5PeS/HySFyd56znH/+Ukt27xub2hg8/pWVu8ztuXHv93SX4ri3+kP5PkpRvO47t6/rs+6Ncji99o1NUsXdXD1+PWSV50zmu/JYs3oOck+f2T2Vz+8/cl+Ywt57x57Hcn+T9ZLLA9O8nzT17jpjVfh2cM3YieZlOHdEiHDtChNa95uywulFg+3hOGbMBYPjqcHS3Soqd1OEtX9fD16KVFxzIfQ350ODc6NPI5O/TXI8fXob7m48qOviaXD92LA/5d6JAO6dBhvh6fd87j33MyHy/I4gKI5yR5WZJr1hz/vUkeMXQnevi70CEd0qHDfD2uOOfx1qrXf720SIu06IDz0XhN69Xnf110SId0yHz48OFjgh8dNtl7/MgbfuivR47vPd41eiP56HBudEiHntbhLF3Vw9fDNXoj+ehwbnRIh57W4Sxd1cPXw/V5I/nocG50aORzduivR46vQ33Nx5UdfU0uH7oXB/y70CEd0qHDfD1cn9fu70OLtEiLDvP1uOKcx1urPv9rpUM6pEMHnI/Ga1qrPv/rokM6pEPmY+uP8+4kxwzUWq8qpTwuybOSfNjJ7pLkYScf5/m5JF9da33/4c9wL3dO8vALHvOuJN9Qa/0fPZwPa9Ra319K+fwsfrPSFyz90T2SPGrN096a5Em11t/Y8WXvluTTtnjcdUm+tdb6ozu+DhfQIR0ag4E69LgkH7K0/bYsFvoZgBZp0RgM1CLzMRI6ZM5gaDqkQzN2l1w8H7f47SRfW2t91QHPZ7Z0SIdmzFr1iGiRFs2Y9eqR0CEdmjHzAUya93gNHwPX6M2bDunQGLhGb950SIfGwPV586ZD5gyGpkM6NGOuzxsRLdKiGbNWPRI6pEMzZq16JHRIh2bs6OfjVkOfAMOptb4oyYOT/EgWg7rObyd5Yq31i2ut1/Vycu39YJKrs7gr5yZ/leQ7kzxgrP8o56bWem2t9QuT/PMsZm2ddyb54SQPrrW+eMvDvzbJ05P8ZpLrt3zO/0vy7Vn8hhP/iT0wHdKhMThwh87z5Mb2s2utN+1xPPakRVo0Bj21yHyMlA6ZMxiaDunQDPxaFr8V9+eSvGnL57w3yXOTfG6ST3XR1WHpkA7NgLXqI6BFWjRT1qtHRId0aEbMBzAr3uM1fAxcozdvOqRDY+AavXnTIR0aA9fnzZsOmTMYmg7p0Ay4Pu8IaJEWzYC16pHTIR2aKWvVI6JDOjQjk5qPUmsd+hwYgVLKbbO46/H9ktwri7sb/3WSq2utfzHkubVRSrlrkockuX8Wd+q8fRb/gfnrJH9Ya/3jAU+PLZRS7p/koUnuneROSa5J8sYkv1lrvXGP494qyUcneUCSj0hyWU7n411J3pzk92qtb9vrE2BnOsRYHKpDHActYiwO2SLzMW46BAxNh5iDUso9kzwoizn/0CR3THJTkvckeUeS1yR53RH8Zp9J0iGmzlr1cdAiYGg6xByYD2COvMczFq7Rmy8dYixcozdfOsRYuD5vvnQIGJoOMQeuzxs/LWLqrFWPnw4BQ9Mh5mAq8+HGaAAAAAAAAAAAAAAAAAAAAAAAAMDgbjX0CQAAAAAAAAAAAAAAAAAAAAAAAAC4MRoAAAAAAAAAAAAAAAAAAAAAAAAwODdGAwAAAAAAAAAAAAAAAAAAAAAAAAbnxmgAAAAAAAAAAAAAAAAAAAAAAADA4NwYDQAAAAAAAAAAAAAAAAAAAAAAABicG6MBAAAAAAAAAAAAAAAAAAAAAAAAg3NjNAAAAAAAAAAAAAAAAAAAAAAAAGBwbowGAAAAAAAAAAAAAAAAAAAAAAAADM6N0QAAAAAAAAAAAAAAAAAAAAAAAIDBuTEaAAAAAAAAAAAAAAAAAAAAAAAAMDg3RgMAAAAAAAAAAAAAAAAAAAAAAAAG58ZoAAAAAAAAAAAAAAAAAAAAAAAAwODcGA0AAAAAAAAAAAAAAAAAAAAAAAAYnBujAQAAAAAAAAAAAAAAAAAAAAAAAINzYzQAAAAAAAAAAAAAAAAAAAAAAABgcG6MBgAAAAAAAAAAAAAAAAAAAAAAAAzOjdEAAAAAAAAAAAAAAAAAAAAAAACAwbkxGgAAAAAAAAAAAAAAAAAAAAAAADA4N0YDAAAAAAAAAAAAAAAAAAAAAAAABufGaAAAAAAAAAAAAAAAAAAAAAAAAMDg3BgNAAAAAAAAAAAAAAAAAAAAAAAAGJwbowEAAAAAAAAAAAAAAAAAAAAAAACDc2M0AAAAAAAAAAAAAAAAAAAAAAAAYHBujAYAAAAAAAAAAAAAAAAAAAAAAAAMzo3RAAAAAAAAAAAAAAAAAAAAAAAAgMG5MRoAAAAAAAAAAAAAAAAAAAAAAAAwODdGAwAAAAAAAAAAAAAAAAAAAAAAAAbnxmgAAAAAAAAAAAAAAAAAAAAAAADA4NwYDQAAAAAAAAAAAAAAAAAAAAAAABicG6MBAAAAAAAAAAAAAAAAAAAAAAAAg3NjNAAAAAAAAAAAAAAAAAAAAAAAAGBwbowGAAAAAAAAAAAAAAAAAAAAAAAADM6N0QAAAAAAAAAAAAAAAAAAAAAAAIDBuTEaAAAAAAAAAAAAAAAAAAAAAAAAMDg3RgMAAAAAAAAAAAAAAAAAAAAAAAAG58ZoAAAAAAAAAAAAAAAAAAAAAAAAwODcGA0AAAAAAAAAAAAAAAAAAAAAAAAY3P8H9Ry3/pQ2KlkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor, Config\n", + "\n", + "async def clean_magnitude(datapoints):\n", + " async for datapoint in datapoints:\n", + " if datapoint.data is None:\n", + " continue\n", + " yield datapoint.collected_at, datapoint.data[\"magnitude\"]\n", + "\n", + "TemperatureConfig = Config(\n", + " sensor_name=\"Temperature\",\n", + " clean=clean_magnitude,\n", + " title=\"Ambient temperature\",\n", + " ylabel=\"Degrees C\",\n", + ")\n", + " \n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 5), dpi=300)\n", + " configs = get_known_configs()\n", + " to_display = configs[\"Relative humidity\"], TemperatureConfig\n", + " for i, config in enumerate(to_display, start=1):\n", + " plot = figure.add_subplot(1, 2, i)\n", + " coros.append(plot_sensor(config, plot, {}))\n", + " await asyncio.gather(*coros)\n", + "\n", + "display(figure)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAE0YAAAUsCAYAAAC9bUPVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdd5h1Z1kv/u8dAqEEEnoRSIBIVUA6AiYRPDSlKr0EIgiCla6IAVEPR1DPQQRF6aKIQEDqT8HQu1IUBUKJEECQloSSEHL//lj7lXnX7Cl7z57Z8877+VzXXGQ9az1l773WzsXMN/dT3R0AAAAAAAAAAAAAAAAAAAAAAACAZTpk2QsAAAAAAAAAAAAAAAAAAAAAAAAAUBgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAYKSqjq6qHv2csOx17aSqOmX0+k9Z9pr2Iu/zga2qThp/VxwI87vvAAAAAAAAAAAObgdq7gUAAAAAODgojAYAAAAAAAAAAAAAAAAAAAAAAAAs3aHLXgAAAACwO1XV0Uk+M0OXs5OckeSbST6V5F+SvCfJG7r7nEWvDwAAAAAAAAAAAFaqqsqQeztqdOr7SY7q7tN3flUAAAAAAMzikGUvAAAAANgzDkty6STHJLltkscnOTnJ6VX1tKo6fJmL2+uq6gVV1St+PrvsNQF7S1V9dvQ984JlrwkAAAAAAAAAYOQ2WV0ULUnOl+SEnV0KLEZVHTfK7XRVHbfE9cgrwgJ5pgAAAGA1hdEAAACA7XapJI9N8q9VdfNlLwYAAAAAAAAAAIA968R1zj24qmrHVgIAAAAAwFwOXfYCAAAAgAPKt5Kcusa5Cye5RJJLrnH+qCRvrKpju/tD27E4AAAAAAAAAAAADk5VdYkkd1nnkqsmOS7JP+3IggAAAAAAmIvCaAAAAMAsPtDdx613QVVdMcnPJHlUkquNTl8syd9V1bW6+3vbs0QWYaPPGUi6+6QkJy15GTPzfAMAAAAAAAAAe9T9khw2auskteL4xCiMtnQHau4GAAAAANgZhyx7AQAAAMDe0t2f7+5nJ7lekldOueRqSX5hZ1cFAAAAAAAAAADAHvfg0fEnszrDdreqOmKH1gMAAAAAwBwURgMAAAC2RXd/K8l9k/z7lNP33+HlAAAAAAAAAAAAsEdV1Y0ybOa50ouSvHDUdqEk99mRRQEAAAAAMBeF0QAAAIBt093fTfL7U07dqKousdPrAQAAAAAAAAAAYE86cXTcSV6c5A1JvrzBtQAAAAAA7CKHLnsBAAAAwJ73xilthyS5RpJ3zztoVR2S5MeSHJ3k0kkukeSMJF9JcmqSf+nu8+Ydf5Gq6oeSXDPDWo/IsOvoGUm+luQ/k7x/UkSObVBVF0pykySXT3KZJIcn+WqGe+XD3f2pJS5vU6rq0kluluSqGdb/zQyBzfd292nLXNt2q6ojMrz2H87w/Hw3yelJ3j3La6+qKyS5cYbn8PAMz9/nk7y1u89Y8LLnUlWHJblFkisnuVyS7yf5ryQfTfKh7u4lLg8AAAAAAAAAYFea5IPuPWp+275sSVW9NMmvrjh3w6q6Xnd/eJvXdf4MuaVrJ7nkpPm/kvzzLHNX1cUy5F6ukeTIJN9K8qUk7+zuzy900avnvmSSmya5WpKLZcgtfSG7NHdVVVdMcr0MmcJLZyiQ95UkX0zynp3ICVXVDye5YZIfSnJYhqzaF5K8o7u/vt3z70VV9SNJjsmQ/7tkkm9n+Fw/myF/+b1tnt+zPP+8u+WZvF6SK2bIDp6T5Ivd/eJN9pcB3gZVdYEkN8rwPFwqw/flGRlyse+dYZxjMjyb++6xs5P8d4Z86Hu6+zsLXjoAAAA7RGE0AAAAYFt191eq6owMQYqVLjXPeFV1qySPSPJTGYqhreVrVfX6JL/f3R+bZ655VdWlktw1yW2SHJvksht0Oaeq3pPkT5K8YrMF3arqs0mOWuP0UVW1mSJKx3f3KVPGPiXD2vd5a3cft8Y6PprkR1Y0fSXJD20lbFRV907y0lHzI7r7TzfZ/5Ak901yvyQ/keSC61z7mSR/m+Tp3f3f8614e1TVcUl+I8mtMxQUnHbNx5L8XpKXzlI4q6pOSPL8UfNVuvuzc6xzPO+Tu/ukDfqclOS3V7Z1d604f+MkT0xyh6zxe8yqemuSx3f3e9aZ52eSPC7JjyepKZecU1WvSvLY7v7P9dY862uYYZyjk5yU4Xtj/F25z5eq6jlJntHdZ806x2i+U7KJ53uyrs+sM9QDq+qBG8237z2ZBPtOzxAu2+eU7j5+w0Wvo6r+b5JfHjVff7vDywAAAAAAAADArvGzGYrVrPTC0T//6uj8g5P8yjyTTTI9/zRq/p8c1mQDv99Mcv8kF11jjE8keep6hXmq6roZ8jN3ylAwZto1707ymO5+52yvYn1VdWx+kFs63xrX/HOSZyf5y1k3/FtU7mYy1mWS/FqSn0lynXUuPbeq3pvkWUleNuvGq+tlpCZ5tQcm+fXsn6Vb6fuT3M4T18s7rZjvpIzeo5F/qtrwLXthd5+w0UWbsZ15xTXmu26G5/a2Sa6wzqVnVdU/JnnaZt7X0RzH5QB/ljeRw9vWZ3mN8XbDM3mRJL+U5CEZNqSdZupndqBngDe6r2cxZY0bfqdslE2tquskeWySuye5yJQhXphk3cJoVXWVDN+3d8jan2+SfLeq3p7kj7r7DeuNCQAAwO4z9T+mBAAAAFiwaUV81ir+M1VVXX1S6OxtSe6Z9YuiZXL+fkk+WlV/UVVrFsZapMnuol9M8udJ7pGNAxFJcoEMxbv+Nsm/Tv7ofyAZBxguneSOWxzzhNHx2Un+ejMdq+p2ST6a5EVJ/lfWKYo2cZUMhbM+XVVzhR0XraoOq6rnZgin/FTW/z3etZO8JMkbJ2GeA1oNfifJezIEwdbb3OHYJO+qqkdPGeeIqnpFktckuUWmF0VLhufvnkk+VlW32dLi5zC55/4tQzByve/Fy2UonvZvVXXDHVjawk1293zJqPm4qrrWvGNOdnx+wKj53YqiAQAAAAAAAMBB5cTR8beT/N2+g+7+UJKPjK65X1VNLVC0FVV1tyQfS/KLWaOQ0sTVk7yoqv52vI5JfuZJSf45yc9ljUJKEzdP8vaq+o2trfx/5j5fVf1JklMyZK+mFlKauEGS5yZ526RIzY6qqgtU1VOSfDrJ47N+AaZkyCHdIsOGnR+eFKtaxDqumOQdSZ6XtYuiJcN7eesk766q313E3HtRVV2+qv4qyYeSPCjrF0VLhk0a75LhfT25qjbKlm52HZ7l2efcLc/kTTN8dr+f9YtmTet7MGaAd0xVPTHDs/2ATC+KtlH/i03u648neWQ2/nwvmCGD+/qqentVXXnWOQEAAFgehdEAAACAnXDklLYzNtu5qm6dYfev288x9yEZgm9vrarNBBS26sezfiGnjVwryXuWUaBpC16S5HujtgfNO9gkKDZ+/Sd399c30ffRSV6XoVjYrC6a5I8nhfS28hluyaSI3xuS/PyMXf9XhvDGegGmA8FzMuyOudnfXVaSP6iqh/5PQ9WRSd6c5G4zzHuRJK+pqhvP0GdLJgHHP05y4Rm6XTnD99kBWRwtw66YYw/bwnj3zup/xzx7C+MBAAAAAAAAAAeQqjomQ0GalU7u7jNHbS8cHV8iQzGlRa7lfhkKsh0xQ7efy1BQa98YlaFA0ZOzfiGj/aZO8rtV9cgZ5l09yDD3S5I8Ysaut8yQZ5mpANFWTIpf/X9JfitzFNfJUMDsnVX1M1tcx1UzbAB58xm7/kZVPXUrc+9FVXW9JO9Lcp+svRHmeu6cIX959S2uw7M8+5y75Zn8iQzF4OYtgHUwZoB3xKSg2e9kzve3qo5K8s4M9/X55xjilkneV1U3m2d+AAAAdt7S/gNPAAAA4OBQVVfL9KI/n95k/59J8oqs/iP2OUnekqFg2ueSfDPDzn9HJ/nJJLcaXX+TJCdX1U9097iI13b5foad/v4tyX8k+WqGgnCV5GJJfjjJzTLseLeyCNThSf6mqn6suz+3zvgfS/KNyT9fOcnFV5z73uT8Rs7axDXr6u4vV9XrM4SK9rlDVV2mu788x5APyOqiWM+bduFKVfW/kzxuyqmvJfmHJB9M8uUMO8IemWE3wtslucbo+hMzvK+PnmnVi/O8JMevOP54hkJp/5HhtRyR5MeS3D2rdyP8iSS/luTp27/MxauqX0ny0BVNpyX5+yT/muG1H5nkphlCZBcbdf/jqnpThu+Dv0mysnDYB5O8MclnkpyZ4X37ySR3yv732oWSPLeqbtTd5y7oZU1VVb+eZNrunmdP1vq2JF/IEBK7Sobna9+OshdJcnJW7Gy8Tc5J8uEVx9fO/t/FX0/yn7MM2N3/VlWnJDluRfMDquoJ3f3tOdb48NHxV5O8fI5xAAAAAAAAAIAD04OzuoDSuAhakvxVkv+T/QsUnZjkZQtax42S/N6KtXwjyeszFM36coZcyrWS3CNDxm2l+1TVyd398gx5khNXnDstyWsz5Ge+miE/c5PJOOP8zNOq6rXd/dk5X8OjktxrxfGZSV6d5P1J/msy9zUz5JauNOp7pSRvqarrd/c3so0mmya+c7KWsX9N8tYMmb1967hMhsJld8iweeY+hyd5eVXdors/OMdSLpoh1/VDk+NO8q4k/5ghU3NWkktnyAfeNckFR/2fUFV/393vXWP8L+UH2Z3Dk1xtdP5T2Tj/N1O2ZwPbmlesqhsl+acMr3Wl85K8PcN7+5nJGi6U5IpJjk1y6+z/XP9whg1Gb9jd39zEmsY8yzM+y7vombxckldm/2ftfRkKtp2W4X24fIYc3M9tYryDIgO8Qx6S/Qv1nZUh1/vODPfkIRme6eMzvO/7mRRFe29WZ2aT4TN+Z4as7deTXCDD5/zjGTbkPmzFtZdN8rqqukF3n7a1lwQAAMB2q+5e9hoAAACAXaiqjs4QIlnprd193IzjPDbJ00bNX09yqe4+b4O+V8kQKjhyRfO5Sf4oyR9091fW6Xv9JH+R/YsjJckfdvejNpj36Kx+7Q/q7hes12/S9xNJPppht723bCZYM/mD/e8nuffo1Ou6+6c36j8Z4wVJHrii6bTuPnozfdcY75QMoaF91v3sq+pOGYIzKz2qu/9wjrk/kSEwss/nkxy13v1SVXfNEGhZ6etJHp/kRd393TX6VYadX5+TIWyz0p27+zUzLn8mU97n7+YHoZwvJfml7p5a/KqqDk/yrAyF5Fb6RpIrdPd3Npj7hCTPHzVfZZ4wVVWNf8n45O4+aYM+JyX57VHz2RlCKN/OEM56bndPC7lcNkPBxFuMTv15hnDLMybHn07y0O5+8xpruFGS12X1Z3+f7v7r9da/1mvo7g13Kq2qayT5UFaHHd8wWe/n1+h31yTPzg/CPd/JELSbdf5TMsPzvaLfZ5MctaLphd19wkb9poxz96wu6nZid29YAHE0zg2TfGDU/PTufsysawIAAAAAAAAADjxVdb4MhZ+usKL5C0muNC1rVFWvy1CIZ5/zklx11uIoVXVchgJOK+3LvSTJM5M8aVpRoao6LEO25RGjUx/PkAN6d4YCMRvlZy6XIT/z46NTf97dv7CJ13BSVmd3VmaXnp/k19d4DYdk2LzxqVmdf3lBdz9onvk3k3uZ9H1VhszXSu+arHetImP7ijf9Voa1r5zrs0mu291nbjDvOCO18v16b5Jf7O5/XqPv0Rk+rxuMTr2pu2+33ryT/sdl9T13fHefslHf7bANecWLZ8iKjsd4fpKTunvNAm+TzXufleS2o1Ov7O67bzDvcfEsb+lZnoyzW57J7+cHRfI+kuRh3f3uNfpecFqudC9kgBf5fTFPZnCNbOrKz+Y5SZ7Y3V9do/9+n01VXSDJO5LceHTpa5M8trv/fZ21XC7JHyS53+jU+5PcfNozCQAAwO5xyMaXAAAAAMynqi6f5NFTTv31RkXRJv4q+xdF+3aS23b3Y9cripYk3f2hDEGRfxid+qWqGu9wt0g37u67d/erNrvbYHef1t33SXLS6NQdqmraDnq70esz7Nq20gmzDlJVt8j+RdGSIUixXlG0y2R1iOKTGYIxf75WUbQk6cGrMuzyOC5G9fuTwmk7aV+46NNJbrZWUbQk6e6zMrzHbxqdOjLDTo4Hon1F0W7T3c9ZK3TS3f+V5Kcz7MC50v2SPGXyz/+WIbgytSjaZJwPZPp7talA1xY8O6uDZH+b5KfXKoqWJJN79dj84HVfaK1rd7mTs/p5e/gc44z7dJI/m2tFAAAAAAAAAMCB6PbZvyhakrxknazRC0fHh2SOjNMa9hVS+pXu/uVpRYiSpLvP7u5HZnXm5xpJ/n6yprOS/OQG+ZkvZcjPjHN096qqeTMl+/Is/7u7H7zOazivu5+R5OcybHS60glV9RNzzr+hqnpoVhdg+tMkt1yvAFOSdPc3Jpuqnjg6dXSSX5xjOfver9cmOW6tomiTuT+b5KeyOmP3U1V15Tnm3muelf2Lon0/yf0m9+GaRdGSpLs/leG7YJwhvFtV3XSOtXiWB5t6lnfZM7mv8NY7k9xqraJok7nXypUerBng7bbvs3lUdz98raJoydTP5qSsLor2+O7+mfWKok3G+lJ33z/Jk0enbpzkZzdeNgAAAMukMBoAAACwLSa78L0xyaVHp76dYWe0jfr/VJKbj5of3N1v2ewauvucDIGN/17RfP4kv77ZMWa12SDEGp6SYReyfSrJg7e2op3R3edm2CFvpR+tqhvOONS0glTjwNLYryQ5YsXxt5Pcbr0CU2Pd/bkk9xo1XzvJnTY7xgJ9L8k9NrMTbXd3pt/P490vDyS/ul4gaZ9JWOvpo+YLJ7lIhh0v79Hd48Jp08Z5R4bvqpWOr6px4bKFqKofTXL8qPnUJA/YTMHI7t63o+gBaxLyGxcwu1FV3WizY1TVEVm9w+Y/dPepW10fAAAAAAAAAHDAGBfTSZIXrXP9q5OMCwQ9qKoW9d/YvbS7/98mr/2tKW2Xmfzvr2xUUChJuvvrSZ4xar5Yhg1F53VKdz9hMxd292uTPHXKqV/ewvxrqqpDk/zGqPmN3f2ISY5qU7r7+Un+YtT8a1V12LTrN/DZDAW81ty8c8W8X8vq4jyHZCiYdtCqqmskueeo+Te7+682O8bk8/+FJOMiSY+fc1me5cG6z/IufSa/meSe3X3GHH0P2gzwDnlFd//hLB2q6uJJfmnU/Jzuftos43T3SVm90fa83w8AAADsEIXRAAAAgIWoqgtW1Q9V1R2r6s+TfCTJdadc+pBNFqx63Oj47d39slnXNQkp/N9R811nHWcnTIIgLx4133IZa5nT86a0nbDZzlV14ST3GDW/bbKj41p9Ds/qnQGf0d2f3uy8+3T3O5O8edS8jHvlpd39wc1e3N0fSzLebXTWgnS7xSeyOuC0nles0f7iyfuyWX83Oj40yY/O0H8WD5vS9qjuPnuzA3T3mzLsKnog+/Mk54zaHj5D/wdmKIS30nO2tCIAAAAAAAAA4IBRVZdJcsdR8z9397+t1WeSzxhn0I5KcusFLOn7WV0gaE3d/f4k/znl1Mez8UaSK41zL0lygxn6j81a1OxpScZ5wDtX1eW3sIa13CvD57VPZ3XBnM16yqT/PpfN6o1cN+PJMxZS+psM98pKB2rWa1Eek/3/O9fPZPWGmRvq7u8l+b1R8+3n2CDTs/wDGz3Lu/GZ/MPuPn3ONWzJHsgAb6fzkjx6jn6PSHL4iuOzsjpfvllPGR1fv6qOnnMsAAAAdoDCaAAAAMAsjq2qnvaT5DsZQhGvTfKQrC5Y8+0k9+3ul240SVVdIslPjppnKZY09rrR8VFVddTUK5fvk6PjG1TV+ZeykhlNClG9b9R8nxl27bt7kouO2jYKBt0myZGjtr/c5HzTjO+VY7cw1ryeO0ef8ft+9UUsZAmeP+NOkZ/OsMPj2Kz3wL9MabvGjGNs1u1Hx1/M6vtuM/5sAWtZmu7+cpKXj5rvVVXj53ktvzA6Pj0HfrE4AAAAAAAAAGDzHphknKt64Sb6vWhK24lbX07+sbtPm7HPh6a0zZqf+VSSM0bN8+Ze3tPdH52lQ3d/N6sLAR2aIde1aD87Oj6lu0+dZ6Du/lyS8WudNSv2rSQb5iFH8349qzOC25VT2vWqqpLcbdT8gu4eF4/brNePjg9LctMZx/As/8BGz/JueyY70zf43UkHbAZ4m72luz87R7/xPfby7h4/J5v1riTfGLUtIyMMAADAJimMBgAAAGy3MzMUNbvmZoqiTdwqSY3a3rWFNXxmStuPbWG8Tauqw6vqDlX1+Kp6UVW9rqreXlX/XFUfGv8k+ZPREIdl2PnuQDEuZHaJJHfaZN8HjY7PyurCSWPjUMLpc4SSVhrfK0fPUKhpEb6T1UXONuNTo+PzVdXhU6/c3d42R5/xbpvfTvLBGcf47JS2hX/uk52KrzJqfvWcQb43ZQhXHsjG33cXTvKAjTpV1bFJrj1qfm53n7uohQEAAAAAAAAAu96DR8fnJvnrjTp197uyunDNXSabeW7FPLmXaTmnty9gnHlzLyfP2e+VU9puNudYU00KaN1q1LyVTGGyOis2a6bwPd19zhzzjrNeR8wxxl5x3SQXH7XN/bl299eyeqPNWT9Xz/L+pj7Lu/SZPLW7P7/FNeznIMwAb5d/mrVDVV08yY+Omrfy/XBeVj9jO5IlBwAAYD6HLnsBAAAAwJ73gSTPnOzmtlm3mNL2iqra9O55m3CpBY61SlXdMMljMhQFu9AWhzsyyULDGtvor5P8YfZ/zSdkgwJnVXVUkuNGzX/b3RsVfhrfKxefhEvmNa2Y2KWyepe47XJad39vjn7jMFcyBObO2uJ6dto8u0WeOTo+bY4CWeMxku0JHN5wStusRdySJN19blV9JMnNt7ak5enu91TVB7P/+/KwJP9vg64PHx2fm6EAJwAAAAAAAABwEKiqWyS55qj5Dd39lU0O8aIkv7Pi+LAk903yzC0saxG5l0WNM2/uZa4cS5KPJvlekvOvaJuWk9mKa2XYpHOlB1bVT29hzCuPjmfNFI4L7G3WOOt1MBdGm5YVfWZVnb2FMS88Op71c/Usb+5Z3o3P5D9vYe79HMQZ4O0yz2dz8ySHjNqeUFWP3MI6jhkdb2uWHAAAgK1RGA0AAACYxbcyPaxx/gy79l1+yrnjk7y/qk7o7g135Jy44pS2626y72ZdcsHjJUmq6vxJ/ihD4Z7xH+TndcAEn7r7m1X1qiT3WdF826q6fHd/cZ2uJySpUdvzNzHl+F65cJLrbaLfLC6Z+UJK8/janP2mFVM7/5S23e7rc/QZv/aZx+ju7w0bWO5nO96/y0xp+/gWxvuPHMCF0Sb+JPs/69eqquO6+5RpF1fVZZLcddT8mu4+fZvWBwAAAAAAAADsPidOaXvhDP1fnOQp2T+vdGK2VhhtEbmXRY0zb+5lrhxLd59dVZ9N8sMrmqflZLZiWqbwimu0z2vWTOGisl4HYs5rUaZ9fuOih1s16+fqWd7cs7wbn8kvb3XCgz0DvI3m+Wym3UtX3epCRrYlSw4AAMBiLOr/mAMAAAAHhw909/Wn/Fynu6+Q4Q/EJ2Qo1rPSBZK8uKp+ZpPz7MQfmre6g9sqk0DEy5M8Iov9vcuBFnwaFzQ7X5L7r3VxDRWpHjBq/mR3v2MTc413HNwOC79X1jEtIHXQ6O5FvP7d/B4eOaVtvAPsLLbSd7f4myRfHbU9bJ3rT8zw75SVnr3QFQEAAAAAAAAAu1ZVHZ7kHqPmryd57WbH6O7Tkpwyar5eVd1wC0tbSGZlQfmZeS0yxzItJ7MVuzFTuJtzSgeKPfu5HgTP8m787M7YymQywNtqns9mN95jAAAA7CCF0QAAAICF6e6vdfcLk1w/Q7Gblc6X5CVVdfQmhrr4gpe2Ux6X5M5T2k9P8qdJ7pfk5kmulCEscsHurpU/SY7fsdVunzcnOW3U9qB1rj82q3dxGxdXW6WqLpzksNmWBkt10Slt39rCeFvpuyt093eT/OWo+W5VddnxtVV1SJKHjpo/meE7BwAAAAAAAAA4ONwryUVGbS/r7rNnHOeFU9pOnG9Je8YicyzTcjJbcaBmClmfz3V77MSzvBs/u3O32F8GePvM89nsxnsMAACAHXToshcAAAAA7D3dfXZV3T/JZbP/H/kvlqEAzq03GOI7o+NvdPeu/gN3VV0myRNGzecmeUySP+nuzf5R/4Dffay7u6pemORJK5qvWVU36+73TOkyLpr2/SQv2sRU301yXvYv/ioagZ8AACAASURBVH9yd991pgXDzjlzSts4qDuLrfTdTf40yaPzg2f5/BmCxr83uu72SY4etf1Zd/e2rg4AAAAAAAAA2E2mFS97WFU9bAFj37uqHtXd4/zaweIiSc7YQt+VpuVktmLaZ3KX7n71gudhZ037XC/e3d/Y8ZXsLTvxLO+pZ1IGeFeado9dv7s/vOMrAQAAYCkO2fgSAAAAgNlNQgAPyOpwxU9W1T036P7fo+Mjq+rIhS1ue9wpyYVHbY/r7j+eIRCRJJdY4JqW6QVJxsWKThhfVFWHJ7n7qPn/6+7TN5qgu89LMg5AXWXzS2QRqur8y17DAWRaYO+ILYy3lb67RnefluS1o+aHVtX499cPHx1/N8N3DQAAAAAAAABwEKiqaye52TZOcWSSu23j+LvdInMsiy5sNc4UJrJie8G0z/XonV7EHrQTz/JeeyZlgKdbZj50r91jAAAAzEhhNAAAAGDbdPfnkzxpyqnf26CY0n9NabvuYla1bX5qdPz1JH8yxzhXXcBalq67P5PklFHzvarqgqO2e2T1DoPPn2Gq8b1y9ao6bIb+B7PvTWmbJ8Ryya0u5CDy5Slt19jCeNfcQt/dZvx9eVSS2+87qKr9jif+tru/ut0LAwAAAAAAAAB2jRP3yBy71dXn6VRVF8jqYlbTcjJbcSBmCtmYz3V77MSzvNc+u72UAV5UNjRZbqG3vXaPAQAAMCOF0QAAAIDt9uwknx61XTXrB8jeN6VtXBBnt7nS6Pi93X3OHOPcfBGL2SXGBc6OSHLXUdsJo+OvJXnNDHOM75ULJTluhv4HszOmtF1sjnGO2epCDiIfnNJ2w3kGqqpDs7dCPv+Y5OOjtoev+OeHZvXvs5+9rSsCAAAAAAAAAHaNyUac9x81n5Pkw1v8+dpozOOqajcUtlmGuXIsGTIs46I703IyW/GRJN8dtd1uwXOw8w7ErOiBYCee5b32TO6lDPBCsqFVdcUk482Qd9J7p7T5fgAAADiIKIwGAAAAbKtJMOApU079ZlUdtka3f5jSds9JIaDd6lKj43FgbkNVdakkx885/7mj4/PNOc4ivSKrAxYP2vcPVXW1JLcanf+r7j57hjmm3Sv3m6H/wewbU9rmCXUeu9WFHCy6+8tJPjNqvlNVzfN72tsmucjWVzWTbfue6e5O8qej5ttX1VGTYPO4mOaHuvs9i5ofAAAAAAAAANj17pTk0qO2V3X39bfyk+SJozErKzJOB5m7zNnvblPaFprr6O7vJnnHqPnyVXXrRc6zi41zO8lyM4KLyhG9K8m3Rm13rKqLzzkeg21/lvfgM7mXMsB7Ihva3aclOXXUfJOquvoy1gMAAMDOUxgNAAAA2AkvSfKJUdsVkzxk2sXdfXpW7zJ3lSQnLHxlizMO54xDEpvxiMy/u9qZo+PD5xxnYbr720leNmq+dVXt21nvhCndnj/jNG/K6l0H711V15hxnIPRx6e03WSWAarqfEkevJjlHDTeMDq+QpI7zjHO1O/Pbbbd3zMvSHLWiuNDkjw0yV2TXHZ07bMXPDcAAAAAAAAAsLuNN1VLhlzaVr0syTmjthPm3OjuQHfzqrrOLB0mm6Pef9R8bpJ/XNiqfuDVU9pO2oZ5dqNxbidZbkZwITmiyca7bxw1XzTJo+YZj/+xU8/yXnom91IG+PTsn8NLZsyGTjx0C2tYlPE9dkiSJy1jIQAAAOy8g/EXtAAAAMAO6+7vJ/mdKaeeUFVrhQB+d0rb03fxTl9fHB3/eFVdZLOdJyGUJ2xh/q+Pjo/cJbsmjgudHZLkAZPg4ANG5z7c3f8yy+Dd/d9J/nzUfL4kL62qC8200oNMd385yedHzfeYFDvbrEdkvp0ED2bPmdL29Kq6wGYHqKrbJLnz4pa0aePvmYV+9t19RpIXj5pPTPJLo7Yzkrx0kXMDAAAAAAAAALtXVf1Qkv81av5KVhdUmll3fy2rN7q7YpLbbnXsA9T/nfH6x2Z4v1Z6dXeP83SL8JdJvjRqu2VVPW4b5tptxrmdZLm5rUXmFadlRR9bVbecczwGO/Es76Vncs9kgLv7vCQfGjXfsaqO2OwYVXWnJD8xz/wL9oys3jz5vlV1z2UsBgAAgJ2lMBoAAACwU16a5D9GbVdI8rBpF3f3q5J8YNR8RJI3zLqT3T5VddGqekxV3W+e/ht4++j48CS/vZmOVXV0ktckOWwL8390StsdtjDeQnT3u7P6cz8hya2TXHnU/rw5p/n9rN6t7wZJXjVvMKSqjqqqZ1bVj8y5pgPFONR55SS/upmOVXXrJP9n4Sva47r7o0n+adR89STP38xOw1X1w1ldPGynjL9nfqSqrrTgOf5kdHzZJOOQ40u6e7yjJQAAAAAAAACwdz0ow2aJK72su89d0PgvmdJ24oLGPtDcuqqeupkLq+r2SX5ryqn/t9glDbr7O5leROv3quqR845bVberqj+df2U74nNJvjlqW2Y+cGF5xclmqq8YNZ8/Q/5vrsJMVXVYVT20qn5tnv57xLY/y3vsmdxrGeBxNvRCSTZ7P1w3qzdFXopJYb5nTTn1vKq6+zxjVtX5quqeVTXt3gUAAGAXURgNAAAA2BGTHciePOXU46vqwmt0u3eSr43arprkvVX1m5vZvayqDqmq46vqOUn+M0Mhp8vNsPTNekWS80Ztj6mq36mqQ9dZ372TvDs/2L3xjDnnf8+U+Z9RVXeuqvPPOeaijAMSx2T1boTnJPmreQbv7i8leWCSHp26bZIPVtX91vsM9qmqi0zCDq9McmqSRya54DxrOoD8xZS2p1XVL1RVTetQVRec7Oj4hgxBnvFufGzsF7P6fbtPktdMdjieqqrukuRt+cF32He2Z3lretfo+JAkL6+qGy1qgu7+WFYXjht7zqLmAwAAAAAAAAB2t0mG5UFTTk0rZjavv8/qolN3qqpLL3COA8G+PMtvVtVz18rnTTJ5v5rklRkKWK30gu5+2zau8VlJXj1qOyTJM6vqVVV1vc0MUlVXqarHVdVHMuSg5irAtVO6uzPkDFe6TVX9flVdZglLWnRe8ReSfGbUdqkkb66qP6iqTWU+q+qmVfWMJJ9N8mdJrjbHWvaCnXyW98ozudcywC9I8v1R2yOr6slrvZ5JwbATk7wjySUyZHLPmWPuRXtikveN2i6c5O+q6i+qalPPeVX9SFU9JcknkvxNkk3dmwAAACzPhv9BKAAAAMAC/W2GP1BfZ0XbZTMUCXr6+OLuPrWq7pHk9UkusOLURTLsXPaEqnpHkncm+WKSb2T4Y/eRSa6U5AaTnyMX/kpWr/UTVfWSJA8YnXpikhOq6u+SfCTJWRkCA9dIcqfsH7z5dpLHJXn2HPN/saremP13iLtskpOTnFNVn0vyrawuHvbz3f2BWeeb0YuT/F7237X1WqNr/r67vzrvBN39iqp6UpLfGZ26ymT+p1fVKUk+kOQrGd6Li2W4N45JcqMk183Wduw74HT3+6rq1UnuvKL5fBkKTz2iql6VoUjcOUkuneSGGe6xlWG6X41CVTPp7v+oqt9M8ozRqTsmObWq3pBhB8ovZtip8aoZPqMfXXHt6UlenuH93ymvzlCs8hIr2m6a5P1VdWaSL2RKobzuvv6M8zwryfFrnHtHd0/bHRMAAAAAAAAA2JuOzw8Kzuzzye5+76Im6O6zq+rlSX5+RfP5k9wvyR8tap4DwJMybDyaDO/FParq5CTvT/LlDFmraya5e5IrT+l/WpJf284FdndX1f0yFO4ZF7W5S5K7VNWHk5yS5JNJ9mXSjsxQaOu6GTJQ43vqQPC8JLcbtT0+w+a0X8yQ6zl3dP413f2kRS9k0XnF7v5qVd0pw+e6sojXoUkeneSXq+rdGTaV/HySr2fI+h2Z5PJJfixDBvBgK2a4lh17lvfKM7nXMsDd/YWqemZW5wuflOS+VfWKJP8+WfMlM2QT75j974enZdjg+qhZX88idfd3q+quGYrHXWl0+sQMn88Hkrw1Q1HEr2XIwR6ZIet6/QzfD2tuWgsAAMDupDAaAAAAsGO6+7yqenKGAmkrPbaqnt3d35rS581Vdaskf5fVf9C+SJLbTn52g19OcpMMgZGVrpiNixd9L8nPZQgZzOsxSY7N8L6sdIGsvfPh4VuYb1NWBDbuuM5lz1vAPE+tqi9kKKp0wdHpyya55+SH/T0syY2TXGHU/qPZvxDXNH/Q3X9WVQqjzai7/7CqLpXkCaNTF0xy18nPWr6VITT209u0vKkmAaNfS/LCKacvmiHstQgnJ/lcVn/nJ3OExgAAAAAAAACAA9qJU9pesg3zvCT7F0bbN/fBVBjt6RmKx9xjcnyxDEWCxoWCpvl8kp/s7m9s09r+R3efNckUPj9DYaex62V1gaa94BVJ3pzk1lPOXX7yM/ahbVzPQvOK3f2vVXXjJK9M8iNTxjx28sPGdvRZ3kPP5F7LAP9mkttk9fN0tSSP3WAtL5v0v/cG1+2ISaG3m2RY10+MTp8vwwavN93xhQEAALCtDln2AgAAAICDzr5d01a6dJJfWqtDd78vyQ0yhCa+t4W5O8Ouc2/fwhhrD979zQwhgvfM2PULSW7T3a/f4vwfS/JTSU7dyjjbZL3CZ19M8qZFTNLdz0ty8yRv2eJQ303yN0n+c8uL2uW6+0tJbpnZ7ptzkjy6uzcKx7CO7v6NDDtrzhKG+nyS46ft8rgTuvtFGULAZ27jHN9P8mdTTn0lQ8ATAAAAAAAAADgIVNWRSe425dRfbcN0b8vqrNB1quqgKbTS3Z3kvklm3STxnUmO7e5PL35V03X3md39s0kenuT0LQ73nxmyibtad5+X5GeTvHTZa0m2J6/Y3Z/MUNzoDzNsHrkVH0iypUzmgWoZz/JeeCb3Wga4u7+d5Lgk75ulW4bCeveZfOfsGpOs662TPDHJ17Y43L9n9SbfAAAA7DIKowEAAAA7ahK4OGnKqUdX1UXX6fff3f3gJMdk+KP7v2X4A/xGzkzyugzFh67S3cd393tnXvgmdffpGXYje2SSjcIhpyX5rSTX7O63LWj+d2fYre4OSf40yTsyhC7OSrLMkMLfJ/nvNc69aFIIaSG6+0PdfeskN0vyogyFpDbjixl2fn1gkst19727+8uLWtdu1t2fSXLdJL+R4X1YyzkZdtz7se5+xk6sba/r7j9Ocp0kL0xyxjqXfjnJU5Ncp7vfvxNrW0t3/2WSH0ryoCQvTvIvGdb3nQVOM63w2/O6++wFzgEAAAAAAAAA7G73TXLBUdu7u/tTi55okmubVnDtxEXPtZt197nd/fAMxYHekvUzZ/+S5CFJbrWTRdFW6u7nJLnqZB3/mM1tUHhehrX/QZLjkxx9oGShuvsb3X3fDBnBk5K8Nsmnknw9W9t0dt71LDyv2N3f7u5HJTk6w2v8QJLN5Au/m+Ge/Y0MGasbb7VQ1YFsWc/ygf5M7rUMcHd/NcktMhSsW+/fnd9P8oYkt+jux+y2omj7TO7r301yVJJHZXh/ztlE13OTvCvJU5LcpLuvPdkkFgAAgF2sht/ZAgAAABx4qurSSW6Y5NJJLpnk8Ay7BJ6ZoRjWfyQ5rZf4C5CqunqSm0zWeJHJ+j6f5CPd/fFlretgU1XHJLl2hvvkkkkukCEo8s0kn0nyHwdLEbTNqKrrJrlekksluXCG9+njGYKlZy1zbXtZVR2W5JZJrpzkchmCTP+V5CNJPrRbw0bboapemuTeK5o6yTHLCtECAAAAAAAAAByMqupSGTaovFqGfN4ZGTZe/JftKFC3VVV1gQyZwitmyD5dPENBnDMzbOz5iSSf6O5FbgDINquqI5LcOMllMuT/jsiwieOZGYpGfTzJpxe5QeuBoqpOSvLbK9u6u6Zct5Rn+UB/JvdaBnjyem6Y4Vm6aIbP4VNJ3tXdX1vm2uZVVRdOcqMkV8jw/XBkkrMzvLYvZ/h+OLW7N1NADQAAgF1EYTQAAAAAAHaNSdHLzyU5bEXzG7v79ktaEgAAAAAAAAAAwK6z2cJoAAAAAAeaQ5a9AAAAAAAAWOEh2b8oWpI8axkLAQAAAAAAAAAAAAAAAGBnKYwGAAAAAMCuUFUXSfIro+ZTk7x+CcsBAAAAAAAAAAAAAAAAYIcpjAYAAAAAwG7xlCSXGbX9cXeft4zFAAAAAAAAAAAAAAAAALCzFEYDAAAAAGCpquoSVfX0JL8+OnVakucuYUkAAAAAAAAAAAAAAAAALMGhy14AAAAAAAAHl6r6iyQ3mhxeKskVktSUSx/T3efs2MIAAAAAAAAAAAAAAAAAWCqF0QAAAAAA2GnHJLneBte8qLtfvhOLAQAAAAAAAAAAAAAAAGB3OGTZCwAAAAAAgJGXJPn5ZS8CAAAAAAAAAAAAAAAAgJ116LIXAAAAAADAQe87SU5P8u4kz+vuU5a7HAAAAAAAAAAAAAAAAACWobp72WsAAAAAAAAAAAAAAAAAAAAAAAAADnKHLHsBAAAAAAAAAAAAAAAAAAAAAAAAAAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdIcuewGwbFV1RJJjVzR9Lsk5S1oOAAAAAAAAAMBWXCDJlVYcv7W7v7msxQCAjB4AAAAAAAAAsEfI5+0QhdFgCFy9etmLAAAAAAAAAADYBndO8pplLwKAg5qMHgAAAAAAAACwF8nnbZNDlr0AAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgKU7dNkLgF3gcysPTj755BxzzDHLWgsAAAAAAAAAwNxOPfXU3OUud1nZ9Lm1ruX/Z+/Owyyr6nvh//bpmrrpEehmVBkFJCqivIGmQQRUgnkjMV4SL3mIxleNEoPxRdQYBuONQ5zyJnLjcFFITAxBBSUKeq8yo4IMsZNGGQSaubvpeajxrPeP7i5qOPucfapO1Tl16vN5nn7ovfZae62zq55m7aq1vhuAaWKNHgAAAAAAAAAw41mfN30Eo0FE/8iDww47LI4++uhmjQUAAAAAAAAAoJH6a1cBgClljR4AAAAAAAAA0I6sz5sipWYPAAAAAAAAAAAAAAAAAAAAAAAAAEAwGgAAAAAAAAAAAAAAAAAAAAAAANB0gtEAAAAAAAAAAAAAAAAAAAAAAACAphOMBgAAAAAAAAAAAAAAAAAAAAAAADSdYDQAAAAAAAAAAAAAAAAAAAAAAACg6QSjAQAAAAAAAAAAAAAAAAAAAAAAAE0nGA0AAAAAAAAAAAAAAAAAAAAAAABoOsFoAAAAAAAAAAAAAAAAAAAAAAAAQNMJRgMAAAAAAAAAAAAAAAAAAAAAAACaTjAaAAAAAAAAAAAAAAAAAAAAAAAA0HSC0QAAAAAAAAAAAAAAAAAAAAAAAICmE4wGAAAAAAAAAAAAAAAAAAAAAAAANJ1gNAAAAAAAAAAAAAAAAAAAAAAAAKDpBKMBAAAAAAAAAAAAAAAAAAAAAAAATdfR7AHAbJRSinK5HCmlZg8FYJwsy6JUKkWWZc0eCgAAAAAAAAAA1M0aPaBVWZ8HAAAAAAAAUJtgNJgGKaXo7e2NLVu2xJYtW6K/v7/ZQwKoqaurKxYsWBALFiyInp4eC7EAAAAAAAAAAGhJ1ugBM431eQAAAAAAAAD5BKPBFNu+fXs89dRTMTAw0OyhANSlv78/nnvuuXjuueeis7Mz9t9//5g3b16zhwUAAAAAAAAAAMOs0QNmIuvzAAAAAAAAAPKVmj0AaGfbt2+P1atXW3AFzHgDAwOxevXq2L59e7OHAgAAAAAAAAAAEWGNHtAerM8DAAAAAAAAGE0wGkyR3QuuUkrNHgpAQ6SULL4CAAAAAAAAAKAlWKMHtBPr8wAAAAAAAACe19HsAUA7SinFU089NW7BVWdnZyxcuDDmz58fnZ2dkWVZk0YIkC+lFAMDA7F169bYvHnzqDfq7v737dBDD/VvGAAAAAAAAAAATWGNHjBTWZ8HAAAAAAAAUJtgNJgCvb29oxYqREQsWLAgDjjgAAsVgBmhs7Mz5s2bF0uXLo0nn3wytmzZMnxuYGAg+vr6oqenp4kjBAAAAAAAAABgtrJGD5jJrM8DAAAAAAAAqK7U7AFAOxq5QCFi5wIGC66AmSjLsjjggAOis7NzVPnmzZubNCIAAAAAAAAAAGY7a/SAdmB9HgAAAAAAAEBlgtFgCoxddLVw4UILroAZK8uyWLhw4aiysf/OAQAAAAAAAADAdLFGD2gX1ucBAAAAAAAAjCcYDRospRT9/f2jyubPn9+k0QA0xth/x/r7+yOl1KTRAAAAAAAAAAAwW1mjB7Qb6/MAAAAAAAAARhOMBg1WLpfHlXV2djZhJACN09HRMa6s0r93AAAAAAAAAAAwlazRA9qN9XkAAAAAAAAAowlGgwar9Ia2LMuaMBKAximVxk8ZvJESAAAAAAAAAIDpZo0e0G6szwMAAAAAAAAYTTAaAAAAAAAAAAAAAAAAAAAAAAAA0HSC0QAAAAAAAAAAAAAAAAAAAAAAAICmE4wGAAAAAAAAAAAAAAAAAAAAAAAANJ1gNAAAAAAAAAAAAAAAAAAAAAAAAKDpBKMBAAAAAAAAAAAAAAAAAAAAAAAATScYDQAAAAAAAAAAAAAAAAAAAAAAAGi6jmYPgOmRZVlnRJwYES+MiP0iYmtEPBUR96aUHm1wXwdHxDERsX9EzI+IpyPisYi4I6U00Mi+AAAAAAAAAAAAAAAAAAAAAAAAaA+C0Zoky7JDIuK4iHjVrv8eGxELRlR5LKV0UAP6WRoRH42I34+IPXPq3BERn0spfWuSfb05It4fESfkVFmfZdlVEXFxSmndZPoCAAAAAAAAAAAAAAAAAAAAAACgvQhGm0ZZlp0SER+OnWFoFUPKGtzfb0XEFRGxrEbV5RGxPMuyf46Id6WUttXZz/yI+EpE/EGNqntGxLsj4k1Zlv1RSukH9fQDAAAAAAAAAAAAAAAAAAAAAABA+yo1ewCzzDER8bqYnlC0UyLi2hgdipYi4u6IuDoi/ndErBvT7JyI+EaWZYW/L7IsmxMRV8X4ULS1EfHDXX3ds6vv3faJiO9kWbaiaD/Qzg466KDIsmz4z0033dTsIQEAAAAAAAAAAMCMZ30eAAAAAAAAAMw8gtFaQ19EPNyoi2VZdmBEfDsiukYU3x4RR6eUXpVSOjul9LqIODAizo+IgRH1/u+I+B91dPfJiDhzxPFARLw3Ig5MKb1+V1+vjIjfiIifjKjXHRHXZlm2Xx19AQAAAAAAAAAAAAAAAAAAAAAA0KYEo02/gYi4LyL+V0S8KyJeGRELIuL/aWAfH42IJSOO74iI01NK94+slFLqSyn9XUScPab9+7Mse1GtTrIsOyR2BquN9N9SSl9IKfWP6WtVRJwWo8PR9oqIS2r1AwAAAAAAAAAAAAAAAAAAAAAAQPsTjDa9royIhSmlV6SU3pFS+nJK6Z6U0kCjOsiy7PCI+KMRRf0R8daUUm9em5TStbvGtlt3FAssuyQiOkccX5FS+k6VfnZExFt3jWm3t+8KWAMAAAAAAAAAAAAAAAAAAAAAAGAWE4w2jVJKG6oFlDXIf4+IOSOOv51SerBAu0+NOT47y7KevMpZls2NiDfXuMY4KaUHIuLaEUUdsXPMAAAAAAAAAAAAAAAAAAAAAAAAzGKC0drP7445/lqRRiml+yPiZyOK9oiI11Vp8vqImDfi+CcppV8WGuH4Mb2pYDsAAAAAAAAAAAAAAAAAAAAAAADalGC0NpJl2b4R8fIRRYMRcXsdl7hpzPFvVal7Ro221dwaO8e22yuyLNunjvYAAAAAAAAAAAAAAAAAAAAAAAC0mY5mD4CG+o0xx79IKW2ro/0dY46PrqOvnxTtJKW0LcuylRHxijF9PVv0GkD9Ukpxzz33xC9/+ctYs2ZN9PX1xdKlS+OAAw6IFStWxPz585s9xAl7/PHH46677oonnngiduzYEXvvvXe89KUvjVe96lVRKk0uA3TNmjVx6623xlNPPRU7duyI/fffPw455JA4/vjjJ33tSlatWhUrV66MtWvXxubNm2PPPfeM/fbbL1asWBF77bVXw/sDAAAAAAAAAABgcqzPmxjr8wAAAAAAAACoRDBae3nJmOOH6mz/cI3rjXRUA/oaGYz2koj4cZ3XAApYt25dfPzjH4+vf/3rsXbt2op1urq64tRTT41LL700fvM3f7PQdd/61rfGlVdeOXz8yCOPxEEHHVSo7U033RSvec1rho8vueSSuPTSS3PrZ1k2/PdXv/rVcdNNN0VExB133BGXXHJJ/PjHP45yuTyu3T777BMf+chH4rzzzqt7kdS9994bH/jAB+LGG2+seO0DDzww3vWud8WHPvSh6OjoiEsvvTQ++tGPDp+/8cYb45RTTinU13PPPRef/vSn4+tf/3o8+eSTFeuUSqVYvnx5XHLJJXH66afX9VkAAAAAAAAAAABoPOvzrM8DAAAAAAAAoPEEo7WXw8Ycr66z/WNjjvfKsmxJSmnDyMIsy/aMiD0n2dfY+ofX2R4o4Nprr41zzz03tmzZUrVef39/3HDDDXHDDTfEO9/5zrjsssuio6O1/xfx8Y9/PC6++OIYGhrKrfPss8/Gn/3Zn8WNN94Y//qv/xpdXV2Frv25z30uLrzwwqrXfuKJJ+Kiiy6K66+/Pr797W/XPf7d/vEf/zHe+973xubNm6vWfx0p0gAAIABJREFUK5fLcdttt8VrX/va+MM//MO4/PLLC38eAACgve0Y2h6P9P4q+st9dbXbu3Pf2L/7hVHKqm9UGUpD8Xjvw7FxcP1khtk2ukrdcXDPi2PunD0afu2tQ5vjsR0PxkAaGHeuu9QTB889InpKcxveb6MMlAfisd4HY0nnXrFX5z7NHg4AwIywdWhzPNP3eOzb/YKYP2dhs4fTktYPrI0n+h6Jchq/UX7BnEXxormHRUfW2fB+Nw1uiGf7n4wX9hw6qXl4b3lHPLrjgegt72jg6KbOPl0HxL5dB44KRqhk5/z/gdg6VP33kPPmzI8Xz/uNRg4RAABahvV51ucBQCOkgf6IR1ZFlEoRh7605s/mAAAAAABgNmjt36pTr8VjjtfU0ziltDXLst6I6BlRvCgiNoypOraf7SmlbfX0VWFsi+psD9Tw1a9+Nd7xjneMe5vioYceGi95yUti3rx5sXr16rjzzjtHLTD68pe/HKtXr47rrruuZRdffeYzn4mPfOQjw8dHHHFEHHHEEbHHHnvE008/HT/96U+jt7d3+Pw111wTF110UXzqU5+qee3PfvazccEFF4wrf8lLXhKHH354dHd3x+rVq+Ouu+6KoaGhuOOOO+Lss8+Ok08+ue7PcfHFF8fHPvaxUWVZlsURRxwRhx9+eCxYsCA2bNgQP//5z0e9TfTrX/96PP3003HDDTe07NcIAACYHjdv+H5cveZ/RTnGBwQUsX/XC+NPX3BpLO4Ym4G/09N9j8ffP3FpbBx8bhKjbD+lKMXZy94RJy/5rYZcL6UU1z/3b/G95/41UqQq/c6Jc/Z9T5yw6LSG9NtID2xfGV988hPRW94eEREvm/9/xdv3uyA6SzYNAQDk+f66q+KG9VfHYBqMLLJ487K3x2uW/Hazh9UyhtJgfO3pz8c9W26vWm+P0oJ4z4F/GQfPPaIh/ZZTOa5a8+W4deMNERExJzri3P3+LI5bWP/vgn626ab4+jNfiKEYbMjYpsuLeg6P8w68KDes71fbV8aXnvx4obC3g3oOjwtf9OlGDxEAAJrO+jzr8wCgEdIj90f64FkRTz+6s+DwYyI++++RLVnazGEBAAAAAEDT+W1te5k/5ngir5zeEaOD0RZMYT8jVeqnblmWLYuIen8DdGgj+m6UNDgYsfaJZg+j/S09MLI2XrBy3333xbvf/e5Ri66OOeaYuOyyy2L58uWj6q5duzYuuuii+NKXvjRcdsMNN8TFF18cH//4x6dtzEWtXLkybr311oiIOOuss+ITn/hEHHnkkaPqbNiwId7//vfHFVdcMVz22c9+Nt797nfHQQcdlHvtu+++Oz70oQ+NKjvllFPiC1/4Qhx99NGjyteuXRsXX3xxfPGLX4xbbrklVq1aVdfnuPLKK0ctuiqVSnHeeefFBRdcEC984QtH1U0pxXe+8504//zzY/Xq1RER8aMf/Sguuuii+MQnPlFXvwAAQPtY3ftQXLXmy5O6xlP9q+Ofnv67eO8LLh13LqUUX3ryE0LRKihHOf51zZfi4LlHxAt6Dpn09VZtvzf+/blvFOh3KP7pmb+Pg3peHPt1v2DS/TZKf7kv/uGJv46+9PwmqF9svTOuf+7q+J2l5zRxZAAArWvl1rtGzQFTpLh6zf+Kg3oOb1jA10z3w/XfrhmKFhGxrbwl/ueT/yM+eejXYk42+d///WTTj4ZD0SIihmIwrnj683FwzxGxd9c+ha+zpv+puPKZv530eJrhsd4H46pnvxxv3398WEFfuTe+OGb+DwAwk1ifN43aeI2e9XnW5wFAI6SUIv3Vuc+HokVEPHhfpL95d2Sf+GazhgUAAAAAAC2hPVcczF5jA8smshJ5R0QsqXLNRvZT7ZoT9Z6IuKRB12qOtU9EOttmh6mW/duvIvY7qNnDmDJvf/vbo7+/f/h4xYoV8YMf/CDmzZs3ru7SpUvji1/8Yhx22GHxgQ98YLj8U5/6VLzlLW+Jl770pdMy5qLWr18fEREXXnhh7hsmlyxZEl/72tdiw4YN8Z3vfCciIoaGhuLyyy8f9wbIkc4777wYHBwcPn7Tm94UV111VcW3Pi5dujT+4R/+IQ455JC48MILY926dYU/w2OPPRbvfve7h4+7u7vj2muvjTPOOKNi/SzL4qyzzorly5fHiSeeGA899FBERHz605+Od77znXHwwQcX7hsAAGgf/7n17oZc51fbV0ZveUf0lOaOKl8z8FSsGXiqIX20q19svbMhwWi/2HJnXfVXbr2rpYLRfrV9ZcVQhF9s/ZlgNACAHNc/d3XF8vu2/lQw2i71PPNsG9oSD+/4Zbx43m9Mut+V2+4aV5Yixcptd8Vrun67+HW2jr/OTPKfW38eQ2ko5mRzRpU/kDP/BwCYMazPmzbtvEbP+jzr8wCgIR76xc4/Y/38R5EGByLr6Jz+MQEAAAAAQIsoNXsATKnUZm2AAm688ca45557ho8XLlwYV111VcVFVyNdcMEF8du//fxmjnK5HJ///OenbJyTsWLFikJvYvzrv/7rUcc//vGPc+vedddd8bOf/Wz4eL/99ouvfvWrFRddjfSBD3wgXve619Ucy0if/vSnY8eO5/MhP//5z+cuuhpp2bJl8S//8i/Dx0NDQy37NQIAAKbepsENDblOOYZi6+DmceUbB55ryPXb2abB9Q25zsbB+u71pqHG9Nsom3LG36jvUQCAdrO696F4tPeBiuc2DrTWXK+ZtgxtrKt+w+bnOc9C9c5v653nt5q+1Bt95bHvO4vY2KD7DAAAM5X1ec+zPg8AJum26yqX926P2LF1escCAAAAAAAtRjBaexn7m4+5E7jG2DaVfpsyXf0AE3DllVeOOj7vvPNi//33L9T2k5/85Kjjb3zjG9HX19ewsTXKRz7ykSiVav8v7Oijj46DDjpo+Pi+++7LrfuNb3xj1PGf/umfxqJFiwqN56KLLipULyJi27Zt8dWvfnX4+JBDDol3vetdhdsfd9xxcdJJJw0ff/e73y3cFgAAaC+DaaBh1+pL4ze791bYAM9ojbpHfam3Kf02Sl+58vgrfV8BABBx88brc8+ZQz2v3jdt5c1L65U3P68UElZNq83bJ6LSZ6j3PgAAQLuxPu951ucBwOSkZ5+ocrLen5ACAAAAAEB7qf6aLWYawWgR/zMirq6zzaER8Z0G9Q9Nd9ttt406/sM//MPCbY8++ug49thjh99o2dvbG3fffXcsX768oWOcjLlz58app55auP5RRx0Vjz76aEREbN++PbZu3Rrz588fV++OO+4YdXz22WcX7mPFihWx//77x1NPPVWz7m233TbqbZRvfvObCy0iG+k1r3lN3HrrrRER8dhjj8Xq1avjhS98YV3XAAAAZr68YLQ50RFdpa5x5SkiesvbK7bprRAgUC2sa25pXrFBtomB1B+DaXBcecOCF+q8TqP6bZS88QymwRhMA9GRdU7ziAAAWte2oS3x88235p5vtblec9W38a9RgV15gWaNCkbLe2ZrlhSpymce//2YV7cUpegu9Ywrr1QGAAAzmfV5o1mfBwCTsLZKMNrQ0PSNAwAAAAAAWpBgtPayaczx0noaZ1k2P8YHlm0s0M+8LMv2SCltq6O7ZQX6qVtKaU1ErKmnTZZljegaWsKGDRvi4YcfHj5evHhxHHXUUXVdY/ny5cMLryIi7rrrrpZaeHXooYdGV1fxzSJLliwZdbxp06aKC6/+4z/+Y/jvixcvjsMOO6yucb3qVa8q9HbIsQvj9t9//+GFYUWN/fy//vWvLbwCAIBZqFJQV0TE8sWnx1v2+ZNx5SmleO8DvxflKI87V2mDf95m96Wd+8VHD/mHOkc7s3137T/HDevHZ/Hn3aN65QUsdGQdUxrI1ijV7kNfuTc65ghGAwDY7SebfhQDqT/3fKPCvdpBSvUGo01tcHG9188Lpj5lyZnxe8v+uO5xTZXe8o54/4NvqXiu0vdj3n04ao9j4rwDL27o2AAAoNVYnzee9XkAMAlrn8w/l8av7QAAAAAAgNlEMFp7eXDM8YvqbD+2/vqU0oaxlVJKz2VZtiEiRq5meGFE3D+JvsaOHZiAtWvXjjo+/PDD6w7/O/LII0cdr1lTV9bglBu7kKqWzs7Rm68HBgbG1dm2bVv09j6/iWMii5iKtnn88cdHHb/vfe+L973vfXX3N9L69esn1R4AAJiZBtP455uIiM6scghVlmXRXZobO8rjs+3r2ezeUxqbq9/+8j5zX2pM8EJesNjCOUti/eDaceWtFpZRLSCir9wbe8xZMI2jAQBoXeVUjls33lC1TquF4M4kjQguTik1MBit8ni6W+yZqivrjiyySDE+iK7SZ857Hmm1zwUAAFPB+rzxrM8DgEnY9Fz+ufLQ9I0DAAAAAABakGC09jI2mKy+16lFHDLmeFWNvka+ou6wCv3X01c9bdvb0gMj+7dfNXsU7W/pgc0ewZTYsGF0luGiRYvqvsbYNq22qKdUKjX8mhs3bhx1vGBB/Ru2Fy5cWKjec89V+QX2BG3ZsqXh1wQAAFpfXjDanCz/R37dpZ6cYLR6Nrv3FBxh+8j7zI0KKMsLWFjUsWdOMFprhWX0pfz70GpjBQBopvu33RtrB56pWsf86XmVgrqqacS9G0j9kaJc8Vy9wWt59eeW5tU9rqlUykrRlXVXDH6u9Bny7vNsfFYEAGYo6/OmTxuu0bM+b2KszwOAHNs2558bEowGAAAAAMDsJhitvfznmOOXZVk2L6W0vWD7E2tcb+y5kcFoJ0TEdUU6ybJsj4h4WR19zSpZR0fEfgc1exjMUCmN3iBS79soK2nENVpdd3f3qOP+/v66r1G0zUSuXcvYrzsAADA75AWjdWSduW26S3MrltcXjFb5Gu2snvtWr5RS7nUWdiypWF5vIMNUq3YfWm2sAADNdPPG62vWEYz2vLxgtFKUolwhvKxaYG9R1cKPKwWHVZM3F27FZ6ru0tzoG6rwXFjhM+fdh+6s9T4XAEAl1ucxGdbnTYz1eQCQo6/KzzRT5Rc4AAAAAADAbCEYrY2klJ7OsuwX8XzoWEdErIiIHxa8xCljjqutzL8hIt5ZpW01J8Xo7717U0rP1tEeyLHnnnuOOt60aVPd1xjbZsmSypuwJ2Ooxd5gNfYzjn2zZxFF39y59957jzq+44474oQTTqi7PwAAgME0WLG8WjBaT84G/Eob9vM38fcUGF17yfvMjQj9GkyDUY7Kz8kLOxZXLG+1sIxq46kWLAEAMJus6382/mvb3TXrNSLcq911l+bGjvK2ceWNmCc3cm7bW678/rKe0ry6rjMdekpzY/PQ+N+P1fOsmPe8CQAA7cT6vImxPg8AJqDcWv8/BwAAAACA6VZq9gBouGvGHL+tSKMsy46MiN8cUbQtqgeq/SAiRq54PmHXNYp465jjsWMGJmjp0qWjjh944IG6r/GrX/1q1PGyZcsq1uvoGJ2tOThYeUN+JRNZ2DSV5syZEwcccMDw8a9//evYvr3yZpU8K1euLFRvn332GXU8ka8RAABARMRgGqhYXi0YLS/gq9Lm/7xAgNm42T3vM/eVeyOlNKlrVwu+WDSn8maoVgsbqxYQ12ohbgAAzXLLxusjRe2542AazJ3rzzZ596uewOd6VbtGb51z27x5e08Lhk034llxNoZoAwAw+1ifNzHW5wHAeKmvxs8zy+XpGQgAAAAAALQowWjt558jYuSrYd6UZdnhBdp9cMzxv6WUcld2p5S2R8Q3a1xjnCzLXhwRvzuiaDAi/qXA+IAClixZEoceeujw8caNG+P++++v6xp33HHHqOPjjjuuYr2FCxeOOt64cWPhPv7rv/6rrjFNh+OPP3747+VyOW6++ebCbdevXx//8R//Uaju8uXLRx3/8IfVMigBAADyDabKG2A6so6K5RH1BQjkBQLMxs3ueZ85RTkGUv+krl0t5GxRx56V26TeKKfWWQRdLfysEeEUAAAzXX+5L36y6UeF6wuX3SUnhLhacPFkVbtGPQHFA+WB3Ge2ntK8usc11fKD0cZ/5rz7MBufFQEAmH2sz5s46/MAYIwtNYJMy0PVzwMAAAAAQJsTjNZmUkoPRsSVI4q6IuKKLMtyVyFnWfbGiHjriKL+iPhoge4ujYiRryt/a5Zlv1Oln56I+NquMe12eUrp4QJ9AQWtWLFi1PE///M/F257//33x9133z183NPTE6985Ssr1h37pspVq1YV7uf73/9+4brT5fTTTx91/JWvfKVw2yuvvDL6+4tthD/ttNNizpw5w8ff/e53Y82aNYX7AgAA2G0oNxitM7dNd86PiPpSpc3ulQMB8kII2lm1zzzZ4K9qwQsLOxbnnutPfZPqt5GqBUT05b97AQBg1rhny+2xrbylcH3BaDtVjkXLDxZrSDBalfnrQOqPciq2GbHaHLkVn6m6c8Pmiodot+LnAgCAqWB93sRYnwcAY/zq3urnh1rnZWkAAAAAANAMgtGmWZZlB2ZZdtDYPxGx75iqHZXq7fqzd41uLomIka+PWR4R/yfLsiPHjKU7y7L3RsTVY9p/NqX0WK3PklL6dUT8f2OKv5ll2Z9mWTYy/CyyLDsqIn60ayy7PRfFAtiAOpx77rmjjr/whS/EM888U6jthz/84VHHf/AHfxDd3d0V6x577LGjjq+77rpCffzgBz+IO++8s1Dd6XTOOefEggULho+vueaa+MEPflCz3ZNPPhl/9Vd/VbifJUuWxDnnnDN8vHXr1rjgggvqGywAAEBEDKaBiuUdWUdum+5STjBahQCBvI383dns2+yed98iqgceFFEtvGFRx5Ip67eRqoVHCPUAAIi4eeP1ddU3h9opReWNf/nPNZOfI9cKPi76tal2nbxgt2aq71mx8j2o9twEAADtxPq8ibE+DwBGS1+5pEYFwWgAAAAAAMxugtGm320R8UiFP98YU++AnHqPRMRnqnWQUnoiIt4UESNfj3ZiRKzKsuyuLMuuyrLshoh4PCL+LiI6R9T794i4qI7P86GIGLmSvzMi/j4iHs+y7Posy/4ty7KfR8R/xehQtP6I+N2U0tN19AUUcOqpp8YxxxwzfLxp06Z4y1veEjt2VN/I8fnPfz6+853vDB9nWRZ//ud/nlv/hBNOiHnznt+4cc0118TPf/7zqn08+OCD8Ud/9Ee1PkJTLFiwIM4///xRZWeffXbceOONuW0effTReO1rXxsbN26sq69LL7101IK2f/qnf4oPfvCDMTQ0VNd1Vq1aFbfccktdbQAAgPaRH4zWWbE8IqK7VDnUrFKAQF7Y1Wzc7J533yJqByfUkhcqkEUW8+csqrtdM1QbSysFuAEANMOjOx6Mx3ofrKvNZOeY7SLllPfkPtdMfo5ca/5aPBhte+65vPE3U9FgtJRSfoh2C34uAACYCtbnTYz1eQAwxvpnq58v1/f/LQAAAAAAaDeC0dpUSummiPjdiFg7ojiLiFdFxNkR8fqIWDqm2Tci4g9SSoV/g7Kr7tkRcdWYU8si4oyI+G8R8cpdfe+2JiLemFK6tWg/MJs888wz8eijj07oz26XX355dHV1DR/fdNNNcdJJJ8XPfvazcf2tW7cuzjvvvHj/+98/qvzCCy+Ml73sZbnjXLBgQfz+7//+8PHQ0FC84Q1viB/+8Ifj6vb398dXvvKVOP744+PZZ5+NJUuW1HNLps1FF10UL33pS4ePN2/eHKeddlqcffbZ8c1vfjN+8YtfxC9/+cv44Q9/GO973/vi6KOPjvvvvz96enrijW98Y+F+Dj744Pjyl788quxv/uZvYsWKFXHdddfF4OBgbttHH300Lrvssjj11FPj6KOPjh//+Mf1f1AAAKAtDOQGo3Xktim62T0iP4xhNm52787yP/Nkwxfy73NP1cCEVgnLGEqDuSF9EYLRAABu2fj9utuYQ+1WORqtpzSvYnlfmvx9qzXPzguQruc6rfhMlffsMfZzDKaBKEe5Yt1W/FwAAFCJ9XnNY30eAOyUhoYiNq+vXqlc+edwAAAAAAAwW+TvkmTGSyl9P8uy34iIj0bE70dE3kqHn0bEZ1JK35pgP1sj4g+yLPtmRPy/EXF8TtX1sTNA7ZKU0tqcOjDrveUtb5lw25R2bhA59thj4wtf+EL8yZ/8SZR3/VL07rvvjuOPPz4OO+ywOProo6Onpycef/zxuPPOO8ct9Hnta18bH/vYx2r297GPfSyuueaa4TcyrlmzJl7/+tfHYYcdFi972cuiu7s7nn322fjZz34W27Zti4iIfffdNz71qU+15Jspu7q64nvf+16ceuqp8dBDD0XEznt69dVXx9VXX12xTZZlcdlll8Xq1avHvdGzmnPPPTeeeeaZ+PCHPzz8NfrpT38av/M7vxPz5s2LV7ziFbHPPvvE3LlzY8uWLbFu3bpYtWpV3W+/BAAA2tdQqrxpoyPrzG1TdLN7RH7gV7WwrnbVWeqMOdERQzH+nk82tCKvfXdpbm6Q3c52kwtka5Ra42iVcQIANMPWwc3x8y23VTx35LyXxyM7flUxaMscaqdUZzDa4K7Q3mrPRLXUnt8Wm//3lrdXLO/IOqKzNPHxTZW8MOix35/V7k93lv/8AgAArcT6vOaxPg8Adnnu6Yih/KDOiIgoD03PWAAAAAAAoEUJRptmKaWDprm/NRHx7izLzo+IEyPiRRGxb0Rsi4gnI+LelNIjDerrmxHxzSzLDo6IYyNi/4jYIyKeiYjHIuL2lFJ/I/oCanvHO94RS5Ysibe97W2xdevW4fKHHnpoeFFRJX/8x38cX/ziF6Ozs/amjAMOOCC+9a1vxVlnnRVbtmyp2cfBBx8c3/ve9+LZZ5+t89NMnxe84AVx6623xnve85645pprqtbda6+94sorr4w3vOEN8cEPfnDUuQULFtTsa/dbP9/2trfFM888M1y+ffv2uP322wuNt1Xf7gkAAEy9wTRQsbxaCEB3TqjZ2M3tKaXcDe/VwrraWU9pbmwrbxlXXinIoh659znriTlZR3RknRW/1pXC7Jqh1jiEegAAs9kdm/5P7rz95MW/FU/1rY6+oQrBaJOcY7aNyrloVcOa+8q90TFn6oLRis7De3Ofp1ozaDrvno69H9U+/2wM0QYAYHazPm9irM8DgIh45rHadYYEowEAAAAAMLuVmj0ApkdKqT+ldGNK6YqU0idTSn+fUvp2o0LRxvT1SErpW7v6+OSuPm8UigbT781vfnM8/PDDcf7558fee++dW6+zszNe97rXxe233x6XX355oUVXu5166qlx5513xhvf+MbctzAuXbo0PvCBD8R9990XRx11VN2fY7rtu+++8e1vf3t4AdZLXvKSWLx4cfT09MQhhxwSp59+enzpS1+Khx9+ON7whjdERIx7U+SiRYsK9XXGGWfEI488Epdddlkcc8wxNd9k2dnZGcuXL49LL700HnjggTj//PMn9iEBAIAZrZyGohzliueqB6NVDjUbu9l9IPVHyrn+bN3snnfvJhtQlhd6sbu/ogEFzdKo4AgAgHZTTkNx66YbKp5b0rF3vHT+cYXn57NVyklGqxWMNhl9DQr+7S1vr1jeU5pX95imQ9Hnnb6Uf39ma4g2AACzm/V5E2N9HgCz3pona9dJlddsAAAAAADAbNHR7AEAzHaPPvrolF5/2bJl8bd/+7fxuc99Lu6+++745S9/GWvXro2+vr7Ye++948ADD4wVK1YUeoNiniOPPDKuvfbaWLduXdx8883xxBNPxPbt22OfffaJgw8+OE466aTo6Hj+fzmnnHJKpFR5M0sl9dQd64orrogrrrhiQm1XrFgRK1asKFR31apVw3/PsiyWLVtWuJ+enp54z3veE+95z3ti/fr18dOf/jSefvrpWL9+fQwMDMT8+fNj2bJl8eIXvziOPPLImDevNTfNAAAA02cwDeae68jyf+SXH7I1enN7tTCr2brZvXuKAsry2u/ur7vUE1uHNldo1xqBY7U+f17wGwBAu/uvbffEcwNrKp5bsfj1MSebM2Xhu+2iOcFoNea3Ba+fN19v1aDp/JC+McFoVT7/bH1WBACg9VmfV5v1edbnATDNerfVrlMemvpxAAAAAAAz1rotKbb0PX+8dH7E/J7qLwmCmUYwGsAsUSqV4rjjjovjjjtuyvrYe++94/d+7/em7Pqtatu2bXHPPfcMH7/4xS+e8EK2PffcM84888xGDQ0AAGhTg2kg91xH1pl7rjvL2eyeeqOcylHKSjuPqwajteZG/qk2VaEVefd6d3/dWbEwu2apNY7JBlMAAMxUN2+8vmL5nOiIExe9NiKKBxfPXpU35ld7Jpn0/DxVb1/0+jvK2yuWt24wWrEg6LzPX4pSdGZdDR8XAADMJNbnTR3r8wBoO/0Ffo9eLk/9OAAAAACAGeeex1Kc+9VyrHp6dPnX357Ff/9NwWi0F8FoADBJV155ZWzf/vwGlxNOOKGJowEAAGaDwTSYe65qMFqVTfj9qS96doVwVdvsnxcQ1u7yQysmF/yVd69395d3v/tSawSO1RrHZIMpAABmorX9T8eqbfdUPHfsguWxsGNxRFSZ6wmXjYi8WLSd9y2LLFKFGpMNleutce+Lfm3yxtG6wWh534s7IqUUWZbtOq78+btLPcN1AAAAGs36PADaTqFgtKGpHwcAAAAAMKNs3pHi1M+WY7NlpswSpWYPAABmsieeeCIuuuiiUWXnnntuk0YDAADMFoNpIPfcnCz/XQjVQs1Gbtyvttm/VTfyT7VqQQGTUS1YoFq/rRI4VuvzT/b+AADMRLdsvCH33MlLzhz+u2C0WipHo2WRTdm9a9T8Nj8AeV7dY5oOeSHa5SiPev7Mf36Znc+JAADA1LM+D4C21N9fu45gNAAAAABgjG/fm4SiMasIRgOAEb71rW/FX/zFX8TatWtr1r333nvj5JNPjvXr1w+XvfyA4QheAAAgAElEQVTlL4/XvOY1UzlEAACAqsFoHRMORusd8ffKm/jnREd0ZJ0FRth+8jb6T3UwWl4QXauEZdQaR6uMEwBguvSX++Inm35U8dyB3QfHIT1HDB93Z60912u2lHKC0bIsurOpCRCude+LXj8/GK01A8R6JvmsKBgNAAAoyvo8AIhI/QV+BlwuT/1AAAAAAIAZZeWTzR4BTK/8XZIAMAtt2bIlPvGJT8RnPvOZOOOMM+K0006Ll7/85bFs2bLo6OiI9evXx8qVK+Pf//3f47rrrhu1KaerqyuuvPLKJo4eAACYLQbTYO65zirBZdU24Y/cuN+XKi/CbdVN/NMhL1Ru0sELOfd6d0hGXsDAZPttlFrj6Cv3RkopsiybphEBADTXz7fcGtvLWyuee/XiM0fNi3LDd1NrzPVaWXdpbsTQhnHlefPromoFHxe9/kwLRssL6YvY+Vnmx8KIqB3sDAAAUIv1eQAQEYWC0YamfhwAAAAAwIzy6LrKL5yFdiUYDQAqGBgYiOuuuy6uu+66QvXnzp0b//iP/xgvf/nLp3hkAAAAEYNpIPdcR5VgtLzghYjRG9zzNvHP5s3ueQEGecEARdW611PVb6PUGkc5hmIwDURn1jVNIwIAaJ6UUty84fsVz80tzYvjFp48qixvfl0rnGu2KEe5YnkWWZV7N9lgtOrti16/t7y9Ynm1Z7JmqvasNzKoL/f5JZu9z4oAAMDEWJ8HwKxWKBit8s9HAQAAAIDZ65F1zR4BTK9SswcAAK1k8eLFMWfOnLranHjiiXHLLbfEm9/85ikaFQAAwGjVgtHmZPnvQpiTzckNqBq5wT1vs3+rbuKfDnkb/fOCAYrKu9e7A9FaPSyjSDBEq4S4AQBMtUd7H4jH+35d8dwJi06LrlL3qLKpCvdqf1nus8lk58m1g9GKXT+v3tzSvLrHNB3yApkjRt+TkSFpRdsDAACMZH0eAETBYLShqR8HAAAAADCj5AWjffR3snjjMdn0DgamQf4uSQCYhc4666x49tln44Ybbojbb789Vq5cGY899lisX78+ent7Y+7cubHnnnvGi170ojjppJPizDPPjBNPPLHZwwYAAGaZasFoHVln1bbdpZ4YGOofVz5ys3te2FdecMNskLfRf7KhFXmBCbvvdX7gQ2uEZRQKRks7Yn4snIbRAAA0180bv5977uTFvzWuTDBadSlSxfJSZFMSIFxO5ehLtYLRin1tduTO81szQKwj64xSlKIc5XHnioVoz95nRQAAoD7W5wFARAyMX7MxTnn8z+oAAAAAgNlrw7YUm3KWSJ5yRBZ7dAtGo/0IRgOAMfbaa68455xz4pxzzmn2UAAAACoaTIMVy0sxJ0pZqWrb7lJPbB3aPK68r8Bm97xwsNkgN6AsTTx4IaJ2sMBUBD40UpHPnxe0BwDQTrYMbox7ttxe8dxR846JZV37jyvPm1+bP+1WORgtsmrBaBMPletPfTXrFL1+3ny9VZ+psl33dEd5+7hzQrQBAIBGsz4PgFmvv8DPGQWjAQAAAAAjPLIu/9zBe0/fOGA6Vd8lCQAAAAC0nME0ULG8M+us2bY7ywn4GhWMZrP7WLnBaJMIXkgpVQlG29lfd1b5nrdKWEaRcUzmHgEAzBS3b/o/uQHGr15yZsXyqZhjtpOUl4sW2ZSEyhUJHy56/d4KAWMRrRuMFlHt+1GINgAAAAA0VKFgtKGpHwcAAAAAMGP8OicYrasjYv9F0zsWmC6C0QAAAABghskLXJiTddRsmxdu1peeX3ibH4w2eze75923yQQvDKaBKEflxcy773VewMDIr1czFQntEOwBALS7chqK2zb+oOK5PTuWxm/s8cqK53Ln5uZPERGRIicZLabm3hUL/a1dZ6A8kPvM1soBYkWC+moFOwMAAAAABfQVCUYrT/04AAAAAIAZ45F1lddUvmjPiFIpm+bRwPQQjAYAAAAAM8xgGqhY3pF11mybtxF/ZAhAXiBAXvjAbJB33wbTQAzlhB7UUi20oTvbea/zAx8mHsjWSEWCJyYTHgcAMBP857a7Y/3g2ornTlp8RpSyORXP7Z7zjTUUg7lz/tml8iKeLLLozhofIFwo9LfA9avN1XtK8+oa03QqEjaXH6I9e58VAQAAAKBu/X2165Qrv2QNAAAAAJidHllXufzgvad3HDCdBKMBAAAAwAyTF8TVkXXUbFtss3vlzf554WCzQbWN/kUCFCq2S9UCE3p2/TcvkK01wjIKhUdM8P4AAMwUN2/4fsXyjqwjli86PbfdVMwx20nlWLSdwWhFAp/rVWxuW/v61cbQys9URe5p3j3qbuHPBQAAAAAtZ0AwGgAAAABQn0fXVV5VedDe2TSPBKaPYDQAAAAAmGEGcgKxOrLOmm3zNqyP3OCet5G/O8sPbmh31QIMJhq+UC14YXdIRrWAgf5ygcXSU6xIMESROgAAM9Wz/U/G/dvvq3ju2AUrYkHHoty2UzHHbC950WjFAp/rVeSeFwko7i1vzz3XU5pX97imS97z3shAZ8+KAAAAANAA/QV+jlkuT/04AAAAAIAZ45F1lcsP3nt6xwHTSTAaAAAAAMwweRvxO7KOmm3zwhdGbnDPCxOoFtzQ7vKCFyImHr5QPRhtbs1+WyEso8hnn0w4BQBAq7t14w255169+MyqbauF4JpDRaScYLQssirBaBOfIxe957UCiqvN06t9zZst73lv5H3Ju7+z+VkRAAAAAOpWKBhtaOrHAQAAAADMCOVyikefq3xOMBrtTDAaAAAAAMwwQ2mwYnlH1lmzbZEAgb5UebN7K2/in2rVQysmFr6QF5iQRSk6s64C/TY/LCPve6XeOgAAM1FfuTd+sulHFc+9oPuQOKjn8KrtpyJ8d1bIstx58uSC0Yq1rRVQ3FveXrG8I+uIzlLtZ7Zmyft+3P15y6kc/alyKFy172UAAAAAYIz+6i9fiIiIcnnqxwEAAAAAzAhrt0b0Vd5KFgfvnU3vYGAaCUYDAAAAgBlmMA1ULC8WjJYXINBb8e9F2s4GXVl37rlawQh58u9zT2RZNvz3RvfbKINpIAZzQvpGEuoBALSruzbfEjtyQrBeveTM4Tldns6sK7KoXGcyAV/tIKWUey6LaoHPvVXbVlP0ntea3/bO0Oepavc0IqI/9UWKyve21T8bAAAAALSUQsFoQ1M/DgAAAABgRli/Lf/cfoumbxww3QSjAQAAAMAMkxuMVioSjJa32f35EIC8wK1qIV3trpSVojur/PknHoxW+z53Zd0tG5bRXy6wWDsEowEA7SmlFLds/H7Fc/NK8+NVC06qeY1SVsoN4G12CG6z5QVw7ZTlBnGVo5z7vFRLXyo2b601D88731OaV/eYplOtEO1q8/oewWgAAAAAUFx/gZ9FCkYDAAAAAHbZWPkdvhERsaS1lybCpAhGAwAAAIAZZqCcE4wWHTXb5oV77Q4BGEqDuUECs32ze62ggHrltRv5NWrlsIyi/Td7nAAAU+HXO34ZT/Q9WvHcCYtOi65S5TncWHlz7NkeLlstGK0UWfRUCW2eeHBxsXte6/q95corkFr9eSr/eWfHrv/m35/ZHKINAAAAAHUrFIxWnvpxAAAAAAAzwoacYLSOUsS8rukdC0wnwWgAAAAAMMMMxWDF8o5SZ822eZvxe212ryk/tGKCwQspJxhtzH1u1bCMov03e5wAAFPhlo3XVyzPIouTF59R+Dq5YVQ5c8XZIz8YLSKL7iw/ZGyi88+igWq1rp93ndYPRssJ0d71eas998z2Z0UAAAAAKCqlVDAYbWjqBwMAAAAAzAgbt1deU7lkj4gsy6Z5NDB9BKMBAAAAwAwzWM4JRss6arattdm9WhhAq2/kn2q5926CoRVFAxNaNSyjaCDcRIPjAABa1ebBjXHPljsqnnvJHq+IpV37Fb5Wrfn5bJWqBKNlkVUN4upLEwwuLhr8W2Me3luu/GrGVn+eqhUELRgNAAAAABpgoL9YvXJ5ascBAAAAAMwYGyovS4zFrb0sESZNMBoAAAAAzDCDaaBieUfWWbNt3mb3wTQQQ2mwahjAbN/snhdQVi1Mrpq8ez22n/ywjOYGjhUOjpjloR4AQPu5fdP/jqGoHFZ88uIz67pWq871mi3l56JFZFnVkLHeCc4/i87ra9XLO5/3PNEqurPK34u9w8Fole9rR9ZR6FkUAAAAAIiIgb5i9cpDUzsOAAAAAGDG2JgTjLZk3vSOA6abYDQAAAAAmGHygtHmZB0121bbjN9X7q0awNDqG/mnWl74wkSDv/Lu9dhwjLz73uzAsb5UrP+JBscBALSioTQUt268oeK5vTr3iaP3eEVd18uf6832OVR+MloWO0OhSznLHSZ674q2qzUPz5v/zi219gqkvJC+/tQX5VTOD3zLZvdzIgAAAADUpb/g7/nL5akdBwAAAAAwY2zIC0bbY3rHAdNNMBoAAAAAzDCDabBieUfWWbNt3mb3iJ0b+KuFWHVl3bUH18by7t3EgxcqL3geH4xWud9mB44V7b9ogBoAwEywcutdsXHwuYrnTl58RpSyOXVdL3+OObvnUKlqMFoWWZY1/N4VbVdr/p8bINbiQdN5QdApUgyk/tx5fbVnTAAAAABgDMFoAAAAAECdNuYsW1w8N5vegcA0E4wGAAAAADPMYBqoWN5ZKBgtfzN+X7k3P6wr64lSNrt/nJgXFNDo4IWxwQL5/TY3GK14cMTsDvUAANrLzRu/X7G8I+uMExadVvf1BKNNxM6FPHnPNhOfnxcM/q1x/d5y5Vcz5s3rW0W1Z8VqIdqtHvgGAAAAAC2lr2gw2tDUjgMAAAAAmDE2bqv8stnFe0zzQGCaze6djAAAAAAwA+UFo83JOmq2zQteiNgZBGCze768e5d3z2rJazc2MKFVwzLqCY5IqfIvYQAAZpJn+p6IX23/RcVzr1qwIubPWVj3NbuznHCvNLuD0VLkzx93v98wPxhtYvPzove81vXzzrd+MFq1Z8UqIdpV2gEAAAAAYwz0F6uXylM7DgAAAABgxthQ+X2tsbi1lyXCpAlGAwAAAIAZJi8YrSPrrNm2K+uObDhKYLS+cm9uGECrb+KfDtMVvDA2HCPv3k80kK1RigazpSjHQCq4uBsAoIXdsvH63HMnLz5zQtdsdPhuu6gWjLY7Gq3RAcJF29WqtyM3GG1e3WOaTtWe+frKO3I/t2dFAAAAAKhDf8Hfsw8NTfFAAAAAAICZYmNOMNqS1l6WCJMmGA0AAAAAZpjBNFixvEgwWikrRVfWXfFcb3lHbshXXujAbNKdNTa0Ii9YYOy9bnTgQ6PU0/9Ew+MAAFpFb3lH/HTzjRXPvajn8Dho7uETum5eqFSz53qtLMt2BaPlzM/70sTmnkXn9XkBx8Pnc4PRWjtArNozX59nRQAAAABojILBaFEWjAYAAAAA7LQhJxhtsWA02pxgNAAAAACYYQbTQMXyIsFoERHdeeELqbdKWFdrb+KfDo0OrSgaLNCd5fXb3LCxegLhJhoeBwDQKu7cfHP0liuvLHn14t+a8HXzQ3Bn9/wppZR7Ltv137z5+UTmnkNpMPc5q97r532ftHow2pysI/eZsq/cW+X5pbU/FwAAAAC0lMLBaOWpHQcAAAAAMGNszFm2uGReVvkEtAnBaAAAAAAwwwymwYrlHVlHofbVAgTyNvnnBTbMJo0OrSgaQpfbb5pYIFuj1BMIN9HwOACAVpBSils2XF/x3B5zFsQrF6yY8LXz55izff6UH4y2OxqtkfeuUXPbwTSQ+7zW6sFoEfn3tLe8o8rzi2dFAAAAACiscDDa0NSOAwAAAACYEcrlFJtyti0tnje9Y4HpJhgNgIZYvXp1/OVf/mWcdNJJsc8++0RXV1dkWTb854orrmj2EAEAANrGYBqoWN6RdRZqXy1AIC/kayZs4p9qYwPLdptIQFlKKfdej/365PWbF2I3XfpS8f4FewAAM9nDO1bFU/2PVTy3fNHp0VnqmvC1c+eYs3z+lKoEo2VTEIxWz9y6WjBytev0/P/s3XmcHGWB//Hv09Mz3TO5JmQSAkRICDcIGOW+AiIgouuBB14rIovXeqDrrusB7LreirqKJyJe/EBAUYFwbQj3lQDhNiSThDNkkkyume7p7np+f0wmme6pp7qqr+nj8369eJG6nnq6qqf7qern+Vas/nsgJYw7lNkZou3YBgAAAEBl0T8PAIAmMTQUbj3rVbceAAAAAAAAABrCppRkHV0qp9Z/t0SgLPHxrgAAtLrZs2dr1aodg2kWLlyo+fPnj1+FSvDLX/5S//qv/6p0Oj3eVQEAAACAlpCzWd/5cRPudp87QGDQGSLg2qaVuMLh0l5K1loZY0KXlbUZefLvyFwYjhG03/EUZf+lhMcBAADUi0X9N/rONzI6bsppZZXtamenvMHIbcxmEiYYzdVOLiVAOErbNqj8VC4oGK3+w6aDrj1cx6gRXhcAAABaG/3zAABAXRkKeS8yl6tuPQAAAAAAAAA0hA0D7mXdBKOhycXGuwIAgMZ2ww036Lzzzgvd6er222/Pe1LlhRdeWN0KAgAAAEATytqM7/y4aQ+1fWHw1oi0N+gc5M9gd/dxs7IastEGIwUFLyRMfjiGO8huOJBtvFQqPAIAAKCebcyu18Ob7/VdduCE16qnY+eyyk8a/zamp5yyjkDkVhAUjKZtwWju65roobyRQn8D1g1q9yZj9d8DyXVMUwHXiq5tAAAAAFQG/fMAAGgyYYPRPILRAAAAAAAAAEjrtriXddN9D00uPt4VAAA0ti9+8Yt5g7Df+9736pxzztGrXvUqtbfvGJDf09MzHtUDAAAAgKaUcQajhbvdFxS0lXYOdvffppUEHYOUNxjpGKVtUGBCuGA0K08ZO6QOkwi930pyvVfKXRcAAKCe3N1/izz5D0A7YerpZZcf1IZM20G1K1z4cdMJyEUzw7loAdc10due0dq2wwHFZqQio6Q896MZGyFALPBa0foP2ORaEQAAAKgu+ucBANBkciEfiEEwGgAAAAAAAABJq9b5z++ISztNqG1dgFojGA0AULJnnnlGS5cu3T59+umn6w9/+MM41ggAAAAAWkPO+neUjZtwoQlJx4D8lDeotOcY7G7qfxB/tbmOmyTncStl/cLAhOD9DqojNl7BaOFfc9TjAwAAUA9yNqs7N97ku2x6+0zt33Vo2fsIDEbzUprYNrnsfTQiG5CMZjQcSOYKGiul7ekK/fLjKaeszajddPjs2z9grU1xtcfqP+TOfUzd14pB1ysAAAAAykP/PAAAmlDYYLSw6wEAAAAAAABoaivX+fen3GMnKRYb+4BXoJnExrsCAIDG9dBDD+VNn3nmmeNUEwAAAABoLVmb8Z0fNhjNFb6Q9lJKOQbyBwU2tIrg0Ar/4+biOs5++wnab1A51RYlcGI86wkAAFCqR7c8oI3Z9b7Ljus+TTFT/s/triAqKXobs7m4g9E0EoxmXNc10Y9b1G1cbeFBRznJtsYID3NfKw46jxHXigAAAED10D8PAIAmFDoYzatuPQAAAAAAAAA0hJXr/OfP6altPYDxQDAaAKBka9asyZueNWvWONUEAAAAAFqHZ3Py5N8BNnQwmvEflJ+2KaWt/wD/ZEBgQ6uoZDCaK0jBKKZ201Gw36CwjPDhZJWWtuFf83jWEwAAoFSLNtzgO7/ddOioKa+vyD6C2tmt3IYKjkXbFozmCvFyXNMESUU81q62sOu6oFGup1zHdMDbqowdirQNAAAAgPLRPw8AgCYUOhgt5HoAAAAAAAAAmtrKPv8elXtMMzWuCVB7BKMBAEq2ZcuWvOn29nAD8AEAAAAApctad+fXuImHKsM1KD/lDToH8geFc7WKuGl3HuNUhYLRErGkjMn/ccIVZFfKfislazOB78VCrRzqAQAAGtOL6dVaNvi477LXTT5OE9omVWQ/7aZje9BXoVZuQ9nAaLRhruuatJeStcW3z98mWrva1Q5PeQO+85OxrkjljxfXMd2c3Rh5GwAAAADlo38eAABNKJcLuR7BaAAAAAAAAACklev858/uqW09gPEQbqQkAKDhWWu1ZMkSPf3003rllVeUTqc1ffp07bbbbjr22GM1ceLEyGV6nleFmgIAAAAAgmRtxrksbsINiEnEkr7z096gM3yBwe7DErFOZXObx8yPGlrhDqAbe27aY+1qU1w5je34nLbjE5ZRqdcLAABQr+7sX+BcdkL36RXbjzFGiVjSN2hrvEJw64M72GwkSM4V3mxlNWTTShj/6x4/0du3/uu7zlmjXE+5jtnG7Hr3Ng3y2gAAAIBqo38eAAAIJWzgmRcyQA0AAAAAAABA07LW6okX/ZfNnlbbugDjgWA0AGhyfX19+vrXv67f//73Wrt2re86HR0dOumkk3ThhRfqiCOOcJa1cuVKzZkzx7n8xBNP9J1/2WWX6eyzz/ZddtFFF+miiy5ylrlw4ULNnz/fuRwAAAAAWk3WujvJhg9G8x+4vjm7UdYRQOAKU2s1CZPUVo0NRosaWhE1gC4RS2rA2+JTzviEZUQOjrCtHOoBAAAaTcob1P2bFvoum5PcV7sn51Z0fwmTVEpj20tR21zNxB2LNhwmJwVfo6S9VKRrmEq151PegO/8hglGc9RzU26De5sIAXQAAABAM6J/HgAAiCRs4FnYADUAAAAAAAAATev/PejuTTl7mqlhTYDxERvvCgAAqucvf/mL9txzT1188cXOTleSNDQ0pAULFujII4/Ueeedp2yWH1IBAAAAoF5lbca5LG7CPQfBFRDgF7y1Y5vGGMhfba5Ag7SNFlrhCl5whQq4ztl4hWVEDkZr4VAPAADQeO7fuNDZXju++40V35+rrT1eIbh1wQZFow0LCj6rVNBZ1PKd7fwGuZ5yXe8EBXQ3ymsDAAAAqoH+eQAAICobNvCMYDQAAAAAAACg5f1kobsv5ZyeGlYEGCfhRkoCqB0vKw08P961aH5ds6RYc38E/vrXv9a5554rz/Py5s+dO1cHHHCAurq6tHr1aj3wwAPK5XY8eeoXv/iFVq9erb/97W+Kx5v7GAEAAABAIwoKRmsrMxit0ts0o0qFVriC1FzH2RVQEDXwoVIiv16C0QAAQIOw1uqO/ht9l01sm6J5k46p+D6dIbgRw3ebiZW7M4/R8FMOXW1kqfrtVdf6rvZ5Z6wrUvnjpbRrxUQVagIAAFBF9M+rnSbvo0f/PAAAUJKwAakEowEAAAAAAAAtr3/AvWzGpNrVAxgv/KIO1JuB56W/zhnvWjS/t/RKE2ePdy2q5pFHHtHHPvaxvE5Xhx56qH7yk5/o6KOPzlt37dq1+spXvqKf//zn2+ctWLBAX/3qV/X1r389b91Zs2apt7d3+/QPfvAD/fCHP9w+fcUVV+jII48cU5+enh7Nnz9fknTffffprLPO2r7s05/+tD7zmc84X8vMmTOLvFoAAAAAaC1Z6+782m7aQ5URFCBQyW2akSsoIGpAmStIwRW85gzLGKdgtKivd7wC3AAAAKJaNvi4Xhp6znfZMVNOVnssXJs7Cnf4LsFofkaC0YJCvCIHndmo7Xn/9V3tXtc5rjdRg9HaTYdipq1KtQEAAKgS+ufVThP30aN/HgAAKFnYwDMvV3wdAAAAAAAAAE3tyZf8509ISLGYqW1lgHFAMBoANKFzzjlHQ0ND26ePPfZY3XTTTerqGvs0+unTp+tnP/uZ9tprL/3bv/3b9vnf+ta3dNZZZ+nVr3719nnxeFyzZ8/ePt3d3Z1X1syZM/OWjzZx4kRJ0sqVK/Pmd3d3O7cBAAAAAIyVtRnnsnjIYLSog91L3aYZVSq0whWk4Aqgq7ewjOivt3VDPQAAQGNZtOFG3/lGMR3bfWpV9llvIbj1biQYLW7a1aa4cho7kDDqsYu+vn/7Nmo7v95EDXBrlNcFAAAAVBr98wAAQMnCBqOFXQ8AAAAAAABAU7pnufsBsz9/P6FoaA2x8a4AAKCyFi5cqCVLlmyfnjx5sq688krfTlejff7zn9cZZ5yxfdrzPF188cVVqycAAAAAoDSVCEaLOng9buKhy252rmOXqlCQgisUwzU/6n4rJW0JRgMAAM2nP7NOj265z3fZqye+TtPaZ1Rlv/XW1qsHVl7A0h0delzt82q3V9PW/9ykvAHf+Y0SIJaMGIhNgDYAAABaEf3zAABAWUIHo+WqWw8AAAAAAAAAde1rf3f3o3zVTgSjoTUQjAYATebyyy/Pm/7EJz6hXXfdNdS23/zmN/Omr7jiCqXT6YrVDQAAAABQvqBgtDYTD1VGwkQblB91/WbmGvgfNUjBFXLhKt8Z+DBOgWORgyNaONQDAAA0jrs23izPEch1fPcbq7bfemvr1QPrftChzKj+PNVun7u4yneVk4wFByTUi0TEALdGCXwDAAAAKon+eQAAoCwEowEAAAAAAAAIYcET7mVTG6NLIlA2gtEAoMncddddedPvf//7Q2974IEHat68edunU6mUFi9eXLG6AQAAAADKl7X+nWRjalPMhLvd5woPqNT6zcwdWlGZIAXXsXaF041X4Fjk12tT8qz7aTUAAADjLWszuqv/Zt9lM9p31X5dh1Rt35UK92ouAclo2pGM5jp2lQo6c3GV7w5Ga4wAsajBaFHXBwAAAJoB/fMAAEBZwgaehQ1QAwAAAAAAANA0rLW65Umrz/0pePxNN8FoaBEEowFAE9mwYYOWL1++fbq7u1v7779/pDKOPvrovOkHH3ywInUDAAAAAFRG1mZ857eb9tBlxE27YmoLvT6D3XdwHYuoQQpp6whGcwSg1VtYhivwIR7wPhyy6WpVBwAAoGyPbr5fm3IbfJcd331a6BDiUjhDcB1txlZgA4LRTF4wWnWDiyfEJkVa39VObpRrqoSJGKIdcX0AAACg0dE/DwAAlC1s4BnBaAAAAAAAAEBLyXlWH/y11WxCGWAAACAASURBVKk/8HTxLUEPl5WmEoyGFhEf7woAKNA1S3pL73jXovl1zRrvGlTF2rVr86b33ntvGWMca/vbb7/98qZfeeWVsusFAAAAAKicrPXv/Npmwt/qM8YoEUtq0Nsaav1kgwzirwVXQJkrAMHFFaTgKt91DsYrLMNV/ynxqVqX8b+XkPZSvJcAAEDdWtR/o+/8DpPQkVNOquq+6y0Etx4Ed+nZoRLHzlrrbM9Pjndr69DmUOVnbcYZZN3ZIO3gRCwRcf3GeF0AAAB56J9XO03YR4/+eQAAoGxerrLrAQAAAAAAAGgKNz8h/eH+cL0nuzqqXBmgThCMBtSbWFyaOHu8a4EGtWHDhrzpKVOmRC6jcJv169eXVScAAAAAQGW5BtrHTXukcpKxztDBaK6wgVbkDCiLHIzmv74rWKBSgWyV4gqamNwWFIw2KGlqFWsFAABQmhfSK/Xs4BO+yw6bfLy62iZWdf/11tarD+7OPUY7QgcqEYyWtVl58h9kODk+VS8NPedT/thzE3S+GiVALGba1GESGrLpUOtzrQgAABoS/fNQBvrnAQCAsuX8H4ZX8noAAAAAAAAAmsJfl4Z9pKwiP7wJaFSx8a4AAKByrM1v7FSiQUOjCAAAAADqS876d36Nm2jPQIgygL1RBvHXQsKUH7wwvL4rGM2/fNc5iBrIVinOYLR4d+RtAAAAxtsdGxY4l53QfXrV91+p8N1mYkMGo7mOXZRQuaDjPCXuH+zrV34q5y6nM9YVuj7jLdq1IsFoAAAAaC30zwMAAGUjGA0AAAAAAABAgWzO6soHwwWjvWNelSsD1BGC0QCgiey000550xs3boxcRuE2U6f6D/gAAAAAAIyPjM34zo+b9kjlRAk7Y7D7Ds7QChs+eMFa6wwJcwej+c9PjVPYmOv1TnYER0itHewBAADq12Buqx7YdLvvsrmd+2tWck7V6+Bq6xEs6zAqNCBhXKFy4Y9dUFt+cpt/+9av/KAwtkYKm3Zd85S7LgAAANAM6J8HAADKRjAaAAAAAAAAgFEeWmnV8TFP/QPh1v+3U4mKQuvg3Q4ATWT69Ol50//4xz8il/HMM8/kTc+YMaOsOgEAAAAAKivrDEaLRyonGSHsjGC0HVzHImuzznMzdt2MPHmO8v2DBdxhGeMTNubab1dsojOkLygoAgAAYLzct2mh0tY/ROv47tNqUgdXGzDtpWRtuCcANpug121G/dvZTnacU991A0LUpjiCf/3KT3nuXknJWFfo+oy3KNd/XCsCAACg1dA/DwAAlC1s4JmXq249AAAAAAAAAIy7nGf1tkv8xxcVeuuh0mMXxnT4HFN8ZaBJEIwGAE1k6tSpmjt37vbp/v5+PfXUU5HKuOeee/KmDzvssIrUbYQxNLQAAAAAoBxZzxWM5h9G5eIKX/CTjLBusws6bkGBCmHXcwXWuc5Bxg4pZ2vfIdr1GhKxZECIW/hwCgAAgFqw1uqO/gW+yya1TdGhE4+uST0Sxr/95CkXOny32VgFBaPt6ObgaidHCRAOCvCd7ApG89nGtc82xdUei3a9Np6iXCtGWRcAAABoBvTPAwAAZQsbjBZ2PQAAAAAAAAAN665l0gv9wess/nJM3i/adO3H23TgrvwWiNZCMBoANJljjz02b/oPf/hD6G2feuopLV68ePt0MpnUa1/72orVTZISiUTedDqdrmj5AAAAANDscvLv/Bo5GM1EGOzuCGpoRUED/4MCFUZLW/d6rvMStN+hcQgcCwpGc4ZTWILRAABAfXlmYKnWDD3vu+yYKafULMyqEuG7rWR0tx53KG/4YDTXMTaKaWLbZOc21uaHtw069plsa6zwMEK0AQAAgGD0zwMAAGUJHYxW+wekAQAAAAAAAKitKx50P0RWkiYmpH13rlFlgDpEMBoANJkPfvCDedM//vGP9fLLL4fa9otf/GLe9Hve854xHaXK1d3dnTf90ksvVbR8AAAAAGh2WZvxnR+PGNrgChDww2D3HYKORdjQiqAANdd5qcR+K8m1z2Ss0xmkFzY4DgAAoFYW9d/oO98opmO7T6lZPZIBbfOgUN1mZhXU2WdHNJo7GC18G7mU0F8rq4wdKijHEYzWYNdTUYKxo1xXAgAAAM2C/nkAAKAsYQPPCEYDAAAAAAAAmtbiVVZHfD2nX9wRHIx2zrFGXQkTuA7QzAhGA4Amc9JJJ+nQQw/dPr1x40adddZZGhwMHjhz8cUX67rrrts+bYzRZz/72YrXb88991RHR8f26YULFyqT8R/UDwAAAAAYK+M5gtEUj1ROlAHsiQYbyF9NQcfNFYQwdj13SIOr/KBwgvEIHHPtMxFLOt8v4xHgBgAA4LIh06elWx7wXXbwxMO1U/v0mtUluI3Zqm0od2cfEyIYLUob2bVuMtYZeC1UuJ27nK7QdakHka4VI4SoAQAAAM2C/nkAAKAsuWxl1wMAAAAAAADQUF7eaDX/u54eXFl83e++k1A0tLZooyUBAFX38ssva+XKlSVtO3v2bEnSpZdeqqOOOkpDQ8NPqr/99tt13HHH6Sc/+YmOOOKIvG36+vp0wQUX6JJLLsmb/4UvfEEHH3xwSfUI0tHRoWOOOUYLFy6UJK1evVpvectb9NGPflR77723urryB4fMnDlTySSDKgAAAABgRE7+nV/jsfZI5SQjhJ0RjLZDh0nIyMj6BDWEDa1wrWcUU7vp8F0WdA7StvZhGa7XkIh1OoMUWjfUAwAA1KO7Nt4kK8932Qndb6xpXQLbei3ahvJswFMQR/XzqUQoryvgeDj0t1gwcvf26ZQ34LtelGuvesC1IgAAAJod/fPonwcAwLgiGA0AAAAAAABoaX+432pruvh6u3ZLbTGC0dDaCEYDgDpz1llnlbyt3TZIZN68efrxj3+sj370o/K84UE9ixcv1pFHHqm99tpLBx54oJLJpJ577jk98MADymbzfzh9wxveoP/+7/8u/UUUcf7552/veCVJCxYs0IIFC3zXXbhwoebPn1+1ugAAAABAo8l6jmA0E+1WX9AA/3LWbXbGGCViSaV8whP85vlxhTQkY0kZ4/+jRSKWcJYXdr+VkrUZZ0BfwiQDwilqW08AAACXrM3o7v5bfJft3DFL+3ZVfmB6kHbTIaOYb1Bbrdt69cMdjGZGJaO52p5DNi3P5hQzbUX35Az9NcWC0fK3c52rRgtG41oRAAAAzY7+efnonwcAQI3lcuHW80KuBwAAAAAAAKChPPpcuPU+9wZC0YDYeFcAAFAd5557rq688kpNnDgxb/6zzz6r6667TldeeaXuueeeMZ2uPvzhD+v6669Xe3t71ep2xhln6Gtf+5ra2ooPRgEAAAAA5MvajO/8uIl2HRdlcH6jDeSvtnKDv1zrucqVpJhpU7vpKGu/leIKjpCGgxFc4QgEowEAgHrx8OZ7tSnX77vs+O7TnGG11TISvusnqO3VzGzYYDQTFFwW4pGKktLW3T4PuhYqDEJLeQPOchpJtGC0xnptAAAAQCXRPw8AAJQk5/8QspLXAwCgjj2/weqTf/QU+5fc9v/OudzT4y+4fwsEAAAAgGbX2xfumujdhxGMBhCMBgBN7Mwzz9Ty5cv16U9/Wj09Pc712tvbdcopp+juu+/WpZdeWtVOVyO+9KUvaenSpfqP//gPHX/88Zo5c6Y6Oxk8AQAAAADFuILR2kw8UjnRBruHX7cVuMIXCoMRXFzrFTvOrlCG+gpG6yTUAwAA1L07+m/0nZ8wSR05+cQa12bbvgmXLUlQcFnahmt/utqpiVhScdOuNvlfaxWW7yqnM9YVqh71IkrYGSHaAAAAaHX0zwMAAJERjAYAaBFrNlkd9Q1Pl9yeP+D/srutjv2Wp8eeJxwNAAAAQGvqXVd8nQWfjmnXboLRgGijJQEAFbdy5cqqlj9jxgz94Ac/0Pe//30tXrxYTz/9tNauXat0Oq2enh7NmjVLxx57rCZNmhS57AsvvFAXXnhhyXU74IAD9I1vfKPk7QEAAACgFWWtf+fXuIk2iIbB7qVzB5SVGbzgCFzbvjyW1ObcxpL3WylBAXCJWLLs4wMAAFBNz6d6tXzwKd9lh0+er862CTWu0TBXW7BV21BW7oEQRjs6+wSFC4cNlXMd45F2bSKW1IC3peh2g96AbzlRrr3qQZTrP0K0AQAA0Ajon0f/PAAA6grBaACAFvGbe6xe6Pdftikl/ej/rH75QQb5AwAAAGgtqYzVi45rpe+90+gthxjN6ZFiMa6XAIlgNABoGbFYTIcddpgOO+yw8a4KAAAAAKAMWZvxnd9exWA0Brvncx2PtA0ZvGAdwWhFzkm9BI4F7S8Z63SGegQFqgEAANTKov4bnMuOn3paDWuSz93GbM1gNAUEo6nCwWiudupI2clYpyMYbTBwekSjBU2HvVY0MuowiSrXBgAAAGgc9M8DAAChhA088zxZa2UMAyABAI3pxseCfu+T/ni/1S8/WKPKAAAAAECdWLPJvey0g4zmzuB+IDAawWgAAAAAAABAA3EFo8WjBqM5wqt8122wgfzV5joeYQPKXOsVC6Bz7bfWgWOuwAcjo3bT4T4+LRvqAQAA6sVAbose3HSH77K9Og/QbonZta3QKK7wrFYNlw2MRTOjg9Hc1yqpstvnndv+Hy74N+UN+K7XeMFo4a4VE7EkgzIBAAAAAACAqMIGo0lSLifFGfZVa9Za3fi4dM9yq71nSG+fZzQpyb1QAIjq6ZeDlw9mhj9zV6+X/vKI1bI1w/OnTpBev5/R/H357G11fCcDAIBSZHNWNz0h3bvCav9dpDPnGSXaaUOgfvT7dzOUJPVMrF09gEbBHXIAAAAAAACggbiC0dpMtFt9UQbnd5hEpLKbXbmhFa5gsWLnpNxAtkpx7a/DJBQzMefrcL1uAACAWrlv4/9pyKZ9lx3ffXqNa5OvXtp69cLa4CfIj2gzbWo3HcrYoTHLwgcXB7fPXUFhheW7rgcaLhgtZIh2lLBtAACanTGmTdJekg6QtKukKZLSkjZIWi7pIWvt1grvs13SMZJ2l7SLpC2SXpT0sLV2ZSX3BQAAAKCCcrkI62YJRqsxa63O+73Vr+7ccY/6B7da3fzZmKZPYhA1AIRlrdUrm4uv97dHpbN/42lDQTDA/1xv9eU3Gf3XP8WqU0HUPWutzv2d1a/v2vGd/MPbrG7+TEw9fCcDAACHbM7q/ZdaXfXQjjbEzxdZXf+pGAGrqBuF1z+jdTdWV0OgJrhDDgAAAAAAADSQrPV/enDctEcqxzW4f8x6JqmYoYPRaGGDEVxc6xU7J67ggbCBbJWStq76RwuOAAAAqCXPerqjf4HvssltU3XopCNqXKN87jZUq4bLuoPRYsq/PknEksrk/ILRwh07V3t65Jy4Q+vyt3MHo3WFqke9CBvk5jouAAC0CmPM7pLeLulkScdJmhywes4Yc4ukH1trry9zv9MlXSTp3ZJ2cqxzj6TvW2uvKWdfAAAAAKog59/nw5cXIUQNFbF4lfJC0STp0eelS263uuDNDKAGgLDWhghFk6Szfulp0P85sfqfG6zOOdZqj2l8/raiB3qVF4omSY88J/10kdVXzuA9AQAA/N38pPJC0STprmel399n9bH5tCFQH/odwWgTElJ7nPcpUIgRjQAAAAAAAEADyVr/nkBVC0ZjsPsYrmMSNqCsWPCCe7/1EThWPDiiPgLcAAAARntmYKleybzou+zY7lMit6crrV7aevXCHYs2lju4rMzgYhPcvi3czt1ObqxrqvDXiuHWAwCgGRlj/ihplaSLJb1JwaFoktQm6TRJfzfG/M0Ys3OJ+32jpMclfUyOULRtjpZ0tTHm98aYCaXsCwAAAECVRAlGi7IuKuKaJf53p698MMpdawDA8xvCrecKRZMka6UFj/P526r+/Ij/ub96Me8JAADgdvOT/m2Fz/2JNgTqx4YB//fj1MZ6/ipQM/HxrgAAAAAAAACA8LLWv+Nr3ES71Rd2cH6ywQbx14LrmKRDBn85gxeKHGvnfm1tA8dc9R+pnysgIWOH5NmcYqatanUDAABwWdR/g+/8mGI6dsopNa7NWITLFnJ3RjPKfyriSIBZodDtcxvcPk+Y4sFrWZtxhlh3Ntg1VdhrxUYLfAMAoML2ccx/QdIySWs03DdzT0mHKP8BtmdIusMYc4K19uWwOzTGzJf0F0kdo2ZbSUskrZDULek1knpGLX+fpMnGmLdaa72w+wIAAABQRV6EpjnBaDX3rQX+96afLrh625Kyum+FlMlJR82VuruM73aeZ/XkS9KTL1lZK+030+jVu0mxmNHmlNX9K6RpE6Utaekfa6w8KyXi0sCQFDNSsl06aT+jWVP9yweAUm1OWd27XPKsdNSe0hTH51ip+iv0E+eKvsqUgx2stXr2FenR56WcZ7XndKPXvEqKt9XXd823Hd/Jj72w4985z2rp89KKtdK8PaQ5PfX1GgAAQO396Db/NkQqI12z2CrrDS/frdvosNlSop32A2pvw4D/fILRAH8EowEAAAAAAAANxDXYPm7aI5XTZtrUbjqUsUOB67kCGlqZ65i4AsPGrOcKXnAEOhTfb62D0fz3N1K/oDC9tJdWZxu/2AAAgNpan1mrx7Y85LvskIlHqrt9Wo1rNJY7fDdcG7PZ2IBgNBUGo5UZKldq+3Z0+UH7arQAsbDh2IRoAwCw3cOSfi3pRmvt8sKFxpjdJH1V0r+Mmr2PpD8ZY4631hZ9PLkxZpaka5Ufina3pHOttU+NWi8h6TxJ35U0csP4zZK+Juk/o7woAAAAAFUSJbPYy1WvHojsukes/ulQo1uftHrHzzxt3nb7viMu/eZDRu85PJa3fv+A1Tt+6mnhM6PnWh09V/rYfKOP/t5qazrMnq0+f4rRN99uFIsxYBtA+a5favXuX3ga2NZtMBGXfndOTGe+tnKfMf2Ogf5RrSQYraLSGasPXWZ15UOjb0laHbCLdP2nYtpjWmN8z2xNW21JS2f8r6fFq3bM/8CRRpf+s6m7kDcAAFA73V3utug7fz76nozVrKnSDZ+K6aDdaDugtlzv0W6G2QC+YsVXAQAAAAAAAFAvctb/icBxE/0ZCGEG6DfaIP5acB2T8MELjmC0IiF0rv3WOiyjWP2D3jO1DnEDAACQpDv7F8jKf7DZCVPfWOPa+EsYR1vPEarb7ILyQUxBXzRnqFyIY2etdbZvR8p1BhSPKj+Vc7dzO2ON1WOp3XTIqHiHP0K0AQAtzkq6XtJh1tp51tof+4WiSZK19gVr7XmSPlGw6FhJ7w65v4skTR01fY+kk0eHom3bV9pa+yNJ7yrY/nxjzB4h9wUAAACgmqKEneX8+4egOp54MTi3+m2XeNqw1epdv9gRiiZJQ1npg7+2WrMpf/uL/mYLQtGG3bNc+sClYUPRhn33ZqsbHw+/PgC4bBrMD0WTpHRWev+lnvo2F83vD61/oDJl9fZVrk6QfrqoMBRt2JMvSZ/8Y4Tw1nG2cp30uatsXiiaJP3uPqufLeI9AwBAK5vVHX7d5zcMt4NDPMcKqKgNjmC0qY3VzRCoGYLRAAAAAAAAgAaStRnf+XHTHrmsMAPZGew+VsI4ghFCBpS5wsGKhdC5zkXYQLZKcdd/WzCa4/hIrRvsAQAAxk/Gy+jujbf6Ltul41Xau/OgGtfInzN8q8YhuPXCKiAYrSC0q5xjl7FDzn0ligWjjWoXB7XJGy1s2hjDtSIAAMW901p7hrX2obAbWGsvkXRNwewPFNvOGLO3pH8eNWtI0oesdd9os9b+RdLlo2YlJF0Qtq4AAAAAqsiLEDqS9e8fgur466PFB0J/4Rqrfp/Bq1lPunZJ/vZ/WlzZgdVXPshAbQDlu+ExmxeKNmIoK10X4nMwrP4KdWfr7atMORh2lU8o2ogbHx8OzqsHqUxwPZatka592H+dv1XwfQwAABrPblOLrzPa0uelf6ypTl0Alw1b/ed3dxV/mCnQighGAwAAAAAAABpIxhmMFo9cVlCA1Yhkgw3irwXXMXEFhoVdr1iwgHu/tQ3LcO1vR3CE+z0T9hgBAABUypLNd2tLbqPvsuO73yhj6qMzSZjwrdYS1GG9MBjNv/0ZJkA4ONBs+JyEaf8HnadkrPEe5RgmzI1rRQBAK7PWrixx058UTJ8YYpv3SmobNX2ttXZZiO2+VTD9LmNC3BAGAAAAUF22csFoGwesXuy38jwCQCrh+Q3F17nhMfexHj2QekvK6sX+ClRqlN/fz3kGUL5lr7iXPfJc5fbjFyJZinVbpc0pPv8qZVlA6IdnpRV1EkS3en3w8ruXW6UczaS7l1e+PgAAoHFMSkTfJqiNDFTDynX+1zg7T65xRYAGQTAaAAAAAAAA0ECyzmC09shlhRnIXiysqxU5gxFsSl6RTszWWmewWLHzUU7gQyWlrSMYzYwEo7l/Uax1XQEAAO7ov9F3fsIkdfjk+bWtTACC0fKFj0ULOnbFA4SDju9IuWHKT3n+ozvaFFd7LPq12ngLE6LNtSIAACV5uGC60xjTXWSbtxVMXxZmR9bapyTdP2rWBEmnhNkWAAAAQBXlcuHXzfj3D3niRavD/iennT7radYXPPWc7+lLf/YISCtTmBCfl/yfwyJJ+uFtVqnM8DlgUDWAenX9Uvd3xU8WWp3xo5z6Npf/fbKxgj9x9tZJWFej25yyWrc1eJ3v3FQfbYli5/x7N9dHPQEAQP3JRLjtMmJlH20L1JarvTunp7b1ABoFwWgAAAAAAABAA8nZrO/8UoLRwgxkDxOe1mqCjtuQTQdum7UZefIPTyt2PoICGayt3Q9yrvCIkfrFTJvaTYdj2+LhFAAAAJWyOrVcvalnfJcdMeVEdbZ11bhGbq4Q3Fq39eqFjRCN5gwuDhEqF9Q+HSk3XDCa/76SbY15PRXmWnEkGBkAAETid3PX/0aaJGPMTEmHFGx/d4T93V4w/cYI2wIAAACohiIPW8uTGdv/YGvaav53PC1eJY3cOu4fkL5xo9V3CAkpS/9A+cfvk1cMl3HWLyOc5wg2pzjHAEq3JWX1wMrgdW54XHr7T8v/DKtkMNqKtZUrq5WFCZi74gGre5aP/3dNbxnhJOTEAgDQ2oZKCEbrXVf5egAug0PWGbw/p6fwkbEAJILRAAAAAAAAgIbh2ZwzVKuUYLQwoWdhBsS3GldohVQ8fCEoeKHYsU46ggc85ZS1/k+KrgbXaxhdf3c4BcFoAACgdhb13+Bcdnx3fWVCuNqYnryatvXqh7vHuikIRgsTXObiCjQbXW5QaF2xcho1aJprRQAAqmavgumspKAhiQcVTC+11m6NsL97CqYPjLAtAAAAgGrwygtGu+4Rq3WOq4JL7yIJpBwbBsov44r7rbakrP6xpvyy/IQJtQEAlz8/HO574q5npadfKu87ZcPWyn0nlROShR3Cfodcdvf4H+9yvu9SGSmVGf/XAAAAxkemhGC0VbQ3UUOr17uXzempXT2ARkIwGgAAAAAAANAgsjbrXBY38cjlhRnInnCEcbWyoOMWFKxQbHmxYx2031oGjrlew+j6lRNOAQAAUAkDuS16aNOdvsv27jxIuyZ2r3GNgiVMfbT16kVQdzNjCoLRHMeuWGixJKWt/7FtU3x7+LQzGM2m5NnhQYzONnKDXk8FhUFHWQcAAIxxZsH0Q9baoFSEAwqmn424v+VFygMAAABQa16EEbqZoTGzlr7gXv3ZV6TBIQbzlqq/AsFogxnpzmXll+OyYm31ygbQ/IK+Q8auW973yQv9ZW2ep3dd5cpqZWED5h57fvzbEivLDALdWPxnYgAA0KSG3MNtnAghRy2tD3gM2m7dtasH0Eiij5YEAAAAAAAAMC6yNuNcNjJoP4pwg92Lh6e1mmTAcSsWWpG2AcFoRY514H7toCZqcuD2leJ6jaPr53pvFQuOAwAAqJR7N96mjB07aEySTph6eo1rU1yySPhurdp6dcP6d7g3MmPmBQWXFeMKT8tr2waE1g3ZtJKmUynPf8RcZ1tX0TrUo6BrjyjrAACAHYwxEyWdUzD7z0U226tgenXE3a4qmJ5mjJlqrd0QsRwAAAAAFWCtdd779JVJj5n17QXB269cJ+2/S9SaQZI2VCAYTZLe9L9B+dfleWaNlXzukxey1uqHt1n94g6rp18enjenR+rulF6/v9GFbzbqShgtesbqh7d5euwFybPSXtOlDx1jdNbhsaq9BgDjp3dt+O+g5Wul/gGrr/7V6o5/WG0e9bPbvjtLHzkuprfPG/48um+F1fdv9vTI81Ju20fg6vWVq/d9y8c/qKsR+J2vA3aRzjshpi0pq/OvCnccH1gpxf4lp50nS10dw/NGh4XsvpPUtu1rYk6P9L4jjM4+prLfGyvXlXfON2yVdm6xn9cBAMCwTIQ8+hErCeJFDQ34d2mVtKP9DSAfwWgAAAAAAABAg8ha9yNsqhWMxmD3sYKOW7Hgr6DgtGLHOig4rZaBY67XkAgRHuEKngAAAKgkz3q6o/9G32VT4jvpkImH17hGxQW1MYPCdZuVlauze4RgtCKhxUHrjG57BwcjDyoZ63S2x8Ncc9WjMAHZhGgDABDZNyTNHDXdL+lXRbYpfCb0K1F2aK3dYoxJSRr9xT1FUlnBaMaYGZKmR9xsbjn7BAAAAJpClFA0Scrkj5T87s3FA7dWrCUYrRTW2ooFo1XTF6+1+vfTiq/3+autLr4l//02Emrz8HNWD/RaXfiWmE79gZc3aLy3T7rlKauNg54+egLhaECzWdFXfJ0Ry9ZIJ37X06PPj13W2ycteMLT5Wcb7TvT6KTveUq5n/datodWSRsHrKZ0FQ+GbFWZrNUJ3xkOuhytt0+6/rHSAjvXbPKfPzr0rrdP+r+nrdZt9fT5Uyr3vdEb4b3q55olVl96E+8XAABa0VAJwWgbBmhvonZcwWhdHZIxvAcBPwSjAQAAAAAAAA0iLliMLgAAIABJREFUa909iOIm+q2+cIPdG3MgfzW1mTa1mw5l7NhfJYqFL7iWxxQrGm4XGJYRIvShUsoJj0jb2tUTAAC0rqcGHtHazMu+y46bcqraSmg7V1tQ27yWbb1659f1x3XswoQHuwPNkr7/9tt+iqSU5z9irlGDpglGAwCgsowxb5P0yYLZX7LWrvdbf5SJBdOlJOYOKj8YbVIJZRT6uKQLKlAOAAAA0Fq8iKNzRwWjZXNW37u5eLBab5+V/51UBEllpCHHswr//PGYDvAJmzvzZ2MDaIIcMku69uMxZUe9DaZ0SlvSUrJdmtolZb3hgbDv/rmnax/2L+epl6z238V9jjcNWv3s9uD3yh3LpLN+mR+KNtp3brI673jLgFygiVhrtWJt+PV/c0/x75zv3mx1yCxVLBStI+7+LL7uUasPHsVnksuNjyvSd1Klff9mq8+83ireVv452pKy6ttSXhnfuNHqS28quyoAAKABua5zPz7f6NOvN9r3K/6hsSvXSYd0VbFiwDZb0/7XWhMSNa4I0EB4fAMAAAAAAADQIIKC0UoJdwgzkL1RB/JXm+vYpYuELwSFihXrUNpuOmQct3TDhD5UQtZmlJN/D7SEKR4eUat6AgCA1rZoww2+82Nq0zHdb6hxbcIJauu1YjCalWuwxdg2s+uaJWszylnH6IltXO330aHEYULrXOeoUa+nwgRkN+prAwCg1owxh0j6bcHsmyX9NMTmhcFopTQMCxs8hWUCAAAAqBXPf/CtUya9/Z+9fdKaTcU3eTnEOhjrxX73sr1nSHvvbMb8d/Re0cJf5k6X5vTklzFjstGe04127Tbq7DCalDRqixkdOddd9v29wWFF966QBkOEFAW9n8K+3wA0jg0D0qYK/+T42AvSrU8VD1AL67QD3cseXFmx3TSle1dU7jyU4uVN0qp1lSurXMng59MCAIAm5graPWBXaU6PFHek6/T2Va9OwGgDQ/7zuzpqWw+gkdTfo7ABAAAAAAAA+MoGDOpvN9F7c4QZyB4mPK0VJWKd2pIb2wunWGiFKxgsTPCAMUaJWFIpbyDyfislKNhs9HvFHRzXeqEeAACgtvqG1uiJrYt9lx066UhNie9U4xqFUw9tvXriCkYzPsFoxYLLutrc2R9BwcU7/u1uq49sP+hz3iQpGWvMR4mODj12rsO1IgAARRljdpd0vfLDyFZJer+1tpTRirXaBgAAAEA12PxgtP+d+jH1ts/WYKxLA7FObTUTtCU2QT25ddopt0Gb7n2tzGpPbTFpzaZwTft+/1uVGOWuZVZ/W2p1/wqrF/qlNx9iNCWgy8bujp8Vzpxn9PNF4S+5ZveED1J7xzyjL1ztX/btz0gn7GN15YNWT78sjVxdela67hGrLWnfzSLr7ZNmTqlMWQDG34q11Sm3koGc//O2mP76qH+IKN9vwf766PjfAtz7y55uPT+mk/aLFhxaqBLnev1WadOg1eTO8uoCAAAaTybnP7+jTYq3Gb1qJ/8QtHf/wtOKr8e021TaDyiftVY3PCbd/KRV/4C03y7Su183HI6/1RGMNoFgNMCJYDQAAAAAAACgQWSt+5Gu8RKC0cINdi8e2NWKXMcuKDhMktJlBKNJw2F2/mEZwfutlKBQjtFBe67X04qhHgAAoLbu3LjAGap1QvfpNa5NNK5gtGJtzFZifPqeBQV0pbzBsoPR2kyb2k2HMnZsr6SRc+Nqj4cJo65HYULPEqYxXxsAALVijJkh6RZJu42a/bKkN1hrww5F3VIwXcoXcOE2hWWW4hJJf4q4zVxJ11Vg3wAAAEDjyuWPzv39lPdpcec89/rPSXouWtDJRm4nB/rZIk+f+KPV6KjqH9zqPsbTJ0kTk/6Dok/aT/r304y+tSDcOZrTE76ecwJC1H57r9Vv761+AM53b/Z0zcfaqr4fALWxom/8g7NcjJG+906jA3c1OmKOdH/v2HX6B+q3/uPt70utnnqp9O2nTZDWba1MXU7+vqdvvcPo306NlVzGhgqF4K1cJx08qzJlAQCAxjGU9Z/fvu3ydk6PfzBaJie96t89PfVfMe07k3A0lOcL11h97+b8a5jv3mS14DMxDTiC0boIRgOcSr/CBAAAAAAAAFBTlQ5GCzNIP8yA+FbkOnbFAsrCBC8Eca1Xq8CxoP0kQgWj0QsbAABUT8Yb0j0bb/VdtmvH7tqr84Aa1yiaUtuYzcha/6fBS2M7ngVd1xRrJ7tC5wrLLNYO9wu0K1a3ehbuWrExXxsAALVgjNlJ0q2S9hk1u0/SydbaZRGKqstgNGvtK9baJ6L8J2l5ufsFAAAAGl7Bfc9OW6Hkj1E2bCU4xmVwyOqL1+aHohUzZ5p7mTFG33h7TG96dciyAsLO/Hzm5PEdiP3nhyXP4/0ENIsVjpj+2QGfc+X48XuNfvXB4M+xyz5kdMW5Rqu+GdNnTh4e5nzaQf7bVCosq9lYa/WFq12/q4bz/Ldj6ohXqEKSvnitLSvIrr9C59ov8AQAADS/oZz//JH2zh7TgtuoYcPPAZfevrGhaNLwNc1//c3T1rT/dhMSVa4Y0MAIRgMAAAAAAAAaRFAwWpuJ3jslTBhXow7krzbXsXMFK4xIW0cwmgkbjOYKy6iHYLSk77/Dbg8AAFCuxZvv0tbcZt9lx089XcbU99McXW3CVmxDWfl3MjM+wWhBAV3Fjp0zuNgUBqMFh9aFDVhrFMVCz2JqU7yEa1AAAFqBMWaKpJsljR4av0HSG7YFhEWxsWB6esS6TNTYYLT+iHUAAAAAUClefnDJBMcDF8rR33rP2QjtvhXSxojHZ8/pxX9XeP3+4X57mNMTbd/VCiuK4pk1410DAJWywhESdeCu0q7dld3XxIT0sROMPnxs8NDlfz46pncfFtOsqTs+R6d2+a9LMJq/59ZLT79c+vbdXVKi3Wj+PsXXDcuz0i1Plr59/2BlwkhWriPUBACAVpRxBKO1tw23OYtdm//mHtoQKM8tT7rfQzc/KW12dGfs6qhShYAmQE9VAAAAAAAAoEFkbdZ3fkxtipnoz0AoNth9eJ1wgV2txhVw4Ao+277cEZgQ9ji7wjKKBbJViqv+RkYdZsdjatzBaPTCBgAA1XNH/42+85OxLh0++YQa1yY6ZxuqSBuzGUXpYja6HVqoWPvTGVxccC7coXUjwWj+5SRjjtEbda7Y9Ukilqz7oEEAAMaDMWaSpAWSXjtq9iZJp1lrHymhyGUF03tE3L5w/fXW2g0l1AMAAABAJXj5o3O7qhCMRnCMW29f9MHNs0OEmZ12oNH5Re5qz+mR9t052r5PO8hIV47vgOzePmn/Xca1Cg2nf8DqzmXSpKR05J5Ssr20e+nPrbe6b4W0987SwbtJsVj93pPfsHX4Na/ZPPx+7WiTjphjtO9M8VtClVhr9dgL0uJVVtltmZs7TzI6bm9p6oQdx3z1Oqu7l1sl240e7PX/PJkz3WhTyurFCkbpn3Zg6ee+2/HTWj/fb2N4ntWfHynve+Kfj6rO3+jXb/DUPzhcdiIuHT7baOoEadE/rB5eLa3dIu2xkzRzirRnj9Gu3dKS1VYDQ9Kld1bmu6/XEQYIAFFZa/X4C9LCZ6xe2igds5fRSftKXQnaOUA9GvIfbqOOtuH/v/Ego69eF9zeGByy6uzgbxzheZ7V0hekJaus/vPP7vdXJictW+O/fALBaIATwWgAAAAAAABAg8jajO/8dtNeUnnFgtHiJq54iWU3u1KDv9LOwITiIXWB+7W1CRxzBbAVBiOUGhwHAABQqlWpZ7UyVZgbMezIySeGbm+NJ1f7vDXDZf07ABmN7XQWMzElTNK3rVlqcHHh+6VYaF3KMYAxTBh1PSr299IIf08AANSaMWaCpBskHTlq9hZJb7TWPlBisU8VTO8Vcfs9C6afLLEeAAAAACrB8/Imu2zlU14IjnFbUUJAypwQwWj77WL0iRONfrLQ/752e5v07XfEIgdb7bOz0QePMvrtveMXjjYcJsdg8LDu+IfVWy/xtv8d7r+LdMOnYtpjWrRj+KPbPH32Kiu77dS/Y5702w/H6nJg/m1PWb3jp542jfk5xurj841++B6prY5D3RpROmP14cutrnig8LPBanJSuvbjMZ20n9HFt3j6/NUj7yP358iePdLmQaM7l1Xus+bLZ0R/wOuIqV1GfvUl+DPfQNrqrF96+tvS0svYs0f6zMnF/z6PmSvdvXzH9MzJUkdcWr3evc2jz0vn/W70eQx6f5X+3jv9IKlnkv935Y9us/rBu0suGgAkDX/vnvVLT3/Je/SNVVtMeuyCmPbbhXYOUG8yOf/57duC0ebtLh08S1r6vLuMVeuk/QgJR0ipjNX7f+Xp2ofDrf/4i/7zCdwE3AhGAwAAAAAAABpE1vo/wqbU8DLX4P7tyw2D3V3coRXFghf8lxc7FyNcAQSuwLJKc9bfJAOnR9SqngAAoPUs2nCDc9nx3W+sYU1K5wyXLdLGbEY2QjCaNNyeTud8gtGKBhe7g39HCzo3WZtxhlh3NmiAWNFrxZDXLwAAtApjTKekv0s6dtTsAUlvstbeU0bRjxdMH2yM6bI2dHrCMUXKAwAAAFBLXv7o3AmOBy6Ug2A0t5WlBKOFDLT60XuMTjnAaOEzNu8c7L6T9NbXGB36qtIGt172ocoFo33trUb9A1Lflvz5sZj067v899FbwjFrVTnP6gOXennn/6mXpM//ydOfPtoWupxla6w+c2X++bhmiXTCPlafPKm+Bklnslbvv9QvFG3YJbdbnXKA0VsOrW29mt3v7vMLRRu2KSW9/1eebjk/ps/9Kdxnx549RptTlQtFO/sYo4Nnlf5endrlPz+VGQ4cSLbX19/BePnpIltWKJok3ffFmHomFT+ef/hITItXS3c9azV3uvSu1xpNSEgTPukV3baSpnRK5x5n1LdF6uqQjp4rvet1Rt9c4H7/9vZZzenhPQOgdD9eaAtC0YblPOkTf/R02+fCt/MA1MaQIxitY1uqjjFGt342phmfc7dlVvQRjIbwfnmnDR2KJrkDhrs6KlMfoBkRjAYAAAAAAAA0CNdg+zZT2m0+1+D+EQx2d3MFoxUL/nItd5U3dj3/c1KrsIy0dQW7dRZMj289AQBAa9mS26TFm+/yXbZv18GamZhV4xqVhjZU6RKxpOTTsS1VcnBxuPZtyhsMvAYI286vN8WD0RrzdQEAUA3GmKSkv0qaP2p2StJbrLV3lFO2tfYlY8xSSQdvmxXXcPjazSGLmF8wfWM59QEAAABQJps/6LazCsFogxlpIG3VlSAEpFBvX/Tgnzk94dYzxujNh0hvPqSyx90Yo3m7S0tWl1fO2ccY/efpMefyXM7T5T4BbCtLOGat6sGV0nMbxs7/66NSOmOVCBnmdO3D/sf8miVWnzypjApWwd3LpTWbgte5erHVWw7l86iSrl4c/Hf58ibpc1eFD6zac7q0JV1urXY4fu/ytu92BKNJ0rot0m5Tyyu/WVyzpLzP55P3V14omg0obkJCettrjN72mvy/5ZP3l259qqxqRPL2eUbfPnPsd9mcHnflr1li9flT+AwCULqbn3B/xix8RurbbEOFTAKojZxnne2a9lE5htMmBpczfP+Av22Ec02Ra7SwCEYD3AhGAwAAAAAAABpEzmZ958dLDEZrNx0yMrLyvxnPYHe3ZImhFe7ghXAhdK4wu3SRQLZKCVt/Vz2zNqOczZYc5gcAAODn3o23KWOHfJed0H16jWtTuqDwrVZjHb3UjPEfuOUOlSs1uDhZMO1qh6cC91EsjLpeFbsWdF0PAQDQaowxHZKulXTyqNlpSW+11t5Wod38WTuC0STpbIUIRjPG7CfpiFGztobZDgAAAEAVeflBNRNs5YPRJGnVemn/XapSdEPr7Yu+zR7TKl+PqI6aa7RkdXmDbN97+PCAbtvfJ3VNkulI5C2fPWGrpLFpRKUcs1Z1kyM0I5OTVq+X9t55eJB+b5+UHfWgl50nS1Mn7Bhw/7Xr/ctZ9I8d/35hg9XmUd139pgmdXa4B+1vTVu9vHE46C8WKz64f90Wq7Wbd0xP6ZQ2+vwUcvezxd+Xz64lXK9Uo89zZ4e0+07DYYlPvFh825ufDL+fOT3ShISRHP0HozpqbnkBErtMcS9btZ5gtK1pq+fWS/etKK+cw+eEP0+ugIYPH2N061O1+xs/Yo7//CPnuN+/y9dWrz4AWsODq4KXP7NG6plUm7qgOGutVq+XBv27kKEFpP2H2kiSOkYNXTDG6A37S7c4Ql65FkYUdyyrTDnT+T4BnBh9BgAAAAAAADSIjM34zo+b9pLKi5mYOkxCaesfdtWog/hrwR2MEBy84FqeMOGCBYICGWrBWf+QwRHDZaTU1VbkUUsAAAAheTanO/oX+C7rjk/TqyceVuMalc4d7lWbtl49cYU3u7rol9pOLjf4N+0NajAXFIwW8Fj7OpYwwdeChGgDACAZY+KSrpL0xlGzM5LOtNbeVMFd/UHSlyWNPMf87caYva21xbpY/3vB9FXWOm4EAwAAAKgNL5c32eVVJxitt49gtEKDQ1Yvb4q2zev3k+Jt5QX8VMLH5xv97l6rTY4rugkJ6UNHG/1kof999cNnS/MnrZB3zvukfzwsdSRl3/xhmU9+R3pltexX36fZL+8n7fqrMduuYDB4KI8+Z3XR39zhQL190o2Pe7rgr3ZMwJgx0vx9pCvOjamrQ9qadu/n/562Ove33phB+h1x6X1HGP30fUYd8R3v2YG01Ud+a3X1YqusJ03tkr75DqNzj/N/CM3qdVbv/oWn+3uLvuTQ7lsxHFBhzPj/LTWKe5dbfeBSb8zf38zJw3/vL/RXbl87Tx4ORZuTkN5zmNH/e7B4yNWMSdIrm/2XvWOetM/O5Z3rnSZIk5LKC/8bsWKt1dFlBq81qq1pqw//xurPDw//PRdz2/kxvf2nnm+o4bQJ0j8flX8cg/5Ek46uqW99jdFeM6yefaV4fSrhHfP8Kzl3hrvyK/sIZwRQnslJqT/gsu2Ffit3TxbU0k1PWH3kcq+ibSU0l/a2/OnzT4nplqf8G1a0IRDGvcut3vXzEI3zkGbXQTg/UK8IRgMAAAAAAAAaRNYZjFb6bb5krFPpXLgwAOzgDkYoErzgGHsY9liPd1iGOxits2Da/XpS3iDBaAAAoGKe2Pqw1mXW+C47rvtUtZk232X1yBVGVSx8t7X4dyh1BXWlAo6dZ3Masv4jjArb+672bcobDDw/jRo2HTdxxdQmTznf5WGDnQEAaFbGmDYNB5b906jZWUnvttb+vZL7stYuM8ZcLunD22Z1SPqNMeb1rqAzY8w/SfrQqFlDki6qZL0AAAAAlMDLHyw5wdtaclG7dQ+HmDy/Yeyy3j4G5xdauS76Nj98j394VK3tv4vRnV+I6ds3WS1etSMQp81I8/YwOv8NRq/dw+j4va3e9ysvLzDnX08y+tpbrMzZb5Je3JZ2NZSSrrlE6p4ue9PvpeeXa3an/z3fjYPShq1WUyfwfnIZHLJ6/feDB0L/6DZPNzzuv8xaaeEz0pk/87THtODjfLJjP0NZ6bK7raZ2Sd99544yPnWlzQu62jAgnfc7qz17rF6/f/6+rLV60/96euLFwCqU5Pf3WX3gKN5DYazfavWGiz0NDI1dFjXcMYw9e3b8+7cfNjpwV+nGx63uWe7e5u5/j+l/brB6cKVVOjs8b/pE6dSDjL54Wvnn2RijOT3S0ufHLisMBWwln/ij1Z8Whwvo2GOadOJ+2747Flg9tO27o71NOmKO0edPMdp758LPAHd5rmDDZLvRvf8R0+f/ZHX5vTsK2GuGNDhU2RC/Gz4V07SJ7vfX195q9OW/jH0RK1v4PQOgMgqDlAq18ndTPents3rz/3qhwkPRujoK/p5PPdDomLnS3T5tX/62UUzQtVupit0TAFoZwWgAUOcGBga0ZMkSLVu2TH19fUqlUurs7NTOO++sffbZR695zWvU0dEx3tVsWPPnz9eiRYu2T9ugu7lluP3223XiiSdun77gggt04YUXVmVfAAAAAJpX1nMFozkeyxdCItYp5Xx6ysodLoDgYIQgrgCzsIEJpQQ+VJKr/oXHI+i9U6sQNwAA0Bru6L/Bd36b4jpmyik1rk15nCG4jnDdZmbl/3uNcQWjOYK6gtqeac8/FE0KH/yb9lJKef6PB25TvKxrtfFkjFEy1qkBb4vvcq4VAQDQryW9q2Def0p62BgzO2JZL7sCzka5QNLbJE3dNn20pFuNMR+x1j49spIxJiHpXyR9r2D771lrV0WsF9Ay6J9XXfTPAwBgFJs/SrvLlv47/zF7Gb200TqC0UoutmmVckxmT6t8PUr16llGvzsneIDsO19n9M7XjU1usI/cKTsSijZ6/qU78rPnZNyXjL190tQJESrbYv6+VFpfJOPQFYo22l3PSnc9W15b+fJ7rL5zppUxRqmM1f97wL+8y+8ZG4y2eJWqEoomSb+4w+oDR1Wn7Gbzp4dsRQfWF7Pn9B3vg3ib0ZfeZPSlN0ntH80p5wgWmTvD6Ncfqu6A/TnTCEYbbSBtddVD4T8f5u8zfH4O2s3ot0W+O0ZMKfGnv2kTjS472+iys/PnP/6C1cEXVS6d5pi9gpfvPcNIPr8vr1o/fB/CFe4GAMUMZYOXlxLAjMr7w/2WUDQU5Rd0eM5xRncvH9uG6OVvG0Vcvbjy1271dB8KqDcEowFAHcrlcrrqqqt02WWXaeHChcpm3VfQyWRSp556qj7ykY/ojDPOqGEtAQAAAAC1lpP/9WF5wWj+A/yLLWt1QQFlQZ1p0o4As7DBAqUEPlRS+GA093uHYDQAAFApa4de0pNbH/Zd9ppJR2lyvLvGNSqPq03Ymu2naMForqDhwGC0gPyRwnZ3UDvcFVKcjHU2dCf7RCwZEIzGtSIAoOV90Gfet7f9F9WJkm4PWsFa+7wx5u2SbpI0ks50jKQnjTGLJa2QNEXSPEnTCzb/u6SvlFAvoKnRPw8AAIyLXC5vssvx0IXRJielTT63Mt9/pNHVi6U7l429l7qyrzpBpI2sN+Ix2WuG1JVo3Pu7o9nbry26zq7ZF9XhpTUUS4xZ1tsnzdujGjVrDo+/WD9/b+u2Si9vlHbpllb2yTlI2y+ArZqv48WNVSu66TxepXA6l4N285//vXcafebKse+Js4+pzefi7B7/kKtW/X5b0Sel/J+n6+vVs6Lv41Ovj+nqJWMTZY6ZG70sSdqzR+rqcH8ORTF7mjQpGfzem93jPz+V2fG5CAClGMoFL1/Vot9N9ebJGreh0HgScelVO42dP2eaf7uzf0DqH7Dq7mqO+wKovEpfu02fJM2YVNkygWYSG+8KAADy/d//Z+++46Oq8v6Bf86dmcxMGqmEThIpgnRBpCiwKM2yigVRf7ZddW3oKutaHttaVldcF3tZH2Ctu4+AulgRBQUFDE1pQiAJEEJIL5NMvef3x0CSydxzc6e37/v14kXm1jN37tx77txzPvebbzB06FBceeWVWL16tWqjKwCwWq34+OOPccEFF2DcuHHYunVrmErqm/z8fDDGwBhDfn5+pItDCCGEEEIIITHJyZVbuOilQILRxIFconABIg5GkOGCkytfy3PONQeLiYgDH/x/krQvROERRuZZriTm3Vi2bRlhKishhBBC4t/39V+CCwK0pmTMCXNpAieqEyZi/UnYdFTQ3ky47bh426lt1871bmFoHW8VB6PpYvt6Su16kK4VCSGEkPDjnK8FcDGAqg6DGYCxAC4HMBPeoWjvA7iCc95F1x1CEgu1zyOEEEJIxHDPwJEUDcFoT1zk/aNon0xg5lB3UIiSj3f4Vbq4VlLt2/S/nxwfnZ959VFg+StdTieBI99RpjjuIIU9qPpBIWQskt7bzHHbezKGPuIdcHRSaY27DdNr62RM+KsLuX904fb3Qvc+DtUCTld0badotXp3+LaTyQBcPV75WDf/DIbkJM9hjImnD7YCQchVSU1YVh91fDmHmQ3A/HG+f04TTgFO6fzLItxBrP5INjLMPyM4+8sNGs7JBYI6EeA+5hFCiL/s6j8d0zEmTFZu4/jNIhe63+2uu+b+0YU+97pwyasu7K3g+PQXqmsSdReNYkhRCD8X1TsBYH1xCAtEYt6aPcE97lw/iUGS4uO3KEJCgYLRCCEkijz22GM455xzsG/fPo/hjDEMHToUM2bMwPz583HOOedg0KBBXvMXFRVhwoQJePPNN8NVZEIIIYQQQgghYeSQBcFo0Pu9TLVALq1hXYlILQhAFLDg4HbIUG54qHVbiwMfrJC5uFFjsIhCHzqXS2KSMDxOFK5GCCGEEOILu2zDjw1rFMf1Meaj0HxqmEsUOFFdzypbwXmiNeJTfr9MkIzmT6ic2rjOyxMGo8lWcR2ZxXZ4GF0rEkIIIdGHc/4ZgGEAXgNQpzLpRgCXcs6v5JxbwlI4QmIEtc8jhBBCSETJnr97mrl6MFou6nDbNIZnL2XISwd0EjB5ALB2oQSDngk78Lpk4MDxRPtNWV2pSrhXVorn3w+ex7BwRux3RuWtFvA/TNE8vSgYzddQuURisXGs2RvpUnj604ccr67t+vv/m+dk3Poux6YSoMYCtNgDW6/EgCRB8zWXDBxW+xWDAAAqGzn2Vfo+38Duvs8zrBfw9d0SemcqH+ty0xjWLpQwoo87EK0wB3j7BoZpp4YrGE15PYdrAYcz8c5vpTXa3vOwXsCaeyT0zPD9c9JJDN/cI2HaYEAvAT3Sgb/OZbjpbP8/85fmM/xuMkOq+PmqqrJSgD/PYnhgdtdlyE4FUgTr0br9CCFEiU1DMFritecJrxVbOS55VcbafUB1s7vuWmMBjtYDK7cBQx+R0UTN0olAqhH4f2cy/O91yvWJ3pmAQac874UvyWiy0vebeKtq4thToT5NqtEdRq3FvLEMT/w29n+HIiSU/O9LzY9AAAAgAElEQVQxSQghJKjuuusuLF682GNYWloa7r//flx11VXo16+f1zzFxcVYunQpFi1aBJvNBgCw2+246aabYLFYcNddd4Wl7IQQQgghhBBCwsPJle+w6iWNv5orUAv4UhuX6NSCAGy8FalI9x4ui++8ag0WUPtM7NwGU4jDF0TvQalcRskMm8t7erUACkIIIYQQrbY0rYdFblIcd3bGHDAWe41FRHU9DhkObkcS87PVeAyShQ1HRcFo4uAyEavKuCSvYDRR8JoVVlm586JZlyxcfixQD0aja0VCCCGJjXMescom5/w4gFsYY3cCmASgP4AeACwAygFs45yXRKp8hEQzap9HCCGEkIiTXR4vU2T1HON8uRyM5eCeGQx3n8thdQDmpPbLEXdwjPJvqS9+y/GPebH3O3moHBSEez1yAcND5zEcb3KH/+SmApIUJ9tt3Uqg8pDmyQscpYrD1ULlEt3yrbG7bdbt63oakaPPSl7DTgYfpS9QfqjjwSoIwxyJ29sb/duf1i6U8O8ijrv/I55/60MSepxoymY2AN2Suz7Ojc1n2P6wDq127nHuCQfRviJzd8heYW5YixNxooDKU3sA3y6UkG4C7E5tn6uavlkMa+7RwergMOoR8P12o4HhzWsYXr2Ko7rZPSzdBEgSwDlg1LvPubUWDrvTHYSWpGew2DiarED3NO3nZMYY8rOBXUe9x1HAJyEkEPYugtGsDqCyEejRLTzlSUSL1/j/0PD3b2SYMihOru+IX7JTAINevA/oJIZ+WcCBKuXx/1fEccNk2oeIJ7Vrt3d+x3DleAkumcPpAs5/Ue4yUP29G1lMtnUlJJwoGI0QQqLAsmXLvBpdTZ48Ge+//z769OkjnG/AgAF44okncM011+CSSy7Bzp0728bdc889GDVqFKZOnRqqYseFtWvXRroIhBBCCCGEEKKZSxSMxvz/mU+1szvTFtaViNQCyqyC4C+1UAatIXRqAQQ2uTXkYXaiUDOl/cgomQCX97RqARSEEEIIIVpwzrGu7jPFcWYpGePSzw5ziYJDNXxXtiJJSpxgNFFnPlETING2E9XNAXH93MCSoGOejwMV1bMd3I4WuVlQptgOD1Mrv0ljsDMhhBBCQodzbgfwbaTLQUisoPZ5kUPt8wghhJAOuGeH7p7OY6qTD3IeBDASgDvww5zkOX5gd/G8O8tjN7ApFKqVf8ZFvyx36Eo8BhnwPT/5NH2+vVRxOAXKiG1OwFjyKYOAHt3EHba7pwHHFZ5rVFLNIb7LQwDgJz/3p25mYGB3cVBmkh4Y0sMdUuWPQEPR7pzOsHiNd9nOHSKeRy1Er6Q68YLRRAGVZxYy5KW7P5/OdYRAmPzcV0T0OvXzbFaK5/pSjAwpftwWL8hRDkYrrfF9WYQQAgCyzOHUkMlVWkPBaKEiyzygOve4fKZadyUEAAbniYPRfioDbpgc3vKQ6Kd27Ta4h/uYo5MYdBIwqAfDmr3i3+iG9w48kJiQROAd0U8IISSs9u3bh9tvv91j2MSJE/H555+rNrrqaNCgQVizZg2GDGn/ZViWZVx99dWorqY7UYQQQgghhBASL5zcoThczwx+L1MtSCvWO/KHknpAmXLAgo2LQxmMTGswmnpYRqiJ1iEMRlNchng7EEIIIYRoUWrdj0O2A4rjJnSbrlpnimZqdcJw1PWiCRcGoyk3BBJd16htN3Hor/ey1PapBmedT2WKFWr7I10rEkIIIYSQWELt8wghhBASNWTPXvUFjjIMte0WTn655SPVxfXMEHec3HjQt6LFO4tNeXiaKX46n3KnE/yTtyBP7wb5LCOw4jWf5i9wlCoOL61xBxKQdodrOR5fJeOVtYm3XS4bq/6dEQVaHaTLpjbHGjie+kzGZa+5MPcVF+76t4wNxRwHBeFXagw6dyDW9CFAZrLyNBePYn6HogXDNROU1/37s8TdmlOMDN3TlMeV+LGdYp0o2CtfJUAuEfXPVt7XyhJwnyGEBIdd4cHQSkQBlqJpX10r45Z3ZSz4QMaOw3SMOolzjvc3y7hhqYzrl8hY9oOMow2ATfmZ8poU5sbP9R4JncvHifeT19dxNFmj+3u6fj/HXf+WccUbMp77SkZ9C8eROvc168lrjvtWyPjlSHS/j1iidk0ypp/n6ytU9i8AuLyLa2xCiJs+0gUghJBEt3DhQjQ3tz+CKCMjA8uXL0dqaqpPy+nevTs+/PBDjB49Gna7HQBQXl6Oxx9/3Otpl4QQQgghhBBCYpMoGE3H/P+ZT62DP3V2FzOwJDBI4PB+HJhVELCgFsqgNbxDLVxBtN5gEgejeZfLn3AKQgghhBAt1tV/Jhx3VsasMJYkuFRDcFVCduOTqAGRcmMg0bWLejBa4KG/ANDgrFUcHvPBaGrXiiw2wwcJIYQQQkhiovZ5hBBCCIkasnfP+v8cuRIz+32KckNvj+H3Vf8Nc5pXdbnIZy9l+NOH3r+nttjdne7zc6iDJQA0C4LRUo3hLUeocM7BH7oCWP9fv5chCkazOYGKBqB3pt+Ljiv7KzmmLpJR0RDYckb1BbYfDk6ZQsGoB84bDvz3Z8Bx4tB17QSGGyerH1MKcxk2lXgfk0qqQlHK2HOohmPKIhllHkFXHC99w+FP/mCSHmCMwWQAPvyDhLmvymjocEvx9P7A8/Miex4Y3Y/hlasYbn+v/T0unMFw6enq8xXkAMebvIcnYsheieA9F2SHtxzRThTMWCIIliOEkK7YNQZy3f0fjivOEC2D4/v9wOc7OT7fybGnwnP8q2s5Pl8g4ZyhdN1223scr61rrxAt+xHon+1/kNNTF9M2JdpcNZ7huiXifW3qszK+XSgh3Rx9+9Q7G2Vct6S9nv2fIuDhj90vWj26HbmvOT69Q8KUwdH3PmKNqH55y1QGxjy37+QBwJMXMzy40nsfmzsauPtc+jwI0YKC0QghJIL27t2LVas8b1g+/fTT6NGjh1/LGzp0KBYuXIinnnqqbdhbb72FRx99FJmZ8XUnqri4GD///DPKy8vR1NQExhiSk5ORl5eHgoICDB8+HMnJgkeeBJHNZsO6detQUlKC2tpadO/eHX369MFZZ50VkvVXVFRg06ZNOH78OGpqapCamoru3btj3LhxKCwsDPr6CCGEEEIIIdFFFIymZwa/l2lk4s76Jo1hXYmIMQaTZEKr3OI1ThSwIAoukyBp/gxVwzJCHDjGORe+B1/CI8IR4EYIIYSQ+NXkbMDWpvWK405NHom8pN6K42KBWl3PmmDhssJYNCYKRhPXPTnnivPZBPVSpUAztZAzcTBa6O9ThZLae6YQbUIIIYQQEiuofZ7/qH0etc8jhBASArL3g9dOte/DgeJTUWQag3JDbyRxB8Zat6Cn8xjAmPD3zZPOGcIg+kX1oY853v4ddbB0OHlbsFNnKXESjIafN2gPRTtzJtic6zyH1RxFwYtPCGcpqaZgtJOe/5p3GYp2zhDg6z3q03x+p4SeC72PCSe98zuGKYMYPtnBcdt7yt/xu89l+Ptq/8MiOhvQHXjqYgndzMD4AiDdzNDQwlFU5h7XP7vr40m+IKippDp45YxlL6/lnULR3NRC0V65iuHWd5UnsHQIfZx2KsPRZyVsKgGqm4FBecCwXoAkRf488IcpEuaPc+9Lw3oDeeldl6kgRzlkrzTBgtHqLNwj7K6jAgo/9ZCfrVwnKqsBZJlHxXeBEBJbtAajHWsEWu0c5iT3ceZwrTsE7fNfONbsFYc0A4BLBu5dLmPrUF0QShy7Dhz3DEU7SanepNXsYXTcJ9roJIb3fs9w5T+V69zbDgPvb+a4eUp07VMumePBld4By63K3Y3QYgce+6+MbwYn9vEmUM1WjiqFAGcAmDvaex9hjOH+2Qy/m8SxqQQ43sSRZgJO78dQmCtuC0kI8UTBaIQQEkGLFy8G5+21zpycHFx//fUBLfOuu+7Cs88+C4fDXXu1WCx48803ce+993pNe91112HZsmVtr0tKSpCfn69pPWvXrsW0adPaXj/yyCN49NFHVZd/UllZmWpl7dprr8XSpUu9httsNrzwwgt48803sX//ftXy6XQ6jBo1ChdddBHuvvtuYSOoqVOnYt26dW2vO34eahoaGvDwww9j6dKlaGxs9BqflpaGefPm4bHHHkOvXr00LVPE4XDgrbfewiuvvIJffvlFON3AgQOxcOFC3HDDDdDr6RRPCCGEEEJIPHJy5bushkCC0VTCF6izuzqjZBYEoym3RhIFlxkls+abGjqmh54ZFEPyQh045uROyFBuLWxSCNgT7VuhDnAjhBBCSHz7oeFrYb14SsacMJcmuAwsCRIkyPDuCCOqY8Yr0f0aBkEwGlOue8pwwcmditdMwtBfhWWpXRs1OOsUh6sFi8UC9WtFCtEmhBBCCCGxgdrnKaP2eZ6ofR4hhJCw4cohSHq4cKb1J8D6U6fpOWBrBUziMNCCHPHq9lRQEBEAWOzicSlJ4StHKPFv/k/ztOz/3Qc2YqLn/K0WZC6+B+muBjTqunnNU1LNMXkgddYFgC93df29Gtab4es94ukyk93BUFkpQK3Fe/zLVzJcOV4CAMwaBojCD88fEdxgtJF9gEtP9/ycuyUzTB+ifRmFucrDDyZYmJXIGpX9QuRclQDMMztlN5uTGKYO9qNgYeDrvpQvOL+V1yfWua28XjyuvyCIMFGJghkdLqCigQI+CSG+swvClZU8+xVHs5Xji50cO4/6tp4dRwC7kyNJn7j17TV7g39+V7tWJqSz/BxxnRsAvt7DcfOU8JVHi/2VwGHlJmtC6/YDNgeH0ZC4x5tAlahc24quhwGgezrDBSMBCNo+EkLU0V1ZQgiJoC+++MLj9TXXXIOkpMDuruXm5uKCCy7AihUrPNaj1PAqlhw+fBgzZ87Enj1dPDrnBJfLhS1btmDLli244oorMGDAgKCVZceOHZgzZw6OHhX/StHU1IR//vOfWLFiBT755BO/17VlyxZcfvnlOHjwYJfT7t+/HzfffDNeffVVrFq1Cr179/Z7vYQQQkisaXDWYZdlC47ZjoR0PQYpCYXmU3Fq8kjoGD0lIRSanY3YZdmCRlcDhqaMQm9jfqSLROJEk7MeOy1bUGE7HOmieNAxPfJNAzE0ZTQMUtfXg0phWACgDygYTdxZP9Y78oeaaNuJgr/EwWi+hQoYJROcLu99YUPDV9jfshOA++kxvZL64bTU05GqSxcui3OOX1t+xoHWPV0Glon2v5Nl8h6mvH0OtO7GiuNL215302dhaMpo9DT2VV1/pb0cu5q3oN5ZqzjeJJkxIPk0DDSfptrhK1z1Bl8lSca2eobEJL+WccRaij0t29Dk7OLxxB3omQEF5sEYmjIKOhbcWwZ1jmrstmyDjVsxLGUsuif1DOryy22l2G3ZDodsw4DkoRhoHkZPTiIkiLo6R+iZAYXmwRicPBIGyf+6CCG+kLkL39d/oTguS5+L4aljw1yi4GKMwSiZFMN3v6//AnstO1Tnl5iE3sb+GJYyFmZdSqiKGZDj9grssmxBnUO9B0yF3bdrN7Vrl5VVSxWvmYpbdytOr1S3TWJG4fIdXLlXXawHTVMwGiGEEEIIiQfUPk87ap9H7fMIIYSEgcuHnvUntVpUg9HSzeL7o2U1vq8uHlls4nEp4p9+Y8uK17RN1y0HGOJ9L4WZU8Ayu6PAUYYduhFe40toXwIAyDJX7QR90tAumkZcMNL9vb30dIY3vvPsfC+x9vGAO+hnaE9gd4XnMgZ0B6YMAsb2B4rKxOsy6IBZpwH//bnrcp83IvD2FgWCQIHqZqDJypFmSuw2Hb4GxBl07oCwOcOAz3Z6jz93aPxuz9xU5eH13rdR45ra+81NC185YoFaAE5JNQWjEUJ8Z1N+ZqOiRz/xP9iLc8ClnKGdMEqDfL2RnaJ+rUxIZ6f3A7qnAceblMcXlQF/X+3+oibpgLH5DGfkA5IUuf3Mn+8N58ChWmBgXvDLkyhEvwnoJKAv1TcJCRkKRiMkyri4C/VOehRGqGXocyIeZHHkyBGUlpZ6DJsxY0ZQlj1jxgyPhlcbN26Ew+GAwRCbndPsdjtmzZrl1egqKysLw4cPR15eHgwGA5qamlBRUYHdu3fDYlF4dE4Q7N69G9OnT0dNjedVQ15eHkaPHo2MjAxUVlZi48aNaG1tRW1tLc4//3w8++yzPq9r1apVmDdvHlpaPH/J7tmzJ0aOHImsrCxYLBbs3r3b4wmd27dvx/jx47Fx40b06dPHvzdKCCGExJCjtjK8cPgRNLpUHosVZGPSJuL6nncHPTwk0R23H8ULhx9BrbMKAPBRFcNVPW7DxG7nRLhkJNYdsx3BC0ceQb0zelvpDU4ejj/0frDLzuWiYKpAjkdqAQLU2V2daPtY5VbF4TbBcF8DE0ySGRaX9523n5s3ew3L0ufizr5/Qa5CIJXMZbxX+Qp+aPjap/UrUQxGY8rvq8J+2CvoYmWVDjf0uhtj0iYpzrO9aSPeOroILnTR0qAGmJZ5Pi7N/Z1iQFYk6g2+Gpc2Bdf0XODzb1cb6lfjvcpXwFWeWKVmWMpY3NjrXk0hjVqUtu7Dy0ceh0V276sfsWW4qdd9GBakwJofG9bgnWMvg+NEi5AaYErGHFze/UYKRyMkCDjneL/yNaxv+LLLaYemjMHNve4L2vGDEDU7LVvarhk7m5wxE1IchJgbJbNiMNqO5k2al9EjqQ8W9HkMGYboekz4zuYivHn0b8IgMS2Y4KmJatcua+s/9WkdStdIEpNgZCbYuHqYcEfmGA9GU7tWpBBtQgghhMQyap8XPpFuo0ft87Sj9nnUPo8QQkiYcD96u1stAHJVJ3nyYoYHV3rfJ66xUBARADTHeTAa5xrbCOj0YHf9HcwguKfXMx/5jaXYYfIORiulSygAwFENz6hLMwG9MpTDwU56cI77O3nfLIY1ezgOdLj19cgFDH0y27+zjDE8P0/C3FfltpA/swH4xzwJjDEsukzChS/JaBTcvnjiIoZLxjD8Ui6rdpw/Zwhw+emBHysKuwgmGpHA1ec6C/c51Cs/G9BJDE9cLKGoTPYIahjVF7h9Wvwe3zMEmaB1iRaMptzcECYDYDLE7+fvj4xkIN0ExeNhaQ3H5IG0vQghvrH7EIwWKNn/XLW4cCjIXTwK1S+hCfFi0DMsvoJh/pvKX8ayGmDh/3UcxzH/DIYl1wFJ+sjUMd7e6N+BY9ZiGfuekKCLYKhbLCupUd7ufTMBvY62KSGhQj24CYky9c5qPHTw5kgXI+49Xvg6sg2RjbTdsGGD17CxY4PTMfT000/3eN3a2ort27dj3LhxQVm+VosWLcKjjz4KAJg8eTLKy8sBAL1798b69euF86Wmej7aY8mSJdi9e3fb6/z8fLz88suYNWsWJEnymp9zji1btmDVqlV46623gvBO3BwOB6666iqPRlc9e/bE4sWLcckll3iUpbm5Gc899xyefPJJ1NfX+/xE0N27d+OKK67waHQ1a9YsPPbYYzjjjDO8pt+2bRvuvPNOfP/99wCA8vJyzJ8/H2vXroVOF/sdwQghhBA1K6uWhT3cZGvTDxibdjZGpZ0Z1vXGu1XV73t0cOfg+KDyNYxJm0QdbklAPql+J6pD0QDg15ZfsKnhW5ydOVt1OidXvsuqZ/53tFELEPA1sCvRiI5NNlm5taFouK8BdEamffpaZxVWVX+A63v90WtccevuoISiAcr7ii/vS4YL7x97DSNTz/TqKCdzF96rfLXrULQTvq1bhTPTf4O+pkKvcSur/hXVoWgA8FPTOpzRbQpOSxmjeR6r3Ir/HH/T71A0ANhpKcKWpg04s9s0v5fR0fKqJW2haID7+PXusZfx1Cn/G3BwmV224YPK19tD0U5YV/8ZxqdPQ755YEDLJ4QAJdZfNYWiAcBuy1ZsblyHSRnnhrhUhADf1X2uOFzP9JjULT72wWCEEx+zH8HqupW4rPvvg1Ci4OCc473KVwMKRQPUgtGCd+0i+gyMkgk2l/ZgtFi/nlK/VqQQbUIIIYTELmqfFz6RbqNH7fOofZ4aap9HCCEkImR/gtG6ToC5YpxyMBrg7rw7rLfvq40nFrVgtHh47s+urh+swv7wJHDmLLBThokn6lWAguoSxVEHK50A4mFjBUZLQFxBjjuwSGTuaGBgnvteR34Ow8b7JXy8neNIPTD9VIZJA7zvg5w7lGHbQxL+u4ND5sD5IxgG93BPd/Yghm0Pu8d1DFjLTgVmDGU4s9A93eYHJHy8g+OXcqBjlp5RD5xRwHDhyOB06O+TCegkwKVwuEv0YLSDfgQMngz1GNWXYetD7n2luAo4vZ97P0g3x2/H+8xk5YBBX8PlYl2dRfn8nhHbtyFDgjGG/Bzg5yPe49SCIQkhRCScwWhas47jVZkgaMhfBTnxW0cioTNvnIQai4zb39O2P76/meO84cCV48O/v8kyx/ub/fvelFQDX+0CZg8PcqESRInguq5AJSScEBI4CkYjhJAIOXLE85e2vLw8ZGdnB2XZw4Z537A6cuRI2Bte5eTkICfHXZvT69tPOXq9Hvn5+ZqX8/HHH3vMu3r1agwYMEA4PWMMY8eOxdixY/HQQw9B9ucmsoIXX3wR27dvb3vds2dPrF+/HoWF3h2tU1NT8cgjj2DYsGG4/PLLUVdXp3k9sixj3rx5Hk/VfPTRR/HII48I5xk9ejS++eYbzJs3r+1ppOvXr8e7776La665RvO6CSGEkFgjcxd+bfk5IuveY9lOwWhBtqdlu9cwJ3fiYOteDE0ZHYESkXixx+K9b0Wj3S3bNASjORSHBxKMZpYEj1eEOPiLuIkCyqyy8qMabVx5uC9BZwBg1qX4NL3S8RUA9lp2+LQcNUr7itq+pcQiN+GQ9QAKzIM8hpfbytDs0vDY3Q52W7Z5BaO56w3Be8+htMeyzadgtAOtewIOGTm53mAEo1nlVhxo3eM1vMFVh0p7OXoYA2vpqvZ+97Rso2A0QoLgl+Yin6bf37qTgtFIyB23H8Xulm2K48akTUKavluYSxQavtahRHY2F0VVMNox+5GgBFbrmHITh2Beu5gEn4FJSvYpZDdYn2WkmCTl6w4DSxJ+DoQQQgghhEQTap+Xr3k51D6P2ucRQggJE9nl+zwtzV1O0icDkBggK/SJLaVgNFhUbqWnGMNXjlDh6z5SHc9ueQrsynu6XlDPfBRsKVMcVVJhBwWjASXVXXc8L+wiGK17umen+exUhhsmd92RfkB3hj+eqzxdQQ7Dgunqy8hJY/idhvUESq9j6J+lHAJ2sIoDggfgJIJDtb7P0zHUo1cGwy1TE2f7ZQhuszXbAIeTwxCEIL9YUK/c3BCZvjUfTBgF2crBaP58/wghxBbEYLR0EzCyL/D9fuXxStdyieRIkJ93TQFFxF8XjGCag9EAYOU2jivHh7BAAj+XBzb/im0cs4cnRn062EqqlPePfApkJCSkvB/jRQghJCxqaz1/VcvMzAzask0mE4xGz7t0ndcXS8rK2m+wjRw5UrXRVWc6nQ4Gg/8BASfJsowXX3zRY9gbb7yh2Oiqo0suuQS33nqrT+tasWIFdu7c2fb68ssvV210dZJer8eyZcvQvXv3tmGLFi3yad2EEEJIrLHJNjh5GB/F0oFFbozIeuOVzF2wuJoUx1nlBHvEGwkqh2yHjVsjXQxNRN+BjkTHPH0AndJ7GwsUQwT6GU+BUfItsCvRiAITbIJgtFaX8nCzzrfAhAHmoT5Nb3E1gSs8TszXsDGRfqYBSJK8WwsPSPatnABgcXmfX5sVhnW9HO/vk022Rqze4KtmDccDj+mdwfks/dnWSpQ+x5Nag3BeV9t3g/UeCEl0tY6qrifqwCbbQlQSQtp9V/+FcNyUjDlhLEloneJjXU+kzlkNmQenY3owqNUPfFFoPlVxeJJkRH9TcMJRBySfJhiu/bORoBOWNVYUmgdDUmhSMjDZOwCCEEIIIYSQaETt87Sj9nnUPo8QQkiYiH6zZQyQBN27LOJ7o7ylGfzXrdBbG9FHUNUpq0nMHvaccxys4mhs5bAIbmMZdEBSPATrHClWHz/5Ak2LYSMnId9RqjjucIsZdmdi7ksdlWp4/sukAQymBHy2CLdZwX/dBr77JxRkKKcRlgT+/JyYVmfx/TuUyKEemSrN6RoEYWHxqF7QzCojwZ53yzkHP7QPfE8ReMlu8NpK8OKfwXf/5PEvT1Zu6+LP948Qktg4F19HaDWiD3DvLIa1CyVU/V3CP+aJIz0UmnjHrcZWjtJq7tGuvc6iMoMfJg+Ig+s8EhG9M4B8H56vc8C3ZraaNLRwbCnjsNjEB4aDAa73oCDci3StRCEEHHCHpBNCQicBf2ojhJDo0LkhVEZGRlCXn5GRgcrKyrbXNTXxcRfh+PHjEVnvd999h9LS0rbX48aNw/nnn69p3ocffhivv/46HA6HpulfeOGFtr8ZY3j66ac1lzM1NRU333wzHn/8cQDAL7/8gtLSUp+eAEoIIYTEElHwTDi0uiisK5hssji4yiFrq0cRoiSWgvW0HFecXPn7oGf+dzgxSAacl30Fllct6bA8Pc7Lme/3MhOFSafcwki031ll5Tu3ooA1kckZM/FT43eodWq7q8Uhw85tMDLPoDtrEM6jeqbHedlXKI7LNw3CiNQz8HPzZs3LUwrN8idIq1VhWwcjkCtcfD12BeOzBIK3jVpc4lYKouOYL1pV3q9VEEBICPFNncZzTDtqKEFCyy7b8GPDGsVxfY2FyDcNCnOJQmdKxmxsaVqPemdg93Wc3AmLqxFp+uDef/KX2vlbqxRdGs7J+q1w/HnZ8/DG0acDCsM9xTwEw1JOVxz3m8wL8XPzZk1BrDOy5iJZl+p3OaJBii4N52ZdjC9rl7cNMzITZmVdEsFSEUIIIYQQoh21z/MPtc9TR+3zCCGEBEQWBKPp9IA5FWiq8x7X7B2MxqzU87MAACAASURBVF0u8BcXAh+9DrhcgCSh/4itOATv38q1BDnFm1+OcFzymozi44DEAFlwGyvF+/lvMYdXHgLW/1c8wfTLwfppvIcy9hwU2O8Vjn5ljQN3zUzysYTxRdQB+qR+WcA1ExiqVJ6FF293VTnnwDvPgi99ArC700MKerwEZN7gNW1Jgne+r/fjVllhTuKGemSoNKerawFy0sJXlkiqEwWj+dbcMKbxXZvBH54PHD/S5bQZuY8BOX/yGi7ajoSQ+MM5R6sdaLS6/zW0Ao2tJ1638hP/t49rEgxvbAWcPj6LMM0EnDMEmD2MYdYwhj6ZnudxxsR1IdE1SzxxujhufY9j6QYOp+wOEVp+i4SB3d3b3Ren5IoDqc7IB2bR8/6InySJ4cHzGG78l7Yv5fbD7uMOY4HX2+1Ojpvf5nh7I4fMAb0E3DqN4bnLGHSS5/JLAwzB7+ralijjnAsDvxM51JqQcKBgNEIIiVPBqEhHi1NPPRW7d+8GABw+fBiLFi3CwoULw1qG9evXe7yeP197QEBubi5mzJiBTz/9tMtpLRYLNm7c2PZ63LhxKCgo0F5QANOmTWtreAUA33//PTW8IoQQErdsXPwL+ODk4QEFBZ1UZT+G446jXsODFUBC3NSCWIIRoEISl9q+NSh5OAxBOE74qt5Zi3JbqddwLUFILkEHfz0L7Ge+6Vm/Rfek3vi5eROMkgmnp52FAnP8hEuEilkQaCba70RhEKLliGQbuuOefn/Fjw1rUGYthgwXAMAm21DcuktxHqvcAqPkGYymFB7mXn4eeiT17rIceUm9VfcViUm4sde9+KFhDfa1/OKxjxe37FY8jyudX0XfDQNLQqouHXVO77tzviwHAAYnjwj4e+SP4/YKVDkqvIb7GsAq+izNUgoKzYO9htc6qlFhP6R5Ob5SO/Y6uPKTgX1hVdk+wXoPhCQ6pWMrADBI4PBu9cXjrgk/iTY/NX4nPMZPyZwTV/dEcpJ6YGG/p7Gx4RuUWvcrfuc6cnEX9rbsUBxX56yJmmA0UV1Mz/QYnDxCdV4GCX1NhTgjfQryVOqpw1LH4u6+T6GoaT0q7V03jO8oiRlxinkIJmXMQJKk3Buul7EfFvZ7Bpsav8Vh60HFzyZNl4FhqWMxOnWCT+uPVhfmXI2+pkLsat6KFF0azkifij6m/EgXixBCCCGEkKgQT9ei1D6P2ucRQggJE9mlPFySgLQM5WA0pWEfvgQsf6XDcmXkV27G9xne9+7LqhPrHo7TxTH7BRlH692v1QIGUuIg44s/cLl45KDRYA8t1bwsptMhf9okwLspAQDg7uU6XDyWo392/NSDfVWq8n1aMJ3hzzMZctMYmqwJ9L377mPwNx7yGJTvKFWc9GCCd76v9yOYqTA3+OWIFZkqzen8CZmLVaL9JjM5MY7FvNUCfs95gKXrB1cBQKarXnF4HTUnIyTqcc7RYncHkjW0BZmdDDjjXsM9As06BaC5fAw088f9sxnWF3MwAOMKGOYMY5g0AEjSi4/PksqhOxFqj09/wfHP79vf6cFqYPZiGbOH+3ZO654GFD0o4bFVHP/42r28dBMwqi9w1iCG+2Z5h0gR4ovfTZaQm8rx7iaO4uPufazFDvxaqTz9q+s4bp0a+D73l1Ucy35s/444ZeCFNRwFOcCd0zsHowW2rsN17t9P9Dr6rviiuhmw2JTHFSRwqDUh4UDBaIQQEiFZWVkerxsavJ/mFIj6es8f8zqvL5ZceeWVWLFiRdvrP/3pT/joo49w/fXXY86cOejZs2fIy1BUVOTxevz48T7NP378eE0NrzZu3Ojx5MrCwkKPJ2FqIXd6mtiBAwd8mp8QQgiJJTaVcLKbet0Hsy4l4HV8W7cK/3f8n17DtQQYEe3UQkwoGI0EQu27elOvPyNZlxrG0rhtbfoB/zz6N6/hakFCJ4m+D8EIghyeOhbDU8cGvJxEYpTMisNF4ZlWwbHO5GMwGgBkGnIwJ2eex7B6Zy0eOOD9xNWTZeqmsZwT0n/jtWx/6ZgeZ2XMxFkZMz2G/7X0bhy2HfSavtXlvY1EIVi5hp4YkjISa+o+8Z5H4fskCqYDgFt6PygMwAil1bUrsbJqmddwX+sZos+yv2kAbuvzsNfwTQ3fYtmxxV7DfQ1kE1H6HE8Kxnld7XhJ4bWEBE7mLtQ7ahXHZeqzUesUPG6RkBDhnGNd/WeK45KlVIxNOyvMJQq9LEOu5vqYzGXcue9yuOAdolznqEY/0ynBLp5fROfvTH2uYn3FX/nmQcgPYchz96SeuCDnypAtP9owxjAmbRLGpE2KdFEIIYQQQgjxGbXP047a55X6tC5qn0cIIcRvsqCHvqQDUgUPuWj2rsPwL9/zGtbfoZxmFWhn2Vjz7a9oC0XrSkr4mwgEFS/dA+zbJhzP7n4BTKfzaZkpAwYi72AlKvV5iuPf38xx3+zE7ewr+j79Yx7DgulS22tT+J/TGTH8K+/jUaG9RHHa0mr3fb94Cpn2RYMfzVkKc4JfjliRanQHyCgFXNYmUMhVnUU5Kqeb780NY9OGTzWHogFApiwIRqMm/4SEDOcczbYOIWYe/3OvkLOmjsPbgs/cf6uFGkeT5CTgyYulrifsRK0GJLpUjCcfbvH+gI81Aks2+PbBF+QA3ZIZ/n45w99VcqIJCcSFoxguHNX+rT1Sx9Hvz8pf1Hc2ctw6NfB1vrtJ+bvwzkaOO6d7Dgs0BN8lA0fqgPwEvt7wR4lK2HcBbUtCQoqC0QiJMhn6HDxe+HqkixH3MvSRr2F0bghVV6fwNCc/Wa1WWK1Wj2HZ2dlBW364zZ07F3PnzvVofLVhwwZs2LABADBgwABMnDgRkyZNwllnnYUhQ4YEvQyVlZ5xzgMHDvRp/kGDtHXCOXz4sMfrDz74AB988IFP6+qstla5EyMhhBASD9SCL4ySKSjrMAvCarQEGBHtrC7xZ0nBaCQQaiE/JkGoVaiJ1muVW7ts/OUIYTAa8Z34s1Te70TBXKJzTbDKAygHVYnCq8Lx3RCFwSmd20Xne7Mu2cflKH8uEnQwsMg8Clpcft/qGaJjneizFIXHqgWV+lQelfI7uXdoi6/Utg/V0QgJXKOrQTFgCXCHNVEwGgm3g9ZfccSm3IFiQrffRCTcNJpITEKGIQs1juNe4+qd0dPjTRR2G6nrMkIIIYQQkriofV74RLqNHrXP047a51H7PEIIIWHCBb3dmQSkKQej8aY6jw70XJaB/du9pqNgNLcPftLeOXho6LNfQ+vQPvE4QxLQf7Dvyxw4CgWrSoTBaH/9nOO+2b4vNh44XRyHBZcU+dmebb3UgtHiLhKsbK/XoD7OI4qTtjqAVjuQnKC39nwNRsvPdod+JCpJYshNAyoVMrEO1XLE4bdJ0RFB2GdO+J8HHBG8dI9P02e6lA/UFIxGiDdZPhFo1inMrOFEcFnn0LImK9DQyr0D0KwAj5FAs2A5tYd/86llwybCJvxZuYrosz6ZwVkOIb7o1fnp9B1UBOGZPBYbR5ng95stZd4B01p/6zklFzggaO5bUk3BaL4qEQTSmQ1AXnqYC0NIgqFgNEKijI7pkG1QvolA4kvv3r09Xh87dgw1NTVBaSC1a9euLtcXSxhj+Pe//41HHnkEf//7370alRUXF6O4uBj/+te/ALgbYl199dW44447gvYkzs4N49LTfaulduumcuXTQU1N8O8+NzU1BX2ZhBBCSLSwyVbF4QaWBIn59rRDkWAFlhB1akEsDm4PY0lIvBEF5BiZKWjHCV+ZJeVAIg4ZNm6FiYmDAURBgXpGP/NFgijQTBTkFeowCCMzgYGBK9wi9y1wTHkfDSazTvv5VXSOMElm4XlaOQhOefubpeSIPY1W9NmLQvRERPUS0fFGNNzB7XByR8Bhi2rn9WAEnqqFn1EdjZDA1TnEjzXLMuQCCoconmgt3EhYfVf3mXDcWRkJ2vumkwx9tmIwWl00BaMJ6jei+hwhhBBCCCGhQu3zEge1z9OO2ucFhtrnEUII0czlUh4uSUCqcjAamuvBW5rAX/gTsOlLoPqo4mT9HWWKw6ubgWYrR6op/gNkOOdYskH7PatrJ0ohLE0YlOwWjzvnCrBUbfUjD6OnoMDxPjbiTMXRTcrNNeNeUSnHFW/IcAmyDQs6dSY3xXAzLr51Lfj/Pg78uhVwnXiYVlYPYNJ5YLc+DWZsf2AxX7UEKPvVaxmZLkGSE4DalsQNRqtv8e2e+k1nx99xm3/+NviSJ4CKUuUJxkwFu+kvYKeNB+AOh1MKRisRN2mIO1uUT+/oH5xL8ei3Y71Pk2cIjj8NrYBL5tBJ8fe9IonHJXM0Wz1Dy7zCzE7839AKNLVyj2nbgs5siRdoFizXTvTvWKJ2CJLj/LNwuoL3BjMSODiWRI4kMYzooxzwV1YDHKrh6HciMHt/Jccf/y3jh4NAix3ITgFmDGV4fh5T3H+LSjkueElwsXnC1kPA6f3df3PO8Ut512VO0nO8da0Ol7wqo0ahWX9JNce0BAkbDpaDguuQghxErC8KIYkihn9qI4SQ2DZx4kSvYUVFRZg5c2bAyy4qKvJ4bTabMWrUqICXG0l6vR5PPvkkFixYgHfeeQcff/wxNm/eDJvN5jVtcXExHn30UTz//PN4/fXXMW/evAiU2D92e/BDP6hTIiGEkHgm7lQbnIAZQD30RuauiAUrxRu1gBMnd4axJCTeiAJyTIJQpnBQO0ZZXS2q412C70OgIUbEP+LwTEEwmii8Kkj7I2MMJsmseExVHiYOHAs1YaCZQjmFAW5SikrAmlIQXPQdD8T1DHGwmBLRedSkU/4sRcFogDtALk3vRwNpj2WENhhNLfxMFIBHCNGuzqn8iDgDS0Kqjh5rRsKr0VmPrU0/KI4bmjIG3ZN6hrlE0SlTr/z4RrWgw3ALdV2YEEIIIYQQQjqj9nm+ofZ5/qP2eYQQQjQTnTMknTgYrakB/N6LugwGyRcEowHA019wPHFR/HfQfPlb7efksf2B346K7W3C//mocBxb+JJfy2SShJTxZwN7/SxUHCo+zjF1kYwWlWpkfqfbNMYYbcbF924Bv+d8wNmpXUflIWDFq+BV5WBP/Z972s/fBn/mD4rLUQtGq7MAfTKDVuSY0iB4RuJ1ExmONXCs2we0OoC+mcCNZzP8eVZsH6M641++B/7U79Un2roWfMEM4K2NYPlDUJDDsKnE+9heGj23QEPq+/3i81r/7PjaP5Rwawuw/Tuf5smUxcefhlYgK/TPiyVEyCVzNHkEmZ0MKuNeYWaNrUBTx6CzDsObvX+qI2HSPxu4dSrD7dP8OwarZebE+8+LonqQPzKpmRGJkGXXSxj9uHKA2ci/yKh8TkKzDZj0jIzq5vZxFQ3Ash85dldwbLxf8gjQKj7OMe05GZYuju3jnpTR/KKEZCPDqp/Vp2VcxljrFjzQaz3OHrQQBTlQDkaLnuetxgxRQHPnsHRCSPBRMBohhERIv3790K9fPxw6dKht2FdffRWUhlerV6/2eD1+/HgkJSUFvNyOXKInVoVYXl4e7rnnHtxzzz2w2WzYunUrfvjhB3z//fdYs2YNmpvbrxgaGhowf/58GI1GXHTRRQGtNzPT8+5LY2MjcnNzNc/f0NCgabqcHM8a8FNPPYX7779f83oIIYSQRGOTlR9BaJRMisP9oRaWYpOtMOvoLmkwiEJvgOAEqJDEJQoLEoURhYPacaNVbkEGshXHydwFGco3UygYLTJEAWI2uRUylyExz6cLC8Orgrg/mqRkQbiY5zDOuWrgWKiJA8G0hboB7u3vW8Ca6HgQ+iA4EVH5ndwJh+yAQdL23Ra/N+XPUi2ApFW2IA0BBqOpBLs55MA7namFn6mFphFCtBEFKbmDl5RbaHHEeessEjE/NKyGC8rhwFMyZoe5NNErQ698DVHvjJ5eAcKQ2gjWxQghhBBCCCHxjdrn+Yfa5xFCCCEhJCu3+YAkAWmCYLRt64C6410uuo+jHBJ3QVZ4yOfL33I8EdipOia85EMw2sMXSF1PFMV4yR7xyPOuA0sy+r3szOxU1fE2B4fREP+BPCct2cBVQ9GyU4A0k+f20EmxuX34x//0DkXr6PtPwCsPgeX1A1/+inCyTLlOOK4ugZt01Ave+2m9gP+9Tgeni8PuBJKNsbn/dEVtn/Fgt4J/uhTstme8QgdPOliVGO0TFn0pqDfAHc4T99Z9pHlS9vI3QH01Mh/9k3CaOgsFoxH/OF3uQDPPMDOgsZW3B5ZZT4aZtQ/3CECzosvQGxJaaSYg3QSkm93/dzvxf5qZeQ83A+km1jbs5PhuZngEGvlKrYoY78FowawDZtKxnETIKSq3KxpagX/9yGFzwiMUraOfSoHNJcD4wvZhS3/gms8PK7dzXDWe4bmvxHXE0v0DkeuqgpHbgUMSePVVKMjJQ1FZ4oYNB1NptfLBOj8nPq/hCIkmFIxGCCERNGvWLLzxxhttr99++208/fTTMBj879BeVVWFTz75xGs9SvR6z9OA06ncuUhJXZ34ZkW4GI1GTJgwARMmTMA999wDu92OlStX4uGHH8a+ffsAuDt6L1iwABdeeCEkyf8bmHl5eR6v9+/f71PDq5Pl8XU9WucjhBBCEpVNEOhiDGKnWrXwpFa5hYLRgqTVpRKgwoP/1G6SOMSd7yMYjKaybrVAHycXX7PpGf3MFwmi/YiDw85tMLH285GTO4THs2AG9YnK1DkEzcatwhCbcIRT+BRoJgjBMknJwrJa5VZwzj0aIYQjmM5XagFlVtkCgyRo/N6JWnickmSV8DvRsnzRohKMpnYs00rtWGnnNri4Ezo6LhLitzpBkFKmIVsQi0ZIaLi4C9/Xf6k4LtvQHaeljAlziaJXpkG5V4Do+xwJrYLfcCJZFyOEEEIIIYTEP2qfFxhqn0cIIYQEmSwIPmUSWHqW8h18DaFoAJAEB1LlZjTqvB+CZXMCsswhxWhYkxZNVo59ldqnz4/1QJlftwhHsb4DA1r0BSOAZzeIx1c3A70zxePjzRaFDuQdDe6hPDwrBahVaDpx9ZlR/D1U2a/a7NsOnt0LKN4hnMTI7TDLLWhVuAeUyMFoRwVZzpknNpNex6D3zraMC9zlAvb8pH2GD/4B3PYMCgTBaCU1wSlXtDui8rNA3wQ4DvNft2qbUJKA/CFAYy2yXbXCyY42AKd0D1LhSExwOHlbKFmjR6gZdweWdQgta1IafuJ/tYBUElqMAWnG9lCy9gAzhrROAWdeYWYd5kk1IiquhdQy1eQ4D0YTBcT6I4Oev0giJNXE0DsDKK9XHv/05xyTBqgfa4rKOMYXtk/T1fWmx7ylwFXjgeNN4ml6OY9COvnrkiwDB35G/+xzFacVhXwRsRJBU8xCwXULISR4qGcQIYRE0J133ok333wT/ESkd1VVFZYsWYKbbrrJ72UuXrwYDkf7U1pSUlJw4403Kk6bnp7u8bq+XlAjV7Br1y6fyhVIGrpWSUlJmDdvHmbOnIlhw4ahvLwcAHD48GFs2bIF48aN83vZY8eOxccff9z2euPGjZg4caLm+Tdt2qRpugkTJoAx1rZPrF692qsjNyGEEELa2WSr4vBgBrqoddBVC+Ugvukc2NORUw48QIUkrlZBoFIwg6h8lcSMkCBBhvfTWtQCiZxc/EROPfO/Aw/xn9r5xupq8RhvdYmPc8EMgxAHhXnuW6KwMQBhCf0UfQeVyqUW+mUWBHxxyLBxq0c4XTQGJaqtu1VuRRo0BqMJAkZF28comcHAFMPx1MJKtVLbv9SOZZqX30UdzCq3IkWXFvB6CElUtY4qxeGZ+lyAotFIGP3S/JMw2OusbrMgsTjtGeCHTL1y65p6Z03U3GOwCoJTI3ltRgghhBBCCIl/1D4vuKh9HiGEEBIg7t1OBAAg6YC8vgEvfkLrJnyZOsNruNUBHGsEemm7/RyTynwMyYn2YDT+4+fg364AjpYAO753D5xyMdhNj4H1Gwx+5IB45mmXBLTuCYONMMmtsAranzS0JlYwmqjj80lXjFOuR141nuHFbzzbZPTsBowvCFbJQqCirMtJ+D8fBTtlGOASBD2ekOmqFwSjcSTiPecWG0eVIMCgX1YCbI/qcp9nkf/xR+SfdiuAQq9xVU1As5Uj1RRf287h5Hh5Lcemg+6AnG2HxdMaDfH13hVVlGqb7oxzwdKzgPQspMtNyHDVoV7nfaIqreY4a2ACbLc4trWMY8kPHNVNwKxhwDUTGL7ZC7z/E8eB4xzNNs9Qs9bAmykSP0kM7QFlpg5/mxnSToaZeYxn7SFnHYLNUpKiI9AsWNTeSrzHEwUzGC2TmhmRCLriDIbnvlL+xh6sBg52ETb23FccK7e5oGPAqH4MX/pwG+iDnzh+KXehWJCfn+5qaA9FO6miLOHDhoNlSxnHAeWm1SjIiZ9zFSHRioLRCCEkgoYOHYrZs2fjs88+axv25z//Gb/97W+9nkyoxe7du/Hss896DLv++uuRlZWlOH337p6POti9ezfGjh2raV0dy6yF0Whs+9tms/k0r68yMjIwd+5cvPjii23DSkpKAmp4NXnyZI/X77//Pu6++25N81ZVVeGrr77SNG1ubi5Gjx6NrVvdT7YoLy/H559/jjlz5vhWYEIIISRBiMK0jMwUtHWohd60qoR5Ed+0CjpIA8EJUCGJKxqDkBhjMEnJaJGbvcaphf04uTgkkILRIsOkUwu1akEG2lvSqn22ZpXl+EoUatY5JFAthC+YAaPCdQjes1K5ROd7sy5FPZxObtUUThfJMA61dfsSwCraRqLtIzEJRsmsuA61c7JWLSE+r3dVB2t1tVAwGiEBqHMqt3jINOTALiv/tqsUtEhIoL6r/1xxuJ4ZMLHbOWEuTXTL0Cv34HJyJ5pdjUjTdwtzibyJzt+RvDYjhBBCCCGExD9qnxca1D6PEEII8ZMsCkaTgB79A178GxW3ov/AYsVxB6soGO2knFREdZgOX/Eq+PN3eY9YtxJ83UpgSRGw7Cnh/KxXYMlbktmMNYfOwqT8dYrj6xOoyaRL5ihV2bduOpvhD1OU96Wn5zKUVHOs+tn9uncG8OkCCbooDffgTfVAs4Yg54O7wOcN6XKyTFcdjhp6eQ2vDbxJSkw6VCse1z/KgxqDgX/4iu8zLX8F+V98C/Tbojj67Y0ct0yNzu+TP2SZ48KXZU3hGMtvkUJfoGhQUdr1NIPHgP359fbX1/8P8tcewnalYDQK/4hp3+7lOO9FGdYTTQ//XQTc9W+ORivAqclS0EhMKbQM6HYi0KxjaJl7PPMKM0s3ASnG8DzEIdaobRHRpWK8qAtiMFpGMu1bJHIevYBhzR6O7SoBtmpKa9rrJKv3+HYCq2x0/xP5z5ErvYbxY2UoGMCgFL94tB6wOjhMiRC4G6Dv93NMeVZ8oBaFzxFCgoeC0QghJMKee+45rF27Fi0t7qu7+vp6zJ07F19++SVSU1M1L6eqqgqXXnop7HZ727CePXvi4YcfFs4zZswYj9f//e9/cc0113S5ri+//BKbN2/WXDbA3RjqpOrqajgcDhgMoeu4r9d7nuI6Nvzyx9lnn438/HyUlpYCAIqKirBq1Sqcf/75Xc77l7/8xeMpoV25/fbbccMNN7S9XrhwIc4++2yf9gdCCCEkUdhkq+JwYxADXQwsCTro4YJ3IJEvgSVEnVpAj4PbheMI6Yo4UCmyne9NklkxGK1zeFVHamFCekY/80VCV6FcHakHkQVvfxSVqfM5SzWoTVIOVwsms8ZyioYB7veqGizmagH07Z3RRIFfkQzjUA9g1VbP4JwLt5EoKA8AkqUUxflaXIG3QlUrezCC0axdhLdRHY2QwNQ5lB97nqXPRaVd9CRnamVIgqvSXo69LTsUx41Nm4xUfXqYSxTdMg3i1jV1zuqoCEazCq51whHKSwghhBBCCEls1D4vNKh9HiGEEOIH2aU8XJKAHv18W9bAkWC3/hVoagB/eD4AoJfzKLq56tGg805AK6nmmDwwfju7ltVqv1cVzQFx3OkAX/Kk+jRP/U48ct6dAZeBMYYzsAc67oRLoT1SfQLdjj9aDzgEX9sv7pQw4zTxd8qcxPDJ7TqU13FUNwPDewNSlIaiAdAWQOSDTLlOcXgwQzFiSZlKMFpf5Zzt+PLB837N1s+yHxJckKHzGnfvco5bpgZYrijywwFoCkUDgNN9rDLEIs65+Lg062qw6ZcBvQqBvgM9wpfYmKnov7oM200jvWYrPWYDQPemY9VTn7WHop3UkEBhrV3RSScCzdqCzE7+fSLQrENomTvIjHUKOHP/nZxEgWahJKnkWsZ7y7v6Vt/e4Wm9gF1HlcdFc5WaxL8UI8PWh3SY8bwLX++JdGk8jbL97D2wokw1tKusBhjcI3Rlihd//Uw9vZKC0QgJvQSJByeEkOh16qmnejw5EQB++OEHzJ49G0eOHNG0jP3792P69OnYs6e9Ji1JEt5++23k5uYK55swYQKSk9s7/65cuRJFRUVdruvaa6/VVK6OhgxpfyqM0+nEt99+q2m+lpYWvPjii2hqatK8rubmZqxYsUK4fn9IkoTbb7/dY9jNN9+MkpIS1flWrFiBV17x7ekm11xzDU499dS213v27MHFF1+Mujrlm0MiVVVVXtuBEEIIiTeiwCOjZAraOhhjMOmUb4SqBRgR36gFmAQjQIUkrmgMQgLEYUWi8gLq3wUdBaNFhJGZwATP8LJFKBhNFBSmNahNggQDSwpaeURE71np3C4qq0lKhkkl5LDzfKJ6g+g8Hw4S08HIlOstovCQzuzcBhnKN9zUguPEn0Hg9ZtWlXA1R4DndYfsgJN7B9Z6rJ+C0Qjxm0N2oNGl/DukWvASIcG2ru5z4bizM2aHsSSxIU3XDTrBM9HqndHx6GthXSzC12aEEEIIIYSQ+Eft89RR+zxqn0cIISSMZEFHSkkHZPcEkrQHjbKL/IdRgwAAIABJREFUbgIbOx0YP6N9GIACR5ni9AeVn4sTNyoatE87OC+Ke9KX7gHqq9Sn2a/8YBkAYL0KglIMZk5Blks5yam+Jd5jG9qp7Vfj8rUto3cmw8i+LLpD0YCgB6NlCe45H/PhuxpPKhqUvzd56YDJEOX7RoB4i/Zrzc4McCLPeVxxnNMFyHL8HI/W7tP2XpL0QO/MEBcmGjTWAoJ9h13wO7AzZ4H1G+Qd4NQzH/3tynWhsmP0kO5Y5ZI51uyNdClCQy8B2SnuQJVRfYGzBwLnjwCuPIPh5ikMf5rJ8MRFDC9cwbD0eoYVt0j4+m4Jmx+QsPdxCRWLJFhekmB/VUL18zoc/KsO2x/WYd2fdPjvHTq8+3sJr10t4W+XSvif8yQsmC7h2okSLh7NMH0Iw7h8hsE9GHpmMKQYGYWihZja1o2jU5qiykbfpp94inhrDcwLsDCEBMFLV0qIpkNmmqsR2S6FNoKVh9A/WzxfSZz/VhQMnHOs3Scen53iDhwlhIQW9ZgkhJAocMMNN2Dr1q14+eWX24atX78eQ4cOxQMPPICrrroKffv29ZqvuLgYS5cuxaJFi2Cz2TzGPfPMM5g+fbrqetPS0jBv3jwsWbIEAOByuXDeeefh7bffxowZMzymtdvtWLZsGe677z7U1tYiMzPTp4ZA06ZNw9KlS9teX3/99XjwwQcxfvx4ZGZmQuoQeZ6amoqcnJy29S5YsAD/8z//g0suuQQXX3wxpk6dirS0NMX1bN68GXfccQfKytp/yDzzzDMxaNAgzWUVWbBgAd5++23s2OG+mXj06FFMmjQJL7zwAubOnevxHiwWC5577jk88cQTkGXZp+2l0+nw4YcfYuLEiWhsdF/1f/311xgxYgQeeOABXH311cL3X1tbi9WrV+Ojjz7CypUrceaZZ2Lu3LkBvnNCCCEketm4qFNtcANOTFIyLC7vG6zBCA4hbmohc12FnxCiRtT5Xi0sKBxExylReQH1YDQDMwRcJuI7xhhMklkxhMk7lEv5OJfEjNAx76da+ku0b2ktj1lKCUvjBtF30MHtcHIH9Cf2aZnLXiFzHZdxMpyOKzwvrfN7FL/nCB8PdMmwOa1ew7XWM/wN3UsWBjQGIRgthIGnWrYL1dEI8V+DSoBSpl4cjBbnbbNImFnlVmxs/EZxXD/TAOSbA/+9P95ITEKGIQs1Du+OAXWO6GjBJKyLqQTdEkIIIYQQQkiwUPs8ap/XEbXPI4QQEjGyS3k4Y2A6HfiEOcC6lV0vR5KAiXPcsyanetynKbCXYLtppNcs8d7Ztd6HW8QXjgpdOfzBZRnYuhbYUwT+7YeBLWzSeUEpE0zJyHA1oErf3WtUg7hpU9yx2MTjukXuGXyhUaEeSOyrvg7lEOrS6sS8syw6RuWmhrccEVF+MKDZ8+2lqND39BpucwLHm4Ae3QJafNTQGhhzwQhAF+1Bi8FwTDncDADQK188LqcX+svliqO+OZQKm4PDGOdhhPGo3Lcc+7BI0rvrAummE/9O/m1mSDOdGOcxniG983AzYNSDwshiDK+uADavBlc7TonY0gHcrjiKx3kVydfr0ZF9gbH9gaJOm3lgdyBfJeSJkHAZlMcwZSBUA7P8NbovcLTBt0DBC5tXKYcvlu2FycDQs5ty8HdpDYd6bCOpbASsKl0fLhxF24+QcKBgNEIIiRIvvfQSMjMz8eSTT4KfuJJtamrC/fffjwceeABDhw5F3759kZmZiZqaGpSVleHXX3/1Wo7BYMDixYtxyy23aFrv448/jpUrV6K+vh4AcPz4ccycORMDBgzAiBEjYDQaUVlZiU2bNsFisQAAevTogWeeecanJ1NedtllePDBB9uesnn06FHcdtttitNee+21Ho20AKCxsRFLlizBkiVLwBjDgAEDUFhYiIyMDOj1etTU1GDnzp1eT/FMTk7GG2+8obmcagwGA959911MmTIFNTXuDoIVFRW47LLLkJeXh9NPPx3dunVDZWUlfvzxR7S2uu/6devWDc888wxuuukmzes67bTTsHz5clx66aVoaHBfcRw5cgS33nor7rjjDgwfPhz9+vVDeno6WlpaUF9fj3379ml+iikhhBASL0RBKUbJFNT1iAJTghEcQtzUAkwCDVAhia3VZVEcrhYWFA5mSRRIpFxeQD0kUE/BaBFjkpIVzwedj2uiAMhgh3KJ9m2t5THpwtNyU+07aHW1IlXv3qft3KYYenZyGWrhdF7vWXCuifTxwCQlowHeT1rWWs+wqoSLqu1fovfdIjhuasU5Fx57gcDP61q2C9XRCPFfrVP8BPpMQ464MV68t84iYfVT43fCa8QpGbPDXJrYkaHPVg5GUwk8DBcXd8LOlXsPRbouRgghhBBCCEkc1D6vHbXPo/Z5hBBCIkSWlYefCP9kNz0GvqcIOH5YdTHslqfAcnq1v779b+Av3QsAKHAohxsdrIrvezkNGm8R/3YkcOmY6Om0yp0O8L9cC3y7PCjLY3n9grIcmFLQTVboNQ2gPpGC0ezKw80GQIqzYCL+8n2BL6R3YVsIluhYFO8hjSKiYLSMOL9Nxh128BsnBrSMl47dhdMLNymOK6uJn2A0tSDGjp64SOp6ojjAv3xPeUSSEcjqIZyP6XTITxFXCn7znIxPF0jISI6vY3i8+2RH8OqxJkOnILMTf3c7EWjWMbTMPZ55hZmlm0ABewmK79wI/ueLgUbv9r5aMH1vYKByMJocx5drnHMs2eDbG8xMBp6fJ+HCl2TUnTispxiB1/+fRGGCJGoUdmdYuy/4X96XrpRwrBG48k0ZNnH3ofZy2A/i4aonlUc2N4BXlaMgp4diMFqiXp/54tNfxJ9xRjLw0Hl0TCIkHCgYjRBCosjjjz+OKVOm4NZbb8X+/fvbhnPOsWvXLuzatUt1/jFjxuD111/H2LFjNa+zd+/eWL58OS666CI0NTW1DS8uLkZxcbHX9AUFBfj0009RWVmpeR0AYDabsXLlSlx00UUoL1d++oJWnHPs37/fYxsp6d27N1asWIHhw4cHtL6OTjvtNHz99deYM2cOKioq2oZXVlbis88+85o+IyMDn3zyCVwuwRO+VJxzzjkoKirC/PnzUVRU1Dbc5XJh+/bt2L59e5fLyMzM9Hm9hBBCSCyxyVbF4UYpuKEuWkNmiP/UtqWDC1oYEaKBVRCgaNZFOhhNcFxxiVsPqoUJUTBa5JgE55zO+57oOGcK8r4oPmdpK0+wg9pE1L6DrbIFqUh3/60SsHVyGaJwus7DRAFikQ7jMAv3IW31DLUQMLX9SxTQaFUJaNTCwe1wQXwnNtBgNC3bRS0sjhCirs6h3NLBLKXA9P/Zu+8wN6qzbeD3kbRFu+tt7gXvrgGDDRgwpmNDDJjQQkgIJEA+SDAlkISQhIQ3gQQICeQl8AIJPdQQWgqE3rHpNiVgG2NsbK+Ne9tdb9FqJc35/pC36jyjGXVp7991+fJq5syZI2maZs7c4/FD8elwlGZaa8xtij3XDgDlniHYb8hhGW5R/qjxDTMObw5nvweT9LsMyNzxJxEREREREcD+eU6xfx775xERUZpoKRjNCwBQ43cD7p0HzH8ZetWSmGKqogqY+hWoifv0HzH9a8COYLQJXY3GWRT6za4tAfONql/fBzh2L4WN24ED6hWOnAR4cynQ6s2nUxeKdu5VKakHAOAvR9V2IRhtEF2Ob+s0L1flJRluSJrpptgH77g2bAwwaf/eYLSuVcZiq7YB4YiGz5tD62EGSIGChR6MhrlPAhGbNIed9wLKhgC1I4HmLcAnb8YUmRJcKE7euFXjwAmFsSxJ+7G+Vl7rQd3Qwni/drTWwD/+bB45cjyUxz4crq5WA+bbC/DuCuCOuRqXHVv4n2Mh+fGj7kJnHjpHodKvjAFoxT5+95Q4fdMlCYeiAYBHeEg0UNjPJH13hftpqv0Kh+6isOC3Hrz8mUYwBBw/RWFcDddhyh31Q+3H33GmwphqhWUbNbZ1AJ0h4IaX7Ff2IyYCB+8cXc4XXenBi4u1MdAMlgYevBaTuz7DrLZXUGM1i3Xqv/wSDeMfxDvLY+fdWODnilLh3Afl72zFHxi4S5QpDEYjIsoxRx11FBYvXozHH38c9957L+bOnYtwWD4RXFJSglmzZmH27Nk48cQTE0q8njlzJubPn4/LLrsMTz31VM8TMfsaPnw4zj77bFx++eWorKx03fEKAKZNm4bFixfjkUcewQsvvIBFixZh06ZNaG9vFzsmVVVVYe7cuXj22Wfx6quv4pNPPrH9PABgt912w1lnnYWLL74YZWWpv1Kwzz774LPPPsMVV1yB+++/v1+HtW4VFRU45ZRTcPXVV2OnnXbCnDlzEprXLrvsgvnz5+PZZ5/FzTffjDfffBPBoP2jQCZNmoSjjjoKp556Kg499NCE5ktERJQvpBtrSzylKZ2PHHoziHr5pJldqEtYO3jMBZEgIAT8ZDsISZq/1F7APkzIq3iaL1uchmdK27lUB0E43WdJ7cnUumE3n777d7sQje736veUoclUz4BwLDEoMWe3B86OM6TjEQWFEiUfE5V5zcFoHUkGo9ltxwAgZCUXjObkc3H62RFRrCYhQKm2aLjtdNqm4xaRG8sDn2GdcKPEwVVHothTYHeapFC1z9zbSgo8zCS78yfS8SsREREREVG6sH9ef+yfx/55RESUQZYQ5Nkn4ENVDQWO/ra7R9WMGBetw7JQH2o0FlnbDHSGNEqLCvOGTSl0aK9xCudOtw9QySb95lOpq2xMQ+rqKqtAdbM5GG3L1k4AhZ7mFNUuPM+10ILR8O4L8rjakcA2B79N6nbrtww2hFYai0UsYMN2YNwgyxduES6VVfsLc5vcTb/1tDxy6hHw3Pxiv0HWWfsBKxb1G6YATPJvwWeB2IdErdqailbmhnihk7XlGBShaACAjavlcaPr405eP6oUaJTH/+djjcuOdd0qypL2oLv+SN/aT+H0A3P32I/yl968Fvj8o6TqUDb96yLhCAo18uOFRe77FXaHx46tUTj7kEGy/6O8U1crj/v+YQrnzejeH0WXYa01bntdI2DTjb47FA0Adh6hcOEI8/KvP/8IesvvnDX0i09QP9U8auUW9vu10xmSP5/Jo8FQNKIMKsyjJCKiPOfz+XD66afj9NNPR3t7Oz788EN88cUX2Lx5M7q6ulBSUoKRI0di4sSJmDp1KkpKkr+ysvvuu+PJJ5/Eli1bMHfuXKxZswYdHR0YOXIkGhoaMH36dPh8vbuNI444wthBK57Kykqcf/75OP/88x2VV0phxowZmDFjBgAgEAjg008/xfLly7Fhwwa0t7dDKYXKykqMHz8eU6ZMQV1dneP2JNohqqqqCrfccguuv/56zJkzBytXrkRTUxOGDx+OcePGYfr06Sgv773BONHPC4h+BieccAJOOOEEdHZ2Yt68eVi1ahW2bt2K9vZ2lJeXo6amBrvssgsmTZqEoUPjRE0TEREVkKBlfqRTqm+q9XvMwSGBCEM3UsXuJmm7MCgiO1rrnA1C8nulMC05BEoKCfTAC4/ihfxskfY5A/cR0neb6iAyvxB2Fdue3A1G6xtqZbd/6N4/y+F0vZ95REcQ1MJxg7A+Zoq0PeqMyNuDvuSQO7/tDXpiIFuSxzcdEftgtGT36wMD74xlGIxGlLBtQoBSja+7k7HQ0YLBaJQibzQ/bxyuoDCjmr2T7dQUxd4MAADN4ezfERCwOa7Jdmg1ERERERENTuyf14v989g/j4iIMsiyzMOT7POhfEXQO+qeIIQRAUDjFmD30UnNKmdJgTLVaXw2h27ZGg3wiUSAMfXA6AZXIbp66wbg5UdS0xiPB5iSwsDW8bth9OoNxlGrNgZRyMFoWmus2AxENNAu5OVWFFAwmt6wCvrpe8Tx6nuXQ9/wo/gVTT4AanR9z1XjUWE5TG1be+EHo23arrFoHaA1UFYMbNhu/q1SVbirUtS6FeIote/hsQNH18UEowHAeGzEZ4i9FtqY/cugKdMUp6vTzN0y046csFZebjBp/7iT14wbib2XLMAnpVOM41dk/7li5MJKl99XHU/ZULrYbZscsgtG0+EQCjXyY1PsMy/iGlOd+nYQpdqMiQpKaZguS5ywV+y5AaUUDp8IvPCpXOcRuzk8p+Bmm7R5HeqF/aPb/exgYxfE7PaYQ3d2AEs/BiJhYJcpUEO4oSNyozCPkoiICkh5eXm/jkfpNmzYMHzzm9/MyLwS4ff7MW3aNEybNi3bTQEQfSLoMccck7H5lZaW4vDDDRcAiIiIBikpZKYkxcFopV5zfQzdSI2Q1SUGPnWPJ0pEUHeKIR3ZvvleDNNKICSwSBWlpE2UGGlZGhjeGbDMYVGpDvOU6uu0OqC17umEK4VfZSo00Ku8KFYl6NKxvUj77l+ldcIDD4pUMQA52KzvtEGb0EF/ir8Dt6T2Oz3OkMpJwa7dyoQQvWSPb+JNn2wwmt120k0ZIjJrCtsHo/H5ZpROLeEm/Lf1XeO4Pcr3w7DikRluUX6p9pl72zSFt/Y7DswGu+ODbP82IyIiIiIiYv+8/tg/j/3ziIgojbQQjObxJl/39y4H7rsGdaHVUNqCNoStXfh3C6/+zJPV88XpIgajpeEUtA6HoW/5KfDEnf1HNEwGbnoBqtb+eoYOdkJfey7w6uOpa9RJ50KNGJey6tR3LkH96zcbx63cloLlNUdtaNE46VYL7zfalysvzkhz0kpv3wb969OAj9+wL3jSucAHrwJzn7Qtpr55IbBqSc/r6kizWFZaXwtBV1jj3Ac1/vaes9DmdGyjcoXWGvjsA7nACd+LHTa63li0PtQIYI+Y4XfM1bjtjISal3Ps1ouKEuBnswbHg3O1ZUFffZY4Xn3jgviVjKnHFVv+gFPGPWocvbkVaA9qlJcU3vFQIXpnubsQ/Hrz8+SIkvfJW0lX4ZF+D0LO0C4Ebo/9fJ7CD9GlwlA3VGH2YQp3v9l/X3XYLsDX9jZPc9mxHsxdaiFg6Ep/+ETgyN2dzVu/+4Lzhgba0FC6HcCQmFFb24HWTo0hpTwuMrELjvvDyc6Pz/UTd0Df8nMgvOOLVwr69J9DnXc1lGdwHOcTJYvBaERERERERJSXtNYxoTPdUh0yIwWLSMFs5E688JJkA1Ro8OoUgp+AzIU/yfN3H0gkBQj6GIyWVU7DMzsj5n1GvPAqt6Rl24KFkO5CsSoxtq+bFNKVDqWeMnRFYoPR+oa2ie30lPV01pbes5OAtWhdqf0O3JLa7zTcSwq5i3c8JM23Qwjxcyre9Mnu150EtzG8lihxTaHNxuE1Rew5SOn3dvNLiMB8zHt49bEZbk3+6Q4wHCisQ2iLbMcQX1WGW9RL2jf7lA9FHv6eISIiIiIiIiIiokEiEjEPT8FNkOpr50Dfdw1KdBfGhdfiy6KdYsrMWQq88hlw9OSkZ5dzmoVufFX+NNzc+9TdsaFoALByMfT1F0Jd+y/byfXf/ugsFO3AWUBRCbBlHbDkw+iwvacDfYPtqoZCHXQMcPzZztvvgBo5Hg1qo3Hc6nY/whENn7fwbpye/UD8UDQAKC9Je1PSTt90SfxQtFN/HO2bc+XfgSfvhL75p2JRNXQUdFdvf95ihFBmtaPD0CenqYC7dPzpJeehaABQU8DBaHjxYXGUuuJ+qGGjY4ePrjc+Bnd821Kg9HhjXcs2auw6Mv+3R9J6MbYaePEnHkwek//v0ZHX/glsM+9/MHJ83PBRAMCoOny99Sncs+48nDPmLmORxq3AHmOSaCdlzAUPuQxGGzpI1hXKOP3XK80jyiuBXfdxVIfqkAOGdQEnozV3uFuPx9cCXg/XZcoPd5ypsH898OKnGp0h4NBdFH5ylIJHWIZnTFR48xce3Pu2xuJ1GhrAkFJg+q4KP54pT9eX1hp44W+u2lkfXg1T0DAANG4B9kpdznpBWbFF3n7tvZOz7ZT+dD70jRcPGKiBv18P7LIXcNRpyTSRaNBgMBoRERERERHlpbAOw4K5s1iJKk3pvKRgEaeBJWQvXniJFAZFFI9tEFIGw5+M85eCkGzC3KQwIa/iKb5schpqFRDCoqRgtURJy1Z3m4o9JT1/m2QyNNDvLcP2SFPM8H6BZsI64e+zDjvZT9vta/wpDlR1S/rOnIZ7SeX8XvvANzGg0WY75EQgEi8YLbn9upPjL7ttKRHZawqbH3HWG7hkvpivjd2TiZyL6AjeannJOG5Y0UhMKt83wy3KPzVFQ8VxzeGtWQ1Gk/bf2Q6oJSIiIiIiIiIiIsooLdzsrpIPRkPtKKC4BOgKor6r0RiMBgCPzNc4enJh3WQejmi0mp+viuo0dIHQr9iEmr3zHHRbC1SFzTn5Vx6NOw/12GdQYyYk0LrUqZ9QC7TFDo/Ag7XNQJ18WSIvbW3TeOFTZ2XzPRhNBzuBuU/ELafG7RL93+cDTrlIDkYbPnbH/+MArw+IRPuFVEdahGA0Dem6c757ZL676+bV2e2ylFb65UfkkXseZB4+qs44uL5pARCbowYA+M8nGj+fld/Lk2VpbBf2Y/edPYhC0QBou33k5P2dVTK6HgBwesujOHf07bBUbBDRyi0MRssHW1rd90WqL7DjE8oNeuOX8shpM+G55jFH9Xj/+zFwuzCPAu571+yyO28Dn99KeUQphdnTFWZPdz7N1DqFqXVJHN8t/a/rScZ9+Bi8nqsRMZyWWslgNNFKc3dqHLaL8zrsjm/1y49CMRiNyJEUnD0nIiIiIiIiyrygJTzmEUBJigNOpJAYp4ElZC9ewElId2WoJVRo7IOQshuM5heC2aTwLACICGFCPgajZZW0z+kcsJ8a+LqbFE6VKCkkLNqG+EFhdsFqqSYGBPZrp/lz6zutHCzWO61dUFYm37OJ03A9iRw0Yn88JAWnBaz26NOkEpTu/bqT4y+G1xIlJhDpENefmqJojyNVoB3UKfsWtM1Dc3ircdz06mPhScVNYQVuiLcaHpifLiuFHmaKfCxcwHd7EBEREREREREREQ0UMT8EFL7k+30oj6cnUGZqp3yT7OcbCu+G+zWxz2PrMbwiDTNc+I48zrKAVZ8bR+lQF3RHK7BupX39VcOAEeOTaGBqjB0p96XYZv+8tLy0aC1gOVw9yovz95qptizgy2VAVzB+4YkDHlx02sXGYupbP4z+7/MBo3qX3RrDwxIB9+EY+SJiaSzd6G6a6rL8XZbi2rJeHjfCHN6JMQ3Gwft2fChWtcp8iTmvbO8EpK5aNQXynKl4fdG01tDhELBysVhG7TbV2cxqRwLFpShCGOPCa41FVm4pvOOhQqG17lleFq1zN21lKTBheBoaRbTafHwPAGrnvRxXo2z6PlmRwtsuRSyNYEijyeWxX1KBUUQFTofDwBcLXE/ne/I27FRlPie1cmvhbX8SobVGeMC2eOVm82fTMEx4wLRlQXcF+/2zO761278QUX/sQU5ERERERER5KajlYLRST2lK5yUGrtiErJBzgYh9T6mwDmWoJVRopGAPDzwoVtl9dKe0XQnpLjEALSSsCz5VlLJ2kXtyKFfHgNfmbV288KpUtSfahj5BYcL6kcnQQCfBo1JYYN/PTQwW67N/kcK0fMqHIk9x3Lamk9NlSCKVixe6J31uFiwEtfAYUgfSvV+3C7nrxvBaosTYBSfV+uL1HGTnCErO3ObnjcOLVDEOqToyw63JTx7lQbWv1jiuKZTtYLTsh/ISERERERERERERZZ0UjOZN0QPxRtcDAM5pvl8ssjK7p4vTwi4Up25o6uaj13wB6weHxy930VegW5t7X7/wd1hn7g09cwj0McPk9JtuXz8vGjCVZTVjR4jj3IYb5IPlwg3PJmXZ7XaWEN20CdavvgX91eHQ35sWf4JJ04DJ+/cbpE74HlA8oG9uRRUw6/Te1zu2QwBQbTXDZK15cN5b1wyEhM28pLpAL5VprYGNq80jxzTI27gdAZ8DTez6QpxXSwFsj+y2qdV5/pwp/cVCWBfNhD6qGtb3D4Se/3L/8ZEIrNt/BT2jFPorFfbhocecLo/rQykFjIyG79V3NRrLFOLxUL6zLI0rn7JQf5kF7/kWPOdFMPMGy1Uds6crlBYxUInSYPkiedxxZzmuxmOT6JHMw4xzzcbtGt+4LYKaiy34L7KwbJPzaf1FwDmHcT0mGkivWgLrx7OgZ9VAX3e+WE59/wrziM4O1IdWGUcN9uOirrDGxY9aGHNpdJt10B8iePuL6DZZ+mwahvV/rVubYP32TOjjR0EfWdnvHz58XZ75muXQG79M0TshKmwMRiMiIiIiIqK81DfcZaCSFIfM+L1C4ApDN1LC7rsEgLAOF9TFHsocu5vvlcruRTO78Clp2yKFCTEYLbv8wj5n4PIXELZ18cKr3CqxCQftG+gphXtmMpxCCoXruw5I+4i+n1upsJ/uO61UTy6EcUifQ2fEfv/YTQoKixe6Z7fsxQs3s22PEGbXLdlgNCehZzxGI0qMFIymoFBdFA1bkg6heLROyVgf/BJLOxYax00bMh3l3iEZblH+qikaZhzeFM7uo9Ll32Z53pOfiIiIiIiIiIiIyI2IcK00xcFok7uW4PLNfzAW2bAdCHQV1pWdVdvM76e6DKj0p6Z/kO5og77wK8Ci9+IXjoShf3lydLo3n4L+/feBVUviTzdiJ6hzr5JvZM4w39g6DIlsN45r+mJFhluTfrMfdL5elOdZMJq2LOiffBV48ykg0GZfuHo4MOt0qBuejelfp+onQd30ArD3dKCyFtj/SKjb5kANHdVbaExDb1WRFuMsbnipsLZB3RIJFMj30CtRWzPQbt5+qF/9VZxMVVQBQ2qM486pM4ejNXXk//LUbBeMlv2ubQnTTZugfzgTWPA20NUJLPsY+hdfh/78o94yt10GPHxD3LrUr/4KNWyM85mPGg8AaBACQBq35P9yU2iufkbj6mc0vmxyP+3Ow4GbadqDAAAgAElEQVTLj1f44zcZpkTpoW/9pXlEiR9qRxCjE3b3LlhWYWyXLEvjqBstPPkx0Ba0L/vr4xVm7AqUFkX/HT4ReO1nHkwcyXWZqC/d2hw9H/HfuUCoSy5Ytzvw7UuAGnPIecP6d4zDB/tx0YUPa/z5NY2N24GIBcxvBI660cLSjRorhS6XfYPRtNbQl54EvPYPoM38G9iO/s5k6HA4scYTDSLZf4QEERERERERUQKCVqc4zi4UJhHSjbpdOoiIjsCrvCmd32ATL0BFw4KFCLw8jUEuJRoWlAl2wWidkQAqvJUxw8OWFIzGdSObpGCtzgH7qUyFQXiUB6UevzEIrG9YlBQcJYWBpoP42UX6BprF/9yk9anTwfvNie2B1xxQFrDaobWOG+Qo7Ufjhb7ZfdcBqwPmbobxdcQNRkvu4l28QNVoGQajESWiKbTZOLzSW90niJUdjyj13mh+Xhx3eM2xGWxJ/qvxmYPRmoXgw0wJCIGvuRBSS0RERERERERERJQpOiJcK01RMJoaXd/zMJvTtz+Ka4b/yliucSswaXRKZpkTVgk3qtbVpnAmbzwJNG1yXn7hO9DLF0H/525n5YeOhudf5tCfrBlVh2qrBa2GPkxNb70BnLBzFhqVHpu2u7sRvLw4TQ1JlwVvAys+jV9uyqHw3PqabRG118FQf3lFHj+6oWc7VBOR022+3KaxU21hXXtemUCgQD6HXtnasFoeN6rOftrR9UBr7LIzJrwewC4xw+1CxfKF3Xuoyn7XtsS9/GhsQF4kDP3MfVC7TYUOdQHPPeCsrkOPdzfvkdHlrE4KRsvuc8VoAMvSuPMN59vQE6cA//kh792gzNBrl8sjDzvRVV0ej0eeT4EEo731BfDpOmdlj9tT4XcnyZ8JEe3w+j+B7dvil9vvCCh/OXD6T6FvvSxmdH1gOWB4Pm0iAc+FYntA4+/vxW5/g2Hgple0eJw+YXif37LLFwKfzku8EaEu4P2XgYPZT5bIDo8YiIiIiIiIKC9JoRgKHhSp1PY88XvMgSXRdhTAVfUscxJwEtLCE1OJbEjrpxRClEl2AQBSyFEE5g6yvUEllA1SsFbf5U9rLQb1pWN5lMPaom2I6Ai6tPlRXJkMp5CCufquA3LAYZnx7776fgfi9sBmH58p0jJkwUJI2zzZaQdpPxpv2bJ771KQnBOdwnfWLZzkPj1eoCoQXW60LoyOIkSZ1CQEJ9UUmYOW+uI6R4nqtAKYt/1147j60okYXxrbuZ1k1b6hxuFNoez27JbDbgv1bg8iIiIiIiIiIiIig7AUjJaiYIfRDT1/1oVWQ2nLWKyxwG563dxmHj4u0aeBGeil/3U/0bKPgWWfOCtbt5v7+tNt3M5isFVzU2H1mfxsvbvydebLMblr2cfOyo2uT35eY3q3Q/VCIBEALFiT/KxyTSKBAgUbjGYX3DBsjP20I3cyDq4JmT/gQtgcSe9hSCng8+ZvgKD+x1/MI568K/r/+kagrSV+RTUjgCHuduqqbiIAoCHUaBw/mANActGG7cDG7fHLddt9dP6uF5SHli0QR6m63V1VZfeQZKtAgtH++6Xz91Gb/e7bRHlBL3X2e06N33Fe4aTzosdPA9gdFw3W/r+fb4yGoJk89Yn8mYzvG8Tv9LyPHYffMdFglprHihARERERERFlWNDqNA4v9ZTaXjRIhBRYAkRv7i33Gh6bQI4FIvEDTqIhKvn86DPKBinYx26dzhQpEAqQQ46kMCGfh8Fo2SSFOYR1CCErhCJPEUK6CxYiwvSpXx79njI0Izb8onudsAv19GcwnEIONAv0+Tv+eiy1udMKwNIWPMrjqJ5ssQ8oa0exp8R2+kS3dUWqGF74jKGLgYjQc9yBjjjBZSErftibHSeBqhYiCOkuFCv7z46I+msSOhLX+HqD0RSk31qDs2MEJW9+yxxx2354NZ+C55YUZNgsBB9minS8Yve7iIiIiIiIiIiIiKjgRKRgtBT1+xhT3/Nnie7CmPB6rC0aG1Ns5VYNiNd88k+L0AWitjyF73HJR64n0Xf/Fti20VFZNet01/WnmxpSg6qI+Qbfps0OgmzySHP8bgg9in3ACVPSu/7o91+Bfv4hYM0y5xP5ioFJ06C+81OoYaN762prgb7l587qSHEw2jdan8Q1w39lLPb0Ao3j0/w5ZlpjAs8pqsp+t6X0CAj9jvzlUPHCQCtrjYOru8wfsJv1N1c1d5j7W9TEuZSqtQaevgf6+ot6B06aFv2/shbYsBoYXQe0uF04FTBhT6iTZkN11+eCXt8I/djNwAY5HNE671Cgw2H/tFnfcX9fwMxvAbdehvquRuPolgDQ1K5Rk8pjhTz339Uat83RWLRWo7wEmL6rwqWzFMpK0v8ZuQ2qO+NAfm+UQetXyuOOPs1VVR6PPK5QQomWbHBeNu/CholSSFsW8J+7oN95HmjpsyP0FgGT9oP69iVQI8ZFh33u4HyErwg44hsAAOUvhz7gaODFv/crUi8Eo7UFga1twLBBeFuk3YMD1jXL44buuPVDd3ZAX3de0u3Qf70SOOUiqPJKd9N98Br0cw/GnDtQ5/wG6sBjkm4XUS5hMBoRERERERHlpaBw43RJWgJmbAJLIgGAmURJkW6Q7itshYAUPRyVBg8pCMlunc4Ur/KhSBUjpGMDggJCqFDIEoLRFDdC2WQXPhW0AijyFNlu59KxPMYLHMuVYDQ50Ky9z9/m/b3f2/u5Sd+BhkaXDqJU+RGISOFh2Q/jsA9gDaAqzvSJbuuUUvB7y9EWie2w7GTfLIkXeBrWQmf/FNXfU87qiBsqR0T9bROCk2qKhme4JTRYaK0xt/l547gKbyWmDjk0wy3Kf9U+c6/BpvBWaK1THiTvlBxSm/1jMSIiIiIiIiIiIqKMkYLRfCm6tWtAqFF9qNEcjJbdZ2mknBQoU5WiU9C6fTuw8B33E25aE7+M1wd8+xLg2O+6rz8DanadAKyLHd7iqYJe/D7U5P0z36g0aBKWoYEqSoB/XODBuJr0XW/Rr/0T+qrvApblfuKF70C/8R/grregakZABzuhf3ik48lVKoLRxk7o+XNKcJFY7K43NM6drrFfXeGE26zc4j7QxOspnPffT0Do2+OviD9thbmnVE3QHDTZ5KwbUU5rErppVccLRrvlZ8A/b+0/8LMP+r9etSSxRn32PvTLjwA3Pgu192GOJ9MbVkFfMCN+MOjAdkpmfgvq3Kscz7+bGjEOGkBDSA5nu+MNjf85tkDXQZfmrdA48kYLHX26M7+2ROOlTzXe+IUn7duqS//pbJ9XXgLcfobClHH83ihz9PpGcZwat4urupRNMppl5X8wmmVp3DnX2fsYXQWUFnFdpsFL3/BD4Kl7zCMXvQs95wngzjejx89LPrSvrLIW6rcPQg0d1TtsVF1MsfrQarGKW+do/PbEwbdOrtqWyG+46DGJjkSgLzk2sd/uBvqHRwJ3vAlVUuqs/Ov/hr7yDPP8tzelpE1EucQmX5aIiIiIiIgodwWtTuPwdASj2dXZKQQYkXN2AT3dwtocCEVkRw5Cyo1HLUqhUFK7pTAhn+KzD7LJLsyhe/tmt51Lx/Io1dndDmkZi06buXAKaV6BPmFocoiGv8/fNt9BxP47yIUwDrs22H1X3TqT2NbJ26HEj2/ihapFEIalE78IKIXlxZZLPNyNaLBqCgnBaL5hcafN/65ZlA3LAp9ifZe5w80hVUejyFOc4RblvxohGC2sQ2iLbM9wa3pJ++9c+W1GRERERERERERElBFSMJo3Rf0+htQA5ZU9Lxu6Go3FGhMI78llzcIl5JpUdQd45TFxlLroj8C0me7qUwrq1teg7nwL6vlN8FxwjW1IQjZVD680Dm/yVkPfdUWGW5M+ToOVmm/24Jg90nuzuH7g2uRurN6wCnjuwejfbz4FLF/ofNoUBKOpITXRbdEOZzb/XSx70yuFtS0qtNDJpATazMNL42+YVZ/lp6+qzk3mWYWAYCi/l6VE9mO6aVNsKFqqdXVCP3Kjq0n0f/4aPxTNqWP/HzxXPQRVkuA15Un7Y0x4HYoMDy8GgCuezO/lJpVueKl/KFq3d1cALy9O77zDEY33VsQv9+HlHmz7Pw/OPCg3j5mogK1vNA8/abbrquwO+bXO/23SG8ucl22I3x2RqGDpTWuAZ+6zL7R5LfDM/bbnI3DaxVAPfAT11BqoA47uN0qNjg1GGxXegBJtvg/zqqfzfxuUiMYEfsPVlEUfTo8PXgEWvScXPPrbULfP7fcPZ/9aLv/FAuCtpx23Qz+Y5LkDojzDXwFERERERESUl6Sbaks8ztLx3SjyFMGniozjAg7DOUgWL0AFAEIMRqMESKE4fk95hltiJoUhSe2OMBgtJ5V67cIzo/sIu3Arvzf1y6O4bEV2tMcuqM3m/aSaFMrVdx2Q2tp3Wr/XJlisOwxO2F/bTZspJZ5SKJg7zsYL97J0BEHhIqWTZUsMRksiVCzgIDRW2p7Fo7V2HHjmJFSOiHpprdEUNl/lry3q7Ykkba8YjUaJeKP5OeNwBQ+mVx+T4dYUhpoiuedgc3hrBlvSn/zbLPvHYkREREREREREREQZk+ZgNKUUMHbnntf1oVXGcoUW3tMsXBquTlH3B/3JW/LIvQ6BmvF1dxWOHA815VCoyftD+XOjD5Okdqi5fet9o6I3ahcIKZSor5m7Ax5PmkPRWpuBFYuSr2fB29H/P3nT3YRj6pOeNwBg+NiePxtCjWKxN5YWzjVmrTXWt7ibZv/6tDQlNwSEvkP+ivjTVlQZB9e2rxEncfvZ55qE9mPzXk5LW2LY7QNTUd6G+uoZyVVQUQUPNEaHNxhHe1Q0lIvsw4zeXJbez+gLc+ZhP3uOAfYdr1DkS+9+mMhoq3kbokbGhg7Fo2yOJS0r/7dHb7jYXkwYxvWZBrGF7zoKtNIL3ur5bWeijv4O1IQ9oLze2JEjx8cM8kBjTGi9sS6PAkLh/N8OubW51f003eHF+mP74161x4FQex7U/9+UQ2yn0QucHUvr9u3RIDWiQYTBaERERERERJSXgpY5BKTUk55AFyfhLZSYTgfBJWEGo1ECpGCfTAY/2SkVApmkdkvrgRTcSJlht9/p3kdI+woFhWJVkvo2Cct4d2CV1J4iVZzR5UlcByIdPU8/k9raN/xNCoLrO32nENZlN22meJQHJcJyFC+gTAqKBQC/g2MiKTzNSbiZJBCJP21IeBJnPF06CAvOnm7EYzQid9oiLeKxRo3PSTAakTvN4W34uHWecdxeFdMwtGhEhltUGIZ4q+CBobMTIIYfZoL0uz9d53CIiIiIiIiIiIiIclIkYh6eomA0AFAzTur5WwokGjTBaKnqDrBupTxu9/2AQ48HPC5uz+vzHeW68cPM1xzmlB8BbFjd07cj3zU56F5w8r6910n1p/OgH/wj9PN/g96+LXUNWbciNfW88xysM6cAT97lbrphY+OXcWLPA3v+PKn1abHYl01AV4HcfN8WBCJCd5YG4blGx+6Z+WvvOhyGfutpWHdeAeu2/4F++VHojgTSAOJJJhhtSI1x8PjWz8VJPt/opFG5S96PycuI/vzDNLVmgLYW6Aevg96xL9Sf/xfWNd+HdeYU6Pt+D71pDbTW0B/NgfXzE4GF76RmvtXDgb3sgyPiGlINANgjuNg4OmwBa5uTm0UhaA9qbLLZDKT7uNFJ/V/fl32VKIvahPTNqqGuq1LKZrteAMfVjS62FydP5XpNg5de8oGzgh+8Brz8qDx+173lcaPN4Y1TgguNwy0d/X022LQF3W97u4PR8MGrciGlgMNOiB2+93T7/cf8V2D95RfR4+wBgcN6wdvR4Q9eB33v71y3myjfMRiNiIiIiIiI8pIUBFKiStMyPyk4JV5gCcXn5DNkMBolQgrFkYIOM00OXDRv36T1wKtS10GW3POpIhSpYuO4wI7vUtrOlXj88KjUn6KNt2xJ7cn0uiHtWy1EENJdsLQlrg9921qsSuARTnV3v9eAUE+uhHEkGsBqtw8t9cR/srQ034CD0FKTiI4gqM3htX2FtfAk9DjcHHfxGI3IHbvApJoioad2Hxr53zmLMuut5hdhwXwD2IzqYzPcmsLhUV5U+2qN45pCWQxGk47phJBWIiIiIiIiIiIiooIUEa6TpjAYDd/4Qc+fdaFVxiJNHUBLR+Fc22kWnidmFyjjyvpG8/DDT4byeqFGjIP60fXRG1/j2W0q1JmXpqZdGTBhmPye/q/iXKBpUwZbkz7NcZ7/dtyewNmHRD8L/dD10BfMgL77N9B/mA193qHQ6xuTboMOdkLPPjjpenqskkOkJMprDsJzXc/51/T8vU9wAU7e/qRY9uTbnD0cL9dJwVYAcOvpHuw64JlQ03cFLjkqs4EguisIffmp0P9zCvDQ/wKP3Ah99VnQF82ETvG6rANt5hF+B9cGd4RZDVTZugbDhFy1Y2+20J5AqEGuaBb2ybYBn5YQtpoG+u7fQn9vf1i/OR169kHAi38HVn0Ofe/V0N/cGfqHR0JffAww76XUzNDrg/rl7VBF5j6ZjlVUAQBu2XCJWOTxD/J3uUmVxq324x99XyNipe9zWrnVvu5Dd8789pKoHykYTdhf2fF45GXZSuN6limNW5y9h7MOVjhxSpobQ5Sj9JfLgEdvSr6imadA2QW0j9jJeI7ipg0/EycptBB9J9qD7qepKQf0vBeBJXJQsbroj1Ajx8cOLy6B+sXtcuVrvgAeuzl6nP3DI2Hd/VsAgPXXK6O/2+69Gvru3wKP3+K+4UR5jndNEhERERERUV4K6swGnEj1diYYHEK94oW+AECIwWiUACkURwpjyjQ5cNHc204KRvOpopS1iRJT6vEjFOmKGd69fct0SJ+0bPW0R9h3ZXrdsHv/AasDxULgHACUenunVUqh1FOGDiu2U113CIf0nnMlKDHRAFa7ADO/g2MiKYxE2g7F43S6RANP3Rx3OTm+IKJe24TAJC98GOJ135GLyE5Eh/F2s7lT9PCi0di9zOZphhRXTdEwbAtvjhneHI7TozlN7IJTcyWkloiIiIiIiIiIiCgjMhCMpoZUA9c8Bn35aWjoahTLNW4F9s6Ny+VJCUc0WoVnd1Wn4BS0DrQD2zYax6mvn9v79yk/BA44GvjvG+bwBI8HmLAnsM90qJL8OTc+Ybg87tKRf8T3Vn6M2tqRmWtQmjQH5BCHOT/34JCdAZ9XQW9ZB333b/oXWLsC+qH/hbr0tuQa8YYcHobq4VDf/knMYL15LfCvJOebBqqyFnrETsCmLwEAD6w7B09Uft1Y9vlFwMdfauyzU36H3jTZdFGZOh744HIP5nwOLN2oMXW8wqG7AMW+DL/nN58C3n42dvgXC6D/dRvU7CtTN69Oof+Qk2C0CqF/QqgLE4Za2NJmDoB4eL7GudPzczmSlh/bYLRNa93PaPIBUDNOEkfru38DRITAtY5W4PV/mccteDv+vHfdB9jvCKhqYccS6oLu7ICq2w3Y7ytQI8bFrzOeHctSQ2gVyq02tHtik/V++S+NS49Jflb5zEkIyqufAbP2SM/8G23m/9JPPJi+K1BSlJ/rNuU/rTXQLgSjlVe6rs8uxEjr/A9GWyl0S6ofClxwuEJJEXBgg8KBDdF+30SDkb7/DympRx1/tv34omLo4WOBTWv6Dd8pvBaVkRZs91bFTLNyiwYwuNbNtgSC0arLAH3TT+UCp10MddrF4mg14yTggt9D3/Hr+DN78DrofWcAD1zruH3qgt8Du7D/LRUeBqMRERERERFRXgpa5mC0Ek9pWuYnB4cwdCNZTj7DRANUaHDL9SAkqR2dEfP2LazNHWSLGIyWdaUeP1ojsRe/u0O5Mh3SJy5bO9ohtseb2XXDLgij0+pARAmdwg3Tlnr8xmC0QKR9R31SoGpubA8SDWC1C/8q9cTvTOgXyiQajOY0uCzR/bqb4y4eoxG50xQ29zSsLhoKj+rtlMVOSZQKH7e+h5ZIk3HcjOpj+y1z5F61b6hxeFOWgtGk8zdA7hyLEREREREREREREWVEWLhO6vWmdj477QoAGBdeC58OIWzoV7JyC7D3TqmdbTa0yKeg7QNlnFrfKI8b09DvpRq/GzB+txTMNHc0DLMf/9gHGj/YLzNtSacmoYvEFScozJjY5/rouy8AlhVb8PV/A0kGo+l3n5dHNkyGOuPnscM3r4VOVTDarvukpp5udRN7gtHKdAAjwxux0WcO0XtmQQEEo9l0s6kui4agnbg3kM2gAf3Oc/LIt58FZl+Zupl1SMFoscFUMYbID26bUBnAfJj7Oj27QOPc6U4al3uahS5ONXb7sfWNruejDjrGvC3ZQT9xJ7Bxtet6Hc379rlQJfb9+1O9dqiKanTHDO0eXIoP/VON5Vo7NYaU5vc2KBnREBR7Ty/QmLVHej6jNeauIzjzQIWjJg/e74VyRKDNfOwHyEGeNjweeZnWVn4Ho2mtsVZYn286zYOv7cP1mUhrDbxjCCpOxOj6+GVG1cUEowHAxK5l+MA/LWa4k7DUQtOeQDBardUMrPlCHK8OcpC6u9chjuenb/ix47LY7yu2x/tE+YzBaERERERERJSXgpb5UY8lNiEryRADSxi6kTQnnyGD0SgRmQ6jcssvhFBJgUTSeuBjMFrWSctU9/Yt0yF9UnsCO0IppO2uP037UIkUygVEg8wiSngCpWFa+TvoDqczr1fSephpiQawSuN9yociT/xtQ5kUjOYw4GygDoeBaonu190cdzkNaSOiqKaQuVdDrS/O3Q47FMJTKylz5jabb+woUsU4uGpmhltTeGqE9VZaz9PN7ngmV36bEREREREREREREWVERHg4mC/F/T5G1QEAvLAwPvQlVhRPiCkSDcHI/5vTpTAZIEXBaOtWmId7PMCIAkiWi6O8RKGsGOjoMo//9/Ja/CCzTUqLZiFgb2AokX7mPnPB1iboYACqxH2/G93RBix8B3j5UbGMmnakecSwMcD4icDqpa7nGzOPMy9Nuo5+9jgIeP/VnpdHtr+Gh6u+YyxaCDfgS8tQWXE0FC0nrG+Ux61bCa116h6UFoh9uCUAwB//IY8YPlYcNXPoOjyKXY3jPljlpGG5SVp+pP2Y1hpYvtD9jPaLcy1+2kzg2fvd1xvP3ofFDUVLi4qqnj937VomBqM1bgH2GpepRuWeRgfPV2t0EJ6WqOYOc90jKp3XoVubgMXvA0GbxFyiRGzfJo/rs41xym4/m+e5aGgLAmEhQ26U+4+KqKDoriCw5EPgy6VAW0vyFY6qA8buHL/cznsCC96OGdwQajQGo63KzjNXs6pdONdh5/Cy5fJIXxEw+YD4ley2bzRgs605flmbELaBxHMHRAWAwWhERERERESUl7qDTgYq8aTn4qkU3iK1g5yxdMTRZ8hgNHIroiPo0uZHeORKEFK8MK2BpPXAq3iKL9vk8MzuUC4hpC9Ny2K8ME85NNBB57MUKvGUQkFBI/aKfiDSjohH6BSO2PcordedVgciOoyQNl+5ypUwjkQDWKXxTr9LaRmUguTiiRfk1i2U4H7daf1uyxIRsC282Ti8pmhgwJK5g5ZpW05ksi64Cl8EPjWOO6DycJR5HTwlnGxVFw01Dm8OZ6f3kt3xTKaDeYmIiIiIiIiIiIiySgpG86a234cqq4CuHg40b0Z9qNEcjFYgN7xKYTIAUJ2CU9D69X+bR4zcCSrVgXY5yueRx73aXJe5hqRRk3ApIyaUyC40an0jUD/J1Xz1G/+B/vWp8QuecLZxsFIKOPdq6CvPlLcvA1UNBWpGAI2f9Q7b8yDgsBOdTe+Q+uaF0Pf/vuf1pVtvFIPRVm3N/2vNTUKwT0oCGlNlfaM8rqMV2LQGGJmiwEcxGC3+tWBVXgldWWsMozmt/EOcJwSjrWsGrn3ewmVfVakLeMuQJqGbVrU/9n3ojjbonx7nfiaHnQDsdbBtEXXaT6DffhZoNvcfSUiJH+rsX6euPjeGVPf8efXmq/Bo1WnGYnOWauw1Lr+WmVRyEnqWzgBLt8GAA+kn7oC+6RLAEhKZiNIlgWA0eDxQ2oJWsQfYOs+T0dIeWE2Up/Ti96Ev+wbQtCk1FXo8UOdeBeWx+aG+g/p/l0E/cWfM8PquRmP5h+drPDQ72Qbml3bz7Waiw0a14Li7Z4nj1ewrocqGxK1HlfiBc66Avvln7hpgZ6ddgePPTl19RDkm/laPiIiIiIiIKAcFrU7jcClYJFlSvYkGh1CU9D0OFLIYjEbu2N18nytBSH7XwWjmDmw+NTg6WuayeCF30ncqLQNJt0cKCYsEoLW2aU9mgyk8yoMSm1A5KdjKAy+KVHG/YdJ3ELA6bAM40/UduCVvD+zDQ6XPyOl3Kc030VCxQMTZcVE4wf16vKC4RMsSEdAUMvdirPENDEYjSs7c5ufFcTOqj81gSwpXjU8ORtM68x0pOyPy8Uyu/DYjIiIiIiIiIiIiyogMBaMBAEbXAwAaulYZRzsJwcgHdjfgVybZBUJbFvDSw+aRoxuSqzyPxMsXam0SApDyiBRKVFM24M1bEbmS9Y2u5qmbtzgKRVNX3A9VO1Ief8TJUH951fF81a/+CvXnV6AuvBY45gyoH10PddOLUMUljutwNJ/qYcC4nXte7xX8FBdtu91YtjGNgTuZIm2LanLkUpjuCgJb1tmXueFHqZthp/kDUX6HD+3csQ8bqHzzF3j2R/Lt0L9+QuPNZc5mkSuCIY2A0I2qxvBx6QevBT6dJ9anHl0M9et7gGPOAA45Djj621CX3gr1u8fiBsaphklQd74JpDDITN0+F2razJTV50qf0KIJoUaUCP3VL360MI6JEuUk9KxxK9LW10DafjoJuNXLF0HfeDFD0Sg7yhMIRlPRR0mbWFnoz5NKUtAwkJrAaqJ8pCMR6MtPcxSKpv6+MH6F3/gB1M0vQc0yB07H1DlsDFAV28EBIjoAACAASURBVP+3PrRanOb9xvzeFrnVJgSjDS0HTpjS++/UaQo3fTOC5z6cijIt94VUZ/zc8bzVKT+E+tPTwEmzo8ftLoPWY+q7fS5UzfCk6iDKZWk4e065Sik1BMBhAMYBGAagFcA6AIu01ktTOJ8iAIcCGA9gNIC2HfP5r9a6MVXzISIiIiKiwU0K1JICVpIlh97YB5aQPafBK2HNYDRyxy4QJ1eCkOyCnEyk9YDBaNkn7iN2hEBI32n6wjzN7YkgjJDuQiAitcdh57MUKvX4jetrwGpHRAgD9HvLYjpq2QUNSu+3e/65wO32oFun+F062875he/cacBZzHQOA2MT3a9L79fcFgajEbnRFBaC0Yr6XygfvM/IpVQIRDowv2WOcdyE0t2xU+mEzDaoQEmBhiHdhfZIKyp8lRltj3R84FM+FHmKjeOIiIiIiIiIiIiIClKmg9E+ex/1oUbjaCchGPlACtOoLAW8niSvbC2eL49jMFqP5/6zEKedfXBmGpMGtqFEA7tebN0gV7RBvrnc6M2nnJXbbd+4RdSeB0HPPAV47Z/x6xvdEA0t+85P03/td+JUYM3ynpcz2+fg1tofxBRbvQ2IWDr5dTaLtgrdZXImCGSjg+Vz8fupm19ACEx0E4z2+Uexw9c3Yo8x9pM++r7GjIn5syxts+lqZVx+Xv2HPEFxSXQdH7sz1FfPTKg9akwD1Dm/gfXFAuCtpxOqo6eu2VdC7bp3UnUkpaK638uDAvMwt/xwY9GN2zVGVubPcpNKTo4JO7qATa3AyDR0NZCO5aqcBKO9ZrM+EKVTcQlUSan76ZQHHliw4I0Zpa38DiOyC6yuzo3bNogyb+E7wOa18cuN2wUY0wB4PGLYp7rg965Ct3pMmga890K/QdJ5IiB6LL1//eA4JgqFNUJC9vm/fuCJ+U2h334Jevt6ucIEjr/VgbOgDpwVrf/Fh6Gv+Z7rOgAAXzsHqsr8MF2iQsFgtEFAKXUogCsAHAnhO1dKfQLgDgB36gTju5VSwwFcBeA0ALVCmXcA3Ki1/lci8yAiIiIiIuoWFALJSj0JXGRwQAxccRHQQbHSHaBCg5d9EFJuXGGTtyvm7VtYCInyKZ7iy7ZSr7kXRnfglxSiKYVSJctvE/bVaQXE4EC/8D7Sye8pQzO2xgzvtAKwlPninmkdlgNMO+IEJWY+DM4k0eMMKfzL73X2vqRyQd2JiI7Aq2I7YNi2x2GgWqL7dTdhZwyvJXIuoiNoCTcZx8UGLJk7PWjhaZZEfc3b/jqC2hxyfnjNsRluTeGqLjIHowHREMRMB6NJ++Rc+V1GREREREREREREg48OdsaGthSXAFBAVyfgrwA624HSMqiSFF5Hz3QwGoD60Crj6MatgNY65qFk+aY5YL5GVRPnkrlubQbKK6E8HrnQ6qXiKDVpPyfNKwjxlpBla4IZaUe6NNt0Legb4qC7gsCmNXLhoLs+Cvpft8UvVFkLjHH2YCH11TOh4wWjDakBxmbuQUVq0rR+oTXSDfhhC1jXDOxkvBMxP6yO7foEID0hQibasoDt26Iv/OU9+66e4Us+jF9JWzN0JALldddXqF87WpuASARo324u4K9wVtGOfViM9Y0YWwOMrgLWt5iLLNuYX30XVm+Txw1cfnSwE9hg3q8DACZOtd+vuaAm7Q+dZDAaZpyUkrYkrKKq38s9g4vFYLRlGzO3vuaSpnaNFoe7r5Vb0hSMJsy/uqz3CESHQ0CbYaVf8WnqG0TkxK77JDadUlBCHzurQIPRyoqBYl9+/+YkSpjNOYV+Jk2D8hVBT9xXPm7fPcFzEKPrYgbt2/mJWDzfjqWd6gprBMPAkNLe7VF7l1y+osQwMM73qRL9jrolcZ5J7TZ4zlHR4JWaX7qUk5RSRUqpOwC8BeAY2Afh7Q3gdgBzlFI7JTCvYwEsAvADCKFoOxwC4J9KqYeUUrlx1yEREREREeWloGW+mbrEJgwmGaVe8w27bgI6KJYUADUQg9HILbsgpFy5AV/errTDlFsvrQc+VZTSdpF7pcK+p3sfIYVbSdMl3x55Ge+0OsR9V2kWQsKktgYi7WJ4pin4TfwOIvbBaOk6bnAr0eMM6b05XbbKbL5zu89N0uEw8DSU4H7dTZuchrQREdAS3gYNcxhlrU3AEpEbWmu80fy8cdwQbxX2qTgkwy0qXJXeKngMT5cFosFomZbs8QoRERERERERERFRyr34d+gTx/b/d8ww6GOGRv8+qgr6hDHQR1XDumgm9NrlqZlvJGIenoZgNLXj5lcpiKg9CGxuTflsM066Ab9aOAWtX3gI1rcmQh83Evpr42D95RfQwvei7cJnjjzVZUvzV7zsvGdWD81MQ9KkyaZrQc2Orhy6Kwh96dfsK5KCDw30oveA5QvjFzz5fKiiYmeV7n80ULd7/PqKTXd4p8kxp/d7WRdaLRa95638vgG/cau5/fXD0hsEoi0L1p1XQH9tXL/9mfWDw2H98mTo40dHh119VvzKImHg1ccTa8fT98I6ZVfo40ZBnzgWWLfSXNBhMJqSgtEWvgPPk3fgRzPlz/XVJcDf3jX3f8hFC9eal52yYmD4kAED1wuf6w7q1B+lqFUAjj0zGqaYqP2PgmqYnLr2JKKiut/LH26TAymldbjQrXDRfWDlltR/Rp0hjU6hG2F1GaA7WmH99kzoY0fEHrufOBZINryPKEHq5AsSnFDBo837qHzfCjV1CIHVuXHLBlHG6VVLoK+/MH5BX1HPNkV9SziW22UKsK853DUe03H1iMhmsfzKzHctTKvmDo1v3RFBzcUWqn5sYe+rInhneXR71WaT8V4+4Gez1hr6tv+RJ6gZARz97aTaqsbvBhz0VfcTDh0NzDwlqXkT5YM0PFaEcoFSygfgaUQD0foKAZgHYA2AckQD0cb3GT8DwMtKqUO11sLzCmLmdQSAJwH0PduqAXwEYAWAagD7Auh798wZACqVUl/XWjiSJyIiIiIiEljaQlBnNhjNFMICJBYaQr2k0JuBQtrmcQxEBlKYkE8VociTG0FifiEQyoKFkO5Csep/Rj2izR3ofIqn+LJNCvfqtKLhj9Ly6PemJ4hMWraibZKDwuymSxdpnp1WAJYQ0mMKcPMLwWKdViCvtwfxjjPEZcthyJ3ddx6ItKPcO7CHnT2nx0WJBp66CaTtXv+IKL5tIbmjQ42vfzCaEp8Jn+/dsyjdlnYsxIauNcZxh1QdnTP75ELgUV5U+2qxLRy7bjeHHF3+TamAsE/OlcBqIiIiIiIiIiIiIlsL3ob+0dHAY0ucBxRJhOAklYZgNOy4+bWhSw73+unjGg/NTm9oT7o1C5eFqw2noPW8F6F/f07vgJatwGM3Q/uKoC74fewE64XPbvf9oCqq3Dc2T8VbQuZjMrZva0Vlrbv+BblCWoaA3uVI/99PgI/m2FfkMBhNb1oD/ZP4Nzuri64DTvuJozoBQPl8wF9ehf7TRcDcJ/uPHDEO6psXAt/5qeP6UkHVjIAe09ATklVttaA60oRmb2zY0tXPaJy2v8ak0fm5TZICBBrS/RyyB64FHvrf/sMiYWDRewlVp393NrDnQVBjGpxP88Z/oP/3B84Klzq8Pmgzf/1/P8EvflOLV3Y/Ba8tMZc56z6N4UM0vrpn7i9P5/1NCNUbCqgByZT6uvPFetSv74X6yjdT1i41fCxw2+vQd14BLH4f6NrRZ7+tObZwRXX/4V87B+pHf0pZWxI2pH8w2q4hOei20EJAnDr7Pue3dafjM2qx2wf7AX3ld4F3zQ/gs1VaBviSPG4nGkgpYMIeUCedC5Vo+I3yQAl97KxIfve9c/O7jKjQ6UA79EVH2heqGgpM3AfqjEuh9joYAKBmfQdQCvqJO4HGz4CKSmDqTKiLroXyeBJrzGjzcfX9G8/H2SPvjBm+cks0BGzgcWi+OvVOC6981vt64VrgyBssfP47D55eIG93Bwaj4R9/tp2PumMuVGVtEi3dUc81j0aPv997AWga0Pcz0NZ73sFXBFQPB/Y6GOrCawfVOSoavHjXZOH6I2JD0W4BcKXWuqnvQKXULAC3A5iwY9BuAP6tlDpCa217NK2UGgfg3+gfivY2gHO11p/1KVcC4HwAfwLQfWfDiQCuAfArF++LiIiIiIgIXVqO5i9RpWmZpymEBWDoRrKcfn5hIRCKSJJLwU8Su+CigNWOYk//M+pSkJBPMUQi20qF8Mzgjm2ctDxK0yWrxCPvCwM2QWHZCKcoFQPNOmDB/FRm0+cmh9PlVhCcxK79dpJdtuzC+dyEkHXriDgLPE00GM1NIK3T8FUiAprC5t6LJao05nhFCkbL765ZlAlzm58zDlfwYHr1wEualKxq31BjMJq0vqeTfLySO8diRERERERERERERLY2r43elDj9a8nVIwUnpTEYbWRkI/xWBwKGc7KPf6Dx0OzUzzqTmoTLwtWGS+b66XvNhV98GPr8a2Jv/F3faC6/z3SnzSsIteXA1jiX3//9+Cc4+4LDMtOgFJOWIa8HqCiJ3tSOlx+JX5HDYDS8/CgQjNNn8vCTob59ibP6+lDVw6Cuecz1dGk1bSbw1D09L+tDq/GxIRgNAB54V+O6b+TfDfhdYY21hqwoAGgYlr73o7WGfvqe+AXdevFh4Hu/dt4OadtqUlbhrNyOfZjo6Xvwp0tPxdTfyaFO97xl4at7ep23LQs2tMg9LQaG6mmtgU/nmQsPHQ311TNS2LIoVT8J6tp/przejCkuBYqKgVDvg7m/1vo0nhpyYkzRwRiMprXGp+ucl0/HZ9Rs0xWwqmN9YqFoANQfn4CaekRijSJKJ6XgER4YbZ/kkPvc/C4jKnhvPgW02Ow4v/tLeM672jhKHf3txMMXTYTj6p0DnxuHd3QBm1uBEZWpa0K2rNyi+4WidQuGgYfmafzjA5tgtAH5qvqZ+8Sy6oLfQ42ZII53Q5X4oX78J+DHORAyTJRjEoyHpFymlJoEYOBjIX6mtb54YCgaAGitXwJwKIAVfQbPAHCag9ldBaDvGcl3ABzVNxRtxzyCWutbAJw6YPqfKqXqHMyHiIiIiIioh12Yll0YTDL8QsBISHclHO5BzkNX+BmTW4FI7t98bxdcZGp/iMFoOUsK2OrexknbOrtwvGR4lFcMCg1E2tEZMe9H/UJIWTrZfXbSemyaxrYe4bghl7YHUvs7rQAsLXfikz8jZ8uW3WfQkUCwWLr369L7NWF4LZFzTSFzJ4zaouEF8+Q3yq6m0BYsaJtvHDelYn/UFg3PcIsKX02R+fHzTeGtGW5J5kOCiYiIiIiIiIiIiNJi+aLk65CCk3xpCEYbOR5Q0UfeVFnbzc3R0UCffLamydz+2grDNa65T5or2bIOCBiuj29YZSyuRg2uW6B+c2L864ULVufvQ0+/FJahYRWIXitduzx+kBkAHXbWD0IvXxi3TDoCjrJF1U/q93pycLFYduGa/Nwerdoqh5kMDLdKqe3bosGdKeZkGe1nhYv9Y7zAs26j6oBSm35dyxdil+FAsc3uc8Ea583KlkU2X9/uowdse1tsrvNWp3NBy19KKWBASEV9V6OxbOOW/Nz+JCPQFb9MX6u2pv4zsgtGq974aWKVKgXU7Z7YtETpphSU8PhRK8+T0ZqFw+Wa9HSTJ8pp+osFtuNVw+QMtQTAaPP5i4Yu8/kOAGjMfPfCtLD7PbBwDdBp8xO+sk+3Rh3qAhoNCWvdMvl9Eg1iDEYrTL9E/+/2Fa31jXYTaK03APj+gMF/UEqJ0fhKqV0BnNVnUBeAs7XWnTbzeRLAA30GlQD4rV3biIiIiIiIBgraBF2k68baUpuAESlghuILRJyFrjAYjdySAnGk8KFs8HtttiuG8ABpPfCpNHSQJVekcKnuUCtpv5XOMIhSIeSsLdKCCMwdUrMRFCZ9Bp1Wh02IRmw75e+gA51iUGLuhHFIbdHQ6NJBcbpkg0a8cUL03Ao4DFOTgh7jcRN2FowTKkdEvZrC5mC0Gp/zzrNa6LRFBABvtbwIS3ji6eHVx2W4NYNDtW+ocXhzFoLRkg1yJSIiIiIiIiIiIsoFroNiTKTgJG/q+32o4hJg+FgAwMnb/2Mso3U00CefPDzPwnE3RzDlygi+d5+FF4TMjPoBp8l1JGJfcaCtf/lwCNgs3EXrNNinQBy/l0JFiX2Zm7ZMz0xj0mCl+VJpb6DV2hXOKpKCDwf65C378dXDgQNmOasrH8z8Vr+XZ7Y8LBaV1udcZxccMHBblCpaa+jbf5Weyt9/xXk7Ql3Ow9l23w9q7M6OiqriEuDI0+QC27ehPNKKU6bKwY3LNgHtwdzux/DsQrl9Zx084L2tbxTLqlnfSU2DCpA6qv9y1BBqNJabsxSIWLm9vKTaApe5itL+MhlSkJJHAeVvPJ5YpQccDTV0VOKNIkon5YFH6NOq83wb1CIEHVb744cs69ZmWLf8HNbsg2GduTesq8+CXvReiltIlBy9djms686HddZ+sM7YK/rvzL1hXfld6E/nRctoDf3UX4FHbCJdKqqAQ0/IUKsBDKkByitjBo+MbITfa/4Nu2Jzfm+Pui3bJL+Pxz7Q+HyjedzQcsDr6bPt2vSlnIQNAPsflWALicgNBqMVGKWUAnD8gMF/cjKt1nougPf7DGoAcITNJKcD6Buc9m+t9TIHs/rjgNenKiXcfUdERERERGRgF4xW4knPzwu/Vw4YcRoCQrGcBpyELAajkTvSeimFRWVDsSpB9Nm8sQKGsKOINl988KmilLaL3JNCqIJWAEErIIbFpDOITKpbCr8BshMcKAViBCIdxvUAAPyG9VgOWAugQ9oe5ElQol1AmRSMZlef07KJHN+kO/DUTZs0NIKW+AwPIupDDEYrig1Gi16GMsjzp1ZS+oR1CG83v2wcN7J4LHYrm5LhFg0ONUIwWlMoDb2V4xCDXG3OsxARERERERERERHlnDn/hg4mef1RCk5KQzAagJ4Ar+s2/VoscuXT+XON55ZXLZx5j8YLnwKL1gEPvKvRJXykDQMvc738qH3lnQOuRW/6ErCEB3ENsmC06jKFV37qwYQ4z1S67vn8fHCZHIwWvS6qL7cJZ+pLCj7sQ2/dAGwSAvcAoLQM6uYXo6FQBUINHQVU1va8ntX+Kg5vn2ssqzWwbGP+bJO6rdxibvPISsBfHD8MJBH6ziuAZ+9PS93oaIVe3+is7MbVzvoK7HUI1LX/ctUMdfENwOQD5ALrG3H7mQp1NuFzU39nQedoX4bF6zRuflVu255j+y87+i+/kCv79iWpalbh+e4v+72sD60Si85+IDeXlXTYuF3jkOvc7bdXb0t9eFxzh7m+6pIw1AsPuqtMKWD/I6GuuD/5hhGli1JQQn/yPM9FQ5O0PsfpyqxDXdAXfQX4x5+Bzz8CVi0BXn4U+idfhV74bhpaSuSe3vgl9AWHR4+/VywCVi+N/lu1BHj1cegfz4Je9B70PVdDX3+RbV3qphegyioy03Ds6O9rOIehANR3mCNhTv9rnm+QdvjFPxN7H09c2D9+Sd9/rVhW3fU2VFFxQvMhIncYjFZ4JgPoe7q5C8AcF9O/MOD1KTZlTx7w+j4nM9BafwZgXp9B5QAK6HEWRERERESUbp02IRclQjBKsuzCU5yGe1EspwEniQao0OAlrZfZCH6SeJTHJsypf3iApSOwYO6IwGC07JO+Rw2N5vA2cTpTwFeq+IU22YVhSO8jnezWAWk9Nk1jFwTWInwH6fz83bL77O2OM6TwODffpbRdlOq2k+79uttjLobXEjmzLbTZOLzGF+fuBiIHPm59D9sjzcZxM6qPlcP2KCmmYEMAaA5vzXjn/3z4bUZERERERERERESDzBEnQz3wEdSPrnc33YK3kptvloLRynUHRoU3GIs8Ml/nbGhMXxFL439fdN7O7lCrbvreq+0nCAy4Pr5eDk7ByPGO21EoDmhQ+OIPXly7x8dimRtf1ugK5/6yNJAUatUwDNCtTc4rktbvvp59QBylLrsLnpeboCbs4Xye+eK4/9fv5bWbrhCL/tHFep4rGreah8cENKaI7mgF/nVr0vWoG56R5/GPvzirZIO8rVR/fTe6r316LTy3vQ41bLS79vnLoW6bIxdYtxJDShU+uly+PXrZJuC9Fa5mmzG3zZGX9W9O7f9aRyLAgrfNhcdPhPLwFnGJ8nqBY87oeW0XjPbAuxrrm/NvG5SIB991/z5DEWCti92iE81C98TqkNznFoedEN22DPz37Hp4bnwOqsomLZEo2zweMRgtH36T2RHX53hdmd9+Fli5OHZ4MAD9xB1Jt4soFfQz9wHN5j62AICuTui//TEa8GdDXXYX1G5TbcukhRDubndctK09v7dJX2xKvP27jxow4IW/mQtWD4eaNC3h+RCRO2k6e05ZNG7A62Va66CL6RcOeH28qZBSahSAvfsMCgMQzrAYzQFwYJ/XxwJ4ysX0RINGR0cHPvroIyxbtgxbtmxBZ2cn/H4/Ro4ciYkTJ2LfffdFcXFqEmVXr16Nu+66C3PnzsXSpUvR1NSEUKj3RtX77rsPZ599tnHa+fPn47777sM777yDL7/8Ei0tLbD6PCVp5cqVqK+vBwAcccQRmDu39ykv+f7DnYiIiDIvKNxUW6SK4VXetMzTLhgtkeAQinL62TEYjdySwnDs1uVs8HvKjevBwGFhLXeeYzBa9tktV81hofdbnOmSJdXdZNMevyfOo7nSQAo067QCiAhhgKb3ZhcE1hQ2h8Hl0vbAPoBV3ldK49wEjUjfe2ckgWA0h9Mkul8PRNwFnTG8lsgZaTtpDlYyh1hpodMW0dzm54zDS1QpDqr8SoZbM3hUC8GGId2F9kgrKnyVGWuLdLySjVBeIiIiIiIiE/bPIyIiGnxUZS1QWQtdWQv8+VLnEy75CNj/qMRnnKVgNAAYE1qPDb6Bd3dGbWsHhlakpwmpsmorsM78HBajCQNPk7e12E/QOeBatBT2Uz0cqizHP6w0mv7/2Tvv8DiK849/5+5kFVvWqdiW5CbZFOMCprjSTDPYtFBCaIGYEpKQEAjwA0IzpgdIgACBQOi9mF4N2BhjwJhusI2LzlWSbVmy6p3ubuf3hyzpyrxzu6eruvfzPDz4ZmZn506zu7O773xmlAP4SZ23rblDQjSmPLFt6ilrifntlSUAVn5rviJf5DgIuXwJnTluivl9pRmirCLobfJIL22qWlGdfvcuLmKNyoriOC0Qtep7wN3DmOWBQ4ARY+n81T+Yq4eSSBYOjIn0QdjtkOWVwOYqxb5dHbvqK1DcF6gjQooWr5GYMjL1FutavIbu6yMGhLS3ViPrHDA4Ri3qxfQr6PpnZbsLNumHQcw1WOICjh+foHYlEZ2YT0dNIzAsht6xBiK0z+nRyGd2Hd87JaJMhiBgI+KiDSP9xkCB1FNitAihzPLHxXTmz5qxM8MkEl0/7WSxOkYyiCEje96WaBis3u+u7avxLrHJN+uAw0fHr0nxRjfW1mETwc/HtLL0YvUzNoZh4gOL0XofRSGfLTz6V5YfKoQokFKGvgUIffr1g5TSyqy00FEA340yTAB+vx8vvvgiHnvsMcyfPx8+Hz0BPicnB0ceeSTOO+88HHPMMVHv8+GHH8Zf/vIXeDxWXIqAz+fDn/70Jzz88MNR75thGIZhGMYqHsOtTM+O46Rau7Cjj8hGu8I9rROWMHrM/nZe2R7nljC9DUqGY0UWlAgoGUCokEgnEXIIfsSXbHLs0YnR4tkfqbrrvepoPAGBbFtO3NpDQR0DbUYL/PAr81TfTScWo75zKp0P+ohs2GCDoQh6oCSiXqOdlCZakb7lEv23lRBMUkgpSSllKF7DuhjNkH54pHoMSMHyWoaJTLvhQYu/SZlX5BgQlpZ64cJMKrPR7cKatuXKvAn9DyYFqUzPUYsNO6j3bUuoGK2NuDdLJUktwzAMwzAMwzCZB8fnMQzDMAwDAKKkDHLsFGDZ56bKS68nqncl0t0KfPSiWuwCxE2MFigjOrTlY3yTu7eynKsu9cVoP24yXzYnCyjtdqBANjUAusmsQJgYTVa71OXKhptvSC9k4vgSDHqhFrWOQcr8dXXpJUZrcktSpjSiRACrXOYro8SHgVASKQAYuqv5faUbAZJGACj2byeLfq35iVIVV5160n0F/boOACB9XmDBXMhlXwD9iyCmzoQYtW/E/cnXY3BvePAJHddAKv/bT2Dccn7Hv5d+BLQ1A0eeATHtRIjxB3a3pdql3r40hufKsgrl9VN+txDiN38FAJy4j8DDn6q/zeUvSxw1VmJMeWpFO3y3gc47aZ+QtmrOHeKg42PUol5MfmHXP/vJFhzV/AHeyZ+hLNpxPKdWX4klNTskXvpaYh0d0oqB+R2yU5WjqSHGoXjv/qg+bgs8W8htxLQTY9sIhkkkQkAQC1ik47oWtY0SLy2VWLaZvl8rjBQatHE1ndfG8b9MivD1/J7XUVIOjJnc83qiQEw7AfL5f4Wln9D4Gu4t+rNym3Xb03tMVEXIqyMxpBAQIuB7b3bRhfeZFt1OGIaJCluyG8DEnNCZ4tkWt1eVVzk9Q9M0o08la0zsg2Eyko8//hijR4/G6aefjnnz5mmDrgDA7Xbj9ddfx7HHHosJEybgm2++sbzPd955BxdccIHloCsAuPrqqznoimEYhmGYhEMJj+ItdKEm7bb5+aF7tJj97SjxC8NQtPnVUWupNvmekkGEynx0x4BDZMW0TYx1KLkXQEu5bLAjS/SJV5PIvl7vU7cn25YLm0j84+Jcm/oYcBttYYLATlTfTSc5o+R0qXQ+EEKQ7aEkojq5KCU7U5Yl/gZmJWedeKRbKXZTEc11nRLj6mB5LcNEhrouAHqxEsOYYWEDvRLiQU51oDETG/rbC2AjQgF04t54QF2PU0lSyzAMwzAMwzBMZsHxeQzDMAzDBCIuvx8YOMRc4cdu6hDZWEA2j2HnewAAIABJREFU74C86AjI2y6gC8VJjBYoI7p2261kMVeUE0YTxfYWiRMeMPcuGgAqikMmsn70YuSN2kLej1MSmljKftIQ+4AyPFN7Lpn/z3nm/06pgG6ydGWJRvqkIsJ9BQCgdr06/dd/Ce6zvY0QMRoA/LPmMmVRjw9YvSW9zCBUP6rUvG6X3nbIK0+EvOEs4JUHOq4vFxwA+f6z2n0Z918JzHu+B60FMHYyxFlXAgDE+XPocu8+2fHf1k1A8w7glQcg/3I45LN3dZd56nb1toq/edSUVarTF70FubLj/nzO8frjZ8LNBt7+IXX61Xcb6LYcNgqYUBGcFvSbh3IsfU5mOhD9CoI+/6tWff4BgEteSJ1+Emt+qZWYcLOBvz6v/45FfQEn8Sq/vjV2v889HxlYuEqd5/TvUGcceQbEiDExawPDJBxbx/LJKqRMr3H06i0Sk24xcNHzEv9dSJ8bnHn0NVp624HFdGwZPBz/yyQf45HZPa+kb3+Iax6FcMTp2U8kRk9UJh/Qtpjc5OpX03tMdMOb0bX/yXOC4y3ly/eRZcV510e1D4ZhooPFaL2P0Ej2Movbq8rvrkjbJeQz8XSWJPQtQbEQolBZkmEyiBtuuAGHH344fvnll6B0IQRGjx6N6dOn47TTTsPhhx+O3XbbLWz7pUuXYsqUKZYDoa666irIAK346aefjo8++gi//PILqqqquv47+eSTg7arra3F3Xff3fW5T58+uO666/DFF19gzZo1QdsOGWLyhTHDMAzDMIwJKDGGTkwTCyjJCEs3osfsb+eT1oIKGYYSKFqRBSUC6rwVemzojgGHSNJLEqaLbJEDQayKQwlncu15cQ1qzLGr+5ZXhq6rsLN8nK+hFNR+JSQ8krjeK47jLNEHNtiV5anvnGoyDur8RElEQwWKgViRvpFiNEIwSUGJ7FT4iL+JDt33JbdheS3DRIQSeAKA01EclkZd7yS9ljSTobT6m7Gk8RNl3sjcPTAkpyKxDcowbMKOAkeRMk933McDK7JbhmEYhmEYhmGYeMPxeQzDMAzDhCJGjIF46juIO9+A+MdrEM/8oN9AN3FbxbtPAsuX6ss44rQgXoCYpq9sxcj2NcpirrrUfs/z8KfW2hcqI5J3/SXyRu6QZ9k1LEZTIWw2TCvYgD08y5X5H68A/EZq96dA1m5VpztswJBCANUu85X59WI02dTQIZdSIKadYH4/6YhCknVUywdk8UtfTB8xSFu7RG2jOq+iWBMXtvgd4MuQ38AwIO+9FNLvV24iN60Bnv9XlC0FMOMsiPvnQ9w7D8K580R5wDGWq5GPzIZs3A65eS1dqCx250qhkazJR24AAAzqL3D9sfTv7fYCl79sBN2XJ5OLnqP7+GOzbEExhdLvB5bMUxcetS9EVvwWZu015AdPWR7prcLJja+Qxbc2pUY/iTW3vSuxqSFyOZsAnEQoaUOMQvEa2yT+PlcjUjKI6+Xf7o1NAxgmaQgIIsbOSJ/hDwDg9vck1m+PXK5QFxq06C39xu6WlLl2M5mJ3FYNPEFL5s0iXlgBse8hMWhRlPsXAjjqt+HpAE5qnKvcZksT0OpJz+OvJ6LtSQFOZikl8N7T6oJDRkLk5Ue9H4ZhrMOzJnsfK0I+DxZCDJFSbjS5/RRFWoEizRnyeYvJ+gEAUspmIYQbQE7Ifuqt1BOKEGIggAEWNxvZk30yTKy4+OKLcc899wSl5efn46qrrsIZZ5yBYcOGhW2zevVqPP7447jzzju7VpNsb2/H73//e7S0tODiiy+OuN+VK1fihx+6X+DOnDkTzzzzjKk2v/baa2hv757IetNNN+Hyyy83tS3DMAzDMExP8BDCo2yRo0yPFdSk3WhEHUwHZsVolNSGYSjaDLXQJ9Um35NCIktitDgFyDKmEUIgx5arvB7U+0LXMegg3n3Rav1UX4w30fwOuQqZmhACubY8tBhNFvadHBkcBfVbUNdK3fjDivSNFLJZHN+0EuddFdEIT3Vjhj4iG+3So9jGmtyNYTKR7T51tH8/ewH62LIVOb14pXImpnzROF95bgaAg50zE9yazKTQUaKU9FLj03hgSL8l2S3DMAzDMAzDMEw84fg8hmEYhmEoRF4+MOnIrs9yn2nANwuUZeX9V0AcdLzpuuXn70UuZI/T1K6S8g7pmq/j/WxlexXW9AmfPuNK3GPjqHhvmbVJrRUlAUIZj/oZdRhtIe+Wq13KYjpBT8ZQVoHxG7/H8uw9lNnLNgF7DU1wm6Kkapu6bw0rAhx2AWNzlfnKfBHiICjZHtDrhXsiOxeyqBTYXtOVNty7niy/mhDWpSK682eopDEQ+dnb6ozG7cDaZcCue4XnUXKsTnbfB1j5DZktTr0YYsSY4MRozmneduDrBUADPZVUxLJPl1fQeV/Ng/T5IBwO7D5IX82Kmo6/l+7vkigoOZXDBpSFzuKt+pmuiK9J5ugXPjV6D0/oFOxuPloucerE3hcb867J8dTwYpDCx/oYTZdYuApo01w2C/0K25JzAERev9g0gGGShc0GGyFGSzf/1zs/mmuwUxMaJL98X7+x398xxmYJKJMsln7U8zqOOxeiIHyB4kQjyiuUZ59hmvuyxWuAw0fHr03x4v2fojuhDnYC2VkBY8BN6sUFAADlI6LaB8Mw0cNitF6GlLJGCLESwO4Byb8FEFFJKoToC+BERZZKWRl6F6m2EuhpQ7AYLRZqzD8BuD4G9TBMQnniiSfCgq4OOOAAPPfcc9qVHHfZZRfcdNNNOOuss3DSSSdh2bJlXXmXXnopxo8fj2nTpmn3vXRp8ApUoatOxmPbBQsWmN4HwzAMwzCMCjchRou34ISqn2oPExmz0hWf1K+oyDChUMelFVlQIqDOK21+K2I0fsSXCmQTYrQGb7iMAoh/X7QqHEuWJIyScunIISRuOXZrYrRo9h1PyPMBca10++lrqJW/Jylo9FuTilkpH811PfS8GEhh1gDUtoevDdLGYzSGiUg9cZ0qdFgNxkiz6CwmrhjSwML6d5V5/e1OjM+fnOAWZSbOrGJAMd9LJUuLF7rnJSrZLcMwDMMwDMMwTLzg+DyGYRiGYSxhs9F5JkVJ0ucDVn0HfPVh5MJ2u8mGWUPY7ZCDhgKb1gIAKogJry5CDpUqrLUoSQqS3tTSk3yDcHe/75btHmDbZnW5st4tsDJFeSUOWzkfzxWcqsyu2pb6YjQpJVZvAW59V933RwzY+Y+dx44p/BHiIKpd6nRHFlBcZn4/6Up5RZAYLVuzUO66uo6/kRCpKyba2iSxeA3w/BJ1HxICGFqoqWCzpm+1NSuTZYTrj5h1NeSNs4AWhdFo4BBg+KjwbXL7Qu65P/DDZ9q6w9ry6RtAyw66wMTDLdWnZZ9pdJ7fD2zZAJRX4pBRAg6bhM+gi983X+LaowFnXvL6lt+QqNK8rrXbQtqm6Stiv8Ni1KpezoDBYUlHtHyIGwdcrSyeTnJGs7R4JCk7C+XwPQQpPGqIQSje5gaJf7ynOVABHNqyIDxx4hE93znDJBshIIgYO8NI7XuyQNraJao1w4BABjs1mdWuyBW4W0yJ0WRrM/DTF0BdTcSyTIZROhwYMwkiCsGe3LCqx7sXE6f3uI6YMPEI4NEbw5Knt3yIfxWrFwCqqpNIx4WU10YZGlkRGjKtuf8Sex8c3U4YhokanjXZO3kaQODV6f+EEE9KKTdF2O5GAOEKdHNiNJPLqATRBiDwMR8ru5mM5JdffsGf//znoLSpU6fi3XffRb9+5g6L3XbbDR999BGmTZuG5cuXAwAMw8CZZ56J7777DiUl9JIWtbW1QZ91gV6x3JZhGIZhGKYneAz1LUi2LUeZHisoiU2bYU0cwnTjNi1Gi7CiIsMEIKUkBTrJkj9RUPKq0GNDJxFyiKyYtomJjlxbHhoQvgxovU+9NKhVcZn19ljr67l2tRwr3kTzO1Dfzep3jvffwCqUoIy6VlLCtGyRA5swHzhPj2+sLfFoZTzkjeK6Tv0OdjiQby9ALcLFaG4eozFMRChBUlHWAGU6FeaQPqFZTCJY2foDtnjVE4b2d07n8WuCKHSo3w01EOPTeKATo6XaWIxhGIZhGIZhmN4Lx+cxDMMwDGMZoRGjmUDWb4G84gRg+dLIhYEOg068KKsIEKO5lEXe/rFjIr4tVMaSArT7JDY2WNumsjjge3y/yNxG7oD30Vs2AJJ4+1XKYjRRVoFTGm/EeeUPKfOf+sLAr/aOj+wvFvj8En9+TuK/C+k3nBUlAnJ7LbDDwozqSGI0StI3cAhEnOSIKUVZBbDsi6Ck22uvwhWDbg0r2toObNgODLO6lleCePoLA+c+IeH102UGO4HsLM05dcsGOs9HxNQ8fze9zf5HA1NmQlxwI+Q//xqcZ7dD/OFmsp+J82Z3XLMIIZuSec9ps0X5CPN1RUAUDYI89WLy+8vrTgf++xkG9bfh7zMF5rxFH9v/mtdx7L/wextmjkvONU/XvgfOCG+TXDCXruwItaCSCaGsIixpStuXZPHrXpf4/YESA/un3rgoWlwmQwTGDwXOniqweA0hRrMWThjGv+YZuPQlfYTR0U3v4LCW+WHp4szLe7ZzhkkJBGxSLQaU1P1HCmL2nNI3GyghHr9Lvx/4ZkHkStytQL7ONgvIn5Z0jGWsjN2ZzGLAYOCe9yGG7mp6E1m/BXjytp7td99DgKkze1ZHrBg9Edh1fIfAPwCljHQnFzwlcdoEiX456TUmilb+7wwNZdSJqY8/L6p9MAwTPT17Ws+kKvcBCPTtOgG8K4QI15vvRAjxNwBqpSegV3B3EM1VIn1G6gwTRy677DI0N3c/QHY6nXjllVdMB111MnDgQLz88svo06fbXLxp0ybceGO4xTeQwH0DQFaW+QlJPdmWYRiGYRimJ3ikemJtdpyFR6TAyB+DJZAyEK/RrpU9hZZlGLP4pBd+qPsWJR5KFpSMKlRIpJMDslgiNaCuEZQsipJRxQqroolkSQP7iGzYLD6mpr6b9e+cWjIO6m9ACcooUZhVyZ3Z81AkrIjRohGeUu3JsefScjceozFMRLZ71UvdUkKluE7MYXoNCxveVabbYMOBBUcmuDWZS6FDPVukwZtIMRo9nki1sRjDMAzDMAzDML0Xjs9jGIZhGMYyESRF0q+x4QCQD11rXooGAHW1kctES4AMpMK7jiw2b3n8mtAT1m+nHWUUlQGvueQ//mhqG9kW8L672kUXVMhVMo6ySuTJNkxtXazMfvVbwG+k7nSxl77WS9EAYEQJIP9FTbEjoGRWO5HVxPGXKbI9xbFzauNLZPFLXjQzlTHx1OyQmPW4XooGABUaqZv0+YAt4Yv/deENj5WVNfT5G+WVEDe9CGGzQZzwB4h/fwicenGHNOuMyyEe+ARCI9ASex8E8fBnEOdcR+/DCr+7Ojb1BGC78HY6c+U3wFfzAACzj7PhnYv0cWgtHuD0hw20ehJ/nlpfJ3GjRoz2632D4zGklMC859WFx06GyE2tWNiUpaAYyA1+BiQA/KH+v+Qm17yeutexaKiK4Arae2iHmG/+pTYU9RVw5qljg3oiRvtxo4woRbNLH17eeCqyQuO/jzkHonJ09DtnmFTBZoMgtAopPHwOI9I5pZPKYkBQsYafvGquErf+xCMNA3LOWSxFY/Rs3QR5w1mWNpH/vZ7OnDoT4uVVEH+4GTjitI5xd+B/R8+CuPIhiDvegMjqQ9eTQIQQEP9ZEJZuh4FfNb5ObvfPD9Po5LQT6hx19dECN/2Kjn8OXStAUmK0keMgIggbGYaJPY5kN4CJPVLKBiHEOQBeCUgeB2C5EOJBAO8C2AwgF8B4AOcCOCCg7EYAgcvKqdZXCV0GIJqZk6HbWFhagOQBAPSTUTUjAdBXbYaJIytWrMBbb70VlHbbbbehtLQ0qvpGjx6Nyy67DLfccktX2v/+9z/Mnj0bhYXqgZZhRP/CoCfbxoKff/4ZP/74I+rq6lBfX4+cnBwMGDAAe+yxB/bcc09kZ2dHVa/P58OSJUuwdu1abN26FR6PBwMGDEBFRQX2339/5OTkxPibMAzDMAxjFY/hVqZn2+J7nc61E2I0i+IQpgMrwpVoBCpM5qLrWzn25MifKCgRUuh5RXcM2AU/4ksFrIrF4i2CsCpei7eojUIIgRxbHloNc48GHcKBLJv6JaHV3zRZ35mCEje6/epzGikKs9gXaalYC6SUdGBCWHkr13XrwlNSBGfL04zRzMvaGCZTqfepBUmFWYQYjSCdVq1k4st271b80PyVMm+vfpPgzErRpd17IU7iOK73bbN0je8JuvFBqo3FGIZhGIZhGIbpnXB8Xs/g+DyGYRgmYxERFvfaupGUGUkpgfmvKPNI8p3WyltAlFV2Tb0frhGjvfCVxJFjUm+BHLOT7gPpFKMFyc4i4Q4UoxG/U9EgiOzUijtKCuUVAIDRnhVYnDdVWWTxGuDAXRPYJgu8/HXk95qVJQB++tJaxf4IC8RSYqsMke2JsoowDUiZrxpZsh1eER4H9JUrIc2yzGvfSfhN3KZVlmjOp1s2ADrBpkqy98lrZHHxu6shHN3xg2L8gRDjD4zcyMA6ho8CZl0N+f2nwNfzLW0bVle8+vQeE4Dl6vfQcv5ciEkdC3QdNVbglP0EXlxKH+uN7g4h6PHj49JSkrnf0m0qzAMKQmVUq76nKxu+R4xa1fsRQkCWVQBrlwWlj2hfS27z0lKJh85MzDv1RLB+u7rvDS0E1t0eLgR2Eq/yG1qjjw16ycT195ptt4ZL0QCIPdXjDYZJO4SADeqBRDrF3lVtM9fWSk34ofzoRXM7iyBGw6rvAUpexDCBrPwGsmEbhDNyXKyUElhAP9cRk6ZDDBoGnHEZ0mmkILJzIUvKgW2bg9IrvfQx9PJSieuOiXfLYouLWDN214HAGZMErnlNfQ6bWBny16x2qSsaOS7qtjEMEz08a7KXIqWcK4T4K4B/Aeh8K5MP4PKd/1HcC6AAwNkBaWkjRpNSbgGwxco2veUBBZOe3HPPPUE3rSUlJZg1a1aP6rz44otxxx13wOvteBje0tKChx9+GP/3f/8HAHC5XKisrCS3P+SQQ5Tpjz32GABo20cdT1VVVaioqOj6PG3aNHzyySddn63cuG/YsAH/+Mc/8NJLL6G2ll4dKzc3F4cccgjOPvtsnHTSSbBHWLkLAJYvX46bbroJb731FhobG8l6jzvuOMyZMwe77bab6XYzDMMwDBNb3EabMt2qCMQqlHDFiuCL6caKUM4nIwQOMUwAur5FiYeSBdWe0PMKdQzYYIctUkAukxAsS7kIkVOssNqeeIvadOTazYvRdO20KtdI5ndWQYkbqXEGLQqzdp7LtfdTpvvhg1e2o48wN7Gt1YKELJrrOi2Cy9OM0dRjRoZhOpBSot67VZlX6BigTBdkKEf6BGcx8eXThvchiSC+gwpnJrg1mU2hQx3I5ZXtaDGa0M/eP+5toMYrdjjgEFlx3z/DMAzDMAzDMAzH53XA8XkMwzAMYxFbhDiM6nWkGA31W4DWJmv722eatfJWCBDUjPX8TBZbuzU13/WYnXTfyahSoLDvzjFTtcv8hl5P1z8lJbCi/uaZRkWHjGdS2xI8UniOssiqWokDd03NuVq/0EPcLiYMl0CD+j0qSZRiNJEp/WrM5LAkGyQk8f65rhkJW+jHCmb6DwBU6HwL1S79xgoxmty4mi4/ZqKZJpljzKQei9Fi2p7QegkxGjauCfo4qRJ4cam+utVbJJBglcUqzYzXySMUiZvWKBI7EPH6nXsrZcPDxGiT22gB5o62jvNQSX68G5YYthNhfWUF4WnSMOD0N6BjinkwDT2YLrHaxIzvSW1L1BmjJ0S/Y4ZJKQQEEWOX5PUxLLHWpLx68kjNdbZ2g7lKIonRNqwyVw/DAEDjdsCEGA0NW4HmHXT+mEmxa1Oi6V8YJkabTF1/AazZKlPyvoyioVWS45XKEgG7TWDqyA6Zeygn7hPyHSnpYjn9/o9hmPjBsyZ7MVLKewHMALDSRPFmABcCuBjA4JC8GkX50Cu6eoYMgRCiH8LFaCoBG8P0at57772gz2eddRb69Alf7cQKAwYMwLHHHqvdTzoipcRNN92EXXbZBffdd5826AoA2tra8M477+A3v/kNNmzQ3yj7/X5ccsklGDt2LJ599lky6Kqz3hdeeAFjxozBPffcE9V3YRiGYRim53gMtzI92xbflaMp6YYVwRfTjRWhnE8qVsFjGAJd34q3QNEqVHvc/lAxmvoYyGKZQMpASa3I8nGWclltj1WpWCyx8lvojmHLMjiLv1G8occZarlXm58ShcXub99mQXZmZTzkjeK6Tovg8sjv4LbQfobJRFqNZrRLjzKvMMtEAAjDhOA1vPhsxzxlXlmfodgtd2yCW5TZFDqKybwGL7E0YoyhJKU59ty0CZhiGIZhGIZhGCa94fg883B8HsMwDMMEEGmBumqXMlm2NEKeGy7/0TLjLIgC+nlujwkQo+Ubzcgm4u6qTE5uTzRUuyaPAH43Nfw582XTA9KqiUmsKtrbA7ZzqcsE/JaZjMjOBfoV4NeNr5Bl5tEOvqTi2ibx02Z9mVP2E6g0NgLedn3BUCKJ0aop4d4wa/tJU0TlHsr0S+rUY/42L1BL3zYkjWe+NCdrrNCc1uUDV+k3VojRKLEeAIhhu5tqkxnE0b8D8gujr+CAYyCGj4pZewIRx59PZ37/adDHMycLpfApkMtflli2KbFSUJdG9nnx4eFjD7nsC7qyQ0+ORZMyB8U1fErblxgp6IvCQwtTUxobDZQgpDBk/VX5ygOQxw2B85nrleXrezBdIpLsNs9owWEtCjHjfofG7bzCMAnHZoNNqg1oFy2shM+fHucd3fWskwH5wNlTNHFBK78xtzM3HQMspYS85Vxz9TAMALOL/8pXHqAzR4wBdts7Ru1JPOLsv4elHdP8Dlm+zStQ86/ZkH5/PJsVM3TPtjrv0f52hA2hYYvH7AnsURaS+Mu3ynoEi9EYJik4kt0AJr5IKT8QQowBcDyAmQCmAhgEIB/AFgBVAF4D8IyUsgYAhBChd4oqR36oRtfqEhWh5bdLKest1sEwac3GjRvhcrmC0qZPnx6TuqdPn465c+d2ff7iiy/g9XqRlZWeE+Z9Ph9OPfVUvPJK+Muz0tJSjBs3DiUlJfB4PKitrcX333+P5uZmU3W3tbXhV7/6FT744IOg9KysLIwfPx5DhgxBdnY2ampqsGTJErS2tna16eKLL0Z9fT1mz57d4+/IMAzDMIw1PMTE2uw4C49o6QaL0aIhVPykwystBhoxGY2ub6WaGC3X3leZ7pFuGNIPm7ADAHxSHTznYDFaymC1b8W7L1qXhCVTjGb+t8i1qY8ZAMi1+B2SKYNTQbWHkj2SorAY/g5t/lYUOIpM1dPqNy8h8xnWxWi0CC6P7O+UjIVhmA7qvXQUQJHDmhgtPcKymHjzbfNiNPvVqyUe5JzBIqwE09/hhA02GAgPqqz3bcMQxD9IhxqvxFsSzDAMwzAMwzAMA3B8nhU4Po9hGIZhQrDpxWiyZh1UT7zlLecB2yJYlwIQ580GzrjcUtMsU14R9PGFTWfgV0PDr/kbG4B2n0QfR2o9y3cRr7MqSwQeOlNg10HAq99IlPQDzjnAhpP3DRSjuczvyBuwmBAlICq1Om2q9yKu/h/6XXUyDmhdhEV5B4Tlv7BU4qlzJRz21OlPhiGx1xy1iKKTa48RuGamgLzsArrQaX8DnvtneLpKZrUT2bwDaG5QZ2ZQvxLnzYZ8ZHZQ2iXb/407Si5Tlq/aBpRGkFslkpodElubzJWtLFH3ffnpG+QE+y5UUr5ql7KoOFctL4oWUV4JPDAf8olbgeVfAZvWBhcoKgUcivteZwkwaTrErGti2p6gtlXsAZx/A+TD6u8sv18EsVfH+WhAvsDiK224/g2JJz+noxkOudPAuttsyMtOzLmKEjUcvgdwxOjgNkgpgRfvVW8wYgxE3/4xbl3vRpRVhMW1CABfNxwPZ8FXym2ufV3iNxMkdhmYOteyaGkgQuicud3fTS58HfLuSzrS+6uvWVQ9Zogk4V29ejTsitgGcftr0e+UYVINISCIKLsWnx2z35S46Vepf85Zu5XO22UgMKlSYPaxAuVOYjw073nzO3Nr5hu99hAtM87OBQp4YdiMxPDTz2Vk5ChXWfUz8MStZL7472fpHQN5yEnA9WcEJWXLdvywZh/sOVItLLzqi0o8WnAzxLnXJaKFPYIab2TZgXJnx79P3Efg9Qtt+M8CA7WNwPQxAtcfEzIW/+A5eicszWeYpMBitAxASukHMHfnf1qEEEMBDAlI2iSl3KQoujzk8y4WmzUi5HOKrgeSeHx+iY2siIs7QwqR9Jcsn332WVjafvvtF5O6991336DPbW1t+O677zBhwgQMGTIEVVXdqx/dfffdQSsrPvfcc5g8OXylqpKSjhvBadOmdaWdeuqp+PLLL7s+B9YbyJAhQ5TpZrn00kvDgq5mzpyJ2bNnY8KECWHlDcPAF198geeffx6PP/64tu4LL7wwKOiqoKAAs2fPxrnnnov8/Pygsm1tbXjggQdwzTXXwO3uWC1rzpw5mDRpEmbMmBHlt2MYhmEYJho8xMqVyZLMUMISRo+V342SQjGMCqpvZYucLtFYqpCrOW+5jTbk2fsBAHxSHTxnF/x4L1WwKneIt5TLav3JlITpZGeh6K71VsYBWaJPyh0/VB+ihCLUuc5yXyQEjbp9qMtaEKMR5zQdOhEcKa+1IGFlmExku08dpWSDDQUO9SrQQjnNB2A1GgMAn9SrVw/MFjmY2H9aYhvDwCbsKHAUod4XHvFT76tLSBvI63eKCasZhmEYhmGYzILj8xJHsmP0OD7PPByfxzAMwzAhCL0YTSWokTvqgM/eorepHA3bkxFkOPHAOQDIyeuaUD6iXT2ekBIAWK/HAAAgAElEQVRYv71jInsqUbVN/Q6qohjIcghcNUPgKmKYIDe7zO8ocEJ9tVqMJsoyR2AVkbKOxVcmt36pFKMBwIfLgaPGJrJRehatBprUYacAgOo7bRjUv+P+xfh6vrpQvwIIZ4n6zahfE99Ys57Oy6R+NWy3sKQB/q3oazSjxdYvLK9qm8SUkakjHXhuifl34hXF6nT5zpORN/YHx9RIKcnzEobuarpNZhEVe0Bcb6KdyWD/YwBKjPbaf7vEaAAwvFjg8VkCIwcYuP4N9d+urgV460eJU/aLfz+TUsJFvKI970DF/n/5jq5s9KTYNCqTICSU/WpXYtTuwIoa9WZPfSFxw3Gpcx6KloYW9THgDAgblO880Z3uV4vR6ls6+rJVIUyLR2JLBLHkQL8ihmnsZIg+2Zb2xTCpjNCI0QDgsc8kbjze+jGWaKjr2ROzBH47JcK9NAD5+sPmd6YRo2nHVcfMgu3if5nfD9NrkNtrIY8fRmSaEKO9/wydWTkaIju9Y96EEJDDdwfWrQxK36N9BXJsPriN8LkVr+cfC3x4EJAGYjRXnfpvPLwYsNu6z63H7ClwzJ70vDL55qP0TsrjvxgtwzDhpNbMLyYVOCzk8wKi3LKQz3sKIfKklGZnmu0fob6MZWM9MOLv+lVImJ6z9hYbKpIsfN64cWPQ50GDBqG4mHj6bZGxY8PfIG3cuBETJkyAw+FARUVFV7rT6QwqV1paGpQfSr9+3S8ccnJygvJ020XLBx98gHvvDV7l4rbbbsMVV1xBbmOz2TB16lRMnToVc+bMCWtnJy+99BIee+yxrs/Dhw/HggULyO+Rm5uLSy+9FFOmTMFhhx0Gt9sNKSUuuugirFy5ErYIq4MxDMMwDBM73IZ6yaFsm/q6Hyuoibtuf1tUL/oyHSsCFQkDfumHPcWkVkxqQstzzMuXEkWORgjVZrRGFKM5UkzslMlYlVFZLW+VbIuyiXi3R79v823VtdPKd0imCI7CqtyLFo1Y+27ZIgc22GAoVly0cq22Jjy1LkZrI8Z/ObY85NitSeUYhumg3qteHq3AUUTKZGkxGpPpbHCvRZV7pTJvYsE05BLnaia+OB3FajEacfzHGur5TTLHngzDMAzDMAzD8XmJI9kxehyfZw6Oz2MYhmEYBZGuOdWu8LR1KwC/n95mRHIMUUIIyL4FXRPKK7yEXAdA1bYUFKMRk+4rzYwzq9USOCVeDwBAetqAump1GUKqkpHsnAi8p4eeCvbjJomjxqbOu8UXl9KT4LPswMCdzl7Z0khXkl8I2IlYLZ8mDqLGpU63O4Dicnq73obiGBIAKttdWJYTfo6sSszrLNP8uMlcuYLcDlG4krUmpk8GihoBYHst0E5Y/coqzDWqt6CTENRuUCaPHSygW+jtx03AKbFxqGup2QG4idNEZYniXFn1E1mXGDE6Rq3KIKi+4/dhbHErVtSo31//tKl3LBLYoH5tD2dg2GbA+clpqMVoPgNobQf6WnSVrYuwbtv05nnqjBFjrO2IYdKAEd4qrO0zQplXvQPY3gIUh/tiUwavT2IHcU4ZUmhy7E/db6lo9yiTpZTAWt21MoUMzUxi0c3pM3NZ1/SrZD3XiTmlw8PEaAJALjxwK9RDbSIXxsY1EGkwZ3Jbszp9iFOdTrKdsOYCQEkG3cMzTArBb4iZUM4N+fyIqpCUshrADwFJDgDqZT7UTAv5/K6FbRmmV7B9+/agz4WF1JNv6+Tk5CA7O/gpU+j+0oU5c+YEff7DH/6gDboKxel0KgOvpJRBdTscDrzxxhumgsc6A7o6Wb16NV577TXTbWIYhmEYpud4DPVLfqsSGKvkEFIlP3xRCT4yHWqCNIVXtkcuxDCg5TxW5EuJQicwaguQIfmkelVRh8iKeZuY6KDkmWT5OMtB7MKOPsJ8BEoyRWG5GkFgKDqJhpXvkIoyDkru5ZFuGDI8gL6NEKZZ/W5CCPJv0Oa3IEazUDaacZObkLTl2vLIv70VWRvDZCIqWRIAFGUNsFyXNBU1wvRmPml4h8w72DkzgS1hAinMUs8Ma/BFiDyOEZRkNRXHYgzDMAzDMAzD9D44Ps8cHJ/HMAzDMApEJDFauFxMfviCvsqZZ/WkRT3j8FO6/pkn2zDIV6ss9oJGHJUMmt0SW5vUeUqJTCifvW1+ZzvFaKhdT5fJNAGRBpHbFxACxze9SZa56e3U6k/LNHKbLDu6J3hXu8hyYsZvaTGaXx3bBQCoIYSEAwdDODJoUUziGKKEjXPeSp0+JKXE44vNteesKQIOe/g5Svp8wGYTwsZQyR7VfwCgLLOEjSJXE2NGnL9njgUG9ac3uzlB5ypK9AkAFQqHu3StoDc47BQ6j1GjuYbPqlhL5qWaoDFaGogQusKdr+2lzwds6V5gwOnfYbkuHZF+x1kNTyjTxYwkjp8ZJk6c0vSKNj8Vzzten8S1rxvY90Y/Jt5CLzpTaCIUXLY2AxvXWNi5WoyGuhpaHAsAh5xkfh9ML0P3rEA/7pOGAXxO607E0WdH2aYUgxgX/cq+WJnebstGjaNUf8ylCNQ4pUhxfpLtHhgPXgNj1gQYJ1TCOHUPGDefC7l5LVBDPBsaNAyCF/BhmKTARx7ThRDiAATLzVZKKRdoNnk15PMsk/sZBWBSQFILgA/MbMswvYnQQKjQlSF7Smh9dXWJmeQSS3744Qd89tlnXZ/z8/Nx++23x6Tu+fPnY9my7tUMzjjjDOy5556mt7/wwguDArreeOONmLSLYRiGYZjIeA0v/FAHkWQL9UrUsUInvWHxhnWsCFSA6CQqTGbiJo5HK/KlRKETAgR+D6r/sxgtdbAqd0iEDCJdRGE5dvNSOZ1Qzsp3oCRkyUQ3zlDJROlznfXvRv0elMykp2W9UVzT2wihao4tj/zbe2U7jx8YRkO9Vx1JVehQi5R0pE5IOpMMWv3N+KpxoTJv19wxKM8eluAWMZ0UOhRR9AAaCDFirHH71dfvZEp5GYZhGIZhGIbJHDg+LzIcn8cwDMMwBJEmOW7dCOntXuBRrvgaePUhsri48iGIiUfEqnWWEeffEPS5ot2lLPfoIolv16fOWx+dFKAywussuWEVIC18F+/O98oK6V0Xg/h9RyDijjfQV7biwJZPlflNbuDhT2lxQiKRUmLhKjpfBM6d14mrfnsl4CBitUJlVoH7p/pVaQW9r95IQTGgEFtVel3K4l4/cP/81OhD17wW+XyS1wc4/0CBO04mZAzvP21uZ76QBYSrXepyOXmA0/qiZ+mOuPF5dca2zUHX5k6yswTmX6q/rt/9Yfz72QVPqffRNxso6afIeOYOdUVFpRBFg2LXsAxB9O0P9C9S5h351Mk4cFf1djqhXTpRT0xxcHa+tt+6EfB3L9xa6G8g63rrB+tjxapt9Db/rLkMv26aG5YubngGYuxky/timFTnnMancdOW68j8VBSjnfWoxM1vS3y7Afh+I13OGSEUXEoJee5EazsPHRd11vX4TeQm4s43IfJj+y6ASSOERowW4RmB/OdFdOZ+h0JMODzKRqUWghCj3VpPH1c3l1wJtFmb/5cMKDFaQZ5CXH396R1j7tU/ANs2A5vWAu89DXn6OFICJ2Y/FcvmMgxjARajMQAAIUQegAdDkq+OsNkzAPwBn08UQhCPAYIIXUruRSll6mtCGSbNELoBfJrw0UcfBX0+/fTT0b+/ZqkOC8ybNy/o829+8xtL2+fl5WHixO4b8U8/Vb/QYxiGYRgm9nikelItAORohCKxwKzAiDGHVZmcT2pWVWSYANr86r4V73NENGTZski5WeAx4jMoMVoGrRqa4ljtX4mQQViRf+mEY/HGktBMU9bS903B80GORt6oumZS19FopG95xL6tXKutCE+jkZW5Ned23fFECVkYhgHqCTFSYRY9k0RoV9RjMpXPd3wEr1QHoh1cODPBrWECcRKiw3pvYiK4qWclyZTyMgzDMAzDMAzDxAqOz9PD8XkMwzBMWiMiTLWSEtiyofvj3NCpOAEccCzE0b+LTbuiRGTnAsVlXZ8pCREAPLAg9cVoNgEMLdRvK1+819rOvJ6O/9cQAqviMojs+C7amnZU7AEAOK75LbLIXR+kRn9a+Is+vyjwtUW1S12ovBLC4QDsRKyWXxPbWLtenV46XN+wXoYQAlBMwqdkjUBHH5JWJIdxoK1d4r75dBuePlfAdasN9Xfb8NBvbejjUN8ryqcJ0VUovpC+RIn1yip6xX2pZYbvrk43DGDzWmXWqDKB+0+nf6t/zpMwjPj1M69P4qfN6rzK4vDnC3LNMnVhADjC2r01EwB1zq1djzkz1efwhlagoTU1rmU9gZKEdInRql3B6QYtRvvH+1GI0YjwhANaF+Gi+gfCMw79NcShJ1veD8OkBULgyro7satHbe3ViQSTwbo6iRe/Ntemgkhh2Su+BjausdYAhfQUAPD6I+r03H5AEqXkTAoQpRhNtjQCrz9MVzvr2p60KrUoq1QmF9d8j3y7R5n3UOH5gDsdxGjqv3FhSKiiXP8LsIh4lqG7tx+yS5QtYximp/DMyV6KEMIhpbkZ40KIfgDeBDAmIPkVKeUruu2klKuEEE8AOGdnUh8AjwshDqNEZ0KI4wH8LiCpHcANqrIM09spKgpeaWDHjh0xrb+hIfghVOj+0oHFixcHfZ42bVrM6l60aFHQ56KiIrhcLkt1BAaBuVwuGIYBW6QVwhiGYRiG6TEeg5ZbZNviG3ykk25YlXwx1mVyPoN4scEwIVB9K5niJx05tjw0+8PvCQO/hx/qxzyUVI1JPCkpRouRcCzeWPktdL+zFdlZKso4dO1XndeosUc0fYv6PVotyM5aDWtiNCmlpQBN+tzeN6K8th9iM5GPYXob271blemFhEhJT2oFZTGJw5AGFja8p8wrcBRhr36TEtwiJhBKdFjv22b5WhwNtMg19SS1DMMwDMMwDMP0Pjg+LzIcn8cwDMMwBGauN9UuYPDIjn///CVdLlUmTZZVAHXVAIBd21eTxb5cmzrvfKrq1G0ZWgRkEeKh7o2XW9vZzgn3stqlzlfInDKeknLAkaXtT7/UdkxMduYlV970RZW+X19+ZHf75OYqdaHOPuAgYrX8fnoHhNhKlGWWGA1Ah5ho7U9BSbo+5KoDtjYBA5MY9rGiBmhSzpLsYO9hAsOKTfTx1mZzOwwRgMhqok9mmFivC933/uxtYPgoZdZugwSouIaN9UD1DmBwBOlmtFBSKAAYotrnz0vI8iJVxhXpSOkw4JdvlVmVnrUAdlPmueqA8akXamgaw5DYQUy9KOy8Ple7gtJzpFqKAgB+w3obtjSq0yvaCfHjkJHWd8Iw6cLOOJ1KrwursncNy9ZdM5LB2z9KnUsqiP6RQoF+0tw3U3jDF2GWujFV0cDMFMcy3UQpRgu9Rwlj8Ijo2pOKDBqqTBbedgzKakGTP1uZ39bYhrzSeDas5zQQYx5n6Fju56+sV57bFygotr4dwzAxgcVovZcLhBAnAXgSwNtSyrDZLTuFaCcBuBnA4IAsF4A/mdzP9QBOAND5GGYqgA+FEOdJKVcE7CsbwO8B3BWy/V1SSuIOlmF6N6GBUPX19TGr2+12w+0OfvJeXJx+A67q6uqgz2PGjCFKWmfDhg1BnydPntyj+gzDQENDQ1oGuDEMwzBMuuEx6AgDq1Iaq+jEa24/i9GsYlUm55XhLzYYRoWbECimoggJ6JAYqcRogceIj+j/DhuL0VIFq/0rJwGiPivXxUSI2iis/Ha6dubY+saknmSha7/bH3xeM6RBymJzLfwOXdsQ/dGsxNQnvfBK8wJTCQkDftgtvKIgxSq2XK34kuW1DKPGkH40+LYr87RiNCJwJNmrdDPJY0Xr99jqrVbmHVAwHXbBr6OTSaFD/W7IK9vRYjShnz2+s0jS7d6MYRiGYRiGYZjeBcfnRYbj8xiGYRiGwGaPXGazCwAgDQNYt5IsJg49OUaN6iFlFcCyzwEAJzfOxY0DrlYWW7YZuO51A6dNFNijLLkTyqu2qdMrzQy7ql3WdubdKQAhBFbIRIFVBITdDlk6DIdv+lhb7sdNwIHhzoeEsnqLPv/EfQL6+roV6kLllR3/txPvvnya2MYaol8NGqZvWG9EIbU6tHWBdpOfq5MrRnNpBCWjy4BRJuQA0uMGtteY2p/0exF09qX6T4YKG0VuX8hR+wIrvg7Lk//5e4fc9MgzIQoHBOUdtCuQZQe8hMPw0c8krj0mPte9b9fT8RSnTAjfp6xdT1d20PGxaFJGIg47BXLh68q88qZVyLLvpuwfVduA8Wp/SFrQ5AYMogt2SkJUUtAS31ZscwwIS9/UAPj8Eg67+eOloVXdgCK/Om5JHHKS6boZJu0QHRLuSq9Lmf3yUon/nJHA9kTgh43myvXPAew2/XmBFBDrtvG1I6xWamwEAPseYnkfTC9DK8bTxLg2N9B5ex0IUZziRjArFNDvWA7qW4XVbnW+a4sXo9Ue2bhT3yLxxOcS36wLH887+wJH7CFwwt5APbHGuzN0Sk21y3ojSoezeJFhkghHovdeBIBDdv4nhRBVAFYCqAeQB6AUwD4A+oRsVwVgupQywmPfDqSUG4UQJwJ4P6Cu/QH8LIT4GsBaAAU79xV6J/wWgGstfq9ez5BCYO0tvKJdvFGuqJBgBg8eHPS5pqYGdXV1MQmQ+umncDtx6P7Sgbq64DcIhYWx+8OF1h0LmpqaOPCKYRiGYRIANakWALLjLEazCTtybLnKNrB0wzq6v6UKSgzFMKG0Geon2qkoQgJoeVWgcNFrEGI0wWK0VMGq3CER/dFsm2ywI0uEPiZMHFZ+C913yrUwDkhFGUeWLQsO4YBP+sLyQs9rHsMNSbygjUYUm0fI1KjzaVi5KASxXuk1LcvRiddybX2135nHaAyjptG/AwbUEb9FWeGBjZ2I8FAjJsP5pP4dZboNdhzgnJ7g1jChOAkxGgA0eOsSIEZTX4dT9d6MYRiGYRiGyQw4Pi9xJDtGj+PzIsPxeQzDMAxDYIs8XpQ16yAAyKtPoQtNOxEYtW/s2tUTyiu6/jmmfTlO2/E8nis4VVn0prcl7v5Q4q2/2HDQbsl7N+Tapn4nXlESYcK9tx3YSszgrxwNVP0cnt4pRqMm2StkTgyAsgrkbFyDd9Yfi5nD3lQWOfgOAw332NA/Nzl9yTAk/reIngD/xCyBcmdH22S7B/h6vrKcKNspRnMQsVr+8FgPAJAtjUCjWvySicI9UVYRFu2SIz14b93ROGr428ptDr3LQOO9NvTLSU4fos5FAPDMeTZzk+N1oqtQvCHxMdUuZTGRgf2nEzHtREiFGA0A5P1XAq8+BNz3EcSA7vv0LIfAvEtsmHanodzu+jcknHkG/nJobJ8ZbW2SOO1hug/9drKi/zxxK1leFA2KRbMyk4NPILPsW9ZhWBGwZmt43rWvGThhbxPS3BSlQROqX9j52v7J28LyXth0Bg4b/kFYut8ANtQDlZo1F0OpJ8L3Cg21hEbssqf5yhkm3dg5bqhodymz61qAl7+WOHnf1IjR++9Cc4ulFkQIW5ZSAi/9my6w+z7Aym/C09s94WnVtGBN/Cn8fMZkGppjR7f4b0sjXeMV/+lBe1KQfPo90D9KXsWjdernWP/5xol/HxCvRtFsa5KYdqeBn9Vr9wIAHvpE4i+HCnLc4wwJVZSPzrHekAwVUzNMqsBitMxAABix8z8dbwA4T0qpuIWnkVIuEEKcAOBxdMvPBID9dv6n4jkA50spCc9+5uKwC1RYeDDApC9Tp04NS1u6dCmOPPLIHte9dOnSoM+5ubkYP358j+tNNrG06ba3qyfT9gSpuzFiGIZhGCZmeAy3Ml3AlhCpS44tTyn0oib7MjRtfnOylU5YjMaYhZLupaIICQBy7ZSQqPu8ohIlAYDDpFSIiT85dvMyqizRx7QQqieYFYXl2vOSuoJNjt38sZmrKWvlGE/V80GOLQ/N/vCXq6HnNd24gzqn6Per3qbV5LU6GvlYx3XdXB91++kIrRxbLuzCgT4iG+0yPAiCx2gMo6beS78KKnTwSwrGHHXeWixrWarMG58/GQUOnqicbAochbDBBgPhAf71vjoMQWVc90+NEVJ1LMYwDMMwDMNkBhyflzlwfJ51OD6PYRiGYXYiTEhRql2Q61cCi9QyKAAQl92X1HfxgYTKiO6ovYoUowFAsweY/YaBjy9Lngikaps6fQS9xk8HtevpCc9TZhBitJ1xadUu5WaCJ8CqKe94zzC95SOU+mpQ4yhVFnv6S4k/TUvOsbDgFzrvyhkCv50ScLwvfJ0u3NkH7ES8j4+IbazRCLEyUbhHHEuHt85HeU4rNrvV75Ce+0ri/AOT04eqCOfzAbsAew012SYrYrSAviQNg+5DZfF9z5fSHHIS8ODVdP7mKsi5D0JccGNQ8kG7CYwcoJZfAcC1r0mcu79EXnbs+tojGjHjlBGA3Ra8L1ntois79ZLYNCpDEXY75D7TgG8WhOXJahcqS9R94+dqoN0n0ceRGmM6qzRoQuecuYCsWq7M28f9Hbmda5s1MRrVBqdfIUabfrr5ihkmHdkp4a70usgiV75i4MS9bbDZknve2VRv/llsqHQoDJX0rJOz/w788q06z6d4xryZEKMNGgbRN74LRDJpgO4ZjO79QpNa1onS4RBDd+1Zm1KNPPo4cbZUo9y7GZuzysPy7l9WjnulTPhzrkcWSa0UrZN/f0z/fQvzutss12seEujIxPt3hkkheNm73ssiAC8BqI9QzgfgXQBHSCmPtypF60RK+Q6AsQAejLDPLwCcLKU8XUppbQY8w/Qyhg0bhmHDhgWlffBBuEk/GubNmxf0edKkSejTJ/6SkFhTUhL8lGz7dmKlnB7WnZOTA8MwIKXs0X8VFRUxax/DMAzDMDSU8CjblpOQB2w5hGQmGiFIpmNVVOJlMRpjEkq6l5uik++pdgUeI34Wo6U81PVBRaL6olnhRLLFFFZ+D93vnGXrY/qY0AnWkgn1W4SOM3TjDit9sZM8QqZm9lrdZlh/1EsJH622I3en1I3qx21+HqMxjIp6n3omSZbog772fHI76o5Lhq3rzWQCnza8T/7tD3bOTHBrGBU2YUd/h3qVR+o8EEvcxHU4mvEKwzAMwzAMwzCMVTg+LzIcn8cwDMMwBGYmoFe7gK8+ovPz8oH+KbSASIiMaJC/FnkR3vN+sgpwe5PzDkhKSYrRIoo4qInyAMSw3dQZXg+k3w/Ub1Hnlw5Tp2c4IkDMtKf7R7LcBz8l713i+5p97zc8REi0VHNM75TAwUHEpfiJGIiadep0ux0YMITeX29FIxkcY6wh85LZh9ZtU+9791IL8co6QV4ogQKQbZtp6V4GT8wX5ZXAqH31hb76UJk8bjC9SaMbWOKKvl0qdH23skTRh5Z+TJYXZZn7N48Z1Dmo2oXhxfQx/d2GuLQmIdRrQucKcgF8NU+Zl280o5iIKXDVWTsnU21wGjvCE7mfM72ejnONToy2dhstiU4kn/xi/lgviBQGtER9XQYAMXgE0CdbnekNF6OREtHBIyI0gskIohWjNSuuSQDg7H0rLQmHo+OZlYrGOgzz0vcuW5vi1CgNHy7v+b1gkLxRd9+vgcfiDJNcWIzWS5FSfielPAVAMYBRAE4EcBGAawBcDeBCAEcAKJJSzpRS0qNK8/vcIqX8I4BSAIcCmAXgqp37PQnACCnlFCnlKz3dF8P0Fo466qigz0899RS83p7JHrZu3Yo33nhDu590oaysLOjzzz8rVmeKkkGDBnX92+12Y/16Cy8aGIZhGIZJKh7DrUxP1KTaTvlGKJSwjaGxKpPzsRiNMQl1POakqAiJlPkEHCNU/3eIrLi0ibGOQ2QhS5ib9JQoEZlZ+VeypYFWfg/qOmy1rmTL4CiodoWKwcyIwqxA9YFWQjQZCiWk1OEzFCu5UfXrRHD2jjEg1d+tilgZJlPY7lWvk1PoKIkgnE7PFXCZ2OM12vHZDnWAbFmfYdgld3SCW8RQFDrUAVoNXmJ5+xhhSD88Uv0MJ9njT4ZhGIZhGIZhMgeOz9PD8XkMwzAMQyBMTLX66Ut6QjYATJmRkEU+TRMiAhEAjmrWS2OlBNbF91EySV0z0OxR5ylFMoFUu9TpRaVAP6c6z9sOuDXvvantMp3J3ePgGc3vkcWSKXao2kpPoj50VEhCtYuuaLfxHf+3U2I04j6DEqOVDO6YkJ5pjBxHZs1on0/mrVW/3k4Ia6OVNAagle6FEihCo/oPAJRXmK+zFyKOOlNfYOU3yuQZ4/TXkM9Wx1bCt5rwbQLATMXhIHV/80nTe96gDEdQYrSfl2Kmpm98vjZ9FwtsIELn+mUDWQ6hHc9WEGIUq9d1qg1Of0NYmpgyw1rlDJNu7LxH3Mv9AwoUx0Ana5I49umkzkJY8GCn/vqqvXeeeATgIOLvfYo4Y6oujYCXySC0z2Ho67lsJo7HfgU9a0+qkq9eaBU76jCx7Stys2Tc27tisM8hAV9Xez7SUVrR84YwDBM1LEbr5cgOVkopX5VS/ltKebOU8hYp5QNSyg+llDF3c0op26WU86WUj0spb9u537lSSnrZFYbJUP76178GvfDcunUrHnvssR7Vec899wQFb/Xt2xfnn39+j+pMFvvvv3/Q5wULFsSs7qlTpwZ9jtVqoAzDMAzDxB8PITzKtuUkZP+UgC0aIUimY1VUwmI0xixtxIq2qTr5nmqXm8VoaUe2SUlnoiR96SIJy7UgN40kQjUrSk2UUNUqVLtCr5mUKMwGm2lBX/B+eyYVo867OrwWrus6MVrnOdSMZJJhmG7qiVVdC7OiXeEufYNAmej4uukztPjVrxkPdqbYZK8MpzCrWJlOnQdiBSW2B1JXWs0wDMMwDMMwTO+D4/P0cHwewzAMwxDYTE61euEeMkuc/fcYNSZGDBgC2O1BSdduuwWDfHK0aE4AACAASURBVLXazWbea8BvJP490Mcr6X1Wqh97d0FOci2vABxEnI3XA7Rp3nvnWF+gLBMQI8d2/fusHc+Q5aq2AVIm530iJbXKzwGceSHvszYT097GTobo7DtUH/L7lMmk5Kh0uDq9lyPs9g75hYKza/5LbvftBsDjTXwfamuX+GmzOq8iwrmoE/nErcDHL5vfaaDMe7NLXaZfAQQlM8gUjj8fGDdVW0S+9O+wtNMmCBy4K73Nta9LPLfE6GnrAAD1LRKbaOcNTtxH8U69mhajicEjY9CqDIeS5myvwdEeWmB4yQsSLy6NTb9INPWt6nOns/OVfbWL3LbCq86zIs71eCXaiDBBlRgNoyear5xh0pGd95oO+PFg9Z/JYkfdY6DVk9x4vHoLobfDIo2Lqmm9hCguBbKIuGfVIifE+IiUXzIZhiZmUXdP2rJDnd5bJemU8G1HHa6uu53cbNqdBry+xJ2bDENiQ33P6rDbgMGBf8bn746uIj7HMExSYTEawzBMEhk9ejRmzAg22V9xxRWordW/YKT4+eefcccddwSlzZo1C0VFRVG3MZkcfvjhQZ+fffZZNDXFxud45JFHBn1+5JFHYlIvwzAMwzDxh5pYa1ZG01Nyicm7bkLYxqgxpN/yb8ZiNMYMUkqybyVb/kRBynz8kcVodpGBK4emMGYFX1ZEYD3BbJ9PtjQwx2Y+gDjSd8o1WVeyvzNFrl3d/sDzAQC4/eqIg1xb36hENHnEfltNCs9aCUGs7u9l5bpOCdqyRJ+u86AZySTDMN3Ue9UzAIocA7TbCSJwRLIYLeNY2PCOMj3HlouJBdMS2xhGi9OhFh42xFmMppOTpqqklmEYhmEYhmGY3gfH5+nh+DyGYRiGIRA9nGp13LkQlXvEpi0xQjgcwMChQWnjPD9hSdX+uLvmb+R2VduAd5fFu3XhnPpf9bunnCyglJi/20W1S51eVgH0yVbneT2AR/NuOTc1YwxSgjMuBwAUGI14f91MZZFmD1DXnMhGdUOJ0e49Nfi9p/R5gS0blGXFmZd3f7ATsVp+v1r+RkmOyjJTjAYA4jT1Oaegfi3e+r2H3O4/nyT+nfQ/59H7rCiJHJ8jV30P+chsazv1BcTTsFiPRDiyIO79AOLc68ky8t7LIOu3BqX1yxF4/2L9df7cJyR2EDIpK1w5l67jm2ttyMlS9CHqb376pT1uDwOt0MJx5XE4dHf6b3b2oxJN7vSLjWkghjeFJsRow73q/uiqM/87NGimCjiNEAnNzLN5ET4mA+ju479umotcTWzNI4uSe86hzh8qhkcSoxHXN/Hnf3T8w0GJ0YLHhlJK/f0ew+iuIzoxWhMhRusb6QFEmkJJlnfUodi/HUO96ntjjw945ZvEnZuqdwBef8/qGFoIOOwd/YIUl5shg+/hGSYVYDEawzBMkrnrrruQl9f9oqyhoQEnnngimputvfnZunUrTj75ZLS3t3ellZWV4brrrotZWxPNmDFjcPDBB3d9bmxsxFVXXRWTumfMmIGRI7tXy1iyZAkeffTRmNTNMAzDMEx88Uj1G7JskZOQ/VOCD5ZuWIMS3OnwGixGYyLjkW5SzJG6IqTI5xWfVK8qmiWIVUiZpGBWRGZFBNYTzAonki0NzLJlwWFS8heprenynSmo9oeOMyjRSI49OskIJZTzGG0wZOTVLqlxUL6dfiFMnddUhIrhOglsN/Xb6aQsDJPJbCeESIVZaoESwwSyzr0aLvcqZd6k/oew9CrFKCTEaPVeC8s4R4HuOYlZmS3DMAzDMAzDMEws4Pg8Go7PYxiGYRgCW8+mWomxU2LUkBijmCg+2LcZf65/EPtX0O9v5yZw0isAtPs0IqJiRBZmVLvU6WUVQBYhRvP7gVbN+DCHn2tTiPKKrn+Pbl9BlquK72sJJfUtkhQ6jBgQ0o+2bAAMIj6irLL733ZNrJZfcRxt2aguO2gYXU9vJ6DPhDLGrp6ADwDv/Jh4Oci7y/Tno0jIT16zvlNf9z2nrCV+DxZ/AOiQo+G3V9DCQgBY/HZYUk6WwKXT6WuJ26v/25tl8Rq6jl2oNesocQzL8GKDTmjh96PSRov0PT7g/Z/i0KY4U0esi+rMiyAYAlBJiNGqLKzBphMrFfobgj6L8kqiJMP0IkLuZY5reossmuj7sFAsidGK6Ouq9PuBSGOaPpQYrT34c3MD0Ebct/H4iAGiF6NR9235vVSM1o/4Xq0dC+eM9dCDnkSem5Zt7nkdQfdti96MrpK8fFomxzBMQmAxGsMwTJIZNWoU/v3vfwelLV68GDNmzMDGjcRgOoRVq1bhsMMOw/Lly7vSbDYbnnrqKQwYQD0tTQ9CA8fuv/9+3HXXXaa337FjB9zucOmGw+HAnDlzgtL++Mc/Yu7cuZbb+OGHH2Lt2rWWt2MYhmEYJjrchlqMlqiJ15RIhaUb1ojm9/JJFqMxkXET8hwgdUVIlLCtzeiOSKD6v4PFaCmF2WtRbpKvWaFQcr5EYkYW5xBZyLLp+7x5OV3yv7MKShISet2kRCPRCiBz7er9Skh4iLFXIK2GOoKqv8NJbuOV7WReKNT3DTzmqN9Od11gmEymwUuI0QiBUiTSb01cpicsrH+XzDvIOSOBLWHMUJilnpVR79vWEegcJ9o0YwiW5zEMwzAMwzAMk0g4Pk8Px+cxDMMwjALRw6lWYyfHph2xpnI0mbV/MW24+GlzYt8EbdhO5w01Mw91s0uZLMoqgCxiwj0ANNXTebksRiMJEBCU+mqQQ7wfWLs18W8U12rELSNCX4sS/QYAECgk0gmYfIr4riZ1hxbFpXQ9vZ2BQ0kB5ZAW9eJMALCpgcyKG7p9lvY3U8Ea6zsN7EdE/0HRIOv19lKE3a697sqN6r/B/iP1ks3VW3vULADAZk3/6ZcTvn/Z7gG2EfYHjVCQsUBxGaCRb03N0T97eGJx5AVGU411hJi0tL8AGrYCbYQ5DcDwdrUYbVODXmQbSL0mdM8ZIkZL2TE0w8SSkDHQ/m2fk0VjcS3qCQ2t5sfvEyo0mds2qcfJQPe9hIO4T/OFxBk3am4WM3l8zXQThRhNetzAyq/V1fVW4V6x/n5iamtqnJvmr+z5c4SKku4+ITdF+Z6pdHhkST/DMHGFxWgMwzApwDnnnIMLL7wwKG3RokUYPXo0brvtNmzYoDZir169Gtdccw3GjRuHH3/8MSjv9ttvx2GHHRa3NieKQw89FJdeemlQ2mWXXYbjjjsOX3+tvtkwDAOff/45/vrXv2Lo0KGoqalRljv99NNxzjnndH1ub2/HSSedhDPOOIOsGwD8fj++/fZb3HDDDRg9ejSOOOIIrF+/PopvxzAMwzBMNHiM8KBqAMi25SRk/5RwhBJ2MGp0v1dfW74yncVojBl00r1UkD+poARNgSJIFqOlB+alXIkJmDUrYEsFSZiZtpppp9njPHXPB+rfIfS6SZ3rov1b6oRqlPQsqD2EfCzP1g824jWEles69X0DhW45dvVvx/JahgnHa3jRGBpcuJPCLL0YjX65z2q0TKHZ34ilTZ8q83bPG4ey7KEJbhETCUp46JXtaDWIVVRjAHXfb4MdWUIz8YxhGIZhGIZhGCYOcHweDcfnMQzDMIwCQthjFjF01xg1JLaI0y4h884f9B2Z95ULuO51I66LbQTiIgQeAHDD8fq/jWxtBnYQNqyyCiArm964kRCjCQH0SUxsYloSMFFcAKj0upTFTntYJlyy9/ka9f6yHUBZQUhitUtdSeFAiLx+3Z8dmlgtvy88rWmHumw+vdBcb0c4sjrkaKq87xbikN3V2y2vRsLOQ0CH9IcSCh23F2CzmZgY/+EL1nfsDRCANBFmrXwzlsjMQZz2Nzrz6X9AusPfWx49DthrCL3Zda9LeLzR97cdrZIUQv1xGtF3ateTwo4gQSMTNUIIiDP/j8w/qfoJ7fYLaXdjyuLapu5TFc0rII/TxHeUVaDCqxajSakX2QbSQBwHdulDXxkSl7j3weYqZZi0JvgacNoOeqywuQH4Ym3yYvLe/8l82YH96XGRfPoOesPOewlKYO0NEaM1E2NrgMdHzE50Y3TieProxfC+1sm4qT1uUSoiymhRLAD8bsdTZN53G4BVtYk5Ny1Yod6P08J0ieGBa8q+82R0DWFJMcMkHc0yBQzDMEwiue+++1BYWIibb76562F9U1MTrrrqKvz973/H6NGjMXToUBQWFqKurg7r1q3DypUrw+rJysrCPffcgz/+8Y+J/gpx4/bbb8f69evx0ksvdaW9+eabePPNN1FeXo5x48ahuLgYHo8HNTU1+OGHH9DU1GSq7gcffBD19fV49dVXu9KeffZZPPvssxgwYAD22msvFBcXw2azobGxEZs3b8by5cuVq1wyDMMwDJMY3MSKgpRIJNZQwhFKCMKo0f1e/RwFaGkPH8+xGI0xg066lwryJxWUkKjN3wopJYQQ8ElF4BwAu+DHe6mE2T6WSwicYo3p9qTAsWFKemaiTDp9ZxXkOCNk/EOd66IXo9GyvjZ/KxDBwdhGyNNy7X2RJfrAI8Ofo1i5rpsZ/1HfgeW1DBNOg49eGp0SKHUitIEjTCbw+Y6P4ZXqQKCDnDMT3BrGDE5HMZlX7932/+ydeZwcRd3/P9UzszuzV3ZzX2R3E44gZzgEAyRyyX0piKIi8Mij4K2PeAuiiA94iwieqMAjigry45I73EICAQkhQHZyTpJNsvc5M12/Pza7mZ2pb3XP7szs7M7n/XrllZ2qPqpnqquru7/1LlQGzHLy0dIr3PdHnArOoEgIIYQQQggZExifJ8P4PEIIISQNJzDiVdUn/zeHBcktasY86LIw0J95nZ3f8Rp++oFT8Nk/mwedfvdejYYpwCVH5//5bnSHPMD2yPke+49F5bxZDUCfpY/RIYjRwnyubWXGvAF53K4+dmN/FK+X72tc9D0/dhG91kEoWJjv8zNCfW6cmim10rGoeSMp4jcAQMASq5UmRtNaA51CvSphMRqAAcnTFoNw546f4po/fB+Lv2/+7X7+qMZnji9M/fnWP+W26Ltnews09dv/kTOnzQGOPw/4808y85Ip8TRCu6RKvf6koY46DXrfw4HXXzDm6198GeqLPx+WFgoqPPElB7WfdcXtfv0ujR+cN7L6ZpN8fvkkYZumc2IQitFyhjrjEujrLzdK6Koe+xOw783iuh29QEevRnV4/PQLmoS62PD4L+SVysLAfkeg4ZF/ytvdDiyY7r3/1m5zW1qXbBkegXTQMVCjlBMTMi5Iq+d1bisejZ6I4xoeMi6++Psuum5wECkrbLvT2q3R4zPE99cXWqRob70C3PUrc2Z1HVTVLltxUBCjJdIKId2zKQVU1niUlJQEtnt3w7Vfaw197aXm5asmAfP3z1HBioz0+9z07MQW/HHTxbhwzu+N+Ude66L5R44/WfQIaevWeFHoHp99sMItz/iTszXsCp3UO7YA3f7ea2XAvjghYw5HThJCSBHxne98B0uXLsXll1+ON9/cPY2A1hqvvfYaXnvNrtk+5JBDcPPNN+Owww7Ld1ELSiAQwB133IH99tsP11xzDeLx3Te0mzdvxubNm0e87VAohL/97W+4/vrrceWVVw4LqGpubsbDDz/saxuVlfIAYkIIIYTklj7XHJxU7hRmVkZJwEbpRnZIApUAgqKsJk4xGvFBj3AuOnBQpiyzvo4hksgoiQQSOo6QKhMFQkHlYSsiBcWvpDNskVDlEr+SrELJRe1l8CM98y6n32MuL4JjNiFdA9PFIpJgdKTCt0hAXk+6ZvtZJuJUIKhCghjNLHzMZvupvzf7aIT4p8UmRgvZxWgShZyZm4wdrnbxZOv9xrza4BQcWPXOApeI+KEmWAcFBxqZQf0tiR2YC/sMkCNFFJsWSBJMCCGEEEIIISYYn2eG8XmEEEJIGqORMsxdkLty5INDjwWezXzWr2NNOPEEBUB+5/On5zQuOTqPZduFJJN5Z4OPlWNN5vRAAJi+B7AlKq/bvtOcHmY/xIYKlUFPmwts2wAAaIxHxWVjbcAjq4GTCzC2fL1FsDff9Eo0FjUvnI0YLV3c0NMFJJPmZatKXGw1qwF4eZkxq771NQDvMObd+pzGZ47PX7FSufNFuQ41yPMSDaEfuFXMU1/9FfSrz5ozU+7H0NlqXqa6zrsAJYY6/SJoQYyGh/4M/dkfQwWHn781EYUfvV/hC38x/9Z/ek7j+nP1iOSYTUJYRtAB5kg/X0wwP0yeAVXOd6w55bxPA3/5mTFr6ew2PLF5krjq3S9rfPjI8SFG641rbBaakfq4RcQ3qx6Y3YgK3YPpia3YFpyRsciAyNb7e2gRQvdq3bbhCVNneW6LkAmB4Zryzt4Xravc9yrwvkPzVSBpn/5jAWfWWMRoD94mr5jSz1ahMvOdaDxt8s6ONtNSQOUkyhXJAFmK0bBK6D8CwP7vggqMXJxf1HiI0QDgmO6nxLyWbuDpt4Fj9sphmdJ48i3AFZqicxZlI0bbVSceu3PEZVEUoxEy5vAqTwghRcYJJ5yAVatW4bbbbsPxxx+PYNDusCwvL8cZZ5yBu+++Gy+++OKEC7oaRCmFK6+8Em+88QYuvfRSTJ482bp8VVUVzj77bNx1112YN2+e57avuOIKNDU14Stf+Qrq6707qdXV1Tj11FPxi1/8ArFYDIcffnhWx0MIIYSQkdMnDKwtlOAkEjAHOkkDfokZ6fuKBCoQEkRPkhiKkFQkAU7YKd7ZW+1CooHjkQRCQcV5D4oJv5KHSMGuWf4kWdK1rZD4Kasf6ZkfMVi5CiOgivNFZVj4HtLbNrGt8/mbpxNUIYSUecY1X2K0pHmZikCl2E5lc13vTQr9hpTfOyIIByVhJiGlzM64OQK3wqkqClkmKV5Wda3A9vhWY94xtScV7fW11AmoACYFzdH1rQnLVOWjxHZvRgghhBBCCCFjCePzzDA+jxBCCElBjWKo1YIDcleOfCANfo1F0TgVqLbMTfp6LB8FymSdIJNpmOoj7icWNadP32NAiGORnOmd5ncgCPO5tieTpw/9eWDfq9ZFX48VZsKlVZb6esBcQ12KRc0Lp58ztvuHZFp8V0eLvGx1aYvR1F4Hinkztsl1aFtHPkpjZoclXKYq7KM9ir4u5zXuByVJ9lLrUQfFaL5ZINcpdLUD2zcZsw4ytQe7aO4AdnSOrDhN281t3bzJQMAx71NvEURVFDHkHGXpr1061S4osl1fio11lnAAm8gUU2ZB7TlwTtXH1xsXkUS26bQKwytqk2lyoypZRkfIxCLzGhDWfVhY3S6usapA/edU1srzrg4j6ABH2OZjtPWHUtvikDl+GfG+4Z+l/nU12xCyi2zFaJY6qhYtyUGBihQfYrTZiRimJprF/FWb89s2PbravP1ZkzzanTTqd0mtta098sLH90UIyS8cOUkIIUVIMBjEBRdcgAsuuABdXV1Yvnw53nrrLTQ3N6O/vx/l5eWYMWMG9t57bxxyyCEoLy8f8b6uuuoqXHXVVSNa9/HHHy/oegDQ2NiIX/3qV7jpppuwYsUKrF69Gtu3b0dnZycqKysxffp0LFy4EAceeCBCIbNQQ2LmzJm49tprce2116KpqQkrVqxAc3MzWlpa4DgOqqurMXv2bCxcuBB77bUXAhPV9kwIIYQUOX1urzG9UGI0SRTQ63ZD65HNDFaKSJKSiFOBIMVoZBT0JIW6NUJZUCGwiQF63W7UoFas/9L5QsYGv5KHsCBwyjV+5TbFIMHxJT3zJU/zPpZiOF4JSeyWft20XUdHvu9KxJP9GemS9Gx4eczLRJxKBJ0QYJgAOe5m7ivb7afWG7GPJkjVCCllWhLmyKXJIdPU6MNRPmZ7JROXJ1rvN6YHEMTiSScWuDQkG+qCU40StBZBlJgL8tFfIYQQQgghhJBcwfg8GcbnEUIIIQCcEYrRDj8BqsgHS6pZDTAOLX3xUZSHFD66WOGGR82DT7d1AN19GhXl+X1fFN1h3v/gYFYbetUL5ozB38UmE9q+2ZweGfvJ5ood9d7LoL/3MQDAue1/x5enX4PWgPm7/s69Gp8vwGslSUoEABcfZajDm5uMy2ac05LMCgASafFdnW3m5QCgqrTFaDjhfOBn/2POu+ZiLDrhXLy0KfN+YP1OINaqMas2v+1QS5dGmxBucrrFvzWM5x4Qs9TUWdAeYjSdTMp1iAKhTN5xODCrHoiZ5WL6qo8ANzwCFRx+H7t07wEpaIc5NB1NO4Cp1dkXp0mQRjXawjIoRisc7z4HuPZSY9aZrXdhSuXxohzx+/drXHN28Y8XeGy1xvE/csV8SXgGYKDvs/g0AEBjfxQvRDJl9VGfoQYtwvdYm0yTG1H4SEoF4V7z0sa1+OIrBxvzrvynxh0vJPH+wxW+caqCIwg2c0mrz/mI33eIwtRqQfgZ7weee1BcV51+8e4PohgtLc5YEqOVet+apGA7PzLvEXUsKi9+2kWjLEsRM2kKEKkCemQLcAAuLmm9BddN/ZIxf+XGfBVugMffMN/TH7dQYZLPoSABB5hbB2itgbt/M/LCFPmzPkJKAYrRCCGkyKmsrMSSJUuwZMkEtguPAMdxcNhhh+VtBs7GxkY0NmahDSaEEEJIweh1zdEG5Y5lusocEhFkNi5c9Os+lKvClGO8I0lWwhSjkVHSKwy+9yusGgtsYoBBmYAsRuPjvWLCr3ArUiAxV0AFEVJliGu7gEq6thUSP4IMP+exr2XGoSgxrvuR1AkEdp3zkmhkNG1dJFCB9vSAI8u+/CwTcSoRVOaAhWyu61L/L1WWFwmY63GP20V5LSFptMTNs7jVBr3FaBLaPISGTCC292/Bqq4VxrxF1e/CpCCDVIuZ2qB5tFirIErMBePx3owQQgghhBBSmjA+zwzj8wghhJQ0amRiNPWd/8txQfLAbPn6q994CT8892A0NWvc+6p5megO4B2z81S2lH2YaPAQo+lEAnj4DnPmrIHjVuVh6LJyoL8vc5lmQYxWzufanpz8YWCXGG2S247H152Ig+e/aFy0tRu45RkXFy0eoYDQJ02WVyB7zxgeP6B7uoCWbeaFZzcM/xy0yIF3Ca2GkMQNQMnLG1TddOgZ84CtZjHP79Z9FIuCtxrz5n/NRecNDgJ5lIJI7RAA3PBB77qrm1aJeeorNw/8IYmg3V2zD3ZZxHoUCGWglAJuehL6rHnmBV57Hvq6y6G+9uthyY6j8Nq3Hcz7slkg9bE/uFh5ZfbS7nWCnLFhqqXeClI3zKIYLdeoimrohYcCq5dn5FU8+Fs8/ZefY+GV8vrfu0/j66cVbyza82s1Tv6pLEWbFY8hrA19oUHKKwb6TJNnoD5urpeSyDadVkEyWesOb+MUhY+kVBDiWD+7YLUoRgOAVTHgqn9qtHQBPz4//+2PJIgFgLoKIOkC7z1E4YYPymUZFCcbOf79UAcu3v05KIjREsPj37UkjWXfiAxiixXXhmuXJKad3Qg1yYedfZyilIKe1QCs/Y91ue80f1sUo930hMYvLshPfP6OTo2XN5jz3r0PUB5SiISAHo+hCHPrgGBAwf3dd0ZXIIqKCRlz8vsUkRBCCCGEEEIIyTF9rnlaLr8ymtFi24806JdkIglObGK0uEsxGvFGlvMUb5Biua1dSQ4cT1InjPnS+ULGBr/1LCwInPKBP+FYYa6h9jJ4l9PPsUR8SM+KWcZh+y1S27fBtiGd0bR1kiDPjxitWxCeRgKVCAkCx4TQrpnodWWh6u6/zd/doLyWELKbFkGEVBfyI0YTZnikGG3Cs6z1AfF3XlJ7SoFLQ7JFOr+l9iAXyCLXse97EkIIIYQQQgghhBBCiBVnhGK0ypocFyQPzGoQs/TtP0QoqPC3y+Tjt8mCckF/QmNTqzmvYYrHYNvnHxSzVKrcShJSbd9kTo+M/WRzxY5SClhwwNDn/ftW4dvbvi0u/9OH8/9usUmQEn34CEM9kgbDA5nnTMAyiWUiLb5REqOVR6DKyuXtlApLzhKz5r/1gJjXlwAekr1jOUES64UCwBwf3g3955/ImY37DfzvCLKtQcGeTaxXXdpiPQk1eQaw9yJ5gfv/CN2a+ePOrVPYZ4Z5lVc3AYlk9m2WVIcabWEZQlukKGLID0eeLGbtteFR3PwRud9xw2MaSbd442RuekIjnpTzG+JR+wbCu2Ly9jkEjYIYzSYgTaVNCD2sS6Z1+NiukVJBEAgppX0Jz37zlEZXX/7bn7Zu8z7+e4lC848c7PiJg99d5KCiXIgl3LFFllYDUOd/dnhCSBCjxdMmBpf6R5QrkkFyJUZbcnZuylPM+JDvBuDiq9v/V8x/bm0uC7Sbp9+S845bOPAbT/IRgtgwBdCJOPD3m0ZemKpJUOynEDLmUIxGCCGEEEIIIWRc0ScItcpVuCD7twlHegRJCcmkRxCcRAIVCDlm0VNCU4xGvJEEhcUsQnKUI8oBBmUCcaH+U4xWXPitZ5ECyiD8CcfGPog3VwK3XAnWxgrbb5EqQ8tHWyd9Lz2C9GwQV7ui8DRiEZ5mc13vsWx/99+W747yWkKG0RI3RydODk7zXLd457sl+aTf7cOzbY8Y8+aUN2BBZN8Cl4hkS13QPINlSzx/I9h6k7IQnRBCCCGEEEIIIYQQQooZpSxDrcqF99Yf/EJ+CpNr5syX82JNAICyoMIegvgnuiO/g/DX7zSPVQaABo85fvQbK+TMPfbe/bc0oLV5szk9zOfavpi397CPe/e/KS76yiagL57fuiQJW4z1aHOTeWHHAWbMG54WtMRqJdMsNNuFOlUzWd5GCaHS6kwqlbobc8s7xPwXovmuP+bt108BAo6Pt+br18h5cxcM/C9J9gbFaDu2yNtgHZKZOc+ev/IpY7JNeLfB4qgzobVGk/AatsH82ha6v09uM3xIK0j22NogrF6BfWbI5/rWdmBjlvWikHi1kXv3W2wjABDe1d+trkO9fTKEzAAAIABJREFUIEaLtQG9Pq7l7b3mZard9uEJNcLJQchEQ7rX1Nra7gzS1QestnQRckWrOeQHkyKA4yjv/tCbL8t5SmXel0r32T1p8cvStbKafSOyi2zFaDFBTJsqV5+oWMT5qezTJ9/bvLguP/dl63eatzu3DmicOvAbT/Yx/KVhihqQ37WNYvLYaXNGvi4hJGdQjEYIIYQQQgghZNzgahd9uteY50eWkgvCATnQidIN/0gClXCOBCqkdJEEhcUsQgJkOcCgRFCq/0FlmYWUFBy/16JCyiB8ycQChRO1iWXwUU4/ArdcCdbGCttv0ZPSz+gR+hwRSz/Fi0jA/P1KMtNB+txeaLjmbTqVObmu9wpte+q5ZPtdKa8lZDg7E+aX/HUhj9EkpGRZ3vEUulzzwIOltadA2QKKSFEgnd+tiR3Q0gizUSKLXIu3L0YIIYQQQgghhBBCCCEABmRIEid8wJisjn9/ngqTW1RFtZy5Zf3Qn5KE7FO3azz9Vv6ERFHLWNV6r7HuwoBmAMCRJ+3+u0oQoyWEd9jhsZ9sbjygTjh/2OdTOh8Ul9UaiOZv7hYAshhtvmmuqFjUvPC0uVDpIjRJZgVk1CG9WdjuTEqOAABLz7aK5s6reEHMW7M1HwXajVR/Gv16e2JRMUsNSs1EMdouwV5KmzyMyhqoqkk+C1J6qPdcYF9gq/l7ff9h8jvvnz6S3XVve+eAuMbEoMjBb7kAsM3IF4tPFbP0hjU4ak+g2jJnu63PMpZorT2vse9v/6t9gcG+T9UkNMaj4mLrfFzLpXOhMj2ewEtqSMhEQYqxcl0ctxCYZrldG8TPuTda2gQxWq3fEOWtG+S8d564uz80iNS36WwdHtcUixoXU5SIkl3Y4xiH9+l0vB9o3mhetAT6X8qnGO30zvvEvCvu1HmRnrcIYf9zU2TG9T7uzeqnAPrvvxxdYSprRrc+ISQnUIxGCCGEEEIIIWTc0K+Ft2MAyh3L28ccUq7CUDA/LJUkJSQTSbISoRiNjBJ58H1xi9EkmdOgRDChE8Z86XwhY4NfyUMhRX02oecgxSAO9CP08iV587XM2B+vhO23GGwPkjqBuO43LjOaY5P27SVGs+VHAvJ1Pe7zuq619iWCk8RuAOW1hKTSk+wWz4m6oB8xmvleSCO/M3KTseWJ1vuN6RGnAofXLC1wachIqA2aI4H6dR+63c687FMSotuu2YQQQgghhBBCCCGEEFIUKHmolVp8CnDR13cnOA7U538Ctc+iAhQsN6iv/86c0bINum/g2W7DFHkw8THXufjri/l5NxTdYd7ujBqgotxjopZY1Jy+18FQkZRn09kKhSJ8ru2LY84E6vcZ+lilu3D3hveKi69tzl9RWru1OJC60VC3dSxqXtg0UNwi8kIyLb4rm+2WIKpuOtS3bxPzr0z8Ssy77XmNpJtPSaN52w2S1CoF3dcD7IgZ89RXbt79IRAwb2CwHm0RZI8zKA+ysuQsa7ZuM9tkPna0/Nv+7BGN791nnjTShCTWA4BGKSwjFpVXKgExx1igKmuA+oXmzAduhaNdPPIFuU/4zbv914lC0twBdJtDCwEAVzVfjfd0PWzdhgrvismrrsO8uCw3stX1QaSyVKbHHLKek1JBkDbpVc+jLKjwj8sdTPG4/Vgn3DPlklahLz3J51yI+gefEvPUFQZJkSSvjvcD/b0D29Sa/WsyOtInD922ITNtkJkNeS/OmOPzvKl12zA9YTZT9yWAM29wEU/ktl1qleSMKW2Qn3uz+jX3A3+9QcxXn77euzDh4h13QkgpQTEaIYQQQgghhJBxQ58wqBYAyn3KaEaLUkqUrlC64Z+epCA4cSoRGqVAhZQ2fuQ5xYgkM+pJdsHVSWiYgygoRisu/EqpCiXzBLylZyFVhoCyzGZbIPx8d/4kb94BycXcHgRUECFVZswbFJDZRKyjkdxJ3510zU4vl4kKp3LUwtO47oeLpDEvtd6UqXLKawnxQUtCjkqcHPIWo9ln1CMTkWjPGqzvfcuYd+Sk4wraryEjRxKjAUBLPD9TyUp9BL8yYUIIIYQQQgghhBBCCBkzHMtQq0AQzn99C+r/bYa64RGoe7dAvfeywpUtF+z3Tjlvl4inXn6sDAD41t3uwMD0HBMVHlk3eJQHgCgRUqd9dHhCdV12hSrnc20/KKWgrvzTsLTTOh/A1ITZgLZWEE/lgqylRLGoeeHZjZlpAUuMTSItDkLaLsUNQ6glZ0Fd8k1jXtWW1fjx+fL76YdW5atUQJPQFolSq1QkoRkAHLB4999SXdolRtPSdmZSjGbDM6YhZv5eHUfh8AZ5te/dp9He46/dkiSf4dCA6NOI9HtPngnF61DeUGf+l5z54iM4rEHhgDnm7KfeAhLJ4ptE0HYNfLXq0/jG9u8LEXYp7KpzqmoSwroPs+ObhX15H39Xnzm9UqfE80WqgEl+OnuETACk69Q/fwsAWLxAYdP1Dp7+snxPKt0z5ZI2H1IiCd1qaYiOOw9q+tzMdEmMBgAdrQP/t24HeoR4ZVO/nZQu0nmW/gxD6BcCKI0+9yz/582lLYJgH8BDrwNPrMlFgXYjyRnrKnf/tn7uzeqXGUSMg+x1ELC3j0kOwpTlE1IMjP2IN0IIIYQQQgghxCe9VjFaISUzlUbBhq18E4UX2pfh2bZHRKFCVaAGB1a9E8fVnYmAEma0gyyRCzsRaNcsgPIrUCGlja1uFTOSzKjX7UFCJ4x5AMVoxYYfcVfYicCxtI+5xks45kckVgj8CL38nMd+RKl+BXZjRcSpQDyZOVXiYD+j1yIqG5UYLSCI0SziM2BA4CgRtghP/V7X/YrgHOUg7ESEPhrFaIQM0hI3DzxQUFZxkid5GPhCioMnWu8X85bUnlLAkpDRMCk4GQqOUbjcmtiOuWjI+T6lZySj6a8QQgghhBBCCCGEEEJIQbBJVXZJ09SkKcBBRxeoQDlm+h5y3pb1QP1CzJ9m38QbW4ENO4F5OXZYrBPFaHaFh07EgeaN5syZ9cM/V03KrlCR4oirGBcYhAT79q3Gk8HMCrXW4ksYLZIUJhQA5pi8eJubjMsrk8DMJkZLpsV4xaL+t1vKNOxrTt+yDo1T5PfQD7+ucfL+uZ/YS2uNqFCHfInRYlFzulLD2yOpLg3Gz26PmfNnWNpwMsDJHwEe+JM5LxYVV5s/VeGFqLnOdfcDzzcBJ77De/dSG9QwRRa3aUnMMavenE5yw5z5YpZe/hjUEe/BntOBVzeZl3k9Bhxg8PuMJc83metwJAQs3PaUv42Ed73Trx24fjfEo9gcmp2xmE3CNkhXZhgkAKAiNZ5vVgMnaiSlQ5k85klrDaUUyoIK71oAXLRY4ZZnMs/p9YKAM1ckkho7hLDgSREf5+orT8t5Uj+42kOMNnUWsEPoGwGZ93yktFHKHM+aniaJaeumQ5XCc4DZDb4XbYxHrflPvKlxwjtydy1v7Ta3c5NShonMn6oA2NvDhs435Mw5C4Cgj7FYpVAXCBkHWKYxIYQQQgghhBBCios+t1fMK6T0SNqXTQwyEVjWcj9+H/sRVnevxNb+TcZ/b/e8jn80/wF/3nqTdVuSoCQSqBRFTxSjET9IAp1ikT9JSEKtHrfLWveDivMeFBN+rkWFlnJ5lalYpIF+vhc/53HICXkKA4tdjCaVb7CfYROF+ZHzSUiSEtv+bPkhVWb9Pfxe121Ss/T6K353FKMRMoQkOK4J1iHgo18hhS5QizYx6Uy0Y3mHOTB2YcVBmFEmTI1Mio6ACmBS0DTSB2hJ5GcqWVlaXdx9MUIIIYQQQgghhBBCCEHAMtmZM/6HYanyMDBlljlz63oAwMn7eQ9oXbczl6UaILrd/Nap3ktGtG3jbplQOumD76vNz8slVLi4Y46KCVVZk5E2XxhA/eOHtPh7j5YmqR5NAQLO8LqttZZFSQZxg3IcuR1IEaPpzjago8W8nEEgV9JIgoz+Prx72jZxtX8L8p/RsrUd6BFCWhqn+hjsH4ua06fOhior3/3ZEa41g/Woo9WcX+thriRQx5whZ66X5QinH2Tf7idudXHXSxrtPfa6J8mirGK9WNScTtFLflm0VM6LRQEApx0gn/ePrC6+aJnH3zCXadE8QEkCvnQG+z6HHw9AlqH4uY53C2K0ytTJWrMQsxAy7olUyXmtwy8gDcJ14+6VQDyRv/ZnYwuQFG6t9pjsYwOxqJiljjrNnGETo3Xu6hNJfSMAqPVjryUlgyjbHH7e6FjUvFiJ9L9URbXvZU/qegiOTor5b8Ry2ya1CmH/dSlhh8cv9N5OfXy9mKeOOs2fGC3MWEdCioHx/0SeEEIIIYQQQkjJ0Ov2iHnlBRWjmR9s2co33om7cdyz/Xbfyz/d9hC29gtTZEEWlISdCEKqzFwGitGID3qTct0qZiQhUa/bg4ROGPMAeAqgSGEpV2EoURkzgPRb5wsv8UQkUBwBvBEfQi+/57HXd1zo3yBbJLnZYD/DJvkazbFJ4rkeoV0dpFsQww5uT2qn4q6/67pt/+nHK7alHsdASCmxM26OwK0L+g0O4gytpcQzbQ+LIssltacUuDRktEjneasgTBwNrnbFZyTFfm9GCCGEEEIIIYQQQgghUJahVra88cTMecZkfet1A9mTFK460/5e6A/P5n4wflSYy6NhiseKWyyij7RBzapqUnaF4iDYrFCf/P6wz43xJnHZfb/l4s7lua9HX7rTvM1GUz1q3wl0d5g3JAm7pMHTyZT3arGoUDpQAJOO9D0DqF5+H+YKLsOn3gKeW5v7+iNJrQAPsdUu9J+uM2ekCxYCwsRlQ2I0s1hP2cQhZIDFpwIGUSMAoH0n9PbNxqxzD1E4/UB5s03bgff+0sVh17hY2yzXPUkW1SCI9bTWwCN/MW+sRMQcY4WqqJZlsY//Hdp1ccERcn/oC3/RuPU5wR40BiRdjcfXmPPePa8L6JcnqB/Grr6PmjITANDQb+5n3bkCcF17O9zVZ06vSI2BZD0nJYS64kY5c/mjwz7WWyRkZ9zgorM3P3I06Z4M8HFfBkDb7s32P9KcXhYGQuYxREN9Ikk6HKmC8iM3IiWEcO3WaeeMJAydVTrXJXXJN30tNyuxBdds+5aYf+cK4Jm3c9cmSWK02pTHM5Mq1LDP6Vw2/QU52vnIk4Bj3wcEhXYnFcryCSkKJsgTeUIIIYQQQgghpUCfa34hF1JlCCjLTJ05RpK32EQl451VXSvQ5QoBQALL258S83qF7yriVCCozAEf0oB8QlKRzsNikT9JSPKqHrfbWvel84WMDUopT1Gnl6gs13iJsopFTOHne/Er/fLaVqF/g2yRRYndw/5PZ6A/NPI2Qe7fmMVnXvmD2ws65oADv9d16XiBTDGurS0lhAzQIgiQ/IvRJIpvFlwyOlydxLLW+415dcGpOKDq8AKXiIyW2qA5OrFFECaOBun5DVD8fTFCCCGEEEIIIYQQQgiBYxlqZcsbT8wwi9EQWwfdM/AO+Fun24/1d0/pAZlLjuiLa2xuM+c1TPGYvEca0DxpKlRF1fC0qiylQpHijjkqOo5937CP8/tlMVpfAvj4n1z0xnNXj7a2y9sySoliUXljksBMElolUia/3CwcdzAETJ0j77MUqZkMVFQbs/T1l+Pqs+Tz/1O3515I1CRIrSrLgalVxqwhdHcn0CxMKJwugJPqkZsc+L9TaBCrBVMcGUIFQ1A3Pynm659fYUwvDyn8/TIHVeX27b+1Dfjm3RYxmiCUEcV6K+VYa1VCYo6xQl16lZy5/FGEQwpH7ykvctltGh15khNly8oNskjk3bUb/G+ofHdMnvr4d9EQlyVHj66WN5N0NfqEeaEr9O6CKosgk5AJx4IDxCx99UeHfa633AP9axXw+2fy0/ZIfaHJlUBNxMekqrGoOf20i6GUeX2llNzHGewTiX0jSmNJGkI9yxCjSRK/UhJ2Lj3H96Jf2vljHD1TOA8BXH6bm7NnRC1Cf6YuLezws8fLbdJHYY59RXkE6tq/QZVHgKCPcRd8JkRIUTBBnsgTQgghhBBCCCkFpIG15U64oOWQBvHaxB3jnRc6lmW9zvIO88v6uNuPhDa/6Yw4lQiq0QlUSOmS1En0a/P0YsUif5KQREg9yS4PMRpnOCo2vOqaX7lXrii28kj4OUfDgrgr221Firw98JJ79SRluehoqHDML+7iuh9xV26HRCHlru2FRnldl7YfdiJw0mZjl+RuE7mPRki2SGK0ySF/YjQlzKGmKUabcPynazl2JpqNecfUnlRQOTnJDXUhQYyWsEz1OkJsYlXpek0IIYQQQgghhBBCCCFFg7KJ0SbI83GbaGX5o0N/VnuE5a3ekqPyAFi/M3Oc8iAN5kfcQ2hpQLPpOLOVCpXzuXZWTJ0zIP/aRWNcFqMBAwOel63J3e7vfUV+bzl/miExFjUvXFYOTJ5pzpOEVsmUmMjmjeZlZuwBFZgg7UiOUEplSsNSaKg2xwMCwIr1wIaduX1X3STMKdQ4BaLMY4iU9jOD9GOURJuD9aijxZxP+Yc/ZjbIeW++LGYFAwqfOs5b+nLXSxqum1n3XFeLYjRJ8qmX3S3vqJTEHGOFpf0Z/G32nC7Xia4+4OHXc12okbFivbk9LAsCi9Vr/jeUKpWd1YCGeFRc9B8vy21wd7+8i8rUeD6K0UgJoZQC6heaM7WGTiaHPnrdA931Un7i9TYIXRCv8gwRixqTlSQdHqRqkjm9s3Xgf6lvJK1HSpdRitFKStg5U5DmC5wwPSbmvbJRFgRnS1uPOX1SmpzxwLlyH61x+wpzxrmfhBp8ZhH0HoulwhSjEVIMUIxGCCGEEEIIIWTc0Oean26VF1hwIgqMJqh0o9ftwaudL2S9Xqx/Azb3ZT4stslJwoEIQk6ZMS/uWt6QEgJ73YoIwp9iQRI+9bo9HmI0H7OUkILiJacKBwp7zfKSiUkSrkITUEGUKft0m34Fh5GA/XwPe+SPNZK4bbCNk9q60f6WYUs72WuRm/QkzXmDorXRCk+zOV4vqRwhBGiJm0VXdUF/YjQIYjQy8VjWYp4xL6iCOGrSiQUuDckF0nnemgcxWq/w/AYonv4nIYQQQgghhBBCCCGEiNjENzZp2jhCHXS0nLl5t8jq8nfb3w29tS1XJbIPoK33GoQfi5rTZxgG+VZnOXA+UtwxBsWGCgSAxO54gIN6X0VNss26ztrtuZM6vGV+HQoAWLKXoT5vFsRtM+uhJHFVQBg8nSpG6xbiLCb5fS9bYsxuFLMOKVtnbZbftvzmI6FJaIsa/fx0m94Ws9TBae2uRbCn+3qBfvNE0qiiGM0Pqtxi9tweg1751MA/gxBj6d7ecRE9cWBLe2Z6rA3oN88bLdehzWvlHb3jcM+ykFGy8FA5b9PAb7N0b/sm1jYXx2SCawWx48Fzgcg2Sz1LJVQG7HPI7s+zGnBYryAWgf3Yu2SvJSpT4xFLSUBDCABMEeS7ALB909Cf8ybb74Ny3QcapEXoxs6s8V5Xay3fm3md61Ifp2NAjKY7hXuKbMXXZOIj3jzsvmbp/j5g+2bzYjaR/ARDVVRntXyta+gAp/B2jp4RdQp9iJq0IRbH7gOEDbfn+80GJsdeMW5jmPjOhxgNEcY6ElIMTIwn8oQQQgghhBBCSgJRjKY8pqbMMdIg3t7kxJRurOx4HnFtlpKdNPl9OG/6x6AEQcKL7U9lpNnkJBGnUhQ9JbQQLUDILqzSvQILFLNFFi52Weu+JBwiY4eX6KHQkj4vUVvEQ5xWSGzfXUiV+a7vXue7JB4rFiRBWc+ufoZ0HfWS4Hlhqwu2a3ePIE0bLM9oxWjSvk11W6rvtusDIaWEq120CAKkupBpenT/FEeIJ8kV2/o3Y1X3S8a8RVVHoTrIYPvxSG3QHC3ZEt8+EJiYQ+zS6uLpfxJCCCGEEEIIIYQQQkjWSKKk8cbh8iQo+om7hv7++BKFMsucfWf9wsXydbl5xhzdYd7OjBogUuYhqTGIbQCYB99nO3A+zOfa2aI+dtXQ3xW6B1fs+KF1+X++nLv3FFFBCgMAR87PTNOxqHlhm7hBElqlCOF0r2CUYH0yklpn0qluieJbp8ttwEd+6+b0XVdUEPU1TPWWZen7b5UzDzl2+OegJEZLAh0t8nYo//DPh75kTu/phP7U8QP/ztsb7ieWQO/YMpR9wr7AUQu8N3/VPZl1ZeVGeXlRjBaLiuso/t55R1VUy23zrv7FuYcq7Ddb3saX7tSIJ8Y+cubXy8xlmD9NQd/3B38bef9nhktSZtWj2u1ERIgBePA1eVPdlvnQK3TK9ihGIyWG+u+r5cw3dsdrOY7CN0+T+x/rdwK98dy3Pa1CyE9dpY8JVVu3Az1CP9jrXK82x6PpzgExmtg/qspSfE1KAKGupt4zbF0//HMqM0tHjAYAOPO/fC9am2y15r/nJy7e3Dq6dime0IgnzXkVZWnlqVD4/AnDf29HAd84sQ9q5xYYSW2LnIB3gcKU5RNSDEyQJ/KEEEIIIYQQQkqBXkGMVmjhkbQ/mzRkPPNix5PG9JpALc6YegGOrTsdCyLvMC6zvOOpjKATuxitYtQCFVK69FjkhIWWUWWLKFx0e6x1n2K04sPrmlT4a5Y9oNIrv5DYxFzZfG/j6ZhNRALmYx0UjEiikdFKRios7WR3UghUgCxGG9yeJDyN+7yuS+JZ0+8o/ba26wMhpURnsl3sV9QF/c1MLoc3jX2AJ8kdT7Y+IOYtrTulgCUhuaQ2ZD7P+3WfeD0fKdLzGwcOQqrMmEcIIYQQQgghhBBCCCFFg02woybGMCwVDALHv9+c+crT0PEBk0XDVIXVV9uP+bSfuejPgQxEElo1mOf9GE4sakxWsxsyE7MdOB8p7pijouT0i4d9/MqOH+C2TReKiz/wGnImlFnbbN7OF9+joJThbWcsat6QTdwQFOK1kimTX/YKcQoUoxlR8/eTM2NRXHmG3A5tagX+79+5e1/dJLRFotRqF7qzDVj7H3PmKRdCpYs1pUH4yQTQYREOCNIQkok65+P+FnzteehrdgshAo7Cvz7v4OqzFE7cV17tN09qrNwwvO6d/nPXuGxNGKgznP5aayBmlnuqb97iWXSSG9TXfmvO2LIO2nVRWa7w5BX2/tD1/xrbuJmt7Ro7hNf+9dW9wKa18sqHvBtYchbUV38N9fHvDs+rnQaEK/D7zZeKqz+8ynzsXX3yLisHYyBrJkNV1sgLEjIBUfsdIebprw+/R7vkaAf/+z45Yu/rd+VDjGbe5iQ/YdySsBrwlk1VCX2cwX5RZ1t265HSxXTfBwx/1jOaujrBUOd/1veyTp93jOHZN45OXN1lEatWGsIOv3u2wi0XK7x3EXDhuxQe/JyD8575H3kjqff6kvQ8FYrRCCkKJsYTeUIIIYQQQgghJUGf7jWmlzvhgpYjEjA/2JIG/o5nOhJteL3rJWPeIdVHw1EDwRmHVR9tXKY5HsOGvuEvUyXBCTDwW0qip7i2POEkBLIsCADCgmioWJCERn1uD+KuXPcDgnCIjB1e0q1CS/q8hGKjlWnlEtt3l8335nVMxXTMJmyiREAWjI72uMqdCJSgPLK1r5J0bPA4JPmJX+FpNscryfUmYh+NkJHQkpCnR68ThEmk9Oh3+/BM2yPGvD3K56MxvE+BS0RyRV1QHjm2My63DyNB6juEnQrzoCNCCCGEEEIIIYQQQggZL6SLbcYxqn6hnPnvh4b+bJiqcNFi+dnutg7g4ddHX551O8zpjVPtz5V1vB9o3mTONA1oznbgPAfBZk/ddKCsfFjS+e134ivbrxNXeeyN3Ox63U5z+j4zhBU2NxmTlU2MFhCEVomUOIheYcA465PMgUcZk/UuadS5h8ir3v58bqQgrquxQahDXm0RnntQzFKNBruWNAg/mQA6bWK0Ons5yG6mzvYnOwCAFx+Bbtk29DFSpvCN0xw8+PkADpgjr3ZbSt2zSUIbpsL8nrRtB9DTaV7J1g6R3GISqQJAvB/YEQMA1FYofO8cuR24LUft0Ei5Z6Wl/u18WcxTn7oOzk8fhHPNX6BOvTCjniqlgFkNaIjLApnbBTmlVWwyOHkb6zkpVfY6WMzSPcP7kZctldse27k/UlqEcOE6P93YWNScXhYGpsy0rysJrAf7RVL/iNJYko4vMdp68zKTZ0CVF/e4o5wzw78IrqpfuFlK4fUY8JLw9frBKlYtz0xTSuHCdzm487IAbrnYwfH7KvneTClgxrzdn/3cK0SKe9wJIaXCxHkiTwghhBBCCCFkwiNJLQotRpMkMz2u9+wH442XOp6BC/MMZofXLBn6e1H1u6CExwzLO54a9lkSnISdCBwVsAhUEsZ0QgaR6lZIlYnCvWJBEi5qaHS5HcY8BwE4E2Qm4omEl4jMKz/XeMmyvERuhcRW1my+N69jKnS/IVuk72GwnyEJRkf7WzrKGVEfR8qr2NWuSe2vXzGaKFYxSNCk72Ai9tEIGQktgvgoqIKoDgiBRWlIQiONsQ3wJLnjhfZlYru5pPYUSq3GMZOCk8X79laLOHEkyOLUEgscI4QQQgghhBBCCCGETDwcQYg0Htn7IDlv/XBL1aJ5wnK7WL1l9O+KojvM26iX5/0YYNuG4QOcU5nZkJlW6e+92BDlxR1jUIwoxwECmbECi3plMcvrOahDWmtsF/xCc+sy33Fp1wW2CiO2Z8+XdxQU4tCSKfGNvcIEbuHiidMpOkwiQwDYMiDjWVQvv6dcvSU3RWjrARLmcFnM9fKRbZGlQUb5iW0QfrtgigyGgFITNYwCFQgACw7wt7DWwIY3jVmHzJPr3hspbdcOof0BgFrpZ4tF5ZUojCoctu86tvvcXmSpC29uBZLu2MXORIVmAwAW9ayQM/de5L3xWQ1Y2CcbTLe0mY+72yJGC+vegT+mzfbePyETkVkWEVEsOuxjVVhue6S+72hoFbqx4rUslVjUnD5SP1xEAAAgAElEQVSr3jvmTJK/drQO/z+dbMXXZOLjR4zWLgi+pszKfXmKHJXFM4/FyVfg+AgfHc0zIqtY1SBGS0drLf++WkOlStz9iNEqqr2XIYTkHY6cJCTHmDrnWnrJQggh4wTXzXy7wwFwhBBCxoI+t9eYXuiBtZJ0QxK3jWde7HjSmD41NAMN4b2GPlcHa7FPhTmAYHn7U8Pui6RB9oPfa1CZHy5quEjqpK9yk9JElOeMg8H3tjJ2JNqM6aEil72VKuGAhxjNIHPKJ16yLC9xWiGxnQfZfG+2YypXYTiquAPVvfoZkgQykoO6FXHMksbupCwWk/IGtzV6MZq5f2X6naXffiL20QgZCTsTzcb02uCULGSrUtDIyMpEigutNZa13m/MiziVw+TYZPwRUAFMCpqDCFsTlijpESDdm0lCaEIIIYQQQrKFMXqEkIkG4/MIIWQc4UygYVhHnCRm6Ru/OqyP/cHDFWotr6T/568a37/fHVW/XBJ6NHiJ0WJROc8gHFDBYHYDWykhGhmnXpiRdFqn+T0UADzz1uh32dkHJAWpVZ2p/m7fDMSFUdc2SY40eDqREgfRZ35XQjGaBUkQ8tjfAAAfOVLuH6/dDhx8dRJrm0f3bEASgQBCHUpBd7TImYe8OzPNJtpsFSY1qq7jfUKWqHM+7n/h6Gpj8qVL5O/8nleAj/7ORVu3ttafTx+X2X/Qz94P/d9HmVcoCwNTZlqLS3JIdZ3YN9D3/XHo7xP2lTeRcIGNlmYg37QKlx0AOLTtWTnzoKO9Nz6zHlVajh+U6n5Xnzm9wu2CMxhoVOVlnSRkYqLO/5yYpx/5S0baewWHYWs38OrG3L4bkdoT2/3gIHrlU+YMH7JPVSUIrNe8NPB/p1mMpqopRiPpSH233eeKlkR7pVqf3nOBr8Wm9mzEOT6cqh/+rcbPHhnZMyKp/wAAlWU+NtDaDPQKDdnJHxn+2Y8YrXqyj50SQvLNBHoiT0hx4BhedMXj/gb5EUJIsZJIJDLSTO0dIYQQkm/6BKlFeYGlR5J0o8/tgauFyJpxyM54M97qWWXMO6x6SUaAxaHV5pejOxPNiPauGfrsJTiRBCqAf4kKKU16ksLge0H0U0zYytiZbDem284VMnYUm4jM6xpZaFGbDdt3l833livB2lghHWtPshtaa4sEMgdiNEFWIu3Tlje4LUl4mtCZzxpMSCI40/FK30GPRexGSCnREjcHT9cFpxW4JKRYaep9Axv61hrz3jXpeJQ5PqbcI0VNbdA8eqwlIQyuGCHy9ZuDxwghhBBCSG5gjB4hZKLB+DxCCBlH+J5spvhRwRCw+FR5gT//eOjPqdUKT11hP/av/UPje/eNbFB+b1xjszAuuWGqhwQots6cXjcdSpJQVWUx2Lks7H9ZMoT66Ncy0sK6D8d3PmJc/q/LNeKJUUqtLFKYOlM4RCwqrzC7Qc4LCjFbyZQ+XY8Qp0AxmoiaKYjRAOiNb2FuncLvL5Lbg1c2Akde66Kzd+T1yFaHPGUggqwDBx0NZerb2wbhi2K0EhU1jAJ1+sVQX/gZUL+P57L6+suN6YsXKHzoCLnu/ek5jTNucNFiqT+nps07rV95Bvqr75NXmFVPCV4BUUrJ0p57fw/91isAgICj8PrVcn/oi38ZuzEEUvt19sGA2hI1Z575X+b2KQ2167v5wdYrjPktwiWvq8/cHlekxhNUCyIkQiY46sDFcuYfvw+9/o1hST96v3yuHnS1i57+3MnRpOtZXYX9uqT7+4BnBRGyDzEaqgVRYmcbdHcnIImssrm3I6WB1IdKlXR1tZmXKdH+tvrEd/0t2NGKP17i4ONLvfupn7tD48bHcyxG8xO+ujkqZqnLrhme4EuMVpp1gpBiY+I8kSekSFBKoaxsuHK0s7NzjEpDCCG5Ib0dKysr40N2QgghY0Kf22tML7QYTZJuaGixjOOR5R3CjC0ADqs5JiPt4Ooj4cA8i13qtiQ5SXhIjCZP4xDXwgyNhECW7o2Hwfe2MnYkzS9eJNkQGVu85FS5kFdlQ8gJWSV6hRa12YhYpGXZfG+27RTT8UpIx5pEAgkdl0VkuRCjCdvodmWxmJQ3KHyU6p/fa3qvKL3MLKsor9W9cHXS1/4ImchI4qO60FTf25Dn0svtzJNkbHiiRQhOA7Ck9uQCloTkizpJjBbfkdP9yPdmxd8XI4QQQggh4wPG6BFCJhqMzyOEkHHEBBNXqgOPEvP0P24a9vkdsxWuOcd+fbrxcQ2ts39vtH6nnNdgfrQ9hN4iiNEskqWsBrZSjDYyaqcaJWBLuuWYxPv+M7pd2qREtabQrFjUvHDVJChJzADIg6dTxWh95ncloqyPWM9Zfc/vAADnLLK3Qds7gb+tGPm7a1sdmuQVgijJOvbY25xuGYSv24R3d7Z6SUTUOR+Hc+srUI93Qz3eDRxzpris3rbRmH75u+1176m3gGVrzHWvLAiE08Kn9D9/AyQtsUx+BDIkt1i+c33Pb4f+3memQp3QlP/9pRyXKQtau831r2GqEgUhat/D/W18diMAYJoQd9RqvuShWwgPrEyJf7RebwmZ6Njuxe79w7DPc+qAoOVW9J8rcxO7l3Q1OoThUJ6S2GfuE7OULzGa5R5t2V2yhLaKgkWShh8xWqcgRqss0fo0ZZYsAE+lsxWRMoVffshB8mYHnzrO+xlRtnQJ/YegA5QFfbwziUXN6eEKoG768DRfYjT2VQgpBibWE3lCioTq6uphn9vb20f0cocQQooBrTXa29uHpaW3c4QQQkihkAbWljuFDT6yCVckWcl45IX2Zcb0OeUNmF0+LyO9MlCNfSsPNq6zouMZuHpgJizpdxyUmYQc+YFqQmfOlE3IID2SnMdyzhYLIVWGAMwP1jsFMVqAYrSiJOIh4hsLMZdtn8Ukp7CVJRvBoX07xXO8EuGAfKy9bjd6hL5GLo5N2kaPICeLu/1I6Lgxb/d13Sw8Tbjm9TL2LR2voW03pQ0i9T8IKSVa4oIYLehfjCap0ShGG/90JFrxUufTxrx3VCzC9LLZBS4RyQeSCFESJ46UfIpcCSGEEEIIGYQxeoSQiQLj8wghZJzhmCeNHLfU7yPnxdZBd7QMS9p3pn0QaqwN2CKML7YRtTymnjfZY+VY1JxuG3xflYUYrbz4J2QsRpRSRiHUvv2rxXVWrB/dPV2LPOebWWITi5oX9hI3SAPGEymxjT1CYShGk5knCMQA4O1XAQA1EYXZHqfvzctGXo9ahfDfmjAQcDwG4UuyDknyEbBcT1qFRjEbqSPJQAUCUIEAMM9y7XvrFWOyl6QTAB5/w1z3aiPIFF+v8TBo2cpI8oOtT7Tm5WEfp1bJi3b2js3zSUlOVhvsB9qENsWvgG/XcrWuuZ2T2k5JbFKpU66RFBqRUkaSpwIZ14mAo7D3DHnxFetzU6ROQYoGeEtite3aZuvnDTIjc3zS0LZff0HuX1NaRNLxJUajaC8V5TjA9LneC6YI5ZRSWDjTvvjrMaCnP7u+UVefOb2y3OcGYlFz+sz6zD657Z4MGLj3j1T63DEhJJ9QjEZIHkgPSIjH49i0aRMDrwgh4w6tNTZt2oR4fPhg5ZqamjEqESGEkFKnzzU/ac9GlpILbOKRiSLdiPVtwMa+JmPe4dVLxPUOrT7amN6a2IG1Pa8DkOVVgzKToEX25FeiQkoT6fwbDyIkpZQocOtItBvTg8rHrCyk4HjVt7Goj7Z9FpOcwlaWiOP/pVKuBGtjhe1Ye9xu9CbtgtHRUBEw77tXuHZL0rLUbUltlV/ZaTZiFdt3MFH6aISMBkl8NDk0rcAlIcXI020PiW3zkrpTClwaki9qg+aI/daEMOv8CJGu3+OhL0YIIYQQQsYPjNEjhEwEGJ9HCCHjEGeCDcM6/ER7/ubosI8n7y8IplL43v3Z98mjO8zrzKwBImUeMqLYOnP6rHp5Hb9yIaVkCRbxRJ14fkbaKZ0Pist/5/9p7OwahdRKCAuoLAeCSELf8VO4Xz4H7iePg/vJ46B/9x3zCl6imIAQ35hMedfWJ8RTUIwmomwD8Z//19D9/gffaW8Tnls78jK0dAtiKz8/W4dZrqAkEaNUjwBZYpSN1JGIqBM/IObpG78CnUxmpM/04ciQpDTp102dSABNq6zbspWR5Ad1guU7T+sPnXGQ3A5Fc/vq3TctwmWnLrFTXsmvGG3mQJ+qNmlu5/oSZumJJDapSI3jo9CIlDCmvvIQLz4K7brDki44Qm57rn9Q44o7XWxqGd37EUloCACV5jmSdxOLynle950AsPBQOe9Ns7gUAMWxxIDHMwQA6DSPzxH77qXATMszlEHS5PnnHqIQ8nCLZds36uozt2N+xWh6nSBjN/R7lFJ2OVp1XaZMjRAyJlieoBBCRko4HEYoFBoWqNDR0YG3334bNTU1qKqqQjAYhDPRXooRQiYErusikUigs7MT7e3tGUFXoVAI5eV+9cqEEEJIbukThBblTrig5bBJNyTp13jjxY4nxbxDa8zyMwA4qOqdCKqgcUD98o6nsWfFfqJEZfB7DSr5rUlcW962kJJHOv+KSfxkI+xE0JnMfMliSgMoRitWyj1kD5IAL5/YBBQRQYQ1FuRKaJYrwdpYYTvWHrfbUzA6GqTvp1sUo8n9nrBjF54mkYCrXTjK/oxU6jeYvidbHRooK+VPpHRJ6gTahGDHOkGUZEKJQSMcdD6eSeoknmw1D0KZHJyG/SstgWdkXFEXnGpMb43vgNY6Z4E8ksh1PEirCSGEEELI+IExeoSQ8Qrj8wghZJwzwQZEqvIw8MsnoC9baszXv7kK6vq7hz6HQwr3fsbBe290scUczoJfPKYxtcrFlWf474tLA2UbzI+1h7PFLEZTtkG9fgc7l4U5CHY0nPdpYMObwD2/G0qK6F4s7n4Gz1QsNq5y9P+6eO6rDmoi2X/votQqAuhvfgB46h5/G/ISxQiyPJ2I736b2itY2sLFH7cylqhPXQd9wxXGPH3zN6A+cQ2+fYbCD/9lfz/9i8dcfPLY7J8HtEpiIT+vuDrNwiBR1mEbgN8qiNEo/sgJasH+coTDujegr7kE6lt/GL6Oj2vB9k5zerpYT3/ePjGZ+tKNUDY5DMkLas8DoE/8APDQnzMzd26B7u2G2iW3/O7ZCj96yFyLvnefxu2XFr7vILVfk16615zhOIBNSJmCqq6FrqpFXb/Qzu3afyQt/L9bCPmvSI05rPJhHSRkgqIOPRb6oGOAleZxO/q6y6G+ctPQ5/95j8I37pL7QD/4l8YdL2g8+1UHs2tH1g5JQkPAh5QoFjWnH3osVJn3s07lONDHvx945C+ZmW+tlFdkO0LSkfptqRMriX33Eq5PM+Z5L9PXA93fN3ROT69RuPuTDs69yRWv+//7gMYtF/tvkyRBo6ecERgQHD94mzlTus8PBAGDGBkA778IKSIoRiMkDyilMHv2bKxfv37YDJTxeBw7duzAjh1jpH4nhJBRMti+8QUvIYSQsaLP7TWmZyNLyQUhVQYHAbjIfPjVK8jbxhNaa7zYvsyYtyCyL6aEpovrRgKVeEflIXil898ZeSs6nsa50/9L/I4GB0iHLLKnhI6LeYR41a1iRxISdSTbjOmSbIiMLRGPa9JY1EdpnwoKZap4BtZYxWhZSL/s2ylsn2Ek2Po17YlWuHCNebmQQErtUE/SHDnVk5TFaBWBKgB2iWNCx6110NWuKMY1ldX2HUiCFkJKhdbETmghtHdyaPTSQGrRxjf/6XwRLQlzcP2S2lPgKI9p/ci4oTZkHkHWp3vR43YNXb9HiyhEHwNJMCGEEEIImbgwRo8QMhFhfB4hhBQLljcfE1C8q/Y/EnrOfGDT2szM5x6Adl2olOM+cr7CxuscBD9hfncNDAzK/8KJGtVhf9e0dZIYbYp9fd3XC2zfbM60ya38DnYuK+yErRMNFQxBXfFLuK88Dax7Yyj9g+1/EcVoq7cAt/9b4xNLs+8PiVKrYA/wpE8pGgDlJUaThFbJlMlke4V4ijDflVg5SJ60F7f9APqCL6KiZjI+cLjCn1+Q2+rv3qvx38dohILZ1aNWIbQkXWxlpMMc4ycOpncs72DbJDFanY+CEF+c/GHggVvNeQ/9GfqjX4WqX5iTXaXWH/32f4CXzfHZAKD+usYu9iR5RV3yTWiTGA0AYuuAxn0BDIhi66eY+y9/fkHjto/lblIyv4hitJfvM2dM3wNKEH0amdWA2qat8v57gFlpzZ0oNtEphWW7Rkoc9bkfQV98uDnz3t9DX/w1qF2yorKgwq8vVLj0j3IfaEML8JunNL51+sjaIElsBAAVXlKiWNSYrI471/f+1ZEnQZvEaD1yrDLbEZKBLzGa0HevLGEx2kwfYjQA6GoDynaPKTx5f4XWnzoou8z8jOiPz2r8/iL/fSNJ0OgpZwSAFx8Ws8T7/EAQgLBTti+EFA0cPUlInqioqMC8efMyAq8IIWS8opTCvHnzUFHBl3GEEELGDkl6VK4KG4CklELEqUCX25GRZxOEAEBbYifW966FNkhNwk4EDeG9UeZ4P7FrTezEht61mFE2B9NCM0f8AtXVSWzsa0JrYudQWkt8O5rjW4zLH1Z9jOc2D6s+xihG60i24dGWe7Azvs243qDMxC5QSYh5qWit0RyPYUv/Rl/LD1ITqMUe4QUI+Bj43+/2Idq7JisZngMH88J7oiboPXNE3O1HtPdN9Lj2OpXOnPIGq7xupPS6PYj2rEG/tkwFNMZs7ze/dB8vg+8lGVJXMrOtAeznChk7vMRnYyEik86BsBOBo4onaNt2rnoJ51Kxyc9yIQ/LN44KoFyF0aczhbCrulaI6+VCuif9Bi2JZuO1fWNvk3F5BWeofxZScjREQsdRBvmc6HN7RZGTqc0MOWUIqqCxv/B698vGvpsfAiqI+vCeqArUjGh9QoqBlrgQOA2gLmgWJeWSpE5iQ+/baE/Ks8eamF1Wj6llM3JeHq01Yv3rsT1u7j9OD83GjLI5JTMA9YlWcyBsUIWweNIJBS4NySd1wSli3gvty1AniNOypS3lGUMq40VaTQghhBBCxg+M0SOETCQYn0cIIeOEInrHnlNm1pvFaACwJQrMnj8syXEUzjoIuHuleZWuPmDFOmDpPv52H91u7s/Xy4+1B9i6Xs6bJYtlVHWdv4l/yot/8rVxwT6HDhOjze8X6toulq0BPrE0+91saTen18XN7y1E5sy35weEmK14SlxdnxBTyDplZ3ajPf/1F4AjTsL5HmK0re3AG1uB/edkt/stgh+hzqOLruP9QLtgeJTEaAHLsN4287aUtC2SNWr2fPt1YOVTQJoY7ZPHKvziseyfP9VVpMQdWKRoiFQCM3wKKUh+mDFvQKZies4YaxoSowHA3FpZ7Lq1HZhZQK9Ke49GjzDveF2yxZwxLcsGcspM1L21Wsze0gbsO2t4miRYqkidaK2K7RopcbyEvK88A5y4+9qwYJqC1xSmy9aM/F2JJDQE7FIi3dcD7BTkiV7HmEq2clClgEhuJoEkEwgPMZp2XVlEXFW6YjQ1u9Hfc5IdW4G64ePVggGFI+cDzwm3+s0dwHSfIfiiWNVLzghAv/SknCnda9ruy0q4PhBSbFCMRkgeGQy82rx5M+Jx4ekCIYSMA0KhEGbPns2gK0IIIWNKQseRhFmKVZ6FLCVXhAMRo1xDkmQldRK3b70Rz7Y9Yt1uSJXh4llfwMHVR8rb2XIjnm3fvZ19Kg7Ax+d8TZQqSWzt34QbNn4bOwRRWToOHBxSbZ6pMZX9qw5DSJUhrjOfSP6j+RZxvUigEgAQVPLjCtM20+lJduGmTd/Dmz2veS5rYlKgDp+ceyXmhhvEZV7qeAa3xH7iqzwmjqk9GedP/29RSPRa53L8ZvP1RimOHw6qOgKXzPoiQo6Pp78+eK7tUdy25UbxHCx2xsvg+8FzIB2TSBEAgg7FaMWIV30bC8GKdH0otnPDVp6wYz4/TNjkZ8V2zBLhQAX6EpnXAElcA+RG+hYRvuft8a24adP3sthOxVBdH43wtNcVprKE3GaGnQp0JjOjne/bcYd1X344efJ5OGPqBSUjSiITi5ZEszE97ETE88mEglT/5ZCIjb1NuGHj1WiXgi092K/yEHxs9hUod3IjxG5L7MTPN3wbm/vXWZebV74An5p7JaqCE1uKuLV/E1Z3m0ctHVp99IQ//lJjUrAOCo7xHuOObb/K+/6zfW5BCCGEEEKIHxijRwiZCDA+jxBCxhEB78kWxyPqyJOglz9mzly/JkOMBgBnLVK4e6X8jmhVTGPpPv7erUYFsUij13wesaicN8MyqN7v4Naywk9+NxFRS86C/tftQ5+XdD+F2mQLWgN1xuXvfXVkMoeoMLZ9D22eJFZkkYeVLSK8X+1NmQA1Lkw+yjplRdVMhj7oGGClMKB9cxQAcPxCIBwCei2PAdaMQIzWJEga95js0ZZtXW8WKQHAdEF0ZRuA3ykY2igQyh3HnAH87moxW2+OZkRHnHXQyMRoe0xO2W4sKi949BmMSRpjVKgMevoeRvGq/vmXgHe8E6p2oHNy7EKFp98214em7YUVozXJcyViXnyDOePAo7Lah3rXyYg89wCmJpqxPTjNUAaNY9POmm7hUliZOmE4hY+kxFGVNdCHHgtI92Kx6LCPixcAU6uA7Z3yNh9dDby0XmPRvOyvKdJ5qxRQbjOSxKJyXjayM4vc2kioHMqZoPJyMgo8Ylx3xIC4MA5s+h55KdG44IiTBu5Rkh5jxmJNwJ4HZCQv3VvhubXmvtG/Vml8+Eh/bVKX1H/wcysdi8p5hx1nTrfdl1G8SEjRwKs9IXmmoqICCxYsQGNjI6ZMmYKystwMSieEkHxTVlaGKVOmoLGxEQsWLGDQFSGEkDFHEo4ByNkA+WyQ5COSwGNZ6/2eUjRgQPz1m83XoS1hnqVwWev9w6RoAPBG96v4+7ZbPLedzq83XedbigYACysPRnXQ+wVk2InggKrDsi7P4ABpRwXgwBxEmNDeA1r+3nzLiKVoANCWbMFNm66BFgJVdsab8dvNPxyxFA0Anmx9AM+0PWzM60524ubN145YigYAKzufx/07/jri9VPZ0rcRf9zys3ErRQNyIwsqBNlKAmyyITJ2hAPFJ3uQZGDFdm7YyhPJ4vwIqCBCyvwMrtiOWWIk5cyF9C1X30+qZMkmPPW6rvdYxGhSm5nP3/iBnX/Fys7n87Z9QvJJS9w8mqTOEKxoI9sgXFe7+OWma0YsRQOA17pW4J7tt3sv6JM/xH7qKUUDgPV9b+PWrTfkbL/FyrLW+8W8pbWnFLAkpBAEVBA1Pu7r88V4kdQSQgghhJDxB2P0CCHjEcbnEULIOEWYBHHcc/bHxSz9pbOguzMnEP3A4QpnHSRv8pO3a2zv8BbI9PRrxAQHUMMUj3dTW4R3PlNmQZVbYgqrzUKuDMoKH5c4ITnq9GEfI7oXv4x9Wly8oxe47XnzRJI2JKlV/VpznJ4JddWtUOUeMSphQYzWMxDjoJNJwBXKH6IYzQv1mR+IefqXXwMAVIUVfvURe/tw7k0uOnuzk1hJcqFRSRolwYczAtGm37aLeKL2PBD40JfkBW67PiPpuIXAx47JXjLTMCXlwx0/lcv0sSuz3jbJA7MazOkb34I+Yw509HUAwBUnyXXhN0+NTPA5UqS2K6hczElsNuapC7+c3U5OuxgA0BDPlMYBQJMhLKmrz/w9VKbGBFL4SAjUpzKvOYPoXw+/NpQFFW7+iGOXlAE49LsufvJw9v3pLmF4TGWZR9xgLGpOVwqYIUhiTUyZbZcUpRPiuyBiQKqrg+PDtpivZQCAmVnU1wmGqpsG9dkfyd/fILGoMflrp8rrXfg7jX+85K9/lBcx2vQ9oCqqzXm2Nke69yeEFJwsegeEkJGilEI4HEY4HMb06dOhtYbruuIge0IIGUuUUnAchzONEEIIKTr6XFkSla1MKBdIg3klgccrWUg0XLj4T+dyHFV7YkaeJON4pfN5XIDLfO+juT/mSwaQymHVx/he9tDqo7Gi45msth9xdj80DKkQ+nQyYxk/YrRcCEt2Jpqxsa8Je4QzZzt9vetluMgsW7a80vlvHF37noz017pWIKFHLyFb2fk8zpz2oVFv55XOf496G2PNeBl8n3oO+MEmGyJjh+2aNFZSLukcKLZzw/bdZVvWiFOBeDLzDX2xHbNEtuVUUDkRxaYKzUa1nZTy2ySOXtd1STgLjF29fqXz3zi4+si87oOQfLAz0WxMrwt5RXD7Q3rfsbFvLVoSlqlpfbKy8zmcO/2SUW+n1+3Bmu7/+F5+dddKJHUCgQna7+pze/Fc26PGvHnhPdEQ2bvAJSKFoC44RZSx55vxIqklhBBCCCHjE8boEULGC4zPI4SQcY4zMcVoKlwBvdfBwJsvmxe47w/AuZ8alhQOKdx5mYMpn3PRLoT2/fwxjW+fab/mrbc8sm7weJWlY0L8myQiGqRqkj1/EIrRcoIKBqEXnwo8c99Q2nkdf0d77HJ8fNaNxnUu+r3GexdpRMr895lEqVV/1N8GwhVQx5/nvVxEeN/R2zXwf1wYyQ0AQcobvFB7Hwx9xHuA5/+VmdnTCd3RAlVdhw8f6eCIRo19vilLP/70nMZl7/ZXhxJJLbZHjVNHJgfA5BlQYaG+ZCP9GKSaAqFc4nziu3DffBn490PGfL1+DdS83e/MHUfh5g8DFy1WOO6HLvp9hvkO1h/dtEpe6PzPQs3OjFcmY8DsRuDlZWK2/s23ob77Z1SFFRbOBFZvyVzm909r/OZCXbD7fkkMOq+8HQEY2sg582U5iIAqD0NX1qAhHsWLkUMz8qOGa3C3IFiK6F0xgYEAEKFwhBC15wHQJ34QeOj/jPl620ao6XOHPp+zSOH1qx386GGNGx6V3398+W8aHzpCY1q1/7aou9+8vQqvLmwsak6fNgeqzL8YWLQrXUIAACAASURBVAWD0NPn2qWzqVA6TEx4idG2CmK0SBVQMzk/ZRonqHM+DixaAqx4HPrHnzMuo2NRmL7h6rDCntOBt7aZt/3J21yccaCDYMDeJkn9h0o/zwZiUWOyuuhr8jo2YbV0708IKTgTM4qfkCJHKYVAYAQzOxBCCCGEEFLC2MRo5UUkRpMEHi1xw1RIFiR5wJruV43p7clWJHTcKh/xs32JkCrDQVVH+F5+v8pDEXYi6HV7fK8zt7xx6O+gCqFPZ/7mXgKVuBtHZ7Ld9z5ttCZ2YA9kBhq0J1tztH3zb9CayK6uZLv97LeTm/KMJal1q5jJtpzj5bhKjaAKYVbZHoj1b8jIOzCLdjSXSHVlbri46lBtcDKqApPQmRw+FXRIlWF62eystjW3vBGrul/KTC+yY5aYW96IaO+arJZ3cjAz+ZzyBigoaIxusGj6NV0iroW3l4P5rpxfpswBDXPLG7Ghb61HCUfORLguktKkJW7uG04O5kaMJu83N+dMS3wHtB590GhXsiMryXG/7kOf24uKQNWo9lusvND+hCj3Xlp7SoFLQwrFvPCeiPa+WfD9KijMLvcYiEYIIYQQQkgOYYweIYQQQgjJCzl4L1u07LGXKEbTT94DlSZGA4CAo3DRUQo/e8T8jvmelRrfPtO+26jlddI8rzHJsag5fVaDfb0qn3Kh8sLHJU5Y5mTG4R3X9Zi4eNIFnnwTeM9+/jbf2auxvdOc1xCP+tvIYcf5Wy4sSFx6BsVolliILMQQJc3Cw8xiNAB44RHguHMBAHvNULhoscItz5jboH+u1Ljs3f52ubFloN6ZaPSSNG6OmjNsbVFwJGK0uuzXIVbU0nOgBTEanrkXmDd8MjGlFBYvAH54nvr/7N13eBzF/T/w9+zd6Yok6+RuuUm2sXGhGJteDMGGQKhOIAmEGkIKCakkkMYvvZPeviGEkEYgQEJCTQi9JxTTYmywbGNkY2zJRbqTrszvD+ns0918ZndPp9NJfr+ehwdpZ3d2fNrbnbudeS8+8idv46t2HT8P3ya3Y9a+nuqiwacmNdtHzj1yG3QmAxUIYPYEczAaAKx6A5g9YTBaWOw1YVh7s7PJXDB1r9J2NGo0moWwUVM4W6cUbJIbp1IXZ2g8UR81ZyG0EIyGR+8ATn1fv0XNYxW+dhqswWipDHDn8xrnHOr9fdYp5PvWunRhdVurucDtc5nJxOneg9HYtyYTt2C0N14zl0+cxusSANU8F2ieC/3ys8BtvyleYdWz4razLcFoG7cDT7YCh8607186D0VdAhp1106gw/wAaeu5yBZYHWYwGlG1GMHfyBMREREREdFI0m0J2IoMQTBaVAhGS2TMk8r9BIT1rm+ux0bat0lnRhgFJFg2+nREA96/1Ktxwjh+9Ds8rz+v9gCMrdl9BzjomENUUll7MFoy2+l5n26kgAAMMCzGrX4/f0ebZDaBrJafhui9nvK0Z6jMie2DieEp7itWgf3qDkZD0NtTZiJODIvrjxzkFlGpjjIEiQQQxOENS4egNcCCukUYExrfb1lI1eDQhmOHpD0SRwVwZPz4ouWHNSxFjePv5vWR8bdCFTyPqDkyG9PCLnfTqsRhDcd6DjsFzMdcKRqCjdi/7tAB1RFUQRzesGzX7yFHvhOZ1vZHp0qBqEEVFG8+HxZfhqAavGfCDPfrIu25pGDkxpC/YLTCc6ubcr1nssigR1uerO6RW9CyyUDDIquV1hr3d9xhLKt16rGo/ogKt4gq5YiG4xBSbo9yLb+F9YdhVJBPsSciIiIiIiIiIqJhzhm54btq0dFyYdsasegtc+T7R8+sB1a/oaG1fL+l1RCkAQCTGoBIqH/deuc26P/8G/rRO6BXPgVseMVc6USXB3V4DRfiRPuyUQccXbRsemodZvTIDz7790r7sZPPFrDX4jUYzWNwg5KC0ZJ990ZTlvuawcrfoxmOrOej1/ufj96yt7zqSiGwyGSN5Tm0bsFoJYU0lnI9qWvwvw3ZHbBELBJDXgAcY7n2FZowqq++DZYHPe7PsaBVw3C96ifVA2xpAwAcNlM+DmznlHLbKTx7fkyPkExSSlARANTF0ZxaZywyXYfFgKXcWP96jh8g2mXRMWKRdD2qjygsdvnY86rPc1GXEGgYE7qwevMG6MfvBp550LxCqcFoXgW9j7OmPYl0fe79bKl3CImijePNy/dQasY8c8GKh6GT5nHBx+xt7yOv3OT++b6z27yOFNCo33y97zz0gFxpU7NcZnvIVlT47E9EFTd4s4OIiIiIiIiIyqg7a75rp+AMyYTeiBASlhCCuaTlklLCsRLZTtTD28CHLiEYTUEh7ER2/d4YHIdDGo7BsY0uj+40WDb6dIRUCI9suwdb0+abq/WBBsyvXYzTxp3Tb7kUBuMWZJCwBNCFVcQYotKdTRrDDpLC30AabKXgIGwI7snoDFK6+C6R9DeWjhUHjjEYKKuzxpAIDY3ubNJXoJ25PeZ2BhBESAiwqwZ1gVGYX7sIp407d6ib4lldcBQ+OfXruGXzdXgl8aLx7xpQQcyI7I0Tx75z2AS+7YmWNJ6IgArgkW334I2e1zEtMhPLRp+OWTGPj7Ets4gTxSemfh23bP4tXk38DxPDU/HW0W/H9MisIWmPzUlj3o2IE8V/tj+ItE7jgPrDcMKYM3zXs1/9wbio6TLc134b2tNvYk5sXywfd8GweZJTc3Q2PjzlSty95Sa0Jlchi4xxvUk103BE/Liyhtxd0PRxjNk8Hit2PoHtmXbP2yk4mB6ZheNGL8fM2Nxdy20hZWmXwNOUGIwm9/1mRvfGJZO/iLu23oS1ydXQKC0kNK3Txn6HHJxKVN3aU0IwWtBfMJpECg+T3jOFnzt21aM1urX5s18i22Xcxg+3oGWTkRqM9kriJWzobjWWHdpwrO9QUho+pkRacOmUL+GOLTdgbXI1MrAHlQ5UQ3A09qk9EKeMO3tQ90NERERERERERERUEY4z1C0YPMeeCXznEnNZ21ro7gRUuPgBpicsABwFZIVbKrM/n8WS2cBNH3Qwurb4nr0UaNU8ZvfPWmvg+u9D/+JzQNb9HrBym0zvNVyoZmD3pijPIcUPfHOg8aXNX8Y5k681bvLtOzWee03j+osd1Efs4z2kAJqATmNq6jVPTVRNLZ7WQ1QYj5fsG/dnC0arYTCaJ/sfJRbpW34J9Z7Ldv2+fKHCucI93dYtwAMvaxw123280BohpHFMLVyPv5KC0QIlTOv1GupInqkps+QRATf/Avj4D41F85oUzjlE4XeP2ccTKAWMivQGNuAf18jr+QmBocG1z6HAlFnAa6vlddpagfFTcNGRCpffbD4Gzr46i81XORUZrygFGdUmzBdHz9e7QvVxNL/eaix6vQNIpnS/UFsxYEn3jfWvYzAaUY6ata98Pbr++8AHvmYsuvJkB8t/nkXKPMQYP7pH48qTvbejUzqfFHRhdXcS+hvvA+65wV5hCdc3NWm699F6IY5vIwPp2pubB7ZTCEZjYGd/C4UAYa2BG34MnPuZoqLzD1O4+kGNlZvMm154rcZe4zUOnyX3j8TzUMHbXfd0Q3/zYuCf14t1Aej9Hm/8VLnc8rlMRQY2F4+IyofBaERERERERDQsJIXAq7BjDrsabFHH/AWXqZ0ZnTYGYwHAxJop2NhTPPAmaQgQcAsF68p4D1/rypqD0SaHm/HZ5u97rsfGUQ7eMvoUvGW0/1C1UoPRTK9bztdmXo1YoK5o+TfXfgrrksU3sKUQBykYYWZ0b3xi2teLlr/Y+TR+8tqXjG3VWhcdv9KxvnjUUTh/0seKlm/q2YAvrTEPSkxmuwYcjCa9pktHn4pTCwLtaODG1kzE+yZ/eqibQWVwRPx4HBE/fqibsUtjaCwubPrkUDfDlVIKy0afjmWjTx9wXQvrD8PC+sPK0KqhMTu2ALNjCyq+36AKYfn487F8/PllqS9guQ3hdl1Pa3NQi9RPyJlTuy/m1O7r3jiLx7fdi99uLB7cKAWnElWz7mwSndkdxrLG0DiftZk/e0l9ZKkvOT0yC5+e/p2i5R3prfjsKxcat0lkOhEPjvbYTjO3846J16fQDzcPdNxhXK6gcFT8rRVuDVXazNhcfDh25VA3g4iIiIiIiIiIiGj4USM3GE3VjgJ+ei/0JccYy/X/fRHqI8X3d0JBhZe/6mDW5+TAsvtfBj51o8Y15xffa1orBaONzVv32Yegf3aF/R+Qr6nZXu51wjOD0cpGBYPQRy8H7ru53/J3b78Bl4//GjaEJhu3u+N54It/0/j+O92C0cz39KakNiAoPIyuyDiPD6mM1JqXJ3LBaMJMbgAIMhjNC6UU9CnvBW79dXHhG+uhd7RD9YWExcIK91/mYMl3zOego7+bRddPnX5hPSavCuF6LV6eNdbWalysyhmM5jhArN7fNuSJuvgr0P/3BWOZfm011BTzw0d/c77C/S9rrNsq190QBRxHIfvtD8n7v+SbvtpLg0spBfz6cejjx8grtbUC+x2B0bUKcycBL7UVr7K1E7jlaWD5AYPV0t06u83XwNpO80PNMan0YLSW1Ati8dotwJyJ+e0yr1ebe4C416Baoj3F2ZcBfyj+vIVMBnrzBqhxxf3lt+2r8MBlDg79prkf1N4FbN6hMa7e23wrMdCwsAv75x+4h6LBpS8k8ROmVsNgNDJwDUbbZi5nYGd/M/cBRo0Gthd3dvWvvgic9UmoYP/PNGPqFB76jINxn5C/Hzr1p1ls+LaDsPD5TOw/FJ6HbviReygaAIybAhW0zDuwfS5jMBpR1Ri538gTERERERHRiNJtCUYbChEhGM0UpiUFbAFAY9A8asK0TTJjfg12b+M9GK0zYw5GqzUEhw2FUInBaLbXOuIUP7EUkEPu/AajSSERUv1ZZNGji7+1lf6OUj3Ssdhb18DDWxJCAEzUEQZ4ERER5VFKlRx4mhaCZYNq8J/5Eg2Yr3PluLYSVVp7ShjBDfnziMRvJLUU+iv1YaU+L+Dv846klGA0eH8G5bCxLd2Op3c8aiybV3sAxtZMNJYREREREREREREREe0RbA9NcUb4NKxZlgdQPXanWNQ8Bgi73Ma94T8amWzxa7t2i/n1np6XR6I9TLrvx20yfbQOCATc62EwWnlNm21cfN6231k3u/5J9/t1a4Rbos2pVtdtdxnb5G09KRgt2TeewBaMxvAGz9TUveTCB27t9+sClz/dP1903986IaSxZaz9LrnuTgAdm82FtjAQx8M5KF9dHGqkX4OGSpMlJOrffxGLHEfhK6faj4/GGKB3dACP32XZ/wy3FlKFqZjLWPq2tbt+PGCafAxc/4QcClJOUoBILG1+iKL13GRTF8f01DqxuPBa3CkFLOXG3zGAhqgfNdlyPSgIF8538AyFH79bPhfd/JT3sW9iIFFBF1b/68/eKhzsYDSGDpOJWzDajnZzOQM7+1GOAyw8Sl7hmfuNi8fUKVx6rHxO2toJ/PMluVqp/1B0HvL6PZHbecgajMY5c0TVgt+GEBERERER0bAgTagPq6EZfCSGaWWKJ+vbAs0aQ96D0dyCALqEsDPzuuabnTGnOoLRpACVlEuQQVII8QqrCBxlHkgihTIkfQafKCEmwm9wmd8gMnt4xMDDW+QwC3PQHBERUSEp8NTtui4FGEn1lZN0nevR3choj0+TJqoS7WlbMJrlCbdlIPdtzX3YGhWGA3O/3fRZy69SgtFGXiwa8Mi2fyKDtLFsSfyECreGiIiIiIiIiIiIiGgYkSbYjhDWIJBtQmoQesNhFrnMX+/qATYY5h9vEW4BNeXPSV73sr3yfEoB46e6rKKA+Hj3uhpGe98vuVJzDjAuX5x4yrrdpu3Ati77XbvWN83lLam1xuVF6uL2YMB8USkYre9gtgWjMbzBuzmLxCK9vv85obFWYYblmWArN7nf9d3SaV6nqSC3R2sNncy7D245N2KcJbHNb8hZrN7f+uTd3uZzEwBol+vP5EZ7vyAeBfD6q0DWEpA1e39rHTREjjhJLNJtrbt+tvV/Vm4qX3NsxAARLYwhLzUYLT4OEd2NSak2Y/GagmtxlxSMlmtXPYPRiPqZu1gs0utXWTddPF2+Hr1ofssaycFou+vXmQywxkPqLAA0NXvfec4kH8FoDB0mE7dgtJ3bzJsxsLOIOmiZXGjpJy92eRuv3Ch/PhPPQ3kfpbXWwOoV9p3kWPr6AFyC0eS5ekRUWQxGIyIiIiIiomGhO5s0Lh+qcCY5TKs4RMoWsNUYNI/GMG0jBVTluAWn5evKmkPUYoHqDkZzCzKQgsAiAfkLSTnkzlyXhnmAghK+QLcGl5mC9KR/g3Csh1SNGB7hN9zNRDquopbXlIiIKF+p13UpOE2qr5xswabdLn0yomojBaPVBxoQcvwNvJfCgLUQHyb3bc3vMaWU2M8sR+ivWyCjifRvG64yOoMHO8xPox4bmoB5tS4DQYiIiIiIiIiIiIiI9mQjPBgNAHDM283Lt22BXv2cuNlH3uL+2vzqoeL7Lh3CLaDG/Oypp+5zrXuXcZOhvEyQ9xAKokoNDiGzQ08AmlqKFp+w807M6llt3XT1ZnvVrUI2VXOq1VvbTn0fVNjjQ3qlydGJXDCaMJMbYHiDH/sdIZc9fFvRokuPlc9Bn/6LxrPr7fd93c5FOp1G9seXQZ88BXpZI7Lv2Q/6gb+JwQoAgPpGsUgpZZ+EX0gK5KMBU5NnyoV3/QH60TvE4rjLEPbGWkDf+BN5hSNOhproIwCGKkYt/6Bc+K/rd/149sHyuee5DcA1D1lC8cpEDBAxjf+ui0OVGEim+gKOpGvrw3mX8kxWIykM0dnVLgbQEPWjbCG9t/wSOm1+CCYAHFTcxd7lx//WuPDaLBI97mPgElKgYf4Qwyf/6VoPgN5+ztjJ3tbNN3YyEDDPjSkSHPyxxDQcSdfmXDBah7mYgZ3FjjtLLNLPPSqWLV+oMEX+KITL/qLxUpv5nCQHNOb90iE/LLqQOukC+woMRiMaFhiMRkRERERERMNCtzYHUIQdj4NRykyerF98E9E2gb8xZA5GM4VyuQWfdRlCtiSdGXMwWm2gOp4qFyoxQMVv8IKtTKpLC/eEpK/PbaFsfoL0ogHzwBZreIQQ7uaHFMhne02JiIjylRqMltbmgRyVCEazBpv6CKMlqgZbU+ZZAlJIs5XPyT7SZyFbyG7MMfd7u8rw3nM775iMtGC0FTufQEfaPDPkyPgJcBRvHxMRERERERERERER7cnUB74qlukLFkN3mx9w+s4DHfzhIoWDLZPyv3abxvMbdt970VqjXRjeFI/23pfSTz/g3uh8XgNmvISeMRitrFSoBupn9xUtDyGN+1uX4h3bbxK3PetXcrCM1hprhHnRLT2txe348p+A8z4LTN0LmLEA6n1fhrr4y27N300KqMqkoVM9QEpIlACAoL8HV+3JlOMAp11sLmx9CXpHe79Flx5rv8951HeyeHOHfO+3Q3hGXi74Sv/scuCGHwHb+g62tf+D/vw7gUdul3fqFvrjNfQDACIMRhtM6pJvimX6irdDr3zKWNbgEozWkNoK3PUHeb//7/ee2keVpw5cChy41FyY6oFuawUAjKtXuOZ8eSzNRddp3PL04I476ZSCjEzjvw0BpZ719YtahGC0Pz6hkcn2/lulcKX8dikGoxEVO+8KsUj/8vNimVIKn1gmn4uufUTjgmvdz0WdQnhaLhhN79wGfdmprvUAACZMhfLT1+mjgkFg/BRvK4cYOkwG0hjX3ESwHUKwMa9LRVQkBux/lLnwX3+Gzpo/p8fCCo9cbv98duS3s9iRLD7nSP2a2vDuv6u+Vv7eqp93fwJq+t72dRxLOxlOTVQ1OLKdiIiIiIiIhoXurHlAVdhxuas8SKLCZP2U7kGmIMRDCroKqRrUBUYZy0zbSAFVOX5COrqEYLSYU+e5jsFUaoCKGLxgCTeRQ+6EYDQhGEEJX7OEVUQs8xOkZ/03iOFuAwuPSOsUUtr8zTKD0YiIyKvSg9HM16BKBKPZrnOJjL1PRlRt2tPmWQCNoXFl3Iu5j1zW4OIyhP5K5xUrKRl5mHqgwzwwP6RqcGjDWyrcGiIiIiIiIiIiIiIiqjrjptgflmMJAXr3QQ4evSKARZZsst88svveS6IHSGXM6zX2Dc/TN/7Y1tpiXoPRmprd15k0gPAQMlJjJkJd8aui5RMyb+D6DedgZmy7cbtVbwDpjPm+XXsXsN08vBTTU2sNC+fAuehKOH98Hs5v/wt17md6Q7i8sgVUJTuBVLe5LBAoKRxiT6ZmL5QL77mxaNE3lsvnrh1J4E9Pyvd+24Whlo0x9Abe3f7b4kKtof90lXnDcBSqxiWsIxC0l+fjpPzBZQtMyGSgb7vWWBR3GUbb+MZLcuFBy6DCQ/NwcPJGvf2DcuGduwPvjptnf8jgrx6Qwz3LoVO47NSaxpAPJPS1b9vpqXXiKvf0HfJSqEm/dtU3lN4WohFKzVggF952LXTa/LBhANh/qr3um57S2GwJiQWALiloMZfte9/N9p3kG8j5ZqLHbd36WrRncgtG29luLq/jdclo/yPlsmfkIPspjQpfO13uI23t7D0v5ctmNZLC1ILa/Izxu6+X25RHveUd7ivZgs3DnDNHVC0YjEZERERERETDghQKFhmiYDTbfguDraQwgKgTE+vp0d1FAWuJjD3kqstPMFpWCEYLVHcwWsolQEUOXpD/XnKomL9gNIlSStx/4T601kgIgQ+2f4MUHpFwCdNzk7QEv9iC2oiIiPKVel2XgtOGOhhtoMGjRJXWnhKC0YJjfdelYB6oIGWHldI/jwXMA7r9fN6RpLU8OEzit/9fzdq612Nl13PGskX1R4jB3UREREREREREREREe5SjTjUvr4kAtSN/oqwK1QBTZonl+pUVrnXMmyRPfl2xfve9l3bLc3HiudtJGw3BVjYeJ+Cr5rn2FUI1QBOD0QaF5bWfpDeLZa8J89fXmG+HAgBaCoPRasID/7tGLOPmEp3yxOoQgxt8a5knFunVxeci27kHAJ59TS7rEIZKxmMKaGsFOs2hfdi+1by8Lm5tCwAg4GP8i+24o4FzuyasMl/7Rrnkmo3etkYutIWxUXWwHBf5/aGJo3pDFCW2c085SEFGtdrQ0XI71m0mTAMAzO9+UVzlmb5+nhTW1tuuXDBaY+ltIRqpbO/RHe3AG+vFYrd+UCYLvPC6ffdi0GJfN9bU/xIN5HwzfY639YI17uvQnkd6K2gN3Z0EeoQDvd5D/30PpCyfyeByTpjvcl56puCUtkMIPAeAur5+t9ZaDiPPFwgAk2e6r9dt+WIqWh3zK4mIwWhEREREREQ0THRnzd9whZ2heVpW1JGfvpYsCLaSg65i1noKA9YKfy9a3yU4LV9nprqD0UKOecBHOmsPUJFea9vrLIeKSa+3ORhBCono3b+wj4L2pnUKGZjDGmz/BjncbWDhEVKQBWAPjCEiIsoXEoLMpOCznJRw3ZfqK6eQExID2AYaPEpUae1pIRgt5D8YzS/p/WLvn5vLEmUIRpMCGR3LLdORFIz2QMcdYtmSxhMr2BIiIiIiIiIiIiIiouqlJkwD5i4uLjjuLChnz5iGpY4/Wy5c9azr9uccIo+juud/wFm/yuLe/2kxiAjoDRjRqR5P+8unJk33tuLhJwF1lqC7o06DilXHWLoRx/T+6nPBK98Sy5ZelcVzrxXfu5OC0cLZJCal2/ovXLIcaqABU1H5XieSlmA0Bjf4N+8guezFJ4sWHT8fGF8vb3LNQxrHfi+Db92ZRTqz+1hKpjSSwhCWxhh6g9H88hKsUOMjLC9iOe5owNSkZmC/I+QVnn8UOpMpWhwKql1hMSYt256X93n8WT5aSENB2cI07v8r9JregDDHUTjb0vdp2wZ0pwZv7IkUZBQzjLNRy95Z8n5UqAaI1uGkHbeL6zy/off/Ulhbb7v6OoC2fhjRnqplHjDFcu5paxWLFk4D5jfZq//g7/v3gQpJ791Yrhvr47OZOq7065z182g+P30p2oOIyWjAzg55MwZ2mh0mjyvV6162bnr8fGCs5WuVH92j8cE/ZNH6Zu95yRaevyuEdusmoNvDOP7D3gbl5TNZwjIumWF5RFVjz/hGnoiIiIiIiIa9pDChPuxEjcsHWzQgD44pDNSS2h5xoohY2p/M9N/OFlIFAF0egwIyOiPWVetUx2AuKYjELUBF+ndFAvLrLIeKmevK6qxxuVLy1yzRgHlQSuE+bOF3tmNOql8KivOq1PYQERHlK/W6ntbmsNCgEKBablIIqFufjKiaaK3RnjLPBBgdLF8wmhQeVhganWP7HBSTgtF8BEFLpPNOSMmTEEZKMFoym8Dj2+81ljVH9sL0yKwKt4iIiIiIiIiIiIiIqHqpr/8FmH9w7y+BALDkdKiPXTW0jaqksy+Tyx65Hbrb/JDTnKXzFJbOlcuvf1LjuB9k8fvH5Psw8RigP36CW0uLTfQWjKaitVBX3W5e/9AToD71E//7Jk+UUsCpFxnLzt32e3G7V98Ejvx2cTha6xbzcTQ9tQ5Owb0+9ckf+WytgS2gKtElB6MxuME35TjAKe81F656BnpH/2CDmqDCXR+zT5e9dyVwxc0a7/n17mOjwzIMJB4D9Pc+4rnNu9R5mEQf8nFM2AL5qCzU/5PPPwCgrzSHtISD8jbNO140F5x0IdScA7w2jYaQev9XxTL9oaN3haN9a7nCflPkev74xOCMPelJa6TNw9pRawpGm773gPanvvEX1OlOLEo8ZSz//eMamawWw9r6tcvLeZJoD6OUgvrBnWK5/u6Hrdve+mEH+0+V61+5CTj7avl8JL13a8OATnYBKx6WK8+J1UN99mqoeQe6rytQCw4Blr3bfcUQg4fJQAnBaNolGI2BnUYqEgNmLDAX/u1X0Fo+p4RDCnd/3P757Jf3axz6zSzWaYENLgAAIABJREFUb7WH58f7hhzrG3/s1mTgwKVQV/yf+3oA0LVDLmMwGlHVYDAaERERERERDQvdWfNgKtuE+sFk229hmFRCCCyLBmKICpP+TdvZQqoA70EBtvVigeEdjCa9RrbXOSIEfCUyXdYvaQvJz/qSjxevx0pvHXIQmVT/QINbbMfcUL33iIho+JGCzNyD0czlUj+h3KTwVLc+GVE16czuQI82j1hqDPkPRlO2p+kVLtFafL9IfXBADuAtx3svnRWC0RzbIKmREYz2xLb7xNDuo+LyU/2IiIiIiIiIiIiIiPZEauwkOL94AOpv66Bu2wjnq9dDhfecsTIqGIT6pGWy6YO3utbx3TPsU9YyWeBbd5rvw4SDQGTdc8CzD7nup8ikZs+rqrmLoW5YCfXnl6Cufqz3v9va4Hz7r1CcFD2o1KJjzcsBLO5+WtxuexL40b/7HzdrzM+JQnNqbf8F7/woVO0oP800swVUJTuBlJAoEWRwQynU4qVy4b+uL1q031SFWz7kPmX2hv9ovLyp91iyBqOFeoC2Vtf6iniZRO8nLI/BaINOjZ0E9Yfn5BXuvwV6wytFi3vMz30EAMzoWWPe13mX+20eDZUFh8hlO7dB3/RTAEC0RuGhz8jnnitvHZyxJ/YAsoKT2wnnDnyHM+YDAM7Y/hdxlVueBjqFjFAAiOq+sSvsaxEZqQnTgLmLzYWvrYbukd/4LWMVnvpCAAe3yPXf+F+NlRvN56Qu4b0bqwFw3y1ype/6WO9nqeuehrp9E9QJ58jreqTe+wX3lRiMRia2YLQdtmA0hmBJ1NGny4UugYn7T1W47kLbbDtg03bg6oc02i1TIuO5YcV/+K64jrr6Uai/b4Bz1W1Q9Y3Wfe5iCUbbk74HJKp2DEYjIiIiIiKiYaFbmMAddiIVbkmvgAqiRpkHJRSGUUmTzyNODJGA94C1ZMby+AMAXZZQrXydWfmLu2oPRku5BKhIQWC2EC8p9CSLDFK6+O6OFoMR5C9rpWA2r8dKbx2W8Aih/oGGR0ivZ0jVIKAsj7kjIiLKI17XhYCinLThOmyrr9zE4NEMg9Fo+GhPCbMAAIwOjvNdnxyMViyle5BFxlhWUt/WYxC0TSmBiz6ykquW1hoPdNxhLKsLjMKi+sMr3CIiIiIiIiIiIiIiouFBjZ5QniCl4WjKTLFIP/eI6+YtY+X5yG7iMZQWihYMAeOn+NpEKQXVNANqzsLe/0aN9r9f8s9yfM1Kvmzd9OHV/W/gbdxmvqE3PbWu3++qyZIQ4YMKhnqPNZNkJ5ASEiVqGNxQkskzxCL93KPG5bPGe6s6dyy1bZPXadxiPx5FXibih3wEo0UYjFYRE6YBgYBc/txjRYsOEk4tjtKYll5fXBAIAuP8XatoCE2abi//29W7fqwNK9QJb2spbGigbPXGdP8xbspHeKwoPg6IxDAzZQ79A4Dbn9Niu6LZLji5cfgMoCGSTZgml61b6br5UbPtH8Ruedrcf5ZCDWtrFPQK+fOZOvKU3s9SLfOgbNdRPyZMAxyXGBQ/fSnac9iC0XYKwWiBIBCRx7Tu8Zrkz2RY4f790Kzx7l8OPbJao0OYTlcXBoIB1RsMKf19J8+AmnMAVNznA6OzWX/rE9GQ4AxWIiIiIiIi8u26th9ic2pjRfe5sec14/KwJfBqsEWdGHoyxU9cSRSEZUjhVBEnhqAKIaRqjAFchaFUCZfgM69BAV2W9WoD9Z7qGGwhIZhACjLIKXztc2zBCxFLWSLbhRqn/w0TKRjNFhIh7b/oWBH+NgrKeqxL/4aBBqPJrycH2RARkXdBIUzT7bqe1uZHqkr9hHKLBqRgU3tYLVE1aU+bg9EcBDAqWL4BhqYesq0vauuDi33nAfZtATloWQq97jX8k9FWJ17E6z3rjGWHNSxFyOEkDCIiIiIiIiIiIiIiKrDvEXLZzT+H/tA3oMLyeKb6iMJx84C7XvC/68YYoNta/W94+Em9oVVU/WbuAzS1AK8XB6ucvuNvuL7hneKm/9sIrNuiMW1M73i9dmE45JjMlv4LyhEIkxOpNU+qT3QBqeIxpQCAIO/JlWTWvnLZ+lXGxfMmAXMmACs32at+9c3c/833hMfUArEtraXdMZ4w1X2dGu9hHirKMZuVoMIR6ENPAB76h7Fc33o1cPxZUHmBDCcsUPj3/4qPkpPHrkHY9FDICVPLFxpDg2/s5N4wzLQ8zk1rveuYmDYaeLGteJ2tncCK1zT2nVJiaqwgaRl+Fy0c41aG66BSCnpSM5auvUdc596VGsfPN5fV5s+F8BIgSbSHUktOh77vZnPhxrX2/hGA5QsVvnOX3IN54GWNy08oXi6FGsZqAKxfLe9w3sHW9pRCBUPQ46f2/nsl7F+TkXSt1cBOIRG5vrFf/44KHPpWsUj/+QfAWZ+09m8PbAYmx4ENQi4dAKzYALR3ms9bjbkhxRvXyk86nneQXDkRDXsuUalERERERERExV7rXoNXEi9V9D9TcBgAhFWkwv/63SIB84T9wkCzwt9zchP+vYZmuYVwuAWn5XRldhiXOwgM6euZL1hiMJr0WpcSvCDX5z8YTQ4u6yz43dz+sBOFo+SvcaR/Q1IINvNKfj2HLpCQiIiGn5AyDz5wu65LAUZSP6HcpOud1z4XUTVoT5mD0eLB0XBUOQfaFveRpb4kYO9PSqGE5XjvSecdWzBYdgQEo93fcbtxuYLCkfHjK9waIiIiIiIiIiIiIiIaDlRNGNj3cLFcf/R4aGlScZ8fvNNB8xj/+47HALS1yiuMnlC8bMosqA993f/OaEgox4G64lfGslN3/B3nd1xn3b75iiyeWtt7H69DGFbZmGnvv6CcwWhSSFVipxyMFvIegkW7KccBjj3TXPi//0Iniu8jK6Xw6/MdjHbJEvvabb3H0BrzbXW0jAX0H77rp7m72+DleKvxMV43Io9zpfJSH/62XPjcI9A/+Hi/RR86WuHEBf1XmzUe+PajJ5vrmDh9gC2kSlKBgHvQ4cqndv34mwvksd77fzmLR18p7xiUbvNzRwGgOJivqbk8O53UjPrsTpy57UZj8dotwPOvmzetzY0lqglDhatjzgJRVTp6uVik//wj180ParGX32kIr85ktRi2GHO6gWceMBcefBxU0Pzw5AFz60/5CJmlPYgUcKY1sENI5qprGLz2jABq1GigdpS5cNsW6M+dAW0JkQ04Ctde4KDecunfvAN4aaO5LN73UUjf9Qe5jbY+PBENewxGIyIiIiIiomFtKAOaxECzwrArIZwqF5YlhWYVBgm4BQGkdA9SWeExLXm6sjuNy2OBuqp5ykXpwWjmUU5RIcQOsIemmf52WgpGs7x20v4L21tqEJkU0icFrXklbS+FVRAREZmUel2XyisXjObt+k1UzdrT5hHcjaGxJdVnCwMuZHuvRB25PymVJTKDGIxmPa8M72C0bemteGbHY8ayBbWLMSZkmDhEREREREREREREREQEQJ3+AbnwhceBO+zhVXMmKjx7pYO/f9jf9LVGWzDaWZ+EunEV1A/vgvro96Au/S7Ud2+FuuYJqKYZvvZDQ0vtfyQw/+Ci5UFk8Ku2D+D2Wb+1bv/5v2YBAO3CELl4tiC4r5zBaFJIVbITSAljIULyw5rITh1/llwoTI4/bKbCyq84uPH9DmosWR0rN2q0CsFozWM08Lz5XqsrL8ebn2MiwjGblaImzwROvlBe4eafQ7/y/K5fozUKf73EwaOXO/jxuxVu+4iD/17yJmam1pi3n+SSVkPVx+X9rK/66K6fD5hmr+qKm7NlaNBuUogRAER0sv+CcoXy9dXz400fF1e5bYV5rE1M91206+LlaQvRCKWCQWC/I82FzzwAncnYt1fK2v8BgJc39X+fJizTkGLP3iPv65SL7DsaCJfzr2LwMJmUEoxWz+uSG3X+Z+XCh28DHjE/vDfn2LkKq77q4LMnymOQv3e3uf+QC0bDdd80bxgfB2UK0CeiEYPBaERERERERDSs1Qbqh2zfXsMypLCrXFiW11ArLyEcXS7haQDQmTEHo9UG6ly3rRQpmCBlCVDRWluCxeTws7ATEQMeTPVpLQSjWUIipP0X/o3FIDJLcERv+eAEo0nH3FAGEhIR0fATVOYRFmlteWQlhj4YzWsILlE125rabFzeGCwtGE1iCg+2BZmFHfnRb1IIb7dOIqPtg7rcyOcVecC5FIw8XDzUcTeyML9uSxpPrHBriIiIiIiIiIiIiIhoWGmyh7foR+9wraI+ovC2fRUOn+l9t/GYEoPRVMs8qJow1AFHQ73jw1BnfATq4OOhogwNGpb2XmRcrAAse+EnqJdvK+LuF4GetEaHMESuMdO++5fRE6HCZRzzJoVUJTqhU93mMgY3lG5is1ikH79LLBtTp/D2RQo/eKc8tvP25zReazffE25RGz03sUhTs/s6fo4JnuMqSs2Yb1/hsTv7/RoMKBw8Q+GSYxycsI9C3QpLgIyXY4Oqi1vQ4Zbd54qAozDDMiTngVXAjmT5xqEkLcPv+gWjhWqAsU1l2afqez3GZLZi/+SzxnWeWW/etjY3rr2uoSxtIRrRJlnCDNe84Lr5h462PwD19uf6n4s6bcFoz98nF5YzfLiAcqubwcNkYglG0zuFYDRel9y5hPvqR++0lgPA+FEKnz7e+8OZcxpjgN62RV5hio8vnArttb95ebR65lcSEYPRiIiIiIiIaBiLOjG0RGcP6f5NEpnCQDN7WJdUT+F2tmABP+t0CcFoMad6vriTAk+kIAMA6NHdyML8JC3pNQYARzli0JcpWEwORpC/oJWPlf5/r2RGCkaT2w/YQvoGFowmBb+4tYeIiCifdF23BZ4C8nVfClAtN68huETVrD1tfrT16NC40iqUBo0Y2EJ2HSXforT1NQfav5XOOzWWYLThLKPTeKjDPBFgXGgS9o7tV+EWERERERERERERERHRsLLXfkCDJd3jFfcJ+TnL5nu/zxQPdgM7t5kLB3HiPVWeOnCpXPbqC1g6V942q4EHVwHbhFv4DZm8Yyg+psQWCoSQKp3sAlJCqkSoMmMdRqRplnHCG9e5br50rnz+WbMF2CoMu52Q3uRat1EgAIyf6r5e2JL8V6jGx7o0cIuPtRbrtlb79q+vKbluqj62axUA4I310OndCWVL59n7POu2lqNVvZKW4Xc1Ou96NGEalFOmOIG84NzFif/62jSaG/dT31iethCNYGrRMXJhW6vr9mcssp+L/vSERk9697yYTiHbFwBqt7wqF7a4hIkOhNv5d+ykwds3DWPSsa8BKRiN1yV3+x0BBC2fadss/d88o6L+g9Fs4fkAgJkLfNeZo878iHn5R79Xcp1EVH4MRiMiIiIiIqJhKaiCOHfiRxFQwSFrQyQghF0VhEklLIEAgCU0K1sYsOYewiEFWeXrygrBaIEqCkZz/AejmULMcqRgE7dyP8ELtq9nvQarSP8G6VjLkY6htE4hlbWHztgkM9Kxy2A0IiLyLiQEDqW15RFzkAOMpKC1chPDa4UgU6Jq1J4yB6M1Bi0TWCz8DElwC4iWxBz5SdeFIdR+iYGLjhyMltXm8OXh4Nmdj2Nbpt1YdlT8rdaAOiIiIiIiIiIiIiIiIhWqgbr4y/IKWzdCP3anp7ref5SPYLSdr8mFDEYbWQ4+HgibH2oKAJ+t/wfCliGiy74v38trzO6e9K4+elVJzRNFhHueiU4gJaRKhMLlbcMeRAUCcjDG6hXQafsYyVnj5fNP65saHcLQ3PgdP/faxP7GT4GyhQbk+DkmQiPzYV/VSjXPBU66UF7hb7+ybm8NTpu7uJQm0VA6/CRgvyPt69zww10/fnKZwljLkPyHVkkP6PavWzj9hbPJ/mN8ytl/mjh914/NqVZfm9bqvnE/dQ3law/RSHXM28Ui/fBtrpsfMgN4xwFy+ZOtwNwvZrFyY+85qcsynDf28uPmgn0OgwoO4nyueQfay/nZkEykh/9qLQew87rkSsXHQp17ubxCW6vnuq44wV84WjwG4Il/iuXq/M/5qq+fJacD+xzWf9m8g4Cjl5deJxGV3dDNHiciIiIiIqJh66j4idiREZ6UUAGjAo3Yu3Y/jAmNH7I2AJawjIKwq6QQVpbbXgzNypv0r7X2FNLV5SEYrTNjDkarraJgtJAQeGIL+bKFlEh/q/xyU1yAKagsC/NgKmXJn496DNGT/sau7bcEpyWznQg5cev28ralhVkQERHlk4LMbIGnAJAWrvvBCgXjyiG4DEaj4SGrM+hIbzGWNYZKC0az0VpD5Q0qkd4rbn1bWyiwlyBoGzEYTQhwHO7ub7/duDykanBoA59CTURERERERERERERE7tQp7wWSndA/vsxYri87FfhnO5QUFNVnwiiFq89VuOg69zCQ+L+vMReEaoCxTa7b0/ChgkHgd89AnznHWL7wl2dixXWbMOcb9b7rjuePcV24pNQmmkWFhz0lOwEnYC5jsNWAqPOugH7yX+bCP/8QOPtT1u2/eprC5/9afP55ZTPQLgwDiWeF4IRFx0DtdwT0NV8xl09qsbZlFz/BaDUM1qs09emfQf/vP8DqFcZyvX4V1NS9zBu3tZqXn/HhfuMqaHhQNWHgqtuAG38M/Qtz8Ib++WeBE86FahyHvSYoPPUFB9M+Yx5v/sE/aLy/TJelZNq8PKKT/RdMmm5esRR5QUQtfoPRcuN+6kob1060J1HhKPTcA4GXniwuvO1a6M/8wnpNUUrhTxc7ePaLWax6w7zOmjeBC6/N4uHLA+gUsn2BvPdu4T4u/ILtnzBgSinoeQcBLz5hXqHJY5+L9iy2YLQd5ofM8rrkjbrg89BvbAD+YfjOZtN66EymN9TaxfuOVPjGHd6DYuNRQP/kSnNhwxioAXxPpKK1wHdvBf71Z+iX/gs1a5/ePl2seuZXEhGD0YiIiIiIiKgER8SPG+omVAUpHCp/sn4qm0Jam+865raXQ7N2j7bo0d1iIFe/bTLuQQFdQjBazKmeL+5KCVCxhZTYwhUAb+F0uwjfv9rGKkj1p3QPMjqNQF/AixT04BoeYSlPZBOoR2lf1IthFi6vJxERUT4pyEzqI+0uF4LRnMoMFo465qdSewmrJaoG29Md4meIxmCpwWhyp1dDQ+WVlxqyG3WESQQoQzCaGLgoP61bSx8Aqtzr3WuxKvGCsezAUUchVkXB2EREREREREREREREVOVOOBcQgtEAAE/8EzjqVNdqDmxWEAdf5YmntpoLJkyDcuSHV9IwNWFab2hYqsdYPGvlP3Bwy7vx+Bp/1TbmgtGa55Y/iCgi3NPs3AFEzGMNfIVgUbG8IJ5C+sFboVyC0VqEW+QvtcnbxDNCcELzXGDBIfKGlrb24yfsjMdPxSmlgLMvg/7SOeYV7r0JOPdyc9nGteY6m2aUqXVUaaomDJz9KejffxvYKYQmPvg34JSLAABTGhUOnwk8/Ip51R1JjfrIwK9NyZS5XxXR/ROOlNfARg9UfRy6Lg7s7MD0HvOxLonlxhLVNZStPUQj2vS9zcFoAND6EtAyz7p5wFG48mSF9/xa/gz26KvA+q0aXeauOAAgqhPmgkoEk+17uByMFh83+Pun4ccWjCZcwxWD0TxTb/8gtCkYLZMGNr8GTHQPY53SCAQcIOM+RRJAQeh5ob0XeavEQsXqgVMugurrxxFR9eG3wUREREREREQlkibsJ7OJvJ/l4IxcuJRcz+5tbaFf+bo8BAV0ZYVgtCqaGF9KMJr0Wis4CKuIdX9yOF3x6ykHI8g3qG3BZvl/22TGfNPIPTxCLk8OIDyi1DALIiKifNJ1PWW5rgPydT9kCTAqp4jQR/PaLyMaalvTm8WyxlBpwWjK0uctlDCFDMM99DegAmL/vctDELSNdN4JWQMXh2cw2v0dd4hlS+InVrAlREREREREREREREQ03Kn6ODB1L3mF9as81TN7AhD3MOyoUQojGjfZ035oeFGOA+y9WCzX61fh4Bn+w2NGZbf3/uBhYrZvceF+6xvrgZQwFoLBVgMztkkue9OSbtZn4VT/x1CjMAFfzTsI2Gt/IGB+UKCaKx/P/fgJRgtW5iGCVGCuHLSg1682L0+nes8FJpMG4XxElWV5fxceEy1j5fNO65vlaU5SuOSEC4LRPAc2ehXrnXPQkvIXjFar+8YS1TeWtz1EI5SyXIe8fgY7qMW9D7TqDaBTCEaL6gQcafzc+Kme2jAQ6i3vMBcccHT5w49phJCOCw3sFAK26hmM5pnt83Wbt35BMKCw2Ee3OJ7YKBfO2s97RUQ0bDEYjYiIiIiIiKhEEcf8ZL9E3mR9W3BGLlxKrKdfYJa3AI6Eh6CAzswO4/LaQL2nfVRCSJkHcdgCVKTXOuJEXW96SEFf+SF3ORrmx1I4lq9ZpPA7oP/fVvo3SMFtOdIxBMiBFF6I7WEwGhER+RB0hMDTrOURc5CD0YLKPLC03KLC9TWtU0hl7aFuRNWgPWUeRVmjwqh1BqPv338AlBiyG5D7rjnRgHt4dCmk80qN8PkDALJ6+AWjJTJdeGLbfcaylsgcTI3wKdREREREREREREREROSPetfHxTL9xD891REOKVxyjPvk9YbMNnMbzrvC035o+FFnXioXXvdNXDz6CdT6yJBqyHQgkBvn19Q8oLaZKClgpq0VSHWby0KVeQjcSKUcB1h0jLlw0zroNS9Zt997ksLBLf72GReC0bDkNKj4WOCt7ykuG9sEHHumtx34CcvzE6JGZaMmz5QL21rNy99YD2TN44wxyedBSFVHnfERufDem/r9+um3yn2eA7+exfbEwMejdKfNyyPZZP8FZQ5GU2d/CgAwPvMGoj7G8sT6Hvat6hrK2h6iEWvpO8Ui/aNPeapi1niFU11yg678WxZdPeZzUkyanzTnAKhgBcby7r0I2O+I/suUgjrTcj6mPZs0d0xrYIf5uwbUMRjNK1XXIAac6t9+3XM9H1vqPdgwvkUOglSnX+y5HiIavhiMRkRERERERFQiabJ+v0Azy82+XLiUFJqVv60tYC1fV3an+zrCzYmYJbyr0qTAE40sMjpjLJNeay8hXtI6iax70JwXtvCHRL+/s3l/UnBbjqMCCKuIa/1+iWEWDEYjIiIfpMDTtBZGZvWRAlGDqjKDhSOWvlG3ITyVqNq0p83BaI2hsSU/LdG2VeHQKFPIMOCtLyn1z7sG2D+XAxdtT9cefsFoT2y/D906aSxb0nhihVtDREREREREREREREQjgTrlvUC0zlz41H3QPUIYVIEvn6Jw1Zn2e1WNWXMYkZJCkWjYU0efDkyfI5bv/fWluO/cDag3D5Er0pgXaCWGmA1EkxButHkD0GV+cK2vECwyUh+9SizT5+4PnbI/oO/Lp/qbSms6F6nf/Acq3DseVH3qp1AXfhHYa//e0KFl74b6xQPeA39qPB7QABCy3dOmwaQu+Za5oK1VWL5Wrmzi9IE2h4aYOvSE3pAek03roNs37/p1wWS5v9OTBs75tRCg50NSeLZnpHDMyKQyH3unXASgdxxRc8pyzBeI5cYS1TOAhsgLNWo0MHUvc+GmddD/vN5TPddf7FjDGh9+Bbj5KXNZrTbPJ1Gf+omnfQ+UUgrqO7cCZ3wYaJkHHHgs1Ddugjr8pIrsn4YhWzDaznZzWT0DO32RPmP/917o//zbUxXvPNDBje93EPcwNa3hHz8yF0TroCZM87Q/IhreGIxGREREREREVCJpsn4ym4DWvZPnbaFUESfa7/+FEhlvAWv9t7EHBWit0ZU1D7yJBeo97aMSbIEnUphB/uuVz0vwgrROMlMc5qCFYARliYmwhbP1D9Izh0d4CncTgvq8HjuFtNbiaxoNMBiNiIi8kwJPpWu6W7k9wKh8otZg0/KEpxINpq0pIRgtOHYAtXoPVJM+C3np28r989JDfwH5vFLjyOcVqf9frbTWuL/jdmNZXaABC+sOq3CLiIiIiIiIiIiIiIhopFDnf1YufOxOb3UohY8tdTC1UV4nnjEEo8090FP9NHypMy+VC9MpLFxxLf77eW9TIePZbbt/mSSEmA2ENBFca+C11eYyBlsNnFuolMt5aOlcYMlsb7tydAb1hWNtIzFg5oJdv6pgEOqCz8G55nE4N6yE88VroSZM9bYDAMpPWF4Ng/WGzDThoHlzgzmMr63VvH58HFRMCBilYUWd/gG58N839vv1GDnzE/94Dti4bWBjUqRgtLDOC6yNxID4uAHtp5AKhoC+IBI/wWi1uTF3dQxGI/Js/yPFIv2P33iqIhxS+OZyB2csksf+3fAf8/koJs1FGYzwYYGK1sK59HtwrnsazlW3Qx3+tortm4YhKRitayeQyZjLeF3yx/L+17df57maty9S2HyV4xqA3mj6jggADn2r530R0fDGYDQiIiIiIiKiEkmT9TWy6O570pI0cT+sInBUAIA90MpLwFq+LpeQjh7djbROG8tigeq54W4LRktp81P9pAAwLyFe0jqm1z33NymkpC/QAQRUEDXKPDAlv91SsJ2XcDcpYMLrsVMopXuQhfmLfy/tISIiypGu67ZgNK212GcJWfoJ5WS73klhpkTVpD0tBKOFBhKMZtO/nyz1z730JWPCZyS3zztuhjpwsRJeTjyPjT2vGcsOb1iGkFOZcygREREREREREREREY1AM+bLZa++ULbdGCe9VnDiPQ2RFsvxBQCvPo9po4E6D/lQ8Uz77l/cwrRKYTse168yL/cTgkVGKlprf+1dzkNKKXzlVG/Tacdm3ix+bNjE6dZxor7V+LhPzeNn6EjHXDYLvLG+aLFuaxXqGYRzEQ0NS39Iv/p8v9/nT5bPGVoDL7w+sKZ4Ckab1Fzec1devQAwP+m9D7gruLSeATREXqkyfgabP9n//muluSijRvuvjKgizNc83bXDuBwAEBs1SG0ZoWznpTX+zksBR+HQGfZ1xma2GJer5nm+9kUb22FZAAAgAElEQVREwxeD0YiIiIiIiIhKJAVRAbsD0eQwgKhrPVlk0dN3Y1IKzCrktl5XZqdYVutUTzBayJEHfEghKVIAmJfgBWkd099PQ3o6l/2msbSP3N8sqzO7AvUKSeF5XuqXjkE3tsCXaN7xS0RE5EYKRktZgtGyyEAjK9QXLEu73Nj6EIkBhjMRVYIYjBYsPRhNWfq8hf3khBASbfsctXsdc/93oO896bxTYwlGk85F1eqB9tuNyxUcHBk/vsKtISIiIiIiIiIiIiKiEWXxsWKR/uN3y7abUdntRcvUae8rW/1UpRYcAkzdSy5/4G8IvfwfnHWwe7hLPLNt9y9NzQNvWwEVjgJjJvnbKDRyHtY0lNQJ54pl+rpvuG5/xF4K7zrQ/RianlpXvLDcAY01Ee/rMhht6FjCFfW75iH76y9Dp/PGIrz0H/PKDPgcOeYcIJfd+mvodSt3/XreoQq2TLJXNktj0r3pNg+pRySbNx59sI69vnrP2fZHONr8IO5CU1N9YYJ1DEYj8uzYM+Wyjs3QXfL8oELv8dCPLhTVhjGAsxcOTuAiUTlIx2bC8l6Juo9ppd3Uce+WC1evgO7plssN9pogn0/CThoT0xvNhcdb2kFEIwqD0YiIiIiIiIhKFA3YwjK6+v2/UCQv6MoeupELWJNDqvqvbw8K6LQFowWqJxjNFniSzprDDKQAMG/BC0JombFO801oW0gEIB8vXv7GXoLIxH+DEEjhxnYseQmbIyIiygkJwWhpSzCaLTRNClort4AKoEaZB5Z67ZsRDaX21Gbj8tGhcaVX6mNAkxgSbfkclSMGo3kMjJZI5x3beWVgQ1Arqz31Jp7d+bixbJ+6xQP72xMRERERERERERER0R5PBUPAwceZCxOd0Lf+uiz7CRgeXKMWLilL3VS9lFJQ3/uHdR196TJ8f+GzOOcQ+33LxmxH7w91DVD1jeVqYn8+g2YUg63K45zPyGU93dC3/NK1it+cr3DWQfZjqKWntXhhucOF/BwTNTx+hoqK1gKN4+UVrv0a9P87BwCguxPAk/8yr8dgtBFDKQWc8RGxXH/waOjX1wAAFk1XuP598jT+D/x+YKNSksIQu4jOCySxhPsNhOo7puf3vISbXnsXmlKvu26zK3SyrmFQ2kQ0EqnG8VCfu0Ze4eafe65rxjiFr53uL9Cs1jAGUH3+N77qIKooaYxr0jKvKmIer0pmasos6+cy/Ym3+aqvxfKs5+mhDjjSHL6mGb72Q0TDF4PRiIiIiIiIiEpkC4dK7gq7ksK6onk/W4LR+ib+uwWe5XS5BAV0ZeVgtFhVBaPJwQQp3WNcLgYveAgVk/6WpjqzpQajuexDCtHrbZ/7F+1SwITXY6e4XbagNgajERGRd9J1Pa1T0Np8XbWFplUqGA2Q+wilBo8SVUoq24Md+U9Bz9MYtIwiGIDCt7MYEu0luNglVLhU0rmlxpGfzi6dp6rRQ9vuRtYwUQgAlsRPrHBriIiIiIiIiIiIiIhoJFIHLhXL9J++Nzj3VhYdU/46qSqpSc1QP/23vEJ3AuG//hS/vdDBN5bL4/UaMn3BaIMUBgPAf8hRqHJjHUYyFQxCffR7YrmX81A4pPD7ixxccYJ8DLWkWov3PZTBaAzWG1pu55L7b4F+bTXw4K3iKmowz0dUcWq/I+TC7Vuhb//trl/PWKxw5mL5fLOhvfS+UzJtXh7OC0Yr+7krJ6/ek3fehrWrZ+G97fawpGmp9b0/1MUHp01EI9XSMwHHHAmir/umr6ouPtJvMFrBXBSlgMkMI6IqJgWjJSzzqiKcH+WXOuW9cuGzD0KvedFzXc1j5PPSdGw0F7zlDM/1E9Hwx2A0IiIiIiIiohLVqDAc4aN1YlcwmjlcKj8MQAq0yt/eFlKVr8slBKsrYw5GC6sIAiroaR+VEFJyMIEUZiAFlHgKXhBDyxLI6kzB0tKC0cRglVwwmiVgxUsQme3fUIqEJWQv7CFsjoiIKEcKMtPQyKLwOtsrrYVRWwBClgCjcpPCmaRAVqJq0Z7eIpYNJBjN3uPd3U/WWov9UG99W3MwsK2P6oX0WSJo+fwh9f+rTVqn8HDH3cay8aEmzIntW+EWERERERERERERERHRiGSbBP/aK8A2+T5VvsuFQKJ9kyuKF05s9lQnjRCTZ9rLX3gMALDvZPnuZVO6rfeHxvHlalURNXUvfxsw2Kp8psySy9rWAluEyfMF5jfJZbN6XjHs1+XY9Csc8b5ukMF6Q8p2zOW8+CT0848NrA4aPlyvVY/3+3WW5XL0ZGvpzejqNi+P5o/ZaWopfQc2k/qH/SkARyQeFlcfm96MWt035q6ewWhEfqhgCKgfbS5M90BnzQ/SNBldCzT6yIAqCkYb2wRVw34tVTExGM08lw4AEOb8KN/GTgZs54KCvpDNXpZ+0uye1eaCidM8109Ewx+D0YiIiIiIiIhKpJQSJ+wnXcKu8sMAwioCJQasdfb7v5tEptP6tLvOzA7j8ligzlP9lSIFqAByUIoYvGAJnvOyTmG94svr8vAcKQAid4wkLX9jL+FubsFrfsmhflE4il8pERGRd7brekoIKUpneyz1VS7MtdzXV6JKaU+/KZY1hgYSjObtiZHdOgkN84CrgQQXD+S9l9VZ8bNEjSUYTQ+TYLRndjyG7bkn3xc4qvEE9uGJiIiIiIiIiIiIiKg8Fh9rL29r9VTNafsr43zlM7f/pWiZKgjeoJFNjZkI7HeEvML6VdCZDI7ZWw51OGnn7b11LTltEFrY5+jl/tYPVe4hcCPewqOtxfqLZ0E//YBrNW/bRyFiGNJSk+3GyTtvKy44cKnHBnrk9ZioCUNJAQ9UEeoY9/e7/v7HgBVyKBT2P7KMLaIhN3MBYAvIfPWFfr+esUh+D//03qx17L9NR5d5u3h22+5fJjWXVLcrQ73Te9aKqzfmxrREa3tDnojIn9n7mZeneoAtbZ6rUUrhHZZzUqF+5xNg8M4pRGUjHN9JYexpJMa+dglUMAgccYpYrv97r+e6FkwG5kwwl7399V+b989gNKI9CkfAExEREREREQ1AJGB+MsTusCvzl6f5YQBKKUQccz257ZMZc0hVoQzSSGk5SKRLCN+qrbpgNDnwJC0EqEjhcQMJFQMMwWhCwIPj8jVLRAhf2xWiJwSRBVUIIcf9BrAcvOYtVK9ouwG8nkRERPnsgafm67oUmOZWX7lJ11epj0dULdpT5mC0WqceYcfHU6d9yA8Qk0J2AYifffJFA+YAaq+B0SYZIRQNAILO8A9Ge6DjDuPyGhXGIaOOqXBriIiIiIiIiIiIiIhopFKRGNS3bhHL9Q0/8lTPpLjCby9QCOQNuTopcRc+tvXHxStPZDDankZd9lNruf7MaYiEFP74Pgd1od33AZXO4qdtl2J2z+reBSeeN3htbJnrb4NQeHAasgdS4QjUd/8ur/DcI9CXLoO+0XA+ydMQU/jdhQ7CecNVa7LduKbtYozNbOm/8uyFUGH3e92+eD0meOwMvcPeBrzjEvs6OzuAVc+ayw44mkFQI4xSCuoL18orbN0E3bF77M5+U+XAlXv+B3z6ptLGprQLQ9ji+Q/WG6x+1NimooDH5pQcjKZzoTN18cFpD9EIpz5l6R/f/SdfdX3lVIWDmr2t25BhMBoNM1LIWWKneXnEPFaV3KkPf0su/Nefof/3X2/1KIXfvdfB+Pr+yz+3ZAeO7LjHvNEEBqMR7UkYjEZEREREREQ0AGIYVd+E/YQQmhEtCMmSQ61yoVneAwCk8DMA6MrsMC6PBeqNy4eKowJwEDCWScFvUviC9Np6XWcg4Qv99yGFO+RC9Mz78dJ+wBa85i1Uz+t2XttDRESUYwv4TGfNAWhSYBpQ2WA0KcBJ6uMRVYv29Gbj8sbQ2AHW7O3JeMmM/B6RQs/6rWP5fFTqU3Jt55UaZQtGq34buluxOvGiseygUUsQq7IgbCIiIiIiIiIiIiIiGt7UYScCoyeYC//1Z8/3c95ziIPXv+Pglg85eOZTnbi5dTkiurt4xUkMRtvTqOl7Q938qrzC43dDr3oWx89XaD3lbtyy/h24/rWzsX7VTLy/4+redeoaoELyfcCycAtKysdwq7JSBx8HjJtsXUf/6kroLvOY2Zy3L1JY/y0HN3/QwY1L/ovW1bPxru03Fu/v9PcPqL1GNR4fahYc5OOYXKlAAOrS70H98fmSQp3USRcMQqtoqKm5i6F+dLdYrv/wnX6/X3iEPObmqn9qrN3if4RKhxSMlu0LRquLQ9UPThCZcpyiUJKmdJu4vs6NOaprGJT2EI14k5qBiHlMnf7F53xVNX6UwoOfdvBey3kpZ9f5JIeh1VTtxGA0YV6Y8L4id2rcZOCMj4jl+pqveK5rcbPC6q85uOOjDn7/XoVXvu7gS69+XB6xzHMR0R6FwWhEREREREREAxARJuznQqWSQmhG4XZyPbnQLO/hVomMHOTVmTE/5SImhHYNpZAQeiIFGkj/bum19bpOMtP/tddCNIJy+ZpFClbJ/Y0TQniEFKhWvJ49pM8vr8cuERGRG1uQmXRdT+u0cTkAhCwBRuUm9tEypQWPElVKe+pN4/LG4MCC0bzFotnDA6V+cb6oEOSVQVoMSnZTcuBiiUFslXR/+x1i2VHxEyvYEiIiIiIiIiIiIiIi2mPstZ9ctuEVz9WMq1c4dX+FfdQaONIjazjhdc80tskenvJ4bxhNY/cbOHnn7XjHjlswMbNpd/kgBcHkU5Oava882CFte6I5C+3liU7guUdcqxlbr3DaQoXT267D+Iz5IWTw87f2qsZjWJ7X9WhQKaWgpu4Fde5n/G88GMcPVYeW+XLZy8/0+3WGZciO1sDdL5YQjCYMYYtntvX+MNjHXkH9QWQQFcYMXdDx294fony4H1EplFJA0wyxXHf7G9MaCiq860APwWi580muHbymUbVjMFpFqelz5MIn/wWdyXiuqy6icPx8hbMOdtAyVgFr/yevPHGaXEZEIw6D0YiIiIiIiIgGQArLyIVRyeFS/cMAogGpnq5+//eiyxKE1ZU1B6PVBuo9118pUjiBKSglqzPo1knj+lJgWL6QU4OgChrLCoPFNLLG9ZRLTIQUcJYLRJPC77wER9jql45BN3JQG7/4JyIif2yBQykxGM0WYGS+Zg8GuY9WWvAoUaVsTQvBaKGBBaPZ5AcIS31QBQdh5f7Ua1ufs9T3n3S+AYAaRx5ILvX/q0Ui04knt99vLJsZnYspkebKNoiIiIiIiIiIiIiIiPYIauESufD1Nf4rbGs1Lw+GgDGT/NdHw55SCjjoOLFc//X/oLt2ADs7zCvUNQ5Sy/I0tXhfl8FoZacsx0eOfu4x7xXazl0LDvFej1chj4FnPHaqi4fjrghDZEYsFbeMw3nqvn5hIG+dbx9nvnaL//23C0PEGzN918amZv+V+mGo//yO3xlXXb7jr70/JEsb105EAKbuJZdtXOu7ukPlnLVd4tn+wWg4aKnv/RBVlnC9TTIYbVAcaDknpFPAm6+XXrflvKZi1TcHkogGD4PRiIiIiIiIiAZADKPK9IZcSYFmhdu5hVr5CbfqypjDz2xlsUD1PX0p6JhDVFLZnqJlUqgYIAeaFJJC7grr1tIDuVwemCO1I7kr/M78Rbv39psD1JLZBLLaf5iDGOoX8BbURkRElBOyBKNJAWgpXXy9BwAHDhwVKEu7vPDaPyCqNu0pczDa6OC4AdYsd3q9BKNFnGjvBAYXMeHzEQB0ZUoLRrMHLsrnKf/P462sx7bfK4ZEL4mfWOHWEBERERERERERERHRHuPU94lF+pMnQafM93zFbe65wVwwYSpUoHL3iKm6qPOukAs3rYN+9wLop+4zl9fHB6VN/UxiMNqQOv4sYP7B9nV++3Xov1/jrb62VvPyyTOgwoMwbrLGazCax/WoItTMBcCpF3nfoCYCjJ4weA2iobf8g2KRvuwU6K7esfsHTFe44HB5zMzXb/c3QiWV1ujsNpc1ZPuC0SZO91WnX8pwHfz41h9iek//IJOPbP0pZves7v2lc/ugtoloJFMf+oZYpr94NnTW35yRWFjh82+zj+VryPQPIVbjJvvaB1HFSeNTE8I8u4g8VpXcqaYW4JT3iuX6y+dBi5PwZLprB7DNnBqrLvyi7/qIaHhjMBoRERERERHRAEghUbmQq1xAWtF2BSFWUqhVItMXjJbxHowmBWwBlmA0pwqD0YRwAlOggS2cRAo0KRQV1isOtzN/Keu4fM0itSP395JC9CKWUIh80YC8XncJ4S1eQ/2IiIjc2AKHpKAiabmtrsEg9Q/8hNYSDYX2tDkYrTE0ZkD1egk1A2x9SY+hv5Zw4FLff7ZgtBolT0LQVRyNprXGAx13GMtGBeLYv34QnlpOREREREREREREREQEQNU1ADP3kVe4+0+e69LZLPDvv5gLBznQg6qbmjEfOPNSeYWtG4HH7zaXVSQYrdn7ugy3KjsVq4f64V1Ql/+fdT393UugN2+wr5PNApvWmffz/q+V3EYrr8FoXtejilGf/AnUlz1e5yZN9zzWgoYndfKFcuGT/wJu+tmuX68+V2HWeHn1N3d4H6OyzTI0PJ7Z1ts2P9epUoyZWLRoRqoVj7YehR9u/AQ+seX7+Ov6t+OqTZftXqFz2+C2iWgEU00tgBTW+urzwNP3+67zE8vs16jc+QSwB7MRVQ2p3yUFB0YGIQB5D+Nc9jO5cMXDvf/51bZWLnvr2f7rI6JhjcFoRERERERERAMghUQlsl3QWoshZYUhVlI9yWwXsjqDbp303KZERg5G68yag9FqA8M7GM0WBuc5fMFj8Em2xGAEOVglAa21GPAQFULzvNYPyMEUNlJ7pBA/IiIiiS3MLCUGo6V91zUY5GBTBqNR9UpkOsW+XGNwbEXaIAU7e+1LhlVEDB7usvT9bWzBaEFLMJoUjFwNVnatwKYe8wD+w+PLKn7OJCIiIiIiIiIiIiKiPUzLPLFI33ez93pWr5DLJjZ7r4dGJLXv4aVtWDf4wWgqVgc0eLwHy2C0QaHCUai3nQecd4W8UjYLPHirvaI3XwdSPeaypuaS22fl9ZjgsVN1lFJQxywHxk12X3mwg6lo6LmEuOb3iZRSuPQtcgjR31d4H6PSYQtGy3b0/jDYx9+EacbF4zObcUn7L/DtNz6Hk3begX7/4kVvGdw2EY10sxeKRfrem3xXF7MNmwPQkM0LM+RnMxoO/AbShr3NNyMXe+0vFvn6fiinbY15eSAAjJvivz4iGtYYjEZEREREREQ0ALawq5TuQRbmp0oUBgJEA3LoRjJruXNpYAsK6MrsMC6PVWEwWkgFjcv/P3v3HSbJVd9t/3uqu2e6J+zMbNDuKq4kJFACBYQkkHclgoRkko2JIhkcCA8YY4IJNvYLGAfA5sEIv4Bfg7EJxg/2izESIIIQGGwRTJBF1kqAVkLSzmyY6d7t7jrPH7O92zNzftVVHad37s916dJOneqqM6m7uqf6rlDQoFK3v0ZW0CTteuUVUYfwH52dkl9At35WvLwO+EpgP415haN5K9ezP08rjJHE+rlL+/UEAKAhcpEi5YJjVqjIWl5YJWG0dh5bgX6Zrd1rjs0UNnW07aQjXu+PHCdbx5LLA9HmfpyzI9TGcXMr1TgpjGbftzR/XqvNjXOfDC6PFOnSqSv7PBsAAAAAAAAAALDWuHMusQfv/En6Df3cXted9ZAMM8JR6cwLpaiNt0Cu39z9uYScc3G69U45q7fzWOPc2cnfB/+zHydvYNdOe6xXYaGRYrr18lwQa9Vq8XMnSe6slPcRGFpuYioxFrv8mOihp9pn3/z4nvT73X/AHlvXeL/Ahi3pN9iOMx4sjWa74La76hk9mgywRiQ9B/vpDzNvbiSf/B6Y6XpTGG1rcggSWB2yhtGyPY7BkPS8+Jb/yr69XTvDy485Xi4ffq8hgKMXYTQAAAAAADqwPHDWUK7Pq5wQzFge2TC3Ey8kbsfad0js6+a2xqLVF0bLu/DlZ6qhMJrxeeVdXoWoxWVsDrHjdEu/nt4Ko7W4skhSUCzp58Wa14r1ErefPR5h/Rwl7QcAAIsVNLMCaNU4fBXefNTfkz3N44P6wqqOJWFt210NnyXp5DSdX9/h1tOdNLL8GLrBet4Tkvb4PC3r/kZafN5ghY6t4/9B2129R9/ef3Nw7IETD9FMIeWV6QEAAAAAAAAAANr1qKfaY3f8QP7276Xbzl077bGH/1qmKeHo4zYdJ12ZPaLijj25B7MJ7OcpL2290pNeLFdKdxEptOnCR0mnnWuPf/Qd8uWEvzXv2hlePr5OmpzpZGa2wmi69QijrVruSS+WRhK+jzPHSL/87P5NCAPjnv5ye3D/Hvl9c4c/PO9Ee9U/+aTXwVq681TmE8Jo4/7Q/d3kdKpttcsVx6SnpngcbPbgR/ZmMsAa4R73PHvwG1+Q/9Dbunpu67p475EPthBGwxBo8b6uFQrp3m+GZO4Jz7cHb71Z8fO3y9/909Tb87t2hge29ud5PoDVhTAaAAAAAAAdKOXCJ6tU4gUz1iWtjEuVIns7WaNWVihgISEgMJ6bzLSPfshnCKhYUbGkGFnadStxecnH1h+KrJBCQ1LgrBKXzZ+XtJ9DIRpR3oWvfNFOPGL55314PilDbQAANLMf12vG8nDAyNpOr1iPw7HqqvpwvA0YtNnafcHlU/n1yhnHi91x5DjZPJbMcHxuPUeyAr6tJN2vLEaOM54QM2Bfmvu0vOLg2I7pq/s8GwAAAAAAAAAAsBa5yRm5P/moOe6f82D5WvhvwkvWu+v28MBpD5IbX9fu9HAUca/6G7nnvynbjbZu68lclnPn/pLcOz+XvM6L/6Ivc1nLXC4n947PJK7j3/YSe3DXzvDyY09uedHctiUFtZrlevl3fnTCnXOJ3Ns/vRjxPOE06fhTF//bdoZ09bPl/ubGxbgjjnru0dfI/c7b7BWajnWcc3rxw+37lVf/S2dhtJyvaaRxXluvwo5N3PNen37lU86SGy32bjLAGuCOO1Xut95gjvtrXy194WNd219e9cV/lMalqQ1d2y7QM1mP3YkQd4U7+Qzpma+yV7jlP+Vf+fj04cZdO8PL+/Q8H8DqQhgNAAAAAIAOLA+cNZRbBM2WBwGKUSm8nXpyYC1kob4/03JJGjMCb4NkRb5CQQPra2R9f7Ksuzwq5mW9ENsijGaEHRr7sOJuWT6HtHG3NKyYWpb5AADQkI/CfziuxuG4mBVM63cYLelxr53HV6AfZqv3BpfP5Dd2vO2kGHDzcXI3jm2tCHU70V9JqrYILlqfm338PzjVuKov7/l0cGzLyPE6feycPs8IAAAAAAAAAACsWWdfbI/VqtLXk4NRkqRdRhjtzAvbmxOOOi6Xk7vm5dIjnpz+Rn18w7R74MPswYmp3oW1sIQbXyf3ur+zV/jcP8tXwn/L9tb9UC9/jnJ5KUrx9l5iDauaO/tiRX/8j4o++F1FH/qfxf8+8N+KXv1uuWNPGfT00E+/8nz793XXziUfnr7Z3swHvuJTRUPmjWt6jsULR86AGet9YNY5J/3yc9KtvGFrT+cCrBkXXZE47K/7QPf3uXUbx7QYDll/TgsjvZnHGuQufWzyCj+5RfrBN9NtzHh+5gijAWsSYTQAAAAAADpghaiq/qDm433BMSen0Wjp1Y6sN/1X4gUzKmBZMEIBiWG0aDLTPvqh4MIvMIfCaNbXyPr+ZFk3bfQkKRIhLX4+kfFSTDleUMUI6XUn7pbtZ8h7b37eWb6mAAA0WEGz0ON60vJ+h9GseK3UfpwJ6LXdtXuCy2cK/btio3Vsm+VYslvHtg2t7leGKYz23/v/Q/vqe4Jj26ev4iQ0AAAAAAAAAADQP9ObpPUJdY/b/qf1Nu4y3vC6+aQ2J4WjlTvl7HQr5nLSMSf0djLLPf43govd01/e33msdacmXETqYEW687bw2Fz47+zadFznczI456TCaOsVCaMBQ8HlctJm47Fn2bHOOcfZ53Xcu1+6J/wWhCXmD4TPZxn3h86rmZhanFMfuFNTPj6PFluvA6C14+8njST8Pu1M8Rwsqy08N8NRKs3xONI58fTWobnbbm25Ge/9iqjsYYTRgDWJMBoAAAAAAB1IilbNVu8NLh+NSorc0qfkViDgoD+g+XqKv242KdfDkY75OBxGixQlRj8GxQqfVANBg0oXwmhmeGHZ19MrDq7XKozmnFMpCgfwynU7gFfMdR53s34mLAd8xQxAZAm1AQDQ0K0wWqHPYbSkx7208VSg36znITP5TX2bgx0uTv+8wz52bi9K2Op+xWqJrcYw2o2z1wWXj7qiLlp3eZ9nAwAAAAAAAAAA1jLnnPSYXzfH/TtfJb/7bnvcezOMpq28+R7LXPFUaSTFG9ePOV4un+/9fJq4q5+z8o+OI6PSFU/r6zzWOne/c6TTzjXH/ef+OTywP3xhKq1b34VZJSCMBhxdjHCQf8crlhwPXXo/aTrhdOzPfq/1uSrzB8LLxxsX+5yYbrmNrnnkU9KtN7L63q8ADCM3NiE94sn2Crtul6/VurtTwmgYFlkvKtsq5IXU3MSUdPmvJa9kvf7TbO9uacF4HyX3RcCaRBgNAAAAAIAOlBKiVbO1cJAgFANIDKwZ27GU43AoYKEeDqON5SYWT1BbZbIEVMr1cHgh6fuznBUgWx496SSLYO1jX31OserBsSwhMiuMljXcUjG+nkn7AAAgScGFTziu+fDJF6EQqmQfH/TKaELEqd04E9Brc8bzh5nCxo63nRQDbg6IWcefpVw4dhZe14j+GtG1Vqww2pH7FauMtrrCaD+t/EQ/qXwvOPaQqcsyPQcCAAAAAAAAAADoBvfcP0wc9y/YIX+gEh7cc59UNv72yhtesYzbcpLc2z4pTc4kr7j15P5MqIk780K5N35EOu6UxQUnnyn3l9fLbT6h73NZ6/eQ2FsAACAASURBVNxbP2EPvv9P5H/83ZXL982GtzUx1aVZGUaKrdchjAYMjy3bzKHm46EocvrWH9pv77/mvV53700+X2X+YHj5kTBaj++/mriZY+T+4H2tV0xznwcgFfd775DOeLC9wnV/3939Ea3GsMj43jiXJ4zWTe6V10qPfqY57tOE0XbttMeO3ZZ1SgCOAoTRAAAAAADoQFIkarYaDhKUopUxgMQwmrEdy0LWMFo0kWn7/VKIjDBavDJoUDHiCKEIncX6HqwILxhhhMi1fpmlZMxnd/WehNt0Ix6RLdySFJuw4m4AACTJEjxNWt7vMFrkIvN4Imt4FOiH2MdmWHl9flPf5mEdf2Y7Pg8fB2c9tm1oFVy0om++ozRy931x7jpzbMf0VX2cCQAAAAAAAAAAwCKXy8n91hvsFe68TfqyESpKelMsYTQEuAddKveJO5NX2rqtL3NZzm1/vKIP3yp3w5yiv/+m3AMfOpB5rHVuZpN03g5z3H/8PSsX7t8TXrlVhK9TI6Ot18mFL0YIYPVJDActOx46Yb3T6Zvt1T/w1RZhtAPh5WONc8B7ff+13GW/2jpGM5riPg9AKm60KPdXnzLH/Qff2t0dJoQfgVUlYxgt1fE4UnOjJUWvfa/0q88Pr7BrZ+uN7DJeJxoZldZvaXdqAIYYYTQAAAAAADqQGEarhWNXoRhAUmzKChtYyvV5+UC8a76+L7j+WG51htGyBFSskFeWqJj1vVweXYsVG1to/QJ60ZhP0ve4O/EIO3QWYoXmFvdBGA0AkF3eha+oVfXhS1faYbT+n+yZ9hgBWA321/eq5mvBsZnCxi7swT7mbQ6IWeHApOdPy5nHtvX2wmit7leGIYy2UN+v/9p7Y3DsfqWzdOwobw4CAAAAAAAAAAADcuLpicP+1q+FBxLf8JpQC8Ga5qJIOuUse/yE0/o4m8D+R9Of84ceOeF+9titX1+5bN9seN2Jqe7Mx5IqjNbfiwgC6MDxCfc9kvytNy/5+LRj7HVvvi15V/Ph0+403rjg4Lr+htHcyKhUbHHe/kixP5MB1gg3NiHlcuHBhf2pt/PcS8Pnzb149zuPfLD5hCxTAwYoYxgtz7F2LzjrmGjXztY3nr07vPyYExZfCwCw5vCbDwAAAABAB3IupxEXPjFhtnpfcHkoLJUUm5qthqNZU7nwHyxjxTrgKyuWL8ThgMD4kIXRqoGggRUmyRYVC38Par6qahyOKDRL8/K5tQ/reyxJpVyWuFv4880abrFCapEi8+cdAIAkVtDMCjhZAaOCEVjrJevxO2t4FOiH3dVwnFmSZvKdh9ESL6Z3qB8W+1gHjDBalsjumHEc3O7vXqv7lWEIo31lz+fMoOSO6av6PBsAAAAAAAAAAIAmD3mUNL7OHr/hI+Hld+0ML998Im94RSL38CfZg5c/sX8TwaqU+PNx681LLj7sDx6QDoT/xq3JHoeFSinO3833/yKCANp0yaOlUsJ537d/f8mHT3qwfSLOR7/uddce+5yV+QPh5eP+0Hk1m0+059Erp5+XPE4YDei+E4xA9e675CvpzrN73APD90VP3fNPRz7oc2wRaFviSa4Bhf6fl74mbDEu8rtrp/xt/5N8231z4eVTGzqaEoDhxSvEAAAAAAB0yIxd1cKxq2Ju5fo5lzdDH9Z2ZgqbzDkt1Fde4WWhvi+47lg0aW5nkApGGC0UNCjXw3+0KUVZomJ2pKHSFJWzwgguxcss1j6s77GT06hL/0dg6/O1vj4WOzQ3Jpf1DwUAAMgOnlqhImu5tZ1esh6/s4ZHgX6wjivzrqCJXMIbUbroQFwxj5mTjrnTrls2gs+tmPcr0XBc8S/2sb44d11wbCo3o3MnL+7zjAAAAAAAAAAAAI5wpXG5N3zIXuHeO+Vv+KcVi/1dt4fXt95ECzQ85Xek7Y9fuiyXl3vNe+WOPXkwc8Lqcf5l0oMuNYf9215y5IP9xhvvJWliuntzCkkVRhuOv2kDkNzYpNz/80F7ha9cJ187cv7KNRc5jSa0D+//B7HuuC98Do4ZRjt0Xo3b2v9jKffKdyaPj6a/4DmAdNyr32OO+RdetiQGa3nsg6TXXH3kPSLOx3rrXa/QRZWbj6zU62MioFuyvt8pTxitJ7ZuM4f8s86Tv+U/7XHr+dnEVIeTAjCsCKMBAAAAANChYi4co6r6g8HlVkjNjFoZb/xfnxBGC91mPhBLk6QxY/6DliWgUonDV+srRun/gFoKBOsayk3bN8NoKV4/t/axp7Y7uLwYlTKFyKztZw23WCG1LF9PAACaZQmeSlI1Xj1hNOvYLWt4FOgHM6qc36DIdf5nQSf72LRxnJx07Jl0zL3cmPH8qBKXFft66u00tLpfccbXJ83JYf3wvYVv6Z7qruDYw6avUM5xlXAAAAAAAAAAADBY7sJHyr30L81x/+4/kI/jpQt3GWG0AcQ8MFxccUzujR+R+9Ati/9/y8fl/u3nclc9c9BTwyrgnJN75bvsFf713fK/+Nniv5PCaJM9joAUU/wNnTAaMFTcxY+We9nb7RW+ev3hf+Yip39/iX0+z76KdO2N4fNWyuG3KWi8cd5OQpCkZ44/Lfk+ayT9xcIBpHTKWfbYD78l3fq1lptwzumNT4i069lf1aduv1p3/+AE/c7sstDhOEEiDImsYbSR0d7MY61rEbv373+zPbjPCqMRaATWKsJoAAAAAAB0qJQxFlU04hpZo1Pr8wlhtPrKMNpCHA6jjecmM+23X7KE0ax4XJbwghU9kaRK0/btMELrF9CtfVixNSuWZ7F+trKG0ezQXPqvJwAAzfIufEUtKyRrBdPyUf/DP8Vc+Bgt6+Mr0A+z1XuCy2cSosrZJB3zNsJo4WNJKdvxZNKxfNI+LOb9yqGgmPWZWcfq/fbFueuCyyPldOn0lX2eDQAAAAAAAAAAgGHbGfbYrp3SnT9ZuuzeO4Orus2E0dCac07u+PvJ7XiC3EVXyvU6YoXhsvnE5DDCN25c/L/1xnup92G0sYnW6xBGA4bPKWebQ/7mzy5ddWPypv72pvB5K/sPhJePNc5537ItecM94KJI2nyCvcLY6nzPAjDMXHFMmjnGXuFrn0u9rWPq9+oRC1/Q+nh26UBpQi7PRTsxLDKG0fLh89vRGTcxJa1bb6/w9c+tDOc3WOFqnu8DaxZhNAAAAAAAOpQ1FmXFsUq5bBGsyfyUCkZkZCEQCluoh8NoY7kUJ1YMgBVGqwaCBt0IeSWF6cpN27fCCC7FC+hZf1a69bNVzhhu6UZoDgCAZlbQrBbXwsvNgFH/T/a0w6PZw0xAr83W7g0un8m3OIuyi6xjSSk5RrxyXfv5UdI+LNb9ypHnVOHj+dUQRruv+gt9Z3/46p3nTl6k6XzCCSQAAAAAAAAAAAD9dPYl0sioPb5r59KPrTe8Tvfv71sAjk5utChdcLk57q/9ffnvfV3aNxteIZeTSj0+vzbN9gmjAcPnjAvtsY+9S/FfvlTxG58r//G/1YnVOxI3dZ9xisyccWr4dLxn8R9TG1JMtAceerU9lnCfDKADl1xlDvnP/7O8T3n+mxWLJUaEYZIURg4pEEbrmYT7Jh08IO2+Kzxm3RdNcF8ErFWE0QAAAAAA6FDSG/ZDrABXlkjA4nbGNGbsu1zPEEaLVmcYrWCET5YHDWq+qqo/GFw3y9c0cjmNumJwbOnXs/0wWtbvcdYQmRlGqy+k/4OWuhOaAwCgmRU0s0JFrQNG/WOHR7OHmYBe213tbRgt6Zi3cbRpHUtGijL9Dic9z1oIPN9ppVVw0f7cBh9Gu2nuU/IKXx1v+3TCCaUAAAAAAAAAAAB95kaLci9/pznu//39Sxfw5nsAPeSe/yZ7cPYX8r/5UPk/vCY8PjEjlzWskFWx9TmZLhe+GCGA1cuNjErbzrBX+Ni7pE/9o/xfvFB68un6zW0/StzebfeuPHdlzrim53T90LHVgI6l3FN/Vzrx9JUD17xCLrQcQMfcs15lD/7o2/J//kL5er31hqxo9cRUexMDBoEw2qrhnv1qqWSfB+xf8+Tw+9yM14kcrxMBaxZhNAAAAAAAOlTMhUNnllIu/MKeFUwztxONmdtaWBbq8N5rPg6H0cZzqzOMlo/SBVQqdeMvu8oe8ioaIbLmuIPvJIyWMXSWef7G+nXVzBBEiBV6yRp2AwCgIW3wtKFqBoz6f7Kn9fhqxZ+AQZqthcNo6wvdCaOlUYnDl6QtReOZThpPOnYuG/tI0up+xZrboLNo1fig/mPPZ4JjW0dO1Gmls/o8IwAAAAAAAAAAgGTuqmdKo8a5cJ/9J/l48YIwPo6l+b3h9XjDK4AucPc/X3r4ryWvVA6fW6vJPkRASinO382Fz7kBsLq5Z7wy9brPvfE3Esdf/MGVF9ObM06dmY73SPmCNBK+WHivuWOOl/ubm+Re817pSS+WnvNauf/9GbnffsNA5gOsBe64U6Vn/b69wif+P+mr17fcjt+/JzwwwXMzDBHCaKuGO+E0uY98317h1pulb3955XIz0sh9EbBWEUYDAAAAAKBDpci+gkGIFUBrZzvWbcr1pWGrqj9ohkfGolUaRjMCKtV4WRgtIYqQNURmhb+aQ2HBK1LIDik0yxo6yxoi61Y8worNZZ0/AAAN1uO6dXxiLbe200vm8UE9HBIFBqXua9pbmw2OzeR7H0ZrBITL9fBxZ9agdM7lNeJGg2Pt/P61ul+xQsferzy5tJ++se/L2l8PvyFo+/Sje3+FcgAAAAAAAAAAgHb80uPssR9+a/H/83sk41ws3vAKoFvcOQ9t74aTM92dSIBLE0bL9/8iggC6YOtJqVc9+cCPE8e/e+fKZXPGNT2n6nuliemBnk/iJqflrnqmope8RdHz/lDuvO2c3wL0mHvABYnj/sZ/bb2ReSuM1odYLNAtWR9v8oTResnNbJJOOdscX37f5L2X9twXXpmAPrBmEUYDAAAAAKBDWeNVVlwqe8RrXGO5cBhtIV4aClioG1e0kzSWW51htELKgEpS8CtryMtavxIf+etxI/iwUusX0DOHzjLH8pLCaOnjEda6WX9GAQBoMIOnQxBGKxqPf83HB8BqMFe7zzxWnSls6so+rHjYosV9W+HidiK7JeP5Tpbob4N1v1JwjRNbjDBa5j11141z1wWXF6OSLpq6vM+zAQAAAAAAAAAASMc98GHmmL/hw/K33Srd/n17A7zhFUC3POjS9m7XjwhIKcXf0fP9P1cGQBfc70GpV91Qv09njIcvhihJd+yWvn671665xbNYqjWv+QPhdafiOSJGwFp01kVSLiGmetstrbexzwqj8dwMwyRjGK1AGK3nzk14PnbHsteF9s1KC/vC627Y0r05ARgqhNEAAAAAAOhQ1jf4W3GszBGvXMkMZ5XrS8NW87HxwqCk8dxkpv32ixU+6WUYzfreLP96hqR5+byYNXSWK2VaPym8liXeYq3bTswCAAAp/eN6q+VHAkb9Yz3+tRNmAnpptnqvOTaT39iVfaS5eqv1u5E1Epx0myzR34ZWwcXIPKIfXBrtjsqPtLPyg+DYResuVzHK9nwBAAAAAAAAAACgbx71VHvsw38l/6xz5V+ww16HN98D6BJ32oOkSx+T/YaTM92fzHKlFBc2JowGDCU3NiGNpTtH30l6zXFfSlznwjfFOu6Vsbb/eV0//IW93nR9D2E0YA1y6zdLj/8Ne4XvfV3xe/9I3iecC7d/Lryc+xQMkxTnuC5RGO3NPHCY+5Xn24P/+Wn5/3PtkY937bTX3bqtSzMCMGwIowEAAAAA0KFSLmPQzHhzf9ZQQCkaVykXDm0tLAsFLCSEvcaMbQxa2oBKxQgvjLhR5Vwu0z6t703zPrzi4DouxcsspS6GzkJGo5KcEXRIE3drsL6mhBcAAO0qZA6j1YLL8y7hinY9Yj0eV+Jy8kkiQJ/N1sJhtGI0lvk5Szsavw32sWQ7YbR0Ieg0qrEVRmvcr4SPo/0Aw2g3zl5njm2fvqqPMwEAAAAAAAAAAMjGTUxJZzy4/Q2M8+Z7AN3j3vBhud9+Y7Yb9SMCQhgNOKq51/5t6nWfVvqK3v/rrWMuX/qR9Jh3hM9ll6TpeI6IEbBGuZf+lXRJwjll73+zdP0/2OP794SXTxKtxhDJHEbr/wW71xq37Qzpma8yx/1f/a781z67+MGu28MrjYxKG7Z2f3IAhgJhNAAAAAAAOpQ5aGZECbKGAopRSWNR+KSI8rIw2nx9X3C9UVc0A2SDZgVUYsWq+/rhj8v1cHgh6/dFsr83lbh8+N9WFsEKki2dU7YIXdb1Ixdp1IiXlY1ARZZ1s84HAICGtMHThqo/mGk7vWQdo3nFOuArfZ4NYNtdDYfR1uc39mcCh0KB1rFkO5FdKwS9/PlOGtb9TeN+xTqaH1QYbX99r76276bg2Olj52jr6Al9nhEAAAAAAAAAAEBG7YbRxibl8v2/aBaAo5fLF+Se8Qq5v//v9DeanOndhBqKKc5zzXF/CAytjcemX3f/Xj3jYqdSitPjdt5nj03X9xCYBdYo55zcC96cuI7/9Aftwf1z4e0SW8QwyRpGI0LcF+4hj0oc95/60OI/7toZXmHziXIRaSRgreK3HwAAAACADmUPmoXXt6Jc9nZKGrNCAfWloYCFeL+xz9UbukoKnzRHDSpWeCHj11OyY2rN4YVOwghZYxDtxCOs21hfp+C6RmyunfkAACBlD6PV4uSAUT8lxVab46nAoM3WwmG0mUL3wmhpYsCVevj3op3Irn18nv7YtsG6vylEh674Z5wQ4/1gwmhf3fM5MxK5Yzrhyp4AAAAAAAAAAACrhDvt3PZuON2nC/8AWHuOPVkam0y1qpuY7vFkJI2va71OjlgDMLROOStdAFGS9s/JOadzO7hOnvOx1sV7pekN7W8EwHBrdaxz+/ftsf17wsv7cUwEdE3GMFphpDfTwFInn5kcfL79e5Ikv2d3eHzTcT2YFIBhQRgNAAAAAIAOJcUylosUacSNBseyBNZGXVGRy5lxgeUhtIV6OIw2nkt3gscgpA2jWVGELN+XBut70Bw98T4OruNc65dZIpfTqCumnk874TrrZyJtPCL2dR3wla7NBwAAyX5cr1phNF8Lbyfq/8meSbHV5TFaYJB2V+8JLp/Jb+rL/hsB4eaocLNiLntk1zy2beN3z7xfOXT/ZEff+h9Gi32sm+auD45N5zfogRMX9XlGAAAAAAAAAAAAbbj8idK69dlvt3Vb16cCAJLkRovS1c9Kt/JkHyIgkzOt18kTRgOGlSuOSVdek27ln/9YkvTbOzIGXZqsi/cqkpfbenLb2wAw3Foe69zzc8W/9xj5O29bObZ/LnwbwmgYJsYFck1RrjfzwBJuasPia0SWW29W/EfPlH76w/B4P56bAVi1CKMBAAAAANChLEGzYjQmZ7zQmiXk1QhUjRmhqoVloYB5I4w2Fk2k3me/FSL7yhvNEZWKEfzK8n1psL4HacILaV8+T4qrrFi3i59DpZ4ujNYcgVu57ewxCwAAJKlgBM1qgTBa7GPVFQ4YFRLCqb1STHj8S3rcBPptrnZvcPlMYWMX92If9TbCaNbvRTvh4pJx7Jw2+tus6g8Gl+fd4lXorDBa/7No0q3z39Q91buCY5dOXaGc42QcAAAAAAAAAACw+rnxdXLXfl46d7tUsM8FW4GYB4Aeci/6c2n741uv2I8ISJo3+BNGA4aae+lfSk/6X9LMMdJUwjk8P/yWfL2uZ10S6a+f3l4cbbq+Z/EfRGaBNc296M+lS66yV/ivz8i/4DL5hSPvMfJxLM3vDa8/MdXlGQI9lDWMlsv3Zh5Ywf3+u6XjT7VX+Ow/STf+S3hsIkVQGsBRizAaAAAAAAAdst6sH5IU1sgWWFvcTikKh9Eq8YJiHx/+eMEKo+VWbxitESgIqcVHIipWFCHpa22xomXNcQdvpBGskMJymQJ4bcQjrM8hbTwiab2i8fMGAEAreSNo1vyYfnhZIJbWaju9NOqKcsafU8px63gq0C+z1fuCy2fy3QujpTnitY/P24n+GiHoNn73rPuWxv2KHUaLg8t76ca564LLI+X0sOkr+jwbAAAAAAAAAACA9rmTHqDoHZ+R+/Tu9Lch5gGgh1w+L/fH/yhFLd5amyZa1qnJFG/wzxNrAIaZyxcUveStcv//HXIf/6ncy95ur/yNz0uSXnhZpA//VvY42nR8KIy25aR2pgrgKOHyebk3fDh5pd13SV/42JGP5/dK3riEaD+OiYBuIYy2arnRotxbP9HejScJNAJrGWE0AAAAAAA6ZL1ZP7huzl43aczap7VvL68DTTGvhTgcRhtf1WE0O3zSHDWo1MPhhSzflyO3saJiR8ILnYbRsgQh2gmjWbeppAyjJa1XaiM2BwCAlBBG87XAstUVRnPOmcHV5ngqMEgH4orm433BsfWF7oXR0rCOJ9sLoxnHtsZzgCTWfUvBjWTeVi/de/Bu3TL/9eDYeZOXaCrPle8AAAAAAAAAAMDwcfmCdPWz06180v17OxkAa57LF6Rii3NM00TLOlUck/ItzoVpNQ5gKDjn5KJIOuYEe6Uf/Pfhf15ySvYw2lR9bvEfmxP2AWBNcKNFaWtyJNF//xtHPtg/Z684QZAIwyTj4ycR4v465gRpNPv70lw/npsBWLUIowEAAAAA0KGCG1GU8im2FdVoNWatO5YQNltoinnN18ORhLFoOMNoVX/w8L/LVnghl/3FUivWUInL8oeugOOtK+GkvLJIlthZMde9eERz3C1JpW4HXtqJWQAAINmP63XVFPt4ybJQLK3Vdnqt0/Ao0Guz1XvNsZl898JoSTHgRkDYDhdnP5YcM+LRCymPbZtZ9y15t3hii3Ph53RWGLlXvjh3nbnPHdNX9XUuAAAAAAAAAAAA3eQe9ZTWK01MSRdf2fvJAMCZFyaP9yEC4pxrHWAjjAYcXR78cHPI/81r5d//Zvn9e3TCeqdL75dt09PxnsV/EA8BIEkPf3Ly+Mfepfj3HqP49c+Qf9Pz7PUmprs7L6CXUr6v67AcYbR+cvmCdPkTs9+QQCOwphFGAwAAAACgQ845laIWV447JCksNeqKqQNrpUPBrLGE/ZbrR2IBVjggKaw2aAU3Yo41Rw0qcTjklfZ7svQ24e+Pl9cBXzn8UUhSJGLJPjLEztqJR5hxt4TgWTMroJZ3eRUi+3sCAECSQkLQrOariR+n3U4vWY+vZSMABfTb7to95th0F8Nora6mF/t603HzUu1Ef4vGMX0lnreDxQHe+yVx5WaN4KL1mWXZT6cOxgf0lT2fDY4dO3KSTi2d2be5AAAAAAAAAAAAdN0FD5d7/pvs8akNcn/2L3Kj2S+ICQBZuZf/dfIK/QoLTbaIjRBrAI4qbrQknXqOOe7f+0fy/+sR8gv79YHnRTr72PTbnqrvkUZLciOjXZgpgGHnnvMaaccTklf6r89In/uo9K0v2euMEyTCECGMtuq5l7xFOm9HthsRaATWNMJoAAAAAAB0Qdo3+SeFrpxzieG0Jfs7tF5SZGsh3n/k3/V9wXXGc5Op9jcIeWe/wNwcTKkYIa9ilP0EuaSvfyM05zsMo6X9HhfciHIJXwOL9TNRjtOFW6zQXNp5AwAQku9SGC1pO71kPb5WUj6+Ar02W703uHxdblqFqF+/N948lpSkUhvH51YIuuZrZugspK6aOdYIMlvH89bxfy98fd+XNB+Hn7vtmLl68WrhAAAAAAAAAAAAQ8o5J3fNy+Wuv0fu7Z+Se8vH5d7yb4v/vfvLcv96h9wDHzboaQJYK7ZsSx6f6FMEpNWb/HODOVcGQO+4Rz4leYUff0f63Ed10ganb70+0nW/ky4FMB3vIRwC4DBXHFP0xo/IvehP299IaUIuTzgKQ4Qw2qrnJmfk3v4p6VdfkP5GrWLSAI5q3FMDAAAAANAFad/k3youVYxKS4Jm9v4Wt5NzeY26og74yop1FupHgmHz9fA2rdDAahC5nCJFihWvGGuOIJSN+EKpjc8tKTTXiDx0GkZLiuMtXa+97431M1Y2AnIr1wsHXtLOGwCAkOQw2tJgUVLsaFBhNPvxlTAaVofZWjiMNl3Y2NX9JJ0z4r0d2ZWkYpePz8vxgkaidFe4XX4/0yx/OBxnfXL9C6PdOHddcHkxGtOF67b3bR4AAAAAsnHOnSLpQkkPPvT/8yU1X5nmdu/9tja33emTkpO99zs73AYAAAAAdJUbXyedf9mgpwFgjXO5nPyWk6S7bl85ODkjl+/TOSqt3uRfGOnPPAD0z9ZtLVfx131A7jG/LuecHvGAdC8TT9X39C/qCGB4PPDS9m/LfQqGTsYwWpTrzTSQyDknXXC5/Mfele4GhF+BNS1dJhoAAAAAACRK+yb/YouAWimXdjtHAgHWbRohrNjXVTGiHeO5yeDy1aLgwid01Hz18L8r9fDn1uprHb5NUnhh8evZ6TuQ0gbP2pn/4vbDn0NSpGLpetbXkzAaAKB9hcQwWnXZxwkBowGF0ezHV8JoWB1mq+Ew2vp8d8NorU4aSYrxpo1JL72NfexcrqcL/0pSLa6aY3m3eB0pK3TcryzazvIPdUflR8Gxi9c9vO3nBwAAAAB6wzl3mXPuU865+yT9WNKHJb1c0g4tjaIBAAAAAABgtdrxhPDyi6/s3xwmZ5LHi5y7CRx1LnxE63W+/eXD/8zn0kVepuO51rFFAGvP6edJG49t77aE0TBskq7+u1wUyUXkdgbmgsvTP9fZfEJv5wJgVeOeGgAAAACALrBiGSvWaxE+S72d5jCaEQtohALK8YK88Xb+sdxEqv0NihU/aQRTvPcqG0GStJG5ZiNuVJHxckkjLOZ9HBx3Lt3LLMVcd35WzO0bP0NpwxF2GI0QAwCgfUlBs6o/uOTj5IDRYMJo1uMgYTSsFrO1cBhtptDtMFoSr0rdjvG2E9pNOia2ngeELL+fada4iXEGQwAAIABJREFUX3HGCTHWc6lu++LcJ82xHTNX9WUOAAAAADI5V9IVktYPeiIAAAAAAABoj3vay6RTz1m6cOs2ud94ff8m0SpiVGrvXFIAq5dbt14azXZe9t8/t3XoZbq+Rxpf1+60ABylXD4v9/J3SCPF7DeeILaIIZMljJbL924eaMmNr5N76V9JuVzyivlC+3FHAEcF7q0BAAAAAOiCtG/ybxWXSr2dprjWmBELWIgXQ1jz9f3mdsai1R5GC790UfOLwZSqP6hY9eA67YS8nHMqReOaj/etGGsVFnNK9wJ6O/G7LKx4xAFfUezrilzyi8blevdCcwAANCQFzRqP69bHS7czmD9r2OFRwmhYHXZX7wkun8l3N4yWdMzr5c1YYN7lVYhGMu9v1BXlFMlrZZy4HKcL/0rJ9ysF15iXEUYzwsjdtL+2V1/b96Xg2APGHqTNI8f1fA4AAAAAuuaApJ9JOrUH2/5PSU/NeJuf9WAeAAAAAAAARwW3YYt07Rekm2+Q//F35LadIV34CLnJmf5NotW+ipy7CRyN3PPfJP/2lyWu4w9U5EYXQ0ZXn+OkFhf3m473EDECEOQe9hjpA9+Uf8oZ2W44MdWbCQG9QhhtqLhffrZ05kPkr32V9NVPhVdav0Uuivo7MQCrCvfWAAAAAAB0QSmXNnaVfIJCO9Esa5uNUMBCQhhtPLfKw2jRiELds2p8UJJUNsILUuuvtaWYKwXDaJW4LGkx+BCS9uXzbkX0LKWE21XissZafM+tmEW78wEAQJLyUVIYrbbk46o/GN6GK8hl+YN1F1nHeo3jA2CQvPeard0bHFtf2NTXuVjH52mPgZdbDBePaSFe+ZymVbi42fL7mWaNcONg7l0W/ceeG8x42/bpq/o8GwAAAAAZVCXdIulrkm4+9P/vSHqYpM/3YH8V7/3OHmwXAAAAAABgzXJjE9KOJ8jteMJg9j85nZw6KhFGA45KW7e1XufuO6QTT5ckzYxJk0VpX8Vefao+J03cvzvzA3DUcceeIn/NK6R//Iv0NyK2iKFDGG3YuJPPkF78F/JWGO34XlyPDMAwIY0IAAAAAEAXpA2atYpLpQ0GNEe/xnLhkx4WDoUCQhEBSYoUtR0o6JdGpGC5RjTAinhJnYTFwl+TRmjOKw6Ou5Qvs6SP37UZdku4XVJIrtU67c4HAABJyjv7j8e1eGkMyAoYWccF/WAdMzWOD4BBmo/3mUHBmfzGvs3DqzeR3ZLxfCfL758VHZOO3D9Zx/NWGLlbYl/XTXuuD47N5DfqnIkLe7p/AAAAAG17v6R13vvzvPe/6b1/t/f+G94nPAEBAAAAAAAAlpucsceck0aK/ZsLgP45+2KpMJK4iv/E38nfd5ekxYsLjiWvrun6HiJGABK587Znu8HkVG8mAvRKlgtwR7nezQPZHHc/adNxwSF3wcP7PBkAqw1hNAAAAAAAuiB90Cx5vVIue2DNClY1QgEL9XAYrZQbl8vyou8AFIyISiOYUq7boS8roNCK9b2sxGVJ6jiLkPpnJeXPworbJWw/6evV0IuYBQAAOeXljKtwLQ8WWQGjQYbRrMfXxvEBMEiz1XvNsZnCpq7uy/o9XuRVNn4nOons2uHi1se2DVY4Tjpy32J9Zr0Oo90y/w3dV/1FcOzS6SuVc5x8AwAAAKxG3vtZ731l0PMAAAAAAADAkEsKo5UmVv15vgDa46Y2SE/+neSVPvQ2+SecpPj118gfqOjPnph8fzAdz8lNEkYDkODBj5Ae9Evp1ye2iGGT5dg5Z1/0G/3lcjm5X3/dyoGtJ0m//Oz+TwjAqsK9NQAAAAAAXdAqeHZ4vRaxq/TRrCNhgTEjALZQXwyjzdf3BcfHo8lU+xqkvAtf2qoRNrAiXk5OI260rX1a34NGaM5Ko0UuXX8+ffyuvTBa0u2sr1czK57WScwCAADnnPKuEIwTLV9mh9EG9ycNO5yaPswE9MpsLRxGi5TTulx3r9iYHEaTKoePmZfqJLJrHYc2nu+kYd2vSM3RxfDn1usw2o1z1wWX55TXw6Ye1dN9AwAAAAAAAAAAAAAGLCliVGjvPFgAw8H99hukU86Sf8Nzklf83D/Ln3CanvLs1+s5f2efxzJd3yNNdPdcIQBHF5fLSW/9hPR/3in/rS9JP/qO9Iuf2utzn4JhQxhtaLnHPlc65jj5Gz4q3Xen9IAHyz3xhXIbtgx6agAGjHtrAAAAAAC6oNil2FXawFpzWMAKBTRCXgvx/uC4FVRbTY5ECpZqhA3KRoykGJVSh8qWs74HjWCY952FEdIGxtL+LCxXiArKu0Iw/mB9vZpV4nJweScxCwAApMWwWSiMVvO1ZR+HA0YFI5jaD9bjciUuK/Z1RS7X5xkBR8xWw2G06fz6vv5senmV69axZHvHtpIdFs4SJlx+P9OQU/7w8wbzKtsdHv8n+cXBXfqf+W8Ex86ffKjW5bniJgAAAAAAAAAAAAAc1SZn7LHqgf7NA0DfOeekK54m/9Xrpc98OHnlGz6i0d/4o8RV1sV7pQnONQGQzI0Wpaf/ntzTf0+SFL/00dLXPx9emfsUDB3CaMPMXXSl3EVXDnoaAFaZ9t4hDAAAAAAAlkgbsWq1XtpgQHNcywyj1Q+F0epWGG0y1b4GKe/CLzQ3wgZWDKGT8IIVuWvsyyscRnApX0BPGxjrKB5hxlvmW97W/JqmjP8BAGBpFTxtqBphNOv2/ZD0OHggrvRxJsBKu2v3BJevL2zq/s5aXE3POpa04mZpjLUIQadRjVdGGaWlzzes4/neZdGkm+auM8e2z1zdwz0DAAAAAAAAAAAAAFaF6YS/7S/s6988AAyMO/281ivdeZv8wQN63IPCw2dVblFOsTSxrruTA3D023KSPUYYDcOmxTmuS+S4KDYADAPCaAAAAAAAdEHaMFqr2FWaYECkSAU3cvjjsdxEcL2FQ6GAeSOMNh6Fb7ea2AGVxbBBuQdhNOt7We5SGK3gRpRT6yuLlHLhAEQa1udfjsstb2t9TdP+jAMAYEkbRlv+8ZHbD+7KXEmPg9ZjJ9Avs9V7g8tn8hu7vq9WR7y9OD4vGmG0hXr6MJp5vxIduV+yw2hx6v1kcTA+oK/s+Vxw7PjRk3VK8f492S8AAACAoXaic+7vnHO3OOdmnXMHnXN3H/r4H5xzv+WcWz/oSQIAAAAAACCDDVsGPQMAg3bF01rHh7yXvnq9XnBZJOdWnsv+m3N/u/gPIkYAsjrmeHtscqp/8wC6IUMXTbnBnZcOAEiPe2sAAAAAALogzRv9c8qbQZAs2ylF43JNV7EYM0IBlXhBsa9rIQ6H0ayg2mrSHIBrVj0UNqjUux/xsr4HlUNRMSuMlvYVdOecSrkx7a/vbTGPUqrthVifv/X1aqj5qqqHonMr50MYDQDQmVaP6w12GC35OKqXkh4HK4TRMGCzNSOMVki4qnQPeO/N34dOjiXHjGBwlt89637Ful9qZh39d+pr+24yn6vtmL56yXM+AAAAADjk5EP/NTvm0H9nSrpG0tucc++R9Afe+/CTjg45546RlPVJ56m9mAsAAAAAAMCwc8717O/SAIaDW79ZuvYL8u94ufSNz0v1enA9/9on64pP3KmPPi3Wn/3tj/Wt0QfqAQe/r+fNvU8vmv2bxZUmiBgByMatm7GPRYgtYthkOe+SMBoADAXurQEAAAAA6IJSLkXQLDfW8s3taYJexdzSYFbJCAVIUjle0EJ9eMNoVgClETYoW+GFFN8Pi/U9KNfnF//hw3/2yRIuKEallmG0khG8S7V94/Mvx/OJt6vUywnzIYwGAOhM3oX/JLE8WGQGjKLWAaNeSQqWlmP78RPoh9mqEUbLb+jB3uxjXi9/OCa8XCfHktZtF+rJx7bNar4WXN58v+TMz637p6B773Xj7CeDY6VoXBeu2971fQIAAABYM8YlvVTS1c65X/Xe39KDfbxQ0ut7sF0AAAAAAAAAWJPcyWfIve3fJUnx40+Udt8dXvGGj+hXzr9MT9i5IzxOxAhAVusSzjMctc+dBVYlwmgAcNSJBj0BAAAAAACOBmkiVklBjSzbWR4GGEu4Tbk+r3kjjDYeDUEYLTICKvFiMKVihNE6CS8Ujds2Ig9WFsEOKazUzvc5C+u2VqjiyHj46ynZXxcAANJqFTxtqMbhMJp1+34ouBHljGvNVDLEmYBui31dc7X7gmMzhY1d31+rY96y8fuQ5rmQxQpBJx27Llf1B4PLm+9XnAv/2dQbYeRO7Kz8QD898JPg2CVTj9BINNr1fQIAAAAYajVJX5D0OkmPk3S+pNMknSfp8ZLeIukXy25zuqQbnHMn9W+aAAAAAAAAaMvTXhZe/msv6u88AKwO284wh/wPvyXtm7NvSxgNQFbnXxZeXhiRNp/Y16kAnSOMBgBHG8JoAAAAAAB0wWiKN/qnCUsVc9m3Y4UCJGkhntdCHA6jjeVWfxit4EaCyxsBlbIRQ+gsvBD+PpXjxciDVxwczxJGS/ez0P0wWuNzsFhfT8n+ugAAkFbaMNryj4/cfnB/gHbOmcdp5RbhUaCX9tRmFRvHp+vzm/o8GzvE20lk1zq2XWhxbNvMvl9pCqMZt/VmGrl9N8590hzbPv3oru8PAAAAwFB7naTjvPeXe+/f5L3/N+/9N733P/Le/7f3/uPe+1dIOknSn2rp9V22SPqYc1kujQ4AAAAAAIB+c1deE16+41f6PBMAq4G74mn24L+/T/5Fl4fHRkblRou9mRSAo5bbuFW6IHC/ctGVcmOr/z1HwBJZ/iyaJ4wGAMOAMBoAAAAAAF2QczmNuuQ/JFpv6M+6zoowWsJtyvV5LdSHN4xmBVSqh8IGVnihFNmxuFasaEPVH1Td1xKyCOlfQE8TGUvzs2CxPody3Q6fSclhtE5icwAASFIh6jSMFr59v1iPzZWEx0+g12Zr95pjM4WNXd9f0hGvlzd/HzqJ7FrH9gfismIfjsItZ92vLA0xhz+7bofR9tXm9I19Xw6OnTF2ro4ZObar+wMAAAAw3A7F0H6RYr2K9/7Vkl68bOh8SQnvomvLtZLOzvjf47s8BwAAAAAAgKOGO/VsuT98v1Q89Lf1sUm5l/1vuXN/abATAzAYVz1LKrVxLvz4VPfnAmBNcH/wPunsi48sOP8yude8Z2DzAdqWJYyWI4wGAMOAe2sAAAAAALqkmBvTgVrFHk8Rusq5vEbcqA76A+Y6y6MckcupGI0FIwTX7/5nVf3B4HbGouENozXCBuX6fHC8k4hXYmguXpCMMEKU4QX0Vj8LkSKNuNHU21vOCk+0CrdY4wU3opzjZSQAQGfM4Gk8HGE0MzxKGA0DtLsaDqONumKPjvftY966r5nPY9I8F7KUcuETPRshtjTB55qvBZfnm45xnfm5dTeM9uU9N5jz2TFzdVf3BQAAAGDt8d6/0zl3haTHNS1+oaQPdnEfv5DUMtbWzGV5EwIAAAAAAMAa5B71VOnyJ0o/+5F03KlyhZHWNwJwVHJRJP3RP8i/6ley3XCCMBqA9rgNW+TedaP8vXcufryRi3tiSBFGA4CjTjToCQAAAAAAcLRo9WZ/K1aVdTvFwHbGonAs4PsL3za3M56bTDWfQSq0CKNV4nJw3IonpJEURqvUF+S9FUZI/wJ60j6kxZ+BTt4kVDR+HlqFW8r18HjJ2B4AAFm0Cp4e+TgcDLKOC/rFOkZrFR4Femm2Fg6jTRc29v1N59axudT6+DdJ0rFo2jChFYtuvl+ywmjdzKLFvq4vzX0qOLY+v0lnj1/Qxb0BAAAAWMPevOzji51z0wOZCQAAAAAAAFJz+YLctjOIogGQjj81+20meBkYQGfcxmOJomHIZThvNsr1bhoAgK4hjAYAAAAAQJekiV2l2k6LgFpoP+2EwMZyE5lv02+tAirleD44XoxKbe8zFJ5rKMcL8kYaIUt2olsRPfP2xuffKhxhhV06+XoCANCQNoyWJmA0CNaxnhUWBfphthoOo83kN/Rkf1Y8TLKPzaVOw2gJx+d1e5/Nlt/PNCwJoxkhOe/jVPtI4zv7v6bdtXuCY780/WhFjhNtAAAAAHTFf0mabfo4J+nMAc0FAAAAAAAAAJDVCadL287IdpuJqd7MBQCAYZHlgsI5ztcEgGFAGA0AAAAAgC7pWhitje2M5yZTbbvByWksGv4wWiUuB8dLUfZQ3JHbthtGS/8yS6vvcSfhCEkqGp+/FT5rsMJp7YT3AABYLm0YLU3AaBCsY7lWj69AL80aka31hU292WHCOSNJkcC0z4VCkqLBrcK/DbW4FlxeiPp7v3Lj3CeDy/Mur4dOPbKvcwEAAABw9PKLhec7li3u0RNFAAAAAAAAAEC3OefkXnGtNDmT/kaT072bEAAAwyBTGC3fu3kAALqGMBoAAAAAAF3S6s3+aWNX7Wzn/mMPTLXthlNLZ/Y9AtCOghFAqfqqYh/rgBFGK0altveZc3kV3EhwrJIQRsuiVWisk3DE4vbDty/XF+S9PX8rNNfJ1xMAgAbrcb3ma8s+Xp1hNOvxlTAaBmm2em9w+Ux+Y59nkvy7UMy1fzyZdwXz+Lwcz6faRpr7FWdU37px/C9Jdx/8ub638K3g2PmTl2oyz1V7AQAAAHTV8hf8eaEfAAAAAAAAAIaIe+BD5f7x23Kv/4D0jFe2vsEE554AANY4wmgAcNQhjAYAAAAAQJdYsYyGtHGpVgG1UDTr0qlHaevIiam2P+qKeuzGp6dad9DyRryt5qs6EFfMSEGr8Fgr1vegXF+QjH1aIYWQVj8LnYbRrNvHqqvqD5q3s2IWnc4HAADJDpstf2xaHkprsMJq/WI9HpYJo2GAdtfCYbT1hU092V/SMa8VKSu4kY7DhqUofHxfrqcLo1nHwP0Mo900d705tmP66q7sAwAAAACaLC9mh59AAgAAAAAAAABWLTdzjNwjn6zot9/QOnw2ThgNALDGuQz5HMJoADAUuLcGAAAAAKBLWsWj0salWq0XCrBN5qf1shPfpK/v/ZJ2Vn6guo+Dt90yepzOm3iotowen2oug2YFFGpx1Yx4SekjdPbtx7S3PrdieSVekPdGGC3DlUVaxe+s8EM3tl+OFzQSjYbH6uGvaav5AgCQhvm47qtLPq4u+7jV7fvFOr6oxOU+zwRYVI0Pan99T3BsJr/8/e/dkRxGsyK7nR2bS4vh47312RXLF4wY23LL72calt6v9C6MdiCu6Ct7PhscO3H0VG0rntbxPgAAAACgwTm3UdIpyxbfOYi5AAAAAAAAAAC6ZOs26YffMofdpmP7NxcAAFajscn06xJGA4ChwL01AAAAAABd0jJ2FQiatbOeFU4bz01q+8xV2q6rUu1nGFgBlKqvmuEFqfOwWDE3JgXaCeV4wQwjJEUilms1v2Kus3hE0s9iJV7QlGbMseB8CKMBALogbRitFh8M3z4abBjNenwt19OFmYBum63dZ47NFHoTRktiRXa7cSxp/f4lxZKb1XwtuLzQdL9kh447D6PdvPeL5vOXHTNXZ4osAwAAAEAKT5XUfDn0uyXdOqC5AAAAAAAAAAC6oUUYTVu39WsmAACsSm5iKv0Zn4TRAGAoRK1XAQAAAAAAabQKo6UNArRar9V+jiaFhIBKUgShGPUmLFZJCKMpQxitVfis47Bbws9IUrzFijWkjfoBAJCkYITNlgeLrICRFVbrF+vxtRKX+zwTYNFs9R5zbCbf/zCadXzejecvY8bx8ULKMOHyAGND8/2KmUXrsIvmvdcX5z4ZHBuLJnTB5KWd7QAAAAAAmjjnNkt63bLF/+Z9p89uAAAAAAAAAAADteWk5PGtJ/dnHgAArFaTM+nXJYwGAEOBMBoAAAAAAF1SbBGPShsEaLXeWgqjWQGUmq+aEa+c8iq4kY72a32NywlhtChDGK1V+KzT7/FoVJQz5pMUb7FiFmmjfgAAJLEe16vLgkVWwMgKpvaLFQpNirUCvTRbuze4fDw3qZFotCf7tI4xJakchyNlrZ4npWFtI+3vX9UfDC5fGkYL/9nUDiOn85Py9/SzAzuDY5dMPaJn3ysAAAAAw805d3/n3GMz3maLpE9I2ty0+KCkN3dzbgAAAAAAAACA/nNbtyWv0GocAICj3cRU+nWjXO/mAQDoGjKWAAAAAAB0SbeCZq0iVGspUmUFVGLFWqjvC44VcyU5lz5SFtyG8TWu1BckK4yQYZ+9jt9FLlIxKgXjcVawYnEsHJZYSzE+AEDvmMHTeGmwyAqjWbfvF+v44KA/oLqvKef4kwv6ywqjrc9v6vNMFpXrVmS31PG2x4yw8ELdPrZtVvO14PI09yudhtFunPtkcLmT0/bpR3e0bQAAAACD5Zw7XuFzMLcs+zjvnNtmbGa/9z70BG+rpI87574j6R8k/Yv3/ofGPCYlPVvS67Q0iiZJb/Te/8TYNwAAAAAAAABgWJxxoT120gPkxib6NxcAAFajyZn0646Fz0sFAKwuvEsHAAAAAIAuKRlv1m9IGzQr5VpsJ9d5WGBYFBJCBfvqe4PLuxGOK+XC2yjHC/JWF03pw2ijUTFxvGjsP4tiNGaE0cLBCkmqGGNrKcYHAOgdM4y2LFhU9QeD6w06jJYUCq3EZY3nJvs4G0DaXb0nuHymsLGHe7WPee3Ibucnj1jHo0nR32ZWcLH5+YZ9PN9+GG1vbU7f3PeV4NiZ4+dp08jWtrcNAAAAYFX4kqSTUqx3nKTbjLH3S3pOwm3PkfRnkv7MObdH0ncl3Stpn6QJSSdIepDC54K+23v/hhTzAwAAAAAAAACsdmdeKJ19sfTdr64Yck9+8QAmBADAKjM5nX7diQzrAgAGhjAaAAAAAABdUoySg2Vpg2ZJ2ym4kYFHQfop6XPdV9sTXJ4ULUnLCi9U4gV5xcGxLGG0yOVUjEqqxOXgeDc+h1I0ptnA8ko9HKzw3qtSt+azdmJ8AIDeybvwnySWB4uWh9KO3H71htHK9QXCaOi72dp9weUz+d6F0ZxLCqOFI2WtnielMWbEo5Oiv82sMFo+RRjNdxBG+/KeT6uu8H3a9umr294uAAAAgDVrStLDUqw3L+l3vffv6fF8AAAAAAAAAAB94pyT3voJ+WtfLd18g7R3Vtr2ALnHPk/u6mcNenoAAAxehjCayxJRAwAMDGE0AAAAAAC6pGS8WV/KFjQrRfZ2uhHMGiZJX7P99XAYzYqaZWF9nRfDaGFZwmjS4jx7GkbLGI+o+oNmtKGY8LMNAEBaBTcSXN4cLPLemwGjwoDDaEnHGJWUcSagm2ar9wSX9zKMlsT6PUh6fpOWtY1yPRxjW64aHwwuz0dNYTQj+uZ9e2G0uq/rprlPBcc2FDbrrPHz2touAAAAgDXjVkl/ImmHpPMlpalO/0DS+yS9x3t/b++mBgAAAAAAAAAYBDc2Kffyvx70NAAAWJ0mMsTOsqwLABgYwmgAAAAAAHRJUiwjS+gqad1uRL+GSSGyAyj7jDBaN6Ji1td5MSrWXhhhuVI0pjndl2n/WRSj8HukrDCaFWmTpJKxLQAAsrCCp1V/JFgUqy5vPNamjcz2SjFnPx4SRsMgzNbC73GfKQwqjBY+nrSOS7Owo7/pwmg1Hw4AL71fMcJobR7/f2f/zZqrhY/3t08/WpHLtbVdAAAAAKuH935bD7d9t6TXSpJzLpJ0mqRTJR0naVpSUVJZ0qykXZJu9t6HC9oAAAAAAAAAAAAAcLQbm5QKI1I1fDHdJSZnej8fAEDHCKMBAAAAANAl3QqaFXMJ20kYOxolBVD21cJhtG5ExazvZaVeNsMIi+9LSi8xpNeF73MpCscjrHBLUlRirQX5AAC9kXfhP0k0B4uqvppw+8GG0fKuoIIbWRJya7DCo0CvlOvzZohsJj+YMJqlG89hrOPztL97NeO+pdB0v+KMMFq7YeQb5z5p7HNEl0w9oq1tAgAAAFibvPexpO8f+g8AAAAAAAAAAAAAsIxzTn7zidLPftR65cnp3k8IANCxbO/YBQAAAAAApoIbUaRccKwYlVJvJymwljR2NEoKoOyvh8No3YiKWfGGpHiYlVGwlHLhcJlkR82ysGJm5Xo4HmGFNRbns7Z+7gAAvWE9rtd8Vd4vhodq8eoNo0n2MZ0VHgV6ZXftHnNsfWFTz/Zrx8Ns3TiWtI6Pa76qatz6yn6hoKGU7n6lnSzaXQd+pu8vfDs4dsHkpZrIrWtjqwAAAAAAAAAAAAAAAAAAADAde3K69SYIowHAMMgPegIAAAAAABwtnHMq5cY0X9+3YixLrGvEjSpSpFjxijErdnW0KrgRc2xvbS64vBtfIyveEPqeHJEtEpEUyxvNENLLuv35eF/wZ3Suel/CfIodzwcAACtA5OUVq66c8qp5O4xWiAYfRitF49oXiLPuqc0GH1+BXrnrwM+Cy50iTeXX92y/7YTRunJ8nvB8anftnsOhsWJUUs6t/PNnzdeCt22+X4pc+HpS1fhg5t/vz899whzbPn1Vpm0BAAAAAAAAAAAAAAAAAAAgha3b0q03wQVuAWAYEEYDAAAAAKCLilE4jJYlBuCcUzEa00K8f8WYFew6WuUDUYOGA74SXN6Nr1EpGs98myhjJMKa56grKudymfe/Yvu58Ofwg4Xv6BU/embq7RSjkqIuzAcAgEJkB0+rvqqcSw6jJR0X9IsVHv3YPe/Tx+55X38nAwRM5We6cizZTaUuRH+Tjs//+LYXHf73qCvqzPHzdM2WF2ksNyFJqvu6vBE4toKNzW7ac71u2nN9xhmHnVQ8TdtKp3VlWwAAAAAAAAAAAAAAAAAAADjCHX8/+VYrRZE0fUw/pgMA6FD40ucAAAAAAKAtVuwqSxhNkkq57mxn2EUupyjjyxdWsKT328gaRgvHHYrG9z6rbkX01trPHACgd5LCZrV4MYhWTQyj2WG1funW4zTQKzP5jYOewgrFNqLDy6UNFx/wFX1z/1f0//78Tw/Oha74AAAgAElEQVQvSwouFprCaC7j8Xw7dkxf1fN9AAAAAAAAAAAAAAAAAAAArEnbH996nfN2yI1N9H4uAICOEUYDAAAAAKCLrIhU1kiVuZ01GOPIN8UK0ijluhBeaGMbWUMKVnytWyGybm2nW4E1AACSHtMb4aK0AaNB4XERq91MobdhtHbiYaVc5+Hi0agol+HPmj8sf1f3VX8hSar6g+Z6S++XehtGG89N6oLJS3u6DwAAAAAAAAAAAAAAAAAAgLXKHXuy3Ev/UnLGOaG5vNwr3tnfSQEA2pYf9AQAAAAAADiabCps0Y/Kt6xYvqGwOdN2Nha26OcHdgaWZ9vO0WBDYbN2Hbwj0/qdGnVFTeSmtL++J/Vt1hc2ZdrHppEtweXd+h5vKoS3n1U3vp4AAEjSiBs1xw74iqTkMFrWWGovrMVjMQyXLSPH93T7eVfQZG5K+1IeJxfciCZz0x3vN3KRNhY2657qrtS3ufvgz7WhcIxqvmau03y/siHj8XxWD516pArRSE/3AQAAAAAAAAAAAAAAAAAAsJa5J75QetgvS9/+D+muO+Tvvl0qTcid+0vShY+SGy0OeooAgJTSX1odAAAAAAC0dMH/Ze/O4+yu63vxvz5nlpyTCSQBEsImhB0RAUVQca1KXapWtO5XRa9LW5dbrVWrrVWrVm9rl9vFq7+6XrVqRVGLdUMEpSIugCAqsoY1SICQZLJM5vv7Y0IZJuecOTOZcyYz83w+HueR+X4+78/n8w7JfDmTmfM6ez5ip7H+0p8T9jhlavvssfM+g2VRHjB00rR7m6tO3ONhHdfu1b8iq+tH7vKZpZQ8eI9TO64/pH5Elg/sM6Uzjh16cBaVnf8xvdmf/XSsbhyZvfp3PdzhpD0fOQPdAEBSry1uOTe8fVOSZFvbYLTZf6+XB+1xakpavIMYzLKSWh6y56O6e0YpOWFJ58/Pj19ySgZrrUMRp2Kqz5M3j47dV0ZGOwtcPH7JQ7v2+V2vLc5jl/1OV/YGAAAAAAAAAAAA4F5l1cEppz0v5UVvSu2N/5zaq9+f8oinCkUDmGMEoy0gpZRGKeVhpZSXllLeUEp5aynlNaWU55RSjiilzMirPUopA6WUx5RSXlRKeVMp5Q9LKc8opRwyE/sDAADszu4/dGKeu/KVadSGkiRL+5bnVQe8NXsP7DulfU7a8xH53X1elHqtkWQs8Os1B/5F9uhfOuM97+6evPez88hlT7xPaEEzByw6JK896J2plZn5547TV5yRh+zx6NTS17busMYxedUBb53y/ov7luS1B73zv/9uLCr1PHWf5+eUPR8znXZ3Uit9ee1B78gBiw6Z1vpFpZ6n7fOCPGSP7oZrALBwLKrVW4YO/XeAUYtgtFpqqZX2/0/uhdWNo/KiVa/LUN8es90K3MeSvqV55QFvzr6DB3T9rGetfFlO2uOR6UvrsMKSWh645OQ8f9UfzNi5T9nnuXnE0tM6Dkm8J3Cx1X0lSQZq936NccTiY/PCVa/Okr49d63RCZb1751X7P+mLBvYe0b3BQAAAAAAAAAAAACA+aqzVw4wp5VSHpbkfyX53SSDbUpvLKX8a5K/r6pq3TTOWZHkHUmek2SvFjUXJPlAVVVfmOr+AAAAc8Wjlj8pj1h2Wu4cWZfl/ftkujnUp+19eh6319OzfuSOLOvfe9r7zHW10pfn7fuqPHPFGblt282pqp1rlvTvmWX9Tb8UnbaB2kDO2P+P8rzRV+U3W29tWrO0f/kuhdWtbhyZd67+YO4cuT179i9LX4chD51aObh/3nrI3+XOkXXZMLK+43W1Usu+g/vPeD8ALGy1UsuiWuO/Q9DGG54kGG2gtPun7d46Zelj8pA9H5Xbtt2cbaOtA5egVwZrg1kxsF/Pvl4YqA3kpfu/IZtHh1s+T957YEUafUMzem5f6cvzV/1BnrXyZff5uuD/u+n9Wbvtpp3q77nXbKu2ttxzYvjyw5Y+Lqfs+dgZ+/xeVFuUvQf2nbHwZgAAAAAAAAAAAAAAWAi8unUeK6X0J/m7JH+QpJNXwxyQ5M+TvLKU8pKqqv5zCmc9KcnHkqycpPThSR5eSvlUkldWVbWx0zMAAADmklrpy14DK3Z5n77Sl+UD+8xAR3PfYG1RDlh0SM/PrdcaObDevXNLKV3/M17Wv9eMB8cBwHQ0aoubBqNtniQYbWJ40WwbCxE9YLbbgFnV7efJrUz8umCP/qVNg9HuDVwcablXs3uLz28AAAAAAAAAAAAAAJhdgtHmqVJKSfKZJM9qMv2LJFckGU6yIslJSZaPm983yVmllKd3Eo5WSnlMki8lGRw3XCX5SZKrkyxLcmKS8a/yfkGSPUspv1tV1WiHvy0AAAAAAOawem1x0/F7Aoy2jbYKRvPtDKC5Rm2o6fhkgYvJ7he6CAAAAAAAAAAAAAAAJLXZboCu+Z/ZORTtvCTHVVV1TFVVp1dV9YKqqk5LsjLJS5PcNa52MMnHSylL2x1SSjkwyZm5byja95McW1XVSVVVPXvHGQcmeV2S8a8+eWqSv5zG7w0AAAAAgDmo0SIYbfP29gFG/TXhRUBz9Vqj6fjwJMFotdTSV/q61hcAAAAAAAAAAAAAADA9gtHmrz+dcH1eksdXVXXZxMKqqkaqqvpokscn2TJuamWSV01yzjuSLB93fcGOc66YcMaWqqr+IcmzJ6x/fSnl4EnOAAAAAABgHqj3NQ9GmyzAqL8MNh0HaNSGmo7fE7i4rdradL6/CFwEAAAAAAAAAAAAAIDdkWC0eaiUclySQyYMv7aqWryibIeqqn6U5MMThp/a5pwjkrx43NDWJC+pqmpzmzO+lOTj44YWJXl7u74AAAAAAJgfGrXmwWib/zsYbaTp/EDp71pPwNxW72s0HR+e5L4iGA0AAAAAAAAAAAAAAHZPgtHmp0MnXK+pquqSDteeNeH6iDa1z0/SN+76zKqqruzgjPdNuH52KaXeSXMAAAAAAMxd9Vr7AKNt1dam8wKMgFZaBy4OJ0lGWrxv0ID7CgAAAAAAAAAAAAAA7JYEo81PQxOub5jC2jUTrpe3qX3GhOuPdnJAVVVXJLlw3NBQktM6WQsAAAAAwNzVqE385+sxkwUYCUYDWqm3CEa7J3Cx5X2l5r4CAAAAAAAAAAAAAAC7I8Fo89MtE67rU1g7sXZds6JSyqokx48bGkny/Smcc+6E6ydNYS0AAAAAAHNQvdZoOj68fWOSZKQaaTovGA1opVUw2uYdwWjbRrc2nXdfAQAAAAAAAAAAAACA3ZNgtPnpoiRbxl0fU0pp/mqznT24yV7NPGDC9aVVVW3s8IwkuWDC9bFTWAsAAAAAwBzU6BtqOr55dDhJMlJtazovwAhopdEqGG37WDCawEUAAAAAAAAAAAAAAJhbBKPNQ1VV3Z3kE+OG6kleNtm6UkpfkldPGP54i/L7T7j+dccNjrlqkv0AAAAAAJhn6rXm7+ExPDr2vhvbqq1N5wcEGAEt1PuaB6NtqTZntNreMnDRfQUAAAAAAAAAAAAAAHZPgtHmrzcnuXbc9ftLKY9vVVxKGUjyoSQnjhs+J8kXWiw5fML19VPs77oJ13uXUpZPcQ8AAAAAAOaQRm2o6fjm0eEkaRlg1C/ACGihUWsejJaM3VvcVwAAAAAAAAAAAAAAYG7pn+0G6I6qqtaVUh6b5MyMhZ01kny9lPLvSf49yS+SDCfZJ8nDkrwyyVHjtvhhkmdVVVW1OGLZhOu1U+xvQyllc5L6uOGlSe6Yyj4AAAAAAMwd9Vqj6fiW0eGMVqMZGR1pOi/ACGil3iYYbXh0U7YJRgMAAAAAAAAAAAAAgDlFMNo8VlXVtaWUU5K8JMkrkjw4ybN3PFq5PckHkvzvqmrxSpExSyZcD0+jxeHcNxhtj2nscR+llJVJVkxx2WG7ei4AAAAAAJNr9A01Ha9SZcvo5oy0CjCqCTACmmu0CUbbPLqp9X1FMBoAAAAAAAAAAAAAAOyWBKPNf307HluSVElKm9o1Sf48yb9NEoqW7ByMtnkavQ0nWd5mz+n4gyRvn4F9AAAAAACYYfVao+Xc8OjGlgFGAwKMgBbqbYLRhre3DkZzXwEAAAAAAAAAAAAAgN1TbbYboHtKKacmuSLJvyQ5NZP/eR+U5KNJri+l/M8pHldNvcNprQEAAAAAYI5q1IZazm0eHc62amvTuX4BRkALA7WBlveIzaOb3FcAAAAAAAAAAAAAAGCOEYw2T5VSHpfkW0kOGTd8Y5I3JzkxybIkg0lWJXliko8nGdlRtyLJh0spHyqllBZHbJhw3ZhGmxPXTNwTAAAAAIB5pF5r/U/Jw6ObMlKNNJ0TYAS0U68tbjo+PLopI6PuKwAAAAAAAAAAAAAAMJf0z3YDzLxSyookn0lSHzf8lSQvrKpq/YTyW5N8PcnXSykfTPLVJHvvmHt5kquSvK/JMbtrMNo/J/n8FNccluSsGTgbAAAAAIA2Bspg+tKf7dk5qGjz6KaMVNuarusvvp0BtNaoNbJh+107jW8eHW5zXxGMBgAAAAAAAAAAAAAAuyOvJJqfXp9kxbjrXyR5dlVVm9stqqrqB6WU5yT51rjht5dSPlpV1doJ5RNfXbIiU1BKWZKdg9HunMoezezoc2Kvk/Wyq8cCAAAAANCBUkrqfY1s3H73TnPD21sHow2UwW63Bsxh9dripuPD2ze2vq/UBKMBAAAAAAAAAAAAAMDuqDbbDdAVvzfh+n2ThaLdo6qqbyc5f9xQI8lzm5ReOeH64M7ba1q/rqqqO6a4BwAAAAAAc0yjRYDR5tFN2dYiwKi/CDACWmsVjLZ5dDjbqq1N59xXAAAAAAAAAAAAAABg99Q/2w0ws0opQ0kOmzD87Slu860kjxx3fUqTmismXB8+xTMOnXD98ymuBwAAAABgDmoVYDQ8uikjgtGAaWj0tQ5cHKlGms65rwAAAAAL0tY7ko3X7zw+dL+kNphsW5809ut9XwAAAAAAAAAwjmC0+WdZk7FbprjHxPp9mtRcNuH6gaWUxVVVberwjFMn2Q8AAAAAgHmo0SIYbXPbYDTfzgBam17govsKAAAAsIBsvSu54PnJTV9LUrWvXXZ88sgvJHtMfJ9mAAAAAAAAAOiN2mw3wIy7s8nY0BT3WDLhesPEgqqqbk5y6bih/iSPmMIZj5lw/bUprAUAAAAAYI5qGWC0vXWA0UBtsJstAXPcdAIXB4r7CgAAALCA/PDlyU1nZ9JQtCS585Lk3CclVQe1AAAAAAAAANAFgtHmmaqqNiZZP2H4xClu8+AJ17e0qPvihOszOtm8lHJ0klPGDW1M8o3OWgMAAAAAYC5r9LUJMBptHmDUXwa62RIwx7UMXBzdlG0tgtHcVwAAAIAFY9v65IYvTW3N3Vcmt1/YnX4AAAAAAAAAYBKC0eancydcv6LThaWUVUmeNmH4/Bbln0qyfdz16aWUIzo45k0Trj9XVdXmDlsEAAAAAGAOE2AEzLRGi/vK5u2bMuK+AgAAACx0d1+ZtHhTirZu+PLM9wIAAAAAAAAAHRCMNj99dsL1c0opL5xsUSllUZJPJlkybnhDkq83q6+q6sokHx83NJjkY6WUepsznp7kJeOGtiZ5x2S9AQAAAAAwP7QKMBoe3ZjR+7wXx736S383WwLmuHpf68DF1sFo7isAAADAAnHNJ6e3bsNVM9sHAAAAAAAAAHRIMNr89G9JLhl3XZJ8opTy96WU/ZotKKU8NskPkjx+wtT7qqq6o81Zb08yfv7hSb5VSjl6wv6LSimvSfL5Cev/pqqq69rsDwAAAADAPFJvEYy2YeSulmv6y0C32gHmgUat0XR8c5tgtIHaYDdbAgAAANg9rPtJ8su/n97a6z83s70AAAAAAAAAQIe8Ffo8VFXVaCnlWUm+n2TljuGS5LVJXl1KuTTJ1UmGk+yV5MQkq5psdXaS901y1g2llNOTfD3JPa8gOTXJz0spP95xztIkD0qyYsLyryb5s6n97gAAAAAAmMsaLYLR7t7eOhhtoAgwAlqr14aajm8eHU6txftECVwEAAAAFoQrP7hr6++4OFl+wsz0AgAAAAAAAAAdEow2T1VV9etSyqOTfDLJSeOmaklO2PFouTzJh5P8r6qqtnVw1rmllGck+VjuDT8rO849qcWyzyR5eVVV2yfbHwAAAACA+aPe1zwYbcP2u1uuEWAEtNOoNZqOb6u2pqQ0nXNfAQAAABaEdRft2vrbLxKMBgAAAAAAAEDPCUabx6qq+kUp5WFJnp/kVUkemrR49ceY4SRnJvnHqqp+MMWzzi6lPCDJO5I8J8nyFqU/SPLXVVV9YSr7AwAAAAAwPzRqzYPRqoy2XNNffDsDaK1eG2o5V6VqOu6+AgAAAMxLN5yV3PDlZPjmseu7rmhde8L7k4v/pP1+P3xFcvl7kqX3T6oqGdmQ3Hb+2Nzx702OeGUy2OpHhgEAAAAAAABgevzE/zxXVdVIkk8k+UQpZWmSk5KsTrIsyaIkdye5I8llSX62o366Z61N8vullNclOTXJwUlWJdmY5MYkP62q6ppd+O0AAAAAADDH1VsEo7XTXwa60AkwXzT6GlNeM1AGu9AJAAAAwCy6/L3JJX/aWe2Bz0iO+eOk1JKfvjFpES6fJNl47dhjokveklz/ueTx5yUDS6bRMAAAAAAAAAA0JxhtAamq6q4k3+7BOVuTfKfb5wAAAAAAMPc0BKMBM6xRG5ryGvcVAAAAYF7Zdndy+bs7rz/pH5JSkmPekBz20uScJyTrfjz1c+/4aXL5XyYn/NXU1wIAAAAAAABAC7XZbgAAAAAAAFg46tMIRhuoDXahE2C+WFRrTHmNYDQAAABgXrn9wmRkY2e1tUVJY/97rweXJ4e/cvpn//x9yfAt018PAAAAAAAAABMIRgMAAAAAAHqm0Tf1YLT+0t+FToD5oq/0ZbAsmtIa9xUAAABgXth6V3L9F5ILX9H5mgN+JykTfoR8/yfvPDYVX9wvWfOlZNvd098DAAAAAAAAAHYQjAYAAAAAAPRMvdaY8pq+CDAC2mvUpha6OFAGu9QJAAAAQI+s/1XytROS7z0r2XhNZ2saByQPfOfO44sPSI5/z671c/4zkq8/JNl43a7tAwAAAAAAAMCC55VEAAAAAABAz/SV/gyWRdlabemovr8MpJTS5a6Aua7etzh3bb+j4/r+MtDFbgAAAAB64OI3JxuvbV+z9AHJ/k/a8fH9k/2fktRXNK+9/5uSlY9NLv6TZO13p9fT+l8ml749edjHprceAAAAAAAAACIYDQAAAAAA6LF6bXG2bu8sGG1AeBHQgUZt8ZTq+2vuLQAAAMAcNrotufErk9cd8NTkhPd0vu8+Jycnfyj56lHT7+2GLyVVlXjDCwAAAAAAAACmSTAaAAAAAADQU42+xVm//Y6OavsFowEdqE81GK34NikAAAAwTaPbk/VXJNvuSqrRGd68JKUv6R9K+hYlm9c2L9t8a1KNTL7dykdPvYUlhyWNA5LhG6e+Nhn77zJ8c7J4/+mtBwAAAAAAAGDB8xP/AAAAAABAT00lwEgwGtCJxhTuKyUlfb5NCgAAAEzH2vOSb00jbGw2rDg1WfX4qa+r9SUPeFty0e9P/+wvHZA8+P8kR716+nsAAAAAAAAAsGD5iX8AAAAAAKCnphJgJBgN6MRUAxdLKV3sBgAAAJiXtq1Pvv3Y2e5icqtOS1Y+Kjn69WMhZ9NxxKuSxv7JdZ9NNl6T1FclBzw16asna85MUiVb70xu/XbrPX78mmT5A8d6AQAAAAAAAIApEIwGAAAAAAD0VL3W6LhWMBrQiUbfVILRfIsUAAAAmIYbzkqq0dnuor29T05+6+szs9eBTxt7THTI8+79+MuHJxuuar3HtZ8SjAYAAAAAAADAlNVmuwEAAAAAAGBhadSGOq4dEIwGdKBem0owmvsKAAAAMA1X/stsdzC55SfuXuet/0Vv+gAAAAAAAABgXvF26AAAAAAAQE/V+xod1wowAjpRr3V+Xxkog13sBAAAAHZDo9uTn709ueYTSaklB56enPBXSZ+vkZvaeH1y0R8ma7+bjNw92910rvQnh7+it2ce8apkzReSVM3n156XfLq0Xr/02OSo1yWHv7wr7QEAAAAAAAAwN9VmuwEAAAAAAGBhadSGOq7trwlGAyY3pfuKwEUAAAAWmkvenFz+7mTTmmTjdckv/za56JWz3dXuafuW5JuPSG766twJRSt9yd4nJ4/9WrLXg3p79qrHJY/89+mvv+vy5IevSK7++Mz1BAAAAAAAAMCc1z/bDQAAAAAAAAtLvdbouFaAEdCJqd1XfIsUAACABaQaTa76yM7j1/y/5IT3J/UVve9pd3bjl8cC5KbqoNOTUz83vTNHtyafW9y+5og/TB78983nSknKLL5X9kGnJ0+5PPmPY6e/x6/+KTn0xTPXEwAAAAAAAABz2ix+FxwAAAAAAFiIGrWhjmsHBKMBHWj0dX5fEbgIAADAgrJ5bbJ13c7j1Uiy5gu972d3t+4n01u3+iVJrW96j/5GsuTw9vsvPab1+tkMRbvH0Oqktmj66++8OBndPnP9AAAAAAAAADCn7QbfCQcAAAAAABaSeq3Rca0AI6ATU7mvDNQGu9gJAAAA7GaqkdZza8/vXR+7s6pKrvpocv4zk5//1dTXDyxL9jtt13o45AWt52oDyf1+b9f277b+RnLQ6dNfP7otWX/FzPUDAAAAAAAAwJwmGA0AAAAAAOipRt9Qx7WC0YBONGpTua/0d7ETAAAA2M2MtglGu+7TybYNvetld/WTNyQXvjRZc+b01j/260nfol3r4di3JIe8cOfxgaXJo85K6it3bf9eOOkfk30fO/31Zx+XjGycuX4AAAAAAAAAmLP81D8AAAAAANBT9Vqj41oBRkAnpnZfEbgIAADAAlK1CUZLkjX/nhz6kp60slvavDb51f+ZvO6YP0n2f9K916WWDC5Plh479vGu6luUPPyTyYM+kGy+JamqpNqWLDs+qc2RfyNdtFfyuHOSTTckd/96bOw3FySXvLXzPa7//ML++wgAAAAAAABAEsFoAAAAAABAjzVqQx3XCjACOlGvLe641n0FAACABWXb3e3n1353YQdR3XbB5OFxSbLfbyf7Pqbr7aS+Yuwxly0+cOyRjIXHTSUYbaH/fQQAAAAAAAAgiWA0AAAAAACgx+q1Rse1A2Wwi50A88WiWj0lJVWqSWvdVwAAAFhQNq1pP7/h2p60sdsYHUlu/npyw1nJHT9J1v148jWL9k5WnNr93uajZcclQ6uTjdd0Vr+hwzoAAAAAAAAA5jXBaAAAAAAAQE81+oY6ru0vA13sBJgvaqWWRbVGNo9umrS2v/gWKQAAAAvIxusnmb+uN33sDkaGk+89K7np7M7X1BYlJ38o6VvUvb7ms1JLTvlQct4zkpENk9dvvLbrLQEAAAAAAACw+/NT/wAAAAAAQE8NlkUpKalSTVorwAjoVKO2uMNgNIGLAAAALCCb1kw+P7o9qfX1pp/ZdP1npxaKdvKHklWPT5as7l5PC8Gqxye/c0Vy8zeT4RuTxQcm29YnP37dzrWb1iSj25Kaf78BAAAAAAAAWMi8mggAAAAAAOipWqmlXmtkWIARMIPqtcUd1fWXwS53AgAAALuRTde3n69GkuGbkqGDetPPbLrxK53XHv/u5PCXd6+XhWbxgclhZ9x7fedlzeuq0bFwtCWH9qYvAAAAAAAAAHZLtdluAAAAAAAAWHg6DTAaqAkwAjrT6DgYzXtHAQAAsABsujG58ezkun+bvHbjtV1vZ9YN35ysObPz+n1/q3u9kAwd0npuwzU9awMAAAAAAACA3ZNgNAAAAAAAoOc6DUbrLwNd7gSYL+p9nQYuuq8AAACwANx6bvLdp3RWu/a7XW1lVo1uSy54YfLF/Ttfc8DTkr1P6V5PJANLkkUrms8JRgMAAAAAAABY8ASjAQAAAAAAPdfoOBitv8udAPNF5/cVwWgAAABwH5f+2Wx30D1X/E1y7ac6q73f7yUn/VPyyC8kpXS3L5Ilq5uPbxSMBgAAAAAAALDQeTURAAAAAADQc/U+AUbAzKrXGh3V9ZfBLncCAAAAc9Cmm5LF+892FzNvzZmd1z7ic93rg50NrU5u/+HO4xsEowEAAAAAAAAsdLXZbgAAAAAAAFh4GjXBaMDMqnd8X/HeUQAAALCTu3812x10x92/7KzumDd2tw92tmR18/E7f9bbPgAAdldVlYxsnO0uAAAAAABmhWA0AAAAAACg5+q1Rkd1A4LRgA51GrjovgIAAABNbLx2tjuYWWvPT84+Idm2fvLavsXJYS/rfk/c19Ahzcfvuiw565Dkl//Qy24AAHYf1WhyyduSL+6ffG5J8pUjk2s/PdtdAQAAAAD0lGA0AAAAAACg5xq1oY7q+gUYAR2q93UWjOa+AgAAwIJQ+pK+xn0fex7Tun7DtT1rres2XJuc++Tkzksmr131hOTx5yZ7HtXtrphoyerWcxuvS378uuSqj/auHwCA3cXP3plc/u5k8y1j13dfmVzwguSmr89uXwAAAAAAPdQ/2w0AAAAAAAALT73W6KhOgBHQqUat02C0wS53AgAAALuBQ5479pjo/Gcla76w8/jGa7veUs/8/L3JyIb2NU++LFl2bG/6obmhNsFo9/j1/00OO6P7vQAA7C6qKrnqQ83nrvpwsv9v97YfAAAAAIBZUpvtBgAAAAAAgIWn0TfUUZ1gNKBT9Y6D0bx3FAAAAAvY0CHNx+dLMNrm25JrPjF53eDy7vdCe0MHT15z56Vj4SAAAAvF5rXJ8M3N5275dm97AQAAAACYRX7qHwAAAAAA6Ll6rdFRnWA0oFONDoPRBtxXAAAAWMhaBaNtuKanbXTNlf+SbN88ed3gsu73Qnt9g0n/kmRkQ+ua7cPJ5luTxqre9QW74pZvJ7/+cLL+ipDAke0AACAASURBVPuOb7sr2XjdfceWHZ+c/MFkn4f2rj8Adn+3ntN6btudybYNycCS3vUDAAAAADBLarPdAAAAAAAAsPA0akMd1Q3UBBgBnal3GIwmcBEAAIAFbcnq5uPDNySj23rby0zbvjm58p86q+3r7I0b6LJHf2Xymiv+uvt9wEy44cvJd347uf6zyZ2X3vcxMRQtSe68JPnGw5K15/W+VwB2T5tuTC54fvuasx+QVKO96QcAAAAAYBYJRgMAAAAAAHquXuvshYcCjIBONfo6DEarDXa5EwAAANiNDR3SfLwaTdb9pKetzLhrP5VsXttZbSnd7YXOLH3A5DW/+Jvu9wEz4fL3JtX2qa8T/gfAPX76x5PXbLxOqCYAAAAAsCAIRgMAAAAAAHqu0TfUUZ1gNKBT9VpnwWgDpb/LnQAAAMBubMkhSVqEgl32zl52MrOqKvnFBzqrXfbA7vZC5xbtnQwsnbxuZFP3e4FdsX1rcvuF01t741dmthcA5qY7Lk6u+7fOam/7Xnd7AQAAAADYDfipfwAAAAAAoOfqtUZHdQOC0YAONToMRhO4CAAAwILWP5SseHhy2/d3nrvp7GTt95KVj+h9X7ti45rkh69M7vp5Z/X7P6m7/dC5UpKDnplc/ZH2dec+JVn5yGTVaXPv7yfz0y3fTm49J9l659j1yIYk1fT3++Grkr56sufRyfbhZMu6ZNVvJfs+dufakU1jwTmXvyfZeE0yuFey5zHJsuPGPt7vCcnKR02/FwB6b8M1yddOnFo9AAAAAMA8JxgNAAAAAADouUZtqKM6AUZApwbKYGrpy2i2t61zXwEAAGDBO+ZNyW1Paz536VuTx507Flg1F6z7SfKd3062/Kaz+hWnJsf+aXd7Ymoe+M5k3Y+SOy9tXbP23LHHZe9Kjn9PcuxbetUd7OziNyc/f9/M7vnr/7vz2OV/mdz/LckJ77l3bOudybcefd/Ply2/SW47f+xxz7rj3pEc9+cz2yMA3XHb95NvTjH4dcPV3ekFAAAAAGA3UpvtBgAAAAAAgIWnXmt0VCfACOhUKSWN2uJJ69xXAAAAWPAO+J1k74c2n1t7XnLLN3vbz6645G3tQ9EOembytGuSh38qefx5Y6FvA3v2rD06sPiA5LQfJL/1rc7qL/3zZPiW7vYErdx91cyHorXz8/cmG6659/qqj7QPEbzHZe9INt3Yvb4AmDkXv2nqazZeM3kNAAAAAMAcJxgNAAAAAADouYEymL70t62ppS+14lsZQOfqfZMHow0IRgMAAGChKyU54T2t5y/506SqetfPdI1uS275Rvuao1+fLDkkOeT5ycpHJrX2/ybJLOlvJKsel6x89OS11Uhy8yR/7tAtN/9n78+84cv3fnz95ztbU436PAGYC7bemdz2/amv27Rm7LkwAAAAAMA85rv7AAAAAABAz5VSUu9rZOP2u1vWCC8CpqpRa0xa0+/eAgAAAMm+j032fVxy67d3nlv34+SGLyYHnd77vjo1Mpxc95mk2t66Zu+HJise3rue2HWrnpCs/e7kddf9W3LI85Kaf+chyfYtye0XJrXBJCUZ3ZLsfXLSV98xvzVZd1Gycc2un3XLN6dWv+z45M5Ldu3Mn/5xUt937OPbf9D5unU/Sg47Y9fOBqC77rys/fxJ/5T86A93Hq9Gk43XJ3sc1p2+AAAAAAB2A4LRAAAAAACAWdGoLW4bjCa8CJiqem1o0hr3FgAAANjh+Hcn32gSjJYkl7wtOeDpSa2vtz114vYfJd99SrJ5bfu6kz/Ym36YOYe/PLn2k8n6X7avu/lrydnHJY/5WrJkdW96Y/d0x8XJuU9Ohm++73h9VfKYs8fC0c59UrLxut73tuTw5NFfTn5wRnLrOdPfpxpJLnje1Ndd+c/JsuOSI141/bMB6J7f/CD51iNbz9//LcmhL24ejJYkt35HMBoAAAAAMK/VZrsBAAAAAABgYarXFred768JLwKmpl5rTFojGA0AAAB22OeU5MCnN59bf0Vy3ad7208nqtHk+8+ZPBTtaVcly4/vTU/MnPrK5AkXJCf+TXLwJEFQ63+Z/FDg04JWVcn3n7tzKFqSbL5lbO6/XtybULSlxyYHPWvscfBzkxP/d3LaBcnQ/cYC/E7+v8nyB913TW0wOeiZycpHd6+vi35/8qBBAHpvdHvyvWe3rzn+3Un/UFLft/n8D18+830BAAAAAOxG+me7AQAAAAAAYGFqTBaMJrwImKLJ7yv9KaX0qBsAAFg4ytgT7TcmqY8b/kRVVdfu4r6rk/yPcUObqqr6613ZE5jgge9KbvhykmrnuUvfntzvOUnfYM/bamndT5INV7ev2fuUZMmhvemHmbdor+SY1499vM/Dkx+/pnXtLd9MtqwbW8PCc9dl7UO/7v5V73o5+o+Sw17WfK5vMDn8FWOPZrZvST5bbz43E677XHLcn3VvfwCm7vYLk01rWs/v96Tknu9nDa1ONt/avM7zIAAAAABgHhOMBgAAAAAAzIq6YDRghtX73FcAAGCWPD/JX+XeZKUzdzUULUmqqrqmlHJcktPvGSulXF1V1Zm7ujeww7LjkoOfl1z36Z3nNl6TXP2vyRG/3/u+mhndnqw9d/K6vU/peiv0yD4PnaSgSu7+dbLo5J60QxdVVbJ5bbJo72TbXcn2zZOvWfPF7vfVqb134e9g36LkIf+SXNSle+3dV3ZnXwCmb/0v2s/vM+757NKjk9t/0Lxuw1WTB6ONjiTVSNLXxRBOAAAAAIAuEIwGAAAAAADMisYkAUYDxbcxgKlpCFwEAICeK6XUkrzznsskv0ry4hk84iVJjk9y+I7rdycRjAYz6YHvSK7/bFJt33nusnclq1+c9Lf/mrurRkeSn74xufojybb17Wv7h5IjXtmbvui+vR6crHx0sva7rWu+cUpy+q1JfWXv+mJmXfWR5NI/S4Zvmu1OpmfVE8ZCJnfFoS9Nrv1Uctv3Zqan8a79ZPLwT8z8vgBM3ej25OI3Jb/4m9Y1g8uTQ8+49/qYNyZXf6x57c/+InnMf7Q4ayT58euSa/9fsn1Lsv8Tk4d+LBlcNs3mAQAAAAB6qzbbDQAAAAAAAAtTfdIAo8EedQLMF5PfVwSjAQBAFzw+yeok1Y7HW6qq2jRTm1dVtTHJm8cNHVlK+a2Z2h9IssfhyWEvaz43fHNy5T/3tp+JfvYXyS//bvJQtAN/N3n8ecnS+/ekLXqglLGwj6P+V/u67z6tN/0w8276WnLhy3obilYbSOr77vpj6bHJ0a9PHnXWrvfUNzi2z+Gvuu94s3MXrdh5/arT2u+//spd7xGAXXfZu9qHoiXJEy5Ihu5373W757Y3nZ3c/M3mcz/9k7Hn8dvWJ6NbkhvOSs5/5tR7BgAAAACYJf2z3QAAAAAAALAwNQQYATNssvvKgPsKAAB0wwvHffzjqqq+ONMHVFV1Zinlx0kevGPoBUnOmelzYEF7wJ8lV398LDRhosvfmxz+imRgz973VVXJVf86ed2Rr01O+vvu90Pv9Q8lD/7b5O4rk5v+o3nN7Rcmd16WLHtAb3tj13Xy+T3TDvq95NRP9f7cySzaKzn5X8Ye03Hj2cl3n9J87ppPJMe/a/q9ATAzrv5I+/mj/ihZevTO4/s/eSwErdWe+z3hvmNVlVz/bzvX3npOMnxL0ljVWb8AAAAAALOoNtsNAAAAAAAAC1N90mA07+8CTM3k9xXBaAAA0AVPHPdxN9NN7tm7JHlyF8+BhWnxgckRf9B8buu65IoP9Lafe2z5TbL5lsnrBGLNf8uOaz9/58960wcz69bv9P7M+Xq/WHZs67m7fH4AzLqtdySb1rSvaXUvb/c8qNlzoK13JMM3N6+//vPtewAAAAAA2E0IRgMAAAAAAGZFQ4ARMMMafe4rAADQS6WUg5PsM27oq108bvzeK0spB3XxLFiYjn1L0r+k+dxl70juuLh3vYxuTy5/b/LFVZPX9g8l93tW93tidq1+UVLa/Oj7Bc9PfvjKZPPa3vXE1Gy4NvmvlyRfPTo5a/XYY+u63vZQ+pNDnt/bM3tl6ODWczeclVSjvesFgJ3dck77+f4lyUHPbD53yP9ove6uy5Oq6ryPanvntQAAAAAAs0gwGgAAAAAAMCvqkwQYDQgwAqaoLnARAAB67fgdv1ZJrqqq6sZuHVRV1Q1Jfj1u6IRunQULVn1FcvQftZ7/2onJltt708sPX5Fc8qeTB/nscWTyW+ckg8t70xezZ+kxyaPOal/z6w8l33hYMrKxNz3RueFbx/5srvl4sv6XycZrxx69tPh+yWP/s32A2Fz3oL9tPfej1/auDwDua/jm5Httgnz3OCJ53DnJ4LLm88uOTe7/5tbrb/nmhIEpBKUBAAAAAOym+me7AQAAAAAAYGFqTBpgNNijToD5YvL7imA0AACYYSvGfXxTD867KcnhOz5e2YPzYOE5+g3Jr/4x2XpH8/lrP50c9Zru9jB8y1h4UjulP/ndNUljVXd7YfdywO8kR7567O9oKxuuTq7/QnLoi3rXF5O75hPJ5lumvu4Rn0+WHT95Xf/ipBoZ+7j0JyObdp5ffMDUz59r9jqp9dyV/5Q88B3Jor171w8AY65u89x2YM/kqb+afI8jX5P8/K+az132rmS/0+69rrZPrT8AAAAAgN2QYDQAAAAAAGBW1CcLMKr5NgYwNfVao+38gGA0AACYacvHfTyNtJMpG3/Gsh6cBwvP4NLk/m9KLn5z8/nf/Ff3g9Fuv2jyMIf9nyQUbaHa44jJa37zX4LRdje/+a/prVv5qKQuC7Vjexzefn7dT5L9ntCbXgC4V7v/D654RGd7tHvuu+W2+16PjnS2JwAAAADAbqw22w0AAAAAAAALU2OyYDQBRsAUNWpDbef7a+4rAAAwwwbHfdyLn0ccf8aiHpwHC9ORbYLPrvtMctPXZ/7M7VuSqz6SXPiK5LynTV5/v9+b+R6YGw46ffKaX38w+Ux/ctm7k613dL8n7mv85/MFLxp73Pa9qe+z8jFC0aaqsSpZ8cjW87/8h6SqetcPwEK36Ybk5/87ufHLrWs6fV5baklfizcIWv/LZP2v7r2uBKMBAAAAAHOfYDQAAAAAAGBW1CcJRhsQjAZMUb3VC0J2ELgIAAAzbtO4j1f04LzxZ2xqWQXsmv7FyVGvaz1/7hOTS/9i5s7bvjn5zhOTC1+WXPXhyesPPSM5+Lkzdz5zy+IDkwe+a/K6anty6duSrxyZDN/S/b4YM/Hz+dpPjj223Da1fYZWJyd/sDs9zncnf6j13E1fTX7yht71ArCQ3fXz5D8fklz8J61ragPJIS/ofM9HfL713FePSm6/aOxjwWgAAAAAwDwgGA0AAAAAAJgVjb72wWj9ZbBHnQDzRX8ZyECbe4dgNAAAmHHjk2YO7sF548+4tQfnwcJ1wO+0n7/83cnwDH0arjkzWXvu5HW1geQpVySn/OvYxyxcx76189otv0muFLDVM51+Pt/j2Lclp3xk7PGwTyYP/WjyuO8kT7k82fOorrU5ry09OjnwGa3nf/m3yYare9cPwEJ1+XuSzZOEsz7u3Kk9r93nYe3nL3nb2K+j7YLRqs7PAwAAAACYRYLRAAAAAACAWVGvNdrO95f+HnUCzCft7i0DgtEAAGCmXbXj15Lk4FLK4d06qJRyWJJDmpwNdMOSQ9vPVyPJrefMzFk3/Wdndcf+2VjgTykzcy5zVylJfWXn9Vd/tHu9cF83f31q9Ue8MjnsjLHH6hcmh74k2fcxSX/77x8wiaX3bz9/8zd60wfAQnZzB89xJ3vOPdHg8mRgaev5284f+7VqF4wGAAAAADA3CEYDAAAAAABmRV/pz2BZ1HK+X4ARMA2N2lDLOfcVAACYcZck2Zqk2nH9tC6e9bvjPt6W5OIungUMrU72OLJ9zZX/lIxs2rVztqxLrv1kZ7X7P2nXzmJ+OfgFndduur57fXCvajRZ84XO65c+IGkc0L1+FrL9nth+/uqPJSPDPWkFYEHZekdyw5eTm76WbLm9fe3yE5LGqqntX0r758TbN4/9OioYDQAAAACY+wSjAQAAAAAAs6ZeW9xybkCAETAN9Vqj5ZxgNAAAmFlVVW1N8t0kZcfjT0oprdOKp2nHnm/MWABbleS8HWcD3VJKcuJfJ7XWb2yQ276f/PteyfpfTe+Mm7+ZnHVIZ7WrX5zs9eDpncP8dPQfJUsO67z+yg92rxfGQhLPe0YysrGz+r56cuL7x+41zLwVpyYHP7f1/O0XJl87Idlwde96Apjvbvl28qWDkvOenpz75Pa1fYuTE943vXOOfVubySqpqqQSjAYAAAAAzH2C0QAAAAAAgFnT6GsdjCbACJgO9xUAAOi5z+z4tUqyIsn7u3DGXyVZmbHwtST5dBfOACY68KnJEy9qXzO6JfnRq6e+9+i25L9emIzc3bqmvio58rXJI89MHvpRAUrc19BByWk/SE76x2Tfx+be/0W0cNHvJ5tv60lrC9KVH0xu/HLr+f2elBx6xtjjge9KfvtHyf5P6l1/C00pycM/1T488O5fJT/+o971BDCfjW5LvvfszgJCj3tH8sQfJfudNr2zlh2bPLzdl8RVMioYDQAAAACY+/pnuwEAAAAAAGDhqtcEGAEzq919ZcB9BQAAuuHTSd6dZFXGUmleVUq5saqq98zE5qWUNyf5w4wFr5Ukt0YwGvTOsuOSB30g+cnrW9fc8s1k6x3J4PLO9117frJ5bfuax30nWXp053uy8NT3SY78w7HH1juTf5/k7+CNX0kOe2lvelto1nyh/fyDPuDzuddKLTnmDclFf9C65qb/SEY2Jf2t/00VgA6sPT/Zum7yuqHVyXF/vuvnDd2v9Vw1mlSC0QAAAACAuU8wGgAAAAAAMGsagtGAGSZwEQAAequqqq2llLck+VjuDS97VynlgUl+v6qqO6azbyllWZJ/TvKccftWSf60qqqtM9E70KF9Tp285pZvJUsfkCxZnfTV7x0f3ZZsWZc09h0LaRi+JRndOhZQ1U59ZbLHYbvWNwvL4LJkz2OS9Ve0rrn5G8mhZySjW5IN17TeZ+tdGftfTpLFByYDe8x4u/PGtg3JpjXJby5oXePzefbs8/D289X2sc+FZcf2ph+A+WrNmZ3VrZjkvtyxWuspwWgAAAAAwDwhGA0AAAAAAJg19Vqj5dxATYARMHVtAxfdVwAAoCuqqvpEKeUZSZ6ee0PMfi/J40spH0ny4aqqruxkr1LK4UlekeSMJHvl3kC0KslXqqr62Mz/DoC29n5IsvzE5I6ftq753rPHfq0tSg57WfLgv0su+8vkF3+TjGyc+plH/3Hi63im6v5vSn7wktbz13927DEVpS858OnJQz8mIG28bRuSH5yR3PDFsXCtdnw+z57lxyf7PTG5+T9b15z9gOTBf58c9dre9QWwUB31upnZp5TWc+c8LjnyNa3nq9GZ6QEAAAAAoMsEowEAAAAAALOmURtqOddfvFAKmLp6u2A09xUAAOim/5HknCQn5d5wtL2SvCHJG0opNyf5YZIrkty545EkS5MsS3JMkpOT7L9j/J5Xet+z14+TvLDrvwtgZ6UkT/h+8rnWX3P/t9EtyZX/PBaWNHzz9M576EeTQ18yvbUsbIe+eCy87Pxnztye1fZkzZlJrf7/s3ff4XFddf7H32ekkVXcbcklbrHTnR7SExISUigJoZelZhd2YYEsS1nI0kLgt7CFXcrCshD6AqEEUoFU0kmB9B7HvUlx72rn98fISI7vHc2MZkYa+/16nvvo6nzPPeer2BnZ8tzPhZP/r3zr1rr73gdLfzn4vPkXwyEfrXw/Svfi38BjX4BHL02f86eLoGUOzDi/am1J0l5nv7/LBQ6XRSa91HFH7kjT21WmHiRJkiRJkiSpsgxGkyRJkiRJkiRJw6axrim1ZoCRpFI01aXfpJ31dUWSJEmqmBjj5hDCmcD3gVeTCzSD/oCz6cCr+o40YcD5wOuvBN4RY9xctoYlFac+/ed4iUoNRZt/saFoGpqZr4Hj/hfufU951136S+j6FmRHl3fdWtS9BZb8vLC5h36qsr1ocHWj4PDPweo/QMft6fMW/sBgNEmqpNlvKN9aIU8w2mBid/n6kCRJkiRJkqQKGsJPQiVJkiRJkiRJkoamKdOSWjMYTVIpGjPpwWi+rkiSJEmVFWPcFGN8LfBhYBu5ULM44KBvLOngBXMDsB34WIzx1THGjdX6OiSl2Pcdld9j/OGV30N7vvFHlH/N3k7Y/Gz5161FmxZA747B5405AOoaK9+PCjPY6+uGx6rThyTtiXo7B58zbn759htKMFqvwWiSJEmSJEmSakP9cDcgSZIkSZIkSZL2Xo2ZptRa1gAjSSVoMhhNkiRJGnYxxv8MIfwQ+AfgfcCEgeWUy8KA83XAN4CvxBifr0yXkoo270JY+IPKrT+qFfY5v3Lra+8x6VgYfxisf6S86/72qN3HRk3afSzTAJOOg8O/AOPLGIIynLatggc+Bh23wZbFhV0z768r25OKM+9CePabEHuT6xufgmVXw4zzqtuXJO0Jutbnr8+4ABrbClpq2faFXP38T1iy/Vm62T3ELBsamFs3lfNGtTBlx5bie40Go0mSJEmSJEmqDQajSZIkSZIkSZKkYdOUaUmtGWAkqRT5Ahd9XZEkSZKqJ8a4BvhUCOFzwPHAacDJwD7ARGBnksxaYA2wArgTuBW4J8bYWfWmJeXX9mI4+Wdw55vKu27IwMTj4MTvQ3363+ulgoUAL/k93P1OWHV9ZffasSZ5fNmVsPoP8PKHoWVWZXuotJ7tcMPJsPm5wuaPmgz7vxcO/khl+1JxJh4Np/4GbssTQHnb+XD6dTD9ZdXrS5L2BJ3r8tdP/FFBy7R3ruQ/lnyCHXF73nl/7l7DsweewsefuJXxXfnn7sZgNEmSJEmSJEk1wmA0SZIkSZIkSZI0bAwwklRujZnm1FrW1xVJkiSp6mKMXcAdfYekWjf7jbmjexv07oCeHfC7Y2Db8tLWO/abMOetkB1d3j6lpmlwxu+h465cqFea5lnQ2wnbV5W/h64N8Nz34LDPlH/talp2ZWGhaOPmw5k354LRQqbyfal4M86D1z4Pv5qcPueprxiMJknF6lyfv17gn3XvWP/7QUPRdtqYbeTB8dM4vWNhQfP/otdgNEmSJEmSJEm1wX9xlCRJkiRJkiRJw6apriW1ZoCRpFI01aUHoxm4KEmSJElSmdQ3QcN4aJoCYw8sfZ3pLzcUTZU1bn7+kK6xB8L8iyu3/5p7K7d2tTx/T2HzWk+FxjZD0Ua6hom5I82a+6rXiyTtKfKFBB92ScHLLNr+dFHbLm0eV9R8AKLBaJIkSZIkSZJqQ/1wNyBJkiRJkiRJkvZejZmm1JoBRpJK0ZgxGE2SJEmSpKqa/UZYfXPx1006AVpmlb8faaCGcTDtZbDi2uT67Dfm6n/+EMSe8u/fcSfcdsHu443TYMb5MP1l5d+z3Bb9qLB5s99Y2T5UHiHkfq2e+WZyvXMtdG02tFKSCtW9DbatTK/PflPBS7V35lknaetSwkh7DUaTJEmSJEmSVBt8HJMkSZIkSZIkSRo24+onJI5nyNBYlx5uJElpRteNJZPyz6Cj68ZWuRtJkiRJkvYCc98Fcy8s7pq6Zjjxh5XpR3qh4/4Hxh+2+/i8d8O+74Dm6XDijyHTUP69uzbAsit3P579H/jDy+Hxfyv/nuW08Eew4/nB5x3+eWg7rfL9qDyO+AI05wmm3LK4er1IUq3bsii9dvBHYewBBS2zvXcbG3vWFbV1d6auqPkAxK7ir5EkSZIkSZKkYVA/3A1IkiRJkiRJkqS916TsFKY1zGRl59Jdxuc1HUxjpmmYupJUy0ZlGjmg+TCe3PrQLuNt2elMbpgyTF1JkiRJkrQHy2ThhMvgsE/D2gcgdvfXenZA73bIjoXYC91bYNwhMPFFkPFtzKqS5hlw7gOw/mHYvABCPUw8Blpm9s+Z8ybY5+Ww5j4Ysx+0zIbt7XBFAT9POuar0LMdHvxY8b09+jnY/72QHV38tZXW2wMPXZxe3+c82O89MOk4aGyrXl8auoYJcN4zcPmo5PqWxTB+fnV7kqRatf7h9Nrhlxa8TEfnytTa3MaDeG77k7uNd4XkBwXl1ds9+BxJkiRJkiRJGgF8R4EkSZIkSZIkSRpW75j2D3x92efY3LMBgAn1k3nr1PcPc1eSatmbpvwdX1v2GdZ0tQPQnBnNhdM/PMxdSZIkSZK0h2uZnTukkShTBxOPyh1psmNh6pn9nze2wfGXwT1/nX/tue8qPRitezOsuWfXfUeKTU/D1mXp9YM/Bm2nVK8flVddQy40MOnXeOvi6vcjSbUo9sLjX0yuNc+AupQAygTtnSsSx+tDPXObkoPRujMlBKNFg9EkSZIkSZIk1QaD0SRJkiRJkiRJ0rCa1TiPS/b9Bgu2PUEm1LFf0yE0ZAp/k7gkvVBbwzQ+OeerLNz2FJ1xBwc0H0Zjpmm425IkSZIkSVKtmf5yCHUQe5LrU14C2dG5Y9LxuZCzYq28fmQGo21emF7LjoNJx1WvF1VGy+zkYLTl18L+761+P5JUa5b+CtY9mFxrO72opdq7ViaOT85OTf238+5QQjBar8FokiRJkiRJkmpDCT8BlSRJkiRJkiRJKq+muhYOHf0iDmk5ylA0SWUxKtPIQS1HcPjo4wxFkyRJkiRJUmmapsLhn0+uNUyEI77Y//lR/54LDCvWE/8KT329tP4qafNz6bVjvwF1DdXrRZXRPDt5fMW18NCnqtuLJNWa3h54+NPp9YP+oajlOjpXJI63NUynPmQTa92ZuqL2ACAajCZJkiRJkiSpNtQPdwOSJEmSJEmSJEmSJEmSJEmSJI1I8z8ObafB6ptgxxrIZKFlDuxzHrTM7J/Xdgq87EFYfg1sfnb37ZH24AAAIABJREFUdVbdABseT97jzxfBzFdD8z4V+RJKsmVh8njDBJjzlur2ospoSQlGA3js87nfkxOPrl4/klRLll8NG59Mrs18DUw8pqjl2jtXJo63ZqeRTQtGC5mi9gAMRpMkSZIkSZJUM2oqGC2EcHPfaQTeHGNsL3GdKcBPd64VYzyzHP1JkiRJkiRJkiRJkiRJkiRJkvYwrSfmjsGMngMHvj+59uDF6cFosReWXQkHvK/kFstuc0ow2j7nV7cPVU6+YDSApVcYjCZJaVbdkFIIcNjnil6uvWtF4nhbw3R6Y09irauUYLReg9EkSZIkSZIk1YYSfgI6rE4HTuv72DiEdRr71th5SJIkSZIkSZIkSZIkSZIkSZJUGW2n5q8v/ims/TP0bK9OP4PZ/Fzy+Oi51e1DlTPY78nNC6rThyTVorTXyJmvhfHzi1pqa89mNvdsTKy1ZadRH7KJte5MCbcFRoPRJEmSJEmSJNWGWgtGAwjD3YAkSZIkSZIkSZIkSZIkSZIkSQWbejZMOj693nEH/O4Y+MV4eOyLEGP1enuhGGH9Q8m10ftWtxdVzrhDcgE+aRb/DLa3V68fSaolK3+fPD7puKKXau9cmVprbcgTjBbqit6L3q7ir5EkSZIkSZKkYVCLwWiSJEmSJEmSJEmSJEmSJEmSJNWOTB2cedPg83p3wEOfgGVXVr6nNM98M73WYjDaHuXkn8GYA9Lrd721er1IUq1YeUN6rYQA0Y6uFYnj2dDA+PpJZDMpwWiZEm4LjN3FXyNJkiRJkiRJw2BvDUarH3DuT3QlSZIkSZIkSZIkSZIkSZIkSZVV3wInfL+wuYt+XNFWSt67hMAXjWCZejj2v9Prq26Abauq148k1YIFl6XXRs8tern2zpWJ463ZqWRChvqQEowWSrgtsLez+GskSZIkSZIkaRjsrcFokwecbxm2LiRJkiRJkiRJkiRJkiRJkiRJe48JRxU2b8Pjle0jn23JAS0ANE2rXh+qjnGH5a9vfKo6fUhSrdj8XHptzAFFL5cajNYwHSA1GK0rU8JtgVtXFH+NJEmSJEmSJA2DvTUY7cV9HyPgT3QlSZIkSZIkSZIkSZIkSZIkSZU34XCYfOLg8zY+ATeeBluXVb6ngXq7Ycui5Nr4IyDsrbcg7MGapsDM16bXtyyuXi+SNNJ1boC19yXXQgayo4tesqMr+da2toZcGGlaMFpvyNCb2Edd+mZbFua+10uSJEmSJEnSCFfL/yoZi5kcQsiGEGaFEP4G+OcBpUfK25YkSZIkSZIkSZIkSZIkSZIkSSlOvxZmvR7qx+Sf134bXH8S9GyvTl8AT301vXbiD6vXh6or369tWlCeJO1tYoQbT02vn3ZdScu2d65MHG/LTgcgmxKMBtCdFIJ22rX5w9Ge/lpR/UmSJEmSJEnScBhxwWghhJ60Y+A0YFG+uQnXbgcWAt8Cxg5Y66oqfnmSJEmSJEmSJEmSJEmSJGkQIYRjQgivCyGcF0LYb7j7kSSprBomwCk/h9etg1ctyj9361JYVsW3vD/1X+m10XOr14eqq74ZZlyQXDMYTZJy1j0A6x9Jr489oOglN/dsZGvv5sRaW0MuGK0+XzBaJuHWwOnnwOvWp2/66KVF9ShJkiRJkiRJw2HEBaORCz1LOwqdN9gR+9Z4Evhl5b4USZIkSZIkSZIkSZIkSZL2XiGExhDC3AFH3SDzzw8hLALuBS4HfgM8FUK4I4RwSBValiSpejJ10DwLGibmn7fgsur0A9C1MXk81EN2dPX6UPW1zEke37K4qm1I0oi19v70Wl0zNM8sesn2zhWptbaGaUD+YLSukHJrYHY0NO2TXOtcDzvWFtyjJEmSJEmSJA2H+uFuIEVk9yC0cgrA/cAbY4xdFdxHkiRJkiRJkiRJkiRJkqS92YeBz/WdLwPmpE0MIbwB+AnJD1M9CbgnhHB6jPFPFehTkqThEQLMfjM889/pc1ZdDz8J0DABOtf1j9c1Q8/W3PmUM5IWh/GHwry/yX1Ms+L3sORyWPcgdG1InjPxRYN+KapxacFoa+6Bm86E+tHQdioc8H6oaxzaXjHCc9+FlddD41SYdyFMOGJoa0pSpW1emF6b9XrIFH+bXnvnysTxUaGRsXUTAMjmCUbrzqQEowG0ngRLfpFQiLDydzDnLcW0KkmSJEmSJElVNRKD0W4jF4yW5LS+j5Hc0yC3F7hmBHYA64EngFtijLcPpUlJkiRJkiRJkiRJkiRJkjSoC8iFnEXgshhj4vsDQwgTgG8Bmb65Ax+wuvOaFuCKEMKBMcZC3z8oSdLId+S/5A9G22lgKBr0h6IBrL45+ZrVN8GC78IZN8Lk43avP/ttuPc9g+994g8Gn6PaNnpO8nj3lv7fX8uvguVXwxk3Q6au9L3u/VtY8O3+zxd8B864HlpPLn1NSaq0x7+YXjvmP0tasqNrReJ4a8M0Qsj9lbg+XzBayPNafML3UoLRgLv+Cma9oaQwN0mSJEmSJEmqhhH308sY4+lptRBCL/1vcHpjjHFJVZqSJEmSJEmSJEmSJEmSJElFCSE0AUfS/76/a/JM/wAwjv5AtOXAFUA38Bpgdt+8GcAHgX+tQMuSJA2P7BiYdi6s/F1l1u/eBE98CU791a7jvd3wyGcHvz7TAGP2q0hrGkFa5hQ2r/02WHU9TH9ZaftsXrhrKBrkQv4e+xc4Pd8fFyVpGG14Ir128MegYUJJy7Z3rkwcb2uY9pfzfMFoXZlM+uL1LTD3nfDc95PrK34LM84roEtJkiRJkiRJqr48P/0cscLgUyRJkiRJkiRJkiRJkiRJ0jA7DKgj976/LTHGP+eZ+1b6Q9GeAg6NMV4UY/xw3zr39c0LwDsr1rEkScNl7jsru/7qW3Yf2/QMbFsx+LUtcyDU4q0HKkqhwWiQ/PupUMt+kzy+4lqIMbkmScOt/Q/ptdFzSl+2M/n7cGt2+l/O6zPpwWjdg31/nnJmem0or+WSJEmSJEmSVGH1w91AkS4ZcL5+2LqQJEmSJEmSJEmSJEmSJEmD2bfvYwQeT5sUQjgI2K9vXgQ+HWPcsLMeY9wcQvgA8Me+oQNDCDNjjEsr07YkScNg2tnk8j8rFAzVuQ4e+iSEAbcQbFlY2LUzXlWZnjSyNIyDttOg/dbB524u8PdOkhW/Ta/t6IDGttLXlqRKWfun9Nr0V5a0ZIyRjq6VibW2hml/Oc+GIQSjTX95em3Lc/mvlSRJkiRJkqRhVFPBaDHGSwafJUmSJEmSJEmSJEmSJEmSRoApA86T7/bOObXvYwA2Ab9+4YQY470hhGXAjL6hwwGD0SRJe46GCXDsN+G+v6vcHo99ofhrJhwJB324/L1oZDr6y3DLubmAsnyW/hJ6eyBTV979Ny8yGE3SyLP+MVhwWXq9ZWZJy27q2cD23m2Jtbbs9L+cZ6gjEIgJ4andg70Oj5oILfsmh6EuuxJ6uyFTU7cXSpIkSZIkSdpLDPJYCEmSJEmSJEmSJEmSJEmSpJI0DzjflGfeyX0fI3BTjLE7Zd6jA85nDaUxSZJGpP3/Fl7+CBzwwdLDoeZ/EkIZAk4O/TSc+is46w5omjL4fO0ZJh6d+z14wvdzv5dmXJA+d/VNpe3RszW9lhTcI0nD7cF/Sq/N/+eSl23vXJFaa2uY9pfzEAL1IZs4rysUcGvg4Zek11ZcN/j1kiRJkiRJkjQMDEaTJEmSJEmSJEmSJEmSJEmVEAacJ9/FnXPSgPPb88xbM+B8bEkdSZI00o0/FF70FTh/UWnXH3EptMweWg/7vj0XojLzNVDfMrS1VHuapsDcd+R+Lx34wfR5y35T2vqbF+WpGYwmaYTp2Q4rf5teb5lT8tIdXSsTxxszzYyuG7fLWH1K6Gl3poBbA1v2Ta+V+louSZIkSZIkSRVmMJokSZIkSZIkSZIkSZIkSaqETQPOpyRNCCFMBfYbMHRXnvUG3gkeUmdJkrQnqG+CSScUd83+78t9nHL60PZuG+L12nNMfFF6bcFlsP353cc3L4KNT0GMu9d6dsC2Felrrvxd8nWSNFy2LIbYm15vO63kpVd3Jr8etmWnEcKuf+WtD8lZ492hgFsDJx6dXlv6a+jtGXwNSZIkSZIkSaqymg5GCyG8JIRwaQjhmhDCvSGEp0IIzxV5LBjur0OSJEmSJEmSJEmSJEmSpD3Q8r6PATgsZc7LB5zvAP6cZ73xA863DKEvSZJqw2GfhkxyEMpuRrXCgR/MnR/4IWiYWNqe4w+DWa8v7VrtebJjIDs2udbbCVe0wj3vht4u2LEGbjgFrtoXrjkIrjsMtizd9ZoNjwF5gs/ab81dt3lRub4CSSpdjHDve9Lrs94IY/cvefmOtGC0hum7jWVDQ+Lc7kzd4BvVN0PTPsm1rvVw5UxYc//g60iSJEmSJElSFdUPPmXkCSGcA3yVXZ8SWerTH32ckCRJkiRJkiRJkiRJkiRJ5ffwgPOJIYRzYoy/f8Gcd/V9jMC9McauPOvNHXC+qhwNSpI0ok1/GZx5Kyz8AWx6JhcqtX11rjZ6Low5AOoaYfQ82P+9MGZerjZ+Ppx9Nzz7LVj3IMSewfeqa4LJJ8KBF0F2dOW+JtWe4y+DO/KE5S34Dow7BNpvh447+8c3PJa77pw/9o/d9VeD77fhMbjzzXDO3aX3LEnlsPJ30H5bev3knwxp+faulYnjScFo9SE5KLUrZArb7Nhvwm3nJ9e2rYRbXwEXLCs8kFWSJEmSJEmSKqzmgtFCCB8FvrjzU/qDzUoJOCs1TE2SJEmSJEmSJEmSJEmSJOURY1wQQniG3ENQA/CNEMJLY4wLAUIIHwZOHnDJlWlrhRBGs+vDVBdUoGVJkkae1hNzR7HGHgBH/0f5+9HeZ/S+g89Z8N1ceN8LrbkHti6D5hkQI2x8srA91/wRNi8sbG9JqpRFP02vtZ4KhYaSJYgx0tGZHIzWmp2221h9SL4FsDtTYA+j5+avb2+HVTfB9HMLW0+SJEmSJEmSKqymgtFCCOcAX+r7NPYdO8PNtgLrgXxPi5QkSZIkSZIkSZIkSZIkSdXzHXLv+4vAvsCTIYSHgDZgJv3vA9wO/DjPOqfT/37BbuCxCvUrSZKkgcYeBHXN0LM1fc6GR9Nrq2+F2W+Aro3F7bvxqfzBaDFCCOl1SRqqjU+k1yYeM6SlN3SvpTPuSKy1NUzfbaw+ZBPndhcazjZmHmTH5n8t3vikwWiSJEmSJEmSRozSH00xPL7Y93HnG6GWAe8H5sQYR8cYZ8QY9y32GLavRpIkSZIkSZIkSZIkSZKkPdtXgCf7ziOQBY4BZtEfdBaBL8cYO/Ks8+oBcx+KMeUOckmSJJVXfQvMu7D06+9+K/ysAX41ubjrHv9i8viin8K18+Hno+Hmc2DzotJ7k6Q0z3wL1t6fXp/3N0Navr1rRWqtrWHabmPZTEPi3IKD0eoaYb/3DNLUbYWtJUmSJEmSJElVUDPBaCGEecAR5N7UBHAPcGiM8RsxxiXD15kkSZIkSZIkSZIkSZIkSUoSY+wEziEXjrYzCC3Q/17AAFwBfCZtjRDCaOC1A665qSLNSpIkKdnR/wXzL84F61RL+62w4re7ji2/Fu56C2x4HHq2wqrr4YZToGd79fqStOdb+CO47+/S64dfCuPnD2mL9s6VieMtmTG01I3Zbbw+1CfO78rUFb7pkV+CQ1P/6g3Lfg09nYWvJ0mSJEmSJEkVVDPBaMCJfR93viHq7THGTcPYjyRJkiRJkiRJkiRJkiRJGkSMcSlwJPBe4LfA48AT5ALRXhdjfH2MsTfPEu8ExpJ7/2AArq1ow5IkSdpVpg6O+AK8YQtkGqq37zP/s+vnz35r9znblsPya6rTj6S9wzPfzF+f89Yhb9HeuSJxvLVhWuJ4fcgmjneHIm4NDBk4/LNw+OfT56y4rvD1JEmSJEmSJKmCaikYra3vYwQeiDE+M5zNSJIkSZIkSZIkSZIkSZKkwsQYu2KM34oxviLGeGjf8boY4xUFXH4ZMGHnEWO8o7LdSpIkKVHIwNiDqrffugd3/Xz51cnzFlxW+V4k7R1i3P21Z6D60dA8Y8jbdHStTBxvKzYYLVPCrYHjDkmv5fvaJUmSJEmSJKmKaikYLQw4f3bYupAkSZIkSZIkSZIkSZIkSVUTY9wWY9yw8xjufiRJkvZq+76tvOvNe3d6besSuONNsOxquP+i9Hmrri9vT5L2XlsWQs+29PrsN0GmfsjbtHeuSBxvy05PHE8NRgsl3Bo47dz02ubnil9PkiRJkiRJkiqgloLRlg84rxu2LiRJkiRJkiRJkiRJkiRJkiRJkvZGB/4DzH5z+dY7/FI44gvp9SWXw23nw9NfTZ8Te6FnR/l6krR36u2Bq+al1yefBEf/59C3ib10dK1KrLU2TEscz6YEo3VlSrjFrr4J2k5Prm1ZWPx6kiRJkiRJklQBtRSM9tiA85nD1oUkSZIkSZIkSZIkSZIkSZIkSdLeKFMPJ/1f+dZrGA8HXjT0dZZdOfQ1JO3dVt2Qv37WHZAdPeRt1nU/T3fsSqy1NUxPHK9PCUbrDiXeGjjr9cnjGx6D7q2lrSlJkiRJkiRJZVQzwWgxxkeAR4EAHBNCmDDMLUmSJEmSJEmSJEmSJEmSpBKFEGaEEF4cQrgghPC2EMLbh7snSZIkFSAEGH/E0Nepa4S6UVDfAtmxQ1ur/bah9yNp75bvdWT8EbnXvjLo6FyZWmvLTkscTw1Gy5R4a+DoucnjnevgmW+UtqYkSZIkSZIklVH9cDdQpP8AvgfUAR8GPjm87UiSJEmSJEmSJEmSJEmSpEKFEGYDHwLOB2YnTPlhwjWnAi/p+3RdjPFrletQkiRJBZlxAax/aGhrZMf1nzfPhA2Plb7WM/8Nm56GcYf2j9U1wKTjYPorc+eSlE/H7em1ma/Je+nWns08vPlelu9YTCTmnbtqx9LE8TF142iqa0mspQajhRKD0VpPyYVT9mzfvfbAR2HSCdB2SmlrS5IkSZIkSVIZ1FQwWozxByGEVwKvBT4WQrgzxvjb4e5LkiRJkiRJkiRJkiRJkiSlCyFkgEuBj5J7OGpImJZ29/jzwGd31kMI18UYF1SgTUmSJBXqoItg9c35g4QG0zC+//y4b8MNJw2tp1U35I4XmnImnHYV1DcPbX1Je67n/wgdd6TXD/xgamlNVztfXfoZOrpWDqmFtobpqbVspszBaNnRsN974an/TK7feCocfxnMu7C09SVJkiRJkiRpiEr86eewegdwFblQtytDCJ8LIYwf5BpJkiRJkiRJkiRJkiRJkjQMQghZ4HfAx0l+oGtaIFquGOMTwC30h6m9pawNSpIkqXgNE+CMG+GMm+Cof4d9zhvaepNeVJ6+kqy+CRb/tHLrS6p9D3w0vXbMV3YNcnyB69dcMeRQNIDW7LTUWn1IDkbrytSVvuH8j0N9S3r9zx+C7q2lry9JkiRJkiRJQ5D0BqMRK4Tw6b7Th4CTgMnAPwP/GEK4G3gcWAf0FrNujPFz5exTkiRJkiRJkiRJkiRJkiT9xWXAS8kFoEVyAWe3kws76wQ+X8AavwJe0nd+NnBp+duUJElSUeoaYOoZueOAv4fLm4q7vnlm/3kmm/t869Ly9rjT8mtg3l9XZm1Jta1zPXTckV4fs3/eyx/Zcl9Z2mhrKD4YrTtkSt+wsQ0OvAge+3/J9a6N0H47TD+n9D0kSZIkSZIkqUQ1FYwGfJZdnwy58w1SzcAZfUcpDEaTJEmSJEmSJEmSJEmSJKnMQghnAm+l//1+zwJviTHe31efTWHBaNcCX+9b49gQQmOMcXtlupYkSVLR6hqh9VTouH3X8cwoaBgH29t3v2bKmbt+3jK7csFo6x+Bpb/OndePhsnHQ3ZsZfaSVFs2L8xfn3xSaqmzdwfru9eUpY2Dmo9MraUGo2WGEIwGcPBH4On/hq4NyfUn/wNiD0w6Fhpbh7aXJEmSJEmSJBVhiD/9HBF2PkGyFKGcjUiSJEmSJEmSJEmSJEmSpF18pu9jABYDJ+0MRStGjHExsL7v0yxwUHnakyRJUtkc9lmoa9p1bP7F8KL/hlC/6/jYA2Huu3Ydq2RQ2eYFcPtrcsctZ8OvWmHRTyq3n6TaseqG9Nphn8uFO6Z4vmtVWVo4esxJzG7cL7WeGowWhnhrYMMEOOnH6fVVN8Ctr4Ar2uDRL0As9RY+SZIkSZIkSSpO/eBTRhzDzCRJkiRJkiRJkiRJkiRJGuFCCBOBk+h/+OlFMcbnh7Dk433rARwAPDiEtSRJklRuU8+As+/OBY51roN9XgEzXpWrNe0DSy6HrUth0vG5ULTG1sLXDvUQu3PnDRNz6z73vdJ77e2Eu94KradCy8zS15FU+x78p/TaYZ/Ke2l758rE8UCGQ1uOGXTrprpm9m86lBPHnUEI6bfMZdOC0TJDDEYD2OeVMGZ/2PRM/nkPfxJaT4IpLxn6npIkSZIkSZI0iFoLRvMnp5IkSZIkSZIkSZIkSZIk1YZTgJ13abfHGK8a4noDQ9XahriWJEmSKmHCEbnjhVpPzB15rz0aVlyXXHvTDggvCADasQaWD+WPmBGW/hIO+tAQ1pBU07YsSa9NPXvQyzu6ViWOT85O4b0z/rnUrnZTnxKM1hXqyrPB7DfBo5cOPm/x5QajSZIkSZIkSaqKmgpGizHeOtw9SJIkSZIkSZIkSZIkSZKkgkzr+xiB+8uw3qYB56PLsJ4kSZJGklmvhcc+v/v45BN3D0UDmPvOIQajAWvu7T/v2Q5dA/7ImamHhglDW1/SyLbxqfTahCMHvbyjc0XieGvDtMTxUqUFo3VnEl4bSzHpuMLmbXq6PPupcD3bc0f9GMjU5c4zoyAE6OnMfa9K+h4pSZIkSZIk1biaCkaTJO3B1j8CT3899480s14P01+R+4caSZIkSZIkSZIkSZIk1aqJA87XlWG9pgHnXWVYT5IkSSPJhCOh7XRo/8Ou4wdelDx/+itg9H6w+dn+sUwWpp4NK64tbM/FP4PlV0P3Fsg0QG/nrvWWOXD4pbDvWwv8IiTVlDX3pNf2/7tBL+/oWpk43pqdWmpHiepD8i2A3eUKxJp2Low9GDY+kX/e6lvg2e/Afn9Tnn2VbsH34J4Lk2vZsdC1EeqaciFpc98JR/1bLiRNkiRJkiRJ2kP4OABJ0vBbdSP89kh49n9h4Q/h1vPg0UuHuytJkiRJkiRJkiRJkiQNzcYB52PKsN6UAedry7CeJEmSRprTr4H9/x7G7A+tp8LJl8PsNybPrWuAs++EOW+Dln1h6lnwkt/DaVfDMV+BiS+C7PjcUdeUvAbkQtFg91A0gC2L4O63wcobhvylSRphYoSHP5Vcqx8No/cddImOzlWJ460N04bS2W6yoSFxvDtTRyzHBpl6eOltsO87oGV2/rn3vhuW/rocuyrN8mvSQ9EgF4oG0LMNutbDU/8FD11cnd4kSZIkSZKkKvExAJKk4RUj3P8BiL27jj/2BZh3ITTPGJ6+JEmSJEmSJEmSJEmSNFQdA873H8pCIYQ64KgBQyuHsp4kSZJGqPoWOPbrhc9vbIOTfrj7+IEfzB07LfkF3PGG0vta8B2Ydlbp10saedY/kl6bccGgl3f1drKu+/nEWmu2vMFo9SGbWusOGbIvvB+jFI2T4cTv587XPwLXHZ4+d8F3YOarh76nkj377eKvWXAZHPEvkKkrfz+SJEmSJEnSMMgMdwOSpL3c+odg45O7j/d2wtIrqt+PJEmSJEmSJEmSJEmSymXnXeYBODCEMJQn5L0MaO47j8Afh9KYJEmS9jLjDh3a9esfLk8fkkaO9Q+l18bNH/Ty57tWE4mJtbaGMgejZfIHo5Xd6HmQGZVezxcqp6FbflXx13SuhW3Lyt+LJEmSJEmSNEzqh7uBoQohZIETgVOBecBEYAxAjPHMYWxNklSIFb9Lry35xa5PapMkSZIkSZIkSZIkSVLNiDE+EUJYDuxDLhztw8CHil0nhJABLt65LPBQjHF92RqVJEnSnm/cwTDxWFh7X2nXb3wSenZAXZ6gIO2ZOjfAI5dAx23QvRm2LIae7blaYxs0TNh1fmYUTDoODrsEmqdXv18VZtmVcPfb0+tz3jLoEh1dKxPHAxkmZdtK7SxRfUi/BbA7k4Hesm4H9c0w6/Ww6MfJ9a1LYfm1sM8ryrzxHqbjTnjqq31BcuX+RUpw/UmwbUXuvHkmnPBdmPrSyu8rac+w5n548su5QOBxh0J2NCz4LrwwBHTGq2Deuwf/HrD4clj4Y+jZBjNfA/u/F0KoWPuSJEmSpD1PzQajhRBayL1B6v1A6wvL7Pa37b9c92bgC32frgWOjTEmP55DklR5+Z4U9PzdsGMNjJpUvX4kSZIkSZIkSZIkSZJUTv8HfIzc+/reH0K4LsZ4Q5Fr/D/ghAGff7tczUmSJGkv8uLfwJ1vhI47Srv+hpPh3PvL25NGtt4uuPHU9Pe8b2/PHS+0/mFYcS284gloGFfZHlW8hT+Gu9+WXq9vgZZZgy7T0ZkcjDYx20p9yJbaXXJLedbrDpmy7vUXx34zFya58ank+q2vzL2uznhVZfavde23wc1nQW9n9fbcGYoGufC6m8+C064xwE7S4NbcBzeelgsxA9jwWPrcZVfCsqvglMtzIZpJnvkfuO+9/Z+vvikXLnvUl8rXsyRJkiRpj1ehn3xWVgjhcOBPwCVAG7k3TBXqamASMAc4Cjir3P1Jkoqw8cn0WuyB5ddUrxdJkiRJkiRJkiRJkiSV278CG8k97LQOuDKE8J5CLgwhTA4hfB/4KP0PS10FfLcCfUqSJGlP1zwdzrodXvZAadev/ROse7i8PWlkW35N/geB57NtJTzzzfL2o/J4/Iv56/v9bUHLtHclB6O1ZqcW29GgsqEhtVaxYLTsaDhnkDDIxw24SfXkl6sbipbmiX8b7g4k1YKnvtLBKQYhAAAgAElEQVQfilaQCI+lfD+NMfm15+mvQ/fWktqTJEmSJO2dai4YLYRwCHArsD+5QLSdb3YKFBCQFmPcDPxiwNBry92jJKlAsTd/MBrAst9UpxdJkiRJkiRJkiRJkiSVXYxxLfBB+t/v1wh8M4TwTAjhX4DzB84PIRwXQnhbCOFHwALgbfS/P7AHeFeMcQTcWSxJkqSaNe4wqGsq7drn7ypvLxrZhvrrvfK35elD5dO5ATY8ln/OmP0KWqqjMyUYrWFasV0Nqj5kU2tdmbqy7/cX2dHQOCW9vuYe6O2q3P61rGOEfL9ovzV3744k5dNxZ/HXrPszdCeEqW1fBZuf2328Zyusvrn4fSRJkiRJe6364W6gGCGERuAaYBz9gWiPAF8BbgFGAU8UsNSVwIV952eWuU1JUqG2rcr9UDMf3zwgSZIkSZIkSZIkSZJU02KMPwwh7Ad8ktx7/wIwD/jYC6YG4O4XfB4HXPOJGOP1le9YkiRJe7RMHcx4NSz+SfHXPvu/sPZP0DwTZrwKJhxR/v7Ub+2fYNnVuXCmGRcUHFg1JKtuhJU3QOdaWP2Hoa3VfhusvB6mnV2W1lQGWxYOPmfGBQUt1dG1KnG8LVuJYLT0WwC7Q6bs++1i5mvhmW8k12JvLvxm7IGV7aHWdG2CHR3D3UW/2y6Afc6H2W+A7Njh7kbSSLJpASz5OWxZVNr191wI9aMh1MGEI2HWG3KvgWm2JX/vlCRJkiQpSU0Fo5F7auQc+kPRvgr8Y4y5xxaEEGYXuM4t9L9Rat8QQluMsb3MvUpSabYshQc+nHvSwpj94NDPwNQzhruryti2fPA529uhcz00jK98P5IkSZIkSZIkSZIkSaqIGOOnQwgLgG8ATfS/DzAMON/5OewaiLYDeE+M8UdValeSJEl7uqO+BBsegfWP7Doe6uHwS+GhTyRft+6B3AHw2OfhpJ/ArNdVtte91cIfwx/fkQteAnj0Ujj9d9B6YuX2fPjTuX3K6ZZz4Ogvw0EfKu+6Ks3mAoLRmgYPNuuOXaztSg6+am2oRDBaNr2XTIWD0Q77LLT/ATY8nly/9lB4w2aoG1XZPmpFjHDj6cPdxa6WX507nv4anHETNE4e7o4kjQQdd8EfXg5dG0pfY/HPdv38yf+EI780tL4kSZIkSepTa8FoH6D/DVC/iTH+QymLxBg3hxAWAfv2DR0MGIwmafh1b4UbToGtS3Kfb1sBN58JJ/4Q5rwVQsh/fa3ZWkAwGsCmZ2DSsZXtRZIkSZIkSZIkSZIkSRUVY/xBCOEW4GPAu8gFpEF/GNpAAegB/g/4bIxxUVWalCRJ0t6heQaccx88/0fY+ERuLDse2k6F5n2gcx088a/51+jtggc+AjNfA6HCwUR7m95uuP8D/aFoAF0b4cF/grNuq8yeW5fDY18o7dpDPgHPfgs61ybXH7oY5l4IDeNK70/lMVgw2uGfL2iZNV3tRHoTa63ZKgejVfr1p7EVzn0ALk8JPovdudAtQyJz1twL6/6cXAt18KKvkfxjkASd63Pfj5r3gUxD7vvO1qXQMAEaxsPWZRCyuV+j+98/+HrrH4YF/wvzLy74y5G0B3vo4qGFoiXZ9DQ8+rn0euwu736SJEmSpD1azQSjhRAOAfbp+zQCHx3ikgvoD0abC9w6xPUkaeiWXdUfijbQ3W+HBz8OJ/8s94/te4ptBQajrX/EYDRJkiRJkiRJkiRJkqQ9QIxxCfD+EMLHgFP6jpnAJKABeB5YDdwF3BRjXD9cvUqSJGkPVzcKppyWO15o7IGFrbFlMWx4AsbPL29ve7tVN0JXwl8FOm7PPYy8vrkCe96waxBbMQ68CDY9BUuvSK73bIf2W2HG+aX3p/LYMkgw2uh989f7tHeuTBwPBCZnpxTb1aAyIUMd9fSwe6BMV6au/5MpZ5R9bwDqGmDScbnQryQrrjMYbacVv02vNc+E/d9bmX0LCUaD3K+VwWiSurfm/mxSCeseSK+VO4hNkiRJkrRHq5lgNODIvo8ReDTG+NwQ1xv4LyQ+ckXSyLD4p+m1bSvgxhfDYZfkwtHaTqv9J4ttLTAYbfk1MO/CyvYiSZIkSZIkSZIkSZKkqokxbgWu7zskSZKkkWXqS4FA7haWQTz4T9B6ErS+GCYfD5lsf61rM6y+Ofeg6MY2CHWwfRW0zIFp58CoSRX6AmrcxqfSaz3byhuM1rMD1twDj1xS2vUTjoSmKTDjNenBaABLfwWd63Lno1qh9WRo8HamqtucJxgt1MGUMwtapqMrORhtQv1kspmGUjobVH2opyfuHozWPfC+kkM/XZG9AZh2bnow2srfQ4wQQuX2rxWrb06vTTu3cvvOeRss+tHg8zruhCW/hMknQfP0yvUjaWSKETY+AYvy3MNYSSt/Dwd9GHo74fk/wtalufFQBwQYfxiMP7T275mUJEmSJJVFLQWjtQ44f6YM6+0YcF6BR8VIUglW3TD4nEc+k/s4/eVw6q9zT96pVdtWFDZv9c3+I5kkSZIkSZIkSZIkSZIkSZKk6miZBQd/BJ74t8Hnrrg2dwA0z4Kz786FzTx/D1x/Qv5rT70CZr566P3uafK9bzwWEFZXqE0L4A8vg00l3qZU1whH/EvufPabYMG3of3W5LkLf5g7dsqOzd0PMPWM0vZW8WJv//+rSeb/cy7krgAdncnBaK0NU0vprCD1mSw7erbvNt6d6QuPmfX6XOBepez/Xnj0c8m1bSvg7nfA8d+p7XtchiL2wp//ETpuT59z8Icrt//8jxcWjAZwx+uBAMd8BQ78QOV6kjSy9GyHu98JSy4fvh5W3wJXtOV66dmWPGf6K+GUn0F9S3V7kyRJkiSNOLUUm9044HxH6qzCDXysyqYyrCdJQ5cdW/jcFdfBs9+qXC/V0F3gy2/XBtiW/A+HkiRJkiRJkiRJkiRJkiRJklR2R/0rvPgqOOD9MPst0FhA4NHWJfDgx3IBOXe9ZfD5d7weOjcMvdc9Tr7bnXrLt8197xs8FG3c/Nyv/8EfgZfeBmfdAQd/FA79NJxzL0w/NzcvUwdnFPCg9J26NsKdb4LertL7V3FWXJde2/ftcPglBS/V0bUqcbw1O63YrgpWH7KJ493TzoGTfpI7MvUV25+mqXD8Zen1RT8qPJhrT7T8WnjqK+n1Qz4BY/ar3P7jDoFXLYGDP1bgBRH+9EHY8GTlepI0sjz7ncJC0Y78Irz4ylxgaKbve092HLSeAs0zYMoZuT8bzXxdaX10rksPRQNYcQ089dXS1pYkSZIk7VEq+NPOsnt+wPnkMqw3d8D5mjKsJ0lDV9c4+JyBnvtebT+dpTvPDzFfaOOTuSenSZIkSZIkSZIkSZIkSZIkSVI1zDgvdwDc+Vew+CeDX7P0V3DgRbD5ucHnxh5Yfg3s+1dD63NPE0J6LfaUZ4/OdbCqgCCzee+Ggy7adaz15OS5mSwc+il49NLCetjRAe23wtSXFjZfQ7Pop+m1/d9X1FIdnckPfm9tqFwwWjYtGG3Om2H8WRXbdxcTjspfX/ILmPfX1ellpFnyi/z1ySdUvoeWmXDUl3JHz3a4vGnwa5b8Ag77VOV7kzT8lg7yOgUw6Xg45J9y5zPOhyM+nz439sLlzdC7ozz9DbTk5zD/E+VfV5IkSZJUU2opGG3nozQCMMhPUfMLIUwCDh4w9OxQ1pOksogRdjw/+LyB1j0A6x6CCUdUpqdKy/d0hxfa+CRMPaNyvUiSJEmSJEmSJEmSJKkqQghZ4ETgVGAeMBEYAxBjPHMYW5MkSZLSTT6hsGC0nu3w1FcLX/fJf4fWEyHUQfNMCJnSe+zalHtYdyY5QGmP0Ntd+rVdmyAzCuoaYNMCIA5+TbFhRpNPLG7+yt/DuEOhaWru8+3t0L0ZGibkDpXPloXptfGHFrxMT+xmTVd7Yq01W7lgtPqUYLSu2FmxPXcz9iDIjoOuDcn1jruq18tIs+np9FrIwMQXVa8XyH0vmHA0rPtz/nmrroe5b899/+nakAuNbJoB9OaCKOtbqtKutIsYYduKCgRuhb7XsPXQND33/8merGvjrvcqbszzOrVTMX/uCRmYfDy031Z8b4NZ92Du9YgAnWsHmZyBlllD+zO0JEmSJGlEqqVgtLuAXiADTAohnBFjvLnEtS4kF7AGsAW4vwz9SdLQ7FgD3VuKv+63R8Kbe/M/FWuk6tle+NyNT1auD0mSJEmSJEmSJEmSJFVcCKEF+BDwfqD1hWVSUglCCG8GvtD36Vrg2BhjAQkGkiRJUhnNeQs8/iXYtnzwuYt+XPi66x6Eq+blzkdNgsMugQP+vrjetq2Cu94C7bdCXRPMfRcc/V+QqStunREjz3vjYwnBaNtWw11/Be235ILRJh4NHXcOfl3rqTDpuOL2mnoWjD8C1j9U2Pwn/j13JJl4LJzyMxg9t7gelOz5u5PHs+OKCn9a09VBLz2JtbaG6gejdceuiu25exNNcOAH4dFLk+vdm+Cq/eCkn8DkIv/fqWVblsCae9Lrc94GzdOr189OB38U7npz/jkdd8CVc9Lr018JJ/3QoEZVz+Kfw4Mfzx9mWQ6ZLMx6Axz37dxr255k4J97Ym/h19WPgf3+tri9DvpI7nWkmH0K9cuJhc9tmADzL4aDPlyb91hKkiRJkhLVTAR2jHEdcN+AoUtDKP5vqCGEfYCPk3sDVQRuiLESf+uWpCLlezrMYB65pHx9VFPPtsLnPv21yvUhSZIkSZIkSZIkSZKkigohHA78CbgEaCNv0sFurgYmAXOAo4Czyt2fJEmSNKhRk+Dsu2HuOysXVLVjDdz/flj6m+Ku+8MrYHVf+EX3Fnj66/DIpyvTYzXku12ot4RgtNsugNU35f779GwbPBRt/BG5YI2X/K74cI1MPbz0D3DA+2HcodA8K3fUjy6+77X3wU1nQm9yCJeKsPTX6bWTLy9qqY6ulam1ydmpRa1VjBERjAa58MZ5706vb14AN58BO9ZWr6fhFCPccEp6ve00OP471etnoDlvglOvgGnnlr7GimvgzkHC1aRyWX1rLtCr0qFoAL1dsOj/cn/u2tPcdn7/n3sKNeuNcNbtMO7g4vaacR68+GqY/gpomd3/557mWVDXWNxaQ9G5Dh74KCz+afX2lCRJkiRVXM0Eo/X5yoDzE4D/KebiEMIU4CpgAv1vqvpyeVqTpCHa9Ezp1z56CXRtLF8v1VJMMBrAmvsr04ckSZIkSZIkSZIkSZIqJoRwCHArsD+59+7FnSUKCEiLMW4GfjFg6LXl7lGSJEkqSMtMOOF7cP6Cyu7z3HcLn7vhCVj3593HF/64fP1UXZ6/JsQig9E2PAlr/lj4/GnnwssfhKP/Heqbi9trp4bx8KKvwSsegQsW546DPlTaWlsWQfsfSrtW/Z75ZnqtyKDDjs7kYLTx9ZNoyIwqaq1iZFOD0UoICxyK/8/efYfHUd1tH/8eraolW5Z777gXsKm2AYNN7wkQAk+AUEMq6SEJLaQ8SQhvypMQkkACCaEaTHXoBowxNsXghnvvkqtsWdqVzvvHSPFqvbN1drQr3Z/r2ks7c86c81Pbnd2duccY5/8jltB+WP+4P/W0tMp34cAG9/bj7ncCE1tK34vglJlw8gupj7HlJTiw0buaRKKxFj78VvLP8+la9wiEkjy/LZvtWQJV85Lb5nM1MPlRqBiX2py9z4Ypz8MFaw/t91y4zhn3cgujfpTauKlYlcQ+tIiIiIiIiGS9nApGs9Y+CixoXDTAdcaYt40xJ8bazhhTaoz5UuO2R+IcVGWBl621cS7zIiLik33L09t+/XRv6vBTssFoy36bmTpEREREREREREREREREREREJCOMMcXA80B52OqFwLXAIGAECYSjAc+E3Z/qWYEiIiIiIqnqdXbmxt69KPG+buFDB9ZDfa039fguxkuEhmByQ215Kbn+Hcck19+PcZP5e5DoYoU6lfZPaqgdwejBaF0LeiQ1TrLyXYPRkvyf8EJBh/g/t7byd7t7oXtbQQco7edfLbF0HJ3e9ttne1OHiJuNM6IHvWZafQ1Ur/Z/3kxJ9rG3/VAIFGemlibdT83s+OH2tJHnHhERERERkTaiBS83kLKLgblA58blScAsY8xWYGV4R2PMvcBQ4ASgiENXmjTAJuALPtUsInK4vcthzUNwcDv0PN1ZjqbiKAjuif8m63vXwoDLIZC5Kwx5LtlgtE0vOB9k50X/QE9EREREREREREREREREREREss7XgQE4x+4B/B74lrW2AcAYk+gZ6G9w6Pi/gcaYbtba7R7XKiIiIiKSuMHXwuYXMzP2/jXw8iTAgglA9SqoCQtjKunpfK2JHtD0X3W7oaR7ZmrMJBMjGM2GoKEelvzCCVGp2Rx7rHg/o2bzBmDglYn3T0avc6GoK9TuSH7bD2+Gpb+EDiNgyI3Q/1Lv62vNrIW9S6O3FXWGQGFSw+2o2xp1fdfCnslWlhS3YLSgrcvovK4GXQsLb3NvX/FHJ6Bx5Peh6yT/6vLL/nXw8Y9g7cPufQZ8IXvOfyntBz1Og62vpLb9nM/Dojuh+ykw7hdQWB5/G5F4DmyGj2+B7W87+z4t5dWTmp+PVzoABlwBR3w59j5JNln7KCz7LVS9l9x2g6/JTD3huk9xAmJjBUl65eA2CNVAfknm5xIREREREZGMy7lgNGvtamPMucDTQE8OHejUEwi/tIYBbgi7T1jfjcC51tpKX4oWEYlU9T68Ps0JPANY9Vf3vr3Pg9G3QtU8eCXWh0EWXp0Cp70NeTny8J5sMFpwN2x/C3roor8iIiIiIiIiIiIiIiIiIiIiOeJrHApFm2GtvTmVQay11caYtcDAxlUjgDYXjGaMKcC5oGw/nOMmq4HNwEfW2rUtWJqIiIhI29P3MzDhD/DB1zIzfuUc97ZEw76CORqMRowQkoYQzP8SrPqb99Oe9Ax0HO39uOAEdEybBXO+ALs+TH77mi3Obdvr0FAHA//H8xJbrXWPured+HTSw+0IRv//61rQMsFooYZQRud1NeqHENoLS+9277PpOdjyMkx7E7oc519tmVZbBS8dDwejh+T91/jf+FNPoiY/Bu9eBVv+Aw3B5Lff+6lzq3wXzngf8gLe1yhtR3AfvHw8HNjQ0pVA3c7myzVbnL/zul0w+sctU1MyVv8D5n4xuW0KyuGIm2DEdzNSUjMmD05+znn82f4Wh94qBkoHQmnfxvUeWf4HGPk978YTERERERGRFpMjyTnNWWvnGWPGAw8AZzWtjvjabBOcT0UM8ApwlbU2zjuPIiIZtOiuQ6Fo8bQf6gSddZ0I562A545w71s1F9b8EwYn+WZmS6k/GH39pEfhncuit216TsFoIiIiIiIiIiIiIiIiIiIiIjnAGDMS6N24aIF0z7RbxaFgtEHAm2mOlzZjzCDgGODoxq/jgfZhXdZZawd4ME9X4E7gc0Anlz5zgHustdPTnU9EREREEjTsqzD0KxDaB6H90YNm8kvB5ENhubMc3AvWOseTh/bDCyMzV1/drsyNnVExgtEObnECQLx26mvQ41Tvxw1XPhLO+gDqdjvH/X/w9dTGWXq3gtGSsfhn7m0dRiQ1VIOtp7JuW9S2boUtFIxmUwi48kJeAI76NVQcBXOucO/XUAvL/691BaOtfTh+KNqoH0OgyJ96ElVYASc/C6EDsG8lzByX2ji7FsC216Dn6d7WJ23L+scTC0Wb+gaUDUpvrmf6p7bdst/CiO9BoDC9+TNtaQIhjAOvhLF3NS4YKOnlb7hhaX8nIDa479D+aaAdFHdx7jeEnAC1R+LUdME656sNwbNDiHo6+ZJfKhhNRERERESklcjJYDQAa+024BxjzATgG8BUnKsfRrMHeA34g7W2xQ+EEpE2zjbApmcT798+LAit/RDnCglvnufef92juRGM1hAEWx+9raQ39LvUeZM70p7Fma1LRERERERERERERERERERERLxyZONXCyyy1q5Oc7zdYffL0xwrZcaYKcAtOGFoUUPKPJ7vLOAfQLc4XScCE40xDwM3Wmv3Z7o2EREREQGMgYIOzi0RTf2agtKKu8PB6EFLaavbHb9PNjIxgtGq5jlhGF6rSDEgKBWFHdO7WPjujyFUA/kl3tXUmtVWubcVdU5qqJ3BSuqJ/vfXtSCzwWgFeVkWjNYkkXC5qnmZr8NPle/F7xN+LlC2yW8HFWOhqAvUVqY2RtU8BaNJeirnxu/T71LoPiX9ubqcAJXvJr9dbRVUr4by4enXkCnBatizKH6/iiOhtF/m64mnoL1zi5TXeKr74Oth1V+jb9vnwubfQ0E5BKPs69YfdEKIY+1PioiIiIiISE7I2WC0JtbaD4Ar4b9XXuwLdAYKgUpgG7DYWtvQYkWKiITbvz7xvkVdoNNRzdd1OxnyyyBUHX2bba87H2AXdky9Rj/U17i35Zc4Vw2KFoyWs1ctExEREREREREREREREREREWlzuobdX+HBeLVh99t5MF6qjgR8Ofu3MYRtBs4xkU0s8CGwGugIHAV0CWu/AuhgjLlQx06KiIiI5IB+l8Dy/8vM2It+Aqv/7gTfbHvdCWUb/1sY+IVDARTZyFr3tn1evLSI0OvspAOy0tZhBJSPhD1LUtt+9qVOuBFA2SAnPCby3AOB0AE4uDV6W+nApENTdgS3uLZ1KeyR1FjJyjfRg9GCti6j88ZVcSSUDYHqle599i2Hd6+CrpNh4FUQKHTvmwt2L4jdnlcEfc7zp5Z09LsEVtyb2rarH4TdC2HrK855Pv0ugZLeENoPHUfDoKsTDwyVtmfLy7Dqb7H75BXBmDu8ma/fJakFowGsfgCO+pU3dWTC/rUJdDLQ97OZrsQb/S5xD0brd2nz5YpxsP3Nw/vVH4Btb0CPU72vT0RERNq2fatg7cON7+XEeO/K5EOnCc7roqKMX2NLRKRVy+JPMZLXeDXJdK8oKSKSWdteT7zv8G9D5FV9CtrD+N/AvBujb2NDsHkmDPh86jX6IRQjGC2v2D3YLVevWiYiIiIiIiIiIiIiIiIiIiLS9hSH3a917ZW48rD7+zwYz2u1wEZgsBeDGWP6AE/RPBTtHeB6a+3SsH5FwI3A3UDTwUbnAT8FfuhFLSIiIiKSQWN/Ars/ge1veT925btAWBBIcC+8dw1sfBpOmgEmz/s5vWDr3du8DkYrHwlH/8HbMRNhDEz8N8w6C2rcw7ZcbX6++fKn98CJ06H3ud7U11qse8y9bdK/kx5uR13031WHQAXFeSVJj5cMt2C0kA1ldN64jIHJj8Ksc+DgNvd+ax5ybuseg1NmHn6uTK6o2xU70DBQDBMfhsIK/2pK1difOuFmO2Ynv231yuZheOufaN6+6n6YNis3fg7iryW/ggXfj90nrwgmPw7lI7yZ84iboHIurH88+W2X/hra9YNhX/WmFq8lEq57/ANQ2i/ztXihxzQY9WNY/NPm64d8yQlNC3fsX+H5odHHeX0qnPqawtFERETEOzs/gNdPc14TJmLdv2HVX2Dqm1DSPbO1iYi0Yq0qGE2ygzGmAJgE9AN6AtXAZuAja+3aFixNpOXtXQ7vXZtY3/KRMPxb0duG3OAkBf/n6OjtW1/N/mC0+hjBaPklUOASjBZUMJqIiIiIiIiIiIiIiIiIiIhIjqgMu9/Fg/EGhd2v8mC8dASBxcD7wPzGrwtxjp17w6M57gTCzyCeA0yz1h4M72StrQV+b4xZDzwd1vQtY8x91tp1HtUjIiIiIplQWAFT33DCaWYe6c+cm56DbbOyNywilWC0bifBEJeLjzeprXLCmAo6OMtlg6BiPAQKY2+XKRXj4PzVUPke1Gxy1hX3cM4l2LUA6nbCnCsSG6uhDhbcAr3OcYKqxDH/Jve2ivFJD7cjGD0YrWthj6THSpZ7MFow43PH1WkCnL/GCeybfWnsvtteg00vQN8L/anNayvudW8b9k0YcxsUupwPk22KOsHUWbBnkRP2VlgBJT1h33KorQTb4ITZVc1Lfuzdn8Dqh2D4NzwvW3JY3R5YeEfsPkO+BOPvhvxS7+YNFMOkR2HsXVC9Ckp6O/sTDWHXcVj8M/fQww++Dt1PgY6jvKvJC9bCyvti9ykfBYOu9qUcTxgD4+6CI26ELa+ADUKP06B0wOH7N+2HOL/b+oNRh+KTW7N3X1dERERyz6K7Eg9Fa7J3mbO/Nua2zNQkItIGKBitFTLG/AO4yqPh1llrByQ4b1ecA7E+B3Ry6TMHuMdaO92j+kRyy7wbEu979J9if8DaaYJzxYpoH6qsfsC5mlfv82DAFZAXSL5Wr9RshZV/ca72cmA99D4fxt/jfPDqJlDi/kFQ3W7njVt9WCsiIiIiIiIiIiIiIiIiIiKS7bY2fjXAUekMZIzpDIwIW7UynfHS9CDw58iAMgDj0TEtxpgjaH4cYB1wdbQ5m1hrZxhjHgzbrgi4HbjGk6JEREREJHNMnhOS1ft82PSsP3Oufyx7wyJiBaOF9kdf3/UkGHB5ZurJpEAxdD/58PUlZzpfV94H299KbKw9i+DgVifYSKCh3v1vqV2flALxdgS3Rl3ftSDzP/OCbA5GA8gvgb4XO2FGbv+nTba8lLvBaNvfdm8b+pXcCUVrkhdwnn8qxh1aF36/XT946/zUxl77sILRpLnKOVBfE7vPETd5G4rWxBjoMNS5AVSMbd6+eaZ7MBoWFt0Jkx/3vq50HIz+nNTMsBz9H2zXBwZ/MXYfY5yQW7ffW+UcCFZDQZn39YmIiEjbYq0T2pqKrS8rGE1EJA15LV2AZL047zQ5jDFnAYuAm3AJRWs0EXjSGPMvY0wG3qESyWLBfbAjxgcg4TofG/3DzUgVMY4X3fAkzL0K3vmcs8PdEqrXwsxxsPB2JxQNnA/qnxvifJDlJlDiXGkmGlsf/0MyEREREREREREREREREREREckGc4CGxvudjTHppC5cgxOwBrAfeD+dwoi/y6YAACAASURBVNJhrd0VK6DMI5cD4VdDfMpauyKB7X4ZsXypMabYu7JEREREJKN6ne3fXCv/Agvvci7UveNdaAj5N3c8sYLR3JQN9L6ObJDs38S6x5xAMIGajWBd/q5L+6c05I66LVHXdyvMfDBafrYHo4ETUtPzrPj91ufw3+m+GDntZYP8q8Mv3U+GQLvUtt05H6pXe1uP5K7qtbDwJ7H7tOsH5aN8Kecwvc6J3b7+CfjgZtjzqT/1xFOzBRb/b+w+JgC9z/WnnpYS7/e2f60vZYiIiEgr1BB0grGX/wmW3g31B1IbZ8c7sOp+2L3Y2/pERNqInApGM8aMNsa83nh7zRjTLYUxujdu2zTO0EzU2opMj9fBGDMFmAGE/z4s8AHwBPAKUBmx2RXAI8aYnPobFElLbRXYhvj9ADofl1i/DsPj99kwHSrfTWw8ry28Aw5uj9724Tfdt8svi32VnAMb0ypLRERERERERERERERERERERDLPWrsLmB+26i5jjHHr78YY0xv4Ac5xaRZ4xdpED8TJWRdFLP89kY2stUuB98JWlQKne1WUiIiIiGTYgCug64nx+5X0hE7HpD/fwttg/pfhlYnw5rkQrE5/TC8oGO2QwddDpwmJ9//wm/D2RRBK8YTd1mTzf9zbjv5T0sM12AZ2BLdGbeta0HLBaMFsCkYDGHMHFPeI3aduF7z9mdz7Ow3ug2qXYLSBVznBcK1NQQc4MjKDPQnPDoZPf+tdPZKbVtwLzw2GqrnuffIKYfw9kBdw75NJfS+CnmfE7rPsd/DCCPj4VrDWn7qi2TADnh0Ey38fu9/o2519xtZs2M1QNti9/bVTsyv8V0RERHJD3S5nP+LVk+D9r8CC76U33nvXwYuj4aPvt+x+pIhIDspv6QKSdCMwBefAppettS5pO+6stduMMUGcA30scD3wXS+LzALfAe5IYbujcYLMmljggVgbGGP6AE8BhWGr3wGubzzAqqlfEc7v726g6Z3484CfAj9MoVaR3BPal3jfzgl+SN0+wWzHNf+ErhMTn98L9bVOKFuy8ttDXj4UxAhGe/l4uHhX6/zQSERERERERERERERERERERKR1+R3w78b7xwN/xjmWLCHGmO7As0BF4yoL3ONlgdnGGNMDGBe2KoRzXF6iZgHhV2Y8C+dnKCIiIiLZrqAMTn0Z1k+HqnnQUAeBIigb5LTvXQ7lI6DvZ5zgoU3PQeVcqN0O5MGWmZBfCt2mAAbWPQrB3YnNveUlJ7hkZBacYpNKMFrpAM/LyApFnWDqLOfY/J3vHwr32DAdandE32bTc7DyrzD8G76VmZXmf8m9rWJs0sPtDlURcgkh61roRzBa9NMA3WpqMR1HwZkfwIanYNFPYvydPgur7odhX/O3vnR8crt729Cv+leH34Z9FTofDZtnwsHG0zlX/jnx7T/8JvQ5/9BzmbQtBzbC+1+FeNc4OPN96DjGn5qiCRTByc/B+idhzuWx+y7+KfS5wPm/8FvoAMy9CuoPxu43dRZ0P9mXklpUu15w5nx4slP09todsPEZ6PdZf+sSERGR3Lbk17Bjdvx+eQUw6Frnfqga1v4rdv+lv4Li7jDiW+nXKCLSRuRaMNoFYfcfTGOcB3GC0QzOVRWz4FMb71hrK4HKZLczxvwgYtUb1trVcTa7k0MHnAHMAaZZa5u9s2KtrQV+b4xZDzwd1vQtY8x91tp1ydYrknOCSQSjJXr1rsKK+H0AVj8Ax96b+Pxe2Pa6sxOfrMLGQLTCcvc+wT2w6yPoND612kRERERERERERERERERERETEF9baR40x38MJ+jLAdcaYkcAPrbVvu21njCkFvgDcDnTDCUQD56KqyYSE5aLREcufWGv3J7H9nIjlUWnWIyIiIiJ+ChTDwCucWzx9zndubspHwQdJhA5teDI3g9FMANr1zUwt2aCgDAZd5dya1GxyAtDcbJjetoPRgjHOZeh8bEpD7qjb4trWtaBHSmMmI98URF2fdcFo4ATVDPsqdD0B/hMjOGjD9NwKRtv2mntb2UD/6mgJXY53bk2SCUYDJyhvxHe8rUlyw4YZ8UPRRv2wZUPRmuQVwIDPQ6AE3r4odt8N01smGG3b6xDcG7tP7/PaRihak8IK6HYybH8zevuG6QpGExERkeRseDKxfqUDD+U31B+MH4wGsOB70PkY6HZi6vWJiLQheS1dQKKMMYOAPo2LDcDzaQz3HND0KclAY0y/dGprDYwxJcBlEavvj7PNEUDYpyrUAVdHhqKFs9bOoHmoXRHOgWsirV+iwWgFHaDD0MT65hXgHC8aTyJ9PLZxRmrbNQWjBYqhqIt7v50fpja+iIiIiIiIiIiIiIiIiIiIiPjtYqCKQ+Fmk4BZxphNwEPhHY0x9xpjXgN2AH8Eujc1AZtxwtJau5ERyyuT3H5VnPFEREREpK3oc15y/fetgF0Lmt/2b8hMbbE0hJLrb+shLz8ztWSrrpNjt+94G6yN3ac127/Ova1sUEpD7ghGD0YrC5RTEihNacxkFOQVRl0fasjCYLQm5aOgoKN7+/Y3c+vvtGaTe1thJ//qyAaDr0uu//on4cDGzNQi2W3f8vh9ukzKfB3J6HMBVIyP3Wfvp/7UEmlfAm8Tds2yn6cfYu0XJfIzExERkdzVUA+h/VBbBQc2Oc/9uxdB3e7kxqmvdbbbu9x5fywR4ftdgWLodEz8bWw9vPM52PHu4e/Bhd/qdkP1mkMhw9Y673XU1yb3fYmI5Lhcete/6QqIFlhmrY1x6Y7YrLXVxphlHDrYZwywPs36ct3FQHnY8i7gqTjbXA4EwpafstYm8iz/S5oHql1qjPlyrEA1kVYhlGAw2sCrwSSYW2mMs6NcXxO7X4PPO7m2ATY+m9q2hRWH7vc+H1Y/EL1fKJmL4IqIiIiIiIiIiIiIiIiIiIhIS7HWrjbGnAs8DfTEOQ7QNN7vEdbVADeE3Ses70bgXGttpS9Ft6whEcvJHt8YmQDQ2RhTYa3dlUZNIiIiIpKLSvvDwCthzUPx+wLU7YKZRx2+vsMIOHE6lI/wtj43tj65/qNvz0wd2WzgVbDs97GDmp7qDpOfgO4n+1dXtlgY429i9K0pDfnhvjlR13ct6BF1vdfyTUHU9SGbZJCgnwLFMOLb8EmMn/nTveDEJ7M/yKdut3OifTSDrnbO72lLhn4NVv0t8f5V78GMvlA+2nk+6TA0c7VJ9lj7KCz/Q+w+nSZAz9P9qSdRxsBxf4NXT3Y/H3DjDFj+Rxj6FX9rq14Tu72kl7OP0NYMuR4W/yx62875TjBjuz7+1iQiItKW2AaoP9h4qzl0v+EghGqcr5Fthy3XHNrGrS1aX9ewcAPdpzjvixR1jl3/kl/Bgu8n9z3nlzmvi8KNugVmX3wozMxNzRZ4ZWKC87SHI26CdY/AgQ3O6+yRP4DRt7W916Ei0iblUjBa/7D7kVczTMUqDgWj9fNgvFx3bcTywwkElV0Usfz3RCay1i41xrwHHNe4qhQ4HUgxRUkkRwQTCEbrfiqMuS25cRMJRgPYvRg6jkpu7FRVzYODW1PbNvxqQOPvjhGMlnI+poiIiIiIiIiIiIiIiIiIiIj4zFo7zxgzHngAOKtpdcTXZpvgBKIZ4BXgKmttigek5JyOEcvbk9m48eKxB4HisNXlOBdMTYsxphvQNcnNBqc7r4iIiIik4bgHoOMY+Oi7qY+xdym8cTqcvwbyfDgVKdlgtGFfz0wd2aykO5wxF+ZcAdvfit6ndgfMOhMu2ADFXfytryXteAc2THdvLx/p3uYi2FDHpwc+jtrWrbBX0uOlIt9E/98L2jpf5k/Z6B87oWKf/iZ6+8Gt8PppcNEmKKzwt7ZkfHCze9voJM8Dag0qxsJZH8O8G6FqbuLb7VkEb5wB562EvEDm6pOWt2sBzPl87D4jvw+jfuTPvkWyOh0F096Al44HtwDK978K7Y/wN9htf4xgtCNugpG3QIk/gZ1ZpbQ/HPsXmHdD9PbXp8G5n/pbk4iIiN9sA9TXphYwlkww2WFhZwehIRtfl1rY9gbMvhSmvubebeOziYeilY8Ekw8VR8Hwm6HiyObtfS+CKTOdEOk9S2DP4tTLbxLaB0t/dWi5/iAsvANKB8KgK9MfX0Qky2XhOwau2ofd3+PBeHvD7nfwYLycZYwZDJwUsfr+ONv0AMaFrQoB7yQx7SwOBaOBc6CbgtGkdXO7QkTpQDjur1DcDTqMTP6N/UBx/D7gXInCr2C0Hck8HEQwYd9/YYUTFrft9cP7hfanPoeIiIiIiIiIiIiIiIiIiIiI+M5auw04xxgzAfgGMBXo6dJ9D/Aa8Adr7Zs+lZgtyiKWE7hq4mFqaB6M1t6tY5K+DNzu0VgiIiIi4oe8AIz4jnN7ug/UbEptnAMbYfss6DHN0/KiSjYYLZvDlDKpXR84+QV4Isbufv1BWP84DP2yf3W1tDX/dG/rOjmlIRfv/9B9yAJ/AmjyTUHU9SEb9GX+tIy53T0YDZyT7Dc8BYOv9a+mZG1+Ifp6E4B2ff2tJVtUjIUz3m2+bsMMePui2NvtXws7ZkP3kzNWmmSBWI/FACf8Ewb+jz+1pKrTBDj1ZXjtVPc+ax7yNxit2iUYbexPYfSP/KsjG8XaR927DPYshfIR/tUjIiJtk7XQUOt9GNlhfaO0ZWU4WRbY9gYcrHQPjA8PHYulsBOck0DQWc/Tm+8fzvsSrLwvsTmSseYhBaOJSJuQS8Fo4Qf2eBFkFv6uf5KfmLQ61+BcVbPJh9baBXG2GR2x/Im1NpmUojkRyz6lNYm0oKBLMFpxN+gxNfVx8xIMRtu/NvU5krVvefT13afCCQ/BjN7u29YfbL5c4PIhbag6tdpEREREREREREREREREREREpEVZaz8ArgQwxgwC+gKdgUKgEtgGLLbWNrRYkS0rMhjtYNResdUA4ekQkWOKiIiISFs04tvw4bdS337PkuwLRut6IhgTv19rVVAGZYOgerV7nz0JnLjbmsT6fjuOS2nILXUbXNv6FA9MacxkFZjCqOsbaKDB1pMXfpH6bFPQHkoHwn6XQB9wHl+ylW2A4N7obSYf8nLpFM0Mq0jwf2zvEgWjtXbxnnsqjvSnjnSVj3ICEN32Tfx87LLW/fzAMn+ei7Jau75OWG7drujtexWMJiLSZvw3nCyBgLFQTVgoWYxgskT7NtS29Hcvh7FQszF6MFr1atjxTmLDJPpaJ9KE38LO92HnB6lt72bba96OJyKSpXLpXbfKsPv9PRivX9j9Kg/Gy0nGmABwVcTq+xPYdGTE8sokp14VZzyR1ifkEozmFvyVqECCwWgHUryyVyr2Lou+vnykEwQXS5cTmi8HSqP3CyWTxSgiIiIiIiIiIiIiIiIiIiIifjPGtAfCz8pbFXkBTmvtaiDGGfwCWJ+2EREREZHWrv/l8MmtqR+L/cE3YOV90O8yGP0jMHne1tckmWC0ITdkpoZcMuQGWPAD9/aV98Gah6CgHLqfCuPviX5CcGsQOgA7Zru3D/5iSsNWBre6to0qHZ/SmMnKNwWubSEbojCbg9HA+Tv9+Bb39k/vgYFXQcVY/2pKxO7F8O4XoKEuevuAK/ytJ9uVDYQep8HWV2L3m/9l2PISHHU3tB/iT23ivWA1fPB1WP33Q+vyG7P5Y+1rdDkBOo7ObG1eKe4GfS6CDU9Gb9/1EWx6EXqfnfla9i6DUHX0ttIBmZ8/2+Xlw+BrYend0dvf/ixMfhz6XeJvXSIikll7lsJH34OquU4wmQ05X0XC1UcJrFv3GLxzWeJjDLkxtbkDxTD5SXjpaKj1ONbm8YiMivB9RZMHgXYQKIGukxpfew32dn4RER9k6BOIjFjf+NUAY4wxnVMdqHHb8HdJfUwLyjpnAr3DlmuAfyewXeQ7juuj9nK3LmK5szGmImpPkdYi6BKMlu9TMNqWmenNk6iNz8H2N6O3tR8a/0o4kW8EF7hcrNbtjVwRERERERERERERERERERERyRafBz5qvM0Dilq2nJwReWBMSQpjRG7j1cE2fwJGJ3m7wKO5RURERCRdJd1h2pvQ6WhINURpzxJYeBt8+B1vawuXaDDa0f8HA/8nc3XkihHfgzF3uLfbeuf4+5pNsPaf8NrJ0JBE+FwumXWWe9vQr0KnCSkNWxXcHnX9uLLjCJg450h4JD/GPEHrEtqVTUZ+H0bfHrvPK5Oheq0v5STkwEZ4ZZITfOTmyF/6V0+umPwE9PvcoYAsNxufgZdPgIOV/tQl3nvzvOahaOA834SqiZnZf/JzGS3Lcyc8CGWD3NvfPAe2vpbZGhpC8MII9/ayge5tbcm4X8Run30prJ/uTy0iIpJ5BzbDyxNh8/NQW+nsgygUTaKJDLpe/2TioWilA+CYe6H/51Kfv2wAnDYHup4IXr6H0LTv/d998DC2wVlXuwM2znBee9Xu9G5uERGf+PPOqzfmArVAIU442leAn6Q41pc5FAoXAt5Ju7rcdU3E8nRr7e4EtusYsRz9HX4X1tpqY8xBIDzRqRzYlcw4kYwx3YCuSW6maFPxh1swWkGawWh5SRwvunc5dBia3nyx7F4Mb53v3t5hmPO141jY/UmUDgYqIq6WFCiNPlaqVykTEREREREREREREREREREREb90wTneD2C+tVZHWycma4PRrLXbSfJ4QWNM/E4iIiIi4p9OE+DM+dAQhLwCsBaCe2kWYLL017D457HHWfVXGHcX5Lsc752ORILRKsbD0K94P3cuMgbG3A7lo2H2xfH771kCW1+FXmdkvjY/7VkC299ybz8i9b+XquC2qOuHthuT8pjJyjcFrm0hG/StjpQZA2PvgNJ+8N610fuE9jkhS2Pv9LU0V6sfhOAe9/b8Uijq7F89uaKwHCY/6gQ5ffQdWPY79761lbDu3zDs6/7VJ97Y9TFsn5X8dme+n3v/N/ntYOoseKafe5/l/wc9pmauhq2vuLcFiqG4R+bmziV5+TDoGlj9gHuf5b+Hfp/1ryYREcmcNQ9CMJFYDGl5BgIlkF8CecXO/kug2FkXeT8vRlu0vuFjzjySqAG9DbXNl2O9Rol0wZq0vvP/6jAUTnvLCe9zC/Cb0ffwgDOv1O6AdY/ovTQRyTk5E4xmra01xrwNTGtc9R1jzNPW2oXJjGOMGQ18l0PPaO9Ya9tkuo4xpitwXsTq+xPcPPKSDTUplFBD82C0NNOhACf0Ls7lQ0RaSMglGC0/zT/9RK+GBfD8MPh8g/OBUias+7d7W14BdD7Wud/7/OjBaBdXHV5bgcsVYjK1Yy8iIiIiIiIiIiIiIiIiIiIiXmk6e9gCG1uykBwTedZ1UhcLNcaUcXgwms4MEREREZHm8hpDloxxQmzCdRwbf/tQNexdBp3Gx++brESOkS+NEU7SVnUYnnjfnfNbXzBa1Xz3trxCKBuQ0rD1NsTOYGXUts4F3VIaMxUFuR6M1qTDsNjtO9/3p45E7IzxNwXQ/ojMnZ/TGuTlQ+fj4veL9b8r2WvD9OS3MXlQNtj7WvxQ0ssJQwy5nIqc6ceuqhjjtx+qx6JwHYbGbq963wkG1s9MRCT3Vc1r6QpyjHEPGGu6Hy+0LGrfOGMGisHk+/PcGyiKHjpWHxaMZi3smJ3YeMO+6U1d4Zp+NtF0PwU2Pef9nE302ktEclDOBKM1uhsnGM3iBHPNNMZcbK2dm8jGxphjgSeBUpyrUNrGMduqK4Hwd8VXAW8muG1kUpFLLGlMNUBFjDFFWpegSzBaQZrBaA1J/vu9ejKc+CQUZ+ADuF0L3Nu6TTn0gfmoW5w3fLf8x1kOtIOJ/4TCisO3c7uCmILRRERERERERERERERERERERLLdlrD7hS1WRe5ZEbHcP8ntI/vvtNbuSqMeEREREWlrep0D+WXxj9l+eSIc8ycYdLUTduIVG4rfZ+AXvJuvtSgf6YTaRbuIeaRPboXh33Q/Xj+X1B+EFffCh99y79PnQvcTj+PYFazE0hC1rUtBj5TGTEV+nvvL6lAi/zPZovPx0K4fHFgfvX3zizD7MueE8MHXQV7A3/oAdi+CNQ/Cxmdi9+t/mT/15LLe58YOkwJY+y8o7e/8vlMMMBQfhQ44j7mL7kp+255nQmFH72vyQ14A+l0Kq/8evf3ARidwI1Dk/dxbX4OFt7m367GouX6XwoIfuLfXH4CNM6DvRf7VJCIimZFouFW2iRYcFjVkzCVwLK8Y8hMMMQvvm1fQ+oNB81yC0RrqnK/bZ8PyPyQ+Xv/PeVNXwvNdltlgtDUPOq/R+l2cuTlERDyWU8Fo1tqXjTGzgCk4oWa9gLeMMf8E7gPmW2tt+DbGGAMcDdwIfAEnCMw23t621r7o2zeQfb4YsfxA5M8vCalsl+pcIrkplKFgtGg76LHseBteOg6mzXI+OPBKcJ/zAZSbkd87dD+/HUx5EfYsgZpN0OloKOoUfbt8l8zEnR/o6gwiIiIiIiIiIiIiIiIiIiIi2W1R2P2BLVZF7lkasTwkye0HRSwvSaMWEREREWmLCsrgpBnw9mchuMe9X0MtvHctbH8TTnjQu/ltffw+fRRmcRhjYNJjMOts2L8mfv/XToVpb6YcGJYVGoLw+mnxT4g/OokTnyNUBre5tnUuyMAF613kG/fTAIMNQd/qSFteAE56Gv4zwb3P+sec29ZXYPIT/p43smMOvHFG/GDI/pfDsJv9qSmXFbSHE5+G2RdDcK97v8U/g1V/g2lvQYeh/tUnyak/6Dx3VL2X/LYVR8Kxf/G+Jj8ddTdseh5qd0Rv3/Qs9LvE2zlXPQDvXRe7z/AYwaBtUdlAOOGf8G6MEN23PwOTn4R+n/WvLhER8db+DVBbmfr2foWRHdZWqPPiM8ktULy+FtY/Ae98PrH3nEweHHUPdDnO2/ri6X8ZVL0Py/5f5uaYfQmM+hGM+2nm5hAR8VBOBaM1ugz4EOiJE6yVD1zdeNtvjFkG7Gps6wQMBZpSdUzjegNsAC71se6sYow5HhgVtqoe+EcSQ0S+u1uSQhmR28R5xzghfwKeSHKbwUCcS3iIeCDoEoyW73MwGsD+tfDWRXDWh+nNHV7DU93d2zsdAz2mNV9nDHQc5dxiiXUFqj2LoOOYxOsUEREREREREREREREREREREd9Ya5cbYz4BxgJjjTG9rbWbWrquHLAoYnmsMaadtfZAgttPijOeiIiIiEh8PabCZ7bBzvfhlcmx+655CEb+AMpHeDN3vJNUu5+iE4ndlA+H81bA7gVwYLNz8fOVf47et2oebJgBAy7zt0YvbXohfija8G9DceoBZm7BaB0CHSnK8y9ULt8UuLaFbJ1vdXii03g4/V14+YTY/TZMh50fQOej/akLnICueKFokx6D/m32tMTk9TzNeT5Z9FPn5+vm4DZY9js45o/+1SbJ2fhM4qFoJz176H7ZIGcfweRlpi6/FHWCC9bC4y7nus3/irfBaA0h+ORWnFOiXUz4HQSKvJuztRj4P9DnQngixnmbn9wKfT+jfUoRkVy16C73tnE/h25TogecBYohr0iP/62V235RQy0s+kVioWhTXoQuE6Gw3NvaEmHyYMI9MOoHTkBacC/kt8OJxwHqaxrD9QLNt1vzD9jwVOLzLP01DP8mFHX2qnIRkYzJuWA0a+12Y8yZwLPAAA69qjc4AWgTItb9d1MOhaKtBC6w1m73o+YsdW3E8kxr7eYkts/KYLTG32lSv1ejHVfxS8glGK2gBYLRAHZ9BFtfhx6nRm9vqAcbgrqdzhupRV0A6+z011Y5ffIKoKQXvHm+szPtZsxtqdUIUNDRvW3bLAWjiYiIiLSk4F4IlDpXcBQREREREREREREREYnuD8BfcY7d+wmHH7smEay1W8IC5cA51nMy8HKCQ0yJWJ7pUWkiIiIi0tYEiqDrJBhyI6y8L3bfra95F4zWEOdE1dKB3szTWuUFoNME5wbuwWgA217L7WC0ba/H79N+cFpTuAWjdS6IcXH5DCiIGYwW9LESj7Qfmli/ra/6F4xmLWx7I36/bidlvpbWJlAMA6+MHYwGzmOSZK+tCf5+xv0M+pyX2VpaSn47KO4BB7ce3hbaB/W13gWV7V0GNXFO+dU+kbuCMigfBXsWR2/fu9T5PZb09LcuERHxxu6F7m2Dr4Pirv7VItkjz2U/rHqNs28VT1Fn6HWWtzWlorgb9D478f771yUXjNZQ54TM97kg+dpERHyWkxHr1tpFOAFoj3Io7MyG3f7bleaBaA3AQ8Ax1tqlftacTYwxpcDnIlbfn+QweyKWk9o7NMaUcXgw2u4kaxDJLUGXYLT8FgpGA3h9Krx3vfOma7gNM+DRfHisGJ7uBc/0g8fbOVe0eKIDPDvQuc3oA4/kwdZXYs9T0iv1Grud6N4W7yo8IiIiIpIZ+1bBS8fBEx3hqW6w8CfOAUEiIiIiIiIiIiIiIiIRrLX3Ay/gHMN3tTHmey1cUq54OmL5i4lsZIwZDhwXtmo/iQeqiYiIiIhE1zuBcJMPvg7b3vTmOCIbJxgtkXrE0X0K5Je6t6/6m3MCbS6yDbDmoTidDPQ6J61pqlyD0bqlNW6y8ghgXE4FDNmQr7V4oqgTdJkYv9+in8CBOMFAXrAWNkyH+prY/TodAyU9Ml9Pa9T+COgwLHafvctg6T1QOVfHpWajyjmJ9etzUWbraGkdx0RfX38wscDORG1/M3Z7fqnzPC/u4u0zfvxjqF7rSykiIuKh4D6omuverlC0tiuvMPr6RXcmtn2fC72rxU+9U3jfY/XfYfHPYfVDULPF+5pERDySk8FoANbaXdbay4GRwP8DmmJdTcQN4GPgbmCYtfZqa21kqFdbcwkQnsS0DXg+yTFWRCz3T3L7yP47rbW7khxDJHdY61z1IZqCNIPRGtIIRgPng8wPv3loec+n8LbHb0CXJvsQEaaos3tbOqFwIiIiIpKahiC8NgWq5gEW6nbCupZEtwAAIABJREFUwtthxb0tXZmIiIiIiIiIiIiIiGSvz+MEfRngF8aYl4wxp7RwTdnuYSA8DeIzxpgjEtju+xHLj1trdZCNiIiIiKSn5xnQ/7I4naxzXNG7V6YfZhMrGK3vxamd8NlWFbSHCb+L3ef54bDxGX/q8Up9Lcz+HATjnCI29idQ2i+tqSpdgtG6FPgbjmWMId/kR20L2qCvtXhm/D1Q2Cl2n/oaeGEEbHsjc3U0hJzHrtmXxO5X0BEm/L/M1dHaGQMT/hA7rBHgo2/DyyfA/JucAETJDtvegD2L4/cb+X0oH5H5elrSMTGOmZ51NlSvTn+Ojc/C+19xbzd5zvN7uucltnbDboaO49zbVz/g7AdteMq/mkREJD3Va+H5GPsaY+/yrRTJQoGi1LfNL4VRP/KuFj+VDYQxdyS3zcZn4OMfwdyrnP+pbXFCeUVEWkj0d0NziLV2OfBtAGNMGdAdaErRqQS2WWv3t1B52eraiOWHrE360iBLI5aHJLn9oIjlJUluL5Jb6mvc34zPT/MNyMIKOLg9etu5y+CTH8P6J2KPseJeGHIjVIyDpb9Or55IHUbEDjdLRI/TYWuUC9c21KY3roiIiIgkb/tbcGDj4evX/RuGftn/ekREREREREREREREJKsZYx5ovLsX2IdzUc9pwDRjzD6cC59ub2xLlLXWRh4H16pYa1cYYx4ErmlcVQj8wxgz1S3ozBhzAXB12Ko6IMFLoIuIiIiIxJCXDxMfhoFXw6wzY/dd+y/oMQ0GXZX6fG7BaKUDYPJjThiIJG7wtXBgMyy8LXp7/UF473roeRYECv2tLVXrn4QNT7q3l4+E4x6ALselPVWVSzBa54JuaY+drHxTQNDWHbY+FGVdTuhyHJz9CWx+IXYIVnAvvHcDnLfcCdfy2qbnnceuWI65F3qdA6V9vZ+/Lel5Gpy9EFb/HRbFCa1YeR/0uwR6TPWnNnFnLcyN81Zcnwtg+Heg22R/ampJ7QdD52MbLzIdxce3wqSHUx+/IQjvXRe7z5kfQcXY1OdoK0q6w2mz4YkY52821MK8G5zH+HTCVERExB+f3Ao1m9zb+3/ev1ok++Sl8FxeMd5536T/ZVAUJ7g7m4253bmwwbbXAQPdp0JxF3h2cPxtg3tg/o1wztLMvOYWEUlDzgSjGWN6AMeGrZptrd0Z3sdaWw1UA6v8rC2XGGOGApHvLt2fwlCLIpbHGmPaWWsPJLj9pDjjibQuwRjHbaZ7ZYZxP4/+ZueAL0CHoTD5cXjxSNj9cexxZh6ZXh1uTvTgigmB4ujr63UxWxERERHfLb07+vod7/hbh4iIiIiIiIiIiIiI5IqrARu2bIGmI6o7cPjxbPGYxjFaNBjNGNOH6Mdg9ohYzjfGDHAZptpaWxljmtuBi4CKxuWJwKvGmOustZ+G1VIE3AD8JmL731hr18UYX0REREQkcSYPep0Bx/4V5l0fu++iu2DAFU6gWircgtF6n6tQtFT1Od89GA2gdgdUvgvdT/avpnRsnBG7/Zj7PAlFO9hQQ3X93qhtXQojX/5lXoEpoCbK+pAN+l6LZ9r1hiE3QFEXePuz7v2qV8KexdBxtPc1bHw6dnvHsXDEl7yft60qGwhj7oSlv45/XtCGpxWMlg32LIH9a9zbz/oIKjJ0Xlq26nOBezDaxhlOmFyqoRI75jjPy24GXqVQtGQUlEHv82HTs+59aqtgx2w93oiIZDtrY78WNHlQ2s+/eiT75CUZ9t7rXJjyXGZqaQldjndu4cbe5QQKxrN3Gez9FMpHZKY2EZEU5dKnAZ8Bnm68PQzUtmw5OeuaiOXZ1tplyQ5ird0CfBK2Kp/kDlCbErE8M9kaRHJKKIPBaL3OhvwoYwy44tD9oV9Jb45UDf8WlA9PfxzXYDQ9FYiIiIj4rm5n/D4iIiIiIiIiIiIiIiKx2bBbrpoNrIlyeySiX2+XfmsAlyvSOKy1G3GOnawLWz0JWGKMmW+MecwY8x9gA/B7oCCs3/NAAke5i4iIiIgkqdtJ8ftUr3ICb7a/7dx2LYCGUOJzWJe+JpD4GNJchxFQ1DV2nw3Tk/s9tZSG+tgnw+eXeRbQU1m3zbWtS0E3T+ZIRr4piLo+5PY/k0u6TIz/P775BecxZf9652911ydQ+R7U7Up93oOVsOah2H0SedyT5BgDXRP4ua75B+xeBLYh4yVJhIYQ7F4IwWrY+YF7v8IK6DDSv7qyRa+z3dvqD8Cm552LTtftTn7sne/Hbu+WIyGm2SSRn9nWVw49x4iISHaq3QGhavf2LhMhL/prJmkjAkXJ9W8Lr/WS2XesXpW5OkREUpRLwWgdca70aID51tr9LVxPzjHGBIArI1bfn8aQkZfD+GKCdQwHwi+7sh94OY06RLJf6IB7W6A0vbFLesKpL0P5qEPLx93vXI2ryaBrYNzP05snWd2meDdnnssLkYY4V4YREREREW80hGDRT+GlE9yvbgbO1VdEREREREREREREREQOZzy8tSnW2lnARcCOsNUGOBq4FDgDiEw3eAS4zFpb70eNIiIiItLGdBgK/S+P3+/jH8KrJzm3mUfBU91g80uJzbF3WfT1Jj/xOqW5QCGM/nHsPsv/ANO7wuaZ/tSUiu1vwdM93cPzAEZ8DwrKPJmuMrg16vo8AnTM7+LJHMlwC0YL2qDPlWRASQ844iux+yz4gfOY8kx/eLQAZo6Dl4+HJzvB3GugIYmfQ6gGZl8GT8UJDCzqAkO/lvi4krhRP3A/X6hJaD+8OAZm9IWq+f7UJbDxOZjeBV4cC0+0h7lXufcdfZvzHNPWVBwJ3ae6t791Prwy2Xl8mndTYsGjDUF473r46DvufcpHQb9Lkq+3rRt4JZQNit1nyS8PPcf851ioib4PICIiLWjhHbHbR/3IlzIki8V7fRGudAAMirGf21p0nQw9piXW983zYO/yzNYjIpKkXApG29n41QJbWrKQHHY20DNseR/wRBrjPQyEHzj1GWPMEQls9/2I5cettUo3ktatvsa9Lb8k/fG7HA/nLIKLd8GFm2DwNc3b8wIw6ha43PpzVYgep8G0N5JPVnYTKI6+vl4PHSIiIiK+mPtF+ORWqJobu1+s/V4REREREREREREREWmrBmbgFucsttbFWvsiMBr4M7ArRte5wMXW2st18VkRERERyagTHoIJv4de5ya+Td0ueOs8OLg9dj9rYZ/LSZgmkPh8crhhX4cTn4rdJ7gb3roAarb5U1Mygnth1tlQu8O9z5AvwZhbPZuyKhj977VTQRcCLfD36BaMFmoNwWgAE34Lx/41tW1X/x2W3p14/0V3wvrHYvfpMBxOf9cJhBTvdT8Fpr0Fg6+P37dmM8w6S+cR+eHAJnj7IgjuSaz/8JszW082OyWRwFcLK/8My34fv+un98Cqv8Xuc9psz8I/25TiLs7j+cjIU5td7JwP71yW2ZpERCQ5uxbAinvd26e9Db3O9K8eyU55CQT2lg2CEd919g2Ku2W+ppZmDJz8PBz5v9DzTOhyAhR0dO//1gXOe3MiIlkil4LRwsPQSlusitx2bcTyo+kc/GStXQE8GLaqEPiHMcYlwQiMMRcAV4etqgPuTLUGkZwRKyAi4EEwWpPCjs4Oaiz9fXhT7uRnvR3PLWCtvtbbeURERETkcPvXwdqHE+sb0vk1IiIiIiIiIiIiIiLSnLV2XSZuWfB9DbDWmjRvVycx33Zr7U1AD+BU4IvALcDXgc8Cg6y1J1hrp2fi+xURERERaSYvAMO+BlOeg/NWgEnw9KSGIKx/InafXQvc2xSMlr6+FzknAMeSyO+pJWx8Nv4xaqN+6OmUlcGtUdd3Kejh6TyJys9zCUZraCXBaMbAkOtg8HWpbZ/osY6J9j3pWWg/JLVaJDFdjoXj/gJnzIvft7YKtryc+ZraunWPga1PrO+AL2S2lmyXF4Dy0Yn1TeQxJ16fEd91zh2U1BR3cwJBRt6SWP/tb8HBGGGsIiLir1jPk+WjoNtk/2qR7OWWR9AkrwDOXQ5H/QpKWuZ1fYsIFDkBsafMhNPnQJ8L3Pvu/RR2fehfbSIiceRSMNpHQFO0pC6zkCRjTHfgnIjVceLjE3I7za9AORF41RgzPGL+ImPM14DIT0Z+kw0HqYlknFswWl5h4h8Ce2XgldBxbOL985PIoiwbBBdugIBrPmJq3MbTlV5EREREMqt6LXz0fQ69HI9DwWgiIiIiIiIiIiIiIiIZZa2ts9a+Ya39h7X2f621f7DWPmWtXdPStYmIiIhIG9V+CPS/PPH+e5aCbTweyUY5LmnvUvdty0cmV5tEVzE+fp+9jb+naL+jlrJnSez24m5Q0svTKauC26Ou71zQzdN5ElVgXILRbCsJRmvSKYG/0Wj2LIaG0KG/XbdbcB8c2Bh7rMIKKO2fWh2SvA7DIVASv1+s5wjxxpJfJN6301GZqyNXVCT4M9j7KdgG98elhnrYuyzOXCk+NkpzCT/HWKjZnNFSREQkTLTnx3B7YuwH6jlSmuTFCUbrOM4Jt23r4u0Pxfp/ExHxWX5LF5Aoa+16Y8xc4ARgmDFmqLV2eUvXlUOuovnve5G1NoFLKcRmrd1ojPkM8BJQ2Lh6ErDEGPMBsBooB8YDXSM2fx64Nd0aRHKCWzBaIm/aey2/HZwxH1bcCx/e7N6v36XQ6yzoMAJePj56n/KRcNRvYNvrUNzDuTJPQQfva3Z7IdJQ6/1cIiIiIuJ8gLDop7DoDudD+EQpGE1EREREREREREREREREREREpO0ZeydsfAZC++L3XfFHWH2/c5HsQAm06wtHfAmG3QzGQHWMzN+eZ3pXc1vW90Io6Q01m9z7rPiTcwPnvIFh34AhN/hTX6Rts2DBLVA1N3a/ITd5foJzZXBr1PWdC7p7Ok+i8l2C0YKtLRit/2Xw8Y+gblfy2z4a/WeUtMHXQ6Awfj/xRkF7GHgVrPxz7H4LfuAE2425U4EGXqs/CB/cDLWVifUvKE8uGLW1OuJGWPdw/OOt6w/AI2n8zZb0gj4XpL69HNL7PGf/88CG+H1nHgkTH4EBl2W+LhGRtmrFfTD/S4evD5RA10kw5iew9Few+QX3MVrqtapkn7w4r+GO+LI/dWS7/pfDJ7dBcE/09ne/AAvvhCHXw4jvOu/XiYi0kLyWLiBJv3a5L/F9MWL5fq8GttbOAi4CdoStNsDRwKXAGRweivYIcJm1tt6rOkSyWiiLgtHA+XBm+Dfgwk1QOuDw9pOegcmPwaCrIb/MfRxrodeZcNSvYMS3MhOKBhAojr6+/mBm5hMRbwX3wsq/wUffg43PJRewIyIiLaPyXVh4W/KP2aHqzNQjIiIiIiIiIiIiIiIiIiIiIiLZq2wQnPISdD4eTH78/k3HgdfXwL7l8OG3YNnvnXX710bfpv1QKO7iSbltXqAYTn8Hep6VWP89S2DejbDq75mtK5pdH8Mbp8cPRRvzExhzm6dTW2upCm6P2taloIencyXKLRgt1NqC0Qor4LQ50H2q+/kkmVLSG0b9GMb93N95BY7+PQz/tvM7iGXxz+DjH/hTU1vy7lWw8r7E+lYcBafNhpKWCYnMKl0nwUnPQqcJYDJ0unbn4+C0dyC/hc5DbG0CRc7fb6+zIb80fv85n4dNz2e+LhGRtmjV/dFD0cB5v2Drq/DKRNg4w32MAVdAt8mZqU9yT6DIva24GwyOjFxpo4q7OPuXsVSvhAXfh6WK9RGRlpVTwWjW2hnAAzihW+caY/5oTCKfmLRtxphJwPCwVXXAv7ycw1r7IjAa+DMQ63Icc4GLrbWXW2v3e1mDSFarz7JgtCbtesF5K+HU12DkLTDpMfhsFfQ5/1CfmG+a2oyXCCgYTSSXHdwOr0yGedc7L4DfOh/eu07haCIi2W7tv1PbLqSXeSIiIiIiIiIiIiIiIiIiIiIibVLXE+CMd+GyWrgsBBMfTm77FX90vlavid7e84z06pPmSvvDKS/CxEcS36bpd+SnVX+DhjihX8feB2Nu9TyQZm/9boK2Lmpbl4Juns6VqDYTjAZQPhymvgqX7nceU3qemfk52/WDizbCuLsgL5D5+aS5vAIYfzdcuAHG/SJ235V/hfpaf+pqC2q2wvrHE+tbUA5nfQgdR2e2plzS+xw48324LOjcAu28Gzu/PZz+LpQN8G5MgdJ+MOUFuGSv8xwT7xzPFff6U5eISFuz/E/pjzH0q+mPIa1HXqF727j/9a+OXNBxFAz7Rvx+y/8I1qc8CRGRKHIxVOxGYB/wDeBLwMnGmN8Az1prq1q0sixlrX0HJ0wu0/NsB24yxnwDmAT0B3oA+4FNwEfWWpdPqERaObdgtGy4UkNeAHqc6tyiifnGnk87snkuCc0N+hBDJOutuA92L2y+bvXfYcgN0OX4lqlJRETi2/xiatspGE1ERERERERERHZ9Aot/DrWV0OkoGHNHYldbFxERERERERGR1sHkOWewlI9Mbrt9KyBYDftdTjspG5h2aRJFMr+nXR9DQ72/gVE7P4jfp8PwjExdGdzm2taloEdG5oynoC0FozVpekzpMBy2/Cezc5WPyuz4khhj4oduBffA/rXQYZgvJbV6299MvG+HEZmrI9eZPOfWYRjs+sibMctHOP8TkhlNzzFu53422fmhL+WIiLQpDSHYlebjq8mD9kd4U4+0Du36urdl6L2DnPb/2bvv8Diqe//j76Nmyb33XrCNbYwNphubTiB0QighIZWUm/IjJIGEm5BcEkKSG0hCSGghhBog9GqqaTaYYoptjLstNxV3SZa02vP7Y6SrlTWzO7s7O7srfV7Ps49Wc86c+dqWV7M7cz7Hz99J7Xpo2AZd+mW+HhERF3kVjGaMeSnm291AD2B/4Lbm9nKgornNL2utPS6wIgVrbQPwcrbrEMkpXh+OJVpNIBfkQo2Fpe7bm/aGW4eIJO+jn7tvX/+QgtFERHKZ182FiSgYTURyQbQJbAQKPUK2RUREREREJHN2rYB5h7Zex9v6Imx9GU5627khVUREOiVjzBcDHM7i3B+4E9gCfGKtlqgWEREREclJvac7oVs7l/rf58Ee3m3dFIyWEb2nQa+psPPjxH1tBJ4/AgpiwrmKusOA2TDp/0FR1+DqqnzDWYy5akH8fl1HQv8jgztujGqPYLQuppRuhXF+VjOoyLhPBWzsyMFoLUZfCMtvyPAxLsrs+OLf4BOgS39nERYvT06CCd9yFm3vc2B4tXU0lQvgjfP999f/k8RGXxRcMJr+vnPD3i3w2rkw7qsw9DPZrkZE8pmNwqp/wKanYceHsGdVa9u4rzsLz3UdmrXyQpXMZwVehnxGYU3S1tBT4f3LwTa13d59HPQ/NDs15bIR58C734doQ/x+1e/A0JPCqUlEZB95FYwGzMW5samFxcnjbok8H9H88Hujk0mir4hI6jpqMFpY95UWeExmj9aHc3wRCd6q22HmH7JdhYiI7MtaWHNX6vs3KRhNRLIo2gjvXQ5r/ulMwB9yEhx2hy52ioiIiIiIhGnxT9ovbrTtXdj8nCYJiIh0bv8kc/fp1RhjFgF3Av+21upmEhERERGRXGEMzH4E5p8Guz9Nf7zuo9MfQ9ozBo5+BOZ/FnYtT9y/+u322zY/B5ueguNfhYIApqptfBJePcsJYoun22iY8zgUFKZ/TBdVDVtct/cvGYwxxrUt04pMiev2SGcIRus3Cw65Bd75bvBzSUwhTP6xE74muaGwC8x9Gl49E+o2efdb8TdY8y849gUt3J6KzfOc39O+GJjwbSeMTuKb+D3nd+qq20j9Y1EDE77p/J1LbtjwH+dx6O0w7ivZrkZE8tU734UVN7m3rboVNjwEpy6BsiHh1hW2SB08Mz39cQ77R/pjSMfScwIc9QAsuAQiu51t3cfBnCe0oKOb0gFw9ONOUHLjDu9+r5wM526Dkj7h1SYi0izfgtHcKNhMRHJfPgejFbhfOHOE9BJcWOq+vbY8nOOLSGps1LutpHd4dYiIiH+b58HCL6W+f+Oe4GoREfHDWmelrF2fwuIfw84lrW0bn4DXzoHjX8laeSIiIiIiIp1Kw04of8S9besrCkYTERFoXQA1SN1xFlydC1xrjPmytXZeBo4jIiIiIiKp6LkffPYTJxjttXPaXtdPVrcxwdUlbfUYD6cug90roG6zs+3VM+NPit1X1QLY9AwM9xuwE8fH1yQORTv6MRh2mhPsliHVjRWu2/sVD8zYMRMpMsWu2ztFMBrA+K/DmIth+wfOIh0FRYBxfl5sivNbCoqg9wFQ3CPQUiUA/WbBmRvgwZ4QibNwb6QGlv4Ojn44vNo6io+vgWhD4n7Hvwq9p2keiF8FxXDoLXDgb51zn5a5NW99DfasdN/n2Oeh5TXeFEDvqQqeyFUf/wrGXqJwFRFJXt1W71C0Fg3bYdXtMPWqcGrKlg0BnLeZIijN3nszyWEjzoZhp8P2xVDUHXpOzOhnB3lv6ElwTiXs+Aienendb809MPG/wqtLRKRZPgaj6beOiOSfSB4Ho8U72Y8XehQkr2A0gI/+x3mTrzclIrln5S3ebbogJiKSmz79S3r7N8W58UREJGhN9c6NQmvv9u5TMd8JTeu5X3h1iYiIiIiIdFYf/ty7bcPDMOO68GoREZFcFHtjh/XYvq99ZzS79bUxbUOAZ4wx37PW/jX5EkVEREREJCOMcSahjv0KvP/D1MYo7AolvYKtS9oyxrm/ouUeix7jYds7yY1RMT/9YLRIHVS/Fb+PKYQhJ2V8DkFV4xbX7f2LB2f0uPEUGfepgJFoJwlGA2d+Sf9Ds12FhMUUOKEG6+6L36/ilVDK6VCaGqDqjcT9xn0NBs7OfD0dUZe+bf/uDvglvHlR+36lg2Hw8eHVJempWec8uiu0V0SSVP22v34rb+74wWhBnLsd8Mv0x5COq6AI+h2c7SryR0ER9J0BQz4Dm59x71MxX8FoIpIVeRWMZq1VhLaI5KemPA5GiyvFFXWS1WWAd9tHP4chJ0D/w8KpRUT8qd8Gi77l3V6sm1NERHLGjiVQ/ijsrYBNT/nbp+9BsO3d9tvjrcgnIhK0VbfFD0VrsXmegtFEREREREQybfdKWHFjnA4hLbgkIiK56svNX3sAPwf64QSZRYGFwCJgPbALKAH6AtOA2UDLbHML/Bt4FigDegP7N/cZRduAtOuNMcustS9l9E8lIiIiIiLJGX566sFopQODrUUSG3FW8sFom5+BxcWwaxlsfRlK+sGwU2HYaU7gi0kwLSzaCCt85FwPPQUKuyRXWwqqGytct/crzt7PY3FBsev2RtuJgtGk8xl+RuJgtIbtUP4EDP2MM6lfWkXqnNfn3Sug22ho3AUbHoHqhWB9XL8ZfmbGS+w0hpwMBV0gWt92u/6O88+u5QpGE5HkRff661dbDouvhB4TnPc+ZdkLZs6Y3SvTH0O/P0WCN+JM72C0DQ/B4p9Crykw7BQo6RNubSLSaelTHhGRMKy61X17Uddw6wiaDSkYre8MKOrmHbSx5m4Fo4nkmvLH4rcXdQunDhERiW/Do/DGec4NZX7Nfbb55jMFo4lIlq2911+/mrUZLUNERERERERw3qPFmzxTsxaa6kOZrCgiIrnHWnunMWYC8DhOKBrArcA11toNXvsZYwqAM4A/AGOAzwHLrLW/2qffKcCfgHE4AWlFwP8CMwL+o4iIiIiISDp6jIfpv4YPfpb8vof9I/h6JL4J34ZNz0Lla/732bnUebRo3AWf3ug8Rl0Ah98FBYXu+0Zq4dUzYcvz8Y/RdSQceJ3/mlIUsY1sj1S5tvUvHpTx43spMiWu2yMKRpOObPhZMPI8WP9A/H6vng6jLoQj7kocxNhZNGyHl09xQtBSMfYSJ8xLgtGlLxx8Iyy6tPW6Wq+pMPWq7NYlyXvlM/C53VDcPduViEg+iUb89136W+dr6SA45jnoMz0zNWVDUz1UvJLeGFP/G3rtH0g5IhJj9Bfg7Uu925de63ztPg6OfV5BsSISCgWjiYhkWuMe77bCsvDqyIiQgtEKS2HAbNj8rHv7ir/CrHgr0ItI6FbcFL+9yecKByIikjk2Cu9+N4lQNAOzboKhJ8Gaf7p3UTCaiISp6k1//eo2ZrYOERERERERSbxgio3C7hXQe2o49YiISE4xxnQFHgUmAo3AxdbaBDNZwVobBR4xxswDngGOAn5hjFlvrf1nTL+njTGvAa8ABzZvPsAYc4K1NsGMehERERERCdWUn8LQU+HlE2Fvhf/9+h+RuZrEXUlvZ5Lr1ldg+3tgm1rbdnyUOKBoX+vucybYDjvFvX3tPYlD0Y56AAYfDyV9kjt2CrY1VmE95kv0Lx6c8eN7KTLFrtsVjCYdWmEJHHkf7PcdqHwTPrjSu++6e6H/oTDxe+HVl8tW/C21ULTRF8P4b8CAI8GY4OvqzMZ/DQbOhq0vQ9lQGHSswrXy1Zo7ndclERG/fM/dibF3Kyz+CRzjMbc6H8V7Lzn6YjjkZifcdcvzUNu8vlK0AXZ8CF1HwNivQF+tjSSSEUVd4dgX4KXj4/fbswo+vgYOuz2cukSkU1MwmohIpsVbIam4R3h1ZMLgBCe2QSrL3sVDEUnSugdg2zvx+yg4R0Qk+3Yth9pyf30PuAamXNm6gl6RxwX4SJxQYBGRINVX+++7c5l3W7TJuXAKzs1FhaXp1SUiIiIiItIZ1WxwJkYmsmuZgtFERDqvXwGTcVbgu85PKFosa22NMeZs4BOgL3CjMeYpa21lTJ/dxphzm/u03Bd5IqBgNBERERGRXNNnOhx6B8w/1V//siFQ2CWzNYm7wi7OQppDT2q7veK15IPRADY+5h2MtvGJ+PsOOApGfi75Y6aoqnGLZ1u/4oGh1bGvIuM+FTBiIyFXIhIyUwADj3Yeq26FPau9+y65FsZ9HYrKwqsvV5U/nvw+A46CI/4VfC3SqudE5yG5o88M2P64iqP7AAAgAElEQVR+cvuUP65gNBFJTqphxpvnQaSu45zbxHvvN/ky589ZVAZjvxReTSLSqsd4f/02PgYoGE1EMq8g2wWIiHR4W1/ybhtwdHh1pGPi9z22h7iCSkm/+O0168OpQ0QSW/KbxH0UjCYikn3Vb/nvO+WnraFoAEXd3Pvp9V1EwrLrU/99d3wAD/aGxVdAU4OzrakB3v4W/KcvPDzAeTzYE148zpnQLyIiIiIiIv6VP+bdVlAMw06HyT+GHhPCq0lERHKGMaYI+GLzt/XAdamMY62tAm5u/rYMuNClzxrgQcA0bzoylWOJiIiIiEgIBh7tfQ/SvgYdm9laJHl9D4KiFBaJX3mL83nirhWwcylseBQ2PAIbn4KdS+LvO+i41GpNUXVjhev2noV9KCnIXlBfsSl23R6xDSFXIpJFiX4v7N0Cr57uvMZsfh4ad4dTV7ZE6qDyTajbAnsrYdNzzmvrhkeSu1e4hX7vSmc0+cfu23tO8t5nyzznHGb3SrA2M3WJSMcSTTEYDQtr74FNz0Ld1kBLyoqqBd5tvaaEV4eIuOs6ErqPS9yvvho2POycD218CioXtM7XEREJkPsyESIiEgwbhWV/8G4ffHx4taRj4vedD8RrY8LHxl4CvUJc0b1L//jtzx0KZ28OpxYR8daw3QmeSKSpNvO1iIhIe9Em53U62ggLv5y4f0lfOPYFMKbtdgWjiUi21W1Mrn/jTlh6nXOh5aA/wns/gJV/b9sn2uiEmz93MJy5CSK7Ydu7zgXWssHB1S4iIiIiItLRbPQIRus5ET77Sbi1iIhILjoK6A9Y4G1rbToXE+YBVzY/PxP4k0uf53BC0wwwPI1jiYiIiIhIJhV3hylXwQdXxu9X0gcm/yicmsS/oq4w7efwfgr/Nq+emfw+3UbB+K8nv18aqhq3uG7vVzww1Dr2VeQRjNZoUw1ZEMlDky6D8kehvsq7z5YXnEeLQ26G8d/IfG1h2/AwvPkFaKoLZrxuo2H8pcGMJZJPhp8G/Q6D6oWt23pOhjlPwBPjvfeb/1nn68A5MPth6NI3s3WKSH6LRlLf9+2Y90MTvg0H/RkKCtOvKUzRRnj7Uqgtd2/ve7Cz+J6IZJcxcMD/wIIvODkZ8bx2TtvvS/rA7Edg0JzM1ScinU7eB6MZYw4ETgdmA+OAvkAPwFpr2/35jDG9gZ7N39ZbaztANK6I5Kyqhd5t474OhSXh1ZKO7mPgxAWw7j5nFYOBc2DUee0DMjIp0Ypge7c4b4i76p5WkazatdxfPwXniIiEr2YdvHJq4pU1W0y6DPb7DnQf276tqLv7Pnp9F5Gw1Fentt/y62HcV2H1nd599lbA/cXOe96WCzmTfggzfh/u+2AREREREZF80LADtr7i3jbyvFBLERGRnDUy5vmmNMeKXTFvlEefZTHP+6R5PBERERERyaQpV0CvybDmbtjwkLOIY8M2p633NBh6Coz9CvTcL7t1irvJl0OPiVD+CNQ2L3C3ZV7wxxl8Ahz+r9AXtatudJ9u1r84u4vrFRn3OSgRm0bIgki+6TUZTnoLVt4KS3/rb5+3L4X+hzu/XzqKus3w+nlgm4IZb+ovYMI3tYiodE5F3eDYebDyFqh+G/pMh3HfgNL+cNzL8OIx8fevmO8Exh52ezj1ikh+ShhmbHDWGUpgxU3Qd6ZzT3w+WfE3WH2Hd/uBPs/rRCTzRl8AZUNh3f2w+1PY+pK//Rq2w6tnwFmbnFB9EZEA5G0wmjFmGnA9EPuO0s/MxGOAh5qf1xhjBltra4OuT0QEa+GT673b+80Kr5YgdB0Kk3+YxQJ8vMRveib0laBEZB+bnvXXT8E5IiLhe+sb/kPRxn4ZZv6vd7tXaG1kT/J1iYikoiHFYDSAp6f66GSd9/UtPvlf6H8ojPxc6scVERERERHpaHYua55w4zHhbviZ4dYjIiK5akjM8wSr4iXUcve0AbxmaG6Ped4lzeOJiIiIiEimDT/DeUh+Gn6a82hxbwYWnDvsjqyE9FQ1eASjlQwMuZK2ioz7VMBIwpAFkQ6m+1g48FqY+H14fCw01SXeZ939HSsYbf1/ggtFm/wjOODqYMYSyVfFPdznTvaZ4W//9f+GQ26BgsJg6xKRjiPqcc7e92A4eZHz/LnDoXph4rHW3pd/wWjr7o/f3n1MOHWIiD+D5jgPgMfGQM1af/s17oTNz8KIszNWmoh0LgXZLiAVxphLgIU4IWf7fmqeKAr3MWB9837dgHOCrk9EBGvhra86K1d50QrpySkblLhPtCHzdYiIt/LH4eNf+usbqWkbNCEiIplVvw22PO+//+QfxW/3DEZT8KWIhKQ+jWC0VJU/Fv4xRUREREREctWKm+GpKbDzY/f2riP8TxIQEZGOblfM8/3THGtKzHOv1VpKY577mBErIiIiIiIigRlxbrDjlQ1xHllQ3Vjhur1/cfghbbGKTbHr9ojVXArppMoGw4Rv+eu75DfQuAua6jNbU9AitU7d0Sbna8tj2e+CO0bQr98iHUlJL+g+PnG/SA3s3Zz5ekQkf3ktOhcbftzvYH9j7fqk9ZwgGlBQaiZFI7DjI+/2LgOg68jw6hGR5PSblVz/6kXO+xgRkQDkXTCaMeYc4HagLHYzsAFYTPugtDastVHg3zGbTg+6RhERqhbA6ju82wuKnQ/FxL/Bxzt/b/EUdo3fLpKrmvbCh7+AF4+FhV+Gbe9mu6LkRWrh1WRW7LNO8reIiIRj51IS54jH6DU5fnuhgtFEJMsatoV/zLX3hH9MERERERGRXFS3Bd6/nLifNw07HUzc2zdERKTzKG/+aoCxxphD0xjr4uavNmbcfQ2O6VOZxrFEREREREQkWft9O+Dxvgsm/KlvdU011ER3u7b1Kx4YcjVtFXkGo0WwWrRaOqspP/UXWgTwYC94sAe8MAd2rchsXena9Aw8NRUe6ObUfX9Rc/3Nj9oNwRyn32HJBx2IdDYTv++v3+o7M1uHiOS3aKP79th50+O+DoWl7v1i1W1sPSf4Tz9nTmouhhBVLYR/l8H9xRDxWvMI2O87UFDk3S4i2TXhO2AK/fdf+lvnfcwTE6H88czVJSKdQl4FoxljhgAt7wxbPq29CRhnrR0NnO1zqMdahgTmBFagiEiLTc/Ebx/ymXDq6EhK+sCYL8bvkyg4TSQXWQsvnwQf/wq2vgyr/+lcZKt+J9uVJefJScnvU18dfB0iIuIumdWnxl+auE9xd/ftEfebwUREAqdzSRERERERkezZ8HD8G1YBhiezmIqIiHRw84FGnPv9DHCTMSbple+MMZ8HTqT1vsHnPbrOjHm+NtnjiIiIiIiISBoGHQNznkpvjMKu0Hs6zPwj7H9FMHUlqapxq2dbv+JBIVbSXlFBiWdbxEZCrEQkh3TpB8fOg9EX+esfbYSKV+GFo3IzQARg23sw/zTYuSSzxxn3VTj2OS12I5LIxP+CWTdBn5nOuYqXD6+CXZ+GV5eI5Bc/wWh9DoBjX4BBx0FxL38haY07nTmpCxLMvw5bzXqYdzg07Y3fb8K3YOrPw6lJRFIzaA7MeRIGHg1FPZzzocKuYBIEGu7+FF49I//my4tITsm36NSfAy3vGpuA8621/4lp97u0xSKcm62KgX7GmDHW2jXBlSkind6Sa+K3l/QOp46OZtbfYdXt3u01a0MrRSQwFfOdi2qxIjXw6Y1w+D+zUlLSdq9KbbWh+mroMS74ekREpL09SbzlHXpq4j7Fvdy3N+2Fpnoo7OL/eCIiqVAwmoiIiIiISPYs+U389uKeMFBr1ImIiMNau8sY8yRwFs79fQcCzxljLrTW+rrQbIz5GnAjreFqUeBuj+4nxTz/IOXCRUREREREJDXDToEL95neda/PwJ1Dbobx3wi+piRVN1a4bi+gkD5F/UKupq3iOJOOI7aRYrTYvHRS3cfAEXdDnwPh/R/522dvBZQ/BqMvyGxtqVj1D7BNwY139OMw/LTgxhPpjCZ8y3kAPDMDti9277f6n3BgguupItI5+QlGAxhwJBz3gvM8UgsPdPM3fvkjULcVyrIb5vx/1tzlo5OBmTcopFUkHww92XnEWvZHeP+Hiff95Ho48p7M1CUiHV5BtgvwyxhTCFyAc3OTBa7bJxTNN2ttBPgkZtOk9CsUEYmRKIW7WMFoKSlIkOf54X+D9ZuRKZIjPv2L+/Y1d4ZbR4umvVD1Nuz4KP7/JxuFbe87KxF9dHVqx6qvSm0/ERFJXjIBskNOTNwnXtBv407/xxIRSVXjjuwcd+OT2TmuiIiIiIhIrmjcA3Ub4/cZegoUloRTj4iI5IvLgdjl4I8Elhpj/maMOdYY03PfHYwx+xljLjXGLAJuBkpwQtEscLu19iOXfUYAc2ldYPW1YP8YIiIiIiIikpIBs/31G3RsZuvwqapxi+v2fsUDKDCFIVfTVpHxDj6LWI+gBZHOZMjJifvE8go2yrYdQeb9G+g3K8DxRISe+3u3Bfr/V0Q6FBtx3x4n/JiirtBtjM/xo7BzSfJ1ZcrS3ybu02O87i8RyWe94pwTxdr6kvIfRCRlCRJmcsphQMsNUA3A79IcrxyY1vx8RJpjiYi0VdTDCRfyEi9IQtJTvQj6H5LtKkT82/BwtitoVfkGvPmF1vCcwcfDUQ9ASZ+2/Wo3wssnpf9BWUN1evuLiIh/e9b663f6Kijskrjfvr8bYjVsh9KB/o4nIpKqSE3iPtN+BR/9PNjjfnoTDPtssGOKiIiIiIjkk/d/lLjP8DMzX4eIiOQVa+0aY8xXgLtwFnO1QDfgG80PjDG7gN04AWi9mr+CE4ZG8z4GeAu4zONQV9C6WOxe4PlA/yAiIiIiIiKSmjFfhMoE2dX9D3cmxeeAzfUbXLf3Kx4UciXtxQtGa7QNIVYikqN6TYE+B/oPPFv2O2jYBpN+CL0mZba2aBMsvwE2PQP1lW3buvSDvgdBUz1Uvw3VbwV33CEnQtng4MYTERhzMay7171t09Owazn0nBhuTSKS+6IeQcYF3uf4gPOa8/Gv/B3jpeNg1Pkw/lIYNDep8gJRtdC5337nRxDZk7j/6IszX5OIZM7g46BsCNRtjt9v7xZ4ehqYQigscz4DmvIzKO0fTp0dSd1mWPIbqHoLovXt26ddDSPOCr0skUzKp2C0lk+3LbDIWrsrzfFi92+34qSISFq83qC28Er2lsSmXwsfXOndvuo2BaNJ/tj1afx2GwVTEL9Pumo3wcbHYfsHsPLvbdu2vACLfwqH/K3t9gVf8h+K1qUf1HsEoHltFxGRYFW+AZufSdzv4Buh+1h/YxbHCfpt2OFvDBGRdERqE/eZ9t9Q9SZsfja44/p5PRUREREREelIok2w4T9QuwG6jmh/LWFfBcUw5ORwahMRkbxirb3fGBMFbsG5X69lSeiW4LNezY92u8b0ew4431rrtXLCXcADzc/3xOknIiIiIiIiYRr3FdizGpZe697e/3A46qFwa/IQtVEW7HrRta1/jgejRTRPRQSMgaMfgxfmtC4Yn8iq25xrIScuyGyQ0VtfgTX/8m7f+nLwxxw4Fw6/K/hxRTq7oSfDgCOd+/TdzDscTlwIPfcLty4RyW2pBqNNvQrqNsHqO8A2JT7Ouvth/UPOOdGwU5KvM1UVr8NLx7sH9bgZfylMiTNXXERyX0ExHDMPXjsHdieYLx87J736Ldj0FJz8LhT3yGyNHUl9tXOeWbPOu0/D9vDqEQlJPgWjDYh57r70RnKiMc/z6e9BRHJd4x5oTBAG0T03VjLKSyPOjh+MVrcpvFpE0rXxyfjt710OB/0xc8ff9j68fFL71YZirf4HzPhd65vLhh1Q4fOC27RfwX7fhtfOhopX27fXVyVfs4iIJOejX8JHVyfuZ4pgv+/4H7eom7NKg9tFFQWjiUgYIj7nM3bJwAoyDTugJE5ApIiIiIiISEfR1OBMHKpe6H+fsV+BErdMGxEREbDWPmCMeRP4A3A2rfftWZfuJubrGuDX1tp/JBg/iV9aIiIiIiIiEhpTAAf+Bqb9HGo2QFMdFBRB6SAnHKBscLYr/D+f1n7k2da/OPt1FscNRvMIWhDpbLqNhDPWOIvIN9VC4y5n7sZHv/Dep2E7fHoTHPynzNRUsw7WBBxQdvK7rc+LujffU2ehxwSINoCNQukAz91FJE0z/gjzDnVva9gOK/6e2TlhIpJ/vM7X45zjA07w0KG3wszrYfcKwMIHP4u/eLiNwLLrwg1G++QP/kPRpv3SeX8oIvmv91Q4bbnznqe+Gp47xF+I4+4VsP5BJ0xf/Flzd/xQNJEOKp8CwWJvfioMYLy+Mc81a1tEgpMo0Rag38GZr6OjSrRSglY5kkQad8HS66BqIfScDJN+AD2yFFZYtzF++/LrYfIPoesw/2PaKHz6V1jxV9i13Nm2/09g/yvbT0T64KfxQ9HAuSD2YE/n+bivwoCjnWMk0mM/ZzUCY6Ckn3uf+urE44iISOpW3e4vFA1g1AXJjW2MEwrk9lqulQVEJNNs1LlhzY9+h8Dau4M9/o4PYeDRwY4pIiIiIiKSi5bfkFwo2ohz4cDrMlePiIh0CNbacuB8Y8wQ4FzgCGA60B/oDdQD24F1wELgBWCetdYtPE1ERERERETySWEp9JyQ7SriWlm31LNtQEn2g9GKFIwm4l/Xoa3PI3vAO/fQUfl65mqpfBP3tQFSNPh46DszuPFEJHndx8Zvr3ojnDpEJH9EPeY+F/iM+yjuDn1nOM/7HhQ/GA2gagFEm6AgiFgOH5I5lxp2aubqEJHs6DbKeUy6DJb93t8+la8rGC0ZmXzPKpLD8ikYLTa1Y6hnL/+mxjxXKoeIBKcliMjLgNnQe1o4tXRUfQ+Gbe+4t0V1MU/iaKqHF+bC9ved77e+BOsfgBMXQI9x4dcT2ZO4z8YnYfw3nACaFvE+kHr7m7Dq1rbbll7nJGefusS5oSAacYIkNj+XXL2rbncefky7urXmLv3d+zToFExExJO1bV/7k7Xmbnjra/76miKYcGnyxyju4x6M1qjscRHJsKY6/31HXeCERDZsi9+vdDAccTe8dHziMV+YAxdE03udFhERERERyVWx1yBW3+F/v3OqoUvfxP1ERESaWWs3A39pfoiIiIiIiIjkhMqGzZ5tk7vNCLESdwpGE0lR/8OhdBDs3erdZ9cnsOg7bbdtexdq10P/I6F0YOt2UwC9D4ARZ0MXl4Xkd6+CdfdDUTcY9XnYszqYP0eLEWcHO56IJK+0PwycAxXz3dur34at82HQnHDrEpHc5TX3ucD7HN/TiLNhya8TH++N82DYGTDyHOe8JEhVC2HTs1D5GlS/BZEaf/t1Gw19sv/eSkQyZPRF/oPRVt8BZcNgyIkwcHZm68pVteWw4RFo2A5DTob+h4CNQvnjznvKipeh+3jocyBseCjb1YpkRT4Fo61v/mqAGcaYYmtT+8TWGLMfMCxm04fpFici8n92feLdNuHbMMPnyZx4i9Z7t+1cEl4dkn82Pd0aitaivhJW3gwzfhd+PX4+7Fn0TecBMPJzUP2OczFu8HFw6G2tF9dq1sMrp3j/H9izGv5dFkzdiRx+N4y+oPV7twt9APVV4dQjIpJPbBQ+/G/nd1NTAww7DQ66AUoHJDGGdUIx/Rg4F6ZfAwOOTL7Wkt7u2xsUjCYiGeb3oik4N56c/C4s/BJUvOrdb9Axzjn2ye/ABz9LHCJc9WZqr50iIiIiIiK5quI1eO8y2PEB9D4Q9vuv+Nc9Yw0/S6FoIiIiIiIiIiIi0iFUNroHo/UvHkRpQUj3YsdRaLynAjYqGE3EW0ExHHYnvH6u9wL3TbWw4ib3Nq8J6Euvg+NehG6jWretvR8WXAw24ny/5Br3hYhTNfwsGHNJcOOJSOoOvhGenubd/uJcmPZLmPbz0EoSkRzmdb4eJ/zYU9+Z/vpteNh5fPpnOGZecPd2LP8zvPv91PY97J9OyKyIdEx9psMB/+PMj/RjyTXOY/pvYMqVma0t12x7H14+sXWu/UdXO+eXFa/A+gdb++2tcOYwiXRS+XTWsACoAyxQBlwQv3tc34t5vtVauzydwkRE2qhZ6759xDkw669Q1DXUcjqkpjjBaHu3QuUCJ1REZF8rb3bf7jd9OmjJBDqA80amZo1zwW3jE/D8bCf8JhqBZw7MjWDAox6CMRe13eYZjBbgxT0RkY7io1/Ckt84r5GR3bDuXljwRef13q+G7bDzY399j3859WCf4p7u2xt3pTaeiIhfkdrk+ncfDcfPh5Pfg3Ffg8J9blIt6QP7X+E873sQHPMsHPtC/DFX/zO5GkRERERERHJRpBa2vATL/ggvHA3b3nFWDN62yAmY9qvXlMzVKCIiIiIiIiIiIhKiyoYtrttP6ntuyJW4KzAFFHmEo0UUjCYS39CT4LSVMCPA+SN7VsHSmPEa98B7P2gNRYP05k0MPgHmPAUnLXJCRE58C456EIqyH9QoIkDvqc7/z3g+/iXUbgynHhHJbVGP8/WCFILRAIp7+++77V1YdVtqx9lXww5Y/BP//addDeO/AYfcAmdXwKA5wdQhIrlr6lVw6lI45FaYeYPzGpDIhz+Huq2Zry2XfHhVaygaABbe+U7bUDQ/hp/p/D3PvAH6HRpoiSK5wHuZiBxjra03xrwIfLZ506+NMY9ba3ckM44x5kjgUpyANYCHAyxTRMT7g6rY1T8kPdE4wWgAzx8BPSc6H/73GBdOTZIfNj+X7Qra8lppyK/dnzrhOdvfc0Jwsq10EAw9uf32Lv3d+ysYTUSkLWth9T/ab9/8rDMptd8sf+O0+UAsgwq6uG/XzVUikmnJBgy36DsDDr3VubFt3X1Q/Y5zDjv2y9BzQtu+g4+DsqFQt8l9rFW3OWOJiIiIiIjkqzX3wIIvBDNW2ZBgxhERERERERERERHJopqm3dREd7u2DSjJnc9Bi0wxkdjQpWYRr6AFEWlVNggm/j/44Kfe4STJ2vR06/Mtz8PeACfzH3QD9Nrfed7v4ODGFZHg9J4av91Gnfls474STj0ikrui7c/hAfAIPk6oIMn9Nj0F+/84tWPF2voyNO3117eoB0z7RfrHFJH802uy8wDY9j6svCV+fxuBLfNgzMWZry0XRBvbvpdMx0E3KMdEOrS8CUZr9mucYDQLDAPmGWM+a62t8LOzMeYY4CGgADBABPhDhmoVkc6q4hX37WVDQy2jQ2tKEIwGsGu5s5L9Ca9nvh7pGGwUTEG4x0w10CHWh1elP0ZQDr0Nirq1317Sz71/fZUTAmRMZusSEckXTXuhtty9bcmv4ehH/Y0TVjBaYYn79qaGcI4vIp1XuufRJb1hwrdgQoJ+vad7B6MB7FzaetOZiIiIiIhIPtm9MrhQNIAeid5giYiIuDPGFAOHAOOAvkAPwFhrf5XVwkRERERERKRTqmzY7Nk2sDi3gtGgrt32iBY1FfGnoBAGHecsXByE2g2w9j7AwLLfBTMmQNeR0GNicOOJSGYUlsKA2VD5mnef9Q/BmC8mH2KUDbXlUP2287zvLOg2Irv1iHQkXufrBcWpjZfsXNidy2Dt/e5tvSZD72lgm2Dbu7Bnrfc4yZxDlfRJqkQR6aB6T4PSQYlDpJdcCz32g74zU39tzFU2CjuXOPOQrIWG6uDG7joyuLFEclAevItqZa19yxhzP3A+TjjawcAnxpjrgQeAdrOvjTGFwFzg68DncALRaN7/T9batZmvXEQ6jfInnDd+bsqGhVtLR9ZjAuzdkrhf5RvOG/DuozNdkXQE9dVQOiDcYwYRjBa0ISc5K5Eka+BcGPZZ97YuHsFo0XrnA3N9SC4i4ojs8W4rf8z/OH6D0frO8j+mmwKPYLSogtFEJMOaQjqPjiYI5X5qCpzf0PEuuIiIiIiISMe34ZHgxiodDIOOCW48ERHpFIwxRwGXAycCXVy6tAtGM8acDJzX/O02a+3lmatQREREREREOqPKRvdgtGJTQs+i3JnQ7wSjtdeoYDQR/6b9AqrehMZd6Y9lI/Dmhantu9934dO/tN9uCuHAa50QNxHJfQf8Cl45FZpq3ds3PwPPHgxzn4auQ8OtzS8bhcVXtg94nHQZzPh98gFMItJeNOBgtGTVV8KbF3i3lw115gP5nZPkx/4/CW4sEclfBUUw/Vp466s4MT8edi2DeYdBz0kw95mOkw/RsANePQsqXgl+7J6TwZjE/UTyWF4FozX7KjARmIHzqtcbuLr50Wb2tTFmGTAGaDkjNM37GOBN4IowChaRTiLaBG99xbs9Vz+0ykf7/xjmx1lFIVb12x3nxFfSU7MufnvdxiwEo8UJwMmGqb9wLvAt/xO89/+S23fYqd5t3cd4t216EiZ8K7ljiYh0VIkCM3evgh7jEo/j9yLExO/56+fFKxhNN1eJSKZFPG4cCVrT3sR9lv0vTNFHjCIiIiIiksPKH4O19wFRGHEu9D0IFv84mLFLB8GxL+THyuYiIpITjDHdgFtwFkaF1kVOY3ndCb0EuBgoaB7rLmvtB4EXKSIiIiIiIp1WZYP74u0DigdTkENhIEXG/TPZiO7dE/Gv/2Fw0tuw9l7YubR9+4aHMl/DxB/AzD/CwKNhy/NQv83Z3m0UjDgHBhye+RpEJBiD5jqvKU9P9e6z4wN49/sw+8HQykrKxqfah6IBfPJHGDAbRpwZfk0iHU3gwWgBB+HUbQp2PIBe+wc/pojkp3Ffhh7jnQU9l18fv++uT2DRN+GYZ8OpLdM++mVmQtEARn0+M+OK5JC8uzvVWltnjDkJuB84ltYboQzO6pEtwWcGJ0Dt/3aNaZsHnGetbQqrbhHpBCpfjx9CUaZgtMAMOhZ6TIDdKxL3fePzMOq8xP2kY6vbDE9Pj9+nthz6HBhOPS0SBeCEab/vwgFXO8/HXAxLroH6an/7lvSFUed7t5cNgd7TYMdH7du2L066VBGRDivR74Xyx2DyZaxdtZsAACAASURBVInHqa9M3KdsGAxP8+Kk18WXpgb37SIiQfFaUS9oQ050VgWN5+NfwegLodvIcGoSERERERFJxoqbnZvEWqwP8Cb74WfC7Ie14qSIiPhmjOkJvAZMpXWB01gt9/a5stZuMMY8DZzW3Pd8QMFoIiIiIiIiEpiKxs2u2weUDAm5kviKjfuipgpGE0lSz4lwwC/d2+4N4fpHt9HOdZaR5zoPEclvvafArL/Bom9599n4ODTVQ2GX8Orya/0D8dsUjCaSPhtx3+4RfNwhdOQ/m4gkb+Bs59F9DLz7vfh9N8+Dhu1Q0iec2jJp/b8zN7ZeZ6UTyMufcmttlTHmBODy5seAlqZ9vrZoCUrbAfwe+J1C0UQkUHVb4MW58ft0hBOvXFHUFY57Bd6/HNbdl7h/3VYoG5TxsiSHrf4nNO6M32f+aTDgKDjoT9B3ZihlEdkTznHi6TkRRl0IU37auq1LPzhhgfN/bOPj8fcf8hmY+QfoOjx+v36HugejNexIvmYRkY4q0e+F8kcTB6NFamHxFd7tZcOcVe5mXg/F3ZOvMVaB+81VRBWMJiIZ1rQ3nOOM/Dx8dHX8Pk11sPzPzjmxiIiIiIj4s/0DePtS2LUcek2G6b+GQcdku6qOx1pY8uvMjD39Wpj8I4WiiYhIsh4CptF6b18D8ADwMhAF/uljjEdwgtEATgCuDLZEERERERER6cwqGzyC0YpzKxityLgvaqpgNJEAjTof1t2f2WP0PzSz44tI+Pol+H8dbYDaDdBjfDj1xNNUD427oLR5ev7uT737bn8/nJpSsbcKoiHdVyySrojH4uAF7uf3HUJH/rOJSOoSnTMBYKFqIfSe1rqpdFBuva407oai7u730DXscOaKRuqgzv3zpkAU5GVklEhS8van3Fprgd8bY/4CXIBzo9NRwFCgIKbrduBN4DngLmttglQUEZEk2Si8dFzifoVdM19LZ9J1KBx5L4y+0Am0imfdvTDxB5qc0ZlVL/LXr/J1ePFYOOUj6DYiszVZ6/1hVhD2vwIOvDb1/XtOgDmPwaOjoHZ9+/ZDb4NxX/U/XnFP9+2Nu1OrT0SkI4rUxG+vfA32VkDpQPf2PavhlVO99x99ERxxd+r17UvBaCKSLU314Ryn1yQYe4kTtBzPhv/AjN/rPaeIiIiIiB+1G2He4U7IMEDVAuc6zykfQ/fRWS2tw9m9wrmpPmgzr4dJPwh+XBER6dCMMecCx9MairYA+Ly1try5fZTPoZ5tGRKYbozpbq3NgRXJREREREREpCOobNziun1giYLRRDqd/b7r3BcWjfl/1WsqTP8NvHamM5csHf2P8BkGICJ5pe8MGHQsbH3Ju8+8w+D0tekvcp6qxj3w1tecRduj9dBtNHQfC9Vve++z6xOYd6QzF6H7mNBKjWvzPFj0bdizKtuViKQv5ZCfOPeuT/4xLPtdiuMGSIE9IuKm3ywYMNuZKxnPK6e0/b6oG4y6AA6+EQq7ZK6+RCpeg7e/7iwM23UEzPgDjDrPadvxESz4UnjBskavs9LxFSTuktustXuttXdYay+01o4EioH+OAFpXay1/ay1p1lrb1QomohkRMV82Lk0cb/C0szX0hkNPh7KhsXv895l8MLRTrqudE7lj/jv27gzuf6paqqj9Z7vfQycA72npz72ft9LLxQt1oiz2m8rKIbhZyY3TlEP9+2RXcnXJCLSUUV8zNt5eJAzgThW01547XPw+DjnoqOXvgenV9++FIwmItkSDSkYDeDQ2+GwO2D0F7z71KyFHR+GVpKIiIiISF5be09rKFqLSA0suSY79XRkfj5rSkW/WZkZV0REOrqfxjz/GDihJRQtGdbaLUBF87cFwOQAahMRERERERGhrqmGPU3u084GFOdaMJr7pNdGBaOJBGfAEXDM8zD0VOg5CcZ9HY6fD8NPg6OfgMEnQulgKB3k/ogVu73nZCd07ZjntBCnSEc15wmY+P+82+urYeEloZXTzsIvw/p/t96LW7M2fpBbi6o34cVjINqU0fJ82bXcWVBeoWjSUXgEH6dl3FfgiPtg4Nw45ys+zkVMoff++57zuO6vwB4RcWEMHPOMMxe+ZxKX/CM1sOo2JzciW2o2wEvHO+cj4Cxc+sbnofJNaNwNzx/tPxStdFD7+Zl+X19b6HVWOoGc/yk3xkwHTgT2xwk8A6gClgHPW2vbvCpYay2wLdQiRSR51kLlG1C3EWrLnXCHuubHQX9x0vHzRfU7/vrpA+vMKCyFQ2+F18+LP8Gj8nVYfAUc8vfEY+5cCpuedSbmDDgKBh6tf798V9wTGpMI4PITdpiuSK1320F/di6e/aev80YtWVOuSL2udmP9zEmv3v6e870phFl/gy79khunuKf79sbd6dUnItKR+H3Nf+e/4OiYEM+P/wc2PJR4v+Gnp1aXF69VaaK6uUpEMqwpxGA0UwBjL3EeB/0JHh4I1uWmjg2PQJ80wo1FRERERDqL7Yvdt6+6HWbdDAWF4dbTkbm9d0lXl/7Q77DgxxURkQ7NGDMEODBm03ettXEumCf0CTCw+fkEYFEaY4mIiIiIiIgAUNm4xbNtQEluBaMVG/dFTSMKRhMJ1qA5zmNfw05xHiIiboq6wkF/hMrXYJvHvNPyR52AtGTnZqWrvhrKH0ncz0vNOtj6Igw5MbiaUrHmLrCR7NYgEqSCDMR9mCIYfb7z8PLkZNj1SfxxBh0Dxz4fv8+9BYD1rkNExE1RNzj4T87zl0+Gzc/533fNXTDzeih0/3wko9beA9GG9ttX3wEDZkPjDn/jdBsDZ6z21/eNi2Ddve5tmfgdIpJjcvan3BgzE7geOCpOt2uNMW8Al1lrfSYTiUjOePnE9ivCg5PUnk/BaIt/nO0KZOhn4LPL4JkDnQ/ovKy9B2bd5Exs97L6X/DWV9t+ODb+G04QVLz9JLeVDUsuGC2VMLJkReOEORR2cd6QDT8b1t6V/Nilg1Ovq91YA+DEN2DrfKgrh4FzoMf45Mcp7uG+XcFoIiKtNj/rr1/5o06wcNdhTjjQ8r/426/bmNRrc7PvigQt3D7cExEJUrxz6Uzq0tc5H3ZbGa/ildDLERERERHJS+vu827bvQJ6TQqvlo4uE9c6Jv1Q4XUiIpKKw5u/WmCDtfbVNMeLXTQ15FljIiIiIiIi0lFVNmx23V5kiuldlFtvP4s8FjVVMJqIiEgO6TXFOxjNNjlhRAOODLemncvSX2Br7b3ZD0bb8WF2jy8StO5jgx/TT1BOrymJg9F6Tcl8HSIivaYmF4wW2e0EtvackLmavCz7nfv2VbdBcS//4/Se6r9vvNdSo3v5pOPLybMJY8wZwL1AKWBimlriYmO3HQW8aoy50Fr7aEgliki6jHGCivasbN9WuzH8elL18a+zXYG06DrcCS97/TzvPpE9ULMeuo92b99bBQu/1H77yltg1IXuK73kOmud5OONj0NxTxhzsZPS3tkkuwpEZE9m6ogVNxit1Pk666/QUA2bnk5ubGMS90lGYSkMPSm9MYo8gtEiCkYTEfk/a/7lv++jw51gsmRCyIL+/aBgNBHJlqYsBaMBDPusezDarmXh1yIiIiIikm9q1sdv37tFwWhBCvpax8C5MOmyYMcUEZHOInZlrw8CGC/2l1z3AMYTERERERERobLRPRitf/EgCnJsgfUi4z4dMBJN8p55ERERyZyxl8CaO73bnz+q7fcTvg0H/I+ziG+Q6rfBh/8NFa/Czo/TH2/Nnc5j1AUw9SrotX/6Y/pV8Tp88kfY+ER4xxTJtNJBMPDo4Mf1eM/Qxtgvw4b/xBsExnzRx8Gsd5OfOkRExnzR+R0f7/VkXy8c7dxv2GL0RTDzeigdkF4tVW/Bst/D9sXugbIN2733Xfl3/8cZ+2X/feO9lup1VjqB3PpkFjDGTALuA8pwAtAsbQPRWmZy25hHKXCvMWZyuNWKSFq6DnPfXpcnwWir74QPr8p2FRJr2OmJ+8RLMH84zsluMknDueSDnzlhbxv+A6vvgJdOgPXxPqzooCI1SfbPcDCatfHDHAq6OF+Le8Dcp+DsCjhzAxz1UOKxR10YTI1BK/YIRmtUMJqICAC1m5LfJ5kAsuFnJj9+IgpGE5FsiRcy3KLHfpk5du8D3LfvrXBuHhEREREREXd1m+H52fH71FeFU0tnkey1kXj6zoLjX4ZCj8+DRERE4otdFnlXAOPFhqHtDWA8ERERERERESobtrhuH1A8JORKEisyxa7bG63u3RMREckZg+bCYXf477/iJicsLcjFg6ONzpgrbgomFC3Wuvtg3pGwe2Ww43qpfANeOg7KHwnneCJh6DMDjnsFCkuDH9sUJu4z7FQ4+K9Q4hLIWDYEjnoQ+s5Mr44CBfaIiA99DoDZDzuvPX7t3edznLX3wLzDIVKXeh3V78CLc51Mhj2roGZt+0c8fu7XK+kDB/0JRpzlv654r6V6nZVOIBd/yv+OE3QWG4bWCLwDbGj+fjhwEFBC23C0m4EMxOKKSEZ0He6+vTYPgtG2vgILL8l2FbKvwi5wxjp4bJR3n51LYOjJ7bdXvR1/7PrK9GrLhoYdzQnJMWwTLLkGRp6TnZqyJVKbXP8tL8CbX4RZN0Jxz+DqWHkrLL/BCb+Jt4JHYZe237ckVHdzX4msjSEnpV5fJnkFo0XroalBk6lERGrXZ3b8kecFP2aB+81VRBuDP5aISCw/N31M/01mjt1zknfbzqUw8CjvdhERERGRzmzVPxJ//rFzCXBuKOV0CkEtAlPSF45/JZixRESks4pdMrmXZy//hsY812oFIiIiIiIiEojKRvf7tAeU5E8wWsTq3j0REZGcMvYSWPcAbH7GX/9dy2DTUzDi7GCOX/6YM2amNO5w5srNuC5zx2jxyQ2JF3A/6iHoMz3ztYgEobg3lPbP3PjGZ4TIft+GCd+EmvVgI862gi7O/H9jwqtDRGTEmTD8DKjbCE0x66O9/nnY/p6/MfasckJUR1+YWg2f/qXtsYMy848w7DQntLLbKDAFye3v8TmQ06bXWen4cuqn3BgzFSfYzOIEoFngf4HfWGu379O3N3AlcHnM5iONMQdYaz8MqWQRSUfZMPftdTkejLZzGbx4TLarEC/dRkKvqd6rGGx5ESb/sP329Q/EH7dhR/q1hW3zPCd0al/bF0Pjbu+gqo6oyUfK8r7W3gU1a+CE14KpYc3d8PY3Wr9vjPMzVdDFfXu8EAaAnpNh1PnJ1xaGeAFzla/B4OPCq0VEJBfVbcrs+EFdHI1V4BFqmeiCo4hIutze58QacCQM/Uxmjl02FIp6QGR3+7bNzykYTURERETEy7Z3E/f56GqY+vNgbqwUaAwoGO2EN6CoazBjiYhIZxW7Et2UdAYyxnQBDozZVJ7OeCIiIiIiIiItKhs8gtGKB4dcSWLFxv3ePQWjiYiI5KAeE/wHowGsvjO4e/8rApoTF8/mZ8IJRqtakLjPwNlQOjDztYjkg4IkIkRMAXQfnZk6FNgjIskwxglmjNVriv9gNIBVt6cejObnfCMV/Y+EHuNT3z/ea7peZ6UTSDJKMOPOaf7aEor2PWvtj/YNRQOw1u6w1v4E+E5Mf4AMzPYWkYzo6hGMVrMu3DqSYaPw1P7ZrkISiffh39aXILJPSJa1UP5o/DHjhVjlKq9wOMh8+EouiTY6j1RUvg4rbg6mjlW3++/rFYyWKMzuM+9BoUdITbYVxal91W3h1SEikqtqMxgOPOx0KPT43ZIOBaOJSLbEC0ab8QeY+0zmJu0bA/0Pd29L9L5SRERERKQzK3/EX7+K+Zmto7OwFt77Qfrj9J4GvRIs2iIiIpJYy13KBhhtjEnnl8s5QMsFigiwMJ3CRERERERERADqo3vZ2dRu6hoAA0qGhFxNYkUek14jNhJyJSIiIpLQyHOT67/xcfj0Jmjclf6x480tDMqOj9pv2/gUvHsZLP091GxIb/ztH8DiK6AuwXyLgXMViiYSK1eCcpIJaBMRcTPyc8n13/oSvPlF5/Ha5+Cx0fDyKc4c/yaXuUjb3oMProI3LoLdKwIpuY1uo6HfwemNEe81Xa+z0gnkWjDarOavFlhorf1roh2stX8H3sC5cQrgkAzVJiJB6zrSfXvNWqjbEmopvr16VrYrED8mft9JKXcTrYctL7TdtnMJ7FkVf8wG9wudOc1a77ZtSaQj57t9g/CSteib0Lg7/ToqXvHXzxRBQaF3+9BT3bcf+FsoLE26rNCUxVktrUr3qouIJLxQl47Bx2VmXK9gtKa6zBxPRKRFk0cA49hLYPIPEwcKp2v4Ge7bd34Mu1dm9tgiIiIiIvnK7w3I5Y9lto7OYv0D6Y9RWAaz/p7+OCIi0ulZa9cAsR+cXZnKOMaYLsDPWoYFFllr07whQERERERERAQqG7znrwwszsVgtGLX7RGb4mLiIiIikjkDjoKpv0hun3e+A8/Phvrq9I4dRjAawJ7Vrc8XXwHzPwvLr4fFP4bnZsGOJamNu/FJeO5QWHpd/H7dxsAhurYtnZAx3m25EpRT4P7eRUTEt2GnwsQkFwhde5fz2PAQ1KyDzc/AW1+Dl0+Cpr2t/dY/6JxrLPk1rLs32LoBuvSDI+7xzrzwK95req4EYYpkUK4Fo02OeX5nEvv9K+a5lisWyRf9Znm3Vb4WXh1+LfqOk7gvua9LX/hcnCCrqgVtv694NfGY296FaFN6dYWtYZt325sXwqbnwqslmyK16Y/xZJqnF/FC6vZV2CV++9gvtd9mCmHUhcnVFLaibt5tNWth1R2hlSIikpNqN7lvT3fVIlMII89LbwwvXhco6jZBVCtPikgGRV1WaQEoSHAuHZThp3u3KcRBRERERMRd7wP89Vt3f3KfqYu7DY8k7jP2EmexIS+nr4YBRwRWkoiIdHotF4QN8AVjjMuFb2/GmALgVtreX5hw0VURERERERERPyob3e/fK6CQPsUDQq4mMa9gtEbrsdigiIiIZI8xcMDVcMqHye2340NY9Y/Uj7u3EvZWpL7/8fPhxLdg5g2J+77/E+drzQZY+rt96tgKS69N/vjWwuKfeN8z3GLuM3DqEug5MfljiHRkuRKUkyt1iEj+MgVw0PVw2gonZOzQf0Dv6amNVTG/9b46G4X3fwTWxxzIWX93jtvyiKelz9xngrv/Lt5raa4EYYpkUK4Fo/WOef5eEvu19DX7jCEiuazrMOg+zr1t09Ph1pLI8hthxU2J++33Xfftfj4AkmAVdYUR57q37btaQs06f2NuzLMJ7pufjd/+9jfaJht3VJEAFoiu2wTbP0h9/2T+nhOFOYw4F6Zd3fpGprgXzP4PdBuRcnmhmfrf3m2LvgWNcQINRUQ6uvpK9+29pqU+ZkkfmPMklA1OfYx4Ckq828ofzcwxRaRzqlkH7/0Q5p/h3DDRuNO9X1jBaF2HQ1+PsPf3Lw+nBhERERGRfGN9Lj6zdwvsTHG1aGlV8XLiPlN/ARO+7d7We3rmPlMSEZHO6k9ABWBx7vG73RjzG2NM10Q7GmP2B+YBFzXvb4GVwP2ZK1dEREREREQ6k8qGLa7b+xcPotAUhlxNYsXG/d69iJ/JvCIiIpIdvac59/cnI9HcwHjSve5e2BX6HwKT4iy21WL3p87X8sdwPsLfx9p7kj9+bTnsXBq/T+lgGHoyFJUlP75Ih2DiNOXI+xgFo4lIUHqMh9EXwrgvw9SrUh9nXfNtBrs+9ZcvUdwLJlzqHLfl4TVXvmxIa5+hJ0Nxz9TrjBXvtVSvs9IJ5NpPea+Y59WevdrbHvO8R0C1iEgYBs6BPavab19zF0z+MfSa3L4tbOsfhHc9As9iTfi281j9j7ZBTCV9YcTZmatPvJX0ct++b1BWnfsKT+2suz9//i2rFsKe1fH71K6HLS/CsFPDqSlbmmqDGWft3dAnxRRpr+AGN4UJwhyMgWm/gMmXw5410HNS/iQ6dx3p3Rath/LHYcxF4dUjIpJL6qvct/faH7a+mNxY034JYy9xPkwrcF8ZMhBxg9Eeh5EeIbUiIsnYvQrmHd4aILnxce++ic6lgzTiTNi2yL1t+Z9h4vfCq0VEREREJB/4DUYD57y/99TM1dIZJFr5e+ip0H2083zQsbD1pbbtEy7NSFkiItJ5WWtrjTFfAp7EWcy1APgJ8B1jzNPA+tj+xpjPA/sBJwKH48zsaJndsRe4wFrrMrtKREREREREJHmVjZtdtw8oGRJyJf4UeUx6jdjGkCsRERGRpAz5DKy713//rS/Bir85c8f6HZZcANiOj5OvL1Yy9+TuWQ0rb4EPf+bdZ9F/QY8JUNwD+s50FpDf+TFsexdsBGo3OfcVdB8NZcNg01OJjzv0FP81inQ2Jk5oWpjyZd6riOSXwcc7gWCpBMRvfBx2/n/27js8jure//h7dleSVVzl3ns3pts0B2x6MaYGCEloCSUhjSTkF3IhnRsCCUlubgoJkBB6B5tmbAOmmG7ce+/dkiVb0u7O749BV21mdnZ3Zov0eT2PHmvnnDnnK1lazc7O+cxSqFrnrX9hp5bb+l0Mi37RcvuAK5Kvxwu351I9z0obkGs/5aFGnydxZXSTviHHXiKSe3qdbgWJNWfGYN0jMN7moCCTYjXw9qXe+h75O+uEz+TX4bOfwL750OVoOPwuKO0XbJ1iL1xqv339ozDxfgi3sx57vXvChif9qSsTFtzhrd/m6W0gGO2gP+MsvRt2f2D9rnc5Krl9kwlGC7Xz1i9Smn8LwxKlW2+ZoWA0EWm7nILROo2FsqFwYJX3sUr6QqlLGKVf3ILR1j0Ex/87+BpEpPVb/oeGULREQhkMRus7DT5zuIBjwR0w/ObceUNZRERERCQXJBWMNh3G/Di4WtqCSHuIVtq3FXSEExu95zXpefjkO7DlZSgqh6E3wLAbM1OniIi0KaZpvmoYxk3A/9JwjV97oPmFOQbwSLPH9SFoUeBa0zQ/CbJWERERERERaVt21DoEoxXkajCa/Q1TFYwmIiKS48beZoWdHdrmfZ8Pb7L+7TASTn654QZYiexfnHR5TbitFWguegA+SHDzrZV/Tq+e5or7wOhb/R1TRPxnKPZDRAJQ2AmOuAs++V5q+88Y7b1v2GbNf+fDYOjXrWDYemVDYcS3U6snEYeA/IRtIq2EfspFJLv6ToOibvaLnHd/kPl6mvvo5sR9jAhMeq4hBb/rRJjyerB1iTcRh2A0gPe+Cic+Dod2OQeR2IlHcz891zRh9/ve+lauCLaWXBA75Nw2bSM8l0Rw4Y634JWjrQVD7YdDxzEQCife75DHIAdI7o4a+aagfbYrEBHJXU7HI0Xd4LCfwbtX0rDmJwG3YyA/JfNmp4hIqlb8yXvfTB5LdxgFpQPt7xJTtw8OboGSPpmrR0REREQk18WTuDvj7g/AjOviyHSE7BfFAdZ7I43vJF5QBhP+EXxNIiIigGma9xmGsRp4GOhB0zc/Gn/eOAzN/PzxLuCLpmnOyUStIiIiIiIi0nbsrHMIRivsmeFKvIk4nANWMJqIiEiO6zgazvwINjwJ22bBttcgXutt34pl8OktcNLT3vrvX+TcNvhqa13cop9D7KB9n0zerDhZR94LAy6F4twMsRUREZEMGPld6HIULPoF7HwbyidC2SCrbc0D/s0TsglGAzjmr9D7bNgxF8oGQ/9LoV1X/+ZtzO06SgWjSRugn3IRya5wEfQ5B9Y82LLN60mdoNTuhdX3uffpdxGM/Ql0PjwzNUly3EJBNj4FB7c2TeP14sAa6DA8vbqCdmg71O331nf7bIjHvIV75Su3E7QlfaHDCKhYntyYb19i/duuJ5z0DHQ7zrnv2ofgva94HzuXTxynK6JgNBERW7FD1l2S7BSVQ/dJ0K4HrP239WGErMXBTjIWjOaywFZExA/JBCdAZo+lDcM6J7DsHvv2yhUKRhMRERERacyMJdd36d0w+ofB1dOamSbUVdi3Hf+obmIiIiJZZ5rmbMMwhgI3At8E+jt0NT7/dxfwv8A9pmlWZqBEERERERERaUNq4zXsi+62betekJthGxHD/tq9uriC0URERHJeSR8Y+R3ro15dBTzZMfG+m16w1h6EHQI66pkm7HMIRjvmLzDsBuvz9Y/Bvs/s+zW+WbERATPJa3qD0u9CGPntbFchIiIiuaD7JJg8s+X23e/D/iX+zBEutt9uGND3fOsjm0KKjJLWTz/lIpJ9pQMdGlzCHjJh8wz39on/gsFJhB1J5rmFgphx2PMpLP9DcmMe2pH7wWgVS5Prv/IvMOKbwdSSC2KH7LfXnwSe8ADMPhVi1dbjSHuIeryW+tA2ePNcmLYJIjYvbvYtTC4UDZqeOG5tEi62MhK0i4i0UjX2F1UBUPT5nQJ6TrE+jvuX9XjzdHjzPPt9ImX+1ufEKXxURMQv+xYk1z/Tx9KH/dw5GG3WZCtEufc5EC7MbF357uB22DIdMKzQ76Lu0HUCtB+a7cpEREREJB3JBKMBzL/VuqC5rR8H1lXA1ldh32Lr8+4nQc9T3c+3x2ucL0ov7RdMnSIiIkkyTbMKuBu42zCM4cCJQD+gHCjECkPbDrwLfGKappmtWkVERERERKR121W33bGtW2FuBqMVOASjRU0Fo4mIiOSlgg7QcSzsdwgzq2dGYdd70GEk1FVa7xsXdIRISdN+B7dC3T77MTqOafjcCDnPFWp07evhv4FPb3GvLVO6HpftCkRERCTX9TjVx2C0HF/zb4SzXYFI4HIxGK3+IqaJhmEM9LhPz8YPDMM4iSSSNUzTfMtrXxEJgsMJlB1Z/tXc8YZzW6S9QtHygVswGsAn34HavcmNGT2Qej2ZUrkquf4bn2zlwWgOoS31wWjdjoPz18Gm56yTtr3OgFcnQPUGb+PX7oGtL1sLtJrb8GTy9YZy/EVSOhIFo61/BE54ODO1iIjkkppdzm31wWgtuL0Jmam/JS4vu93er5MFkAAAIABJREFUJBUR8WL/MnjlqOT2yfSxdKQEyo+F3R/Yt8+9ELocbd2BprBTZmvLVzvfhTlntHztHS62wkH7X5KdukREREQkfckGowGsexjG3eF/Lfmiaj3MmgIHVjdsW/576DgavjAdygY57Ofy/kZBB39rFBER8YFpmiuAFdmuQ0RERERERNqmnbVbbbeHCNGloFuGq/EmomA0ERGR1mf0rfDelxP3mzW55baBV8KEfzQEd2yf47y/52C0RtfkDrwclv0ODm5OXF+QinvDIK3pFRERkQSG3Qhr/wV1+9Mfy8jFSKZGcr0+ER/k6k+5ATyaxr5vJNHfJHe/DyJtQ8gliXTvZ9B5fOZqqWeasPqfzu2DPJxkkuxLFIxWuTL5MaOVqdWSSXUVyfXPdghh0GKH7LeHixs+b9cNhn6t4XH3SbDuP97nmHsRdD4c9s5PrcYmdbVLf4xcFUkQjAZQtRFK+wVfi4hILolWObelsljV8JwTnp6uE53bzDhUrIAOwzNTi7RuB9ZYr892f2gtpC8dCAMug16nZbsyCdKC/0p+n8YXa2RKl6Ocg9EA9nwET3WG4TfDqO9Daf/M1ZaP3r/WPpA8dhA+vBH6nA/hRnchPLAWlt5j3dmwxykw6Cr380x+MuOw6j7YPhuKe8GQa6HTuMzMLSIiIpKPUglG2zHX/zryyfwfNw1Fq7d/CSz6JUx0eC9zyW+cx/Rynl5ERERERERERESkDdlZZx+M1qWgm2MAWbYpGE1ERKQVGnQlxOvg/WuS33fdf6CoHI6613r83pX2/Yp7Q1GXRhvcgtEaXatZ3AtOexuW3Al7PoXaPVDY+fM1jGbLfVNZs5nIkOtg7O3Qrrv/Y4uIiEjr0nHk58cud8G6h9IbK1PrNFMVUlSStH65+lNuYgWcJbtPvRx/dhGRJuJR57aNz2QnGG3+re7tw7+RmTokPYmC0Zx0PgJqdkP1hpZtdXkQjBavyXYFucUxGM0lgGzEt5ILRgN/QtEA2xPCrYWXcJ/n+8NldXoxJiJti9PfKmh6p6XG2rncibKgU3r1eFWQYCHtzONhyhvQaWxGypFWqmIlvD4JDm1run3NAzDxfhh8VVbKkoDFDsGmZ5Pbp+No98DGoAy5Dlb9PXHIw4o/WQF/Z38G7YdmprZ8U70ZKpY5t9fshp1vQ8/P73a4fym8fETDa+B1D8P2N+D4NN+48mre1bD23w2PV98Pk1+HrsdmZn4RERGRfON0zNx3Gmx6zr5t+yyoOwAFZcHVlcu2vuzctvkF57Y19zu3pRLCLyIiIiIiIiIiItKK7azdZru9W0GvDFfinVMwWpw4MTNG2MjQTeVERETEX4OvSi0YDazrGY/8HVRvdO7T/AbEbkEfoWbHG2UD4di/JVfTIz4t9T/8NzD6h/6MJdKqKE5DRMRRp7Fw/L+tD4BoFTw/EGp2ZbUs3xlaiy+tn0ucc9aZSX6ksq+I5AIz7ty2f3Hm6qi3byEs/a1z+/g7rQXXkvtSDUbrf6lz0Ec+BKO5has4iVb7X0euiB203x4udt6n/BiYPCuYehIp6JideTMh7BDu09zOd4KtQ0Qk17iFeDq92dj5SPu7HZX0hw4j/KstkeMfcW6r2Q3L/5i5WqR1Wvm/LUPRADBhwe0QTxBGJcnZ+S7MOhWe6w+zT4OKFdmpo2J54qCxekYE+l8CU+ZkJ1y3y5FwzF+99Y1Vw4vD4NGI9YbKpz+07u4nlupNifscWAWf/cS6WGbG6JbB4Ov+Y7XNmuxjeLWN/UubhqIBRCvdzyeJiIiItHVOx/i9zoR+FzvvN/fCYOrJdbFDULvXub1ml/1r4kSvkxMF3YuIiIiIiIiIiIi0MTvrttpu71aYu8FoBQ7BaABRU9eiiIiI5C3DgG4npbZv7V44uA32L3Hu0+WoZhtcIgbcQtO8Gv7N9McA6HSYP+OIiIhI2xUphVGpBK3meAilgtGkDci1n/INKLBMpO0p6e3cdtD+TabAmCa8lOBEyeCrM1OL+CDF/M/h34RNz9m3RQ+kXk6mxGoS92muZhdE+vtfSy5wC5tx03MyXGHCoV3wTDf/63JS2Clzc2VD/0thwxPufdY9BD2+kJl6RERyQdzhb1XI5W9VKAxjb4ePmr1ZOO52f96E9Kqws3v76vtgwt8zU4u0Tm6BqdUb4cBq6DA8c/W0ZlUbYM4ZDa95qjfCK0fD1NXQLoPHwwC75iXuc+JT0P8i63V8Jp/37Ay9Dur2wac/8NbfjEHVeitEq3ojnPBosPXlC7fg/HofXO9trO1zYOaJcM5SKO2XXl121j1sv33jUxCrhXCh/3OKiGTagTVwcDsU94TSgdn/eysi+S8etd9uhGHMj61jKTvbZlqht50PD662XFSzO3GfaEXLczNV69z3aX5XbxERkQwyDCMEjAXGA/2BbkAx1vWCB4EdWNcPfgYsNk1T1xGKiIiIiIhI4ByD0QpyNxgtkiAYrYgE18mLiIhI7hpyHeycm9q+VeuhYpn72I0ZKa699GrwVdZNsr1cH+qkdAD0PNW3kkRERKQNG34TrH3QPUi2hVy4ftqlhlCuRUaJ+C+nfspN0xyY7RpEJAvcTkxkOoRq20z39q7HQXGPzNQi6YuncLejHlOgoAwK2tu3RyvTqykT4ikGo5W21mC0g/bbw8Xe9m/XFbqd4B7K4aceUzIzT7aM+kHiYLTV/4Txd2Y+gENEJFtSDfEc/g0o6QcbnrKC0vpdAn3O9r8+N5GSzM4nbY/TsVy9imUKRvPLol+2fA0erYR1/4GR381MDWbcChdb9jv3fic9C/2mWZ/nSkjLqO9Dp/Ew5/Tk9lv/GETaw7F/Df4Ck1zn9zmgaBWsuR/G3eHvuAAbn3Zue6IEjr0PhihYX0Ty1MFtMPMkOLCqYVvpQJg8E9oPzVpZItIKmDH77aEIdB7vvu/Kv1rHzG2Jl2C02v0tg9HcLnLveVp6NYmIiKTIMIxJwPXAWUBHj7vtNQxjBnCfaZpvB1aciIiIiIiItGl18Tr21O2ybetW2DPD1XiXKBhNRERE8tigL0PtblhyFxzalty+H98Mez52bm8/pOnjoK9b7XKUdc3vJ7c0vRapsUiZdf1ouARi1Y1qC1vr+Sb+S4EfIiIi4o9IKZzyKsy7Fna8AfHabFeUPkPHSdL66adcRLKvbDB0GAUVS1u2HdyS2VrW/se9/ch7M1OH+KPLUVgpuEncRLjbCda/EYdgtLo8CEaLpRCMtnkGdD4id0IF/JRq2ExjR/4e3jjbCpDzQ1E5nLcSPvo2rHuoYXv/S6D/xf7MkavKj4YxP4bFv3bv9/F34ISHM1OTiEi2pfO3qu9U6yNbwh6C0eJRvRkpqUt0krliGZDF34HWIh6D1ffZt7ldIOG3VfclDkU76o8NoWi5ptdpcN4qeDHJ0JjV90FhRzjit8HUlS+iVf6PufHpYILR3M4NmDF4/xrY+goM/BL0OgPCRf7XICISlHcua3khYtU6eHEY9DoTCrtApzFQ3Nt6jivulZUyRSQPOQWjGWHrYutj/wYfXG/fZ/eHwdWVq7y8H1G3v+W2qvXO/dtauJyIiGSdYRijgT8Dk+o3JbF7F+BK4ErDMOYAN5mmucLnEkVERERERKSN2xPdgUnctq17Qe8MV+OdgtFERERaMcOwbmg84jvWOoNIMTzi8fS62zW/A6+0myylEpNSv94hetD6Wsw4HNrZ0N6um3XNQDxqtYUKoGanFZimm7iLiIiI30r6wuRXrWOTugprW7gdPNUpu3WlSms2pQ0IOM5ZRMSjo/9ov71mV2ohT6mo3tQ0oKi5gVdC12MzU4v4o11X6HZicvsM/JL1b0EeB6PFHcJV3Cy8HT76hnUCsbVxDJsp9j5G+TFw9kKY+AAc85f0a5q2GQo7w3EPwpQ34Ih7YMpsOP4R6wRuazf+V1A+0b3PhseanugWEWnN/PhblS1e3mys3Rt8HdJ6xRO8HqxYlpk6WrtKl/WE6zIYVrv+Eff2/pfAiJszU0uq2g+BC1M4jl16t/XRlgURjLZvIWye7v+4Xmrd8AS8dT7MPAFq9vhfg4hIEGr2wI43ndu3vmL9vf7sNph3NUwfDdtd+ouINOYWjAYw9OvO+1YuBzOJm+C0Bl6C0Wr3tdx2cLN9307jrJtViYiIZIhhGJcCH2CFohk03NWu+Uc9u7b6/SYDHxuGcVGm6hcREREREZG2YUftVtvtBgblBT0yXI13EZfrzeviCkYTERFpFQzDChIDOPy/0x+v/fCW24bdaN+3uE/68zVX/7UYISju0fBhfB5zEIpAuND6utt1VyiaiBejfmC/vf2wzNYhIpKPIsUNxyORUud+RgaCZBNxq8FQMJq0fgpGE5HcUOxyN51D2zJTw4c3ubf3nZaZOsRfJzwGpQO89T3uIejw+Um+SJl9n3UPwRvnwvvXwTtXwCvHWHddeP0UWPFn6+4E2ZZqmODKv8D2N3wtJSfEDtpvD7dLbpzinjD4Khh2A/S7OPV6hnwNwkXW50YIenwBRn0PepzStpKZO9icUG/MjAcTYCAikoscg9GS/FuVDWEPbzh6Wcgr4iRe696+5gE4mKHXjK3ZwS3ObSX9MlfHjrfc2wdcnpk60tWuK1y8D/qen9x+n/4AZoyFJXdZd59pa6IHghl33lX+fz+TCSTf8zEs/rW/84uIBOWg/cIPR3X74IOvQdwh7EhEpLFEwWgAJz5l3ydaZd3gqC3xcj6l8XuoG5+Dedc4H3t2GO1PXSIiIh4YhnEJ8AhQQtNAtPqgM4CdwApgHlaA2kpgV6M+jfcDKAUeNQzjgsx8FSIiIiIiItIW7Ky1v2amc6QrBTl8s+sCw7m2qKlgNBERkVan/yXpjzHg0pbb+pxnfzP3IdekP5+IBG/AF+0DcZxCD0VExF4+r+3P59pFPFIwmojkBrdgtIPbM1PDno+c2wo7J7+gWXJDSW+YujZxv3OXwaArGx4XtHfuu2UGrP4nrH+04edmxxvw0Tdh7oVgms77ZkI8xWA0gM0v+ldHrggibGbYjTRcr50EIwKjvp/6vK1Jl6MS99n1bvB1iIjkAqdwlXwIRvNyJ6YtLwdfh7ReiYLRAF4aCxUrg6+lNavd49xWtz8zNWx9LXGfjmOCr8MvhR3hpGdh2iY45VU45TUo6Zt4v/2LYf6tMOsUiHn4+W9NolXBjFuzG7bP8m+8aLXz60wn6x6ywp9FRHJdKoskKlfC7vf9r0VEWh8vwWg9pzjvv3Ouv/Xkuv2LEvd55zLrZjmL74S5F1jh4U5KArijt4iIiA3DMEYAD2Bdl9g4EK0CuBc4B+hqmmZP0zRHmaZ5vGmaE03THGmaZg+gG3Ae8EegkqYBaRHgX4Zh6Db3IiIiIiIi4ouddfY3ZOxW2CvDlSQnomA0ERGRtqVsMEx0eT/Yiw4jWm4rKIMvvACRsoZtfc+HMbelN5eIZEZxTzjxSQgVNWwb+GUYfnP2ahIRkcyyC8gUaWUUjCYiuaGgg3NbLKCFsY3FY3DIJYDt7AVKTM1nhgHdv+DcXj6h5cm9ou6pzbX5Rdg2M7V9/eK0QHvk9xLvu/xef2vJBRuesN9ud0cLr3pOhpOehrKh9u2DvgonPQOdDwcjZC3s6nwkTH4dOgxPfd7WpN+FiftULA++DhGRXBBEiGemFJYn7rPgJ8HXIa2Xl2Comt2w7HfB19Ka1ex2bqurgLoDwdcwN8HxYXEvKBsSfB1+MgwrfKDX6dDrNDj8N9733f0+LLy94XE8CsvuhRdHwAtDYMHtwQWJZUuQX4+fIZ01u5Lf59AO2DvfvxpERIIST3GRxMwT4PFiePkIWPeYvzWJtEa1+2DetfBsX3h1Aqx9OLn9Nzxt7fd4CTzWDp7sBLNPg30egrSyyUswWmEnKB1k3+/dL8Ghnf7Xlau2vOKt3wfXw2c/TtyvWMFoIiKSMf8DlNAQiGYCPwP6mab5PdM0XzZNc6/TzqZp7jZNc4Zpmt8B+gG/+HyMemXAnwKrXkRERERERNqUnbVbbbd3K1AwmoiIiOSYwVfBxftg0nMw8V/J7TvsJue2nqfCRTvh1Ddh6hpr/HCRc38RyS39psHFu2HKbDh/Axz/b62FFxHxlZHtAtwZioyS1k9HNiKSG4yQFVIUO9iyLVod/Px1+8CM27dN+AeU9A2+BgnW6B/BrndbLu4zQnC0zTWzJWksEPnku3DO4tT3T1esxn57qAj6TIXNL7jvX7ka2vscOBCtgopl1gKnjmMg5Pxm7P8xTahaD6FCqNlhfV1GGDqMtO5I4cX2OWBG7dsiHsdw0u8C68P8/Brs+ucQI2QFINT3iUcBA0Jh22HaLC/PqxXLgq9DRCQXOAWjhfIgGM3L37eC9sHNH4/BgVVQOlBvwDZWtcH6vhd2znYl6Ys7HNs2t9XjgnGx5xaMBlYQlNdj8FRUrEgcijX85vw/pu5/CSy+E/Z7DKxY8hsY8W2ItId5V8HGpxvaFv3CCts69q+BlJoV0QAD+PwMJUslGA1g/1LocqR/dYiIBCHuIZTWSeyQ9Xz77uVWyHO/af7VJdKamCa8cTbses96fHAzvHelde574GWJ99/0Arx9cdNt8RrY9roVUnjeSmiX4o1fguZ0rt5odpzf5xxY8T/2fWedDGctyP/XBonEo1C11lvftR4veNd7nSIikgGGYZwATKEhFK0SuNA0zVmpjGeaZiVwh2EYc4FngNLPxz3NMIzjTdN815/KRUREREREpK3aWecQjFaY28FoYSOMQQiTlmtg6hSMJiIi0noVdoS+51ufb3oONj3rbb+ywe7t4XbQfVJ6tYlI9kRKoccp2Zt/wGWwXjdUFZFWquep2a4AOo5zbnMJzxdpLRT/JyK5I1Jivz3R4mg/uC1q7Xl68PNL8HqfCVPmwJBrG7YN+iqcNR/Kj2nZvziNYLT9S2D1A6nvny6n8IhwO2/BJOse8a8W04SFP4cnO8IrR8PLR8BTnWFNgoU6lavhpcPghUHwXB9rv9cmwqvHwFMd4bPbnMMM68UOwazJzu2dDkv+67FjGNZHKGx9GM3Sn0OR1r9IK1VH3uveXrMTavZkphYRkWxyCkYL50EwGlgBx26CCjrePB2e6QbTR8JTXWDpPcHMk0+q1sNLh8PzA+Cpcph7MURtwqfzhWl6D+eoWpffX2u2JQpGiwUcWL71Nff2DqNg5C3B1pAJoQI4430Y+1/e93m2NzzZvmkoWr1Vf4MDa/yrL9uCPP9Tudy/sRL9vjh570qIpRE4JCKSCc1vKpGquRdAXYCBlyL5bP+ihlC0xlb+b+J9Nz0Pb53v3F5XActtbgSTK8yY/Xaj2b3c+roEK+5fAltm+FdTrnIKkUtH+dH+jykiItLSTZ//a2CFo12faihaY6Zpvg5c32hcgBvTHVdERERERETatpgZZXfdDtu2bgU9M1xN8gocFr5GFYwmIiLSNvQ513vf3ucEV4eIyIjv2m8ff2dm6xARSUfj/In/Y8Cgr2S8lBZ6ToHCzi2395gC4cLM1yOSYQpGE5HcEXYIRgt6ATa4B6MVlQc/v2RGtxNgwj/gCtP6OO5B6OSQklvSN7253r8G3rkcFtwO866Gj26G3R9a4Q5BizkFoxVBxEMw2rYEoQRe1FXAhqfgteNg4R1NFzxFq2DeVdYiLjumCW9NsxaI2bbHYfGv4a0LIO6wkKp2L8wY41yfEYHeZ3n6UiRAzUPk7FT4GGAgIpKr8j0YbfSt7u3RKv+PgQ6stY4Xavdaj2PV8On3YdOL/s6TT0wT3jgX9n1Wv8EKUvo0j8Okkl0Ivnd+MHW0BbUJgp6CCqwyTdg2C+b/0L3fSc+0npP1kRI47OdwqU/f0zlnwr6F/oyVbTGH78nAK6HvBfZtw78Fx/2nZZhGczW7YadNAEkq3M4hJbLkN/7UICISFLdQ2lCSdxR7sj2seRCqN6VVkkirs/Yh++0751r/Rqth8wxY+TdYdZ8VAr7kLvjwm9br4EQW/9K6McmmF5zPN2SLYzBasxuLdJ8EBZ2cx/noZuv7s+uDxDdQyVdxn4PROo5NfAdwERGRNBmGUQSchxVcZgJPm6bp263hTdN8FHgaKxzNAKYahtFKThqKiIiIiIhINuyu20kc+/PM3Qt7Zbia5EUUjCYiItK2DbjMCsNIZNT3oePI4OsRkbar/BgY9o1m2ybAsBuyU4+ISCrG/heUDmq67YjfQrtu2amnsVAEjv1b02sti8rhyLuzV5NIBiVYMSYikkERh2C0aAaC0Xa+Y789XOxcl7Ruxb3TH2N9s2t8V/wPDPkaHPMXCIXt9/FD3GGxU6gICjok3n/n29bCqz4p3g2ichXMPh2q1rr3e2sanPQ09Luw6fa9nziHojW2+QV4ri+cs6hpgOG+hTBrCtTsdN63+0lQ6LKwSjLDaSFcY5XLodtxwdciIpJN+R6MNvBLsPCnLh1M62uMFPs358an7f+ObHoG+p7n3zz5pHKl/THUhqfg6D97CyTNNU6Bv05mHg/nr4PSAYGU06olCnoK4nV5tBrevhS2zHDvN/7XrfOCjEiJ9TqmJkEoXSKVK+Gl8TD+VzDm//lTW7Y4BfBFSmHAF2HTs023h4pg+Degw3DociRsfc16PTz/R/bjzDwejvkrDLs+vTrTCUZb+y8Y91/pzS8iEqS4wyKJcDGcvQC2vAwff8v7ePOuhkgZnPA49DnbnxpF8p3bscSBdfDW1PSDb+ddZf3baRxMegHKBqY3nl+czgc3f78kVABDvw5L77LvX70BPvz8wslBX4EJ/7Qu/GlNkg0KT2Skw515RURE/DURKPv8cxP4XQBz3ANc9PnnZcBxwJsBzCMiIiIiIiJtwM66rY5tXQt6ZrCS1CgYTUREpI2LlMDJL8HmF2H3+y1viFjQEXqcDD1OyUp5ItKGGAYc/Sfod4G1Vr/jKOh1FhSUJd5XRCRXlA6AMz+EzdOtm0L3PBW6Tsh2VQ36XwIdRsPWlyHS3sqAKOmb7apEMiKU7QJERP5P2CGALJaBYLT5t9pvL+oa/NySm8KFTcO2/LL6PuugM0hOARLhIjA8/ul/+1Ko2pjcvBufg3nXwovDEoei1Zt7EdRVNN225RXvcx7aBm+c23TbBze4h6KBtRhTsi/uYXFXxbLg6xARyTanUNN8CUZrPxSOe8i9j1PYTao+/YH99jUP+jtPPtnwpP32mp3O4Xu5rvkb9F7MOcv/OtqCA6vd22edDHPOhP1L0psnWg1LfguPGPBEaeJQNICRt6Q3Zy7rNsmngUxY8BPY5yFgOpc5BoUWQ++zYdxPG+5wU9gFjv2rFYoG1hvoI78No35oBfA4+fAGWPDT5J8XqzbCwp/Bu1fCsnuS27exA6v9/5soIuInp2C0UIF13D/iZjh/A3Q5xvuY0QPw5jkQPehPjSL5zu3mJR9/O/1QtMb2LYTFv/RvvHSYJphx+zbD5kYyY3/ibdy1/4ZNz6deV65yej5O1eCr/B1PRETEXv3drkxgqWma8/ye4PMxG5+k1B22REREREREJGW763bYbu8UKacwVJThapIXMexvGhL1++YbIiIikrvChdD/IjjiLjjq3qYfh/1MoWgikjmGAT2nwLjbrfAehaKJSD4qKofBX4Wxt+VWKFq9TmNg1Pdh2PUKRZM2RcFoIpI7IqX226MBB6O5ja9gtLatMIBgNIBVfw9m3Hpxh2C0UDuoq/Q2RqzaOXDEzsJfwNwLYM393vep92yfpo8XeFzwVG/3vIYwtdp9sOs99/5H/h7adUtuDglGaf/EfQ6sCb4OEZFscwpnCeVJMBrAoCvh7AXO7TGFwGRVvobwpBKMVrG0dS6KD1I8CpUJgtEAtr4KM8bA9jdTmyd2CGafBvN/6H2fk1+2LtporUbc7N9YZhzWJgipzHWJQr7H3QEXbIGzPoPz19qHOxgGdBjhPs+in8Gb53kPmziwFmYeDwt/Cusehqr13vZzUrEivf1FRILkdPwVanS3+dJ+cMY8OGeJ9bd60Fe9jf1aDl4gIJINBR2d2za/4P986x51DiTLJLca7ILRCtrDJR7fz9jyUmo15TI/F62dNd/7TXNERETSM6bR5+8EOM/bDnOKiIiIiIiIJKUqVmG7vVOkS4YrSU3EKLDdXpfKNVciIiIiIiIiIiIiOUhXwIpI7giX2G+PBRyMVrHcua1sSLBzS24L2d9FKW2bX4QPrvceUlYvdgg+/SE8XgyPGNbHm1Nhzyct+9kJF0E0iTk3PA4HtyfuV1cBi3/lfdzmogfg6e5QsdLbfHbeOMtaWFWzG+sG1C5GfDu1OcR/vc+BUIKgi9q9malFRCQTNj4Dr50Azw2A974KNXus7bGD9v3DeRSMBlDkEjy6b3Hm6mir7BaS1/vom94DgHJJqhfpfXCDv3W0dlXrklt0/8l3U5tn83TY9a73/qECKD8mtbnyRY9TYNLzVpBXouNiL5belRuhF6lyDPludBfmdt2h82FQ0MF5nPbDE8+17XV4rBBePwXm/whmngjTR8E7X4JDO5v2XfFnqN6UeEyvKpb5N5aIiN+cjhmb/50yQtBxFPQ+EyY+4G3sfQvTD5cUaQ3cjmOCEKuGR8PW+wkvjoDZp8Ou9zNbA4AZc25zej1bUAadDks89pr7oe5AanXlqriPwWidx/s3loiIiLvGF9gEecDReGxd1CMiIiIiIiIpq4rZn1suDbfPcCWpKXC41iRq5uF1YiIiIiIiIiIiIiI2FIwmIrkj4hCMFg04GO2tac5t424Pdm5pu1b9Hd48F0yXEK9oFRzcBrEaK0xkxhhY+tumwWebX4TZpzYNFIu5LCbvfU5ydXoJLtg1z3kBu1c1O2H6cNj8QupjfPztxMFvZy8Cw0h9DvFXQRmMTBCsUbsvM7WIiARt04sw92Lrb2v1Blj7b5h1ihVg0zyApV64OLM1pitS6tz25jnJh8JKctzuag3sAAAgAElEQVSC0TY8DvOuzVwtfnE6rgUoP9a57dA2qFjhfz2t1cEtyfXf+2ny31/ThJV/TW6fgV+CovLk9slHfafCucvgshr44qH0A9Le/ZI/dWWDUxhist+TDiO8993xBiz5Dex8xwosW/8IzDwB4o2CO5bdk9z8iRzc7O94IiJ+cnoudrjbvNVmwNTVEPGwQOSz26zznH4G/oiId5UrYNtMmD0l80GFbmHMhstNao7x+DrincuSqyfXJRNe7ab3uf6MIyIi4k2PRp8HebDReOyeAc4jIiIiIiIirVx1zP56tpJQfgSjRRzew4v6dY5ZREREREREREREJMsUjCYiuSPsEIwWCzAYLXrQCqawY4Sh07jg5hbZ8RbsW2jftvxP8Fx/eLYXPN4OXhoLB9bY963dC4t/3fDYKaQs3A56ne6+yKi5RCEJO9+BOWd4Hy+RD76e+r6r/gY1u5zbz5oPncakPr4EY/ydMOF+53YFo4lIa7Hyz0CzQNR9C2Db61C53H6fsoFBV+Uvp+P5eusfzUwdbZVbMBpY33+nEL5c5RTMAXDSs+77bnnZ31pas3gKd4nd+pr3vvuXwDPdYfus5OY4/K7k+rcG4SK4cJt7n67HQZejnNs3PBl8wHxQnMIQw0XJjVM+Ib06KlemF9qdSPRgcGOLiKTL6e7xiUIqywbDWZ/CkK+591v3sHWe8+lyWPdIajWK5LtUjr/rlQ5s+r5V1+NSGydaBQt/mnodqTBjzm1ur2e7efwat8yAPZ8kV1Mu8ytActgN/owjIiLiTeO7HAT5Jm/92AbQJcB5REREREREpJWrih2w3V4aLstwJamJOKwJiDq95yciIiIiIiIiIiKSZxSMJiK5I+IQpBDkgt6KZc5tfXQXdcmAj29u+BmPHrQCBuZeBB9/C2r3eB9nxR/BNKFmD8QcFllHyqCwExz9R+/jVm+0/q07YIVLrH0IDn6+UL92H8w+3ftY6ep1lvU1OInXwaYX7dtCRdB5fDB1SXoMA4ZcDcc7LIat25/ZekREghCtgq2v2rfNOQNih+zbOowKrqYghMJWEKuTNQ9mrJQ2yTDc280obHwqM7X4xS0YLVICF7mE4u5f5H89rVUqwQyf3gJbZzZ9/qraAGv+BUt/B5/9Fyy4HeZeAjPGuAcY2xl8DbTrlnxdrUFhZ5i6Fkr6N9powBH3wBUmnP4unPkRlE+039+MwfY5GSnVd06/84nCeJrrcYr7a0cvdr0H+xbBpz9Mbf+icuc2p9fsIiK5wOm4IGR/t/km2g+BCX+Hy+OJ+9ZVwLtfgvevs44dVv4N9i1OrlaRfJVqMFpRV5i6Bs5eYB0XXmHCqW9CuDi18dY86F/4lhepBqMB9DzV2xyL7/ReT64zffi/6X8J9Doz/XFERES8a5xuH2QwWuM3kF3elBARERERERFxVx23D0YryZtgNPv38OoUjCYiIiIiIiIiIiKthP3tIUREsiHsEIwWCzAYrXKFc9ugq4KbV/JD6SDYvyTYOXa8Ba8eCxMfsBYC7luQ+lgr/mwFkjhpP9T6d9iN0PU4WPJbWO8QRlVvyW9gwOXwzmUNQYKhQjjpWajZ6f33s9cZMPQGqFwO83/kbZ/GinvBKS9ZwQuvHOX8/7L5BfvtBe2Tn1Myq7CT/fa6fVboX6KwFxGRXHVgLcz2uIC3uQ4j/a0lE8LFzkFvu97zZ46oAmVsuYWI1TuwJvg6/OT2NYUKrXC0IdfB6n+0bHcLwZamUglmiNfCnNOhyzFw8nTY9jq891V/Fu8bIRj+zfTHyWdlA+Hs+bDxGSuQuvskKD+maZ9hN8Luefb7v3kuXB6zvpf5JF5jvz1UZL/dSbjI+v4s/W3qtSz9bXr7n/mp9dq1ZmfLNgWjiUgu8yOk0jCs4KaXDkvcd/U/G+8I438JY37sfS6RfJTqYqQBV7Q8RxoqsM7fr7k/tTF3vQfdT0pt32SlE4w28EvWa45ENj4FS++BUbckV1suSuW11ZG/h8Iu1g1vOh8Bvc/SeXUREcm0xidxglyB3fgPpYcUZxERERERERF7VbFK2+2l4fy47rzAsH8PL2p6uI5MREREREREREREJA/k2eo4EWnVIg7BaNEgg9FWOrf1nRrcvJIfMrUYf/9iKxwtnVA0gI9vhg9vsm+LtIfi3g2POx8Oh/3c27gvH940WCJeC+9eAfsXea9twj+g3zQYfSu06+l9v3r9L7P+DbeDsz5z7le1zn57QYfk55TMKnAIRovXKThARPLbrMmphVGVDoKC/LjzZBO1e93bTTP9OaL2d+ps87wExh2yCejJZU4hSdAQlNTlSPv2nW9DzR6oq4Sld8Pbl8IHN8C22bDxWZh3LbxzBaz8K8Rc5mkL0gkz2/MhfPZjmHe1P6FoAEf+Aboc4c9Y+aywMwy51gp1aB6KBjDoSvf9NzwZTF1BcvpdDCcZjAYw7o70aklVuAROfAJK+0H3L9j3SfS3UkQkm5wCU0NJZg10HAtlQ5Oc3ITPfgJ70zxHKpLrUgkm7nUGjP+FfdsRd6Vey+uT4OPvwJ5PUh/Dq7SC0b7s/f2aT78P+5J47yJXxVN4fTXyOzD4KzD2NuhztkLRRERERERERERERBJwCkYrCeXHdXsRI2K7PerXNTwiIiIiIiIiIiIiWaZgNBHJHZFS++3RquDm3Pm2/fa+08DQU2Sb12MylA7IdhX+6DCy5SIYp985L+r2w8ZnvPXtOBpK+jY8Hv+r5Ocr7tXweSgCo36Y3P6R/LhzV5tW6BCMBvBRhkIKRUT8tvZh59DORHqf5WspGdN+mHu7H2EwsUPu7aksHm4N4gm+LwCHdgRfh5/iDncvNUIQ+nzhfIeRzvs/XQ4zRsOnP7BColb9DWZPgbkXwpr7Yf2j8OGN8OZUiLXhO6WmEszQ2Op/Ov9fJevsRTBCx36eGCE4/hHn9tX3Z64Wvzj9HIXs73DsKlIKR/9PevUkq+fpcMEW6H+J9ThcbN9v7b8UyCgiucvxuTjJYDTDgDE/SqEA03qeFGnNkj3+nroaTn7Z+eYfReUw5rbU61n+B3htImx5OfUxvEgnGC0UhqP/BGd6DHB7aRyYce+15aJkF601vjGOiIiIiIiIiIiIiCRkmiZVMfsbdJaF8+O684hh/x5e1EzzWiARERERERERERGRHKHUHxHJHeES++2x6mDmi1bB9tn2bZ0OC2ZOyS/hQjj1LWtxc77rPqnltnY9oGxI6mMeWOOtX79Lmj7udXrywYPdTmz6uKRPcvsX5Mcb1G2aWzDamgf8CdIREcm0T7+X+r4DvuhfHZnU7ST39ppd6c8RO+je3laDFKIJvi8ANTuDr8NPTmFljUOSOh0GGPb9AKo3JZ5n22vOrw3bgnSD0fzSYzJ0GpPtKvJL7zOd23bMgdr9mavFD3GHsLBQUWrjZTpktOsEKOzY8DjiEIwGsG1W8PWIiKTC6bgglZDKwdfAkb+D4iTP4y37HTxiNHxMHwXrn0h+fpFclczx99DroWxwy5ueNDfwivRreuNsiLuEl6XLLcQ8UTBavc6HQ+lAb323z/HWL1clG/o+9vZg6hARERERERERERFppWrMQ8SxPy9ekufBaHUKRhMREREREREREZFWQsFoIpI7Ig7BaNGAgtH2LXZegNLn3GDmlPxT2h8mvwqXRRMHfeSy4d9ouc0wYMz/C3bekr4w6paW24Zc532MHpOh68Sm25JdUFnQIbn+knkFLsFoANvfzEwdIiJ+qd4Eh3akvn++HncM/6b7gubqjenPkSgY7f3r2mZwQvxQ4j75FjQadwhGa3xRX1F5y2PFVGx9Lf0x8lUuXAxphOGIu7NdRf4p7Ax9zrNvi9fB1lcyW0+6nH7nwykGo5UNhgGXp15PssLtmj12CUZb/odgaxERSZXTc3HIflGFK8OAkd+FCzbBJZUwOsXzkBXL4J0vwpoHU9tfJNckc/w94lve+nUcDX0vSK2ext6+2LktWg3Vm1Mf23QJXQtFvI1hGDDmNm99t8301i9XmS7BaCX9mz4uGwr9Xf7vREREMsv8/N+JhmFMCuIDmJDNL1BERERERERah6pYpWNbabgsg5WkzikYLWo6vOcnIiIiIiIiIiIikmc8XmUsIpIBYYdgtFhAwWg7HO4WHymFLkcFM6fkr1AYht0IO+dmu5LkDb4GygbZtw25Foq6wtqHYOPT/s7b+1yY+E8osLlr1jF/gY7jYMsMKOwC7bpB1QaoWtfQp7CTFYo26vvWgqfGinsnV0skP+7c1aZFiq2fhdo99u2NfzZERHKZacKiX8DCO1IfY+rqln/78kWXI+DMj+Hlw+3bZ59qLWI+7Bepf42JgtEAVv4ZBlya2vj5Kurh++IUDJ2rnBaCNw/mGPRl2PVeenMt/70VpjvudjDa2H0E4i4L7oPSYwpEq6xgu4KOMPpW6HxY5utoDSY9D486/Mxueh4GfDGz9aQjVmO/PVSY+pjH/RsqlsPeT1Ifw6tQEsFo29pwGKOI5Dan48V0nosBCspg/K+g4xhY/xgc3Aw1O61Aaa+W3g2Dr0qvDpFc4PV12eCrrMAzr058HJb9Hra9DiV9YOj1VoDWkv+G3R/C7nmJx9j0HBxY2/T9hHgUPvkerPqrVXuHkXDik9BprPfawD0YzS1gvbmh11nvaax7CDY+S0P2SjNLfgOH/3dSJeYUt5+T09+znhP3zbfezxx5i/XaSkREJHcYwKMBz2F+Po+IiIiIiIhISqpjBxzbSvIkGK3A4eZGUbebb4iIiIiIiIiIiIjkEQWjiUjuiDgEo0UDCkab/yP77e2Htb2F8OJNvwuhz3mw+cXs1VDcx1o4mIwRN7u39z3f+qjeBM/1S722xkbf6r7oyAjBiG9aH6ko7Z9c/8JOqc0jmTXkGmtBl53YoczWIiKSqvWPpReKdsTdUDbYv3qyofN4KOnrHHKw+FdQOtBazJwKL8Foez5Nbex8Fvfwt7J6A1SuhvZDgq/HD06BXaFmp7OGXAcf3pT+fIt+ZgUADP5q+mPlEzPDgXmX1bX8P5TUGYYV4r3yLy3btsyAWC2E0wyzcVO7D7bPgeqNYESg8xFQfqwVLp4MM+4ShliUen2hCBz/MMwYlfoYXoWbB6O1s+8nIpLLHIPR7BdVJMUwYNCXrI96Myd5vxHF/sWw6j7rPGa77unXI5ItXoLRyo+FI3+f3LihAhj9Q+ujsaP/aP27+E747MeJx3lhMFwWbTieW3YPrPhTQ3vFMnhpHFxWm9xzg1/BaAD9plkfAM/0hEPb7ftVroL2Q5MbO1c4HRsbESjpDUf9LrP1iIiIJCcToWUO6agiIiIiIiIi3lTFKm23GxiUhEozXE1qIoZDMFq+3TxTRERERERERERExIGSf0Qkd4QdgtFiAQSjLbnLua39cP/nk9YhXAQnPgVfeBFG/dChj8PPsV9OSPLGyl2Pg07jvfUt6QtT1yZfU3NTZruHovmhuLcVqOKVfq/zw9DrndtqdmWuDhGRdCzzsHB5wv1w6QH4wnToMcX6OzXup3D6PBh1S+AlZkRRV/f2DU+kPnbUQzBatNIKA2pLvHxfAKaPgEW/CrYWvzgtnDeahWqFCmDqan/mnHcV1OzxZ6x8kemLIRWK5r++0+y311XAno+Dm3fvfJgxBuZeCB9/Gz76Bsw8Ht6alnzIfdzlOTuUZrBbhxGZeU3YIhit2LmvHwFDIiJBcHo+dlhUkbZhNybX/4Ovw/SRsG12MPWIZILT8XdxHxj3MzjhMescu983+xj0VYi099Z37b8aPl/zoH2fN85Nbn4/g9EacwuQe3EYmHmameI1KFxERCR3mQF/iIiIiIiIiKTFKRitOFRKKJ3z1hnkFIxWl+mbJIqIiIiIiIiIiIgERFfOikjuiDgFox0CMw6GT1mOsRqYf6tze+cj/JlHWqdwIfQ51/rofRa8db612Byg7wVWcNnci2HLdP/nHn8ndDsxuX0m/BOMJG7GXNInufEbM0JwxkfQJQO/Q4ZhLf5ffq+3/h1GBluP+KP9UOc2BaOJSD7Y9jrs+dC9z+BrYMjV1ud9zrE+WqNEwWjbZqY+dsxjAFjtbijulfo8+SZ+yFs/MwYLb4deZ0D50cHWlC7TYSF482A0sEJzi7pBzc705517AZz6Zvrj5ItMBqP1PD1zc7Ul3U+GSClEq1q2VSyFbsf5P6dpwvtfh4NbWrZtmQ7P9oYzPoAOHgPJYjXObeGi1GqsZxgw6VmYfToc3JzeWG6SCUZzaxMRySanRRLphlQ6GfBF2DUPVvzR+z61e2H2FPhijXWuViTfOP2e9Z0K424Pbt6S3jDxfvjwBqjZ7d73/Wth0/PWa4WKZfZ9tr0G+xZDpzHe5g8qGC3Re3qPhqDfhRApg24nweCrIZQHC9ocXw8rYFdERHLaBhRaJiIiIiIiInmiKn7AdntpuCzDlaTOKRgtqmA0ERERERERERERaSUUjCYiuSPsEIwGVvhBpNSfebbPcW8f9BV/5pHWr8fJcOEO2PMRlPSF0gHW9iHX2gejTZ4F7YfBkjth5V8Sjz/xAeh0GBzaAeXHQFF5cvVN22wtdkpGqAAi7SFqfxcsRyX9Yeoqa/9MSSYYreOoYGsR/wz/lv1iWAWjiUiu2/U+zD4tcb/eZwZfSy4o6hbc2F6D0WraWDBazGMwGljB06v/kcfBaDaL2I0QDLsBFv0i/Xl3vAU73obuSYYS5yun73MQhl6XubnaknAhdBhtH875/rUw5Br/59y/2D0MtG4/vHosTH7d23NNvNa5LZRmMBpAx9Fw/nrr9fvye2H9Y+mP2VzzYDTXvgpGE5EcFXN4Pg7qnJ8RgqP/AKO+D/sWwLJ7Ep+/r/fmeTD51WDqEgmSUzBxJgKv+l8MPU+FihVQuwfeOMu57+YXEo/30li4PObtxkZBBaN19HBTlI3PWP+u/TdsmQEnPZPcDWWywel1WkiXd4iISO4yTXNgtmsQERERERER8ao6Zn+tfEm4fYYrSV2BgtFERERERERERESklfNwlbKISIa4BZ9Fq/2bZ/8S9/Zkg6SkbQsXQbcTGkLRAPpNgwn3Q9kQMCLQ/Qtw7groORlK+1mPvRh8FXQ50gpQSSYUrctRcObHqf8sF3VJfp/T3s5sKBpY3/d2PRL3K+nX9P9HcltRV/vtmQxG2zwdZp8O00fChzdBXUXm5haR/LXwZ4n7RMqgVxsJRisdGNzYyQSjtSVuoUJ2Vv3NCkjLZfEkF4KPvQNG3+rP3J98z59x8oFTMEO6Jj0H3U+2XieUDoJj/wb9LwlmLoEOLoEQ+xb7O9fuj+ClcYn71e2Hxb+ybzuwDuZeBC8dBnMvhj2fOI8TKkypzJbjhKHrBDj+YRhzm/V6MlIK/S5yfu7oMML6OfY0frNgNLfASgWjiUiuclok4ddzsZPSftDnHDjS400QALa9Bi+OgE3PB1eXSBCcjr8zdX69sBN0PdZ63+HY+9If79EwVKxM3K92j3NbOsFoAOd5mL/epufg0RDMPsM6rs1VTq+HDQWjiYiIiIiIiIiIiPihKnbAdntpqCzDlaQuomA0ERERERERERERaeV05ayI5I5IiXNbzMdgtNq9zm2j/59/80jbNuRq6yNe13JBk5eQro5jndsGfhnWPWTfdvp70HWi9zrtFHaGqvXe+5dPsBYvZlooAuN/De9f695v7E/AUBZs3mjnEIxWvTEz8295Bd6aBmbMelyxHPbOt8L/9HMkIm52vp24z2G/gIL8uaNkWsqPDm5st6CZxmrbWjCaw6JpN7s/shbE5yozyYXgoTAc/t8w/k6IVkKoqOG1ZEFH62/5snvhk+8mnnvPhxCtcg/wbi2CCEbrfQ70mQp9z7d/TST+6+gSjLbhCejkIcDTi8pV8Oox3vtveq7ltpo98MKghsf7FsLGp53HCBd5n88LIwTjf2n9XTZj1mvLmj2w5kE4tL2hX9lQOPNTiBRbX/fME5u2N1fQoenjeI1zXwWjiUiucgrbzdTf8s6HWccQm1/w1r9yhXUe5wsvQp9zg61NxC/ZDkZrbOh1sH8RLP9DeuNMHw7nb2h4n6Bmj/X1FLQH04TqDTBrsvP+TuHXXrUfagXRb33F+z7bXoMdc+CsBe7H0tni9Ho43e+ViIiIiIiIiIiIiABQ7RCMVhJWMJqIiIiIiIiIiIhIrlC6g4jkjrBLMFq0yr95Nj/v3Nb/Iv/mEQH7xUxdjobiXu77DXEJ+xr6NfvtA7+cfigaQGGX5Pp3cglxC9qQa9zbT3gMhn49M7WIP0oH2W8/uAW2vBr8/Kv+2hCKVm/Xe7D30+DnFpH85hbkWzoATnoGRnw7c/VkWxcPwWjzrk4tkCl20Fu/mjYWjJbKBW2vTYDqzf7X4pfmf5PrJVoIbhhWQFG4yAr9LezcEHDqFsjd3BNlsOZf3vvnKz+D0bpPgsN+aT3nGYa1TaFomdHbJQxm0c/9+39emELA2paXGz4/tBOeLk9u/1Bh8nN6YRgNzydFXeDsBTD0BitUY+QtcPq7VigaWGEbp70DJX3tx4qUQnmzwDincCFQMJqI5K6YUzCazyGVbk562gq67TDC+z4LfxpYOSK+c3rtlq3j5jE/aRnwmoo198PB7TBrinW891RneLobPN0Vnh/ovq8RTn/+k2ckv0+8Dhb/Ov25g+AUfu4UFC4iIiIiIiIiIiIiSamKV9puLw3nz41PnYLR6hSMJiIiIiIiIiIiIq2EgtFEJHe4LVCPugRNJKOuEvYtdG7vcpQ/84i4CUXgiHucFxSWT3QP/Op2Agy+qum2rsfB0X/0p75kg9E6jPRn3lRNfMB+e4dRMOCLma1F0uf28/TGmXBoV7Dzb3IIz1xyV7Dzikh+M03nAKeux8H566DfBQ0hQW1BSb/EfdY8CJ/emvzYXoPR6iqSHzufOS2aTmTuhf7W4acgFoK7BXLbmXcV7Pk49flySfVm2PgsbJ9jPW/VMx2+z50Ph4jHu+D2vQAuj8Opb8LY2yAcUJCVOOt8WEMAoJ0Pv5H+HPEobH4x+f3eONsKRAN45/Lk9w9nKIynXXc49i9wystw5N3QrlvT9vZD4PwN0P+SptuNEBz955Z19r3AeS63/ysRkWyK19hvz+Tf9lAExvwIzl0GV5jWMUYiez6G6k32bfuXWMdAez7xt06RVDkF1josXgpcu64wOoXX5s3tfBee6wvbZ1uPzRjU7ILaPYn39SMI1wjB5NetwNpkrHsIFtwBH94E6x+H2KH0awEw47D3M1h1H2yebr0/mdT+CkYTERERERERERERCVJVrPUGo0UVjCYiIiIiIiIiIiKthK6cFZHcES52botW+TPHK0c7t42/0585RLwYeDl0GmctEorXQlF3qFwJHUZA/4sh3M55XyMEE/4J/S+FXe9Bh9HQ97zkF/w4KeycXP9uk/yZN1V9p0H4ppYhKQOvyE49kp7S/tbPv9MCtG0zrd+fTDu4NfNzikj+cApFAzi8jQYrGoZ1TFG7173fhifgqN8lN7bXYLR4bXLj5junxfWJ7P4A9i2CTmP9rccPjgvBw6mPmcox85LfwIlPpD5nLlj9AHz0jYbfn24nwMmvQEGZ889OST+YMhuesglO7n02DLgCqjdAx9HQZ2rbCn/MVVPXwfP97du2vpr++PsWQN3+1Pbd8CT0OQe2z0p+X6dQ8WwwDDjhcRhwufV6vLCT9fvQ+fCWfTuPdx7HKXhIRCTbnJ6fsvlcbBhwzlKYMcq938xJcP6aptvm/+jzsPvPQ2EHXwUT7tdxi2SX0/F3KEvBaAAjvgMLf+pcW98LrGN/t9Doba+lNnf5RP9CY3tOgbM+g43PWPXGDsHqfyTeb9HPrX9X/sX697yV0H5o6nXEo/DulbDh8YZtpQPgCzOg0xhvYzi9Hg7p8g4RERERERERERERP1THDthuLwl7vIlgDihQMJqIiIiIiIiIiIi0crpyVkRyRyhihaPZBR3U7Ut//IrlULnCub2jx8UIIn7pNDb1AAojBL3Psj78VmQTfOCkuA+UuwQOZkJhJzjhMXjncohVW9v6ToOR381uXZIaIwTtekHVWvv2fQuALASjacGsiKVqI6z7D1RvhO4nQ/9L9PsB7oFUbXnB6shbYMFP3Psc3AybnoetM6GoHAZ+CToMd98n6jEYzW3BdmvktGjai/WP51kwWhq/V26B3E42PAnP9oUj77HCifPpeS8egwX/BUuaBYHvfAfe+zJMetY9mKGwM5y7DGafZj33A3Q6DI69D0p6B1u7JK+0H7TrCYe2tWyr3gC1+6GwY8u2eAzWPQx7P4XinjDsG1ZoXnP7l6ReW8VyK2wvFan83gbJMKDfBdaHa78QDP06rPp7y7aYgtFEJEfFHMKFw1kOqew4Eo79O3z0TecA5Kq1sHcBdD7Merx9jhVw29iaB62Psbdbz9ElfYKsWsReLgajRUrg6P+FD77Wsq1dDzjpaesYaOtrMOcMf+fud6G/47UfAqN/0PB48FUw92L7Y2QnLw6zXvsNviq192Devtg619FY1Xp4aSyMuQ1G/8j+eLuxeACvh0VERERERERERETk/1Q5BKOVhvInGC3i8N6CgtFERERERERERESktfDp9ssiIj4pKrffXrM7/bE3POXe3svnxRwi+aowiWC0cXdYi72zre9UuHAbTJ4F562Ek56BSGm2q5JU9b/Eua16U+bqaCKPAlBEglKxHF49Fj77Maz8C7zzRfjwhmxXlRs2v+jc1pYXrA7z+PPx1jRY+WdY9HN49RjYNc+9f/yQt3E3Pg1bXvXWtzVIJxitar1/dfjJaSF4WoGDZmq7HdwM71wG730ljbkzLB6D2VNahqLV2/ScFZDmdDFk/V1lO4yAqWvg9PfgrM/gzE8UipbLRn3fua1yZcttpglzL4B5X4Xl98L8H8GMMVBrE1BfsSz1ug5ugsrlye83/BfDx+AAACAASURBVFv5FUbYXPlE++1xBaOJSI5yen4KFWa2DjtDvwbTNkHnI5z7rHmg4fOVf3Put+jn8NI42POJf/WJeOV0/J3NYDSwQsDsjl2G3tBwPNbrdCgd5N+chZ2tkMIgdTsBpq6CKW8kt9+GJ+CNs2HhL5Lbb8FPW4aiNbb4V/BcX/vj7cYcA/Ta8HkmEREREREREREREZ+Ypkl1vNK2rSTcPsPVpC5iOAWjRTHNFK+REhEREREREREREckhOZBkIiLSSGGAwWhugRUnPAbhHFjcJZILCjt76zf+ThhybbC1JKOgPfScDO2H5vfCeXEPRmvXPXN1NKGfKRGW3g2HtjXdturvsH9pdurJFWbcPSAu2wubs6mo3DrOTkZdBSz8qXufeK338Rbcltz8+cxp0bQXNbv8q8NPZsx+ezqBg05ha16t+w/seCu9MTJl8wuw4033Pu9f5y2ALhSBrhP/P3v3GeZWfedt/JY0fdx7t3HFBoyNwfTeHXpCKMmmV9iQPEvabsqm955N2M1uCmwCaSS0UBIILfSOKabZuPfumfF4RtLz4uB101GXRtLcn+vS5dG//kbWaCTNOV/BwJkQjRWvRhXftI+F9215I5isux2evBKujcB10X3fL2lfAn8c+EZ/DK6rC75+/qvha5/xRPq6lv4JnvpEdt/D7g75bu5zKkmsMXV73GA0SRUqNBgt5PGs3JqGwtyfhfe/9IPgNVqiG5b8Lv1aOzbCc18Jvl51F9x1Etx2CDzxL9C5oXg1S3sLDbzq4fcPonVwwi0w5vwgDLFxMMz4Vzjwc3uOOybDz1a2GgbBSX+Dhv7FWS+dulYYfjwcdV3uc+d/Pnh82L4m89jt69I/Z96pa3PwfHvZTeFjwsLPe3MAvyRJkiRJkiQVyY5kJ90h78O2xvqUuZr8hQWjAaHfnyRJkiRJkiRVE4PRJFWWxpBgtB0FBqN1rof1j4T3j7+osPWlWtIwKPOY0x+DAz4NEZ9KqAQGHxre192+6+vta4JLPIeAnHTSfTqaYXsSLA458fX1X5e3jkqz5v7ghPowvf2E1eEn5j5n5R3pQ75yCQDb8ER2Jy/XgkIOZutcW7w6iinse4oW8HPVZ0J435TLsltjcY6Bfz1leZqT7HfasgC2vZa6r6eDGZSfaAz6H5i6b/Vd0LYYbj0IFnwvu/WSifCQwp0O/BwMOgTOfCa3WjPZ/18K+3mvBGFBQonO4L2qYr2WkaRiCXtcCgt67Anp3jcCuO882PpKdmst+3MQ+P33U2D13bDxKXjp+3D/+enfJ5IKEfaaNs3JS2XTOBiO+xNcuBUuWAuzvrZvMHK/afmvX98f3toGlybhLeth0JzC6s3VuAth4CG5z1t9N9x9JiQyPC9ee19ur83vOxeWhXyok8FokiRJkiRJklQybfGtoX2tsb5lrKQw9WmD0TweQZIkSZIkSVL1M81EUmUJC0brLDAY7aUfh/cd/vPC1pZqTWOGYLTmkcFJ71Ipjb84dXt3G2x8Fq6rhz8NDy6/a4SnPhGENhQibeCDT5vVyyWT0B1yMNDCq8tbS6VZcUv6/t4eLBRrzm/etoXhfYkcA8C2vJxfDdUml8C4vXWuK14dxRT2fx2JpW7PRv8DoXX8vu0DDoJD/wPGvjnzGq9clf/+5fLaz2Hhr7Ibu+be1O2VEMyg/Ayem7p94S/hxgnpH2ML2W/gTJj55eKtO+HS4q3VU8KChHZshOuHwJ+GwvwvGr4jqXIkOlO3hwU99pTzV4b3Lb8ZHn5P9ms9+sF929bcB8szvNaT8hX22q2S3j+INYR/UER9v/xC0CEIvq1ryb+uQkVjcMrdsP+VMOiw3OZufBKWhHxowE7ty3Kv6b5zUodShr0erqT7iSRJkiRJkiRVqbTBaNHqCUarSxuMVsCxZJIkSZIkSZJUIUx4kFRZGkoQjJZMwHNfDO8fOCv/taVa1Dwmff+cH0PEpxAqsYaBqds718Gdx0JyrxPDXvwOLPh+YXumC5QJOxFQ6i12bAzvCwtM6y02L0jfH60rTx2VKtaU37wtaW7XXA/aSrdWLck1MG53lRqMtvfv+50iBfxcRSLB89low662WAsc8r2g74hf7tkXpqtCH/val8HTn4ZH3lf4Wr398auajT67vPvtHowx5tzirDnt/8GgOcVZqydlChLq2gLzvxCEGUpSJQgNRsvi+VE5NY+AYceH969/uPA9lv1pz+vJJGx6Hhb/HtoWF76+eq94W+r2SgsgTCefMNx++8P0TxS/llzV94NDvgNnPAoXbYeBs7Ofu/RP6fs7VuRX06Pv37ct7PWwr9MkSZIkSZIkqWDt8W2hfc2x1jJWUph0wWhdBqNJkiRJkiRJqgGmmkiqLI2DUrfne6J+dwf85cD0Y3I56UHqDfpOhn7TU/cd9lMY9+by1qPeKdaSun3lbUF4QCqL/rewPRM7Cpsv1bKOleF9XVuCINreatsr6fvTHHzUK0Tz/P7XPx7ely7IMpXeEoxWyMFs3dsgvr14tRRLWNhboSeCjzkbznwKDv46zP42nPkkjDgl6KvvCxPelnmNrS8XVkMpLPpfuGkyvPDN4qzX2x+/qtmQw8u314hToG63g4L7Z3gPJpUZn4Lpn4T93hGEbJx0J8z5XvFq7EnZBoQu/m1p65CkbMVD3huJVWBg0+QPlnb9Rdfs+jrRHQTP3nogPHAR3DgBnvtqafdXbUrEoXND6r6mIeWtpRBDj4Zzl4T3R+qgdUJw6TMZDrsK5j0Ldc3lqjA7sUY4/ZEgIDsbS69P/9q5Pc9gtBW3BeGLuwt7PVxIULgkSZIkSZIkCYC2ROpgtOZoC7FIrMzV5K8uzXvG3WEfwCFJkiRJkiRJVcQjZyVVlqYRqdu3vZbfenedAFteDO8/7gaIRPJbW6pVkQgc83u4+3To2O1EnoO/DlM+3HN1qXepy+MT1zY9E5xAlu/jetpgNPOE1ct1ZDixc90jMPTI8tRSSRJdsDXD89RCA5x6q+U3wcFfTt1nMFpqYSdNZ6tzHbSMKU4txZKMp24vxong/WcEl1RmfQO2vATrHgyfv3kBDJpTeB3F0rkeHv0gJDqLt2a+wYbqeU0joK5PEHpYaqPP3fN6JALTPw4vfie7+fUDgteatfreTDTLIKHVd5W2DknKVthziWwfz8pp/MXw4KWlWz+ZCAKsGgcFAZYLf7Fn/7OfhRGnwpC5patBtWfHBiCZuq+xioLRAFrHwls2wf0XwOq/B21Nw+GIq2HU6T1bWy6i9TDxXTD85OB72ZAmqB3glunQOh76TIR4JyS7Ycnvgw/6iLfnV0PnWti+CppH7moLO2HNYDRJkiRJkiRJKlh7fGvK9pZY3zJXUpj6NB962F3Ih2xKkiRJkiRJUoUw4UFSZek7NXV7xwroSv0HqFCPXQbrHw3v7z8Dxpwb3i/1ZgMOhHMWwSn3BwGCF6yBAz7d01WpN6lryW/ejo3575kuGK1WgxqkbG1fnb5/+U3lqaPStC0OP1F1J09Yzc+mZ2HbwtR9uX6aZW8IRkvECT25Plud64pSSlGFnghe4k9mbRoGp9wLZ6Q5IX7tP0pbQ66W/gniHcVd02C06hWJQN8ppd+nZUwQIrG3cRdlv8bIU2v7uXasAoOEJCmd0GC0hvLWkY1IBM56qbR73DItCGbeOxRtp+U3lnZ/1Z50r7uqLRgNoKE/nHQnnPFE8Brq7FeqKxRtd61j4fRHgr+JpNP2Oqy5Fxb+EhZfG4SiQf6haDtt2evxLOy96lK/HpYkSZIkSZKkXqAtnvqD5lqjfcpcSWHqIuF/w+tOpvuwaEmSJEmSJEmqDp6hLamy9JsW3rf1FRg4C7a+ChueCC4bnwxCcFonwMyvwIADgrFbXoFXrkq/1/hLi1a2VJNiDTDsmJ6uQr1VLM9gtI7l0Dgov7npgtGo4bAGKRuZwnaW3Qizvl6eWirJ9rWZxxgsBCPPgJW35z5v+S0w7Yp92xM5fppl2yKIb4dYU+41VItsw+JOvgfuOiF1322zYcLb4eCvBSeEV4LQYLQyvJ0VrYNBc2C/d8Cia/btf/U/g5/vQ75bGT/nS/+UeUzfqXDiHXDTftmtabBjdRt6NGx8Kv/5kbrgZ7DPJGgeBRse3/P5wJAj4dCfQH2Kg4L7HwD1A6BrU+Z9xr45/xqrQdOw7Mc++XGY8SloGlq6eiQpnUQckonUfZUa9NhvKkx6L7z289Ks37kOVt4Bq+9O3f/81+Dgr5Zmb5VWMgHxziAMcOe/iR37tqXq26d/R+o5qebuSPP8qGFw+b7/YopEYNAhPV1FcUSiwd9EzloAt+xf/PWP+CU8/O7UfXedCPOehQEHBdfDPgCkoX/x65IkSZIkSZKkXqYtvjVle0us2oLRwo9Z6sr1w0clSZIkSZIkqQJ5hqOkytIyFqKNwQkie3vwUuhYCV1b9u3b+DSs/Cuc9SK0joMVt6bfJ1oPU/+5ODVLkoqvLs9gtPYVu04ey1W6oJ1INL81pVoRT/HcbHdbXgyCaftNKU89laJzXeYxBgvBtI/BqjuzD+/aadNzqdtzDUZLJqBtaW3fP7O9TYYfDw2DYMeG1P2v/xpW3wVveh4aBhavvnwlQu4z0TL+XI16U+pgNICXfwzdW4OT23tSvDO78MEznghCrObNh1uzeL5U11x4beo5Uy4P7rup3kMBmPQ+eO1/wudfuCV4b6ZhQO571zXD9Cvh2c+lHzdwNox9S+7rV5OmEdmPXfBdWPsAnPoPiMZKV5MkhUn1nvxO0QoNRoMg3DebYLTxl8JRvw5eH+xYD099EhZdnXney/9ReI07da4Pnmf3tveZEt2ZA8MK7cs1pKzSTgaqa/X5dyXpNw2O+SP8o8jPVaMNQYDx2gdS9986E057KHgO2bEi9ZjGIcWtSZIkSZIkSZJ6obZE6mC0PrF+Za6kMHVpjk3sTuZ4jJ0kSZIkSZIkVSDP0JZUWaIx6DsFNqcIQdjyUvq58XZ47itw+M9g3UPpx56zyE9Vl6RKFmvNb17H8vz3TOwI79v4VP7rSrUg3QnyOy2/Efp9vPS1VJJsgtGi4Z/K2GuMOh1OvA3+fmpu83ZsTN2eazAaBMEH1HAwWi4n9TcOCQ9GgyCMetGvYdpHCq+rUMl46vZyBg6OOhPq+kD3ttT9C38FRODw/+m5gItlN2QeM+K0IBQNoP8B0GcibFuYfk6/GYXXpp7Tf3849QF44Vuw4fFdjxPNo2H8xTD5A+mD0eqagQLCOQ74TBDosPi3sH0VdLdBfd8giKSuFYYdDwd9ofYDwCKR3MavfxiW/AEmXFyaeiQpnbTBaA3lqyNX2YYETbg0eFyOxKBpGEz5cHbBaCvvKKw+gA1PwoNvD0LF6wfAAf8G0z+e+++JTJLJ4PVSysCwTojvSNFWypCyN/qTieJ+n7XIsKvKM/L04q8ZrYdBc8OD0QD+emT6NbyvSJIkSZIkSVLB2uOpjwNqifUpcyWFiUQi1EXq6E5x7JjBaJIkSZIkSZJqgcFokipPv2mpg9GysfxGSP4nJLaHj5n9XWgZnd/6kqTyqGvJb17Hivz3TBeM1rESdmyChgH5r1+pti0Kgt8GHQqt43q6GlWqdD8fO73+m+DE7lqX6IY190J8Oyy+LvP4cgY4VbIRp0DDoPSBXHvr2pS6PZcQsJ22r819TjXJJixuzHnBv01DYevL6ccuurpCgtFC/q+jZfy5qu8L0z8B8/89fMzCX8LQo2HSe8tX1+7WPph5zMwv7fo6EgnuDwu+Fz4+2hj83Kq6DTgQjromvH/ax+ClH+zbPvE9he8dicDk9wWX3m78Jdk9Z9jp5R8ZjCapZ8TTvO6LNZavjlxlExI09s0wat6ebUMOh/3emV04WiG2r4Xb5+y63rUJnv4kLL0exl4QHiaWb0iZqlPLmJ6uQHur7wP7XwkLvlu8NSP1MOYceOn7+a9hMJokSZIkSZIkFawtJBittcqC0QDqIg0pg9G6/LuRJEmSJEmSpBrgGdqSKk+/afnP3b4GVt4By24MHzPhbfmvL0kqj0oLRgNYdhNMfEf+61eaZDI4EffF7+xqO+AzMPPLQZCFtLt4Z+YxG5+GFbfBqDNLX09P2bYQ7j0HNj+f/ZxorHT1VJtoQ27jd4QEo2UTAra3znW5z6km2YTF7Qw6yuYk6g1PFFZPsSRCvq9ImX+uZnwqCDXasiB8zCPvg9HnQlMPnKSeLuhu8ofgoM9D88g92zMFo+33T0EQgGrbuLekDkYbc275a6llk96TWzDauodKV4skpZNI87ovWsnBaIPT9x92FUz+QOr3Oo74ZfC86P7z89s7Ek3fv+VluCXk7x3rHwkuEgSvJVR5Zn87CDFLJoqzXrQehh4D/abDlhfzW8NgNEmSJEmSJEkqWHt8a8r2lmjfMldSuLpIfcr2VGFpkiRJkiRJklRtDEaTVHkGHlLY/HvmhfcNPQaahxe2viSp9GKt+c1rX57/npmC0Z76eG0Fo624dc9QNIDnvwrDjoeRp/ZMTapc6U6Q39098+CSRG2G68W3w02TerqK6hbLMUxhw+Op25MGo+0jLEBsp+mfhNFnBV83ZAiO2OnxK2Ds+TD8xPzr2vIyvH4trH84CFsbejQ0jwnWHHtB5seKsAP0ImV+OyvWCCfcBjftl37cPWfCGY+Vp6bdhQWjjTgN5l6Vum/IUdA4FDrXpuiMwMFfK1p5qmBDjoKZX4FnP7urbfrHYfTZPVdTLRp+cu5z1j8Ogw8tfi0qv/YVsOhq2PISkOzpaqT0ulKfAALk/ly+nKKpT/b4P5M/GP68MxKBsefBQV+A+V/IY+8M4c+Pvj/3NdX7jH0zTLuip6tQKpEInPl0EJLf9nrh60XrIVoHR14Nd58OOzbmvobBaJIkSZIkSZJUsLbEtpTtrbHq+xDBupDjqLrzOcZOkiRJkiRJkiqMwWiSKs+Yc6BlDLQvCx8Tieb3Ce2eXCJJ1aGuJb95HSvy3zOR4SCAlMEhVeyVkKCUhb8yGE37yhQcuLuFv4JJ7y5ZKT0i3gk3ju/pKqpfNI8whZd/ClMv27Mt0+N1KrUejJbuQLZTH4ChR+26nu3t9/KPg8vsbwdBSblacx/cfSbE23e1Lbsx+PeVn8Ck98PhP0u/RljgW7mD0QD6TIDzlsMNo8PHbHgcVv0dRpxUtrJIdIefoL/3z87uojE48PPwxEf27bu4K+hX7YtE4MDPwMR3wcanYMBMaB3X01XVnkgEmkdCx8rs59xxGBx1HUy4uHR1qfQ2L4A7j6395yHqHTIFgPW0gbOD32V7a92vtMHd6W6X7WuD58SqbpFY8Fo21pji34bUfdFGiDXs9nXI3FgzDD4M+k6tzYD5WjHgIHjT83D3abD2gX37j/oNvPBN2PRs5rV2BjkOPgzOXQJ3Hpf6sSudxizDziVJkiRJkiRJKSWTSdriqT8wqDXWt8zVFK4+kvpDhAxGkyRJkiRJklQLDEaTVHmi9XDSnfDQu2DDo0AE+s+AgYfAoDnBZeDBcPthsOXF3NYePLcUFUuSii3WE8FoOQQ/1YIVf0ndvvhaOPo35a1FlS/emf3YR96TWzBaojs4gXTV34Kwo+lXwqgzc6+xlF79GWxf09NVVL98whSe/iSMews0DdvVFhaWlU6tB5Kku01a9wr127Eht7Wf+gT0nQZjzt53z0XXwPNfhW0Lg7bm0dCxPLt1X/vv4LKzvvr+MPxkmPklqH/j01eT8dRzoz30dlbLqCBo7m9Hh495+F1w3pKylcSOjeGh4S0ZAq6mfBg618CCHwQBdsNPhMN/YShab9QyOriodPL53fXMp4PfgT31mKfcJROw4Huw9E/Ba9O2xT1dkVQ8+YQcl9OBn4X737xv+9A0z9uKId3ju48Bufu/oLE0oWLRhpCgsRz6sg44a/C5sQJ1LXDyPfDUx+G1X0D3VqgfAAd9HsZfAmPOh6euhIW/hPj28HV2Pzmtvk/w+vKpK8M/wGKfOvpCv/0L+lYkSZIkSZIkqbfrSu4IDQ1rqcJgtDqD0SRJkiRJkiTVMM+qklSZ+k2D0x8KTihMdAcnwuytcUhua467aN9QAElSZarLMxht+2pIJiESyX1ubwtGqwWdG6B7GzQM3HXirEojkUMwGkDbEmjNEMiz00PvgMXX7bq++i44/mYYfVZue5bS4t/2dAW1IZZHmEJ3Gyy7ESa/f1dbPgdtbV+d+5xqkkhzm0T3Ovht7JvDwzHD3HcOnHIvDDsu+D2b6IIXvwXPfm7PcdmGou1u98CITc/ChseDvSIRSIYETUR68O2soUfBcTcFt0kq7Uth84tQ1xpc4tuhcTDEmopXQ6I7eK0ca4DO9eHjGgenXycaC4LoDvxccJvm8/xJUnbGnBeEQeaibXHwuNh3chCCCEGYRl1LECbpz2zleeJj8PKPe7oKqfgiUYg193QV6Y05Pwh5XX33rrZoI0z9SHbzBx2a377xdkjEU4dnFRLeX3KR9MFgxQgiSxc4lnLPBn+3qbJF62DOD2D2d4Lw/OYRweMjQF0zHPZTmPNDePQDsPBXIWvs9fp893m3zYLNL6SvYeo/F/e1pSRJkiRJkiT1Qm3xraF9rdE+ZaykOMKC0boMRpMkSZIkSZJUAwxGk1TZItHwkJNcg9GO+t/C65EklUdda37zkvEg4Cyf8B2D0arHhifh4XfBpvl7tk/7KMz+buoTklWYXH8+lt0I07I4AX3ZTXuGou1079lw3I0wJiR4qJy2r4N1D/V0FbUhmsdjM8CyG/YMRksXAhamokMJiiAsQAz2DREbeWp+ezz7eTjke/DYh2H9o/mtkY2198PKO2DUGWmC0Xr4cX7M2dAyNghBS+UvM/Zt2+8dcOh/QH0Bnywb74Rn/i0I3Ul0waizYMIl4eMzBaPttPfJ+ZKKb9S83IPRAG6fA0SA5L59c34YBP4YIlMZNj1vKJpq15CjKj+IPBKBY6+HBT+ElbdD8yg46PMwcFZ280ecDPX9oGtL7nt3b4OG/vu2z/9C5rn1A6D/jPSBY4WEjYX1GYor5S9aBy2jQvrqg9eKoXNDXntF6+G0R+CpK+HVn6UeM+fHMPXy3GqVJEmSJEmSJO2jLb4ttK81VjvBaO3xrWzt3vzGmDqaY3kely1JkiRJkiRJPchgNEnVK5dgtFPu92RvSaomsZb853a35ReMFjcY7f8suwmGHp19oEohkskg4KxjBTQMgu4t0GdicNnb1tdg45Pwj7emXuulHwYnFc/8QklL7pXinbmNTxWMtmMTrP0HdG4I7lsDZ8F954avcd+5cNYC6Dct93o3Pg2r7wnuU8NPgNZx2c3r2gLrHoaOVcGJrk3D4aUfkTKMRLnL9/n4iluhfRm0jAmu5xOMtvEp2LERGgbmV0OlS3eb7H27t4yBGf8KL3w9tz3W3PtGQE8ZLPlDEIyWCAlGi1bA21mnPQw3jM5+/KJrINYEc/8r/z1f+CYs+N6u6ytuCS6pRBsLez4lqbhGzYMRp8Gqv+YxOeR5yBMfhebRMO7NBZWmIrn1wJ6uQCqNur4w6xs9XUV2GgYG7wfk855ArAlmfQse+1Duc1MFoy2/NXgNks7BX4UD/i33/SRVuDShg+neF6nvE7xe7H8gPHHFrva61uBvnINmF69ESZIkSZIkSerF2hNbQ/taaigY7Y4N13PHhuv/7/rwhjG8Zei7OaBPmY7/kiRJkiRJkqQiqIAzSSUpT9kGo9X1gSFHlrYWSVJxReshEoNkPPe53W3QOCj3ecksgnaSSYikObmtVtx3LhCBY34H4y4s3T7dbfDwe2HJ7/Zsj9QFJwfP/GJwPZmAZz6bXYjPomsMRiuFRI7BaGvuhfj24ORyCILS7jsv931v2R8uiUMkmt34RDc8cDEsvX7P9tnfgelXpp+77hG4/3zoWJl9feMvgUGHwlMZ1tYb0gTMxZqC+0yYG8YGJwhP/gAkQ8KyMrl+CBz7JxiTJpCvWqW7TSIp3vo5+Ksw7HhYfhO88tPS1ZWvhb8IfgesvT91f6rvqdxaRsH0T8CL385+zms/h4O/ll/waHcHvPit7Mc3Du4dz1mkahFrgBNuhdd/Aw+/s3jrvnKVwWiVYNP83MZPfFdJypCKrt/+MOZ86De1pyspjykfhAEHwd+Ozm1ed9u+ba/9T/o5pz0EQ47IbR9J1S/k5LQ9TPtI8DfNZX+GaBNMfj80jyh9bZIkSZIkSZLUS7TFt6Vsb4o2E6uEY5JyVJ/Ne8/A6h3LuGr51/jU+G8ztinFBxdLkiRJkiRJUgWqvndtJWmnpqHZjRv3VojGSluLJKm4IhGoa4WuLbnPTXVC6k6JOKy8A1b/HVpGw6T3Qn2/zPN2SnZndwJbTUjCQ++EEadAw8DiLr1tIbx+HTz72ZCtu+G5L0HX1iAQa8kfoH1Jdmu3LYJEVxCup+JJ7EjdPvxEWH33vu3J7iAAaOrlwc/xAxfnv/d1Meg3Pfh6yBHQOgHGnh+csL5T2xKY/8UgTCmVpz4Or18LA2ft1piAtQ9C/wNg5GlBuFEuoWhTr4BDf/jG+gajZaX/QbDmvn3bow1BMMBts9PPf/SDwWNSIosgy1SSCfjHRXDBamjon98alWbdo7DsBlhxS/iYVI+HkQiMOj24dKwMTriuNDeMDe+LVsjbWRPfnVswWjIOj/8zHH1d7nutviu75yo75RO+Jqm0ojGY+I4gkHL9I8VZc/Vdwe+3bENkVRobn8l+7Fu3Ba91JVWmoUfB1I/Ayz/Ofk68fd+2dM+vp/0/Q9Gk3irb9ysHHxpcJEmSJEmSJElF1xbfmrK9Nda3zJUUR10Ox8omiPPYlvsMRpMkSZIkSZJUNSrkTFJJykPz6OzGzfhkaeuQJJVGrCW/YLR4SGhIMgmPXw6v/teutgXfg9Mfg+YRQQhXJokdvStwK94By26Cie8s3pprH4S7T4fubqWuyAAAIABJREFU1J+6t4eXvp/fHot/D/u9Lb+5Si3embp90BxYc38QhLa3x/85CPFpnQDx7YXtv+XFPf99/mtwzO9hzDmw+l6464TMa2x8MrjsbevLeYRCRWDy+3KcI8a/NQiDIbln+7iLgtC6t7bB7zMEhSy5PjwY7bgbg/vcg5eGz090wqq/wrgLcyq9Ii38FTzy3iAQJ51IhpDobAOnCzH3v4PwtmU3Fme9TN9zufTbH/pOga2vZD9n8W9h4OzcX6cuuyG38Q0Go0kVa/wlxQtGA9j6GvSbUrz1lLv2pdmNO/luQ9GkatA0PLfxe4fXdqcISttdv2m5rS+pykTCu3rT+8qSJEmSJEmSVKHa46mPXW2J9ilzJcUxuH5YTuNX7VhWokokSZIkSZIkqfiiPV2AJOWteVTmMcf+2RONJKlaxZrzm3f7ofCPi2HT/D3bn/7knqFoAO3LYP6/B18vvjbz2mFhPLVs8wuFrxHfAa/8J/ztWPjb0dmFohXiUQOrii6xI3V7XR/oOyl83tOfggcuKkE9nfDUx2HjM9mFohXblMtgwEHl37faDTsOjvxfaBkTXI82BOEwc68Krte1BEFT6ax7iH2C1XZqGADjL4a+U9Ov0V4DB3d1roeH351FKFodRNKclA3QmNvBcTmb9tEgSPDQnwT1FEPHyuKsU6hIBMa+Jfd5878A29dkHrf2QbjnLPjjIHjt57ntMfiw3OuSVB7TroADP1e89W6fDX87Lvi90La4eOsqOzs2wzP/ln5M49AgJHT4CWUpSVKB6vvlNn7vYLStL6cf3396butLqh0Go0mSJEmSJElSj2tLpP4Q5dZY3zJXUhyz+xxFJN2HduwlLBhOkiRJkiRJkiqRwWiSqlfL6PC+ie+Ci7th7HllK0eSVGSxhvznLvkd3HE4bFsUXH/pR/Did1KPffVnsPDqfYPUUumNwWjZ3C57i2/f87Z65l/hsQ/D2n8Ur65M+3esLs9evUWiM3V7tDFzkFWpbH0FbptV/n37HwgHf7X8+9aK/d4G5y6B85bBhZvh6GuhrnVXf+v49PO3p/nZ3hkCNv3K9Gt0rMq+3koS3x4EoiW64foh2c2JZhFE1lTiYLTmN163tYyG/d5RnDX7H1CcdYphxieCwJtcxDtg8W+D/0sIAu6SCUgmIREPfoetuS8IE13xF9ixMfe6Jr4n9zmSyiMSgZlfCt63mvTewtfrboO198PCX8Hth+X3mKH8JLrhrpPSj7lwK5y/IggJlVQd6nM86WXvYLTNC9KP76nX0JLKI104ecRgNEmSJEmSJEnqaWHBYC2xPmWupDgmt8zgn0ZcQZ9Y/6zGtyUMRpMkSZIkSZJUPbI4Q1aSKlTzyPT90Vh56pAklUakwKeq8Q64aSIc8Fl49b/Sj334Xdmt2RuD0VbeDtvXQVMWITxd2+CR98KyGyEShXEXwoS3w4Lvlb7OvT33RTjsp+Xft1bFw4LRGmDkGcH/eW8w8nQ46jfQkN1BRAoRiYSHHGcKRos1h/dF3zjBePIHoK4PPPi21ONe/BYsvi54jBh9VuZ6e9qOjfDwe2DZDbnPzeak68YsQ9byNfK0XV/P/Rn0mwYrbg2uT/sobHgCns8xbHDIEcWrr1ANA+H0h+HZf4fXf539vCc+Ck/+CyTjwXOeZHfxapr0Xuhv4IZU8aIx6DuluGt2roVbZ8F5i4u7rlJb/XfY+GR4/+QPQn11Hjwv9Wp1uQajte95fdmfw8cOmpN7qK6k2hE1GE2SJEmSJEmSelpbfGvK9tZojn8jqiBH9D+Ruf2OZ13XarqTwXHOz217nBvWXbPP2PaQ71+SJEmSJEmSKlG0pwuQpLzFmiDWkrpv3MXlrUWSVHzFOlHs+a8EAQHFkNhRnHV6WiKX8JUkPPu57IY+/E5Y8ntIdAbBdIuugbtPyzyvFF65CtY92jN716Kw+36sMQi/G3x44Xu0jIUjfgWRCg23PeAzcOLt0Di4pyupbZmC0dI9nu/+e2PCpTD5Q+Fj25fCvWfDpudyq68nPHBpfqFokN39tS7kNVUxTHw3DDx41/VoDGZ8Ek65J7iMPR+mfiS3NSd/EAbMLGaVheszEY76X7g0ueflopBQyZ2S8Tf+LWIo2qA5cOhPireepNIaNS99f8tYeMtGOOX+7NdsXwKr7ymoLGVp6fXp+/sfWJ46JBVXfY4nvcTbdvt6e/C+SJhZ3wiCoiX1TgajSZIkSZIkSVKPa4tvS9neEqvuD72KRqIMaxjJqMZxjGocx+jG1MfhtcW3kUwmy1ydJEmSJEmSJOXHYDRJ1W3iu/dtq+sDw48vfy2SpOKqq8CDDBJdPV1BccS35zZ+0dXQ3Z5+TOcGWHZj/jWVwoLv9HQFtSMREu4TbYT6PnDy3TD94/mvP+ZcOPNpmPhOOPOZ/NdJZdjxQXjbzkusOfu5E94OU6+A4/8CB3+luHUptdYJ6fs3PRveF6nb83rjkMz7vfLTzGN6UttiWHl7/vNHnp55TF2RP+20zySYcjkc8wc4/OeZxzcPD0J/MmkaAcfdGIR+VUuYRKwBzniidOvP+SEc8n2Y+C6Y+B447Kdw6gNBaKWk6tD/QOh/QOq+Q74Hb3oBGgbAsGNgzo+yX/fV/y5OfQrXthhe/Vn6MS2jylOLpOLK9flx927BaMtvDh839gIYcUp+NUmqHnu/N7E7g9EkSZIkSZIkqce1xbembO8TK/IxVD2sJeT7SRBne6KjzNVIkiRJkiRJUn7SHJkrSVXgoC/Axidh3UPB9VhTcAJ+rKlHy5IkFUGxg1qKIVkrwWg5HtQQ74CXfwwzPhU+ZuPTkIwXVlcu6voEgT9Lrw8fs+QP0LkeGgeXr65aFQ8LRmsI/q1rhtnfhtb94PHLc1v7wH+HmV/YdX3AATDoMNjwWF6lAkEY2sl/h0iKLPDkNfDYZfDqf6Zf47yl0DImu/3m/jc8+v592ye+K7v52qU19SdVhlnUMYEb153Dpu4BnL2iD3MG7NaZVTDaVUGYVKVadWdh82d9I/OYwYcFP8uJHYXtBTDtY3DId1P/7KXTMABO/Qfcdz50rt2rb1DwGm/ESYXX1xMGHRKELL7+6+KvPf4SaBpa/HUllU8kAkf8Eu47FzpWBm2tE4LnMX3223PsmHPgiSuyW3fxtTD+Ihh9dvWESVabxy7LPKZ5dOnrkFR89Tm+H9W5YdfXG54KHzf+0vzqkVRdJrwNnv3svu0tY9KHpkmSJEmSJEmSyqI9sS1le0usAj/MuQCtab6f9sRWmmMtZaxGkiRJkiRJkvLj0beSqlvTEDjl3uCEo+0rYdhx0DCwp6uSJBVDfZqDDA67Ch77cPlq2akYoTGVINdgNICnPw19JsG4t6Tuf/FbhdWUq/EXwZgL0gejAVw/BM5fCc0jylNXrQq77+8MRttp6mVB+EY2QREAk967ZyjaTrmGKu1u4Gw45Z7w/kgE5l4V3IfuOjH1mAtWQ9Ow7PccNQ/qWqG7bc/2sRdmv4YCOQSjPbz5cObNv4VN3cHz/y//MMkv35XgHUe+cf/JJhgNYP6X4aDP5Vpp6W17HR55X/7zL1gdBI5lUt8XxpwHS36f/14AZ70E/abmP3/o0XD2S7D2AehYFbQ1DYOhx0DjoMJq62mzvw3Lb4KuLcVbc8plhqJJtWLwYXDWAlj3SPAcaOgxEGvcd1zLWIg1Z/9c/r5zYdL74fCfFbdewdbXYMWtmcc1jyp9LZKKL9dgtOe/Agd8OnhNuGVB+LjRZxVWl6Tq0GcCDJ4L6x/ds33cRQbWSpIkSZIkSVIFaItvTdneGqvAD3MuQLqgt7b4NgbXDy9jNZIkSZIkSZKUnwLONpekChGthyFzYcy5hqJJUi2pSxOMNvbNMPWK8tWyU6Kr/HuWwuYX8pv31CchEd+zrWsLPHY5rLyjsJrq+kLLuMzjog0w4W0w58cwel4QkpfJ058urDaF3/djDfu2TfkwHPIDqO+ffs39r4S5IUEd+Qaj7fcOOPmu7MYOPwFOuQ/6TNy5KQw+HM59PbdQNICWUXDiX6HvG6FQTcNh7n8F91Hlpmlk1kM/s+gr/xeKBpBMRvjIdUm6upNBw+BDs1to/udh28JcqiytjlXwyAfgpv0KWyeX+/HhPw9+t0brg8uY82D8xdnPH3lmYaFoOzUMDAIjJr8vuIw5p/pD0SAI55z5lSIuGIFZXy/iepJ6XH0/GHkqjDg5dSgaBM+PhhyZ27qv/Tf8rgUWXg3JZOF1KrD85uzGGc4sVae6PE56+euRcG0Elv05df+4i8If3yXVnuNvhuEnBc/fYi1BWO2sb/R0VZIkSZIkSZLU6+1IdNKVTP0hsS3RNMcsV6GWaGtoX3t8WxkrkSRJkiRJkqT81fV0AZIkSVJK6U5EjTbApPfCwl9Adxn/QF8rwWgv/SC/eW2LYONTu8KGkkm473xY/ff81qvvD2e/DJE6qO8LiW74fUv4+HnPBiFWdbsdsDHlQzD5A3D3mbDqr6nnLfl9EKBW15xfnYJkyH0/Up+6ff+PBgFpiR3Byd+JHdC5Pvi/i8Qg1pzhpPBI9rUNPAROvQ+I5v5/POxYOPtV6FgJsabCApiGHgVnvwTb10HjYIjk8D1ol2gsq2GdiQbu3nTiPu1bt8M9L8OpM4B+07Lfd/Hv4YAKCFHs2gq3HwodywtbZ9BhuY2v7wPH/hG62yGZCK5veAoW/zbz3EgMpvVAWGm1mfIheOYz0J36U2ez1mcSnPViEGAnqffZ/0pYc0/wWJ2teAc8/C7YvgZmfKJUlfUum5/LPKZpuI/VUrWqzyMYbdP89P3j3pxfLZKqU9OwILh/x+bg/SaDESVJkiRJkiSpIrQn2kL7WmN5/I2ogkUjMZqjrXSk+J7b4gUevyRJkiRJkiRJZRLt6QIkSZKklOrTfPpatB4GzoST7ixfPVAbwWidG2DV3/Kff8dhsOD7QSja8pvzC0VrnQBj3wynPxacKNg4KPg/zRRq1Tx6z1C0nSJRmPy+8HnxDlh9V+51apdEd+r2aJqs7VhD8HMcrQ/+31rHBYFhDQMynxCaLlRs7s9g2HHQ/0CY8Sk49R/B+vkG30Ui0DKqsFC03TUNMRStUFM+nHHI5u7+oX0LViV3XZnwT9ntueyG7MaV0o7N8Id+uYWiDT0mdfuYc/Oroa5l1+/fQbPhtIeh3/67+kecCvOeg2kfC34GR54Jx/8FRp2R3369SbQe9nt7bnNaxgS/J5uGw6A5QRDoqQ8YtCP1ZqPnwXE3w8jToXkUNI/Mfu7Tn4S2paWrrTd57eeZx4x6U+nrkFQa0XoYemxx1+ybQ2izpNrR0N9QNEmSJEmSJEmqIO1pAsFaYmmOWa5SfULC3gxGkyRJkiRJklQt0pzFLkmSJPWgkafD819L3RdrCv4dcjhM/wS8+O3y1JTYUZ59Smnjk5BMFLbGk/8C21fDhidzm3fg52Dml9KPiTaE3871/cLnjTwDIjFIxlP3L7sBRp+VXZ3aVzIkFLBk4TxpgsUmvB0mv79E+6oi7P8vsOymtAFhW7rDHw/67H7OcfOI7PZc/wi8/NMgUKxldJaFFtmDb8t9zsT3BMGAK+/Y1dZvOkz+YHFqGnI4nPXivu1zvl+c9XubmV+Bhb8KAjt3F6mDo6+DcW/pkbIkVZnR84LLTmv+AffMg+4sDly+ZX+4KPwTsCtadwdsehZIwuDDey6IduMzmcc0j4TpV5a+Fkmlc/BX4c7jirde3ynFW0uSJEmSJEmSJEl52ZYmEKy1BoPRWmJ9oWvVPu1tiW09UI0kSZIkSZIk5S7a0wVIkiRJKQ09BlrG7Ns+5jyI7PY0tpxhV4mQcKhqUqzv4YVvwqq/ZTd2ymVw/C2ZQ9EgCIcJE03TV98X9ntHeP+quzLvrdSSifAwvXT/XwVJE3SxMxhRtavvZDj90bT3r83x/qF9rbsHozUMyH7fxy+HG8bAM5+FZDL7ecXQvgxW/CX3efV9g8fXw38Bkz8Eh/wATnsQmoYUv0YVrnEQXLAKDvhs8FgWrQ8CXk9/2FA0Sfkbdgyc8RhM/3jmsfF22Jwi8LLSbXgSbjsY/noE/PVIuGMutIcHqJbU/C+m7+8zGc58GvrPKE89kkpj2LHQlGXIcib1A6CuuThrSZIkSZIkSZIkKW/t8dSBYI2RJuoipfqQ2J7TGk0d9taeJiBOkiRJkiRJkiqJwWiSJEmqTJEoHHVdcALpTn2nwqE/2XPc0GPhgH/bs23S+0pTU7IWgtG6y7fXzC/DpUk47Ccw+k3ZzUkXfpbJrG+F97W9Xv6go1qRjIf3lSoYLZLmpWokTWiaakfLKDjws6Hdm7vDg9FaGna7j9TnEIy20/NfhVV35j6vEJuey3NiJHjcnPRumHsV7P/R3MLgVH71/eDgL8NFHXDxDpj9LRg0p6erklTt+k2D2d+G4/8SPM6k8+zny1NTsSST8Mj7Yesru9o2PA6Pf6T8taz8Kyz7c/oxZ78MTcPKU4+k0hpyZHHWGX5icdaRJEmSJEmSJElSQdpCAsFaY33LXEl5tMRSB6O1hQTESZIkSZIkSVKlMRhNkiRJlWvYMXDuQjj+Zjj5bpg3PwjL2V0kAgd/Fc5+NQhSO/MZmPuz0tST2FGadcspXchVMY16U9pQo1CDDs1/z6YhcNpD4f0r78h/7d4skSYQMFqiT0nsM6k066q6RBtCuzalCUbbIwMxXcheOouvzW9evjpW5jfPEDRJ0u5Gz4OzX4EDPxc+Zukf4cXvlq+mQm14AjY+uW/7sj9D29Ly1TH/y3D36enHHP5zQ3ylWlKs59pTLyvOOpIkSZIkSZIkSSpIeyJ1IFhYgFi1Cwt8C7sdJEmSJEmSJKnSGIwmSZKkytYwEEafBcNPgFh4SA59J8GEi2HgzOBk9BmfLn4t6QKiqkWyuzz75Hv7T/946vb93pnd/KZh4X2Pvj/3epT+PhOtK82eU/85dfuoeaXZT5Up2hjatTlNMFp3YrcryUTouLSWXJ/fvHy1L8t9Tl0rDDmq+LVIkqpb0zCY+SUYODt8zFMfh62vlq+mQqx/JLxvxS3lqWHRb2D+5zOPq6/NTxGXeq36IgSjzf0vGH5y4etIkiRJkiRJkiSpYG3x1IFgrb0sGK0tvrXMlUiSJEmSJElSfgxGkyRJUm2a+K7ir1kLwWiJLILRhp9Y2B6Dj4ChR+c3d8Qp0P+APduijTD5A9nNbxwS3te+DLo8oCNn6e73kfrS7DlwFgw9dq+9ojDlw6XZT5Upll8wWnz3LLR+0/Lbu3treQNjsglb2dukD0Bdc/FrkSTVhqN/m77/5inlqaNQG54I79v4dOn3X3oDPPT27MbWGYwm1ZSGAoPRRp0VvJcRiRSnHkmSJEmSJEmSJBWkLb4lZXtLtDb/1tsSEvjWHhIQJ0mSJEmSJEmVxmA0SZIk1aZ8w3DSqYVgtGQ8fX/rBDjxbzDrm1DfL/f1hx0PJ/01/xN/o/Vwyr0w6X3B/+GoN8GJt8PQo7KbnymMYOsr+dXVm6UL04vWlWbPSAROuBWmfgT6z4ARp8FxN8Los0qznypTtCG0a3M8PBitO57cdWXosVCfZ6DBzVMgmcw8rlCbnkvfP3guTP8kzPpWEDw56FCY9Q045Dulr02SVL36Tc383Hj94+WppRDrHwvv61xXun3jnfDoB+H+87OfU1+bB8tLvVahwWiT3lucOiRJkiRJkiRJklQUYYFgrbHa/FtvazR1MFpb3A8YliRJkiRJklQdSnQWuyRJklSDEjt6uoLCJdOEXEXq4OCvQzQGMz4Jkz8AfxyY2/rH/qnwQIDGwXD4f+c3N1Mg29LroWsL9JkErWPz26O3SaYJBIzUl27f+j5w6I9Kt74qX7QxtKst3hrat3suGrEGmPV1eOzDe6476BBY91DmGl65CqZelkWxBVjyx/C+g74IB31+1/UZnyhtLZKk2jL1Mnjhm+H9K2+HwYeWr55sdayGtkXQOBS2vBA+rpTBaI9/BF7L8TVJXeqDyiVVqaYR+c8dfhKMmle8WiRJkiRJkiRJklSwtkRYMFpt/q23JSTwrS2+jWQySSTfD0CWJEmSJEmSpDIxGE2SJEnKViJNQFS1SMbD+069H4Ycset6ff/c12/IMUit3J7/WnABmPQ+OOw/gyA4hUukCdOL+pJSJRQLD0ZLJKOhfd17P8xN+RD02x+W3Qh1LTDuQhg4C1bcDk9/GjY9E17D45dD8ygYe16Oxedg1d/C+8aUcF9JUu2b+O70wWjPfi74HTnuLeWrKZ1kEl7+CTz5/9IHOu9UqmC0rm3w+v/mPi/ic2Oppow8Nfi53vvxqHkkTHg7dG2GV3+277xIHZxwaxDSLEmSJEmSJEmSpIrRHt+asj0sQKzahQW+xemmM7mdpkhzmSuSJEmSJEmSpNyEn0ksSZIkVbvpnyjuepueLe56PSEsYKDP5D1D0QAiEeg3Lbf1K+ET5LINEnrtf4LQhRe+CS/9CNoWl7auapUulMLwB5VSNDxIIF4/ILwvkaJx+Akw5/tw8FeDUDSAUWfAvKfhzKfT13H/+dCxOnO9+dq2MHV741AYOLN0+0qSal+/aTDnR+nH/ONCePwK2PxieWpKZ9HV8MRHsgtFg9IFo21ZAPHtuc2JNUOfiaWpR1LPaBgIR16z5+veIUfBm16E2d+Cuf8FR/8OorsFOg86FM5bljbkWZIkSZIkSZIkST2jLb4tZXtYgFi1a00T+NYecltIkiRJkiRJUiUxGE2SJEm1a+xbgCIGdS38BSy9oXjr9YRkPHV7NCTgavylpaulVMZfkv3Yl38MT38anvgo3DoL1j5QurqqVaIrvC9aX7461PtEw8ME4tHwg9G6UwWjpTPwYBh3UfoxK2/PcdEsJbpge0jo2pHXlGZPSVLvMu0jMPWK9GNe/jHcNhuW/rk8NaWy8Bp4+N25zelcD8lcf/FnYcuC3OeMPgfq/DRtqeZMuATOXQxH/xZOfQBOuQca+u/qH/9WOOc1OOo6OPluOPUf0Dy8x8qVJEmSJEmSJElSuLAwsJY0x6JVs9ZoeDBaW3xrGSuRJEmSJEmSpPwYjCZJkqTaNWQuHPUbaByyZ3tda/6BTo9fVpqT78sl0Z26PRISjHbAZ2DKZbsCigYcHLSlMuXywusrhvFvheEn5T6vaxM89Yni11PtkiH3GQi/30jFEAsPRktEW0P74vk8RB/xi/T9HSvyWDSNba/DvefAbxuAZOoxLaOLu6ckqfcanyEAFCDRCfdfAPHO0tezt64tQVBxrpJxuO88WP9Y4TWsexgefDv8/XR46J9yn3/4/xReg6TK1DIqeBwdelTq95JaRsOEi2H4CWlfw0iSJEmSJEmSJKnndCW66ExuT9nXJxYeIFbNmmPhx9iFhcRJkiRJkiRJUiUxGE2SJEm1bcIlcMFqOG8pXBIP/n3LZpj3PMSa9xzbPBrOfAaGHRe+XsdK2PRcaWsupbCQq0gsdXs0Bof9BC7cBOevhHlPwwH/GtxWu4s1w+T3F7fWQhzz+/zmrXsoCCzaXTUH4RVDoiu8L9+AQSkb0YbQrni0Obwvnx/ZuhY44bbw/u4iHgjWsRJungzLb04/bu/HWUmS8jXkyOCSjTuPL20tqSz/SxBSnNfcm4Oa1z6U//4rboM7j4PXfwOr/pr7/KlXQH1tfoK4JEmSJEmSJEmSJNWC9sTW0L6WGg1Gi0ViNEdbUva1pbk9JEmSJEmSJKlSGIwmSZKk2heJQsuYXf9GY9BvCpz2IIw8A1r3g/GXwCn3wMCZ+wam7e22g+Guk2Dra2Upv6iS8dTt0br082JN0Dwi+LquFU5/BMZfHNx2o94EJ90FAw8ubq2FaByc/9yb9oPf94X7L4RbZsBvG+C2ObDqruLVV00SIWF6kPl+IxUi2hjaFY80hfZ155tlOOoMIJK6r5g///O/GP5YvFOsCRoGFm9PSVLvFonAiXdkN3b9I9C1pbT17G3FrYXNj3fAS9/Pf/6C76UPA86kvjYPkpckSZIkSZIkSZKkWtEWD/9gzNZY7X4QVljoW7rbQ5IkSZIkSZIqhcFokiRJ6r0GzoITb4NzF8LR10LfyUF7mjCe/7P6brjzeOhuL22NxRYWchWJ5bZOy2g4+rrgtjvhFhh6ZOG1Fdu4i/Kf270Nlv4RtrwYBBhtfBLuPQc2LyhefdUimSYkIlJfvjrU+8TSBaOl6cs3GA2CwMdU1j8CnesLWPgNiW54/deZxzWNCEJsJEkqlvq+MOl92Y3d8GTx908mYdsiWPsAxLfv2bf15cLXX/KH/Otac19hezcNK2y+JEmSJEmSJEmSJKmk2uNbQ/taorUbjNYa8r21pbk9JEmSJEmSJKlSGIwmSZIk7a1xcHbjOpbDqrtKW0uxJeOp2yN15a2jHCa+s7jrxduDsLTeJixMDyBag/cbVY5oQ2hXMk0wWnchwWh1aQ5ye+mHBSz8hvlfgO62zOOGVGDYpCSp+tWl/iTofWwpchhwdxvcfwHcNBH+dgz8aQSsunNXf+e64uyTT4hp9zZI7Mg8bs6Pob5/6r6RZ+a+ryRJkiRJkiRJkiSpbNri21K2N0QaqU9znFq1a4mlPh6uPeT2kCRJkiRJkqRKYjCaJEmStLdsg9EAnv9a6eoohWRIyFUtBlyNPAMGzi7umpufL+561SDsPkMEIr6kVAlF60O74oQHo8ULCkZrDe977suw4Sl4/hvw5JXw0n9A2+Ls1+7aBs9/Nbux4y/Ofl1JkrJVn20w2kvF3feFb8GyG3Zd79oMfz8VVtwRXC9WMNqTV+Y+J9u9J74DjrwGYk17th/yfeg3Jfd9JUmSJEmSJEmSJEll055IHQQWFhxWK/rE+qVsb0tsLXMlkiRJkiRJkpS7Gkw/kCRJkgrUOCT7sTvWl66OUkjGU7dHYuWtoxwiETjqWvjL9OKtueQPcPR1xVsPNJzYAAAgAElEQVSvGiS6UrenCa2SSi0ebQnt6y4oGC3DgW63H7Ln9Wc/C8ffAsOOybz2rQdmV8OAg2DUmdmNlSQpF9kGo219pbj7vv6b1O33nAH7vRO6thRnn0VXw5G/ym1ONsFodX2hvh+MOQfOWQir74b4dhh2PPSdlFepkiRJkiRJkiRJkqTy2RZPHQTWJ5bl39GrVFjwW3s8dVCcJEmSJEmSJFUSg9EkSZKkveUSjFZt4VCJ7tTtkRp9adDQv7jrJeOQTAaha71FspfdZ1Q5+kwMHo/3DiyJtZBoGhE6LV5QMFprbuO7NsOdx8LZr0DfyeHjtrwEbYszr9c0Ao66rvp+t0iSqkN96k+C3sfGJ+Hh98LCXwTXYy1wzB9g9LzU47s74IVvwpp7ofuNg8nr+sLwE2DK5bDttfC9Fl2ddflZ6VwPjYOD5+yLfwuL3/i9OuUyGHFyivFZBKPtHijXPBImXFq8eiVJkiRJkiRJkiRJJdceEozWUuPBaK0hwWhtIbeHJEmSJEmSJFWSaE8XIEmSJFWchkHZj41UWXhNaMhVrLx1lEv9gOKv+exni79mJUt0pW43uEmlFonC5A/t2z7pPcST4cF83fEC9qxryW/ezVNg66vh/Uv/lH7+vOfg/JVw/goYcEB+NUiSlEm0MbtxHSt3haIBxNvh3jfBot/sOzaZhLtPh+e+CGvugQ1PBJc198D8L8BNE4tQeA5e+EZQ0/wvwIOXwvKbg9/Dfz8FXr9u3/Gd6zOvWV/bB8JLkiRJkiRJkiRJUq1ri29L2d4aTR0cVitaoqn/3h12e0iSJEmSJElSJTEYTZIkSdpbMpH92GhD6eoohWRIYlAkPGSoqtU1w6BDU/dNuTy/NRd8D7o78q+p2oSF6UVr9D6jyjLzSzDrWzBgZnA56Isw54fEE8nQKfHwrswSIff3bNw8Be46CbYt3Ldvxa3h88ZfEoShNY+ASCT//SVJyqSrwE98fv4r+7YtvwXW3h8+p7uInzLdPDLzmBe/A79rhOe+tG/fg5dCd/uebZ3rMq9ZZzCaJEmSJEmSJEmSJFWz9kTqv123xGo7GK015Ptrjxfxb/mSJEmSJEmSVCIGo0mSJEl7GzQ7+7GxKgtGCwv9qeWQq5lf3jfAbtY34bD/yG+9+HZYfXfhdVWL7WtTt0fqy1uHeqdIBGZ8AuY9E1wO+jxEoqTJRaM7JP8xK/ECQw9X3w1/OwbinXu279gYPmfMeYXtKUlStgbPLWz+lgV7BottXwPPfrawNXMx/JTsxiW6wvtum7Xn9bbFmderNxhNkiRJkiRJkiRJkqpZW3xbyvbWWG3/PTgs+K0tsY1kspBPIJUkSZIkSZKk0jMYTZIkSdpb637Qb3p2Y6stHCoZkhgUiZW3jnIadQac+gBMvQKmfBiO/wvM+GRha3auK05tlSyZhBe+BY9fnrq/lsP0VPHiifz6MooU4W2SjpWw9Ppd15NJaF8aPn7UvML3lCQpG4MOgcbBha2xMxht/pfghjGw6dnC68pWrAEmvbewNba+Ahue2HV9y0uZ54S9hpIkSZIkSZIkSZIkVYX2kGC0lmjq4LBa0Rrrl7K9O9lFV3JHmauRJEmSJEmSpNwYjCZJkiTtLRKBI36Z3dhotQWjdaduj9R4yNXgQ+HQH8JhP4XRu4UQHfBv+a1XX9ufEgjAmnvh6U+F91dbKKBqSrrws+5CgtHGnFvA5N08+DZ47HL4ywFw28HQtSX1uCmXQ31tH1wnSaog0To46lqINua/RrwDVv4V5v87JLqKV1s2og1w0BdgwEGFrXP7obD+seDrLQsyj+/aWth+kiRJkiRJkiRJkqQe1RZP/Xff1lhtHwvamib4Lew2kSRJkiRJkqRKYTCaJEmSlMqQw+GIqzOPq7ZAsWQ8dXskVt46KsW4C4FI7vMKCZOoFq//Jn1/tMru+6opiWR4X7rQtIz6TYf+MwpYYDev/BQ2vwCb5oePmfnF4uwlSVK2Rp4G5y2BI6+BaR/LfX68AxZ8r/h1ZSPaAC1j4LSH4YTbClvrjrkw/0vQ9nrmsWEBp5IkSZIkSZIkSZKkqtBrg9Fi6YLRtpWxEkmSJEmSJEnKncFokiRJUph+UzOPSXaVvo7ddW2DF78D954L/5+9O4+P667v/f/+zqbdliyNFie24zh7AtkJWYCQBZJSoATKvhVoadNLgUJb2lsaKC3w47LcUlpogQa4BUpICaUUAmHPBiQBErKROImdxYtGtixb6yzn+/tDsS3NnO+Zc2bVjF7Px0MP63y389FYOkejmfM+t10pzT4ebb7N+7ev1pCrgdOk874kJddGm+dl61PPSvLQZ4L7Wy0UEG0lKPwsX00wmjHShd9aPDbUW0da6his/34AACjWOSxtfo208SXR537zeGnnd2pfUxix5OK/iW5p/WXSmhOqW+/XV0kKSFs9KM+bwQEAAAAAAAAAAACgVeVtTgt23revOyA4rB0EfX0znn9YHAAAAAAAAACsFFzJDgAAALh0DJUfU/B/s0RdWE/68W9L4z8+3Lb9K9Jlt0m9R4dbw3MEo63mkKujXi5t/F3p7vdJd7833Jx2D0azIQIiDgZTAE1QCPgWDQpNC6Vnk3T5L6WZx6TUWim5RlrYI81sXwySiaWkRJ90z/ule/6u8v1UG+YCAEC14t3NriCaWGr5dtd6af/99d/vkS+s/z4AAAAAAAAAAAAAAHUxW5hx9vW0eTBa3CTUGevSvDdX0jdbIBgNAAAAAAAAwMq2itMPVjdjzAmSTpV0pKQuSfOSxiVtlXSntdb9l//yayclnS9po6QxSdOSdkj6pbV2W3WVAwAANNBKC0bbfs3yUDRJyu6VHvgn6YyPhFvDFvzbTby62lpdLC5teUN7BqM98S3prndLs9ultSdLT/uMtObY4Dlb/6X8uqs5TA9NFxR+VnUw2kE9Gw5/3jG4+LHUqe+TOkekO95S2fqjF1deGwAAtZBo8WC0nk2N2e9Rr27MfgAAAAAAAAAAAAAANTcTEADWE+trYCXN0R3r9Q1GmylMN6EaAAAAAAAAAAiPK9lXEWNMv6S3SnqDFkPLXArGmF9JutZa+8EI66clvVfSyyStc4y5RdJHrbX/GbpwAACAZkmuXbz4PigEq5HBaPd/2L999w/Cr2Hz/u0xnhqoZ6N0zB9KWz9VfmyrBKPtu0e68XckL7e4Pf4T6TtPk164TUqt9Z/z6LXSbX9Ufu3UQM3KBKLyrLuvZsFoYRz/v6TsHunX74k+95g317wcAAAiiTc5GC3WsRg8Orcj5Pjk8u1Nr5Aevrr2dS21/nnS0Hn13QcAAAAAAAAAAAAAIBJrrX62/4e6b+ZXmvGCA77mCjPOvu54b61LW3F64n3am8+UtM8WBaMtePP6yb5v6+G53yhnS98jG1dcmzqP0TP7L1dvYk3d6gWAYtZa/Xz/j3XvzC814/mHXQ4kBnV633k6qef0BlfXmqbyk7px3/XanX1CR3Uep2f2X6Zk8U0rQ8h5Od2479vaNv+ghlPr9Yz+y7Q2wTUGAAAAAIDaIf1glTDG/K6kT0oaDDE8LulMSUdKChWMZoy5XNLnJA2XGXqepPOMMV+U9GZrrfsVBgAAgGYzRlp3ljRxi3tMo4LRrJX23uHfN/mrCOsU/NtNPHpN7ejsf5bS50lb/1XK3OQe1yrBaL/+m8OhaAfl9kmPXStteePydi8n/fQN0rZ/D7f26MW1qRGoQFD4Wd5xmKubp1wl9T9VeuIb0twuaWabtP/+4DlnfULqGm1IeQAAOCWaGIx2/Nulza+SBk6XHv68tPv7UvfGxd/BMzf6zyl+893IhVLfcdKBB2pf36ZXSMPPkI5+oxTjuRIAAAAAAAAAAAAArCRf3v1J3TT13arWSJqUUrGOGlW0cvXE+3zbl4YL5bysPvbYX+vR+a2Ba/165jb9fP+P9Y6NH1BfwnFzXgCosa+Of0Y/2vc/ZcfdPHWDXj78Zj1z4PIGVNW69uX36sPb/+JQaOYdB27SndM/1Vs3vE/xCNeUFGxB//j4e7R17p5DbT+d+oHeufGD6k+GuYQZAAAAAIDyYs0uAPVnjLlK0jUqDUV7VNL3JH1Z0nWSfiopclCZMeZCSV/X8lA0K+kOSV+VdIOkiaJpr5L0ZWMM34MAAGBlW1/mhTGvQcFouf3B/dmpcOt4ef92Q2aypMUwvM2vkZ79HSmWdI9rhWC0/Kz02Nf8+372Jmn64cXPpx+WHvhn6T9S4UPRRi6Wjn9rbeoEKhAUjFbwbOMKOWjDi6SnXy09+9vSb98nnfVP7mPIUa+Sjr2ysfUBAOAn3qRgtCOeL535UWndmZKJSVt+Tzrv36XT3i+tPdk9zxSdW2NJ6ZzP1r6+0z4onf8l6dg/kuLR74QKAAAAAAAAAAAAAKif8ezOqkPRJHdgWLvpjvf6ts8Wpg99/svpW8uGoh00ntuhW6a+V5PaAKCcvbmMfrzv26HHf3PPl5W3ufIDV7Eb911/KBTtoK1z9+qemTsirXPPzB3LQtEkaW8+oxunrq+6RgAAAAAADiL9oM0ZY94h6T1FzV+W9AFr7a99xscknSvpxZKeG2L9IyV9TdLSK8RulvT71tr7lozrkPRmSR+WdPAKtudL+jtJfxXyywEAAGi8ztHg/kIDgtEKC9IPy/xqNrNdSj21/FrWEYwW46nBMoluaexy6Ylv+Pe3QjDaT14Y3P+NLdLRr5e2XyMVZsOve/GPpPR5wcFxQJ0FZZ8VmpCLVuK4K6Wx50iZW6TCjBRLLQZcrjtLSl+wGMIIAECzxTubs9/Nr3P3xQPuxu0XUjZ8gfSSfdLDV0u/eHv1tUlS1/rarAMAAAAAAAAAAAAAqLkHZu+qyTp98bU1WWel64n5B8BNFw4c+vz+mTsjrfmb2bv03MEXV1UXAITxwOzdsgq4m3KR6cJ+7VjYro2dx9Sxqtb2mxn/8+j9M3fpqb1PC7+O43x8/8xdev7QqyqqDQAAAACAYqQftDFjzKmSPrikKSfpldbaa11zrLWeFoPNbjbGhPn+eK+kgSXbt0i6xFq7LCHEWrsg6ePGmEclXbek60+NMf9ird0eYl8AAACNl+gO7l+YkHLTUtL/jmo18eg10p6fBY+Z2SYNhAlGK/i3m3jkstre06+W/nPQv68RgXjVmM9Iu0Lcke/hz0Vb9+xPSSPPqqgkoJYKAe9xyDsOcw3Xd8ziBwAAK5UxUv9TpH0l98+QTEyy4d9UqFhKGr5Q2hXirtwbXhS8TtS+1FrphLdJg+dIN5xXfv/ldI1VvwYAAAAAAAAAAAAAoC7Gsztrss5JPafXZJ2Vrjvu//7m2SXBaJlctMc0k9tVVU0AEFbU45MkjWd3EYwWwPWYRj4XZP3PBZwjAAAAAAC1FGt2AaiPJ0PN/k3Lw+/eHBSKVsxamy+zj2MlvW5JU1bS64tD0YrW/Lqkzy9p6pB0VdiaAAAAGi5eJhhNkr57jpSfk6ytTw33/9/yY2ZC5sx6jl/xQmXirjId66RhRwjYXe9ubC1RhQlFi6ojLW1+Te3XBSoQFIwW1AcAAIps+YPStrHLwz0PWuol+6Sn/E35cSf++WLomku8091nksFrD50jDZxWvoZyuo6ofg0AAAAAAAAAAAAAQF1UEpJT7MiOzbpo4Pk1qGbl63EEo80Upg997gq3cdmbyyhvc1XVBQBhZCoIw6zFeaJdzRVmdaAw5ds3ETHQzBWANl2Y0lxhNnJtAAAAAAD4If2gff2upDOWbH/fWnt1jffxSknxJdtfs9Y+GGLe/6flgWovNcZcGRSoBgAA0DSJEIEAU/dK13RLyTXS6HOks/9J6hyuXQ2Tvyg/Zs/PJL0leMzMo9Lu7/v3mbh/+2oXS7n75sdr+/9cS/M1vtPS+t+Wzv5EuJ8HoAG8gBzKPMFoAACEd/z/koyRtn5ayk5K639LOuMj0jU94dfo3igluqSBEHfT7hor07/e3Rf0u7m0GLh20fekO94u7bpB6j5SOuEd0sizpNuulCZuleZ3B6/RvVHqOy54DAAAAAAAAAAAAACgaVwhOcd2nayjuoJf740ppg2dW3RSz+nqjHXVo7wVpyfe59s+6y0Go817c9pfmPQdc0rPWbp75vaSditPe3LjGklx4zEA9TXuCDnb0nWipgv7tTv7REnfRMSwx9UkKPxsIrtbni0oFuK6Es8WtCdordwubYgfXVGNAAAAAAAsRTBa+3pz0fb767CPFxVthwpes9beZ4z5maRznmzqkfQcSd+oYW0AAAC1EY/wxofcfumxa6U9P5de+MjihfnV8kLeUW3bF6Wnf16KOV6IKixIN5zvnm94auArKHxh+1ek48uE0RUWpKl7pDUnNDZUbGGi+jVOeId0xoerXweog0JA+FlQHwAA8HHcHy9+VCvRLXWkpYWMe0y5YLQ1J7j78gfK19AxKJ33hdL2Z15X2vbIF6VbX72kwUhP+Rv3cyoAAAAAAAAAAAAAQFN51lPGEcRyQf9zdPaaZzW4opXPFYw2U1h8Dd4VNCdJL0q/TvfM3CGr0juZZrI7CUYDUFfWWmWyO3z7zl17sXYsPOobjJZxhKkh+LEpKK/J/B4NJsvfOH5ffq/yNh+wn13a0EkwGgAAAACgejVIasBKY4w5RtLSv+Zvk/TDGu9jVNKpS5rykm6OsMSPirYvr7YmAACAuqgkzGr2Uelrw1IhW/3+p7eFH5u50d33xDek2cfd/Vz871D6Zo5DDmwNnvrwF6Rr+6Xrz5SuHZDu+0htSwtSbTDaeV+STv8/takFqIOg8LM8wWgAADTPuT6hZEuVDUY73t1XmIteT5DNr5Ke81Pp6N+Tjv1j6eIfSFveWNt9AAAAAAAAAAAAAABqZiq/Vznr/97cdHJ9g6tpDd2xXt/2nM0q6y04g+biSmgktV79iUHfftc8AKiVGe+A5rxZ377h5JjSyVHfPo5Pbpls8GMTFJYZZVzYdQAAAAAAKIdgtPb07KLt71trAxIdKnJK0fZd1tqZCPNvKdo+ucp6AAAA6iNeQTCaJC3ske5+X/X7XxgPPzYTkFO757bguQceCr+f1SQofCEoNG/yTumnr5MK84vbXlb65Tulnd+tbX1LTd0r3f8P0l1XSVv/tfJ1nvK30lGvkIypXW1AjRUCnuEGhaYBAICQjr2ysnn9xX82LtK7Jbi/c1RK9vv3pS+orKYgQ+dIT/836exPSCMX1n59AAAAAAAAAAAAAEDNZHLuoJXhVJkbda1SPfE+Z99sYdoZXjOUGlHMxJV2PK6E3gCot6AQr3RqzHl8msrv1YI3X6+yWlrQeVSSJkKGypULnwu7DgAAAAAA5RCM1p6eVrR9qySZRZcYY642xtxrjJkyxswYY7YbY75njHmXMeaokPs4qWh7a8Qai5M3itcDAABYGYLCr8p57KvV7z93IPzYu/5a2v9gabu10n3/J3juWn4d85X3v8uUJCne5e57/Ov+7Y9dV109Lls/I33rqdIv3ibd/bdVLGSkza+uWVlAvXgB4We5QuPqAACgbR35O+HH9h1z+PPuI6WRi/zHpZ8hdR8RvJYx0jFvKm3v2SQNnBa+JgAAAAAAAAAAAABA23GF5PTE+9Qd721wNa0h6HGZ8Q44Q3LSybEn/x317S8XrgMA1RrP7vBt7zCdWhMfcB6fJIK5XMqFWo6HDL0sdw4Iuw4AAAAAAOUQjNaeziravu/JwLPvSbpB0uslnShpjaRuSRslXSzpA5IeMMb8kzGmXALIMUXbj0ascXvR9qAxZiDiGgAAAPUXryIYbXrbYihZFE/8j3Tr66WfvkHa8R0ptz/a/G8eJ930Uun7l0i//HPpwEPSxE/Lz1tzQrT9rBaFCoPRfv0e//atn6qqHF+zO6Sf/75ka5AGdcE1Uu/m6tcB6qwQcGidzzWuDgAA2tbYpdIZHw33fOjEdy7fPvcL0rqzl7etO1M6/z/C7fuUq6SNv3t4u+9Y6cLrJcPLGQAAAAAAAAAAAACwmo3n/ENyDoZ4oVRPUDBaYdoZXjOcOhiM5v/YukLqAKBWnMGNqVEZY7QumVbMcXk0xyh/mTKBcWED5coFrBGeCQAAAAColUSzC0BdFP/VuVvSbZKGQsxNSrpS0rnGmOdZa11/hegv2h6PUqC1dtoYMy+pc0nzWkmTUdYpZowZlpSOOG1LNfsEAABtLlFFMJq3IOVnpGTIu9A9+Cnptj86vP3w1VL6/Oj7ffSri//u/r70yOel9DODx/cdKw0/K/p+VoN8QDBaLNm4OoJ8/YjarPPSmeq+34EGKnjuvpls4+oAAKCtnfB26Zg/lKYfkvb/RrrpJaVjerdIIxcvb+s+Qrrs54tB0bOPSd0bpN6jwu832bsY2LuwR1qYkPqOk4yp5isBAAAAAAAAAAAAALQBVxALwWhuCZNUh+nUgp0v6ZstTLuDh558TNMp/8d2IrdbBVtQ3MRrVywALOEKNzt4fIqbhAaTw75hX+UCwFajrLegffk9gWPCPm7lAtT25fco6y0oFesIXR8AAAAAAH4IRmtPxaFlV+twKNqMpE9J+rakxyX1SDpV0hskXbBkzumS/tMY8yxrbc5nH8XpHnMV1Dmn5cFofRWsUexKSVfVYB0AAIBF8a7q5mf3hAtGs5706/eWtmdurm7/8+PSY9e6+9PPkM79XPjwttWmEBCM9puPSye8zWdO6ZtH6mbP7ZXNMwlJnpTok0aeLZ31CULR0FI86+7bGim2GwAABEp0Sf2nLH6c+wXp1tce7hu9RHr656V4yn9u71HRAtGKdQwufgAAAAAAAAAAAAAAIGncEYw27AjvwqKeeJ8W8qXvbZ3MT2gqv9d3zsFANFfonKeCJnMZDaVGa1coACzhDG5ccsxPJ8f8g9Ec54vVbCK3u/yY7C5Za2UCbmJprXWG1i21JzeusY4NkWoEAAAAAKAYwWhtxhjTIak4Sv3IJ/+9V9Jl1trHivp/IelqY8w7JH14Sfu5kv5C0t/57Ko4OaOS9Ic5SQMBawIAADSfiVU3f2FC6tlUftye26X5JtyZ6NKfNH6frSQfEIw284j00L9JW96wvP2W19S3pqV2/yDa+Ct2S53D9akFaKCCF9z/lds8vezsKo/fAABguc2vWfwAAAAAAAAAAAAAAKDBrLWhQnJQqjveq735TEn79vmtzjnp5GLg2VBqxDkmk9tFMBqAunGFmy0NbBxKjUo+b/ef8AlLW+3ChMUt2HntL+zT2sSAc8yBwpQWbPlLiTO5nQSjAQAAAACqxlXC7SfuaJ+SfyjaIdbaj0j6WFHz240xYQLLbMj6qp0DAADQWuYnwo1bGK9vHX5O/0jj99lqbJn0pYc+s3x7fkJ6/GvBcwrZ6mpa6p4PhB+bGpA60rXbN9BE5YLRPnsTTzcBAAAAAAAAAAAAAAAAoF1MFSaVs/7vv1wakoNSPXH/y8K2zT3g2x5TXOuSizfh7Yx1aU3cPyAnTMgOAFRipnBAM94B376lYZiu478rSHM1C/uYTGSDQ+XCHvszZdYBAAAAACAMgtHajLV2VpLfJeIfDQpFW+LdWgxRO2idpMt9xk0XbXeFqzBwTvGalfhnSadE/HhhDfYLAADa2ZrjK587+2i4cbYJIT7dRzR+n63m9A8F90/cunx7/33lw9S+/2xprgYvts48JuX2hR/fNSYZU/1+gRXAK3PI/N59jakDAAAAAAAAAAAAAAAAAFB/49kdzr7hFMFoQbpjfb7t4zn/x3QoOaK4iR/aTqdGfccRPASgXoJCtYaXhKG5jk97cxPK21zN62plYYPKyh3bM7lw60yEHAcAAAAAQBCC0drTjE/bF8JMtNbOSPpaUfOFPkNXZDCatXbcWntPlA9JD1W7XwAA0OY2vry0LbVOevGEdM5npfO+KCXX+M/9+R9Ik3eV34ctVFdjJboIRitrvV9GcICc/52plpm4Rbr+TClzS2U1HfTQZ6ONH76wuv0BK0ihTP4gAAAAAAAAAAAAAAAAAKB9ZLL+QS3dsV71xP2Dv7Ao6uNTHDSUTvoHz4UNxwGAqFzhXEmT0prEwKFt1/HJytOe3HhdamtVYcMsyx3bQ6/jOG8DAAAAABAFwWjtaV/R9m5r7bYI839atH2iz5ipou10hPVljOlVaTBacd0AAAArwyn/WzrqNZLM4nbXeumi70odg9KWN0hHvVJae7J7/s/eJD3yRenmV0q3/4m05/bSMc0IRus9uvH7bDU9m6R4Z/AYaw9/ng8RjCZJczul718o/eId0i//XLrpZdKDn5S8CN8Hd783/FhJ2vLGaOOBFYxgNAAAAAAAAAAAAAAAAABYPVxBLcMp/1AcHNYT7400Pp1cv3zb8RgTegOgXlzHl3RyTDFz+JLooeSIzMFrPEKusVrVKtBsIhsuFJPwTAAAAABALSSaXQDq4gFJG5ZsR/0rzo6i7UGfMQ8WbW+KuI/i8XuttZMR1wAAAGiMWFI67wvSmR9bDLRae5JkijKGEwF3U9t7m3Trqw9vP/Rp6Vn/LY1ecritMFfbmstZe4rUvb78OEgbXixt+6K73+Ylk1z8PBcyGE2SvJx0/0cPbz96jbT7h9L5X5GM/wu0h9x1Vfj9SNLGl0rrzog2B1jBPFt+zHfusXruyWV+lgAAAAAAAAAAAAAAAAAAK14mW3yp06J0kmC0crrjAe9x9pFOjS7fdjzGmdwuedZbFlIEALUw7gjxKg5qTMZS6k8MajI/UTKWYK7D8janvbnSx8jPRJnHLWzA2p7cuAq2oLiJhxoPAAAAAIAf/vLYnu4p2l6IOL94fKfPmPuKto+JuI+ji7bvjTgfAACg8ToGpf5TSkPRJCkZ4U0DhXnpB5dK1x0p3f6Wxe38TO3qDGPsOY3dXyuLdQT3e9nDn+cjBKP5efSr0tTd/n2PfV361mnSl4x099+617j8V9KZH5d6t0idw9Lxb5PO/ixCrxkAACAASURBVGR1dQErTMErP+bdXw8xCAAAAAAAAAAAAAAAAACw4rmCWIpDclCqJ94bafxwURDacFFQ2kF5m9O+/J6K6wIAl0zWccxPlh6PhnzaFtcgGO2gPblxWYV7X3W5xy1s4JyngiZzmVBjAQAAAABwIRitPd1VtN0fcX7xeL+/UhenNTzVGNMdYR/nl1kPAACgtUQJRjto7gnpgU9IP36BNPmraHOf/nlp4Izo+zxo7cmVz11tYqng/sKSXOHc/ur399BnS9t23iDd9GJp353Bc/tPlQZOlY5/i/SCrdIVu6UzPyZ1rKu+LmAFCROMdvt2yfNs/YsBAAAAAAAAAAAAAAAAANSNtdYZ1JJOEoxWTncsWjBacdicK3RICh+QAwBRuMIwh33CMP3agtZYjVxBc35mvAOaLUz79s0WpjVTCH8j+XH+DwAAAAAAVSIYrT19W9LSq7+PNsZ0Rph/StH248UDrLU7tTyALSHpggj7uLBo+9sR5gIAAKw8iQqC0Q7adYO09VPR5nQMSVveUPk+1xxf+dzVxuaC+72lwWjhX+hz2nVDadvWf5VsiCSoza+tfv9ACyiEzDub8H9dHgAAAAAAAAAAAAAAAADQIvYXJrVg5337XIE4OKwnHv49zjHFNJgcXtbWHe9Vb3yN7/goYTsAEMZsYVrTBf+bladT60vbHAGZHJ8Oixpi6Ro/EXGdCUeoKQAAAAAAYRGM1oastTsk3bqkKSnp4ghLXFa0faNj3HVF278XZnFjzAmSzlnSNCPpu+FKAwAAWKGSVQSjVaJjSDr69RVONtKaE2tZTXvLzwX3F5YEo+VrEIw2da9ki1KfHrs23Nzjrqx+/8AKZ60t+RFx2TlV31oAAAAAAAAAAAAAAAAAAPUVFG7jCsTBYVGC0QaTw4qbREm7M3goR/AQgNoKCt9KJ0dL2oZSpW2StCc3Ls8WalZXK4saEucaPx4x6IxzBAAAAACgWgSjta+ri7b/NMwkY8wzJD1tSZMn6VuO4V+UtPSvQ1cYY44NsZu/KNq+xlrHrVsAAABaRdL/Tmh10zkkJXqkZ30z+tz1z5M61tW+pnZVKBOM5i0JRsuVCUZbd6Z06U3l9/mzN0lexBdiL7lRindGmwO0IC9kKJok7dhXvzoAAAAAAAAAAAAAAAAAAPU37ghW6Yr1RAr9Wq164r2hx7oC0NKO4KGoYTsAUI4rfCtpUupPDJa0+4WlSVJBeU3mJ2paW6vKBITNRRkfNegs6n4BAAAAAChGMFr7ulrSfUu2LzLGBIajGWOGVRqodo219iG/8dbaByV9fklTStLnjDHONAZjzAslvX5JU1bSe4PqAgAAaAmJBr+xIvXki3qp/uhzz/nX2tbS7soFoxVCBqOtOUG64Bopfb7UVeYOhQ//m/TwZ6W7rpJ+ckX5Gs/4v9LwBeXHAW2g4IUfu3MqQooaAAAAAAAAAAAAAAAAAGDFcYVvpVNjMsY0uJrW0x2LEIyWcgSjOQLTJgi9AVBjmdwO3/ah5KhipvRyaNdxS5IyjpC11SZqiKVr/ETEx5PHHwAAAABQLYLR2pS1tiDprZKWXjL+EWPMPxhjBorHG2MukXSzpC1Lmicl/VWZXV315LiDzpP0PWPMCUXrdxhj3iLpq0XzP2Kt3V5mHwAAACtfo99YkVyz+G+8K9q87iPLh3JhuXLBaF728OfZPf5jNr5Uet69Uu/Ri9smWX6/P3+zdPffSo9fFzzu6DdIJ7y1/HpAm/AiZJ3tmKpfHQAAAAAAAAAAAAAAAACA+svk/ANahh1hXVguGUspZTpCjXUFDA0lR33bM9ldspYbmAKoHXcYpv9xqDPWpb74Wv+1CG9UwRa0Jzfu27cukfZtd4Veus7Ha+MllysfWsezEe6IDQAAAABAEYLR2pi19gYthqMt9SeSdhtjfmKM+bIx5uvGmG2SbpB0zJJxWUmvsNY+UmYfj0u64snxB50v6V5jzG3GmK8YY66X9Jikj0tamgDxTUnvruBLAwAAWHkWHIFY9XIwiC3eHW1euZAvlCobjLYg3f8P0rdOlSZu9R8zctHy8LxYqnb1DT+zdmsBLaAQ4fXxnQSjAQAAAAAAAAAAAAAAAEBLG3eG5BCMFlZ3vDfUuLQjbG7Y8Vgv2HntL+yruC4AKOYKM3Mdn4L6XCFrq8lkbkIF5X37Tuw5zbfd9bi5/m9O7Dndtz1ns9qfnwxRJQAAAAAA/ghGa3PW2k9IulLS7JLmpKRnSHq5pBdK2lQ0bbekZ1trvxNyHz+S9CJJmSXNRtJZkl4q6bmSiuPjvyzp5dbaQqgvBAAAYKVrVjhVImIw2nF/Up862tmGlwT33/MB6Rdvk/bd5R6z5oTl28f8fvV1HTT23NqtBbSAKMFou6a4EyUAAAAAAAAAAAAAAAAAtCprrTOgJSgkB8v1xPtCjXMFoAU91gQPAagl5zE/IAxzKDXqv5YjyGs1yeTcx+iTHIFmU4VJLXjzy9qy3oKm8nsjrSNJ4wH7BwAAAACgHILRVgFr7SclPVXSv0s6EDB0l6T3SDreWntLxH18S9Ipkj4lKSjG/aeSXmKtfaW1dibKPgAAAFa0wXOkRLg3DVQtuebw553D0eZuuKK2tawGm14W3L/jf8qvseb4ojVfXnk9S41dLnX5v5ALtCsvQtbZDm5ECQAAAAAAAAAAAAAAAAAta39hnxbsvG+fK8QLpcIEoxnFNJj0f19yT7xPXTH/mzkHhe4AQBRzhVntL/i/+Xc4IKDR1Udwo/sxWBMf0BEdm53zJopC5Yq3l9rYeYx6Yv7nmaB5AAAAAACUk2h2AWgMa+1Dkl5jjOmSdL6kIyWNSspKyki601p7V5X7GJf0R8aYtz65j01P7mNG0hOSfmmtfaSafQAAAKxY8Q7pnE9Lt7xKsoX67uv0jyzZb2f4eSf+mbT25NrX0+56NkqnfkC68y8rm5/slzpHfNb8e+nO/11dbWd/orr5QAsqeOHH7pyqXx0AAAAAAAAAAAAAAAAAgPoKCrVJB4TkYLmeWG/ZMeuSaSVM0rfPGKN0ckyPLjxU0pfJEnoDoDaCQrTSAWGY6ZT/jcYncrtkrZUxpuraWlXG8ZimU6MaTKYVU0yeSt+cncnu0hEdRx3aHnecj2OKaTCZ1lBqVDPzB3zWIZwOAAAAAFA5gtFWGWvtnKTv1XkfWUk/rOc+AAAAVqRNL5MGTpN+/ofS+I/qs494t7TxxeHHP+M/pQMPSukLpKHzpFX8ol5VTn5X5cFoI8/yf9xP/itp9NLF75fJX0Rfd/BpUu/RldUEtLCowWir/Q0NAAAAAAAAAAAAAAAAANCqMjn/QJXOWLd642saXE3r6o6XD0ZLJ/2DhQ71pxzBaI7/IwCIynU8SZiEBhKDznlDjqDMrF3Q/sKk1ibW1aS+VuR6TNPJUcVNQuuSaU3kdvvMWx6o5gqtW5dMK24SSidHtX3+wbLrAAAAAAAQRazZBQAAAABtZc3x0ql/V5+1k2ukC74qpQbCz9lwhXTSX0jp8wlFq1b3kZXNG7vc3Td4tnTpT6RYKvq6J1UY1Aa0OM+GH5srSNl8/WoBAAAAAAAAAACoJ2PMe4wxtoqPzzX7awAAAACAaoxn/QNdhpNj3DAzgp54X9kxw6n1gf1pR/BQxvF/BABRuY75Q8lRxUzcOS+dcgc7rvZjVCbrH0yWTi0e013H9omiec51npzv+j9Y7Y8/AAAAAKA6iWYXAAAAALSdlPtuRKHEu6ULvykNnC6l+qW5XdLsY9LaU6REV+n4jrS0kClt795QXR1YzstVNq9vS3B/okfq3SLtvy/8moPnSEc8v7J6gBZnIwSjSdJcTupI1qcWAAAAAAAAAAAAAAAAAED9ZHL+gSoHA10QTnest+wYVzjOoX5X6E1up6y1BNUBqJorRKvc8akn1qeuWI/mvJnSNXO7dIxOrkl9rcazniZywYFmQ6lRaba0v/j86zofDz15bnAGrOV2cY4AAAAAAFQs1uwCAAAAgLbTMVR+TP+p7r7fulMaefZiKJokdY1Kg2f7h6JJ0lPf599+4jvL14HwFiYqm9cVfAc9SdJld4RczEibXild8BUp5r7rFdDOvKjBaNn61AEAAAAAAAAAAAAAAAAAqK9KQ3KwXE+8r+wYV/DZoX7HYz7nzWqmcKCiugBgqUrDMI0xSicd4Y1Z/2Cw1WAqv1c56/9G6oOP6bDj2J4pClQr3j7o4Pwhx+PPOQIAAAAAUA2C0QAAAIBaSw2UH/Pcn0tjly1vi3cvtvcdE21/m14q9R27vK33aGnTy6Otg2CDT6tsXtcR5cckuqTNrw0eE+uQXlGQzv+i1LOpslqANhAxF01zubqUAQAAAAAAAAAA0AyvkLQ5wgd30wIAAADQsqy1zpCc4TIhOVguVDBambC5oGAi1/8TAEThDsMMDm6U3Meo1Xx8coWZSYcfU1eg2d5cRnm7+CbsvM1pby7jO+7gfM4RAAAAAIB6SDS7AAAAAKDtxOLS+t+SdnzLPSaekp75X9L9H5UyN0mdaem4t0jrzoi+v9SAdOkt0n0fkiZ/KQ2cLh3/NqlzuPKvAaVGLpImbo0+L7km3Lgjf0d65Avu/o5ByZjo+wfajOdFG08wGgAAAAAAAAAAaCO7rLXbml0EAAAAADTCdGFK896cb1+5EC8s1x3vDew3Ms5wnIPWxPvVYTq1YOdL+sazO7W56/iqagSwus17c5oqTPr2DafWl53vOi+4wtZWA9fX3hPrO3RecAWaWXnam8toOLVee3MZWfm/gfvg/KBzRCa3i3MEAAAAAKAiBKMBAAAA9XDaB93BaGtPWfw3npJOfldt9tc5JJ3+odqsBX8nvH3x/3Tyl+Hn9D81fJjZ2HMkGUnWvz81EH6/QBvzHD8iLnPZ+tQBAAAAAAAAAAAAAAAAAKif8YAwm2FHkAv89ZQJRhtIDCkZSwaOMcZoKDWqJxa2lfRN5HZVUx4AaCLrPo6ECcNMp/zDHTO5nbLWyqzCG5RnHMfmpY/VUHLEPT+7U8Op9YHhcgfnB50jVnM4HQAAAACgOrFmFwAAAAC0pf6nSC94yL9vwxWNrQW10TEoXfLjaHOOenX4sYkeaeB0d39ybbR9A20qYi6a5nJ1KQMAAAAAAAAAAAAAAAAAUEeZnH+QSmesS71x3lMZRU+sL7A/HTJoLp10Bw8BQDVcx5G4EhpIDpWd7zo+zXmzmvEOVFVbq3IFki0NmkvFOtSfGPSf/2SwmitgrT8xqFSs49D2kPMcQXgmAAAAAKAyBKMBAAAA9dJ7tHTxj5YHWm14sXTyXzatJFQpGfzGkGWO/j3puD+Otv6zvuHuCwpNA1YRz4s2fp5gNAAAAAAAVowf3G/1J//h6Z1f9fSzh6PGnwMAAAAAAAAAVhNXSE46OSZjTIOraW3d8d7A/uHk+lDruALUMllCbwBUx3UcGUqNKG7iZecHBTyu1mOU8zxa9Fi5A812Bq9TNM8ZnukIaAMAAAAAoJxEswsAAAAA2trIs6QrxqW9d0jdR0o9G5pdEaoV75YKs/59Y8+VnvJeqWtU6tkUfe3uI6Tj3iI98I/L201c2vza6OsBbSjqJdNz2bqUAQAAAAAAIvr0jZ7e/P8OP7P/xx9YfeUPYvqd07l4DQAAAAAAAABQatwRpBIUfgN/qViHkialnPV/Q1065R9mUzIu6QhGc4TmAEBY47kdvu2u406xNfEBpUyHsnahpG8it1Obu46rqr5WY611BpKVBJqlRrV17p6ScQcD5dyhdcXr+P9fTeRWZzAdAAAAAKB6sWYXAAAAALS9eEpKn0soWrs46V3+7R2D0gXXSEPnVBaKdtAZH5GOf9viepLU/xTpmV+Xhp5W+ZpAG/EiJqPN5aJGqQEAAAAAgForeFb/+7rlz9FzBend/+U1qSIAAAAAAAAAwErnDnQhGK0SPfE+Z1/Yx9QVejNd2K/ZwnRFdQGAFHDMDxncaIzRUNJ/rCvYq51NF6a0YOd9+4qP5cVBaQdlngw0yziCzYrPHa51DhSmNO/NBdYLAAAAAICfRLMLAAAAAICWcvTrpK2flOaWvPi65kTpstukRE/168eS0pkfk874qFSYkxLd1a8JtBEv4vXSc7n61LGSzWWtJmel4T4pETfNLgcAAAAAAN28VZrwuR7qnh3Sjn1W6/t5/goAABDSm40xfy3pREmDknKS9kjaLukmSddba29sYn0AAAAAUBPWWmVy/iE5w45wLgTrjvVqn/b49rkCz0rGOUJvJOmmfd/VQHKootpckialLV0nqi+xtqbrNoJnC3piYbt2ZR/37R9IDGpT53FKxpINrgxovgVvXo/M/UYHClOH2nY6flaihGGmU2Pakd1e0j7uOJ+0i4LNa/v8Vu3JjR9qm8jtdo4vPpa7HuM9uV26bf9PtMexVsk6AeeSG/ddr/7EoLO/EnGT0KbOLRpMjtR0XQCAv8nchLbNP6i8Lb1IJ2U6tLnreK1J9DehMgAA0M4IRgMAAACAKHo2SpfeLN3/MWnfr6XBs6WT3lWbULSljCEUDfBhI46fy9aljBXrYzd4+ttvWk3NSWNrpX95TUy//VQuLgcAAAAANNf2Pe5n9PvnpPW8LxIAACCslxdtd0jqlbRJ0jMl/ZUx5nZJf2mt/V6jiwMAAACAWpku7NecN+vbFyUkB4f1xHt9241MYODZUv2JQSVM0jcM4esTX6iqviAvSr9Ol657Ud3Wr7Xp/H596on36+H5+wPHrUukdeWR79b6jo0Nqgxovodm79OndrxfM4UDocYPp9aHXtt1LJvI7gq9RqvJZHfqnx5/n8ZzO0KN74x1qTe+PGwynfJ/3PI2r6t3ftS5VnEQ2kBiUHElVFC+ZOx1mc+Hqq8SF/Y/Ty8ZfoNiJl63fQDAauZZT/898SV9Z++1geOMjK5I/54uXveCBlUGAABWg1izCwAAAACAltO7WTrr49IlP5RO/5DUsa7ZFQGrhhcxGW2u9P1Xbeu/77R6x1cXQ9EkaeeU9LJ/8fRowMXnAAAAAAA0W4GnrQAAALV2lqTvGmP+3hhT87unGGOGjTEnR/mQtKXWdQAAAABob5ncTmdfcRALwumO9/m29ycGlYylQq0RM7HQIWq1dF3m83po9r6G77dS35j497KhaJK0N5/RF3Z9vAEVAStDwRb02Z0fDh2KJrnDznzHOs4PQeeUVvel3Z8MHYomLYaLFv/JcKjC43rx/03MxDWUGqlorWr8aN//6FfTP2v4fgFgtbh/9s6yoWiSZGX1n5l/0+PzjzSgKgAAsFoQjAYAAAAAAFqGjRqMlq1PHSvRtXeUPjhzOemff8wV5gAAAACA5gp6Zjq7ip67AwAAVOEJSZ+W9PuSLpB0kqQTJJ0v6S2SvlM03kj6K0nvr0MtV0q6O+LHf9WhDgAAAABtbE9ut297h+nUmnh/g6tpDz3xXt/2qEFzzQqmu2fmF03Zb1TWWt1x4KbQ4x+d36pMtn1Dm4ClHpq7V/vye0KPjymudcnh0ONdIWoHClOa9+ZCr9MqDuSn9JvZuyLNSadKH6PueK96HOGZLr3xNeqK95S0VxqyVq3b9/+kKfsFgNXg9v03Rhof5XdhAACAcghGAwAAAAAALcOLGoyWq08dK9Ft2/wfnA9dTzAaAAAAAKC5goLOZxYaVwcAAEAL+rmk50raYK39A2vtZ6y1N1tr77PW/sZae4u19hPW2ssknS3pwaL57zLGvLDhVQMAAABAleYKs77taxPrZIxpcDXtYWPHFt/2zZ3HR1rnqM7jalFOZNOFqabsN6r9hUnNef7fvy67s0/UqRpgZdm58Fik8Zs6j1HcxEOP9wv9OqgdAwjHszsiz3Edw2t1LtjcpHPEruzjTdkvAKwGUX9X5XdbAABQSwSjAQAAAACAlhE1GG02W586VqL7d7n7DswTjgYAAAAAaJ75gOBygtEAAADcrLXfstZ+19qgqNlDY2+X9HRJDxR1fdCYCFeQAgAAAMAKsGDnfds7Yp0NrqR9nN53rvoTg8vaumLduqD/0kjrnLv2IvXE+2pZWigFFRq+z0pUEr6UyQW8+Q9oI7sjBnldvO4FkcYPJIYUV8K3rx1/zqJ+TX3xtTpnzbN9+y4aeL5iIS83jymmiwae79t33tpL1BNr/Dkik92lgm2N8wQAtJqo55t2POcCAIDm8X+WDwAAAAAAsAKVv+xnucmZ+tSxEvV0uC8mn5yR+nhPIAAAAACgSaYDws9WU6g5AABAvVlr9xpjXiHpdknmyeYTJD1b0vdqtJt/lvTViHO2SPqvGu0fAAAAwCqw4BGMVmt9iX796Ya/1zf3/Ie2zz+osdQGPX/oVRpMjkRaZ21inf5s44f03xNf1Lb5B5TzAu6OUoE5b0Y5W/rigbVeTfdTL64gCKOY4iauvC19vDJZwiOwOoxnn/BtT5kOdca6JS3+QWusY6Oe2X+5Tut7eqT1YyauweSwxnOlAWyVhBaudJmc/9cUV2JZgGUyltTmzuP1gqFXqy+x1nfOCT2n6o+P/Bv9YPIbenxhm/zu02CM0REdR+migefrhJ5TfdfpTw7qnZs+uHiOmHtQeZuv4Ctz8+RpujBV0l5QXntz40qnxmq6PwBY7eYKM77HXUnqMJ2+gdaZ7E5Za2WM8ZkFAAAQDcFoAAAAAACgZXgRg9EmpiNOaGFdSXcw2oGAC9ABAAAAAKi3mYDws5ms1eHMDgAAAFTLWvsLY8x3JT13SfNlqlEwmrV2XNJ4lDlc/AIAAAAgqgVvzredYLTqDKVG9fqxt1W9znBqTG9c/84aVFTq/+38R926//sl7Z5aIxht3BG+tKHzaG3o2Kybp24o6XOFGwHtZnfOPxjteUMv16XrXlSTfaRTY77BaBOO0MJW5gp7O7XvHL1p/Z9FXu/EntN0Ys9p1ZalkdQRetP6P696HT8L3rze/uDLfft2Z58gGA0AaswV+itJrx37E316x4dK2rN2QfsLk1qbWFfP0gAAwCoRa3YBAAAAAAAAYfncgCzQxHR96liJUgHx9/v93ycIAAAAAEBDuIK8y/UBAACgYtcXbT+1KVUAAAAAQIUWPP8/HhOM1v5ixv9yR8+2RjBaxieQSZKGk2NKJ/0De1zhRkA7yXoL2pvL+PaNpI6o2X5cP2eu0MJW5gp7SydHG1xJ43TEOjWQGPLtG8/6H38BAJVz/Z6aMEkd23VK5HkAAABREYwGAAAAAABahkcwmlPcuPsOzDeuDgAAAAAAigWFn81mG1cHAADAKrKtaDvdjCIAAAAAoFILnv8bnjpMV4MrQaPFFPdt91RocCWVyWQdQUWpMaVT/mFFe3LjKtjW+PqASmVyO2Xl/ybgmgajOX7OXCFirSzoeNPOhlPrfdt3E4wGADWXyfkHnKWTo+pNrFF3rNe3f9wxDwAAICqC0QAAAAAAQMsgGM1tIe/u208wGgAAAACgiYKC0YL6AAAAULG5om2SAwAAAAC0lAVb/LRmUUess8GVoNFixv9yR896Da4kOmttQHjEmNJJ/7CigvKazE3UszSg6VyhVTHFNZQcqdl+0kn/YLTJ/ISyXvu8MDlbmNaMd8C3z3WsaReuIL3x3BMNrgQA2l+5EE5XGGcmSzAaAACoDYLRAAAAAABAy7ARg9Gm5qRsPuKkFhUUjHZgfnU8BgAAAACAlWlmwf28dCbbwEIAAABWj6Giba6uBgAAANBSFjz/O0ESjNb+jONyR08rPxjtQGFK855/qF86NaahlH9gkyRnoBrQLnZn/UOrhpIjiptEzfbjCmiRpD258Zrtp9kyOf+gGskdDtcuhlPrfdtd4XsAgMq5Q39Hl/0bdh4AAEBUBKMBAAAAAICW4VWQ77VnuvZ1rETBwWiNqwMAAAAAgGKzAeFnQX0AAACo2DlF21wVCAAAAKClEIy2esWNIxjNrvxgtEzWHQAxnBxVZ6xLa+ID/nMDQo6AduAKRhtJHVHT/Qwmh50Bi+0U0uI63iRNSmsS/seZduH6ntmX3+MMpwQAVMZ1vkknF4NIXYGkmSy/2wIAgNogGA0AAAAAALQMW0Ew2r5V8Bq3tTYwGG0/wWgAAAAAgCbKB1yrlCs0rg4AAIDVwBjTKemKouYfNaEUAAAAAKiYOxitq8GVoNFcgUaeWiAYzRG61BnrVm98rSQpnRr1nxsQqga0g/EGBaMlTFLrkkO+fe0U0uIKUxxKjirmCJhsFyPJ9c4+jqUAUDsL3rymCpO+fUNP/k57MCCtWCa3U7aSi38AAACKtPczXAAAAAAA0Fa8SoLRZmtfx0qTLwSHxh0gGA0AAAAA0ERBz1nzBKMBAADU2l9IWnpFaUHS/zSpFgAAAACoyILnfzfMjlhngytBo8VN3Lfdsyv/BQVXMFo6OSpjzKHPo8wF2oG1VrsbFIwmBYe0tAtXAJgrfLGdrEumlTAJ377d2R0NrgYA2teEI4RTkoafPNemU/7n3HlvTtOFqbrUBQAAVheC0QAAAAAAQMsICkZLOP7KsRqC0Rbywf37CUYDAAAAAKxQBa/ZFQAAAKxMxpjXGGNGIs75fUlXFTV/zlq7vXaVAQAAAED9LVj/NzylDMFo7S5m/N8I6Gnlv6Aw7gwqGvP9fKlM1h08AbS6A4UpzXn+b+YdSa2v+f6GHAGEE230c+YOYvQ/xrSTmIk7v85xRwAfACA61++nMcU1kExLkoYd51xJGg8IVgMAAAiLYDQAAAAAANAybEAw2kCPf/u+uYBJbaJcMNoMwWgAAAAAgCYKemaeX/nXMQEAADTLGyU9Yoz5vDHmecYYxyshkjHmLGPM1yT9qySzpOsJSX9d5zoBAAAAoOYWPP83PHXECEZrd8ZxuaNnV/4LChlXMNqSAB9XmM9EbldLfI1AJXYHhFWNpI6o+f6cAYSOMLFW5Ap5SwcE1LSTYcf3ze7sjgZXAgDty3XeHEqOKG7ikqTe+Fp1LmRZYgAAIABJREFUxrr85zt+NwYAAIgi0ewCAAAAAAAAwvIcV1IbI/V3SZkDpX37/G8y11bKBaOV6wcAAAAAoJ6Cgs7zhcbVAQAA0IK6JL32yQ/PGPOgpG2SpiQVJA1KOlXSiM/cvZIus9b6XyUJAAAAACtUwRaUtznfPoLR2t/BkIVinl3ZLyhYa53hEcNLQppcgU05m9X+/KT6k4N1qQ9oJlcwWlesR73xtTXfnyscbE9uXAWbV9y09mXVC968pgqTvn2uY0y7GUmt923fnXOH8AEAonGG/qYOn2eNMUonx/TYwsOl89sokBQAADRPaz+DBwAAAAAAq4rrQuqYkfq7/fv2zdWvnpWiXPDZfC7gCnQAAAAAAOos6Flp3pWCDgAAgGIxScc/+VHO9yW93lr7eH1LAgAAAIDay3rzzr5OgtHanlHMt92T1+BKopkpHNCc538X13RySTCaI7BJksZzOwlGQ1tyBaONpI6QMabm+1sa2LKUJ097c5mWDw/LZN33QVh6vGlnI6kjfNvHsztkra3L9xUArDauYLPic006NeofjOYIVgMAAIjC/y+FAAAAAAAAK5DrWmkjqb/Lv2+f/3uN2kq2bDBaY+oAAAAAAMCPK+hckvKFxtUBAADQYv5B0pckbQ85fkbSdZIusdZeQigaAAAAgFa1EBCM1hFzvEkMbSPWosFo47kdzr6lIUzd8V71xPt8xxEegXYVFIxWD0MBAYSZnDtUrFVMOL6GmOIaSA41uJrmGE6u922f92a1v7CvwdUAQHtyBXEWB4y6Qjnb4ZwLAACaL9HsAgAAAAAAAMJyBaPFYlJ/t5FUOmA1BKMtlAtGK9MPAAAAAEA9BQWjPbC7cXUAAAC0EmvtdVoMOpMxpl/SyZI2SBqR1K3FG+PukzQp6T5Jd1lriZ0FAAAA0PIWbEAwmulsYCVohriJ+7Z7K/wpryvUrMN0ak28f1lbOjmqmcKB0jUIj0CbGs/6BweOpPzDrarVEevU2sQ6TeX3lvRlsjulntPrst9GyeT8jzdDyRHnMbTdDAd874xnd2htYqCB1QBA+8l5WU3mJ3z70kUBpK5jMqG/AACgFghGAwAAAAAALcN1IXXMSGu7/fum5upXz0pRNhgt15g6AAAAAACI6je7pR37rNb3m2aXAgAAsGJZa/dJurnZdQAAAABAIyx47jd8dcQIRmt3xsR82z3rNbiSaFyhZunUmIxZ/hpIOjmmbfMPlq5BeATaUN7mNOH4+RhJHVG3/aaTo/7BaG0QQOg6VqRTo77t7ag3vkbdsV7NetMlfePZHTq2++QmVAUA7WMit1tW/hfvpFNjy7eT/uefWW9aM4UD6on31bw+AACwevj/pRAAAAAAAGAF8hzBaEZSn+M9bwfmHZPayEKZ4DOC0QAAAAAAzVTumfm1d7T/c3cAAAAAAAAAQDjz3ryzL0UwWtuLOS53tFrhwWiuoKLkWGlbqrRNkjI5gtHQfiayu+U5fn7rG4zm+DlrgwBCV7jbkCOYph0ZYzScWu/btzv7RIOrAYD24/q91CimweTwsjbX77ZSe5x3AQBAcxGMBgAAAAAAWobrMulYTFrjDEarWzkrRrYQ3E8wGgAAAACgmWyZ3LO3fYVgNAAAAAAAAADAogVHMFrSpBQ38QZXg0aLOf6PC7bMm+SabNwRHuEXFJF2hBdN5HbJlntRBWgxrpAqI+MML6uFdMr/56wdAgidQYwBwTTtyBWsN57b0eBKAKD9ZLL+IZzrkmklTHJZ25r4gFKmw3+dNjjvAgCA5iIYDQAAAAAAtAzPcdNHI6nPEYy2fxUEo7kel4MIRgMAAAAANBOX8AAAAAAAAAAAwnIFo3XEHG8QQ1uJOS53tCrzJrkmcwYV+YSgucKL5r05TRemaloX0GyuYLR1yWElY6m67XfIEbo2kdstz67s40mQnJfTZH7Ct88VutiuhlPrfdtd33MAgPBcgWZ+5xpjjPP323HH78gAAABhEYwGAAAAAABahue4kjpm3MFoB1ZBMFqhzBXmcwSjAQAAAACayJKMBgAAAAAAAAAIacGb821PmY4GV4JmiBn/yx29FRyMNlM4oFlv2rfPL7gnKLxoPLerZnUBK8HunH9I1UjqiLrudzjl/3OWtznty++p677raW9+XNZxW6q0IwyuXbm+hzLZXSrYQoOrAYD24gz9dQSguX6/dQWsAQCA/5+9O4+O5Czsvf+r6kVSt7bRqFujGW941djgGTtgsyRsISwhQGLWhPAmARJ4sydkuQnJzfoGSHJzk8ube8EkkJATDA4xEAw2YFZjY8DYI49taWzP2GN7tHRLo7VbvVbdP8Zjy9P1VFdL3a1evp9zOBxXtaofaaqrt3q+haAIowEAAAAAgLZhmkdt29JgF4fRnCrnfOUIowEAAAAAdhBhNAAAAAAAAABAUHnX+4SvHruvySPBTrAV8lzeypEbUzhC8o5H9IeG1GvYn/22BbSjVGHGc/mYRzSwnkZ9AoTpNg4QpgzHCEuWdkfGmjyanZWMeO9DjspaLM43eTQA0FlMQTNTAM0UTEsX2vc5FwAAtAbCaAAAAAAAoG2YAmCWpIFey3PdaheE0cpVJpi3exjtnsdd/fS1ji7+o7L2/3FZb/tnR48sMKseAAAAANoF7+AAAAAAAAAAAEHlHVMYzXDlTHQU2/Ke7ui6Va4euoNShnBE1OrRUGhXxXLLspSIGOIRhm0B7Wq+cMJz+VhkX0PvNxbqVzw04LluoY0jLQuGqNuu8KgidqTJo9lZSUOER5LmDUE+AEB1Zbekk8W05zrTa1he2wIAgEYhjAYAAAAAANqGaSK1bUkDhvPeCiWpUOrsKdimYNxpJUcqVauntaipWVc//AFHn7rT1UMp6ci89O/fdXXVXzlaXG/P3wkAAAAAAAAAAAAAAACAtwJhtK5mG6Y7OmrdMFq64B18SETHZVneF3xNRPd4Lm/nYBNwpkx5TevlVc91Y9HGhtGkzoy0mI833seUTha1ezQSTniuSxmCfACA6haLaeNr74QhSmlavl5eVba8XrexAQCA7kMYDQAAAAAAtA3H9Q5hWZY06HPe25r3uXIdI0jzLF9q/Dga4R+/7mo9X7l8YV36h68SRgMAAACAdmB4Ow8AAAAAAAAAQIU8YbSuZlshz+WO28JhNENkKRExh4o6MdgEnGneJ07VnDCa92PQFBdrB+bjjfcxpdMlo3s9l88XZpo8EgDoHH6vR0cjY57L/V73LhQJ/wIAgK0jjAYAAAAAANqGYzi3ybakAZ/z3lY7PYwW4JyvXLHx42iE24+aZ8/fcBcz6wEAAACgHfDuDQAAAAAAAAAQlDGMZvU1eSTYCbZhuqOjcpNHElzKEFlKRM2holFjsIlwBDqHKYzWY/VqKDzS8Ps3PQbTbRxoMR0jTMeUTmcK7PlF+QAA/kwB0eHwbkXtHuO6sBXxXJfi9S0AANgGwmgAAAAAAKBtmCZSVw2jbTRkOC3DcatPMW/HMJrjuDri8z3Y/bPSg/NMrwcAAACAVhfgbSsAAAAAAAAAAJKkvOt9sleP7XOCGDqGbRnCaG6Aq4fukHTREEaLmMNopmBTxllTprxWl3EBO22+MOO5PBndK8uyGn7/CWOAcFZuG36BWXbLWiymPNf5hRg7WTK613N5qui97wEAqtvKa1vbss3Pu4btAQAABEEYDQAAAAAQSHrN1d99xdF7P+PopsPt92UwOoNj2PUsSxr2uSDo/GpjxtMqygHO+WrHMNpjS9JGlXF/bpLjEQAAAAC0ujacVwAAAAAAAAAA2CF5J+e5nDBad7AN0x0dtWYYLVteN4bMkj6hoqRPWCJd8LmaKNBG5gsnPJePRfc15f5HDY/BvJvTenmlKWOop6Xigsoqea7zi9V0MtO+tFI6qZzT4VfVBoAGMb0W9XttK5kjnekCYTQAALB1hNEAAAAAAFUdX3R15V84+p3/cPW+m1y9+oOOfvv61jzJBJ3NNJHatqRI2FJywHv9zEpnz8A2BeM2qxYYa0XH0tVvc+sDnf1vCwAAAACdIMg7t2KJ93cAAAAAAAAAAMJo3c62Qp7LHbc1z1lNF80RM79Q0WB4lyJW1LBN4hHoDKkdDqMlI3uM61I+j91WteAz5tHoWBNH0jrGonuN61KFmSaOBAA6h+m1aLUIZ8LwvMtrWwAAsB2E0QAAAAAAVf3lF1ydWH76sn/4qqvJx5iwiuYyBcAs69T/7x32Xn9iqTHjaRXlAOd8FbwvEtfSsoXqt5luv3NTAAAAAAAe2jHoDQAAAAAAAACoP3MYra/JI8FOsA3THR21ZhjNFN6JWFENhUeMP2dbtjEe4Rc/AtqF45aNIZRmhdH6Q0PqNTx3pAvtF2lJGf6eg6Fdxt+z0+0KjypsRTzXzRvCfAAAM8cta6Ew77kuETUHRyVzOC1d4LUtAADYOsJoAAAAAICqbnuoskblutL7biKMhuYyhdHsJ8Jo+0xhtGXv5Z3C9HfZrFBu/DjqrRTgXLZjC1KhxLEIAAAAAFqZG+BtW5A4NgAAAAAAAACg85nDaL1NHgl2gm15T3d05cgN8oVDk5niSqORPcbf5bRE1BSPaL9gE3CmxWJKJdf7ir7NCqNZlqXRDgoQmo4N1UI1ncy2QkoaQjymcCUAwGyptKCyvJ+/TeGzJ9cbXtuulpeUcza2PTYAANCdCKMBAAAAAKqaNnz3e/2drXeSCTqb6bym02G0vcOW5/qZ5c7eV8sBAmIF7++nWloxQMyt7EhH040fCwAAAABg64K8K98oNnwYAAAAAAAAAIA2kDdMmu+xepo8EuwE22e6o6MAJ8o1WdoQV0oawhCbmYJNpm0C7WS+cMK4Lhnd27RxmCIu7RggNMXcEoZjSbcw7U9++yAAwFu6YH4dOlolxOkXTlvw2S4AAIAfwmgAAAAAAKBtOIaZ1NYTPbTxIe/1C+uNGU+r6NwwWrCg3fHFBg8EAAAAALAtptD5Zmu5xo8DAAAAAAAAAND68q73B8Y9dl+TR4KdYFkh4zrHbcEwmiGu5BeGePI2hnhaOwabgDPNF2Y8lw+Hd6vH7m3aOIyPs2L7Pc6Mx5sAIcZONhbd57k8ZdgHAQBmKcPz42Bol3qrvB/bFRlVSGHPde34vAsAAFoDYTQAAAAAwLas5YKFi4B6ME2ktp8Iow0ZvmtZzzdmPK3CFIzbrFBu/DjqrRhwzCeWOQ4BAAAAQCsjjAYAAAAAAAAACMJ1XeUd75O9mhnSwc4J+Ux3dNR6J8GZ4hFBQkVJQzxttbysnLOxrXEBO22+cMJzuSli1SiJyB7P5eniXFPHsV2u6xrHPGr4HbtFMrrXc/l84YTcIF9UAwCeZI5wVn+uCVkh7Y4kDdttr+ddAADQOgijAQAAAAB8VftCcHalSQMBZA6AWU+E0foN5751+uTqcoALYRZKjR9HvZUCnsc2s9zYcQAAAAAAtifI6earzO8BAAAAAAAAgK5XdAty5X0yFGG07mBbPmE0N8CJck20Uc5ovex9Eq0pxvS02/gEJhaIR6DNtUwYzfA4y5TXlC2vN3Us27FSXlLRLXiuSxgii93CtE/l3ZxWy0tNHg0AtLe0KfobMMJpigObtgsAAFANYTQAAAAAgK98lZjSLEEiNJGp02c/EUYb6PFe3+lhNFMwbrN8qf2uelYMGEY7wXEIAAAAAFpakAtxr2y03/tWAAAAAAAAAEB95R3ziV6E0bqD5TPd0RTN2ynpojlelozurfrzu8KjCils2DbxCLS3VKuE0XyiYX6P4VaTLpiPCUlDhKZb+B1vTYE+AIC3tCHOawqeVdzO8LybKsxseUwAAKC7EUYDAAAAAPja8L641JNmV5i0iuYxBcCeDKP1Wp7r1/MNGlCLKAc436tQJXLYioKG0WaXOQ4BAAAAQLtb7fCoOQAAAAAAAACgOt8wmtXXxJFgp4SskHFd2Q14QlmTmEJFYSui4fDuqj9vWyHtjiQN226fYBNwpo1yVivlJc91zQ6jDYVHFLYinuva6XG2YIi4xex+xUL9TR5Na+kPDSoeGvBcR4gHAIJzXMf4fOMXGn3a7aJ7PJe3U4wUAAC0FsJoAAAAAABfG0X/9fNrzRkHIJnDaNYTPbT+Hu/1uaJUKnduPCtQGK21zgkLJGgY7cRyY8cBAAAAANieIO/ICaMBAAAAAAAAAPLuhnFdj93bxJFgp1g+0x0dBThRrolSRe8w2mhkTLYVbNpmIuodmUgbtg20g1TRHKMai+5t4kgk27KViJgiLe3zOEsZQoymY0i3SUa896v5wokmjwQA2tdK6aSKbsFzXdDnm6QhoLZcWlTByW95bADQbR7NHdVD2fu0Ujop1+3c+ZBAEOGdHgAAAAAAoLVteH+u/aRV83lIQN2ZPsuznwijDfic+7aWk3bF6z+mVmAKxm1WKDV+HPVWCnge2wxhNAAAAABoaUHOzeEzJgAAAAAAAABA3jFfRYMwWnfwC4q99+g7Zcna0naHI7t1Rf/z9LrEzypk1Tal0nVdfX35Rt2+/BXNF54KPjnyvvJnwhCEqOW2t618RXesfL2mcW7WG+rTxX3P1JvGflFD4ZEtbwc47YHsYX1+4RN6NHdUjut/cqdriBhGrKh2hRONGJ6vRHRcs4XHKpbfuPAJfXHhU00fz1aYjzfe0bduMxbdq4dzRyqWf23p8/rG0he3vN14qF/741fojcl3KBbq384Qm+r+zN26afH6QI/XzWKhuCZiB/XGsXeoPzTYwBECrc1xHT2eP6apzKSms4c0VzihXrtPL9n1Gr1w+JVNGcPDGw/o8wv/roc3jqjkbn8iSDw0oEvjB/XG5DvVF/KeVOMXDA36fOMXUPvtB39my6/lTWzL1rm9F+o5gy/SC4ZeJtsK1XX7ALBTvnzyBt21dpskKWr1aDSyR4nouK4ceJ6eM/iiHR4d0FyE0QAAAAAAvnJVPkNfNZ+HBNSdKQB2+usRvzDaer5zw2jlAN9ZF7zPiWhpxYBjnl+TiiVXkXB9vygDAAAAANRHoDAanzEBAAAAAAAAQNczhdEs2YpY0SaPBjshJHPMwBQGCmKxOK9blj6rjLOmt+35tZp+9utLn9en0x8NfPukTxDiTImoOTJR1tYjGJnymu5e/44eyx/TnzzjH2uOwQGbPZo7qg8+9mfb2ielUyFAv/hho4waYi6u3G3/TjvN7xjSTZLRfZ7Lt/tvvFpe1ndXv675wgn97jkfkGW1/nnKR7NT+t+P/+WWnjPXyiv6/to3NVM4rj849+925PEK7JTFYkrTmUlNZQ/pSPYeZcprT1u/IumT8x+S6zp60a4fb+hY5vKP64OP/4lyTv2uMLhaXtIdq1/XfGFGv3PO+z2PZ+nCnOfPxkMDgeOQI5GEbNlyPCKp23ktb1J2pYc27tdDG/fr28tf0k+PvVvn9V1c9/sBgGZLF56KVRbcvGYKxzVTOK69Pefs4KiAncG7EgAAAACAr42C//rV+n3WDlRlmkdtP/EJR3+P+WeXsnUfTsswBeM2K7ThuRtBw2iueyqOBgAAAABoTQHetvIZEwAAAAAAAADAGEbrsXvbIkaC7bMaHGH53so3K0IXflzX1deXb6zpPhKR4GG0ZA233YqF4rwOr9/Z0PtA57t1+ea6BMTGDPGqRksYwmidoJbjTScbi+5t6PYfyT2g47kHG3of9XL7yi3bjg+dyD+ihzeO1GlEQGvaKGd0aO0OfXL+w/rTY7+sPz72S/r3+X/UXWu3+b5W/Gz641opnWzo2H6w9u26RtE2ezh3RMdzD3muSxdnPZfX8lwTtiIaiSS2NLbteix/TH/z6O/rurkPKVte35ExAEA9uK6rdNE7Vsnrf3QjwmgAAAAAAF8bRf/1a97nIQEN4VReOEaSZD9xzttAr/ln/+ZLQaZht6ey4e+yWTuG0UoBfq/TTiw1bhwAAAAAgO1xA7wlX93o3PftAAAAAAAAAIBg8oYAQI/lc8VMdJT+0KBCCjds+2WVdCL/SODbZ8prWiymarqPPT1nNeS2W/Vo7mjD7wOdrV770N6ec+qynVrt6Tl7R+63GfZEG38MaQd7e85t+H2YQkKt5vH8wy21HaBVlN2SHsrerxsXrtPfHP99/e5Db9O1M+/Xt5ZvUqo4E3g7eTen/1r49waOVJrJP9rQ7T9qOJ7NF7z/DrUGRvdEd+5515WrW1du1p8+/Cv6zspX5QY5YQkAWsx6eVU5J+u5rpOjz4BJ4z4lBAAAAAB0hI2C/3omraKZHMPudvpaoPEeybK8J1x/52jn7qumv8tm+TYMoxVruGDZzErjxgEAAAAA2J4g78hXie8DAAAAAAAAQNfLO94fFvfYfU0eCXZKj92rS2LP0v3Zuxt2H+nCnC6OPSvQbWsJZUjSrvCoLuy7NPDtd0fGdH7vhI7lpmu6n1qki7MN2zY6n+u6dduHnjP4orpsp1YX9l2q4fBuLZcWd+T+GyURGde5vRft9DBawlh0n87pvdAY+6mHdHGuYduup6yz3lLbAXaK67pKFWc0lTmk6eykHsgeVs4QYa7VHStf04uGf1zn9F5Ql+2dyVENkyi2wPS8njKE0cai+2ra/lWDL9K9mTtrHlc9rZdX9G9zH9TtK7foLWPv0r6e83Z0PABQiwWf152J6HgTRwK0BnunBwAAAAAAaG0bRf/1TFpFM5kmUttPfMJhWZZnFE2SIqGGDKkllJ3qtyk09vuxhqgljLaw3rnhOwAAAADoBqv1Of8UAAAAAAAAANDG8m7ec3mP3dvkkWAn/dz4b+ic3gsbtv1aYmfpQvAg1HB4t9697w9lW7WdrPgLe39L49FzavqZWtTyOwBnWi+vbjskE7Yi+vnx31Jyhybxh6yQ/t9979VwePeO3H8jjIQTete+/ybLsqrfuEu8ffw9Ncd7atEux9JMuT5Bs3ptB2imtdKK7ly9Vf8290H90bFf1J89/Cu6PvUR3bP+vbpF0STJlatPpz4q1zRxZZvKbqPDaJXBHcctG4NpyejemrZ/5cAL9PKRa2Rp55+jjm5M6X2P/LZuSP1LXfcBAGiklOF1Z4/Vq4HQUJNHA+y88E4PAAAAAADQ2jYK/h/WE0ZDMzmGANjmr0x+dEL6qsfFE5c7+HuMQGG0UuPHUW+1hdEaNw4AAAAAwPYEOReUz5gAAAAAAAAAAHnDZHXCaN1lIDys/3bu32qhMKeUIdAQxC0nP6vp7GTF8lriNqb7T0b26k1jv/jkfw+EhrSv59yao2iStDsypj867x80V3hcS6WFmn/+tAeyh/XlkzdULE8XZ+W6LgElbIkpkiJJ79z7e+q1+3x/Pmr16JzeCxS1e+o9tJqc3Xu+/vL8a3Uif1xr5ZUdHct2DYaGtbfnXNmWvdNDaSnJ6Lj++LwPaq7wuJZLi1vezt1rt+u2la9ULPd7LLSKsltWzsl6rvupxM9rX8+5Fcu/cvIzOpK9p2J5trxW9/EB9VZ0Cjq6MaWp7CFNZyb1WP5YXbcftsIKW1HPx9VDG/fp0Pp3dMXA8+t6n5LkyntyyBX9z9cLhn8s8HbuWrtNt6/cUrHc67XwyeKCSm7Rczu1Ridty9ZPJv4fvXzkGj2WO6ayGhN6c11H3175sibXv+t7O0eObln6rO5cu1VvSL5DV/Q/j9fFAFqa6XVnIjrO8QtdiTAaAAAAAMBXrkpMabWDY1NoPaZ51Pamz/V+82W2vjpd+WXQsvf3vB3BCTDBvB3DaCXCaAAAAADQEYKE0Vb4jAkAAAAAAAAAul7e8b6KBmG07jQa3aPR6J4t//yxjWnvMFpxLvA2TBG1fT3n6dL4FVse25ksy9J4z9ka7zl7y9vosXo9w2gbTlaZ8pr6w4PbGSK6VLrg/XjpsXrbLixiWyGd3Xv+Tg8DDWRbtvb2nKO9PedseRs5J+sZRlsozslxy1sKYDbLRjljXDcRu9xz/z+8/n3PMFqmzInZaD2O62gmf1xT2UlNZw7poY37VXQLdb2PfT3naSJ2QPvjB3Vh36Wazk7qQyf+yvO2N6T/Vc+MP1sRO1rXMTiudxgtEd1T0+vPbDnjHUYrzslxnacFNlPFGeN2EtHxwPe5WSzUr0vil2/pZ4O6rP+HdHj9+7o+9REtFlO+t10uLeqfZv5al8au0JvGfknJLf5eANBopvdgiQjHLXQnwmgAAAAAAF9574t+PGnV+zwkoCFMATB700XPhmPet8mXpFzRVW+kfU7CCKrs/d3X0xQac6GdhirWMOZFvn8HAAAAgJYVoIvGZ0wAAAAAAAAAAMJoqCvTpOF0YVau6wYKOqUK3pGIVgwp+EUr0sVZwmjYknTROw44Gt3TVlE0ICjTc0fJLWmptKjdkWSTRxRcxlkzrouHBmpannU4MRutYbm4qKnsIU1nJjWdndRaeaWu2x8Kj2h/7IAm4gc1ETugwfDw09Y/K/4cTcQOeMZ2F4vz+vrSjXr57mvqOiZH3pNDLNmey02ShsBwyS1qubSokUjiyWXzhROetx0O71av3VfT/Tbbs/qfo0til+tLJz+tr5z8jEpuyff292fv1l8+8ut6+cg1esXI6+setgOA7TK9B0tsIxwPtDPCaAAAAAAAX6YQ1WmrGwp8ggiwXY4hALZ57zOF0SRpKSOND5vXt6tqj1NJKvp/v9OSSjWF0YJMswcAAAAA7AQ3wFu2TF4qO65CNp8xAQAAAAAAAEC3MobRrNaejI/WlIzu9VxecPNaKS9pODzi+/Ou6xonJJu2vZMGQkPqsXqVdysfR6nCjJ7Rd8kOjArtbqE457k8EWFSPjrTqM++nS7MtnQYLVs2x8xiof6alvttC2iknLOhB7P3aiozqensIc0VHq/r9nusXl0Yu+zJGNp49GzfuVCWZen1yV/QXz3y23I9gmU3n/wPXT30Eg2Fd9VtjI7rPYkiZIVq2o7v8aw497QwmjkG3Hqveb1E7R69ZvStumrwxfpAI2cQAAAgAElEQVTU/LWeIbvNSm5RX1z8lL6/+k29KfmLuqz/h5o0UgCozhhGMwR8gU5HGA0AAAAA4KtacKnkSLmi1MdFMtAEpt1x85zpYZ9z4JY3OjOMVjYE4zbLt2EYrVhDGG2B798BAAAAoGUFTVmv5fyD5wAAAAAAAACAzpZ3NzyX99i9TR4JOkEiao5BpAozVcNo6+VVbThZ7223YBTKsiwlouN6PP9wxbq0IW4FVJMueO87frEVoJ31hWIaCA1prbxSsS5dnNOEDuzAqILJlNc8l4cUVo/l/VoqbnuH0TKE0dAkjlvW8dxRTWXu1nR2Usc2jshRDZMIqrBk69zeCzQRO6iJ+AGd33eJwlakpm3s6zlPPzz0ct26cnPFupyzoRsXPqG37vmVeg1ZjkeATZJs2TVtJxbqV39oUOvl1Yp16cKsLok968n/ni+c8NzGWGRfTfe508ai+/RrZ/2pfrB2m/4z9c9aKS/53j5dnNM/nvgLXdH/PL0++fanxeIAYCdky+vG13R+n3EAnYwwGgAAAADAV7UwmiStbBBGQ3OY9sfNF+nxm0C97H2OUtsL8jgtlIJOQ28dpQDBt9MIowEAAABA+1vdIIwGAAAAAAAAAN0s7+Q8lxNGw1b0hwYVs/uVdSpPLksXZnVx7Jm+P58qzhrXJaJ7tz2+RkhEDGG0gvl3AfyYonrJ6HiTRwI0TyIy7h1Ga/FjqSlmFg/1y9p8sv0msdCA5/KssybXdY0/B2xHujCrqeykpjOHdCR7WBtOpq7bH42MaSJ2UPvjB3RJ7HLFQt4BwFr8xOhP6/tr31LOI5p7+8oteuHwq3R27/nbvh9JclzvSRSWVVsYTTp1PPMMo53xOjdVmPH8+WSLvub1Y1mWnj34w7osfqW+sHidvrH0BWNs7rS717+j+zN368dH36yX7nqNQhYJFgA7Y8Enap6I8B4M3YlnZQAAAACAr3KAMNFqTtoz1PixdLp//66j67/vyrakt1xl6c3Pqf2Li07nGtpe9qbvXGNRKWx7R7U6NYwW5HFaqN+Fk5qmWA4ecyOMBgAAAACty/R+/kwrG40dBwAAAAAAAACgtRFGQ70louM6nnuwYvmZMQgvpgBOj9WrwdDwtsfWCAlDrCrI7wucaaOc1bpHHEqSRiN7mjwaoHkS0XEdy01XLG/1Y6lXCFSSbxQqblhXcksquHn1WLwGw/Zlyms6kj2s6cwhTWUntVicr+v2++y4JmKXayJ+UPtjBzQarf9z1EB4SD+++026If0vFetcufp06p/1m2f/ZV1igq4h4hVSqOZtJaJ79HDuSMXyza9zC05eJ0tpz58fa8Mw2ml9oZjekHyHnjv4Ul03/yHPv8NmeTenz6T/VXesfF1vGXuXLopd1qSRAsBTUgXvMFrEimooPNLk0QCtgTAaAAAAAMCXE2Di6iqTVrftAzc7+oMbnvpjf27S1cyyo9/6MeJom5n2x81hNMuyNBzzDmXNrbqSOu/KVUH6Ybli48dRb8UaYm4rG1Kx5CoS7rx/XwAAAABod0HDaKve890AAAAAAAAAAF3CFEaLEkbDFiUjhjCaIXr2tNsUZzyXJ6LjdYleNELCEKtKGyZXA34Wiub9xhThAzqB+Vja2mG0THnNc3k8NGD8Gb91mfIacVpsSckt6tjGtKYyk5rOTurR3FFj7GsrQgrrGX2XaH/8gCZiB3Vu7wWyrdqjYbV68a5X69blL3lGEh/cuE+T69/VwYHnbvt+yq73JArLqn1uUSJiiuY+9Ryf8jm2JaP7ar7PVnNW7zP0nnPepztWv6bPpP/VeKw8bbbwqP7nY+/V1YMv0TWJn9NAuDWDyAA6kynEOxoZk72F5wGgExBGAwAAAAD4ChRGY9LqtuSKrv765so/9PtucvUrL3EVJfT0JNP+eOY5Ruft9g6jHanvxYVahhPge8KVNgwY1hJGk6STWWlssDFjAQAAAABsXcAuGvF9AAAAAAAAAOhyecf7g+IeiygHtsYUb0oZJhs/7TaGSESyhYNQpt8346wpU17zDeAAZzJNyg8prF3h3U0eDdA8yehez+Xp4pwc12nZKEW27HHyvKSY3W/8Gb912fK6RiKJbY8Lnc91Xc0WHtN05pCmspN6KHuf8m59JxmNR8/WxBMhtItil6nX7qvr9oMIWxFdk/h5fXjmfZ7rb0h/TJfFf0gRO7Kt+zFF5GxtIYxmeG2YLszKdV1ZlqWUIQYcUli7I8ma77MV2Zat5w+9TJf3X6XPpf9Nt618perPfHf167pn/Xt63ejP6oeHX96U+B4AmEK8hKnRzQijAQAAAAB8BQkuMWl1e+5+VFrKVi5fWJfuPSFdeW7zx9SqXMNMavuMMNrEHkt3Hq+88ZHZoFOx20s5wK+17LGPtbpSjWG0hXXCaN3okQVXKxvSubul4RghSQAAAKAVmd7Pn2k150ridT0AAAAAAAAAdKuCm/dc3rMD4QN0hkSkegzCxDghOeIdzGkFScPvK0npwpzifYTREFy6MOe5fDQ6RhwEHc0Unii6Ba2WljQcac0wYMYQRouHfMJoPusyjvf2AElaKS1pOjOp6eyp/62UTtZ1+4OhYV0SO6D98QOaiB1omcfd5f1X6ZLYs3Qke7hi3UJxXt9YvlE/NvJT27oPxzWE0bYQZTS9Fi64ea2UlzQcHtF84YTnbUajexTqsOf7/tCg3rrnV/T8oZfpuvkP6fH8w76333Ay+mTqw7p99av66bF369zeC5s0UgDdyhSnTkT2NHkkQOsgjAYAAAAA8OUEmLjKpNXtOTJv/iM/MO/qynP5255m2h/PPDfpYsPnfdPe52i0vSABw+U2DBgWaw2jrTVmHGhNjuPqlz/h6p9udeW40nBM+sjbbL3+hzhmAgAAAK0maKZ8tb4XDAYAAAAAAAAAtJm84/1BcY/d2+SRoFMkDXGbzTEIL67rKmWYkGzaZisYCo8oYkVVdAsV69LFWZ3Xd9EOjArtyjQpf5RJ+ehwfuGJVHGmZQJNZ8o63idSx0LmKGbICqnXjinnVF6BO1vmxGw8peDk9eDGfZrOHNJUZlIzheN13X7EiurCvks1ET+o/bGD2tdzrm/AdqdYlqXXJ96h9x3/bbmqnMRx0+L1unrwJRoMD2/5Psoe25UkW1sIo0XNx7N0YVbD4RGlCjOe68eirRsD3q5n9F2i3z/3b/Wt5Zv0+YVPeB4DN3s095D++vjv6keGX6nXjr7VNyoJANuxYIhTm0KXQDcgjAYAAAAA8BUojNaGwaVW8lDKvO4Bn3XdyDXsj/aZYbQx79s9tqSqV3lsR0Eep8vZ9vvdaw6jcWGyrvKx211d+62ndv7lrPTGDztK/Q9bowPts58DAAAA3cD0fv5MK3zGBAAAAAAAAABdq+yWPWNOEmE0bF3CJ2J2OgbhZb28YgwktPKEZMuylIiMe8ZK0gXvyBVgkmZSPrpULNSveGhAGY8wWLowp4tjz9qBUVWXKXufSB2vEvCJh/o9n/NM20N3cFxHj+ePaSozqansIR3bmFLJLdVt+5YsndXzDO2PH9RE7IAu6NuviB2t2/Yb6aze8/SCoZfp2ytfrliXczZ048In9DN7fnnL23ddQxjNCtW8rbg9oD47rg0nU7EuXZzVRbpM84UTnj+bjHRuGE06FYZ8ya6f0JUDz9cNqX/R99e+5Xt7V66+tXyT7l67XT+V+HldPfjitpqbA6D15Z2cVspLnuv8PtsAOh1hNAAAAACAryDBJSatbs9Rn/jZEe9zCrqWaX88M4x29i5LUuWNs4VT++twrP5j20mO93dfT1MsSxsFKdbT+PHUS+1hNFcSXy51i7+/xfuAkHyPo/KHbb5oBAAAANoQ8X0AAAAAAAAA6F4FJ2dc10sYDVvkF4NIFWZ0Uewyz59LFc0nbyajrR2JSEQNYTSf3wnwki56x/QS0T1NHgnQfInIuHcYzfC4aAVZQ8gsZvuH0WJ2vxZVOaHBtD10rsViStNPhNCOZO/xfAxsx0g4oYn4AU3EDmoidrn6w4N13X4zvWb0Z3Tn2q3KOZUnuty2coteOPwqndX7jC1t25H3JApbds3bsixLiei4Hs09VLEuXZiV67rGMNpYdF/N99eOhsIj+oW9v63nZ16mT6Y+bPx7nLZWXtHH5/5Bt6/coreMvUt7e85p0kgBdDpTmFqSEhHeg6F7EUYDAAAAAPgKEkbLeF+kEQFlCuY/8vRsgH+ALmLaH8/sH+0dNm/jxHLnhdHKAXeT5Y32CqOVAgTfNlvyvkAnOtDxRVf3zZjXf+9h6erzmzceAAAAAP7cgO9bV81z3gAAAAAAAAAAHS7vE0brsfuaOBJ0EsuylIzu1fHcgxXr/EJh6YL3yUm9dp8GQkN1G18jmCZMpwutG/NB6yk4eS2XFj3XMSkf3SARGdcjuQcqlrfysTTrGMJoIf8wWjw04Lk849Q3ioXWs1HO6Ej2sKazk5rOTCpV9Dk5ewt67Zgujj1T+2MHNRE/oGRkb8dc+HogPKxX7X6TPpP+14p1rhx9Ov1R/cZZf76l39dxvSdR2FbtYTRJSkYMYbTirNbLq54BYUkaa/EYcL1dEr9c7z3v73XLyc/ppsXrVXT9J8o9tHGf/uqR39JLd71GPz76ZvXynhXANpkCvLZC2hVJNHk0QOsgjAYAAAAA8OUECBOt5xs/jk5W8r6giyTpyLzkOK5suzO+ANou00TqM/884z7nHZ1Yki7rsO9oygEDYstZ/2hcqyn6PDa8EEbrHvf6X4hJnznk6urzOW4CAAAArSJo9n218kK6AAAAAAAAAIAukXd9wmhWbxNHgk6TiOzxDqMZ4meSlDKEbxKR8ZYPeiSj457LU4ZJ1oCXxWLKuC5h2MeATpKIGiKTLXosdVxHmbJ3GM0UPjvNFE7LGraH9lV2S3p44wFNZyc1lTmk47kH5ajGK5n7sGXrvN6LNRE/oP2xgzqv7yKFrM5NWbx4+Cd06/LNWijOV6x7IHtY96x/TwcGrq55u6Z/E1tbC6OZnrfThTmlfF4PJ6P7tnR/7SxsRfTK3W/QcwZ/RP+R+mfds/4939s7KuuWpc/qzrVb9cbkO3Ww/7kt/14BQOsyBXhHI2MKWaEmjwZoHZ37ahIAAAAAUBflADNXM4TRtsUv/pQtSI8tSefubt54Wplj2B/P/O4gGraUHJBSHheqOrHsSuqsLxsc0x/mDCttNsGcMBpMsv4XYNIt97vSNc0ZCwAAAIDqTKHzM63lgibUAAAAAAAAAACdJu+YT27qsQmjYeuSUe8rqfrFbUzr2iEIlYh4j3G9vKKNckZ9oXiTR4R2ZHoMWLK1O5Js8miA5jMdS9OFObmu23Lhm7yzIdcQU4rZ3uGz0+K2dzgtU/Y4ER9txXVdpYozmsoc0nR2Ug9kDyvn85p7K5KRvdofP6iJ2AFdHHtmV73OiNgRXZP4BV07837P9TekP6ZL41cqYkdq2q7jGsJo1hbDaKbjWXFW80Xvq5X32TENhIa2dH+dYHdkTO/e94e6Z/17un7+IzpZSvvefrm0qI/MfECXxa/Um5K/2BbvGQC0HvPnEN7BXqBbEEYDAAAAAPhyAlwAhjDa9pSq/I0fWSCMdpppIrXt8d3yvmHvMNpR/+8k2lKQgKEkrZovqtqSTGG0kC2VPR43yxkm0HeLQpWdfqPYpIEAAAAACCTou7V2C3oDAAAAAAAAAOon55hPbooSRsM2JCLek4j94japwoznzyQj3pG1VuIXYkgX53RO6IImjgbtKl2Y81w+EhlV2Kot8AK0o6ThWJp3c1otL2sovKvJI/KXKa8b18VD/mG0mGG93zbRutZKKzqSvUdT2UOazkxqqbRQ1+3HQwOaiB3QROyA9scPaiSSqOv2282B/qt1Ud8z9eDGvRXr0sU5fXP5C3rZyE/WtE3HEDm0FNrSGE2vDXPOho5mpzzXJaP7Wi4AuRMu779KE7EDunnx0/rKyc+orJLv7e/L3KW/eOTX9YqR1+vlI9coYkebNFIAnWCh6P0ezBS4BLoFYTQAAAAAgC8nwMzVTJ4Y0XaUDPGn004su5L4UkEy749eYbSLxizd/VjlD0zPdt7+GiRgKEn5NotFmR4biX5pbrVy+TIT6LtGwf87xarHVQAAAADNZQqdn4kwGgAAAAAAAAB0r7whjBa2IgpZW4sAAJKUjHrHzE7FbZY0FB552nLXdZUuzhq21foTkofDuxW2Iiq5lScMpguzOqeXMBqqM03KHzWEBoFO4xuZLMy2XBgt63hcTfwJ8dCA78+awmlZhzBaOyg6BR3dmHoyhPZY/lhdtx+2wrqgb7/2x67QRPyAzup5hmzLrut9tDPLsvSG5Nv1/uPvketx2cAvLl6vqwdfooHwUOBtuq735JDQFv/uSZ/n7vsyd3kuHzO8fu5GUbtHr028VVcNvkifSn1YR7KHfW9fcov6wuIn9b3Vb+jNY+/SpfErmjRSAO3OFKf2e10KdAPCaAAAAAAAX8HCaI0fRycrVg2jNWcc7cC0P3pdjGbC8P3NtPfnhG2tHHCCea7UXpE902MjOegdRlvKNnY8aB35KmG0E8syXs0VAABgKx5KufrSfa6iYenVz7K0d5jXGUAjpM3nagMAAAAAAAAAOpwpjNZj9zZ5JOg0iUi1uM3Tw2jr5RXlHO+rufhtq1XYlq3RyJjmCo9XrDMF34AzpQve+0o7PAaAeojbA+qz49pwMhXr0sVZXahLd2BUZpmyd8TMkqVeO+b7s6ZwWqbMF/ityHEdzeSPayo7qenMIT20cb+KbqGu97Gv5zxNxA5of/ygLuy7VFG7p67b7zRn956v5w+9TLetfKViXc7J6saF6/TTe94deHtleU+isLS1MFp/aEi9dp/n69vV8pLnzyQjhNHOtKfnLP36WX+uH6x9W59OfdT4tzstXZzT///4n+mK/ufrDcm3a1dktEkjBdCOik5BS6UFz3XEqdHtCKMBAAAAAHwFCaOtE0bblpL3BV2eNEMY7UmuYX+0PZoE+w3nXjyYkkplV+FQ54QMnCr70Gn5ygtAtjRjGM1w4bKlynMP0KEKVcJo2cKpUN5IvDnjAQAAne3zk67efK2j3BOvp3fFXH3pN209+7zOeU8BNJrp/fyZZleIHAMAAAAAAABAtyq4hjCaRRgN2xMPmeM2qeKsLtRlT19mCEJJUjLaHlGoRGTcO4xW6MAry6Ih0kXvfSURZVI+uoNlWUpEx/Vo7qGKdX7PEzvFFEaL2f2yLf+YUszu91yeNWwTzbdcXNRU9pCmM5Oazk5qrbxS1+0PhUe0P3ZAE/GDmogd0GB4uK7b7wavGX2rfrD2bc/42LdXvqwX7nql9vWcF2hbrus9OaTaY9nEsiwlIuN6LH8s8M+MRfdt6b46nWVZevbgj+iy+JW6cfE6fWPpi3LlP5nn7vXbdX/mLr169C16ya6fUMgi7wKg0kJxXq68T7Jsl88hgEbhmRMAAAAA4CtIGC1T3wvMdB3CaMGZ9kev6dL7xy3J40PBYlk6mpYu6aBzM8oBJ5jnq8SkWo3psZEY8P63Xco2djxoHQVDNG+zB+al557f+LGgMb57zNUHv3bqq51XXib97HMt4hgAgB3hOK5+5RNPRdGkU687r/orR861oZ0bGNBmAr5tVb5E5BgAAAAAAAAAulXeMYTR7L4mjwSdxi9uk/aI26SKM57b6bVj6g8N1X18jZCIjkseFxpNF1sv5oPWU3bLWiymPNclIkzKR/dIRgzPHS14LM2W1zyXx0Le0bPN4obbFNy8ik5BETu6rbGhdjlnQw9m79VUZlLT2UOesdPt6LF6dVHsmZqIH9D+2EHtiZ7FObrbNBge1itH3qjPLny8Yp0rR59OfVS/ftafBfo7O4bQVkhbP1ctEd1TUxgtGd275fvqBn2huN6YfKeeO/hSfXL+w3o4d8T39nk3pxvS/6I7Vr6mt4y9WxfGLm3SSAG0C9PrS0u2RsLJJo8GaC2E0QAAAAAAvpwq0S5JWvc+HwkBFasEfmaWg04f7nymv4RtV35BdPGYZFveMbWp2Q4LowV4nEp6WsyhHZgeG6OG7+iXN06FK7z2B3SWfIB9+cicq+eez77Qjr50n6tX/cNTB7brvifdOyN94PX8ewIAmu+Oh6XHl7zXve8mR3/wqq1diRPoNm4NH23MLBNGAwAAAAAAAIBulHc2PJf32L1NHgk6kSluk/IKo3ksk6REZE/bREOShniVVwgOONNSMS1H3idwjkY66ORboIpE1Ht/b8VjacZZ91xuip5tFgsNGNdlnXUN2SNbHheCcdyyjueOajp7SFOZSR3bmDYeh7fCkq1zey/QROygJuIHdH7fJQpbkbptH6e8ZNdP6NaVL2mxOF+x7kj2Hh3OfF+X919VdTuO6z05xLK2fp5arWFTwmjBnN17vt5zzvv0nZWv6rPpjyvjeEcqT5spPKq/e+wP9dzBl+qnEj+ngXB7RJcBNF66MOe5fCQyqojNcza6G2E0AAAAAIAvr6jUmTKFxo+jk5WqfGe16HHVvm5lCvV5dbB6I5aeMSodTVeum5pz9ZNqjxOUggjyOJWkfKmx46g3Uxgtafj+3XWl1Zw0HGvcmNAaCgG+65/2/l4ALc51Xf3adZUH+w9+zdXvvtzV6EDnHLsBAO3hu8fML7bf+xlXv/cKVyHCvEBVtSTfZ5alZ+5r2FAAAAAAAAAAAC0q73hfoZUwGuohETWEwoqVcRuvZVJ7BSJMv+9KeUl5J8fjCr5ShseAZA5FAZ3IFBJKF+fkum5LxTKzZe8Yj1/07KnbmONpmfK6hsKE0RohXZjVVHZS05lDOpI9rA2nvpNGRiNjmogd1P74AV0Su9z33xn1EbGjuibxc/rIzF97rr8h9S+6NH5F1SidKYpnaxthNMNrQy/D4d28VqyBbdl6wfCP6UD/1frswsd1+8otVX/mjtWv6Z717+l1ibfpBUMvk22FmjBSAK1soeg9AarWsCXQiQijAQAAAAB8lQ0hqs3W840fRycrVfkbL3hfwKkrmQJgpu+V9497h9EePVm/MbWCII9TScoVGzuOenJd1xxGGzT/3FKWMFo3KASI/J1Yavw4UH93PSo9lKpcnitKtx2VXnew+WMCAHS3bJUQ+OET0sGzmzMWoJ25NZTRZlZcqYNi5ttxLH3qvfGFSRFhBAAAAAAAANDxCKOhkZKmuE1htiJuky6YwmjtMyHZb/J0ujCns3rPa95g0HYWCt6T8gdDuzgmo6uYjqU5J6v18qoGwkNNHpFZtuwd1Yrb1WNYMTvus10mMtRLprymI9nDms4c0lR2UovF+bpuv8+OayJ2uSbiB7U/dkCjhCx3xMH+5+nCvsv00MZ9FetSxRl9c+km/ejIa40/77quXMPlB21rG2G0GsI6Y20UA24l/eFB/eyeX9Xzhl6mT81/SI/nH/G9fdZZ13Xz/0ffWblFbxl7l87pvbA5AwXQkkyfQ4xGeD4HCKMBAAAAAHyZQlSbFUpSqewqHGKC5laY4k+nncxIZcdlAqxk+IpHMv1pxgYtz5862WHf0QZ5nEpSPkBMqlX4/U6Jfu9/V0lazjZmPGgthSrHTUlay9VQXkDL+Nwh87/b4ROuXneQ50IAQHNVC4EveF9wF8AZagqjLTduHO1iLefqp/63o69Nn/rvi5LSZ37Z1qV7eT0MAAAAAAAAoHMZw2hWX5NHgk6UMETN8m5Oq+VlDYV3SToVo0gVZry3EWmfSMSuyKhCCqusypMG08VZwmjwlS56T8pPENlBlzE9d0inHietFEbLON4nsMRC1cNoUbtHESuqolt59cCs02En3TdRyS3q2MYRTWcmNZU9pEdzR+Uq4NXQAwgprGf0XaL98QPaHzuoc3ovkG2F6rZ9bI1lWXpD8u36wPHf8QycfXHxk7p68MXqD3tfKd7x2Udsbf3f1+94dqZkdN+W7wfSBX0T+v1z/4e+ufxF3bjwCeWcDd/bP5J7UB84/nt64fAr9ZrRnwl03AbQeczvwdon0A40CmE0AAAAAICvoMGlTF4aijV2LJ2qVCXw47jS0uxJ7b73S9LaSenqV8g6+6LmDK7FOIbveUzTgncbvhNYzHRWMKkc8DvSdgqj+QUDTf+ukrREGK0r5IvVb7NWJWKC1vRfk+bj87F0EwcCAMAT0lXO72yn19hAu5hd2ekR7Lxf/YT7ZBRNkh5MSW+51tHkn9iyLOJoAAAAAAAAADpT3vWeMN5j9zZ5JOhESZ+oWbow82QYba28orzrHelrpwnJISuk3ZGkUsXKyFu64D3hGjgtXZzzXJ6IEEZDdxkIDanH6vV8XkgXZnV+38QOjMpbtux9gkvQwE48NKDl0mLF8kyZKwYG5bquZguPaTpzSFPZST2Uvc/4mmKrxqNnayJ+QBOxg7oodpl6bQLCreic3gv03KGX6jsrX61Yt+FkdePidXrL2Ls8f9ZxfcJolr3lMQ2FdhkDiGcaa6MYcKsKWSG9dNdrdOXAC3RD6mO6c+1W39u7cvTN5S/qrrXbdE3iF3TV4Is4PwjoImW3pMViynMd78EAwmgAAAAAgCqChtHWCaNtWSlA1GrhN9+skbknPgwP/Z70x/8q60ff2NiBtRHb8B3P7rj38sUOu3hV0MdpLkBMqlX4hdH6ItJAr7Tm8V3xUqZxY0LrKFQJSkrSqv/FldCCVjdc3fO4ef33H+msqCUAoD3MLfs//5yKLnMSElBNLa/kZqs87jqd67r6wuHKv8G9M9Idx6TnXbADgwIAAAAAAACAJsg73uEIwmioh3hoQH12TBtO5ZU308U5XajLJEmpQmVI7LRkpH3CaNKpkJtnGK1IGA3+0gVDGK2N4oBAPViWpWR0rx7LH6tYZwoI7pSMIYwWt4OF0WJ2v5ZVGUYzBddwykppSdOZSU1nT/1vpXSyrtsfDA3rktgB7Y8f0ETsgIYju+u6fXL/LZIAACAASURBVDTOa0ffqrtWb/OM4926/CW9cPiV2ttzbsU6R+aT5G1tPYxmWZYSkXHNFI5Xve1YdN+W7wdPNxwe0dv3vkfPz7xMn5z/sOdr883Wyiv617m/1+0rX9Fbxt6t8Z6zmzRSADtpsZiWI+/JpUnegwGE0QAAAAAA/oIGlzLVLxwCA78A1GkLKwVdfPo/ymW5f/PL0o+8Vla0p5FDazmm/dGUITCF0Y7M12U4LaMcIK4nSflSY8dRT36Pi0hI2hUzhNGyhCm6QTHAvuy1f6C1Pbbkv/6+GenInKtL9uz8Y/z7j7j62G2u0muuXn6ZpXf+sMWVuQCgQ2WrvNfttOgy0ChuDa2zmZXGjaMdFMvSSUP0++N3uHreBbzuBAAAAAAAANCZCKOhkSzLUiK6V4/mHqpYtzmGZoqG9dkx9YcGGza+RkgYQm6pAmE0mDmuowVD8Gk0sqfJowF2XiK6xzuM1mLH0mx5zXN5LDQQ6OfjIe+Amim41q0KTl4PbdyvqczdmspMBopM1SJiRXVR32WaiB/QROyg9vWcy7mpbWooPKJX7H69/mvh3yvWuXL06dRH9Wtn/WnFv6/jmieG2FZoW2NKRIOF0ZLRvdu6H1SaiB/Qe8/7B92y9FndvPgfKrr+JyU+uHGf/r9HflMvG3mdXrX7TbwnBjqcX7yc92AAYTQAAAAAQBVOwODSOgGaLSsF+BunQ8mnL8isSvd9V7rihY0ZVIsy7Y+m7/t291uSKmdf54rSStbVUKwzvigMGjAstFEYreQTRgs/EUZ71OOiWkuVF/REByoECEqu5Rs/DtTXiSphNEna/98dOddu74v97frmEVev+l+OcsVT//2fd7m661Hp/7y1M55TAABPV+11x6IhXgTg6Wrooul45UWou4pfRO5oqpa/JAAAAAAAAAC0F8JoaLRkZNwzjLZ5ErIpGpaIjLddmCQR9Z5A7TfpGlgtLRljHabYHtDJjJHJFjqWuq6rjOMdMDMFz85kCqhlHO/gWrdwXEeP549pKjOp6ewhHd2YUsmt3wn5liyd1fMM7Y8f1ETsgC7o26+IHa3b9rGzXrrrtfr28pd1spSuWDedndS9mR/oWf3PftpyVz5hNNnbGk8iQFwnpLB2R5JVb4faReyIXrX7jXrOwAt1feojujdzp+/tHZX15ZM36Pur39Ibk+/Ugf6r2+79CIBgFgreYeqh8Iiidk+TRwO0HsJoAAAAAABffpMxN8v4X7ACPvwCUKfNeH2pevg7XRdGM+2OtuE7npG4eVvvv9nV+67pjC8GggYMT0d82kHR53ERCZn/bQlTdId8sfqT0xrBzrYzsxLsRcddx11dee7OHb//+ktOxfH02m+5+u+vdjU+3BnPKwCAp1SLC/P6Ewgm6OdLkjS7Iq1uuBrs687XVn7x8wdTzRsHAAAAAAAAADSbMYxmEUZDfSSi3nGb9KZJyOnijOdtktG9DRlTIyUNMZ/l0qIKTp4J1vCULnpPypfMsT2gk5mfO1onjFZ0Cyq53ieJm4JnZzIF1LJl7+BaJ1sspjSdmdRU9pCOZO9RplzfONxIOKGJ+AFNxA5qIna5+sODdd0+WkfU7tFPJX5O/zz7t57r/zP1UV0aP6iQ9VTuw3F9wmjW9sJoScPxbLNEdI9sa2cvYN3pRqNj+uWz/kj3rH9P189/xDOct9lSaUHXzrxfz4w/W29KvlOjvB4DOo4pXk6YGjiFMBoAAAAAwJffZMzNMvnGjqOT+QWgTjsR9jipprev/oNpcab90TbMlR4fMm/rc4dcve+a7Y+pFZQDPk7zpRpmou+wamG03aYwWvd9/143ruvqyJw0HJPGBtXSVxQqBDhuruUkx3Flmw4QaDknloLd7hsP7GwY7aZ7K5e5rnTtra7+5DXsbwDQaaq97lgmjAYEUksYTZKOzEvPOa8hQ2l5fp/Fza00bxwAAAAAAAAA0Gx51xBGswmjoT5Mk4pThRm5rivLspQyhG5MYZxW5jfmheK89vac08TRoF2YJuXH7H7FAwaWgE5ieu7IOuvKlNda4nHhF+6K297BszPFDLerdxSsFW2UMzqSPazp7KSmM5NKGSKpW9Vrx3Rx7JnaHzuoifgBJSN7W/ocbdTXlQMv0DeWv6CjG1MV61LFGX1z+Sa9dNdrnlxWlvlkNUvbC6MlAoR+x6L7tnUfCO7y/qt0Sexy3bz4H7rl5OdUlv8VXO/N3Kkjj9yjV4y8Xj82co0idqRJIwXQaObPIQghAhJhNAAAAABAFUHDaOuE0bbEcdxAf+OZsMeXqpnV+g+oxZUNF8AxdY8uSJi3NT0nnVhytW9X+3+x6JgvDPQ0ee+LgbWkamG0kX5LUuWDZynTPvG3VvLAvKuf+6ij7z586r9f/Szp42+3tSvemo+Pgv/3fk/KFKQBzo1tGyeWg91u2nxR0h11f33PhQEAtIhqrzvWcrz+BIKo9ZFyZM7Vc85rzfcjjeYXkcsHfC8EAAAAAAAAAO0o75jCaN13AVE0RtIQCsu7Oa2VVzQQGlLaMCE5aQjjtLKRSEK2bDmqPMEwXZgljAZP6YL3yVmjTMpHl/KLTKYLs4r3tUIYzXxV6XgoWBjNFHjL+my7XZXdkh7ZeFBT2UOayhzS8dyDns+VW2XL1nm9F2sifkD7Ywd1Xt9FClnkHLqVZVl6Q/Id+sDx3/Fc/4WFT+qqwRepPzQoSXJd874YskLbGksiUv25PBkgnob66bF79brE23TV4Iv1qdS1eiB72Pf2RbegGxev0/dWv6k3j/2S9scPNmmkABopXfR+D2YK9ALdhlfSAAAAAABfphDVmTJ5V1JtE1bXc65umZIeW3L14ostPeus7pvwGvTveyJc+QWDu5yu8S/e/hxDRc4URrMsS594p6Wf+Sfvnzt+Utq3q16j2zlBA4a5NppAXfJ5bIRtaXfce91ipjHj6WSO4+od//JUFE2SvnBYes9/uProz7fmUSZoGG0tRxitnRxNBTuYPTDXmgGaQqk1xwUA2B6/YK8krREJBxoi3fkXnTYK+h4fAAAAAAAAADqJ67o+YTRO/kB9+E0qThVm5EZd5V3v/dAvjNOqwlZEI5GEForzFevSRe8AHGDaN9oxDgjUw1BolyJWVEW3ULEuXZzVeX0X78Coni7rmL9gjwUOo3nfLuO0fxjNdV2lijOayhzSdHZSD2QPK+ds1PU+kpG92h8/qInYAV0ce6b6QoYT3dGVzu29UM8dfInuWP16xboNJ6MvLHxSbx77JUnyjfTZsrc1juHwboWtiEpu0Xibsei+bd0Htma852z9xll/rjvXvqX/TH1Mq2X/q42nijP64ON/qisHXqA3JN6u4cju5gwUQN05blmLhjCaKe4OdBvCaAAAAAAAX0EnY67XOBl8ftXVK//e0eTjp5e4+p9vtvQbP7q9D+vbTbVJ9qfNep1QsLxY38G0AdP+aAqjSdKbn2MOoy10yETroI/TvPk7rJbj99iIhKTdhu/pF9v/+/em+84x6bajlcs//QNXH/pZV9Fw68XR8gHDaKsb0t7hxo4F9XOk8hxMTw8EvF0jmAKdUvD9EgDQXqoFWde950UAOINbY+wrU3lOedeo9W8FAAAAAAAAAJ2g6BbkGiIAhNFQL/2hQfXZMW042Yp1p2JQ5g/pk5HKi9u2g2Rkr3cYreA98RpYMOwbo5E9TR4J0Bosy1IiMq6ZwvGKda1yLM2UvU+e7rX7FLKCZQRioQHP5dlye55sv1Za0ZHsPZrKHtJ0ZlJLpYW6bj8eGtBE7IAmYge0P35QI5FEXbePzvPaxNt019rtKriVE69uXb5ZLxx+lcZ7zpbjmsNolrW9uVa2ZSsR2aPZwmPG27Tra95OYFmWnjP4Ij0z/mx9fuET+ubyTcb3yKfdtXab7lv/gX5i9Gf04l2vVsgKNWm0AOplqbSokut9ojLvwYBTCKMBAAAAAHz5BUA2y9QYRvvAze6mKNop77ne1Zuf7WrPUOtFeBql5P859ZOWbY+yz0p9v6BrB6bdMeTzHY9lWTprl/T4UuW6hXVXUvvvb4HDaG0U7akaRjNcSGsx05jxdLL/9VXvHWg9Ly2st2ZYrBAwKjm3Kk1wkZS2kMm7evRksNvOr0nFkqvIDkT7/I5NQfdLAEB7qXZ8X6vxvTDQrWptfdX6OVMnCfoeHwAAAAAAAAA6Sd4xX42GMBrq5XTc5tF85VUkU4VZ48/12XHFDcGYVpeIjkvZuyuWnwrBAU/nuq5x30hEmZSP7pWMeofRUi1yLM0awmgx23AVag9xw203nKzKbrnlYztFp6CjG1Oazk5qKnNIj+WP1XX7YSusC/ou1f7YQU3ED+isnmfI3makCt1lODyiV+x+vT6/8ImKdY4c/Wf6Y/rVs/67HJlPVgtp+4/DRHTcN4w2FiWMttP6QnG9aewX9byhH9V18x/SI7kHfG+fd3P6z/RHdcfq1/SW5Lt0QWx/k0YKoB5MYWpJShBGAyQRRgMAAAAAVBF0MuZ6jRNWP/zNyg07rvTZQ67e/aL2D1UF5RdY2WzN68vGpXR9B9MGTPujXWWXGe03hdG2P6ZWEPRxmis2dhz1VDWM1m/Ja2r9wvqpk3Msq3uOI9t1bMG8Ay22ahgtYORvZrkz4ofd4MFU8Nu67qno3dkjjRuPiV8cJ99Gx1gAQHDVXnesmefoANjENbztCNve0fhaP2fqJITRAAAAAAAAAHQj3zCa1dfEkaDTJaN7PcNop2JQ3h/SJ6N72/Z8NNNEasJo8JJx1rThZD3XMSkf3SwR9b5Cb9onqtlMWcf7hPhaop6xkDmitlHOqD88WPO4GslxHc3kj2sqO6npzCE9tHG/im6hrvexr+c8TcQOaH/8/7J33+FxVIfawN+ZLZJW3dJKstzBxqaFltAuaUAaKRdISOAmkOTmBpIQQgmhhl5DS0IJLRA+SgoQIISSEEIJYDCYYoyxZWNbLpIsrbq0K22b8/0hy15J58zOrLbM7r6/5+HBmjMze3anz5zzzr5YWLYHvHpJWudPxeeI2v/Gq/3PoS/WPaXsw+A7WDX8Nuo8jcrptTSE8Zkdz8v0clS4qqf9GZQec0p3wdlzr8XSgefxROB+5b5+XFu4FTduOR+HVB2Bo/0nodLNZUmUD1TX5hWuapS5yrNcGyJnYjAaERERERERmbLaGTNo8znSiCI85L7XBH70aXvzymeyzr8yQ64qGNCgJza86XHGw9RsUgajJXnG41c8q11rI4jHyQyL65Fqu3OimEn4kFsHGhTP6qNxoDcI1Fl/yVnR85i8PMqp4YFhi8Fobf2ZrQelz5oOe+kPbf05CkYzWffMQtOIiCh/Jdu/MxiNyBpVMFpFKdAv6VsRLOJgNNVvNS4WF3C78rPzFREREREREREREZFKWIwoy0r00izWhAqd3ysPg/gotApb9A3yafI4EEoV5tMbDeDBbbemPF8X3JhXthAfr/wkg2Icbjg+iLcHX0VbuBUGzBubhuLqBoOqdYmoGPg98vW/PbxpWvtSu2rd9fhYxYGYU7rLhOFBxbbrsxGmYRaiFjSGUIGdwWhCCHwQXI61oZXKMMVMGjVCWBdahaH4QFrnW+2egd19+2BJ+b5Y4tsHVW4Hvlma8ppXL8Ex/u/i3o4bpeV/6rwDc0t3VU6vIx3BaOrjeWMehwEXKl3TcVjN57FPxUF4ovt+vD7w76TTvD74b6wYXoaj/Sfi0OrPQU9DoF4hyvWxLJ08mhfzS3fDAVX/BbfmyXV1yKYuRdBuPt+HIEo3BqMRERERERGRKavBaAPqdklTBMPqmSYLuCo0ZuFPkwX1clQmvuVjoAciEobmLZ5GJaoAMD3J85f6Sg2ytzne+6rA3SeKvH+AY3U7DaX3RVgZFTULRnMBM01eYNMxwGA0O+ImbZ16gtmrhx1m4VSJ2hmMljdaOu2Nn6tla7ZvsrpeEhFRfjHb9wNj59hxQ8CV7KKEqMipLlsrSuTBaPl0/Zpuya7xg2Gg2peduhARERERERERERFlS9hQv42GwWiUTn5Ps3T4YLwfiMsbpDR45dPkA1X4hYDA0oHnpzXvVwaAV/v/idNmX4YyFx9eOFFftBu/3XIxuqLt05qPVytBlas2TbUiyj+qYMCwGJ32vtSuf/Q8iu83n4X9Kw/dMSwUH5KO69PVYWdTxnWpG15PDk18pOv3eKn/acvzdqoSrRSLfHthSfk+2N23L5q8s/O+TwE53wGVh+HFvqewcbRlSllvLIDe4YBy2nQEXJkFnTZ4Z017/pQZle5qnNh0Gg6tOhJ/6rwD7ZFNpuOHjGH8sfN2LB34N05o/NGUQE0CHu66Gy/3P5PraqTNy3gGywZfxI9n/RIeneFo+SQQ3SYdzmBqop2KrLs5ERERERER2WU1cKl32OKIADoH1WWuInuWlKyTfaJBvWrqwO7pNVbIN6r1MVkGgVlI1ivrUq+PU1jdToPhzNYjnVTbhlsHNE1Do2RzGNeR3heAFbwRk8CBbhv79myKWNx3Mhgtf6y1GYzW1p+bddMs/CzMYDQiooIjhLAUfJlP59lETlOp6Ms2POrMa5FsSPbNizk0joiIiIiIiIiIiAqXKhhNgwaP5s1ybaiQpdK5WBUulg/qPI3QkLmGua2j6/DG4AsZmz9Nz4t9T007FA0A6j1NDAuioub3NOW6CjvEEcNjXX+AIXY2pA1OCi4bV24SdjZZiVYKF9zSsmBC8FpHeEvehqJp0DG/dBG+OOM4nDHnSly/6AH8ZPYvcXjtVzGzZA73c5QVmqbhuIYfpDStDte0P9/svLYxj8OAi8Wuvt1x/vyb8HX//6JESx4g3jq6FtduOhsPd96NkXgwCzXMD+3hzQUVijZuTWgFVgy/ketqkE2BSId0uJPOP4lyjcFoREREREREZMowrI0XkL9oSMo0GK3IrlRjFn9fABjSJQ8nu+U3wApVqsFoC+rUZZc+aWMhOJTVYLR86jyt2jbc25/ned0a6hXP6zsGircDfSpGTcI+uuVtJXLOSkAJAASGuC7kix6bIXy9OXo2axbKx2A0IqLCE7MYxjok76dDRAmE4nSvokQ+PJhH16/pluxeXDH/NkRERERERERERFS4VMFoJXopQyoorRpSCDlrSCFMzSk8uge17vqMfsaq4DsZnT+lblXw7bTMx+9lp3wqbjXuOkcFtfbGAmgPb97xd8iQd+TwuSotz1PTNGWQWmLw2od5ts+v9zTisOov4IfN5+D6hffjnHnX42v+b2M3315wa55cV4+K1Pyy3XBg1WdsTaNBh1uThxfaUeupV4YgNngYjJYPXJoLR8z4Gi5ZcBsOqDws6fgCBl7qfxqXbTwVbw2+DKFqxFVECvn65YPg8lxXgWzqiwWkw+sZjEa0Q5F1NyciIiIiIiK7rAYu2QnP6TIJUSu2UBGrHe0BYEiXPJzs2pq+yuSBVIPRjtlPPcJLa4FL8jwczep2GjOAaCw/HmREFduGJ+FFRzOr5eN0DKS/PoVsxKRTfY9Dg9GsHit6+GKjvGH3+J+rABrVvgmwHthHRET5wywQMxGD0YiSU12JKoPRwhmriuMlu8Yv5t+GiIiIiIiIiIiICpcyGE0rzXJNqNBVuqsxp2QXy+NXuKoxp9T6+E60R/n+GZ1/IFJcL/jNF4YwEIhuS8u8Mr0OETmdrunYvXzfXFdjgq5o+45/JwaXJVIFnan4FOOHjJ3z74o6e59fppdjv4pDcELjj3H5gjtw+S534n+afoz9Kg9Vfj+iXPjv+u/AqykazUjMK10Ijz79gEaX5sKS8n2mDHdrbiz2fWza86fsqfHU4QfNZ+O02ZdaCrUbjPfjDx2/xm+3XoyO8JYs1NC5Cvn6JRBJz/k/ZUdcxDFihKRl1e7aLNeGyLkYjEZERERERESm4hbzogI2wnM6B9U9PIstxMYsYGWyQVkwWtv69FUmDyiD0ZLc4Zhfr+FrU5/f7HDFUwLvbs6PwDAZw0auW8gkBMtJVPsed8KybqqSj2MnqJGA0ai6zKnBaFYDqIrtmJLPzNZDmVwF0Jite239QDiav8cSIiKayuo5R76cYxPlkuplo6pgtOEiDv9KdkYZ5D6HiIiIiIiIiIiIClBYKILR9LIs14SKwdH+k+DRkgdLaNBxjP8kuDVPFmqVOZ+bcTRq3HUZm39PtAtxwTcKOk1/rAcxYbNRlsT80kX4RNWn0lAjovx2VN23UC5ry58jnZG2Hf8OKYLRfLq9ILByl/z7BeNDO/7ttDAZF9xYVLYnvlr/bZwz9zpcv/B+/HDWufhkzRdQ723KdfWIlGo99fjuzNOhW4j68GolONp/Yto++8t1x6NML58w7Et130KFW9E5gxxt9/J9ceH83+Kr9f9j6RpnbWglrm49E38LPKAMKC903WkKD3aiQv5uhWgkru7wpDovIypG7lxXgIiIiIiIiJxNFUQ1WV8IiMUF3C4t6bidg+qy1m6gPyRQ40s+n0IQsxFoNSx5mCq2rENx/FJjVAFguoUf4dKv6XhyhfoH/3+vC+w3Nz9/TavbKTAW2lDty1xd0kX1nbSERVRfqUHWZdypYV5ONWrSJq0n6LyQJyEEIhZDJXuGx8bXtPzctotJ2GbbyJwFoyVZ94693cBTp+lc54iICoTVIOuR6bclJyp4ymC0Uvl1XbCIg9GShZ8X829DREREREREREREhUvVIbtEL81yTagY7F6+L86ddz3eGVqKQETecbzGMwP7VByEXcqWZLl26ef3zsS5867HW4P/wdZwK4TqwU0SYTGC94ffnDLcQBy90QD83pnTrSqlUcAkFOHjlZ+EliSIxa27Mb90NxxU9Rl4dcXbjoiKyNzSXXHuvOuxfOhVbItsUT4DT7cNo6vRE+2aMjwxGC0xuCyR3UANVZBaYvCaat8yv3QR/J5mW583HdXuWizy7YVFvj1RyiBdylP7VR6KX8y7Du8PL0N3ZOp2DgBNJbOwb8UhmFkyJ22fO79sEc6bdwOWD72KYHwIe5Tvhz3K90vb/Cn7PLoHX6r7Jj5R+Sn8peturAq+bTp+HDH8s/eveGvwPziu4f+wT+VBWaqpMwSi8pDPbB/LpmM4PoDVofemDB+KD2DUGOGxMU8EDfk5HAD4XPYCbokKGYPRiIiIiIiIyJTVwCUhxsLR/Baen3Wp79sgZgDPfiBwwoH5HSjyziaBsx8xsHwTUOMDjt1fwzXHaCjzTvxedoLRBmUPJ7esm2ZN84tqfbQSjLZbg3n57S8J/OZb9uvkBHEb61Eokrl6pJOhaDGQuKzrFPd5u4edF+blVEIIjJisE90ODJmLG+pQhcnCsbF1vpztshxPFYzmcclDaYZGc7OdJwvIefYD4In3gGPYPoCIqCBYDWPNl3NsolxSnb2pztWDRbxdJTvTNbuGIyIiIiIiIiIiIspXYWNEOpzBaJQpzSXz0FwyL9fVyJpq9wwcOePoac0jbIzizHXHS8sC0W0MRnOYQEQe+FDhqsL/Nv88y7UhKgz13iZ8se4bWf3Mx7ruw/N9T0wZ3hVpBwDERBRhIQ+YtRuooRo/ZAzv+KzeaEA6zhfrjsPHKg609XlEBMwrXYh5pQuz/rl+70x8qe64rH8uZVa9twk/mfVLrBhehke6fo++WLfp+L2xAO5svwZ7l38CxzX8H+q9jVmqae6MHcvkv0s+Hcu6I524eOMpirJtmF26IMs1olQkhs9OZjfglqiQmce6ExERERERUdGzGowGAL1Ba+N1DZqX/+Z5kfIb6ZygZZvAx68y8NJaYDgMbO0Dbv63wMkPTP1OyQJWEvW4Zkwd2NGacj3z0XSC0XwlGubVqcujcSAYzs/1zs52mi+hDapdQOKyrlc8r+9xYJiXU8Xi5uuPE4PRVAFaKlwf8kM4Kh+uClwdkrfjybiIhfXv0idtpFUSEZGjWdnvAwwpIrJCdY1XqejPNjACxO1c7BaQZF87FCnO34WIiIiIiIiIiIgKW9iQNwRgMBqRc5Topah21UrLVCFclDuBqHyZ+D0MsCPKJ43eWdLhnZE2CCEQiqs7cJTbDEZTjR/cHtrRE+2CgLx9JPctRETOoGka9q08GBcvuBWfn/F16HAlnWZl8C1c0Xoanu15BFFD0ai/QPRGA8pjWb2nKcu1SV2tpx4uuKVlgei2LNeGUhWMD0mH63ChROP9MKJxDEYjIiIiIiIiU3b6oAbD1sZ75G3zmb7VCux1qYF1nfnV0dMwBM551MDuF8tvkj60TGB918TvFLMRjNbhltxk7Q9AxGymBOWx6QSjAcB/72s+4tubbFbIIQoxGM3KslYFozkxzMupRpI8t3JiqJjVgJJx25KEcZIzqALvVNu5k4PRVrYhrwNeiYhoJ6vnHQwpIkrdzGr58LgBBOTtfgqekSRnN1+u64mIiIiIiIiIiIjsYDAaUX7we+XBN6oQLsodVVidahkSkTOpgtFGjBCG4gPKQA0AKNcVb6ZV8OnyBpuh7cFoqv2KBg31nkZbn0VERJlVopfiaP+JuHD+b7CobK+k40dFBH/vfghXtZ6ONcEVWahhbpgFOufTscyluVDnaZCWMbQ6f4yHz05W7qqAplnsKElUBBiMRkRERERERKaSdcZMFEzSMVMIgT8uszbD1R3A4osMrO7Inw7m974mcMNz5vV94r1JwWg2ft8Ot6QxghBAX6f1meS5uOL30i3e4TjnCxp2N2nT8ZVbbCwQBymqYLSEZV1XLh+HwWjWjSYJRhscBSIxZ+2HIzYCJQHgxRZn1Z8mWrlV4J5XDbT1y8uVwWgWw1jTLWpx/XNiqCAREdln9bwjWdgsEQGqs/LZNepp2hXniIUu2RVMvlzXExEREREREREREdmhDEbTyrJcEyIy4/fIG2B2sfO946iWSYNiGRKRMzV6m5VlXZE2hIygstznUjTAVCh3yYPUxsPXAtFt0vJadz08utfWZxERUXbMLJmDR3HcowAAIABJREFUM+Zcge/NPBNVLpOGWtt1Rdtx89ZLcG/7jeiP9WahhtmlOpbVuOvg1UuyXJvpqfc2SYd3K74jOU/IkHc68SnOyYiKFYPRiIiIiIiIyJSdwKWgSUjJSETgm3ca+M499gJq9rzEwO9eyo+wqvtfT/7dXlwzcRyrASsA0C4LRgOA7uJpUKIMy7L4IoTmGg1vnK++HTIcBsLR/AtRKshgNFUIXsKyrq+QL/i+kPPCvJwqWTAaAPSq20zkRCRmb/xX13FdcKornjKwz+UGfni/ehn5Fdv54EimamXOakBO+0Bm60FERNlh9XotX86xiXJJKE75/JUa3IrLdFV4bqFLdo3PfQ4REREREREREREVorCQNwQo0UuzXBMiMuNXdL5XBQxQbgghEIjK2xarliEROVOFqxpluvxN0p2RdoS2h5ZN5tG8tgNeVEFq46EdAUXgIvcrRETOpmkaDqz6NC5ecCs+XXMUNAsRM8uHXsHlG0/FC31/R1zYfLO9g6lCw+o9+Xcs8yvqzGuz/BGKy4PRynV74bZEhY7BaERERERERGTKTuDSSfca+Pdq+QQPLxf46zup1eGnfxRTAsWcRgiBlW3Jx1s96f5izFYwmuKNTz0MRrMajAYAlaUavry3uvyjgL06ZYoQAg++YeDEewz84lEDH7artwFViJhMvnSgtrKsZ1arp1/vkOXodCMWgtG65ffacyZsMxgtIG/zQTn27maBy/6e/Nhep3imMyR/UXTGWQ1dbOvLcEWIiCgrrAayWjmnIiI5l66+tmvvd/a9oExRhciN4z6HiIiIiIiIiIiIClHYkDcE8DIYjchRGrzydqw90W0wCigwId8NxPsQFfLGon6P4iXNRORImqah0TtLWtYZaUNQEajhU4SpmSl3VUqHB+PDMIShDlzkfoWIKC/4XBX4VuPJOHfedZhXuijp+KPGCB7tuge/2vRzbBhZk4UaZl5XAYV8qsLcVOFv5DzK8zhFWC1RsWIwGhEREREREZmK2whc6h4GPv8bA/e+OnWiR9+eXmfWI24y8FarczvEdg4CA/KXVk7Q2gOMRnd+j5iN37fdrXho2FM8Ny1VAWB2gtEA4KzPqW+JrHZIztxpfxI46V6Bh5YJ3PicwMHXGHhjg3wbsBNgGIw4dztKZCUYbVe/etmvKZ7NYlpG8zAYzWpAybihcGbqQdPzh6XC0r7LL29ng5EoMDiS/f1Z1GL7zbYiDfEgIio0Vs878iV8mChXRJKkr1m18uEdAxmoTB5Idp7MfQ4REREREREREREVooghb+BRwmA0IkdRhd/ERAx9sZ4s14ZUAorABwDwexlgRJRvVKGUnZE2hOLytwf7FCFnZny6PIRDwEDYGEEgIm+czf0KEVF+mVu6EL+Yey1OaPyxct+faGu4FTdsPg8PbrsVw7HBLNQwc1ShYX5FyJiTqcLceqPdiAm+eTMfhAz5eZwqrJaoWDEYjYiIiIiIiEzZCVwCACGAi58UiMUnTvj0yunX5cy/2EgRS4PBEYFfPmFg1wviOPCquDTwbZzVECYhgLWdO/+2GrACAMOuSgxJbjqLbockeWWBlbAsKz67RD3BPSbLOVu29Ar87qWJX3Y4DBx6rSHtUG5nOx2Sv1zVcVTfSUtYdCUeDbv45eOt2cZQIitGLDzv6HFaMJrNF4vmyzpfbH7/irVtdLdGddmKrWmqjA1WA3LaizTEg4io0Fg9zx5hSBGRKbNcNA2AX9G+rt9CAH0hYjAaERERERERERERFaOwIb8pzGA0ImepNwkMMAvjouwKROXLwqdXsJM9UR5q9M6SDu+KtiNoyBv5lruSB93YmWYoPoDuaKe0TBWaSUREzqVrLnyy5gu4ZMGtOLjqcEvTLB14HpdtPBWv9f8Lhsh9vyu7DGEoj2X1eXgsUx1/BQz0RLuyXBtKRTAuP4/zucqzXBMiZ2MwGhEREREREZmyG4wGAO39wGqb7Rv+fHLyZKul68cCo7LltD8JXP2MwMZuYPkm4P/uF7jtRfnN243d1uu1pXfnvycHyCXT7pbcuOwpnsYkqvXRlcIdjqP3lQ//5ypgXWduQ7We+1D9+Tf+q7iD0SaH4C1WhCZtCKS3PoUqbCEYrXvYWSFzVuqcaLBIwxScLBgWGLW4HHdr1FDjk5e9szn766bVYL6N3AcRERUEq+fZDCkiMme2KWkaUOOT3xMaCGWmPk5nFiQHcJ9DREREREREREREhSks5I2aSjQGoxE5SZnLh0pXtbQsELX4hmHKOFVInd+bf4EPRKQORgtEtmEo1i8t86UUjKYOTtwa3ggD8gaUfq86NJOIiJyt0l2Dk2b+DGfNuRrN3rlJxw8aQ3io8zbcuPl8bBndkIUapk9/rAcxIe/E0JCHx7I6T4OyrDvCa7N8EFIEo5XrDLMmSsRgNCIiIiIiIjKVSjAaAKzetnPCkYj5TJqqgGP21fD5PZLPd955BroGMx+EsmKLwANvTP2c370k/+w2+TNFqYGRnfOI2XxJRpu7eerAbgajTQ7LsmLJTPVEiy8yYKS68qfB8x+qyy54TEBM6iVtp6qD+RKMptg2Ji/ruXXy5djR76wwL6eysu70BDNfDzusBlONGw5jyjZDudVu45hZ5gH2VzxjfXdzeupjR9Ti+teS44BNIiJKD6unECM2g1uJaCdNA6rK5GX9oeI8p0p2nTbCYDQiIiIiIiIiIiIqQGFDEYymK24iE1HO+D3ycC1VGBdlXyAqXxYNimVHRM7W6JX0HwBgII7No+ulZakEapTqPmiQt8veOLJWOV29J//CZIiIaKKFvj1w/vyb8HX/9y0FlG8cbcG1m87GI12/x0g8P95+2W0S5JyPxzKvXoIad520jKHV+SEYH5IOTyXglqiQMRiNiIiIiIiITKnCiZJZnfBM/YqnzXt03nKCDo9bw2+P19Fg4RncnpfsDK1atkHgj8sMvLkxvZ1lf/28fH6rO4BQeGqZnZCXgZGd/7YasDKuwy1plNBTPDcslcFoKdzh2D3Jfeu7XsldB+wKk+cIMQMYSmgHKISwHNgATJzWyVRfaXIw2qwa+Xh2wgqLmZVgtG75S0hyJhKzN74hgBCDAxzFzjGzxA3sN1fe0OadTdnfT1td/1q2MZCPiLKjPzR2PfTEuwI9w9zvpJvVX5QhRUTmzE6LNAA1PnlZ/4h8eKFLdhqZ7AUERERERERERERERPlIHYyWvEM2EWWX36sIRlOEcVH2BSLydsWqZUdEzub3zFQGlm0Nt0qHpxKooWs6fLp8uk2j66TDq90zeL5GRFQgXJobR8z4b1y84FbsX3lo0vEFDLzY9xQu33gqlg++4vi286pz5HJXZd4GUfkVgW5mIXDkHCFD3lmrPE/XR6JMYTAaERERERERmbISmiOztnPnv59aoZ7J8gt1fP2AsQd1i5s0rLtKx6IG83n3BIH9rzTw7d8bOORaA9+5R+Dgawz88H4jbTdSn1ulnk9PcOqw9n7rn5vYsTdmM3iuXRaM1r4BImYzKShPqYL6JodlWbH7TPOJHnojdzflh5OEl/UmrIN2V/mhPOlYbjUETxWM1j6Q3voUKivrT0+eB6MB+RMIWCzaB6zvuEo8wP5z5WWrtwGRWHb31RGLgaZ9ISAgf4EPEVHaLG8VmHfe2PXQsbcb2OdyIyehkYXM6vVwiCFFRKZMg9E0oKZMXtafHy8TTbtk+x4GPxMREREREREREVGhiYs4okJ+85NBG0TOo+p8H4gwGM0JhBDoirRLy1TLjoiczauXoNZdLy0zIG/UmGqghioYplURjOb3MHCRiKjQ1Hrq8X/N5+Cnsy+xtJ8fiPfh3o4bcfPWS9AZactCDVMTUISF5fM5cr1XXvcuXps5niEMBOPyzlo+V2WWa0PkbAxGIyIiIiIiIlOpBqNt6d054ahJiM3+8yaGU1WWavjgUh3HHWAeWvX+VuBPb06s3D2vCrhOGQtMu/NlA/FUKw8gbFLnbsl9p/Z+6/MeSAimiloMWBnXIbupPDwArFxqb0bTIAwD4sW/wrj2FBh3/BKiJ3tvklCGZaUQjLbHTMDrVpe/th45e2NJstCgvoTO4XZX86HR/AhtsBqC11wjX/iBISAczY/vmktW1p+BEWf9jmb7Z5VBBqM5SpuNY2aJG9h7lnw7jxvAtiyHIMZtBJq2dCYfh4hoOk68x5gQ/tneD5z+Z5vJy2TK6uUAQ1iJzCXblGp88uH9eRLsnW4MRiMiIiIiIiIiIqJiEzHUD1tKGYxG5Dh+rzwcIRDdBkPwmXWuDcUHEBby/apq2RGR8zV6Z9kaP9VADVWgWkxEpcP9ikAWIiLKf3uU74dfzv8tvlJ3AtyaJ+n4LaH3ceXG0/G3wIOIGOEs1NCe7qg8LKw+j4PRVKFu3YoQOHKOsDECAfn1c7meWsAtUaFiMBoRERERERGZSjVbLDH0ZEDRkXWvZvlwj1vDX07RceeJKaRdYSww7ccPCRx3h5FysJVZ8IksGG1zr/V5J/4eMZvBaO3e2dLhYunT9mY0DeK6H0Nc/D/A0/cBD10P8d39ITatycpnpzMYzVei4SefMZ/wyRX255sOydanaQWjOe/5gpTVZT2rRj2PbYPpq0+hsrL+DDosjCASl1fabXKnk2ElzmInTLTEbb6dd2Q5GM3OPnfNNmeFChJRYWnvF9IAxtfWA+u7uP9JF6v7/f5Q8nGIipnZrRlNA2rK5NfmxbptJbuVxWA0IiIiIiIiIiIiKjRhk2C0Er0sizUhIiv8shf8AoiKCAZjfVmuDU0WiMgDHwD1siMi52vwKjpeKKQaqGE3UI37FSKiwubRvTiq/lu4aP7N2LN8/6TjxxHDP3sfxeUbf4r3h9/MQg2tC0TkYWH5HB5crzgOd0c7GVrtcCFD0jl1u1QDbokKFYPRiIiIiIiIyJSqI/g1x2r4hsk9zfZ+7AglUwWjXX2s+WXpDz+p4xPzLVRS4Yn3ANcpBhZdGMc5jxoYjVrr1R6LCwyahOj0DE+cT19QoGvIer0SQ4ZiNu8zvlB5hLzg1b+nHAJnh3j+L2OBaIkGeiD+9OuMfzaQ3mA0ALj2WA0/OEw98TG/M3DDcwaMVBMCUxAKi+TBaMGd/zYL8ZNxWsiVitVl3WwSmNRmI3ypWFkKRnNYqJhqna/xqafJl/W+WHTY2DZLPWPLtlTxkqn2bAej2djntvBFS0SUQWbnOW9sZDBauli9xOrnuQaRKbNNSYP6XH5wFFm9HneKZF+ZwWhERERERERERERUaMLCJBhNK81iTYjIigaT4ICuqDqUi7IjoFgGpboPFa6qLNeGiNKl0TvL1vjlKQZq2A1UMzsmEBFR4fB7Z+Insy7Cyc3nocZdl3T83lgAd7RdjTvarkZPVPIW4CwTQiAQVQSjeZqyXJv08XvldY+JKAZiSTqmUU4F4+pgtHJXagG3RIWKwWhERERERERkShVAU18BPPwjF147V35pGY4BPcPAaFQgEpPPo8bCyxyfO2P6l67rA8ANzwn817UGVrULvL9V4MN2gVhc3tO0NygdvEP3pHtPLTbv0Q6Edn5uNG5v2l5RiYCrfmrB1vXA5hZ7M7NIDPVBrH0PYsWrEJedJB/p9X9k5LMnU4ZlpbiaeN0a7j5Jh9/k2e85jwpc8XT2OmKv60oewNCXsA7Z7SM+5LCQKxWrwWjVZYDPKx+3ncFoSeVjMJqqzl43UFEiL3uztfjCFJysrd/68vC4AE3T0FwtL2+3Ma90sPNpW/gskYgyqEwRGAkA63LfhqRgWD3X7g9lth5EhUzT1MFoQiS/R1OIkt0TGIlmpx5ERERERERERERE2RI21I1TvLqiMQgR5YzPVYFyXd7oMhBhMFquqYLR/J4maFqKbyEmopyzG4zmSzFQw+50fg+D0YiIioWmadi38mBcvOBWfG7GMdDhSjrN+8Nv4vKNp+EfPY8iJnLX6Gk4PohRQ97Qsz6fg9FM6q4KgiNnCCmC0TRoKNMVDSqJihSD0YiIiIiIiMhUsnCiuTPU07b1AwMj6vJqC8Fo1T4NHTek5/L13S3A3pca2PdyA3tdaqD+TAMPvD41+a1ryHw+gUn3nt7fai+UpT/hN4nZDEYDgJtnnCovWPac/ZmZEMFBGJd8B+KoJogfHATx0yPUI/dugxjKfAqVoQjqmxyWZddndjOfwWV/F/ioKzvhO2u2Jf+cvoT78XaD0ZwWcqWi+l6T2+VomobmGvm4dsKXipVqm0o0aLIfzwVVnV0asM9sedmzK7kuOInV0MLyEuxojDdTEYzWMZCmSllkZ587NMr1jogyx2x/9FFX9upR6JKFE43rC429UZCI5Mw2Dw1Ak8mL6duzfL7nBMnOOUOR7NSDiIiIiIiIiIiIKFvMgtFK9NIs1oSIrPJ75R3w2fk+9wIR+TLwexleRJTPGrzNtsYvTzEYrdxl8rZxiXwOkyEiotSU6mU4xv9dXDD/11hYtmfS8aMigie7H8RVrWeiJfh+Fmo4VbfJdUo+nycztDp/BePyzqtlejl0LXnoIFExYTAaERERERERmUoWRNVYpQ6lShaMVmMxwL6xSsO7F6X/EnZwFPjuHwT+9z4D5z1m4Du/N3DNswY+dpl5UtCmnol/P2MzcCeQcO8qpvio2nivcvrH6k+QDhcbVtmqh4oQAuK9VyC+6AdeeMT6hJvXpuXzzSQL6kvVtV9PPoMDrrSQIJUGk9cvmd7gzn9bCbZKlC+hDXZC8GYpgtGshi8VMyshT04L01PuB3Tgq/vIt+WVbfmx3mfK4IjAI8sFnnxPoDeY299BCGE53KLcu/PfzTXyZZvt7dzOPnfIYdsOERUWs2P4tsHiPealm9VAzLgBBMOZrQtRPjMNRtPM7y0V43Udg9GIiIiIiIiIiIio2IQNeSNDt+aBS3NnuTZEZIXfIw8PYOf73OuKypeBapkRUX6oddfDo3mTj7idT08tGM1nI1Ct0lWNMpfFDiFERFRwmkvm4sw5V+K7Taej0qV4C3qCzshW/HbrxfhD+00YiKn7zGWCKsC5RCtFlUvRISlP1CtCq83C4Cj3gsawdHiq4bZEhYzBaERERERERGRK1RnTtf2K0u3S0KS4f7m1T5iGPFWXWa/HPnM0rL48M5ex9y0VuO4fAn98U+DCx5P3fG/ZtnMcIQReapGPN69OPrytf2dATzQuH2ff0RXqz8dcbHM1Ti3YpKiIDSIagTjvWIjTjrQ/8aY10/78ZDIVjLagXsMFR5nPZGgUWNOR+ZCJNgudvvtCO/9tNaxh3Gg0P0Ib7CxrpwQm5SMrq89oFIjEnBOwEjcJzTt4F/m60BcCuuXPDQreu5sFFpxv4Ft3GTj6d2Phn+9syt3y7A2OrVNWVJTs/PdMxfPGjoHsfhc7+1ynhQoSUWFRHQ+BiSG6ND12jjL9JqHgRMUu2bbkdmlorJKXtfU751okW5JlOocixR38TERERERERERERIUnbMgfsJfopVmuCRFZ5fcqgtEUoVyUHUIIBCLt0rIGxTIjovygazoavM3WxoWOUj21wLJyG4FqDFwkIiJN03BQ9WdxyYLb8KmaL0FD8s5dbw39B5dt/Cle7HsKcaHoVJdmqgDnem8TNG2aHdJyzO+RB6OpwuDIGULxIenwMgajEU3BYDQiIiIiIiIyZSWcaLYirKStH7jwcXmPfU2bGHhixeImDf88Q0ddub3p0q2lc2cH1GBYHXzyg8PkN0dDEWBwe6f5mCLQwCNieGbzV5V1aPNIHmxuWmO7Y+yyDQKn/tHAOXd1YMV1N0AcXgksfcbWPMaJzdMPZkvGLBBpui76soZvH2Q+oz0uMfBRl73f+NV1Aqf/2cDP/mzglXXJp2230Om7fxrBaAAQyIOAKNXX0iV3s5oV+6CHlgl2Fk/CMAlVSTTooKAPs+PSEvkzHQDAmiJ9rvPde40JYYrt/cDP/mxxwWfA2k7r45YnnCc0K0JYOwamVx+77OxzhxiMRkQZZLY/Stzv0/RYPVcCJp6jE9FEZpdl4+3KVNd1xRh4beWc02rYMBEREREREREREVE+CAtFMJrGYDQip1J2vo90sM1eDgWNIYwY8ofXDDAiyn8Nsv4DEj5XRcohLz5XpeVxVSGZRERUfHyuChzfeArOmXc95pYuTDr+qBHCI12/x682nY2NI5nvi6YKCatXXNfkE79X/h26I0XagSZPBOPyjn12QmqJigWD0YiIiIiIiMiUlWC0WbXycdr6gfUBeVlVKaCnkGb1uT00tF6r46WzdTzxEx0fXKojcruOlZeO/X3jcZl/U0N/CAhsD+bvNgmYOniBui5t2zv2xhQvt3CLGI4MvqCcPuCqnzpwqA9oXa2u0CR3v2LgkGsN3P6SwA3LG3Dw2h/jqYovWZ5+ik1rUp/WIuX6mIY7HCUeDff/r4anTzOf2QFXGnh3s7WGOw8tM/CZGwzc8oLArS8IfPYGA/e/bp6u0Gah03dfcOfnpxKM1jVof5psU4VQyHYbsxQd6AHgnL+ykZUZq+uPKgAyF1R1dumAvxKoUbzkbn2g+NaFjn6BDyQvAF26HtjYnZvfo6XT+ucmbu8zFcFo2Q7KYDAaETmFWWBXXzB79Sh0do6WvfzdiZTMtqXxUz7VdV17loNwncBKX6ERBqMRERERERERERFRAQkbimA0vSzLNSEiq1RhOGExiqF4ET7gcYhApENZxgAjovzX6J1laTzfNAI1yl3Wp1WFZBIRUfGaV7oQ58z9FY5v/BHK9PKk428Nb8T1m8/FQ9tuw3A8cx2dVCFhhXAsU4W7BaIMrXaykCoYzUZILVGxYDAaERERERERmbISRNVcIw8Aa+8TUL1saGAk9TqVl2j41G4avravhj2aNbhdGvZsHvv7zM/pePKnOhY3pj5/K1o6x/5vFoy292x12XiQS1QVjIYYdAg0xDql5d0ev3zCV59Sf2iCtj6BUx6YuHDDeiku8V9iq/P/BDZC2VKlDupLTyCepmn40t4aPre7epyh0bFwtMCQ+S8Viwtc8JiYUGdDABc+LhCLy6cVQuCNDcnr2ZfwQr9UgtECJuutU1gJZRzXbBKMduNzAvVnxnHcHXGsap84065BgVP/aGDPS+I47Fdx/OOD4rvpb1h80JEPwWi6NrYNz1GEdRZjSMzmXnXZGxtys76vsfHioVhC6I/qXKN7GIjEsvddbAWjhTNXDyIixekkgLHjNhszpIedn7FjgL85kYrZtjR+OT/T5N5SsbFyzhmKZL4eRERERERERERERNkSNuSNCUv00izXhIis8nvUIVtm4VyUWV2K375EK0WVy6ShJRHlhUZvs6XxphOoYSdUjYGLREQko2sufKrmi7h0wW04uOqzlqZ5beBfuGzjqVg68DwMYfLm4BQFovLz5EI4lqnC3UaMEILGUJZrQ1aplo3PRkgtUbFgMBoRERERERGZMhT3ExODqGYpnpVv6ZsY4JTonC+mJ8hK5isf07D6CheMu1x44/zMXPq2bBvrpaoKRnPpgL8C8CueK27sGZs+pvh9PSIKAPDHuqXlgdmfkA4XLe8oajzRnHPlH7yi9GPocCtu7GoatAfeg3benRjRSrHKuztGtITGZ1vXQ7RvtPT5qbITljUdt307+XrT+HMDQ6Pq3sqrO8a2gcna+oFV7fJp/u9+ax2+exMCnlTbqJlkoW5OYGdZz1J0oB/XGwT++g7w2RsM9AyPzdgwBI75nYHbXxJY3QEsXQ8cdbOBl1uc/9ukk9WQp8FphFmmW7J1o9YnL1cdjwqZ2fLdYhKalkmt8sOaVHxCMJp6vE09qdfHLjv73EgMCEeLa59CRNmTbH80nSBq2slqiCwwdp5PRPaNX82p7i21D2StKo7BYDQiIiIiIiIiIiIqNmFD/sY+BqMROVeFqwqluryhlip0gDJPHfjQBC1NLyAmotxp8M6yNN50AjXKbUxrFpJJRERU6a7BSTNPx5lzrsJM79yk4wfjQ3hw2624afMF2DramrZ6jBojGIrLG6GpQsXySb1JuFt3xMZb7SmrQnF5h1Q752JExYLBaERERERERGTKSjiRqvPqqnZA1Y/8Wx/PzgP2AxdoePuXOr6x/8ThlaXAPrPNp/3c7uqyls6x/6sCpuorAF3XsKtfPv267dPH4vJyt4iNzScuT5DpbtxLPuHmFvnwBLe9aJ6i0OJdNHXgl78P7S9rEJu9BD9qOxZ1u3Vgn13fRu3iTpzTcBVicI2N99pTST9/OtRBfen9nIUNGlwW7ppU/8zA3a/IK7WqXd2T+QNJWSwu8Mhya8ELiQFPZh2my0vkwwN58NIPO8FoZoFJibqHgev+OTbjMx8WeH3D1HE+e6OB0SIKMrIcjCZvf5oT8ST7gRpFMFp/EQbEBMPqstYshokl6hiwvn0lhofOrwNUbfPGj8nZYHfvMOSgbYeICkuyY/jPHxEQNkK9SM7OT8hgNCI1s21p/ByvuVpe3iYJHC90VvY9DEYjIiIiIiIiIiKiQsJgNKL8o2maMkSAwWi5E1AEHzC8iKgwNHqbLY03nUANO6FqDSZBLEREROMW+fbEBfNvwjH+76FES36dv2F0Da7ddBYe7boXI/FQ0vGTCUTU1yd+b/4Ho1W7auHRvNKyQJTBaE4VVASj+fTKLNeEyPkYjEZERERERESmkgXQAMCsWvupVPVZDLDfb66Gh3/kgnHXzv8Gbnbh3YtdGLxZx56TnhGe/CkNxl0u/PNMF048WP7dtvaO/b9bfh9qx/db1CCffl3nWC/XqCoYDePBaPLkmu4SxYPNjR9CxGLyMgBDowKn/cm8h+1a724T/tbuXgr9vDugzZyPy58WuHt5OSL6WOJWTPPgprozUbr7EB6sOgHDr/zLdN7TZScsa7qszvKUBwSueMpAJDaxcusD6mk2SMrWB4BhkxCjRP0jgLH9xzALxWhU3A8NKNZbJ1F9L1kwkqoDvcz1/xTNJWnxAAAgAElEQVToHBS45QX1D3fOX4snREQVNjjZ4IhzfhPlfmD7nc4an3zr7Q9mqEIOZhaWsLYzN8u0Q/6yJanE8NAyr4Z5M+TjrdmWve9iNUxw3JDF/ToRkV3J9kd/eE3g8XezU5dCZme/38FgNCIls01pRzBajfw8vnNoLEi8mFjZ90wnGM0wBN7ZJPDQMgMbAsX12xIREREREREREZEzKYPRtLIs14SI7PArAnFU4VyUeapQOtWyIqL84nNVoNKVvNH0dAI1XJobpXryc7ByvdJWiBoRERU3l+bG52YcjYsW3IL9Kg5JOr4BAy/0PYnLW3+KtwdfndaLgrsV4WAuuFHrrk95vk5hFlqt+u6UeyFD3rFvOgG3RIWKwWhERERERERkykoQ1awa+/OtK0+tPulWUarhnV/quPd7Gq45VsNzZ+i44zs7L5ebFd+tfWDsh+kakpfvCEZrlJev6xr7vyp4ziPGws388W5p+ca4Xz4hADxwrbLoT7c+p55uuxbvop1/fOHb0JYcsOPPB99Q30z+3qx7UD36ON5aZSP1xibV+ujKwB2OT++WfJxxlzwp8KnrDPQM76zg+DKWWd469YustvGSRCGAwe3tAU2D0arkw7sV662TqAK7ZCF4JR4NPvkLTqSuedb8ociflomi6Xhv9VsOjGS0Grao1g3X9nWjxicv73dQuFu2BCPq77wmB8+4hBBotxEaE5u0rBcrXsjUksXvYjVMcJyTth0iKiyq64hE1z5rc6dFU9g5e2jrL75zDSKrrLRLU91bEsJeuG4hsLI3CaUYwBuJCZxwt8DHrzJw4j0CCy80eLwgIiIiIiIiIiKinAsLRTDa9pd3EpEz+T3ysK0uRTgXZZ4yGE2xrIgo/zR4FS9XTzDdQA2fnnx6v1fRoJOIiMjEDI8fP5x1Lk6dfbEyzCvRQKwX93TcgFu2XorOSFtKn6kKbq7zNEDXXCnN02nqFcflQITXZk4VisuD0Rg8SzQVg9GIiIiIiIjIlKrDfWIQld1gNJ8X8JVI0o1yxOPW8L1DdZz7RR1H7jGxXjMVL1Ua75S7vkveXbWpamw+8+vk0/cEx/4/OfRlnHt7MNrc6GZp+Stt5RjwzJCWiXuvgAhPTWIR6z/Ak+/E5B+Y4PYZp4z945AvQTvrtzuGD4QENvUknRw/vC+KuFla1zRYCepLl5MOsTfTN1sB/1nGjtCzwJD6N/jXaiAUnli+Zpu936wvNPb/VILRzOrmFHaX9cVfsb68bv63+ffvCQJL11ueXV6zuqkOytuf5oRy3dh+XKpRvKiuL5iZ+jhZ0CQsob0fGMxyWNzQKBCKWB9/8jnIwgb5dt7Wl73vYffwtiGQmXoQEVnZHy3fBLQzrGta7ARiFuO5BpFVZnui8TO8OfJbHADMg8cLkZV9z0g0tXn/4TWBR96euEQueFzgvS08XhAREREREREREVHuhA1VMFpplmtCRHY0eOVhW4FIO4SVN+dQWoXiwwjG5W/NZYARUeFo9M5KOs50AzXKXZVJx2HgIhERTcee5fvjl/Nvxpfrjodb8yQdf01oBa5qPR1/734IEcPeGyWV4cEFdI6sCpkLRLP4BnqyLGKEERXyjjXlevLzMKJiw2A0IiIiIiIiMqUM7kp4KUJFqYZqRRCNTH0ehdfP3PCydHhHv4AQAmsU9wgXb7+nWN3fKi0fGBq7gRWNyRt/uDEWYHZE8EVpeTSu4c09vquoNYDlL0wZZPz9XiwtO0g9zfi8NS9uPq0V2q8eh+ar3FHP+edbSwV4f6AWb2ywNKptyQKR0unr+2sprasHXm3g8XcF+kPqcUajwDuTMu9abN5v7t0evKAKLwSAhip5iFBA/mIJR7G7rE/5VHrT8Z54rzgaZlkN+xicmrWYM6p1fjw0r7ZcXt7voO+QLcEkIWTrsxza9UG7vfE/MX/i36og1vaBlKqTErvBaHZDL4mIrLK6P3p6JfdD02Hn1+szOf8nKnZm/V607efxNT4NfkWbnlMesJFSWACs7OOD4dT277e9KJ/uwTd4vCAiIiIiIiIiIqLcUQej2WiUSERZp+p8P2KEEDTkAV2UOWahBw2e5izWhIgyyUowmpVgMzNWgtX8inBMIiIiqzy6F1+uPx6/nH8z9vDtl3T8mIjh2Z5HcEXrz7ByeLnlz+lWnCfXK65n8pHqu3RHGIzmRKG4ulPfdANuiQoRg9GIiIiIiIjIlCqAxj3pilIVViKTL8FoIhpB0z9vlpYFIxr6hmJY2yWfdsn2e4pVL94vLR8VXowu/ZcyeM4jogCA/UffhT8m/5B3Fhyjrnzr6gl/io/eR+cTj6LfVaueJsH5LzVgePtLNIJhAd9PDQzYCBU66+GJX+y5VQKH3xBH89lxfOq6OB5allqnZlWIk57eTCwAgK9Ew39+oeOQXexP+/XbDbyeJBxucljOn9+y1wm5b3swmlmH6cYq+fCuPGhzpOo4r1rW1T4NVx6dvhXhN88LGHYTkPKQ1a84KG9/mhPK0LzxQAVFm9hiDCsJJQlGC2R5X/DsB/a2qTOOnHiy0aw412jrS7VG9tndLaztzEw9iIjMwnETPfN+4Z/PZJKd/X4xhrASpUPiVdwSRVuz9QEgMFQ8+zMr39TKPZql6wW+8OuxezGNP49j/yviyrDim/5VPL8vEREREREREREROU/YkN/0LNFLs1wTIrLDLBQnwA74WReIdEiHezQvqtzW2g4TkfNZCTos16fXWaPcSjCah8FoRESUHg3emTh19sX4YfM5qHHXJR2/J9qJ29uuxJ1t16AnqujUl0B1bVJIIZ+q7zIQ71OG0VPumAWJTzfglqgQMRiNiIiIiIiIlAxDKDuCF0MwGtavRHPvKmXxy7+6E5GYvGxxkwYhBKpXvaCcvv+C7yMak//ALjE2Yw3AHuHV0nEubPk4BMY6zA7pFRjVSnaUiU0tO//d0Qrx/U/g+NkPKOsyWTgGPPCGwIftAntfalgOXhj3VutYB1wRGsIL7w7ji7818NJaYNsg8OpHwIn3CNy3dGymXYMCW/usdcBNFoiUbktmanjtPBdGf6fj9CPS+yFrEu6tr+0UCCvWJZXxkCdVWBwANCmC0bIdhpSKVJb18Z9I7zI65nepBfjlE6thH0MOehaiqrNr+3FpRrl8PegahHKfW6iCYfPy7uHs/h4fbJV/3uxaoGpSW+ZDdwUOWzhx2Kwa+bLtCQLhaHa+i91gtE09xbXOEVH2WN0fvb3Z/rx7gwKrOwQ2BASEKq22SNj5+sFw8Z1rEFllti1pCad4uzWqr+n+vqJ4ti+z6/xxyYKf39si8OnrDfxr9di9mMAQ8N6W9NSPiIiIiIiIiIiIKN1UnXRLNAajETlZlasW3oR2q4kCUXlIF2VOV0T+hhy/pwm6xm7ERIWi0Tsr6Tg+C8FmptPryQM5GgooTIaIiHJP0zTsV3koLl5wK46sPRq6hRicFcPLcMXG0/Bcz2OIiah0nKgRRV+sW1rm9yje4pmHzL5Ld5Sh1U4TjA8ry3yu8izWhCg/8I4GERERERERKZmFYbkmB6PVWg8kqqvIUIpVum1qwexoG9yKG6RPrlM/NNytEUBPB6qD8oYGADCgVyG6Xh565hY7U7KWRNYq53Hzofdh4a6rUbu4C/MXrsXvak8ZK1i/EgAghMDGb38Oh8x/Ga/6DlPOR+anfxTY61IDrT22JtvhsF8ZCB81G0feXiYt/9GDAgdcEUfT2Qbmnmtg4QVxvLHBvKNztoPRxnndGm76poZbTtBQ4k7PPFu27fwyt7xgv4N3X2hsGrNQjMYq+Q8TigChsLM7laeyrOclfzmMLX9/HxgIOft3mi6roSqDI875HZKtG/MV60HMADamuD/LR63dAlc/Y77cutXPUzKirV8+/AeHaXjpFzq+/18aPrkIuOAoDf84XYfbNXGDbzYJYX3k7SwFo9nMS+zJ8m9MRMXD6v5oax8wPGptH9nWJ/CZ6+OoP9PAnpcYWHihgaazDfw1S/tYJ7IbiDkwkpl6EOU7s00pMRjtKx9TX/D944Pi2RdZ+ab9SfY3Vz1tP+SeiIiIiIiIiIiIKFfCQhGMpjMYjcjJNE2DXxGME4gwGC3bAorAA9UyIqL8VO9tTBoWM91gtHIL0/s93LcQEVH6leplOLbhe7hg/q+xa9nuScePiDCe6L4fV7eeibWhlVPKe2NdEIrWWPUFFIw2w+NXnh8EIgxGc5qQIhitRCuFW/NkuTZEzpemrrxERERERERUiGImHSjdrol/m4WVTFY3vWdtWSM2t8CDGBZG1mNNyZIp5X+r/Ip0urkzgPISDeKDFlQbg8r5D7iqEeveBpTvMaXMg53BaHuGP1TO4+d93wS8Y//udvvxs6ZfY0l4DQ5f+zLE0/8PhmHgC3Ofxnrvrsp5ZFL5IvmbNQAgEgPe3bLz7w3dwJE3Gdj8Kx0zyqd2hhZC3TU408FowFgjnlM/q+HUzwKnPGDg7lem1yl7TcK95TUd6nnNr4M0nK4vNPZ/82A0dVlgGJgnf1mjI6QSjObSNezVDHygziO07V+rgW8ckL75OY3lYDR5+9OcUHXuH183FjWOhSvIdhlrOrYHVxY4IQS+fEvyFIRsB6O1D8iHz6oB9p2j4Z7vmu/M59SOBbPK1oErnhL49kECmpbZA4LJoUiqJ5iZehAR2QnsOusRgf3nmk8gBHDqH6eOExgCjrvTwIqLdew9O08CrtPI7n6/fwSoT/7SXKKiY3Vb+vLe6rJ1XempSz6wso/vD6nLRqMCz35g7zOzcV+FiIiIiIiIiIiISCVsqILR5C/kJCLn8Hua0BZunTI8EGUwWrapwugYXkRUWNyaB3WeRtP9bLk+vcYrPpf59GW6D+VJxiEiIpqO5pJ5OGvO1Vg2+CIeC/w/DMcVHRG22xbZit9suQifqPw0jm34HqrdtQCALsU5sgYN9Z7C6Vji0tyY4fGjO9o5paxbEaBMuROMD0mHTzfclqhQmcdCExERERERUVFThc8AgHvSFeUsG8Fo9flyn2ZTCwBgcWSttLjfVSsdvrhiLAxNXPJtVBmD0IT8hxzQqxCFPMnfLXYGox07+ITlKgPA1fXnjn3+tSfjgj905SwUDQCEZu/WQygCPP6uvAewWcdgPct3OO48Ucc/Ttfx88+n3nN4Y/dYZ2VAHRYEALv65cN7t4ftpByMJr+P6hjKYLQky/r4A9Pbm/uFNdMLwHM6I3l2FgBgcCSz9bAjWWheqUfDgjr5OC2dhb08x134hMBqC20LsxmMFjcEtimD0axttxWlGo5UvPhpXRewfFOKlbNBtQapzm16g+bBnkREqTK7Vpvs968I/OQh8/9koWiJ7nu9OPdldgLoAPOgIqJiZrYpJZ4Jul3qsFyz6+ZCY+U6zWx/81br2P0VO1xsOUJEREREREREREQ5IoQwCUYrzXJtiMguv1ceuhWIsPN9tqlCklTLiIjyV6N3lml5mat8WvMvTxLK4ffMzPhLbImIiDRNw8HVh+PSBbfhkzVfhIbkx563hl7GZRtPxUt9T8MQcWUoWI27Dh7dm+4q51S9p0k6PMBgNMcJGfKOPMnOwYiKFZu3EhERERERkVLMLBjNNfFvq6EmQB4Fo20eC0bbI7za1mTzN70Isf4DYKAHOgQqDXkC1aCrGjHNLS3ziOiOfzfFp76xwcxL5Z9Bj2sG1nh3w/X1Zycd/9b/Sf3B5Ml1b+KhtpNSnl5mjeKeq1nHYD0Hz1Y/v6eG67+hw7jLlVJAmiGAj7rG/t2h6OB91TEaan3ysr7QzvmozChXd252fDCaYnkn+6XPOELDsfulrx7LNhR2CIjVbzeQB8Foiev6LopAwc7B9NfHaQZHBK591tqS7cliMFrnoHrZNdsIV730q+pb2u9vzfz2qto3+RUvPwzH7IdSEBFZYTewa7peWVvY50QqdrMtGYxGJGe2LU1uKz2nVn7VFxgCwtHi2BdZ+Zb9IfVYq9rt/06J91Xe2yJw0d8MnPtXA0vXF8dvTkRERERERERERLkTFREIyB/GMxiNyPn8HkUwmiKkizJjJB7CUFzeENWvCEggovzV6G1WlpXpPrg0l7LcCp+eJBiNgYtERJRFPlcFTmj8EX4x9zrMLdk16fijRggPd92NX236BVYNvy0dRxUils9Ux+duhlY7TjAu78jjcyk6pRAVOQajERERERERkVIsri5zT7qinFVrfb75EIwm4nFg60cAgMODL9qatqp3PcR9V+34u9qQJ/H06TWIah5pmRuxCX9/cy97qURLyw7GT5puTjremxfo+M5B9kO9/vA9Da3X6Lj9jNk4cOQt29Obae+XD4+b9MXNRTBaouu/oeN7h9qvxKsfCYxEhDJA4ZBdNNSUy+fbFxz7QcwC49y6ensLDDu7c7Mq7CPZsvaVaHjkRzpartDxyCk6/iv5cw8AwGcXy4e/u2Xnb12IrIaqDMpfzJsTqnU+cd2or5CvKL3BDFTIYfa7wmSnMEkqgQmpUu3bAXvBaAftomEPRZualiw8s1NtM36Tc5tsBtARUfEw7CZ2TdPyTUCPw88fM8HuN+53UJgskZOYBqNN+tvs/tK2Igg6Bqzt482CGFWB82bGX4Dw7EqBg68xcNXTAtf/U+BT1xl48A3r1xhEREREREREREREdoUNdaMUBqMROZ+q8/1wfBAhRWdvSr/uqPoBEQOMiApPo3eWsiwdgRrlSeahCsUkIiLKpPlli3DOvOvwrYaTUab7ko6/JbwBH4belZY1FOA5sioQmaHVzqO6Vi5PEk5LVKzcua4AEREREREROVfMpN+ja1Iw2mwbwWizanKcYmXFtlYgGgEAHBZaihJjFGGLDa0qjWHgpcd2/O2PdWOLZ87Uj3A3IqiXS+dRbkzs4VpXaS/b/Jg5jyYd5y8n6/j4/LFlcdM3NZz1sHnHW00DDt0F+P13dSxuGl+Gc9D8+S8AG2xVz1Rbn7weZgFguQ5GA4A7vqOhrgK46z8CQxZDpJ58T+Dze6grP7NaHWw2HrRjFmyla2NhPZ2SzuNdQ9bqmCvKYDQLC1vTNCxqBBY1An0hDa+tT96p/LTDdbzYIl/JPnODgRWXTO/taU5ltl0lGnRQyId63dj57xnyXWvBBrps6hE4/zGBP79l7/t92AFsCAjs4s/8TlQVjOZxAXWK5aXy8fkaPuyY+l1btmV++arWP7PQ194QMLcuM/WZLiEEHl4ucMsLAuEY8PX9NZxxpIZSj/V14sE3DNzzqsBwGDhqbw0XfVmD2+WAAzNRgbMabppOv/23wOX/XVzbt93feTgsMDXmiYjMaJM2meZq9bjt/cA8h55XpZOV7Ms+k2C0VM6Lx0/fznvMQCQhq98QwC8eFfifA4Wl63EiIiIiIiIiIiIqXBEjjLbwJsRENK3zHYz1KctKNAajETmdqvM9ALw3/EZGwnNmePyo8zSkPL0QAoHoNgzEeqXlDd6ZqHbPSHn+2TBqjKAtvAmGGHsD9kcjq6TjuTU3at1F8ICNqMg0eJuVZekI1Ch3mc/D71Xv+4mIiDJJ11z4dO1R2K/yUDwWuA9vDr6U0nzqTa5j8pXqO/VGA1gbWgkN5v0Sq90z4Pc0QZvcoI/SLmTIO/T5kpyDERUrBqMRERERERGRklkwmnvS/TB/xVi4STSefL5L8uH+4aaWHf/0IIaFkfVYVbqnpUmr4hNTqJpi8jexbXM3YVCvks/DmDiPuur0XcJrEAjf7poQWnL6ERqeWSnw/Oqp49/0TQ0nHKihogQoL5l6g7P01MvhPz2AgNuflvq1KcJzTAPA7OXGZYTXreH6b2j41bEC/1kHHH5j8sSpF1qAlW3qcrNgtG6rwWiKl3YF8jUYzeY99qP21gCYdwr/yWc0HDBPXb6yDXh9vcAhuxbeDX6rYR8jUSAaE/C4c/8bxBWbVuK6UafYbnqD6a9Prg2EBA6+xpAGIFqxfFN2gtHa+uUrW3ONtcDDRLs1yoe3dNqtlX2qbWZGhQZNE9IQi7Y+YN+p+ag5MRIR0LWx7SUaBx5+W+B/79tZ6bc3CawPADceB1SWIumDzd+/YuDkByZOvzEA3P+D3O8riAqd6niYSa+uK8yAUTNWwokSBcOZqQdRvjPblCafblSVAeUl8u2ptacwr8sms3Kd1m8SXr06hZd8unRg24CQ3qPoHASWrgcOW2R/vkRERERERERERFQYXu57Bn8N3IuYiCUfOY1KLL7IlIhyp8ZdB7fmkYYmPrjt1ox97oLSxThl1vmoctfYmq4n2ok72q5BW7jVdLwlvn3ww+ZzUebyTaOW6SeEwNM9f8Y/eh6BgeQNB+o9TdC1wnwpLFExa/TOUpalI1DD51I0Pt8uE6GXREREdlS5a/C9mWfg0Ooj8ZfOO9ER2WJrer+38I5lquBSAwZ+s+UiS/No8s7GT2ZdhHqvosMGpUUwPiwdXp7kHIyoWDmg2zARERERERE5lVlne/ek5+S6rmFmdfJ5+iuBuoo86MS6uWXCn4siH1metNKYeINqpiIYrcPdhEFdftOqKj4xtaquKn3BaIHT104IRQPGgk/+dqqOC47ScOB8YHEjcNRewN9O1XHGkToaqzRpKBoAaJW1+IJ3Rdrq19Y/FsA0WbIAMKfQdQ2fWazhvYt1HHcAsIexHjOj8l7JkRjwm+flG5q/Eqgq06YXjKYD/kr5j+P0YDRVCIXdZd1co2Fxknvyt5ygYXYtUGXSlvKiv+UgfSQLrAajAcCQQ4I+VHV2JdzprCuXj9NTgMFot70kUg5FA4AW+SEq7doH5MObLZw7TLakSb4jWB8AIpLjRzoZihXQ4wLm1MqnaenMfZCQEAJXPm2g/KcGyk41UPITAxWnGRNC0cbd86pAzekGDrrawLIN5nW/+d9Ty//4pkCHIgiPiNJHdTxsqAQu+oqGg3cZO6e3+58qfBIA1nVl5rs4mZ1zJQAYdsj5EpHTmIUMTj6z0zQNu9TLx12bhSBcJ7ASytgfGjvHmywYFtjca/8zXTowYBK2tqmX53dERERERERERETF6qPQh/hL111ZD0UDgBK9LOufSUT26JoOvyf7b0veONqSUvDaPe03JA1FA4A1oRX4S9edKdQss94dXopnev5iKRQNYHgRUaGqctWiVHGelI5ADZ+uaIS7XSGGyRARUX7azbcXzp9/E46uPwlercTydLm4hsm0+jR8p22Rrbi97co01IbMhBTBaD59+gG3RIUofb2qiYiIiIiIqODE4uoytyRqe1YNkna+XJIn9w7Fhg8n/L1bZK3laSuNiYlTTYpgtDZPM4ZcVYp5JKTclPowZ4YGYHqdUEuMUby7x+2YsefZ0vIyr4Yrj9Zw5dH2533ByQvx4B3Tqt4Oo1HglY+Aw5dMHJ4vwWjjPjZbw59PGIB4cG8Y0DB/4Tq0e5qnjPeyYtUa31bqK+TLvnt4rBN0st9FHazm7E7Nqu+VyrI+6VANFz4un+GyC3Ro2thM7zpJw/F3ycd7YQ3wxLsCZV7g8MWAx+3AlS4FdsI+BkeAGeZtHbLCyrpRp1jvnRqM1jMs8P5WYFW7wIJ6DXNnAL1BYF2XQFUZcOiuGmbXTl3neoMCv3zC2kI8Zj/g8XenDs9WMFpbn3x4s72XtgIAFivOJeIGsCEALMlgmxuz9W9Jk/w8aE2WfmMzN/5L4OK/2dvvL98EHHengQ8u1VFVNnX9i8YEPmifOp0hgIffFjj9iMLYTxI5lWp/VOYFLvuajsu+lvq8z3rYwG+en/oBbf3A8KhARWnxbN9WwokSBRmMRiRl9+pzt0ZgZdvU4evyJBhtaFTg5bVATRnwiflAicfeftPKdVo0DoQiQPmk9nyphsd1DwOPvq3+YKMws8KJiIiIiIiIiIjIgjcHX87J52rQ4NG8OflsIrLH752JjsiWrH/uquDbGI4NosItb4c7WVekHa2j6yzPf8XQMsSbYnBpzumCu2zgJVvjM7yIqDBpmoYGTzM2h9dPKfO5ph+o4dXNg2WqXCk0/CQiIsoQt+bB5+uOxcerPolHu+7Be8NvJJ0mHSFiTlOil6LaVYuBuKLjhkUdkS3oinSggdcSGROMD0mHpyPglqgQSbqxExEREREREY2JmXR6dCmC0ZL55CLnd6IXAz3As/+fvfsOc6Ja2AD+nsn2hS1soxepSlERuSoWELuIyrXfa0Gxo9jrp2LvXa5eK/aGXkVsiAURVLChUhaQKtv7bpYtyZzvj7DsbnLOZCab7Gbh/T0PD5uZM2dOksnJzGTOO6+0mnZg7RLby/sHo/XQBKOtiRusrSOlZR3xSTh8D9ur17rC+waGXaUORWurYaMH4u+hd+L2otvDUt8XKwMH43a2YDQAQLEvMcaAxHE1HztadGh335PSBZt5TF9QldXgZEMAWZrzosXq86hRQxdCYYRwNuus/QS6KH6jP+9AgX37N288p4wxkG1xHnnK0yaOftzEsFtNrMyL7mA5uxwFo9VFrh1O2ApGS1Z3CmVuwHTypNvBwlyJ4beZmPiIicvfkjjuKRN73mFiwsMmLnhV4rRnJQbdbGL2ktYf9m9yJTKvtJdOsOV+A0Ny1K9JbmH7vB75ler19Exz3oEPytL3+7kRDsuw2v6GdFc3ak1Bx25zLy02cd2c0Nrwdznw0hL1stUW4T+hBnIQkX1ezVdAOPaLp0/QV/K7IqhoZ+Z0t8HdEJl2EHV2ViGDQtHlDNbsu65pp33Xtli8TqLPdSYmP2Xi4AdNjL3HRF6Fs3bb7XsqagOn5bZh3/MWiyDdKDuMIiIiIiIiIiIionaU37C5Q9bbI67PjpsdElF06xs/sEPWKyFR2GD/R+y8emf9Wb2sQ41mwHpHKXAYQNc3oWPeGyKKvH4J6nEIPeP6hqX+/pr6ByUO5z4aERFFpW6xWbig1w24pNf/ITM2R1suO7YnEl1J7diy9tMnTPv/FZ7SsNRDarVmjeHAQ9YAACAASURBVHJ6OAJuiXZGDEajsBJCxAohxgshzhJCXC+EuFQIcaIQon9Ht42IiIiIaGclK0shX7kP5mNXwrxhCsz/3Aj52euQXm+b67YKRotRHFH2TA/+I9exI6P7hzBpmpBTdguYfmjtN0gy3bbq8A9G6+VRX3hR4UrX1pFiVjU/SEhC1wSBCw9p22t35iGJbVo+mB6X34Sbh6/G6ZVvtbmuVfmKYLQgAWBRqSRvx5+Tqz9ytOhuwheopws2A4Dv1gFnvah/YVwGtEFf0R6MZif8yq5e6QLPnimQ2uIjMHlP4KnTAyv75Zbgp8s2lADnv2JCWo3u7yScPIXKbZFrhxN2gmB0nxuvCZSof0PoEKYpMXW2iaIgn8cGD3DubAnjAi/2usOLM54zcejDwUPRkuKA16cJ9EoXGKa5qVFuAdplWy7VvO459m7Y2kp8rECfbup5hVWRfS5WfZPuNV6tzkcNm9X5EnfMMzH1JRMPzTdR7m5u5PwVEue93LbX5I6P1MvXWIQlVkdJf0G0MwvnvpK/fhlAYqx63qd/dv79HyecfkVa9Y1EuzLLYDTFtCGa69JyC9tn3zVUpilx8jNmq1DpP7YC17zrrM12n2KFYp8rUsc7DEYjIiIiIiIiIiLadRU3RPhHb41xaUd0yHqJyLn9Ug9FnFDcubQdFDfmOyjrvD+r9UbPxWZe6UFpY5Ht8qmudOzVZb8ItoiIOtJBaUfCgKvVtGSjK/bqun9Y6h+Xqt4XOyTt6LDUT0REFCkjuozB//V/AsdknIoYERMw/5D0YzqgVe3j4LSjwlKPlMHHqlBovNKDOlM92CKZwWhESoE9OXV6QoiZAG5rQxUvSynPcbjOLAC3AzgVgHJYohBiCYBHpJTvtaFtRERERETUgszbADltf6C6vHni4o8hAWDBW8CDc9t0Rx5d+AwAxLgCp/VKC17n4OyQmxNxUkrIW08HGgJHsyfIehxRswAfpBwftJ6ufsn9w+pzHbclpeVd5hJ8aU5Pnibw34WhjUQdUr8Gw3bX3/EiHERsHMTd7+CG79fgzZfaVpcqRMZqEK4RrdHvLYLRxtd+i67eKlS77KUApc+5F3LAUcjcR3/S/binrE82CyG2B0QFvnjF0XO9jpJVEF4oThtr4LDdJf7YCqQnA3v1UfeNPdMEjhwOfL7Cur7v1wO/bQH2Ds+N1TqMk8HtFbWRa4cTdoJgeqbql99aAWSHEMYVCT9uADY6vJnO738Dv/8d/I2bO93AfgOAzK6+F2ZodwFVX1BTD+RVAL30WZ1hUa7ZftJDvNlSVhdgk+K1i3TwnS6kwjCAoTnq17ioGih3S6Qnhz/F85tcieOeMuGub5721FcSP9xoILcAOOrxtnem5bW+fST/fcrqes0CAKrqmJxBFGm6fSVXGPaLXYbA+KHAp38Gzluybtf6fDsNAqptiEw7iDo7q4+S6rTVEM1+VXUdUFgFdLfY3+9Iv24BCqoCp7+1TOK18yQMm+mVdvueckV+f1WEAhoZjEZERERERERERLRrqjO3ocpbHrxgGHWP641xqUdgfNqx7bpeIgpdt9gsXNX3bswpehEb69bAIz3ttu6iBgfBaA7KNnF7o+cOtKWNxTAR/FqgeJGAgUl74LTsCxFndExgHRFFXu+EAbi8z0z8r/gVFNRvwYDEoZiSNRWpMeG5GHRc2uHwSg8WVnyKgoYt6BHXBxO7HY99Ug4MS/1ERESRFGfEY1Lm6Ribcgg+LX0Xf7p/QhdXKg5KO3KnPt8wossYnNvjGswvm4Ot9ZsgLa/c07Nz3EGhsQrfTjIYjEakwmA0ajMhxNEAZgMIFm9wAIADhBCvA7hQSqm4VJuIiIiIiJyQ/7mxdShaSz/OB76aA0w8OeT6PV79vBjFgPtgwWhxMUBGlJ6jkV4v5EPTgYUfaMtMjluGD2AnGK31hRADGjciVjagUcTZbk+K2WIkbbwvNSbGJfDBJQZO+I/zE4z/3PYRxIiLHC8XipH7D8GceImTngn9ROiaQqC2XiIpvnnQsNUgXFf4s2bCo7g5GC1eNmCi+2tb4XoAkN5QDPn0TUh+5WjkpPgGfzvRNN46S/OZq64D6holEmKj88XThl+1Iewjs6vAhGHBy43oJfD5iuA/AMz5WWLvvtH5+tnlZHB7fqUE0PHPV9dmV4uQgewUXzCMKuAzryJ6Au1yCyOTLnDbcQKTRrV+r4ZaZGOuLuh8wWiZmr4t0sFoVsF8w7rrl8stBPbbLfztufl/rUPRAGBzGTD+IRNrCsO3nvJaoFty62k1FqEbVeqbGBFRGNkJCm2Lw3YX+PTPwJV8nQtUbZNISWzffYJXvzcxe4lEXSMwaU+B648UtgOG2sLpN3UNgyGJHFMGo1n86rymMHqD0VT9ZpMyN5DZ1V49ujBefxWKfS4GoxEREREREREREVE4lTQo7m653e0DnkZGbPhv1GmIaL1DJhFZ6ZswCFf1vcd3g+IQB99beTH/YfxSvThgenGjg2A0TdmD047G95VfolEG3gmr1oyeO9BaPddHBr+JOOELQRMQbbqpNhF1HkOSRuL6fg8qb3waDgenH42D04+GKU3uoxERUaeUHdcTZ/eYEbHvymg0JuVAjEk5EKYMPqbvirWnwiMbA6YzGC1y3FbBaK4oHXRL1MF4JEJtIoQYD+ADtA5FkwB+BvAugC8AlPgt9i8AbwrBI2EiIiIioraQNZXA4nnWZea/0aZ1eCzOY7kUe/S9061PEvZMRfSeSHz3CWDei5ZFjv33QbaCBrr6XQgRAy8GN6xz1JxE2WJ0a0JzaszkvQROH6tuRGoisO5uAymu1gkp3T0FuPqgOojkFEdtaIspowW8/zXQeMyLKFjTB9Wru2FK1f8c1THy9tYboNUg3LaEZUWSLMlr9Xh4/Urby6aalcCm1RAFG3HkQOfZ4juC0SwGXpdGzzU7ASId9mHFKtyoJTvhadHOdPB7RV5F5NrhhK7NLfsBlyHQQxOWsLUiet63sgjcNiC7K3D5oYEflPRkgWxNfxCpgLYmpilRoQtGSw7tQ53ZRb1cJF7Tlqz6pp5pQBfNTVbXF4f3NfZ4JYqqJL5fr54fzlA0AMivDJxWbRG6UVQNSClR5paQdpM9iMgRVfgnEL59pRG99BVlX23CXd9+n+1nFpo4+yWJr3OB79cDN/9P4uLX22f9TvaVAMAdeJ08EcE66EvV22R2FQGhrE3WRHjftS3iLW5LV+zg+NtuCFlFbWDByggF1NrtD+sbJbaWcx+QiIiIiIiIiIhoZ6EL4XEhBt1is2EII+z/iKhzE0JEpG/Iju2pXF9xg4NgNE3Z7NgeSHapL6xye6uV0zuCrv1pMRlIMBJ3vFZRe502EUVMpD/33EcjIqLOblfcR7Z1rKWJGzKlt51bu+twW4Rv645LiXZ1PBrZNZwOYICDf9fYqVQI0RvA+wDiWkxeDGC4lHKMlPIUKeURAHoDmAGgZVzocQDuasNzIiIiIiKipV8AnsBU/laWfAJZG/qP8lbBaDGKI8qRvawH4vdKC7kpESU350LOusG6UEYPZB1xDPbsbV3MkF6keQPTg8Zs+9lRm1q9jPGJrebNPkfgjuMFurfIOZs0Clh1h4HdsgSW35WIc/qtx4HGnzjH+BxLDv0S6dNvcbT+cBBCwOg1AJneUiTKOkyutg7y87ehBNhQ0jyQ1jIYLVrPUfsFow1ryLW9aJrXl0IjT90dx300zfGqm0KiUhP1ZaxCbTpaRwajHTlcKMMf/f2yGfh2Tece7G13wD0AbI2SYDSvzW1D950TLc8DUIdNtUVOCrDsZkMbNqYL/Vutv8FzWFTX6be19CT19GAyNDfDKamOcMibpnohfN97fbup54frvc4tkNj/Xi/iLjbR/Zr2uxNTvuJzU1MfOK3Jynyg17UmMq800e8GE/N+79x9JVE00vVHdvZh7LAKim3wAF0vM3H6syZq6iL/+X5sQeA6Zi+RKK2J/LqdrsGqbyTalYXyaR2So54e7gDYcEqI1c8rqrJfj93jtHJF+HC1Jhht3ED761fRHYc1qWuUOPtFE92uMNHnehN9rzfxxo+8cygREREREREREVFnV9ygvqAgIzYbLuFq59YQ0a4sK079I3ZRY76tG7Y0mg0o95Ro6u6pHYBe642eu8/qwiqzYm3eCZaIiIiIiKgFXfipKXndV6TUasK3Y0QM4kR8O7eGqHNgMNquoUBKudHBP/VZvkC3A0hv8XgJgMOklKtaFpJS1kspnwBwit/yVwkh+oX+tIiIiIiIdg3SNCFXLIX84bNWIWfyO5shUwveCXndHouA/xjFdU3pyQIHD9Yv0zs9+tKrpJSQ/xoVtJx4ZiEAYPce1s+hm7cMLgSeAJxc87HtNu1ev6r1hITWqTGxMQL/d6yBvIdcMJ/1/Zs73YXuqb629csQePHmwfj2mT3x4jPHoP+/z+q4u1v0Hbrjz1Oq5uCA2iWOFv/g1xbBaBbnVaMxGE1KCSxb0GrasHonwWjNKTSH1yxAvOksxazpNUmxCEariuJgNN21Su3xXvdOF7jxaHsrGv+QCa+TdLEQbGuQ+OQPiW9yJRo84V2Xk6bnVURHsJGuL/DfNnqnq8tttHvmqx0UhDkYLe9BA3266bfdId3V89YURPa9VQU2NAk1GC1TE4z28+bQ6rMr2PbXPVU9P1gwmrte4ouVEq//aGJlnvr9qGuU2P1WEz9usNlYB2JdwD4WZ2rzKwPbVB0kDKlge/jH3+XACbP0z4uIQhPpENleaUDXBOsyb/8kcdFrkf1s19RJZQhSoxf436+R71ec7ua5GYxGpGQ1FkV3umJIjmbftTB69ykaPPp5xQ7GzNgYu+OrU3GNVJVmH22f/gKXTwz9S6I+yL0Zpr8p8eoPEtu2l9taAZz5osSitdH7fhEREREREREREVFwRY15yunZcT3buSVEtKvLiu2hnF5n1qLGG/wONSWNhZCa2/lkx/VAkqG+GKlGM2i9I+jCKrPi1K8NERERERGRFaGJGzIV4yIpPHTh20lG144b+0kU5RiMRiERQgwGcHaLSQ0AzpFSaodUSyk/APByi0nxAG6LTAuJiIiIiHYOsrwY8sqjIS86CPLa4yFPGQq55BPfzF8X2qvjwUual3HIG0IQ1Ql760/C7D8wpGZElHzh9qBlxJWPQXT3pYUMCXJjtUxvqXL64TULkOCySJpr4aiaz1tPSAgxNSYaZPcGEpMBAHFoxNebjsCzeRejf8NGpHvLcFXpo7il+G7t4gtWtQhGsxhLG23BaLK+DvL2s4CG1skII+pXIM1bbquONLM5RaeLdOP0Kmchh02vSXKcvkx1FAejmZqR4O31Xt9xvIG50+2dOrvk9cgN9F62UaL3dSYmPWni0IdNjLnLxIaS8K3PSdjH1orgZdqDLiTA5fd27ZYV/UEK64vD15YN9xpBfwgZpvkO+3ULYEYw4C8SwWgZmmC0wirgkS8i90NcsCCiHqnq98AqBG/5Fonht5k48jETZ74gMWKmiQtfNVvdzbaoSiLp0vA8r/12A2ZMFHjgJIFbJgncOklg5e0Glt2sv5v3ekWgYI2D8B9TAi8tiZ7PHtHOQHesFq59JcMQOGVM8Mre/VmiojZyn293g37e2qKIrXYHu+FETZz0jUS7EstgNM30wdnq6b9tQav9pGhidYxdVG2/zXZ3zfMU+5hV29RlUxOBR08RmHdZaJeI1FuEvjV6JOb8FNhoKYG3l0Xne0VERERERERERET2FDfkK6dnxQW5iI6IKMysAhmLG9V9lZ0yAga6xWQj2aW+GEk3aL0j6J6DLjSOiIiIiIjIiiHU15JJBqNFjNtUH2PqjkmJiMFoFLozALQcKfe+lHKtjeXu93t8ihAiIXzNIiIiIiLaucjHrgB++aZ5QmUp5PUnQn74HFCivhujsp7rT4Ssdp5o49Gcx4oxoA1fOX4v/eB5q3kdQa5dDrx8b/CCYw7d8efwHtbPIUMTjJb8z6k4bLg+cKTJuNrFmFl8V+uJ8Z03GE0IAfQduuOxCybOrXwZ6/7aA8VreuOBoptxW4k+GG1li+s4OlMwGj55GfgyMMgsFh4cVTPfVhWp3tYjnO8uuhX7bltmuwlNr4lhCHTVHHlXRXUwmnq60Y5nsyaNElh4rYGsrtblnlskUexgkLtdUkqc/IzZKlTqzzzg8jfD9yODkzyBMnfYVtsmum3D/2tpSI66XG5hdAQplLslvl9vXaZ3OvDd9QauPVJo+7mEWGD2VIF+GcE7wj0032HF1cDSjUEXD5lVMFpaiF9x3VP0z/eadyV+2RSZ9zhYMFr3VPX8/MrWC5a7JR6ab+L690zsfaeJzWWtyz+3SMJ1oYlr3jVR7pa4dW74ns+SG1x49FQD1xxh4PbJBmZONjAw2/cEJo1SLzN/ReD6nYZrPjy/4z93RDuT9thXuuuE4N8tjV5g/3tNXDvHxIKV4f+c11oEo1VVRT6FzOkug1V7iXZlVh8lXbbv7pp9181lwAr7p8TaVbVFt1Rcbb8eu11PfkVgyUpNMFpKgu8czTEjBf7zL+cnUeoa9fNKavTnF75cxX1AIiIiIiIiIiKizqy4sUA5nSE8RNTeurpSEa8ZgqgLcWxdRt2fdYvNRKwRi2SX+iJBt+ngR54IMqUXJQ2FynlZceyTiYiIiIjIOUMTN2RKBqNFii58O4nBaERaDEajUJ3o9/glOwtJKVcB+LHFpGQAR4SrUUREREREOxP5+2LgqznqeQ9Nd17flAGOl/F41dNdFkeT/TIEzt4/cIDlWfvbC21pL3L1z5Dnjg1ecM8DIVoEe40fav38M+MUo2CPPQfGjEewT7/gz/+bTYcjWfolyMR38jzpfsOCFvlwyxTl9E2lgLveN4jWMhgtys5wSEUoWpPRdb8GXT7JdCMOrUcd53iL8O3GiVi0cTxeypuGl47abFlHyxAlXTBadV30DlA2NefR2zsE76DBAmvuNPD8WdYrzrk6/Cf+V+YjICwJAD7+A9hSFp73zupz5a/CItyqPQULpmoyJEf9nlXUAuuKwtyoEIy9R7/NPHWGwPwrDKy+w8ABAwXu/6eBVXcYmH+F7//vbzDw8lSB9y82sP4eA2ftb68TPHAQEB+jnvfhb5HrD8o1oXpdE4AYV2gf6qFBbj495m4TjZ7wP6dg218PTTDa3+XNf68rktjrDhPXzZF48HPrNj7yhUTGlSae/TY8zyUnxXr+IUPU78cPG4ASvwDImsjnERGRBV1/FGK3qpSTIlA7K/h3TG6hL/zwiMdM3DkvvPtEbou+pnLhfMiS4Be4t4WTfSUA2MZgNCLHdMFoVudf5i6PzmPZKk0oGQAUORgzozse9penuAeCLqAsJbH577REdRkr9R79PKtQSDf7RSIiIiIiIiIiok6rwaxHhUd9k1CG8BBRexNCaPueokYbwWiaMk1Bj7pB6LpB6+2t3FMCL9Q/2GTFBrmQioiIiIiISEEbjAYGo0WK26u+kFAX1k1EDEajEAghugPYs8UkD4DFDqr4xu/x0W1tExERERHRzkg+eGl4K6yrhdy4ytEiHs15rBiX9XKPnCJwzgECQvgGuJ5zgMAjp0RHKJos+hvmnVMhzz8geOF/HAFx51utJmV0ETh4sH6RzH+MBcYd63sQGwecOgPiqicAAENzrFd3RuWbUL5KsfHB2xrFRL+hQcsMq8/Vzluz/SZ3lsFo0bF5NVv+nXbWUGNr0MWzPCXK6bHwYP9tS3Fm5Rs4s+xlXHm4/om3DItL0QajBW1Kh7EbftUeUpMEzj3QwMXjrVd+yesmpAzfAH3VIPcmdoIA/i6XmPqSieG3eXHAfV48PN+E1++FdRL2UVMPeLwdH0DgtRmaN7ynvo7nv2vf5+HxStz/mYne13lhXOD791exumyfdODiQwQO20MgKb75SQ3O8U0bsvUb7DvrOPzr1Yk4/o/7kRNvkb7gp0uCwERNVmVEg9Fq1XWnJ4Ve58Cs4GXmLg+9fh1t37S9z+3bTd1PbChp/vw8+LnElnJlsYg7d5x1P3bsSPV8KYHPV7Z+8tsalUUtRXMgJ1FnE6w/CpeEWIG1dxk4cJC98nfOkyisCt9n3TIYrSEG8tX7wrYuFafPpM4iOIhoV2Z1mKTbO+mWLDBuoHreJ39E5z5FjcUx9vIt9tts9zgtvzJwmi6cLbVFGFp6svMD6zqLfT+rYLQwHiITERERERERERFROytpLNDOawoSIiJqT9maYLTihuDBaEUNecrpTWFryYZ6ELpu0Hp7K26w6JMZVklERERERCEwhHqAqCkZjBYpuvDtJEMd1k1EDEaj0Izwe/y7lNLtYPklfo+Ht7E9REREREQ7HVlTCTgMMbPlh88dFdeFz8QEOZpMTxZ48RwDdbN8/148x0C3EAZdhpusKIGcui8w/42gZcXH+TAe+ggiPTB55fi99M8lK7srjPveh/i6BmJ+OYzpD0DE+YLNhvUIEkZS86l6hitIEl206xs8GK1/4ybEm+oRxKsLfKNoddsjEF3BaPLr9yzn737YfkHr6OlRX4TTyqK5yLI472m2eL26aoLRqjphMJrowPf6idOsV/7MQokb/yfDFo5mNbj8p43Wy1bWSoycaeLl7yVW5QM/rAeunSNx5TuhB6MB0bHN6Nrs8vtu6pYsMLa/uuxjCyRW5bffCP2LX5e48X1pGXbX5JhRAkKzoculX0BecRSw9AvgjyWQz90Gefd5geVME7LWd1GebPRtSLJ+G2ThFhy3m7oRqwuANYWReU0qNOEMbQlGi4sRGJxtXeaTP8P/fHQf76bvoSGaEFSPCWzcfiPtj2wEG0ZCelLwYLSh3YHdMtXzft7U+rFVOIbOt2ucL0NEanaDQsNhYLbAt9e5cNyo4GU9JvDlqvD1c1b7QxVGKvDVe5Bm5C7AcFp1gwcBQbREdkmPB7LefuhtZxLqp+K4PdWd2h/B88Y7hFUI7JK/gBqbIbF2X6+iaqDR01xaSolKzSaUktD8WqYlqstYqbcIfrQMRnO+KiIiIiIiIiIiIooSRZqgIQMGMmJt3M2MiCjMdKGMxRZBjsHKZG+vM8mlvhiz1lQPWm9vRY3qPjnFlYYEI4Qff4iIiIiIaJdnCPUAUQkGo0WKW3OMmaw5JiUiBqPtKi4UQiwQQmwVQtQJIaqFEBuFEAuFEHcLIQ5yWN8efo/XOVz+ryD1ERERERHR5sikRsiPZzsq7wkxGK1JbIxAbEwUJVbNfR6oKgtaTDw8DyKlm3b+lNECcTHqeYft7nu+IiYWIqZ1oRE9gd7p6uVS4704qma+eqZLs7LOYvd9ghZxwcSQhrXKeau3X49ilS8QVcFoj1+tn3nOzRhw0XRkBjlf2ctOMNr6FRhZ+5t2dssAqxRNMFp1FIRc6eje7458r12GwLfXWneAD3wmkTbDxDML2/5DgNWg+tU/roIsDkwDKK6W2O8eL9KvMJUD4p/6SuKnjc31Og37qKh1Vj4STM3Godo2poxWbzCNXmD6G2bYQux0TFPigldNvPCd/fWcOiawzXKbG+bd50FePSlwgW/eh/zwOV85KSFffwhycm/IIzNhHhQPeWhX3/+HpUGeNAiTHh6tXfeHv0Xm9SjX3FKhLcFoADDZIqgUAF5aHP7nE6xvGmRx7ffaQqBqm0RBVdibBQDoEg/00exnnDFW4NvrDAzMtn7NhBA4eIi6zDMLWz/5UILRPl/JaAyicLEbFBpOE4bZ2xH79wuyVVBPW7gtwnYKY3KAimJgrX6fuK10zyIpTr9MKP0j7dqk1wvziashj+sJeVQWzKsnQVaUdHSzwspqt9sq/Hp0X/XM6jrA442+/Yrqeuv5T35tr81OjtNa7lvWNerP5aW0GA+TFsJ+uFXfZhWMZhVyT0RERERERERERNFNFyKUEZsNl+jk17MRUaeUFacORitqyLO8DswjG1HWWGxZZ7Krq3K+2xsdwWjFmrBK3WtCREREREQUjKGJG/JKbzu3ZNdR661WTk/SHJMSEYPRdhWnAZgIoCeAeABdAPQDcDCAmwB8K4RYJoQ4zGZ9g/web3bYnk1+jzOEEJohe0REREREu6jNuaEtl9ULOPRk/fyNqyDLi2xXpxtkGsnB9pEkf1sUvNCUiyDGHm5ZpHe6wMzjAgfn/nM0cMgQ/XIxLoEH/ikCguWEAO4/tASppiYppZMHo4mcvsCgUUHLDW1QBwLOX+HbDq0GBkdLMJosyQNK1RegoGs6xLm3wOUyMGmUdYN7NrYIRuuSpi034fHxttrVVROMVqUIzooW0RiMBgAHDhbISLYuU10HXPK6xNSXTORVBB/4bpoSK/Ik3lxq4of1zUEiNRaD6nMbc2D+a1TABV0nP2Ni6Ubr9Y29pzkQzCpwUCUqgtF024biu+nCgwVyUtTlv84F3lwa2TCFl5ZIPL/I2TrGD229kcttbsjz/gF89pp2GfnQdMhtbuCTVyCfuRmoLNWW7eEpwNhtS5XzQnk9TFNi0VqJJX9JuOvVy5drtpv0IJ+lYK6YKLBbpnWZlkGA4aDb/poCPZLihTYEdU2RxFr7u2GOHDsSqHzCwKb7XTCfDfz32jQDw3va60AH56in1zUCm0tlq8dOrS2MvgATos5Kt28cyX2lY0bar3zATSb+u9DEyry2fe513y0AkBfTwxdc9tefbVqHFV2/nxyvX2abRUAQkYp8fibw7lNATSXgaQSWfgF5w5SOblZYWQajWSxnFeBVFYVB36pw6pbe/8Ven+ik58yraP7b6jVpGZieFcI1VA0e/TyrYDT2iURERERERERERJ2XPoSnZzu3hIjIJztWHQK2zXTDbaoHlwNAaWMRJNQ/smfFNgWjqe92W2fWwistfihpJ8WNmj45tns7t4SIiIiIiHYWQhM3ZGqOn6jtdOHbyYb6mJSIGIxGzcYAmC+EuFsIq/tyAwD8R2Q7Gs4nt3QxeQAAIABJREFUpawB4H9ZdqqTOoiIiIiIdnZyzW+hLZjSDWLmq8Do8foyc1+wXZ1Hcx4rxuWsWVFj2QLr+YP3hLjiMVtV3XC0gS+uNHDFYQIXjxd4Y5rAWxcYcAVJIjhtrIElNxi46RiBs/YXuOYIgUXXGTh/X33akOjkwWgAgIMmBy0ytF4djPbjBuCOeaZlgJMqEKkjyDvO0c/cdyKaDrlP2Mt6O+l9+ETgjKshZjwC8cEmYPd9leUSpEVyVgspier1VUfhQPImHRH2Yddf99jb4F7+XqL3dSae/kb/o4C7XmLK0yZGzjTxr+clDrjPxIEPmMivkJbvT4UrHRs8mZAn9Id0+0IV1xZKfLvW3nP4aXtsveNgtCgI0/M62DZSkwQePEm/0VzzrkRlbWSCmipqJc5/xVndWx9ovW3JX7+FPLE/sMXGG/vFm5DzXrS1nsnV85TTf9sCfPqH/TZvKpUYfZeJQx40ceD9Jva6w8QvmwKX1wXqpSW17QPdK13g11sNHGeRvfnfb8McjGZj+xuiCRZbWwisKwpvey48RODlqQIfXGog+Glde4Zk6+t56uuWwWjOn0vL4A4iahtNhnVE95WG5Aj00mf2tpJXAVz8usSImSamvWJa3p3birtIfdduAKgzElFppEKGGixug67ZSXH6ZbaFEBxJu7gv3w6ctuJHyL/XtX9bIsSqB7DahbEKRouG0GZ/ZW7r+T9v8h0nBOPkOC2vsvlvq2C21MTmv7slCwzKtr8OANhmse9nFYzmbkDI3wFERERERERERETUsYpb3tixBYbwEFFHyYpTB6MBQHFDgcU8daiYgEBmrO9CnyRDf2eZWs3A9fake35WrwkREREREZEVQ6jHRknJYLRI0R1fJmnCuomIwWg7u60AngNwPoADAewBYBiAcQAuA/C5X3kB4CYA9wSp179XDWVIrP8yIdyXOpAQIlsIMdzJPwADw7FuIiIiIqJwkVICi9WBJUFl9YQQAmLaTH39331kuzptMFonPJqU9cEToMSNzzkKFZm4u8AjpxiYdYaB08YGD0VrMqa/wF0nGJg91cADJxk4YKAAYi1G1u8EwWjCRjDanvW/a+fNnCux/G/9QNqEKHiJZN564NeF2vniikd3/H34HtZhCsMOGAHj4nsgTroUIj4B4uDjtWVf3XqOcvrY/s1/6waTF1VH7+BkXcuiIRgtJVFg3mX2O8JL35AYOdOLmAu9OORBLxava352T34lMXd56/LLNgK9rjNx/XvW789HXY4FygqA954GACz/23aT8NsWX91Ox6dHQ/iALiRAt2386x8ChwxRzyuoAm6dG5nPwVXv2K83MRZ49ZhNyHnvTpiPzoB8/SGYz8+EvPxwYHvwXTDywUuBP3+wVVYXjAYAxz5pwmszieGwR0z83mK7+6sYuPC1wPCbck34Q7pF0IVdXRMEXjhb/3lckRfmYDQb298gTbDY2kKJQntvpy21sww8/S8DZ+5vfx/Ejj376OfNXd4yGM153fmVwcsQkT0dFSJ78hjnK3jxO4lZX9vvj+WP82HOuh7115yIJ99WD7hpkhfTA9isDlgOB12/z2A0Chfp9QL5m9TzPnutnVsTOVbHHZbBaIn6edFwbOKv3EabttoIitX18Sp5Fc0vbpXFr/YpCa0fHx8ksN1fjcVptdoG/RvsNYF6j6NVERERERERERERUZRgCA8RRZsUVzriRYJyXlGD/rflokZ1MFpaTAZiDd+Pv8kWg9DdHRyMZkoTJY2aPjmWfTIREREREYXG0MQNmWAwWiSY0kStyWA0Iqc64VB2smEpgCMB9JFSXiClfF5KuVhKuUpKmSulXCKlfEpKeRSAfQGs9Vv+BiGEfsR1YDBa8HSBQP6XZYerp74EwJ8O/30YpnUTEREREYXH+hVA3oaQFhWjx/v+GLGfvtDqnyGLt9qqz7szBaPdebZ1gX0mAINGtU9jVGLj9fOMTviC+xs0Cujez7LIUTXzke4t085/eYl6oG1iLJAU3/FpWfLjl/Uzx0+BSM/e8TAxTuCS8eo2d08BjtjDb+Kkqdqqp1R/gMGJgSOrT923uf6eqeplt5brm9zRtOFDUfJxOGakwKcz7DdmRZ7vOS1aCxz0gIk75vk62LeXhR7atCjpQACA/NS37W2tsF/X6u3XSdnMv9qhQhNw1Z50bXZp3g4hBGadYWi/u2Z9LfHr5vA/ry9W2qvz3QsNrDv8A5z+2Ahg9t3A+89APnMz8PK9YW9Tk90bVmNQwzrt/CV/Ba/jmYUm/ioOnP7zJt/23lK5W11HOILRACCzq/47ILcAAUFtbWEnGG1IjrrMumKgVPNaNOkSD2y5P3jf8uNNBhJiI/Pdpwt2A4A1hcDqfN+LEEowWkkNUN/Y8f0I0c7A6fdhuFwxMbS+5/K3JIqqgn/+zadvgrzmONS//R/sX3QLlidYH6Ntie0NbM4NqU126L5CLIPRGiLTFtpJeSy+UGt2jURRq14lxSoYLZRbd0VQg0fCXR+8XEl18DJO9pbyWpwOqLL41b6L3xih6RME4h2EzFu93rVB+j07rwsRERERERERERFFl0azAeWeEuU8hvAQUUcRQiArrrtyXrEm/AwAihvU87JbBD0mu7pql3drBq63l0pPGRql+gcZhlUSEREREVGoDKEJRpMMRouEOrMWUnN1oNUxKdGuLkqGklI4SSk/kVLOlzZG/EkpfwKwH4A1frPuE0K47K7SaRtDXIaIiIiIaNewaG7oyx40GYDvx3/xxHx9ucUf26rO41VPj7F7tBAl5IJ3gIUf6AuMHg/xfy9BiA4M13JZjEa1mtdJCCGAg46zLJMkt+Guopna+b//rZ6eKSphXjwe5q1nQP66sA2tbKN5s/XzsnoFTLp9ssC0gwRiW3ye9u4DfH2NgbiY1tuiSMsETp6urDpeNuDdxuswtr/vcZd44PqjBK44rLmOXunqZm3Nr4H571EwrzsB8tvoyg03NefRjY7PwNvhyOECr08TyAwh7n3mXAnjAi+Wa7ZrO3Ljh/j++PsvVFfV4cq37Z9uyd0ebOQ0GK0mCga02wmm8rdHT4GrjlAXMCXw5FfhOVVVWStx/XsmRt/pxdbAvMJWztxPoPhBEyf+egdyHj4D8Gq+dCNAADihSv+Zn7vc+vWQUuLSN/Rl/tzael55rbpcerLlahz5aLr6VHd5LVBsI3zCLjvb34BM9baWVwGUWlwnuVsmMHe6gV7pAvOv0J+6f/4sgX37R7Yz/GOmfv1N28e2EILRAKCgKrTliKi1UL4Pw6FvhsDHl4X282L3a0xU1wU2XEqJF74zceg1f2HUD6djt0GrkTysAr8l7Bm0zr/iBgKbciG3h0t5vBK3fGjCuMAL4wIvsq/yYt7voX/P615ny2C0EPtH2kV5LTaYuihL/moDq0+h1akYlyHQNUE9r0Kzj9lRdPu8/optjJtxcpyW3yI/r0qzyXRN8L2WLfXLEPjfJQb6bD9fEOz7w+r1ZjAaERERERERERHRzqeksVA7UDObITxE1IF04YzFDQXaZYob1fNa1hUr4hAjYpXlar1hvPgoBFahb1mx6qA4IiIiIiKiYIQmbsgEg9Eiodarv3gw2QhhYBrRLoLBaAQpZRmA09H6mvRhACZoFvHvcS3u1a3lv0zH3jqBiIiIiCiKyFCD0Q6aDNF70I6HYu9DgAF7qNfx3UfWbajzjXb0aM5juUI4mpT122Ajvzns5E9fQt5+pr7A6PEwHv8cIrODL9iK04z0BYC+Q9qvHREktgf3WZlW8aJ2XqlbPT2zagPw5/fA1+9BXj0J8uevQ21iSOQ2N2TeBqBMf2GNGLZPwLTEOIFnzzRQ9YSBtXcZKH7EwM+3uDC0u3o0srj0AW39I1a8ge8vLkXNkwYKHzZw7xSjVdBfz1R1neWyC7Zt3gR8/ynkzadAfv6Gdh3traPCPpw6fazvNb9vSvs3bF3cQDQiBiYEjphZ5GjZv4p9/3fGYDRviKF5txwrdgz69/fV6rZ/P5mmxJGPmXjwc4nftujLPXqqQO0sAy+fayD9sfOAl+9p87pDcWXZk9p5P220fj02lgJWX+lr/DZHbTBakuVqHNm3v37eevVNrEOi7Zta7Bv1SlOXqfcA64rUFRw9Alh3jwvjh/o25MP2ELjs0MCN+snTBc49MPKn9Yf3FDhgoHpe0/ZRF2LwT16Q0EAisifU78NwOHqkQOMzBmqeNFD+mIFlN9vvlw57xERpTeu+8N5PJc5/ReKbqv5YGb8HNsf2tV3furjtndWcpwAAJz9j4u6Pm+svqQEmP2Xi5SUmtjU4/77Xfd9ZBqMFCQgiaqXRYoOpj7LkrzZoy+mgNM0v0RW10XUfrjLNOQt/U2cHv2jMyeuVX9lcuHKbesEUzSmno0YIbLzPwN8PGCh91Lovr7DI6QsWjBYNx5FERERERERERETkjC6ER8BAt5jsdm4NEVGzLE04Y3FjnnaZ4gZ1n9ayLiGEdiC622LwenvQhb4lu7oiycXB80REREREFBqXcCmnS8lgtEhwm/pjSx7bEekxGI0AAFLKXwDM95t8lKZ4NAej/QfACIf/jg/TuomIiIiI2kwWbgbW/BrSsmLGw4ETDzxOXfiXbyBrA+9gJj94FuaJAyCP6AbzooPhKS5ULh7j4GhSbv0L5iUTII/MgJyyG+Tbj9tfOAzkczMt54vJ09qnIUGIxGRg+D8CZ3RNB/Y9rP0bFAkjxwHZvS2LuGDi3zXvOKo2w9Mi8aaxAXLOrFBa55jM3whz+kTIo7MgTx1mXdjiPYyPFRiYLZDRxTrFQrhcELM0oW+mCfnYlUiKF0iMC6ynlyYMCgDyYpov7pGv3m/ZhvakCx8SURaMBvguirruKAP3/7N9G9co4rAhrj++TJ6AH2t6OVp26/ZgIqfBaO4oGNAeamhecrzA7cerCxVUoc3hndfMkVi6MXi5yyYIJMQKyL/+BBa83aZ1tkWOtwiXlan7y9x86x+yVutvQgoAWNniOkMppUUwWvg+M1ldgQT1TVuRXxm21cC0EUTUUxOMBgB/bFVP36Nn4Gvx4EkCj54qMLY/MG4g8Po0gYsPab9+ZsIw9brm/OL7XxeMdt6BAifvo29nON8Pol2Z7vswlBDrULgMgaR4gdQkgX36CSy+3sCRw4Mvt2wjkHWVid7XefHRcoknvzLxfx+E/h28Jm4wAEDOvge5BRIfLleXmzpbIm2GiWMe96Koyv76dCVdAoiPUc/bFmJwJO2iPBYbTN2uEYwWbO8mTROm+9Hy6ApG0+3z+nPXIyAg0p+T47SWobNVdeoyKRa/5gsh0DPN159bqajVHzMFC0ZzMzCSiIiIiIiIiIio09GF8HSLzUSsoflxnoioHWTFaoLRNP2WV3pQ2qi+6ah/Xcmurspytd7A663bky6sUvdaEBERERER2SE0cUMmvO3ckl2DW3NsKWAgwdBcKElEDEajVj7zezxKU85/6FqWk5UIIbogMBitQlXWKSllkZRyhZN/AP4Kx7qJiIiIiMKicAvQo7/jxcQNz0Lk9A2crgtGa2wAfmydjSy/fh/y4cuAkjzfiNUVP8Lzv+eUi9sNRpMN9ZCXHQ78sQTweoGSPMinroP87DV7FYRA1tVC/rYIctVPkH/+AKxcar3AhH9GrC1OiQvvBBJanMgSAuLieyBido6LyURMDMSMRwCXJkFgu+x6TWqMRqa3tPWE7z5y2jRHZN56yK/fgzxlKLD8O9+2beXsmyDSHR06643cH+g9SD3vqzmQeeuVs3qm6qssbHkX102rIStL9YXbUajhVx3p2iMN3D65fRuYGzcUixMPcLxcTT1QXSe1IU86HT2g3eOV+HGDep6dIJjdu6vfnwYPULkt9HblVUg8tiB4esHovoBhCEgpIZ+7NfQV9h4Y2nL7Hw0xZ92Oh8dWf6IsVlBtoKJW/3xWF1g/1y9WSni8vjI19YBXs52lh/G3GyEEemj6uvzK8IVm6Gpq2Td1T9GHOOpCwbolB06LixGYMdHADze5sOh6F04fa8Box05waI5+3n8XmtoAjH8MAN6+0MBAzVdfXkV0hZgQdVbRtq+0/0CBT2e48NkMeweLeRXA8bNMzHirbX3CjpDfulp8t8ZjWbbRC3y2AjjuKfs7QFZhvYlx6nnbGABETlgFo9W3YQc1ylh90oOFX2dqboT44XLgnZ9MNHiiY9+izG2/7E+brOeHHIym2WRSEuzXp9Po1fdvwYLRKnaejD8iIiIiIiIiIqJdBkN4iChaZcWp+yG3Wa0cZF7aWKwd1J8V173V4yRNMJrbrHHYyvAqbmCfTERERERE4WcITTCadDjQiGyp9aqPLZNcydr3gogYjEatbfR7rBu1vdbvcT+H6/EvXyalLHdYBxERERHRTkmMGgfx9mqI2T9DnHcbMGTv4AslJkMce7Z63rB9gAz1D9/y569aP/5kdkCZRxOmKpeNcQVvFgDg9++A4sCQK/nFWzYrcEb+tgjyjBGQlx0GecE4yIsPsSwvXlsOYUTPobHY+xCIZxdDnHsrcMbVEE99CXHcuR3drLASBx8P8d/vgH9dAxx8vLJMmleTGqMREIwWQeasGyBP3R3y1jNsL2NMuy1s6xdCAAdN1s6Xp+4OKQNHUCfHAwmafL1SV2brCZvXtKWJYRNtYR923TLJwFdXGxiz/ezHbpnW5dtqddwQ5MYPCWnZreW+HEwnaupDWlVY/F0uMeZuE9V16vl2to2cFP28wqrQ2gUAby+z90KOGyQgK0shLzsMWPyx8xXtOxHi2lkQs3+BmPGwo0XFebdB3Pc+RE4fiAvuBAAMbdB/3nPVN1EFAPy2xXpd5bXAou1nEMstAiLSFWFgbaELRpv7W/jCMqwCcprEuARy1NdJamWE+bUIh8HZ+g/Vxa9LbNR8/TZ93+jejzxnX/NEpKHdV+rgw5sjhgusuav9GlHqyvD94fVg5Tp7X+bLNgJ/brX33aDbVzIEkKjZv97WGB0hTdRJeCwSpZYtaL92RJjVcUewYLR9+ukLnPasxNBbTPy4vuM/d2Vu+2145Xvrsk6O00rdwLYG3wK6sOdU/1uWhahQfcPKoMFopTUd//4QERERERERERGRM0UNecrpukAiIqL2km0RBqYKENMFPQKBwWLJLvUde1SBa+1JG1bpF+xGRERERETkhKGJGzLBYLRI0B1bJhsOB58Q7WKiZ/Q3RQP/S6V1l0iv8ns8yOF6dvN7vNLh8kREREREOzUhBMTAERDn3ATjhR8grnzMuvyLS/XzDAPY7yj1zM/fgPnsrTCfug5y4QfAD5+3mv1TwmjkxfZULuqyeTQpX7hDPWPpF/YqcEDW1ULefZ4yiE1FXPU4RL9hYW9HW4kBe0BMvRnGxfdAjBrX0c2JCDF0bxgX3Q3j7neAA44JmJ9uVjiqr6cn8EI86VXf4a8tzKdvAt561NlCh54U9nYITaDcDh+9ELiMEMhUX7ODkqYwie3kkk9CbVpYmZrz6NEejAYA44cKLL3ZBfNZF9bd48KzZ0au0bnxQ5Ebpw9Ge/RU/brzKgGnw9PdNfWQ7z8Nc8puMC+ZAPn9p8owvkiY8ZaJ3//Wz7cTBJNt8XtBW4LRVuivn2tlcu8CyEk9geXfOV6HuPE5GI98AjF5GkR8AjDlEvvLXvU4xDk3NYeBnn4VMPEU9PLkIVlzR9PVD94P89x/wHzoUsiX7oJcuxwA4DUlPvkj+Hv+4XJfmfJafZn0JNtPwRZdENf8lYCpSxByyG7f1DvdWb290qKvcxvWHYi1G4bbQkKs77n01DynfGdf80Sk4Y3ifaVB2QIvnN0+DSlxZezYn6mvsP9lvmCVve8Fq0BMfTCa7WYQAR7rDUY2Bkmc2gkE6y0mjbIusakUOOclEw2ejg3fstrv9ffmUmm5f+p013V9ie//Kk2IdEqCvXpmTrZ+re/6WN2wbUE20xL1IQcRERERERERERFFseJG9d3UrAKJiIjaQ2pMN8SKOOU8VYCYKiwNANJiMhBnxLealqQJRqv1dtyPHVJKFDeo++SsWAajERERERFR6AyhCUaTDEaLhFrN2B3dsSgR+TAYjVrK9Htcoin3p9/jUUIIJ8MY/Uf2+9dHREREREQtTT4f2G24et7x0yB6W2cViz6a+XW1wKv3A28/Dvl/pwbM/qzLEdo6Y+weTdY5GBXaVt9/ChRsslf28NMgTrwosu0he7r3C5iU6q10VMUE98LAidvCeyGKfOsx4I2HHS8njj0nrO0AAAz/h+Vs+eClkOVFAdPtBqPhtQcgF38cauvCRjcQPBrCPpyadpCBzfcbePpfApdPFLjhaP2TeOoMgc9mGHj8NIFnp1TjmfxL8WDh9cjxFCrL/xm/B9bFDVTOu/d4EzMmGuiWrF7X5jKpDXnSqflxEeSjV/hCKP9YAnndCZAz/x3xcDR3vcTc5dZl7GwbSfECXeLV84racGPPvPLgz39k3R845Eb/+wXYI+ashTjmrNbTDANi9s/BF558XsB3noiJgbjtFbhmPIwhDeuUi60uBLD2N+DD5yFfvBPy/P0hP38DawqBUnfw1X63NngwWprutgwhyknRbwQ/2dxFCMZu3zS0u/3OKsYAxjm99UQ7SE0S6J8RvJy/pqAgXVBdfmXHhpYQ7Sx0/ZErSnaWTh0j0D0lfPWNrPtDOb3eSEDt9p+o8gvtH3/a/d7X7eIYAkjQBaPt/DlWFE4ej/X8XxXHu52Q1be/CNJtHWhjPym3EPiig2/FVWZjH7klq/1Tp4dXudvHwlRrgtG6Jtr7bjhptHW5d3+SymM/d711gxmMRkRERERERERE1Ll4ZCPKGouV87LiGIxGRB1LCIEsTUijKkBMFZYGqEPFkg31XTfd3jZcWNZGVd4K1Ev1j0Dsk4mIiIiIqC2EJm7IBIPRIsGtCd1OZjAakSUGo1FL/iOr81SFpJT5AH5vMSkGwIEO1jPe7/GnDpYlIiIiItrliJgYiDvfBHr0bz3j6LMgZjwavIKsXiGtt8iVrZ23d1+bg+0tRnLK78N7KCAfvtx2WXHS9LCum0In0vwzuoF6oUkt0hhTpwgGqg1+IYrM2wDzzqkwD4r3/TtvP5hn7wNzxpEwbzwJcsWPvnLffgg563pHbUKXNIhrnoIYe7iz5WwQQkC89JNlGTm5D6Tfa6ALRiuOCXwP5H9ugHSamBVmut7D6KRns3qnC1x4iIHHTjVwz4kG5l1moGda8/zEWOCuEwQuOljgiOEClx1q4LzdCzCt4iVcWfYk7iyaqaz3p8QxqDXUyWcHpPwNAOjXTd2mNYX6UBUdt8cVOPGrOcDiec4qcmhtEeANskm6bG4bOZqQlsKq0MOa8oLkOSaatXgh/0IYlpEQCnsd7AtFy+mrnC0GjoC47RUgu4+2CnHqDPV0IYATL8JQqU5kWBM3uPUErxfyrqnY8luurab/shk48wUTU55Wv3Fd4oHYmPCG9+zbXz/vle/DE8ZlNxhtSI79OscOANKSoiPIyN8PNzrvdJuCgnSftWgIxthQInH2iybG3efFFW+byKtgWBt1PrpdtSjJRUNSvMDHl7dtxy3e8OLqmqdRt6or3t76b225pqDf/LJG23U3BMmiaqLr94UAkjWHLbUMRiMnPEE2mE2r26cdEdaWHGXDEPjmmuD9Sbj290JlFQissqVMP8/pcVpuoW+Bylr1gikJ9urZo6fAR9P1r3VNve840l+wfi8a9v+IiIiIiIiIiIjIvtLGIkjNAFhdGBERUXvSBYIVNQYOhVSFpenqSNIMRnebHfdjR3GDOtgNYJ9MRERERERtYwjF+CAApvS2c0t2DbWa0O0kTUg3Efl00qGkFG5CiAQAU/wmf2OxyP/8Hk+1uZ5haB3A5gYw386yRERERES7MtF3KIx3ciE+K4aYsw7iyyoYNz0HERsXfOHM0H74bhD6us85wG4wmj7FRt4wBfLr95w2S13Xdx8BlSX2Cu9/NMQe+4ZlvRQGqRkBk4Y0rLG9+OWlT0K5NQYJRpN5GyCn7gvMf6N54ppfgfV/Ar98A3z3EeRFB0O++gDkzafYaou47mmI13+HeHsVxMf5EMefb/t5OCUGjQTGHWtZRk6fCOltPhmd2UX9uS11BQajYfMaYLO98KNIcRL2IRvqtfVYzetIx4wU2HK/gY33Gsi900DF4wZuOsaA0fIJlhXt+HOful8cryN9w1IAwLAe6vc+t0A6HnBfY6gv/pKfvuqsIocuejV4UJ/dIJhszW8GhVUOGuRng8VXkEt68ELehRhd91vwio76N8S3dRDvroH4OB/Gk19oQ9GaiMNOhXhrJcQNzwbO3O8oiL5D9cu6XBjSU/1jVm78EOX0/Fn3W7anpdd/lKjQBESkJ9muxrYpo/UbwX++kVi6oe1hGdqAHL/Qu2Hd7ScT9c+IkhQjhfRkgSdOc9a+pmC0DE0gZ6m7jY0KUXWdRF2jxJ9bJfa6w8SrP0h8vx544kuJiQ+bqNAEiQQjpYTptDMlCgOvzaDGjrR3X4E/Zjr7KfKJgiuxcsxLWH2ngcqnYvHAa5cg9u0VyHxziXaZ0pgM1Is4/CEH2F5PfpBQ0ya6MCcBIFlzyFwTnbufFK081oF+csvadmpIZFkFo9nptg4eIrC3PgsYALBwTcd+J5c73Mcpdevb6vRprNk+nqeqTj0/NdF+XceOErh9sv5d+XVzYOPcQYLRShmMRkRERERERERE1KnoQngEBDJjHdwljIgoQrI1wWiqELSihsCwNEAdKpbsUl9Yphu83h5KGtXBbglGErq4NHctJCIiIiIissHQxA3pAvOpbdxe9YV0Sa7kdm4JUefCYDRqcj2AXi0eewF8bFH+9e1lmkwRQgy2uZ6W3pFSai7RJiIiIiIifyI5BSKnD0RcvP2FMnuGtK4GEaucPiTHN8DdFl2y0fZ58u3HQ2hZM1lbA/P+iyHaf04KAAAgAElEQVRvPMneAidPh7jzzTatk8IsNTCUa4yDAKi7imeqZ7iDBKPNmRU0PA0A5LO32GvIvhMhjjsXou9QiJ67QRiRP+Ui7pljXWDtcsjnbt3xUBdQU6wKRtu+fEfSDQRvGfYhP54N85QhkIenwbz4EMiNq5rnff2eb95hqTDPPwBy9c8RbrFzQgj0zRAYnCMQGxPYr8qnb9rx9/D6lUg0NQlTGmm/zAMADNVck7q6wPmA+1pDk2b17YeQQUIdQlVQKbF0Y/BydoNgcjTXg4USjFZUJXHUY15Ua85uuaQHCzdOxCnV9oJAxakzIISA6N4PIqWb7XaI2DiIY8+GuPMtYJ8JwG4jgNOuhLjr7aDLDhutDpFZFzsQHgSGpuXHdLfdLiuDssNSTStdEwQOtjhDedvctv9Ap+2bHrwY5qReMP97C6TXizH97dfZK73NzYqoSycIPH+W/aSl+Bjf/xnJmkDOdg7G+GG9xKiZXqRebiLpUhOjbjcDPrO5hcCHvzkPUvl5k8SEh0zEXWyiz3VevL2MPwJT+3ESItuRhvcUWHJpJbp7Ai/WzvEU7vh3QO0SvFJyCS6dOhxDzz8PQ3IE4mIEhGFA9ByA9Myu2udW4srA94n/gFsT4KqSV2HvM2+1T9olQT3PzWA0ciLYPvTOEoxmMU/Y7Lcm7m5dsKgato4bIqXcIuhMxSos1ipITiW30LeALhgtxUEwGgDcMkl/TmNrReC0YP1eSQ1DZImIiIiIiIiIiDqTYk0IT1pMBmINGzdyJSKKMFWoGQAUN7YOdvRKL0obi5RlVeFqyS71b866wevtwf85NcmK7Q5h94c2IiIiIiIiBUOorxMzGYwWEbWm+thSF9JNRD4xHd0ACi8hxJkA5kspCx0scz6A2/wmz5ZSbtItI6VcK4R4GcC52yfFAZgthJioCzoTQhwP4JwWkxoA3G63nUREREREFKLs3iEt1iDUFzEdNNjBD+kyyImwFT86aFGLaqUEtqyBvGQCUFkafAGXC+LWVyAOtRmgRu0nNSNgUrxswEHuRViUfJDlov0bNiJJblPP3PoXMHxswGRZVgjk/gK8+2RIzVXqM9hW+FC4CcMA7nsP8oZ/6gu9/hDkyZdBZHRHluY86ZZYdR8h7zgb4vDTwtDS0OhCKMTKHyHjioDyIsiHpjfP+PMHyMuPAN5c4QuFu/WM5nmrf4a88mjgtd8hMsIT6hQOsrTAtz3WB55KkUu/AFYt2/E4Bl7sVbcc3yftb7v+9F/mQtZUYnDRHwACl9taLjFcfY0Y4mOAek/g9BqrwJEt64ABu9tun119r7f3o4rtYLRUAVU0w+YyZ4P1pZQ4/TkTX+fqy/yxfjSGNKyzV+EJF0AMGuWoDf7E+BMhxp/oaJmh+48Avgx87g1GPDbG9sOgxvWtpheEKRhtTP/IXJg3fqjAt2vV7+XnK4CKWom0pNDXrQ0iMhuByhLgtQcghcCAC+7AHj2AleprE1vplRZyc9qFEALnHihw0GCJcfebKAlyrWdG1XrI3wvQbT0A7Bcwv6YeqG+UiI+N3MWZ7nqJ5X8DK/IkLnzV3md72Ubg7APsr6OyVuL4WSbytoeDbK0ATn9OIrurxIRhAmVuiV82AUO7A3268UJUCj9daI4rym6JJNf9jrHPXIa/1/5gXfCUy2Fc9l/tbJchkJ6kDhIqc3XDNuEs9aeg0l45XQ8ihEBynLpEDYPRyInGBuv5W2zuS0Y5q6Avu+M1htnYDf3wN4n9duuY790yZznWKLMIRnMaYL1m+5UBVZpTJCmaIEcrh+0OLFgVOH1FHrBgpcTI3kBOiu+1rg2yGZc7fG2IiIiIiIiIiIioYxU3qH/oVoUIERF1hCxNf1TjrUKttwZJ2wPOyhtL4IXiIjiow9WSDfVFlttMN0zphSECbzIZacUN6rBK3WtARERERERklwFNMFqw8aAUklpN6HaSJqSbiHwYjLbzOQ/Af4UQ7wJ4B8A3UkrlZdVCiDEAbgLgP1pyK4D/s7Gu27Yvm7798QEAFgghpkkpV7dYTzyACwA87Lf8w1bha0REREREFB4iIQly4Ejgrz8cLdcoYpXTY538rm818rWpiNcL4bJfqWyoh7xnGvDlO/YWOO0KiAknQeyxr+11UDtKy1JOvrH0gaDBaCdVvaedJ+88B3BXQZx4YfO095+GfPJawNMYSkuVxCX3AsefD5HUMXdnEOMmQY7YD/jTImjih8+BY8/GIPVLjTVxg+GFAZfijh6yJB8is2MuoPFqzqOLBW9BvvuMemZ5EbB0AeS3HwTOq6kEFs8DJk8LXyPbQL7zBOR/bgS86guvVPat+9l2MFq8WYdEWQd5zzRkbu4CKJarrpPwmOrQgJREoLg6cLpbJOlXuml12IPRtpZLeGz+pmI3CGag5rOQq76GTOunTbAMRcvwlGBgw3p9gRbE7a8DEyxCDiNoaI46KA4AcuOHBASj5YcrGK1fZAIrTh4jcMc8/f7HmS+Y+Oiy0C9S1NVstPzx79NXIafNxN59BVbmB98X6pXWOUKzBucI/HqLgRcWS6zOB95aFvjcBjWsQ99LR0EC6Ba/B7DbT8q6St1AzwgFwi1YKXHWiyYKqpwt994vEk+dEbxck2cXyR2haC3N+trE2iKBS9+QO77LLh4v8PipAjGuzvFeU+egDZGNks1M1tZAXncCsHxR8ML7ToSY/kDQYhld1MFoJa7AsOVgVPWoaAMxBZCsCRoKFhBE1Io3yPFp4WbI+m0Q8c7C/6KN1R6R3W5raHf9fmuTucsl7p1it1XhVW6zX2lSahE2qzudlhwPuBXhi2VuoKRaolITjJaa6PzLoWea+vWevURi9hLf9JuPFbhjsoA7SL+3LXynYYiIiIiIiIiIiKgdFDWqg9FUIUJERB0h26I/Km4sQD/XoO1/6+9omBkXeA2U1WD0WtONLq4UB60MD/bJREREREQUKYZgMFp7cmuC0ZINBqMRWWEw2s4pEcBZ2/+ZQoi1ADYCqATgBZABYE8AOYplywAcJaUMOhRUSvm3EGIKgM8BxG2fPA7ASiHEzwDWA0gFMBqA/5DTeQBucfa0iIiIiIgoZAdOchyM1iDilNPjnBxJmt7gZTwNgMv+AF85+27boWjio60QaZm266YOkNVTOTnFa51mMq52Ma4te9SyjHzkcmCf8RB9h0Ku+x3y0StCbmaAjB4Q76+HMGwmMUWQuOddyMl9tPPl3+sgAAzTDCKvNxKwKbYvdmvcGLjwX38A7RSMVt8o8f6vEj9t8g0CX6m5JqmLaT3aXL71KLByqXreZ69DdHAwmly5DPLV+4Dv5jledp9tv9gum25uT+tZNBdpCXsDAxRtgYGK8m3wnUpqrUu8Ohit1ggSjBZms74JHirVxLA51n9ItvqzsKkM2NYgkRhnr6IPfrVu26SaT5WBg60LnQtx3X8gOjDFJileoG83YHNZ4LzcuCE4Fv/P3n2HR1Htfxx/n9n0QhKSUIKA0ouI2EWxYBd7vfZesKBe61WvXq+/a0WvDXvvHbH3ih0vYgEJiNIJSSC975zfH5uQsufszm42Db+v5+Fhd+a0bJmd2Z3zmXdbLVvrsyTLRWjbTWPSTJCxeYobDlVcOdP8/Lz1Mywr1gzKju4xtwYRtXxNFa2CylL6Z2R4arOjAsI6woAsxTUHBB67q6ZoDry+gD/9gddEpn89z6w8aUO4SU5DsbWd4orwf/faMs2seYHwsb3HKHYcGv45K6/RnPx45KFoACNN35aHcN0b5hfDq3Ph1Tbbh/s+1Ww1CE7buZskVokNXDcQYOfXgQAsvw6Es7b6F2aZG3EdHVw3wjZcDXOWml+D3WD3FAB981neQtEAdcvrnj4Lc9IgvyB4ebEvmyRdE9H41lUGngtfmB0I26e9UpBqPmSmstb7/osQnoK7V/wOQzfv+LF0Ea+7wmPzIM4hZHDygtWQX6AZ0bfzP3Nt4V9piVBhDDOzbyts+5yj+wUCmk0WFkCZZVPYK4pcvf4edmX/85Zmh81U2EBICYwUQgghhBBCCCGEEKJnKayzhPAkSAiPEKJ7yIjrTbxKoF4H/whRWLeawUnDNtw26eXLIskJ/gEl1We/QG6lv7zTg9G01hTWrTKu6yPbZCGEEEIIIUQ7OZgvOO/iYT6oiIjWmirXMEkLSAlxLCqEkGC0vwIHGNn4L5yPgJO11iu8Nq61/lQpdSjwOM3hZwrYpvGfyXPAGVpr+UQUQgghhBCik6iDz0A/cWNEdazBaObvvMxcD1cIaKiHRG8zNPXK3+Gpmz2VVVc8KKFoPYDKyEYPGQtLfm21PE3bw6/+ud0qrnxiP+JpCNu+fv95OPkq9CnbtnusLanjL+kWoWgAKqsPfFiK3tMya7nxSh0jQgS+5CcMNwejLV8E2+/d/kGGUVGj2f8ul9mLw5cdVhem0NoQX2ss+SWygcWYfuVe9J1/DyS/RWF0nffgsSz/+g23M/0l1nLr15ZiCkazBX1UOylowBQzoH/52rg8WlOfcXngs9gHo40MvtgnEHhafi+EzQd4a2fWj/axKTTT1t0Tsr665TXUjvt566yDjepnCUZL2yJwGYUWinzt/2zNToXB2e1uxuqK/Ry+WOTnHctb/qlvNFdNiTIYzbJr47QNwSspYkCWt2C03B76O9aY/jDvz+35lC2pU4nsXfEBqbpqw/refsOLqlFx6IxLFhVo9vqvu+F1ed0bmluPUFy8d+jP3lf+FwhS62gFZTrigI8zntQcsZUmIyWy157W2hi81Z5AraB1xjo6dPiXx35DjTN4LJqwY/WwrFW9MOU3Rr5ukL+nf/0WPn7ZU1n1+A+oOG8/V2anmpcX+7Jb7ft44WooqYLsMBdZs4UTOQpSE83rTAFIQlg1hD+uZcXiHh+MFuoQyOtmKzNFcdhWihfnhD5GmPWj5tJ9On9jaPtc6ZNu3i6sNZ/jBNi3Pf0zID0Jyg0BaHOXaesY0pPsfdkM8Bje+/hXLpVhtnsSjCaEEEIIIYQQQgghRM/h1w0U1681rsuNlxAeIUT34CiHnPh+rK5bFrSusH618XZLuQnmE8hSfPYfkKv8FRGOsv0q3XKq3Srjutx4y0lwQgghhBBCCOGRwnxuvtt2boRotzpdS4M2ny+aGuJYVAghwWgbozuBlcBOwGAP5SuB94EZWuuPoulQa/22Umpz4DrgaCDLUvQbYLrW+pVo+hFCCCGEEEJET+UOQE85Bd56zHOdOhVvXJ4QyZGk9vBFWH342ZG6aBX6qZvh1fs9datOvQb2O8FTWdEN7LhfUDDaiNpFZPhLKPW1nombngSXjs73FIoGwLzZ8O5TsRppwA77wiFnx7bNdlKJSehBI2BZfvBKfyCXPC1J0T8DVpcGF1kZH5wEpYGHfurNOwWB+udPdthjtHly+TdLNNPfc6msg303V0zdVZEQFyj7eb7mwc81v6zSaA3D+8C5uzvsPqq5rae+0Z5C0QBG1Rn+xpaKzFdIBCC7c04G0n4/vPs0+qYzmxdm9YH15hNHvRpRu8hz2Qx/8xOd6Rqe9EbrqjAmEdiCPgBqVSJJ2jDz/Zv30FXlqJT2pzw9/11koWgAXrMKh+SAzzEHFyxc4y0YLb9AM9983hwATw6dxfgFP5tX5g5A/eNB1LZ7ehtwJxjRT/H+/ODHO3+Lv0H5la1eu4Vx7Q9G230kKNWxYRWX7O3wzi/m/ZA35mmumuK9rfoGzRNfa16ao1lTZi7jtN3nKS2mf8ZQT+3bgn66K718EfrmqTDvC1KBKbxrLJdAPen+MsoNV8stCnOu6H/e1kFhfVe8qjl5oiY7zf7aef676IInAUqrvZd966fo+sm60GVITmTBX7ZgFCFsujq7V69agj57F09l1dWPoSIIewq8/4PfFMW+3iSY9k3CKKoIH4xmC3NSCtIs+0vhAoKEaMXDdyIUruz4cXSwKLOhgzxwvKK6TvPWz/bPyMtf0Vy6T2z6i4RtPAN7w5Ki4OWLCuxt2R4vR8HIvjBnafC6H0NkhNu2V6Fss6l5m9vWK/8L35YEowkhhBBCCCGEEEII0XOsqy/ExW9cZwsSEkKIrtAnob8xGG1t3Wrj7VZ14/OMyxNVEj7i8BvOT630h7jqTQcprFtjXZebIGGVQgghhBBCiPZxlPmkY+1lPqiISKhjylRf++dgCbExk2C0jYzWeiYwE0AplQmMBQYCfYEUwAFKgPXAAuAnrbX5V4vI+l0LTFVKXUBzKFs/AsFrK4G5Wus/2tuPEEIIIYQQInrq0hnoJT/DgjmeytfHIhjNS5JDQ+jZkbq0GH3WJFgbYoZnC+rlxai+Az2VFd2DGrJ50FTbBOo5c/3D3JpzSavlU3dTpNaVeJia2+jPBej3n4vFMAN23A/nltdi114sDRxuDkZzmw/7B2RagtHi8vDjUK2SSdOVAFzc52buWnMUNJ5b8/o8l0dPVhy7naKmPhBSp5TirZ80B97T/KX3e79q/rcUnjhV8cF8zQF3u9S3+Obh55Uw80eXN89z2G9cINzmTY8BM70bisnxF3sqa5SZG33dCOgH/wnP3tZ6YTtD0QDSdCUDkytZXh0+RSnLLdlwu2VIWlvrdFrEwWjVKtkcjAbo8/dCPfJN2PGFsq5Sc+zDkScnOJasJK01Sil0Qz0qLp74OMWQ5FIWVWYElV1YoGl6QJrqmcz60T6+ZTc75D35pXnlkLGox3/o8FCwSI2ynLv821oH9cJv6L17A+CiKPZlG8v+39pruLbPtfjxhexLKfjH/h2f2rPbSPu67/6ENaWafhnenoeLX9bc83Ho16TT9qpIpUUM7Bc+TMLnQEayp2F0C3r1n+hjIwgx8q8zBqMVVzS/10ye/Dr4cfO78NqPmtN2NterrtN8GiY7M5RIgtFenxd9uospGEWIWErqwl/+dHkJ+ujRnsqqadNR+xwbUfu2ELNiX29rEOx2mwa2+8Z6leH7DBVOZNtfqpBgNBGJhvqwRXTRqhCfmj1DqE/OSHaNM1IUs87zUVKlueldzS3vmlu++2OX8yd3blKkKXgZYFR/xWf5hlDHSigq1+SkBz8Atq/TlIKR/RRzlgYXWLDK/ignmb/iC2n7zSKvY1NVF/r4SgghhBBCCCGEEEII0X0U1ttDeHLiJRhNCNF95Mabg8EKW4ShFdabg9FsQY9KKVJ9aZT5S4LWVfrDXAWwA9jGn6AS6eXL6uTRCCGEEEIIITY2DuZz7Ny2cyNEu1WFOKZMccJc5VmIv7guvm686Eha6xKt9Zda6+e11ndqrW/UWv9Haz1Da/2s1npuLELR2vRZp7X+RGv9uNb6Jq313VrrVyUUTQghhBBCiK6nfD7Uza/BIWfCkM1hy11Q/30H9jZPRq9TCcblCaHzTlqzzSJvqT50MBrvPOktFG2nKain50koWk80aIRx8Q2F13BT2nNsORC23RRuOUJx46EKKuwhT0EcB+Z94b38VrvB+EnBywePhOMuQV3/vPe2OpvlSh20uFLHgExzkX/nXk3i6AoyRxUyeNginsw4jgeyzggqd+rjmqRzXDIvcPGd5eKc6W8VitbkqW80PyzV3PZ+61C0DUPScNVrzfXyC0L/aU22qpnrraBNtYf0i3bSBcuDQ9G8ik+AjOzmfwlJrVara59k5KbhQ9EAsvzrN9yOw0+a5eoilZYv0FPMHwEAVDshUpzy56I9BlnabH9DdD+i+Fq8BXTBctx/HoM7KRG9S1Lg/93TcCcl4j54DSPWmIPL8n8v4YP5GudM/4bXuHOmn49/a/15ZgtG234z2CQrxHZq2PhuGQYwsq95TIXlUNSQAjtNAWC9Lwu/Mifu7Fn5Me+5FzJ5FIwbEFg2MKs56MJRMHkUfHW5w4RBHf8YKKX44Wr7199eAxl/W62Z8Un4skHBaCXFbD0Y0kKEDAJkp4JjS/XrhvRD/4qofLZ/nXF5qDAiN0Sw7ofz7fU+XAB1wRfs9cxrMFp9g+aDEOMQoqvtNKzjtyn6py9xz5qEu0cG7rGbo+d8hF6/Fr1/X0/11RUPwBHnRdxvji0YLS6HSpViXDeqvyLZEghU5OGC3rZDWqXs2/hKCUYTkfCHD0ajyDzhoScJ9fVQNLvHmSmKE3ewV7QFpnUkWzDaGPOcHAB+s8wvtI3eUTDYnFPM74X2fqIJzVRKcfLE2HymaA217dhPE0IIIYQQQgghhBBCdJ6WgUItZcT1JtFJMq4TQoiukJtgCUZrDBNztZ8iS9ijLVQNIMVn/mG6yu2CYDTLNjk3oX+3PAdNCCGEEEII0bM4lnlorpZgtFirDHFMaTsOFUIEdOF144UQQgghhBBCdDaVlYu6+O7WC7feHV1fC5+80mpxvSUYLT6iYDQPX4Q1hJ4ErH8MH2qlHv4aNXIrr6MS3Y0lGE0BlxRO57Lbj2+1XFdGEIy2zmPiVlw86q3VqJR07213Nz7Lm9PfnEyWl6WwT7EOWBk/gFPzHmr3cK6Z5fJ+iOCYH5fDkkLNJlnwZ7G3NveveLd9g6oIvpJjzH0xK6pq6pJ7UAcHh9G1NarI5cMF4Sf5Z7W5amWmW0qFz/vrOzXB/lqpUWGSnr54HQ4/x3NfLX22UIec0B9KU7aUdl30dSfCz1+ZCz51MyP63MBb7B+06t25NTz5c/Bn1563u8y/zmFUf0VBmebrJeamD96ycRC2YLS0jHB/RpcYFeKizmc86TJz0kHoL9+iyGdJYQByGwrZZvET7P7QjG5z4t2EQYpR/cyBE2/+pDndkIPZ1hNfa085r07b90tpEQlxipsPV5z7rL0BW8hPd6TrauGD5yKq09tv3sCHCkYrCRFQlmQJNwKYOdf+OPscePN8h33GKt77VbPfncHv87Ia0FqHff2uKIFqDxk2QnSF3UfClHEd24deV4A+d3LzguWL0BcFf6baqOfnowYMjarvbEs+bLGvN1WOORgtJQGy02DF+uB1RRWawFGHXahwolRLkGyFBKOJSIQLiwcoXNnx4+hgoXanot1zHN0fBvWGZYYc1pUlUFKlyUzpvP1SW7ZrXoaiV5KmrCZ43dJ1mp0Nj4AtZE0pe+D52hBhj6H2oUIZGeI4IVIzPtFcvHf3OE4QQgghhBBCCCGEEELYNQUKtdUnRIiQEEJ0Bdt2qdxfSrW/imq3kgZtvnKLLVQNINVyjl2l5cKkHcm2Tc6Nj+GPOEIIIYQQQoi/LAfzPDS37UXjRbtVWY4pk5wUfCqSybpC/PVIMJoQQgghhBBC/MUppeBfT6PbBKPVYZ41mRDJkaTb/mA0luWHXr/VbhKK1sOplHT7JOk/F6CrylsFlulij2FnkdjtsJ4digZguVJHy4BC2wTqjvDOL+HLvPGTZt+xyjrpu6Vkt4ojy19t36BsYVUxomuq0HdeHFmlbfdAHX8ZaqvdPBUf2ddbs5ltgtEy/KWsiN/E87BSQmSfVavkkHX1z1+jogxGu+W96H9AqWrKlJjzkT0UrdHIukXG5Wvj7A/wjE81dx+j+GiBPSjrkHDBaOmd+CaMQF4mpCWag1xenwcNxx2ML+1yCv051jZy/UWgG+DzWbDrIR042sgcOF7x25rgJ+yD+VBdp0lOCB3O8OIcD6logNMmDFaXFKGAqbs5fP27y9PfmtvJ7knBaI/+O+I6OZZgtKI/VgHmbdIC8zmdACRaQj1WlWge/8r+XM25ymH8wMBznWHZhPndwHsgPcxFzos6/wLAoofyOY3/VIvbjf8cZV8XapljWZeaqNhlBBy3vQq7XWsvffCg6CrudhjqojtQvT3uzBhkp5mDW4t82VQ65tS01MRACKU5GC18n6EOaVMTzeOplGA0EYlw34kArFziKbyzOwsVNBvtn6WU4sDxihmfmBv/aAEcvnV0bUfDdlzrc2Bgb/h1VfC6lYZtU+i2FAMywweetxVtMFpeDHOd7/9Mc/HesWtPCCGEEEIIIYQQQgjRMdbWWUJ4QoQICSFEVwi1XSqsX021337VvlDBYrZgtCp/558wUlhnuBoksk0WQgghhBBCxIZjmYfman8nj2TjV2k5pkz19aAJJUJ0EQlGE0IIIYQQQgiBchz05CPh45c2LKtTCcayCZGE0GsPATf1ddZVurwElpvDa5qoY/8ewYBEd6X+/Sz6mmON6/R/L0Jd9XDzgu/ej23nQ8aizv5PbNvsCo7lzek2fyHdmcFoXlz0gmbw1PCz4BPcWu5ZcyH9G8wn+nhWWYp2XZRjCZFrB712BfrYzb1XcBzUuTejjpoWUT+j+nmbBJ/ltp5h39u/LqJ+UkMFozmhg9Goju4ksPIazUe/RVUVgN//KMW971Z49rawZYdbgtFCmb0o8LibAg0AhveBUf2bgtFKjGVUWgyTBWJIKcUWm8BXv5vXf1mQya6X3UfRf18xrk9xK0nR1QDoq4+GT6tQvu5x1ZoDt1Dc+l7we6a6Ht6fDwdvGZt+VNv35ao/Nty86XBlDUYbmtszAk50VQU8Mz3ietmWbU/x3B/RFenG98S5z9r3H5MtoR6HzLDXeWVqcygaBAKSbP4sgnFhMiSLOv8CwB1GqfDBXEFBXBEEeTnGdap10FcE4V/hlrWqp+x9GscZRUhZqMfHcXrGeztSes7HUdVT/3kRtcvB7e7f9v6tclIp9vU2rktJsNcrtp8Hv4Ftr8txAqGiJtX14Hc1vo30dSBizEswWsEy+HMBbDam48fTBdrzTrn5MHsw2pEPuLgPdt4+qWvZYPicwLG46ThilSVPOVTI2iZZkY8t2mC0AVmRh7DZ/F4Yk2aEEEIIIYQQQgghhBAdrLDeEowWLyE8QojuJTMumzgVT4MO/r2tsG41Va75B+E0XwbJPvOFtwBSHPMPzJX+zj9hRLbJQgghhBBCiI6ksASj4WE+qIiILWzbdgwqhGgmwWhCCCGEEEIIIQLaBJjUK/OsyYRIjiS1h8mT//sURgSnkujSYvQBeaHrjtwHVC0AACAASURBVNwKttkzggGJbmvH/ezr/vfJhpu6sgyW/Nr+/jJzUSdfCZsMhS13QSWGCXrqCWxhX27zF9J5GbGZ0BxLh91n/8L8v2suJtMtZVLVbDatX9b+zlw3EFjVyxycES09/3v0xVOgtjp0wUPPQg0aAcnpMG7HwO0IjbJfrLKVTH/rGfZ5DeaTpGxSzNmYAFSrpNCVi6MLsHv/V6hriKoqAP3euAWKb/dUdmRt5MFo81aA1pqFa8zvo202bRHpUGFJOEjrZumELRy7veKr381/26wfNbsdfRiFVbvCrOD1uQ1Fre7rG05H/fOxjhhmxHYcCtmp5vCbQ+91qbvPIc5nj+NY5yE0B0C1/fFv2cINN/MyFUdto3hxTvDje8x2PSQ053PDE++BLZSx2NcbPpsJU05utdx1NT+tsLdneoXW1GvmWeokxcPebTJkBveGeB/UGy5k9dsaD8FoFZF9lh6yZWD7kJkSLvhLeQrlsod/RR5SplQPef2JbkHX1qAvCrHPbrPN5JiEokFge26zIt785k358QNy+u+FaQtS5CHL1RZ0pAgdJFtVB+lhdpmEALwFowH8+HmPDkbz8vVQNFISFZvnwS+W8OL7P3M5e9fYB2ObhAozy8s0B4ytWm9+YKxtKRgQYTCaUoF9n2jkdc9cZyGEEEIIIYQQQgghRAdxtZ+iugLjutwECeERQnQvjnLIje/H6rrlQevW1q+m2m8+6adPmFCxVJ8lGM2N7mKh0aryV1DhLzOuk22yEEIIIYQQIhYcZQlG0xKMFmtVlmPKFMsxqBCimQSjCSGEEEIIIYQIcFrPkqxT5lSctsFoWmv46i30G49CYgpqjyObJ7674b8I0zMuR/3twsDtL99Ev/M0VJXD9x+Grjh6W9TVj6B8Uc7uFN2KSkpBJyRBXU3wyrUr0HW1qIREWL82Nv2deDnq8HNi0la34VjeCy3ehwN6+YGe8Z7Zq+IDzl9/X+wb/u4D2PPodjej/X54ZQb663dgzsdhy6vrnkFNPqLd/eZlQloiVNSGLpflL2l1v3+EwWiJcYEJ/KYJ+dVOmCDBZflorSMO3Hnjp/BpCQOzYPl687p9Kj7w3FdffwGD65ayNGGw5zoAa8thgSX3bWRjaJ3WGsotg0ztvskCZ++iOO9Z83PwxjzNf4+GIrIwBTrk+lsHo/H+s+jJh6N2OqADRmqmi1ah774UPn45sGDPo1HTbsOXlcuULRRPfm3+2xKmukwZB3uPVfRKgplzNWvLYevBiiv2VZSGyTts4rT98W/FYrTfv2E/5Z5jFBU1mrd/CazulQQ3HqbYa0z3DqbS5evRj/0fvHRPVPVtwWilvgz07DdRbYLRTAF2LVUatn2LCswhZwBbD4LUxNaPcXycYmhuIAStrYUFmkDckV24Mbb0zOmKY7brnDAWITrczPujqqaueTJmQ8gJ8dv/mjhzemzKnLfpvf/WQHCSULGHoENbmJNSgX0ym8paCUYT3ug1S72VW74ozCdU9xbq3dbenM7thyh+WWXu4ZxnNKfupEmI6/hHzxak6KjAcZzJKkuesm3b43MgNw0ykvG8n5oUF30YaqQhbEIIIYQQQgghhBBCiJ5tfUMRfsxXtMuN93glPyGE6ES5Cf2NwWiFdaupds0neIQLFUvxpRuXV/nLIx9gOxTV2y9OKttkIYQQQgghRCw4mM9z120vGi/ardJyTGkL5xZCNJNgNCGEEEIIIYQQAW1S/utUvLFYgq/NZMrXHkTfPm3DXf3xSzBtOurI88G1pFS0odevha/fRd94hrexjtkOdf/nUU/sFN3UUdPg6VvM6169D/52YSD0Jhb2PjY27XQnjiV4pWUwWloDPSUYbUTd4g5pV193IozfGZU7oH3t/OdU+OB5T2XVebfEJBQNAhPaR/WDOWHyEzLd1sFcAxpWRdaP1iTHmwPYalSYYLTqCiheDTl5EfX51e/m2f+nT1LMOEaxuhQG9oZZP8Jh97X+oWVi1VeMq/3Fc18KOGf9/Vze98aIxvjst5oFloy5UU3nm83/HirNV+sk3ZKI0A04juKxkxWnPB78PCwpgqJyTaHlwqfZ/uKgZfqKw+Gu91ETdo31UFv3U18HxavRR45oveLDF9DfvAcvLODALbKswWgAb/0Mb/3cev03SzQPfBY+MKeJ0/bHv/o6WPMnDBgKQE664s1pPoorNAVlgSA9n9O992N0VQX6lO2gYFlkFTNyAvuA5evJ9JvTPkp8mYH3ShsrSwyFW6iqC1620HzBcgBuPdL82TiqnzkYbUlh6P4BijxeAHhwNhw6oXs/x0JEQr/9RGQV0jJQry1DJcYuHax3auR1Ut1Kstf8BAR/Hnl5P4cKOkoNEYwWLsRWCGj8LmTWQ94KL1/UsYPpYLagL2h/MNq5uysemW3v4LN82GtM+/rwwhQqDYEwM1sw2hpLMJqtLccJ7LfvM1bx4hxv+6pJ5q/3PElPiu2+TDQB2kIIIYQQQgghhBBC/FXNLnmfd4tf6tQ+G7Q5FA3CBwkJIURXsAWE/VA+2zqRP1yoWKpjnpRe6fd4wkgI+VW/8PH611lZuxTd9iKMbdRrw0kyQJyKJzMuu91jEUIIIYQQQghHmc+1z6/6hat/9zjHs5PFqXiGJI9k3+yj6NNNv6/6ueJ7Pi95hzV1K9CNJ09W+M1zjFIcczi3EKKZBKMJIYQQQgghhAjwtQ5LqlMJxmLxLYrpyjL0/VcFldHP3AaHToUwP9xvUFKMfupmz0NVh02ViZQbIXXK1WhLMJqecTkcdDp89Xb7+7nkHlTGRnhiiGMJPGsRUNgroYE0fx0VlqsaRiojGQb1hhN2VIzoozjk3thdFWTLmnkxayvIu8/ACZdFVVUvW4g+ZzKUFnmuo46+IKq+bCYMUsxZGnoSfE5D66CqvAZLmpeFem46yVlnUUHwa6Xa8RBw8sf8iILRyms0i9ea1+0zRhEfpxjU+LY9ZALMPMfh9g9cVq6HfdT3XD/7cBy8h1gx+UgunvscN/ovo8SX5bnaxS/Z+9h6kEJrjT57krmAUjB0c+9j7AJ7jVFgeRz7XOySZgmAyW0wp0npaXvDY9+jhm0RoxG2aPvPBejp58Ev34DfcnJ2RQnMepi9j4wuVLMhgk1aUDAawNKFG4LRmmSnKbJ7ykV93nky8lA0QB0+FXY9FP3QtWQsNe9Pljq9YN0adEUpKi1jw/JVYYLRKmuDX5+/rbG/L3cYYt5fzMs0v9bXVYbfjoQKUtosB+oaYJcRiulHKJLiZX9V9Hx6+SL0pQfByiXeKw0Zi7rtzZiGogHE+RSZKVBS5b1OiltFzrLvIC66YDRbmJNSkGrexAFQKcFowov3n/Nedll+x42jE4QMRmtn21sOVEwZFwi7Nfnbgy7Fd8QuIFy/+Rj6iRuhohRGb4O6/D5U30H4QwQp9k4xryutNi+3teVrPA9tt5Hw4hxv421PMFqs1fshQc5QEUIIIYQQQgghhBDCkxq3inWW3+I7Wy9fJklOmIvoCSFEF8hNMJ+fZgsVC9QJPXE+xXJuZVU7g9Hyq37h7uX/wo89hNKL3Ph+1vACIYQQQgghhIiEwnxsUa/rus33UiZr61cxv/JHLht8C73jc7t6OK3MLf+Kh1fdivY4vynV11MmlwjRdeS0UyGEEEIIIYQQAU7rL7NswWitJjB+PguqyoMLFa+GFYtCz3xtqbQIViz2VnboONjzaG9lRY+iEhLRA4fD8kXG9fpvo0M3cOhZMPOB0GV2Owx1cPe8akW72U52cVuE9fgbGFy/gl99YyNq+tSSx3lw9TmoM6+H3AEwYAgMH49Kaj27+6O/O+xxe/vD0ZR22b/i3Xa3Y6Mf/CcMGQP9N4NNR6Mc+4lCuqEeFs6FkkIoKULfdKb3jtIyUfd/FoMRt3bgeMVDX4Tevmb717W6n1e/KqI+nJpKkmvWQ7whGE2FP9lVf/s+ats9Pff380r7ugmDgpcdNKqag+J+gvVr0Vce6bkffHGoa59C7X4YWmt+nrwpQ4cuoM6xJH55NLo/DO2j0M9Mtxfadk9UVp929dPR+mdAryQoqzGvr7CEvOT47UGB+pRt4e0CVHpmxOPRtdUw/3soWA6JyZDQ/DzpKw7z1sZ7T5N+wmVM3U1x36cRhOdFyDGFwS7Lh4n7d1if7aHr62DF74EQ283GBAXO6toa9It3Rd7wgCFw4GmonP6oG1+m9yINtwY/NtVOCrUqAf/vi5mXuhUj+kJuumJlSejnyPQazF9jLnvweHs7tnC6dZUhuweguMI8xtMnKR48QU48FRsP3dAAC/9nD/y06TMQ9fgPHRZk3Sc9wmA0XUV2wS8wIHhdsYfz1l3LMa2jIC1E7lul/Tx7ITbQL9zpvfCqP9CVZajUXh03oA5QVav5/k/48nf7Z3wsNhfPneHQa5r5WHR9Ffxzlstl+yjSk9rXmf7qbfTNZzcv+P5D9Pl7oZ+db/0KzOdARrI5lLWsBrTWQdtMv+WwuikYbZMse6BxW+0NRtthCHwTQTZmKDX1EowmhBBCCCGEEEIIIURPFC5ESAghukqf+Mi3T7lh6tgmpVe5FbjajTqU7OP1r7c7FA1kmyyEEEIIIYSIHZ+K3QVHO1uZfz0/lM9mr96HdvVQWvlg3WueQ9HAHs4thGgmp50KIYQQQgghhAhwWn+ZVa/MMycTWhTTX75pb69oFVSWeepaf/Oep3IA6qGvUL6e+8WbCGPH/azBaKxfG7Kq2vlAdIhgNHXpvTDl5HYMrpvz2YLR/M23/Q0cWPEWvyaZg9GG5MABNR/wx+pA8kyGv5Q9Kz/muLLngMZAsZb++zZqmz023J00HIbmwu+GC4OM7g/PnO6w1fXhg9P2q3iPvv7Qz3d76SsOD9wYtgXc9Cqq78DgMvO/R//jCFhnSd0JJSMb9fDXqH6D2znSYHuMgtREqLSEVAFk+4tb3c9rWB1RHw4uyW61cV2NCpEC0uS7DyLq7+cV5i/+05Ng0+zWy/Tns9D/dwpUe0gwarLrodBnE9TkI1Cb7wCAUor+Bx/G6bMf497eZ4dpILSDxgeCDPQ7T1rL9IRQRqUUo/rBd39GVi83RDAaAG8+Csf8PaI29eez0FcdFdlATJYuxL19GndP+y/3fdr+5mwcgrdtetlCOiYWqH30H/PR/zoBlvwSWDB+Elz3NCq7X2B9/o/o07b31JZ65Fv49Rv0gh9Qg0fCvsdvaAcgI0SO4oOZp3HFfeOobQzwnLaHIjNM7qJpu/fbGvP2Y2R/+6PfO9W8vNhTMJp5eY5crElsRPTqPwPb4EXzIq+83/EdFooGsO2mivwC7ycMpLqVxGnzyeWl1eZAopZsQUcKSIwLBKS5hjJLCjUTh3bHTwHRrRSGSAc2WTQPtowwrLALvTjH5aRHNbVh5nfEYpuRlqS47zjF1GfMb9r/vKW56yPNoyc5HL519P3ph64NXrj6T9yv3gbMgbiOgl6WfZx6P9Q2BIeX+U0bFsDXOPQBEWQOJ7czGO34HRTfLIlNwHBNvf2xEEIIIYQQQgghhBBCdF99EvK6eghCCGEU6fZJoegTJlgs1TIpXaOpcatIsQSnhbOkemFU9drqEy/bZCGEEEIIIURs2I5/eoqlNZb5h12kQdeztGZxRHUy43p30GiE2HhEF1EvhBBCCCGEEGLj0yJszI+DX5mztBMaF+v6OpjzsbU5/c7T3vt+5lZPxdTLi1DxCd7bFT2OOukf0VfeZg84zBBulJyKuvFl1EGnbdyherYrEeoWYT0N9VxcfAc7VX0ZVGxYVh3vXejw339uxcwVRzFzxVE8vvoMji97zhrsoy/aH/e+K9HFgeCwOJ/iob2WkhVX06rccfGf8dOf2zF+zgP8cOJi+idYUmUa3V5wacj16tIZOF/UwuY7hiznyeKf0LeeE7RYNzSgrz46ulA0QL22rENC0QCSExT7mrPtAOiVBPH7HdtqWd4++0TUh4NLsq4xrqt2PASjrf4TbUsSMVi2zrx88zxwnOZXoF5fiP7X8ZGFoo2biPN/z+NMm74hFK2JOv4yblp7FdtXfbthWZyu5+QSe8CZyUHlb6ILlsNSywlscfEwcUpEbXaVcZtEHhSRO2mXkOv1vf9A+/0hy7QqX7wmNqFoTWY+AMeO5tODf45dm22YgtFYlt9h/UVD19ag330afeKE5lA0gHlfoA8ZjDvjCvQz0z2HoqEUDB6FOvRsnCsfQh13SatQNCBk0NlF/W6j1m3+XL7rI82/3wy93WgbjKa1ZmGBuezIvvZ2sm3BaKE/ngAokmA08Regp58XXSjaFjuhIgzCjNQBW0RWPsWtJsMtNa5rcKG6LnR921bJcQJhTqmJ5vUnPhqbECEhWsmf29Uj8GxpseaYh8KHosXS0dsq4kKc/VBeA0c+4PLdH9G9P92Vf/DpqgxuyL6MF9MPp0o17+j4f7M/Nz4ncIxmU2rIo/Zb8sSb8tDzIghGaxu6FqlTJsYu5LGmPmZNCSGEEEIIIYQQQgghOtHW6Tt39RCEEMKod3wumyWN9Fx+dOqEsMFmqSHWV/jLPffVUrW/kgq/+XfrSG3dS7bJQgghhBBCiNgYkzqhq4fQLjWuec5TVymuX4s2zSux8BHH2NStOnBEQmwczLPchRBCCCGEEEL89TjNwRT1yj5rsikYjSW/QGWZvb33n43RwALUy4tRfQfGtE3R/aheveHvd6JvvyDyuo4DF94BB5wKC75Hr1mGGrU1jN4GlTugA0bbzdhC31qGEfkbyHJL+GDp/nydsj0/Jo7HVQ4j6hax6z/uoFefzYA+6BMuh6du9tbvs7ehn70NZnwCq/5gl5vO5Fey+Dh1N4p92WxV8z92qP4OBejbL2A88JOTyQEDZ/JtSnD4zur8QeT6i+z9JSbD7ocDoI79O/rKI72NM5TvPkCXFKEyc5qXzfsCCldG1Zx65FtUXMd+7XbQeMUr/zNP6C+rAefKh9CHnAmr/oBNhpI6amuyLvSzvspb+wpNkmuYoQ9UtwgAICER6mqDC9VUQVU5pPby1N9qy3lfm2S1mYT/2UyoD5Ng0oY63h60p3L6k3rOv/hixmQ+St2dYl82E2p+ZGD9Cp7IOB5tCxxsoV/DGrZ9+Cj0wyECFg46vcNfE7Fy8kTFI7MjC4vos8c+kHgBvHCntYw+cyd4YLanx0Ef0gGhgquXsvNN23PsxK94dv2WMW9emaJzulEwmi5ahb74AFjyq73Q8/+1BgAZ9RuMSgwdlJiZEkmD4ZW32dwUlAVCTkxG9bOHeGSnKkxxR+sqA2FrStnr2oLRbGFrQvQ0etUS+O4DT2XVtU9Bckpgf2PT0TBhtw7/vNtqkPn9a5OqK/G59nDOkmpIsYSbAbiW8xOathK2bRBAVa0mJTF2gUJi46JtL65QdRbOtYZWdzezftREkJMcE5kpiolD4fMwF4Hc4UaX2Zc7TBwa2aN50aMl3D34vQ33t67+H28vP4hs/zr8P3wGXGWs5yjICBEWW1YNfdscNoULRstNg3gf1HvIHm5vMFpyguKlsxyOfCDy12xbNZ0YlCeEEEIIIYQQQgghhIiNPbMOYVTK+K4ehhBCWB3X71zuXXE96xoKQ5brE5/H0X3OCNteipNuXVflLwf6RzpECuujuzhrWwfmHMegxKExaUsIIYQQQggh+iYM4Ni+U3mu4H50ZDMJuoVay5ynrrK2brXnsj7iODXv4rDh3UIICUYTQgghhBBCCNGkRfhLnUqwFov79CXc+56Gb96zlom5CbtKKNpfySFnQRTBaEAgyGT4eBg+vsdMGI8ZW4CTbjF52R+YhZxAPbtWzWbXqtnN1VOag9XUnkejvQajNXVz7u4bbvehkL+VvWQtm+WW8OnSvbi0703cl3UmfhXH+JqfeGD1OaFD0QA1/Q1Uelbgzs4HRjRGK61h7me482ZDwTLYdAz8uSDydlLSURf+FzUi9qFLbU3ZInwoiBqzLYzZdsP9AZl4DkbL9q8jRZsLVzot0n/6bAIrfjc3UrQqgmA089/SP7P5tq6qQN92vqf2WlIT9w9d4KhpODMuZ6/Kj1stHl63mPzEEWHbP6D8bZxwz8V5t4Rtp7vYaZjiwRMU057X1NR7q5ObDmrqjejli+Crt82F8ufCO0+iJ+6PnnEFfPBcYPkBp6LO/j9URjYA+pt3Y/BX2N3zzT7UTZnPy4uzY9qui2EbvH4t7jXHok64HDW8a08U1y/eHToULRpjtgtbJC0xEAbixuh30rVlrYPLVpbYyw7Nta/Ltvx+2OAGQo56WcJLtNbWYLSctL/cnofYCGmt0Vf/zXuFEVuiBoX/rIylTbMDwUC20KC2UtwqkrU9vWx1Kbw4x+Xj3zR9eymu3F+xWU7z+9m2+XI8vOWLKmBQiNA18Re3fm3kdfLnxn4cHWTpuq7pd+Y5DtkXhd9A7HxzoMxuI+De4xxG9Q/9pp67THP38i1aLfsheSvuzTqLfxbdiFtTDZb3u8+x71sAlBrOzQoXjOY4ioFZsCT04TPQ/mA0gBT714QR8Xp8IYQQQgghhBBCCCGEgDGpE0j12cN5OlqcimezpBHkJPTrsjEIIYQXeYmDuGaze/ijJp919ebf4HLj+zE4aTjxTvgfPZKcZBwcXIJ/sKl0LSeNhFFomRwfp+I4pu/UsPUTVCKbJY+kd3yIk2GEEEIIIYQQIgo7Z+7D+LQdWFz9KzXdLGisyYLKH5lT/kXQ8u423sJ687Ffui+DQ3JP3HA/xUljWMqYLv3uT4ieRILRhBBCCCGEEEIE+JpDkeqVfdZk/LM3QW2MgzXCUGf+u1P7E11LKYXedk/4/kPvlTbfoeMG1FM4PvNy1998uzEYzcjX/DWRGjIWvesh8NlrMRpcsHgauKPgEv5VeD1VTgp9GwrwGU4m2qDfYNQLv6Gc5vAhpRQ8+wv62M3bPR59zbHNd2a/GVFd9VI+VFXAoBGouBjMOvegd6qiby8oKAteN2WcuU5eJvyyylv7I2sXkuZWGtdVOSnNd/oMtAejFa+BwaM89bfKEm6UlxH4X9fXoc+c6KmtltRjc8KXcRy45B709PNaLT93/f1c0O/2sPUPrAjzehk0AhUfoySBTnL6JIeTJ2q2u8Hlx+Xhy+ekgfL54KZX0YcMhnUFxnL6udvhtvPA32K79Oaj6C9mwcuLUUkp6LefjG7QvfvCuInw2cyQxXq55Tz/xkDWv1XFH0Uax23g1Gfi+WlldN02SbH9qPbJK+hv3oM730ON3qZ9nURB19cFbnz0Ymwb9sWhDj8nbDHHUWQkew9lDKe6HsqqIaNxM2TbdsT7Aq9Lm96p9nWrS+3hJeU1gfA0k1D9CdFT6If/BYvmea+Qt1mHjcUmPk6xWQ4s9pgplepW0cs17DA12uM2P2U1TYFImhe+13zzD4cxeYFltmBH5SEYrSbErrcQ/Ppt5HWWLUTX1aISun/iXrHHOSGJMT5bIStV8chJitOe8JbK+mk+jLnW5bsrHcbmtV6XEAe+xhTEl34wt/d6+oH8s+hG/CuXwhBzHz4H0pPsYygzZDf6LcP3tcjiHd3fYzBaDB7jhBg9TxKMJoQQQgghhBBCCCGEd3mJg8lLHNzVwxBCiB4hwUlkZIrlpLkIKaVI8aVT4S8NWlflL4+qTdvk+Jz4fuyYsUdUbQohhBBCCCFErKTHZTAhPfL5Op3Fr/09IxjNEoqdlzhIjv2EaAcnfBEhhBBCCCGEEH8JLUKV6pQ9wCVB13XGaDZQ099ASejVX8+ICREVVwee1kED6UEcy9c8bosEl5ZhRG35Ws90Vlc/BkecG4OBhZbplpLXsDp0KNq+J6AenN0qFK2JGjgc9eCXHTjCMI48H9VvMGrI2E4LRWvyf4eYEzn2GmNenpfpIcGj0ci6RaRagtEqnBbpP0kp0Ku3uZG13pOmVgefRwZA/8ZgND56CZYu9NwegDrtWtQwjye87XRA0KJz198ftlp2QxF7VH4SutBmY7yNoZuJ8yku3NPbaya38UI1SinY7wR7weWLzNuh0mL0Xlnol2fAJ69EPtiDT0c9vwB1/XOo82/1VCVrSgpbnZTKlqdk8NXsPC5OmsWmWdEl2CS4tWxR+7O9QHUF+qW7o2o7WvqHT3BP3gY9OR09OR3Wrohd4xN2RU1/HTVuR0/F+/aKXdcAWRe6XDnTpbpOs7LEnBrSPyMQymYzINMeahQqbKkoRMiLBKOJrqJ/+hL33Mm4+/XBPW0H9Pzvo2unpgqev8N7hW0md/q+T5OtBnnfp0nRVSTpGuItx7HNoWgBFbUw/f3mbYu2hBOF2MRsUNW5h86ih9Ffvxt5JdeFlUtiP5gOUFzhLZhsR0uYWHucPDEQjpaZEr5sk+1ucEk9r/W/jGkuqef6yb3Iz03vmP+euUlbogF/vT3xy1GBgLU0S55dmeHcLL/l8NjXYtszsp+3bWFSDDbV8ZYc9khVy3ZRCCGEEEIIIYQQQgghhBA9QKrPfBJIpd/j1YHaKKxbY1yeG98/qvaEEEIIIYQQ4q8kyTFf9by2uwWj1cuxnxAdQYLRhBBCCCGEEEIEtAxGwz5rsjOD0dQDs1Hb791p/YnuQ+0cHFIU0q6HdMxAehLHMlPZbRFC5A8R+tMm2EIlpeBccDvq1ln20LVOoq58CJXVx75+9DZw3KWdOKJG2f1Rp1zV+f02OnmiYqehrZeN6gfHbmcLRvPWbi9/KTn+IlLdKuP6StUiYcAXBzl5xnJ63mxP/VXUaGvYUF6mQtdWo5+80VNbrRzkPTBR5fRHnXl90PL/LdmOdH+Ztd5Na68mSdeGbnvSwZ7H0d2M7h8+bCEhDjJa/M6kjvl71P3pOyOsqxTqqkdxLpmBSk5FKYU6ahqccHlEzSTVlHDz3GNYvGwCtx0RuuwRW/rxqdbBGNcV/ptkXRO64rzOC3DUS35FX7gv/B4irC0aY7dHfVqFc9f7C1GGMgAAIABJREFUqG28X7HI67YnEje9o7n2dc2SQvP6AWH6TE5QDMw0J47kF9iDXJats7cpwWiiK+jClejLDoGfvoSKUsifiz5rZ/SqKIKTfv8Z6sJsy5okp6JOuTryPmLkgC28l01xq1BApr/Ec52Pf2veDriWTUJTuOK+Y+3tVNXB2jLNzys06yq9hUSJv5BFP1pXqQtutx+DLc/voAG1X2295rs/NJ/na/4oCl8+KR6uOTD2x5pKKU7ZyWHdHT4u2dt7kGJbVXVQXQ/F5rzoDVbGDcANcdqFr3FVL/O5WZRWB28frMFoLboZ7fFcqaT46B+DJsPsh+MRqYkuh1gIIYQQQgghhBBCCCGEEKJTpTjmk0Cqog1Gq19tXJ6bIJPjhRBCCCGEECKcREswWk13C0ark2M/ITpCXFcPQAghhBBCCCFEN+FrDlVK0rX8rfQF6lQCdZn9qR+9A3VLFlJXbA/KiblhW8CorTunL9H9jNnOc1F1x7uo1F4dOJgewjZx3m0xozpUMJrP/DWR2mFfePR79Mz7YNbD7Rhg9JQKP5FbHX8p+plbO2E0wNBxMOkg1FHno9KzOqdPA5+j+ODvDk98pfn2DxiSCxfsoUhPMj9e4YKCmmxavxQFpLrmE7kqndQWg4iD0dvAkl+CC875yFN/+QX2dUNWfo6+5G9QFiKNyGT8zqjefSOqok64DEZOCIRzLQsETmxR+wvf/zGRB7NO47eEUejG1+Im9Ss5quwldq/6PHSjaZmw05TIxt6NjPTwEI7u1/o9qjKy4c1V6APMgXntctBpqJwB6EU/Qu8+qD2ORk3YJaiY2vd49HO3Q0N9ZO2v+J0L5p7HdUn3UGbIBkpwa7n3zfH8Y/I5PPJNApVOKoeVz2T/infDt71uDVprT9uz9tAL56JP3yH2DR94KurCO1A+SwhnCAMyFRD7QKDp79vbDBXGprWGx29g+PJtWZYWHPAWKhjttzXmddmpkJHSsc+tECb6melQGRzgqY8eDZ/XRLbNCRWKNnQc6vjL0N++D1m5qH2PRw0JkQjWwSYN97ZdSXKr8RHYF870l1IY5y3ZZ9k6KCrX5KQrtC0YrfH/KVso3v3VXOiKV1zmLIWaekhJgDv/pjhtZ7lmlWj8LFq20Lxyr2NQR5yLfvkeWGkIOVzWPYPRZi/SHP2gy+rS8GX3GAUTBimO2U4xYVDHfn7efLji11WadwyHK7HyW8IIxtfaA2mdxj8xIxlWGTIaTfudXoLRBvX2ti1MSQxbJKy8TMV2m8J3f7avnZoId8+FEEIIIYQQQgghhBBCCCG6Qqov3bi80i2Pqr3C+jXG5bnx/aJqTwghhBBCCCH+SpIswWgNuh6/bsCnuj42ya8bKK5fa1yXGy/BaEK0R9e/w4UQQgghhBBCdA9Oc9BFX/9anl51SuBOziScCz7EvetR+N/dnTYcdfn9KFvQk9joKcdBn3QlPHFD+MJb7dbh4+kRHEtYjetvvt0QeTAagBq6OeqSGXDJDHRDPXp38xURu5JKy0D3GwxrlnZcH1NvQB17cYe1H42keMVZuyrO2jV82TyP4URPrDoNgFRtDsKsaBOMpnbYF/3W48EFC5ahG+pRcfEh+7OFECXGaTa5/RgojzAULbs/atptkdVppLbbC/VMINRAz3wAffs0htUv4Za1V0XX3uX3o9IyoqrbHfRKVvRJh7UhzukzhVmojGz0UdPgxbtiOh516FTUsHGEi89Qg0bA1BvQ9/4jdCCkyZuP8v0+OWy+9ErqVUKrVY+vOp3e5cvoPesKIv7LGuqhtBgycyKtGZIuWg1fvxMINNp+744JRes/GOey+6Kv7jGUMZYGZYd4lXz5JvrRfzO0312Y4hvXLC8GzOFJC83nqTIyqxr9wiOQ3Q8mHYxKTIp4zEJESmsNr9xrL/D2kzDlJO8N1tdZV6lL70WN3Q6151ERjLDjDMyC5HioDhOwk9Ii1DvLXR9RH6c94TLrPB+uZdep6VD19J0V5z9nLjR7cfPtqjo48ynNpOGaEX0lSPEvr3AlVFcaV6nDpwZuDBxhDEbTy/LD7gt1tuo6zTEPeQtFe+4MxdHbdt53PUopXj/PYZ87XD7+rWP6WJg4knG1v1rXN4WZ9bLsHpQZLlppC0ZzWjz5XoOv02IQjAZw/wmBx7Gw8dggKwXev8hh/CZwyAyXtz2Ez9XUa+h2r2AhhBBCCCGEEEIIIYQQQojWrMFofvOFRkOpdWsobTCf/5abIJPjhRBCCCGEECIcWzAaQI1bbT2G60zr6gtx8RvX9ZFjPyHaRWaYCyGEEEIIIYQAQCnLIaJunI1ZFmEwTXtsviNq1Nad15/oltQBJ4cvtO0eKCWTaoHmdIa23BYzqkMFBIUIRmtJxcWjHvs+fLlbZ6GuewbSs+yF+g1G/f0u1FQPAXhe7Ht8bNoxOezsbheKFikvE+dT3YoNk/pTXXNYQ2WbYDQGDjc3pjWsKwjb5+JC8/JhSevxlReHrb9BYjLq+udRT/yAGrGl93o2ex4NifYfUMJRN76M2u3Q9o+ji/UJ8xvRVoPMy9UhZ3rerniy6WgYurnn4uqoaagn56KueDDiroa+dwvrF/blqZUnc2jZa9xacDlLFw3jqPJXIm6rlWJLqlaU9I9foE/eGn3LVPQdF6GPGRvT9puoR8Nv80PxGtoRS7sMt+8b6C/eACDHX2RcX7zaHp60yBLkOPKXF9H3XIa+7kT01F3QRasiGK0QUSpYFnK1vulMdHkEYWChgtHGbue9nU7gOIqRHi6c3TLkNa9+dUR9NIWaaUswWtNWJjFekZ1qLtOW1vDol+FDasVfwPJF9nWDRrT+P6hufuzH005v/KRZWeKtbE5a5x+/+xzFBxc5jOmgc4vyE4bjV5agcprDzGzBaKWmYDTLpsLX4rDf6z5WaoyC0bYcqJh/ncNLZzk8d4Yi//8cth6siPMp3jjf4cO/OzxwgmLeNQ4DLV8D1IQJtBRCCCGEEEIIIYQQQgghhOgOUn3mC8dW+kNcXdKiqN5+vlCfeJkcL4QQQgghhBDhJIYJRusO1oY4Tzkn3sNJz0IIKwlGE0IIIYQQQggR4LNM4nQb0+qLI5tI3i7JKZ3Xl+i++gwMXyYjp+PH0VM4tvdwi2C0UOEYtvoGatgWqCsfNq8cMAT18NeoHfZFTT4C9cZKezsnXoE69KyYBY6pEy6H/U+CprA823Ytmran3R6ztrrKyH7Nk/JttqyZt+F2mtdgtNw8e4OF4cOB1pm7YeCayMKY1J3voXY7FJWRHVE9a3vpmajpb4QvOOkgGDex+X5iMurSe1E7HxiTcXS1HPN5fhtsNdj8olIDh6OueQLSMto/iCGbo26eGXEQpho0AjXlJNj72Ii7TNK1HFP2Ii+tPJaL1t3NgAaPQVehXn8x3JfSWqPP3xNKIwgPDEFd+xT07tt6Ye9+qLs/RLXzORzUu/MDUPYaHWLlbz8AkNNgCUarsv9sYgt9GVK3pPnOonnol2eEG6IQ7bd2RfgyL9/rvT1bgG5aF6QbejCyb/htS4qv+W/Ka4hsG7y+CiprNa4lnKjlPlW6JezI5MP5EowmgPWWZOC0TFRjsLSyBaMty0fbEvu6yLu/eC+bHWbfsqMopZh9ucOBW8S+7d8SRuCGOO2iKcwsw3JuVllN8DK/G7ysZVsAvZIhJSH8+NJiFIwGkJ2mOHxrxdHbOmS3CLlTSjF5lOKMSQ7jNlEkxZvrSzCaEEIIIYQQQgghhBBCCCF6ghTH/KNWlb8i4rYK68zBaA4+suJzI25PCCGEEEIIIf5qkkIEo9V2k2C0wjrzecqZcdkkODE8iU+Iv6C4rh6AEEIIIYQQQohuwhaK5G8MRvMy8T5W1q3tvL5Et6UcBz1sC1j8k71QjAKQNgZKORinx+vAjGpdV4u+4jBzZcdBOZHl56v9ToDJRwSCftYXAgp6ZcEmw1qFFymfD+7/An32pNYNDB4F+x4fUZ9hx5SQiPrHg+jzb4UVi2HQCPRBA6G2fV90q8fmBP6OHi49STE2D362Z9UxqjZ/w+1Ur8Fo6VmQkAR1hhn9ReHDpEqqzMuz/CGC/NoauRWM2c57eY/UlpPgno/Q5+1hL3PAKaiJ+6OLVsP6tTB4FCph4/nhIlQwmlKwxYAQ6ycfAbscDH/+Fvw+jItHf/AcvHBnyP7VI9+iRmwZwYgNbZx8Jfr9Z9vVhqd+TrsWjrsEPTndXCAG+1La7wet0Xdc0O62WtntsMDztWwhVJZDajoMGhnxZ4PJyL7hy8TSweMhJTFEYFLj9jzHbw6VK9K90Fobg/hswWibNLTZsH72Gpz9H0/jFSJqxfarSjfRH7+EOuUqb+3V15mXx3tI3ekCIz1cPC110CBYmQEVpeR5DbhsIb8A8/41zTm84C2YqMn/lkU8DLExKjWHc5LZIvjbFoxWtg7+mA9DxsZ+XFGat9x7UFu40N2OlJmimHWej4IyzaoSiHOgqs2mz69h55stqWQW+Ykj8HsIRktPVpi2KmWGw1UvwWhKKQZkwqIwX6HFMhjNK2swmiWDUwghhBBCCCGEEEIIIYQQojtJ9ZnP/an0l0fcVmG9eXJ8dnwffKrnn5MohBBCCCGEEB0tVDBaTXcJRrMc++XGezjhWQgRkgSjCSGEEEIIIYQIsAVfuH50QwOs+sNed8hYGDcRZj0Um7HUmMN4xF+POuVq9FVH2ddn5FjX/eXYgruawg1/+DhE3ei+IlKJyZA3JPAvVLmx28H0N9CP/BtKCmHs9qizrkd1UNCGSsuAUVsDoA3BNp5tvgPqzH+jho2L0ci63ndXOiSfa5/oP7Ju4Ybb1mA0ldJ8x+eglELn5sHKJcGFC0OksDUqqTIHKWT6S8PWBWDf41HTbjOGGMWCGr8z/Ps59DXHBK/MyIatJwfK5fSHnP4dMoau1DvNHOAA0Ccd0pJCP+4qLh5s76ERW8KQzdE3nmGue94t7Q5FA1ADh8OMT9CXHAjVkV+51bNt90DFJ6BHbwML5gSt1t9/iDrglIia1LXV6KduhidubN/Y+g2GbfaANx8NXjdhV1Rc4+fApqPb14/BkNxAiIct4CPWjt42zLagoR6AbEswWrGThVu8Fl9O60S32npNkeXl07/tD5krFlvD1f6KtNaB/RG3xT+/5Xar+27jvwjrNN3WbsR19IZ+I+in5TrtWsYa5u9oNVZbG4b74fy5wPsT1cOC0UZ5OE8gN8OHevBL9N2XkrekLOI+fl2lcS3bLqfF29sWAGSiFFTWalJDBTiKjV/ZOvPylsFow7YIfE9jehF++Va3CkYrieC8ouzU8GU6Wt9eir697OtXT3e46JH1fPxzDaVOBgCb1i+lf8NqPk3dLaj88viBlPnsDTZtLzIs52aVVQfva1uD0dpsOjbLCR+MltqdgtHqO3ccQgghhBBCCCGEEEIIIYQQ0Ujxma/2U+VGft5RYZ1lcnzCxneemRBCCCGEEEJ0hHiVgMJBE3xiXbcJRqszX/Bajv2EaD8JRhNCCCGEEEIIEeBYQpVcPxQs3RAi0ZZ6bA5q2Di066K/eB3WFbR7KOqQs9rdhthITDoo9PpsuXLCBsoSbqhdtNboZ6bb60YZjBYJtf3eqO337vB+gvo97lL0I9dFXu/M61EnXNYBI+paifGKkycqHv/KHHQ1si5/w21bMFqF0+LEr6bXTo45GE3/OZ9wsR8lVeblGa49GE3dPBM1cf8wLceO2v0wuOJB9E1ntl5+3i2oxKROG0dXyDGf5wdApv3CO54opWD/E2HbPdAnToCKFs/5xP3hqGnt66BlX1tMRL0fHITl3n0pvHhXbDoZPCrw/ybDjMFofPwy+spHInrN6IeuhRfujH5MY7ZD3fcZqjEA183oDS0/DxKSUCf9I/r2PUiIUwzNhfz27yJ6ctQ2YbY6VYGTVHMswWiu8lGyeAnZbYLRVofIahzQsCp44fzv0CMmwKJ5UFFiCPyyBGBZA7Gay2pr+FbL+7ZwrxDLw42jVb8ext50X/QMDZZgtLgIUr860aj+9uDOJnmZCjVwOOqW1xj8m4bbI0to/GC+vYeWuYehtg9taR1o95AJEQ1FbGR0SZF5RUb2hpsqPQs9bieY90Vw/fy5YfexO1N5jbdyKQmQnNCdRt6ariyDxT/Rp66Gp1+dErR+SfymjBg231h3YcIIa7u+xkP1XpZdwDLD42cNRmtz2D+8r+L9+aG3hWldEMQowWhCCCGEEEIIIYQQQgghhOjJUn3pxuWV/gpc7eLYztU0KGx7sb1GufFy7qsQQgghhBBCeKGUIslJotoNnnxU212C0azHfhKMJkR7STCaEEIIIYQQQogAnyUYze+HFYvt9TYZCoByHPR+J7QO24hWF4Qnie5JKQWvLkEfNsRcYId9OndA3ZljOdlm+SL0sZuHfh9HcKJOjzNxfzAFox02FV69z15vzLYdN6YudtKO5mC0TFXJ5FOmoFIPQ990JqnaHIxW6yTRgI84/M3BaJm55s5mPfz/7N13eFvl3cbx+zmSLHkkTmI7w9khgwwCgbDCCJuwd6CMQmhLgQ7a0pc9CqVQKB28BUrZ0EIZYa9SRtn0BcreOwkhyxmOR7yk5/1DSWxZ50hHsuT5/VxXrljPOj8nWkc65z6yg0dKx50Zfzy3Y5ct0pqPayRnUnI90TWuS5qbX5OZsLnHb5c/Zr/jpZETZB+/TZKR2e94mc227/Q6OlvKYLSi3GzDVAyX7nhP9q4/SWuqZKZsLe1/out9JtfMj6+Q/fxd6c3nOrbQwMEyJaXxNUdO8I7qeeaeeBicD3b1cmn+1R0qy/z56Y2haJJkfniJNGEL2VefkPoPktn7GJlJ+U/n2XRo5wSjfXSxI8dJc79ZtlCSVOYRjCZJK75cpLLtEh/fi92fkiRJlS3JX2Tak3dOXQfQ3TR7BKOFCjq3Dp+m+DhOoHJA6887jM98G4+9Z7Wpx7HoTpbBaJL0xPtWB8/ovuFQ6ATVHq9BpeWJt7fYyTUYTc/dL7tskcyQkbmvLQu1jf7GlRXnt46OsPddK3v1GZ4XBZCk0c0LFY41qNFJTjj7MDzZc96G54v+HqHC1S7HZUU93ky2D0abNMR9XFvFXfA0HvE4CoVgNAAAAAAAAAAA0BMUOe4HTFnF1Bhbp8KA/y++VjQtdW2vKODkeAAAAADwK+wUugajNXSDYLSYjaqqyf1kCfb9gI7rxWe9AgAAAAAy4hWMZGNSlfsX8yobJhNpTUUxx54hTZ7ZsTJOvEBm7JQOrYHexVQMl/nl1VK7gBzzk9/JDB7RRVV1Q17BaGtXpQ5Fk6R1tbmvJ1MnnOveftipHVt3wubSsWcktm29ezwcaNKW7nNKBkib79ix7XZjsycZnbZ74uOpICj95fslKp57klQQliT1j9Z4rrEmsD5pZGMwWpnnWHvDhdLrTye3f/2R7OHjtaYl7DpvQCw5ZcQ8ubJLQtE2bn/6LDln/VXOWdf1iVA0SapwvwCqpNwFo0mSGTREzqmXyTnnBpmDT5IJds41PYwxMn94XNpx/+TOfgNl/vy0tNOB6Rcav1nrz2Oneg6zLz7suzZ779XxgNpsjJsm89BCmYLEx5cxRmb3I+Scd7Ocn17ZKaFokjRxSPYBQJ98PlWHrH0w7bhLDzGaNDT1duxLj2z8eXDLCs9xX36d/Pzz5Qr3hJLiWK36x9amrQ/oKvaTt2T9PJe0eASjBUK5LShHCoJGc2emfsxXtDlWvSBodPY+mT0XraqTXvnCva8j2Z0ffOsZn4m+orrKvb008T21GZ0cHryB/dWxuawoay1R6zvsKlXgbley7/9H9k8/TxmKJkkBxbRJ85eufYuDw73nrd9VL/UIRlvbkNwWjaVea4PJw9I/GZUk57jlXaFHGBvBaAAAAAAAAAAAoCcoCXgfMFUX9X+sZXOsSatb3L8brAhxcjwAAAAA+BVx3A/A6w7BaKtbqhRVi2vfYPb9gA7rnLPLAAAAAADdXyDg3h6LSmtXuvcNKE+4aUpKpWv+Lb32L+nrj6UhI6VvvpC96SLX6ebM66S9jpbefkFa/KU0fQeZTaZ15LdAL2UO+oE0Y7b05nPxsL4Zs2XGTO7qsroXx+Mx3EOYnQ+Sve1SySYGRZjZB3dsXWNkfvhr2V0Pkz74jzRivDRjl3jo0jXPyu4xIHnO3J/IBLtnCEiu/PFIR0dtbfXql1bFYWmPyUZjy9efVL8+6aM86hHYIGl5oELl0ZWtwWil5Z5jJck+fJPMNnu23n78dtnLfiBJWhModZ0zILom4bY59TKZom6aptCLVZYaSe4BLuFe8umyCQSkS+dL//239NnbUnOzVFEpbbOnTNlQqaEubaCZ2btNOMn2c7wHvv2CrLUyaRJ17OO3S3+7PJNfI27OsTI7HShtu5dM2CN9owtsOjT7uZs0f6W7Fh+re2sO07HDb0vqnz5Cuv1ER9NHpA8GsX+7YuPPRXadhjcv1uJQcpDJJwsbtG+7ts+Wu685oekLdSAfCcg7+/3tpKJ+stO2k9l8R2n6DtLkrWXC7ZJymj2C0UIe6TbdwC/2NLrnDe+QsTFliY/OSw42uut1q6/avcUpja5Rswmp3vF/Ve+2K08Y7P0c4eajJfL1WoBebJX7Hca0C0bTKO9gNL3/H9nl33R5WHhto/+xZd3wrbxtbpI9Zbbv8RUtKySXXOflwQrPOc76h3r/iPv76mqX47L8BqNtNy7+nrzR/ZgqSVJxFzyNR0Luv2tDijoBAAAAAAAAAAC6i6KA9xdbdbEalWuIr3WqmpfJehx3NbiAk+MBAAAAwC+vYLTGbhCMtrxpiWdfeUEHTqQAIIlgNAAAAADABl6hStGobPUq9772J+1KMqECaYf9438k2Y//K7kFo43YRNrvhPjJ4G3CcgAvZtREadTEri6j+3Kc9GO6MTNhc+m8W2Sv/LG0rlYqLJY55TKZGf5PUk+5/sQtpIlbJLaFC6W/viR76felBR/HA8HmHCcd8z852WZ3t+04o23HuQRymPh9qSJFMNqKYLnUpI3BaKb/II9DuNZ7/gE9cdGfdc+AI9VY0E/ff/B27SIpJqNqxz0YrTRWndiwyWaptoA8qUzODtyo3iNDpycyxkgzd4v/aW/bvWVOuVT2hgullubEvkBAOvqX0p5Hta4VLpRO/o3sdecmr1VbLa1cKpV7H9xoVy7dGByY0e9w9g0y+34343mdYdJQ74C9VO5fNFeSFFBMR629V0WxdZpXeb2qAwMUtM06f9wbOu+sHXyFC9k1VdKHryXW1fSJazDap6sKZNdUybQJAf50cZOk5NDM8U2fZ/hbAV2gvkZ67SnZ156K3w4VyG46U5o+S2b6DtJms5Kf3zboxsFo24w1uuooo9PuSn5+MUbaYmT7NqOnfu7ohFtiemn9Q3e/msd1w5JTdPKwq/VwvwN8bzvS5ulg3g5G5zzg/zludb20vEYa0t/3FPQiNhaTFn/h3lnW7v3B6Enxx6BXcOG3X0ldHIxW0+B/bOWA7hMGaKNR6aHrZf/4s4zmlUfdLxywPOAdjLYhzGxgkXt/9TqpJWoVDLT++3gGo7X7JywOG+22qfTE+56bV0nEuy9fIh45440eLzUAAAAAAAAAAADdScQpkpEjq+QvbeqiNb7XWdHsfnK8kaNBwcFZ1wcAAAAAfU3YIxitIZbBQYx5ssIjGK1/YKBnoBsA/whGAwAAAADEeQWjxaLSWvcTP9V/UNplzaZbyU7fQXr35cT2ky/1FWIBwCevx3APYvb6jrTb4dKiz6QR4+NBi/ne5pStpVv/Ky1fJIULZcq4GseGkL2IbVS/6FrVBJJTO6oC68OC1gejqbQ8aUxbfxl4kn6y+FRpcfz2XaOf1M3f/kBzav8la9xD/QZE2wWjjZns/3dAzqQKRqtr7Lw6upIxRjr6dOngk6Q1K6SySqlmlbTsG2nsFJkil6vE7neC5BaMJkkLP0kdjHbw6Mxr/MHF3TYUTZI2zfKpdXb9Cwm3D6x9VMs+HalPCiZqbPPXKqrcX8bs6G+xj99IrqvxUz1bnByG92VwdDxEbda+G9u+XlAtKfm5bnyTR7gNOkcgEH8P5ATir19Om9tt+wKp+gLxUNCE9va32/2cNM9JPc4JyLTtMyb92kk/O4m/Y5sx9q/nS++/6v/frblJeu8V6b1XZO+4Ml5PsUdKV7D7BqNJ0k92c9TYEtMZ8xODyQ6cLo0qS97fHFdh9Pz/OFqwUgo8cYuGX3+KJGla4wcZBaMVh1t/PmJKrc55oDijup/7xOrIrdkf7pOWL5IaPa5QOHpSwk0TKZI99BTp7qvcx69cmuPiMlebwfvBiUPyV0cmrLXxcOx/3el/0rAxMn97W+U31kjvJHcvT3HiirP+oV7ez6ueeGBiRZt+z2A0l12nAzY3euJ973DGkrBnV96EPY5CaSAYDQAAAAAAAAAA9ACOcVQUKHYNQauP1vpeZ0WT+/d5g0LlCjkeV5oBAAAAACTxChhrjHkcj9mJvEKxKwo4Pw3IBYLRAAAAAABxnsFoMWntKve+/gN9LW0uf0D26jOld16QggUyx/xS2vmgLAsF4MpxD5fqaUwwJI2d0snbDEqVYzt1m91am6CyimiVazDaikBFfOj6YLRH1k7SeWNf07LgYO1W95x+veJXGtf8tSSp0RToN+VnJa1xYuUNKcsY1byo9cbICVLF8Ex/E+RAv4h3aEt9UycW0g2Yon5S0frEinClVF7pPXZAuWxpmVTtEi779UfSlru4zrP/92Tmhe13gnTcGZnP60RlJUZlxdLKOv9ztlr3pkpja5Pag4pqatNH8RtV3/pfcMEnSU0jWr5xHboyUC4tfCkhGO3b5Q2SyzGpY5oX+K9Bit+H2od4tQ2+SheQlRDg5RHG5bpGu1AtjzkmaU6K7biu4XjU6nOOs36ej9Aw00ve++TEFQ/I7tuBL8+hRdvnAAAgAElEQVStlWqr3ftC3f9g7F/sYVRUIP3vM1ZG0l5TjS4/zPv1yxijMeWSPXae7IKXpCfv0MTGzzLaZnGbvLhxr/9NR1eX6s7S7/ie/50brE64JaqAEw86Crb/OyAFTOLPwUDiGNd5G/tMwjzH97zkGjZsN7kGk3pNz3lpamnzuztOLwyPc3k92mjUxKQmc8plsl7BaAs/zVFR2avJ4GKLk4Z07f+n/fRt2at+kRTcn1K/gdKWs2VO+4NMuFDlI8LSO8khZMtSBKNtCDMrd8nS3aCqNjEYLeaRc+b89VzZxpkyux62sW3/6Uan3uEdjDbUI/cynyIeLx0Nzd51AgAAAAAAAAAAdCfFTj/XYDS3Ni9Vze7BaBUh7wsqAgAAAACShT2C0Rq6RTAa+35APhGMBgAAAACI8woWiEWlaq9gtDJfS5uSUpmzrsuyMAC+eIUb+jFhi9zVgZ7PtAYWlEer9KXGJQ1ZESyP/+AE9NSHVgc/PUOKxJvuLp2rD8OT9dpXOyikFr0fnqqlwczCWgZGV2lwdPn6bTgy3/+VjOmFwRg9RDgoNbYkt5+0M/8nKY2aJL33SlKzff1pmUNPSW5vaZb95YGZbePQk+X83CMspZvZdKj08hfJ7UP6S0fMNLr62dagjJBt0vlVv0m/aAbBaHZRcnhMeYtLcJ2kqmCZ7MJP1Nhs9fYiacD7T2lJcLbr2GEtS6RDfig98Ne0NZgfXCzz3TN91wz4Vtgv/ZhsBQvSj+lijmN06i5Gp+6S2TxjjMx5NysmacrzH2Q0tyTc+hpon52vY6qLMgpGk9xfW3OnM8KH8r8NY7IJhcsk3E0KOmbjWKdDYXSptmtaf/5Acop3UzjWqC0a31X/2PoTJwYNlSlOTrAygYDsjNnSW88n9dmbL5aZd27O/92r660Wr5HGVUiRUOr3e7WN/ted3IXH+NiVS2W/t63/CUf9TM6PLk9q9go3q3eKPZdybExSQGXeQ1RVm3g7GnMfF6haJHvBH6Q/PCaz9R6SpBEDjWaMlN5alDz+yJmmSwIGvYPROrcOAAAAAAAAAACAbBUFSiSX7zbqY7XJjR5WNC1xbefkeAAAAADITKQ7B6N57fsVsO8H5ALBaAAAAACAOK9QpVhMWuseGmFKB+WxIAAZMR7hhn5s6R72gj6qTQBZRUuV65AVgYr4D4GArno6+az99yKb6R+lR+q71Xfok4KJGZcwqfFTGUna93iZOcfKzNg54zWQOz/f0+i3TySHn+w/nWC0lKZt5xqMpjeelW1pkQm2+3j+2flplzTn3iT70RvS2lUyOx8kzT4kR8Xm36FbGr38RfL96A9zjY7a2mjWOOmRJ79S/3ef0rHVd2j7da+lX7TqW1lr0wYn2sZ10kM3JrWXRz2C0QJluuXzkfrJz2LrAzx2lzw2MfyU02UO2EmavqPsb06UWlIkfkTcv5AFOsoEg/mLqAp6pNv0IuacGzVj4jXS0/7nFIfb3HjvFU0Kjcp5XZCslVqs1OIREpWjreRzcZdt7C6N2l2SFLTN+umqq3X58nNTf75S7n1wjP3ifZlNpuWkyljM6vInrc5/0CpmpWGl0h+PNJo703tfc6XP8z6mj+jiYLTDNslovFsomqSU4Waea73yqLT7QSosMCoOS3UuYXJJwWged8uAjUqS7M2XbAxGk6QTdzT6yT+SJ524Y9e8X/cKRltHMBoAAAAAAAAAAOghigPuV8ypi2YQjNbsdXJ8ZhcZBQAAAIC+zisYrbGLg9FiNqYVzUtd+wjFBnKjA2fMAgAAAAB6lYBXMFpUWrXcva+0PH/1AMiM12M4nYKIzPFn57YW9GxO60eGXqFBqwMD4j8EgnrmY/dlTqy8QQePuFeXlZ+RcQnTGj+UOfECOWdfTyhaN/CLPYy2HpPYduURRiMHEYyWitlhP/eOhnpp2YKkZvvCg6kXPPp0mTnHyvn5n+RceLvMrofJOD3nI/7v72S026aJbWfMiYeiGWN01DaO/r7j27pm6Wn+QtEkqalRqlmdftx917o2D/J4jqt3ivUDnbk+FC21ylnbyhgjs8dcOf+ulXmuXip0PzhWMwgiRR6NGO/dN2ELabs5Uklp5usOGpJ9TT2EcRwF5v5EN/f7i+85JeuD0ez6MMRRzYvUP1qdj/LQi7WYkP5Q9nPdWvpdKZIicWu4d6iXvf2ynNXzyLvSuQ/EQ9EkaUm1dNT1Vl9VeYfHPf1R+mC58hLpT0c6aYNMc822NMs+fY9i87aWoi3+Jg2okLnBJdh2vYp+mf8Ozt8u3fizV7BaVW3iv2PUIwwwoHgwmt5/VXbVso3tP9zZaO+piWNP2cVozyndKxjNz3srAAAAAAAAAACA7qA40M+1vT5a42t+1LZoZbP7sdecHA8AAAAAmQl7BKM1dHEw2pqWlWqx7gfGDS5g3w/IhWBXFwAAAAAA6CYcj1ClxnVS3Vr3vnI+oAG6DZNdOI55bIlMpCjHxaBHaxNYMCDqHji0OjBQkvRO/RA1psgYeLSfRzBUGsdW3yEVHpTVXOReeT+j537p6NmPpa+qrHaZZDRtOKFoaU2c4d238NOEkBPb2CA9nyIYbY8j5ZxyqXd/D9AvYvTETx09/ZH02XKrHcYbbTlKiSEpoYLMF/76I2n6DimH2Lv+5NruFf7oV8C2aPCgxJpNICC711HSQzcmDh49SRo/vUPbA1KafYh0x++S2wtLZP7yvEw4IhuNSl99IL3zkuy7L0vvvCytdL9C9QZmpwPyVHD3c/zu/XXafWtVE+ifdmzx+mA0LVsoSXJkNbv+RT3Sb/88Voje6qF+B2he4ULPfrPb4bK3/sa989n5spO3ljnqZx2u42+vuqdxbXJOTNG/JgebxWJWj77rHox20ObSgVsYFQSl3Tc1GlrayaFoa6pkf7Rr/D2XT+anV0p7HCkzcLDnmMos8iWdL97d+HN5ibRwVfKYqtrE257BaLZNx8uPSQecKEkKBowe/6mjf30oLVplNbXSaPtNuu79esTjKBSC0QAAAAAAAAAAQE9R5LgHo9VFa13b21vZvEIxuX/pU8HJ8QAAAACQkYhnMFp9J1eSaEXzUs++itDQTqwE6L0IRgMAAAAAxHkFo3mFoklS+fD81AIgc16P4VQOOJFQNCRrE7I3IFbtOmSNE08EOOrdPXO++cEty7TjulelyNE5XxvZKyww2m+6JBGI5pcpLJYdPFJavii5c9FnstvNkZ74m+w//y699XzqtQ45OU9Vdq5Q0GifzaR9vO5HobB7ewr2lcdlUgSj2Vcel1a7X4G3o8FoQ0uicpzk38Wccpns8sXSq0/EG0ZOkLnsvqRAGSCXzPcukP32S+nf9yW2X/mwTDgS/zkQiAf0jZ8uc9ipstZKS76S3nlZ9p2XpXdfkhZ9Fp8YLpSZd57Mtnt39q/SdbbfRz+86UZdWfaLtENLNjxd1bbuL9/+7YkaOMn9+WZk8yItCo3MRZXohRaHhkuFxZ79ZuwU2QlbSJ+97dpvrzlT2n6OzOhNE9pX1Vld+S+rW1+2WrpW2maMNLbc6JAt4wFVj70rVdXGg81GDjK6/y3vGgM/jOmEWUa7TJKO287IGKP/LpSWuO8u6JjtHB2+Vde87tmmRtkDMvu8yvzxCZmZu6UdN3xg5vU4islaK2OMykvcx/gNRnPanDxjX35UZn0wmhQPm917qtQd3q9HQu7tBKMBAAAAAAAAAICeojjg/sVOXbTG1/wVzd4XKSsPDcmqJgAAAADoq7yD0dZ1ciWJVjR969peEihVYcD7uFAA/hGMBgAAAACIc5z0Y9or56plQLeR6WO4sETm+LPzUwt6tjb3pYHR1a5DqgOlqjeF+qre/cqY2YrE1um9L7eK3wh6nE0P9CSjJrgGo9mFn0pX/UK679r0a0zYXNps+zwU1w0VZB6Mpvf/z7PL/usfsr8+wbN/YHS1jJGszXyzklQ5yD2U1BT3l7niQdmVS6XaNdKoSYSiIe9MqEDm4jtlVyyWFn8pDRoiDR0tk+JxZYyRKsdJleNk9jlOkmRXL5fWVEllQ2X6D+qs8rsFM7BCBw5eoCuj6ccWb/hnbWw9oKJfrFZ3fnOcjh7xt4Sxmze8q9e+mqXlwcH6LLSJonOOU2zOCYrGpJZYPACpJSpFrW3z8/q/24xJGB9L0ddufixhLes6NlfbbfEIc0Jq60xEiqQ+AMb86nbZY6Z79ttjN5deaNj4elNdb7X5RTEtXtM65rWvpde+trr7DdcV0tZ56ytWt74i/d9X0jVHGz38jvucgqDWB3R1Pmut7GmZBTqa616Qmbqtr7EDi6RwUGps8bm2jcVjyuprpOL+Ki8xcvu3Xuk7GK3NE9Trz8iuq5NJEarXVTyD0Xz+uwEAAAAAAAAAAHS1Iq9gtFita3t7K5rcg9EGBMtU4GRxfAwAAAAA9GFhj2C0xi4ORlvuse9XERrayZUAvRfBaAAAAACAuExDlSJFUklpfmoBkDnHPZzF1eY7yZx0kcyQUfmrBz1Xm/CeAdFq1yGrAwP1XNHOarYZ3O9SiMTWadt1r+mqZaerLLoqJ2sC3cLICdIbzya3P3SD7yXMn/7Zd0K1CiKZz1n0qWuzbWmRvTZ1AGhg1hxNCksfL818s5I0dFDqr1hM2VCpjC810blMxXCpYnj28wcOlgYOzmFFPcv2u22qkY8v0qLQyJTjigvW/9CUeEDFETX3ad23hbq87JdaESzXXrVP6/fLzlRAMQ1rWaphLUulB16WHjg5u3DyHiAmo6gCipqAWhRs93e8PaqAWkyw9W/jJI1tHeNsHBvd+HfrWhvnbehTQC3GfftuayVvI7nexLVb640l1evyuymwcXyjCavJ5SSHdaZQKnQ/sWKjkROlsVOkrz70HnPn76VjfilJuvQJmxCKlkvXv2B1xt5WD7/tHoy22ySpXyT3713sujrZmy6Snn9QkmT2O0H67lkybR5L9uZfS++/6m/BkRNkfnyF71A0KR4oWTlA+qrK3/jAhiCz6pVScX+Vefw3r6xN/LeMeuTUBWybYLSmBun1p6WdD/JXTCfyDEZr7tw6AAAAAAAAAAAAslUccL9gaH20xtf8Fc1eJ8dzQWoAAAAAyFTEIxitIdYga22XnW+xotn9RISKAvb9gFwhGA0AAAAAEJdJqJIkDRrSd0I6gJ7AZ7CC+d6FMieck+di0KOZ1vtSacw9GG2NU6q3I5tnvYmrlv5CP1p9nbT7XOmZe7JeB+juzKiJ8si18Df/krtl+g/KWT3dXiiLK+KuWiZbs1qm38DE9vdekVa6H2S6gfnu2drnQ6OPl2b3v1Q5gPfCQG/jHPh9XXHLPH1nxN9Tjive8HTVmBiMZiQdX/13HV+der4kKRbLrshuzpHkKCqPXKQ+7a7+R+jY4bclta9zIlJhUcq5xhjplEtlzzjYc4y97lxp/3l6a80g/e7JjrwDSS0ak659zuq9xe79B2yen9dH++sTpBcfbr1900VSc6PMDy6SjcWkD1+Tbv2Nr7XM+bfK7PWdrOoYnkkwmm0TjFY5VuUewWhVtYm3ox5PDxuD1tazLz8m0y2D0Yzk8i6YYDQAAHLPGDNW0haSKiWVSFoiaYGkV6y1vPoCAAAAAABkqdhx/2KnLlrr66T7FU1eJ8dzgT0AAAAAyFTYIxjNKqZm26QCk8V5CDmwosn9fIXBhGIDOdM7L0UOAAAAAMhcIMNgtOL++akDQHb8hhvO2Dm/daDnaxOyNyC6xnVIg1OodyObZbX8Vuve1Mmrr5e54DaZky7Oag2gxxg5sWPzt94jN3X0FNkEo0nSwk+TmuxLj6Ses+thMlO30TZjstukJFWWZj8XQPdkwhHNPe84PbVgTspxwcD6g9wbGzqhKvQWhTH3+8s6UyhFitPON9vvI3PxPzz7o3L0yz98qpm/yX/oXqrgtVwHo9lYTLHzjkoIRdvo4Ztkv3hfdt8hsqfM9rWe+emVWYeiSdL4wf5/P0fr/y+WLpSkjgej2cRgNL3yuGw06j64C0U8Ls9HMBoAALljjDncGPOKpC8l3S/pakm/lXSbpOckLTXGXGuMKe+6KgEAAAAAAHquokA/1/aYomq06b8nXtHsfnJ8BSfHAwAAAEDGIk7Es68hts6zL5+std77foRiAzlDMBoAAAAAIC7gcdail3BRfuoAkB3H58c8ozfNbx3oBVpP9B8Qq/Yc9Vrh1q7tR2zlHRQwrulL3b34aAX/9qbMnkdJFcOliMfrSV8LhELvNHpS9nNn7StT5JGe0VsVFGQ3b8EnkiTb0iz77/tkn7pLuud/vcdP2lLm51dJkoYPyD68ZZOKrKcC6MbMrH21a/0L2mrdm6794wPLWm80ds3BFOiZItb9/rLOKZQp9Peab3Y9VNouObjvrfDm2mX0U/rjkm06VGNHbTlKGjEwd8FotqVF9rwjpecfcB+wZoXsCVtJdWv9LTjvPJkjftKhmiYO8T92Q5CZvfR7kqTyEvd/m7bBaLGYd+hcQO1C0NaskD74j/+COkkk5N7e2BI/GAwAAGTPGFNijPmHpHslbZ9i6CBJp0h63xizd6cUBwAAAAAA0IsUewSjSVJdtCbl3JiNqqppmWtfRQHBaAAAAACQqYhT6NnXVcFo1dHVarZNrn0VocpOrgbovTI86x0AAAAA0GsFMwyiiHh/oASgC/gJRistkxlQnv9a0LO1uS8NjK7xHLYwNMq1fe+p0i0nOLr5mud1z5tGY5oWaEzzAk1r/EB71D2rgfPfkqkYLkkyoQLZWftKz85PXGTSljJDRnb8dwG62pBR0tDR0tIFGU81c3+ah4K6uVA4q2l24afSqmWyp8yWvv0q9eCdDpS54DaZ9aGMlQOy2qQkaf/puQt+AdC9mIe/0WHz/qD/Fm6Z1HfQ6vmyzSfLhAoIRkNGCj0OvmkxIbXIkUeWVBJz6b2yu7WeiPHr8rN1UcX5Oaiw4w7YPIehaNUrZX+8u/T1RzlZz/z5aZktdurwOpsONZL8hXs5isV/aKiXjcU8g9Gq10kNzVaRkNET73uvtyFoLcFbL0jTd/BVT2fxCkaT4uFoqfoBAIA3Y0xA0t2S9m3XtULSW5KqJW0iaYZar34xRNJDxpg9rLUvdVatAAAAAAAAPV1xwPvCRvXRWpWFBnv2r25ZqahaXPsqQkM7XBsAAAAA9DXhFMFojV0UjLaiaYln32BCsYGc8XHGLAAAAACgTwhlGoxWlJ86AGTH+PiYZ+zU/NeBnq/NfaksujLj6ZsOMyoKG/3otJ303Iz5unXpSfpV1SU6XM9p4B/u3hiKtnFzv7xG2rxNQMGYyTKX3JV1+UB3YoyRZu2T+cS9jpbZatfcF9TdFUSym7fgY9n//WX6UDRJ5hf/uzEUTZKGlWa3yW36LVX/QoLRgN7KDKzQL3aN6oQ1tye0H7b2fl387bnSW8/HG7yC0TbZTOaeT6Rp2+e5UvQkEdvo2Ve/vMr3OiZUIHPpvZKkqwb+KCehaA//2NGcqZLp4EvbQVu0LmCbGmXnX63YhccoduNFsssWxtvXVCl29RmK7RSO/7nuXNnP3lHs2rMVu/AY2Qevl21plr3hgtyFol33Qk5C0SRphns+tKuA2gSZrV2V8n3HFyuk+karE2+L+VtvPXvv1f4L6iSFKT5ibGjuvDoAAOiFfqvEULRmST+RNMJau7e1dq61ditJ0yS92mZcWNKDxhiOvAYAAAAAAPCp0CmSkfuXZ3XRmpRzU50cX8HJ8QAAAACQsUiKYLSGLgpGW970rWt7sdNPRSnCtgFkJtjVBQAAAAAAuolghsFoYYLRgG4lEEg7xGy7VycUgh6vTRpCoW3QoJaVWhUs8z190pD1ywQCMqf/Wfaki6UlC6Rx02SCyR9Hmn4DZK5+Oh6U0NggjZwQD5MCegkzaz/Z+6/LbM5pv89TNd1cQTi7ea8+LkWTg0KSBALSoCEJTYUFRoOKrFbVZ/a8c9KkhZKGpx0HoOcKnXqJbny4XJcvP0fvhadqcuMnGhJdHu/8/F1pmz2lJo+gq3ChzLAx0rX/lhZ9Gh/X2CCtq+20+tH9FFVFpPvd+xrHbp7RWmanA3XVxN/o9MDPfY1/6avZumbQKfpH6VFJfSVmnfbbrFj7Tw9oVZ3Vu9/E39Pf+ZrV/8y3vmvaZ5q0xcj466ltaZE961Dp9ac39tsnbpcuvVf2jEOkVUtbJ95xpewdV7aOe3a+9OoT0pvP+d62p0iRzBPLZYKhjq+13ugyo903lZ75OP1Yx7YJOVu5VONGlyngSFGX7LOPl0ifLZNWpDiPJmBdJlZXyT58k8yB30tfUCcZUybddZJRJGgUCSnhT0mWb/cAAOjrjDHjJJ3WrvkIa+1D7cdaaz80xuwu6RlJG9KayyRdKOnkvBYKAAAAAADQSzgmoEKnWPWx5O940wajNS91be8fGJDyZH4AAAAAgLugCSlogmqxLUl9XRWM5rXvV1EwtJMrAXo3gtEAAAAAAHGhDIPRIgSjAd2KcdKP2Wz79GMAJ/G+NLzlW9/BaOUlUllJYriQ6TdQ6jcw7VwzZJT/GoGeZMbszMaPmezrMdMrhVInZZjvXSh700XJHX5C0SSpf5mMk/x6ueVoo6c/8rfEBjtPIMAR6O1MqEB28tYqe+cl7VL/YkKf/cs50vb7yDZ6HEwRjh/MboyRRk3Kd6noIYqWW+l+l2ArSeum7pzRWmvXWV1Q8CPJx0vguo/6K6QWaZVcg9H2qP6X9NFIacrWGlRstMv6u+xpu8f/9hOONnem0V+PbfPa+M6LCaFokqTl38ieuqvU1JC+6FceTz/GB3Pi+TkNRdvgisMdbXWJ+/9lW4G2/0ErlyhUPkzjnEZ9FhuSNPaIv2a4Xhv2+guk/ee5vs/pCgOKjObO5L0SAAA5dqGktm9sbnULRdvAWrvOGHOCpPckbfgC8HvGmCustV/mr0wAAAAAAIDeozhQ4h6M5tLW1oqmJa7tFQXDclIXAAAAAPRFYadQLS5B1Y1dFYzmte8XYt8PyKXucWQsAAAAAKDrZXqiaJirlgHdSiCQfkxxaf7rQM/XLmSvssX9w3o3m3JhEyCJKQhLx53pf/zx58SDdPqiVO9HSwZIR/2sY+9BS91DHs/fP7OvSk5Yc7s22WRQ9nUA6DkC3teYsqfuKn3zuXtnOJKngtCTFaZ4mWsorcxorSfet6qNpg+4f2DREfFQNEnbNbyu49b8PaG/KFanM1b+XnrtqaS5wYDR6Xs5+u95qV8nT9nF6K6THJUWtb5/sXf9yX2wn1C0XBk+Tjr01LwsPWOU0TAfu9eO2oTKrVwq++sTNHH1f7PebsB6JOFVV0nfkm8CAEBvZYwplHR4u+bL082z1n4q6cE2TUFJR+ewNAAAAAAAgF6tKNDPtb3e5UT8tlY0e50cz8F1AAAAAJCtiON+HkFDVwWjee37EYoN5BTBaAAAAACAuFD6E2oTRIryUweA7BgfH/MUux+oAyRwEu9Lw1u+9T114tA+GuYEpOGcdLGvceaPj8vsMTfP1XRfxhhpuznufQ98JRMpkqZsk/0GSstdm3eaYLRz6EPXvln1r+ii5Rdpz9qndEDNo7p6yWm6fskpUnlmATYAeqhU4cO1a6Rn7nHvI0gcLgpTfOyyrtn/OtGY1XdusGnHTWn8UAfUPpbQdv2SU3XDtyfr4LUP6furb9YbX22vbRrekL3pIs91ZowyOnSG93auOdplX/Q//0xbX14d8ROZG/8jk8eQwsk+jl1qG2Rmn50v/d+/NLp5YdbbDMgjGE2SatZkvS4AAOj29pbU9ku5V621H/uce0u724fmpiQAAAAAAIDer9gpcW2vi9amnLeiiZPjAQAAACDXwsb92NzGLghGs9Z67/sRig3klPdlzgEAAAAAfUuGwWiGYDSge3FShDZsUEQwGvxIDDerbPYfjLYpn98DnsyNr8p+f3vv/isfkZm5eydW1D2Zn1wh++nb0qql8YZQgcw5N7W+9xw1QXrr+ewWH1Dm2XXv1Ee1+39iej8ybWPb0JalunbpTzWt8UNpZZvBxf1litwPfgXQy/h5j+2mgGA0JCsMefeta/K3xpsLrL57c8zX2H8uPCCpLaQWzau+XfOqb0/qs4s+kxk5wXWtm09wtGBVTP9d0NpWXiI99tPudR02c/6tMnt9p1O2NXGI0bMfpw6oSwgyWx8WN6zF/WAoP9oGrSWpq856XQAA0O21T5F/LoO5L0pqUetxojOMMUOstctyURgAAAAAAEBvVhRwPzakPkUwWszGtKJ5qWtfRYhgNAAAAADIVsRxPza3oQuC0Wqi1Wq0Da59gwu4ADuQSwSjAQAAAADigpkFoynMid5At+L4OCGdYDT40e6+VBGt8j110hCTfhDQR5lJWypldEY5X4BJkhk1Sbrtv/HwkPoaaatdZUZv2to/cmLqf8dUSr2D0crHjdSrd+2sh/odoA/DkzWmaYEOqH3M/TmwnANVgT4jkOVXqewvw0UkVTBac/r5Z90f0xX/9PcqeNO3J6kywwAue/Q06YUGGZP8nr5/odHLZzp68G2r9xdLIwdJB0w3Glrazd7/73Rgp21q4pD0YxybHGI3vMV/8HR7CUFr7dWuzXpdAADQ7U1rd/tVvxOttXXGmPckzWjTPFUSwWgAAAAAAABpFAfcj7esi9V4zlnbslrN1v2qSBUFHG8CAAAAANnqTsFoK5q8j88kFBvILYLRAAAAAABxoQyD0SJF+akDQHZMmmC0grBMpo9z9E3tgtHKMwhGm0quE5BaaZlUvdK9j+fojcyAcmnOse6d46Zmv+7YKd6dY6eq0DboqLX3pl9obPY1AOhhsg5Gi+S2DvQKxhhFQlKDSwjaOvdzIzZ69QvrOxTN2Jj2rHsmiwolu3NEdve5MlvOlvabJxMIbOwrCBrNnWk0d2ZWS+edOfUymcLiTttePBQ69f+JW5DZsNcqDQ0AACAASURBVAwD69qyShFEV1edOLbqW9m/nCv96854wwEnysw5Vmb6Dtlv/60XZJ+7T4rFZHY5VGarXbNeCwAAZGRyu9ufZzj/CyUGo02R9GyHKgIAAAAAAOgDPIPRot7BaMubU50cP7TDNQEAAABAXxX2CEZr7IJgtOXN7hdILXSKPPclAWSHYDQAAAAAQFwwwzCOMMFoQLfS5oR1V4V8sAq/Ek+2L2/xF4w2cYg0tjwf9QC9iJPiuZpgNH82myWFC6XGLL7A3OVQ777x06UBFdKaFWmXMQecmPm2AfRMqZ63UykgGA3uCr2C0Vza2rrtVX+haJK0f+3jquxA+JaeuUf2mXuk156WueSu7NfpbHOO69TNTRySfoxjY0ltwz0OiPIjZFPcUWpbg9Hst1/JHrlpYv8jN8s+dqt04d9kdjs8423bp+6SvWSeFIv/TvahG6Qz/yqz3/EZrwUAAPwzxgySNKhd88IMl2k/fkL2FQEAAAAAAPQdRYES1/blTd/q0ap/uPYtblzg2l4c6Oe5HgAAAAAgvYhHMFpDnoPRFjZ8rk/r30/YzufrPnQdWxEaJmNSXAAVQMYIRgMAAAAAxAVDmY2PEIwGdCvGSd1fxEE18MlJvC+VR1f6mrbXVMMH+EA6BKN1mIkUyc7aV/r3fZnN++39MuWV3v2BgOzsg6WHbki90OARMtvsmdG2AfRggSy/SiUYDR6KCqTV9cntdY1W7QOKN4jFrK5/IX0wWv+IdOiwr3XVe5d4DyoZIPPnp2XnzUxf7PMPKLZTWObE86XjzpIJpn482Leel73p19LK7IO/shYMSaVlnbrJMeXxf/O1Dd5jAoomtY1r/koFsUY1OeGMtje4ZZnGNn/t2W/XVG28B9m/nOM+KBaTvfAYaccDZAr8b99aK3vDhRtD0dY3yt74K2nf77IfCABAfg1od7veWluX4RrL290u7UA9AAAAAAAAfUax437MZU20Wo+vvDujtSpCw3JREgAAAAD0WeEuCEZ7tOofGe3/VRSw7wfkWpozZgEAAAAAfYUJBKRAirCO9sKc6A10K+kev0X9OqcO9Hwmu2C0ad55QwA2SBWwEyQYzS8z7/zMJ22/T/p1v3uWVNL+fOM2BlTI3Pxa5tsG0HNlso/chiHsEh5KPLKo6pq85xxwdcy7U1LQkZ76uaNVf3J089mbqN+dr8s8WyNz6mVJY81JF8uM30zaeg/fNdubfy17nUfQ1oYxX34g+/N9pXdelL75wvfaGakY7t1XNkzG6dxDHwKO0V5TUo+J2EbXtt3r/51y3hSXY6POrbpcjlIE5P39CkmSra+RXnw45fr2iAmyDS4JfV4WfSYt+Tq5vepb6dO3/K8DAACy0f7s22yO6G4/p8NfFhhjBhtjpmbyR9ImHd0uAAAAAABAZyoK5O6YS4LRAAAAAKBjIh7BaI15CkZb2vgNodhAN5DlZc4BAAAAAL1SsECK+vwwKOz+YRKALmLSnARe3L9z6kDPZ0zCzfJola9pk4eZ9IOAvi6Q4rm6wCMpBUnM2MnSbW/KHr+lvwl7HuUrLMUMHiHd8prsHVdKn78nFZVIq5ZJw8ZIg0fIHHuGTGlZx4oH0LOkCrRMJRjKbR3oNYo9Xu5rG9zbm1usnv/Ue72Dt5DOmONou3GJ78VNqED2qJ/LjJks+9itkozMAfNktt073n/lI7KzM/hc575rZb97lkz/Qa7d9oYLpWiL//UyVdRP6j9IWrHYvb+8aw4mOnym0fw3vcPKpjW879p+YM2jeqJkjue8Z0539MoX0r1/fUaNa6p19Nq7dUjNQ2nrsVXfSu+8nP7/YtUy2T0Hxu8jp1ya/n3S2lXefauXp60LAAB0SPtgNI93jim1/+Kv/ZrZOFXShTlYBwAAAAAAoNsqyWUwWsHQnK0FAAAAAH2RVzBaQ56C0T6oezPjOez7AblHMBoAAAAAoFWoQGr0+WFQQSS/tQDITLrQhqJcnOuEPqHdSfFh26RBLSu1Kpg6DGgKFzYB0nMC3n3Bgs6roxcw46ZKP7hY9oYLUg8cOlrmhHP9rzt0tMzpf+5gdQB6jWyD0UI8p8NdiUcwWl2Te/ui1VK9R9+2Y6X7T/V+b2GMkbbfR2b7fZL7HEe66knZsw+X6mvSlS21NMv+7kfS7IOlKVvLVI7b2GVr1kgvPZJ+DS9b7Sr999+px5QPSx0iO2hI9tvvgENnGE0fYfXuN+79+9c+7tl+iseac2caDelvdMgM6SDnN9LiV/wX9N6rsi+kD1Db6K4/yq6rkbaYLVWOlZmytfs46x3+1j5YGwAA5F2KF+aczgEAAAAAAOjzhofHKGwiarTZZNUnmlg0LQcVAQAAAEDfFXbcz2VtjHV8n81NTXRNxnMmFLLvB+Ramkv/AgAAAAD6lEwCOQhGA7qXYLpgtNxdvRC9nMuJ7bPW/SfllGmVUlkJJ8QDaaUMRgt1Xh29xXFnSMPHJbcPGipz8m9kzr1J5sZXZUZN7PzaAPQOTpZfpYZSBDihTyv2CkZrdG9fUu291qm7dOz9t9lyF5nb/itz2h+kfgPTT3juftmLvit7zHTZ+/8iSbKrl8vu27FQMrPzQdLgEakHlVemflwVl3aohmwFA0bXHO3IcfmvGNGvWfsft5PrvGEtS3Vk9T1J7UYx/f17bRaLtmRUj73gaOm5+zKao4dulL3oONkf7qjYeUfJxmKZzQcAAPlW2+62+yWwU2s/p/2aAAAAAAAAcFHghDWn7IgOr7Np0eacHA8AAAAAHRRx3L8ub4ity8v26qI+Ljrbxg6le6q8oGsu8gr0Zlle5hwAAAAA0CuFCEYDeqx0j9+i/p1TB3o+l2C0Q2oe0qP99vOccvAMQtEAX1IEo5lsw3f6MGOM9Kd/yl54rPTha/HGyTNlLrxdZvgmXVscgN4hkOVXqZnsW6NPKfa4a9RmEYx27HYdfw9uho6WDv+RtMXOsvNm+pvU0iz7x5/J/vFnHd6+JKliuMxv75c9cRvvMZtMk7760Lu/qCQ3tWRhh/FGd/7A6IRbrBqa423DSqV//DCsovE/kp0zV/bCY6S3nk+Y9/tlZ2pJcKheKN5ZkjS14QP9rfQaBQN/bR2UYTCaJKkjwWbPPyA9erN04PcT21PWwb4gAAB51l2D0a6VdG+GczaR9FAOtg0AAAAAANBp9i47TIMLhumd2v/T6uaVGc0tDBRpQuFUzR64b/wYFwAAAABA1sIewWiNeQpGq4+6f7U+IFimitCwjbdLAv01pXiGZpXukZc6gL6OYDQAAAAAQKtgyP/YgnD+6gCQuUCax28XniiOHsYkhzPtX/u4ArZFUeP+ceIhBKMB/mQbsANPZuho6boXpC/elwoKpMpxMpm8pwWAVFIEWqYUJBgN7koiRpJNaq/3DEZLHitJm1QopydPmPGbyW6+k/TOizlb07fySpkJm0tPV8v+dM/WsNMNAkGZOcfJ3vgr7zWK+uW1xHTmznR0wHSr17+WCoLSFiOlSCj+/2MGVkh/+qf0zWfSkgXS2CnSv+/T0KvP0DML5+jDgslqNiFNa/xAwVHtgl29Askcp2MBaCnYe/4s0z4YrdnjDiplF94GAAAy0T4qt8gYU2ytrctgjcHtbq/pYE2y1i6XtDyTOZz8CwAAAAAAeqoZ/WZpRr9ZXV0GAAAAAPRpEa9gNNugmI3JcTkXqiPqYu7BaNv230UHVRyX020B8JbbRzYAAAAAoGcLZXDydkEkf3UAyFy6EJguPlEcPYiT/JFhWXSVdq/7t+vw8YPjJ/4D8CGQZcAOUjLGyIzfTGbUJELRAORWtoGWmexbo08p8rhr1DW5B6AtbR+Dsd6w0hwV1Ia59B5pjyOl0vLcL55KRWV8++GIzFVPSof8UCoZIBkjTdhc5ooHZSZukTKg33SD/d3CAqOdJxptN85sDEXbwDhO/H3KtnvJDB4hVQyPt0ua2vSRtmh8V0FFpYWfJi7qFTq21W55+A3WW/Cx7JKvE9uaGrzHN6UITQMAAB1mrV0paXW75lEZLjO63e3Psq8IAAAAAAAAAAAAAIDO5xWMJkmNsRTHuGWpPlrj2l4U6PrjFYG+hGA0AAAAAECrIMFoQI+VJnzBFJV0UiHo8Yxxbb54xUUqiDUmDb38MEfGYw6AdhyC0QCgRyEYDTlW4vFRSq3HMTlLPILRhvbPTT1tmf6D5Fx4u5xHF8vc/XHuN+AmEJQGDmmtIVIk5xf/K/PYEpmn1si5+TWZbfaMdxZ4H9Sknra/Wz7Ms8u+9ULrDY9gNLPj/q6B1jnzyVuJt1OFnzW799loVHb1ctm6tTksDACAPuujdrfHZzh/XJr1AAAAAAAAAAAAAADo1sIpg9HW5Xx7ddFa1/biQA87XhHo4QhGAwAAAAC0yuTk7TDBaEC3Egyl7i/Ow5nz6J2M+0eGMxve1Ctfz9axa+7QzIY3dcRWRv/6maNDZhCKBvhGMBoA9CyBLJ+30703R59V7PGxS12Te/vSauvaPnRAft+Dm8qx0uCRuVls/HRp6rbufdvuJePyODOOI9P+c6eBFd7b6Gn7u+WVnl32L2e33vAIRlMoLHPn+zkuqo0F7YLxGlNcTbMpuc9+9Ibs97aVPXCk7P6Vil19hmw0muMiAQDoU9q/8G/vd6IxpljS9DTrAQAAAAAAAAAAAADQrUVSBKM15CEYrd4jGK3IIRgN6EwEowEAAAAAWoXC/scWEIwGdCuBNOELRf06pw70fI73R4ZbNL6rW5f8QP9ZdZDu/qGj3ScTigZkwhzxY/eOkRM6txAAgD+BYHbzMgkdR59S4vGxS22je/uSavf2YaW5qScVc+FtHV+kpFTmR7+Vuew+afSkxL5BQ2R+cLH/eiq8w8R63P5ueaVU4HFn+PID2Yb6+M9eYWKBoDR0TPbhjWnYBZ8kNriEn7X2NcrWrJF9dr7sf/4pW7Na9qQdpC/ei/e3NEt3XyV7zDTZ+VfnpV4AAPqAf7a7vUsGc3eS1HbH5i1r7bIOVwQAAAAAAAAAAAAAQCfqzGC05lizGq37cXPFgR52vCLQw2V5ND8AAAAAoFfye/K242R/gjiA/AimCUYr5IoU8Mn4uJZCpDj/dQC90Q77SeFCqTHxizez53e6qCAAQEpOlqFDmYSOo08p9gpGczl+piVq9c437uM7JRht+g6yu8+Vnrkns3l3vi+9/JgUjkiz9pUZMireccOr0rPzZb/+SGbkhHhf+TD/C5elGFvUs/Z3TUFYdtQk6fN3kzsb10kfvSHN2FmKtrgvEAjKBAKyZcOk5R53ko5Y9Gni7RTBaPbFh6XrL5Bq16Rec/GXsledLnO4R1AwAABI5UlJ6yRtOMp7e2PMptbaj33MPaHd7QdyWRgAAAAAAAAAAAAAAJ0h7EQ8+xpzHIxWH6v17CsO9KzjFYGejrPYAQAAAACt0gUrbVAQkTEmv7UAyIgJBGRTDSjiihTwyc/zeyHBaEA2TFE/6fIHZM85QqqviTfueph07P90bWEAAFcmEEz9HtuL39Bx9DmlHhcsXF2f3PbAW97rDO3fOZ/JmDP+IruuVnrlcX8TttkzHnp21M+S1yoslvY7XllXXpIiDc5PuHM3Y373sOwhY9w7Vy6J/50iGE2SNG5qfoLRqqsSbtqXH/Ue+/rTud8+AABIYK2tN8bMl3Rcm+YzJc1LNc8YM1HSIW2aWiTdmfsKAQAAAAAAAAAAAADIL8cEVGDCarKNSX0NuQ5Gi3oHoxUFOD8P6Ew97whhAAAAAED++D15u8A7YR9AN0UwGvxyfHxkSDAakDWz1a4yjyyWufY5mfmfy7n4ThkCdACgewpkeY2pIM/rcFde4h4LtrpeaokmxvDd/XrMc51hKTLCcskUlci5/AGZ29+Wuf5lmafXyNz3hcx5t7gMNjLzzstfMeWV3n3F/fO33Twx5cOkEePdO6tXxv9OE4xm9j8x/Ya+84vMi6up3vijveUS6Y1nM1/DjZ99TQAA4OVXkprb3D7BGHOg12BjTETSLZLa7pzcZK39Ij/lAQAAAAAAAAAAAACQXxHH/eq0uQ5Gq4vWePYVOZxPBXQmjjwFAAAAALQiGA3ovQqLuroC9BTGTzBaSf7rAHoxUxCW2Wx7mSEju7oUAEAq2Yb4EHgJD+Up3kavqku8ff9b3mM3HZqbevwyYyfLTJ4pEy6UGTxCZu+jZW58VZq2vRQulIaNkfnV32WmbZe/IsZNk8qGJbf3GyiN3zx/282n0jLXZrv8m/gPnsFoAUmSmX2wdOjJKTdhBpTH/+0yUbtGse9vr9hOYdmbf53ZXAAAkBfW2i8lXdWueb4x5sfGmIQdEGPMZEnPSJrVpnmlpIvyWyUAAAAAAAAAAAAAAPkT9ghGa8xxMFp9rNa1PWQKVOCEc7otAKkRjAYAAAAAaBX0G4zGBzhAjxN2//AXSGJM+jERgvYAAEAfEAhmNy8Yym0d6DVSBaNVtTmO5q2F1nPclGFSOOTjPXuemUlbyvnLc3KeXiPnnk9kdjs8v9sLBGSO/WVy+9GnywSzfKx2tf6D3Nvv/L3s1x9JtdXu/W2em8y881Nvo7BE5tj/8bef19Ynb2Y2HgAAdIazJD3R5nZI0p8lLTLGPGGMuccY84akD5QYitYk6RBr7ZLOKxUAAAAAAAAAAAAAgNyKeASjNeQ4GK0uWuPaXhzol9PtAEivhx4hDAAAAADIi5DfYLRIfusAkHsFBKPBJ+PjWgqFKRIdAAAAeotAILt5fvet0eeU+QxGO/v+mOe4W+f13WufmcN/LA0cIvvsvVJzk8xuR8jMOaary8peaZlnlz1uC+95bYPgSsvizznNTe5jC4tl9jxKKu4v+/ht0vMPZllsBwwaIg0cLDl9974LAEAuWGujxpi5km6UdGSbrsGS5nhMWy7peGvti/muDwAAAAAAAAAAAACAfAp7BKM12twGo9VHa13bixzOpQI6G8FoAAAAAIBWQYLRgF4rTDAafPJzsnoRH+YDAIA+IJDlV6kEo8FDJGRUEpZqG5P7NgSjNbVYvfql+3zHSJOG5q++nsDsfoTM7kd0dRm5UVud3bw2YdbGGNnyYdKSBe5j14dam1n7yszaV/aFh2TPnZvddrOx3zw5Z13XedsDAKCXs9bWSjrKGDNf0umStvMYukrS3ZIutNau6Kz6AAAAAAAAAAAAAADIl4hHMFpDLLfBaHUewWjFAc6lAjobwWgAAAAAgFahkL9xBKMBPQ/BaPDLmPRjBlTkvw4AAICulnUwWji3daBXKS9xD0ZbUWMlGb34mVTT4D53kwqpX8TH+3X0CGbiDNmXHsl8ohNIvF0+3DsYLVKUeDvb57UsmTOu7dTtAQDQV1hr50uab4wZK2lLSZWSiiUtlbRA0svW2qYuLBEAAAAAAAAAAAAAgJzqtGC0WI1re1GgX063AyA9gtEAAAAAAK2CBf7GhXyOA9BtmEAg/SBAkoyTfsiA8k4oBAAAoIu1Dx/yi31mpFBWIn29Mrl9zfrjch5913rOffJn6d+rowcZv1l285x294NBg73HFra7QuXkmfEwbOt9P8uJYWNkLr1Xpn2tAAAgp6y1X0n6qqvrAAAAAAAAAAAAAAAg38JOxLW9McfBaPXRWtf24kCJazuA/CEYDQAAAADQyu/J20F2JwGg1/Jz4vqAivzXAQAA0NUCWe77+g0dR580wP2ChVpTH//71S/cA6sO21IaU27yVBW6xHZzspvXPsy6vNJ7bGFx4tRBQ2S33Uv6z5PZbTtVWRfdITXUSyMnSBNnyITdD0IDAAAAAAAAAAAAAAAAACBTEcf9AMyGWENOt1MXrXFtL3IIRgM6G5fnBQAAAAC08huMFgjltw4AQNcxPsIWBpTnvw4AAICu5gSymxdknxneSr2C0dZJ1lp9uty9f88phKL1NiZUIHPJ3ZlP/H/27j3KsrOsE/DvO+dUneqq7nR3SOdCEuhcCQkYQJCrEklAgZEAIjoIGhGHhTdQRnGWo5AZlzoizBqdYXS8wQg6423AcURcusRRkFkjwvKGw02iokBUwO6qVHdSteePatJ1Oafq3HfVOc+z1l7p8+1vf/vtXbve6jrZ9attYdbl4iu6z51v7zzva96cPOUrknaXm7FfD7o+5Zc+lPKU56U842tSHv54oWgAAAAAAAAAAACMVLtLMNqZ9XtGep5uwWhLzSMjPQ+wtwF/zTkAAADTqLTmU/UyseXbSYCpVXr4XQrHLx5/HQAAdRvwe9/S8Lup6O7oYkk6vPvy2ZXk708nn1npfNyNlwlGm0blyc9O9bgvTd7zG30ctO1eeNjju889ujPUuixdkHLnm1Pdezb5hR9J9WPfvfc5r35YGm96b6r77k3OriZnzySHDgtAAwAAAAAAAAAAYCIWugSjrY44GG1l/XTH8aXm4ZGeB9ibp/IBAAA4b26+t3nNufHWAUB9egnyOLbzh+sBAKZOc4BgtMfcOvo6mCrHFjuPf2alygc/2f246y8ZTz3Ur/zAL/V5wLbv2W56bHLZg3fOu/qmlF2+dytz88lTnpe09n6frzzr6zf+25pLWTyScuwioWgAAAAAAAAAAABMzKSC0ZbXugWjHRnpeYC9CUYDAADgvB5+ELKveQAcQGXvKUcFowEAM6DR7PuQ8k0/NIZCmCbHOj+Xk8/ek3zwk1XHfUcPJSc8TzO1Smsu5a13JScf2tsB28KsS7OZ8s2vTebb5wfnF1K+9XV7n/uykykv/t7dJ13/yOTpL+qtNgAAAAAAAAAAABiDdpdgtDMjDEZbq+7L6vpKx32LgtFg4gb4NecAAABMrbn53uYJRgOYXo09fpfC0YtSNv/APQDAtGr2GYz2mFtTrnnYeGphahxb7Dz+mXuSD36y877rL0lK6SHAmAOrPODS5Cf/INWXnkjuu3ePyTu/ZytfdHvyk+9J/uDtyfp68uRnp1x5XW/nftF3Jp/3hFTveUfyjrckd398Y8fFV6a85NXJrc/3PSAAAAAAAAAAAAC1WugSjLY6wmC0lbXlrvuWGodHdh6gN4LRAAAAOK/VYzBa07eTAFOrww/Zb3HRZZOpAwCgbo3+gtHKi141pkKYJsc6P5eTz6wkH/pk1XHf9ZcIRZsFpX0o1YtelfzM9+0+sUuYdbnqxuSqGwc7981PSrn5SclL/+1AxwMAAAAAAAAAAMA4tbsEo91X3Zu16r40y/A/87qyfrrrvsWmYDSYtD1+yhEAAICZMtdjMFpLMBrA1Cp7hC6ceOBk6gAAqFs/oeAPuj65+QvHVwtT49hi539v330qeddHOh9z3SVjLIh9pRx9QA+TPOYBAAAAAAAAAADAbFnoEoyWJKvr94zkHMtrp7ruW2oeGck5gN55YhYAAIDzeg5GmxtvHQDUp7HHW4YPEIwGAMyIvYLRjl60MedRt6T8+7en7PXvKEjywGOdx+9bTz75T533PfzyPcKLmR5HL9p7jl4DAAAAAAAAAADAjJlMMNrpjuOt0sp8aY/kHEDv+vg15wAAAEy9Vo/BaHv9cDhQj6tuTP7yz3eOX3715GvhwCqlpNptwkWXTaoUAIB6ze/yAMMXPDXltb+a3Hs2pb0wuZo48B5ySX/z51vJrTeMpxb2oaMX7j2nCEYDAAAAAAAAAABgtrR3CUY7M6JgtJW1Ux3HFxtHUopfcguT5olZAAAAzpub621es8d5wESVF35n5/GXvGaidTAFGt3fNiyHL5hgIQAANXrQQ7rvO7SU0mgIRaNvhxdKrjje+/xbb0guOORhmplx9KK95+zy/RoAAAAAAAAAAABMo4VdgtFWRxSMtrx+uuP4UvPwSNYH+uOJWQAAAM5rzfc4TzAa7EtPfk7ymNu2jj3mtuQLn1VPPRxcu/0Wk/bi5OoAAKhROXZRcsW1nfc99DETroZpcsOlvc991s1C0WbKict3/34s2Xs/AAAAAAAAAAAATJn50k7pEpM0qmC0lbXOwWiLgtGgFoLRAAAAOG+ux2C0Zmu8dQADKe2FlB/45ZQ735K84JUpr3lzyg/+Skq7+2/EgI7KLm8bLghGAwBmR3nhd3Te8dinTbYQpspDLu092Orx1wjBmiXl+InkUbfsMck9AQAAAAAAAAAAwGwppaTdWOi478yIgtGW1051HF9qHhnJ+kB/BKMBAABwXru3sJvSmhtzIcCgSnsh5SnPS+Nl359y61ekzLfrLomDqCEYDQAgSfKlL0qe8bXnXzdbKS9/Xcq1n1dfTRx4N1za+9xrT4yvDvan8sof3X3Cbt+vAQAAAAAAAAAAwJRaaBzqOL46omC0lbXTHccXG4dHsj7Qn1bdBQAAALCPHL2wt3mC0QCmXOm+q935fyIAAEyj0mym/Kv/kuqff1vydx9Lbvj8lOMX110WB9wNl5Yk1Z7zrjyeLLZ3+bc5U6lced3ud0cRjAYAAAAAAAAAAMDsaY85GG15vXMw2lJTMBrUQTAaAAAA5x19QG/zms3x1gHA/rWwWHcFAAATV04+NDn50LrLYEo86kFJKUm1Rzba9ZdMph4OmIZgNAAAAAAAAAAAAGbPQpdgtDMjCkZbWTvVcXyxeWQk6wP98cQsAAAA5y0d7e2HK1tz468FgPrcd7b7vrZgNAAAGMbxpZJX3Fb2nHfdJXvPYQYVj3kAAAAAAAAAAAAwexYaCx3HV9dXR7L+8trpjuNLjcMjWR/ojydmAQAAuF9pNJIjx/eeKBgNYLqtr3fftyAYDQAAhvXDz9s79Oz6SyZQCAdPL7/UAAAAAAAAAAAAAKZMu3Go4/iZ9XtGsv5Kl2C0xeaRkawP9McTswAAAGx1wYV7z2kKRgOYWQud/ycCAADQu1JKvuSm3edcf8ne4WnMoOIxDwAAAAAAAAAAAGbPQpdgtNURBKOtV+tZWe8cjLbUPDz0+kD/PDELAADAVkcfsPecZmv8dQCwP7UX664AAACmwmVHuwefNUryuKsn6svn2QAAIABJREFUWAwHR8NjHgAAAAAAAAAAAMye9hiD0VbXV1Kl6rhPMBrUwxOzAAAAbLV4ZO85rbnx1wHA/rQgGA0AAEbhqou673vMyeTCpe7Bacyw4jEPAAAAAAAAAAAAZs9Cl2C0MyMIRlteO9V132Kjh5+5BUbOE7MAAABsNd/ee45gNIDZJRgNAABG4taHdg8+e84jhaLRRXFvAAAAAAAAAAAAMHu6BaOtjiQY7XTXfUvNw0OvD/RPMBoAAABbzfUQjNZsjb8OAPalIhwTAABG4nFXJZcf67zvWTcLv6KLhsc8AAAAAAAAAAAAmD3tLsFoZ0YQjLay3jkYrZFGFhqLQ68P9M8TswAAAGzVSzBaSzAaAAAAwDAajZIfet7OALQXP6nkhssEo9FF8ZgHAAAAAAAAAAAAs2ehSzDa6giC0ZbXTnUcX2weTime6YQ6+El2AAAAtuopGG1u/HUAAAAATLmvekzJ4nzJf/it9azelzz3USXf8sUeoGEXDcFoAAAAAAAAAAAAzJ5xBqOtrJ3uOL7YODz02sBgBKMBAACw1fz83nOavp0EAAAAGFYpJbc/Irn9Ec26S+GgKILRAAAAAAAAAAAAmD3tLsFoZ9bvSVVVKWXwX0y7vHaq4/hS88jAawLD8cQsAAAAW821957Tmht/HQAAAADAVg2PeQAAAAAAAAAAADB7FkrnYLT1rOfe6uxQa6+sn+44vtg8PNS6wOA8MQsAAMBWc/N7z2kKRgMAAACAiSse8wAAAAAAAAAAAGD2tBudg9GS5Mz6PUOtvbzWORhtSTAa1MYTswAAAGw11957TrM1/joA2H+WLqi7AgAAgNnW8JgHAAAAAAAAAAAAs2dhl2C01aGD0U51HF9sHBlqXWBwnpgFAABgi9JLMFprbvyFALD/XHC87goAAABmW/GYBwAAAAAAAAAAALNnnMFoK2unO44vNQ8PtS4wOE/MAgAAsNX8/N5zBKMBzKbH3FZ3BQAAALOt4TEPAAAAAAAAAAAAZk97l2C0M0MGoy2vdw5GWxSMBrXxxCwAAABbzbX3ntNqjb8OAOrzZS/uOFxe8MoJFwIAAMAWpdRdAQAAAAAAAAAAAEzcXGMuzXT+2dbVIYPRVtZOdRxfah4Zal1gcILRAAAA2KqXYLSmYDSAaVZe+B3Jicu3Dn75N6Zcfk09BQEAALCheMwDAAAAAAAAAACA2bTQONRxfHV9deA1q6rK8trpjvuWGocHXhcYjp9kBwAAYKv5HoLRWnPjrwOA2pQHXp38+O8lv/0LqT751ymPfHLyhc+quywAAAAagtEAAAAAAAAAAACYTe3GQpbXT+0YP7N+z8BrnqlWs561jvsWm0cGXhcYjmA0AAAAtpoTjAZAUk5cnnzVt6XUXQgAAAD3K8V3aQAAAAAAAAAAAMymhcahjuOrQwSjLa/tDFr7nKXm4YHXBYbjVwkDAACw1dz83nOacrYBAAAAAAAAAAAAAAAAAJiMdpdgtDNDBKOtrJ3uum9RMBrURjAaAAAAW/USjNaaG38dAAAAAAAAAAAAAAAAAACQ5FBjseP46hDBaMtrp7ruW2wsDbwuMBzBaAAAAGw11957TlMwGgAAAAAAAAAAAAAAAAAAk9FuHOo4Pkww2sr66Y7jhxpLaZTmwOsCwxGMBgAAwFbzvQSjtcZfBwAAAAAAAAAAAAAAAAAAJFnoEox2ZohgtOW1zsFoS83DA68JDE8wGgAAAFstXrD3nNbc+OsAAAAAAAAAAAAAAAAAAIAk7S7BaKtDBaOd6ji+2Dwy8JrA8ASjAQAAsNWDrk8OLXXfX0pKszm5egAAAAAAAAAAAAAAAAAAmGkLYwhGW1k73XF8qXF44DWB4QlGAwAAYIsy304e8UXdJ7TmJlcMAAAAAAAAAAAAAAAAAAAzr1sw2pkhgtGW1091HF9qHhl4TWB4gtEAAADY6YILu+9rtiZXBwAAAAAAAAAAAAAAAAAAM6/dWOg4vjpEMNrK2umO44LRoF6C0QAAANhprt19X2tucnUAAAAAAAAAAAAAAAAAADDzFhqHOo6fGSIYbblLMNpi8/DAawLDE4wGAADATvPz3fc1BaMBAAAAAAAAAAAAAAAAADA57S7BaKtDBKOtrJ3qOL7UEIwGdRKMBgAAwE6t3YLRWpOrAwAAAAAAAAAAAAAAAACAmbfQJRjtTLWa9Wp9oDWX1093HF9sHhloPWA0BKMBAACw01y7+77W3OTqAAAAAAAAAAAAAAAAAABg5nULRkuSs9WZgdZcWescjLbUPDzQesBoCEYDAABgp7n57vtarcnVAQAAAAAAAAAAAAAAAADAzGvvEoy2un5P3+udXT+Te6uzHfctNo/0vR4wOoLRAAAA2KHMtbvvbApGAwAAAAAAAAAAAAAAAABgchZ2CUY7M0Aw2sra6a77lhqH+14PGB3BaAAAAOw0P999X2tucnUAAAAAAAAAAAAAAAAAADDzdgtGWx0gGG15/VTXfUtNwWhQJ8FoAAAA7NQSjAYAAAAAAAAAAAAAAAAAwP7Qbix03TdQMNra6a77FgWjQa0EowEAALDTfLv7vmZrcnUAAAAAAAAAAAAAAAAAADDzGqWZ+dL551/PDBCMttIlGG2hcSjN4mdpoU6C0QAAANhpbpdgtNbc5OoAAAAAAAAAAAAAAAAAAIBshJZ1sjpAMNry2qmO44uNw32vBYyWYDQAAAB2mpvvvq8pGA0AAAAAAAAAAAAAAAAAgMlqjzAYbWX9dMfxpeaRvtcCRkswGgAAADvNtbvva7UmVwcAAAAAAAAAAAAAAAAAACRZ6BKMdmaAYLTltc7BaIvNw32vBYyWYDQAAAB2as1139cUjAYAAAAAAAAAAAAAAAAAwGS1uwSjrQ4QjLaydqrj+JJgNKidYDQAAAB2mm9337dbaBoAAAAAAAAAAAAAAAAAAIzBQpdgtDMDBKMtr53uOL7YONL3WsBoCUYDAABgp7ldgtHand80AgAAAAAAAAAAAAAAAACAcekWjLY6QDDayvqpjuNLzcN9rwWMlmA0AAAAdpqb775vUdI9AAAAAAAAAAAAAAAAAACT1W4sdBwfJBhtee10x/HFpp+jhboJRgMAAGCnuXb3fYuS7gEAAAAAAAAAAAAAAAAAmKyFxqGO42cGCEZb6RKMttT0c7RQN8FoAAAA7LRbMNohb+gAAAAAAAAAAAAAAAAAADBZ7S7BaKsDBKMtr53qOL7Y8HO0UDfBaAAAAOw0N9d1V1k8MsFCAAAAAAAAAAAAAAAAAAAgWegSjHamz2C0+6p7c6Za7bhvqennaKFugtEAAADYaW6++75DS5OrAwAAAAAAAAAAAAAAAAAA0j0YbbXPYLSVteWu+5aah/taCxg9wWgAAAD05/gldVcAAAAAAAAAAAAAAAAAAMCMaXcNRlvta53ltVNd9y02j/S1FjB6rboLAAAAYB86cUVy/OLk05/aOj7fTr7gtnpqAgAAAAAAAAAAAAAAAABgZi10CUZbXjuVH77ru3pe50zVPUhtsbHUd13AaAlGAwAAYIfSaKT6shcn//UHt+546gtSli6opygAAAAAAAAAAAAAAAAAAGZWu0swWpX1fHT1L4Zef67MZ77RHnodYDiC0QAAAOiovOQ1SXsx1W++JVlfT77o9pSX3Fl3WQAAAAAAAAAAAAAAAAAAzKCFLsFoo7LUPDLW9YHeCEYDAACgo1JK8jWvSvmaV9VdCgAAAADMjmfekfyvN+4cP7Q06UoAAAAAAAAAAABgXzncvGCs6x9pHh3r+kBvGnUXAAAAAAAAAADAhvLcl3Uef/H3TrgSAAAAAAAAAAAA2F8unDuRy+avHNv6Dzv8+WNbG+idYDQAAAAAAAAAgH2iXP+I5Ov+9dbBL3hq8pyX1lMQAAAAAAAAAAAA7CMvvPSbc6ixOPJ1r1p4SG49fvvI1wX616q7AAAAAAAAAAAAzmu8+HtSfdGzkz95d3LyocnDH5/Smqu7LAAAAAAAAAAAAKjdVYcekldf9YZ8YPn9+cf77h56vUYauXLh6lx36KbMNeZHUCEwLMFoAAAAAAAAAAD7TLn24cm1D6+7DAAAAAAAAAAAANh3Lmgdy2OP3lJ3GcCYNOouAAAAAAAAAAAAAAAAAAAAAAAAAEAwGgAAAAAAAAAAAAAAAAAAAAAAAFA7wWgAAAAAAAAAAAAAAAAAAAAAAABA7Vp1F8B0KaXMJXlikgcluSzJ6SR/m+R9VVV9rMbSAAAAAAAAAAAAAAAAAAAAAAAA2McEo82wUsp/S/KV24bvqqrq5ABrnUhy57n1Luwy591JXl9V1S/3uz4AAAAAAAAAAAAAAAAAAAAAAADTrVF3AdSjlPKs7AxFG3Stpyf50yQvS5dQtHOekOSXSilvLqUsjeLcAAAAAAAAAAAAAAAAAAAAAAAATIdW3QUweaWUY0n+84jWuiXJW5PMbxqukvxRko8mOZbkkUku2rT/q5NcUEp5dlVV66OoAwAAAAAAAAAAAAAAAAAAAAAAgIOtUXcB1OJ1SR547s+nBl2klHJFkl/J1lC0dyW5qaqqR1dV9fyqqp6W5IokL09y76Z5X5bk+wY9NwAAAAAAAAAAAAAAAAAAAAAAANNFMNqMKaXcluTF517el+R7h1juziTHN71+d5Lbqqr6wOZJVVWdqarqR5I8f9vx315KefAQ5wcAAAAAAAAAAAAAAAAAAAAAAGBKCEabIaWUpSQ/sWno9UneP+Ba1yX52k1DZ5PcUVXVardjqqp6a5I3bRpqJ3n1IOcHAAAAAAAAAAAAAAAAAAAAAABgughGmy0/kOTkuT9/NMlrhljrBUmam17/SlVVH+rhuH+37fXzSykLQ9QBAAAAAAAAAAAAAAAAAAAAAADAFBCMNiNKKU9I8k2bhl5aVdU9Qyz5nG2vf6aXg6qq+kCS/7NpaCnJ04aoAwAAAAAAAAAAAAAAAAAAAAAAgCkgGG0GlFLaSX465z/eb6qq6reGWO/SJDdvGrovybv6WOKd214/fdBaAAAAAAAAAAAAAAAAAAAAAAAAmA6C0WbDa5I85Nyf707yyiHXe9i2139cVdVyH8e/e9vrm4asBwAAAAAAAAAAAAAAAAAAAAAAgANOMNqUK6U8Ksm/3DT0iqqq/mHIZW/c9vrDfR7/kT3WAwAAAAAAAAAAAAAAAAAAAAAAYMYIRptipZRWkp9O0jo39BtVVf3cCJa+dtvrv+rz+Lu2vX5AKeX4EPUAAAAAAAAAAAAAAAAAAAAAAABwwLX2nsIB9l1Jbj735+UkLxvRuse2vf5UPwdXVXW6lLKaZGHT8NEknx62sFLKxUlO9HnYNcOeFwAAAAAAAAAAAAAAAAAAAAAAgOEIRptSpZQbk/zrTUPfU1XVx0a0/OFtr+8ZYI17sjUY7cjg5WzxjUlePaK1AAAAAAAAAAAAAAAAAAAAAAAAmJBG3QUweqWURpKfStI+N/TeJD8ywlNsD0ZbHWCN7WFq29cEAAAAAAAAAAAAAAAAAAAAAABghghGm04vT/K4c3++L8lLqqpaG+P5qgkdAwAAAAAAAAAAAAAAAAAAAAAAwJRq1V0Ao1VKuTrJ920aen1VVe8f8WlOb3t9aIA1th+zfc1BvSHJL/Z5zDVJ3jai8wMAAAAAAAAAAAAAAAAAAAAAADAAwWhTpJRSkvxEksVzQx9N8poxnGrfBqNVVfWpJJ/q55iNywYAAAAAAAAAAAAAAAAAAAAAAECdGnUXwEh9Q5KnbHr90qqq7hnDeT677fWJfg4upRzOzmC0zwxVEQAAAAAAAAAAAAAAAAAAAAAAAAdaq+4CGKk7N/3515N8uJRyco9jLt32utXhmL+tqursptcf2rb/wT3W123+P1ZV9ek+1wAAAAAAAAAAAAAAAAAAAAAAAGCKCEabLoc2/fkZSf5ygDUu73DcI5O8f9PrD2zbf22f57h62+s/7/N4AAAAAAAAAAAAAAAAAAAAAAAApkyj7gI4kP502+vPK6Us9nH8E/dYDwAAAAAAAAAAAAAAAAAAAAAAgBkjGI2+VVX1d0n+eNNQK8mT+ljilm2v3z5sTQAAAAAAAAAAAAAAAAAAAAAAABxsgtGmSFVVx6qqKv1sSb542zJ3dZj3/g6n+x/bXn9dLzWWUm5I8thNQ8tJfrPnvyQAAAAAAAAAAAAAAAAAAAAAAABTSTAag3pLkrVNr59bSrmuh+Nete31L1RVtTq6sgAAAAAAAAAAAAAAAAAAAAAAADiIBKMxkKqqPpTkTZuG5pO8sZSy0O2YUsrtSe7YNHQ2yZ1jKRAAAAAAAAAAAAAAAAAAAAAAAIADRTAaw3h1kk9vev2EJL9VSrlh86RSSruU8i1JfnHb8a+rququMdcIAAAAAAAAAAAAAAAAAAAAAADAAdCquwAOrqqq/qaU8twk70gyf274iUn+vJTy3iQfTXI0yaOSnNh2+K8l+Z5J1QoAAAAAAAAAAAAAAAAAAAAAAMD+JhiNoVRV9c5SynOSvDHnw89Kkkef2zr5+STfUFXV2vgrBAAAAAAAAAAAAAAAAAAAAAAA4CBo1F0AB19VVb+e5GFJfizJp3eZ+p4kz6uq6gVVVS1PpDgAAAAAAAAAAAAAAAAAAAAAAAAOhFbdBVCvqqremaSMYJ1PJXlZKeXlSZ6Y5MFJLk2ynOTjSd5XVdVfDnseAAAAAAAAAAAAAAAAAAAAAAAAppNgNEaqqqqzSX6n7joAAAAAAAAAAAAAAAAAAAAAAAA4WBp1FwAAAAAAAAAAAAAAAAAAAAAAAAAgGA0AAAAAAAAAAAAAAAAAAAAAAAConWA0AAAAAAAAAAAAAAAAAAAAAAAAoHaC0QAAAAAAAAAAAAAAAAAAAAAAAIDaCUYDAAAAAAAAAAAAAAAAAAAAAAAAaicYDQAAAAAAAAAAAAAAAAAAAAAAAKidYDQAAAAAAAAAAAAAAAAAAAAAAACgdoLRAAAAAAAAAAAAAAAAAAAAAAAAgNoJRgMAAAAAAAAAAAAAAAAAAAAAAABq16q7ANgH5je/+PCHP1xXHQAAAAAAAAAAQ+nw3MN8p3kAMEGe0QMAAAAAAAAADjzP501Oqaqq7hqgVqWUZyV5W911AAAAAAAAAACMwe1VVf1q3UUAMLs8owcAAAAAAAAATCnP541Jo+4CAAAAAAAAAAAAAAAAAAAAAAAAAASjAQAAAAAAAAAAAAAAAAAAAAAAALUrVVXVXQPUqpRyNMmTNw39dZKzQyx5TZK3bXp9e5KPDLEeQL/0IWA/0IuAuulDQN30IaBu+hCwH+hFQN1mtQ/NJ7ly0+vfrarqs3UVAwCe0QOmkD4E1E0fAuqmDwF104eA/UAvAuqmDwF1m9U+5Pm8CWnVXQDU7Vxz+dVRrVdK2T70kaqq/mxU6wPsRR8C9gO9CKibPgTUTR8C6qYPAfuBXgTUbcb70PvqLgAAPsczesC00YeAuulDQN30IaBu+hCwH+hFQN30IaBuM96HPJ83AY26CwAAAAAAAAAAAAAAAAAAAAAAAAAQjAYAAAAAAAAAAAAAAAAAAAAAAADUTjAaAAAAAAAAAAAAAAAAAAAAAAAAUDvBaAAAAAAAAAAAAAAAAAAAAAAAAEDtBKMBAAAAAAAAAAAAAAAAAAAAAAAAtROMBgAAAAAAAAAAAAAAAAAAAAAAANROMBoAAAAAAAAAAAAAAAAAAAAAAABQO8FoAAAAAAAAAAAAAAAAAAAAAAAAQO0EowEAAAAAAAAAAAAAAAAAAAAAAAC1E4wGAAAAAAAAAAAAAAAAAAAAAAAA1E4wGgAAAAAAAAAAAAAAAAAAAAAAAFC7Vt0FwBS6O8md214DTJI+BOwHehFQN30IqJs+BNRNHwL2A70IqJs+BADTydd4oG76EFA3fQiomz4E1E0fAvYDvQiomz4E1E0fYqxKVVV11wAAAAAAAAAAAAAAAAAAAAAAAADMuEbdBQAAAAAAAAAAAAAAAAAAAAAAAAAIRgMAAAAAAAAAAAAAAAAAAAAAAABqJxgNAAAAAAAAAAAAAAAAAAAAAAAAqJ1gNAAAAAAAAAAAAAAAAAAAAAAAAKB2gtEAAAAAAAAAAAAAAAAAAAAAAACA2glGAwAAAAAAAAAAAAAAAAAAAAAAAGonGA0AAAAAAAAAAAAAAAAAAAAAAAConWA0AAAAAAAAAAAAAAAAAAAAAAAAoHaC0QAAAAAAAAAAAAAAAAAAAAAAAIDaCUYDAAAAAAAAAAAAAAAAAAAAAAAAaicYDQAAAAAAAAAAAAAAAAAAAAAAAKidYDQAAAAAAAAAAAAAAAAAAAAAAACgdq26C2CnUkozybVJbkzywCRHk5xJ8ukkH0nyh1VVLY/4nHNJnpjkQUkuS3I6yd8meV9VVR8b5bkmpZRyU5JHJDmRpJ3kE0n+Jsm7qqparbO2SSqlHE9yU5LrklyYZCHJZ5LcneS9VVV9pMbydiilXJWNj9sDkxxO8ndJ7kry7qqq7q2ztlmiD42GPrRBH2JQetFo6EUb9KKu53F/7EIfGg332YaD1ofYH/Sh0dCHNuhDW5VSrszGtbgiyUVJDiU5m+SzSf4qG9fk7voq3B/0odHQhzboQwxKLxoNvWiDXsQg9KHR0Ic26EOduT+AOvgaPxp6+IaD9jXeszH7gz40GvrQBn2IQehDo6EPbdCHup7H/bELfWg03GcbDlofYn/Qh0ZDH9qgD23l+bze6UWjoRdt0IsYhD40GvrQBn2IQehDo6EPbdCHOjvQ90dVVbZ9sGWjYb4iya9l45v7apftviRvT/LMEZz3RJI3JPmHXc73riRfPuR5rk7ylUlem+SdSf5p2zk+NqLreCTJdyf5+C5/n39K8rNJrqnx4z2265FkLsmXJPmPSf50j3upOnet/k2SS2v+HHheknfvUuc/nLtXLxpg7b2uwV7byTqvzQQ/BvrQaK6jPqQPbV7z5Ah60Obtjjqv0YQ+DnrRaK6jXqQXHfj7o8aPgT40mut4IO4zfai2+2MpyZOSfFuStyT5YJL1bee6o67rUPemD+lD+tDYrsd1Sb4/ye9k439q7HU9qiR/lOSbkrTruiY1fRz0odFcR31IH+q0fi+9Z7ftZF3XpoaPhV40muuoF+lFm9c9OYI+tHm7o65rNKGPgz40muuoD+lDB/7+sNls07X5Gj9bPdzX+I51e0av5k0f0of0Ic/o1b3pQ/qQPuT5vLo3fUgfmuU+NMH7w/N5u18ffWg011Ef0oe2r+35vP6ul140muuoF+lFndbvpf/stp2s69pM+OOgD43mOupD+tDmdU+OoAdt3u6o6xpN6OOgD43mOupD+tCBvz/2/HvUXYCtSpKfG+IL2v9McsmA5316kk/2ca43J1nqY/1bkrxjjy8KI/vETPLYbKRw9vr3WU7ysgl+nMd+Pc5dg38c8F76dJIX1nD/H07y833U+YkkX9LnOQb9/PrcdnLS16WGj4M+pA/pQ2PoQxn9N7JfOenrM+GPhV6kF+lFY+hFB+n+qHvTh/ShWexDk7w/svHG8Z9k4w3pvc51x6SuwX7a9CF9SB8a3/2R5CVDfH79vySPndQ1qXPTh/QhfWi898cQn1+f205O6rrUuelFepFeNLbrcXIEfWjzNrXvV0cf0of0oZm/P2w223RuvsbPRg/3Nb5rzZ7R2webPqQP6UOe0at7iz6kD+lDns+redOH9KFZ7EOTvD/i+bxerpE+pA/pQ2O6P+L5vH6ulV6kF+lFY7w/hvj8+tx2clLXpa5NH9KH9KGxXY+TI+hBmzfvVetDvXwO6kP60IG8P/rZWmE/uL7L+MeTfCgbzbWVjdS/m5M0Ns35Z0n+dynlyVVVfaLXE5ZSbkny1iTzm4arbKSsfzTJsSSPTHLRpv1fneSCUsqzq6pa7+E0j0jytF5rGkYp5bZspIG2t+26K8kfZ+OT8IpsfPLOndu3mOQNpZRGVVX/aQJlTuJ6nEhyvMP42Wy8uf2JbCSmPiDJo8/993OOJfnZUsrFVVW9fsx1JklKKc0k/z3JM7btujvJ+87Vek027sVybt8lSd5WSrmtqqrfn0SdM0IfGpI+dD99aHxWspFoPc30oiHpRffTizqf5yDcH3XTh4Z0QO4zfWirid0fSV6Q5OiEznVQ6UND0ofupw/trcrGm/wfzsb/WFjJxm/MvSrJTTl/fyQbn5u/XUp5ZlVVvzvpQidMHxqSPnQ/fYhh6EVD0ovupxeNz7S/X60PDUkfup8+1MEBuT+A6eRr/JAOSA/3NX6bA/ZszLTTh4akD91PHxof73noQ7vSh+6nD3U+z0G4P+qmDw3pgNxn+tBWns/bX/ShIelD99OH9ub5vO70oiHpRffTixiUPjQkfeh++tD4eK9aH9qVPnQ/faiDA3J/9K7uZDZblSR/mPMpen+U5JuTXNNl7uVJfjw70/d+L0np8XxXZGfq4e8neei2ee0k35qNT/rNc7+/x/O8okOdVZLVbLyhMZLEwmykp25PRfxwkqd2mHs8yY9um7vWae4YPs5jvx7Z+EL+uTVOJfmpJLcmOdRhbknynGw0r+01jf16nKvhtdvOe/bc/T+/bd6NSd69be7fJ7msx/NsPu495+6ZfrbWJK5HnVv0IX1IHxpLH8rGN1579Zhu2+9vO98bJ3FN6tyiF+lFetHY/k10UO6Pujd9SB+axT40qfvj3Lk+0+Vcf9Nh3x3j/rvvx00f0of0obHeH1+f5C+y8W+vZyY5vsvcY0m+PRv/A2Tz+T+e5Oi4r0mdmz6kD+lDY//30Oa1vFfd/TrpRXqRXjSe6+H96t6vlT6kD+lDM35/2Gy26dx8jZ+NHu5rfMd6PaO3T7boQ/qQPjSWPhTvefTzsdCH9CF9aEz/Hjoo90fdmz6kD81iH5rU/XHuXJ7P2/sa6UP6kD40vvvD83m9Xyu9SC/Si8b7b6LNa3mvuvM10of0IX1oPNdaSfFZAAAgAElEQVTDe9W9Xyt9SB/Sh2b8/ujr71R3AbYqSf5vNtL2Ht3HMd/Y4Yb/qh6P/altx70rycIu85/d4RPrwT2c5xXnmv77kvxEkn+R5FHZSAy8ZYSfmD+/ba0PJbl4j2O+c9sxf5akOeaP89ivx7nG/cn8//buPFqatKDv+O8ZEBjWUZBBQBj2oLiAmAhqHA0YiEeQJS64MIL7cqLRHA9CTlATjYnrOfEoUQTEJRIEREEgiANuuJ1BQEcEdVCUQVZxhlnhyR99573d1ff27equ7qqu+nzO6T+q3q7l9vu837rvc+vUTb4jyW3W3OaOSf68cfzLs+Y3Alt8HvfO8jcFj13x/vOz/IPGn1rzWPPbXLrLr+tQXzqkQzq02w5tcG53S3Jj41ifvcvPYwgvLdIiLdpdiw5lfPT90iEdmmiH9jI+jo71gcx+08LLknzP0ed04dGfXdo41iW7/LqH+tIhHdKhnY6Pj9pgm09NclXjHL5rl59H3y8d0iEd2vn3Q/P7unSXX9chv7RIi7Roty3a4NwmN1+tQzqkQ8aHl5fXOF+u8dNouGv80nHdozeglw7pkA7ttkMbnJs5j/W20aHj4+jQ8TF06EDHR98vHdKhiXbI/XkDeumQDumQ+/OG8NIiLdIi9+j1/dIhHdIh9+f1/dIhHdIh46PV19T3CXjVJLlow+1e2BhcL1tjm/s1LozXJbnfGts9t3Gsn11jm48+7YLQYajundkTB+f39VlrbvuaxnZP2fHf8z4+j49dN9iN7T7lhM/x03f8eTyvcbznrLHN/Y/G7E3b3JDk3mtsN3+cS3f5dR3qS4d0SId226ENzu3pjXP7y11+FkN5aZEWadFuWnRI46Pvlw7p0EQ7tPPPY25/p/4G3bjx6qbP4aINt9MhHWruR4e6O7/vbZzD6/d9Dnv+ei/acDsd0qHmfnTo5P3N7+vSXX5dh/zSIi3Sot18Hluc2+Tmq3VIh3TI+PDy8hrnyzV+Gg13jV86pnv0BvTSIR3Sod12aINzM+ex/nY6pEPN/ejQgY6Pvl86pEMT7ZD78wb00iEd0qHdfB5bnt+k7s87+pov2nA7LdKi5n606OT9ze/r0l1+XYf60iEd0qHdfB5bnJu56vW30yEdau5Hhw50fLR5nRd6V2u9YsNNf6Kx/LlrbPOkJDebW35RrfWta2z3g43lLy6l3GrVBrXW99dar11j39v4gmRhHL++1vo7a277Q43lr+7mlE62j8+j1vruWuvVG2z3p0man9s642kjpZTzkzyxsbo5xpbUWv8yyUvmVt08szHNlnRoKzq0eAwd2lIppWR5LDy7y2MMlRZtRYsWj6FFiw5mfPRNh7ZyMONMh5aOuY/xcdOx3rmP4xwyHdqKDi0eQ4e68/LG8n17OYs90aGt6NDiMXSIjWnRVrRo8RhatKWpzlfr0FZ0aPEYOrToYMYHME6u8Vs5mIa7xh8b8r0xU6VDW9GhxWPo0JbMebSmQzrUPIYOLTqY8dE3HdrKwYwzHVo6pvvzBkSHtqJDi8fQoe5M6v68RIu2pEWLx9AiNqJDW9GhxWPo0JbMVbemQzrUPIYOLTqY8dGGB6Mdtssay+eXUi44Y5vHNZafs86Baq2XJ/mDuVW3SfL562y7Y/+6sfzKFtv+ZpLr55YfXkr5uO1P6WA1x9Ndd3isf5vk1nPLv19r/Ys1t22O2cd3c0psSId0qEs6NPM5Se4zt3xjZr+xjtNpkRZ1aYwtMj52T4eMsy7ts0OMhw7pUJd0aNH7Gsu36+Ushk+HdKhLOsSmtEiLuqRFM+ar29EhHerSGDtkfACHyjVew7s0xp9Hs3s6pENd0qEZcx7t6JAOdWmMHTI+dk+HjLMujXHuld3TIR3qkg4tcn/e+rRIi7qkRWxCh3SoSzo0Y666HR3SoS6NsUOjHB8ejHbYbjxh3S1Oe3Mp5S5JPqWx/e+2ON6ljeVHt9h2V+7eWH7zuhvWWq9L8ra5VedlGF9TX5rj6dSx1IFHNZYvbbHtb2fxXB9cSrlw6zNiUzqkQ13SoZmnNpZfVmu9ssP9j5EWaVGXxtgi42P3dMg469I+O8R46JAOdUmHFt2zsfwPvZzF8OmQDnVJh9iUFmlRl7Roxnx1OzqkQ10aY4eMD+BQucZreJfG+PNodk+HdKhLOjRjzqMdHdKhLo2xQ8bH7umQcdalMc69sns6pENd0qFF7s9bnxZpUZe0iE3okA51SYdmzFW3o0M61KUxdmiU48OD0Q7bfRvLNyZ5z4r3P6ix/MZa69Utjvd7jeVPbLHtrnxMY/kDLbdvvv+TtjiXQ9ccT+/c4bGaY/H3193waMy+qbF6CGNxqnRIh7o0+Q6VUu6Q5AmN1c/uYt8jp0Va1KUxtsj42D0dMs66tM8OMR46pENd0qFFX9VY/q1ezmL4dEiHuqRDbEqLtKhLk2+R+eqN6JAOdWmMHTI+gEPlGq/hXRrjz6PZPR3SoS5NvkPmPDaiQzrUpTF2yPjYPR0yzro0xrlXdk+HdKhLOrTI/Xnr0yIt6pIWsQkd0qEuTb5D5qo3okM61KUxdmiU48OD0Q7bExvLf1xr/ciK939CY/ltJ77rdH91xv76cH1j+ZYtt2++fwhf096VUm6f5JGN1X+4w0M+sLG8z7F4j1LKc0opf1ZKeX8p5fpSyruOln++lPJ1pZRm8DmdDulQJybWoVW+LMn5c8vvTPIbHe17zLRIizox4hYZH7unQ8ZZJ3roEOOhQzrUCR1aVEr55iRfMbfqxiQ/1tPpDJ0O6VAnJtYhc9Xd0yIt6sTEWrSK+er2dEiHOjHiDhkfwKFyjdfwToz459EnMe/RLR3SoU5MrEOrmPNoT4d0qBMj7pDxsXs6ZJx1YsRzr+yeDulQJ3RokfvzWtMiLerExFpkrrpbOqRDnZhYh1YxV92eDulQJ0bcoVGODw9GO1CllNsmeWpj9YvP2Kz5xMK/bXnYtzeW71hK+eiW++jaexvLH9dy++b7H7DFuRyyr09y67nlf8qOnq5/9J/E5n8U247F5vvv12LbeyW5JLMIX5Dko5Lc+Wj5y5M8K8nfllJ+9OjfGafQoXN0qBtT6tAqzX9Tz6u13tjRvkdJi87Rom6MtUXGxw7p0DnGWTf21iHGQ4fO0aFuTLpDpZTblFIeUEp5cinltUn+V+MtT6u1vrGPcxsyHTpHh7oxpQ6Zq+6QFp2jRd2YUotWMV/dgg6do0PdGGuHjA/g4LjGn6Ph3Rjrz6NPYt6jIzp0jg51Y0odWsWcRws6dI4OdWOsHTI+dkiHzjHOujHWuVd2SIfO0aFuTLpD7s/bnBado0XdmFKLzFV3RIfO0aFuTKlDq5irbkGHztGhboy1Q6McHx6Mdrh+IMld5pY/kORnztjmgsbyP7Y5YK31qiTXNlbfoc0+duDyxvJnrLthKeUeSe7aWN3317N3pZSLkvznxuofr7U2nwbZleY4/FCt9eqW+2iO3a7/3m6T5NuS/Ekp5RM73veY6NCMDm1Jh2ZKKZ+U5KGN1c/edr8ToEUzWrSlkbfI+NgtHZoxzrbUQ4cYDx2a0aEtTa1DpZQLSil1/pXkqiR/keS5Sf713NuvSvJ1tdYf6uFUD4EOzejQlqbWoTWZq16fFs1o0Za0aMZ89UZ0aEaHtjTyDhkfwCFyjZ/R8C2N/OfRmzLvsR4dmtGhLenQjDmPjejQjA5taeQdMj52S4dmjLMtjXzuld3SoRkd2tLUOuT+vM5p0YwWbWlqLVqTuer16NCMDm1Jh2bMVW9Eh2Z0aEsj79Aox4cHox2gUsrjknxLY/XTa63vO2PT5tOKr9ng8M1tbrfBPrr02sbyE0optz7xncu+6oR1fX89e1VKuUWSX87i131Fkv+xw8P2NQ5vTHJpkmckeUySh2T2W5senOSxSX4oy9/M3D/Jq0sp99zgHEdNhxbo0BYm1qGzNJ9U/dpa69s62O9oadECLdrCBFpkfOyIDi0wzrbQU4cYAR1aoENb0KFTvSvJ05Pcq9b6032fzBDp0AId2sLEOmSuumNatECLtjCxFp3FfHULOrRAh7YwgQ4ZH8BBcY1foOFbmMDPo+eZ9+iQDi3QoS1MrENnMefRgg4t0KEtTKBDxseO6NAC42wLE5h7ZUd0aIEObUGHTuX+vDVo0QIt2sLEWmSuukM6tECHtjCxDp3FXHULOrRAh7YwgQ6Ncnx4MNqBKaV8SpKfa6x+VZKfXGPzZribT6dcRzPczX3u28sye5rnTS5I8syzNiqlfHyS7zzhj25WSjm/m1M7CD+T5F/OLX84yZM3+G1IbfQxDp+R5G611s+ttf63Wuuv1Vovq7W+rdb6hlrrS2ut/ynJPZP89yR1btu7JHlRKaVscJ6jpENLdGg7U+nQSkffSH9FY7Wne6+gRUu0aDtjb5HxsQM6tMQ4204fHeLA6dASHdqODp3swiTfkOQbSym37/tkhkaHlujQdqbSIXPVHdOiJVq0nam0aCXz1e3o0BId2s7YO2R8AAfDNX6Jhm9n7D+Pvol5jw7p0BId2s5UOrSSOY92dGiJDm1n7B0yPnZAh5YYZ9sZ+9wrO6BDS3RoOzp0MvfnnUGLlmjRdqbSInPVHdKhJTq0nal0aCVz1e3o0BId2s7YOzTK8eHBaAeklHKPzAbifCzfnuQraq315K1W2tc2O1Nr/eckP95Y/Z2llP9w2jallLsneUWSO5y2245Ob9BKKd+X5Csbq59Wa33dnk9l5+Pw6D+vzad3n/S+a2utT0vyrY0/ekiSL2tzzLHSoWU6tLkpdWgNj01yx7nlf0rywo6PMRpatEyLNjeFFhkf3dOhZcbZ5gbUIQ6IDi3Toc1NuEMfTHKvudd9MpsDenySH03y7qP3fXyS703yplLKp/dwnoOkQ8t0aHNT6pC56m5p0TIt2tyUWrQG89Vr0qFlOrS5KXTI+AAOhWv8Mg3f3ICu8e7ROyA6tEyHNjelDq3BnMeadGiZDm1uCh0yPrqnQ8uMs80NqEMcEB1apkObm3CH3J+3JS1apkWbm1KLzFV3R4eW6dDmptShNZirXpMOLdOhzU2hQ2MdHzfv+wRYTynlzkn+X5K7za2+Mskja63vPnmrJVc1ljd5Ml9zm+Y++/D9SR6d4yczliQ/Vkp5YmZPR31DZk/ivOvR+74xxxe/dyS5+9y+rq21Lj3ps5Ry0bonU2u9otXZ96CU8m2ZPfV63o/UWv/nmttftO6xTvg8Bj8Oa60/UUr5/CSPmVv9TUl+scvjHBodWkmHWtKhJU9tLP9irbX5FGmiRWfQopYm1qKdj4+p0KGVdKilnjvEgdKhlXSopSl3qNb6kSRXnPBHlyV5cSnlGUl+MMm3HK2/R5JXl1I+s9b65v2c5TDp0Eo61NKUO7QOc9Wn06KVtKglLVpivnoNOrSSDrU0sQ6ZqwYGzTV+Jdf4lib28+jWzHucTIdW0qGWdGiJOY816NBKOtTSxDpkzqMjOrSSDrU0sblXOqJDK+lQS1PukPvztqNFK2lRS1Nu0TrMVZ9Mh1bSoZZ0aIm56jXo0Eo61NLEOjS6uWoPRjsApZSPSfLqJPefW/2eJI+otb61xa5GGe5a6/WllMcneXmST577o886ep3mvZl94/DKuXUfOOW9f9PilEqL9+5dKeVrk/xIY/VP1lq/o8Vutvk8DmUc/kAW/yP7GaWUC2qtp42RUdOh1XSoHR1aVEr5+CSPbKx+9qb7GzMtWk2L2plai/Y0PkZPh1bToXYG0CEOkA6tpkPt6NBqtdYPJfnWUsoNSb79aPXtk/xcKeXTNvwNQwdPh1bToXZ0aG3mqhu0aDUtakeLFpmvXo8OraZD7UytQ+aqgSFzjV/NNb6dAVzjD2UcmveYo0Or6VA7OrTInMd6dGg1HWpnah0y59ENHVpNh9oZQIc4QDq0mg61o0OruT/vdFq0mha1o0VrM1c9R4dW06F2dGiRuer16NBqOtTO1Do0xrnq8/o+AVYrpdwhyauSfNLc6vdn9iTLP2u5u39qLH9sy3O5bZbDPYiBXGv9+yQPT/KsJDessclvJXlokqsb66/s+NQGpZTylUl+KosxfU6Sb97jaTTH4a1LKbdpuY87N5Z3MQ7/MLN/aze5WZJP2MFxBk+H1qND69GhE12Sxe/J/rTW+idb7G+UtGg9WrSeqbbI+NiODq3HOFvPQDrEgdGh9ejQenSolacn+Ye55QcneURP59IrHVqPDq1Hh1oxVz1Hi9ajRevRohNdEvPVK+nQenRoPVPtkPEBDJFr/Ho0fD0DucYP7d6Y05j3OKJD69Gh9ejQiS6JOY+VdGg9OrSeqXbI+NiODq3HOFvPQDrEgdGh9ejQenSoFffnzdGi9WjRerSoFXPVR3RoPTq0Hh060SUxV72SDq1Hh9Yz1Q6NbXx4MNqAlVJul+QVST5tbvUHkzyq1vqGDXbZfPrlPVtu33z/+2qt7z/xnT2otV5da/2GJA/IbELkt5K8I8k1Sf45yeVJnpfZU1T/Ta31iiQPbOzmj/d2wntWSvnSzCI9/+/+F5J8zT6foF9rfW8W/4OYJPdouZvmWGzzZNe11Fo/kuRvG6tbfbMzBjrUjg6tpkPLSiklyVc3Vnu6d4MWtaNFq029RcbHZnSoHeNstaF0iMOiQ+3o0Go61E6t9ZokL2msflQf59InHWpHh1bToXbMVR/Tona0aDUtWma++mw61I4OrTb1DhkfwJC4xrej4asN5Ro/pHtjVjHvMaND7ejQajq0zJzH2XSoHR1abeodMj42o0PtGGerDaVDHBYdakeHVtOhdtyfd0yL2tGi1bSoHXPVMzrUjg6tpkPLzFWfTYfa0aHVpt6hMY2Pm/d9Apzs6LfRvDzJZ8ytvirJo2utf7jhbi9vLN+35fb3biz/+YbnsVO11r9J8v1Hr7M8rLH8B6fss5y0/lCUUp6Q5PmZPaX6Jv83yZOP/sPWSgefx+WZPWHyJvfN8vhcpTkW22zbxjWN5eYTXUdNhzanQ8t06FSfl+Rec8vXZfZNNUe0aHNatEyLju1ifIyVDm1Oh5YNsEMcAB3anA4t06GNvaWx3PbfzEHToc3p0DId2tik56oTLdqGFi3TolOZr15BhzanQ8t06Ji5aqBvrvGbc41fNsBr/FDujTnLpOc9dGhzOrRMh05lzmMFHdqcDi3ToWPmPNanQ5vToWUD7BAHQIc2p0PLdGhjk74/L9GibWjRMi3amLlqHdqIDi3ToVOZq15BhzanQ8t06NgY5qrPO/st7Fsp5fwkv57ks+ZWfyjJF9Raf2+LXb+5sfzJpZRbt9j+M8/Y30E5eqrq5zVWv7aPc9mlUspjkvxSFh+E+JIkT6q1frifs1oaO81Anurom5pPPmN/XblTY/k9OzrO4OjQfuiQDiV5SmP5RbXW9224r9HRov3QIi064ziTGB+n0aH9mMo4G2iHGDgd2g8d0qE13NBYvmUvZ9EDHdoPHdKhNUx2rjrRon3RIi2K+epT6dB+6JAOrTKV8QHsl2v8fkyl4QO9xg/+59FHJjvvoUP7oUM6FHMep9Kh/dAhHTrjOJMYH6fRof2YyjgbaIcYOB3aDx3SoTVM9v68RIv2RYu0aA3mqnVop3RIh2Ku+lQ6tB86pEOrDHl8eDDawJRSbpXkpUkunlt9bZLH1Fpft82+a63vTPLGuVU3z+LF4SwXN5Z/Y5vzGYDPS3LR3PJra61v7elcdqKU8u8ye3LlR82tflmSL6m13tjPWSVJXtFYvrjFtp+dxYvQZbXWd219Rg2llDtl+Smu/9D1cYZIh/ZKh/rTe4dKKRckeXxj9bPb7mestGivtKg/vbdoDaMfH6fRob0a/TgbcIcYMB3aKx3iLHdvLO/i+67B0aG90iFONeW56kSL9kyLJsx89el0aK90iFVGPz6A/XKN36vRN3zA1/jB/zx6yvMeOrRXOtSf3jtkzuN0OrRXOtSf3ju0htGPj9Po0F6NfpwNuEMMmA7tlQ5xlknen5do0Z5pEacyV61De6JDE2au+nQ6tFc6xCqDHR8ejDYgpZRbJHlRkkfMrb4uyRfVWn+zo8O8uLH81Wue279I8q/mVl2d5FUdnVNfvqux/KxezmJHSimPTPIrSW4xt/pVSZ5Qa72+n7M655VJrplbftjRGFvHJY3l5pjuypdmsZHvSnL5jo41GDq0dzrUnyF06MuT3Gpu+Yokr9lwX6OiRXunRf0ZQovOMurxcRod2rtRj7OBd4iB0qG90yHO8vmN5UFM7u+SDu2dDrHKJOeqEy3qgRZNm/nqE+jQ3ukQq4x6fAD75Rq/d6Nu+MCv8Yfw8+hJznvo0N7pUH+G0CFzHifQob3Tof4MoUNnGfX4OI0O7d2ox9nAO8RA6dDe6RBnmdz9eYkW9UCLWMVc9TEd2h0dmjZz1SfQob3TIVYZ7PjwYLSBKKXcPMkLkjx6bvUNSZ5Ya31lh4f6hSQfnlt+fCnlfmts1xzEL6i1Xtvdae1XKeXJSR45t+oNmT35cRRKKZ+T5Fez+A3SazL7JuC6fs7qWK31Q0le2FjdHGNLSin3T/K4uVU3JvnFDk/tpuNcmOQZjdW/VmutXR9rSHRov3SoXwPp0FMayz879s6sQ4v2S4v6NZAWrTrOqMfHaXRov8Y+zobeIYZJh/ZLhzhLKeULkjy0sfpX+ziXfdGh/dIhVpnqXHWiRfumRcR89RId2i8dYpWxjw9gv1zj92vsDR/6Nf4Afh49yXkPHdovHerXQDpkzqNBh/ZLh/o1kA6tOs6ox8dpdGi/xj7Oht4hhkmH9kuHOMsU789LtGjftIhVzFXr0D7oEDFXvUSH9kuHWGXo48OD0QaglHKzzIL62LnVNyb5klrrr3d5rFrrW5M8b27VLZI8t5Ryq1M2SSnlsVn8jTfXJ/meLs9rW0cXvnXf+/gkPz236sYkT6m13tj5ifWglPKwJL+e5Py51a9L8oW11mtO3qoXz8zsm5ObXFJKecxpbz4ao8/J4hM6n11r/asV2zyglPKFbU6qlHKXzD6/C+dWX5/kB9rs59Do0PZ06JgOna2U8qlJHjK36iNJntt2P2OjRdvTomNadOK2xscZdGh7xtmxA+oQA6JD29OhYzp0rJTy0FLK485+59J2n57k+Y3Vr6u1vqmbMxseHdqeDh3ToWPmqtvRou1p0TEtOpv56mU6tD0dOqZDy4wPoC+u8dvT8GMHdI1/ZtyjNxg6tD0dOqZDZzPnsUyHtqdDx3ToxG2NjzPo0PaMs2MH1CEGRIe2p0PHdOiY+/Pa0aLtadExLTpmrnp9OrQ9HTqmQ2czV71Mh7anQ8d0aNnYxsfaXww79bNJvrix7ruTXFZKuajlvq5c40mT/yWz32Dz0UfLD0/y6lLK19Ra/+KmN5VSbpnk65L8cGP7H661vn2dkyml3D0nj7O7NJZvvuJrvarW+p4zDvWmUsrLkvxKkj+otX7khHN5UJKnJXlS44++u9Z62Rn778SuP49SyoOT/EaS286tfkuSb05y51JKm9O9ttZ6ZZsN2qi1/nUp5ceTfOfc6heWUv5jkv9da73+ppWllAcm+ZnMxupN3puzv4H4uCQvLaW8KcnPJ3nx0TcvS0opt0vy5Mye7H1h44//a631r9f4sg6ZDumQDs103aHTPLWx/Mpa699tuK8x0SIt0qKZXbXoIMZHz3RIhybXoWR/46OUctskdzrlj5sTyndacax3DGlyrWM6pEM6tKir8XH3JC8qpbw5sx+gvSTJW2o9+bcslVI+IcnXJ/mmxnlde7RuzHRIh3RoUVfjw1x1O1qkRVq0qOvx0WS+epkO6ZAOLZrk+ABGyTV+Ig13jT/mHr3B0SEd0qEZ9+j1R4d0SIdm3J/XHx3Socl1KHF/3sDokA7p0CL35/VDi7RIixa5R2//dEiHdGiR+/P2T4d0SIcWTXJ8rK3W6tXzK0nt8HXxmse8OMl1jW0/kuSPkvxyklck+ccT9v9rSW7W4mu7ooOv6blrHOc9c+//5yS/l9k/0l9I8qoV5/F9e/673unnkdlvNOpqLF26h8/jZklefsKx35XZBegFSf74aGzO//l1ST57zXHe3PcHkvxOZhNsz0/y4qNj3HDK5/Csvhuxp7GpQzqkQzvo0CnHvGVmN0rM7+8JfTZgKK8Ox44WadEzOxxLl+7h89hLiw5lfPT56nDc6NDAx9muP48cXof2NT4u6egzuajvXuzw70KHdEiHdvN5fNEJ7//g0fh4aWY3QLwgyauTXHnK/j+U5BF9d2IPfxc6pEM6tJvP4+IT3m+u+vTPS4u0SIt2OD4axzRfffLnokM6pEPGh5eX1whfHTbZNX7gDd/155HDu8a7R28grw7HjQ7p0DM7HEuX7uHzcI/eQF4djhsd0qFndjiWLt3D5+H+vIG8Ohw3OjTwcbbrzyOH16F9jY9LOvpMLuq7Fzv8u9AhHdKh3Xwe7s9r9/ehRVqkRbv5PC4+4f3mqk/+rHRIh3Roh+OjcUxz1Sd/LjqkQzpkfKz9OulJckxArfXSUsrjkjw3yccerS5JHnr0OskvJfnaWuuHd3+GW7ltkoed8Z73J/mmWuv/2cP5cIpa64dLKV+c2W9W+pK5P7pzkkedstk/JnlyrfW3NzzsHZJ85hrvuzrJt9daf3rD43AGHdKhIeipQ49L8jFzy+/ObKKfHmiRFg1BTy0yPgZCh4wz6JsO6dCE3S5nj4+bvD7J19da37jD85ksHdKhCTNXPSBapEUTZr56IHRIhybM+ABGzTVew4fAPXrTpkM6NATu0Zs2HdKhIXB/3rTpkHEGfdMhHZow9+cNiBZp0YSZqx4IHdKhCTNXPRA6pEMTdvDj47y+T4D+1FpfnuRBSX4qs4F6mtcneWKt9Um11qv3cnLt/ViSyzJ7Kucqf5fke5PcZ6j/KKem1npVrfVLk/z7zMbaad6X5CeTPKjW+jbdgAcAAAUCSURBVIo1d395ku9P8rtJrllzm79M8t2Z/YYT/4ndMR3SoSHYcYdO8tTG8vNrrTdssT+2pEVaNAR7apHxMVA6ZJxB33RIhybgNZn9VtxfSvKONbf5UJIXJvnCJA9309Vu6ZAOTYC56gOgRVo0UearB0SHdGhCjA9gUlzjNXwI3KM3bTqkQ0PgHr1p0yEdGgL3502bDhln0Dcd0qEJcH/eAdAiLZoAc9UDp0M6NFHmqgdEh3RoQkY1Pkqtte9zYABKKbfI7KnH90xyl8yebvz3SS6rtf5Nn+fWRinl9kkenORemT2p81aZ/Qfm75P8aa31z3s8PdZQSrlXkockuWuS2yS5Msnbk/xurfX6LfZ7XpL7JblPkrsluSDH4+P9Sd6Z5I9qre/e6gtgYzrEUOyqQxwGLWIodtki42PYdAjomw4xBaWUC5M8MLNxfsckt05yQ5IPJnlvkjcnecsB/GafUdIhxs5c9WHQIqBvOsQUGB/AFLnGMxTu0ZsuHWIo3KM3XTrEULg/b7p0COibDjEF7s8bPi1i7MxVD58OAX3TIaZgLOPDg9EAAAAAAAAAAAAAAAAAAAAAAACA3p3X9wkAAAAAAAAAAAAAAAAAAAAAAAAAeDAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgdx6MBgAAAAAAAAAAAAAAAAAAAAAAAPTOg9EAAAAAAAAAAAAAAAAAAAAAAACA3nkwGgAAAAAAAAAAAAAAAAAAAAAAANA7D0YDAAAAAAAAAAAAAAAAAAAAAAAAeufBaAAAAAAAAAAAAAAAAAAAAAAAAEDvPBgNAAAAAAAAAAAAAAAAAAAAAAAA6J0HowEAAAAAAAAAAAAAAAAAAAAAAAC982A0AAAAAAAAAAAAAAAAAAAAAAAAoHcejAYAAAAAAAAAAAAAAAAAAAAAAAD0zoPRAAAAAAAAAAAAAAAAAAAAAAAAgN55MBoAAAAAAAAAAAAAAAAAAAAAAADQOw9GAwAAAAAAAAAAAAAAAAAAAAAAAHrnwWgAAAAAAAAAAAAAAAAAAAAAAABA7zwYDQAAAAAAAAAAAAAAAAAAAAAAAOidB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9M6D0QAAAAAAAAAAAAAAAAAAAAAAAIDeeTAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgdx6MBgAAAAAAAAAAAAAAAAAAAAAAAPTOg9EAAAAAAAAAAAAAAAAAAAAAAACA3nkwGgAAAAAAAAAAAAAAAAAAAAAAANA7D0YDAAAAAAAAAAAAAAAAAAAAAAAAeufBaAAAAAAAAAAAAAAAAAAAAAAAAEDvPBgNAAAAAAAAAAAAAAAAAAAAAAAA6N3/B89nvm568KCIAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor, Config\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 5), dpi=300)\n", + " configs = get_known_configs()\n", + " to_display = configs[\"Relative humidity\"], configs[\"Ambient temperature\"]\n", + " for i, config in enumerate(to_display, start=1):\n", + " plot = figure.add_subplot(1, 2, i)\n", + " coros.append(plot_sensor(config, plot, {}))\n", + " await asyncio.gather(*coros)\n", + "\n", + "display(figure)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAE0YAAAmZCAYAAAAwyqtnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdd5RkVbX48e8eZkiSGXIaJAoIKElRkiBREZAgQRyCOYvx93yK+MxZjKBkQRHBwEMMKPoQUBBEJKkIKEgecmZm//44NVJ9+1Z3pe7qnvl+1uoFd997ztlVdavWmu5d+0RmIkmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmDNGXQCUiSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJknoQEVn5OXrQOUmavPxMkSRJkiRJkiRJkiRJkqT5S0QcXa0dG8txgxIRM2pq5GbOL+tLkiRJkqT2TR10ApIkSZIkad4WEVOBDYDnAEs1fhYAHgEeBm4FbgZuzswnBpSmJEmSJEmSJEmSJEmSJEmSJEmSJEmSpAGzMZokSZIkSeq7iFgI2Bs4HHgxsEgbw56KiL8AlwG/AX6emfeMXZaSJEmSJEmSJEmSJEmSJGk0ETEDuKmDIU8ADwIPADcCVwKXAj/NzCf7nd9cEfES4IKaUz/LzF37tMb2wK9HuGSHzLywD+scCpw8wiVrZubNva4jSZIkSZIkTURTBp2AJEmSJEmat0TEnsDfgTOAl9JeUzSAacDzgNcB3wHujIgvj0mSktQnEXFzRGTTz0mDzkmSJEmSJEmSJEmSJEkasIWA5YC1gV2A9wM/BG6LiE9FxGJjtO4RLeIvjYjVx2jNqsMn2DySJEmSJEnSpGNjNEmSJEmS1BdRfA34EbBqH6acAoxXIZIkSZIkSZIkSZIkSZIkSRpb04H3An+JiBf2c+KIWArYp8XpKcDMfq43gldGxBK9TBARzwa27VM+kiRJkiRJ0qQzddAJSJIkSZKkecY3gNe1OPdP4FfANcDdwCPAYsDSwDrAZsAmlF0iJUmSJEmSJEmSJEmSJEnSxPYI8PcW5xYFlgGWbXF+DeD8iNguM//Up3wOBhYe4fxhEfHRzMw+rdfKosABwPE9zHE4EP1JR5IkSZIkSZp8bIwmSZIkSZJ6FhF7Ud8U7QrK7o6/Gq2YKCIWBXYF9m78PKvfeUrSRJeZFjRKkiRJkiRJkiRJkiRpMrg8M7cf6YKIWBV4OXAUsFbl9BLAWRHxnMx8qg/5HFE5ToY2F5sB7Aj8sg9rVd1H2Sh2rsPpsjFaREwBXlMJz6I0mtM8KjOPBo4ecBqSJEmSJEkTxpRBJyBJkiRJkia3iAjgCzWnzga2zswL2tlhMTMfzcyzM/PVwCrAO4G/9TdbSZIkSZIkSZIkSZIkSZI0HjLz1sz8OrAJpaawai3g9b2uExGbAs+rhL8APFmJHd7rWi18F5jddPyCiHhOl3PtAqzadHw/8NNuE5MkSZIkSZImIxujSZIkSZKkXm1N2Umx2W3AzMx8opsJM/OBzPxiZr6n1+QkSZIkSZIkSZIkSZIkSdLgZOYjwMHAdTWnX92HJY6sLgl8CTi3Et8nIpbuw3pV/wZ+Xol124StOu504PEu55IkSZIkSZImJRujSZIkSZKkXu1WEzspMx8a90wkSZIkSZIkSZIkSZIkSdKEk5mPA5+oObV5RCzT7bwRsTBwUCV8YWb+Ezi5El+I0qBtLJxQOX51REztZIKIWBbYc5R5JUmSJEmSpHleR79YkyRJkiRJqrFGTeyP455FCxGxPLA5sHzjZzZwF3AncGlmPjjA9IZo5Lo+sBawFPAs4CFgFnAb8IfMfHicclkK2KIplymNPH6ambeMUw6rA88HVgaWBh4GbgIuy8zbxymHRYAtgZUo989iwL3A3cBVmXnjOOSwJPACYB1gScrzcDdwRWZeP4brbgSsTXncywKPNta9mfIaPDVWazfWXwDYFNgAWAFYGHgE+HNmXtDm+GdT3lOrAEsACwD3NX6uB67OzDlj8gAmiIgI4LmU+2c5YBngAcrn4E2U+2jMn4NB3ceSJEmSJEmSJEmSJEmaUM6viU0B1gMu6XLOfSj1Zc1Oafz3PEqNynJN544AvtLlWiP5MXAPML1xvAKweyPerkOABZuO/5yZfywlQBPD/FiXFRGrUB7vDErt0yLAg5Sayn9S6ukeH1iCfRIRC1JqBtcHVqS8tlAe5yzK63rDOOUylVL7uyHlPTUHuJ1S83ZpZs4ejzzaNRFqTSVJkiRJmtfYGE2SJEmSJPVq+ZrYI+OeRZNGgcFbgAMojbVaVQU9HRGXACcBJ493oURELE7Z3XFnYHtg9VGGzI6IK4FvAqdk5pNdrHkS8Jqm0C2ZOaPp/G7Au4AdKMVKVYdRnq8x0Wji9BrgTZTGbHUyIn4HfCozz20aezNDG/WdnJkzu8hhCmVX0EOAbSkNuVpdexNwJvDZzLynw3VOYuTXYlPgg5R7ZFqLOW4BPgd8ox+NyiJiY+AdwC6UhnStPBwRv6S8Bpd2uMb2wK8r4R0y88LG+dWB91J2ca0WLAL8BqhtjBYR61AKHV8CvIjSXHAkD0TELyiv3+/bzH8GpbiqlddExGtGOA9AZtZ+LkVEVkIfycyj28mtMs+6lOdxd0qxVSv3RsTPKM/BlV2scxIT7D6WJEmSJEmSJEmSJEnSxJSZd0fEgzzTcGmu6XXXt+mIyvGjwFmN9Z6OiNOBtzed3zQintdNrcxIMvPJiPhOZa3D6awx2uGV4xN6TqwPxqMuq7HO1cBGTaG7gVV6qSmKiAOB0yvhN2fm10YYMx3YG9gJ2I7S5G4kT0bEpZSGez/opilcRBwNfLg51qrGrJ8a9V17UWpGtwIWGuX6u4FzKa/ttWOQzwrA+4GZlE1969wVEWcCx2Tm3f3OoV3jVWsqSZIkSdL8asqgE5AkSZIkSZNe3S53a9TExkVEHAD8Dfg0sBmtm6JBaRq/DfBt4KqI2HbsMywi4tPAXcBpwKGM3hQNSqOyzYHjgRsjYps+5rNYRJxF2SFzJ+qboo2pRsOp3wIn0ropGpTX9MXATyLiexGxaB9z2BW4mrJj6M6MUKjSsCbwPuAfEfH2Ua5tN4cpEfFR4HLglbRoJtWwBvBl4PcRUdeksN01V2oU5f2J0vxupKZoUHYz3Au4JCJ+GBHLdLt2JY8jgOuAN1PfFK3VuGUj4grgr8AnKa/daMV3UHbv3Be4NCJ+FBGtCqkmjYhYNCK+BlxDKfocqSkawLKUJnR/jIhTI6Lt532UPMb9PpYkSZIkSZIkSZIkSdKk8HBNrNoorS0RsSaloVOzszOzeY2Ta4ZWm6n1y7crx3u0Ww8TEZsDGzeFnqTUFw7MAOqyTqwcLwfs0W6+LcysHD8BnNHq4kYjvduB44D9Gb0pGsCClMZYZwJ/iYgNu8p0HEXE+hFxA3AlpSHbtozSFK1hOUqN4V8i4viIaGdMuzntDlxL2dx1pHtmecrmyddFxKv6tX4nJkKtqSRJkiRJ8zobo0mSJEmSpF7dURPbf9yzACLiv4HvAqt0MXxD4BcRcVB/s2ppS0YvhBjJqsAFEfHqXhOJiGcBF1CaFw1ERKxFaYr24g6H7g/8NCIW7EMO7wb+F9igi+GLA1+MiG9FxNQecphCKZT5IJ01p3se8NuIWKyLNTcB/kBpjtXNDpOvoBSwrdvF2OY83gN8C+im0d3ilOegF3sCf4iIVXucZ2AaO5X+CngjpfFjR8MpO1deFBHtNGocKY9xv48lSZIkSZIkSZIkSZI0adQ1PHqwy7kOZ3jN0ynNB5l5JaWBUbODI6KX+r1amXk18Mem0FSg3Rq/wyvHP87Me/uSWPfGuy7rNOCpSuywbhdurLlTJfzDzLxvhGFb03ntVbPnUOrpqutONCsCvdT8BXAkpd6rq8aGQyaLeDnwI6CTTVqXBU6PiNf1un4nJkKtqSRJkiRJ8wP/4SxJkiRJknp1MVAtKtgpIt6amceOVxKNpmjH1Jx6Gvg18EvgNsrvQ1YDdgdewNCiqAWB0yLi6cw8c2wzHiIphVdXA9cBd1MKvWZTiiCeDWxB2dlyWtO4acDxEXFNZl7Rw/rHURq1zfVv4Dzgz8BdlN0416AUKPVdRCxJaea0Ws3pfwA/pOw4eR9lt8HnUppxrdi4Zlvg8z3m8EnKbnxVs4BfUIrV7gIepRTmbQjsCqxXuf4I4H7g3V2m8jHg4Kbjf1EKaK4G7gEWoxROvZKyg2Cz9Si7cr6l3cUau4z+ujFvsznA/1He3zdRHtMilIZ82wE7MrTh1TrAeRGxWWY+0O76TXYG3t90/EQjrwspzRefbqy9VU2udR4GLqO8n/4GPAA8RHmPL00pSNqB8lw2Wwf4XkRsl5lPt5j7SeCqpuMNGPq+vA/4Zxs59lVELEJ5zjaqOX0PcA7PvKeX5Zn7aOXKtRtQmqNtmpmzukxnXO9jSZIkSZIkSZIkSZIkTQ6NDTTrNk78RxdzTQFmVsK3UTYJrToF+EzT8VLAPsDpna7bhhOAzZqODwc+N9KARpO2A2vmmWjGsi6LzLwrIs6j1AfOtXtELJ+Zd3WR76HAlEqsk+d1NnAFcA1wPXAvpbYzKHWV61DqUF9UWWcx4LsR8bzM/FcXeQ/CfTzz2t5IeZwPU+oGp1NqJncGqptubknZELWXDZXXBI7lme87J6V28Tzg1sbxasBulOe6ue43gG9ExL2Z+YMecmjLBKo1lSRJkiRpnmdjNEmSJEmS1KvzgMcoxQ/NvhwRLwU+nZkXjWUCEfEi4MM1py4CjsjMv9ac+5+IeCGlyGX95umA4yLi95l5S/+z/Y85wM8pBVc/z8y7RxsQEdOBD1EaBs0t7FgIOJnSLKwbqwIHNf7/MeADwNcys7rrIsAHx2KXTOALDC+WeYhS8HF8ZmZ1QES8DXgPcDTld1xvojSs6lhE7M3wQpX7KI26TsnMx1uMC2Av4BvA8k2njoqI32bmjztMZaWmPB4CjgJOyMzZNWv/P0ojwPdXTr0hIj6RmbeNtlhELA18n+GNxk4Ejs7MVs29Pt4oUPwqsEtTfC3K++mVo61d4708c0//AHhnq4KwEe7B+yk7hp4FXNziHq7OtTXwJWDzpvDWwDuAz9aNycx/A5s2zXEzpXHgXD/OzJmjrT0GvsDwpmizgU8BH627jyPincC7gI9SPkvmWo1SrLZPF3mM630sSZIkSZIkSZIkSZKkSaWutug+SjOmTu1CqX9rdlpmzqm59jTKZn3Nm0Eewdg0Rjud0ghtbp3TBhGxVWb+foQx+1CaKM11G6W+cCIYl7qsJicwtDHaVOAQuts8dWbl+FbKJrsjeRI4m/KYf9XORqERsQbwCYY2t1sW+DrwsnaTHYA7gJMom25e3uK98x+NmsndgC9SmsLNtV9E7JuZZ3WZx3t55v1yPTCzxfvl4xGxZSPn5uZ7AXw9In6Tmfd0mcOoJlCtqSRJkiRJ84Vqt3tJkiRJkqSONBp6faXF6ZcD/xcRt0bECRHx2ojYJCL61qy9UTDwbYYWLEFp2LZji6ZoAGTmJZTd466unFqS1o+pX/bOzF0y8zvtNEUDyMx7MvNtwGGVUxtFxM5d5jH3eXsE2DUzvzRS4VKrwo1uRcQLGP54Hm7kclxdU7RGHk9m5scoTd1mUwpbFqq7dpT1l6c0Amv2N2DjxvotH28W51CKt26tnP5E497sxIKUxzEL2CYzj69rJtVY+6nM/ABwfOXUAgx/Plv5KjCj6Xg2cEhmHj5CU7S5699IKXCqPnf7RMRWba7fbO59eCyw30i7ZLZ4Tf4NrJyZb83M37RTfNeY62JgG+D8yqm39fNzaqw1mkO+vhKeAxyWmf/V6j7OzNmZ+RlKYWX1Ods7Irppcjfe97EkSZIkSZIkSZIkSZImgYhYibJZZtUZozVkauGImtgpdRdm5h0MbzS2Q0Ss2cW6I8rM+ymNppqNVgtTfSwnt6q5GWeDqMs6D7izEpvZzrrNGjVV61TCJ7dxr22Rma/MzHPaaYoGkJm3ZOZBlI1em+0eEevXDJkI/gCslpkfyMw/tPMebNRMngdsBVxZOf2uHnKZ2xTtGuDFIzURzMw/UO6tayqnlqNsIjomJlitqSRJkiRJ8wUbo0mSJEmSpH74EHDJCOdXoRT2HAf8CXgoIn4fEV+OiH0jYoUe1t4DWK8S+yewf2Y+OdrgzJxF2V3wseq8EVGdt2/aLZhpMfZkyu6LzY7sLSPen5m/7XGObry5JvaeRmHUqDLz+5SdJbv1dkojvLkepTRlqxafjJTDv4BXVcIbAHt2mdNhmXlVm9e+H6gW1Owy2qDGvX1AJfxfmfmdNtel0bTu9QzfrfX97c5R8Qfgna2a4Y2Sy5OZWX0Ptzv2ceA1lNd+rtWAbpsNDsI7a2JfzMxT2xncKFb775pTR/WQ05jfx5IkSZIkSZIkSZIkSZocImItSpOs5SqnHgU+0cV80ykbtza7PDOvHWHYydVpGLvN+06oHL8qIhapuzAiZgA7VMLVBkwDMYi6rMx8GjitEn5uRGzWYQp1r+2oz2svtZ3AMcBlTccBHN7DfGMmMx9tPNfdjL0POLQSfmFEbNBDSk8C+2TmvW2sfy9lM9BqjfDBjc+GsTARa00lSZIkSZqn2RhNkiRJkiT1rFHAsjvwkzaHLAxsCbwV+D5we0RcGBGHR8TCIw8d5i01sXdn5iPtTpCZNzF8p7igvmnXRFHd2fLFPcx1I/DVHsZ3JSKWAvarhK+jNNDrxIeB+7tYfzHgTZXw5zLzH53OlZm/Ay6ohPfudB7gN5n54w7WnUXZIbPZphEx2u/93sPQ3w3eBHy23XWb1n8K+HglvFsX72MoDfEGsstpZt7F8N1Je3lPjZuIWAXYqxK+i9KwshOfp+xg2eyFEfH8LtIar/tYkiRJkiRJkiRJkiRJE1BELBwRq0TEHhFxHPBnYOOaS1/bSWOhJocCC1Zi1Zq6qh8B1aZXM8eoRuUC4Jam4yWBV7a49jBKveJcv83Mv49BTuOuh7qsamM5gJntrhsRiwL7V8K/zcwb252jG41NQaubWU6KOrROZeZfgCsq4V4e67GZ+dcO1v8rcGwlvBAd3CftmqC1ppIkSZIkzfP8YpkkSZIkSeqLzLwfeAWl4KjTopwAtgO+DdwQEQe3NShiwca4ZncA53S4PsA3gerudy/tYp7xUm1gtFJErN7lXCc2CnLG24sohSjVXOZ0MklmPgx8r4v1dwKWqsS+3cU8c/1v5bh6b7bj+C7G/KFyvBiwSquLIyIouyU2O6mHpmTVhlYLAVt1OMffMvO3Xa7fL9X31AsGkkXnXgIsUImd0klzSPhPk7u6+6+bz8Exv48lSZIkSZIkaaJrNAHYMSKOiIj3RcTbI2K/iNhk0LlJkiRJUp9sFxFZ9wM8BtwKnAu8Fli0MvZR4ODMPL3LtQ+vHD8FnDHSgMYGsGdWwqsBO3eZw0hrJXBSJVzNmUZTttdUwnVNwSazjuuyMvNahtcTHRQR1XrDVl4JLF6Jndjm2F5VH+/zI2LaOK093vpZc9dNzVndJry79ZBDKxOx1lSSJEmSpHne1EEnIEmSJEmS5h1zd7uLiDOAXYGDgD2AJTqYZnXgtIjYCXhDZj4xwrXPBxauxH6YmdUGZ6PKzDsi4iJg+6bwehGxbGbe2+l8nWoU7LwY2ATYCFiO8rwtxvCmRzB8t0soz90/u1j+112M6Ye6Iphqk612nQu8vsMx1WKS2zLzltor23NT5XhGRCzVaBrYrt90sW7dLpZLAv9qcf3GwNKV2MVdrAtAZs6KiAcaa871PDp7LBd2u34rEbEKsDXl8a5LyW8JYBGG7rA614qV424bDY63F9XEzupyrjOBT7cx/2jG4z6WJEmSJEmSNA+JiGcDWwCbN/77fIZ+gfmWzJwxgNQ6FhEbAR8CXs7wv2PNveZvlC9kfy4znxzH9CRJkiRp0B6ibIJ5TGZ2VRcSES8ANqyEz8vMe9oYfjKlUVuzw4Hzu8llFCdS/n04t1Zp+4hYMzOb68x2AtZoOn6I7mt/xsU41mWdCGzZdLwMsCfw/TbGHlY5frjNccNExGLAtpTHuwGwLOXxPguYUjNkscrxQsAKlEaBE1pErEWp69wYWIvyOJegPIa617b6WnZbc3d9Zt7Q6aDM/GtEXMPQz4MtImJKpxv0jmIi1ppKkiRJkjTPszGaJEmSJEnqu0ZjsnOBcyNiAWBTStOvzSlfZFmP+mZfzWZSCkf2H+Ga59fELu803yaXMbQxWlAaPP2yhzlHFBFrA+8H9mVoY6luVHeka0cCf+px3W49t3L8GHB9l3Nd2cWYasOnpSOil+eiWtAEMB1ot1jl8czspvjpgZrYSPdSXaOrYyNipCaEo6nu6Dq9w/FX9LD2EBGxL/AmSjFSXeFZu7p5Pw1C9XPwaeCqbibKzFsi4i5g+RHmH8143ceSJEmSJEmSJrmI2B74AOXvR8sMNpveRUQA/w0cTf2XhZutA3wcODAiDsrMv4xxepIkSZI0UVwOHNttU7SGI2pip7QzMDN/FxF/B9ZuCr8iIqa32VitbY1anF8BOzZCQamL/HDTZYdXhn0vMx/pZx79MoC6rDOAz1Mars01k1EanEXEGgytAwU4s9PnNSI2A95Daca2yCiXj2YpJmhjtIiYQnlPvZbSrL4X3dbc/bGHNa9gaGO0xSkN+7qtRa0z0WpNJUmSJEmaL9gYTZIkSZIkjanMnE0pWvhP4UJELApsBewA7Aes32L4fhHx1sw8tsX5uuZL1/WQ7rVtrtEXEfEh4P9RdtPrh26aCD2cmY/2af1OLVs5/lfjfulYZt4WEU8B0zoYtmrleFFgk27WH8GywN/bvHZWl2s8VRMb6XmoPm5o/R7sVvW1Hc1dvS4YESsDpwIv6XWuhsnSlKv6GXVTZj7ew3zXMbQxWqefgeN1H0uSJEmSJEma/DYFdh50En10PMO/nD+H8qX/m4EFgQ0oX86d67nABRHxwsz8x3gkKUmSJEl99Aj1tVHTgKWBlWrO7QBcFhEzM/OMTheMiGcBB1TCsygbubbrFOCYpuMFgUOAL3aaTxtO4JnGaAAzI+IjmTknIpYG9qq5fkIZVF1WZj4QEecABzWFd4mIlTLz9hGGzmR4w/IT200uIqYBXwDeSG8N4JpNyFq0iHgO8B3KBsL90O3jvKGHNesaoC3fIt6tiVZrKkmSJEnSfKFfv5iRJEmSJElqW2Y+mpm/zswPZeZzgF2Ba1pc/sFGI7U6S9fEetkx7b6a2DI9zNdSRHwV+Aj9a4oG3TURerCP63eq+vo90ON8nY4fk9e2opOdIusaQ42FTpuWdaPTHTJ7ug8jYhXgQvpXfAeTZ1OJ6vuo110jq5+DC43wGVxnvO5jSZIkSZIkSfOuJ4AbB51EJyLirQxvivZdYPXM3CozD8jMvTNzPWBL4Mqm65YHfhoRC49TupIkSZLUL5dn5qY1Pxtm5sqUOqWZDG9QtCBwakS8vIs19wcWr8S+m5lPdjDHKUBWYtV/0/XL2Qyt51mdZxqlHczQ+sHrM/OSMcqjKxOgLqva0GwB4NWtLo6IAA6thP+WmRe1s1ijKdr3gTfT3+/eTrgNIiNiI+A39K8pGnT/OHupHa0bu1QP89WZaLWmkiRJkiTNF2yMJkmSJEmSBi4zfwZsAfy05vTywJ4thlYLnKDsQtmturF1a/QkIg4B3lRzahbwbeBwYBtgBqXp0SKZGc0/wJp9SufpPs3TjWpTuE6K0+o80e6FjUZP/WxKN5nUNRQctF7vw5OAdWrifwI+AewNPB9YEVgCWLDmPfWRHnMYlOpnVC+fga3G9/1zUJIkSZIkSZIanqL8LvdbwOuBzSi/kzxykEl1IuCbghUAACAASURBVCKWBT5eCR+bmQdm5m3V6zPzMmBb4A9N4XWBd4xdlpIkSZI0/jJzVmaeDGxKaR7dbAHgtIiY0eG0dQ3MTukwr1soDaGabRQRW3aYSztrPQ6cUQkf1vjv4ZX4Cf1evw9OYrB1WRcAt1Rih9Vd2LAd8OxKrNpcbSTvA15RE78N+BpwCPBCYDVK862Fax7vDh2sNxCNBnBnAsvVnP4dcDTwMmATSg3v4sDUmsd6cp9SmrB1v/N5rakkSZIkSQPVSXd9SZIkSZKkMZOZj0XEq4AbgemV0zsyvDAK4KGa2LN6SKNubN0aXWsUlHy65tQngWMy87E2p5oXdoer7tTXazHKEh1c+zgwh6EbB/wwM/fuMYfJoO4eWzoz76+JT3gRsQewUyV8F3Boo+liuybre+ohhu5w2ctnYKvxff0clCRJkiRJkqSGk4FvNL4kPkREDCCdrr0VWKzp+DrgqJEGZObDEXEwcC0wrRH+QER8MzPvG5s0JUmSJGkwMvOJiHg1sAJDm0YtQdlIdMd25omI9YAX1Zy6tE//jjycoU2s++VE4I1Nx3tHxA7A85piTwOnjsHaXZsIdVmZmRFxMvChpvD6EfGCzLy0Zki1adps2mycFxHLAx+ohJ8G3gN8JTPb3fxzMtShvQ54TiV2I/CqzLy8g3n69Vgnct3v/FxrKkmSJEnSQE0Z/RJJkiRJkqTxkZkPUnYYrFqvxZC6L4YsVRNrV93YWT3MV2c7YKVK7NjM/EAHTdEAluljToNSff2W7XaiiFiQoV86GlFmzgGqjcDW7Hb9SeaemtiM8U6ijw6sHM8GXt5h8R1M3vdU9X3Uy2dg3fgnMvPRHueUJEmSJEmSpGEy8766pmiT0Msrx1/KzKdGG5SZfwd+2BRaAtinn4lJkiRJ0kTRaCp1KPBg5dRLIuKANqc5or9ZDXNgRCza70kz8zLg6qbQwsBplcvOy8w7+r12jyZKXdZJQFZiM6sXRcRiwCsr4Z9n5m1trrMnUH3935eZX+ygKRpMjjq06mv7ELBTh03RoH+Pdck+j+3bJrHzea2pJEmSJEkDZWM0SZIkSZI00dTtuDi9xbV318Squ9h1YoOaWF0TqV68tHI8B/hYF/M8uw+5DNq/KserRMTSXc71XKDTbT/vrByvGxELdbn+ZFJ93AAbj3sW/VN9T52fmd3s3DpZ31PVz8E1e7yPq5+D/f4MlCRJkiRJkqSBi4jFImKXiDgsIt4bEUdFxKsjYvOIaLu2NiIWBzathDv5gvj5leN9OxgrSZIkSZNKZt4KfKjm1McjYtpIYyNiKqWx2lhagrH7d9mJleOVK8cnjNG6vZgQdVmZeRNwYSX8qohYuBLbH3hWJVZ93kdSfbz3AV/pYPxcE7oOrdFA7oWV8CmZeXMX0/Xrsa7bw9i6jZfv6mG+OvNrrakkSZIkSQNlYzRJkiRJkjTRPFATa7Xb3hU1sc17WHuLynG2WKMXq1WO/5qZdY2qRlMtTJmM6oqkXtDlXN2Mq66/CLB9l+tPJnXP+27jnkUfRMSCwPKV8P91Mc8CwJZ9SWr8VT+jpjL8S3htiYjVGf58/rGbuSRJkiRJkiRpImo0Q/sVMIvSlOwE4FPAZ4FTgMuAOyPik21u5rIyQ2txH+nwi8RXV4539Iu1kiRJkuZxXwf+UYk9GzhilHEvA1aoxO4Arurxp2q0PLp1KvBki3N3Af87Rut2ZQLWZVUbnC0J7F2JzawczwJ+3MEa1drO32dmq9dsJBO9trP6uwzo7rVdnv41Rtusj2MfAv7aw3x15tdaU0mSJEmSBsrGaJIkSZIkaaKpFi/B8N3W5roCeLwS26tRTNORiFgB2KYSviEzZ3U61yimV447nr+xO+Ze/UlnoC6piR3U5VwHdzHmFzWxQ7pcfzK5GHikEtujzS94TTTV9xN08Z4CdgcW6zKHauPGjj9/enRxTazbnWv3a3N+SZIkSZIkSZpUImJ6RPyC0gxtB2DaCJdPB94H/C0ith1l6mUqx/d3mFr1+mnA+h3OIUmSJEmTRqPR1DE1p/5rlEbRdQ3LDsvMTXv5YXjDo20jYu1uH18rmXkPcG6L06dmZqvNYwdlItRlNfsB8GAldtjc/4mItRhe//mdzHyigzX6Uds5nfJ7h4msX6/tAb0m0uQ5EbFep4MiYl1gw0r4ssyc05+0/mN+rTWVJEmSJGmgbIwmSZIkSZImmpfUxG6suzAznwJ+XQmvSHdNw14HTK3Eft7FPKOpNqSqKzIZzUHASn3IZaAy8yrg+kp434hYs5N5IuLFdLfL4s8Y3ljvwG4KbCaTRnHh+ZXw4sBRA0inV9X3E3T3nnpXDzk8VDnuRyFfJy4AZldir46IZ3UySURMBV5bc2osPgclSZIkSZIkadw0vtD+e2CnyqmHgAuB7wFnAZcDzV+cXRb4RUTsMsL0T1aOR/oSf5266zfocA5JkiRJmmxOA/5aia1Kfe0KEbESsFslfCf1zYq6yaXq8D7MW+eEDuODNBHqsv4jMx+l/Pu92Y4RsVrj/2fWDDuxw2X6Udv5ZmDhLsaNp55f28bmvm/tTzr/cWQXY+o+M37aayI15staU0mSJEmSBs3GaJIkSZIkqScR8fJOG1mNMNdawP41p1rtlAjw1ZrYZyNi0Q7WXQN4fyWcLebu1e2V43UjYka7gyNiBeCz/UxowL5ROV4Y+EZELNDO4IhYrGaOtjR24TyuEl4AOD0iFulmzknkYzWx9zaazE0amfkA8GglvHMnc0TEkcD2PaRxX+X42T3M1bHM/DdwTiW8AvDhDqd6B1At1PpdZl7ZbW6SJEmSJEmSNGiNvxedw9Df3d4A7AssnZk7ZOarMnO/zNyC8kX845uuXRA4LSJWabHEvZXjpSOiky9A122E45dqJUmSJM3TMnM28NGaUx9o8W+qmZS6rmZnNObp1XeBpyux17Rbv9ah8yj/Dmz+WSEzrx2DtXoyQeqyqqqNzqYAh0bEFODQyrmruqh7qtZ2bt3J5pQRsSHwgQ7XHITq44QOX1tKbdo6fcil2Vsbze3b0ri22pztCeCkfiYF832tqSRJkiRJA2NjNEmSJEmS1Ks9gL9GxIkRsX63k0TEypQvplQbmt0N/HKEoecB11diMygFB1PbWHdp4Ec16/4kM6u7UvbD/9XEPtXOwIhYhtIkrpudCCeqE4BbK7GdgZMjYqGRBkbEUpTnY8Me1v8Ew3dAfD5wTuPe6FhErBERx0bERj3kNaYaRV8/qISnUR73tt3MGRELRcTrIuKdPSfYmYsqx9tHxO7tDIyIXYEv97j+1ZXjjZp2Ih0vX6iJHRURr2pncETsQn2zvM/1lJUkSZIkSZIkDd5ngObf1/8UeF5m/qDuC/SZeXtmvg44qik8nfov7EP5G8fDTccLAJt3kN8La2JLdjBekiRJkiar0xle97cy8Iaaaw+riZ3WjyQy827gZzV57NaP+StrZWbeUfm5q9/r9NGg67KGyMxLGH7PzAR2BFavxE/oYolqbeditLk5ZWNz3B8DI9Y8TgSNe65aG3twRGzSzviIOIyxaQC3EHB2O3WbjWvOZvjzfXqjidlYmC9rTSVJkiRJGiQbo0mSJEmSpH6YSikwuS4iLo2It0RE3Q73w0TEohHxBuBK4Lk1l7wnMx9vNT4zEzgCqH555RXAz0faQS4itqIU71QLOu5n+E5y/XI+8FAltn9EfGuk3QUjYmfgUp75Ms2DY5TfuMrMh4DX1Zw6GPhLRLw6IoZ8ASgiVoyIt1CKnLZrhG8C7uxi/TuA1wBZObUL8MeIOKTNBnvPiogDIuJs4O/AW4C63UsnktdTnrdm04ELIuIzEbFiO5NExFYR8TngZuCbwFp9zXJ0Z9bEvhcR+7YaEBELR8SHKE0R5+7Y2O176uLK8RTg+xHRyRffepKZFwNfr8nj1Ig4OiIWrBsXEQtExLuAHwLVa87JzHP6n60kSZIkSZIkjY/GpjxHNoVuBvbNzMdGG5uZn6dszjPXwXW/N8/Mp4HfVcKvbjO/AA6pObV4O+MlSZIkaTLLzDnAR2pOvT8i/rPJaURsB6xTueb6zPxjH9Opa7J2RB/nn6wGXZdV58TK8drAlyqxJ4HvdDH3D4A5ldh7IuKjI9UQRsSBwCXAsxuhyVDbWX1tpwHnR8T2rQZExFIR8SXg2zzzveR+Pda5NcLPBS6KiC1HyGMLShO7ar3x3cD7+pTPMPN5rakkSZIkSQMx6j+0JUmSJEmSOrRV4+fYiLgZ+D1wLXAPcC+lKGAJYA1gY8pufa0agp2ZmSePtmBmXhwRHwGOqZzaAbg2Ii4AfgXcBiwArAbsDmwNRHU64PWZ+c/R1u1GZt4XEV8APlQ5dQSwV0R8H7gCuA9YilIs8zKGFnHMBt7O8CKfSSkzfxoRHwP+q3JqbeAUYHZE3ElpWDcdWI6hr9uTwKEML1CrNstrtf4PGsVYH62cWhM4FfhsRFwIXE4pnnmEcg8v1chxc8q9POF3e2yWmfdGxJ6U5oDNzeemAu8G3hYRlwC/BW6l3JMLUR73SsDzKI99ufHMu8YplB0omxuyLUZpTnYF8BNKAdFTwPLAZpT31LJN11/buK6bwqgfAbOAZZpiWwGXRcRDwL95pnDrPzJz0y7WGslRwDZA8+6RUym7lr4xIs4B/kz5LF4a2ADYB1i1Zq5/MfTLgpIkSZIkSZI0Gb2BoZtCfCQzH+1g/Ocof0+iMc+uwEk1151G+RLsXIdFxNcz80+jzP9Whn+5H2yMJkmSJGn+cSbwQWDDptgKwJuAzzaO6xqUndrnPH5EafC0RFNsj4hYPjPv6vNak8mg67LqnAp8nFIHOtdzKtf8JDPv7XTizPxrRJxGqUVs9kFgZkScRam/ephSK7YesCdDn59HKY+1usnlRPMFSkOupZpiKwK/jojfAj+jNJif04hvDexGef3nuoBSk1t9vrrxaeBdjfk3AC6NiIuAn1Jq2aDU/e5KqZGrq/t9Y2be3YdcWppfa00lSZIkSRoUG6NJkiRJkqSxNKPx042T6WDXxcz8aEQEw3eRnEYphti1jWmeAg7LzLqdDvvpf4DtGj/NlqV8SWckSSn8urD/aQ1OZn4wIpJSRFS1ALBy46fqCeDgzLyoZre9tncjzMz/iYh/A19l+O57KwAHNH7mKZn5l8YOimcztKEWlC951d2nE0pmPhUR+1EavC1aOf38xs9IbgP2AGZ2uf7jEfFOymdW1eKUArgxl5mPRcRLgHOB6o6ZywOvb3Oq64BdM3NWP/OTJEmSJEmSpAF4adP/zwbO6nD8RcDTPFNruw31jdG+CxzNM1+Engb8JCJ2zcxr6iaOiAN45kv+VXM6zFOSJEmSJqXMnNPYELVar/feiPg6pW7sldVhwHf6nMdjEXE2Q+uHplEaPrX6t9s8b9B1WS1yuj0izm/M28oJPSzxNkrt1fqV+KrAO0YZ+xSwH6U52oSWmbMi4mDgxwxtMgewbeNnJH+hPNYv9Cmlm4CDKXWMC1Aan23T+BlNAm/IzB/0KZeRF5tPa00lSZIkSRqEKYNOQJIkSZIkTXqnUgqN7u/TfP8AXpGZMzNzdicDM/MY4EDg312sey3w0szsa9FUncx8CngFpYFRJ+4H9s/M4/qf1eBl5n8DOwN/a3PIn4AXNxW0LF05/0CH658AvBD4VSfjajxO+RLUP3ucZ1xk5t+ArYDPU3Yo7MXlwHk9J9WhzLwS2AW4vcOhlwIvyMybe1z/FOBI4KFe5ulVY8fLHYBvUL6s19Fw4HTgRZk5Ke5dSZIkSZIkSWolIhYGNmsK/QuYHhEz2v2hbNjS/PevtaiRmU9Tvrz7ZFN4VeCKiPhaROwSEetHxHMj4oCIOJfyd4RpjWtvrUzZr7+5SZIkSdJkcBbw50psOeCtwEEMb8h1UWbeMgZ5nFYTa3tj13nVoOuyWhip8dntwM+6nTgzHwB2ouTfiX8DO2XmuNfOdauR6350sAFtw7nANpl5X5/z+TGwF539XmQWZWPdca2pnV9rTSVJkiRJGm82RpMkSZIkST3JzN9l5iHA8sCOwDGUP/Y/3ME0d1Kaq+0BrNcocOg2n+8CawPvBa6gNPtp5WnKboZHAhtn5m+6XbdTjQKaPSlflKkWdlXdBXyG8tycNda5DVJm/gLYEHgZcCJwNXAPMJvS6Owq4DhKsdXzM/NygIhYnOFFcLO6WP9Pmbkj8ALgFIZ/GamV2ynFca8BVszMAzPzrk7XH5TMfDQzjwJmAEdTGpy105jwccr7/f8BG2bmFoMq7srMi4BNgE8zenHU5ZTX6kWZ2e5rPNr63wZWAQ6jNIy8kvLefawf83eQx6OZ+UZgI0oR4B2jDJkFnAFslpkH97tgTZIkSZIkSZIGZEWeaTwG5fffN3XxM71pjmVaLZaZvwcOofzefK4FgTcC5wPXUf4e9F3K38Pm+iFwUmU6G6NJkiRJmm9kZlLqlareDby+Jl7XwKwffg3cVomtHxFbj9F6k8ag67Jq/IRSU1jnlE435K3KzNuAbYG3UDb6HcktwH8D62fmb3tZdxAy8xxgY+CbjFznNge4kLLp8cszc0x+d5GZ5wIbAF9l5IZtdwNfoTzvZ4xFLqOZX2tNJUmSJEkaT1F+dyhJkiRJktRfERGUJkHrAKsDSwCLUxqVPQg8RPkD/9WZOVrjnl7yWAHYgtK4bTlKs6e7Kc2CLm00KBu4iFidsoPcCpTn6nHKLoLXAH9Of4kzooh4KfDzSnjHzOx1Rz4iYm1Ksc2yjZ8FKY3/HqB8Ker6ebEwJSKW5Jn3zrLAkpTip4co9+YNwD96LSQbCxGxALA5pcnedGAqJe+bgMvH8jNnoml8Fm9M+SxeHliK8hl8N888H3MGl6EkSZIkSZIkDRcR21O+lD7XLZk5o4Pxm1G+jN1PN2fmmqOsuznwNcrv10fyFPBx4GON649sOveOzPxSL4lKkiRJkjQW5se6rIhYF9iSUn/6LOARShOsP2fmDYPMrZ8iYiFgK2A9Sr3gFEojvBuByzKz441qe8xnGuX3Kxs28plDqTm+CbhkgtYtzpe1ppIkSZIkjRUbo0mSJEmSJGnSi4gvAm9vCs0Bls7MkXYNlCRJkiRJkiRJE1AfGqO9ELi4z2m1nUNjQ5c9gW2AlSmbVswCbgH+Fzg1M29qXHsR8KKm4S/OzN/1MW9JkiRJkiRJkiRJkqRJZeqgE5AkSZIkSZJ6ERHLAEdUwlfZFE2SJEmSJEmSpPnWPZXjn2fmLuO1eGb+AvjFaNdFxDRgs6bQ08AVY5WXJEmSJEmSJEmSJEnSZDBl0AlIkiRJkiRJ3YqIAE4GFqucOm4A6UiSJEmSJEmSpInhzsrxugPJYnQvAhZuOv59Zj42qGQkSZIkSZIkSZIkSZImAhujSZIkSZIkaeAi4tCI2KnDMUsAZwMvq5y6HzitX7lJkiRJkiRJkqTJJTMfBK5pCs2IiHUGlc8Ijqgcf2sgWUiSJEmSJEmSJEmSJE0gNkaTJEmSJEnSRLA18IuIuCEiPhkRO0TEMtWLImJaRGwREf8D3ATsVTPXWzLz4bFOWJIkSZIkSZIkTWg/qxy/diBZtBARawH7NoXuB743oHQkSZIkSZIkSZIkSZImjMjMQecgSZIkSZKk+VxEfAN4fc2peyhfBHoCWAqYDiw0wlTfzswj+5+hJEmSJEmSJEkaLxGxPfDrptAtmTmjwznWBq4DpjZCjwObZ+Y1/cixFxGxAHA+sFNT+N2Z+bkBpSRJkiRJkiRJkiRJkv4/e/cdZldd5w/8faaldxJCSEJIUSBIR5CiCLrYVkXFFdYCKIKr+0OxLbsqqCyru7rqrgW7riKyomJdsAUbKkgRUFqAkGAoIb3PJHN+f5wh0yczaTfl9Xqe88z99s+dmXufBE7el51GXa0LAAAAAIA+7JVkZpLZSfZN36FolyY5d0cUBQAAAAAA7NzKspyb5MsdugYn+XFRFAcNZJ+iKAYVRXHWZuY09DXeZW5jkq+lcyjajUk+PpC6AAAAAAAAAAB2V4LRAAAAANgZ/DbJvC1c+7MkzyrL8r1lWZbbriQAAAAAAGB7KopiclEU07peSSZ2mdrQ07y2a68+jrgwye0d2lOT/LEoin8timJKH3UNKYriOUVR/FeSBekcsNaT5xVF8ceiKP6ht33bAtZOa6vnjA5DS5O8tizLjZs5AwAAAAAAAABgj1D4t6IAAAAA7CyKojgkyYlJnp5kRqp/oDQ6yZAkG1L946DFSe5J8qskPyvL8i+1qRYAAAAAANgaRVHMS7LfVm7z1bIsz+rjjClJfpLkgB6GH0hyd5JlSRqSjEoyLcnMJPUdJ5ZlWfRxxouS/KBD18NJ/pJkSZLGJHsnOTzJsC5LFyd5YVmWf+htbwAAAAAAAACAPU1DrQsAAAAAgCeVZXl7ktuTfKrWtQAAAAAAALu+siwXFEVxdJLLk/x9l+HpbdfmLBvgsZPbrr78Nslry7J8YIB7AwAAAAAAAADs1upqXQAAAAAAAAAAAAAAbC9lWa4qy/LVSQ5N8vUkS/uxbGGSK5KcnmTiZub+OclXkzy6uVKS/KptzxOFogEAAAAAAAAAdFeUZVnrGgAAAAAAAAAAAABghyiKoi7JIUkOSjI2yegk65KsSDIvyV1lWS7Ywr2nJXlakilJRqX6EOMVSe5P8oeyLBdvXfUAAAAAAAAAALs3wWgAAAAAAAAAAAAAAAAAAAAAAABAzdXVugAAAAAAAAAAAAAAAAAAAAAAAAAAwWgAAAAAAAAAAAAAAAAAAAAAAABAzQlGAwAAAAAAAAAAAAAAAAAAAAAAAGpOMBoAAAAAAAAAAAAAAAAAAAAAAABQc4LRAAAAAAAAAAAAAAAAAAAAAAAAgJoTjAYAAAAAAAAAAAAAAAAAAAAAAADUnGA0AAAAAAAAAAAAAAAAAAAAAAAAoOYEowEAAAAAAAAAAAAAAAAAAAAAAAA1JxgNAAAAAAAAAAAAAAAAAAAAAAAAqLmGWhcAtVYUxagkz+rQtSBJc43KAQAAAAAAAADYGk1JpnRo/7Isy+W1KgYA3KMHAAAAAAAAAOwm3J+3gwhGg+qGq+/VuggAAAAAAAAAgO3gJUm+X+siANijuUcPAAAAAAAAANgduT9vO6mrdQEAAAAAAAAAAAAAAAAAAAAAAAAAgtEAAAAAAAAAAAAAAAAAAAAAAACAmmuodQGwE1jQsXHNNddk5syZtaoFAAAAAAAAAGCLzZ07Ny996Us7di3obS4A7CDu0QMAAAAAAAAAdnnuz9txBKNB0tyxMXPmzMyePbtWtQAAAAAAAAAAbEvNm58CANuVe/QAAAAAAAAAgN2R+/O2k7paFwAAAAAAAAAAAAAAAAAAAAAAAAAgGA0AAAAAAAAAAAAAAAAAAAAAAACoOcFoAAAAAAAAAAAAAAAAAAAAAAAAQM0JRgMAAAAAAAAAAAAAAAAAAAAAAABqTjAaAAAAAAAAAAAAAAAAAAAAAAAAUHOC0QAAAAAAAAAAAAAAAAAAAAAAAICaE4wGAAAAAAAAAAAAAAAAAAAAAAAA1JxgNAAAAAAAAAAAAAAAAAAAAAAAAKDmBKMBAAAAAAAAAAAAAAAAAAAAAAAANScYDQAAAAAAAAAAAAAAAAAAAAAAAKg5wWgAAAAAAAAAAAAAAAAAAAAAAABAzQlGAwAAAAAAAAAAAAAAAAAAAAAAAGpOMBoAAAAAAAAAAAAAAAAAAAAAAABQc4LRAAAAAAAAAAAAAAAAAAAAAAAAgJprqHUBAAAAAAAAAMDOoyzLtLa2pizLWpcCu42iKFJXV5eiKGpdCgAAAAAAAAAAAMBOTTAaAAAAAAAAAOzByrLMunXrsnLlyqxcuTLNzc21Lgl2W01NTRkxYkRGjBiRwYMHC0oDAAAAAAAAAAAA6EIwGgAAAAAAAADsodasWZOFCxempaWl1qXAHqG5uTmLFy/O4sWL09jYmEmTJmXo0KG1LgsAAAAAAAAAAABgp1FX6wIAAAAAAAAAgB1vzZo1mT9/vlA0qJGWlpbMnz8/a9asqXUpAAAAAAAAAAAAADsNwWgAAAAAAAAAsId5MhStLMtalwJ7tLIshaMBAAAAAAAAAAAAdNBQ6wIAAAAAAAAAgB2nLMssXLiwWyhaY2NjRo4cmeHDh6exsTFFUdSoQtj9lGWZlpaWrFq1KitWrEhLS0unsYULF2bGjBledwAAAAAAAAAAAMAeTzAaAAAAAAAAAOxB1q1b1ymUKUlGjBiRfffdVygTbEeNjY0ZOnRoxo8fn7/+9a9ZuXLlprGWlpasX78+gwcPrmGFAAAAAAAAAAAAALVXV+sCAAAAAAAAAIAdp2MYU1KFNQlFgx2nKIrsu+++aWxs7NS/YsWKGlUEAAAAAAAAAAAAsPMQjAYAAAAAAAAAe5CuwWgjR44UigY7WFEUGTlyZKe+rq9NAAAAAAAAAAAAgD2RYDQAAAAAAAAA2EOUZZnm5uZOfcOHD69RNbBn6/raa25uTlmWNaoGAAAAAAAAAAAAYOcgGA0AAAAAAAAA9hCtra3d+hobG2tQCdDQ0NCtr6fXKAAAAAAAAAAAAMCeRDAaAAAAAAAAAOwhyrLs1lcURQ0qAerqut+209NrFAAAAAAAAAAAAGBPIhgNAAAAAAAAAAAAAAAAAAAAAAAAqDnBaAAAAAAAAAAAAAAAAAAAAAAAAEDNCUYDAAAAAAAAAAAAAAAAAAAAAAAAak4wGgAAAAAAAAAAAAAAAAAAAAAAAFBzgtEAAAAAAAAAAAAAAAAAAAAAAACAmmuodQF0VhTFAUkOTTI5yZAk65I8nmRukj+VZbl6K/ZuTHJ8kqlJ9kmyKsnCJLeWZTlv6yrvdtb+SQ5LMinJ8CSPJHkoyQ1lWbZsy7MAAAAAAAAAAAAAAAAAAAAAAADY9QlG2wkURTE6yQVJzkkVWtabjUVRjXXTagAAIABJREFU3Jbk6rIsPzSA/ccneX+Sv0sytpc5NyT5z7Isv93vwnve5xVJLkzyjF6mLCmK4qok7yvL8omtOQsAAAAAAAAAAAAAAAAAAAAAAIDdR12tC9jTFUVxepK5SS5J36FoSVKf5Mgkbx3A/s9PcmeSN6WXULQ2xyW5uiiKrxdFMay/+3c4Z3hRFFcm+VZ6D0VLWw1vSnJnURSnDvQcAAAAAAAAAAAAAAAAAAAAAAAAdk+C0WqoKIqLk/xvknFdhuYn+VmSK5N8N8nvk6zegv1PSnJNkgkdusskN6cKMPtpkie6LPv7JFcWRdHv342iKOqTXJXkVV2GFiX5SdtZt7Sd/aS9k3yvKIoT+nsOAAAAAAAAAMBAzZ8/P+95z3ty4oknZu+9905TU1OKoth0feUrX6l1iQAAAAAAAAAAAAC0aah1AXuqoijenuSSLt1XJvm3sizv6GF+XZJnJHl5klP7sf/kJN9J0tSh+7dJzi3L8q4O8wYlOS/JR5I0tnX/bZJLk/xzP5/Oh5K8oEO7JcmFST5XlmVzh7MOSvKFtueRJIOSXFMUxdPKsnykn2cBAAAAAAAAADvAtGnT8tBDD21qz5kzJyeddFLtCtoCn//85/OP//iPWb9+fa1LAQAAAAAAAAAAAKAf6mpdwJ6oKIpDU4WJPaklyellWZ7ZUyhakpRl2VqW5W/LsrwwyaH9OOb9ScZ0aN+Q5DkdQ9Ha9l1fluV/JXlll/UXFkWxXz+ey/QkF3TpPr0sy092DEVrO+svSU5J8rsO3eOSXLy5cwAAAAAAAAAABuLHP/5xzjvvvH6Hol1//fUpimLTdckll2zfAgEAAAAAAAAAAADopqHWBexpiqJoSPKldP7en1eW5dX93aMsyw2bOWNWktd16GpOclZZluv62POaoii+2mHdoFSBZedsppyLkzR2aH+lLMvv9XHO2qIozkpyR5Kmtu7XF0Xx72VZPrCZswAAAAAAAAAA+uWiiy5KWZab2meeeWZe//rXZ8qUKWlsbL/VYa+99qpFeQAAAAAAAAAAAAD0QDDajnd6kiM6tH9eluWXt/EZZyap79D+TlmW9/Vj3YfTOVDtlUVR/ENvgWpFUQxJ8ooe9uhTWZb3FkVxTZJXtnU1tNV8aT9qBAAAAAAAAADo0z333JPbb799U/sFL3hBrrjiihpWBAAAAAAAAAAAAEB/1NW6gD3QeV3al22HM07r0u5X8FpZlncl+UOHrmFJ/qaPJacmGdqh/buyLO/uV4Xda3pZP9cBAOycWlYkC76T3PfZZNUDta4GAAAAAAD2aH/84x87tV/xiq6f+wYAsIdZdmdyxweSez+drF+SbFiblK21rgoAAAAAAAAAoJuGWhewJymKYmaSZ3XompdkzjY+Y2KSQzt0bUjy2wFscX2SYzq0n5/k+73MfV4Pa/vr16lqe/J38PCiKPYuy/KxAewBALBzWL0g+flJ7YFoRX1y/FXJ1JfXtCwAAAAAANhTPfZY59sPJk+eXKNKAABqbMV9ybWHJxtWt/f98c3tjye9MDnua0nTmB1fGwAAAAAAAABAD+pqXcAe5tld2j8vy7Lcxmcc3KV9e1mWq3uc2bMburRnD+Cs3/X3kLaa7hjAWQAAO69b39keipYk5cbkd69JNq6rXU0AAAAAALAHW7VqVad2Y2NjjSoBAKihJbck1x3dORStq4U/Sm56y46rCQAAAAAAAABgMxpqXcAe5uld2r9LkqIoiiSnJPn7JMck2TfVz+aJJPcl+VmSb5ZlOa8fZxzUpT13gDXev5n9OjpwG5x1eJezfjHAPQAAam/+Vd37Nq5NFnw3mXbGjq8HAAAAAAB2IWVZ5pZbbsndd9+dxx9/POvXr8/48eOz77775oQTTsjw4cMHvGdra+t2qBQAYBfSvDz59cuTluWbnzv/quTIjyeDx2//ugAAAAAAAAAANkMw2o51VJf2XUVRTEvyxSQn9zB/att1SpIPFEXx+STvLMtyTR9nzOzSnj/AGh/q0h5XFMWYsiyXduwsimJskrFbeVbX+bMGuB4AYOe26DeC0QAAAAAAoBdPPPFELrvssnz961/PokWLepzT1NSUk08+OZdcckmOOeaYXveaN29e9t9//17Hn/3sZ/fY/+Uvfzlnn312j2Pvf//78/73v7/XPefMmZOTTjqp13EAgJopy+SmNyWr5/Vz/sZk8R+SfV+0XcsCAAAAAAAAAOiPuloXsIfZp0t7aJKb0nMoWleNSf4hyW+Koui6T0eju7Qf7395SVmWq5Ks69I9qh/nrCnLcvVAzkr32no6BwBgF1bWugAAAAAAANgpXXPNNZk+fXo+9rGP9RqKliTNzc259tprc+yxx+a8887Lhg0bdmCVAAC7qAXfTh66cmBrfvm3ycb17e2NzckdH0x+eFDyf0cm9302KVu3bZ0AAAAAAAAAAD1oqHUBe5iuYWJfTrJX2+PVSS5P8n9JHk4yLMmhSc5JckKHNYcn+XZRFM8qy7KlhzOGd2mv3YI61yYZ3KE9Yjue01FP5wxIURQTkowf4LIZW3suAAAAAAAAANA/X/rSl3LuueemtbVzsMaMGTNy0EEHZejQoZk/f35uvPHGbNy4cdP45z73ucyfPz8/+MEP0tDglhcAgF5Nen4y49zk/s8PbN1Vg5PxJyQT/ya5432dx246P1l6azL5tGTQuGTMYUld25/JHvtl8vj1SdOYZOzRyYgZSfOyZOi+yaO/SFY/lOzzN8mIWUlRbJOnCAAAAAAAAADsvtwluoMURTEoyaAu3ZPbvv4lyfPKslzQZfyWJF8uiuLtST7Sof8ZSd6d5NIejuoaWLZuC8pdm2RMH3tuy3P62nNL/EOSi7fBPgAAAAAAAAB01bohWfNwravY/Q2d3B4ysZu57bbb8qY3valTKNphhx2WT33qUznuuOM6zV20aFHe+9735rOf/eymvmuvvTbve9/7ctlll3WaO3ny5Dz44IOb2h//+MfziU98YlP7yiuvzLHHHtutnr322isnnXRSkuT3v/99zjjjjE1jF1xwQd761rf2+lwmTpy4mWcLAFAjDcOSYz6X7HNqcuO5SfPS9rG6pqS1ufe1i35TXT2Z+9nq2lrjjk2W/SnZ2HYb6eSXVH2DxyeLb0we/VkydGoy6XnJ6EPbAteOSOoaq/mr5iWL/5AUdcm+L66e04bVSVFf9dUPStY+ksz/VjV/ysuqP2MPRMuqqr7B/fis3nWPV9+zsjXZ53lJ47a4HRYAAAAAAAAA9ly75120O6f6XvqXp+dQtE3KsvxoURT7Jnlbh+63FUXx8bIsV23m3HKAde7sawAAdh2lP+4AAAAAALuZNQ8n39+/1lXs/l78YDJ8Wq2r2C5e//rXp7m5PYjjhBNOyHXXXZehQ4d2mzt+/PhcfvnlmTlzZt75zndu6v/whz+cM844I0972tM29TU0NGTatGmb2qNHj+6018SJEzuNdzR8eBVcMW/evE79o0eP7nUNAMAuYerLk3FPT3736uSJ3yXPvSFZeV9yw5m1rWvx7zu3H/5edXW06oHk8eu3zXk3X5A0jkqmnJZsXFddQ6cm089Kxh5ezVl4bXLXR5Lld1RBZx01DKsC2B66snN/XWPS2tL9vNFPq0Lp6odWAW1No5Ipp1cBdWsXJkv+mBQNyYhZyV7HJOsXJy3LkwnPTJbcWs2bcEIybL9t8/wBAAAAAAAAYBcjGG0HKctyTVEUrUnqugz9Z1+haB28N8k5SUa1tccmeX6Sb3WZ1zUobchAa+1hTU/hazvqHAAAAAAAAABgNzBnzpzccsstm9ojR47MVVdd1WMoWkfveMc78stf/jI//OEPkyStra352Mc+li996UvbtV4AgN3CsCnJyb9IFt+YjDuqCu1qGJZsWF3rynasluXJA1/p3Hffp5Pjr6zC4v70z72v3bC6eyha0nMoWpIsu6O6OrrrIwMqN0kV5jb7X5Kppyet65MV9yarH0we+Umy4u5kw6pk3WPt8+sHJyOe0vYzHpEMm5pMeFYy9oikblBSFAOvAQAAAAAAAABqQDDajrU6yYguff/Tn4VlWa4uiuI7Sc7u0H1SBKN19el0/55szowk39vsLAAAAAAAAABgi331q1/t1H7zm9+cSZMm9Wvthz70oU3BaEly5ZVX5jOf+UwGDRq0TWsEANgt1dUn459RPa4flJwyJ7nu6bWtaWdQbkh+c3qtq+hdy/LktndVV39sXJcsu726enLEx5KnXiAgDQAAAAAAAICdXl2tC9jDLOvSfqwsy3kDWP/7Lu0De5izvEt7/AD2T1EUw9M9sKxr3T2dM7QoimEDOSvJhH6cMyBlWT5eluWfB3IluX9rzwUA6FlZ6wIAAAAAAGCn8Zvf/KZT+9WvfnW/186ePTtHHHHEpva6dety8803b7PaAAD2KOOOTl78QDK4622c7NZueVvyYL8+zxkAAAAAAAAAakow2o51b5f2IwNcv7BLe1wPc+7r0t5vgGd0nb+kLMulXSeVZbk4Sdf+qVt5VtfaAQAAAAAAAIDdwNKlS3P//e2fWzZ69OgceGBPnwfXu+OOO65T+6abbtomtQEA7JGG75+87LHk9OXJ0ZfXuhp2lJvfmmxYUz0uy+oCAAAAAAAAgJ1MQ60L2MP8OckpHdrrB7i+6/zBPcy5q0t75gDPmN6l/Zc+5t6VpONdxzN7OH8gZw1kLQAAAAAAAACwi1i0aFGn9qxZs1IUxYD2OOCAAzq1H3/88a2uCwBgj9c4Mpl1XnUlycZ1SYpk1f3V4+H7J0tuTn7x3L73GTolqRuUlC1Ja0sy7phk/PHJre/Y7k+BAWhZlvzvsJ7HBo1PGoYnG1YkE5+b1A9OBu+TNC9O1j6aHPL+ZNTsZPFNSV1TMubwpNyQ1A/asc8BAAAAAAAAgN2eYLQd6/Yu7dEDXN91/uIe5tzZpX1IURRDy7Jc088zjt/Mfl3HOgajPSPJD/pzSFEUw5IcMoCzAAB2QT5VFwAAAADYzQydnLz4wVpXsfsbOrnWFWxzS5cu7dQeNWrUgPfoumbJkiVbVRMAAD2ob/vM3lEHtfdNfE7v8yf+TXLydb2P9xaMVjcoedW65BsDC8vdZPShybI/9TzWMCyZ8Oxk4Q+3bO891fpF1ZUkD32z+/hfv9/72iGTkoPenaxZkCz9U/LoT5MJz6p+n8YckUw8uQrLWz2/ClprWZE8/L2kaKjGJr80qWts32/NwuSxOUlRJJOenzSN2bbPFQAAAAAAAICdmmC0Hev/UqVjPHkXx/SiKAaXZbmun+sP7tJ+uOuEsiwfKYri9rSHjjUkOSHJT/p5xkld2v/Xx9xrk7yxj7V9OTGdf/9uLcvysQGsBwAAAAAAAGBHq2tIhk+rdRXsgsqy84eJFMUWBmBs4z0AAOinyS+pgqy6mnVe3+umvDxZ8O3u/Yd9aPNn1g9ONvZwi21Rnzz318m3xyWtLd3HX/iXZNjUZOP6ZN43kiduSAaNS4btn9x0/ubP7csZrcnczyY3vann8ef8KhkxMxk8MVlwdfU9a16ejDks2e/vqnrvuKTvkLFd0dqFyc0XdO57/JfV10euS/7yb72vnXt5++P6ocnGXj4LeviMZNTsZMPKpGlsFa7W2pIsvbV6PPE51c95+jnJ+OOqgLzm5cn6J5KUybD9Ooev9aVsrepfeV8yYlYV8lbU9W8tAAAAAAAAAFtNMNoOVJblwqIofpfkuLauxiSnJPlRP7d4Xpf2r3uZ9920B6MlydnpRzBaURQHJDmmQ9fqzay7LsnaJEPa2s8oiuKAsizv3txZSc7q0v5uP9YAAAAAAAAAALugsWPHdmovX758wHt0XTNmzJitqgkAgAGYeX73YLShU5NJL+p73bRXdw9Gq2usQsKSZNILk4U93Ea735nJyKdUIWJdHXxx0jgimXxaMv9/O49NeFYVipYk9YOSGWdXV1KFZ93y1p7D1vpjn1OTokgmPb/n8bFHJxNObG9PPb26upr9L70Ho71kXjJ0SnJlfe91HPah5LZ/6nnsqE8l085IGkYk3+xnCNjOpLdQtCRZdX919ebRn1ZfH/pm73PqBiWt67estiSZ8Ya2B0Wy4q6keWkV1DdkUvKUtySD965C4oqG6uufLqqC2SY8Kxl5QDJ8ehW6NuVl1e/30tuSNQuTvY5NBnX4O9PG5iqIrc6t/gAAAAAAAMCeyf8t3fG+nPZgtCS5MP0IRiuK4sQkT+/Q1Zrkx71MvyLJe5I8eVfEy4qimFWW5X2bOebdXdr/W5Zlr3d/lGW5piiKq5O8psseZ/d1SFEUT0lyWoeuDUm+sZnaAAB2PWVZ6woAAAAAAGCnMH78+E7te++9d8B73HPPPZ3aEyZM2KqaAAAYgEnPS46/KvnLh5JVDyTjT0ye/pmkvqnvdVNemhz+H1XA2YbVVXDUcV9PhuxTjU89vedgtP1fk4x8anLXR5MNK9v7G0Yk019bPX765UnzsuTRts8AHndMcvyVvdfSODKZ9prk/s/3+2lvUtQlT31b9XjYfsm0v0/mXdF5fPZF/dtr7BHJ4InJukc79488oAqbK4pk5huTuZ/rvnbGG5ID35nc++lkzfzOY42jk+lnJw1tn3d85H8lN/+//tW0p9iaULQkuf8LPfcvuz155Nre1z3+y+p60p/6+buSJPVDqtC1Q/81WXxTsurBKmCtcXhSNCYjZiV1bbeMr16QrH4oGXNI9fsOAAAAAAAAsIsSjLbjfTlVGNqBbe2Ti6K4sCzL/+xtQVEUE9rWdfS/ZVn2+LFnZVneVxTFV5Oc09bVlOQrRVGc0lvQWVEUL0lyVoeu5iTv39yTSXJJklclefJj5c4qiuK7ZVn2+FF2RVEMbnsuHe+E+WJvzwUAAAAAAAAA2PWNGTMmM2bMyP33V7cHLFu2LHfddVcOPPDAzaxsd8MNN3RqH3300du0xqIotul+AAC7nf1eWV1lWYV39deB70ieekGy5q9VqFjHtfv9XTL/W53D0aa9Jpn43Crs6Tm/TG57V7L0T8mYQ6uQtWH7VfOaxiQnX5esezxpbUmG7rv5Wo7676R+cHLvf/c97/TlyW0XJY/9Ihk6JTngbcmkU9vHj/1KMvppycIfJ4P2SmacW4XH9UddQ3LYh5I/nJOUrW19TVXfk9+bqaf3HIy236uqELaD35vceG7nsdn/1B6KliSzzk9W3JXc95n+1cXOaePa5K7/qK6BGLJvsu+LqoC0Jbckj/2883jTmOq1NPm06jU0bGoVXDhsWjLmsKRpVPvc1o1JuaG61ixMhk5KGoZVY2WZpKx+LwEAAAAAAAC2EcFoO1hZlhuLorggybVJnvw/wB8timK/JJeUZbm04/yiKJ6T5DNJZnToXprknzdz1MVJTksypq19XJKfFUXxhrIs7+6w/6Akb0zy0S7rP1qW5UP9eD4PFEXxiSTv6NB9dVEUFyb5XFmWzR3OOjDJF9pqedLi9C+ADQAAAAAAAADYhZ1wwgmbgtGS5Iorrsill17ar7V33XVXbr755k3twYMH58gjj9ym9Q0aNKhTe/369dt0fwCA3caWBMrWNSbDp3Xvrx+cPPO7yaM/T5bdnow9Mtn75PYzxh6enPzTvvcePKH/ddQPSo76r2Taq5OfHNPznHFPr8Kkjv5U7/vUNSQHvbu6tsT01yUjZiYLvluFok19efXcn7T3KVX42Z0fbO+b/Z7qe5MkM9+QDJmYzPtGFVY15eVVyFynGhuToz+dHPiuZN7Xk9vfu2W1smta+9dk7md7H29eWl1Lb+t7n0F7Jeuf6HmscXTSsqzt8cgq0G/GG6vX5BM3tO1dJJNekIw/rgpgaxxVvX7qB3feqyyTjevaw/02Nle/wy3Lk3WPJSNmCV8DAAAAAACAPYhgtBooy/KnbeFoHT9u7v8leVNRFL9P8tckQ5IclmS/Lsubk5xRluWDmznj4aIoXpbkuiRNbd3HJ/lLURQ3J3kgyagkRyQZ32X5D5MM5O6Hf0oyO8nz29qNqZ7be4uiuCXJyiTT287qeDdMc5LTyrJ8ZABnAQDsQspaFwAAAAAAADuN1772tfnqV7+6qf3JT34yb3nLWzJx4sTNrr3ooos6tV/1qld1CzLbWqNHj+7UfuQRtzMAAOwQdY3JpOdV144y7qjex0Y8ZcfUMP746upJUSSHfCCZ+cZk6Z+S0Yckw6Z0nrPvi6prc4ZPSw5+TxVudc8ntrrsfusrUItdR18/wydD0ZKkZUVy/xerq6u7/r173/AZVahfw/Aq8GzVvGTDyr5raRyZjH9msvqBKmCttTlZcnPSNDYZPj1Z8sdq3pgjklnnJavnJ+sXJQ9fk6xfnJQbq/HpZ1evrVUPVO8/409MBu+dbFhVBRXWb9u/awIAAAAAAAADJxitRsqy/GRRFBuTfCTJ0LbuxiQn9rHssSQvK8vyhn6ecX1RFKcl+Uraw8+KJEe1XT25Msm5Zfnk//nt1zkbi6J4ZZIvJOn4cXMTkvR2l8rjSV5XluWv+3sOAAAAAAAAALDrOvnkk3PYYYfltttuS5IsX748Z5xxRn784x9nyJAhva772Mc+lu9973ub2kVR5G1ve9s2r2/69OlpampKc3NzkmTOnDlpaWlJY2PjNj8LAIAaK+qqsLFlt3cf2/+1O76e3gydXF3bwuTTeg5GK+qSsnXbnJEkIw9IXnRXe/vx3yR3XJI89vMq2OqkHycjD0zu+Xhy5wfb5zWMSA56V3L7QD7bmV3WqvsHvqZlRbLwh937m5ckS5a0t5fektx4Xu/7PPDl6toS445JhkxKRh1UfR00Llk5N3nom8mah5OppycjZlWvq5Vzk33/Nhl9cLL20WTYfknL8mTtI1XQYcPIpGlMUle/ZbUAAAAAAADAbkwwWg2VZfmZoih+kuSSJC9JMqKXqY8muTzJx8uyXD7AM35cFMXBSd6fKrRsTC9Tf5/kI2VZfnsg+3c4Z1WSVxVFcXWStyc5tpepS5JcleTisiwXbclZAAAAAAAAAMCO9+ijj2bevHlbtHbatGlJki9+8Yt5xjOesSl87Prrr8+JJ56YT33qUznmmGM6rXniiSdy8cUX59Of/nSn/ne961055JBDtqiOvjQ1NeX444/PnDlzkiTz58/Pi1/84px//vmZNWtWhg4d2mn+xIkTM3jw4G1eBwAAO8j0s5JbLuzcN2y/ZO+Ta1LOdjfhxGSfU5NHrmvvG7x3cvyVyc97ec4HvD25+6Pd+8cdmxRF8sTvuo8ddFGXc09ITvlZ93mHfKC6yrJqF0X1ddFvk0eu7T5//AnJc36VPPg/ybyvJxvXJlNflTzlzcmvXpr89fs9P4ckOfK/kmV3JPd/vvc50B+L/1B9ffi7PY93/R2be/nA9h8yKZnysmTFvVWQ4NqFSeOIZPW8ZPiMZOmtSf3QKoBw7JFVMNvkl1QBa/VDk41rkpZV1dqV9yStLcnYo5K6huq1tnFNFTBXNCSNo5LWddVcAAAAAAAA2MkIRquxsizvT/KaoiiGJDk+yeQkE5M0J1mU5E9lWfbwcXQDOuPxJG8qiuKCtjP2aztjdZK/Jrm1LMsHt+aMDmddneTqoij2T3JEkklJhqUKd3soyW/LsmzeFmcBAOz8yloXAAAAAAAA28wZZ5yxxWvLtrCDI444Ip/85Cdz/vnnp7W1NUly880359hjj83MmTMze/bsDB48OAsWLMiNN96YDRs2dNrnuc99bj74wQ9u+ZPYjAsvvHBTMFqSXHvttbn22h5CGZLMmTMnJ5100narBQCA7eypFyTrFiX3fjLZsDIZe3QVElZXX+vKto+iLnnm96ugpkW/SYbPTGadnwybmsw8v3uA09DJyaGXJvOvStY83Hls5huSDWu6B6PVD0kmv3iAdRWd25Nf0nMw2ow3VHOnv666utbam5N/lkw8JWndkDzwpaTc2H3O8d9Mbn1XsmZ+97HjrkimnVk9XvzHZN1j1XljDq36vlF0X7M5B7072dic3POxga9l97Z2YfWe1JMV97Q/XnV/svBH1eObL+jn5kV6vJ+tYUQy9fRk1dzk8V91Hpv5xmT/s5KxhydFfTL/6ur1OWTf6nU18ZTej2tZVe05aEIydFI/awQAAAAAAICKYLSdRFmWa5P08HFo2/SM5iRzNjtx25z1YJJtErYGAAAAAAAAAOw+zj333IwZMyZnn312Vq1atal/7ty5mTt3bq/rzjnnnFx++eVpbGzcbrW96EUvyqWXXpqLL744Gzf2EJgAAMDuo6hLDrssOeQDyYZVSdPoWle0/dU3JU/9f9XV0VH/XQWGPfDlpNyQjHxqcuJ3kvrBySnXJ79/XRWC1jQuOfAdyfRzqvkr7k7u+0ySMmkam5x49dZ/H6edmdz/hWTJze19445Jpr6y9zX7nJrc9+nu/XWNyZjD2h43JBOf2z10rX5otX7JLcld/959bNILO9RxVPcz9joueeKG7v1Hfzq56z+rYKiOZp6XHPah6nFvwWj1g5PTVyaP/iy57Z+qwLbmpclBFyV/+bee18Bm9fIhnxtWVqGBPZn7uerqScffxfHHJ0OnJGsWJCvuTdYv6jx3+PTqfWPNgqRxVJLWZMjkKghu5T3JsOnJhGcme5+UlK3JoLHJ+iVJ44ikaOgcoFiWXdqtVfBhfVPnM1tbqq912++/IQAAAAAAALD9CEYDAAAAAAAAAGCHesUrXpFnPvOZueyyy3LFFVfkiSee6HFeY2Njnv3sZ+fiiy/Occcdt0Nq+5d/+Zecdtpp+drXvpYbbrgh9957b5YvX561a9fukPMBANjB6hr2jFC0vtQ1JMd8Ljnio0nzsmTYlPaxETOS5/4m2bAmqR/SHkhUNCRHfyo59NJk9fxk1Oxqn63VODI55RfJA/+TLLstGX1YMvMNVVhYbyY9P9nned1Dz/Y/Kxk0rr19yAeTxTcSLAWJAAAgAElEQVQmzUva+w69tPr5z74oWXJT8ljbZ1DXD06O+1rSNKrvevd7VfdgtLrGZMorkvHPTH75t8nqts+a3ufU5NDLOtT3uuTBr3bf82mXVN/LSc+rro72eW7y85N7ruXwjyS3vqPnsVlvSo78RLL2keShq6pAqvWLkykvq4Lwhu2XLP1T8tM+/t41+SXJot9Wj1ubqzXL7uh9PnuOJ38verPqgeT29/Q9p7egwJ4Mn5Gsur9zX+PIZNyxyfI/J2v/2nnsmC9Vr6U1D1fz1j2WrH4omf+tZOV9SV1TMvm05ClvrkIzN6yuroe/mzz4P9X725RXVK/3jqFsSbJhbdKyPBkysf/1AwAAAAAAsFlFWfbyyT+whyiKYnaSO59s33nnnZk9e3YNKwIAdjnfKHrun35OcuwXd2wtAAAAAAB92LBhQ+67775OfbNmzUpDg89Vo3ZaW1tz88035+67786iRYuyfv367LXXXpk8eXJOOOGEjBgxotYlbhfb6/X45z//OQcffHDHroPLsvzzVm0KAFvBPXrADtHaktz98eSvP6gCjaaclhx0UVJX33neqnnJgquT5qVVmNqEEzvssbEKY1uzMNnrGcngvfp37o3nJw98qWrXD02O/0YVIpYkZWsV1NQ4Ohk6uXOo0qO/SH5xSuf9iobkxfcnw6b2fN7iPybXHd3z2HHfSG59exV+1tUL/5yMOmgzz2VD8s3G3sfP7OXfHfR279TmDNor2bg+2bCy7znrew7S3mTMEcnSW7asBtgSYw5PNq5LVtzVuf/Z1yUtK5ObL6jC0kYdnLQsTcY+vQppXPijZN2iKnxt9j8nk16YDNmncwDjivuqtaMPqeaVG9qDIdc+Ur1vNAxJxh7V+/sE7cqyCsQbMilJWYVRzv9W9XOYeW4y6/xaVwgAAAAAwC7G/Xk7jjubAQAAAAAAAACombq6uhx99NE5+uhe/nE/AADA5tQ1Jge9s7r6MnxacuA7etmjPhl7ZHUN5Nxjv5gcemmy6oEqpKthSPt4UZeMflrPayeenBzzheS2dyfrF1fBacd+pe+woxEz2sKSWruPjT8+mfGG5M4Pduk/YfOhaElS11CFMS27vfvYfmf0vm7cscni33fvP+YLVSDRHZf0vO4FdyZD9u49WG3YfslL5iXL/5L8qJdAzVNvTMa1/V2ybE1W3l+F3o07Klm/pAqiaxyVpKxC55b/ufo5NS9LBo1Nivrk/i8kC77T+/ODrpbe2nP/nFM7t598Xay4p/vcW99RXVvr4Pclrc3JyrnJ4huTEbOSfU6tgthGHZQ0jEiaRifNS6owsFUPJCmr94sNq5PV86v3xbFHJhvWJMvuqN7XRsxKHroqeeS6JK1V0OS4o5J1jydLbk4aRyZjj07qm7b+OWwP65ckd/9nMvezvYcr3vSm6nrZ48ng8Tu2PgAAAAAAYLMEowEAAAAAAAAAAAAAwJYask91DdSM1yfTz67ChgbvXQV59aVpTDLhpOSxX3TuH3t0Fah28MXJxvXJA1+sQo/2OTU55ov9r2fmG5M/vqVzX8OI3sPkkmS/v+sejFY3KJl8WhXC1FMwWsOI9iCip16Q3POJ7nMOaDtzxFOr0Lg1D3ceH7JPMuaw9nZRl4yc1d4evFf3PUcfXF0dTXp+++O7PpLc2ku43pll9fXnz0ke+3nPc05fmTQMTVbel9x4frLy3upnVjQkM85Jhs+sQqju/2Lbcy6SckP3fRpHJS3Lez4DOrrzA53ba+b3/vu5NXoLDzzxO8mkF1TvYSvursIVh+zdeU5Z9v3etn5xsmZBMvLApH7Q1tW5fkly98eq19eGlf1b85vTk+dcv3XnAgAAAAAA25xgNAAA2G7KWhcAAAAAAAAAAADszIq6ZMjE/s8/5ovJnL+pwreSZOjU5Bn/Uz2uq08O/3By2L8l5cakrnFgtcz6h2Tj2uSe/06aFyfjT0wO+3Ay5pDe1zzlzcnyO6uwr6QKPTvhqmTQ2KRpdDJsWrJ6Xuc1U19RPe+kCoeb+9lk47r28aaxybQz2p/TIf+a/P6stN+PVSSHXDrw57c5k17UczDafq9qfzz9rJ6Dp+qHJI3Dq8cjn5o8Z07v5xzx0eraXGBUa0vyxO+SuqYqBK5+cNK6MWldn5StyYKrk7/+KFn0m2SvY5OppyfL/5z8+bKe95vwzOr7tuDbPYfRwUD9+mUDXzP++Op9Yc2C5PFfdR5rGlO9py27PRl7ZBVutnFdMupp1XvC3icnrc3Joz+rvrZuSJ74bbL0tiqYbUs8/sukeVn1fgUAAAAAAOw0BKMBAAAAAAAAAAAAAMCuYPi05IV/SZb8sQrHGntkUj+o85yirj14bCCKIjnwHckBb6/2rqvf/Jq6xuSYL1ThZasfSsYc2l5PUZc885rk+hckaxdWfeNPTA7/SPv60U9Lnv3T5I73VaFeY45Mjvx4Mmhc+5zpr02G7ZfMvypJXTL15cnezx7489ucUQck089JHvhSe1/T2OSgf2pv73NqUjQk5YbOa6edOfDz+gpFS6rv7YRndumrT+qGVo+nn1VdHa1b1Hsw2gEXJhNOrK7D/yNZckuy9pFk4ilJ44hqTtmaLL6xOvuRnyR/+ufOexzx8apv45r+PEPobtFvq6snzUurK6ne4560+qFk4Q+3X02r5yVNh22//QEAAAAAgAETjAYAAAAA/H/27js8zurO2/g9Rb1LtmxLstwbtjHYmF4NobcACYGQTkJ62c2mbMiml01v+242bbPJBkgjpIcNSSiB0AnVNmCMe2+SrK6Z949jZTSaGVnFtlzuz3Wda+Y5v3POc55pBlvzlSRJkiRJkiRJkqRDRTQOY07cf+tHIhAZRChaX0XjQuuvagFctiqEcOVXQtmMzECw2lPh7D8PvP64M0Lb3074DtSeAZv+DMUNIXisbHqqXjg2BLs9+u5UX+l0mHvj/t/bYBSMgfLZ0LQsvT9WBLVnpo6jeTDmhMz5kWjqtVW9CCZeAZvvgqI6GH8OxAoh0QF/f3/28x/zOTjqX8L97jbYei889QnYfDdMegXM+ReoXhhqT9wIy76UfZ3iRigcB8ke2PFoZr32zHBN2+5PBWlJw7VrKVQZjCZJkiRJkiRJ0sHEYDRJkiRpv0mO9gYkSZIkSZIkSZIkSZIkaXRF4zDm+NHexeBEIjD11aHlMvtdUHsabPxTCAyrvxDyqw7cHgcSicC8f4P7Xknaz6/NeS/kVwx9vfJZofVVMjn3+OpjU/fjRSFMbfw5mePiRTDtDbmD0c5/CAprw/2eDtj4xxDWN/YUyCtPH5tMwu5V4X5+JbSth542+MNx2dcunQbHfQPuvCD3dZxyC9z7itz18jnQtDR3XYeW+66FydeM9i4kSZIkSZIkSVIfBqNJkiRJkiRJkiRJkiRJkiRJkiQNVvXC0A5Gk6+BgjGw8ofQ0woNl8PkV+679SecC9F8SHSm99ecALVnDn6d8jlQNgOan0vvH3tKKhQNIFYA9RfnXicSgdLJqeP8Smjfknv8/I9B3fnhPFvuzT5m0tW5g9GO/SLM+adw/6ZIjj3F4Zou2PEELP8q7HwyXNPs90DrWrj/tbn3p9HRthGKxo/2LiRJkiRJkiRJ0h7R0d6AJEmSJEmSJEmSJEmSJEmSJEmS9pEJL4GTfwCn/QymXBfCw/aV/Eo4+X9D+FevsafA6b+AaDz3vP4iETj+W5BXnuorHAeLvjbyPRaMgZJJWc4ZD48NwLQ3ZZ9bf2m4bbw6SzECjVemDuOl2deYfkO4rToaTvwunP8gnPkbGH82TH1N+mPX15iTYMkfs9cAzn0Aznswd724Ea5N5q4DnHPPwHWAhpfufczhpmXFaO9AkiRJkiRJkiT1YTCaJEmStL8k9/IDRpIkSZIkSZIkSZIkSZIkHWoaXwYv3QCn/hTOuRvOvguKJgx9nXFnwsXL4aQfwCm3wIVPQfXCke8vEoFZ78nsn/IqKKwN9ydeDnmVmWOmXR9u534QCmrSa7PelR641ju2v8mvHHh/M9+RvX/GW6B6EUTzMmvxEqicB6VTc69bc1y4PfoT2euTroHaU8N15FLcCKfclLs+5mSomJe7PljRgpGv0V9eJRz9SXjZLqhcMLS5Xc37fj+SJEmSJEmSJGnYhvDreCRJkiRlMPxMkiRJkiRJkiRJkiRJknSkKRwDjVeNfJ2i8SGwbF+b/a4QJrby+9C9G+ovg3k3pup55fCSu+H+18H2R0Ow2/yPQsMloV61AM57EFb+CNrWw/hzYOIV6eeY9U5Y8zNoXZvqa3gpjDlx4L3NuAFe+B507Ur1lU6HiVdBvAgaXwEv/jB9ztQ3QLw4tAnnwYbbM9edcH64nXQNPPkRSCbS69NeH27LZ+XeW+U8iBXmrk+8MgS3PfLO7PVrEiGYLtEDt+T4ylJxI8z/CDzwhuz1M38PpVNgy725x0w4D8aeCj0dkOyCuotCqFy8ONSP/gT89UpIdKXmNF4Nq3+cfb3uluz9kiRJkiRJkiRpVBiMJkmSJEmSJEmSJEmSJEmSJEmSpMPL9OtDy6VyPpz/MHS3QqwoBHr1VToV5n849/zSKXDu/fDC96HleRhzCkx9XeY6/ZXPgpfcA898DnY9A2NOgPkfD6FoACd8OwS3rfkpRPJg8rWw4NOp+Yu+Dve8FHY9neqrPSOMAyibBqfdBg+8Hjq2QqwYjv1cCHeDEMD2yHsg0ZG5t6l7wtMmXglrfp5ei8Rg0tWQ7IZH3gX0+8WyE69KXXs0FoLaNvwh8xxzPwBjT8v+2MSKYdwSiOXD7lXZxwAc8zmoOjp3veESeMm98OLN0NMGDZeG/eQKRlv5g1DPK8295sGkuw1aXoDdK8Prt3J+eL0mE+F5a98EdRdAfjU0LQ21kknQ0w6dO6FgDERzfKUs0QORaOq57OkIz0WiI5y3pxW6mqBtQzhvXnl4L8RLDtz1S5IkSZIkSZIOewajSZIkSftNcu9DJEmSJEmSJEmSJEmSJEnS6IkXD39ucT3M+9DQ51XOh5N/mL0WK4DF34Djvh6O+wetlc+A8x6Etb8MwWqV80PwV6wwNabhEqjfBLtfhOLG9BCswrGw5I9w37XQujbVv+hr0HhluD/vw7D5TujYlqrPeV+4XoBZ74TlX03V8qtg7r+m73PytZnBaNECmPgyKBwD1Ytg+yP95lwTQtEAao6HaD4kOtPH5FWEcLm9qVkcWl8VR4XHrL91v4afloX7jS+HCeeFELHVP4GmZTD+JSFobPw5sOF2WPrF8Dy1roGyWVA+M+yzqwnW3Jq+9rTroXgiNFwOFXMgmrf3vSeTsO5XsOonsOlP0NUM098UXqtPf3rv8wEee+/gxgFMegWsuiWzv+FyWP/77CF62VQvCo/dzLdD0QTo6QyvgaZl0Lk9hLmVzQghdOWzYcffQ2Dbzidg55N7HqdLobA2PP6RvBCyJ0mSJEmSJEk64hiMJkmSJI2I4WeSJEmSJEmSJEmSJEmSJGkf6x+I1le8OISIDTg/CqVTs9dqT4PLVodgtLxyyCsL43tVLQjhay/eDO2bQyBYwyWp+sIvw9hTYMMfQwDWlFdB2fT0c0y+Dpqfg2f+PYSGFdbCyTeHUDSA034B91wB2x8Oxw2Xw8KvpObnV8Kka2Dl/6SvO+0NIZRsOOKlex+z+ieh9fXi/4aWTduGECKXy4rvhNsnPxJuy+dA6TSY9jqoXgwlEzPnPPFhePpT6X3Lv5I5bl/JFooGsPa2oa2z/ZHQ9hbeNlD9wTemH0ficNrPQ6Bc9aLwOuqvuzWE7kVj4floehYiMSidAokuKBwH8aKhXYskSZIkSZIkaVQZjCZJkiRJkiRJkiRJkiRJkiRJkiQdSSKR7KFcvUqnwrwP5Z7b+LLQBlr/6I/DUR8MAWxl09LD10omwvkPhVq8BPKrMtc4/luhf/VPIZoPk6+F+R8b3PVlM5hgtP2taWlo638z2js5NCS74e7LDuw5y2ZC41XhtdfdBsu+AF1Nqfr8j8GU63IHD0qSJEmSJEmSRsxgNEmSJGl/SSZHeweSJEmSJEmSJEmSJEmSJEmjJ14E5TNy14sbctdi+bDoy7DwSyFobaQKx498DR3+mp+Fpz+du/7kR0IDGH8OFNVDrACqF0NPK6z/PWz4Q6hXL4LaM2HGm6FsOnTuhFgxJLugYxsUT9w3r21JkiRJkiRJOswYjCZJkiSNhOFnkiRJkiRJkiRJkiRJkiRJ+8++Co6a+FJYddO+WUsC2HhHn4NvZda3PxLasi/ufa3iBpj/Uag5HqKF0LQ0hPmVToa2DZBXDiWTQrha925Y+QPYfBdsvQ/KZkDJZJhwPhRNgPaN0NUM064P9zffBXmV4T0QzQs//2wgmyRJkiRJkqSDmMFokiRJkiRJkiRJkiQdISJZvuiU9BdASKMikUhk9GV7j0qSJEmSJGkfmXglTH09vPC90d6JlKl1LTxw/fDm7vh7aGtvS+9/7L2ZY/MqoacVEp3huOGyELRWcyJULYCieiABRXUhbA2gYytE4xArgqVfgA3/B+WzYdLLYexp4Xj3Kqg7H8qmQzIBkejwrqVXTyfE8ke2hiRJkiRJkqRDlsFokiRJ0n7jlwklSZIkSZIkHVyi0cwvInV1dZGXlzcKu5GObN3d3Rl92d6jkiRJkiRJ2kciETjhO1B7Oqz5eQii2vHYaO9q8IomQLwUYoUhlGr1T4c2v+ZEiBdDcQOs/MH+2aMOfl0704/X/jLcbrxjaOtsuQdWfDu975Es4wrHQfumcL98NjQ/D8l+fzcaK4Se9tznGnsKJHrCa3f82dBwORSNH9w+ezohmhfe/5IkSZIkSZIOGQajSZIkSSNi+JkkSZIkSZKkQ0ckEiE/P5/Ozs5/9LW0tFBcXDyKu5KOTC0tLWnH+fn5RPxyniRJkiRJ0v4VicDU14QG0NUEP63IPrZkCsy7ESKxEKLWtBy23Q+l00JQ0xMfzjFvElz2Yghy2ngHPPx2aHl++HuuPQPO/ktmsNOvZuRe96KlUD4LundDNB6Cp/o66X8gmYSWF0JIWncLTDgftvwVnvp49jVP/Rn89arM/uJGuHQF3DLAL+C4dAXsegb+/gHo3A6Vx0DZNCACz3499zwd+npD0QCalmUfM1AoGsCWe8PtNmDNz+Cht2SOqVwQAtC2P5xZK50aggW7W8NrvXt3eB32tENRHdRdBJEotG2AWAFMflUIdCuohq5dkOgK7+uC2rBeNBbe34lOiBelnyuZNIRNkiRJkiRJ2gcMRpMkSZIkSZIkSZIk6QhSVlbGtm3b/nHc1NTE2LFjDWSSDqBkMklTU1NaX1lZ2SjtRpIkSZIk6QiWV567NvcDMO31ueu5gtEaXx5uozGoOw8ufW7P+H+Dpz4xtP3N/xgc9f7sQUuz3x1C1/qb+XaomB3u55XmXjsSCeFkR38s1ZdfmT0YbdobYcJ5EC8JoVJ9TXlVCF/Lpf7SEExVOhXqL86sT3k13L44+9ySSbB7Ve61pV47H89da3khtGza1sOKb6f3rf7p4M8biUOye+/jiifCxKtgxyOw+e7sY07+EVTOh9Z1IYyxa1cIeysYA2NOgvbNUDY9BLVtvAOi+VB3YXif93TA2l/CM5+B5ufDZ9vY02Duv0LV0ennaV0H638LRGH8kvDe7JXoguYVUDYjfIb1Z/CbJEmSJEmSDhCD0SRJkqT9JjnaG5AkSZIkSZKkDP2D0bq6uli3bh319fWGo0kHQDKZZN26dXR1daX1l5cP8CVcSZIkSZIk7T+TroFVN6f3RaJQf8nA86a9MTNQCWDyddnHz/sIrP4JNC0feN1rB/nzp41Xh7C1zu2pvmg+TLt+cPOzqT4uhDet+Vmqr7AW5rw3hC+ddivccyV0t4Ra3UVw1PtS+1n948w1p71hL+dcCMWN0Lo6vX/CeXDWH+CmIf699bizYfF/wG9mD20eQOE4aN80tDmRGCR7hn4uHR4GE4oG0LoGln954DH3vXLk++nV3RLej73vyWyhhn01XAY7/p49iLDmRNh2f7hfMhmIwO6V4XjMSTDjLeFzLxKBRA+0PA9F9dC8HLbcC9GC8HlaMAZ2PQn5VelhbJIkSZIkSVIWBqNJkiRJI2L4mSRJkiRJkqRDS2FhIXl5eWmhTM3NzaxYsYLy8nJKS0uJx+NEo9FR3KV0eEkkEnR3d9PS0kJTU1NGKFpeXh4FBQWjtDtJkiRJkqQj3NwPwaa/QPvG9L6iCQPPm/1PsO5X6UFak6+DqqOzj4/G4Ow74aG3wtpfZB8z4y2D33fhGHjJvfDIu2D7Q1AxFxZ8CqoWDH6N/iIROOUWeOG/YfPdUDolBJuVNIb6hHPhik2w9X4oqoPymSFEDmDm22DNz9ODospnQd2FezlnFE78b7j7cuhuDn3FjbBwT4jUjLfCc/8vc16sEHraM/snvzLsbajGngLlR2UPu8uldBpcvAx6WqG7FTb8AWJFUHsmPPbP8OKPhr4PaX8YKBQNYO0vc9d6Q9EAdr+YXtv6t9D+9uqB13/ozQPX8yohryy02jOhcDy0rYeCaogWQtdOSHSFcLWJV0Ll3OzrJJPQsSWst/Nx6GqCinlQNG7g80uSJEmSJOmgYzCaJEmSJEmSJEmSJElHkEgkQl1dHatXryaZTP3yh66uLrZt28a2bdtGcXfSkaf3PRmJREZ7K5IkSZIkSUemyrlw/kOw+qchiGf8S0IA2N5UzIZz74eVPwhhQbVnwJRXDTynaDycfiss/wY88o7MeuPVQ9t7xWxYcvvQ5uxNNAbTrw8tm3gxjF+S2V97Gpz1e3jmc9DyAow9FY79AkQH8fW18Uvgkudg058hXhIey/yKUGu8Knsw2kk/DAFu63/XZw9nwqSrwx7HngJb7u03KQInfBceeH3mehOvguqF2YPRGi6D9X+AREd6f+NV4fqi5ZBXDlNfm6pVLgCGGIxWNAEmviy8nvIqYOzJUDIJnvn38Npsfi41duY7oGAsdO2CbQ9C8cTw+kp0wbNfz32OxpfD6p8MbV/S/ta1MzSAXc8MPPbJj8DY08JnzIbbYceje1+/oCa8Z8aeFoIwW56HLfdB57ZUaNyEC6B8NtSeGgIOi+pD4GQkCp3bQ9haNDay65QkSZIkSdKgRfr+kLN0JIpEInOBp3qPn3rqKebOzfFbIyRJkvpLdMEt+dlrk66FU/xNb5IkSZIkSZIOTq2trRnhaJIOrEgkQmNjI8XFxftszaeffpp58+b17ZqXTCaf3mcnkCRpiPwZPUmSJCmLrha4+9IQ0NNr6uvhhO+AAfrpkkl4/EPwzGdSfTPfDgu/AiRg7W2w/VGonB/CzWJ7fq5328Pw53NCcBhAtACO+xpMfxMs/SI89t7UenUXw6m3hDCkPy2BzXelavEyOOeuEKR033WQ6Az9tWfA6bdBfmX2fe9aCr89KrO/dFoI3nvuPzNrJ3wXpmUJbevV1RLOX1Cde0zHdvh5Tfba6b+EhkvT+5LJ8Bi1roP7roGdTwIRGHdWCFF76M25zyUdiWKFUDIFWtdC+UxIJqBlJZCEwnEhLDFWEgIaJ18HHZth8z2w4Q9hfsVcqLsQJl0DpZOBSFizY1uY37EFtv4NYsUhHDGvfBQvVpIkSZIk9efP5x04BqPpiOcPXUmSpBHp6YQfF2SvGYwmSZIkSZIk6SDX2trK+vXr6erqGu2tSEecvLw86urq9mkoGviDV5Kkg48/oydJkiTl0NMBG26HXU9DzfEwbomhaANpfh52PAaVR0PZzME9Vm0bYfXPgARMOD+EGP1jvRUhfKhsOlQvhmgs9He3wdLPw+a7oXQKzHwHVB0dau2bYctfoagBqheGAKSB3HFGWKevY78A48+G/zsJetpT/UX1cPEyyCvd+3Xtze+OgZ2Pp/fFS+ClGyCvbOC5XU0hkKn32v76Clj94+xjr+3zvcSu5nCOSDQcv3hLCFrL5pRboGpheMy3PgjJHmi4BNbcCve/LvucCx6HrffBQ2/JrJVOg5YVua+pqD48X1ULobsZln0p91jpYFQwFqJ5kFcBkT2fVXUXwJTXhPfP8q/A7lVhTP2lMOak8Bm5/OvQtBTat8C8G6H2tDA/vzoEsCWT0LQcttwD2x4IIW9l06HhpSG8zT+TJEmSJEnK4M/nHTgGo+mI5w9dSZKkETEYTZIkSZIkSdIhLplM0tHRQVNTE83NzXR2do72lqTDVn5+PmVlZZSXl1NQUEBkP3ypyB+8kiQdbPwZPUmSJElHrM5d8NBbYf3voKAapr8J5rwvhA1tuQ+e+mQILao5ARZ+AYob9s151/4S7rkKkt2pvgWfhrkfHPpa634Hd12U2T/+HFjyx9zzOrbBL+og0e/fHKoWwgWPZJ/T8iL8akpmfzQPrtoRgtcAEl3Q/ByUToVYYWrczidh+6NQOA5qz4B4Ufbz/KQ8BKRJGrqCMdCxNXstvxoKx4YxBWMgXgata2HznaFefwmUzwnhbD2tUD4rhIRGolAyCfJrINkFRXVQNiMVtNhXMhHmRPNDPde/syS6obslfEb0/ZyQJEmSJGmE/Pm8A2cvv5ZCkiRJ0vAZQixJkiRJkiTp4BeJRCgsLKSwsJDa2lqSySSJRAJ/0Zq070QiEaLR6H4JQpMkSZIkSZJ0kMqvCL9kOZnMDO8ZezKc9bv9c96Gy+Ccu+HFH0HPbqi/DCZePry1JpwbAshaXkjvn37DwPMKamD2e+CZf0/1ReIw/99yzymdHELitj2Q3l9/aSoUDUJQWsVRmfMr54e2N3M/AI9/KLN/zMmw9b69zx+MyvkhqC2Xy9dCcX24n0zAjsdg9yooHA9Vx8CLN8GDb8w+N5qfGTjXa/y5MOlqeOANuc+9t+ucfB3sXglb7s09RkeuXKFoAJ3bQ2N59vq6X4c2FEUTINkTgs5IQvfu9Nf/mJOgejGs/D50NYXwxYGUl8UAACAASURBVB2PZl9r/LlQvQialsGYE8J7r3I+7FoagtrKZkHlXOhqCe+B4onhMynZBbGiEMTWvhnW3gadO6H+4uyfRYkuIAJRv74tSZIkSdJI+H/WkiRJ0oj4xUBJkiRJkiRJh5dIJEIsFhvtbUiSJEmSJEmSdHgYjV+YMPak0EYqGg8haw/eAJvvhJJJMOdfoPGqvc9d8BkoPwrW/wbyymHKq6H29IHnnPpjuPMi2PV0OB57Ciz+5ogvI039ZdmD0SZdHQKNtj+UWcsadBaBeHEIaupv9j/Dyh/Cpj9l1qIFIQDtH8tEQ1hT9aJU35gTcu//kmfht/Ohuzm9P14Kp98KrWtzzz3uG1B3AfxqWvb69DfB8f8VAqNuzvFvRQs+BdOuhyc/Cmt/Be2bwuti7Cmw7SFoWpr7/NJQtW0YuL71b6H1yhWKBrDx/0IDWPuLke/t7+9P3a89M4TC7Xwi1Tf2NJh8DTRcEcLVIrEQ9DZciZ7weTHQnynJJJAM4yRJkiRJOsQZjCZJkiRJkiRJkiRJkiRJkiRJkiRJkjIV18OZvwmBO0MJeYtEYOqrQxuskklw4ZPQ/GwIECudPOTt7lXl3BDu1Tccre4imPYGyKuE+1+TPn7sKXD8t+FPS6B9Y6p/9nsgVgxPfzJ9fDQf6i8GktmD0eovguhefkFNxVwomQK7V6b315wYHqOZb4NnPptem/FmiJdAcWPYQ6Izc91xZ0PhAMFMZTPCbSQaxmbbf8PlUFgLi/9faNm0bwmBVuWzIZYPNw3wupnxNnjuP7LXJl0Lq27KPVc6WGy+M7Nvyz2hPfTW4a0ZKwaSkF8Nbesy66VToageelph+yOZ9VN/Ej4POrZCwVioOhq6miC/Jnw+xApHJ7hTkiRJkqRBMhhNkiRJ2m+So70BSZIkSZIkSZIkSZIkSZIkSRq5AxWgE4lA+az9e465/woTr4Qt90H5zBA4Fo2FELdkTwjqat8EE86DhV+CvHI470FYdUsIKBq3BOovge4W2Pq3VIBYNB9O/D4U1MDk62DXM7D086nzFjfCgs9m3VKaSBSO/ybccwV07w59BTWw6Kvh/oJPh7CkVbcACWi8Go56X6jFi0Iw25pb09esOgYqZof75bOhaVnmeRtemrp/1Pthy92Q6Er1TbwSKo7a+/4Lx4bWq/FlsPqnmeN6H6tcwWjHfn54wWjnPQg1i2H3anj8Rtj59/DY1yyG0mnQshKqFoSxOx4PYXPVC8NzXtwAd14ILS+krxnNS38spP2tpzXcZgtFg/Aa7f867euvLx/ceSrmhvdETyvES0MYZtsmaLwqhCBu+CNsfyjUzrkrfM6tuTV8VpbPgp522PU0FE+E6uMg0RHGjDk5fK42LYdtD0PJnnq8eGiPgyRJkiTpiBVJJg1r0JEtEonMBZ7qPX7qqaeYO3fuKO5IkiQdUnra4cdF2WuTXgGn3Hxg9yNJkiRJkiRJko5oTz/9NPPmzevbNS+ZTD49WvuRJMmf0ZMkSZIkHdYSPSF4a/fqEARUNC69vvPpEJ4WL4G6CyC/cvBr714FG24PIUMTzoei8YOb174Z7roEtj0YjkunwZm/TQXOPfef8NBb0+fUXQxn/jq9b/M98Nw3oX0jjH8JzHkvROOD33+v9bfDneen9xXUwKUvQrIbbh0fwpT6Kp0GlzwHf/8ALP1c5przPgIv/i+0rEjvLxwHl68JQWbD1dMRgp+6dsK4s0N4HsCtE8Jj0d+ir8Gsd4T7bRthwx+gcALUHBfWIgG3TRz+fqTDXXEDtK5NHY85GWKF0N0Ku18MQYYtL4SQxTEnQVEddGyFkikhhDGvPMzrboFoIZAI8yVJkiRpP/Dn8w6cYfwtlCRJkiRJkiRJkiRJkiRJkiRJkiRJ0hEuGoPqRaFlUzk3tOEomQTT3zT0eYW1cO790Pxs+EXgFfPCPnvNeAsQhee/BZ07oP4iOCZL+FjtaaGNVN15cPKP4KmPh3CjmhPghO9AXmmoz3wbLPtS+px5N0IkAlNeBcu/AonOVC1aAFNfEx7Xe68N4WoARGDBp0YWigYQK4DJ12S5jgvhhe+l90Wi0HBZ6rhoPEx9bebchpfC2l+MbF8A1yRgx2Ow8ofhsSyZDBMvh6pj4GfVueeddTtsfzQ8NvlV4Xnv3g0Vc6G4Hrqaw7XsegY23w1rfja8/dWeDrVnhtCqjq2w8wloWja8tXTk6BuKBrD1vvTjDXsCCZ/+9NDXnvVumP+RoYVSSpIkSZIOCgajSZIkSftLMjnaO5AkSZIkSZIkSZIkSZIkSZIkHWkiESiflbs+44bQDpTJ14aW6IZov6+1HvsFKJsOa24LYWlTXgMNl4Za5Tw487fw2L/Azqegcj4c9w0onRJaUUMI8Up0wcQrYNyZ++8a5n4QNt4Brav79N0IJY17nzvt9ZnBaPFSaHwZvPDfgzv/Ue8Pz2v1wtD6m/XuECLX38QrYMK5oe3N+LNh1jvgF/XQtj77mKpjQzhbNmf/JQSsZfPUp+CJG7PXZr4Tnv1a9tr0N0HtGSE8q2MbbH8INv0l+9h4CYxbEgLeWlZkH6Mjy/KvhPft2X8KoZGSJEmSpEOGwWiSJEnSSBh+JkmSJEmSJEmSJEmSJEmSJEnS3vUPRYMQ9jXjLaFlM/4cuOCx7KFqY08K7UAomw7nPwRrboXWdTB+CYw7a3Bz6y+Gxd+EJz8C7ZugYi6c9D8QLYBVN0NP+97XaLx64PrEl+YIRrtqcHvsa+6H4OG3ZfZXHQsz3wYPXJ9ZK5qQOxQNoO787MFoeZVQs3jgvfQPn+vpDIFyO58Ij+WkV0BBdebcnnaIxEOg2rYHoaAmhMr1tMGTn4C2tSFcb8K5UDoNWp6HOy/MvZdJr4BVt+Su6+C06ylY8d0QbihJkiRJOmQYjCZJkiRJkiRJkiRJkiRJkiRJkiRJkqSDV7ZQtQOtsBZmvHl4c2fcANPfBN3NkFee6l9yBzx+Ywhvqj4OFn4JXvgeLP3CngERWPhlqD524PXHngZz3ttnHjD5Oph45dD32nAZPPIOSCb69V8OdReFALT+tUnXDLxm1UIonwVNy9P7p1y3J2AuAvT7xfUFY6GoPnOtWH54PPcmVhhui8ZBwyXp/Yu+lDm+fEZ4jts3Z9ZO/hFMvjYE9K35WfbzXd0RHpvVPw3Pw45HIV4WnvOieujYAonOve9b+97GPxqMJkmSJEmHmIPgb4IkSZKkw1Vy70MkSZIkSZIkSZIkSZIkSZIkSdLhLxJJD0UDGHsKnPOX9L5jPw+z3gO7noaqY6FwzODWPvbzMOU1sP0RqDgqBK1FIkPfZ3E9HPf/4OG3pgLQxi2B2e8O+1/4FXjknanxVcfAnPftfX9n/AbuuhSaloa+iVfAMZ+FeAnUXwLrfpU+Z8abIRob+v5Hov5SWPGd9L5oAUw4P9yf+prswWhVC0NgG8Dka0IbSMe2EJ7WshJqjoNpb4T8ilT9pgGet4uXw29m5a6fcze0b4I1P4fVP4Nk98B7ORJ0bB3tHUiSJEmShshgNEmSJGlEDD+TJEmSJEmSJEmSJEmSJEmSJEn7UHFdaENVOS+0kZpxA0w4D7beByWToeZ4iO75SvKsd4SgtM13QnEjjF8Sws32pmw6XPQ0tLwAeRXpgW+n3BzC1tbeBvEymPpamPfhkV/HUM37N9jyV2haFo4jUTjua1BQHY7HvwQKa6F9c/q8qa8Z2nkKauCYz+SuT3sjrPh2Zv/cD0H5TJj5dnj2G5n1ya+C2tPC/car4NgvwK5noHAsVB4drmf3GvhlY/bzzv4naLgc7jg9997m3gid26CrGV7839zjDiadO0Z7B5IkSZKkITIYTZIkSZIkSZIkSZIkSZIkSZIkSZIkSVJK6eTQsqmcG9pQRSJQNi2zP14MJ3wHjv92GDNaSibCeQ/Cxj9C24YQAFcxJ1WPFcCSP8G9V4fAsVgRzHpnCCrbl6ZclyUYLQKTXxnuNrw0ezDapKvTj4vrQ+uraALEiqGnNXP+5FdC9UI46X/hb9dl1iecDws+kTrOFYxWvQhO/Rk8+RFY+YPsY16+G6L5IXAvmYTdL4bAvObngQSUTodYfhiz8c+w/KvQ/GwYByFcbsprQlBdsge2PwJrbs1+LoPRJEmSJOmQYzCaJEmStN8kR3sDkiRJkiRJkiRJkiRJkiRJkiRJh4bRDEXrlVcGE6/IXa+cBxc9DW0bIb86hHfta7Wnw/Hfgkf/GbqbIb8qBMf1hrSNOwuO+iA885nUnFnvDsFlexONQ+NVmYFlZTOg6thwv+GycM7+gWLT3pB+XLkAdj6eeY5Z7w6herP/OXswWtnMEIbXKxKB0inhfsHxmePrLwxtbzbdBX86M7O/ezfseBwqjoJo3t7XkSRJkiSNOoPRJEmSpBEx/EySJEmSJEmSJEmSJEmSJEmSJOmIUjR+/64//Y0w9XXQugZKJkEkmqpFInDMp8OY7Y9C5Xwonzn4tRd+GXa/CJvvDsfFE+G0W1PBdHmlcM5d8LdXw46/Q+E4mPfhEKjW18QrMoPRogVQf3G4Xzkfak6Ebfenj5nx1sHvdSjyq3LXfn9MuK27KDye2x6E4voQBldzIuRXQF55CLsrGAvRWGruqp/A8/8FXU3h2ub+KyQT0LYOihtD2NxgJLqBSPrayWTqcU90Q7IHYgVDumxJkiRJOhwZjCZJkiRJkiRJkiRJkiRJkiRJkiRJkiRJB5NoHEqn5K6XThm4nktBNZx9J7SsCGFflQvSw7oghJpd8Bh0NUO8NBXe1dec98L2h2Hdr8NxrBBOvhnyK8NxJAJn/Q4efDNs+AMUjIEZb4FZ7xz6ngdjoGC0Xut/m7q//WFY+8uhnWP7w/DkR9P78sqhYh5E88Nj0L0bonnhudn6AOx6au/rxsuguzm9b+Y7wmNVOi398U8m0oPyevsSXWEPXbugZSVUHJU7ZC1bSNvedLeF57qnFSZcAEXjBj9XkiRJkobIYDRJkiRpf0kmR3sHkiRJkiRJkiRJkiRJkiRJkiRJUrpIBMqm731cXlnuWrwYTv8lND8Lu1dBzQmQX5E+Jr8KTv1x9jCvfW0wwWj7Q1cTbL0vs3/TENboH4oG8OzXQxuJSDQ89gBFE6BqEbRvgqal0N0SQu9mvh3aN0PReGjbCKtugspjoP4iqL8ENt4BT308XGevaD7M/1hYs2kpxEpgzIlQOS/09T7fiZ5wG4nsCW/rhp62EBwXLx7ZtUmSJEk6rBmMJkmSJI2E4WeSJEmSJEmSJEmSJEmSJEmSJEk6EkUiUD4rtAHH7edQNIB4CeSVpwd4Hel6Q9EA2jZA22/S690t8MxnM+dtuz+0Jz6cfd1EJzz+wZHtrXwWVB8PhbXh9VF1LDRcDvGizLEHIlhPkiRJ0kHFYDRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0qErEoG6i2HVTaO9Ew1G0/LQ+iuZAoXjoLghhNz1tMHW+yDZA7FCqF4cbiecD+POgEQP5FeGllcBsYIDfy2SJEmS9jmD0SRJkqT9JjnaG5AkSZIkSZIkSZIkSZIkSZIkSZKODIu+DDseg6alo70TDdfulaFty1LraYct94T7G/+YfX6sEPIqIb9iz+2ewLT8ysH1x0tCyJ4kSZKkUWUwmiRJkjQihp9JkiRJkiRJkiRJkiRJkiRJkiRJo66wFi58ErbcDY/fCB1bofnZ0d6VDqSedujZCO0bhzc/EusTmDaEQLXe/rwKiMb27TVJkiRJRyCD0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJh75oDMadBefeG45bXoBfTcs+9pjPwriz4fbFudcrmQy7X9zXu9TBKtkDndtDG6542eCD1DL6KyBWuO+uR5IkSTpEGYwmSZIk7TfJ0d6AJEmSJEmSJEmSJEmSJEmSJEmSdOQqboT8KujckVmbdC2UTITF/wkPvSWzXjEXLnoKkkl44sOw7MvQ0wrVx8EJ34aqY8K4nk74cUH281ceDRc+njpe8T144A3Zx16xBbpbYPWP4e8fyKzXnAhta0NYW7wENtwOkSgkE6kxeeUhmKttXeb8vHLoasp+bu073c2hsXZ486MFITCtNzxtUIFqffrjpRCJ7NNLkiRJkg40g9EkSZKkETH8TJIkSZIkSZIkSZIkSZIkSZIkSTooReMw7XpY+vn0/rqLQygaQMNl8PDbIdmTPqbx6nAbicCCT8LcD0GyKwSP9Q2eiuWH0LJt92eef/Z70o/Hn5N9nyWToaAGCsfAUe8PbTB6Q9Ei0cxa5w7Ych+UToPyWdDyAvx6evZ1cu0foGohnP8wPPt1eORdg9uXhi/RAe2bQhuOSLRPoFqfwLS0oLUs/b1ha3nl4X0jSZIkjSL/i1SSJEmSJEmSJEmSJEmSJEmSJEmSJEmSdHha8GkgCS/8Twidqr8EFn8zVS+aEI4fuiEVNDb+HJj1zvR14kVAUfZzTHpFZrBYrBAaLk/vK2kMfWtvS++f9a70sLXByhaI1iu/CuovSh0X1eUeO+Mt0Lw8hKn1d/THwt5mvRPGvwS23hfC4RouD6FwK74LD1yfe+2r22DjHXDXJdnrp/4Edq+GFd+BpmW519HgJBPheezcAbuHuUa8NEtgWsXgg9Zihfv0kiRJknTkMRhNkiRJ2l+SydHegSRJkiRJkiRJkiRJkiRJkiRJknRki8bh2M/DMZ8LoVHRWOaY6ddD3fmw+a9QOhmqjwvzBmvm26DpGXj+W+E4rxJO+2kIiervlJvhsffDul+H+rTrQzDZ/hYvgqqFsOPR9P5oHtRdCJvvghe+l17Lq4RxZ6eOK+aE1lfdxbnPWTIphGTVngHxEujul9RVdyE0vizcL50C91yZfZ0574Oln8teW/hlGLcEunZC5649tzuha9ee2779fes7IdGVe+9Hsu6W0Fg7vPnR/MxAtVxBa/378ytC8N5wggIlSZJ02DAYTZIkSRoJw88kSZIkSZIkSZIkSZIkSZIkSZKkg18kApEsoWi9ihtg8iuGt3Y0Dsf/Fxz9KWhdDZXzQ+BYNrFCOO6roR1o8z4Ef305JHtSfTPfAYVjYMEnYfvDsPOJPfssghP/OwSqDaRoHCz4DDz+wcxa48vDbV4ZHPsFeOitwJ7vYxWMhQWfSo2tOTH7+tF8qJyX+/xVx0LV0QPvMZtkEnraBxmolqO/f9CbgkQntG8ObTgi0RCW1j8wLS9HkFq2+lCCDSVJknTQ8b/mJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEkaqcIxoR2sJl4BZ/0frPwf6GqC+oth6utDrWgCnPcAbP0btG+B2tNC32DM/UAIP3v47am++kth/kdTxzPeDNXHwYY/QH41NFwGxfWpenEdjD8HNt6Rvnbjy6DmhNznLps+uD32F4mE0Ld40eCvs79EV3gchxqo1tvftQuSieGd+3CWTEDnjtCGmz0XLxlkoFqO/lhheI1IkiRpVBiMJkmSJO03ydHegCRJkiRJkiRJkiRJkiRJkiRJkiSljF8SWjaxQhh31vDWnfk2mH4D7HgMCsdBSWPmmJrjQsvl5Jvh3lfApj+HUKr6y2Dxf0K8FMpmQPNz6eOrj0sPVzvQonlQUBPacCQT0N2SPUjtH+FpAwWt7YRE5769psNF9+7Q2tYNb340PwSmVR8HM24IQX4j1fIirL0NCmuh7qIQwiZJkqSsDEaTJEmSRsTwM0mSJEmSJEmSJEmSJEmSJEmSJEkiGoeaxcOfXzgGzr4DOraH0LG8slRt8Tfh7ktD2BVAfhUs+urI9jvaIlHIKw+NicNbo6d9gEC1QQStdbfs00s6bCQ6oWMLbPh9aH3N/yjEyyBeDPESiO25TTsuhtievlgRPP4hWPrvIQyv15iTofZ0mP5GaN8S+pI9UHVMmNereQV0N4f3xbpfQaI7vDd2PAYbbg9jSibBUe+HKa8Oe5AkSTrEGYwmSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIODgXVmX3jl8BFz8D634fQtAnnQXH9gd/bwSZWCEXjQxuORDd0NWUGpg0laK1v2NeR4MmP7pt1tt4X2jOfHflau1fBQ28NrXBcCN2LFYfnpuFyaLwKEh3Quh5e+C5s+gsU1UHZdFj8X1AxO6yz7WHY/jAUjof6SyAaG/neJEmShsFgNEmSJGm/SY72BiRJkiRJkiRJkiRJkiRJkiRJkiTp8FDSCDNuGO1dHF6i8RBEly2MbjCSSejePbxAtd77Pe379pqOdO2b0o+Xfzm0/trWh/bbOeE4mgeJrvQx5bMhVgSdO/Y8XztTtcJxMO4siJfBzieguxkmnA/z/g3yK1LjeoPzItFw27Q8tNKpUHFUqn+wOneE11zh+PD6lSRJhyX/lJckSZJGxPAzSZIkSZIkSZIkSZIkSZIkSZIkSdIRKBKBvNLQihuGt0ZPO3TuSoWnDRSo1hvO1be/u3nfXtORqn8oGkDTstzj2zfBqlvS+3Y9A8u+lH38hPOhYytsfzh7PZoPZTMh2QPF9SGQbfuj4Txl06GnbU8oWksqbA2g5gSoOhZiBSGkLb8ytLzKzPt5FYapSZJ0iPBPbEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJB14sUIoKoSiccObn+iB7qaBg9Q6d2UGqvUNYEv27NtrUqYNfxi4nuiEXU+F+01L02sDBbRteyC0wYqX9gtLyxKg1huiljGuAqJ5gz+XJEkaNoPRJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSdOiJxiC/KrThSCahpzUVmNayAu6+bN/uUQeP7pbQWDu8+fGS7GFqOQPWDFaTJGk4DEaTJEmSej33X7DyB+EvMRsuh7k3hr8UHUgyeWD2JkmSJEmSJEmSJEmSJEmSJEmSJEmS9q1IJIRdxUuguB4q58JVO2HZF2H1T6BpeeacvAoorIXu1vB9xO7dkOg88HvXgde9O7S2dcObnzNYrWIvoWp7xsTy9+31HG6SSWh+DlpXQ/FEKJ0G0Tj0dIZQukgk99zOXZBXPvAYSdIBYzCaJEmSBLDsy/DoP6WOd/wdWtfBCd8a/pqGpkmSJEmSJEmSJEmSJEmSJEmSJEmSdGjJr4CjPx5a7/cEe9og2QOxYojGMuckuveEpPUJS+vec/vns7Ofp+FyaH4edj01/L1G86DhClj94+GvoQNnpMFqseLcwWlHerBa63q4/7Ww8Y/Z63kVUD4b2jfB7hdzr1N7Znhv5leE7xlvuRealsHuldnHVx4NY06Cogmw/REoqAnvyfqLIBINYxLdsPRzsPluyK+GadfD+CV7al2h7X4RWteGevWiENCWTEDLCyHsrXs3tKwMz2XDZSGcUZIOYwajSZIkSQDP/kdm38rvw8IvQV7pAd+OJEmSJEmSJEmSJEmSJEmSJEmSJEkaZZFIuI0XDzwuGodoOeSVZ9YWfRUeeVe/daOw6GshdOm+a7KvedX2EGrV0wo/HwM97ZljprwaTvgOcAusuS18L7JtQwhrmvpaKJ0WQpfW/w5W3QLdLVA2E2pPD8eb74RoPpTPgaZnwlgdvHpaoa0V2tYPb36saHihar33D9Zgte5W+Mt5A4cMdu2CbQ/sfa3Nd4Y2WDufCK2vF74fbiNRiJdD1870+qqb975urDg839k8+CZYcgd0bINEB1TMC59RpdMh0QnNy6HpWahaAOWzBn8tq34Cj7wzhMcV1MDib0LjVSEgcstfQ3hbtAAq5kDZjPDZEYlCV3P4fMqvDJ8hLSuguDGEy/XqagGS4TWY7A6ffa1rofY0KJ06+D1KOmIYjCZJkiR1bAv/k91fogvW/gKmvGqAycn9ti1JkiRJkiRJkiRJkiRJkiRJkiRJknSIm/5m2Pq3EEQGEInD8d+CkokQOyccJ7vT55TPCkFUkQjES2DWu+GZz2auPfX1qfsTLw8tmxk3hNa/D0LoUW8AXDIBzSugoBq6mmDdr0P4Ud1FkFca9ppXFr6Xue7X0L0b8qth7S/D9zETnUN7bArGQMfWoc0ZSOXRIQCrc2e4VbqeNmhrC+F5wzGUYLW8isxarGDfXk+vNT8fOBRttCQTmaFog5UrFK3Xn88Z3Dolk2D+R8PzESuGwloonw3bH4I1t8LW+8Pz2j8MrmMb/PVlw9l5pnhJ+KwYyLglIbSxYysU1YXPkoIaGHsabL4rhNrFiqFwDBROgO2PhKC26uNgwaegdPK+2aukg4bBaJIkSVKiO3etu2UECxuaJkmSJEmSJEmSJEmSJEmSJEmSJEnSES2WDyffBPM/Ds3PQc1iKBwbaoVjYPob4bn/TJ9z1AdSYWUAR38SiMCyL0GiIwSUzf8ojDlp5Pvre55IFMpnhPsFNTDrndnnFNTA1Nemjidfk33cTZHs/TUnwHn3p47bNsKqm2H978K1LfoK/PGUEM6UMfd4OPdvsPPJEIiVVwGNLw9Bc30leqC7eU9I2s5wm+t+1j6D1TKMOFitcHCharn6cgWrbXtw+Nd0uNu9Cu5/3ejuYW+haACb/hzaUDU/C+t/A6f8GOrOH/p8SQctg9EkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZKk/SUSCYFjvaFjfR33DSidDut+BXnlIXBs4hXpY6IxOObTMPPt0LoaihtCO9iNW5I97Gjm29KPi8bD7PeE1mvam+CZz2TOnfGWEOBWtSC0XKKxVLDWcGQEq+0afKjaP4LVksM79+Gqpx16NkL7xuHNzwhWqwi32x7Yt/vUoaWrCe68INyPl0G8GNo3heNZ7w6fqQN9Vkg6KBmMJkmSJI1E0r+UkiRJkiRJkiRJkiRJkiRJkiRJkiRJwxSJwpx/Cm1viutCO1RMfX1mMFp+VWbwWzbT3wgrvgUd21J9pdOh8eX7do+5jDRYLZmAruYBgtP6BKjlqhmslm6kwWo6/HU3h9Zr+VdC+//s3XmUpGV9L/Dv09PD7AMM+zrs83+RdwAAIABJREFUIqIggqi4YBTFaFSMihqNGI9LjN6cmOS6JIbojcvNek2iSdRcJDcmUYlKFuOGmiCIYPS4gSKyqOwwIMwwCzM894/qoatrumvp7qrqmfp8zqnz9rP/CoZz6h3q/fb4quQZ30xWHTm82oCeCEYDAIB+/cWQ0DQAAAAAAAAAAAAAAAAAYFQd9pJk403Jle9OttyV7H588ri/T8ZXdF678vDkjEuTq/4w+dmVyZqTk4efm4wv73/d86GMJbvt3nitWNv7+vpAsnV9+1C1KQFrLX33/6yxB9AIS/vsKcnTL09WHTXsaoAuCEYDAIC2yrALAAAAAAAAAAAAAAAAAADY+ZSSHPfbyUN/sxHUtdueva1ffUxy6of6U9tCV8aSxasbrxWH9r6+1slgtV5D1bZfd/Zgtcd/LPnKC6cf2/dJyVO+1PgzmjTe69XvS37w5433fsDTk+PPTf7jhGTbxmn2/nhy6POT9dcl916TXPpLyebbpz9ryd7J5jumH1u8R3LUq5MDz0xu/lxy0380/r3VrcmipcmqY5LlhzTm/vD9vb1/ptpyV3LteckJ7xx2JUAXBKMBAEBbdY7jAAAAAAAAAAAAAAAAAAAjrIz1HorG3JSSLF7VeOWQ3td3Cla7/2edg9bqtnl/W10bX5Uc8Ixk5ZHJ+h/tOH7YSydD0ZLGn9GHvKHxanboC5Przp/at2h5csDTGj+vPLzxOvg5yY9mCPF7/MeSi35ux/7FuyfPXzdZx35PTk5898zv6VH/J7nu75Mfvq/x72fPE5NVRydb7002r2vUtHVDstseybd+J7n72zPvNZ2Hvz35zrkzj5/6t8mm25JvvaW3fZsd/7bku/9r9uvn6vZLhnc20BPBaAAA0DdC0wAAAAAAAAAAAAAAAAAA2MnMS7DahumD06YLUZvvYLVjfyNZvDI54V3JpS9O6gOTY/s9OTn8Zd3t84i3J3d8Nbn36ka7LEpOeV+yePXUeWvPnj4YbY8Tkn2emCw7KNl449Sxw395ajhbJ2OLkyNf0Xh1ctCzkjuvSO74WrJoSbJibbLx5uSyc6aff+J7kuPe1Pjn9N237zi+/JDkyF9pjM8UjLbi8OQJFySfedT04/s+MXnEO9oHox307OTGf5l+7HEfSfZ4RHL7xckVr5t5j3bWXze7dcDACUYDAID08JcGAAAAAAAAAAAAAAAAAADAzEppBJMtXpksP7j39bUm2+7rPVRt2YHJwc9JjpgID1v7wkbfdX+XpCb7PCE5/KVJGeuujhVrkzOvSG65KNl0WyNUbfUxO87b9/RGeNh9P5naf8QrkrFFyZP+JfnyM5NNtzT6939aIySsn/Y6pfHabut9ydd+ZWpI3Hb7/Vzjeshzpw9G2x4kV8aSVcdMBsU1O+mPkzUnNfa69Ys7jh/dKcysJA8/d/pgtDKeHPK8ZNHS5J7vd9injbmE7QEDJRgNAABSh7QWAAAAAAAAAAAAAAAAAACYopRkfEXjtfygue217+Mbr9lavDo55Kz2c8bGk6d8Kbnkxcm6KxprjvkfyUPe0Bhfc1Ly3J8kd30zWbJ3suKwxnscpPHlyQFnJjd9emr/8kOSNY9q/LzniclRr06u+cDk+O7HJce8frJ96AuS771z6h6LVzf2TpIjztkxGG3JXslBz54446Tkrm/sWN/Dz22cv+KwZMP1U8cOfk4jFC1JFu8+83t84qeSy16RbLlr+vGZ+oEFRzAaAAC0NZe/VBCaBgAAAAAAAAAAAAAAAAAAu7xVRyZnXp5suTsZX5WMLZo6Pjae7HXKcGrb7qQ/S3525WTw2PjK5DHnJWVscs4pf90IMbv9K8mqo5JDfjHZbY/J8Ye9Nbn7O8mN/9JoL949ecInGsFrSXLYS5ONtyRXvifZsq4RdvbY/5eML5sYf8n0wWiHvqBRx2n/lPznM5PNdzb6dz8+OelPJ+eNr5j5/S3ZJznmDcl33zH9+Lb7kus+kqz77+TWLyTbNifH/kYjGG7rfY33sPrYZPGqyTW1Jvd8v7H30r1nPhuYV4LRAAAAAAAAAAAAAAAAAAAAAABgrppDxBaa1cckP/+t5Nb/TLauT/b7uWTZflPnlJIc9MzGazrjy5MnXZisvy6578Zkr5OTRUunrj/ut5OH/mZy/73JbrtPXX/Ua5KbP5vc8vnJvoe/Pdn9uMbPe5+aPPv65PZLGgFlax6VLFoyOXfPE5JFy5JtG1vqWpns+chkyV4zB6MlyVdfOrV9xa9OP2/1Q5NlByS3fnFq/6l/myw7qBEut+nWRh1b1ycbfpysPCJZvDrZ/4zG+xhbPHMdc7HptmTpvv3ZGxYIwWgAADAXtQ67AgAAAAAAAAAAAAAAAAAAgM4Wr04O/oW577Py8MZrJmVsx1C0JFm8Mjn93xvBZ/f8INnncckeD99xzoFPn37f8RXJ4S9LrvnA1P4jXpGML0tWPyR59AeTy1/V2/tpdc9VjVerr72y89p2wWxJI1ht+cGN97L/U5IDn9UInLv3R42QtaX7JOOrki13Juuvb8xbdkAjEG3x7slXX5Yc9Kzk5L9ojMEuSDAaAAD0i9A0AAAAAAAAAAAAAAAAAACASWOLk/1Ob7xm4+T3NQLebvhoUsaTtWcnj/iDyfHDfmnuwWj9tPHGxitJbv1i8q3f6X2Pa89Lbrs4ecIFyZ4nzG99sACMDbsAAAAYPgFmAAAAAAAAAAAAAAAAAAAAC97YePLIP0qe++PkOdcmJ747GVs0OT6+LFlz8vDqG5T11ySfPTW5+v1J9bw8uxbBaAAAMCduEgEAAAAAAAAAAAAAAAAAABaMo14z7AoG44HNydd/Lbn2/w67EphXgtEAAKBvCdhC0wAAAAAAAAAAAAAAAAAAAAbqyF9JjnzlsKsYjD0fmRz20mFXAfNqfNgFAADA8AkwAwAAAAAAAAAAAAAAAAAA2CWUseTRH0wOeX5y+yXJirXJwc9O7r8nKYuSMp5svi3JWHLXN5P7703WX5Pc84PkjkuTrRuG/Q66M74yOe2jyaIlw64E5pVgNAAAmFMwmlA1AAAAAAAAAAAAAAAAAACABaWU5MAzG6/tlu47+fOKQxrXNY+cfv0dX0tu/WKy7IBkvycnFx42ixoWJXVb7+u69ei/SVYf3b/9YUgEowEAQO1XuJnQNAAAAAAAAAAAAAAAAAAAgJ3O3qc2XklSH5h53tL9kk237ti//JDkuT9Ott6XXPvh5L6fJnscn6x9UVLGkq0bkw3XJ5vvSNZfl6y/Ntnr5EYQ26IVyb8/dOYz15ycHPfm5NBfnMs7hAVLMBoAALQNMCsDqwIAAAAAAAAAAAAAAAAAAIAFpowle56U3PWNHccec37yX89JHtg8tX/t2Y3r+PLkmNftuG58WbL7RPjZvk+Y7tBM+xz8PqclZ3yll+phpzM27AIAAGD42gWjdVo6h7UAAAAAAAAAAAAAAAAAAAAsfEe9ese+PU9MDnha8tjzk7HFk/37nJYc9+a5nXfcm2ao47Vz2xd2AuPDLgAAAIauX+FmQtMAAAAAAAAAAAAAAAAAAAB2fke9Otm2Kbn6L5JNtyb7PzV59AeSUpK1Zyf7Pim5/eJk2YHJXo+eGpQ2q/Nelfzog8nmOyf7Vj8kOeSsue0LOwHBaAAA0JZwMwAAAAAAAAAAAAAAAAAAgJFWSnLsrzde9YGkjE0dX7Z/cugL5u+8lUckZ1yaXPVHyc++1whbO/5tyfiK+TsDFijBaAAAMKfwM8FpAAAAAAAAAAAAAAAAAAAAI6M1FK1fVh+TnPrBwZwFC8iA/gsDAICFrF24WenTvgAAAAAAAAAAAAAAAAAAAAA0E4wGAABVgBkAAAAAAAAAAAAAAAAAAADAsAlGAwCAzCUYTagaAAAAAAAAAAAAAAAAAAAAwHwQjAYAALVf4WZC0wAAAAAAAAAAAAAAAAAAAAC6JRgNAAAEmAEAAAAAAAAAAAAAAAAAAAAM3fiwCwAAgOFrE4xWSoelQtUAAAAAAAAAGKxSyniSk5I8LMk+SXZLsj7JjUmuTvK9WuvW4VUIAAAAAAAAAACzIxgNAAD6FW4mNA0AAAAAAABgp1FKOSLJKUlOnrielGRV05Qbaq2HDaG0B5VSjk7y20nOTrK6zdSNpZSvJPmrWusnB1IcAAAAAAAAAADMA8FoAADQjnAzAAAAAAAAgF1WKeX0JG9JIwxtzXCrmVkpZTzJ76VRazff/VyW5Iwk65IIRgMAAAAAAAAAYKchGA0AADKX8DPBaQAAAAAAAAA7sROTPG3YRbRTSlmW5IIkP98yVJN8L8mPk9ydZGWSI5IcG98PBQAAAAAAAABgJ+WLLwAA0LdwM6FpAAAAAAAAADupzUl+muTIYRZRSilJ/ilTQ9E2JfnDJB+otd44zZrlSc5I8qIkWwZRJwAAAAAAAAAAzBfBaAAAUNsEmJUyuDoAAAAAAAAAGIb7k3wvydeTXDFx/U6S05J8aYh1Jcnrkjy7qX1zkqfUWq+aaUGt9b4kFya5sJTie6IAAAAAAAAAAOxUfOEFAADSJhitr2sBAAAAAAAAGLLzk/x1rXVT60AZ8i/SKqUcmuQ9TV2bkjy1XShaq1rr1nkvDAAAAAAAAAAA+kgwGgAA9C3cTGgaAAAAAAAAwEJWa71r2DW08TtJVja131lrvXJYxQAAAAAAAAAAwCCMDbsAAAAYuirADAAAAAAAAICFo5SyKslLmro2JHnvkMoBAAAAAAAAAICBEYwGAACZQzCaUDUAAAAAAAAA5t/ZSVY2tf+51nrvsIoBAAAAAAAAAIBBEYwGAAAAAAAAAAAAsLA8uaX9+aFUAQAAAAAAAAAAAzY+7AIAAGD4ap+27dO+AAAAAAAAAOzqHt3S/mqSlFKWJTkryYuSPCzJgUk2J7kjyTfTCFD7x1rrvYMrFQAAAAAAAAAA5o9gNAAA6CXAbOPNyU8+mdz3k2T/M5KVh/evLgAAAAAAAABGTilljyRHNXVtSXJtKeVJSc5L0vo/qpcm2T3JkUmen+RdpZR31Fr/fBD1AgAAAAAAAADAfBKMBgAA6TIY7d4fJRedntz300b7yvckR5zTr6IAAAAAAAAAGE37t7RvSvK8JB9LMtbF+r2SvLeUckqSV9Rat85zfQAAAAAAAAAA0DeC0QAAoNtgtO+9czIUbbtrPzz3fQEAAAAAAABg0h4t7ZVJ/j6ToWg3JHlfkq8kuTPJmiSPT/JrSQ5rWvfSJLcm+a35KqyUsm+SfXpcduR8nQ8AAAAAAAAAwK5PMBoAANR2AWZl8sdrz+t7KQAAAAAAAACMvNZgtL2bfv54kpfXWje2zLmslPKXSf4uyQua+n+zlHJhrfXieartdUnOnae9AAAAAAAAAABgB2OdpwAAwK6uXTAaAAAAAAAAAAzUTN/tvCLJS6YJRUuS1Fo3JXnJxLxmvzuPtQEAAAAAAAAAQF8JRgMAgNqvYDSBawAAAAAAAAD0bP0M/b9Va93abuHE+Btbup9WStl3XioDAAAAAAAAAIA+Gx92AQAAMHztAsyEmwEAAAAAAAAwUNMFo91Qa/2vbhbXWr9SSrk2yRFN3U9K8vF5qO39s9jnyCQXzsPZAAAAAAAAAACMAMFoAAAAAAAAAAAAAAvH3dP0XdbjHl/L1GC0h86+nEm11tuS3NbLmlLKfBwNAAAAAAAAAMCIGBt2AQAAMHy1zdgcvqBd2+0LAAAAAAAAANO6Icnmlr6be9zjppb2XrMvBwAAAAAAAAAABkcwGgAACDADAAAAAAAAYIGotW5L8oOW7tagtE5a5y+dfUUAAAAAAAAAADA4gtEAACCC0QAAAAAAAABYUL7d0t6jx/Wt8++cQy0AAAAAAAAAADAwgtEAAKBvwWgC1wAAAAAAAACYlU+3tB/W4/rjW9o/nUMtAAAAAAAAAAAwMILRAACgCjADAAAAAAAAYEH5tySbm9qnlFLWdLOwlLJnkke3dF88X4UBAAAAAAAAAEA/CUYDAIC0C0YrA6sCAAAAAAAAAJKk1npvkguaupYkeX2Xy1+fZGlT+4Yk352n0gAAAAAAAAAAoK8EowEAQNtgtIW4LwAAAAAAAAA7k1JKbXmd3sWytyXZ0tR+aynlsR3OeWyS323pfnet1f/ABgAAAAAAAABgpzA+7AIYjFLK4iSnJTk0yQFJ1ie5Kck3a63Xz/NZhyc5McmBSVYmuTmN3zh5aa31/vk8CwCg/3w3HAAAAAAAAGBXVko5ONN/n3L/lvZ4KeWwGbZZX2u9Yz7rqrVeV0r5w0wGnS1J8rlSyv9M8qHm7+OVUsaTvDLJHyfZrWmby5OcN591AQAAAAAAAABAPwlGG6BSyu8nOXcOW5xfaz2nxzP3SfL2JGcnWTPDnEuT/Gmt9Z/nUFtKKc9P8sYkM/1GynWllI8m+b35/gIYAMCc+MXYAAAAAAAAAKPsK0nWdjHvoCTXzTB2fpJz5qugJr+X5CFJXjDRXpnk/UneVUq5LMm6NL4b+Jgke7SsvTHJL9Zat/ShLgAAAAAAAAAA6AvBaLuwUsozknw4yb4dpj4uyeNKKR9J8ppa64Yez1mZ5INJXtRh6pokv5rkeaWUl9daP9vLOQAA/dOnYDSBawAAAAAAAADMQa21llJelkYA2muahvZIcmabpZcnOavWelM/6wMAAAAAAAAAgPk2NuwC6I9SyulJPpWpoWg1yX8n+XiSzye5o2XZLyX5x1JK138uSimLknw0O4ai3Z7kcxNnfSNT00b2S3JhKeXx3Z4DANBfAswAAAAAAAAAWJhqrZtrra9N8tQ0vvu3rc307yY5J8njhKIBAAAAAAAAALAzGh92ASPuxUku62H++m4mlVIOTvKJJLs1dV+S5FW11qua5i1J4zdI/nGSxRPdv5DkD5K8tcua3pPk55va9yd5Y5IP1Fq3NJ11XJIPJXnsRNeSJJ8qpTy81npzl2cBAPRHbReMJjQNAAAAAAAAYFdWaz1sAGeUedjjoiQXlVL2SfKYJAck2TvJvUluTXJprfWncz0HAAAAAAAAAACGSTDacN1Sa72+D/u+PcmeTe1Lkzy11rqpeVKtdXOSPy+l/DjJJ5uG3lhK+Zta6w3tDimlHJHk11u6X1BrvbB1bq31ylLKU5JclMlwtL2SnJvktV28JwCAPmoTftY2NG0O+wIAAAAAAADALNRab0/yr8OuAwAAAAAAAAAA+mFs2AUwv0opRyd5eVPXliTntIaiNau1firJ+U1dS9IILOvk3CSLm9ofni4UremcjUnOmahpu1dOBKwBAAxRuwAz4WYAAAAAAAAAAAAAAAAAAAAAgyAYbdfzkiSLmtqfqLX+sIt1/7ul/cJSytKZJpdSliV5foc9dlBrvTrJp5q6xtOoGQBgeKrwMwAAAAAAAAAAAAAAAAAAAIBhE4y26zmrpX1eN4tqrVcl+VpT14okT2uz5OlJlje1v1pr/X5XFe5Y0/O6XAcAMARzCE0TuAYAAAAAAAAAAAAAAAAAAADQNcFou5BSyv5JTmjq2prkkh62+HJL+xlt5p7ZYW07F6dR23aPLKXs18N6AID5VR9oMybcDAAAAAAAAAAAAAAAAAAAAGAQBKPtWo5vaX+71rqhh/WXtrQf1sNZX+32kImavtPDWQAA/VMfSK54bbsJAysFAAAAAAAAAAAAAAAAAAAAYJQJRhuu15RSvlBKubGUsqmUcm8p5fpSyn+WUt5ZSnlCj/sd19K+psf1P+qwX7OHDvAsAID+ufFfkw3Xzzxe5xKMJlQNAAAAAAAAAAAAAAAAAAAAoFvjwy5gxL2opb0kycoka5M8MclbSylfT/KWWusXutjvqJb2j3us54aW9l6llD1rrXc1d5ZS1iRZM8ezWucf3eN6AID5cdWfDLsCAAAAAAAAAAAAAAAAAAAAAJKMDbsAOjo5yedKKe8spZQOc/doad/Wy0G11vVJNrV0797FOffVWjf0clZ2rG26cwAA+u/2iztMqAMpAwAAAAAAAAAAAAAAAAAAAGDUjQ+7gBF1Y5JPJ7k8yVVJ1iV5IMleSU5K8qwkT2+aX5K8NY0gu7e02XdlS3vjLGrbmGRpU3tVH89pNt05PSul7Jtknx6XHTkfZwMAu6q5BKMJVQMAAAAAAAAAAAAAAAAAAADolmC0wbo8jcCzz9daZ0rJuDTJX5ZSTk7yD0mObhp7cynlslrrhTOsbQ0s2zSLGjcm2bPNnvN5Trs9Z+t1Sc6dp70AAJIZP7YBAAAAAAAAAAAAAAAAAAAAMJ/Ghl3AKKm1frrW+rk2oWjNc7+e5DFJrm4Zek8pZVG3R/Za4wJfAwAwBD62AAAAAAAAAAAAAAAAAAAAAAyCYLQFrNa6LsmLMzWN49gkT55hyfqW9rJZHNu6pnXPQZ4DALBz65yHCwAAAAAAAAAAAAAAAAAAAMCE8WEXQHu11m+UUj6X5OlN3Wcm+cI00wWjJe9P8vEe1xyZ5MJ5Oh8A2OUINwMAAAAAAAAAAAAAAAAAAAAYBMFoO4fPZGow2iNmmPezlvY+vRxSSlmZHQPL7u7inOWllBW11g09HLdvF+f0rNZ6W5LbellTSpmPowGAXVUVjAYAAAAAAAAAAAAAAAAAAAAwCGPDLoCuXN/Sninw7Ict7bU9ntM6f12t9a7WSbXWO5O09h86x7NaawcAWCAmgtFmFZAmVA0AAAAAAAAAAAAAAAAAAACgW4LRdg4bW9rLZph3VUv7qB7POaKlfWWbufN9Vut+AAALRG25AgAAAAAAAAAAAAAAAAAAANAPgtF2Dnu3tO+YYd53W9qPKKUs7+Gc0zrs127ssd0eUkpZkeQRPZwFADB8VTAaAAAAAAAAAAAAAAAAAAAAQD8JRts5nNrSvmm6SbXWm5N8u6lrPMnjezjn9Jb2f7SZ+5kOa9t5Qhq1bffNWuutPawHABicBwPRZhOMJkwNAAAAAAAAAAAAAAAAAAAAoFuC0Ra4UsrSJM9r6f5ymyWfbGm/ostzjs3UALYNST7XZslnk2xsaj92Yo9unNPSbq0ZAGABEW4GAAAAAAAAAAAAAAAAAAAAMAiC0Ra+NyU5qKm9Lcm/t5n/kYk52z2vlHJ0l+c0+1itddNMk2ut9yW5oMMeOyilHJPkrKaurUn+oYv6AACGpLZcAQAAAAAAAAAAAAAAAAAAAOgHwWgDUkp5WSllvx7XvCrJuS3dH6613jDTmlrrD5Oc39S1W5IPl1KWtjnnOUnOaerakuTtXZT4+0nub2qfU0p5dptzliY5b6Km7f621vqjLs4CABiOWqdeZ7MWAACA2as1uefq5P57hl0JAAAAAAAAAAAAAAAA0GeC0QbnlUmuK6WcX0p5ZillxUwTSyknl1I+keQDSUrT0I1JfreLs85NcldT+3FJvlBKObblnCWllDck+XjL+j9pF762Xa312iTvbem+oJTy+lJKc/hZSikPTXLRRC3b3ZnuAtgAABYAIWcAAAADt+4byYVrk397SHLBmuTy1yYPbBt2VQAAAAAAAAAAAAAAAECfjA+7gBGzLMkvT7weKKX8MMn1SX6WZFuSvZKckGS/adauS3JmrfWWTofUWn9aSnleks8m2R5QdlqSK0sp/53k2iS7JzkpyT4ty/8tydt6eE9vTvKwJM+YaC9O8hdJ3lZK+UaSe5McMXFWc8jbliRn1Vpv7uEsAIAhqC1XAAAABmLrxuSLZyRb1jXadVtyzd8kKw9PjnvTcGsDAAAAAAAAAAAAAAAA+kIw2vCMJXnIxKuTi5KcU2v9abeb11q/XEo5K8mHMxl+VpKcPPGazj8meVWtdVsP52wrpbwwyYeSnN00tG+SM2dYdluSl9daL+72HACA4ZkIRKuzCUYTpgYAADBrt3x+MhSt2TUfEIwGAAAAAAAAAAAAAAAAu6ixYRcwQt6b5B+S3NDl/A1JPpnkqbXWp/YSirZdrfXTSY5P8tdJ7moz9bIkz6+1vqTWumEW56yvtb4oyQsm9prJuiR/leT4Wutnej0HAGAoHgxEE3IGAAAwUN//s+n711872DoAAAAAAAAAAAAAAACAgRkfdgGjotb6yTSCzlJK2SPJw5IckmS/JMvTCKm7O40As6uSfLvWum0ezr0tya+WUn49yWlJ1ibZP43gtRuTfLPWet1cz5k464IkF5RSDk9yUpIDk6xIcksagXCX1Fq3zMdZAACDIxgNAAAAAAAAAAAAAAAAAAAAYBAEow1BrfXuJJcM+MwtSb40oLOuSzIvYWsAAAtGnU0wmjA1AACA2XNPBQAAAAAAAAAAAAAAAKNmbNgFAADAgvZgIJoH8gEAAAAAAAAAAAAAAAAAAAD6STAaAAC0JRANAAAAAAAAAAAAAAAAAAAAYBAEowEAQFu15drLUqFqAAAAAAAAAAAAAAAAAAAAAN0SjAYAAO1sDzcTcgYAADBg7sMAAAAAAAAAAAAAAABg1AhGAwCArnggHwAAAAAAAAAAAAAAAAAAAKCfBKMBAEBbteU6m7UAAAAAAAAAAAAAAAAAAAAAdCIYDQAA2poIN6tCzgAAAAAAAAAAAAAAAAAAAAD6STAaAAC082AgmmA0AAAAAAAAAAAAAAAAAAAAgH4SjAYAAG1NBKLV2QSjCVMDAACYtVndhwEAAAAAAAAAAAAAAAA7M8FoAACMttLtR2IP5AMAAAAAAAAAAAAAAAAAAAD0k2A0AABGXKePxLXlCgAAwECUMuwKAAAAAAAAAAAAAAAAgAETjAYAwGgrHT4S1zr12ovZrAEAAKDBPRUAAAAAAAAAAAAAAACMHMFoAACMtk7BaPEgPgAAwIJz65eGXQEAAAAAAAAAAAAAAADQB4LRAAAYbWVRhwm15QoAAMDQfe9dw64AAAAAAAAAAAAAAAAA6APBaAAAjLhuPxLPJhhNmBoAAEBf3PKFYVcAAAAAAAAAAAAAAAAA9IFgNAAARlvp8JG41qlXAAAABsTZzKyOAAAgAElEQVR9GAAAAAAAAAAAAAAAAIwawWgAAIy2TsFoDz6I74F8AAAAAAAAAAAAAAAAAAAAgH4SjAYAwGgrizpMmEswmjA1AAAAAAAAAAAAAAAAAAAAgG4JRgMAYLSVDh+Ja516BQAAAAAAAAAAAAAAAAAAAKAvBKMBADDiuv1ILBgNAAAAAAAAAAAAAAAAAAAAoJ8EowEAMNpKp4/EteXagypMDQAAYPbcUwEAAAAAAAAAAAAAAMCoEYwGAMBo6xSMtj3cTMgZAAAAAAAAAAAAAAAAAAAAQF8JRgMAYMR1+kgsEA0AAAAAAAAAAAAAAAAAAABgEASjAQAw2kq3wWizCUgTqgYAAAAAAAAAAAAAAAAAAADQLcFoAACMtrKoy4lCzgAAAAAAAAAAAAAAAAAAAAD6STAaAACjrXT4SFzr1CsAAAAAAAAAAAAAAAAAAAAAfSEYDQCA0dYpGC215doLYWoAAAAAAAAAAAAAAAAAAAAA3RKMBgDAaCuLOkyYCDerQs4AAAAGyn0YAAAAAAAAAAAAAAAAjBzBaAAAjLgOH4kffBDfA/kAAAAAAAAAAAAAAAAAAAAA/SQYDQCA0VY6fSSeQzBaFaYGAAAAAAAAAAAAAAAAAAAA0C3BaAAAjLaOwWgThJwBAAAAAAAAAAAAAAAAAAAA9JVgNAAARltZ1GFCbbkCAAAAAAAAAAAAAAAAAAAA0A+C0QAAGHEdPhLXuQSiCVMDAACYPfdUAAAAAAAAAAAAAAAAMGoEowEAMNrGxjtMqC1XAAAAAAAAAAAAAAAAAAAAAPpBMBoAAKOtLOowYSIQrQpGAwAAAAAAAAAAAAAAAAAAAOgnwWgAAIy2jsFo2wlGAwAAAAAAAAAAAAAAAAAAAOgnwWgAAIy2Mt5+vG4PRBOMBgAAAAAAAAAAAAAAAAAAANBPgtEAABhtZVGHCROBaFUwGgAAwILiPg0AAAAAAAAAAAAAAAB2OYLRAAAYbd0Go8UD9wAAAAAAAAAAAAAAAAAAAAD9JBgNAIDRVjp8JK6C0QAAAIaiug8DAAAAAAAAAAAAAACAUSMYDQCAEdflg/YeyAcAAFhg3KcBAAAAAAAAAAAAAADArkYwGgAAtFVbrgAAAAAAAAAAAAAAAAAAAAD0g2A0AABoSzAaAAAAAAAAAAAAAAAAAAAAwCAIRgMAYLTVDoFnncYBAAAYDvdrAAAAAAAAAAAAAAAAsMsRjAYAAG1NPGjvgXsAAIABcx8GAAAAAAAAAAAAAAAAo0YwGgAAdMUD+QAAAAuL+zQAAAAAAAAAAAAAAADY1QhGAwBgxHV4kL7WqVcAAAAAAAAAAAAAAAAAAAAA+kIwGgAAtFVbrgAAAAAAAAAAAAAAAAAAAAD0g2A0AABGXKfAszkEo1VhagAAAP3jngsAAAAAAAAAAAAAAAB2NYLRAACgne3hZkLOAAAABsx9GAAAAAAAAAAAAAAAAIwawWgAANAVD+QDAAAAAAAAAAAAAAAAAAAA9JNgNAAARlvtFHhWW649bT6LNQAAAHSl4/0cAAAAAAAAAAAAAAAAsLMRjAYAAG1NPGjvgXsAAAAAAAAAAAAAAAAAAACAvhKMBgAA7QhEAwAAGI6O92Pu1wAAAAAAAAAAAAAAAGBXIxgNAIAR1+2D9rN54N5D+gAAAAAAAAAAAAAAAAAAAADdEowGAABdEXIGAAAwUKUMuwIAAAAAAAAAAAAAAABgwASjAQBAWxOBaFUwGgAAwEB1vA9znwYAAAAAAAAAAAAAAAC7GsFoAACMuA4P0j/4IP4sHrgXpgYAAAAAAAAAAAAAAAAAAADQNcFoAADQ1hyC0QAA+P/s3XuwpHld3/HPr89hZ4bdhAUEEQmsi4giQSVUqZALJpS38hIMojFFSWIMhff7pSICqdxMImXQqBWDQmlEAhJQg2i4WepiNLArGkCBheG27LrsCuzsmZk93b/8sWfc3p5+ntPdp5/znH769aqa2tPP9WvZ1XWeZn7vAeiOGDUAAAAAAAAAAAAAAAAMjjAaAAC0Olhob8E9AAAAAAAAAAAAAAAAAAAAQKeE0QAA2G4LB89WCaOJqQEAAKzOMxUAAAAAAAAAAAAAAABsG2E0AABo81fhNAvyAQAAThbPaQAAAAAAAAAAAAAAADA0wmgAANDqYKF9XWXBvUX6AAAAAAAAAAAAAAAAAAAAAIsSRgMAYMsdFi8TNwMAAAAAAAAAAAAAAAAAAAA4DsJoAADQpl4KowmkAQAAnCye0wAAAAAAAAAAAAAAAGBohNEAAKDNhb+4+791hQX3q5wDAADAAc9UAAAAAAAAAAAAAAAAsG2E0QAA2HKHLLS/9c3Jb3xWctsfHc84AAAALEaMGgAAAAAAAAAAAAAAAAZHGA0AAA7z8Xcmb3tO31MAAAAAAAAAAAAAAAAAAAAADJowGgAAdKb2PQAAAAAAAAAAAAAAAAAAAADAxhBGAwBgu1XxMgAAgM3keQ4AAAAAAAAAAAAAAACGRhgNAAAAAAAAAAAAAAAAAAAAAAAA6J0wGgAAdKb2PQAAAMCAeeYCAAAAAAAAAAAAAACAoRFGAwBgy1lIDwAAcCJVz2sAAAAAAAAAAAAAAACwbYTRAAAAAAAAAAAAAAAAAAAAAAAAgN4JowEAsOVqh5fu8NoAAADbzjMXAAAAAAAAAAAAAAAADI4wGgAAAAAA3ZmM+54AAAAAAAAAAAAAAAAAgA0hjAYAAAAAwPq9+78mv/4ZycuvSt74pcm5D/Q9EQAAAAAAAAAAAAAAAAAnnDAaAADbrdYuL97htQEA4AQ7+7LkD5+VfOJdyfh8ctNvJa9/cjK+2PdkbJTDnqk8cwEAAAAAAAAAAAAAAMDQCKMBAAAAALBe7/3Fy7fdcWNy65uPfxYAAAAAAAAAAAAAAAAANoYwGgAAdKb2PQAAAPTjw/9r/va3/cvjnYOB88wFAAAAAAAAAAAAAAAAQ7Pb9wAAANAvC+lZo3PvT25+Q/LxdyanH5J88hclVz8uKaXvyQAATobxhb4nAAAAAAAAAAAAAAAAAOAEE0YDAABYhw+8Mvndp+Wy2N6jvjV5wk+KowEAAAAAAAAAAAAAAAAAAMAhRn0PAAAAg1Xr4ccwDPt7yXXPyGVRtCR5139JPvK/j30kAAAYPM9cAAAAAAAAAAAAAAAAMDjCaAAAbDkL6VmDD/16Mr6zef/Nbzy+WQAAAAAAAAAAAAAAAAAAAGBDCaMBAAAc1U2/2b7/xhcfyxgAACdf6XsANoqQNQAAAAAAAAAAAAAAAGwbYTQAAOiMRfzb45DAx86Z4xkDAAC2imcuAAAAAAAAAAAAAAAAGBphNAAAtlu1kJ41uP369v1X/83jmQMAAIbE8xoAAAAAAAAAAAAAAABsHWE0AACAo9jfS26/of2YndPHMwsAAGwT4TQAAAAAAAAAAAAAAAAYHGE0AADojEX6W+HmNxx+zOSu7ucAAIChKaXvCQAAAAAAAAAAAAAAAIBjJowGAMCWEy/jiN7+Y4cfM7nQ/RwAADA01fMaAAAAAAAAAAAAAAAAbBthNAAAgKOY3HX4MR9+TVIn3c8CAABbRTgNAAAAAAAAAAAAAAAAhkYYDQAAulIt0t8Ko53FjvvAK7udAwBgE5TS9wQAAAAAAAAAAAAAAAAAnGDCaAAAbDfxMo5swbjHu36m2zEAAGDreJ4DAAAAAAAAAAAAAACAoRFGAwAAOIqy4GPVzW/odg4AAAAAAAAAAAAAAAAAAADYcMJoAADQmdr3AByHstP3BAAAMFCeqQAAAAAAAAAAAAAAAGDbCKMBALDlLLTnqDxWAQBAL6rnOQAAAAAAAAAAAAAAABgaK/gBAACOonisAgAAAAAAAAAAAAAAAAAAgHWwgh8AADpT+x6AY1H6HgAAAAAAAAAAAAAAAAAAAAAGYbfvAQAAoF/iZRzR5ELfEwAAnBx3fjC57a0tB4jKsozDntc8zwEAAAAAAAAAAAAAAMDQCKMBAEBXqkX6W2H/zr4nAADoX63JH/9w8vYf63sSAAAAAAAAAAAAAAAAADbYqO8BAACgV+JlHNX4XN8TAAD078OvEUWjA+WQ/Z7nAAAAAAAAAAAAAAAAYGiE0QAAAFZVa/Kxt/c9BQBA//78p/qegEESPgMAAAAAAAAAAAAAAIBtI4wGAACdsYh/8G5/a98TAACcDDe9dsEDS6djAAAAAAAAAAAAAAAAALDZhNEAANhy4mUcwUde3/cEAAAbxu/frFH1fgIAAAAAAAAAAAAAAIChEUYDAABY1cW/7HsCAAAAAAAAAAAAAAAAAAAAGAxhNAAA6EqtfU9A18Z7fU8AALBhSt8DsEkOfabyzAUAAAAAAAAAAAAAAABDI4wGAMCWs5CeIxjf2fcEAAAAAAAAAAAAAAAAAAAAMBjCaAAAAKva3+t7AgAAAAAAAAAAAAAAAAAAABgMYTQAAOhM7XsAujYWRgMAgP545gIAAAAAAAAAAAAAAIChEUYDAGC7VQvpOYLxnYsfe8UDupsDAGBTlNL3BAAAAAAAAAAAAAAAAACcYMJoAAAAqxrvLX5snXQ3BwDAphAmZineLwAAAAAAAAAAAAAAALBthNEAAKAzFvEP3v4yYbT97uYAAIBtJLQHAAAAAAAAAAAAAAAAgyOMBgDAlrOQniMY37n4sZO7upsDAGBTlNL3BGwU7xcAAAAAAAAAAAAAAADYNsJoAAAAqxrvLX5s3e9uDgAAGKTDQtZC1wAAAAAAAAAAAAAAADA0wmgAANCVapH+4C0VRht7TwAAAAAAAAAAAAAAAAAAAEALYTQAALacUBVHsH/ncsfXcTdzAAAAAAAAAAAAAAAAAAAAwAAIowEAAKxqvLfc8XW/mzkAADZG6XsABkXoGgAAAAAAAAAAAAAAAIZGGA0AADpjkf6g1bp8GG1yVzezAABsDL8jswzvFwAAAAAAAAAAAAAAANg2wmgAAGy3aqE9K5pcWP6cur/+OQAAAAAAAAAAAAAAAAAAAGAghNEAAKAzomuDNj6//DkTYTQAYNuVvgdgSISuAQAAAAAAAAAAAAAAYHCE0QAAAFYxvrD8OVUYDQAAAAAAAAAAAAAAAAAAAJoIowEAsOVq3wOwqSYrhNEmwmgAALA+nucAAAAAAAAAAAAAAABgaITRAACgK9Ui/UEbn1/+nCqMBgAAC/NMBQAAAAAAAAAAAAAAAFtnt+8BOB6llPskeVKShyf5lCR3JPlwkutrre9b870+LcnnJnlokquS3JTkbJLraq13rfNeAADQm8mFFc7x6zAAsOVK6XsCAAAAAAAAAAAAAAAAAE4wYbQTqJTyK0m+bmbz2VrrNStc60FJnn9wvQc0HHNdkhfUWn912evPXOdpSb4nyRc2HHJbKeVlSX601nrrUe4FALA+te8B2FRjYTQAAOiX5zkAAAAAAAAAAAAAAAAYmlHfA3BvpZSvyuVRtFWv9WVJ/jTJs9MQRTvwxCSvKKX8UinlyhXuc1Up5aVJXp7mKFoOZnh2kj8tpXzJsvcBANg8FukP2vj88udMVoipAQAAAAAAAAAAAAAAAAAAwJbY7XsA7lFKuTrJz6zpWk9O8qokV0xtrknemuTGJFcn+bwknzS1/58k+eullH9Ya50seJ+dJC9L8uUzu/4iyfVJPpbkkQf3Kgf7PjnJq0spT6m1/t4S/2cBAKxfFS9jRatEzlaJqQEAAPN5ngMAAAAAAAAAAAAAAIDBGfU9APfy40keevDzJ1a9SCnlYUlemXtH0X4/yWfXWp9Qa316rfWLkzwsyXcmuWvquK9M8q+XuN2/z72jaHcl+fYkD6u1fsnBvf5WkscmefPUcaeSvKqU8ilL3AsAAE6OcUMYbXSq5RxhNAAAAAAAAAAAAAAAAAAAAGgijHZClFKekuSfHbzcT/KjR7jc85Pcf+r1dUmeUmt9x/RBtdYLtdYXJnn6zPnfU0p5xGE3KaVcm7vDatO+ttb6U7XWizP3enuSf5B7x9EemOS5h90HAGBz1b4HoEuThjDazum7/8wz3utuHgAAAAAAAAAAAAAAAAAAANhwwmgnQCnlyiQ/N7XpBUluWPFaj0ryjVObLiZ5Zq31fNM5tdZXJXnJ1KZTWSxY9twk95l6/eJa66tb7rOX5JkHM13yTQeBNQCAnoiXsaJxw6/YO6eTUVMYrfHXcgAA4DKHPa95ngMAAAAAAAAAAAAAAIChEUY7Gf5dkmsOfr4xyfOOcK1vSLIz9fqVtdZ3LXDej828fnoppaHmkJRSziR52iHXuEyt9c+TvGpq027unhkAADbL5ML87aNTd8fR5hFGAwC2Xul7AAAAAAAAAAAAAAAAAABOMGG0npVSnpjkW6c2PavWuneESz515vUvLHJSrfUdSf7P1KYrk3xxyylfkuS+U6/fXGt950ITXj7T1yx4HgDAZqm17wno0rghjLZzKtk5M3/fRBgNAAAW55kKAAAAAAAAAAAAAAAAto0wWo9KKaeS/Hzu+f/DS2qtrzvC9R6S5HOmNu0n+f0lLvGmmddf1nLslx5ybpvfzd2zXfJ5pZRPXuJ8AIA1stCeFY0bImc7p+/+s8w5AADA8sSoAQAAAAAAAAAAAAAAYHCE0fr1vCSPPvj5L5J87xGv99iZ12+rtZ5b4vzrZl5/9hL3evOiNzmY6U+WuBcAAJw8kwvzt49OCaMBAMBalL4HAAAAAAAAAAAAAAAAAI6ZMFpPSimPT/J9U5u+q9b60SNe9jEzr9+95PnvOeR60z7rGO8FALChat8D0KUbf2H+9h1hNAAAWI/Dnqk8cwEAAAAAAAAAAAAAAMDQCKP1oJSym+Tnk+webHptrfWX13DpT595/f4lzz878/qBpZT7zx5USnlAkgcc8V6zxz9qyfMBANajWkjPij7+zvnb924WRgMAAAAAAAAAAAAAAAAAAIAV7B5+CB34oSSfc/DzuSTPXtN1r555fcsyJ9da7yilnE8yXXG4X5LbD7nPnbXWc8vca85s91vy/LlKKQ9O8qAlT3vkOu4NAHA50bXBOn9r8777XJWMGsJoE2E0AAAAAAAAAAAAAAAAAAAAaCKMdsxKKY9J8iNTm55Ta33fmi5/1czrvRWusZd7h9H+Wof3mTbvPqv4liTPXdO1AABgvvGdzftGVyQ7DWG0/VV+dQYAGJLS9wAMihg1AAAAAAAAAAAAAAAADM2o7wG2SSlllORFSU4dbHpLkheu8RazwbLzK1xjttQwe83jvA8AwDGwkJ4VjFt+BX7oVzSH0Sar/OoMAAAAAAAAAAAAAAAAAAAA20EY7Xh9Z5IvOPh5P8k/r7WOO7zfKpWPk3wOAFzurjuSOul7Cpiv+pVnsCYXmvdd+43Jzpn5+9qCagAAwL15pgIAAACOWSnl2lLK15VS/mMp5U2llI+XUurUn/f1PeOsUsp9SynvmZmzllJe3PdsAAAAAAAAAACwit2+B9gWpZRrk/zrqU0vqLXesObb3DHzuqHG0Gr2nNlrHud9VvHTSV6+5DmPTPLqNd0fgONyx43Jdc9IPvoHyalPSh793cljfjAppe/JgG0wbgmjXXF1snO64TxhNAAAWBvhNAAAAGANSilPTvLDSZ6Q5AH9TrOSf5Pk2r6HAAAAAAAAAACAdRFGOwallJLk55Lc92DTjUme18Gttj6MVmu9Jckty5xTBHQANs/4YvK6L0rufP/dr8/fkvzxDyenHph8+jf3OxsbyEJ6VjBpCaONTgmjAQAAAAAAwOb43CRf3PcQqyilfEGS7+h7DgAAAAAAAAAAWKdR3wNsiW9O8venXj+r1rrXwX0+NvP6QcucXEq5KpcHy/5ygfvct5Ry5TL3SvLgBe4DAPPd+uZ7omjTzr7s+GeBVqJrgzVuC6NdIYwGAADHwjMXAAAA0KkLSd7T9xBNSilXJHlR7vl7oJ/ocRwAAAAAAAAAAFib3b4H2BLPn/r5NUneXUq55pBzHjLzenfOOR+utV6cev2umf2PWHC+puNvq7XePntQrfWjpZTbk9x/avPDk7zjCPeanR0Amr3tR+Zvv/n1xzsHsL0mDWG00RVJKcmoIYw2EUYDAIDFCZ8BAAAAx+auJP8vyf9N8kcH//2TJE9K8sYe52rzo0kec/Dz2SQvT/J9/Y0DAAAAAAAAAADrIYx2PM5M/fzlSd67wjU+dc55n5fkhqnXs2GyT1/yHtfOvH57y7HvSPLEmXstE0abvdcy5wKw7eq47wkYkmqhPSsYN4XRTt39352GMNpYGA0A2HKl9D0BAAAAAMx6SZKfrbVe9j/mlRP6fVYp5XOS/ODUpmcn+fyexgEAAAAAAAAAgLUa9T0Aa/WnM68fV0q57xLnP+mQ67Xt+8JFb1JKuTLJ45a4FwDcm5AVG8N7dbAmDWG0ncPCaHvdzAMAAIN02MJjz1wAAADA0dVab58XRTupSim7SX4+9/zDuC+ttf5mjyMBAAAAAAAAAMBaCaMNSK31piRvm9q0m+RvL3GJJ8+8bvvLUq895Nw2fyf3/KWsJLm+1nrzEucDsPUsfAZ6Nm4Io40OC6NtzHoKAAA4ATz/AwAAAMzx/Ukef/DzbUm+q8dZAAAAAAAAAABg7YTRjkGt9epaa1nmT5IvmrnM2TnH3TDndv9z5vU/XWTGUspnJvn8qU3nkvx2yym/lWRv6vUXHlxjEc+ceT07MwC0q5O+J2BQLLRnBZOGMNrOpTDamfn7hdEAAGB9quc5AAAAYLuUUh6d5LlTm7631npLX/MAAAAAAAAAAEAXhNGG578nGU+9/ppSyqMWOO8HZ17/j1prY7Wh1npnklccco3LlFI+I8lTpzbtJ/nlBeYDgCkWPrMhLNIfrnFDGG10KYx2uuE8YTQAYNuVvgcAAAAAgI1UShkleVGSg/9RMm+otb64v4kAAAAAAAAAAKAbwmgDU2t9V5KXTG26IsmLSykNZYaklPLVSZ45telikucvcLvnJblr6vUzSylf1XKf00l+4WCmS15Ua33PAvcCgHvUSd8TANtu0hBG2xFGAwBoJx7Mgcl+cu6soDQAAADA4r4tyZMOft5L8qweZwEAAAAAAAAAgM4Iow3Tc5PcPvX6iUleV0r5zOmDSimnSinfnuTlM+f/eK317GE3qbXemOQ/z2x+RSnl20op0/GzlFI+K8nrD2a55KNZLMAGADMsmmaNLMJnFU1htNEhYbTJee85AAB4508kv/rA5NXXJK/6G8lHXj//uEN/d/a7NQAAALAdSinXJPm3U5ueX2t9dz/TAAAAAAAAAABAt3b7HoD1q7V+sJTyNUl+K8mlQNmTkry9lPKWJDcmuV+Sxyd50Mzpv5HkOUvc7oeSfHaSLzt4fZ8kP5nkOaWUtyb5RJJrD+5Vps67mOSptdablrgXANytTvqeABZkkf5gjRvCaJeCaKOGMFqdJHU/KffpZi4AgBOvHH4Iw/bBX0ve+t33vN77UPI7X5F8xZ8lVz68v7kAAAAATrafS3Llwc9/nOTH+xqklPLgXP73Dg/zyC5mAQAAAAAAAABgmITRBqrW+qZSylOTvDj3/CWkkuQJB3/meWmSb661jpe4z7iU8vQk/y3J103tenCSL2047ZYk31hr/d1F7wMA9yY2xTp5P7GC8fn520en7v7vTkMY7dK5I2E0AAC21Pt+6fJt4/PJB1+dPPrbj38egDbnziZ/9sLk9huSBzwhecwPJKce2PdUAADAlimlfFOSpxy8nOTuv+O33+NI35LkuT3eHwAAAAAAAACAgRv1PQDdqbW+Jsljk/xskttbDv2DJE+rtX5DrfXcCve5o9b69Um+9uBaTW5L8jNJHltrfe2y9wGAv1InfU8AbLvJhfnbdxYMowEAwLZ6/8vnb3/Ld6xwMaFroEN3fjh53d9L3vmC5OY3JO/4D8nr/m5y8WN9TwYAAGyRUspDk/ynqU0vrLX+UV/zAAAAAAAAAADAcdjtewDmq7W+KUlZw3VuSfLsUsp3JnlSkkckeUiSc0k+lOT6Wut7j3qfg3u9IskrSimfluTxSR6a5MokH0lyNsnv11ovruNeAGw7C5+Bno0bwmijRcJoe+ufBwAAAFivs7+cnDt7720fe3vyoV9LPu0Z/cwEAABso59OcvXBz2eT/EiPswAAAAAAAAAAwLEQRtsSB0GyNx7Tvd6bZC2xNQCYq076noBBEdpjBZOGMNrOpTDameZzx+fXPw8AwMY48r8FwVY55Hmtep4DOnT998/f/of/QhgNAAA4FqWUr0/y1VObnl1rPdfXPFN+OsnLlzznkUle3cEsAAAAAAAAAAAMkDAaALCBLHxmg9SaFPGHwRk3hNFGl8Jop1vOFUYDALaZ5zkANpznegAA4BiUUj4pyQunNr201vqbfc0zrdZ6S5Jbljmn+N/MAQAAAAAAAABYwqjvAQAAllYnfU8AbLtJQxhtRxgNAADWx4JZAAAAYGu9MMmDDn6+Lcl39TgLAAAAAAAAAAAcq92+BwAAWF7tewCGpHo/sYJxQxhtdOre/51nIowGAGwzoSuWcdjzmuc5AAAAYHhKKY9O8o+nNv1EkvuWUq455NSrZ15fNXPOpNb6/qPOBwAAAAAAAAAAXRNGAwA2T530PQEsoUb8YYAmDWG0nUthtN2k7CZ1//JjxsJoAAAAAAAAQKMzM6//1cGfZf2jgz+XfCyXx9MAAAAAAAAAAODEGfU9AADA8mrfAwDbrimMNjp1z887p+cfI4wGAABr4vsBAAAAAAAAAAAAAAAAGBphNABg89RJ3xMwKBbSs4JxQxhtRxgNAAAAAAAAAAAAAAAAAAAAViWMBgBsICErNkj1fh2kSUMYbbRIGG1v/fMAAPSuLHjYgsdBEs//wIl1y+/1PQEAADBgtdYbaq1l2T9Jnj9zqZfMHHN1H//3AAAAAAAAAADAsoTRAIDNUyd9TwBsu3FDGG06hrZzpuHc8+ufBwCgb4sGzy/lKC4AACAASURBVISDWSfvJ6AvH/6NvicAAAAAAAAAAAAAAIDBEkYDADaQhc+sk/cTK5g0hNFGp+75eTqSNk0YDQAYpAXDaACwKUZXNO97z4uObw4AAGAwSil15s+T+54JAAAAAAAAAABOot2+BwAAWFqd9D0BLEF4bZDGDWG0nakw2qghjDYRRgMAhmjBMFoRUANgQ4yuSCYX5++7cOvxzgIAAHSulPKwzP/7lA+Zeb1bSrmm4TJ31Fo9MAAAAAAAAAAAwBEJowEAG0hoCuhZU9xsNBVG22kIo42F0QCAASrFoxo98KYDOnTqQcn+HfP3Xf24450FAAA4Dr+X5BELHPepSd7bsO8lSZ65roEAAAAAAAAAAGBbjfoeAABgaXXS9wQMSbWQnhWML8zfviOMBgBsK1810wHPa0Cfrnx48777Peb45gAAAAAAAAAAAAAAgC1jtRoAsIEsjGaTeL8O0qQhjDYSRgMAtlQpfU/AVvK8BXTJZwwAAAAAAAAAAAAAAPRht+8BAACWVid9TwBsszpJJnfN37cjjAYAbKtFw2gCagBsiNoSRmvbBwAAbKRa6zXHcI9OvxyrtT4vyfO6vAcAAAAAAAAAAByHUd8DAAAsz8JD1sn7iSVNLjbvG02F0UZNYbS99c4DAHASFF81AzA0bf84g3+4AQAAAAAAAAAAAAAAumK1GgCweaqFh2yQKrw2OOMLzft2psJou2cazj+/3nkAAE6E0vcAbCPPW0CX2j5jfP4AAAAAAAAAAAAAAEBnhNEAgM1j4SHQp0lLGG00FUYbnW44XxgNABgiYTS64Pkf6FHrP87gH24AAAAAAAAAAAAAAICuCKMBABvIwkPWqeuF9hbyD854wTDaTkMYbSyMBgAMUBFGA2BoWr6D9A83AAAAAAAAAAAAAABAZ4TRAIDNU4XRgB5NWsJoO8JoAMC2EkajD8JEQIda42e+nwQAAAAAAAAAAAAAgK4IowEAG8jCZ6BH47Yw2un5P9/rfGE0AGCAiq+aARialvhZazQNAAAAAAAAAAAAAAA4CqvVAIDNU1sWJcKyOl/IaqHs4ExawmijU/f8LIwGAGyVsubjIDn0eUqYCOhS22eM7ycBAAAAAAAAAAAAAKAzwmgAwAay8Bno0bgljLazQBhtIowGAAxQETwDYGja4me+nwQAAAAAAAAAAAAAgK4IowEAm6e2LUqEZVnIypImLWG00RVTPzeE0cbCaADAEAmj0QXvK6BHteU7I99PAgAAAAAAAAAAAABAZ4TRAIANJGTFBmlbRMtmGjeE0Ub3ScrUI9bOmYbz99Y/EwBA7wSs6MJhz1Oet4AutcXPfP4AAAAAAAAAAAAAAEBXhNEAgM1T2xYlAnRscn7+9tGpe7/eOT3/uHHD+QAAm6z4qhmAgWn7DtL3kwAAAAAAAAAAAAAA0Bmr1QCADVT7HoBB8X5iSeML87fvCKMBANus9D0AW8nzHNClts8Ynz8AAAAAAAAAAAAAANAVYTQAYPPUSd8TwBIslB2cSUMYbbRgGG1y0ecYADA8RRgNgIFpe3b3XA8AAAAAAAAAAAAAAJ0RRgMAAFjG+IhhtLZrAABsrAW/ahZQA2BjtMXuhfABAAAAAAAAAAAAAKArwmgAAGy3aiErS5o0RM12lgijTc6vbx4AgJNA8IwuHPa85nkO6FKdrLYPAAAAAAAAAAAAAAA4EmE0AADolIX6gzNuCKONZsJoo5Yw2lgYDQAYGmE0AAamNX7m+x4AAAAAAAAAAAAAAOiKMBoAAMAyJg1htJ2ZMNqOMBoAsE2E0dgA++eS87f2PQWwMVriZ63RNAAAAAAAAAAAAAAA4CiE0QAA2HIti1xhnnFTGG0mhLZzpuUae+ubBwDgJCi+aqYPCz7PjS8m1z0jecX9k1c+KPntJyV7N3U7GrD5WuNnvk8CAAAAAAAAAAAAAICuWK0GAABdqhbKDs6kIYw2OnXv17OhtGnj8+ubBwAABmtNz1PXf2/yvl9KJnfd/frW65Lf+cr1XBsYsJbPoNZoGgAAAAAAAAAAAAAAcBTCaAAAAMsYC6MBAMDJsEA4rdbkvb94+fbb3pLc8d71jwQMR2v8TAgfAAAAAAAAAAAAAAC6IowGAMCWs5CVJU0awmg7M2G00RXN1xBGAwC2Vul7ADbKGt4vkwvJXR+bv+/srxz9+sCAtXxn1BpNAwAAAAAAAAAAAAAAjkIYDQAAOiW8NjhNYbTRTBitlGTn9PxjhdEAAGABXT9PCfUBLVrjZ77vAQAAAAAAAAAAAACArgijAQAALGPcEEbbOXX5tlFDGG0ijAYADI3AFD2oC4SJ2o4p3rdAi7YwWms0DQAAAAAAAAAAAAAAOAphNAAAttsiC+mPdoOOr8+xG+/N374zJ4I2b1uSjIXRAADgeLQ9kwmjAW3aPj983wMAAAAAAAAAAAAAAF0RRgMAAFjG/h3zt+9eefk2YTQAAOjQImEi8SJgRXWy2j4AAAAAAAAAAAAAAOBIhNEAAACWsX9u/vbdqy7ftnNm/rHCaAAAsIA1RM1q2zXK0a8PDFjb54foIgAAAAAAAAAAAAAAdEUYDQCALdfxQtbWRfhspMYw2pWXb9s5Pf/Y8d765gEAAFq0PJMVYTSgRZ2stg8AAAAAAAAAAAAAADgSYTQAAIBlrCWMdn598wAAbBQhKtZpkRB12zHej0CL1viZED4AAAAAAAAAAAAAAHRFGA0AAGAZTWG0HWE0AGCLFYEpTqjWsJH3LdCmJX5WhdEAAAAAAAAAAAAAAKArwmgAAGy5rheyWig7OPt3zN++OyeMNmoIo02E0QAA4Hi0PJMJ+gFtWsOKbfsAAAAAAAAAAAAAAICjEEYDAABYxv65+dt3r7p8205DGG0sjAYAAIeqh4SmD9t/6DHCaECbls+PRT5/AAAAAAAAAAAAAACAlQijAQAALGp8Man78/ftXnn5NmE0AABYXJ0kt9+Q7N203ms2EkYDWrR+frTtAwAAAAAAAAAAAAAAjmK37wEAAKBXtXZ9g46vz7Ean2veJ4wGAABH86qH3RNFe9hXJ5MLh5ywyPOWZzJgVS2fH51/nwQAAAAAAAAAAAAAANtLGA0AAGBR+8uG0c7MP1YYDQAALncpipYkH3z1eq5ZJ837SlnPPYBhavv8aNsHAAAAAAAAAAAAAAAcyajvAQAAoF+17wHYJEuH0U7PP3a8t555AAA2jRAVx67tmc/7EWjTFj/zfRIAAAAAAAAAAAAAAHRFGA0AALpULZQdlMnF5n2jU5dvawyjnV/PPAAAsNUWed4SRgNW1PadTm2LpgEAAAAAAAAAAAAAAEchjAYAALCoyX7zvtF95mxrCKNNhNEAgKERmOKEaosXFe9boE1b/EwIHwAAAAAAAAAAAAAAuiKMBgDAdqsWsrKE2hZG2718205DGG0sjAYAAMej7ZlPGA1o0fadUVt0EQAAAAAAAAAAAAAAOBJhNAAA6JTw2qBMWsJoRRgNAACO1SKh67ZjijAa0KDWtH+n4/seAAAAAAAAAAAAAADoijAaAADAoqowGgAAbJZJyz5hNKDJIeGz2vbZAgAAAAAAAAAAAAAAHIUwGgAAW+6Qha5HvnzH1+d4tYbR5jxeCaMBAECHFnje8kwGrOLQzw6fLQAAAAAAAAAAAAAA0BVhNABgWO64se8JgCGbNITRym5SyuXbd840XEcYDQDYVnN+Z4JOTVr2eT8CTdo+O5LUQ/YDAAAAAAAAAAAAAAArE0YDAIbl+h/oewJgyGpDGG20O3/7zun528fCaADA0AhMcULV2rxvXtwYIGn/7Lj7gGMZAwAAAAAAAAAAAAAAtpEwGgAwLB/41b4nYON0vZDVQtlBmTSE0cqyYbS9BRZZAwAA7Rb5nbrtGGE0oMmkfXc9ZD8AAAAAAAAAAAAAALAyYTQAYLMICQF9qkuG0UYNYbQ6ab4WAACwPq3xImE0oMGh30H6jhIAAAAAAAAAAAAAALoijAYAbJb9O/qeANhmTTGzUUMYbachjJYk4/NHnwcAALbZQvH0lmOKMBrQpC2qmEOiiwAAAAAAAAAAAAAAwFEIowEAm+XiX/Y9AUOz0EL6I92g4+tzrCYNYbQijAYAACdS6zOfMBrQ4NDwme97AAAAAAAAAAAAAACgK8JoAMBmuUsYDehRbQijjYTRAADgZGqLGwmjAU0OCZ8dGk4DAAAAAAAAAAAAAABWJYwGAGyWi8JoQI8mDWG0IowGALAYISrW6f+zd+9hsp11nei/v+4dsjck3OWqBoQoIIrgOMhFBVHQUUEYhfF2BJTjMKMw4hzHyyCCjOMI4x1UznhBOSpyFRkRPdwEQYEBQUJQIEBUIhEIhiR772R3vfNHV8+uVLqqV92ruj+f5+mnV631rvf97dR6Vq9VWe+3DgguSpI2pk05HoERDgw+63D+AQAAAAAAAAAAAAAApiIYDQDYLILRmLsFT2QdNwmfzdMmDUY7MbqvnmA0AABYvHHhRoLRgFEO+DznwOA0AAAAAAAAAAAAAABgWoLRAIDNcp1gNGCFRgWjbY0KRjs+uq8dwWgAwCFSAqZYU8KqgWkcGHzm3AIAAAAAAAAAAAAAAIsiGA0A2CzXCkYDVqg3IhitRgSjbZ07uq+dk7PXAwAAR1mn0LNxbQT6ASMcFIx2YHAaAAAAAAAAAAAAAAAwLcFoAMBmOfPpVVfAodNlIv06989StRHBaFujgtGOjQ5N2zk1n5oAADaK62OWbFx4UQlGA0Y56O+Vv2cAAAAAAAAAAAAAALAogtEAgM0ybkIzwKL1RgSjjQo/S5Lt4/uvF4wGAAAz6hJMNK6NYDRghIM+g/QZJQAAAAAAAAAAAAAALIxgNAAAgK6aYDQAgNl0CbKCeRKMBkzh1OUHNPD3DAAAAAAAAAAAAAAAFkUwGgCwWZpJh8zZwo8px+yh0hsRjLYlGA0AoBP3dCxb643eVoLRgBHe/5zx28edWwAAAAAAAAAAAAAAgJkIRgMANoxJ9MAKtRHBaDUmGG1rRDBaTzAaAHCYCJhiFTp8RjA2jM9xC4zwgecd0MBnlAAAAAAAAAAAAAAAsCiC0QAAOOJMZGUCo4LRtsYEox07sf/6HcFoAMBR5PqbZeuN2SYYDZhSG3duAQAAAAAAAAAAAAAAZiEYDQDYMCbRs2GaY/ZQ6Y0IRqsxwWhbx/dfLxgNAAAWzz0ZsCjOLwAAAAAAAAAAAAAAsBCC0QCAzdJlwqFJicCitCmC0bZHBaOdnL0eAICN436NOep0/z+mTdXcSgGOIn/TAAAAAAAAAAAAAABgEQSjAQBwxC16EqtJsodKb0Qw2tY0wWinZq8HAAAYr/XGbBSMBszAlzMAAAAAAAAAAAAAAMBCCEYDADZMlwmHJiUCC9JGBKOVYDQAgE6EyDBXM35GUILRgFmMC14EAAAAAAAAAAAAAACmJRgNAACgq1HBaFuC0QAAuhGMxrKNO+YEowEzEPYJAAAAAAAAAAAAAAALIRgNANgwHSYcmpTIJBZ+vDgeD5XeiGC0GhOMtjUiGK0nGA0AABau9cZsFIwGzGLc+QUAAAAAAAAAAAAAAJiWYDQAYLMIPQNWqY0IRtsaE4y2PSIYbUcwGgBwiFTXgCn3dMxTl+PJMQcsiM8pAQAAAAAAAAAAAABgIQSjAQCHkEmJwIL0RgSj1bhgtBP7rxeMBgAAi9d64zYurQzgMBp3fgEAAAAAAAAAAAAAAKYlGA0A2DAmLTNvCz6mmmP2UGnTBKMd33+9YDQA4Chyfcw8dTqeHHPAgvibBgAAAAAAAAAAAAAACzFm9v7mqqoLkzw8yZ2TnE5ycZKXtNauWGlhAMAcmPQMrNCoYLQtwWgAALCWxgYX+fwAmEVv1QUAAAAAAAAAAAAAAMChtPbBaFV1pyRfObDqBa21a0e0rSTPSvLkJFtDm3+mqp7UWvvNBZQJAKyTsZOeAWbQGxGMVtMEo52cvR4AgI3jfo0la4KLgAXxGSQAAAAAAAAAAAAAACzE2gejJfkPSb6vv/y/Wmu/PqbtTyZ5ysDrvRkJleS8JL9WVdVa+435lwkALIUJh8zdoo8px+yh0rtu//W1PXqfkcFop2avBwBg47g+Zp66HE9j2viMAZiJ4EUAAAAAAAAAAAAAAFiErVUX0MHXZTfYLElGBppV1ecm+X+yO8tpMBBtb9/WX/7FqrrjYkoFABZvxknPALPond5//fa5o/cZFYzWE4wGABwmdXATWAmfEQALIlwRAABmVlW3rqrzV10HAAAAAAAAAACwXtY6GK2qbp3kLgOr/mhM86fk+v+eVyb510kekeSl2Z2Z15KcSPKD860UAAA4EkYFo22NCUbbGhGMtiMYDQA4TDqGwwiRYdlab9zGpZUBHEJjzy8AAMAoVXVBVf1WVX0qyceSfKqq/r6qnllVJ1ZdHwAAAAAAAAAAsHprHYyW5PMHlv+ptfaR/RpV1XZ2Q9D2ZjH9SWvt4a21l7XW/rC19k1JXpDdcLRK8uiqqkUWDgAsSpdJyyY2M4GFBzM4Hg+VnRHBaNtjgtG2BaMBAMBi+IwAWCXnFwAASJKq+s6qurT/c1FVjfwfZ1X1hUneluTbktw0Z5/nu0OSH07ytv6XqQIAAAAAAAAAAEfYugejXdD/3ZJcPKbdv0hyq+w+JJUkz9ynzY/m7AyF2yS5+zwKBACWbOEhVgBj9EYEo22NCD9Lku0RX2wvGA0AOEw636u5p2PJWm/MNscjMINx5xcAADhaviXJZya5Y5LXt9b2/R9qVXUsyQuT3Dq7z/m1oZ9Kco8kL1lCzQAAAAAAAAAAwBpb92C0Ww0sf2JMuy8bWL6stfbnww1aa3+X64er3XPG2gCAdWViM7Aoo8LMtkd+8X2yPSI0TTAaAABHzbzv1zv15zMCYArHb9ehkfMLAABU1VaSBw6setmY5v9Xks/L2SC0JHlPkr8aWvfAqnrMnEsFAAAAAAAAAAA2yLoHo50YWL56TLv793+3JH8ypt3fDizfdtqiAIBVMuGQeVvwMSWo73DZ2fcL7pOtKYLReqcdHwDAEeT6hyUbe83teARG2D5xcJvWW3wdAACw/u6R5Mb95euSvGFM2+/q/64k/5zkfq21e7XWvjjJfZJ8LGdv1p+4gFoBAAAAAAAAAIANse7BaGcGlsfNQLj/wPKbxrS7amD5vKkqAgBWrMukZRObgQXpjQhG254iGC1Jdk7NVg8AwNpwH0YXqzhOBBcB0/AZJAAAdHSX/u+W5P2ttev2a1RVt0vypf12LckzW2tv3dveWnt3kidlNzStkjywqm6xyMIBAAAAAAAAAID1te7BaFcOLH/mfg2q6u5JbjOw6i1j+hsMV9uZoS4AYK2ZlAgsyM6oYLQx4WfjtvUEowEAR0xzv3akzf3979Df2DEdj8AIrUOoYpc2AABw+N1xYPlDY9p9ec6Gnp1J8uv7tHlZkn/uL1eSL5pHgQAAAAAAAAAAwOZZ92C0S/q/K8m9qmq/RIFHDCxf0Vq7eEx/txxY/vSsxQEAK2ASPXO36GPKMXuo9EYEo22dO3qfrTHBaDuC0QCAo8b18dG2ivdfcBEwjS7nK3/TAAAgyXkDy1eObJU8sP+7JXlLa+1Tww1aaztJ3jmw6q6zlwcAAAAAAAAAAGyidQ9G+6vsPgzVkhxP8vjBjVV1LMl391+2JG88oL+7DSz//ZxqBACWqsOEQ+FpwCK0NjrIbHtMMNq2YDQA4AhwH8ZKzPgZgeMWGKV1CFXs0gYAAA6/czq2u9/A8uvHtPvHgeWbTlwNAAAAAAAAAABwKKx1MFpr7fIkb+6/rCT/raq+o6puXFV3SvJ7ST5nYJcXj+qrqm6X5PYDq94/32oBAGA/JtofGu1MRr6fW4LRAAA6EUR1xK3i/XfMAdPocu5wfgEAgCRXDSzfYr8GVXWTJF80sOrPx/S3M7A85n/AAQAAAAAAAAAAh9laB6P1/Vx2Q9Fakpsk+c0kn07ywSSPzNlZB5dlTDBakq8ZWL4qyd/Mu1AAYAk6TaI3KZEJCGagq53To7eNDUY7MaZPwWgAABwhq7j/ar1xG5dWBrBpOpwfxp5fAADgyPj4wPLdR7T5qiTb/eWW5C/H9HfzgeVrZqgLAAAAAAAAAADYYGsfjNZae0mSl+ZsOFoN/GRg/Q+01sYkFeRRe10meWtrEjAAYDP5Ew6sSG/M7cb28em2CUYDAA6Nrvdq7umYI+HpwKJ0Cj1zfgEAgCTv6f+uJBdU1T33afNv+r9bkve01q4c098dB5Y/MYf6AAAAAAAAAACADbT2wWh935rk13I2DG1PJTmd5Ptbay8ctXNVfVaSr83ZGQqvXkSRAMC6MCmRSSz4eJHHe3jsjAtGO3f0tq0bjd7WE4wGAMBRsoL7o7H3ZO7XgFE6nB86hacBAMCh957sBpjtXUT/TFWds7exqh6Y5JsGtr9qVEdVdSzJPQZWfWi+pQIAAAAAAAAAAJvi2KoL6KK1dm2SJ1TVs5M8PMkF/U3vS/LS1tpHD+jia3P22ymT5A/nXyUAsBwmLQMrMi7EbGtMMFpVsn082dln//3WAQAcau7pjrZVvP+Ci4AJtV5y6vIuDRdeCgAArLvW2k5V/W6S783uRfJDkry7qv4wyW2yG4q2ld0vQG1JfntMd1+SZPAbhy5aSNEAAAAAAAAAAMDa24hgtD2ttb9J8qwp9ntekufNvyIAYC01kxKBBdg5PXrb9phgtCTZGhWMdnK2mgAA1kbH+zD3a0fb3N//Dv2NG9PxCOznb36hW7smeBEAAPqemeQ7kty0//rzknxuf3kvEK0leUlr7b1j+vnG/u+W5AOttSsWUCsAAAAAAAAAALABtlZdAADARDpNWjaxmXXieDw0emOC0bYOCEbbPr7/+v3C0gAAgDkSXARM6JLf6NZOMBoAACRJWmuXJ/nXSU7lbBDa/9ncX/fBJE8c1UdVbSV59MC+r19ErQAAAAAAAAAAwGYQjAYAbBghU8CK7IwJRhsVfHbQdsFoAMBh0SnEOnFPd9TN+/3v0N/YY9PxCOzjU+/u2FAwGgAA7GmtvTbJvZK8MMk12Q1DqySfSPJLSb60tfaJMV08PMkF/X2S5I8WVy0AAAAAAAAAALDujq26gINU1SX9xZbky1prH52ynzsmeeNeX621u8yjPgBgHZnYDCxAb0ww2ta54/cVjAYAAFnN/brPCIAF6Z1ZdQUAALBWWmsfSPItSVJVt+6v+3jH3T+U5JEDr1893+oAAAAAAAAAAIBNsvbBaEnu1P/dMlu9x4b6AgA2kj/jzFFbwvG0jDFYjt51IzZUsrU9ft/tE/uvF4wGABw5ro+PtFXcH7XeuI1LKwM4hJpgNAAAGGWCQLS99u9K8q4FlQMAAAAAAAAAAGyYrVUXAAAwkS6TqAVRAYvQdvZfXweEoiXJ9vH91/cEowEAh4X7MFag0/2/YxNYkJ5gNAAAAAAAAAAAAAAAWATBaAAAAF2MDEbrcFs1KhhtRzAaAHDECLI+4lbx/o8Z0/EIDJvkvNAEowEAAAAAAAAAAAAAwCIcW3UBS3TOwPJ1K6sCAJhRl8mJJjbT1TKOFcfjoTEyGG374H23BKMBAOxyfXy0reD9b73ljwlsrt7p7m0FowEAQGdVdfMk5yep1tqlq64HAAAAAAAAAABYb0cpGO22A8ufXlkVAMCMTKIHVmSWYLTtUcFoJ6evBwBgrbhXYxVmDU933AJDJgkw7wlGAwCAUarqG5M8PMmXJblTkq3+ppZ9nlmsqjsl+ez+y6tba/9r4UUCAAAAAAAAAABr6ygFoz2s/7sl+ftVFgIALFgzsRlYgNbbf/1MwWgTTLgGADgU3K8daau4Xx91HQ+wn0nu05tgNAAAGFZVD0vyC0nuureq4653SfKn2f3w6NqqukNr7YoFlAgAAAAAAAAAAGyAtQhGq6rPPrhVkuSOVV2flUqSnJvk9kkemuQHBtb/1SSdAABrpNMkahPt6Wgpk/Idj4dG29l/vWA0AADoaM73R13u6ca2cb8GDJnkPr0nGA0AAAZV1Y8l+bHshqFVrn/j3TImJK219pqqujjJ3ZPcKMljkvzK4qoFAAAAAAAAAADW2VoEoyX5cA6egVRJ3jTDGIMPVr10hn4AgJUyaRlYEcFoAACjdQ0dXko4MetrFe+/Yw6YwCT36U0wGgAA7KmqJyX58f7LvZvx00nemuTKJF/foZsXDvTxdRGMBgAAAAAAAAAAR9bWqgsYUvv8HLS9y09y9oGrtyR55cL+BQDAGjDpmTUi+OHwmCkY7cT+6wWjAQDAYrXemG3u14AhPcFoAAAwqaq6MMmzs/s/6lt2A9F+MMmtWmsPSvJ9Hbt6xV6XSb6sqoafHQQAAAAAAAAAAI6IdQtGW5S9h6RekuQbWjPbCQA2lz/jzJPjiQnMFIx2fP/1k0y4BgA4FFyDH2lz/2i+S3+OOWACkwSY9wSjAQBA3zOSHMvuM3qnkjyktfbs1trJCft5d3//JDk/yYXzKxEAAAAAAAAAANgkx1ZdQN/zx2z7zv7vluSlSa7q2Ofet09+KsnFSd7QWvvI1BUCAOuhyyRqGajAIswSjLY1IhhtkgnXAABrzX0YXaziOBk3puMWGDLJfXoTjAYAAFV1bpKH5+xN9n9urb1lmr5aa72qujjJvfur7pbkb2evEgAAAAAAAAAA2DRrEYzWWnvcqG1V9Z05++DUD7TWLl1OVQAAMA8m2h8aswSjbQtGAwDY5fr4SJt7kHmX8PTenMcEDrVJ7tN7gtEAACDJA5Kc6C9fneS5M/b30ZwNRrvDjH0BAAAAAAAAAAAbamvVBXRUqy4AAFgXXSZRm2hPV44VJrCQYLST09cDALBWOl5bzz0YCw4y7phzPAJDJglGu+i/JL0RnxUAAMDRcaf+75bkra210zP2d+XA8vkz9gUAAAAAAAAAAGyoY6suoIPHDSx/5askPgAAIABJREFUfGVVAABrwqRlYEVGBaNtzRKMNsGEawAA2HgruKdvveWPCWyuSe7Tr/pg8tYnJF/664urBwAA1t9nDCz/4xz62xqxDAAAAAAAAAAAHCFrH4zWWnv+qmsAADaN8DTWiePx0OiNCEYrwWgAAN25Pj7a5vz+ty79jWnTaX/gSOmdnqz9Jb+Z3PtZybm3Wkg5AACwAQYvos+dQ3+DF9dXzKE/AAAAAAAAAABgA619MFpV/djAy59rrV05ZT83S/LkvdettWfMWhsAsAJdJi2b2ExXjhUm0RYQjNYTjAYsWWtJ1aqrAA4j19asK8cmMIlJg9HSkkuen9z9KQspBwAANsA/DSx/5hz6u9eIvgEAAAAAAAAAgCNk7YPRkvx4kr2ZS7+ZZKpgtCQ3H+pLMBoAbCQTmoEVmSkY7cT+63cEowFLcuZk8o7vT/7hFck5N03u/NjkHv9JSBqwAu7pjrSVhJT1xmxzPAJDpjlPnf74/OsAAIDNcUn/dyX5oqq6SWvt6mk6qqr7JPmMgVXvmLU4AAAAAAAAAABgM22tuoCO5jlL14xfADj0TGxmjaxk4j8LMVMw2vH91wtGA5blzd+afOBXk5OXJVf+TfKuH07e+1OrrgqAI2fe90cd+nNPBkxkXJjiCF0+FwAAgMPrrdn9otOW5Jwkj5+hr6cMLH+ktfaRWQoDAAAAAAAAAAA216YEowEA9JnQzDw5npjEiMnRXSZAb40IRms7Se/M9CUBdHHq48nf/8EN17/rR5IzVy+/HuCQ6nhtLaTqiFvF+z9uTMcjMGSav1OC0QAAOMJaaztJ/md2v6y0kjy9qj5r0n6q6pFJvjW7N+stye/Os04AAAAAAAAAAGCzHFt1AUtUA8tTfN37fFXViSR3S3JBkjskOT+735p5ZZJPJHlPkotaa3NJSaiqc5I8IMlnJ7l9kquSfDTJO1trH57HGANj3TnJF2X333VeksuSfCTJm1tr181zLADYn4nNwAK0nf3Xd5kAvT0iGC1Jdk4lW+dNVxNAFx/53Yy8PnrTY5IHvXKp5QBHnfs15qnD8dRW/r8DgI0iGA0AAKbwE0kek93n826e5PVV9fDW2kVddq6qxyb55exekFeSk0l+fjGlAgAAAAAAAAAAm+AoBaPdbGD5mlUUUFWPS/KVSe6b5C5Jtg7Y5aqq+v0kv9ha+6spx/yMJE/P7sNntxzR5s1Jfqa19pJpxhjo55uSPCXJ/UY0+WRVvTDJj7XWPj7LWAAcYc0keuZpGceTY/bQ6I0KRjvosj4HB6OdIxgNWKCdU6O3ffR/JmeuSY7deHn1AHB0reSefsyYPmMAhk0TprglGA0AgKOttfa+qvrFJE/O7o34nZO8o6pekOT3k3xyeJ+q+qwkD03y3Un+Zc5+6WlL8rTW2uXLqB0AAAAAAAAAAFhPHWbwHxpf1P/dkqwqlOsnknx7kgvT7b/9eUken+TtVfWzVTVRkF1VfW2S9yR5YkaEovXdP8mLq+oFVXWTScboj3NeVf1ukhdldCha+jU8Mcl7quphk44DALs6TFo2sRlYhDYqGK3DBOixwWgnp6sHoKuDAhw/+fbl1AEccl3vw9yvHW0reP+nCTkCjrApzlNdPhcAAIDD7weS/Gl2A85aknOSPDbJHyX5iwxcbFfV1Uk+nOR5ORuKtrf9Za21Zy+raAAAAAAAAAAAYD1NFLS1qarqwiQ/NLDqvauqZcg1ST6Y5NIkV2Y3LO2WSb4gye0G2m0n+Q9J7lRV39TaqESGs6rqQUlenuRGA6tbknckuSTJzZPcO8mtB7Z/W5KbVtU3ttZttlhVbSd5YZJ/NbTpn5K8M8k/J7lLf6y9b/a8bZI/qKqvaq29qcs4AACwcgsLRjs1XT0AndX4zQd/zAAAczLnYLROwejj2gjqA4ZM84ULgtEAACCttV5VPSLJc7MbiLZ3cb33AXUbWHdicNeBdr+e5N8utlIAAAAAAAAAAGATrEUwWlW9tmPT36uqSVIDzk1y+yQXDK1/zQR9zNPVSV6R5FVJ3pzkPaMCyKrqS5M8M8lDBlZ/Y5KnJHnWuEGq6jOTvDTXD0X78yRPaK1dPNDu3CTfk+TZ2f2WziT5hv64P9Lx3/RTuX4o2nX9Gp/XWrt2YKx7JPkfSe7XX3VukpdX1Re01i7rOBYAzGHSMwyYZrLr5IMsYQyWYpZgtK0xwWg9wWjAgtXW+O2C0YBlWso1OAxwzAET6fS9QdcnGA0AAJIkrbVTSR5fVa9K8tQk9xzVtP+7+j8fTPJjrbXfXXyVAAAAAAAAAADAJliLYLQkD8rBiRGV5L5T9D34rZNJ8qkkL5iin3m4Z2vtui4NW2t/UVUPTfL8JN8+sOlHq+oXWmunx+z+9CS3GHj95iRf1X/4bHCM00l+oaouTfKygU1Pqapfba19ZFyNVfU5SZ48tPqbW2t/sM+/571V9ZDshtLthaPdKsnT4ps+AZiIYDRgRWYJRjt2YvS2HcFowIIdFIzWO7OcOoDDTfgUXcz9OOnS35iQI8ctMGya84JgNAAAuJ7W2ouSvKiqHpzkq5M8MMlnZfdZsRsl+XiSj2X3mbZXJ3lVa77BAwAAAAAAAAAAOOuAmbGHwuA3TH46ybe21j6+kkI6hqINtO8l+fdJrh5YfbMkDx61T1VdmOQ7B1Zdm+Sxw6FoQ+O8PLsBbHvOzW5g2UGeluScgde/uV8o2sA4J5M8tl/Tnu/qB6wBAMB6myUYbevc0dsEowELV+M3tzGBMQBzJ4jqaFvB+y/8DJiIYDQAAJiX1trrWms/0lr78tbanVtrN22tHW+tfWZr7Ytba9/XWnulUDQAAAAAAAAAAGDYOgWj1YifLm1G/Vyb5PIkr89uiNfdWmuvXvC/Y65aa1cmedPQ6ruO2eVbkwzOwHhpa+39HYb6b0OvH11Vx0c1rqoTSb7pgD5uoLX2t0lePrDqWHZrBoCOOkxONOmZzpZwrDgeD4+ZgtGOJXVs/22C0YBFqwM+/jHnDJiLjte9ro9ZunHHnOMRGCYYDQAAAAAAAAAAAAAAVm0tgtFaa1ujfvaa9H/uNK7tPj8nWmu3b619ZWvtJ1prl63wnzmLTw69Pn9M20cOvf6NLgO01i5O8pcDq26S5KFjdnlYkhsPvH5La+19Xcbap6ZHddwPAEyiB1ZnlmC0JNkekTssGA1YtAOD0c4spw4AmHsQWZfw9N6cxwQOtWnOGYLRAAAAAAAAAAAAAABgrtYiGK2DWnUBK3bB0OuP7teoqm6X5F4Dq84k+fMJxnn90OuvHdP2aw7Yd5w3Zre2PfeuqttOsD8AHEB4GuvE8XhoLCoYrScYDVi0g4LRRpzfABbC9fGRtpKw83FjOh6BYVOcFwSjAQBwxFXVa/s/r6mq28zQz20H+5pnjQAAAAAAAAAAwGY5tuoCOviznJ2FcOQSA6rqc5Pcd2BVS/KGEc3vOfT63a21qycY7s1Drz9/TNvhsd7SdZDW2tVV9ddJ7j001se69gHAUWbSMvPkeGICiwpGO3NyunoAuqoD8uYFowFz4dqaLlZwnLTe8scENtc0AY6C0QAA4EE5e9M/4n+IdXK831fiwyYAAAAAAAAAADjS1j4YrbX2oFXXsCpVdfskL0oyOKPixa21D4/Y5R5Drz8w4ZAfPKC/QXefw1iDwWj3SPLaCfsA4Ejq8vyzZ6SBBZg1GG1rxDyQ3pHLfwaWbmv85t6Z5ZQBkMT9GnPVKcBoTJtpApCAQ26KMEXBaAAAkCQVH/wAAAAAAAAAAABzsvbBaEdJVR1Lcovsho59fZLvSXLTgSaXJPneMV3cdej1pROW8JGh17eqqlu01q4YqvOWSW4541jD7S+ccH8AgA3h+f9Do42YHN11AvT2iGC0HcFowILVAcFoo4IfAWDuVnB/JPwMmMQ05wzBaAAAAAAAAAAAAAAAMFeC0Vaoqn4uyZM7Nn9dku9orV0+ps3Nh16Pa3sDrbWrqupUksHEhpsluWKo6fA417TWrp5krH1qu9mE+wNwVHWZnGjSM105VpjEqOCgzsFoJ/ZfLxgNWLgav7mdWU4ZwOHW9draNfjRNvf3v0t/IwKOO+8PHC2C0QAAYIUGn2X0wTUAAAAAAAAAABxhgtHW3yuSPKe19icd2p439PrkFOOdzPWD0c5f4DiD9htnYlV1mySfMeFud5nH2AAsS5fJiSY2AwswczDa8f3XC0YDFq22xm/vXbucOgBgFffrwviASbRxYYojHHS9DQAAdHXrgeVJv6QTAAAAAAAAAAA4RDY2GK2qbpXk7klukeRmSSaaddBa+61F1LUAX5tku6pOtdb+7IC2w4Fl0yQsnMzuf9NRfc5znHF9TuvfJXnanPoCAJidSfiHh2A0YGPV+M2965ZTBkASQdYs37hjzvEIDJvmvHDA9TYAANDVl/d/tyQfXWUhAAAAAAAAAADAam1UMFpV3Tq7wVffluSuM3a3DsFoz0jycwOvTyS5VZIvSvLIJF+Z5JwkX5fk66rqOUme3NqoRIYbmGb2xjrvAwDp9CdEEBWdOVaYgGA0YFPVAVnyvWuXUwdwyHW9tnYNfqTN/X69S3+OOWACU52nnGcAAGDARBfIVXVOktsneWiSHx3Y9NfzLAoAAAAAAAAAANgsGxOMVlWPSvLrSc7P9F+93vr7rsUMhdbaJ5N8cp9Nb0ryS1X1wCQvSHJBf/2/z2542neN6PKqodcnpihreJ/hPpc5DgDckNAzYFUWFYzWE4wGLJhgNADWxprd0/uMAbgBwWgAALCfquryRZ6V5MNV0z7ad71nAl8xbScAAAAAAAAAAMDm24hgtKr6tiS/lf0D0QZnGwxvH9429VNXq9Bae1NVPTjJ25Lcqr/68VX1itbaH+yzi2C05LlJXjThPndJst9/TwA2lsmIrBPH46ExMhjtgMChPVsjgtF2BKMBiyYYDViGjte9gqiOuBW8/445YBKtt+oKAABgXXV97m6W5/P2vvT0fUlePEM/AAAAAAAAAADAhlv7YLSqunOS52X3oae9h5/eneRlSU4m+al+05bkcUlumuQOSe6f5AHZnf3bklye5JlJPr3E8mfWWvtQVT0jyc8PrP7B7B/k9c9Drz9jkrGq6rzcMLDsUx3GuXFV3aS1dvUEw92mwzgTa61dnt33urMZvqUUgJUwoZl5cjwxgZHBaNvd9t8eFYx2crp6ALo6KMBRMBoAm6pT6Nm4Nu4JgWFTnBcEMAIAcHTsPbu3KJXk7Uke01q7boHjAAAAAAAAAAAAa27tg9GS/MfshnXtzSp4epJntNZaVV2Qs8Foaa09f3DHqrprkp9O8o3ZDQn7niQPba1dtozC5+j3cv1gtC+tqpu31obDxN4/9PqCCccZbv/J1toVw41aa5+oqiuS3GJg9WcnuXiGsYZrB4ARZp30DDClhQWjnZquHoCuDgoEF4wGLJX7tSNtJeFBjjlgEtOcM5xnAAA4Ev4soy9+v6L/uyV5a5Ku//OrJTmd3S/UvDjJ61prb5ylSAAAAAAAAAAA4HBY62C0qtpK8u05+1DVi1prT++6f2vtA0keVVVPT/LUJPdI8odVdb9N+lbJ1trlQ0FkW0nunOSdQ02Hg8nuOuFQnzP0+r1j2l6c5P5DY00SjDY81iT7AgBsEJNjD42Zg9FO7L9eMBqwcFvjN+8IRgPmYCWBV2yeeR8nHfobe2w6boEhrTfFPs4lAAAcfq21B43aVlW9nL3Jfkxr7dKlFAUAAAAAAAAAABxaB8yMXbkvTHJ+kuq/fsY0nbTWnpbk5f1+7p3kSXOpbrmGg9zO3afNe4Zef2FV3XiCMR5wQH/jtt2v6yBVdZPsvrddxwKAs7pMNDQZka4cK0xi5mC04/uvF4wGLFrV+O09wWjAMrkGZ9kcc8AknDMAAGBKB3wQDQAAAAAAAAAA0N26B6Pds/+7Jbm0tfbecY2rxs70/eGB5e+atbBlqqrjSW49tPpjw+1aa5cleffAqmNJHjjBUA8aev2qMW3/+IB9x/my7Na2552ttRv8ewBgeiYwAgsgGA3YWILRgDUinPiIW8X7P2ZMxyMwbKrzgnMJAABH3tP7P89I8qkV1wIAAAAAAAAAABwCxw5uslK3HFi+aJ/twzMNjic5uV9HrbW/qaqLk9w9yedV1ee31vbrcx09JNcPsbsmyT+MaPuyJF848PpxSf7koAGq6m5J7juw6uoD9nt1dv9bn+i/vl9V3a219r6Dxkry2KHXL+uwDwD0mWjIhjHR/vBovf3XzxqM1hOMBqxY77pVVwAcCq576WDu90cd+nNPBkxkxL3/WM4zAAAcba21p6+6BgAAAAAAAAAA4HDZOrjJSp0/sHzFPtuvHtN+P387sHz3qSpasqraSvLUodV/3Fq7dsQu/1+SnYHXj6qqCzsM9Z+GXv9+a21kQkNr7ZokLz6gjxuoqs9N8siBVWeS/E6H+gCgr8tEQ5MR6cqxwgTazv7rZw1G2xGMBizaAX/veqM+YgBYBNfgR9sq3v9xYzoegSHThCkKYAQA4IjrP98GAAAAAAAAAAAwN+v+UNJg8Nk5+2z/9NDrOx7Q31UDy7ebqqIpVdX3VdXtJ9znnCS/luS+Q5ueM2qf1tr7kzx/YNWNkvxmVY1IYUiq6hFJHjuw6tokXb7J88eTXDfw+rFV9fAx4xxP8hv9mvb8Wmvtgx3GAgDYUCbHHhqjgtG2OgajbQlGA1bkoKAGwWgAbCphRMDcOa8AAMAULq2qp1XVQc/uAQAAAAAAAAAAdLLuwWgfH1i+6fDG1tq1Q23ueUB/g8Fk581Q1zS+K8kHq+oFVfUNVXX+qIZVdaKqviXJO3P9wLIk+e3W2msPGOtpSa4YeH3/JP9/Vd1taJxzq+r7krxoaP//3lr7yAFjpLV2SZKfH1r94qr63qoaDD9LVd09yWv6tez5RLoFsAHAWV0mPZsYTWeOFSYwKhitOgajbY8KRjs5XT0AnR30987fQ2AOOt+HOeccbat4/8eN6XgEhkz1uaJzCQAAR94dkvxYkg9V1Uur6qGrLggAAAAAAAAAANhsx1ZdwAH+dmD5whFtLkryFf3lhyT57f0aVdVNkvzLgVVX7NduwU4k+bb+T6uqDyT5cJJPJbk2yflJLkhyjyTn7LP/K5M84aBBWmt/X1WPSvLqJHsBZQ9I8t6q+l9JLklysyT3SfIZ+4zx1An+TT+U5POTfG3/9TlJfjHJU6vqHUk+neRz+mPVwH7XJnlka+2yCcYCgJhoyMZpvVVXwLwsLBjt1HT1AHR2wPWTv1UALMsqgsyFpwMTmeba2HkGAAD6jiV5RJJHVNWHkvxqkt9orX18/G4AAAAAAAAAAADXt7XqAg7w3iQ72Q3UunNV3XifNm/s/64k31xVF4zo64eSnDfw+qK5VTmdym7Y21cn+ebshqU9PMm9csNQtJNJfjTJo1prp7t03lp7fZJHJvmnoTH/RZJHJ3lYbhiK9rtJ/k1roxIf9h1np9/fC4c23SbJ12T33/bFuX4o2uVJHtFae2MAYCFmnIx45prk/b+a/MXjk/f9XHL6k/Mpi6Ppop9cdQXMy86IS/Gtc7vtLxgNWJUDA2EEOQBLJKTqiJv3+9+lvzFtHI/AsGnOC84lAABwbXafDdu7OK7sfpHmTyX5u6p6QVU9cFXFAQAAAAAAAAAAm2etg9Faa1cleUf/ZSV5yD7N9gK5WpITSf6kqr58b2NV3ayqnpndYLG9h68+meQvF1L0aE9I8swkb0nSKdwsyfuSPDXJ57bWfrK1dt0kA7bW/ijJPZP8SpIrxjT9iyTf1Fr71tba1ZOM0R/nqtbav8luCNpfjGn6ySS/nOSerbU/nnQcAEiy+ImGO6eSNzw8edu/TS75jeQd35+85sHJ6U8sdlxWYxkTV//hFYsfg+XojQpGu1G3/bdPjO7XJGpgoQ44x7TecsoADrmu1zOue1g2xxwwCecMAACYwh2S/GCSD+Tsl2e2/vK5Sb4lyRuq6q+r6t9V1fmrKRMAAAAAAAAAANgUx1ZdQAevTvIl/eWHJ/nDwY2ttYuq6g+SPCK7D1RdmOR1VXV1kiuT3CbJdr/53jdT/tKkIWOzaq29Lcnbkjy1qs5JcvfsfjPmHZOcl+ScJFf1a/5wkne21saFmXUd9/IkT6yqJyd5QJILktwuydVJ/qE/zodmHac/1ouTvLiq7pzkPtl96O0mSf4xyUeS/Hlr7dp5jAXAUdZlcuIMExg/+sfJx15z/XWfenfyoRckd3vy9P0Cm6834lJ2+9xu+28fH9P36fHbAWZxUPiiYDQAlmYFgUNj/w4KQAKGTHVt7FwCAMDR1lr7ZJJnJ3l2VT0kyROz+5zfsZy9YK4kn5/kF5P8t6r6nSS/2lp7xz5dAgAAAAAAAAAAR9wmBKO9MMl/zu7DUd9SVf+xtfbPQ22enOS+SW6bs982eV7/Z8/e+rcn+clFFz1OP5Tt3f2fZY15bZLXLWmsDyWZS9gaACzdu354//Xv+A+C0eCo2zm9//qtOQSj7ZwSjAYs0EFBDYIcgHnoei5xzjnSDgrrnLzDObUB2DPNOcN5BgAA9rTWXpPkNVV12yRPSPLdST57b3N2n9+7SX/9d1fV25P8cpLfa62dWkHJAAAAAAAAAADAGtpadQEHaa1dlOSLk3xJkq9IsrNPm0uTPCTJe7L78NT/2ZTrf+vkq5I8tB9MBsAm2zmd/NUPJ6+6d/LahyWXvmTVFbE0HSYazjLR+sr3Tb8vG8jEVSbQGxWMdqNu+28dEIwGsCqtt+oKAGBxxn5G4J4QGDbFeWHuoY8AALD5Wmsfa609M8mdkzw8yR/l7AX34PN8X5Lk15J8tKp+tqrutvRiAQAAAAAAAACAtXNs1QV00Vp7Z4c2F1fVfZI8KskjklyY5OZJrkjyriQvbK29dqGFArA8f/6Y5O//4Ozrf/zT5AG/l1zw6NXVxHJ0mmhoMiKwADsjgtG2z+22/7ZgNGBVDro2EowGLJHwmCNuzu+/zwiAeVtEaPA1H01O/WNy83slW9vz7x8AANZYa60leWWSV1bVZyX5niSPS3L7vSbZDUi7eZInJXlSVf1ZkucmeVlr7czyqwYAAAAAAAAAAFZta9UFVNUrq+oHquo+VVWz9NVa22mtvai19u2ttfu21j6vtfalrbXvEYoGcIhcfen1Q9GSJC15/3NXUg4AR0Tv2v3Xb92o2/6C0YBVOSg0ZhHhD8DRI/CMTlZxnIwZ03EL3MAU54W/fHzSu+6G63dOJ2/818nL75j88RcnL79D8om3z14iAABsqNba37XW/nOSz07y6CSvGWpS/Z8vT/J7Sf6uqp5ZVRcst1IAAAAAAAAAAGDVVh6MluRfJfnpJG9L8omqenlVPamqvmDFdQGwrv72l/Zff/kbllsHK9JlcqKJzXRkEjxdtV4y6gvpt87t1sfYYLSTk9cE0NlBf+/8PQSWyTnnSHMPBqy7ac9TF/3XG67766clf/fSs69PXZ68/mv2D1EDAIAjpP/lpy9urX11ks9N8t+TfCK7Hxy1nA1Iu22SH07ygap6aVU9cFU1AwAAAAAAAAAAy7UOwWh7KsnNk3xDkp9N8ldV9U9V9aKq+ndVdbfVlgfA2jj98VVXwEqZRA2swM7p0du25xGMdmqyegAmcsD1U+stpwyAJO7pmK8Ox9PYkCPHIzBsyvPC+597w3Uf+u0brjv9ieSyP51uDAAAOJxumuRmSQb/R1ob+EmS7SSPSPKGqnpVVd1luSUCAAAAAAAAAADLtk7BaIMPM+196+OtkjwqyS8muaiqLquq36mqJ1TVXVdUJwArZ9IqBxg76RlgCr1rR2/bulG3PrbGBKj1BKMBC3TQtZFgNGAu3IfRxSqOE8cmMIFpr41PfeyG605+dP+2l/z6dGMAAMAhUVUnqurxVfWXSd6e5LuS3HiwSZIzSU72lwefKXxYkndV1dctsWQAAAAAAAAAAGDJ1iEY7T8leVWST+dsIFqyf1DabZM8JsmvJPmbqrq0qp5fVY+tqguWWzYAKyP06mjz/jNXjic66p0evW1c4NmgqmT7+P7bdgSjAYt00N87fw+BJXJPd7TN+/3v1N+YNo5H4AaWcF7oXbf4MQAAYA1V1T2q6heSfDTJ/5vkX+Tss4J7zwdeluTHk1yQ5A5JvjfJRTkbkNayG6L2+1V1l2XWDwAAAAAAAAAALM/Kg9Faa89qrX19klsmuW/OBqVdlYOD0j4zybcn+bUkl1TVJVX1P6rq26rqDkv8ZwAASzPjpGeAaeyMCUbb7hiMliRbgtGAVTjg2qj1llMGAKzifl34GTCRGc4ZXc83vWunHwMAADZMVd2o/yzfG5P8dZJ/n+RmOftMYPrLr0/y6CQXtNae0Vr7x9bala2157bWvjDJ1yW5eGC/40m+f1n/DgAAAAAAAAAAYLmOrbqAPa21XpK39X+eVVVb2f1WyAcleXCSByQ5b3CXgeW9B57ulORx/Z9U1QeSvC7Ja5O8vrV2+eL+BQAsjwmtACxZb0ww2taNuvezfTy5bp/1gtGARToooEEwGjAXXe/V3dOzbOOOOccjMGSWa+OdU8mxEx3GODP9GAAAsCGq6sIk35PkO7P7hanJ7jN+e1+OWtn94tTfTvKc1trF4/prrb2qql6X5E1J7tPf/6sXUz0AAAAAAAAAALBqaxOMNqwflPbW/s9PV9V2doPSHpzdsLQHJLnJ4C4Dy3tBaRcmuWuSJyRJVV2c3aC017XWXrrI+gFYoIOCHTjkurz/jhG6cqzQUe/a0du2zu3ez/bx/dcLRgNWSjAaAMsy73swnxEAczbLZ88713QLRuvtl5gOAACbr/983yOT/NvsPuOXnH2Orw28vijJLyf5rdbaVV37b62dqqr/muRF/VWfNXPRAAAAAAAAAADAWlrbYLRhrbWdJH/Z//mpqjqW5EuyG5L24CRX2fZoAAAgAElEQVT3T3LjwV0GlvcesLpH/+eJ2aB/OwDDTGg90rpMThSeB8zbzunR27bnEIzWE4wGLNIB10aunYBlcs452lbx/o8d0/EIDJvhvHDmmuTcWx3cTjAaAACHTFVdkOT/TvL4JLfZW53dC+zWX95J8vIkz2mtvWGG4d47sDzB/6QDAAAAAAAAAAA2ycaGg7XWziR5S//nv/aD0v5ldkPSHpTkftk/KK1yNigNgI1k0ioAS9YbE4y2daPu/YwKRjtzcrJ6ACZy0PVzbylVAIecwDPWlmMTmECb4dr4zNXd2vWunX4MAABYTx/M9Z/JG3xO77Ikz0vyvNbaZXMY65qhMQAAAAAAAAAAgENoY4PRhvWD0t7c//kvVXVOkvsm+eYkT4hviASAQ6LL882egaYj4Q10NW7S8tYEtxpbI4LReqcmqwdgEgf9vZsl/AFgYq7Bj7Z5v/8z9ueeELiBGc4LO9ecXR53fmlnph8DAADW01Z2L6Zbzgak/VmS5yR5Wf+5vnmr+KAJAAAAAAAAAAAOrUMTjLanqm6R5CuSPDjJg5J8fs5+GyUAh4FJqwAs287p/dfXdrK13b2fYydG9C8YDVgkwWjAMnS9V5/wnv66TydXvi+5+Rcm2777YvMt6DOdqz+SnHvr5NhNljcmcEjNcM44MxiMtjO6Xe+66ccAAID1VUmuSvLbSZ7b2v9m787DLMnq80B/J6sa6G5WsQq1gG6QtSC0IckbaECDtdmSNVibLVndNjOjsWfRWLN4bGvzjD22Rx7b8iNrNF4k2mgxFthIxrIshA1oYRGLhNqgBbpo9oaGpmmglsy8x39UZtetrBtxI27cLW6+7/PU05kRceOcIg4nTkTl78v6n1bRSK31rlwOYgMAAAAAAAAAAHbY6IPRSimPTPIVuRKE9ozMDkKb3qYSCgBGq8NtXHgesGyThmC0vQf1O8/eQ2ZvF4wGrNS8tZG1E7Cl7vgbyW//9aQeJGeuT778Hyc3f8eme8UQy35ev+/tycs/J/n47yZ71yW3/LnkS3/06vDi1jbdA4EThsxTh9PBaC3hw4LRAADYPW9P8qNJ/nmt9f5NdwYAAAAAAAAAABi/0QWjlVIenquD0L4wV4eelVyuZjoZhPbWJK8++vOadfQVgFVRtHqqCT1jqYwnOmoqWu4bjHamRzDaJ84l73v55cLqz/j65BGf168tgGPz1k9toQ0Ay9b1me69P5+89fuufH94PnntdyaP+sLkkc9YTd8Yn3f82JWvJ/vJO/5xcv1nJM/4/qmDPPcBfQxYGx9MB6MdtjRxafE2AABgC9Van77pPgAAAAAAAAAAALtl64PRSikPS/LsXAlC+6Ike9OHZHYQ2ltyJQjtV2qt966jvwCsgeAG5lL0DCxZU0FzOdPvPF2D0T782uRVX5Psf/zy97/1vcmzX5Lc9Cf7tQeQZP7ayPoaWIYlP4e945/MbuPci5Iv/n+W2xZrtIbn9Tt/vEcwmvcHwAlDfinDYcdgtHqweBsAAAAAAAAAAAAAAHAKbF0wWinlxlwdhPbFSabTBsqMj02SvDlXB6F9fLU9BQA2Q9EysAHrDkZ78/dcCUVLLhdNv+G7ks/4hqTMeiQCGGBI+ANAbx3nnPe/fPb2t/+QYLRRW8M955N3nWjSfQ7oY8CccfCJqdO0BKNN9hdvAwAAAAAAAAAAAAAAToGNB6OVUm5I8qxcCUJ7ZuYHoe0neWOuBKH9Wq31EzOOA2AnKWg93bpcf2OErowVOlp1MNpkKhjt4keTj7zu2mMu3J185PXJY/5QvzYB5t7vJmvpBQBsJqSspU2hacBJdcDa+GN3TH3Tch7BaAAAnFKllEcn+eYkfzDJ45OcT/LeJL+c5N/XWi9tsHsAAAAAAAAAAMAW2XgwWpKPZX4Q2qUkb8jVQWjn19A3AGCMFDbTxfm7k3e/dNO9YCyWFYy21xCMdjD1eHPxnubP3/9OwWhAf/PWRkPCHwCOdX4O87zGmnlHAPQyYM5478uSZ/5wUkoyaXiPkCQTWQ8AAIxfKeUxSb4gyWOTXExyZ5I7ar32hXMppST5K0n+apLrZ5zuf0hyVynlL9Zaf3F1vQYAAAAAAAAAAMZiG4LRzuZylcF0INqFJK/LlSC019VaL2ygbwBspZbitFovF56xuxQ0swznfjJ53a2CYOhuWcFoZxqC0SZTjzttBdJnHtyvPYAkc8Md3A+BdfJMd8pt4vq3tWk8AicNmBc+9Z7kvjuSRz6j+T1CktSDxdsAAIANK6V8UZIfSvKcJHsndn+olPIPkvzdWi8vio9C0W5P8u25+ucDjxffx9uekuTflFJuq7X+1Gp6DwAAAAAAAAAAjMU2BKNNq0l+OcnfSfKaWlUGADCDIupTrsv1N0Zocf7u5LXfGeOEXppCg8rJeo85zlw/e/vhdDDaxebP7z2oX3sASYf1s3siAOvingNsuaGhwR985fxgtMn+sDYAAGBDSinfluSfJzmTq0POjj0+yf+d5CtKKV9fa50k+e4k35HLLwWmw9COPz/9suBMkh8vpbyl1vq2FfwVAAAAAAAAAACAkehZxb9Sxz/k9Lwkr0hyXynll0sp31tKeXYp5boN9g2ArdJWRKvAFpjjzp+IuYLemgqay5l+59lryKaeTGVCH15q+bxgNGARc+57Q8MfAJJ0X2Nbi7Nu3iMBPQz9pRzn33f0Rcsauy00DQAAtlQp5cuSvCiXfxFrydVBZ5n6viT5miT/SynlYUl+MFcHon0gycuT/HSSX0xyb64OWbsuyQ+v6u8BAAAAAAAAAACMQ0NV/lq9Pcnn5NrfInl9kuce/UmSC6WU1yV5dZJXJXldrbUlMQCA3dVSnFbr7N9LzA7pUpyosJkWd/74pnvAGC0rGK00ZVNPFUy3jdEzD+7XHkASwWgAbI2hgUNjaRMYsYFzxnHwufAzAAB2z/+X5EyuDjm7N8k7jr5+apJH5Uo42l9Kcl+Shx9t+0iSF9Ra/830SUspe0lekOQfJHnI0We/spTy1FrrO1f8dwIAAAAAAAAAALbUxoPRaq1PL6U8JslzcjkE7TlJPvdo93S0zfVH+56T5AeSXCylvD5XgtJeW2u9uI4+A7BhrQWtil133soLmo9/uTU7a7K/6R4wRksLRms4/jiUqNbknf+0+fN7gtGABcxdP1n7AOtkzjndNnH95wTsA1xlaDDa0XsnwWgAAOyQUsofTPIluRJ69uEk35Xk52q9/HBdSilJviHJjyV5XJLHJ/meo1PsJ3lerfWtJ89da50k+SellLuTvCxXFuXfnORvr+rvNFallOtz+WcrPyfJY5M8NMknknw0yR1JfrvWerC5HgIAAAAAAAAAwHJsPBgtSWqt9yR5ydGflFIelyshaM/J5R/kSa4OSntIkq84+vN9SS6VUt6QyyFpr07y67XWCyvvPABbRkErGVbYXPYULu46PwfOIpYVjJa99vPf+5vtH+/dHkAyd418HM4IMIjncbrYsmA0gJOGro2P3ztNvF8EAGCn/Kmj/5ZcDjn7qlrrb00fcBSQ9nOllHNJfiOXfy7xD+Tyg/lPzgpFO/H5ny+l/Mdc/sWqNcmXLvev0F0p5ZYkX3bUhy/L5VC4h00dclet9Slr7M+XJPnGJF+Z5MuTXNdy+CdLKS9O8sPz/jcHAAAAAAAAAIBtthXBaCfVWj+U5F8e/Ukp5fG5EpL23Fz+oank6qC0Byd51tGf702yX0r5jVwOSntVLgelnV955wFYg5aC1iGBWIzEqq9xmX8I4zbZ33QPGKPGYLSGoLMmTccfF15fuHteR/q1B9CJYDRgjTy3s26tY854BE4aOC88EMhvjQ0AwE75kqP/1iT/8mQo2rRa61tLKf8iyZ+d2vzSju28NJd/NjBJnt67lwOUUp6T5K/kchjap62z7SallIck+U9JbunxsRuT/Pkkt5ZS/m6S76u1+gdyAAAAAAAAAABGZyuD0U6qtd6d5MVHf1JKeUKuhKQ9J8lnHR06nWTyoCR/5OjPX83loLQ3Jnl1klfVWl+xjr4DsG4KWndepyL6AeOg7BlGu04wGouoDQXN5Uy/8zQdfxy8dvbGOf0wQQGLmDN3NM1xAH10XqdYz5xqG1nPGnNAD0PnqeP3Tk0B6w8cd5DsjeKfaQEAILnyS0yT5OUdjv+FXB2M9taO7RwHrpUkj+74mWX5oiRfteY25zmb2aFoNcnvJnl3knuSPDTJ55849kySv5zks0op31rrAynOAAAAAAAAAAAwCqP8ifta6weT/IujPymlfHquhKQ9N8lTjw49GZT2h4/+/OWM9O8OQKKglfmGjJEy/xDGzc98s4imgubewWh7DTuOQonOXD+vI/3aA0g6hDuYWwBYl20LRnMPBE4aGBo8OXrvNC8Y7fBCsvfQYW0BAMD6PGLq69/tcPzJYz7SsZ17pr5+eMfPrNrFJO/NlZ9H3JTDJL+U5PYkr6y13nPygFLKM5P8vSRfMbX5+Ul+MMn3rqGPAAAAAAAAAACwNE1V+aNSa/1ArfWna63/ba31s5LclMu/dfLHk9x5fNjRf0skngCMW2uwg4LW3bfia9wYWsTOmOyvv825gTRsvaUFozUcX48Kr/fm5TcbS8Ai5swddWD4A0Av1jOn2iaejTyPAX0MnTNqx2C0ycVh7QAAwHpNp/re1+H4j09/U2u90LGd6eOu6/iZZdpP8ptJ/mmS70ryzCQPS/Jfb6Avxy4m+UdJnlJr/bpa64tnhaIlSa31TUm+MsnPnNj1v5VSnrzifgIAAAAAAAAAwFLNq7ofpVrr+0spb0vyuCSPT/LEJA/ebK8AWJ6W4jTFrqdAh2s8aBy05KfWmhT5qqO3iWC01MjmHbmlBaM1hC8en39eOJH7HLAQwWjAOlinMELW18A1Bs4Lx++d5q2xD7vmQgAAwFaY/ofOOSnAnY/ZNrcn+bFZIW5lcz8jcCHJ02qt7+36gVrrYSnlBUmeleQzjzY/KMm3JPmh5XcRAAAAAAAAAABWY2eC0UopX5jkOUmem+TZSR650Q4BsDqtRasKWhmo9YeahVvthHqw6R4wRo3BaA1BZ42agtEmV/+3uSM92wPI/NAXwWjAOgmiOuU2cf2NOaCHoWvj4/dOTe8RjglGAwCArVJrvXfTfTip1nqQpHMo2tTnzpdSfiLJ909tfm4EowEAAAAAAAAAMCKjDUYrpTwjV4LQviLJo6Z3T31dG7YDsJMUu+68TkX0Q8ZBS8hRPVwgBAmSvPOfJU/7bzbdC4ZoKowuZ/qdp+n444JpwWjASsybO8wtAKzLtgWjuQcCJw2cFyaC0QAAgK3wlhPfP3EjvQAAAAAAAAAAgAWNJhitlPL0XB2E9ujp3VNf11ypWihT+96b5D9O/QFgtFqK0zqFZjFuK77GpSVHdW5gETT43X8gGG3smgqaewejNYQrPjC/uI8BqzBnbrHGAZai6zrGeoc1864I6GXgnFH3j/47JxhtcnFYOwAAAO0OTnz/oI30AgAAAAAAAAAAFrS1wWillM/NlSC0/yLJY6Z3T33dFIT2gSSvylEQWq31nSvsLgBr1VacptiVZNg4aAgtSuYXNEKT+96WHF5Izjxk0z1hUUsLRms6/iiUaF44kVAHYCUEowGwJhtZz3qPBPQwdJ6aHGUPzHu+P/jUsHYAAADaPe3E9x/YSC8AAAAAAAAAAGBBWxOMVkr57FwdhPa46d1TXzcFoX04Vweh/e4KuwsAbMyKi5ZLad4nGI0hDi8KRhuzpQWjNYQvPnD+eeFEghuABcwLdxC6CKyVOYd1M+aAPgaGBtfjYLQ57xHf+r3J8141rC0AAFiv4wfsP1RKecqcY58w/U0p5dm5+uf/On2OQb7pxPdv2EgvAAAAAAAAAABgQRsPRiul/FQuB6JN/2BTlyC0jyZ5da4Eof2n1fYUgK3RGtyg2HXndQnuGBLu0RRalCR1YGEkp9vk4qZ7wBDLCkZLUzDa5Or/NnekZ3sAyfy5wxoHWIKuz2HCGE+5DVz/tjFnPAInDZ0XJh2D0T706mHtAADAZpQkP7PAZ17V4/iabiFqNCilfFmSP3pi87/eRF8AAAAAAAAAAGBRGw9GS/Knc/UPNDUFoX0syWtyJQjtrevsJADbREEr8wwZBy0/Yz2voBHaHApGG7WmwLK2MMVZ9hqC1I7nl3nBaO5zwELmzB3CXwFYm02sZ62hgT4Gzhl1/+i/1tgAAOykPqFl04vrPkFnHuQHKKVcl+T/P7H5V2qtb1hyO49L8tieH3vqMvsAAAAAAAAAAMBu24ZgtGPHPzh1/INQ9yf5lRwFoSV5S61SAABI2n8O1q1i9636GrcFoyloZIDD85vuAUM0BSOWhqCzRg1Bag/ML/PmGfc5YAHzXqdY4wBL0XWdYj3DunmPBPQwdG08OTg6T4dfsFBrUvrkQwAAwFZY5GHaA/j6/FCSL576fj/J/7SCdv5ikh9YwXkBAAAAAAAAACDJ9gSjlSSfTPJruRKE9sZaVeYCMENrsIOfpyUZNA5KQ2hR0q2gEZocXth0DxhiWcFoTccfP/rMzYJ2nwMWYW4BYEv43SfA1hs4T9U+wWiHSdmWf6oFAIBW744XyVuvlPLnk3z3ic0/WGv9zU30BwAAAAAAAAAAhtiGn7b/vlwOQntDrcfVAgCwIAW2p8Cqr3Fp2SezlQEEo43b0oLRGsIXHzj/nHnGfQ5YxLy5Qy49ALus7T5ofQ2cNHRemOwfnadDMNpkP9nbhn+qBQCAdrXWp2y6D7QrpXxNkh87sfnlSf7WBroDAAAAAAAAAACDbfyn7Wutf3PTfQBgbBStnmpdihOHFDA2hRYl3QoaoclEMNqorToY7TgQbW44kXsgsIh5c4e5BYB12cQ9x30O6GNgaPDx74DqEj5c95NcP6w9AADg1Cul/NEkL01y3dTmX03yrbWuLBX+R5P8bM/PPDXJz62gLwAAAAAAAAAA7KCNB6MBwHIpdmWo0rxLMBpDHApGG7Wmgua2MMWZxzcEqR3PL/MKp1dWuwDsto7BsqVlHQSwTOYc1ql1DW19DZww9Ll7chyM1uE94uGlq2MLAAAAeiqlPDPJv01yw9TmNyT547XWT62q3Vrrh5J8qM9niveBAAAAAAAAAAD00LOKHwC2QUtxmsCYU6DLNR4wDtpCjuYFFkEbwWjj1lTQ3BR01qhhjjmeX+bOM+5zwIpY5wBrZU1zem3i2htvQB8D54y6f/TfDsFox8cCAAAsoJTyBUl+Kckjpja/JclX11o/vpleAQAAAAAAAADAcghGA2B8WkMbFLvuvlVf45bfUtyloBGaCEYbt2UFozWFLx6f/+D+fucD6KJTeLBgNGAAIeV0tZGx0tamsQucNHBemBwcnabDe8SJYDQAAGAxpZTPS/LLST5tavMdSb6q1vqxzfQKAAAAAAAAAACWRzAaADtGQSsZVmhd2oLRBIYwgGC0cVtaMFrD8cfzy/kPzutIv/YAknSaO6xzgHUSpMY6GW9AH0PXxfU4GK3DeQSjAQAACyilfHaSVyZ57NTm30nyvFrrPZvpFQAAAAAAAAAALJdgNABGqKWgVbHr7ut0jYeMg5blUVMwEnQxEYw2aksLRmuaY+rl+e3C3XP64T4HLGLV6ycA6GoT9xvvkYA+Bs4Lx2FnXd4jCkYDAAB6KqU8Lcl/SPKEqc2/n+Qra61z/qERAAAAAAAAAADGQzAaAOPTWrSqoHX3rfgal9LS9GS1bbPbDgWjjVpjMFrPR6q2ILU6SS58cF5H+rUHkHQLfbHOAQbpu0axpmGdjDegh6GBifXg6L8dgtGqYDQAAKC7UsrNuRyK9sSpzXfmcijaBzbTKwAAAAAAAAAAWA3BaADADhpSwNiyPOpS0AhNBKONW1NgUFvQ2czj2x7BJsmFeb/IXagDsAjBaABsi21bz25bf4DNG7gunvQIRptcGtYWAABwapRSnpTLoWifObX5rlwORXvvZnoFAAAAAAAAAACrIxgNgBFqK1pV0Lr7VnyNS2lpWjAaAwhGG7em///3DUabF754/oNz+uE+Byyiy9whGA1YJ2saVmx63WwNDfQxdM6oB0fn6LC+nuwPawsAADgVSilPTPLKJE+Z2vy+XA5Fu2sjnQIAAAAAAAAAgBUTjAbACLUUpyl23X1drvGQcVDalkcCQ0Zvk3OEYLRxW1YwWtvxdZJcuHteR/q1B5Csfv0E0HcOMeecXhu59gL2gT6WMC/Uw26/YEEwGgAAnDqllHriz3PmHP+4XA5Fe9rU5g8keW6t9c4VdhUAAAAAAAAAADbq7KY7AAC9tRbRKmhlqNK8a9KhoJHtVg8217ZgtHFbWjBaS/jiR9+cnH/fvI70aw+gMwGwAKzDutazNVee762hgR7qEtbF9aDbe0TBaAAAsFVKKTdl9s9TPuHE92dLKU9pOM0naq33LKk/j0zyiiSfM7X5k0lekGS/pQ8z1VrftYx+AQAAAAAAAADAOghGA2CEBKOdbl2u8arGgfE1ehstODV+Rm1pwWgtx//yszv0wzgCFtFh7lhGAARwivVdo1jTsGK1TuWitYw362vgGkuYFyYHze8RrjpOMBoAAGyZX03y5A7HfUaScw37bk9y25L680VJvuDEthuT/MKC52v5LXEAAAAAAAAAALBd9jbdAQBYKgWtp8Amr7HxNXqC0VhUU2BQ6flI1ff4azsy8PPA6dQlGM38AsA6bOJ+4x4H9LCMdXHdT9IheLgKRgMAAAAAAAAAAAAAgFkEowEwQm3FaYpdSVY2DgSGjN/k0ubaNn7GrR7O3l7O9DvP4GA0gAV0ugd1CG4AWBprY1atNnzddhxAspR5YXLQ/B7hquM2+J4KAAAAAAAAAAAAAAC22NlNdwAAoJcuwR4rC6BSMD16k/1N94CxWlowWs/jr+3IwM8Dp1OX9ZNgNGAIaxQ6Wltg9FQ7QqqBPpaxLq5dg9G8pwIAgG1Sa33KGtooPY59VZLOxwMAAAAAAAAAwC7Z23QHAKC31oJWxa67b5PX2PgavbrJglPjZ9SWFYw29BFMqAOwEMFowJaxpmHVrhpj3iMBfSxhXpjsJ598d7fjAAAAAAAAAAAAAACAawhGA2CEWorTFFeTZGWFzcbX+B1e2nQPGKtlBaP1DlK7piMDPw+cSp3WMOYXANZhE/cb9zigjyXMGfUg+dhvzT9OMBoAAAAAAAAAAAAAAMwkGA2A8WkNdlDsuvNWHk5mfO20usmCU+Nn1Opk9vbS85Gq7/HXdmTg54HTqcPc0TTPAXTR+znNmubUWlvgeMd2BKADJy1jXTzZTz722x3aEowGAAAAAAAAAAAAAACzCEYDYIQEV51uXa7xqsaB8TV6kw0WnCq4H7d6OHt7OdPvPEOD0YwjYBGd5g7BaMA6WdOwalNjzBoa6GUJc8bh+WT/4/OP2+R7KgAAAAAAAAAAAAAA2GKC0QDYLYpdWaUqMGT0Jpc23QPGamnBaD2Pv7YjAz8P0MA6GoC12MT9RsA+0MMy1sWHF7od5z0VAAAAAAAAAAAAAADMJBgNgBFStHq6dbj+Kwv2MPZGb7K/wcaNn1FbWjDawEcwwUXAQrrMHQJggSF6rlGsaVi1q8aY8Qb0sYR1cedgtE2+pwIAAAAAAAAAAAAAgO0lGA2A8WktoFbsykBt40vx/vgJRmNRSwtG63n8tR0Z+HngdOoSLCsYDYB1WNd6dqod75GAPpbx/u/wYrfjBKMBAAAAAAAAAAAAAMBMgtEA2C2Cq3Zfp2s8ZBwomN5pk0ub7gFj1RiM1veRaugjmHkIWECX9ZNgNGCtrGlYJ+MN6GMJc8bkQsfjBKMBAAAAAAAAAAAAAMAsgtEAGCHBVafbioPRWoNDjK/R22TBqeDGcWsKDCpn+p2nd5AawDKsOlgWwBxCR2t7Lppqp61Nz2nANZYwLxx2DEa7eM/wtgAAAAAAAAAAAAAAYAepygdghARXsUoKpnda3WAwGuNWD2ZvL2f7nadvkNo1/TAPAYvoMHc0BUACrIQ1zem1pmt/1brZeAN6WMa6+PBit+Pe85Jk0vC+AQAAAAAAAAAAAAAATjHBaACMT1sojMCYU6BLsMeAcdBa/Gh8jd7k0gYbN35GrR7O3t436KwMfQQzjoAFdFkbCUYDhuj7DObZnbUSsA/00TAvPPHrup9i0jEY7cLdyQd+qft5AQAAAAAAAAAAAADglBCMBsAIKWg91VZeQC94b6dN9jfYuPEzavVg9vZytt95+gapXduRgZ8HTqcuc4dgNADWYV3rWetmYEFN7/9u+fPdz3F4ofux527vfiwAAAAAAAAAAAAAAJwSgtEAgB00pABa8N5O22gwGqNWD2dv3+sbjDbwEUxAI7Aq5hdgrcw5rNrUGGu9xxmLwAm1ITC4lOQzn9/tHJOL3dt778uSS/d2Px4AAAAAAAAAAAAAAE4BwWgAjJCC1tNtxddYwfRum1zaXNsCZ8ZtcjB7eznT80RDH8GMI2ARXeaOhgAIgE6sUehoI89FxifQR9OcUbqf4rBHMNrkUnLXi7sfDwAAAAAAAAAAAAAAp4BgNAB2i+ChU6DLNR4yDlo+a3yN32R/g40bP6NWm4LRzvY7T+8gtWs6MvDzwKnUZQ1TBaMB62RNw4pdde/znA/00RaM1jEc7fBCvybvfGG/4wEAAAAAAAAAAAAAYMcJRgNgfFqLVhW0MpTxtdM2GozGqNXD2dv3+gajDXwEE9wALEQwGgDbYl3r2al2rKGBPprWxeVMOgejTXoGo33k9cl9v9PvMwAAAAAAAAAAAAAAsMMEowEwQm2hDYpdd16XguYhRc+C93bb5NIGGzd+Rm1yMHt7OdPvPEOD0YwjYCFd5g7zCzBEzzlEUNUptolr7zkf6KExGG0vKR2D0Q4v9m/33O39PwMAAAAAAAAAAAAAADtKMBoAu0Vx9Smw6mCPluA944AeVzUAACAASURBVGv86v6me8BY1cPZ28vZfucRjAZswqqDZQF6M+ewarXha4B5WoLROp+iJRjtEU+fvf3ci5JJw7sHAAAAAAAAAAAAAAA4ZQSjATA+QhtYpdbxZeyN3mSDwWjmrvGqNakHs/eVM+vvC0Bvqw6WBYCO1rWenW7Hcz7QR236pQl7SUq3cxxeaN731BfM3n7+fcndr+x2fgAAAAAAAAAAAAAA2HGC0QAYIQWtp1uHazyo0Lrls42FkYzG5NIGGzc/jVbb//f3zq6vHwALE4wGrFjfZzBhr6yV8Qb0UA9nby99gtEuNu978p9O9h48e9+dt3c7PwAAAAAAAAAAAAAA7DjBaADsGMWuO2/lBfSC93baZH/TPWCMmoqik6SsOxjNPAQsoMv6SQAsAGuxrvVsx3aE9AEnNa2Ly15SOgajTVqC0R786OSmb5y9773/Krl0X7c2AAAAAAAAAAAAAABghwlGA2CEWopWFbSSZFChdesYMr5Gb6PBaMbPaNWD5n3lzPr6kcQ4AlbH/AKskzmHFbvq2d54AzqqNY1zRp/n/8MLzfvKmeSWW5s/9+6f7d4OAAAAAAAAAAAAAADsKMFoAIyP4KpTbtXXWPDeTptc2lzbxs941cPmfXtn19ePxDgCFtRh7jC/AIOYQ+hqA2PFeySgs5Y5oewlKd1OM7nYdJLL53nCH0uu//TZh5x7Ybc2AAAAAAAAAAAAAABghwlGA2CEFLSebl2u8ZBxYHzttMn+pnvAGNWD5n3lTP/zPfrLF++LeQhYyKrXTwB9mXNOrbUFcdaGrwFa1EnLzh7BaIcXZm8/foewdzZ5ynfMPubDv5bc/45u7QAAAAAAAAAAAAAAwI4SjAbACLUUtK6twJad1VoAaXyNXt1kMJrxM1qTtmC0s/3P9/S/tnhfjCNgEV3WyK1rIIB5rFHYNh2D0bxHAqa1rYnLXlKWFIyWJDff2vz5c/+8WzsAAAAAAAAAAAAAALCjBKMBAOPSKdhjQGFz22cVTI/f4aVN94AxqofN+xYJRnvi1w7oi3kIWESXucP8AqyRNc0ptoFrb7wBnc0JRut8mosN55gKRnvk05NP+9LZx915u+BiAAAAAAAAAAAAAABONcFoAIxPa0GrYtfdt+pgD+Nrp9X9DbZt/IxWPWjeN13U3NUiYWoPMI6ABXS6B5lfgHUy57BiV937POcDHbWGke0lKd3Oc9ghGC1Jbrlt9nGfenfyoVd3awsAAAAAAAAAAAAAAHaQYDQAdovgIQZrGUPG1/hNNhiMpuB+vOph8769BULOSsdC6pl9MY6ARXSYO8wvwBDmEDpb11jpGowGMKUtGK30CUa70HCOE8FoT/62ZO+62cfe+cJubQEAAAAAAAAAAAAAwA4SjAbACLUVtCp23X1drvGAcdBa0G98jd7k0qZ7wBhNDpr3nSxqXjnzELCILnNHSwgEwNJZ05xamwjR85wPdDYvGK3raS7O3r534h3Cgx+dfMY3zD72PS9N9j/RvU0AAAAAAAAAAAAAANghgtEAGJ/aFtqgoJWhFEzvtMn+Bhs3fkartgWjnV1fP05qC2wDmNYlhObgk6vvBwCsjecvYAFt753LXlJKt/McNgSjzXqHcPOts489+GTynpd0a49xuvCh5EO/mnzsjuUEhx58MrnnDcnBp4afCwAAAAAAAAAAAABgwwSjATAuh5eST7yzef8yCojYbl2u8aBx0PJZ42v8NhqMxmjVw+Z9e+sORqvJB1+Z/LtnJi9+SPILX5h86FfW3AdgJ73mG5MPvGLTvQBGq+ezkmerU2xN1/6qMeY5H+io9Rdy7CXpGIx2cP/s7eXMtdue+DXJQx43+/g7b+/WHuPzOz+c/NyTk19+dvILz0j+/Zcn97f8u0eX873kUckv/cHkJZ+W/P6PLa+vAAAAAAAAAAAAAAAbIBgNgHF56/fOOUBB6+5b8TVuLYA0vkZvcmlzbSu4H6/JQfO+WUXNq3Tf25JXf31y75svB7Z97K3Jf3he8vHfX28/gJHpeA96zZ9M9htCHABgrDyLAV21vRcse0npGIzWeI4Z7xD2rkue/O2zj//Qq5JPnBvWJtvnI7+RvPkvJYcXrmz76Bsvh1Uvcs+6+z8mb/6fr/xCiMnF5Df+QvLh1y6nvwAAAAAAAAAAAAAAGyAYDYBxufOFm+4BozCk6Lnts4qpR++4QHAjjJ/RqofN+8rZ9fUjSd7zkuTw/NXbJpeSd71ovf0ARqbjPejwfPLen19tVwCSWBufZuu69rXh67bjAOYEow3VFK5+y23NnznneX/nvP/fZeb95747kvsXCL5/5z+bvf3dP9v/XAAAAAAAAAAAAAAAW0IwGgDjcvHDcw5Q0Lrz6oqvcdv5V902q1c3GYzGaNWD5n1NRc2rcvEjs7ff8X+ttx/AuPRZw5x74cq6Aeyyvs9Knq1Yta7BaABT2oLRs5ekDDt/0zuER31B8qgvmr3v3O3eSe6aC3c37zv//v7ne9dPzd7+u3+//7kAAAAAAAAAAAAAALaEYDQAdosisVOgyzUeMg7aPjsZcF62wuTSBhs3P43WpCUYbe/sYue87pGLfQ5gIT3uQesOfATgdNnEe5vWNj2nAVNqy7u/ssJgtCS5+dbZ2z9xZ/LhXx3WLttlcrF5X1s4PwAAAAAAAAAAAADAKSIYDYAdo6CVDCy0bvms4L3xm+xvrm3jZ7zqYfO+smAw2md/92KfA1hIn3uQV0XAAvquda2NT7E1XfurxpjxBnQ0LxitrDAY7Sl/pvkdw7nbh7XLdjm80LyvLZwfAAAAAAAAAAAAAOAUUe0KwI5R7Lr7VnyNWwv0ja/R22QwGuNVW4pS24qa23ze/5484XlT59lLnv7Xksd/ZfLgxyx2TuMbaNIngGjReQ0AtkrHYDQhfcBV2oLRlrBO3msJV3/I45Inft3sfXf9y+TgU8PbZzscXmze590OAAAAAAAAAAAAAECSpOUn8AFghBS07r5O13jIOBCMttMmlzbYuPEzWvVw9vayl5Sy2DnP3pA85xeTe9+cfOJc8thnJTc88cr+X/zS5KNv6nfO8x9MbvzMxfoD7Lge96A9wWjAOlgbn1qbeG/jXRHQVW0LRttLsuA7gAfOMWetfcttyft+/trtB/cn7/nXyc3fPqx9tsPhheZ9beH8AAAAAAAAAAAAAACnyN6mOwAAsFXaCiAVU4/fZH/TPWCMJg1FqfMKmufZO5M8+suSJ3/L1aFol0/e/3yX7h3WH4Bk+NwGnFKeldg2XceksQtMaXsvmDUEoz3xjycPfvTsfedeOKxttsdEMBoAAAAAAAAAAAAAwDyC0QDYMQpad1+XazxkHLR91vgavY0Goxk/o9VUlFrOrrDRRYqt2wq4gdOtzz3IqyJgHayNT681Xfurgs2NN6CjtmC0speUFQejnXlQ8uQ/M3vfB1+ZfPI9w9pnOxxebN7XFM4PAAAAAAAAAAAAAHDKqHYFYMcodt19m7zGxtfoTS5tru1q/IxWPZy9faXBaAtoK+AGTrc+96B5YQ0Ay2BtzFoJQAe6mhOMNlSXtfYttzbsqMm7XjS8D2ze4YXmfU3h/AAAAAAAAAAAAAAAp4xgNADGo0vhtOJqksXHwbzPGV/jV/c33QPGqKkodZXhQaX0/0xTgBtAn9CXZQQ+AKePZyU6W9dYmWrH+AS6ag0c30uywLP6tC7vER71JckjPn/2vjtvN6ftgsnFln2C0QAAAAAAAAAAAAAAEsFoAIxKl6IvhWE7b6XFf/PObXyNWq3JZJPBaMbPaDUVpe6dXWGjiwSjtRVwA6dbn2C0FYY+AjzA2vjUWlugT234+uRhxiIwpe25uuxl8P2ry1q7lOSWW2fvu//3knteN6wPbN7hheZ9TeH8AAAAAAAAAAAAAACnjGA0AMajU7Gqgtbdt8JxMHeMGV+jtvHCQuNntOrh7O0rDQ8SjAYsUZ/Ql+JVEQA74OD8la8nlzbXD2Bk5gSjDX3uLh0D1p/y7c3vHM7dPqwPbN7agtEWeLcEAAAAAAAAAAAAALAlVLsCMCIdCs/6hD7ANeaMH+Nr3Cb7m+4BY9VUlNq1oHkRZZHiVcFoQJM+wWirDH0EdlffZyXPVqfXmq79m//S5f/e8/o5BxqLwJS24LOlBKN1XGtf/+nJp3/17H13/Yurwx8Zn8nFln1LfH+596DlnQsAAAAAAAAAAAAAYM0EowEwHkKpSNKtaLnhmFqT+9+ZHHyyYf+84kZjcNSawq3W1r7xM1r1cPb2lYYHLRCMNrRAG9hdfe5BxasiAHbAB19x+f73npdsuifAmLQ+V+9lcCB5n/cIN986e/v+fcn7fn5YP9iswwvN+yY931+2PevtXdfvXAAAAAAAAAAAAAAAW+TspjsAAN0NCMRid3QJ9ph1zEfflLzm+cmn3p3sPSh52n+XPOJzkzt/Irn0seQzvj55xg8Mb5vt5fqxqE0Eo5VFgtEa+gnQZ4280tBHgCPW5qfYOq99Td7+d+cfA/CAluCzsjf8/tVnrX3TNyTXPTLZ/9i1++68PXnytw7rC5szudi8r+73PFfL8YLRAAAAAAAAAAAAAIARE4wGwHjUlsK0B45R0MoMB59KXvm8K4WEk0vJ7/3Dq4/5nf83uf/355zI+Bq3TV+/TbfPwpruPysND1okGK3DfRJgrr1NdwAYpb5rXWtj1sA7IqCvtufqsjc8kHyvx3uEMw9JnvxtyTt+7Np9H/z3yafen9zwxGH9Yf1qTQ4vNO//zf/j8v7P//5uofltIWt7D+rfPwAAAAAAAAAAAACALaHaFYAR6VLQquh19y0wDj7wi1dC0dq87+eX0Dbba9PXb9Pts7CmwueyysepBYLRIhgNaNLjHrTS0EcATr21hpUJ2Ad6ag0+2xseSN53rX3LbbO310nyrp8a1hc2Y3Jp/jG//YPJ2/5Ot/MdtgWjXdftHAAAAAAAAAAAAAAAW0gwGgAjIhiNZKFrfMffXFLTQodGrW/B+5nrV9MPxqfp//urDA8qCwSjmaOAJn3ugSsNfQR2Vt+1tjCqU2yN1976GOirbd4oexk8h1338H7HP/rLk4d/9ux9517ofjpGk5Ygs2nvetHw8xXBaAAAAAAAAAAAAADAeKl2BWA8uhS0KgYjyTVFil0Lzvqel5Hpef2ef3fyrJckX/X65BGft4TmjZ/Rqoezt680PEgwGrBMfYLRVhj6CABrJWAf6Kk1GO3M8Ofu6x7V7/hSkptvm73vvrclH33TsP6wfocXuh1339u6Hdf23vvMg7qdAwAAAAAAAAAAAABgCwlGA2BEFLSSxcKlDpcUjCbYatz6Xr/rHpY86U8lj/nyZO/Bq+kT49BU+Lxt4UFNAW4AgtGArePZ6vRa47UXHAz01haMtte+v4sHPbL/Z27+jjSGp9/5wiG9YRMml7of2+U+1vbeu1zXvS0AAAAAAAAAAAAAgC0jGA2A8RBKRVcnx8pkScFoivdHbsj1ayhAXVv7bFRT4FhZ5ePUAmNO8APQpM86WjAasBBrXbaRgH2gp9bn6jL8ufu6h/X/zA03JU/4Y7P33fUzy/uFEGyfLgH4be+99wSjAQAAAAAAAAAAAADjJRgNgBHpUnimoHX3LXCNDy9srm22yIDrV5YQjCbcccQa7j+rDA9aaMwJRgOa9AlG86oIWAdr41Nrnc9FgoOBvhrnjXL5OX3ovHL2xsU+d8uts7df+mjyvpcv3h/Wr899cHLQ4Zj95n2C0QAAAAAAAAAAAACAEVPtCsB4dCkaEjx0CnS5xieOmVxaUtPG16j1Kl49GUq1hGA0xqseNuxY5ePUAmNO8APQqE8w2gpDHwFgnbqsjz3nA1dpCkY/fv4fOGecfehin7vpG5PrHj5737nbF+8P260ODEbzYwAAAAAAAAAAAAAAwIj5iWgAxqNT4IuCVnJtYfPk4rJOvKTzsBkDrl9ZxrLZ+BmtpvvPSsODBKMBG7KUex5w+vRc6wqjOsXWee2NM6Cnxuf/vfb9XZ29ccHP3ZA86Vtm73v/LyTn7168T6xZj3tTl2C0tmP2znZvCwAAAAAAAAAAAABgy6h2BWBEuhQNKXrdeYsU0B9eWFbjSzoPG9Fn7JSToVQLhFRd24ElnIONqIezt68yPOiaMdhBUz8BBBABW8e8dHqt8doL2Af6apw3lhSMdsNNi3/2lttmb6+HyV0/vfh52V6TDsFok/2Wnct4nwkAAAAAAAAAAAAAsBmC0QAYkQ7FqkIfToENBuQZXyPX5/qtIhiN0WoqfC5nVtjoIsFoAwu0gR3W4x5oLgFgV9QOgTIA0xqf/4//OXXgWvlRX7z4Zx/zR5KHPm32vjtvX/y8rFmfZ7OhwWie7QAAAAAAAAAAAACA8RKMBsB4CGlg4wSjjduA61eWEIwmWG+86uHs7WWVj1OLjDn3SaBJn3uQ+xWwgN5rXXPNqbXO56LD8/OP8ZwGXGVOMNqQOeNz/9dh7xFKSW7+ztn7PvZbyb2/ufi52U6TgcFo/j0FAAAAAAAAAAAAABgxwWgAjEiXwjMFrSSrGwfG16j1Kl49GUq1hGA0xqupkLScWV2bi4TxKXgFmvS5B5pLgG0grIplOPjUpnsAjE3jWvg4GK0hOL2LW16w+GcfOEdDMFqS3Hn78POzXWqHYLS2Y6ynAAAAAAAAAAAAAIARE4wGwHh0KuRR7LPTNl3Mten2GWjA9VskpOqke9+UvO7PJa94VvKbfzXZv3/4OVmPpsLnssrHKcFowDL1uQda7wBrMPfZyly0u9Z4bQ/PdzjIWAOmNAajHz//D3ju3ju7+GeP3fjk5PHPnb3vXT+VTPaHt8Fq9Xm/POkQjNZ6zb0nAgAAAAAAAAAAAADGSzAaACPSoZBHcBXJCseB8TVuPa7fNUFoS1g2X/hQcucLkw//WvK2v5W86usUrI5GU2H0mfV2Y56mADeAPvdAIYvAQjwrsYUOPrXpHgCjMycYbcg7x7KEYLQkufm22dsvfjh5/79bThtsh9rhvWHbu0XPdgAAAAAAAAAAAADAiAlGA2A8OhWeKcbebRu+voL3xm1Q8erJoLQl+PCvJve8bvnnZfkaA8dW+Ti1yJhT8Ao06HUPtN4B1mHOXOPZa4et8doenu9wkLEGTGl6/j8ORhvy3L23pGC0z3x+cvbG2fvufOFy2mCFetx3JgcdTtd2jHscAAAAAAAAAAAAADBegtEAGBHBaKde5+L4VY0D42vc+ly/k6FUKwhGS5Lf/sHVnJflqg2Fz+XM6tpcJIyvqZ8Afe6B5hJgIX2fleYd79lrZ60z9O7wwvraAnZD41p4b87+DsqSgtGue2jypG+eve/9L08u3LOcdti81tCzI5P9ls97tgMAAAAAAAAAAAAAxkswGgDj0aWQZ50FtmyxFY0DxWQjt4XBaPf/3mrOy3LVw9nbyyofpwSjARtiPQ1sBXMRy+A9EtDTvGD0QcFoSwxXv/nW2dsn+8ldP7O8dliBHvedSYdgtNoSjGY9BQAAAAAAAAAAAACMmGA0AEZEIQ+bHgObbp9BhhS8lxUFoy2zKJbVmVcYvRKLjDnBaECTPvdAcwmwBvPW5sKqdtgar21TwDFAk8bn/+N/Th2wVt47u/hnT3rcVyQ3PmX2vnO3L68dNqt2CEabtASjCdAHAAAAAAAAAAAAAEZsiT+FTx+llDNJnpbk85I8MckjklxMcm+SdyZ5Y631k0tu87okfzTJk5J8epJPJHl/krfUWt+15LZuTvJFufx3e2iSDyS5K8mv19r668sBmnUq5FE8vds6Xt+VFdEbX+PW4/pdE4S2omA0OcXj0BSoUFZ4/RYJ45sIfgAa9FkbCSMCFmHuYBt5jwT0NicYbVDo/hL/SbbsJTd/Z3LH/3ntvo++KfnYHckjP3957bE8vZ7NugSjtRwjGA0AAAAAAAAAAAAAGDHBaGtUSnlSkucneV6SZyd5eMvhh6WUVyT5kVrrvx3Y7mOT/PUk35rk0xqO+fUkf6/W+tKBbX1Tku9J8ocbDvloKeXFSb6/1nrPkLaA06hD0ZBibFbJ+Bq3QcWrKwrAKmdWc16Wq6mQdKXXb5EwPgWvQJM+90BzCbAO8+Ylz147a53P1QJhgL4a5429Ofs7WGYwWtIcjJYk525PvviHltse69cWenas9XdRWU8BAAAAAAAAAAAAAOO1ooQHTiql/HSSu5L8/SR/PO2haElyJsnXJHl5KeXflFIev2C7X5vkjiR/IQ2haEf+SJKXlFJ+spRy4wLtPLSU8jNJfjbNoWg56sNfSHJHKeWr+7YDnHKdimcV++y0zgXUqxoHxte49bl+J0OpFgmp6tKM5fgo1MPZ21d5/coCY07wA9CkTwiNIFhgK5iLWIKmdfzVB628G8CINAajHz//D3ju3ltyMNrDnpo89tmz9537yW6hWmxAn2ezDtdw0hKM5j0RAAAAAAAAAAAAADBikhjW5w80bH9fklcleXGSlyZ5S66trPgTSV5TSnlCnwZLKc9J8rIkj5vaXJO8KZcDzF6R5J4TH/v2JD9TSveUh1LKmaP+f9uJXR9O8ktHbb05V/+0/+OT/Fwp5Vld2wHoVnimoHW3bbqYy/gatyHXTzDa6dZUGH1mhW0KRgOWqc890FwCLKLvWnvO8UIad9gar631MdDbnGC0ReeVcjbZu26xz7a55bbZ2y98MPnALy2/PdarS7hd6zHugwAAAAAAAAAAAADAeEli2Iy3JPkfkzyt1npTrfW5tdZvq7V+U631S5I8Kck/PvGZP5DkZ0spnRISSik3JflXSR40tfnXkjy91vqltdZvqbV+VZKbknx3kulfKf71Sf5Gj7/P307ydVPf7x/9/W6qtX71UVvPTPL5SV47ddyDk7yslPLpPdoCTrMuhdGKp3db5+LDFY0D42vcel2/E0uubkuw/lYarMXS1MOGHat8nFpkzCl4BRocXuh+rPUOsA5z5xpz0e5a57XtsD523wOmNb57HBiMdvaGxT43z5O+KTlz/ex9525fTZusT+0QjFb3W/a5xwEAAAAAAAAAAAAA4yUYbX1qkn+b5MtqrV9Sa/2RWus7Zx5Y6/tqrd+V5L8/setZSb61Y3t/Pcmjpr7/9STPq7W+/URbF2ut/zDJt5z4/PeUUp48r5FSyi25HKw27ZuP/n6XTrT1tiT/Za4OR3t0kh+Y1w7AZV0KeRT77LRFiw+X14ENt88wPa7fNUFoqwpGsxwfhaa5Z2/Lgu0aA9yAU2/SIxhNyCIAu2Lj7xCA0WmaNx54f7NoMNqNi31unusennzm82fve+/Lkkv3rqZdFtcnrKxLMNqkLRjNfRAAAAAAAAAAAAAAGC9JDOvzzbXWP1FrfWPXD9RafzTJS09s/rPzPldK+awkt05tupTktlprYyV0rfVlSaZ/ffyD0y2w7AeSXDf1/QtrrT/X0s75JLcd9enYC44C1gDaKeSha/FhnwKzXgSjjduQ67eiYDTL8XFoDBxb4fW7JpyvA/dJoMnB+e7HrmwdBey2vnPHvOPNRTtrnfeZTsHBxhowbU4w2qLP3WdWFIyWJLfcNnv75FJy14tX1y6r1xZ61ukY74kAAAAAAAAAAAAAgPGSxLAmtdZ3LfjRf3Ti++d2+MyfSXJm6vt/VWv9/Q6f+zsnvv+WUspDmg4upVyf5JvmnOMatdbfS/KyqU1nc7nPAHN0KVZV0LrTOhcfTo2DZRZdCwoZt17X70Qo1SIhVZ2aOTP/GDavae5Z6fUTjAYs0WGPYDTF88A28OzFMnRaHxtrwJTG5//jf05dcM44e8Nin+vicc9Nbrhp9r47X7i6dllQjzE0OehwupZjrKcAAAAAAAAAAAAAgBETjLb93nLi++tLKY+c85n/6sT3P9GloVrr25O8fmrTjUm+quUjX51kuprjtbXW3+nS1ow+Pb/j54BTrUMhj2Kf3bZQ6M8yx4TxNW5Drt+Kls3FcnwU6uHs7Su9foLRgCU6vND9WOtpYC3mzTXmot21zmtrfQz01PhcvTdn/xxnb1zsc13snUlu/s7Z+z7y+uS+rv9sx9ZpCz07Ntlv27m0rgAAAAAAAAAAAAAArJskhu0366feH9R0cCnlCUm+8MTnf61He6868f3Xthz7NXM+2+ZXcvXf7YtLKY/v8XngNOpUeKZ4eqc1hRNde+DUl8ssADO+xq3P9TsRSlUWCKnq1MyZ1ZyX5WqaR1Z5/RYacwpegQaH53scbC4BFrD0UEXPXixBl3cIAkGBaY3P/wOD0c7cMP+YIZqC0ZLk3O2rbZueetx3hgajuccBAAAAAAAAAAAAACMmGG37Pe3E9wdJ7mk5/vNPfP/WWusne7T36ye+f3qPtl7btZGjPv12j7YA0q1oSLHPTluk+HCZwWiKycZt0PVbVTCa5fgoNAUqrPT6LTDmOodHAqfK5KBbQf0x6x1gHcw1p9gar/1Sg9KBU2Hu8/+C88rZGxf7XFcP/+zkMX949r5zL0om3heM0qTDc1zrs577IAAAAAAAAAAAAAAwXpIYtt83nfj+jbW2VnR93onv39GzvXfOOd+0z11jW8Bpd/87kt/7kfnHKa7ecR2Lua4aB8ssADO+xq3H9Sul/ftlEYw2Eg3zSDmzwjYXCUZT8ArMcHih3/HmEmAhS35W8my/u9Z5bTvd04w1YFrTvHH0/mbRtfLZGxb7XB833zp7+/n3JXe/cvXt002f+2CXgOvJfsvnPdsBAAAAAPxn9u49WpezrhP8r/Y+J3cSAiSQgEnOISAqOgrYNiiIDghoNzdpURBPutsZp132co3jmqvdtmt6pp1erbO6HXW6l445It6gBWy8gEIj0ly0EW0VlcA5uXAJCSSE5Jycy95vzR9nn/Ced7/PW5e3qt6n3vfzWSuL7Kq3qh5StZ9L7f37bgAAAAAAYLwkMWSsKIorIuIfzmx+c8VhN898fWfDy94xpDgpEQAAIABJREFU8/Vji6K4ek7bHhMRj1nyWrOff0rD44FNcdebI37ryyM+/vOrbgmr1qaYq8sCMMX5I9fk/s2GUvUVjNZnsBadSfYjPS6n2oTxKXgF5tl9uOEB5jvAEKr6Gn0RHSh3V90CYGxS6+rz72/avhs8cHm745q48dURWxfP33fsaP/Xp3uTJYPRzKcAAAAAAAAAAAAAgBETjJa3fxERT5j6+vMR8XMVxzx65ut7mlywLMuHIuLUzOaralznZFmWJ5pcK/a3bd51gE032Yn4wD+oKPCZpthnrdUO/Zl6DjoNChI6NGpLBdv1FIxmOj4OqUCFrT6D7do8c/ooYI7d2SV+FfNpYACVc3N90foa8N7Weh/gWQOmJIPRzr+/abnu3h4gGO2iR0c86eXz933iNyLOPNB/G6ihwbhT1ghGKxf83ESAPgAAAAAAAAAAAAAwYgdW3QDmK4riFRHxAzOb/7eyLO+rOPSKma8fbnH5hyPikqmvH9XjdabNu04jRVFcGxHXNDzsycteF+jR3b8XcfbzDQ5Q0LreWhRzpQKN2lgqWIvVa3L/ZkKpip4CzIo+g7XoTLKQtM9guxbBaApegXl2Gy7X9SVAK9ZK5MiYBjRVEYzWdq584LJ2xzV1+JaIO39t//bdUxF3vjHi5u8dph10o04w2mTBZ6ztAAAAAAAAAAAAAIARE4yWoaIo/quI+MWZze+IiJ+tcfhsYNmpFk14OCKuXnDOLq+z6JxtfH9E/GgH5wFy8bk/avZ5wVXrrXYx1/Rz0GUBmOdr3Ja5fy1Cqmqdts9gLTqTCljsM9iuaBOM1mEQJLA+jv1CwwPMd4AhVPQ11vZrbMB7W+cdgmcNmJbsN4qK/RUOXN7uuKae8MKIS6+LePjT+/cdPyoYbWwWhZ498pmzC3Ya4wAAAAAAAAAAAACA8ZLEkJmiKG6IiN+KC0PC7oiI7y7LVlVa63YMQAVdy1qrW3w4PWS2LVicf+IOz8XgmkylZkOp2oRU1bqO6fgopPqR3O5fp/0dsBaOvyHiIz/e7Bh9CZAFay86IDgYaKpy/d9yrnzJ49sd19TWdsRNr5u/7973Rjz4sWHawQIN5jhljWC0ckEwmrUdAAAAAAAAAAAAADBimVXyb7aiKK6NiN+LiCdObb47Il5YluW9NU/z0MzXl7Zoyuwxs+cc8jrApmucCal4eq21KebqsgCsVUYp+Vjm/vUVjLbdz3npVipQodf71+KZU/AKzLrtZ1ocZL4DtND12t3aa30NeW9rBaN51oBpqT5hb43edt39uGe3O66Nw0fS+47/4nDtYHl/+X9Uf2ayIDzNeyIAAAAAAAAAAAAAYMQOrLoBnFMUxWMi4vcj4qlTmz8bES8oy/K2Bqfa9GC0n4mINzY85skR8dYOrg3kQPH0mqtbzDX1HHRaAOb5GrVG/cNsKFVPwWhyikci0Y/kFoxWu48ENsZn39f8GMXzQBasvdbXkMFoxjSgodS7o2Lv/U2bfuXAFRFXfXn7NjV11ZdHPOZZEff95/37jh2N+Mp/9sX/PwyvyfvJydmIe98fcc2CYL3JmUUXq38tAAAAAAAAAAAAAIDMCEbLQFEUV0XEOyLiK6c23x8RLyzL8i8bnu6Bma+vadiWK2J/YNnna1znsqIoLi/L8kSDy11b4zqNlGV5T0Tc0+SYougr6ATohuIdppS7LQ4SjMZ5De7f7Pygr/nCVp/BWnQm1ff0WUjc5pkT/AB0wnwHGIBQc4ZQa37sWQSmpfqN82v0Fn3GwauGDyI7fMv8YLSTd0bc8wcRj/+mYdtDe7e/fnEw2u7D6X3eEwEAAAAAAAAAAAAAI+ZPgq9YURSPiojfjYhnTm3+QkS8uCzLP21xyttmvr6x4fGzn7+vLMv7Zz9UluXn4lx427QblrzWbNsBWlDQutbqFnNNF9l3WQCmeH/klrl/fU2bTcdHIdWPFH0G2wlGA1ZEXwK00nSuXfV5a6/1NeS9NaYBDaXe/S0TmL91sP2xbd34nenrHrt10KYwq+E4eNvPLt6/KBjNfAoAAAAAAAAAAAAAGDFJDCtUFMXlEfHbEfG3pzY/FBEvKcvyj1qe9q9mvr654fGHZ77+yIDXmj0fQAuKfdZam6COTsM9PF+j1ijYbqbgdZkC2IWXMR0fhXJ3/vY+71+bZy7VToBGzHeADAilpgt15seeNeACqfeIe+v/Z/1U81NuXdS6Na1d/NiIJ750/r67/n3E2YeGbQ/9WRSMJvQaAAAAAAAAAAAAABgxSQwrUhTFpRHxtoj4hqnNJyPi28qyfN8Sp/6Lma+/qiiKyxoc//UV51u079l1L7IXCvdVDa4FUI+C1jVXt5hr+jkQjMZ5y9y/voLRtvs5L91KFZL2ev/aPHMKXoEOKJ4H2mi8Fq/6vLXX2hryvY0xDWgq1UedDy9//H8dcdHVzc65imC0iIhDR+Zv3zkRcdebhm0LUzoeBxcFo3lPBAAAAAAAAAAAAACMmGC0FSiK4pKI+M2IeP7U5lMR8dKyLN+zzLnLsvx0RPyXqU0H4sLwtSrPn/n6dxZ89ncrjl3kuXGubed9uCzLzzQ4HtgUjYtYFU+vtTZFzV0WQgveG7km9282lEow2kYrdxM7+lxOtXjmBD8AXTDfAbKgL6IDtebHnjVgWqpP2Fv/X/yYiG9+Z8RVT69/ylUFo13/4ohLrp2/79jRYdtCf3YWBKNZ2wEAAAAAAAAAAAAAIyYYbWBFUVwUEb8RES+Y2nw6Il5eluU7O7rMm2e+/vs12/a0iPi6qU0nIuIdCw55e0RM/8b9s/fOUcctM1/PthngnMnpZp9X7LPeaof+TD0HnQYFeb5GbZn+oRCMttFS/Uif96/NMycYDeiEvgQYgLX7Bhvw3icDjgESkuv/qTX6Y74m4tv+POJV90U87y3V59w62E3bmto6GHHja+fvu+fdEQ8dH7Q57OlyDlSWEbsLgtGs7QAAAAAAAAAAAACAEROMNqCiKA5ExK9HxEumNp+NiFeVZfn2Di/1hoiYrvp6ZVEUT6lx3P808/Wvl2V5KvXhsixPRsSbKs6xT1EUT42IV0xt2omIX67RPmAT7TYMRhNctd7qhv6UgtGYp8H92xdK1VMwWm/npVOpQIWiz+WUYDRgRYQVAa103Hfoi9bYkMFodebHnjVgWqpPmLNGv+jqeoHpWxct1aKlHL4lve/46wdrBj2ZnImF45j3RAAAAAAAAAAAAADAiAlGG0hRFNtxLrDsZVObdyLi1WVZvq3La5VleVtEHJ3adFFE3FoUxSUL2veyiLhlatOZiPixGpf7Z3Eu3O28W4qieOmC61wSEb+w16bzfr4sy4/XuBawiSbJfEY2Uptirg4LwBTnj1yT+zdT8NprABb5S/QjdQqgh5QKcANoRPE8MISqubm1F10wpgFNJcaf5HuhGqHmqwxGu/qrIq7+6vn7jh/1rnMlOvxvvvvwcNcCAAAAAAAAAAAAABiYhIfh/H8R8R0z2/7XiPhwURQ3NfwnGXA25Ucj4v6pr58TEb9fFMXTpj9UFMXFRVH844h448zxP1GW5R1VFynL8lhE/OuZzW8qiuIHiqK4oNqjKIovi4h37rXlvM9FvQA2YFPtnm54gGKftVbWLWqeeg5qH9PwvIzPUsWeNQpdW/FMjUIqcKzXwLw2z5zgB6ADwhGAQQhG21hDjjN1goONe8C05HvE1Bq9TjDawbat6cahW+Zvf+hYxL3vHbQpdKwqGK3T9+IAAAAAAAAAAAAAAMM6sOoGbJDvmbPtX+7909Q3RcS7F32gLMtPFEXxyoh4e0ScDyj7+oj4SFEUH4qIYxFxVUQ8IyKumTn8bRHxTxq053+OiK+IiJfsfX0wIn4qIv5JURR/EhEPRsThvWtNV4mciYhXlGX56QbXAjbN7qlmn1fQut7aFHMJRuMRTe7fTGFr0VMwmgLFcUjdp2K7v2u2eeY8T0An9CVAGx2vlazt6YL5MdBUcvxJrNHrBKZvXVT9mT7d9JqID/9wRLmzf9/xoxHXPnf4NtGNqmC0iHPPdF/vNQEAAAAAAAAAAAAAelTjN/YZq7Is3x0Rr4iIe6c2FxHxrIj4joh4UewPRfuViPjOsix3G1xnd+98vzaz69qIeHFE/L2IeGZcWDlyT0S8rCzLP6x7HWBDTU43PEDx9HqrW9Q8/Rx0WAitqHrcdk4ucXBfBYT6rFFITY3rFEC3JhgNWFLbUCFhRMAQ9DUbbMB7X2t+7FkEpiX6hOT6v8bafdXBaJdcE3H9t87fd8evL/m+jOY6HHd2agSjGecAAAAAAAAAAAAAgJESjLbmyrL87Yh4ekT8vxFx/4KPfiAiXlWW5WvKsjzR4joPlWX5nXEuBO0DCz56X0T8bEQ8vSzL3216HWAD7Z5qeIBCn7VWP7dz6pgug9E8X6P2x99X/7PFbGFrT8FogqzGIXWfiu0eL9rmmfM8AdPazlv0JUAOrL3ogjENaCi5/k+s0VPbp606GC0i4vAt87fvPBhx15sHbQoNFQfS+3ZrBKN59wgAAAAAAAAAAAAAjNSC36amS2VZ9pSmUeva90TEPyqK4gcj4usj4saIeEJEnIiIT0bEh8uyPN7Rtd4UEW8qiuJQRDwjIq6PiMsj4u6IuCMi/lNZlme6uBawIZoGowmuWm91C7mmn4NOi788X6M1ORtx8hPtj69T6NqK4sRRSIYy9pgz3eaZaxMeCayXT/9exG0/HfHwpyOue1G7c5hPA2007juqPq8vWltDjjMf+3fVnzHuARdI9QmpYLQa7wW2DrZuTWeu/7aIix8bcfpz+/cdvzXi0GsHb9LGajrubC0ZjGZOBQAAAAAAAAAAAACMlGC0DbIXSPYfB7rW8YjoJGwN2HCT06tuATlpFXImGI2IePBjDQ+YLXjtKRhNEf44pALHFhWnLq1NMJqgPdhon3xbxHte9sW+4HN/1PJE+hIgA+bJayy3e5tbe4DVSvQJyQC0Gmv3rYtat6Yz2xdF3PiaiI/+1P59d78z4sRdEZd/yfDtolqxZDCad0UAAAAAAAAAAAAAwEjV+FPmALBCkzMND1DQutZqF3JNfa7L4i/F+SPWNGRq5vPJAthlKU4chXJn/vZFxalLE4wGNPRXP9FNP2C+AwxCX0MuPIvAlOR8OrVGH0kwWkTE4SOJHWXE7a8ftCmbreG4U2yn9wlGAwAAAAAAAAAAAADWmGA0APJW7jY9oJdmkIuahVzTgR6dFn95vkaraBEydeEJOmnGPsJnxmGSCEbb6jEYrc0zq9gVNldZRtzz7o5Opi8B2uh6XmuevL4yu7fm0MAFUn1UYo1eJ0g/l2C0q58RcdXT5+87dtQ7qlwtevdU64/KuK8AAAAAAAAAAAAAwDgJRgMgb6kwmhQFXOutdsGyYDRmNQyZ2hdK1VMwmvCZcSgTY1HRYzBaq2fO8wQb6/S93Z3LfBpoo+m6q7Kv0RcxFM8aMCU1PiUD0Gqs3bcOtm5Op4oi4vCR+fse/GjEZz8wbHs2VsNxZ9G7pzo/OxEACgAAAAAAAAAAAACMlGA0APJW7jY9oJdmkIk2wWhdBgUJChmxJYPN9gWldURx4jikCk1zC0ZrPGYCa+PEnd2dy9gEtNK076hYW1l7ra/c7q1xD7hAqk9IrNGTgWlTti5q3ZrO3fTaiGJ7/r7jR4dtC8tLBflfwDgHAAAAAAAAAAAAAIyTYDQA8laruOeCA3ppBrmoWcg1XdjcaZGz52u0GgebzX6+r2A0z9QopMairT6D0VrwPMHmOtlhMJr5DtBG5+FS+iIGIhgNmJZaVyffK9V4X5RTMNql10Vc96L5++741YjdU8O2ZxM1fXeTCrKLSAf5L3M9AAAAAAAAAAAAAIBMCEYDIG/lbsPPK2hda7Xv71TBl2A0ImL5YLOegtHqhv2xWqlgtKLHYLTGYX4R+ijYYCfu6u5c5tNAG437DvOWzZXbvc+tPcBqpcazxI9T66zdtzMKRouIOHzL/O1nH4j4xFsHbQo1HLwyva/WH5WxvgMAAAAAAAAAAAAAxkkwGgB5m9Qp7pnSNEiNcalbbF9OFzZ3WPxVKpgercYhUzOfL3qaNnum8ldO0n3PVo/BaK3C+DxPsLF2T3Z4Mn0J0EbHoRvmyWsss3srEBSYlhp/ku+VarwvKrZbN6cXT/y7EQcfPX/fsaPDtoVqi37eUScYzTgHAAAAAAAAAAAAAIyUYDQA8lanuOeCzwtGW2t17+90wVenxV+ZFXDTQMOQqX0Fr21CqupQnJi9Rf1OkVkwmgAR2GAdfv8rnAfaaNp3VM5bzGsYimcNmJbqExI/Tq0TxH/q3tat6cX2JRE3fdf8fXe/PeLkp4Ztz8ZpOO4s+sMxdf6ojHdFAAAAAAAAAAAAAMBICUYDIG9Ng84Eo6232sX2UwVfgtHoRE/3XvhM/hYVmfYZjFanuHoffRRsrE6L3fUlQAudz2v1RWsrt4AWazJgWqpPSK7Ra6zdT97Zujm9OXRk/vZyEnH7G4ZtC4st+sMxtf6ojHEOAAAAAAAAAAAAABgnwWgA5K1Wcc/05wWjrbcVB6PlVsBNfUXTae9MYWtvfYtnKnuLxqGtHoPR6hRXA5zX6XxH4TzQQuO+o2IebO3FYIx7wLTU+JNYo9d533TtN7ZuTW8e+7cirvzS+fuO32oc7lPT/7aL3kkuCvNvez0AAAAAAAAAAAAAgEwIRgMgb5OGYUSC0dZb3WL7Cz7XZZGzQrLxWjJkqq++RfhM/hYFoxU9BqMVbZ5ZfRRsri6///UlQBsN57VCOjZYZvfeswhMS/UJyQC0Gmv3676ldXN6UxQRh26Zv++Bj0Tc96FBm8MCi95L1fqjMt49AgAAAAAAAAAAAADjJBgNgLzVKu6Z/rxgtLVWO0Rqqoixy+ApIVYj1rTYfaawtbe+RRF+9iYLxqGtHoPR2oT5CXWADdbh97/5DtBG532HeQ0DMe4BF0j1CYk1elWo+VP+UcQVh5dqUW8OfXck/38du3XIlmyYhnOcRe+lFu175HLGOQAAAAAAAAAAAABgnASjAZC3psFoE8Fo661mIVfZUzCa4vzxWjYwqq9gNMWJ+Vs0DhWZBaPpo2Bzme8Aq9a4H6rqa/RF6yu3e5tbe4CVSr0/SgagVfyY9Vn/z1LN6dVlT4p4wgvn77vjVyJ2Tw/bHuZb9E6y1s9OjHMAAAAAAAAAAAAAwDgJRgMgb43DiIQMrbXaxfaTxL8ve32FZOPV8N7NFrwKRttckwVFpls9BqMli64X0UfB5urw+9/YBLTScd9h7bW+cru3xj3gAqk+KvHj1EVr9xteHVFk/mPYw0fmbz9zX8Qn3zZsWzZGw3FwUfhZnWA04xwAAAAAAAAAAAAAMFKZ/0Y+ABtvUSDNPB/9qYj3vCLiP/9gxAN/3U+bWJ26hVzThdadFn9lVsBNjwYKRvNM5a88m95X9BiM1kZuIRPAcDr9/teXAC00XndV9TX6IoYiMAaYkhrPkgFoC4LRiu2lm9O7J7084uCV8/cdPzpsW5hv0c9H6vzsRDAaAAAAAAAAAAAAADBSgtEAyFc5icbF0OUk4hNvifjov4l4x9dF3PfhXprGqtQt5BKMxqwl713TkMa6FCfmb9G97zUYbUFxdZI+CjZXh+OJsQloQ99BbZnNWYULAxdI9QmJNXqx4MesYwhGO3BZxA3fMX/fp3474uHPDNueTdB03Fn0xxrKOu8rjXMAAAAAAAAAAAAAwDgJRgMgX4uKfuo4+4WIv/6JbtpCHuoW21/wuS6DQhSSjVbjezdT8Lpsf5QiQCJ/i4pMtzILRtNHwebq9PtfXwK00HReW9lv6YsYijUZMC0x/iQD0Bas3Xt9Z9Chw7fM317uRtzxy4M2hTnKnfS8qc4fcvDuEQAAAAAAAAAAAAAYKcFoAOSriyCi29+w/DnIR+1CrqlisU6LvxTnj9eS925RONZyJ+7pvHRmUZFp0WORc7LoehHPE2yuDr//Fc4DrTTtOyr6LYGvayyze2vcA6Yl+4REANqitXuxvXRzBvG450RccfP8fceODtsW5ks9l3XeVxrnAAAAAAAAAAAAAICREowGQL4WhdE0sXu6m/OwerXD8gSjMaNpsEIxU/DaVxGh4sT8LSoy3RKMBmSiy/Hk7Be6OxewOTqf1wpOYyieJWBaqk9IBKMlt8d4gtGKIuLwkfn7Pv9nEff/6bDtWXstxp3UO/Faf8jBOAcAAAAAAAAAAAAAjJNgNADyVauwp4YTd3ZzHlavbrH99Oe6LNAXYrW56oTyPf2ftjlxi2MY1KKQzqLHYLQ2SzUBIbDBOvz+P31vxKRuGC3AnsZrpWX7LfOe0cptzmqdD0xL9VHJ8PJFwWh9vjPo2KHXpfcdOzpcO5gv9XOSOn9YxjgHAAAAAAAAAAAAAIyUYDQA8lUniKiOE7d3cx4yULeQa7qIUTAaEc2DE2YKWxcFNT7z30R8659HfNWPNW6VZ2oEFt37Pouck0XXi2QWMgEMp+vx5L4PdXs+YAN0Pa81r1lfud3b3NoDrFZqPEsEoC1auxfbS7dmMJffGPH4b56/7/Y3REzODtuetdZi3Hnwo4lT1fnDMsY5AAAAAAAAAAAAAGCcBKMBkK9JncKeGk7c0c15WL26oR/lVMFXl0EhXYX1sQINiwCL2WC0Bff+5u+LePTTmzcpIroPkKBzi4pMt3ILRgM2V8fF7vcLRgMaarruKiv6rWX3Q13CqoFpqfFl9j3RF3ekz9XnO4M+HDoyf/vpeyM+9TvDtoULve+187fX+fmJcQ4AAAAAAAAAAAAAGCnV9gDkq6sQqp0T3ZyH1asdjDaZ/+9LX18w2mgtG5ywqNBwmUJXgQ75S977ot/wslbn9jzBxup6PHnw492eD1h/nYduVPVr5j3jldm9ExgDTEv2CYk1ejIwLSKK7aWbM6gveWXEgcvn7zt266BNWWtt1m4PfCTi9H1zzlXnD8sY5wAAAAAAAAAAAACAcRKMBkC+ahX21LD7cDfnIQN1C7mmC8wEoxHRvPh+prB10b1fKhxLcWL2UmPRMoF4tbR4rgTtwQbreDy5+HHdng/YAE37oWWDz8x76IpnCZiW6BNSAWiL3gmNLRjt4BURN/y9+fs+9baIU58dtj1c6NQ9+7fV+fmJd0UAAAAAAAAAAAAAwEgJRgMgX4LRmFW2CEarfUyX12ft9BWKpzgxf5PEWFT0HIzWKnDP8wQbq+vxZHK62/MB689aibpyWwN5doELpILRUmv0RGBaRP/vDfpw6Mj87ZOzEXf8yrBtWVsLxsHHfl163+7J/dsmZ2tczzgHAAAAAAAAAAAAAIyTYDQA8jXpKIhIMNr6qFuwPP25ToPRegrHYgBNi+9nClt7u/eKE7OXCukUjAZkpePv/13BaEBDjcOuKj5fdb7cwrVoILd7l1t7gJVKvkdMBaAtCEbbGmEw2rXPi7j8pvn7jh8dtCkb6XlvTe+b9zOOVJj/NAGgAAAAAAAAAAAAAMBICUYDIF+pMJqmBKOtj9qFXNOFzYLRiOWDE/q694oT85cai3ovcG6xVBMQApur6Xjy7F+KuPpr0vsngtGAphr2Q5XzlmX3Q03WZMAFUuNLIgBtUah5sb10awZXbEUc+p75++77UMTn/2LY9qylBXOYix+XfqZ2Ts45VZ2fn5gzAQAAAAAAAAAAAADjJBgNgHx1FUQkGG2N1CxYni6y77LIWTDaiDUsAixmCl67CmrcR3Fi9iaJe1/0HIy2qLg6yfMEm6vh9/81Xx/xkj+JuO5F8/fvCkYDGuo6XGrp4DTyldm9E4wGTEuNP8k1eiIwLWKcwWgR6WC0iIjjR4drxyYqiojty+bv220ZjGacAwAAAAAAAAAAAABGSjAaAPnqKohoRzDa2qgdTDZV8CUYjYhoXnw/G4zW071XnJi/1Fi0JRgNyEnLANCLHjN//0QwGtBQ43mt4DNy4VkDpqXGs0QA2myw/gX7RhqM9qgnR1zz3Pn7jv9SOkCebmxfOn/7vJ9x1LkX3j0CAAAAAAAAAAAAACMlGA2AfHUVRLQrGG1t1C3kKqcKmwWj0YXegtEU4WcvVWRa9ByM1map5nmCzdV4vrMX4LB98fzdu4LRgKYGDt0w7xmv3O6dwBhgWqqPSgagLVi7jzUYLSLi8C3zt5+6O+LT7xi0KWunahw8cNn87bsn55yrTkhdZuMuAAAAAAAAAAAAAEBNgtEAyFcqjKYpwWjro3bB8nTBV5dFzgqmR6tx8f1MwWtX/dE+nqnspYpM+w5GK9os1RS7wuZqOc5tJYLRJoLRgIYah0tV9VvL7oe6PEvAtFSfkFijJwPTYoBA9R7d8KqI7Uvn7zt+dNi2bJQi/d993s846ryvFAAKAAAAAAAAAAAAAIyUYDQA8pUKo2lKMNoaqVnINV3w1WXx12S3u3MxsCWL3cue7r3ixPylxqItwWhARpoGgBaC0YCOdT2vrezXzHvGK7N7Z00GTEv1CckAtEXBaNtLN2dlDl4Z8SXfPn/fJ94Sceb+YduzVirGwe3L5m/fOTnnVHV+fpLZuAsAAAAAAAAAAAAAUJNgNADy1VUQkWC09VG7YHmq4KvLIue+wrEYQMvAmEcO7+veK07M3iRRZFpkGIzWNBgJWCNN5zt749x2IhhtVzAa0FTDfkjw2ebKbs4qGA2YluqjUgFoC/q0vgPV+3b4yPztkzMRd/zasG3ZFEURcSARjLbbMhhNACgAAAAAAAAAAAAAMFKC0QDIVyqMpqndU92ch9WrW8j1ibdEPPBXe18IRiOWL76/+qu7accsxYn5SxWZFts9X9hSDWig8Ti3F+ywlQhGmwhGAxpqPK9dMhgtu3AtRsuzBFwg0SekwssXvSvs/b1Bz679pojLnjR/37FbB23KeqkYd7Yvnb993h9/qfPzE+8eAQAAAAAAAAAAAICRUm0PQL66CqHj4sQhAAAgAElEQVSaVzTEODUp5Prtr4y4/Ze7Lf4SjLZBigu//LL/cf7HnvL9S15HEX72Ut/3fRc4p4quF/I8weZqON8p9sa57Uvm7xcsDDQ1eOiGec945XbvcmsPsFLJ8ayYv3lRMNXYg9G2tiMOfc/8fZ/7YMQDfz1sezbFgcvmb985uX9bKsz/wg8t1RwAAAAAAAAAAAAAgFURjAZAvmoV9tQgGG2NNCi2L3cj/ui/nV801pZgtBFrWgQ4U/D6mGdGXP93Ltx28WOXD0YbPECCxlL3qFVwWQOC0YAmypbj3PbF83fvnl6qOcAGajyvrei3GvdrsATPG/CIVH+QCEbbvjR9qkuesHRrVi4VjBYRcfzocO1YJ1VjTuqZmvczjkXBfI9cz7tHAAAAAAAAAAAAAGCcBKMBkK86hT11CEZbH02DyXZORHzyrau7PhlZstB9azviuW+KeMZPRjzxpRFP+6GIF7w34tFfsWSzFCdmL/V9X2z3fOEWSzWBDrDBWgajbSWC0SaC0YCmup7XVvVr5j3jleG9sy4Dzkutq1Ph5Zc+PuLKp+3ffvCqiOu+pbt2rcqVXxrxuGfP33f89RET70q7cz68+rL5ux/82P5ttdZtxjgAAAAAAAAAAAAAYJwEowGQr65CqHYEo62N3VPNj/n8n3fYAIVko9U0MKoo9m/bvjjiaf99xDe+NeIZPxFx1ZzC1+YN6+Ac9GpVwWipouuFPE+wsZoGupwf57YTwWi7gtGAhpr2Q5Xz84r9AmHplLU+sCc1ns17T3Te0/9pPBJq9ci2H4nYOtBZs1bq0JH52x/+ZMRn3jlsW9ZCxRxm+9L52+95d8QHv/fCMLo678rNmQAAAAAAAAAAAACAkRKMBkC+yp2OTqTAdW3srjjkbtJRWB8rkGkRYNMACYaXLIrueSnV5vyKXWGDNf3+3wtu2EoEo00EowENdT2vXTY4jXzlOGfNsU3AiqT6gwVr9Ju+K+Kb3h5x+B9E3PiaiG94Y8SX/XAvrVuJG1+dXjccOzpsW9bZ+fC9rYvSn/n4z0d87N9+8etawWjePQIAAAAAAAAAAAAA47Qmf64cgLVUdhRCpfhnfeycXO31u3omGYFioOsowM9e6vu+2O75wm2C1zxPsLEaB7pUBKPtnDh3zmKo8RAYv6br7qp+yzp+feU4Z/W8AXuS4egV8+LrXnjun3V00aMjnvTyiDt/bf++T7w54swDERddNXy71tVWxY/uj90a8dTvP/fvkxrBaMY4AAAAAAAAAAAAAGCk2lTbA8AwJjvdnEcw2vrYfXi11xeMNl6NA2MGon/KX7IouudgtEIwGtBEw/HkfLDDRVfP33/mvogHb1uuScBmaTqvrZqfV57PvIcO5bpeBFYg1R9seGDw4Vvmb999OOLONw7alPGrGHO2Di7ef98fn/vfyU69+ZcxDgAAAAAAAAAAAAAYKcFoAOSr7CgYrWlQBPkSjEZrTYsAByp4FYyWv9T3favgsgbanF+xK2yuxt//e+PcY58VyTHv3j9cpkXApul8XlsVnGbeM1453jvrMuC8RB/V9zuA3D3hhRGXXjd/3/Gjw7Zlbe2ty4oD9T6+e6rmeY1xAAAAAAAAAAAAAMA4bfhv8gOQta5CqAQPrQ/BaLTWsPi+GCgYLctQAC6QDEbb7ve6rYquPU+wuVqOcxc/NuLRT5//mdP3LdckYMM0XXdXBZ9Vnc+8hw55bwScl+wPhnpPlKmt7YibXjd/373vjXjwY8O2Z8yqwl27DkYTJgsAAAAAAAAAAAAAjJRgNADyVe50eC4FQGth5+SKG6BYerRy7QMU4I9A6h71vZQSjAY00Hg8mQp22L4scU6BsEADXc9rzZPXV5ZrsxzbBKxGqj/Y8GC0iIjDR9L7jv/icO1YW3vP2NbBeh+f1AxG8z4bAAAAAAAAAAAAABgpwWgA5KvLMAZF1eth9+HVXr+cZFrETfeGKnj1PGUvNRYV2/1et8359U+wwZp+/0+Nc1sHEqfsMKQYWH+N19wV/VbV+cx76JJ3RsB5qfGl8OPUuOrLIx7ztfP3HTuqL62tYg6TWp/N2j1d83LuCwAAAAAAAAAAAAAwTn6TH4B8TboMY1AAtBZWHYwWoZhstDINTvA85S91j3oPRrNUA5poOM4VU8FoRaLwvtO5OLD2Op/XVvVrmc7vqSHHe5djm4DVSI1nQwXoZ+7wkfnbT94Zcc8fDNuWdXN+jVYcrPf53VM1T2yMAwAAAAAAAAAAAADGSbU9APkqdzs8l/ChtZBFMFqHzyUDaloEOFTBq74pe6nv+b6Dy1qdX7ErbKzGc93pYLRE0GMpGA1oomE/VFbMWyr7NfOe8crw3nlnBJyXGp8KwWgREXHjd0ZsJYK7jt06aFNGq2oOtJUIrp41qRmMZowDAAAAAAAAAAAAAEZKMBoA+eoyjEEB0HrYObnqFghGG6uqosNVybVdfFEyGC0RJNQZwWhAE0sEgBaJwntzHqCJztfc1vAMyDsj4BGpebUfp0ZExMWPjXjiS+fvu+vfR5x9aNj2rJW9NVpqfTZrVzAaAAAAAAAAAAAAALDe/CY/APmadBiMpqh6/MpJxOT0qlshJGS0GgbGFEX1Zzqhb8peqoC072C0osVSTdAebK6m3//T49xWKhity7k4sPYah25U9FtV5zPvGa8s712ObQJWIvkOYKj3RCNw6Mj87TsnIu5607BtGaWKMWfrYL3T7NZ9T26MAwAAAAAAAAAAAADGSTAaAPnqMoBKmNX47Z5adQvO8SzRpSxDAbhA6nu+TXBZE63O73mCjdU4kGgq2KFIBKN1GlIMrL+Bg9HMe+hS43EUWF+p8UUw2iOuf3HEJdfO33fs6LBtWSt7z1hqfTar7rtyYxwAAAAAAAAAAAAAMFKC0QDIV9lhGIMCoPHbObnqFuzxLI1T0+CEgQpeBe3lLxmMtt3vdQWjAY0sMc6l+rMu5+LA+ut8zV3Vr5n3jFeO9y7HNgGrkegP+g5HH5OtgxE3vnb+vnveHfHQ7UO2Zv1sHaz3uYlgNAAAAAAAAAAAAABgvflNfgDy1WVgkAKg8dt9eNUtOGciyGqUykyD0RTg5y81fvReFN3i/I2fc2BtNJ3rFlPj3NaB+Z/ZOdG+PcDmadoPVc1bqs5n3kOXvDMCzkv2B0O9JxqJw7ek9x3/xcGaMU4Vc5jU+mzWbs1gNO8eAQAAAAAAAAAAAICREowGQL4mO92dS5Hr+JUdPg/L6DKwjwFlXASof8pb6nu+2O73uq2C1zJ+zoHuTc5G3POeiOOvjzh5Z8ODp4IdikTh/bFfiHjoeOvmARum6zltZTCaddl4ZThntSYDzksFbxaC0S5w9VdFXP3V8/cdPyrAtI3zz1hqfTatLCN2T9c7rzEOAAAAAAAAAAAAABgpwWgA5KvTICwFQOOXSUGdAvyRavj8tC14ffI/bH6MZypvqQJSwWjAKp39QsTvf+O5f97/PREP/GXDE0wHoy3ozz7YYlwDNlTTNXfVvEUw2trKMiwnxzYBq5Eaf/w4dZ9Dt8zf/tCxiHvfO2hTRqVqHNw6WOMcOxGTU3UvWPNzAAAAAAAAAAAAAAB58Zv8AOSry0LnVLAN45HLPbzvQ6tuATk7dKT5MUId8pa6P62Cy5pocf4sQyaAXvzF/x7x2fe3P346AHTrQPpzn/mPETsn218H2Bxdr9cqz5fJ+pD1kMv7BmD1UuvqtgH66+ym10QUibXE8aPDtmUt7D1jqf+m0yZnI3ZrBqMZ4wAAAAAAAAAAAACAkRKMBkA+dk5EPHTsiwVok53uzq0AaPxyCfx5z0vPFZ8xLo2fn5YFr9c+N+Lm/67ZMfqnvCWD0bb7vW6r4LVM+kmgf3/1r5Y8wdQ4V1V4f/bBJa8FbIam85Cqz1fsnwgXHq8c56w5tglYjVR/4Mep+1xyTcQTv23+vjt+XcByUsWYs3Wwxil26gejCZMFAAAAAAAAAAAAAEbKb/IDsHrlJOKPfyDiTVdH/OaTI/7DzRH3/1k6jKYVBUDjl1Gh8mc/sOoW0NiAz8/1L272+U77OrqXGj96XkoJRgN61SAYbXKm36YA66Fp2G9VcHHV+cyh6ZKwauC8VH9QtAzQX3eHjszfvvNgxF1vHrYto7f3jFWtzyLO/UGZusFoufyxEQAAAAAAAAAAAACAhgSjAbB6f/WvIm776YjJ2XNfP3Qs4l0viNg90d01FLmOX0738GP/dtUtoLGGRYBLFbw2PFaoQ95S96fY7ve6rYLRAGqaHueq+rPybL9tAdZD1+u1yvNltD6koQwDWnJ63wCsWKqPEow21/XfFnHxY+fvO37roE0Zj4pxcKtOMNrZiMnpmtczxgEAAAAAAAAAAAAA46TaHoDVO/76/dtOfzbi0+/o7hqKXNdARsXTWxevugU0VTZ9foYMRtM/ZS11f/oORmuzVGv8nAOba2qsqiq83z3Tb1OANdF0Tls1b6k4n3BhOmUeDZyX6A+El8+3fVHEja+Zv+/ud0acuGvY9ozZ+fDq4mD1Z8udiN1T9c7rvSMAAAAAAAAAAAAAMFJ+kx+A1XvgL+Zvf/hTHV5EAdDo5VTEtS0YjQ4Jdchb6v70XRTd6vwCHYCaiqlgtKIiGK08229bgPXQ9XqtKvDVHHq8cgzzzel9A7Bayf5gmQD9NXf4SGJHGXH7nD+IsumqxsGq4OqIiMnZ+sFo3hUBAAAAAAAAAAAAACMlGA2AzaDIdQ1kVMS1JRhtfJo+P0sUvBYNjxXqkLdkMNp2v9dtE4yWY8gEkL+q/mxyZph2AOPWeM1dNW+pOJ81/ojlOGf1PAHnpfoowWhJVz8j4qqnz9937Kh3FbXtPWNVwdUREeVO/WA0cyYAAAAAAAAAAAAAYKQEowGwGQQPjV9ORVzbgtFGJ+cizJyebfZL3Z++g9FaLdUyfs6BjMyEOmxVFN5PzvbXFGCNdDynrZojW+PTpZzXi8CwUv1Bm/DyTVEUEYePzN/34EcjPvfBYdszdlsHqz8z2YmYnK53Pu8dAQAAAAAAAAAAAICR8pv8AGwGBUBrIKNC5S3BaOPT8PkpiurPpA9u9nGhDnlL3Z++i6JbnT+jfhLI1+wYVwhGAzrQdM1dFUQlGG19ZRlC5p0RcF6qP1jmPdEGuOm16QD5Y7cO2pT8VYyDVeuziIjybMTuqW6uBwAAAAAAAAAAAACQKcFoAGwGwWhrIKMirm3BaOMz5PMjGG2tJIPREgW/XWkTjJZlyASQn6bBaGf6awqwPhqvuZcNRrPGp0Pm0cB5qf5gqQD9DXDpdRHXvWj+vjt+tUGI1ybbe8a2DlZ/dLJT/7+pORMAAAAAAAAAAAAAMFKC0QDYEAqARi+nIq4twWjrb8iC14yebfZL9T1tgssaaXN+gQ5AHTNj3FZF0OPkbH9NAdZH5+u1quA04cLjleOc1ZoMOC8VjObHqZUO3zJ/+9kHIj7x1kGbkreKcXCrIrg64twarXbYXI7jLgAAAAAAAAAAAABAtRq/XQ0AayCnUC1ayqiIa+vgqltAU2XT52eJYLSi4bEToQ5ZS4VuFBVBQstqVXSdUT8J5Gt2nCoqXg1NzvTXFmCNNF1zVwWfVZxPMBpd8s4IOC/ZHwwZoD9ST/y7EQcfHXH28/v3HTsaceOrh2/TmJxfp1WtzyIiyp2Iyel65zXGAQCstaIonhERT4mIJ+5t+mREfLQsyw+vrlUAAAAAAAAAANANwWgAbAYFQOOX0z1UhD9CGQdGeZ4yl+h7cgxGaxwACGym2VCHipCHydneWgKskc7Xa1XBaBmtD2koxzlrjm0CViPVHwhGq7R9ScRN3xVx28/u33f32yNOfirisuuHb1duqt7d1PmDHOVOxO6pmtczZwIAaKMoisMR8bUR8ay9/31GRDxq6iN3lGV50wqaFkVRHIyI/yEivjcinpz4zMci4uci4ifLsvSSHwAAAAAAAACAUWpRbQ8AY6QAaPRyCvwRZDVCDZ+fYpmC16bH6p+yNkl8v7cJLmui1fkz6ieBjM2OUxXjkGA0oI6moRtV67uq81mTjVdOa/vzhMYA56X6qL7fAayLQ0fmby8nEbe/Ydi2jM7eOq2o8TfNJmfqB6N5VwQAUFtRFM8viuLtRVF8LiI+HhG/GhE/HBHfGBeGoq1MURRPiYgPRMS/iEQo2p6bI+LHI+L9RVHcPETbAAAAAAAAAACga36TH4DNoMh1DWR0DxXhj8+gxfcNg9E8T3lL3Z9iu+cLC0Zjxs7JiLvfGfHAR/IMFGE4y97/2fDPqnny5Mxy1wM2Q7nT8fkEozEgcyvgEanxZ5kA/Q3y2L8VceXT5u87fqv+NiIq393Ued/0X360fjCan4sAADTx1RHxLRHxmFU3ZJ6iKJ4QEb8XEc+Y2fWxiHhrRPxmnAt0m/bMiHhHURTX9t9CAAAAAAAAAADolmA0ADaDAqDxy6lwThH+Bhiw4NXzlLnU+NHzUqqwVGPK3e+K+I1rI971gojf+opz/7tzYtWtYlWWntc2DEYrzy55PWAj1A3neETV+q5ivzX+iGW0tn+E5wnYk3r/OBsuzHxFEXHoyPx9D3wk4r4PDdueUdl7xrYvqf7oZ98XcerTNc9rjAMA6MDp2B84NqiiKLYi4i0RcePU5k9HxIvKsnxKWZYvL8vyZWVZ3hwRL4mIu6c+dygi3lwUFjYAAAAAAAAAAIyLansANoOi6TWQUfH0RJDV+Az4/DT9nXL9U95SwXXFdr/XbROMllOAJN3ZPRXxnpddGIT2mXdF/NmPrK5NrNbSgZoNg9EmZ5a8HrARug5GqwxttCajQ9ZkwCNWFI6+Tg69Lv1O49itgzYlTxVzoK0DEdf/nerT1J17eVcEANDU2Yj404j4uYj4voh4ZkQ8KiK+d5WNiojXRsTXTX19X0Q8pyzLd8x+sCzL342I50TE/VObnxMRr+61hQAAAAAAAAAA0DG/yQ/AhlDkOno5FSorwh+hpkWAy/zB7KbBaJ6nrKX6nr6D0Vot1RS7rqVP/oeInYf2b7/tp4dvC3lYdtyYDfCsOt/k7HLXAzZD42C0KoLR1leOc9Yc2wSsRCpEqmkI/ia77IkRj3/B/H13/ErE7ulh2zMW08/Y1/50xBVP7ua8Ob1TBwDI39GIuLIsy68py/K/Kcvy35Vl+SdlWa70JXlRFNsR8WMzm3+oLMvbU8eUZXk8In5oZvM/L4o2f5kJAAAAAAAAAABWwy+7ALAZFACtgYwKlRXhj0+qsDVlyIJXz1PeUven77qBVufPqJ+kO7e/Yf52YVWba+lxY3aMq5gnT84seT1gI0waBqNVzc+r1vDm0HTJOyPgEanxyY9TGzl8ZP72M/dFfPJtw7ZljC6/IeJb/7yjk3lXBABQV1mW95dl2XX6fxe+ISIOTX39yYj4pRrHvX7vs+c9OSKe02G7AAAAAAAAAACgV36TH4DNoGh6/HIqVPY8jdCARYBNQ9VyerbZLxmMtt3vddsEozUNAGQcJsYcZi07bsyMU1XjkBA+oI7djmtGK+c15tCjleWcNcc2ASuRmhsPGaC/Dp708oiDV87fd/zosG3JTXIcnHnGDlwa8ew6WRdV1zNnAgBYA6+Y+foXy7L6Fxb2PjM7qXxlZ60CAAAAAAAAAICeCUYDYLWGKohVALQGMipUFoy2AQYsePU85S1ZFJ1hMFpO/STd0Ucwa9lnYjbUQTAa0IXGwWhLBp8JDh2xDOes3hkBj6gZWsViBy6LuOE75u/71G9HPPyZYdszVode28FJjHEAAGvgxTNfv7vBsbOffclSLQEAAAAAAAAAgAEJRgNgtQYrPlUANHo5FSoLqRmhIYvvGxbLep7ylro/rYLLmhCMxp5yZ9UtIDdLhwHNBqNVnO/kXUteD9gIjYPRKlSt/8yh6VJO7xuAFUusq3t/B7CGDt8yf3u5G3HHLw/alLw0fHfzpJcveTnvigAAxqwoiosj4uaZzR9ocIr3zXz9lKIoLlquVQAAAAAAAAAAMAy/yQ/Aig1UfKrIdQ1kVMSlCH98GhcBNgw3W+ZY/VPeksFo2/1et03RtWLX9WTMYdbSz8TsOFUxDn3855a8HrARmgajVc1bKufI5tDjleOcNcc2ASuRHH+WeU+0oR73nIgrZvMb9hw7OmxbxqBIPGPblyx5YnMmAICR+9KImP6h5D1lWX6h7sF7n/3s1KbtiHhqR20DAAAAAAAAAIBeCUYDYLWGCgQSPDR+Od1DITUjlHGhu+cpb6m+p01wWROtzp/xc0575c6qW0Bulh03Zgvuty+tPubMA8tdE1h/k4bBaNUnXLzbHJou5fS+AVixxLo6FVpFWlFEHD4yf9/n/yzi/j8dtj3ZaPjuZuviJS9njAMAGLnZtOE7W5xj9pintGwLAAAAAAAAAAAMSjAaAKslGI3aMgr8UYQ/Qg2fn2UKXpse63nKW+r+FNvzt3fGUo09+gj2WXZeOzNOHf771YecumfJawJrrSwjdpsGo1XMz8uq/cbH0aq6tyuRY5uAlUj2UdborRx6XXrfsaPDtWMUEu8Tty9Z8rzGOACAkXv0zNdtXtbPHnNVy7YAAAAAAAAAAMCgDqy6AQBsuqECywSjjV5OxdOK8DfAEsFoTY8V3Ji5xP3pOxit7fnLcrlgP/IzWTDmuN+badl5yOwzc8WhiGufF3HPe9LHTJoGHgEbZXKmxUFV67uKObI5NF3yPAGPSIxP1l3tXH5jxOO/OeIz79q/7/Y3RHzNv4zYOjh8u1ap6TvuZYPRjHEAAGN3xczXD7c4x+wxj2rZlgsURXFtRFzT8LAnd3FtAAAAAAAAAAA2g2A0AFZrqMIcBUBrIKN7KBhtfHIK1pvlecpb8v5s9XvdoufzMx6L+ohy0n9IH/lZetyYE+rwvN+MeNOj04fsCkYDFuijj6haw5tDj1iGazPvjICIindHgtFaO3RkfjDa6XsjPvU7EU966fBtylLiGdu6eLnTGuMAAMZuNhitzYu42WC02XO29f0R8aMdnQsAAAAAAAAAAPZRbQ/AaglGo66cgq0U4Y9Q0+dnmYLXhsd6nvKWuj9bPYdRtQ5Gy6ivpBsLg9H0Hxtp0kMw2kVXRbzyM+lDBKMBi7TpI6rWd4LR1liO89Uc2wQMb0FfILy8vRu+PeJAInfh2K2DNiUPDcec7UuGvR4AALlrM8EzKQQAAAAAAAAAYJT8Jj8AKzZUYJlgtPHL6B4qwh+fnIL19sno2Wa/ZChH30upluF8WT/rtCIYjX2WHDeKRP9yybULLnl6uWsC62334e7PWRmMZg5NhzxPQERFX7BMgP6GO3B5xA2vmr/vU2+LOPXZYduTq9Q6bdlgNGMcAMDYPTTz9aUtzjF7zOw5AQAAAAAAAAAgSwdW3QAANtzuqWGuowBo/HIK+xFEM0INn59UMWIfx3qe8pa6P8V2v9ctijhXeN2078uor6QbgtGYtfR9XzBObV8WsXty//ah5uzAOLXqI6rmLBX7jYHjldPa/hE5tgkY3qK+QDDaUg4diTh26/7tk7MRd/xKxJf+48GbNBrLBqMZ4wAAxi7nYLSfiYg3NjzmyRHx1o6uDwAAAAAAAADAmhOMBsDqTM5GvOeVw1xLMNoayOgeKsJnoYbFshPPU9ZS40ffwWgREcVWi/5GwevaKXcW7NN/bKReg9EuEYwGNDfpoY+oWsMbA+mSd0ZAxOLgxmJruHaso2ufF3H5TREnbt+/7/jRzQpGSz5niXXa1sVLXs8YBwAwcg/MfH1Ni3NcO/P151u25QJlWd4TEfc0OaZY5o+TAQAAAAAAAACwcfwmPwCrc88fRHzuA8NcS9H0+C0qThya52mEmj4/Q/5StgLFrKW+34coim5zjZz6SrqxcMzRf2ykZechiwqPti+Zv10wGrBIqz6ias5SFYxmDByvHOernicgYnFfoHh/KcVWxKHvmb/vvg9FfP4vhm3PmKTWaHWZMwEAjN1tM1/f2OIcs8fMnhMAAAAAAAAAALIkGA2A1fnI/zXctRQArYGMiqcFo41P47CoZQpeGx7recpbavwYIhit1XIto76SbizqIyb6j4209Lx2wTi1dfH87ZPTS14TWGuTnebHVM3Pq/o6c2i65HkCIhaPPcX2cO1YV6lgtIiI40eHa8fKNXxvs2wwmvdEAABj9zcRMf3i4tqiKB5V9+CiKK6MiMdNbdoNwWgAAAAAAAAAAIyEYDQAVufu3x/wYoLRRi+ncDtF0yOUcRGg5ylzqWC0AYqitw60OCjjZ512FoXN6D8209L3fUEwWqrofvfUktcE1lrZIhit+qQVu42B45XhfFXYLBBREYzmx6lLe9STI6557vx9x3+pXdDqWkms05YNRsvpnToAAI2VZXk6Ij4+s/nZDU7xnJmvb9s7JwAAAAAAAAAAZM9v8gOwGRQArYEVFE+nih4VTY9Qw+enWBAa0/Wx+qe8pUI3hiiKLloEo5UZBk2wnEXBL0JhNtOy933ROCUYDWijVTBaVfBZxRzZHHq8cpyvmlMBEbHwD2sIRuvG4Vvmbz91d8Sn3zFoU1an4Ti4dfGS1zNnAgBYA7878/XzGxw7+9nfWaolAAAAAAAAAAAwIL/JD8DqtAl8aUvR9Pit4h6mCs8UTbNQ02A0z1PWkn3PAEuprTbjZIZBEyxHMBqzlr7vgtGAjk3aBKNVqAxGMwbSIc8TELG4LxCM1o0bXhWxfen8fcePDtuW3KQCrFNrtLpyDCQFAKCpN898/bqiKLarDtr7zHdXnAsAAAAAAAAAALLlN/kBWJ2tg+2PveJwwwMEo43fCoq4BKOtj8ZFgA3DzZbhecrXoudmiKLoVgGiCl7XjmA0ZvUZjJaa+0xOL3lNYK2ViWC07csirn5G6qCKkwpGW18Zzlc9T0DE4lDO6swB6jh4ZcSXfPv8fZ94S8SZ+4dtzyo0fUe5bDCan4sAAKyDP4yI4/Q6OiYAACAASURBVFNfPyn2B57N890R8cSprz8eEf+pw3YBAAAAAAAAAECvBKMBsDqtAl8i4ut/NeJb3t/smEWFbYzDKu7htmC09TFk8X3DUDX9U74WFkVnGozWOASQ7AlGY9ay40axYJxKFd3vnlrumsB6mySC0bYOLO5zFqnq64yBdMnzBERUjD1+nNqZw0fmb5+cibjj14ZtS1YSc6ZUeHVd3jsCAGSnKIpy5p/nL/p8WZa7EfGjM5t/siiKmxZc46aI+L9nNv9IWZogAgAAAAAAAAAwHn6TH4DV2TrY7rjLbwzBQ5toBWE/qcIzRdMj1PD5aRvg0OZYz1PGVlwUvdUyQJT1UibCZiL0H5tq6fsuGA3oWGqsWhTyWhnmWrXfGn+8MgzyNacCIlYfjr4prv2miMu+ZP6+Y7cO2pTVaDgOptZofV0PAGDDFUXxpKIobpr9JyKeMPPRA/M+t/fP43po2hsi4oNTXz8mIt5XFMW3zPn/8KKIeH9EXD21+X0RsclJxAAAAAAAAAAAjJBKewBWp20wWrEdjYPRFE2PX2XhfA+2BaOtjcbPzxLBaE15nvK1sCh6u//rLwoTSVLwunYW9RGCXzeTYDQgN5NEMNrWgUj3ORVzlqoxzhyaLnmegIjFfYFgtO5sbUccel3EX/6f+/d97oMRD/x1xFVPG75dK5eYMy0bjOa9AQBAU++NiBtrfO6JEXE8se9oRNzSVYMiIsqynBRF8YqI+EBE3LC3+bqIeHtRFLdFxF/GuUnlV0TEzTOH3x4RryzLVfzCBQAAAAAAAAAAtOc3+QFYnVaBL3EujKZoGFr0hb9pdy0ysoIiri3BaLTRsH9SoJivhcFoAyyltgSjERXBaMajjbTsfV80j07NfQSjAYuUiWC0tmv+iOo58sQYOFo51uCaUwERsfDd4xDh6Jvk0JH0vuNHh2vHSjQcB5cORstw3AUAoJWyLD8dES+MiA/P7HpKRLw8Il4W+0PR/iQiXliW5Wf6byEAAAAAAAAAAHRLMBoAq9Mq8CX2CtEaBg/9zb9udy3ysYoirm3BaOuj6fPTsI9ZhucpYysORmsTJqLgdf0sCobRf2ympQM1F/RfBy6bv333xJLXBNbawmC01Ly6Ys5S2dcJFx6vDOer5lRAxOrD0TfJlU+NeNyz5+87/vrNDEBNBVinwqtrM2cCAFgnZVl+NCK+LiL+l4g4tuCjH9/7zN8uy/JjQ7QNAAAAAAAAAAC61jKRBgA6UBxsedx2ulBokcnZiK2W1yQDKyjiShWeKZoeoSGL7xv2T56nfK26KLpNMFqOQRMsRzAas5a974vm0QeumL/97IPLXRNYb5NEMNrWgXZr93MnXbzbGEiXPE9AREUop2C0zh06EvHZ9+/f/vAnIz7zrojrXjh8m3K0fclyxy8drA0AsFnKsrxpgGss9Re6yrI8GxE/HhE/XhTFMyPiqRFx/d7uT0XER8uy/NByrQQAAAAAAAAAgNUTjAbA6rQNKSu2o3HwUIRgtLErVxD2s3XR/O2Kpsen6fPTOsChzbEKFLO16qLoLcFoRCy8p8ajzbT0fV8UjPao+dsFowGLlIlgtEUhr1Xz88r9xsDRWsXavornCYhY3BcMEY6+aW58dcSHfjBicnr/vmO3rm8wWtNxcNlgNO+JAADW2l4AmhA0AAAAAAAAAADWkt/kB2B1WgW+xF4hWovQIoWuI7eC8Kjti+dv9yyNUMZFgBPPU74W9DtDFEUvChNJyTFoguUsCugzHv3/7N15nB11ne//d50+3emEbE0WCGFJmsVABJFlDCEoRFCEi6AyUURJ1JlRYO7AOIA63gDKHRnc8OfAT9QLphkUETEgLsAV2VFAFgmGRbISMHtCtt5yTt0/Omm6T9e3Tu3beT0fjzyg9m84RdW3vqc+79OYwn7ubgGezYZgtJ0EowFwUTUEo5XKCvTs3rdT98WuAbaAT/SpAEju9xarKbl2NIqWsdK+ZzkvW7VQ6nkz2fakztBnssrhxqDoMwEAAAAAAAAAAAAAAAAAAADIKYLRAADpsZoDbtfkHuhgQhFQvqUR9lMiGK1xBQ1wCLAt51N2uRZFJ/AoFShAlGC04nH5TLl+NKbQn3uAYLRegtEAuDBdl1xDXg33N7sqbX1VqnQHOyZyIIP9Vc4nAJJSD0dvRO3znOdXOqWVtyfalOT4vA9alnmM2tPh+E4EAAAAAAAAAAAAAAAAAAAAQD7xJj8AID2lEMFoQUKLKHTNuRSKp5sIRisOv+dPiGA038GNFChmlmvxaAKPUq5hIgZphEgiPRQ4N6bQn7vLfapsCEbbSTAaABf2Tuf5Vlm++tWr7pZ+MVG6+2Dp9V/WOSbPZLlUrUgbnki7FUNxPgGQ0h8DaER7nyINn+S8bFlHsm1JnUufqak1xH4ZJwIAAAAAAAAAAAAAAAAAAACQT7zJDwBITylA4IsUIhiN8JBcS+PzKxGMVhhZDovifMout+uOldFgNApei6XevY/rR2MK+7m7BXg2m4LRtoU7JoBiMwWjuT7z1/RZtrwiPfJhqXuDx2PyfJ9Lf/la2i1wRp8KgOR+LUhiDKARlZqkKZ90XrbuUWnrq8m2JxEBxm3CBKPRZwIAAAAAAAAAAAAAAAAAAACQU7zJDwBIj9UccLsm90AHEwpdcy6FsJ8mgtGKw+f5E+Qa89bG/lbnfMqwlIPRAgWIEoxWKFVD0MxuXD8aU+jP3eU+VTYEo1V7pe6NIY8LoLBM9yurbO5X1wYXr7jNHLDmuD33wFxatTDtFjjjfAIgpR+O3qja55qXLbs5uXakzW0s0vTjHZ4QjAYAAAAAAAAAAAAAAAAAAAAgn3iTHwCQnkCBL+oLRvMbPCSJIqCccytOjEup1Xk+RdM5lOGwqDTObXjj+tkk8ChlBbhP1oaMIN/s3jrLuR81pDiD0ZoNwWiSdMd46fVfhzw2gEIyBZqVyrue3522qelnLbo8mmMi2zY9m3YLnNGnAiDJPRzdcD9DeGMOk/Y81nnZ0o7ijZsFGbdpMoxRx3U8AAAAAAAAAAAAAAAAAAAAAMgAgtEAAOkJEvgiSVZJgYLRKHTNuRSKuJpHOs+vdCfbDqQgSPhiwG25NmWXW/GtlcCjVNAAURRHtU7oC9ePxhQ2GMAKGIwmW3rsY1LX+nDHB1A8pvuVVTY/94cNNqv2hNseGIg+FQAp/TGARtY+13n+jpXS2oeSbUtqXJ7TQgWjFSxYDgAAAAAAAAAAAAAAAAAAAEDD4E1+AECKAgZdWU3ugQ7Gw1HommtpFHGVTcFoncm2A+HZCQbr+b0+cW3KsJSLogMFiKYQIon4VHvdl3P9aEyhP3eX+1TZLRhN0s5tDRRMAMAzU8iZVTYHvYYORqtzjwT8qNKnAqA6/Wy+To3VAR+TSi3Oy5YuSLQp8QswblMKEYzGOBEAAAAAAAAAAAAAAAAAAACAnOJNfgBAeoKGOlhNcg10MB4vhWAtRCiFIi5jMFpXsu1ABPyePwGuMUFxbcout8+GYDQkoV5oDMFojSnWYLQ96m/etSbk8QEUjul+VSqb+zNVgtGQIfSpAEjpjwE0smHjpMlnOC977Q6pd1uy7UmFy3Na07AQ+2WcCAAAAAAAAAAAAAAAAAAAAEA+8SY/ACA9QcOAAgejUeiaa3YKRVzNo5znV7vTaQ+C8/t5WWGC0Xxuy7Upu1zvUwk8SpUCBKNxbSqWeqEvXD8aU9jP3e0e19Raf/tqT7jjAygeU8iZ5RKMVi/8s+4xCUZDhOhTAZDqBKM1JdeORtU+z3n+zu194WiNzMtzmgk/yAAAAAAAAAAAAAAAAAAAAAAgpwhGAwCkJ2jhqdUULLSIIqCcS+HzK480L6t0JdcORCDDYVEU4WeXa1F0Ao9SpiARVxk+1+FfvdAY+jaNKfR9w6UfbZWkUov75tXukMcHUDim+1WpbA56NYWpeT4mwWiIEM9kACS5jj0mMQbQ6Ca9X2qd6Lxs6YJEmxKvAOM2YYLRGCcCAAAAAAAAAAAAAAAAAAAAkFO8yQ8ASE+YYDS3QIeoj4dssFMo4iqPMi+rEoxWbAGuMUG35dqUYSkXRZuCRFxR8Foo1TqhL1w/GlPoQLw696mm4e7LKwSjAahhCjmzyuag13rhn3WPSTAaIkSfCoBU51rA16mxKzVLB5zrvGztg9K25Um2JnluPwRTChGMlsaYOgAAAAAAAAAAAAAAAAAAAABEgDf5AQDpSTwYLWyIBNKVwufXPNK8rEIwWr4kWAToVsjohGtTdrl+Ngk8SpmCRNxQ8Fos9UJjCPFoTGE/93r3qXrBaNWecMcHUDym+5VVNge9EoyGLKFPBUByHwNIIhwdUvs887JlNyfWjFgFGbdpGhbmgCG2BQAAAAAAAAAAAAAAAAAAAID08CY/ACA9QcOArJL/4CGJQte8SyPsp+wWjNaZXDsQnu/zJ8A1JiiuTdmVdlF0kGA0Cl6LpV7oC9ePxhT6c68XjNbqvrzaHfL4AArHFHJWKpv7M1WC0ZAh9KkASC5jAFawsWj413aE1Hak87JlHQUPg3c5x+o9o7kq8n8zAAAAAAAAAAAAAAAAAAAAAEVGMBoAID1BC0+tkoKFFgUMYkNGpPD5lUeZl1W6kmsHIpBkEaDP6xNF+BmWcjBaiWC0hkcwGpzEHow23H15hWA0ADVMIWdW2dyfMYWpeWUTjIYI0acCIMk4BpDE8z/eMnWe8/xtS6V1jybalHgEGLcphQhGK3SYHAAAAAAAAAAAAAAAAAAAAIAi421+AEB6ghSeWk27/hkgGI1C13xLo4ireaR5WaUzuXYgAj7PnyDXmLc29re6TWhjZrl9NkkURlsBgtEoeC2WeqEx9G0aU9j7Rr17XL1gtGpPuOMDKB7T/apUNvdnTGFqXtULDwX8oE8FQJKqhmsBwWjJmvJxc/9hWUeybUmUy3NaoOD83Rh3BAAAAAAAAAAAAAAAAAAAAJBPvM0PAEhPkFCH3cFoQZiK25ATKYT9lEeZl1W6kmsHUhAmGM0nivCzy/U+lcCjVKDCV4LRCqVe6AvXj8YU+nOvF4zW6r682h3y+AAKxxRyZrkEo9UL/6x7TILRcifLAb70qQBIMgdI8VVqolonSJNPd1624mfSzh3JtidyAe6HYe6hWb7/AgAAAAAAAAAAAAAAAAAAAIAL3uYHAKQnSOFpmGA0Y3EbciFIkF5YTcNlDA8hGC1fkiwCtHyGqlGEn2Eu1x0rgUcpU5CIKwpeC6VeaAzXj8YUezDacPflFYLRANQw3a+ssjnolWC0xpPGM71X9KkASObrVKjxaAQyda7z/J1bpdcWJtuWpPgdT/SMcSIAAAAAAAAAAAAAAAAAAAAA+UQwGgAgPUkHo1HomnMpFHGVmqSmVudllc5k24KQ/J4/cRUjOslwQECjcwtvyGwwGgqlXuhLlgNGEJ+wfdp6Bfemvs9u1Z5wxwdQPFVDyFmpbO7PmLbxyiYYLX8y3G9hvAiA5BKMxlepidvndGnYOOdlyxYk2pTIBfrxhjDj4gSjAQAAAAAAAAAAAAAAAAAAAMgn3uYHAKQoQFFsmEI0wkPyLa3Pr2m48/xKV7LtQEhJFgH6DFWjCD+7XK87CTxKlQIEowUqsEVm1QuN4frRoML2ieoFoxn6PrtVukMeH0Dh2Ib7lVU292cGbhPkWa9eeCiyJ8tjMvSpAEjmawHBaMlrapEO+LjzstX3S9tfS7Y9iXB7Tgsx1sM4EQAAAAAAAAAAAAAAAAAAAICc4m1+AEB6qgEKT62m4Mej0DXnUiriamp1nv+HuRTj54nfIkDLZ7jZ4I39rR7kWohkuIU3JFEYbQUIRkvrWol42HXuM/RtGlPYz73ePa5eMFqVYDQANUzBaKWyuT8zMPyz2uP/mDyL5Q/BaAAyz3Sd4qvUVLTPMyywpeX/nWRL0hcq3IxxIgAAAAAAAAAAAAAAAAAAAAD5xNv8AID0BCk8DRWMluEiXNSX1udnCkar7JCe+bdk24KC4tqUXSkHo5UCBKOFKpZF5lQNQTO7EeLRmEIHatYLRjP0ffqPHyDACECxme5Xlksw2sAwtUpXgGMSjJY/GX7uoU8FQDKPPZZCjEcjuLZ3SmPe7rxsaUeOxz8SbjffiQAAAAAAAAAAAAAAAAAAAADIKYLRAAApClCUEyoYjULXfEu4aGxke98/S8PM66z4KcVlueH3/KkTGuO6qc9tuTZll+tnk8CjlClIxFVeC4PhqF7oC9ePxvPaL6SXrw25k3rBaMPdl1e6Qx4fQOHYLsFopqDXsMFoNsFouZPlZ2f6VAAkl+sUX6WmwrKk9rnOy7a+Im14Itn2xM11PDHMWA/jRAAAAAAAAAAAAAAAAAAAAADyibf5AQDpCVJ4GioYLcNFuKjPTriIa7+z+/7pds51r5O61ibTHoTk8/zxG242iM8uNkX42eV237ASeJQadUiAjSh4LZTNz7kv5/rRWDY+Kz06J/x+6t3jynWC0aoEowGoUTUEo5XK5qDXathgtCrP+HmT5c+LPhUAyXwtSOL5H86mnGsem126INGmRCfAuE3rxBCHY5wIAAAAAAAAAAAAAAAAAAAAQD4ZKtNQNJZlNUs6XtL+kiZJ2ibpDUnP2ra9POJjTZV0pKR9JI2U9DdJKyQ9btt2b5THApBziQejUeiab0kVUVvS/nOkI67aNVnnnMtycTfekmQRoN+CWc6h7HINRgsTnufR3rP9b0PBa7EsvsZ9OX2bxrLqzog+8zrXr2ET3JdXeyJoA4BCsQ3BaFZZsgz9KTtkMJokVXulpmHBtkUKMvzcQ58KgGQeAyAYLT3DJ0mT3i+98Zuhy1b8VDr6O1JTa/LtioXLc1r7POn5+QH3yzgRAAAAGptt26pWq7L5DhVAwizLUqlUkpXEuyUAAAAAAAAAAAAAUFAEo6XEsqx2ScdKOmbXP4+SNGrAKits254SwXEmSPqKpI9K2tOwzuOSvm3b9h0hj3W2pM9LOs6wykbLsm6TdLlt2+vDHAtAQQQJA7JC3LoodM23OF9UnTBLOvG3Uufr0rDx0rBxby2rG8bHC7T54PdzCvFiot8AR65NGZZyUXRTq9Q8Rup908dGXJMKo+rh2sD1o7G88NWIdlTnHrf3Ke7LK90RtQNAYZiC0Upl83N/dcA2VYLRGkKWA6HpUwGQZB4DCPFDHQivfZ5zMFrvm9Kqu6QDPpp4k0IJMsY9Yt8wBwyxLQAAAJA/tm2rq6tLW7du1datW9XTw4+9AEhXS0uLRo0apVGjRqm1tZWgNAAAAAAAAAAAAADwgZ85T5BlWSdalnWvZVkbJC2R9FNJl0h6jwaHokV1vA9IekHS+TKEou0yU9LPLcu6xbKsPQIcZ6RlWbdKul3mUDTtasP5kl6wLOv9fo8DoICCFJ6WwmR6ZrgIFx5E/PkNn9RXWHfM9X2haM0jpdFvGxyKJtUPQKKAGrUIRisOU3hDkkXRY6b73ICC18KoegifynLACLKrXohQ2xHSO79lXu7l3ATQWKqGYDSrbA43HximFjRw0e4Nth3SkeV+i5dAWgDFZ7xO8VVqqiafITWPdV62tCPZtsSqTlH0u24Ktts4f2wEAAAAyJgdO3ZoyZIlWr58uTZs2EAoGoBM6Onp0YYNG7R8+XItWbJEO3bsSLtJAAAAAAAAAAAAAJAbvM2frCMlvU/uIWWRsCzrREl3Spo4YLYt6Wn1BZj9X0nrazY7V9KtllUvAWbQcZok3SbpYzWL1km6b9exntHghIa9JN1lWdYsr8cBUFBBwoBMRdVxHQ/ZEXUR1yH/U5rxI+mQC/pC0UzqBSBVKcbPB7/nT4hfaPUdjJbhgIBGl4Wi6Kbh/tan4LU4bEPIzKB16NsggKbW+usc+nlzOFqVQiIANUz3rFLZHG4+KBitK9hxeRbLlyw/99CnAiCZrwXevzJDHJpapSnnOC9bfa+0441k2xNawHGb5qC/r5Xh+y8AAAAQoR07dmjlypXq7WXMEEB29fb2auXKlYSjAQAAAAAAAAAAAIBHvM2fDd2SlkS1M8uy9pX0C0ktA2Y/Jmm6bdvH2LY9x7bt90naV9JFkga+EXSGpP/t43D/Kem0AdO9kv6npH1t237/rmMdLentkv4wYL1hku60LGuSj2MBKJpAwWg+A4cGHY8ioHyL+vPzGHxFMFr+dW+QNj6b3PH8FsxShJ9dpvtGkkXRXgKMBiEYrTCqBKMhJiWP15WRU5znV7ojawqAgjDds6yyOdy8SjBa48nwmEzn62m3AEAWZGEMAM6mznWeb1el5T9Oti1xseqMVZeag+2XAH0AAAA0gN2haDb9XwA5YNs24WgAAAAAAAAAAAAA4JGhMg0x6pX0F0l/kvTUrn8uknS8pAciOsZXJLUNmH5c0sm2bQ+qMrRtu1vSdy3LWilp4YBFn7cs6/u2ba9wO4hlWe3qC1Yb6O9t276rdl3bthdblvVeSfdLOm7X7HGSrpD0OQ9/JwBFFCSoLEwhGuEh+Rb1S6z1is3616tzztkU42dWtSI99VlpyU3yHRbl9fxw3NZngCPXpgzLQFG078JXXvgvDJtgNMTEa+BiaZjz/CrBaABqmO5ZVlmyDP2pgdtUCUZrCFkOq+98o+/5sRQijB9AAZjGALg2pG7c30mjp0lbXhq6bNkC6dBLwo3lJSnoGLcVMBiNcSIAAAAUnG3beuONN4aEojU3N2v06NEaOXKkmpubZeXlmQFAYdi2rd7eXm3btk1btmxRb2/voGVvvPGGDjzwQK5PAAAAAAAAAAAAAOCCYLRkdUi6oTagTFJkX25blnWwpIE/nd4jaZ7TMXezbftOy7I6Bmw3TH2BZZ+uc7grJA18E3+BUyjagON0WpY1T31BcC27Zn/Gsqyv27a9tM6xABRRkDCPUMFoGS7ChQdRF3F5DUarU/xIMX52vfQtacmNATdOMhiNa1NmGT+bBIPR0LiqBKMhJp6D0Vqc51d7omsLgGIwBaOVyub+1MD7XIVgtIaQ9eeeTc9K445JuxUA0mS6TiUZjg5nliVNnSv9+UtDl725WNr4dAGu4XXGIn0H5+9GMBoAAACKraura1DYkCSNGjVKkydPJmwIQOqam5s1YsQITZgwQa+//rq2bt3av6y3t1fd3d1qbfX43S0AAAAAAAAAAAAANCDe5k+Qbdub3ALKIvJxSQPTOH5h2/ZfPWx3Tc30HMuyjN+4W5Y1XNLZdfYxhG3br0i6c8CssvraDKARBQrzCPHiIuEh+ZZWETXBaPn11++lc1y/BbNcm7Irj0XRNgWvhWF7uL9w/UAQXoPRmoY5z7crUpVzD8AApjBPq9z3x4kdQTCaKZANGZXxYLQtL6fdAgBpMz5fZXgMoJFM/aR5PGbpgkSbkoqgwWiMEwEAAKDgBoYMSX0hRISiAcgay7I0efJkNTcPfr7fsmVLSi0CAAAAAAAAAAAAgHzgbf7i+VDN9I+8bGTb9ouSnhgwaw9J73PZ5P2SRgyY/oNt2y95auHQNn3Y43YAiiZI0FWYMJq0grUQkaiLuDy+CFvvnCMYLbu2Lw+xcYgXpeuF6dUi2CjDchiMFvm1EqkxhcwMxPUDQXgNRisZgtEkqdodTVsAFIMpoKzULJU8BKMFvabwjJ8vmf+8st4+ALHLYzh6IxkxWdrrZOdlK26VKnl5RjGN29QZiwwajMY4EQAAAAquNhht9OjRhKIByCTLsjR69OhB82qvYQAAAAAAAAAAAACAwXibv0Asy9pb0jsGzNop6TEfu3iwZvoDLuueWmdbN4+or227vdOyrL18bA+gKAKFeYR4gZHwkHyLuoja68uw9UKubILRUMNvMBoF+NmVy6JoCl4LwxQyM2gdrh8IoGm4t/VKLeZl1Z5o2gKgGExhnla570+9bSpdwY7LM36+ZL3fwvkEwDgG4HecB7Fpn+c8v2ej9MavE21K4kbsF2y7rN9/AQAAgBBs21ZPz+DvK0aOHJlSawCgvtprVE9Pj2ybdzwAAAAAAAAAAAAAwCTLFf3w7+0108/btr3dx/aP10xP93GsP3g9yK42LfJxLABFZNsKFN4SJoyGIteci/pFsIiC0aoEoxVSmF+R9nud4tqUXcbi0Qw/RvHSbHGYQmYG4vqBIJpaPa43zLys0h1NWwAUgynMs1Tu+1Nvm6DBaAQM50vWg1my3j4ACchjOHqD2fcsqXm087KlCxJtSnABx2322D/Z4wEAAAA5UK0OfY5rbm5OoSUA4E25PPQ7E6drGQAAAAAAAAAAAACgD2/zF8thNdOv+tx+SZ39DXRogscCUESBC05DhBVRNJ1vkRcpez2X6nSXCEZDrXpherWqBBtllum6k+miaApeC8MUMjNoHa4fCKDkMRit1GJeViUYDcAApnuWVe7746QaQTAaQVY5k/HPi/MJQB7D0RtNebi0/xznZW/8Rupck2x7ouTlRxr2/VCAHTNOBAAAgOKyHX4wygrzA2gAELNSaeg4k9O1DAAAAAAAAAAAAADQh7f5i+WgmumVPrdfUTM9zrKsttqVLMvaU9KeIY9Vu/7BPrcHkHeBgzxCvMRIeEjORfwimNcXYkt1Qq4IRiuoENcav8FoWQ8IaGgEoyFFXu4v9G0QRJPXYLRh5mXVnmjaAiD/ejaZg81KLsFolR3StuW7/j1oMBr3wVzJevAY5xMA03Ug02MADah9nvN8uyKt+EmiTQkkTLHz2MOTPR4AAAAAAAAAAAAAAAAAAAAApIi3+YtlbM30Wj8b27a9TVJtJeIYD8fZYdv2dj/H0tC2OR0HQJEFLTgN8+uuWS/ChbvIi7g8nkv1Qq5sgtGKKUwwms8uNgX42WW8b2T4MYqC1+Kwd3pYh+sHAvAajNbkEoxW6Y6mLQDybftK6bdHm5db5b5wNJNfvU1647chgtF4xs+VzH9eWW8fgNhtes55vu8AfMRq/ExpZO3vRO2ytCPZYh4TLwAAIABJREFUtkTKw1hkc5CvUhknAgAAAAAAAAAAAAAAAAAAAJBPLpVpyKGRNdOdAfbRKWlglfSoGI8zkNNxfLMsa6KkCT43OzCKYwPwK2DBqd/AoYEID8m5tIqU65xzVYLREBLXpuwyhTeEuRfFjoLXwqgSjIaYeA1GK7WYl1UJRgMg6c9flrYvMy+3ynIN+aj2SE98Rpp8ZrDjcx/MmYwHj1U5n4CGt+JWw4IQ4fmInmVJ7XOl5+cPXbb5z30Bd21HJt8uz0KM27QQjAYAAAAAAAAAAAAAAAAAAACgcWS5oh/+1QaWdQXYR21gWe0+kzxOEBdIesHnn7siOjYAP3ZuD7hhiEK01xYG3xbps6Mu4vJ4LllN7ssJRkNYpvAtZEAGgtH8FvNGfq1EamyC0RATz8Fow8zLqj3RtAVAvi2/xX15qdz3x03n36RNzwQ7Pv3ofMn855X19gGIVfdG87ItLyXXDngz9ZPmZUs7kmtHpDyMVTcHCEbL/P0XAAAAAAAAAAAAAAAAAAAAAJwRjFZsQVIRsrwNgCJZ/0Sw7cKE0ax9UNr0XPDtkbKIi7gsgtHgwk7wcyXYKLuMxaMJPkYd+A8+N6CbXRgEoyEuJa/BaC3mZZXuaNoCoNissjz1mzr/FvAABH3kStaDWbLePgDx6lpjXta7Obl2wJs9DpD2mu28bPmPMz5eG2Lcpnl0gMMxTgQAAAAAAAAAAAAAAAAAAAAgnwhGK5ZtNdPDA+yjdpvafSZ5HABFtu7RgBt6DLMyee3OcNsjPZEXcXkNRqvTXUoyQAvJSTLwhWCj7DKFI4QJ6fRrxGTp4AsGzys1u2xAwWtheCnkJsADQTR5DUZrMgfEVglGA+BBqVw/aFqSegIGztCPzpmM91s4n4DG5uV+hWyZOtd5fvc66Y3fJtuWKHj5EY/mMQF2zDgRAAAAAAAAAAAAAAAAAAAAgHwiGK1YCEaT/n9Jb/f558yIjg3Aj54NwbYLG0bzwlfCbY8UGYqoJ8ySWtoC7M9rMFqdwkgvwTXInyQDXwg2yrAMBKNJ0jHXSTM6pCnnSodeKp3yeLLHRzqqO+uvQ4AHgvAajCZJpWHO86s90bQFQLFZ5b6QxXp2bg22f/rR+ZL1zyvr7QMQL4J/82f/j0jlkc7Lli5ItCmJaRlrXjZ6mmEBwWgAAAAAAAAAAAAAAAAAAAAA8qmcdgMQqTdrpif42diyrJEaGli22cNxRliWtYdt29t9HG6ih+P4Ztv2Wklr/WxjefkVdgDRCxzkwf+zDcs2FHGNbJeO+S/p+SukTc9Kex4j2Tul1+9235/X6z/BaI2pkmQwGsFGmWUKR0g6GM2ypPbz+v5IUqXLvK7pWon8sQlGQ0yG7+N93aZhUmXH0PlJ3icB5JdVlhTj8xL3wXzJevAY5xPQ2Nyes5FN5T2k/c92DkF741dS9wZp2LjEm1WXcdzGw1j1yIOk1r2krjWD5zeNkA78B+nZS3wcDwAAAAAAAAAAAAAAAAAAAACyLeGKfsTsrzXTB/jcvnb9jbZtb6pdybbtDZJq5+8f8li1bQdQdFWC0eCXoYjLKkltR0rvuUs6a6X07l9IYw+P7rAEozWmKsFokEt4Q9qPUW73QgpeC4NgNMSh7Uhpj/28r19qcZ6f5H0SQH6VyvWfp8LIetAWBsv855X19gGIFcFo+TR1nvP8aq+0/NZEm5KIUpN02BeHzj/2eqllT8NG3N8AAAAAQJKmTJkiy7L6/zz44INpNwkAAAAAAAAAAAAAANSRdkU/ovVizfRBPrdvr5lenOCxavcHoOiCBnlYBKM1LGMRtdM54aWL4/Fcsursi2C0YqokGYxGgWJmmT6beteF2BGM1hCqBKMhAntMeevfRx4onXCHv+1Lw5znV3sCNwlAA7EIRsNAGf+8OJ+AxkYwWj5NPGHwM89AyxYk2RIfQo7bTLtYmvVzaconpP0+LL37l1L7PPP3JjbjRAAAAAAAAAAAAAAAAAAAAADyqZx2AxCpF2qmj7Asa4Rt2zs8bn98nf3VLps5YPo4SXd7OYhlWXtIOsLHsQAUUtCC07TDaJAeQxGXU0CRl9AiryF79Qr5d7zmbT/Il2qSwWgEG2VXRoPR3K5fFLwWh5fgTa4fqOe059/qq4ye5v/61WQIRksyQBRAfpXK8fabuA/mS9aDxzifgMZGMFo+WSVp6lzpha8MXbbxaWnzC9LYtyffrkB8/CDM/h/p++Npe8aJAAAAAAAAAAAAAAAAAAAAAOQT6TIFYtv23yQ9P2BWWdIsH7s4sWb6ty7r3lNnWzcnaHAo37O2ba/xsT2AIghacJp2GA3SYyyidij68nSeRBSMtuSHUvcGb/tCfiQZ+EIBfnYZrztp34vcrl8UvBaGvdPDOlw/UI8ljTms70+QfnSpxXl+kgGiAPLLKtd/ngol40FbGCzzwWgZbx+AeFU6024Bgmo/z7xsWUdy7fAsrnEbgtEAAAAAAAAAAAAAAAAAAAAAFEvaFf2I3sKa6U952ciyrGmS3jVg1nZJ97lscq+kgZUix+3ahxfzaqZr2wygEQQO8vAYZoUCMhRxOYZ8RBmM5mFfK3/ubV/Ij0QDXyjAzyxTOELqIZ0EozUEgtEQBStk37k0zHl+tSfcfgHkn+2hzxF3MBr3wZzJ+HMP5xPQ2CpdabcAQY1slyac4Lxs2S1S1cOzdRaEfXYzbe+lzwYAAAAAAAAAAAAAAAAAAAAAGZR2RT+i92NJA6u4PmxZ1sEetvtCzfTPbNs2VoLYtr1DUm0KTO0+hrAs6xBJHxowa6ekn3hoH4CiCVpwGrZACPllCihyCgjyElrk9VzyUsj/l//tbV/Ij0qCwWh2lSLFzMpoMJrb9YtzqTi8FG+vffitf7dt6a83SL87UbpvpvTydzkfoNDDPk2GYLQk75MAssn4fDZAKe5gtIwHbWGwrH9eWW8fgHhVXYLRxr3LvAzZ0D7PeX7Xaulvbr8BlYLYntNNY0WMCwAAAAAAAAAAAAAAAAAAAADIJ4LRCsa27b9K6hgwq0XSAsuyWk3bWJZ1pqR5A2b1SPqKh8NdKal3wPQ8y7I+6HKcVkk/2tWm3W60bXuJh2MBKJrABafcuhqXqYgrYDCaV14K+Xesiu54yIZqwoEvFOFnk/FzSfte5BbsSMFrYdgegtEkacsrff/8y39IT50vrX1IWv8H6emLpOfnx9c+5EPYUOFSs/P8aq/zfAANxEP/1SrHGyhLHzpfMv95Zb19AGJVcQlGO+ifkmsHgtn/bKlpuPOyZR3O8zMn5LObqc+V+fsvAAAAAAAAAAAAAAAAAAAAADgrp92ARmNZ1r5y/u++d8102bKsKYbdbLNte73LYa6Q9CFJbbumZ0r6nWVZ/2Db9ksD2jJM0j9J+lbN9t+ybXuFy/4lSbZtL7Us6/+TdMmA2T+3LOvzkn5g23bPgGMdKun/7GrLbhvkLYANQBHZlWDbhQ13QH6Ziricir48Fd97PJfiLORHdiUdjKaqJA8hfEiWn+tOklzvhQSjFYbX4KkVP5Wm/7v08neHLnvlOunwK6USj/6NK+T1yjKcO0H78gCKw0vIRqnsLWg6cBu4FuVK1oNZOJ+AxuYWjDblE8m1A8E0j5b2+4i0/Jahy1bdKfVsklrahi5LRVzjNqaxIsaJAAAAACBJtm3rmWee0UsvvaS1a9equ7tbEyZM0OTJkzVr1iyNHDky7SYG9tprr+mpp57SqlWr1NnZqfHjx+vwww/XMccco1Ip3HeSa9eu1SOPPKI33nhDnZ2d2meffdTe3q4ZM2aE3reTxYsXa9GiRVq3bp22bNmiPffcU5MmTdKsWbM0bty4yI8HAAAAAAAAAAAAAAiG6ujkPSrpAA/rTZa0zLCsQ9I804a2ba+yLOvDku6V1LJr9vGSFluW9bSkpZLGSDpK0oSazX8lab6H9u32RUnTJX1g13SzpP+SNN+yrGckbZXUvutYA9/K75H0Idu2/+bjWACKJHDBKcFoDcve6Ty/1Ow008MOvQajEVbVkCoJB6PZFfV1o5AtGQ1Gc2NT8FoYpvterUVXSJNOlbrXDV3W+6a06Tlp3DHRtg35ETZU2NQP8np+AiguLyFXVtzBaBkP2kKNjH9enE9AYzMFo417l9TU4rwM2dI+1zkYrdojrbhNOvhzybfJl7DfexCMBgAAAABpWr9+vb72ta/plltu0bp1Dt/bSmppadHs2bN15ZVX6l3vepen/c6bN08dHR3908uWLdOUKVM8bfvggw/qpJNO6p++4oordOWVVxrXtwZ8r/ie97xHDz74oCTp8ccf1xVXXKHf//73qlaHjqPutdde+vKXv6wLL7zQd4jZs88+q0svvVQPPPCA47733Xdfffazn9UXv/hFlctlXXnllfrKV976LeYHHnhAJ554oqdjbdiwQd/4xjd0yy236PXXX3dcp1QqaebMmbriiit08skn+/q7AAAAAAAAAAAAAACil+GKfoRh2/aDkj4kaeBbFpakYyTNkfR+DQ1Fu1XSx2zbe1rRrnXnSLqtZtFESadK+ntJR2vwG/lrJZ1p2/YjXo8DoICCBqOFDXdAflUNARyWQ86rl9Air+cSwWj5FDYcqppGMBoyp2r4XLIQjGZsAwWvhWG67znpWm1exvWlwYUNRjPk6ROMBsDL/cVqirnfRJBVrmQ9eIw+E9DYTMFozaOSbQeCm3iSNGI/52VLFyTalFSYxroJ0AcAAACA2N15551qb2/XtddeawxFk6Senh7dc889mjFjhj772c9q587sf9/2ta99Te9+97v1u9/9zjG4TJLWrFmjf/mXf9HZZ5+tnp4ez/v+9re/rWOPPVb333+/cd+rVq3S/Pnz9Z73vEdr1qwJ9HeQpJtvvlnt7e265pprjKFoklStVvXoo4/qlFNO0Sc/+Ulffx8AAAAAAAAAAAAAQPQyUNGPuNi2/RtJb5d0g6RNLqv+UdLZtm1/3Lbt7QGOs8227Y+pLwTtjy6rbpT0PUlvt237Hr/HAVAwgQtiuXU1LFMAh1Nwmafie69BIR72VRrmcV9ITsiiv0rSwWgZDwloWKbPJQv3IlPBK+dSYfgJnurZbF7WNDx8W5BfYQOJTAGxpuBIAA2kTp/DauoL6IgzaJogq3zJej816+0DEC9TMBrPU/lRapKmftJ52YYnpC0vJ9seI8OYZegfhDFtTzAaAAAAAMTppptu0kc+8hFt3bp10PwDDzxQZ5xxhj760Y/quOOOU1PT4LHyH/zgBzrjjDMyHY72zW9+U1/+8pdVqfSNxb/tbW/TBz/4QZ1zzjk68cQT1draOmj9hQsXav78+Z72/a1vfUv/9m//1r/v3Q477DCdeeaZmjNnjmbMmNH/3+3xxx/XnDlzhqzvxeWXX665c+dqy5Yt/fMsy9K0adN0xhln6OMf/7g+8IEPaMKEwb8zfcstt+i0007L9GcEAAAAAAAAAAAAAEVXTrsBjca27SkJH2+tpPMty7pI0vGSDpC0t6Ttkl6X9Kxt28siOtbPJf3csqypko6StI+kPSStlrRC0mO2bfMTagD6BC1gDhvuIEmvXC8dcmH4/SBZpnOm5NSdiTAYzUshf3mEt30hOXbYor+EiwYJdcgmUzhCFPeisKyS4byh4LUwqn6C0VxysDc8KbUdEb49SFfg+1rI4nrHfpb8BfcBKKZ6IVLWrutHrMFoBFnlS8Y/L57JgMZWNQWjtTrPRzZNnSv95WvOy5Z2SEcalhWBMViNcSIAAAAAiMtzzz2n888/X9XqW2OfRx55pK6//nrNnDlz0Lrr1q3T/Pnz9f3vf79/3j333KPLL79cX/ta9p5XFy1apEceeUSSdNZZZ+nqq6/WtGnTBq2zadMmff7zn9eCBQv6533rW9/S+eefrylTphj3/fTTT+uLX/zioHknnniirrvuOk2fPn3Q/HXr1unyyy/XDTfcoIcffliLFy/29ffo6OjQVVdd1T9dKpV04YUX6pJLLtH+++8/aF3btnXXXXfpoosu0sqVKyVJ999/v+bPn6+rr77a13EBAAAAAAAAAAAAANEgGK1B7AokeyChYy2TFEnYGoACC1xwGjLcQZL+9M9S60Rp/78Pvy8kxxQQYzl0Z6IMLSp5KOQvNUd3PEQk40X3tSjCz6YsB6OZ7ocEhBSH3et93d7N5mVP/qO04qfSCbdLLW3h24V0BP1/21gc73V7Qz+I+xaAusFou64fcfabuBblS9b7qVlvH4B4VQzBaKVhybYD4Yw+RBp/nLT+D0OXLbtZOuIqb2O9cQr9Yw4mhj4X9zcAAADAkb1zp7RuVdrNaAwT9pVVLuZryp/5zGfU0/PW7wTPmjVL9957r0aMGPrjihMmTNANN9yggw46SJdeemn//GuuuUbnnHOODj/88ETa7NXGjRslSZdddpmuueYax3Xa2tr0ox/9SJs2bdJdd90lSapUKrrxxhsHhZHVuvDCC7Vz51vvgH34wx/WbbfdprLDeTJhwgR973vfU3t7uy677DKtX7/e899hxYoVOv/88/unhw0bpjvvvFOnnnqq4/qWZemss87SzJkzdfzxx+vVV1+VJH3jG9/QP/3TP2nq1Kmejw0AAAAAAAAAAAAAiEYx3zgAAGRf0ALmsOEOuy2/lWC0vLH9BKN5KHDzfC55KOQfdbDHfSExeSv6y1t7G4bpc8lAMJoxZCSuAlskzhQI6qTHJRhNktbcL/3qMOl9f5BGTgnVLKQkUN85gn6zUz9LMvfLADSOev3XMdP7/unl2SyuNiBbMv95Zb19AGJVNQRTNxGMljvt85yD0Tpfl9b8Xpp0SuJN8iZsqLUpQJ9xIgAAAMDRulWy57wt7VY0BOtnL0uTpqTdjMg98MADeuaZZ/qnR48erdtuu80xFG2gSy65RA899JB+9atfSZKq1aquvfZa3XTTTbG2N4hZs2bp6quvrrvef/zHf/QHo0nS73//e2Mw2lNPPaUnnniif3rSpEm66aabHEPRBrr00kv1u9/9Tvfdd5/H1vcFmnV2dvZPX3vttcZQtIEmTpyon/zkJ/q7v/s7SX1hb9dee62++93vej42AAAAAAAAAAAAACAaGajoBwA0pMAFsRHdulYtjGY/SI4pIKbkUGhvDAwatJK343oKWSNrNnPCFt0fnfQLjRQpZpIpiCjOgA/PTAWvBDoUhp/gqd46wWiS1LVaev5/BW8P0hUkiCyKQOGSKRgtYMgxgAKp0+c48NN9/4y130S/J18y/nlxbwMam58fZEC27T9HKhkC7ZYuSLQpzuIaAzQ9/zHmCAAAAABx6OjoGDR94YUXap999vG07X/+538Omr711lvV3d0dWdui8uUvf1mlUv33r6ZPn64pU6b0Tz/33HPGdW+99dZB0//8z/+sMWPGeGrP/PnzPa0nSdu3bx8UNtfe3q7Pfvaznrc/9thjdcIJJ/RP//KXv/S8LQAAAAAAAAAAAAAgOgSjAQDSEbTg9JALo20H8sMYUORQoJh0MBoF1BkUsuhv8unRNMMrwqyyyfS5ZCEYzXido+C1MEyBoE4qHl+UX/7jYG1B+gL1NSIIRjNd7/ycnwCKya3/evAF0sGf2zUR4/BzleewXMn6M0/W2wcgXqb+LcFo+dMyVtrvQ87LVi2Uet5Mtj2ehX1+IxgNAAAAAJL06KOPDpr+xCc+4Xnb6dOn66ijjuqf7urq0tNPPx1Z26IwfPhwzZ492/P6hx56aP+/79ixQ9u2bXNc7/HHHx80PWfOHM/HmDVrlufwuUcffVSdnZ3902effbankLeBTjrppP5/X7FihVauXOlrewAAAAAAAAAAAABAeASjAQDSESTcYfg+0vjjom8L8sH2U6DooYtjeQ1G87AvwkGyJ2xR+8j2aNrhGUWKmWQMZMzCY5ThGkagQ3GY7nuO6/K5F16QvnMU1ypTEISf8xNAMbldl9520Vv/HmugLPe/XMlCf+Wk+6Qpn3ReRuA50NhM/dsSwWi5NHWu8/xKp7Ty9mTbMkRMY4CmsW6bMUcAAAAAiNqmTZu0ZMmS/umxY8cOCgbzYubMmYOmn3rqqUjaFpUDDzxQLS0tntdva2sbNP3mm87B5H/+85/7/33s2LE66KCDfLXrmGOO8bRebXDdPvvso+XLl/v6U/v3X7p0qa+2AgAAAAAAAAAAAADC441+AEA6ghSczr6fYrRG5qdA0VMQiNdgNA+F/BRQZ1CIovsx06NrhldZCAnAUMZgtDgDPjwyXucoeC2Maq/3df2EVFUrUikD5zD8CdTX8NjXcd2F4Vyh7wPArf86sJ8SZ6As16J8SfuZZ2S7NOkUacWtzsvTbh+AdJl+9MAUFIxs2/sUafgkqfNvQ5ct65AO+ofk21SP1x/xMGKcCAAAAACSsm7dukHTBx98sCyfz3XTpk0bNL127drQ7YpSbdBZPc3NzYOme3uHfte9fft2dXV19U/vv//+vtvldZvXXntt0PTFF1+siy++2PfxBtq4cWOo7QEAAAAAAAAAAAAA/sVYmQYAgAu/BafNY6Qx0+qvh+LyU6CYeDCaj0AaJMMOUfQXZ3iDCUX42WT6XLIQjGa6hnEuFYefe4uvYLRu/21B+tIKRjOFEpv6ZQAaiFsw2oC+kmUpkuuRE/o9OZP257XrOc8Y+pl2+wCkys8PMiD7Sk3SlE86L1v3qLT11WTbM1CYMUs3pgJ87m8AAAAAELlNmzYNmh4zZozvfdRuk7XQrVIp+vdmNm/ePGh61KhRvvcxevRoT+tt2LDB977r2bp1a+T7BAAAAAAAAAAAAAC4441+AEA6fIc7xFRIjfwwnTOORc0RvqDnJSSLYLQMClP0l0Z2cExFkQjHeN3JQL60sQ2cS4XhJ3jKz7qVTqk8wn97kK4gwWhRXKucAmilgEFtAArFLWSj9vpjNcXzzETQR76k/XntDowx3R+5twGNzXSfMvWHkX3tc6UXv+68bNnN0hFfTbY9dYX9/sO0PeNEAAAAgKMJ+8r62ctpt6IxTNg37RZEzq4JvbZMYdU+RLGPrBs2bNig6Z6eHt/78LpNkH3XU/u5AwAAAAAAAAAAAADixxv9AIB0+C04bYAXwFCHqUCx5NCd8RIE4vWccgxeq0EBdfaEKbpPI/Qq7ZAAOPMVyJg0wzWMc6k4/ATI+Fm30uW/LUhfoL5GBP1n0/WOUFgArn2OpILReA7LldT7qbuD0Ux9+bTbByBVprBpgtHya8xh0p7HShufGrpsaYd0+JXZCL6PDMFoAAAAgB9WuSxNmpJ2M5BTe+6556DpN9980/c+ardpa2sL1SYnlUq2xtBr/46bNm3yvY+NGzd6Wm/8+PGDph9//HEdd9xxvo8HAAAAAAAAAAAAAEhXkd74BgDkie8CZoLRGp6fAkVPRW1ezykPxWOmtiE9eQtGo0gxm7IcjGY8TzmXCsNPgIyf+1Cl039bkL4gfY0o7mdOAbQSfR8A7v3t2utPbP1rgqzyJeXPqz8c3XA+ErQHNDY/P8iA/Gif6zx/x0pp7UPJtqWfYdwm7A/DmLa3GScCAAAAgKhNmDBh0PQrr7ziex8vv/zyoOmJEyc6rlcuDx6b2LnT+3d0QYLH4tTU1KTJkyf3Ty9dulQ7duzwtY9FixZ5Wm+vvfYaNB3kMwIAAAAAAAAAAAAApI9gNABAOvyGFoUtDEL+mQoUnYLRPHVxPJ5T1d7661BAnUFhiv5S6CKHCXJDfEyfSyrhebVMBa+cS4XhJ3jKT4hapct/W5C+QH2NCPrPpiBI+j4A3K4DQ4LRYgqVrXItypXU+6m77oumvnzq7QOQKj8/yID8OOBjUqnFednSBYk2JX6m5z+C0QAAAAAgam1tbTrwwAP7pzdv3qwXX3zR1z4ef/zxQdPHHnus43qjR48eNL1582bPx/jLX/7iq01JmDFjRv+/V6tVPfSQ9+DyjRs36s9//rOndWfOnDlo+r777vN8HAAAAAAAAAAAAABAdmShoh8A0Ih8hykQjNbwTOeMU5G9l9Air2F7noLRfATSIBlhitrTCL2iCD+b/Fx3kmYMdKDgtTC83H92617vfd1Kp/+2IH1BgsiiCBY2BUHQ9wEgt/5rQsForm1A5qT+zLM7GM0U+pl2+wCkytS/LRGMlmvDxkmTz3Be9todUu+2ZNsjxTduYxzPZJwIAAAAAOIwa9asQdM//vGPPW/74osv6umnn+6fbm1t1dFHH+247sSJEwdNL1682PNxfvOb33heNyknn3zyoOkf/vCHnrft6OhQT0+Pp3Xf+973qqnprbHgX/7yl1q7dq3nYwEAAAAAAAAAAAAAsoFgNABAOghGg19+ChQ9BVt5DUbz8FJdlXCQzMlbMBpFitmU5WA04zWMQIfC8BM89aaPX/uudPlvC9IXJBgtiiEfYzBakPYAKBS3/nZtXymu/jVBVjmT8ue1OzDUGDDMvQ1oaKbnL1N/GPnRPs95/s7tfeFomRH2+w/D9vSXAAAAACAW55133qDp6667TqtXr/a07Ze+9KVB0x/72Mc0bNgwx3WPOuqoQdN33323p2Pce++9evLJJz2tm6Rzzz1Xo0aN6p9euHCh7r333rrbvf766/rqV7/q+ThtbW0699xz+6e3bdumSy65xF9jAQAAAAAAAAAAAACpIxgNAJAOvwWnFsFoDc8UPuZUoBhl4b2XYDQKqDMoZ8FoFClmk+lzyUIwmjHQgZC9wvATjOZHpTOe/SJeQfoaUfSfTde7uM5PAPnhGoxW00+Jq+/Ec1i+pP7Ms+u8NN7b0m4fgFT5GXdEvkx6v9Q60XnZ0gWJNqVPTOM2xuc/xokAAAAAIA6zZ8/WkUce2T/95ptv6pxzzlFnp/t3sddee63uuuuu/mnLsvSv//qvxvWPO+44jRgxon964cKF+tOf/uR6jL/+9a+aO3duvb9CKkaNGqWLLrpo0Lw5c+bogQceMG6zfPlgP5p6AAAgAElEQVRynXLKKdq8ebOvY1155ZWDAuf++7//W1/4whdUqfj7bmHx4sV6+OGHfW0DAAAAAAAAAAAAAIgGwWgAgJT4LTiNIRiNotd8MQVwlJwKFD10cbyGhVR7669DOEj2hAqHSqOLTJFiJpnCNtIIzxvCdA3j3lYYpsL8sAhGy6dA/dYI+s+O/SzFd34CyJEsBKPR78mVtD+v3WMAxoBhgvaAhuZr3BG5UmqWpnzCednaB6Vty5NsjYuwz2+G7QnQBwAAAABHq1ev1vLlywP92e3GG29US0tL//SDDz6oE044QU888cSQ461fv14XXnihPv/5zw+af9lll+mII44wtnPUqFH66Ec/2j9dqVR0+umn67777huybk9Pj374wx9qxowZWrNmjdra2vz8J0nM/Pnzdfjhh/dPb9myRe9973s1Z84c/fznP9fzzz+vl156Sffdd58uvvhiTZ8+XS+++KJaW1t15plnej7O1KlT9YMf/GDQvK9//euaNWuW7r77bu3caf6+c/ny5br++us1e/ZsTZ8+Xb///e/9/0UBAAAAAAAAAAAAAKHxRj8AIB2+C05jCEar7pSaWuqvh2wwBXBYDt0ZT6FFXoPReuqvQwF1BoUouk8j9CrtkAA4MwajxRTu4Ycx0IGC18KIK3Sz0hXPfhGzAPeJKO5npusdfR8Abv3XIcFoMfWvuRblS+rPPLvHAAznY++bibUEQAb5GXdE/kydK730bedly26WDr88wcbENW5jGutmnAgAAAAAnJxzzjmBt7V3fSd/1FFH6brrrtPnPvc5Vat9459PP/20ZsyYoYMOOkjTp09Xa2urXnvtNT355JNDgrhOOeUUXXXVVXWPd9VVV2nhwoXavHmzJGnt2rV6//vfr4MOOkhHHHGEhg0bpjVr1uiJJ57Q9u3bJUl77723rrnmGs2dOzfw3zMuLS0t+vWvf63Zs2fr1VdfldT33/T222/X7bff7riNZVm6/vrrtXLlSt11112D5rs577zztHr1an3pS1/q/4z++Mc/6oMf/KBGjBihd77zndprr700fPhwbd26VevXr9fixYv7/1sDAAAAAAAAAAAAANLFG/0AgHRUfRYw13mRKRB7pySC0XKj2u083ymwI+lgNFPxJNITpug+jWC0MEFuiJHhc8lCMJrxGsa5VBjV3nj2W+mMZ7+IV6D7WgT9Z1MQRFzBfQDyw/W6VBuMFlffiX5PvqT9ee26L5rOxw1P9J3XqTwPAkidqX9b4mvUQmg7Qmo7Utr03NBlyzqkt8+P5/sHP8IeP+32AwAAAECD+sd//Ee1tbXpU5/6lLZt29Y//9VXX+0P/XLy6U9/WjfccIOam5vrHmPy5Mm64447dNZZZ2nr1q11jzF16lT9+te/1po1a3z+bZKz33776ZFHHtEFF1yghQsXuq47btw4dXR06PTTT9cXvvCFQctGjRpV91iXXXaZjjjiCH3qU5/S6tWr++fv2LFDjz32mKf2trW1eVoPAAAAAAAAAAAAABAtqnwAAOmwfQajRRHsMKQNBDrkxpuLzcucChS9FN57LRbzEkzDuZRBdohtU+gi22Hai9gY71UZeIwyBTZwLhVHXPeWSlc8+0W8ggSjRVEYbwqC8N2XB1A4bteB2n5KXMFoYcKQkby0P6/d90W34LP1TyTTFgDZY3r+MgUFI3+mznOev22ptO7R5NoR27iNy/2NsSIAAAAAiNXZZ5+tJUuW6KKLLtL48eON6zU3N+t973ufHnvsMd14442eQtF2mz17tp588kmdeeaZsgzfAU6YMEGXXnqpnnvuOR166KG+/x5J23vvvfWLX/yiPyDtsMMO09ixY9Xa2qr29nadfPLJ+v73v68lS5bo9NNPlyRt3rx50D7GjBnj6Vinnnqqli1bpuuvv15HHnmk8b/hbs3NzZo5c6auvPJKvfLKK7rooouC/SUBAAAAAAAAAAAAAKHwRj8AICV+C2JjCEarEmaVG0s7zMscCxS9hBZ5PKf2/aD0yn+5r0M4SPaEKbp3K5SPDaEOmVQ1/L8dV7iHL6ZrGOdSYcTVT6l0xrNfxCxIIXsE9zPT9W7zIun5K6XJ/0Mad0z44wDIH7f+9pD+dEz9a57D8iX1YLSmwf908tK3pQm3J9MeANliev4iGK04pnxcevYS5xC8ZR3SxBOSb9MgIb//cCvotqsZGcsCAAAAgPQsX7481v1PnDhR3/nOd/Ttb39bTz/9tF566SWtW7dO3d3dGj9+vPbdd1/NmjVLo0aNCnyMadOm6c4779T69ev10EMPadWqVdqxY4f22msvTZ06VSeccILK5bfGMk488UTZPsKy/axba8GCBVqwYEGgbWfNmqVZs2Z5Wnfx4rd+WNOyLE2cONHzcVpbW3XBBRfoggsu0MaNG/XHP/5Rf/vb37Rx40b19vZq5MiRmjhxog455BBNmzZNI0aM8P13AQAAAAAAAAAAAABEizf6AQDp8FvAXOeXGoO1gWC03Hjx6+ZlTgWKUQZbTXyP1NIm9Wwyr8O5lD1pB6Mde4P01Oe8rx/iBVPEyXAelTJQTGo6TzmXiiOue0ulK579Il5B7mtR9J/dgiBe+Ir0wleld90oHfip8McCkDNuwWhN7tNRSTtoCz6l/Hk1tfb90+15b+vLybQFQPaYnr9KfI1aGK0TpMmnS6vuGrpsxc+ko78rlfNc8Oz2/MdYEQAAAAAkpVQq6dhjj9Wxxx4b2zHGjx+vj3zkI7HtP6u2b9+uZ555pn/6kEMOCRw0t+eee+q0006LqmkAAAAAAAAAAAAAgJhEmBoCAIAPfoPRXAt7AqoSZlUITkX2noKtPJ5TpWbp3XdJ5ZHmdewqYURZEyokIYIu8n4fkvaYMnhe82iXDQh1yCTjvSoLj1GmaxjnUmHE1U+pdMazX8Qr0H0timC0emFGtvTMxVKlJ/yxAOSL63Wppq8UV6is73EFpCrtILuSh2C0OMaeAOSD6fnLLSgY+TN1rvP8nVul1xYm1AjTGHLYexDBaAAAAACAYuvo6NCOHTv6p4877rgUWwMAAAAAAAAAAAAASEIWKvoBAI3IbwGzp6Arv23ojX6fSF7JoUDRy/li+Sg2m3iC9OHV0vR/N69DUX7GhCj4i+J60zpROvkh6aDPSXseLR34j9LJD5vXTzskAM5M/1/XDQpKgOk8JaSxOOLqp1S64tkvYhbgPhHF/cypn1Wrd4u0+v+GPxaAfHHrvw65/sQ0BE0fOl/S/ryadgWjuQbHEIwGNCzbEIzmpT+M/NjndGnYOOdlyxYk2pTIuY11M1YEAAAAAMi5VatWaf78+YPmnXfeeSm1BgAAAAAAAAAAAACQFILRAADp8F0QG0NxatVQ8IZ8sZwKFL10cXyeU+U9pH3+h3k5wWjZEqboPqogxj32l/7ue9Kpf5Le9QNp1MHmdSlQzCbTeZSJYDTTNYyAkMKIq59S6Yxnv4hXoPtaBP1nx36Wg82Lwh8LQM64BaPVXH9i6zvR78mVrASjVbrTbQeAbDIFo3ntDyMfmlqkAz7uvGz1/dL21xJoRFxjgG7Pf4w7AgAAAACy5Y477tC///u/a926dXXXffbZZ/Xud79bGzdu7J/3jne8QyeddFKcTQQAAAAAAAAAAAAAZABv9AMAkpdWsEMtU8Eb8qXk0J3xFGwV4JxyK+i3d0oa5n+fiEkGgtGG7thlGaEOmWQKPIztHPHD0AZC9oojrn5KpSue/SJeqQWjeQwzcuqPASg2Y4CsQx8lrmA0wqlzJivBaITEAnBgCqamn1s87fOkV/7LYYEtLb9Fmv6lpFvUxxiA73V7t7EqxooAAAAAANmydetWXX311frmN7+pU089Ve9973v1jne8QxMnTlS5XNbGjRu1aNEi/epXv9Ldd98te8B7EC0tLero6Eix9QAAAAAAAAAAAACApPBGPwAgeUGKl8MWBjkxFbwhX6yAwWhBzim3YkjOp2wJFCCzW0yhV27nJWFW2WQMRosp3MMP0zUs1LmPTIktGI0wkHwK8P92FCGOXoMgnPpjAIrN+FzvFIwWU/+afk++pP15eQlGi2PsCUD22bb5+Yt+bvG0vVMa83bpzReGLlu6QDrsi/HeD2IbA3Rpc9r3YAAAAAAADHp7e3X33Xfr7rvv9rT+8OHDdfPNN+sd73hHzC0DAAAAAAAAAAAAAGRBTFVpAAC4CBKM5lbYE1RcgSNIlmNAUVzBVi7FkIHOa8QnRJFhXMENrvulQDGTshyMZrzOEbJXGHEFbla64tkv4hWoeD6C/rPX6x2BEUDjMQVsOF034uo7EfKRL2l/XiUPwWhxjD0ByD636xP93OKxLKl9nvOyra9IG55ItDlvCXsPctuesSIAAAAAQLaMHTtWTU3+vjs4/vjj9fDDD+vss8+OqVUAAAAAAAAAAAAAgKzhjX4AQPICFcMSjAaDkkN3xlOwVYBzyq2gn/MpW8IU3ccVjOZ2zqUdEgBnfgI/kmYZzifOpeKo9sazX9cwEGRXgP+3o7ifeQ2CMF2TABSXsZ/kcO2JLRiNcOp8Sbmf2rQrGG3nDpeVuJ8BDcltTM9p3BH5N+Vc6bkvOPclli6Qxs+I8eAxhZS5PZMFCtoGAAAAACA+Z511ltasWaN77rlHjz32mBYtWqQVK1Zo48aN6urq0vDhw7XnnnvqgAMO0AknnKDTTjtNxx9/fNrNBgAAAAAAAAAAAAAkjDf6AQDJC1K8HEfYQpUgq0JwCuyIKxjNrRiSovxsCRUOFVMwmut5SYFiJpn+v44tPM8PUxs4lwojrsDNSlc8+0W80goW9hpmVOkOfywAOeMnGC2mvhOBsPmS9ue1Oxit4hKMZscUTAsg29yevbwGBSNfhu8tTTpVeuPXQ5et+Kl09Hfeum8kJuzzm9v2jBUBAAAAALJn3LhxOvfcc3Xuueem3RQAAAAAAAAAAAAAQEZloaIfANBoAgVIxRCMFlfgCJIVNBgtSNieWzgIQXsZE6LgL7bQK5dzLu2QADgzBqN5DAqKk+kaxrlUHLEFo3XGs1/EK8j/21EEC3sNguC8AhqP8brkFIwWU9+JcOp8Sbuf2h+M5nLP2rk9mbYAyBa3MT23H0lAvrXPdZ7f+6a06q4YDxxTSJnr8x/BaAAAAAAAAAAAAAAAAAAAAADyh2A0AEDyghQvRxHsUIsgq4JwKq720sUJEozmUgxp9/rfH+ITpug+rmA0ChTzx3QeZSEYzXid41wqBLsaX3hIpSue/SJegYLRIrifeQ2CIBgNaDzGfhLBaDDJSDBa03DzOgSjAY3JLZTaa1Aw8mfyGVLzWOdlSzuSbYsUwfcfLs9/aYeTAgAAAAAAAAAAAAAAAAAAAEAABKMBAJIXqBAnhmA0t6I35IdTUbOnIJAA51R5hHlZ7xb/+0N8QgWjxRh6ZTo3KVDMJlPYRlzheX6YCmY5l4ohzqAXAqxyKqX+s9d7IucV0Hj89JPi6jv1bIxnv4hH2v3U0q5gtGn/al6nSuA50JDcfjyDYLTiamqVppzjvGz1vdKON5JtT1j8IAMAAAAAAAAAAAAAAAAAAACAgslART8AoOEECvuIIRjNregN2dI82rysZezQeV4K712LxUzHGifjudi11v/+EKMwwWhxdpEJs8oVY+BHjOF5npnOU4pdCyHOUI5KV3z7RnzSChZ26mc5IRgNaECG65JjMFpMfaeu1fHsF/FI+5mnaVcw2rgZ5nXSbiOAdLj9eEaJYLRCmzrXeb5dlZb/OJ5j2qZxm7DPby7bG48J/D/27jxejqrO//+7+y5JLiEJkIUlkIWwRnYYFtkRdBgEv1+ZEXAUZpRBdBzUUb8wuMCMgqM/BxzRr8go4AiI4yiRr05QJICIgIQlskbMiiRkD1lu7tb1++Nyk7vUOV3bqTrV/Xo+Hnk86KquqqN1uuqc6vt5NwAAAAAAAAAAAAAAAAAAAOAvgtEAAPlLEoyWJMSqbjscho4gW6bi5AM+Hr7cVeF9tUUaNTF8HcFofklV8OdwiGwMXaNA0U+mwA8PgtFM90XCHBqDrTA/LQKsSirBfSKLoM/xs6O9j8A9oPmYxhxh4yRXY6fOFW72CzeKHqcOBKO1tEtH/bvhTczLgKZkm39VCEZraLv9mTTuwPB1i28rWaCY7fuTMv3vAAAAAAAAAAAAAAAAAAAAAIB+BKMBAPKXJBjNWtiTUM1h6AiyVTOE2O3+NsMGUYY4CfvU6MnhywlG80yKovssgmTMOw9fXHRIAMLVDPcrp30kKkL2GlYQSEvudLd/gtHKKdF9IoPxc7VNat+1/vvoV+Xy2n3SEx+S5n9MWv1o/fe/Okd67APS/I9La55w3z6Ug/G6FDZGcTR26l4v9XW52Tcc8CQYTZJ2mh7+HuZlQHOyPSOuEozW0CoVacbF4es2viCtm+/goKbnNinnb7YflilVwBsAAAAAAAAAAAAAAAAAAAAA9POhoh8A0GyKCnYYLiAYrTRM56raFr48SmiRrVjMxhSM1kUwmlfSFLS7DL0y7psCRS+ZgjwrLfm2I7QNhOw1rGf/Sfrd5e7237fN3b7hTpLPdtKxznB7vL3+ewhGK4+F35QefIf0ys3Sy1+T7j9FWn6P+f0v/Kv08LukRd+VXr5R+sWx0qv35tde+Mt0XQob77ocO21b6W7fyFbR49TBwWjGeyRjaaAp2Z4RVwhGa3gz3md+Xrf49nzbkopt/sdzRwAAAAAAAAAAAAAAAAAAAADlQzAaACB/pqAZm6yCHQar9WS/T2QvCMx9Jk0wWtKwvVGTwpdvIxjNL2kK/lwOkQ37LjokAAamwA8fgtEI2WtIXWulF7/s9hi1bqmWYCyGgiW5T2R0P6u2139PL8FopVDrlRZ8ZuiyoFf6/efC39+3Tfr9tSOXP3yutPHF7NuHkokRjFZ1GYy22t2+ka2i5zzVUYNfhL+n6DYCKIbtGbEP83+41bGXNOVt4euW3Cn1dWV8QEfPbWzPw7m/AQAAAAAAAAAAAAAAAAAAACghgtEAAPlLEoyWNMTKhmC0crAWJ7YalrsMRpsYvrx7fbL9wY00BX+R+k/SfRv6HQWKfjLdr7wojKYvNaTF38/nHNa2uT8GspWkX2QVLNwyqv576FPlsOrh8DHrht9LnStHLv/TvVKfIfTu0Yv6A4zRvIzXpZCxtGnelgXm9SVSdDDaoKBP05yPsTTQnGqW4KuW0fm1A8WZeUn48u510ms/y6cNqedvtu0ZtwMAAAAAAAAAAAAAAAAAAAAoH4LRAAD5S1RoGlLY85bPpmsHAQ7lEPSa11XbTCvq7zdpsVnVEA5Ss7QT+fM1GM3YNylQ9JIxyNODaZSxn9KXSm3jc/kch3tW+WQ1fk5icJCMSa8hPAt+6fyTeV3PGyOXbVlmfv/6Z6TVv0nfJpSXMUA252C0osO2EF3RoWPVQf2QsTSAwfosz4gJRmsOU98ltY0LX7fotmyP5SxcmGA0AAAAAAAAAAAAAAAAAAAAAI3Fg4p+AEDzSVAMGxZiNe0iqW18+Punv6/+Pm1Fb/BHrce8zhSMVmlx0xZpaDH1YLYAN+QvVdG9wyGyKZCv6JAAhDOdF5fXmMjoS0iBe1b5JPlsZxX0GSUYrY9gtFKwhVOFhVzVu9+9/LV07UG5GcdJIdce0xwqk3aYgmzhnaLHqZUIwWhFtxFAMUzPiCtVx+Ge8EbrGGmf94Sve+3nUufrOTQiZbC17UdAnIWxAQAAAAAAAAAAAAAAAAAAAIA7BKMBAPKXqNA0pLBn/IHS6fdLU9+1Y1nrTtLsz0jHfbf+LglGKwdbeIupODFSEEjCYjNTGBshM55JUfCXVZBMKNO+KVD0kiloo+pBMJqxn9KXyi1lIXRUNe5Z5ZPks51RfyIYrXHYgs5Cg9HqBIFsfiVde1ByMQJkXYbKEIxWIgWHjg0J6DONpQlGA5qS6RlxdbQ9bAqNZebF4cuDPmnpnRkeyNVzG1tf5VkRAAAAAAAAAAAAAAAAAAAAgPLhp84BAPnLKhhNknY7Wjr5J8naQTBaOdR6zOtMIWW20Icdb0rUHGNRPyEzfkl0nXmTy2A0077TtBfuGIM2fMiXNlzD6EuIgjDP8kny2c7qflYdVf89BKOVg22MXOsaucw01h4QELDQ1EzXpbBrT9VlMBpjn9Io+lwNnsubgo6KbiOAYpieEbeMzrcdKNbEE6Sxs8LDfxfdLh34cccNSBvCRzAaAAAAAAAAAAAAAAAAAAAAgMbiQ0U/AKDpJAl2SFsYFNaMkOJ/+McWjGYKKYsSjJa0T5mOSciMZ3wNRjP1OwrwvWQKRosUvuiYsZ9S7FpqLsY7YbhnlVCGwcJxtbTXfw+Bw+Vgu3+FncN6YVY+3A9RHGOAVMgYxTSHyqQdpiBbeKfo0LEh/dAy5yP0EWg+BKNB6p+Pz7w4fN2GZ6X1z2R0IEf3GdvzzKLvwQAAAAAAAAAAAAAAAAAAAACQAMFoAID8JSpcdhAUQoBDOdjCW6pt4csjhTQk7FOmgIgaITNeSVXw53KIbNg3xfd+MvUjL4JgDNcwil0RBfes8kn02c5o/FyNEozWmc2x4JYtfDFsblQvzMplmCz8ZxwnEYwGg6LHqYPn8oTHABisRjAa3jTjfeZ1i253e+y0QenW7XnuCAAAAAAAAAAAAAAAAAAAAKB8qGAEAOSvyGCHwQhGK4daj3mdMRgtyhAnYZ8yFfXbAtxQgBQFfy5DPkxFihTf+8kUtOFDEIyxDRS7IgLbvRV+SnKfyOpaFTUYjZBP/9lCEZMEo7mYo6E84oyTTOHSmbSDcXR5FHyuKhGD0RhPA83H9IyYYLTms9M0acrp4euW3OH5XNoyNmeuBgAAAAAAAAAAAAAAAAAAAKCEPKjoBwA0nUTBDgSjNS1bwZkprKHS4qYtkrmon2A0v6QJSHAaekWYVakYAz8cXmMiI2QPKXDPKqECx8/VUdHeV+vK5nhwxzauDpsb1Q2z4p7T3EznP2S8WzdkLwXTeA3+KXqcOuSaZpnzFd1OAPkzPSOuEozWlGZcHL68a7X02v+k378xpCzt/M22Pc8dAQAAAAAAAAAAAAAAAAAAAJQPwWgAgPwlKjIlGK1p2cJbqm3hy6OEFiUNCzEV9dcImfFKqmJ2h0NkU+gaxfd+Mp0XH4LRjAF+FLuWm4PxThiC0cqnyPFztT3a+/o6szke3AliBqPVC4u1Ba2h8cUZJ9UN2UvTDoLRSqPoOc/gubz1eQBzM6DpmJ4RtxCM1pT2ebfUOjZ83eLb821LHNZ7G8+KAAAAAAAAAAAAAAAAAAAAAJSPw6o0AABMPAlGqxGMVgq2wIU0wWhJ+5SpqN8WNIECpCj4qxcCkoqp31F87yVT0IYPwWimvlR04ATiqfVJ6+ZL65+Wxh0g9W7O6bgEo5VPgvtaVvezyMFojK29Z/vsh82N6t1TCFlsbsZxUsi1xxQunUk7GPuUh0fBaLYwbPoU0HwIRsNgrTtJ+5wvLbpt5Lo/3St1rZVG7ZbiAK5CyizPugOC0RrS8nukZXdLLR3StPdIe5xVdIsAAAAAAAAAAAAAAAAAAACATBGMBgDIX5Ii04qDYDTCG8rBFoxmKrCPFASSsE+ZjknIjF/SFLO7DEYz7ZsCRf8EgYzFqk7D8yKiL5Vf7xbp1+dLK+bmf2zCjMon0X0to/FzS9RgtM5sjgd3bEG+YXMjU/DVAMa/zW3TK+HLQ4PRHIbK1uun8EfRgWODQ85t4/mi2wkgf6YfzyAYrXnNuCQ8GK3WIy25Szrg7x0cNOX8jXtbc3npa9JTH9vxetGt0nHflWZeUliTAAAAAAAAAAAAAAAAAAAAgKx5UNEPAGg6RQY7DNbXlf0+kT1beEu1LXx5lML7pGF7pmA0Qmb8kqrgz+UQ2dTvKFD0jq0PuQz3iIy+VHoLbyomFE0izKiMihw/VyMGo/USjOY9W+BwWLBd3WA0y/7Q+Fb/Onx5+64jlxGMBqn4UJZKxGA0UzgygMZl+vEMgtGa1+STpJ2mh69bfFu6fTsLtLfN/7i3NZRan/TctcMWBtLv/7n48RYAAAAAAAAAAAAAAAAAAACQIYLRAAAFSFCckTTEytoMQ9Eb/FLrNq8zFdhbi5zfNO7AZO2pGoLRCJnxTIoisCj9J+t9OyuKRGK2kA0fgtHoS+W39AfFHZswz/JJUtyc2f0s4jg8LFgLfrEGo4XMjer1O64lzatns/TGS+HrJp80chnBaJCKD+qoRgxGK7qdAPJnCkarjsq3HfBHpSrNuDh83br50obnHBwz7fcfBKM1jY2/l7rXj1y+ZbG08cX82wMAAAAgV8uWLdNnPvMZnXTSSZoyZYra29tVqVS2/7vtttuKbiIAAAAAAAAAAAAAAJkhGA0AkL9ERaYOgtFMRW/wS19X+PKW0ckLxqZdKLVPSLZtxRCMFlaMhOKkCYcqIhgtTZAb3LAGo/kwjTJd/+hLpbH+meKOTZhRCRU4fo46dicYzX+xg9HqBE5xLWlem18xr5v6rpHLXI6dCLEqkYLP1ZC5vO0eSZ8Cmo7pGXHL6HzbAb/MfL953eLbU+zYUUiZ7Tk5IfqNpWezed3mRfm1AwAAACiZ6dOnDwkQe/DBB4tuUmy33HKL9t9/f33xi1/UI488olWrVqmnx/LdDwAAAAAAAAAAAAAAJedDRT8AoNkkKVx2UUhNMFo51AznqToq+T6Puy35ttW28OV9W6Wudcn3i4ylKGZ3GnplKFIk0MFDlnNSacmvGcY2GPopxa7lYCtizcO2VcUeH/ElGj9nFSwc8brC2Np/QcbBaLagNTS2TX8IX15tl3Y+YORyp8Fodfop/FH0nGdwMJqtTxbdTgD5IxgNYcbOlCafHL5u8felWtYhwWnnb7bteVbUUFo7zOs6X5O2/kl68grplydKT35U2rIsv7YBAAAAcObnP/+5LrvsMnV1GX5ccpgHH3XGYEIAACAASURBVHxwSBDcNddc47aBAAAAAAAAAAAAAAA4QDAaACB/iYpMswp2GITwhnLoM/xRX5rixJb25NsOLqYe7g/fTL5fZCtVMbuD6832XZuG3xQoescWsuFDMJqxnxLkUApblro/xr4flFp3Cl/36HvdHx/ZSnRfy+qRT9RgtM6MjgdnbEFmocFodfpd5mEQKI1NfwxfPnamVA0ZJ7kcOxGMVh5FB44NmYsRjAZgENMz4irBaE1vxsXhy7etlFb8IuFOXT0DJBitadjGvxt+L91/irTw36XVv5EW3iTdf7LUuTK/9gEAAABw4qqrrlIw6EfSLrroIv3qV7/SwoULtXjx4u3/zj///AJbCQAAAAAAAAAAAABAtghGAwDkL1HhcoLinWP+r309wWjlYDpPaYLR0qhagtEWfDa/dsAuTTG709ArQ5Eixff+sQajeTCNMrUhoNi1FPIIRmsZI9W6zeu7N7pvAzKU4LNdySjoM+p1hWA0/9mC0WphwWh15m0BwWhNq3dz+PIxexo2cDl2YhxdHkUHow26L1rH84yngaYTNg6Sinv2CH/s85dSS0f4usW3Z3ustPM3272N546NxRZQ/YdvSJuHhRhvWSot+6HbNgEAAABw6uWXX9aCBQu2vz777LN1xx136PTTT9d+++2n6dOnb/83duzYAlsKAAAAAAAAAAAAAEC2PKjoBwA0nwSFOOufib/NXu+U2saZ1weWYAD4w1ScWB2VbzsGVCzBaPBHogDGN7kMvTLum+J779iKRp2G50VlKpil2LUUet5Itt2U06K/t2WMPQRp7ePJ2oBiJCpkzygYbcKh0d7X15XN8eCOLcgsLIy43njKdo1BYzP1pWpb+HLb2Gm3P0vZlhTjfuTLp1AWwmMADObbjzLAH207S3v/7/B1r94jda/Ptz1Wtvkfzx0bSpKA6vlXZN8OAAAAALl58sknh7w+//zzC2oJAAAAAAAAAAAAAAD5IhgNAJC/JEWmvVvib9Oxl3T6/eb1tQQFJMifKWSjqOLEKsFopZAqGM1h6JWpAJ/ie//Y+pAPwWjGvkSxayn0dSbbbqqhIDtMS50AUYI+SybBfSKrczxuP2ncQfXfVyMYzXu2ILMkwWhJCvLRGExzadN1xxZCdfRN0pE3SlNOl8bOTNAWgtFKw6s5jyU8xqt2AsgFwWiwmXlx+PJat7T07vj7Mz63SRlsXbHd23hW1FAIBgYAAACazuuvvz7k9dSpUwtqCQAAAAAAAAAAAAAA+SIYDQCQv0RFpgkLg3Y7Rjr5HkM7KOQvBVNxYrVO4IsrBMmUg6/BaKZrGcX3/rH2IR+mUab7In2pFGqGe5vNmb+Rdt43+vsrbfb1BH2WS5L7RJbn+IQ7pPZd7e8xjdngD2swWkhgY71+F/QRstCsTHNp03XHFoxWaZEOvEI641fSyT9N0BjGPuXh0bmy9Umf2gkgHwSjwWbyaVLH3uHrFt2Wa1PsbN+fMGZvKHyvBQAAADSdzZs3D3nd1lbne2AAAAAAAAAAAAAAABoEldAAgAIkKDKtJAxGk8xBVjUKSErBt+JEgtHKIU3QmLVIPiXjvilQ9I4tGM1peF5Epr5EQE05xA2QOuEOadIJ0opfRN+mWucP4rmflUuS+1qW53jXI6RzF0mrHpQeflf4e2pd2R0PbliD0UKuS1GCZoM+rifNyDSXNvUF29hp8JgmyTg8TSAy8uVTGLStr/nUTgD58O3ZI/xSbZFmvE96/rqR69Y+Lr3xsjTugBg7dPTcxvr9Cc+KGgrfawEAAABeC4JATz31lF566SWtWrVKXV1dmjRpkvbaay+deOKJGjt2bOx91mo8swQAAAAAAAAAAAAANCcqFwEA+UtSZJqm2NlUnB1QQFIKppCNoooTqwyfSiHVNcNl6JWhSJHie//YzknVg2A0U19KEj6K/MUNRhsYy8QJjKl3v3IZAonsJblPZD1maR8vTT1Pmni8tOa3I9f3EYzmvcBBMFqth/FxMzLNpY3BaLZ7zqAxDcFojc2rOQ/BaAAGqRnmZ1WC0fCmGReHB6NJ0qLbpcMN62JJ8cMwkuz3NoLRGgrfawEAAABeWrNmja677jp9//vf1+rVq0Pf097ertNPP13XXHONjj32WOO+lixZohkzZhjXn3baaaHLb731Vv3N3/xN6Lprr71W1157rXGf8+bN06mnnmpcDwAAAAAAAAAAAABAEaiEBgDkL1EwWorCVFOhPgUk5WAKj6mOyrcdA0zF/vCLr8FoprAHiu/9Y+tDTsPzIjL2JYpdS6GvM977B8YycfpevftVjXFQuSS4T7gas5jGYHED/5C/WsxgtCj9jjlVczKdd2NInuUR9JAxTZJgNMbRpeHTubKG8DGeBpqOaRxb1I8ywD/j9u8PiA6z+HtSLc5zSEf3mYotWM2jezDSIxgYAAAA8M4999yjmTNn6oYbbjCGoklSd3e35s6dq+OOO06XXXaZenv5jgUAAAAAAAAAAAAAABuSPQAA+cu7GNYUChHU+v9ZC2JRuFpX+PKiihONxf5vCoI6hWjIRaoCMZfXBNO+Kb73jrUPeXDfMF1nfAqcgFncAKntY5kYfa9eKBZhRuWSJPSw3pglKdMYzDRmgz9swWi1kOtSlIAHriXNyRSuabr3WIM9B93bkszNCYYoEZ/GqZY5O+NpoPn0efbsEX6aeYm05rcjl3f+SXr9AWmPM9PtP/XzZNu9jeeODYWgewAAgGzUeqWtrxbdiubQMdXdd1Ye+O53v6tLL71UtdrQ54r77ruvDj74YHV0dGjZsmV64okn1Ne343n2t7/9bS1btkz33nuvWlsb9/8fAAAAAAAAAAAAAADS4Bt1AEABci4ytf2BXdBHMJrvTOExRRUnRgmaqbTl0xaYpQlIsAY3pESYVXnYzonLPhIZIXulljQYLU7fq9a5FxFmVDIJ7hP1xixJtYwKX24KlIA/bMFoYdelKOMp2z7RuEz3ENPc2zbnHjw+Jhitsfk057H1NZ/aCSAfYQGxEsFoGGqfv5Ke/IfwQOhFt0UPRnMWUmYLVuNZUUPheQ4AAEA2tr4q/XRG0a1oDuculsZOL7oVTjzzzDO6/PLLh4SiHX744frGN76hE044Ych7V69erc9+9rO6+eabty+bO3euPve5z+m6664b8t6pU6dq8eLF21/feOON+trXvrb99V133aXjjjtuRHsmTpyoU089VZL02GOP6cILL9y+7oorrtDHPvYx4/+W3Xffvc7/WgAAAAAAAAAAAAAA8kcwGgAgf3kXmdpCIWq99YNDUCxjMJohlMO1eiEjfdvoU15IcZ1xGnpFmFVp2EI2fAhGI2Sv3Po6471/IGgmTmBMvV9er1FIWypJPtuuxiNVwxgsLCAAfrEV0IeOuSP0O64lzcl03k1zJevYadC9LVEwGmOf0vDpXFn7mkftBOBerc8c9EowGgZrnyDt/b+kpT8Yue7Vn0jdG6X28SkOYAs2i7K5ZXtnYWwoBMHAAAAAgDc+8IEPqLu7e/vrE088Uffdd586OjpGvHfSpEn61re+pVmzZulTn/rU9uX/+q//qgsvvFCHHHLI9mWtra2aPn369tcTJkwYsq/dd999yPrBxo4dK0lasmTJkOUTJkwwbgMAAAAAAAAAAAAAgK8SVJsBAJBS3sWwtmAQWzgA/GAK2agWVJxYL2TEFOSGfNVSFIglCWSIvG/CrErDGozmwzSKkL1Si3uvqBfKmWQbxkDlkuQ+kaTfRGEKRmMM5D9T6IcUfv6iFNxzLWlOpvNuDEaLOnZKEoxGMER5+DTnsfQ15mYok84V0jP/JN13vDT3z6SXv04AUly2cN+inj3CXzMuDl/e1ykt+6+IO3H1GbUFq3FdaCiEUwMAAABemDdvnp566qntr8eNG6e77747NBRtsE9+8pM655xztr+u1Wq64YYbnLUTAAAAAAAAAAAAAIAy86GiHwDQbPIuXLaFQlDI7z9TyEaLIZTDNVvQnkQoiC/SXGcqLdm1YwTT8Jvie+/YAhGc9pGICNkrt7j3ioFQzjjb1QvFopC2ZDwKRmsxBETYQiXgB2swWufIZVHGU7Z9onGZ5tHGuZLtEfSg61uS8FmC0crDp3Gqta8RHoMS2LxYeuJyac4M6YXrpbWPSet+J83/B+n5LxbdunKxzbFM4140r93PlMbsGb5u8e0pd24LNouyOfe2psF3WgAAAIAXbr996DzwIx/5iPbc0zBnHOZLX/rSkNd33XWXurr4ng0AAAAAAAAAAAAAgOEIRgMAFCDnYlhbKASF/P4zBqMVVJxYL2SEYDQ/+BqMZipSDChQ9I6tD/kQjGacytGXSiHuvWLg3hMWXGQyEKZmQiFtuSQJk6kX5pqUKZy2j4IN7wW2YLRtI8cjUcZTXEuakylc0zRXqlrGTkHaYDSPwrZg59W5soTPeNVOYJiNL0iPvl+6dz/plW+FB9Mu/DrPGOIgGA1xVFuk6X8dvm71I9KmV/JtzxDc25pG0ufe9AMAAAAgU4888siQ13/914b5YojZs2fryCOP3P5627Ztmj9/fmZtAwAAAAAAAAAAAACgURCMBgDIX94FGLZQCFNBN/wRVuQpSVVDKIdr9YLRagSj+SHFdcZpMJqhSJHCNP9Yg9E8mEbRl8otTsCZtGMsEysYrd79ijFQqST5bNcbsyRlGoMRDus/ayh0MHJ9lH7HtaQ5mQLxjPcey9hpyJgrSTBaikBk5MyjcaptPM94Gj5aN1/69buln71FWvKf9mvftlXStpX5ta3sbM/xCEZDmJkXm9ct/l6EHRiCC03PeSKzbU9YYkNJGk5NmDkAAACQmfXr1+uPf/zj9tcTJkzQQQcdFGsfJ5xwwpDXv/vd7zJpGwAAAAAAAAAAAAAAjcRRlSwAABZ5F5naQiGSFpEgP6YAh2p7vu3Yftw6wydCQfyQJiDBaeiVad8UKHrHdq9yGZ4XGX2p1OKGaA6MZcbF+IP6eqFYjIFKJsFnu96YJSlTQIQpzBb+sAajqf/a1DJojB1lPBXU2ScakykQz3TvsY2dBo+5kozDCUYrD58Cx6x9zaN2Aqselp6/TlpxX7ztfPq8+c72HI9gNIQZf7C06zHSupCC9UW3S4dcU0ygvi1YLeBZUUNJGk5d2yZpTKZNAQAAKLWOqdK5i4tuRXPomFp0CzK3evXqIa/3228/VWIGXh944IFDXq9atSp1uwAAAAAAAAAAAAAAaDQEowEACpBzcZ4tFIJQEP+ZCt2LCiaqFzRDMJofUgWjOexbpj+GpWjZP7Y+5EMwGn2p3OLeKwbGMuMPlnaaJm1ZGmGbNvt6xkDlkuSzXanTB5KqjgpfTjCa/+oFo/Vtk9rG7XgdZTyVtCgf5Wa6hxiD0SzhIIP7WaJgNMY+peHTubL2SY/aieYUBNKKuf2BaKsfSbgP+nFkq35tXkcwGkxmXhwejLZ1mbTqIWnKaeZtnYWU2QrwCUZrKL2bEm7XKbXvkm1bAAAAyqzaKo2dXnQrUFLr168f8nr8+PGx9zF8m3Xr1qVqEwAAAAAAAAAAAAAAjaiAn6wGADS9vIvzbEFWFPL7z7tgtDrHJRjNDzVPg9GMw2+Klr3jezCasS9R7FoKfZ3x3j8wlqlUpONuj7eNCWOgckkyfraFA6fRYghG6yMYzXtBhGC0Ie+P0O8IWWxOpvNuuu5EDaFKFIyWYtyPfHkV1EQwGjxU65OW/Uiae5T04NnJQ9H6d5ZZsxreyzea11UJRoPBtAukanv4ukUR5+wj2ILN0m7Ps6KG8uzVybar8b0FAAAAkJVgWOh1xfSjZjFksQ8AAAAAAAAAAAAAABoNwWgAgPz5FIxGIb//TMEtrsI+6qm22dcTjOaHNAEJSQIZ0u47oEDRP5Z7lcs+EpXpD6MJciiHuPeKwfeeKaf0F2HX3abOfZIxUMkk+GzXC8dLqmoKRmMM5L1a3GC0COOpevtEYzLN0UzXnV0ON+9r530HvSAYrbF5NE61FhkyN0POaj39QUo/f4v0yF9K659Ov0/mhdH1bDKvq/cMEM1r1G7SXu8MX7f8R1LPZsvGju4zUYNoUW7b1iTfljk7AAAAkJldd911yOuNGzfG3sfwbXbZZZdUbQIAAAAAAAAAAAAAoBF5UNEPAGg6SQpxJr01+fFswSCmgm74w1ToXmnJtx0DWkZJE08wr69RYOSHFAV/TvuWqQCfAkXv2EI2fAhGM07lCHIohbhBQsODZsbuG/6+4dsc9sXs2oBiJRk/uwqRbRkdvrzW5eZ4yE69uU+SYDRCFpuT6bybrjsdU6Vdjx65fNKJ/cEiAxKNsRhHl0aRoSxHfGXYAsJj4IHeTmnhN6V795Meu0R646Xo2044VDriq+b19OPo2nY2r7OGKKLpzbwkfHnvFmn5fyfYYcr+VqmYn2nWutPtG/74073JtyUYDQAAAMjMpEmThrxeuHBh7H28/PLLQ15Pnjw5VZsAAAAAAAAAAAAAAGhEPlT0AwCaToLivFkfSn644WEig1HI7z/TObKdV9cOu868jgIjP0QJ8jBxGYxmCnsICLPyjm+hjMOZCrQpgC+HuOOP4UEzpmCqIdu0Sfu8J7s2oFhJPtuuxkoto8KX9xGM5r2gTiBikmA0gqabk+m82647J9wpdey94/VO06Xj/3PY9gkeVacZ9yNfRY5TZ/7N0Ne2vsZ4Gq71bJJe+LL00xnSkx+RtiyNvu1ux0mn3Cv9+TPStL+yvJFnDJGZnuPN+rt824Hy2ePt0mhD0fqi2ywbOvx8towJX97X6e6YyFeac8ncDQAAAMjMLrvson333fFDVhs2bNCLL74Yax+PPvrokNfHHHNMJm0bUCHwHQAAAAAAAAAAAADQAAhGAwDkz1RkOuFQadoFI5dP/2tp2oXJjzc8TGQwikH852M40ZRTzOsIRvNDqmA0l0Nk0x+fUnzvnZrp2uPJFMrYDgrgSyHu+GN40EyUYLRKq7TzvuaQGsZAJZPgPmEbA6dRNQSj1RgDea9WLxhtWJF9lHAgQhabU5Lw6nH7Se98RXrbw9KZj0jvXCiNnT7sTQSjNbYC5zyjdhv62jqmZ24GR7rWSgs+L82ZJj3zf6Rtr0ffdve3SWc8IJ31qLTXOW8GZRPwlwnTc7zJp+baDJRQta3/e4swqx6UNi+Jt78sCtZNwWi9BKM1jDT9hLkbAAAAkKkTTzxxyOs77rgj8rYvvvii5s+fv/316NGjddRRR2XWNkkaNWro93ldXfzAEQAAAAAAAAAAAACgfDyp6gcANBVTcV61XTrhDumsx6UDruj/946npONvl6opQrBsxdkUg/jPFNziKuwjqvGzw5cTjOaHVMFoDkP3TAX4FC17yHBOigxlHMJQCElfKoe4448RwWiGYufBBu6Tuxr+iJ4xULkk+WzbxsBptHaEL6fY3n91g9GGjWOjjKfq7RONyXQPqTdHa2mXJp8kTXprf5jIcEkCaAlGKw+vxqkESiFHnSukpz7ZH4j23D9L3eujbzv1POmsx6TTfylNOW1oII7tmkk/js70HC9KGDUw42LzusXfC18eOAy0N83Vhgcgo8RS/GkHz4EAAACATL3//e8f8vqmm27SypUrI2171VVXDXl9wQUXjAgyS2vChAlDXq9YsSLT/QMAAAAAAAAAAAAAkAeC0QAA+TMVLleq/f8m/pl01I39/3Y9Illx9JD9EoxWasb+UnA4kalAkmA0P5QtGE0OiyKRjK/XngH0pXIzhX6aDA+aiVKkPzD+MYXUxG0DCpbgsx0WOpQFUzBf31Y3x0N26oWY1RIEozGfak6me0jaQMZEwWiE/5SGT+eqYggZlsR4GpnZvFh64nJpzgzppa9KvVuibVepStMuks5eIJ18jzTxWPP7jDz6vPlu+PhnAMFoiGKXQ6Vdjghft/j2mCFotntTRMzVGp91DFMHz4EAAACATJ1++uk6/PDDt7/euHGjLrzwQnV22sOpb7jhBs2ZM2f760qloo9//OOZt2/mzJlqb2/f/nrevHnq6eHHbgAAAAAAAAAAAAAA5ZKyWg0AUlj3tNS9tv+/BxeI7DRdGrdfIU1CXkzFeY7yOm2FghSD+M/XcCKC0fyWqujeZXawoXjNp5AA9DOGwfiSLU1fKrW4QULDg2ZMxc6DDYRiVQzhWIQZlUuSz3bagCKTlo7w5UFff/CWq0A2pBfUKXgZPo6N0u+YTzUn0z3EFMYZWZJgtBSByMiZT+NUS6gI42mktfEF6fkvSUvvjHeNqrZJMy6RDv60tPOsKBuYV9GPowkC83M8gtEQ1YyLpfVPj1y+eZG0+hFp8kn5tcUYjGYvykeT4DkQAAAAMMTKlSu1ZMmSRNtOnz5dkvSd73xHxx9/vLq7uyVJDz74oE466SR94xvf0LHHDg27X7NmjT7/+c/rm9/85pDln/70p3XooYcmaodNe3u73vrWt2revHmSpGXLluncc8/Vhz70Ie23337q6Bj6fd/uu++u0aN5HgIAAAAAAAAAAAAA8AvBaACK88yV0spfjFx+8JXS4dfn3x7kx1ScV3UUdFWp9AdDhBV+UAziP9M5chX2EVXV8AeBNYLRvJAmIMHVtUgyBzUODgiFH0z3qqJDGQcYQz/pS6UQd/wxPGgqSpH+wH3SFFLDGKhcfApGazUEo0lS71apfbyb4yK9WtxgtAjjqXr7RGMyBeKlve7YQs1NCEYrD5+CmioV9YejhYydfWonymXdfOn566TlP1GseVnLGGnWZdJB/yh1TI2+XYWAv9Rq3eZ1pud+wHDTL5Ke/mT4HHvx7SHBaKbrg+UzHZUpGK2XYLSGkSaYmlBrAAAAYIgLL7ww8bbBm3/fceSRR+qmm27Shz70IdVq/c9j5s+fr+OOO06zZs3S7NmzNXr0aC1fvlxPPPGEenuHjsvPPPNM/cu//Evy/xF1fOITn9gejCZJc+fO1dy5c0PfO2/ePJ166qnO2gIAAAAAAAAAAAAAQBIJqs0AAEjJWJzn8LY0PFBkAMUg/jMVuhcdTmQKpRkeKIFipAlIcNq3TEWOFC17x9SHXAbnxWLoSxTAl0Pc8cfwoJkoRfoDgWimkBrGQOWS5LNtCsVLy1RsL0l9W90cE9lwEYxGyGJzchVebQv5MbaFsU9p+HaujEF8nrUT/lv1sDTvHdLco6XlP1bkULS28dLsq6XzlkpH3RAvFE2qEyZJP47E9gwvShg1IEmjJ0l7/UX4uqU/7A+PzotprtZHMFrDSPPdA3M3AAAAwIlLL71Ud999t8aOHTtk+SuvvKI5c+bo7rvv1qOPPjoiFO1v//Zv9bOf/UxtbYa/Z8vAOeecoy984QtqafHlbxwAAAAAAAAAAAAAAIiHYDQAQP5MxbDWgr6UTAXaFIP4zxTc4irsIyqC0fyWJhjN5RDZdJ3zLSQA/oYyDjDeMyMW4aM4QU2xz9Pw891qCabavk2dYDTGQCWT4D6RNqDIpLXDvC7Pon/EE+XaM2IcG6HfcS1pTqbzXsQcLdW4H7nybc7D3AxpBIH02v9IvzxJuv8UacV90bcdNUk67Lr+QLTDvtAfqpSI5dkF/TgagtGQlRkXhy/v3SQt/8mwhQ6f2xCM1vhqKb57qBeUDQAAACCx888/X3/84x91xRVXaOLEicb3tbW16ayzztJvfvMbfec733Eaijbg6quv1oIFC3TllVfq5JNP1u67764xYyJ81wwAAAAAAAAAAAAAgAcKThQBgDAEejS+AoLRTAXaFPL7z9dwIoLR/JamCNhl3yLMqjyMfciXbOlK+GIK4P1nCvw0qbRKlWHnuxqhSL/65h/Sm8ZAcduBYiX5bLsKKGqxBKNRcO+vKEXww4vsaxECpyiub06me4irQEYbgtFKxLdxqmk8zdwMFrU+6dWfSM9fJ61/Ot62HVOlgz4l7ftBe9BsVLbnqMwLo7EFDBGMhjj2/Atp1G5S19qR6xbfLs14b/19DJ/3J2G6tjBPaxxpvnvguzAAAAA0uSVLljjd/+TJk3XjjTfq3/7t3zR//ny99NJLWr16tbq6ujRx4kRNnTpVJ554onbeeefY+77mmmt0zTXXJG7bwQcfrOuvvz7x9gAAAAAAAAAAAAAAFIVgNADFyaLQA+VURNiMqUCbUBD/mQp2iii6H4xgNL+lCUhwGrpHmFVp+BrKOICQvfKKW4gaFm4VpUh/4D5pul9SEFsuSe4TrsZKtiCP3q1ujon0ogSY9Q4LTIgynmI+1ZxM9xBXgYw2jKPLw7dzZRxPe9ZO+KHWIy25U3rhS9IbL8XbduwsafaV0vT3SS3t2bWJYLT0bM/wCEZDHC3t0rSLpIVfH7lu5f3SluXSTnv3v3YZwNkyJnw5wWjlEgTSxuekLUulSW+V2nfZsS7Ndw/M3QAAAIBcVKtVHXPMMTrmmGOKbgoAAAAAAAAAAAAAAKVHMBoAPwWB9OL/Jy3+Xn8AyT7nSwdfJVU9CSNBOqbiPFtBX1qmAm1CQfznazhR1VAgWSMYzQupgtFchjQSZlUavl57tiNkr7Tijj3Cwq1Mxc6DDYx9TGOgKCFJ8EiC+0S1LftmSPb+10cwmreCCJ/54ePYKOMp5lPNqXdL+PIiwqvTjPuRL+/GqYa5mXftRKF6O6VFt0ovfrk/oCaOCYdKs/9J2vt8R8+0bc8ueMYQCcFoyNLMS8KD0RRIS74vzb6qzg4y+CEh01yNAOvy6O2UHj5PWvnL/tfVNum426SeTdLax6RFtyXfN3M3AAAAAAAAAAAAAAAAAAAAlAzBaAD8EwTSgs9Jz39hx7INz0obfi+99QdSJYMCERSsgGA0U4F2jWIQrwWBudDdFPSSl1ZDoZmtqBL5SRWM5jL4ijCr0igixDMOQvbKK+7YIyzcKkqR/sDYxzQGoiC2XJLcJ1wFFFWqUnWUVOsauY6Ce39FCUMcMY6N0O8IWWw+G18wrytijkYw4LiqPwAAIABJREFUWol4NucxjaeZm0HqD6D5w7ekl74qbXs93ra7HSe95Wppz79w+xzbNjelH0fT12leZ/pBBMBklyOk8W+RNj43ct2i26SDr3zzmuDwuY0pGM3W1+GX57+4IxRN6p9vPfrebPbNcyAAAAAAAAAAAAAAAAAAAACUjCdV/QCakykcpk965f+OXL7sh9JL/+a2SciHsTivgGA0ikH8ZivkdBpeFYGpQJJgND/4GoxmKlxeMVfavNjdcRGfqQ8Vfe3ZjpC90oo79ggbw5iKnQcbCFQzhdQQDlsyCT7bLgOKWjvCl1Nw768kwWhRxlPMp5rPq/eY17kKZLRZMVda8Hlp5QP9wdrwl2/jVGOolGftRL661vZfU+ZMk575dLxQtClnSGc8IJ31qLTXOe5/3MMa2k0/jsT2DK9lVH7tQGOoVKSZl4Sv27RQWvt4vR2kb4PxhzyYp5XGwpvc7ZvnQAAAAAAAAAAAAAAAAAAAACgZgtEA+Gfbyv4itDBPf1Lq2Zxve5A9UzGstaAvJVMwBIX8frOFMRQdTtRCMJrX0hTdu7wWmYbfW5ZKP50p/ea90YJL4J7vwWimfupb4ARGiluIGjaGMd2DBhvoq4TDNoYkn22XAUWmcL6+re6OiXSSBKP1bIqwX64lTWfZf5nXFRGMJknP/bP0wBnS7y5nLOQz784NQcMYpHOF9NQn+wPRnvtnqXt99G2nnied9Zh0xv3SlNPcB6JtZ3l2QT+OpmtN+PJqu+NnQ2hY099rfm606LY3/8NhkKtxnkYwWmn0bHS375e+KnU73D8AAAAAAACA1Hr7Av36D4F+8Tw/CgYAAAAAAAAAgEQwGgAf1QsVeuPFfNoBd4xhMw5vS6YCbQr5/WYLbSmq6H4AwWh+s4Xq1eMy+KpegfTSO6WF33B3fMRQQIhnHMb7GsF63osbSBZ2riMFo1XN20vS0rvitQPFSvLZNgUDZ6GlI3x5L8Fo3oobjBYE0ron629DyGLz2bDAvK5W8FzolZulNb8ttg2w8CyoyTiup8igqWxeLD1xuTRnRn9gTO+WaNtVqtK0i6SzF0gn3yNNPNZtO01tMCEYLZqnPx2+PMp8CwgzZndpj3eEr1v6A/tz4yxCFY3Pq7vS7xvlt+kP0o8mSIu/X3RLAAAAAAAAAAyyaVug/54f6JJba9rjkzWd8pWarvox3/UAAAAAAAAAACARjAagUIZCj3qhQlEL1OAvU3Gey7AZUzAEhfx+s4VbuQyvisJUaFZ0GAD6+RqMFmX4/fLXHB4fkdVMIZ4FX3sGtIwKX16j2NV7WQSjVdujb28LxyLEqjySfLZdhsi2GoLR+uhT3opy7Rk8jt20MNp+CeRsPrsebV43aqK747buFO19K+931wYkFwT+BTWZnkH51k64sfFF6dH3S/fuJ73yrehjrWqbtO+l0jkvS2+9Q5pwiNt22lhDlOjHkfRuCl9OMBrSmHlx+PKejdKrc9weu8qzIkTw2/dJmxcV3QoAAAAAAAAAku55OtCkT9T0lzfX9L3fBlr7ZonE08ul5ev4QScAAAAAAAAAAAhGA+CfekUa9YLTUAKmYDSHYTOmYAgK+f1mC3CwBb1I0uFfDl9+0KeSt2cwU5Ek1yg/pApGczhEbokQZrRlibvjIzpTH/ImGM10DaLY1Xtxxx7VtpHLKpXo16q2ceZ1656M1xYUJ8lnO6zvZMVYcN/t7phIJ8q1Z/A4dv0z0fZL0HTzGTvLvG787PT7n3pe+PIDroi2fffG9G1A9lzfHw65NsFGBKM1pXXzpV+/W/rZbGnJf0Z/dtAyRjrgY9K5i6Rjvy3tbLkW5soQjkY/jsY0p9q2Kt92oLHs9U6pfZfwdYtu7w8LDWULO4yI59WIatmPim4BAAAAAAAAAElH7CN1G/7s4h/u4vseAAAAAAAAAAAIRgPgn3pF/xRxlJ+xOM/hbckUjEYhv99qlgLVeuFEU88dGdpRaZH2fnf6dklSlUIzr6UKRnMYfGXqN/CPMRjNkymUMZSIYDTv1WKOPVrGhC+f8X7zNnu8Y8d/736m+X29W+K1BcVJ8tkeNTn7dgwwBdTG7d/ITxAlGK1z0H9HHNNyzpuPbZydRSDjwVdKrWOHLtv/o1LHPtG2rzEf81KW8+Th/aw6Ktk83zSuJ1CqMa16WJr3Dmnu0dLyH0syBRMN0zZemn21dN5S6agbpI6pTpsZG/04HdO1afZn8m0HGkvLaGnaBeHrVt4ndb7m7tg8K0JUCz5XdAsAAAAAAAAASJq2W0WHGb5+mvOsVP27Ph16TZ8+cHtNP1sQqFaL+B0XAAAAAAAAAAANwpOqfgBNqVIJX16vWJLQofIzFee5DJshvKGcbEX3prC7AeMOkE65V9p5v/7XO02T3voDaeKx2bSthWA0r6UpAnYZjNZqCDiCh0z3Kof9Iw5TsSvXIP/FDWU13W+O+Ko08YTwdQdfueO/J51k3jf9pTzqhUeHGT0x+3YMIHS4fGpRgtG2hf+3TZTANTQW0+d8vw9ns/+Jx0ln/kY66JPS9PdKx39POuprUoth7DMc9zY/ZXVe2neVTvzRjnn+uAOlU/+fNP7gBDszPJc0zQNQPkEgvfY/0i9Pku4/RVpxX/RtR02SDruuPxDtsC9Ioye5a2caBKOlY7o2TXprvu1A45lxSfjyoCa9/qvwdabvy+IwjZcYH2E4X374AQAAAAAAAIDeeZj9+fBzr0m3/ibQO2+q6Yq7AwUB4WgAAAAAAAAAgOZRJ1EEAApQ79fr+XX7BlBAMBrhDeVkOz9Rwon2OFN650Kpe4PUNj6bArMBBKP5zRaqV4/La1ELwWilYepDvgSjmYpdGSf5L6tgtFG7Smc+Ir3+gPTs1dK6J6V9PyjNulTa9agd76u2SKMnS9tWjdwH96zyqHXHe/++H3TTjgHVtvDlhA77K3YwWmfE/XLOm47pPlYvuDqOXQ6VdvnK0GWmUNjhkgRJwr1aRmOOSlWaem7/v55NUtvO6fYVhkKC8gtq0vIfS89fJ61/Ot62HVOlgz7VP5Zq7XDTvkyZnl/Qj+sKauYxtmkOBkS12zH94Z1vvDRyncvgQuPzasZHGC7D70kAAAAAAAAApHLuYRV94WfRvtv5xrxAHzm1ogP3cNwoAAAAAAAAAAA8QTAaAP/UC/QgwKH8jMU/DsOIqoZbHoX8frOFW8UJJ2qfkL4tw5kKzWrb+gupswxhQ3ypgtEcBl9RXFse3gejUexaWnHHHrbrRqUi7X5G/z/rPgyhjFGDj1C8uKGHO89y044BhA6XT+xgtIjzbs5586kVNEYyhcIOl1UAF7KV1bO8wWFmaULRhu9rCIeBNXCr1iMtuVN64UvhYUQ2Y2dJs6+Upr9Paml30z4XjAF/9OO6bHNnnt0grUpFmnGx9OxV+R7XFCRLiD6G47sLAAAAAAAAwBtHTZMOmCK9/Hq09z+0MNCBe/CMDwAAAAAAAADQHBwm0ABAQvWKJQlGKz9TcZ6xKDUDhDeUk+38mMLu8mIqkgxq9CsfeBuMZggngn+KuFfFYSt2DaL9giQKEvcekcV1wxikx7i6NOKGHlYdhzmYxmGMgfzlKhgtyn7RWEyfc9fzM9PYZzjubX7K7LxkORYnUKph9HZKC78p3buf9Ngl8ULRJhwinXCXdM5L0r4fKFcomkTAXxq2IE2C0ZCFGe+L+QwpgyI24w95dHN/wzAUTQIAAAAAAAC+qFQq+p8roj9PXrvFYWMAAAAAAAAAAPCMJ1X9AJqT4Q/v6xVL2oqWUBIEoyGimiXcymV4VRS2IkmK8YuXptjPh2A0W99HPkzhekVfewa0WMJBCKnxWy1uMFoGRfmmkCzuV+VRixmM1uo4iNM0tub6468gwrkZPNeOOu9mPtV8jGMkx8FotrHPYNzb/JTVeclyLG56BkVwTHn0bJJe+Ir00xnSkx+RtiyNvu1ux0mn3Cv9+bPS9AukqifzvNjox4nZrkuuQ4bRHDr2kqa8Ld9j2oJka935tQP+8+WHHwAAAAAAAABIkqZPrOj1r1Y1fbf6712/1X17AAAAAAAAAADwheOKNQBIoK9O0T9FruVnKs5zWYxRNYU3UMjvNVvQguvC+3psRZJ926S2nfNrC0YyBTZE4vBaFDXgqNYlVTvctQP1+R6MZi123Sa1tOfXFsQTN0Qoi2A00z4IHC6PenOk4VyHOTC2Lp8o52bwXDvqvJtz3nxM9zHXYyTb2Gcwnhn5KbNgtCznaoYfbDCF+cMfXWull78uLfx3qXt9vG2nnCG95Wpp8qlSxdQHSoSAv+Rs16Us5mCAJM28RFr5i4hvzuCaZAuS7euib2OQBrgHAgAAAAAAAA1m0s4VLbq+RUvWBHpllfSub9a0NeQ3LzYQjAYAAAAAAAAAaCIEowHwT88G+3qKXMvPWJznMIzIFKIVN5wE+bKFWxUdTmQrJOM6Vbw0wWguQxpbxkR7X982qZVgtEIVca+Kw3oN6pLa8msKYoobIhT1upFkH72d6feNfNRiBqO5LnhnbF0+QU/99wwJRot4fYiyXzQW033MFJiYFYLRys3HYDQCpcqnc4X04lelV74l9W6Jt+3U86SDr5ImHuumbUUxfibox3URjIY8TH2X1DZO6nkjn+PVfV49Pp92oAQIRgMAAAAAAAB8NX1iRdMnSn99XEXffjgYsX7D1pHLAAAAAAAAAABoVASjAShQwj+8p8i1/EyBRS7DiExF2nHDSZAvW7iG68L7eghG81uqYDSHhWFxgtFQLOO9quBQxgG2cJC4AUrIV9zgqGoGRfmme1aNa00p1Pri39cIRsNwtQgBZrXu/v5WbYk+FmE+1XyMYyTH87OW9mjv497mp8zOSw7BaKKQwDubF0svfFladGu8uU6lKu1zgTT7SmnCIe7aVyjD8wsC/uojGA15aB0j7fMe6Y+31H9vFs8jeVaEqFx+FwcAAAAAAAAgExMMv6u7fmu+7QAAAAAAAAAAoEgEowEoHwo4ys9UnOeyGIPwhnKyhYAUHU5kK5KkGL94aYLRXIpaXEsfKp7vwWgtlmLXPsZKXos79siiKN+0D0IYy6HWHX8b12EOhA6XT5RgNKl/vl3tiH59YD7VfEzn3PUYyRb0MRj3Nj9ldV6yfG5k2heBUv7Y+KL0/PXS0jvjzfGrbdKMS6SDPy3tPMtZ87xAP06OYDTkZebF0YLRsmB9VsQYCYO4/GEQAAAAAAAAAJnYxRCMtoFgNAAAAAAAAABAEyEYDUD5UMDRAEzBaA4LqQlGK6eaLRit4GGMrUiS61TxfC0CbhkT7X30oeIVEeIZhy0chBBZv8UNjiIYDUk+067DHBhbl0/UYLS+bVJrjGC0qPtF4zDdx0yBiVmxBX0Mxr3NT5kFo2X53IhAKW+tmy89f520/CeSgujbtYyRZl0mHfSPUsdUZ83zCsFoydkC6aOGcQJRTDxBGjtL2vxKnTdmEFRVtf2QB8+KvBfEuOel5snzTQAAAAAAAABGpmC09QSjAQAAAAAAAACaCMFoAIqT9BfJKXItP2NxnsNijGpb+PI+CoK8ZgvXcBmkF4WtSJLrVPECS6hekaIG1dCHimfqQ0VfewYQzlhecYOjogYqJtlHX2f6fcO9JONV12EOpgAk+pS/ghjBaFL0c0kYXvMxjpEcP2aOel3rfM1tO5BMZsFoGT43Mj2XJFCqOKse7g9EW3FfvO3axkv7/710wBXS6Elu2uYt02ciz3CdklrzePjy6qjk31sAYSoVaebF0oLPuj+WLUiW70H8l+fzbK5zAAAAAAAAgPd26ago7DuftZulIAhU4TkfAAAAAAAAAKAJ8HPAAMqHsI/yMxWZZlngOpwpvGHpXVLN0wAl2IuBig4nqraai/+5ThXP22C0iAFH9KHieR+MRrFradXiBqNFDFRMsg+uNeVQSxKM1p59OwYzjYGW/1iqRQzgQr6inpfaQDBaxOtD3Gsays8Uhud6jBQn8HHjS+7agWR8DEYzfjVCMFqugkB67X+kX54k3X9KvFC0UZOkw66TzlsqHfaFJgxFk/kzQcCf3bY10rNXha+zzbWBpGa8X1K9ArUMCtgI0S+3XK/dFEwCAAAAAAAAvpsyLnz5G9ukVZvybQsAAAAAAAAAAEUhGA1A+fR1Ft0CpFZAMJopvEGS1j7h7rhIx1R0L/kRTkTQjL8IRkNaxhBPD649kj30aNvr+bUD8W14Nt77swhGqxr2sfy/pV7G1t574+X427gORqu2mdetesjtsZFM1GC0vpjBaFuWjly29TVp4TekJ/9Beu6L0hrmWw3FNEczhZFnJU5Qzas/cdcOJFPLan6T4XMj0zOo136e3TFgFtSkZT+S5h4lPXi2tPqR6Nt2TJWO+pp03hJp9lVS+3hnzfSe8VkqwWhWtgC+njfyaweax077SFNOc3+cSquMgVdJAreRsxyv3bVu6ZVbpF+eLP3XBOmZq7j+AQAAAAAAAJ45aA/zuhdey68dAAAAAAAAAAAUiWA0AOWzZXHRLUBam03nsKBgtJe+6u64SGfFL8KXV6pSxVDklSdTWE1mRd9IzNdgtDGWv1YZjBDQ4pn6kMsQzzgqVXMw0a//l/TGwnzbg2jWPim9+JV420QNVLTuwxKu9tA5Us3TayakjS9K886Kv12cAKEkbGPr5693e2wkEzcYLep4dusy6f7TpO4N/a9X/1b6f/tLT/69tPDr0oLPSL88Xvrjd+O3GX4y3TNch8dWY1zXTPNIFCer4Ocs+5lpXL/iPstzK6RW65EW3S79bLb0yF9K65+Ovu3YWdKx/yG984/SAf8gtXa4a2dpGPqxKegb/Tb9oegWoBnNuNj9MSoV81yQH2HwX57Ps7vXS0/8nbT611LPRumFL0n/NV56g+sjAAAAAAAA4ItJO1c0aefwdc+/FuTbGAAAAAAAAAAACuJJVT+A5pQw1OiNl/v/aB/lVOuRNiwIX+cybKZqCW947efujot0Xrk5fLktjCNPpqAZCs2K52swWtTCbYLRimcMRnMc+hGHLSBk/hX5tQPR/e7y+NvYQs0i78MSrvb6A9Lax9MfA268+OVk28UJEEq0f8tY7PUH3B4byQS90d43MI6NM55d9aD0+Af7//uJv5N6tww7dk166uNSX3f0fcJfpr7keo5mCoQNs+Y37tqBZDILRsvwuZGtz756T3bHQb/eTmnhN6V795Meu0R646Xo2044RDrhLumcl6R9PyC1tDtrZumYPhMEo9n5+swIjW2fd0utY83rs/oRkKrphzy6stk/3PHh2v3kR4puAQAAAAAAAIBB9p8cvnzlG/m2AwAAAAAAAACAohCMBqCc1v6u6BYgqQ3Pmde1jXN3XFvBqy8hWxipfdfw5TVPQhVMhWYEoxUvavjHcLuflW07wuz/9/XfU+tx3w7YGYPRPLpnmK6RkrT6kfzagWh6t0jr5sffbswe6Y9db4z1/PXpjwE3Ft2WbLs2S8F9Fny6FiKaqGOL7cFoMUNa//RTaetr0kbDfK/njWTXQPinqDFSnLCQKae7aweSyWp+k1cw2lOfyO44za5nk/TCV6SfzugPW9myNPq2ux0nnXKv9OfPStMvkKoehVT7wviZ8CBcx2e2Z0aTT86vHWgurTtJ+5zv/jgthpDsPoLRvOdDMNrKX0q9W4tuBQAAAAAAAIA37WR45NvrweNEAAAAAAAAAADyQDAagHJa83jRLUBS3evM6/b8c3fHrVoKXm3rUCxT8XSLIZAsb6Z2EIxWPFNgg02lKu3/4ezbMpwtzGpA0mA3ZMd0Dny6Z0w5zbyud7MUBPm1BfX1bJYU85yMntwfCJHWpBPs69c/lf4YKEZrSADaLkdK7bu4PS7BaOUTNZRo4P4Xdzxb65E2LLC/p29LvH3CT6YxUiWHwKKx+0Z7X8sYt+1AfJnNbzL8OsOncX0j6lorLbhGmjNNeubT0rbXo2875QzpjAeksx6V9jonXjBi0zF8JnwI1/GZ7ZnRnn+RXzvQfGZcYlmZ0bWuagpG43m195I8z3ahZ2PRLQAAAAAAAADwpjbD1/C9njxOBAAAAAAAAADANYLRABQnTVHbWoLRSstWkL/bMe6OawtvyKOAG8nUDAVbR30933aYEIzmr1rEwvsDPyFNOETa4x3SST+Wpp7ntl1StGC/qO2HO6Zz4FMY0BFftq+nGN4vpnvagNadhr4ePVk65WdSNYNxyq5H13kDYROltOc50qFfGLqs2iYdco37YxMmUz5BxGC0WsJgNKl+8BHjm8ZgOo95XBfe8rlo7+vrctsOxJfV57+S4dcZPo3rG0nnCunpT/UHoj13rdS9Pvq2e50rnfWYdMb9/SHQBKLVZ/r/iLmgne2adOAn8msHms/kk6Sdpoevq7ZncwzTc8ca4yPv+XLtZt4GAAAAAAAAeKPV8PVoD8FoAAAAAAAAAIAmQfUPgHJa+7gUBBTIlZGpWH54GEjWrMFo3A69ZQpkGDUx33aYEIzmr3rBHAOO/KrbdoSpjqr/nqjthzumc+BTGNDoydLbHpLuPyV8fdArifBPb/R2mte9a7nUvqu09AfSpoXSTtOkff5KGrVbNseuVKQJh0kbns1mf/DDPu+WZl4i7TxLevUeqXWsNO090sTj3B+b8XP52AKqBwtSBKPVC6NifNMYAsNfWOdxXWgdE+19BH/4J6vPf5bB9j6N6xvB5sXSC1+WFt0a7zNYqUr7XCDNvrI/tBzxGMMCPQnX8ZXpmjT1XVwb4FalKu37QWnBZ0auy+pHY1oMzx0JjvWfaZwtSQdfKb3wpXj7O+DjUuefpGU/jLcdY2kAAEaoVCozJB0uaU9JYyWtkLRU0qNBEPUXKZy0a1dJR0uaIWmC+n8FZ6OkVyX9LgiClUW1DQAAAEA2Wg1fj/byVRAAAAAAAAAAoEnwF/4AyqlrjbRlsTR2ZtEtQVymX5t3XURtK2qj4M1fpkCGlogF8a4Zg9Es4TdwL/D8rz5MBYqDERxSPNM58C0MqKXDvC7olRShvyEfNUvIUOtOUmuHtO/fuju+9d4ZuDsu3Km+OQ7Z6y/6/+V6bM+uhagvTjBarTfZWKR3S502ML5pCMYxUg5hrFXD/Gs4whz8k1kwmikEKsm+CBDOxMYXpeevl5beaQ90Ga7aJs24RDr40/0hr0jI8Jnw/blI0YoM+QQO+sf+oKoNC3Ysm3yytM97stm/abxkeyYBT1iu3XucFT8Ybe93SWNnxQ9G47sNAAC2q1Qq50v6hKTjDW9ZV6lU7pb0uSAI1uTUpoqk90j6iKQT67z3aUnfkvTdIODLZwAAAKCMWqsVhf1dV2+Mr+UAAAAAAAAAACgz/sofQIEq6TZf8zjBaGVk+nvLapvb49oK2yh681NQk2rd4etMgWR5MxWamQLdkA/fQzei9F/f/zc0g6KCPOOyBTrQj/xiuzdEDXpJw5d7J7JT5Dn17VqI+qIGo9V6k49lezfb11N71xhM44s8AhOjXveYj/knq3FppsFo3MtSWTdfev46aflPFCtkt2WMNOuy/mCgjqnOmtc0TJ+JgOBjqyJDPoGW0dLbH5de+Q9p8yvShEOkaRdJLe0Z7d8QkN9HcKz3bKGWSZ4bVUcle27AWBoAAFUqlbGSbpF0QZ237irpckn/u1KpXBwEwX2O27W7pDslnRZxkyMk3Szp7yqVygVBELzirHFAA9i6daueeuop/eEPf9CaNWu0bds2jRkzRlOmTNH++++vI444Qu3t2czdli1bpm9/+9t66KGHtHDhQq1fv149PTu+x7n11lt1ySWXhG77xBNP6NZbb9Wjjz6q5cuXa+PGjarVdswnFi9erOnTp0uSTj31VD300EPb1wU8MwIAoHTaDF9d9PIbOQAAAAAAAACAJkH1DwC/veVz0rL/kt54ceS6tU9I0y/Mv01Ix1SQ77og1VbYRtGbn2zFWr6Eu5jaUaN4qFCB5z+HVzUUKA5GcEjxjEGenk2hbO2hH/mlr9O8Lo/7WtX2h/opA4tRjJYxxR2bMJnyCSIGowUOg9EI7GwMprF2HvPqyMFoBH94J7NxaYbBaL6N68ti1a+l578orYhZ6902Ttr/o9IBV0ijJ7lpWzMyhgVSDWNlupdxXUBeWkZLB/y9m32bnjsSduU/2zPt1gTz/5bRBKMBAJBApVJpkXS3pLOHrVot6WlJGyXtq/7QsYEvV6ZImlOpVN4WBMEjjto1SdI8SQcOW9XzZruWqn8yOFXSUZIGDwSOkjSvUqmcGATBUhftA8qqr69PP/zhD3Xrrbdq3rx56u01P8ccPXq03v72t+uDH/ygzjnnnMTHvOWWW/TRj35UXV3xnmP39vbqwx/+sG655ZbExwYAAOXTagpG8/xPZAEAAAAAAAAAyAp/5Q/Abx17SROPNQejoXwKC5qxFARS9OanogNkojC1g+KhYvkeBtUSIRiN4JDimc6Bb2FAtvbQj/xiujdUR0mVHILJ8jgG8lXkeIjxc/lEvSfUepOH/PZssq/3fYyGaEznMY8xUtTrXo1gNO9kNS7NMoDPt3G9z4JAWjFXev46aXXM+u5Rk6QDPy7t92Gpfbyb9jU1QzBaQDCalXG+z49noAEYf8iD8ZH3bNfuKD+0EbZNku1s38sAANAcvqShoWg9kj4h6dtBEHQPLKxUKgdL+g9Jx7+5aJSkeyqVyiFBEKxw0K4bNTIU7VuSPh8EwarBCyuVygRJ/0fSp7Vj4jhV0s2S3uGgbUApPfDAA7r88su1cOHCSO/ftm2b5syZozlz5ujoo4/WzTffrCOPPDLWMX/+85/rsssuUxAEsdt79dVXE4oGAEATajF8FdTLV0EAAAAAAAAAgCZB9Q8Av43ZS9r1GGnRbSPXbV2We3OQgaKCZmxFuBTD+skWLkYwGmx8D92oRui/vv9vaAaFBXnGZLuH0Y/8Yro3eHFPi//H98hBvUCLIvsOoRHerce7AAAgAElEQVTlU+uJ9r6gN/lYtrdOMFrUNsBfQSAFhp+ezmOMFPW610fwh3eyGpdWDH/5n2hfno3rfRTUpOU/7g9EW/90vG07pkoHfUra94NSa4eb9sH8mSAYza7IkE/ANdMPMjA+8p9pnC0lm/+3jJKqLVK1Ld5cjO82AABNrFKpzJR0xbDFfxkEwZzh7w2C4IVKpXKGpF9pRzjabpI+L+lDGbdruqSLhi2+PgiCfwp7fxAEGyRdValU/iTp64NWvb1SqRwbBMHjWbYPKKNrr71W11577YiAskqlooMOOkhTp07VbrvtptWrV2vZsmUjwtOefPJJHX/88brpppt06aWXRj7uVVddNeSYF110kT7wgQ9o7733Vltb2/blEydOHLLd66+/rhtvvHH76/b2dl155ZU6++yzNWnSJFWrO54RTZ06NXJ7AACA/9oMf57Ta3mcCAAAAAAAAABAI+Gv/AEUqFL/LWP2lHoMxdW17vDl8FtRhWe2ohKK3vxUIxgNCdU8/6sPU4HiYLYwR+TDeL/yLAzIFkJCMJpf+jrDl7eMybcdKI9694Ii+w5hG+UTxAlGM1yv6undXH/fKDfbZz+PMVKUgGHJPpdEMYxj62q8e0qmwWiejet9UuuRltwpvfAl6Y2X4m07dpY0+0pp+vv0/7N35mGyVPXBfk9Vr9OzL3fnLqz3sgUVRcBEEIOiohE3EpKoMaJGE4ggBpMP8YoGUZOg0cQVEp+AfqhB9CPKoiiCiBiQ5V7gwl2469zZZ7qn16rz/XG6Z+mZ6mWmp7t67u99nn6661TVqV8tfc6p5byFHVqa+IRpPP8T0lYrSSMln4Kw1Hi1l6R95H9KtYmsBdSphXsXdrRKMdoCzwcFQRAEYXnwcSA4Y/jm+aRoBbTWSaXUu4AngEKF/R6l1A1a6501jOvCouF+4BMVzPcl4L3AqUV5iRhNOKK5/PLLufHGG2eltbW1cfXVV3PJJZewfv36OfM899xz3HzzzXzuc58jnTbi6Uwmw6WXXkoikeDyyy8vu9xnnnmGxx9/fGr4da97Hf/1X/9VUcy33347mcz0c5LXXXcdH/nIRyqaVxAEQRCE5ibgcUsz68hLMAVBEARBEARBEARBEARBEIQjgxr2JBIEQVgComvM28zno5oH+QX/4LXfvPZzrSglRpNOb/6klFys0g7xS42I0fyJ36UblYj9/L4ORwJeQiK/yTRLxSOCPX/hVTf4QvZZgbBYqD/l6oJGHjul2taCP6n0/NnNLbwtmxUx2rKn1D6sRxup0nLPSS9tHEL1eLVLqz63r+HtDLkWNJdcEp79MvzwOHjoXdVJ0TpPgbNuhTc8Dce8R6RodcPjPyES29J4nu+LMFFYBni9kEHaR01AKQnxAtpAVv5YqPbagdzbEARBEI5QlFJR4K1FyZ8pN5/W+lng9hlJAeBPahgawNFFw3dprcs28LTWGvhhUfJxNYtKEJqQ//iP/5gjRXvFK17Btm3buPrqq+eVogEce+yxXHfddTz++OOcfPLJs8ZdccUV3HfffWWX/cgjj8wafutbi4uc2s973333obWe+giCIAiC0HwEPC4N5uRWkCAIgiAIgiAIgiAIgiAIgnCEIGI0QRD8iwpApE/EaMsNr47US90htdEduIXqKdUBxxcSGbw7cbvSeaih+F3WYnl0UJyJiEMaT6Pqq2opFY8cR/7C12I0wZeIGE2oJZWeP+tFiNFyZcRoIuxsfkr99/0kRnNF/OE7vOq0auuyhUhBPPPyWbu+kWQnYNtn4Y5N8MgHIbGn8nl7zoA/uAMu+B1svBgsEUvVFa//hIjRSuNVJkm5ICwHvK47iuzK/5Rsay+gfi1I8qoV0cqxIgiCIBy5vAZomTH8K611pcbwm4qGL6pNSFPEiob3VTHv3qLhrkXGIghNy7PPPsuHPvShWWlnnXUW//M//8O6desqyuP444/n3nvvZcuWLVNpruvyp3/6pwwODpact7+/f9Zwpctc7LyCIAiCIDQ3XmK0/SOQc0R8KgiCIAiCIAiCIAiCIAiCICx/RIwmCELjUKr0+Ohq07lLxGjLC6/O8Evd8axUpxK/SW4EQ0kxWrR+cZTCqxO3dB5qLH6XQdkViNFEHNJ4GlVfVUupeOQ48hdOcv70utVpZdregv8o9x8WMZpQDZWeP7uLEaNNlB7v9zaaUJ5S+7AeMqRKyz0nDVoeAvcVXnVa1WK0Gh5nci0I0kPw+LXwgw3w2FWQ6i87yxQrz4Pzfgrn/wrWXVj+Oq+wRHhtdxGjlcSrLVvLMkYQGoVX3SriWP9TUmq5gEc6CpK8attbXtevBEEQBGH589qi4fuqmPd+YObFjxcppVYuOqJpDhUNV1PBF087vMhYBKFpufLKK4nHp1/w0tnZyfe+9z1aW1urymfFihV897vfJRQKTaXt37+fT37ykyXnm7lsgGDQ43nIGs8rCIIgCEJzE/S4dfHoXgh9wOWln3L45Q65Ny4IgiAIgiAIgiAIgiAIgiAsX6T3jyAI/iW6xnx7idG0iNGaEq+O1EstmikllvCb5EYweAoZlHe5UG9EjOZP/C5rsSp4Vl3EIY2nUfVVtZQSOshx5C+86oa6ya3kIbimo5zIqpGiWL/XtcJcKj1/1rmFd4TPxkuPP3QPbP7bheUt+INGn1dXXGdqcywrn5w3Ct7t0qrFaDV8z4vf2vX1JHkQnv4n2PFvkEtUN+/aN8JJH4PeM5YmNqE6vP4TJeU6gmd9JsJEYTng9UIGR8RovqfUefZC2kCFMq3aawdyb0MQBEE4cjm5aPhXlc6otU4opZ4AXjQj+SSgCgN5Se4vGn5xFfO+pGj4N4uMRRCakqeffpof/ehHs9Kuv/56Vq1ataD8TjzxRK688ko+/elPT6V94xvf4Nprr6Wrq2veeVx34ddrFjNvLdi2bRtPPPEEQ0NDjIyMEIlE6OvrY8uWLZx66qmEwxW8HHAecrkcDz/8MDt37mRgYIB0Ok1fXx8bN27k7LPPJhJp4EuiBEEQBMEnBMq80+W3e+C1N7o8ea3Fxl55kZEgCIIgCIIgCIIgCIIgCIKw/JCn/AVB8C8FMZpXR1btmk8tO0UKS4+X4GGpRVclO5WUuXMsNIZSAhnlkxv4IkbzJ6WEDX7Aq4PiTPy+DkcCXvIGv3WULiV0EDGav2i4GK0Eyf2NjkCYj3L/4UYeO+XEaHu+A+vf7p82m1BetFfgmRvhhMsXtoyR/y09/sCd8Pg1cOrWheUvNJ6S59V1aCNVs4zhR6H3ZUsXi1AdnmK0KkUdIkZbHPFdsO0G2HkTuFUIcpQF698BJ10NnacsXXxC9XiK0USKXBKv+uxILBeE5Yflcd3RlevVvqeU1HIx97CqvXawUFG2IAiCIDQ/W4qGn6ty/ueZLUY7EfjpoiKa5l7gGeCE/PDvK6VO1Vo/XmompdRa4C0zkrLArTWKSRCaihtvvBE943pJb28v7373uxeV5+WXX85nP/tZsllz/yWRSPC1r32Nq666CoDdu3ezadMmz/nPPffcedNvuukmgJLxKY/7b7t27WLjxo1Tw+eccw4///nPp4Z1FdeM9u7dyw033MBtt91Gf7+35zEajXLuuefyzne+k7e85S3Ydvnzl+3bt3Pdddfxox/9iPHxcc983/jGN7J161aOP/74iuMWBEEQhOVGJdX3ZAaO/pjL3/6hIhqE1vxlYqWgJWSGlYJkBnIudERhPAnpHGQcCNmwrgtetVnR1ybP+QiCIAiCIAiCIAiCIAiCIAj+Qp7yFwShgZS5eday1nyXEma52coEM4J/aJRopmQHbpHr+RKvzlp+EMgUEDGaP/G7DKqSY9jv63Ak4CWn81tH6VLxDP4auotfBC80DK+OpdUKQRZMmbb3vjtg3RvrE4pQGeXqgkaWR+XEaA9cDKOPw+99qj7xCOWpVLqaPACPXbV0cTz5STjmLyG2fumWISwdpcqlegjHq5Et3nUGvOFpaD+h/LTC0uNVBlV9fl9LMVqZY9bN+U+KvFDGtsNT/wh7bilfh8/ECsKmd8GJV0HbsUsWnrAIPK9plpDrCN71mbw8Q1gOeF6vrkKIKTSIUmK0RbSBqm1vPfcVOPUTC1+eIAiCIDQhSqluoLso+YUqsyme/riFRzQbrbWrlPoLjGgtjLlA8l2l1Pla693zzaOUWgncDrTMSL5Oa32gVnEJQjPx4x//eNbwn//5nxMKhRaVZ19fHxdeeCHf//73Zy2nIEZrVrTWfOpTn+KTn/wkmUym7PTJZJI777yTO++8c46YrRjHcbjyyiv5whe+gOuWvn6VTCb5zne+w/e+9z0+97nPcdlll1W7KoIgCIKwLHhiX+Vi03++e3Evzulq0Xz/AxavPEHkaIIgCIIgCIIgCIIgCIIgCIJ/WCY9ewRBWJZE15hvEaMtLxolmuk+3XtcNZ1ChfrhJRfzkxjN8ojFS+om1Ae//6etCuotEaM1nkaJPKulVDyPfAiO/6v6xSKUxu/12mNXiRjNb5QTWVUjCKo1ldS12z4DW66CUMfSxyOUR2cbHcE0z30Nfu+TjY5CWAhuiePIb20kgOe/Di/6bKOjEMC7bV1tO6iW0qJyx6yTAqu1dstrBMO/hac+DXv/G6iiI4QdhWPfB1uugJZ1SxaeUAs8RDlaxGgl8RSj+bAuE4Rq8ZKvJ/fXNw6hetxSL/dZRBuo2vZWqt/UI/JCIUEQBOHIorNoeFJrnagyj8NFwzW9MK61flAp9QbgFqAPI157XCn1DeDHwB7Myf864DzgUqBnRhZfAeSi7AxyjmbfSKOjODJY1wUBu3H3tPbt28fu3btnpZ1//vk1yfv888+fJUZ76KGHyGazBIMlnnX0Mblcjosvvpjvfe97c8atWrWKU045hd7eXtLpNP39/fzud78jHo9XlHcymeSP/uiPuOuuu2alB4NBTjvtNNatW0c4HObQoUM8/PDDTE5OTsV0+eWXMzIywrXXXrvodRQEQRCEZuMlGxU/+N3ihGeVMjIJ7/2Wy/atFrbl3X5zXI2lQDXyuSVBEARBKCKZ0RwYhawDjgbXBVfDxh7oaFlYnZXKalwXoiH/13ta65Ixam22zwvDkMrC6g5zzeaFYbN+azogaIOVbwMk0prJDIRsaI/OXv9EWjM6Cd0xiAQhnYPBOPSPQyxk8g7aZj9obZaXc8HJ7xPHhUPj0BqGgGUuauYcyDhm2tFJaI/AizeArSCVg4NjMDgBqzshmYGJlIn70BhYCk5ZB2s7a7efMjlNOmfi2jNstsO6LhP/gVHzrTWsaDfrEQvPXW4mpwnaJqZsTjOegrH8O9Yd16x3LAQB22yH9ggEA2pqf2Uds/yADaGAv48/QRAEQRAEQRCEpUae8hcEwb9UJEYr/2ZCwWc0quPZUW+GX3mMKyedEBqDk5w/3UtG1gi8OhV5yW+E+lDpf3r925c2Di8qEXpKudR4GiXyrJaSHSM1ZMZESuQXvKSZ9arX1r4BDv7Ye/z4M5AahEhvfeIRyuNnSWbn75WfRjsw8iisPGfJwxEqwE/nzofuEjFas+KkvcdVIv+tBa3HQvy5yqYd/PXSxiJUjlfbutp2UC3FaOXyclIQbFIx2uH74alPwcGfVDdfsB2O/2s44TKI9C1NbEJt8ZLWiBitNF6S31qWMYLQKFqPmT99ch8kXoDY+vrGI1RBibJbWXD8h+DZf60+24UI+Seeh/bjqp9PEARBEJqX4gsAHg8qlKR4nrYFxuKJ1voepdQW4HLgEmBT/vflJWZ7GrhGa31breNRSq3ASNqqwaPBWn/2jcDRH5Pz53qw89MWGxt4+/GBBx6Yk3b66SVerlkFL3nJS2YNJ5NJHnvsMV760peybt06du3aNTXuX/7lX7jxxhunhm+99VZe/vKXz8mzt9dsrHPOOWcq7eKLL+bXv56+3j0z35msW7e4lxxcccUVc6Ror3vd67j22mt56UtfOmd613V56KGH+Pa3v83NN99cMu8PfvCDs6RoHR0dXHvttbznPe+hrW12kZlMJvnyl7/MP/zDP5BKmXvsW7du5YwzzuCCCy5Y4NoJgiAIQnNy+gZFVS9AWiTPHYbg+11OXQfpLDzTP/90loKWkHmno86H19sKtmWEJlkHwgEjRUnljChlfTd0RI0IJJGGgbiRffS2mumzDrRFjFwknjbzn3G04oa3KHpbIZmFyYwRr7RFYF2XQmtNKmukboNxM6+rzXiATM7E0BMzsVmWmSfnGEFLJGhiGU7AUMKsz6p2IyZ5YRj2j0IsbGLOOia9JWTkLLZl4pxIaXpbFas7oLPF5DeaNNuoIHtxXCNUCQfNekWCZl0Oj5v8bMtIT9rCZvp42myzeAo6WmDzKuiOiRBFEARhPh58XnPtHS73bC893dnHwNouRdYxgk/bUqSymkNjpg5J5Ux5nXNMORwKGPlWgaBtPq42ZXpvq6nXNKYu1Jh6J5GeFn31T8AJK0391NkCazsVsXxdNZaE/nEj7g9Ypi4IBUz9YCsYT00LxUYn4fiVZtzopKmTlJqWjOXc6fq4JWTyiwTNZzxlYspW8C7kcnS1QCJj1rOAlY/DL7SG4eKXKSxl4g3aRriWyeU/+d+WAssyAr2sY7ZjPK3Z0W/q/3iJxyTnY0UbrGw3++zgmMkzvcBHwCNBk89M1nVBX6tp44QD5ng9pk8xmX8seGOv2e/94zA6qUlmpsV0WQcOT5h13DVotsExfWacq818sbykLuuYbRgNwVAcJtJwxiZF0DbjtqyGaNAc2zp//A1MmPbQZAZWdShWtBmZ3lDcLCsaNNMVhIXpnDl+V3eYZR6egAOjmo29inDA/Bdslf+e+ck3hQ5PmGMeoNA6Umr6XeOWMulK5X/P+FbMTVvacWr+6a355ys5Tk2vW/E01Y6bE2uNxvldICk0H66rp87hCseX1hrHNeWCHHOCIAiCcGThs179giAIMyiI0VQpMVrWe5zgT7z2mbXEVVKgBWIbILFn7jg/SyeOZLzkYgvpyLNUiBjNn3h1cC3m+A8tbRxeVCKNkHKp8TRK5FktXh3hC2RHRYzmF3Ie/WgC0fosf8MfwyNlyr1cHBAxmm8oJclcVZs32S+Y1a+BQGv+mClBLlGfeITy+Kl9qn30JIxQHW6JJ34qkf/WgrUXwjP/XNm0XrJtof54ta2rPb+v6fWAMg9FeElt/YrWRoL71Kdh4JfVzRvug81/C8f9lZw7NBue54PSsbsknrJGn53vC8JC6D3Te9zAAyJG8zOlrmkrGzZ/GPb9ACb3Tqf3ngmD87wRaP07pn/bC7ju5Mi5vCAIgnDEUSxGW8hFgeILUUtlWy+cuFTSNe9B4FrgniWK5a+Ajy9R3oJQM/bt2zdreOXKlfT09NQk75NPPnne5b30pS8lEAiwcePGqfTOzs5Z061atWrW+GJaW6eLkUhk9nXRUvMtlLvuuosvfOELs9Kuv/56PvrRj3rOY1kWZ511FmeddRZbt26dE2eB2267jZtuumlqeMOGDdx3332e6xGNRrniiis488wzOe+880ilUmit+Zu/+RueeeYZLKvMMxKCIAiCsIz4g+PgpDXw1IH6LvfxfaXHu3quMKScQGTX4Pzpe0emfw8VXZp8pl/zn7/yfsZkppitEgpSj9qztM/BBCz44h8r3vdKaQcJgiDMZNeg5g1fdBmdLD/tA8/D7PK6dNldLLUqSDzBSKvGK7yC+PShmUMLry9m5+NNQZRVaXzVMDLPdvaTFA1Me+Tr99c/qMMT5lMLiqVoYF7ysG9kdtr9Oxa+ns8drmbaapazmG3vs4OpJizHdSpNpUK1+URySzFuqWR44ykjuJzMmLZ6d8xIDR13WlpZ7vtgXsxZ4HNvU6RzJt/WMHRGjQRxJGHmsZSph8ZT5rwmnRc+FtY9aBvJYSEOMBLPgQl45pAmkTGi54EJk09vK8TCakoUaSsjHUykNas6FBt7jUB62wFN1oFNvYpjVxjZZkfULKd/3IgSbWVEiCMJzYFRI/rMOuZcLZeXRIcC05LRcMDUKenctIQ6k8t/O2YZxWVqa14inZhx3rm2E/raTB7pnCk/07np34X5WsPTEu6p3xEjK52THoa2iJo7XwRiISPbFgRBEAShMchT/sKSoJTaBJwGrME87HUQ2AM8qLUWk5WQp8yJQMta822FvKeRw6n58OoMa5UQ4NWK4z4Aj/3d3PRKJUpCfWl2MZrW06+dEOpLpVKxvrOXNg4vrIDpzFaq7CklwxHqg2d91WSnUFo6xPsGL7mGVad6LdwNL/sKPPw+72n8JE4SStdnp36yfnHMhx2Cl34ZfvXnpaeTY8o/LHZfdL8Ejnkv/Ob9NQjmyLvZv2woKUarU3128t/D8MNG7FEOKYP8gy/FaGVoluNHu7D3+0aINvJodfO2rIMtH4Fj/tK8UEBoQjw6P8h5YGm8rsf4TYQuCAsh0gvtm2H86bnjBh6AjX9c/5iEyihZdlvQugnOfwj2fBviO2HlOXDURXDf640ctYAdmf1CkIW0n7zk/oIgCIJw5LCQC5hLftFTKfVe4J+BWIWznAXcBTyplHq/1rqCC2qCsPwYHh6eNdzV1VWzvCORCOFwmHR6+tp58fKaha1bt84afv/7319SilZMsfitgNZ6Vt6BQIA77rijIrlbQbh21VVXAfDcc89x++23c9FFF1UclyAIgiA0Oy1hxY8vs/g/P9D89GnNUV3w8QstbnlYc/OD8uxFte/lWxop2tKTc+ED/6U58xjNqetq/1y662osS5HJaYK2ESB0RMlLEipbntaanANPHYTdgxBPa9ojivaoETQMxY2wYEW7ESfYFrRHze9kFlZ3QHvUxLB3GLpiRhSxe9Dst64YrGo3wpt4Gjb1QEvIyCJSWSOkGIibY2I8CcOTMJHS9LUqzjoGOlpKr0cyoxlOmFiDtslDKSO7CNpGuBAOgFIKrTWuBrdIcFHJb8eFJ/eb70jQbOdUFjpbzIWFTF5w0RYxy48EjRRjNAk5x+QxGIeJFKxsNxKOVNaIIyIBM5+jzT4M2bCuy+xHjRlO5mURXS1mnJJ+DsIi0Fo3/Bj6xA91RVI0QRAEoT5obdoigLzXs0quvK0R53dey5wvvbHnn/OJuPePmk8pUtnZArppSq2P97jYHIlaQaymaJ1HstYagbYZ44rniwSlTS4IgiAIlSJP+Qs1RSn1VuDDgNcryYeVUt8BrtFae7z3RRDyRNeY71LCLFfEaE2Hl+ynHh3PvJYhAiJ/0sxiNLQpn+wSYkdh6ahEdrj6AlANfHuaHYFcwnt8pXI3YeloZH1VS5xKXhgv1AU/1GvHXgodJ8Hdr5h/vJe8TWgMpeqCji31i8OLTX8Gu74Fh+72nqZZpDJHAovZF+0nwKt/YaQ5yoaH31u7uITmolS7wgrXJ4ZwD7zqXhj6DUzsgI4TYejX8NvL5k4rZZB/8GpbN1SMVuZBDb8fP24Wdt8C266fX35TitZj4aS/g41/Jtctmh2v6xoiRiuNVztb2fWNQxCWir6z568bBsWD4WtKld2F8r5lDWz58Oxxf3A7bPsM9N8LLRvguPdD31nT4xci5JfrQ4IgCMKRR3GXiOgC8iieZ95uFgtFKfX3wHVFyY8AXwbuBw5guhmtAl4OXAqcm5/uZODnSqn3aK3/o5ZxCUIzUCwq8xJ4LZTOzk76+/unhoeGhmqafz14/PHHeeCB6XPGtrY2PvOZz9Qk75/97Gc8+eSTU8OXXHIJp556asXzf/CDH+Saa64hlTLnKXfccYeI0QRBEIQlQY+bNoNq725wJHNZ26X45rtmd5Q+bwu89mS44zF4+pCRNAVtI3GKhcyd0KE4jCWNPEopI1JK5yAUgHjKyLaE5uK0rS6v3mL2YzIDARtWtpljZCgOP3tGY1tGhLWhx8gD9o1MS7k25A/vnGs+WcdIuA6Ne0vmWkLTcq9MzhxLazrMuPGUyXsy4xWxH+R9JoZoEE5YBaOTRkKQSMOBMbN+YERilaBU9UI+P/OqzXBMnyKZAatwKyJkyolo0IjU2iJw+gZFNGj2dThgypuJNChgOKEJ2EZOt2sQoiEjfEvnzPQHx4xELhQwx4vjGmFKOAB9rWYPzRTNacxvR5v95LjmmG6LTM+rMMtQysQ5ljTLS+W7liWzZj+lsuZz3EozfTIzXfYl85KMglCut9UI8MBMl8yafFe0wYvXK1683iwjnjYiukKpfGjcbI+sY7adbUE6L6Cb/miSGfOfcbWJbWW7Wa+gbfJ3XHhivxH6jadMmT0yaY5ZxzXyvn2jZrktITO+IMzb0GO2Qzhotlkya7ahxixLY7ZDW8TkN5Y08a7pNLEOxk15ErLNfrItk98je6aPlZPzXfsKZUf/OGQcs91sZdKtvOiwI3+VrLCNCq4PpUy8kxmzXdoiZntEAmY+pfJCRmX+ky0hIwuxlNnug3EjA9zYY2SKL1qv+M9fLaM/pCAIgiAIvieRNp/+8eIxCxOt2da0TG2OUC2iiM2Sr80Wsc2WrzElXwsFRLQmCIIgLE+arFe/4FeUUq3A14CLy0zaDXwAuEgp9U6t9U+WPDihObGjEMzfNREx2vLCs+NZPcRoHp3bKpEoCfXHUyCzkOeQl4hSnbLdlHQwbhSVyA4b/b+3woCI0XyN1z6wmuwUykk2OgKhgNe+qHe91vVi73F+F4AcaZQ61/GLpLH3zNJiNOlM7R8W8/8+6m1GigZw7F9CYjc89alFBCMPJDUtpY4jq47nPnYYVrzCfADGn5l/OimD/INX27qhYrQy+LVd5KTg+W/C9hsgsaf89DPpPAVO/BisfxtYIoBaFngK36UnS0m8rhs12/m+IHjRezY8/4256aOPQ3YCgm31j0koj+f1ajXdY2Q+7DCcco35zDt+Ae0nv7aDBEEQBGHp8LUYTSn1KuCTRcnXAlu1ntMde3f+822l1KXAv3wJIP4AACAASURBVGP6odrAN5RSz2mta2XM/TJwW5XzHAP8oEbLFwRfoEq115uEe++9d9bwn/zJn9De3l6TvO++e/Z9xHe84x1Vzd/S0sLLXvYyfvGLXwBw//331yQuQRAEQQDQrguP/QL931+B+74Pb/pL1JVfanRYFaGU4u2nK95++sLzePQFzUuuk3tKzcY92+dLnfsczv7RuVM9eaD65RVLz7SeP2+/k8zCY3vnpqeq7Iq0nKRoAD99Gn76dCUrtcxWvGqWev0Xl//OwYXNd3Cs8mm9yo8D85QHlYoGx8o83h6f5/2dw4np/P/fE0f6cSkIgiAIQrPjuKZNNH+7aGGytVCgWKI2W6jWOo9QzXyreeeLhcG2mv8+iCAIgtD8yFP+wqJRStnAd4DXFY0aAB4FxjAPNr2Iaen/SuAHSqlXa61/Wa9YBZ9R6sGg6Nrp8SJGW1547bN6dDzzEkiIgMifeHVir2dH6HJYJWJxUhCszYOCQpVU8p9utBjNDpceX4ncTVhavPaBX2RElSIdGf2Dp/CzzvVaqfJHRHr+olRd4BdpQ7njV8ogf6D14gRRgaI+fX4SFQv1xZ3niTMwUrRGdv7yKoukDPIPnhKiKttB1U6/GPx2/GQnYMe/w9Ofh1R/dfP2nAEn/T2sfUNj/6vCEuCxP7V0YimJ1zWhZjvfFwQv+s6eP127MPgQrP7D+sYjVIhH2e0pwayQBYnR5PqQIAiCcMRR3A20RSkV01pX2I0TgBVFw7XsJv4pZp8A/ofW+hPlZtJaf1UpdRTwD/kkG7gRWIQ6YVb+h4HD1cyzHARSQvPR3d09a3hsrIqe3xUwOjr77168vGbgwQcfnDV8zjnn1CzvX/5y9qPB3d3d7N69u6o8Zkradu/ejeu6WNYiz5UEQRCEIxo9dAj+51voH30T9u+cHvGDr+NOJlAf+xoqUKLvQpOjXReGDnJabzuffFOMa+7Qy072JAiCIAiCIAiCIAhHIpkcDOe8ZLULk61FgzOEafMI1WLzithmiNZmzNMahpaQ3DMUBEEQqkee8hdqwfXMlqJlgQ8DX9VaT70jRCl1IvB14Mx8Uhi4XSl1itb6YL2CFZqEljXTv0uJ0bSI0ZoOL2FRPTqeeQkkRIzmT/wikClFqVj81on6SKIS6Vmj//flOvQ3Oj7Bu43RbB2lpSOjf/BLvaYsI7BxM3PHSd3lL0rVBX4pi0SM1hzo3OIEKcXtFj+1x4X64niI0Rp9TIgYzf94ta2rPXbqeawtRihZS9JD8MwX4dkvQGakunlXngcn/z2sOEeEaMsVL1mO9F4pjef1abu+cQjCUtF2HIT7ID0wd9zAAyJG8yuul7RxkWXTQsTW0o4WBEEQjjC01kNKqRGga0byemB7FdlsKBresejAAKXUWuDlRcllpWgzuB64Aig0Cl6ilDpVa/14LeJrZtZ1wc5Pi1ipHqzrKj/NUlIsKhsZqfIaWwlSqRSp1Oz2c09PT83yrxcHD85+dPekk06qWd579+6dNfzylxcXadXhui6jo6NNKaATBEEQfMTPvof+yj/MP+7uW9F334p+218DGoYPm/su0RiMDpjfXStQr/wj1JkX1CwkrTU8+yg89WuYjKOHD6G6VqJTCVQoAoGgiSHaCvFRaGmHzl7IpGBi1KS1dprrjLF2sAPgupBKwNgQemwIDuyEvTvgwC5ITQJwdWsHb1PreaTvVWRPOpvoOa9nMmcxGIeABeMpeHyvJhI0HZ1ftB5cDavaFbZlNodSpuP1QFwTtCESAEfDRApCNhyegMkMhAMQtCEWNt/7RkyH6FgY2iOQysFIvuP2//lBc9zrspTZHoIgCIJ/+MA5imsvVAzG4Z/u1uwd1gQs6IopgrYRcWjAcU0ZHrBgfTes7YSDYzAQN9OcsBLWdiqCARhPQjwNg3FNOgepLNiWeZOBUqY+UMrkFQtDOgs/f9bUk7YFqazm0Dj0tZphS4FtKQI2rGiHFW0m/3QWAjb0tprYfvQ7TTQEK9sVHVH4zW5NNAhvOk2xvluRdUz9e2jM5NvXZmIIWGbYcaE9qmiLmLo3HIDVHeb3YNzUz1lnOibHhXQOBiY0QVsRDZnfh8ZNjB1RRSxk1jEcgIwDyYzZXp0t0BOD4UmIp0z8hW0TC0/HpLUZt6INklkTQ9A2bYGgDaGAme7J/TAwYeZtCUE0ZPIfnYSca6bV2sR/y8Oae7ZrhuJm31oKOqMmn3DA5BkKmHZJKKBwXIinNcmM2baRINi2mW9jDxzTB7GworfVLKM7ZrZLIm2W3R4x+6uw3caTsHdEM5wwca3uMHkentBkcmYZfW2m3dOef/QtYJvjJ5k1271/HJ46oIkEzfZZ3aEIBczynzus2T9qYvjWrzRDCThuBXS1wIYehaWgf1xj5dd3XZci50LOKRwDcFQ3xEJmOVnHHAdtEbMPhxNmfTqiZhtNpOCxvZqHd8GhcRO3paCn1eSRccyx7GpIZOD4FdAZUwzHNWNJk3/OnW7/hQMm/6EErGjVtEYUEymz3FQODoyabfmqE6b/m1MfPXu4sP27Wqb1PVoX/c4fY5oZv4u/fTJOM//0giAIfiOZNZ/DE/ON9Sq4vAs0pYolarOFarE58rXCeOU5XyggsjVBEITljk960grNilLqaOCyouS3aa1/UDyt1nqbUuo84F6m5Wg9wMeB9y9poELzEZ0hRlMlxGiuiNGaDtej41kpAV6t8OpA4tXhRGgsXp1vygml6omI0fyJVzkzk0aLx+xw6fGVrIOwtHjWV012CiViNP/gtS8W0kF1sdhREaM1A6WEDX65aF/u+JUyyB8s9r8dKNrPixUTiayleXE9xGhWmbbtUuNVFkm95h+82tZVi9HqeKw1+vhJHoSn/wl2/Bvk5n11mzdr3wgnfQx6z1ia2AT/4CVGYxFC1COB5XK+LwheKAV9Z8G+ObdqYfCB+scjVIhH2e1Z1lfIQs7f5FxeEARBODLZDpw1Y/hYqhOjHT1PfrXgtKLhnVrrXZXOrLVOKKUeAs6dkXwGcMSL0QK2YmNvo6MQ6sHatWtnDR86dIihoaGaCMyeeuqpsstrBoaGhmYNd3XVzmZXnHctmJiYEDGaIAiCsDjO/2P4t6sh43H/G+C2L5bMQv+/m+FDN6DeUdyNpnp0Love+k742fdmpxd9LwnxMY7lCY6deAJ23giJt6I++hWIxirqUKxzORgfgmTcXJseGTDStY5e82x+Mg72CCQmIBSGjh4jcItEIZeDbGZK3kZyHCYGIZ3i6hMP82x2Jb9yNnOo92RWbd7EsSstOqNGsnFo3Ag0osFpWUosZKQdGiNp0Ri5x/5RIynJ5IxcI5R/7OrgmBGiHLtCsaLNSGgcDU8fhH2jmjUdipcfbZY3OmmEL4NxiATNtCHbSE3AiD0mMzCWNJ2yO6Jm+em88KUrZjx1BZnOSF7qclSXkYU42kw3lJfx/N9HNFt/JM/WCIIgVEuQLFfv/Dg9n9hGz/gIXwmGIBiCYBjiYzA5bn5n0+YZxnDUDA/sh5Y2kx6JmZfQFuyfw/0mcztg2g7hKERbIBQ14zt6INICI4chFMkvL8R7O3pNHsk4tLShNm6BjZtNXZnLwuggenwYUhr6C5YkDUz//nAgb0kayhnLVcCGkSH4wbCpZ7U2FQz572jMxHlgF/SugeFD0N5jrF9ODlYcZUSpuSxrXdesZ3s3tHWCZUMyYerrcBQS4zB0CBJjZl27VsDgAdj3nNker/wjs6zU5PQ2CrewEqC1HeLjRirrZDEKMMz2KnxCUTrau8w2beuEWIcRwSbjkE1zSiBk5k+Mm/bCxAhkUnTlsmZd27uNINbJcW0wzLWtHWYdQxGzXq5jpnNn/nbAcaAlBl0roWcVjMyIDUweKLOP4qP5/DTseMxsg2NOgfFh80mMm22glBHTKpV/ebll8rAsE3sgaI6LwjEUyBvPHCcfm8Nm1+GVuZzJN5UwMtxkHCyb82NtsO5YOOp4Pn/GOujsM/vIyZlPLgt9SdPeau+GFWvNcTYxYtZbKZjIx5PLoUcHYdew2eeZtFmP8WHoWwtdfSafkX7zUtEV7SZ+yzax2gEIKBgahtFBM3wwf8yOHDbrm0mb/R4Mm+PDts12SSXM+EiL+b+5rjlWUklIJ2Gvmt6GSpll9qwyyz3rdai+tWZ9Xcd8a40eGYDBg9CzEtW7xvwfC8dboRWti75n/Z4nrdrpZj0PXSKPUtPNM712NS7K/M0BjcJ1NRplhGpuPq0gVMuna62mZGxT06DQ+XnzJQauzuetFVrr6em0NmkwvXw9+/f08hQaPZ1XPs0sd/Z00zI4NXvczHjzy52afuZ3fvkzpyuOc/Z8am6ezIhz5jrM2H5m+ul8CmlMza/QloUVsAkph925XhI5m82hfgKWNsJES2FbCluBbSssy8gwrfzHthVXbPN+rrM7mKLLThEOaCzbJulYrAoniagsGRXG0ZBzNBuicaIB1+wzRzOSDTGci5JIQzAArrKxlSZsa1ZEUnQF0uQIEM1N0J4bIaMDZCbTuOkUTjCKG4zgpNOMpgOM2e1MEiHkpFin+2kJwZ7QBgZ1B0kVoT/XSjpnDqZowEEDm9rSqEAAhSadcWmxsqyMpNnUMk5YZwjbmmwmSzYYI6kihFSOaEDjBCL0xjSR9lYCTopQNm72w1A/dmqC5+Jt7E628mJnG2sy+4mPJ9keO4XDsY1sWhWkw0oRJkPYSRAeOUCEDOEghMMBtLJIBDuJuyHiToi4EyTuhJjIBc1v1/xOuCEmcoXxQSacEGktzxEuJVobEedEyohpi8aWmtNzTACHVjtDm5Wm1crQapvvoHIYcyKMu1GUbdETyrCqzWFdKM6G4DDtgTSJlhXE3TCZeJJuZ4icCmJForwwbrM5OkRrSLNvRHMwtJZwOEDOVeS0heO4ONrCsYM4KoDjanKOecFLKylaoxYHnQ72JyK0B7O84eVtvPsPgthWZX3BdGLc1IeFdkogBKOHzW87aOroQN7JkBg3v13H1LV2ABWOorWeur6jXdfU+WODpv4NRaC9y7SpEuOm3s5lYfVG094Y6YfJuKmb9z4Lh/aYunzL6Wb8yqNQsfbK1kVrM28wBJSX2OlczrQhtEZZFtpxYOgg9O81bYpA0GyDjm5YdxzKlpciC8KRgNTOwmL5ODDTZnTzfFK0AlrrpFLqXcATQCif/B6l1A1a651LF6bgT0o0XmaK0UoJs0SM1nx4Ch7qUCV5LaPRgiRhfrw6IS9WxFBLRIzmT3QFssNGCxHLySOkXGosunDJfx7qUV/VEimL/IOf6jU7Atk5V5DlePEbXsIGP5VD5Y5fOab8wWL3Q7F0yk/tcaG+OB4PhtdTVjXv8j2OSZ0zZamIbhqP1/lNteWJFSo/Ta1olBAkvgu2fxae/6a3jHA+lAXr3wEnXQ2dpyxdfILP8JDlaBGjlcTrupHXSzUEoRnpPXt+MdrEc/WPRagMz7K7EWI0OZcXBEEQjkieZLYY7Uzgh5XMqJSKAafOk18t6CwaPrSAPIrnER2YcERx1llnzUl75JFHeM1rXrPovB955JFZw9FolNNOK/YZNh+VSFAqJZOZ52Vdi0TLC3gEQRCERaLau9GvfDPc/e1F5aP/9Sr0w3cbCVgwBLE2I3XIZKCzx8gbCvKVvBRDx8dMR07LguHDRsTy9G9rtGY14KffRf/0uwDojl5YvQGOOj4vwQgaQcnooOlEOzpohBtLxPH5zxSBoOmgC/Cqt5mOvsm4EYeEIzA+Mi0dKUhCLJvjV61Hnfgy6F1txtkB07n2qDWolrap7LXW4ORYsTFnOgUnEzBuE0nG6c5mIBOm+7knzDqv2QSbTjQxpJN0h1voDmZZlxyGXbvMfu9eaeJKTcJY2khCsvlPtNUITYbywp10EhLjbOzqgw2bOS0EsG7Jtm29CFguOXeR17gFQRCq4NP9/8Ca7aXlpo2i7mey++a7L/zQwvPb8/Ts4Z/fvvC8asHggdnDowOVzzs2CAf3VL/M+Bjs3VH9fAthbIZofuQw7HseHvpJ/Y+jpSA1aT5Qfr8NHTTfzz1edt2XxbYpotCKkqeZlh/f2XgfD0dfNid9XXYfu7cfP88cQr3JEiBhxZiwWonnPxNWK4n8t0mLMWG1Ebdi86YnrNjUfBNWG46f+gAtQ3LYjDpRRh2Pl60XSABLdymjJHfshEtvcQnoLO06TpsbJ6aTREgzqaIcsvr4/czDdOpxAtkkvzf5v1wy9m263NEFLW9K7znzekqN0a2dRs6rLMhljCw2l4WDu6cnCoWnX06Qv2aj27rMdZ7C9ZvCd0H+O3MZeZkaWe/7TXrDZtQ7r0b94cVzxjmuZjIDbREjGR1PGel9MgPtUSPSH09BT8y8WGs+UlmNAkKBuffQhhMarY0MvyVkhPm2ZfLP5FenJWTSXA2hQF5UpzUTKYjlu+EcHoeV7UawKQjC/EhNKiwYpVQUeGtR8mfKzae1flYpdTvw9nxSAPgT4LraRig0NdEZb08UMdrywmuf1aOjstcyREDkT/wkkPFCxGj+pJL/dKP/9+WOY6nfGouXjAiaT6zRKKGDMBc/1Wtey5S6y1941VV+KocsEaM1BbUWo5Xb72VZjo8gHCF4SZrKSX+XmnLnZVZr/WIR5serfV21GK3ENcKqKVMW1bsOG9sOT/0j7LmlMtl3ASsIm94FJ14FbccuWXiCT1EiRlsQjXxxhyDUi9ZN86dnFvaglFAHlkraKGI0QRAEQaiUHwOXzhg+p4p5f5/Zz2A+qrXur0VQQHEDLraAPIovjsUXGIsgNCXr169n/fr1vPDCC1Npd911V03EaHffffes4TPOOINQqI4vd6gRvb2zfYnDw8OsXbvWY+rq8z5wwHRWjkQiTE5O1lS8JgiCIAgLRb3h3ehFitEAePhuz1FN/2TEWF6A5hdx28xOvD+9rapZvfaFDkXMfTUnB65/7q/1Rs+AjT/zHP++ka+RUC08FTmJntwgMT1JRoUYsHtZn92LjUPYTbMh+wIbs3uYtFoYsrtpcycI6BwBHAI6R1BnyakAe4LrWZnrp88ZZFK18HzoaE7IPEubGyeoM1jaRaOIW61kVRBH2bhYdDmj2OQYszrYFdqIRvGa+N2cnH6KoM4SIEeOAJNWCxkVosMZI6NCOMomo0IcCqxkd3AD98ZehYNNtzPMutx+2t1x1mQPENYZVuUOkVVBFJq41UpEp+h0xngudDRJFSWkM9g4pFSEVbl+VuX6sXFod8e5s/W13B89mwm7nZgbpzfq0umMMKDbcRzNsG4j6k5yWvpxOp1RYm4CR9mEdIZ2ZwJXWUTdJAcDqxgK9BJz41jaxd5wHFasFdvNYY0exhrYi51NYeFiawcL10xH0W/tYuNCIMjqwBjJRIaArXEjbWQDLdihEKHDO7FwGbU7Cegcw3YXw3Y3q3L9tLiTWLiEdIZgKMBgoBflOqBderKDOChSVhS7s4eIypHRNvvUCrI5TXtmiEzWJUmY29rfwuPhU0hYLbS4SVr0JBE3RX9gJQOBPlblDqG05s62C6o6bm2dw8UipDP0usPEnDgtOkmbM06rTuBiYWtnarsM2j2kVRiFxtIuFi6qoxsrGMTKplHZFNFcHEtBVgVIOTbKdQi6GSatKINWj1keWWztgOswYncR1mna3DgOFk9GTkZply5nhHZ3gg53nDZ3HJSF0i5t7gRB5TJutzOouhm0u7G0S1QnCeosI3YXhwKrFvQ/DpAjrHKELdd8qxwdKkHAzZLOap5Ux3jOe3J6G63uBG0kCekMVsAiSYS4asFysvRkB4joFONWO+lgjKy26Qyk6F6/mhUtDrHMKFZmEmXbWJaFApI6iKvBSifIpjKEQhYDVg/doTRHtyXJpTJsy61lx2Q7q9Uo4YBmV6qDDivJCmucdePPEHGTBNZuIKA0oWyCqJVh8vAQWlkETjubiZWbyWVztGRGUW4OtEbnP7ianAOj4xnCbopw2CblBnCwSLs20SC0tEdp7Wgh58BkBsbTCjfn8Mg+m10TUU7uGOfn/T10hh1yLsQzFrGJAwR1lqMzu/irkX/n/MQ9C9pfgiAIglBP7t3zWto2D89Jv2Ts1gZEI8xHkByd7hid7lhN8tNAWoXnCNXM8PTvmSK2uNVKXMWYsNuIq7nytbjVivZ6flTwNTkVZFh1MWx1zRn3w8gfmh9RoP1PuXzVPwGwJb2duNVKtzNCxE2ywhlgwO5ld2gjSms6XHO+vTN09FReR2X3YmsHR9nsDR4FwOnJRwjpDA42WilyBBmz23GwcZTN2ux+1mf3EtUpwjptzke0Q1aFmLRaGLPacZRNSoUZsbuJWzGyKkirmyCjgoR0FgLwwvHrUFozHOgB4NzEz3CwmbRiuFhopViffYHe3BDrsy9g4xDSGRSaiE4zZHezJ7iBcasNWzvsD67hsL2CDdk9HJXbTw6bnAqYDwFyTgDnmza5Bw7htPeRcyHnwKFxeL4Kf27QhlXt5n0GrgtjSSNNK54mGgSlIOdCoop3oAP0tkLAgsG4mb+Y1jC89iQjVTs0Zs6NbMtI2QrLSmRMHK5rfp+yFo5ZoTg0qtk1BPtH4NDnLWyRrAnLDHnKX1gMrwFaZgz/Smv9tNfERdzEtBgN4CJEjCbMJLpm+reyzGe+Dl1axDFNRyM7nnl1IKmmw6lQP7xkPn4So5USALjSeahhVCRGa/D/3i4jj2i0uO1Ip9T2b7aO0tKR0T941mtl3kixFHjVpVJ3+QsviYyfyqFy7TIpg/zBosVoRfs5sNhyq+kf/z1y8ZR8+lyMFhQxWsPxlH1WeX6vailGK0O96rDh38JTn4a9/01V5aMdhWPfB1uugJbmf1u4sEA8H2zxT8cNX+IpH/JRO1sQFkuwY/703Li51yYPxvkPL6nlYvfVQsTW8qIFQRAE4cjkJ0AS85g5wJlKqc0VPgf3rqLh/65hXAeKhk9QSrVorSeryOPFRcOHFhmTIDQdr33ta/nqV786Nfytb32L66+/nmBw4dcbBwYGuOOOO+YspxlZvXr1rOFt27Zxyimn1CTvlStXTonRUqkUL7zwAhs2bKhJ3oIgCIKwKF70Sjj1bHj8gUZHIjSSjD+fa1qV83Zt/37ifr506LI6RrM4guTocMenhkM6O3VbvM8Z5JT0U1wYv7PqfFcky/dsfn38x7w+/uOq8y7m2OzO2Qnb71tchvnHJ1oLv+NzT/F7nSEAOt0xjs7unptHGlanJ2YlBYGIk4SB4anhE3huzqynDDxVcahpFWJ3cAO2dtiY3YONYwR1booAOeJWKy3upBG+LVMG7R6eDJ9IjgCtbpyITk9JByJuiqhO0erGieokCRUzYkKdxqrg+Y9nQsdxd+w8RuwuVucOcW7iPo7J7lp4sDsWPmvFeB0+v6vDsgVBEARhmRDVKe7ffQ5vXncbg4E+AN48fjsfG/xMgyMTlgoFRHSaiJOeausvFhdFUkVnCdUK34ki+dqE1UqiaJppMdt0WtJqKb9goSFsD28BmBKcFXOQ1XPS5pv2kejpJZezN3gUD/HyBURYmp/Fzp2T9mjktKrz2RE+rvQEB5h7d70Ksg7sHSk/TXYR3dIHy7zCLJ6G7/5vdXn2j8M922efg+4fgfU9VQYnCD5HnvIXFkPxkxz3VTHv/ZjLuIVj8EVKqZU1fGOm0AzkEt7jWtbMHlZB0POoU10RozUdXoIHqw6dW706t3nFJDQWz073fhKjBcxxNV8nbxGBNA63grPLRovHynVIk3KpsZQ6PqwmO4WSjoz+wU/1mlcZJHWXv/CUyPioHCp3/Ipszx8sdj8UCxwX0rFeWB64Hq+0afQxUWr5Ug75A686rdp2UD2uHRVY6nbR4fvhqU/BwZ9UN1+wHY7/azjhMoj0LU1sQhPhIcvxkusIBs92tsdLNQShGfESo2kXcnFTnwj+wlPauMiyaSFia7k+JAiCIByBaK0nlVLfBf5sRvJHgXeXmk8pdTzw5hlJOeCWGob2ODACFF4ZHsnH+JVKZlZKvQFYW5T8y5pFJwhNwmWXXcbXvvY1tDadAgYGBrjpppu49NJLF5znjTfeSDY7/dxiLBbjve9976JjbQRnn302t91229Twfffdxzve8Y6a5H3WWWfx6KOPTg3fddddTbudBEEQhOWFUgq23oJ+x2ZIy/N1gr/YlN3Nxsxudoc2zhl3YqYSf7cg1IawznBCZrZtq82Nz/t7udLrDHHO5P0VTduqS/SPm4cTMjvmbF9BEARBEI4Mzkw+zL4dR/O7yKmszB1mXW5/o0MSmgwLTUxPEnMmWekcrkmeDtaULC1eJFcrlqiZ9NnytbjVSkLFmLDbiOe/sypUk9gEQaiOXYMiRhOWHz7qTSs0IScXDf+q0hm11gml1BPAi2YknwSIGO1IIllCvRotei7PCs7fAVfEaM2HV8czL2lZLfGSSDRakCTMj1cH9kZ3ui/GjpjOZMVI56HGUcl/utHiMTtceryUS42l1PFRj/qqlkhZ5A+09pbJNEKMViw5KiAiPX/hVRb5qRwqd/zm5JjyBYutC4rLjMWWW7r8GzEFn+J41WVl2rZLTaljUtpCjUe73pKmqsVodbxBvhTHjtZGhPbUp2Cgyj7I4T7Y/Ldw3F9ByEN2Ixx5KBGjLYhmaGcLwmIJdXqPy4yJGM2XeJTdXmV9pZS8n6KAec7PpA0tCIIgHLlcC1wMFMzs71JK/bfW+o75JlZKRYCbgJkXLL6htX6+1EKUUsUV8Lla6/vmm1Zr7eSFbTMtQtcrpR7QWj9ZZjnrgX8vSn5Aa32w1HyCsBw58cQTueCCC7jzzjun0j760Y/ypje9iZUrV1ad37Zt2/jsZz87K+3d73433d3di461Ebz61a+eNXzLLbdwww030NbWtui8X/Oa1/ClL31pavjrX/+6iNEEQRAE36B6VqHuGUVvfwR9963QxJW0ZAAAIABJREFUv3f2S3lzOdj/PHT2wbZfg1PBC3trybGnglIwOQGTccikjMQtGIZIC8RHIZuZnj7SAqlJM0+0FSIxsCywA9DaAUefhDrqOFh3LDg5OLwf/bVr6rtOQkUo4IuHLufC9bfPGXfJWC1d3IIgCIIgCIIgNIoADi9JPVp+QkGoEzYuHe44He54zfLMECwSqpnfiXnka4X0cvI1d7EvmRSEI4Cdg5pXnqAaHYYg1BR5yl9YDFuKhp+rcv7nmS1GOxH46aIiEpqLkmK01bOHreD804kYrfnw2mde0rJa4nXSo+t8s1qoDK/ONwEPmUujEDGa/6jkP93o/70lYjRfU2r7N1tHaRFd+YNSdYKXpGwp8ZKQSN3lL7RHu9lP5VA5oY2X6FaoL74To0k7p2nxknyWa9suNSJG8zelzr2qFqN5XB9cCmp57GgX9n4fnvo0jFT5IEvLOtjyETjmLyHQUruYhOWBpyxHxGgl8SqX5IEZYTkRLCHRzI4BR9UtFKFCvKSWixajlRDLhrogMzw3Xa4nCoIgCEcoWuudSqkbgStnJH9XKfVh4Kta6ynjgFJqC/B14KwZ0w4Bn1iC0LYCfwoULtR2Ag8qpT4GfFNrPTlzYqVUCPhj4HNAb1FeVy9BfILQFHz+85/nvvvuY3LS/GVGR0e56KKL+MlPfkJra2vF+QwMDPDWt76VTGZaQrJ69WquuaZ5pSInnXQSr3zlK/n5z38OwPj4OFdffTX/+q//uui8L7jgAo455hief944Ix9++GG++c1v8hd/8ReLzlsQBEEQaoXacjpqy+klp9Gui77yQvjNPfWJaeutqHMvKjuddhywLJQyHR11OgmhyNRwWVZvQP/TZUayttRYFrge10EjLRCOQs8qCEXg6d8ufTw+54LEXXx/79u5dPWXGAz00ZMb5LOHr+as5K8bHZogCIK/CUfhlDONSLRvjRGFatfUQeEoKhID24aWNpicQMfHjBg1lwXXQXWtABQ6k0K1dhi5qOtCIGjEo5mUkZamk6A1enQAsmlAmTpMKUjGYegQvPAM7HlmdnwdvRDOPy/V2QfdK8z9QKVMXYkyvwsflIk/k4JwC7R2QlcfKhSenk8p9NgQjI9AcgLiY0aMatkmFq1h7w7zu2cV7N9ptsEr3ggbN8PEKKCNcDWVNL9bWs16B8NmGU7OtINiHSaPzj4IhSGdgvgIdOfF845jpm3tgFgHqrXdbDet8y/U1fntNmiEruPDkMjLV4JhiLbA2LDZJx29qHXHmG3f0Wu2T/9ek38wZPZ1IGjSM2mTlsua9bZts31m/rZtGB00y06MTb/gd+rbNdsuFDHxR1vNsgYOwOB+GD4MG7fAinVm3Q/vN3nG2lGF9dfabDftguugJ0Zh6CC0dUIgZGS33SshYPaPsuzpGC3LxJlMQCQK7T3mWOnfi37+CXj2MXNcoc3+LXyUBYf3zj7OAkFYedS82x5lQXu32cfjI5BKmG2/Yq2JLxwxx1qkxaz/6ICJKdpqtkswbGJuaTX/o0zKbM+OXlRvvi/w2JCZPhCA7lVmmaGQOT7Ghsx+yqSm91t7t5m+EKPron/4Ddj+iDkWIjHIZcz/rqXNbMNQJL/dbBNfenK2NJgZ7eFC23hmG1lVOp2aPd1842a1vRc4XalllptuqfKteF2K56tDbEu9zvNNp5Q51iZGTPkVjppjMhw1//FC+ec607+nhnNFn/w0EyOmbA4ETfp8Lx4PhU0ZOD5slgfm/5mvh4jGTJk8ctjE1bsGYm1wcI/5nxWItZv/YvcK6Flt/p+TcfOfPLQHNmw2/8fEuPmvbzzRlAfBEBzeBz+fK22uiEJ9FgxPxz9zXCUvWw9FTJk2eNBsrwLRVujoMdsvGDLbpVBv9e81ZYvt0e+m1Dmz17iS59kLmGdB42ocd6XXDhaxnBDQrRRzXyszmf8MVpWf1pBSYSZ0lDgR4joy/ZsW4npmWpSEjpDNaXpSB7BzaYacGM+oDfxv5EVopYi5k7TqSRIqyoTVyqjdNWeZvbkBbFzGrHZiboIXZZ8kqDPY2iHgmm9bO9jKxVIwrDoYsToJkOP54DEcDK6eZ00EYWnZ5fHXEoRmxke9aYVmQinVDXPaIi9UmU3x9MctPCKhKUn1e48r7ujn1fFx580w9FDNQhLqwMSO+dPrIXjwWkZuEh79yNIvX6iOxJ75061FihhqjVdH7p03w/Bv6hqKkGf0ifLTNFrIUU4AMLlfyqVGkp1HdligHiLPWnLgTshNNDoKwfEQycDiBUMLwWuZB34snV/9xOiT86f7qRwqd/yOPCb1mR/waldXSvF+Xmy5Je2c5uXwL+ZPt30sRtt2A0RX1i8WYS5uiXOvRorRyj1QceBOyNXgrWfaNXmNP13dfK3Hwkl/Bxv/DOwSQhPhCMdDljP4a6lrS+F1zuMnAbEgLJZQCTHaU/8ILWvqF4tQGWPb509frLSx1EOMwbb5xWgD9y9tPfJ715sH1AVBEATBn/wdcBJwQX44CHwR+D9Kqf8FJoCjgRczu/dBBniz1vpgrQPSWu9TSl0C3AYUKtG2fFw3KKV+CxzAWLJXAacD81me/l5rfX+t4xOEZmHz5s188Ytf5D3vec9U2oMPPsgFF1zArbfeyrp168rmsWPHDt7ylrewfft0+92yLL71rW/R19e3JHHXi2uuuYbzzjtvavhLX/oSmzZt4oorrqho/rGxMcLhMJHI7Gu+gUCArVu3cskll0ylfeADH6Czs5OLLiove5nJPffcw9FHH83RRx9d1XyCIAiCUAuUZcENP4D/+U/0U3kxVTRm5AsFscP4MCQmTOfxsSHTsT0xAQP7zL3JQNBMGwgamUNHD+z43ewF2QHUp/4v6uzXVxaXPfs6mwpX94JO9YcXw9mvh0MvwM4nTcdxrc26ZFLoHb+D/c+bDvMdPSburhWozl7TOb8z/4m1mw7/yjK/hw9DZw+0dZltFGlBKYXO5YyELZMyHdaDIQiGUeG59431ru3w65+gD+9Dda9E73wKxgaNPCASM1KWaMzElkkZmYgdADtovlMJsx92PGYkJ37GDpjO/snZz62+Mf4jLtzxIw4E1rA6dxCL/D3uQNBIQQJB87ED5tgaHSgSgsygs89IS5Q1LWSolIJoINZhvgNBc413T5X3wAvMFCCEwmafFdJdxwgdCkRaoKXd7OOO7rxQKGr2aVsn9K01x2syAYMHpiUrrmOO533PLSwuQRCakze/D+vDX6hqlgVoR6qaThfqVdeFjh7TplgCFqA1aSiNjLeey67VsirJR7uukQ7lMhBtQwWa+xkY9eq3NzoEQagLOjUJgRAqEEAPHjRt0oJsMZkw51Iz6g6t9fS5lVJzzglnTsfAftN271pRuTy7VKwD++HALiN6jMbybfU206ZPjJtzkYK4UlkmXVlG5lnII5c1UriZYsvEGIwOmnPJjh6zDUIRc46TGIfWzqkyTWcz8Nzj0N4Fa46uyXoJzUcs/1ko2nWnxKAq2DcrfTKjsSwLSwHZDKGQBfQaAWe0BXT0/7N35+GWpXV96L/vqTo1dA1d1d3V88xMM2iDE6IQwAkjoBghqKHVaKIxN0aMEUwuiT5ouKKJCRi5EUGJKFeUSeMQEFAwDtgo0LTQDT0ATTc9VHfX0F3je/9Yp6rO2Wfa++xh7eHzeZ71VK111vDutd/zXfu8e+3fTtl05r2UenyhAOL8ljNF648eaQqj7rs0eehADt7xqfz+Xx3KnQc356qdhzM/dyIHj2/OgWOb88DR+Vy//+z87f492VxO5nidyyce3N3Ho4PGLV88kVXvMYcJNdl/4dCmPR3zh2uth3rcxxc75te4S5+ZV1b54OMdv9dMTL5RFHhY7cNt9Xhy42uGf3wGo40CMmtZrVDbF/6gmRhPa304fxTWKx5x9D65NK4m7YPS9/5lMzG+2ij4udq19L6/VtRzEqz2t1Eb1vuA9sHPuJ5Ng03b157v1bH79YtpMzfGhdFuffPo2kHvei6MNsICYff+RTtfxrDnicnjX5Fc/o8UDGF9q93Y88DHm4nejFMBYujXpm3NdfPkCh+Auu0to28PfRjiDUqrvRa7/2PdffnIRj35Z3KmpgsAjJda64lSynck+ZUkL1r0o/OTfOMqm30xyUuHWXSs1vr2Usrzk7whyeJvAdie5OnrbH4oyU/UWl87rPbBpPje7/3eXH/99Xnd6153etkHP/jBPP7xj88rXvGKfOd3fmcuu+yyZdvdfPPNedOb3pTXvOY1OXJk6RdivfrVr15SUGxSPetZz8rLXvay/PzP//zpZT/2Yz+WD3zgA3nlK1+ZpzzlKcu2OXnyZP7yL/8yv/Vbv5U3vvGN+ehHP5orr7xy2XoveclL8t73vje/+qu/miQ5evRoXvjCF+YlL3lJfvRHf3TFfSfJiRMn8tGPfjTvete78ta3vjU33nhj3ve+9ymMBkBryubNybd8b8q3fG9P29Xjx5JaU+ab9zpPfZD91P+bok4Hk/MuaaWARTlrV3L1Nc3U+bON7vTsc8/8f/OZ+5zK5s1NIbVu2nXV45KrHne6Df183L0eeehMMbDjx5MH701u+2TzgfyzdpwppnZq2jzfFLirtfmg/4H9TaGR7TubfTx8uPlQ9LGjpwvdZOv2pkDA7r3N/++7qzn4qUIBW7Y1xeCOH03uuDXZtr05zu5zUrZub/rC/Xcn93yhOfZFVyWHHkw5fjSX1toUBNi6vTnW9p0rFgA4XSRhoTjaqT63bL0TJ5p+d3iheMHe85vHfargwuGDTRu2bG8+3L1GEZ96YH9y+6eaPrzj7KYfbVk4d8eONudr83xy9OGUnWefbmdqTU4cX9bGWmuy/4vJ4QNNu87a1Vexg3rnbcnffaj5QrNjR5u2bdnWPCdbtyVbz0r2XZycd3FzDo481JznA/ubIg0njjUFGT7656m3f6p53stc817+pk1NoYcdu5PHf1my94Jm/VP97NS2Bx9oigRu2doUbjvyUHLk4abQxalibAf3JwcfTPbuS65+QtPegw8kB+5vttt9TvP8nDje9LmjDzdtmJtbaM/Cv4cPNNvVk822u/Y0heW2NEUIc86Fzf4euLcpZpE0+9u2PTlxMjl2pCleePJEctGVzT5Lac7JFz/X7P/Y0eYxPHy4KSZw+EBy1eObgoWb55u+cOhA8/NzL0h27mnO81xJjh1r9n3q92v/F1N/6780bT52pDne7nOaYiD7Lk45+9zUAwvFFE+cSDlrZ1Pk79wLlz7RRx9uzul5FzaP98F7m/mzFurGL/Sl3PXZpr0H7m+Kdmw768zzvlB4JOdf2pzbv/rjpiDj9e9vHtupfnj8WNM/6snmsaQkF13RFO3bu+9Mcb3tO5tz9eB9zbG2bGv2v21H87v38OFm+YkTzeM/+9zkysel7N2X+tmbkh27Uy5e+Nvn5ImmnQ/c0/zs7z6YPPFpTbvf89Yz56GU5rGee1Ezv3nzmd/HUzbPNwUFHz7cFCF56FBTdHLX3iZnjh5p+vauvc05S5rnfv8Xz+z//Eub/dz8sabgw1rmFvpQmTtz/k5lZq1N/6snm3Y8tMaXmq9UuHDnnqaPHTuanH9ZU1T0Rf9q7fa0oJSy9LoIQ1Lm5hayvZ9SMcColW1nnfn/eRct/eFZy78D59Rr4/X+diylNNfsASr7LmleR6zk1OuG9fZxqrjzKVu3NdM5K3wB9vyWZX8/lvktyeOe2m2TYUVlbm7FPlvm5rJj8a1U84s+H7F55WJlze/i0t/HsmVr8/dUkuzam12P2ZsXP6b79h07XvORzyYf+FTNHfcnO7Ym+3Yl9xxMDjyc3H0g2b092b0tufq8ZNt8ctt9yYdvrfnTTyXPflxy1Xklj74geeCh5Of/uOboieTYieTyc5LnPblk17ZmP3c92Gz/mAuTHVuS2+9L7j2UHD+RHDmeHD1ec/xksnVzsm2+ZPf2ZMvCLV/n7EjuPpjcek/NFeeWXLC72W7/4eTSvclr/6Tms/uTay5OHrkvOXdXySV7kpM1+fz+5PP7ax4+3vwpeuJkcuhIUpM8dDQ5d2eyb2dyyd6SLz5Yc+u9TbvO2ZE87sKSreVoNv/v38jmeryZcjybTv//xOnlZ9XD2VKPZf+mPXn0kZtSUnOyzOXiY3ekpGb/pnOS1Jx18nAOze3MgbmdOVq2ZC4nU1JTUnOo7EgtJVcdvSXb6sM5Urbm0NyOnMimbMqJfHHT+dleH8rFx+/I9pMP5ViZT03JWScPZ0uO5XDZnrs3n58Tmcu2+nAOzu3MiWzKyTKXvSf2p6Tm187+7nx4+1Oy7/g9ueD4XTmrHs6ukwdz9on7s60eycNla847cW/u3HxhDs3tyI6Th/K5zZfkZJnLkbI1O04eyomyKXtOPJCrjt2Sq47emid93/+d5BHddzyYAO7yZ6M6X1U/tIF9dG7T3avfNZRSzk/S69fvSfZJMDdGH/5nOEZR4MEHSqfDuBVGG7f20J16ot3jt1EIicHwQWkGrY3rSL9FjWiXHGLUlhVG8zqGDm33ibK5uYGunmy3HfSu17+Lpnl88NyvSK75yeSSf7h6sSvoVHyb10CtV/QXJs2WPcnDnd9RxcQZZjYZHwKAFdVaDyZ5cSnlbUleluQrV1n1viRvTfLKWuvdI2jX75dSHp/knyX5vqx/v9tdSd6c5LW11tuG3T6YFK997Wuzd+/evOpVr2qKLiQ5cOBAXv7yl+cVr3hFHv/4x+eyyy7L3r17c++99+a2227LJz/5yWX7mZ+fzy/+4i/mB3/wB0f9EIbm1a9+dW6//fb89m//9ull7373u/Pud787F198cZ74xCfm3HPPzZEjR3LnnXfmox/9aA4cONDVvn/5l385+/fvz9vf/vbTy97ylrfkLW95S/bt25cnP/nJOffcczM3N5cHH3wwd9xxR2688cY8/PDDA3+cADBqZfPS9zgXF3k6XSxFwZShKls7xkL37kuueGz3O7hgefHcdS0UAVtm0/bkqsctW1xOFRzae/6ZhYuLAKxWgKBzH1m9INrp9TZtas7B3lU+dtVlUYMkKbv2Jtd8xUqNaQocnLJl66IflebnK3wxWimlKYqwUmGEDSgXXpFceEX3G5wqTLH7nKXLL3lEX8X5psKAnpMlrnxcypc+Y81VBnreL3tU9+te8+WtPedrHXfZz17566n339MUSTvngnV//zfq1N/PnYUKa63JPXckn/l481mt8y5JzruoKey2RlHFFY9x+EBy9+ebInC79i4UVCtNsbuF/5dSmmOePNlkGQAATJn5zSVfflXy5VcN5i+Sf/MNA9nNWB231q2pv/WjTZHsKfDNB/9w4PssR74tyucwbXyalo3qLIy2katHZ2G05SWMe/dDSV45gP0wCnuvTfZfv3z5Sh+o3XzW8mVMl1F8kFohoumwecy+wWLc2kN39q33xdlDpt9MLtcSBm3zIP4M6vWYMmiitV2AaLH5PW23gFHozAwZQqe2x2xKSTbtSI539wEsxsj87jS3bdb11mxsXeP7MDbvSI4fWr58tevmrh5ueB2mC56dXPOK5IJ/oCAavZvbuv46dG+cXmfDIGzZqzDaNNjUZ9ZvO3/1n+24Itn/t/3tHwCmWK31bUneVkq5Ksm1SS5OsiPJnUluS/KhWuvRDex3wwMAtdb7kvxskp8tpVya5ClJLkqyJ80gywNJ7k7ykVrrzRs9Dky7n/7pn84znvGM/NAP/VBuuumm08trrbnhhhtyww03rLn9tddem9e//vV56lOfOuymjtSmTZvy1re+Nddcc01e9apX5dixY6d/dscdd+SOO+7Y8L7n5+fzO7/zO/m5n/u5vPKVr1xS8Ozuu+/Oe97znq72sWOH96gAAAAWK4uLKA7rGKvcz1JKaQo3dlG8cd1jnLWrq6KVpZREUTQAAJhZpZTUCy9Pbv9U200ZX5+9af11YML4OnkGpctPr/W9DdPkEd+38vIv/3+XLzvvq4fbFtq3bwTP8TnX+sDgNDjvaW23YKm2C2yxMY97WbvH128m085HJNuH8K1n/XqCusATa/djkm3DvylhGRk02cbpb6MdlzX9mOm154nJlo5vsd12frLr0e20h/E0DteV87+m7RbQq63nJXuekJz7Zd2tv/PqZPcaN0A+9bW9Lb/iRcnc/Mo/G4VLnpd8/V8kz35PcuGzFEVjY8ZtjGySbdrWfJELTJN9X9t2CxiEfrN+z5OT7St8GGXHlcnVq7xPCwAsUWu9pdb6O7XW/1Zr/U+11jfVWt+3kaJoA27X52qt76y1/vJCu3621vpLtdbfVhQN1vec5zwnn/jEJ/Ibv/Ebefazn53Nm9f+jumtW7fmW77lW/LOd74zH/7wh6euKNoppZS88pWvzCc/+cl8//d/f84555w119+5c2de8IIX5B3veEcuv/zydff94z/+47nlllvyEz/xE7niiivWbc+uXbvy3Oc+N6973evyhS98IV/2ZV2OJwMAAAAAADCdvvYFbbdgrFVF45hCpVa1qehdKeVJSf5u0aJ7a609faK/lPIvk/zXRYt+t9b6wj7b9R+S9FUZ4uMf/3iuueaafnZBt47en7znmcn9i7rSOU9NnvP+ZHPHt/s9cGPy3mf6dvtpdfmLkq9+S1JGUK/zhv+U/N3Lh38chuMx/zp5yi+03YqlDt6SvOdrk8Ofa7sldOuyb0+e/tbRZM5qTjycvP+bk7v+pL020JsylzztLU0BhXFz+PPJH3xJcuSetltCL8qm5Kt/M7n8H43+2MceTN77nOS+vx79senPtguT53wg2T1GRaluf1vyoRcl9WTbLaEX83uSbfuSA2t8E0jZnHzN25JLn7/8Z7f9f8mHXhw178k5T0me9d7lBfRG7e4/T973Dcnxg+22g+59+euTR/5AcscfJn/6/OTkGp8lLnPJV/3P5Mp/vPo6K72+Wa9/fuynko+NsMhwmWvGwK55eVN4Evp17EDyJ1+X3PuXbbdk8j35Z5NrfqLtVsBgeV9t8m09N3n2+/p/3fCZX0v+4nty+u+3Mpd81ZuTy16YvP+5ox+jfvHRdgvUzpAbbrghT3jCExYvekKt9Ya22gMApZRrknz81Hy/9+gdP348N920dIz7UY961LoFrmAlhw4dyt/8zd/k5ptvzt13352jR49m69atueCCC/LoRz861157bbZunb0v4zx58mSuv/76/P3f/33uueeeHDx4MDt27Mj555+fxz72sXnSk56U+fmNv76/5ZZbcv311+fuu+/O/v37Mzc3l127duXiiy/OYx/72DzqUY/Kpk2bBviI2iW3AAAAAAAA+lMPH0z99y9O/up/977x1u3Jlm3J9p3JvV9IThxvls/NNV90fuoz58ePDa7Bo7JzT3L5o1Oe9tyUl6qjMQruzxsdhdHYkFLK1Uk+vWjR4VrrjtXWX2UfP57k1YsW/Xqt9aV9tuv8JPt63OwRSd55akZhtBE7cm9zQ/7+65O9X5I86oeSzWetvO7BzyS3vDm598NJfOh+KszvSS58VnLVS5O5Ed7g87l3JZ9/d/LQHaM7Jv3Zui+56BubgkSltN2a5Q59NvnMm5oPYNcTbbeGxcqmZNsFSWpy4mhy/tcmV790PD54dfyh5NNvSL74geSO30vmtiX7ntZ2q1jJzkcml397cv7XtN2S1R2+I/nUf00+sfDy+oJnJ5tm78bsibHzkU1BtPOf3l4bjj3YZNDdH0pOPNReO+hO2dQUkb7qu5OdV7XdmuXu/lBy61uST/+P5jX+ub6tfXzNNX97n+pLn/m15It/2hQs37rvzLVj16OTy78j2fdVq+/qix9MbvvN5KZfaubPeWqy7fyFw8wnB25OHlg0nrvrUc3EdNi0Ldn39OTq70m27Gm7NY37P5bc+hvJ/R+Pon1j7KzLk8u+Lbno684su/evk9vemjx4Y5MjFz832XpeU3yzbO7+tfjRB5LPvDG578NNUbSrr0u27F17m8++vbmGfe4dyY7Lk92P7evhrWhuPtnzJclV35XseuTg989sO/pAMyZ19595Xb8R2y9OLnlecum3tN0SGI6Dn0k+8+vJfX8T76tNkrnknGuTK78r2T2gv6Huel9y++80769c9u3JBc9olp8ao777T5PjhwZzrPV87TtH+57gDHPjFQDjRmE0YNbJLQAAAAAAgP7VkyeT2z6ZfObjydnnJBdcnuy7JNm8JTn6cLJpc/Pv8aPJ/NZkx+7k5MmklJS5pvjZqTpLZYWaBfXwweSu25Pd5yR7z2/uu/vczcntn0wuuKIppPbgfcmhB5PU5OCDTTu27UgOH2imTfPJpk1NWzbPn2nTg/uTXXuSPfuSkyeST/xV6ic/khx6IJnf0rR385Zkfr6Z37I95aydTXtrTdl2VnL2ucm+i5vjbTsrOf+yZM95Kz4Whsf9eaOjMBobUko5N8k9HYt31lq7vmO6lPKaJC9btOi/1lr/1SDa14tB33QFAAAAAAAAANAWN14BMG4URgNmndwCAAAAAACA6eD+vNGZa7sBTKZa671J9ncsvrzH3VzRMX/TimsBAAAAAAAAAAAAAAAAAAAAAAAw9RRGox83dsw/ssftr15nfwAAAAAAAAAAAAAAAAAAAAAAAMwIhdHox8c75r+q2w1LKTuSPGmd/QEAAAAAAAAAAAAAAAAAAAAAADAjFEajH3/YMf/MHrb9miSbF81/pNZ6V98tAgAAAAAAAAAAAAAAAAAAAAAAYCIpjEY//ijJQ4vmv6qU8tgut72uY/7tA2kRAAAAAAAAAAAAAAAAAAAAAAAAE0lhNDas1no4yds6Fv/b9bYrpTw6ybcuWnQ8yVsG2DQAAAAAAAAAAAAAAAAAAAAAAAAmjMJo9Os/JDm2aP66UsrzVlu5lLItyRuTbFm0+A211k8Pp3kAAAAAAAAAAAAAAAAAAAAAAABMAoWi+bsXAAAgAElEQVTR6Eut9TNJfrFj8dtKKT9cSllc/CyllMcleW+Spy1afG+S/zjcVgIAAAAAAAAAAAAAAAAAAAAAADDuNrfdAKbCTyS5Jsk3LczPJ/lvSf59KeX6JAeSXJ3k2iRl0XZHk3xrrfULI2wrAAAAAAAAAAAAAAAAAAAAAAAAY0hhNPpWaz1RSvmOJL+S5EWLfnR+km9cZbMvJnlprfXPht0+AAAAAAAAAAAAAAAAAAAAAAAAxt9c2w1gOtRaD9ZaX5zkHyX5izVWvS/Jf0/yhFrrH46kcQAAAAAAAAAAAAAAAAAAAAAAAIy9zW03gOlSa31bkreVUq5Kcm2Si5PsSHJnktuSfKjWerTFJgIAAAAAAAAAAAAAAAAAAAAAADCGFEZjKGqttyS5pe12AAAAAAAAAAAAAAAAAAAAAAAAMBnm2m4AAAAAAAAAAAAAAHSjlLJsWa21hZYAdGeljFopywAAAAAAAABoKIwGAAAAAAAAAAAAwESYm1t+6+uJEydaaAlAd1bKqJWyDAAAAAAAAICGd1QBAAAAAAAAAAAAmAillGzatGnJsoceeqil1gCs7/Dhw0vmN23alFJKS60BAAAAAAAAGH8KowEAAAAAAAAAAAAwMXbs2LFk/sCBAy21BGB9Bw8eXDK/c+fOlloCAAAAAAAAMBkURgMAAAAAAAAAAABgYuzatWvJ/OHDh3P06NGWWgOwuqNHj+bw4cNLlimMBgAAAAAAALA2hdEAAAAAAAAAAAAAmBg7duxYMl9rzWc/+9kcP368pRYBLHf8+PF89rOfTa11yfLODAMAAAAAAABgqc1tNwAAAAAAAAAAAAAAurVp06bs2rUrBw4cOL3s6NGj+fSnP53du3dn9+7dmZ+fz9yc7w8GRuvkyZM5duxYHnzwwTz44IM5efLkkp/v2rUrmzZtaql1AAAAAAAAAJNBYTQAAAAAAAAAAAAAJspFF12Uo0eP5siRI6eXnTx5Mvfff3/uv//+FlsGsLKtW7fmoosuarsZAAAAAAAAAGPPV+EBAAAAAAAAAAAAMFE2bdqUyy67LJs3+45gYPzNz8/nsssuy6ZNm9puCgAAAAAAAMDYUxgNAAAAAAAAAAAAgIkzPz+fyy+/PDt27Gi7KQCr2rFjRy677LLMz8+33RQAAAAAAACAieBr8gAAAAAAAAAAAACYSFu3bs3ll1+eY8eO5YEHHsgDDzyQY8eOpdbadtOAGVVKyfz8fM4+++ycffbZCqIBAAAAAAAA9EhhNAAAAAAAAAAAAAAm2vz8fM4777ycd955qbWm1pqTJ0+23SxgxszNzaWUklJK200BAAAAAAAAmFgKowEAAAAAAAAAAAAwNU4VJZqbm2u7KQAAAAAAAAAA9MgdHwAAAAAAAAAAAAAAAAAAAAAAAEDrFEYDAAAAAAAAAAAAAAAAAAAAAAAAWqcwGgAAAAAAAAAAAAAAAAAAAAAAANA6hdEAAAAAAAAAAAAAAAAAAAAAAACA1imMBgAAAAAAAAAAAAAAAAAAAAAAALROYTQAAAAAAAAAAAAAAAAAAAAAAACgdQqjAQAAAAAAAAAAAAAAAAAAAAAAAK1TGA0AAAAAAAAAAAAAAAAAAAAAAABoncJoAAAAAAAAAAAAAAAAAAAAAAAAQOsURgMAAAAAAAAAAAAAAAAAAAAAAABapzAaAAAAAAAAAAAAAAAAAAAAAAAA0DqF0QAAAAAAAAAAAAAAAAAAAAAAAIDWKYwGAAAAAAAAAAAAAAAAAAAAAAAAtE5hNAAAAAAAAAAAAAAAAAAAAAAAAKB1m9tuAIyBLYtnbr755rbaAQAAAAAAAADQlxXue9iy0noAMELu0QMAAAAAAAAAJp7780an1FrbbgO0qpTyvCTvbLsdAAAAAAAAAABD8Pxa67vabgQAs8s9egAAAAAAAADAlHJ/3pDMtd0AAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgNaVWmvbbYBWlVLOTvKMRYs+m+ToBnb1iCTvXDT//CSf7qNpAL2SQ8A4kEXAOJBFQNvkEDAOZBHQNjkEjINZzaItSS5bNP+BWusDbTUGAAZ4j94ps3qNB8aHHALaJoeAtskhoG1yCBgHsghomxwC2jarOeT+vBHZ3HYDoG0L4fKufvdTSulc9Ola6w397hegW3IIGAeyCBgHsghomxwCxoEsAtomh4BxMONZ9JG2GwAApwzqHr1TZvwaD4wBOQS0TQ4BbZNDQNvkEDAOZBHQNjkEtG3Gc8j9eSMw13YDAAAAAAAAAAAAAAAAAAAAAAAAABRGAwAAAAAAAAAAAAAAAAAAAAAAAFqnMBoAAAAAAAAAAAAAAAAAAAAAAADQOoXRAAAAAAAAAAAAAAAAAAAAAAAAgNYpjAYAAAAAAAAAAAAAAAAAAAAAAAC0TmE0AAAAAAAAAAAAAAAAAAAAAAAAoHUKowEAAAAAAAAAAAAAAAAAAAAAAACtUxgNAAAAAAAAAAAAAAAAAAAAAAAAaJ3CaAAAAAAAAAAAAAAAAAAAAAAAAEDrFEYDAAAAAAAAAAAAAAAAAAAAAAAAWqcwGgAAAAAAAAAAAAAAAAAAAAAAANC6zW03AKbI3Un+Y8c8wCjJIWAcyCJgHMgioG1yCBgHsghomxwCxoEsAoDp5BoPtE0OAW2TQ0Db5BDQNjkEjANZBLRNDgFtk0MMVam1tt0GAAAAAAAAAAAAAAAAAAAAAAAAYMbNtd0AAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgNYpjAYAAAAAAAAAAAAAAAAAAAAAAAC0TmE0AAAAAAAAAAAAAAAAAAAAAAAAoHUKowEAAAAAAAAAAAAAAAAAAAAAAACtUxgNAAAAAAAAAAAAAAAAAAAAAAAAaJ3CaAAAAAAAAAAAAAAAAAAAAAAAAEDrFEYDAAAAAAAAAAAAAAAAAAAAAAAAWqcwGgAAAAAAAAAAAAAAAAAAAAAAANA6hdEAAAAAAAAAAAAAAAAAAAAAAACA1imMBgAAAAAAAAAAAAAAAAAAAAAAALROYTQAAAAAAAAAAAAAAAAAAAAAAACgdZvbbgBnlFI2JXlkkscnuTjJ2UmOJNmf5NNJPlxrPTTgY84n+eoklye5KMnBJHck+Uit9dZBHmtUSinXJPmSJPuSbE1yZ5LPJflQrfXhNts2SqWUvUmuSfKoJOck2Zbk/iR3J/mbWuunW2zeMqWUq9I8bxcn2ZnkC0luS/LntdZjbbZtlsihwZBDDTnERsmiwZBFDVm06nH0j3XIosHQ1xqTlkWMBzk0GHKoIYeWKqVcluZcXJrkvCTbkxxN8kCS29Ock7vba+H4kEWDIYsasoiNkEODIYcacoiNkkWDIYsasmhl+gfQBtf4wZDhjUm7xrtHZjzIocGQQw05xEbIocGQQw05tOpx9I81yKHB0M8ak5ZDjAc5NBhyqCGHlnKPXvdk0WDIooYsYiPk0GDIoYYcYiPk0GDIoYYcWtlE949aq6nFKU1Q/kiS30vzR31dYzqe5A+SfPMAjrsvyS8luXeN430oyQv7PM7VSV6U5OeSvD/Jgx3HuHVA53FXkp9M8vk1Hs+DSd6c5BEtPt9DOx9J5pN8Q5LXJvn4On2pLpyrn0pyYcu/A9+e5M/XaOe9C331vA3se71zsN50ZZvnZoTPgRwazHmUQ3Jo8T6vHEAGLZ6ua/Mcjeh5kEWDOY+ySBZNfP9o+XmQRYM5jxPR12RRa/1jR5KnJ/nXSX4jyaeSnOw41nVtnYe2Jzkkh+TQ0M7Ho5L8TJL3pXlDY73zUZNcn+RfJNna1jlp8bmQRYM5j7JIFq20/27yZ63pyrbOzYifBzk0mPMoh+TQ4v1eOYAMWjxd19Y5GuFzIYsGcx5lkSya+P5hMpmma3KNn60Md41fsd3u1Wt5kkNySA65V6/tSQ7JITnkPr22Jzkkh2Y5h0bYP9yjt/b5kUODOY9ySA517ts9er2dL1k0mPMoi2TRSvvvJn/Wmq5s69yM+HmQQ4M5j3JIDi3e75UDyKDF03VtnaMRPQ9yaDDnUQ7JoYnvH+s+jrYbMMtTkrf0cSF7d5ILNnjcb0pyVw/H+p9JdvSw/2cm+aN1LgYD+4VM8hVpqm92+3gOJfnBET7PQz8fC+fgvg32pf1JvquF/r8zyW/20M47k3xDj8fY6O/XqenKUZ+XFp4HOSSH5NAQciiD/wP2RaM+PyN+LmSRLJJFQ8iiSeof4zDJIlk0i1k0yv6RZtD4Y2kGo9c71nWjOgfjNMkhOSSHhtc/kvzTPn6/PpnkK0Z1TtqeZJEskkXD7R99/H6dmq4c1Xlpa5JDckgODe18XDmADFo8GbOWRd0cTxbJoontHyaTaTon1/jZyHDX+FXb7F69MZjkkBySQ+7Va3uKHJJDcsh9ei1PckgOzWIOjbJ/xD163ZwjOSSH5NCQ+kfco9fLuZJFskgWDbF/9PH7dWq6clTnpa1JDskhOTS083HlADJo8WSsWg518zsoh+TQRPaPXqbNoU2PXmX555PclCZUN6ep9vfkJHOL1vmHSf60lPKMWuud3R6wlPLMJO9IsmXR4pqmuvpnkuxJ8qVJzlv08+9MsruU8oJa68kuDvMlSb6+2zb1o5TynDRVQLd2/Oi2JB9N88t3aZpf2vmFn52V5JdKKXO11teNoJmjOB/7kuxdYfnRNIPad6aplHpukqcu/HvKniRvLqWcX2v9hSG3M0lSStmU5K1Jntvxo7uTfGShrY9I0xfLws8uSPLOUspzaq0fHEU7Z4Qc6pMcOk0ODc/hNJWsp5ks6pMsOk0WrXycSegf40AW9WlC+posWmpk/SPJS5KcPaJjTSo51Cc5dJocWl9NM8B/c5o3FQ6n+bbcq5JckzP9I2l+N99bSvnmWusHRt3QFsiiPsmi02QRGyWH+iSHTpNDw2PMWhatSxadJotWMCH9A5hOrvF9mpAMd43vMGH3yEw7OdQnOXSaHBqeaR/3kEN9kkOnyaGVjzMJ/aNtcqhPE9LP5NBS7tEbL3KoT3LoNDm0PvforU4W9UkWnSaL2Cg51Cc5dJocGh5j1XJoTXLoNDm0ggnpH91ruzLbLE9JPpwz1fOuT/LDSR6xyrqXJHl9llfd+7MkpcvjXZrl1Q4/mORxHettTfJ/pfllX7zuz3R5nB9ZoZ01ycNpBjIGUqkwTdXUzmqINyf5uhXW3Zvkv3Wse2KldYfwPA/9fKS5gJ/ax4Ekb0jy7CTbV1i3JPnWNKHV2aahn4+FNvxcx3GPLvT/LR3rPT7Jn3ese0+Si7o8zuLt/mKhz/QybR7F+WhzihySQ3JoKDmU5g+u9TJmtemDHcd70yjOSZtTZJEskkVDe000Kf1jHCZZJItmMYtG1T8WjnX/Ksf63Ao/u27Yj30cJzkkh+TQUPvH9yX5+zSvv745yd411t2T5EfTvPmx+PifT3L2sM9J25MskkWyaOiviRbvy5j1yudIDskhOTSc82HMurfzJYtkkSya8f5hMpmmc3KNn40Md41fsb3u1RuTKXJIDsmhoeRQjHv08lzIITkkh4b0emhS+kfbkxySQ7OYQ6PqHwvHco/e+udIDskhOTS8/uEeve7PlSySRbJouK+JFu/LWPXK50gOySE5NJzzYay6+3Mlh+SQHJrx/tHTY2q7AbM8JfnrNFX2ntrDNj+0Qkd/cZfbvqFjuw8l2bbG+i9Y4Rfqii6O8yMLYf+RJP8jyQ8kuTZNpcBnDvAX8jc79nVTkvPX2ebHO7a5IcmmIT/PQz8fC4F9V5KXJdnR5TbnJvlEx/FvTJcvAPo4H1dn+YuB56+x/vYsf4Pxl7s81uJt3j/MxzWpkxySQ3JouDm0gbZdkuR4x7G+ZpjnYxwmWSSLZNHwsmhS+sc4TLJIFs1oFo2kfywc6/4037Lw+0n+48J5umDhZ+/vONZ1w3zc4zrJITkkh4baP+Y3sM2XJDnY0YZ/O8zzMQ6TLJJFsmjor4kW7+v9w3xckzrJITkkh4abQxtomzHr7reRRWeOI4vOHEMWTWj/MJlM0zm5xs9GhrvGLzuue/XGaJJDckgODTeHNtC2mRv3kENySA4NL4cmpX+0PckhOTSjOeQevTGa5JAckkPu0RuHSRbJIlnkHr22Jzkkh+SQe/TanuSQHJJD+kdPj6ntBszylOTKDW73to5O9ftdbPOojgvikSSP6mK7N3Uc61e72GbvaheCAQbU1WkqDS7e19O73PZPOrb73iE/z6M4H/u6DeqO7Z68wnn8siGfj1/rON4bu9jm0Qt99tQ2x5Jc3cV2i4/z/mE+rkmd5JAckkPDzaENtO0nO9r2qWGei3GZZJEskkXDyaJJ6h/jMMkiWTSjWTT087Fof6t+e27cdHXqPFy5we3kkBzq3I8cGlz7fqqjDX8x6ja08Jiv3OB2skgWde5HFq28v8X7ev8wH9ekTnJIDsmh4ZyPPtpmzLq37WSRLOrcjyya0P5hMpmmc3KNn40Md41fdkz36o3RJIfkkBwabg5toG0zN+4hh+SQHBpODk1S/2h7kkNyaEZzyD16YzTJITkkh4ZzPvpsn3v0ut9OFsmizv3IopX3t3hf7x/m45rUSQ7JITk0nPPRR9uMVXe/nRySQ537kUMT2j96meZCa2qtt25w09d1zP+DLrZ5SZJNi+Z/t9Z6Uxfbvbpj/jtKKdvW2qDWur/W+nAX++7HNydL+u9f1Fo/2OW2r+mY/57BNGllozgftda7a62HNrDd3yXpPG/d9KcNKaVsT/LtHYs7+9gytdZPJXnHokWb0/Rp+iSH+iKHlh5DDvWplFKyvC+8YZDHGFeyqC+yaOkxZNFSE9M/xoEs6svE9DVZtOyYo+gfp471hVEcZ5LJob7IoaXHkEOD87865h/ZSitGSBb1RRYtPYYsYkPkUF/k0NJjyKE+GbPeEFkkizqPIYuWmpj+AUwn1/i+TEyGu8afMc73yMwqOdQXObT0GHKoT7M67iGH+iKHlh5DDi01Mf2jbXKoLxPTz+TQsmO6R2+MyKG+yKGlx5BDg+Meve7JIlnUeQxZxIbIob7IoaXHkEN9MlbdMzkkhzqPIYeWmpj+0QuF0SbTRzrmt5dS9qyzzbd2zL+xmwPVWm9M8peLFu1I8vXdbDtkX9sx/0c9bPveJEcXzT+tlHJR/02aWJ396eIhHusbkpy1aP7/1Fr/vsttO/vstw2mSWyQHJJDgySHGs9I8ohF88fTfFMdq5NFsmiQpjGL9I/RkEX62iCNMouYHnJIDg2SHFrqvo75Xa20YjLIIlk0SLKIjZBDcmiQ5FDDmHXvZJEsGqRpzCL9A5hUrvEyfJCm8X1phk8OyaFBkkMN4x69kUNyaJCmMYf0j+GTQ/rZIE3j2CvDJ4fk0CDJoaXco9c9WSSLBkkWsRFySA4NkhxqGKvujRySQ4M0jTk0lf1DYbTJdHyFZVtWW7mUcmGSJ3ds/6Eejvf+jvlv6mHbYbm0Y/7j3W5Yaz2S5OZFi+YyHo+pLZ39adW+NADf2DH//h62/bMsbeuXllIu6LtFbJQckkODJIca39cx//u11jsHuP9pJItk0SBNYxbpH6Mhi/S1QRplFjE95JAcGiQ5tNQVHfN3tNKKySCLZNEgySI2Qg7JoUGSQw1j1r2TRbJokKYxi/QPYFK5xsvwQZrG96UZPjkkhwZJDjWMe/RGDsmhQZrGHNI/hk8O6WeDNI1jrwyfHJJDgySHlnKPXvdkkSwaJFnERsghOTRIcqhhrLo3ckgODdI05tBU9g+F0SbTIzvmjye5Z431n9Ax/9Fa66EejvfnHfPX9LDtsJzTMX9/j9t3rv/EPtoy6Tr70xeGeKzOvvh/ut1woc9+rGPxOPTFWSWH5NAgzXwOlVLOTvLCjsVvGMS+p5wskkWDNI1ZpH+MhizS1wZplFnE9JBDcmiQ5NBS/6Rj/n2ttGIyyCJZNEiyiI2QQ3JokGY+h4xZb5gskkWDNI1ZpH8Ak8o1XoYP0jS+L83wySE5NEgzn0PGPTZEDsmhQZrGHNI/hk8O6WeDNI1jrwyfHJJDgySHlnKPXvdkkSwaJFnERsghOTRIM59Dxqo3RA7JoUGaxhyayv6hMNpk+vaO+Q/XWk+usf7jO+ZvXnGt1X16nf214WjH/NYet+9cfxwe08iVUnYn+bqOxX81xEM+rmN+lH3x8lLKG0spN5RS9pdSjpZS7lqY/5+llB8opXQGPauTQ3JoIGYsh9byj5NsXzT/hSR/MKB9TzNZJIsGYoqzSP8YDVmkrw1EC1nE9JBDcmgg5NBSpZR/keS7Fi06nuS/tNScSSCLZNFAzFgWGbMeLDkkhwZixnJoLcasN0YWyaKBmOIs0j+ASeUaL8MHYorfl16JcY/BkkNyaCBmLIfWYtyjd3JIDg3EFOeQ/jF8ckg/G4gpHntl+OSQHBoIObSUe/R6Jotk0UDMWBYZqx4sOSSHBmLGcmgtxqp7J4fk0EBMcQ5NZf9QGG3ClFJ2Jvm+jsVvX2ezzkqFt/d42Ns65s8tpeztcR+Ddm/H/EU9bt+5/mP6aMsk+2dJzlo0/0CGVFV/4Y/Dzj8Qe+2Lnes/qodtr0pyXZrw3ZNkPsn5C/PfmeT1SW4vpfznhd8zViGHTpNDgzFLObSWzt+pX6u1Hh/QvqeSLDpNFg3GtGaR/jFksug0fW0wRpZFTA85dJocGoyZzqFSyo5SymNKKS8tpXwgyWs7Vnl5rfWjbbRt3Mmi02TRYMxSFhmzHhA5dJocGoxZyqG1GLPukSw6TRYNxrRmkf4BTBzX+NNk+GBM6/vSKzHuMSBy6DQ5NBizlENrMe7RAzl0mhwajGnNIf1jiOTQafrZYEzr2CtDJIdOk0ODMdM55B69jZNFp8miwZilLDJWPSBy6DQ5NBizlENrMVbdAzl0mhwajGnNoansHwqjTZ6fTXLhovn7k/zKOtvs6Zj/Yi8HrLUeTPJwx+Kze9nHENzYMf+V3W5YSrk8ycUdi9t+PCNXSrkyyb/vWPyLtdbOKpCD0tkPD9daD/W4j86+O+jnbUeSH0nyN6WUawa872kihxpyqE9yqFFKeWKSp3YsfkO/+50Bsqghi/o05VmkfwyfLGroa31qIYuYHnKoIYf6NGs5VErZU0qpi6ckB5P8fZI3JfnaRasfTPIDtdbXtNDUSSGLGrKoT7OWRV0yZt0dOdSQQ32SQw1j1hsmixqyqE9TnkX6BzCJXOMbMrxPU/6+9EYZ9+iOHGrIoT7JoYZxjw2RQw051KcpzyH9Y7jkUEM/69OUj70yXHKoIYf6NGs55B69gZNFDVnUp1nLoi4Zq+6OHGrIoT7JoYax6g2RQw051Kcpz6Gp7B8Ko02QUsq3JvnhjsU/WWu9b51NO6sUP7SBw3dus2sD+xikD3TMv7CUctaKay73T1ZY1vbjGalSypYkb83Sx31rkv9niIdtqx8eT/L+JP8uyfOSXJvm25q+NMnzk7wmy1/EPDrJe0opV2ygjVNNDi0hh/owYzm0ns4K1R+otd48gP1OLVm0hCzqwwxkkf4xRLJoCX2tDy1lEVNADi0hh/ogh1Z1V5KfTHJVrfV/tN2YcSWLlpBFfZixLDJmPUByaAk51IcZy6H1GLPukSxaQhb1YQaySP8AJopr/BIyvA8z8L70YsY9BkgOLSGH+jBjObQe4x49kENLyKE+zEAO6R9DIoeW0M/6MANjrwyJHFpCDvVBDq3KPXpdkEVLyKI+zFgWGaseIDm0hBzqw4zl0HqMVfdADi0hh/owAzk0lf1DYbQJUUp5cpJf71j8x0n+exebdwZ2Z1XKbnQGduc+R+3301TxPGVPkv+w3kallMuS/NgKP9pUStk+mKZNhF9J8uWL5k8keekGvgWpF230w3+X5JJa6z+otb6q1vruWutHaq0311r/ttb6rlrrv0lyRZL/lKQu2vbCJL9bSikbaOdUkkPLyKH+zEoOrWnhBfR3dSxW1XsNsmgZWdSfac8i/WNIZNEy+lp/2sgiJpwcWkYO9UcOreyCJP88yQ+WUna33ZhxJIuWkUX9mZUsMmY9QHJoGTnUn1nJoTUZs+6dLFpGFvVn2rNI/wAmhmv8MjK8P9P+vvQpxj0GSA4tI4f6Mys5tCbjHr2RQ8vIof5Mew7pH0Mgh5bRz/oz7WOvDIEcWkYO9UcOrcw9euuQRcvIov7MShYZqx4gObSMHOrPrOTQmoxV90YOLSOH+jPtOTSV/UNhtAlQSrk8TQdcHJK3JfmuWmtdeas1jWqboam1Hkjyix2Lf6yU8q9W26aUcmmSP0xy9mq7HVDzxlop5aeTfHfH4pfXWv90xE0Zej9c+KO1s2r3Sus9XGt9eZJ/2fGja5P8416OOa3k0HJyaONmKYe68Pwk5y6afyDJ2wZ8jKkhi5aTRRs3C1mkfwyHLFpOX9u4McoiJogcWk4ObdwM59CDSa5aND0izTjQtyX5z0nuXljvsiQ/leRjpZQva6GdY0sWLSeLNm6WssiY9eDIoeXk0MbNUg51wZh1D2TRcrJo42Yhi/QPYFK4xi8nwzdujK7x7tWbIHJoOTm0cbOUQ10w7tElObScHNq4Wcgh/WPw5NBy+tnGjVEOMUHk0HJyaONmOIfco9cnWbScLNq4WcoiY9WDI4eWk0MbN0s51AVj1V2SQ8vJoY2bhRya1v6xue0GsLZSyvlJ/neSSxYtvjPJ19Va7155q2UOdsxvpCJf5zad+2zDzyT5ppypyFiS/JdSyrenqYr6t2kqcF68sN4P5sxF73NJLl20r4drrcsqfJZSruy2MbXWW3tqfQtKKT+Sptr1Yr9Qa/25Lre/sttjrXA+xr4f1lpfV0r5+iTPW7T4h5K8ZZDHmTRyaE1yqEdyaJnv65h/S621s3o0kUXrkEU9mrEsGnr/mCWyaE2yqEctZ1QVJ7cAACAASURBVBETSg6tSQ71aJZzqNZ6MsmtK/zoI0neXkr5d0leneSHF5ZfnuQ9pZSvrrV+fDStHF+yaE2yqEeznEXdMGa9Mjm0JjnUIzm0jDHrLsmiNcmiHs1YFhmzBsaaa/yaXON7NGPvS/fMuMfK5NCa5FCP5NAyxj26IIfWJId6NGM5ZMxjQOTQmuRQj2Zs7JUBkUNrkkM9muUcco9ef2TRmmRRj2Y5i7phrHplcmhNcqhHcmgZY9VdkENrkkM9mrEcmrqxaoXRxlgp5Zwk70ny6EWL70nynFrrTT3saioDu9Z6tJTybUn+V5InLfrR0xem1dyb5gXDHy1adv8q697SQ5NKD+uOXCnl+5P8Qsfi/15rfVkPu+nnfExKP/zZLP0D9itLKXtqrav1kakmh9Ymh3ojh5YqpVyW5Os6Fr9ho/ubZrJobbKoN7OWRSPqHzNBFq1NFvVmDLKICSSH1iaHeiOH1lZrPZzkX5ZSjiX51wuLdyf59VLKUzb47UJTQRatTRb1RhZ1zZj1InJobXKoN3JoKWPW3ZNFa5NFvZm1LDJmDYwz1/i1ucb3Zgyu8ZPSD417LCKH1iaHeiOHljLu0R05tDY51JtZyyFjHoMhh9Ymh3ozBjnEBJJDa5NDvZFDa3OP3upk0dpkUW9kUdeMVS8ih9Ymh3ojh5YyVt0dObQ2OdSbWcuhaRyrnmu7AayslHJ2kj9O8sRFi/enqWB5Q4+7e6Bjfl+PbdmZ5YE9Fh241vr5JE9L8vokx7rY5H1JnprkUMfyOwfctLFSSvnuJL+cpSH6xiT/YoTN6OyHZ5VSdvS4j/M75ofRD/8qze/aKZuSPH4Ixxl7cqg7cqg7cmhF12Xpa7G/q7X+TR/7m0qyqDuyqDuzmkX6R/9kUXf0te6MSRYxYeRQd+RQd+RQT34yyR2L5r80yXNaakvrZFF3ZFF3ZFFPjFkvkEPdkUPdkUMrui7GrNcli7oji7ozq1mkfwDjyDW+OzK8O2NyjR+3e2RWY9xjgRzqjhzqjhxa0XUx7rEmOdQdOdSdWc0h/aM/cqg7+ll3xiSHmDByqDtyqDtyqCfu0VtEFnVHFnVHFvXEWPUCOdQdOdQdObSi62Ksek1yqDtyqDuzmkPT1j8URhtDpZRdSf4wyVMWLX4wyTfWWv92A7vsrHp5RY/bd65/X611/4prtqDWeqjW+s+TPCbNQMj7knwuyUNJDiS5Mcmvpame+uxa661JHtexmw+PrMEjVkp5cZpwXvz7/htJ/ukoK+fXWu/N0j8Mk+TyHnfT2Rd7qejalVrrySS3dyzu6UXONJBDvZFDa5NDy5VSSpLv6VisqncHWdQbWbS2Wc8i/WPjZFFv9LW1jUsWMVnkUG/k0NrkUG9qrQ8leUfH4m9soy1tk0W9kUVrk0W9MWbdkEO9kUNrk0PLGbPujizqjSxa26xnkf4BjBPX+N7I8LWNyzV+nO6RWYtxj4Yc6o0cWpscWs64x/rkUG/k0NpmPYf0j42RQ73Rz9Y2LjnEZJFDvZFDa5NDvXGP3hmyqDeyaG2yqDfGqhtyqDdyaG1yaDlj1euTQ72RQ2ub9Ryapv6xue0GsNTCt9D8ryRfuWjxwSTfVGv9qw3u9saO+Uf2uP3VHfOf2GA7hqrWekuSn1mY1vNVHfN/uco+y0rLJ0Up5YVJ3pymOvUpv53kpQt/qPVkAOfjxjSVJU95ZJb3z7V09sVetu3FQx3znZVcp5oc2jg5tJwcWtWzkly1aP5ImhfTLJBFGyeLlpNFZwyjf0wzWbRxsmi5McwiJoAc2jg5tJwc2rBPdsz3+jsz8WTRxsmi5WTRhhmzlkMbIoeWk0OrMma9Dlm0cbJoOVl0hjFroG2u8RvnGr/cGF7jx+UemfUY95BDGyKHlpNDqzLusQY5tHFyaDk5dIYxj+7JoY2TQ8uNYQ4xAeTQxsmh5eTQhrlHTxZtmCxaThZtmLFqObQhcmg5ObQqY9VrkEMbJ4eWk0NnTMNY9dz6qzAqpZTtSX4vydMXLT6c5JtrrX/ex64/3jH/pFLKWT1s/9Xr7G+iLFRTfVbH4g+00ZZhKqU8L8lvZmkBxHckeUmt9UQ7rVrWdzqDcVULL2aetM7+BuW8jvl7hnScsSOHRkMOyaEk39sx/7u11vs2uK+pI4tGQxbJonWOMxP9Yy2yaDRmpa+NaRYx5uTQaMghOdSFYx3zW1tpRUtk0WjIIlnUBWPWcmio5JAcijHrNcmi0ZBFsmgts9I/gNFyjR+NWcnwMb3Gj/370guMe8ihoZJDcijGPVYlh0ZDDsmhdY4zE/1jNXJoNGaln41pDjHm5NBoyCE51AX36MmioZNFsqgLxqrl0FDJITkUY9WrkkOjIYfk0FrGuX8ojDYmSinbkrwryTMXLX44yfNqrX/az75rrV9I8tFFizZn6UVhPc/smP+DftozBp6V5MpF8x+otd7UUluGopTy3DQVK+cXLf79JC+qtR5vp1VJkj/smH9mD9t+TZZefD5Sa72r7xZ1KKWcl+XVW+8Y9HHGkRwaKTnUntZzqJSyJ8m3dSx+Q6/7mVayaKRkUXtaz6IuTH3/WIssGqmp72tjnEWMMTk0UnKI9VzaMT+M115jSRaNlCxiVcas5dCIyKEZZsx6bbJopGQRa5n6/gGMlmv8SE19ho/xNX7s35c27iGHRkQOtaf1HDLusTo5NFJyqD2t51AXpr5/rEYOjdTU97MxziHGmBwaKTnEetyjJ4tGQRaxKmPVcmhE5NAMM1a9Ojk0UnKItYxt/1AYbQyUUrYk+d0kz1m0+EiSF9Ra3zugw7y9Y/57umzbY5N8xaJFh5L88YDa1JZ/2zH/+lZaMSSllK9L8jtJtixa/MdJXlhrPdpOq077oyQPLZr/qoU+1o3rOuY7+/SgvDhLs/GuJDcO6VhjQw6NnBxqzzjk0Hcm2bZo/tYkf7LBfU0VWTRysuj/Z+/Ow2S7ynrxf98QCEMgYQqjJMyDyhiUgJiDgAIKGFBAZAjkyiDOIALXIaAXLj9F8YqCoJAwKoMEZFTEwxAIMo+KTIkQmQmEEDKv3x+7jqfO7urumrqquvvzeZ5+yF6119qrqtZ+O+x+867lWYVYtJkdvT42IhYt3I5eaysei1hR4tDCiUNs5id7xyvxYH+riUULJxaxEc+s9xOHto44tLt5Zr0OsWjhxCI2sqPXB7BYfscv3I6O4Sv+O347/F3ac4/9xKGtIw4tzyrEIc89RhCHFk4cWp5ViEOb2dHrYz3i0MLt6HW24nGIFSUOLZw4xGbk6O0nFm0dsYiNeFa9nzi0dcSh3c2z6hHEoYUTh9jIyq4PhdGWrKoOTvLKJPccar4wyc+11t46x0u9LMnFQ8f3q6obj9Gvv3hf2Vo7b37TWqyqeniSuw81fSRdxccdoaqOTfK6HPgvRm9P98v//OXMar/W2rlJXt1r7q+xNarqJkmOG2q6KMnL5zi1fde5RpLf7TX/Y2utzftaq0QcWixxaLlWJA49snf8wp0eZ8YhFi2WWLRcKxKLNrrOjl4fGxGLFmunr7VVj0WsJnFoscQhNlNVP53k6F7z65Yxl0USixZLLGIjnlmLQ4sgDhHPrEcSixZLLGIjO319AIvld/xi7fQYvuq/47fB36U999hPHNoi4tByrUgc8tyjRxxaLHFouVYkDm10nR29PtYjDi3WTl9nqx6HWE3i0GKJQ2xGjp5YtAhiERvxrFocWgRxiHhWvYY4tFjiEBtZ9fWhMNoSVdWl0gXS+w41X5Tkga21N8zzWq21zyQ5eajpMklOqqrLrtMlVXXfHLjTzQVJnjrPec1q8Atv3HPvl+QFQ00XJXlka+2iuU9sCarqmCRvSHK5oeZ3Jrl3a+37o3stxYnp/qVkn+Or6j7rnTxYoy/KgZU5/7a19rkN+ty0qu49yaSq6prpPr9rDDVfkOQZk4yz3YhDsxOH9hOHNldVt05y26GmS5KcNOk4O41YNDuxaD+xaGRf62MMYtHsrLX9tlEsYoWIQ7MTh/YTh/arqqOr6rjNz1zT7/ZJXtJrfmdr7ePzmdlqEotmJxbtJxbt55n1+MSh2YlD+4lDm/PMejSxaHZi0X5i0VrWB7AsfsfPTgzfbxv9jj8xcvVWhjg0O3FoP3Foc557rCUOzU4c2k8cGtnX+tiEODQ762y/bRSHWCHi0OzEof3Eof3k6E1GLJqdWLSfWLSfZ9XjE4dmJw7tJw5tzrPqtcSh2YlD+4lDa+209TH2m2FLvDDJA3ptT0ny4ao6asKxvjJGhck/SLdzzZUHx3dM8raq+l+ttf/Yd1JVHZLkUUme1ev/rNbaGeNMpqqum9Hr65q944M3eK/ntNa+scmlPl5Vb0zymiTva61dMmIuP5TkyUke3HvpKa21D28y/lxs9edRVbdJ8uYkhw41fzrJ45IcUVWTTPe81tpXJukwidba56vqz5M8Yaj51VX1W0me31q7YF9jVd08yd+kW6v7fDOb/4vDtZK8vqo+nuSlSV47+JeWNarqikkenq6i9zV6L/9Ra+3zY7yt7UwcEofEoc6849B6Tugdv7W19sUpx9pJxCKxSCzqbFUs2hbrYwWIRWLRrotFyeLWR1UdmuRq67zcf5h8tQ2u9aVVerA2Z+KQOCQOHWhe6+O6Sf6hqj6R7o9npyT5dGujd1iqqlskeXSSX+7N67xB204nFolFYtGB5rU+PLMenzgkDolDB5r3+ujzzHo0sUgsEosOtCvXB7Aj+R2/S2K43/H7ydVbOeKQOCQOdeTqLY84JA6JQx15essjDolDuy4OJXL0Vow4JA6JQweSo7ccYpFYJBYdSI7e4olD4pA4dCA5eosnDolD4tCBduX6GFtrzc+SfpK0Of7sGfOae5Kc3+t7SZL3J/n7JG9J8rUR4/9jkktN8N5On8N7OmmM63xj6PzvJnlPupvzZUn+aYN5/OGCv+st/TzS7WQ0r7W0dwGfx6WSvGnEtb+a7hfPK5N8YLA2h18/P8mdx1zn/bG/neTd6R6svSTJawfXuHCdz+Gvlx0jFrQ2xSFxSBzagji0zjUPSZcgMTze/ZcZA1blZ45rRywSi06c41rau4DPYyGxaLusj2X/zHHtiEUrvta2+vPI9otFi1ofx8/pMzlq2fFiC78LcUgcEoe25vP42RHnnz1YH69Pl/zwyiRvS/KVdcY/N8ndlh0nFrQ+xSKxSCzams9jz4jzPbMe/VmJQ+KQOLSF66N3Tc+s1/9sxCKxSCyyPvz48bMDf+YYk/2OX/EYvtWfR7bf73i5eivyM8d1Iw6JQyfOcS3tXcDnIVdvRX7muG7EIXHoxDmupb0L+Dzk6a3IzxzXjTi04utsqz+PbL84tKj1cfycPpOjlh0vtvC7EIfEIXFoaz4POXqTfR9ikVgkFm3N57FnxPmeVY/+rMQhcUgc2sL10bumZ9WjPxdxSBwSh6yPsX9GVZJjB2ut7a2q45KclOTqg+ZKcvTgZ5RXJPml1trFWz/DmRya5JhNzjkryS+31v5uAfNhHa21i6vqAel2VHrg0EtHJLnHOt2+luThrbV3TXnZw5LcaYzzvpfkN1trL5jyOmxCHBKHVsGS4tBxSa4ydPz1dA/4WQKxSCxaBUuKRdbHChGLrDVYNnFIHNrFrpjN18c+pyV5dGvtY1s4n11NLBKLdjHPrFeEOCQO7WKeWa8QsUgs2sWsD2BH8zteDF8FcvV2N3FIHFoFcvV2N3FIHFoF8vR2N3HIOoNlE4fEoV1Mjt4KEYvEol3Ms+oVIQ6JQ7uYZ9UrQhwSh3axbb8+Dlr2BFi81tqbkvxQkuelW6DrOS3Jz7XWHtxa+95CJje5Zyf5cLpqnBv5YpKnJbnhqt6Mu01r7ZzW2oOS/Hy6tbaebyV5bpIfaq29Zczh/z3J05OcmuT7Y/b5zyRPSbezif/zusXEIXFoFWxxHBrlhN7xS1prF84wHjMSi8SiVbCgWGR9rDCxyFqDZROHxKFd4O3pdsR9RZIvjdnn3CSvTnLvJHeUcLX1xCKxaBfwzHrFiUPi0C7lmfWKEYvEol3E+gB2Fb/jxfBVIFdvdxOHxKFVIFdvdxOHxKFVIE9vdxOHrDNYNnFIHNoF5OhtA2KRWLQLeFa94sQhcWiX8qx6hYhD4tAusqPWR7XWlj0HlqiqLpOu2vGRSa6ZrqrxmUk+3Fr7wjLnNomqulKS2yS5froKnZdN939czkzy0dbap5Y4PcZQVddPctsk105yhSRfSXJGklNbaxfMMO5BSW6c5IZJrpPk8OxfH2cl+XKS97fWvj7TG2Bq4hCrYqviENuDWMSq2MpYZH2sPrEIWDZxiN2gqq6R5Obp1vlVk1w+yYVJzk7yzSSfSPLpbbCrz44lFrHTeWa9+sQhYBWIRewG1gewG/kdz6qQq7d7iUOsCrl6u5c4xKqQp7d7iUPAsolD7AZy9FafWMRO51n16hOHgGUTh9gNdsr6UBgNAAAAAAAAAAAAAAAAAAAAAAAAWLqDlj0BAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAHqq6qiqar2f45c9r0Wqqr2997932XPaiXzO21tVndiPFdvh+tYdAAAAAAAAAMDutl3zXgAAAACA3UFhNAAAAAAAAAAAAAAAAAAAAAAAAGDpDl72BAAAAIDVVFVHJfnCBF3OT3J2ku8k+VySDyc5LcmbW2sXzHt+AAAAAAAAAAAAMKyqKl3e25G9ly5OcmRr7czFzwoAAAAAgEkctOwJAAAAADvGIUmunuRGSX4qyZOSnJLkzKp6ZlUduszJ7XRVdVJVtaGf05c9J2BnqarTe3HmpGXPCQAAAAAAAACg525ZWxQtSS6V5PjFTgXmo6r29PJ2WlXtWeJ85CvCHLmnAAAAYC2F0QAAAICtdrUkT0zyiao6ZtmTAQAAAAAAAAAAYMc6YYPXHllVtbCZAAAAAAAwlYOXPQEAAABgW/leks+u89rlk1wlyVXXef3IJG+pqmNbax/ZiskBAAAAAAAAAACwO1XVVZL87Aan3CDJniT/upAJAQAAAAAwFYXRAAAAgEl8oLW2Z6MTquq6Se6d5PFJbth7+UpJXl1VN2+tXbg1U2QeNvuegaS1dmKSE5c8jYm5vwEAAAAAAACAHeohSQ7ptbUkNXR8QhRGW7rtmncDAAAAACzGQcueAAAAALCztNa+1Fp7bpJbJfmHEafcMMmjFzsrAAAAAAAAAAAAdrhH9o4/k7U5bPerqsMWNB8AAAAAAKagMBoAAACwJVpr30vyi0n+fcTLD13wdAAAAAAAAAAAANihqurodJt5DntxkpN7bZdL8uCFTAoAAAAAgKkojAYAAABsmdbaeUmeMeKlo6vqKoueDwAAAAAAAAAAADvSCb3jluQlSd6c5GubnAsAAAAAwAo5eNkTAAAAAHa8t4xoOyjJTZO8d9pBq+qgJLdJclSSqye5SpKzk3w9yWeTfLi1dsm0489TVV0nyc3SzfWwdLuOnp3kW0n+K8n7B0Xk2AJVdbkkP5LkWkmOSHJokm+mWysfba19bonTG0tVXT3JHZLcIN38v5MuYfN9rbUzljm3rVZVh6V77zdOd/+cl+TMJO+d5L1X1bWT3D7dfXhouvvvS0ne0Vo7e87TnkpVHZLkTkmul+SaSS5O8tUkH0/ykdZaW+L0AAAAAAAAAABW0iA/6Bd6ze/cl1tSVS9P8htDr92uqm7VWvvoFs/r0unylm6R5KqD5q8m+dAk166qK6XLe7lpksOTfC/JV5Kc2lr70lwnvfbaV03yo0lumORK6fKW/jsrmndVVddNcqt0OYVXT1cg7+tJvpzktEXkCVXVjZPcLsl1khySLlftv5O8u7V21lZffyeqqh9KcqN0+X9XTXJuuu/19HT5lxdu8fXdy9Nfd1XuyVsluW663MELkny5tfaSMfvLAd4CVXWZJEenux+uli5enp0uL/Z9E4xzo3T35r41dn6Sb6TLDz2ttfb9OU8dAACABVEYDQAAANhSrbWvV9XZ6RIphl1tmvGq6s5JHpfk7umKoa3nW1X1piTPaK19apprTauqrpbkuCR3S3Jskmts0uWCqjotyXOSvGbcgm5VdXqSI9d5+ciqGqeI0l1aa3tHjL033dz3eUdrbc868/h4kh8aavp6kuvMkmxUVb+Q5OW95se11v5qzP4HJfnFJA9J8uNJLrvBuV9I8sokf9Ja+8Z0M94aVbUnyVOS3DVdQcFR53wqydOTvHySwllVdXySF/War99aO32Kefav+9TW2omb9DkxyR8Mt7XWauj12yf53ST3yjrPMavqHUme1Fo7bYPr3DvJ7yS5Y5IaccoFVfXaJE9srf3XRnOe9D1MMM5RSU5MFzf6sXKfr1TV85I8q7V2zqTX6F1vb8a4vwfz+sIGQz28qh6+2fX2fSaDxL4z0yWX7bO3tXaXTSe9gar68yS/1mu+9VYnLwMAAAAAAAAAK+Pn0hWrGXZy759/o/f6I5P8+jQXG+T0/Guv+X/ysAYb+P3vJA9NcsV1xvjPJH+0UWGeqrpluvyZ+6QrecPL+wAAIABJREFUGDPqnPcm+e3W2qmTvYuNVdWx2Z+3dKl1zvlQkucm+dtJN/ybV97NYKwjkvxmknsn+cENTr2oqt6X5C+T/P2kG69ulCM1yFd7eJLfyoG5dMMuHuTt/O5G+U5D1zsxvc+o51+rNv3ITm6tHb/ZSePYynzFda53y3T37U8lufYGp55TVW9L8sxxPtfeNfZkm9/LY+Thbem9vM54q3BPXiHJryb5pXQb0o4y8jvb7jnAm63rSYyY46YxZbPc1Kr6wSRPTHL/JFcYMcTJSTYsjFZV108Xb++V9b/fJDmvqt6V5M9aa2/eaEwAAABWz8j/mBIAAABgzkYV8Vmv+M9IVXWTQaGzdyZ5YDYuipbB6w9J8vGq+puqWrcw1jwNdhf9cpLnJ3lANk+ISJLLpCve9coknxj80X876ScwXD3JT8845vG94/OTvGKcjlV1jyQfT/LiJD+ZDYqiDVw/XeGsz1fVVMmO81ZVh1TVC9Ilp9w9Gz/Hu0WSlyZ5yyCZZ1urzh8mOS1dIthGmzscm+Q9VfWEEeMcVlWvSfL6JHfK6KJoSXf/PTDJp6rqbjNNfgqDNffJdImRG8XFa6YrnvbJqrrdAqY2d4PdPV/aa95TVTefdszBjs8P6zW/V1E0AAAAAAAAANhVTugdn5vk1fsOWmsfSfKx3jkPqaqRBYpmUVX3S/KpJL+cdQopDdwkyYur6pX9eQzyZ34/yYeS/HzWKaQ0cEySd1XVU2ab+f9c+1JV9Zwke9PlXo0spDRw2yQvSPLOQZGahaqqy1TV05J8PsmTsnEBpqTLQ7pTug07PzooVjWPeVw3ybuTvDDrF0VLus/yrkneW1X/Zx7X3omq6lpV9bIkH0nyiGxcFC3pNmn82XSf6ylVtVlu6bjzcC9Pfs1VuSd/NN1394xsXDRrVN/dmAO8MFX1u+nu7YdldFG0zfpfabCuP53kV7L593vZdDm4b6qqd1XV9Sa9JgAAAMujMBoAAACwCIePaDt73M5Vddd0u3/dc4prH5Qu8e0dVTVOgsKs7piNCzlt5uZJTltGgaYZvDTJhb22R0w72CBRrP/+T2mtnTVG3yckeWO6YmGTumKSZw8K6c3yHc5kUMTvzUn+14RdfzJd8sZGCUzbwfPS7Y457rPLSvLHVfWo/2moOjzJvyS53wTXvUKS11fV7SfoM5NBguOzk1x+gm7XSxfPtmVxtHS7YvY9ZobxfiFrf8c8d4bxAAAAAAAAAIBtpKpulK4gzbBTWmvf7bWd3Du+SrpiSvOcy0PSFWQ7bIJuP5+uoNa+MSpdgaKnZuNCRgdcOsn/qapfmeC6awfprv3SJI+bsOuPpctnmagA0SwGxa/+KcnvZYriOukKmJ1aVfeecR43SLcB5DETdn1KVf3RLNfeiarqVkn+LcmDs/5GmBu5b7r8y5vMOA/38uTXXJV78sfTFYObtgDWbswBXohBQbM/zJSfb1UdmeTUdOv60lMM8WNJ/q2q7jDN9QEAAFi8pf0HngAAAMDuUFU3zOiiP58fs/+9k7wma/+IfUGSt6crmPbFJN9Jt/PfUUl+Ismde+f/SJJTqurHW2v9Il5b5eJ0O/19Msl/JPlmuoJwleRKSW6c5A7pdrwbLgJ1aJK/q6rbtNa+uMH4n0ry7cE/Xy/JlYdeu3Dw+mbOGeOcDbXWvlZVb0qXVLTPvarqiNba16YY8mFZWxTrhaNOHFZV/zfJ74x46VtJ/jnJB5N8Ld2OsIen243wHklu2jv/hHSf6xMmmvX8vDDJXYaOP52uUNp/pHsvhyW5TZL7Z+1uhD+e5DeT/MnWT3P+qurXkzxqqOmMJP+Y5BPp3vvhSX40XRLZlXrdn11Vb00XD/4uyXDhsA8meUuSLyT5brrP7SeS3CcHrrXLJXlBVR3dWrtoTm9rpKr6rSSjdvc8fzDXdyb573RJYtdPd3/t21H2CklOydDOxlvkgiQfHTq+RQ6MxWcl+a9JBmytfbKq9ibZM9T8sKp6cmvt3Cnm+Nje8TeTvGqKcQAAAAAAAACA7emRWVtAqV8ELUleluT/y4EFik5I8vdzmsfRSZ4+NJdvJ3lTuqJZX0uXl3LzJA9Il+M27MFVdUpr7VXp8klOGHrtjCRvSJc/8810+TM/Mhinnz/zzKp6Q2vt9Cnfw+OTPGjo+LtJXpfk/Um+Orj2zdLlLf1Ar+8PJHl7Vd26tfbtbKHBpomnDubS94kk70iXs7dvHkekK1x2r3SbZ+5zaJJXVdWdWmsfnGIqV0yX13WdwXFL8p4kb0uXU3NOkqunyw88Lslle/2fXFX/2Fp73zrjfyX7c3cOTXLD3uufy+b5fxPl9mxiS/MVq+roJP+a7r0OuyTJu9J9tl8YzOFySa6b5Ngkd82B9/WN020wervW2nfGmFOfe3nCe3mF7slrJvmHHHiv/Vu6gm1npPscrpUuD+7nxxhvV+QAL8gv5cBCfeeky+s9Nd2aPCjdPX2XdJ/7AQZF0d6XtTmzSfcdn5ou1/asJJdJ9z3fMd2G3IcMnXuNJG+sqtu21s6Y7S0BAACw1aq1tuw5AAAAACuoqo5Kl0Qy7B2ttT0TjvPEJM/sNZ+V5GqttUs26Xv9dEkFhw81X5Tkz5L8cWvt6xv0vXWSv8mBxZGS5E9ba4/f5LpHZe17f0Rr7aSN+g36/meSj6fbbe/t4yTWDP5g/4wkv9B76Y2ttZ/ZrP9gjJOSPHyo6YzW2lHj9F1nvL3pkob22fC7r6r7pEucGfb41tqfTnHt/0yXMLLPl5IcudF6qarj0iW0DDsryZOSvLi1dt46/Srdzq/PS5dsM+y+rbXXTzj9iYz4nM/L/qScryT51dbayOJXVXVokr9MV0hu2LeTXLu19v1Nrn18khf1mq8/TTJVVfUfMj61tXbiJn1OTPIHvebz0yWhnJsuOesFrbVRSS7XSFcw8U69l56fLrnlWYPjzyd5VGvtX9aZw9FJ3pi13/2DW2uv2Gj+672H1tqmO5VW1U2TfCRrkx3fPJjvl9bpd1yS52Z/cs/30yXaTXr9vZng/h7qd3qSI4eaTm6tHb9ZvxHj3D9ri7qd0FrbtABib5zbJflAr/lPWmu/PemcAAAAAAAAAIDtp6oula7w07WHmv87yQ+MyjWqqjemK8SzzyVJbjBpcZSq2pOugNOwfXkvSfIXSX5/VFGhqjokXW7L43ovfTpdHtB70xWI2Sx/5prp8mfu2Hvp+a21R4/xHk7M2tyd4dylFyX5rXXew0HpNm/8o6zNfzmptfaIaa4/Tt7LoO9r0+V8DXvPYL7rFRnbV7zp99LNffhapye5ZWvtu5tct58jNfx5vS/JL7fWPrRO36PSfV+37b301tbaPTa67qD/nqxdc3dpre3drO9W2IJ8xSunyxXtj/GiJCe21tYt8DbYvPcvk/xU76V/aK3df5Pr7ol7eaZ7eTDOqtyTF2d/kbyPJXlMa+296/S97Ki80p2QAzzPeDFNzuA6uanD383zkvxua+2b6/Q/4LupqsskeXeS2/dOfUOSJ7bW/n2DuVwzyR8neUjvpfcnOWbUPQkAAMDqOGjzUwAAAACmU1XXSvKEES+9YrOiaAMvy4FF0c5N8lOttSduVBQtSVprH0mXKPLPvZd+tar6O9zN0+1ba/dvrb123N0GW2tntNYenOTE3kv3qqpRO+itojel27Vt2PGTDlJVd8qBRdGSLpFio6JoR2RtEsVn0iXGPH+9omhJ0jqvTbfLY78Y1TMGhdMWaV9y0eeT3GG9omhJ0lo7J91n/NbeS4en28lxO9pXFO1urbXnrZd00lr7apKfSbcD57CHJHna4J8/mS5xZWRRtME4H8joz2qshK4ZPDdrE8lemeRn1iuKliSDtXps9r/vy6137oo7JWvvt8dOMU6/T0vy11PNCAAAAAAAAADYju6ZA4uiJclLN8g1Orl3fFCmyHFax75CSr/eWvu1UUWIkqS1dn5r7VeyNufnpkn+cTCnc5L8xCb5M19Jlz/Tz6N7UFVNm1OyL5/l/7bWHrnBe7iktfasJD+fbqPTYcdX1Y9Pef1NVdWjsrYA018l+bGNCjAlSWvt24NNVU/ovXRUkl+eYjr7Pq83JNmzXlG0wbVPT3L3rM2xu3tVXW+Ka+80f5kDi6JdnOQhg3W4blG0JGmtfS5dLOjnEN6vqn50irm4lztj3csrdk/uK7x1apI7r1cUbXDt9fJKd2sO8Fbb9908vrX22PWKoiUjv5sTs7Yo2pNaa/feqCjaYKyvtNYemuSpvZdun+TnNp82AAAAy6QwGgAAALAlBrvwvSXJ1XsvnZtuZ7TN+t89yTG95ke21t4+7hxaaxekS9j4xlDzpZP81rhjTGrcRIh1PC3dLmT7VJJHzjajxWitXZRuh7xhP1xVt5twqFEFqfoJS32/nuSwoeNzk9xjowJTfa21LyZ5UK/5FknuM+4Yc3RhkgeMsxNta61l9Hru7365nfzGRglJ+wyStf6k13z5JFdIt+PlA1pr/cJpo8Z5d7pYNewuVdUvXDYXVfXDSe7Sa/5skoeNUzCytbZvR9Fta5Dk1y9gdnRVHT3uGFV1WNbusPnPrbXPzjo/AAAAAAAAAGDb6BfTSZIXb3D+65L0CwQ9oqrm9d/Yvby19v/GPPf3RrQdMfjfX9+soFCStNbOSvKsXvOV0m0oOq29rbUnj3Nia+0NSf5oxEu/NsP111VVByd5Sq/5La21xw3yqMbSWntRkr/pNf9mVR0y6vxNnJ6ugNe6m3cOXfdbWVuc56B0BdN2raq6aZIH9pr/d2vtZeOOMfj+H52kXyTpSVNOy73c2fBeXtF78jtJHthaO3uKvrs2B3hBXtNa+9NJOlTVlZP8aq/5ea21Z04yTmvtxKzdaHva+AAAAMCCKIwGAAAAzEVVXbaqrlNVP11Vz0/ysSS3HHHqL41ZsOp3esfvaq39/aTzGiQp/Hmv+bhJx1mEQSLIS3rNP7aMuUzphSPajh+3c1VdPskDes3vHOzouF6fQ7N2Z8BntdY+P+5192mtnZrkX3rNy1grL2+tfXDck1trn0rS32100oJ0q+I/szbBaSOvWaf9JYPPZVyv7h0fnOSHJ+g/iceMaHt8a+38cQdorb013a6i29nzk1zQa3vsBP0fnq4Q3rDnzTQjAAAAAAAAAGDbqKojkvx0r/lDrbVPrtdnkJ/Rz0E7Msld5zCli7O2QNC6WmvvT/JfI176dDbfSHJYP+8lSW47Qf++SYuaPTNJPx/wvlV1rRnmsJ4Hpfu+9mlZWzBnXE8b9N/nGlm7kes4njphIaW/S7dWhm3XXK95+e0c+N+5fiFrN8zcVGvtwiRP7zXfc4oNMt3L+212L6/iPfmnrbUzp5zDTHZADvBWuiTJE6bo97gkhw4dn5O1+eXjelrv+NZVddSUYwEAALAACqMBAAAAkzi2qtqonyTfT5cU8YYkv5S1BWvOTfKLrbWXb3aRqrpKkp/oNU9SLKnvjb3jI6vqyJFnLt9nese3rapLL2UmExoUovq3XvODJ9i17/5Jrthr2ywx6G5JDu+1/e2Y1xulv1aOnWGsab1gij79z/0m85jIErxowp0iP59uh8e+SdfAh0e03XTCMcZ1z97xl7N23Y3jr+cwl6VprX0tyat6zQ+qqv79vJ5H947PzPYvFgcAAAAAAAAAjO/hSfp5VSeP0e/FI9pOmH06eVtr7YwJ+3xkRNuk+TOfS3J2r3navJfTWmsfn6RDa+28rC0EdHC6vK55+7ne8d7W2menGai19sUk/fc6aa7Y95Jsmg/Zu+5ZWZsjuFV5SiuvqirJ/XrNJ7XW+sXjxvWm3vEhSX50wjHcy/ttdi+v2j3ZMnqD30XatjnAW+ztrbXTp+jXX2Ovaq3175NxvSfJt3tty8gRBgAAYEwKowEAAABb7bvpiprdbJyiaAN3TlK9tvfMMIcvjGi7zQzjja2qDq2qe1XVk6rqxVX1xqp6V1V9qKo+0v9J8pzeEIek2/luu+gXMrtKkvuM2fcRveNzsrZwUl8/KeHMKZKShvXXylETFGqah+9nbZGzcXyud3ypqjp05Jmr7Z1T9Onvtnlukg9OOMbpI9rm/r0Pdiq+fq/5dVMm8r01XXLldtaPd5dP8rDNOlXVsUlu0Wt+QWvtonlNDAAAAAAAAABYeY/sHV+U5BWbdWqtvSdrC9f87GAzz1lMk/cyKs/pXXMYZ9q8l1Om7PcPI9ruMOVYIw0KaN251zxLTmGyNlds0pzC01prF0xx3X6u12FTjLFT3DLJlXttU3+vrbVvZe1Gm5N+r+7lA428l1f0nvxsa+1LM87hALswB3ir/OukHarqykl+uNc8S3y4JGvvsYXkkgMAADCdg5c9AQAAAGDH+0CSvxjs5jauO41oe01Vjb173hiuNsex1qiq2yX57XRFwS4343CHJ5lrssYWekWSP82B7/n4bFLgrKqOTLKn1/zK1tpmhZ/6a+XKg+SSaY0qJna1rN0lbquc0Vq7cIp+/WSupEuYO2fG+SzaNLtFfrd3fMYUBbL6YyRbk3B4uxFtkxZxS5K01i6qqo8lOWa2KS1Pa+20qvpgDvxcHpPk/23S9bG944vSFeAEAAAAAAAAAHaBqrpTkpv1mt/cWvv6mEO8OMkfDh0fkuQXk/zFDNOaR97LvMaZNu9lqjyWJB9PcmGSSw+1jcqTmcXN023SOezhVfUzM4x5vd7xpDmF/QJ74+rneu3mwmijckX/oqrOn2HMy/eOJ/1e3cvj3cureE9+aIZrH2AX5wBvlWm+m2OSHNRre3JV/coM87hR73hLc8kBAACYjcJoAAAAwCS+l9HJGpdOt2vftUa8dpck76+q41trm+7IOXDdEW23HLPvuK465/GSJFV16SR/lq5wT/8P8tPaNolPrbXvVNVrkzx4qPmnquparbUvb9D1+CTVa3vRGJfsr5XLJ7nVGP0mcdVMl6Q0jW9N2W9UMbVLj2hbdWdN0af/3iceo7V2YbeB5QG24vM7YkTbp2cY7z+yjQujDTwnB97rN6+qPa21vaNOrqojkhzXa359a+3MLZofAAAAAAAAALB6ThjRdvIE/V+S5Gk5MF/phMxWGG0eeS/zGmfavJep8lhaa+dX1elJbjzUPCpPZhajcgqvu077tCbNKZxXrtd2zPOal1HfX7/o4awm/V7dy+Pdy6t4T35t1gvu9hzgLTTNdzNqLd1g1on0bEkuOQAAAPMxr/9jDgAAAOwOH2it3XrEzw+21q6d7g/Ex6cr1jPsMkleUlX3HvM6i/hD86w7uK0xSIh4VZLHZb7PXbZb4lO/oNmlkjx0vZOrq0j1sF7zZ1pr7x7jWv0dB7fC3NfKBkYlSO0arbV5vP9V/gwPH9HW3wF2ErP0XRV/l+SbvbbHbHD+Cel+pwx77lxnBAAAAAAAAACsrKo6NMkDes1nJXnDuGO01s5IsrfXfKuqut0MU5tLzsqc8memNc88llF5MrNYxZzCVc5T2i527Pe6C+7lVfzuzp7lYnKAt9Q0380qrjEAAAAWSGE0AAAAYG5aa99qrZ2c5Nbpit0Mu1SSl1bVUWMMdeU5T21RfifJfUe0n5nkr5I8JMkxSX4gXbLIZVtrNfyT5C4Lm+3W+ZckZ/TaHrHB+cdm7S5u/eJqa1TV5ZMcMtnUYKmuOKLtezOMN0vfldBaOy/J3/aa71dV1+ifW1UHJXlUr/kz6WIOAAAAAAAAALA7PCjJFXptf99aO3/CcU4e0XbCdFPaMeaZxzIqT2YW2zWnkI35XrfGIu7lVfzuLpqxvxzgrTPNd7OKawwAAIAFOnjZEwAAAAB2ntba+VX10CTXyIF/5L9SugI4d91kiO/3jr/dWlvpP3BX1RFJntxrvijJbyd5Tmtt3D/qb/vdx1prrapOTvL7Q803q6o7tNZOG9GlXzTt4iQvHuNS5yW5JAcW/z+ltXbcRBOGxfnuiLZ+ou4kZum7Sv4qyROy/16+dLpE46f3zrtnkqN6bX/dWmtbOjsAAAAAAAAAYJWMKl72mKp6zBzG/oWqenxrrZ+/tltcIcnZM/QdNipPZhajvpOfba29bs7XYbFGfa9Xbq19e+Ez2VkWcS/vqHtSDvBKGrXGbt1a++jCZwIAAMBSHLT5KQAAAACTGyQBPCxrkyt+oqoeuEn3b/SOD6+qw+c2ua1xnySX77X9Tmvt2RMkRCTJVeY4p2U6KUm/WNHx/ZOq6tAk9+81/1Nr7czNLtBauyRJPwHq+uNPkXmoqksvew7byKiEvcNmGG+WviujtXZGkjf0mh9VVf3n14/tHZ+XLtYAAAAAAAAAALtAVd0iyR228BKHJ7nfFo6/6uaZxzLvwlb9nMJErthOMOp7PWrRk9iBFnEv77R7Ug7waMvMD91pawwAAIAJKYwGAAAAbJnW2peS/P6Il56+STGlr45ou+V8ZrVl7t47PivJc6YY5wZzmMvStda+kGRvr/lBVXXZXtsDsnaHwRdNcKn+WrlJVR0yQf/d7MIRbdMksVx11onsIl8b0XbTGca72Qx9V00/Xh6Z5J77DqrqgOOBV7bWvrnVEwMAAAAAAAAAVsYJO+Qaq+om03SqqstkbTGrUXkys9iOOYVszve6NRZxL++0724n5QDPKzc0WW6ht522xgAAAJiQwmgAAADAVntuks/32m6QjRPI/m1EW78gzqr5gd7x+1prF0wxzjHzmMyK6Bc4OyzJcb2243vH30ry+gmu0V8rl0uyZ4L+u9nZI9quNMU4N5p1IrvIB0e03W6agarq4OysJJ+3Jfl0r+2xQ//8qKx9nv3cLZ0RAAAAAAAAALAyBhtxPrTXfEGSj874863emHuqahUK2yzDVHks6XJY+kV3RuXJzOJj/z97dx4maVnei//79KwsAwwwIEsUWdxQYxRUEEVwTfQkaAyuiRijHIInag4aDWFRE40/RJKjxiWK4kE9xBhAcwx4RIgiKuBKxAVcGDZlhGGYYXqmZ6af3x/VM3RXV3VXddd09XR/Ptc1F7zPuzx3VXf1VE3f7/dJsqFp7Lk9noOZtyP2iu4IZuK1PNdek3OpB7gnvaGllAOTNC+GPJO+1WLMzwcAAIB5RDAaAAAAsF2NNAa8vcWu00spS9qc9v9ajL14JAhottq7abu5YW5SpZS9kxw3xfk3N20vmOJ1eulzGd9g8aqt/1NKOSTJU5v2f6rWurGLOVp9r7yii/Pns3tbjE2lqfPY6RYyX9Ra70ryi6bh3y+lTOXfaZ+TZJfpV9WV7fZzptZak/xT0/DvllIeMtLY3Bym+b1a6zd7NT8AAAAAAAAAMOv9fpIVTWMX11ofN50/Sf6m6Zolo3qc5pkTpnjeC1uM9bSvo9a6IcnVTcP7lVKe0ct5ZrHmvp2kvz2CveojuibJ/U1jzyulLJ/i9WjY7q/lOfianEs9wHOiN7TWekuSm5uGn1hKeVg/6gEAAGDmCUYDAAAAZsKFSX7aNHZgkte0OrjWenvGrzL30CQn9byy3mluzmlukujEqZn66mprm7Z3neJ1eqbWuj7JRU3DzyilbF1Z76QWp328y2kuz/hVB19aSnl4l9eZj37SYuyJ3VyglLIgyZ/2ppx54z+atvdP8rwpXKflz8/tbHv/nPlEknWjtgeSvDbJC5Ls23TsB3s8NwAAAAAAAAAwuzUvqpY0+tKm66IkQ01jJ01xobsd3VGllMO7OWFkcdQ/bhrenOTLPavqAZe2GDt7O8wzGzX37ST97RHsSR/RyMK7lzUNL0vyP6dyPbaZqdfyXHpNzqUe4Nsztg8v6bI3dMRrp1FDrzR/jw0kObMfhQAAADDz5uM/0AIAAAAzrNa6Jck7Wux6aymlXRPA37UYe88sXunrzqbto0spu3R68kgTylunMf/qpu09Zsmqic1BZwNJ/mSkcfBPmvZ9v9b63W4uXmv9TZKPNA0vSPLpUspOXVU6z9Ra70pyW9PwiSNhZ506NVNbSXA++1CLsfeUUhZ3eoFSyjOT/EHvSupY88+Znn7ta633JfnfTcOvTvI/msbuS/LpXs4NAAAAAAAAAMxepZQDkjy7aXhVxgcqda3Wek/GL3R3YJLnTPfaO6h/7PL4N6fxfI12aa21uZ+uFz6W5FdNY8eUUv5qO8w12zT37ST97dvqZb9iq17RN5dSjpni9WiYidfyXHpNzpke4FrrcJLvNQ0/r5Sye6fXKKX8fpKnTWX+Hjs34xdPfnkp5cX9KAYAAICZJRgNAAAAmCmfTvLjprH9k/z3VgfXWi9Ocn3T8O5J/qPbley2KqUsK6W8qZTyiqmcP4mvNW3vmuSsTk4spRyU5PNJlkxj/htajP3eNK7XE7XWb2T81/2kJM9I8uCm8fOnOM27Mn61vscnuXiqjSGllIeUUt5XSnn0FGvaUTQ3dT44yRs6ObGU8owk/1/PK5rjaq03JLmyafhhST7eyUrDpZTDMj48bKY0/5x5dCnlt3o8x/ubtvdN0tzkeGGttXlFSwAAAAAAAABg7npVGosljnZRrXVzj65/YYuxV/fo2juaZ5RS/raTA0spv5vkjBa7/ldvS2qotQ6mdYjWO0spr5vqdUspzy2l/NPUK5sRtyZZ0zTWz/7AnvUrjiym+rmm4UVp9P9NKZiplLKklPLaUsobp3L+HLHdX8tz7DU513qAm3tDd0rS6ffDYzN+UeS+GAnm+0CLXeeXUv5wKtcspSwopby4lNLqexcAAIBZRDAaAAAAMCNGViB7W4tdbyml7NzmtJcmuadp7OAk3yqlnN7J6mWllIFSynGllA8lWZlGkNODuii9U59LMtw09qZSyjtKKQsnqO+lSb6RB1ZvvG+K83+zxfznllL+oJSyaIrX7JXmBolDM341wqEkn5rKxWutv0ryyiS1addzkny7lPKKib4GW5VSdhlpdvi3JDcneV2SpVOpaQfy0RZj7y6lnFxKKa1OKKVaAjpkAAAgAElEQVQsHVnR8T/SaORpXo2Pyf15xj9vL0vy+ZEVjlsqpZyQ5Kt54GfY4PYpr61rmrYHkny2lHJEryaotd6Y8cFxzT7Uq/kAAAAAAAAAgNltpIflVS12tQozm6ovZHzo1O+XUlb0cI4dwdZ+ltNLKf/crj9vpCfvDUn+LY0Aq9E+UWv96nas8QNJLm0aG0jyvlLKxaWU3+7kIqWUh5ZS/qqU8oM0+qCmFMA1U2qtNY0+w9GeWUp5Vyllnz6U1Ot+xZOT/KJpbO8kV5RSzimldNTzWUp5Uinl3CS/TPLhJIdMoZa5YCZfy3PlNTnXeoA/kWRL09jrSilva/d4RgLDXp3k6iR7ptGTOzSFuXvtb5Jc2zS2c5J/LaV8tJTS0eu8lPLoUsrbk/w0yf9J0tH3JgAAAP0z6Q2hAAAAAD30L2n8gvrwUWP7phES9J7mg2utN5dSTkzyxSSLR+3aJY2Vy95aSrk6ydeT3Jnk3jR+2b1Hkt9K8viRP3v0/JGMr/WnpZQLk/xJ066/SXJSKeVfk/wgybo0GgYenuT3M7bxZn2Sv0rywSnMf2cp5bKMXSFu3ySXJBkqpdya5P6MDw/7s1rr9d3O16X/neSdGbtq6yObjvlCrfXuqU5Qa/1cKeXMJO9o2vXQkfnfU0q5Ksn1SVal8Vzslsb3xqFJjkjy2Exvxb4dTq312lLKpUn+YNTwgjSCp04tpVycRkjcUJIVSZ6QxvfY6Ga6N0RQVVdqrT8upZye5NymXc9LcnMp5T/SWIHyzjRWajw4ja/RY0Yde3uSz6bx/M+US9MIq9xz1NiTklxXSlmb5I60CMqrtT6uy3k+kOS4NvuurrW2Wh0TAAAAAAAAAJibjssDgTNb3VRr/VavJqi1biylfDbJn40aXpTkFUnO69U8O4Az01h4NGk8FyeWUi5Jcl2Su9LotXpEkj9M8uAW59+S5I3bs8Baay2lvCKN4J7mUJsTkpxQSvl+kquS3JRka0/aHmkEbT02jR6o5u+pHcH5SZ7bNPaWNBanvTONvp7NTfs/X2s9s9eF9LpfsdZ6dynl99P4uo4O8VqY5LQkf1FK+UYai0relmR1Gr1+eyTZL8nvpNEDON/CDNuZsdfyXHlNzrUe4FrrHaWU92V8f+GZSV5eSvlckh+N1LxXGr2Jz8vY74d3p7HA9UO6fTy9VGvdUEp5QRrhcb/VtPvVaXx9rk/yn2mEIt6TRh/sHmn0uj4ujZ8PbRetBQAAYHYSjAYAAADMmFrrcCnlbWkEpI325lLKB2ut97c454pSylOT/GvG/0J7lyTPGfkzG/xFkiem0TAy2oGZPLxoU5I/SqPJYKrelOTYNJ6X0Ran/cqHu05jvo6Math43gSHnd+Def62lHJHGqFKS5t275vkxSN/GOu/Jzkyyf5N44/J2CCuVs6ptX64lCIYrUu11veWUvZO8tamXUuTvGDkTzv3p9E09vztVF5LIw1Gb0xyQYvdy9Jo9uqFS5LcmvE/85MpNI0BAAAAAAAAADu0V7cYu3A7zHNhxgajbZ17PgWjvSeN8JgTR7Z3SyMkqDkoqJXbkhxfa713O9W2Ta113UhP4cfTCHZq9tsZH9A0F3wuyRVJntFi334jf5p9bzvW09N+xVrrf5VSjkzyb0ke3eKax478YXIz+lqeQ6/JudYDfHqSZ2b86+mQJG+epJaLRs5/6STHzYiRoLcnplHX05p2L0hjgdcnzXhhAAAAbFcD/S4AAAAAmHe2rpo22ook/6PdCbXWa5M8Po2miU3TmLumserc16ZxjfYXr3VNGk0E3+zy1DuSPLPW+sVpzn9jkmcluXk619lOJgo+uzPJ5b2YpNZ6fpKjknxlmpfakOT/JFk57aJmuVrrr5Ick+6+b4aSnFZrnaw5hgnUWv86jZU1u2mGui3Jca1WeZwJtdZPptEEvHY7zrElyYdb7FqVRoMnAAAAAAAAADAPlFL2SPLCFrs+tR2m+2rG9wodXkqZN0Ertdaa5OVJul0k8etJjq21/rz3VbVWa11ba31RklOS3D7Ny61MozdxVqu1Did5UZJP97uWZPv0K9Zab0oj3Oi9aSweOR3XJ5lWT+aOqh+v5bnwmpxrPcC11vVJnp7k2m5OSyNY72UjP3NmjZFe12ck+Zsk90zzcj/K+EW+AQAAmGUEowEAAAAzaqTh4uwWu04rpSyb4Lzf1Fr/NMmhafzS/Ydp/AJ+MmuT/N80woceWms9rtb6ra4L71Ct9fY0ViN7XZLJmkNuSXJGkkfUWr/ao/m/kcZqdb+X5J+SXJ1G08W6JP1sUvhCkt+02ffJkSCknqi1fq/W+owkT07yyTSCpDpxZxorv74yyYNqrS+ttd7Vq7pms1rrL5I8Nslfp/E8tDOUxop7v1NrPXcmapvraq3/kOTwJBckuW+CQ+9K8rdJDq+1XjcTtbVTa/1YkgOSvCrJ/07y3TTqG+zhNK2C386vtW7s4RwAAAAAAAAAwOz28iRLm8a+UWv9Wa8nGulraxW49upezzWb1Vo311pPSSMc6CuZuOfsu0lek+SpMxmKNlqt9UNJDh6p48vpbIHC4TRqPyfJcUkO2lF6oWqt99ZaX55Gj+DZSf49yc+SrM70Fp2daj0971esta6vtf7PJAel8RivT9JJf+GGNL5n/zqNHqsjpxtUtSPr12t5R39NzrUe4Frr3UmekkZg3UR/d25J8h9JnlJrfdNsC0XbauT7+u+SPCTJ/0zj+Rnq4NTNSa5J8vYkT6y1PmpkkVgAAABmsdL4N1sAAACAHU8pZUWSJyRZkWSvJLumsUrg2jTCsH6c5Jbax38AKaU8LMkTR2rcZaS+25L8oNb6k37VNd+UUg5N8qg0vk/2SrI4jUaRNUl+keTH8yUErROllMcm+e0keyfZOY3n6SdpNJau62dtc1kpZUmSY5I8OMmD0mhk+nWSHyT53mxtNtoeSimfTvLSUUM1yaH9aqIFAAAAAAAAAJiPSil7p7FA5SFp9Ofdl8bCi9/dHgF101VKWZxGT+GBafQ+LU8jEGdtGgt7/jTJT2utvVwAkO2slLJ7kiOT7JNG/9/uaSziuDaN0KifJPl5Lxdo3VGUUs5OctbosVpraXFcX17LO/prcq71AI88niek8VpalsbX4WdJrqm13tPP2qaqlLJzkiOS7J/Gz4c9kmxM47HdlcbPh5trrZ0EqAEAADCLCEYDAAAAAGDWGAm9vDXJklHDl9Vaf7dPJQEAAAAAAAAAAMw6nQajAQAAAOxoBvpdAAAAAAAAjPKajA1FS5IP9KMQAAAAAAAAAAAAAAAAAGaWYDQAAAAAAGaFUsouSV7fNHxzki/2oRwAAAAAAAAAAAAAAAAAZphgNAAAAAAAZou3J9mnaewfaq3D/SgGAAAAAAAAAAAAAAAAgJklGA0AAAAAgL4qpexZSnlPkr9s2nVLkn/uQ0kAAAAAAAAAAAAAAAAA9MHCfhcAAAAAAMD8Ukr5aJIjRjb3TrJ/ktLi0DfVWodmrDAAAAAAAAAAAAAAAAAA+kowGgAAAAAAM+3QJL89yTGfrLV+diaKAQAAAAAAAAAAAAAAAGB2GOh3AQAAAAAA0OTCJH/W7yIAAAAAAAAAAAAAAAAAmFkL+10AAAAAAADz3mCS25N8I8n5tdar+lsOAAAAAAAAAAAAAAAAAP1Qaq39rgEAAAAAAAAAAAAAAAAAAAAAAACY5wb6XQAAAAAAAAAAAAAAAAAAAAAAAACAYDQAAAAAAAAAAAAAAAAAAAAAAACg7wSjAQAAAAAAAAAAAAAAAAAAAAAAAH0nGA0AAAAAAAAAAAAAAAAAAAAAAADoO8FoAAAAAAAAAAAAAAAAAAAAAAAAQN8JRgMAAAAAAAAAAAAAAAAAAAAAAAD6TjAaAAAAAAAAAAAAAAAAAAAAAAAA0HeC0QAAAAAAAAAAAAAAAAAAAAAAAIC+E4wGAAAAAAAAAAAAAAAAAAAAAAAA9J1gNAAAAAAAAAAAAAAAAAAAAAAAAKDvBKMBAAAAAAAAAAAAAAAAAAAAAAAAfScYDQAAAAAAAAAAAAAAAAAAAAAAAOi7hf0uAPqtlLJ7kmNHDd2aZKhP5QAAAAAAAAAATMfiJL81avs/a61r+lUMAOjRAwAAAAAAAADmCP15M0QwGjQari7tdxEAAAAAAAAAANvBHyT5fL+LAGBe06MHAAAAAAAAAMxF+vO2k4F+FwAAAAAAAAAAAAAAAAAAAAAAAAAgGA0AAAAAAAAAAAAAAAAAAAAAAADou4X9LgBmgVtHb1xyySU59NBD+1ULAAAAAAAAAMCU3XzzzTnhhBNGD93a7lgAmCF69AAAAAAAAACAHZ7+vJkjGA2SodEbhx56aA4//PB+1QIAAAAAAAAA0EtDkx8CANuVHj0AAAAAAAAAYC7Sn7edDPS7AAAAAAAAAAAAAAAAAAAAAAAAAADBaAAAAAAAAAAAAAAAAAAAAAAAAEDfCUYDAAAAAAAAAAAAAAAAAAAAAAAA+k4wGgAAAAAAAAAAAAAAAAAAAAAAANB3gtEAAAAAAAAAAAAAAAAAAAAAAACAvhOMBgAAAAAAAAAAAAAAAAAAAAAAAPSdYDQAAAAAAAAAAAAAAAAAAAAAAACg7wSjAQAAAAAAAAAAAAAAAAAAAAAAAH0nGA0AAAAAAAAAAAAAAAAAAAAAAADoO8FoAAAAAAAAAAAAAAAAAAAAAAAAQN8JRgMAAAAAAAAAAAAAAAAAAAAAAAD6TjAaAAAAAAAAAAAAAAAAAAAAAAAA0HeC0QAAAAAAAAAAAAAAAAAAAAAAAIC+E4wGAAAAAAAAAAAAAAAAAAAAAAAA9N3CfhcA81GtNcPDw6m19rsUgHFKKRkYGEgppd+lAAAAAAAAAABA1/ToAbOV/jwAAAAAAACAyQlGgxlQa82GDRuydu3arF27NkNDQ/0uCWBSixcvzrJly7Js2bIsXbpUIxYAAAAAAAAAALOSHj1gR6M/DwAAAAAAAKA9wWiwna1fvz533HFHNm3a1O9SALoyNDSUu+++O3fffXcWLVqU/fffPzvvvHO/ywIAAAAAAAAAgG306AE7Iv15AAAAAAAAAO0N9LsAmMvWr1+flStXargCdnibNm3KypUrs379+n6XAgAAAAAAAAAASfToAXOD/jwAAAAAAACAsQSjwXayteGq1trvUgB6otaq+QoAAAAAAAAAgFlBjx4wl+jPAwAAAAAAAHjAwn4XAHNRrTV33HHHuIarRYsWZbfddsuuu+6aRYsWpZTSpwoB2qu1ZtOmTVm3bl3uu+++MSvqbv35dsghh/gZBgAAAAAAAABAX+jRA3ZU+vMAAAAAAAAAJicYDbaDDRs2jGlUSJJly5blgAMO0KgA7BAWLVqUnXfeOStWrMjtt9+etWvXbtu3adOmbNy4MUuXLu1jhQAAAAAAAAAAzFd69IAdmf48AAAAAAAAgIkN9LsAmItGNygkjQYGDVfAjqiUkgMOOCCLFi0aM37ffff1qSIAAAAAAAAAAOY7PXrAXKA/DwAAAAAAAKA1wWiwHTQ3Xe22224aroAdViklu+2225ix5p9zAAAAAAAAAAAwU/ToAXOF/jwAAAAAAACA8QSjQY/VWjM0NDRmbNddd+1TNQC90fxzbGhoKLXWPlUDAAAAAAAAAMB8pUcPmGv05wEAAAAAAACMJRgNemx4eHjc2KJFi/pQCUDvLFy4cNxYq593AAAAAAAAAACwPenRA+Ya/XkAAAAAAAAAYwlGgx5rtUJbKaUPlQD0zsDA+LcMVqQEAAAAAAAAAGCm6dED5hr9eQAAAAAAAABjCUYDAAAAAAAAAAAAAAAAAAAAAAAA+m5hvwtgZpRSFiV5SpIHJ9kvybokdyT5bq31lz2e66FJHpdk/yS7JrkzyS1Jrqm1burlXAAAAAAAAAAAAAAAAAAAAAAAAMwNgtH6pJRycJIjkxwx8t/HJ1k26pBbaq0H9WCeFUneluTFSfZsc8w1Sd5ba/3cNOd6UZK/THJUm0PuKaVclOTMWutvpjMXAAAAAAAAAAAAAAAAAAAAAAAAc4tgtBlUSnl6kremEYbWMqSsx/P9bpJPJNlnkkOPTnJ0KeVTSU6utd7f5Ty7JvnnJC+Z5NA9k5yS5IWllFfWWi/vZh4AAAAAAAAAAAAAAAAAAAAAAADmLsFoM+txSZ49ExONhLBdkmTxqOGa5DtJfp5kjyS/k2TvUftfnmS3UsoJtdbhDudZkOSiJL/XtGtVku8mWZPkkJG5ysi+fZNcWkp5Zq316i4eFgAAAAAAAAAAAAAAAAAAAAAAAHPUQL8LIEmyMcnPenWxUsqBSf4tY0PRvp7k8FrrEbXWE2utz05yYJLXJ9k06rj/luRvu5ju7zM2FG1Tkv+R5MBa63NG5npCkkcn+cao45YkuaSUsl8XcwEAAAAAAAAAAAAAAAAAAAAAADBHCUabeZuSfC/JR5OcnOQJSZYl+bMezvG2JMtHbV+T5Jm11h+NPqjWurHW+r+SnNh0/l+WUh4y2SSllIPTCFYb7Y9qre+vtQ41zXVjkmdkbDjaXknOmmweAAAAAAAAAAAAAAAAAAAAAAAA5j7BaDPrgiS71Vp/p9b6mlrrR2qt36m1burVBKWUw5K8ctTQUJKTaq0b2p1Ta71kpLatlqSzwLKzkiwatf2JWuulE8wzmOSkkZq2evVIwBoAAAAAAAAAAAAAAAAAAAAAAADzmGC0GVRrXT1RQFmPvCzJglHb/1ZrvamD897dtH1iKWVpu4NLKTsledEk1xin1vrTJJeMGlqYRs0AAAAAAAAAAAAAAAAAAAAAAADMY4LR5p4XNG1/vJOTaq0/SvKtUUO7JHn2BKc8J8nOo7a/UWv9cUcVjq/phR2eB3PSQQcdlFLKtj9XXXVVv0sCAAAAAAAAAACAHZ7+PAAAAAAAAADY8QhGm0NKKQ9K8tujhjYn+XoXl7iqaft3Jzj2uZOcO5GvpVHbVr9TStm3i/MBAAAAAAAAAAAAAAAAAAAAAACYYwSjzS2Pbtr+Qa31/i7Ov6Zp+/Au5vpGp5OM1HRDF3MBAAAAAAAAAAAAAAAAAAAAAAAwxwlGm1se1bR9c5fn/2yS6432yBmcCwAAAAAAAAAAAAAAAAAAAAAAgDluYb8LoKcObdpe2eX5tzRt71VKWV5rXT16sJSyZ5I9pzlX8/GHdXk+AAAAACM2100ZrsNdnbOoLE4ppaNjh+twNtdNUyltzhkoA1lYFm23628a3pSa8V/LBWVBFpTZ/8+5w3U4A8V6HAAA3ai1dvzefL4aGt7YcnxhWZiBsmC7zdur97db6uZsqVt6UNH2181nxS11S7bUzRMeU1KyaGBxL0oDAAAAgDmr1prUmjLg9+0AAAAAAJAIRptr9mjavqubk2ut60opG5IsHTW8e5LVTYc2z7O+1np/N3O1qG33Ls8HAAAAmPdWbvhZPnvXR/OLwZ9mON3dZL/bguU5Yren5gUrXpkFbYIENg5vyEW//nB+sO66rB9e14uSd3gDWZCH7vSw/NE+f5YHLz2kZ9f9yfobcsmqT2blhp+1DkbLwjx0p4flxfu+NgcsOahn8/bKms2r8+lf/VN+uv6G7L5wzxy3/Pk5dvnv9bssAIBZ7cf3fz///pvP5NaNP88BSx6SF+97ch6ytHktrPnt6/f+v1yx+tL8aui2lvuXDuyUR+78uLzsQX+eXRYs69m83117Tb5497/krqE7ctDSh+VlDzol+y4+oOvr3Lnx1vyfX38oPx/8SbZk4gCx2WKPhXvlybsdn+fv/dK2oXCj3/9vrBsmvN5BSw/Lmx9yzvYoFQAAAAB2eHXD+tR/eGNy9b8nCxakPvcVKa99R8qC7bcgBAAAAAAA7AgEo80tuzZtD07hGoMZG4zWqnu8V/OM1pMu9VLKPklWdHla7+5gBQAAAJgh92xalX+89YwMDq+f0vn3bVmdr6z+fLbUzXnxvq9teczH7nhP/uv+66dT5pwznC352eCP8g+3npEzD3pf9li017SvecfGW/KB296ezXVT22O2ZHNuHrwx/7DyjJz50Pdl2cLmtQv6Z7gO5x9vPWNbWMVdm+7IRXd9JEsGlubJux/f5+oAAGanOzauzIdvf9e2UKlfbrgp5608PWc89H9lr0X79rm62eH6+67Op379gQmP2TA8mO+u+0buvm1V/urB56SUMu15f7L+hnz0jvdsCyy+afC/8t6Vf52zHvqB7Lyg+Vfl7a3bcl/ee+tf5/4ta6dd00y6d/Pdueyez6aU5L/t/fJx+5vf/wMAAAAAU1ffcVLy1UsfGPj0ualJyinv7FNFAAAAAAAwOwhGm1uau7AnXpq5tcEkyye4Zi/nmeiaU/XnSc7q0bVgTqm15jvf+U5+/OMf56677srGjRuzYsWKHHDAATnmmGOy6669ehnOvFtvvTXXXXddbrvttgwODmbvvffOYx7zmBxxxBEZGGi9kn2n7rrrrnzta1/LHXfckcHBwey///45+OCD8+QnP3na127lxhtvzA033JBVq1blvvvuy5577pn99tsvxxxzTPbaa/o32wMAAHPHD9ZdO+VQtNGuve+q/OE+r8rCsmjM+H2b780P7//2tK8/V20YXp/vrvtGjlv+/Glf6/r7rp4wFG20+4fX5gfrrstT9njWtOftlV9u+GnLUIRr1lwhGA0AoI3P/+bCbaFoWw3Vjfn2fV/Ps/d6YZ+qml2uve+qjo9dueHm3DF0Sw5YctC05/3Wmq9sC0Xbau2WNfmv+7+dJ+52bMfXuWHddTtcKNpo31jzlTx/r5eNC5v7xeBPhKIBAEAL+vOmRn8eAPNZ/c0dydVfGL/jsgtT//vf9WQhCAAAAAAA2FEJRpvb6hw7B5iC3/zmN3nnO9+ZCy+8MKtWrWp5zOLFi3P88cfn7LPPzpOe9KSOrnvSSSflggsu2Lb9i1/8IgcddFBH51511VU57rjjtm2fddZZOfvss9seP/qXuscee2yuuuqqJMk111yTs846K1/5ylcyPDw87rx99903p59+ek499dSum6S++93v5k1velOuvPLKltc+8MADc/LJJ+ctb3lLFi5cmLPPPjtve9vbtu2/8sor8/SnP72jue6+++6cc845ufDCC3P77be3PGZgYCBHH310zjrrrDzzmc/s6rEAAABz051Dt/bkOoPD67Nm8+rstWifMeO/Grot1T/hTOhXG3sTBnDn0Mouj+/N175X7tzYup5fzbI6AQBmizs33pofrLu25b47unxvOJf9usvwrTs33taTYLQ728zb7n1v+3p27PfD926+OxuG12enBbuMGZ9tn0cAAKDf9OfpzwOAKfvyRUmLvwdzz6+TdWuSZXvMfE0AAAAAADBL9H4pLfppXdP2TlO4RvM5zdecyXmAabrkkkty8MEH57zzzmvbdJUkQ0NDueyyy/LkJz85J598cjZv3jyDVU7NO9/5zjztaU/Ll7/85ZaNUUny61//On/xF3+RF73oRRkaGur42u9973tz5JFH5oorrmh77dtuuy1nnHFGjj322Pz617+e0mNIkk9+8pM5+OCD8+53v7tt01WSDA8P5+qrr86znvWs/PEf/3FXjwcAAJibNtdNPbvWxuHBjsYYa0OPnqNurzPbvjbt6u/V8wMAMNdcsfrStvtm23u9fhruMqi5V89du/ex3V5/w/D6XpTTV62eC9+jAADwAP15+vMAYDrqrTdNsLP135EAAAAAADBfLOx3AfSUYLTkn5J8tstzDknS/u4D2EGdf/75ec1rXjOuceiQQw7Jox71qOy8885ZuXJlrr322mzZsmXb/o985CNZuXJlvvCFL2Thwtn518R73vOenH766du2H/7wh+fhD394dtlll9x555355je/mQ0bNmzbf/HFF+eMM87Iu9/97kmvfe655+a0004bN/6oRz0qhx12WJYsWZKVK1fmuuuuy5YtW3LNNdfkxBNPzNOe9rSuH8eZZ56Zd7zjHWPGSil5+MMfnsMOOyzLli3L6tWrc/31149pnLvwwgtz55135rLLLpu1XyMAAGD72zzcu5tmBlvc2D4XbuLf3nr1HHUbLDA4y7427erfXDdlc92UhWXRDFcEADB73bv5nlx731Vt9wuXHa27YLRevT9vd51urz8XvpatHsNs+zwCAAD9oj9Pfx4ATNuvVrbfN+r9AwAAAAAAzEd+Wzu3rGnaXtHNyaWUXTM+sOzeDubZuZSyS631/i6m26eDebpWa70ryV3dnFNK6cXUPVM3b05W3dbvMua+FQemzOGGle9973s55ZRTxjRdPe5xj8sHPvCBHH300WOOXbVqVc4444x8+MMf3jZ22WWX5cwzz8w73/nOGau5UzfccEO+9rWvJUlOOOGEvOtd78ojHvGIMcesXr06f/mXf5lPfOIT28bOPffcnHLKKTnooIPaXvvb3/523vKWt4wZe/rTn573v//9Ofzww8eMr1q1KmeeeWY+9KEP5atf/WpuvPHGrh7HBRdcMKbpamBgIKeeempOO+20PPjBDx5zbK01l156aV7/+tdn5crGL8CvuOKKnHHGGXnXu97V1bwAAMDcsbm2Xqn+d3Y9Ks/a8wUt971n5VsznPHNs61u8G8VlpYkyxfundfs/+YuKt3xXb3mS7lmzZfHjfcqeKHdc72oLM6mFl/n2RawMFEwwobhwey6QDAaAMBWV63+92yu7UOOZ9t7vX6qtdtgtN48d+2Cf7u9/uBw61+fH7ns2By3/Hld17W9bKqbct6tp7fc1+oxt3t+Dl76iLxonz8dN754YOn0CgQA6DH9eTNoDvfo6c/TnwcAPfHrW9vvGxaMBgAAAADA/DY3Ow7mr5uath/S5fnNx99Ta13dfFCt9e5Syuoky0cNPzjJj6YxV3Pt89eq21JPfHi/q5jzyr/8JNnvoH6Xsd28+tWvztDQAzdOH1vQ57oAACAASURBVHPMMbn88suz8847jzt2xYoV+dCHPpRDDz00b3rTm7aNv/vd785LX/rSPOYxj5mRmjt1zz33JEne/OY3t11hcvny5fn4xz+e1atX59JLL02SbNmyJR/72MfGrQA52qmnnprNmx+4GemFL3xhLrrooparPq5YsSIf/OAHc/DBB+fNb35zfvOb33T8GG655Zaccsop27aXLFmSSy65JM997nNbHl9KyQknnJCjjz46T3nKU3LzzTcnSc4555y89rWvzUMf+tCO5wYAAOaOTXVTy/Hli1bkoJ0e1nLfTgM75/7htePGW93YvmFL67CrXRfs1vb6c9VNgz9sOb69gxf2WLhnVm36VcfH98tE9WzYMphdF+w2g9UAAMxeg1vW52v3XjbhMYLRpq4XwcXDdbjt16DrYLQ2n6n2Xbz/rPpMVWtNSUnN+CC6Vs9pu+dh+aK9Z9XjAgBoS3/ejJnLPXr68/TnAUBPrLm7/T7BaAAAAAAAzHMD/S6AnmoOJju0y/MPbtqeaHm1Xs/VTagaMIErr7wy3/nOd7Zt77bbbrnoootaNl2Ndtppp+X5z3/+tu3h4eGcd955263O6TjmmGM6Wonx7/7u78Zsf+UrX2l77HXXXZdvfetb27b322+/nH/++S2brkZ705velGc/+9mT1jLaOeeck8HBB24aOe+889o2XY22zz775NOf/vS27S1btszarxEAALD9bW4TjLawLGp7ztIFO7Ucb3XD/sba+mb3pQMTf76ci9o95l6FVrQLcNh94V4tx9sFLPTLRM+DYA8AgAd8fc2XMjhJeFcvwr3milZBXRPpxXvPjcMbenb9dl/rpQtm12eqUkqWDLT+rNjq+7Ht42pzDQAAmGv05z1Afx4ATNPa1e33DQ/PXB0AAAAAADALCUabW/6rafuxpZRuuqqfMsn1Jtp3VKeTlFJ2SfLYLuYCunDBBReM2T711FOz//77d3Tu3//934/Z/sxnPpONGzf2rLZeOf300zMwMPlfYYcffngOOuigbdvf+9732h77mc98Zsz26173uuy+++4d1XPGGWd0dFyS3H///Tn//PO3bR988ME5+eSTOz7/yCOPzFOf+tRt25///Oc7PhcAAJhb2gWjLZogGG1JaX2j+sYWN/gPbml90/9Os+wm/pnQ7gb/XoRWDNfhtuELeyzcc7vN20sTB6PNrloBAPplc92Ur6z+wqTHtXpvPl+1C0ZrFwbdm2C03r23HRy+v+X4TrMwbLr9Z57xz0e750gwGgAA84X+vAfozwOAadqyuf2+4S0zVwcAAAAAAMxCgtHmkFrrnUl+MGpoYZJjurjE05u2/2OCYy+b5NyJPDWN2rb6bq31112cD0zg6quvHrP9ile8ouNzDz/88Dz+8Y/ftr1hw4Z8+9vf7lltvbDTTjvl+OOP7/j4Rz7ykdv+f/369Vm3bl3L46655pox2yeeeGLHcxxzzDEdN7ddffXVY1ajfNGLXtRRE9loxx133Lb/v+WWW7Jy5cquzgcAAOaGdsFo7UICkvahZq1udm9303+7cLW5rJuQgG4N1Y1tAx/2WLhXy/F2QWr9MlFAhGAPAICG6++7OvduvnvS4zYMD2a4Ds9ARbNfu/fJ7YLFevH+fHCC97bdXr/d8TsN7NLVdWZCN89pu8e1dBYGvgEAwPagP28s/XkAMDV1yyTBZ4LRAAAAAACY5xZOfgg7mIuTPHbU9quSfGmyk0opj0jypFFD909y3uVJBpNsvSv0qFLKI2qtP+6gxpOati/u4BygA6tXr87Pfvazbdt77LHHmMajThx99NH5zne+s237uuuuy9FHH92zGqfrkEMOyeLFizs+fvny5WO216xZk1133XXccd///ve3/f8ee+yRQw89tKu6jjjiiI5Wh2xujNt///3zy1/+squ5mh//z3/+8zz4wQ/u6hoAAMCOb9MUgtGWtAn4anXzf7uwq6UL5mMwWusb/DfVoWyumyZ8ziczUbjCHgv3bDk+OLw+tdaUUqY8by9N9BgGBaMBAKTWmi/f0/mvRIfqxiydh4HE49TWwWhLB3bO2i1rxo1PFNjbqYmCfbsJRhuuw22v1S54uZ/afVbsLhht9j0uAADoNf154+nPA4ApWnfvxPsnC04DAAAAAIA5TjDa3POpJH+TZMHI9gtLKYfVWm+a5Ly/atr+l1rrhnYH11rXl1L+NckfN13jVRNNUkp5WJIXjBranOTTk9QGdGjVqlVjtg877LCub5J+xCMeMWb7rrvumnZdvdTcSDWZRYvG3py+adP44ID7778/GzY88CNvKk1MnZ5z6623jtl+wxvekDe84Q1dzzfaPffcM63zAQCAHdPmNsFoiyYI6Wp3o3qrG/bb3ey+U5uQsLlsohv8NwwPZtcFUw9Gmyh4YY9Fe7UcH86WbKpDWVyWTHneXproMUy0DwBgvrjx/u/kjqGVHR+/YXhQyFSS1rFoyU4LdklafBzqxXvPicLPNg4PdhxQvHF4MLXNI9hpwS5Trm97aff91ipsrm2I9jz8rAgAwPyjP288/XkAMEW3/GTi/cOC0QAAAAAAmN8Eo80xtdabSikXJPnTkaHFST5RSnlGu6CzUsofJDlp1NBQkrd1MN3ZSV6SZGtXw0mllItrrS2XZCulLE3y8ZGatvpYrfVnrY6ft1YcmPIvk/ySi+lbcWC/K9guVq9ePWZ799137/oazefMtqaegYGBnl/z3nvHrri1bNmyrq+x2267dXTc3Xff3fW1J7N27dqeXxMAAJj9Ng0PtRxfONA+pKtdqFmrm//bBQLMx4CGicLgNg4PZtcFnX0mbGVwS+tQgSTZfWHrYLSt8y4emB3BaIMThEe0C00AAJhPvnTPxV0dv2HL+mThntupmh1Jm2CxNu/PJ3pf2qmJgtFqajbWDVlaJv9MNDjB++DZGDbdPhitxWfFLa2foyXz8LMiALCD0p83c+Zgj57+vKnRnwcA49UP/83EBwwPz0whAAAAAAAwSwlGm2GllAPT+nl/UNP2wlLKQW0us67W+psJpjkryQuSbF227egkXy6l/Fmt9cejalmS5LVJzm06/9xa6y0TXD9JUmv9eSnlH5OcNmr4X0spf5nkI7XWbXfnllIemeSjI7VsdXc6C2CbV8rChcl+B/W7DHZQtY69QaTb1Shb6cU1ZrslS8beSD401DpcYCKdnjOVa0+m+esOAADMD5vr5pbji0r7YLR2N6q3umm/XaDVfLzZfekEwQWDWwYfWDZgCjZOELywx8LlbfcNDg9mWfaY+sQ9NNFjmChYAgBgPvjl4E25afC/ujrHe6iG2iYYrd37816E8k52jQ3Dgx2FRQ8O39923+wMRmvznDaFoNVa235/7jQPPysCADsm/XlMh/68qdGfBwAt3PLjifcPb5mZOgAAAAAAYJYSjDbzrk7ykA6OOyDJL9rsuyDJSe1OrLXeVkp5YZLLkyweGX5KkhtLKd9O8vMkuyd5fJIVTaf/e5IzOqhvq7ckOTzJ745sL0ryviRnlFK+k2RtkoNH5hrdvTGU5AW11ju7mAuYxJ577jlme82aNV1fo/mc5cvb34Q9VVu2zK5f1DY/xuaVPTvR6cqde++995jta665JkcddVTX8wEAAGyum1qOL5wgGK3dDfytgq3a3+w++27i394mCoObbvhCq1C6JFlSlmangV2227y9sqVuzqba/iaj2VInAEC/fHn1xV2f4z1UQ7tgtHafSSYK7O1Uu/fn3c7RHCg22tIJ3uf3S6dhc5vrpmxJ65DuiQKlAQBgrtCfNzX68wBgrLplS7JukvcRw8MzUwwAAAAAAMxSA/0ugO2j1npVkhckWTVquCQ5IsmJSZ6T8aFon0nyklprxx0RI8eemOSipl37JHlukj9K8oSMDUW7K8kf1Fq/1uk8QGdWrBj7sv7pT3/a9TV+8pOfjNneZ599Wh63cOHYbM3Nm1vfBNHKVBqbtqcFCxbkgAMO2Lb985//POvXd3fT0Q033NDRcfvuu++Y7al8jQAAAJK0DaOaKBitXYBAq+CFdmEM8/Fm90UDi7KwtF5jYrqhFe2CFZYO7DRJINv0Qx96YbI6ZkudAAD9sGroznx37Tdb7jt0p8OzpCxtuc97qIZ2wWjtPpNsrpuzabh1gHSnJgs+G9zS2fv/weH7W44vLIuyaKD9Z7Z+aRei3fy9ONH35kSfXwAAYK7Qnzc1+vMAoMldtyZbJvm7fXh2BZ0CAAAAAMBME4w2h9Vav5jk0Uk+lGSiLodvJnlRrfVltdbWHdoTz7Ou1vqSNELQWnf2N9yT5INJHl1rvazbeYDJLV++PIcccsi27XvvvTc/+tGPurrGNddcM2b7yCOPbHncbrvtNmb73nvv7XiOH/7wh13VNBOe/OQnb/v/4eHh/Od//mfH595zzz35/ve/39GxRx999JjtL33pSx3PAwAAsFWtNZtr6ybZRWVx2/Pa3ajefHP7cB3OxuENLY9td8P8XNcufGFDm+epU+2CBZYu2DkLyoIsLkvanDe9QLZemawOoR4AwHx2xerPp2a45b5n7XlCx2FU81brXLTstKB9WPNkwWaTmey57/T6gztY0HT778X1E26PttOC+flZEQCA+UV/3tTpzwOAUe74xeTHbBGMBgAAAADA/CYYbYbVWg+qtZZp/jmpi/nuqrWekuRBSY5P8qokb03yF0n+MMnBtdajaq2f68Fj+9da61FJDk7yopE53joy5/FJ9qu1/nmtddV05wLaO+aYY8Zsf+pTn+r43B/96Ef59re/vW176dKlecITntDy2OaVKm+88caO5/niF7/Y8bEz5ZnPfOaY7X/+53/u+NwLLrggQ0NDHR37jGc8IwsWLNi2/fnPfz533XVXx3MBAAAkyXC2tA1YWFgWtj2vfbjX2Jv7h+rG1DYpBPM3GK2zoIButQte2BpiN9vDMiarY7bUCQAw09ZuXpNvrLmi5b79Fv9WDt/lCVnaJuBruuFec0W7zyQ7TRAutr3en2/VLvCs0+Mmqr2f2n3uaA7Mnuj5aRfEDQAAc43+vKnRnwcAo6y6Y/JjhgWjAQAAAAAwvwlGmydqrUO11itrrZ+otf59rfV9tdZ/q7V2sNRM13P9otb6uZE5/n5kzitrrZ11JQDT8id/8idjtt///vfnV7/6VUfnvvWtbx2z/ZKXvCRLlixpeezjH//4Mdtf+MIXOprj8ssvz7XXXtvRsTPp5S9/eZYtW7Zt++KLL87ll18+6Xm333573v72t3c8z/Lly/Pyl7982/a6dety2mmndVcsAAAw722qm9ruW1gWt923dGBpy/Hm8IANW9rf7N8uXG2um+lgtJ22BaN1FmbXLxuaghLG75/e8wMAsKP6z3u/mE1tfj36zD1PyEAZaBsk1Wn41lzXPhhtl7bnTPd98mTvXzsNrWv3mWrWBqO1Cekb91lxgsc/X0O0AQCYf/TnTY3+PAAYZaiDf2cUjAYAAAAAtLBhU83f/t/hPPu8LTnqXQ/8ufyHrXsuYUcmGA1gjjn++OPzuMc9btv2mjVr8tKXvjSDgxP/AvW8887LpZdeum27lJI3vvGNbY8/6qijsvPOD9wkcfHFF+f666+fcI6bbropr3zlKyd7CH2xbNmyvP71rx8zduKJJ+bKK69se87/z96dh0lSFXi//53IzKrM3rt6VRqGpUGWEZARQWiYpllGQQFHXhWdYUa9jo6+iuMdF1zxOtdtZoSZC47ggOAyyAVZbNEWkIaWRkAaEBQa6JamAemNql4rMysz47x/FFVdWRUnMqJyz/x+nofHjjgnIk5GllXnZJ7ziw0bNuj000/X9u3bY13r4osvLpvQ9oMf/ECf/vSnVSrF+wL7iSee0KpVq2IdAwAAAKAzFP2wYLSUs8wVslW0RRXGnDMsiMG1YL7T1SugzBW80DsajOYIZAsJr2ukSsERrRLgBgAA0EhDfl73bP95YNnMZJ9eP/1kSXvDcMeLGr7V6VzBaGEBXPUKLo5aPiLr7wncn2nR8ZTrno4fG7rub8r0hI5FAQAAgE7C/LzJYX4eAABj5AlGAwAAAAAAABCf71u96VJfX7zV6s4npQee3fvfy7sJRkPnIRgNAFrMpk2btGHDhkn9N+Kqq65ST0/P6Pbdd9+tk046SQ888MCE623btk0f+chH9IlPfKJs/6c+9SkdeeSRznZOnz5d73znO0e3S6WSzjrrLN1+++0T6g4NDem73/2ujj/+eG3evFmzZ8+Oc0sa5gtf+IJe+9rXjm7v3LlTp556qt7xjnfoxhtv1GOPPaa1a9fq9ttv18c//nEdccQRevLJJ5VOp3XOOedEvs4BBxygK6+8smzfN7/5TS1ZskTLly9XsVh0HrthwwZdfvnlWrZsmY444gjddddd8V8oAAAAgLZXtO5gtJQXPxhNKg9fCAtiCAsh6GTuYLTqghdc93rker2uYLQWCcuoFNrRKu0EAABopN/s+JX2lHYFli2b/dbRPnur9/WaL3iSTtKknCFc1QcXhx8fFiId5Txpb2rsNjWCa5xXsEMq2b0LMF2vy/WzDAAAALQi5uc1D/PzAAB4xVC+cp2YgZ4AAAAAAAAAOt9da6VVzzS7FUDjJJvdAABAufPPP3/Sx1o7vEDkmGOO0WWXXaYPfehD8n1fkrRmzRodf/zxWrx4sY444gil02k9//zzevDBBydM9Dn99NP1la98peL1vvKVr+jmm28efSLjli1b9Fd/9VdavHixjjzySPX29mrz5s164IEHtGfPHknSwoUL9Y1vfKMln0zZ09Oj2267TcuWLdO6deskDd/TG264QTfccEPgMcYYXX755dq4ceOEJ3qGueCCC7Rp0yZddNFFo+/R/fffr7PPPltTpkzR6173Oi1YsECZTEa7du3Stm3b9MQTT8R++iUAAACAzhQWjOYKCJDCQ81y/qCmacYr/w5e7G5k1GvSEVvZWVz3rtrghawzMGH4epmEK5CtNcIysqXwYIhqg+MAAADaTcmWdOfArYFlaS+jJTPPGLPd2n29Zhv53ms8Y4zSXka7SxPHRVUHo1Xo31YKBh6R9fcE7s+0aIBYpRDtKYlpktz3t1VfFwAAABCE+XnNw/w8AACG2XyEzxmtX/+GAAAAAAAAAGgr9zwTPK8S6FQEowFAh/rABz6g2bNn673vfa927949un/dunWjk4qCvO9979N3vvMdpVLuhfQj9tlnH/3kJz/Rueeeq127dlW8xgEHHKDbbrtNmzdvjvlqGmfffffVr3/9a334wx/WzTffHFp3zpw5uvbaa3XWWWfp05/+dFnZ9OnTK15r5Kmf733ve7Vp06bR/YODg1q9enWk9rbq0z0BAAAA1FdhssFoibBgtL0Tb7OOMKteL1NxoUmncgejVRf85QpWGAkmqNd1a6VSMETU4AgAAIBO8eiu3+jlQvD3IEtm/pUyiamj2/UK3+10RiPBaDsnlFXbT65076O+N64A4bQ3NXB/s4WHaI8NRnOPFQEAAIBuw/y8yWF+HgAAkqIEo/ml+rcDAAAAAAAAQFtZ17pfAwJ14TW7AQCA+jnvvPO0fv16XXjhhZo7d66zXiqV0hlnnKHVq1frqquuijTpasSyZcv04IMP6pxzznEujp83b54++clP6tFHH9Vhhx0W+3U02sKFC3XTTTeNTsA6/PDDNWvWLKXTaR144IE67bTTdMUVV2j9+vU666yzJGnCkyJnzpwZ6VpvetOb9Oyzz+ryyy/X0UcfXTFgIJVK6YQTTtDFF1+sp59+WhdeeOHkXiQAAACAtlYMCUZLhQWjhS52Hwz8d9TjO91IUNl4uVJ1oRXue52W5A4YaJVgtErBEEVbVMF3/7wCAAB0Emut7ugPXtSdUFLLZr+1bJ+zj9kifb1ms3I92dDULVSuZsFojvcwkwh+z5vN9bMojR8rhgc7AwAAAN2G+XmTw/w8AEDXG8pVrlMiGA0AAAAAAABAuXVbXfMqgc6UbHYDAKDbbdiwoa7nnz9/vi699FJ961vf0po1a7R27Vpt3bpV+Xxec+fO1aJFi7RkyZJIT1B0OfTQQ3XLLbdo27Ztuueee/TCCy9ocHBQCxYs0AEHHKCTTjpJyeTePzlLly6VtdE7XXHqjnfNNdfommuumdSxS5Ys0ZIlSyLVfeKJJ0b/bYzR/PnzI18nnU7rwx/+sD784Q+rv79f999/v1566SX19/erUCho2rRpmj9/vg455BAdeuihmjKFxSUAAABAtyvYIWdZMiQYLWlSSppUYLDa2AXursXumS5e7O4KXnAFHkTlutcjgWiue15t4EOtRGlH3s8q5UVf5AUAANCunh58XBvz6wPLjp1xsmal5pTtGwnDHS/fIn29ZnMFoxmFhcpVd+8q3fuooXU5f0/g/lYdU4WHaI8dKxKiDQAAgPbD/LzKmJ/H/DwAQIPlI3yO6ROMBgAAAAAAAGAva63WbQkue80C6ah9wx8QBLQjgtEAoEt4nqdjjz1Wxx57bN2uMXfuXL397W+v2/lb1Z49e/Twww+Pbh9yyCGTnsjW19enM888s1ZNAwAAANChgoLNRoQFo0nDAQK7Szsm7I8SjNbbxYvd04ngRTDVhlZUCqFzBQy0UzBazh/UNM1oQGsAAACa646BW5xlp/WdO2Gfq3+dbZG+XrO5g9GM895V00/2bUl5mwutE/X8rvcw402N3a5GSJkeefLky59QFmWsSDAaAAAAwPy8emJ+HgCg4wzlK9fxJ35WBwAAAAAAAKB7bdst7XBMYfzuBZ6OeDXBaOg8XrMbAABAu7v22ms1ODg4uv3GN76xia0BAAAA0A2Kthi4P6GkPBP+kV/aSwfuz/mDgf8uP7Z7F7vXK6CsUgidO/Ah+D1qtCjtaJUQNwAAgHp6IbdBT+x5OLDsz6e+Xq/u3W/C/pEw3PGqDd/tHMHBaDLGee+q6SdHC/2N9t7kSsHtyDgCl5vNGKN0hHuaK7mC0VrzdQEAAADoDMzPAwB0nHyEzxlLpfq3AwAAAAAAAEDbWLfFXXbwgsa1A2gkgtEAAKjCCy+8oC984Qtl+y644IImtQYAAABAtyj4Q4H7kyZZ8Vj3Yve9E29di91d4QPdwHXfslUEL1hrnaEXI/faHfjQGmEZ0cIjWiPEDQAAoJ7uHLjFWXZ639sC97tDcFujr9ds1pWLJqNeZ+Dz5O9drYLRrLXK+nsCy1o5QCxKGDQh2gAAAAAajfl5AICONJSrXMcnGA0AAAAAAADAXs9sCZ5UOa1Xmj+9wY0BGoRgNAAAxvjJT36iz372s9q6dWvFuo888ohOPvlk9ff3j+476qijdMopp9SziQAAAACgoi0E7k95PRWPjRSM5ljs38qL+OstLCTAuhIbKsjbnKyCjx0JyYjyfjVTrcIjAAAA2ll/Yase2vnrwLL90wdrcebwwDJXCG6+ij5mJ3H1lY1MXfrJtQr9HbJ5+fIDy1o5bNo55intfc3usSLBaAAAAACiYX4eAACS8hE+x7TBnzECAAAAAAAA6E7rtgTvXzxfMsY0tjFAgySb3QAAAFrJrl279LWvfU3/9m//pje96U069dRTddRRR2n+/PlKJpPq7+/X448/rp/97Gdavnx52cKknp4eXXvttU1sPQAAAIBuUXAEoyVNquKx7oCvwcB/j9XbxYvdXQEGVr4Kdkg9pjf2OfMhwQvp0WC04Hs+EpbR7C8vwl7DCILRAABAp1s5sFy+SoFlp/e9zdlnc/WvrazyNqe06d7+txQejBYWKjdZkfq2pcrBaNmQ8LRWDpuuKkQ70bqvCwAAAEBrYX4eAACShvKV65SCP3MGAAAAAAAA0J3WO547dPB8QtHQuQhGAwAgQKFQ0PLly7V8+fJI9TOZjL7//e/rqKOOqnPLAAAAAEAqOoLRUlUFo41d7B68kD+T6N5ghrAAg6w/qB4vfjBaWGBYpWC0VgnLcP2slNchGA0AAHSuwdJu3bv99sCyealX6ahpxzmPdfX1pOE+VFh5dwgORpPcoXLZCMFlLmGBZiPyNiff+vKM5z5PaY+zLJOYOqm2NUKUsaIrPI6fVQAAAABxMT8PANDV8hG+Q/cJRgMAAAAAAACw1zObg+dUHjS/wQ0BGsg9WxcAgC40a9YsJRKJWMeceOKJWrVqlc4777w6tQoAAAAAyrmC0ZKRgtGCA77GBly5gqzCwsE6Xa+XdpZFCQcLPi5KMJr7nrdC4FiUNkz2/gAAALSDVdtXKG9zgWWn9p0jz7i/cwgLk3IFUHUT6whGMzLOe5e3k79vUfvXeT/4/Y5ynkwLj6nSjiDssf15V3hcN48VAQAAAMTD/DwAAEQwGgAAAAAAAIBYrLV6Zktw2eJ5jW0L0EjJZjcAAIBWcu6552rz5s1asWKFVq9erccff1zPPfec+vv7lcvllMlk1NfXpz/7sz/TSSedpDPPPFMnnnhis5sNAAAAoMsUqgpGcy12z435N8Fo44UFGEw2oCxXcgeGjQSxhYVl5EqDUrJvUteulWjBaIR6AACAzlTwh3T3wG2BZdMSM3X8jFNCjw/rX2dD+ordzhh3MFquNPm+Z9QwuryfVSYR8t75ewL3e/LUY3on1bZGcIdoD98Xa23IWNE9bgEAAACAsZifBwCApKHwhy9IkkoEowEAAAAAAAAYNjAo7XBMcTx4gWlsY4AGIhgNAIBx5syZo/e85z16z3ve0+ymAAAAAECgYj2C0cYEL+T84BCG9CthXd2oN+S1hwWchXGFCvSatDyTkCSlQwIXmh04VrIlFexQxXrNbicAAEC9PLjzHu0sDQSWLZ11pnq88BCssD5m1JCuTmWtDSk1zn5y1h+UtVbGxJ/ok3WMg4LqzdIcZ7l7PDVlUu1qFHeI9vDPYsEOycqPdSwAAAAABGF+HgCg6+UjBKP5BKMBAAAAAAAAGLZ1l7tsv77GtQNoNK/ZzqQG5QAAIABJREFUDQAAAAAAAAAQT9ERRhUpGM0RIDB28b4ryCrtuUO6Op1nEuo1wcEVkw3+ct/nvaECPaZXRsHhCa7AhUaJGtbR7aEeAACgM/nW150DtwSW9ZhenTz7zRXP4RnP2ceMGtLVqazcwWhGRmkTHMTlq+QMkq6kVv3brCM4ORMSetwKXOO9kXFL2M9kN48VAQAAAAAAgNiGCEYDAAAAAAAAEF3/HnfZnKmNawfQaASjAQAAAAAAAG2m4Acv9E95PRWPHRu6NdbIYveSLargCF7r9sXu7ns3udAK13G9Y67jGU+9Xm0D2WolalhHt4d6AACAzvT47t9q89CLgWUnzDxN0xIzIp3H1cfs9nDZ8GA0KZ0Ivm/S5PvnrkCzieevEIzmB89AyrT4eKq3wngn7GfS9XMMAAAAAAAAIMBQhM9/fb/+7QAAAAAAAADQFlzBaD1JaWpvY9sCNBLBaAAAAAAAAECbKdrgYLSkSVY81hVuNrK4P2yRf7cvdk8nwu9dXHk/+CnQ469T6T1rlqhhHc1uJwAAQD3c0X9z4H5Pnk7tOzvyedxhVN3eh3IHo0kmdGxS6/553PO7ytNeaz+WMVMhpC8scK7bx4oAAAAAAABAVNZaaShfuaJfqn9jAAAAAAAAALSF/j3Bcyr7pkjGmAa3BmgcgtEAAAAAAACANuMKRkuZnorHuhas5/xBWWtZ7B7CFVCWDblnYVzHjb/PYe9ZM2UjBk5EDVADAABoF+sHn9Qfc2sDy46ZfqLmpBZEPletw3c7hQ0JRjMyzr65NPl7F7V/Xale1g9+NGOrj6fc451s2f8GH9varw0AAAAAAABoGUPRHtBAMBoAAAAAAACAEf2OaYt9rf28VqBqBKMBAAAAAAAAbcYVjJY0qYrHuhas+/JVsEPKlsIWu7vDB7qB695NNvjLdVy7BKNFfd3ZUnPbCQAAUGt3DNzsLDut79xY53L39bo8GM2diyZjTGgQ12TvXdTA40r1XP3fjNfaM5B6K4w7XP3/HtMrzyTq1i4AAAAAAACgo+Qjfn5ZIhgNAAAAAAAAwLD+4Oe1EoyGjkcwGgAAAAAAANBmCs5gtGTFY8PCzXJ+NjRsi2C02oZWuO71xGC04Pue8yM+SbpOor7uvO3uUA8AANBZNuVf0OO7fxtYduiUo7Rf+qBY52vVENzmcyejGRklTFIp0xNYPtl7FzX4t1I9V3BaJtHa46mM42exaAsq2oIz8K3bx4kAAAAAAABALEMRv+f3/fq2AwAAAAAAAEDbeHl38H6C0dDpCEYDAAAAAAAA2kzREYzmCgYYyxW8IA0HCLhCBJImqZSXitbADuVa8O8KPqjEFSzWOyEYrTXDMqJeP1ciGA0AAHSOXw3cKusI7Tqt79zY53P19aKGdHUq1z0eZiTVI7g42nGV6uX84EczZlo8QGz8OGSsnJ91/kyGjTEBAAAAAAAAjJOP+PmlX6pvOwAAAAAAAAC0jQHH8p2+qaaxDQEajGA0AAAAAAAAoM0UHMFoSVM5uCw8GC2rnB/8dOKwRfLdotYBZa5AhfGBCa0bjBY9OMLasGALAACA9rCjOKAHdq4MLFvUu78Om3J07HO6w3cJRnMZmcbTqsFo2VJwPz3jtfajGcOC2/J+1vm6CUYDAAAAAAAAYhjKR6tHMBoAAAAAAACAV/TvCZ5T2dfa0xKBqhGMBgAAAAAAALSZoiMYLeVVG4w26AzbcgU2dBPXPah18ML4ELpaX7dWco7Ah/FKKjp/ZgEAANrJ3QM/U9EWA8tO63ubjIn/5D1X/zxPMFpI6fB9rn3/PFr/tlI9Z4BYorXHVGFjvmwpq6xrrNjirwsAAAAAAABoKflon19a369zQwAAAAAAAAC0i/49wfsJRkOnIxgNAAAAAAAAaDNFPzhkKmkqB6N5JqEe0xtYlvOzzkX+mZBAtW6RqXHwgivsYnw4RssGo8W4frPbCgAAUK2cn9Wq7b8ILOtLztNfTD9xUucdH4o79noI5r0SQOe+d9ECziYeF+2eV6qX9YNnILX6mMp1P6Xhexp1/AIAAAAAAAAgxFAuWj2/VN92AAAAAAAAAGgbBKOhWxGMBgAAAAAAALSZgh0K3B8lGE0KD9pyLfJ3HdNNer104P5caXLBC1lHYMPEYDRH4MMkr1sr8YLRmttWAACAaq3efoez/7as72wlTHJS53X29bq8/2StDSkdDkar5b0r2aJznDXx/JWC0Vz9/NaegZTyUko6fo7zISHaBKMBAAAAAAAAMeQjfs9eIhgNAAAAAAAAwDCC0dCtCEYDAAAAAAAA2kzRFgP3Rw9GcwdtuRb597LYPTRQbjLyEUPo3IEPk7turbjaH6TZbQUAAKhGyRZ118BPA8umeNN0wszTJn3uVu3rNZuV7ywzFYPR4t+7WKG/IQHFBb+goi0ElmXaIGzaNe7L+lllGSsCAAAAAAAA1RvKRavnE4wGAAAAAAAAQCr5VtsdUxznTDWNbQzQYASjAQAAAAAAAG2maIcC96eqDUbzs8r5wYv822ERf71lEq5gNHcwgou1Vjk/eMLz+Pcn7bxuc8MyYoVHdHmwBwAAaG8P7bxXA8VtgWUnz3qzs38dRa3Dd7uJ896V6hyMFlI35zseyyj3eKKVuO5p3s86g5EZKwIAAAAAAAAx5AlGAwAAAAAAABDd9kHJ2uCyvqmNbQvQaASjAQAAAAAAAG2mYAuB+5OmJ9LxYUFbrpCvasIeOoXrHgzZvHwbb1LykM3Lyo90HXeQXfxAtlqKc32CPQAAQLuy1uqO/psDy5ImpaWzz6rq/K6+Xt7PyrpmsnQBK/drNxp+wmHYvYurVn3bbEhZxmv9GUiZkLEHY0UAAAAAAACgBvIRP78kGA0AAAAAAACApH7381oJRkPHIxgNAAAAAAAAaDNFZzBaKtLxYUFbuVLwJNy0Fxym1k3CFvzHDf4Kqz/+XtcykK2W4rzmZoe4AQAATNYTg4/oT0PPBZYdP+MUzUjOqur8rn62lVXe5qo6dzsLDUYz4cFo2Un0PXN+9HsdFryW890zkNohQKzXOVbMOvv/rmMAAAAAAAAABCjko9UrEYwGAAAAAAAAQHpxu7tsDsFo6HAEowEAAAAAAABtxhWMlqo6GM292L0dFvHXW1g4XPxgNHdYQ6+Xrtt1aynOtcPCIwAAAFrZnf03B+43Mjq175yqzx/Wz+7qPpQ7F01GrwSjJYL7yZO5b3GCfPM25wwozpbc52mHMZVr7JHzB539/wwh2gAAAAAAAEB0pWJt6wEAAAAAAADoaOu2BE+onDNVmpY2DW4N0FgEowEAAAAAAABtxhWMlvSiBqOFLXYPXsjfDov46y08oCx6kIIUHtYwPlgg7N43MxgtTuBEtptDPQAAQNvamFunpwYfDyw7ctpxWtCzT9XXaNW+XrPZsGS0kWC0kMDnuHIhgWZB8n4ucH82ZDzlmUTsdjVaeIh28GvrZawIAAAAAAAARBc5GC344QwAAAAAAAAAusv6rcH7D5rX2HYAzUAwGgAAAAAAANBGfOuraIMnyiZN1GC0sMXuwSEC6YQ7FKxb1DK0IiworNdLj7tuWCBb88IyXKEPQeKEqAEAALSKO/pvcZad0fe2mlyDYLRgYcFoZjQYzRX4PIlgtNj9+eC+cNbfE7g/rE/fSlw/j1l/jzMMbnywMwAAAAAAAIAQxeAH4U0QNUANAAAAAAAAQEf7oyMYbfF809iGAE1AMBoAAAAAAADQRkqOUDRJStUgGM21wL9dFvLXU8r0yHN8pBo3SMEVFNZr0vJMomxfeFhG9HCyWirZkgp2KHL9ZrUTAABgsrYNbdLDu+4LLDsoc5gOyLymJtcZH4o7FsFo4dzjmkFZW/n48mPi9ueDQ8Jc58l4U2Odv1lc476dxe3O9yRsvAIAAAAAAABgnFIpYj2C0QAAAAAAAABI67YEz907cF6DGwI0AcFoAAAAAAAAQBsJC6NKRg5GC17snvMHnYFdLHaXjDGh9y6ObCm4fm/Afa5lIFutuH5OXFyBewAAAK3qVwM/lZUfWHZ639tqdh3PJNRrgsPRco4+Y3dwB5t5Zrhv7Bqj+PJjhfhK8fu3rv5/trQncH+mTYKmXfd0e/Fl5zFBYxgAAAAAAAAADlEDzwhGAwAAAAAAALqetVaPPB9cdhDBaOgCBKMBAGpi48aN+vznP6+TTjpJCxYsUE9Pj4wxo/9dc801zW4iAAAAAHSEonVPfk2ZnkjncC1231XcId8R/kAw2jDXfXAFnbnECaALD2RrTjBa3OvGDZoAAABopt3Fnbpvx52BZQt6FunPp76+ptdzBUs1q6/XCtyxaHuFjVHi3ru4Qb6u+q796US7BKMFt3N7sd95TLuEvgEAAADtjvl5AAB0CILRAAAAAAAAAET0nXvcsykXzzcNbAnQHMlmNwAAut3++++v5557bnR75cqVWrp0afMaNAnf/e539dGPflT5fL7ZTQEAAACAjle0BWdZ0kT7uM+12H2Pvyv2Md2mVgFlrvqucIe0l9GgvzvgPPECHGol9ustdW+oBwAAaD/3bP+5CnYosOz0vnPlmdo+fyztZbSzNDBhf7P6ei3BuifzGA1P5gkbo+T8Qc3QrMiXi3uvXcG/rvO0S3iYazwSNg51BfsBAAAArYL5eQAAoJXYovuztjIEowEAAAAAAABd7/u/cc+lPGheAxsCNEltZ2wDALrOz3/+c33wgx+MPOnq7rvvLntS5cUXX1zfBgIAAABAh3EFNEhS0qQincO12L3Wx3Qi131wBSO4uILFXKECruvmSs0KRot33bhBagAAAM0y5Od1z/afB5bNTMzWsdP/subXdPcxczW/Vrvw5YeUjgSjuccocfufce+16/xZf0/g/nYPRgvT66Xr0BIAAAAAI5ifBwBAh4kaeEYwGgAAAAAAAND1BkKW7iyY0bh2AM2SbHYDAADt7aKLLpK1e5Nm3/3ud+v973+/9t13X6VSexfkz507txnNAwAAAICOU7TupwenTE+kcxCMNnnpRHCgQbZGQWEZx/nTjiCFZgWOxb1u3CA1AACAZvnNjl9pd2lnYNkps9+qlBctjDiOWvUxu4V55X9docJS/P5nrfrzWUdwsas/32pcP4vO+l5GnuF5fAAAAEA9MT8PAIAOQzAaAAAAAAAAgAhyBaunNweX7TtbMsYEFwIdhGA0AMCkPfXUU3rsscdGt88880z96Ec/amKLAAAAAKDzFXx3MFoyYkjDZBblE4w2zHUf4gYvuOr3muDzuwIK2icYrTntBAAAiMO3Jf1q4NbAsrSX0ZJZZ9Tluq4+Zr6L+1BW1llmXolGS5iEekyvhmx+Qp24/c+499rVn3cHIE+Ndf5mSTvGIy5h4XQAAAAAqsf8PAAAOlDRPeejDMFoAAAAAAAAQFf7+i/c8ygvfw8PNEV34CcdADBpDz30UNn2eeed16SWAAAAAED3KFr3JNmUiRqMFnOxu0nLM4lYx3SqjCNUrlbBC+mEIxjNSzuuGy+QrVbiB0d0b6gHAABoH4/uvl/bCsGP1ztx5hmakphWl+u6wnG7uw8VEow25imH7uDi2gSduesHnz/r7wnc3y5B067xiLP+JEK3AQAAAETH/DwAADpQ1MCzUqm+7QAAAAAAAADQ0q5Y5Z5HuWBGAxsCNFGy2Q0AALSvzZvLFwctWrSoSS0BAAAAgO7hCkYzMvIULbwsnYi3eL1dFvE3Qq2CF7KO4AXX+V2BA80Ky4gfNJGVtbYsxAIAAKCVWGt1R/8tgWWeElo2+611u7YrjKpZIbitwLrn80gaG4w2RTtL2yfUmEx/NVb9kisYLfg9y3hTY52/WeKO/RgrAgAAAPXF/DwAADpQ5GC0iPUAAAAAAAAAdJS1L1mtesZq8053nT6eaYouQTAaAGDSdu/eXbadSqWa1BIAAAAA6B4FRzBa0qQih071mF4ZGVmFpg2M6mWx+yjXvYgbWpH3c4H7XQForReMFvx6jTxZ+RP2+yqpYIfUY3rr3TQAAIBJeSb7ez2Xeyaw7NgZJ2t2am7drl2r8N1OEtSnHGHGBKP1eunAOrlSvP65616nTI8Kdihyfdd1M47+fKtxjTvc9RkrAgAAAPXE/DwAADpQqRSxHsFoAAAAAAAAQDex1uozN1n96y8rr/Xqa49ntQJVIxgNALqEtVYPP/yw1q5dqy1btiifz2vevHnaZ599tGTJEk2bNi32OX3fvSgFAAAAAFAfxZBgtKg846nXS0cOWkgn2mMRfyO4Ag3ihla46ruCBdxhGfECH2rF1f4ZiZnaURoILMv7WfV4BKMBAIDWdEf/zc6y0/rOqeu1Wy0EtxVEi3B237u8jds/D+5Xz0rO0dbCS5Hql2xJeRscgJxpkzFV3KCzuEFqAAAAQCdjfh4AAIikGDznYwKC0QAAAAAAAICucu86RQpFk6SZPNMUXYJgNADocNu2bdNXv/pV/fCHP9TWrVsD6/T09GjZsmW6+OKLddxxxznPtWHDBh1wwAHO8lNOOSVw//e+9z29973vDSz78pe/rC9/+cvOc65cuVJLly51lgMAAABAtynaocD9qRjBaNLwAvaoQQuZmIvjO5k7tCJeQJmrfvxgtOaEZeRKwdedmZrjDEbL+llN16x6NgsAAGBSXsxv0B/2PBxYdsTUv9A+vfvX9fquvl6+i4PRwqLRjMzov12BY1lHfzVIwS+oaIMXGc5K9kUORgt7vzJeezyeMWGSSpkeFRzjzvHiBqkBAAAAnYj5eQAAIJaogWcEowEAAAAAAABd5YY1UR8pK3meqVwJ6ABesxsAAKifW265RQceeKAuueQS56QrSRoaGtKKFSt0/PHH64Mf/KCKRb5IBQAAAIBW5Vqwn4wZjNYbYwG7KwysGzkDymIEL0juQDN3MFptAtlqxdX+Wck+5zHdHewBAABa2Z39tzrLTu87t+7Xd/UBs03q67UCGxaMZvZOc+g1rgDh6PcurJ86KznHcf6Jx2T9Pc7zZNpoTBUn7IxgNAAAAHQ75ucBAIDYCEYDAAAAAAAAMM6a56wuuytaMNqb/7zOjQFaSLLZDQAA1MfVV1+tD3zgA/J9v2z/QQcdpMMPP1xTpkzRxo0b9eCDD6pUKo2WX3nlldq4caOWL1+uZJI/EwAAAADQagr+UOD+uMFomRgL2OOEqHU6ZzCan5W1VsZUfuqKtdYZLOa612HXbQZX0IQrOELq7mAPAADQugYK2/TbnasCy/4sfbAOztR/Bomrr0ewbLCxPe50ovp7F9annpWKEYxWcvd32ylsOu1ltKu0I3JdAAAAoFsxPw8AAExKsRCtHsFoAAAAAAAAQFf4r7t9feR/ooWiSdLHT/MqVwI6BN+oA63GL0qDLzS7FZ1vyiLJ69xfgY8++qj+8R//sWzS1dFHH63LL79cJ5xwQlndrVu36gtf+IKuuOKK0X0rVqzQF7/4RX31q18tq7to0SI9++yzo9uXXnqp/uM//mN0+7rrrtPxxx8/oT1z587V0qVLJUn333+/zj///NGyCy+8UB//+Medr2XhwoUVXi0AAAAAdJeiDZ4km/J6Yp0nzsL8TBst4q83130rqaiiLShlKr8PBTskKz+wzHWvWy8YLfi6U7xpSpkeFezEAD+CPQAAQCu6a2C5fJUCy07vOzdS8G21XH3MnJ+LHL7baXwb3F8etvd+uPrJcUJ5XaG/kjv4N6hvG3bNTKJ9xlRxxortFPgGAAAwivl5jdPBc/SYnwcAACYtauAZwWgAAAAAAABAx9sxaPWxH0cLRdt/jnT133ta+prum1OK7tWZMw6Adjb4gvTTA5rdis539rPStP2b3Yq6ef/736+hob0LkJcsWaJf/vKXmjJl4uKEefPm6Tvf+Y4WL16sT37yk6P7v/GNb+j888/Xa1/72tF9yWRS+++//+j2rFmzys61cOHCsvKxpk2bJknasGFD2f5Zs2Y5jwEAAAAATFS0wZNfkyYV6zy9jgCBIK6wgW6UTrjvRc4fjBRQFxaY4HpfXIEDRVtQwS8o5cV7/6vlCjlLexmlvYwKpYnBaGGBEwAAAM0wWNqte7f/MrBsbmqBjp42cbF5Pbj621a+hmxevSbdkHa0C1MWjBbcT877ucjnC+unzkz2Be4P6tNn/T2BdVOmRwnTPlMz4oz/GCsCAIC2xPy8xungOXrMzwMAAJNGMBoAAAAAAACAV6x8SiqFPUdW0u8v9nT4qwlDQ3fymt0AAEBtrVy5Ug8//PDo9owZM3T99dcHTroa65//+Z/1lre8ZXTb931dcskldWsnAAAAAGByCnZi4JQkJWMutM/EWuwePqbsJmH3IusICxvPFSo2fH5XMJr7/Qo7X73kQoPRgu9RLkY4BQAAQCPcu/125W1wH+XU2efIM4mGtCMstNjV7+p0Vu4nII6d3uPqJ8cJ5XXd46RJalpiemBZwQ6pZEtl+7Kl4GtmvKmR29IKCNEGAAAAwjE/DwAAVCVyMFqpch0AAAAAAAAAbSk7ZPXvt/v66/8KT0VbNFt6zcIGNQpoQQSjAUCHufbaa8u2P/KRj+jVr351pGO//vWvl21fd911yufzNWsbAAAAAKB6RVsI3J8yPbHOEyfsjMXue9UioCwspMEdjOZ+v5oRluG6Zq+XqUk4BQAAQL0V/ILuGlgeWDYtMUNvnHlqw9oS1sfs3j5UWDDa3mkO7r5n9D6yO/R3Smg/fHz/3/VeZRLtFTSdiTVWbK/XBgAAANQC8/MAAEBVihGD0aLWAwAAAAAAANBWhopWp37L1ydvdM+THPH/nmuU8EzFekCnIhgNADrMvffeW7b9N3/zN5GPPeKII3TMMceMbudyOa1Zs6ZmbQMAAAAAVK/gCEZLmlSs8/TGCDsjGG2vsHuRjRhaERbS4Hpf0onWCssIC30gGA0AALSD3+66RztLA4FlS2edpR6vt2FtqUX4bqexIcFoGjPHpxZ9T3cwmjv0N+g413ig3cLDGCsCAAAA4ZifBwAAqlKKGHgWtR4AAAAAAACAtnLLo1b3/zFa3b99I7FQ6G78PwAAOsjAwIDWr18/uj1r1iwddthhsc5xwgknlG3/9re/rUnbAAAAAAC1UXQEo6ViBqNlYizOb7eF/PWUMEmlTE9gWdTwBVfwQo/pVcIkAsvCAxkaGzjm25KGbD6wrNfLOIMUwgLhAAAAGsm3vu7ovyWwLGV6dPKsNze0PeHhu93Zh7KhuWh7k9FcY5Wcn5MNO0lZXVegWSZ0LDT+OGd4cJuNp+KEnaUT7fXaAAAAgGoxPw8AAFSNYDQAAAAAAACgq/3qyWj1PvNmU7kS0OEIRgOADrJ169ay7YMPPljGxOvwHHrooWXbW7ZsqbpdAAAAAIDacQWjJWMGo7HYffJcwQZRg79c9cLek6RJOd/jRgeOhV0v42Xc96fUnaEeAACg9fx+z0PaPPRCYNkJM0/TtOSMhrbHMwn1mN7Asny3BqPJd5ZFCUaz8p1hvuO5++dTYoXWZUudEYyWiTH+izOuBAAAADoB8/MAAEDVCEYDAHSRP261eu/3fHn/UBr9711X+npoQ7QHHAEAAABAJ1q3JdqY6OyjCEYDks1uAIBxpiySzn622a3ofFMWNbsFdTEwMFC2PXPmzNjnGH9Mf39/VW0CAAAAANRWwa9NMFpvnGA0FruXSXtTtLO0fcL+6oPRwgMI0t4U7S7tmPR1ayXser1exvmz1eh2AgAAuNzRf3PgfiNPp84+p8GtGZb2pmioNDHIyxW2hWFhY5Wcn1Wvl654Dlc/tdfLKGV65MmTHxDUNj60LuvvCW5jmwVNM1YEAAAdj/l5jdOBc/SYnwcAAKpWDJ7zMUEpYj0AAFrUn7ZbvfHrvrbuKt///z9k9bPHrH79KU+v249F/gAAAAC6z7oIz036h5ONjjug/m0BWh3BaECr8ZLStP2b3Qq0KWvL02HjPo0ySC3OAQAAAAConaJ1BKN58YLRMjEW57PYvZwrXCEXMbTCVa9SaEPaSzuC0RoblpH3c86ytDfF+fPS6HYCAAAE+WN2rdZnnwwsO2b6CZrbs6DBLRqW9jLaWRqYsH98+Fa3sHI/EdFo73dX4cFog5qp2RWv5eqnZrwpMsYo7U3RoL+74nGugLWMN7ViG1pJpkJg81iVwp0BAABaEvPzUAXm5wEAgKqVirWtBwBAi7p6tZ0QijZicEj6/+6yuvrvGRMDAAAA6C65gtUL293lbzlS+vhpnk55Dd8jAhLBaADQUfr6+sq2d+yYuFi6kvHHzJ5decEIAAAAAKBxCnYocH/KxAtG640RdsZi93Ku++EKQhgvb4PrVbrP1V63VsICztJeJiQYrTtDPQAAQGu5o/8WZ9npfec2sCXl6EONFxKMZrzRf4cHo0W7d656I8HFaS/jCEYrPy7r7wk8T7sFTUcdKxp56jG9dW4NAADtwRiTkLRY0uGSXi1ppqS8pAFJ6yU9ZK0N7ixM/popSSdK2k/SqyTtlvQnSY9YazfU8loA9mJ+HgAAqFrkYLSSrLUsfmwi7j8AVGfF793f90nSD++3uvrv9277/nB9Y1j8j3L8TQYAAEAn2bRDso7h0hNf9nToq+j7AmMRjAYAHWTevHll208//XTsczz11FNl2/Pnz6+qTQAAAACA2iraQuD+pOmJdZ5MjMX5GYLRymQSroAyd2DYWNmSKxgt/D1pnWC04OuNBCOknfenW0M9AABAq9g89KIe2/1AYNlrprxW+6UXN7hFe7nCqLq1DxW+TGKvkfCyINUGo430v52hdaXy/n+2FDweyHhTI7WjVUQNckt7aRYgAAC6mjFmP0l/Lek0SSdJmhFSvWSMuUPSZdba26q87jxJX5b0Tkl9jjr3SfqWtfYn1VwLwETMzwMAAFUrBs/5CFQqSUmWfTXas9usPvIjX6vXSwfPl774Fk9nH81noQAQ15MvhZcXfalYsvoizKhjAAAgAElEQVT6CqtrVlv9cdvw/hlp6dTDpG+/x9OCGfz+7Wbrt1j97+t83ffK3+SLz/b0liP5mQAAAOEefd7q0zf6euBZ6dCF0r/+L08nHUwfAq2jP+SRavPDZh0AXcqrXAUA0C5mz56tgw46aHR7+/btevLJJ2Od47777ivbPvbYY2vSthEskAAAAACA6hRt8NODkybeZFhXyNZ4Rp5SMUPXOp0zGCFiMFreGbxQKRituuvWiut6I8EIrna6XjcAAECj/Kr/VllH5NbpfX/d4NaUc/f1urMPZa3vLDPa+12TZxLqNcHhaOODy1xc/dSRgOiooXWufrIrWLlVRQ3GjjqmBACgExlj/kfSc5IukXSWwkPRJCkh6U2SfmaMWW6MWTDJ675Z0u8l/aMcoWivOEHSjcaYHxpj2iulFWhxzM8DAABVK5Vi1A2eH4L62ZO3OvHrvlb8QdqVkx7eKL3tv3zd/VTUx3kAAKThwLOBCF/VfehHVl+8dW8omiTtzEk3PyKd8m++fJ/fv91qd87qxG/4+uWYv8nnXu7r18/wMwEAANz+tN3qjEt83fHkcL/ywQ3Sqf/u6/EX6EOgdbiC0YyRZkZ7pinQVQhGA4AOs2TJkrLtH/3oR5GPffLJJ7VmzZrR7XQ6rb/4i7+oWdskqbe3t2w7n8/X9PwAAAAA0OmKdihwf9KkYp3Htbh/vLSXYRHNOFGDEVxc9SoFC7RKWIbreiP3xfU6sg0OcAMAABhrR3FA9+9cGVi2T+/+OmzK0Q1uUTlXH6rRIbitImwq2thgNKn6fnLWEaA20r91BYWNP3/WD56xFDVorFXEGSsCANDFDnHsf1HS3ZKul/QTSY9IGp/4+hZJq4wxC+Nc0BizVNItkuaP2W0lrZF0g6Q7JG0bd9h7JF1njGGeKFBDzM8DAABViRN2RjBaw930sNWmneX7rJWuuIcF1AAQx3MvR6t39b3u369rN0m/WlujBqHt3Piw1ZZd5ft8K32Hv8kAACDET39ntW13+b6iL12xij4EWkf/YPDP46yMlPBYuwWMx4QXAOgwF1xwQdn2ZZddpk2bNkU69qKLLirbfte73jVholS1Zs2aVbb90ksv1fT8AAAAANDpirYQuD9lemKdJ+ri/HZbxN8IUYMRXFzhFr1eOvS4VgnLcL3OkfviCkjI+1lZy5eKAACgOe4euM3Zlz5t9rlNDwMO60N1p+j9RndwcbR+sqveyHsSJRjZt35IP3lqpHa0iqiBZ5WCnQEA6CKPSPqopMXW2kXW2lOste+y1p5nrT1G0n6Srhx3zCGSbjARO6HGmEWSbpI09kPg1ZKOsNa+3lr7DmvtGZIWSbpQ0tiO71sl/cukXhmAQMzPAwAAVSEYraX9tyOg5/qHJu7fusvqT9srf5adL1g9tclq7UtWuUJ5/a27rIaKVtsHrZ7dZvV8/3DdzTutNmyzemm7le8zzwJAfWzeOfx7pi7n3lW5ThRrnuN3YD0US1bPbB7+27Qn35r3+KpfB7frugfL92eHrNZtsSrx9xIAAMgdvPvtu4f7DGtfGv5vhyOYCmiEl3cH7+9rr2mGQMMkm90AAEBtLVu2TEcffbQeffRRSdKOHTt0/vnn6+c//7kyGfdChksuuUS33nrr6LYxRv/0T/9U8/YdeOCB6unp0dDQkCRp5cqVKhQKSqVSNb8WAAAAAHSigiPMIWnifdSXMj3y5MmXH1ov6qL4buK6J9GDFxyBCYnwYAHndUuNDctwtX8kMMLVTl++CnZIPaa2i7wAAAAqyflZrdr+i8Cy2cm5ev2MJQ1u0UTpRHAfKtvgENxWYUOC0cy457+lE1PKoz9ekfdzka7lqjfSr3W9N2P7/0M272xzuwWIRR0DVgp2BgCgw1lJt0m62Fr7UGhFa1+U9EFjzO8kXT6maImkd0r6cYTrfVnS7DHb90k6zVpb1pGx1uYl/acxZqOkm8cUfcIYc4W19rkI1wJQAfPzAABAVWz4HI0yBKM13K+fcZetfcnq0FcZrdti9c4rfD3y/PD+g+dLP/q/PL1+//Ls65Jv9c83WF2xyir3ymfYvUnp704w+shSo7+92tdjL0Rr1w/eb/Se47zKFQEggif+ZHX+d309/uLw9qELpf/5gKej963dg6QG9tTmPOu21uY8GGat1TdWWH3tF1a7XvlkMelJbz/G6L//zmhqb3MfJjbW6vXusmLJquRL//gjqx89YFUoSbOmSJ870+j/PoO/lwAAdLNHn3eXHfL5vZ/JGCOdfpj0w/d7mju9dfpA6A79jvHSHILRgEAEowFAi9m0aZM2bNgwqWP3339/SdJVV12lN77xjaOTm+6++26ddNJJuvzyy3XccceVHbNt2zZ96Utf0re//e2y/Z/61Kd05JFHTqodYXp6enTiiSdq5cqVkqSNGzfq7LPP1oc+9CEdfPDBmjKlfHHIwoULlU6zsAIAAAAARhQdwWgpryfWeYwx6vUyyvrhs5B6CUabwBVskHUEho1XKVjMfV1XIENjg9HyjuuNBkeEBD/k/Kx6PILRAABAY923/Q5nv3fZ7LOViBkyXA+uvl7UcK9OE/ZMTjNuLlrGce+ihMpZa5310q8EF0fph2dL7nFVpQDkVhM1GC3TZoFvAADU2P+y1m6Ic4C19tvGmGWS3j5m99+qQjCaMeZgSX83ZteQpL8fH4o27lq3GGOuHXNcr6QvSXpfnDYDnYr5eczPAwCgqUqlGHUJRmukFwbCPpmWDv+Sr9y3PZ1xia8NL+/d/8wW6bRv+Xr+m56mp/d+gP3NX1r9x6/Kz5kvSleusrpyVfi1xvvbq6wOmmd1/IEs1gZQnaGi1Wnf8rVp5959azcN/x7b+HVPU2oUjNW/J97vOZd1m2tzHgz7nwetPntz+T0t+tL1D1lleqSr/749/s48PyD956+srrlv72vZPih98karfft8veP1hKMBANCt9uuT/ritcj1rpdufkN79375u/6dE/RsGjNHvmNbYRzAaEKj5M7wBAGXOP//8SR9r7fAHesccc4wuu+wyfehDH5LvDycYr1mzRscff7wWL16sI444Qul0Ws8//7wefPBBFYvlX5qefvrp+spXvjL5F1HBJz7xidGJV5K0YsUKrVixIrDuypUrtXTp0rq1BQAAAADaTcEPDkZLmlTsc2W8KRWD0VjsPpE7tCJaQJmrXqV7nXYEKuQiBD7UkjM4YjQYzR2kkPMHNUOz6tIuAACAICVb1F0DywPLMt4UnTjr9Aa3KJgrXLbRfb1WYa3vLDMqn5DvChiO0j8v2oJ8BS9ETJvw4N+yYLSQ9yksOLgVeSahXpNW3p21Iqn9XhcAALUUNxRtjMtVHox2SoRj3i1p7Gz8m6y1z0Q47hsqD1R7hzHmw2GBakC3YH5eOebnAQDQYH6MYLRi8PwQ1MdND1cO37l4uS0LRRuxMzd8/N+dsPfz6++trm2YzzX3EYwGoHq//IPKQtFG9O+Rbv2d1flvqM3vmYEafcW5bmttzoNh14T8bfrxb60uf7dVpqf5f2sKxfC/oU9vlr7/m+A61z1g9Y7X16NVAACgHUQNRhtx55PS8/1W+/Y1vw+E7vHy7uD9fVP5OQSCEH0NAB3qAx/4gK6//npNmzatbP+6det066236vrrr9d99903YdLV+973Pt12221KpeIvqI/qLW95i/7lX/5FiQQpygAAAAAQV9EGT3xNTSIYzRUgMFY6UblOt6k2tMIVmlDp/XAFjuUiBrLViitgIlowWmPbCgAAsGbXavUXg2fMnzzrzaF9l0Zqlb5e6wib7F4+Aaia/nlYnZGxUJTzhwWjtWPYdJSxYpQ6AABggkfGbWeMMZWeIvC2cdvfi3Iha+2Tkh4Ys2uqpDOiHAsgGubnAQCASQl5KMQEJXcw2p681d1PWS3/ndW6LXY0wBWTFyV85+u/cN/n372w99+Deat1W2rQqDGuXMV7DKB6j7/o/l1y1b22YiBVVP3hz2qN7E/bh//moTYef9FdlitI61skiG5jf3j5zY9YZ/jefX+sfXsAAED7mDOtcp3x/vCn2rcDCLNhW/AYZ970BjcEaBMEowFABzvvvPO0fv16XXjhhZo7d66zXiqV0hlnnKHVq1frqquuquukqxGf+9zn9Nhjj+kzn/mMTj75ZC1cuFCZDAsoAAAAAKASVzBachLBaFFCIFwhAN0sLLTCrzCJ2VpbMVjMfV1XIENjwzJc1xtpX1hAQtTwOAAAgFqw1urO/psDy5ImqaWz39LgFrkRjFYueixadfcuG1JnpH/rOv/Yfn2uFLy6I6GkUqanYjtaTZSxYoYQbQAAJqMYsM/ZWTDGLJR01LjjV8e43t3jtt8c41gAETA/DwAAxFYqRa+bzwfuvvkRq/mf8LXs332dc7mvQz7v683/4WtnluCYavTvru74S++0emFg+D24/9kaNAgA6uBff+n+W3HXWunAz/p69Pnq/564Qqsmo1XCutrdzqzVll3hdd5xhS/fb35/olJYaVhY6O5cjRsDAADaSjHGxy4j1m1pfv8H3eUZR5j+4vmNbQfQLpLNbgAAdLsNGzbU9fzz58/XpZdeqm9961tas2aN1q5dq61btyqfz2vu3LlatGiRlixZounT48fIXnzxxbr44osn3bbDDz9cX/va1yZ9PAAAAAB0o0INg9EyEULPoiyI7zZhYXF5P6dMwl1esEPyFRyeVjkYzRX4MChrrYwZHxFRH66AiZFAtIRJqMf0ashOnKTdrcEeAACgOZ4cfFQv5DcElh034xTNTM5ubINCuMJlc362oX29VmFDotHMuOe/VRMg7AotHj5vpux/xxsbquYKWMskprTlexdlHNhrGCsCADAJi8dtFyVtC6n/5+O2H7PWBieyBrtv3PYRMY4FOgbz85ifBwBAS6nwsLUyhYnfuW/ZafWuK30Vxi30vf0J6Us/tbrkne33eWSr6N9T/ULoD/3A188+ltDZl8V4n2MY2GM1eyrvMYDJ2bTDakeFr89e3D4cjrX2//HkeZP/fbO9hsFoz2yWjlxUu/N1q3WO8IWx1m6Sfvo76dzX1b89YaoJJ/GtuvL7dQAAMGxoEsFoBPGikXbnrF7aEVy2eD59WCAIwWgA0CU8z9Oxxx6rY489ttlNAQAAAABMUsmWZB2hWqlJBKO5whfGCgsB61ZhwWd5PxtaHhbOMNlgNF++CnZIPaY39PhayZWCZ66NDdpLexkNlQhGAwAAzXVH/82B+42MTus7t8GtCefq69kG9/VaR0gw2rhJ7GkvHVgv51decZENqVMpGG1sqFrOD84nadeg6XTImCZOHQAAMMF547YfsjY0FeHwcdvrYl5vfYXzAagh5ucBAIBI/BgrdAOC0X7ysJ0QijbiugetLnnnJNsF9ceJoXZY8Yfh8LrBoerPFeSZLdIbDqjPuQF0vhvXRAubWrdFeui56n7fbNtdfdjkaHu2WkkEBFRr+D5Wdt2DVue+rrn3O0qIm0u+KGWHpCnd9vU6AACQJA0V4x+zPmI/CaiFDS+7yw6e37h2AO2EYDQAAAAAAACgTRSse+ZkchLBaOlElGC09lzIX09hgXJZf1CzNMdZHh6MFh4sEFae87Pq8RoUjOZ4Db1jAinS3hTtLG2feKwjVA0AAKDWNubW66nBxwLLXjvtWC3o2afBLQoX1tfL+oMN6+u1ijjTzVz3Lkoob95RJ2V6lDDJ0PMX7JBKtqiESToD1jLe1IptaEVRxoEZxooAAMRijJkm6f3jdgcn+e61eNz2xpiXfW7c9hxjzGxr7UDM8wAAAACoFT8sG3mcoYnBaL8ZH388xpZdUv8eq76phMdMxss1CEbzrfTf99ZvQfUzW6zecEC093fLTqtfrbV6erPUk5RSCWlWRlr6GqPF84fPkS9YrXpGevxFK99Ki+cZnfIaaeYUfoaATvTES3HqDv++efIlq1VPW+0a8yfpNQuMlr5Gmp4e/l0xVLRavU569Hmr0iu/An/x+9q1+5kqQrK6zfj36/BXGf3lIVLJly69M9rfpxvWWC34sa/9+vbuGxyS1r4kLZwpvXrW3v0HzDFadqg0u8Z9j2rDSfoHCUYDAKBbDcXIox9RTSgrENeOkCmNY/vaAPYiGA0AAAAAAABoE0VbcJYlTU/s82UqBHFJlcO6ulFYSECl8IWcIzCh0nkrX3dQM9SYb0Jc4RFjf1bGhqSNFSWcAgAAoBbu7L/FWXZ63183sCXRhPX1hvtfsxvXmBZgbfDiQBPwNHjXvYvS93T1z8ees1L/f2piurKOAOB2HU9FCUYLC4wGAACBviZp4Zjt7ZL+u8Ix4z/wizUt31q72xiTkzT2w7qZkghGAwAAAJrAWivZGEEfQ7myzd89b/XDB8KPX7dFesMBk2kd+msQjCZJn7+lfsFoX/mZ1XuOq1zvnqeszv22H7jY1jNWl7/b6O3HGL31Ml8PPDu21Gq/PukXF3o67FWEowGdZt2W6L+fnt4sfWOFr4tuCjrG6uD5w78r5kyV3vZtX3c/Xbt2jnf1vVbf/VsrY/i9FObrv/D12ZvHv19WPUmpWBoO74zqsruiVrZ61Uzp5x/zdNS+tXt/qg0neXqztKi7vl4HAACvGCrGP+aP26SSb5Xw6G+i/nZPfA6CJCnhSb2kPwGB+L8GAAAAAAAA0CaK1v1NTcpLxT5flIXsURbEd5tek5aRkdXECUBhwWfD5e5whkrvR6VgtEZxvYby8IjgAAiC0QAAQCNsG9qsh3etDiw7KHOYDsoc2uAWVdYqfb3WFxSMNvm+Z87PBe6PHow2OByM5gevmMsk2jUYjRBtAABqyRjzNkn/e9zuz1lr+yscOm3c9mQ+XMuqPBht+iTOUcYYM1/SvJiHHVTtdQEAAIC2VyrFq18oXyn5sR8HP1BirGe2WL3hABbyxlXyrbaHjLimj3s2XK4gFWK+nZI0e4pUfOVt3BX88XSopzdLu3JW09Pu99j3rT7wg+BQNGk4GOdjP7Z64FmNC0UbtrFf+ucbfN32sUT8BgJoac/ECJv6+eNWj70Qfq6LbrJ67SLVNRRtxG/+KJ3Ap0tOT2+2AaFowyYTDhLHSzukj17na9WnavN3o+Rb/XFbdee46CZfD3yWv2MAAHSjsL5PKhE8lh8qSi8OSPvNqV+7gBF7HMFo03pFGDTgQDAaAAAAAAAA0CaK/pCzLGnif9QXbbE7wWjjGWOU9jLKBgRUVA5GCy5PmR4lTPhknPBAhsYEjvm2pLydfHgEwWgAAKAR7hr4qXwFLxA7bfa5DW5NNGEhud3YhwoKIZaCYtHcfc+8n5W14U+Pd/XPx46VwsZN2VJWSrnfo4w31XlsK4syDmSsCABANMaYoyR9f9zu2yX9V4TDxwejTWLZvLKSZoecczI+LOlLNTgPAAAA0F1s5WCzMoW9c0Q277T69TOVD3m2yiCRbrVtt2SDP5bWQ5/zdMyfTfyc+R3fKenGh6NfY9mh0p2fiBbS8pmbfH1zRXCD7nhC+utj3Mc+/qK0rkL4UaEkXXOf4wVLWvEHaXfOalpIABuA9pIrWG2sFNE/Rlgo2ohbf2e1dtPk2zTeoQvlPN9tj1mdcBC/k1xuetj9O70R7l0nbdlpNX9G9e/Rph3Vh7k98VLVzQAAAG1qyBFi/p/vMrrgjUazLgz+bGbdVoLR0Bi788F996m9DW4I0EYIRgMAAAAAAADaRMEWnGVJ0xP7fNEWu1cOT+tGvc5gtPDQirwzMKHyffZMQr0mHRhM1qiwjLzvXnuZTlQOj6gUHAcAAFCt3aWdum/HnYFlC3r20WunHdvgFkWTMAn1mF4N2YmPBCQYbS8jb8I+17jGyipvc0qbsNA5VzBa5dBfaW//PuvvCSyP0s9vRYwVAQCoDWPMfpJuU3kY2XOS/sZa15L7UI06BgAAAEA9+OWrc6+c9X5tTO2rPd5U7fGmareZqt3eNL2quEnT/Z3a/ZvXSi/4SnjSrogfE/cHf1SJMX67wepnj1k9/JzVSzukN/250bzp7vr7zA7ef9IhRjfGCKI5aF70sJi/PNg4g9FWPmX1hgOkG9dYPfnS3kGftdKK31u9uD3yZZysldZvlY7at/pzAWgN67e6AyAna6g4HMZYK5843egffhDcyJd21O46neinv2v+R4CHfdHX8o96VQfYvVyDvkx2SMoXrHpThOkBANBtXAGrPUlpRsZo/nRpy66J5Rdc7evhz3s1CXoFJOnOJ6zueNJqYFA6bKH09mOM9ptjtGfi9FBJ0jSC0QAngtEAAAAAAACANlEMCUZLmVTs87HYffIy3hRt18sT9lcKrcg5gsV6I7wXI/XypYnnyJYaEzgW9vqihEe4guEAAABqZdXALwLDxSTptNnnyjMTg7VaRdr7P+zdd3gcxcEG8Hf2Tro7FduSLbnJVZKNjQGbGGyDHQwGU0MnkFBCSyGBQBKSEJJQEkIgdEJIIQQICUn4ANObMbbpBoMpxk2Se5UsyVa705Wd749zke5m9qquvr/n4cE3szc72tvbm72bfdcFb4DBaFaEYu6Z1TmLx3Rbnvfotm3P8bldFMAGOwIInzm3N1hNNx7P1vOpaPrtivIchoiIKF8JISoBzAcwvEfxdgDHSSmbomymI+RxPB/Aoc8JbZOIiIiIiFLFNHs9/FvZ5fjUeYh++fUA1scWdNLKYDRL/3jHxHcelzB7bNZPNuq3cakTqNSEpl0wTeC+NyTW7oxu3bWDo+/n3AP1dX9aKPGnhX0fgHPX6xL/vIwXhBPlirod6e6BtckjgItm6IPRWjrTH/yVqV5dLvHB2nT3AmjtAmbebuLecwV+OCf+3+STEfJqSmB9MzB+SOJtERERUXbxBtTlhXtSdWoq1cFoW3cBQ641seYWAzWVPBemxPxynonfv9L7HOb3r0i8do2BDk0wWnFhCjpGlKUyd9Y3ERERERERERER9WIVjGaPKxgt8sXu0YSn5SPdttsbjKCjq492O6c7cCzqYDSbup/uCNuHiIiIKBFesxuLdr2srOtnK8Ph/Y5KcY9iox9j5l8wmpSmpiZ84pnVWDrSONkTUNe7erwWQgjtOva+NrpxvsuWrcFokc9Pog13JiIiykdCiHIAbwAY16N4J4BjpZR1MTSVqcFoDwKYFON/pyVhvURERERE2c3sfXVusZn83GIGx+i5vRI/fap3KFokNRXB74hVyooF3v9F9Jfl1VREf2G1zRC45Mj0Xoj9ryUSZiwbi4gyWl2j+v1coQl/TNTwAcBXRlkvc/ho4Ku1wPUnCSz+qYFCu8CvTlYf+5IRlpWLpJT46VO631Wj8+JVyb3E/Nr/k9jdFf/nR7Je6/rG5LRDRERE2cUbft9LAEChLfj/6gjn5re/yvNgSsyGZonbFPvRzg7gpudNdGqC0UqcfdwxoixmT3cHiIiIiIiIiIiIKDq+pAejRb6OThdwle90284diBSMpg5eiDoYzVYEKHaDVIVlWK2nZzCCPsDNk/Q+EREREe31QdtCdAR2K+tml52MAiOzb6vnMNSzWzwRxpi5SEI9yUyogtEswsfiHZ+Hhn45bS50muG3C937fLepnqHviiKMOhNFCtE2YEOByOz3ExERUboIIfoDeB3AQT2KWwEcJ6X8MsbmQge3FTH2pQThwWi7YuxDGCllI4CYLi3UBQkQEREREeWVsGC05H/328zgGK0P1gKtMW7y2sHW5zIVpQJ3nC3w06ciXzhdUxnbug8aHtvyfWH1DmDC0HT3goiSYc0OdflXRgKfbgK2tyVvXa4CYOPtBoQQML4T0C73wfW2sLKBJeplGYymtrEF+HJr/M/v5wROOkjguAnA/JXJ6ZPfBN5cDZwxJb7nNycp5LW+SUJ10y0iIiLKbd26YDR7cFxQHeHc/MmlEg9dlOROUV55dbmE1AxpX/0SGKv5xb+YU/GItBiMRkRERERERERElCX8mmA0AzYYIvY790UVjBZlYFe+iTf4y6OZ2BwavBDret19MGFapVsTHCEg4BD7gzx0QQq6v5+IiIgoUaYMYEHLs8o6h3DiqwNOSHGPYqcdY8rUhOBmklimuxcKh7Yu0vhTVx/6WjiE+rXZH4yma6fYcv2ZKtJ5oMsoYrgJERGRghCiFMCrAL7So7gNwAlSyk/jaLIu5PGoGJ8funyLlLI1jn4QEREREVEymGavhyVmR9JXweAYvWBASmyqo4inPv7AyMFoI8piDxibO1Egtm/Lk6+OwWgxkVLivx9JPP8pUOIELpohMKs29u/SPT6J+xdIvN8gUTNY4AezBUYPyszv5KWUePwDiZc+Bxrbg/troQ04bIzANXMEBpVmZr+z3aYWiQcWSnyyQcK/56OlslTg5IOBC6cLCCHg9krc/6bEO3USzgLg6U/UbdUMFujyyqQGox1/YPwh+eWae/cw+DNcQ6PE1/9qRl7QwoUz+uY9etafTRw1Lvhvhx34yigBRwEw7xOJzzbvX276WGBUucDODolCO9DlBRavSU4fEgmMIyLqqaFR4qF3JP7wanCsU1MJPPANA3MP5DiHKBN5dcFoezJ5j58ocNPz+nPtdg/Q2S1R7OB7nKK3fqfEnxZJLNso8eYq/XK+ALBym3r/K9FPgSTKewxGIyIiIiIiIiIiyhK6YLQCURBXey5NeNX+dgthj7PtXBdv8JdHEywW6bXYv15dIFtqwjJ0gQ8Ow9VrQpuun7q/n4iIiChRn3UsQZNvu7Ju5oC5KLJpbi+eQXRjTHcgH8dQ6glABsIDoQ1hwGm4lGPNSONP7fjcVmT5eP/zuyClhEfzGumel+kiBaM5DKdlPRERUT4SQhQDeBnA9B7FHQBOlFJ+GGezK0Me18T4/LEhj1fE2Q8iIiIiIkoGM9DrYbGZ/JQXBqPp1e2I/Tm1gyMvM2m4wGUzBR5+R/29ts0AbjtLwGbEdlH1xGEC3zxc4IkP0xeOFgyT48Xg0bpBxuAAACAASURBVLrheYnfvbT/9XrsPYn/fdfAGVOi34YBU+KEe028tS8qXeLx9yXe/bmB6srMey1+9rTEXa+H76PzV0o8uVTi/esMDCzJvH5ns43NEkfcbmLrrtAaif/7GPhiC3DbmcDce0y82xC5vXGVgNsr8FZd8o41vz4l9hu87hXcX8L70tIZDOLjjXuCVm2TmPUHM6HAuBFlwI+Pi7w9Dx8NfLh+/+OBxcHPtsZ26+f1DDh7fYV6//pgLfDB2vj3vTkHACMHCjzybngbf39b4i/nSxgxfv4SEfW0ZofEUXeY2NEjQLS+ETjhPhP/uFjg4iPi/8wjor7hDajLC/ek6hw+Bpg4FFixTd9GfSNwyIjk941yU0OjxJG3mxHHx3st26QuZxgfkR6D0YiIiIiIiIiIiLKEz/Qqy+1GfOFljogXu1vX5zOnTb1tdMFhe+kCE6Ld1vEGsiWLLoAtNDhBH4yWmn4SERFRfpFS4vWWeco6AzYcXfa1FPcoPukOwc0kUhOMpuNIcjBa6PhcN173mG74pBcBqG83qhu/Z7pI/c7Wv4uIiKivCCFcAF4EMLNHcReAk6WU7yXQ9PKQxwcLIYqklNF+yXZkhPaIiIiIiCiVTLPXw+Koh/bRY3CMXkNT7MErNRXRbce/XSgwd6LAwtUSu3t87TyiHDhzisDhY+J7PR6/LHnBaD87QaDLCzR39C43BPDvJep11DUmZdV5obUzPCDMbwI3v2DijCm2qNt5YyV6hKIFNbYDf1woce+5mfW+bmyTuH+Bfv+sbwQee19GFbxE0XtwsVSEou13/wKJA4chqlA0AKgdLOD2JS8U7duzBKaMjP81Ly9Wl/sCQEc3UMp79wAA7l0gEwpFA4Al1xsY0j/ya/XUFQbeqZN4ux6orgDOnyZQ4gBKrzIjPjeZShzAxUcKNHcAzgLgiGrgwukC97+p338XrgbmTEhhJ4ko5/x5kewVitbTTc9LXDhdxhyATER9R0oJr3oK175gNCEE3rvOwICr9WMZBqNRLP64UEYdigYATZplix3J6Q9RLmIwGhERERERERERUZbwS5+yvEAUxtVepIvZXQxG09IHlFkHL0QbLKZfry6QLTVhGbrgt9B+6YMjPJyETURERElX5/4SGzx1yrqp/WahvKAixT2KT7pDcDOJlOoJ7LpxpNMowm60hJVHCpXTbVtXyGthFfxrFY4c2k62iHR+Eu35CxERUT4QQjgBPA9gdo9iD4BTpZRvJdK2lHKbEOJzAAfvKbIjGL72epRNzA55/Eoi/SEiIiIiogSZgV4Pi80OzYLx85vBCywr+yW96axXtyP259QOjm45IQTOmQqcMzW5cyGEEJhVC7yt/gkkaneeI/Dj4wxtfanTxF8Wh38v39CYvLCkXLdwNeBRTOv6fDPQ0ilRXhzdvvHkUvU2f+gtiXvPTaSHyfdOfTCsysqi1RI/Pi41/ckXC1dZvy99AeB3L0X/3q2tBLp9AojxpkU6cycmdhwcqAlGA4AtrcABQxNqPmc89HZir9dphyCqUDQgGEh23uEGzju8d/nPTxC4/dXUfU5cfKTA/eeFf5bVVgK6/XfRGok5EzhPkYji93ad/ji3sQVoaALGRXnOQER9z29xflLYI6+6n0ugshTaMKu6RgmAYwiKzqLVyRkTlzAEmkiLwWhERERERERERERZwqcJRrOL+L7mKzAKYBd2+KX61jiRgtPymVUwghVdcFr0wWjq1yRS4EOyRBvspguAkDDhld1wCP5yQ0RERMnzRsuz2rpjy05PYU8S4zDUY6RI4bu5SGovvlBPOtOFOluFlgH6bRsa9Ksb33pMt+U5QNYGo9ms+x2pnoiIKF8IIQoBPAPg2B7F3QBOl1IuSNJq5mF/MBoAXIIogtGEEAcAmNajqDOa5xERERERUR8yzV4Pi/vophgNTQxGC2WaEg1NsT9vcL/0Xwh9+mRhGcgQjVMneGE+eDPw4XxgwCCIM6+A+OppkN5uyH/8BjUflgH2H4U9r64xodXmjTa3xNl/MbX19Y3BG8Lc9oqJTzYGAwz3GjYAOG2ywC9OFDAE8Mi76tfa7QOa2iWunyfx1hqJju79deMHA5fNEjh/Wnhg0N/fNvHP9yU2tgBfGQXccIqBQ0ao92uvX+I3L0q89LncFxCwbff++opSwN5jFT3rdF78PPIy1NvOdolfzJN4u06i3RMscxUAR9YITB0NfLQ+chvRHu8KbMDIcqCyFCh1Yt/64lVUCBw3MbE2RpQDQgCqeyjVN+VvMJqUEn97S+JfH0isaVRvn56OqAbea9DXn3hQ9J9vxZp79p4xJbXBaCceqO7znAP0z2ng5xgRJag+wnFkLYPRMsbmVonrn5F4r0HCrb7cgvKA1RjJUdD78WmThTZstj6O7w8o/+w9d/t8c3LaG1WenHaIchGD0YiIiIiIiIiIiLKEXxOMViA0s0+i4DBc8AfUt7uJNqwrH8UbUKYLTYg2WCDeQLZk0Qe7FVk+Dm1DF/pBREREFKut3RuxvHOpsm5i8aGoco5ObYcS4NKMCfMxGE1HN0U/NMhsL6vxuZQy6uBiXfse0w13oFO7DpfN4rb2GaxQOCAgtAF1PFckIiIChBB2AE8COLFHsQ/A2VLK15K4qn8D+BWAvfcxP1MIUSulrIvwvJ+HPH5SSpng5a1ERERERJQQM9DrYYnZkVBzJQ70Ckfaq65RYkZ1+gO9Msm23Yj54vi7zsmMbXj5LIEXP5dYuFpdf0Q1cOsZBmbfqQ7m+u1pAmPvOxf44NV9ZfLjhcBvnoB89V/Aey+juuQkYER4MNrGFqDbJ+EoyIxtkYlMU+LYu/WhaADw1McSf1qoDmjYthv4eEMwuCzSRdCDf6Jez7bdwKI1Em6victn7U8uu+t1Ez99av/3/BtbgPkrTHz0SwPjh4S/phf83cRTn+jX36SeXhbRh+skDh/DfSgaXr/ErD+YWL0jvG7tTonHP0ju+qorALtNoMQGPPANgcsek72C+1TOmALMWxZebjOAP35DoJ8rsdfaWSAwoiy4v4aqb5TQ/1qY2/7wmsQvnok+hOz5Kw2c+1cTC1aF1504CbhgWvTbscCuXvaw0cAP5wjcv6Dvw9GqK4C5B6rrSpwCVWXA5tbwuuA+Q0QUv8p+QJvFLytrd+bvZ1Mm2d0lMeP3JrbsSndPKJMV2no//tXJ+mC0Bo4hKAKrc7d4ja3g5wmRDoPRiIiIiIiIiIiIsoQuGM0uCpTl0XAaRejUBKPpLv4nfRCAO2IwWnTBC8leb7Lo+h+6r1gFn3nMLvRHWVL7RURERPnrjZZntXXHlZ2ewp4kzip8K9/oArkEDGW5LpjXatv5pBcS6qs7QsfdVgHFunUIGHCI7AwENoQBh+FM+PyFiIgoVwkhbAgGlp3Wo9gP4Fwp5YvJXJeUsk4I8RiAS/cUFQJ4VAgxRxd0JoQ4DcDFPYq8AG5OZr+IiIiIiCgOIcFoxQncAG1WLdDhAZZtCq+rb4y72ZxVF8c2uWB6ZlyQWuoUeOVqAwtWAh9vlPDv2Y1sBjBlpMCxE4JBQo13GXjqE4knlkg0tgNHHyDw7ZkCU8yVkLe9GtauvP17QGcbAKDWW69ct5TA2p3AhKF99udlvUVrgKUbrJe58/XIF9X/XXNBfizueE3i8lnBfwdMibvnh7fZ0Q38ZbHEPef23r/XNknLULRE/PZFEy9cZYu8IOH5z5DUC+sjqa3c/+8LZxiYNlZi/gqJq/6j3x+f/K6BhauAjzZIdO+ZyjioBDh2gsABQ5Nz3Kyt1AWjJaX5rOMPSNyjeD/rnDEFKC8WePmHBhasApZuCH52FNiAaWMEjhqnDzuLhRAC954rcO5UiT8vktjRJvGV0QKFtmAg4qtfJryKfRZda8Bm6Pt886nBYL9QDU3J6wMR5SdfwLo+Xz+bMs1/PpIMRaOICkNSdUaUC/zuDIFfzgsfQ8TzHQLllxf64NytuiK57RHlEgajERERERERERERZQlfnwSj6S9od2nCBcgqeMF64nLiwWjq9XanORjNFdJ/q30nVX0lIiKi3LfL14yP2t5S1o10VGNc0UEp7lFidGPC/Bw/6YLR1BPe9cFl+m3nthi7h467rV4bt9mp7ZMQmXHhXDycRpHF+QvPFYmIKO/9A8DXQ8quB7BMCDE6xra26wLOergRwBnAvrsNHAHgDSHE5VLKVXsXEkI4AHwHwF0hz79LShnhMm0iIiIiIupzZu8bNZSYHXE3ddlMgZc+B5ZtCv8ulRfnh6tvjC10qrw4GPSTKQrtAiceBJx4kP4750GlAt87SuB7R/Uul/98Qf2EPaFoADDGtx6GDMAU4eFV9Y0MRrPyfkPigWbJUtcINHdIDCwRaGgCtu1WL7dw9f4+SynR2Q0sWNV3fwePSdF7f21q96fxQ3ofU8YNFhg3WKCx3cRvXwzvy5lTAJshcOxE4NiJffcbWHWlUO6TsR7Lc8W6nUCj+r63ShP2BNQV2AVOmAScMCnya3X5LAPzV4bfUKqyNPL6ZlQLzKjuvY7mDomKH6tvUBWrUicwbID1MtUVAqrfl1u7gJZOifLi7P3NlojSq1s9bX+ftU35+dmULp3dEnLPJrfbggHRALBkbRo7RVlDdY5/6Ej1GGLrruD+VuzgGILUkn3uVmgHRpYntUminMJgNCIiIiIiIiIioizhT3EwGi921wsNAtvLL33wS5/yNZFSJhwsoA98iP9O0rHQrccR0i+H4dS24c7LYA8iIiLqC2+2voAA/Mq648rPyLpQKt2Y0CrAK1dppw5pXtJ4xslWdaHt6V8bt/b1yfag6dAxfk/RBjsTERHlsIsUZX/Y81+sjgawyGoBKeVmIcSZAF4DULin+EgAK4QQHwNYC6A/gEMBhN5L+kUAv46jX0RERERElGxmoNfDYhn5u98fzhG4f0Hvb0xdBcCphwis2q7+JvW/H0k88e34u5mL6mIMZjr3MJF1vzGoyIblkA/dEHE5h/RipG8T1heODqura5TQfjlPeO7TzArDuPF5ifU7Tby8XL/M55uBgClx/TyJf74vsaNNv2wyrN0J+AMSdhv3o0gefz+1+9M3Dle/JucdJpTBaF87JDWvYW2lujxfQ/Zi/bvPnRr763TSQcHxhTtkeuq3jojvNR9YInDsBOCNlXE9vZevT438mVyj2WcAoKEpGHhKRBSPbvWUpH3y9bMplaSUuP9NiXvfkNjQvL9cCGByFXDveQYeS/EYirLPYaOBitLw8URN6K+qPcxbJnHBdJ7DkNoTS5J73DlzikChnfsbkY6R7g4QERERERERERFRdHymV1lekFAwmv5ifaeNF7vrWIUE6MLPfNILEwFlnVV7PekDH9wwZXLusmilWxvs1rtfhrDBIdThaJ5A/gV7EBERUfK5A514Z/dryrqBBYMxuXRGinuUON1Yr9t0Q8r8msQnNWNbobn4ymqcrKMb26ras3pt3JrxbbYHTevCoAEGoxEREaWDlHIRgDMANPUoFgCmAvg6gOMRHor2HwDnSSnVX0oSEREREVFqmb2/5y02OywXH4RduOU0gZMm7S9zFQD/utzAgCJheQHvZ5vy6zvlSBoao98eR1YDvzk1+y9GlW0tkFceE/XyNd56ZTnDHvR2dUks3ZDuXvT24CJpGYq215hfmLjjtb4PRQMAXwDY2NL368l2G5oldlp/LCTVH84WmDJSfaybMFTgvvMEjB7V354lcGGKgiFqKtXrWd8MeP359/lW3xT933z31wUOqor9dSp2CMz7voGiwv1lx00Abjgl/tf8LxcYGDc47qcDAKaPBW49I3IfhvYPjpFU6mMYAxARhYoUjLZ2J2CaPM70pYffkfjR/3qHogGAlMCyTcBRd/T93HnKbiPLgScuV0fqjBoI2DVpOxf9Q6K5g+9vCrepRWJ7Es+lK0qBO8/J/u+hiPqSPd0dICIiIiIiIiIiouj4pfoXVruRSDAaL3aPh8si5MATcKPE1i+s3Cp4wSp0oCercAWv7IZT9O1r5tYGo4X3y2G40B3whJVbhVMQERERRevtXa9pxxXHlp0Gm7CluEeJ042/TZjwSS8KhSPFPUof/bQyXTCaepxsNfbUjW2D7UUXjOYxu+A2O5V1Llt2B6NZhmhneegbERFRtpJSviyEmATgZgDnAijTLPoBgDullE+nrHNERERERBSZ2TuzuFjz3eJe1eZGlDgH4vkrDazaDmxqBaaNAQYUBb8nDQbHqL9N/dMiib9dyIsq96pvUpf/+hSBM6YIrNgqIUQwDOig4YDNyIFtt+BJoGN31IvX+NbiDUU5A2X0/vtR9m6bza3xP/dfl4W/P/q5BA4eDoz+hTqYoq4RGGsR5kjAo+/Ftz9tut3AX96S+N1L+uf//kyBEXu+RSoqFJg2Bhg6wPo4d9UxBs75isQnG4GJQ4HRg1J3XKypVJebMhiOlmjYVraxCqh86CKBdg8waqDAEdXA4H7xv05zDxTYfqeB99cCVWXAAUMAIeJvb2yFwOc3GvhkI7B2T7ibwy7g8QdDGb9aKzCoBPh4A9Dtl6gqExg/BFi2EWjplJgwVODgqug+k4UQqK4Alm8Nr2PAJxElIlIwmscHbN0dPG5S3/jL4vjH3N+aIXDcxCR2hrLO6EECh40CCuzq8YTdJjBmUPB8ReU/H0pceUwOfD9ASfXY+/rj0s9OELj5awKfbgLcPuDXz5p4t8G6vc23G9p9lIiCGIxGRERERERERESUJfzSpyy3i74KRuPF7jpW28ZjdmnK9cELjiiD0azCFTyBrj4Ps9OFu6nW6zRcaAuEz6TUbR8iIiKiaPlMHxbuelFZV2wrxYz+c1Lco+SwGst5TDcKjfwJRtNdzGdog9H0wWU6urFtoXDACAnW07Xvl350BNS3gHQZxdp1ZwOrcxSGaBMRUb6TUqZtZrKUshHAFUKIqwEcCWAUgCEAOgFsAbBMSrkuXf0jIiIiIiILsndg0CjfJsvFJ/lWA5gCwxCYOAyYOKx3/YSh+ueu2pa9gU19oaldXT52EDB5hMDkEblxAaqUEti2DvD7IF96LKbn1njrleUMlFHz+CQeeTf/3mdzJwLfnGZo64f2B7Yp8vjqdkgcf2BuvM+SodsnsWo7EDCBkeXAoFKBZRvj258GlgBH1Qr8TvPbWrED+PGxIq4L7Yf0FzjpoLi6tc9tZwpc90x43y6dqe9PdQUgBCAVf1J9Y/4FozVoAiovmylw2Uz9+zEeJc7kBsgU2gWmjwWmj+35evd+7UcP6l12wqTwZaJRU6kORlurCUclIookYEoE1JmvvTQ0xhaMFjAltu8G7LbEAi1zkZQS65sB0wyG6voDwOeb42/vt6cLVJVxG5O1ScP1wWgfb0htX+K1s11ie1sw2NZuC+7zHp/E6j3nHDWVwTBrSg6rc7cLpgk4CgSmjQ0+PmyMwLsN+uWnWgT3EdF+DEYjIiIiIiIiIiLKEn7pVZYnFoymD9rixe56ViEB8QSjuaIMobNar9vswgAMjKqdeHkC6r9NF4ym0m16ktonIiIiyj9L29/Cbn+Lsu6oASdlbYCYdfiuG/0wIIW9SS+puXhDNwleH4ymH4O7tWPb8NfB6rXZ5W9Wlkc7xs9ULgajERERZTQppRfAwnT3g4iIiIiIYhAI9Ho43L8V07s+wAdF05WLX9D+PwDnaZurKNVfOPlOffCiciF4cSUAdHSry3PpwmC5bDHkD+fG/fxq71pl+caWYIiToyB3tlUiTFPi189J3DVfwutPd29S74Lp1vtBbaUmGI0BewCCx+VbX5b43csSnh73Rz1uAvD5ltjbcxUAzgKB2eMlqsqAzeH3r8Q3Do8vFC1ZTpss8KtnJfwhwTLnfEXfJ2eBQNUAYJPi76lvlIgnNCub6d4/NZWp7UemG1shoLr5Vr0mWI6IKJJu9b3MwyyukzhqvP6zSUqJNTuABask3lwpsXA10LpnusqZU4DHLjVQ7MivzzaVzzZJnPNXc18w84gy4HdniLAxRCwYikbRuHC6gXnL1DvaY+9LzB5v4ltHJDeMNlmaOyS+8ZCJN1YGH5c6gTvPEdjYAtz5mkT3nnNWQwTPCx66SMDJc/uE1e3Q1x0YclODi2YI3PuGfjx64Qy+HkTRyMyjMBEREREREREREYXxS/WMuoKEgtGsLnbP7gv5+1KBUQC7UN93Qhe+YBXKYBV41pPV69Vt0X6y6P4GVf+dNvX+49YExxERERFFw5Qm3mh5VllXIApx1ICTUtyj5LEa6+nCd3OXekKQbiqQ7txFF+wL6LepOvRXf27U6tsZU5+yhdU5CoPRiIiIiIiIiIiI4mAGwoqe2vwNTOta0qus2OzAn7ddiVm734zY5L8v119A+eh7DAIBgkEEumC0kuy8z0oYuWsn5NXHJ9RGrbdeWW5KYJ36a/C89Mh7Er9/JfFQtB8cndkXPw8fANxyusDgfsHHDjtwwykC50+z7nfNYHU9g4mCnlwaDNbzhAStzF8J7GiLvT3fno8Vu03glasN1PYIyhICOGMKcPc56d3Xxg8ReOp7BgaVBB+XOoH7zxM4/sAI+5Im9CvfQvb8Aak9BtdUZPZxJNV0+0xDU2r7QUS5wxt++qZ00/Ph45zNrRKPvWfiW/8wMfLnJibcYOLKJySeWbY/FA0AnlkGXP0/jpO6fRJz790figYEA1Iv+kf82+axS/g5SdE5bTJQVaavv+RRiQ/XZeb79NJH94eiAUC7B/ju4xK/e2l/KBoQPK//9xKJXz6bmX9HNjFNqR1f3nqGCLtBweQRAo9fJlCouOzoR8cJfH82j1VE0VBfuUdEREREREREREQZxye9ynJ7QsFo+ov1ebG7NadRhI5A+Kw0fTCaOnihQBTCJmxRrdMhnBAQkIqgCKvgtWQwpYlu6VHWuRT7kW7/SUWAGxEREeWuLzs/xjbvJmXdjP5zUGrvn+IeJY9VEFVfj/UyjSk1E7GEejKQduwpPTClCUOE3zOu21SPbdXBaPrXptXfrCx3aYKCs4X1uWJ2/21ERERERERERERpYZphRUMCO/DuhqOxzT4EW+zDUCi9mNC9CgUIXsEq/X4Iu/7Sr+ljBXQ3mnjkXYlLjkxKz7NalxfQfeVc6kxtX/rMwqf1f2QIcekNwIwTehe6OzDm6lNgyABMxfyVukbggKHJ6Gj2e/z9yNv5m4cLPPGh9XJ3nSPwp4XqZb4yCnj8UgNjK4C364Dj7gk/dgDAvecKXJPEII1iB7DwJwb6u4IBQ0IIXHdCMJRpeBngLIh8wXatJpioPs/CrHT+GcX+E+rVqw2ccJ96H6go3f/vA4cJrPqtgQ3NwM4OoLoCKCvOjIvsT50ssP1gA+t2AqMGBoPcIqmpFFi4Onx7rW3KrzCHTa2AX/3ya4PA8lV1hXpMtL0N6PBIlDgz4/1ARNmjO4Yg3A/WSmxuBRaskli4SmLNjuifO+8Tib9dIGEY+Xuceu1LoKk9uW3OrM3f7UmxEULgz+cb+NoDmkEXguP4w8dk1j61s13ipS9ie84/35O482wZFt5F0du6G3D71HVzJqi36/nTDJw7VWLVdqDAFvyeavxgoMjB14EoWgxGIyIiIiIioqznNbux1r1Ke2F0shSIQox1HYChhSP4RWAf8ZlerPOsRpt/N8YXTUKpfUC6u0Q5wmd6sda9Clu9G9PdlV5swo4xznEY7hitvFA/lF+qv0UvEIVx98HqAn9e7G7Nabg0wWjqADRdmEUsAXRCCDgMl3IdH7e/s++zUEBgmGMkxjgPQIFhHZy3w7sFDe6V2mCIvfxS/yu/KsRD93et99RhYeuL+x73t5djXNEklNj6Wa6/M9CONV3LsUsTPOE0XKhxTURFofVsXK/ZjQb3Smz3brZcLtUKhSM4znCMiLuNNv8urOlajvbArqifYxcF+45DyR7feEw3Gtwr4TW7Mb7oIBTZSpLa/t6/1ye7Ue2aiMoIrz0Rxc7qM8IuCjDWNR7DCkfx/IhSan7LPGW5gIE5ZaemuDfJZRM2FIhCZSDy0ra3saV7veXzDRgY5hiFMa5xCYUn96WuQAfWdC1Hq19za/M9NnjqleUCmmA0ixCyBa3Pwy7Cp0as6VLPDlO1ZRVa1xHYrW4ny8+nVOHHe2X730ZERERERERERJQWZkBbNdS/HUP928Mr3B1AqX7+1Mhy/eo2t8bSudzV0a2vK3Gkrh99ST7z5+gXPvECiCGjej/fNOEoMDDStwnrC0eHPaW+UQKa7+fzzVt1kZeZNNy6fvIIoNAuMGMs8P7a8PpbTjdwwNDg9p42RsJZAHhCpowV2ICvTxX49XMS7dbTfaJ2+UyBqaN7v86GIVAdQ/hSbaU6mGjdTsAfkFEFYuWyL7bE/pwZ1cDwAcAWxVSgWSGBH0IIjB4EjB4UZwf7UKz70qiB6vJkh6ZkOqu/V7eN8pVVUFxDE3BI/FPyiChPdWuCb1SOuE0fqBRJa1cwhM0V/6UAWe/LbckNPi2wWZ8rE4U6ZETwXp26vPEHF0nMrAm+zwvtAoeNBkaUp/fcZvUOwIzxrdPcCexoA4Zk731n067OIviypkJfZ7eJiN8VEJEeg9GIiIiIiIgoq7X4mnD/phvR6NuasnUeXXYKzqq4NKoQI4pem38XHth8EzbvudDbLuz4zrDrMKlkalr7Rdlvl78Ff9x0E7ZlWChaT4eVfhUXDf0hbIqL9XvyaYLREgk9sA5Giz6wKx/pwgDcmgC0ZASj7V1eFYz27u75YWVVjjG4qupGZdCklBIvN/8PLzX/N6b16/oUShcesd6zBus9a8Ke/73hv8S4oknK59R3rcCDW27Rhs71dGbFxTi2/HRlXTrGDbGaW34mTht0YcwhQ190fISHtv5BG6AYyRH9j8U3B18BQ3H353g0erfi/k03osXfBCAYrHFV1U0Y7RqXlPaXdyzFQ1v/0Cs45vRBF2HuDjrRNAAAIABJREFUwDOT0j4RAa80P4kXdj4Rcbnp/Y7BBUN+kLTjB5GVde7VqHevUNZNKZ0eMSA1GzgNF3yB8GC0d3a/FnUb1a4JuGL4L5MeSpqo9e41eGDzb9BldiS9basx9bymRxNuq8AogF3YLcOCQ1kFi2UDh+HU1vFckYiIiIiIiIiIKA4yjovlIwSj2QyBiUOBFdvC6za2AF6/RKE9v4OIOixCo3IlGA3rV0a33PTjw0LRAEAYBuTwsaj2NiiD0eoaE+xfjmjpjHzVud0Axg9Rh4Pt9d2vBt+T3z1K4P21vZerrgCOnbD/cYlT4PxpAg+/03u58w4TGNJf4OIjBP74pn5dE4cC1xwr8J3HrftuN4DLZiZ+rKjVBBP5TWB9s3VwUa7r6pYxB1YO6QeUOgW+e5TADc+Fv4bfmpG7x/eBxeryls7U9iPdWjVT5WwG0J8/1/Uyoix4LPMrhlsMRiOieHRHPz0kYbowpnyxtim57Y0dFDxXJopWVZnAyQcBL36uX+abf9/7Rg3+/0fHCdxxloCRpn1t3rL4DhwXP2LilasN3gw5TvVN6u0+sBgoK+Y2JeorvIKbiIiIiIiIstpTjQ+nPNxkYeuLWNn1aUrXmQ+e2/n4vlA0APBLPx7eeid8ZnwBL0R7Pdv0WEaHogHAR+1v4cO2xRGX82veDwVGAsFoNv3F+tl+IX9f04UB6MK79MFosW3nWF6Xzd3r8PzOfyvrNnjqkxKKBqj3o1j66THdeGTrXTAVE8GllHh02z1RhaIBwDNNj2J792Zl3dON/8joUDQAeL3lGdS5l8f0HJ/pwyPb7o47FA0A3tv9Bj7t+CDu54f6746/7gtFAwC32YVHtt0NmYQZHH4Z/Ht7hqIBwLM7/4ktPcYSRBS/zZ51UYWiAcAHbW9iafs7fdwjoqD5LfO0dceWnZHCnvSdWMeGKg3ulZjf8mwSepM8wTHdvQmHohmaKQ7JDOrStRXzuN2muWIjS1j9vboQZCIiIiIiIiIiIrIQCMT+HHfk71Sf+Lb6e1NTAhuaY19lruno1teV6u8PkTVkvcWV23sVlQLHnQdxs3r+CACgqga1vgZlVd32OPbdHNQQRWDDmEFAaYTAve/sCUa7aIaB+88TGD0QcNiBuROBhdcaYSEOf/qmwBWzBcqLgbIi4PJZAn+9MLjMnWcL/HCOwKCQe+U4C4CTJgFv/NjAZTMF7jlXYNRAdX8OGg68/EMDk4YnfhF3dYW+rm5Hws1ntWj2n1C1g4P/v/5EgV+fIjCkX/DxAUOAxy8TOPGg3L3wvlwTKtAS3fSxnKELZCwrAsMsQthtAmMGqevqG/M8cYiI4pLKYDQzzw9T63YmdwPsHUMRxeKJy42w8yor98yXeCGK0/G+IKXE3fPje9+8vgJ4uy7JHcojuvNaHneI+pY93R0gIiIiIiIiipcpTazoXJaWdS/vWIoDiw9Ny7pz1ZcdH4eVdUsP1npWYXzRQWnoEeWK5Yp9KxMt71iKGf3nWC6jCz2yiwSC0Xixe9x0204fjKYuj3U7xxrIsLxjqbq8U10eD1V4RKzhFLsDrdjcvQ4jndW9yrd6N/QK2IrG8s6lGOKo6lVmShNfdn4SUzvpsrzjY4yL4bOvwb1CG7wX63oPLT0y4Xa6TQ/WdH0RVt7k246dvu2oKByaUPtr3avg1ryflnd8jOGO0Qm1T0SIOShxdefnOLzfUX3UG6KgRu9WfNaxRFlX65qE0a7aFPeobyQr4OvTjvdxWsUFSWkrGZp825MSUGsIXTBa8kKddW05DRc6Am0xtJPd51MuTYi2XRQkFM5NRERERERERESUt8w4wqU62yMuUlupr2to4sWZ7R59XUmEAKtsIN940nqBc6+GuOL3EDab9XJVNaj+Uh2M1rDZA4DfC0cTrFNbCbgK9fXfPUr0CjO68hgDVx4D+AMSdps65KjQLvCnbwr88bzg+o0ewWkFdoF7zxW45+uy177uKgjW7XX1HIGr5wDtHome97MrsAGuwuSFKxU5BKrKgM2t4XV1jRInIn+DnOIJRqupDG4vwxC4+VSBm74m0eUFih25vx3LNfcf2tUFBEwZFiCYq1o61eW67ZPvqiuAusbw8nUMiiWiOKQyGC3Pc9Gwfmdy29s7hiKKRYlT4P3rDNT+Kvwm7zr//VDitMmp399WbEvs+f/5SOKr4/g+iUdDk/qIXVPB7UnUlxiMRkRERERERFnLK7vhlRa3dOxD7YFdaVlvrjJlAG2abdoZw0XHRKF8pg9dZuS752YC3XugJ18fBKNVOUajQBTCJ729yocWjtBeCE9BLk1ggjugDmzSleva0RntqsU6z+qol28L7IaUMuwukW3+5HyWDS0cqQx9GOMcH3Nb7Yo+xdNP1XO6TU/axg2xiuZ4kMjy2nb8ipmpcegI7IYJ9Q/DHYF2VCCxYDSrfYJjNKLk2OnbHtPyXaZmNi5REr3R8hykZirg3PIzUtybvjPaNQ6butcm3E6zbwdMaWqDxFItWeOMkc4aZbnDcGJo4Uhs825MeB1jnOM05eOx06e57WMIAYHRmnayxShnDQRE2Psu2/8uIiIiIiIiIiKitJEWF9cKgV5pRXt1qH//lJ4uYOkCYO0KOEeOw/D+p2DL7vDvg4MXbObfxZmrt0u8uUpicD8Bv6n+bcFuAIW5cFXdh69bVosTLogcigZAHDgNNS88pqxb31mEbp+EoyD/9qWe6hVhO6GmjRVwWkzj0m1BXShaT4ZFEJQQAv2iuF9LqTP5r6H0eYFPFgFrPgUCftTaL8ZmhCcyqsKK8klzZ+yRJ6HBl0IIFOdAoGM0rIK/WjuBQaWp60s6MRgtSDYsB5YtgqxfDjRuAgYMAiqrIJy9N0TVzuMBTA57/s72fI8cIiIr3b5gwGx7dzBUee9/yzYlfuyYOBQ4ZoLAnAME+jmBOXerzwnN6HOYslqHR2L+SmBHm8RXawUmDguOTdcmORht+tjktkf5Y/QgYEg/YHuUl7B9viW5Y4w2t8T8FcDqHRKThgkcOyEYPh1qVYLBaGu2c2wUrzrN1MGaPL8pAVFfy4WvcImIclpXVxc++eQT1NXVYefOnfB4PHC5XBg8eDDGjRuHKVOmoLDQ4pYyZGn27NlYvHjxvsdS9YNyEixatAhHH330vsc33ngjbrrppj5ZFxERUT7xaAJmUqErwAv/k8ljurV1PtOrrSOKxJNFIR3uKI4rfk0wWkECwWgOw4mjBpyEN1qf7VV+XA6FS/QVpyY4zm1qgtE0+6PLFttMpZn9j8eS3YuiDv2TMNEtPXCK3jMgdf2JlW5fqSk6EGOc42MKcVMF68TTT9VzkvX3pkI0x4NEltdJVpCk1TgpNIQxrvYtXkuO0YiSo9kX66x0TpSgvtXm34UP2t5U1g0rHImJxYemuEd9Z1b/E7C07S3tmDJafulHe2AX+tvLk9SzxCRjLFYgCjF7wMna+rnlZ+Cx7fcltI7BhVU4uORwZd3sspPxWceSqMJ2Z/Sfg372AQn1Jd3628sxrd/Rvd57BgwcW35aGntFRERERJR8nJ/Xtzg/j4iIqIdAQF1uLwCKSoG2lvC6tvCbTsjm7ZA/PRWo+2xf2djat7DFPjVs2YamuHubtR5+x8T3/iURMAGr37BKnAi7wVy2ke++1Gs/CDP1GIiag6Nr7MiTUeO9QVt96t2dePVnxVm/zRIR6f1UVgRccqRAm34qZM79qiq7OiCvPxv4eOG+spohg7Cw7LKwZesbc+2vj01rHD/91Vbm7/ttoMV0upYuBqOV59H9buV/74H803XqupDH5RUGMCg8GE23HYkoO3n9cl94WUdImFl7t+z1uKMb6PAA7Z7w8LO9z/VpTtPiMWogcMwBAsccABwzXmDogP2f5Z9aBK1pspxzytZdEsfdY2LlnkAnmyHxp28KzB4f+3inrEg/tqqpBE6fnL9jKEqMzRD40XECP386ujflym3A7i6J/kWJ73Prd0ocf6/ZI1BaYsoI4OWrDQzu17v9YAh+/KIJ/aZwpim13wvUVKS2L0T5hsFoREQZKBAI4Mknn8QjjzyChQsXwu/3a5d1Op04/vjjcfnll+OUU05JYS+JiIiI0s8qTGtwYRVsCL8LZqw6Am1oC4TfeTPRC5SpN+sAFXUQFFE0rMJzknWciFWX2Yld/mZleSS6QCF7AsFoAHBGxbdQUTgUn3UsgUM4cHi/2TikdFpCbeYDl6GegaUL5NOFQRRp2tEZ6hiBH4+8FYtaX8R6Tx1MGfxV3i/9aPRtVa870Amn4QorUymx9UM/W+QQh8GFwzGt/9Ha4AibsOGqETfh9eZnsKbrC3h6fHY2+rbCL8O/71D1SfcZYYMdTsOFTrM9vB3Ftrb6rBlSWAUjDceD9sButAd2h5XHGhyiO34UiEJUFAwJK+80O7DbHz6pPlmhYp2B8NdkL13AYyysguCyKQCPKJPpgtEEDEiE36JS5twUfso0i3e9pP0MObb8jJy6CKfKORo/GnErFu96CRs8dTCl9W1hJSS2eTcp61p8TRkUjKb+HsWADUMKh1s+VwgDIxxjMXPAXIx1HaBdblr/o+GyFWPJ7kXY4d0cU/8KDQeqXRMwt/wsbXDxGNd4XDPiFry16xVs6l4LqXhtSu0DMKl4Ko4uy43f7C4Y8gMMd4zGl50fo8TWD0f0PxYHFB+S7m4RERERESWM8/OIiIgoLXTf9xoG0K9MHYzWHl4mn7grLAyrumMF3h6gCEbLsyCi1k6Jq/6zNxTNWqmj7/vTl6TfD3n79/QLlA+BuO2ZqNsT9gKM/erhEJtNSBE+f2J+gwtL1gHTx8bT29xgFex11qHALacbqCoTWBfIo/fdS4/0CkUDgBpvvXLRuh2p6FDmao1jOkvt4OT3I1uUWwWj5dHUIF3oS3lx7vw+bkU2bob88/VRLz8woBhLAWjOo32GKBP5Az3CykKDzDyyd7hZSJBZePAZ4NV/lZsy35oh8E69hJTA1NHBILQ5BwiMrdCHL1sdufNh9HjzC3JfKBoABEzg6v9KHDQ8tr9++ABgyfUGrviXiRc+319eXQHMqhW4/SyBQnt+fE5S37h2rkCpE/jXB/tDsHa06Ze/+UWJu7+e+D530wuyRyha0LJNwB2vSdx5TmgwWmLr2tQKuL0SrkK+V2KxdTfg1lwGUTuY25KoLzEYjYgow7z55pu44oorsGbNmqiW93g8eO655/Dcc89h6tSp+Otf/4pDDz20j3sZu9GjR2PDhg0AgFGjRmH9+vXp7RARERHlBI9FONnPR90RFgATj8WtL+N/jX8LK7cK5KDYWYWY6IKgiKJh9V5N1nEiVp+2f4C/bb0trDya44oqSAoA7KIwoT4JITBrwPGYNeD4hNrJNy5DfetFd0D9+aQLndIFL1gZ5hiJbw75fq+yNv8uXNdwsbpPZifKMKh3fzTH3qPLvoYTB54Tc59UnIYLp1acH1Z++4afYoOnLqxc1SddiMZQxwhMKJ6M+S3zwp+jeA2sPmuuH31PwgGD8VjQ8hyebnokrDzWgDLd8aPWdSCuHHFjWPlHbYvxyLZ7wtdrdsS0Xh2roMekBKNZtJ+scDeifOYzfcrwRACoLByKHd4tKe4R5TuP6cbi1leUdQPsAzG138wU96jvVTlH4/whP4hqWSklflR3HryyO6yu2deEMa7xye5eXHTjlYrCIfjVmPuTtp6DSw7XBvcmw2hXLUa7avus/UxjCBvmlJ+KOeWnprsrRERERERJw/l5RERElDaBgLrcsAGl5QAawuvaWsPL3n4urGisd62y6UQvls02r6+Q8ET5k3Sps2/70udWLQVa1Tc7AgBx5/MQjtjmRTknHYqR6zZhQ+EoZf28ZRLTx+bvxb71ms395/MFvnvU/jA5l8X0k1zbevLtF8LKar2KYxmADS2AaUoYRq5thejoAq6s1FQkvx/ZotgBFNgAn+Kj0yqYItc0tqnDYgbEPt0wO737EmBGkXa6hzYYLTlT4ojyRsCUIeFlPQPKZFi4WUdImFlofXcGBJklUz8n8Mglsd+I2WoIFMOhLmu9ujz8M63bDyzdEFs7NZXAsAECz11pS1LPiHoTQuB7Rwl876j9ZU3tEoN/on6jvrUm8WhDKSXmLVO38+wyiTtDLutoaEp8net2AhOHJdxMXtF9JwDk97kbUSowGI2IKIPcfPPNuPnmmyFl70GpEAITJkxAVVUVBg4ciKamJmzcuDFsctbSpUsxY8YMPPDAA/j2t7+dyq4TERERpYXHdCvLBQQcIjkzl4o0YTVWgR8Uu74OUKH8pdu3BIykHSdipTuudEsPAtIPm9B/Zad7P9gtnkN9RxuMptnvdOVFRnJmKun6A8QWFJas/liJZdvpQjRcRjFcmr4q29H8vYXCkZZQNEAfimcV/BXL8rr2i4wSZXlXoANSSu0d66LVFdDPJvOZiQeeWoWfxbrtiChcq78JUnMfyoEFgxmMRin3/u4F2vDOY8q+lrbP8UwhhEB5QQW2ezeH1bX4LGbjpJju3MxqDEtERERERJRsnJ9HREREaSU1V7sbNqB/ufopbS0QAOSS1yGXvA40bga2hV85Xu1TB6Ot2JZfQUQ3PR/9xcFH1mT5Ntlcr68bUAGMnhB7m1OOQs3T9dpgtDtek7j9rNibzXZd3RIPLpZobFfX11T23pecFj9dJX75et+S7buA15+AXL0MCOxJMSkfDHHESRBTvtp72W3rgWWLw9oY5t+qbDtgArvdQFm+BDqF2BVjMNq0MUCRI8uPUyHk9g3AG09CvvQI0NEGFDqAsZMAXzdQVQNRfRBw/PkQRSUQQqCqLBjYECoYBJFb20Zn2SZ1edWA1PYjXeSm6ELt99IGo3E6GeW4gCnR0TO8rFcwmQwJNgvW9woyC6l389INS9PHxvc8wyJLzcz0QWKCpJTYpMj8jsfwAfkxBqDMMkg97R4A8MlG9Jp77w9I/HuJxHsNgNsbPP85/kCBkw5S77td3RJ3zg8ej1XW7gQ8Pglnwf7nf7Q+un4fNwF4c3XwXCxUfSOD0WJV16iZV10MlBXz2ETUl3jFJBFRhrjmmmtw33339SorLS3FL37xC5x//vkYOXJk2HPq6+vx6KOP4s4770R3dzcAwOv14jvf+Q46OztxzTXXpKTvREREROniNtUzBRyGK+FAj710gSseszMpwSEUpAu9AZIToEL5S7dvFRnFaXv/6o4rQDC8qsTeT1vvl+r3Q0Geh0Gkiz7USv35pA340rQTqwKjEHZRoAzQUwVR9HV/rOgCAlV90od+FWmDNFTBWfqAtfSFccQS7GZFFxSma7/Ipv6F1oSJbumBU8R21+jw/lgEoyUh8NRq+zAYjShxzRZBSgPtlcry0IuJiZIlIANY0PKcss5lFOHI/nNT3KPMNLCgUhmM1uzPnGA0q7BbIiIiIiKiVOD8PCIiIko7UxeMZgCl6mA0tLVCPnIL5D9+a9n0WO86bd38lcDxB0bbyez1foPE6h3RL3/VMdk970/e/j1tnbj4eoiCwpjbFGMPRJVzdSLdyjkdHolj7zbx4Xr9MjUhP6G6snQal2xthLzqOGDDqvC6/94DXH03xNk/CD6u+wzyB0cr2xkYaNauo7kzf4PRWrui/029wAb86mSL9JQsJOu/gLzmBGB3SNJZ457fOD9eGAwOfOEfwP2vQ5T0R02FOhitPnN+Au1TO9okdrSp68ZWZPdnWDSklMD/PRDTc8o1xx+PLxg6kmthg5S9TFOi09szvKxnOJlUhJthT/CZ7BVutvffXbzUImUcduC6E+P7jLY6AuX6zLtk7qP5Opak9BJC4PuzBR5cpH63Xv0/ifvPE/AHJE59wMSrX/au/+ObEj8/QeD3Z/Y+frR7JI6LcL4JADN+b+KTXxsQQmBDsz5EraeRzg48dFE/HHOXibWKMXUw5Itjo1jozkNqB6e2H0T5iMFoREQZ4LHHHgubdDVz5kz85z//QVVVlfZ5NTU1uOWWW3DRRRfhrLPOwvLly/fV/eQnP8HkyZMxe/bsvup2Tli0aFG6u0BEREQJ6DbdynKnkViYR08uTXCIX/rhk14UCkfS1pXPrEJMkhGgQvnLKlApXXSBUEAwvKoE6mA0KSX80q+ssxuxT2akxOkCtdyBLmV4piqcLNhO8n6ldRlFaA/sDu+TYt2p6I+Obh2qPulCv4qMYn3AWix/bwqC4HSKtAGsbpgyAEPYompHd6zTbR9dMBoQDDVLdCyl29aAPuAxFlaBqrr9hYiipwtG62cbgELNmEPm/PQsSpdP2t9Fi79JWTdrwAlpHddnknJNaGGLT73t0kF/bsYZi0RERERE1Pc4Py99OD+PiIioh0BAXW7YgH5l6roNqyDn/ydi0zXeBm3d9/9touHW6H57zmY3Pq8JnlO4/iSBScOz9wJgubsZ8Gvm1NkLIM76ftxt26bOBj7V15umhGFk77aL1b+XSMuL1AvtQFVZeFlWeu7vylC0veRDNwInfQuiqATy0d8BbvVvPwMDLdo2mjvCg+TyRatmOsuNXxMYUAQsWCmxqwsYP0Tg4iMEjqzJrfeZfOzW8FA0lbpPgVcfB86+EtWVAvNXhs9FqG/Mj/kJN7+g/zvHDkphR9Ll83djfkp5oFVb19IFFHHKP8VJSonO7p7hZT3DyaQi3Cwk5CykvqM73X8RRWIzgFInUOrY838ncMgIgUuPFDh8THyf0VZDaF2Gdq5oSeK03nJOM6I0+cWJ+mC0B96UOGNyMPQyNBRtrztek/j+bIkR5fsPBv/50Pp8c6/PNgPv1gMza4HrntaPEad1LYFLujHDvQSXe5/CiJJ3UVNZqAxGq8+caYVZQ3ceUpMHocVE6ZatX7UREeWMNWvW4Morr+xVdsQRR+CVV15BSYn+ItWexo0bhwULFmD27NlYuXIlAMA0TVxwwQX49NNPMWhQPnzjSURERPnIbXYpy3VBNfGwasttdqLQ4K+kyWAVYpKMABXKX7p9KxXBTzpW67YKCfRbhATaRZbeajTL6V7LAMLDM00ZgEfzuaULx4q3T8pgtJD3gs/0avepZPZHR7ftPIHwbWQVoqFrRzVG0IVppfV4YBHm4jHdlgFmPcUacmf1GncFOlBeUBHVeq3a0ElG4KlV8JrH7IIpTRgit+6cS5RKzb4dyvKBBYPBO8RRKkkpMb9lnrLOLuyYXXZKinuUuXSf3ZkVjNb33+EQERERERGpcH4eERERZQypudpdGEC/cnXdyo+iarrM3IWyQAtabeHttHRCeXO3XOL1S7ypz3MKc8rBWb4tPlmsr/v6DxNq+uRJwD8sgtGaOoDB6ns+5qRXl1sHMI0ZCNhCUi6s3muHjUpKt/qEXPK69QJd7cCXH0B+5RjAYtlSsx126YNfMZ+tOY/vdbejXV1eUQp8f7aBq+ektj+pJKUEFj0T/fILn4E4+0rUakL06tX3ess5X2zWH3/G5MHXEPKD16JeVvxvFbBrJwZ9/3TtMtt2hwdZUu6SUsLt3RtcFvqf3B9u1qO+w7M/yCy0vqMbkPmRyZi1DLE/wGxvoFnJvmAzEfy3sl70Lt/zn8NuPaaLh1Vzub57JTMYbSCD0ShNhvYHXAWAWzMN/vp5Jg4dpX+jmxKYv0Li0pn7l3nty+jf/a8sl5hZK1BnERL8xsYT4ZKe/QUrPkJ15UxgRfhzGvIkbDiZ6tRTq1EzOLX9IMpHDEYjIkqza6+9Fh0d+y8WHTBgAJ5++umoJ13tVVlZiaeeegpTpkyB1xsMjtiyZQt++9vfht3tkoiIiChXeEy3stxhuJK2DuvgkE70t2smpVFMrMKgkhGgQvlLt28V2dL3q5jTKIKAgFT8jKkLbgKsg9EKGIyWFlahVm6zq1d4pu4zK9hO8vbHIlsxoNhVQt8LVsFSyexPrOtQ9UsbjGYUw6UJDvNLH3ymFwVGYY92NMF0aTweWIWydQU6ow5G04a+af42q3a7TH2oWbSs2vCZiQeeWo0bJCS6TXdK9mOiXNXsU88iHliQp7fuprRZ1fUZNnevU9Yd3m82BvB8fB99MFpjxlzslokhtURERERElB84P4+IiIgyhhlQl9tsEJVVCV8MP1ATjLbbDTR3AINKE1xBBlvfHLzIOFo1id0rrM/JBf8HufBpYOtaoO6zYOHkr0JcfRdEzcHABn0KnJh+QkLrPnqS9Y1iWzvzKxitPsI9aE7ShOydPhl4NiRgrtAOnDM1/b/ZaG1piLiIvPdHEHe/BHTr50EJAOWBFjTaw68Ob+6QyMebcXn9Epta1HUjyvJge7TGmGT2+bswb/02qif9GMC4sOr1zUC3T8JRkFvbzu2VuPN1ifcbJNw+4F2Lt2RZcW797UpRHJMAACPHAUNHA5VVGBhohtN0w6O4jqChUeKw0Xmw3XLYu/USD78j0dQucfyBAt+fLfDC58B/P5RoaOoRdrYnyCyWsSGlnhCh4WU9/xP7ysPrhTL8zFWY/CCzZDMsupfr+2syg9HKOc2I0sQwBE6cBDyzTF2/ZB2wZJ31m/nyf0r87a0AbAZwyAiBeZq2VH7/isQbKwP4ZKN+mV6haACwdS1qKmYql82XsOFkebdeYvlWdV2mf8dElAsYjEZElEarVq3Ciy++2Kvstttuw5AhQ+Jqb+LEibj22mtx66237it7+OGHcdNNN6GsLLdua1BfX4/PP/8cW7ZsQXt7O4QQKCoqwuDBgzFmzBgcdNBBKCrSX6CeLN3d3Vi8eDHWrVuHlpYWVFZWoqqqCrNmzeqT9W/btg1LlixBY2MjmpubUVJSgsrKShx22GEYO3Zs0tdHRESU6bo1ITPOJAajWYVqWIVyUGy6LMKgfDLxABXKX7rwp3RefG8IA07DpQxpsgqrsgpGszMYLS2s9iN3oBP97fvPxa0+M6xCOGPlNNTnoqH7m1UIXzL7E+s6VNvJKkTDpfl7geD7qX+vYLTMOx4hVep3AAAgAElEQVQka5yhDYHU/G02YYdDONEd+gMorD+To9UV0AejWR3LomW1/wLB157BaETx0wWjlRdUwpTqC3ZUga9EiZrfMk9bN6fstBT2JPPpggu7pQedZjtKbOm/Qkk7FuNnNhERERER9SHOz4sf5+dxfh4REfUB01SXGzZgeOKfMw9uuwpzR72irKtrzO1gtLURwqt66ucEBsaWkZtS8om7IP98fXjFp29BXnIY8NB7kA/frG9g8qyE1t9/gAu/bboBv65Qr6NVfU+6nGSaEg0W+1ZNJXDNHHXCxU2nGnin3sTOHtMnbj9LoNSZmYEdsrMtuvCqjWsgz66NuNhAXTBank653diiDzypzoOL6OW/7oj9Sa/8EzWLPwZGfaSs/tvbElcdk5nvp3gETInj7zXxTn3kZX95cu783ZY2RxGMVuiE+P5twTAkewGMybMwtm0dVjgmhi1qdTynzPfqconT/mTCt2fa0ktfSPzwv5yrlGoloQFmex6XOEV43b56dV1RFgSZJZtlMJrmVDFXJPMcojwfwkEpY93wNQPPLEvsDfvh+uD/318b++fYR+v1dbfv+EVYmdyyFjXTBKCY37uxJTfDhvvCGysk5t6rf91rB3MbEvU1BqMREaXRfffdByn3DygHDRqESy65JKE2r7nmGtxxxx3w+YIXmXZ2duKhhx7Cz372s7BlL774Yjz22GP7Hq9btw6jR4+Oaj2LFi3C0Ucfve/xjTfeiJtuusmy/b02bNhg+cXFt771LTz66KNh5d3d3bj//vvx0EMPoa6uzrJ/NpsNkydPxumnn44f//jH2klQs2fPxuLFi/c97vl6WNm9ezduuOEGPProo2hrawurLy0txbnnnoubb74Zw4YNi6pNHZ/Ph4cffhgPPvggvvjiC+1ytbW1uPbaa3HppZfCbudHPBER5QdVqBAAy5CUWBUKBwzYYCI8AEC3fopdl2kRoGImHqBC+UsbqJTmi+9dRrHyGGIV9uNjMFrGsQ616v36WoVNOW3J+9wq0vQpdN+yCt1KxftDtw7Ve0D3eVtkK7YMcQsLp7MIWEsXq3VbBSX2JKXU7l9Wr6XLVoxuvyIYzeIzOVpWwWjJCDyNtG3cgU6Ah0WiuOmC0QYVVKLRu03zLE42pOTa5FmLVV2fKesOLjkcQx0jUtyjzFauCUYDgBZfU4YEo2nGdGkcixERERERUe7j/Dw1zs/rjfPziIgoZUz1DWhgGMCwMbG3d8zZwJtP7Xt4dNdi7aJ1jRIzqnP3Qs2Gpuh/qxo1MHNDGGS3B/Lfd1ovc/OF+sqzf5Dw3yYMA9d1/pnBaAC27AI8mulalxwp8IezBAaWqLf3wVUCS39p4JllEk3twImTBGbWZuZ+BwDYsjapzZUHWpTl+RqMZhXINGZQ6vqRNv/3x7ieNsZdBwETEkZY3S/nSVx1TKIdyxyL1yCqUDQAuOzIDD6WJImUEthiEYxWVglx5hXAUadDjNkfgiYu/RXG/kETjLbVC8DZB72lVPj9K/tD0Sh6xY4e4WW9wskESkLDzRz760LDzUqcQHEhYFgle1FEVsP0XJ9519IZ219oNwC/JoPIHj4sIEqZg6sENtxmYNR1mZdmeMHu/2fvzOOjKPL+/6memUzukxAh4UrCLcopcnqAgoiKJ4L7eK27rLrq7uO6ruu5uu4jK+oPb2VXdF3XY5FLWA9QkUMRYQHlEJJwGK4k5M7kmpmu3x9DQiZT1dMz03Pm+369eJHpqq6q7umjpvtb73rXc+HRAyiUhBWqHDhUCQz0bx6hLsVTn2h/34VdQHZNEOGG3soSBEGEkU8++cTt84033oi4uLiAyszOzsZll12GpUuXutUjCryKJkpLSzFt2jTs3btXV36n04lt27Zh27ZtuP7661FYWGhYW3bu3IkZM2bg2LFj0jz19fX429/+hqVLl2LlypV+17Vt2zZcd911OHDA+4umoqIizJs3D6+88gpWrVqF3Nxcv+slCIIgiGih2dkkXG5VEgyrgzGGRFMSGpyewdZaAiPCN7RlUIELVIiui0z+FO7B94mmZFQ5PCOetGQ/Dg0xmoXEaGHByuLBoIDD82VH52NPU0Rm4PEoK8tD1CZpjwIT4pjVsPbIkLVT1C7ZvktQknyT08nKCaMo0cRMsLJ4tHBPQZnefkYrbxEKXAHta12ikowaVHos15Ka6UVLrqYledSDXW3VvB666qc+GkH4S6vagjpntTAtU1OMRhDGsrZquTRtasasELYkOkg1pcPMzHBwh0dalb0CveMLwtAqdyJVWk0QBEEQBEEQRGxD8Xn6ofg8is8jCIIgQoAqGUipmIBuuUBcPNDq+e5YBPv9K2CX3Qp+/2vg07JcywAMb96JHfFne+QvEs+LEzMcq9Gfd0iPCBY6HNwN1ImFUu0ckYtiWO+BhjSDJSSju6MM5eYcj7TqRg7X0Rb7HK+Vpy24hiEjSXs/9M5i+M3UKNlXWgIiP+jm9IxHAYCj4lfRMc+xGrEMpEcakBAXJceIn/B6Hy7QnbDyVpzhKMNxcw+PtBYH4FQ5TDEi6dlYrE8YE28BemUGuTGRQE0F0FgvTGIvrwMbNk68Xm4B8luXCJMOHG8BidGiE7uDY4O2vz9mSIzrLDBrE5e5RGYeafFAivW0yKxjepIVMXONjBW0vg41xs1oR33sDvx8EsNrX4l3ygDPnygEEVJ6ZTLseETBiCdU6JwHJuikOmvR3Sl48HO0BPndXGJGUVuLy0mM5g2nqt0P6ZYMr88GCIIIHBKjEQRBhIkjR47g0KFDbssuvvhiQ8q++OKL3QKvNm/eDLvdDoslOgfKt7a2Yvr06R5BV5mZmRg2bBhycnJgsVhQX1+P48ePY8+ePbDZgjMAds+ePZgyZQoqK91f1OTk5GDEiBFIT09HWVkZNm/ejKamJlRVVWHmzJl4+umnfa5r1apVmD17Nhob3Qdy9+jRA2effTYyMzNhs9mwZ88etxk6d+zYgbFjx2Lz5s3Iy8vzb0MJgiAIIkpoVsXTD8Yr4tmo/SVBSRSK0Ui6YRxawqBABSpE16ZRNvg+zGI0qbzKT0mgmcRoYYExhnglQXgN63yPkh2LVhYPEzMZ1ia9x5bsWEs0JYVkZmSZsMvB7bCrrbAoroFpTu5EsyoWoSYoiYhjVigwCcVgnnI6cb8h3KLEBFMSWhwCMZrOfobWdUPrWpdoShYulx2rvqBVRqDCU9n36JaH5LUE4TfVjpPStCxLd+k9IkLiO4gYodJejm31G4Vp/eIHoiBhcIhbFPkoTEGGuRsq7Cc80qrskTHaTXYPTzD4GQ5BEARBEARBEEQbFJ+nH4rPo/g8giAIIkSo4gmvwBiYyQQ+8TLgi397L8dkBiZc6lo1MdntPU3/1iKhGK24zI/2RhHV3l8jt3PlyOC1wx/4wT3grz0E7N0KVAX4RU2caUyjEpOQ4awRi9G60Ov4eomnkDEgzbi5eyMCvm+7oeX1aT0sXF5c3jXfLFdJzpvslNC2IyysXxHQ6oNb9grFaHanS7TXOyug4iOGkzrnsZw1nHUN0VFpsTwtT2NSsG49UaCWCpPWH0nGV/s4zhvYBfZfjHFI7NqMCOItHeVlHeVkLpGZu9ysLZ0J5GZAcjyJzCIdzjnw7rPga98Hjov7OpqYcoGe30nKDrBxEc6XP/q2gcPzgHPzgc2d5rIYdAbQtxudJ0T4OSuP4cKBwOc/Gl/22H7AkWrfhIJX1a8Q68v3/RdWC0PvTOCw4H5aXNF1xOf+cqTa9dtDxlUjaf8RRCggMRpBRBhO7kSNxsAjwhjSzd0MHXTsD5s2bfJYNnr0aEPKHjVqlNvnpqYm7NixA2PGjDGkfL0sWLAAjz32GABg4sSJOHr0KAAgNzcXGzeKBzUBQHKy+8DcxYsXY8+ePe2f+/bti5deegnTp0+Hoige63POsW3bNqxatQp///vfDdgSF3a7HTfccINb0FWPHj2wcOFCXH311W5taWhowDPPPIMnn3wSNTU1Ps8IumfPHlx//fVuQVfTp0/Hn/70J5xzzjke+bdv34577rkHGzZsAAAcPXoUc+bMwbp162AyhfdYJwiCIIhgIhWlmIyNOvFHYET4hpZAxRGgQIXo2sjEQgmm8IqQEiX1a4mQHNwhTWuTSBGhJ0FJFH5vna9roToWE0xisURnEYVM7hkqaaDWdjeqNqSdOqZlEtS2MhhjSDAlwub0nCHS4zuQ3GviJfssVCQoSaiB59tGvf0MLVGr1n6WXYcaVZ2RdhJUrmpfy9TAhKd6hHF6pXIEQXhy0i4fbJFp7g4mC4KI9egsIqR8Ub0SKlRh2kWZV4ZE4hqNZFqyhWK0Skf4xWh2tVUqRw23tJogCIIgCILoelB8XugId4wexedRfJ4WFJ9HEARBhAWZGO3UvYTNexx8/3+BIyXyMhQF7J5nwTJPC6vY/a+Cz/8VAKCwVbxuUYzLiPTKuuacw3Dl8Mh5z8DLSsFvPw+weU7a6g8sO9eQcpCQjPRW8SjsKh8kdNFOQ4t4eVIcoMSQuIRzDrzju2jYg/7DgaIdrj/t4mtRcfhfW4UFmRgtM8bnD+LHD4E/9cuAynjl+F0YWLhbmFZSETtitFod11bGgD/Pip1rjxb8kbnihMQUID1buh5TFOSniscWAMAFz6j45g8KxuZ3jf0YK9z5L3H8iD9YzR3lZZ3FZKyT3KztH3MTm3VMN5voWOpK8EWPAm/P93t9ZpbHx6gx/HOtppFjfZH3fB3JTGJ4/nqGy15UUXbqp1JaAvDGzZ7PqgkiXAw4g+FzH6V/enj5BgVldcC1r6mwSX6TdmRIyx48WvGENJ2vX4HC7JliMVoX/X3mC799X94P6ZMFPHwp9QUIIhSQGI0gIowax0k8fGBeuJsR8zyR/xqyLJ6z14SSI0eOuH3OyclBVpYxT2TPPPNMYX2hDrzq1q0bunXrBgAwm0/fcsxmM/r27au7nBUrTs8QYjabsWbNGhQWFkrzM8YwevRojB49Gg8//DBU1ZgHYC+88AJ27NjR/rlHjx7YuHEj8vPzPfImJyfj0UcfxZlnnonrrrsO1dXVuutRVRWzZ892m1Xzsccew6OPPipdZ8SIEfjiiy8we/bs9tlIN27ciHfeeQc33nij7roJgiAIItqQyVLiFWOjBWRSEZJuGIfWvrQHKFAhujYysVBimAffywb/a0kC7apcEmhm9JgvXCSaklDlqPBY3llEFqpjUXpsqfokYaGSBmptd5PThjRzxqm/5VFfbWUkKklCMVrne4vsXhPu64FcUKavn6ElUNPatkQlWbi80RmYGK1ZbQSH/EWvTIqiF63rZHse6qMRhN9U2sWRDmnmTFgUC2Szw2md9wThCw3OOmyqWSNM627pibOSPQcmEy4yLd2Fy6vsnn3VUNO5b9wRmdiXIAiCIAiCIIIFxeeFjnDH6FF8Xl/d5VB8HsXnEQRBECFCds9krsHdrGc+8Pdvgf+uAw7v88yXkg6MOA+sV3/35eNntP/Zv7VYWEVRuUt+FKuTj1Q3it9V3TiOYdpQoKwOOKcfw7n9IktoxVe/aZwU7S4DxFZtJCQjs1ncv6puUAF0DSFBQ4v4uEq2hrghweaHbwIvo89AYODIdjFaoeRadKIOqG/mSImPnPMwFFRLXpVlxvj8QXz1W9oZJlwKmC1A1hlAzUngiyUeWQrsB5FssqPBafFIO3CS4wLZ5G5RRpXNe8xFxbMKMpNiY3u14C1NQOVxcWJugde+TEGOAojdngCAl9dxEqNFEZxzrN3r2zpLfqVI5WcWM333hH/wlmZg2asBlaFoxNfFshhtxQ7fNy4zCRjdl+GHRxV8tR9ocXBcPIShWwqdw0TkUCB3tQIA/vlzhn7dGHYd46iyAXVNwP99rH0+XDkCGNHbdZz/+LiCz3/kOF4ryNhkA958EoNbf8QFtq+QxOWxefzt+Sg47zKhxK0kxiX6gcI5x/Id8vRdjylIstJ1iSBCAY2YJAiCCBNVVVVunzMyMgwrOz4+HlarFS0tp3XAneuLJg4fPtz+99lnn60ZdNUZk8lkyIyMqqrihRdecFv2+uuvC4OuOnL11VfjjjvuwIsvvqi7rqVLl2LXrl3tn6+77jrNoKs2zGYz3nrrLWzcuBHl5a4BjAsWLKDAK4IgCCKmaVbFszpZlQRD65FJRbRkLYRvaIrRAhSoEF0bmRwnVPInGTIRkta54OBiSSADg4ke84WNeMk9ornTdxmqYzFBIgftLM8KtyRMa7s7ijO0zom2MmQyuI7bzDmXCrXCfT2Qtl+n3Et2bJmZBRYlTrpeokkiRgtQKuZNXGaXXMv0ome/aMniCILQpkoiRssyi4VLBGE0G2o+QSsXT3U4NXMWFNY1Btr4g+w8jQwxmkafLsySWoIgCIIgCIIgYheKz9MPxedRfB5BEAQRIlSneLly+l7KElOAiZe5/ukl4/TzYZmMqL4ZKK8HclL1FxtNyKRDA3KAOecE590C5xyorwYSkgHFBOZjn4hzDnzzsXEN6jPQuLJSM5BVUSlMKj1mA5BmXF0RiMPJwbnrvBGRHB/a9gQT7nSCf/0feYZh44EfvvZeUO+BYHkF7bqP/NaD0qxldS5BTSzDOUdlA8ABxFuAasmrsvRYl1zt2SJPO/8qKE+867ZILT8K7PIU9Q22nsB3jb08lpeE/zWoYVR5CXUq7I4uIUUDIJbDttGzn9fV++alwFrVjBZFfKH59iAJQKKJYxqSOxG3TGC4amQXOVeI0HKkGGgQ2Yn0w7TEaC0tAGKzg7S91Pd1sk6FN3dLYbh6FCCbzJUgwsnAHAZIzusHL2WYO9b1LGJcwenj961vnJr3tvEd8uZmMNw4TjKR8Xffglc9p6+hVeUolIT/FsdQfzoYlNfL087Og89SNG6rA1QnWIpx7ysJoqtAkeMEQRBhonMgVHp6uqHldy6vslL8YiraaAsoCjXr16/HoUOH2j+PGTMGM2fO1LXuI488AovFc3YSGc8//3z734wxPPXUU7rXTU5Oxrx5p2e1/eGHH9zaTRAEQRCxRotEjJZgsBhNJkzRKywhtHFyp1RyB8hlUAThDbtql4r1QiV/kuGPCEl2LpiZJWZn9I0G5CIy96hb2XdrtAhC7z1LKgkL0bkRx6xQJI+nO7ZVS9IVf2rf69lmO2+FCnGQecReD3TKvfyV3MnSG50NuuqV0ahqr+8IUHjqTbwGUB+NIALhpL1MuDzLkgNAHmLENQK3CEIvrWoL1lWvFqalmtIxNvX80DYoysi0iKehjAgxmsb9WyZrJQiCIAiCIAiCCBSKz/MPis/ThuLzCIIgiIBQVfHyACWjjDGgu0sY07+1RJrv/62N3fc5MjFahjikI2D4ikXgl/Zw/bswBfz8RKjzbwdvFU/+4rYu5+Bv/xX8it7Aj9uMaVBGd2DkBcaUBYBNvBz97IeEaSXlkuM4Bmi2c9z2DxVZv1WR+VsVd7wjPmdSrCFuWBDgDjvU//db8Jk9gXeeluZjf1wEWL3H47JpNwB5pwXL2c6T0ryVgYWlRDSccyz4TEXufSq636si514VaXereH+r+FjKDNI1KmL4bq00iU2d7bkwr0CYt8D5k3D5km2xc1/zJkabe07XiQ/lbz4pTWPT5npd39qrL66sXyFNP3jSJcAkooMfjvqWv0AcNkEQgVO0M+AiFC7vR6tq7F6XZIJYLfK7Gd8OgjCaqYOBboKwN7MC3CwRml0/Rt6nUxhw7Sidfb493+nLBwDlpShIF8fuHzwJ2B2xe/0JlCJxODUA4PLh+vvnfNuXUH92Fvj0bPAZZ0C9bgD42vcNaCFBdB1IjEYQBBGjxNKg+EGDBrX/XVpaigULFoS8DRs3bnT7PGfOHN3rZmdn4+KLL9aV12azYfPmze2fx4wZg379vM9o0ZELLnB/qblhwwaf1icIgiCIaKJJFUc0xUskNf4ik95oyVoI/TRLvsc2ZGIrgvBGs8Y5KhMphQpZ/VrCH7tUjGY2pE2EfySYJGK0Ttc2mQwi0eBjUSbZsvNWN7meVKYVonODMabrPJDtNyuLh4m5gsP13Kf1CNbChWyfy/o5Hvlkkjsv36VMQhKwGM3L+rJrmV70SM/0yNMIghBTZRcPfM2ytE0ZFzvPnYnI49u6dah3imdXPT/jUliUuBC3KLqQidFsar2mjDwUyPo1DAqsLDZnvCUIgiAIgiAIIvah+Dxjofg8giAIokugiifzAgt8aBd7/F8AgG7Ok0hz1gjzzP+EY/tPsTngVSaUCYYYja9bBr7g10B9tXvCqjfAF/7WewHLXwN//WGg2iAhbVoW2J/fB7MY+B5lxo0olEj2imsTwHlsHkd3vMPxxkaO+mbApuG4S46BVxv8lT8CH74MNIivFwCAzDPA8gpd15cEL/FEky53E6OlqPUwS+JDvAmgopk3NnH8fgnHiTp9+TPDG8IYVPi2L+WJvQe4jplOsFyxGC3f9qNweXE5cKI2Nq5HVRphYleNAH53cew8g9CCb/sS2LBSnmHiZd4LySvAs2W/R7zkHbndCZRWC5OICGTG874JWQu7e89DEP7An7w14DIUyI/nWO1fA0CVzbdt654CpCZ0jfseEd1YLQwf3q64PXewmoHXb2Qo6C4+hh+ZyTB9qOfyODPw1q0MvbP0Hfv8b4/51NZCiE2jThU4XCVMIgAUV8ivXw/O0Pld/bQf/N6ZwOF9pxcePwz+pxu1fzMRBOEGjZokCIIIE5mZmW6fa2vFg338pabG/QVF5/qiiblz52Lp0qXtn++77z4sX74ct9xyC2bMmIEePXoEvQ1bt251+zx27Fif1h87dixWr17tNd/mzZtht59+AZSfn+/zjJJqp9nESkrkM38RBEEQRDTj5A6pMMuqeJ+hzhdkkhmZiITwDW/7MVCBCtF10ZIKyc7rUJEou65oCH8cknPBwkgQEU6k94hO36VMzGX0sahVXpOzESnmtFN/h6Y9WiQqSbA56z2Wd9x3snOio/RLJgBrdp6+Bmjda0Ilg5Mh2+d65V7+HltSMVqA4tdG1YsYTQ1MeKqn/6VHnkYQhJhKr2I0MRyxG5xFhAaVO/F5lXjWZiuLx+T0S0LcouhD6zytspejp7VPCFvjjrRPpyTGlEiAIAiCIAiCIIjIguLz9EPxeYd8qovi8wiCIAi/USUD4RVT4GUPGA4oCpiqon9rCbYmjBJme2MTxwu9Y+u5rKpy1EhChDKSjN9W/tHf5Ymf/gv8rgVg8XIjG1/xN691sJ8/CgweBQweA9ScBPZuBSxxgNninjEtCxg0GsxqrKmLMYbCfqmA4PW+zWnBiVqgR7qhVYad+maOd7foe+eZbA1yY4IMd9iB/7zlNR+b4xL9sfEzgJVHwC/KEGc0mcAUBTw3//S6ADKdVSg353hkr2rkiNUJuRat9+29eUyL0T58WZrG/vwBmCKQguZJxGhVOwDJq9Bl2zluPz+6jyfOuVQY+NJchl+dx7rMO1X+0RvyxPEz9O2H3AJ0d1bgeFEfZAwUx8AUlwP9uvnZSCJk1DX5HotUkN01zhUitHAvQmP25Ae6ylEOHgM2idM6P2+MJXyV4vYnwSERRUzqz3D0aQXfHQKaWoExfbWfQ6QmMKy+W0FxObD7GMABpFiBsflASrxO0dahvT63M//7fwO4T5hWVEZiURlFZeLlo/oAcWad39fHbwNOhzjtozfARl0gTCMIwh0SoxEEQYSJzoFQ1dXGTTfQ3NyM5uZmt2VZWVmGlR9qrrrqKlx11VVuwVebNm3Cpk2uJwGFhYUYP348JkyYgEmTJmHw4MGGt6GszL0H279/f5/WHzBggK58paWlbp/fe+89vPfeez7V1ZmqKlI2EwRBELFJs2QmJ8A1sNZIZMKVQMUhhAtv+zFQgQrRddGSCoVbjOaPcFEmRjMzi3A5ERr0fpdNTnEUrtFSLq3ymlQbUuASo0llWiGUhOnZd7JzoqNcUCYa7LiNWveasF8PTOJ+i165l5595Et6o7MBnHO/A+oandpiNNm1THf5OvaLXqkcQRDutKjNqHeKBwi3CZdYjAaoE+FnZ8MWlNuPCdMmpF8kFXoSp0k3Z4FBARfMMFtprwirGE12bw5l35MgCIIgCIIgiK4Hxefph+LzKD6PIAiCCBGSgZAwBS5GY5Y48JzewPFDGNaySypG21kae5PdHKsFVMlmZRv8eoE7ncCWNfIMLU3A4X3AwBHu69nqgIN7gNZmoOQH7UqsCcCc34JZT00Om5oJ9NbX1zGSvj0SgMPitPL62BOjfX8EaJGcop1JtkbnO1OuqsBP+1yivQYd4uj8oe1/svhE8EtvAVYv9sz3s/tP5+meB5QfAQBkOquFYrRK7bCSqEVVOXYe8W2djMToPJZ0cUJyAQGAnv3Ey3PFYrShth3Son484UujIpP6ZsAp8eGM6hP9UjTusAM/7Qdy80/f2zrnOXkMOPET8LmGXCj/TH0Vdu8FmMxIcTbgDMcJnDCf4ZGluJzjoiHRvV9jlbI6DlsLkJEIvPWNb/1Wi4mESkSQOLBbnjb7HrDJV+gqRkn9XkOMFlu/01SVY1+ZS4q2TyIWkjE0l67PRHQRb2GY5MPrDMYY+ucA/T1/KmnCHQ7g4G7wVYLfZF5I+OCvyD3rf3G0zvP5U0lF7IqrfaG0iqOsDhiWC1gtrv1RLPFi9u/uub8450BpkUtu35Glr8gr3b/d3+YSRJeDxGgEEWGkm7vhifzXwt2MmCfdHH6tf25urtvnEydOoLKy0pAAqd27PX9sd64vmmCM4f3338ejjz6KZ5991iOorLi4GMXFxfjHP/4BwBWI9bOf/Qx33XWXYTNxdg6MS01N9Wn9tLQ0XfkqKyt9KlcP9fX1hpdJEARBEJGAlhgtXhG/OPUXmTikmaQbhqAlggIAOycxGuEfMqkQgwKrYuxMqb4iEwC08GY4uQMm5vnYzmzxXYIAACAASURBVE5itIhELrVq7PRZIoMwWMqlJQft2CZZe7zJtIxEj3hUj8BNj2BNds82wQwLi/Pa1mAibb9eMZqfkjuZYEaFE628BVbm33XSm5QsUDGat34DoH/fEQThTpW9QprWLkaTxj/EVnAWEVo451hTtUyYpkDBhRmXh7hF0YmJmZFuzkS146RHWpVde/baYNO5b9yG0WJ7giAIgiAIgtADxeeFjnDH6FF8nn4oPi8wKD6PIAiC0I1MjGY2KO4jrwA4fgg31ryNxek3CbPIBnVGMyUa25SfbVw9fPMn4A9e5z3fbecC/9gO1m8IuNMJ/uJ9roGwqsR605mps6XimFDSrXd3qRit0hZ7A6c3Fut/35lkDWJDggT/cRv4g7OB8lLvmQGXWGjkBW6L2Iz/Ae8sRlMUsGlzT3/OK2wXo2U4xXLq//6ku9lRxdEa/XK9NjJjdA4hzjlw7KA40WwBs0pikvLEYrTRzdukdVXHQIhQlcY2RPsxwr9YAv7UPKCpwdXfue0xYO697bI3XlcF/vAc4L/rvJbFpt+gq05mNoP36AMcKUFBa4lYjCYPjyHCRF0Tx9xFKv6zy/8yrh7JkJoQW/0TIjLgmz+VprEZ4t9dIhST/PjkMSRG23qI46pXVBzxc56Sm8bReUwQneEbPwJ/8ufeBdeX3Qp89Ibn8iYbCuwHcBSeBreu3i86Uctx9Ssqvjng+hxvAZ67jmHeeQqKysXX5oJOIlZ+YDf4H68Bjh7wrfLSIvAdG8CGT/Kj5QTRtSAxGkFEGCZmQpbFR80rEZWMHz/eY9nWrVsxbdq0gMveunWr2+eEhAQMHz484HLDidlsxpNPPom7774b//znP7FixQps2bIFLS0tHnmLi4vx2GOP4bnnnsNrr72G2bNnh6HF/tHaarz0g/PYeTBCEARBEB1plgyqBYB4gwfW6hG3EP7jbT86uB2c86if9YwIPXIRVSIUpoS4Ne5oyaeanI1INnsO9pDJhEiMFl5kModwidGsSgIYGLhAUNNRKCWTS3mTaRmJ7DxwE5pJJRodxGiSNjfpFKyF+/6SKOtn6BSwyvJ5O7YSFfnU2I3OBr8Fko2q9tS+gQpP9UjPSIxGEP5RaRdPz8jAkGHp1v5JBD2BJAKhpGkPDjXvF6aNSpmETIuBo5ZinExLtlCMVhluMZqf/RWCIAiCIAiCCAYUn9d1oPg836D4PP+h+DyCIAhCNzIxmsmgoV15hcB3n2NS09e4vvZ9vJfmeY8+UQc0NHMkx8dOHFZJhfhenJEIpCcas5288gT4A9cADn0TgfH7ZwHv/QiseB1Y8pL+ii68BuyeZ/1spbGY8/KR6qxFnclTQFu1fTswaFQYWhU8Hliqv0+XEt75OH2Gt7aA/+5yoNbzHZKQgmFgj78DZna/NrGzJgAPLAJ/8fdAfTWQmQP2+1fAenUYXJ9X0C44ynJWCYv/xzcci2+OvXjQIj9ex0W79EpKbSVgqxMmsb8ul67GUjLAUzOBOvdjhwGY1eMnLD/e22OdKlv0/x6LVTEaLy0Cf7SDzMxhB3/1QbD8ocC4S1x5FvxalxQNNz8I1meQ/sp79AOOlKCw9QA2JU7wSC4ui/7jJtb47Qc8ICnarOHAqz+LrfsKERlwzoH3npOms/yhusvS6vuoMSJGa7FzzHhexUntMGIAwPVjGD7dzVF9Kkw8M8klIxpXQOcyQXSEl5W6JO3eZOsJyWC3/wV83TLX77VOFJ74GuvTPMVoJRL5V1fh5sWnpWgA0GwHbn+HY1gel/7G699BjMadTvDfzwLK/DOA87umAp9WgiXKx3UQBAGEdwQoQRBEF6Z3797o3dv9oexnn31mSNlr1qxx+zx27FjExcUZUnYbTqfT0PL0kpOTg3vvvRfr169HbW0tvv76ayxYsABXXHEFkpPdO361tbWYM2cOli+XPzjXS0ZGhtvnujrxQ3oZtbVeTMyn6NbNfabUv/zlL+CcB/TvzTff9KmtBEEQBBEtNDubpGnxirEzJsoG6tp5K+yqvmAnQk6jU/vNBweHEz5OpUcQ0JAFhVD8JEOrDTKBk0NyvTErJEYLJ/GSe0Sz013oFarjUWGK9D7YURbVWdzW3h6D5aJa6BKa6ZBoyO7THbdRJuPQkhSGCln7m9VGqNz7jNEyCZhMuHY6XUOM5kVupoW3+7pdInnUix7pmV6pHEEQ7sjESenmLBKxEkHls6pl0rSLMmeFsCXRT6a5u3B5lSO8UztKJcGm0PU9CYIgCIIgCILoelB8nn9QfB7F5xEEQRDBg8ukWgaJ0VhuQfvfT1Q8Js1XEt5HxoZzsFK8vMDIeVe++LduKRoA4Phh4PtN4J/+S/cq7NNKKH96Bywh/HEMAIDcfGQ6PQdTA0DV1u9C3JjgckAi15ORbA1SQ4LFd2v0SdHSs8GWH4by5law3gOFWdiMG8FWHQNbegBs+WGwCZe6p+cVtv+dKRGjAcCe4/qaHk0U+yEUyIjVV2XHD8nT8s/UXrfDvawjw1mJcHmVfI7tqEEmRmMMSDM2HD6k8DXviZefujfyxgZgw0pdZbHrf+Nb5T37AQAKW4uFycUx1heKduwOjve/038NvWoEcGKBgtL5Cn54TEHNQgVL7zAhNYFkSkQQ2L9DnjbtBnmaAEWRKz14jIjRPt0NXVI0APjNVIaKZxXse8L1r/wZBf8zjrQnBOHB5x94l6IBwMybwVIywG56QJhc2FIkXF4c3vlWw0pZHcdne8Rpz36mwuY5bxAAoH/3Dn2O7zf5LUVrZ9OqwNYniC6AQdOKEARBEP4wffp0vP766+2f3377bTz11FOwWPwfZFZRUYGVK90fDE6fPl2Y19xpBheHQ79sorpa/JIrlFitVowbNw7jxo3Dvffei9bWVixbtgyPPPII9u/fD8BlZb/77rtx+eWXaz488EZOjvtMsUVFRcjO1v+2tK09vtajdz2CIAiC6Io0S4QuJpgNH7QvE5a42mGDRUk3tL6uhh7BiV21w2wiGQPhG1JZUASIkLTaIGu3QyITspCoJKzI5FNNqg2cu2Y3VbkqvW8F43hMUJKE4rM2WZRdbYWdt0rXDRUyCZu7wM27REP6HXSQY8mEgxEhSpTscw6OFrXZqzBEum1evkstcVogYjFvUjWZ5FF3+Tra1qw2QeUqFEZBEgThCzIxWpbltGiJQRxEyHlsBGcRoed4Syl22bYK0wYnDkdefL8Qtyi66Xi+dqTKHplitEj4bUYQBEEQBEEQRGxD8XmBQfF5BEEQBGEwTklfwCAxGvJOy2R62Y/AwlthZ57y1uJy4OxexlQZCcgG3udliJf7Az8oGSmrtc7LfwD2it+BeDDpcrBE+eRmYaH3AGQ69+AQ+nokVVaLY06ilQM+vkYZ0jM47WiDt7YAP24FSsVCHyGWOGDwaLBe/T3L2/ypvjImXgaWdYbXbExRgOxccWIHMdrQFvl5s+sox9CesSWw8UcokBmrr8rqJb9nFQXIzBGntZHTC9jrKV/MbBWfqDKpWDRR1SiOt0hPAEyK9nnCG2qB79YCh/a69q351H0/LRPIHwoc+hGo9vEix5hr3cKzwcy+91E458DhH4HFfxZn+PwD8DFTwYt36pOO5hWAJaX61AY2YAQ4gMJWsVBv3wnAqXKv+7cr4VQ5dpYCPxzlSLIyjC8AeqaHZv8crgIafehajOjN0D3V1bZcA/t7BCFE43cAGzDcp6IYk59TaoyI0XYf178d3VMARWHo76VrQBCxCq+vBr7/GqjpILE2W4DBo4BeA9qvGfzgXl3lsf6nrklX/gr48GUPWbGsX7S/vOv2i37UEHYv3S5P65N1+m++7YuA28G/+QTsout9X8/e6nruVNpJejd8otvkCQQRC5AYjSAIIozcc889WLRoUfugsYqKCixevBi//OUv/S5z4cKFsNtPPxhMSkrCL37xC2He1FT3B4M1NTW669m9e7dP7dL64W4UcXFxmD17NqZNm4YzzzwTR48eBQCUlpZi27ZtGDNmjN9ljx49GitWrGj/vHnzZowfP173+t9++62ufOPGjQNjrP2YWLNmTftAeoIgCIIg3GlWm4TL400Jht87NcUhqg0pIDFaIOgRozl4K4BYnR6PCBYyeU4kiJCsSgIYGDg8XwA2SdotE1kZLYMkfEMm91KhooU3I54loEVtEn7XQHCOxwRTEuDwDGhqu96KpGltaN3zjEYm7up47sra2nHdeMl30MKb4eQOmJhZKqaTfX+hRGufN6k2r2I02TXD27FlZhbEMStaued0Ro1OnVO2CfAmLpNdy/Sip9/AoeqSyhEE4Y5MjJYpES25ExvBWUToWVu1XJp2UeaVIWxJbJBpEQ8YD7cYLZJ/mxEEQRAEQRAEEdtQfJ6xUHweQRAEQQSITP5hNijuo4OQyAwn+rUewn7rAI9sReUckEyGE41US14hZyYbs42cc+CjN3xfUa8UDQCb5X//NFiw+ERksjphWlVtC3iTDSwhNp7zy6REIs5IBS4dFrzzh5eVgv/+CuCAb78H2te/5k6wXz8NZjK5Pv/zaWD5617WcsHyDBg43UHMdl3dEtyf83/CbHMWccwYxpESHzvXopIK39+Zp8QHoSGRQKMk7igxxftvr7RM4eKs1jLh8pgQo8nuY14usXz7evC7LzK+QW0Mnwz85QOwFP3mKe6wg//1DuDjf2jne0r/fY/Nmqc7bzsXXgM8fQcK7AeEySoHtv8EjO7re9GxSF0TxzWvqljb7l3hUBjwwhyG288P/sSkH+3Uf/1MjANuHBc79w4i8uFHxSIhAMBFc3wqS9GQDqkxMinpg8v0bUecGeglvuUTRJeAf7cW/KHrgcZ6cYYrbgN+sxAwmYBP3vZeYEZ34DxXrCWLs4KfMxVY8Te3LAWt4n4R58DWQ8DYfF+2IDbw5zccAGSd6qfzZa8Bb4l/8/rEmnfBC84Eu+F3ulfh5UfA77sCOLDLI4098hZAYjQixgj+rxKCIAhCypAhQ3DJJZe4Lbv//vtRViZ+YOuNPXv24Omnn3ZbdssttyAzU/wrsXt39wFte/bon8noP//5j09ts1qt7X+3tHgOuDWS9PR0XHXVVW7LDh48GFCZEydOdPv87rvv6l63oqICn332ma682dnZGDFiRPvno0eP4uOPP9ZdF0EQBEF0JaRitCAITmTiFgBocsrlMoQ+vAlUAMDOdcwKRhCdkMlztM7pUKEwRXq9apS02yE5DyyC2X2J0KF132k+dY+QfadAcI5HWZltkjEtsVQozw+ZCKNj+2TSr44ysUQd92mpjCMCrgdacjY990jZ96m1X9rzmMQzTjeq/ovRbE7JS9pT2Lm9fcCZP8iOCY98OgRqBEG4U2kXP5fuZjk9LSOTDJKJjdAsItTUOKqwpe4rYVovaz4GJp4V4hZFPzIxWp2zGnY1MDlpIMglteHvixEEQRAEQRAEEdtQfF5woPg8giAIgvATp0O83GQ2pvwe/YAOwhmZDKQ4vHNpGE61TfymKtOoMMIdGwwqqBOMAQXDwB5/F+ycIIptAiBz2FDh8mpTJvgbj4e4NcFDr1jposHAV/cpSE8Mohjtpfv9lqIBAJa8BGx29W/5vu3grz2kf90OckW/yS0AFNdw1V6Oo+hhPy7N+vznsfWWuciPn5kxK2iWCR4SU7yvmyL+fZ3RdEK4vMoGqGp0H0v+iNG4wwH++E3BaVAbO9aDv/1X39ZZ+75XKZovsDv+D7jubt/XS04DLHFSAQgA3PA3NZCmxRRPf8Y7SNFcqBy4818cB08G//y699/66phQ4LoP98qM0WsnEZnIxGh9BoJliGN0ZCgaRg8e5fcyADhSrX8b8rsBJg1RHEHEMry1BfxPN8n7zIBLarZhhffnEdYEYPSFYC9/CZZ4ekwA6+lpOdPqF81Z1DX7RSV+PB9LsgJWCwM/dhD8Wd/7qTL4qw+CF+3Un//lB4RSNIKIVUiMRhAEEWaeeeYZJCaefutWU1ODq666Cg0Nvg1AraiowDXXXIPW1tMDW3r06IFHHnlEus7IkSPdPn/00Ue66vr000+xZcsWn9qXnp7e/vfJkyfdZs0MBmaz+wvijoFf/jB58mT07du3/fPWrVuxatUqXes+/vjjPm3vr3/9a7fPv/vd73w+HgiCIAiiKyAbVBuvJBhel1WJB5P8hCbpRuDo2Yd2Hr4B3ET0IhUqRcjg+0SZFErSbgcXB8iamUEBsoRfyOReQAcRmYbIKRjHo0y01dYOLdmW1vYYjWzbO+4vmVSuo0RD+zuwuf3v0YYQbq+MeC2xm5d7JOdcLn3TsW2y70CPkE2GlggQADhUqHAGrfz2fAFsA0F0VSod5cLlWZbuwuUEEShfVn8EJ8R93Isyr4zdgQBBROt8rXKEb6RbJEtqCYIgCIIgCIKIfSg+LzhQfB5BEARB+IFDcr8yWwwpnsVZgZze7Z/7txYL85WUR/+g+45USeY11RLK+AL/4t/SNPb0CrDbHvOtQGsC2Bf1YF80QHlzK9gFV3lfJ0xkdhNLjMpN2cCWtSFuTfDQI0YbkAN8+lsT+ucEUYpmbwU2rAy8nC8+dP2/bqlvK+YWBFw3s8QBPfq2f766fpk07wdbY+tadLDSt/y56d7zRC1Nkt9XCeIJHDvC0sRitMzGI8LlKgeqo3x+a3/EaNi9GTh5LCjtcePLD33Kzr9YYljV7PevgM35X//jBoaMRZpah2xJLMzBkwhocs9Y4t8a1+Ml24K7j07Uei+/ewpgf1XBhvtNGNWH4kiIEHP8kHj5xMt9LoqZ5EoPVY1+KdGy7fqvF4UUjkh0ZXasB2pPes3GP/+39vOIBSvBPquC8tzHYJ0l14LfdsnchjMcYtnw4aqu2S/6qcr3dbLa+uje+sk3PQD2ZYP7v0ff1lyF6+x7c4cdWL9cV16CiBVIjEYQBBFmBg0ahBdeeMFt2ddff41LLrkER46IH9x2pqioCFOmTMHevaf1/Iqi4O2330Z2ttw8Pm7cOLegr2XLlmHr1q1e67rpJt9nlRg8eHD73w6HA19++aWu9RobG/HCCy+gvl7DftyJhoYGLF3q/hKnY/3+oCiKR0DUvHnzvM50uXTpUrz88ss+1XXjjTdi0KBB7Z/37t2LK6+8EtXV1T6VU1FR4bEfCIIgCCKWaFabhMuDIUZTmCItl8RogaNHXGJXgxu4T8QmUqFSBIiQALkEQNZumSDQzIwJkCX8Q0ts1naP0BI5JZiMmqK4Y5kS4VibqE3SHgUKrCze8PbIkLWz4/6SSeU6yt/0fAfycsJ/PbAoFlhYnDDNWz+jlbdIJWN6pHuJJnHAYaPq/wCwRqf3de3cv/u6XbXrlqVSH40gfKNZbYLNKX4Gm9lBtMQgCzDsekERRGA0ORuxoeZTYVqWpTtGpIwPcYtigwxzN2lalT18YjSZ3D4YfWGCIAiCIAiCIIjOUHyeNhSfR/F5BEEQRAhxiicLgcnACfGGjWv/s6D1gDBLsdgPErXIhDIZRj2C/mm/PG3gKLd9rovhk8AscWDmyJ8IsWe2OIZkVcqlQLm+vnQ0UKkjvGDK4NPvSfm+7eDvPgu+5j3w+hrjGnK0RC5Q9IXP/gV13iTgn3/1bb3c/MDrBtwEjeOaNkuz/XAUUNXYeM/cbOewtfi2zgUDQy/34U4n+OZPoL7xBNRFj4J/uRS8KQjxNY2S2KFEsWzRjRSxGK1nvVj2CQB7j+tpVOQiF6PJjxH+zcdBak0nThwGX/IieFmpq97iH6AuuBPqL8aD/+sZ8JOunc+//xrqQ9cDRrVLUYBzLgqsjNQMAEC2UywecahAhf5HITGL3cFRohFK8KPYn2IY+3SUP7k/YFJIiEaEiVqx+ZRl9/S5KK3DOBa6RL5cL87Np3Oa6MLs/lZfvq+WActfl6cPHgOmSFRBkt923SXCWM6Bsjp9zYol6pp8v/i2yYv5ljWa+djwSWBmi9s/nDkW0JL+vj0f6qsPgf/zafDd7pMn8T3fuZb/6xngX88Cdn3jKQgiViAxGkEQRARw66234s4773RbtnHjRgwZMgRPPfUUSktLhesVFxfjoYcewrBhw/DDDz+4pc2fPx9TpkzRrDclJQWzZ89u/+x0OnHppZfis88+88jb2tqKRYsW4dxzz0VZWRkyMjL0bh4A4IILLnD7fMstt+Dll1/Gtm3bcODAARw6dKj938mTpx86tra24u6770ZeXh5uvfVWfPTRR5pBWFu2bMGUKVNw+PDh9mXnnnsuBgwY4FN7Rdx99904++yz2z8fO3YMEyZMwJIlSzys7DabDY8//jiuv/56qKrq0/4ymUxYsmQJUlNT25etXbsWZ511Fl555RXN7a+qqsL777+POXPmoFevXnj++ed92EKCIAiCiC5kg2rjleAMqk2UyVt0SL0IbfSISxw6JSgE0RGZCEmPLCgUyIRMsnY7JCIhmVCJCA0WFgcFJmFa23cp+06tLB4mZnygq+wYbxe1ySRhpiT/Z1j0A1k77bwVdtUOznm7zK0zHaVqViVBKupp21Z5OZEh45DtC2/9DNmxBeiTvknFaDrkZiJUrkr7aB2xq/7d15t9kJ2RGI0gfKPSXiZN62bxPkUjJzEa4SMbaz+T3jMuzLgcJibuXxHaxClWpJrE08uHU4wmlVZHyG8zgiAIgiAIgiBiH4rPo/i8jlB8HkEQBBE2HBIxmtm4CfHYNadFowWtJcI8R2uAxpbYebdTLXlFrSWU8YkjchkPy8gGhk8GhpyjryyTGWz2Pca0KwQUarwmfNkyG7zeN7FspFLtJbwg2Qrceb7reOLvPQd+27ngLz8A/vhN4PMmgpf9FHAbuL0V/Fadx5Ee9mzxnqcTLMGY9zbs1ofb/76i/iPNvHMWxca1SOsY+uMMz2tRvAX41fmhFYJwhx38kTng910BLP4z8I+nXJ/vmgpeIxZH+V1Xo+Q3VaI4TsmNNLEYrUfNj0iyileZ/LQa1fe1apu47ZqCzyb/J730Fb7wXvCbR0P9863gt4wGVvwN+HEb+Ct/BL+yL9T/nQF+5wUueYdRXDwXLKdXYGWkuJ4TPFzxF2mW97dG73FjFIcqAacqT1+8iQdVYllcoV12nBm4ZyppEIgwUifp76aK71daSAVGALjWiRgllJTru1Z0TwFuGU9iNKJrwo+WgL/xhCFlMa3rUM9+wsWPVjwpXSXWJPp6qG/2fZ2sJIBv/Rz47zp5pkGjgJEXeCxmZ/QBLpqjXcE7T4O/9hD4ryaBL/4zAIAvftL17OG1h1x98EWP+N5wgohyIn96CYIgiC7Ciy++iIyMDDz55JPg3PUjsL6+Hg888AD++Mc/YsiQIejVqxcyMjJQWVmJw4cPY9++fR7lWCwWLFy4ELfffruuep944gksW7YMNTWumWrKy8sxbdo0FBYW4qyzzoLVakVZWRm+/fZb2Gyup/VnnHEG5s+f79PMlNdeey0efPDB9lk2jx075hFs1sZNN92EN998021ZXV0dFi9ejMWLF4MxhsLCQuTn5yM9PR1msxmVlZXYtWuXxyyeiYmJeP11DSuyD1gsFrzzzjs477zzUFnpsr0fP34c1157LXJycjBq1CikpaWhrKwM33zzDZqamgAAaWlpmD9/Pn75y1/qrmvo0KH48MMPcc0116C2thYAcOTIEdxxxx246667MGzYMPTu3RupqalobGxETU0N9u/fr3sWU4IgCIKIBZrVJuHyeCUhKPVJBUYk3QgYLalLG3aJEIogtJCdnwkS0WGokQkXZe22q+LzwMyMC5AlfIcxhgRTImxOz4CuNhlXqI9FmeyrXdQmaU+opYFa29+s2mBRrOAQv+zv2FaFKYhXEoTys3YZXITLOBJMSah1egZQeOtnyLarrUxv+Ctkk9GsNuqSI9n9FJ5qba9HXpLXEoRPVNrFUQ0KFKSbu4W4NUSs4+B2fFktHgSRpKRgfNrUELcotsi0ZKPOWeOxvEoy42OwUblTKsGLFGk1QRAEQRAEQRBdA4rPOw3F51F8HkEQBBEmnCEQow0ZAz7nf4F3n0WhRIwGAAdOAmfmGlZt2HCqHDVSMVrg5fPmRqBcfP9nTy11/a8owHMfg7/xOLDtS8BWK8isAPlngl1zJ9goz8GxkUr/HAZIYgDuPuM5zC35AZnDfRP6RiJVEikRAFw/huH+6QxDejLwk8fBX33IPUNpEfjb88F+91JgjfhqOWDXiKXo0cdz2fHDnssiAHb2xPajJp63YH/xEAwo3CPM++9tHA8e4TgrL7rlGJUaISp3ns8wug/Dog0q9pcBI3sz3D2FYXxBiLd5w0fA+hWey/f9F/zDl8F+buDgeqkYLcX7uhLBA2tpwoBsFduPiKUy737H8fOJ0XkcVflzH6s84V9lomsJALS0AFUaZTbUAJ++I0777nP99Z/RB8L5T9uuZ2ndwK67C7jhPv1lykh13Z+uqV8KmX7invc47row8KqiGT0SlC/3AVMGh77+q0YAv5mqYEJhdJ7bRPTDOQcaJGK0FPGkhVooivxYDqJ/MGRonc99swCrGRibz/DoZQw90um8Jrom/E25sNUX2P8t0U5PTAHP6A5Uu5+YlzfIxdXFFRwT+3etc7Ohxfd1MpMA/txv5BnMFrCFn0plmOyBReC7NwNHD3iti7/xBHDWBNfzJr306APEaxmWCSI6ITEaQRBEBPHEE0/gvPPOwx133IGioqL25Zxz7N69G7t379Zcf+TIkXjttdcwevRo3XXm5ubiww8/xKxZs9xmOiwuLkZxsefsRv369cPq1atRVlamuw4ASEhIwLJlyzBr1iwcPXrUp3U7wzlHUVGR2z4SkZubi6VLl2LYsGEB1deRoUOHYu3atZgxYwaOHz/evrysrAz/+c9/PPKnp6dj5cqVcDqdPtc1depUbN26FXPmzMHWrVvblzudTuzYsQM7duzwWoavM4cSBEEQRDQhkp8AZw13OQAAIABJREFUYRCjOSVvpAnd6JGc+CtQIbo2ES9C8lFI5JAIAi0KidHCTYLiTYwmvlcE61j0JvOUCSlDfW5o1deo2mDRkGJ2ln4lKEkSMdqp7yBCtlmGvJ+hfY/UStcjGkk0iWdibVT9m1W00alvPdn1zBt6ZKrteUleSxA+IROjpZuzYGKm9s+Mda3AByI4bK3bgBpHpTBtcsYlsCrxIW5RbJFpycahZs/3J7LzPNjIxPaAXOhLEARBEARBEAQRLCg+Tx8Un0fxeQRBEESQcEjek5pM4uV+wi6eC/7us+hj/wkm7oCTeQ4dKy6PDTGaTIoGABlGPILWGqjae0D7nywxGezXfzWgwsiif3ft9A+32PGL4aFpSzCpkoQXPDyT4U+XdxjM/O2nYsHhhlVAgGI0vmmVPPHsSVBeXOu5TtlP4Nf0D6jedvqfbUw5bYy6wCUKBJBvP4RsRzkqzOIDasWO6BejyY4hwDVwftYIhlkjjL3W+wrfKJcgYMNKwFAxmiR+KEEcp+RGiliMBgD905ux/Yj44v7RTo6fT9TTuMhDdvxoitGOyOWnUm55CMqtD0uT1asLpDLQQGGfVYElhDZOj6VkgMPlYRvevBM74sXXufpmjpT46L4GBUJxhXcb0/IdHFMGB2cf/VQlXj7nHIZ3bhMLRQgiZDQ1ALJnjim+PxNUJJIcAOCqeBLpaIFzLj2fl96uYNaIrnudJYg2OOeAVp/cF3rp+B2Ym+8hRmMARjX9F9sSRnpk1yNLjTX8EaNloRb4ab80nc1fBqYhhGZmM/DAIvBfT9FVH18gngBJyMjzoSz8VH9+gogiSIxGEAQRYUydOhV79uzBBx98gDfeeANfffUVHA7J7FAArFYrLr74Ytx222247LLL/BqYduGFF2LLli34wx/+gJUrV7bPiNmR7Oxs3HzzzXjooYeQmprqc+AVAIwePRp79uzBu+++i08++QS7du1CeXk5bDabNDApLS0NX331FVavXo3PP/8cO3fu1NwfADBw4EDcdNNNuOeee5CYaPygmuHDh2Pv3r14+OGH8eabb7oFrLWRnJyMa665Bo8//jh69eqFdevW+VVXYWEhtmzZgtWrV2PhwoXYsGEDWlq0e9uDBw/G1KlTcd1112HChAl+1UsQBEEQ0UCLZGBtvBKcQbWJJm3JDOE/eiQn/gpUiK6N7NiSnc+hxtfrikwQaGYkRgs33qRWcilXcO5Z3qR7UmlgiM8NLSlZk7MRTkX++7/zuommJFQ5KgTlnPoOJNscKdcD2b731s+QfZdmZoFFifNab6IiEaPpFJx5tkffev4KT/XIVNvwRaJGEIRcmJRl6RycLn7+LHqmTBAiOOdYU7VcmGZhcTg/fUaIWxR7ZEoGlVTZPftKoUCrPxMpklqCIAiCIAiCILoWFJ/nDsXnUXweQRAEEUJEQiUAMBsc95GbDwCwwIG+9sMoiSvwyFJU3qYKiW6qNcRomkIZvRzxFNkCcMnsevQ1oILIJjWBITEOaJS84n+vqBt+EdomBYVKnVIivvLv4oxVJ8Ab6zUHP4vgqgp89i/wF+4D6iQmCQBs1PnihO69gLxC+XHqA2zuvQGX4caZ49rFaABwoW0d3k+7Tpi1JDyvsAxFJrZKsgJWS4Rca49qiLRKfgDn3LiJ0po8f8MBABJ1iNG6y62dF2aU4gMMFKat3AnYWjiSrBGyv33AVzEaLy0CSn7wuR424jztDCMvAD552+dyvTJ0bMilaADcpEWDWn6UitFKKoDhvULVqMhDjwSlpDx4MUFVNnHZPdL0rc9bW4DVi8F3fQu00GT3hMG0NMvT/BCjMUV+j1KjPPSurglwSNxuuTSvBNHF4ZtWg3/zMXBoL9BQG3iB3fOAPB1itMKzgF2bPRYXtJYIxWi7jkb5hcgP6jUu8zImH/5Anmi2AEPO8V7IwJFAUipgq/Oe1wchMht5vu68BBFtkBitC8EYSwEwEUAegG4A6gEcA7CLcy5XU/pejwXABAC9AfQA0HCqnu2c80NG1UMQsYzZbMbcuXMxd+5c2Gw2bNu2DcXFxaioqEBrayusVitycnIwYMAAjBw5ElarNeA6Bw0ahOXLl+PkyZP46quvcOTIETQ2NiInJwf9+vXDpEmTYDafvm2cf/75fg12S01Nxbx58zBv3jxd+RljmDx5MiZPngwAaGpqwu7du1FSUoITJ07AZrOBMYbU1FT07t0bZ511Fvr06aO7Pf4GRKWlpeH555/H008/jXXr1uHgwYOorq5GdnY28vLyMGnSJCQlnX5w6+/+Alz7YObMmZg5cyaam5vx7bff4vDhw6isrITNZkNSUhIyMjJQWFiIwYMHIysry696CIIgCCLaaJaI0cIlmSH8w8mdaOHenybaVf8EKkTXxcHtaOXiQQuRMvheKtOSiAMcXBwgS2K08ONNahVqEZm8Pa7AD6k0MMTnhlWJB4MCDs+34U2qTVOK2fl+Hy+7T6s22FW7VMQVrH6Dr8j2vTcRmFT4pvO7lB0rvgjI3NbT2S+yq/4JT32Rnfm7DQTRVZGL0XLcPsvCszi6XlAE4R+7bdtwvPUnYdq5aRcixZwe4hbFHp5CQxdhE6M55cHHkfLbjCAIgiAIgiCIrgfF552G4vMoPo8gCIIIIU7Je1KTsUO7WEISeLeewMljKGwtEYrR9EgwogGZTAYwRozG/0+i/erRF8xooV2EYlbkaV/W9g5dQ4KI7DjK6nwMcYntAQCOHgD6i6U7MvifbwXWvOs942U/Fy5mjAG3PQb+xE2ARITsQXI6kJENlBadXjZoFDB5lr71dcKuvh38rb+0f76v8lm5GC2Iwp1QIRP7ZEZGWJILbwPqv1sLnHORMXU1ysRo3uWBLCkVPKM7UO15o5qTsBm/kojRAOD8BSrW/U6JKjka51zjGuS5HXzfdvDbzvW9onOnAcMnaWZhc34L/vVqTVGjz8RZwW592LjyfCE1s/3Pxyv+hPfSZguzPbFKxYe3m0LVqohDzzW4OIihBr6KATvCHXbwe2cCO9Yb2yiC0IMfYjQoChhXwZlnB1uNcjNalZawOpL6QwQRYvjiJ8HfeNy4AhkD+/mjYCbvfRf2P/eDL3/dY3mB/YAw/8qdQLOdIz5SxM4hoEF7jhwPzkn4CTM3/kGazm5+ECzZu92VxScCN/8R/CV5WT7Tsx9w2a3GlUcQEQaJ0boAjLEJAB4GMAWS75wxthPAqwBe435GBjDGsgH8CcBsAJmSPF8DeJZz/qE/dRBEVyQpKckt8CjYdOvWDVdffXVI6vKHhIQEjB49GqNHjw53UwC4ZgSdNm1ayOqLj4/Heed5maWDIAiCILoIsoG1ViUhKPUlmMRP5GVCEkIfegUndg05DkGIiIbB91IhkeS8kEmiSIwWfmRyrXCJyGTtaVYboXJVeu8KlqhNhsIUJCiJaFQbPNKaVBscTHzMW1gcLEqc27JEmQzOaUOzxr061NssQypK9HKflKXr3a5ERTwTa5PT8zvRg80pCWzshEMiqvNG2zmlKy/JawnCJ6qkYjSxYIkg/GVN1TLhcgaGKRlXhLg1sUmmJVu4vMZRCSd3wsRCG9StJSuVPWshCIIgCIIgCIIIJRSf5w7F51F8HkEQBBFEHOIJ8WAKQtxHbkG7GO1TQXJJRXQPvG9DJtMwKUBKfGBl8/pqwFYnTswrDKzwKIJ5GRO9f8dBDBjeLzSNCQJaUqLMzlIiu0asw5ESn8RofN92XVI09qd3wLr1kKdPuRbIOgP8rqm66mVPvAvkDwVWLQYv2QU2YDhw9R1gcYHLoN3qyegO3mcQcPhHAMDwlu9xd+ULeD7rLo+8wRTuhAqZDMQIQaMR8IZaoPakdp6F/wv2zg/GVNgojjtiOsRoAFzXWIEYLalsH9b8VsFFz4klhdsOA+9/x3HrxOiROTS1Ai2S7oHo+OFvP6VZHltSBGxZC771C6C+GkhMARsxGbjiFy6Zota6+UOB1zaAr1oMvLNA7yZol/nSl2CDRhlSls+knJ6ULd9+CMnOejSYPI/BZdsBp8phUqLnuDESPdfgQycBu4PDYjZ+H8nuwRl6Qgm+/g9J0YjwkeLPxI8MClQ44SlG83fCh0gh2MJqgohGeG2l175bG2xJEfg1/bUzXf5zsAuvBRt1gb4yu+eBZ+YAVWVuy/u3FkvXWfpfjrlju0afiHMuFaOlJwLn9D39OTEOGJ9Ti18+PxqJvElaJrvpAd31s+t/C/TqD75+JVBx1CWqDgD26nqwDIr3JmIXEqPFMIwxC4AXAOiZ9u1sAK8AmMMY+xnnvNTHui4B8CYAb1fM8QDGM8beATCPc06j0wiCIAiCIAiC8ItmiRgjPlhiNJmwhMRoAaE1QLoj/gpUiK6L1rkpEyiFGpkUS9Z22XlgITFa2JGK0U4J+mTXumBJuWT3LA6OFrVZ3p4wSAMTTElCMVqj0waLRIwm2t/y+3SjtowjwkWJ3voZgX6XiSaxGK1RbQDn3GtAnN72dMbBJRF9XvCl36W3LQRBuDhpLxMu9xSjdY2gByI4HGraj6Km3cK04cnj0D1OPqiD0I9MjKZCRY3jJLIsOSFtj0xWamXxMDEKVyAIgiAIgiAIgiAIgiAIogvhlEwMaQrCs9K8AmDnBhS0lgiTi8Vz5kQd1Y1igUBGInx+3+3B95vkaSRGa2ftutKoFqPZWgC7U5zWUeLAOQeOH5IXdPKoT/XyDSv1ZRw61msWNnwS8KsnwV990Ht5eQVgmTnAjX8I/pvfM89tF6MBwCW2T4VitLI6oKGZIzk+et9FH6sRL48YEcjRA97z1FYZV1+jZGLFRHGckge5BcAPX3suP1KM4b20V/1sD3DrRH3VRALHa+VpncVQnHPgu8/lKySnA917gV12K9hlt/rVHpZXCParJ6GWHwHWvOdXGe1lPfbP8EnRACA10+3jpKZN+Dh5ujDr/jJgcBcMV3A4OQ5qOxNd+VTgcBVQGATXRnUAYkm+ZY2xjSEIvSSng5n9iN1XFDCIf7+oztgUozEGpAVneBdBRD47N2rLtdvofzaQnQfEJwLN4hsj+81zYFff4XsbzpoArFvqtkj2nAgA1uwB5nr/CRoTNNsBp9i3jNV3KRhX4P77lK/+CFww5qWdWb/0uQ1swkywCTNd5a9fAf7gdT6XAQC49i6SohExD0UaxyiMMTOAjwB0nibNDuBbAEcAJMElROvdIX0ygDWMsQmc80qddZ0PYDmAuA6LOYD/AjgAIB3ACADdOqTfACCVMTaLcy65bRAEQRAEQRAEQchpUZuFyxNMeqYI8h2ZwKhRMsCX0IdewYmdSwIDCUKC1rkZMSIkmchJ0na7RCRkJjFa2In3IrmTXeuCdSxq3QubVJv0GAuHNDBRSYLoIWSTaoOTiY95kURMKqfT2F7XepFxPZCKEp2SyJ/2dMl3GaAYzcEdsPNWxDHfZgRudGq88OuA3U/hqS/9LpLXEoR+Gp0N0nOms0CJScLjuSRoiyA6sqZquTTtosxZIWxJbJNplge5VNorQi9Gk4ntg/T8hiAIgiAIgiAIgiAIgiAIwhv8y6Xgb/759IKak0CVYBKZoWOB0VPA/ud+MGt84BU7JfYlfwbVe4HlFoADKLCLZTg/VQHNdo54S/SKiAD5AHyZTIMf2A3+/kKgaAfQMx9s+g1gEy8TZ9YQCbEJl/rY0ujF2xGy80h0vyes1AgtcDuOPnwZsNXJMzv0xzfympPAW3/xnrHwLKB7nr5CJ1wKeBOj5Z8J5PTWzmMgbPwM8NVvtn8uaJWfUxuLgelnhqBRQaKkXHwe9MkK/jWWf/sp+EeLgdL9rgXJ6cCoC8B6DwD//N/AsQPAAfHkVW7UngQvLQLr1d/3NhTtBP/geaD4e0B1AqVF4oyJKbrKY70KxREIG1chs3Qbzs0fgc2Sw+mDrRwPXcpxZm503N+KNESlvTM7LaipkEvnAGD8jMCloKdg42eAByhGw5gphrTFb1LS3T5e3LBGKkYrqeiaYrTSarkctDPF5caL0VSVS8VoGYnMJQNcsQh8/Qqg8rhnJj3XNoIIBudM9W89xqBwVdjB5jy6+9RVNrmwWlGi455MEEbCm2zgj8zRl3n8DDBFAR93CfDlh+I848R9GK/kFngsGtO0TZq9WPK7JlrhnOPldRwrd3DUNAHn5jM8dClDdgpDQ4t8vWTB8Am+6g3NugJ+TjTyfMCaALQ0+bwqGz8jsLoJIgogMVrsMh+eUrTnATzGOa/uuJAxdjGAVwDkn1o0EMBSxtj53EtvmjGWB2Ap3KVomwD8gnO+t0M+K4B5ABYAaHtrcxmAPwP4ow/bRRAEQRAEQRAEAc65dGCtVQnOlCIiCQtA0o1A0ZLVdMSu+idQIbousnOTQYFVMSBY1QBk15UW3gwnd8DE3B/dOSQiIRKjhR+ZiKz51L0q1CIyLSlWk2pDY4hFbVrIzoNGpw0ORSJGE7RTqxzZ9kbD9cBbP0Mq3dN5bGkdK43OBsQpPorRtGZC6oC/wlNf+l16+xgEQQBV9gppWpZFb1RjbAVEEMZT3nocOxq+Eab1TxiKvgkDQtyi2CXBlIhEJVl4X9Y634OF7P6tV+RKEARBEARBEARBEARBEARhOPXV+kQKu78Fdn8L/v0mYOGngctGJOIkZgrC0K68QgBAYWuJNMtLX3Lce3F0D1L3RYzGD+4Bv+P803Krop3gXy0DHnwDbPoNnvmPyvcdRl7ge2OjFG+H/aK6iXjJ7oTZYgpNgwxGdgwBQOapcCD+wfPgL9ynXZBDHOPSGd7YAH77ZO8ZE5LA7pyv+7rD+g4Gn30P8P5CeXl3/dUwaZIuxrsPDO9tL4WZ2+EQxLrNeF5F+TMKuqVE5zWpWPIKzmiJUGf4F0vAH/sZ0Hn45/eb/HqDz+eeCXxcDpacpn+d/TvAf30h0KQjTkenGE0kcGiv79cXYv793+C8A4OkeSbOV/H1HxQM6Rn5x9P1r6vC5bnpQKLVvf38H0/JC4qLB7vpAeMaNnkWMPZi/H/27jvOjeL8H/hnVtJVt7tz99nYvjPG9GIIzaETOtiUHzgkAUIgJkCAQPgmQAiBFGoghJJAgNA7JmAwmGLAuFKMbTC2z/3cfcXldEXSPr8/dLZ10jyjXZ3q6Xm/XveytTu7O5JGuyvtzGcx6/2EFldX3wPVIzrZLc2itn9x49O4tv+92qLhEJDsby/Jdsck53uKVLxGW1tid187lJcC9OhNwPP690yIjOk9EOrimxNbVllQzBHatnO7753bwGohujKybdA1J/Hh+JGG7w01bgIAQF18C2j+DGDz2o5lfnIj1MDhmoXjU5VVMXudAgQwpnUGPis8LKY8970mV133MuGBD3e9AnNWEN6ZT/jqFgtzVvDLdYsaXkIzJwMLZvILHDUWOPiETtVVdesJTPgL6IHr+BMknWPPDYeqCdHFSTBaF6SUGgXgmqjJvyGi+3Tlieh9pdQRCAea7Tgy/hDA/wMQL9r9NgBlEY+nAzieiFqittEK4B9KqVUA3oiYdZ1S6l9EtDLOdoQQQgghhBBipwC1wYb+R8IiSx9O01lcWIyEbnQOF1YTLZhggIrIX1x4YrFVAktZaa6NnjG8KuRHN2+PDtOCtv5z4LMKtNNF+nDvpb/9GJHuILIiY9tqYo9dGQlGY47bzXYTQqTvNKp7vbn3oMVu2hlQp9t2tuwPuNch3nHS38n30hTO57e3oxcqHK1nV30cBqMlGHjq5rzL6TmGEALYHNignW7Bg17ejh1FVR52BBXJ8WHDmyCmc9/x5WPTXJuur9zXB/5WXTCa4ZbjKcIdv1P1+40QQgghhBBCCCGEEEIk3defAPNnAPse3rn1hJjgJG8KbohXGQ6VGda2AhaFYKvY0Ko/vkX4zYnJ33Q6Nei7A6BM8xM0vfrPXaFokdNfuE8bjIY1y/QrP/0SKCs7+hqkg5Org5Nf/xKn/b9DUl6XVDAFo5WVAhQMgJ67J/6KmODDGB+9AtQaQvfaqSdmQ7UHHDplXXkX6NCTQM/cCSz/LrzP6T0Q6uQLgSNOgxo8wtX6Okt5vaBjzw0/ZwBehDA0sBI1Bfrn9d8ZuRnWaNuEZZkKRnvmTneD5p2Y8gIw9pfO6/DKP52FogFASTdn5Sr5YDS0teKIaX/G05c8i58+oX/uW1uABz8mPPLj7G5P21oIW1v087Rt59WH2HWpV5dAlSWvwamCQuBvbwCf/Q/03Wygrb2izU3A7ClA3Tpg6CjgwKMAKKB+QzgsYo8DoS68EWqvLDgmlPYMp3u2f0a6UROO8H+Oz0uOiClak/7L6Fnhyc9dBKOlICjFeAxW24DXHk5sxf13Aw4/JbFlheAoBTV8r/A5VUX/hNdhQR+ImeO5aHwwmnQNEvlozgfAd7PNZc69Emr3A4AxZ0CVhscMqWGjgMdnhM+/ViwEuvWEOugYqAOOSrwuTODwTevvwEm7TYqZvmFr+By1e1F2n0c7Ubed8MgnsTvXpZuAF+cQnp3J73i7R91Xnp4zBLUO3wvqT88n5XcidfYVwJ6HALPeBzVoTlBXLwmf31ZWA0UlUPscBhx+al79RiXylwSjdU03Aojcg33AhaLtQETrlVKXAJgaMfkvSqlXiEibNqCUGgHgZxGT2gBcFB2KFrWdiUqp/0YsVwjgVgCXmOonhBBCCCGEEJFa7WZ2XrFVnJJtFjPBIa3UghCF4NF0HhPxOQ04CVBiASoif7HBT57sucLG7VeAcKBPN0QFozEhUV7NXTRFenGhDjsCubj2aAql6gyf5YNPFWj3nc22H81MYFSq6mPCB4/6EbL0bb5I8znmPk/+UBMfHpaB58vh6tIcagIRsXfs7ex7WWLxHQ6dhpx1XCa1gaduws4kvFYI57igpHJfb1gOv+fkeN8skWLbgo2YueUj7bwBBUOwV+mBaa5R11fu64Pa1uUx0+uD6b+tYzadewohhBBCCCGEEEIIIUTC5k/vfDAaF5zkSUG/s0HDAQAFCKB/cAPW+gbGFGkLAsEQwevJ3QGvaxr00ytKNc9p6hv6wssWgFr8UEVRfRHW6MOr3IZV5bobT1b47avmq4HTFvhx2v9LU4WSbHWD/rmVlQAeS4FW1YQDf+KgUMBRiBzNmx63jPr94wm3MzX6WKjRxya0bErsNrLDwxFtNWww2rQluRnWWNsAtDK5l1V9Urd/Jf82oGZe8tc7bzqUi2A0zJvmvGwvh8FdldUdAq1itzkdJ16vYOqpMG1J9vdimLuan1fVt2PbIU2w507D9kxqKNoOyusFjhkHdcy4pK87HZRlgcr7h0Pc2u3VupAJRsv+9pJsrQF3z3lpCl4jLuAWAMrWfAO08uNFTNS9b0ENGRm/oBDppiw2GI1yPBmtnvk8l0vXIJGHaL75O5+69n6ocRP08yr6A2ddlrzbFzOBw9UBPqx76SZg/8HJqkDmzF4e/t1LZ9oSoM4wTKJHxLBUCoWABTPYsuqC3yQ1mEyNGg2MGi23sBYiisT/dTEqPELu1KjJDm5NARDRJwDmREwaBuBowyLjAURegXmdiJY42NSdUY/PU0oVOamjEEIIIYQQQgBAsyEYjQun6awSJrgF4Af5ivicBpwEEgxQEfmLa1tcCFMmuN2vcAGBXiX3Psg0NtTKboJNNppt/RXfVLZHbt1bg41sW8rE54MLxGi2m/gQDU09i5njv2k93DKZwO0PbNho5e9D0el9nc8qgE8VuFq3id92FqaWaOCpm7CzZtsPm/SdSIQQHdUF9cFoFb7YjrNcUCNJNJowmNr4DrvvP6H8LFhKLlknW7lX3/G9jglCTKVc+G4mhBBCCCGEEEIIIYQQ8dDcTzu/khAzItOb/BviqZLuQHk/AMDerd9qywRCwKr6pG86ZWybcMckG6NuCaH7VSEcfXcIr3ypv0Y1tHfHx2TbwFbDk23ueK2bgkFg3Up92TwLRjvnwPjDce/aMAahHA1zqGEunQzb0YaWL3S2Ii74MNrU1+OXOfwUZ+vKAeqosR0ej9s6kS375jeprk1q1BjuS1TdJzXbpGAAdNN5qVn5By+5qgc2rHJWuLw/MGI/R0VVaQ/g4OP5AnXr0Mfnx5gRfJFv1wIbt2b3fumxT/n6nXdQ1L63toZf0f5jklSjLujwkzs8rGrTh4C8/x3gb83u9pJsH37vrvySFHQ1qGe6AioF9Hjd0ZD4WMP3BgbvnnilhEglpaCY0M8cPZXeqYH5PJfrAquj0LoVsH93NuxT+sM+rifsCUeBPnZwzixEGtG3s2BffSLsEytgH9s9/HdcT9iXjwF9Ev6OQ8Eg7EdvAv77V35FHg8w5ow01RpAxQCgsDhm8uBALXwqpF3k27U5vkNq9/Vq/nk8M5Pw3Tp2Ngq8EfuujavN3/ejzjeFEKkhvcy7nj0BRP6E3wZgqovlJ0c9PsdQdmzU4yedbICIFgKYFTGpFEAO3tNBCCGEEEIIkSktTMAMABRZsT/aJYNpwK6bkA7RkdPXLtEAFZG/uLaVTYPvC61iKOZeHrr6B5mAQC7USKQPF7DVYjejxfaDmDt8pTQYzaOvUz0TfgPwIWWpxL0GzXYT/NznWFNPbj0tdjOaQvqwrmzaHyR6nsHu61y8l1wom5953UycLpNo4KmbMFqCjVabD5UTQuzCBSWVa4LRWNydmkXea7Vb8GnDu9p5vbwVGN1DOmmnQoVPP8qiPmAYmZEiLaH0hwQLIYQQQgghhBBCCCFE0s18D+Tf1rl1cAMpPSm6Id6gKgDAo+t+xRa57JncudnUzW8S/vAmYdEGoKkV+HQJX7Y6+jLXaw+ZVx4VjIaNq/ggu4HD49a1KxnaW+Gf4xWY+yftdP0ruXm9kAtGG9E3/ITpDxc4W5GDYDRauzy2rUVRN/0HqmeFs23mAFW1d4fH47e+aCz/1crca0c1G/V17tMd6FkSPwwkEXTnBOCLj1KybgCg5d85K7hqUcrpAAAgAElEQVR+JRDSByp0UNId6rZnoSznQ5nVr+81F1izFA+NN69v95vtrA1tnLmM8Owsvm7Hj+r4mP74E7asuuz2ZFWry1G/uK3D4xFMMBoAjH04d86JOmvFZsJpD7p7vss3A8FQcj9P9U369fXyBWDNih7m7kCvPlA3Psre9FGIjLMsWEx/crJzex/EfZ7L4nQNIv920ISjgWlvA9sagLYWYMFM0K3jQZ9PSn5FhUgArfwedPWJwNefhL/PBdrCf20twHezQbecD5rxLujeq4DnzMGe6pr7ofoMSlPNET7/HhT7G4YHNoa36IN3f/Kf7Dx/duvmiYk9jxcv63geQfddzZZV1/0Dqkd5QtsRQrgjwWhdT2XU4yVE1Opi+flRj0/VFVJK9QcQGdMfBPC5i+1MjXoscZhCCCGEEEIIx0zBaIUpCkYzhcU0G+ojzJwGnATtxAJURP7i2lYmgp84lrJQxARq+aPqH6IQbOZiqFcl/87Bwh0u1IFAaAzWsculsj1ydaozhGFkIpyCC/Dyh5rY46suiI57LcPvwWbtvGzaH5iCzEznGey+zsV7WeLppp2eUDCa7WyZYIKBp9H7xnjcBKkJkc+4YLTevn6aqdJ5ULgzfcsHaLL1A8WOKTtdzmVThAs2bAhugk3p7UzJHb/dBLkKIYQQQgghhBBCCCFEUu19KNSv7wPGnOFuuS8/7tx2uaAtb4p+K6+sBgAMCdaigrlu/tH3AOXADXDagoRHP3Fezx2hVjvQS/8wL+CP+i27lg9O0Q0q7uquONrC0j9bOKnfWrbM49MI/tbsb0vRlmzQ17m6H0B1652vyEkw2ltP8DMPOQHq1Rqoky50vs1ccf61O/9bSG2YvvyHbNF7p+ReG+LC9ar19zHqNGrcDEx5odPrUXdN5LfxyoPOVrKG31eqq++B+vV9ULe/CPXyIqj93d0wSw0ZCfXOBr5A7VLsPUhhxV/54dFbW4APF7rabNqYjmnnHAhY1q7jGAXagFp9cAUqq6G69Ux29boMVdYXOPbcnY+rDMFoUxYCS5mgw67mic/dP89ACFjdkNx6NDDdIsuZ89Yd1K/vi/3788tQz8+H2vPg5FZSiGRSig1Gy9IcT8fqma665fG6Bk19HahbFzudCPT2k52ulxDJQG89EQ5BYwsQ6Om/Ae89a17RxTdDnXVZcivnRHtofrSqtmXsImsbc3un9M3qxOt//KiI83AiYOZ7bFk19vKEtyOEcCdFtxURGRQdK9nocvno8oOVUj2JaEvU9L2jHs8jIjejzKZHPd7LxbJCCCGEEEKIPNdiN2unF6hCeJQnJdssMgSuNYckdCNRfoevXSDBABWRv7i2lYngJ5MST6k2uCd6vxIkvvOcT8IkMq7Yow+4A+IFkfHLdRa37nom/AbITDgFF+DVbDchRPpO4brPsemzzQX+ZNP+wNQWuPMMIuL3dS7eSzYYLYFQMadhaoEEA0/dnnP5Q00o96Wop6kQXQQRsfvJcm9ssBIXi0bI7Y4QIjVCFMJHDf/TziuySnBkzxPTXKP8UcEc/4IUxLZQI3p603enQu74ncpzYSGEEEIIIYQQQgghhDBRw/cChu8FHHceaNpbgNNgsGXfug9Ta0dEwIbV+pkpCkZTlVU7r+AMC6xEnbe3tty6LcDAXimpQtIs3QQ0urh3aXXEZS4iArbyN7UDAPijbvKyhhkgXN4fqjh7+hqk09DeCrcf24jJLwzUzm9qBRZtAA4YkuaKdQIRYYkp1GrJXOcrcxCMhsVfs7PU9f+E6jfY+fZySOS+CABGti1myy5mguqy2bJN+jpX9XF20zFq2AgUd4MqcnjtrOYbPmjTqYHDgD1G8/NnTA6HcREBWzYDBUWA1wdV2qNjOW5f2Xsg1LlXda6OAFT3XqDBI4DVS2JntoeyDalQ6N8DWL9Vv45pNYQT98q+G8DNWcG39ZEDouq7lg+tyMewTtcq+u/87/DAchTYrWizCrVFv1oFVOnvQdZlhGzCHZMS29eu3wIM059OJoQLUipr5fu4qstuhzrnV8mrhBDppCwo6I/hdo4mo9k2Ye0WYJP+nplxg9Ho+y/4mUvnJ14xIZJpoaGd7rBgZtwi6tCTklCZBAwdBXwW24dzj7bv8Q5O1i4yd3X2/05kYjrXNlEKKC+NOBevNwQ1j9gvoW0IIRLDR6KLXBU9Ulz/LZ2nK7+ng2lM7DwrOl5dtw0hhBBCCCGE0OKC0YpSOKjWUh42HC2R4BARpguE0gkYQqGE0OHaVkkGgp9MuGCm6P2KKRjNK8FoGWcK2DIFkRWlMJiLC8aqZ4LaLFgoVEUpqw+He+2aQ02uPscJBaMZAu3SzacK4FX6+5hw5xlt1AobIe08LnBOh90POQw528GmEJptZz3REwk8DVIAbdTqahmn5xlC5DO/vR0tzGe3wqcLRsu+DsMie329bTp7HB7T60dZdSzuanTBhjtw70mqcOcHmQjlFUIIIYQQQgghhBBCiEiqrA9wyAmOy9OcDxPaDn3wEmjsMKCtRV/Ao79W3GmDqnb+99ytr7LFlvL3e8saN0+0HZftWQz0jrw/2MZaoDnOtePmjtfHaU30kKd2lVX66XnigAMGYvdWPtTq61W5FeiwcRuwnemGMKKfAmqZdqATdBBUZQg3UgOGOt9WrhnU8XPT02YSrAB8ubI9zDCH1DD70HjhSjTnA9jnjQSdMRh0cl/Yvz0LtK3BvMyqRaBrT0mwphFOuCB8DORsXgs6tjvouB6gccNBpw0EndQH9pXHgSJCPmnGu/rlByVxX8msix69CdT+uRv/A74fwx2TCD9+3EZTa/a0K9smLFzHz7/g4Kjns8gQqnjShUmqVdeleuy6aVgxtWDstjfZslMXZ087STYiwh//Z6P3teZzqkG9gALm1JQLMkvE2kbCzRP1r7cpGA3HnZu8SgiRbkrBIv1nMMdOf0BEuGOSjd7X2Rhyo41FTHZQebyuYW/8i5/X4iIZW4gUobXLgXmfd35FlVXAKEMwcQqpE87XTh+/5SV2mZnLcmynFGXSvMTqf0B0VnnNN2xZdfS4hLYhhEiMBKN1PdG3MRngcnld+ZGaadVRj1e53M7KqMcVSqkyl+sQQgghhBBC5KmWkP5Hbi64LFnY8BYJ3UiY82A09wEqIr9xbcsUnpQJTgOJTOGAEoyWecWGYM76oL73m08VwGel7r3j6tQQ1N8FudhTCqXSH3bDBWK0UguamGAu3efGFKyyJVjveD2ZopRyfZ7RHOKPoW6eW4mnm3a633YXjOY0FA0whz2y62fO/4zLyDmaEHGZApJ6+/qlsSaiqyEiTKl/QzvPAy+OKTs9zTXKL6We7ihQ+vtncUG5qcKG3WbRuZgQQgghhBBCCCGEECJ/qRsfBXY/wFnhbz4LD4p1gebPAN32U6DOkIDiTVHfgYgQr2vqH2SLLd2U3QNeP1xIeIPPhIlR3Rcd+j/QHx2ExkQHp61hAqySGfaTg6xeFXi14TJ2/qVPZ3dbiraECXAAgBF9Aaqtcb6ykLkfBAWDwLrooXRh6ld3Ot9OLhocPQQReLn2Arb4Qx/nTjsiItQwl9yrDcFotGYp6IYzgXUrwhOCAWDGu6Cb9aEFAEBtraCrTky4rjsdczbUT34LAFA3PeFu2W+mgX5zKogIFGgDZr6nL5fMEElN+9mBnvozAOCPp5v7vL0wm/DLZ7OnXf3lXb4uVx6rsOfAjs+Hbr+IX9lx5yWnUl1Zj45Dlh/Y8Bu26CNTCbadPW0lmR6eSvjT24Qt+nvT79SrhA8yqm9KzmtDRDjtQT6grSzUqJ2uLrsdauCwpNRBiIxQFhT0n6Nc2/f8+1PCH94kNMbp1lteyh+j455rN7vrwyxEslEoBPrF4Z1fUf/doP78SkbGaQCAGrandvr+rfPYZe6YlFv7pEitAcKbfJ6Z0fO/6Bi9RNefwRcef31iGxFCJESC0bqe76MeD1JKVbpY/jDNtJ6aab2iHru6tTgRbQcQfbsb3XaEEEIIIYQQIkaLrb8ql7FgNEMwiTCLDn/iBGwJRhPu+JnPJRfClCklTH2iwwOCNt95LpXhWsIZn1UAr9LfJo8Lnkh1EAR3zCLoO5RkKpjCFCpnI8QsE1tXj/KiUBVpyxPTkSDbwjjcnmf4DaFfbvZ1JRYTjOby/MbpMR1ILPDUTfDaDm6fgxD5iAtG88CLHl7d/Wz0nTO4fa3IX4v887C6VT9o6JAeR6GXt1w7TySHUgrlPv1d3tMZjEZEbLip6TxQCCGEEEIIIYQQQggh0kX1GQT1+Ayo5+ZBPTMX6qNtQEl3tjy9+4yr9dPbT8Yv5NH3N+i0iBAvD2wc1PyVthgX6pMtnvjc3XWoEX0jQtGIgAUz4y8UPeh+zVJtMTVouKu6dEV79rdxwvYp7PwNW3PnuuGSjfq69iwGencD4CoYLWiev3E1X2b0sc63k4v6VAIFHW/oc4R/Blv8P9Nypw2t3wL4mS4w1X0MQSCTn9O3h6+mgurW6xeaORmoZ+Y5oK66G+qN5bD+9DxUYXtf6wN+6H5FKxeF96szJ/PbGpi8faUyBVK+/SSICN2KFP453hw08cqXhK3N2dG2np7B1+P2M6JC0bj2AAAHHZOxgI2c0qNj34TeoTpcUf8oW3y6/hQg5z3hcN9aUgCUM10P691339P6ehUwdzU/v9xu0M+44LrkVECITFEKFtOHO9eC0Zx+R+P2JwBAk581L9ziB9l8iKIQKff1J8BW/c3ZHRs8AurFhVDD90pOnRI1boJ28kWNT7OLfLc2t/ZLO0yan9hyxb5wQPoOtE0f1AoA2OMgKG+KfssTQmjJJ66LIaL1SqlFAEZGTP4JgL/GW1YpVQpgnGaW7qpO9Gi5OFnhWs0AIkcr8lePHFJK9QWg7+XPy+9btgghhBBCCJGD2GA0T2oH1fIBRkm60peHTKEukYJkvqOiENGig8V2yNUgJFOIkFdJMFo2KLZKsS20JWY6FzyR6pA+t+vn2mKqccdWE+65FXtK0RqMvheD+/VkSomnFNAc7rhjpSmY1c2+jnsP3ASdAc6P6QAQMIQ9crj9OgD09JZjSzD24rNpGSFEWF1Afxv0cl8fWCr2/kqGrttJq5PoGqbUv8HOO778rDTWJH9V+PpifVttzPS6YPpGuAWoDSHoB/lk27mYEEIIIYQQQgghhBAifymlgCG7huDQqNHAlx/rCz/1Z+Dnf3C0XtqwGnjnv/ELpigYTXXrCerVB2gM91sYHliGL4sPjCm3LH3300jIN6vdXYeqihjIirp1zhaKCEYj2wbWLteXMwX05IvKauz9zbeY0u0E7ewFa4B+PdJcpwRs8RMbwFXdN7xfICYgTysYpx/EWv0NhQAAA4c5304OUpYFGjAMWPn9zml9Q/z1qg1b01GrzmkLEuauBibN5/dP1X3ZWcD3X/Dz1q0AKvrHTl8aZ4T/2MuBN/6ln2dZwAkXQJVFDbnsMygcGuUy8IFeegBoMFxzrNrb1fqMqvfl59WtA7bUAb16Y99BCqZ+C21B4IXZhJ8fCXg9mQsTIyLUMplPANCzJKpuy7/jCw/bMzmV6up6xQ413qd1AVv8m1rCkSO6VuBcyCYsWOus7P6DFRau03+W6pPQFa+5jfDIJ+Zzu+o2TTDpiP0kgETkPsuCxRyriHKn751tE+ascFa2jyk1It65DQC0+IES/c2fI5FtAysWOv/+J/JH/92AyurEwmRr5nV68+rE8VAeT6fX0+l6VO+r3fvsbTgnmr+GsOfA3Dsnmleb2P50x+8AO0V8f40xePeEtiGESJx8E+iangVwe8Tj3yqlniaiNXGWux1AT810J8Fozkcc7tIMoMywzkRcAeDWJKxHCCGEEEIIkcVamCCyIqs4pdvlQmP8hmASYWYKdYlkCoUSQodrW5kKf+KwgURRYT6mcECfKkhqnURiuGC0uoC+E1iq26LbEMDiFIeLsttN4HXgnluxVYJG1KV026nkNChxBy6IzKt88FnO9wslHv3Psn7bZTCaiyC1YALHde51UFAo8/bWB6PJOZoQcXHHqQqfqZd2rNzpmiXSobZlORb652rn7V06GgMKB6e5Rvmp3Kv/HNczn/tUMAWnZtu5mBBCCCGEEEIIIYQQQuxkdW7QKvm3gW69EJg52dkCqRwkW1m1KxitTR/29eIcwvO/SF0VOsO2CUtdBreNiPx5/Ls5zhZqjvg9u24d0Kq/cSsGDXdXma5oUBUu/uRp/L3iGu3s178mHDcqewdPExFue4tw+yQClz8xoq8CNTcBtUkMRlvDBKOV9YUqMSVGdBGDqzsMLFcARjd/iS+KD4opun4r0Ogn9IoOiMoSkxcQLnjMxhZmNwEAPYuBctOlsHUr+XkBfZ8aeukBfpmCIqiLbwYt+xb4Zlrs/CNPjw1FQ3to3Sk/A178u6GyGp/wN8kCAPzgRHfrM9nncKC0B9CkT8yj+66G+tPzOLwKGNkPWKS/NxwAYMJzhD++RZh4hYUfDM9M+3pqOqGF2V2cqMk5I8O5hDr14iTVqovTHLvP3foaJgz4p7b4VS8QfnoYoXtRdu6DErG6HgiEnJUdf4jC3z9ITTDa87NsXPgfcw+jIrsZ47ZOjJmuTr2ocxsXIisoKOYE1LZzp/edKeAzkscCdivXzyMiYNrb8VfS0hQ3GI1Wfg/6v3Huzt1FfqneF7j7f1C9BzhehPzbQA/d2LnterzAiRd0bh3JcszZwF0TYiZfsOVlXN/vLu0iFzxGGHsAocCbW+dEbn9D2mFgr6gJtZqg1nZq7OWJbUQIkbDYW72LruCfACJHYfYC8K5SahC3gFLqOgD6X6UB28E2Eznrzp0zdSGEEEIIIURWyVgwGhMa02wY6Ct4QQqgjVodlQ0YQqGEiBaiIFpJn+FezASRZYrTICRTMJpX+ZJaJ5GYIuYYsTWkvwLMheIli9u2nqlgiiKrBAruLphxr7Xb55B1+wOX5xncdLeheCUWE4zmMlSsyUUwWiLHdS5YpcgqQSkT7ibnaELE5zoYLZE754m8M6U+tpPqDieWj01jTfJbuS92cAMA1AcS7P2TAFNIabadiwkhhBBCCCGEEEIIIcROlnmoFdnmITb0r1uch6IBwFaHI8sTMahq53+r2phgJgDTlmTn8J7aBqA16G6Z6r67rmfRTec5Wob823Y94AKsgHDQXJ5TldXYs+17dv4jUymrgx3e+gb409t8KBoAVPcF6MHr3a04TjAace0qX8L2BsV+dv679hK2+HUvZ2cbqm8ijHvEHIoGhNuQYq6tk20D61bwCwdjg9GofgMbDAYA6v7JUGV9oW5/ETj4+F2Bm14fcNRZUL9/nF/2sj8BZ/4CKExS/+sxZ0B5k9efUVkW1FNf8AU+fg009zNYlsJ711g4Is5uesNW4IyHbLQF09/GNmwl/Py//Hb/87OO5x9EBBgC8VT1PkmrW5fWd3D4sxChl70F+7XMYxe55c3s3AclqsbBvdPKSoCnL1E4aqRCeal+/9XQia54NRspbigaALyz6gwMCdbGzhgXG+YiRM6xLFhMXIPp3DTbLHF4P8ahFYCPC1Sa9Z6zlTSb+yUTEegP4yUUTZjVzAPd9lNXi9Bjt5oL/PiGcHgvZ8BQqHvegho4zNV2U0V16wl1f+zvVP1CG1EWir0x+Q4PfJhDO6d2NRv1dTYGVwPwRv0USKZgtH0Oc1stIUQnSTBaF0REjQCifx3cB8BCpdRdSqljlFIjlVL7K6UuUkp9BuBeYOcIxOhvjo2azUSfTSby61f0Ms5HzgkhhBBCCCHyWout71VQZOkDRZKFDTCS0I2ENIf0AXc6QdLfBU8IHVPbchsYlGpcGED0fsUUIuRV3qTWSSSm2OUxKNVBZK7rk6FgCktZroJNLVgoVEXaeW6fQ9btD1yeZ3BBI65fB6a833b3c62b8oEEjuvc8y3xlLKvHRemJoTYxW0wGhdmSbnUO0ukVF1gI77c9pl23tCi3VFVrLnNtUgJUzBauj6zpt9Lsu1cTAghhBBCCCGEEEIIIXZScYZa1a1jZxERMOVFd9vzFbor74KKDEYL8IPFn56Zndd6ahK410d1+8/j1BonuShS5ID7Nczr1L0MqnuZ+wp1Ne3hcD9tfIYtMmt5uirj3vOz47f1EX0BzHrf3YrjBKNhLfOiDMyPYDRVWR0zbXjbcnhIn3z44cLs3Ce98TWhxcG9AKv7GG44tmkN0Ka/6SsAIKDpU/Pxa2xxdcPDOwfmq7I+sO6bBPXOBqiXvod6dyOsO16CMoQ2KF8BrOv/CfXuRqBvJV8vh9ShJ3V6HTHr7L8bMGI/dj5NeQEAMKRC4bMbPTh2D/P6Nm0DPliYzBo688oXfLsuLQQG9oqauMJQyZMuTE6l8oDyeABNKMl5W19hl3luJnWpfjBLN/HPpeF+C6vutLD57xYuPDR8DlzGXMqvb0r8NXnBwfH395v/hh82fx4zXf32ETZsUoicohQU9J8FO4f2OUuY0KFo1cx9WQGA3uW/S3TQHGe80dIFwLJvna1L5Ld500DbdHEpseL9rqOuvAvWL++AmrQe6uVF4fPuyL+JK2G9vAhq9LHJqn1SqIOOAXr2jpn+ky3Ps8s4OX5nGy4Q9m/jFFoe5n/v229w1LnGaiYY7dhzEqyZEKIzJBitiyKi1wH8GugQH9wdwA0APgLwPYCvATwJ4MiIMv8A8GHU6nIpGO1hAHu7/DszCdsVQgghhBBCpFGmgtHY4BAmqEOYuQmUC9gOepMI0c4UhJOp8CcOFwYQ/RyCTDCaBQ8s5Ul6vYR7boMdUt0W3QavZTKYwk1diz2lbCcX9+F0qT1vcIsN92LOM7h9nfv3vpt2epACaLNbHa/HH3L+8y63TzOu3/B82ZBJOUcTwoiIUM8Go/Vzu7bOV0h0CR83vAWbubvpCeVjpbNqGnEBh63UgiZ7W1rq0GzrOyha8MCnCtJSByGEEEIIIYQQQgghhHDNE6cfxppl/LxVi4BtDe62t/8Yd+XdqNwVjLZPCz9gfPH67LzWU+Nw0P0Ou1UAfbq3PzC9T9EiQoqIWy7itcxrw8I3wRnd8hVb5Lt12dmeAGeBWwcNJmBjrbsVh/QBXzutZdrVoPwIRsMeB8VM8iEILxOMtnk7YNvZ146+43MxO6gyBIFg9WLzwpqQPVr5PV9e89qqku5QA4dBFTnvG6V8BcDR4xyXZ40a3fl16Gie504rF3V4eOwe8a9Jv/dt+tuXqf2M3g2x19JX8O+7GnlgkmqVJwbFHsMPauaPY3VN4f1QV8E9l4OHAj1LFCrLFJRSoFAI9O1slK+coy1f34mueAsd7D9Hc++JtHfRVSgLFtOnqimQO3EfS5jQoWijhxqOx6uXOFtJc5ydcc03ztYjhG0DDQ4bb8NGYEsdP7/9vFR5PFADhobPuyP/KvonocIp0is2GO3A5q/Z4vNrCXaLIdQ5yzQ0EeqY85XqvgoFXoUDBuvnjzsgap+1apG+oCb0WwiRerlzpiRcI6J/ADgZALPn7WA7gF8BuAbAoKh56zXlt0Q91t9ynKGU6obYYDRnUasGRLSRiL518weAv+2NEEIIIYQQIiu1MANri6yilG6XCxppcRHwJXZxEygXIM1d8IRgmEL3Mhn+pMPtV6LDfLgQIZ/yJb1OIjFFHnchW6lui8Uu6+M2TCuZuOBRbVlDPd2GzWVdUCIX7sWc93ChX27bVolHH4wGmIMmY8q6CEYLJBCMxj3fYquUfc5uQliFyEdNoW1oJX2nBS5QiZN9XdJFJvhD2/F54xTtvL6+gdiv2yFprlF+Kzd8jusDm9JSB/Z8xRB2K4QQQgghhBBCCCGEEBmn4gy1WqMfgkKLvgJduJ+7bR1+ClTvAe6WcSNiwGa5zQe21aTnZ2PXuEH3hw4HTtk7dvpVx6pdvz/X1jjfUGvETcOY9xcD8yTAKg5VEk6eu2DLS2yZP72VnVcPX/2SHyS9w/GjgFH1s9yvXBNmtQMRsUF9Kl/aFRNq8/PGp7TTmwPAuuiRi1ng71Octe1q5jIdtfhB155iXjig6Stbyw99VLvv76hOTqjTLwEKOtEPe78joUa4PA46pM78BT/zm2mgiM/gzw5T6B7naTz4EeHfn+rDaVJlqSHs88pjYs896PVH+JWdeEEyqpQ/NOGmx/qnordhOPPYh+3w/rsLqNd3P0RFRJc7am4C/e5s0C/HoOyTZ1ytxwknYbcnb58cO3GPg5K6nxMio5SCRfpjz5WfDMequtzY59RsiF/PkgLgkiP0/YKoxQ8scRho1sKfvNOWOtCff+5sPUIAcNLLlWwbdMOZfIG+lcC+RySxTumlLrg2Ztq4bRPZ8iFSmP/Ln4LqdFEz2Wep4betHd/Rrjw2dt90RBVwwJBdj6nFD9TM065HSTCaEBkhwWhdHBG9D2AvAGcD+A+AhQDqAQQArAEwDcD1AEYQ0cMU/ra+R9RqvtCsOjqOdzeXVYsuX09ELm+LI4QQQgghhMhXzXazdnqR5S4Exi0uNMZNwJfYxU1YCRcKJYQON/heQaHQis5pzywumKmNWju0e+4z4LUkGC1buA0WS3UQmev6ZDAkrMhFXU3HereBYKk+b3DLaVDizunMcdTte2kMRnMRdubquG67Dzzl1l/iKZVzNCEStDmwgZ3HBaMpSJCR4H3a+C4btndc+ZmwlCfNNcpvPTy94FVe7by6gMM7YHYSF7JanGXnYUIIIYQQQgghhBBCCNGBZR5qRZqAGiIC3flLd9s54+dQtz3nbhm3ooJA3lw9TltsbSPQ1Jp9A/G5EJnd+ym8fLmFXx2jUFkG7DMIuP//KVx7fMS1LDfBaIHIYDR9gJUuVCVfqb+9hjK7EaObdcPNgNUNQENTdrWn7S2E8/5lDkG6dIzC6xMs0G0/4Qtd+Fv9dEMwGho3A/5t+nmD8iMYTSkFdcktMdNv2/QndhkuGLlJDh0AACAASURBVDFT5q523qar+zDX1d/6T/yFdcFoXGDjxTc7rpMTaugoqAfeA/b/IVDEXM/zeGP/yvsDp/wM6s43klqfDnUbeSAw/jd8gfdf2PnfQWUK035r4YRR5nX+6nnC2sb07au4ENLRuwFnH9SxzVBbKzD3U/0Cg4ZD9ShPcu26NjUo9hhugTC/7kfsMtOXAp8sTmWt0qeB6UJXXhrR7v73ODDj3fD0UL22fH2CXfGIKO4+ffmSEfAhGDNd3a8JSxMiVykFZQhmumlidp0/c0yf59JC4JiRwCc3WBjWmwlGe+4e5xtrNgSjxVuP7pxF/vLgz9A/0Ung6ZwPgMVfs7PVk3Ny+2agp/wsZlIJNWP28sPZRX4ZvAb0yO9TWauk4YJYi3zAwJ7h/198hIV//0Rhv0pgQE/gosMVJl1tdXhf6dm7+Y1IMJoQGeHNdAVE6hFRCMDr7X9GSqnBACojJq0hojWaogujHrvdi0f/cvudy+WFEEIIIYQQeaw1Q8FoJUzQiJsgELGLm9ctQG0gotz+EVmkDTf4vsgqgRXvrr5pZgpyag750d0b/gU+wIQIeZUEo2ULt+EOqQ4icxuM5jZULJm446vbsm6ec5FVDE+WhbO4Pc/gQr+S+d67CUZzUzaQQOCp6fnKOZoQiakP6nsp+VQBenjKtPP4YLTc6JglUidgt2FqwyTtvO6envhBj6PTWyEBS1ko8/bGpkDsHRvrA4bbIyZRS0h/y+hUhwQLIYQQQgghhBBCCCFEp8TrW6ILqFm7DFjyDb/M7gfA+s/MztUrAap7GahHObA1HHAxqvV7tuzSTcC+lezsjOAG3Vf1AUoKFR68QOHBC/RliAsS0mkPRiMiNoBIF6qStwaPAACctP19fFE8Wltk0nzChYdmT1+/KdGj4KI03G+hZ4kKhxzWrdMXKu8H1b2X/sqoKRhtLRO2B+RNMBoAYPf9YyaV2Y2oCNahzlsRM69mI+HokdnThl790vk18ao++un0cdyhnUCwYz9BCgaADau0RdWI/RzXySm196FQD05J+nqTQZ16Eej5e7Xz6NOJUKf8dOfjfSoV3rvWg7sm2/i/1/XvXcgGJs4lXHF06ttZW5Cwsk4/7+ZTNecdXCgaAPzgxORUKp8w4aZ9Ns7H/vvamLtGf+736pfZtR9KVD0TVloWcdmepu7aP5XZDdryDX7AtgmW5e41qW8CtuiHfuw0OKgZwn7AUVClPVxtS4hsppSCl2IDAHd47SvCUxcTPC4/Y+lERFjBHM9evEzhvNEOxmnMet/5Bv2GfslTX+PnnX8trF/9zfl2RJdB9RtAZw5hZsY/n6ephqDf3Q/I+XBapRSoel+gZl6H6Qe0zEUPTwu2hopilllaMBx47zng5ifSVc2ELWf2T1V90OH85dIxFi4dY1jRFx/y8yQYTYiMyK6RoCIbHBf1eCpTbkHU432VUm5Gfx4RZ31CCCGEEEIIwWqx9QNri6zilG6XG7jbYjfDJvPdBEUsLuCEEzRcCBIiUjPTttyEL6VLiacbOy8y0Idr/z4JRssaroPRUhwGUWgVQbn4+TfVQW3Gbbt4LUxl3TyHVIepJqKIeW7NdlO487Vmuo7bfV2BVciGLLoJFvPbboLR9GGPJqbny7WLZiaMRQgRVhfQjyQp9/VxHUhMEoyW92ZtnYqtoUbtvKPLTkWBVZjmGgkg/HnW4YIRk40Lrc7kuacQQgghhBBCCCGEEELE5Ylzk61aTXDWoq/Ny+x7eOL16ayIgbtDAqvhZW5kNXd1dl3vsW3CUuY+HyP6OljBsu+cb6ytJfzv1npg+xZ9mXwKsIpnYDhg5kj/52yRj/gMvox4fhbfv9PnAXqWtF8f3bwWCIX0Bcv7AV6mr5YpGG0NE4xWXAqUOWnMXQQTLlgV0IcRZlsbenues31kVR+gf09m5nez468gENWnZv1Kvk3m26D8gYb98Hp9eNwR1ea+D1O+Tc+xb0UdYDObqtbtBlYvYdel9sngOUWuMoSbHtGPOe4DWLIhu86NElXPdAEsj7xsH9HmykP6YDSi+AFnOlzQ7Q4XNj6nn5HJ82chUmR061fsvJYAsLo+jZVx4auVhL+8Y+O+KYQW5rS3ssxhf8OFc5xvuD3AOhq1tgDrVrKLKdl/5C9Tv1cnh/XP3uTndZV2pTkvUgBKqUVbfLO3D5pVEYj7TpJF6pihDIN66afTwi9A//0r7Aeug/3oTaDP324Ppl7Nb6RX785XVAjhmgSjiWg/j3r8uK4QEa0DEBkH6gVwpIvtHB31+F0XywohhBBCCCHymE02Wmz9VbWUB6MxA3cJxIa1CZ6bsBUACCYQoiLyEzv4PsVBVIkw1SkyPDDIdErlwoxE+rkNd0h1UJ+lLFfHxZIMfj5cBaMZXjc368nk8+VwdQpSUBsklsx9XYmlD2n0h5yHnbkJPOX2aSbceUORVcK2Cz8TKieECNsc2KCdXuHNo873IilssvFB/UTtvAJViB/2OjnNNRI7lPv0n+f6ADOSLMm447fbUGEhhBBCCCGEEEIIIYRIKxVnqNWapR2uQ1LDJtCtP+bLd+sFNfbyJFXOPXXpH3f+34sQhrct15a76EnC5m3Zc3117Rawg+6r+5oH3ZN/G7BghvONtbUPuNeF3u1gCFXJN8rrBfb/IY71T2XLPDWd8MWK7GlPr/EZFLAim5OhDahf3MYHo4UMN33lgtEGDnd9w6qcNmCYNqhgRFuNtviLcwizlmVHG3pnPmFerbOyvztZad9XWvatuZ3sEIzqI7TGsF8aOMxZpboI5fUCexykn7l2ubaP0OFVwNG78+t88xvg85rUt7N/f6rfhlLAcM29ruj+a/mVjTkzSbXKI/13Y4NvJ9Q/zC5Wk57L6ikXLxiNtjUAW+p2TQ/xyUzfrnW//ZqN/GesxG7C1Q0Pxc7o1Qfq9Oih7kLkvgmNjxnn16TnPoeu/PtTG4f8xcbNEwk3vMp/nsscdAWyH73Z3caZYDRjeFVRCXDYKe62I7oQ0/cr8zkfffxah+NhzJrH/jLBOmWZSv1vG7fY/2EXebP76UCLu/F/mcCd81R003w/e/Uh0OVHgh7/I/DqQ8Bz94D+72zQ/40LB6brnHB+fn2HFyKLSDCa2EkpdSQ6hpstIqKphkXeiHp8scPt7AHgBxGTmgC872RZIYQQQgghhGgj5sdthIMxUskUNNIswWiuuQlbAYBAAiEqIj81M+E82RiMVmgVQTE/0UWGCOhCkQAJRssmbttXOtqjm/A1t8FuyeSqnobXLVeeL8dUJ12oCLuvS+C5ca8dF76m0xTa5rhswHYfdso93xKrlA2VI9hoZe5gJYQA6gP6nlQVvn7sMorpOJId3dFFpszbPhsbA/rOIIf3PAGlnu5prpHYgQs6rGM+/8mWzPMVIYQQQgghhBBCCCGESBsrzlAr/zagcVdSBr3+iLG4emQq1JCRyahZYo49p8PDqgAT0gTgUSa4JROW6O/xAwCojnefnzfNgQMxAu3XsLkAouJSoJy/hpaP1DV/hwXCNXUPsGVuesNOY414yzaZ27Un8iNfqw/pAgB1+CmGYDS+byOtZT5zg4Yb69XVqMIioE9lzPSqNn6f9H+vZ74NERGueclcjz0HAGfuB7w2wcIlR+qPIXTvVc422BbVR5oL6+szCKowtTeTzkbq6nv1M5q3Aw2x10CVUph0tQWfPhMLAHDja6ltZ0SE+6bo90ODy4AiX8d+GNRgSOM66qzwZ0m4orw+YMBQ7bw93v0z/jpW3xdmZR3QFsyec6NEscFoO4ZdRAV4loca2HX94U33nxdT0NPUlSfgwJa5MdPVvz6F6jfY9baEyHaHt87BtOVHsfNr4py3ptv2FsL1rxBsB9WKF4xGm9cCz93trgLR50U71nXHJewi6tWacJiqyE+m0CrDjbYpFALdNYFf7ZV3QQ0xpO3mEMWEvl+0VhNU2u6SAf8On29nuYYm/XscvX+ibQ2gR36vbxOz+MgbdcktnameEKITJBhNAACUUiUAHo2afFOcxZ4DEIp4PE4pNcLB5m6MevwykYxOE0IIIYQQQjjTEuIDyIo9qQ1G40I3AH6wr+C5CVsB+GAoIaLpAoSA1O8jEmEpC8VMqGPk8wgywYA+VZCSegn3uPeR4ybEK1FuwtcyGRzoZtumY3GuPF+O6bn5NecZ3L7OtB5+292Y7Tq/iOnmuJ5I2Cm3/mJPqTFcxW0QqxD5hAtGqvAZRpKwHUeyq1OWSB8iwpT66HsphVmwcFz56WmukYhU7tPcXhxAfSA9t7Zmv5tl4bmYEEIIIYQQQgghhBBC7GQZ0lN2iAyqmf4OX+7Ui6GGjup0lTpDKQVU7bPzcXUbE7ID4O1vsueaDxcK0Lsb0KvEMNgZAM350N3GAu0D7tcwAU0Dh4dfR7FLe6jXAS3fsEU++B5obst8m3pnvrkOE47e9d4SF4w26uDwvx4mGC0Y5DdgaFd5pzJ2EL5pn/TJYmBrc2bb0OIN5lCfaTdaWHCbB2/8yoOxBxj2E5tqnW0w2LFPDXGBjUygQZdnChSc8a52cnGBwvOX8sOopy8F6pkQhWRY08jPq9Jdzv2CP4apkQd1vkL5yvCZOb3/au10m4AVdamqUHoQEeqZoRflpe37rKgAxh72VviYPvtLErgH26p6/fSxWydqQ9Fw1mVQ+XiMFPlBKRzaMgeH+6drZyfyGUulTxYD2/XZZDHiBaOZwoZYgdh9EQUDADEhjQOGQvWscL8d0XUkGIyGpfOB7Vv4+YedlHidso3mOxkAFGxZj+GF+nDUkPIguD37++Pz5zxRE76cCrS5jLbxeID+uyVSLSFEEkgwWhellHIcZ6uU6gZgEoC9Iia/RkSvmZYjoiUA/hsxqQDAU0opNnZeKXUmgIsiJrUBuM1pXYUQQgghhBCi2eaD0Qqt1N79zBSq5DbkS7gPk+OCoYSIlsywoHTgAn0ig5C4ECGv85+ARIq5Dd5LRxiEm7C2Eo8+GCsd3ITEmQKw3DzfbAzjMD23lqjzHyLShqXFWw+He//9trOLmDaFYupoLI8QQhSKXzACd95QbJWaw2vlHE0ILSJig9HKTcFohvWJ/LS0eSGWtyzSzjuo+5Go8PVLc41EJC4YzW9vR4vdnPLtNzPh9tn63UwIIYQQQgghhBBCCCEAAMrBUKv2oCOybWDx1/yqDjk+WbXqnIiBr8c38YErs1cA17xk48uVmb/2s2SDfnq1k0tZa5kgKk77gFg+gEjCOaKpohKgbyWO9n/KliECvlyZxkoxFqw1zz/nwIjB80uYoLfK6vC/Xi4YzdC3kQlGU/nYrjRBN6Y2BABfr0pVZZwxhaJ1KwQOHBJ/HRQMABudBaNRdAAIF6yXr8FoZX2BvpXaWfS3y2E/fhtI81r/cHfzau+bkrrj3uc1/LoPGaYJ76jlwwKRLecVOUjtewQ7b5h/MZujYtoH5AJ/G9DGZHfuDAlZvbjDdAUgwNy0edN2IGS7+7xwwYODgvoDtDpY2rnowtq/a45ggmEf/yzz38MiTZzrrD7FPqDQFye8eqW+f5lRUBPSuG4FYPPBaCLPJRqM1mA44PcbAlSOSLxO2aZiADur0qdP9A0pL1Zv1IempsOGrYTb3rJx5j9DOOWBjn8/ftzGk5/bsG1CPTNkICYYbfUS95XoNwSK+z1ACJFyEozWdV2ulPpIKXWRUkrb410p1U0p9TMA3wM4OmLWCgBXONzOrQAi4z8PB/CBUmqPqG0VKqWuAvBK1PL3ElEW/MwthBBCCCGEyBWmgbtFKQ5G8ygvClShdp7bkC/hPqgkYGfuh1SRW5IZFpQOXChA5GeECwb0MZ0PRPoVuQx3cBPilSinbV7BQiF/r4OUK3IVaMaXdfMZdxPGli4FqhAW9Hcejw5gbaNW2NAHiyUSNMK9Htz+NKZcAuFjbgJPQxRCK+nvzFTiKTV+/uQcTQi9baEtCDB3d+1tCEZTMHdgEvnng4aJ7Lzjy89KY02EToXh81zPhCMmE/e9P1u/mwkhhBBCCCGEEEIIIQQAwIo/1GpHgBZdfzpfSCngSMP8dNoR6gTgpO3vw2u4XvuPDwlH3mnj/W8zOyh/6Sb99kf0jTPgPhgA1rscptTWGv5XAojcGVSFQcG1uLruQbbID++22UCUdAjZhH9/ym//3IMUDhkW/j+1NgNzPtCWU4MTC0aj5iagfr1+mYHD2Hp1Vaoy9rM0MLgO19X9nV3mmHttbPFnrg3VMPsiAPjb2QpFcUJAAAAbVgEhhzcQjA4AYQIbda9lPlBKAceeyxf4719Al48BrVvRYXKf7go3ncq/V395h/DXd5mQlU5Y10i44DG+DV13Qmyd6Ik/seXVyAOTUq+8dNZl7Kyi9UswuEw/76oXkt8u0okLCAF2hYTQE7fHzLtv/fXaZdqCwJoG7SzXdSgLMSs6/BR3GxAil7SHNlUxwWjbWoCnZ2TPfuc/05ydg5XF6QZERMAL9/EFivU3d6Yd39Mi1dawq1FX3WOuiOj6jMFohs/WNn0gGACoy2+HcvA7Uc7oUc7Ouq8v3xf0runMyVKKrWskHP43G7e9RXhrHjD5245/L8wm/Py/hEufdh6MRv++xX1F8jHYXIgs0oX2wiKKAnAMgCcBbFBKLVVKvaOUek4p9YZSagaAOgBPARgUsdxyACcQkaOe8ERUC2AcgMhf3Y4A8J1Sao5S6iWl1GQAqwH8A0DkL8BvA0jgyCGEEEIIIYTIZ61MMJqCSkuoCzd4123Il3AetrJDwEWAishv7OD7BMKC0oHbr0R+RgK2vv17LbnrSLZwE0blUwXwWakPtXPa5kus0nCnsQxx89qZnlOy1pMpSikUe/TBb9HhXqawr0SeW4ml71TgD213tLzbYzoANpBJx3SeVWyVwmf52KDIRELbhMgHdYZAJFOQksSiiUjrWldj3vbZ2nl7lOyHwUXSGSTTenkroJguAab9QLI0237t9HSEBAshhBBCCCGEEEIIIUTCLP0NrTpYsxS07Fs2RAkA1CuLoQr0N+FMNxUR7OWBje+X7mMs3xoE/vhWZgfk1zA/Y1fxl7LC1q3gA4jOv1Y/PdB+/VoCiNxpf13u3XijsdhT0zMXavXet/y8kf2A53+hdvWZ+ehVvnBlYsFoWLucX2c+DqxmQgbv3HiTcbFnZmauDS3dxM+74miHQ3NN7SBaYFd/GgqF+GXzsf20Uyf/xFxg81rQaw/HTL79TPP79Zd3CNtaktvW/mUIZty9XziwLRKtWsyv7NyrklWtvKR6lAPV+2rn0ZqlqGbOL5ZvBprbMhsW2xl1cYLRaPFc7byfbXmWXa7GsF/UYUNKQvWxE48aC8Uda4XoCtrDlaqZYDQAuHkiIWRnfr+zss55HcridQNaMJOfd8zZwP5j9PMCLoPRqs3fc0U+MAWjGdr0Nj71U51wfifqk4W69WJn7R/gv0D/+7v+4ZDDNHtsGmH55vjlnppOWLdFP6+8dFe7oGWGHwlMJDBfiIySYLT8oAAMB3AygPEAzgJwKIDokWL/A/ADIuLPCjWIaCqAsQAiv9IqAKMBnAfgRwD6RC32AoDzicjh7Q6EEEIIIYQQIowbVFtkFacl1IULXeHqJXhuw+TcBKiI/MYFBrkJTUonLsQo8jMSZIIBvcqbkjoJ97hAK23ZNLVFp9txU/dU4MIB3Zb1WQXwKmedYtxsM524/VR0uJcp7CuR51biYYLRbKfBaM7KRQoygY86piC4kvbny56jJRDaJkQ+qAts0E4vUIXo5ulpWFL/nYuQ+c5YIv0+bHiTnXdC+dg01kRwPMqLXl79XR7rAy57KyeAOw5nY0itEEIIIYQQQgghhBBC7GQ56INWuxT48iN+fmkPoO/g5NWps6KCvXYLrEJJnL5bM5cBTa2ZuQZk28QGo1VHj06KxoSbAYAauod+RlsLKBgEGpiNDhwWZ6P5SbWHhSkAP9r+Plvu4+8zdy3xQ8O2/zzWgifi805fTeVXtDMYjemrFWL6QHDt0eMB+g3ht9dVMSGDCsCPCr5hF/sog21o6Ub9ti8d46K/8pplzssGI/rJbqrtEJTWQR4PzFfD9wJG7G8u9OXH2sljD+AXaWoF5qxIvF46prZ7yFBNGzLsh9Tg6iTUKM+NPEg/fXUNqvrwn+m5q1NUnzTgQsmA9iAj5ny2p70VvYP6PgVLN7nbJ/PBaJoQmmF7ulq3ELknvK8Z0cbHONQ28CHR6fTpYuef9fJ43YC+4L87q8NPBbhAcU0wGtUy59cHHh2nEiIvmMYUJhKMNurgztUnCymvF+jG9BFu2IjD/DPYZdczwWOp9NHCzn8X7LCPMv2WZ6DyOJhaiGwgwWhd1zQArwDgI0rDggDeBXACEZ1JRAn1gCeidwDsDeDRONucCeAcIhpPRDIiTQgH/H4/pk2bhieffBJ33303br/9dtxzzz145plnMGvWLLS1JS8cYtWqVbj55psxZswY9OvXDwUFBVBK7fx76qmn2GVnz56NCRMmYL/99kN5eTk8Hk+HZVesWLGz7NFHH91hnhBCCCGEGy1MAFmhVZyW7bMBRhK64Zrb14wLhhIiGhcYlGtBSJGfET4YLTr3XmSKR3nhc/h+pKstOg08y3QwhZvQwnhliy2nzzmzYXAcp+cZxqCwBN5PNpDN4bHaaYBaJDeBp6Yw1R2vGfe5MoXICZHP6gL63lMVvr4J/mYrwWj5ZkuwHrO3TtXOqywchj1K9ktvhQSr3KcfIcbtB5IlREG0Uot2XrZ+NxNCCCGEEELkJ+mfJ4QQQogYysFQq4VzQN9M4+cfeXp2HYejAnQUgNO3TYq72Effp6g+cazbAjQzXcVG9IvzutYyIQN9K4HuZfp5gVagxXBtubv+JiR578jTdv73jG1vs8WWZDDYoWYDfx3z+FFRE7i2A+wKYfIyN+wLMg12LROI1W8IFLeurmz43uys05vfY+e9yWempdy7C/TTq+KFNLajxs2ge69yvsHIIDQu+AMA8nxgvjrzUnOBmnmg5tj9+un7mY8h5/3LRksgef0fphl2K7q6kClE77CTk1Cj/MaGy82cjNP34d/3Cx6z0ZrEdpFOXChZjyLA61EgQ6BsVZu+PboJbCIi1DP3ni/TBKOpiHMLIbokK/xdc9/W+egb1N/YFABe/iLz+5w6F11vh5Sbj6+mfQ1+cCLgZfrf636b587ZmQBekWcs0+85/OeKuGC07r06V59sxf020rgJY/z8b12T5qd/37Rsc+fXsVvETzq0eG5iK8njYGohsgFzmwKR64hoLoDzVPhKyu4A9gRQCaAHwkfuRgCLAcwiom1J2uZGABOUUr8GcASA3QD0B9AEYA2Ar4loeTK2JURXFwqF8PLLL+PJJ5/Exx9/jGAwyJYtKirCj370I1x66aU47bTEf/x57LHHcNVVV6G1NTZF2yQYDOKKK67AY489lvC2hRBCCCHcaLGbtdPTFXAioRvJ4/Y1C9jJG3QgujYuMCjT4U8cJ/sVLhjNp/Kwg1wWK7ZKEQjF31clElyVCKfbKclwMIWbYIx4YW/FVim2heLfjijTz5nDvRbRwWDcMdSrfPBZ7gMTSzzdtNOdBp75Q/pyCgrEXEgOuAg85QLaFBSK2s8BJbxWCHe4QKRyX1/jcgpZNIBHZNTHDZMQJP21ixPKz8quwV55rtzbF0uxMGZ6PXN352RpZoLtgewNqRVCCCGEEELkD+mfJ4QQQggj40DaCJ9MZGepi36fpMokSe+BQGEx0Lqr792tm+/AjJJDsco3hF3szIdsrL3bQv+e6f3d/6aJ/GDb6jhhRMQFCVVWAz5uwH0r0Gy4Pl6cnX0MMk0NGbmzR8CFW57Hrwb8Q1tu2SYgGCJ4Pem/frSYyZsYWgH0KI6qD9d2Dj0Jyts+BNPDDMVkgtHYkKM8DbVSlgU67jzgw5dj5l1Y+zCu3O232uWIgEXrCSP7p7cNza817Yvi14Vam0ETjnK30UBEW+KC9cr6QpX2cLferua0S8LH4TkfsEXokoOB57/tcO36/IMVXp5DmPytfpn6JuCsh2xMvsbT6SpOXcS3n9JC4Mz9NTMMwTGq/26drlPeMwRa/OjNSwE8rp23qh44+xEbb1/d+XaRbvVN+nZYvuPUxhDAWBVYhln4Qcz0ZZuch6L424A25me38lB9zDQ18kDH6xYiJ7Ufkzyw8e91V+Cswa9pi936P8KZ+xP2rcxc/ysuWFFnWO84Bbjjm8cLVdYH5CvUzw9q+uQz61KVTPilyDOGzwwZjl/bGvXTuQCxXNejHFi3InZ642bcWHcv7up9g3axy54hHD+KMLR3evZNLQHCGuatcarIBwzoGf4/hULA5GcTW5EEowmRUQ5/rRe5isIWEdEbRPQgEf2ZiP5CRA8T0QfJCkWL2mYbEX1MRE8R0d/at/u6hKIJ4cxHH32EPffcE+PHj8eUKVOMna4AoKWlBW+++SZOP/10HHzwwfjqq69cb/Odd97B5Zdf7rrTFQDcdNNN0ulKCCGEEGnFBaMVpSsYjdmOhG64E7ADCJC7oDM3ASoif4UohFZq0c7L1iAkLrwqcr/CtX+vBKNlFacBX+kKgnB6bMx0aKCbY3i8ujr9nGf6OXP4/UHHYJHooLR4y8fdLheMxgSeOS3XzcN3wgy6OA/gnm+hVQyr/W7t3HvPLStEvqsL6EcAVMQJRuNwIYiia2oO+fFZ47vaeeXePjiw+xFprpEw4T7X9YEUB6MZfifJ1u9mQgghhBBCiPwg/fOEEEIIEZfVydCLH1+fdYOylWXFBDHt3laD2cuPwJNrLzUu++T09F4HIiI8PUO/zYpSoKw0zgDc2hr99EHDAW7AfaAV8BuGV5Xor6kLQF36RwBAKfkxc/mR2jJBOxwqk27BEGHZZv28u87pOKSStm8BGvXXTtT51+x64GH6ahGFB1lH44LRBuZnMBoAqHOv1E7vi0A0PwAAIABJREFU5t+Iz37ZwC535+T0X5O+YxK/zSonl9Y/mcjvkzgRASBs0GOeButFUh4P1D1vQf32Eb5Q7VJg/vQOk4p8Cv+70kIvQ3e1978Dvl7V+fZ26/9sdt7Xt1go8GqOZ8w+Q13yh07XRwCo5AMtPB88j9P30Pc9BoB3FgDzDGGJ2YoLNtoZjMYdpwBUtenn1ejvxehq+wBQbkft88dNcL5iIXKV2nUOetr2dzEksIot+s+PM7vPcROMNjxOeDUXwqiuvT/8nwJDgHUECgaA9Sv1ZSW0SAA7wwe1TMFoW+r007v36lx9slUPJvCtYSN62luxd8sCdtHHPkvfvmnZJvPb5sTw3oBltbeLLz5MfEUDh3WuIkKITpFgNCGEyCK33XYbjj/+eCxevLjDdKUU9txzT5x44om44IILcPzxx2P33XePWf6LL77AYYcd5roj1O9+9ztQxNnh+PHj8eGHH2Lx4sVYvnz5zr9zzjmnw3IbNmzA/fffv/NxQUEB/vCHP2DmzJlYunRph2UrKytd1UkIIYQQgtNi+7XTC62itGyfC73xS+iGKy0JvF5uAlRE/jIF4GRrEBK3X4l8Llz7l2C07OI08MxpgFpnOQ4Jy3AwhUd5UGQVxy2noOKGqDkPg0tPOJ1bTvYHAB80kuh7yQWqBagNATt+MKnf1gej9fTyd8oKkHmwYYf1M883st7cPl7O0YTQqwvoeylW+PoltL7c6/opOuPzLe+jmfluflz5mfAob5prJEzKffreh/XMfiBZuDYCZO93MyGEEEIIIUTXJ/3zhBBCCOGI1bmhVmqvHySpIknWf7eYSb1DdfjJludx6gj+uurMpem9EmQagF/JX4LeZQ0z6H5QFVDA9DEkArY18usskt+1WREBBKNav2eLLUntZQmtlXVAQJNVBgAjokOtmHYDoGOQjtfQVyuk6QdRt15bVA0Yyq+nqzMER+4VXMLO+359+q9KL95gCEaLFwACgBbMcL/RQEQ/wc3r9GUGyKB8oD3087SLgR7lfKH5se+B16Nw/YnmkM3pSTj21fI5fxhaETuNiIC1TEiVIdBLuDBwuPE8bw+r1rj4G1/nXu8Yrh1WlALU1gps4EOZ2GC0TejwO5eJMRgt1LFyareRjtYpRE6LCm06ZftktuiMNH8Pi9bAd/uJMaIvf1w1BRDv/C5hCrDuUKmNgC6MOHJdIr8lEIxGRMD3X+qX6dk7CZXKQj00J6MAEAyPGdi3dT67aDr3TVMXd35b1RHf/WnBzMRW0nsgVFF2jj0RIl9Ir3QhhMgS11xzDR544IEO07p3747f/e53+PGPf4whQ4bELFNTU4OnnnoK99xzz867Sba1teGyyy5DU1MTrrnmmphloi1atAjz5s3b+fiUU07Bc88956jOEydORFvbrh/d77jjDtxwww2OlhVCCCGESFRLqFk7PV0BJ1xwSCJBX/nMFFLiUwUIaEKgAhQ/mEUILiwIcB4SlW5OwnyCTPv3KeYOSSIjHAejpSkIwul2uGNbOhVZJWix9cf4HQqtYljK3AE9V8LgOFwbij5ucsfRRNtWiYe/u7Xf3o6elrl3ORdc1t3TCwoKpIlMCtrOA0+50MvI95ENlTMcF4TIVzbZqA/qOxtV+My3tVamjiMiLwQpgI8a3tLOK7G64bCex6W5RiIeLhhta6gRAbsNPis13ylMx2AnobhCCCGEEEIIkWzSP08IIYQQjsW5Lh3XISckpx5Jpo45GzT9He28c/svxaQl+2rnvTUPeHG2jfMP6eTr4lCNIUDrR3ubr1VRMACsW6mfOXgEUMAMuAeArfX8PAlG40WE9ZSSHwMC67DONyCm2MkP2Nhwr4U+3dN3vXHBWn5edfRl0VomGK2gEOgTEUJsCkYLBmLb2DYmkabMfF22S+tRDnTrBWyPDSPsuepLAIdoF5vJ5EWlChHhG0NGUvciB235w1fcbzgY0Z9ma52+TJmDVLY8oZQCHXM28KY+wJwevQkY/5uYvg7nHKRw80Q+aOGqFwhXHE0J95FoCxJWMm9f96JwOFuMuvVAC5NCM3B4QvUQHamSbqBDTwKY86Gz6SPcDT688blZhFtPT1XtUmPpJn07H+rZBDprfzYkBkqhKqA/Nja1Ahu3Af16xN++KRitVyjqOPDDM+OvUIhcF/Vd85ytr+HRssu0Rb9dC6xtJAzslZn+enNXOw8kOtR0mPrwZX5epctgtK2G1FE5PxJAQsFo+G4OsFn/5VGNPCAJlcpCcYK6z9n6/9k77/g4irv/f2bvTrrTqctykWRjS7JxwUCwTTEYDDY9ENoTCCEklOQHcRqBhzwQQhzTTBJInAAPIYUaAw8x3RQXsAEXjLGNbVzlLldZvZyku9v5/aHiK/Od25PuTifp+369/LJ2Z3Z37m52dnb3O+95A3OzvqNMW7INqG6UyHHHv236cGP3xWjF+QHlXLWwazth8SLD9DiJeSrNMAzDaHn++efDgq7OOussbNq0Cffcc48y6AoASktL8eCDD2L9+vU44YQTgtLuvPNOLFmyJOKxV69eHbQcOutkPLZdsmQJpJSd/xiGYRiGYaKBkqY4EyRGIwVGLN2ICt33lWlXy1dUsjSGCYWS5wCJk1FFCyVyChQJ+KRiRlEAdsHzHiQTLpu1a1GiJH1W5V/JcG5YkbNZydObZHAqqPKHikUo0UhXP1eaoRGj+Rsibt9kqvOk2dJhF+qg4Giu6x5THfQX+H1Rn113XWCY/kqdv4aUrkYUo4EKZuDnvP2F1XWfocanjuA+J+diFl4lIbrzmpIkxgJK5Oo00mAIW9yOyzAMwzAMwzAMo4Lj8xiGYRiGiQqjG88wx50GkZqkz8qnX0cmXZeyHG6NM+z6f0jMX5+YfgUl8ACA+y+NMPD20B7Ar46xQWEJPeAeoMVoKU4IO8fnkIQMEC5tLSOznv8nM6H90yufMpXrC7MBd2pIXSonyl1QDGEEDL/UidH8inewVL3K1E9Q15cRQgQJ9QKRc+7E0zfQ5/lb6xJXf575hD7WS7dElgDIw3v1wsVCwiDiDRSjqeUfIisv4vH7E+KW+/UZnn8kbNWoQQJ/vlb/Oz6+sOv1bXclYBKb/+c2Ykj3AY39j6ovTNSInz9Gpk14XS/ALzvSJr3rTVDC2ZKlT9DyTiGASdNR2krXSZ3INhBKjJblr4Ed/uDDDiiwtlOG6c2ESJvOafoU5zfQop6Rvzbhpy4ocaTZK7H5oLW8354oYDPU11R5cDfkH3+i3tCRckxATAmsW0PFaJq+VUb/7V8zgej6d+pzSd42RZ3dMIBvnNP9IiUhgrgf6+DShvdQ0krIwwFMfzz+9/YtXomPtqrTzj3e+n5K2p2Jsqke2LSqa4XhvjjD9DgsRmMYhulhtm3bhp/8JPjmbvLkyXj//fdRVFREbBXMqFGjsHjxYowZM6ZznWmauOGGG3D06FHttocPHw5atnrM7m7LMAzDMAzTVZoJMYbTlpiAMlJgxNKNqKC+LwED6Tb1FFI+Uy1vYJhAKOmegEiYQDFaKBFSq2zplJZ4TbVAiBIOMT2DVSlXokRklsuTIFFbd8tgKY/Fz+xMVjEa8RlDxSLUdbSrv2WaTSNGs9DHoeRpaYZOjGb9uk6K4AI+L8trGcY6lV46OjGSGI2CB9j2D6SUWFT1hjLNLhw4J/vSBJeIsUKOfQCZVuWNnxiNen7jStL7MoZhGIZhGIZh+i4cn8cwDMMwTNQYXR9qJf7rpzEsSGwRdjtwylRlmv3Adiy9S/+5n16qlkzFmh3Eo+txBUBaqMwqlP30wF0UFtMD7gGghujXuej36QwgMrKBrGPvIkZ66d9gfTnwGe1NiylH6uj3lyMVr0RlOVHuotLgZZ0YzRccByFbPECLeiJgZObS++kPFNID8c/P3kWmPbYgMe0QAPzlI7oOXTA2shgN771IJolfPU3LKgPrUZ16wioWfwQjcgZCzJhNpss3/gZphtedn00zcPtU+rd8aknX4yB00qgpI4mE/YSEyp0JsAwvZoiCYuCS76vTAJyQR7Tb7by3IQ6FihNen8Ruohkp9RCmEQAYNAwYMRYD/EeR4a9TZtGJbAOpalLny/WHSNmmXmVpfwzT6wm51xQAXt5/I5nd4wUWbY5zmRQs+Np63msm0NdS+T7dH0JBMYStTUouKIG1N2T8BCV0dKVDOFJ0xWT6C0LTT1f0B+VOTWUfPREiPSsGhUpCNPdjAGCDiXf2XUmmr90HrNsX60IFs2wH0NiiTrvuVAv3Y+2U5Lfn/Xhel8siInxfDMPEHxajMQzD9DB33XUXGhqODR7Nzs7GvHnzkJ4e3Qu0gQMH4j//+Q9SUo7dwO3fvx8PPPCAdrvAYwOAw2F9UH13tmUYhmEYhukqpBjNSIwYjRKpePzqcjFqKElJmuGGQ6hfSrRK4qkmwwRAyYKchguGSM5HYTqRU0fb4iMEQg6DX+IlE8kmIrMqnUhLAkmYle/OUh4L361DpMBhJOczDOq3CBWDUdfRrkr3HCIFdqGe4ZqSngXlIdreNBt9XfdJtfAxmv0Hfl6W1zKMdaq8h5XrU4UTbiMjwaVhehObGtfgQOteZdrpmech056d4BIxVkgxUpFpU/82OlFid4l1f4VhGIZhGIZhGKarcHwewzAMwzBR0534kuFjIufpSYqIwZzlZRg1CHDY6E2/3BOfIoVCidFUMqsw9hHWrfxCCGca4KTjKGSV+h0a0vi5dkTyCzr/HNuySZt1zd7ETLj0VTmdNqZAMYi6nKg7oeeMTR1bASBMjIa6KjpvPxejiRFjybShh1aTaftr4lEaNUfULiAAQJ6F20m5bQ2dePIUWt4RKACpI+Qf/bz+KCk9kU6rOgQcPaBM0knudh0Fqhq71maVHVFvNzQHcDrUx5SU3LOwBEIn+WCiRow8iUz78RDNuQvgywRdx2LBzqOAn/BJlrRqZLKDhkEMHwMBoNSrFvbp5H+BVBGhe2FitAyON2H6C+HtebZZiwInLWX890qJOk9i256NB6wf77QRmsStmjY18N6Z6hf5QuKMqf41942YDnR9JtXkv7o6OuHc7pcnWQkVgCsY0bobLmL8JgB8uSe+7dIHG9X7z3IBF58QjRit7X+5bW3XC1NY3PVtGYaJCck5GpRhGKafsGXLFrz77rtB62bPno3Bgwd3aX9jx47FXXfdFbTun//8J6qriYfhaJu5sqt0Z9tYsGnTJrz66qt46qmn8NBDD+Gxxx7DCy+8gC+++AItLV2XZvh8PixfvhwvvfQS/vSnP2H27Nn45z//icWLF6O5uTmGn4BhGIZhmK7QbKof+jstyl+6i066IVUPShkllKTEZUuDQ6gD+ikxFMME0hsH31PtCnDsXPES9d9OnC9Mz+CyJZeIzGp5EiVq06E7DzqwInqz8t0mc3tA/Rah103qOmrle1QhhCC/F0tiNCJPmi2dlNBR7ZqKUDFcB4FlpsrP8lqGCecoIULKcwyMGEwrFMFZTP9hQdUbyvUCAtNzv5Xg0jDRkOvIV66v8hKjy2KA7r6fYRiGYRiGYRgmUXB8Xvfg+DyGYRim32LT2MF0lIwHisfFtiwxRlCDX1ctRLpT4Mpv0O+CDtUBjS3xj4/bQchkivMjv6eSi19TJxS2y610A+YP71Ovd0Un1O2PiGnf7vz723XzYNfEA9zxqoTXF/96tJ2oRwBw4+mKukQIiURhiBjNronVChOj0fcJ/V7ecP61ZJLxwI0Y7PYp03YdBT7fGf/6U90oUUnIfCYcB2uSqs/eJZNEUSkt2TP9AADp9wMNhAkuq5/XHxUnnwO46LgpeXUJZHV4rMRFES7b6zWSRR1lxGvYUp3kc79aQMUihjhw3jVk0jU7/6rd9KH5Ek0J6A91Bykl/rTQxJj76edKxa276B24M4BzrmzPp66XOy2GGlBitBx/iNyov18Xmf6DodZ63HDcbnKTlz6XyP2Ficv+6kdNU2Lan2qLYbdTRwFDcwnhZ+UhYPl75Lbigu8cW6DEaK0hz6BJMVqOrphMf0LbTw8/fyTV/wIgvnlTDAqUpOQN1orjAcABH75dN49Mf3d9fNujD79W73/6GCDf4mMaQwDH5QHS0wi8/nTXC0NNMsAwTMLQTFPAMAzDxJs5c+YEyTMGDBiAm27qXmf5F7/4Bf7whz/A6217qdLY2Ii///3vuPvuuwEAu3fvxogRtIb73HPVFuNnn30WALTlox7u79q1C8OHD+9cnjp1KpYuXdq5HI1AZN++ffj973+P1157DYcPE7MyAXC5XDj33HPx/e9/H1dffTVsFl5Qb968GQ8++CDeffdd1NWpp3dxuVy4/PLLMWvWLIwaNcpyuRmGYRiGiR09LUajpBsmTLTIZjiFKyHl6O3oBCcOQ/1iwytblesZJpBYy4ISgU7S1CF6o8SAlEiQ6RmsXosSJSKzCwccIiVi+5koUZsOK7IyK99brPL0FNRv4ZWt8JreTslYEyUa6cZvmWZLR72/Nmx9k9kNMZqRDrsgruum9eu6lbZdJ5WTUvLMqQwTQBUpRhtkYWsikEkRNML0LXZ7tmO7Z6My7aT00zAwpSDBJWKiIdeRj93N28PWV/ksTuPcBUgxWhL0PRmGYRiGYRiG6T9wfF4bHJ/HMAzDMFEi1IPVI2720KvJ/14yVPIUgFw2H09efwk+3yWxp1KdZ0cFcGJRnMoWcAwVWpkMANnUAGxcoU5sF8KJVBdkihNoVchYj7AYrct855fA3+4DABT4DuI/5dfhiqH0AOqH3pOYeXl8z5UyzSuQ04qDjy0b6wCFMAlAZ93pJCoxGiFuAICM/i1vEAXF2jfM8/ZcjTMHvKVMO2O2ifq/GnCnxq8OUVIrAJh7a+RrhFy9mEwTtz/c9gd1D+Vvl8LVVwPUvVwGC4RCEXY78NQSyJsmkXnkb2+A+MuCoHWpDoGV9xg4/RG1QOrSv5hofDJ6YSol+SwZqKm3lJijgMVosUbkDoLMGahs+3O/fBsfPtGKC58kJD0Afv6qxN9vTN4+35vrgDtfo1vZAu8BuKXGeuR0Q2RkQwIoaVWLQ8s0AtJAKDFarj9YHir6+XWR6UcQ94v3j96I328dQ25mSmD+BuCmZ028MaOLIu8osCJGm3gc8OItdL9I3vtf9MalJwJTLj+27EhV5/MGi9EkJR7mNoTpRHN9VvWtCUE2AIgC+j1Pb0cIAVlYAuzYoM33+OH/xvPZ31Omvf0V4PVJOOyx7xPtr5bYsF+dduE4gVSHgMsBeCLM0T4sF0ixC5iP/rx7BeL+OMP0OF17Ws8wDMPEhA8++CBo+cYbb0RKCv3gzAr5+fm47LLLtMfpjUgp8eCDD6K0tBRPPPGENugKADweD9577z1ce+212LePeEnZjt/vxx133IETTjgBc+fOJYOuOvb76quvYty4cZgzZ06XPgvDMAzDMN2j2VQ/ZXcazoQcXydXomRfTDiU0CXN5oadED15zQhPLRkGvXPwfarhhCAe03V8HkqMRp0vTM9gtZ4lUkRm5VjOJDg/rMgLrXwWK79BMojgKHS/RXNA+0YKRrshfUsz1MHcVvo3lDwtzZZOChypdk25f41QVfV3IB3yWoZhjlFJitEijCbRwGK0vs+i6jfItPNzr0pgSZiukGtXn99VXovTOHcBqg+RzNJqhmEYhmEYhmH6HhyfZx2Oz2MYhmGYAIwuDLVyZ0JopGNJQ6jkKQD51t+Rly6w/UH681PSsljR0CxxiOgqlORHGGz7iVqiBACiKOC3ySSEQoeJPo0zMRO29maEzQYcf0rn8jcb3sfMillk/ueWx//dIiVs+cFkRT0qpwfDoyjkvNaK0XzBy7WEYdCVDuHo3n1Jn+A7vySTTjr6CYTmHfTbX8W3DlH1x+UASvIjby/f+gedOOG8tv9tdnV6hxitjqg/AJDFYjQVovREYAwtRsPapZAHd4etPnWEwNgh6k08XsDTGn19o+SMpbr6c0AtRhOh7RATE8TVPybTph99F898j+53vLxKotmbvHEyzy1Ti/46oGRnnXRIYc/6Jkq8u5RZdALJQKob1d9TrhkiN6L6ZwzT1yAk3C6bD09cH1ku9M564Gh9/NufGuLc/X/nCOx91MDOhw2s+rUNhTnEJKt7twGbVpH7F/f8PVgqnmJNjEb2r7kNYTrQPc9RitEIMe13/zs25UlmLPQxs8w6/KbiITJ9waZYFugYn5XR7dyF49rajhwLIYgl+YBsbgI+eq3rhcnMhcjI7vr2DMPEBOIJCsMwDBNvysvLsXv37qB1F1xwQUz2fcEFF+D111/vXF65ciW8Xi8cjt45YN7n8+G6667DvHnhswYNHjwY48ePx4ABA9DS0oLDhw/jq6++QkODekBuKB6PB1dccQUWLAie9cPhcODkk09GUVERUlNTcejQIaxatQpNTU2dZfrFL36B6upqzJw5s9ufkWEYhmEY6zSbHuV6p5GYACSdcMVjNiIHAxJSjt4OKXQx3HAIddCPT7bGs0hMH4GU5yTx4HtDGHAZaUqxUIcYzctitF6BVclDIkV9TpsbtX5ihqx2kkFOYeU7sXIeuyz0B6zk6Sl0v0WT2YgMtL1YoySQ3ZG+UcempGcd+KWf7J+1idHU13VvFNd18vMGlDmSvNZpuCwfj2H6OpVe9aBWK2K05J3vloknFa0HsbZ+pTKt1DUWI1yjElwiJlqo85sSJcYCDyG2T2ZpNcMwDMMwDMMwfQuOz7MOx+cxDMMwTDDCsNE6ntxBQFX4uxZx3R1xLVPM0MnbDu8FANhtAiX5agnam2slvnUSYBjxeWu08yidFklGJHdupBNLTzz2d2YOcPRAeJ6K/eptXepJxpgQSk8Ctq7pXJzgWUNm3VsF1DZJZKXF7+3jdsLzO3KQYuV+QhCTkgoMHBq8TidG84fEdx3arc6XY8Gs1Q8QpSeSba1TtmCM6yg2edTf1Yb9wHfiVzRSalWSb7H9o+oUAAwd2fZ/JDHaob30PrK5DpEMGwVs/oJOX/cpMGR42OrifGDTQfUmWw8DJw9Vp6nw+SV2Edez0oGEQKa+hpa9FBZbPzhjncC+QQhyxwZMuOgagGilmlqBXUeBMYRQr6fZqOjmBHJSywZ9Bld7fGVGLilRq2psk57luPVtYh0xn2mmvzZ4BV8bmf6CIM4Z08TJQwWodqczm2y7Lg3IiH3RAqki5lPOSQOKCBlaELs0tqQU57H+UAdOIpaosT54+aBa1shtCNMJdY4BhBhNfZ3rF2Jai3L/k5vXk2mf75K49MTY39cfrFWvLx0IDM1tO97ADOBAjX4/JQMFsHcb0NqNCdYHFnV9W4ZhYgaL0RgmyfD5Jcr1Y1WZGFCU0/bCridZtmxZ2LqJEyfGZN8TJkwIWvZ4PFi3bh0mTZqEoqIi7Np17Abwz3/+c9DMii+//DJOP/30sH0OGNAm+Jg6dWrnuuuuuw6ff/5553LgfgMpKupex+/OO+8MC7q65JJLMHPmTEyaFD6bh2maWLlyJV555RU899xz2n3PmDEjKOgqKysLM2fOxC233IKMjOAnBB6PB0899RTuu+8+NDe3dYRnzZqF0047DRdffHEXPx3DMAzDMNHglz5SopE4MRp9HErIxIRDC07SYUA9SwclhmKYQOIhC0oELptbKR/qaFd8RP13sBgtqbB6LXLZEifmslL3k0FOYUmMZuH7tSJ5S2ZRolbA2t4eSCnjIoFMM9TB3E1+/eA2Snbatk83KXCM5rpOte2B5xzLaxnGGqb0o8qrjsDNc6hGAYTCarT+yOLqtyGhnlH4/NwrE1wapivkOtQBgDW+KvilDzYR+7ABsr+SBH1PhmEYhmEYpn/D8XmJo6dj9Dg+zzocn8cwDMMwIRjq2CUAwGU3Ay/MDh5Q60gBLvpu/MsVA0SqEzI9G2hQjB49sAtSSgghUDpQLUZ7caXEJ9slPrvbQKGVAfFRojomANgNYFhuhI0P7KTTJpx37O+MSDsKgcVolhCX3QQ5/9nO5fMbF0NIE1Koz6ftR4CJw+NTFr8pScleab6i3paXqTMPGQER2h5QMisA8AXHQUhqvxYHoPd5zv4WkJVHyqBuTv0Id3muVabNfl/i4Ti+pqTEaEqxXghSSqCcEKM5UiDS2tsUqi511KMDhPgjdzCEM3knhexpxFW3Q374bzqDQm4KAD89z8C769XvxE95wMTa3xg4aai1697eKsCn3hVKqfnqdNewAhajxYXTNPL8Fx/FyT/8HcYXtokYVSzYJDFmSPLF0LT6JPYQjj0AMKQfP6h5Qb+TDkFRZg5KWxeT2XZUABMjvP5vaFGvTw+NByws1e+IYfoKlGC1qQ5nFANjh9Cizg52VEicWRrf9qdaPRcicix2QeRHr9GJ538HwhXSeGTmqPPWV0Oa5rE++X719VJw/5ppRwih0QsGp8j6GqCuSp21H4hpRWFJBBVjGxc3fECmPThfYtQgEzecrnmO1gUoOeOQrGN/l+QD6/bp91MiDkHeclr3CuPO7N72DMPEBBajMUySUV4NFN9LPP1iYsbOhw0M7+GxkOXl5UHLgwYNQl5eXkz2fcIJJyiPN2nSJNjtdgwfPrxzfXZ2dlC+wYMHB6WHkp5+7MWe0+kMStNt11UWLFiAv/zlL0HrZs+ejV/96lfkNoZhYPLkyZg8eTJmzZoVVs4OXnvtNTz77LGXb8cddxyWLFlCfg6Xy4U777wTZ5xxBqZNm4bm5mZIKfGzn/0MW7duhaF7Cc4wDMMwTExoNj1kmtNwJaQMDiMFduFQSoooaQcTThPxXbkMN/zSr0yjpHgME0g8ZEGJIM1wQxWL4DEbIaUkxWiUcIjpGayIu9ryJa4+RiqTgIFUQ33fnEisnKPW5Gm9QwRHkWo4IWAo5TMd185W2QIT6mtldySQaTZCjBahf6OSOgbu02GkKNO8prXrul/6yT5g4OdleS3DWKOR2A7JAAAgAElEQVTWVw0/fMq0PAcVgXsMQcyoJy2FSDC9kXpfLVbUqgNdB6cUYZx7gjKNSS4oMZqEiRpfpUUxYnQ0m+ooyURKghmGYRiGYRhGBcfnJY6ejtHj+DxrcHwewzAMwyggRE4AIEZPAB5+DfKJu9sGZQ8fA3HXExCDj0tgAbuHmD0P8ifTwhOam9qEMXmDUZwvEDpouIM9lcCMuSbenGGLednKjqiPOXyABekuJSK65PsQ9oDhc9Sge4q05I0xSCbEuNMgr/gR8OYzAAA7/Ni64wSMKt2kzL/tsMTE4fEROuytArzqsAql2EpSdWeoQtJi18Rq+UPew1L7LWJxA4A2udcTiyG/d7Iy/ee1T+MuqMVoALCzQra3VbGHaotKrByv+gjgUcfSiD++c2yBEqO11yNJidH6gaShO4ixk7TRC/LIPuV0cOeP1f+23/6biS0PGGTMRCCUWA9oEzgoIUQvSEkF8gsjHpOJHmF3QJ5/HbDwFXWGg7uw8I4RGHyX+jniHa9K/FzRneppdlcCpuYkeL382zi5Zb12H6JdCisy81DgOwCn6UGzYpxG2ZHI1/JGUowW0E4KARSM0O6HYfoOROzdcw/DuOYnWHCHgR88a2LpNro/u5OQSceS7ojRpN8PfPQfMl3c8efwlZmEvFpKoLEWyMiBbGkGDu9V5ytiuSJjARlygdSJafuDbM/ifWkKvLigYSEWpJ+vTL/xXxJnFEuUDIzdvRklRssLeDxTOpB+btVB8YePatPFA69A/uY6fWFCRY4Mw/QI/IaYYRimh6iqCjYJ5+RE+YJNg9PpRGpqqvZ4vYVZs2YFLd92223aoKtQsrOzlYFXUsqgfdvtdrz99tuWgsc6Aro6KCsrw5tvvmm5TAzDMAzDdB1qUC2QODEaQEtHPJry9RV2ebbi5UNP46nyB5X/Xjg4B+vqV0bcj4cQlKTZ3HAY6uAhn6kWQzFMIOTg+yQWIQG0FKrJ3wifVMtLAMBOCIeYnsFKPbMLOxwicb9bJOGYy0iDoQnqThRWhF5pVuRpFvJY2U9PYQiDFHx1tG/UNRToXltHfS9Nflp8Fik9zUiHgxA4UsLHUHT9v8Df22GkkOcWy2sZ5hiVXvXsx4A1MRpJaNAI02dYWvMeKak+P/fKpOhHMJHJtdPnd6U3PhGTOiE6wzAMwzAMwzBMIuD4PGtwfB7DMAzDKNDJOA0bxFmXwXhlM8SiGhgvroM46azElS0WHDeaTmsXs5RS4pZ23lkP1Hli/35oB/HImhTJtCOlJAc1i1OmBq+gBt1TuNSTjDHhiO/eFbRc7N2N8c0blHm3a8RB3SVqKVF5mTqzajC8TSNG84XEQRBiNMHihk7E8DEQ//2UOm1/GZ6/iR5c/8oX8XtHXUa0RaVWXqlTQjwAGDHu2N+kGK3dgnJwtzqd5UGRGTiUTtP8PheMpTfbfgT4co+1w5dVqOvmkCzAnUrUaapcQ0ZAsCQ8bohJ0+nExf/BwEyB6WPoLPuqki9WZu1eukwNmI5vNrwfeSeu9vjFzBwYkChpVfexqLYy6JikGC0gniC/CCK15yf3ZZiEYCPk0rVt06sXZAssuMOGmjkGpoxUZ423GE1KiUoi5DYnzYL4aMNyOu2KH6nP9wzNs/u69ufuh/fQMYosHmYCoUS2ofWH6n+lpAIDCmJbpmQkCvnb+Y2LtOlvrottn4iUM7qP/bZW7s2KDyyjEyeeB+RamEyWnwkxTFLAd8UMwzA9RGggVOjMkN0ldH+VlZUx3X8iWL9+PZYtO9bxzMjIwKOP6g29Vvn444+xcePGzuXvfve7OPHEEy1vP2PGjKCArrfffjsm5WIYhmEYRo/H7yHTnIREJB5Q0hWdqKQvsK5+Jf649x58WvsBNjauVv5bWfcxnjkwG/OPEjNotaMbIE1JTajB+AwTSBNxHib74HuqfB6zET5N3XcIIkCK6RFctsjXIpfhtjRzZKyIVPetiMQSgZVyWDmPU4UTRoTH3onsM3QFnSgRoK+hum2tkGaoX9xFFKMR5TFgwGm4un1d1/WvQoV6VB2hrg0M0x+p9KpHAbiMNKTZIr/Ap65gyRfqycSCVrMFS2veU6Zl2XMxMePsBJeI6SouWxp5ra+KkxhNJ0RnGIZhGIZhGIZJBByfFxmOz2MYhmEYAq0Y7ViaSE3cRJ4xJSsPSMtQpx3YBQA4dYQ+rkFKYBs9H0+X2UnIZIrzI8RZVB0GPMR74dBB8rpB9yp4EKx1FDKi0lb1YPPfvSPjJpTZfkS938GZQIZTUZf2RyEwo2QWQJAYTbY0A0f2qfNFMQC9XzCUEMXVVmLSwHpys2Vl8ak/tU0SFcRhSwdaiPmiRHvuTCB7wLFlUozWPolqLXGPmV8YuQz9HHHVbXTi7i1k0qQI175bXzDxzlcS9c36ukfJGXXyBknIPVFYrD0W003GTiKT5J62unLyULpefPh18kXLfPi1en1JPuAs32xtJx19n5Ent23rJcRoFiSnlBjNLQP6bSw0YvoTjlQySTYdi9V1pQicXqxuf176XMLnj1/7U1EPNBLn7uAsCzvYQ19rxegJ6oSsPHp/ddVt/9donr8PGmahYEy/waoYbT/R/yoo7h9i2ijuKyZ5VmvT1+7tbmGCqWxQt3G5AWGHp0XouwPAqNbtdOKYSYBDPcYhCH4mxDBJQT9olRmGYfoniRxkHS8WL14ctHz99dcjMzMzJvteuHBh0PK1114b1fZpaWk49dRTO5c//fTTmJSLYRiGYRg9LWaSiNEo6YZGVNLb8Us//u/I3yFhWsr/fuVr2sHV1ABpl+GGXahnVfRKr3I9wwTiIc7DZB98Hyr36cDjb4RPU/fthHCI6RmsXIsSLemLJGuj6l6isfK9WJF+CSEi7itZPjOFi6hHHe1bNKKwaKCESJH6N41+dTSoy9YmAezudT0aERwpr+3DfTSGiRZKjJbnsDK1NUCr0Zi+yIraxWQ7f272N+Ew1G08k5zkOvKV66uIdqE7SCnhMdVTNya7pJZhGIZhGIZhGMYqHJ+nh+PzGIZhmF6N0InRNFKkXoIQAigYoUyTL/0eADC5BBgZ4fXR8ytiPxh/BxFuVqp+xH0MakAzABQES2VEZm5UZRKu5I4xSCaEYQDfOCdo3UjNQOTjf2PizbWxr0f//Zp6nyMHha+TjXVtYj0VClGLEAKwE+/IAsRoOLArfOB9B5QIrL+iEcUdv/1dMu39jcAXuxPXDgGR20UAkC88ok4oLAm+j+yiGE1kRdeG9UsuuoFOO7IPslr9I99ypkCGU5kEAFhfDnzrSROTHjKx6yhd93YQcsYSQvIppQTmP6feGYsU44o4bjSd+OG/IU0Tt51DP//50YsScz+3FlefCKSUpKxtWkkLUF9tbUfO9r5PuziuhJCcvrBCwjT17XBDs3q9OzCejwWATD9CXPn/6MQvFgUtFg8g8qHtetTYEh85Wrf7QuXqNgMAcO7V6vVpGbSAuK59ApT6KnV6ihPCybFITACkGC34mi0JQXZ/uS4JwwDGnho5I4AzPSsw0fMlmT53lcTKnbFrk6qIsP9AMdoJhfp3dAWOergk0RFxpUN88wcWxWj8TIhhkgEWozEMw/QQubnBD6Nra2tjuv+amhrt8XoDy5cvD1qeOnVqzPb92WefBS3n5uZi9+7dUf0LDALbvXs3TDN5HmYyDMMwTF+lmRhUaxf2hA7I1gmM+iqbGtegxmd9lnMTfnxet4RMbzIblOvTbG44CNGTT7ZaPj7Tf6HkN4mWUUULJfNpMhu18iBKOMT0DDZhQ6rQREch8ZK+SHXfimwsEVgRelk9jyPJ4JLlM1OQAtb2fgYlCrMLBxxG12WJ9HHV1+xI6W6jbYbx7l7XKakKEC5WIftoLEZjmE4oMVquRTGaIMVoyTcLLtM9/NKPRdVvKdOchgtTsi9McImY7kKJ0Sp9sRejtchmUqye7JJahmEYhmEYhmH6DhyfFxmOz2MYhmEYAkMnRusjw7Cogb57tkB6GiGEwKp79Z/1yY9lm8wlRrT6JPYQ4WmUTKYTakCzOxPIDjEKZOZEVzAnP9eOBnH3U0HLIwmZCgA0e4FbXzDR7I1dPTpcJ+EhQq2U9Ugn1aOERFbEaPvL1HkMAxiiFhP2WwYUAKkuZZJ86Gb8+Vr6/J/x79jfI2wnpFapdqAwW7+tbGqg61RRiBAvkhiNEhhl5ukLwUDkDYZ44BUyXT5xt3L98AECn94d+Tq/7TDwmzfpdquMknxSYRlffUYkAKKfiDl6EvHTP9CJaz5Gcb5Aeiqd5baXJOqbkyNmZsN+4CDx+OvCAeXWd+Rqi8kTQgDX/UJ7Lf94K70bv0lfk9MDxhEIFgAy/YnLf0gmyd99L2hZdw/0/kbg2WXxaXvKiL5QhhPIz7CwA+re7JSpEGnqHQghgAzi+XpHn6iO6hv1vufyTLyhxGghdZvqt/ej65L45V+s5QPw4d5LtXluf8mM2TMiUowWMkTkl+fT7eQruU+SaeLJjyAKigGbhbFYLvXE8wzDJBbiCQrDMAwTb0IDoaqrLVr3LdDc3Izm5mCTbV5e73v4ffDgwaDlcePGxWzf+/btC1o+/fTTu7U/0zRRU1PTKwPcGIZhGKY34TE9yvWphjooIl44CeFKX5ZuLK9dFDlTCCtrP8JFudeEzZbuNVvhI0RPLsMNByF60smhGAZokzc0E+1EsouQdMJF6nwB2sSQTHLhsrnR4iNml0HiJX0uI4IkLEnEFJFkZoB1iUZEGVyE76SnoeR5Hf0Mqr/RXclImk394q5VtsAnvaSIkRK1dXwOSl7rNa1d1ynxrNNwwSaCZ4gjJZN9WF7LMNFCCZAGOBTTo0eBZDFan2Nd/QpUeg8r087KujDp+9dMOLl2daR9lVcz1WsX0Ynjue4wDMMwDMMwDJMoOD4vMhyfxzAMwzAEho1OE31EjKYTM61eDEy5HFlpAplOoI4OgcCmg8C4gtgUaU8lYBKvnEoizPEjqQHNBcVhsWtRD5znQbDRMXh4m/CpXe40snW7NntVI/DJNuCCGHVF311Pv7ccqXolWk4IzBwpwMCh6jRKjNYhtAKAQ3vVeQYNhXB0fdK7vogwDMjCYmDn18r0E/JbAKi/s9V7gL2VEsPyIsgTo6CMmFOoJB8wjAjHWb2YTisKESzYiGtNRz2qq1KnRyt37K+crpnoa8tqMunEIoG7LxL4/Qf6GIg31kqYpgyrE6YpsTNKMZr85E36QCxGiz/FJ5BJcumbEBOn4epTBJ5foa4TDS3Awk3AVafEq4DW+XyXuox2AzjPvt76jgL6PuL4U1Dy9r/IrPPWSEwbo24bmzTzproDJ0sdOtJ62RimlyNsNshho4C928ITva2Qfj9Eex+hWD3/YSevr5H4yXmxL+NuUlaN8HsrFYQYTXzjHP12mTlAjeIi2tEn4r4RYxWqnoaJ0Yi62p/6X1F81iyzDr8dvxW/23C8Mv2rcmDX0chtlxWqiTnVc0LCDieXCDy+UN3/GVWxUr2T6++EGHlS29+OyGI0wc+EGCYp4JGTDJNkFOUAOx/uIy/LkpiiJLjXKSwsDFo+dOgQKisrYxIg9fXX4S8EQo/XG6isDL6LzsmJ3Q8Xuu9YUF9fz4FXDMMwDBNnWgjhkTPBghNKPNJXpRt1vhpsaKADASgqvAex07MFJWljgtZTAhWgTaLiMNRBLF5T84aUYQA0m8QTcHRfGBRvKDmAx9SL0RyCA+WSDZeRhhrQ95yJFkFQkq3O9CQ5N2zCjhSRilbZQuaxIk9ryxdBjEYIwJIFSuzWIRihRCPdrVtpBv29NPkbkWlXT3vb5G9Qru/Yn51op3RtWyCUCE71PZGSyT4sr2WYaKn0qqO4cx0RRpN0EruAciZ5kVJiYdUbyjQb7Dg355sJLhETC/Ic6qijuIjRNNfeZBHzMgzDMAzDMP0Xjs9LHD0do8fxeZHh+DyGYRiGIdAN9tZJ03oR4uSzIF/5kzoxYHDwj84W+OMCWg7z9FKJv34nNu+PdmgeVxcPiLAxMaBZOcg3I8o+T1pyxxgkG8JuD5pU6RvNXyHDX4d6Wya5zfYjEheMi0092qae9wcAcPZIxTHKibpTMKJTShGGjRg87QuIg2iqV+fJ6d6EVX2WolJSjDbBsRuGGEWKE1fvAYbF0FNNtUWU1CoIleSkHXHimcErbMSwXr8PssUDtKjjpZHZ+6TcPYFwptHTu+3dBnP2bYAQEIOGAmddBlE6vjP57JGRxWgeL7CnChgRcn3aXwO0+NTblOYT7dw+QtAIAGMmacvBxIDRE+i0dnnmlJHA8yvobJ9ul7jqlJ6Pp9lOXANPGQZkHt5ibcpDuwM4PsDyVliCic1ryOzry+m9NmjkuulmQMxhYQmdkWH6IvmFdJ/h8F6goE1ifVweMDQH2EfM97GCcEN3l6PqkGBLz/ulaQKUtDpUEhsKJbCua/sCZD3xRWTw82ImBIN6B3jsmiWbm4CjB9TZ+tF1SaRnRTUlcq6s0aa/sEJi5uXd6xNJKVFP9CGyXMH7nno8kGoP73+PHgzkfbxAuQ8R+PtS0vNA0jjWkWGSARajMUySYbcJDI/00obpE0yePDls3erVq3HhhZpZKSyyenWwtMLlcuHkk0/u9n57GktGcYu0tsZeqiFDjdEMwzAMw8QcSnrkMlwJLYdOYNQX+bxuCUz4lWlnZE1DmuHGx9XvwoQZlr6y7qMwMRoldAHaBkjbhfrholWBCtN/iVS3khmqfE1mI7yauk+dL0zPEamuJVpE5oxwvESL2nS4bG60+tRitBSRCpuw9jg72X6DaKFkdp72fhAlGO1uO6eT6DX5G2gxmkmI0doFdA6indK1bcHHtv55I0nlGKa/45d+VBMCpDy7NTEa9YSWn4z2LbZ5NmJvi3oQyKTMKchx8Ius3gglQKz2VcCUJgwROzGEThzvSrDcnmEYhmEYhmFC4fi8/gPH50UPx+cxDMMwjAXIAba9jNMuIpPkk/8Dcd0dAIDbpwo8vlCSQqInP5bIzzBx/ze7/72UHVEfpDAbcKVE6KdQg+9VA5qpAfcUruSOMUhGxM2/hfz7/QAAt2zCnVV/xsz8+8n8P31ZYsa5sTk2VY8AYLKiOkhKqldUSh+EGjwdIEaTHuJdCdcnJeLWmZCfvKVMy6zYhnsuOR4PzVf/ttc8beLQHw0MzIzN/QxVh0oGRt6//Nt9dOKk6cHLdlqMhroqej+ZPWwh703ccDfw0u/VafOfBdAe6/DCI8DMlyDO/hYA4MJxwGkjgM936Xc/+jcm6v9qIMV+rG788zO6DSpRz2NFyz0BiCwW4cUbkZ4F6UwDmhVjFNp/m2sntYlitxxS72POYonbzpE4fnDPydGklKTMdtQgAfmvB6zt6JoZEO4AmWlRCbLMOrjMJngU7/qX7wDqmyUynOGfvVHzaChIjNYugWKY/oL44SzIL6co0+Sbz0D8+BEAgM0Q+PWlAre9pD63W3zAloMSo4fEtu2pJrqxuW4Lx6k8SMtdI8mmCIG1rKtqi1mk+kfcN2LCIOpq4PuFA5qOnkqw3pf51q3AW/+wlDXbp7lPATDrXYlBmSZun9r1Z0StPsAXPjQRAJCeGryc6xb42TSBP3x47LcVAvj1hH0QHxMHCJQ0UrLqQFwZkfMwDBN3+sgTeYZhmN7HsGHDMGzYsKB1CxaoDbTRsnDhwqDl0047DSkpKTHZdyIZMCA4CrGqSt9p7uq+nU4nTNOElLJb/4YPHx6z8jEMwzAMo8ZDiNFSEy1Go6QbRPl6M1JKLK9dpEzLdwzBDYN+gqsH3oxxbvWMWV/Wf4ZWM1hyoxPIuWxuOIS67+qVsQ+eZ/oWlCwI0At/kgFShORvhM+k5UEOg8VoyYbLphc9JFpEFkkClkySMF1ZovneIn2mZJLBqaD7GW1tHCX56u5v2SEyU0HJzwCNuKz9e6au6z6L13Wq36BqN6nfVnd9YJj+RI2vUikzBoA8R3dnJudBqX2JhVVvkGnTc69IYEmYWJLnUEfa+6QPdX79bI7RQj0fsQsHHEbve1/FMAzDMAzDMEzvhOPzIsPxeQzDMAzTBQxbT5cgJgi7HbjoBjJdHj0AABgxQGDbg/qhZw+8K3Gwpvvvinao5/ehRTKBEFIZUaQSo0U5cN5Fv0tnCK78UdDifUdn44X9N2k3OVwXm/eN2w+r199zsVCLgMvL1BvoxA0WxGjwEHEWLEZTIkaMpRMP7MSsy/Uijv9dGrv31duPqNePjDDXmNy7lU781q0QoWJNahC+3wfU6sRoUcod+zHi2z+zltHbCvnE3ZBmWzyFzRBY/EsD939T4NzjNZv5gbfWBa+b9a66LuZnAFlp4fVY+nzAwd3KbcQDr1gpPRMDxMwX1QmH90G2tsCdKvDZr/T9odnv92zczJq9dFqJg+hkdXDSFODMSyHu/l+IH88OShIZOUBmLubu/z65+fPL1Z+9QT1HLgAgvSOeb0ABBF8bmX6GGHcqnfjy40GTQ/zobAN//C+6H/SzVwh7UDeoalSf0zlW5kEsp2WfUN2bBUL1cTqEaHXV0W3H9F+oCWACxWiUmNZmAwYfF/syJTHihrst5/V6miPm+Z/XJRpbut4v0vYfUsPXzb5K4O83Clx+EnD9qQLv/czAdz6g+y1B9/pWxGhp/EyIYZIBFqMxDMP0IBddFDzT0osvvgivlx7wboWKigq8/fbb2uP0FoYMGRK0vGnTppjte9CgYwP9mpubsXev5gkgwzAMwzBJQ7Opnj3EqZiBKJ5Q4hFKVNKb2dW8FYdby5VpZ2RN6wwWOj3rPGWeZtODdQ0rg9ZRchIDBlKFEw6hDhzyyu71lZm+j+4cdCZYoBgtlAipVbagWRIzJwGwwcLDeCahUL+l1fRYk2yiNh2678YVxbU+4mdOcL8hWqjydQjIKFFYd3/LVOGEAXUQf5NfJ0ZTp6UZbS8C7ULdTlm9rlPiNVX/rz/10RimK1R6iQhu0MKkUJSDBQBIFqP1Gcqbd2NT4xpl2gnuiShI7V+BP32JXDs9WqNK0z50BVJsmkRSXoZhGIZhGIZh+gccn6eH4/MYhmEYhkBq3nuEim16MaJ4HJ246thEmsX5AjPOpQfj+01gwabuvyvaWaHeR8lAvRBJ1lcfGywfSmFx+LpoB847+dl2tIiMHCA9O2jd9XWvYtaRmeQ2izbH5n3jXqIqjCsgNiDkDaKolD6InYjXChSjNROT7LJoj2bSdOVqWb4DQgj8YDLdFry3ITb1p8UrcbhOnVaSr2+LsPojMkmUjA9fSYrR/EBdJX0cln9YJ3uA9XPu4G4gQG6Xliow83IDi++04XTFpaSD9zceq3v1zXQ9LMomEo7sC247gjbStENMbKG+a9MEDu4CAOS6BeZcp2mHNvZs3IzuOlpcuZpME3c9AeOJRTBmvw5x2c3quKDCEpS2EiJRAJ9sI8RoGneKuyOmQNVXY5j+wIln0mmVh4IWf3qugI24Dd11NIZlaqeK6MbmWrktomRTmblt9wg6KIF1pxiN6OhH2i/T/7AiRjuiHiOHQcMgKBF2X2XgUMBhbeKf4307I+apbwaW0d2GiEQrRhNC4JazDLw5w4aXbjVw4ThB/74pqUB+4bFlK781C1wZJinoO0/kGYZheiE///nPgx4YVVRU4Nlnn+3WPufMmRMUvOV2u/HDH/6wW/vsKc48M/gGf8mSJTHb9+TJk4OWYzUbKMMwDMMw8aWFEKMlWnBCCVco4VdvZnntIuV6AQOnZ57buTw+fSLctgxl3pW1wQEflJwkzZYOIQTshvqhqk96g2bAYZhQqHPQaaTBEMk9Y69OCFXvq1GutwsHKSdheo5Iss6EX7OSTNSmQyf2iqacurwGbEgRirdiSQT1PXQIRihRWHd/SyEE0mzqYEBdH8djEmK09n1R13Wv2WqpXKRYRfE9RfruGKa/U+lVT4+eZqRHIVfkvkdfZ1H1m2Ta9NwrElgSJta4bRlkP6jKG2GG6Cih7vsTLbZnGIZhGIZhGIbh+Dw9HJ/HMAzDMF3ASO74k6g47UIySX7wUtDyReP074huek6SUgyrlBGPqksize+zXzMwt7AkfJ0rnRYSqXAm92SMSYti8PAFjepYRADYfLD7h/T6JOoICcuQrPA6LJvqgapDitwAihR1pwNq8LQ/QG7kISag40HVNJQcZ9MXAIALNS7HL3YDD8030eztXjtUTYhAAGBIln5bWaMxk5x6fvg6XTtUTTSIaRn9T9TQDYQQ6u+egpC5XKi5Bj63XOIfn5qQUuIoPe8kxhcp2qBDeyDv/S96IxZGJY4hI2iJylfLOv+8YCxdFyrqgdqmnotxr6in06Y1f0InElLKIIpKcHzrNjK5kgjNo8QmDtmKFLRfM/MGRz4+w/RFxkyk0zatClp02Om2Z0cF0NgS27anijinrYjR5O7N6gTVfVkIIoOQvx5tv1Gor1Zvx9JYJhQrYrQ6dX1C7iD1+j6MMAzLz0gmtn6FHAvhfxfNMfH5zq61TVoxmjPy9rLFQ4vR7Cltn7cDK5+b5YsMkxSwGI1hGKYHGTt2LC6++OKgdb/61a9w+LB6gFokNm3ahD/84Q9B62666Sbk5vbOm7vp04Mfrs2dOxf19ZondVFw4YXBL3L/8Y9/xGS/DMMwDMPEF4+pjjpwGokNPqLEIx5/Y58SdzWbHnxZ95kybZz7FGQ78jqX7cKBSRlnK/NubVofNMiakqt0fK8OQQdu+GT3ZnBn+jakPCeJxE8UKsFPB3WEGE13rjA9ByXP7ED3W8eDSKKbRJdHh+5cjaacus+cZnMnvVBQ188AohOFRQv1GzT56ci9RiLN3S5Go9oqq9d06vOqvifqu+uL8lqG6QqV3iPK9XmOgZb3Qbagfec2qF9T5a3A6rpPlWnDnSMx0qUZbcAkPUII8nyn2oeuEs/+CsMwDMMwDMMwTDRwfHkdzi0AACAASURBVJ4ejs9jGIZhmC5g9J1hWKJY89x/7VLIZfM7Fy86AbgowmuCaY+beH1N114amabEzliL0VJSgQEFYauFEEA0g+dTWYzWFcQv/hS2bkLzGjL/w+/Jbsde6qRWeap54nRSvaJSOo0aPO33HfvbQ8QpOPldCYWghBnb10HWV+OKkwXpOACA37wlccGfTPjNrtcjSu4DWJCB1FWRScrPphWjEe/usnrnvWdPIn5wL5A1wFJeOesHyvW3naOPNfvRixIz5kpSJAMA/3NR8D7kgZ2Q/28KsGODeoO8IRAsUkwYIiUVGDRMmSb/8GPIdinP8YMFvnkivZ8nl/Rc8Iyu/g0+tI5MEwUjIu+8sAQGJCZ5vojq2I2E2CQ9cCJWlo0w/RTx3f8m0+Svvw1ZWxm07n+/S1+LTphpwuxG/yeUrorRpJTAq3PUiTrpcAeZRHuwfR2k30/3tajtmH4Mdb4cO09kPVGf+ul1Sdz5V0v5HA1H8ejV1sZhnPNHEws3Rd82NRCycwBIV88JG8yB3WRS2Oe0IkZj+SLDJAV954k8wzBML+Wxxx5DWtqxQdM1NTW46qqr0NCgmSpCQUVFBa655hq0trZ2rhsyZAjuv//+mJU10YwbNw7nnHNO53JdXR3uueeemOz74osvRknJsRvqVatW4V//+ldM9s0wDMMwTPxoNj3K9amJFqPZVFEygB8+eGWrMq03srZ+OVqk+qniGVnTwtadnnWeMq+ExOd1SzqXO8QuoXSIbBwihSxTX/p+mdgTqW4lM5TMBwDq/OoZaewsRktKdL+llfRYkyqcEJrHwIkujw7duRpNOXWCtWT6vBSUMKRFNsMvfREFo907trqPoxOjUWlpRocYTX1dt3pNbyLadtX3RH13fU1eyzBdpSoGYjQKyWa0PsHH1e/AhF+ZNj33yqSXizKRyXWoR48FysxjAXX97g19MYZhGIZhGIZh+h4cn0fD8XkMwzAM0wVEHxuGdeP/kEny+Yc7/7YZAm/NMFCQTe/KbwKz3jW7VIwDtUCLT51WOjDC+4n9O9TrC4ohKJFdNIPnWYzWNSZfErZKALiz8nFykxUaT5kVdFIYpcihvEyd2ZECDBxK78xGxGz5AiaIo8RoLnVcBgOgsJhOm/8cUh0CZQ/p2+DPyoAPv+56EaKuQ4HUqWP8cNEN6vWaQfiyhnh3l8GD8qNFlJ4I8fdlED96ADj/O8D519GZm+ohG2rDVg/KFHjlR/pr0TOfSHy1j46bGDUoeFm+/jRQpZG2WxHIMLFF1wa988/OP9/4Md0O3fdmz8XOVDeqj/3jqYIUgYqf/kG5Pixfu9zxR9X/VKZTbWdDi7pMbjPAZMqyEaafInLygSHD6QzvPR+0+J1T6evQnkpgybbYlMs0adFnrjvCfdlXn9FplAA3EF178MVCuq/F7QgTChXjGBhHXl+jztNPxWg492pr+eqqcOsUA5/ebeCn5+nbhFYf8OD86J8RNRBiVSEAl5XhU/uJ+3wg/HPaLewwK8/CQRmGiTd97Ik8wzBM72P06NH461+DLbPLly/HxRdfjPLyckv72L59O6ZNm4bNmzd3rjMMAy+++CLy8yNNkZTchAaOPfnkk3jssccsb19bW4vm5nCZh91ux6xZs4LW3X777Xj99dejLuOiRYuwc2c338IxDMMwDGOJZr96Sj+XkaZcHy90whUPISvpjSyvXaRcn27Lwvj0iWHrh6YWoyDlOOU2K2s/6hSSUN9Rx/eqF6N5yTSGiacsKN6kGrS8qs6nfvGiO1eYniPSNYmSa8YLIUSvEYXpvrtoyunU7iexfYauoPusHrMprhJISoxGXbv90kdKVDskZZTE0eo1nTq26nuivjsTJllOhulPHI2JGE0dzMBitN5Pk78Bn9UsUKblOwbj5PTTElwiJh7k2tXne5WPmHW+izSbxPMbW/L3xRiGYRiGYRiG6XtwfJ4ejs9jGIZhGBWa9x6GLXHFSABi6Eg6cfNqyAC5k8Mu8OAV+oGv68uBKkLMoaNM85i6JEJ3S5YTYjSdVCYauRCL0bqEsDuUkpnjW7aT2yzZ2r13jpU6qZXqFQVVdwpGQNg05zo1eNoXYPdrVhdGuJInTifpKKLbI/nVMgDA8DzAnarfzWuru16PKBFIWgrgdESQgdRXqddTsg7dIHxKmBWN1JHpRAwZDvG9u2Hc/xyM+58HrvgRnXnLauXqScP1v78pgXe+Ute9XDdgGCHbr1mq3Z8lgQwTW4pKySS59pPOv22GwEgizEYIoNnbM/EzVepX9Mh1+oAj+9SJms8cnK+tPuYSkzxTx6bEJunmsckKBLdrTH/m+FPIpMB2BwDcqQKFGkl1d/vRHTS2tl3TVGRHui0KKXMgwkp7k0PHMMovPwYaWGTFWIQSo5kBkq56QrSXoTnR+jAi1QUMKIicsV1QeGapwJzrDDx0pb6PvKwMaPVF1z5R/Qd3iqJPrYISoA8ZDuEIGX8V6RmfYQDp/bNOMEyywWI0hmGYJODmm2/GjBkzgtZ99tlnGDt2LGbPno19+9QPoMrKynDfffdh/Pjx2LBhQ1Dao48+imnTpsWtzInivPPOw5133hm07q677sLll1+OL7/8UrmNaZpYsWIFfv7zn2Po0KE4dOiQMt/111+Pm2++uXO5tbUVV199Nb773e+S+wYAv9+PtWvX4ne/+x3Gjh2L888/H3v37u3Cp2MYhmEYJlqaTY9yvdNIbPCRTjzSRMhKehuHW/djh2ezMu20zHOUkhMhBM7IOk+5TYX3IHZ6tgCgv6MOmYnDoAM+fLKVTGMYShaUFgNZULwxhEEKm+r96hd5lGyI6Vkiyal0krJ44dQIKJLp/NAJwaKRfuk+UyzkYfFGV36PvzGiYLRbxyb2QV27df2eNKNNsuYw1BJHq9d0UgSnKGuk745h+jtVpBhtkHK9CkGI0Zjezyc1H5ASyWm5V8AQfWugV38l16EePVblJWad7yK9WVrNMAzDMAzDMEzfhOPzaDg+j2EYhmGixOhjw7BOv0ifvj9YHHXJCQKOCK8MbnrWhJ8aTU+wo4KWyWSnRXg/dYAQqBaES7k6iUbCkeK0npcJ5qzLwlZd0vABmf2+NyV2EnXBCpTUKtUOOL31MB//GcwbToT5reNgfus4yGd+o94gkpCIFKMFTBDnaVDnYTEazfDRdNpn70D6fBBC4IqT9W3C8ytk5yS+0UKJHXOt/Gx1armCoMRoNju9r2ri3V1mnoWCMJEQUy4n0+SvrgySgnYw1MJl41PCwRBaf2RTPbB9nXZf4my6jEx80NWLUMHG+EJ1NimBXUdjWKgooK6Bub7KtoKp0ElkA2m/Lub41QLIxhagRSGEayTFaAGFjUZWyzB9DG27s+J9yJbgOK5vafpAD86XuPp//Vhf3j1BWoNm/uGMCLdFcj8hHQaA0y+MfPDxk+m0LWvoNKqvxfRfKDFaIPUs2gujYETkPCEy6Ej3ZqYEdldGV4yGFnU7FqkN6kBuXKlOUPR7hGHon/Nl5LTlYRimx9E8QWEYhmESyRNPPIGcnBw89NBDnQ/h6+vrcc899+Dee+/F2LFjMXToUOTk5KCyshJ79uzB1q1bw/bjcDgwZ84c3H777Yn+CHHj0Ucfxd69e/Haa691rnvnnXfwzjvvoKCgAOPHj0deXh5aWlpw6NAhrF+/HvX19Zb2/fTTT6O6uhpvvPFG57q5c+di7ty5yM/Px0knnYS8vDwYhoG6ujocOHAAmzdvVs5yyTAMwzBM/Gk21VMK6YQv8YCSFwEgZSW9jeW1i8i0yVnnk2mTMs/BGxXPw4QZlray7iOUpI1Bk6kO+umQmdiFWqACAF7TS6YxTG8ffO+yuZXnR52PEqPxo71kRHeNAHpGzJVmuEG9U0qm80MntYpG+qX7TD0hposWXfmbzEZaMBqDupVmSyeOq752U+sD9+UgJI4+6YMpTRhC/8KQFMEpPq/uu/OYjcjBAO2xGKYv45c+VPvUV4M8Bz3bonV6ZsZbJjZ4zVYsqZ6vTEu3ZeH0zHMTXCImXujEaFJKCCuBYRaIRmzKMAzDMAzDMAyTKDg+j4bj8xiGYRgmFM2z0j42IFJkDwB+8SfIP9+hTJcP3wrxr1WdywMzBR7/tsBPX6bfDb2zHrj93xLPfM/6M+cdhAOoVP1YO5hy9QB8oZN9WB08n+KM2bPz/oj4zi8h1ywBtn/VuW6w/zDs0gsfEUtwxmwTG35rYGBm9N87JbXKcwO44yJgCy3nDaKLYjTp8x5rPTzqWFc4+V0JhRAC8vJbgLf/qUyXD98Kcf9z+N3lAv/+XP9++tdvSjx8ZVfqkHq9NTGaWhhEihhtGstktXrSs6ikjgzNRI3kvLUF8u4rgL8sCGr/7bbI9YmsPwHhhFJKyFtO0+/oguuB0yKIS5nYM2k6MKAAOHogPK1iP2RzE4Sz7cecc52B19eGx8kDwIx/m/jorsRPPEfVv5xPX1InGAYweLi1nWcPANyZyPWpBZAAUN0EDM4KXtdAiNHSAuMBuV1j+jNTrwIe+AGZLO+9BuKxdzuX771E4KkldB/ojbXAos0mvvi1gVGDunYP06iZ7zg9NcLGlBjNnQmRFVnuKlKdkMeNBvZsCU/csprekNsRJgyi/geKQom+u8jIjkN5egkFI4D1y/R5PI2QrS0QKW0NwpghAvddKvDgfLpt+ulcEx/eYb1vRAkaI7ZBAGRrC7D0TXUidZ9vdwCtRKfFQtvFMExi6FtP5BmGYXo5DzzwABYsWICRI0cGrZdS4uuvv8YHH3yAl19+GQsWLFAGXZ1yyilYvnx5nwq6AgCbzYZXX30VM2fOhMMR/BLpwIED+PDDDzF37lzMmzcPy5Ytsxx0BbQFqs2bNw+PPvoonM5gZXBFRQUWLVqEV199FS+//DLmz5+PtWvXhgVdORwOuN38gophGIZhEkGz6VGudxquhJYjRaTCgPrBHDX4tzfhlz58XvuxMm2E83gMSR1Kbptpz8ZY9ynKtC/rl6HVbIk4QJoSqACAV2retjD9nt4++J4SNtX5CTGaQUsEmZ4jkhitJ8RcTqJMAgZSjeSZ2Vh3rkYj/dIJ1npCTBctun5Nra8KJvzKtFjUrTSDEKP5CTGapt9zTIxGt1U+qReemtIk+3+q+qI7/3RlZZj+QLX3KKRCXgzERozGWrTezaq6pajzqwNYp2ZfghTDQlQJ0yugzvcW2YxGv/V3K5HwEGL73tAXYxiGYRiGYRimb8PxeWo4Po9hGIZhQtG8+ehjYjQAEFf/mE7c/hWkNzhea8a5BjbM1H8Pzy+XqKi3/gZpB+EAKhmoH9AvPY1A5UF1YkExvWGGxcHzqYmNS+xriLzBEE+GxyH++dBd5DYV9cDzK7r29rGSkhLZGq1L0QCIoaX6DHZiMktfQAyEh5hozqWOy2DaEJffSicufBmyYj+K8wWuVoeodvLUxxJNLdHXI7IOWZm7mRSjEYPpbZpJUSkxGg/MjwnCMICLbqAzrPskqjYjEkFivQ0rSKEnAIhZcyHu+xcE1c4wcUMYBsRfF9IZAn63whyBQZnqbEu2AX4zsVE0UkpajFZGCE4GDe2UmkRCCAEUliDPT7RzULeflBgtPUiMZlFWyzB9EJGSCvHPz+kMqxZC7t7cuViQLfDna/X3R/XNwDOfdL0Nos5bAEiPFG5OCat/PNvy8cUNd6sTmgnpMMDtCBMO9dwmUIxWrx6fY/lZQR9EFIywljHkvmfWtwx88Wv6GdHCzYAZRd+onuo/WOm2LHuXTBKUGE13X0bdyzEMk3D4DplhGCbJmD59OjZt2oT/+7//w7/+9S8sXboUPp+PzJ+amooLLrgAt956Ky677LI+OyOREAK//e1vceONN+KRRx7BvHnzUFVFP1BLT0/H9OnT8YMf/ADDhg2LuO+7774bN954I+bMmYOXX34Ze/bs0W6TkZGBKVOm4NJLL8W1116LvDzu4DIMwzBMvJFSasRoVqIOYocQAmk2Nxr8dWFp1OBfADjcuh+f1XyIvc07lVICp5GGkWknYGr2pXAYtBwscD+DUgpxeta5KHaN7tJnWVO/DOvqV6LGV9m5rtVsIUVMZ2RpZkrrzHMeNjaGz8rSbDbhj3t/haPew8rtOgZId0eg0sEOzxZ8XvsxDrXus5S/g0x7Nsa7J+HUzKnavnWr2YKlNe9je9NGNGt+81AMYcOw1BJMyb4Q+SlDyHx+6cPSmvextXE9PGY0IheBotThOCNrGoY6NcF9UdJserCk+l2UeTaj1Uze2dn3t+xWrtdJkpIJShJACQp0EkGm54gke9C1cfGCOgdcRhoMkTxB27rvLpJwLjhvbPbTUxjCBqeRpry+vH7kOXK7WEggqbqyt3kHHt97b9h6SjZmwECqaIuCsGvaKp/0IgX0m8pmswmSGHSgKqvDSIFDpChFqq8cfrpT1hYtNmHHcOconJNzCbLtHETB9E4qvUTgNIDcKMRogppNT4OUEp/XLcHGxi9Q5yMCSoijDUkdijMyp2G4a2Tk7FHwdeMafFn3KXlvMjClABMzpmC0+6SYHjcZMaWJRdXqWfJSRCrOzrk4wSVi4onufH+i/Hcxk+AdaFG/Y+kJSTDDMAzDMAzDMEwoHJ+nhuPzGIZhGMYihnoyzV7PpOnAF4vUaQd2AscFx6aNKxD4rwkCr32pfp/r9QNr9wIXjLN2+B0V6v0U50fY8MAuOq2IGPQKQGTmWpv4h8Vo3Ua43JCX3gTMf7Zz3fGt4RLiQFbu7JrMoVw9DxAG+CvVCRRDR+nTHcT7lNaAuLoWIqbQyXVKS1Fpm8jAVE/6hS1fAvmFuPlMA/PWEHkA1DUDmw8BE46L7vDlxC3QgAjhJtLTSIvRsog4E60YrUK5WvRjUUOsEceN1l8HNq0CxkwMWnXH+QJ/Whh9+5SXHvAcYZNGgJOeDUy9qs8+d+gVDB7edm76Fc+JysuA0vGdi8cPAg6HDyNoy1oNHJfAxxhHG4AW4tFWHnUNHEhPkq4kvwC5278mk8urgXEFwesaSTFagDyUhUZMf2foSMBmA/zqCZOx6Qtg+JjOxYnDBSJNYbqsrBtiNM0wEbcm/F021AI16v6L7r4sjMIox78IweJhJhyqL9UuRpM+L1Ctjhvt19elSPfBHVTsBwYEj4WbcJzAmSXAMsL/e6AWKLJ4K0O1QxHljADk15q+9nHHq9fr7ssysiMflGGYhMBiNIZhmCTEbrfj+uuvx/XXX4/GxkZ8+eWXKCsrQ0VFBVpbW5GamopBgwZh1KhROOWUU5Ca2vWBKjNnzsTMmTO7tO2SJUsSuh0AjBgxAs888wyefvpprFmzBlu2bMHRo0fR0NAAt9uNgQMHYvTo0TjxxBPDZq+MxODBg/HII4/gkUcewa5du7BmzRpUVFSguroahmEgIyMDBQUFGD16NEaOHAmbrY++2GYYhmGYJMUrW2FC/cDfaSQ+WMRlqMVoTYTE6mDLPjy+715ScNTBxsbV2Ny4Fj8puh+GCO9vhO5nu2cjVtYtxm2Fv8ZY9zei+gwfVL6Gt4/+23L+FJGKCRlnRcx3gnsS3EYGGs3wz1pOiKuAYwOkdQIVlegklK8bvsTT+x+BH/QABh1r6pfjYOs+XJF/ozLdL3342/5HsLlpXZf2v61pA1bVLcEvhz2MgSkFYelSSvz9wO+xvmFVl/Zf5vkaK2oX42dDf4cRLuLhbRR4zVb8dd9M7GrWB6QlM7GQBSWCaMupO1eYniPS79gTgUuUDCySxC3R6EQZ0ZRV1y/oLe1BmuFWitGOeA+Q28Ti96TEYS2yGWWeTVHsJ6OzrutkgJGu6zo5qJP4LV2GG15/+H4PtO7VHisSW5vWY3X9p7hr2CPIYjka0wup9KnFaOm2zKjup+jrGB1Q9UbF86R4KxJlnq+xsvYjzCj6DUaljY+8gQVW1C7Gi4f+GuG4m7Ci9iPcNOQOTMycEpPjJisbGr7A4db9yrTJWdORbiOmOWZ6JZm2bNiFHT4Zfr+8t4WemTxWJFpszzAMwzAMwzAMQ8HxeTQcn8cwDMMwETCSZ/KxWCKmXwtJiNHkK3MgfvW/YeuvnUSL0QBg1rsmLhgX+XoupcQOYgx9aSQx2n7i2bbNBgzSyFszLY7IZYlVTBDTvw0ZIEab0rQMQ7wHcdChnlj0jbVAdaNEjju6GJsdR9T1cUTtBus7cbmBkyO8H6TkC81tMQ5SSqCVsMFQUjUGACDcmZBnXAwsm69MlxtXQky5HOeNBvLcQKVmztk5iyReuCW6OlRGSBpH5EfYz/6ddFrBCPV63QB8T4N6fRYLo2PGuVcBf7uPTJarFkJc/eOgdddO7JoYbcSAgP2u+IDOOO0alqL1MMJuhxwyvE2CFoL8zXXALb8Fvn8PhBC4eoLAJ9vV9WHj/sSK0crouRJR3LpbuV6cdVlUxxDTr0Xqsvko9O7HfkehogwSF44Lrr+kGE0GNN4sfGT6OcLlhjzzm8AnbynT5dqlEJccG9Ny2ghgWC6wl57PAp/vAi79ix//uNHAkOzoriuNREiv3QBSdEYSXV+oMI5itBQnXzsZBRFiXA/toUXMVN+9PzD54rb7YY/mJgtoew4TIhAGgCu+IbBsh7pvdMYjJjbNMpDhjHy+NlD9Byu30tQzIgCYcJ56ve6+LC3DwkEZhkkELEZjGIZJctxuN84++2ycffbZPV2UpMIwDEycOBETJ4Z3oGPBiBEjMGJEP76JYRiGYZgkpNn0kGk9IkazuQFv+HqPX/0QcGnNexGlaB1safoKOz1bUZo2NixtSc38sP34pA8fVs6LSozWarbgw8p5lvMDwCkZk+GyRR7E7DAcmJg5BUtr3otq/x1CFyEE7MIBnwz/gr1mZDHaB1X/6bIUrYPFVW/jwtyrlZKZnZ6tXZaidVDnr8GnNR/i6oE3haWVt+zqshStgxbZjEVVb+GHhXd3az8AsLlpXa+WogFAWpLJnyh0UigVLEZLTigJWU9CCbOirXPxRif2iqashrDBaaQpxWLJJoOjcNncgI+I/CaIxe+ZZsRm5rTAsjgMjfDUVHSmAmgi+lWhxwjEZXOjzk9MA91NKr2H/z979x0eR3WvD/w9s7vSFnW5W66SKwYXwDRjeu+QS8cJkIQQkpAAISGFhNSbC5cEAiGBkHDzIwkhkIQWeu8ldDC4AcY2YGzZliWtpN2d8/tDWlnaPd8zs6vVqvj9PA8P0pyZM8fSaObMzpn34Pktj+Hg2uP7pX6i/rQxYZ7hriY0qiD1a20e0NCaasYjm+7qU90J3YEHG/9VkGA0rTXu2XCLv3Xh4t6Ntw77YDQptE7Bwf7VRxe5NdTfHOWgOjgCnyY+HpD9D5V7MyIiIiIi2r5wfJ4Zx+cREREJnGEa3HnwqcDPv2Auu/sP0Icvgdpxj16Lj5kHnH+AwlUPm58TPbMSuPt1jSN3sr/4urEZ2CIMDaz3DCMSXnodMwkqaBlXU+FzMqwSBqMVxM779fo2iBT+uvZ07Dv5YXGTY6518cTFuf29LReCYerXP++7DnX5nfZjB5CD0dIvkCctYyFKwr7bsr1S3/gVtBCMhr/8L/SXforSkMLfznFw4JVCoAGAm5/XOG8/jd2m+g/LWG5+rI4Gr8fqYkhjEBglhDTaXsCXMECoYNT4euCbv4G+/MvmFZ75N3R7G1Tptr/ZXScDPz9e4ZJ/5BaOlj5+dFsr8PJjcps+f1lO9VI/qWswBqMBgL7xMqhQCXDaRfjSYoXzbzEfC0dd48K9vnh9xuVCMGhZIIFRKeHi+JnzctvJ/v8FXLYE9R0rjcFopmtwc7u5XTGXwWhEPanzr4QWgtFw383Q3/odVLCz3xBwFG75ooOjr3GxQchRBYB73wQOuNLFmz904Dj++0LNbeblsVKPicGF8yZKSoGR2ecMUfUof8FM3fWzb00G0rGaHuO67j1527GTC96coUJFy4Ef3gz9g9OAtux3MLqtMd/7fG1/hW/eZr72r90MnHqDi7u+6t0/koPRfJzLPhTORTvvB1UiJKsFLPf/0r0/ERXd8JyqhIiIiIiIiIYdU7hJWngAQmikMI5W1/yEYWV8aU71S+tLgVnL42+KYQQma9s/QLsWnlwI9qw80Pe6e1QKsylYlAcqu78OCYFPCUNYWk+udrEq3vcQrxSSeL9tubHsvQLUDwAr428bl68Qlheq/lytaC1MPQOpLFAx0E3wpTxYldP6hQowosIqdSJwYH5oMzk8rcit6dTz/NrTYPvbkNoJ5N5WqS7bPgaTXNtZqsIIOSV932+O5yFJRY96gkpuV0LbA0+twbgB8wD0/v4dF+o6TVRsGxPmgY4jChSMJnm/bTlcpPpcT6H6tk2pTWjMIXjyo44PreeioW5l61Lx3nPn8r0womR0kVtExVAbGrjf61DpixERERERERERERGJ1PB8DUsFg8Au8ngvfeeNWcsCjsIvT3Kwz3S53uufkEOL0lZaHt3Uj7Rvq6UwovH19g39hnCUMhitEJRSneF7PSyKP4uHPzhY3OapFcDb6/yPh0y5Gqs2mMsaOoTjJGvFnaDmLvJeLyJMBNPaNeFtQniTG+gMhyArNXoicPTZ8gpvPgcA2H+mQtPVDmxZH79/yv8xtKlFY6OQwdHgFdIohYGMndwdZJIln2A0v6GO5Is6+mzg5K/LKzzVexI4pRS+daiDdZc72H2q//00jOo6fh43T1oGAOrLP4eqGuG/Uuo/ExqsxfqOGwAAoaDCnpbuxqaW3AL0+kLqSzWUbIDx7DVrF+8Q0AzKcYCaMWhIrDK3wRDOJgWbdAejhaO9wgeJtldqVB1w2kXyCi880Ovb3acqvP9zBzd+1t4/eedj4PFlubWlpUMIWvTqwkr3ZeOmdp4/fFJKAeNyuMiG2Lcmg3yD0WrHQoWL/27iYKL2PBzqXx9AXXGXeO+q3zOP5Q0FFXazzIVzzxvAwquqIQAAIABJREFUBxu9+0ctUv/B489dp1LAOnM/RR39eXlD6X4NACLb9/FANJgMz0/kiYiIiIiIaNixBmM4xR+AFBGC0eIpc4Bba8oyJYupHtc8wmJLslHcJpcX9ptTTTm1Z1zJJNRHZvtef0JpPSblEABUqsKoj8zq/j4khKh4B6i0QsN7QJ0f0u8gVYBgBwBoTZnrjwvLc65faH+upJ/DUBFSJZgWnTPQzfBldmx+TuvPjO3UTy2hvnCUgzllOxvLdizbtcit6TQ7tsC4fAdh+UCJBsowOZw9YnpUaBxGhMbkVJfp78mBg5mxuXm3r5hyPR/sUFaY3+XkcANiTnmf6+l5zElhpwCQ9Ag8la77DhwEhXpz/dnlaqhfF2n7JQWj1QRzC0ZT5iGTolzvgyRtbhwpnexzPR2u5SUEgasL0/8fjB7c9E+x7MCaY4vYEiqmuWW7Dch+ywIVmBD2eBGNiIiIiIiIiIiIaLDL4aXuIWfKDnLZ8lfFokPnyM+P7n4d2Nxqf/F15afm8mgJMCZjvg2dTEKvegv63Zeh168B1ppfesV4j5fp/YYLMRitYNTU7ONrfttrCFnGAz6x3H+ozJpNQIfwOLG+QzhOMjX4HFMSFSazjHeNJ+iwPJNkeIMvato8ubDH+agsrPCtQ+Vz0Cur/R9DtpDGaR7zDuk1QhhIneXZWD7BaJUMRis0NW+xWKaFa9+YSoVvHuK/PzC5tqu+Za/IK9Xv6Ls+6l/K1h8CgI/eh966GQAwY4x8/nn7owI2ysNGYWjOxNRac0GdPfxNVFGNeiFsdIVhWJIUbFKWnoSeYY9E3ZStH7ri9axF0VKFJXsolHtkC77yYW4hjWKgodCF1W2t0Mtfg14m3C/a+kKSXLZh6DCZeAWjbTKPpcWYif3TniFGxSqgdjsY+MxXzCv851Fo1/zO3pzx9vHFr37ovf/mNiGgUTjfpc9DWP0ukBA+X7CF5wcCcllEuPcnoqIbxp/IExERERER0XDS5poDx4CBCUaLBoRgNCEsI25pv4kUmmXdxvUfOtCSQzBaLFCO08ec1zkDi09KKZw6+lxUBKo813UQwGljvoISZ9uDCSnsxCtApZBhJdLvQOv+DV4rVKBZUieQcO1Bcn4M5QAYBw5OHX3ugJwj8tEQmY19qg73te78sj2wa4U8KIcG1vEjP4eaYO9pi+sjs7Bv1RED0p4JpVNxSM0JvZbNjM7FXlXyzLsD5eTR56AsUNH9fdiJ4LQcr0EAcFjtiRhfOrn7ewWFkzLqHswWVR2CGVF/A95qQ6Nx7IglBdlvQAVxxtivitdhPxoiO/Q6l0lhp4D3dV0qt9W5T9XhaIh4DFDrg0IFmBIVmxSMVhvKLRgNQjCahnkwQq73QTb53CNlSnicd0zcAgUvDzYft6/BG80vGstmRHfCRAZYDVu7V+6P2dH+DRLNFFQhnDHmqwgoy0AiIiIiIiIiIiIioqHAGb6fc6pDTpMLV74hvvh6yq725/k1X3dx0u9ctLabnyetEMKI6kei11gBfd/N0EeMgf7sAujP7wF9Qj3w0iPGbZXtpVcAqKi2l6eVeiQNkH8HnpS1qMLdimO33ilu8uU/a5x1k4uOpHeggymQJa0+4S8YTU3wFxSjpJej413jNzva5I1D8ngH6mG/E8Qi/cBfe31/+u7yOejl1cAba/wFgixfb14vHALGVRqLtlkrBaNZjql8gtHKGSJUcAsPkstuu1YsOmwOUGseRp5lRBmgt24Cbr1aXmnBfv4qo/637/He66zrvK6cvUg+/3ztr8UbayIFkFXEhYtj3sFoNWgQgtFWbQBSbu/zqBiwlB6XXu6zP0a0PVh0pFik77zRuDzgKJy2m/1e7KancwtGEwMNM/LHdCoF9+oLoQ8dCX3WQuBxYXJOr/syk3EeIdc9MRiNjKS/i86/B93UaC6urO2f5gxRau4ic8GWDcCDtxiLluxhPycd9xsXb661n5ek/oPxPHTNxdCHjYI+ayH0Est4SFt4fkB+Z0KFfXb4iajf5fEJChEREREREVHxtblx4/ISVQpnAF6sjThCMJrhZX1Xp8Rgt7JAJZpTW7LrMYRRpXTK2qbWVLPvYIOW1Fbj8opAFRZXHdb9fXVoBObEdkZ50DvgLNOE8FR8b/LVeLPlJTQmzCPYyoKVmBWdi5ElY3stDznmAUBeQV/xlBy8cEjNCcYglSe33I8tyewPt3MNBKsJjsSelQdmLV+f+AgvND1mrF9rnRX2IwWujC+djPlle2Qtb0414bHN9xi3aXVbUCn8LP2SAigaIrMxM+pzlswBUBaowMzYXIwqGTfQTfHNUQ5OHPUFLKzYFyvibyPhZn+qH1BBTI3MxNTITIYKDGKjSsbhO5N/iXdaX8f6jrWYGG7AtMgO4rmtvymlcMzIMzC/fA+sjL+DsSUT0BCd3afwq/4yMVyP70++Gu+0voakTmJWbD6qgrkP6qsIVuGiif+NZa1vYFNiA6ZHd8SY0rp+aHH/CDsRnFd3KVa0vo3325bBFUI5x5ZOwIzoTogGCjcj0U5lC/GDKddgactraEpu8r2dUg4mhRswLTIHIWfbsWU7zhKWmZ8B+bofdOQ6I4Eovlr3QyyPv4kP2lbkHWi6pv09vNr8XNbyQgWYEhVTwk0Y+7sAMCLkMbW1T2IwmtCXrArWYlFldkBn3G3Fw5vuMG7T6jajHF4jzu2SHucdo9zGhw0ZD2+6Q/y9HVRzXJFbQ8VU6oRxbt13say181rpenzW0FeVwRrMjM3NI4iRiIiIiIiIiIiIaIBoy8MBxyleO4pMzZgPfcKXgdt/Y17hT/8NfO47WYsn1ipcdbLC+bfIP7e//0djZDlwzanZL8musgSjpel3/gP907Ot7e/F9tIrAFT4HIdQOjQmYxwK1OgJ0KURoL33ONDrPvoq/l7xGXG7m57RGFcF/ORY+wvWK4RQq1HJT1DhmsdKZhk72d96EeHl6HQwWkJ4kxtgeINPqrIWevxUYK0h1O6t56Fbm6GinWNlZo1VOP8AhaseNh8Du/zURfOvHYSCXseQeXn9SMBxPCZ0FILRrCGNeQWjMUSo0FSoBHrRUcBTd2UXtsehP/kQavSErKJwSOH+rzvY5af2cUllpUBJUMG94ivySgedDBXka96DhSqvAn7xT+hvWcZNrFkJzFiAPevlc8MrHwL3valx6JzcJoTNR7MQPlvW8rFxuWeArKSiGvUd5rDRRAr4sBGYPKJnu8zVlKXH3/ntjxFtB1Q4Cj13EfDaU9mFn6yG3vQpVPXIrKIrPqOwsbnzfsvkzXXA5laNqqi/c5HfQCLcdg3w92s868vnfKPGT/U/XC/EvjUZSJOxp8Pem4Sx8bwu9TZ/n85g70T2mFv9kzM7+7AZn5HtPU3hd2conPP/5L/iQ69y8f7PHQQD5t+T7/PQP38L/O0q6z8BAFA1EqrMMu7Ydl8m3fsTUdHxjpmIiIiIiIiGBCkYLexEi9ySTpGA+QMuU1iG1HYAGF86Ee+2vpG13BQg4BXUJYWdmTSnmozLR5eMx+EjsmdnzFdZsAK7V+6f83YhIUQloRPW7WxhJUeOOAUBlf1RyLL4m8agCCkQzIV5IENtaJTxZ7cy/o4xGC2pk0joDpSo3p/QSv+G+sgsY/2bk41iMFo81YLKYN8Gw8SFUL/ZsQU4tFYelEb5UUphSmQ6pkSmD3RTqI+igTIsKN9zoJvRy8RwAyaG85ztr4jKg1XYtWKfPtdT6oSxY9muBWjRwAiqEGbG5mJmrPghlLWh0VhUlR1YlA+lFIIqhKThGu51XZfKTUGnvcqdEGbH5mN2zDL7k4dXtz5nDEaTQp6IBrNNyQ1iAFZNjkFFuQ7XlPq2o0vGGfu28ZQlGK0Af38J137eMdFC/38o25LchOebHjWW1ZVOxqzovCK3iIotoIKYFZuHWTH+romIiIiIiIiIiIhy4gzvSezUWd+HFoLR9MO3QhmC0QDg3H0ULrhVI2V5rHLzcxpXnawRyAgYWvWp+TlW/aht6+n7bvZoeYbxHmMjYpWdL0vbQvAABqMV2vHnAn+9steiKncLLtrwv7hixIXiZn96VuMnx9qrXiEF7AkBLkYjx/tbLyJMXhfvep7ZYZmsqSTsvz3bOXXEmdDXf99c+OSdwCGndn/77cPkYLRECnhoKXDYjvb9SSGN0zweqev2NmD9GnNhXQGD0coqGZ7VT9Q+x0GbgtEA4KG/AaddZCxaMEnh+jMUvmgJfqiJAbp1K/CEeRwEAKhFR+XUXup/as/D7aE8PcIQT9xF4daXzGv/6dliBaOZl8cSm80FdXmOIS2vQX3iMbF4xfrewWgtYjBaV5BoBcMeiXpSB5wIbQpGA4BHb+vsS2eIlir87RyFmXe6+PHd5nPR7S9rnL2ob8FosYxAIt/3Z7a+kMQr5Lonhg6TiRSMlr7/bzJPMswQ4t5UJNYZ2PjSI+YVXnsKmL84a/EX9nbw4vsufv+k+Zy0bnPn/dmhc8zV+g1G0/f/WWp6b17nIWswWuEmrieivhm+U5UQERERERHRsNKWMoczhZ2BGXwUdczBaKbwMtsL/FIQgSlAwCuIozX9oNAHKUQtFij3XUd/CgqBJwltGTQE+WdUqsLGUDQAiOTwu7Qzf4AuHSuA+ffcmjL/HqV22uv3f0xIpJ+pbb9EREQ9BaXAU9d+XTeFqQFygGohRYUQ3HbdhpRO9fv+iQppY+ITsaw252C03AZsSn1JqW8bdiJwhMeXhejbet1PmPiegXIIeWzT3UjqpLHswJrjoKTBQURERERERERERERE27th/hm6qqiRC1e/KxYFAwpz6+x1N7UBazZlL/9UmAt0Ys+mrHrLXnmmcZOtxcpxgGofz8n4YnRBqenmCVsWtL1q3W7NJmBLq/2p3cr15vKGjpXG5VnCUWDGAn/rRoUxlq1dzzMTwpvcABBieINvwvECAPq9t3t9P6ocGFclV/Xou95PfT/dal5nYm2PkMZkAvqtF6AfvR163SporYGmjXKloyfJZU6Or/XGKnNbn/ybIU+8qJ+917rp5Fp7v6AmBmD1MiBpmcStYSdrHTRAdj1QLNJrtl1b5k2Qq/jHK7rzPNHPmtvMy8ukcfD5BBUBQM0olLvNGJ00j0NakRF2KwWbRHXXOyFl7GcR9TLdcj1a/rp10/1myNej3z2u0Z7wdy4SAw1Le/aHksAKe3u6jc/jfDMuh2A09q3JROpnp6/JzebgUOvnIdsptfuhcuH7b4tFCyfb6318mXxO8hOMprUG3vmPfSdp0zwmqA9a3kmI8J05osGCwWhEREREREQ0JLS5cePygQpGiwhhGaYX/20BW7VBIRjNEI7lFdTVIgRqmdc1jygrC1T4rqM/SYEnUkBKmvQzkn5fgCXkTghx0DBPbeoIAx9t+87leJECWkKqBAGYQ9+8wvT8MIW3AfZ/FxERUU/5XtelACMpQLWQpNAmIJ/wVKKBtTGx3ri8IlCFEqcwg4O0EB+Wa/9cKSWWSQHCuUh4nHdMpH/bUNXmxvHEZvPg7ergCOxcvleRW0RERERERERERERENIQM82A0AMDCg8zLXRf6jhvEzb60j/fP5oTrXLhu72cvjeb5UlHb9chIJ5PAK4971t1tVB1UqY8xhT5e0lf5BoeQ2d5HAzWjsxYf3Xw3xiQ/tm76qJzLBwBYYX4kivrEKn9tO+Q0KL8vPUvrxZs7X9C2BaOVMLzBt10OkMv+fHmvb5VSOGexfA664gGNXz9iHveZ5nku+vgD6DN3hf7S3tCXngp90izoy78MNAoHHwBUyuEKSikgYB73aRQt878u5URNmS0XvvYU3KsugE6ZJ1Gs9jht1EY19AVHyCvM3wdq4nQfraRiU8d+US6890/dgWdL9pDPPR1J4L9+6yLe0b/jTsQAEdMEhOXVUJW1ee1HdYUV1Quho1c+uO3fmUxptAlDdLrbVcFgNKJeZu8ql939B+hPPhSLF0+TN33pA2D691y8udb7XCQFo8V6BhL9/oee9QDoDBsaZUmPlIya4L+PxL41GUnX5q6/gaZGczGvS9mO+JxYpG/9tVh24i4K1VG52l/cp3HjU+b7MzHwNdzjmzUr5MozqCPPsq9gO98wGI1o0GAwGhEREREREQ0Jcdc86iAcsHxa1o+ksIxWtzlrdidbeEZNyByMZtqm1SPkKpeggOZUk3F5LCDMZlhkISHwRApISRNDvCzhJmLwglCXPHmX+QN0KXhN2ocYHiHUYw2P6GNwi9ZaDFez/buIiIh6yve6LgWnSUFrhSQFkgKFCR4lKiYpGE26F7ESX/bJLRjN1peMOuYB3YUIRkt6nHdMhlsw2tObHxTvrw+oPhoBlcPgeyIiIiIiIiIiIiIiGnbUN68Vy/QVX4Fu/MRYdvYihStPVJhkydp4eTVw31s96tMajcLj15pY13Opf9/k0eIMPgLPfK/nty7yRZVGoK59JGt5WLfj8fcPwOKWJ8Rtj79ODrVyXY2Vn5rLpnVkvzCtLv0/4KizgLIqoGokcMKXoc6/0vsfkBYRAqpSSaCjHegQ3uQGgBDDG/xSgQBwxJliuV69rNf33z3cHs54/i0ab62Tn/3K56Ku/V15PvD+0t6Fd/0B+p+/lXda7hGukFMw2uAY2ztcqS/9VC687VrgyTuNRTUew2irW9YAWzfJ+/3Z3/00jwaAWnwMMMsSUvTGswCAcVUKvz5FPv/84xXg2scGKhjNcGLrS+jrhAYAwDQhGG3FemBLa+e/VQpX6tkuVSGHRxJtj5RSwGnfFMv1VReIZY6j8JX95XPRh5uAz/3RHhILAC3t5vNVOhhNr12ZFVArGjcFKpj7ODQVDAJjJ/lbmX1rMpHGuKZfBGsS+mZeffftkCqrBGbtYi5cswK6dauxqCKi8OTF9hijL/4/jfc2ZJ9zxH5N6bbfq778PGvd3Y79ItT0efZ1bBMghPnOHNFgwWA0IiIiIiIiGhLa3bhxedjxMbtjP5Be5E/qZFbIhxRoVqrCKBOCyOJuS04BawDQkjJ/qJjLuoMlGC3omANPEq4wfVQXMcTLEm4i/S6lujTMD4WUEIwWUiUIwPxQJ24Id5COl0L+G/xK6A6kkDSWSWFsREREmYJCkFlCCD7rLnfNAUYhxxy0Vki2UFUpUIhosNqYML+cUptHMJrU55VIfVvb31g0IASj9TH0F/A+7xjJychDTkon8cgm84DtqFOGPasOKnKLiIiIiIiIiIiIiIgGoVilXKa2g9ewRtYBIcsz2cf/ZVyslMLXD3Tw3s8DmFsnb37LC9uevWxtA1LC+/ndYUQP5xgaM26qr9VUV7iHVZ2PdSgnqq4B6gd/ylpen3gPj6w+FNPCjeK2UlDDR1uAuPAYsL5jVfbCWbvAufg6qLvXQd35IZyv/xLKdsxnkoLRACDe3BmOZhIIQjnbwTmkgNT8xXLho7f3+tZxFH55kv159q0vyc9+NwrzdNXEAN3SBDx/v3mFe24yL4+Wex9XuQSjRThes19JgQ9d9MO3GpdXe8ztXfPpUrlw0VGdYRM0aKkvXiaW9TwmTlnoce55caCC0Qwntr70bboCY+uFYDQAuOv1rmA0y7yF3e2qYAANUSY1Zze58Jl7oOPy+Lm9G+znopdXA8s+sZ+P5ECiri8e/Yd1+176EjLt854OJQxGIwNLMJrWGtgq3HPyumSk9j5GLnxOuEcCMHucwv/+l3xe0hr4e8b9WSKp0W5+fQ2xnrdWK9+Q29SDOvYc75USljRX3oMRDRr8NI2IiIiIiIiGhDYhgCLseDxV7ie2UKjMADMp0CwSiCEivPSfS8Bad7npAaZACkYrC1T4rqM/hZR5QEhSW56UwvKztgQvSL9LqS7pcZAUEqGU8r0PV7visZ7Pv6Gv4RG27W3tISIi6kkKMksKwWdpUoCRFLRWSLbw3b4GjxIV28bEeuPy2tDogu1Dyg6z3QtJpNDfVkOocK6kwEUbLd4BDD0vNT2FTckNxrK9qw4dsOBxIiIiIiIiIiIiIqJBZd/jzGE1E6dvFwEmKhAAZsoBMXr1u5517D9Lfvn15uc1bn3JxeZWjUbLo9d0MBpefsxzfz2pOp8v4O9gCR0AgKqRwLgpOe2bfJq9q1g0q+MdseyqhzXaEtnP7laYH4cCMASjVY8CxkwG0HmsK+mleZuoZdxcvFl+sboknPu+tnc7LBSL9AfZx8oeU+2/zx/frXHNIy6WftT7OHJdjU3CHHm1MQWsWQG4QoqjpKLGe51cwjxsgXzUd9Pm2kNBn7rLuLgiLGdvAMCYphVimZotH980SEybJ5f94zroriDMmpjCNMvchC+vRtZk6YUkB6Nld7T6dNyNGAcA2C3+grjKu5/Y2wQAsfQ4+XIf50mi7c3MneWyVApYawj97bJwiv2aBAD/esV+LmoR/nZjXV0WvXqZfQc9KK/7Ldu2c3b3tyL712Qi/R1oDbRu7fxbMuF1ycxyTwaPc8LuHvdn3/6HxoNvayRTnecm6Z4MAKq6Xh3VHe1Akxyo3q2syl8gbKv53crOOob/Z4BEQwWD0YiIiIiIiGhIiLtx4/KBenE7KgSaAdkBZlJ4RsSJiS/9A/4D1tJafAYFaK3RLASjxQLlvurobyEh8EQKSEmTwuOsoWJS8IIYjGYe4KIsM8LK4Q6999HuxsXgBdsxFxECAr2OGS+24JeoJcyCiIiop3yv61IgqhSgWkiOCogBvH0NHiUqtkYxGM0yKjNHUh82nkfor9TvzSUIWpLMI3BxuASjaa3xYOM/jWVBFcK+1UcUuUVERERERERERERERIOTipYDR3w2e/kJXx6A1gwMdfLX5cLbrvUM9zhnsf3l15Ov19j1py5efF9epzYG6FuvttZjNH6qv/Xm7wPMWCAWqxO/BhXs/0m7tkdqnPw7+s7Ki8Wy7/1L48ArXWxq6X38LV9vPh5rkxtQ7W7uve+TzocKGoIPc2ELqIq3AAlhsqZcQrAIAKBsL7I/eAt0RqjBrpOBxdPsdX7tFo2dLnPx+ye3jQNtagNc4bRWEwP0PTf5a3BP5dXe6+QS5sFgtH6lyquBI8+UV0gmoO/5v6zFjqNQaRnGPm3Tf+TCw87IoYU0EFRlrbVcf+Mw6K2d15mLDpH7Pq4G3lhb0KZtq9vVcpCRaZzNwafkvS/lOMDCg7Bf6+PiOj+9p/Nk2twm11OWbleFj/Mk0XZGjRgHHHSyWK7/fZNYNqlW4cSdvUOIbnhSDnsVgxZLuwIe7/2Ttf5uFTXA4Uv8rWtyePb9uFGI/WsyEZPR7IFavC6ZzVssFukbL7NuuvtUYC+P7PpDfuXi+OtcxDt8hue/8IC9wrTPnAdV6uN+q8USjOYn7JqIioLBaERERERERDQktAkv1EuBFf0tl0AzKTwjGoghYgmXygpYE34G29b3FxTQrtuQQtJYNliC0YJC4ElCCEhJk4LAbCFeUpkUCiYN7LM9RhL34fNYAfILj7AFm/lhC1aztYeIiKinfK/rUnCaFLRWaFJ/r6/Bo0TF1OG2Y0tqk7Esn2A0ZRs0YiD1R639c0cIRutj3xaQzzu2wMXhEoy2tPVVrOv4wFi2W8W+qAxyYA8RERERERERERERUZq64NdQX7gMmLkzsGBfqEtugDr+3IFuVtGoxccAc3aXV3j7Bev200crXH2y/aX8lZ8CX/2rNEElUNH2KfSvv+nZ1izjPd66Te/DcaCuuh847hxg0gygZkznf3P2gLrgauD0PPZNvqkLzKF3u7S9bN3umZXAtY/1fn634lPzuvWJVdkLT73QV/usrMFozUCHkCjB4Ia8qAuukgszXopXSuGerzmo9hhWnHI7A9LSIXu2F/Croxr45+/8NnebSh8v0ecSlhdlMFp/U+f/Elh0lFiu//uL0C1NWcvjluFPDfFl5n395G9QI8bm3EYqPvXTW+XC158G7rgBAPCFvR384gS573PO/5ODiPqi1XL8lWWOcZuxAKqPAR/q67+EA43zGq8T13npfY0WS7ti6XYxbITISH3nRrnw79dYQ6r/dJbCd4+w34ede7POChpOE4MWSwG8+qS1XtSMAcZMAvY7Aeq6x6FGjrevb6FGT4C6NDuQNEuo/ydZpiFICX8DWgNN5rG0AHhdEijHAY6QA4T1R+/L2yqFe893EPBINLr7deCWFzUaLa9MpoPR9I8swYnl1cAOu0Gd/79QZ33fvtO01uz+fbeyKn91EFG/YzAaERERERERDQntbty4POxYptrqRyFVggDMMwdmvvwvhWdEnFhOAWteIVetppmdDJqT8gd3ZYEKX3X0t5BjDjxJCgEpaVJYgi3ESyrr0O3G/cnBCPJDJGkfme21hdvZjhWpzO8xIZGOuQCC1vAIIiKinqQgM6/ruhRgJAWtFZoUYNvX4FGiYtqU3CCWFTYYLVtSJ9ChzaOlbAHXUmia3yBoGylwscSxDTgfHsFoDzb+w7hcQeHAmmOL3BoiIiIiIiIiIiIiosFNBQJQS74N54Zn4Fx1P9ThSwa6SUWnTvq6WKafvNNz+xMWeD9XWr/VvLw6CjjP3+e5vdH4qb5XVbEKOBdcDefm1+Hc8UHnf9c9BnXcOVDSy9RUGJNniUWHNdt/93e82vv53QfCI9H6jt7BaOqcnxTm91oaARzhlcx4M9DRZi5jcEN+LMeKfiL7XBQrVbjrq96vzLYlgAfe7jyWPrG8C1/dZJ58ylO5j4mpSsL+67MF8lFBqEAA6pLr7Su9+HDWolmWfLOGjpXmgoUH5dAyGlATp1uL9RN3dH990cEKEWG+z/fk4Tt90iyEGAE9AsjSFuzb9x2OmQQEAljQ9oq4yl9f1GgWLoUlbjtC6cndyxk2QmSigkFg90PkFdYK1xYAoaDCj49x8MXFcp/X1cD9b5nHw0nnlLJS+z2g+p9/dd5L/X0ZnB/9Bcrj3OnLnod7r5NLyCxtP6R7PtcFtjZU/IhmAAAgAElEQVTK28Qq+69NQ5yaPlcufPpu67ZlYYW7fdyf/esVLQZWlwSBaAmgUymg3fxuKcZOgvPvj+H89gmoz3zF/72/FGyOrlA4IhoUzG9wExEREREREVn8ft3/4JOOdUXd5ycda43LI5YX6vuTUgqRQAzNqS1ZZa1ZgWbmaQsiTgwhVYKgCiKpk1nlmaEbmfVmakkJI8Uy13Pl9WKBcl919DcpdCvhWqaQgiWETghXAOyhafFUK8qDmR9wmx8E2UIixGCVzGPF8juOBORjXapfCorzSzrmIoEYB/8REZFvIUe4rgvBZ2lJ1xxgJAWoFprUR4i7limpiAaZjYn1YllNcGTB9mPqIUv3QYBH6K9wTxLvY+gvACSF806JJXDRNsvmULG6bQXebX3DWLZT2W4YXZL/DJ1ERERERERERERERDRM7bSnXPbnK6BPvxiqTH5xeEwlMGM08O4nue+6JgboD5fnvuH0+VCxwTExKHmYsQAIR4G27GeK+7Y8jnvLDhU3/c8HwLsfa8wY0zl+bWOL+XneuGTGGNe6hvzb24NSCjpSBrQY0rRam4GE8GI1gxvyM2OBXLbS/Ax0Xh1QGQG2CO/Mpy3rOj+t/NR8DMVKgaoNeZyLAGBUnfc6OQSjKQajFYWqqIGu31E8tvSffg4sPqZXSMK+MxRe/TD7GNqpfCOq3c3ZldSOhYrIYyZokBk7pTMsRRo7svTF7i+VUoiVAnHDkLf1W4GX3tfYZXJhx16b9pUW073HgKu6+j7vT4VKoEdPxOJPnxTXue9Njd2nmP+dZT3H/lTU9Lk9RMOV2nFP6OfuNxeuXenZr91vBnD9E3L5n57VOHlh9nI5GE2J10YAwA67WduTDxWrgK4eBWySxz/mFDJL2w/xPScNNG0yF5VVQQUC/dakIW/+PmKRvu47wNFfgLLc7+42BQiHOsOpJc+uAk7Y2dzfqol23Yev/7Az4M5kBMfAEg1njCkkIiIiIiKinK3vWIe17e8X9b+kNn8CVupEivyv30Z6mT8z0EwKu4p2hUtJoRvZAWv2kKvWlL+gAClATcGxhoQVU1CZA08SwnGQJgWV2IMXLMFoht+dziMYTdp/ZnCZFGRWqsIIKDnfvr+CW6RjzvbzJCIiyiRe14Xgs+5yIcBIClAtNKmP0NfgUaJi2pAwv2lSGagWQwvzk91HtvVFbcHFfvvO+ZDOO7bzitT/H0oebPyXWHZQzbFFbAkREREREREREREREQ0Vqma0tVyftx/0lo3y9krhB0cpOHnkf9RE0fnCfy4CQagzv5v7zmhAqGgZ1BnfNpZ9dsvNmNqxyrr9rEtdPL2i8zleo/AYsTbV2HtBAQJhukkhVfEWoEMKRmNwQz5UtByoHmUuXPoitCGgLlqq8J3DvU8+P7iz8xhaLuRtNIwEcP33/Da1FzXex/GWyzERZTBasaizvi8XLn8N+qdn95pg7dx9FEZnZHIGHODSpeeZ6yjkuYj6nSoNA6MmWNfRbz7X/fUvTpDPPQt/5uKRdwo7BiVumZc07GZcj/ycl/wYX48piQ/g6JSxeOlHwNsfmf+dZemwtkBQvpYSEXD058UifeOPPTc/dp69H3TfW9nLXFejVTinRNEGvPyYWJ/qr6BDr2DjEIOHyUQ4/rUGmhrNZeVV/decYUBNmS0XdrRDX3gktHQfDKAqqnDhwfbz0oZm4LU15rLari6D/sd1chu//HNr/UQ0tDEYjajAlCFJVkuJ8EREQ4RrSFE2ne+IiIgGQngAg9Gkl/kzA82kF/jDTrSznj4GrKV16HbPgBEAaE4ZZioEEAuUwVGD46MCKZggKQSkpElBXpFAVNzGFgZn+t2JwWiW/pF0rGT+TqXfsS04AvAf0perzGPZb3uIiIh6yve6LgWiBi1hoYWU7qtl8uqTEQ0mjQnzCO7akP1FFokUBmzqI9v+VuzBxeaBj62uvyBoGylwscSRB0kN9WC0DR0f4+WtzxjL6iOzMDUys8gtIiIiIiIi6juO0SOi4Ybj84iIaLBS379JLlz1FnD3H63bn7zQwYPfcHDmXrld12piANasMBfuegDUH18Ejj8XmLcYmLs3cNRZUFfdD7XoqJz2QwNLLfmWcfmI1EY8/f6+OLv6Bev2l97R2YeSgtFqUpt6LyhUIAwARITnna1bgYQwFoLBDXlT3/qtXHjPTcbF3zzEwW1fcnDqQvv55401GiulYLQRLrD8NZ+tzOAn/Kokh2OCAUJFoxYfA0ybK6/wwF+Ad1/u/nbaaIWnLnbwzUMU9p8JnL1I4aEzN+DYrXeatx83tcAtpn433v4707/6RvfXp+9mP+d871/Z9/990WZ5bSCi470XFCqUr6ue91bMEFf55yvmz2pj6bFEFTX83IPIQlWNACZONxcufRE6aX9nqDTk/ff1xpref6dSKBoAlL16n1imfvQXz33lzaP/rti/JhNHeCdOa2DrZnNZf4X7DSPqnJ/Iha8+ATwp9H27/OhohZvPVphuGbr8ywfN/YeaWNdz4Ft+Jbdvzu7W/RPR0DY43nYmGkYcQ4cpkfAOJiAiGsySyWTWMtP5joiIaCCUBwduZoaIz7AMKRAg2hUuFRUD1nq/+C8FrNm2MWlJbTUujwXKPbctlpAKGZdLASkA4GoXcbfVWGYLPyt1wlDCRySm3530Yo0UEmHbf2bwmBRkZguOAPyH9OVKDGoTjn0iIiKTfK7rgBycFhSC1gpNDB5lMBoNIRvFYDRhRm0vOQxKlPq2CgqlloBrKRitzY0jJcw261dSOO9IAY7A0A9Ge3jTndAwD6w9qOa4IreGiIiIiIioMDhGj4iGG47PIyKiQauuwVqsn3/As4r9Zirc+FkHi+xV9VJtCUZTB58G1bATnG/8Cs6vH4RzzUNwLr4Oau4i/zugweMz5xkXj0xtwG/XnoPysLzpY8uAtoS2BKM1bvumdiyUFGaWDymkKt4MnWg3lzG4IX+WUCL9n0fFsuMXKNz8eQfXnSY/577vLY3VjeZnwvXOR/7bmMnj/AkAKLEc4JkKefySJ3X4Z+0rZFz/6kcp/OIEBw9dEMANSxws3mAJkClUOBUVj0cwGho/6f4yFFSoHymv+twqYEtr4cahxC0fiYZ127ZvSkqBkXUF2afqCioan1yHndpeN67z+hrzttuC0aoL0haiYW32bnLZyjc8N//eEfZxfve91ftc1GIJRosufUou9NPnyZOa4FF3LiGztP2QxrhqDd3UaC4r53XJkxTW2EU/d7+1XCmFU3dz8OJ3c3/uURMFsElIswaAvoSizd/HvLx2bP51ElHB8YkpUYEppVBS0vsFmuZm72ACIqLBLPM8VlJSwpkZiIhoUIg55ZgcnjZg+xcDzVK9r51yuFSs1/+z6/EXsGbbt4kUjFYWqPDctliCjjmYIOHKT1za3TbxhX9bMJqjHN8hd4AcjGALRpPCHTLDIqQgMyn4rLt+Kbgl1SIGufkRT+UeNEdERJRJCjKTAorSEq4UYGQOWis0MXjUR1gt0WCxMfGJcXlNvsFoOZD6tmEnAkfJjyhtocBS2JpfCSFwMeQMz0FSzckmPLPlIWPZ6JI6zIntUuQWERERERERFQbH6BHRcMPxeURENGhNnwfUjJHLX3kc2hDwaXLYjv6vbTWBOBAXngsxUGZYUbsfKpd98C4O38E8HhAAtAYOv8pFU5u5vDq1ads3Iwr8UrMQjKbjLUCHEIxWUpxJ4IaliTPksuftL+ADwKFz5PPPivUQw/XGrHvJs26jYAgYNcF7vVyC0UrlyceoH+x2sLVYewTS6LUr5cI9DsunRTSAlNfv7NO10M1bur/16vOs2lCIVnVqE4bfKe2ipOcYmbFToAoVwN6jL7ZH/PmcNi1LTwBfXlOYthANY2r3Q+TCde95bn/MPPu56Fu3a/ztxW197WahTw0AZa8/LBdOnePZlrxZ7hUAAKN99LdoOyQd+xrYuslcVMHrkqf5i+33L+tW+aqmPJz7c4/qmALWWPrXs3bNuc40dfTZ5uXn/izvOomo8BiMRtQPysvLe33f1NTUpxfRiYgGktYaTU1NvZZlnueIiIgGQokqxVnjLkRABQasDVI4VGaYlhQulQ5Wk0I3surxEYwmhZ711JxqMi6PBQbPNV4KPLEFqNh+PlKIXVouwSd5BaP5PVY8QvTE+oXgtRSSYviDH1J7vH6eREREPYUc83U94RWMJgYYFWewsN/rN9FgtjFhniVtRGh0XvXZhiRkPgeRQszy7dsCQKvbt5fcpcDFEiHAEQBcLb9sMdg9sfle8Vx6YPUx1oA6IiIiIiKiwY5j9IhouOD4PCIiGsxUMAT1lV9Y19HfP9lXXV/cO4dgtOVPyIV1Db7roSFg1wOB0RPF4u8+eypqLY8XH1sml9WmGru/Vhddk0/rZBGhUfFmoENIlQgNz8maikE5DnCQcK5JpaA/eMe6/aRaWzCaxkZhGEjNf+7028Texk2BCvgY25xLMFoJj59iUhOmASedL6/w6O3QScu4J0swmpo2tw8towGxx+Ge4Tx6yfzuzyYvPEhhcq287qV3FG4cSlw4DMO6rfcYn0IGy/boizV0rMhp07L0uLuK6sK1h2i4WnyMWKR/9FnPzXeepHDmXvZ7sFNu0Ljigc5zUovllZOyVvPkrFh0lL8+T57U9Hn2FXhvSCbShCNaA02N5jJelzyp8mqoL1wmr2ALLsvwixNyC0eriQH6ivPEcrXk2znV18vexwALD+q9bOf9gH2Ozb9OIiq44EA3gGg4Ki8vx8aNG7u/TyQSWLt2LcaPH88Z3IhoSNFaY+3atUgken9SWlFRMUAtIiKiweLAmuPEcK1iqAhUY0Z0DsqDVQPWBkB+Yb9nmJarXcRdczBaOhDAT+hGSqfQ5sY92+QnKEAKTxtcwWjmQRy2kC9TiFmaZ/iCE8NGw3JT8IkYjGa535OD15qhte7eVvo3eAa7Wf59ralmlDj5DYrJN8yCiIiop5AQOJRw7eGdUiBqUAhQLTQxvNbS5yAaTDrcdmxNbTGW1YZG5Vmr/2cc+YbsRh1LMFqqj8FoUuCicP8xlHW47Xhs8z3GsopANRZW7FvcBhERERERERUYx+gR0XDA8XlERDQUqINOBpwA9A9PN6/w1F3QH7wDNWmmtZ7aMoV/nOvg+Ou8w0Bq3nzAXFBWBVRakkZoyFGOA9z4HPSR44zls1feiVf/9w1M+P2OOdddk9q0bT8zd867jUZRYaxlvBlwhHCIXEKwKIs6+RvQD95iLNN/+DHUZX+2bv/LkxS+8bfssZ+vfAhsNg/xRU1KCE7Y5zioeXtDX3WBuXy8zwCiXI4JBusVnfOV/4H7wbvAc/eZV3j6HjkwQQqG6EtoAw0YFQwCP78deOAv0D//gnmlT9cCrz8NzF2ESbUKL3zHwagLzX2ee94AXFfDcfr+GWabJRitF7/nJT/GTukMndEaDR2rcto0lh5LVM4AGiIvKlQCvesBwIsPZxcmE9AtTVAx+2eIv1+i8N6n2hom/It7Nb66n0Zzu7xOTBgHqE6/2Lr/gliwL/DyY+ayQp7baPiwBqNtMpdV1PRfe4YRdfLXoZu3AP/3s+zCxo+hW5uhovL437TP7anwrdv9T3ZVE04C771tLqxrgKoa4buuTKo0DPzsNuDpu6GXvgTVsBOw3wlQDKYmGlQYjEbUD8LhMEKhUK+BClu3bsXKlStRUVGBsrIyBINBOI4zgK0kIjJzXRfJZBLNzc1oamrKGnQVCoVQWspOPRHR9m5hxT4D3YRBQQqH6hmE1u62QcP8YDPiRDv/L4ZmbXuA0CaEq2WSQs96kkLtYs5gCkYzB54khIAUQA5eAIBIIGrdn5/fQVp6Rq9s8gNqKfzOhYt23YawigCQ/w1eQWRS+wGg1W1BFfIbENgqtccjzIKIiKgnKchMCj5LkwOMzEFrhZbuq2Wy9TmIBpONifViWU2ewWjK0ufV0L3K8+3bhp0IHDhwDfdRUv/UL+m8U+LI5xUpGHmwe3bLw+K93/7VRyHkFCdkkoiIiIiIqL9wjB4RDVUcn0dEREPSPscCgSCQSprLX3sK8AhGA4AFE/3trmegVS9jJjIIeRhSlbXQlbXAFtPUpsC4lY/g0B12xH1v5VZvd6jV7IV9bKFBTBhr2fgJUCm8lM1gq76pswRfrLakfXSZPkoBhme/UigaYAlGmzzLflxNmObZHgBALv1+BusNCHXCudBCMJp+7SkoQzCa1hpYaw5GU3UNBW0fFY8KBoHDl0D/4cfAJ6vNK732FDB3EQBgRLnCgbOAh5aaV127GZhQgAyWeId5TEvE7R2Mpmzn0BypklLo2rHAhnWo7xBCAAVl6XE/FQxGI/Jl0kxzMBoAvPtyZ2iYhVIKFx7s4LFlcjj1xhbg7Y+A5jZzeQAplGohNa2A5xaJOmwJtCkYbcQ4XwFMtB2yBaNtNffvVVlVPzZoeFGHL4E2BaMBwLpVQMNOnnWMKAOqovZ7sZ6q4x/JhdPm+qvEQpWGgf0/A7X/Z/pcFxH1DwajEfUDpRTGjRuH1atX93phPpFIYOPGjb1mqiQiGkrS5zc+UCYiIuokhV3Fe4Rp2cO6Orf3E7AWNwR0mZiCvDJJ4WllgcEz63RICCZICgEpgPyzLlGlYiBLmvw7MNVpfojsQH6xxhb+EE+1IOx0BqNJv7+oRxCZdCym68+X9DO17Y+IiCiTFGQmBZ+lJbV5UL0UoFpo0vW7zY3D1S4cxZdqaXDbmPjEuFxBoSaU/wxpst79ZKlv6xWyq5RCJBAz3rf4CYK2kQMX5QHnUtD1YObqFB7edIexrFSFsajq4CK3iIiIiIiIqPA4Ro+IhiOOzyMiosFKBUPQex0BPGF+/qDffgnq6M971jOxVmGXScBLH9jXq5aC0eYv9twHDVGLjwHu+oOxSP/mEhx30Sm47y3/kz+F3TiiOt75zfjCBzaoMZPMowg/XAFEhNC0Egaj9YWKlstTWq14HbqpEapCThnaexoQLQFa7UNVeqlxzecite9xwJQdgFETgPUfZpfvc5y/HeQSdsZgtIEx3zKRuBB+hs0bgBbzJGb9cT6iIlt8DPD3XxuL9CuPQy35dvf3h81ReGip+cx1+o0uHrnQQcDp2/1/m5BZG9YZCUeFPvYmTgc2rMPUxHtQ2oX2OY4u5jYDAFR5AVLhiLYDavGx0LddayzTt10L5RGMBgD7z/QOILrxKY0DZpnPR7FUsziVqqqs9dx/n+1xaGc/uiMjnM0QTkrUSTpiNdAkfNZguY+gDKMmAMEQkMyepFjfdzPUV/7HswqlFI6br/DHp/1NWlzTnH3P1V2X33svIhrS+NYOUT+JRqOYOJGz0RDR8KGUwsSJExGNRge6KURERIOG9EJ/a48wKVtQWTpcyk/AWqslYK33vr2DAqQwgVhAGJAzAKQgs6ROwtXmYIJ8gxcAf7+DNC0PrxHZ2tAzfEwKIrMFqwGdQXLSz8zvsWNsWx9+pkRERGlBZZ6jJaGzH4r2LhcCjIQA1UKTgkk1NNpcn9NUEQ2gjYn1xuWVwRrP4GCJ7YlHZi85374tAEQd82yOralmz21tpPNOieW8onPv/g+4V5ufwwYhGG9R1SGIBjhbJhERERERDQ8co0dEwwnH5xER0WCnzv2ZXHjPH6FTKV/1XHuag5Eew9RqUo3mNpx1qa990NCjzvyetfy06/fA0bPbrev0VNMzXK+uH4KIpICZdauAdmE8Qag4Yx2GM/Xt34ll+ox50K486VVZWOH8A3L7/KDGFNJ44ElQDTtBBQJQ3/4tEMl49nri14Ad9/C3g9KI/8YwWG9AqNIIMHNnc6EUjCYtB/rnfERFpc64WC586RHo+LaxMufuK59znlwOnPeXvg9IiQthjxE33ntBgY89dfFvAABh3Y4JyTW+t4vprmtkRXVB20M0bM3bWy578k7olx72rCJSonDDGQ5KzcN4AQC/eUzj0XfN56QyYQygOv9Kz30XgqqshbrgaiAQ2LZw2jyoM75VlP3TECQ9M3RdoMn8WQOvS/6pYBAYO9lc+LeroJe/5quey45W2GGcv31W/+0nciFDEom2CwxGI+pH6YFXoVB+LxgREQ0WoVCIg66IiIgMbGFa6ZnppTAAAAing9GEl9J7BlpJAVWZWnwEBTSnzDORDaZgtJCSBwElhTAD6Wct/Z568hNylyYFoynLxyy2NvQMdJN+z36CC8TjsQ/BaFKomp8wCyIiojQpyCwpBJ91l7vma36+gU65sl3v+nJ9JSoWKRitNuR/JvVs/geKx1PmAf++gtF83CPlI+mazzslSh5EriEPnh+MtNZ4sPFfxjIHAexXfWSRW0RERERERNS/OEaPiIYDjs8jIqKhQNU1ACd/XV7h5Ud91bPrZIW3fmh/na3GNYQRTZoBVVbpax809KiR46G+8COxPNz0EW4b+Vv85jR/zyt7huspKcSsL+oazMsTHcDaVeayEIOt+mwvy7POxk+Alx+zbv7twxTGVPjfXbUhGE199w/bvt71QKi/vAn1/ZugvvErqBufh/PVy30HuKuSsP/GMBhtwKhTLzIXrHvPHAq6RghGi5QB1X0Zr0GDgaoeBfWV/5FXePT27i/DIYWFk+VVb3pGY1NL38LR2oR5ScO6R5hoIAiMmtin/WRS4+uBWOcJtb7DEgaYocztes+hoqag7SEarpRSwMGniuX69t/4queEnRXe/bH9HuyaR6RgNOH9pCKGEakjPgf15zegvn091BV3Ql33GFTtmKLtn4YYqS/e3gZ0tJnLeF3KjeUeW99xva8q6qoVnrvEwV+/4H3vZPyMCAD2PBwqyOfDRNsDBqMR9bNoNIr6+npMmTIFtbW1KCnhDB9ENDSUlJSgtrYWU6ZMQX19PQddERERGUhhWikkkegK+pBCM0KqBCEnZK2nZ8Ca3wCAVo9gtA63vbttmcoCOYz46GchS+CJ1H4pVMxX8IIl5C5T+neSyTaWJeSUiGFvPY+RvgSR2Y6jfCTcDjGELuKwb0hERP5J1/WEEHzWXS5c820BqoUkXVsBOfCJaDCRg9FG99Mee/eTxeBiy99W9zpC/9frfsdLQujfSgGOQ9Hy+Jv4oG25sWzXisWoCY0scouIiIiIiIj6H8foEdFQxPF5REQ0FKnZC+XCpf/xXc+IcoWJlveOawxhRGIQFQ0fM+Zbi52lL2DJ7gpBH29D9gxGQ10/BKNNsByP771lXp5LCBaZVdYClSPk8qUvWTcvDyv87Hif4XrJjQhkTqJVVw8VDPZapEaMhTr4FKjjz4WaPs9X3d1yCTtjsN7Akc4hiQ7gw2VZi/VaISSqrt53aB4Ncpa/db30xV7f7zBe/p13JIHX1/StKXExGC2+7Zuxk7POXQUxZQcAwKz2d31vUuFu7fqiuvDtIRqm1KSZcuHb9r5PTxNrFS46OPfrUEwLY2Vrx+ZcV1+o8fVQR3wWardDoEojRd03DTFCf0s3b5a3Kavqp8YMU5Mt56UcPhuKlSqctKuDPT1u2UckN5gLJs7wvS8iGtr64W6GiDIppRAOhxEOhzFq1ChoreG6rvgyPRHRQFJKwXEcfuBORETkgy2sqtVtQYlTKoZS9XzRX3rpP4UkOnQ7SlVYDBXI2q9HUEBLaqtYFguU+9pHMdiCCaQwA+lnZAs18VrHVKeGEIzmkT8fcWJIpLIDXlq7jhFXp9Dmmh8cScdIZv0mfkP1MsWFtgD+wiyIiIjSgkKQmRR8BgApnYKbOcC0iy1AtZC8+npEg93GpBSMlv8MxAryZ4aZ/eTWvgQXB8qMy1ulGSh9yidwUer/D1YPNv5TLDuw5pgitoSIiIiIiKi4OEaPiIYKjs8jIqIhbfdDxSJ9w6XAqRf6Dt6wddWrUtkvLKtDTvdVLw1hO+8H1IwGGj8xlz/+T0QW/gHHzPscbn/ZXlWvcL3xhQ9GU9FyaKmtrnmsQ04hWGSklII+6CTgtmuN5fr67wOnfAMqKI8rWbK7wu8e13j+Pfu+pibez15Y6IDGXMLyGKw3cMZPFYv0GfOgdz0A6rt/gKod07nwkb8L9fRDSCMNjB33ksv+dT30woOg9j4aAHDyrgp/fFru9Dz3nsY+M/L/fEAMRnPbtn3THwGh6XrffBYnNv0dv6n5kq9NJne83/lFuSUhl4h6O/C/gBsuNZc1fgzduhUq6u89oFMWKlzxQG7PTGKm8Xqj6qAcH2nFRANBCcdmq/wuHSJ8PyoX6sCToG/5lblw2SvQ69dAjarzXd9OdQrPrDSfm0IqhfHJdeZ2HHyK730Q0dDGYDSiAaCUQiAQGOhmEBERERFRH9nCoeKpFlQFa8TQjHCPbW3BAPFUC0qdsBiwlqnFIyigOdUklpUNomC0oCXwJOmawwykn3XE8Z5ZO7dQMSkYzWMfgRiaDLOZpsMdbEFkfsLdxPAIj7A8iS2Mz0+YBRERUZoUZJYUwk4Be2iaFLRWaAEVQKkKo123ZZX57ZsRDaTGROGD0aTZ9ICul1d6FMvBxd7986gj9W379rcnnXdKHPklhKEUjLa2/X281WJ+C2SH2AKML51c3AYRERERERENII7RIyIiIiIqPBWJQU/dAVj1lrFc33Ap1Lk/6/N+gkhlL9zn2D7XS4ObCoaAn/wN+sv7iuvoy7+Mqy+twwcbD8RLH8h11bhd4/TKKoHK2sI2NG18vRziZqBCDEYrBHX2D6CFYDQA0Nd9B+qrl4vljqNwx3kODr3Kxasfyvtp6FiRvbDQwVYMRhsSrEGIAPDiw9AXHgn88UWgqRFYvcy8HoPRhg0VDELv/19iCJ7+7onA9U9DzdwZB84CLjta4Qd3mseeXPIPjW/JubOe2oThd5Ge49366dhT4+uhAewVfxb//cl3cMmon0BLYTRdpia6UikrqvulTUTDkRo3FfrM7wF//ImxXF91IdQl1/uqa/5Ehc/tqXDTM/7Hww03m6sAACAASURBVMUM77ioH/3V9/ZERSeNcY1bxp5GzONVyUzNWAC97/HAY/8wlusv7An8833fAYoNliHNU0saERAmWlfT5vqqn4iGPsaxEhEREREREeXJFg6VDqOSQjOiPba1hV6lg7mk0K/s/VpmsQDQYimPDqJgtJAl8CQhhBlIP2t/oWLmdUx1umIwmv1jlqhwvKT3YQtYkbb1Vb/PYyeTLXTCz8+UiIgoTbquJ3QHtDANeNKVQ9NCjhygWmjSNS/f6ytRsbS5cTEUuTY0Ou96c5mjVgr+9ROyK/XP8w39TUsIIcu2+w/pPDUYPdR4h1h2UM1xRWwJERERERERERERERENV+qos+XCe26Cds0vrGYamctQtYUH+X6hloY2teMeUL9+yLrO6Id+i+cucXDuvvLTy+pUY+cX4+uhLJM/9UldQ27rh4ozCdxwp8oqob7xK3mFf/8fdDJprWNUhcJ/vufg9N3kY6O+Y1X2vusGMhiNwXoDyitYauUbwNKXgIdvFVcp+PFDA0oddJJcqDX0PTd1rqcUvn+kg4Nny6u/tS7/cSlxYe7RcI9gtH479rrqVQAuavwVPlk2AXu3PCmurrSLSYnVnd+UMxiNKBdqySVyoRDSKPnlibn1jcvcjPF6jgNMn5dTHURFJd3/tVretWMwWs7U166QCxs/AV5/2ndd00bJ56WpWGsuOPhU3/UT0dDHT4WJiIiIiIiI8lTilCKozMEc6SAzKTSjZ8iGLfTKT2hWTy0eQQHNQjBaxIkhoAK+9lEMIeHnCnSGqJhIP2s/oWJSOEOHbkcyK4hNeADt8YzIK1jFFn7nJ4hM+jf4PXakdmVy4KBUcfZBIiLyL+jIg3uT2jwYVbreA/YAo0KTrq9+Q2uJBkpjYr1YVhu0TK/WJ9v6ya5OoU0IRvMV+hswDzSJZw60ypEUsmw/rwyNYLRNiQ14sekJY9nEcAOmReYUuUVERERERERERERERDQsTd1BLtuyEfhUeGk1w8WHmgdbHdT8YPbC8VN91UnDRP2OQCAoly97FY6jcPKu8oC9hnSo1chxBW7cNqo+x+dvDLYqnPod5bLmLcB/HvacAEsphf/aRT6Gdmp/I3vh1AI/c/UbjOY49r8J6n+2a1/aK49DL3/dUgef2Q8rXsfEit7nkP1myuebV1bnPy5la5t5eaznmB2vYL98ZdRb427CuZuuF1cfl/wIYd3e+U1ZVf+0iWiYUsEgUC2M+etog+5o911XZVRhQg7ZhOWZ4/XGTIJi4C8NZlIwWlwYe+o4vFfLR+1Ye9DpCku/OMOc8XLZjnHDfRkAjJviu34iGvoYjEZERERERETUB9JL/fHuYDTvMICQU+IZsOY3fCPutsDV8qybLakm4/KyQIWv+oslaAkmkMIMWoUAMCnQxO868VTv36E0YEZ5JKNJx0p3iJ4lwCziRK11A3J4Wr7BLeLPMxDrv1k0iYhoWLIFniaFADTpeg9A7Df1h6gUbJpn8ChRsWwUgtEUHFSHavOu19bn1T0CxNrcuLien9DfqGMORpP6qH6kdAouUsayEkce2KKHSDDaI5vuEv99B9ccxz48EREREREREREREREVxty9gYoaufyNZ3xVc/gchcpI9vJTmm7NWqbGMRhte6LKq4B9jpVX2LAO+pl/Y696YJohHyLituLorXd31nX05/uplQAOPCm39f2GYJG3HfcERsihd/qio6FP3wl69bvWag7ZARhjGDpbm9yAI5rvzS6Yu3euLbXzG8AQKuXz3gGmDlviuY7+7XeBu/8grzBrlwK2iAaaGjcVmLdYXuHNZ3uNNz91ofw3vOQPGs+vym9sSmOLebua1MZt3/RXMFpddr1TE++Jq4d1V4pbWRVUYPBM5k40ZCw+xrzcdYFVb+ZU1ef28t+vqE419l5Q15DTvoiKTzi+W4VgtEgZ+9p5UI4DHHq6WK6vugC6zfw+ZaYpIxT2mW7YhwLOeO9K8/4ZjEa0XWEwGhEREREREVEfSC/1p8MypNCMzCAuz4A1nwEAGhptQhgbALSkthqXxwLlvuovlqCSZ7dLuuYAlbgQACYFmvhdJ7NeKRjBKxhNCl9L/26lALOwE4WjvB8Ai8dQnuER4s/TR9AcERFRT6E8Ak+lwDSv+gpNvH5b+ltEg8GGxCfG5dXBWgQsfW1v/gaA2ALM/IT+Sv3z1swZKHOQtAQulljOK0MhGK011YyntzxgLBsRGo15ZbsXuUVERERERERERERERDRcqUAA6ndPiuX6Mu/wGAAoCys8cqGDGaM7v68Ia/x4w2U4Y8ufs1cez2C07Y26+Dpg8iyxXH/rOKiWzbj3fAc7127pXj6l4z3ct/pIjE51TSS1+6H918baMcCoOv8bhHyGYJEn5ThQ1z5sX2n1MuhLPiNOhAsAJUGFhy5wMKdHxtqs9qV4YPURCOv23isffXbhg3z8huUxVG/AqR0WQn3/JqAyz4noTv46AzeGIfUjQ5+lp0dv7/5yQo1CueVP+fCrXcQ7ch+f0igMz6lJber8wnGAsZNzrtcPVV6d9TdR37FKXF+nxxxVVPdLe4iGO/XVy8Uy/d0Tc6rre4crnLuvv+tSdWpz7wWGUESiQUXqc8WFsadhvh+VL/Wln1rL9Y2X+a7rb190sP/Mbb++0RXA7fPuw6wOIeyawWhE2xUGoxERERERERH1gRSWkQ65ksKuIoFoxvceAWtCPSZS+BkANA+RYDSllBh6khCCUuIpc0CJ9Dvyu05mqEO+wWhSuEN3+F0fg8jEYyiHY6fXdkKYRdhHkAUREVFPIRUSy6TruhSYBgAhp5jBaObrXr7Bo0TF0phYb1xeGzJMmZ4Dv8N0bX1Qqd/aU9QpMy5vc+NI6ZTPVvQmnW8AoMSRX0KwDZQfLJ7a/ADa3Lix7IDqY3wFLRMREREREREREREREfml6hqAOfLELHrzBl/1zJ+osPTHAXx0hYNPL3ofl3z6C/PzqPF8+X57o2IVUH980b7SY//E1JEKL+zzb3y0bCLeXz4Ny1fugL3iz3WW14zp9yAideSZ/lcuYTBaIalxU4G5e9tXWr0MePdl6yqzxym8/sMA1l3u4MO5V+KNVTtjbvsb2fvb7ZC+NNeMwWhDijr4FKg71wAH5BY+AwBq5/36oUU00FT1KKhb3hbL9b1/6vX9OYvla9KmVuDeN3Nvg2cw2uiJUKF+HGuX0UerdjcLKwK7xV/o/KKcwWhE+VClEWDMJHPh+jXQKf9j6kJBhWtPdfD/zvbuK3efT9Lt4L0ZDXbSPWCrEIwWYTBavlRJqT0c7f6/+B5/O6pC4aELAthwpYOVP3Ow7nIHR7/2C3kDBqMRbVcYjEZERERERETUB1JoVXegmRCakRnE5RmwlkP4RktK+MAWcmhaWaDCd/3FEhRCVExBKVprSwid9wfVpU4YSviYJDPUQQ5Gs3/MIv6OvY4VH+231p9vMJoU1OazPURERGlBS5BZUghAS7hygFFQBfvcJr+k63C+11eiYtnYT8FoNj37ydZgNB/Bv9GAORgNyD+YMOlaAheVJRhN6P8PFgk3gUc23WUsKwtUYI/KA4rcIiIiIiIiIiIiIiIi2i5MmiWXrX43p6pGVygEP1olr8AXXrdLKhgCps0Ty/Xffw3d2gw0NWJkagPqkmt7r1BZ088tRG6hff0ZTLO9mrnAe52XHvFV1ZhKhbFrX5BXmDbXZ6NyUOo3GI3HzmChHAdqvxNy35AhMsPX6Ily2XP39woq2lnIM0p75+Pcx6c0mucUR02qsfOLun4+9gzH9oHNDxlXPbnp1s4v3PwmRCQiACPGymUb1splgj3rvYPRqt3ewWiYPj/n/RAVlRiMZn6XjsFofTTDck7YtB5oasypuuqYwpQRqjPk/NN18oq1lvMhEQ07DEYjIiIiIiIi6gMpLCMdBCAFAmRuJ7343x2wlkP4RqtrC0ZrMi6PBcp9118sIWUezJHU2UEp7boNGq5xfSm8ridHOYg4UWNZVjCaNGOFx3MhKVCsO/xO+L35CY6w1R9PtfieZcPUrnzbQ0RElBYSwk6BzkAfEykwTUEhgCIGo0khuAxGo0FODkYb3cea5U5vzwAxKdi5VIURUAHPvdjCeG33OzYJw31EmnTv0WlwB6P9f/buPE6Sur7/+Ptb3T1Hz7E7M8suyy7I5cEGEBGQQwE5lUMFb7zQmBhj1BhjPBOPBHMfaqJREzXRmOQXFcRbUBHxVjyIGg88OVxgZ6+Znt3t7vr+/pjt3Z6e76e6qs85Xs/Hgwc79a2u+k7PTHVNT/Wrv77789rV8M6cNeesvUQDEe88DwAAAAAAAAAAOs894QXmmH/BefJl+28zwdvc8F/hgamNckPh67qw8rnHP98e/Nn35a86Xv7Wm8Lj4z0Io20+Nv26Bf5u12nu0mc3Dc75t79G/qPvTrfBO2+397XxyAwzS2kgbRgt5XrojTMvSY5hNcrlpEObFLGwbLl8IfHr619xxXzEU9JjT3LatNbe1jUfy3Z9SjX22tEsjNbtKF8gvPb87e9ctOzofT/VxTM3zH8ws6O7cwJWMPeUl5hj/o+fmvk1I0etczpxc/I6E43XpT344Zn2AfRe1jCa/Sa+SOHkR0qja8xh//pntPR6Nr93TrrnV+HBLafJRWSSgNWEn3gAAAAAANpgxTJKB4Jm4b84Nsa6rHhX7UX/mcJoVTsUMBOHn8wdXYphtCgcUSkHQilJn7MVr0u73uKoQ/hJ2ajJ0yxmWGX/9q14RFIUYsF6xvZjxdrr96TaRmhejdLenwAA1CQFh0LBU8kOGOVdYf5doHokKTwKLGV2GG19W9tN+/OXNhBtKUb2xSZJ5/5JQr9H1CTFw+IlHEaLfawbpq8LjhXcgM5Ze0mPZwQAAAAAAAAAAFYLd+wJyStYobMAH8fSp/4jPBgIbmD1cJdeLa0/3F5h293SFz8WHhub6MqcFsjy/UncquPcUcfJ/f0npC2nJa7n/+YF8vfembxOHEt3hMNo7uX/3PIcEw2kjOUR1VtSXGFA7p8+K518brobbDhCrknAD8ube9377MGvfEr64FslSUMFp1tebl9rPleW7tud/hoVK4omSZP7Q0auy2E0t35xUemxMx/Rv935HJ2w5zaNV3fq8t0f1U2/uFB5VedX2E0YDWiVO+dx9uAPviF96/OZt/mR30t+DcxkfRjtSS/q6fW7QEusYFa1El4+zOuj2uGiSO5937VX+PpnpNu+lH3Dd/3c3uer/yX79gAsa4TRAAAAAABogxnLiGflvTdjV41BgKRoVtVXtSeeSz2n2arxThYJYyO58dTb75W8EVEpx4tDKXuMAJ1kB8PSrtcYdWg1jGBFIObikmIf2/GIlPNPiky0Eo+w5pP2/gQAoCbv8uaYFSqylidF1rrBPEfLEK0Fem2uOnsgsNxoss0wWpY5hKQ9tx2MhuWMP2OWWvz5s0KMUrNjy9INo/3v7De0dd8dwbEz11yg0fzS+z0PAAAAAAAAAACsIOc90Rzyn/tg+u38+Dv22GFHZ5gQViL3e3/Z2g3HJzs7kQA3Ppk+wEYYrSvcgx+u6O1fkJ72MnulalX6fPgNpw647y5pn/EGtMee2PoEk6T9niCMtuS4DYcretOnpMkNzVfucpgKS8AR908crj8nut+U05ueYkeFrv9O+mtUtieE0Sbi/SGjbgdmN4XP056267/0rZ89TNt+tFHX3vEkHVa5++DgqRd0d07ASnf8GeaQ/+wHMm9uQ5PLyybqwmjuNx6WeftAz2WN9w3x+qh2ualDpWPseH4rxybd+ZPw8iiSNh6VfXsAljXCaAAAAAAAtMF6YX8pntU+v1dx7d2NGjTGpayoVSmeTYx+hW9jR7Bmq7uCy0dyY5n20QsFVwgurwRCKVaATpKG2gyLLd52+I/OVrihxgqKecXaG+8xPwcrvpd2+1Jr8RYz6kcYDQCQUeRyyikcRysboaJQCFWyzw+6xYzgVrOdnwG9tK18jzm2rpDiotwESZeMeH/wPHnO+B0m7blt5CLz/LaV6K8kleNwcFGSCpF9bFm6WTTphulrg8udIp0/8ZgezwYAAAAAAAAAAKw27gT7Rfn6yifTb+hXP7L3cfzpGWaEFWnLadlf3C5J6zZ2fi4hST8HNc5JR23p/lxWMXfimYnj/pufS97AnbfbY0b4p21pw2gDhNGWrBOSv++kJo+VWBHc2IR0vwfZK9zx4wXX1Jx5jP2YdovRAAnZbbQcJWlN7fUCh2xKv8FWPOiUxGNZ6DN1Fz6le/MBVoOk348+/E75PdmubR3IJ59nT9aF0bp2TgR0VMbfHQeHuzON1SbpnPeDb5X/6feybe8O4/ezDUfIFXr7JusA+o8wGgAAAAAAbbBiWnPVGc0lxrqKCz62XvQ/V51N3E7IrBEKqPiy9sRzwbHRJRlGCz9ZGQqoWOGvghtIjBzUs4Jfjdv2VhityfPn1vdKbR/W55A2RJYUgMv6PVSbU3A+KWMWAADUsx6PQ8HTpOX5qLd/zGw8Z6spxbMLLlgDlhIrjBYppzX5dt8VPTGNduBf7Z7bSnZEreUwmhFidHLKKW+Gjr2PW9pft/107v90+9wPgmMPGTtD6wYO7fGMAAAAAAAAAADAqnPxVYnD/v1/m247d/7UHrvgSRkmhJXIbThcuij5ey14u83HdmE2gf08+cXNV7ry+XLF0e5PZjU77SLp2BPt8Vs+Iv/dL9njvzJqRGum5qNH3ZA2wpALvxkh+s896UVSUphhzTrp0qt7Nh/0j3vaH9qDc7PS9NYDH558hL3qe77k9Z1fpbsmbWavPTZae5P18XavE0rmhkekNI+D9U67sDuTAVYJ99jnJo77F14gv3Nbx/a3Jt558IPDCKNhGcga1Say1RHuyucnjvvnnCr/ifem3p63wtWbj8kyLQArBGE0AAAAAADaUIzCF6uU4lmVjBiAtPhF/mZgrcl2gvuu7g4ut4JpkjSyBMNoeRcOqJQDoZSSEf7KFF5IiNPVsyIoVkjh4PbtC5tKCQE8a16NClHBjMll/R6S7JhalvsUAICavBU8jcOhIiuMVjDOD7rFehz2irXXJ7ztJtBH2yrhMNpEYZ1yLtfWtl3Kd9PrxPn5cM76XavVMJoRXHQFOZf2M1s6bpi+zhy7cPKKHs4EAAAAAAAAAACsVm5sQu6vP2yO+7e9Sn57+G9XC9azwmjHnSpXXHrXtaH33CveIfdbb8h2o029ecG0O/lcubfcmLzOi1JGAtEyl883/Tr4f/wje8x84X0XA3uFwZTrEWtYqtyJZ8r9wyelc6+cjzQcdtT8f/d7oPSop8u9/Wa59Zv7PU30gHv0M+Re+hZ7hbpzHeecXnqRfZXKq69N9wZ+M8ala4PxHhVUmf+gy2E0SXK/9fr0Kx9zglzaKCSAILf5WLkX/IW9wv99U7r27R3bX1R7s9Q1U3Jjazu2XaBrCKP1hTtqi9xz/theoVqVf9MfyM+lfG2b9ftZj37PB7C0EEYDAAAAAKANjYGzmrmE0JW0OAhgBQJKcfJ2rNuEzFZ3mbcZyY1n2kcvFKL0AZU543O2gnNZ1m28P72sMFqz7RfNsaQAXpbPIW3cLY25uBTeR4b5AABQk3fhd6+1QkVlHw6mWRHQbkl6HC4lRGeBftpW3hpcvq6wvqv7rT9Pts/P7XPiRta5rRVda6bS5LhihY5jpbvgtJe27rtT3535anDsgcUTdL+hLl6cDwAAAAAAAAAAUO/EhyePf/XTzbdxlxFGO+GM7PPBiuTyeblnvly65Fnpb3R47/5m5k56hHTUlvDgwy+Ti3gJZy+40TVy1/w/e4UffF1+26/DY7/+RXj5YUe3PzGDy+WkfIo3CEyzDvrGnXiWoj/9T0X/+X1F//1/8/+977uKXv2vcoQbVpfH/pZkBV0bznW2bLQ388nvSXvL4WvV683sDS8frb3hYC5nz6eDnHPSlc9Pt/Ihh3V3MsBqcealicP+lo90fp9dPCcCOipzGC1lrBjNnXtl8vjsLunbN6fb1h3hMBrn18DqxLNqAAAAAAC0wQqaxYq1o7ItOJZ3+UVRj6TAWinOFt2Yre4OLp8xlkvSSLT03lmz4MIXc1QCARUrvGDFFLKs2xgVs8NoyU+z5F1BAy78pHmpOmPGy6zvseC6KeNuzVR8Wft8+C/mWeYDAECNFTSzQkVWMC1vnB90S9K5hHX+AfTbtvI9weWTXQ6j1bMiu1nOJYu50eDyrL8f1VjHldrvHVmvh+mnz0x/2Py95ILJK3o8GwAAAAAAAAAAsJq54qi05TRz3L/tVfKVSvJG7gyH0dwmXnyPhdxDH5luxeKYtPaQ7k6mgbvoqvDy857Y03mseieelTz+vfAbUGnXdHh5tyM+A0PN1yGMBiwLzjnJOHfx//yaBedDj3ygfZFK7KUfGA3HejN7w9eNjNauaRubnJ9TD6R+fB4c7u5EgNVi0zHShiPs8R/eKu+bBxYz2UyMCCvUAGG0jjn8AdIhm5LXuTMcPKvny/ukrb8MD3IsAlYlwmgAAAAAALTBCppJdpBgOBpZ9IfG5MCaccGFoVQNhwJmq7uCywfdkArR0rtwwgqolAMBlZIVFUv4+qRdtzF6YgUI2tnHTHWX9vo9wbGk77FF60bheIQVXbPMVcMhC4kwGgCgNVbw1AoVWcG0QhQ+P+iWoaQwWsLjJdBP08bvIVP59sNoTukumLTOPztxbmv9vtNMOQ4fV/IHjivhz62d8/9u2FXZoa/s+lxw7LCB+2lL8SE9nhEAAAAAAAAAAFjt3HNeYw9Ob5V/1RPk4zg47PfOSffdFb4tYTQ0Oudx0nGnNF9v87E9i8EccOnVi1+kfdyp0tmP6+08Vjm3dp30jJeb4/7VT5LfFigO7doe3t74ZKemFpYqjNbba2UAtOEw49xl293yr37igVDRkeucrj7Tfpw6+U9jlYzwWc1M+P2vNVp7w8E1XT5+1TvzknRhmQHCaEAnuFxO7rmvTV7pti91dqfW8Q1YarL+HlggjNYpLp+X+83XJn4NvBHGX+Dun0vGc0jafGxLcwOwvBFGAwAAAACgDUmRqG0VO4zWqJXAmmXWDKPtDi4fzY9n2n6v5DMEVBrjZTXFDBEv62tZaty28e45kWv+NIs1n2nje2X+NuEgRIgVXlv0OTRh3Z9StpgFAAA1eSNoZoWKynE4mGYF1rqlEBXMWGvS4yXQL9573WeF0QoburvvuoCYdf6ZJbI7kjPCaC3+7FWMEGPtuGJF37w3LrDok5u2f8z8XC6cfFzvX+ABAAAAAAAAAABWPfewi6VTL7BX+PInpO98ITx218/s2/HiezRwg8Nyb/q03HNfl7xiH14s7SYOkXvbzfMvBD/viXK/++dyb/603GCK8BU6KvrtNySvcP2/Ll62y3gD47GJ9ieUJFUYbem98TEAQ1LU9Usfl75984EP//VZydd3fODW1sJoI37/dTVjvQujuXxB7r9/2HzFQcJoQKe4Rz1d7rX/bo77t7yss/trDAADS1XG6ycdYbSOcpc+S+7vP2GvcMftzTdyp7GOc9LGo1qbGIBljTAaAAAAAABtGI6K5ti0ESQIxauSAl5Zw2ilePeBd5SqN2OE0UaisUzb7xUrQlLxiwMqc9X2wwtW8Ktx27GsMELzJ9Ct+SR9ja3YWYj1fWTdP5ZSwvpZ7lMAAGqsoJkV9ykHHu8lKW+cH3STGU/N+PgK9MJcPKs9cSk4NlVY34E9JLyTW10YzTr/zBLZLVphNCME3Yx1XKn93mGG0VraW3fsief0+R0fD45N5NfplPFH9HhGAAAAAAAAAAAA89wFT04c91+7MTxgveA1l5MOvV+bs8JK5IZH5J71SmnDEfZKfQo3uLXr5K5+laLXv0/uqX8gN2RfX4ouO/9J5pD/euB4ZIXR1kx1aEKGgRQhBsJowLLhNiU//tSfDznndPb97XVv/H7yvmb2hJePxvuvqxnvctixgVu3URpdk7wSsVCgs85/kh0c3H5v6s2cYvzadc7s5w9+cBgxIiwTWd9YdqD316WvdO6hj5R73p+FB+/6afMNbP1VePkhmwmPA6sUYTQAAAAAANpQiAbMgJcVuwrF1IYSw2hbg8tHc+PB5RVfCb7of7a6K7j+SG6JhtGi8MUc5XhxQKUUG2G0DOEFK3qyz+81oy310jx9bs0nKYyWFM1Lu33r/rHMGes7OQ1GPJEMAMjOOl+yQkXWY68VWOsm6/HVerwE+inpvLITYbTEa0b2F8S895oz4mxDCWHpRsWo02G08HElv/+4YoXRllIa7Us7bjCPPedNXK6cy/d4RgAAAAAAAAAAAPuddqGUS/hbxfv+Krz8TuNFsesPlyvwAmUkOOsSc8ideWkPJ4KlyJ2V8D1w25fkKwf/fuwrZakUfuPhroeFhsN/F1+AMBqwfJx+sRQlvGz/+19b8OGlJ9oX4rzvq1633WFfszKzN7x8tHZdyaEJAdFuaRaTtAJOAFrinJMGjNd2bP2l/O4dqbbzO+eEj0UvmX7zwQ8mOvGmrEAPuIz5nEKKUDGy23R0ePkvfxQOVdfbtT28fGpDe3MCsGwRRgMAAAAAoE1WUGu6HH6XlWIgrlGICpkDa1MF+0m92eriizRCyyQ7sNZv+QwBFSu8kCkqlrDuXPXg9r3i4DouxdMsVtzB+hrPh8jS/xHY+hyyhlus9YeioqKsfygAAEAHw0ONrFCRFUyzzpe6yTqfIIyGpeg+I6qcU15r8pNtb9+Ohx201+8xz5mznJ+Hfm+Sskd/ayrWcSWaP644o/rml0gYreor+uz2jwTHhqOizlp7UY9nBAAAAAAAAAAAcJBbt1Huua9LXMf/198vXnaXEUazXkQL7Oeueqm0+djFA5c9R9pyau8nhKXlnCsS3/nLv/IJBz/YbbzwXpLG2v87e6Jiijc2JowGLBtu/Wa5q19jr3Dr9MQnewAAIABJREFUTfJ7Dl6T/tyHJ1+H8+A3xPreXeHrVuww2vwbDrpNxyRPtgvcy/85eQXCaEDHJf3c+adukY/D1/HVe8qpThcct3DZ43d9SBfP3HBwwXiXz4mATkl8998AwmjdkXAe4v/gUvkvftQe3z0dHhjrcrQawJLFK1kBAAAAAGjTsPGC/X0+/BdHK16VNbqxLjGMNrNo2YwRRhvJpbiwog8GjPBJJRBQmauG7yPraxNihRekhV8DK4uQ5vlzax87K+EnbrOGyKztW/ePpT4El2b7AAA0YwXNrABaOQ4H0/JR7y/2tM4nrMdLoJ+mjeDuZOGQrgduawGxUuB3kZpM5+dGVHhPXFLsq9kmJ/u4UjgQbjTCaH5phNG+ufuLmq6E49tnr320hjIElQEAAAAAAAAAALrBPf1l81Eqg3//38lXGv5mcydhNLTGbThC7u1fkHvFO6QnvlB6xsvl/uZ6uT96q/mmSFg93MCg3L9/y17hK5+U//kP5v+9c5u93niXX3xfDP9dfIFC799EEEDr3LNfLV1unw/ppg8d+OfEiNNHfi/5ep63fDZ83cqsGUbbf814H8JoevAjEocdYTSg8x6W8GaaO7dJ3/xs000UB52u/71IH7joe/rje6/Rtb96gt5/5zNVUOXgSqNrOzBZoAey/i44QBitK5o8p+P/42/twV1GuJpAI7BqEUYDAAAAAKBNVtDMYoXRskQCJGkqIYxWihdH0GaNMNpobjzTfnsl78Lhk3IojGbE44ajYur9WV8XSSrVhcW8D79rjkvxNIu1D2/k1rKGyKztl2I7ThFe37o/CaMBAFpTMIJmFSNUZAXTrMBaN2WN1wL9tM0Io00V1ndoD0kXjcyf0yb9bGT53amYsy8At85Xk1jHlfz+44qzwmhmGrl3vPe6cfra4Fje5XXuxKU9nhEAAAAAAAAAAECYe/TT7cHt90i/+snCZffdHd7OxqM6OCusVG58Uu7SZyl60d8o+u03yD3sYqJoOGjTMVI+4Q34bvvy/P+tF95L3X/xfTHFGxvnev8mggDa4y692hzzt31pwccnHZ68rXfcHL5uZedcePlI7Zrxw3ofmXVRJB15nL3C2nW9mwywSrihorR+sznuv/slc6zeUMHpiqmf6LX3XaPLZz6unOpeMzO6Ri6Xa3eqQI9k/H2wQBitG9zIuDRpv+ZR3//q4nB+za7p8PJuR6sBLFmE0QAAAAAAaFPmeJWxftbo1FhuXENR+J2T6kNeNVYYbSSX4sKKPihE4fBJOV4YNPDeBz9fKVtsbjAaMuNm9XGHdrIIWeN3Wb8nrO9F6/6xzFn3J2E0AECLrKBZJRA8TVpeMMKp3TRkhFazPr4CvXBfeWtweafCaFY8TDp4nmydS0rSUKYwWrpwcVrNjitLOYz2g9K3dcfenwfHHjb+SK3J8054AAAAAAAAAABgidjyMGlNQvTi599f+PFuI0i09pDOzQnAquQKA9JZl5nj/q+er/jFF0vf/Fx4hYGh+dhINxXtNww7ICnuBmBpetAp9tj1/6r4EYMH/tv4lmc33VwcL752Zbtx6cxEdcf8P/oVITv3Snvs1At6Nw9gNTnnCnvsPdfI/+jb6bZj/W42tjb7nIB+yRrKLvT+DbtXjXMTjk3VqvTVT4XHzGMR18kCqxVhNAAAAAAA2pQ5XmWs30pgrRiFL4oIRdBmqruC6y7ZMJoRPin7hWG0fX6vYlWD61r3dUjkIg0b4ZOFYbQ4uE6U4mmWLPORpGIuxUUvC7YfXn9PXFLsw/MOqf98F86HMBoAoDX5lI/rzZZb2+km6/HPerwE+mm6fE9weafCaGnMxaXg8oIbUCFK/zNsndtKUqk6k3le1nGlFm60o2/9D6PdMH2tOXb+xGN7OBMAAAAAAAAAAIBkLp+Xe917zXH/J1ctXLBzW3jFNbzgFUD73Av+InmFW2+Sf9cbwmPjPTgOFZtfv+uINQDLjsvlpIdfnm7lG/5Tf1Z9W+Iqb785EEYLX56jyer+mEifQkbuSS+SHnJOw0In90dvk1u/uS9zAlY698xXJI773ztP/te/aL4hYkRYCbKG0QYGuzMPyF39aumoLea4f8Xj5bffu3jAeJ7IjU90amoAlhnCaAAAAAAAtGm4haBZcHnGaNZwNGKGs0rxwlBA7KtmvGM0N55pv72Sd+GLORqDBnNVO0qS+T41vjalhH10Yvvm+h2av5fX3ngu9XaszzfrfAAAqCmYj+vlTMut7XST9fhXIoyGJcZ7r219DKP5/QGxTp1LDkbDcsafMht/30mjHIePK/n9sTZnXBDj+xxG++We2/XD0neDYyeOnqZDB7loFAAAAAAAAAAALC3ulPOkBzzEHPfbfj3//71z0l7jmqZeBIkArHhu45HSVS9t7ca9eOF9ijCa8r1/E0EA7XOXPiv1ulf+PDmM9g83Lr52Zdq4dG0i3i4Nj8r16djhxtbK/d3H5N56k9wfvFnuNe+W+8BP5C5/Tl/mA6wGbu06uZe+xV5hblb+4//edDveCqMRI8JykjWMlidC3C1uYr3cv3wleaVPv3/xsl3WsYjniYDVijAaAAAAAABtKrYQNAsuzxjNKkYjGjHCaLPVhaGAUnXWfEH/SC7FhRV9UHDhP8hWGkIpSVGSVu7TkPqonPfh+9G55k+zZP1e6dT3lpQt3mJF9IZzxUzzAQCgphBZj+v7wsvj8PK8sZ1uss4nkuKsQD/MVndrr98THJsqbOjIPpySLhqZP0+2zyWzndtGLjLPh0vVFsJoxvHmYHDRCKMZ5/+9cuP0debYhZNX9nAmAAAAAAAAAAAAGZz0CHvs5uvkZ3ZK995przPGC14BdIZ70ENbu2EPjkNuOMXf0XP5rs8DQBcc8cDUqx657xcaiirm+I/vke7a4VXaO38NSxx7bS+F152obpfG+hsxcvmC3AlnyF3xPLmLr5Jbz5v+AV13/wcnj//g6823sWs6vLzPxxQgk6xhtIHB7swDkiQ3MCidcp457n9468KP9+6Rtm8Nr7xmqpNTA7CMEEYDAAAAAKBNSTGqEOvF/ZkjWLkRFaNw1KxU3b3g45nqLnM7SzaMFoXfeaPcEEpJipK0cp+GlOr2YQXm0jx9XswYg+hU2E3KFm8xYxYZ708AAGryznpcL4eX+/DygrGdbrLDqcbVZUCfbKvcY45NFdZ3ZB8uxUUj1rlk1nNzyT5/biWM1hhYrqkFma3PrJ9ZtPv2bdWtu78YHDt66EE6ZvhBPZ4RAAAAAAAAAABAOu6ip5pj/u9eLP/o9fJP/Q17A+O8+B5Ah5z+KGlkPPvt1vQg0FhMcf1uoffXygBonzviAanXHVBZT1j3o8R1Nv9RrNEXxnr826q6c4cUGxe0TFR3SGNrs0wVwEpw3KnSpqPt8a98Sv4D/5i8jd07wsv53QzLSsYwWoEwWre5C+3nh3TDf8nf+N8HP777Z5L1ZsZJxzgAKxphNAAAAAAA2tSp2FUxN5ptv9GIRozblOKFoYDZhlBavdFcCxd89EB+f6CgUWMopWSEF/KuYMbVLFb4qz7uYIfRmj/N0qmInrn9XNEcs+6nECui1krMAgAA6WB4qFHZ78u03NpON1nnbnPVWXnrj69AH2wrh8NoeVfQWK77FzzWfhrmquFo4HBkn6tahlP+vpOGfVyZ/53BOp/3ijPvq1M+u/16xcb+L5y8osezAQAAAAAAAAAASM898OT2NjDGi+8BdIYbHpH7iw9Ja6ay3XBsiYTR8r2/VgZAZ7jnvi71un+34TodmuKS/mu/JT3mH+1rWSaq2zmPAlYhF0Vy1/xP4jr+TS+Vv+lae4Vd0+HloxxTsIxEGfM5hNG67+KnScP2a9H8658pf9uX5z+48/bwSlEkHXpk5+cGYFkgjAYAAAAAQJuyxq6sIEDm7eRGzJjabLUhjBaHw2gFN6CBaGk+kVsLFDSKVVXVVw98PGcEv1qJeFm3qQ+F2WG05u8sYoVVOrV+zuU16IaCY6Vq+niEFVHLOh8AAGqsx/VKQ/C02fK8sZ1uss7dqqqYoSWgH7aVtwaXTxXWK3I9+JPg/lCgdX7eyrmkdX5eMkK+SRoDyzW1ILN9Nt+fAOJMdZe+tPPG4NiGgU06YfTUHs8IAAAAAAAAAAAgo8uf09rthkfkBpbmNW0Alid30iPkrvul3Mv/Of2NxnsQASmmeEPlfO+vlQHQIQ85J/Wqk3N36Vd/le76nu/ckbCd6nZprPtvoAhg6XHHHC/3r19NXMd/7N324O7t4e324pwI6BTX/HVdCwxwrt1tLpeTe+MHEtfxH//3+X/c+dPwChsO53kiYBUjjAYAAAAAQJs6FbsqZtzOUFRUMQpfFNEYwZqp7gquN5JL8W5zfVJw9rvc1cdS5owoQivhBes29aEwM4yW4gn0rPG7VuJu1udgBSqC61r3aQvzAQBAOhgeamSFxawwWtL5QbckPf5ZMVGgH7aV7wkun8qv79g+kmLAtfNkK1rWyrmkFYIuxemjvzWVOHy8KUTzF7Y4Ix7XnyyadPP2T2if3xscu2Dicb2J3QEAAAAAAAAAALTB3f/Brd1w7SGdnQgASHL5vHTBk6WB8JvPLlp/fLLLM5I0sqb5OvneXysDoEOOOV4qpAyu7N6hXOR08hHt7XJNvFNau669jQBYvo54QPK5zlc+Jb93Ljy2e0d4+RhhNCwnGcNoRIh746gtydG6j75LvrxPfjp8HbQOPbIr0wKwPHDFPAAAAAAAbbLiZCGRIg268B8asoQChqJh5VzODJvNVncnflwzuoTDaHlnP8FcH1Gxgl8thReM29SHwryPjVs3fwI953Lm1z+klbhbms8hSdVXtdfvCW+7hfkAACAlhdHCAbRybITRot7/ATrp8S/t4yvQC1YYbbLQuTBamnNe6/y8lXPJtCHoNKzjTbPgon3+3z374r26acfHg2PjubU6bTz9OwoDAAAAAAAAAAD0zXlPlIaK2W+3+ZjOzwUAJLmh4nwcLY3xHkRA1kw1X4cwGrBsuZFx6dzHp1v589dKkp59VsagS5211e3KKZbbxLkUsFq5oaJ04VMS1/EXrJX/zP8sHtg1Hb5BL2KxQKckxbdCONfuCTd1qHTGoxPX8Y85XLrpg+HBNL83AVixCKMBAAAAANCmLC/wH86NyBlPtGYJedXWLeaMUEBDjGCmuiu43khuPPU+e60Q2U8wV+piKSUjSDIcZb+ozgqRWXGHelHKdxbJEjuzImetbL/xe8KS9Lm2EpsDAECyg2aVQAAt9lVVVQmubwXWuinp8S/NOQLQK9vKW4PL1xU29GT/Xl6SNBeXguNDLZyfp/19J436uHK9WpDZGefzPvOe2veVXZ/TTHVncOzcicv6EokEAAAAAAAAAADIyq2ZknvTp6X7PSjbDYl5AOgi9wdvkk46u/mK4z148f1Yivhagb8PA8uZe9k/zQcZBwaT4yvey8/u0u+e6/Tay1uLo01Ud8z/Y/OxLd0ewMrgXvIP0vFnJK7jX/8M+V//4uDHlbJU2h1eeWxtJ6cHdFfWMFou3515YBH3x+9JDpzN7JDu/Gl4rBfRagBLFmE0AAAAAADalCUWlRS6yhRY27+dESMUsCcuqeoPBkVmq+E/UozkxlLvs9cKzr6Yoz5qYAVJsgTIDtzG+PqUqjMH/u0VG7dO9wR6lthZJz+HtOGWOSM0l7RtAACaKRhBs1CoqOLDUbT57fT+Ys+CG1Dehf/wnfS4CfSS917byvcExyYL6zu2nzRnvNbPRSvRX+s29efnaVX84hCjdPD4ZIfRrPP/7oh9VZ+Zvi44NuiGdPbaR/V0PgAAAAAAAAAAAO1wW05V9L7vyH3kzvS3IeYBoIvc4LDcmz7VPJrQixffj082X4dYA7CsueERRa/9d7lP3Cv3yXvnQ2mWL35Mzjm99vJIH31h9pf/T1a3z/+DyCywqrnBYbm33JC8kvfSZ/7n4Me7d9jrpjlfAZYKwmhLlhtdI/eeb7R24zGOQ8BqRhgNAAAAAIA2DeeKqdcdiux1MwXW9gezilE4jCZJpbogwfIMo9nvilWuixpYwa+WwgtGiKxUtw9v3NalfAK9aMTsQloJkVmfQ9pwS1JALUu8DwCAelbQrOzL8t43LFscSzu4nYR3zewS55yGrDhTyvAo0G0z1Z3mz85UR8No9jmv33+mbP1ctBL9tc6dWwmjlePw/VOI5o9Pac/nu+07M1/VveVfB8fOWntRpt8nAAAAAAAAAAAAlgq3dp101UvTrfygh3Z3MgBWPRdF0sia5JV6EAFxA4PScJO/ped7f60MgM5zA4Nyg8PSMSea6/h3/In8T78nSTrzGGkwY6tlbS2MtmFzq9MEsEK4fKHp71X+PdfI/+S78jf+P+nz19orjvUgFgt0DGG0JW1qo7TusMw3c72IVgNYsgijAQAAAADQprwraMANplo3KSyVJbBWC2YlvSi+FB+MBcxUdwXXGc2Np95nr+WNgIokVeqiDyUj+NVKeMEKkZX9PpXj+Rib93FwnaRIRJp9hLQSPbC2nzbcMlctmWND0XDm+QAAIM2fL4V4xYpVXbCsPoDaqBYw6jUruJo2PAp0233le8yxdR0MozXjvTd/LloLFxthtBaihNax5eDxKXw+7800cud573XDdPgis0g5nTdxec/mAgAAACA959zRzrknO+f+2jl3k3Nul3PO1/338za27dv878iOfaIAAAAA0CZ32bObr3T/k6QTz+r+ZADgyt9JHu9VBGR8Knm80J9rZQB0yZZT7bGtv5R/1smK3/xSrRnyeuYZ2eIuk/F2ybnm4UcAq4J7/AuSV9hTkn/2qfKvf4b8377QXo8wGpaTrG+QS4S4p5xzck9ocmwK6UG0GsDSRRgNAAAAAIAOSBvhSopiZQms1fY3khsz15mt7g7+u17S7futENlPMNciZZI0F4dDXlkCZGlus2d/fKHdLELa75VIkQbdUObtW/E9KyC3aD0jMjEUFRW5XOb5AAAgJQfNGmNFlXifsaYdWOs26/G7lTgT0A3bjDBawQ1oNNfJix2TLhrxKvt9qqoSHG0lXGzF1PbEJcW+GhwLqfrqoghjTe24EllhNN+7MNpP5r6vn+/5cXDslPGHa7JwSM/mAgAAACCZc+5c59ynnHPbJN0u6b8k/aGkcyQt3T++AAAAAEAfucPvL/eOL0qHbFo4UBiQJg+VLn6a3Js+KZf1hcwA0AL3tJclr9CrF9+PN4mNEGsAVhTnnPTY30pe6X/+Ubr1Jv3TVU6veHT686KJ6g5pbEIuIh0AQHKPeprcK9/Z3kbyBWk4+3V/QN9kfT4hl+/OPGC76qVyL/jLbLchjAasahypAQAAAADogGI0op2abrpesxjAcG5E+yp7U+1PkgbcoPIur4pfHB8oVWcO/NsKo43mxpvuq19yysvJyQdSZGV/MJgyZwS/rIhCEisqJs2HT8a0Vl5xcDxK2Z9PO6/h3EhLF/lZcbe5lOEWa71W7k8AAGoKCUGzcrxPQ9HwwY8bQmkLt9Ofd8EdjorB5WkfX4FumzbCaFOF9R194UjSprxP/ploJVxczI2aY6V4NvXvM5VUxxUjjNZ2Gjm9G6avNccumLiiZ/MAAAAAkMpJki7q9yQAAAAAYLlxx50i96Gf9nsaACBXHE3+a/BQ+FqRjmv2Iv8cYTRgpXEPPLnp1Sj+pg8pf8p5euMVTq96tNf4i8LXr9ebqG6XxtZ2ZpIAVgR3yTOl9ZvkX3JJaxsYmyBcjeWFMNqS55yTnvL70pop+Tc+N92NxprEpAGsaGSfAQAAAADogLQv8m8WlypG9gv/F+xvf8DLOWfeZnZ/GM17b4bRRnJjqfbXD8455Y2ISn0wpWTEF5pF6IK3Sfj61AJs7WYR0s6r1RCZGUYzAnJp12vl/gQAoCafEDSrD56GPq6XFFjrJiueOlct9XgmQNh95a3B5VOFDR3eU/JFI6WEc85WzieTfj9K2lej5DDa/HHFmZ9bb8Jod+39pf539hvBsS3Fh2jz0JE9mQcAAACAtu2VdHuXtv1VSUdl/O+OLs0FAAAAAABg+TvHeIOqk87uXQSkWRhtmGs3gRXnhDOar/Phdx745+hQuuPRRHV782MKgNXngSdLA0Ot3XacGBGWGZchn+OcXC7XvbkgWZrzoZp1G7s3DwBLHmE0AAAAAAA6IO2L/JsF1KzoxqL16rZTzIVjAaV4Pow2F88qVvhdokaipRtGk6SCEVGp7A+meO/NkFcrYbHBaEjOeLqkFmDzPnxfupRPoKedV9rY3qLtm98P6cIRZmiuxfkAACAlB80qvrLg43JCwCgpsNZNZng05eMr0G3T5XuCy6cK63s4C5/4M9HK+XnS70el/SHoNJKOK4Vo/rhiXdQe9yiMduP0debYhZPGxfgAAAAA+q0s6duS/kXS8yQ9VNKYpJRvbZ3ZHu/9zzP+V2m+WQAAAAAAgNXJPfnFi0MhuZzcU36/d5MgjAasOu7I4zLf5iUXNo+jTcQ7pNG1LcwIwErmxiakK5/f2o3HCKNhmckSN87luzcPNOU2Hytd8OTmK+Zy0sYjuz4fAEsXYTQAAAAAADogdeyqSfgsbXyqfjsjuXDcbLa6W5I0s///IaO58VT76xcrolILG5T9PlUVfk1P2lhdvchFGo6KwTErwFbjlO4J9NQRvRbmL9nfi3vikmJfbXp76/O07hcAANKwYqfSweDpgY/jfcaaUt7154/QZhityfkB0CvbKr0JoyWd83rZ0eKc8onHActQVDT3WQtBp5F8XKn9zmF8br77YbQd5W36+q6bg2NHDB6jBxRP6PocAAAAAGT2b5LGvfcP8d7/lvf+Hd77W71PKDMDAAAAAABgSXEnnCH3lhuli58mHXuidP6T5P7mo3JnXdq7STQNo4XfLBfA8uZe8BdN1/F79xz49ysf1fw69cnq9ubHFACrkvvdP5d76Vuy35AwGpYbwmjLinv1u+R+55rklSYPlcvbb9AOYOXjaA0AAAAAQAcUc+kuPGgWPksdRqtbrxiF912qzocCZhPCaFZUbanIRwNSoOVV3h82mIvtGEna+3LR7XIjwchCbV9ecfB2acNo1tdr8Xqtz9+yJ55r+r1aMu7TVkNtAABIUj6y/yBZbni9cNmHA0Z5V5DL8gfrDrIeB63HTaCXYh9rW9kKo23o2Ty8pLm4FBwbzhVb+vmdDxeHz89LGcKEjceZerVgW2Scz3t1P4z22e0fMYPPF0xe0bdjHwAAAACb9357v+cAAAAAAACA9rktp8ptObV/+x+fTP6rdHFpX+cLoEX3e1Dzde7+mXTkcZKkqVFpzbC0c85efW11uzSWYrsAVh3nnPS435b/9S+l//jr9DckjIZlJ8O1lsS2+s7l89LT/lB6xGPkn2a8gfCRnNsAq13U7wkAAAAAALASpI1wFZvEpZqNH1ivbn8jRuiqFg+Yre4KjkfKaSgaTrW/fim48BPNlf1hg6QYQtr7ctHtjK9lbV9WGCFtGC1tYKzVEFlSUC1NPGLOWKfVUBsAANLB8FBILXh64GMjYGSdF/SC9TiYFGkFemV3dceB8+NGU4X1Hd1Xs3NeM7LbxrmkdV4fiqVZrOCiVH9s6U8Yba46q1t2fio4NlXYoIeMndHV/QMAAAAAAAAAAAAA+mh80h7L5aWCfc0NgGXshDOlweTr+P0zTlL8j38k/7PvyzmnNU0u+5+sbidiBCCRO+2CbDcY55iCZSbLm9Dm8t2bB7LZfKy08X7BIXfahT2eDIClhjAaAAAAAAAdkDp21SQIkDYYUL+/ohFGm63OhwJmqruD46O58fl3flnCrIhKLWyQFCNpNb5gfS1r+zLDaCnvy7SBsU7PX0oXj5iLS5m3CwBAMzmXU2T8SaIx6FQxAkZJcbVuM88PquHHTaCXtpXvMcem8p0NoyXzZmS3nXPJYmSEoKtZwmjhcJwk5fcfW6yz+W6H0b6w41PaE4ffzvf8icco53Jd3T8AAAAAAAAAAAAAoI/WJITRhkeW/HW+AFrjRtfIXf3q5iv+95vkf+ds+e99TW9+SnISYKK6XY6IEYAkJ50tnXlJ6tVdUsAVWIoIoy1LLorknneNlGu4XvaoLdIlz+rPpAAsGRytAQAAAADogE7FrtIGA+r31ywUMGuE0UZyY6n21U95Vwgur4UNrPBCTvmW4ynW16hUC6N5I4xmphTSbb+RFbxrZigqmmPW/bVgHSM2l/Z7HAAAS8ENaK/fs2h5uSGEZgWMrPOCXrAev5MirUCvbCtvDS4fdEMdP+dPOuf18l05l7TOi7OE0SpxOLgoSXk3/+dS58IXj3YzjFaOy/rcjo8Gx0ZyYzpjzfld2zcAAAAAAAAAAAAAYAkYSwiORLyRFrCSuae/TDr2BPmXPTZ5xdJu+ff+hS574wcTV5usbpfGCKMBsLkokq75H+mT75X/zi3SHbdL//tl+wZja3s3OaATsoTR8v27Lh2LufOfKG04XP6mD0n33S33oJOlS58tx3EIWPUIowEAAAAA0AFpg2bDOTtaJWUIrNXtz4od1IJoM9VdwfHRZRBGK0ThuFllf0ClZIQXhnOtv0ue9TWoRcWsMELaMFqxhfhdFjmX01A0rD3x3KIx6/6qZ8XT0n6PAwBgyUcF7a2GwmgLQ2hlI2BknRf0wrARHi37fSrH+/o6N2Bb+Z7g8qnC+s6/c3ST7c1VS8HlaePAIdb5c5YwYWOAsabgBg7cR+ZnZoSRO+Ebu2/Wzsp0cOyctZdoMBrq2r4BAAAALEtHOOfeLek0SYdJGpG0XdJ9kr4l6WZJH/Deh3/RAAAAAAAAwNKzJiGMNhu+/hfAyuFOf5T8Fc+Trn178oq33iTnpAdskH4UeA/F4bikET9LGA1AUy6fly57ttxlz5Ykxa96ovSF68MrJwVcgSUpwzWzOVI7S407/nS540/v9zQALDGcPEZOAAAgAElEQVThtz4HAAAAAACZpI1YNVsvbXxqqC7OUcyNBtepRbBqgbRGVlBtKSm48DtwlOP5gIoV8Wo1KibZX4NaeMEKo6V9An0oGm5rHqlua8XdUsQjzNicEYQBACCtggvHwxpDaBVfMW7fv3fmSgqbzsXhEBTQK1YYbbKwvsczsc83mwWikxSj8O8tpepM6m00Bhhr8guOK+Hz+W5l0WIf68bp64JjBTegc9Ze0qU9AwAAAFjGjpJ0taQtktZKKkhav//jp0l6u6RfOuf+3jkX/uMRAAAAAAAAlpYNR9hj1fA1NABWFnfWZc1XmpuVbr9NV54cvr7l4pkb5q98IYwGIKuNR9pjY2t7Ng2gI7K8mXAu1715AAA6howlAAAAAAAdkCZi5eQ02CSKlSboNRQNK+cOPgFrBc5K1d3y3i/zMJoRUPHzARUz4tVGVMz6GpSqyWE0lzKMFrmchqKi9jSJqFhxszSKuVFtr9y3aLkVkquJfdWcVzvzAQBAkvIu/CeJSkOwqPY4v/j24fOCXkh6HJyLZzUuLv5A/1hhtHWFDR3fV9IZr/c+IbLb3rltSClOH0arGMeV+t83rPN5rzj1frL43uw3dfe+XwXHzlhzvsbya7qyXwAAAAAr3oik35d0iXPuSu/99zq9A+fcekmHZLzZMZ2eBwAAAAAAwErghopde8MuAMvEqRdIF10lffr9iav5Z5+qF39wWp/8dl7fvvvgtXibynfqz+597fwH45PdnCmAFchNHWqfi3BMwXKToYumHKkdAFgOOFoDAAAAANABaV7oPxQVFbkocZ1iiqDXUFRceBtj37Fi7YnnNFPdFRwfzY033Ve/WWG0WkBlzgwvFIPL07Ciagf25Y0wWoZ3FilGI03DaGkieRbr+9EKVdTsiefs+bQRmwMAQGoePK1pDKUdvH2h43NKKym6WmoSHgW6zQqjTRXWd2Fv9jmvlzdDvO2cSzYLF6dRto4r0cHjih1G644bpq8LLneKdP7EY7q0VwAAAADLVEXSLZJulPRdSXdI2i1pVNIRkh4h6ZmS6n8RfICkG51zp3vvf9Hh+fyupNd2eJsAAAAAAAAAsCq5KJJe8y7p0U+XbvuK/LveYK67/usf0M1PP12fePGf6NtDD9YD9/5IF8/eoEOq+99Qe4w3+ASQ0diEPTYcflNTYMmKkl+zt0C+f9elAwDSI4wGAAAAAEAHpIlYpYkBpAmsNe6rmBsz1y3FuzVb3R0cG0m43VKRj8JPNO+L5wMqvQwv1PbljTSCFVII7iM3ounKvYnrJAVY0mw/xLq/apLiEmm+NwEASJI3wmaNwaLGUFqNFVbrhUE3pEiRYsWLxqxQK9ALsY81XQ6fV052IYzW7JzXDhe3c24bvriqFM+k3kY5Dh9X8nXHFWdErL1f/HPfrp/N/VA/mftecOwhY6frkIGNHd8nAAAAgGXrNZLe6b0PV7Glb0u63jn3x5qPlb1cB6vWh0r6kHPuFO+Nd30BAAAAAABA/110lfTp9y9efvlzej8XAH3hnJNOOV865Xz5L39C+sHXg+v5b39BI5uO1uN3X6fH7w68KV9S4AgAQh5ydni5c9L6zb2dC9C29K/rUo7UDgAsBxmSlwAAAAAAwJImYpUmBpBqOw3rjBihAEmarc5oNg6H0UZz40331W9WAKWyP5hS6kJ4wfoa1PbViTBaqgBewte11e03i0ckhV3aCbUBACA1f1yvKcfl4HpWMLUXnHPmY2Gz8CjQTTsr06qqEhxbV9jQ49nYPw/DUbHlbZphtGr6MFrFh48rhbpgY4bLYdp2w/S15tgFE1f0cCYAAAAAljrv/TUJUbT69fZ4718p6YUNQydLempXJgcAAAAAAICOcI/5zfDy0x/V45kAWArceY+3Bz/5XvkXXhAeKwxIQ61fowNgdXKbj5UeePLigRPPkhtb2/sJAe1whNEAYKUhjAYAAAAAQAfkXE6DbihxnTQxgFTxtIZ1hqOiGeXaVdmu2equ4NhIbqzpvvqtPlRQr7w/bGCHF1qPeBWN25b9PpXjspFFyxhGSxEZs+aRavtWGK1JuCUxjNbGfAAAkKSCETZrDKE1htIO3N4Iq/WKdS6X9PgJdNu2sv3a+KnC+o7vL+mM18vb4eI2IrvWefFcXFLsq6m2UU51XAl/dlYYuVX37LtL35n5anDs/sPH68jh+3d0fwAAAABWF+/9P0m6vmHx73Z4N2+VdHzG/x7b4TkAAAAAAACsHCeeJT3rlQuXPeEF0iMe05/5AOivxz2vtduNTchlCcIAwH7uFW+X1m8+uGDDEXKvfEf/JgS0KsvjYL5/b9gNAEiPjCUAAAAAAB0ynBvR3sqexPFmaoG1vd7eTrFhO5HLaTgaUSmeWbTuW+/8M3M7yyGMljcCKLWwwVxcCo433kdZJH2d9sSz8oqDY1n+kNwsepZTvq34i/X5Nwu3WOG0QTeknMu1PB8AAKTmj+sHPy4H17OCqb3SangU6CYrjDYUFbsUtrXPeSu+bAbI2on+FnOj5thcXEr1e411XMnXHVes0LF1/t+qG6c/bMbWLpq8oqP7AgAAALBq/bmk+lfNnu6cW+u939GJjXvv75Fkl7oDeDEeAAAAAACAzTkn99zXyV/yTOknt0nHniB32NH9nhaAPnFDRelvrpf/w4xxxLGJ7kwIwIrnjj1Reu93pP/7huS9dOJZcoX+vpkx0JIsf5PMkdoBgOWAozUAAAAAAB1SjEa0Q9sSx9NoGlgLbKeYC4fRkozmxjOt3w9WAKWyP2xghb7aiUAk3bYUz8poGCgpErFoH03CbcO5kbZeJGR9DnNNwi3m/dlGaA4AgJpmj+s1VljJCqv1SqvhUaCbtpW3BpevK6zv+YvOrWix1N75ZDGyw2iz1Zl0YbQ4fFwpRAePK3YYrXN2VXboK7s+Gxw7bOAIbRk5uYN7AwAAALCKfU3Sdkm1V8HlJG2R9KW+zQgAAAAAAABNucOOlgiiAZCko34j+20IowFogyuOSief2+9pAG0ijAYAK03U7wkAAAAAALBSpIldpdEsoBaKchRTxAAapQkI9Ft9qKBeLWxghb7aCi/k7PDCXHVWseLgmBVSCGkWbksb0TNvb3z+pSbhFvP+bHM+AABIUsEImzWG0Ro/PnD7KBxW6xUzPJoQgwK6bVvlnuDyycL6ruwv6Zy3VLVDze2cT1rnts32Wc88rtQFG+2QXOfSaJ/f8TFzLhdMXtHzmB0AAACAlcl7H0v6ZcPiQ/oxFwAAAAAAAABAdm795uyBonHCaACAVS7LNZiE0QBgWSCMBgAAAABAhzR7sX/aGEDTwFpgO+sKG1Jtu6YYjS6L2FXehQMo5f0xASv01c7nNuiG5IynTOb3Fw4jZAmjJcXXpPbCblJCuMUIn9VY92dSjAIAgLTyRtis7Pct/DjeF1zPCqv1ivX43OzxFeim6XI4jDbVpTBa0ilvt8JoQ1HRPNcuxenCaI3HmZr644q1D+87E0bbE8/p89s/ERxbm5/SKeMP78h+AAAAAGC/uYaPh/syCwAAAAAAAABAS9wfv1s67tT0NxgjjAYAWOUIowHAikMYDQAAAACADmkWj0odRmshsPbQsbNSbbvm5LEzFbml/7SAFUCp+H0qx/tU2R9Ia1RsI7zgnDNvP1edle9EGK3p17iYelvB7Rvfi3v9HlV91bzdXBdCcwAA1FiP6+V44eN52Xh8t4KpvWI9HlphUaAX7jPDaNnCyWklnfNaPwtOkQajoZb3GbnI/vlLGSZMd1wxwmjG+X9WX975GTPkdt7E5X0/xgEAAABYcdY1fHxfX2YBAAAAAAAAAGiJW3eYonfcIveBH8u9+YbmNxgnjAYAWOWyhNHyhNEAYDlY+q+ABgAAAABgmWgWj2oWTku7Xmj8pNEz9Nh1zzCDIzVOTg8ePV1PWP+bqebSbwUjDlD25cQIyXDK+9q+fThMNhfPynsjjJbhCfTm3yujqbeVdftzCfGIuWop8/YAAEjLflzft+DjSsPHB2+ffJ7TbUnhVKAfqr6q7eXw69qn8ut7PBv7Z2E4KrYdZbZ+R7JCY43SHFes6FsnwmhVX9Vnpj8cHBuKijprzUVt7wMAAAAAapxz6yQd3bD4rn7MBQAAAAAAAADQHrfhCLmHnC1tPiZ5vbWH9GhGAAAsUQPD6dfNEUYDgOWAozUAAAAAAB3SLGiWNi5VjJKjWKHtOOd08dTjdd7EY3T3vl+o6uPgbdcPbNRIbizVPJaCQhQOoJT9vsQIiRUuScv6WpWqs2YYwQopBLffLH7X5vyTvhdL8axGNR4cmzNic2mjfgAAJMkbYbOKLy/4uNzw8cHbh8NqvWI9fluPn0C37axMK1Y1ODZV6E4YLemc1/pZaDdaLNV+R9q6aHmpmi6MVo7Dx5VCdPC4YoWOOxFGu3X3FzVduTc4dvbaR5lhZgAAAABo0VO08E1zt0r6QZ/mAgAAAAAAAADohE3HSHfcnjwOAMAq5sYn0l/xmevvdekAgHQIowEAAAAA0CFNg2YpgwBNo1kJ44WooCOGjk21n+XACqBU4nJihKTd+IJ1H8/FdhhNGcJozcJn7c4/KcKXdL+VjNhc2qgfAABJCsbjetnvW/hxvC+4nnX7XjHDqYTR0Cf3lReHwmq6FUZLYkXKhqP2o1/FXPh3rdRhNB8+rtQHG+2z+fbCaN573TB9rbH/vM6duKyt7QMAAABAPefcBkmvaVj8Ee99+9VnAAAAAAAAAED/NAufbV45ryEAAKAl45Pp182R2gGA5SBqvgoAAAAAAEijadAsZVyqaTRrFUWqCnWhgnplv8+MkETKacANtrXfpPCJFUaLMoTRmn2vtPs1HoqKcsZ85oz4mWRH04Zz7ccsAAAoRNbjennBx5WGj5vdvlescOqeaqnHMwHmTZfvCS4vRqNth3Yt1jmmZEcCO/H7S1K4OA3zuFIXXHTGn03jNtsBPyx9V3fs/Vlw7NTxc7Q2n+FCHAAAAACrhnPugc65yzPe5lBJH5W0oW7xPkl/3sm5AQAAAAAAAAB6zx3eJHy26ejeTAQAgKWKMBoArDgcrQEAAAAA6JBmL/hPGwRoGs3qUuRgKaoPFdSLFWumsis4VsyNyLn0kbIQ6z6ej4oZYYQM+2wWv0sb0bNELtJQNKy5eHGoxQpWSAlhtFUU4wMAdE/eeFyvxPsWfFz2+4LrWbfvFevxcK/fo6qvKOf4kwt6a5sRRpsqrO/xTOZZAV4rapZFMRoNLi9VZ1LdvjHAWGOFmBdqL4z26ekPmWMXTDyurW0DAAAA6C/n3GaFr8E8tOHjvHPuSGMzM977+wLLN0q63jl3m6T3SbrWe/9jYx5jkp4l6TVaGEWTpD/z3v/U2DcAAAAAAAAAYLk47lR77IgHyI2u6d1cAABYirKE0Yq8TgoAlgNepQMAAAAAQIc0i1kN54qpttOpwNpKkE8IFeyu7ggu78T9Y30t5+JZxT4cRnBKH0YbjIbl5OSNyEIn4nfF3GgwjGYFKySp1MWYBQAAVoCoMVjUXsCoe4Yj+1xurlrSaH68h7MBpG3lrcHl3Q2j2ee8pTgcKevI+XnOCKMZ+2xUjo3gYnQwuGidz7eTRfvVnp/q/0rfCY6dMHKqNg4e3sbWAQAAACwBt0i6X4r1Nkn6mTH2b5KuTrjtCZL+UtJfOud2SvpfSfdJ2i1pVNLhkh6s8LWg7/De/2mK+QEAAAAAAAAAlrotp0nHny7971cWDbknv7gPEwIAYInJEkYbn+rePAAAHUMYDQAAAACADmkWsxpKiGnUSwqsDboh5Vwu07yWs0JdqKDRrooRRutAxMuKN8yHw9oPo0Uu0nA0YoYcrPBDFubnEIfjZ7GPtScQUkvaFgAAWeRd+HG97BcGiypmGM0+L+iFpHOMUjyrURFGQ29tK98TXN7NMJpzCWE0I7KbNhCdpBgZYbSE6G89+7hyMLjoXBRcxytOtY+QG6evM8cunLyi5e0CAAAAWLXWSDorxXqzkl7ivX9nl+cDAAAAAAAAAOgR55z0tx+Vf+srpK/dKO3eLt3vQXKX/6bcpc/q9/QAAOi/8YnUq7oM6wIA+ocwGgAAAAAAHZIUNBuKhlMHzZKiG52Ifi0n9aGCRruq24PLh1MG6JJY9/NcPCvfgTBabR9mGK0DITI77hbe5954j/m5EUYDAHSCFTarDxZ5782AUT6yzwt6Ienxec4IjwLdZIXRJrsYRkti/Rx04lyyaJyfW+fTjRoDjDX1xyXrbN778DlyM9vK9+ibu28Jjh019EAdM3xcS9sFAAAAsGr8QNIbJZ0j6WRJwylu8yNJ75H0Tu/9fd2bGgAAAAAAAACgH1xxTO4P/6nf0wAAYGkam+zOugCAviGMBgAAAABAhyQGzTLEAJKiG50IZi0neSOgIkm7KjuCyztxH1nbmKt2LoxWjEa0zRjrZjzCClYkBV2sbQEAkEXBCJuV44PBIiuKJtlhtV4ZjIbl5ILnAnNVwmjoraqvaHslfDa5rrChx7OZZ8XHOnJ+nhsNLreiv43KVnCxLsTsFAXXsc7/m/ns9usVKw6OXTh5xfy7+AIAAABY1rz3R3Zx21slvVqSnHORpPtLOkbSJklrJQ1JmpO0XdLdkr7uvb+3W/MBAAAAAAAAAAAAgKXMDQ7Jr5mSdlqv1qozPtH9CQEA2kYYDQAAAACADhmKiuZYltBVYmBtlQWqCi4cUJGkXZXtweWduI+sbZQS4mFZwwbd/jpb33NWuKWUEHTpRKgNAAAreFofLLLCSlLyeUEvRC7SUFQMxkSTAqNAN2wvb5M3oltThfVd22/WGLDUmXPbYhQOo83FJcW+qsjlEm9fMY4t6YKL2cNos9Xd+uKOG4Jj6wuH6cTRUzNvEwAAAMDq5b2PJf1w/38AAAAAAAAAAAAAgJBNx6QLo62Z6v5cAABtI4wGAAAAAECH5FxOQ9Gw9sRzi8aGc3Y0rVGnAmsrQSGyAyg7q0YYrQP3UdHYRlKsRRkjEUnztPafRdEIUOyq7tCuyo5Fy7eVt5rbyvL9CwCAxQqbxaqq6qvKudyCSFojK6zWS8NGGG26fF/w8RXoljv2/swcm1xqYbQunttK0r3lXx/Yx3A0okK0+FhRjsPHlvrfN6zPbW+8J/PP9+d3fFz7/N7g2AWTj20acgMAAAAAAAAAAAAAAAAAAEBGm46Rvv+15uuNre3+XAAAbSOMBgAAAABABw1HI+EwWoYYQFJgLSkIsBIVEgIos9XdweWduI+GW9hG1kiEFT/Lu0JiEC4t63vuh6Xv6hW3X516OwU3sCRCNACA5S/pcb3iy8q5nCoJEVIrrNZLxdyIpiv3Llr+wXvfpQ/e+64+zAhYaDQ3rqFouN/TWKCVc+tGxWjUHHv9z15w4N8FN6DjRk7SMw99kYq5+dvEvqqqKsHb1p/nOhc+n79l56d1y85PtzLtRcZya/Sw8Ud2ZFsAAAAAAAAAAAAAAAAAAAA4yB1+rHyaFdes6/ZUAAAdEPV7AgAAAAAArCS1F98vXp4tBmC98D9LYG0liJSTy/j0RSfuo1a2kTWMZgUirGBaVtb3YubtrLLvOQBA9+QTwmbl/UG0clw21ylE/Q91rrZzMSw/k4X1/Z7CIp04n0x7blv2+/Tdma/pn+9844FlFR+OokkLg4tZz+dbce7EZR2JIAMAAAAAAAAAAAAAAAAAAKDBaRc1X+fYE+XWTHV/LgCAthFGAwAAAACgg6xYRtaIhhnNyhhYW+6ccyq4bBGUTgRLWomKZQ0pWIGI4Q4FzToVbrG+FwEAyCopbFbZH0SrBdKCt08Iq/UKj4tY6qby3Q2jtRIP68R56VBUzLTvn8x9X/ft2yqp2XGl/rjU3TDaoBvS2Wsf1dV9AAAAAAAAAAAAAAAAAAAArFpbTpUufEriKu53runRZAAA7cr3ewLoHefcsKSTJB0naULSkKRdku6RdKukn3jvfQf2U5B0lqQjJG2UNCPpLknf8t7/vN3tAwAAAMBSdsjAofrJ3PcWLy8cmm07hUN1596fL1q+LuN2VoJ1hQ26a98vU69/yED799GgG9JYbo12V3emvs1UIVuE4pCBjeHlHfoaW9vPajV+zwEAumPQDZlje/0eSVLFl8118hljqd3QqcdpoFs2Dh7e1e3nXUHjuQntqm5PtX7BDWg8v7bt/UYu0rrCobq3fHfq29xTvkvrBjaonHBcKUQHg4tZz+ezOmvthRrJjXV1HwAAAAAAAAAAAAAAAAAAAKuVc056zbulsy6T/9bnpS9+TLrvrvnB858k94yXyx1zfH8nCQBILer3BNB9zrkznHP/LWmHpP/P3n2HR37V9+J/n5G0u9JWr73r3gsG22DjRjU2mGJCL+b+CDUECJAfJJcQSiB0AgnhXgiQBLihtwAGYxIw1TYxNhAb27Exwb33trvaova9f2h9V9bOjEZazai9Xs8zz+p7zuec89mir0bSzlu/SPJ/knw4yfuSfCzJ15L8PskNpZR3l1JWT/GcNaWUTya5NcnPknw+yQeTfDzJaUmuKaWcW0p57o7+ngAAAGarY5Y/drux7tKTI5c/cnL7rDhhu7HFZUmOWHbslHubqx6+/NEt1+7cs2v2W3LIDp9ZSskxK7b/u2xk/yUPyqqenSd1xuFLj86SWt9248dO4tzmPR0yLeEOx9b5twgAU9HbtbTh3Mbh/iTJYDXQsGY2BKMdvfwxKSkz3QbUVUstx604sa1nlFJy1CQ+tzly2SOyqLZ4Ws6e7PPS++8rQyOt3VeOXPaItr1/99b68oSdntmWvQEAAAAAAAAAAAAYVWq1lCc8P7W/+Hhq374mtZ9vGX2864tC0QDmGMFo81gppbuU8vEk5yY5NcmiCZbsmeSvk/y2lPKUSZ51SpJLk7wmSbNgtUcl+WYp5UullMavggMAAJijHrz0yLxw19dmadfyJMnq7jV53Z7vyOqeNZPa5+HLH5Xnrnl5emujnzqt6dktr9/73VnWtWLae57tnrLz83PiqqdlUWkeqLDP4gPzhr3ek1qZni93PHvNS/OIFY9vGsJSUsshfUfkT/Z826T37+1amj/b+z1Z27PH6HWtL8/a5SU5dsXjptzzWLVSyxv2ek/2WXzglNZv60cwGgDTY1FZnFqDb0tsGrk/GG2w7nx36Z62j/E7Yr/eQ/Ly3d+YFV2rZroVeICVXTvlT/Z8W9Yu2r3tZz137ctz/IqTmj5PrqUrRy17VF6422un7dyn7nxqHrfqqekpE327a9RE95UkD9jroL6H5CW7vSErunbasUbHWd29Jq/a863ZqWeXad0XAAAAAAAAAAAAAADmq1JV1Uz3QBuUUkqSf03yvDrTv0tyeZJNSdYkOSbJ+Fd5DCR5ZlVVP2jhrBOTnJkHBq9VSS5McnWSVUmOSjL+FR9nJHlWVVUjE53RTqWUwzIa6pYkufTSS3PYYYfNYEcAAMB8MFKNZP3wfVnRtSqjn6JNdZ/hbBhenxXdwjeGqsHcOXBbqmz/tYxlXSuyvHtlW84dGNmSuwZvrzu3snun9HUt2+Ez1g3dm2Vdy1MrXTu8Vz3rh+7LhuF1LdfXSi1renZrWz8ALFxvuvLF6R9ev934H+3+FzlmxWNy0frz86mbP7jd/JJaXz5y8Fc60WJLqqrKXYO3NQ1cgk5ZVFuU1d1rd+jzjqlo9jx5p55dsqTW25ZzB0cGc9fgts8LPnPz3+WWgeu3q3vWLi/Jk3Z+Tq7ffFU+eN0b6+719wd9Ob1dD/w5PtP5/r2otjiru9d0/O8GAC677LIcfvgDfsLt4VVVXTZT/QCA/6MHAAAAAAAAAMwH/n9e53TPdAO0zR9n+1C0c5K8rqqqS8cOllK6k7w4yf9Kcv+ryBcl+Xwp5ZCqqu5rdEgpZa8kp+WBoWjnJnllVVWXj6lbnOTVST6cpGfr8NOTvC/J2yb3WwMAAJj9aqWWld3jM6insk+XULStuktPdlu8V8fPXVRbnN0X793WM9r9d7y8e2XbguMAYDL6akvrBqNtGulPMhqEWk936ak7PlNKKdll0W4z3QbMqE48T66np/bAzwtWdK+qG4y2cet9pVnAWXdZtN2Y928AAAAAAAAAAAAAAJhZtZlugLYZHzZ2TpKTx4eiJUlVVUNVVX02yclJtoyZWpvkTyY4591Jxr7S/xdbz7l8bFFVVVuqqvpYklPHrf+fpZR9JzgDAAAAAIB5oLe2tO74puH7A4wG6s73zLJgNGD26Gt0X7k/cHGk/n0lSbqLnyEFAAAAAAAAAAAAAACzjWC0eaiUckSS/cYNv76qqsFm66qq+s8knx43/PQm5xyc5KVjhgaSvKyqqs1NzvhOks+PGVqc5J3N+gIAAAAAYH7o7aofYLRx5P5gtPpfxu4pi9rWEzC3NbqvTBy4uCillLb1BQAAAAAAAAAAAAAATI1gtPnpgHHXN1RVdXGLa08fd31wk9oXJukac31aVVVXtHDGh8Zdn1pKWdJKcwAAAAAAzF19teYBRkMj9QOMuktP23oC5rbeWl/d8U0TBC66rwAAAAAAAAAAAAAAwOwkGG1+Gv/KshsnsfaGcdc7Nal99rjrz7ZyQFVVlyf55ZihpUme1MpaAAAAAADmrt6uBsFoWwOMhqqhuvM9tUVt6wmY23obBC5uvD9wsaofuNhT3FcAAAAAAAAAAAAAAGA2Eow2P9067nrJJNaOr727XlEpZbckDxszNJTk3Emcc9a461MmsRYAAAAAgDmoYYDR1mC0wYYBRj1t6wmY2yYKXBysBuvO99TcVwAAAAAAAAAAAAAAYDYSjDY//TrJljHXDy6l9La49ug6e9Vz+LjrS6qq6m/xjCT5xbjrwyaxFgAAAACAOaivUYDRcPMAo27BaEADfQ0CF//ffWWkfuBid1nUtp4AAAAAAAAAAAAAAICpE4w2D1VVtT7JF8YMLUnyionWlVK6kohUJLMAACAASURBVPzpuOHPNyh/yLjrK1tucNRVE+wHAAAAAMA809sgwGjjyGiA0VBVP8CoR4AR0EBvg8DFbfeV+oGLPQIXAQAAAAAAAAAAAABgVhKMNn+9Jcm1Y67/tpRycqPiUkpPkk8lOWrM8E+TfKvBkoPGXV8/yf6uG3e9cyllp0nuAQAAAADAHNIoGG3T8GiA0eBIgwCjmgAjoL6+BveVwWoggyODGRS4CAAAAAAAAAAAAAAAc0r3TDdAe1RVdXcp5aQkp2U07Kw3yZmllG8m+WaS3yXZlGSXJI9M8uokDxqzxa+SPK+qqqrBEavGXd8+yf42lFI2J1kyZnhlknsmsw8AAAAAAHNHX1eDYLSRrcFoDQKMugUYAQ30NrivJMnmkf4MVvUDF7uLwEUAAAAAAAAAAAAAAJiNBKPNY1VVXVtKOT7Jy5K8KsnRSU7d+mjkriQfSfJ3VdXglSKjlo273jSFFjflgcFoy6ewxwOUUtYmWTPJZQfu6LkAAAAAAEyst1Y/wGiwGsjgyECGGnxZukeAEdBAo/tKkmwa2ZjBkfqBiz01gYsAAAAAAAAAAAAAADAbCUab/7q2PrYkqZKUJrU3JPnrJF+bIBQt2T4YbfMUetuUZKcme07Fa5O8cxr2AQAAAABgmvV1TRBgVDUIMCoCjID6+roaf3tp43C/wEUAAAAAAAAAAAAAAJhjajPdAO1TSnl0ksuT/GOSR2fiv++9k3w2yfWllD+e5HHV5Duc0hoAAAAAAOao3lqzYLT+DDYIMOoWYAQ0sLgsSWnwLbDR+4rARQAAAAAAAAAAAAAAmEsEo81TpZQnJPlxkv3GDN+U5C1JjkqyKsmiJLsleUqSzycZ2lq3JsmnSymfKqWUBkdsGHfdO4U2x68ZvycAAAAAAPNIb1fjYLSNw/0ZHGkQYFQTYATUV0pJb62v7pzARQAAAAAAAAAAAAAAmHu6Z7oBpl8pZU2SryZZMmb4jCQvqqpq3bjy25KcmeTMUso/Jflekp23zr0yyVVJPlTnmNkajPbJJN+Y5JoDk5w+DWcDAAAAANDE4rIktdQykpHt5jaN9GeoQYBRjwAjoInerqXZOLL9t5k2DvdnqGoQuFgELgIAAAAAAAAAAAAAwGwkGG1++p9J1oy5/l2SU6uq2txsUVVV55dSXpDkx2OG31lK+WxVVbePK79v3PWaTEIpZVm2D0a7dzJ71LO1z/G9TtTLjh4LAAAAAEALSinp7Vqa/uH1281tGu7PoAAjYAr6aktzV53xTSP9GRxpELhYE7gIAAAAAAAAAAAAAACzUW2mG6Atnj/u+kMThaLdr6qqnyT5+Zih3iT/o07pFeOu9229vbr1d1dVdc8k9wAAAAAAYI7pqy2tO75ppD+DVf0Ao+4iwAhorLer/n1lY5PARfcVAAAAAAAAAAAAAACYnbpnugGmVyllaZIDxw3/ZJLb/DjJY8dcH1+n5vJx1wdN8owDxl3/dpLrAQAAAACYg3obBKNtHO7PkAAjYAoa3Vc2jfRnSOAiAAAAwKi7L0yu/2bSf+32c9VQMjKYLN032f2UZI8nd7w9AAAAAAAAALifYLT5Z1WdsVsnucf4+l3q1Fw67vqhpZS+qqo2tnjGoyfYDwAAAACAeai3q3GA0eBI/QCjntqidrYEzHF9jYLRhvsz2CAYrae4rwAAAAALyA3fTs59wWj42UT++6PJQ9+XHP5X7e8LAAAAAAAAAOqozXQDTLt764zVfzVIY8vGXW8YX1BV1S1JLhkz1J3kMZM448Rx19+fxFoAAAAAAOaoRgFGG0f6M1gN1J3rKT3tbAmY4xoHLm7M4Ij7CgAAALDAVVVy0ZtbC0W736XvSbbc1b6eAAAAAAAAAKAJwWjzTFVV/UnWjRs+apLbHD3u+tYGdd8ed/3yVjYvpRya5PgxQ/1JfthaawAAAAAAzGVLuvrqjm8a7s9QVf+Fed1lUTtbAua4RoGLm0aa3Fdq7isAAADAAtF/TbL+ismtGRlIbvlRe/oBAAAAAAAAgAkIRpufzhp3/apWF5ZSdkvyjHHDP29Q/uUkw2Oun1NKObiFY9487vpfq6ra3GKLAAAAAADMYY0CjDY2CTDqKT3tbAmY43q7GtxXhvszWA3UnXNfAQAAABaMW86c2rqb/216+wAAAAAAAACAFglGm5++Pu76BaWUF020qJSyOMkXkywbM7whSd3/EVFV1RVJPj9maFGSz5VSljQ545lJXjZmaCDJuyfqDQAAAACA+aG3QTDahqH7UqWqO9dTFrWzJWCO66311R3fNNKfwYaBi+4rAAAAwAKw/qrk16+d2tprvzS9vQAAAAAAAABAiwSjzU9fS3LxmOuS5AullI+WUnavt6CUclKS85OcPG7qQ1VV3dPkrHcmGTv/qCQ/LqUcOm7/xaWU/z/JN8at//uqqq5rsj8AAAAAAPNIb1f9YLR1w/c2XNNT62lXO8A80ChwcdNwf4aqgbpz3cV9BQAAAFgArvjkjq1fd8X09AEAAAAAAAAAk9A90w0w/aqqGimlPC/JuUnWbh0uSV6f5E9LKZckuTrJpiSrkxyVZLc6W/17kg9NcNaNpZTnJDkzyaKtw49O8ttSygVbz1mZ5OFJ1oxb/r0k75jc7w4AAAAAgLmsr0GA0bqhxsFo3WVRwzmARoGLW6rNKVX9nxPVU3NfAQAAABaA28/ZsfV3/DxZcfD09AIAAAAAAAAALRKMNk9VVXVlKeVxSb6Y5JgxU7UkR259NFye5NNJ/qyqqsEWzjqrlPLsJJ/LtvCzsvXcYxos+2qSV1ZVNTzR/gAAAAAAzB+NAoxG0vjLxT2lp13tAPNAo8DFJKkyUnfcfQUAAACYd4YHkkventx4erLpliRVMrShcf0hf5r8/uPN9/zlK0YfSdK9PBlav21u9dHJ8f+S7PTQHW4dAAAAAAAAAMaq/yPSmReqqvpdkkcmeWmS8zIaeNbMpiRfTvKoqqpeXVXVpkmc9e9JDk/yT0nuaVJ6fpLnVVX1wqqq+lvdHwAAAACA+aFZgFEjPWVRGzoB5otGgYvNuK8AAAAA8875L0su/7tk/e9HA8yahaKtfEjy8I8kB/5x6/uPDUVLkrsvSH74iGT9VVNqFwAAAAAAAAAa6Z7pBmivqqqGknwhyRdKKSuTHJNk/ySrkixOsj6jQWaXJvmvrfVTPev2JK8ppbwhyaOT7JtktyT9SW5K8puqqq7Zgd8OAAAAAABz3FQCjLprPW3oBJgvphK42F3cVwAAAIB5ZOPNyfVfb73+8T9Jaj3JcZ9KDnpV8rMnJwPNfi5yA8Obkgv/PHncdye/FgAAAAAAAAAaEIy2gFRVdV+Sn3TgnIEkP2v3OQAAAAAAzD29Uwgw6imL2tAJMF8srvWmpKRK1fIa9xUAAABg3hgZTm7+t6Qaaa2+Z1WyZNfRt0tJdj42OeYTyS9eOLXzbzojuebLyX7/X1JqU9sDAAAAAAAAAMbw3WcAAAAAAKBj+rqWTXpNd+lpQyfAfFErtSyp9U1qTU/NfQUAAACY40aGkgvfmHxrl+RXr2p93X4vHA1EG2vPpyXdk/+hFv/PeS9Kvrk6ufgdrQe0AQAAAAAAAEADgtEAAAAAAICOWVyWpEzi2xO1dKWrdLWxI2A+6Oua3At3u8uiNnUCAAAA0CH/9e7kdx9JBu9tfc2uT0ge9v7tx3uWJ489LelZMfV+Bu9LLntfcvnfT30PAAAAAAAAAIhgNAAAAAAAoINKKemrtR5g1FN62tgNMF/01vomVe/eAgAAAMxpVZVc9emJ6/r2Sk44ffTxtN8nj/9RsmhV/drdn5Q857bkqA/vWG+t9AUAAAAAAAAATXTPdAMAAAAAAMDC0tvVl/6R9S3V9tQWtbkbYD7onUTgYpL0FPcWAAAAYIpGhpP7LksG70tSTfPmJSm1pHtZUlucbLm9ftmmW5PNt0283WF/lez1jNaP71qSHPjHycVvTUYGW1831vorki13JYt3ntp6AAAAAAAAABY8wWgAAAAAAEBHTSbAqLv0tLETYL7o7ZpcMJp7CwAAADAlt52V/OSkme6iNV19yT6nTn7dopXJ3s9Nrvva1M/+1i7J0R9NHvT6qe8BAAAAAAAAwIJVm+kGAAAAAACAhaVvEgFGPcKLgBb0TTJwsZTSxm4AAACAeWlwXfLTJ8x0F61ZdkDy+B8ni1dPbf1xn0r2enZSuraNrXhwsvKwJC1+XeWCNyS3nzO18wEAAAAAAABY0LpnugEAAAAAAGBh6Z1UgNGiNnYCzBe9AhcBAACAdrvhO0k1MtNdNNe9LHna75K+PXdsn57lyQmnJYMbko03JkvWbgtZG7g3qfUk3UuTr/cmw5sb73PNF5O1J+xYLwAAAAAAAAAsOILRAAAAAACAjhJgBEy3yQQu9ghcBAAAYCEaHkhuPysptWT1scmilTPd0ey28abkjv9IBtdvG/vVK2eun1bt94c7Hoo2Vs+yZOWhDxxbtGrb23v8QXLDtxqvv+ozyc7Hj77dvTTp3SPZdHMy1J+Ukqw8LFl99GjQGgAAAAAAAABsJRgNAAAAAADoqL7JBBjVBBgBE5vMfaVb4CIAAAALzYZrkh8/Ltl4w+h1757JCd9Odj52Zvuara78VPLr1ybV8Ex3MjmlOznoVZ098+DXJjeclqRqXDNRoNwuj0pOOD1Zssu0tgYAAAAAAADA3FWb6QYAAAAAAICFpVeAETDNersELgIAAEBD579sWyhakmy6KfnVq5KqSZjVQtV/ffLr18ytULTSlex8XHLSD5LVD+/s2bs9Pnnst3Zsjzt/kVz2vunpBwAAAAAAAIB5oXumGwAAAAAAABaWSQUYFQFGwMQmE7jYI3ARAACAhWSoP7nj3O3H77koufs/k52P7XxPs9kNpyXVyOTXHfa25KHvndqZ1UjytQm+XvHgNyVHfrDxfJnBn5W997OTZ16bnL7f1Pe4/l+To//3dHUEAAAAAAAAwBw3g98FBwAAAAAAFqI+AUbANOubROBit8BFAAAAFpKBe5NquP7cjd/pbC+z2b2XJpd/OLnwz6e2fp/nj4aTTeVR6052Pan5/mse03yPmda39+hjqjbdkgzcN339AAAAAAAAADCnzYLvhAMAAAAAAAtJrwAjYJr1ClwEAACA+hqFoiXJZR9IRoY618tsdfXnk+8fmfzmTVNbv/tTkp2O3LEeHvympHTVn1v10GSPp+7Y/u1WaslD3rxje/zw+GSkyb9XAAAAAAAAABYMwWgAAAAAAEBHTSrAqCbACJjY5ILRBC4CAACwgIwMNp+/5czO9DFbDW1MLnh98wC5+y07cPQx1kPenJzwnR3vY49TkhO//8AAtBUPTg55fXLyOUmte8fPaLdDXpc88kvJ7k+u/2c1kXX/ndz6w/b0BgAAAAAAAMCcMge+Sw4AAAAAAMwnAoyA6dbX1fp9pVvgIgAAAAvJ8Mbm8zd9N9nzDzrTy2x0+9nJ4LqJ6x53RrLn09rby+5PHH3MZfv/4ejjfnf8IvnRo1tff+N3R0PiAAAAAAAAAFjQBKMBAAAAAAAdNakAoyLACJjYklpvy7UCFwEAAFhQ+q9rPr/+qs70MVsM3Jtc+enkik8m/de2tqa2ONnlUW1ta97a6ahk0U7JwD2t1a+/or39AAAAAAAAADAn1Ga6AQAAAAAAYGHprbUejCbACGhFrXRlSa2vpdoegYsAAAAsJBuunWD+6o60MSsM3JP86DHJRX/ZeihakjzkLcni1W1ra17r7k2OeFfr9RuubFsrAAAAAAAAAMwd3TPdAAAAAAAAsLAsri1JSS1VRias7akJMAJa01dbms0jGyes6xa4CAAAwEIyUQDYxuuTkcFkIXwd7uovJPdd1nr9AS9L9nx6svdz2tbSgvCg1yfLD05uOC3ZeFPSt1ey5fbkxtO3r+2/PhneknQt7nyfAAAAAAAAAMwagtEAAAAAAICOqpVaemt92TiyYcJaAUZAq3q7liZDd0xYJ3ARAACABaX/mubz1fBoGNXyAzvTz0y65czWa4/82+Qhb2pfLwvNHqeMPu533+/qB6OlSjZck6w8tGOtAQAAAAAAADD71Ga6AQAAAAAAYOHp7VraUl1PEWAEtKa31up9ReAiAAAAC8CNZyTfe0hyw2kT1264qv39zKQ7zkt+8aLklu+3vmbPp7WvH5Jl+yelwX9jX39FZ3sBAAAAAAAAYNYRjAYAAAAAAHRcnwAjYJr1tRi42C1wEQAAgIVgcF2y7vLWas9/eXt7mUl3nJv89PHJtV9ufc2hb0xWPrh9PZF0LU769qk/t+HKzvYCAAAAAAAAwKzTPdMNAAAAAAAAC0+vACNgmi2p9bVUJ3ARAAAAxtl0czK0KenunelOpt9/fywZ3txa7eHvSHY9afRB+y0/KOm/dvvx9YLRAAAAAAAAABa62kw3AAAAAAAALDy9tdaC0XpqgtGA1vS1el8RuAgAAADbW/fbme6gPe76ZWt1+zw/eeh7hKJ10rKD6o8LRgMAAAAAAABY8ASjAQAAAAAAHddqgFG3ACOgRb1dLd5Xaova3AkAAADMQfMtjOru3yQ/Pinpv661+r2f195+2N7yBsFot/4w+f5RyTVf7Gw/AACzRVUll/998r2HJF9bkpz5iOSmf5vprgAAAAAAOkowGgAAAAAA0HGtBhj1FAFGQGtaDVzsEbgIAAAA29tw1Ux3MH023pj89OTk9rNaqz/g5cnez2lrS9TRKBgtSe65KDnvJcl1X+9cPwAAs8Xlf5f85i+SdZcnI1uSu36ZnPOM5LazZ7ozAAAAAICO6Z7pBgAAAAAAgIVHgBEw3QQuAgAAwBg7H5sc84kHji3ddzRk4fY6gQrrr+xMX51w6XuTgbub1xz4imTn45Kdj09WPTQppTO9sc2yJsFo9/v9PyT7vqD9vQAAzBZVNfocaLvxkeSKTya7Pq7zPQEAAAAAzADBaAAAAAAAQMe1GmDULcAIaFFvi4GL3QIXAQAAWAhWHDL6GO/WH9cPRttwVft76oT+65OrPztx3RHvTvr2bH8/NLb8wIlr7r5gNASk1NrfD0yXkcFk4w3bjy/ZNRnekqRKUpKelUmtq9PdATDbbb4t2Xhj/bnbftrZXgAAAAAAZpBgNAAAAAAAoONaDTDqqQkwAlrT1/J9ReAiAABMt1JKSfKmJEvGDH+hqqprd3Df/ZO8eMzQxqqqPrwje8KCt/yg+uPr50kw2m8/NBpKNJFFq9vfC811LUlqPc3/voY3J/3XJcv271xfMFUjQ8mFb0yu+kwyvLG1NYf/dXLEu5JS2toaAHPIZR9oPLflztHg2NVHd64fAAAAAIAZIhgNAAAAAADouL6uFgOMigAjoDW9Ld9XBC4CAEAbvDDJB5NUW69P29FQtCSpquqaUsoRSZ5z/1gp5eqqqk7b0b1hwVp2YP3xTTclQxuT7r7O9jOdNt40GkjUiu7e9vZCa0789+SnT2xe84sXJU86tzP9wI649H3J7z82yTXvSZbsmhzy2vb0BMDccssPk9//Q/OaHxyTnLoh6W7t+2IAAAAAAHNVbaYbAAAAAAAAFp7eWmv/UbtbgBHQor4W7ysCFwEAYHqVUmpJ3nP/ZZIrkrx0Go94WZKrtu5dkrx/GveGhWf5QY3nrvli5/poh9/+bTIyMNNdMBk7Hz9xzZ2/SKpq4jqYaVf/y9TWXfV/prcPAOam4YHkP/+0tdobvt3eXgAAAAAAZoHumW4AAAAAAABYeFoNRhNgBLSqt0vgIgAAzJCTk+yf5P7UmrdWVbVxujavqqq/lPKWJN/cOnRIKeXxVVX9dLrOgAVl6b5J99JkqH/7uUvenuz7gmTRqs73tSOqKrnz/OT3H2utfu3j2tsPretZniw7INlwdfO6a76YrDg0WX1UUvO1HWaB4YHknguTgXtHrwfuSTbeMLW97rkwuenfkq4lyepjkuGNSf8NyU5HJl0Nvkey5e7krl8n1dBoIGRtcVJqyaKdktUP934CMNdUVXLB65P1V7RWf+8l7e0HAAAAAGAWEIwGAAAAAAB0XF+LAUY9NcFoQGuW1PpaqhO4CAAA0+5FY96+oKqqb0/3AVVVnVZKuSDJ0VuH/jCJYDSYilpPss/zk6s/t/3cljuT/3pPcvRHOt7WlA3cm/zH85Nbf9z6mv1f0r5+mLwD/zi5+G3Na85/6eivi3dJTvhOsubR7e8LGrnlh8l/nJoM3jd9e579tO3HelYlj/1GstvJ28aqkeTitye//ZvGey1anZzw7WTtCdPXHwDts/mO5IePSjZc2fqaVgPUAAAAAADmsNpMNwAAAAAAACw8vbUWg9FKT5s7AeaLrtKVxWXJhHU9NfcVAACYZk8Z8/b/aeM59+9dkjy1jefA/HfEu5OuBp9D//4fknX/3dl+dsRFb5k4FG3VEUnKaKjWw/4mOeDlHWmNFj34L0cfPSsmrt1yZ3L2M5Lhze3vC+oZuC8551nTG4rWyOC9ydnPTAbXbRu74bTmoWhJMnD36PvJ0Mb29gfA9Ljg9ZMLRUuS9ZOsBwAAAACYgwSjAQAAAAAAHbe4tiRlgm9TlNRSS1eHOgLmg96uiUMXu8uiDnQCAAALQyll3yS7jBn6XhuPG7v32lLK3m08C+a3pfskD35T/blqKLnwjZ3tZ6qqkeS6rzavefj/Tp56SfL8dclzbksOe0tSSmf6ozW1ruSoDyXPvTtZfvDE9QN3J7ec2f6+oJ6bvpsMb+rcecMbkxvP2HZ97VdaWzd4X3Lz99vTEwDTZ2jTaOjlZG24cvS5MAAAAADAPNY90w0AAAAAAAALT63UsqTWm00j/Q1rekpPihcpApPQV1uae3NX05qe0tOhbgAAYEF42NZfqyRXVVV1U7sOqqrqxlLKlUkO2jp0ZJIb2nUezHsPeXNy1b8km+q82978b8nNZyZ7PLnzfbVq8+3JNV9KBtc1rlmyNjnolaNv9yzrTF9MXa0r2fXxyforJq797YeStScmi1a2vS3mgM13JreflVTDo9elNvrvY8ma0estdye3n51snIanDRf/1Y7vMVnnvSgZ2Po1zxu/3fq6G7+T7PPc9vQEwPS48xfJyEDj+X1ekFz/9e3HhzcnG29KlsoLBwAAAADmL8FoAAAAAADAjOjrWjpBMNqiDnYDzAe9XUsnrHFvAQCAabVmzNs3d+C8m7MtGG1tB86D+at7aXLkB5PzXlx//sI/T3a7OKnNwoDxW3+cnPOcZGh987ojP5R093WmJ6bHQa9Orv5s84CQJLnzvOTfDktO+n6y6ojO9MbsdNvZyTnPTAbve+B4z8rkhO8kXb3J2U9LttzZ+d5Kd/K47yXn/WGypfkPc5jQBW+Y/Jprv5QsPyg54p07djYA7XHzD5KzTmk8v/ro5JiP1Q9GS5IbTksOncLHBwAAAACAOaI20w0AAAAAAAALU2+teYBR92x80SUwq010X0mS7uLeAgAA02inMW/f2oHzxp6xqgPnwfy23wuTnY+vP7fu8uSKf+xsP60YGUrOf/nEoWjHfybZ/6Wd6Ynps/qo5PE/StaemHQva1676abk16/rSFvMUtVIcv7Ltg9FS0bHzn9Z8stXdC4UrbZ49NG9NFl7QnLSmckeT06edH6yx9OarGvj1yv/613JPRe3b38ApmZkcPTjVDNP+GmyZG2yeJf68xf+2bS3BQAAAAAwm3TPdAMAAAAAAMDCNFGAUY/wImCS+romCFwsPSmldKgbAABYEBaNebsTP6h17BmLO3AezG+llhz90eSHj6g//1/vSvb7w2Txzh1tq6m7fpVsvLF5zc6PSA58RWf6YfqtPSE5+Wejb//+k8l/Ngk/u+Pnyabbkt5dO9Mbs8vdFyb91zae77+uY63k+M80vu8sPyg58YzGawc3JN/cKamG2tPb9d9MdnpYe/YGYGruODfZfFvj+d1PSXpWjL69/ODGIZ+eBwEAAAAA85hgNAAAAAAAYEZMFGDUUxY1nQcYT+AiAAB03MYxb6/pwHljz9jYsApo3S7HJ/u9KLn2S9vPDdyTXPLO5NiPd76v8fpvSG78TnLxWyeuXfvY9vdDZ7Tyd3ndV5ND/6z9vdA+g+uTG05L7vp1cs+FSe/uyZLdJ153xSfa31urdnn01Nf2LEuO/UTyq1dPXz9jrbu8PfsCMDUbb0wueH3zmrHPgXY6MrnzvPp19/wm6X1K4336r0tu/G4y1J/s+QfJqiMm3y8AAAAAwAwRjAYAAAAAAMyIiQKMugUYAZMkcBEAADru1jFv79uB88aecVsHzoOF4cgPjoYSDdfJG7zyn5KDX5OsOqzzfd3v7guSnz052XLXxLWLd04O/pP290RnrDoi2euZyY2nN6658M+T7r7koFd1ri+mz+Y7k589MbnnopnuZOr2fl6y8tAd2+OAP0pu+E5yy/enp6exbvhWMjyQdPnaKMCMu+ei5KdPSrbc0bimd4/Rjwv3e/Cbkiv+sX7tWackz70rWbx6+7m7fj161uC9o9eXvD151JeTfV8w9f4BAAAAADqoNtMNAAAAAAAAC9NEAUaC0YDJWiJwEQAAOu2qrb+WJPuWUg5q10GllAOT7FfnbGBH9e2ZPOQt9eeq4dHgqarqbE9jXfxXrYWiHfSq5InnJcsOaH9PdM5jvpE87P3Nay78i2SovzP9ML2u+MeZCUVbdcSOP9aemDzsb5JHf3XH+6l1J4/9ZnLEuyfuc+Xh268/4OVJafLSkJu+u+M9ArDjLn5781C0JHnyL5PeXbddL9s/6VnVuP7Kf64//pu/2BaKlow+r//1a5OR4db7BQAAAACYQd0z3QAAAAAAALAw9U4QYNRTW9ShToD5os99BQAAOu3iJANJ7k8hfkaSj7TprGeNeXswyQykqMA89uC/SK76TLLx+u3nbv1RctMZyV7P6Hxfw1tGz5/IYW9PHvbe9vdD59V6ksPeLnWOnAAAIABJREFUltx7WXLdV+rXDK1Pbv95ssdTOtsbO+7m73X+zINenRz3T50/dyLdfckRfz36mIoD/ij58WPrz930vWSf5029NwB23MhgcsuZzWsOf2fSt9f243s8Jbnua/XX3PS95LC3PnBsaFNy+znb1w7cndz2k2T3J7XWMwAAAADADGryY4EAAAAAAADap7drggCj0tN0HmC8ie4r3e4rAAAwraqqGkhydpKy9fGXpZTmT8ynYOueb0pSbX2cs/VsYLp09yZH/W3j+XOemWy5q3P9JMn130h+9JikGpm4VrjD/DfR3/FZpyS//bvRIBBmp4F7k0vfl5z19OSnTxp93PWrzvex+5M7f2YnrD668dw1n+9cHwDUd89FSTXUvKbR851mH7vu/MX2Y8NNng/d99vmPQAAAAAAzBKC0QAAAAAAgBnRV5sowGhRhzoB5ouJ7isCFwEAoC2+uvXXKsmaJE2Slabsg0nWZjR8LUm+0oYzgH1OTdY8pvH8t3ZJhvo708sl70r+49Tk7v+cuHavZzXvm/lhn1OTnY9vXnPRXyY/fUIyMtiZnmjd4LrRoMNL3pHc/L3k1h+NPjpt7YnJnk/r/Lmd0N2brDy88fxlH+xcLwA80MB9yZnHNa/Z+znJLo+sP7fPqc3X3nPx1PoCAAAAAJjFume6AQAAAAAAYGHqFWAETLPeLoGLAAAwA76S5P1JdstocNmflFJuqqrqA9OxeSnlLUlel9HgtZLktghGg/YoJTn6o8kPjsnou1wd1309OfCP2tvHwD3J5R+auO6AlyVrTkj2f8lo78xv3b3JE36W/Gtf87o7z0tuOmM0XITZ49qvJPddNvl1i1Ynu57UvGZw3fYha7s9MelZse26qy9Z86jkgJcntXn8vYeHfyT52ZPqz13y9uSQ1yU9yzvbEwDJtV9qPv+Izyb7vbjxc9ruvuSplyT//tD68xe9OTnpB9uuq6Gp9QkAAAAAMIsIRgMAAAAAAGbERAFGPQKMgEkSuAgAAJ1XVdVAKeWtST6XbeFl7y2lPDTJa6qqumcq+5ZSViX5ZJIXjNm3SvK2qqoGpqN3oI7VDx8NDrr6X+rP3/az9gej3XFeMry5ec1uJ48GSLCwdPcmR34wuegtzetu/algtNnm1p9Mbd0pFyVL957eXuaz5Qc3nquGk7v/c+KgOQCmX7OPg7ueNBr4O5EVh2bbp8Xj9F//wOsRwWgAAAAAwNxXm+kGAAAAAACAhalvggCj7poAI2ByJrqv9NQELgIAQDtUVfWFJKdn26u0S5LnJ7milPK3pZQmKR0PVEo5qJTyt0muyGgoWrn/mCRnVFX1uensHajjYe9vPHftl5KL/yoZ3jK9Z/Zfl5z30uR7hyZn/8HE9Xs9a3rPZ+7Y8xkT11zxieQrJTnjQcndF7a/Jx5o7Pvz6fuNPm745uT32enhQtEma+m+yaqHNp4/51nJ0MbO9QOw0N3yw+Sspyc3frtxTavPa2s9qRuKliTrLk+u+9dt11WzYLQGewAAAAAAzDLdM90AAAAAAACwMPV2TRBgVAQYAZPT29XXdL67CFwEAIA2enGSnyY5JtvC0VYneWOSN5ZSbknyqySXJ7l36yNJViZZleTBSY5LssfW8bGBaCXJBUle1PbfBZD07pbsc2py/b/Wn7/sA8k9lyQnnjE9522+MznzEcnmW1ur3/Xxyf4vnZ6zmXtWPjg54I+Sq/9l4tr1v09+cHTy1EuSVUe0vzcm//7cSM+q5OiPTk9PC0kpydEfS35yYv35wXXJz56SnHz2aC0A7XPzD5Kzn5ZUw83rDnh563s+8ovJeS+uP3fuC5KRgWT/FyUjg63vCQAAAAAwSwlGAwAAAAAAZkRfbaJgNAFGwOR0le4sLkuypdpcd17gIgAAtE9VVRtKKU9I8rkkz85ooFmyLeBsjyTP3PpoZGxCx9j1pyd5aVVVG6atYaC5g1/TOBgtSW7+XnLvZcmqw3b8rGu+0HqI0gnfTXZ/ctLlc/wF7fjPtBaMdr/ffzw57p/b1w/bTOb9OUnWnpjs8sikGkr6r0+WrElWPTTZ45Skb6+2tTmv7fq40T/X28+qP3/Hz5M7z0/WPLKTXQEsPJd/eOJQtJN/nvQsb33PvZ7RfP6/PzYajFYNtb4nAAAAAMAsJRgNAAAAAACYEYtrvSkpqf7f65wfSIARMBW9XUuzZahRMJrARQAAaKeqqtYneW4p5c+TvDdJX7LdJ/5lu4Vbl4+rLUk2JXlnVVUfnu5egQmseNDENXeeNz3BaHee21rdUR9O9nr6jp/H3FdKsvro5O4LWqu/8lOC0Trlzl9Mrv4x30iW7NKeXhay3Z/YOBgtGb1/C0YDaI9q66e1E35MLJN/Lt2zIundPdl0S/35ey4c/XVEMBoAAAAAMPfVZroBAAAAAABgYaqVWpbU+hrOdwswAqagt+l9ReAiAAB0QlVV/yvJvknen+TejIac3f+oGjzG1ty7de2+QtFghvTunqx5bPOaX70yuegtycjw1M4YuC859w+TG05robgk+zxvaucwP+1z6uTqN97Ynj7Y5vpvJDd8q/X6XZ8gFK1d9n5+8/nfvDG55K+TaqQz/QAsBAP3Jb94UfKtnZOv1pLhTc3rd39ysminyZ+zzwsaz1Vbn5dXg01q6v/QMgAAAACA2UYwGgAAAAAAMGP6upY2nOupCTACJq+31uy+InARAAA6paqqu6qqekeS3ZKckOQdSX6Q5NIkNyfZsvVxy9axM5P8dZLHJdm9qqp3VFV150z0Dmx13KeSpfs1r/nth5KL3jy1/c95ZnLdVyauK13Jcf+cLN13aucwPx3yp8mez2i9/rsHJSND7etnobvlh8l/TCKsbtmBybH/2L5+FroVBydH/0Pzmkvfm1zyzs70A7AQnPOM5NovJwP3TFy7/JDkmI9P7ZzD39F8vqo85wEAAAAA5oXumW4AAAAAAABYuJoGGBUBRsDk9TYLXCwCFwEAoNOqqhpM8h9bH8BcsvLQ5A9+m5x1SnL72Y3rrvp08rD3J12LW9/73sua75kkB/1JstvJyZpHJb27t743C0N3X3LCt5P7LkvuvTTpvy65+K2N60e2JLecmez5B53rcSG54p+azx/06mSXR4y+veyAZOfjkq4l7e9rIXvQnyYbrkz++6ONa678p+SIdyW1ro61BTAvrft9cvs5rdWefE6y87FT/zi4eHXyhJ8lPzmp/nw1kowMTm1vAAAAAIBZRDAaAAAAAAAwY5oFo3ULMAKmoK/pfUXgIgAAAExKd29yyOuah5gNrktu/E6y8rBk2YGja+43PJBsuTPp22M0pGHjjcnIQHLNF5qfW7qSIz+QLNppen4fzE+llqw6YvQxMpxc9oFkaH3j+uu+nuxxSjK8Odlwdf2anpWj/6ZTjV737Z0sWjntrc8bg+uS/uuTG7/duKZ0JUf+jffnmbDrE5oHo225M+m/Jll+UOd6ApiPrvtaa3VrHpusfeyOn1dr9n30kaQa2vEzAAAAAABmmGA0AAAAAABgxvR1NQ4w6hFgBExBb9P7isBFAAAAmLQ9njZxzbn/Y/TXWk9ywMuTo/8hufTdye/+VzK8afJn7vl0IUpMTq0r2e+FyZX/3Ljm2i+OPiaj1EbfBx71xaRnxY71OJ8Mrk/Oe0ly03dHQw+b2fNp3p9nyu5PShavSbbc0bjmjIOTo/4+OfTPk1I61xvAfLL5ttbq9n/x9JxXao3nfvy45EFvaLK4mp4eAAAAAADarMlXQgEAAAAAANqrt9YkwKjpT7oGqK/pfUXgIgAAAExed2/ypPNaqx0ZTK78VHL63sllH5haKNraxyXHfXry6+CoDye7PWl696xGRsO/fvXq6d13rvv1a5IbvzNxKNriNclxn+lMT2yva3Fy0veTvr2b1/3mjaP/zgFon+7lyYGvmKbNmrwc8M7ztoUW11MNTVMPAAAAAADtJRgNAAAAAACYMb1dfQ3nugUYAVPQ1yVwEQAAAKbdLo+YXP3m26d2zv4vSU4+K1myy9TWs7D1LEsef2by0PdO/943fCsZXDf9+85FQ/3J9d9orfaZ13l/nmmrjx79e1i8c/O6qz/XkXYAFqwTvp2UaXoZ347sMzI4PT0AAAAAALRZ90w3AAAAAAAALFy9tcYBRoLRgKlwXwEAAIA22f8lyTVfaO8Zezy1vfuzMOz2xOSSd0zvniODyUVvS9Y8KhkZSEp30t3gB3/UFiWrj016d53eHmbawH3JXb9Mbv/56J/BRJYfknT3tr8vJlZKss//SK74ROOaG09Pqmq0FoDJmfDjYklWHt7ydvcN3Z3rN1+VoWpou7me0pMDqi1p/OPHJjCy/Z4AAAAAALORYDQAAAAAAGDG9DUJMOopizrYCTBf9HW5rwAAAEBbHPjK9gajLVmb7PmM9u3PwrHzccmqhyX3Xjy9+17xiebBUuMd/s7kiHfOj6Cpq7+Q/OqPRwPiWnXQq9rXD5N34CuSK/8xqUYaFFTJ2c9IHvP1xqF/ANQ3cHfz+b2f01Jg6kg1ktPv/GJ+dPe3m9aVJM9ee2BOvv2qSTS5VTWJj+UAAAAAADOoNtMNAAAAAAAAC1dv0wCjng52AswXS2qNX7TnvgIAAAA7YO1jksd8Y/r3LV3JLo9KTv550t07/fuz8JSSnHRmsvspM9vHpe9ObvvJzPYwHTZcm5z/stZD0ZasTY54V3Lo/2xjU0za6qOSE85oXnPz95LL/64z/QDMJ/+XvfuOk7uq9z/+OrM7m2TT66YHAqGEFjqEIh0RRRQVudeuV8Verlgv9nrVawWx+1NRwQIoKCJdOtISWgokIWUT0nu2nd8f3113Q+Y7OzM7M7ubvJ6PxzzmO+dzvud8Astk2f1+37Ojm2C0439R0DJztzzYbSgaQAT+OOVgFgweVdC6Oykm5FSSJEmSJEmSepHBaJIkSZIkSZIkqdcMyuQJRsvUVbETSbuL+jzvK7W+r0iSJEmS1DNTXwX/EeHC7fDqDfDK56GuhECGDideBa/eCGfdBcP2K1+f0qAGOPUGOOfR/PMGNsC4F1Wuj0VXVm7tallyNUkESzfGHA8XrIZXNMIhn04C6tS3THoJvGZL/jmLf1edXiRpd7Lj+fRa/VSoTf/dVVf3b7y9qG3njBhf1HwA2lqKP0eSJEmSJEmSekFtbzdQjBDCLe2HEbgoxriqxHUagN90rBVjPL0c/UmSJEmSJEmSpOLU1+QJMArZKnYiaXcxKM/7Stb3FUmSJEmSyqNmQPLIAhPPhUW/LH6NzACY8GKorS97e9K/DT8QBoyBHatz1yeeA5POg1XFBZEU7JmfwdAcoX+DxsP4M6B+cmX2LadC/9lMfAkMGF3ZXtRztfUw4hBYPyd3ffMCaGuFTE11+5Kk/iq2weZn0uuHfKbgpVbsWFLU1huzA4qaD0BsLv4cSZIkSZIkSeoF/SoYDTiFzo+bGtiDdQa2rwUFfXyVJEmSJEmSJEmqhEGZ9ACjulBXxU4k7S7q87yvZH1fkSRJkiSp/PZ7Nyz5HbQ1FXfejIshO7QyPUkdMlnY730w59IctTqY8S4YOQuGzoBN8yvTw6Mfzz1eUw8nXg2TXlKZfcvh+Xtg+fXdz8uOgOlvrnw/Ko8DPgT3pvz7amuGbUth8LTq9iRJ/dW25dC6Lb0+7TUFLdMaW1nVtKKorZtDCSGWbS3FnyNJkiRJkiRJvSDT2w2UIPR2A5IkSZIkSZIkqTzG101hYKZ+l/FRtWMZUjO8FzqS1N8NqRnOmGzDLuMDwkDG103phY4kSZIkSdrNjTkWTrsJJpwNA8ZC3cjkkckTUH7oF+CIb1SvR+3ZDv4UHPF/MOqo5GtzwNjk6/W0f8Doo5PwtDPvgr3fAEOmw/gz4ejLYPL5le2rdSvc/7YkiKovihEeuDj/nEETkn9OZ90D9ZOq05d6bvqb4Kjvp9c3P1O1ViSp31s/N732krlQm/6BPl2tbm6kldyhZTXU5hxvyZRwW2Dso993SJIkSZIkSdIL5P7JqCRJkiRJkiRJUhVkM1lOH3ke16/57U7jZ416JSH4WSmSihdC4KxRr+TKlZfvNH7aqJeRzWR7qStJkiRJknZz405OHlJfFAIc8IHkkWbgWDj+FzuPzbgYHv8SPPrJ/OtfsBpatsK1U4vvbdsKWH0fjDux+HMrbcuzsP7R9PqpN8KEs6rXj8prv3fBnEthx5pda5ufgYZTq9+TJPU3McLjX8hdGzAaRhxU8FIrdjyXczwQOGnE2dy2/vpdas2hpuD1/60td/iaJEmSJEmSJPU1e2owWtc/tz/RlSRJkiRJkiSpF71k9IWMzI7hkU33kgkZjhn2Io4YekJvtyWpHztxxNkMrhnKAxvvoCk2cfiQ45k9/IzebkuSJEmSJEn9zeTz8wejDZ8JdaOgbiQMmZ4EShXrqW/A2BOSALe+ZOO8PMUAo4+uWiuqkCH75A5Ge/xLsPebIFNC4I4k7UmWXAXP35W7Nvq4opZqbFqae5nsOOprhuSsNWcyRe0BQFtz8edIkiRJkiRJUi/YU4PRxnQ53tJrXUiSJEmSJEmSJEIIzB5+hqFFksrq8KGzOXzo7N5uQ5IkSZIkSf3Z8Jkw9TVJ8MkLhQwcfGl7oFlIju99U/F7LL0GHnwPHP39nnZbXpsWpNdmfiwJg1P/NmQ6rLl/1/HNz8Bdr4ETr06+ziVJu2rZBg9fkl7f791FLbeyaVnO8fF1U6gN2dwtlBJgGVuKP0eSJEmSJEmSesGeGox2cvtzBJb3ZiOSJEmSJEmSJEmSJEmSJEmSpD5q9pUw5nhovAka/wEDG2DcKbD362HCmZ3zpr8RBo6DRb/OHSq25r70PeZflgSoDJ9Z9vZLtml+eu2wL1avD1XOkOnptef+CCtvhfGnV68fSepPnvsjbF2SuzbhbJjw4qKWa2xamnN8fN1ksqEuZ62llPDKtubiz5EkSZIkSZKkXtCfg9FiMZNDCFlgAnAW8MkupTnlbEqSJEmSJEmSJEmSJEmSJEmStJvI1MABH0ge3Zl4TvLI5bFLYe7n089d/te+FYy2OUe4G8A+b4UQqtuLKiNfMBrA8hsMRpOkNCtvyT0eauDwbxT1d2WMkZVpwWgDJtOSEmbWnCkhGC22FH+OJEmSJEmSJPWCEn4CWlkhhNa0R9dpwKJ8c3Ocux14FrgCGNZlreuq+MeTJEmSJEmSJEmSJEmSJEndCCEcGUJ4VQjhZSGEfXu7H0mSemxCSmBah4f/G/5xCjz0YdiyuCot5bXixtzjQ2dUtw9VzvgzSW7NSPHUN6vWiiT1O6vuyD2+1+tgxEFFLbW+ZQ3b27blrDXUTSabqctZaw41Re0DQErImiRJkiRJkiT1NX0uGI3kN2tpj0LndfeI7Ws8Bfy+cn8USZIkSZIkSZIkSZIkSZL2XCGEgSGE6V0eee/cDiGcF0JYBNwP/A64Bng6hPDPEMLMKrQsSVJljDkOpr02/5xVtydhVDceB5sXVaWtnDY8BbE1d22IeaW7jcFT4cCP5J/z1Leq04sk9SfbGmHzgty10UcXvVxj09LU2oS6ydSGbM5aS6aE2wJjS/HnSJIkSZIkSVIv6IvBaNAZXFYpAXgQeGmM0Y+6kCRJkiRJkiRJkiRJkiSpMj4MzG9/3Aq0pU0MIbwG+CMwhV0/EHU2cF8I4chKNyxJUkWEALN/DaOP7X7u9kaYf3nle0rz2P+k14bOqF4fqrzDvwp7vyG9/vgXoHVH9fqRpP5g3nfTayX8PZkWjDasZgT1NUPIhrqc9eb8ueO5tXkbnSRJkiRJkqT+oba3G8jhDtKD0V7U/hxJPg1ye4FrRmAHsB54Erg1xnhnT5qUJEmSJEmSJEmSJEmSJEndOp8k2CwCP4kx5rw+MIQwEriC5ANfY/sjtJc7zhkM/DGEsH+MsdDrByVJ6jtCBg7+FNz+su7nrrqt4u2k2vR0em3oPtXrQ9Wx//vh2f+Xu7ZjDWx4HEYdUd2eJKkvW31vem3ofkUvlxaM1lA3GYBsyOasN2cyRe9F09riz5EkSZIkSZKkXtDngtFijKek1UIIbXRe4HRhjHFJVZqSJEmSJEmSJEmSJEmSJElFCSEMAmbRed3fX/JMfy8wnM5AtGXAH4EW4JXAtPZ5k4H3AV+rQMuSJFVew6mQHQbNG/PPW3M/3PlqOPoyGDi2Or0BxDZYPye9Xju4er2oOkbOgvopsPW53PXNCw1Gk6QOLVth5S3p9cHT0mspGnfkDkYbPyAJRqvN1OVuJVOzU6J4QdbPgRghFHWWJEmSJEmSJFVdCR8N0ev8yaskSZIkSZIkSZIkSZIkSX3fIUANyXV/W2KMD+WZ+zo6Q9GeBg6OMb4/xvjh9nUeaJ8XgDdVrGNJkiqtdjAc/QPIZLuf+9zv4aYTobWp8n11eOZn6bVjf1q9PlQ9IQPH/ji9vmlh9XqRpL7u1rPTawd9oqTAsZVNKcFode3BaCH9e4aWkOPWwEkvy79hvr/rJUmSJEmSJKmP6G/BaJ9tf3wOWN/LvUiSJEmSJEmSJEmSJEmSpHR7tz9H4Im0SSGEA4B9u8y9NMa4oaMeY9wMvLfLKfuHEKaUuVdJkqpnr4vg3CeTgLR935l/7qZ5sPwv1ekL4PEvpdemnF+9PlRdE86CEYfmrm02GE2SAFj3GDz/z/T63m8oesmtrZvZ2Jr7FrmOYLRsnmC05kyOWwNP+hOceHX6po98rKgeJUmSJEmSJKk31PZ2A8WIMX62t3uQJEmSJEmSJEmSJEmSJEkFaehyvCLPvJPanwOwCfjTCyfEGO8PISwFJrcPHQo8V44mJUnqFUP3SR4xwuIroXlj+tz5P4DJr0jm1AyAUANtzdDWBLVDoGULSbboCwXIDoMQuu8ntkHzBtj8TO56pg7qRhbyJ1N/Ne5FsP6xXcc3Pg1N6yEzAGoHlXfPtmYItYV9jUpSb1tzb3otUweD906vp2hsWppa6wxGq0ud0xxqgJYX9FIDU18FA8fB9lW7nrRjNWx/HgaOLbpfSZIkSZIkSaqWfhWMJkmSJEmSJEmSJEmSJEmS+o36Lseb8sw7of05AjfHGFtS5s2lMxhtag97kySpbwgBpl4IC3+UPqfxJvhNprT16yfD/h+EAz6YO3yqdQf86/2w+HfQvD59nRGHlLa/+o8h++Qef/5O+P3IJJBv1NFw7I9gxME922vbCrj3LbDyVhgwGvZ/Hxx4iQFpkvq2lben16ZcADXpAWZp0oLRBmYGMaJ2NADZkE09vyWT5/uDcS+CJVfnKER48utw+FeLaVWSJEmSJEmSqqrE345KkiRJkiRJkiRJkiRJkiTl1TXZIv1Obpjd5fjOPPPWdDkeVlJHkiT1RYd9qXJrb10KD38Ynvlp7voDF8OCK/KHogEc/8vy96a+ZWhKMFqH2Apr7oWbToSmbr5e8q4T4ZYzYMXfoG0HbFsOj3wM5l9e+pqSVGltrbD4yvT6Ed8oadnGHbmD0RrqJhPawyJrM+mBa82hJn3xY65Irz35NdixtqAeJUmSJEmSJKk3GIwmSZIkSZIkSZIkSZIkSZIqYVOX44ZcE0II44F9uwzdnWe92q6n9qAvSZL6loFjYPpbKrvH/B/sOta8ERblCXnpUFMPww4of0/qW4Z0E4zWoXkDLLmq9H2e/ydseGLX8QV5AnwkqbetvDm9dtAnYNCEkpZtbEoLRpv07+NsSM8Zb87kuTWwbiTMeHd6ffFvuu1PkiRJkiRJknpLbfdT+q4QwqnAacDhwDhgOPk/VTKXGGMs8Dd4kiRJkiRJkiRJkiRJkiSpQMvanwNwSMqcl3Q53gE8lGe9EV2Ot/SgL0mS+p5pF8IzP63c+msfhOfvgVDTObbmPmjb0f25Iw6BYCbpbm/IdKgZBK3bup+79uHS91ny+9zj6x+D1iaoqSt9bUmqlHV53vdGHFryso1Nz+UcH183+d/H2ZD+vtiSqUmtATDpXJj//dy1dY90258kSZIkSZIk9ZZ+GYwWQjgb+A47f0pkqb9pjT3vSJIkSZIkSZIkSZIkSZIkvcBjXY5HhRDOjjHe+II5b25/jsD9McbmPOtN73LcWI4GJUnqMxpOg/rJsHVp5fa4aXZp501/U1nbUB9VMwCmvRae+Vn3cxf8AI65vLR9NjyeXtuyCIbtV9q6klQpLVvgkY+l1ye9rKRlm9uaWNO8KmetazBabUi//a85ZPJvMv7M9NrCH8OxP8p/viRJkiRJkiT1km5++tn3hBA+AtxAEorWNQwtlvCQJEmSJEmSJEmSJEmSJEkVEGNcCMwnuV4vAJeFEPbuqIcQPgyc0OWUa9PWCiEMYecPU11Y3m4lSeplmVo49UaoHdLbnXTKDICZH4V9397bnahajvwOTHkldBe0A7DhiRI3aUsvbVpQ4pqSVEEPX5JeG3M81NaXtOzKpuXElNvbJgyY8u/jTKihhtzhaM2ZmvybZGphxsXp9XWPdNunJEmSJEmSJPWG9I+M6INCCGcDX21/2RFu1hGOthVYD+T7tEhJkiRJkiRJkiRJkiRJklQ9Pya57i8CewNPhRAeBcYBU+i8DnA78Ks865xC5/WCLcDjFepXkqTeM3wmvGYTbF0KW5fD348tfo1zHoa/Ht6zPoZMh5P+BMP2g5qBPVtL/Ut2CJz0B2jaAFuehaV/hjmX5p777C9h1peL32Pr0vTaZoPRJPUxba2wKM//qk59TclLNzblfj+soZYx2YadxrKZLK1tLbvMbSkkyHLSeTD/8ty1Z34BR87qfg1JkiRJkiRJqrICfvrZp3yl/bnjQqilwHuAvWKMQ2KMk2OMexf76LU/jSRJkiRJkiRJkiRJkiRJu7dvA0+1H0cgCxwJTKUz6CwC34wxPp9nnVd0mftojHFHBXqVJKlvqJ8Mo4+G+inFnTf55TByFkx4cc/2n/5mGHmooWh7srr+2Xo0AAAgAElEQVThydfS9Delz3niK7D+cYhtnWNtzfD8PbDydmjN8e1aWwtsyhN+tvDH0LKt5LYlqey2PgfNG9PrI0sPI21sei7n+Ni68dSE2p3GakNdzrnNmQJuDRx5WHrt6W8lYZiSJEmSJEmS1Mf0m2C0EMI+wGEkFzUB3AccHGO8LMa4pPc6kyRJkiRJkiRJkiRJkiRJucQYm4CzScLROoLQAp3XAgbgj8Cn09YIIQwBLuhyzs0VaVaSpL4kBJjxruLO2fedyfOMi0vft2YQ7P3G0s/X7mVwN+F8NxwMd5wPLVtgyxK4/mC4aTbcfApcNz0JTutq7b/o/JYuh/Vz4M8zYN1jPe1cknqurRVue0l6vX4qjDup5OUbm5bmHB9fN3mXsWzI5pzbEmq632jQhPz1a6bA8hu7X0eSJEmSJEmSqqjfBKMBx7c/d1wQ9YYY46Ze7EeSJEmSJEmSJEmSJEmSJHUjxvgcMAu4GPgr8ATwJEkg2qtijK+OMbblWeJNwDCS6wcDcH1FG5Ykqa+Y+VE49PNQv2tAyr+FGhh2IMy+Eia+OBmbfB4c9wsYtn/he4UaGH0MnH5b92FY2rMc+5P89WV/hqe/A/e/HTbN6xzfthzuvmjnuf98Tff7bVsG97wBYp4ANUmqhmXXwsYn0+tn3w+h9FvzVjYtyzk+vm7Xv4ezoS7n3OZMgfvP/k16rWVT8n7dsq2wtSRJkiRJkiSpCmp7u4EijGt/jsDDMcb5vdmMJEmSJEmSJEmSJEmSJEkqTIyxGbii/VGsnwC/7LLWhnL1JUlSnxYCHPwpOOiT0LYDagbCv7NEQ1KPbblDWaa/IXm0bu9yTr69aqEmd+iK9nAjZ3U/Z+GPYfMzu46vnwObn4UheydBZ1uXFLbn+keTkLViwv0kqdwW/za9NvYkGNRQ8tJtsTU9GG3AroGotSGbc25zpqawDUcemr/etA4ab0rCVSVJkiRJkiSpD+hPwWihy/GCXutCkiRJkiRJkiRJkiRJkiRVTYxxG7Ctt/uQJKnXhJCEosGuIWi5QtG66jhPKtWwAyE7HJrzZNPmCkXr8MhHYfjBUDOouH3XPZI7GK1lG6y4EbY8mwQTjT6quHUlqRDNm2DJ1en1Mcf3aPk1zatoic05a+Prdg1Gy2Zyh5e2dPd9QIch+8KA0bBjTfqcjU8BBqNJkiRJkiRJ6hsK/Olnn9D1YzAK/DgLSZIkSZIkSZIkSZIkSZIkSZIklaR2EOz33tLPX3I1zPk0PHJJcefd9dpdA3y2r4Z/vAjufAU89CG48Wh47DOl9yZJuWxdCjcem3/Ovm/v0RaNTUtTaw11k3YZy4ZszrnNmQJvsaupg/0/mH/OIx8tbC1JkiRJkiRJqoL+FIz2eJfjKb3WhSRJkiRJkiRJkiRJkiRJkiRJ0p7i0M/Bkd+B4TOru+/T39359bzvwNoHdh6b+1nYOK96PUna/T3+Zdj4ZHr92J/C0H16tEVaMNqo2rEMyAzcZbw2LRgtFHFr4EGfgKMvzz9n87OFrydJkiRJkiRJFdRvgtFijHOAuUAAjgwhjOzlliRJkiRJkiRJkiRJkiRJUolCCJNDCCeHEM4PIbw+hPCG3u5JkiRJOYQA+78Xzn0cBoyu3r5L//SC19ekzLu28r1I2nOkvdd0mHJ+j7dIC0YbXzc553g21OUcb8nUFL5pCDDjnUnQZRrfTyVJkiRJkiT1Ef0mGK3dN9qfa4AP92YjkiRJkiRJkiRJkiRJkiSpOCGEaSGEb4UQngEWA7cCfwB+Dvws5ZyTQgiXtj/eW71uJUmStItxp1Zvr/WPwWOfhvWPw4Ifw/o5uec9/oXq9SRp99a8EbYtT6+POAzqRvZ4m8YdKcFoA3IHo9WGbM7x5kwJtwY25Hkf3zS/+PUkSZIkSZIkqQL6VTBajPEXJBdABeCSEMI5vdySJEmSJEmSJEmSJEmSJEnqRgghE0L4IjAfeC+wF8m1gF0faVYDnwE+DXwrhLBPRZuVJElSupkfLe96p9+Svz73c3DDwXD/f6XPad4Iba3l7UvSnidG+OsR+ecc8pkybBNpbEoJRqvLHYyWzaQEo4Wa4hsYcXB6bdOC4teTJEmSJEmSpAroV8Fo7d4IXAfUAteGED4XQhjRyz1JkiRJkiRJkiRJkiRJkqQcQghZ4G/Ax0iu/XuhmO/8GOOTwK10hqf9R1kblCRJUuFGHwUvmVPG9Y6Bly/p+TqNf+/5GpL2bM/fBZsXptfPuB2mnN/jbTa2rmdb25actYa0YLRQl3O8JVPirYGzvpp7fP2j0Lq9tDUlSZIkSZIkqYxyXWDUZ4UQLm0/fBSYDYwBPgl8KIRwD/AEsA5oK2bdGOPnytmnJEmSJEmSJEmSJEmSJEn6t58AZ5AEoEWSgLM7ScLOmoAvFLDGH4BT24/PAj5f/jYlSZJUkBEHw7D9YePTPVsnk4Waeqivh+wwaN5Y+lrL/wYTz+lZP5L2bCtuTK8NOwDGnVyWbRqblqbWxqcEo9WGbM7x5lBTWhPD9s89vn0lPP0dmHlJaetKkiRJkiRJUpn0q2A04DPs/MmQHRdI1QOntT9KYTCaJEmSJEmSJEmSJEmSJEllFkI4HXgdndf7LQD+I8b4YHt9GoUFo10PfK99jaNDCANjjNsr07UkSZK6NfHcngej1Y2EEJLj7IieBaPN+07yGDmL5FtGIFMHo4+GAy+BwVN61quk3d/T306vTTw376mLts3njvU3sGzH4m632dK6Kef44JqhDK0dnrOWDXU5x5szmW73y2nsSRBqIbbsWnvko9CyBQ75NIQS15ckSZIkSZKkHupvwWi5xO6npAo9PF+SJEmSJEmSJEmSJEmSJKX7dPtzABYDs2OMq4tdJMa4OISwHhgBZIEDgEfK1qUkSZKKc8AHYdlfYNO80teoG9l5fMwP4bYX97yvdS/4FnHNffDcH+HsB6B+Ys/Xl7R7euYX0JI7sAxI3vNSLNz2FN957lKaY1OPWhhfNzm1ls1kc46XHIw2YBTs81ZYcEXu+tzPwY7n4ejLSltfkiRJkiRJknqoP35sQyjjQ5IkSZIkSZIkSZIkSZIkVUAIYRQwm+QDTCPw/lJC0bp4osvxfj3pTZIkST1UPxnOuicJNJv+FqgZVMIiXW5pGX9G2VrbxbblsPAnlVtfUv8WI8z9fHp91tegflJq+aa1f+xxKBrkD0arDXU5x1tCTekbHvo5yA5Lry/4IWxbUfr6kiRJkiRJktQDtb3dQJFO7e0GJEmSJEmSJEmSJEmSJElSQU6kM+1iVYzxuh6u1zVUbVwP15IkSVJPDRgF+/5X8jjmCrhqMLQVEQ40bP/O40wNDJ0Bm+aXv0+A5++szLqS+r9ty2HzwvT66GNSSzFG5m+dW5Y2xtdNSa1lQzbneHMmk3O8IAPHwUGfgkcuyV2PrbD6HpjyytL3kCRJkiRJkqQS9atgtBjj7b3dgyRJkiRJkiRJkiRJkiRJKsiE9ucIPFiG9TZ1OR5ShvUkSZJULplamPxyWHL1zuMDxsKQfWDNvbueM+mlO7+un1q5YLTGm+Cq9m8ha4fAuBfBEf8H9RMrs5+k/mPj0+m1TBbGzk4tb2rdwLa2rT1uIZBh1tDjUuvZUJdzvCXU9Gzj/d8HC65ID4a78wKoGwWjj4XDvwojDunZfpIkSZIkSZJUoB58LIQkSZIkSZIkSZIkSZIkSVKqUV2O15VhvUFdjpvLsJ4kSZLKadZXYOiMztc19XDcT+GYK2DQpJ3nTnkV7PW6nccy2cr217IleWxfCUuugptmQ+v2yu4pqe+7/aXptZOuyfve1Ni0tMfbBwIXjH0To7PjUufUhtw9NGd6eGtgzQA45fr8c5rWwoq/wk0nwpYlPdtPkiRJkiRJkgpU29sNSJIkSZIkSZIkSZIkSZKk3dLGLsdDy7BeQ5fjtWVYT5IkSeU0ZDq8+CFYdQc0rYOGU6F+YlI7dy6svA22Pgejj4VRR0KmZufzB4xJX3vmR2Hzs9C8CcadBOPPgBuP6Vm/WxbDc9fAXq/t2TqS+q/mjdC6LXetfgpMekne01c2Lcs5PjBTz7mjL+x2+4GZevatn0lD3aS887KZupzjLaEm53hRhu0P098Mz/ws/7zmjcmcQz7d8z0lSZIkSZIkqRsGo0mSJEmSJEmSJEmSJEmSpEp4vsvxjJ4sFEKoAQ7vMrSiJ+tJkiSpQrJDcgcJ1Y2AKefnP3faa2HRr3Ydr58Cs76y6/iR34Z/vb+0Pjssvx6mXQghQMtWaFrfWcvUwoCxSU3S7mn93PTauBd1e/rKpqU5xyfWTeX0US8vtatdZEM253hzJlOeDUYf030wGsCa+8uznwoTI7RuTf5+qhsBmSy0bIGa+uTvptbtEGqTv68kSZIkSZKk3Yw/9ZIk9Q3P3w3zvpd82tLUVycXNoQy/ZJOkiRJkiRJkiRJkiRJvWFO+3MA9g8hTI4x5r5rvHvnAPXtxxG4t6fNSZIkqY8ZfwYMGA071uw8Pu2i3POnvhoe+hDE1tL3XPQrWPxbiC1JuExs2bk+aBIc9gWY/qbS95DUdz1/Z3pt79d3e/rKpmU5xxsGTCq1o5xqQ13O8bIFo025AP71Pmhrzj9v+Q0w7zLY713l2VfpFvwQ7n9H7lqmDtqakufMAJj+Rjjim0lwmiRJkiRJkrSb6PeJMyGEbAjh5BDCJ0MIPw0hXBNCuDmEcHNv9yZJKtCyv8BNJ8Di38DSa+Du/4RHP9HbXUmSJEmSJEmSJEmSJKkHYoxPAh13iQfgw6WsE0LIAB0Xk0Tg0Rjj+p53KEmSpD6lZgCcdE0SjtZh4kvh4P/JPX/QBDjhd1AzqHNs37fD+c/BqKMK37cjDO2FoWgA25bBvW+G5TcWvp6k/iFGeORj6fXxZ3a7RGNKMNr4usmldpVTNuQOvGoJNcRybDBwLJx4NdTUdz/3wXfDkj+UY1elWXpteigaJKFoHc8tm2De9+CRj1enN0mSJEmSJKlKanu7gVKFEAYDHwTeA4x9YRly/1w3hHAR8MX2l2uBo2OMZfkZsCSpBLENHnzvruNP/m9yYcKQ6dXvSZIkSZIkSZIkSZIkSeXya+ASkuv63hNCuCHGeFORa3wJOK7L6x+VqzlJkiT1MeNOhPOXw7qHYWADDJ4GIaTPn3oBTDwnmT9kehKWBnD2/bDxKdi8MHm9+Hew6Fel97XwxzDx7NLPl9T3rHskvTbtovzvPUBT2w7WNq/KWWuom9STznaRDXU5x2MItIZAbTlujZv8crhgNax9AFbdCY99Kn3uwh8n77+qjAUl/Nhj4U9g1lchU1P+fiRJkiRJkqRe0C+D0UIIhwJXATNILpaClCC0HP4M/AAYCkwDzgT+Xu4eJUkFev4u2LJo1/HYBot+Awd/suotSZIkSZIkSZIkSZIkqWy+BryT5Jq9GuDaEMIHYow/7O7EEMIY4OvA60muEQxAI/DTyrUrSZKkXldTB2OOLXx+bT2MPWHnsRBg+IHJA5LQtJ4Eo617uPRz1f+1NcO6R6Flc/I6ZCBGct7KlBkAIw+F2sFVbVElWPHX9NqIQ7s9fVXTCmLK7WxlD0bLZFNrzaGG2thSno1qB8G4k2HUUfD4F6B1e+55jcXmne/BdqyBDY8n98gUavn1xe/TvB6e/QUM2QdCDQzbDwaOK34dSXu2pvWwfi4MOwAGjoEtz3Xe91c/BbY+B0NnwKDxha23dWnyd8mQfboNHJUkSZIk6YX6XTBaCGEmcDswjOQip46LnQoKSIsxbg4hXA28pX3oAgxGk6Tes+LG9NqiXxuMJkmSJEmSJEmSJEmS1I/FGNeGEN4H/Jzk+r6BwOUhhI8AvweWd50fQjgG2B84CzgPGELn9YGtwJtjjE3V6V6SJEm7jeEzYfSxsOa+0s7fvDD5QOgXBrBp97f0Orj7ddCyqfBzMnVw5LdgxsWV60ula94Id10Ey29In7P367pdZlXzspzjNdQyJttQanc51Ya61FpLJgNFZG4VtmE9TL0wCdrKJbbCbefCiVcnc7WrtmZ44GJY+JPq7XnfW3d+PfXVcNwvksA7ScqnrRUe+iDM+x7d3KKdmPxyOP5XkB2Su960Hu54Bay6LXk9/GA45XoYPLVcHUuSJEmS9gCZ3m6gGCGEgcBfgOFdhucAbwWmAwfSeQFUPtd2OT69bA1Kkoq3fk56beOTyadMSJIkSZIkSZIkSZIkqd+KMf4/4Avs/GGo+wCXAN/qMjUA95CEqP0HMLRjifbnj8cY/SBUSZIklebka2DcKaWff9OJ0Lq9bO2oH9i6HO58ZXGhaABtTfDAu2DNg5XpSz3z8Efyh6INHAf1k7tdpnHH0pzjY+vGUxNqS+0up2zIptaaQ01Z9/q3o78Po45Mry+/AeZ8pjJ77w6e+lZ1Q9FyWXI1PP7F3u1BUv+w8Icw77sUFIoGsPRaePQT6fX739kZigawYS7c+aqedChJkiRJ2gP1q2A04H3AXnT+3/V3gCNijD+LMS4CCv0N0610Xly1dwhhXJn7lCQVakM3wWeLf1OdPiRJkiRJkiRJkiRJklQxMcZLgTfTeZ1fx3WAHWFpHY9A5wekdrxuAt4YY/x61RqWJEnS7mfQeDjjVjjvmdLXWHFj+fpR37f4txBbSz9//uXl60Xl0dYKi67MP2ffdxS01MqmZTnHG+q6D1UrVm2+YLRMhW4PrB0MZ96df86iX1Vm791BX/ln01f6kNS3PVvCe8WiX0PMEaTWugOWXbfr+NoHYMvi4veRJEmSJO2x+lsw2nvpvBjqmhjjB2KMbcUuEmPcDCzqMnRgGXqTJBWrZQts7ubCgqU5fhAqSZIkSZIkSZIkSZKkfifG+AuS6/UuIwlI6whAC+wciNYx1gb8P+DAGOMvq9iqJEmSdmdD9obBe5d27r8+AAt+CMv/Cs2bytuXdtW8CZZdD6vugNam6uy5bSUs+X3y7/nhD/dsrWd+CjvWlKcvlce2pdCyOf+cUUcVtFRj09Kc4w11k4rtqlvZUJdaa87UlH2/f6upg5Gz0uvbVkDTusrt31+1tcL6x3q7i8SWxfD0d2Hdo1D8bZiSdnet22HlbbC6myDMXJrWwtwvJN8zLfwJrP1X8j6zbRm0bst9TuMtPWpXkiRJkrRnqe3tBgoVQpgJdPxkOAIf6eGSC4GO32RNB27v4XqSVB7Nm+CJr8Lzd8HQfeHA/4Zh+/d2V5VRyKc8bHwq+SV2Tfov8iRJkiRJkiRJkiRJktQ/xBiXAO8JIVwCnNj+mAKMBuqA1cBK4G7g5hjj+t7qVZIkSbux/d5TWujVlkVw/zuS40ET4JQb8ocGqXRrHoBbzoLm9v8lGLofnH4L1Jc/dOrflvwe7n4dtO0o35p/GAOn/A0mnl2+NVW6TfO7nzPxnG6nxBhZ1bQ8Z218BYLRajPZ1FpLyJR9v53s9x64723p9TsvgNNuhhDS5+xpHrmktzvY2b/elzxPey0c93OoGdCr7UjqI7YsgdvOgQ1PlL7GnEt3fj3pZTDzY+nzY0vpe0mSJEmS9jj9JhgN6PhNUQTmxhif6eF6XS+WGt7DtSSpPNqa4ebTYO2DyetVt8HCH8NJf4LJ50Glf2FVbVuWdD8ntsDmBTB8ZuX7kSRJkiRJkiRJkiRJUlXEGLcCf29/SJIkSdV1wAeT54U/hI1PJ8fZ4dBwGhz9fbhmCsTW/GtsWwH3vhXO+Vdle90TxQh3vqozFA1g0zx44GJ40XWV2bN5I9zzxvKGonW453Vw/jI/LLwv2LQgf33vN0CeELIO61vWsCNuz1lrqJtcSmd5ZUP6105zpqbs++1kn7dCWxM88K7c9ZW3wqrboeGUyvbRX2xaAE99s7e7yG3xb6HhdNg3T9CdpD3Hw//ds1C0XJb9GWJbngmxvPtJkiRJknZr/SkYbWyX4wI+nqNbXX9TUV+G9SSp51bc2BmK1tWdr4CB4+GE30LDi6rfV6Vsfa6weeseNRhNkiRJkiRJkiRJkiRJkiRJUnmEAAd+KHnkcuS34cH3dL/Ouodg8zMwZHp5+9vTrXsItub4EO5lf4bWpsoEjC27AVq3lnbuec/CvW+EVXfkru9YnQRHTTiz9P5UHt0Fo407uaBlVjYtS6011E0spqOC1IQaMmRoY9ewmeaQ6XxRqfeiGRfD/Mth/Zzc9SVXG4zW4bk/pNcGNsArG8u/Z4zwm0z38wCW/M5gNEnJ91NLr6nM2suvT681b6zMnpIkSZKk3VJ/CkYb2OW4HB+/MrzL8aYyrCdJPbfsz+m17Y1w8ykw9dUw9mTY581QO7hqrVXElhy/rM5l6Z9gr4sq24skSZIkSZIkSZIkSZIkSZIkAYw9ofC51+0Lww+EvV4H098EgyZ01jY8CfO+B6tugxGHJtd/r74Xhh8MB3wQxhxb7s53D6v+mV5r2Qw1o8q315YlyXX8hQTh5VI/GQZPhUnnpQejAdzxcpjxruR44FiY8GIYeVhpe6p0G5/MXx8zu6BlGpuW5hwfVjOC+pohxXZVkGyoY0fcvst4S6am88UR/1eRvQEYc0J6MNr8y+Dwr0PtoMrt3x+0NcMTX0uvF/j1VbQQYMLZsOLG7uc2/gMe+zSMOwkaTk/OlbTnaNkCy/4CS65K3rOq7YmvwfS3QNNaWHY9bH0uGd+8AGqHwIRzYPLLIDus+r1JkiRJkvqc/hSMtrrL8ZgyrNf1IzDWlGE9Seq5Z37e/ZwlVyeP+d+Hs+/r3z/o25b7l4G7WHFj8gk2/sJFkiRJkiRJkiRJkiRJkiRJUqWNnJUEV634WwGTI2x4Ah79RPI45+Hk/MVXwV0Xdk7b8ESX48dhye/gsC/BQR8ve/v9XsjkKcby7bPqn3D7S6F5Q+lrzPxY0u++74CnvwVbU66Rb90GT32j8/Wjn4CjfwD7/lfpe6s4rdth+Q3p9cnnJyGHBVjZtCzneEPdpFI6K0htJsuO1l2D0Zoz7f+9jDgMxp9esf3Z7z2w4Afp9ZtPg1P/CnUjKtdDX9ayDe58RRL2k+aAD1Vu/wP/u7BgNIC5n0ue9/kvOOYK79WR9hQ71sCtZ8Paf/ViD8/DH0an1xf9GoYfBKfdtHPYsCRJkiRpj5TvNwV9TWP7cwAO78lCIYTRQNefVC/oyXqSVDbZ4YXP3fhU/k+S6Q+aCvwFcvNG2Lqksr1IkiRJkiRJkiRJkiSpKkII2RDCySGET4YQfhpCuCaEcHMI4ebe7k2SJEn6t5OvgYM+BaOPhaEzCj/vkU9AaxM8+O7u5z76CdiaO2Bpz5YnpCe2lm+bhz5YWCja0Bkw7mQ44ptwxLdg3Ckw4RyYfSXs1/7vOTsEzn6g8L1jW/v+m0pqXSVYfFV6bdiBcGKe+gukB6NNLrargmVDXc7xlqEzYP8PwOk3Q+3giu3PiIPg0M+n19fcCwt+VLn9+7olV+UPJpv2Whh3YuX2H38GnH4rDNmn8HMW/ghW31u5niT1LfMuKywUbcorYa//hNHHpM8ZOgNqh5avt642PA5PfbMya0uSJEmS+pXa3m6gCHcDbSRhbqNDCKfFGG8pca230Plbki3Ag2XoT5J6rmZAcfOf+Aoc+rluPhGrD2vdVvjc9XNh8LTK9SJJkiRJkiRJkiRJkqSKCiEMBj4IvAcY+8IyEFPOuwj4YvvLtcDRMcaccyVJkqSyqRkAh30+eQDc80Z49v91f17jjfD8HbBjdWH7LP8r7Pu20vvcHYU8wWhtLeXZY9sKWFvA7URHfa8z/KzDAe/PPXfQeDjkszDn04X10LIFVt4Kk88rbL56Ztl16bXZv4RMtuClGpuW5hwfXzep2K4Klg25+2s++BMw4qyK7buTyefDY/+TXl92Hcz8SHV66WvyfX0B7PX6yvfQcAqctyA5bm2CqwYlIYz5LPszjD2+4q1J6gO6e58CGHsCnPSHwtaLEa4emnw/U25Lr4PD/7f860qSJEmS+pV+E4wWY1wXQngAOLZ96PMhhFuLvbgphDAJ+BidF1DdFGN3P+GTpCpoa4XtK4s7J7bCIx+Dw79WmZ4qrXVr4XM3zIVJ51auF0mSJEmSJEmSJEmSJFVMCOFQ4CpgBp0fbFro9X9/Bn4ADAWmAWcCfy93j5IkSVJe488oLBgttsEtZxa+7v3/lQRVhBoYeUQSkjZoQvH9Lb0Olv0F6kbCXv8BIw8rfo0+I08wWmwubcllf0n+GWWHwV4XwbzLCjuv4fTi9hl/RuHBaAB3vBymXghjjk2+BlbfCy2bYcBoGH82TLswf1CcCrf67vTa8EMKXmZ72zbWt6zJWWuoYDBabajLOd4cmyq25y6GHQCDJsK25bnrz/8T5v8A9nkbZPrNbYs9FyM898f0es3A6oeP1dTBuBcl4Yv5PPFl2PgkbJoHgyYnoaBN65L3o2EHwtQLkvc1qVp2rE2+33r+LmjbUd61l/05eR66H0x4MUx77e4bDLj0z8mfd3tj8jrGwgJhG4r47z2E5PukQgLXirVpHlzZ/v1P7WBoOC1PHxkYMQv2eSsMnlL+XiRJkiRJvaa//YTx28CV7cfHkVzo9I5CTw4hNADXASPbhyLwzXI2KEkl27II2kr4Je2T/wv7vh2G7lv2liqupYhgtOV/g5kfrVwvkiRJkiRJkiRJkiRJqogQwkzgdmAYScJBbH8uKCAtxrg5hHA18Jb2oQswGE2SJEnVNuUCePq7sPaB8q/dEdSx9BpY+CM4804YPK3w8+d8HuZc2vl63vfglOuh4ZSytlk1+YLA2lqKX+/xL8Ojn+h8/dQ3Cjtv+pth+AHF7TXmeJh8fvLvslBLfpc8XuiZn8Pqu+Co7xbXg3a1dRlsW5G7NvbEJESqQKuaUkLBgIa6ycV2VrBsyOYcbyk1LLAUmVo49PNw31vT5zxwcRJCeMr1e06o3yPd3Osy8xNJaGW1HfxpWH0ftHZz707H+9WGJ3YeX1BVi9cAACAASURBVHU7LPgBHPU92O/dlelR6qppHdxyOqx7pLL7bJqXPOZfBif8Bqa+qrL7VdvjX4JHP1n8eYP3Tu5RLMZBn4RVt0HzxuL3K1TLls7vldMsvRYWXAFn3AHDZlSuF0mSJElSVWV6u4FixBh/C3T8VCMAbwsh3BlCOCnfeSGEwSGEd7afO4vkIqoI/D3GeFcle5akgr3wFwjF+POM5JPF+pvWbYXPXXVb8qkfkiRJkiRJkiRJkiRJ6jdCCAOBvwDDuwzPAd4KTAcOpDMgLZ9ruxyfXrYGJUmSpELV1sMZt8LhX09C0ipl63NJAFuhmjfC41/Yeax1K8z9XHn7qqp8wWhFhkA1bYC5X+h+Xld7vQ6O+zkc+5PizoMkCOrE38MxV8C0i2DiucmjVPO+D5sXlX6+EnM/n147/H+LWmpl09Kc49lQx6jsmKLWKkY2kzu8rbmtqWJ75rTPW7r/b2PFX2HlrdXpp7dtWwFP5vkamvlxOOR/qtdPVw0vgrPugQM/0rN1HrsUWreXpycpn4cvqXwoWlexJQkQi3k/s6F/KeX7ntHHJqGXZ98L9ROLO3fMMXDWvTDzYzDxpZ3f90w8F8afUdxaPbW9EZ76ZnX3lCRJkiRVVG1vN1CCVwH3AqPbX58A3BZCaAQWdJ0YQrgc2A84HhjAzp80uQx4fZV6lqTubXyyZ+c3/gMmnFWeXqqlpZtPnXmhJ78Os75UmV4kSZIkSZIkSZIkSZJUCe8D9iK5dg/gO8CHYkw+BTCEMK3AdW6l8/q/vUMI42KMq8rca58XQsiSXDc5FZgAbAaWAw/HGBf1YmuSJEl7htrBcOCHk+MbZsH6RyuzT+M/Cp+79FrIFYy08tbkw7dDpnx9VU2eYLTYUtxSq25PguIKNe0imP3L4vZ4oUwN7Pv25NHhqf+Dhz5UwmIRVt4CQ97Ss572dOseTq8NnVHUUo1Ny3KOj6ubSCbUFLVWMWpDNud4cywyLLAc9n4jPHBx7veeDo3/gPGnVa+n3tJdANyB/12dPtKMPBRGfg0mvwJuml3aGk1rYc0DMO6k8vYmdbXuUVhYQiBpT22al4TSDp5a/b0rYfXd0Lqt8Pm1Q5IAxVDI51akGH4gzPpyen3Bj+D+t6fXy6mY76ElSZIkSX1evwtGizE+E0J4KfAnkot6Oi50mgCM7zI1AG/vckyXuUuBl8YYV1elaUnKZfMiWPRr2L4yCTTb8ETP1rv7P+EVyyGT+5ddfVIxv2AGWHwlHPbFnv2wVZIkSZIkSZIkSZIkSdX0XjpD0a6JMX6glEVijJtDCIuAvduHDgR6PRgthDAdOBo4qv35CGBolymLY4x7lWGfscBngQuBUSlz7ga+GWP8Q0/3kyRJUgEmvbRywWjrH4Xbzk2C2Fq2wOaFsPHpzvqw/ZPnrmO5NG+AupGV6bGS8l0v3tYMMcK878LSa2Db8vxrdffP6IUmnVfc/EJNfGmJwWjAfW+FJ78Gww5MwtYmnlPe3vYEa+5Prw0YXdRSK5uW5hxvqJtY1DrFyoa6nOMtMU84WaVkamDiubD0T+lznvgybFmchEmOOqJ6vVXLtkaY+zmYf3n6nLEnwICc/wtffaOPgoHjYXtjaef/42QYfQw0nAoH/0/y95PUU9tXw9zPwvN35Q+wrLRrp3V+bwUweC/Y63Ww9+t6raWiLbse5n0fVvy1uPMmvbTy9+lNOg9q3l9cYFupNi+AthbI9Ltb5yVJkiRJOfTL/7uLMd4fQjgC+CnQ8dP8+ILnnU4hCUQLwE3AG2OMJf4UT5LKYN0jcMsZsGNN8nred9PnHvDh5JMTnvoWbJibPm/H6mTN025JfsnUH7QUGYy2ZTGsuQ/GHFeZfiRJkiRJkiRJkiRJklQ2IYSZwKT2lxH4SA+XXEhnMNp04PYerleSEMIpwMdJwtAqfodzCOEc4OfAuG6mzgZmhxB+Dbwjxril0r1JkiTt0fZ/Hyz+DWx+pjLrL78hvVZo2NeOtf0zGI08AR2xBf71AZj3nfJvO/FcmPKK8q8LMGwGzPx4EhZVio1PJ4+l18KJV8HUV5W3v93ZsuvTa4d9sejlVjblDuNrqJtc9FrFyIZszvHm2FzRfVMd+vnk/o584YSLr4Rl18IZd8Kow6vXW6U1bYC/H5fc45LPrP+tTj+FyGThqO/C3f8JbSWG6a25P3msugPO/CeETHl71J6lZSvcNBs2ze/tThJdv7fa+DSsuBG2r4IDSww1rabFv4O7LiL3rdV51E+BQz5TiY52NqgBZn0N/vU+iu6xFAt/AjPeUfl9JEmSJEkV1y+D0QBijCuBc0MIRwLvB04HJqRM3wDcDHw3xtgrF0JJ0k7mfLYzFK07w2fCPm+Bfd4K8y6DB9+dPnfVHbDolzD9TWVps+LSPulhv/emh8Ut+b3BaJIkSZIkSZIkSZIkSf3DrPbnCMyNMfY0MWJ9l+PhPVyrJ2YBZ1Vjo/YQtmuAui7DEXgIeAYYARwOjOlS/09gWAjh/BhjWzX6lCRJ2iMNHAfnPAJLroanvw2ZATD2xJ3ntDXBqluhbhTM/CjUDoGn/g82zYMxs6GtObn+u1Ka1gL7VG79iskTjLatERb8oPxb7vM2OPpyyFTwVqtZX4KJL4aVtyahHVufK2GRCE98xWC0Yjz2qfTa3m8saqm22MqqlGC08XWTco6XS22oyzneHEsMueqpEQfBix+Cu16T3MuSpmVLcn/IcT+tXm+VtujX3YeiTXstjD2+Ov0UauqrknuUlt8A6x6FRb8qbZ3V98Cq26Hh1P/P3n2Gx1Hdbx//HvXiIhfJlnsvuGFMs2kGbHpvCSShJUAgCSGElCeBEJL8CQmBhJCeECCd3nuzwVSDDTZuYBvj3qtkWVpJ53kxEpLlndnZ3dnZXen+XNde0sxpPxftrmZn7gm2PulYVj7gLxRt8IVQ0COJhSws+U1iQxf9EkZ+wwkWzGQLfo6vwLGR33K+GuM8F/Q9DYrKU1pay9pfd64HXPdcyzWVeSXO++GKI2DJb2H1I7D1vRjzNP0ZGqph6V+i95l/o4LRRERERERE2omsDUZrZq19D7gQwBgzBOgP9MA5CWgzsAFYoJN7RCRjNDbAumf99+8yuuX7EVdBwx6Y+233/p/8IzuC0Rojzt26ohlwrnMgc/Mb+7Ztn5faukREREREREREREREREREREQkKK2vrPNxpWNMta2+LwlgvqDVAqsJKHnCGNMPeJi9Q9FeBy6z1i5q1a8QuAL4FdB8peapwM+AHwRRi4iIiIi4yO/cdBPsS/2P6TW15XtrYe1TTQFmKVCbonlTzXgEo215ywmcC9r4n6U2FK1ZxZHOo98Z8Mz+sftHs/U9qK+BvOJga2uvatZF329yoLhPXFNtjWx2DSLrVdAv3sriku8SzFPfGEnpup6Ke8HEX8FzB3v32/R6OPWEZdOs2H16T0t9HYnoup/zsBbWPAmR7bHHRLPpdQWjSXL8/BxVHAWH3uP9vsDXWq/D1tnxj9uzAaqWQ5eRya2fSpEq2P5B7H4Tb4XR16W+Hi89DnQe0Yz9ofN46xJYfk/0Pn1OgUm3t2yvfDD6e+jITuc5Ltn/NyIiIiIiIpJ2WR+M1lrT3SSTvaOkJMkYkw8cBgwAKoEqYC0w11q7Io2liWSG6k+ccDM/Csuh+6S99w29FObdAA27o4/ZMMP54K64MqkyU67epX5w7vjQ99TowWip+tBfRERERERERERERERERERERIJW1Or7Wtde/nVt9f2uAOZLRgRYALwLzG76Oh/n3LlXAlrjJqBbq+03gGnW2r1OPrLW1gK/NcasBB5p1XStMebP1tpPA6pHRERERIJmjHNT6aV/Ts38M0501rCNLfu6TYQjHoROQ1KzZhCsdW/bsci9LVG9pzkBT2EqGw+dh8OuBDOk7y9xgr0ASofA4C/B2Otb9okjstMJtommuE/coSkb6la7tlUUxBeyFq98UxB1v1tQW2i6T4LSQVC9wr3Pro/gvhIoPxwm3QFdR4dVXWp8+l/v9pwC6HtaOLUkyhgYcA4s+1ti4+fd4DzaKujmBK9NuAUqDk+uRmmf6qvhvWti/98zOXDAbcGEWw04J7FgNICXp8EpS5xr3TKR3/cR/c9KbR1B6X+uezDagHP33u4yKvq1hw01MOdaOOB2haOJiIhIsJb+BT76HexYCHgcuzJ5zu/K43+SuaHZIiJZQke72yFjzD3GGBvQY0Uc65YbY/4ArMc5sete4Bbgdzh3rfzEGPO6MebsVPy5RbLGjJP99x19HeS2+fCqoAz2/7nHIOvc8SDTNdS4t+WWQGH36G3ZetcyERERERERERERERERERERkY5nc6vvewYwX+vkhi0BzJeoe4Eu1tqJ1trLrLV/sdbOsdZGglrAGDMcuKjVrjrg4rahaK1Zax9tqq1ZIXBjUDWJiIiISIqMu2nfm2kHxu4digawbS48dzBEqlK0ZgBsg3vbzoCD0UoHw6TfBjunH8bAofdCYY/E57CNzqNqKcy/MXpIUUc35zr3tsPui3u6DXVrou4vy+tBUU5x3PPFI8/kRd0fCe5X0cSYHJh8rxOI5aWhBta/AM9PgT2bvftmsu0LvNtNHhz8VygqD6eeZIz/qROWGaS6bbDpdSdMasfCYOeW9uG1c/2Fok3+Z3Dvj4ZfBX1OSmzs7tXw6pn7vp/KFG+cH7vPpN9mdiBua31OgBHf2Hf/wPNh4Of33nfo3e7zLPkNLPplsLWJiIhIx7bs7/DOFbB9vnPcqvmYTLRHYx1sfhNeORE2v5PuykVEslr0I6IiLTySi1oYY04E7gEqYnSdAkwxxvwbuMJaW51ceSJZZvGvnTvd+NHjEBh1bfS2kVc7B3dfcLl7ytI/QfkU6Dpu32C1dKhZBzsWQMMe6DwSugyHht3u/fNKoMAlGK1OwWgiIiIiIiIiIiIiIiIiIiIiWWJ901cDJHWlrTGmBzC61a6lycyXDGvtthCWuQDIbbX9sLX2Yx/jfsHegWrnGWOu8gpUExEREZE0K+4F09+ALW/Di0eGs2btFlh5Pwy9NJz14mXr3dt2Lo6+v+JIJzTDfVKoWgG5hVDcx9lVOhjKD4P8TolWmpzyyXDqUtj4GtQ0BW4V9YbOw53z7+u2wuwr/c/38R9h3I8hJz8l5WalZX91b+txSNzTrXcJRutd0C/uueKVZ6JfG1Jv61K+dkwVR8Jpy2DNU/Dml7z7RrbDin/BqGvCqS1oH93p3jb8KhjzAyjpG149ySjuDce9CVvecULMCsogvwxqVjvPl7Ye1j4D2z+If+7GWlj6F5j0m8DLliy2aymse8a7z5CLYf9fQFGsy1TjkN8JjnzcCYetWgb5XZ1r3RprW/p4vd6ufx5W/BsGx3h+C1tjBHYu8e7T42AYGSVoLFOZHJh0Bwz/Kqx62Pkz9j8LysY7obKtdRkBeZ2g3iXsd8mdMPq7+44TERERSYTX74JubD0s/TP0PDj4ekREOggFo0ksD8XqYIyZCjwKtD7CboE5wHKgDOekttZ3/PwC0MUYc4a1mRqXLxIwa2Hx7f765hY5d8zJ8XiaLj/M+cBkwc37tu1YCM8eCHmlMOU/0O+0xGpOVmPEOTC87K699/c4GCbe6j4ut9j9bkGRHdDYADm50dtFREREREREREREREREREREJFO8ATQCOUAPY8wx1tqXE5zrUpyANYBq4N0A6stkZ7bZvtvPIGvtImPM20DzFf6lwHHA4wHWJiIiIiJByy2AiiNg8EXwyb3hrLnoVqg4CkwulA5wgigyhW2If0zliU6IRrYpKIN+p+67v2yM83XtM7DG59v5um1QtRy6jAyuvmwW2eXeVtI/oWsSNtStjrq/V0Hqg7DyTfTAu0hjJOVr+1LQDQZ/Ed7/fkvQn5sts8OpKRV2fOjeNu7GYMOcwpBb6Lz+VBwRvb3PSYmHdi65Q8Fosre1z8buM+7Hqfk5ysmFHgc6j2h2LPQOu3jzQug5BToPDb62RG2dG7vPfv8v9XUEzRjoup/ziKXbBNj0evS2mjWwZ4MTAikiIiKSiMYG2L0SGvbAtvcTm2PlfTD+p1BcqcBWEZEEZNCnFrEZY8YaY15uerxkjIn7CIcxplfT2OZ5RqSi1jS7DhicwOPcNvNY4O9eCxlj+gEPs3co2uvAGGvtgdba86y1xwH9gG8CrY+2nwr8LIE/n0h2qlkHu6N/CLaP3tP9fRjZbX/v9vpqeO0sZ+10+Oj3+4aigXM3mRePch+XVwoF3d3b68K46a6IiIiIiIiIiIiIiIiIiIiIJMNauw1ofbXzT42J/4xvY0xf4Ps457RZ4IX2fENOY0xvYEKrXfU45+X5NaPN9onJ1iQiIiIiIRn0hfDW2rkYnhgGjw+GB3vAotudm4FngkSC0ToPC76OTDD4i/H1f3IULPldamrJNts9Aqz6Rgmj82FDXfTAr1CC0XIKou6P2LqUrx2XQRfE7vPpf+CjP6S+lqBZ6x7AA9kXiuZHzylQOijx8U+Ogi3tPdteYtr2Pjw1Ft77hne/8iOgdGA4NbXl5z3YE8PgscGw4ZXU1+OlagU8PwWeP8S7X0F36HNCKCWlTax/twX/F04dIiIi0r5YC/N/Ag91h8eHwFM+Alvd1FfDo33hsYH+goJFRGQvWRWMBlwBTAWOAuqstRvjncBauwEnnKt5nssCrC8jWGs3W2tXxPsAprWZ6hVr7fIYy90EdGu1/QYwzVq7qE1Ntdba3wLntRl/rTEmTUerREIW2em/b/lh/vp1HRu7j22AlQ/5Xzso1sKS38Y/LqcAckug0CMY7c04P9wVERERERERERERERERERERkXS5o9X3hwJ/imewMaYX8DjOeWrNoWq3B1Naxmp7UtA8a211HOPfaLM9Jsl6RERERCQsvafB/r8Ek+vdb8B5MOXfzg2pgxDZDnO/DSsfCGa+ZDXWxz+mvQaj9T8HxlwPJo5LwN77Bqx+LHU1ZYtXPcLPDrgt7ul2N1Sxs2F71LbeBf3ini9eeSY/6v56G0n52nEZ92Pof3bsfu9+DVY/kfJyArX8bve2yf8Mr44w5eTCUY8nHla1cwm8dDTU7Qi2Lske9dXw0jGwY4F3v7IJMOVf4dQUTc9D4CAfgY3VK+CV42H36pSXFJVthBknwOY3vfsVVcDUpyC3KJy60mXoZTDi6+7tH/0Otsx2bxcRERGJZtlfYf6N8WVDxLJ7Fcw8WeFoIiJxyrZgtNNbfX9vEvM0jzXAmUnM024YY4qBz7fZfVeMMcOBi1rtqgMuttbucRtjrX2Uvf/tCoEb46tWJEvF8+a3p89gNL93XVn0C/9rB2XLbKj+JP5xBd3BGOerm3XPOXe3EBEREREREREREREREREREZGMZq39H/B+06YBvmKMec0Yc4TXOGNMqTHmq01j9wds0+N5a+3rqaw5A7S97fjSOMcvizGfiIiIiGQqY2C/78A522Haq3DMizDtNTivCs7aCMe+Ameuh8Pvg0EXwNlb4IT34JytcOL7cOzLcMxLzrhjXoQeh8a3/vK/p+bPFS/bEP+YTkODryMTGAMTfgpnb4VjZ7T828ayLEP+LdOlMQK1W6K3dd0voaCYDXVrXdt6FfSNe7545ZuCqPszLhgtrwSOeBDOXAtjb/DumynPOX4t/Yt7W4XnYY7sVjYOTlsOJ83z/xzUWn1V5gRvSvhWPQp127z7VJ4AJ86F0gHh1ORm+JVwXjV0P8i7X2MEVvw7nJra2vSGEzjopaA7nLEWesb5PjAb5eTBgXdC6WD3Pl6hliIiIiLRxHNMpfl3pMPvj93XNsKs82D7h4nXJiLSweSluwC/jDFDgObbZzQCTyYx3RNAA5ALDDbGDLDWrkyyxGx3DtC11fY24OEYYy7A+Tts9rC19mMfa/2CvQPVzjPGXOUVqCbSLtTHEYzWfZK/fn4/jNuzwf/aQfn0f4mNK2wKRMvr5Pz5GlyeGjbOhE6DEltDRERERERERERERERERERERMJ0DvAW0KNp+zBghjFmPW1Cv4wxfwRGAJNxbrxpcALRDLAG+FJINafTsDbb8Z7f+Gmb7R7GmG7W2hhXoYqIiIhIxsjvtG/ITl4pFE3de19uIXQ/wPm+oFuUebrAcwf7X3fdc7D2mb33FfSA7hMhJ9//PMmy9fGPye8cfB2ZpKAr9DqqZXvkNbDkN+791zwO9budkKqOqLrtr0WtlCQWvLOhbnXU/YWmiLK8HlHbgpRvov8MRjItGK1ZcSWM+AYsuNk97HD1o1BfA3nF4daWqN2r3NuK+7m3tQcmxwlIa9bnZFj7lP/xC2+BsvHhv55I+m16LXaf/mc7QaCZIK8Ejn4WnhjmHei2YQbs973QyvrM9nmx+wz+EuTkxu7XnvQ6GpZ/Er1t2/vR94uIiEh2amyAxlonf6D5a0MtNDZ9bd5f0h+6jPL/PnP3GtixACK7YMvb/sZUngC9j23ZLukHu6MfO/hM/S6YeQpMutMJeXVT1Mv5s5SNd44TNuxx3teUDobiXv7qExFpB7ImGA0Y2/TVAkustVWJTmStrTLGLKHlLojjiP/Eofbmy222/+0jqOzMNtu+otOttYuMMW8DhzTtKgWOAx73M14ka9Xt8Nev3xn+P9QxBnIKnTfoXhojYG14B4ltI6z0kWwcTfMH8sZA7+mw5ono/SI+/z5FREREREREREREREREREREJK2stcuNMacAjwCVtASdVQK9W3U1wOWtvqdV39XAKdbazaEUnV5lbbY3xjO46RzJPUDruy52xblhqoiIiIh0JN0PdC6g9BOi0WzGSfvuKyyHIx+F8inB1ebFLUTJTd9TU1NHJhtyCXz0W+fcfTcPlsGUf8OAc8OrKxNYC29d6t4+4usJTfvq9mei7q8o6IMJ4VqN/JyCqPsjti7layesqNy5RmbVQ+59HuwGh/0P+p8RXl2JqN0CNWujt3Ud2/FCiIZ+Jb5gtKpl8PwhUFQBRz4GPQ9NXW2SGax1AjyX/tm7X36XzHudKuwOE2+Ft7/i3mfds/DBD2H8z8INddu11Lvd5DjvETqaoV+G5X+P3rb5Tdi+AMrGhFuTiIhIe9McSNY6jKxhz76BZG0Dy9z2N+5xDzXzCj2LJ0y/y0g4+jkoHejex1qY8y1Yckf8fydDv7Lv9vwfxx5X/Sm8epr/dSpPhE2vQn21sz3scjjw997BaiIi7UQ2PdO1frVZFsB8y2gJRkvsVh/thDFmKHBkm913xRjTG5jQalc98Hocy86gJRgN4EQUjCbtXWRn7D5FvZ0DovHILY4djAawbW7L3cBSbdMbULMmsbEF3Vu+H/8zj2C0XYnNLyIiIiIiIiIiIiIiIiIiIiKhs9a+Y4w5APg7zvli4ISetf661xCcQDQDvABcZK1dn/JCM0OnNts1CcxRw97BaJ0TL6eFMaYCKI9z2NAg1hYRERGRBBgDU5+BmafCtjmJz1O7yblg84w1kFsYXH1uGuO4yBXg4L+mpo5M1m28Ey400yMUrjECr58PPadASd/waku39S/Aptfc2/ueHPeUexprWLHn46htvQv6xT1fIvJMftT99Y2RUNZP2KF3w46FsHNR9PbGWph1LpyxGop7hVtbPN65wr3t8AfCqyNT9D8DDvoDzL4qvnF7NsKrZ8AZqyAn+v9paSc2vwFzrvXuUzYeJt8LBV3DqSkeQ7/sBE+89033Pgtuhu6ToP9Z4dVV5RGMVjoQJt0J3Sa492mvyqc4QSTL/ha9fcYJcPrKcEPsREREguIaSNY2QCyeQDKPsUEEkmWKnUtg1nlw/NvufT75R/yhaEUVMOYGGHD23vvHXA/1VbD0L/5yJfxa1yaofelfoGwCjIjz9zERkSyUTcForU/K2RHAfK1fSboEMF82u5SWu2sCzLHWvh9jzNg22/OstdVxrPlGm23FrUv75/UGduyPnDfB/c+J/4OcvGKIbI/db/VjIQajzUp8bOsP5bqNhy6jo38AVl+V+BoiIiIiIiIiIiIiIiIiIiIiEjpr7QbgZGPMJOCbwLFApUv3HcBLwJ3W2pkhlZgp2gaj7Ulgjhqgm8eciboKuDGguUREREQkDCV94MT3nHCPp8dD1fLE5qnd4gRO9T0l2PqisQ3x9S+qSE0dma7vKXBeFdzv8XbfNsDK+2HUt8KrK91W/Me9rfyIhKacXzXbta1XQTihc/mmIOr+iK0LZf2E5Xd2LkJ/wOPyPVsPqx6EEV8Lr654bXw1+n6TB52HhVtLphh+JQz7KtTvcl5jGuudUMI3vuA9bs8GWP8y9Dk+nDolPbyei8EJ8Br59XBqSdTIq53wtpeOdu+z4j/hBqPtcglGG/lNmPSb8OrIRGN+6B6Mtns1bHsfuk8MtyYREcluvgPJ2gSIxRNItk97OwkkyyRb3oGa9VDce982a2HRrf7nOn0lmFworoweuJqTCxNvhQm3QM1a55jMa2cnd7MCN5/+R8FoItIhZFMwWus7HgYRZNY6aC3OT0zaD2NMLnBRm913+Ri6X5ttj6j5qJbFmE+k/Ym4ZDr2nALjb0p83txif/2qP018jXjtWBh9f+Xxzt1+HunjPrbtLxZdRkYPRovsSrw+EREREREREREREREREREREUkba+17wIUAxpghQH+gB1AAbAY2AAustY1pKzKz2JDGiIiIiEh7llcKo74N7yYRPDT7SudG2L2mQkG3mN0TFk8wWu9p0S9G7SjySqHrfu7n8APMuRbIgYKuUHEkdBoSWnlpsf5F97buByY2Zd0q17ZBxSMSmjNe+SY/6v5GGmmwDeSa3FDqSEh+Z+gyCnYudu/zyb9g+FWZ9/NsLWx9F2o3RW/PLYKcbLpEM2DGQH4X5wFgjgQMMQ9LzLkGSu6HsnGprlBSbfdqWPmA8zrUaWjLdW4f/8F7XOX01NcWhLLxkFMAjS4hlKsect4b5UR/jg6UDq4q4AAAIABJREFUbYx+jR041yd2dCX9oaiXE74Yzcd/hAPvhNzCcOsSEZHUsha2fwCb324JEdsnyCyOULPW7Y2RdP/pJCg16/bNL2iohYW3wI4F/uaoPAFK+/vrm5Pb0nf6q/DCEbBtrv96/dj0Oiy+Y9/9jbVNNTS958krdt4rlo0Ndn0RkZBk01G3za2+HxjAfANafb8lgPmy1QlA61uT1AAx4vgBaHsri5Vxrts2oamHMaabtXZbnPOIZI/Izuj785PMevQbjOZ24DNokSpY8c/obWXjnQOMXrq2+VAjr3P0fvUKRhMRERERERERERERERERERHJZMaYzsDgVruWWWurW/ex1i4HlodaWOararPt8wQhzzFt5xQRERGRjmjQ+TD/RqjdHLtvNLtXw2tnQVEFHPUU9EgsZComW++/74irU1NDNhlxNcz+qnefOdc4X00OHPg7GH5l6utKh1WPQM0a9/ZhlyU07aa69a5to0omJDRnvPJMgWtbxNaRaxL51TFEI6+G2Ve5t295C965DA76U+YEjTU2wLtfh6V/cu8z4hvh1ZMNSvrBgHOcoCwvOxfD0+OdwM6Jt2ZeIJ74s/IBmHVe/OMqT4AuI4OvJxUKu8PgC2HZ39z7vDwdjnzMCSBNpQ9+6N7Wue3lvh1QTq7znDzv+ujty/4K296HqU9BUXm4tYmISGrYRuf9+sd/THclkuka9uy9vWejE1a26yOfE5jEf/fLK4WjnoDnDvE+XpGI5mM9foz+Duz/C/3uJSJZJyfdBcShOXjLAOOMMT0Snahp7PhWuwJ+Bckql7bZfshau93HuLI22xvjWdRaWwW0eQdB0kd+jDEVxpgx8TyAocmuK+JLyoLRivz12/IO1Nckt1Ys9dXwzET39q77OR+kehlw9t7b+W7BaDpXU0RERERERERERERERERERCTDnQ/MbXq8AxSmt5yskcnBaH8Axsb5OD2gtUVEREQkWQXd4Li3oO+pUNS7ZX9usXNeevMjlj0bYwdxJcM2+Ot3+APQ79TU1ZEthl8BB//ZX1/bCO9+A3avTW1N6VC/2wnuc7P/L6Hr6ISm3lgX/e/r8K7HkxPrGomA5Ofku7bVN0ZCqSEpw690Qs+8LLsL1j4VTj1+rHvOOxQNYKxLAE9HNvmfMPIaKB0cu+/i22DTrNTXJMGLVMGbF8U/rnQQHPFQ4OWk1EF/hN7HubdvnAlLfpvaGnavgYW3uLd30iWyAIz5gXf71tmw4OZwahERkdRb97xC0cSfxtq9tz/8mf9QtJ6TnfevfU9KfP2SvnDCbBhwHhSW730MrvmRk+KP0RfdCpvfTO0aIiIpkCG3T/DlLaAWKMAJR/sa8JME57qKllC4euD1pKvLQsaYcqDtJ0B3+Rzeqc12ImlLNUDrT8xc0o/ichVwYwDziAQvsiP6/vwkMwGN+4db+5h1jnNXg1RZ+QBULXVvL2vKpKw8EdY9s2/7wM9D6cC99+W1fbppEtmVWI0iIiIiIiIiIiIiIiIiIiIiEpaeOOf7Acy21m5NZzFZpO2JRuXxDDbGdGLfYDQ/N0yNyVq7kThvpGp053ERERGRzNJ5KBz1uHefxXfAnGu8+2x9D6pWQKdBQVXWorE+dp9eR8OAc4JfO1sNu9wJRXl5Wuy+tgHWPOYEVbUnG172bh/0hYSmtdayMbIuatvg4hEJzZmIfFPg2haxdaHVkZThV0BhD5h1rnuflQ9CvwzJ1171oHd7UW/IKwmnlmySWwiTfu08Ft0Oc7/t3X/VQ1BxRDi1SXDWvwgNCVxSevRz2fdzk5MHh98HD3Zz77PqQRh3Q+pqWP2Ye1thORQkeX1ie2GME8y45DfufVY96Dw/iYhI9ov1fl3CZ/Kc3weag75ah37tta8Qcor27btPu58+rfY/3AtslGNKDW2C0Vb5DOrtdgAc90byfy8AxZXOe0ovT42DHR8Gs140Kx+E8impm19EJAWyJhjNWltrjHkNaD5Cf50x5hFr7fx45jHGjAW+A9imXa9ba6sDLDWbXAi0TlRaBsz0ObZtUtGeBNavAVofDXJJPxJpJyI7o+/P75LcvI1x/PitfRrm3wSjv5Oag8jrX3RvK+kP3fZ3vh9+Jax7lpanYqCoAqb8e99x+S6ZifVB3cRWRERERERERERERERERERERFKkOeDLAqvTWUiW+bjN9sCovdy17b/VWrstiXpEREREpKPxG1Az6zyY+AsnpCxItiF2n24HBLtme9B9EuQW+wuqWfBzGHo55OSmvq5Us42w+nGYdbZ7n05DnYuQE1DVsIM9jbujtpXnJzZnIvJMvmtbxEZCqyNpPSeDyXH+3aJZ8S8o6ec8r/Se7oTchK1mHax6BJbf7d2v/PBw6slmfl5PltwBZeOg/9lQUJb6miQ5jQ2w+lGYlUA4aXEldBoSfE1hKChz/p9ud7mcefs853nN5AS/9o5F8O7X3Nv1XLS38sO9g9F2r3b+HcvGhVeTiIikxpZ3011B5ogWSLZPkFg8gWQe4WZec6T7GENuUfT8geYshl1LYcV/oWatv/mGXhpcbX70np7aYLQlv4aBn4eeB6duDRGRgGVNMFqTX+EEo1mcEK1njDHnWGvf8jPYGHMw8CBQinMXSts0Z0d1SZvtv1trbdSesSUyLtG1RLJTqoLR4r27xvwfOx/6Hf0sFMV1M9kYddTCiijBZs0GX9RycLffqXD4/bD411CzBiqOggN+Hf3gb55LMNrmN5OvWURERERERERERERERERERERSaV2r7wvSVkX2WdRme1ic49teYbowiVpEREREpCPqfgD0Ocm5MbeXrbPhpWNgzA9hws+CW9/Wx+4z8pvBrddeFJTByKth4S9i9929ygkSO/xByMm2y8tasY3w+vmw8n7vfmOvTzhga2PdOte2ioI+Cc2ZiHzj/mt1va0LrY6klfSFIV+GZX9177PwFucx8hqY9OvwagPYsRBenuaEo3nJLYbR3w6npmzW/UCoPAHWPevd7+2vwKJfwTEvQUl4P1cSp8YGJxBt9aOJjd/vB9n9mjPmh/D6593bN82CiiODXXPNkzDrXO8+o68Lds1s1/dUKJsA2z9w7/P0eDh2BvQ6KrSyREQkYLVbvZ/rw+IrkMwjZMxP2Nhec2RoIFmmyC2MHozWUAsbXoGZp0Vvj6Z0MAz6QrD1xTLiKljxD6jdkro1nj8UDvo9DL8ydWuIiAQoq44iWGufN8bMAKbihGr1AV41xvwT+DMwu22wlzHGAAcCVwBfAvKbxlrgNWttjE9p2idjzKHAmFa7GoB74pii7St+cQJltB3j812Epz8AD8Q5ZijwWABri3hzDUbrmty89XEGowFsmwOvHA8nzklu7c9qqIaHe3v32e97e28POMd5xJLfyb1t11LoHO95nyIiIiIiIiIiIiIiIiIiIiISkta3tB6ctiqyT9tbgY83xpRYa3f7HH9YjPlERERERGI74hFYdCusfxE2zvDuu+BmGPoV6DQomLVtg3d7UW8o7R/MWu3NhJ9Dp6Gw6mGoWQvb57n3Xf2YE1bU95Tw6gvahpdjh6KV9IchFye8xMbI2qj7i3KK6Zyb5PUgccjPcQ9Gi9hIaHUE4uA/Qd1WWPWQd78lv4Fhl0HX/cKpC2D+T2KHopX0c54jexwYTk3ZzBg48jFY9EuYd4N3352LYckdMNFHuKOkx7pn/YeilY1v+b7TEBh0AQyIEfCV6QZ+zgnkfOOC6O1vXgynLw9uPdsI730LGva49+l/NpRPCW7N9iC3AKa/6jyfL77Nvd/c78AJ74RXl4iIBGvhLd7tFVO9Q8ZyiuIMJHMJN1MgWWbJKYy+v7HWee33E4rWZTT0ng5jf+gE0Iep8zCY/iYs/hUs/UvL/rLxex/f6ToWTE7Lttexn31YmPtdGPRFyO+cdMkiIqmWVcFoTT4PzAEqccLN8oCLmx7VxpglwLamtu7ACKA5Vcc07TfAKuC8EOvONF9us/2MtTb6kfroMjIYzVq7EdgYzxiT4B1fROIW2RF9f36X5OZt9Di46WXbXFh0u3OnrGi/eO1eDVtmQ+0mKCyHvFIwuc4b5dqtTp+cfOi2v5MO7PXLwJT/egecefEKjlv/ooLRRERERNKlvsa542txX+g8NN3ViIiIiIiIiIiIiIhIBrLWfmSMmQeMxwn36mutXZPuujKdtXZdq783cM6TPBx43ucUU9tsPxNQaSIiIiLSkeQWOBeBjv0hvHUpLL/bo7N1wlKGfzWYtWMFo/U+Nph12iNjnCCpYZc52ysfhFkeQTRrnszuYLQ1T8XuM+rapJbYVLc+6v7y/MpQr0nKN/mubZHGutDqCITJgQPvjB2MBs6/cVjBaNbC2idj95v+OpQOSH097UVuAYy9HvqdDk+P9+679kkFo2WyNT5+PgBGXwcTb01tLeky6Hx49+tOuGNbe9ZDQ53zfz4IOz+CqqXefQZ+Ppi12pv8LnDAr5wQWLe/w62zYc9GKKoItzYREQnGptfd285YAyV9wqtFMkduUfT91Z/C1vf8zXHyAufYSrp0GQ4H/9l5+LXoNph7nf/+9VWw8VXoe3L89YmIhCzrgtGstRuNMScAjwODcILOwAk76wRMarPvs6G0hKItBU5vCtHqcIwxpcDn2uy+K85p2iY8lcdZQyf2DUbbHmcNItklsjP6/mSD0eprEh8799vw6X+du6+0/iVv/k9h/o+Sq6u1ZMLLenrctaJuW+LzioiIiEji1r8Ir57ZEo7b9zQ4/D73A8giIiIiIiIiIiIiItKR3Qn8FefcvZ+w7009JbpHaAlGA7gEH8FoxphRwCGtdlX7GSciIiIi4qn3cTGC0YDZV0J9NQz9MhSUJbdeY713e+Xxyc3fkVQcBTkF4BactfTP0OsYGHheuHUFYc9mWPKb2P0qj0tqmY2RtVH3VxSEe6F9DrkYDPazy+Za1NtIqLUEoqg3lI2D7fO9+73/Xeg6OvUBfnXb4YMfOM9jXrqMgpL+qa2lveoy2rkZb41HZv6OhTDjVCifDCOuhvxO4dUnsS39k79+/c9JbR3pVjYeNs7Yd39DDXz8Bxh1TTDrLLjZuz2nACqmBrNWe1V5PHzsES733CEw4WYnYC6dASgiIhKfrXNg8xvu7cWV4dUimSWnMPr+eTf4Gz/g3Ox8T1B5HMyNc8zMU6D3NCjp57x/V0iaiGSonHQXkAhr7Yc4AWj/oyXszLZ6fNaVvQPRGoF/AAdZaxeFWXOGORfo3Gp7A+Azrv8zH7fZHhjn+Lb9t1prlXAk7Ze17sFoBV2Tm7txT3Ljt74Lzx3Usr3+pWBD0QA6DU58rFcqd0OSf3YRERERiV99Ncw8vSUUDWDN4/Dh/6WvJhERERERERERERERyVjW2ruAp3DO4bvYGPPdNJeULf4NNLTaPssYM9zHuO+12b7fWquTbEREREQkOf3PhPLDY/ebex28ciJEqmL39WIb3Nt6Tm7/gStBKiqHMT/w7vP65+ADnxcJZ4o9m+H5ybH7Df0KdN0vqaU21a2Lur88P9yL7Y0x5Jn8qG0R6xJ8l8mMgQk/d4J9Ypl5Kiz2EYKXqLod8PwU+PiP3v1y8p2as/FC+UyQkwf73wImxiWta5+ED34ILx4J9TXh1Cax+f0ZHHAe9Dg4tbWk2wG3ubfN+ZZzbV6y5v0IVvzTu8+YH0BRz+TXas9GfcsJZHRTvQLeuMAJxhQRkeyw4RV4dpJ7+8hr9H69I8t1CUbzK9bxk0xVNg6GXBr/uPUvwvJ7nJC0JXcGXpaISBCyMhgNwFq7zVp7AbAf8Gug+fYQps0D4APgV8BIa+3F1todYdebYdrecfMf1toYt9PZR9tguWFxjh/SZnthnONFskt9FUS5Kw8AeV2Sm7vrOPe2aTOh1EduYc1aWPQr2L0W3vtmcvW01W1/KOyR3Bxud/Rq0AccIiIiIqFb+ww07N53/5rHw69FRERERERERERERESyxfnAIzjn9P3cGPOcMeboNNeU0ay1HwP3ttpVANxjjClyG2OMOR24uNWuOuCmlBQoIiIiIh1LbiEc8wIcFCM0CGDLW7DgZ8mt53WJyzEvQV5xcvN3NONuhOFXevdZdCvUbg2nniAsvxuqlrq353WCKf+Fg/+S1DLWWjbWrY3aVlEQbjAaQL6JHiIWsZGQKwlI35PhuLdgv+/H7vvhT1IXkrXiX7Cz7aVybYz+Lkx/A/qfkZoaOorBX4Rps2DIxbH7bpsLKx9IeUniQ8MemBcjQDOvMxx6Lxz23/YfRtL9AOg61r39w58mN3/tVlj4S+8+Rz3pvL6Lt85D4fh3YvdbfDvs2ZT6ekREJHkfxjjeMOqacOqQzJTj+jGqt2GXw2nLnEyEbHXI32DKf5yA+KGXwWH3wfRZ/sd/eBM01KauPhGRBOWlu4BkWWs/Ar4NYIzpBPQCmhN4NgMbrLXVaSov4xhjRgBtb9NzVwJTfdhme7wxpsRaG+Xq+KgOizGfSPsS2enelp9kMNqY78Os8/bdP/xrUHEknL4CXpwKG2d6zzP3O84jaEc8lPwcuS4fXDfoZrYiIiIioVvicse37fPCrUNERERERERERERERLKCMebvTd/uBHYBnYFpwDRjzC6cG59ubGrzy1pr294gNFTGmH5EPwezd5vtPGPMIJdpqqy1mz2WuRE4E+jWtD0FeNEY8xVr7eJWtRQClwO3tRl/m7X2U4/5RURERET8yy2C4V91gk/e/KJ33yV3OOezl/ZPbC3bEH3/iG8oFC1RI6+Bjz2C7RprYfObTlBVNtjwknf7sS9Dj4OSXmZnw3ZqbfTrFsoL+iQ9f7zyTX7U/ZHGupArCVD3ic6j4kiYcZJ7v7ptsP0D6Hlo8DVseNm7vcfBMPEXwa/bUZVPdv4dVz0Kke3efTe8DEMuDKcucbftfaivcm8/ZTF0GRlePZlg2GXw3jejt216DRrqIDd6mGVMm990Xpdd174ie16vM0FJHxjwOVh5n3ufxjrY/Ab0Oz28ukREJH6NEe9r5XMKoSTB4xDSPuQWxte//9lwxIOpqSVsxsCg851HaxN/BXOviz2+dgtsnw89DkxNfSIiCcqaYDRjTG/g4Fa7Zllr97oVibW2CqgCloVZW5a5tM32LGvtkngnsdauM8bMA8Y37crDCVx73ucUU9tsPxNvDSJZJeJx3maywWiVx0OnoVDV6qkvtxiGtjr3c/R3YgejpcKkO6DTkOTnyXVJaFYwmoiIiEh4ts+Hdc/BptfTXYmIiIiIiIiIiIiIiGSXiwHbatsCpun7Lux7o89YTNMcaQ1GA2YBA3306wt84tJ2L87fT1TW2tXGmLOA54DmKykPAxYaY94DlgNdgQOA8jbDnwRu8FGfiIiIiEh8Ko+HnHzngmQ3DXvgmf0hr5Oznd/ZCT2a8H9Q0M193GfjXcJATNZcBpV5Og+HLqNh5yL3PjNPgWFfdf6dCruHV1s8Irtg3g3OuWxuSvpBtwMCWW5T3TrXtor8ykDWiEdeTgFEyQ2stx4/j9mi4ijI7wqRHe59np8MJQOc63B2fNiyv6gCJv8LKqfHt+bqx53AwHXPevfrd0Z880psxkC/0+CTf3j3++ReJ5Sr8jgYd5PCMcOyZzPMu94J6Kr+1PvnsstI6DwivNoyRb8z3YPRbCPcVwilg6BsHIz6FvQ62t+86190Xo8919ZzUtz6ne4djAbw6hnOa0zpABhwrhPIa4z3GBERCdfG19yD1MF5f2lywqtHMk9OnMFoHSEUte+p/oLRAN66CE78AHJ0/E1EMkc2vbKfBTzS9Pg34BF5LtEYY3KBtrdIuCuJKR9ps32JzzpGAYe02lWN/0A1kezUsNu9La80ubnzu8C0mTD4Qicgrc8pcMxLzh1zmvU9GabG+KAmaAf8GkZeHcxcuS4fXDTUBDO/iIiIiHhbdjc8MxHmfse7X2N9OPWIiIiIiIiIiIiIiEi2s60e4sFaOwM4E9jUarcBDgTOA45n31C0/wKft9br6hARERERkQQV9YSJt9OSd+yibivsXuk8dixwwodeONw7UK3Zumei78/JjbtcaWIMHPg7yOvs3W/pn/z/O4XNNsJLx8KSO7z7HfTHwP6vbIpED0YrzimhU26XQNaIR77Jj7q/XQSj5ZU4/0djBSDuXrl3KBrAno3wynGw1iMwr62VDzkhOLFC0XpOhuFf9T+v+DfuRuc6qFi2fwCLbnXCoqwOJaVcQy28cBgs/TNsn+cdigZw4O87ZnhUaX+Y8HPvPtUrYM0T8PJxsOGV2HOuex5eOcG7z6AvQe84QyAF+p/lL/hk90rYNMsJvfvgB6mvS0RE/KvdAi8f695eWA7jfxpePZKZcov89+1zihOG2t51GQFjf+Sv746F8Ha6700mIrK3bApGK8P51MQAs6211WmuJxudBLS+Hcku4IEk5vs3e99n5CxjzHAf477XZvt+a+2eJOoQyXz1XsFoJcnPX9IXJt8Lpy2FqU9A+eR9+/Q5Hi6wMOzy5NeL5YDfwKhrgpvP7ReRBj11iIiIiKRcZBfMucb7rirN6qtSX4+IiIiIiIiIiIiIiGQjE+Cjw7HWPg2MBf4EbPPo+hZwjrX2Ap1jKSIiIiIpNfLrcOJcmHgbFHTzP27HQljzlHef3Wvd22IFJom33sfAyR/G7rdzkRPkkmk2zICts737HPkY9D0lsCU31kX//1he0AeThiCgfFMQdX/E1oVcSYoM/iKcND/x8Ytv89930a3EzGsf8wM49uX4nufEv05D4ITZMOU/0OOQ2P03vAxb30t9XR3d6sdg10f++nabCL09AkrauzHf99fP1sOi22P3W3y79/nanYY61w8qKDZ+uYVw+EMwNUYYZmsf/d4JChQRkczwyb+8209ZBF1GhlOLZK7cwth9Rl8HU5+GIx+JL0gtm42/CY57G/b/hfN7rpcV/4Lda8KpS0TEh2z6RGBr01cLRL/dhsTSNp7zf8mc/GSt/dgYcy9wadOuAuAeY8yxbkFnxpjTgYtb7aoDbkq0BpGs0eASjGbyICf6HXtSZvjXYOlfUjf/2Bth1DeDnTNHwWgiIiIiaVH9KSy+AyI7/fWvr4KCstTWJCIiIiIiIiIiIiIi2WZwugtIBWvtoJDX2whcaYz5JnAYMBDoDVQDa4C51tpPwqxJRERERDq4bhOcx8hvwJP7QdVSf+M2zoB+p4HJAWuhbbiUV/BVYc+Ey5UmpQPggNthzrXe/TbMgD4nAwZyo4dxhW7jq97tJhd6Tw92ybrol7BV5FcGuo5feSb69ScRGwm5khTqOgrGXA8Lfhb/2PUvNF1nEiO0rrEOtrwdYzIDo7/TcS6UT5eCbjDofKg4Ah7tH7v/5jegx4Gpr6sjW363/74dORStWe9psP7F2P02ztw7ZMvkNYWgNQc0Wue118vwq/Z93yT+5eRCn+Nh0h3wno9rH+t3wa6PoWxs6msTERHn+EBjhM9eG00u5LSKQtn8uvvYXsdCYY+UlidZIidGMFpxH5h4azi1ZJqeBzsPcN6HLvxF9H62ETa+BoM+H15tIiIesikYrfWR5NK0VZGljDG9gJPb7P5bAFPfCJwJNN/6YgrwojHmK9baxa3WLwQuB9reeuM2a+2nAdQhktnqXYLR8krCrQOg23g48lF49YzYfTsNhaFfhg880n97TnE+WCjoBhN+DsMuD67WZnnF0fc31AS/loiIiIg4Hygs+D+Yf6NzQNOvyK7U1SQiIiIiIiIiIiIiIllJ54cFy1pbB7yS7jpERERERD6Tkw8TfwmvneWv/5I7YMlvcS52NlA6EIZdAft9zwn72PWx+9jK44KoWPqfDXO+TUsYSxQf3ek8ADoNg5FXw4ivpyeQZd0L8P73YNtc7359T3O/9iBBmyJro+4vL0hPMFp+TvSQunpbF3IlKTbwvMSC0QDuC+j/QOXxulFsmEr6tVyf5OW9b8Lu1TDh5r2DMiR59bth9pWw7ln/YwZ8LnX1ZIsB5/kLRqvfBfclE7RoYMA5SYyXz/Q/G+Z8y9858k+Pg8n/gMFfSn1dIiIdkbXO8YE51+zblpMPPQ6F8T+BhbfAuufc5xmo9yTSJFawtd6/OgZ8zj0YDeCN853jMEO/AmOvVziviKRVTroLiMNcWo64j0hnIVnqIvYOwvvQWvtOspNaa1cDZwGtj6AfBiw0xsw2xtxnjHkWWAX8Fmh9a5IngRuSrUEkKzS4BKPlpiEYDaDf6XCBhaOfj97e/yw4ayOcthT6nuo+T5fRMH0WfK4GztkKw69IzZvbHJdfRBr3BL+WiASv+lOY+x2YeTosvNU9LFJERDLH5jdg3g3xhaIB1Felph4REREREREREREREREREREREclc/c90brLtm235Wr0CPvh/sPg2Z9eupe7DysYlWKDspXQAHPJXMLn++lcthfeuhmV3pbauaLbOgRknxg5F6zoGJv0m0KWttWyqWx+1rSI/TcFoJj/q/khjJORKUqxsHEy8DUjTxdedR8CBv0vP2h3ZIX9zwjJjWXSrc32CBOvNL8En//Dff8LN0H1S6urJFoMvgkEhhGYd8lfn9VuSV9IXDrkLjM9wxTcvhNWPpbYmEZGOaulfooeiATRGYNNr8NLR3qFoAIMvDL42yU45hd7tY68Pp45M130i7O8RjAaweyXM/xEsuDmcmkREXGRNMJq1diXwFs4RzZHGGIWjxeeSNtuBfRphrZ0BnAlsarXbAAcC5wHHA+Vthv0X+Ly1tiGoOkQymlsIUF6agtGaVU6HkxdC5QnOdnElHP4AHP4gFDX92HrWaJ0gtFgJyslym79BwWgiGW/XMnjuEFj0K1jzOLz/XZh5inNgSkREMteK/yQ2TsFoIiIiIiIiIiICzuejkZ3O3X1FRERERERERKRjGPN9OHM9HH4/HHoP9J4e3/iP/+h8dQtGG/61pMqTNoZ+Gc5YAwPO9T/+PHKwAAAgAElEQVTm4z+krh43S/8KsS49GvQlOGFO4IExOxu2UWujX7NQUdAn0LX8yjMFUfdHbF3IlYRg9LVwxirnGpdD7wlv3WmvwUnzoPPQ8NYUR9fRcPIiOPYV6DLau++yu3RNUZB2r4VVD/vvf/pKGPP/nGvKOrrcAph8r/N/d/K/4JC/B7/Gmeud120JzpCL4cw1cMTDzmtMTvTg0c98lIb3QCIiHUEQv2NOnwW5McKwpOPw+r9w8J+hsHt4tWS6/b4L/c6I3e/jP+r8LxFJq6wJRmtyq8v34sEYcxgwqtWuOuBfQa5hrX0aGAv8Cdjm0fUt4Bxr7QXW2uogaxDJaA0uwWi5xeHWEU3X0XD0M3CBhTPXwoBz9j4wnRsjGC0Mbn9PDTXhrC8iifv4D7Bnw977NrwCG2empx4REfFnwyuJjYvsCrYOERERERERERHJPgt/CY/0hQe6whMjYNOb6a5IRERERERERETCUtzLCdoachFM/GV8Y6uWQ8062DQrenvnYcnXJ3sr7gVjrvfff9tc2DoHts9veVQtT90FsvXV8Mm9sfsNu8wJpgnYxrp1rm3lBZWBr+dHvoke3FJv2+lNq0v6Ote4DLkIRl6T+vUqT4SKwxWskE55xdBrauzXkPpdsPpxhaMFZd0z/vv2nAyl/VNXSzYyBrqOgsFfgKGXQLeJwc3d4xDn9VqCV1QB/c90XmMaY7yOrn8e6naEU5eIdAw1653fp3Z+BFUroPpTaIwRCN3eNNTC9nnJzWFyoMuo2P2k4yjxCEwvGx9eHdmi8vjYfWrWQO2m1NciIuIiq4LRrLWPAn8HDHCKMeb3xpi8NJeV8ay1r1trTatHobV2cwrW2WitvRLoDRwDXAL8P+Bq4GxgiLV2srX2oaDXFsl49W7BaF6hYxnCK7zNNoZUQ1H0/foAQyTzLb49+v4V/w63DhER8a+hFnYuSmxsfVWwtYiIxKt6FSy5Exb8HLZ9kO5qREREREREOp5VD8P734PIdme7ainMOEmB+iIiIiIiIiIiHVHZBCgbF9+YR/pAY230NgWjpUbZOOffyq9nJ8HT41sejw+FR/snfjPOaBpq4a1L4IGy2DdTLx0M5YcFt3YrG+vWRt1fnFNKaU7nlKwZS76JHgAXsXUhV5IGg78YwhoXpn4N8af3cU5okZfXP+c8T8z5dscLEglKQx28fRm8/RX/YwZ/KXX1tBdBPpfo7ztzPFgGM0+HyM50VyIi2azqE3jmAHik0vl96smR8PhgeGwQ/C8Plv413RWG56PfJT9Hn5OhsEfy80j70fcUyIkSKN55uBM4K3sbcC7k+AgG//Cnqa9FRMRFVgWjNbkCuAMnHO2rwPvGmEuMMXrXkiGstXXW2lestfdYa2+x1t5prX3YWvtJumsTSZsGl2C0vCwIRsuEGhWMJtL+rHky3RWIiEg0tVucD1cSpQtcRSSdNr8Dz+wP710NH/wAnj0Qlv8j3VWJiIiIiIh0LPN/su++yHZY8Z/waxERERERERERkfQyBo58NP5wNDedFIyWEsbAkQ9DWRLnjdWsgVdOgJoNwdQ073pYfg/Yeu9+nUfA1KfApObyuE2RdVH3VxT0wRiTkjVjyYt2gTcQaYyEXEkadJ8Eh94NuSm4xiUnH8beCAM/F/zckpjcApj6LJQO8u7XWOvczH3JHaGU1e58eBMs+5u/viYXRn4Lhl6e2pragxFfdx4mN/E5mv++h301uLokeWseh3f0byIiCbKN8PI02DbXvc87l8OGmeHVlC5Vy2HudcnPc8hdyc8h7UvnoXDEw1DQvWVfl1Fw1BPO8Q/ZW2EP57hKYbl3v49+B1s9nrtERFIoL90FxMMY83KrzV1AZ2A/4G9N7auBjU1tfllr7bGBFSkiEo3bXYpS8YFM0Fw+OAPA2nBqyC2Ovr9mLexYCF33C6cOEYlP9Sr3toJu4dUhIiL+LbkTdn2U+Pj6quBqERHxY+0zMO9G2Dp73zZbD3O+5dzFJs/l90oREREREREJztpnYfsH0du2vAPDrwi3HhERyRjGmAsDnM7inB+4A1gPLLY2rBNYREREREQkbp2GwIkfQPUKePNC2DQrwYkMdBocZGXSWqchcNIHULUCaprCwF6YEt8cjXXw6X9h1DXJ1WKtE4oWy7RXofzwlF7YvLFubdT9FfmVKVszlnxTEHV/xNaFXEmaDLkYBn0Btn8IDXtazglqqHWCJhKRkwddx0BeFlzf09F0nwinLYfHBsDu1d59P7kXRl8bTl3tiZ/nW4Dj3nJ+TvI7pbScdiMnDw68Eybc7Fz31vz89O5VsO396GOmvQqm6XJvk6O/70y26iGIVOnfR0Tit+19JxAslk/ugV5HpbyctPrkn8nP0eNQKIoR5iQdU99T4OxNsGMB5JVC6WCFonnpfSyctR52LIKnx7r3++Re53c0EZGQZVUwGjAV58SmZhYwTQ+A/k0Pvyc6mTj6iogkrn539P1Z/8FJSE+hXn9PT42BM9dDca9wahERfxob4AmPO/MpGE1EJHPU18Cm15wP0T+8Kcm5FIwmIiHa+CrMPMX7pMa6rc5J1ZXTw6tLRERERESkI6rfDW9/2b193bPh1SIiIpnoHlJ3kkm1MWY2cC9wn7W2NkXriIiIiIhIokxTqNnwKxMPRsvJh9zCYOuSfXUa5DwA+p4Ka56Ib/z8m6CkPzTWQt02yCmA4sqmC9Z7+ptj2/tQu9m7T1FFykPRADZF1kfdX16QzmC06De+r7eRkCtJo5x8XYzdkRgD/c+FJb/27rd9HuzZ7P+5pqOpXgm7PoZuE6H6Uyesq2at84hl7A3Q85DU19ge5Xfe++/ugNvhpWP27ddtf6g4Iry6JDmNdc7Pk16LRCRe1Sv89Vt+D/Q5BToPh7KxzrU+7c32D5OfY9hlyc8h7ZfJgbJx6a4ie5gcKBsDQy6B5XdH77PkDqg40gnw7TxCYXMiEppsC0aLRsFmIpL51j4dfX9ulgejJXpHnXh13c+7fdnfYOwPw6lFRPxZ/7xzsN+NgtFERDLD9vnw8nTYs8H/mKJezokR0S5mjewKrjYRkViW3Onv99J1zykYTUREREREJNU+/a/3xTORnc7vcO3xhF0REYlHKs6O7oRzw9WpwM+NMZdYa59PwToiIiIiIpKsfmdCYTnUbop/7MDzg69HvA27PP5gtMh2mHVO9LaJv4JR17pfOGsb4f3vw6JbY68z9PKUX4BrrWVT3bqobRUFfVK6tpd8UxB1f8R6nLctku2GXgIf/RZsg3e/h8th/1/Cft8Jp65s0BiB2VfCsrsSn2PwRcHV09FVHOWESOz6aO/9w65ITz2SuJknw+mrICc33ZWISDZpjCPMuPn3qu4HwVFPQHGv1NSUDtbCqgeTmyO/Cww4N5h6RKTF0Mvcg9EAXjvb+Vp5PBx+v/OzKCKSYtl4xqkJ8CEiknqN9e5J3nlZHowWltKBUDbBvX3e9eHVIiL+LLnDuz2sYEUREfH2xhfiC0XrNBRO/MC5g1k09VXB1CUi4offD0TrtqW2DhEREREREYFP/+fdXl8F1Z+GU4uIiGSq1ufr2VYPL9ZH3+b9BqgEnjHGfC2JOkVEREREJFXyimH6a1B+WPxjJ/0m+HrEW99T4NC7oXRQMPPNvQ62zHZvX/1Y7FC0wh4w+rsw7sfB1ORhR/1W6mxt1Lby/MqUr+8mz+RH3R+xcYQsiGSbsnFw1FPQZXTsvu9/F1YmGbTRniy/J7lQtGkzofPQwMrp8EwOHPsy9J4OOQVQXOmE+SkYLfvUrEs+1EdEOp54gtGabZ0Nc64NvpZ0Wv+Cd/v+t8CgL0Fep+jtxZUw/Q3365pEJHHlk2HIpbH7rXsOPvy/1NcjIgLkpbuAeFhrszHITUQ6uk2z3NtyszwYrauPDxWCUjYWtn8Q3noikrjVjzm/2HpRcI6ISPpVrYDt8/33n/BzGHaZc3KZ2wcMen4XkbBEdvrvu+FlqK+GvNJ92+q2tVyYX9AdSgcEU5+IiIiIiEhHsmej87tXLNvnQ6fBqa9HREQy0SVNXzsDPwJ64ASZNQJvAbOBlcBOoADoDowDjgB6N421wH3As0AxUAbs19RnIHsHpP3aGLPIWuvjBUpERERERELVZSRMnwXL/v7/2bvv6Diqu43j36tqybZcZbl3sHHDdIxppvceWmgJCakvCQkpJCSkUtITEkJIAQKh946BgKk2BmwD7r1b7pKtutLO+8dIUZuZnS0zuys9n3P2aHfunTs/GbE7O+W5MOdqf+sU9IWC3sHWJc5GX2U/6neD1diyfPPL9qSc8Vr7IPQ/1KUtxuQL3UfCWSvtUJkQbI1scm0bUJDGYLQc52C0hmh9yJWIhGzwyTB4EUT2wOP9wetvft53YMiZkFsYXn2Zau2D8a9TMg5O/RhyC1Jfj0DxEDhuJjTWQ04+GBN7HQleYT+o2xHfOmsfhBEXBVOPiHROie6zr38covfYnxudwer73dtOfNcOZgKINkCkoqUtrzuQo30UkaDt9x1Y9a/Y/dY+CAfcFnw9ItLlZVUwmohIVlr7sHtbv4PDqyMZo66E1fd2XD7h++HVUFjq3V651D74LiLp98lPY/dpqAq+DhER8bb5Jf99z98BhX1bXue5zKwS2ZNcTSIiflUs8d+3ag080gNGXAqH3AEFvaC+At69DDY917Zvz33hqMftcG4RERERERHxZ/3jYEW9+3QfBY214dQjIiIZx7Kse40x+wDPYIeiAfwd+IVlWevd1jPG5ABnA78BRgGfARZblvWzdv1OA/4IjMEOSMsDfgsckOJfRUREREREUmXwaWBy24ZtuennEqQl4WkfTDfwRDB5YDXEN87SP0D1eiidDrlF9iT0jbXQZyqse8R73cGnhRaKBrC1frPj8u45Peme63L9XAjyjXMIQMSKhFyJSJrk97TfDzY85d6nag08ORjKjrPDjkZ/zv4s6awBVLs+hu3vQPEI+3fc/Sns/BCIQvnr8Y9XdrwCR8Kgf+PMMuUXMPcrHZd77e9seBoW3mJfdzrweAX5ikhs0QT32aN19ntUz32hzwEw4Jjs/RxprIM197m3t76GPyfP3pcTkXD1HOMvNLZ6PSy4sSm0ECjoY38HK9k3+BpFpEtRMJqISJCiEVhxp3v74NPDqyUZ+3zZPtHYWNOyrN+h0H9aeDV0G+Dd/uJUuKjGu4+IBK9uB+yaF7tfw97gaxERkY4ql9oXg9RssS8y8+PoZ9qGogHk93Duq/d3EQlL9br411n7ANRth+Nehrlf7RiKBrBnGbwwGS6shs0vwo73oddEGHZeywkbERERERERactroqiT3rO/V+Wn70ZBERFJP2NMMfAUMA6IAJdblhXjjnewLCsKPGmMmQm8CBwJ3GSMWWdZ1j2t+r1gjHkLeAOY2rR4ijHmRMuyXknpLyMiIiIiIqlRNBBGfhZW/9u7n8mBcd8Ipybxr1spjL4SVv4z/nXXP24/2i/zklsE+ziElQRoW8Q5GK20YFCodbSXb/IdlzcoGE26knHXwsZnvcM163fC+sfs5yv+Bvt8DQ6+vfOFo33yc/jkx6kbLw3vtyIZYei58OnPoWZTy7L8XnD00/Dase7rLfiB/bP7SJjxEpSMC7JKEcl2iQajQdvvXmUz4OinIL8k+ZrCVLcTZp3h3p5brGtLRDJBTj7s+w1/3zMW/rLta5MLh/wVxn4xmNpEpEsKb6oMEZGuaOub7m3DLoCCXuHVkoz+h8Nxr8LwC6HvQTD+W3DcK3bidlhi3YDeWAt7VoZTi4i4q1jor5+Cc0REwrfpZXjxQJj/fX+haH0OgGNfhKFndmzLUzCaiKRZ3bbE1tsy075hf/2j3v0eKYa3zodFt8F7V8BrJ0B9RWLbFBERERER6cyqN7mfE534Q/s8oy5cFRER+BmwH2ABt/kJRWvNsqwq4DxgJ2CAPxtjStv12QNcADQ0bQfgpCTrFhERERGRIB32D/sYUm6Rc3vZcXYYxeBTwq1L/DnkTpj0Y+g1CQr6BndTfkEfOP4N6D0pmPFdbK13DkYbkOZgtDxT4Lg8omA06UrKZtjXtw48wf86y//ifY9XNqpcmtpQtMGnp+X9ViQjFJXBCW/CiIuhx2g7KO2EWVB2DEx/KPb6VWvsa/RFRLykap+9/HVYfmdqxgrT0j/C9vfc2495OrxaRMTbpBvhwD9A34PjO95jNcIHX4e6HcHVJiJdToiJNiIiXUzlcvivx0H2IQ4BE5ms9Aj7kS6WFbvPlpnQUzOTiKRNZC/M8vneFlFwjohIqCwL5n0bGqv99R97DRz6N/f2PJebWSN74q9NRCQRtdsTX/edi+NfZ8dse5bqcf+X+HZFREREREQ6k9pt8MlPYPkd7n1GXBRaOSIikrmMMXnAFU0v64DbEhnHsqztxpi/ATcARcClwB/b9VltjHm0qc0Cpidat4iIiIiIhCAnH/b/hf2Q7JOTB1N+aj+aPWBSv53TF9thJSHbVr/JcfmA/MEhV9JWvsl3XN5g1YdciUiaDTrRftRsgWf38Tex7/on7JCjzmLDU6kba+ptMOG7qRtPJBv1HAPTH+y4fPDp/tbf+Cw01kOuc4ipiAhRl2C0vgfDKXPt568cBdvejj3W+iey77N7w5Pe7T33DacOEYnNGBj/DfsB8Mw+sHeFv3Wj9bDpBRh1eXD1iUiXkpPuAkREOqX6Cnj1SO8+wy8Ip5bOwteMIwGcSBUJS9VaWPcobJ8DVjTd1STmvSsgUumvb2O1+8E8ERFJvaq1ULHQf/8JN3i35/dwXu7nwhIRkVSo2xb+Npf/NfxtioiIiIiIZCLLgtlXeYeilewHvfyc3xMRkS7gSKA/dlDZ+5ZlVSUx1sxWz89x6fNy008DDE1iWyIiIiIiIhKvMVendryScdBtQGrH9CFqRdkW2eLYVlowMORq2srPcQ5biei6bOmqigbCfj5DQZb9CWZ/Dj641g4Tsaxga0tWQxWs+DvMuQZeORoezIPnJ9q/w+zPwfzvp25bQ89O3VginU1+D+h7UOx+ViPsWRp8PSKSvaIuYcat9/EH+Axx3TGnZZ9gwY2wY27y9QUhGoFV98ATg2D3J+79eoyGYp3WE8lYZcfG1/+9K2DOF2HZX+zvNSIiSchLdwHJMsZMBc4CjgLGAH2BnoBlWVaH388Y0xsoaXpZZ1lWeVi1ikgXsv4JqN3q3l48DPKKw6unMyg9Cgr6QP0u9z553cOrRySVVtwFc78GVoP9uux4OObp7PqbXv7X2Kn97dXtsE9EiohI8CrjPMnaY6R3e55LMFpkT3zbERFJVDqC0SoXh79NERERERGRTLT1TXtmTy8jLrJnDxUREYHhrZ5vSnKsza2ej3Dp0/pAXp8ktyciIiIiIiLxGPdNWPnPFA1mYNKP03KccXfDDiKWc2hBaf7gkKtpK8/kOy5vpIGo1UiOyQ25IpEMsN/1UP6qff4illX32D+X3Q6jPweH/yvQ0hJWXwH/PQF2ftB2ecUi+5FKIy6xgyhFxN2kH8Fb59vhZ15emAIXVkNeUTh1iUh2cQszzmm1jz/2Glj1L6jZ7Ny3teb9GoBFt8Lhd8Ooy5MqMaUa6+GN06D8tdh9J/0YTE7wNYlIYsZ9E9Y9BpHd/tdZ+Q/75/K/wknvQn6Jd38RERdZu4dgjJlsjHkV+BC4CTgOGIkdemaaHk5mAKubHsuNMUomEpHUW/uQd3v/w8OpozPJLYCpt3r3aawLpxaRVKre2DYUDeyDPYt/k76a4tVQBXO/Gv966QizEBHpqqrX+u+7/y9j93E7GNlQCVbU/7ZERBJVq31JERERERGRtFn+l9h9hl8UfB0iIpItBrV6nuzsYM3X+hnAbRau1jPuFSa5PREREREREYlH70lw+iIYdEriY/Q7HEZeDjNegpGXpq62OGyrdw8hGFAwyLUtDPmmwLWtofX16CJdSV4RHPMc7H9zfOutuht2fhhMTclafW/HULSUMJDXdIiu32Fw0B9h2n0BbEekkxl6Nhz3Goy+yt5X8bLukVBKEpEs5CcYrftwOGk2jLsOSo+C4mH+xrYaYd533LeRDhuf8ReKNu3fMPrK4OsRkcT1nggnvQf7fh1Kp9v7Q7H2iZpVLISlfwq2PhHp1PLSXUAijDFXAX8BumFf5GS1arZwD0UDeBpYhz1jZHfgfEBHb0QktbbM9G4v6BtOHZ3N2Gvg/S+5t7//RRj7hfDqEUmFdY+2DUVrtvE5mHxT+PVYUaheDzndoKjMu2/1RjuJf92jiW1LYRYiIuHZs9J/36Hnxe7jtj9rRSFSCQW9/W9PRCQR9TvSs91dH0OfKenZtoiIiIiISCaINsY+L9B7f+g1Ppx6REQkG1S2ej4hybEmtnq+16VPt1bPa5LcnoiIiIiIiMSr134w48W2y54cCjUbY697/OtQdmwgZcVjW8Q5GK1HbgnFuT1CrqatfJPv2hax6ilQRrh0Vfk9YeIN0GcqvHGa//U2vQh9DwqurkRtejF2n3icOs/+txGRxJUdYz8AXjseyv/r3G/TCwr4ERFnlktoWft9/O7D4aDfNa0ThUd6QKOPU1615bBzHvQ/NLk6U2X9E7H75PWAkZcFX4uIJK/XeDj49rbLVt4Ncz4fe911j8GkG4OpS0Q6vawLRjPGnA/8k7aBaAY77Gwn4HmExrKsqDHmYeC7TYvOQsFoIpJq+SV2IISbgj7h1dLV7FkJPcekuwoR/z66znl5ILP7xLD7E3jvStg1z3498rNw6F2QV9y2X91OePsCKH89ue3VKRhNRCQ0e30Go429xt9Nq4UeQb/1OxWMJiLBi+xJz3aX/A6m3ZOebYuIiIiIiGSCpb+P3WfERcHXISIi2WRD008DjDbGHGZZ1pwEx7q86afVatz2Brbqo5PSIiIiIiIimWDYebDsdu8+hf2g/+Hh1BPDprr1jstL8weFXElH+TkFrm0Rt6AFka6k9CjILYbGan/9P/4R1O2AcddCj1HB1mZZsOIu2Pxix0nmC/pC6TRoqIbts6H8tdRtt3gY9JqcuvFEBAad4h6Mtu4R2Hsb9BgZakkikgWiLvvrOe7hx5gc+z1nw5P+tjHzMBjzBfvR/7D4a0zWrgWw4m/2farb3o7df/CpYEzwdYlIMAadaL9PWVHvfrsXwMwjAAO5RdB/Gux3PRT0CqXMTqVuByz+DeyYA411Hdsn3gBDzgi/LpEAZVUwmjFmEHBv08vmULQ7gN9alrXaGDMSWOVjqKexg9EMcEyKyxQR8f4iCmCy6u03s4y7zvuGi9X3wpSfhVePSDKq1nq3W1bwB3b2rIB1j8LuT2HtA23b1vwHigbBAb9uu3zO55MPRQOo3Zr8GCIi4s2yYNPzsP7x2H37HACH3Olv3AKPYLS6ndBjtL9xREQS1bA3dp8LdsKz+0Ld9tRtd/W9CkYTEREREZGupbEWVt0L1evsYz7zvhN7HQWjiYhIW7OACPa1iga4wxhzlGVZPu9OtRljLgJOouW6wVdcuh7Y6vma+EoVERERERGRQIz/Fqy62/t6j6m3QW638GpyYVkWb+x+zrGttCD9wWh5xv1elYZofYiViGSo/B5wwK/gg6/7X2fpH+x7KU56L9jrX+d+FVZ4XKe7yfm9Jykmz74fJCc39WOLdGVjrob533Vvn3l403tKwIGLIpJd3PbXPcKPAZj8Y9j2lv9r4lf+A1bfB8c+DwOPj6/GZGyfA/89Hhqq/PUvLIVJPwq2JhEJVvFQmHADLPxl7L7b32t5Xv4abHgKTp4DecXB1dfZ1O+GmdNgz3L3PrpvXzqhnHQXEKcfA8XYF0hFgQsty/q6ZVmrm9ot1zXbmot9sRVAP2OMvl2KSOo01Nhpq166jwinls5o2Hne7Ts/CqcOyX6W392GAG14xrt9zhcSH7v59/P6Pbe9Cy8dBAt+0DEUrdmyP0Nkb8uMBJE9sOkF/3Uc8lfof4RzW50m5xYRCdxH34ZZZ/rre+I7/gM580uwv5o7qN/lbwwRkWT4CUYr6AMDT0z9tiN7Uj+miIiIiIhIJmqosc8jzP0yLLzZ33mLsuMUmi8iIm1YllUJPId9YsECpgIvG2OG+R3DGPMF7AlVrVbj3O/S/eRWzxckUrOIiIiIiIikWI+RcNZKmPwzyCm0J+YsPRK6j7RD00581w4YyQDLaj51bRuQn/5gtHzjHpoQsSKubSJdyr5fgxPegoEnAAb6HR57ndqtsPTPwdVUtR5W3pXaMUddYT/KZgDGfk8ddQWMuNT+OfFGOHm2JrQRCUJhXzjW496q2nJY/tfw6hGR7BB12V/PcQ8/BqDPVDjlA5j6Kxh1pf05H3NbdbDwlvhrTMbiX8cRitbP/p16Tw62JhEJ3v6/gGNfhHHX+Xt/albxKax7NLi6OqM1//EORRPppPLSXYBfxphc4BJaws9usyzr8UTGsiyrwRizBGjeWxoPrPZYRUTEv8rFsfv0nhJ8HZ1V6XTvdreDAyLNKhbD3K/Ajveh5772l64hZ6Snlqo13u2r/mWn3vcY6X/M+t3277f2oZZlpUfCIXd0PFC04AcQqfQer7EWHu1pPy8aAiM/6+//s+KhcPZaMDmw+WXnPrUKRhMRCYwVhfeuhDVu9wS1M+wCyCvyP77JsQOH6nd2bHNaJiKSSlbU/0nTkvGp3/7ml2D4Z1I/roiIiIiISKZZdAtULPLfv/tIOPgvgZUjIiJZ7XrgVKCw6fV0YJEx5n7gUeCDpgC1/zHG7AvMAL4AHEjLjC0W8E/Lsj5pv5GmsLVjabnG8K3U/hoiIiIiIiKSsG4DYPKP7EcGW17tEYxWMCTESpzlG/fQhIhVH2IlIhluwJFw3Cstr7f8F/57vPc6W2cFV8+2t+zr3lKlbAZMuzd144lI/Poc6N0e5HuKiGSnRIPRALqPgAnfaXldNAgW3ea9zra3INoIObn+a92C23wAACAASURBVEzG1jf89z3meeg+PLBSRCRkg0+xHwD5vWHZn/ytt3UWjL4yuLo6m/I30l2BSFpkTTAacDhQ0vS8HvhVkuNtoCUYzffskyIiMe12PxEG2MFE/Q4Jp5bOyBjoexDs/NC53WoItx7JLvW74JUjWwJbdi+AN8+2ZwMqPSL8eiJ7YveZeRiMvhqGnWe/f2x/F2o2w4BjoLjdyfU9K+HZsR3H2PY2vDAFRlwMg04Gcux/g3gPstdshMU+d8Em3miH5gAUljr3qVMwmoiIo8he2DEH6rbD4NMhv0f8Y3x8k/9QNICxX4x/GwV9FYwmIunRUO2/78hL7ZO+jT7WGXEJrH0wdr+3L4SL6/2dhBYREREREckWlgW7P4Zd86HvgdBrIqy62//6Rz5in4PIL4ndV0REuhzLslYbYz4P3AfkYAeXdQeuaXpgjKkE9gAFQK+mn9A2EM0Ac4BvuWzq+03jA9QCr7j0ExEREREREXG0pX6Da9uE7lNDrMRZnilwbYtYmmRexFXpkfZ9DV73MOz6CB7vz/8OR0Xr205EX9i/5bnJgd5TYPy3YPCpbcdpqIHlf4HV90FeD9jnK/Y5mFQaem5qxxOR+BWVQf8j7Pu8nOx4H+Z+DabeCvk9w61NRDJTMsFo7Q09L3YwWrQeHsqz70ua9CPof1j823HTWAsLfgibXoDKJfGtWzwU+h6culpEJLOMusx/MNqqu2HbOzDoJHufKa97sLVlotX3wYq77PsxB58OU34OteUw/3uw9qGWfvm9IbI7fXWKpFE2BaM1p3xYwNz2M0QmoPX6ujJXRFKnYqF729Bz4bC/2+FekrjGWve28v+GV4dkn3WPdgxrsaKw8h/pCUZr2Bu7T+1WWHSL/WgtJx+m3Q8jLrRfL/8bzP2y91hrH2r7RSgoB/ymbcBONwWjiYj4tnc1zDqzZZ8yvxcc9QQMPM7/GNFG+7PNj5LxsP8t9gHEeBX2BaePsrod8Y8lIhKPhir/fXuOhWNfgLlfgcrF7v1GXWHPoDn6KvjoOqhY5D3uxudh2Dn+6xAREREREclk0Ub48P9g+V9blpUeBdXuNwC2MehkGP6ZYGoTEZFOw7Ksh4wxUeAu7Ov1rKam5otoejU9Oqzaqt/LwMWWZbkdJLwPeKTp+V6PfiIiIiIiIiKOyus3Oi7vndeP4twEJjlNsTzjfitgQ7Q+xEpEskxuARz6N3j3Uu97kryuga3b3vb1llfte5iOfbHtdbjzvwvL/tzy2i00KVEDT4LRn0vtmCKSmIP/BC95hPssv8OemOrEt3U/qYiAW5Bxjnv4sat+h/jvu+l5KH8NTpoDfabEvy0nb11gj5uIQ++CnNzU1CEimaffITDhe7HDG5vtWWY/dn8Cx7/etfaZVv4T5nyh5XXFItg1z76vtGZz274KRZMuLJuC0VonaqxPwXjRVs+z6d9BRDJd1Wrn5SM/C0fcH24tnZXXSQiAJ4fC5JtgzBe61g6wxLbkD87LV90Nh/8r3FoAInsSXzcagXcugrJj7RNssULRwjJjJgw6se2ywgHOfWu3Bl+PiEi2mX9D26DdSAXMvhJOXwz5Pi+qqtsGtVv89T3DIyQolnyXjPF4AotERBLhJ2C4tbJj4PSFsO1tWHUPrHuk7RjdBsLEH9jPB51k9y2fBa8d6z7mwpsVjCYiIiIiItmtbid8fGPbMLTWtr3lf6z+01NTk4iIdHqWZT1ijHkX+A1wHi3X7VkO3U2rn6uBX1qW5Xli37Ks2amqVURERERERLqeqBVla/0mx7ZzSq8IuRpnxhjyTQERq2MImtMyEWll2Ln29bhrH4QFP0jNmFYUlv6xJRht72o7CClVymbA2C9BQV87LKBkPAw4GnLyU7cNEUlc34Pg5LnwskdA0fZ3YftsKJ0WXl0ikpmiLsFoJoHPdWOgoA/U7/LXv7HW3kc59M74t9VexZL4QtHGfRP2roT+R9j32XcflnwNIpLZpt4Kw86Hbe/Y9xlueiF2YPTWWbDzQ+jnETrb2Sz+TcdlW16Nf5zBp0P/pn3NvgcmV5NIBsqmQLDWFz+lIga2b6vnikcUkdSpWue8vPuIcOvozKJ13u01G+H9a+xZ7Kf8NJyaJDtUJhH+EoR4Ax2cPFGW/Bip0nuyfeKtvW6lHZeBHdwjIiItrChsfLbj8uoNdojPmM/7Gyes4MmcQufljTH21UREkpXIfrQxMOAo+3HQH2HD07B7ART2t0+wFg9p27/sGCgZB5VLncfbOdd+v8t1eS8UERERERHJZA018OoxUPFpasYrHpqacUREpEuwLGsDcLExZhBwAXAEsD/QH+gN1AG7gLXAbOBVYKZlWU7haSIiIiIiIiIps6thm2u42MCCIY7L0yHP5LsEo7kELYhIix4jYcL3YfGv/QeJxLL55ZaxVt1tXw+cKtPua7m2rf0E9iKSGfocALlF0Fjj3mf7e9kVjBZpuk7X78TuIuJP1CXIONHAUxNnTMjml9z3f/J729fbg70vE6nwHscvkwsH/d5/fxHpPPodYj8ARl4Cz4yJvc7ml+xgL5MTbG3pYllN768W1FdA5ZLUjDvtXijsl5qxRDJQNgWjtU7OGJyC8Sa1er4jBeOJiMDeNbBjjnNb8fBQS+nUGmv99Vvye9jvOzoIJ/401EBeUcjb3BPu9oI2/WHIcdi9LHQLRttp//+c2y3YukREskXDXmisdm77+Ef+g9HqQgpGcwsDcjtZIyKSKskGDOf3gFGfBT7r3a94mHswGtghAifPTq4WERERERGRdNj0QupC0QBKj0jdWCIi0mVYlrUZuL3pISIiIiIiIpJ2W+o3urYNyKBgtHxTQA1VHZY3uIS6iUg7xsCIS2D5HakZz2qEx/qmZqzWBhzdccJPEck8Obkw/DOw+t/ufeZ9G2o2wdRbne+7yhSbXoKPvgWVi+3XJePhgN/CkNPSW5dIZxF1CTJOOBjNxNe/aq37Pku3MhhztX2/59qHILI7sZraG3BMasYRkezWYzT0PRh2fuDd7+MfweLfwshL4cDfQ25BOPUFzbJg0a2w7Hao2Zz68RWKJp1cNkUlrmv6aYADjDEJ7uWBMWZfoPVRoY+TKUxE5H/eucS9rXhYeHV0dhNu8NevYU/snWTpOmIF6lWvD6eO1pINdAjCkY/AyMviX2/fr0Ov/Zzbiga5rGTZB81FRMQW8QjMrNkE9T5PLNT6DEab8nN//dzkuBxcVDCaiAQtEtJ+dKzvEDvmwPqnwqlFREREREQkUTs/ggU/hPk3wPY59kWsb1+QuvGHnQ8l41I3noiIiIiIiIiIiEialNdtcFzeO68f3XJCnoDbQ75LcELEcglaEJGOpvzcDh5Lp4K+cOyLkNejY1vPfeCwf4Zfk4gk5oDfQL/DvPss+S18fGM49SRi1wKYdUZLKBpA5RJ480z7nLOIJC/VwWjEGYzmpbYcFt4MK+5MXSgawPhvpW4sEclu0+6D7iNj94vstkOsP/xG4CWFZtmfYcEPgglFG3VF6scUyTDZFIz2HlADWEAR4JE+FNO1rZ6XW5a1NJnCREQAqFwOO2a7t3cfHl4tnd3Qs/33nf354OqQ7FFfAS/HOMC8Z0U4tbTmFYCTDmeusGcp2efL8a/r9f9lyTgo6OPctvXN+LclItJZxQrM3OAzfMdvMNrQc/31c+MajFaX3LgiIrE0dpzxNhAl42P3mfslO1RARERERETiZ1n2Q4Kz4WmYebh98eqiW+3nj6dwhsj9b4HpD6ZuPBEREREREREREZE0Kq/f5Li8rGBIyJV4yzPOwQkNbkELItJRYV84/nU47VN7cvn2jzDs920YfAqcuxmOe7Vl2yfNgdMXQs+x4dQhIsnrVgonvRs7mGLlPyDaGE5N8Vr5L7AcarOisFJBjSIp4RZk7HZvTmeQX5LuCkQkU/QaD2cug5Pegz4HxO6/+t/QUBN8XWFY8bfgxu6h743S+eWluwC/LMuqM8a8BpzRtOiXxphnLMuKK3bWGDMd+BJ2wBrAEyksU0S6quqN8Ny+3n26DQinlq6g5xg45A6Y+9XYfatWQ/1uKOgdfF2SudY9Crs/9u4z63R7do6D/gT9Dw2nrlgBOGEpGgLHPGv/vwXQ/wiY8H37Jik/9rseyo53b8/Jh0GnwFqHm6Nqy+OvV0Sks4oVmLn2YRh9VYwx9sJH18Xe1tTboPdE36U5yil0Xh6tT25cEZFYwjq5MfKz9kUoXmq3wtI/wZSfhFKSiIiIiEinsOMDeP+LULkUek2E/X8Jg05Kd1Wd0/zvuc84nIzuI+DIx6DfwakfW0RERERERERERCRNttRvcFyeacFo+S7BaBG3oAURcWZy7Gtpna6nLZsB5a8Hu/1ek+yf+T1goMf9GCKSHUwOjLjEDvFwU7cDajZC9+Hh1eWmepN9T1eviZBbANvfde+7/jE4+M9gTHj1+RGNQMUiaKxNdyUi/tTvcl6e47x/3ymYrIkyEZEw5ORD/8Nh8k/hzbO8+zZWw5r/QO/JLct6jLYDaTNBtAH2rIAeoyC33T2WVhQql9j3ijbWQsXC4OrozJ8hIk2ybW/il9jBaBYwBJhpjDnDsqytflY2xswAHgNyAAM0AL8JqFYR6SqsKPzXxwHovJ7B19KV7PMVGHIWvH8NbHrBu+/cr8KhdypdvCvbMtNfvx1z7P+fT18Y/EFmywo+GG3fr0NuEfQ50P5yU/46FA+G3GJ7Fo+8YigeBqVHQUGvlvWMgam32OE7z413H//Qu2DA0VAyLnYt3cqcl0cq4vqVREQ6tVifC5tfgsrlULJPx7ZoA2x8Dt461339HmNhys+g/2H2gcBkuc1Ko2A0EQlaNKQLGEqPgpLx9gkJL2vuh8k3Zd4FHyIiIiIimahqHbxyJETr7Nc7P4A3z4XTFmjW+1SrWmuHz6XawBPgqMd13k1ERFLCGJMPHAqMAfoCPQFjWdbP0lqYiIiIiIiIdEnl9Rsdl2daMFqecb52L2Lp2j2RlBl1VcdgtLzuMP7b8GkKDl0VlsKgk5MfR0Qyy8DjoWiIHX7m5ukRcO4WKHK5zypoNeXw9vmw7R37dW6Rfc9ZpNJ9ndqt8MwoOOoJ6HtgOHXGsvo++57RoO/NEwmDS/BxUgafDpueT/248VJgj4g4GXSyfc95bbl3v/e/6LDuqTD9wbb3xIdt3WMw52p7/ymnEKbeCuO+Yd9TtOW/8O4l9v5TGHKyLTJKJH5Z9VduWdYcY8xDwMXY4WgHA0uMMb8HHgE6HME1xuQCxwJfBD6DHYhG0/p/tCxrTfCVi4gvjXX2QZ9ugyCvKN3V+Ff+X383FeR2C76WrqZ4CBzxgH1A0Ctcae2DsPEZOHW+bqrpqtY/4b9vw167//hvBlcPQGONHawYhMJ+cObKjl/shp8f3zgl42DM1bDyn+0aDJyzDoqH+h8r3+VLpoLRRERaRPbE7vPcvnDqPOgztWVZ7XZ4ZTrsWea97tgvwMhLkquxNbdgtMa61G1DRMRJWDO75eTC8W/AB1+DDU+D1eDcb+9K2Pkh9Ds4nLpERERERLLZmv+0hKI1a6yGT34GR3jMnC3xq9sezLgTvqdQNBERSZox5kjgeuAkoNChS4e7S40xpwAXNr3caVnW9cFVKCIiIiIiIl1NTWMVlY27HNsGFsRxzXQI8l2CExqsSMiViHRioy6HqtWw6Fb7erXi4TD9Ieh3qH3z+/I7Ep9IuOe+cOSjkOt0WExEslpOPhw3E966ACoXu/d77zI47pXw6mqz7StaQtHAvr+tsSb2elVr4fVT4Jz16X//2jXf/j1EOosgwsP2vxm6ldohglZj6sf3S4E9IuIkt8DeF3r7M/FP/Ln5Rfjg63DEfcHUFkvlcnj7Quy4IuxrIT+6DnpNgL4Hw6zTw7vnCcDofVY6v2z8K78aGAccgP1u0Rv4SdOjzdEkY8xiYBTQvEdomtYxwLvA98MoWEQcRBtg/vfsWeGr19k/a7fYbSe+DaXT01tfPDbP9NfPmNh9JH4FveDA38Ocz3v3a6iC+d+Hox7z7heNwKLbYMMz9kG90iNh8k/SNwuDpEZuN/tvwC+vg8+p0lDt3nbqAigZD4/3S2zmitM+TV3a9YQb7Pe56vUtyyb+ML5QNHC/ScprRhERka6mwUcwGsCca+DkOS37lx99M3YoGsCwOAMyY3E7oZnohR4iIn6FGcBYVGZ/j7QsO1TgyUHOJ4fXPaxgNBERERERP3Z/7Lx8zX1w2D/si54kNaIBXNha2A8GHJP6cUVEpMswxnQH7sKeGBVaJjltzXJZfSFwOZDTNNZ9lmUtSHmRIiIiIiIi0iWV1290bSsrGBJiJbHlG+dj6RFL1+6JpIwxMPkm+36K2i1QPKzlut2Dfg9Tb4HKZbgfygK6j4SaTW2vqy3oA92HB1m5iKRbrwlwxiJ4cjDUbHbus+VVu61oULi11WyGLT7vhXVStw02vwxDz0pdTYlYnaYgFJGgBBGMltcdDr8bDrrdngTcyYtTY4/TbQDM8HjfyO8Fz4xyb3cJdRYRofdkOGMJVK2HmYe57zc5WfcoHHoX5BUFV5+bNffj+D1w1b2wd3V8oWinzrd/mjzIKbAnmG2taAg0VsG878K6R5zHCOIzRCTDZF0wmmVZNcaYk4GHgONoedcw2LNHNgefGewAtf+t2qptJnChZaUz4lakizO5sOLvzuEPVeuyJxitsR4W/zrdVciYz0HvSfDyod79Njxt30DvNSvBu5e13Tms+NQ+2Hjqh+7BTpnOikLFQsjrCT1Gprua9CgeBpVL/PePJBBGFq+ox5eb3CL75q/hF8Cqe+Ifu1sKg/x6joGT58L6x6FmI5TNgIEnxD+OW1BbpCK5+kREOpOPb/LXb+dcWPUvGHiiPSvCmv/4W6/n2MRrc5LjcqOygtFEJGhe+9JBMcaeNWvgCfZFHe2Vzwq/JhERERGRbLT2Ife2ysXQZ//wauns/Ibwx2O/7+hiKhERSZgxpgR4C5hEywSnrTVf2+fIsqz1xpgXgDOb+l4MKBhNREREREREUmKLSzBagSmkd16/kKvxludynDYSjYRciUgXkFvgHGSW2w36TIm9fqomvBeR7DPkTFhxl3v7ir9D3wPte9jyiqDf4fZkvkGo2QzbZ8PG55If682zYdq/of806DGmJTQyDFYUKhbBkt+Ft02RMJTsl/oxc5oiRPJ7uF+LM+JSWPuA9zijrkruWp6crIsyEZGwdR8Goz8HC2/2v060Dj75CfSaCLXl9mSfg09NTeisZdnXMe6aD05xRJ/+zHm9tQ/Apjj2tYZd4PP9tb+dOeDG6H1WOr+s/Cu3LGu7MeZE4PqmR2lzU7ufzZqD0nYDvwZ+pVA0kTQzxj4wXLGwY1v1+vDrSUT1Jngqs2b+6dL6HQIzXobXT3bvYzXAnmV2irCTZX9xTszduwI2PAOjLktNrWGqWAKzToe9q+zXZTPgqCegoHd66wpbvAEtDSEEo3mlPud2s38e/Geor4CNT9sHb/0oHpr6g8pFZbDvV5Mbwy1YsF7BaCIiAEQj9j6HX3O+EFwtfrkFozXWhVuHiHQ96XyfGXquczBaxUJ7n93khF+TiIiIiEi2+OSn3u01WxSMlkqpPtcx9BwY/+3UjikiIl3NY8BkWq7tqwceAV4HosA9PsZ4EjsYDeBE4IbUligiIiIiIiJdVblLMFpZwRByMux6kHzjfO1eg6VJTUVERDLGmC/Cyn86B2oAfOIwqfohf4V9vpzaOpb/FT74P/c6EvHeFfbPsV+Gg28PJ/iooQreuQQ2Phv8tkTC1GMslB6R4Moe95D6CcrZ50uw9kE6xnI0ySmAMZ9PqLKWMTT5noj4MPpzsPi3duCZX4t/1XHZgX+A8d9IvI6GGns/Z/1jia0fqfTfN559Pq99LQVQSheQWUdm42DZfg2MAK4GHgI20jJzZOswtOeBa4FRlmXdolA0kQxR7DBjBkDVunDrSERDlULRMtHAE+wDAV52f+q8vH43fPB19/V2vJ94XeliWfDWuS2haADlr8NH16WvpnSJ9+afjc+kZhaM9vausm/8ev9LsPrf7v2ag9HyusPRT8D52+HcLXCMj5oGn5GaWlMt32Wmo8hu+29VRKSra/15HYRxAXz+5xY6L483kFREJF5eIcPNxl4TzLb7HOC8vLEaqtYGs00RERERkc5gw9P2LI1e6raGUkqXEdmTurFGXApHP6kLqUREJGHGmAuAE2i5s+I9YB/Lsq60LOseYJbPoV5qHhLY3xjTI6WFioiIiIiISJdVXr/BcXlZQebdN5JvnMMFIlYk5EpERETEVb+D/d0H1trcr8CelamrYc8KmPu11IaitbbiTlj/eDBjt7f0TwpFk84lr7t9H+gJs4IJD/Mz5oCj4ajHoffktstNDvQ9CI57FUrGJVeHn4A2EZGeY+H416DvwWByEx/no29CxeLE11/xt8RD0fzqNRGOfAQGHu9/HZfjQDHbRDqJrN+bsCyrFri76YExxgB9gAJgh2XpqK5Ixuo+zHl5dYYHo9VXwBNl6a5CnJgcOP0TeLjIvc+2t2DkJR2Xr33Qe+z6XcnVlg67F0Dlko7L1z0Kh/69a9280lAV/zqzzoQpP4dJN6amht2fwGszoG5H7L7NwWjNCvrYP/0cSBp9VdylhSK/xL2teh10HxFeLSIimSjocGCn/Z9k5TjPOqlgNBEJnJ9gtNGfC2bbvSa4t5W/AT1GBbNdEREREZFs5+cC5fe/DKMuD76WrqIhRcFoQ8+GI+5PzVgiItKV/aDV80+BEy3Lqo53EMuythhjtgIDsCeF3Q+Ym5oSRUREREREpCsrr9/ouDwTg9HyjPO1exFL1+6JiIhklMGnwIiLYe1D/tdZ9yhM/H5qtr/2IVrmKwnI2odgxEXBbqN5O7GcPNcOGxHJBjn5wd7f6zeQbNi59qOxDqxo07q5kOtyv1C8ggh9E5HOqXQ6nDIXGuvbhrq+cQpsfdP/OOsegck3JVbD2ocTWy+W6Q/BkLPsHIzcwvjX9/q86EpZEdJlZfxfuTFmf+AkYALQv2nxdmAx8IplWfNa97csywJ2hlqkiCSmeLjz8qq14dYRr9eOg2hduqsQN7ndYPDpsOl55/b1T8JBt0NOu8TgWAfH6rPwo2XTS87LG6qgdgsUDw23nnSxookFowF8/CMYeAL0Pzz5Ohbd5i8UDToGozXrMdp7vUk/hv6HxVdXWPJ7ubctvR0O/E14tYiIZKLq9cGO3++Q1I/pGoymfWURCVis95n9b07NPryT/B7Qcx/Ys7xj27qHYUxAgWwiIiIiItluh4+8ksZqqFwOJfsEX09XsOaB5MfILYZp94MxyY8lIiJdljFmEDC11aL/SyQUrZUl2MFoAPugYDQRERERERFJUqPVyLbIZse2soLMu+Y+3yVcoMGKhFyJiIiIxNTv8PiC0RbcAL0nw6CTkg8U2jUvdp9kbXrBYbsfQ/nrUDTIDofLL0l8/OpN9jZ2f+zdr7Af9J6SujAnkWwXb1BOIkE9fvgNaBMRadb+s3zAjPiC0T75CUQbml5EoWo9FA+BgcdD2XF2OFlrVeth80t2vsmO2clU7szkwoCjIa8oiTE89gn1PitdQMb+lRtjDgR+Dxzp0e0WY8w7wLcsy/ognMpEJGW6uwSjVSyCyB7I7xluPX58cC3s+ijdVUgs477hHoxWuwW2vwsDjmpZVr0Btr7lPWZdFgajNex1b9v5YdcJRmtI5npqYOY0uKgu+QOja/7jr5/Jcf8iYnKg32GwY07HtqFnw5SfJl5f0Ar7ubdteErBaCIiVeuCG3vSj4IZN8flxEdjbTDbExFp5vY+k9cTzlhsn7QI0pCzYMlvOy7f8irUboNupcFuX0REREQkG8W6SLnZ2odgckDHMrqSrW/DtreTH2f0VXZAtIiISHKmNf20gPWWZcVx1bKj1hdweJyIFhEREREREfFnR2QrDVaDY1tZweCQq4kt3zhf1x6J1odciYiIiMQ06jJYfBvUOIewOpp1Bgw8AY5+CvK6J77tXfMTX9evaD3Ubodu/e3XS/8MH16LfUoAKBkHM2a630vsZdt79r9FvY/7Osd9U6Fo0vV4TXLnFaITpmQDHkVExlwNy273tz/QbOEvOi5bdCuMuBim3dcSHln+Brx5NkQqU1Kqo1FX2mGxyfAKu9T7rHQBObG7hM8YczbwFnYommn1+F+XVo8jgTeNMeeEXaeIJKnPVOflVgNsnRVuLX7M+5694ySZb9CJ9o6pmy2vtn29eSb/O9jmZsdssKJJlxaqyB73tjfP6fjv0Fl5BcT59aLL+1UQcgq9D0oNPct5+fhvB1NPqnQb4N62dyWs9vh/VkSkK6heH9zYQ84MZtwclxOH1esh2hjMNkVEwD0YbeQlwYeigX0yxInVCOsfD377IiIiIiLZqHS6v35r7g+2jq5ijc9j7rkeM1FOuAEO+lNq6hERka5uYKvnC1IwXuuLAJTgKSIiIiIiIkkrr9/g2lZWEMK1KHHKcwk5iFiRkCsRERGRmAr7wUmzYdDJ8a235VVYdW/i262vgL2rEl9/v+thwDH++i74gf2zdhvM+xZt7tOsXAoLb06shg+/ETsEpdckOOQOmPjDxLYh0ll5heiEyWRIHSKSvboPg5Pes+/j6TEGiocmPtbah2DTC/Zzy4IPvuYvFM3k2tttfngpGmT36XsITPkFHHpX4vU28wo/0/usdAEZF4xmjBkPPAgUYQefWbR8C2odkGa1enQDHjDG7BdutSKSlF6ToFuZc9vqDLvp4aPrYfGvYvcbdp7z8sk/S209Etuoy2Dwac5t7WdY2LPc35gbnk6uprCt/Id3++zPuwcKdCapCEarXAy7krg+u7HOf9/cbt7tY78MfQ5su2zUFVB6ZPx1hW3wGe5t718DkRT8txIRyVa1W5yXJ/v+PuZq6Htwqo8CRwAAIABJREFUcmO48ZpRaeMzwWxTRLqmHXNh1lnw3ASY80WocbkYNacwnHr6HmSfUHEy9yvh1CAiIiIikm3cAtbb27MMKhYHW0tXULEwdp9TF8AJbzq39RgNU2+GnNzU1iUiIl1Vr1bPUzHVcuswtC5w0YOIiIiIiIgErbx+o+PyvnmlFIR1PUoc8o3zMfcGqz7kSkRERMSX7sPh2Bchr3t86214KvFt7v448XUBhl8IJ7wBl1oxu7Jjjv1z80sQdQhqTeSezJrNsHOud5/CfnD6J7DPV8AY774iXY3JkOs9vMJ8RET8KtkXpj8IZ62Ac9bD4UmExzbvX+1dCRWLYvfPLYaLI/Z2mx/7Xuvc1+TBuZvsPqe8D5N+mJrr77zCzzIlCFMkQBkXjAbciR101hx6ZoAG4D3gEeDRpucR2oakdQP+FnaxIpIEY2DgCc5t6x6GnR+GW4+bpbfDkt/G7jfoFBh/PS1vTU1MnntgmgSraJDz8sjutq+r1/sbb80DydUTpo3PQ2O1d5/q9bDppXDqSaeGqtSM88HXoHZrYuvW7/LfN1YwWmFfOPEtmPZvmHgjHPMcHH5PdhzAHXq2e1tjLWx6PrxaREQyjdtnTO8p8Y/V7zCYeisc8zwc+vfgPiO8Lvja/HIw2xSRrmfXfHjlKNj4rB1YvPIfsO0d576x9qVTxRgYcZF7+7zvhFOHiIiIiEg2sRr99133aHB1dBVu35ua9TkQ+kyxg59LxndsH3FJMHWJiEhX1fqEeS/XXv4NbvV8ZwrGExERERERkS7OLRitrGBIyJX4k2+cwwUilkMQiYiIiGQGY6DsuPjW2fIKzJwOC26E3Z/Et+6u+fH1by+ecNjdH8PbF8J7Vzi3126BBww8tx+881lY/FuoXAaLf2e/fvM8u/0BA2+eY//OL0yOvd0BM/zXKNLVmAyJEPEK8xERSdSgkxNfd9XdsPRPsO1tf/0L+3e8N3P4Z5z7jv5c4nV58QqZ1PusdAEZsldjM8ZMAo6mJRAN4LfAQMuypluWdbFlWRdZljUdGAj8ut0Q040xCdw1LiJpM/h097a1j4RXh5uqtfChS2pre0fcD6XTYNp9UFhqLysaBEc9Dr0nBlejuMvr4bx83aNtU3zX/MffeOsfS76msCz+lb9+G58Nto5M0BAjIM6vbe/AE2Ww5A/xr1u/O3afZjk+whzyimHU5bD/z2HI6dkRigZQEOMa90RmABER6SzcgtH67A89Rsc31thrYML3YMhpwX5G5DjPOgnACuWWi0iKLPkDROv89Q0rGA1gxMXubavuhmgcoQ8iIiIiIl1BPMFoycx6LbbcIu/2o5v+jY2BGS9B30Ps1zmFMPZLMPkngZYnIiJdzrZWz5O6gMYYUwhMbbVoQzLjiYiIiIiIiABsqXf+ellWMDTkSvzJc7l2LxKtD7kSERERicuEGyCve3zrbH8XFv4SXj4Mtrzqf71kg9HivSbXzwRolUtg7QMw73p4bhzM+7b9esOTLX02PG3/znU7vMfKL7HvmRDp0rLgntKc3HRXICKdUVEZjP924ut/+A2Y7TPELM/hOrzS6TD4tLbLCvvD+OsSr8mLV/iZV2iaSCeRUcFowPlNPw12ONq1lmV9x7KsXe07Wpa127Ks7wFfa9Uf4LxQKhWR1Bh2HuT3dm7b+WG4tTh547TYfQCOfhoK+9nPR30WztsC52yAczbC0LOCq0+8uQWjAbxzKVhW/H9nqQrZClK0EXa8769v+WvB1pIJGmvc2077OP7xProOHsiBdy+DVffaf0deGqrgk5v8jx9mmEPY8kpidMiCg3EiIkGwLKhzCUbrVgaTfhzfePk9k6/JD69gNBGRVFl9r/++8cxOl6xek6DHGOe2uh1QtSa8WkREREREskG0wX/fXfMgsie4WroCr+M2n6mA7sNaXncfAae8D+dtgwt2waF3Qo5mkhQRkZT6qOmnAUYaY8YnMdb5QPMHXQMwO5nCRERERERERADK6zc5Lh9YMCTkSvzJN843vTZYkZArERERkbiUToMT34Vx34DiOANYG2tgwQ/99/cKRis7DsZ+2Xv93BCvyY3XuOvsf8d+B6e7EhEREUmXA34N0+5ruSc/r6e9j1N2XGq34zRBqTH2xKQH/RGGXQD7fQdOmg299kvttltvz7VN1/lJ55dpwWhN0xBjAbMty/pLrBUsy7oTeIeWJI1DA6pNRIKQWwhDz3Zus+K4QSIIFYvsh5dh58PJ73cMPzM5UDzEe0dDgucVjLZ7AVR8CsvuiG/MPcuTqykMe1dBY62/vlVroWJJsPWkW6NLmF1uEfSeDAOOTmBQC9b8B2ZfBe9f496toQZeOwHWPeJ/6M4cjFbQK90ViIhkpoa97p/dhQNg9JVw7Esw4mJ/43ntA6WSZhQQkaDFG4QQ5r60MTD2S+7tq+8DKxpePZ1NQ7UdnNFYp39HERERkc7Caoyv/1PD4wtT68yiDfY+coPHRDCtWVGIVDq3TX/YnjnbSbf+zjNcioiIJMmyrNXAilaLbkhkHGNMIdB815cFzLUsqyrJ8kRERERERKSL29tYyd7GCse2sowNRnOeHEPBaCIiIlmgzxQ46A9wznq41LIfF9XQcou8hx3vQ/3u2P2iEfu+SSeH3wPHvwaH/hX6THUfo/Vkxf0Oi73NsIy4BA76HfSemO5KREREJJ2MgVGX2ftRl1pwYaW9j3P8a1A6PXXbcQpGA/u+ynHXwlGPwgG/gp5jUrfNeGgCVOkCMi0YrXUE4r1xrPfvVs+TmVFSRNKhxyjn5TvmhltHe+se926fMROOegz6HeLdT9InVijI5ldg1b/iG7N+V+L1hMXtwKWbpX8Mpo5M0ehyo1Dzl5FD/wElrXYfeu4b3/gr/wGVS53bNjwNO+KcoLozB6O53WzVbO+qcOoQEck0tVvd27oNsH8OPhmmP9hy8vOYZ93XCSsYLRv2i0QkezXWwZsuQepuwt6XHn+de9unP4VHS2DJ78Gywqsp2zVUwdsXw2O94aF8eLgbPJgLr5/i/XkpIiIiIpkv3gmRIrvtY+xdmRWF+d+3940f6Q6PFMMDBj7+iXeAcMNe7KwYB91HBFGpiIiIH3c3/TTAZcaYK+NZ2RiTA/ydttcXxpx0VURERERERCSW8vpNrm1lhUNDrMS/POM8qWnEqg+5EhEREUmJ3G4w8AR/fR/rY583bn48MQg2vdi2T8ViiLrsF7QJQ/OIGMhtFYy279f91RaGIWekuwIRERHJdINTuL+Q6ff85zgfIxLpTDItGK13q+cfxbFec1/TbgwRyQYm13l5YzXU7Qy3ltZW/9u9re9BMOjE8GqRxOTHCAWZ9+34x4xUJlZLmKrXx9d/xZ3B1JEpGmIEo5XsA6d8BKd8CCfMgjMWQ984Aw9fmAJL/wTvXg7vfxnePBdePBDevST+ejP9S1Iy8nt5t++YDdE4b44TEekM6na4txX2d2nwmBHKhJT033Mf7/aGqnDqkM6voRo2PAsf3wQLboQVf4fqjemuSoK26DYofz2+dWLtb6ZaTh4MPs29vaEKPvoWvHwIrHnQnoFPvL13Fax7uOO/1eaX4Q2Hk1ON9bD6P7D0z7D7k1BKbGPXfFjyB1j7cHYcLxARERFJJ6sx/nU2v5z6OrLJotvsR3uf/hQW/8Z9vTX/cW8L+3uTiIhIiz8CW7HTOw3wT2PMzcaY4lgrGmMmADOBzzatbwErgIeCK1dERERERES6iq31ztchdcspoldun5Cr8SffNRhN16aIiIhkrf1/mdh6tVvgjdPs61SbzTrTuW9OPpS0mn/EeEQM5LS6v23Y+TAwA+6lHXgCDDsv3VWIiIhIpht7DfQ5IEWDZUIkUwbcRyqSRpn2V976KlyPO8M72NXqec8U1SIiYXELRgNY+xDs+9Xwamm2+j7Yu8K9few14dUiicuLEYzmJbfYDudrLxtudG50CQLrqtz+PZqD0QDyiqDvgS2vh38Gds71v41oPXz4jcTqa8/lRHWnkF8Su8/Lh9hBdcbji5qISGfj9dnttj/jlebvtX+dSiXjvdtfORJmzIRupeHUI51T/W54/RTYMaft8oI+cPQzMODI9NQlwbKisOz2+NcrOzblpcTe5vGw6QXvPjs/hHcvhU9/Die9CwWa18FRZA9sfNq9fedc2L0Qek+0X9duh5nTWh2/MXDAr2G/BELQE7HkD3bwHZb9umQczHgFug8LZ/siIiIi2cZtUoz8EvdzLyv/Dof8FXJCOtaRaVbf69H2b5jwXee2T3/uvl6BgtFERCQ9LMuqNsZcCTyHfeVwDvA94GvGmBeAda37G2MuAvYFTgKmYV/p23wSuRa4xLIsK6TyRUREREREpBPbUr/BcfmAgiGYDL2eOS+nwHF5gxXBsqyMrVtEREQ89DsEzlwOz8aYvNzNwl/CyEvs8+/V65z79JoIua32I7yC0XILW57nFcExz8KGp2HXPCgaZE+Otmc5OB2qr99hT45ctz2x38XJEQ/A8Au876MQERERASjsCye8CesftycZ3b3Avj8tWh//WJl+jEXBaNIFZNpfeetvUfFMGd26byZELopIPBrr3NsqPg2vjmbVG+C9K7z7jLw8nFokOYkGo426wg5eqFzasS0rgtFqE1invu2Bzc7EKeAOIM9j4umx17R82QlbXvfwtxkWP/9P7poPuz+BPlOCr0dEJFO4BaPl5Lvf+Nv/cLs92m6Gx9wi6D0ptfW5MQZGXwWr7nFu3zUflvwOpt4STj3SOS39Y8dQNID6XfDhtXDKh5l/kDmb7JoPn/4CKpfYM8Id+Lv0hDztXR3/xRD73wLFQ4Opx8s+X7G/O+z6KHbfysXwWB8o7AdFQ2HERTDhe94XlnQle5Z3/Fxrr+JTO4hu8a8c/kYsmHe9/Rh6Lky9DUoSvEAolpotMP+7/C8UDexjCAt/CYfeGcw2RURERLKd5XL6f/z18MmP3df78Fo45C/B1JTJoo3O56maVSy0LzBv/53YsqBms/t6+QpGExGR9LEs62VjzFeBO2i5xq8ncGG7rgZ4oN3r5gMxDcDVlmX5OCAnIiIiIiIiElt5/UbH5QMLhoRciX/5HhNxN1gR8k0nvS9ARESks+s5FnqMbTVhbBwqFtrXV+/62L1P7/3bLfC4frX9ta25hTDiQvvh11sX2IEkyTr8Hjv0TUTa0X0UIiKu8nvA6CvtR7NZZ8HGZ9NXUxAUGitdgO66E5H0K+jj3rbb40BMECwLnopx0/cZy+yUe8l8LjMhxTT+25BX4tzWWYPRUjkDQ6ZxC5vJ9fj/uKAXnPIBTPs3FJYGU5cbr8C2bGcM9PQRTLDh6eBrERHJJIl8VuWXwOAzOi4fek64nyXDzvduX/9EOHVI57XlNfe2XfPcZzST+NVshteOty9AqFgI6x+Dlw60L5II24Yn/fWbcAPsfzOc/D5M/H6wNbnJK4LjZkKfA/yvU7fDDmFe8AOYdWZwtWUbP7PvvHOxHUgW6zvshidh5mFQU56a2jqM/7RziNuKvwW3TRGRMEUbYevbsPTPsPVNe1IFEZFkWQ3Oy4sGwbEvuq+3/A6oWBxMTZmsfkfsPg17Oy6rcb6B73+8jjeJiIiEwLKsvwMnA1tpG3hG0/Pmh2m33ADbgZMty3ownGpFRERERESkK9hSt8FxeVlBGibo88kr+Cxi6dyeiIhIVht+QeLr7lnpfT/uiIvbvg56cuphSfwuzXIKYPDpyY8jIiIiMvVWMHlxrpThIZQ58f4+ItlHwWgikn4DjnRva6gOrw6Aco+b7gF6jIaeY8KpRZLn56ZqJ32mQH5P57ZOG4y2NfV1ZIqGBMJmwP4yMOpyOK/cnm0jLP2PCG9b6bD/LbH7fPJjqFobfC0iIpkikWA0gGn3wtBz7WT/nAIY/hk47B+pr89LXg/v9j3LwqlDOq9YoVy7Pw2njq7gk59C/c62y+q2w+r7w6uhsQ7euRTmfce7X7/D4cK9MPVm/p+9+46Tor7/OP6a3WvcHRz96BwdpEgTsCGCotiNBdQYjTFqNFFjfkl+xlRTTaIx0V+a0TRjb9gbYEeqovQicCDSOeDuuLY7vz/Gy7WZ2dnd2Xb3fj4e94Cb73e+3w/H3d7M7Hzfw8hbocsxyanPSW4XmDGv5Q0jXux40XrqjF3IVltTV+HveDUH4JP7/R2z3rrfObc93QNW/cIK3xcRyUSHN8Jj+fD6ibDsG/D6SfBoHhz4MNWViUimM0P2240gdJ/qvu/6//O/nnRX5eF9G7tzZrfz5C6TE39ju4iIiAemac4HBgPfAbZh3Unc/INGf98H3A4MMk1zQdILFhERERERkVYrZNaxt9b+AWjFOb2TXI13WUa2Y1utqXtQREREMtqI/4l9bdmiq2HZjc7tPU9r+rmR4IiBfhdAyWWx728E4Zg/QV5X/2oSERGRtqvoKDj+4cQfA/nO5Z6/qIPeRDKPvstFJPU6jXNuq9yWvDoAPvyee/uYn2XgwU4b5va95eSoW60/szvYt7fWYLTlt8DUuc6BcJks1rCZeoYBY34KCy8DM+xfXacvhXnTm35PFY2MLUwhk/T9gvWkjh0vuPdbcgNMez45NYmIpFqsv6uy28PUpz4PkglAlsffbX7KKojcJ1ynpw9I7MLV7u0HV0FvPQUsbuE62PgX+7Z9i4BvJKeO9f8HWx9279P3Qjjx8eTUE42cTtYbJAOugDdmRbfvp8/BCyPhzNVt+/Wy9rD/Y664DUZGuNYTi5qDkedd+XMYdDUMu1Eh+yKSWd6dY/PACRNeanSttftUyO9vXcfqfUZSyxORDBaus98eyIKsfBh8rfN5yd73EldXuvIajFbQr+m28k+c+x/9i/hqEhER8ZFpmhXAb4HfGoYxFDgB6At0AXKAvcAu4D1guWkqhV5ERERERET8t6dmJ2HsH+zRI42D0bKNHMe2OjPGh8uLiIhIesjtAjPmW++TV5RCMM+6n8eLshXObSWX2TxIK8HrZAPZcOy/YeiNcHAldBhhraM7tLqhT4cR0HEM7F8KNWXWPQRVuyGnI3Q/CQoHJLZGERERaVv6XQjdtsPOeVC9x9qWVwzvOYW5pvmDSAPO4fkirUU6rrSrv4lpimEYJR736dH4E8MwTiSKVxjTNN/y2ldEEsAIwLSX4Y3TW7ZV77VCnoJ5ia9j15uwf4lze5fJUHJJ4usQ/7Qrhi6TYN9i7/uUXGr96RiMdtC6qJjX3fq+rN5nLYCvPQw5RfHX7IdwDMFouxZYIV2nvGktQGpNQpX226P5d5bMgXY9YetDUHcEtvw7vprO3WotVjpvG6y7Bw58CJ3HW4vmczvHN3a6Mww48Ql4NEJ4z44XoHwLFJYkoyoRkdRyCjX1egzsJZwsUbzMXb3POi4TiUWLUI5myj5OTh2t3aE1zm1bH4bjHkxOHaWPubfn94MTHk1OLbHqdbp1XvX6SdHtd3gDLJgJx/3HOvdoi+rKEzPuxz+F0T/wd0yn88zmfdb/AT75O5y2CIpG+FuDiEgiVO2G/csi99v9+dtqW/4NE+6BYV9PbF0i0jqY9gvLMILWn5P+7ByMdmgNhEMQCCamtnTkNRitsboKOLTWvm92B+gxPf66REREEsA0zfXA+lTXISIiIiIiIm3PzprtttsNAnTLTt/7N7JdFr3WhmuTWImIiIgkRDAXik9u+LxiK3z43fjG7DC85bZhN8Get1tubz80vrkaMwzoOsn6qNfrtJb98s/xb06RtmLUbbDk+pbbO45Jfi0iIpmkXU8Y8MWGz8N1zsFoLYJl04yRjpFRIv5K1+9yA3g4jn3fiKK/Sfp+HUTaDrfgm8pPof2gxNfw8Y/d20d9P/E1iP+OfxhemWyF7EUy4R7oOMr6u1Mw2pYHrQ87XabAhN83vVCXCk7hKpHsXwrbn2kIh2stQkfstwcjBHM1V3yS9QFAGLb8J7Z6htxghaKB9X026rbYxslkwTzrSSORvobbnoIRtySnJhGRVPLrd1UqeAlGq9qlYDSJXajavX3Lg9DlGBj6dSt0W2Jz5DPntrwk/fyGqmHfIvc+E+/NjP/n7lPh/B3w9oXWE/u82rUAnu4FBf1h8gNtL7Sg7nBixv34hzD4Gv9+F5mm8+9uO3WH4aPvw4lP+jO/iEgiVe2Jfp+PboOBV0J2oe/liEgrY9bZb298Y87xj8K7s1v2CVXB4fVtK2y2amfkPtuehuJpcGQXLLwcdr7m3LfXWb6VJiIiIiIiIiIiItJa7K7ZYbu9S3Y3sgM5Sa7Gu2zDubZaM8KDKEVERCTz9J8dfzBa/zktt/U6HbIKWz7YtsQhGERE0kufL8Cym1s+jH7QV1JTj4hIpgqkedyQWzhbutcu4oN0XUloYgWcRfNhNvqIdl8RSbX8Ps5tVbuSU8P+Zc5thYOg1xnJqUP8VTgQzveweOTMNTDs6w2fZxdFP9e+9+GdC6GmLPp9/eQUjJbVPvK+nz7nby3poHqf/fZ4wmaG3gguT9pyFMyHo+K8EN1a9L0gcp/9SxJfh4hIOqjL5GA0D8cXK25NfB3SeoUjBKMBLLvJClSV2LmFoFTvs4KgEu3D/43cp9PRia/DL+16wqnvwKwP4Zg/w3EPQW43b/tWbIX5M6BiW9PtVXth3T2w5i6rT2tTWx65T6w+nevfWLUHIdqnK3/6AtQmKPhNRMRPzW+Q8qL2ELwwEj74Dmy63/pcRCI78CGsvgM2PwjV+6Pbt/aQtd8H34UPvg0rvg/bn03OcXs8zJD9diPY8PfeLuFdXs4ZWpNdCyL3Wf8HOLwRnu7hHooGDQ9sEREREREREREREZH/2lmz3XZ7cY7L+pY0kGU438deZ0Z5T4OIiIikv4L+1n2o8Wg/uOW2rAKY9iJkd2zY1n8OjNT9/yIZoV0xTH3GCjisN+irMOSG1NUkIiLJZSgYTVq/dP4uj+fOba/7KhRNJF0E88EIgBlu2VZXkfj5645AncsC1dOXWPVJZgoEod9FUPq4fXvfC6FoeNNt+b1jm6tym7UAcMS3YtvfD07BaEOugzW/cd936yMw5R8QzPW9rJSo3ucc9paVH/u4XSfB9Nfh49th17ymbUYQRvwP9DkfPv4RHFhhpTF3GgdjfwUFfWOftzXpMSNyn7KVia9DRCQdhDI4GC2nU+Q+O19PfB3SeoU8BKMBrL8X+l2Y2Fpas2qXYLRwjdWe1z1x89cdgXV3u/fpNA7yM+xY2jCsMLf6QLd2vWDeNO/7z+0Hl4Ss6xF7F8OCUxvCZlZ8D054FPqc63vZKeN2XSZen70Cg6/xZ6yq3dHvE66GPe9Br9P8qUFEJFFiCUYDqCxtuO648udw6tuxX18VaQvW3QvLvtHweeEgmP4aFA6IvG/lpzD/VDi0pmVbn/PhxCfdnw6YSk7BaI2fWJiVD52PsX9oxqfPWq8xo25LTH3pxDRh9xve+j43xFu/gv4xlyMiIiIiIiIiIiLSWu2q+dR2e4+c9H6vyy0YrdaM8T0/ERERSW8ll0Cfc2DvIqgrh3fnOK9DaG7Et53bup8IF+yG/R9Afh/I7+VPvSKSHL1mwQX74MBy6x6kPI8P8vaTkQVmXfLnFRFJhmBeqisA3DJO0vR+UREfpVswWinxBaKJSKYyDAgW2C+CTUYwmtsi8BlveAt8kPQ25ufWhb/K0qbb8/vAxHta9s/vF/tcH/wP9DilYfF7sjkFowXzoO8FsO1J9/13vAh9z/evnt1vwYrbrJCrQBC6TIZxv4Gio5z3CVXBh7c2DUfIKrAukhSNhDE/sb7GkTw/zLktr9j7v8FO96kwI0LQy8kvxzdHa5bdwfq/PLjKuc/hdRCuhYDzm/ciIq1CJgejeVls3fjpM36q2ArLvwX7FkHRKBj1feh2fGLmyhShauu469NnIbsIBn3FCsfNZGGPwWj7FlkLx9M1ACDdVe91b685mNhgtJ2vRu4z+ieZ///bfar1c7npfu/7vHsplG+C/Uubbg9Xw+JrrfOirAJ/60yV2vLEje1n6HIswWhgBQYpGE1E0l2swWiNVWyGZ/rAJeHM/90tkgjV+2H5TU23lW+CVb+Ayfe571u+BZ51CU/b/jRsfRRK5sRdZkKEHW6ANIJNP+93kX0wGsBH37faOwz1t7Z0E65tCEX2S+Egf8cTERGJgWEYAWAUcDTQD+gGtMO6X/AIsBvr/sEVwCrTNHUfoYiIiIiIiCSMaZqOwWjFaR6MFjACZBlZ1NmED9SatSmoSERERJIiqwB6TLf+PvBK2PAnb/t1HO3eHsiGrpPiKk1EUiiYA12npG7+SX+FRVe13F5yefJrERGJVZfJ1tq05oZ9M/m1NNd/NnzwrZbb83q0nvVEIi7SKhjNNM2SVNcgIimUlcJgNLdFrZEu/Ehm6DAEZn0An70Mu9+2gkY6jbUOBoO5LfsXxBGMBvDSWJj8NyuQomo3ZOVDj5nJeWqCWzBadlHk/Usfjz8YLVwL+5bC9mdgza+btu140fo4cw0UDbff/91LrUVcjdW/Fux9D+afChPugaE32C+wDNfB8m9C9T7nGr0Eq0liDb4Wlt3o3B6uhcMb3EP0RERaA6dgtKwMCEYDGHgVfPKAc3tdAoJuasrg1ePgyA7r88rtVhjrzPdSF06bDhZebh3L1du/1Pp9OuwbqaspHuEQmCFvfUNVVghH4cDE1tRauYWFQ2J+jusdXAsf3+7eZ/A10OfsxNWQLIZhnSeWXAalT8KG/4u8T+mjzm1Vu2DRNTD+TmjXw786UyWR32eH11u/K/L7xD9WpJ8XJ7vmwdbHoP/F8dcgIpIofgSj1XvlGDj6l9YNV9nt/RtXJNPteBHMcMvtm/5mBaOFQ3DwYziy03poT/lm67yorhyWeAi+XnoD5HW19u00Dgy3JwUmmdP5ndHsloX+F8OH33EeZ+Xt0H+O9R6PH8d36cjvRWtGlsLkRUQkpQzDmApjNpKcAAAgAElEQVRcC8wCPNy0AMABwzBeAO4zTfOdhBUnIiIiIiIibVZ56CCVYft7FYpz0v/6c5aRYx+M5ud7fiIiIpK+BlzpLRgtuwj6xLlOUETETa9ZkNW+ZT6A7pkWkUzSf07LYLT8Pulx311+b+h6nJWv0Fi/i/UQa2kT0uhOaBFp85wSSUNJCEY78IH9diMLcjomfn5JjtzOUHIpTPoTTLgLBn7JPhQNID/OYDSARVfDOxdZC5He/zI80xs++jEk+qHGYYdgtIDHYLStD8Oe9yL3c1K5A149Fl47rmUoWmMvjIBdC1puL/+kZSianWXfgFentAxPrCiFF46C9fc675vXAzpPjDyHJJaXoJODqxJfh4hIqjkFowUzJBit91nu7eEaCPl8s9X2ZxpC0eqFKmHzv/2dJ5NU7YbSJ1pu3/DH5Nfil3B1dP2fHQRVMQYWtXWRvm6JCCwP18Lia63zggPL3ftOzODvYzvFJ8PEe/wZa+tDMLcENt3vz3ipZBeWDzDoKzDaITzv2H/B+Tuhx6ktAzWae6YvbPNwrhmJW7h+JGvvjH9+EZFEclsk0SvCcX9z+5fBgpnw3FDYszC+ukRak89edm6r3gfzT4GXxsEbs6zr3+9dAgu/6C0UDaBmv/VgkZcnWn/Gc+ziN5vFWQAYwaafF/SH7lOdx9nyH3jzbOv47sP/Tfx7LqkQdvhaxWrAF60H+IiIiCSZYRhHGYaxAFgAzAE6AobHj87AF4E3DcN43TCMocn/F4iIiIiIiEhrtrPmU8e2Hjm9k1hJbLKNbNvtdX4/fENERETSU9dJcNzDkNfduU+HETBjAWQXJq8uEWl72vWA6a9Ch2HW53nd4Zg/Rl5rJCKSTobdBCO/B9kdrM87T7COowIR1qkky9S5n6+bCVprTgdeBeN/m+qqRJIiTX4KRURwDkartX8Kj68WX2O/Pa8bGMqQbJNyiuxTyuO18ifQ/UToMcPfcRsLOQSjBfOcg+Cae+NMOGs1tOvprb9pWkEknz4H22wCOZzMmw4XHW56gfWzV7zvv28xLDgNTm30gOhFX4HDG9z3m/RnpSCnA6eFcI2VrYJ+FyW+FhGRVHL83Z0pwWjnQLcTYc/bzn1CFRDM8W/OZTfbb197Z9u9qFf6BGCzGPzQWghVez8OTCfRBqMBvH6SdRwr0Snf5N7++onWRf1Jf4XO42Ofp+agFZ686hfe9zlrPQSCkftlGsOwnhyz5934xwpXw5KvQfeToP3g+MdLlbpK++3BAhjyNfjkfqjY2rC9+zQoucy6bjP9VSvAzwjC4x2s4D07b38BjvoujPqB83UoO4c2wMY/W+ea8fyf7Vucua/JItI2OAWjZbWHac9ZQT2lj8F7X8T22NNO1U7rAQqzq/T6JwKQ7fIwnmU3w+43/Jtr13xY+XOY+Hv/xoyVaTo/KKN5MBrAuN/CK5Mij7v6Dus4uNes+OpLN07Hs7E6+pf+jiciIuKBYRgXAw8A7bCCzsD+RMJL23RgmWEYV5qm+aSvhYqIiIiIiEibtbtmh+32doECCoMeHkaeYtmG/f14tabPDzEVERGR9FUyB/rPhsrSlg8yz+4A7YpTU5eItD1dp8BZa6FqL+R20dpdEck8hgFH/xxG/8TKlsjplOqKmsrraq2bqT0EgVzdky1titJ+RCR9OC1IratI7LxOQRQAuS6J+dL65XVLzLjr74l9X9O0fiZqDkL1fvvFMW7BaHUegwZry2DZTd7r+vB/4f0rogtFq/d4ewg3WhC15Pro9t/zLmyfa/299jDsWuDev8tk6HNudHNIYnh5jT20NvF1iIgkU6gajuxqtu2Ifd9MCUYLBGH6azD06859/A47rj3o73itQc1+5zavx4DpJhRDMNqhNbD1Mf9rac3CdXBoXeR++5fByxNgz3uxzVNXaQXXRROKNukv0GFIbPNlgkFX+zdWuBY2PeDfeKngFIYYzLPexDnjIxj9Y+vJNsf8GU5+uWmYfVaB1bf9UPd5Vt8B80+Fyu3WOTY0nGebdgGT6+G142HtXVYYuNvrrReH18e3v4hIIjkFo9WHHAeyoORSOOUtGHwd9DrD+9gvjIq/PpHWwO1mmS0P+j/f+j9YN8KYJtQccH9PLJHMsHOb3RMVuxwDM97wNnb9+wOtiZeHing1+QHrybwiIiJJZBjGRcBDQD5WuJn5+YdBQ9jZHmA98D6wGNgA7G3Up/F+AAXAw4ZhnJ+cf4WIiIiIiIi0dodD9vegdc0uxsiARfxZRrbt9lrT54dviIiISHozDCjob91v2/hDoWgikgp5XRWKJiKZLZCVfqFojWV3UCiatDkKRhOR9JFVaL89lOBgtL3vO7cVliR2bklvAfunKMVt+1x4cSwc2hDdfuVbYN40eKwQnugIT3aBp3vD5maLpdyC0WoPeZ+v9HE48lnkfjUHYN3vvI9r55Es2PESVGyLbf+3zrP+bVW7wQy5953+amxziP96nwVG0L1Pzb7k1CIikmimCR/eCk90hqd7wPPD4cAKq80xGC0vefXFK5gLI29zbt/+TPJqaavcfqe+PLFlIF8mcArmiGTZTfbhRmKvfLNzIJWdRVfH9vXd/gyUrfDe3whC77OjnyeT9L8Uhn7Dv/FW/9I6P8tUjueyn79pk90BRv8IptwPQ651fjOnaGTkufYuhGf6wuMd4NnB1rn1Ex3huSEtrxOt/z+o3uP93xFJ2Ur/xhIR8VvzJ8fWa36dtPsJMOlPMO0FmO1wPtNc+UYrbFKkrcspSv6cjxfBwwHrmsTcEth4X/JrcLtu73Q+W3xS5NBbgI1/aX2vL3YPxYnVwCv8G0tERMQDwzCGAX/Hui+xcSDaIeBu4Eygq2maPUzTHGGa5nGmaU4xTXO4aZrFQDfgbOAPwGGaBqRlAf80DKMVP01BREREREREkqUiZH9ffftgCq7lxyDbYa1DnYLRREREREREREREpJVQMJqIpI+sAvvtdQkORpt3snPbUf+b2Lml7SpbAQtOhbDDYqBwHWx9FFb+HN77EnzwbXh2AOx+q2m/6j3w/pfhwIcN29yC0fpeEF2de95zbzdNWPULfxbpvHEGvHlW7Pu/Mwdq7Z/c9V8zF1qL6SU95HaGAV9y71O9Pzm1iIgk2oY/wupfQajS+vzQOph/qvV7+8gO+32cjo/TlVPQMcCyG6Hy0+TV0hYZWc5tFVvgnYuSVopvQi5hXYUDnduqdsKB5f7X01pVeQhDbuzQmui/vmUr4b3Lotun74XQrmd0+2SaYA5M/AOcWwqnLbb+jNebGRwm5/QzH4jyaTZFR3nvW1cO5ZsaziXLN1nnprXlDX3W/yG6+SOp3O7veCIifnIKpnV7gEQwD2Z5DD99fhh88B3rgQxmOPr6RFqFFD8RtWoXLL4W9ryb3HnNOuc2t/PZifd4G/+di6z3VVoLt69XNPpfAoZuCRERkaS7F8inIRDNBH4C9DVN8xbTNF8yTdMx3d80zX2mab5gmubNQF/gp5+PUa8Q8HiQICIiIiIiIuKsPHTYdntBMDPuNc82sm231/n58A0RERERERERERGRFNJdsCKSPlIRjFbjeK+lpeuUxM0tUrEV9rzTcnu4Fl47Ad6dAx99H7b8G9b81nkcsw5W/erzv5sNgSvNBfKgeJr7QsbmKre5ty//pntt0Sr7KPZ9d71uhX44mT5PP9PpaNJ9MOanzu2RXqdFRDLF5n+33Fa9xwoEOLTOfp/CwYmtyW9Z+e7tm/+VnDraKiPo3r7nbSj/JDm1+CXsEow2/TX3fXe87G8trZlTAIqbnfO99934V3hxdHTj53SGCb+Pbp9MVtAXuhxj/XnuFve+gWwIurze7nkPjuzytbykcfqZD+ZFN063E+Oro+YAbH04vjHcOJ2zi4ikg1iC0QA6jYGZi6DXGZHnWPMbeOdiePMchaNJ2xTL8Xe9YF7T0Nj8fjEO9PkDT5LJdHhIDLifz/ac6W38so9g5+vR1ZTO/Fq0NvDL/owjIiLikWEYxwMzaAhFOwycZprmT0zTLHfd2YZpmodN0/wRcDpQQUNA2qmGYRznU9kiIiIiIiLSRpWHDtluL8xqn+RKYpNl2L+HV2vG8V6EiIiIiIiIiIiISBpRMJqIpI9UBKOVrXRuK/li4uYVqTdvmhUUALDp7/DSeHgkB/Ytim6c0ketxdsVm50XVuV0guwOMPlvYHg8BFh7pxW2tv6P8OIYeLo3LL7O+rksWwXrkhhWUHIZtOvp3B6utQ+dASs4oMf0xNQl8QkEYdT34YTH7Ntr9ie3HhERv5kmrLvX+Xf7wi85Lw7uGGWQUKoZAedjeoANf/RnHtOM3KdN8vB12fpI4svwk1swWk4XuLDMub3sY//raa1iWXD/4Xesc5fN/7E+rymDhVfAUz3hIaPpx+Jrox9/wOXQrjj6/VqDgv5w3nboNK5hm5EFkx+AS02YUwOzK6CHU0CEaQVsZyKnn/nG4R9edJ8Kud3iq2Xlz+DFsdb3cCzcfoeHjsQ2pohIMsQajAbQdRJMe8H6feXFjhfg4aB1LfTxTlZQWvkWz6WKZKxYA68KSmD2EZhTZf2cXWrCuZsht0ts4+14MbkPpTDrnNsCWe779v2CtznemAUVER72kincvl5eDbwKepwS/zgiIiLRuf7zPw2si9bXmqY5L95BTdN8Hbi20bgAX4t3XBEREREREWnbKpyC0YIdklxJbLIM++vrtaZPD98QERERERERERERSTEFo4lI+gimIBjt4GrntmE3Jm5eyQx9zk3OPIuvhddPgkVXwYEPYh/nic7w7CDn9qKjrD8HXA5nrYMhN0Qes3I7vHEGLL3BCpc4sgM2/gXevgA+e8l7bQOvhBlvwJS/e9+nsY5j4LgH4dyt0P8S5347X7ffnlMU27ySPDmd7bfXHoSwQ2CQiEgmWPs7WPaN6PcLZEOHof7Xk0qV2/0Zp+6wP+O0NqGqyH0qdyS+Dj+FXILRgrnWMd6Ib9u3b3u8IUTv0AYrwGvHS1B7CKr2wva5sPXRzPuaJIJTAEokBz6AhV+E0sdh/kzY/C+o2hl/PVntYfi34h8nk+X3hlPfhpOeg2P+DOdugUFfbtpn5K3O+2/6W2YGyzi9jgWjDEYLZMGoH8ZXS2UplK2Ibd+sQjjlLWjv8Hu8rjL2ukREEi2eYLTGzo/iGCtcC7Vl8Olz1kMk9DoprV2sx99Drmu5zQjA4DjyQN48F3bO93Y+GS+3a7xG0H3fQdd4n+fZEvdzyUwRS4DesQ/CSc/DhN9bx6OT/wZGjEG/IiIiMTAMIxc4Gyu4zASeNE3Tt6d1mKb5MPAkVjiaAZxjGEaUJysiIiIiIiIiDcodgtEKMiQYLdvhtLjOjPG9CBEREREREREREZE0o2A0EUkfWU7BaOWJm/PAcue2Lsckbl7JDAOuSN5cu99K7Pj5fZuGg7UfDEc5hEg099nLNttegV1veJ9/wj1QfJIVkNbnPO/71et9jvVnIBuOf8ha8GXH6fUiW8FoaS+nk3PbtieTV4eIiJ8Ob4IPYgz36TzR+r2XcSIsuPVjcXKk4OT6MKy2JnQkch8/QquSKezy/VIfztFpvH27GYZ3Z8PSm+D5oVaA1xtnwONF8FQ3eOs8eHcOPNMb1t7tf+2ZJJYF9429dznsX+JPLQAnzYWCvv6Nl6myCqD3WTDkWisorbniaZDfx3n/Nb9OWGkJ4/Q7IpgX/VhDr4+vllh1ngAzF0JOR+vvdtbfk9yaRESi4VcwWrue0PO06Oev2Aqf/CP6/UQySbTH37ldYdQPnEOhR/8o9lr2vA3zZ8DLExIfrGvWObcZWe779joNpvzT4zxhePVY73WlK7evl5MBl0HvM60HP3U/UaFoIiKSClOAQhreKLgrAXPc2ejvhUAr+MUvIiIiIiIiqVIesn9AZ2GmBKM53F9YG++9QCIiIiIiIiIiIiJpQsFoIpI+HIPRIgQfxCocgu3P2LcNujoxc0pmKRoBA7+c6ir80Wlsy215xbEtMK+34wVv/fqcC9mFDZ8Puzn6udoPbvr56Nuj21/BaOkvp7Nz27uz4w/sEBFJhXcujn3ffrP9qyOZOk90b6/aFf8ckQLAdr8R/xyZyFMwmg9f/2RyCkkKZDcE5XYc7bx/6eOw/g+R51n+TTiwIvr6Wot4j7PcAuyikdsN5tRC8cn+jNcWnPiUc1vpExCOIUwhlZy+lwK50Y9lBODkV+OrJ1pHfRdOXwodR1mfZ+U7993vEtQvIpJKfgWjAYz9NWS1j36/pTfAS+PgIcP6ePcS2OdjCKtIqjn9nNkpGglf2A1jbnd+WEggC058Or6aDq6GZwfEN0YkZsi5zQhG3n/gl+Bij+8XHvgADm3w1jddRXueNjzGYH4RERF/1YeUmcAa0zTf93uCz8dcbTOniIiIiIiISFTqzFqqwpW2bYXBGN7jSoEsw/49vFozivciRERERERERERERNKYgtFEJH1kFdpvT1Qw2qG1ULXbvq14RmLmlMwz+W9w7IPQ++xUVxKfAV9quS2YBz1nJX7u4bc0/bzbCVBQ4n3/QC70OafptoJ+0dWQnRlP7mrTcjq5t+9+Ozl1iIj4pWoPHIgj9GTAF/2rJZn6nOfeXr45/jnq7G9I+69502HXgvjnyTSRvi7gfP6TrhyDORqFJBWNgHY945+r9In4x8hU6RJAO/xmK9RBvOs80TnsunpP5r0WOoUhBmMIRgPofhLkdom9nmgFmwX+B12C0bbPTWwtIiKx8jMYrdMYOGMFHHUr9P1CdPse+LDh71sfgVePhR0vRV+DSDqK5vh7+C1gGJH79TzNn4eDrLjNua2uAiq2gmnGNrZbMJrX84CsfOtBLF6UPuatX7qKNuQ42tdZERGRxBjZ6O/vJnCedxzmFBEREREREfGsInTYsa0wmBn3nWcb2bbb68w0uRdIREREREREREREJE4KRhOR9JFVYL89UcFoO1+1325kQe+zEjOnZB4jAAMug5OehfF3pbqa2Dktipl8H3RN4EOUx90J3ac23RYIwtSnIb9v5P2zi+Ck51qGZnnZt/k4kt4ihdcd3pCcOkRE4mWa8NEP4anusY8x6kfJDXLx09Cvw6CvOrfPmwYffi/2hdTgLQBszZ2xj5+pQkci9wk7hA6lK6fAgECjm/qMAPSbHf9cq34GK34Q3/dmpkqHmyFLLocR3051FZnHMGDmQuf20keTV4sfwlX22wMxBqMFc+CkF2OvJ1pZ7ZrN386+H8DK2xNbi4hIrPwMRgMoHABjfwEnPglnb4COY2IbxwzBx3rtlFbC6efMzoArvPXLagfTXoDcrg3b+l8CY35qnTN5teoXVvhZY+FaWHIDPF4Ec0vguaFwYIX3MeuZLkFfRtD7OJP+Bl2mRO738Y+9j5mO3M7Txt9tvZcJ1uvzxHuh23HJqUtERMTdoEZ/X5TAeRqPPcixl4iIiIiIiIiL8tAhx7aCjAlGs38Pr9aM4r0IERERERERERERkTTm8fHLIiJJ4BSMFkpQMNryW+y3tx8C2YWJmVMyW7/ZsOa3cGRHqiuJzoz5zoufcrvAzPfg8EbYOQ+WXOfPnIEcOG8b5DmEwnQaC+dshoMfQ05nyO9j1VCxpaFPdhF0GmctZm+uoH909eR0jK6/JJ9hwMCr4JMH7Ntry5Jbj4hIrLb8B1b+NPb9i2fAmB/7Vk7SBYIw+a+w+Z/Oi71X/9IKSBjsEqDmJuQhGG3PO7GNncm8BKNVbIVPX4Res6zfvenOaeG80exy1lHfhXV3xz/fqp9BbmcY/s34x8ok0QQz+OGUt63j/9yuULHZCsiN9vheGnQaC/0ugtLHW7Ztewom/tH+nMovB9dA6RNwZLv1s9lpLPSfHTn4uDkz7ByGGMyLvb6uk+D0pfDyxNjH8Kp5EFpWfuLnFBHxm5dg2li1HwynL4dDaxqury44zfv++96HZbdYD7HoPCH+ekRSxWsw8ZmrrHNsr7odD+d/BmUfQbte0K6HtX3YjbB/OSy7yWqLZG4JzKlp+Llfcyds+GNDe/lGeGkszK6O7jgzHHJua36O5yavK5y2EA5tAMLw/HD7fmYdlK2EjqO8j51Owi7nw8NvgsFXQ9kq6DjS+f1VERGR5Ctu9Petjr3i13jsHgmcR0RERERERFqx8tBhx7bCYPskVhK7LMP+PbzadHhIooiIiIiIiIiIiIgPonhEtIhIgjnduF+XgGC0Rdc4txUd5f980jrk94JT3oJBV0PBgNTUMHVudP3bD4FuJ3roNxiGXAvHPxpbXY0N/TpcuN85FK1eIGgtmi/oZwW3dRgKPWc2fHSd7LywqqAE8qK4x7n9EO99JXUGu7w2V+1JXh0iIvFYe2fkPn3OhROegD7nN2zLKoSR34NpzyeutmTqMMK93S7AxysvAWC1ByHUxp58WechMA7gzTNh4eWJrcUvTgvBmwdztOsB01/zZ87lt0D5Zn/GyhROASiJ0v0EKCyxAsk7jlYomh/6X2q/veYA7F+WuHk/fRFeGgcf/xA2/tUKzFh8Dbx6XPTH724BfYHc+OrsNC6688dYNQ9wC7oEowUSGFYnIhIPp9djv163AkErpKj++t/4KMNt1/0OXpkMn/zTn3pEUsHtXLXTeOg/xwoRjOW9qkAWdB7fEIoGVmBt8TQ4/hHvAWTr7gHTtD423W/f57kor7k7BV8DGFEEwNXrMAQ6DIPJDvUBvDgaQtUN/5ZM4hhU+fn/YVaBFQKsUDQREUkvXRr9PZFPvaof2wA6J3AeERERERERacUqQodst7cL5BOM5oEeKZTt8B5ebbIfkigiIiIiIiIiIiKSIApGE5H04XTzfqjK/Uny0ao5CJvuc27vPNG/uaT1aT8IJt8H534CU/5hBXrV6zQeLtgLvc5MzNwDr4x+7Ml/a1go40Xf8yP3cTN1Lky8J/GLcQwD+l3kvX/H0YmrRfzTdbJzW9Xu5NUhIhKrJTfAgQ/d+wz6Ckx9BvpdAFOfgktN6+Piw3D0z1uGqmSqSAGpO+MIsfIaAFa9N/Y5MpGXwLh6W/4Dn76QuFr84vT0UrubD4unQ25Xf+Z9dmDmLZqPRzKD0XrMTN5cbUmv062ATTvxvN66CYdg6Q0Qrm7ZdnAVPNUd1v/R+3ghm3HqBeMMRjMCcNyDEGwX3ziRNB/fbb5E1yIiEqtEB6M1N/R66Hl6dPuYIXj/SqjcnpCSRBLO6TxnyNdg1jI4/mHoPM7/eYtGwNg7vIWQffAteDhgfZRvtO9TWWqF43plurzPF0swWr2ux7m3P5pn/TseK4QFp8Nhh39PunEKkjOy7beLiIikh8YXcRIZjHaw0d9byZsqIiIiIiIikmzldfbBaIXBDkmuJHbZDteM65zeixARERERERERERHJMApGE5H04RakFKrwb55d893bB17h31zSug28As7eAJMfgJNfhZnvQm4XGHyNff+jfwHTXoQep3obf/zv4LiHYcLvYeZCa55AFAuEzlwN3ad67w8QyIbsouj2qXfeNuhzTmz7xqL/HO99i0Ylrg7x17Cb7bdXJzEYLVwHexdB6eNwZFfy5hWRzLbuXtjgIQCm99mJryUdRApGi0fIazDansTVkI7CVdH1/+SBxNThp7DDQnC74F8jAEOu92/uNb/xb6x0l8xgNKdzJYlPMA86jrFv+/hH/obN11t7J1Rsce+z9AbY+Dfn9rKVsO0ZKFtlheI7CcQZjAbQYwacsxmm/DNxgfgtws7CUfQVEUkTIYdgtGCCgtEC2TDtBZj+Ooy7Ewr6e9/3mb6wa0Fyj2VE/JDsAMLGRtwCZ66CY/8F4++Of7zF11o/h144BX1BdA93aa5ouLd+oUr47BV4bgisvdu6/pvOgdhOr23xfK1EREQSr/FFnEQeqDc+sFBqqIiIiIiIiMSkPGQfjFaQUcFo9u8t1JoO70WIiIiIiIiIiIiIZBgFo4lI+nALRqvzMRjt8Hrntna9oV1P/+aS1q9wIAz6MvQ81VqMDlY42JR/QPsh1uK+4ulWgNrIW6HXLBh6g7exh98MJXNg2I3QdQoYhrf9ukyCWR9A0YiY/knkdo1+n/N3Qn6f2OaLVdcp1tc4kqJRya9NYucUpFOVpICy2sMwbzq8OgXeuRie6Q1bH0vO3CKS2byETOV1h56nJb6WdNDB48LkWNR5DEarSmKoZjpwCrFwsu0p6/deOnNaOG84LAQf9UMY+T1/5t54nz/jZIJEhYnMWGCdCwVyoHAQTLoP+l2QmLkEikY6t+143r95zDC8fRF8+F1v/Tf8yWYME5b/D7w4Gt4+H14cBQu/6DxG/bl2vNoVw8AvwWmLYdQPoF0vyGoP/S6Csb+y36frsVA8w9v4zcPO3MLesvK9jSkikmypCGwyAlaA5YhbrOMHI4q3LudNh9dOhOp9iatPxG+OgVdJyvToMAwGXA7Db4JjH4x/vHnTYckNkcN4S59wbjOieCCMnfO2Rdd/+Tcbrv86BXKnmtP5cLK+T0RERERERERERERaufKQ/X1ThRkUjJZl2F8zrjX1YCERERERERERERFpHfRIYRFJH1mFzm1+BqNVlDq3DbvJv3mkbRt4hfURroNAs1+3XoJC+pzv3Db+Llh+i33bWeuhg4ewMDe5XaB8k/f+PU6xFpgnmxGAiffCgggBM2Pv8B4qJ6mX18N++4EPoaYMcjomdv6VP4M9bzd8bobgvUut7/PczomdW0Qy28FV7u1GACb+0b9wl3TX9djIfXa8DL1Oj37skMdgtOo90Y+dyWK5oe2NWXDK2+l7rOS0QL358fV/twfh6J/DmJ9Z3ydGNoQ/DybKKrR+DtfdC8u+EXnu8o0wbwYc+8/WH7LrFIASj2E3QfE068PunEj812msc9uSr0Gfc/2ZZ+N9sM0l1KK5A8uh5iDkFFmfmya8fyVs/lfTfjtfdx4jmBt1ma4MA8bcDqN/YgW9Be6uLKkAACAASURBVIJQdwS2PgoHPmjo1+1EK6AnELTCNufPhLIVzuPm9236uVswWvMQNRGRdBGutt+eyGC0xgoHwLCbYe1d3vfZtwg+/jFMvCdhZYn4KhUBhE4GXGY9kOKDb8U3zoY/Wg+F6XUmbLoftj1pHcP1+QIcWg3bnnZ/aJFT+LVX+X2s4NuVP41uv21PwKbpMORr8c2fCE4BevF+rUREREREREREREQEgIrQIdvthcH2Sa4kdtkO7y3UmQm4F0hEREREREREREQkBaJ47LqISIJlFTi3+RWMZprWAg0nA77kzzwi9ewCADoMgy6T3Pcb+GXntj7nghFsuX3ivfGHogHkdImuv9sC/ETrORN6ugSqzPoQep+RvHokfkUjnNtePNp5QZhf1vy65TYzBKWPJ3ZeEcl8bq9PA6+CWSug3wXJqyfVIh3rALxxRmyvr6Ej3vpV741+7EwWy+/IPe86B+6mA9MhGM3haacN7YZ1fhnMgewO1ofx+SUwt/PO5nbNh+eHQ80B7/uks3AtlG+BqmY/G34+JXbI9XDi0zD+dw3bFIqWHP0udm478hmURhFm5mbDn6Lf5/nhDa9RH/2wZShaJAGfg9HqGYYVegaQ1Q5mvg8T7oHht8DkB2DGvIb2vO5wypsw5Ab7sdoPgaKjmm5zC1VsK0GpIpJ5nEIdk/m6Nf5OmPosDL7GeoBDQf/I+2y637n2ugrrGKjWfnGLSNI5Bl5FOM9JlGHfaHkcE4stD8OyG2HxV+Gzl2H7XHj/Clh9h3soGvgT9jXmdsjtGv1+S66HPe/BviVQuT3+OhoLVcO+pVD5afT7Op0PB1L0fSIiIiIiIiIiIiLSypQ7BKMVBDskuZLYZTu8t1Cb6HutRURERERERERERJJEKxNFJH0kIxht+Ted24pGQbtif+YRieS4h+Cdi+HA8qbbjQCM+Sn0Pst538KBcMLjsPAKqDtsLYQZ+QMrhMAP0S4e6jTen3ljNfI2a6FVc73Phk5HJ78eiY/bIrzKUtjzDhSfnLx66m15EIZcm/x5RSQzhEOAad826gfW4ty2JtvLkzNNWP0b6HdRdGPXVXrr5zVArbWI9Ya2dXfDyFut0J9047gQPI7LWdmF0fWvq4CVP4fxv419znSw601YdDWUb7RClgdfBxN+b4U+OX3v9DrDCnba+Ff79mA76+cspxOMvwsGXpmw8sWDvK5WoNfau+zbV/0c+l0Y3xwVpVC2Ivr9qnbCjpegeJpzfW6SFcYTzIFhX3duzymCY+6FrpNh8XUQ+vz3UfuhMO0FK2itsT7nwqKv2I9lhvypWUTEb+Fq++2JCql00uds62PSX6zPX58Gu9907h86Aku/AZPva7p987+t9wSq90FWoXXddfjNCStbxJNwjf32YE5y66gXyLYeujJvenzjbH0oxvlz/fu3z1oB7862riFH47XjG/7e+RiY/irkdIyvltV3wMc/abg2UTwDjn/I+7m3Y4Cebu8QEZG0V/9myRTDMEoSNEePBI0rIiIiIiIibYhTMFphBgWjZRn219drTYf3IkREREREREREREQyjO6cFZH0Eci1bui3W/xeezD+8Y/sgnW/d24fdlP8c4h41X4QnLYYqnaBWQt5PeHQGmg/2D0ksF7f863wtINrrLG87ONVbhfvfQM5VmBCKnU73grK2rWgYVsgB0Z8O3U1SeyyO1jfg9X77Nv3LU1NMJoRSP6cIunoyGew9RGo3A7dT7JCKJuHgLRFpksgVc/Tk1dHuhl8HWz8s3uf/Uvgs9fgs1es1//+c6BwgPs+XoPRDnzkrV9rEc+TPrfPhcFf9a8WvyRiIXgwhuPmtXfCztdhzE+g9zmZ9bpnhq3z4OW3NNoWgg3/ZwUgTPid89c5kGOFkQRyYP29TduO+SP0mw3Ve6FdD+sYTlJv7B2w8S/24fJlH0GoGoI2wTZmGEqfsIK783parwdZ+S377V8We2173rECaUIeX8MbC7aLfd5EGHA59L0Qyj62AjPaD7F/XXA7tw45BA+JiKSa0+tTsoPRmjv5VXjhKCjf5Nxn09+sYOqCftbnZSutgMr6Y526ciskbfk34ehfwMCr9KAUSQ3H85zs5NbRWPHJ1vF96aP27Se/Yp2HvXWe9bAWPw38sn9j5feCU96Cii1WqC/Aoqug/BPvY+xfAk90gkFfta5R9IghMG7J161zrsZ2zYOniq3Xn2E32R9vN+YYFJ7C7xMRERHvDODhBM9hfj6PiIiIiIiISEwqQvbXuzMpGC3b4b2FOrf7GUVEREREREREREQyiBIeRCR9GIbzotGqPfGPH+lp9b3Pjn8OkWgEgtZCnYL+EMyBTkdHF3AWyIZOY/wNRQPI7eq9b8llkFPk7/zRMgw46QUYeRt0Pc5awDXjDeh+Ymrrktj1dAnbK0tVyI3uqxfh8CZ4ZZIVrrP2LnjrXFimYFkAdrzk3NaWF6wOuspbvwUzreCpFd+DlydYIZhuvIbqbH0Ids731rc1iOeGtr0L/avDT2GnheBxBKPFGmpWtsIKAVichgFyTswwLDi9aShaY+vutn7ewg5Pia1//ZrwBzjmT1A8wwqGO/5RGPI1yO0MHYYqFC2dBLKgxyn2bWYYDq9vui0csn7O3rkY3p0Nq++A5TfDc0Oh5gCYJoSqPv+ogQMrYq+t/BM4uCr6/bpMie9nPlGy2kHXSdbPgNvryqS/2m8PVSWmLhGReDm9PgXzkltHi/lz4PQlkR9usrHR6+7au5wDqFZ8D14c3fbClCU9OB5/5yS3jubG/9b+vYZ+F0PPmVZA2EVl/s87+Bp/xzMMK3C9+CTr46x1MPbX0O2E6MbZdB/MnwGrfx3dfqt+2TIUrbEV34One0PtIfdxEhEULiIikjz1oWWJ/BARERERERGJS3nI/jptQbB9kiuJXbZh/95CnVmLaZpJrkZERERERERERETEfwpGE5H0ktvNfnu1D8Fo610WIvQ5D9oVxz+HSGvgFFDYXMcxMO43ia3Fq6x2cPTPYOa7cMIj0O3YVFck8eg/27ktr3vy6hCRptb8Giq3N922/h44tC419aQLM+welNSWg9G6HAMlX4xun5oD8PGP3Ps4LSK3s+LW6ObPZE6Lpr2o2uVfHX4yHYLR4lkIboZi3xdg0/2w+634xkiWT5+Dna+591n0FefvnfpgBsOAIdfBjNfhpLnQ/2J/6xR/TX7Aua3s82CyIzvhrS/AI1nwSDZse7JpvyOfwhOd4eEAPNru849cWPkT57GH3uhe17YnYVmEPnaOfzj6fdJJMN9+e1jBaCKSpsLV9tuDucmtw05OJ5hwt/WABCerfg51lVbw55YID0qp3gMrb7f+vul+mDsAHu9oheGWf+Jf3SLNOR5/p/j6QX4fmPpM0yDEDsNh7C8bPjcCcNx//Jtz7K+g8zj/xrMTyIKjvg2nvg0Tfh/9/h9+1zo2Prg2ct/qfZGvaQDUlsHjRbDuD1YYsR3HoPA2fJ1JREQyjZngDxEREREREZGY1YSrqTHt3xcrDGbOAwKzHB66YmISwuE6s4iIiIiIiIiIiEgG0SOFRSS95HWDgzbb4w1GqyiF8k3O7Sc8Ed/4Iq1JbtfIfUb/GEZ+HwLBhJcjbVCvWc5tdZXWn+WfwOYHobIU+nwBesyIf5Gu29PRDOUJi7DjJfvtWx6GMT9OailpZdcCa+GrE6ONL1gdfxdseTC6fT57FUI1ELS/cSuqYLR9i6Fqd9sI1owrGG23f3X4KRHBaPn9nNuyi6DW7oS0mc3/gu5TY68hGcwwrPhe5H5lH0FWoX2bFtxnptzO0H4oHF7fsm3Vz6BmPyy9wd85R/yPFZpdNByWXO/fuAOvgsIS/8ZLhcbBIo0d+cw6n8nvA91OsAI7RETSQcgpGM3h9SwVep7m3v5ERzh9uXPIW2PbnoTXToA97zZs2z7Xuu502lLncxKReDid0zosXkqqHqfAedut8/KcztD9BMgqaNqn1xnxzTHgS9BhGPS9EDoMjW+saA38Mqy+A47siG6/mgPwxulw5mrIcgi+Bdj9ZnTn5stuAiMIQ22Oz02HceI5HxYREUm8UhRaJiIiIiIiIhmgPHTIsS2TgtGyXe5NrA3XkhXUvT8iIiIiIiIiIiKS2XTnrIikF6dApuq98Y279i7ntrG/VriTSGO5Xdzb84ph1A8UFCWJYwSgx6mw87WWbXXlsOHPsORrDds23Q8FJXDaoviCb8yQW1GxjyvSGphhqNxm37bxz207GG37M+7tbT1YKNgu+n3MOji8ATqOtG+PNgDs4Kq2EYzmFCLmRboGo4Ud/k3x/Fx1HA35fVu+phWNhJnvwwsjreBVN5vuh8l/i72GRAtVw8LL4eBqb/33vme/va0HO2aybsfbB6MdXOV/KBpAt8+DAod8Dfa+b4UH+mHQ1f6Mk0puQUILL7f+7HocnPwyZLdPTk0iIm7CVfbbA3GG0fspEIRZK+Clo+3bw7Xw4mjv4zUORatX9jGUPgoDLo+tRhE3Tue06XL9ILcLlFzi3J7T0Qp23fNO9GMfdSuM/UXstcUruz1MnwdLr7d+9qMJXq/YCp/83T7E7L99IpxL2ln6dStsrnBA0+2JOB8WERFJMNM0S1Jdg4iIiIiIiIgXFaHDjm2ZFIyW5XJvT51ZA7g87ENEREREREREREQkAyjRRETSS243++1Ve2Ifc/9yWPd75/Zes2IfW6Q1Khzo3j7+dwpFk8RrP8R+++ENTUPR6lVsgZU/i2/OcLVzm77npa1zC6mtdX56YptwcI17e1tfsBpLMBpYQQROog1GK1sVWw2ZJtqvS2PVu8E0/avFL05hb0YcOf+G8fnxbKMxArlWYHZ2IZy1GoIebgqsijO8OxFC1fDRD+HRPCh9PP7x2vrrVybre2Fy5+txSsPfR97mz5iDr4Nux/ozViq5BaPV2/serPpl4msREfEi5HBtJJ2C0QA6jbFC9RNp62NNPz+0Ht7/CrwyBZbemL7hwpL+ag/ab8/KoMVJY26Pfp+CEhjl07FiPIqGw4z5cHElXLgfCgd533fro+7tTg8ViGTxtS23OQbo6bl3IiIiIiIiIiIiIvEqD9nf82hgkB8sSHI1sct2CUarNeO4l0xEREREREREREQkTejOWRFJL07BaEc+jW28/cvg5YnufYpGxja2SGtV0B+6TIZ9i1q2TboPSi5Jfk3S9mQV2m+3+76st/0ZmPiH2OcM17g0GrGPK9IaVG53bgsdscLRsjPnSYm+OqRgNFeBYGz77XwVSubYt0UbAHZwZWw1ZJp4gtFCVVBXDtnt/avHD4laCN7vAihcDNvnWmP1ORc6jrbasgpg8LWw7nfuYxxcBXknxVeHn0wT3jgDds33b8y2/vqVyZIZKNbvYshqFILZYWj0Y4z4jvUaVLndukbT7TjodaZ/NaaSl2A0sH7v8YuEliIi4olTaLzX17NkGv5N2Pla4sbf8bx1jGUYUP4JvHZ8Q2j4vkXW3KctarvnwhKbULVzMFpu9+TWEo/ik+HsjfDcYOc+2R0AA4ygFZ479Pr0ei0JBCGnE5y5Cj55AJZcH3mfPW/Dzteh4xio/LTh/zJUBbld4cCK2GrZ/aZ1/tv4HMwxKFznaSIiIiIiIiIiIiLxcgpGyw8WEjBivN8tBbKNHMe2WtPtnmgRERERERERERGRzKBgNBFJLwX97bcfWgtmGIyA97F2vQnzprn3OeMja2GTiDR14lPw1nmwf4n1eXYHOOZPUHJpauuStiMrhieuVW6DUA0End/odxVSMJqII7dgNLDChQZcnpxa0knNATiyw72PodPumGx7yjr2COa2bIv2aZZtIRjNNJ0XTXtVtTv9gtEcF4L78HPVeZz1YWfM7dbPdumjzvsfWA7FaRSMtnehv6FooGC0TJbTCfKKoWpX4ufqP7vltgl/gGU3etu/YACMu8PfmtKJ1/CP/csSW4eIiFehKvvtdsflqdZrlhWsX1eeuDnW/AaO+g5s+ntDKFq9Q2th+3Mw4LLEzS+tT/Ue57a8DApGA2g/CGZXwZKvwSf/AEwoGgVT/g5dIjywKJ0Ec2HI16DfbFj8Vet6hJv5p/pfQ7gGDm+EohGNtiUoKFxEREREREREREREHIPRCoOZ9UCcLJd7e2rjecimiIiIiIiIiIiISJrQnbMikl6KjrLfXlcBFaVQWALhEJRvhLKPrKev15RB4QBr4UJWvtW/tjxyKFqf86DjaD+rF2k98nvB6YutIJzqfVA0UgtuJLliCUYDK8SksCS2fcPVzm3RBHOKtEbV+9zbtz7WNoPRKkoj91GwEBQOto7fo1F7ED57Bfqc07ItHOXTLMtWWsFhrTkQ2WsoWn4f56DDt8+HITfAwCvTJ/gi7PDvSvRxaXYhnPAIVN0Lc/vaB4Qsv8U6n+xxSmJr8Wrn6/6PGYgxbFbSQ9HIxAejdT8J+pzfcnuvM7wHo/X9gr81pZtgFOc12+dC77N17iEiqWOazsfagTQ5PmzuvO3wRMfEjf/hd6H3ObDqZ/bta+9UMFprUx86Ha6BULX1Z/1H88/D1daDFhp//t++DtuqdjrPnWnBaGCdO055AMb+CkJHoF0fCARTXVVscjvDiU/Ckc/gzXMbHhrjpy6TYd8i+7b3r4TprzcEltdV2PdL19djERERERERERERkQxSETpsuz3TgtGyDed7e+rMKO+xExEREREREREREUlDSjgRkfTiFIwGsPgaqDkAB1faL0zf+Bc4fbm1iH37M5HnGnxN7HWKtBX5fawPkWSLNRitclscwWhuNwG04jAdES/cggMBdr5iHafldEpOPemianfkPgpGg56nwYYog9EAdr3hEIwW5dMsaw9aC5vze0VfQ6bw+jWZ9SE82dW+rexjWHIdbH0ITn4NgmkQiuUU+GYk6XJWXlcY8V1Y+RP79vmnwvi7YfhNyanHiWnCxz+K3G/MT2HkbfDSOChbEbm/odevjNZ/NuyaH/v+xTOsMIauU6D4ZNj8T9i/DCq2Qo9TodsJMOJb9qGThQOh80TYv9R9DiMIg66KvcZMEM25yVvnwcAvW+EiIiKp4HZdJJiXvDqikVMEU/4O73/ZW//60GYjy3u4cOmjzm0HPvA2Rr1wXdt++IRpWucuruFijcLE7MLFPAWWRRli1rx/KhjBzL6mkomhbk7a9YRT34Kne1nXuvw09Ouw0CEYbd9ieHYQnLnaes11CjnO6+ZvTSIiIiIiIiIiIiJtUHnokO32gmD7JFcSnyyXe3tqzSjvsRMRERERERERERFJQ2347nsRSUvZ7SG/H1SWtmzb+Zr7voc3wOo74OifRl7kPewm6DUr9jpFRCSxsgpj269yW+xzui18LI8h0EekNbELpW0sXAvb58LAK5NSTtrwEoymYCE4+mewb1HkgJzmqj6z3x5tMBpA1U4FowHkdoGC/lawkZPdb8H2p61QpVQLO4RVJDNwsP9s52A0gOU3W+F7o35gHxCVDLsWRO7TrqcVimYYMPNdeLI7hCrd98nv7U99khoDvgQ750HpYy3b8nrA1Lnw6mTn/We83vRzu6BKJ4YBk/4Kb54FR3Y49AnCuN+6B+S3BtEGCX3ydxhwuRVGJyKSbG7nfcHc5NURrY6jvfU7+pcw8n8bPt/0d1jkIaDz4x/HVFYTh9bDoqth70LI72sdOw7yGObmVYvQsUjhYrEEjvkQYib2cruBEUh1FVIvmAcz34fnh/k7biAH+s+BrY/Yt1fvgaciBJ/ltqIQOhEREREREREREZEUcQpGKwx2SHIl8QkaQQIECRNq0VZr6n0ZERERERERERERyXwKRhOR9FN0lH0wmhdb/g1jbod9S5z79DwdJtwd2/giIpIcWQWx7RdPMFqo2rnt8Aaoq4i9rnRlhmHfUjjwAXSeYH2kKtRF0lvY5eej3tq720YwWl0lbH8W6g7But9H7p/MAKd0ldPRWlD8SJSXIGoO2G+PKRjNQ4hdJvPyNSkosf7M7e4ejAaw46X0CEYzHYLRjCRezioaAb3OgB0vOvf5+EfW13fgl5JWVhOfvRy5z4hvN/yOzyqwQq6cFuPX6zkz/tokdYJ5cPzDcNT/wv5lDT9P7XpB96nWa3PP0+CzV1ruWzw9/vk7j4Oz1sDud6xwyk5jrRDBQ+ut78Fux0HhwPjnyQROX2cnn/xTwWgikhpu532BKIMekyk3QohQfZ8h1zXdVnIJfHQbHHEIZPZLxbam4UoVm61AtnV3W+9VxBIu5rRNMle7HqmuQJrrMBTyuvt7PSGQDb3Pjnwu5ibPw2ueiIiIiIiIiIiIiLiqaCXBaADZRjbVZstgtDozhnvsRERERERERERERNKMgtFEJP0UjfS2sNtOxVb49DnY/aZzn3G/jm1sERFJnlgDyCriCEaLtIB0+3NQMif28dNNOASLr4ZP/tGwbfA1cMyfwAikrCxJU27BgfXKVsDWx6D/xYmvJ1XKVsGCmXBkh/d9jGDi6skkgSDkFUPVLu/7VO+33x7LTVutPRjNy9dk1A+tP/O6R+67+Z9w7D/iKskXToFvgSRfzjrmT/DiaKi1vykSgPevgB6nQH6v5NVV7+Bq9/YJ98DQG5pu6z/HfTF+j1OhoH/8tUlqGQEroKzzOPv2wdfYB3aVXOrP/NkdoPcZTbe1xcCvfrOjC0ZLl9dgEWl73M77grnJqyNakYLROo6G4x+1QkEbC+bBzIWw5Hr3EFxXEcLl9y2FV46xbyv7yPoQAeihUOK0dNZaeKKzf+MFcqzzxpxOzmHwkeR6OKcXEREREREREREREVflocO22wsyMRgtkEN1qKrF9lo9VEdERERERERERERaAQWjiUj66eSwYNert851bgvmWwuhREQkvWUVxrZfZTzBaBGCn1bc2rqC0bY/0zQUDWDjX6HXWdDn7JSUJGnM5sYZW+/Ohn4Xts5wvcOb4MVR0e9nRFgo35YE86Lrv3+JFc7QPITBKSzLTTSBbJko0tekeDr0n239PS9CcES9x4tg+Ldg5K0QyI6tri0PW79bdr/RsK3jaOh+Mhz9Uys0yY1ZZ7/dSPLlrIJ+cNzD8OaZ7v2e6Q2XmsmpqTGnYLTcLnDBXvu2nqdDdhHUHrRvn/QXf2qT9NbrLOh1RtMwmO4nWUFe4p+SS2HRVdHts/7/2bvP8LjuOm/j95lRsyT33uM4sR2nOE53qtNJIz2B0GGBZemwLGF3gST0Tlg6+wCBZcMSCJAQ0nvvxenNiXuvkmWVmfO8ODGWpTmj6Wr357rmss6//iRLU6RzvvMj2PNffB4xEKy8GZ7/Lmx5AeiFxwgpH9meUyb6cDBa1ZDs/ac8Ef8atWE6LLwOnroEnr40/717Cox75MPZ+yWAYbNh9sd7uwplUjMSjroa7rkg/vVpPhLVUD0UDvwB3P+OwtbIJexckiRJkiRJkpRVUyrzmyM2JodWuJLiVQWZz+tqL+TNRyVJkiRJkiSpjzEYTVLfM/UceGwstK4t/doLrij9mpKk0qtqKGxeUcFoPbw7WvNrha/dF73wvcztL//MYDR111NwYGdPfBbmfyu/9VPbofl1CJIwdI/85lZCy2q4tg/W1d8UEqbw6CfgkJ/s2lbIu1m2rsl/Tn+SLcRi/2/CrI/sDIxI5fjz3L4FFn0RVt4IJ92beUwYwuZnIExD24Zo7ZoR0c/ys9+ApX/sPmfTouj24g9g4d+BN0IqaobDiHm7Bluk+0gwGsDkU+HYm+D2k7KPe/5ymFPBUIN0e/xzlEN/GT8vWQt7fQae+s/ufeeuh9pRJSlPfVyyBo7+Kyz9E2x8PPoZnHJWzwEzyk+yNgrqT23Lfc4jH4GWlTDvy+WrS+URpqPHxm0rosfQuNddUn+Tb8hxpY05HNbd1729cffcgrsLDaLM9hqnZSWsf6iwddVPBNHjfKIm+l5I1ES3ZJfjRE2ncZ2Pa2HUQdHfxHz+3XdNPRtOeRz+HvOmS/t8Hp7+Um5rJWqif2e8HYbPhRsOzL8eg9EkSZIkSZIkqShhGNIcG4zWw5s89kHVQU3G9o6wgHPsJEmSJEmSJKmPMRhNUt9TNQSO+Rvc9zZoejlqqx0dXaA7Yr/oNnI/uOdCaHolv7XHHF76eiVJpdcbwWipQXYSwNqYkJsV11W2DvUPqe25j33u27D/N3K7+Bxg/cNw70U7n/dNPgOO+D1U1edfZ7k8/+3ermBgSBYQjPbyT2H2R6MLhnfIFgIWp2V1/nP6kzAmQAxgt7ftGnKU68/mDuvug5uPguNu2fX/sHkJ3H0ubHgkv/U6u+PUXY9rR8OC38Gkk6PjuM8r0Uu/zpp4IhxzHdx5WvyYpy+LgugSycrU1LoeCDP3NeyWfe7cz8K2ZfDq/4t+rkbOh8P/x1CGwSZRBdMvjG4qn+F7w4aH85vzwg+in9Pq/veO1IPWlhfgzjNg60u9XYlUeoU8l6+kuRfDXW/u3j7+2BwXKDAYLVtoc9Nrha2pNwQ7w8N2CRTLNXSs0/GO8cma7iFmOc2PW7NCz/nV+0bsAxdsg4feD69fGQWhBskobHrfS2DOp+HBf8ocDt5Zonrnx6MOgPM25TZvh5qRMGyvgj8NSZIkSZIkSRK0htvpiDknqX8Go1VnbG8PCzjHTpIkSZIkSZL6GIPRJPVNYw6BM16Atk3RBdp14yDocnFSw/T8gtH2+CDUTyptnZKk8qhqLGxe67o3LkzLM/QFIN1a2J6qvDANr/4aVt8Br/8vhCmYeg7se2l0oaJKL9+fj3UPwNgcAmnTHXDjIbu2Lb8W/tAAFzT3jXC0MIQlV/V2FQNDoq6wea9dCfO+tPO4kGC07SsL27u/yPY1SXQ5+W3KWfDa7/Jbf+098Px3osCJ138Pa+6Cl3+Wf509aV0P970VTn8R6sZkCUbLfEJfRUw+FY6/DW49LnN/2wb4fRWM2Bc2LYraZn0EZrwTRh9c/P5b+BFGAgAAIABJREFUXooCA1Mt0WNf3fj4sXVjs6+VqIJDfgL7fzU6rh7R/XW3pNIYe3j+wWgdW2HRpdC+aWcI4rK/Rn2zPgb7XQo1I0peqgoUhvC3Ob1dhVQeyfro1pdNPh0mvxmWX7OzrXpYdH+Z0/zTYNEX89831RI9F8/0/HTDo/mvVzFxoWM5BIwlMwSOFRM6FhdiZuiY+pqqIVGQ9ME/joIPh+6x8/dWNcPhqKugdQPc/y5Y8bfMayRqdj3eMa9tI9xwyM43DYgz9+LoZ02SJEmSJEmSVLCmji2xfQ39MBitquvvnt/QYTCaJEmSJEmSpAHAYDRJfVeQgNpR8f1143Jfq2G36GIFSVL/UNVQ+NxUS2Hz022F7znQdDQX939QiHRHFNDSk1Qb3P8OWPKHXduXXh3dTrgbxh1ZnhoHs1SewWiv/1/mYLSOFkjWRWF2iSq4bm78Gn/fD057JrpIupJSrVE4b6IKakbB6tuh+fXK1jBQFfp/ufL6XYPRCjlpa8vzhe3dX+QTjDbxpChsIN/Awxd/GIU7LL06//ry0bYxCm6b8/HosSGToJd/nTX+WJh0evzF7rAzFA2ir91LP4Ejr4KpZxe+79r74JZjdgbGvfSTKIAtTu2Y3NatGVl4TZJyM+0CeOHy/Oc9/53M7S/+AF78Lzh7JQzJEpCoyrn3Lb1dgVQ+E0/K7fV6bwoCOOJKeOWXsPJGqJ8Me30Ghs7Mbf7I+VA/FbYtzX/vts1RqG9n25bDox/tee6oA2HIpBxDx/INGDN0TCqL6mEwcr/MfbWjYNT8LMFoMSHfNSPh9Gfhue/Ak5/LPOaI38P0C/OvV5IkSZIkSZK0i6ZUfDBaY3JoBSspjeog8++e79p0A882PwZAMqhmRt0sjh5xCkOrhleyPEmSJEmSJEkqSh+/kkGSsqjNIxjt+NujoDVJUv+QrC98bnuTwWjF+kMjjD0SDvt17hcRF+qVX8GT/w7bV+1sGzYHDrw8uvh6h1W3wEMfgqaXs6/39GVw3E3lqXUwS23Pb/zSq+DA70cXpwM0vQYPvBvW3LlzTLIu+7pNr8Btx8OJ9+S398v/DQ+9f9e2XALztq+Dh/8Zll+TPWRKlbfhUbh+Piz4TRQCVcj/z7ZlcPPR0RqNu5W8xF6XTzBa9bDoguq78wzoallZ/lC0HR77BOz5QdjyXOb+3g5GAzjyD/CHPJ6vhCl49GMw+YzCgkXCMLqPCruExXUOYOusekT8RfeSKm/MAtj3Ulh0CRCWaNEQnvkqHFRA4JpKq21T9+BmaaAYtlf/ecORqnqY/ZHolq8gET2/u2lB/nNTzUCXYLQXftDzvGOuhcmn57+fpD4uiO9K1GTpq4a9L4bRB8N9F8H2NVH7yPmw8HrDcCVJkiRJkiSpRJpjgtESJBiSqPAbCpdAdZD5d8/r21ezvn31P46fbX6MR7bezaenfo3GqmGVKk+SJEmSJEmSitIHriSVpALV5RiMNvqwgRl+IEkDWSIJySGQasl/bkcTkOVCsY1PwIbHoG48TDplZ3BmLnulU1Ftg8Hae+DWY+HNr5Q+WKV1A6y4Dp77Dmx6snv/lufh9pPh6L9C8+uw9l5Y8n+5rb3q5ig8JshyEaLyl27N3F47GlrXd29vWQmrb4MJx0O6A249DpoX7zoml7C1tffCdXvDuGMhWQvVw6FhGkw8GYZM3DmufQu88kt47JOZ17nlKNjzw92fPza/Bg27wZjD4IXLYcXfe66ps8N+DcPnwo2H5DdvsKrLct889ZzsoVsbn4CbDoezlhQeZLn2brjlmDfu1wbIr0OaX4cVN2T/3s30rqBTz4LzNsCau+GuM8tXXzFuOwm2r87c1xf+/6qGwJFXwT3n5z5n2zJ48Ucw5+P577fxifgQtExqx/Q8RlLlBAHs+wWY8Xa4poTBw0uvMhitL1hzV+5jp50PE08pXy1SKQ2bA6MPGjxhq2MOg/O3wh+HQ5jOfV57U/e25dfGj0/UwLnroHpo/jVK6t8yvT7vasLxcMbL0e/EkkNg3FG+8ZMkSZIkSZIklVBTTDBaY3IYQT8877Qql989v2F123Ie3noXx470zXskSZIkSZIk9Q994EpSSSpQ/eTcxs18X3nrkCSVR1VDEcFoMZ79FjzxWSCMjkcdCCfcHYWbtG/tee10GySG5F9Tf7VtKay4Hqa8uXRrbnoGbj8JWlb0PLbQsJ4dgVwqnVRMMNrU8+Dln2Xuu+0EOOyKKMCsayhaPjY/G906qxkJx1wLY4+AjU/C9fv3vM5LPyq8hkwOuwJ2f2dp1xzoxh8LS//UvX34PlHA1BMXw3Pfip/f0RSFp6XbM/c3zoy+17KFGGxbAqtvh4kn5ld7X7T8b3DPhZDaln1cXIhYzcjo/n3GO2Hxb0pfX7HW3h3f11cuCp90Wv5Bro99Igotm/G2/PZ6/ff5ja8bm994SZXRuDvs/h549VelWa9lJbSsgiETSrOeCtP0Sm7jhu8NR/6hvLVIKk51I+zzBVh0Se5zuv4eKt0BW56LH7/flwxFkwa0LBfNJWtyW6J6KEx6U2nKkSRJkiRJkiTtoimV+VzhhuSwCldSGvXJxrzGv7TtaYPRJEmSJEmSJPUbfeRKUkkqQP3UnsdMOBFmvrf8tUiSSq+qobB51+8Pd5wB6x7c2RaG8NQX4Yl/4x+haAAbHt15sesrv+h57XRbYTX1ZxseKX6NjhZ47ttw/QHw931yC0Urxn1vL+/6g1F6e+b2uvFQPyV+3gPvioLwSq1tIzzyEdj8fG6haKU2cn/Y7a2V37e/m/EuGHf0rm1VDXDg96Kgq/nfhPpp2dfY9AyEqcx9h/43vKUdqkdkXyNbSEF/0boB7jyj51C0INFziFhdmcN09vhnuCiEUx4v3Zotq0u3VjGqhsCUs/Of98hHoG1Tz+NW3QK3Hgf/G8Bz38xvj6Gz8q9LUmXs84XSBjxeMyN6nn33+dFzI1VW6wZ47FM9jxsxD05+uPz1SCpedZ4XvXQNRtv6UvbxI/bNb31JA0dQ3dsVSJIkSZIkSdKg15TakrG9Mdk/39hmTv1+eY2PC4aTJEmSJEmSpL6oqrcLkKSC9RSMduRVMPWc0l5sKkmqnERt4XNX/C26Hf0XmHJmFMr19GWZxz73TRi6B2x5oed10+2F19Rfrc/z4v0wDRsfh0QNDJsLiSQ8+vHcgudKZfsqaF0PtaMrt+dAl2rN3J6sg+F7w7Zlla0HYOMTcN1eld83WQcLfgMJL2bNW3UjLLwBVvwd1j8AQybB5DOi++Adhs6EbUvi11h9a3xfojp67j/j7fDiD+PHLb8Wpp4H9ZPy/xx6S7oj+p5vehWCAO65ILd5uVx0PaTMwWgNb7xuG7k/jDkc1t1X/Jqdv2d629x/gyV/gLAj9zntm+Dxf4M5n4Rhc2DzM9CxDaqHwpbnIbU9eizLJWgnzm4XFT5XUnk17gZnr4bFv4bHP1P8eqnt0fPvjY/D0j/COWugbmzx66pn6Xa45ZjsY+Z8GkbsF4Xq+vxR6h+qh+c3vmsw2uans48fvk9+60saOBI1vV2BJEmSJEmSJA16zbHBaHm+eU4fceDQo3iy6UGebHqw58HEf/6SJEmSJEmS1BcZjCap/8oWjDbz/TDtvMrVIkkqvUQJnqredRZMOAnW3pV93EMfyG29dFvxNfU3K2+Ara9EYUU9aXoVbn8TbH0pOh6xH0w5q7KhaDvccRqcdH8UIKTipbZnbk/UwvjjYeWNla2nNx13C4zYt7er6L+qhsC0c6NbJo0zYfXt8fPrxsX37bjAeP63oH0LLP5N5nGrboG/ToN9Pg/7fKHv309segbuPAOaF+c/N5cAltosX9NSGNcpMOaIK+GBd0f/x4lqmPHu6Ov/8s/zW3PUQaWssDgj50VhiQ99EDryeEfVV35RvsfHIZNh4knlWVtSadSNgb3+NQrWevLfS7v21ePgLR1RQLHKa+VN2QOQRh8KB3y7cvVIKo3qPC96ae8SjPbM1+LHDp0F9VPyr0lS/5HtdwyGpEqSJEmSJElSr2uKCQZr6KfBaNWJav5p0r/x0ranWbz9BTrC6A2gV7Qu5cmmB7qNj/v8JUmSJEmSJKkvMhhNUv9VNQSGTISWld37DEWTpP5vR8BNsVbdVJp1YOAEo6Xb8xv/+Kfh6L/0PO7et+0MRQPY9FR06w3rH4SlV8eHLyk/6dbM7clamP5WePmnUTBeUQLY91JY9IUi1ymTCSfCcSW8P1Fmjbtn79/yQnzfjguMk3Ww4AoggMVXZB4bpmDRJTD2KJhwXCGVVkYYwv1vLywUDbIHye1Q3VjY2rmYeDKMOXznccM0OP426GiBsD0KnWhanF8w2uQ3w6gDS19rMXZ7K0w9F1LN0fH2tdA4A1pWwF93q2wt9VPhtCwhPZL6lslv7jkY7aT7YfsauOvM3Ndd+keYfmFxtalniy7N3j/jHZWpQ1JpVQ/Pb/yO54AArRtg4+PxY/e7rO8HM0sqn1L9vluSJEmSJEmSVLCmVOY3Pmzsp8FoAMkgyZyGecxpmPePtmeaH8sYjNac2koYhgT+zUqSJEmSJElSP5Do7QIkqSjTLujeVj0Mxh1T+VokSaVVNbS3K+huoASjpVryG7/sGmhZnX3MtmWwvvtJFL3qhct7u4KBIxUXjFYHtaPgpAdhWhHhGyPnw5tfhn0/D8fdUvg6mSSHROFXO275GHtUFFhy8I/h2Bvixw2ZWFyN2qmnYLRtS7s1pcIEzal6CKp37WjYref9Xvnv3GvrDZufho1PFD5/4ik9j6kdW/j6mSTrYNLpMP/bcPQ1mYMfqoZEr9sgChA7c0luax/wPTji95BIlq7eUknWQM3I6DZsVhTU1zAdTn6ofHvu/w2Y/QkYfyyMPx72+jc45fGdX1tJfd/wuTBiXua+2R+HM1+HMYfBlDdHAbK58nlw+S3/G2x4OPuY+qmVqUVSaeUbjNbetPPjpX+KHzduoaGV0mBQMzK+L1Ed3ydJkiRJkiRJqojm1JaM7Y3JPnjOchHigt7SpGlJN2fskyRJkiRJkqS+xmA0Sf3bvpdEFxTtUNUIR/8FkrW9VZEkqVT6YqjHQAlG69iW54QQ/jwB2jbGD1mRJTSqHOrGwR4fyD5m7d3w6CchDCtT00CW3p65PfHGc666MXDk7+HQX+a/9ryvwSmP7QzEmnA8jDq4sDp3mHI2vDUNF4Vw4TY48a6dt7emYfYne17j7JXR+GP+Cnt+CIIsL58P+H7m9lkfK6z+waxxZs5DO9JJPvLi5Yy6Zx2j7lnH6b+cyvqmTj/vdeN6XuT1K2HLiwUUWgFhGu4+r/D5QRXs/7Wex406IP/whzhzPwcXNMPCa2GvT0dhYblomBoFLA6Z1L2vbjyccHf08zznE1GoWn8y+mCY9ZHSr5uoju6bDvweHH8bHH8LzP8G1I4u/V6SyicIYMGvoX7azrZhs+GspXDg96GhU/ue/5z7uuvuh+v2hfU9BHepMOl2eOiDPY8zGE3qn/L9fdRrv9v58aan4sft8x+F1SOpf5n+ViBDQPjwuZCoqng5kiRJkiRJkqRdNcUEozXEBIn1V9mC3ppSWytYiSRJkiRJkiQVzmA0Sf1bzQg4/lY49Sk49iY4ZxWMP7a3q5IklUK2C1EX/HbXYMxKSbdXfs9yaM98YkeP4i7+3/gUPPT+wuspxJ4f6TkYDeCF78Nr/1v+ega6uFDArmG0M98DC6/Pfd39vw57X9y9PVsIWU+mvwWOvjoKGskkCODA78Kpi2L6E1Gw05AJue858WRomLFrW3II7P7O3NdQZEdAXg4ufvVr/HjFh9maGkZ7WMPfn2/g7B+ndw4YMjG3hW5/E6T6UPBlGMLa++Dv+8HWIkLbzt8M1Tm8k2myLrf7056cuQT2/2rhP79jDoHTX4DjboHDfxfdjr0JzngJxh1ZfH29af+v5/W9nZP9vpTb/6+kvm/k/nD6c3DiPXDifXDqM1A/pfu4unFQOyb3dTc/DTceAs98FZqXlq5ewapboWVFz+MMRpP6p5o8Q4M3Pgav/x88cTG8+MP4ceOPK64uSf1D3ViYdn739j0+VPlaJEmSJEmSJEm7SIdpmmNCwRqrBlYwWragt+aYcDhJkiRJkiRJ6msMRpPU/wUJGLEvTDwRqhp6uxpJUqlkC0abdEp0q7S4cKj+5oXvFzZv6Z+gZeWubU9/Ga6fV1w9DTNg7BEw51M9jx2xHxzwXdjnP2HUgXD8HVFIRDZPXxoFDalwcaFRQXX3tklvguNuhbFZgoyG7x0FHM79bMy6BbxUrR0DB3wPFvwmt/Ej9omCnKaeB3UTou/DPT8E52+Bqvr89q4ZDifcGYWyNUyHiafAsTdG36PKT83InIalw4D/XfPWbu33vAzLNr7x855r8EDzYlj+11wrLK8whPvfCTcfAZufKW6tfL6P9/86zPsqjJgX/Xzu9yXY78u5z9/zX6ChBOEv1Y0w4XjY7aLoNvHEgRH+VdUAh/6ydOtNfwvM+XTp1pPU+6rqo+fDYxdAIhk/bspZ+a/95H/A3/eB1XcWXp92tfrWHAYFUDu67KVIKoNsv4+Kc+9b4NlvxPfve0lxAeCS+pcFv4W9PgPDZsPoQ+GQn8Hsj/R2VZIkSZIkSZI06G1PbyNNOmNfY5Ygsf6oNqijKtP5nUCTwWiSJEmSJEmS+omq3i5AkiRJyijbhaiJ2ijAaNlfYN39latpIASjtW2EV39d2NwwDX+eBMdcB5NPhY1PwVOfL7yWiSdHa+0IfwhDeP678ePPXgFDJu7aNv4YOGc1PHVJFICWydaXYOMTMGp+4bUOdmFH5vZE5hNnmHBcdCtYkOOwquji0pnvLWybhqlw1FWFzc201hFXlmatwSwIYOxRsPburMM2dYxgVdvEjH1/XxTygaODKLAuV6//Hqadn0+lpZdOwQ3zYdOi4tea/pb8xgcJ2Ptz0W2Hto2w5CrY9GT2ucNmx4ccaqfxx0RhiRseLW6d2R+HAwsMOJXU/+3zn7D6Dmh6Ob957Vvg1oVw4XZI1pajssFlWQ6BqqMOjJ7XSOp/kvVRePb2VaVbc9zRpVtLUt+XrIH534xukiRJkiRJkqQ+I1sgWGNyALx5YydBENCYHMamjvXd+gxGkyRJkiRJktRfGIwmSZKkvmn4PvF9ydookOm4W+HqsdDRXJmaBkIw2sanINVS3Bp3ngYHXg5b8wxkANjr36L/u1EHwpQzozCeHYIAgiSEqcxza0bGrzv9wvhgNIhCjwxGK1y6PXN7XDBasTp/X3R19ipYcV308zjmcBi5X3lqUO+Z+d4eg9G2dMSHZ+6SQTL7E/BCDiFSS6+Gxb+F8cdD/aQcCy2xh/85/1C0fS+DZ77c/fFp5vuLr6dmJJx0Hyy7Bl74HlQNhTmfhEmnwIbHYPWtUD8VJp0KNSOK328w2PcSuPOM+P5Jp0dhR1VDYcxhUNUIw/eKHhfbNkaPnYZqSINbw3R408Ow/FrY9DQQwsu/gPZNuc2/8WA49amyllg2HS2w6Y3aRx/Se6Fjza9Hwcs9mfm+8tciqTyCAHa7KHtwe76y/Y5LkiRJkiRJkiRJFZEtEKwhmeXNnPupxuTQmGC0rb1QjSRJkiRJkiTlz2A0SZIk9U1Tz4lCYrqGeI0+ZGcYU9UQOOTncN/bKlPTQAhGKzYUbYdHP57f+NGHwYIrYNis7OMS1ZCKCUZL1sXPG75XFBiz4dHM/Sv+BvO/kVut2lUYQtiRua9cwWhkCbqoGxsFZ2ngmvEuaFkFT34udsimjvggrsbaTgc1o3Lf9/53Rv/u/R+w35cqG7jSuh5e+e/85w2fA8feCA+8F5oXQ+0Y2P+bMOG40tRVVQ+7vSW6dTb6oOim/Ew+PQoW7foYOvU8OPTn2QNAJWmHmhEw4x07j+d9JbpfeeknPc/dtCgK9mqYXr76ymHD43DvhTsDyUYdCEdf0zthpk9+vucx874Ge3yg/LVIKp/9v17aYLS6saVbS5IkSZIkSZIkSQWJC0arCqqpDbKcn9pPxYW9NWcJiJMkSZIkSZKkviTR2wVIkiRJGVU3wt7/vmtbohr2+eKubVPOhFFdwlkady9PTen28qxbSXEBV+XQMANOfwHO2wAn399zKBpAUETQ1kE/iu/b/GwU8KX8ZfueKeb/K5sgy0vVbH0aGIIA9r4Y9okPHtnYER8g1VjbKdCskKCpZ74Cq2/Nf14xNj5R4MQEjF8IZ74K566Dc9bAzPeUsjKV2uyPwYXbo9uZS+CCZjjqKkPRJBUuUQ0H/xgubIWp5/Y8/q6zIEyXv65SCdPw4Pt2hqJBFIb8yL9Uvo4Xfgiv/Tb7uPM2Rs9jfM4q9W+Japj85tKsNeGE0qwjSZIkSZIkSZKkojSntmZsb0wOI6jkm2hWSGNMMFpcQJwkSZIkSZIk9TVenSNJkqS+a5//hKP+BLu/B2Z9BE64CyafuuuYqgY47hbY/5sw9bwoSOfkh8tTT7qtPOtWUrqCwWinPxeFoeUT9jL6kML3G3MoHPbr+P7FVxS+9mCWLRAwUVWePYfuUZ511b8kh8R2beoYntsahX6PLu4h9KTUmpcUNq/z/Wvt6ChUTn1fsja6NUyFqvrerkbSQJGsgSOvggX/A7Vj4sdtfAIe/Xjl6irW+kdg4+Pd25f9FZperVwd914Ej340+5j9vw41IypTj6TyK1Vw7e7vK806kiRJkiRJkiRJKkpcIFhjcmiFK6kMg9EkSZIkSZIk9XcGo0mSJKlvm3oOHPZLOOi/YMxhmcfUDIe5n4GjroL9LoPaUTD3s6WvZSAEo4UVCkY74c4o9CVfe306c/tu78ht/rij4/se/lD+9aiHYLTq8uy554czt086NXO7BqZE/H3Ixo74kIKOdKeDMFXY3ot/U9i8Qq25I/85VQ0wZkHJS5Ek9WNBADPeBueuhWRd/LgXfwhLrqpcXcVYd19839K/lH//VCvcdiIs+b+exzbuXv56JFVOzaji15j1MZh2XvHrSJIkSZIkSZIkqWhxgWANMQFi/V1DTOBbc2prhSuRJEmSJEmSpMIYjCZJkqSBaca7S7/mQAhGS+cQjDbxlOL2GH0ojD2qsLkTToDhc3dtS9TAnh/MbX7t2Pi+1HbYvrawugazbMFoQZmC0UbuD2OP7LJXAvY03G5QyRLosqljRGxfR+cstNGHFL7/4v8pfG4+0h2FBbHN/ABUDSl9PZKkgeG0Z7L333MBpPrB65t198f3bX66vHs3LYarJ8CqW3IbXz28vPVIqqzaIoPRJp0GB10OiarS1CNJkiRJkiRJkqSixAWjNQ7QYLS4zyvu6yBJkiRJkiRJfY3BaJIkSRqYhs8p/ZoDIRgt7CEYbcR+sPBvsP/XoaaAi4AnnADH3QRBUFh9iWo44S6Y+T4YOgsmnQrH3gBjj8htflVD9v7NzxZW12AWZglGS5QpGC0IYOH1MOsjMGwvmHAiHPUXmHx6efZT35Ssje3a2DEyti+VDncejDoQhkwqbP/73wHbVhQ2Nx8rb8jeP+pA2Otfo/vl0YdGx/O+Bgd8u/y1SZL6r8bdo8eMbFZeX5lairHuvvi+7WvKt+/q2+HaPaB9U+5zqgfmyfLSoFUT/5ojJ3t9ujR1SJIkSZIkSZIkqSSaU1szthuMJkmSJEmSJEl9k29TLkmSJOUqNcCD0apHwEH/BUEC5n4WZn0U/tBD0FhXR/8VquqLq7F2NBz634XN7SmQ7daF0b/jj4W9/z0KclN26SzfM+UKRgOoboy+HzV4JeKD0ban62L7OtKdDoIEHPILuOdcSG2P2urGwfS3wguX91zDXybDOaujOeXy+h/i+w76Icz68M7juZ8tXx2SpIFn+kWw4dH4/rvOgrNXwpAJlaupJ02vwiMfhy3PQVUjbFsWP7ZcwWhhCI9+HMJ0z2M7Sxb5OkhS3zJsduFzZ/4TjDumdLVIkiRJkiRJkiSpaE0dmQPBGpJDK1xJZcQFo21LNZEOUySCZIUrkiRJkiRJkqT8GIwmSZKkgWvIJGhZUbr1Us2lW6u3ZAu5Om0R1E/ZeVxIwFmxoWilMHwubH42+5jVt8Pae2Dh34EAkkNg1EGQrKlIif1K2B7fV85gNCkZH36WCuNPyurommEy+VQ47TlYeWN0HzXhJBgyHvb4Z3j1V/DcN7PXccOBcMYr5bt/WP9gfN+088uzpyRpcJj5Pnj6MmjfHD/mzxPhmL/B+IVQlWcocqk1vQrXzMx9fGuZgtGaX4NNi/KfVzO85KVI6kXjjoH6abBtya7te3wQRh8CYQoe+kD3eVPOgkN+3nNwuyRJkiRJkiRJkiqqKZU5GC0uQKy/iwt8CwnZlmqmsWpgft6SJEmSJEmSBo5EbxcgSZIklc2+l5R2vScuhk1Pl3bNSgtjgtGGzd41FG2HyW8ubz3lMOm03Mal2+G2E+G2E+DmI+CGA6DptbKW1i+lswSjBQajqYwStbFdqZqxsX0dqQyNjbvBnh+EGe+IQtEAhs+B+d+AC1uy17FtGay5o8dyCxKG3YMWdpjzaagbV559JUmDQ81wOO6WnsfdeTr8bS/Y8Hj5a4qz9t78QtEAtq+JHktLrZDXfI17RAFKkgaORDWccAeMPQKCBNSOhXlfg4N/AjPfC3u8H858DcYeFfVXj4B9Pg9H/clQNEmSJEmSJEmSpD6oObU1Y/tADUbL9nnFhcRJkiRJkiRJUl9iMJokSZIGrmkXwMj5pV3z3gtLu16lpWOC0YKqzO17fw6qMr9rXDdTziqsplKb9eHC5m1+Bh77RGlrGQiyBaMlDEZTGSWzBKMlGmP7OtL57lMHx92afczGJ/JctActK+H+d8GVCUhtzzxm2gWl3VOSNDiNPgiO+L+ex21bGgUFh/k+kJZAqhXue0cB81rggffApkXF17DxCXjoQ3DXOXD/2/OfP+/LBiFJA1G/5G7VAAAgAElEQVTjDDjxHjh/C5yzGva+eNef9YbpcOJdUf9562G/y6KQNEmSJEmSJEmSJPUpqTDFtnRTxr6BGozWkIw/99dgNEmSJEmSJEn9gWfnS5IkaeCqGQ7H3wbzvwNTz4Fhs2HKmbDvpXDYrzPPGTEv+5qbn4U195S81IoJ44LRkpnbxxwGJz8Acz8Hu78nClU44yUgw0X/084vWZlFaZgOJ9xd2Nxlf4V1D+4MKkp3wPa1EIalq6+/yRqMFhOoJ5VCsi62K5VoiO3rSBWw14TjYOq58f3tmd8ttCDb18K1e8Li32Qf1zC1dHtKkga3yadB9fDcxt755vLWksnKG6F5cWFzF18BNx0B6x8pfP9Vt8JNC+Dln8KyP0N7nieAj5gH0/t5gLak7KoasocfVjUYiCZJkiRJkiRJktSHbUs1EZL5PNBsAWL9WU2iltog8zl4BqNJkiRJkiRJ6g+8il2SJEkDW80I2OtTwKd2bQ9D2PoiPPPV6DhRCwdeDnt+EG47GVbdFL/mLUdB4x5wxJUw+qCylV4WscFoWV4aDJ8L+39117bDfgUPfQDSbdHxnE/B9LeUpsZSGHtE4XNvOiz6t2G3KBSsZTnUjonC9CafVorq+pdswWhBdeXq0OCTqI3tSsWcsAWQKjTHcMFvYemfMve9fiXM+1KBC3ex6IvQ0Zx9TKIa6saXZj9Jkqoa4Kir4bbjex674rooELS6gid+L/tLcfM7tsLz34Uj/rew+c99e2cwciEmnVr4XEmSJEmSJEmSJElS2WULAmtMDqtgJZXVkBxKa0f3v4c3p0r4RqGSJEmSJEmSVCa+fbkkSZIGpyCAeV+Bs1fBCXfDuWujUDSAZHzgzj80vQy3nQBtm8tbZ6mFqcztiTwzk3d/F5y7Dk68B85ZAwd8B4I+9PIiCGDqucWt0fxaFIoG0LoO7jwDNj1TdGn9TpglGC1hMJrKKJktGG1IbF9HzN1cj6qGxAc8Nr0CTa8VuHAnqTZ46Sc9j6ub0LfuUyVJ/d+E42C3t+c2dsMjpd9/+1p46afw1Bdh9Z279m1+tvj1X7+ysHlhCKtvL27vurHFzZckSZIkSZIkSZIklVVzlmC0hmQF3ziswuJC37IFxUmSJEmSJElSX+FVtpIkSRrchoyHcUdCdacTG2rH5Da3fTOsuqk8dZVLuiNze5BnMBpEX7OxR/TdIIBcgx9yFsKSq0q8Zj+QNhhNvSQRH1KZDuJD0zrSRexZleUktxe+X8TCb7j5iNzGjTum+L0kSeqqblxu40odBrz1ZbjhIHj4Q/D0ZXDrQlh06c7+7WtKs8/Gp/Kf07EV0q09j5v3FahqzNw38ZT895UkSZIkSZIkSZIkVUxTamvG9tqgjppE/Llo/Z3BaJIkSZIkSZL6M4PRJEmSpK7yCfp6+svlq6McwphgtEQBwWh93ZQzYeis0q65ucQhEf1B3PdMkIhuUrkEydiuVBAfmtaRKmLP6mzBaJfDvRfBnyfBldVw7azoMSDMMYlt3QOw4ZHcxk5/a27jJEnKR3XmE5672fx0afd95iuwbcmubYsugRsPi0LYWksUjPbwh/Kfk1MoWwCzPgaH/KJ7MPC+l8HwOfnvK0mSJEmSJEmSJEmqmLggsIZklvPFBoCGmGC0ZoPRJEmSJEmSJPUDAzD9QJIkSSpS7bjcx6a2l6+OckjHhVwNwJcGQQALr4Nr9yzdmsv+Urq1+ot0e+b2oDpzu1QqVQ2xXamq4bF9HTnmlGXeszF7/+tX7vx460vw1Odh4+Nw1J+yz0t3wE0Lcqth7BEw8eTcxkqSlI/q+MfPXTS9CusfgbX3QstyGHskTDo1e5hy81JYdx90NEXHVUNh3NFQNx6WX5t5zvoH4e/75Pc5ZLPuPkinIPFGuGpHM6y5K3qtM/7YzPXnEoxWPRyqG2G3t8Dog2H1rdHrwHELYeR+patfkiRJkiRJkiRJklQWccFojTHBYQNFY1Xm4Lem1NYKVyJJkiRJkiRJ+RuA6QeSJElSkeryCEZL1JSvjnIIB1EwGkD1iNKuF3bAhkdh1IGlXbcviwtGSxiMpjKrnwRDZ8HWF3dtHzKRdM3Y2GmpYoLRqgt4B9ClV8ODH4CDfxT/c5FrqOK4Y2DBb3cGukiSVErVOZ7Qverm6LbDc9+CIAlnvgb1U7qPf+mn8OjHMjxvDGDfS6F1faEV52/dfTDuKFh7H9xzHrSsjNqHzYaFN0DjbruOzyUYraZToNzQmdFNkiRJkiRJkiRJktRvNA/WYLSYzy8uKE6SJEmSJEmS+pJEbxcgSZIk9TlVjbmPHSjBaIkBGoxWMxJi3vGuYHefC2FY2jX7MoPR1Jvmf3PX4MYgAfO+ljX8rKOYYLSgwO/rV34Bv6+BRV+CVGv3/rX3ZZ9/URjdTrgDGqYWVoMkST1JZ3iMylWYioJAu9ryUkwoGkAIi75Q+J6FuOVouPetcPMRO0PRALa8ANfM6D6+NYdgtFwD5SRJkiRJkiRJkiRJfVJTamvG9oYBHowW9/nFBcVJkiRJkiRJUl9iMJokSZLUVe2Y3Mf2t2C0dEwwWjBAg9ESSZhyZua+428rbM3m12Hri4XX1N+kWjK3D9TvGfUtU86Ek+6DOZ+Gvf4Vjr8Tdn8XqSzZhB2pIvaL+37P1aIvwG0ndg9PXH5N/JwDf1DcnpIk5WrIpOLmr7x+1wC0jm3wzFfig3RLbeIpuY17/ffxfQ99aNfjbct7Xq96eG77SpIkSZIkSZIkSZL6pKaYILDGUr/xbh/TGBOMFvf1kCRJkiRJkqS+xGA0SZIkqavRB0GuJzsk+1kwWhgTjJYYwCFXB/0Qxi3ceTx0Fpz2DIw/tvA119xVdFn9wiu/gvvfkbkvUV3ZWjR4jT4YDvg2zP8WjDsSgFQ6fnhHlr4eFRuMBrD2blh9a5d1t8WPL+a+SJKkfIw5AoIi/yTQ0RT9+9JP4K/TYPEVxdeVqyETYPShxa3x8k+joOMdNj/b8xyf90qSJEmSJEmSJElSv9YcF4wWExw2UDQmM58L3ZLeRirufGJJkiRJkiRJ6iMMRpMkSZK6StbB7I/mNjbRz4LR0jEnMgQDOBitZjiccDuc8TKc/jyc9iwMnxv17f7uAtccUbLy+qx1D8GD743vNyBCvahswWgTTihicie3nQh3nwu/r4E/joaWlZnHJethxD6l2VOSpJ7UjYHd31PcGh3bYM098PCHoXV9aerKVaIW5l4MBMWt89fdYNUt0cebn+55fLvvlC1JkiRJkiRJkiRJ/VlTTDBawwAPRmuICUYDaEptrWAlkiRJkiRJkpQ/g9EkSZKkTPb7Mkw8uedxQT8Lh4p7h7eBHIy2w9CZMGw2JJI726ZdWNhayYbS1NSXvfqr7P397XtfA0rWYLRUEQuPWQA1o4pYoJOlV0O6Hdo2xI85/dnS7CVJUq4O/hns/3UYfVhhrwE6tsGzXwPCkpfWo0QNTD0LFv4dJp9R3Fq3nQiPfRq2vtTz2LbNxe0lSZIkSZIkSZIkSepVcSFgjQM8GC3b59ccExYnSZIkSZIkSX3FIEg/UCZBEMwB5gFTgCHAdmAN8DLwZBiGzUWsXQ0cAUwDJgJNwArg8TAMXyuuckmSpAoJAtjni7DyxuzjwvbK1LPD5mfhyf+ENXdC/VSY/y2YeGLu8+OC0RKD9KXBhBNhj3+Gl3+a37x0W3nq6Ut6+pokDEZT78kWjJatr0eJKjj8d3D32ZDaXsRCOagZCfXTyruHJEldJZIw97PRbc09cMtR+c3/26zy1JWLZE3076Q3RbdrZ8PWFwtf7/nv5jau3WA0SZIkSZIkSZIkSeqvOsJ2tqe3ZexrTA6tcDWV1ZDl82syGE2SJEmSJElSHzdI0w8GpyAIRgAfB95LFFoWJxUEwRPAH8Mw/Hoe648FLgUuBEbFjLkP+G4Yhn/KuXBJkqTeUjeu5zGplvLXsUN7E9x5BjS9Gh23bYDbT4YT74Gxh+e2RjomGC0YpC8NEkk4+Mewxz/BY/8Ka+7IbV66taxlldzGJ6FpMQzfC4bN7nl8mEOylMFo6kWpML6vo5hgNIiCVt78Kqy6BWpGwcj5sP6B6Gdo2zIYdQCk2+GF78OmRYXvM3yfKIRTkqTeUtXQ2xXkJ1Gz63H91OKC0XI1453l30OSJEmSJEmSJEmSVBbNqa2xfY3JYRWspPKqgmrqEvUZg+GasnxdJEmSJEmSJKkvGKTpB4NPEATnAz8BRucwPAkcCEwBcgpGC4LgFODXQE/pIYcDhwdB8Dvgg2EYNueyviRJUq/IKRhte/nr2OHln+4MRfuHEF78Ue7BaGFMMFpiEL80CAIYdSAc/jv4yxQgS+LSDum2spdVEmEI974VlvzfGw0BzPsq7H1x/JxUK9xwUM9rG4ymXpTKEn6WrS9nQybCjHfsPK4/p/uY3d8Niy6Fpy8rbI9JpxQ2T5KkUunvwWjD5sDqW8u/77Tzy7+HJEmSJEmSJEmSJCkvYRiypn1F1uAzgHXtq2P7GgZ4MBpAY3JoTDDalm5tqbCDFa1LaA+7nyObDKqYVDON6q5/u5ekCujpPn9E1WhGVY+tcFX9W1u6lfXtaxhXM4lkkCx4nVSYYk3bCkZXj6MmUVvCCiVJkiRJMhhtUAiC4IvAJRm6lgAvAmuBOmAisC+Q1xVxQRAsBP4CdP7tdgg8BrwKjADmA2M69b8NGBYEwVlhGJbisnVJkqTSq2qE6mHQ3v2P//+QaqlcPU/+R+b2DY/kvkY6Jhgt8KUB9ZNg7mfh2RyygVOt5a+nFF75RadQNIAQnvwcTD4DRuzdffza++HmHEP26qeUpESpENnCzzpSFSoiSMB+l0LNCHjsU/nP3+MDpa9JkqR89HYwWtVQGDoTNj6R2/iuJ87NeAe89KPS19XZ9Itg9MHl3UOSJEmSJEmSJEmSlJcl21/h58u/zoaOtUWt05gcWqKK+q7G5LCM4XDNXYLRHtlyN79b9SNaw/g3jK4KqjlrzDs4duQZBEFQ8lolKZNl21/j5yu+ljXoEmC3ull8YPLFjKgaVaHK+qcwDLlxw5+4bt3vSdHBkEQ975zwceYNPTTvtZ5qeogrVl5OS7qZJFWcNuZCTh51no8RkiRJkqSSSfR2ASqvIAg+TfdQtCuB/cIwnB6G4YlhGF4UhuE5YRguAIYBRwLfA9bnsP4U4Gp2DUW7F9g7DMODwjC8IAzDk4ApwMeB9k7jzgC+XOCnJkmSVH5BAOMWZh/TUaFgtHQHpLu/AxsAW1+EdI5JQKHBaFnN+yoccy1MPSf7uHQ/CUZ7/vuZ21+4fNfvmebX4alLcg9FA5h8ZlGlScXIGoxW6ejtOZ+E426F2Z+MwlMmntLznIXXQ+3o8tcmSVI2vRmMtu9l8KaH4U2PwVFXw6yPwv7fzP442vVdp0cfAuOPLX1tiRrY88Nw+JWw4DdRGKokSZIkSZIkSZIkqU9oT7fzo2WXFR2KNiRRT3IQnDvbkByWsb2pUzDaytal/HLld7KGogF0hO38ce0veX7bkyWtUZLipMIUP17+pR5D0QBe2/4iV6z8XgWq6t+eanqIa9b9Dymi60pa0tv4+YpvsL59TV7rbGhfy8+Wf52WdDMAKTq4Zt3veLLpwZLXLEmSJEkavAb+b3AHsSAI5gFf79TUDlwUhuEf4+aEYZgmCja7Nwhy+g3/pcDITsf3ASeE4a6/DQ/DsBX4QRAES4A/d+r6VBAEPwvD8PUc9pIkSaq8cUfB8mvi+1MVCEYLQ3jum9nHtCyHhmk5rBUToJbwpQEQheFNPh0mnQp/ngTbY/6ImuoHwWiLfwtbnsvc98ovYOUNcNgv4YnPwYZHcl83UQ1zPg27v7skZUqFyBqMlgorV8gOE46Lbjusvh0eeB80L951XKIG5n8HJr2psvVJkpRJbwWjzfoo7Pv5ncdTz45uEAX2xukajBYEcNiv4PaTYcsLpatv/rdh9kdLt54kSZIkSZIkSZIkqWSe2/Y4W1Obi16nMSYwbKCJ+zybOrb+4+MHt9yR15oPbrmdvRr2L6YsScrJC9ueYlPH+jzGL2JD+1pGVY8tY1X924Nbbu/WFpLm4S138qbR5+e8zsNb7iKk+wndD265nf2HHlZUjZIkSZIk7WD6wQD1RqjZL9n1//iD2ULRugrDsKOHPfYE3tWpqQ14d9dQtC5r/iUIgis6zasFvgi8N9e6JEmSKqq2hz+KbV8F6RQkkuWrYe298OR/ZB/T9EpuwWjpmKd4g+Bd7/ISJGDuZ+GxT2XuT7dVtp58pVrh/ndmH7NtKdx2Yn7rjj0Cjr2x90I0pDdkyz7LFppWMeOPhdOfj8JdqhuhfQu0bYIR+/jzI0nqOxLVvbPvnv8S35eszdJX072tYXr0mLv1FXjpJ/D8d4qvr35q8WtIkiRJkiRJkiRJkspieetrJVlnYm0O59wOAI3JoRnbm1Nb/vFxvl/TFa1Z3vRMkkpoeQH3NytblxiMlkXc13RF65I813ktZh0fIyRJkiRJpZPo7QJUNucDB3Q6vjUMw1+VeI+LgM4JIFeHYfhSDvO+0eX4giAI6kpXliRJUgnlEmBz2wnQ3hQFpJXDq/+v5zFbX8ltrbjs24TBaN3M+WR839NfqlwdhVh1a3nWPfgnhjqpT8gWftbRF4LRIApvGbYnDJkIw2bDmEP9+ZEk9T3TLuzeVjsGqvN8Z+wZ74JDc3jdMvEUGD4nvj+Z5dfEiSyhaUNnwt7/XprA5waD0SRJkiRJkiRJkiSpr1rVurwk6xw+/ISSrNPXNSQz//2/qVMw2uq2ZXmtubptBemwr5yoJ2kgW9OW/33+6gLmDBbt6XbWt6/O2Jfv1y1u/Lr2NbSn2/OuTZIkSZKkTAxGG7g+2OX4q2XY4+wuxzkFr4Vh+BzwYKemBuCkUhUlSZJUUrmE2Ky5A64aGt3ufDNsK/Ef0179dc9j1t7d85imV2HVzZn7ShEgMBCNPz5ze2obtG2ubC35aMoxKC8f+14CI/Yt/bpSAfpFMJokSf3BAd+NAjx3qGqABf8D7Vvi53RVPw0W/Bomndrz2PHHZO+vGR3fl6jJPrd2FBz2awg6/dljzOEw93O7tmWTrIehs3IbK0mSJEmSJEmSJEmquHxDvLqaVDONd0/8JPs1HlKiivq2xh6C0drTbaxvX5vXmu1hGxs71hVdmyT1ZFUB9/mr21aUoZKBYV37KtJkPtF6TdsKwjDMaZ0wDFkT83UOSbOufVXBNUqSJEmS1JnpBwNQEAR7AJ2vMHsNuL3Ee0wA5nVq6gDuzWOJO4BDOx2fAlxTfGWSJEkllksw2g6pFlh+bXS7oCm/uXHSHbmNW/wbOPT/QSLmKX5qO9x8ZPx8g9EyS9bG9y37K+z+zvj+MITNT8P6R2DkfjByfu6BDMXavqY068z9LAzfJ6p9xN6lWVMqgazBaKnK1SFJUr9XPwlOeQLW3gNtG2Hs0TBkfGFrDZmQw5gp2fuHz43vS23ref0Zb4Pxx8Lq26F+chSMlqyB3d8Nm5+BMA3pVlh9G6y7HzY/22X+O6F6aM/7SJIkSZIkSZIkSZIqLgxDVrdlfvPit43/MIcMW5h1fhBAVVBdhsr6rrhgtObUVgDWtq8kjAnJ+cy0b/CtJZ/N2Le6bTmjq8eVpkhJihF3n3/BuPezsm0pd2+6oVtfIWFqg0Xc1xOgNdzOpo71jKwe0+M6mzs20Bpuz7rPxNqpBdUoSZIkSVJnph8MTMd2Ob41zDWuPXf7dDl+KgzD5jzm39fl2JQFSZLUNxUabvaHRjhnNdQV+Uf/psW5j11zJ0w4PnPf0j9Dy8r4uYlkfnUJNjwaH4wWhvD4Z+D57+xs2+0dcNgv48PrSqk1v3fv62b6W+HgH0PNiNLUI5VY1mC0LH2SJCmDZB1MOKE0ax35B7jngvj++p6C0bL8mjjVmlsN9ZOigLTOhs2KbjvsdhF0tMAzX4FXfgHJeph2Acz7cm57SJIkSZIkSZIkSZIqblPH+tgglkm106hODK7Qs1w0JjO/OVhruJ32dBurYkJyEiSZVjeT4VWj2NyxoVv/6rblzG2YX9JaJamzpo4tNKW2ZOybVDuNkMyXy67JEv412PUUGre6bXlOwWjZAtZy6ZckSZIkKVeJ3i5AZXFIl+P7AYLICUEQ/CoIgmeDINgcBEFzEASvB0FwSxAEFwdBsFuOe8ztcvxynjW+0sN6kiRJfUOywGA0gEWXFr//9tW5j33+e/F9K67PPrdlVe77DCYd2+L7qurj+9bcsWsoGsBrv4UlfyhJWd2k2mDRZXDjArh2Nrz8s8LX2vdSOOJ/DUVTn5bKEv2dLTRNkiTlaM9/KWzemAXZ+4fumb2/fgrUji5s7XxVDYmC0M5ZDWcuhvnfAE+SlyRJkiRJkiRJkqQ+K1vQyviayRWspP9oSA6L7WtObWV1TEjO2JqJJIMqJsR8XXsK15GkYmW/z58Se7+/ObWRllSWawAGsZ5C43INNDMYTZIkSZJUKQajDUwHdTl+7o3As1uAm4F3A3sBw4B6YBpwPPA14MUgCH4UBEGWlAcA9uhyvCTPGl/vcjw6CIKRea4hSZJUftnCr3qy/NrC5jUthqbXoo/bN+c+b8V18OoV0LIS1twNbW/M7dgWhXJl07h7QaUOeB3N8X3JLN8br/wyc/urvy6qnFj3XgiLvgjrH4CtLxa+TpCA3d9VurqkMskWftbWUbk6JEkasKaek/vYsUfs/Lh+Ckw4KfO4cQuhflL2tYIAdn9f9/bG3WHkvNxrkiRJkiRJkiRJkiQNOHFhXMOSI6hPNla4mv6hMUswWlNqC6taM4fX7AhEGxcTPNRTuI4kFSvuPn9Iop5hyRFZAzHXtK8oV1n92uq27F+Xnvr/Ma7dYDRJkiRJUmVU9XYBKouJXY7rgYeBMTnMrQb+BVgQBMFpYRiujBk3osvxmnwKDMOwKQiC7UBdp+bhwMZ81pEkSSq7qobC57asgDAdhU3lNH4V3Hk6bHg0Oh59KOz2tvz2fODdOz8OEjD7kzByfs/zchkzGKWyBKNlC8177X8yt6+6ubh6Mnn2m7DsL6VZ66iroWF6adaSyihbMNq2tsrVIUnSgDXheDjoh/Dkv0P7luxjZ3141+MFV8A958Hae3e2jVkAR1yZ2977fjEKe94R7jx8bzjqz7m/rpIkSZIkSZIkSZIkDUhxQSvZwnEGu/pkIwEBIWG3vqbUFlbHBA+Nr5kCwIQ3/u1qlaE3ksos/j5/CkEQMLJqDNVBDe1h9xOHV7ctZ3rdHuUusV8JwzA2bG6HXEMvewpQW5NjwJokSZIkST0xGG1g6hpa9it2hqI1Az8FrgeWAQ3APOC9wJGd5swH/hQEwTFhGLZn2KPrW6m0FFBnC7sGow0tYI1dBEEwDhib57SZxe4rSZIGsGKC0cIUtG2E2tG5jb/vbTtD0QDWPxjdCt4/Dc9/B5JDso8btxDGHl74PgNZR5ZgtKZXK1dHnPYt8MRni1+nbjyctQwSvkRU/5AtGO1p/5YuSVJpzPowzPwnaH49el1z02Hdx4xbGIWedTZkApx4D2xbAduWQf0UqJ+U+75V9XD4b+DgH0LremicUdSnIUmSJEmSJEmSJEkaGOICXcbHhHcJkkGS+kQjzemt3fqiYLTMITgT3gibiwud29yxge3pFuoSPZyjLEkFirvP33H/lAgSjK+ZxLLW17qNiQt9HMyaUptpSWe5NgL+P3v3HSbJVd/7/3Oq0+Sd3Z2ZnrC7ykI5gIRAIAzYGOk6EJzANjYY44BzIjj8CNe+Nk6P8c/GXCcMBmNjDAZsIRDJgBICIUArIVZC0oaZ7pndyalTnfvHaKXZmTrdVTOd+/16nn12+5xT53ynt7u6e7rqU8oWwgajlR+34i9pubiovvhA6PoAAAAAAAjCWe9txhiTkpTa0nz6N/z3S7rRWntsS/89kt5ljPkNSX+6qf2Zkl4v6fcDltoajLa+g3LXJO0tM+dOvFbSm6owDwAAwAZv61uriNanwwWj5U5J2c/sbi2XUpkM28t+T7roNyQvUZu1W125YLQj75DOf42096ot7e+sbU2bHftwtPE9B6WuUalrWFqbkhL9Uvr50iWvJxQNLaVcMJok3T9pdcm4qU8xAAC0s1hKGrhw498vvFu666ek+W9s3L7sTRvvI40XvG3PeLRAtK0SAxt/AAAAAAAAAAAAAACQO4hl1BHehQ29sf7AYLTjuUeVs8Gng50Om3MFo0kb/x9ndZ1fnSIBYAvXPn9zGOZIcsIRjBYu4KuTZELcJ7OFGeX9nJJlzqEp+HnNFqYrzpXNnyAYDQAAAACwa5z53n5ijvYFBYeiPcFa+2fGmAlJv7ap+deMMX9hrV2usK6NWOdOtwEAAKgvs8tgnfVpac/FlcedvHN36+zE8LOkK95a/3VbSXG1fP833io950NP3i7lpXvfUH4ba3f/uDrtkXeHH2vi0vc9JMWS1VkbaKBShU+Tf/wJq396FcFoAABU1f5rpP/19UZXAQAAAAAAAAAAAADoQOv+muaLpwL70qkDge3Y0Bcb0HRhclv7w2v3O7dJJzcuhLY3PqSESapg89vGZHLHCUYDUBMFv6CThWxg3+bARld4Yza/fZ/X6cKExVlZzRSmNJE62zlmujApG+K04Ez+uM7rCXEeDQAAAAAAZXiNLgDVZa1dleQHdP15uVC0TX5PGyFqp+2TdFPAuK1Bad3hKiy7TaXwNQAAgNaz8li4cTboLVyNnfvq+q/Zas55Rfn+zK1n3p67VyosBI897QsvkXLBB+dEkp+Tsp8NP77nIKFoaBulCrvM99xBDjcAAAAAAAAAAAAAAAAAtItygS6jjmAcbOiLDwS2P7Z+JLB9ILZXPbE+SZJnvCdC0raaLlQO2QGAnZgpTMkGniIbLhhtOj8pvxHnZzSxMMFoG+PKh8qFDZ0Lux4AAMqodT0AACAASURBVAAAAOUQjNaeVgLa3hNmQ2vtiqQPbWl+bsDQZg1Ge4ekyyL+eVEV1gUAAO3s3FcGtz/lV6SeQ1L/he5t7/xJaf5wiEUa8MVb78H6r9lqzvnJ8v3FLW9h83OV5zz+EenmK6Xs53ZcliTpob+PNn7vFbtbD2gilYLRAAAAAAAAAAAAAAAAAADtI5M7HtieMEntjQ/XuZrW0hvrD2wv2mJg+9agoRFH8FAmR+gNgNrI5oP3+Z48DSdHn7jtCsYs2LzmiidrUlurCh+MVn5c2HmmC+EC1AAAAAAAKCfe6AJQE/OSNv/WOmutfTTC9ndKetWm2xcHjFnYcjvStwjGmD5tD0abjzJHEGvttKTpiLXsdlkAANDuLv0dKfNpafXYk21X/qF06Rukp/3Fxu1PXCed+lLw9nf8uHTgxdKJ/5ZSQ9L5r5EOvuTMMbZUm9rL6Tu3/mu2mqHroo0vbH2b7LB2Qvr086Xh66XEXmltUko/V7r8LVKir/L21kr3vi5abRe8Ntp4oIkRjAYAAAAAAAAAAAAAAAAAncMVxJJOTsgzXp2raS19sYFI47cGo40mDwSOCxuOAwBRufYvQ4lRxU3iiduu4MbTc+xPjFS9tlZV72A0XiMAAAAAANVAMFp7+pakg5tuT0Xcfmsc+/6AMUe23D4r4hpbx89aa+cizgEAAFAf/edLL7xbOvERafW4NPoCaeSGM8ck9ri3n7t3489pUx+XznuNdOFrpT2XS15MKq7WpnaXvnOl3nPqu2YrMp501sulx97vHuMXJe/xj1aFxQiTW2nmtidvzt0jnbxDesEXN9YNsj4tLT0s3fXqCOtIGnqmlP7OaNsATSxMMNq/3OXrR6/jgDcAAAAAAAAAAAAAAAAAaHXZ/PHAdldoF54UNRhtdEvQUDo5HjhuujAp35bkmdiOawOAIBlHqNZo6sx9fpfXrT3xfVoozm4bm82f0CW9V9ekvlZT8As6WciGGlsp0Gw6ZODZTD6jki0qZjiFHQAAAACwc5wh3J4Ob7mdi7j91vFdAWMe2HL7/IhrnLvl9v0RtwcAAKiv7rR0/s9IV7x1eyiaVD4YLcjDfyd9/GrpYxdI84el4kp16gxr4kWSMfVds1XFusv3l9af/HdhYXdrnbxj489Wfkm662ekD6WlW6+XFre+Hd/khv+QzvvpJ2+nnyc98583AviANlGylcf87/8KMQgAAAAAAAAAAAAAAAAA0PRcITnpLSFe2C5qMFp6S/BQ2hE+V7QFzRZO7rguAHBxhXMF7fNdrwOVAr46yclCRlYhrkqtjfvN2uBjsK21oe9XX6XQYWwAAAAAALgQjNaevr7l9mDE7beOPxUw5r4tt68wxvREWONZFeYDAABoLYloBw08YeUR6ebLpLt/Ltp2z3iXdPAHdramJO29aufbdhovWb7f35QrXFjc/XoP/8P2tiPv2AjTq2TftdLBl0rX/Z30w6vSSzLSd35G6j9v93UBTcQP8d38g1mpUCQcDQAAAAAAAAAAAAAAAABaWcmWNFOYDOxzhXbhSb2x/kjjR7eEDI0kx51js/njO6oJAFw2wreC9y2jAfv8dIJgtEqi3Bfr/qoWS/OBfUulBa35qzVZFwAAAACAIASjtaePS9p89ve5xpiuCNtftuX2tt8kWWundGYAW1zSsyOs8dwttz8eYVsAAIDmk9hT3/W6J6SJ79v59oNb3/LByV8v31/a1F9Y2P16p+7a3nbsg+G2vWBTwF68W+pO774eoAmVQuadZaqQVQgAAAAAAAAAAAAAAAAAaJxThWkVbTGwb2uIF7bri4W/+HPCJLU3PnxGW5fXrcH4/sDxhN4AqLaF0pzW/bXAvnTAPj+dIhitkkzEEEvXfRf1Ps3mg0NNAQAAAAAIi2C0NmStnZR0x6amhKTvjDDFjVtuf8Ex7sNbbr8qzOTGmIskXbepaUXSJ8OVBgAA0KQS4Q8aqIquEensH5e6x6JvG++XBi6ufk3tqljhqkZ+7sl/F6qQwrRwv5T59Jlt058Pt+25r9z9+kCTs9bKhgxGOz5X21oAAAAAAAAAAAAAAAAAALWVdQS6GBmNJMfrXE3riRKMlk6OyzPbTzcMCiOSpAzBQwCqLJtzh3gFBqM59k/zxVPOgLVOMx1xX+0aHzUYLeq6AAAAAABsRTBa+3rXltu/HmYjY8wNkp6+qcmXdLNj+PsklTbdfqkx5oIQy7x+y+0PWGvXw9QHAADQtJJ76rtealjyYtL174u+7QU/L8W7q19Tu6oUjFba9Fa2sFB+7NmvkF58rPKan7tJmv+GNHmL9M23Vx4vSS8+IQUcjAK0m5IffizBaAAAAAAAAAAAAAAAAADQ2lzhW/sSw0p6qTpX03qiBaMdCGwfdbRHDckBgEoyjjDM/tge9cb6t7WnE8HBaJI0nZ+sWl2tLBvxfnDt26Pu83mNAAAAAADsFmfNt693SXpg0+3nG2PKhqMZY0a0PVDtA9bah4PGW2uPSHr3pqakpH8yxnSVWeNFkl65qSkv6S3l6gIAAGgJsZ76rpcaenzd3ujbXvWH1a2l3ZUqBaPlnvx3ft497uLfkp7xD1LPAam7whUK/YJ08xUbAWn3/GrlGm+6V+rhqofoDNGC0WztCgEAAAAAAAAAAAAAAAAA1FzWEZLjCvHCmbq8HnkhTyFMJ4MDhkaSwceoEnoDoNpc+xXX/mlfYkhxk4g0Vyex1jrD5tz3W3CQmuv+jCke2O4KNgUAAAAAICyC0dqUtbYk6VckbT5l/M+MMW83xuzdOt4Y812SbpN03qbmOUm/XWGpNz0+7rTrJX3KGHPRlvlTxphfkvTvW7b/M2vtYxXWAAAAaH6FhfquF0tu/B2PGMiWGpIMHwMiKVYKRluXvv0e6VPfIWU/Ezzm6j+Rrv5jyXv8y0MvWb36rvpjae+V1ZsPaHKRgtHKZBUCAAAAAAAAAAAAAAAAAJqfK4hl1BGSgzN5xlNvrD/U2FFH2JyrfbE0p7XSyo5rA4CtXCFermA0z8Q0kiC80WW5tKA1P3g/fVFP8DkIrvvN1X5Bz6XOtVdLyyGqBAAAAAAgGIkIbcxae6s2wtE2+2VJWWPM540x7zfG/Kcx5lFJt0o6f9O4vKSXW2sfqbDGcUkvfXz8ac+SdL8x5m5jzL8ZY26RdEzSX0raHCP/X5J+bwc/GgAAQPMZeEpj1o33Rht/4MW1qaOdDV1Xvv/Bt0t3/qQ0/Xn3mIGLz7w98b27r+u0se+u3lxACyjZ8GNPzFUeAwAAAAAAAAAAAAAAAABoXu6QnOCwLmzXFxsINc4VPORqlwgeAlBd7jBM9z7ftY9i/yRlytwHV/RdG9h+qpBV0RbOaCvagk4Vso55nu5cg/8DAAAAAMBuEIzW5qy1fyXptZJWNzUnJN0g6WWSXiTprC2bZSU9z1r7iZBrfE7SSyTNbGo2kq6R9MOSXihpeMtm75f0MmttKdQPAgAA0OxGvkMy8fqs5aWe/HdqKNq2Z/9YdWvpBOe9unz/0X+rPMfgZWfePvendl7PZnsukQavqM5cQIso+eHHHp+LkKIGAAAAAAAAAAAAAAAAAGgqy8VFrZSWAvvKhXXhTL27DEYbjO9X0qQC+wi9AVAt6/6a5oonA/vK7fMJRnNz3Qc9Xp/O674ksM+Xr5l85oy2mXxGvoIP4r6w5zKlTFek9QEAAAAACINgtA5grf0bSVdIeq+k4G8DNmQkvVnSU6y1t0dc42ZJl0l6p6S5MkPvlPSD1toftdauRFkDAACgqSUHpYt/oz5rXf0nT/470R9+u9HvkoZvqH497W7PZdLBH9z59vF+qefQmW17r5IOvGR3dUnSte+UjNn9PEALiRaMVrs6AAAAAAAAAAAAAAAAAAC1lckfd/aNJg/UsZLW1herfLzxvviwkl5w+JlnPI0kxwP7MoTeAKiS6fyks6/cPj/t2D9N5yfl2wgHHrchVzBZOjmhocSojOMU863bueYx8jScGHe+RhCMBgAAAADYjXijC0B9WGsflvQKY0y3pGdJOiBpVFJe0oykr1lrv77LNaYl/bwx5lceX+Osx9dYkXRC0lettY/sZg0AAICmduUfSnsul+56teTnarNGrEs662Xhx1/8W9LSkY1AtAtfK3mx2tTVzoyRnvUv0r9+cGfbp5+7PbzMGOnZH5CO/I30lV/e2bzd49IIQXfoPFGC0U7MS9ZaGQIEAQAAAAAAAABACzLGvFnSm3Yxxbutta+sTjUAAAAAUH+uQJVur1f9sT11rqZ19cUGKo5JJyfK9o8mD+h4bvtpYdOE3gCoEtc+P24S2pcYdm7n2n/lbU7zxVNlt2135YLREl5CQ4kRzRQy2/q3htS5Quv2J4aV8BJKJyd0LPft0OsDAAAAABAGwWgdxlq7JulTNV4jL+mztVwDAACgKRkjnfNjUt+50q3XV3/+WLf0jHdJXRG+mLv6j6tfRyfyElLPQWn1WPRtD7zIMWdcesovSee/Rvrgfqm0Gm3ep/9d9FqANuDb8GNLvrRekLqTtasHAAAAAAAAAAAAAAAAAFAbmfzxwPbR5AEumBlBb6hgtANl+0eS44HtGUJvAFSJK0RrJDEuz7gvEF8u2HE6P0kwWoDT99lIciIwGG3rdu55Dpwx3/Z5ggPVAAAAAAAIw2t0AQAAAEDb6RrZ3faxHuk5H5Ve9Kj0o1b63gel598qvfiYdNaPbB8/9sLgeQ68ZHd14EyFhZ1t139B+f5YlzQcMUhv9AXS+E07qwdocVGC0SRprVCbOgAAAAAAAAAAAAAAAAAAtVUp0AXh9IUIRhutcJ+OOoLTZgqT8m1pR3UBwGbOMMxU+f1Td6xXA7G9kebsBAW/oJOFbGDf6ddRd6BZ2GC08vPMFKZ4jQAAAAAA7Fi80QUAAAAAbSdMMNr5Pyc99M7gvu//ttSdfvL2wIUbf1wu+Hlp6hPb2w/9YOU6EF6sRyosRt+u52DlMc/7hPR+91WsntB7lnTwB6RL3ihxpUN0KBsxGG01L+3rrU0tAAAAAAAAAAAAdfZySXdGGL9cq0IAAAAAoB6yrpAcR0gXgvXG+iuOSafK36eu0JuiLepUYVrDybEd1QYAp7nDtyrv89PJcS2uzYWesxOcLGRk5Qf2VQxGK5woezvsPEVb0GxhRkPJ0VA1AwAAAACwmdfoAgAAAIC2E++Tuit8uX/tX0tX/dGZbXuvll584sxQtDDG/5d06IfObJv4/o0ALVTP0HU72647xFUJjSdd+jvlxyT2SC96VHrqn0ldQzurBWgD/g6C0QAAAAAAAAAAANpExlr7aIQ/JxtdMAAAAADsVMHP62RhOrDPFcCCYH0hgtFGK9ynI8lxZ1+mg4OHAFSHb0uazk8G9oXZ5zsDvjp4/+T62T15Gn48qCzt2LevlJa0XNy4qPxyaVErpaXAcae3L/ca0cn/BwAAAACA3SEYDQAAAKg2Y6SzX1FhjCdd8nrpe+6Xrv5T6fr3Sy/4otTj/kLIyUtIz/pX6bkfl678Pxt/3/BBKZbaWf0Iduhl0bfpHpNiyXBjz6owf2o4+vpAG4oajLZGMBoAAAAAAAAAAAAAAAAAtJyZwpSs/MC+0dSBOlfT2vpiA2X7u7weDcT2lh2T8rq0Nx58Yd9pQm8A7NJs4aQKNvig30rBjZI7GM0VttYJMvnjge1DiVHFTUJS+dC504Fm2TL34entU16XBuP7y84DAAAAAEBU8UYXAAAAALSlK/9Amv+aNPWJ7X2bA7D2XLzxZ7eMJ43fuPEHtXH2y6T1jHTPr4XfZvS7w48dvEyKdUulteD+5J7wcwFtLGow2irBaAAAAAAAAAAAAAAAAADQcjKOIBVPMQ0l0nWuprVVCkYbTU7IGFNxnnRyQnPFk9vaXeE7ABBWtsx+ZGQXwWizxRnl/HWlvK4d19aqXKGVI8nxJ/49ENurLq9b6/72cxiyhRM6Txc7/2+6vO4zQjXTyQnNF09tG+d6PQcAAAAAoBKv0QUAAAAAbcmLS8+7RTr7x89sTwxKF/9mY2rC7l30q+HHJvdKF/16tPmf+W53X/8F0eYC2pQlGA0AAAAAgJb1kXutXvkuXz/zz74+882IH/IBAAAAAAAAAB3FFcQynBxTzMTrXE1r660QjJZOHgg1jyt4KJufjFwTAGzmCs8ajO9Xl9ddcXvX/kmSpjt0H+W6TzffV8YYZ/Bc9vHts86AtTNDNd2vEQSjAQAAAAB2ht8CAwAAALX0zHdL6edLmU9JPQekc18p7bm40VWhlsZukgYvlS78Ran3rGjbHvqhjcfJasDBPAdfWp36gBbnE4wGAAAAAEBL+otP+fr1Dzz5wf4fv2j1z682evnTuZ4bAAAAAAAAAGC7TC44SGW0TPgNgnV53YoprpKKgf3lAoU2G3UEqLlC7AAgLNd+xLXf2Wp/YkRxE1fRbt/PZfOTOth17q7qazXWWmcg2db7NJ2Y0NH1h7aNqxSMlk6c+drhei2ZJhgNAAAAALBDHGEMAAAA1JLxpPNeJT3rfdLVbyMUrR1c8gZ33/c+KD3vZunqP4keinbaC74oDV55ZtvFvyUd/MGdzQe0majBaGuFiBsAAAAAAICqKxSt/vd/nfkZ3bfSWz/G53YAAAAAAAAAQDBXSE46ZEgOnmSMUV+s39kfNnjIFXqzVFrQaml5R7UBgCRlXOFbIYMbPRPTcGIssK8Tg7mWSwta81cC+9LJ8TNuj6aC7+NsfvKMvyvN4/q/WijNaa20WrZeAAAAAACCxBtdAAAAAAC0lHNfKR15h1RYPLP9B05JqX27n7/3LOnGL0vz35DWTkj7rpW607ufF2gTvh9t/Gq+NnU0q3zR6iP3Sg/NWH3HhUbPPHfjoDYAAAAAABrpCw9JcwHHuj+YlU7MWU3s5bMrAABASD9rjPldSRdL2i+pIOmUpMckfVHSLdbaLzSwPgAAAACoCmutso4gm9GQITk4U29sQAulucC+sMFD5ca988Qfqsvr3lFtLgmT1Pk9l+iZe76z6nPX2vH1R3XX4medj+PB+H5d3f9MXdx7VZ0rAxrvq0t36L7lL2uptPBE29H1hwLHhg1ulDb2UVP5Y9vaXc/DdnFk9bC+svRFzRZmnmhzhaJJ2wNGXfv2mfyk3nH89zXjDEabKHt7s3ee+AOlqrwfj5mYDnWdpxsGb1RfbKCqcwMAzrRWWtHn52/RY+tHVLTFbf1JL6lzui7ScwZvVMJLNqBCAADQrghGAwAAAIAoBp4ifefnpMO/vxFetu8a6ao/qk4o2mleXNp3taSrqzcn0CZsxPGdFIy2sGr10r/x9dkHT7dYveYGo//7Ck4uBwAAAAA01ok59yf65VwdCwEAAGh9L9tyOyWpT9JZkp4j6beNMV+W9EZr7adqUYAxZkTScMTNzqtFLQAAAADa13zxlHJ2PbBva6ALwumLD0gBx9N58jScHA01x2B8v1KmK/D/5qG1w7stMdBXl2/XVxa/qF86+GalvK6arFFt31q9T399/K0q2PIHMH5x4RN62cjP6jl7b6pTZUDjfezkv+jjpz4QenzY4MZyYzP546HnaDVfWvwfvXvq7bIKd+XpHq9vW4jYSCL4fvPl676VLzvn2vp6vDc+pIRJBu77jtToNeJry3fpzoXP6DcPvU398T01WQMAOt1aaUV/evSNmsofLTvunqXb9dWl2/Vrh35fMUOECQAAqA6v0QUAAAAAQMvZd7V0w39I3/ct6Vn/IvUeanRFQMfwIyajdVIw2nvvsptC0Tb83ResbrkvapwcAAAAAADVVe6TaX77hWQBAACwO9dI+qQx5g+MMbW4esprJd0X8c9HalAHAAAAgDaWzZ9w9qWT43WspH30xfoD24cSo4qbRKg5jDEaacD9/+31b+oby3fXfd2d+u+T/1oxFO20/zr1fhX8Qo0rAprDUnFBt85+KNI2oxHCMF3BaNP5SVnbfsfS+rakj868N3QomrRxH239leFIckxG0X6NaGQ0khw7o80zXkNeI2YKGX1x4ZN1XxcAOsWdi5+tGIp22rfXv6mvLd9V44oAAEAnIRgNAAAAAAC0DD/8d/eSpLUOCkb75OHggzZ+64MR7zQAAAAAAKqs3HkGy7n61QEAANDCTkj6O0mvkfRsSZdIukjSsyT9kqRPbBlvJP22pP9TxxoBAAAAoGrmiicD2/tje9QT66tzNe1hILY3sN0VJOQSJaSomh5ee6Ah60ZV8PN6aO3+0OOXS4s6kXukhhUBzePI2mEVbfirJqVMl/bE94Ue79qf5ey6FoqzoedpFTOFjGaLM5G2CQoXTXop7UsMR5pnb3xISS8VMH+015Rq+ebKvQ1ZFwA6wTdXvlbT8QAAAOUQjAYAAAAAAFqGH/GCbSsdFIx2833B7YcnpVLUOw4AAAAAgCoqlsnsJhgNAACgrC9JeqGkg9ban7HW/r219jZr7QPW2gettbdba//KWnujpGslHdmy/RuMMS+qe9UAAAAAsEtr/mpge19sT50raR8X914V2H5V/zMizXN539OrUU5kRVtoyLpRzRSmZBXtYqbZ/IkaVQM0l0zuWKTxV/RdJ2NM6PHlQrna8Xm2k5/pir7rAtsv7422b3fNc0WDXiOm8scbsi4AdIKorzft+JoLAAAah2A0AAAAAADQMqLGey2s1aSMplQqcyzVzFL96gAAAAAAYKuVMuFnBKMBAAC4WWtvttZ+0lpb8SsSa+2XJT1D0re2dP2RMSZWxbLeIemyiH8IZwMAAAAQSc4PPvCry+uucyXt45Lep+qa/hvOaLuo50o9rf/Zkea5qv86Xd57bTVLC8W30cLGGiWzgyCIbH6yBpUAzWcyfzT02H3xYX3P0I9Emr8n1qd+R4Bmpg2Ds6IGz1zV9wxd3he8//7ufS9ROnkg1Dzp5AG9YN+LA/uu7rtel/Y+LVJd1bBcWtBScaHu6wJAuyvagk4WMpG2IRgNAABUU7zRBQAAAAAAAITlRzy2aWYxapRa69rbI80FXyhVC2vSKBdLBQAAAAA0SLnws5WclRT+Su8AAABws9bOGmNeLunLevJN1kWSnifpU1VaY1rSdJRtjOH9HgAAAIBo1h3BaCmvq86VtI+YiemVY7+qZ+x5vh5bP6Kx5CFd3netYhGztOMmoZ+deIPuW/mKHl07ooLNV7XO+1e+qqmA8KSSSlVdp1ZcQRB9sT0aiO0JDIbKtmFgExBkKncssP387kt0VtcFkiQjo7HUQV3ee6364gOR10gnJ7S0tj0gqx0DCF37m+HEmK7oe/oTtxMmqXO6L9SlvU+TZ7zAbQYT+/W6Q2/T15fv1onco7IBl7I2MppIna0r+q5Vd6w3cJ6El9DPTfy27lv+sh5dP6KiLezgJ3Mr2aI+N//fgX1T+WPqj3OwNABU08l8Vr6CT+K5tPdpOrzylW3ti6V5rZaW1RPrq3V5AACgAxCMBgAAAAAAWoYfMedseqk2dTSjVJnf8iyu168OAAAAAAC2WirzubRcaBoAAACis9beY4z5pKQXbmq+UVUKRgMAAACAenAFo3V53XWupL14JqZLeq/WJb1X73qeK/qefkbwTrWsZ1YDg9F82yrBaMEhZ+d2P0UHUudo8lRQMFpwuBHQTkq2qGlHONlzBm/SNQM3VGWddHJCD63dv619ug2fZ659x6W9T9MPjLwq8nzdsV5dt+e5u6xqI4jzyv7rdGX/dbueaytrre5e/LxW/O0HiGdyx3Rhz2VVXxMAOlnG8d7WyNMPjfy0Dj+yPRhN2ggkPaf7wlqWBgAAOkRwvDcAAAAAAEATihqMll2sTR3NKF7mwp0Lq/WrAwAAAACArcqFnxGMBgAAUBO3bLl9RUOqAAAAAIAdyhGM1rE8BR8I58uvcyU7k3EEFaWTE0onJwL7pgtTLRP8BuzUdH5KJRUD+8ZSB6u2zojjeZYtdE4w2qjjPmgHxhiNpg4E9k3lj9W5GgBof65Q0/2JYQ0nRpUyXYH9rrBgAACAqAhGAwAAAAAALcNGDEab3n5BsLaVDz5eRJK0EHycIAAAAAAAdbFSLhhtvX51AAAAdJBHt9webkQRAAAAALBT645gtBTBaG3PM8GnO7ZCcJi1VtlccAjEaPKARpPBYT5FW9BsYaaWpQENN5U/GtjuydNIonpBXq5QsNnCjPJ++1yxaaW0pOVS8NWjXSGM7WIsGRykRzAaAFRfxhFwlk4ekDFGI8lxx3btF0gKAAAag2A0AAAAAADQMvyIwWgLa1KuEHGjFpUrG4zWGfcBAAAAAKA5La27P5eu5OtYCAAAQOfYmiBAcgAAAACAluIKRusiGK3tOYPR5Ne5kugWirPK2eArwqSTE87gCEnKEh6BNjeZCw5GG06OK+ElqraOKxTMymo6P1W1dRqt3D6j7YPRUocC2zM5gtEAoNpcrzenX2tcwb+8twUAANVCMBoAAAAAAGgZUYPRJGlmufp1NKP1grtvIfg4QQAAAAAA6mKlzMXXl9vnwuwAAADNZGjL7ZMNqQIAAAAAdsgdjNZT50pQb55ige2+bf5gtEz+uLMvnZxQyuvSYHy/Y1vCI9DephyhVWOOQJWd2p9IK6Z4YN90oX2eZ67AmZTp0p74vjpXU19jyYOB7YuleS2XFutcDQC0L2ut8/Vm9PFgNFcYZ7bM+2IAAIAoCEYDAAAAAAAtYyfBaHMr1a+j2VhrlSu6+wlGAwAAAAA0UrnP88VS/eoAAADoINdtuT3ZkCoAAAAAYIdyzmC07jpXgnrzTPDpjr5t/i8UXMER/bE96o31S5JGHSFQrm2BdjGVPxrYPpY6VNV1YiamoeRoYF87Pc+y+eBf940kx2WMqXM19TWaCg5Gk6SMI4APABDdcmlRq/5yYF/68fe0rmC0mXxGpRZ4/w4AAJofwWgAAAAAAKBl+Du46ONsBwSj5cuEokkEowEAAAAAGssSjAYAAFA3xpgumyZUuwAAIABJREFUSS/d0vy5BpQCAAAAADu27ghGSxGM1vY8xQLbS2r+LxRcoUvpTWForvCIbP54TWoCmkHRFjSdnwrsG0tWNxhNktLJ8cD29gpGC95nuMIX28me2F51e72BfVPsSwGgasq9Pz39njbteN0pqahThWxN6gIAAJ2FYDQAAAAAANAyypxHrd5UcPvcak1KaSrrhfL9i+v1qQMAAAAAgCDlPs8XdxCCDgAAgLJeL2nzWdYlSf/doFoAAAAAYEdyjmC0LoLR2l7MBAej+bb5v1DIOIOKnvyY7g5Gm6xJTUAzmM5PyXeEG46nDlZ9PVc4WDs9z9xBjMH7mHZijNFYMvhxM5U7VudqAKB9uV43u71e9cf2SJJGkmMyMoHjXO+NAQAAoiAYDQAAAAAAtAzfcSa1MdK+nuC+2ZVyp1+3h1yxfP9avj51AAAAAAAQxJb5aF4MPgcCAACg4xljXmGMSUfc5jWS3rSl+Z+stY9VrzIAAAAAqC1rrXJ+8JUgCUZrf57jdEdXqFIzcQcVHdj07+DQosXSnNZKKzWpC2i0qdzRwHZPMY0kx6u+njuA8LhsuS8uW0TJljSTzwT2jXRAMJokjTkC9abywY81AEB0rmCzdHJCxmyEoSW9lPYlhgPHud4bAwAAREEwGgAAAAAAaBm+46KPRtK+3uC+2dWaldM01gvl+9fyrX8gBwAAAACgdZX7VFoo8ZkVAADA4dWSHjHGvNsY8z3GGMc3IZIx5hpjzIck/a02vjY57YSk361xnQAAAABQVTm7Luv4zXKKYLS25xlHMJp1HDzYJNb9Nc0VTwb2jW4KKnIFNkmER6B9TeWPBbaPJMcUN4mqr+cKB1v317RYmqv6evV2qjCtkoKvqJyuQdBcMxpLBgejZXLBjzUAQHSu96ajW15nN4cAh9keAAAginijCwAAAAAAAAjLd5wr7Rlpb09w31wHXERxPfj4hiesVQhOAwAAAACglspdeL3Y3OcxAQAANFq3pJ94/I9vjDki6VFJC5JKkvZLulJSOmDbWUk3Wmsz9SkVAAAAAKoj5685+7oIRmt7nmKB7b6a+wuF6fyks29zGNpgfL+SJqW8zW0bl82f0NndF9akPqCRpnJHA9vHkodqsl65cLBs/oT2xPfVZN16KRc0Uy58sZ2MpoKD0RZKc1otLasn1lfnigCg/bheb7YGkI4mJ3T/yj2htwcAAIgi+BIKAAAAAAAATch1HrXnSft6g/tmV2tWTtPIVQg+IxgNAAAAANBI5YLRbn+4fnUAAAC0OE/SUyS9UNIPS3q5pO9WcCjapyVdaa29r37lAQAAAEB1rJcJRkt5XXWsBI3gmeDTHX1bqnMl0WTzxwPb4yahfYnhJ257xtOII7QpQ3gE2tRk/lhg+5gj3Gq3+mID6o31B/Zly4QYtgrX/mZffFhJL1XnahpjLOl+7Ezlgh9vAIDwCn5BpwrZwL7R5IEzbm8NSjuNYDQAAFANBKMBAAAAAICW4Tsu+ugZabDXBPbNrdSwoCaxXizfv5avTx0AAAAAAER1cll6eLpMchoAAEDnerukf5H0WMjxK5I+LOm7rLXfZa0NPkMSAAAAAJpcrkwwWpfXXcdK0AieiQW2l5o8GM0VajaSGN/2M6Ud4RHThEegDRX8gmYcYWTjqUM1W3draMtprlCxVuIKmnGFLrajwfh+dXk9gX1TjiA+AEB4JwsZ+Qo+eWfre9lRx3vb5dKilouLVa8NAAB0lnijCwAAAAAAAAjLd5wnbSQNOo55W1xr/5Or1wu76wcAAAAAoJYqfTL/wFes3nhTcOA5AABAp7LWflgbQWcyxgxKulTSQUlpST3auDDuvKQ5SQ9I+rq1TX6WOAAAAACEsFYmGC1FMFrbiyk4GM06ghmahStsaTS1PSjCFYzmCjsCWtl04YQzWGU0ebBm644kx/Xw2gPb2tvheZZ1BM259i3tyBijseRBPbL+4La+DMFoALBrrtdLT56GEqNntKUdYaSn5+mLD1S1NgAA0FkIRgMAAAAAAC3DFYzmedKA45i3Bfdxcm2jUOE0pzWC0QAAAAAADWQrJKP9zoet3nhTfWoBAABoRdbaeUm3NboOAAAAAKiHnCMYLWGSipng0Cy0D2O8wPZSk2eBu4OKtgdFuMKLpgtT8m1JHo9ztJGpXHBooKeYRpJjNVs3nWjfAMJpx8/QScFokjSaOhAYjDaZO9qAagCgvWQcob/7E2klvMQZbQOxQXV5PVr3V7eNzxZO6DxdXJMaAQBAZwj+TSEAAAAAAEATcp1I7RlpjyMYbXG9dvU0i1KFi2ESjAYAAAAAaKQKuWgAAAAAAAAAADxh3RGM1u311LkSNEJMwaFgvpo3GM23JU07gtFGA4KKRgPC0iSpaAuaLcxUtTag0abywSFV6eS44iYR2FcNrpCwU4UZFfzWPah2tbSsxdJ8YJ9r39KuxpOHAttdYT4AgPCihHAaYwLf80pSxhGQCgAAEBbBaAAAAAAAoGX4OwhGWwg+Tq6tVAxGy9enDgAAAAAAgriCzgEAAAAAAAAA2MoVjJbyHAeIoa14Jvh0R99WOEiugWYLJ1WwwQfppQOCikaS4865CPRBu5nKBQejjaUO1nTd0VRwSJiVr5nCVE3XrqWsI4RRKr9vaUejjsfQfPGU1korda4GANpLJkIwmiSNONqzjnkAAADCije6AAAAAAAAgLBcwWjGSHu6jaTtAwhGk9Za9+J2kqSFVav33Gn11aMb/9fXnCX91LOMUgnT6NIAAAAAACEQjAYAAAAAAAAACCvnCEbrIhitI3hyBKOpeYPRsmXCzIKCilJelwbj+zVfPBUw16Quq2p1QGNN5Y8Fto8lD9V03aFEWp5i8lXa1pfNH9d4qrbr14orYCZpUhqM769zNY01lnSH603lj+nc7ovqWA0AtA9rrfP1ZjQg9HejnWA0AABQGwSjAQAAAACAluEKRvOMNNAV3Le0Lvm+lee1b4hWpWC09cLGF1TGtN59MLNk9dw/9fXApgv0ves26d23W33+dZ6S8db7mQAAAACg05CLBgAAAAAAAAAIa90RjJYiGK0jeCYW2O7b7eFGzSLjCHzYGx9yBvqNJg84gtEIj0D7KPgFzeSnAvvGahxMFjNxDSXSmi5Mbutr5eeZq/aR5Lg8Exws2a72xoeUMl3K2fVtfVM5gtEAYKeWSgta81cC+9IBob8b7cGBaScLGRVtQXGTqFp9AACgs3TWJ10AAAAAANDSbJlgtD1ljntb2v6dd1txBcZttl6ofR218I7P2TNC0U770qPS336eU+sBAAAAoBW4Ps8DAAAAAAAAALBVzhGM5gqYQnuJuYLRVOHqoQ2UzR8PbE8nJ5zbuPpccwGtKJs/4XzujiUP1nx99/Nse1haq5h2BKOV29+0K2OMxlLBj6NM/lidqwGA9lEuQNQVgOZ6HfLlayafqUpdAACgMxGMBgAAAAAAWobvOJO6UjDaQvCxcm2jFOKYr7UWDUa75T732fP/fCdn1gMAAABAK+DTGwAAAAAAAAAgrHWC0TqacZzuWLKlOlcSXmYHQUXtGNgEbDWVPxrYHlNcI8mxmq/vfp65A1+anav2TgxGk6Sx5KHA9qkcwWgAsFOuoN4er099sYHAvuHEmPN9fCu/7gIAgMYjGA0AAAAAALQM33EmdccHozkC4zZbb8FgNGutDpc5zuvuR6WHpzm9HgAAAACaXYiPrQAAAAAAAAAASHIHo6W8rjpXgkaImVhgu9/EwWjTjrCH0eQB5zauEKPF0pzWSitVqQtoNFc4VTo5rpiJ13z9csFotgW/wPRtSdOFqcC+Tg1GG00dDGyfyhOMBgA7VS6E0xgT2JfwEhpKpCPNBwAAEAbBaAAAAACAUP7nQauX/HVJN7ytpDd+yNfyeut9IYzW5wpGM0Ya7HFvl1msTT3NouRXHrOWr30d1XZ0VlrOlR/z719hXwQAAAAAza4FzysAAAAAAAAAADRIzhGM1uWVuXIm2obnON3RV4iD5BpgtbSsxdJ8YF+5oKJyfYRHoF1M5Y8Gto+lDtVlfdfzbM1f0VJpoS41VNNsYUZFG3yV5E4NRhtzBFDOFU9qrbRa52oAoD1kygSjleMOJD2+65oAAEDnIhgNAAAAAFDR579l9cK3+/rI16TbHpbedovV9/2V35JXy0Jrcz3kPCMl40bpgeD+Y7Pt/VgNFYwWfCxEU3t4pvKYz3+rvf9vAQAAAKAdhPnkVijy+Q4AAAAAAAAAIK07gtFSBKN1BM/EAtt925zBaOVCzEYdgT2SNBjfr6RJRZ4TaCVTuWOB7WPJg3VZv90CCMvVPJIcr2MlzaNcyF6GIB4A2JFpx+tNufe2UrlgtMld1wQAADoXwWgAAAAAgIr+8tO+8sUz2/7nW9LN32hMPehcfplgNEk6uDe4/+hsbeppFmGC0XLFymOazWq+8pjDfE8GAAAAAE0vTLb+SojPgAAAAAAAAACA9pdzBKN1EYzWETzH6Y6+SnWuJBxX8E7KdGlPfJ9zO894ziCjTAsGNgFbFfy8ZgqZwL6xVH2C0fpiA+rx+gL72ikYbTC+v2NfI/fGh5QyXYF9mXxwMB8AwK3gF3SyMB3YVymE0xWclskflw1z4BAAAEAAgtEAAAAAABV91fG94K9/oDmvwIf25QxGe/w3HAcdxxEdm6tNPc3Cdb9s1orBaIUQx7Idm5MWVvmiDAAAAACaWZhPbSu5mpcBAAAAAAAAAGgBawSjdTTPxALbrax823zHrLqCitKpAzLGlN3WFR4x3YKBTcBW2fwJWQU/Z8eSh+pSgzFG6eREYF9rBqMFX0nY9TN2As94SqeC96VTOYLRACCqmcKU8/Xb9d71tLQjOG3NX9FyaWHXtQEAgM5EMBoAAAAAoKJHTga3Hwm+EAhQM77juKbThw8d3Bd8INHx2fYOziqFON4rV6h9HdVWKIX7f/tm8EUFAQAAAABNIsyFX1fyta8DAAAAAAAAAND8co5gtBTBaB3BK3O6oyukoZEy+eOB7aMhgopGHOERmRYMbAK2msofDWyPm7iGk2N1q6OdgtFc+5tODkaTpPHkwcB212MQAOCWdbzWePI0lEyX3TZdJjiN97cAAGCnCEYDAAAAAOxKMWRwEVANrkeb93geWnoguH8++Fi5thEmGC1fqn0d1VYIWfPR2drWAQAAAACovcU2/+wOAAAAAAAAAAhn3RGM1uX11LkSNELMxJx9Jdt8B8G5wpXKBUM8OSY4zGimMCW/CX9WIIrJ3LHA9pHERNnnebW1UzDatHN/09nBaKOuYDTHYxAA4OZ6fRxKjCpuEmW37YsNqNfrd8wbHLgGAABQCcFoAAAAAIBdyS42ugJ0Et+RjOY9/huOPY6Lgrb7ydVh8glzhdrXUW1hg9GOzRHQCAAAAADNzIb42Da/Wvs6AAAAAAAAAADNrWSLKtrgA526PMfBYWgrXpnAJF8hriBaRyVb1Ew+E9gXJqho1BGeVrQFzRZmdlUb0GhT+aOB7eOpQ3Wtw/VcPFXIOl9vmtFaaVULpbnAvk4PRhtLBQejzRZnnGGrAIBgmV2EcBpjNJIcD+xrxUBSAADQHAhGAwAAAACUVSiWP3P1ePB3rEBN+I7jmjyz8fdAV3D/4npt6mkWpRDHe+WKta+j2vIhaz46W9s6AAAAAAC7EybOeoFj0gEAAAAAAACg45ULMCEYrTN4ZU539G3IK23WyclCVr6CaxoNER7hCo6QpEz++I7rAprBVO5YYLsrxKpWXEEuvnxnsGEzmi5MOvvSZfYlnWAs6Q7by+TYlwJAFNO7CEaT3MG/rsA1AACASghGAwAAAACUtZov339ivj51AJLkO86kfjwXTf1dJrC/3YPRXPfLZrkKIYfNqBDyOLbjs633swEAAABAJ7EhPrbNr/HZDgAAAAAAAAA6XblgtBTBaB3BM+WC0UJcQbSOXIE7Rp6GE2MVt095XdobHwrsy+bdIUhAs8v7OZ0sBIeOlQuxqoWhxKgzcDHbQiEtrloTJqm98eE6V9Nc9iWGlTDJwL5MPjigDwCwnbXWGWAWNhjNNS5L6C8AANiheKMLAAAAAAA0t7VC+f7JeasnY6mA2nKdIu09fszCQFdw/0pOKvlWMa89H6ulEMd75Yu1r6PawgajHZurbR0AAAAAgN0JE3k2v1rzMgAAAAAAAAAATS5XJhiti2C0juAp5uw7nntEvcX+Hc07GN+v/vienZYlSVorrZ4R9nRk7XDguKHEiBJecEjPVunkhOaKJ7e1P7L+oI6tf3tnhUrq9nq0P5GWMe15zCQao2SLyuZPqGTLH9w5U8jIOr4hHEsdrEVpTgkvof2JtGYKU9v6Hlo7rP2JkbrWs1MPrz4Q2D6SHC8bKNkJPONpNHlAx3Lb95lH1g5rInX2jufujfVrX6I1g+fCPl8364n1tcxzAqiXki1poTirpJdSX2ygrmv7tqRsflJFW+GkrhDC7M8WS/Na94MP3hlNHgi1jisY7VRhRo+tP+QMK90pI0/p5IQSXqKq8wJAo3116Q5l8sc1mpxQOjmh4cRY6N8zAO2GYDQAAAAAQFmr+fL98+7jkICq8x0BYKfzzgbKHPu2tC4N9lS/pmYQJhgt187BaLO1rQMAAAAAsDs2RDLaAr9jAgAAAAAAAICOt04wWscrF/Dzl8fftKu5L+i+VK8e/y0NxAcjbZf3c3pf5h368tIXZFX5YL10yOCIjbET+ubq17a137N0m+5Zui1SnVvtjQ/pp8Z/U+d1X7SreQBrrT479zF99OT7lLe5Hc8TN3ENJUarWFk46eREYDDaZ+Y+ps/Mfazu9VRTOjne6BKawljqUGAw2h0Ln9YdC5/e1dzp5AG9Zvx1Gk8d2tU89WKt1a2zH9bHT31AObseefuRxLh+evx1OtB1dvWLA1pA0Rb02PrDOrJ6nx5au1/fXntA6/6aPHl6+sBz9WOjr1XM1D6e446FT+s/pt+lVX+5anOOJg/oNeOvd4aUZvPHndu6As+2rZEKfh9s5ettj/1mqDmiSpikru6/Xt839KOEOwJoG19Z+oLuWbr9idtGnvYnhnX9nhfoxv0/2MDKgPrr7ChwAAAAAEBFFYPRgi8IAtSE7ziR+olgtC73tottfIJ1pwejZZekfDHEWfYAAAAAgIYIE4xG+D4AAAAAAAAAwBWMZuQpYZJ1rgaNEFOsZnMfWTusd039eeTtPnryvbp76X9ChaJJ4YMjoo6Naq54Un917M1aK3GgL3bnvpWv6IMz/7irUDRpI2AqZmr3HHev277hYbXch7SSsWRwyE81ZPPH9VfH36KSDXlQc4N9dfl2/efJ9+woFE2SpguTevvx31PBL1S5MqA5Ffy8vrV6n24++W96+7H/T79x5Mf0Z0ffoI+efK/uX7nnic8nvnzdufgZfSD79zWv6aHVw/rnzP9f1VA0ScpU2J9l85OB7b2xfvXFB0KtMZRIy6vh+/kgBZvXlxY/p7c88gv6z5n3aK20Utf1AaAWMrkTZ9y28nWykFXBVjjRF2hDtY+kBQAAAAC0tErBaAuctIo6cgWjmdPBaGUuCnrvMenQ/urX1AzaNRgtH7Jma6UT89I5Q7WtBwAAAACwM2GirBc4JwcAAAAAAAAAOl7OEYzW5XXJnD5IDG3Nq3Fo0oOrX9dsYUb7EsOhxvvW1x0Ln4m0xmjyQOixtQ41ytl1fXX5dl2/57tqug7a250RnwMutQyvKqedw8NGEu37s0UxlqrtY2u+eErfXP2aLu19ak3XqYa7F7+w6zlWSkv65urXdHnfNVWoCGguOX9dj6w9qCNrh3Vk9bAeXf+WijZ8EOAXFm7RtQPP0fk9l9SsxnuX76rZ3HPFk3pw9eu6pPfqbX3Z/PHAbaK8t42ZuIaTo8rmT1QeXGVFW9AnZz+k2xc+pZv2/7CeM3ijYoYoFQCtx7e+ZgpTgX3t/NkGcOHVHAAAAABQ1lqlYLTVMKe2AtVhHQ8373QwWpd72z+6xdf3X1X/K83VQynE07AVg9EKES6udvQUwWgAAAAA0Kxcn+c3W1jjd0wAAAAAAAAA0OnWHcFoKa/MFTPRVgbig+ryup2PhWo4kXssdDDaXPGk1vyVSPMf7Do39NgDqbPlyZOvEFdH3aETuUdrNjc6Q7UeQ2d1XVCVeaI61HVeQ9ath3b+2aI4mDpXRkY21CW7dubE+qMtEYw2kw8O0Yg8jyOMA2g16/6aHl57QEdWD+vI6n16bP0h+YpwkkKA92f/Rm88+88VN4kqVXmm2cJ0TeY97UTuscBgtKncscDxI8nxSPMfSp3XkGC005ZLi/r36b/X/8zdrBcP/4Su7LuOkG0ALWWuOKOCDT6hl2A0dCKC0QAAAAAAZa1WCkar3bEnwDZ+hWC0rjLfLbXzY9UPcUxUvs2D0U7MW0l8YQUAAAAAzSjM4efzqzUvAwAAAAAAAADQ5FxhWF0Eo3WMuEnoaf3P1m0Lt9ZsjWz+uC7XNaHGZvLHI819dtcFOpgKH4zWHx/UVf3P1D1Lt0VaJ4psrnHBFGh9JVvUyUJ21/OkTJeuG3ju7gvagYOp83RW1wV6bP1IQ9avlfO7L9VY6mCjy2gKexNDurzvWn19+Us1W6ORIT9RrPhL1ZmnVJ15gHpbLS3robX7N4LQ1g7r2Pq3ZascQDuVP6ZbZ/9TN+3/oarOe1otA3OljffCQabywcFo48lDkeZ/9uALdffS5yPXVW3ThUn97eQf6bzui/XS4VfpnO4LG10SAISSKfO+k2A0dCKC0QAAAAAAZVUKRptv47ApNJ9KwWjlruRS6bHcykohzjDPtXkw2sxy7eoAAAAAAOyODfG5tZ0DzQEAAAAAAAAA4RCMBkl6Wfpn5ZmY7lm6rSbBLFHCbbK5cMFoCZPUxb1X6cfTv1j2OMYgPzH6y0qalO5dvlPrfvWvJJMttEaYD5rTTD4jXxEO5tzCyNPBrnP1o+mfV198oIqVRajBGL124nf1vuxf64GVe1WwrX1AcdKkdGnvU/Vjo7/Q6FKayivHfk3/mv2/+vryXc73E7sRNSizEay1WiktVmWu5SrNA9TacnFRR9YO68jqYT20dp9O5B6TDXX5vt35+KkP6Gn9z9JIcrzqc/u21sFo298brpVWNF88FTh+NGII5wU9l+qnx1+nj868V9OFyR3VWE0Prz2gPzn6Oj2t/9l60dArNJRMN7okACjL9TuLPfF9/H4MHYlgNAAAAABAWWuF8l8KcNIq6skVjLb5OKI3f7/Rmz+6feDsSo2KagKlEN99tX0wGhcmAwAAAICmFSYYjfB9AAAAAAAAAEDOGYzWU+dK0EgxE9fL0z+nHxn5mV0FhX1k5r36wsIt29qjhNtkHCckX9B9qX524o1P3E55XYqZnZ2qmfRS+omxX9aP21/YVZjPAyv36h+m/nRb+2xhRnk/p6SX2vHc6Fyuk/KNjP7wvHcpXuFxHzeJpnjs9cf36OcmflslW1TOX290Obuym/1NO+vyuvXKsV9VyZac7yfCuHPxs/rg9D9sa8/mT8haGzn8sp5ydl1FG3zA+C8deLPO6jp/W/u/T/+D7lr87Lb2agWsAdW2UJx7PARtIwxtKn+0JuukTJfO675YObuuh9ce2NZftAW9P/s3+uUDb636fsG3wSdRPHfwe/W9Qy8LPc8dC5/Rf8z847b2oNf2cu+Px5LRgtEk6an91+up/ddr3V9z/jzVcM/Sbfqvk+/XYmm+4tivLH1RX1u+U98x+D26af8PqSfWV7O6AGA3srngz2CjyYk6VwI0Bz79AgAAAADKWq1wUaz56l+cDnBynUjtbfou6YbzjRRwlZ+ldalQtErEm/cL6Z0KFYxWqH0d1ZaP8B3YNMFoAAAAANC0wlyLl98xAQAAAAAAAABcoVApr7vOlaAZeMbbVWDBROqswHZX0FMQV0jEeOqsqocpeCa2qzkPdp0b2G5lNZ2f1IGuc3Y8NzqX6/myLzGigfhgnavZvZiJE4TS5mK73JceSAXvK1f9ZS2XFtUf37PjuWutXJjZ/kQ68H7ZE98XOH65xIHZaA6zhRk9tHa/jqzepyOrhzVdmKzJOt1ej87rvkQX9FyqC7ov1cGu8xQzMS0V5/WWR35Rq/7ytm0eXP2GvrT4OV2353lVrcVX8MkhKS8Vaf/meu+3XFrUcmlRfbGBJ9qm8seC1zRd2hsfCr3mVl01/hz37MEX6pqB5+jW2Q/rU7P/qYItfwJc0Rb16bmP6I6FT+um/T+s5wzepISXqGmNABBVthD8GWyEYDR0KILRAAAAAABlVQpcWtj5BZWAyPwQwWj7et3bz69Jw/3VrakZhAlGK9TuQjs1U4xQ88ximNPsAQAAAACN8P/Yu/M4R+oC///vqtzp+0y6p+eCaY7pAeELKKCCoCwKioAiC4uI51fddVdd15/ren69VndlxQtW3eVQEUFALkGRGx0YUI6ZnhnoYRimj+mk73Tuoz6/P4aZ6Zl8PpVKd5KuJO/n4+HjIakcn0lXKpWkPq9Shc4XiiQBwxDQ9doLmhMRERERERERERGRNaowWrkn1FNtCnj6pJdHcxFEsxE0OpulyxcKKcJoQbf8vpdThysAB5zIIZu3bDw9yjAaLYpqUn6Ak/KpRplt30PpEVuH0cxiZo0O+QH0DYrLYwyj0TIQQmAqE8ZQYm8EbSgxiKlMqCyP1aA3YZ1/Pfp9A+j3b8AKz2romiPvek3OVlzQ9T78MvQj6f3cOnEtBhpOsLRfaVVOyCdRyMZnJmjyXh1Kj6HRtyCMltotvV6PZyU0zd7H8Xh1H97ReSne2HI27pq6EU/MPQhR4BSOcSOKWyf+F4/M3oPzuy7H8Y2n2v7fSUT1I5SSfw/Bz2BUrxhGIyIiIiIiIlOqENU+qSyQzAh4XfwSmMpvqWG06Vj9htFS+cc62V4xMbcwf38nIiIiIiKyLStxy7uEAAAgAElEQVQpayGA+STQ4i/7cIiIiIiIiIiIiIjIplIMo1EJmccgRgsGLGK5eczn5qTL7Dgh2aE50O3uwZ70cN6ycFoetyIqJJwek14ecPdWeCREldHkaIFPb0DCiOUtC6XHsM4/sAyjsiaai0gv16HDq8t/iFcF01T3RVRKQgiEM2N7I2jxQQwltmA2O1WWx2pytKDfP4B+3wb0+wcQdK+ErumWbntqy1vwZORh7EgM5i2L5iK4beI6XN7zjyUbq4B8cogDxYXRmh1t8Op+JI143rJQegSH+47a/997lDHglUU95nJqdXXgvcFP4IzWd+D2ieuwLf5swdtMZkL42dh/YK33SFzYdQUO9x9dgZESEaklcnHM5Waky+wYaCeqBIbRiIiIiIiIyJSV4NJcAvC6yj+WepBI750q7HMzNCejCqNpRYTRalGhgCEApDJWpqHbC8NoRERERERE9WU2wTAaERERERERERERUT1LKsJoHobRaBHMYhDj6ZGC4YNxk5hY0GPPSETAvUIaRhtXxC6ICgkpXgcBl/3igESloGkagu4+vJx8IW+Z3bel0aw8ZtbgaFIGoBod8khoLBeBEAKaxjkNVDpCCOxJD2MovgVDiUHsiG9FRBF/WapWZwf6fQN7Y2j+Deh29S56fdY0DZcEPopv7voUcsg/W/0TkQdxcssZOMJ/zFKHDQDICfkkCs1iyO3A9TUE3CvwSnIob9l4auSQ/87ffwSAHs+qoh7TDvq8a/CJlV/B1tgzuC18HcbSrxS8zcvJF/Dd4X/F8Y2n4J1dl6Pb3VOBkRIR5Qtn5GFqgHFqql8MoxEREREREZEpK8Gl2TgQMD9xHhUQSQh88HoDdz63N/J1/nEafnq5hiYvf0xcSCjWR33B0+R3Ay6HPKo1k398U02wEjBM5f8GZ3vprPWYG8NoRERERERE9qX6PH+oOfl8NyIiIiIiIiIiIiKqEylFGM2reys8EqoF++I2u5Iv5i1TxZ4Ovo48gOPVfWhxtC15fOUQcMtjVVb+vUSHiuXmEc3JQ0uqdY2oFgTcvdIwmt23pTFDfjC1Kn5mtiwrskiJJLwa47S0eIYwMJrahaHEIIbig3gpsVX5vrJUHa7uV0NoG7DOtx6drmBJw349npU4u+Nd+N3Ur6XLbxy/Gv+25ntw6e4lP5YB+eQQBxxF35cqjLYwvJM0EpjOTkhv3+PuK/ox7WJ9w/E4as2xeCLyEO6a+CXmLET4noluxHPRTTit9W04p+M9aHRyohwRVdah4cp9XJobbc6uCo+GyB4YRiMiIiIiIiJTVsNotDQfut7ArX898N83Py3g0IFffohhtIVU6+PCMJqmaehoAMYlv5m9MiUA1N5zmrPwOo2nyz+OUpPF7VTmk0AyI+B11d7fl4iIiIiIqNpZDaPxOyYiIiIiIiIiIiKi+pZUhNE8OqMctDhB9wppGG1cET076DqKCckBd19JQxulFFDEK0LpURjCgK7pFR4RVTOzCBTDaFTL1NvSwu8dyymmCE41OJqUtzFbFstF4OU+GBUhJ3IYTu7EUGIQO+KD2JHYioQRK8tjdbt60e8fwDrfevT7N6DdVf5YzNnt78LTkccOiortE86M4ffTt+LtnZcs+XEMIZ9EsZj9uKDi/Xrhfu54alh5+x7PyqIf0050zYFTW96CE5regAem78D907cjJZKmtzGQw8Ozd+PJyIN4a8dFeFPruSUJ3hERWRHOyD+Ddbt7+Xme6hbDaERERERERGQqJz/ZyEHm5McikUXhiMBtz+RffsvTAj+4RKC9wZ4H0CwHZRjtkO/21nXLw2hb8n+DqglWXqczVTi5vJgwGgBMzAMr28szFiIiIiIiIlo8i100fsdEREREREREREREVOdUYTRGOWixlhK3UcXTgor7tANV/CItUpjNTlUkGkK1QxVG82hetDh5sCbVLlX4bzITRsbIwKW7Kjwia6LZeenlDY5m5W0aTZZFc/PocAWWPC6qXVmRwSvJl7AjPoihxCB2JrYp9+eXqse9Eut8A3tjaP4BtC7D+5BLd+OS4Mdw1fAXpcv/MH0rTmx6I4Kepe0rGpBPDtFRfBBHvT0bR1Zk4NRc2JOWh9E8mhdtztrYd/ToXpzTeTFe3/o3uGfyV/jT3B8hFM/zPgkjjtsnrscjM7/DO7suwwlNb2SUiIjKbjwl/wwWcPdWeCRE9sEwGhEREREREZlShagWmk0IAIx3LdamXfLnOWsAz+wG3nx0xYdkW4bit4dD176BFRoe35H/pA6OWp2KXV0YRtsrzDBa3Xlou8DX7zEwMQ8cv0rDdy/S0NnE9yMiIiIiIrsRFj+Oz8b5HRMRERERERERERFRPUsxjEYlZh63ScOlu5W3VUWhVPdpB2ZjC6VHGUajooTS8rMRd7t7oWn8TY9qlyqAKWBgIrMHvZ5VFR6RNTFDclZxAI2OJuVtvLofOnRpiCmak98f1a+Mkcau5BCG4lswlBjEy4kXkBapkj+OBg29ntXo3xdC861Hk7O15I+zGEf6j8HJzWfiiciDecuyIosbQ1fjkyu/tqSAliEUYTTNUfR9qSLBBgxMpkMIevqwJyUPowU8fTUXAmtxtuHS4Mfxpra347cTN2BL7OmCt5nOTuDaPf+FB2buwoVdV+AI/4YKjJSI6pX6ewj7BtqJyo1hNCIiIiIiIjJlJYw2V56TutSNF0PqJ3n7uMCbj+bBA/uonin9kKfoGMWxPdvHSzoc21AF4xaajpV/HKVWdBiNv7/XlWeHBc7+noHsq+v/ljGB258RmP6eDqeD200iIiIiIjuxmimf5XdMRERERERERERERHVLCIGkkZQu8zCMRotUOG6zWro8Y6QxmQkVdZ924HM0oNnRhkhuJm9ZKD2KoxuOW4ZRUbWqxjggUSl0ugPKWFgoPWLbMFo0Ny+9vMHRrLyNrulocDRhPjeXf39ZHphd79JGCjsT2zGUGMRQfBC7ki8iKzIlfxwNOlZ61qLfP4B+/wYc7jsaDSZBv+V2YdcV2Bx7CjHJa25HYhBPRB7EqS1vWfT9G5BPotBRfKSsy9UDDTqEZHs2nh7ZG0ZLy8NoPe6VRT9etej1rMLH+76A7bHncNvEdRhJvVzwNruTO/C94S/g2MbX4vzOyxH02PczARFVJ0PkMJHZI13Gz2BUzxhGIyIiIiIiIlNWgkuz8fKPo5ZtlX9nBQDYIj/ZWt1Shfr0Q37j6e/WIJt2HZ4HUhkBj6u2oklWAobzSSCTFXA5q+ffns4Wd/3QvABQPf8+Wpp/ve1AFG2faAo49/sGfv+p4s+IRURERERE5SMsltEY3yciIiIiIiIiIiKqXxmRlk7YBwAvw2i0SF3uIHQ4pIGJ8fSoMow2kdmjXB/tHEYD9k6YjiTkYTSiYoQZRqM65dRc6HQFEc7kH8g/buNtqSpk1lggMKUKo8UMeWiNalfSSOClxDYMxQcxFN+C3cmXkEORB/RboMOB1d51e0NovgEc5jsKPkdDyR+nXBqdzXhX1wdww/hV0uW3ha/DMQ0nosnZuqj7N4R8H1TXij8+3qW70OnqxkRmPG/Zvn3D8ToMo+1zVMNr8Dn/d/FU5BHcMfkLzGanCt7m+egmbIk+jTe0no1zOy5e9N+ZiOhQ05lJZERauizIz2BUxxhGIyIiIiIiIlM5CxNXI/KTNJJFk/PqJ3lw1OLM4TqhCvXph7SwVrap72NkBji8u3RjsoOchYAhAMwmgC77njwpT0Z+siOlqWh5xkH2Mx0T+P2gfNn924ChkEB/gJE8IiIiIiK7sBpGY3yfiIiIiIiIiIiIqH4lDPWXxAyj0WI5NCe63EFpFCyUHlHeblyxTIcDXe5gycZXDgH3CgwltuRdrvo3EckYIoeJjPzMzwGbxwGJSiHo6ZOG0ewcmYzlVGG0ZtPbqZar7o9qRzwXxY7EVgzFB7EjsRXDyZdgKMKwS+HUnFjjPQL9/gGsezWE5tG9JX+cSnpd85vwZORBvBDfnLcsbkRx68S1uKLnU4u6b1nQFwAciwijAXvft+VhtBEkjQSmMmHp7Xo8tR9GAwBd0/G6ljNwfNOpeHDmLvxh+lYkDfMzOxow8OjsvdgUeRh/034hzmw7D27dU6ERE1GtCmXU+5ndDKNRHWMYjYiIiIiIiEypQlQLRRlGWxKz+NOWMUAIAU1j4AcADMVE6kOfnZXt6vvYPV2/YbSZeG2H0aZj5RkH2c9fXzFffuMmgS+/g9tNIiIiIiK7sJp9nzU/rpCIiIiIiIiIiIiIaljKZPK5V/dXcCRUawLuFdKQzXhKPel4PCWPiHW5e+DQ7D0lM6iYMG3nmA/Zz1QmjKzISpcF3L0VHg1R5XW75Ou5XbelQgjEjHnpsoYCYTTV8mhWfn9UvaLZCIYSg6+G0AYxmtoFYfmIDutcmhuH+Y7EOt8A+v0DWOM9ouaiUZqm4ZLAx/D1Xf+ErMjkLd8UeQSvaz4DRzccV/R954R8EoUGvej7Ava+b2+RzLMIpcdMt2k97voIo+3j1j14a8e78fqWt+B3Uzfjsdn7CoYCk0YCd07+Eo/O3ofzOi/Da5tPh64t7u9ERBRSfA/R4mznCQOortn7WzgiIiIiIiJadqoQ1ULzqfKPo5aZxZ9m48DYLLCirXLjsTPV+qgf8ttBg0dDe4M8lLV7WiA/pVbdclZeqKi+cFixYbSpKvv30eIViiU8vav0P9ITEREREdHiCYu76JE49+WJiIiIiIiIiIiI6lXSNIzGCaC0eEF3H57HprzLQ2n5pOO9y+SRCFV0zE4Cnj7p5bPZKSSNBF9PZIlZKKWbYTSqA0HFtjSUHrHlSc9TIqmMGTY6zM+qrVoezUWWPC5aXnPZGeyID+6Poe1J7y7L43g0Lw7zHYV+/wD6fRuw2rcOTs1Vlseyk253L97WcRHumrxRuvym0DX4tzVXFR2FE0Ie43IsMrgVcMu3Z+PpEexJydcJl+ZGu6t7UY9X7Zqcrbg48BG8qe1c3D5xPZ6P5n+OONRsdgo3jF+FB2fuxIVdV+CohtdUYKREVGtC6THp5dXwPQRROTGMRkRERERERKZy5ie4AABEk+UfRy0rFH96aYJhtH1UE6l1yW/Lq9rlIbAXQ6Udkx3kLM4bnysQk7Ib1WtD0+TrwgzDaHUjlTVf6QflvwcQEREREdEysZo7KxRBJiIiIiIiIiIiIqLaZRZG8zDkREsQVMQgQulRZdxmXBFNU4Ul7CTgUk+aDqdHscq7roKjoWqlCqO1OTvh0b0VHg1R5am290kjgUhuBi3O9gqPyFw0q46YNTiaTW+rWh4z5pc0Jqq8mczkqxG0LRiKDyKcKc8B1V7dj3W+9a+G0Aaw0nsYHFp9JivOar8AT0Uele47TmTGce/ULXhn12VF3WcO8klcGhyLGqMqqJMwYngxvkVxmz7oiwyx1YqAewU+uuLzGIoP4raJ6/BKcqjgbUZSL+P7I1/GQMMJuKDrfej1rKrASImoVoQy8s9g3QyjUZ2rz71MIiIiIiIissywMHM1mrQ6vZVkCoXRdk8LAPY6q9RyUa2PsjDakQENzw7n32DLaO2tr1YChgCQzJR3HKWWVrw2gs3Anrn8y6ditfe3JblUgXVZtk0gIiIiIqLlowqdH2omXt5xEBEREREREREREZF9pRRhNJfmhkNbXASACFDHbVIiiZnsJNpdXQddbghDGYVSRdbspN3VCZfmRkak85aNM4xGFqleAwFOyqc6EXD3KpeNp0dtF0Yzi5g1OppMb6tabhZbo+UnhMBUJoyhxN4I2lBiEFOZ8pxBvkFvwjr/evT7BtDv34AVntXQuX8OAHBqLlwa+DiuHP68dPn907fjpOY3otez2vJ9CiGfHOJYZKjM7L17c/Qp6eU9npWLeqxa1O8fwL+s+jb+Mv847pj4OaazEwVvMxj7C7bGnsGpLW/G2zsvsd17BhHZUyglD7RXw/cQROXEMBoRERERERGZshJGm0+Vfxy1rFAYbXimMuOoBqr1UXLCRmxYAfz66fzLN8uP1ahqVl6nAJDMVFdkT/XaUIXRpmPlHQ/ZRyprvnxkFjAMAZ2FNCIiIiqBTFbg334rcMezAi4HcPkpGv7lbE165ngikrMaRhuXfNYjIiIiIiIiIiIiovqQVITRPLqvwiOhWmMWtwmlR/PCaLPZKaSF/MDYYBVEoXTNgW53L0ZTu/KWqWJXRIdiGI3qXaOjGY2OZkRz+XGwUGoER/qPWYZRqcnGCQA6dPj0BtPbNjqapZfHFPdJy0MIgXBmbG8ELT6IHYlBzGQny/JYTY4W9PsH0O/bgHX+9ehxr4K+yChXPVjnX4/Xt5yFP83dn7fMQA43jl+NT6/6puXnMAf5JAodi4vRNTpa4NcbETeiectUUcWgm2G0hXRNx0nNp+G4xpPx8OzvcN/UzUgY5md/FDDwp7n78XTkMZzVfgHe3P5OeHRvhUZMRNUmkYtjLiefQMrPYFTvGEYjIiIiIiIiUzn5yUYOEk2Wfxy1LFsgjLZ7ujLjqAaqAJisfXTMCg1A/g12TQHzSYEmb+1EDKy8TgEgmSnvOEpNGUZrATCcf/lU/m91VKMKhdHSWWBkBljVUZnxUOkJIfD4jr0BjWP7gFZ/7WyziYio+nzk5wLXbzzw2eJztwnMJYBvXMD3JyKrLHbRsGcOyOYEnA6+voiIiIiIiIiIiIjqTUoRRvNy8jgtkd/RiGZHGyKSScbj6REc3XBc3mUqAXdfycdXDgH3CkUYTf1vI1oolB6TXt5tEhokqjUB9wpEE/lxsHEbRiajWXnErMHRVPDEfw2KMFo0Nw8hBE8cuEyEENiTHsZQfAuGEoPYEd8q3ZcphVZnB/p9A1jnH0C/bwAB9wr+3Yt0Qdf78Hx0E+Zz+WcE3Jncjj/N3Y83tp5t6b4MoQijLTJOp2kaAu4VeDn5guXb9HpWLeqxap1Ld+Os9vNxSsuZuHfqZjw6cx9yMJ/YkBJJ3D31Kzw2ex/e3nkpTmk5E7q2uMgdEdUus4g5w2hU7xhGIyIiIiIiIlOqENVC8/IT45FFqvjTPsNTVqcP1z6hDKPl//B2rMnxR1tGgVMOL9GgbKDewmiBZnn0btr8pDtUQwqF0QBgcIxhtGo1MS/w1u8ZeObVAGJvK3Djh3ScdgQPsiAiosqbigrcuCl/3/Nb9wq892SBo3r4/kRkherz/KEMsTeOtrK9vOMhIiIiIiIiIiIiIvtJKsNovgqPhGpRwL0CkUR+TEQ2+VgVRmtxtsPn8Jd8bOWgmjg9nrJfzIfsJ5GLK+M7nJRP9STo7sNLiW15l4dtGEaL5eRhtEZF9Ozg6zRJL88hi5RIwqtxX6wSDGFgNLULOxJbMRTfgh2JrYgq/q5L1e7sQr9/A/pfDaF1uoIMoS2R39GId3d/ENfuuVK6/LcT1+PYxpPQ4ix8QIwB+eSQpcS0ig2jBd0rF/1Y9aDR0YyLuj+E01vPxR0TP8cz0T8XvM1cbga/DP0ID83chQu734/1DcdXYKREVC1UYTSX5kabs7PCoyGyF4bRiIiIiIiIyJSVMFo0Wf5x1LJCYbTx8vyeVZVU66Mu+R1udQfQ5AXmJevn5lGBUw6vnR/vLIfRLMSk7EQdRpNfHksBqYyAx1U7f1uSsxRG2yPwtmO4LlSjT/xK7I+iAcDYLPDB6w1s/5oOh2yDT0REVEa/HxTK/dJzvm9g57d49kaiUhueYRiNiIiIiIiIiIiIqB6pwmgehtGoBILuPgwltuRdHpJE0MZT8jBasIqCUKqxTmT2wBC5JYU1qPapJuUDDKNRfVFGJhUBzeUUM+allzdYCKOZXSeajcDr5r5YOeREDsPJndiRGMRQfBA7EluRMGJleawuV8/+CNo6/wA6XN1leZx6d2LTG/HE3IPYFn82b1nCiOM34f/FB3s/U/B+DCE/WM2Bxe+/Bd19lq/r0tzo5DpiSbe7Bx9e8Vm8lNiO28LXWorPjaV344cjX8VR/tfgwq4r0OddW4GREpHdhTPyz2Dd7l7oml7h0RDZC8NoREREREREZMpKcGk+Vf5x1LJCYbSw/HfKuqQKo8lOUKRpGjb0Aht35i/bPl7acS03y2G0THnHUWppRfwq2KK+zXQM6Gktz3jIPlIW1uUXQ+UfB5Xe2KzALX/J39i/NAE8PgScfuQyDIqIiOra7mn1sl1TQDgi0N3McCdRIRa6+/uNzAgAfF0BwExs7zPX1sDng4iIiIiIiIiIiGpfShFG8zKMRiUQ8KjiNvmTj2WxNAAIuleWdEzlFFDELzIijenMJDrdgQqPiKqJKozm0txoc3ZWeDREy0cVRpvOTiBtpODWPRUekVo0qwqjNRW8baPJdaK5CDrB94xSyIoMdidfwlB8EEOJQexMbFOGgZcq6O5Dv28D+v17Q2itTp6drhI0TcMlgY/ia7v+ERmRzlv+l/nHcXL0DAw0nqC8DyEEDMgnh2hLCOMUEzYNuFcwolukw31H4TOr/h3PRDfitxPXYzJTeCLD9vhz+NYrn8bJzWfiHZ2XotXVUYGREpFdjafkn8EYpiZiGI2IiIiIiIgKUIWoFoqlAMMQ0HVO0lwMK2E0IQQ0Wf2rzqjWR9Wqt65bw8ad+TeaqLHYXM7iDPNqCqMZhlD+vYMmJy+bYhitLqQU0byFZmPFpBfILm75i4BQ/OmeHRE4/Ui+FxIRUWXF8o9RO8jzI8Bb1ldmLETVTLWPJzMyU75xVItURuAD1wvc8rRA1gBOOQy46SM6VrZzf5iIiIiIiIiIiIhqlyoM4WEYjUogqAiFzWWnkcjF4XP491+mikJV04TkbnevclkoPcIwGpkKZ+SvgW53L/QlRFmIqo0qMgkA4fQY+rxrKzgac9FcRHq5WfRsH5/eAB26NMYUU9wvFZYx0tiVHMJQfAuGEoN4OfEC0iJVlsda4VmDft/eCFq/bz2anDyYfrl0uoM4t+Nv8dvJG6TLfxW6Bl/0/wAe3StdLhRRNABwoDJhtJ4qigHbiaZp+D9Np+LYxpPw6My9uHfqFsQM84lLAgIbIw/g6fnH8Jb2d+Ks9gsZBieqU7XwPQRRuTCMRkRERERERKashNGAvZPFm+TfzVMBWfVvFwCAdBaY2z2Klqd+CxGZgXbK26AdfWJlBmczqonUqjBap+K33In52gomGQXWoX2qKYxmFgwMNGsA5H/D6Vh5xkP2YiWMNleek6hRmd38lHr7vH28ggMhIiJ61WTUfHmh0DUR7VVMGG14unzjqBafvkXgV5sOPGkbdwIXXWPgic/zjLxERERERERERERUu1JGUno5J4ZTKZhNJg6lR7HG1w8AiOeiiORmpddTxdXsyKv70OrswGx2Km9ZKD2KAZywDKOiaqGelK8O7hHVog5XN5yaE1mRf9DqeHrUVmE0VXyn0WFyNupXaZqGBkcT5nNzecuiuRo7G3kZpY0Udia2YygxiKH4IHYlX0RWlP7gfQ06VnrWot8/gHW+Aazzr0eDhQAeVc6b28/DpsgjGEu/krdsOjuBeyZvwoXdV0hvKwsU7qNpiz9mpMsdhA4HDBQ+2C3oYRhtKZyaC2e2n4eTW87EfVO/wcOzd0vfRxbKiDTunboFj8/+Aed2XoLXt5wFxxL+3kRUXQyRQzgzJl0WZBiNiGE0IiIiIiIiMpezGFyaTzKMtlhWJtKH/vE9aJ7+CwBAXPt14DM/hPbOD5d5ZPajDKMpTn7T1Si/fKLGfqPNWZxgXithtAbP3v/FJCfNYhitPqQthNEi8mNlycaiSYEnXlYv//OO2opaEhFRdRidMX//mYoJAIpSMxHtV8yeXKHXXa0TQuC2v+Y/B5t2Ac8NC7xmJbc5REREREREREREVJsSRlx6OcNoVAptzk64NQ/SIv+gs1B6ZH8YbTw9oryPagqjAXvHKwujjSuiV0T7hNLySflmgUGiWuTQHOhy9WBPejhvWcjk/WI5RLMR6eVWg1mNjmZpGC2Wk98vAUkjgZcS2zAUH8SO+CBeSe5ADhYOcC6SDgdWe9dhnX89+n0DONx3NHyOhpI/DpWOQ3Pi0uDH8N3d/wohOWLmwZk7cVLzaVjpPSxvmSHUE7gcUEyasTimTldAGd5ZqMfNMFop+B2NuLD7CpzW+jbcOfkLPD3/WMHbzOfmcFPoGjw8czcu6HofNjScCE3jcUJEtW46M6mMqfIzGBHDaERERERERFSAYXEualQSKCJrrITRwgkX+hf8t/jR/wec/XfQvP6yjcuOVOujrviuv0vxW+4z+b9PVzWrAcNk6X9rLZu0yevC5QA6GuRhNIYp6oOVMNpcovzjoNJ6ZVodwASAzaPAoy8KnHbE8r/G//sRA1c/IhCOAGcPaLjqbzU0+5Z/XEREVHrzBWKrtRZdJioXs/28Qw3PlG8c1SCTA0KKY8uvfkTgmsu430lERERERERERES1KWXID/bw6vV1jByVh67pCLhXYDi1M2/ZwhiaKozm1X1ocbaXbXzlEHCvwPb4c3mX2y3mQ/ZiCANhRRit28VJ+VR/Au4VijCavSKTqoBZo6PZ0u0bFNeL5nhgzD7xXBQ7EluxI74VQ4lBDCdfggGLB/EXwak5sdrbj37fBvT7B7DWdyRDwVXoMN9ReEPr2Xhs9r68ZQYM/Cp0NT6z6t+ha46DluWEehLFodctVtDTZy2M5mEYrZQ63QF8oPefcWbiHbht4jrsSGwteJvx9AiuHv0GjvAfgwu7rsAq7+EVGCkRLZdQRr1f2c0wGhHDaERERERERGTOsPhbTaHJ4qRmJYwWcgYOviARA7Y8AZx4ZnkGZVNW18d9uho1QHKWHQB4KSxweHdtTCa2GkZLyU8gYUtmrwu3A2hvAHZP5y+bipZvTGQfKQthtAjfl6rO7vwT1OZ5038ayFyjw6EqYlbA/z5u4GO/PPDecv1GgZcmBB797NIOOCAiInsqFGSd4P4nkSVFdHAyMRcAACAASURBVNHw0kTZhlEVzCJyL4wX80wSERERERERERERVZekIozmYQiCSkQdRjswCXk8JY+GBdx90LTqOt4woJhAbbeYD9nLTHYSGZGWLlOtU0S1LODuk15up22pEEIZMFMFzw7V6JCfjTyqCK7Vg2g2gh2JrRhKbMFQfBCjqV0QRR39YI1Lc2Ot70j0+wbQ7x/AGu8RcOuekj8OVd75ne/F8/NPYi6Xf4bAXckhPDp7H97Udu5BlwuT2J4OfUnjsfI+7tSc6HQFl/Q4JLfGdwQ+tfIbeC76JH47cYOlSN2L8c3491f+Ga9tPh3ndV6GdldXBUZKRJUWUnwP0ersYByVCAyjERERERERUQGGxd9uogzQLFrWQtRq2Cn5UXXrpvoLoynWR13xG0+X/DdaAMBX7xK44YPVdaCSitXXabJGwmguB9DZKF/GMEV9SGULr/Rz8mNlycaGZ6xtzP64DTh7oMyDMfE/j+eP8/EdwNYxgfW9tfG+QkREB6QLhKwneGJcIkvMYl+HmowC4YhAd3N97luZfcZ/Ybxy4yAiIiIiIiIiIiKqtJQijMZJoFQqQWXcZmTB/5eHbqoxCKX690Zys4jnovA7FAfhUV0ziz1V4+uAaKmCJpFJQxjQtaWFikohJZLIQX7mv0aLYbQGRRgtpgiu1aK57Ax2xAcxlBjEUHwQe9K7y/I4Hs2Lw3xHod8/gH7fBqzyroNLd5XlsWh5+RwNuCjwYfxs7DvS5XdO/gLHNZ6MVlfH/styQn2wmq4t7QTOVt7HA+4+OJb4OKSmaRqOazoZxzSeiMdn/4B7pm6yFKDcFHkEf53/M85sOw9nt18In6OhAqMlokoJpeWhxIC7t8IjIbInhtGIiIiIiIjIlGEh2gUA86nyjqOWmQWg9tntWpl/obv+zgSkmhzsUMyVXtMhvxwA7tkskM0JOFU3riLWw2ilP0tVuRQKo3U1aYDkrFtTDKMtSs4QuPWvAj/fKNDi0/C+UzWctd6+r42UhchfLIWaeY3Xi+H8E6JJPbFT4OyB5fu7bsw/cTAA4EcPC/zoUq5vRES1ptB+x2y8evaxiZZTMWE0ABgcA7qtHZ9dc8w+40/yMy8RERERERERERHVsKQyjOat8EioVqliEBPpceREFg7NifEFkbSFVGEcOzOLX4TSY1jrO6KCo6FqoQqjNTva4HP4KzwaouWn2pamRQqz2Sm0u7oqPKJ80aw6qqMKnh1KFVCzEuypVjOZyVcjaFswFB9EOCOPkiyVV/djnW89+v0DWOcbwCrvYXBozDvUi+MbT8GGhhOxJfZ03rKkkcDN4Z/iIys+t/8yA+oJXDqWFmIMKKK5C/W4JfOWqOQcmhOnt52D1zafjt9P34aHZu5CRqRNb5MVGfxh+lb8ee5+nNNxMd7Yeja3JUQ1QvU9hJXtNlE94LsdERERERERmbIaXJpPCgDFx0BiKYFQBFjbuffsF/UmZwhLk4NHXPlfZonZqUU849VNtT7qit94elo1NHuBSDJ/2Uwc2D4ObKi+45XyWA0YJi3EpOyiUBitQ3Gyyol5hikW41v3Cnzpjn3PncCvnhK4/v0aLjt5+c9kJ5OSn9guz3wSaOMJkarGK5PWrre1PMeeLFlojtsfIqJalC4Qso7I5+cQ0SGK3VN6MSRwxlH19q3HXmbfxWUtfv4nIiIiIiIiIiIiqkaqMJpH91V4JFSrVJOKc8hiMhNCu7Mbk5mQ9DrBKoxEtDo74NG8SIn8AyhD6RGG0UgqnJYfnBVw91Z4JET2YBaZHE+P2COMZhIva1xiGC1WI2E0IQSmMmEMJfZG0IYSg5hSvOcvVYPehHX+9VjnG0C/fwB9njXQNUdZHovsT9M0XBz4CF58eTPSIpW3/NnoE3g+ugnHNr4WAGAI9cFqS12PrLyXBxnhqSifowHnd70Xp7W+FXdO/hKbIg8XvE00F8HN4Z/i4Zl7cH7X5XhN4+vqci4eUS0JK+LUZvuhRPWEYTQiIiIiIiIylbM44TKa/x19gfsV+OdbBH78kEDWAFZ3AL/5qI4TVtfXF7Jm8aeFhiVhNMxOlHYwVSCnmB2sm6w2T39BxxFfkK/Ie+ZqI4yWszjDvJrCaGmT8JXLAXQpw2jlGU8tG50R+NrdB69EQgDfuU/g714nbPlDmdUw2lyCYbRqMjhmbWO2xeL1ykGY1EytrpdERFRdzPZLAXmEmYjyWYnCL1TPr61inysiIiIiIiIiIiKiWpATOWREWrrMyzAalUi3uwcaNAjJKV1C6VHkRA4C8mMNq3FCsqZp6Hb3Yji1M29ZSDHxmki1blTja4CoFHyOBrQ42jCXm8lbFkqPYn3D8cswqoOp4mU6dPh0awfRNijCaNFcdR6YLYRAODOGofggdiQGMRQfxEzW4tl7i9TkaNkfQev3D6DHvQq6Zs8TU9Py6HB14+2dl+C2ieuky28K/TeO8B8Dr+6DAfUEI8cS16tGRzMaHc2mMcUez6olPQYtTrurC1f0fBJntr0Dt01chxfjmwveJpwZw0/G/h2H+47Gu7rejzWMHhNVpUQuLt3PBPgZjGgfhtGIiIiIiIjIlKJDlWe+yAmrP3hQ4PsPHLjzV6aAs/7LwOh3dPjc9ovwlIvVMFrIEci/cCZc2sFUAdX66DD5jWddt4b2BmA6lr8sPC8AVP/6ZlgMGCarKNpj9tpwO4EuxQnMJqLlGU8t++ljQvp8bxkDZuJAuw3DYlYDVBNRYE1necdCpZEzBLaNW7vuzom9B60sR7Qva7JtYhiNiKg2Fdq+13O8iagYxba+iv2eqZZY/S6OiIiIiIiIiIiIqJakjIRyGcNoVCpu3YN2VzemMqG8ZeOpEWSF/MdBHQ50u3vKPbyyCLr7pGG0cYbRSGE8PSK9nJPyqZ4FPH2Yi8vDaHagipc1OpotH2fZ4JAfmB3NRZbteM1iCCGwJz2MHfFBDL0aQosoIiNL1eJsR79vAP3+Dej3DSDgXmH754eW3xlt78BTkUel+2Wz2SncPXkj3t39QRhCPTFEw9KDewH3CkQTJmE098olPwYt3irv4finvv+HLbG/4PaJ65T7ZQu9lNiG7+z+LE5seiPO67wMnW7J3DMisi2z/Ul+BiPai2E0IiIiIiIiMmUIa7Mxo6ni7vdXm/LvdzYO/GEr8M7jiruvamYWWFkoIvuxsR7DaIrfefQCvyUGmhVhNPVvOlXF6qTphPykqrZkFkZzOYDORg2yqfUT1XlismV17xb1CjQxX91htOFp4KQ1ZR0KlcjOCSCZsXbdVHbvutktP0FhWaUZRiMiqjvpQmE09RwdIlrA4tdL+xX7PVMtYRiNiIiIiIiIiIiI6lHSJIzmYRiNSijoXiENo4XSo8hB/uNglzsIh1ad0zBVE6lDFiILVH9SRhKz2Snpsm5Oyqc6FnCtwIvYnHe5XbalsZz8gHhV7Eym0SE/INNADkkjAZ/Dv6ixlYshDIylXnk1grYFOxJbEVU8D0vV7uzaG0HzD6DfN4BOV5AhNCqaQ3Pg0uDH8Z1XPguB/EkxD83cg9c2n2762cehOZY8jqC7Dy8ltsnvH050uYNLfgxaGk3TcEzjiVjfcDz+PPdH3D15I+ZzcwVv9/T8Y3g2uhGnt56Lt3VcBL+jsQKjJaKlUoXRXJobbc7OCo+GyJ6q8xs5IiIiIiIiqpic+oQjB5lPFne/T+2SX/6TRw2887ilf2FfLcziTwtF9GYIAAf9hBa2x1mmKimnmBxcMIzWBGzbk3/5lrGlj8kOrL5O4zUURgsogkjRFBBJCDT7+INzKUzMA0fa8PfNQoGSfYZn8racZFODRW6Ph2eWKYxmsu6lLIbdiIiouhQKX0aK/CxMVK9UYbRmr/x1VOz3TLVEFYXfJ2cIOAp9EUJERERERERERERUZVKG+othL8NoVEJBdx8GY3/Nu3xL7Gm4E17pbVRxsWqgGns4vQc/Hf32ou/XoTmx2rsOp7a8BT6HDc+8SfvNZaexce4BjKR2QQjzH6LMtsXV/DogWqqAR77+70oMLWlbWqxWVweObzwF6/wDB10ezcnPKt2giJ3JNJpE1GK5yEFhNEMYeHr+MbwQfx7JXNzyY5RKSqTwcuIFJAzJWdNLoMvVsz+Cts4/gA5Xd1keh+rPau86nN56Dh6evTtvmYCBn459B12uHuXtdehLHoNZ6DTg7q3aGHAtcmgOvLH1bJzUfBrun74df5z+LTLCfEJQVmTxwMwd2Dj3AM7peA9Oa3sbnJqrQiOuLoYw8FTkUbyY2Lws72Wl5NTcWOPrx+tbzoJb9yz3cKhIqjBawN0LXVv6dp+oFnDvhIiIiIiIiEwZiomrh5pTn7AxTyKtvtPp8vw+ZVtWw2g5zYmY1oBGseAJmh6HyKShudzlGZwNqSYHF5oP3N2sAchf7679k8BP3yugV/mEYquv01gNhdH62tTLR2eBZh4PWRJh+bESy65QoGSf3dPlHQeVzpYxixuyVw1PAyesLtNgTJite1bXSyIiqi7pAp/Z5pOAYVT/ZwqiclPt7TUpwmixVFmHY2uF9ozj6b3PGxEREREREREREVEtSRrqAxA9DKNRCQXcfdLL53NzQG5OuizoXlnOIZWV6t9rIIdnohuXdN9Pzz+GP8/9EZ9e9U00mAR1aPlMpkO4cvjzmM1OLel+HHAyDER1LajYlqZEcsnb0mI9PPM7XBb8e5zS8ub9l8UUYTSz2Fn+ddURtWgugk4cOMvyz8d/gCcjD1m+b7sLuvvQ79uAdf716PcNoNXVsdxDohp2Xtff4dnoRul781QmjKlMWHlbXXMs+fGDJmG0oKd693lrmVf34R2dl+KNLWfjrqkb8cTcgxAFji6KG1H8ZuJ/8fDsPTi/63Ic33gqNI3HNy50w/hV2BR5ZLmHUTJPzT+CpyKP4pMrv8Y4WpVRhdHMQpZE9YaJQCIiIiIiIjJlNbg0EbEeNNkjP3YEAOCos0+qVsNoABA59AdHIYAJ+RdgtUq1PhZab7pMftd9YPvix2MXlsNoVTSxPK0IDDl0QNM09LaobzsyU54x1aqESTAvPF9crKpSrAaoRhhGqxrb9hR3/eGZ5Vk3VdsmgGE0IqJaJIQw3fbvE62i/Wwiu1EFvuaT9vwsUgmFPuNHJSE5IiIiIiIiIiIiomqXUoTRNGjwaDxbBJWOWQyilLexi253DzSUL4KwJz2MP889ULb7p6V5YOaOJUfRAKDLHYSjBDEWomoVcPcu9xD2EzBwx8QvkBWZ/ZdFcxHpdYuJVnp1P3TIX+cL7384ubPqo2i97tU4vfUcfKj3s/j24dfhS2t/iEuCH8VJzacxikZl59V9eE/3hxd1W9VrtBgBk/3aniqOAdeDVlcH3hv8BP519ZU42n+cpdtMZkL42dh/4D93fw4vJWpg4lSJDCd31lQUbZ9dyRfx1/k/LfcwqEiqMJrZ9pqo3jiXewBERERERERkbznD2vXC8hMNSTGMdkAxYbQ5vRm9OKQcEx4BeteWdlA2ppocrBc4bufwLvWys79nYOZ7Olr81XsGlFoMo6leG+5Xf8/zuDR0N8m3PSMzAijjwVy1JpFRL5soYtteSSmTMS8UKiLaSctrKlrc32oqWqaBFJA2ed9mGI2IqPZY/bwWSQLNvvKOhajaCcXuXrNiLls9BweNAt/F1fNzQ0RERERERERERLUrYcSll3t0HzSNxwFR6QTcfRW5jV24dQ/aXV2YyoTL9hjbYs/grPbzy3b/tHjbYs+W5H44KZ/qXZuzCy7NjYwwORNxBUVyMxhLvYJV3nUA1GG0xkNPym5C0zQ0OpoQyc3mLYvlDhxMXKrtSqVo0NHnWYN+/wb0+wawzr++qGAcUTkc13QyXtP4OjwXfdLybXTocGquJT92hysAp+ZEVuQf9NzjYRitGvR51+ITK7+CrbFncFv4OoylXyl4m5eTL+C7uz+H4xtPwTu7Lke3u6cCI7WvrbFnlnsIZbM19gxObjlzuYdBRZjOyj+r8zMY0QF1Nt2ciIiIiIiIimU1uFSqMFrCHr8XVkzWYngO2BtGy7NnV6mGUhVUob5CYbQLjze/wluvMpCzurLbkNWAYdYA0tnq+HeqIhSuBSc66muTX2c0/zd5MmEWRitm215JVgNUE8sUz6LiJS3G7vaZk58ouuzSJuseAxVERLXHbLu/UGSZ3peIqonqk2iTIow2nyzbUGyv0NcT3O8kIiIiIiIiIiKiWpQy5D+4eHWenYZKq8nZgjXeIyxfv8XZjlXew8o4ovI7puGkst5/KD1a1vunxcmKDCYz4yW5r2May7sOEdmdrunY0HDicg/jIHtSw/v/f6wEYTQAaFBcP7ogjGb3bb4OHWu8R+Cs9gvw8RVfwH+u+zn+dc2VeHf3B/Captcxika28Z7uD8OjKQ6akVjrOxIufelhNIfmwPqG/5N3uUtz40j/sUu+f6qc9Q3H4/NrrsRlwX9Ai0MxseYQz0Q34msvfwK3hH+mjGrWA7u/ly1FLf/balFWZJBUfB/W6myv8GiI7IthNCIiIiIiIjJlWAwuhYr4TnTPnHqG59gcIER1hJtKQRV/kplztORdJl7ZXsLR2J9qcrBe4BuOVR0a3neKOo725MvATU9V73pXTNMtViUTqFX/JseCv3VQ8Xu9XWNedhU3CVJO2vS5tBpGm2QYrWoUG0aLLFMow2zdm5gH7ny2et9LiIgoX9ri57VYnQW+iRZD9VVPs2I+Wz3HvxhGIyIiIiIiIiIionqkmgjqYRiNyuDCrvfBq/sLXs8BJ97d9QE4NGcFRlU+b2k/H12unrLd/0x2Eimjjs96Y1MT6XEYKOLszQpH+I/BiU1vLMGIiKrbuZ1/azk8Uwl70gvDaPKDfVWhM5VGRTRsYTxnPD1S1H2Wm1Nz4nDf0Xhr+0X4h74v4z/7f4nPrv4OLuh6HzY0ngifo2G5h0gk1ebqxAd6PwOnVjh25tP9eFfX+0v22O/ovBTNjtb9/61Bw/ldlzMcWIV0zYFTW96Crxx2Nd7ecYml2F4OWTw0cze+vPOjuH/6dmSM+jv4sZbjYeH0WF3Nyax2qn04oPjALVEtq+5v5YiIiIiIiKjscha/D4umgHhKwO9Rx6f2GZ9TLxubBTaPAsf2WRygTaUyAv/zJ4GndwGtfuDC4zW8oT//uSkmjDavS35o2LVt8YOsQspYVuHVDv92robrN6pX6F8/JfB3r1vkwJZZUWG0NNBWBb/xKiN4C/7W3c0agPwr2jXmZVcJk9+ywvP2+1HEMITlbedUdO/1dd3CRoKWVdJi7G6fSGJ51s10gXFe/r8GNn9Fx8p2rnNERLUgZTHcGWekiKgg1fFWTV7557r5Op47U+jYtGgdPzdERERERERERERUu1RhNC/DaFQG6/wD+PzqK/FcdBMmM+PS67Q423FM44lY4VlT2cGVQburC59d/R08O/8ERlO7ICS/zViRNlLYGHlAuiycHsNK72FLGSaVmCr4oEHHaa1vLXh7p+bEam8/jms62VK0hajW9XpW4XNrvovn5p88KEpWbi/Gt2BPenfe5XtSe8cghEBUGUYrLnKkun7s1TCaEEK5bTnK/xoE3CuKerylaHa24TDfUVjrPQJu3VOxxyUqpWMaT8TnV/8XNseewnRmQnqdgHsFjmk8ER2uQMked4VnDT635ko8N/8EYrl5HN1wHNb6jizZ/VPleXQvzum8GK9v/RvcM/kr/GnujxAFArkJI47bJ67HIzO/wzu73osTmt4AXdMrNOLlFU6PSS+v9HvZUsRy83h6/rG8y1MiibncDFqd7cswKirWwvjsoRirJDqAYTQiIiIiIiIyZRRxsrDwPLDGwu9Ke0zCaABw4yaBY/uqNyiSzgqc9A0DWxZ8V3rVAwJX/52Gj5x28BfFxYTRZheclWW/V7YvcpTVSRnLsvD9+2GdgM8FJBRxg7ufr96AUq6I12msSqINhmIm+MK/dZfie147xrzsyjAEUiahp7ANI3PpIrabhgCmY0AnfxOwvaRi29ziA+Ykxz5H5MdDl12h9S+SBH78sMC3Lqy+9xIiIspndb8jVn8nTSQqmupTWpPiRKWROo5/FYqfx7nNISIiIiIiIiIiohqUUobRFF8kEy1RpzuIN7eft9zDqJgGRxNe33rWku7DEDk8Nf8osiL/QJ/x9AjDaDajihd1ugK4OPCRCo+GqDa0ONtxWtvbKvqY903dgjsnf5l3+b5YWtJIIAf5gcCNjuaiHkt1/dir4bVoLoK4EZVe520d70G/f6CoxyMiIOjpQ9DTV/HHbXW24/S2cyr+uFReLc42XBr8ON7U9nbcPnE9BmN/KXib6ewErt1zJR6YuRMXdl2BI/wbKjDS5RPNRhAz5JNk3tpxUdX8+1VhNGDv5wCG0apDTBG3BRhGI1qoPrKdREREREREtGiFJmMuNG9x0uqD283v9Dv3CVz2MwPTseqLG92w0YD34wdH0QBACOBffiMwFz/435QtIvAz5uzJvzA8CqEISNUiVQDMSstM1zW8dq35dXZOFj8mOyjmdVotYTQrf+tuxfe8EzaMedmVKka1jx2fy1SBMR9qQn4MBtmMal1Uvc6XK5SRNgkJ7vPt++rnfZmIqNZZ2e4DjBQRWaH66qKjQX55LAXMJ+tzv6rQZ/xYuj6fFyIiIiIiIiIiIqptSUUYzaP7KjwSIlLRNQe6XZLjWKGOcNHyCaVHpJcH3CsqPBIiWooe9yrp5VOZMNJGyjSo0VhkUKNBEUaL5iIA1NsVAAhy20JEZBu9nlX4+74v4h/7voo+T4FJVK/andyB7w1/AdeMfrOm9+3N/m3VtJ/c4GhSBk1r+e9Xa6KK/Tiv7odTc1V4NET2xTAaERERERERmVLFiWSiBYJLQgjc87zA7unC93XjJoHOTxkYClXPZM+7nhO44lr1eOeTwG+fPXh5pogw2ohLciaYdBKIWHhCa4RqcrCVMBoA/MMZ5l+FvPuaIlZ4GzFK+Dq1Cyt/6y7F7/VhG8a87CpRIDI2GQWMYsp7FZCyGCjZ5/Ed9ho/HWzbHoGfbzSU+waqMNqc/HjosrMayKnXiAcRUa2xut8RZ6SIqCDVq2SVyckph+vn646DFAyjVcnneiIiIiIiIiIiIqJipBRhNC/DaES2EnBLjmMFJ9/b0bjib1JNwQciAno88jCagMB4emR/tEymocgwmiqwsi/aEUqPSZf79AY0OlqKeiwiIiq/oxpeg8+t/i4uD/4TWp0dlm7zfHQTvvbyJ3BT6L8xn50t8wgrL5SR7yN7dT+aHa0VHs3SdLt6pZeHFe/XZD+q/bhi9+GIah3DaERERERERGSqmB6OWXApmRG45KcC7/hhceGpI79o4CePVkes6uqHC4/z7ucXH0YbdioORpionwNKVAEwh8VvON51gobr3q+uqD0/AmRz1Rc1KOZ1Wi0TqFV/64VhtO4m+d9yYh7I2SzmZVfxtPlyQwDTscqMxap0EdtNALh/kOuCXX3zdwYGvmzgfSZR0W75cTaIJMs0qAKsBnLqNeJBRFRrrAYxq2Ufm2g5CcUu34o2DZriY7qVsH4tUj1X+8QKfI4jIiIiIiIiIiIiqkZJRRjNwzAaka0EPfLjWEPpkQqPhMwIIZSxuqAibkdE9tTp6oZLc0uX7UntRkwR1NChw6c3FPVYqgjHvscYV2zrg+4+aKof/omIaFnpmo6TW87AV9b+GOd1XmYpPm7AwKOz9+LLL38M9039Bmmjdg6QVO0jB9wrqu69TBU8ZrS6eqj241SxWqJ6xTAaERERERERmSqmLXT29wz89DEDQjKD8+anBW5+enFxmo/+QuDaP9k7jiaEwKZdha/3/CG/BxYTRhtxKQ5GCNfPASWq9VEv4vvny0/R8eaj1Mt3hIsbU7mkMgJfusPAKd/K4fwf5XD/VvXrJ1fEy6NaJlBb+Vv3KE4uZgjgpYnSj6kWJTKFrxOeL/84ipGyMOaFRmrvREU14ZndAl+6o/B+QXezfAM/Jz8euuzSFuOZwzNlHggREVWE1SBmodgsEam5HUBQcRzP8Ex9Ro4LfRfHbQ4RERERERERERHVIlUYzcqkbSKqnG6XavL9GAxh7+N868l8bg4JQ35GVFVAgYjsSdccytftnvQIoiZBjWIDL42KMFo0N28aXAy4e4t6HCIiqjy37sFbO96Nr669Gqe3ngPdQmYmaSRw5+Qv8JWXP44n5h6qif39WnovU+0fhBlGqxqxnHyylmqfjKheMYxGREREREREpooJLgHA//25wDd+lz+D85ZFRtH2+eD1Ar/bXPkJsUIIbBkV2DMrpMG3fcbngGn5MQQH2TEBJNIH7qeYMNqwsw/SEUzUz5eWqvWxmDAaAHzgDeobbLbJ0/me/zbw9XsEnnwZuPO5veHBu5+Xr4PFBAyjqeqYWK76NzkWfJt1RED9tx8cK/2YalHCwoR624XRLAZK9oksU0CLzP3kMWFp29Wt+E0nlgLm4pXfnqUtrn/D09WxrSUiInNWt/vVEh8mWi5m36doGrCyTb5stE5js4X2k2O1cxJWIiIiIiIiIiIiov1SRlJ6OcNoRPYS9MhP8JsRacxkJys8GlIZT6tPuMwwGlH16XGvlF6+J7VbGdRocCjOUGaiUXEbAzkkjbhJTEZx8nciIrKdJmcrLg58BF9c+wMc2/haS7eZzU7hhvGr8O1XPoPtsefKPMLyCqXlE42qcR+5WxFzm8yEkRWZCo+GFkMVuG1gGI3oIAyjERERERERkaligkv7XHm/OCj+BQD3bF76WD59s2E6mbbUNo8IHPf/DBz7VQMrPmvgwh8bygiL1QiTEMC2PQf+O1tEeC7qaMKc3pJ/n3UURlOtj8WG0f72JPUNLv7J8p/FZNsegbuez7/8vB8amJWsg8W8TqslEmXlb+1zazi8S369zaOMElmRsPB7x0SVh9HmqmSdrydCCFz/Z2uvIQYzYAAAIABJREFU0aOD6mVP7SrNeIphOYxWpxEPIqJaY3U/O84wGpEps69yNAABxfHY0/GyDMf2GEYjIiIiIiIiIiKiepQ05Ad4eBhGI7IVs2CAKphDlaf6WzToTcrwERHZV49HHkYbTw8jqgyjFR/UMLvNbHYak5mQdFk1xmSIiOpdwL0CH13xeXxq5TewyrvO0m2GUzvx/ZEv40cjX8NYaneZR1h6OZHDZHpcuqzbJY+M2Znq/VfAwITi30n2otqP42c2ooMxjEZERERERESmFhNGm40Dmxf8pm4lZnbL/y38EfXFEHDVA5WJHaWzApf9j3HQv+OO54DP/1b++DsnrY9rZEEsJZMr7t8z4pJ8cRmun4NJVOujo8hvODRNw0UnqONoP354eeNovx9Urxf/dFP+slwRw43IT65qO8ow2iF/6wHF7w8vT5R2PLUqZSGMFp63V2Su2DBatazz9WQuASQtnoToyKCGzkb5sk27Kr9uWl3/huTH/xARUZWx+nmYkSIic2YvJU0D2hrkn89nYuUZj90V+hqNMUYiIiIiIiIiIiKqRSlFGM3LMBqRrXh1H1qc7dJlDKPZh+pvEXCvgKYVeSZiIlp2Qbc8jDaZCWEmOyld1riIMJpZhGNX8kUIyA9YZxiNiKh69fsH8NlV38H7ez6NdmeXpdsMxv6Cb+z6JG4c/zHmstVzNvGpTBg5yCcDVON7WacrCE2RC+Jns+oQUwZuGUYjWohhNCIiIiIiIjJVTHBpoc2jB2ZxPjtsft113cAFxwMXn1j4x/ZP3yxw21/LH0K5b8vBcbd9btokpKG33dPW73smfuD2mVxx4xp29uVfGC7wBNcQ1fqoL+I4jQ0m31v/w40COyeWLwb15E71sp8/IZA9JKhXTMBwTn4Moe0YFv/Wazrlf/zhGXvFvOzKyrozIf+ufdlYibktNJ8EcoupfFLZDBfxnulzAa9bK1+26eXK/13TFt+3t4xynSOiyslk5Z9RaOmsPq2MFBGZM3staRrQ5pcvm4nV57at0McXbnOIiIiIiIiIiIioFiWMuPRyr674EpmIlk1QEQ0YT49UeCSkElL8LQKe6gs+EBHQ61klvVxA4KXEVukys8iZilf3Q4dDuuylxDbp5Tp0dLmDRT8WERHZh67pOKn5NHx57Y9wQdcV8Fn4HC5g4PG5P+ArOz+G303+GinD/mezN4uFdbt7KziS0nDpLnS6uqXLwumxCo+GFiOai0gvX8x+HFEtYxiNiIiIiIiITC22JbMwKva5W83ratdeoUPXNfzXxRpeI+l+Herd1xi4YaOBezcLrP9SDu6P5rDhyzn8YbB0E2a/do98zDNxeVhqpIiTXMwuuH2xYbQRl+QJCtVPGE21PuqL+IbjmBXmNbVv37d8E7B9bvPlMwuOAyw2glE1YTTV3/qQP9vKNvn1igkv1TMr2/iw3cJo8pP0mIra/3e2ujJcxHum1wW8dq18e/3ky8VvA5cqbXH9eyG0N1RERFRO8ZTA+6810PZJA+2fNPDxXxpIZrjtKSWrn4fjqfKOg6jamYbRALQ1yJfNyOfA1bxC255Yitt6IiIiIiIiIiIiqi1CCKQM+UFNXt1X4dEQUSHdijBa2CQ0QJU1rvhbBFwMoxFVo05XAE7NJV02mQlJL29wNBX9OJqmKUMcqjBapyuoHBsREVUXl+7GWe3n46uHXYMz2t6ujGUulBJJ3D31K3xl58fw57k/whBFTpKrINXnlXZnF9y6p8KjKQ1V0C2U4WezahBThNEWsx9HVMsYRiMiIiIiIiJTiw2jDYUO3DBkEtWZuFLH69ftDZ4EWzQ8/QUd/3K2ebAKAK64VuDcHxjYPg5kDWDrHuCtVxn45K8NXPWAgWd2L22S6M4J9TJZJGh42vrjzcQO/P9skd/5DsvCaCM7IEK7i7ujJRJjOyHu/BnEY3dCZBdRKVok1froKLzK5Dm2QITvjmeXb6JxOGL+2FPRA/+/2NdopMbCaKva5X/84ZnKB5OqkZX1Z+H6ZgeLCaNVSxCwXhTznul1Aa9ThNFCEWC2wrEMq2G0TA4YCpd3LEREH7xe4PqNAvH03ve6ax4R+OSvuf9TSlb3taOMFBEtmqYBbYqTjE7H5JfXOsP8/AKIMcZIRERERERERERENSYj0jAg/3LUwzAake0E3fKDL1UxLqqsjJHGdEZ+4FLQY+Hs1URkO7rmQFARpVRRBc4KUYU4QqrgYpHjIiIi+2t0NOOi7g/hS2t/iOMbT7V0m7ncDH4x/kN8c9ensTX2TJlHuDiq9zJVXKwaqN6Hw+mxCo+EipUVGSQVJwloZBiN6CAMoxEREREREZGpXIHJmCrD0wf+v9lE1o7Gg2MnDl3Dt9+l46aPLKJ0BeD7Dwh86tcCJ3zdwNfvWeTgAZhNaw9Lgvy7p/MvU5ld8L1Vpsgw2ohT8ePhQ7cVd0dLIH7zQ4hLN0D8x99DfP4iiI+/CWLGpCRXQspY1iK+4VjbCRy3Ur08PA9s37M8gYNC69PUgtdUsa/RuUR1RBushtFWtsuvl8zYL+hlR1ZiH3ZbZxYTRoskSz8OWrzhGevX9bqAo3vUy0eKuK9SKCZGuWXMXq8dIqotsZTAbc/kb2du2Cgwn+T2p1SsdnZnKhzqJKo2Zi8lTQPaG+TL6vW1VWjTE0tXZBhEREREREREREREFZNSTAQFAK/ureBIiMgK1eT7uew0Erk6/YHHRsKZMQjFL04MGBFVrx73qqKu37DIMFqxIQ5uV4iIale3uwcfXvFZ/POqf8da75GWbjOWfgU/HPkqfjD8FYwkd5V3gEWqxchnt2Lsqn8r2UcsN69cttjALVGtYhiNiIiIiIiITKkCIBt6905eVVkYdlJNZP3i29V38J4TdUz919I+tn7pDgH9Izmc+PUcvnGPgWzO2qx2IQSiJhGd8CHfPSXSAi9PWh/X7ILno9gw2p9azpBeLh66tbg7WiTx7GMQV/0zkFsw8G1PQdzyg4o8vioCdmgsywpN0/Af7zZfx9Z/2cBPHjUgrBYRSiCbE3hRfrK+/RYGv4qJ9ADAnPo4QluxGsFb2aa+j2LiS/XKsBDWm7XZsWqqbXmLyQmCq2W9rxfFxMw8TiDYrN7O2zqMxt8TiaiMXgzJP0skM8BD2ys/nlpldbtvFgMnIvPIoAagzS/f2ZuOoaKfx+2i0LYnzjAaERERERERERER1ZikaRjN5IAQIloWZuGA8P/P3n2Hx1EcbAB/Z+9O3VaxrWbZBtPcgNCrqYbQQseU0D8CoQQcSIAAARNqaAFCDxCSEAjNGNMCxpQYDBhjDO69SJYlWb2f7m7n++Ms6yTN7O1e00l6f8/jx7rd2d2529253b2dd33lCawJqehCEAy4MNxTkODaEFGsFKZaPA1cwWnAWdd0zoI4ClNLIloOERH1Hzulj8PvRt+Py4pvtH08ubx1Ee7b+Fv8a8tfUe+riXMN7ansUJ+r9OdgNF3dmwONlsFb1PeaA43acZkRHscRDVQMRiMiIiIiIiJLutCc66YIzLvJwNHj1OMb24GGVgmfX6LFqy5z1G7WaVa5mQKf/y76U9eFm4A/viORc52J/8w38eb3Ep8sk6huUvc0rW8F/BZhQVU9pltR4Swopa6lq7DTYLS1ogR1Rk7vEcvmQ1ZsdDYzG6RpQq5fDjnvA8jP3oL8zRR1wU/+E/Nlq2jDsiIIRgOAo8cLrL3Xehv79csS932YuI7Ya6qADr91mZqQbchOsFWo/hIQpXtfPdd1wVDA41KXDQ1oJDU7bVd9km0zujpnpgIpbvW4HzYNvjCFZFZaa399pLoBj1ugMFs9vqw+sevWyff92q3xqwcRke74BwCWbuH3XqzY/SR1YeBEFGS1LwkB5GWqx/lNoDHJzkcSIdx5vu46GxEREREREREREVF/ZRWMlspgNKKkk+seDo9IUY6r8JYluDbUky4YbURKEVxCc4MdESW9ohRnwWiZDgPOIp2uwNN/w2SIiMg+IQT2HnIw/rjDEzhzxKXIMLLCTiMh8XXjHNyx/kq8W/2K5bl/vLUFWtEYUD+RvV8Ho3mKteOqNEFwlByaLYLrGIxG1B2D0YiIiIiIiMiSVRDVAWMFXrhIf2q5qdY6UCcnI/zyD9tV4O8XR5h61UNrB3De8xJTnzVx7KMmin5v4sGPevc2DRemVNkjlH+hw8Cd0E7zToPRAOCxvGvUI758z/nMLMi6Kshrj4G88GeQN50Geft5+sJbNkK2xv9pErrOwa4ornDsOFxoA/463TZTYlFpYgImlti49lzT0vV3wGG1+kunct376hmMZhgCIxVZgYCz8KXByk7IU7KF6QUsQvPGFarHzVzEbSGZlKp/U+wl3RPcxwFgVK5mXgkOQHQSjFbfyu2OiOLHqj1aznsZYsZuCHFtCyAl230iHavdQwAotLivuqw+5tVJeuGOOVs6ElMPIiIiIiIiIiIiokTxWnSOTmMwGlHSMYSBghR1B3xdKBclToVXvQ4K+3HgAxEBRanOgtGyIgzUcBrEUZDKtoWIaDDxGB4clXcy/jT2GRydewrcNoJ3fbIDH9a8junrrsTc+o8QkBF0pIuS1XlKfw5Gy3bnIVWkKcfx3Cy5tWiC0dKMDLiFJ8G1IUpuDEYjIiIiIiIiS1YBNABQnNM7qKhTaV33ELCecm0EowHARQcbePuq2J/CBkzgprck8qYF4L4iAOPyAHa5NYC97rLu/b5ua/fXMxY66wAfGqzm1ywq02zWTv/q8AuhWqJc/aOjeujI+mqYL/wJ8uRRwI9f2p9w/bKYLN+KVVBfNKafHH77mvyAmZCwg3Vbwy+jJmTzsBvW0Km6uX+ENujel2pdj8pTl7UbvjSY6dr4UPUW7Xhf0LUDLgM45WfqxuCHTf1ju4+Xz1dK/PplE9NeM/Hl6r79HKSUKLO5bw4J+Y2uRBOMZndeseKkze0vQZRE1D9ZheaUNwze77xYsxuI6QsEg7iJSM0yGE0AI3OC/6skOgg3GYRrelq8CakGERERERERERERUcK0a4LR3MLNzqBESaogpUQ5nJ3v+15lR5lyeH8OfCAiYLin0NFxUZbL4gllMZou0zUk4uUQEVH/luHKwhn5l+D2HZ7EvkMm25qmMVCPVyufxj0brsPi5gUJ7d+hO0/xiBTkuIclrB6xJoRAPkOr+6XmQKNyuNOQWqLBgMFoREREREREZMkqgAYA3C6B4hx1mU21El+t0V+ozM20X49Tfibw5q/jcxpb39r1PtdutS4LAEvLu96TlBL/W60uN9oirKnzAq5P86CL/doWaJe/VpRgs1txg8L6pdpprPj8wbpIvw9y/TLIi/cFXrrH+YzWLolo+U6EC+qL1CE7C5yxt3WZFi/w3YbI5t/hl+jw27tobyfMq6al62+7YQ2dvP7+EdbjJARvVK56A0h0YFJ/ZGf78fqBdl/yBKxYtQNHj1NvC3WtwJaGOFYqib00z8RRD5t47n8Sj8+ROOIhE//+1mGiYgxVNgLtPntls1K7/h6p2c831yV223TS5jb0g7aWiPovq3DTGn3GMjnk5FumtiV8GaLBKty+5HELFGrulS5N8PFeMggXxtvaMbiDn4mIiIiIiIiIiGjgaTfblcNTjfQE14SI7NKFbOlCuSgxpJTaAAQGoxH1by7hsr0fG3AhzbD5BPseshyEcRRqQjKJiGjwGJ5SgEuLb8CNox/AzukTbE1T0VGGpzffjcfKbsem9rVxrmFQlU93jFwMQ/TvyB39uRmD0ZJZiyYYjaGzRL3171aaiIiIiIiI4s5OOJEuAGxTLXDHLPUMXEb3wBM7Tt9b4K0rDcfTxdryLYC57YNpbAsGZqlcfaQ6xKXd1xVWoAtGS5E+vF16prYOZW7FEx3WL4P020ybAbC1SeLCF0ykXx1A5hVtmHbe39B60UFAzRbb8wglIwxmc8JJWJZT/7zUwIm7W5c58D4Tt79jImAzGafFK3HBCyZyrgv+O/95E83t1tOW1oafd21zVxmnwWgAUNnkfJpE065rxdWsUZo26NX50tbnOZjZ3X6SKeDJKrBzovphNwCAJYPwdx3TlLhlRvcPzJTAbTOl7XYs1pY5+IrJDPm+H5WrLmMnTDKWnHxsjer7tomIYsKqPaphQFfMhAsnClXXGr96EPV3VhleYtv5vPZ4rzb29Ul2do452zriXw8iIiIiIiIiIiKiRPGa6htT0hiMRpS0dJ3vq3xbYErNjbEUdw3+Wnil+qYlBhgR9X9FKaNslctyDYEQkd1c7ySMg4GLRETUaYf0XfHbUffg8uKbke+x6NQRYlXrYty/8Qa8tOVR1Pq2xrV+upCw/AHwXZafov68qzrKE1wTcqIloO7Y5ySklmiwYDAaERERERERWQpoOoJ3D0ZT/3BWWqvv/JrmQUQ/uJ22l8Daew28c7WBf1wi8OVNBpr+amDujcHXt58Ug4SsMNp8wPrq4N9WAVOH7qyvy6ZtHXt1wWge6cNJzR9op69yF/Qe2N4KfP+pvkIhpJQ47AETL38rYUqBNpmCv+ZcgdtGTLc1vdK6vgtGc8UgGS09RWDWNQZmXGl9ueTu9yUuetFeMs4V/5L497cS7b5gIN4r8yWueNl62vnrw883NOxCt49aqVQ/WCKpOAnB0wWjAcCYm0089bmJz1dKSEWDtGSzxJOfmXh1vgmff/CFqJlWCQUhkikYzep7aViWQKHmnowNNYNv/a7dClQo9veNNcDCTYmvDwAsLY9sPZRYBKOp9u14cRKMlkz7DRENPFbHgNXNiavHQOfkG6Y/HGMT9RWrfanzFE93XsdgNLUWBqMRERERERERERHRANKuCUZLFQxGI0pWupAtv/TFPdSA9Co6yrTjGGBE1P8VpdoLRst0EG7We1r7YRxsV4iIKJQQAj8bciD+uOPjmJr/K9thm/MbP8f09Vdh5tZ/oS0QnycDV2pCwgbCdxlDq/un5oD6puNojuOIBioGoxEREREREZElO0FUus6rm2ol6jWhINHEWI0YIvCLPQUuOMjAwTsJZKYKHLJz8PX0kw3Mu9nAkbsBET7oyJZlW4L/V1l0ft99JOBxqceFC0Zzww8BYJSvVDm+Ml39w6ac96G+QiGue01iZWXv4S/kXIJ2kWprHr2sXAjpi2/PXDtBfdEQQuDUvQSuOcp6hq/Ml7jpLetEstoWidcX9N6BXl8gUdOs3rHmrpbKEKOeakLCLpyE9HTqD6EN+ran97BRudbr65pXJI562MS5f+sejvbgRyb2/JOJ37wq8cvnJfa400Rty+AKzzJtBuvVt8a3Hk6EC80bqQnQqo3Pb2RJrcbiPf+wqW+29aUOHjzkD9k+SzT7eYs3sdunkza3sT2xoW1ENLhYtUftPgzKwNd4sBsiCwCltfzMiXSsdqXOaze6473SusG3b9lpelq88a8HERERERERERERUaJ4NcFo6a6MBNeEiOzKTynWjrMK56L4quzYrBw+xJWNDFdWgmtDRLFWlDLaVrksB+Fmvae1H8YxEMJkiIgo9lzCjSNyT8SdOz6NY/POgFt4wk7jlz58XPsW7lh/Jb6o+wAB6Y9ZfUxpomoQBqMFQ6urE1wbsqs50KQcHs1xHNFAxWA0IiIiIiIishQugAYARmlCaFZU6Dtq/vXc+KWWHThWYM4NLgSedWHzAwZKNPWLxtLy4AdTpb4OhcxUICtNaD+blZXB6f2aUCKP9AEACvxVyvGVYw9VT7h2iXp46LIrJJ74VL1im11DsDJlV/WEE/aH+KQBr1+7EEeN/i9G7rIeR4z5GB9k/jw4vqURmD877PKjod0eY3yF466Tw2+fD34ksdMtASwqVVfq+43q9Rswge82qOd50Yv2UqpCw44iC0ZL/o7lusAuVQieLpyxp9cXSLw6P/jeP18pcdNbsluH85WVwG632UwKGyDsbj/JFIymC0jsDM3L09wTOxiD0Tosfg9c30e/cTkJjfGHhIeOGaYvt6Iiigo5ZDdMEAgGWjQzsIKI4kT3fdhp5qLE1GOgc9Lul9bFrx5E/Z1lMNq2/3XndaW1Ma9O0rNzntYa31x6IiIiIiIiIiIiooRqM9U3pqQa6QmuCRHZlWqkIdc9XDmuUhM6QPGnC0YrSClJcE2IKB6KUtUPVu8pM4pAjUwHwWiFbFuIiMhCuisTp464ANN3fAr7Dz3C1jTNgUa8VvUc7lp/LRY1fROTh5TX+avhk+qbrfI9+sDn/sIqtLrKx3OzZNWiCUZzcixGNFgwGI2IiIiIiIgs6TrchwZRjc5Th0ht1YSGAcBBO8UvGC1UUY7Aij8ZeOZ8gUsPFThnP4Frjxa47USBaVMEdi1QT3fe/gL3nCZQnKMev6oy+H9Vk/oia8G23xPHF6mnX74l+L8voB7fGYyWrwlGq8rRhJetWGB54TdgSoy/3bp3/7LU8b2Gidv/AfHkp3hlUQrOmz0O/8s8DJXuAnyZcShOHv02po78N+alHwD/J29azjtadoL6YiE7w94M11cDe99l4r9LZK/PfWWFfj10BuOFqmiQ2FBjr361Ldi+PKtQjALN9dCKRnvL6UtO1rUugFDl+bkSbR0SRz2s/uBqWoB/zBs84Wh2g9Ea1A/m7RPhto28TPX+W5tE4W6JYhXKtUrRDiXC5nr7ZUPDJUfmAEPS1OWWlCfuvQQcLqoxifYdIhpYwgV2nf2ciR81Ab5kn5NPcNMgDG8isstqXxLbDt9115ZK6xCTG9z6EzvnaS1RBqNVNEh8tkKiqX1wfbZERERERERERESUnLym+sf1NENzowARJYWClJHK4ZUdZQmuCXWq0Hz2hZp1RUT9y3BPIdzCHbZcVhSBGmlGOlwIvwwX3Bjm0XTEICIiCpHnGYGLi6bh5jEPYdeM3W1NU+Urx3Pl9+MvpbdiQ9uqqJavCw8G9Oc0/UmakY5st/qppFbvnfpWc0DdsS+a4ziigYrBaERERERERGRJ1xnTFdJfdfQw5/PNj/xBRI5lpApcfpiB5y808MqvDDx6toE/nWLgkakGVtzlwl/OFsjJCJYdVwh8eoOBly8z8IfjDZy1j7pj7ua64AdTqQmYyt92HWpckXr6ZdtCXPxhgtEKAupgtFJDk7jmbQM+flU9DsA7f/9cO67T0tQJ3V6L2XUQx5wD4fbgL7PVG8SMoafhsB0+w4jSR7BiU/xSYLTbYxyucOw0wn7ZEx43cfITJppDOhQvsXiwxsKNvYctcXC92esHWrd1grbqMF2crR6u226TiZNgtLxM+/P9fBXw3Fzrjt93zOoddDdQ2Q1Gq29Lns9DFwbY2Q7karaHupbkeQ+J0mIRjOakzYmlzXX2y4Z+RwohMFHzMKOlCXyQUbggop6SKVSQiAYWO0GNt7w9eMJe48XusRIAlNYOvmMNIrusTq86g9F0gdftPqC6OfZ1Sma2gtEsjvUt521KTHvNRPHvTRz9iIlh00y8NIjCwYmIiIiIiIiIiCg5tWuC0VKN9ATXhIic0IUIVLDzfZ/RBR8MhMAHIgJcwoWClJKw5TKjCNQQQiDTFb6jx4iUQriEK+LlEBHR4DM6bWdcV/InXDnyNhTa+D4DgDVty/DAphvxYvnDqO6ojGi5VR3qzgZDXblId2VENM9kow+t5rlZsmrRBKPZOQ4jGmwYjEZERERERESWdAE0RsgZ5Wj1gwW0PC4gO4nuWbruaAMVDxloeNzA4ukGjtitK3mpRNMxt6w++P8adW4ZCrZdh9pN8yCk8m3T+7TBaH4AQLFPfQF2zuZctAr1hyjvvgTS7+s9fNMq/GdOjXqBIe4ffuP2v8Xf5kGkBS/01rZILNxkPW2jMRSXPtMct1Ap7faozp+LylVHOJvp+4uBodea+Hxl8L2X1+s/g1k/SnT4u49fUu7sM6vZ1jHcqsN0kSYYraox+UMbnASjCSFwzVH219ctM6zf/6ZahN3WBwq7YR/JFO4UbtvQBeXVtsSnPsms2atfwWu2Am0diW0L2jokahysB3+PNn9CsXo/31CduPfhJCAHANZXx6ceRER2ghpnLwsew1PknJzWVDXFrx5E/Z3VrtR5hGd1bWlVZPe09Vt22p5Ig9FemS/x+JyuBfhN4NKXJFZs4fcFERERERERERER9R1dMFoag9GIkpouzKCKne/7hNdsR51ffbMSg9GIBo6ilFFhy2RFGahhZ3o7AW1EREQ9CSGwe9a+uHWHx3BuwZUY4tJ0euphQdNc/GnD1ZhR9RJaA86esqkPD9Y8tb0fKvAwGK0/8Uuf9lpYtMdxRAMRg9GIiIiIiIjIUs9Qkk6ekAf85GYAman25zliSPBiZjJJcQsMSRNw9UhdGrlqtrJ8WW2ww+iSzeqOo7sVBeczvG61cnxdQ7AHq18TjOZGMBjt0LavlONbfQLf7nKOemIA+P7TXoPMt5/DZ2mT9dOEuOfQNyD++QPEuH0ABMNshv/WRvoCgG+q8/Dt+t7DA6bExhoJnz/yzrZOwrKiNXVfAXcEV06OetjEy9+YqLMI/2lo6x28tdjh9ebOcCGrUIyiHPUHU6l+sERS0a5rzTq56nD7G0Fb79zAXv7z3eDoFG4nVAUA6lvjWw8ndNuGa9u2wWC0Ls0WYQlSJj5g4qcyZ+UnFHV/vcMwdbnS2sjqEwmnwWhLHYZeEhHZFbDRvPhN4J1FbIei4aTdtzr+JxrsrIK+Oi8PFWYDQ9PUZc5+zuaJywBhp+1psRlybJoSm2ok1ldLtHolXv5GPd07P/L7goiIiIiIiIiIiPqOl8FoRP2SLmyrMVDvOKyAolfVoX4QM6APsSOi/qcoNXwwWqZraFTLsDM9AxeJiCgaLuHC5Jyf486xz+D4YVPhESlhp/FLPz6pm4k71l2JT2tnwS9tdAyCVTDawPkuy9eEvFmdI1DfaQnon8ScFeVxHNFAxGA0IiIiIiIisqQN7go5oxRCYFSu/Xnm95PweultR/HmMR5cAAAgAElEQVScJ5XjmrwCNZsqsKJCPe2kbdcUsz//p3J8G1LR/vpT8GkSDTzbLtAe2fIFcgPqxJd3R1+mr/yaxd1eyg//hbXvvI8a93D9NCHurj8R9fnjAQCrKiUyr3HWCfng+7vKm6bE3e+byLnOxI5/MJE7zcS1/zEjCkjThTjFIxhtZK7A3y8RSHE7n/bCFyW+Wmtdpmeo3t+/cvZ51Gy7b8gqFKNI8/CUfhGM5nBdjysSOGPv2C3/4Y8lapoHfsdwu2EfDer7T/tEIMy2wWC0LlbBaEDi24JZDsMWbji2++Vr3bFGaV2kNXLOeTBafOpBRGQ33PTtHwb+8Uw8OWn3a5MoSJYo2VgGo3X+LwQmae41K68HyusHT3tmp+0JF14tpcTjc0wM+62JHf5gYqdbTGRfZ+LjZeryf5gxeD5fIiIiIiIiIiIiSj7tmmC0VMFgNKJkZhUkUMkO+AlX0aF+aqVbeJDnGZHg2hBRvBSmhA9Gy3JF11nDTiBH4QAKkyEior6TZqTjF8PPw507Po2Dhh4NgfCdw1rMJry59UXctf43WNg0D9Lq5jTow8EGUjBagSYYrc5fDa/ZnuDaUDjNAX1Hnswoj+OIBiIGoxEREREREZGWaUptZ0x3jzPK0Xn259tfgtGwehFKGpZrR3905e/g9avHTRopIE0TuSs+005f99R96OhQJ8+5twWjuRHAnu0/Kcs8vnkv+OHCpxmH4/HcqzBjyCkIbDvVl+uWbi8nv/8MSx96CON2XqKtS0++AHD0Iyauf93EuD86C0Xr9PS71ZBvP4u//OUr3P6ORMu2gJ7WDuCJTyXuel9i4UaJB/5r4u73TcxdHb4Trm57dMXpCscvDzCw5UEDH00z8LPwvyM7siTk2rqd995TTUtwGqtQjOIc9fCKRoS9+N/XdOvaKgTvgTNjuyFMeSSybb8/sR2MlkRBH+HagWGZ6o2kohFo9yX3dh9rS9QPN9quqimxn8fizerlDU1DrxDK8UXAkbt1HzYqT71uq5uBxrbEvBenwWgbagbXNkdEiWMVjhvquw3O5rt8i8Qjs03c9JaJ298x8f5PEqbTxm8AcXLI3OIFOiIIfyYa7ETIId6EYv0J3xvfD579y074Zbjg5/d+Aqa9JruFXOtCpomIiIiIiIiIiIj6mq6TbprBYDSiZJbjHoZUkaYcV6kJ6aL4qexQ3yyW7ymCIVwJrg0RxUtx6uiwZewEm1mxE8hRkFIS1TKIiIhC5XiG4YKi3+APYx7BuIw9bU2z1VeB58sfwEObbsa6thXKMh2mF7X+rcpx+QMqGE3/XnTBcNR3mgNN2nEMRiPqzR2+CBEREREREQ1WfosOk+4ev5EHw0rsdVLNHxL+CQ5JYd1SjPKVIc1sQ7viJqvXhp6lnMwQwLhCAFvWI7etQjv7OlcOfPM/BbKO6TXOsy0YDQAmeZfh88wjlPPYY9IqrAoUbX+9X9t3+GLDFKQs3vbUi+YGvHL7i7hgp4XaeugsKgUWlUbe8fjqd3Ox88YZ+P2Yy5Tj735f4p4PZEjYgMRvjxF4+Cx1uJWU+qA+q7CsaOVmChwzAThiVwPT35W478PYdMZeGhIQ9MKXkQSjBf+3yqkoylbvl+0+oKkdGJrE9w7qOmxbresxeUC6B2jz6cs48WMZUFortWFMA4HtYLQEhU7ZEW7b2CVfP93KCmDPGIccJqvXF5h4dX6Ypx/pf0+Ji9Ja9fDf/Vzg4J0EHvzIxJoqYPIuAvefLpDq6b7vleTq533X+xIPnhn/fdVOSEWo6ub41IOIyG57VNkIVDdJDLdxDvaf+SYu+ruEr1t2s8QpewKvX2HA4x64x0Q6TjPh6lqBgujuLSUakKx2pdBgtNN+JvD8XHXp2Uslrjs6tvVKVnbannDBaA9+xBQ0IiIiIiIiIiIi6j/azTbl8FQGoxElNSEE8lOKUepd12tchSaki+JHF4zG8CKigWW4pxBu4YZfap7ujugDNewEqxWkFEe1DCIiIpWStB1x7ag7sazlB8yo+jvKOzaFnWZ9+0o8tOlm7JV1ME4ZcQHyU7r62FmFglmFifU3wzz5cMGNAHofH1R2lGNU2tg+qBXptGiC0dKMDLiFJ8G1IUp+DEYjIiIiIiIiLX9AP87dI7tqdJ79+Y7oJx3F5fqlcMHE+I6V+CHtZ73GvzvkJOV0O48A0jwC8uv/IjdQr51/nSsHPs0FK0/Ixci923/QziM0FA0AvkvfDw8MvwG3bbkf8rA0lHuKcMHOa7XTx9vPx3xgOV726Oz7l9kSFx8ksXtJ79CFnmVDxTMYrZPHLXDPaQL3nAb8/k0TD38cXVDUkpDr6+u26uc1oQhYtqX38JptYTu6kCgAKM7Rj6tsTO5gtEhC8AxDYK/RwLwYbvJv/yBx7dEDNwTEbthHvfr+0z6hq7Nr2/fSzvlAihvoUNzzsaRcYs9RA3d9diqvlzjnufArN+HBaHXq4aPzgKPGCRw1zvrJpGPygMxUoMXbe9yzX0jcfpLEkLT4rl/dd5HHhR5BQkFbE/wZE9HgEXBwKJp/g4mh6od0b9faoQ/GfudHYOYi4Kx97S9zoLA6B1Gpa2EwGpGK1b4UevT284n6cmvVD+4ckOw0PbWt+nEVDRJfOTwvTsR1FSIiIiIiIiIiIiIdryYYLY3BaERJrzClRBmMpgvpovip7ChTDh9IgQ9EBLiEC/mekSjv2KgtYyfYzEpWmGC1oa4cZLiyoloGERGRlQmZe2HcDnvg64ZP8V71K2gIaDoihPiheR5+ap6Pw3KPw/HDpiLLNVR7XuKCG8M8+bGudp8xhAsjUgpRoTgnqOK5WdJpDjQqh4c7BiMarIzwRYiIiIiIiGiw0nWMB4IBIKGcBKPl95frNOuXAQAmeJc5mmxC22LI1mbIx65HpmyBS/NEpnojB36hzix3h0xzRuPbjpb/Qs4lMCHgFSkYbSMULd0TXcBXrL23WF0fqwAnV4KvcDx4poGvbjJw72kCY4ZFNo/KRmBrU/BN6cKCAGjnX9MS/N/qcynKtl5+MtMGo4VZ15dNjm1v7liGrCUj06KdD1Vv0ek+0XRhgJ0d+d0ugXGF6jKrK+NTp2RTcqO9FVuVwHag1StR26IeNyrX3n6b6hGYuq+6bLMX+GJVpLWzT9c26UJwaluAgN0EQiIiB+x+h3dqbLf+Z3XuBwAzFw3OtsxpE24VVEQ0mFntSiLk8M4wBF79lfp4r7QOkE7TCvspO218XYv+s/hmnfNgx9DrKgFT4rsNEl+tkfD5B8dnTkRERERERERERH3HlCa8sl05jsFoRMlPF7qlC+mi+DClicqOcuU4BqMRDTzFqaO14wy4kGZkRDX/zDDBavlsV4iIKAEM4cIhOcdg+tincdKwc5EqwjwhGEAAfnxW9x7uWPdrzK6dic1edZDoiJRCuIT1Q937G/25mfo8gfpOiyYYLdwxGNFgxWA0IiIiIiIi0rLqHO/uFYxmP4yovwWj7de2wNFkJaXzgJnPAgAEgFzNkynqXTnwwaMc55G+7X9nylaMzlaHq6mUekZhYdpeuHP4rWHL5mQAM6+O7GJuRgrw/B5zMXfDERFNr7OxRj1cF4YEhA/LioeDdhK4+XgD6+9z4Y0rIqvAgg2AaUps1gSjvXKZwLBM9b5V2xz83yqsYUgqkJWqHtdvg9HCNDUXHSRw3+kCudH9pr/d6wskzAEcamT3rTWoH8zbJ+xsGztoAgW3Nse+PsnmznftJ+WU1SVu27YKgBzlIFz17lP0jcDS8vi/H932pzu2MSVQpwmEIyKKRiDB4UCvzpfwBwbuMZGO08NAtvlEak6aLN31pdYOoG6QhA/aaXt0ocMAsHiz8/bave2yxuY6id2nmzjgXhOTHzCx060mVlYMvvafiIiIiIiIiIiIEsdrqkPRACCVwWhESU/X+X5rRwUCMpDg2gxedf5q+GSHclxhakmCa0NE8VaYot+vs1xDIER0D5nOcll39ihkMBoRESVQqpGGE4afjeljn8Kh2cdC2IjIaTNb8fbWl/Df2jeU4wdieLA2GM23OcE1oXBaAk3K4eGOwYgGK3dfV4CIiIiIiIiSl9/ingR3j+uITkJNCoZG92NbIsi6rUBtJQDg5Kb3MK3wEdvTDvXXQT79p+2vhwVqUe0e0atcpTsfbZqbt1Klt9vro3b246Xv7Z/GH7jjl2HLjMoFFt1uIMdhgNTJewJP/dJAUTaAwCGoeWO1sxmEUVqr7nBr1TE4XFhWvJ2xj8DH0wwc+6j9QCIAeOsHib1GC20I4a4FAt+uV7/x6ubgcMvPxQAKhgLNW3uPq2iUCEb3JSd9+JV1nYUQuOk4gd8fK1HeADz3P4m73w/fifuWEwTu/UBd7sa3JB46K3k/q2jYDfuoT6IAAl1Ioivke2n4EAGg95urVv9+0O81tUs8+JHE7GUS3663P90Xq4D6VomcjPhv36W1+nElufbnU5QjcOwE4ONlvcctTcBvdrp9psDi4TzVzcDwJP6NasEGiSc/k/D6gTP3EThtLzi6MerL1RL//EaixQucsDtw3v4i6huriCg809lhZ0y8Ol/igoMG1/7tNH+uoS25j7GJ+orVvtRzj7G6vlRaC+RlxqRKSc200fhYBaMtjeAhn50PQLjsnyZWVHQNL6sDzn7OxKLbB9YTUomIiIiIiIiIiMg5KSVqfFXwhzzwMxaaAg3acemuGD0ZkYjipkATzhOAH6taFyPXPTzmy8zxDENalMGJrYFmNPrrlePyPCOQYmieSJskTBlAta8K5rbwufXtK7VlB2LoA9FgV5Q6Wjsu02VxM6NN4eaha/uJiIjiKdudh/MKr8IRuSfh7a3/wNKW7yOe10A8Rta9p6qOzajwloWdfqg7BxmurFhXixSaA43K4bE4jiMaiBiMRkRERERERFq6sCagq8NkJyehJuOLIqtPQm3oSlwZ7S/DKF8pSj2jbE2a3eNmrWJ/OVam7tarXJl7JBqMbOU8cnrMY0R2bDugnrOfwBPnCeRmBrsgb37AwMgb9Sv8uIlAdrrA0eOBSw8RMDqTyNwe5D35DvB47Oq2SROek8zBaAAwZYLAglsNvPiVxFOf20tQmLFQ4iKLcImSXCBfc12zalvAky4kCgBcIhjWs1YRjFapvo6aNHRhH3bXtWEIlOQCP5+IsMFoY4YF9wldMNojsyV+NVlit8Ik2NBizG4wWpMXME3Zte/3IX1oXtffIzS/x3QGCg4kXp/EwfebEYUf+ALAvLXBMKt4K61Tf/YjhgBpHmfb1Z6jBD5e1nt+S8vjv351bVO+JowPAMobgHFJcuzT4g3W0RDB47yv1gAnPN71pv7zncQtJwj8dkowdCRcwNl7P0mc/pS5/Zjx1fnBII57T+v7toJooAv0wVdaMBgt8cvtS3aPlTo1tcenHkT9ndWu1PNwoyg7GHqsOtfdUAPsae/STL9mJ5TRKhhtyWbnXxJuA2hul/hoae9xP5UB67ZKjB3BYzwiIiIiIiIiIqLBakHjl3i96m9otggxi4fUKIOPiCj+8lOKICAgFb8I/bVselyWacDA7ln74cLC6xwHKDb5G/D3LY9gZetPyjoDgFu4sVfWITi/8Gp4jJRYVDmmvqj7ALOqX0abGf5pp9nuvKhD5Igo+RSl6H84z3JF/xTXrLDBaMVRL4OIiChSxamjcXXJH7Gi5UfM2PoSyrwOniy/zUAMRsv3qL+f2802/GnDNWGnFzCwc/p4/F/x7zHUnRPr6lGI5kCTcngsjuOIBiKjrytAREREREREycsf0I9z9zijTPMIFNgIps9MBcbkRVevhFjXvSfoOO8K25MONbtfoCrxbVaWK3cXo0Hzw2G22SMYLcdje/nhPLLPUrzyKwN5mV0dWotyBN69xkBOj3tEJu8CVDxk4IPrXHj1cgOXTTZ6BSOJifvjcP/8mNVvYw0QUCQQWIUSuJLkCsfeYwSeOM+A7xkDlxwSvsNwfSvw6CfqlJ3MVGB4FpCvua7ZGWxmGRhnQLtfJn0wmi78yuG6PmgskB3mvp6PpxnYrQAYkqYv84cZFgl0/ZjdsA8pgcYkCfrQhQGGtgPDNcFoW9W/H/Rrz82VEYWidYokNCESpXXq4aMcBKt2mqS5p2Z5hfr7I5Z0s89IBYZlqsct39L3gXxSStwxy8SQ3wT/ZV5jIvtas1soWqd7P5AYcb2Jfe42MW+tdd3ved/sFaT7l9kSdS19/56JBjqrcNw8TXsUrZWV8ZlvMrMTThSqyRufehD1d1b7Us9gNJchtNeNkuG4KhHsHNLqgtG8PhlRe+0ygM31+vFfrxscnz0RERERERERERH1tql9LV7c8lDCQ9EAMMyHqB9IMVKR5xmR0GWaMPFj87f4d+WTjqd9YctDWNH6ozYUDQD80o/vmr7Am1UvRlPNuFjcvACvVT1nKxQNAAoHYOADEQEjUorggls5LlyomR1Zbut5FKaURL0MIiKiaI3L3BM3j3kYFxZehxz3MEfT6kLE+rNow94kTKxuW4qnN98ToxqRTosmGC0zBsdxRAOR+syHKEJCCA+AQwCMBlAEoBlAOYAfpJQb+rBqREREREQUAZ+DYDQAGJ0XPmxpQhF6BWslI/nTV91ej/euwOysY2xNm93jJrBi/xZluU2eUWgwssPPIzUdxbkCsLgRw67ncT8u+dUflONO3ENg4/0Gvt8INLQBY4cDE4qDnZKtCCEw7UiJL+ZGXT0AQLMXmLsaOGK37sOtwh+SbZNyGQIvXCRw6xGNWPLrCzHKV4YjxsxGk+Ii5ds/qOcxcdu+EgxG673uq5qCQTeWwWgCKBiq3naqGpO7U7PufbkcrmvDELhsssDDH6tn+MhUgV0KgjM9Zz+Bv81Vl5u5CLjrPRPpKcAv9xcoykmyjS5CpoO8t4Y29ApP7Ava0LyQVTJCEyi4tTn29YmFn8okPl0hMWOhxME7C4wdDnj9wNqtwNA04MjdBI4c13ub+7FU4rr/2NuX9ywBfizrPXyZ+isq5kpr1cMjCUabWKxu19p9wLqtwC4Fzudply54zRDAxGLgf6t7j1sSRXBdrFzxssTzmvZNZ1EpMPVZE4vvMJCb2Xv78wckvlU8YMvrB95aKHHZ5IHRThIlK9334eg8YMn04DF9fVtk8z7tKfUBwoYaoNUrkZE6ePZvp3mbzUkSJEuUbKx2JVWLMqEYWFfde/jyBB27RuunMokPFkvkZAC/2ENgZK6zdtNO29PmA9o6JNJTus97ZaX19ROd6mbgznf1C3Zy7khEREREREREREQDy9cNc/ps2Skitc+WTUT2FaSUoMZXlfDlLmr6Bq2BZmS4NE/R7KG6oxKrWhfbnv+CprmYWvAruIQr0irG3NcNnzgqX8DwIqIBySVcKEgpRnnHpl7jMl2aG2gdSBUWT5oGEh6ISUREpGMIAwdmH4m9hxyMT+vexce1b6HdDH/zbLQhYskoyz0UmcYQtJjq0C27NravRo2vCsM8+TGqGfXUHFB3vo1FwC3RQMRgtAFICDEdwB1RzOIfUsqLHS5zBIA7AZwNQPkMbyHEPACPSCnfiqJuRERERESUQH6LTo8exe/8o/OA7zZYz/PQXZK/E70sXwd8+ma3YYe2zcPj+I2t6Yf0uIhY4t+sLLc8dRykUCTMAcg2Qy5ypWXi2AnRB6NdUP8yLnnhaghDvUwAGJImegWS2XHKBQfj7Q+vwBmZf4UZg5tA/rtU4ojdum8r4QLAktGOgVLs0PwhAODUpln4V875tqedODL4pgo01zV9gWBQVbjAON30ldFd6447qQu/0m++WpccLPDYJ7JXm5adDkyb0jXDZ87XB6MBwB2zguP+OFPiw+uMXttof+Qk7KO+FRjj7EE6caENzQvZNkZkqdvM6mbANGVSBXT+Y56Jy/4pt+/LX67pXe+735e4+XiBe0/repP//NrExX+3twK/+L2BWT9K/FjWu/ySzYkJSdxcp15OSZ7zdTG+CBBC3U4s2xLfYDSrYL6JIwX+t7p3gWXlfRtEefMM03EoWqfyeuDFryRuOLb3emqyCP/5fhNwWURLJCK7dMeALgPIShM4PIJj+k4r7zKw2x97L0BKYMFG4LBdI593f+M0GK3JG596EPV3uvM7IHhc19P4IoH3flIcV21J7oBvAHj5m+Bxemf7cccsiQ+vNbD3GPvHvXbbnrpWID2l+7Bojj3/851FMFryf/REREREREREREQUJ2VexROzEiDfUwxDc28dESWXUak7YlnLwoQv10QAW7yl2CljvK3yTtuzNrMFzYFGZLsjePJjnDh9D6NSx8apJkTU10an7awMRotFIKIQAiNTd8Bm74Ze43ZI2wVGEgVGEhERAUCKkYrjhp2JQ7Kn4P2a1/Bl/Ucwob7RNtc9HFnugRlAVZK2I1a2/hT1fBiMFl8tmmC0WATcEg1EvEJMURNCHA9gCYAroQlF2+ZgAG8KIV4WQmQmpHJERERERIOAnPMGzEv2gzk5Nfjv6KEwbz4dcv3yqOdtFYzmVvyeVZIbvpPnGXsnTxiNiqwshTy7900SP2+ejQyzxdY8ss2Gbq9H+3r/6AgADa4c7TxyAvVdL9IzMXyIwLETbC1e63c/NyCG6JcZrZP/9iA6fAdjasMbUc9rsSK8xwwTAJaUKrvW/VmNznLCdy37DNI0kW9xXXPaaxKHP6j/YFyGPhitokE9PFlYhQ85NaFY4O5TRbcO9xOLgQ33db80JoTA4unhL5d5/cD//cOEP9D/e4ZbBev11BD+wTkJoatz6Lah2+4DJlCVRKGAXp/E796QttbD/R9KGJcHtv+zG4p2z2kCk3cRmFSsHr98CxBIQMrB1mb18OIIvpbSUwTGaK5CbmmI73uxDEbTfMZLNgPSKg0kClJK/GW2id2nB5B1TQD73xPAB4vl9nEX/93EA/+NbtnT31VP32gRjNaYJO0F0UBmJyg0UmNHABkp6nEzF/X/4x8nnDbfVqGRRIOZZTCaYtiEInXZ5VuCQcfJqsMvcc0rslsbvbUJuHWmgxMv2G97ahWXqXTH3dFK4o+diIiIiIiIiIiI4qyyo7xPlrv/0MP7ZLlE5NxB2UfDQN+E5FR0lNkuW9mhfsixFV2H9b7gMztQ49tqu3y6kYG9hxwSxxoRUV+anHNcr2EpIhV7DTkoJvM/cOhRyuGHZB8bk/kTERHFwxB3Ds4puAK37fA49sjaX1nm0JyfJ7hWiXNojL6npXR2vxvZ55c+tJvqzhZZDEYjUmIwGkVFCHEEgJkAQiM/JYDvAbwBYDaA6h6T/RLAq0Lw0S1ERERERNGSX70POf18YE1Imn+HF/jqfcjrT4BsqtdPbIM/oB/nVhzRj7aKSt5G17k1GcjWJsgzd1aOy5StOKnpA1vzye5xI8RE7zLHdck2Q+aRlgEAeO83kZ9GTWpfgkn77RTx9HaIzKEQz3+DW84dHvW8vlzTe5hVJ9xYBEDERVXXTTdTWj5FbqDW9qTDvn4N8m93WAaj/fNr657JQggUDFUniVU2xi+oJxZ0QXgiwhC8G48z8OPtBp7+pcBrlxv44Y8GsjN6z2xiscDhu4af3/pq4LOVkdUlmTjp3F4dpw72TumDYLrW5yiL76NN9nfDuPtqLVBjL3PTsYfPElhwq4E/HB9sICcWq3eeNl9we463Gs32MyzCxyfowu/iHXynDUYzgEmaz7iuNX5hlA9+JHHDGxJLy4HWDmDBRuCkv5qYu1riz/+VYb8n7GjxqsPzrMLPGlqT9/uFaKCwExQaKZchMEXzQO0ZC/tm//YHJL5aIzFnuURTe+Lq4DQIqMUbn3oQ9XdWu5LqHG+C5riqtSO5jud7+t8qdXjsR0sBn99+g2K37VEFo9W32l6MI05CtYmIiIiIiIiIiGjgaA40ojmQ2KcvZrqG4Ni8M3DcsLMSulwiilx+SjGuKbkd+R7NUwXjyEnYWSTBaM1JFIy21bcFEuF/tBEQGJU6Fr8ddS/SXRkJqBkR9YUd03fFr4pvQp57BACgOGUMrim5A3meETGZ/1G5v8CJw85BlisbAJDlysZpIy7CwdlTYjJ/IiKieCpMLcGvR96CaaPuxm4Ze8AFNzKMLBybdwZ+nnd6X1cvbvYZeijOzr8c2a7cqOYTgEWHUopKS0Df4SXLpekkQzTIufu6ApQQ5wL4xkF5W91chRAlAGYASAkZ/BWAX0kpl4eUSwVwBYCHAHi2Df4FgLsB3OKgXkREREREFEJKCfnMrfoC1eWQb/wV4tI/RrwMv8Xv527Fw91G5wlYdXfNSgWy0yOuTlzJ0tWQ502yLHNW9o94HeFvuBpqdr8RYrSvFFmBJjQ7SO7PNkNuKEsPpsa4XQJzrjdw9CPOe6Ne4J0J7HaT4+mcEm439jh1CmaMkTj96ch7zTa1A29+L3HmPl2doa064cYiACIeZGXp9r9T4MNxzR/j1exzbE2ba9YDb7+N9Itvxc75Hqypcrbszs+kUHNdtM0HNHuBIWnO5pso2vChKNb1pJECk0aGn8HkXQS+WBW+J/or30ocMyFJNz6bnIR9lNVJAH3/fu0EwQzPAtI8QLuvd7nSWmD/HeNTN6fWbY1PsMsjUwWmTemeGDneIph0aTmwc75+fCyoQhsAYFhmZNuULjRya7yD0Sy2v4kW93YuKQeKcmJbFyklHpuj3oYOfzC2yRVVjb3rrwr96FQXp0AOIuqiDwqNzfxP2F1g1o+9F7KpFnhpnomLD05cMvGWeokpfzGxfEvw9YghwKyrDRwwNv7HJU6/qRMZ2kbUn1hlcquC0cYV6ssv2wLsEH0ee1x8u17/RquagJE27zeLJhitwSK8NhpOgyKJiIiIiIiIiIhoYKjsKNeOu2XMoxjizo75Moe4smGIZH1KJhHpjMvcE9PHPoXWQDN8UnHTVpTerHoB3zd92Wt4RUeZorSaLhhtcs5x+K7xC7SbvX9oaQzq7jUAACAASURBVLbotJ5ouvobcOGusc/CEMEbu1NEKgPRiAaJvYYchL2GHIQO04sUIzWm8xZC4MTh5+CEYWejOdCILNdQiEifbk1ERNRHds2YhF0zJqHD9MIjUgbFd9nhuSfgsJzj0RxogBnmLtg/rrscfsX5m5R8ima8WIVvZzrod0o0mPBK8eBQIaXc4OBftc353gkg9PbteQCmhIaiAYCU0iulfBzA1B7TXy+EGBP52yIiIiIiGuTWLwM2LLcu88lrkFa9T8PwWwT8uxVnlDuG6Zg6Kg9JeRFRShk2FA0Ajr92KrJs/GaYY3Z/SqYBiQkdYdZVD6myo+tFWub2P48cJ3DLCerP8GejgLpHDew6pHve9R7tP+E3U0dCpCYuAevUvQTM51wInP4qtq4sRvOKXFxa/5KjeUx91oTX17X9WnXCNZL1CkdV95tu9mhfbHvS3EAt0NIIOSUbp1S96njRnSFRuvAgAKixFY3eN+IRjGbXniX2FvKPr2W3bbQ/ctK5vbQufvVwwk4QjBACozShA5tqk2edVcbhgaJ7lAC/Prz3NpyZKjBW8z29ZHN8PxOfX2pDtIZlRTbPEUPV+2ncg9Es2qZhWULb5m6sic1nHDAlHptj4uxnTRz7FxNbEvRg7s31vYc1WQSjfbcB+N0bJo57NIAb3zRR3ZQ8+x3RQGEnKDQau1uEyV76ksRB9wUw84fE7NtX/bsrFA0ItvW/fN6M6lzXLl0gpo5V20g0mFntrarWZkiawOg8dfllW5L3uCI9RT/OybG//WC03gXr+zAY7YPFEhe8YOLwBwP4/ZsmSpPo3IuIiIiIiIiIiIgiU6kJHEoz0jEydQyy3bkx/8dQNKL+LcOVFZe2oSRV/SRMXVhYT1JKbYjaqNSxyHKpn0Br1Wk90So073VESiFyPcO3f1YMRSMafGIdihZKCIEh7uyk7ANCRERkV4qROqi+y4Lf3zlhz7NccCmnD8CiQylFxSp8m8FoRGq8WkwREULsAuCikEEdAC6WUmq7fEgpZwL4R8igVAB3xKeGREREREQDi/S2QVaXd+v4LT97K/yEpauBVT9EvFyfxXUsj+La1+4jgbzM3sM76UJq+pr87fHhC514CTIm7YX91fdWbJdmtiHL7J02dXTLZ7brU+Cv7DHT7jcp3H2qgbeuNHDu/l0XZe87XeDrmw1kZwj8cN9QPDS5FFfkfY0H89/BvKsbkXbGZbaXH1M7jEeuWY806cX/1f3d8eQfLe362zIYLVmvT29e1+3lRO8y25PmBbpSqM5a/6TjRXeGRGWn68vogoqSgTbsIwFXs07Y3botCzXhjsQ8CaW5XaKmOfadyp0Eo5XVxnzxEbEbBDNKE6SwoSa29YlGmSJsKhq/miww7yYDaR51ozixWD3dsi3q4bFS26ofZ3df60kXQFbREN/whXChjWOGqceX2QgW3NoksaxcwufXv4dTnjDx29ck3vheYs6K8POMFVX9G9v19fSbwCOzJT5eBjz0scSB95loaGUwBlEs2QkKjYbuO6PTt+uB05828eRn8T0W8geCbUlP66qB+evjumgAzo6VAKDZG596EPV3VjmGuvvNJhSphy8rj74+8aJ6iECnCgd9ZuzmPlYrws51x1zn7CeQ5rFfh56srhECwEvzTJz0VxP//lZi7mrg4Y8lJj9goqyOx4BERERERERERET9mS5wqCClZFB1KCaivleQMlI5vNpXCZ/pCzt9U6ABbWaLclxhykhkaoLRWpIoGE3fJqs/GyIiIiIiIiu6cHpTJqaf1GDUoglGSzMy4BZR3OBHNIAxGI0idR7QLQJ0hpRytY3p/tzj9VQhRFrsqkVERERENLBIbzvMx38HOSUH8rQdIX99GOSaxcGRc2fZm8dlB3VN45Df4jqWqsO9xy1wxt76G57GFSXfzVDy6w+B78OHlonrHwMATCy2fg/5ga1QlTi78Q3bdTqw7dvuA9J7p8actpfAvy8zYD7ngvmcCzcdZyB1WxBOeorA9RfsgKfvPxQ33H06Mg443PayY26H8dt7OR/Q/h0eqrzR0eRvLezqQKsLQwJiFwARK1JKyJcfBJZ83W343u2LbM8jNyQYbZ/2hdipY62jOnSG9Ay1CEZraHM0y4QyNT3BExGCl54iMONKexvV+mrg5W/id9G/okHi8AcDGHqtiaLfmTj/eROt3th1LDcdVH1TbXJ0aNeFBPRsB3Ycrt5YVmxJjvcBAKU1savLKXsCz15gICNVv5NMHKket6g0vp9JrfqeQgDAsAiD0UZkqYf/bzXwweL4vZ9wwWgjc9TjN1uE4FU0SBzzSAAFN5iYNN1E7jQTT33efef0+iQOuDeAD5ZEUGkbDtgRePFi/baj2v8bHXyHrKsGXvo6efY9ooHAblBopIamC+xZEr7cXe9JdFgEOkarsR1o09zD/l4c2/tOTpfQlMTBw0TJStdsjddcf/mpLHmPKazCESsb7dfbbiij6hizXhNKPGYYMOtqwzI83Uq7RX8iKSXu/aB3pTfVAv/6JnnXFxEREREREREREYXHEB4iShaFKeofsCVMbPWFfypkRUeZdlxBSgmyXOqnNDYzGI2IiIiIiAYoo1tcTBcJBqPFi+4cU3dOSkQMRqPIndbj9d/tTCSlXA4gtId/JoBjY1UpIiIiIqKBRj57K/DGX7sGLJsPecm+kJ/NADYstz+fS/aF9Drvoe0PqIe7DGif+Hju/vqe+KfsmVzBaHLzWsgbTw1bTjw+GyIlFQAwKcz9A/n+rcrhk7zLMKkg/FPpAODXdc91H5AWYWpMEhBpGcDIsdtfT6t9AhWrRuHTDcfgzbJz8O36Q7Bl1Wjt9N9v7OpAa9UxOBFhWY58/jbks7f1GlwYqMSBrd/YmkVeSDCaAHB31R2OqmBsu+qT4hZI0zw0IrmD0dTDE7WuD9tVwPuUgUnF4cte+KJESwzDykKd+YyJudui6P0m8Mp8iZtmxDAYzcGsKpLkHi9dEEzPr6XxRepyy8LfB5cQ7T5pK+RqpxHhy4wrBN60Eean256XbwFWVcYvsKCmWT8uL8KvuAL1Q1oBACf91cSG6vi8H23btO3jH5mrbqQ213WfsLFN4olPTdwxy8Qed5qYs6JrXGsHcM0rEsblAdz+jomGVol7PpD4bkMM3gCAL35v4MubDLQ8YeCnO4L/5t1s4OKDDRw0Vj3N7GWKYDSHh5Zvfc9QDKJY0rVHsQwMvum48AdeVU3AUQ+buG2miS9Xx34/b7EIGapr6Ij58npyEiILWIciEQ1munBjoPdxfKcJmuP5hZuAsrrkPK6wOsd2cj5l9zxN9Tno6pCdDkyZIFD1sIELDnR+Ym0VjFbTDKypUo9778fkXFdERERERERERERkT4VXHSRUyBAeIkqw4SkFMDRdYSstQs+6yqhDxTKNIchyDUWmS30zUrO/yX4l40hKyWA0IiIiIiKKKSHU51gByWC0eGnRBKPpzkmJiMFoFAEhRCGAPUMG+QF85WAWn/d4fXy0dSIiIiIiGojk0m+BN55Qj7v9XCDgdza/cyc4roNfcx3LbXE2OXkXdRjNuELgsF0dVyFu5OofIc+x8ZkMKwJ2P2j7y8N2se48OiKgDkYT/1mGY/dICbu4zzZMwTEtn3YfmJYRvp7JbMeJ3V4OD9TgsLavcGrTLOzT/gNGBKpxf+UtyklXVQJeX7ATbX8KRpPv6/PDj235JOz0KaYXGbK127CzmmbgrdKzcXTzHIzp2Igx2dZBe6GfSXa6ukxDW/J2UNaFUCRyXXvcAt/fZuCuU8IvtPj3sb/wv6lGYt7a3sOf+UJia1Ns1p2TYLS61vBlEiFcMFWnCUWagKr65AhSOOwB623mwLHAI1MFlkw3sOpuA788QOCAHYHcjGBY2g7DgkFnvzlK4OubDbhs7ByH7qwv8/qCOAajtaiHp3uA9JTIdupdCqynG3uLCX8g9u8pXNtUkqseX9qVdYn11RI/+5OJa/8jcdd7EtUWwXF3vy+RO83E3e/H7r1M3kXg4J0E0lMEJo0M/usMvD1Es43MXh4McwvV5DAY7cs1EVWXiDR0QaGxPFY6Z38Dz5wffobz1gL3fiBx2IMmHvhvbI+JrILG6j/9CLJOk8QTI05b37b4Z7UR9UtW+5IuGG2yxfWXN5M0cNUqOLbSSTCazaa0rK73sHpNMFrOtktLHrfAMc4vEaLN4hJEk0VbXaqoIxEREREREREREfUPfulDta9COY4hPESUaG7hwXBPoXJchSYwLJRVqJgQAlmaTui6TuuJ1hioQ7upvoGvIKUkwbUhIiIiIqKBwKWJG5IIJLgmg0dLQB2+neUakuCaEPUfDEajSEzq8fonKaWme6PSvB6vJypLERERERENcvKha2I7w62bITetdDSJNhjNpZ/GZQi8eJGBYZldw4ZlAi9ebC+0Jd7kyh9gXnUk5KX7hy+clgHx+ych3J7tg3YrFNjD4h6C/D0mdg8yKxgN8doKiJE7Yfcw94Od0jQLk9t6njIBSEkLX9dkNrbnaWRvxzd/pBzuN4PhaED/CUaTUgLffqwdv7s//H44PFAD1Vs6pfldfFT6C6xdOx5rxz+Ia4/Wv3FXyFUffTBa2Kr0GW34VYLXtcctcOuJBsznXEh168s1tQMnPBaAzx+7Dvpr1DmLCJjAWwvDL2fhRonDHwwg/aoACm8I4Kp/m2jxdp/OSTBafSsQcDJBnOiCYFw9tg2rNveR2Yl9H03tElf8y4RxeWD7vwUb1WVzMwDvUwbm3ezCtCkGUj0CO+cL/Ov/DMy72UD1US9h5bo9sGbZWCxKvRKPHlOF7Ax7O8boYQIHjlWPe/27+H0mtS3qeQ/LinyeExQhrD29+1Pk89fR7QKdbe7oPPX4NVVd+88DH0lsqIl93ey48gjrbeW0vdTjO/zAh0u6v/kWiwAMneb2vm9DiAaKcO1RrFx+mIGXLhHwWJwDhrp9lkRVY+z2dctgNK8L8qV7Y7YsFaeHPq0MRiNSkhE0C7sWCO0x/ds/JOcxRaPFOfaHi+3X2W7J0trew+o1gdY5IdcF8jKdn1i3WwSjWR0XRrLuiYiIiIiIiIiIKDlUd1TChPomDYbwEFFfKExVtz2VHWVhp9WV6Qx61HVCbzbVndYTzSr8rSClOIE1ISIiIiKigUII9U3HARnbhyRTl2ZN+HamJqybiBiMNlhcIYT4RAixWQjRLoRoEkJsEEJ8IYS4Rwgx2eH8ej5Deo3D6deGmR8RERER0aAnm+qBNXFI85j3gaPifk3AvzvM2eQBYwXW3GPgn5cK/PPS4N8Hju375CpZuQnyysOAxYrwsR7E1X+GePkniENO7DXu7P307yV/l9EQry6D+MPfIKa/DPHvxRDFOwIAJo20/gxObPpQPcJlkcbUD4ix4fOwd+1YDY9Upwgs3hzsRasLQwJiHwARlZnPWY6euM+YsLMY5SsNv5zXH0e+RaiQL2T/HarJ1uuXwWh9uK63PmK98P8uBUbdZOLbdTIYkBclq07136xo146rbpJ49gsT+95jYu5qwOsHqpqAZ76QOPXJ7juS07CPZNhm7G4bI3MFJmnu+XpsjsRXaxLTQz9gSoz9g4m/zbW3vJP3FPC4e39fyPZWyDsvhHzwKqBsDVBbAXzwD8grD4M0u9ar9Pshl3wD+dlbkKWrIefOgvzfO5CfzYB852+YmvaNcrlLyoFl5fH5TGo0j1TIy1QPtyMzVWDscOsy7/4Y+/cTLrRxXKH6u97rB9ZXB/9+20awYTy4DODig62PRQ7YESjOUY/7dn33120W4Rg6nyx3Pg0RqemOjeMRInvhQQaW3mnvIKzDD7zvIPwnHKuwnVpXLjDndUi/P2bL68l0eG+H158cQbLU/0i/D/KH/0F+9R5koyLtqp+z2iusmq0z91GPXWTjlLkvNLbp3+nqKtgOjrTbjFQ2AR0h4dxSSn0wWkiYciTH4ZEGo7FJJCIiIiIiIiIi6r8qNCFCAgZGeGw8zYyIKMY6Q8x6sgoNC1emKxhN3Qm9RdNpPdEqNfXPcg3V1p2IiIiIiMiKS6ifmiw1QfkUveaAOnxbF9ZNRAxGGyzOAXA0gGIAqQCyAIwBcBiAWwD8TwjxnRBiis357dzj9SaH9dnY4/UwIUSuw3kQEREREQ1s65fFZbbyyZsdlfdrrmN51Ne9usnOEDj/QAPnH2ggO6PvQ9EAQM54BvCpw7dCiesfhzhnGkTBKOX4c/cT2nC4KeMFxPAiiBMuhDj6LIjUrkSqPUYCRdnq6TI9AZzaNEs90t2/g9EwYb+wRTzwY5x3pXLc4m33c1h1po1HAESk5PPT9SMPPQm73HQHhoXphDzab6OXd0sj9lj+in50SMfk7HR1mWQIudIJFz7UF7LSgmGPVqqagIPuN3Hqk2a3DuqRaGrXT7/06xWQC+b0Gv7ZCon8G0xc+W/1tHNWAI9+0tW4Ow37qNUEXCWSqdk4XIpVc87+6vUlJXDpSyZavfHtpd/QKjHielMbDKZyrqLOct1SyOOGA3Ne7z3Blo2Qt50dLNdUD3nDiZBXHg55+3mQ502CvOUsyFunQt5+LuRD1+CMd86H0DzB57UFcQpGa1YPD9cWhnPSntb740vzJPyB2L6ncG3TbgWA0FRrWTlQ2yJR1QcPkt1xODDjSgP77WD9mRmGwLET1GUe/aT7m48kGO3DJUzGIIoVXXsUr8DgnfMFHplq70Ds//4hUWkz/CecZouwnS3uIqChBlg2PybLUtG9i8xU/TRt4U85ibqRNRWQF+8Lee0xkDefATl1N8hFc/u6WjFllRutO3YCgMm7qEc2tQO+KM+34iHcOfZDH9sMRrN5niYlUF7f9bqtQ38tL/S6QMyD0SzaPauQeyIiIiIiIiIiIkpuuhCe4Z4CeAxPgmtDRAQUppQoh1d6yywfZNphelHrq1LPMzU4z0xNuFizP1mC0dRhlbqwOCIiIiIionAMTdxQQAYSXJPBo1kTvq07JyUiBqNRl30BfCyEuEcIq9vPAQA5PV6rrwxqSCmbAbT3GKyJBiAiIiIiGqQ2RBiMlj8KmHyyZRG5cqHt2fk0YSK6ULCkt9RGh/mTLoU47QrLIjsMF7j1xN6nTiftARy5m346j1vg/tOFMtjpz0dVI8+sU04nXP07GE0UjgHG7xu23ESverv/838lmtulZcfgZAlGk0vnA4216pE5IyDufROu9DScvrd1hUt86ptYejp61pW2yjEYLXbOP9BAbkb4cu/+BKRdZeLGN000tll3fl9UKnHpSyb2uyeAs54JYM7yYPkmiyCQZe5d4P/tSZDLF2wfZpoSF74Yvtf59a9LtPuCy7AKHFSpa3VWPh50OVeG4rvpqiMECjW/D6yuAm6dGd8whV88YaLe4Wd2zISuv6XfD/nui5AX7Q0ELH5cmjsLcvNayNceBRZ+bjn/kf5yHNI2Tznurvek5U2CPUkp8dFSidOeDODMpwN45VtTOb0uUC/aYLTrpwiUhHncwsxF0S2jJ12wQ2fblJEqsMMwdZnlFRLLt8S2Pp2O3A3wP2PAfM6FwLPB/xseN+B/xoD3KQNr73XhF2GC5DpNKNaP+2Jl1/ptjyD4Z+3W5AswIeqvwrVH8XDKz+zPvOh3JozLAzjp8QA2VEe+7zdbBMVu9hTDhADW/hTx/MPRHStlpuinaWUwGjkkH7se2Liia0BLI+Qd50NaHf/1M5bBaBbTWQV4JcO5SU/h6vTG9/aOt52cp5WFXEqqtzjHzwk5j9WdI1mxDEazOHdlm0hERERERERERNR/MYSHiJKNrv3xynY0+DX3bQKo6tgCqXksVuc8szSd0L2yHT6z73/wqOwoVw5nm0xERET/z959x0dR538cf31n0xNKAiQBBAuidAtYaPZ21rOe3tl7OT3b/WznefaznOU8G+odp6fn2bGDDWxYALHQpLcACSQhvezO9/fHgiTZ73d2ZrMp6Of5ePAgmW+Zb7bMzszO9z1CCJEoR4WMy13kbphtpTpSaVxuOyYVQkgw2s/dauAJ4DxgHDAEGASMBS4FJreor4DrgTvi9JvT4vdEplG3bNMlgT5iKKXylVJDg/wDBiRj3UIIIYQQQiSTnvFhYg2790Td+jzsvp+97zee8t1d2DIHN8V83qvz+/YT7/JBI1H/94ivrm46yuHNSx0u3Fdx5hjFU2coXr7QISXkHRZw2miHj//P4cqDFSeNUvz+AMWHVzlcNLplfnQToa3/DpvqgBPj1hlWP8datvttLrUek3BNgUjtTbsu+sLx9gr7HcvmLPKT9/B+nWx74H5w/MWoi+5ATSmFUQcY66XrBnaq/9FY1qdJrHnXTPP6yi1hRZ2BLQgv1Ame61V3+x/EvVM03f/g8vlizfTFmmXrNZEms9xnLNOMu8tl4ueamcvh5Vlw8P0u//rM5XvzjXcBqHWy+Dxzb/T5Y6OBfMCXS2F1ub9xfbgpdyFoMJot4Ko9WV8bhpd59yzF46fZn6+/f6j5ZGHbBDVNmaP5dFGwNsXXrYFF36Eb6tHl69G3nYW+218Aon72Xvj3nb7qnlTxsrXs2Ef8f4n13FeaXz3oMulbeOUbOPUpzc1vmILRzI9xbnbr0nv691B8d5PD0bvY6zz/VXK/lPMT2ji40Fxn/hpYWJzc19sZoxWPnaqYfLmDs2kQmz9rumQoHEeRmhLscR5caK8/4ZMt469tDP63rDJnwAohEmDbHrXlvtL2PRW79w/W5u0fYIfrXYrKAwRvui56+Xz0snmsnjLFWi+sUikO5aOXJhgs7oNtvyM73d7G67hFiJa01vCRYd+sdC18M7Xdx9NWvLYAXrfs8gql7ozBaBuqvMuXb4A1G+P3E2Qva2XZltpeoczdmwSmd81U7NYvwEqAmgb7qKrr7WVV9dEQbyGEEEIIIYQQQgghxNZHQniEEJ2N1/ZnrSXMEaC40XwhXogUeqYWAN6T0G0T19uTPaxym3YeiRBCCCGEEOLnwrHEDbn653NT186mOlJhXJ4dSkrcjhA/SykdPQDRJr4CDgXe0/ZbTn8O/EMpNQp4DhjYpOxapdQXWutJlrYtg9E8Zu9b1QK5Hn0m6mLgpiT1JYQQQgghRIfQNZXw+duJNe6/EyoUgqv/gf7tMHOdqa+hL38QlRL/kDBsmQSe0gmCiYLSX7/vXcFxULe/8FOYiB+HD1ccPjx4qMuYAYoxA5q308Vp9gahrTWJrokDToCHr/GsMrbmc2vZomJ4aaZ9Im0Xj2CCdjP1Fc9idfFff/p5n52gb3d7iNXow3fH2W7klgUHnWwNTPzH2j9wyLbvxCwf0eQaoHzLNTuryjrv5GQ/4UMdJTNN8eX1Dnvd4T9wadxdzet+cZ3Dntsr/jZFU2O4oeQ5/47/3Lza9deMr/0c/ew9qDteZME6/8/nD6s1hw9XCQSjaaLZ+h0nYnttWD6bjtpFcfpoxdPTYxtqDWdPdJn9Z4fs9OT+Xbe86f/1UZAT4ZnKK8k7/YlAIQjNvPFP31WPq3iNywvuxTXc4ef1b6G4QpPf1fvxWFOuOe2p2NHe957mioM03bK2tLcFRPRIwhnB7lmK5851yLnU/HjPXdP6dTRl3TY1ef0N6q14+4fYinPXaAb3Tt7rLPzYljC0ZNpze3vZ699qauo1WemK2gRuhruqLBoAE2R/SwhhFrF8zLT1vtJJoxSzVgT/tNrm/1xf2y393efoW86AdSt4MPcS/lh4j2f9lanbULik7YLRbH9ptsfhm2nfTgirSNhapL+cghp1YDsOpu1Yv7HGOxgtL9te1tmC0bTWrI8TjAawdmPzIHMTWyijSdPg2XKP25l1bxEyd8peim9W+t+eb/TouzrOdq+mAXIyfK9KCCGEEEIIIYQQQgjRCWitrSFDhRLCI4ToINmhLnQJdaMyEnsnmnUNqxmUbb674tp68/asZ1ohIRW9ljrHYxJ6VaSC7qk9EhhxcjS49ZQ2lhjLCtL6tPNohBBCCCGEED8XyhaMRnJvTi+iwrqROtd8IZ7XMakQv3Rb4VR2EY/W+m2t9RSPULSmdWcAewM/tij6q1KGmZGWboKOMcE2QgghhBBC/DJ89hbUe8w29KDGHx39v99ASLPMONy4HmZ95Ks/azDaVpbTpdetQF95hHel4y9B5XfgRVupHsleoa0/11zlbwO7jPOsM672c3arm20tf/1b86FkXnojoQnXo1/6B3q9+U6l7UF/8IK98LBTUZlbZnSHHMWdx5lnfx8wCEZt22Lhob+1dr1/zTSOyPyu2bKQA1cevOW0T/88c9uVqypw77oI/czd6FWL7OPvAJ05GA1gj+0Uq+5O/NTa3ne6/OZxl//NSPwUycyM3aI/fPI6ruvy+DT/fc3Z9FYJGoxW3gnCB2whASGP18b9Jylr+MDiEnj4o+ScqtJa8/pszTUvu3y+OH79I4bD18fPYunXeRww/4mkjMGPwsg69qn5xFr+8qz4j8f4u81PRFU9zFjefFmp5XXTwyPoIoisdMUIy0f4wmKob0zeqUjb66/ptmlwb3OdJSXEDcsYVAi1D8fftqy5t21C0QB6dVHWv6G6Ht76PvpzbWPwvmsaOl+IiRBbK9tneKiNv/n7/f7Kum8Zz8kTXGxfXX27UnPjU6u58NYfuDlyGgf2f4er4oSiASxO2wG+/aRZvx/M05z0WIS0CyPc8KrLkpLEPwdsj7NXwI8Eo4lAwh4fqLXV7TeONub1LvTao8lKg1TLOajSTvbwVNbZz6M1VVwZv06Q47SVTYLRNlr2s1JDkJHafNlF+yq2CzB/x+vxrq73bluZyG3WhBBCCCGEEEIIIYQQHaoyspFa13xisCCtr3G5EEK0hwJLOKMtzBGioWkmhU22Z1lxgtE6UnHDGrTlGzcJqxRCCCGEEEIkKmSJk9FagtHaQnXEfvFgTqhrO45EiK2LBKMJtNalwCk0vyZ9ELC/8qRE5AAAIABJREFUpUnL6XuZCay2ZRsf988WQgghhBDil8EzXMlLtx4w5vCfflVv2L/k1x++5D2GTZPKwxFzeUoCR5M+spvbhF6xAH3CQM866rJ7Ub+/u51GZBHySJvL+nmk/qsDT/QuB54outBa/uM68/L8isXw3/vQD16FPn8ceuXCVowyOO266Po6+HiStY4aNDJm2al7O7x8kcNhQ2GnAthre7juV4o3L3VQqvnUcJWSinrsY3PfwH9/PIabDo+w705w1AiYfLnDQUO29NEv1zzVfHVdFpE3J6In3Ig+dzT6++k+/uL20dmD0QD6dFcsvsPhtL0TG9SLM1u3XZyTPuSnkzkX3buML5cGaFsUbWkLebKpijPhvT1EbK8Nj8+m3GzF46faK7zQioC6ps59WvPrR1zumezd36794D/nKF7LvZ/dbhtHGgkkTLXSeeX/tJa9N9d7/GXVmuWl9vIfipq332A585eXpGA0gOfONT+/Edf++ZEIP9um7XqYtwkbqmGlx+N2yf6KT69xSE9VlD9of70uvM2hoGvbbgy/udG+/imbXh+1CQb/rCqLX0cIEV/ER1BjW8hKV3xxncNJo4Kv6KVZcNnzmnCLD/PXvtHsfmuE278s5Incc7i11w1My97XV5/z0gZFf/j6fQBuedPl4PtdXpoVDSi68x3Njje4fLZIJ3RMamuSnWZvI8FoIpBGjxfMzykYzePtpzw2J0op6z5jWU3nug/XBp9P193vxj8ICxKMtrpsS+XyWnPD7lnEnGfITldMv87h/H0Uu2wD+3ifOvMORouz3esMx5FCCCGEEEIIIYQQQohgvAKGJBhNCNGRCi3bIFv4Gdi3aU1D1kIqRJaTY6xX5TF5vT2ss4w/RAo9UgvaeTRCCCGEEEKInwulLHMwtGVCqWgVr9DtbAlGE8JKgtEEAFrrWcCUFosPs1TvzMFojwDDAv47JknrFkIIIYQQotV0ZRl82XLX3B910R2ojKwtv2d1gYN+Y6788SS0YfKt/uBF3DN2Rx/aA/eaYwmXmdM7Uj0yvGL6XF+Ee+1x6MN6Rft+5xn/jZNAP3q9d4XTr0WdeCnKK1GnPXTJhZ59Ypc7Dow/uv3H0xb2O847AA7Ytf47MnVtoG57hUu2/FKyGv3svYmMLjC9YS3udSegD+uFPqibd+XBexgXH7ub4u0/hJh/a4jp14W4/ViHjFTzrHA1dC/YzRwQkVW1jhvX3sxHV4eY9PsQBwxq3ke/PPOwIiqFtSmF0V+qK9AT/uz9d7Qja/hQJzubtX1Pxb/Pdlh2Z/sPrDyUy5qU3nybPpwnFm0bqO2KTZv3IBPuASrrgtVvC7Ywt1CcfJYjRijOHGOutLC4lYMCHv7I5V+fxX9Al97pMOvGEKdsX4T6582tX3GCTqqwh6R+v8o7rOH71fZAns3lTdlCFHpkJy+9Z2C+PQxoZRKDuPwEo9m2uQCzV5o7+P0BiodOccjb9Jh0zVS8f6VD7pZdO/rnwbxbHAbkt31CZFqK4tzx5vU89emmYLQE8/wkGE2I5LBtj0LtsEtS2E3x/PkO7oQQ7oQQlQ85cQN1Nnv4I03aRS673RJh2gLNizM0xz3qokls2zY/fWcA9F0XUVyh+cvr5gdm/N0ueZe7nPqky8YAYUq2xzktxR4YLsFoIpCwxwumvqb9xtHGPIPR4rRtuj/U1IfzEx5Om1jv89vuqT9CbYP3dihIjmPT4N1yy0umu+Xb/IKuisdOdfjmzyGm/tH7fE2Zx8uxOk7wWWc4jhRCCCGEEEIIIYQQQgRTbAkYyna6kCMTNYUQHahpmFlTtmA0rTXFDUXGspYha7btW7XH5PX2YPvbeqUVElIBLugWQgghhBBCiCZCmI8nXOLf/FME5xW6nR0yB3ULISQYTTT3bovfR1jqbWzxe68gK1FK5RAbjFYepA8brXWx1npOkH/A4mSsWwghhBBCiKT4cgqEE0iZ2GU8HH5GzGK1//Hm+pVlMOODZov09HfQfzkVlsyB2mr4/G0aXplgbG6bAN6SDjeiLz0YPnsLaiphyRz0HeeiP3rFXwcJ0OXr0R+9jP7sLfT0d+DTNz3rq+MvbrOxBKGUgl+dFlsw5ghUbqDDrk5L5ebD0efGrXde6ZOB+s2PlDRf8NbEQO2D0nO/Rj//APrX28Knb0BtnNnPOwyFwaOSsm517xv2wmfvRa9baSzq7xHSsyqlycU9sz9G13Ts3Q03s4Uu2YKPOlr/HoqKv7f/qbYf0ofwdo4t295ufVV0Mn7QYLSqOBPe21plnea9eeYyP6F5Z401v4Aq66C6PuCD0URJpebS/8Zvv10P2LaHQofD6NvPAUNIaVtTN06M/g+8vNIcoLpkvaLG4/H4ocj7b333B4276cVV26CtAVo9kvjdTWqKotCSUbm6PPHntiU/wWjbdLe3X7DOvLyX4bE4YJBi0e0Oz52rePECh/m3Ouxc2H4bwZH97WX3THatARePnar4/Fr7G3JlafKeDyF+yTrTvlJ2uuKDqxzeu8IhO91fm29Xwf5/c/nNhNZdPLE0dfvoD+UlTP7Bu6+NtfDcV5pjH/G/Tq/tflaauUyC0UQgXvuDtZZ02a2Q16e/irPd6pFtXv6vzzSPTg0WdtiWNgS4DdiXS73LgxynNQ2d3WjJme+WyG3OWqhpgLpG88DiBaPZxiWEEEIIIYQQQgghhOi81lpCeArS+kavcxNCiA7SMsxss7Lweurc2C8lysMbqNfmi1xahqxlh7oY61V10mC0AstjIYQQQgghhBB+OMp8zb+rI+08kl+GakswWoaTRYpKbefRCLH1kGA00dSyFr/bZt4vbPH7tgHX07J+qda6zFhTCCGEEEKIX5oDT0I9+QWcciUUeKRRtKAeeNd8wdFeh0KW+Yt6/UXzbGT9evMwKg3ckH65sW2K3xuMfT8dVi2KXffk//jsIBj92Vvokwej//xb9LXHof/v15711SV3ofIK2mQsiVDn/gVOvxbyt4FuPeCIM1E3Pd3Rw0oqdcldcOKl0b/PIs8NdoiYHy6JXykJtNa4t56FvmAc+uFrfLdTD05J2gWBKi0djjjTWq5P2BEdiT0BnZsFqZb3bUlKz+YLllpSp9qZn/ChziYnQ7HyLofDh7XfOuekD2Fu+uCE2q4qAx0wQ8AWhNQeFqzV7HqLPcjEz2ujtyU4C2BNy1sBBPC/r/09kPvspNDr16DPHAmzpia2sp13Rz0yNRq6GEQohHpyOuqQU6DvDgAMrZ9jrKpRzFtr7+rrOEEOReXw6aaP/w0eeR55lpCLRNkCyf79eTsEozU5056VrqwBHja9zLtr5GYrTt7T4fiRiozU9t0ADuljX981L2uWbTCXZabC3jso9t7BXL4qKbfIEELYtkehDvrmL+QoDhysKLnP4ZrD2m979dO+bEMd8xf7+zCf+iPMX+Pvs8G2r+QVjFbb0DlCmsRWIuwRjPbVe+03jjbmddwR73B5+Db2Cpc8p9nhepcP5nX8+25Dtf8x3P+ed0BjkGC0dZVQvymwrNwSQNY9y39/XlZbTtdUxwmELKnq+OdHCCGEEEIIIYQQQggRzLqGVcblBekSwiOE6Fgtw8yaKm4oillmCxWL9tWn2e85oa7Gep03GM3+WAghhBBCCCFEPI4lbsildTc9Fma2Y8scS0i3ECJKgtFEUy0vlbbdO7rlDOkdA66n5ZS4uQHbCyGEEEII8bOllELtvBvOxXeiXlgQDT7Jzfduc99bqJQUc1l6Bow90tzwlcdwL94f99zRuA9eCZ++2az488y9aXDSjU1TfB5N6om3mws+e8tfBwHoqo3ouy6Eap8XIBx2Kupkc/BbR1GOg3PezaiXFqFeX4Vz7eOojCTNXu0kVHomzmX3ot5YjXq/HHbfL6ZObiRYYkrfcOxFH6ZwsNbQ4Ub0abvClOeCNRx3FKp7z/j1AlAHneRZrh+IfV0rpci3nCctCTXPRddP3pTw2JLJtZxH78zBaAB9cxVvXhbCnRAi/JhD9T8cTh/ddoOekz6UOelDrOUnjrSve2VZsAn3AFXF63EvOQB3fHr03wNXoEvXBeskQVe+4LJ0vb3cTxBMofnaNaB1wWizzdcDxzg+8j762O1g+fzgKznqbNSHlThPTkcNH4167BP/bX91Os7UGtTOuwOgnvoS+u/E9o3LyHRrjE2+v+Sc6HN8TH/cyw5Bv/wI2nVpDGsmfRv/hfPCjGidUo9gtKDhYfH0zTUv/3wxhCPJCWPwu23a1p7/adSnW+fbuA3tk9g2NzMt2sgWVGcL1BBCBBPppPtKGamKO49zeOiU9hlIcagXm7fwG0v8f5h/uMDf54JtX0kpyLQEo9XECQgSoplG7xeMrjPvq21tvN5x8bYWx+zqXaOsBs6a6FJd37HhW+ur/Nd94zvv/dMgx2law8Li6M/llpdLd9u3/i3EC7a8/lXzwGrqvfst7ti5QkIIIYQQQgghhBBCiASstYXwpEowmhCiY+Wl9iRVmb+sNYU6rrUEPXYNdScrlNNsmS0YrTpSGXCUyaO19ghG62NcLoQQQgghhBB+OMoSjKYlGK0tVFuC0bItx6JCiCgJRhNNtZypbZtq+kOL30copYLM1B8bpz8hhBBCCCEE0ZAsNXw06sWFsO0gc6VdxqP2OMi7nx2H2wu//xwWzIKXHo4pmpJ9sLVZmjmHLVZFqc+KSTDtVSgr9le393ao659s2/G0glIK5fy8D9mVUqj0TNg+NtCpe8BgtP2rp8UurPF3IYquLEevWIBeNg9dvArdUI9e8SN6ffM7B+qrjkwoyEgdfnrgNnHttp93+WsT0AtmxSy2BaOtS2kRvjjjQ/Sz9yY2tiSyTQTv6LCPIBxHkZmm+NeZikmXOAzpHV2+U4G9ze/2Ulx/uGKXbWDvfo2cUPEy/RtXWOvPytiVH9MGGsuOGeHy/PnKGj61dL22hqrYVM78Cr77bMuClx9BX3E4uiHOTPhW2lijeSfOGSQ/r42cDEWOOfOTNRsTD1JYVRq/7c71Czjk38cm1L+67X+oPz6CSt1yUZ/KzEY98G78xiPGoq6b0Ly/7K6oJ6YT2u/XDK5fYGw2J31w9IfSdfDNNPQDV6DvPJ/5a+2BC009MlVT36hZ4bErkJf0YDT7i2D6kuSsw++2aXBv/xurFAfGBr31RDvIy1YM9M7nNcpMjf5vez5WlXVsaMlmFbWaxcWahnDnGI8QQdm2R6FOsrN06l6Krhltv556J4MqJ3qx+uoi/xejL9/gr5722O5nWYLRqiUYTQQRDnuXz/ywfcbRgVSczdaBllNiTa0qgze/69jP9A0BgtEAvvDYPw0aYD2nKNpgo2U/vVuWv8+Gk0Z515v0rcY1DK4qTihdccfNFRJCCCGEEEIIIYQQQiSgwa2ntNF8HV5h+jbtPBohhGjOUSHyLYFgplBHe6hYbNBjdsh8kWWVZfJ6e9gYLqVe1xnLCtNkmyyEEEIIIYRInEPIuNxFgtHagu3YMsdyLCqEiPp5z7IWQe3V4vciUyWt9RrguyaLUoBxAdazX4vf3wnQVgghhBBCiF8clZ6B+ssz0DWvecHeh6LumRS/g4L+Ca23NJRnLdtjO5+T7V37iTD3+hPR9bVBh2Wk62rQf73Ad311+wuoeDNvRbtQubGJK67ljhM2e9Z9HbuwxvtCFO266Kf/ij68AP27EejTdkUfPwB9YFf074ajj90e97az0TVVuGfvCbOmBhoTKamo82+FcUcFa+eDCoVQj3/qWUefOxr96RvNluVbbiBRHOoV237i7Ul7fybKGj60FZ7NUkpx1C6KH24O4U4IMf/WEP85R9Elo2kd+MOBiolnKW77tcM3fw7x2alLeH71aSxZNIh/Fp1n7Pu7jBHUOZnGsqsHL0IpxYDYpxiAOUXBJ9xXOYYkqyU/wKQJscuT6P158euEfL42enczL1+z0f94WlpZ5l2e6dbwz6LzSSVO8EVLOwxFPTMbte+vjZ9bauT+qCsfhC651i7UDU+Z22bloG5+lqFqqbHdnPShsQvffYblD9/ne/iZl7gc/Q/zvkDXDEgJJfezeOwAe9m+97g0JiEAy28w2pAAN2QdMwB65HTO/ZKpfwy+0c3cFBRke6+VdIJgjLvfdel3jcvAP7n0vMLllVkSjia2PrZw006Si0a3LMUbl7Z+x+2simeomp/L/EXDrHVKQtH7/iwv9f/H1zX6q2fb7iuFNWy1ynxNuhBm4ThJesuCB3R3RraQQYB479yUkGLy5fG3J09+0sHBaNXB6q8ut4/X6/Eymbsm+v/GWnPDbuZDxhi79Vc8c479GWkIw4zlscur4+RkSzCaEEIIIYQQQgghhBBbl5LGNWjM5xtNQUJCCNHebNuidQ2rYpatNSyL9hEbKpYTMl9k2ZHBaLbxg2yThRBCCCGEEK3jWObvuTrSziP5ZaiOmC+ky7YciwoholI6egCic1BKZQDHtVg81aPJq8CIJr+fBUzxsZ5BNA9gq/bTTgghhBBCiF86teMIeLMIipZAfR30KER16+GvcX5idwSrdyyzvIGzx/qccK497hDwyevoh69BXfn3gCNrsYoF36DP3dt/g4NPRg3cpVXrFEmUG5vYNKLue9/Nby++0TyJuqoCCjwaTn8b/cRN3p1PfhY9+VnfY1GX3QuDRkFKajTMKN3nzOMEqCF7oI85FyY9aa2jrzsBXliA6r0dAPldFBguWixJMaRm1dXA0rkwaGSSRhycn/AhXVYM7z2PXr0Ytct42O841KbkNF1dAW9NRK9ciBq6Nxx4Iio1rR1G7s9v93I4fnfN3DVQH4ZBhdA9q8WrefGW98Lomi8CryPvh8lw4GCG9lV8tSz2AZ2zWpOXHSw9pcox34lEv/gP1ImXBh6jXyc+Hv+OM36DYHp3g4WGGxsXlQcc1CYfzdfMW2MvT3PreW716exlCnFs6cCTUNc8Bit+hOwu0HdA3CBPdeyFcOjvYPJz6Psua1548MmoPtvb2zoOQ7bNgHWxZXPTBxvbFP2wEHrH/Uvi6tUGN7U5ehfzdm6zf3ykueLg1iUGWQNyPnoRvWQJ7H88qv9ODOvjPZamdujVSVKMDAq6RgMbz/yX/3SOzNTo/7bnuKQqCQMLIBzR/Hu65qWZmslzYsur6uGEx1wW3e4Efi5cV/PabPh4oaZvd7hwX0WXjM77fIqfF9v2yG9QaHsYP1Ax/1aHQTf6v3Pc3euuZfThI3EO+g07F0JuysmwZBgFWQVwu7lNcagXWW4t34YG+V7PylJ/2zWvfVJrMFqcgCAhmmn0DkbTy+bFDQ7bGgQN+mrp4CGK8QPhk4X2Op8ugopaTdfMjnnENgTcx1nvUT9ogPXcomiDcku+efcs/339bi+HjbUuv3/OPIi5azR7bt/8MY633SuplBBaIYQQQgghhBBCCCG2JusaVhuXh0ihZ6rXBVlCCNE+Cg2hZgBr62O3X7ZtWqEhVCw7ZL7YpSOD0Wzj7xLqRlYop51HI4QQQgghhPg5UViC0fB/3a/wr8oSjJZjORYVQkR1oukRooNdAzQ9oxcB3vKo/+ymOpsdp5Qa6HM9Tb2gta7zN0QhhBBCCCF+2ZRSqL4DUDsM9R+KBgkHozWQaly+53YwqLfPSaZunBNhk58LNqgW9OTnAoWiqQtvR13/VKvWKZKse2wo1/D6H3w3v2rDA+aC6o3WNrqhHv3q477X4ctJl6FOvBQ1fDRq8Kg2DUXbTF31j7h19Ek7o8NhwB5QU5RiTjjSD1+b8NiSwRpCgUbX16LXrURfuA/6oT/CK4+hb/od+s7z0Fqjy0rQF4yLlr02AX372eg///anx6KzSE9V7FrYwF6FVXSjCl1TueXf6sXom0//qe6OjYvpFTakeXnIm/4/tNYMzS41ls9bG3zCfaVjuZhqzTJ0hXk9rXX1i/6+VPEbBNO7m/kzLJFgtAfedznwPvv4tmtYxsyle3NU1dvxO0vLQF10ByozG7XzbqhtdowbiraZyuqCOvYC1IOT4aDfwMj9o33d8M+4bYeOH25cviK1PxWGILxVKcm50+iIxHZPPGWmKY7f3V7+0Ica3cpUDuu26asp6Cf/gj5vDHrWVMbuCCk+X5P981o1pDZ3+miHSZf4/yohc1MGZU/L5qKkklY/D365rubg+13Oe9ocitbU/2YEH9Np/9Sc8JjL3z/QXPOyZrdbXNZVbOknEnQjK0QAtkMtv0Gh7WWnAsXc039gbM1nzZb3aSxieN33P/37dcUk3tZXctXloxl7wcmMHqDIy1ao9AzU4FF07b8NaZbbPZWk9GJ61t5oy53rTFaW+atn21w5StElw1xWKd96iSDiBKOxbF77jKONeX0i+tzl5aDB3hXrwzBpdsd99m6oCrbuEvM1TkACwWibgprLa8zl3QOeorh4P/v2dEVp7D5OvGC04o6bKySEEEIIIYQQQgghhEjA2vpVxuU90woJKcsXNkII0Y4KDKFmAMWNRbh6y3THOreW8vAGcx/psRcv5YS6GutWRyrb7VqXlmzBaLbHQAghhBBCCCH8CqmQcbmrJRitLdhCt7Mtx6JCiCgJRvuZUUqdppQKdAsWpdR5wE0tFk/UWi+3tdFaLwT+3WRRGjBRKWWZBgJKqWOAM5ssagBuDjJWIYQQQgghRAJ69oHM7MDNGlSacfku/QLMtI93IqwmsYsF9FsTcY/dHn3bWf4a9OqLeupL1O+uRqXIxVmdSm5+zCIHzVUb7ovbdEzN56Q0y+zeQl9yAHpx84A1vWAW7vlj0Qd3hy+nJDZekwNPQl1yV/L680kphXrOR4jct58AsE2uuXhB+s7mgtkfoxvizG5uQ7awD/XQVeiDuqNP2BGKljYvfPc/8ONseG0CLF/QvOzTN2D2tLYZbAL0nK9wz9kbfXB39KE9Y/+dPKRZfQWMrv0y0DpyV38LH7zAgOkTjOUlGyPW0B5b0EeVLRgNYLH/UEO/GsKa+97z9znhNwimnyWEav7aYJ9HxRWa61/1bvP5sn0Z3LDAsw4ASqGu/DuqoF+gMcR0s/t+ODc9jfPAu6jfXoUKmb+oamr4yG2tZXPTBsUsK0rt06oxbjZ6QNsk9xw8xN7vsg3w9PRWBqNZtk2hzRdV1lSiJ95BXrZi35389dnZg9EAjtpFUfaAw5gB3vUy3Fp2+F0P3PHp9Lx6H2OdxghsrG2DQW6yslTzm8ddnPMjpFzoMu1Hf+1mLQ/22nj7e81/v2reZsn6aADfd6s0Y/4aIfNilyF/jvDqNxKQJpLPFprjNyi0rWmt0c/fjzs+nZ2u25Npyw8mPC/rp38rFu3IN0v3+unfy2fXc9gTD6L2P87Yn1KKXrbAxVAv1ocChIfjP6TH9jgrBTnp5s+c6o7bhRZbo3CcYLTl89HxQue3Al6nfvwGow3tE7/iCwkEnSbL+qpg9Us86gd9yheuix47WYPRsoL1B3DMLublf3ldk3mxy263RPhgXvTxjrfdq5TtohBCCCGEEEIIIYQQWxVbCE+hhPAIIToJWyhYWDdS2ljy0+/Flu0ZQEFqbB+2YLRG3UCD7pgvPNY2mMMqJRhNCCGEEEII0VqOJW7ItczVE61THTHfTdV2LCqEiJLZ4D8/5wCPK6VeBF4Apmqtq00VlVKjgOuBY1sUrQb+5GNdN21qu3lq9RjgfaXUuVrr+U3Wkw6cD/ytRfu/eYWvCSGEEEIIIZJDhULoPQ+Gaa8FalfvpBuXp6cG6MTPTM5wI6SaQ9hM9NRX0X+9wF/lgbuizv4T7LoPKqeb73WIdpQXG4wGcETlO/ytx5WeTX9f+qhnuT5zJLxZhOrWA11Wgj53dMLDNDr9WtTYI2HwKJTfmdxJpvoNhD/ch37Q47H67jMYuf+mSeSxk8TXphSyPtSDnhHDnRF//AaG7Z28AXtwXc30JTBjuUZr+KHIXM8WhreZfvcZeMX82tAzp6JGHdjaobaKXrMM3vsf+ok/B247pmY6r3c5ylfdbpFyUoigbz6dvMy9YbtrYurUuyGqasKYThF2y4TKuth+Kz2D0b6H3cxBSIn6zxf+gw38BsEMseR6zVsTfR06PhPWXpqlqWu0l+9R+zX5kRJ7hU3U2X+GX52KKrQHlLWl/nmQkw5Vhmv35mQMZe+6r5stK0rpnZT1jmmjYLST91Bc/Ky2BtmcNVFzwkhNtiXMJp6IpV+HJvs830xD19UwsCCDD+bHfw33z+uYz5CgumUppl7t8MlCWLBOc/MbmnUtgoV+U/ESOZtOR+dHiq19lVTGD+ioqdd8sgiKyjUHDFJs2yP+4xRxNSdPcJm+JG7VGLNXBqv/78/Nz+3T0zUPfah/2obOXwvHP+oy7Y8O4wduHc+1iIZ6RdxoKFbExf6zjh7yRLRHnYT60XHbzi0yvwY7aLc01osPoR++1ldVdceLqPFHx62X3wVWl8cuL0npSZqOEy7VQnFl9HmOtx9vC3NyFORYgmQr6yQMUQTQGOe1W1sNxSuhg/YVk8XrXeF3szXMx9yOKXOhrFqTm93+G8Ogwa8bPILRbI/Xdj2iYb8thV34cZ19DN0ygz8e2+SZzyFsXt+3q+CIh1y+ut4xHks0JYGRQgghhBBCCCGEEEJsXWzBaAVp27TzSIQQwiw/zX5jx7UNq+iZVrjpZ/P2LFWlkZfaM2Z5Top9MnpVpIJ0x/IlcRsqbjBfSFko22QhhBBCCCFEKzkqZFzu6q3/Zq6dUXXEfFfnnFCXdh6JEFsXCUb7ecoETt/0z1VKLQSWARuBCNAD2AUoMLQtBQ7TWq+NtxKt9Sql1HHAZGBzisFYYK5SaiawBOgG7A70atH8TeDGYH+WEEIIIYQQIlHqV6ehAwajNShzWFma+ZyXmZ8TYY31voPR9Ia16BtP9r169dQXHRZYJXwq3A5yukNV84SDHHPG90+eKjqfkypfjt//5GfRJ16KPjrJF4GMPxrnvJsxewduAAAgAElEQVST22eijr8YKkrhX7cZi3V9LQoYZr8WiDnpg9m35tPYguXz2yUYrSGsOfVJl5dmxa/brzFOcs3UV+2hjP+9Dy64NfgAk0R/9DL6trOhwZA45sPIOh8P0CY9IqU//ZwXKbPWKy3agOkUUY45G5NaJxONObxAz/0KxSW+xxjPbW+5/HmS/2ARn3lmDOltnuBf0wDLS2H72GvejP73tffYzij/T9w+1N/fQyU5TC4opRRD+8CXS2PL5qQNjllWHDIHWga1e/+kdBOja6Zi3i0OO99o3wd55gvNhfsmtn9g27w0C0YDKCumX56/P7J394SG0iFSQor9B8H+gxTnjHW586wHeSrlWDLcOo6oeps7i7ec8u0VXm/tp6QKBprOTm+ydqPmVw+6fLvpprchR/P02YpT9vROQHznBxIKRYNo0IhfVXWaF2eatwGrLJvcfe9xqXnYISPV32tPxwvGarNArs11dMJtE1l/bFsf60/W42FoawvD2hr4DQptS3rFj+iH/uiv8pjDfYWiAfSyfO9fEupJN9d8sYBNfTgaCtolznXrtqBNpez7S/ECgoRoJuyRtLvZsnlbfzCax3bV72mbgfkwvC98b56/AkBjBF79RnP2uPY/FxS27Cf27gZrNsYuL66wPyi2bc/OhdF9DdO6Zq/U1FpeTvECaU365cav0xCGZ7/UEowmhBBCCCGEEEIIIcTPiNbaGoxWmObjDhZCCNEOMpxMclN6Uma4NmVdw2qGMWrTz6uM7fPT+hgDALI9JqNXRyrpkZqc66b8qnfrKA2bb8yZL9tkIYQQQgghRCs5mC86dom080h+/sK6kTrXfOdTr2NRIYQEo/0SOMDOm/7F8wFwptbafNbPQGs9VSl1LDCRLeFnChi16Z/Jf4HztNbyiSiEEEIIIUR7GXNE4Cb1tmC0IEeStvSQphob4lbRa5ejn7oV3n3G33oLt0U9/omEom0FVCiEHn80vPN0s+U7NCwlpMNEVOwLrujUz8m/IX7gEIBe+B3qIx8BagGpS+9Jep+JUkqhzr4R1xKMRiR6+F3YLToZurwmtsqK1NjwnggOf/8qj3cWRNv/fn+HX+9mfk+9P1fzt/dcqurgsGGKKw5SZKVH606eo3l0qsucouhk+IEF0b6OGLGlr/99rX2FogEMr/vBu0KpR9Z7r/a5GEg3NsCkCegHr9qy0BAAGNSw+rm+6+Y1CUbLjdjXu77SvJ22BX1EVAqNpJKGYcb9e8+j/+9RVEYCs+5beHGGDhSKBv6DYAb3tpfNKfIXjLaqTPPJQnv5uC4rOWfev+wVDjwJddPTneZzakgfxZdLYx/vObudCZOvabZsXUrrL/AbMwDf4VCJGFigmHiW4sx/mV9DL83UXLiv//5qGzSPf6x5cYZmrSV3x2kZBlu+nn65/oLReuX4H0tnoBd9h775dELL5vEn4E9ca6yXravJcGupczJjykoqvddxy5v6p1A0iIZVnTVRc+QITZcM+2snXmChl3Lz94xGb36X2HqyLnEp7OovzEuIRPkNCm0resUC9O9G+Ks8YDjq9hd9992riznctCSlFymNYd/9bFZckXgwmqPsbSsTy8AVv1R+gtHWrmj7cbQxz2A0n30opbjreIcTH3c9g7bOfVpz9rhAw0sK2+d33+7mYLQfi+192U6npadEj6nnrYkt+2qZvb942zqTQYXmbW5L90yOX6c6/qk/IYQQQgghhBBCCCFEJ1Ee3kC9Nn/ZUSAhPEKITqQgra8xGG1tkzA0W9CjbXuW5WSjcNAtb5AIVEWC3awrGYobiqxlElYphBBCCCGEaC1TYDSA23JuhGi16oh9AkVOqGs7jkSIrU8nuG+8SLIHgeeA5T7rVwOvAgdprQ8KEoq2mdb6bWAY8BhQ5lH1C+AErfVvtdbVQdcjhBBCCCGESJxSCvWm/QtykwZLMFp6kGA0r5mvm8UJRtNlxejzx/kPRTvkt6h/fY3KK/BXX3Q4NWJMzLLu7kYOrXovZvkxu0BBxHwHPKNpr6Bff7I1w4uh3ixC9d4uqX0mxZjDzcs3nZBWSrFdD3OVd7IP5bUuRzM1azylTi4AlxY+wB/XHMGH8+HD+XDcoy5nT3SZNFszeY5mZammrFpzw6suhzzgMnkOfLYYbpykOWti9L3/5neaIx9yef1bWFwCS9bD5Dlw1D9cXvtmy/bhpZn+AmZyIpX0D6/0ruQVyNij0Nd6Wks/el3zUDRodSgaQK/IevJT4qQJbZIX2XKKJte1n67ZEMk2LrcFowHUGkKONtMXtD6BoLhC85sJwb9IaRkEo8ON6CVz0PNmoL+fjp7xAbqilC4Ziv4Z5sdxblH0tbihSvPZIs20BZoNVbGvzxdm2F+zVx+ieK//I6RiDmhRtzzXqULRAIb1MS+fU94F9a8ZP/2ugeKUXsa6J230H2xz+UFtf1r6hN3tj+/UBdHXmV9/+J/myhc005fY6zgtL4gsK6ZfbvznWCnosRUFo+mVC9Fn7QHL5sWtq4hut0xKKr0f/8emxZY3hGHKHHub2gbdumA0Q3Cojdc2IJ61FVBcCRuqo+usqIPqeqhrjP6NEoomWivVfI1C0unqCvTiH9AbN2xZtmGt/1C07K6op75Epfg/wOxluSFaSagX1U7wjWmxj90q2yGto+z7S1UegU1CxPATFl8c+OvbTsfrkzPIbvFhwxTf3+Rwx7Hejf42pf0/UG2f4cP6msdaVA5l1eZHxiuUcYgl6Hn2CvujnJlqLbI6dGjwNjbV9aD9nCMUQgghhBBCCCGEEEJ0OFuIEEgwmhCicylM28a4vOl2bG29eZtma+uoENkh83fP1R0QjGbbJqeoFHqktv7mlkIIIYQQQohfNscSN+QSaeeR/Px5hW1nSzCaEJ6CTGcXWwGt9atEg85QSnUHhgL9gAIgi2gYXjnRALN5wHda61Z/Mmmti4GLlFJ/AMYC2wKFRIPXVgPfaK2XtnY9QgghhBBCiMSpbj3goffRd18EKxdCahocfga88ww0xN7l0RaMlhbkSNIroGizxjizxt+cCGXF8fvJzEb94T7UEWf6GZnoTLY3z7adWHQuJw+bzIeNwwA4aDBMON2BqQECptIy4JtpyRgl7DgC9Zdnou+lzsixpGC4Ww77++XCbEOu2AvdTuSFbif+9PslpY/yz+5nxNSb+Llm4ufxJzO/OFNz2SLN/e+51snh17/qcsyuDkop5q6J2yUAu9XNplVRUg1tn1KhVy+GF//RNp0fcALDcrL4cGH8qj0iW0JK0nUDWW41NU5sCFql5QR6Toa97xoni26u5aT8kjnooqWoPtvHH6SB1prCqxMLMWgajKbnfIm+7SxYtTh2HSPGMqTsalbkHBpTNue71dwf6stVLzZ/nd91vOLqQ9RPYWa28KVhfeDuExzc20vNgzz4FNT+x/v8i9rP0D4KU1zF2gpY0nUY24/cH2Z+RJmTS6Nl/+CK0r+zY9dqHsw4k2rLWy0tBW44XHHcbkkcvEVWuuKpMxTn/Dv273I1vPKN5sJ9429Rvl2pefKT+Nu92GC0EkbuHn+cPXMg1DLVrxPTj98YqH6v8HpWpvaLWV5SZW/j2pJAiH6+HD/S/Hi98wOEW5GBUuYzGK0hrHnXI6BNiI62V2IfwYHoN/6JfuS6aPBrSiqccxPseTD6nL38dXDACaj/exQVCpbiZg1GS+lFQXidsey0vRUvzNDUG/JKWxOMphR0sewvVcYeXgthF44fjMa6OOHQWwGvTKygecHb9VRc+yvFQYM1e95h/vB/6EPNVYcE67e1bMe+I8zzagCYUwTjBsYutz1cjoKBBeZ99x/Nm0EgsWC09FTFuB3h00XB27bk6mg4mtdxphBCCCGEEEIIIYQQonOwhfB0DXUnyxIWJIQQHcEW1rh203bM1RGKG803lC5Is9xFkuiEdNOE9aqIvxuaJpNtm9wrtQ+Oaqe7pgkhhBBCCCF+thxlCUbTcqfvZPM6prQFdAshoiQY7WdMa10OfNbO62wAPmrPdQohhBBCCCH8U7uOh6e/gfISyMhG5XRDX/UQ+ozdYencZnUbVLqxj/QgR5J+ToQ1ek8C1t99GrcLddm9cOyFqJQEZnqKjrf9YOPiPLeMKfPHU/zKRtJSIC87OltaV5b573vjhvh1AJRC/ec76NkHMrNh7XKorojO3nYj0L0n5Pf7KRSpU7IFS0SaBKPlmSdQt/Rw3kWtHs74u73f//PXwverYWC+Zsl6f30eXfVm6wZVFeC1kyD93/sTazjuSNSZNxgKFGRmQbeeqG49GPK8y4cL4z+HeZGymN9NwWg22Wn210qNyvRu/PEkOPly3+tq6tkv4/9tNqFN38nouhr0zafDmmXmit99xuD8I3jXEIz2zKI+PLModgzXvKzZewfF+IGwpETztaXr3+yxaRtRaQlG69Ld82/oKMM8bup8zMMu3x9wInrmR6xLsd9ptCC8jlvmX8zV75xJo3bIy4Z1FbChCgb0gtIayM2C7PT2246eOUZx5zuaRYZ81Zdmai7cN34fT37q7zXptHy/lJeQk6H485GKW96099FrK/oOS1dXwLRXA7XpFSkxLi+usD8mpdX2/rLMuXxANHDTy+3HKs4YrXhvruasibHrL6+JhjPG+6xfWQp1jZ5VhOgww/vCUSPadjur534dDdveLNyIfvxP8PiffLVXD7yLGrl/QuvOtwWjhXpSbdnPycmItltp2A0sqdQQJ3bXK5wox3zITFXbZ/GKn5M450QAKF7V9uNoY157VIlutUZuC327w2pDdvqK0uh7vFeX9tv3tGW79s9TdM3QVBhCE5es14wbGDtGW8iao6B/nrnMK+wx02MfysuRIxSfGo6PEnHDa5oHT+7E51SEEEIIIYQQQgghhBAArG0wn5O2BRAJIURHKUwz352mKrKRqkgFdZEawtp8gUeBpS1ATqgLpvvRmMLS2potGM0r2E0IIYQQQggh/HIwz0NzW940XrRateWYMsPJIkXJfFghvEgwmhBCCCGEEEL8wqiU1Gj40+bflYInpqMP6tasXoPlpEpakJuMNQlksgrHSZZYMse7fPAo1ImX+h+T6HRUVhf7JOmGegrWfoPaefefFulVi5I/iEN+i+q/05bfe2+X/HW0Ncfy5nS3vA9tE6g7ygszNCeOVGgf86yz3SpO2fhC61ZY0bbBaHrZPJj0RLBG2+6MOvUaOPS3voL3hvm8pikv0jyYKzdSxqpU+wVdLWVn2MtqnCzPtvqHLxION/j7B4lPui+rAR2JwPv/s4eibTK0fl7g/id8rBk/UPH+PPsYtwSjGdIZALp2sjfhJr27QfesaDBUS3PXQMXo4+nS7UbWNdqD0fI3BWB1ffACnBueBKBP9+g/gCxLeExbUkpx0ijFHW/HPmdTF0TDufK7er9aX5/tMxitRRis3rAGBfzlaIcvlkSYMtfczhby0xnpM0cFbtMrbA5GK/l6JvxmT2PZizPtj3mG5Tu/l2dqfjRdlbrJO39wOHRo9Lke3BtM8Syujm5H8uJkSJZUeZcL4Zejov9CTvRf3J8VOJv+b1knOx322UnxhwMU3bLaLnRGN9SjLxiXWOM+26PueAk1YFjC6++VYw5uLQn1pNIxJ01mp0F+V3MwmleI0Gaux7UdXTLM46k0hB8JYRX2EYy2+Ht0uHGrDoP3OuZLNH9cKcVv9lDc956587++q/nbie0XxGULMws5sH1P+NYwl3ClJU/Z3peiv8/A86YyE3zp9Evi4ct/v9I8eHLy+hNCCCGEEEIIIYQQQrQNewiPBKMJITqXgnT7tXDrGoqojdgv8Mj3CBbLCXU1Lu9cwWj+rwMUQgghhBBCCBtHOcblrvYxH1QEUhUxX7ScE9qKJpQI0UEkGE0IIYQQQgghBCo9A33gSfDBltChBpVmrJseZDKl9nGHgFrzxQdaa3jub1BsvgvlZurSewMMSHRW6p5J6D8eYyzT91+Oeuzj6M9awydvJHflO+2GuvD25PbZESwnpJu+D5M5qTkZ7nhbs3xD/HqZbg2Pr7mEwohH6o0f1RXocBiVktxTYrq+Dv34DfDiP/w3SklFXX4/6pjzAq1rWF9/k+BbBqP1ipjDiWxyPEKsalWmd+PqjYHWtdmSEs2M5Qk1BWDRlE/Qtx7iq+7g+vmB+588J/q4f2++3oxd+8GO+ZuCFyrMCQeqS/fA620PSin23A5reNcbi7vyu+smUHzvq8bybpFyMnR99Jd3n0GfcgVqh6FtM9iAThxpDkZzNZz3tMuk3wdJfLVTLe+KtGzLa+y/5zkUXu3SaPh+cES/9gvraA29fD6sDf4G7RlZb1xeUlSKXjLH+Dq57PngwWhXvWjf55xyucNBQ7Y8zr27Wasyfy2MGWAvByhu/+tc24xjCNgKGsiVeFsVU9/x2U9yxhK7/mQElPlt6yh8BaJ2NvqqIxNqp+5/GzXqwFavv5flu/96J4N1KQXGspzaEvK79DSW+QpGs2ySHMe+v1QfhsawJjVl63uORQdo9BGMVlkG30yDPQ5q+/G0Ec9gtFb0e8ex9mC0+9/T3HC4Ji+7fd6LEdv2QkWPxY3BaJbsbq+QtX65wcdm24eKp19u8BA2m/USLiuEEEIIIYQQQgghxFZhbYP5Wj0J4RFCdDbdQrlkOJnUubUxZesaVlEbMdwhEshN6UmGY7/+zRaMVt3OwWiudiWsUgghhBBCCNGmrMFoLedGiFazHVNmW45BhRBbSDCaEEIIIYQQQogop3kwSL0yz/JOM+SH6OoKmPoqZGTBbvug8jZNSvea+bq57b2/R/3r6+jPGzfAV+9BQz16/gx4bYJ343FHwrC9465DbAVGeUzwXvjtlp9L10F5sIAno+2HoH5zOfTdAYbuhUo1BwFuVUKWcJ8mM6r7dU/OhOZkevZL+5gmFF1Ed7ec0bVf0ju8NjkrLFkFvbdLSld6xY8w80P0fX/wVV9dcBt07wmZOTBsL1RB/8DrHNrbX70eLYLR+jVa0rwssj3eEjUeF4YBULQ00Lo2e2FG616fB859xHfdIQ3zAve/vgoawpo5q83jHLVdk8CFynJzJ107WTphE5cd6DBlrvkLrBdmaE79/ZEUl+0Dr8eWF4SLm/2uz9gdJm9AZeW0xVCNtNbR9+OHL0E4jDrkFBi5PyO2gYH5sLA4ts0b38GfJ7n0z4P9d1ZkpsF7czXrKqLP5/47Q4nPAAen5Zd/S7ekzOVmKy49IDa0Iz0FzhzT+UNz9OxP0H+7NKG2vSzBaBtCPdFT/ou68LZmy+sbtTUIBKAhHLusuEKzwpxFSH4X2G/n5su2yYUuGVBZF1t/TpFmzADv56S4Mti26qL9FEP7RLerzYPIVIcEcm1uq7bSYC7RcfTcr2H2x8EbHn1OUkLRIPqetlmaup1xedbkp+i139VA7L5yiY9gNNs73lHRbYlNVT3kyrewwg8/wWgA82Zu3cFoHmWt+ThKS1GM3gGmLzGX732ny4+3JScINx6vMLNtLAFjq0rNj4xXX/0DHlKkOJASSuxB7mzh6kIIIYQQQgghhBBCiLZV59ZSHjbf4bBQQniEEJ2MUoqCtG1YXrcwpmxt/SrqXHMwWrxQMduk9KqIjy+Yk6g8vIGGzTeqbEG2yUIIIYQQQohkcLAEo2kJRku2KkswWk7I4+JoIQQgwWhCCCGEEEIIITZrEarUoMypOGktjiT1vBnoKw+Hqo3RBXkFcNv/UMNHgxuJv95F36HDjbBsPvqqI6HUZ/jR8Rejzr5RAh1+JlRKCjp/Gyg23HW0oQ4992vUkD3go5eSs74LbkWNPTIpfXUajmWyd5P3Yf+ujUBq+4ynlU6oeJmzN/476f3qs/aA11eh0szhj777efc/6LsuhHCjr/rqn1+hBu7SqnUCdMtS9MuFlWXe9XIjzSts02i+o69NaggyUqHO8OfVqCzvxmuWoetqUBlx6rXw9vf2uISR28LyDTB+IGyshQ/nx9YZU/uF73V1cavYp/pjPs7eJ9AYv1wK36w0lw3rE/1flxVDuSGFC6BL90Dra0+HD1dskwurDK+t9+ZGQ+HWNeZgCnTIj8T+vfrQHvDKElSvtr8QT7su+voT4LO3tix752nY7zjUX/7DiaMUd7xtfn3d9tbm5S3LNYcNNb8HTJyWX/6tL0JXlqG65AJw57GK7HT4zxeatRthr+3hL0c77Nqv8+7HaK3Rd5wL7/4n4T7yIuaNVVmoO3zxLrQIRjO9/pqqNlzvOafIXv/w4SomCESpaFDZF4YAFa++NisOcJ3r9Gsd9tqh8z7HQgShn7s3eKNdxqOueDBpY+jl8d1/peXi9JyNq+hVOh8YGlNW4iPo0LVc26HwEYyWHbd78Qunw43oJ27yV3fZPLbmTxSv3PzWntY5chfF9CXmFSwqhsXFmgH5bf/oeYWZ2QLGbMd1Xn11y1LsVAA/rvM3rsxW5MD36ZZ4WyGEEEIIIYQQQgghROv8UDWDGZWftOs669xaa1lB2jbtOBIhhPCnIK2vMRhtVuVnRDBfvxwvGM02Kb0qbJ7EHsTGcClfVXxMUf1ydMubMAZYX7y/QQghhBBCCCH8cJR5HtrKusVMXHN/O4/GnxSVyvYZOzOq63jSHY8LeTvQ+oa1zKj8hLUNq9k8T2Vp7QJjXVs4txBiCwlGE0IIIYQQQggR1SJUqd4SjJaesmUyqY5E0LefvSUUDaB0HfqhP6ImfGqfRd5S0RL0Q1f7D0U76TKcS+/xV1dsNdSf/om+7BBjmb5gHHxch37wquSsbO9fJaefzsRHMFrv7DAhrYiozn9KaEj9vLbpuLoCPnsT9j8+oea6ohR998Uw7VXfbdS/Z6F2iA3jSNTwvvGD0XpESpv93i8cLBhNvf0vskInU0fsFwW1TqZ3Y61h2TwYNNL3+sIRzawV5rK/Hqf4v8O23IlmcbHm4PtdljW5SfHtxTfSO+zzM2STO4tvZOz20wK1Of9pl42W64CH941+PuqrjoKIJRg0v1+g9bW35893GHdX7Gd3fRiG3uSSZwl4KQibg+D0cTvApBWovIJkDjPa98YN6Ak3wuxPYMWP5kpTX4Fpr3LiyOOtwWhe3p3jv65julhx6VwYMRaA1BTFzUcrbj468DA6zhfvJhaKtu+xUFcNX04hr8W2aLPSUC4snodubEClbtnnjLdtq6yLfR5/KLI/t3870RyCsnOB4gtDgMrajYbKLZT4DEY7e5ySUDTxs6Ary9EPXgnTXgvW8Mizca55NKlj6ZIRDepuCPtvk+NW0Wvl15iC0fwEHdq2MI4DOR45u5V1voYnfuk+ecN/3WVtdHzUCbT20/LCfRQ3vGrfH7j6RZdXL7EcLydAf/Mx+tl7oufChuyJOu9mVGa2PcxM2QPGNlSbl3sFowGcMNIe/NtSZiuy0VNTkrsvE3E1IUf2j4QQQgghhBBCCCGE8GNtwyq+qgh2TUNbSVGp5KX27OhhCCFEjEJLQFhpuMSjjXfQY45lUnp1pHXBaMUNa3hg5Z8oD2+IX9lD11AumSG5S5cQQgghhBCi9Rwc4/KNkbJOc17K5PON7zN94wf8vt9NZMSb39TOVtQt4u8r/0KNW+Wrvi2cWwixReefBSuEEEIIIYQQon20CFVqsASjpTU9kvxmGiw3JNbP+xq9bgX2aeQtVFXArKn+6gLquAt91xVbD7Xbvp6vGH3jKd4djD0CPnsr/npeX4kKJW9SdKfhmE9INw0oTKGRvuESVqT2D9z9/62/h+IRR9I9SzG1vB977JRBWnoK/fPguN0UPXLg4PtdZi5P9A9o7tCq95LTkYG+7SxIS4fC7WD7ISjbYwfoxgb4cTaUl0DVxmjbIM64PqmhaACHDFW8/YP39rUgvK7Z79s0BgtGc9YuJzN3A6TGXjxWq3x8cfDVe4GC0eatgZoGc9kBg5pPnB+Qr/j6qjpeen8tRRsdDnn5dEbXfuV7Xex/POqQU9h70fc88vKlXNz7Id9NF6wzL++aAaMHgH7/f7BwtrlSr76wwzD/4+wAo7aFFAfChiCGxSXRfyb5HhcT6jNGwkuLUOnB78aj62th7tewbgWkZ0Lapj5SUtFXH+Wvj+f+xognjqdrBlS0YUhNvGC0zkY31MPqxdHPiB2GolTz95mur0M/fmNCfatfnQZ7HgyfvUX3mRvBsKu4MdSdSMSlfsliZjuDGFgABV0VK0u9t21V9bHL5hSZ6+65HeRmm4M38i03ViqpjL/vagtG2zEfTt5D0RiB8QMVv+rcb3ch4tLhMCz+Dn3u6MBt1c3PJhxC69mvUuR3gVVxQhSbynZryF/+BRSeGVNW7OO6ddc1bxcU0aA2G9P2SoiW9Cev+6+8bC66oR6V5pHI1wnV1Gu+XgafGwJJkyU3WzHlcodDHjCniU36Fh78wOWsMYquma0L5dLzZqCvOGxLEPKcL9Fzv4JHp2HZXBByIDdLYTpHVl5jbhMvGG2E93ydZjLNp/c6RG0D5HTOm3QKIYQQQgghhBBCCCE85Kf2wVE/w2uthBBbvYI4IWfmNuYwtc2yLcFoVZFKtNYx19j49V7pK60ORQMoSOvT6j6EEEIIIYQQAtiqz/csqZvPrMrPGNPtoI4eSjNvrn/edyga2I9BhRBbSDCaEEIIIYQQQoioUPNgIFswWnqTI0n9xj/t/a1ZDlUbfa1af/62r3oA6q8vo/oO8F1fbGX2PRamvWousy3fRI09Eu0VjJbTHXXHi6jc/FYMsBOzBqNFtvwcDjO+5lOe7fZbazcKF93krh871y/g30XnMKpuFnxw05aKn4C6/x3UqAN+WvTuHxz6XeNS12juOyfdX0jEgIbF7Fn3dfyKiWqoR1+7KaxjwHC46xVUQWxYnJ7zFfr6E6DUkoYVz++uRp31p1YM1OzEkYorXtBoj2yBXpH1zX7vFzQYDZcs1zxLv8bJittef/oG6vRrfdiUhNIAACAASURBVK9v5grzH5MaguEtrkXTH08i97azOK+22nf/QPQ9MvZI1DWPobK7wrijOG/WoTxd+gVfZO0drK8Wfr2bIiNV4b7wd2sddfzFnT6UMS1FsXOhPWjKJj9SbC8sL4F3noZfnx+oT/3xJPQNJwUbiMmCWej7LmPmDQ8wMLGcL18cHZteoZfMoXXRG21DL52L/supsGROdMGIsXDrf1F5BdHyH2ejz9nLX2f7HgtzvoT1RdAlF3X2n1Bjj4iW7ff/7N13eBtVugbw9xs1y73EJY6dnpBeSAiEFEgIEFoKJIHQy3KpCT0ssMCyF7gsnSV0WOrSwtJZem8LJNRU0km105zYjps05/6huGqONJLl/v6eJ0+kc86c+WxLo5E08850dOqpgJutkz0eSTsXV93TCxX7AjznTBRkhrngUbFFuN2STdbbj5Hd9b993Xq22/gOslATnjZ1mOBvU/VBm0RtidqyLrANXvlL5Asfejxk4oyY11RtYG6kwWglcFT5LPt2aQKJ6tIFHRkCxIcIG1q9TWFUj9b4KkCtyocv2B9bVQms+hUYcEDT1RNjLy80ceaTSvv+sFqU547UM2mAoH/nQOCylcteUrjhDYUnzjAwY0T0K1Tz59WGolVb8h3MHz8HMM5yGYcBpGreQu2tBCp9Cm5n/Zp8mo1P9Ud3XdOtg9asxDXyiJB5kwW3vxebYLuyKgajERERERERERERtUXhQoSIiFpKThMEoyVqTkr3w4dyswxeR/hj56wsKf0xquUa4jaZiIiIiIhixSNt+2CuFaW/tqpgNFP5sXzvzxEtk+RIaaJqiNoPnqVDREREREREAUZtWIsJgU9clsPc+4YpXxXww0fa6dSTN9tf99O32homd70NGXOs/XmpzZEzrol+4YkzgO79rfsmnwZ5axNk+Pjo52/tDE3gUt1gNH8VLt1xP5L9waGFTkPhtQsN7LrgZ/y8ZiR+XjMSa1f2weI1wwOhaBbUZUfBPPdgqBU/AQAyEgU3DFpuObbg9zwUdToLjwz9JuyPckfBNSHDhOScGyFvbgCS08POFdbq36DuvDioWfl8UNefFHUomvx7NYzzb2mSIKzOqYJD+uj7E9wK8ZkZ9dryMyL7GNCAiXhVZtm31/CGn2D9iojWt3qbdfugXMDjqn00qF3boG46DYgkFK1bP8g7WyD/KYBx64JAKNo+xp9uxMNbL7Z8TkRixuYnoJZ8ByxbaD3AMIApf2rUOprL4C6RB0Vkdw79ZYy6aw7U3mLb86mt62MTilbt9UfRY0Y8/rfvotjN2YABi/CvdcuabH3RUNu3wHz4L1CnD68NRQOAX7+GmtoV5rxpMG85x34oGgC55lHIq2sgr62FvLkRMqP+9jQtxLGgc3PuQYVZu428/5NAYEkoDcM1lVJYoglAGRTiONDMROv2bTYepoWaMVlhQt2I2hJ1x4XRhaJ5EyB/ujH8uEaYOiyy16kEVYo0v3WSWoUPKKsMvd3R9RoGYBiCRI91/ymPxyZEiKiepd+3dAW2/bFDYfZj4UPRAEBikYwG4N25od/zFJcDsx4x8cqi6J6flZv/wEMbBuL03Cfw105/wSZnbk2f/2f9+1xD9MFoALDb4m2X3zpXFs6aYDQ7FQd4Q4Q42nHe+NiFPJZVxmwqIiIiIiIiIiIiakaDE0e2dAlERJay3V2Q4cq2PT7P0x2pzoyQYxId+gNASv17bK+rrnKzDEW+HVEt29AgbpOJiIiIiChGescPaOkSGmWvaeOq6M1oR1UhfMr6Ys46/eKHNlE1RO0Hg9GIiIiIiIgooE6oUqXoz5p0OwFVVho4Ub7Y+gRzAMCPn8WwOEBufgky6vCYzkmtj/QZGgg4i2bZhGTIA58AZ1wLZHQONB54BOQvT0KufQzidMaw0lbI0HzM468TjOarwvCKX/DF+sNw0c6HMHbvVzh47zc4q+hpfHRGAaYOEyQPPwCDhuVhUMVS5Ps2hQwoAwAsXwT1p4OgPn8d5oPXYN7z++OFjafi+D2v4dDSz3DZjnux9fd8ZPh3Ah+9hHNenIS3/5iqnW7BxtmYUvK2fn0OB3D06ZC0rNgFb/z3/UDgllJQfj+UUsDPnwPbNkU1nVz3BCQr8qtRRuLEA/R/mdJKgfzze+CUK4FDjwdOuxopT3yM5Agu5iJQ8Jp7reeXhNo7Ls3rxd5iqFL7B4Jt0ryc9Mps0PDpK0BlheVYHZk1B5KcXi8QraZvyMEYNG4wvlo3AeftegzH73kNtxf8GYUr7F9ZM82/E5Peuwzq/BDBiwcfA0lKjajuljJ7VBTBaGddBHgTQo5RM/oE9h8AKNMMhA/6fFBm/dQHZZpQM/tGXIMd17wxDgkob5K5LYPRfvwssD1pBdT65VBnjgD+dYd+0LfvAu89Z3/S7K6B114RSKdcy9fZ9NAPi4jtafDnK9gDFFlvqjAwV/9Y7pRo3be9BGH/ZoWaTVsmg9GonVB/rAB++Nje4NmXA0edDgwdB0w9F/LEd5Bu/Zq0vkP6RvY6lWiWIl0TjAYAO0sDz/tKn/Vz39SEE1VX0TCwsa69Fa3jNYBaJ1X3fZrdZdpQMNprPys0925Q1wzB8Pzw42Y9YuLlhSaqfAqmaa9IpRSm/aMKc3LuxfMps3Fz5rUY3f0LrHN1BQD4fvxSu6zDAFJDZEtHEozm2Pe2Pzu5NiQtHK/1dQ9s69FJcPes2ISjldkIyiMiIiIiIiIiIqLWpbd3IPZPGtPSZRARWTLEwAmZZ8Ep4Y8NdYsH0zLPCHvRnkRH8DFm1UqiDEYrrIzuOMSGBiWMxKCEETGZi4iIiIiIqHtcXxyUPLGly4hauWlx8F0L2hrhe79JadPQyW0/7Juoo2rnZwQTERERERGRbY7at4ihgtFc914E9dtT9cOWmtqQMZBDpjXf+qhFyfVPQX3ySnTLJqcHwrJiFZjVltQJN6zHrPNc9QeuPDGoYinuK7ii3jDpubL29vm3QH33QUSrV385seb2zOJXMbP4Ve3YyaUfYteKLByf9xI+TZgAAEj37cATW87HcSXvhFyPXPVQbejYlHOBuy+JqE4dde+lwOL/AoUbgbzewMZV0U106jzI5FNjUlMoJ+wvuOBf1ifxOw1AUjIg599Sr71ruh+LN9ubv5NvBxLMUsu+UiO+9k5ON2DDSstxKNwE9NAfKFbXxl3WP0uXtNoD0dQvX0Hdc6mt+eo57pyQ3TLvIQz4KB0PbK3/WOpXsRzLPeHDXaYXvwk3Qp/hL9c/Gb7OVuKYwcClkwT3fmQ/ySIn3QV5axPUqUOBreutBxXvAl55ACqvN9QNs+v33fYqZMwxgdvvPhtl5fYsXTkI04Z9hZ9Kc2I6r2iSP9T4OOCCW4HZl4c9sLIpqefvBnbH5sqzNQYeGHZIUlwgwEMX7hGprbsDwSTVv8s/durH7hfiO0JdiJnPDISTpMZb95umwnbNhaWyklru70sUK6q4COqUIbbHy7FnQbo2TZilTu/MwL6Oz+Z2JdEsgdfUh2J+vFzh8S8VvloVCHO8dbrg3HFSs53RvRoaNp7y20qAbh57dVIHtGNL5Mss+S72dTSRddvtjYv17tErFxjodW34DcRJjypUP8P/foLgyiMk5L7aJ8uB93Z2r9e22ZWL+9Ln4J6Cq+DfvRPQ7D84DCAlRDCaVchruGA0hyHo3glYVaift5pX/xGfbX2zBfoton3lDEYjIiIiIiIiIiKyLdfTDaNTDmux9TvFhR5xfTEiaRxcRiOvwEBE1ISGJR2Eea478WvJd9jhs/7yJNOVg6GJB6GzJ/xVduKMeBhwwETwMdLRBqPpTo53ihMHJB8Sdnm3eNDT2w/7J42BIZrjRImIiIiIiCJkiIFTcy7G0MQD8XvZb60uaKza1oqNWFu+Iqi9zK+5wnoL0YVie414DEsaXXM/3khEv4ShGBA/vLlKI2rTGIxGREREREREAXVClSpEf/a2e9m3zRuKBgSF+1D7Jk4X1OijgG/ftb/Q4Sc1XUFthS4YTdU5o9oX4ixkR+1BjNJ7CNT4qcAXb8SouGBJZgk++OMYLIwbgd1GMkaW/4hUc3fIZeTNDZC0rNr7Dgfw/GKokwc1vqC6YXwRhqLJdf8EPHHAfsMhuT0bX4sNnZIEo7oD368L7jtuqPUy+emwHYw2oGIpEpUuGC2x9k5WXuD3ZRUKtW0j0KO/rfVt3GXdnpcW+F9t3wJ12VG25qpLnlwYNoxKvAnA1Q9D/f38eu0X7noEc3PuCbuOmXvCBDl27QuJ16QwtUKGIbh7lmDORIWhN5koqQi/THYyIB4v8PKKQBCYhnr0euv2Px8P/OmvwOzLoZ64KbrCAVuhhl18m/H1wv2wsM+JWOvqjp15w3HZhsgfWw3pni8AoB66NrDtOuq0Rq/HLmWagdfRlb9A/fIlsPCT2K7A4YDMuCjsMBFBWjy0YWKRqvABt/5H4aIJQGq8YIMmGC3OpQ8/A0L3/bFTH4xWVKYPY8pqO09zameUUsCvXwOrfg1sB0cdHnUQY92g27DcHqBLr6jW0xgup6BPNrDMZqZUgrkXKSH2Mc98snYfZmcpcP5zCllJgmn7jjUwNTlAdn7Feyvt1UgdVIRB1ACAzWuh9ha3iX1Lu6/9iTEOD+zRSfDgKYILNSHSVq7+t8KjXyicNKr+EzvVC0zsF9jfmPag9Q7AW4nHBILRNq8DelvP7zACYbEi1m+brILRdPsb1cFoADAo12YwWgzOV3TH6PyaMgajERERERERERER2TYgYTgGJPDkSCIiO/LiuiMvrntM5hIRJDqSsMdfFNRX4i+Oas4CzcnxWa4uOC1nTlRzEhERERERxYIhBoYmHYihSeEvmt5Svi760DIYrdxsXcFoWys3WrZ3j+vL935EjWCEH0JEREREREQdgqP2LMdKcWuHeUwbCSkxJHe8ARk8OvxAaldkUGR/cxk3tYkqaUMcmjOV6wYZhgo1dNTPz5e/PAnMvDgGhekJgAPKF2HS3k9Dh6IdfUZQKFrNHPl9II9/23RFhiHn3AiZfApkwgnNFopWbd5k64/2pgy1TurIS7MfkjKgcjmSNAdyFdcNRouLB9KyrSdZv9zWupRS2BAmGA1vPwlURZYuIhfdBuk92N7gQ6YFAl7quHDXI2EX61a5HhNKPw89aMhYezW0Mj06CZ44w97Hx9nJgf9FBHLezVGtTz3+V6jDkoFt1gcChjT1XMj7OyDPL4bMuSPscDeqcPDK53DK0psx54MTULw8HZfvuBc9vNFd1TXRX4zB5YtDjlHvPB3V3NFQPh/UvKlQfz4+EDQX61C0YeMhd75le/8sNzW2q7/+DYWuV5v4YZ3Chl3WoSd5aQgZDJWfBrg0L5vLtuiDVLaGeKliMBq1BKUU1E2nQ118GNS9l0FdeRzUjadAhQrD1c21fQvw42f2Fzj4mEBIbQsY3cv+Pk2iWQKPqkS8qQ+wbGj+p7WJRKYmnMiwUUJp8751pjZGhQoCN0Lsg62zt4/d0gr32AsmG6cJE2uM88YLHjtdkJNsf5nV24Bb3lH1/l31isKIm01tKBoArHN3R4W4Yfr1P6/DCIQPp3it+4ssLrLp16zSWeehMbCLvW1hXAyC0bz6jwkjUsbASCIiIiIiIiIiIiIiagMSHNZfNJX6ozu2qEBzcnyOp0tU8xEREREREXUkXof1Vc/LWlkwmi4UO9vN935EjcFgNCIiIiIiIgowak9qrwgRjOZWzXcWo7y0HHLQ5GZbH7UiE0+IbPzYY5umjrZENB/zmHXC0EKFZDjrny0t3gQYc+8KhI4lpsSgwOgZ1zxqGYpWTfbbH3L1w81Y0T79RgAnX9H8691n+nDglAPrnwx/5EBg5gjrE+Tz0+3Nm+IvQrJZjCSzxLK/2KiT/uN0Abk9LMepr962tb7NRfrgkPy4Eph3XBgId4qEyw1MOdf2cElKg1wdHIS2dmUf9Khca7lMvFmKB7fOgRMhAgcByCFtN7hxkI3vX1K8QIKnzmNu5sVAVn7TFVWXNwFyz7swrpwPiU8MBLPNmguZe2dk06hy3F54LVb+mIM3p68JOfaGlLeQ5qndlooy8diWC+CCL/RK1i2LqKZoqYpyqKn5wHcfxH7yw2dDviiHcf+HkJGH2V4sPy38mEiVVACzHzVx+cvWISTh1ulY9TP6YINl37It+uVWFFi3iwBZEYSvEMXMxy8H/tX16b+hHv9r5HNtDr39qycrD3LODZGvI0Z0+zoNiTLhVYHEoTSLq3nrfLI8EDoHALqoo+pgtNMO0tfy1SqF6Q/4MfQmP2Y/amKTJsyROqjVv2m75NZXAgHEVtYubaKCGqe0QuHSl0z0u96P7n/240Mbuz5ZScCdM2N/uIKI4JyxBjbf6cADJ9sPUozW7+4+8Is+KLJ6e5GqC0bbG7xt0AWjOeoGo3W2V1+8u/G/g+H5sQlYK4s8t5OIiIiIiIiIiIiIiKjZJTqsr45XEnUw2mbLdp4cT0REREREFF6cYX08ZblZVnO8b2uwlcFoRE3C2dIFEBERERERUStRJxgt1b8bNxXehEpxoyKnN6oOnYXKRV+iYt0qJJvFzVPP4bMhmrAdav8kr7c2hCBo7CurIC59mF+HYWhOxK4bjOYPEdzjsP6YSPbbH3hxGfDhi1A/fQ588UYjimxCk08F/n5+069n2Hhgv+GQfiOACTMgDv0J8E1NRPDM2cC54wT/XaPQK1MwbTjgMDTBaDbDiaYVvwUASNAEo5UYCbV3HE5g5ERg8bfBA5cthFIKIqFPxF8aIoRov/tnAcs+DVtzkMNnQ+ITI1pEjpgNDDgA6tWHgFceAJRCvm8TFq4djVeTpmGZZz8oBH6WLr7NOK74HfSqsg5Nq9F/JHDA4ZHX30r0zgTcTqAyxKZjRLf698XjBV5aBjUhst+/HXLjM4DhgPr9Z0h6FjD2OOt9haNOB164B9hm/cVSKEffOgizjt+Kl5cFp1wNK/8F1y47GRc6UvFS8kzsFS+mF7+B3lU2woR2b4eqKId44iKuKRTlqwqErlWUAf0PgDpvLLBnZ0zXAQDyt+eBQ48P+3y2kpcu0EcLRW/Ndn1ffrq+TvXHCqhLjkD/1AexNDk4xG/lH3sBWD9+l2y2/jl6Zih4ln4NlZEDdOkV1e+JKBrq9cesO/51J9SkkyC9B9ufrFKTUgoAh82CzL4cWPgxkJIBjDkWkpYZWbExdJDNt4kJZimqn43p/p3Y5LJ/YMH8TxXmTBSYms1X9dP85AMFz/7XelDd8MbfNil8ukJh1S0GEuO4jejoVFkpsNl6P1Iuug0y5hio7v2B5YuCl123FK3tEaSUwoyHTby/JPzYFC9w2eGC3BRgylBBVnLT/jQXHGoAMHHR80138NNST39k+wq1/dVhZqnxAHYE9+8uC27za8qtG4zWLcPePlZiDHY/4z2C6cMFL3wfvL6DewHfrLY3T1nzXWuBiIiIiIiIiIiIiIgoaokO66vjlfojP37aVCYKtcFoeRHPR0RERERE1NF4NcFoCiYqVQU8EttzNKJR6i9GiX+3ZV8O3/sRNQqD0YiIiIiIiAgAIA5HzemU6eYuXLfj74E7XcbCOPEkmBteBr59vPnqufTuZlsXtU5y51tQVx4Xflx2cKhJh6QL6DLN2tu+Kv3yTpe2S1IygBkXQWZcFJjy1KHA+uXRVNlkxOmCOuAw4IePm24dj/8Xst/wJps/GiKC8X2B8X3DBwrk2wwnenDrHABAkiYYrdioc0VMhxNywCSop24JHlhWApQUAUmhE9mWbrGuqbO3HGk/RhiK5nQBE06AXHpPZMvtI3m9IXPvAubeBfXT51Bzj0CKuQdn7X4muvlufKZFw/May+UU5KcBq7fpx4zqEfzYE6cLmPcQ1O0XxK4Ytwc48AhIUhpk4oyQQyUxBbj5Jag7LwZW/hzxqp54rTuSsu/CE2ln1bT1rFyD5zedBif86OTfgYt2PRzxvNixGcjtGflyGmrTaqgbTwVW/BizOa3Ihf8HmXBC1MvbDWWMpcEhso/Ue/8CSvega8Iflv3b1m0B0Meyb6n1caoYuPEDqIunB+4cPhu46gGIN8F6MFGMqJLdwC9f6vvPGgl8ttf+65BPn1Yjl98HSU4HWsl+UEp84PVpw67Q4xJVac3tbF8BfoP9oLjb3lWYMxHQXUiuOof2yIH2Q50Ki4EnvwkErlEHt26Zvm/clMD/mmC0kMu2kG/XwFYoGgA8e46BY4c073PggkMNxLtNnPVU04SjLfYMxPi9X2n7Hft+3FSvdX+RRTCazx/cVncuAMhPt1dfUoyO+XrsNIHPD7zxi4JSwDGDgafPNpAUJ/jnVyZuekthwy6gZyd9gG1ZlQJaXbQfERERERERERERERFRfQmaYLQS/56I59rl24YqZf19fLbb/sW9iIiIiIiIOqo4TTAaAJSZe+ExWj4YraByk7Yv28NgNKLGMMIPISIiIiIiog7B0Jww7993NuY2TRJEUxh1eODEe+rYho4NP2b81Kavo63QPYfrBqPtDXHFQof9/Hx57BsgM8RBOaOPgnxRDvlwF+SWl/XjTrkS8vp6yAs2z6IPV9eZ1wEezdnmjZ37+cWtLhQtUr0zw48ZXP4bPPsOxErUBKOVGnXCfhxOIKerfsKCDWHXubnIur3vnsgCreSaxyDvbYdxw9MxCSSS4YcAh0yLbuFOuZAPdkK69Gp0HS0tKyl0/4EWwWgAgKNOA/bbP3aFnHQZJEzIXl0y4ADI499C3t8B9BkW0aq8qhyPbL0IxcvTUfB7HnYv74QVqwehb+WqSKuuL8b7Uuq0YbELRcvtYd0++ijgpMsaNXXXFtilmz48RODGL4HgkiyfdeLftj2mZTsArN1uHajSv+TX2jsfvgC8/kj4Iokaa6ONbdIbj9qfr7LCuj0huVW+NxuYG35MglkbjJbv0x9wYGV7CVDlUzA1OUpSZzOTF0EA5NeNfCmhdqJwo3W72wN0DrwmS/f+1mPWtr5gtFcW2Q8cy0xswkJCOONgA29e3DSHRizxDIAf+hBKx77VpuiC0fYGt/k1uyOOOj9C55T693WSPOHH2BHvEbx0noFd9xrYcY+BVy90ICkusDE8e6yB1bcaKL7fwKpbHejZyXqOshBZ7URERERERERERERERK1FojYYLcTxlxpbQ50cz2A0IiIiIiKisLwhgtHK/RYH4LUAXTCaR+KQ4miBK80TtSMMRiMiIiIiIqIAbTCaL/D/1j+ar5Zdhc23Lmq1JC4eMMJ8dJFmI+mpgxDd78oMhBsqXxXUlcdpFhaIQ38id9BwbwLkuV+B2ZfXNu63P3DIdMjVD0NuexUiAomLh4yfCkw/L3gSjxcy5RxIRg4kr7ftdYesa8gYyEOfAydcCBxwGDBrbkzmxZnXQfL7xGauFtQ1Q5AQ5qT4gRVLa24naYLRio06SVkOF5DRGdA9fmwEo+3SfA+RVaYJjLDiTQQmnADxxPZKL/LXfwF5ocPN5KoHIbe9Chx1OnDQkcAZ10Ke+Skm4WytQfhgNOt2cbog8z+GnHtTIFxr/0Nr/0UiNRNy47OQP/01suUQ2C5KfCLk5MvDD7bgVeXI8O9EgtqLEDFbtY45C3Lh/+n7G7EvpSrKoSrKoLZvgdq8FuaD1wBV1leTjYY8uRAy905g3JTA32jcFMgld0FufQUitn56rX45jVs+Ugd0B3pmhlhnSSCNMctvHYxW6Nc/6Dfssm7vXrW+3n31wQshayQKRSkF5fdDVVUGnvdlpVCle6CKd0Ht3gG1qxBq+xZg9eLwc331tv0V67Yprhgl6sTYwC7hty2JnbNrbudVRbBfAaDKD6wshDYYzaiz+gS3/XlfXmg/QIrasSLr1yBk5NS+r+sxwHpMwR9Qm9c0TV1R+na1/cd1lvU5JM3i2CGCH64zMLpn/fZD+wIT+wX+Degc+bxLPf3hD3HYRXV4WWq89XZrt1UwmuZX6qzztsthiK1gxsQYXwzT6xYkxgX/LE6HIMEj+8ZYL1vOYDQiIiIiIiIiIiIiImoDEh3Wx46U+vdEPJfu5PgUZzrijKa5CCwREREREVF7EucIEYxmto5gtK2V1scpZ3vyGn0+BlFH52zpAoiIiIiIiKiVCBGqpPx+YOPK5qtlb+RXVaP2SS65G+qeS/UDUrOar5jWThtuGAhGw6JP9cs6Iv+ISOITAwFAoUKAqsdecg9UaTHwwfOBhoRkyKX3QnJ7hl4wCtJnKOTSe2rum288BlSURT/hlHMgZ/0lBpW1Dl9cZWDEzaa2f0DFsprbiZpgtBKjTuCX0wFxOKA6dQEKLEKfCm0Eo5Van/Wf7tckEDXk9kBufrFJgsjE6QSe/SUQKmj1HHK6gEOmQVIyIGOOifn6W4NOSQLA+m+UkQDkpOi/pJG4eOD0P2tDxVRxEdT1J+m3T937w3j258gKtnLYLGDJd8ArDzR+rhDksBmQAyZBvf88sPq3oH71/nOQI0+OaE5VvAvq3strt59NoecgSHwiMHMOZOacmE/fvzMgAqhmygI68YBwXxwG+jN91qE024x0+HduhyO9U732Kp/Clt3WMwYFLq36FUqpNvslplIqsP+gzEDAqtVtvz9wv+5t06zzf/Vtf/jbNfOb9tcVtN7adSvb6zVD/4wxq9HU/J40t2P5ZPnhI/tjtcFoEaR+NaOBueHHZGQmQi65C2r+1ciPMBgNAH7eoLR/jrrBaPER/or2VijEe9rm9oFiZJcmGK3u+9s+Q/XLf/YacPIVsa2pEbZF8BFOZmLT1WHHiG6Cr/8cOhT834sUzv5nJYqr7L1PXu3qiRJD/4NVB6OlaI7NKioL3tD4NW/ZHA02HT0ygPU7QteX1AL5lnEu6/ay2OX6EhERERERERERERERNZkEh/XVfkqiCUarsA5Gy3F3iXguIiIiIiKijsgtHggEyuK8lrJWEoymC8Xmez+igfUG1wAAIABJREFUxmMwGhEREREREQXogpFMP7BlLVBZYdktVz0I9B8JdO8PNbUrUGwzyCYEmfKnRs9B7cSxZwMhgtEkI6cZi2nldMFoyoRavxzqqin6ZZ2as5ZjRBwOyPVPQp1+NbB7B9CtHyQlo0nXWWP25cBTt0S+XL8RkL8+C+nSK/Y1taDhXQXHDwde/cm6f6CNYLRio84VMatfO7LyLIPR1IL5wJRzIQ59+MDOnWUAgq9+meov0i6DscdCpp4LeLxAv5FNEopWTZwuyL3vwbx+NvDZq/U7T7u6+R7LLSTL+gKoAICMRgZbSFIqcPd/gPeeg/q/c+t3pmZC/vl941ZQvR6RQNDmzIuBpT8ApXuAynKgx0Coh64Fftc8ISLVd3jg/279LIPR8MPHUCW7IYkptqdU913R6FA0ueddwB0H9BsBdeMpwFdv1e+fFfswtLoSPIIeGcCa7U26mhrnjw8TNlQS2LZk+q0L8okLRSt+R8bo+sFom3fr86ryfcGBS+rJm4EeA4E/VkCVFEUfzBUUvKXChJJZ3TbtBXJV326uFDtqXaqs3+819X5itAbl6oM7q3VNF8iMi4EJM9Dtk3XAh5Gt461fAFOzirq5h1sjPPb97d8UZo1kMFpHpnYVWnekZdbclMwuUP1GAMsXBS//0cuQVhSMVqzZfDTkdQEJLRDSZYcyTeDrt6FW/Ijpe0tw6OJn8YN3BPYYgZNeulX9gQSzFEN6/Ri8rBhY6umvnbs6SDE1+C0PAGC3RY63z2891tHgmgb9cwWf/R56W5gU1/zbG68uGK2qeesgIiIiIiIiIiIiIiKKRqLTOhit1F8MU5kwRHMhagsFVdYnx2fx5HgiIiIiIiJbDDEQZ3gtQ9DKW3kwWrY7r5krIWp/GIxGREREREREAbrQGr8fWL9Cv9zhJ9UE0qjJpwAL5je+llFHNH4OahfE7QEe/Rrqf8ZYDzjoyOYtqDUzNAfbLPkO6syRrSLkRLr1a/51jj4KyioY7ZgzgXee0i933s3tLhSt2v+MN/DqT2ZQe5IqwcSDsyF9b4eaP08bjFZhxKEKTrjgqw1GS8+2XtmGlVCXTgbufAviiQvqVt+9j50rsgHP4KC+dP9Oyyll3kPAMWdCdI/5JiI3PA0MHg31n2cC9489E5h2XrPW0BKyrI/zAwCkxyCPTgwDOPp0oHP3QJBU0TZgwIGQc66HuNyNX0HddeX2BHJ71m+c/zHU0dmAr5EpDRmda0LypHs/fVTPe88CMy62NaXavBZ4/1+NKkv+vRqSVefLtJv+BfXYDcC37wEpGZDjzoFMPqVR67BjUJfmCUb74FID8R59+IeqqgQKAyFmWT5NKA2ArSvXI2P0wfXa/rDeJAEA8quCg9Hw5M1hIpuIWhlfpXW7u3WmGA3JA5LigOJy/Zi8tMD/kpGDcdOygQ+D939CeetXhQGdrfuMOpuaLbsjmhbvLQZmjYxsGWpnirZZt6dl1b9/4JGWwWhY+TPUt+9CRh8V+9qisMci2MtKZlIgsLa1UaYJde0M4Ot3atrSABxR+nG9cX4YiDPLUG4EJ5z9FjdIO391mFlqvHV/kcVxWX7NTkTDYDTdNqquxBbYjDMYjYiIiIiIiIiIiIiI2rJEh/UBUyZMlJt7Ee+wfzXJggqLY0oA5PDkeCIiIiIiItvijHhNMJrNAxibkF/5sK1yq2VfNkOxiRqtec8eJCIiIiIiotbL0ASjmX5gZ4F1X2aXmlA0AJCz/gL0HNi4Ok6+AuilP6GUOh7pPxJy8e3B7efeBOncvfkLaq1ChUSFC/wpb/krZMi5f7PumH154ybuPxI44cL6bUPGQObcAfQeYr1MaiYwbHzj1tuKHTFQcM7Y+oEETgO476wkpFz/QE3IWaqpT/nY7uwUuOHYd8Z7WqZ+hT9/Abz7TL0mVVYK8+65UFdOwU4j1XKxdP+uoDZ5bxvkuLObPRQNAMTlhsyaC+OphTCeWgiZcTHEqTnjvx3JTtL3pWnCHaIhw8fD+McHMJ75CcafH4ZkNs8XQOJNgHy4CxgxIbjTmwi5+x1g4szwE+03vPZ232HaYerTV23VpYqLoE5sRJhkXm/Ia2vrh6IhEDhqXPR3GM/9AuOBT5olFA0ABuRGH4KyfNUgHFnyQdhx1x0jmDQgzHpeuKfmZra/EKKsQ5JWrC4ObttqnVCS4i9CirknbH1ELcW88VSoBfdDLfkOqrJCP1DX54xtSGWsuJ2CqUNDP+dz6+xixLkE8yZHti3aWwksXG/d15hsp182MDaxw9ulCUZLrb9PLSE+G1F3XATVCsKvK6oUKnz2xmaF2K9sSWr+VfVC0XQcMNGncpVl3yanft81qmA0TY6js8HboMFdwm+MkoLzqZucV/PSUabJ4CQiIiIiIiIiIiIiImpNEh36L7ZK/PaPESnz78Vui2PgAJ4cT0REREREFIk4w/oAvDJ/aTNXEmxb5VaY8Fv25fC9H1GjOVu6ACIiIiIiImolQgWjFW237kvLqndXktKAR78BvnwDat3yQBhH0Xaox26wXFz+/EggbOT7D4FNq4GhY4EBoyCNOcuc2iU58RJg/0OBRZ8Apgnsfyik34iWLqt10T2H24pDpwNP3QxU1TlT2uGATJzRqGlFBLjkbmDiDGDxf4G83sDooyAuN/DYN1ATgq/eKKdfDXG274/NHj1NMHuU4NvVCgke4PABgoHVwUUSONs+21eoXb7AkYXOvq2AY9/vqcHrQUPqrjko3+8g/OIcgErlwMF3Toax7HsAwC6bwWhyyd2QBOurcVLTyU8XANahG0Y7ebkWpwu46x3gm3egVv4C+KognToDBx8NyekGeOKhPlkQeo4p59TeOfBI/cCl30P5qkKG6imloK45IdIfI+CIkyEHTALGT4XE2786bVMbmBvdcglmCXpXrcHrG2bgxZRZOCv38aAx+2UDT55l4KCeoR+QSimofz9Qcz9OVaBX1RqscvcOGrtkTQmmK1Vvn3TpFut5+1WssPnTELWQTxbUbsNcbqjeQ4EBB0AGjAIGjgJyewYe67ogXben+WqN0NVHCZ77Th8M1T2j/nbh/6YL3vxZYXmDi7J1rtqCCnFjpzPD9rrrvgaeOFLw0kL7AVVLtwA+v4LT0U5eSClyhRssmyW1U/2GHgP0c2zbBKxbDvToH8PCIldcbn9sZisLRlO7dwAfvgAsmG97mWxfAX7D4KD2Lc4c7TLVT/VUr/V+9c4IgtEcDYLRDuwBpHiB3SEuetkiwWgu65+1LExmOxERERERERERERERUWuQ4NAfo1bi34Ms2DsQpqByk7aPwWhERERERET2eTXBaOVmiIPnmonuvZ/AQKarczNXQ9T+tO8zPImIiIiIiMg+hz4YTRVts+5reNIuAPHEAZNORPUp3mrreuCfNwH+Bsn3Q8dBjjkzcPuQaVGVTB2L9BkK9Bna0mW0XrrncBshXfsCt78OdddcYOMqoEtPyIW3xSQAT0SAIWMC/+q2O13Av36DunsusOhTIC4eOPES4ISLGr3O1k5EMLEfMLGfRSCHETjbvpN/OwzlhynBj60CZxZQAWBfgJykZWqiswKWuPvjpNsMLPMIABP9Kh7G664Z6Fq1ASWaK2ymmg2ulskwxBaRn6bvK6lovjqamjgcwLgpkHFTgvuGHAzc+AzUP64EdjUIDEzLgpx9PWTMsbXjnS7gb89D3XBy8Ip8VYFtXHd9iIl6+Drgl68i/xnu+Q9k5GERL9ccBuXqA/ZCeX/9MQAAF3w4bffz6F25Cud2fhjLPf2Q49uKm7t9ibNvPMneZGuWADsL6jUNqFhmHYxWmQus/g3oPaSmbdmq3QCCD3ztX8lgNGpDqiqBZT8Ay36A+veDgbaUTlD9RwKlmqtaO93NV1+EBuYK/n2BgRMeCk4QSvAAB/eq3yYi+OxKA5e+pPDiDwoO5cM5RU/h9oJrMDfnbjyTeprtdSfU+bVM7A+8tNB+3RU+YPFmYFi+/WWo/VBlpcDmtdaduT3q38/vC2R0BnZo0jkLN7R4MNqeCILRundqPWGA6ss3oW4+G9hbHNFymX7rCwdsdWZrl6kOM8vQZNaWVgB7KxTiPbW/H5/NYDSPSzB1mOCZb/X7WS0SjKZ56SivtG4nIiIiIiIiIiIiIiJqTTwSB6e44FPBV30p8Wu+W7egOzneJW6kOYOPvyYiIiIiIiJrcQ7rYLQy0+LKpM1M996vkysLLqP1HodN1FYwGI2IiIiIiIgCDE2okt8PFFmf+InUzLDTSk43qOMvABbMr210uSGX3xdFkUSkpXsOtyEy8jDIC0ug9hZD4q3DsmK+zq59gXveDWzrRALhSB2dBM62d8BEpn87CixO8q9uE0fg48U/XN1wZ/Zd2OLMwaTST3DG7mfhUbVnvc/JuQfLPLWhDcs9/dCv92IMLF+iLaOTb0ftHcMAeg5s1I9F0clN1feVtqNgtHBk0omQSSdCVVYALncg4Gz3DiAjJxC+2NCYYwOBlQ2DYQFg7VJtMJrasxN4/q7I62vFoWgAsF9O5MvEmWUYUf5TvbbRZd9j8Zr9scdIQpJZDMmYDMBmMNrKX4Ka+lcsx5tJxwW1b3LlBsbXCUZb/8ceWAWj7VfBYLSoGEZg36Xm/3C3Q4x3OAKvXfVuG9btjn3LWt42bNcjoWqzrMeqBqm9XW9+Oz+nUX+uz16FeuDP0f0tdm8H/vuevt/Vur+Qnz5c8OU8A+Nur58i9OfJgmRv8PY5K1nw/LmCp89SwI9fw3HFXADA4IrFEa03sU7Q0EzHlzgPYyNafv//NXF4/8Cfst4/ARyGBLcHjQn8c4bptxxTr1+Cx0jwnKHnsBhj0W8IrF8zO5r1ywGlCbFqsL8rDgdw/i1Qt5xtPb5wY4yLi1xxBMFog3Kbrg47VMluqBfuBp65LfKFDz0exv++gKxnSgGL/NpQwWjGvod9Voi3uNtKgG6e2vt+TTCa8f6zUD3GQXJ71rTNGBE6GC0jQb/ephLnsm4vr4o8KJeIiIiIiIiIiIiIiKi5iQgSHckoqnv82j6lfvsX3tGdHJ/tzoUhhmUfERERERERBYszvJbt5a0gGG1rpfWxnFnuLs1cCVH7xGA0IiIiIiIiCtCFKplm4GR5K6n2rlgmc+4EBh4E9fMXgDsOMuMiSOfu0dVJRNba0YEyzRWKVrM+EcDJj8lqGLWPpWxfgXUwmiMrcMPhwrItCqPfm4g96UcAAF5Nno4PEiZhwabZEABrXd3wRcJ4y1UtibMOO3MoH3pXra5tGD+t2R8XFOB06ANMhnfteOEm4t6XWOFyA506hxyn8noD64NDs9SPn0EmnBDcrhTUMfo5tev6x4eQ4dbPsdYiziXYLxtYUWB/mZP2LIALPsu+ZHPfQaYRBMKotcFBjLm+LZZjtzkyodb8B1AKa7cDqVsXY4OvK2DxUtut6g/bNQAADpnWBoK57NyWCNdVf70MR4otNf0CINpgtHBaeTAaAIzpLVhyk4GHPg8E7hwxQHDskNCPMZdTgFEToe59D+rSyRhYsTSidSbVCTBK/uJ53Lf1VVySc3dEc3y4TNfTnMFBzRtSFCo4zSGA09G4foexb4xFwJxhOSbcHHZD6cReaJ0BGL9ug+EZDI+qQO/K1XBiX4iqxwt07hH0O5PJp2iD0dTtF0CO04SmNYJSCjtKgPQEwDBCP5f2RBKM1qXltv2qohzqf8YAG1baX+jAI4CEZMj+hwLHBn7PWZleWD1vCkMEozn27T+EDEYrBrpl1N7XBaM5Fn0MdfolwD+/D4R8Azi8P5DiBXaXBY8f3AVIiW/+37suGK2sqnnrICIiIiIiIiIiIiIiilaiI8kyGK3Ev8f2HLpgNJ4cT0REREREFBmvEW/ZXtYKgtF07/1y+N6PKCZ4xicREREREREF6ILR/D6gyDoYTVJsBqOJAIfNhBw2M9rqiCgch+Y5bMehx8euDmr76oTVZPkKLYcUOKuD0Ry4432FPZX1P2Z8PXkq3is6AkeVfoBfPUMiLqFv5Up4VGXgTr8RkEvuingOip3jhwOv/hTcfupBDDYKqc8wy2A0fPEG1OX/CA6GWvhxZPNn5UOue7zVh6JVG9NHsKIgOEhk1kjBvCMFUx8wsalo39i9X+O2wuvCT2ozGE35qoDng7cjmb5t1tM6M/HmCi/Ov9JEYTEADLAMRQOALvmpkAs+gpozKWwdcs6NkDOvtVUzUUTcnvBjotUGgtEAoH9nwT9Oivx1SUZMAO58EyPnnRHRcklxddb1zlMY6xkc8bo7Ir+pD3yKvdYaMHc40PNwAECqfxeu3f53XL7zH0B2PkT3nm78VOCLN6zXXLABkp0fYb3WlFJ4/CuFy19WKK0A+ncG7j3RwOED9M+tIpvHFCV6gGGxKTMqkYaiyVOLIL0GBbWHCjfTMZZ8C4w4GKnxgcA8n8VzoLC4/n3d88SpfEBFGdTD10FuXQAA8LgE04cLnvom+HF40qiW2V/3MhiNiIiIiIiIiIiIiIjauARHsmV7ZMFo1se15LjzoqqJiIiIiIioo4rTBKOVmxZXFG1GSils1bz3y+Z7P6KY0JzKQ0RERERERB2O7gRc0w/s2Grdl2ovGI2ImoEu3NAGmfY/MSyE2rw6YU3ZfutgtG3OzMANhxMv/mAdBHFc19cxoOfPuKjzfRGXMLBiKZDXC/LMT5BHvoJ0yo14DoqdORMNOBt8kjyyG3Bwr5app62QcVOsO3YWWAZ6qQ9eCD1hfh/IR7shLy6FPPxl4P/9D218oc1k7kRBXIOQjF6ZwPzZgv27CdbcauDbSZ9i8eph+Gz94ejkD77qbpCSIqi9JeHHvfWEZXOm3zoYrciRhuPL/xIUUmIl/+q/QYaNC/xt5n8MuTzENm/YuPATEkVBRICktKaZPCGlaeZtReTAI5Hx7iocVfKe7WUS92XRKTOQXtSvcgUcytcU5VE7VuRIw7zs2/BK0nQgPkTiVojgM/WPK2JWz4dLgfOeDYSiAcCyLcCR95rYsFMf/PbpCnuhcBdNkPqBgs1AlZVCvfYwzCn5wJrFtpeTc/9mGYoGAFlJkf8MxoLAvoGIIMv6/BkUFtf/PVqFpwGAA/7AjS/fhCreVdP+1+MECQ0yMrtnAHMmtFAwmiZTs6yyeesgIiIiIiIiIiIiIiKKVmIjg9FM5Udh1RbLvmw3j4UjIiIiIiKKhFcXjOa3eXXXJlLi340ys9SyL8fdpZmrIWqfGIxGREREREREAQ6ndXtlBbDD+st5ZPEDGqJWI8pgNLnt35ARE2JcDLVpRu1Hhhn+nZZDdhmB8JVFe3NQXqWf6ndPX2x15kRcwgl7XoMcdw6kxwCIwY8wW9oh+wnev9TAsUOAgbmBYIsPLzPgMFomaKHNOGCSvm/dsnp3VUU58N5zIaeTf3wA8cRBuvSCDBwFcWkSJ1qpIXmCL64ycNwQoH9n4Kwxgq+uNtBpX8CIyykY1Xkv+lX+jogeWTaCTtRzd1q2Z/msg9HsEmWiS9eMwG1PHGToWMj084ExxwQPTukEDDywUesjCumwmdoueW0t5MmFkKseBI45E+gxoF4QaigydGyMCmzdJD4Rrx+7yvb4pLh9Nwr+AAB4VCUOKvuuCSqjjuCl5JmAN1HbL2OO1S/8xRswH78pJnU8+bV1yFm3P5vwm8F9pqnwyiJ9MNqBPYCxvYH7Zwtund7MoWjbN0OdPAjq7kuAXdZhz0GS0yFX3A+cNk87pEtq5LU4vn6z5naWJv+usMH5M35tMFqdji/fqrnZNUPw9dUGpg0D9u8KnDFa8OmVBhKbOYyumtdl3V4W4r0jERERERERERERERFRa6ILRiv127jKHoCdVdvgU9ZfjmS786Kui4iIiIiIqCOKM7yW7WVmywajba3cpO3jez+i2NCc9U5EREREREQdji5UqaRIv0xWftPUQkSRiyY8atKJoU+yp45Jah9Laf5dlkN2OgLBaDN/mdwkJUwrfhOIZ2BfazKhn2BCv+gCGDsqSUqF6pQLbN8c3Ll2KdTg0VDz5wFv/TP8XHe9DenU9q8WO7K74I2LQzyO3HH6Pg31+euQQQdZ9/l8UE/cBBRusOzP8jcuGC0nvhIuZ3Dyh5x3C9TKX2vX63JD5j3Y5sLsqG2RU+dB/fd9YOv6+u2X3BXYfnTKBXoPhkw5BwCgSvcAyxcBS76HWvY9sPQHYGdB/UkPmgwcdXpz/QgtznnYdFz46sN4MP38sGNrgtGKa98vP7zlYgzu9VMTVUft2Tp3dyBeH4yG4YeEnuDpW6EGHQg5qP6++derFK551cRXdTL/8tKAw/oJfCbwyXKFHfsuVNglFVi7Xb8K1/kmemcBE/YT3DFDkOwV/HctsNH67QKePFNwxsEtE3CsNq6Cmj0womXk/Fsgp1wZdlx+euT1GDChlIKIIFPzZy5scP6MNhhN+Wtuq08WQI6u3UYPyRO8emHr2F/3anZ5yiqbtw4iIiIiIiIiIiIiIqJoJTisr3hT4ttj2d5QQYiT47Pcbf8YICIiIiIioubkdSRYtpe3cDBaQeVGy/Z4I1EbuE1EkWEwGhEREREREQVEE6qUxeR6olZDF26o4/ZAzrimaWqhts0IH4y2y5GGHY50bCy3/nKhMdau7AMXfIBF2BBRm9Ojv2Uwmlq3DDihd+gA2mp5vYCRhzVBca1QFMFoWPyttks9+b/Ac7dr+9P9O2EIYKrIVwsA+Z2sv2KRHv2BJ78Hfvg48Dc+YBIkt0d0KyGySbLzgad/BH74COqNRyHDDgHGHgvpaR0OJAnJwIgJwIgJEABKqUCo2tIfgN3bgS69gFGHQ0Sa9wdpQZLdFbM6LcWDmkCiuhI9+26U1x5Q0b9yBe7dejkuzbm73tg+FSvx3bqxeDfxSKx094YfDphjpsCnBH7Lf0bNbcsxqO33mwI/IlzexhgTLRNo1VHtFS/g1QejiWEAz/wMdfow7Rh11VTgoyKIJ3BVxFWFCoffY6K8wUXoN+4Cnv42+IUvVChatVWFgXlXFih8cqUDLy+0fgF1O4Gpw5pm26F8VcCiT4GkNKDXoJqft6a/rDTyULSLb4eceImtsZ0SgTgXgn6v2rmVCQGA0j1AYgqykgVA8O9tm+1gNF/tnYWfQO3eAUnJsFdMM/Jq3sqV+6zbiYiIKHoi0gPAMAC5ABIBbAGwHsA3Simbey1ERERERERERNSQNhjNby8YbasmGC3VmYE4w2vZR0RERERERNZ076NaOhhN994v292lQx2DTdSUGIxGREREREREAY4IQ5XikyCJKU1TCxFFLpJgtG79IOffDOnev8nKoTZMaoMw0jXBaDsdafgoYSL8KnahGQMqlmL+lkuQ79NfLZOozenePxCO1dA7T9meQu59LxCI0hFEE4y2dimUUkFfHKrSPcCL94Zc1HHIVAxyA79aX6gprC6aYDQAkOR04LCZ0U1MFCWJTwQOmQY5ZFrky4oAnbsH/nVgY44YjJ5vrsEad8+Q45KqN1cV9Q+ouGjXw6gQD+7JuAS7jWSMLvsvntp8LpLNYpy455XagW/cEuPKY0sBMGHADwd84oRfHPDDEfw/jLD9ftk3R4N+s+a+Ydnvt91fO8aMYZ1166tus65D32+Kvfdoe414IF4fjAYEQjdVn6HAyl/0f7eTBkBeWwsAOPXx4FC0WPnsd+CHdQqvLLIORjtyAJAaH/sDetTKX6Cung5s2/d+oecg4PbXINlda8dM7apZ2oLbA7liPuTo020vIiLISwuExNnhgD9wY1chkJiCTOvzZ1BYXP936dMFo1XPBwB+H/DFG8BxZ9srphnpgtHKKpu3DiIiovZMRGYAuBzAaM2QnSLyEoAblFI2YnCJiIiIiIiIiKiuREeyZXupv9iyvaGCECfHExERERERUWTijHjL9nKzDKYyYUjLnG+he++X485r5kqI2i8GoxEREREREVFAJKFKAJCR0zR1EFF0bIYbykV/B2bN7TghOxS5Oo+NNE0w2i5HGn72DIl6FQ9smYsTil9DwqRpKP7oTcSpciSb9g4aI2pLpPsAWEeG2Fz+7nfqhX20e54ogtFK9wCFG4Hs/PrtX70NVJaHXFTOvA7Tlgp+3RjdXykvjVdxImpvjOPOxj2PzcTxeS/DL/qvUePd+26U1w9GEwBX7LwPl+ycDwf8aKtbCQEQiAYz4VZVaNSLWQdWN2DOLw68knw8zsp9PGhcmcQB8ZrErDpkzh1Qc4/QD9i+GSs+X4SpHw3D7wWNKNyGA2/VJHcBmDmyCULR1i+HOntU/cY1i6HuuRS49RXgg+ehbjnH9nxy6wLIuClR1dItPYJgNLUvyKxoO5DfB1m6YLQ99e/7dcFoyl/vvvpkAaQVBqPFuQRWG46yJgrrIyIi6khEJBHAYwBOCjM0HcAFAI4XkTOUUu83eXFERERERERERO2ILhhtr1kCU/lhhLlIUkGl9VX6eHI8ERERERFR5LyaYDQFhUpVgTjxNnNFAbr3fgzFJoodngFLREREREREAZEGo9k4aZeImpHdq1vsfyhD0Sg0qQ0ySNcEo/nEhe+8oyz7wplS/Bb+p+hxZN72T8Sf/xdk+bdZh6KlZEQ1P1Gr0r1/9MumZgLDD41ZKW2C2xPdcmuX1NxUe3ZCFRdBfbIg9DKnzoP0Hoz9u0Yf3pKfHvWiRNRKicuNY++/Gd+sOyTkOMPYt+2oKLPsd7bhUDSKneqAOTeq4FXlSPUXWY7ba8QD3sTw8w0/BPLQ55Z9CsA33gPR/19NH4oWiscJTBka20e/WvET1KlDrTt/+Ajq9gsiC0X7v1eiDkUDgH6d7f98DgSCzNTrjwKAPhitztshpRRMTRhh9Xw1fvwMatc22/U0F6/bur2ssnnrICIiam9ExAHgJQSHom0D8AGABQB+RP2E0mwAb4jI2GYpkoiIiIiIiIiondAFoyko7PWXhl2+oHKzZXuWO7cKlCbWAAAgAElEQVRRdREREREREXVEcZpgNAAo9+/V9jWlKrMSO6qsr7LKYDSi2OFZsERERERERBTg0py1qBOX0DR1EFF07ISdORxAt35NXwu1bXVC9tJM62A0APgy3vpcumuOEhza13qZY4vfwbPbzofxzhbIQZOBjM5A5+7BAz1e4IBJkVRN1Dr1GhTY9kZj4gkQpzO29bR27rjolluzBMpXBfOOC6GmdYM6Ohv45j/68cedDTnnBgCNCzc7sAdjj4jaI+k9GCMOyMeU4rcs+w/1/1B7RxOMRmQl3rQ++GavkQB49Aft1CWDDoJcdm+9ti+8Y5DXZy3Gd/+00TU21uSBQLI3Nq+Pyu+H+Y8roP50kH5QZQXwzlO255RbF0DGHteougZFcK6KQ+0LMvvgeQBAZpL176awOBCIBgBrt+vncypf/QbTBL5+235BzcTrsm73mYDPr0l9IyIiIjtuA3B0nftVAOYAyFNKHamUmqWUGgFgEIBv64zzAHhdRDo3X6lERERERERERG1bgkN/8egS/56Qy5b5S7FHc0HSHHdeo+oiIiIiIiLqiOIc+mMsyzTHZja1wqrNULA+Hi7Hw/d+RLHCYDQiIiIiIiIKcEYYjOa1d9IuETUTO8E7XXpBPFGGzlDHUSdkL8O/UztMifVHiwf1FHxypQPLT/0Zr285CW9sOB7/+eM4rFvZB6/v/h8kvr8JkhxIIhIRyImXBE8y9VxIHF9nqO2ThGRg2Pjolj3j2hhX0wZEGYym1i4FnrsDePMJoKoy5Fi55WUY8x6COAOJHflpUa0SADC2d/TLElHrJv/7Ii7e+SBcqv42xVB+zNl8J9SaJYGG8hAHUww8sAkrpLYoXukfL2W7Q588UZccfwGQFHgB+yx+HCZ2/xAFzuxG1xcLM0fWBn8ppaC+fhvmw9dBvfM0VMnuQHtFOdTbT8Kc3gPmCb2g3n0Walch1GuPBMZ+/2EgJOzfDwAL5semsKx8yAc7IeOmNHqqQV3sB78ZMGtuq7JSZCdbj6vyA5uKANNUOPUJ03oQAAf8QW3qgxds19NcvCE+Yiyrar46iIiI2hMR6Qmg4QepM5VS85Wq/8ZFKbUUwGGoH46WAeDGpq2SiIiIiIiIiKj9SHRovthB+GC0gspN2r5sd5eoayIiIiIiIuqovIb+/KLyFgpGK6jcbNluwIFOrtZxTCdRe+Bs6QKIiIiIiIiolXB7Ihsfl9A0dRBRdAwbwWhDxzZ9HdT21Qk8S/fvRJxZhnLDa3vxQfuO3eo7fgT6pF4GteB+YPNaYPgMyNnXQxqE+MkJFwIJKVAfPA9UlgfCCmbNjcmPQtQayIQToBZ9Gtky970PSe+AX4ZFGYyGRZ9CffGGvbGjj6p3NyMRiHMqlPvsh5wAwN/2+xEiB0S0DBG1HeJw4LBH7sN/zpuCB9IuwG9xgzCgYhnO3fUEji59H/j5MKDnQH0wWr8RkAc+Bd57FurFe4F1ywLtWfmAg9et6qjiK/VpUeUJmYjkUxZ5dQ1eOv5PODnv2UbX5YAfu+934Y1fFF7+QWHxZmC/bOA/iyObJzMJmDI08HqqlIL6+/nAO08F7gPAK/OBWxdA3XAysHxRzXLq1j/Vm0f9605g5sXAx6804qeq48zrIKdcGbPg5VHdgc4pwJbd4cc6VJ0gs22b0Cerj3bsks3Amm3Af9eEms8iNO2nz6G+fgcy5pjwBTWTeDeQ4AG8LiDOFfjf6w7879fnvhEREVFoNwJw1bn/lFJK+2GIUqpMRM4E8BuA6h3Rc0TkdqVUiD0OIiIiIiIiIiICALfhgVs8qFQVQX3hgtG2aoLR3OJBqjMjJvURERERERF1JG7xQGBAIfgAtLIWC0bbaNme6e4MhzDKiShW+GwiIiIiIiKiABeD0YjaNCN8wIKMm9IMhVCbV+exJAC6Vm3A756+thaNdwPd0mvvy5CDIUMODrucTD4FMvmUSCslahvGTwXunguYNlMgUjKAoeOatqbWKlww2tjjgK/eCm7fpr/Sbj1JaRBX/VAaEcGQPMH36+xNUe2Q3v7wg4ioTZPu/TEhvwQTVswO6lP3XAoMGg1VUWa9sCc+EAZ7zJmQY85s0jqp7UgoUMD11vsDewcegkhOgSgTL+Z2ewiw8XL09h9TMbn0Q7yYPBOndnk6qH9Y2S/wbk7A7FEDMHtUbfuqQoVJd5v4Y6e9mh49zUBi3L6g0WULa0LRaif8FeriSUDhhvCTLZhvb6XhTD8Pxjk3xGaufVxOwXXHCC5+XoUd66j7B9q+GalJqcg1BJvN9KCxR90Xfl/RofmDq4euAQ4+GiKRBb02lYG5guL7bYS3ExERkS0i4gUwo0Hz38Mtp5T6XUReBzBrX5MTwMkAbo5thURERERERERE7VOiIxk7fduC2kv9xSGXK9AEo2W5c2EIL6RFREREREQUKRFBnOFFmVka1FfeQsFoWyus3/tlu3ObuRKi9o2fpBAREREREVGAyxV+TF3e+Kapg4iiY9g46bgTP1wlGxocfJVfZSO4YJ+BuYBhtI6T8YlaC0nLAgaPsb/AUacHwnQ6ogahZQ3JFffbCgLVSu1k2XzKQZFtt4aU/4oxg5Ojr4OI2o4E/XP9/9m78zg587pO4J9fVd9HJgmZZDKTORjmDoxz4XA43AgoDKcjwq4ggopcHii4glyKuoKK4LGisCgil4DHgqICLgvIrhwLyLVyDMcMMzBXkk53ju5n/8gwSbqfqq6qrj7S/X6/Xnml6/f7Pd/fdyaVTlX183ye6lkPSq79Qv3kyOgyNcSJbKzNP3P7d+3uqtbffbrKd2YnFl33rJt/Pw+d+sckyWP3vDOXznyydk0+uDB49JztJZ9/WSM/cNfF+/nqrzfyyEuO/ntaveuP6xd2EorWR+UJP78sdZ9+35KBDl6SNI+9O+WN30j1kh/N7j0f63nfZtUiCe/aLyTfurbnugDAmveQJMf+UO4jVVV9vsNjXz/v8WP60xIAAADA+jfenKwd3ze7p+1xNxz8Ru34KUO7ltwTAADARjXaqL+WdXp2dYLRvPeDlSEYDQAAgCMGh7tbPzK+PH0AvekkGK1NsAPcYV7o0BmH6z+sr7P7VKFoUKe84m86W/j4n0n5qV9b3mbWsFJKcul96+fe8PGUbTuTi67sfYMt22uHn3n/1t+7mtXhXLn/o2lUsxmZm84P7n133vO1q1N2+IElbAjtgir3703e97b6uRFB4izULhht+lDnr6OnDlR5/B9XHa39rRuef8fXgzmcN3/jiXn0nndlaO5ATjv0zfzh9c/ME/f8ZarX/krt8SODJX/7rPanFNz6qkbOuNO8/t/zZx31t5zKq/4h5ZQzl6d2Kbn3OYuvOzbIrPr7NyYfe3/ucugrPe87kMOtJ2+7qee6AMCa99B5jz/QxbEfTI57EXFpKWXHkjsCAAAA2AAmmvXnWy4ejHZd7fj2ITe2BQAA6NVIi2C0mbnpFe4kqaoqNxz8Zu3cjqHTVrgbWN8EowEAAHDEYJsrdGuUUcFosKYIRqNvjg812HWom2C0fvcC60MZGUt55d+1X/PSN6XxjN9MaRfCswGUp70kmfc6szzjN1PO3n3kwV129158y8n1e5aSr1z8O9lx+Ibjxkfn9uefrn1oPnTt/bPnC9tyyxd25K+/8bjsGJlJ8W8qbAydvMauMywYjYXaBqMdXPz42/ZXee7b5jL5rLmO9vvsly7OQGaPG7vLoa/kbd98Qqa+sCXX/se5edqtr7vj1X/1gXfW1iml5FuvaGTXluPHBxrJe57TyKbRtROOXH75T9P44IE0Pngg5bL7LeteF3UQCt089v//x96fpLv3VwvqVbOtJ/fe0nNdAGDNu+u8xx/p9MCqqqaSfHre8BI+XAEAAADYOFoFo021CUabq2bz7UP1wWinDLkJHwAAQK9Gm62C0favcCfJbYdvzoFqpnbOez/or4HVbgAAAIA1YnC4u/UjLvSGNaXRQf69EBc6Me+5tOPwjR0furuDcADYqMr3PjhVuwVnXrBSraxp5W73TF774VT//LZkel/Kld+fcsUDj87feXf7/4/tbN7WcuqMC07PJ97+vXnt5qfkC8Pn5cxDX8sTb/vLXHDwi0mSkerA0cXb/bASNoxmjz9KHR7pbx+sC8MDSSlJVfMP2f5FgtEOHa5yn9+ay6frbzC4wGuv+6mcd/A/Ws7XvWqvXvj45BV/m2w/PTnz/JRj3hds31TyyV9p5I//Z5V/vy7ZtSV5wveW3G3XGnv9f99Hr9hWF+1cfE2jWhhid/pSgtHSLhjt1gVD1W03Jd+5Ptm/N9l5Zsq2pSdZVzffkMzNpWzr4H8AANAvF8573PqFXr0vJbn0mMcXJXnfkjoCAAAA2ADGWwSj7Zvd2/KYmw7dmMPV4dq5HUOn9aUvAACAjWikUX8t6/QqBKN962Dr8wC994P+EowGAADAEV0Ho40vTx9AbxrN9vMjYykDgyvTCye2ecFo22c7D0a79Ix+NwPrzEnbktu+Uz83OLSyvaxh5cwLUp7ywvrJ8y/rve7ue7SePO/SbJ/9dn75pt9cvFC7OsD60mswmiBxapRSMjpYH4K2WDDan/1r1XEo2tDcgTxq799032CS6rmPOPLF1lOSl7wx5ZKr7pjbOl7y/IetsSC0Y5TnviZldOU+q7poZ0kWiWutCzLbdbj3YLS5tAlE33vLHV9Wc3OpXvMLydtec9yS6ooHpPzKG1K2bO9672rvLale8Pjk4x848vjie6f82ltT2gTPAgBLV0rZmmTrvOGvdVlm/vpze+8IAAAAYOOYaE7Wjt92+ObcdKj+nLovTX+uZb3tQ0u/iQ0AAMBGNdoiGG1mBYLRpmb3ZmZu+o7HX5n5Yu26yeZJGWtOLHs/sJEIRgMAAOCIbsM4VvBiU6ADiwWjjZ+0Mn1w4ivHX2x/8uFvd3TYve6S7Ni0doMSYE1oF7Az1GVI7UZ14d2PhLXc/K3uj73q6tZzp5+bnHlBcu3nFy1THvvT3e8NnJh6DUYbGu1vH6wbY0P1IWhTB6okrV9Lv+Bd7QO4jvVTt742W+Zu7aG7Y9z8rVTPelCqxzw95eE/lnLu9yx6SDWzP3n3G1Ld1MO/0f3w4Mev6Ha7O7hupVktDEY781C3OSZHnTzbImA3SfbddvTrv/7jBaFoSZJ/e1+qZzwg5U2f6Xrv6uVPvSMULUnyqQ+leumTUn77f3RdCwDoyuZ5j/dXVTXVZY35V+n6YQEAAABAByaam2rHv37gy3nhl3+iq1pbB07OcGOkH20BAABsSCON+nNzlzMY7eszX84brn9Vrjt4bUfrdwztWrZeYKNqc0thAAAANpSBwe7WjwhGgzWlscjHPOP1dy+EBeY9l3bM1t/dcr4HXyQUDRbVbBNiOSgYrROl2Uwe/uTuj3vzZ1MmWl/3W0pJecRTFi/0mJ9KOeduXe8PnKB6DkbzPZ16Ey2eGvsOtD7mzz4ylxv2LF77fuclv/uA6/LKCz+anHl+/aJzLk55782LF/uud/xhqqfdK9W/vKvtsmr/3lRPvjzV7/xM8me/0Xn9bgy1uVBk4qSUsZV9z7t9U8m529uvaaY+GO3UQ9d1vd/FM5/KttmbWs5Xf/nbR36fm0v1F69sXejr/y/V22tC09qopqeSj7534cTH359q7xJD+ACAxcy/lfR07ar25h+z5BdOpZTtpZTd3fxKcpel7gsAAACwkiYG6oPRerF9qIO77gAAANDSSGOsdnx6dnmC0aZnp/K7X39Bx6FoSXLK0GnL0gtsZILRAAAASHIkDCKDQ50fMFKfsg+skkabsJ0kGW8dBgPHKcd/ZLj98Lc7OuziXYLRYFHtAnYEo3WsPPEXklPv3PkBZ16QcloH194+5unJPR/Wev7+j015zu90vi9w4usxGK34nk4Lky2yvfbO1I9XVZWfe2vVtuZdT02+/puNvO+5zTz78aen+bI3pfHGT6W89sPJ1h1HF95pZ8rz/zhldDzlRX/eedOzh1P9zs+kOnSw5ZLqdS9Lvvnlzmt2qzmQ7Dyz9fz21bnL4mMua/8eaOfh6xeMlSSP2/uOtse9/NElp24++njL7M3579c9tX0zt92UamZ/8pl/TW74Wtul1at+PnOPvzDVezp8Hnzp00ndn//sbPLv/9pZDQCgV/OD0Vq8cmxrfjDa/Jq9+Okkn+ny11/3YV8AAACAFTPe7F8w2ilDq/PzLAAAgPVitFkfjDYz18v9xRb3qX3/J9Nz3YWu7RCMBn3X423OAQAAWJcGh+svdKwzLBgN1pTmIsFoE/07SYd1rnF8MNpJc7dlaO5ADjbaB3zczef3sLhGm3uVdBNQu8GVsYnkTf+e6n71P9xcsP6xT+9s3eBQ8pvvTP7v/zoSALLt1GTztuQ71yfbd6Xc7Z5LaRs4EfUYjOZ7Oq20Ckbbd6B+/PrbkpunWtf7u2c18oALkpHBhQFd5YLLk7/8bPLRfzgSfnzl96eMjh+Ze9A1qT7wjuRf3tlZ4zddn+o1v5Bc/H3JRXdP2XnWHVPVgenkLa/qrE6vtp2ajIy3nl+lYLSfvE/J7/5TlQOH6+cfNPW+2vEf2vP2/N7WZ7as+4sPKfmJ+5R88Lm/nIPXfikP2fePmajaPBG+6/9+MNWH/kcnrSff/HKqlz81ueHryennJrvOSTn/0vq1VZtwviIgGwBWWPvU3P4dAwAAALDhbR/c2bdapw2f1bdaAAAAG9FIo1UwWnfhZZ268dA3uz5m13AXN38HOiIYDQAAgKMGh5Ps7WztkGA0WFMGBtvPjwlGo1NlwaNLZz6Zj45d2fKI7ZPJ2duWuS1YDxptQiwH24cPcrzSbCbvviHVD+yoXzA8mtzplJTHPD151E92XreU5JKrjvwC6DUYbcj3dOpNtHhq7J2pH//GLa1rPesBJT9wt/ahVGVsIrn/Y+vnXvj6VNt3Je/9y+S277StkyR5xx+lescfHQn+e/YrUx71E6lu/U6qRywtIbn8+ItS/elL2i9aLPhs052W1EOvztpW8uKrS37pHQuzRgZzOD984N21x91j+n/nggOfz+eHL1gw99mXNNJolGwdTx5R/a9k70c77qd67tXJ6ETn/wHJcf/vqwc8LuXFbzzyeui4RbJUAGAV7Zv3uJcfzs0/Zn5NAAAAAGpsGdyW88fuli/s//SS6ow0xnLZ5L371BUAAMDGNNKo/3H59DIFo+073OE1trc7eXBnzh2767L0AhtZY7UbAAAAYA0ZHOp87bBgNFhTFvv7O3HSyvTBia+xMFzhcXvf0faQx15e0qg5Dpin2ToYrbSZo16Z3JzyW3+dHBveMTSc8rI3p7z35jTe8vmUH37OwnAPgE71+r1Z2CUtTI7Uj+89UD/+zVtb1/q1Ry3t37cyPJrGs1+R8rffSHnl33V+4KGDqV75rMxdNbzkULQkyZkXpDzzv7Zfc/q57QMHxyeX3kePfv7BJddcsfDP4kWPGsxZ/+MTKa/+pwVhZSXJH17/zAzPHZ+I99qhV+WCncfUmj3cfUPTS8g5ed/bk7/5k4Xj1Vybg7zOAoBltlaD0f4gyV27/PXIPuwLAAAAsKKeeuovZvf45Wmkt58d7xw6Iz97+q9mtDnW584AAAA2ltHGeO34zHIFo83u6WhdScmdR87Ps09/cRpFhBP0W4+3OQcAAGBd6iYYrd0FqcDKG1jk7+/4ppXpgxNfzQfx1+z5q/zi9l9P1eJD+h+5u4vhoSNNH8n3W7nHQ5M3fSbVe/48ZXA4uc8jU87evdptAetFr9+3u3lvzYYyOVKSVAvGp2YWrk2Sb96ycG2SnLIpmRjpz2vwUkqqKx6YnHVh8tXP9aVmV3acnnL/xyTnXZrq2Q+uXVIe/PhUb/291jXGVy8IfKBZ8hdPTR5zWfI/v5gMDSQ/cNeSB110+5/PJVclr/to8k9vTfWta1POuiDVvtty1Rt+PZ/90vfkdZufnENlINfs+atcsmMmyc8dLX740Ir/91Rve01y9VOPD5Y92OIJmvQW3gYAdOO2eY/HSinjVVVNdVFj+7zHbeJ3O1NV1Y1JbuzmGMH1AAAAwIlovDmZZ+x6YQ7MzWTv4fkf1bQ30hjNxIDzNgEAAPphpFF/H7GZuenMVXN9DyVrFYx2n80Py4O2POqOx2PN8Yw1J2rXAkvnKiwAAACO6ubi7eFebkoPLJvF/v4KRqNTjYU/DDjt8HW5//4P5H3jD1gwd9adknvdZSUag3VAMNqyKLvOSXnaS1a7DWA96jkYTZA49cZbPDX2ztQHoH2jRWTFuTv61NDtSqORvPRNqV7yo8mXPt3f4ovZvutID5feJ3nHl1O9+D8nn/rQkbmhkZSn/1rKFQ9I9a4/blmirPL73Waj5JorSq65on6+7DonefJ/yR1RIO97e6okZx7+el7ynZcdXfi1pJqbO/LnkbQOHbv8/snH3t+n7ue59vNHfp114dGxA9Ot1x88sDx9AABJkqqqbiql3JJkyzHDZyTpJtH2zHmP/9+SGwMAAADYYIYbIxkeGlntNgAAADaskcZYy7kDc9MZbY73db+p2b214ycPnpJtQ30+iRNoqb+RhwAAAJzYurl4WzAarC2LBKOt9oXinEBqgtGS5OU3/koGq4MLxv/r4xppNErNEcACjeZqdwBAN3oORusidJwNZbLFtRL7WmRLXXdL/fhpm/v/+rvc+aKUP/1oyruuTXnth/tev9bwaLL16AlC5eTTUl7zzylv/4+UP/lIyntuTHncM49MjrQ+qemECwLfcXrrub/6/aNfHz5Uu6RcdXXL92198YVPHP/4wEzrtTWhaVVVpfrwuzP36l9I9fpfTXXLjX1uEAA2nPkhaOd0efzZi9QDAAAAAAAAgDVttNn6HMLpuf19329qdk/t+Hhzsu97Aa0JRgMAAOCoIcFocMIaWCR8YeKklemDE1+p/8jwipmP50NfvV9++La35pIDn8qjL03e85xGHne5UDTo2FZ3BgI4ofQajNbNe2s2lFbBaHtb5E5989aqdvzUzX1qaJ7SbKbc6ZSUCy5Pzr2kP0W/56rk7g+sn7vq6pR5AV+llJQdp6ecf1nKsX+Xtu1svceJFoy2fVfLqeptrzn6YPZw/aKhkZS3fL7PTR3Tw5c/c/zAwTbBaDVz1e8/L9XzHp289fdSve5lqa4+PdUXP5lq32197hQANox5/zjnnp0eWEoZT3LxIvUAAAAAAAAAYE0babQORpuZW3iDz6Woqir7ZvfWzo03T7DzFeEE1+PZ/AAAAKxLiwUrHWuoxdW8wOoYXOTv75gPXulQo/W9FC6b+WT+4ronJ1t3pPH0r61cT7BOlP/0C6k+8p6FE/d46Mo3A8DiBnr8UWo3763ZUCZaZObtO1A//v4v1I+ftkzBaMcqL/2LVD+ye2lFTr1zynNemew6J9UvPTb52PuPzt35opSnv7zzfrbvSn1MXE68YLStpySbT05u/fbCueu/mur6r6bsPCuZna0/fmAw2XFGMjKWzPT/TpeZH4x2oPVJY9UNX0v18qcl//zWI38Om7Ym1y4Mbat+/Mqk0Uj5l/6egAYAG8TfJ/mJYx7fr4tjr8rx54h+oqqqG/rRFAAAAAAAAACslNG2wWj9PY9uZm46s6m/semEYDRYUYLRAAAAOGqxYKXvGhhMaTaXtxegO81FPuaZ8MErnSqLLxmbWP42YD3afY/krAuTr37uuOHyA09apYYAaKc0B1oHMbUz1CL9ig1vskXG/K01WVGfva71s++0LX1qqI2y65zk51+d6pXP6vygrTtS3vL55GPvOxKov/vKlLHJI3O//e7kMx858jro9HOTi65MGe4idH/rKa3nRsc7r7MGlGYz1b1+IHn3G+oXfOnTyc6zksOH6uebAymlpNpxenJti/S8pbj+q8c9rL755dZr3/DrR78+OJPccmPrtXNzS2oLADawf0gynWT09sf3LKVcUFXVwjTShZ487/E7+9kYAAAAAAAAAKyEwTKURpqZy8Ibjk73ORhtanZPy7mJ5mRf9wLaa6x2AwAAAKwhnQajDY8uvgZYUaUsEmY1ftLKNMKJr9HBR4ajPsiHXpRmM+X33pvc/7HJSXdKzr0k5Zdfl3L/x6x2awDUWSx8uJVBwWjU2zZR/77t23uTqjo+CO3V728djLZrSwdhxv3wyKel/Pyrk9POTrZsPxLW1c5D/1PKyFjKvR+ecvcHHQ1FS1IajZSL751y9VNTLr1vd6FoSbKpTRrcYu+H16DyvD9qPXnLt4/8Plt/x8kMDB75/R4PXXyjU87srrEk2XPLHV9W7/+r5M2/032NOifgnxMArAVVVe1P8vZ5w89b7LhSynlJHn3M0OEkb+pjawAAAAAAAACwIkopGW2M1c7NzPY3GG1f22C0TX3dC2ivx7P5AQAAWJc6vXhbMBqceEYnVrsDThSlg2C0Mc8n6FXZsj3lpW9KVVWLh1oCsLoEo9Fn21vkCx+aTW6bTjYfc87On3+kdTDaOSf3ubEWSinJo34i5VE/sWBu7qVPSv7xzUcHzjgv5Un/ZfmaOf+yI4Fghw8dP95oJHe52/Ltu0xKo5HqvEuTL35i4eR3rjvy+/z/1u+6/XtTuebZqd7yqvb7POLHU73ld5M9N3fe3C03Zu45D0mu+0ryrWs7P24xXvsCwFK8OMnjk9yekJonl1LeWVXV39QtLqWMJHl9kmPviPSnVVV9aVm7BAAAAAAAAIBlMtIczdTc3gXjM3PTfd1nanbhHknSSDMjLcLZgOXRwVWOAAAAbBhDnQajjSxvH0D/jfrglQ41OvjIUNAeLJlQNIATQLPZ23GDg4uvYUNqFYyWJDcecx7N566vsv9gmzqbVv91RHnhf095+duSH3tBynNfk/L6f0tZxgDlMr4puffDF05c8cCUTVuXbd9ltXlb7XD1upel+rf3JfturT/u9u9NZcLK1l8AACAASURBVPuulNf/W/s9xieT+z+m+94+/oH+hqIBAEtSVdWXk8xPRH17KeWZpZRjw89SSrkwyT8nudcxwzclecnydgkAAAAAAAAAy2e0RSjZ9NxUX/fZN7undnyiOek6EFhhPd7mHAAAgHVpYGjxNUkyNLq8fQD9NywYjQ6VDoLRxtokOgAArBfNHn+UOthh6DgbzsntgtH2JOftOPL1L759ruW6d/702rj3WSkluerqlKuuXrk9n/dHqQ7sT/71H44MXHa/lBf92Yrt33cn1QejJUn1sw9rfdzAMeGLd77oyPeq2cP1a0cnUp71ilR7bkn+57uS2dkemwUA1oDnJ9md5LsvFAaTvDrJC0spH0+yN8nZSS5LcuyZ2AeTPLqqqutXsFcAAAAAAAAA6KuRFsFoM3PTfd1n3+ze2vHx5qa+7gMsTjAaAAAAR3V68fbQyPL2AfTfsEBDOtQQjAYAkKT3YLQhwWjUGx8uGR9Opg4snLvx9vNopg9W+cAX648vJbnvecvX31pXJjen/NbfpNp7a3L4YMqW7avd0tIcnOntuEbzji9Ls5lq26nJDV+rXzs2mTI8mvLSN6Xac3PygXek+q1n9LZvj8qffnRF9wOA9aqqqtlSyjVJ/iTJDx8ztT3JQ1scdmOSJ1VV9cHl7g8AAAAAAAAAllPrYLT9fd1n3+ye2vGJpmupYKWtjdtJAwAAsDYMDXW2TsASnHj8vaVTpSy+ZusJHkAAANCJXoPROg0dZ0Pa3uK8mBv3VkmSf/j3+uC0JLnglGTzWAev19e5Mrn5xA9FS1LOu7S3A48JRkuSbN/Veu3o+NH9Nm1NTjmztz17VN6/L+W8S+74BQAsTVVV+6qqenySH0ryr22W3pzkD5Pctaqqv1+R5gAAAAAAAABgGY22CEabnu1vMNpUy2C0TX3dB1hcj2fzAwAAsC4NdBiMNuQibzjRlGZz8UWQJGXxeymshxACAIBF9RyM1uF7azakbRPJV76zcPzmqSO///Unq5bHvuPp7nu2rpzfY1BYY97zYNvO1mvH5iXxXXB50mwms7O97d2praekvPytKQODy7sPAGxQVVW9PcnbSyl3TnJZklOTjCf5VpJrk3yoqqqDq9giAAAAAAAAAPTVSItgtJm5fgej7a0dH2+2uDMusGwEowEAAHBUp4FnvV4cDsDaN/8i+zpbdyx/HwAAq63nYDRh4rS2dbx+/LvBaP/nq/XBaE/43pLzTynL1BWr4vIH9nbc/DDrHWe0XjsvGK1s2prq/o9L/uktve3drq2f/vVkbi45e3dyt3ulTJzU9z0AgONVVfWVJF9Z7T4AAAAAAAAAYLmNNEdrx6f7HIy2b3ZP7fh4c1Nf9wEW50p2AAAAjhoY6nDd4PL2AcDqmX+RfZ0t25e/DwCA1dZrMJr3zLSxZawkWRh+dsv+5NDhKl+8of64h1+8vH2x8srAQPK6/53qKd/b3YHzwqzLaWfXPKNuN7LwRLDyS69NtWV78i/vSm78euf7jk4k0/sWjt/7B1P+y5+kbNraeS0AAAAAAAAAAADowkhjrHZ8pu/BaHtrxycEo8GK6+AqRwAAADaKMjTc2cLBDgPUADjxNDr4yHCrYDQAYAPoJRht+66UUvrfC+vG5vrzcnLLVJX/+HZyeK5+fvepnlfrUTn3e1Ke+uIuD5r3nu3eP5jUfd8ZGkm2nbrw8KHhNJ79ijT+6j9SXvTnne35kCem8d6b0vjggYW/fuMdQtEAAAAAAAAAAABYVqMtgtGm56b7us/U7J7a8YnmZF/3ARYnGA0AAICjOg08Gxhc3j4AWD3zL7Kvs3XH8vcBALDaeglGe8AP9b8P1pWt4/Xjt+xPPnd9/VyjJOd5Cb5ulSf9UvK4Z3R+wLww63Lyack9H7Zw3fc9ImV4tH2t+zwyOe3sxXt8+I913h8AAAAAAAAAAAD02UiLYLSZuf1926Oqquyb3Vs7N9Hc1Ld9gM4IRgMAAOCoToPRmoLRANatxiIfGQ6PJhObV6YXAIDV1Gx2fUj5yZctQyOsJ1vqz8vJzVPJZ6+vaufO2Z4MD5Zl7IrVVp71ipRn/EaHixe+Zyu/9Nrkyu9PSjnyveuqq1Oe90eLlxoaTnn525NzLm695vn/LeWSqzrrDQAAAAAAAAAAAJbBSKP+RqEzs/0LRpuZ25+5zNbOjQtGgxXXw23OAQAAWLcGhztbNyAYDWDdKosELmzflbLYGgCA9aDZ3Y9Sy0v/MsX7ZRaxdbx+/Jb9yeeur5+7aOfy9cPaUBqN5PE/m+rW7yR/8Yr2i2tCG8vmbSmv+NtU+/cls4dSJrd0vvfZu1Ne/39Sfef6ZP/eZOKkpKqSudnkTjuP9AYAAAAAAAAAAACraLRZfwLmgWomc9VsGqX7GyLPt292T8u5iebkkusD3RGMBgAAwFEDQx2u83YSYN0qi1z0vuP0lekDAGC1dROMNrkluedDl68X1o0tYyVJtWD8xr3Jv3xx4XiSXLhTMPFGUe50Ss2zY/6i1u/ZythE73tv25lECh8AAAAAAAAAAABrz2hjtOXczNx0xpq9nz/3Xftm97acG29uWnJ9oDtu7QsAAMBRQ8OdrRsYXN4+AFg9jUU+MtwuGA0A2CA6DUYb35TyK/89ZWRsefthXThtS/34wcPJdbfWz128a/n6YY3Zsn3xNYu9ZwMAAAAAAAAAAIB1ZqTR+jzdmbnpvuyxb3ZP7XgzAxlpE8wGLI8ubnMOAADAujfYaTDa0PL2AfRm95XJv3904fg5F698L5ywSimp2i04+bSVagUAYHUNtzmB4eJ7p/zsq5JbbkguuCJlcvPK9cUJ7cJTuls/NJA8ZHdZnmZYezafvPiaIhgNAAAAAAAAAACAjWW0TTDa9NxUkg7Ov1vEVItgtInmZEpxLiesNGfMAgAAcNTgYGfrBjpcB6yocs2z68d/9JdWuBNOeI3WHxuWiU0r2AgAwCo668LWc+ddknLO3VLu/iChaHRlYqTkzts6X//Q3cnmMSfTbBidBKO1eb8GAAAAAAAAAAAA69FIm2C0mdnpvuyxr0Uw2njTtVSwGpwxCwAAwFGDw52tE4wGa9N9Hpnc91HHj9330cn3PXx1+uHEVdp8bDgyvnJ9AACsojK5Obn8/vVzZ5y/wt2wntz11M7X/tAVQtE2lFPPSoYW+Xyu3fs1AAAAAAAAAAAAWIcGymCaGaidm5nb35c9pmb31o6PNyf7Uh/oTv3feAAAADYmwWhwQisDg8mL35h87P3JFz6RnH9JcvkDUwZ8BESXGo1ktsWcYDQAYAMp/+kXUn3s/ccPjk4k93rY6jTEurD7tJK//VTV0dp7ni0YbSMpY5Op7vvo5B/f3HpRw3MCAAAAAAAAAACAjaWUktHmWPbN7lkwN92nYLS62kky0dzUl/pAd9xKGAAAgKMmN3e0rAhGgzWrDAymXPn9KT/6vJQrHyIUjd6UNhfajwpGAwA2jnLFA1Oe+5pk4qQjA2ecl/Lyt6XsOGN1G+OEtvvUztaNDiZn3ml5e2HtKc/9/UUWOM0DAAAAAAAAAACAjWekMVo7PtO3YLS9teOC0WB1uDIWAACAozZv62ydYDSAda5NMNrI2Mq1AQCwBpRHPi15xI8n+25NJrektAuRhQ5cfFpJUi267vxTkmbD822jKWMT7Z8dDcFoAAAAAAAAAAAAbDwjjfprmqbnpvtSf2p2T+34xMBkX+oD3XHGLAAAAEedJBgNgCSzh1vPjY6vXB8AAGtEaTRSNm0VikZf3PW05OJdi6+7aKfnGzUEowEAAAAAAAAAALABjbYIRpuZm+pL/X0tgtHGm5v6Uh/ojjNmAQAAuEMZHEomTlp8oWA0gPWtXTDaiGA0AABYilJK/vwpi/+o/sKdK9AMJ57iNA8AAAAAAAAAAAA2npEWwWjTs9N9qT81u7d2fLwx2Zf6QHecMQsAAMDxNm9bfI1gNICNa6T+hwgAAEDn7rar5PvOab/mwp1lZZrhxNJornYHAAAAAAAAAAAAsOJaBaPNzO1fcu25aq5lMNrEwKYl1we6JxgNAACA453UQTBaUzAawIY1Or7aHQAAwLpwzvb2wWf3PHuFGuHE0nCaBwAAAAAAAAAAABvPaHP5gtFm5vZnLnO1cxNNwWiwGpwxCwAAwPEmNy++ZkAwGsCGNSIYDQAA+uHsk1vPXXnnZOfm9sFpbFDFaR4AAAAAAAAAAABsPCON+mC06T4Eo+2b3dNybqI5ueT6QPecMQsAAMDxBoc7WDO0/H0AsDaNCkYDAIB+eOju1sFn11whFI0WGk7zAAAAAAAAAAAAYOMZaYzWjs/MTS+5drtgtPHmpiXXB7rnjFkAAACONzSy+JqBweXvA4A1qfg3AAAA+uLyM5OLdi4cHxpIHne5YDRaKE7zAAAAAAAAAAAAYOMZbYzVjs/M7V9y7anZvbXjA2Uww6WDa26BvnPGLAAAAMcbHF58TXNg+fsAAAAAWMdKKfmDJzbSmJeB9oIfLDl9q2A0Wmg4zQMAAAAAAAAAAICNZ6RFMNr07NKD0fbN7qkdH29OphTndMJqcCU7AAAAxxvuIBhtYHD5+wAAAABY5+5zXsmnX9zIH3ygysyh5LGXlTz0rk6goQ3BaAAAAAAAAAAAAGxAo836YLSZuX4Eo+2tHZ9oblpybaA3gtEAAAA43qBgNAAAAICVcuHOklf/iDA0OlQEowEAAAAAAAAAALDxjDRGa8cPVgcyW82mWZo9156a3VM7PtGc7LkmsDTOmAUAAOB4QyOLrxkcWv4+AAAAAIDjNZzmAQAAAAAAAAAAwMYz2hhvOTczt39Jtfe1CEYbb25aUl2gd86YBQAA4HiDw4uvaQ4ufx8ArD3D9XdWAQAAYIUUp3kAAAAAAAAAAACw8Yw0Wl/XtNRgtKnZvbXjE4LRYNU4YxYAAIDjlKGRxRcNCEYD2JBO2rbaHQAAAGxsDad5AAAAAAAAAAAAsPGMNMZazk3PTi+p9r7ZPbXj483JJdUFeueMWQAAAI43NLT4GsFoABvT3R+42h0AAABsbMVpHgAAAAAAAAAAAGw87YLRZuamllR73+ze2vGJ5qYl1QV654xZAAAAjjc0sviagYHl7wOA1fODP1Y7XJ743BVuBAAAgOM0mqvdAQAAAAAAAAAAAKy4wcZgBspg7dz03PSSak/N7qkdn2hOLqku0DvBaAAAABxvcHjxNQP1Hx4BsD6UJ/xcsnXH8YOPeErK6eeuTkMAAAAc0XCaBwAAAAAAAAAAABvTSGOsdnxmbn/PNeeq2UzN7qudG29u6rkusDQDq90AAAAAa8zQyOJrBoaWvw8AVk0547zkv30wee+bU934tZRL7pM88JrVbgsAAIBSVrsDAAAAAAAAAAAAWBWjjbHsm71twfjM3HTPNffPTaXKXO3chGA0WDWC0QAAADje0PDiawYGl78PAFZVOeXM5EefF5fcAwAArB1FMBoAAAAAAAAAAAAb1EhjtHZ8enaq55pTs3tbzo03J3uuCyxNY7UbAAAAYI0RjAYAAAAAAAAAAAAAAAAAwBoy0hirHZ+Zm+655r42wWgTzU091wWWRjAaAAAAxxsUjAYAAAAAAAAAAAAAAAAAwNox2mwVjLa/55pTs3tqxwfLUIZKB9fbAstCMBoAAADHGxpZfI1gNAAAAAAAAAAAAAAAAAAAVshIoz4YbXoJwWj7WgSjjTcnU0rpuS6wNILRAAAAON5I/QdDxxkYWv4+AAAAAAAAAAAAAAAAAAAgyWiLYLSZpQSjHa4PRptobuq5JrB0gtEAAAA43hnnJc2B1vOlpDSbK9cPAAAAAAAAAAAAAAAAAAAb2sgyBKNNze2tHReMBqtLMBoAAADHKWOTye4rWy8YGFy5ZgAAAAAAAAAAAAAAAAAA2PBGWwSjTc/2Hoy2b3ZP7fh4c7LnmsDSCUYDAABgoZ1ntZ4TjAYAAAAAAAAAAAAAAAAAwAoaaYzWjs/MTfdcc2p2b+34RHNTzzWBpROMBgAAwEJDw63nmoLRAAAAAAAAAAAAAAAAAABYOaPNsdrxmbn9Pdfcd3hP7fh4c7LnmsDSCUYDAABgocE2wWgDgtEAAAAAAAAAAAAAAAAAAFg5I436YLTppQSjzdYHo000N/VcE1g6wWgAAAAsNNQmGG1waOX6AAAAAAAAAAAAAAAAAABgw2sVjHaoOpjD1aGeak7N7a0dF4wGq0swGgAAAAsNjbSeGxhYuT4AAAAAAAAAAAAAAAAAANjwRhqjLedm5qa7rjdXzWb/7L7aufHmZNf1gP4RjAYAAMACZXC49WRzcOUaAQAAAAAAAAAAAAAAAABgwxttjLecm5ntPhht/+xUqlS1cxPNTV3XA/pHMBoAAAALDQ61nhsQjAYAAAAAAAAAAAAAAAAAwMoZaY62nJuem+q63r7ZPS3nxpuTXdcD+kcwGgAAAAsNj7SeE4wGAAAAAAAAAAAAAAAAAMAKGm2MtZybmZvuul67YLSJ5qau6wH9IxgNAACAhQaH28wNrVwfAAAAAAAAAAAAAAAAAABseM0ykMFSf43rzNz+ruu1CkYbKsMZarS5zhZYdoLRAAAAWKhdMFpzcOX6AAAAAAAAAAAAAAAAAACAJKONsdrx6R6C0aZm99aOjzcnu64F9JdgNAAAABYaahOMNiAYDQAAAAAAAAAAAAAAAACAlTXSIhhtZrZ/wWgTzU1d1wL6SzAaAAAACw2NtJ4bGFi5PgAAAAAAAAAAAAAAAAAAIMlIs0Uw2tx017X2ze6pHR9vTnZdC+gvwWgAAAAsNDjUem5gcOX6AAAAAAAAAAAAAAAAAACAJKON0drx6bmprmu1CkabaG7quhbQX4LRAAAAWGhwuPXcQJvQNAAAAAAAAAAAAAAAAAAAWAYjjbHa8Zm56a5rCUaDtUswGgAAAAsNjbSeG5tcuT4AAAAAAAAAAAAAAAAAACDJaItgtOm5/V3XmprdWzsuGA1Wn2A0AAAAFhoabj03LhgNAAAAAAAAAAAAAAAAAICVNdIiGG2mj8Fo403X0cJqE4wGAADAQoNtgtHGfKADAAAAAAAAAAAAAAAAAMDKahWMNj3bfTDavtk9tePjzU1d1wL6SzAaAAAACw0OtZwqgtEAAAAAAAAAAAAAAAAAAFhho836YLSZue6C0War2eyf21c7N9F0HS2sNsFoAAAALDQ03HpOMBoAAAAAAAAAAAAAAAAAACtspNEqGG26qzr7Z/e2nJtobuqqFtB/A6vdAAAAAGtQaZOjfadTVq4PAAAAAAAAAAAAAAAAAABIMtIYrR3fP7cvew7f2nGdGw9e13JOMBqsPsFoAAAALHTyacmW7cktNx4/PjSc3P1Bq9MTAAAAAAAAAAAAAAAAAAAb1mhjrHZ8anZvnv+lJ/dlj/HmZF/qAL1rrHYDAAAArD2l0Uiu/vGFEw/+kZSJk1a+IQAAAAAAAAAAAAAAAAAANrSRFsFo/TJcRjLYGFrWPYDFDax2AwAAAKxN5cdflAyPpfqHNyZzc8l9Hpny1JesdlsAAAAAAAAAAAAAAAAAAGxAyx2MNt6cXNb6QGcEowEAAFCrlJL8519M+c+/uNqtAAAAAMCGUZ7/31L9xk8unHjwj6x8MwAAAAAAAAAAALCGbB3clkaamcvsstTfPnTqstQFutNY7QYAAAAAAAAAALjdlQ9JRicWDJf7P2YVmgEAAAAAAAAAAIC1Y6w5kd3jly1b/btvus+y1QY6JxgNAAAAAAAAAGCNKNt2przib5PTzj4ycNKdUn7md1Kuunp1GwMAAAAAAAAAAIA14Mk7fyZ3Hb8ijT5GJ400RvOIbU/IPTY9oG81gd4NrHYDAAAAAAAAAAAcVS6+V8qbP5fq5huSzSenNNz3DgAAAAAAAAAAAJJktDmen971gkzP7s+th29acr1GaWTb4ClplmYfugP6QTAaAAAAAAAAAMAaVLbuWO0WAAAAAAAAAAAAYE0abY5ltDm22m0Ay0AwGn1VShlMcu8kZyTZmWRfkuuSfKKqqq+uYmsAAAAAAAAAAAAAAAAAAAAAAACsYYLRNrBSypuT/PC84Wurqjqrh1onJ3nJ7fW2tljz4SS/XVXVX3VbHwAAAAAAAAAAAAAAAAAAAAAAgPWtsdoNsDpKKVdnYShar7UeluQzSZ6eFqFot7tXkreXUt5YShnvx94AAAAAAAAAAAAAAAAAAAAAAACsDwOr3QArr5SyOckf9qnW/ZK8K8nQMcNVko8n+XKSzUkuTbLtmPknJtlUSnlUVVVz/egDAAAAAAAAAAAAAAAAAAAAAACAE1tjtRtgVbwyyam3f7231yKllF1J3pHjQ9E+lGR3VVVXVFV1TVVV359kV5LnJDl0zLpHJPnVXvcGAAAAAAAAAAAAAAAAAAAAAABgfRGMtsGUUh6U5Cm3Pzyc5FeWUO4lSbYc8/jDSR5UVdXnjl1UVdWBqqp+L8k1847/uVLKmUvYHwAAAAAAAAAAAAAAAAAAAAAAgHVCMNoGUkoZT/LaY4Z+O8kne6x1bpInHTN0MMmTq6qaaXVMVVXvSvKGY4aGk7yol/0BAAAAAAAAAAAAAAAAAAAAAABYXwSjbSy/nuSs27/+cpIXL6HWE5I0j3n8jqqq/l8Hx/3mvMfXlFJGltAHAAAAAAAAAAAAAAAAAAAAAAAA64BgtA2ilHKvJM84Zugnq6qaXkLJR897/PpODqqq6nNJPnrM0HiS719CHwAAAAAAAAAAAAAAAAAAAAAAAKwDgtE2gFLKcJLX5eif9xuqqvqnJdQ7Jcn3HDN0OMmHuijxgXmPH9ZrLwAAAAAAAAAAAAAAAAAAAAAAAKwPgtE2hhcnOf/2r7+d5OeXWO+u8x5/qqqqqS6O//C8x7uX2A8AAAAAAAAAAAAAAAAAAAAAAAAnOMFo61wp5bIkzz1m6GeqqrppiWUvmvf4P7o8/kuL1AMAAAAAAAAAAAAAAAAAAAAAAGCDEYy2jpVSBpK8LsnA7UN/X1XVm/pQ+px5j7/W5fHXznt8p1LKliX0AwAAAAAAAAAAAAAAAAAAAAAAwAlOMNr69vwk33P711NJnt6nupvnPb6xm4OrqtqXZGbe8ElL6ggAAAAAAAAAAAAAAAAAAAAAAIAT2sBqN8DyKKVclOQFxwy9sKqqr/ap/MS8x9M91JhOMnLM48ne2zmqlLI9ycldHnaXfuwNAAAAAAAAAAAAAAAAAAAAAABA7wSjrUOllEaSP00yfPvQx5L8Xh+3mB+MNtNDjekkW9rU7NVPJ3lRn2oBAAAAAAAAAAAAAAAAAAAAAACwQhqr3QDL4jlJ7nH714eTPLWqqtll3K9aoWMAAAAAAAAAAAAAAAAAAAAAAABYpwSjrTOllLOT/OoxQ79dVdUn+7zNvnmPR3uoMf+Y+TUBAAAAAAAAAAAAAAAAAAAAAADYQAZWuwH6p5RSkrw2ydjtQ19O8uJl2GotB6P9QZK3dXnMXZL8dZ/2BwAAAAAAAAAAAAAAAAAAAAAAoAeC0daXpyV5wDGPf7Kqqull2Oe2eY9P7ubgUspEFgaj3bqkjm5XVdWNSW7ssp9+bA0AAAAAAAAAAAAA/P/27jxaurSg7/3vaZqGZupGhmbmZVQGBwheFTC2BlTkCjJcMWhCKw5xSjDxxqWYFTC5eHMdouvGKFeRJohcCWGSOSgNAkHFNAKCSCOgDI0NNGA3NE3Dkz/qvO+ps6tOndpVu2rvqv35rLUX7HprD2ef53zr9PPutV8AAAAAAAAAWIMHo+2Xp079/5cnuayUcuqEbW7TWD97zjYfrrVeO7X+nsaf33nJ8zvu/Z+otV7Zch8AAAAAAAAAAAAAAAAAAAAAAADsEQ9G2y/nTv3/b0vyvhX2cfs5290vyVun1t/V+PO7tzzGXRvr72y5PQAAAAAAAAAAAAAAAAAAAAAAAHvmrL5PgJ30jsb6V5RSbtRi+wedsD8AAAAAAAAAAAAAAAAAAAAAAABGxoPRaK3W+pEkb5t66ewkD26xiwsb669Y95wAAAAAAAAAAAAAAAAAAAAAAADYbR6MtkdqrefXWkubJck3NnbzgTnve+ucw72wsf69y5xjKeXLknzN1EtXJ3n10l8kAAAAAAAAAAAAAAAAAAAAAAAAe8mD0VjVc5J8YWr90aWUeyyx3U811p9Xa72mu9MCAAAAAAAAAAAAAAAAAAAAAABgF3kwGiuptb4nybOmXjonycWllBset00p5ZFJLpp66dokT93ICQIAAAAAAAAAAAAAAAAAAAAAALBTPBiNdfzbJFdOrT8wyWtKKV82/aZSyg1KKT+e5L82tv+lWusHNnyOAAAAAAAAAAAAAAAAAAAAAAAA7ICz+z4Bdlet9YOllEcneVWScw5eflCSd5ZS/izJXyc5L8n9k9yqsflLk/ybbZ0rAAAAAAAAAAAAAAAAAAAAAAAAw+bBaKyl1npJKeVRSS7O4cPPSpIHHCzzPDfJD9Rav7D5MwQAAAAAAAAAAAAAAAAAAAAAAGAXnNX3CbD7aq0vT3LfJL+R5MoFb31zksfWWh9fa716KycHAAAAAAAAAAAAAAAAAAAAAADATji77xOgX7XWS5KUDvbzd0l+uJTyL5I8KMmdk9wmydVJPpTk0lrr+9Y9DgAAAAAAAAAAAAAAAAAAAAAAAPvJg9HoVK312iSv7fs8AAAAAAAAAAAAAAAAAAAAAAAA2C1n9X0CAAAAAAAAAAAAAAAAAAAAAAAAAB6MBgAAAAAAAAAAAAAAAAAAAAAAAPTOg9EAAAAAAAAAAAAAAAAAAAAAAACA3nkwGgAAAAAAAAAAAAAAAAAAAAAAANA7D0YDAAAAAAAAAAAAAAAAAAAAAAAAeufBaAAAAAAAAAAAAAAAAAAAAAAAAEDvPBgNAAAAAAAAAAAAAAAAAAAAAAAA6N3ZfZ8ADMA50yuXXXZZX+cBAAAAAAAAALCWOfc9mwCVcQAAIABJREFUnDPvfQCwRe7RAwAAAAAAAAB2nvvztqfUWvs+B+hVKeURSV7c93kAAAAAAAAAAGzAI2utL+n7JAAYL/foAQAAAAAAAAB7yv15G3JW3ycAAAAAAAAAAAAAAAAAAAAAAAAA4MFoAAAAAAAAAAAAAAAAAAAAAAAAQO9KrbXvc4BelVLOS/INUy/9bZJr19jl3ZK8eGr9kUneu8b+ANrSIWAItAjomw4BfdMhoG86BAyBFgF9G2uHzklyx6n119VaP9XXyQCAe/SAPaRDQN90COibDgF90yFgCLQI6JsOAX0ba4fcn7clZ/d9AtC3g7i8pKv9lVKaL7231voXXe0f4CQ6BAyBFgF90yGgbzoE9E2HgCHQIqBvI+/QpX2fAACc5h49YN/oENA3HQL6pkNA33QIGAItAvqmQ0DfRt4h9+dtwVl9nwAAAAAAAAAAAAAAAAAAAAAAAACAB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9M6D0QAAAAAAAAAAAAAAAAAAAAAAAIDeeTAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgd2f3fQKwh65I8tTGOsA26RAwBFoE9E2HgL7pENA3HQKGQIuAvukQAOwnn/FA33QI6JsOAX3TIaBvOgQMgRYBfdMhoG86xEaVWmvf5wAAAAAAAAAAAAAAAAAAAAAAAACM3Fl9nwAAAAAAAAAAAAAAAAAAAAAAAACAB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9M6D0QAAAAAAAAAAAAAAAAAAAAAAAIDeeTAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgdx6MBgAAAAAAAAAAAAAAAAAAAAAAAPTu7L5PgFmllOsluXuSeye5XZLzknwuyZVJ3pvkLbXWqzs+5vWTPCjJnZLcNslVST6c5NJa6/u7PNa2lFLuk+SrktwqyQ2SXJ7kg0neWGu9ps9z26ZSys2T3CfJPZJ8SZIbJvlkkiuS/Fmt9b09nt6MUspdMvm+3S7JTZJ8JMkHkryp1vr5Ps9tTHSoGzo0oUOsSou6oUUTWnTscYyPBXSoG8bZxK51iGHQoW7o0IQOHVVKuWMm1+IOSW6Z5Nwk1yb5VJK/yeSaXNHfGQ6DDnVDhyZ0iFVpUTe0aEKLWIUOdUOHJnRoPuMD6IPP+G5o+MSufca7N2YYdKgbOjShQ6xCh7qhQxM6dOxxjI8FdKgbxtnErnWIYdChbujQhA4d5f685WlRN7RoQotYhQ51Q4cmdIhV6FA3dGhCh+bb6fFRa7UMYMkkmE9K8tJM/uO+LliuS/KKJA/v4Li3SvKfk3x8wfHemOQxax7nrkkel+QXklyS5NONY7y/o+t40yRPTvKhBV/Pp5M8O8ndevx+b+x6JLl+km9J8p+SvOOEsVQPrtXPJblNzz8Dj03ypgXn+fGDsXrLFfZ90jU4aTnV57XZ4vdAh7q5jjqkQ9P7PNVBg6aXi/q8Rlv6PmhRN9dRi7Ro58dHj98DHermOu7EONOh3sbHjZM8OMlPJHlOkr9K8sXGsS7q6zr0veiQDunQxq7HPZI8LclrM/lLjZOuR03yP5P8aJIb9HVNevo+6FA311GHdGje/pdpz6LlVF/XpofvhRZ1cx21SIum93uqgw5NLxf1dY229H3QoW6uow7p0M6PD4vFsl+Lz/hxNdxn/Nzzdo9ez4sO6ZAOuUev70WHdEiH3J/X96JDOjTmDm1xfLg/b/H10aFurqMO6VBz3+7Pa3e9tKib66hFWjRv/8v0Z9Fyqq9rs+Xvgw51cx11SIem93uqgwZNLxf1dY229H3QoW6uow7p0M6PjxO/jr5PwFKT5HfX+ED7/SQXrHjchyX5aItj/U6SG7fY/4VJXnXCh0JnP5hJviaTp3Au+/VcneSHt/h93vj1OLgGn1hxLF2Z5Ht6GP83SfLcFud5eZJvaXmMVX++Ti+ntn1devg+6JAO6dAGOpTu/0P2cdu+Plv+XmiRFmnRBlq0S+Oj70WHdGiMHdrm+Mhk4vjtmUxIn3Ssi7Z1DYa06JAO6dDmxkeS71/j5+vdSb5mW9ekz0WHdEiHNjs+1vj5Or2c2tZ16XPRIi3Soo1dj1MddGh62dv56uiQDunQ6MeHxWLZz8Vn/Dga7jP+2HN2j94AFh3SIR1yj17fS3RIh3TI/Xk9LzqkQ2Ps0DbHR9yft8w10iEd0qENjY+4P6/NtdIiLdKiDY6PNX6+Ti+ntnVd+lp0SId0aGPX41QHDZpezFXr0DI/gzqkQzs5PtosZ4chuOcxr38oyXsyievZmTz17yuTnDX1nv89yetLKd9Qa7182QOWUi5M8qIk50y9XDN5yvpfJzk/yf2S3HLqz787yc1KKd9Ra/3iEof5qiTfvOw5raOU8pBMngZ6g8YffSDJ2zL5IbxDJj+81z/4sxsl+c+llLNqrb+2hdPcxvW4VZKbz3n92kwmty/P5Impt0jygIP/Pe38JM8updy61vrLGz7PJEkp5XpJfi/JtzX+6Ioklx6c690yGYvl4M8uSPLiUspDaq1v2MZ5joQOrUmHztChzflMJk+03mdatCYtOkOL5h9nF8ZH33RoTTsyznToqK2NjySPT3Lelo61q3RoTTp0hg6drGYyyX9ZJn+x8JlM/sXcuyS5Tw7HRzL52fyDUsrDa62v2/aJbpkOrUmHztAh1qFFa9KiM7Roc/Z9vlqH1qRDZ+jQHDsyPoD95DN+TTvScJ/xDTt2b8y+06E16dAZOrQ55jx0aCEdOkOH5h9nF8ZH33RoTTsyznToKPfnDYsOrUmHztChk7k/73hatCYtOkOLWJUOrUmHztChzTFXrUML6dAZOjTHjoyP5fX9ZDZLTZK35PApev8zyY8ludsx7719kqdn9ul7f5SkLHm8O2T2qYdvSHKvxvtukOSfZ/JDP/3epy15nCfNOc+a5JpMJjQ6eWJhJk9PbT4V8bIkD53z3psn+X8b7/3CvPdu4Pu88euRyQf56X38fZJnJPlHSc6d896S5FGZxKt5Thu/Hgfn8AuN4157MP7Pabzv3kne1Hjvx5LcdsnjTG/35oMx02Y5exvXo88lOqRDOrSRDmXyH14nNea45Q2N4128jWvS5xIt0iIt2tjvRLsyPvpedEiHxtihbY2Pg2N98phjfXDOn1206a99iIsO6ZAObXR8PDHJX2byu9fDk9x8wXvPT/IvM/kLkOnjfyjJeZu+Jn0uOqRDOrTx34em92Wu+vjrpEVapEWbuR7mq5e/VjqkQzo08vFhsVj2c/EZP46G+4yfe77u0RvIEh3SIR3aSIdizqPN90KHdEiHNvT70K6Mj74XHdKhMXZoW+Pj4Fjuzzv5GumQDunQ5saH+/OWv1ZapEVatNnfiab3Za56/jXSIR3Soc1cD3PVy18rHdIhHRr5+Gj1NfV9ApaaJH+aydP2HtBimx+ZM+C/a8ltn9HY7o1Jbrjg/d8x5wfrzksc50kH0b80yW8m+cEk98/kiYEXdviD+dzGvt6T5NYnbPOvG9v8RZLrbfj7vPHrcRDujyb5V0luvOQ2t0jyzsbx35UlfxFY43rcNbO/FDxywfvPzexfNP7Gksea3uaSTX5du7rokA7p0GY7tMK53T7JdY1jff0mr8cQFi3SIi3aXIt2ZXz0veiQDo20Q1sZHwfH+mQm/9LCy5I89eA6XXDwZ5c0jnXRJr/uoS46pEM6tNHxcf0VtvmqJFc1zuGnNnk9+l50SId0aOO/D03v65JNfl27vGiRFmnRZlu0wrmNbr5ah3RIh4wPi8Wyn4vP+HE03Gf8zHHdozegRYd0SIc226EVzs2cx3Lb6NDhcXTo8Bg6tKPjo+9Fh3RopB1yf96AFh3SIR1yf94QFi3SIi1yj17fiw7pkA65P6/vRYd0SIeMj1ZfU98nYKlJcmrF7Z7fGFwvW2KbezQ+GD+X5B5LbHdx41i/vcQ2Nz/uA6HDUN01kycOTu/rwUtu+4eN7b5vw9/nbVyPWy0b7MZ2XznnOn71hq/HsxrHe+YS29zzYMye3ubzSe66xHbTx7lkk1/Xri46pEM6tNkOrXBuT26c219t8loMZdEiLdKizbRol8ZH34sO6dBIO7Tx6zG1v2P/Bd248er0dTi14nY6pEPN/ehQd+f3c41zePO2z2HLX++pFbfTIR1q7keH5u9vel+XbPLr2uVFi7RIizZzPdY4t9HNV+uQDumQ8WGxWPZz8Rk/job7jJ85pnv0BrTokA7p0GY7tMK5mfNYfjsd0qHmfnRoR8dH34sO6dBIO+T+vAEtOqRDOrSZ67Hm+Y3q/ryDr/nUittpkRY196NF8/c3va9LNvl17eqiQzqkQ5u5Hmucm7nq5bfTIR1q7keHdnR8tFnOCr2rtb5/xU1/rbH+jUts8/gk15taf0Gt9T1LbPcfGuvfWUq54aINaq1X1lqvWWLf63h4cmQcv7nW+oYlt/3Fxvr3dnNK823jetRar6i1Xr3Cdn+epHndlhlPKymlnJvksY2Xm2NsRq31r5K8aOqlszMZ06xJh9aiQ0ePoUNrKqWUzI6FZ3R5jKHSorVo0dFjaNFROzM++qZDa9mZcaZDM8fcxvg4fayPbOM4u0yH1qJDR4+hQ915eWP97r2cxZbo0Fp06OgxdIiVadFatOjoMbRoTWOdr9ahtejQ0WPo0FE7Mz6A/eQzfi0703Cf8YeGfG/MWOnQWnTo6DF0aE3mPFrTIR1qHkOHjtqZ8dE3HVrLzowzHZo5pvvzBkSH1qJDR4+hQ90Z1f15iRatSYuOHkOLWIkOrUWHjh5Dh9Zkrro1HdKh5jF06KidGR9teDDabru0sX5uKeX8E7Z5VGP9mcscqNb6riR/PPXSjZN88zLbbtg/bKy/qsW2f5Dk2qn1B5ZSbrv+Ke2s5ni63QaP9S1JbjS1/j9qrX+55LbNMfvobk6JFemQDnVJhya+Icndptavy+RfrON4WqRFXdrHFhkfm6dDxlmXttkh9ocO6VCXdOioTzTWb9rLWQyfDulQl3SIVWmRFnVJiybMV7ejQzrUpX3skPEB7Cqf8RrepX38+2g2T4d0qEs6NGHOox0d0qEu7WOHjI/N0yHjrEv7OPfK5umQDnVJh45yf97ytEiLuqRFrEKHdKhLOjRhrrodHdKhLu1jh/ZyfHgw2m67bs5r5xz35lLKbZJ8ZWP7N7Y43iWN9Ye12HZT7tBYf8eyG9ZaP5fksqmXzsowvqa+NMfTsWOpA9/aWL+kxbZ/lKPner9SygVrnxGr0iEd6pIOTTyxsf6yWuvlHe5/H2mRFnVpH1tkfGyeDhlnXdpmh9gfOqRDXdKho+7cWP9wL2cxfDqkQ13SIValRVrUJS2aMF/djg7pUJf2sUPGB7CrfMZreJf28e+j2Twd0qEu6dCEOY92dEiHurSPHTI+Nk+HjLMu7ePcK5unQzrUJR06yv15y9MiLeqSFrEKHdKhLunQhLnqdnRIh7q0jx3ay/HhwWi77e6N9euSfGzB++/bWH9brfXqFsd7U2P9Pi223ZQvaax/suX2zfd/+Rrnsuua4+kjGzxWcyz+j2U3PBizb2+8PISxOFY6pENdGn2HSinnJXlM4+VndLHvPadFWtSlfWyR8bF5OmScdWmbHWJ/6JAOdUmHjvqnjfXX9nIWw6dDOtQlHWJVWqRFXRp9i8xXr0SHdKhL+9gh4wPYVT7jNbxL+/j30WyeDulQl0bfIXMeK9EhHerSPnbI+Ng8HTLOurSPc69sng7pUJd06Cj35y1Pi7SoS1rEKnRIh7o0+g6Zq16JDulQl/axQ3s5PjwYbbc9trH+llrrFxe8/96N9cvmvut47z1hf324trF+g5bbN98/hK9p60opN0vy0MbLf7LBQ96rsb7NsXinUsozSyl/UUq5spRybSnlowfrv1NK+cFSSjP4HE+HdKgTI+vQIv84yblT6x9J8oqO9r3PtEiLOrHHLTI+Nk+HjLNO9NAh9ocO6VAndOioUsqPJvmeqZeuS/IrPZ3O0OmQDnViZB0yV909LdKiToysRYuYr25Ph3SoE3vcIeMD2FU+4zW8E3v899HzmPfolg7pUCdG1qFFzHm0p0M61Ik97pDxsXk6ZJx1Yo/nXtk8HdKhTujQUe7Pa02LtKgTI2uRuepu6ZAOdWJkHVrEXHV7OqRDndjjDu3l+PBgtB1VSrlJkic2Xn7hCZs1n1j4Ny0P+4HG+i1KKTdvuY+ufbyxftuW2zff/6VrnMsu+6EkN5pa/1Q29HT9g/9IbP6HYtux2Hz/PVpse5ckF2US4fOTXD/JrQ/WvzvJ05P8TSnlPx78nHEMHTpDh7oxpg4t0vyZelat9bqO9r2XtOgMLerGvrbI+NggHTrDOOvG1jrE/tChM3SoG6PuUCnlxqWULy2lPKGU8rok/6nxlp+utb6tj3MbMh06Q4e6MaYOmavukBadoUXdGFOLFjFf3YIOnaFD3djXDhkfwM7xGX+GhndjX/8+eh7zHh3RoTN0qBtj6tAi5jxa0KEzdKgb+9oh42ODdOgM46wb+zr3ygbp0Bk61I1Rd8j9eavTojO0qBtjapG56o7o0Bk61I0xdWgRc9Ut6NAZOtSNfe3QXo4PD0bbXT+f5DZT659M8lsnbHN+Y/3v2hyw1npVkmsaL5/XZh8b8K7G+tcuu2Ep5U5Jbtd4ue+vZ+tKKaeS/JvGy79aa20+DbIrzXH4mVrr1S330Ry7XX/fbpzkSUn+rJRyn473vU90aEKH1qRDE6WUL0/ygMbLz1h3vyOgRRNatKY9b5HxsVk6NGGcramHDrE/dGhCh9Y0tg6VUs4vpdTpJclVSf4yycVJ/uHU269K8oO11l/s4VR3gQ5N6NCaxtahJZmrXp4WTWjRmrRownz1SnRoQofWtOcdMj6AXeQzfkLD17Tnfx+9KvMey9GhCR1akw5NmPNYiQ5N6NCa9rxDxsdm6dCEcbamPZ97ZbN0aEKH1jS2Drk/r3NaNKFFaxpbi5Zkrno5OjShQ2vSoQlz1SvRoQkdWtOed2gvx4cHo+2gUsqjkvxY4+Un11o/ccKmzacVf3aFwze3uekK++jS6xrrjyml3GjuO2f90zmv9f31bFUp5Zwkv5ejX/f7k/w/GzxsX+PwuiSXJPnZJI9Icv9M/tWm+yV5ZJJfzOwvM/dM8ppSyp1XOMe9pkNH6NAaRtahkzSfVP26WutlHex3b2nREVq0hhG0yPjYEB06wjhbQ08dYg/o0BE6tAYdOtZHkzw5yV1qrb/Z98kMkQ4doUNrGFmHzFV3TIuO0KI1jKxFJzFf3YIOHaFDaxhBh4wPYKf4jD9Cw9cwgr+Pnmbeo0M6dIQOrWFkHTqJOY8WdOgIHVrDCDpkfGyIDh1hnK1hBHOvbIgOHaFDa9ChY7k/bwladIQWrWFkLTJX3SEdOkKH1jCyDp3EXHULOnSEDq1hBB3ay/HhwWg7ppTylUn+S+PlVyf59SU2b4a7+XTKZTTD3dzntr0sk6d5nnZ+kqectFEp5Y5JfnLOH12vlHJuN6e2E34ryf82tf6FJE9Y4V9DaqOPcfizSW5fa/3GWuv/VWv9/VrrpbXWy2qtb621vqTW+n8muXOS/ztJndr2NkleUEopK5znXtKhGTq0nrF0aKGDX6S/p/Gyp3svoEUztGg9+94i42MDdGiGcbaePjrEjtOhGTq0Hh2a74Ik/yzJD5dSbtb3yQyNDs3QofWMpUPmqjumRTO0aD1jadFC5qvb0aEZOrSefe+Q8QHsDJ/xMzR8Pfv+99GnmffokA7N0KH1jKVDC5nzaEeHZujQeva9Q8bHBujQDONsPfs+98oG6NAMHVqPDs3n/rwTaNEMLVrPWFpkrrpDOjRDh9Yzlg4tZK66HR2aoUPr2fcO7eX48GC0HVJKuVMmA3E6lh9I8j211jp/q4W2tc3G1Fr/PsmvNl7+yVLKvzhum1LKHZK8Msl5x+22o9MbtFLKv0vyTxov/3St9fVbPpWNj8OD/3htPr173vuuqbX+dJIfb/zR/ZP84zbH3Fc6NEuHVjemDi3hkUluMbX+qSTP7/gYe0OLZmnR6sbQIuOjezo0yzhb3YA6xA7RoVk6tLoRd+jTSe4ytdwtkzmgRyf5j0muOHjfHZP8XJK3l1K+uofzHCQdmqVDqxtTh8xVd0uLZmnR6sbUoiWYr16SDs3SodWNoUPGB7ArfMbP0vDVDegz3j16O0SHZunQ6sbUoSWY81iSDs3SodWNoUPGR/d0aJZxtroBdYgdokOzdGh1I+6Q+/PWpEWztGh1Y2qRueru6NAsHVrdmDq0BHPVS9KhWTq0ujF0aF/Hx9l9nwDLKaXcOsl/T3L7qZcvT/LQWusV87eacVVjfZUn8zW3ae6zD09L8rAcPpmxJPmVUspjM3k66lszeRLn7Q7e98M5/PD7YJI7TO3rmlrrzJM+Symnlj2ZWuv7W519D0opT8rkqdfTfrnW+gtLbn9q2WPNuR6DH4e11l8rpXxzkkdMvfwjSX63y+PsGh1aSIda0qEZT2ys/26ttfkUaaJFJ9CilkbWoo2Pj7HQoYV0qKWeO8SO0qGFdKilMXeo1vrFJO+f80eXJnlhKeVnk/yHJD928PqdkrymlPKgWus7tnOWw6RDC+lQS2Pu0DLMVR9PixbSopa0aIb56iXo0EI61NLIOmSuGhg0n/EL+YxvaWR/H92aeY/5dGghHWpJh2aY81iCDi2kQy2NrEPmPDqiQwvpUEsjm3ulIzq0kA61NOYOuT9vPVq0kBa1NOYWLcNc9Xw6tJAOtaRDM8xVL0GHFtKhlkbWob2bq/ZgtB1QSvmSJK9Jcs+plz+W5CG11ve02NVehrvWem0p5dFJXp7kK6b+6MEHy3E+nskvDq+aeu2Tx7z3fS1OqbR479aVUn4gyS83Xv71Wuu/arGbda7HrozDn8/R/5D92lLK+bXW48bIXtOhxXSoHR06qpRyxyQPbbz8jFX3t8+0aDEtamdsLdrS+Nh7OrSYDrUzgA6xg3RoMR1qR4cWq7V+JsmPl1I+n+QnDl6+WZL/Ukr5Byv+C0M7T4cW06F2dGhp5qobtGgxLWpHi44yX70cHVpMh9oZW4fMVQND5jN+MZ/x7QzgM35XxqF5jyk6tJgOtaNDR5nzWI4OLaZD7YytQ+Y8uqFDi+lQOwPoEDtIhxbToXZ0aDH35x1PixbTona0aGnmqqfo0GI61I4OHWWuejk6tJgOtTO2Du3jXPVZfZ8Ai5VSzkvy6iRfPvXylZk8yfIvWu7uU431W7U8l5tkNtyDGMi11g8leWCSpyf5/BKbvDbJA5Jc3Xj98o5PbVBKKf8kyW/kaEyfmeRHt3gazXF4o1LKjVvu49aN9U2Mwz/J5GfttOslufcGjjN4OrQcHVqODs11UY7+TvbntdY/W2N/e0mLlqNFyxlri4yP9ejQcoyz5QykQ+wYHVqODi1Hh1p5cpIPT63fL8lDejqXXunQcnRoOTrUirnqKVq0HC1ajhbNdVHMVy+kQ8vRoeWMtUPGBzBEPuOXo+HLGchn/NDujTmOeY8DOrQcHVqODs11Ucx5LKRDy9Gh5Yy1Q8bHenRoOcbZcgbSIXaMDi1Hh5ajQ624P2+KFi1Hi5ajRa2Yqz6gQ8vRoeXo0FwXxVz1Qjq0HB1azlg7tG/jw4PRBqyUctMkr0zyD6Ze/nSSb621vnWFXTaffnnnlts33/+JWuuVc9/Zg1rr1bXWf5bkSzOZEHltkg8m+WySv0/yriTPyuQpqv+o1vr+JPdq7OYtWzvhLSulfFcmkZ7+uX9Oku/f5hP0a60fz9H/QEySO7XcTXMstnmy61JqrV9M8jeNl1v9srMPdKgdHVpMh2aVUkqS72287OneDVrUjhYtNvYWGR+r0aF2jLPFhtIhdosOtaNDi+lQO7XWzyZ5UePlb+3jXPqkQ+3o0GI61I656kNa1I4WLaZFs8xXn0yH2tGhxcbeIeMDGBKf8e1o+GJD+Ywf0r0xi5j3mNChdnRoMR2aZc7jZDrUjg4tNvYOGR+r0aF2jLPFhtIhdosOtaNDi+lQO+7PO6RF7WjRYlrUjrnqCR1qR4cW06FZ5qpPpkPt6NBiY+/QPo2Ps/s+AeY7+NdoXp7ka6devirJw2qtf7Libt/VWL97y+3v2lh/54rnsVG11vcledrBcpKva6z/8TH7LPNe3xWllMckeXYmT6k+7b8mecLBf7C10sH1eFcmT5g87e6ZHZ+LNMdim23b+GxjvflE172mQ6vToVk6dKxvSnKXqfXPZfJLNQe0aHVaNEuLDm1ifOwrHVqdDs0aYIfYATq0Oh2apUMre3djve3PzE7TodXp0CwdWtmo56oTLVqHFs3SomOZr15Ah1anQ7N06JC5aqBvPuNX5zN+1gA/44dyb8xJRj3voUOr06FZOnQscx4L6NDqdGiWDh0y57E8HVqdDs0aYIfYATq0Oh2apUMrG/X9eYkWrUOLZmnRysxV69BKdGiWDh3LXPUCOrQ6HZqlQ4f2Ya76rJPfwraVUs5N8tIkD556+TNJHl6Dc7dAAAAPuklEQVRrfdMau35HY/0rSik3arH9g07Y3045eKrqNzVefl0f57JJpZRHJHlujj4I8UVJHl9r/UI/ZzUzdpqBPNbBLzVfccL+unLLxvrHNnScwdGh7dAhHUryfY31F9RaP7HivvaOFm2HFmnRCccZxfg4jg5tx1jG2UA7xMDp0HbokA4t4fON9Rv0chY90KHt0CEdWsJo56oTLdoWLdKimK8+lg5thw7p0CJjGR/AdvmM346xNHygn/GD//voA6Od99Ch7dAhHYo5j2Pp0HbokA6dcJxRjI/j6NB2jGWcDbRDDJwObYcO6dASRnt/XqJF26JFWrQEc9U6tFE6pEMxV30sHdoOHdKhRYY8PjwYbWBKKTdM8pIkF069fE2SR9RaX7/OvmutH0nytqmXzs7RD4eTXNhYf8U65zMA35Tk1NT662qt7+npXDailPJtmTy58vpTL78syeNqrdf1c1ZJklc21i9sse3X5+iH0KW11o+ufUYNpZRbZvYprh/u+jhDpENbpUP96b1DpZTzkzy68fIz2u5nX2nRVmlRf3pv0RL2fnwcR4e2au/H2YA7xIDp0FbpECe5Q2N9E793DY4ObZUOcawxz1UnWrRlWjRi5quPp0NbpUMssvfjA9gun/FbtfcNH/Bn/OD/PnrM8x46tFU61J/eO2TO43g6tFU61J/eO7SEvR8fx9Ghrdr7cTbgDjFgOrRVOsRJRnl/XqJFW6ZFHMtctQ5tiQ6NmLnq4+nQVukQiwx2fHgw2oCUUs5J8oIkD5l6+XNJvqPW+gcdHeaFjfXvXfLcvizJ10y9dHWSV3d0Tn35qcb603s5iw0ppTw0yX9Lcs7Uy69O8pha67X9nNUZr0ry2an1rzsYY8u4qLHeHNNd+a4cbeRHk7xrQ8caDB3aOh3qzxA69N1Jbji1/v4kf7jivvaKFm2dFvVnCC06yV6Pj+Po0Nbt9TgbeIcYKB3aOh3iJN/cWB/E5P4m6dDW6RCLjHKuOtGiHmjRuJmvnkOHtk6HWGSvxwewXT7jt26vGz7wz/hd+PvoUc576NDW6VB/htAhcx5z6NDW6VB/htChk+z1+DiODm3dXo+zgXeIgdKhrdMhTjK6+/MSLeqBFrGIuepDOrQ5OjRu5qrn0KGt0yEWGez48GC0gSilnJ3keUkeNvXy55M8ttb6qg4P9ZwkX5haf3Qp5R5LbNccxM+rtV7T3WltVynlCUkeOvXSWzN58uNeKKV8Q5IX5+gvSH+YyS8Bn+vnrA7VWj+T5PmNl5tjbEYp5Z5JHjX10nVJfrfDUzt9nAuS/Gzj5d+vtdaujzUkOrRdOtSvgXTo+xrrv73vnVmGFm2XFvVrIC1adJy9Hh/H0aHt2vdxNvQOMUw6tF06xElKKQ9P8oDGyy/u41y2RYe2S4dYZKxz1YkWbZsWEfPVM3Rou3SIRfZ9fADb5TN+u/a94UP/jN+Bv48e5byHDm2XDvVrIB0y59GgQ9ulQ/0aSIcWHWevx8dxdGi79n2cDb1DDJMObZcOcZIx3p+XaNG2aRGLmKvWoW3QIWKueoYObZcOscjQx4cHow1AKeV6mQT1kVMvX5fkcbXWl3Z5rFrre5I8a+qlc5JcXEq54TGbpJTyyBz9F2+uTfLULs9rXQcffMu+99FJfnPqpeuSfF+t9brOT6wHpZSvS/LSJOdOvfz6JN9ea/3s/K168ZRMfjk57aJSyiOOe/PBGH1mjj6h8xm11vcu2OZLSynf3uakSim3yeT6XTD18rVJfr7NfnaNDq1Phw7p0MlKKV+V5P5TL30xycVt97NvtGh9WnRIi+Zua3ycQIfWZ5wd2qEOMSA6tD4dOqRDh0opDyilPOrkd85s99VJnt14+fW11rd3c2bDo0Pr06FDOnTIXHU7WrQ+LTqkRSczXz1Lh9anQ4d0aJbxAfTFZ/z6NPzQDn3GPyXu0RsMHVqfDh3SoZOZ85ilQ+vToUM6NHdb4+MEOrQ+4+zQDnWIAdGh9enQIR065P68drRofVp0SIsOmateng6tT4cO6dDJzFXP0qH16dAhHZq1b+Nj6S+GjfrtJN/ZeO1nklxaSjnVcl+XL/GkyX+byb9gc/OD9QcmeU0p5ftrrX95+k2llBsk+cEkv9TY/pdqrR9Y5mRKKXfI/HF2m8b62Qu+1qtqrR874VBvL6W8LMl/S/LHtdYvzjmX+yb56SSPb/zRz9RaLz1h/53Y9PUopdwvySuS3GTq5Xcn+dEkty6ltDnda2qtl7fZoI1a61+XUn41yU9Ovfz8Usq/TPL/1VqvPf1iKeVeSX4rk7F62sdz8i8Qt03yklLK25P8TpIXHvzyMqOUctMkT8jkyd4XNP7439da/3qJL2uX6ZAO6dBE1x06zhMb66+qtf7tivvaJ1qkRVo0sakW7cT46JkO6dDoOpRsb3yUUm6S5JbH/HFzQvmWC471wSFNrnVMh3RIh47qanzcIckLSinvyOQv0F6U5N21zv9Xlkop907yQ0l+pHFe1xy8ts90SId06Kiuxoe56na0SIu06Kiux0eT+epZOqRDOnTUKMcHsJd8xo+k4T7jD7lHb3B0SId0aMI9ev3RIR3SoQn35/VHh3RodB1K3J83MDqkQzp0lPvz+qFFWqRFR7lHb/t0SId06Cj3522fDumQDh01yvGxtFqrpeclSe1wuXDJY16Y5HONbb+Y5E+T/F6SVyb5uzn7//0k12vxtb2/g6/p4iWO87Gp9/99kjdl8kP6nCSvXnAe/27L3+uNXo9M/kWjrsbSJVu4HtdL8vI5x/5oJh9Az0vyloOxOf3nn0vy9UuO8+a+P5nkDZlMsD07yQsPjvH5Y67D0/tuxJbGpg7pkA5toEPHHPMGmdwoMb2/x/TZgKEsHY4dLdKip3Q4li7ZwvXYSot2ZXz0uXQ4bnRo4ONs09cju9ehbY2Pizq6Jqf67sUGvxc6pEM6tJnr8R1z3v/pg/HxkkxugHhektckufyY/X8myUP67sQWvhc6pEM6tJnrceGc95urPv56aZEWadEGx0fjmOar518XHdIhHTI+LBbLHi4dNtln/MAbvunrkd37jHeP3kCWDseNDunQUzocS5ds4Xq4R28gS4fjRod06CkdjqVLtnA93J83kKXDcaNDAx9nm74e2b0ObWt8XNTRNTnVdy82+L3QIR3Soc1cD/fntft+aJEWadFmrseFc95vrnr+tdIhHdKhDY6PxjHNVc+/LjqkQzpkfCy9zHuSHCNQa72klPKoJBcnudXByyXJAw6WeZ6b5AdqrV/Y/Bmu5SZJvu6E91yZ5Edqrf//Fs6HY9Rav1BK+c5M/mWlx0390a2TfOsxm/1dkifUWv9oxcOel+RBS7zv6iQ/UWv9zRWPwwl0SIeGoKcOPSrJl0ytX5HJRD890CItGoKeWmR8DIQOGWfQNx3SoRG7aU4eH6e9OckP1VrftsHzGS0d0qERM1c9IFqkRSNmvnogdEiHRsz4APaaz3gNHwL36I2bDunQELhHb9x0SIeGwP1546ZDxhn0TYd0aMTcnzcgWqRFI2aueiB0SIdGzFz1QOiQDo3Yzo+Ps/o+AfpTa315kvsm+Y1MBupx3pzksbXWx9dar97KybX3K0kuzeSpnIv8bZKfS3K3of5Qjk2t9apa63cl+T8yGWvH+USSX09y31rrK5fc/buSPC3JG5N8dslt/irJz2TyL5z4j9gN0yEdGoINd2ieJzbWn11r/fwa+2NNWqRFQ7ClFhkfA6VDxhn0TYd0aAT+MJN/Ffe5ST645DafSfL8JN+e5IFuutosHdKhETBXvQO0SItGynz1gOiQDo2I8QGMis94DR8C9+iNmw7p0BC4R2/cdEiHhsD9eeOmQ8YZ9E2HdGgE3J+3A7RIi0bAXPXA6ZAOjZS56gHRIR0akb0aH6XW2vc5MACllHMyeerxnZPcJpOnG38oyaW11vf1eW5tlFJuluR+Se6SyZM6b5jJf8B8KMmf11rf2ePpsYRSyl2S3D/J7ZLcOMnlST6Q5I211mvX2O9ZSe6R5G5Jbp/k/ByOjyuTfCTJn9Zar1jrC2BlOsRQbKpD7AYtYig22SLjY9h0COibDjEGpZQLktwrk3F+iyQ3SvL5JJ9O8vEk70jy7h34l332kg6x78xV7wYtAvqmQ4yB8QGMkc94hsI9euOlQwyFe/TGS4cYCvfnjZcOAX3TIcbA/XnDp0XsO3PVw6dDQN90iDHYl/HhwWgAAAAAAAAAAAAAAAAAAAAAAABA787q+wQAAAAAAAAAAAAAAAAAAAAAAAAAPBgNAAAAAAAAAAAAAAAAAAAAAAAA6J0HowEAAAAAAAAAAAAAAAAAAAAAAAC982A0AAAAAAAAAAAAAAAAAAAAAAAAoHcejAYAAAAAAAAAAAAAAAAAAAAAAAD0zoPRAAAAAAAAAAAAAAAAAAAAAAAAgN55MBoAAAAAAAAAAAAAAAAAAAAAAADQOw9GAwAAAAAAAAAAAAAAAAAAAAAAAHrnwWgAAAAAAAAAAAAAAAAAAAAAAABA7zwYDQAAAAAAAAAAAAAAAAAAAAAAAOidB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9M6D0QAAAAAAAAAAAAAAAAAAAAAAAIDeeTAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgdx6MBgAAAAAAAAAAAAAAAAAAAAAAAPTOg9EAAAAAAAAAAAAAAAAAAAAAAACA3nkwGgAAAAAAAAAAAAAAAAAAAAAAANA7D0YDAAAAAAAAAAAAAAAAAAAAAAAAeufBaAAAAAAAAAAAAAAAAAAAAAAAAEDvPBgNAAAAAAAAAAAAAAAAAAAAAAAA6J0HowEAAAAAAAAAAAAAAAAAAAAAAAC982A0AAAAAAAAAAAAAAAAAAAAAAAAoHcejAYAAAAAAAAAAAAAAAAAAAAAAAD0zoPRAAAAAAAAAAAAAAAAAAAAAAAAgN55MBoAAAAAAAAAAAAAAAAAAAAAAADQOw9GAwAAAAAAAAAAAAAAAAAAAAAAAHrnwWgAAAAAAAAAAAAAAAAAAAAAAABA7zwYDQAAAAAAAAAAAAAAAAAAAAAAAOidB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9O5/AXpnFOxFOo7tAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "from uuid import UUID\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor\n", + "\n", + "\n", + "location_names = {\n", + " UUID('53998a51-60de-48ae-b71a-5c37cd1455f2'): \"Loft\",\n", + " UUID('1bc63cda-e223-48bc-93c2-c1f651779d69'): \"Living Room\",\n", + " UUID('ea0683de-6772-4678-bfe7-6014f54ffc8e'): \"Office\",\n", + " UUID('5aaa901a-7564-41fb-8eba-50cdd6fe9f80'): \"Outside\",\n", + "}\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 10), dpi=300)\n", + " configs = get_known_configs().values()\n", + " for i, config in enumerate(configs, start=1):\n", + " plot = figure.add_subplot(2, 2, i)\n", + " coros.append(plot_sensor(config, plot, location_names))\n", + " await asyncio.gather(*coros)\n", + "\n", + "display(figure)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9f576f5bb8e34cb8ab1d3c09f770d027", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(DatePicker(value=None, description='Start date'), DatePicker(value=None, description='En…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "from uuid import UUID\n", + "import functools\n", + "from concurrent.futures import ThreadPoolExecutor\n", + "\n", + "import ipywidgets as widgets\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor\n", + "\n", + "\n", + "def wrap_coroutine(f):\n", + " @functools.wraps(f)\n", + " def run_in_thread(*args, **kwargs):\n", + " loop = asyncio.new_event_loop()\n", + " wrapped = f(*args, **kwargs)\n", + " with ThreadPoolExecutor(max_workers=1) as pool:\n", + " task = pool.submit(loop.run_until_complete, wrapped)\n", + " return task.result()\n", + " return run_in_thread\n", + "\n", + "@wrap_coroutine\n", + "async def plot(*args, **kwargs):\n", + " location_names = {\n", + " UUID('53998a51-60de-48ae-b71a-5c37cd1455f2'): \"Loft\",\n", + " UUID('1bc63cda-e223-48bc-93c2-c1f651779d69'): \"Living Room\",\n", + " UUID('ea0683de-6772-4678-bfe7-6014f54ffc8e'): \"Office\",\n", + " UUID('5aaa901a-7564-41fb-8eba-50cdd6fe9f80'): \"Outside\",\n", + " }\n", + "\n", + " with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 10), dpi=300)\n", + " configs = get_known_configs().values()\n", + " for i, config in enumerate(configs, start=1):\n", + " plot = figure.add_subplot(2, 2, i)\n", + " coros.append(plot_sensor(config, plot, location_names, *args, **kwargs))\n", + " await asyncio.gather(*coros)\n", + " return figure\n", + "\n", + "\n", + "start = widgets.DatePicker(\n", + " description='Start date',\n", + ")\n", + "end = widgets.DatePicker(\n", + " description='End date',\n", + ")\n", + "out = widgets.interactive(plot, collected_after=start, collected_before=end)\n", + "display(out)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "60091fa7d9ea415985ec53937e422b4a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(DatePicker(value=None, description='Start date'), DatePicker(value=None, description='En…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from uuid import UUID\n", + "import ipywidgets as widgets\n", + "from apd.aggregation.analysis import interactable_plot_multiple_charts, configs\n", + "\n", + "location_names = {\n", + " UUID('53998a51-60de-48ae-b71a-5c37cd1455f2'): \"Loft\",\n", + " UUID('1bc63cda-e223-48bc-93c2-c1f651779d69'): \"Living Room\",\n", + " UUID('ea0683de-6772-4678-bfe7-6014f54ffc8e'): \"Office\",\n", + " UUID('5aaa901a-7564-41fb-8eba-50cdd6fe9f80'): \"Outside\",\n", + "}\n", + "\n", + "start = widgets.DatePicker(\n", + " description='Start date',\n", + ")\n", + "end = widgets.DatePicker(\n", + " description='End date',\n", + ")\n", + "\n", + "plot = interactable_plot_multiple_charts(location_names=location_names)\n", + "out = widgets.interactive(plot, collected_after=start, collected_before=end)\n", + "display(out)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "08a4d937037b45bda2298879df7f80b6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(DatePicker(value=None, description='Start date'), DatePicker(value=None, description='En…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import datetime\n", + "import uuid\n", + "import ipywidgets as widgets\n", + "from apd.aggregation.analysis import Config, configs, interactable_plot_multiple_charts, draw_map, get_map_cleaner_for\n", + "from apd.aggregation.database import DataPoint\n", + "from apd.aggregation.utils import merc_x, merc_y\n", + "\n", + "start = widgets.DatePicker(description='Start date')\n", + "end = widgets.DatePicker(description='End date')\n", + "\n", + "def get_literal_data():\n", + " # Get manually entered temperature data, as our particular deployment\n", + " # does not contain data of this shape\n", + " raw_data = {(53.8667, -1.3333): -1, (53.35, -2.2833): 1, (52.45, -1.7333): 3, (51.5, -0.1333): 6, (51.55, -2.5667): 5, (54.9667, -1.6167): -1, (55.9667, -3.2167): -1, (54.7667, -1.5833): 0, (53.7667, -0.3): 1, (53.7667, -3.0167): 0, (51.4833, -3.1833): 4, (53.2667, -3.5167): 2, (52.0833, -2.8): 2, (52.0167, -0.6): 2, (52.6667, 1.2667): 5, (50.4333, -4.9833): 9, (50.35, -4.1167): 10, (50.5167, -2.45): 9, (50.8333, -1.1667): 9, (56.45, -5.4333): 4, (57.5333, -4.05): -2, (54.5167, -3.6167): 3, (53.0833, 0.2667): 4, (51.35, 1.3333): 7, (50.8833, 0.3167): 8, (58.45, -3.1): 3, (50.1, -5.6667): 9, (58.2167, -6.3333): 4, (55.6833, -6.25): 7}\n", + " now = datetime.datetime.now()\n", + " async def points():\n", + " for (coord, temp) in raw_data.items():\n", + " deployment_id = uuid.uuid4()\n", + " yield DataPoint(sensor_name=\"Location\", deployment_id=deployment_id, collected_at=now, data=coord)\n", + " yield DataPoint(sensor_name=\"Temperature\", deployment_id=deployment_id, collected_at=now, data=temp)\n", + " async def deployments(*args, **kwargs):\n", + " yield None, points()\n", + " return deployments\n", + "\n", + "def draw_map_with_gb(plot, x, y, colour):\n", + " # Draw the map and add an explicit coastline\n", + " gb_boundary = [(-2.6653539699999556, 51.617254950000074), (-2.6937556629999335, 51.59617747600004), (-2.71312415299991, 51.58661530200004), (-2.760487433999913, 51.579779364000046), (-2.7980850899999155, 51.56350332200009), (-2.816395636999914, 51.555568752000056), (-2.8587133449999556, 51.546128648000035), (-2.943348761999914, 51.54254791900007), (-2.9562882149999155, 51.54572174700007), (-2.9641007149999155, 51.552801825000074), (-2.969471808999913, 51.559881903000075), (-2.9746801419999542, 51.56297435100004), (-2.984038865999935, 51.55853913000004), (-3.0102432929999168, 51.53803131700005), (-3.0156957669999542, 51.53164297100005), (-3.0737198559999115, 51.50836823100008), (-3.0764867829999503, 51.50775788000004), (-3.088937954999949, 51.505072333000044), (-3.105620897999927, 51.49721914300005), (-3.1317032539999445, 51.48041413000004), (-3.1350805329999503, 51.47630442900004), (-3.1409399079999503, 51.46478913000004), (-3.1453751289999445, 51.45994700700004), (-3.1524145169999542, 51.45718008000006), (-3.1666560539999296, 51.45600006700005), (-3.1723933579999084, 51.45327383000006), (-3.1727188789999445, 51.453111070000034), (-3.160064256999931, 51.43183014500005), (-3.167144334999932, 51.41046784100007), (-3.1848038399999155, 51.39760976800005), (-3.204009568999936, 51.401597398000035), (-3.218861456999946, 51.402777411000045), (-3.289418097999942, 51.38422272300005), (-3.539173956999946, 51.398504950000074), (-3.557443813999953, 51.40509674700007), (-3.5753067699999406, 51.420436916000085), (-3.6047257149999155, 51.44570547100005), (-3.6631973949999406, 51.476223049000055), (-3.6769913399999155, 51.47703685100004), (-3.695423956999946, 51.47150299700007), (-3.717925584999932, 51.478583075000074), (-3.7376195949999556, 51.49087148600006), (-3.748036261999914, 51.50092194200005), (-3.7494197259999282, 51.50535716400009), (-3.747670050999943, 51.507025458000044), (-3.7445369129999335, 51.50763580900008), (-3.741851365999935, 51.50836823100008), (-3.7493383449999556, 51.52806224200003), (-3.7519018219999225, 51.53306712400007), (-3.758941209999932, 51.54677969000005), (-3.770130988999938, 51.56329987200007), (-3.782215949999909, 51.57664622600004), (-3.7902725899999155, 51.58197663000004), (-3.8077286449999406, 51.589178778000075), (-3.8169652989999463, 51.59650299700007), (-3.8326716789999296, 51.61554596600007), (-3.8416235019999476, 51.621527411000045), (-3.8548884759999282, 51.62384674700007), (-3.8867895169999542, 51.62140534100007), (-3.9623917309999115, 51.61562734600005), (-3.9766332669999542, 51.61188385600008), (-3.989979620999918, 51.60651276200008), (-3.998768683999913, 51.60028717700004), (-3.999908006999931, 51.59088776200008), (-3.9922582669999542, 51.58112213700008), (-3.9818009109999366, 51.571600653000075), (-3.974598761999914, 51.56297435100004), (-4.016184048999946, 51.56297435100004), (-4.016102667999917, 51.56037018400008), (-4.0208227199999556, 51.555853583000044), (-4.026519334999932, 51.554022528000075), (-4.029204881999931, 51.55927155200004), (-4.031971808999913, 51.56313711100006), (-4.0385636059999115, 51.56622955900008), (-4.046457485999952, 51.568426825000074), (-4.0531306629999335, 51.569240627000056), (-4.056304490999935, 51.56704336100006), (-4.065581834999932, 51.55756256700005), (-4.070220506999931, 51.555568752000056), (-4.0768123039999296, 51.55695221600007), (-4.087269660999937, 51.56191640800006), (-4.112131313999953, 51.565619208000044), (-4.121652798999946, 51.56598541900007), (-4.132191535999937, 51.56297435100004), (-4.142730272999927, 51.55695221600007), (-4.156809048999946, 51.54629140800006), (-4.1664119129999335, 51.54254791900007), (-4.176503058999913, 51.544256903000075), (-4.18773352799991, 51.54877350500004), (-4.1967667309999115, 51.54938385600008), (-4.200550910999937, 51.538763739000046), (-4.213368292999917, 51.539129950000074), (-4.272450324999909, 51.554754950000074), (-4.2899063789999445, 51.555568752000056), (-4.293324347999942, 51.55914948100008), (-4.29515540299991, 51.56195709800005), (-4.297352667999917, 51.569240627000056), (-4.278309699999909, 51.578192450000074), (-4.280832485999952, 51.58881256700005), (-4.2897029289999296, 51.601548570000034), (-4.2899063789999445, 51.61701080900008), (-4.255767381999931, 51.62384674700007), (-4.252023891999954, 51.62710195500006), (-4.241281704999949, 51.63934967700004), (-4.234730597999942, 51.644964911000045), (-4.228505011999914, 51.63743724200003), (-4.234730597999942, 51.63743724200003), (-4.234730597999942, 51.631293036000045), (-4.2278539699999556, 51.628119208000044), (-4.22101803299995, 51.62384674700007), (-4.1900935539999296, 51.63027578300006), (-4.139027472999942, 51.63231028900009), (-4.0912979809999115, 51.639878648000035), (-4.070220506999931, 51.66229889500005), (-4.0698136059999115, 51.66893138200004), (-4.070383266999954, 51.67430247600004), (-4.07054602799991, 51.67597077000005), (-4.0754288399999155, 51.677801825000074), (-4.087269660999937, 51.668850002000056), (-4.095448370999918, 51.66510651200008), (-4.106841600999928, 51.66425202000005), (-4.146351691999939, 51.66705963700008), (-4.200550910999937, 51.68585846600007), (-4.214955206999946, 51.679673570000034), (-4.293690558999913, 51.67226797100005), (-4.3152970039999445, 51.67747630400004), (-4.342355923999946, 51.69086334800005), (-4.3664444649999155, 51.70848216400009), (-4.379261847999942, 51.72687409100007), (-4.338042772999927, 51.72333405200004), (-4.319976365999935, 51.72483958500004), (-4.310454881999931, 51.733710028000075), (-4.328724738999938, 51.73297760600008), (-4.3471573559999115, 51.73578522300005), (-4.3625382149999155, 51.74286530200004), (-4.371815558999913, 51.754787502000056), (-4.368763800999943, 51.75698476800005), (-4.362904425999943, 51.76386139500005), (-4.358021613999938, 51.773138739000046), (-4.358225063999953, 51.782131252000056), (-4.365101691999939, 51.789048570000034), (-4.3714900379999335, 51.78595612200007), (-4.379261847999942, 51.77529531500005), (-4.384917772999927, 51.77187734600005), (-4.3929744129999335, 51.763739325000074), (-4.399159308999913, 51.76162344000005), (-4.409331834999932, 51.76316966400009), (-4.417876756999931, 51.76788971600007), (-4.426503058999913, 51.77529531500005), (-4.445790167999917, 51.77326080900008), (-4.449330206999946, 51.76630280200004), (-4.441395636999914, 51.75678131700005), (-4.426503058999913, 51.747300523000035), (-4.460764126999948, 51.73578522300005), (-4.4988907539999445, 51.73484935100004), (-4.574208136999914, 51.74115631700005), (-4.603423631999931, 51.73924388200004), (-4.639230923999946, 51.73318105700008), (-4.6453751289999445, 51.732123114000046), (-4.678212042999917, 51.71743398600006), (-4.680287238999938, 51.692694403000075), (-4.689442511999914, 51.69159577000005), (-4.69163977799991, 51.689886786000045), (-4.69163977799991, 51.685980536000045), (-4.693959113999938, 51.67841217700004), (-4.712310350999928, 51.650091864000046), (-4.721424933999913, 51.652044989000046), (-4.734934048999946, 51.65924713700008), (-4.741851365999935, 51.65607330900008), (-4.759185350999928, 51.644964911000045), (-4.8482966789999296, 51.64630768400008), (-4.86351477799991, 51.64411041900007), (-4.878977016999954, 51.63743724200003), (-4.887806769999941, 51.62995026200008), (-4.8957413399999155, 51.621079820000034), (-4.904774542999917, 51.61383698100008), (-4.923695441999939, 51.608628648000035), (-4.931996222999942, 51.59902578300006), (-4.941029425999943, 51.59650299700007), (-4.946034308999913, 51.59760163000004), (-4.956450975999928, 51.602769273000035), (-5.021595831999946, 51.61603424700007), (-5.0457657539999445, 51.62689850500004), (-5.0366104809999115, 51.63743724200003), (-5.0511775379999335, 51.65692780200004), (-5.100493943999936, 51.66469961100006), (-5.119740363999938, 51.67841217700004), (-5.113433397999927, 51.68528880400004), (-5.0366104809999115, 51.67841217700004), (-5.038726365999935, 51.68183014500005), (-5.04133053299995, 51.68939850500004), (-5.043446417999917, 51.692694403000075), (-5.028675910999937, 51.69293854400007), (-5.002552863999938, 51.68740469000005), (-4.988189256999931, 51.68585846600007), (-4.974598761999914, 51.687933661000045), (-4.941029425999943, 51.70014069200005), (-4.892648891999954, 51.706366278000075), (-4.868275519999941, 51.716782945000034), (-4.8580623039999296, 51.71832916900007), (-4.844838019999941, 51.71381256700005), (-4.844838019999941, 51.720038153000075), (-4.873402472999942, 51.73773834800005), (-4.879017706999946, 51.76203034100007), (-4.8625382149999155, 51.78237539300005), (-4.824330206999946, 51.788275458000044), (-4.824330206999946, 51.79572174700007), (-4.836008266999954, 51.790716864000046), (-4.864979620999918, 51.783270575000074), (-4.921294725999928, 51.78001536700003), (-4.933583136999914, 51.77529531500005), (-4.9172257149999155, 51.77533600500004), (-4.905181443999936, 51.771185614000046), (-4.900542772999927, 51.76211172100005), (-4.906239386999914, 51.747300523000035), (-4.8920792309999115, 51.73940664300005), (-4.895659959999932, 51.728176174000055), (-4.9105525379999335, 51.71820709800005), (-4.988189256999931, 51.70685455900008), (-5.009917772999927, 51.706366278000075), (-5.149240688999953, 51.718085028000075), (-5.166900193999936, 51.71381256700005), (-5.156971808999913, 51.69757721600007), (-5.1686091789999296, 51.68891022300005), (-5.1828507149999155, 51.68927643400008), (-5.180653449999909, 51.70014069200005), (-5.180653449999909, 51.706366278000075), (-5.230132615999935, 51.73004791900007), (-5.2495011059999115, 51.733710028000075), (-5.228138800999943, 51.73395416900007), (-5.213937954999949, 51.73574453300006), (-5.202870245999918, 51.74079010600008), (-5.191151495999918, 51.75104401200008), (-5.176828579999949, 51.75967031500005), (-5.1432185539999296, 51.76386139500005), (-5.125965949999909, 51.76850006700005), (-5.110259568999936, 51.778509833000044), (-5.107085740999935, 51.78807200700004), (-5.112294074999909, 51.81317780200004), (-5.113392706999946, 51.82880280200004), (-5.11750240799995, 51.84369538000004), (-5.125884568999936, 51.85602448100008), (-5.139637824999909, 51.86399974200003), (-5.146473761999914, 51.85716380400004), (-5.16437740799995, 51.86676666900007), (-5.2037654289999296, 51.87018463700008), (-5.221587693999936, 51.87767161700003), (-5.2358292309999115, 51.87103913000004), (-5.2914119129999335, 51.86399974200003), (-5.3109431629999335, 51.86399974200003), (-5.304269985999952, 51.867621161000045), (-5.297352667999917, 51.87018463700008), (-5.297352667999917, 51.87767161700003), (-5.300689256999931, 51.882025458000044), (-5.302561001999948, 51.88523997600004), (-5.300160285999937, 51.888332424000055), (-5.2905167309999115, 51.89199453300006), (-5.2905167309999115, 51.898138739000046), (-5.2983292309999115, 51.91095612200007), (-5.288929816999939, 51.91693756700005), (-5.252837693999936, 51.91864655200004), (-5.234201626999948, 51.923041083000044), (-5.204172329999949, 51.942287502000056), (-5.191151495999918, 51.946600653000075), (-5.16038977799991, 51.94944896000004), (-5.1195369129999335, 51.95892975500004), (-5.088042772999927, 51.97601959800005), (-5.085031704999949, 52.00185781500005), (-5.070790167999917, 52.00185781500005), (-5.070790167999917, 52.00804271000004), (-5.082753058999913, 52.01447174700007), (-5.081206834999932, 52.021185614000046), (-5.070220506999931, 52.02635325700004), (-5.053700324999909, 52.028509833000044), (-5.0266007149999155, 52.027411200000074), (-5.015044725999928, 52.02533600500004), (-4.961740688999953, 52.007513739000046), (-4.942534959999932, 52.007473049000055), (-4.913685675999943, 52.014837958000044), (-4.920521613999938, 52.028509833000044), (-4.9016007149999155, 52.02643463700008), (-4.863189256999931, 52.01699453300006), (-4.841420050999943, 52.014837958000044), (-4.83226477799991, 52.01898834800005), (-4.833851691999939, 52.02875397300005), (-4.8382869129999335, 52.04010651200008), (-4.838002081999946, 52.04901764500005), (-4.83039303299995, 52.05292389500005), (-4.796986456999946, 52.05646393400008), (-4.77757727799991, 52.064886786000045), (-4.7631729809999115, 52.075873114000046), (-4.7386775379999335, 52.100816148000035), (-4.720285610999952, 52.113348700000074), (-4.7065323559999115, 52.11347077000005), (-4.673451300999943, 52.09739817900004), (-4.675689256999931, 52.126939195000034), (-4.637521938999953, 52.13849518400008), (-4.513824022999927, 52.13568756700005), (-4.50226803299995, 52.138373114000046), (-4.495757615999935, 52.14350006700005), (-4.490956183999913, 52.150376695000034), (-4.484283006999931, 52.156317450000074), (-4.454701300999943, 52.16205475500004), (-4.4348038399999155, 52.170355536000045), (-4.415394660999937, 52.18154531500005), (-4.385568813999953, 52.20343659100007), (-4.371245897999927, 52.20929596600007), (-4.3547257149999155, 52.212103583000044), (-4.334339972999942, 52.21283600500004), (-4.315825975999928, 52.21629466400003), (-4.197132941999939, 52.279282945000034), (-4.1390681629999335, 52.33022695500006), (-4.10960852799991, 52.365301825000074), (-4.096262173999946, 52.387884833000044), (-4.0873917309999115, 52.430121161000045), (-4.0789688789999445, 52.45302969000005), (-4.067941860999952, 52.47361888200004), (-4.056548631999931, 52.48786041900007), (-4.0618383449999556, 52.49705638200004), (-4.064035610999952, 52.50918203300006), (-4.062570766999954, 52.52098216400003), (-4.056548631999931, 52.52944570500006), (-4.048491990999935, 52.530462958000044), (-4.0266007149999155, 52.52338288000004), (-4.016184048999946, 52.52195872600004), (-3.998768683999913, 52.52594635600008), (-3.9473363919999542, 52.549261786000045), (-3.9473363919999542, 52.556708075000074), (-3.9744766919999392, 52.55654531500005), (-4.025868292999917, 52.545355536000045), (-4.0531306629999335, 52.54242584800005), (-4.068470831999946, 52.550116278000075), (-4.1141251289999445, 52.58860911700003), (-4.125477667999917, 52.60390859600005), (-4.122222459999932, 52.62872955900008), (-4.105946417999917, 52.653509833000044), (-4.0848282539999445, 52.67267487200007), (-4.067128058999913, 52.68024323100008), (-4.063547329999949, 52.68309153900003), (-4.05882727799991, 52.696600653000075), (-4.056548631999931, 52.70066966400003), (-4.052723761999914, 52.70221588700008), (-4.041981574999909, 52.70465729400007), (-4.001088019999941, 52.72410716400003), (-3.988270636999914, 52.73427969000005), (-4.014719204999949, 52.73232656500005), (-4.031971808999913, 52.723944403000075), (-4.048817511999914, 52.721584377000056), (-4.125152147999927, 52.77830638200004), (-4.144357876999948, 52.802801825000074), (-4.149037238999938, 52.81207916900007), (-4.146229620999918, 52.82021719000005), (-4.128895636999914, 52.82363515800006), (-4.117339647999927, 52.83075592700004), (-4.1197810539999296, 52.84625885600008), (-4.127756313999953, 52.86172109600005), (-4.132191535999937, 52.86831289300005), (-4.131988084999932, 52.882473049000055), (-4.129872199999909, 52.88922760600008), (-4.123605923999946, 52.89325592700004), (-4.064035610999952, 52.919175523000035), (-4.071400519999941, 52.921087958000044), (-4.074574347999942, 52.92279694200005), (-4.0776261059999115, 52.926662502000056), (-4.0891007149999155, 52.918850002000056), (-4.100493943999936, 52.914129950000074), (-4.1105850899999155, 52.915676174000055), (-4.118560350999928, 52.926662502000056), (-4.144398566999939, 52.91478099200003), (-4.171620245999918, 52.91347890800006), (-4.228505011999914, 52.919175523000035), (-4.300689256999931, 52.905585028000075), (-4.317290818999936, 52.89935944200005), (-4.337310350999928, 52.89203522300005), (-4.406605597999942, 52.89252350500004), (-4.4272354809999115, 52.885972398000035), (-4.446197068999936, 52.87592194200005), (-4.4816788399999155, 52.850897528000075), (-4.477935350999928, 52.84833405200004), (-4.475493943999936, 52.84414297100005), (-4.491363084999932, 52.83820221600007), (-4.500965949999909, 52.82680898600006), (-4.501332160999937, 52.81391022300005), (-4.4891251289999445, 52.803168036000045), (-4.501942511999914, 52.794989325000074), (-4.509185350999928, 52.791449286000045), (-4.5164688789999445, 52.789496161000045), (-4.5285538399999155, 52.79047272300005), (-4.5424698559999115, 52.80068594000005), (-4.5639542309999115, 52.80524323100008), (-4.583078579999949, 52.81464264500005), (-4.594634568999936, 52.81679922100005), (-4.606516079999949, 52.81509023600006), (-4.61351477799991, 52.81110260600008), (-4.619211391999954, 52.80654531500005), (-4.626332160999937, 52.803168036000045), (-4.648589647999927, 52.79962799700007), (-4.704497850999928, 52.803168036000045), (-4.719309048999946, 52.79751211100006), (-4.733225063999953, 52.78750234600005), (-4.747425910999937, 52.78343333500004), (-4.762847459999932, 52.789496161000045), (-4.752512173999946, 52.79877350500004), (-4.7514542309999115, 52.80320872600004), (-4.755441860999952, 52.80931224200003), (-4.7492569649999155, 52.81427643400008), (-4.734934048999946, 52.83047109600005), (-4.596058722999942, 52.92841217700004), (-4.580962693999936, 52.93349844000005), (-4.562082485999952, 52.93451569200005), (-4.543527798999946, 52.937933661000045), (-4.523996548999946, 52.944240627000056), (-4.443430141999954, 52.98216380400004), (-4.423695441999939, 53.00263092700004), (-4.358225063999953, 53.02846914300005), (-4.349964972999942, 53.04148997600004), (-4.345692511999914, 53.059475002000056), (-4.343861456999946, 53.10106028900003), (-4.340891079999949, 53.11273834800005), (-4.334339972999942, 53.11676666900007), (-4.3276261059999115, 53.11469147300005), (-4.324696417999917, 53.10789622600004), (-4.320668097999942, 53.10150788000004), (-4.312245245999918, 53.109442450000074), (-4.304758266999954, 53.12099844000005), (-4.303618943999936, 53.12531159100007), (-4.263539191999939, 53.15452708500004), (-4.2523494129999335, 53.159409898000035), (-4.234527147999927, 53.16400788000004), (-4.221302863999938, 53.175034898000035), (-4.200550910999937, 53.20099518400008), (-4.17796790299991, 53.21759674700007), (-4.151519334999932, 53.22809479400007), (-4.122222459999932, 53.23346588700008), (-4.0906876289999445, 53.23517487200007), (-4.08234615799995, 53.23354726800005), (-4.074330206999946, 53.23065827000005), (-4.066883917999917, 53.22907135600008), (-4.054107225999928, 53.234361070000034), (-4.032297329999949, 53.24070872600004), (-4.008900519999941, 53.24445221600007), (-3.974598761999914, 53.261786200000074), (-3.8653051419999542, 53.289129950000074), (-3.8312882149999155, 53.289129950000074), (-3.841420050999943, 53.30744049700007), (-3.870757615999935, 53.32562897300005), (-3.8784073559999115, 53.337591864000046), (-3.859974738999938, 53.33633047100005), (-3.840565558999913, 53.33283112200007), (-3.822987433999913, 53.32656484600005), (-3.8101293609999516, 53.31708405200004), (-3.7905167309999115, 53.323431708000044), (-3.7688695949999556, 53.31915924700007), (-3.748199022999927, 53.307806708000044), (-3.7319229809999115, 53.29287344000005), (-3.7162979809999115, 53.28693268400008), (-3.6022029289999296, 53.28888580900008), (-3.5623266269999476, 53.29441966400003), (-3.372059699999909, 53.350897528000075), (-3.33031165299991, 53.35179271000004), (-3.2923884759999282, 53.34052155200004), (-3.2713110019999476, 53.33055247600004), (-3.262074347999942, 53.32050202000005), (-3.250803188999953, 53.312567450000074), (-3.122222459999932, 53.26227448100008), (-3.107533331999946, 53.25189850500004), (-3.0951228509999282, 53.23932526200008), (-3.0877579419999392, 53.23468659100007), (-3.0845434239999463, 53.23859284100007), (-3.0845434239999463, 53.25857168200008), (-3.0845434239999463, 53.275458075000074), (-3.09593665299991, 53.28713613500008), (-3.1111954419999392, 53.302801825000074), (-3.1354060539999296, 53.33380768400008), (-3.171538865999935, 53.36225006700005), (-3.185210740999935, 53.37726471600007), (-3.186350063999953, 53.39276764500005), (-3.175526495999918, 53.40273672100005), (-3.157297329999949, 53.40875885600008), (-3.1146541009999282, 53.41266510600008), (-3.0942276679999168, 53.41738515800006), (-3.058257615999935, 53.434759833000044), (-3.0355525379999335, 53.43374258000006), (-3.0121964179999168, 53.41669342700004), (-2.9529516269999476, 53.323919989000046), (-2.9351293609999516, 53.309475002000056), (-2.9105525379999335, 53.29633209800005), (-2.8814998039999296, 53.288397528000075), (-2.850575324999909, 53.289129950000074), (-2.849598761999914, 53.29120514500005), (-2.848378058999913, 53.29555898600006), (-2.8449600899999155, 53.300116278000075), (-2.837554490999935, 53.302801825000074), (-2.8286026679999168, 53.302435614000046), (-2.813384568999936, 53.297756252000056), (-2.8061417309999115, 53.296576239000046), (-2.789784308999913, 53.29743073100008), (-2.775502081999946, 53.29987213700008), (-2.7481176419999542, 53.30963776200008), (-2.753651495999918, 53.32245514500005), (-2.750884568999936, 53.33161041900007), (-2.743153449999909, 53.33852773600006), (-2.734486456999946, 53.34442780200004), (-2.7261449859999516, 53.34198639500005), (-2.7174373039999296, 53.34271881700005), (-2.708607550999943, 53.346136786000045), (-2.6997777989999463, 53.35179271000004), (-2.7141007149999155, 53.35236237200007), (-2.764393683999913, 53.34516022300005), (-2.775380011999914, 53.341009833000044), (-2.782378709999932, 53.32636139500005), (-2.799794074999909, 53.32103099200003), (-2.810332811999956, 53.32172272300005), (-2.843658006999931, 53.323919989000046), (-2.886463995999918, 53.33356354400007), (-2.924956834999932, 53.35000234600005), (-2.956939256999931, 53.37055084800005), (-2.980824347999942, 53.39276764500005), (-3.096587693999936, 53.54433828300006), (-3.101918097999942, 53.55805084800005), (-3.0994766919999392, 53.57200755400004), (-3.087635870999918, 53.58771393400008), (-3.021839972999942, 53.65281810100004), (-2.968658006999931, 53.69403717700004), (-2.9603572259999282, 53.69757721600007), (-2.9517309239999463, 53.70807526200008), (-2.9114477199999556, 53.725043036000045), (-2.899037238999938, 53.73541901200008), (-2.9848526679999168, 53.73607005400004), (-3.021473761999914, 53.745794989000046), (-3.049183722999942, 53.769517320000034), (-3.056385870999918, 53.80304596600007), (-3.044911261999914, 53.87848541900007), (-3.056630011999914, 53.90615469000005), (-3.040679490999935, 53.923529364000046), (-3.017567511999914, 53.93195221600007), (-2.925689256999931, 53.95270416900007), (-2.909250454999949, 53.95384349200003), (-2.896107550999943, 53.94773997600004), (-2.8885391919999392, 53.94603099200003), (-2.885365363999938, 53.950506903000075), (-2.881988084999932, 53.95652903900003), (-2.874175584999932, 53.96165599200003), (-2.865142381999931, 53.96548086100006), (-2.8579809239999463, 53.96759674700007), (-2.869252081999946, 53.97882721600007), (-2.8344620429999168, 53.99982330900008), (-2.830067511999914, 54.01601797100005), (-2.8475235669999392, 54.00836823100008), (-2.864857550999943, 54.00429922100005), (-2.895497199999909, 54.00234609600005), (-2.900298631999931, 54.00495026200008), (-2.9160863919999542, 54.026556708000044), (-2.91820227799991, 54.03432851800005), (-2.911284959999932, 54.03998444200005), (-2.9007869129999335, 54.044907945000034), (-2.8920792309999115, 54.050116278000075), (-2.872670050999943, 54.071600653000075), (-2.8588761059999115, 54.08100006700005), (-2.826771613999938, 54.08881256700005), (-2.815174933999913, 54.09878164300005), (-2.795969204999949, 54.12518952000005), (-2.8128149079999503, 54.139878648000035), (-2.8364151679999168, 54.16758860900006), (-2.8509415359999366, 54.18463776200008), (-2.854237433999913, 54.19407786700003), (-2.8328751289999445, 54.19904205900008), (-2.810292120999918, 54.21190013200004), (-2.7952367829999503, 54.22947825700004), (-2.795969204999949, 54.24872467700004), (-2.8028051419999542, 54.24872467700004), (-2.806630011999914, 54.233710028000075), (-2.8208715489999463, 54.22174713700008), (-2.850575324999909, 54.20774974200003), (-2.886382615999935, 54.19627513200004), (-2.904652472999942, 54.18764883000006), (-2.9126684239999463, 54.176988023000035), (-2.9203995429999168, 54.16205475500004), (-2.939198370999918, 54.15509674700007), (-2.9842016269999476, 54.15314362200007), (-2.997710740999935, 54.15957265800006), (-3.011341925999943, 54.17413971600007), (-3.017323370999918, 54.19009023600006), (-3.008168097999942, 54.20034414300005), (-3.015370245999918, 54.21190013200004), (-3.024484829999949, 54.221584377000056), (-3.035755988999938, 54.22597890800006), (-3.049183722999942, 54.22207265800006), (-3.044667120999918, 54.208319403000075), (-3.047840949999909, 54.19432200700004), (-3.053537563999953, 54.181301174000055), (-3.056630011999914, 54.17023346600007), (-3.0610245429999168, 54.16193268400008), (-3.090728318999936, 54.13947174700007), (-3.10765540299991, 54.11855703300006), (-3.117909308999913, 54.10883209800005), (-3.145253058999913, 54.100043036000045), (-3.147450324999909, 54.08869049700007), (-3.1443985669999392, 54.07514069200005), (-3.1453751289999445, 54.063788153000075), (-3.1805313789999445, 54.09284088700008), (-3.1897680329999503, 54.09788646000004), (-3.2057185539999296, 54.098537502000056), (-3.219553188999953, 54.100775458000044), (-3.2311091789999296, 54.105129299000055), (-3.240956183999913, 54.11212799700007), (-3.2381078769999476, 54.12759023600006), (-3.232533331999946, 54.14468008000006), (-3.233143683999913, 54.15916575700004), (-3.248402472999942, 54.16681549700007), (-3.248402472999942, 54.17365143400008), (-3.215199347999942, 54.17983633000006), (-3.206776495999918, 54.20892975500004), (-3.2090551419999542, 54.24274323100008), (-3.207386847999942, 54.263006903000075), (-3.2231339179999168, 54.25763580900008), (-3.231353318999936, 54.24721914300005), (-3.240956183999913, 54.22207265800006), (-3.232167120999918, 54.20254140800006), (-3.247141079999949, 54.19794342700004), (-3.270130988999938, 54.19912344000005), (-3.2860001289999445, 54.19721100500004), (-3.306792772999927, 54.19188060100004), (-3.3285212879999335, 54.204738674000055), (-3.3644913399999155, 54.24249909100007), (-3.394195115999935, 54.26439036700003), (-3.407378709999932, 54.27773672100005), (-3.412912563999953, 54.29376862200007), (-3.41038977799991, 54.30145905200004), (-3.405995245999918, 54.30963776200008), (-3.4041235019999476, 54.31854889500005), (-3.4114477199999556, 54.33274974200003), (-3.4134415359999366, 54.342962958000044), (-3.4163305329999503, 54.344916083000044), (-3.440174933999913, 54.35175202000005), (-3.474273240999935, 54.39350006700005), (-3.497710740999935, 54.40582916900007), (-3.5918676419999542, 54.48309967700004), (-3.608143683999913, 54.488267320000034), (-3.613189256999931, 54.49164459800005), (-3.6236873039999296, 54.50608958500004), (-3.6341853509999282, 54.512884833000044), (-3.6268204419999392, 54.520412502000056), (-3.616200324999909, 54.52757396000004), (-3.61156165299991, 54.52993398600006), (-3.5903214179999168, 54.56464264500005), (-3.5638321609999366, 54.64276764500005), (-3.5301407539999445, 54.68805573100008), (-3.5160212879999335, 54.712876695000034), (-3.5091853509999282, 54.72166575700004), (-3.500721808999913, 54.72597890800006), (-3.478871222999942, 54.730902411000045), (-3.4681290359999366, 54.73529694200005), (-3.455433722999942, 54.745021877000056), (-3.439564581999946, 54.76146067900004), (-3.4309789699999556, 54.780462958000044), (-3.440174933999913, 54.79743073100008), (-3.4075414699999556, 54.85602448100008), (-3.3879288399999155, 54.88336823100008), (-3.3644913399999155, 54.89980703300006), (-3.3449600899999155, 54.90253327000005), (-3.3333634109999366, 54.89728424700007), (-3.3227432929999168, 54.889878648000035), (-3.3064672519999476, 54.88617584800005), (-3.295725063999953, 54.88690827000005), (-3.254628058999913, 54.89980703300006), (-3.267323370999918, 54.905503648000035), (-3.317290818999936, 54.92031484600005), (-3.2914932929999168, 54.93667226800005), (-3.276519334999932, 54.943426825000074), (-3.213612433999913, 54.954413153000075), (-3.2010391919999392, 54.95221588700008), (-3.1936742829999503, 54.94863515800006), (-3.1879776679999168, 54.94448476800005), (-3.1801651679999168, 54.94082265800006), (-3.14281165299991, 54.93353913000004), (-3.122792120999918, 54.93268463700008), (-3.0395401679999168, 54.94717031500005), (-3.021839972999942, 54.954413153000075), (-3.090728318999936, 54.954413153000075), (-3.090728318999936, 54.96124909100007), (-3.0715225899999155, 54.96312083500004), (-3.0562231109999516, 54.968817450000074), (-3.040923631999931, 54.97247955900008), (-3.021839972999942, 54.968085028000075), (-3.021839972999942, 54.97553131700005), (-3.0462947259999282, 54.982123114000046), (-3.0502913779999403, 54.981510325000045), (-3.1354060539999296, 54.968085028000075), (-3.453846808999913, 54.981756903000075), (-3.470692511999914, 54.984442450000074), (-3.486236131999931, 54.989488023000035), (-3.501047329999949, 54.99249909100007), (-3.515288865999935, 54.98920319200005), (-3.5123591789999296, 54.98712799700007), (-3.511463995999918, 54.98688385600008), (-3.510894334999932, 54.985988674000055), (-3.5091853509999282, 54.981756903000075), (-3.5260310539999296, 54.97711823100008), (-3.5418595039999445, 54.98065827000005), (-3.57054602799991, 54.995428778000075), (-3.583607550999943, 54.968085028000075), (-3.5756729809999115, 54.95734284100007), (-3.5706274079999503, 54.937567450000074), (-3.5687556629999335, 54.916001695000034), (-3.57054602799991, 54.89980703300006), (-3.581695115999935, 54.88361237200007), (-3.598378058999913, 54.87799713700008), (-3.691761847999942, 54.88320547100005), (-3.7176407539999445, 54.880845445000034), (-3.739247199999909, 54.859808661000045), (-3.8101293609999516, 54.86627838700008), (-3.8078507149999155, 54.86107005400004), (-3.806792772999927, 54.86090729400007), (-3.803334113999938, 54.85887278900003), (-3.8123673169999392, 54.855169989000046), (-3.8198136059999115, 54.855902411000045), (-3.826079881999931, 54.85993073100008), (-3.8312882149999155, 54.86627838700008), (-3.819976365999935, 54.878566799000055), (-3.815052863999938, 54.87714264500005), (-3.8101293609999516, 54.87250397300005), (-3.8116348949999406, 54.88003164300005), (-3.813221808999913, 54.88312409100007), (-3.8169652989999463, 54.88617584800005), (-3.828846808999913, 54.874986070000034), (-3.8443090489999463, 54.86627838700008), (-3.839751756999931, 54.855902411000045), (-3.8374731109999516, 54.851996161000045), (-3.844105597999942, 54.85097890800006), (-3.8578995429999168, 54.84454987200007), (-3.823841925999943, 54.82469310100004), (-3.833607550999943, 54.82005442900004), (-3.885731574999909, 54.80646393400008), (-3.9641820949999556, 54.771918036000045), (-4.011708136999914, 54.76821523600006), (-4.042876756999931, 54.76947663000004), (-4.042876756999931, 54.77692291900007), (-4.046783006999931, 54.77802155200004), (-4.050200975999928, 54.778550523000035), (-4.053334113999938, 54.77997467700004), (-4.055775519999941, 54.782538153000075), (-4.05296790299991, 54.78546784100007), (-4.050160285999937, 54.78900788000004), (-4.049712693999936, 54.78998444200005), (-4.051747199999909, 54.800034898000035), (-4.0477188789999445, 54.81305573100008), (-4.049956834999932, 54.82322825700004), (-4.063588019999941, 54.82684967700004), (-4.064035610999952, 54.83152903900003), (-4.078602667999917, 54.82412344000005), (-4.09007727799991, 54.809759833000044), (-4.093495245999918, 54.792669989000046), (-4.083851691999939, 54.77692291900007), (-4.122954881999931, 54.77301666900007), (-4.173939581999946, 54.792303778000075), (-4.209136522999927, 54.826239325000074), (-4.200550910999937, 54.86627838700008), (-4.215402798999946, 54.861029364000046), (-4.2397354809999115, 54.843003648000035), (-4.255767381999931, 54.838324286000045), (-4.2707413399999155, 54.83942291900007), (-4.345285610999952, 54.86017487200007), (-4.3569229809999115, 54.86554596600007), (-4.3656306629999335, 54.87250397300005), (-4.375152147999927, 54.88690827000005), (-4.379872199999909, 54.89789459800005), (-4.386789516999954, 54.90477122600004), (-4.402902798999946, 54.90729401200008), (-4.409006313999953, 54.90302155200004), (-4.416818813999953, 54.89280833500004), (-4.423573370999918, 54.88035716400003), (-4.426503058999913, 54.86945221600007), (-4.4172257149999155, 54.84593333500004), (-4.4094132149999155, 54.831244208000044), (-4.402902798999946, 54.82469310100004), (-4.386708136999914, 54.82416413000004), (-4.372425910999937, 54.82184479400007), (-4.35960852799991, 54.81663646000004), (-4.347645636999914, 54.80731842700004), (-4.344471808999913, 54.79450104400007), (-4.353179490999935, 54.78310781500005), (-4.358143683999913, 54.77098216400003), (-4.343861456999946, 54.75641510600008), (-4.356516079999949, 54.741888739000046), (-4.353260870999918, 54.72089264500005), (-4.348133917999917, 54.70197174700007), (-4.3547257149999155, 54.693793036000045), (-4.360340949999909, 54.69159577000005), (-4.365305141999954, 54.68695709800005), (-4.371896938999953, 54.68227773600006), (-4.382394985999952, 54.68008047100005), (-4.405262824999909, 54.682074286000045), (-4.426503058999913, 54.687567450000074), (-4.4518123039999296, 54.69879791900007), (-4.46117102799991, 54.701239325000074), (-4.4967341789999296, 54.70062897300005), (-4.505604620999918, 54.70465729400007), (-4.563628709999932, 54.75641510600008), (-4.596669074999909, 54.77529531500005), (-4.714466925999943, 54.81785716400003), (-4.759592251999948, 54.82534414300005), (-4.781076626999948, 54.83307526200008), (-4.799631313999953, 54.86127350500004), (-4.821034308999913, 54.86664459800005), (-4.859120245999918, 54.86627838700008), (-4.88304602799991, 54.86009349200003), (-4.905873175999943, 54.84979889500005), (-4.925770636999914, 54.83738841400003), (-4.941029425999943, 54.82469310100004), (-4.9496150379999335, 54.81582265800006), (-4.953684048999946, 54.81000397300005), (-4.954823370999918, 54.804754950000074), (-4.954701300999943, 54.79743073100008), (-4.952870245999918, 54.78896719000005), (-4.9479060539999296, 54.777329820000034), (-4.940256313999953, 54.76703522300005), (-4.930165167999917, 54.76264069200005), (-4.923247850999928, 54.75185781500005), (-4.911936001999948, 54.728216864000046), (-4.8959854809999115, 54.70453522300005), (-4.867258266999954, 54.69013092700004), (-4.866932745999918, 54.68146393400008), (-4.872141079999949, 54.663316148000035), (-4.872425910999937, 54.65403880400004), (-4.872059699999909, 54.64923737200007), (-4.859120245999918, 54.63296133000006), (-4.880604620999918, 54.63621653900003), (-4.923491990999935, 54.649725653000075), (-4.944081183999913, 54.652777411000045), (-4.953684048999946, 54.65973541900007), (-4.959868943999936, 54.67552317900004), (-4.958973761999914, 54.69196198100008), (-4.947255011999914, 54.701239325000074), (-4.954823370999918, 54.707464911000045), (-4.958892381999931, 54.714056708000044), (-4.959055141999954, 54.72093333500004), (-4.954701300999943, 54.728501695000034), (-4.973378058999913, 54.729722398000035), (-4.981556769999941, 54.731634833000044), (-4.988189256999931, 54.73529694200005), (-4.992665167999917, 54.74433014500005), (-4.997059699999909, 54.75836823100008), (-5.003285285999937, 54.77130768400008), (-5.0130102199999556, 54.77692291900007), (-5.033192511999914, 54.782416083000044), (-5.1282445949999556, 54.848944403000075), (-5.157134568999936, 54.87909577000005), (-5.175526495999918, 54.91461823100008), (-5.180653449999909, 54.954413153000075), (-5.177601691999939, 54.99054596600007), (-5.170806443999936, 55.008693752000056), (-5.156727667999917, 55.01654694200005), (-5.1356095039999445, 55.01585521000004), (-5.124582485999952, 55.016791083000044), (-5.119740363999938, 55.01992422100005), (-5.115142381999931, 55.03156159100007), (-5.105213995999918, 55.02619049700007), (-5.095529751999948, 55.01508209800005), (-5.091867641999954, 55.00971100500004), (-5.076893683999913, 54.99555084800005), (-5.069488084999932, 54.986029364000046), (-5.064564581999946, 54.97553131700005), (-5.0637914699999556, 54.96458567900004), (-5.065256313999953, 54.940334377000056), (-5.06086178299995, 54.93113841400003), (-5.0475154289999296, 54.92031484600005), (-5.030995245999918, 54.911322333000044), (-5.013091600999928, 54.90961334800005), (-4.9955948559999115, 54.92031484600005), (-4.992298956999946, 54.924261786000045), (-4.988189256999931, 54.927720445000034), (-4.988189256999931, 54.93455638200004), (-5.0240779289999296, 54.97638580900008), (-5.029774542999917, 54.98550039300005), (-5.032500779999907, 54.99371979400007), (-5.033029751999948, 54.99526601800005), (-5.047027147999927, 55.01508209800005), (-5.0502823559999115, 55.02680084800005), (-5.0496720039999445, 55.04897695500006), (-5.047596808999913, 55.05573151200008), (-5.043446417999917, 55.06427643400008), (-5.0257869129999335, 55.08869049700007), (-5.018950975999928, 55.10224030200004), (-5.016184048999946, 55.12262604400007), (-5.007801886999914, 55.14118073100008), (-4.988270636999914, 55.15265534100007), (-4.947255011999914, 55.16791413000004), (-4.882394985999952, 55.21857330900008), (-4.877552863999938, 55.22089264500005), (-4.867258266999954, 55.22247955900008), (-4.865305141999954, 55.22565338700008), (-4.865589972999942, 55.236314195000034), (-4.864816860999952, 55.24135976800005), (-4.841949022999927, 55.275091864000046), (-4.838002081999946, 55.28400299700007), (-4.8372289699999556, 55.293850002000056), (-4.839751756999931, 55.31557851800005), (-4.838002081999946, 55.32501862200007), (-4.832508917999917, 55.33112213700008), (-4.7992244129999335, 55.354722398000035), (-4.781076626999948, 55.36351146000004), (-4.773101365999935, 55.36937083500004), (-4.767160610999952, 55.37905508000006), (-4.758778449999909, 55.40228913000004), (-4.7492569649999155, 55.413763739000046), (-4.71703040299991, 55.43048737200007), (-4.650502081999946, 55.448472398000035), (-4.626332160999937, 55.468410549000055), (-4.617787238999938, 55.49559153900003), (-4.626779751999948, 55.51972077000005), (-4.6507869129999335, 55.53705475500004), (-4.687163865999935, 55.544134833000044), (-4.66624915299991, 55.562201239000046), (-4.666493292999917, 55.56329987200007), (-4.6711319649999155, 55.584418036000045), (-4.692738410999937, 55.60521067900004), (-4.7219945949999556, 55.619208075000074), (-4.776519334999932, 55.632879950000074), (-4.808745897999927, 55.63361237200007), (-4.818104620999918, 55.63719310100004), (-4.810617641999954, 55.646551825000074), (-4.810617641999954, 55.653998114000046), (-4.868560350999928, 55.67560455900008), (-4.900990363999938, 55.69232819200005), (-4.920521613999938, 55.70856354400007), (-4.876332160999937, 55.735256252000056), (-4.861073370999918, 55.756740627000056), (-4.865305141999954, 55.79047272300005), (-4.8717341789999296, 55.802435614000046), (-4.8777970039999445, 55.81102122600004), (-4.882720506999931, 55.82135651200008), (-4.888661261999914, 55.864528713000084), (-4.888824022999927, 55.865301825000074), (-4.892648891999954, 55.89288971600007), (-4.886463995999918, 55.91966380400004), (-4.872141079999949, 55.937201239000046), (-4.849354620999918, 55.94822825700004), (-4.818104620999918, 55.95563385600008), (-4.799387173999946, 55.957912502000056), (-4.7857966789999296, 55.95697663000004), (-4.722320115999935, 55.94009023600006), (-4.705433722999942, 55.93846263200004), (-4.693959113999938, 55.94135163000004), (-4.6725154289999296, 55.93378327000005), (-4.505970831999946, 55.91909414300005), (-4.4816788399999155, 55.92829010600008), (-4.590606248999961, 55.941514390000066), (-4.630034959999932, 55.94627513200004), (-4.673451300999943, 55.96185944200005), (-4.724517381999931, 55.99835846600007), (-4.765044725999928, 56.007066148000035), (-4.78343665299991, 56.017645575000074), (-4.7992244129999335, 56.030951239000046), (-4.810617641999954, 56.04376862200007), (-4.8237198559999115, 56.07367584800005), (-4.824330206999946, 56.07851797100005), (-4.8391820949999556, 56.08063385600008), (-4.844309048999946, 56.07298411700003), (-4.843739386999914, 56.06297435100004), (-4.837554490999935, 56.05060455900008), (-4.790150519999941, 56.010199286000045), (-4.778920050999943, 55.99209219000005), (-4.785308397999927, 55.984035549000055), (-4.803618943999936, 55.982082424000055), (-4.828033006999931, 55.98232656500005), (-4.851551886999914, 55.98802317900004), (-4.862294074999909, 56.00214264500005), (-4.865386522999927, 56.02020905200004), (-4.866851365999935, 56.05833567900004), (-4.865386522999927, 56.06671784100007), (-4.826324022999927, 56.124212958000044), (-4.755441860999952, 56.188381252000056), (-4.750884568999936, 56.20270416900007), (-4.755523240999935, 56.20652903900003), (-4.7662654289999296, 56.20209381700005), (-4.7799373039999296, 56.191473700000074), (-4.837269660999937, 56.12441640800006), (-4.851673956999946, 56.112616278000075), (-4.873117641999954, 56.11200592700004), (-4.880604620999918, 56.11985911700003), (-4.878977016999954, 56.15053945500006), (-4.883168097999942, 56.16400788000004), (-4.893544074999909, 56.174261786000045), (-4.9070938789999445, 56.177069403000075), (-4.920521613999938, 56.16791413000004), (-4.909087693999936, 56.14996979400007), (-4.895253058999913, 56.11473216400003), (-4.8862198559999115, 56.08038971600007), (-4.889149542999917, 56.06484609600005), (-4.901926235999952, 56.06191640800006), (-4.904367641999954, 56.054348049000055), (-4.900054490999935, 56.03412506700005), (-4.900054490999935, 56.01459381700005), (-4.898019985999952, 56.001166083000044), (-4.892648891999954, 55.98973216400003), (-4.906402147999927, 55.98574453300006), (-4.921457485999952, 55.98867422100005), (-4.937489386999914, 55.993841864000046), (-4.954701300999943, 55.99656810100004), (-4.954701300999943, 55.98973216400003), (-4.942005988999938, 55.986314195000034), (-4.928863084999932, 55.98114655200004), (-4.918446417999917, 55.97333405200004), (-4.913685675999943, 55.96185944200005), (-4.917388475999928, 55.94745514500005), (-4.9272354809999115, 55.93768952000005), (-4.9387100899999155, 55.92963288000004), (-4.947255011999914, 55.92084381700005), (-4.952137824999909, 55.90912506700005), (-4.954986131999931, 55.89935944200005), (-4.95921790299991, 55.89012278900003), (-4.96898352799991, 55.87986888200004), (-4.983143683999913, 55.87103913000004), (-4.994740363999938, 55.86981842700004), (-5.026356574999909, 55.87372467700004), (-5.0424698559999115, 55.884751695000034), (-5.056752081999946, 55.91030508000006), (-5.0668025379999335, 55.938788153000075), (-5.070790167999917, 55.958685614000046), (-5.1108292309999115, 55.98895905200004), (-5.116037563999953, 56.00169505400004), (-5.123605923999946, 56.00991445500006), (-5.139637824999909, 56.00275299700007), (-5.123768683999913, 55.986314195000034), (-5.085682745999918, 55.93187083500004), (-5.078236456999946, 55.91095612200007), (-5.086537238999938, 55.901271877000056), (-5.105620897999927, 55.90497467700004), (-5.171538865999935, 55.935532945000034), (-5.180653449999909, 55.948431708000044), (-5.180653449999909, 55.96930573100008), (-5.190825975999928, 55.96173737200007), (-5.1996150379999335, 55.948553778000075), (-5.2057185539999296, 55.93451569200005), (-5.207915818999936, 55.92462799700007), (-5.212635870999918, 55.91714101800005), (-5.242054816999939, 55.89288971600007), (-5.218129035999937, 55.86469147300005), (-5.208159959999932, 55.849269924000055), (-5.201079881999931, 55.83148834800005), (-5.2193904289999296, 55.83144765800006), (-5.2631729809999115, 55.845770575000074), (-5.296701626999948, 55.85268789300005), (-5.307118292999917, 55.86041901200008), (-5.313384568999936, 55.88544342700004), (-5.319325324999909, 55.889105536000045), (-5.327219204999949, 55.89154694200005), (-5.3348282539999445, 55.89667389500005), (-5.3382869129999335, 55.90375397300005), (-5.3391007149999155, 55.91303131700005), (-5.3382869129999335, 55.93138255400004), (-5.336089647999927, 55.93919505400004), (-5.326161261999914, 55.95026276200008), (-5.323963995999918, 55.958685614000046), (-5.325754360999952, 55.967230536000045), (-5.3382869129999335, 55.99656810100004), (-5.313628709999932, 56.01235586100006), (-5.204497850999928, 56.11945221600007), (-5.146473761999914, 56.13312409100007), (-5.104603644999941, 56.15151601800005), (-5.0949600899999155, 56.15737539300005), (-5.0594376289999445, 56.203111070000034), (-5.043446417999917, 56.21629466400003), (-5.013295050999943, 56.22760651200008), (-4.974964972999942, 56.23700592700004), (-4.9400935539999296, 56.25141022300005), (-4.920521613999938, 56.277777411000045), (-4.938099738999938, 56.27098216400003), (-4.975087042999917, 56.24799225500004), (-4.991932745999918, 56.24298737200007), (-5.0327042309999115, 56.24115631700005), (-5.049549933999913, 56.23704661700003), (-5.064564581999946, 56.22931549700007), (-5.0754288399999155, 56.21698639500005), (-5.099436001999948, 56.18195221600007), (-5.1088761059999115, 56.174709377000056), (-5.228138800999943, 56.12921784100007), (-5.3109431629999335, 56.05805084800005), (-5.319935675999943, 56.05491771000004), (-5.338042772999927, 56.05410390800006), (-5.345692511999914, 56.051214911000045), (-5.345285610999952, 56.046128648000035), (-5.350209113999938, 56.03192780200004), (-5.356353318999936, 56.01976146000004), (-5.359364386999914, 56.020738023000035), (-5.3686417309999115, 56.009426174000055), (-5.390288865999935, 56.00568268400008), (-5.415028449999909, 56.00690338700008), (-5.43382727799991, 56.010199286000045), (-5.434559699999909, 56.014960028000075), (-5.434722459999932, 56.02362702000005), (-5.437123175999943, 56.03001536700003), (-5.444406704999949, 56.02757396000004), (-5.4479060539999296, 56.02228424700007), (-5.448231574999909, 56.016058661000045), (-5.447621222999942, 56.009426174000055), (-5.454986131999931, 55.95563385600008), (-5.45140540299991, 55.95343659100007), (-5.436431443999936, 55.94896067900004), (-5.430775519999941, 55.94818756700005), (-5.420806443999936, 55.92829010600008), (-5.416737433999913, 55.91681549700007), (-5.416005011999914, 55.907416083000044), (-5.4125056629999335, 55.899603583000044), (-5.400380011999914, 55.89288971600007), (-5.400380011999914, 55.886704820000034), (-5.407215949999909, 55.886704820000034), (-5.407215949999909, 55.87986888200004), (-5.402943488999938, 55.87872955900008), (-5.39289303299995, 55.87372467700004), (-5.3976944649999155, 55.87156810100004), (-5.402495897999927, 55.868353583000044), (-5.407215949999909, 55.86627838700008), (-5.35179602799991, 55.83242422100005), (-5.326771613999938, 55.808579820000034), (-5.317779100999928, 55.78302643400008), (-5.324574347999942, 55.769232489000046), (-5.3385310539999296, 55.76264069200005), (-5.372425910999937, 55.75641510600008), (-5.3875626289999445, 55.75031159100007), (-5.433461066999939, 55.72101471600007), (-5.4445694649999155, 55.71161530200004), (-5.4539688789999445, 55.70058828300006), (-5.46117102799991, 55.68813711100006), (-5.463612433999913, 55.67983633000006), (-5.466175910999937, 55.662176825000074), (-5.468617316999939, 55.653998114000046), (-5.490101691999939, 55.644598700000074), (-5.488270636999914, 55.640326239000046), (-5.484283006999931, 55.63572825700004), (-5.482289191999939, 55.632879950000074), (-5.4838761059999115, 55.61005280200004), (-5.474761522999927, 55.603949286000045), (-5.462635870999918, 55.60203685100004), (-5.454986131999931, 55.59194570500006), (-5.461089647999927, 55.57880280200004), (-5.476918097999942, 55.57489655200004), (-5.488758917999917, 55.56907786700003), (-5.482289191999939, 55.55027903900003), (-5.503529425999943, 55.52651601800005), (-5.509632941999939, 55.516791083000044), (-5.5106095039999445, 55.51146067900004), (-5.509632941999939, 55.49258047100005), (-5.5109757149999155, 55.484442450000074), (-5.514271613999938, 55.48387278900003), (-5.5187882149999155, 55.48517487200007), (-5.523264126999948, 55.48265208500004), (-5.545521613999938, 55.44916413000004), (-5.561512824999909, 55.435532945000034), (-5.5846248039999296, 55.427435614000046), (-5.5846248039999296, 55.421210028000075), (-5.572132941999939, 55.422308661000045), (-5.562082485999952, 55.41986725500004), (-5.553089972999942, 55.41453685100004), (-5.543690558999913, 55.40692780200004), (-5.527455206999946, 55.38434479400007), (-5.5266820949999556, 55.38027578300006), (-5.5149633449999556, 55.37368398600006), (-5.525054490999935, 55.358628648000035), (-5.557972785999937, 55.33185455900008), (-5.574370897999927, 55.32200755400004), (-5.594105597999942, 55.31313711100006), (-5.616281704999949, 55.30658600500004), (-5.6399633449999556, 55.303900458000044), (-5.649525519999941, 55.30516185100004), (-5.669097459999932, 55.31085846600007), (-5.6808975899999155, 55.31134674700007), (-5.691395636999914, 55.308579820000034), (-5.714019334999932, 55.29913971600007), (-5.725575324999909, 55.29706452000005), (-5.7545466789999296, 55.29734935100004), (-5.772287563999953, 55.30125560100004), (-5.782866990999935, 55.31354401200008), (-5.794667120999918, 55.35639069200005), (-5.796701626999948, 55.37909577000005), (-5.7914119129999335, 55.39862702000005), (-5.763417120999918, 55.41205475500004), (-5.725412563999953, 55.437567450000074), (-5.715646938999953, 55.44790273600006), (-5.7152400379999335, 55.46889883000006), (-5.720122850999928, 55.491522528000075), (-5.7219132149999155, 55.51386139500005), (-5.707753058999913, 55.54336172100005), (-5.712066209999932, 55.55072663000004), (-5.718861456999946, 55.55731842700004), (-5.721831834999932, 55.56460195500006), (-5.718129035999937, 55.57575104400007), (-5.694488084999932, 55.605536200000074), (-5.6733292309999115, 55.640611070000034), (-5.6694229809999115, 55.66071198100008), (-5.6808975899999155, 55.67446523600006), (-5.626535610999952, 55.70062897300005), (-5.61945553299995, 55.71198151200008), (-5.613189256999931, 55.725775458000044), (-5.5982966789999296, 55.74298737200007), (-5.581206834999932, 55.75763580900008), (-5.5678604809999115, 55.76386139500005), (-5.539173956999946, 55.77094147300005), (-5.504628058999913, 55.78937409100007), (-5.4735001289999445, 55.815659898000035), (-5.454986131999931, 55.845770575000074), (-5.551747199999909, 55.783636786000045), (-5.587473110999952, 55.76715729400007), (-5.599436001999948, 55.76422760600008), (-5.6126195949999556, 55.76386139500005), (-5.60578365799995, 55.77684153900003), (-5.6332087879999335, 55.78278229400007), (-5.64671790299991, 55.78750234600005), (-5.66038977799991, 55.79734935100004), (-5.667958136999914, 55.81102122600004), (-5.669016079999949, 55.83783600500004), (-5.67406165299991, 55.845770575000074), (-5.631988084999932, 55.88178131700005), (-5.625599738999938, 55.889837958000044), (-5.61937415299991, 55.90314362200007), (-5.6043595039999445, 55.91364166900007), (-5.586293097999942, 55.92332591400003), (-5.571034308999913, 55.93451569200005), (-5.593495245999918, 55.92796458500004), (-5.6275935539999296, 55.90534088700008), (-5.6537979809999115, 55.89760976800005), (-5.671701626999948, 55.88690827000005), (-5.6808975899999155, 55.886704820000034), (-5.687977667999917, 55.89337799700007), (-5.694162563999953, 55.90497467700004), (-5.696400519999941, 55.91596100500004), (-5.586822068999936, 56.01203034100007), (-5.57843990799995, 56.02448151200008), (-5.5826716789999296, 56.028957424000055), (-5.576649542999917, 56.032538153000075), (-5.571034308999913, 56.037543036000045), (-5.583892381999931, 56.040716864000046), (-5.596424933999913, 56.036810614000046), (-5.609852667999917, 56.03001536700003), (-5.625599738999938, 56.02448151200008), (-5.6317032539999445, 56.005926825000074), (-5.674875454999949, 55.977728583000044), (-5.67406165299991, 55.95563385600008), (-5.690785285999937, 55.93764883000006), (-5.694488084999932, 55.93451569200005), (-5.704497850999928, 55.936753648000035), (-5.707508917999917, 55.942572333000044), (-5.705881313999953, 55.949652411000045), (-5.701975063999953, 55.95563385600008), (-5.696441209999932, 55.98216380400004), (-5.659901495999918, 56.02326080900008), (-5.5846248039999296, 56.08466217700004), (-5.5815323559999115, 56.08828359600005), (-5.580067511999914, 56.09292226800005), (-5.5774633449999556, 56.096991278000075), (-5.571034308999913, 56.09902578300006), (-5.564605272999927, 56.098089911000045), (-5.556548631999931, 56.09589264500005), (-5.550689256999931, 56.09349192900004), (-5.550526495999918, 56.09218984600005), (-5.547840949999909, 56.09003327000005), (-5.5394587879999335, 56.08685944200005), (-5.531605597999942, 56.08633047100005), (-5.530100063999953, 56.09218984600005), (-5.534738735999952, 56.098537502000056), (-5.5414119129999335, 56.10248444200005), (-5.5475154289999296, 56.10488515800006), (-5.550526495999918, 56.10643138200004), (-5.55695553299995, 56.12221914300005), (-5.558705206999946, 56.13080475500004), (-5.554676886999914, 56.13739655200004), (-5.522531704999949, 56.16575755400004), (-5.515736456999946, 56.174709377000056), (-5.509632941999939, 56.188381252000056), (-5.5399063789999445, 56.18341705900008), (-5.562489386999914, 56.16791413000004), (-5.5826716789999296, 56.15058014500005), (-5.60578365799995, 56.139960028000075), (-5.599354620999918, 56.160589911000045), (-5.586415167999917, 56.18113841400003), (-5.569406704999949, 56.20026276200008), (-5.550526495999918, 56.21629466400003), (-5.5594376289999445, 56.22955963700008), (-5.547230597999942, 56.24017975500004), (-5.52562415299991, 56.247259833000044), (-5.50617428299995, 56.24982330900008), (-5.494740363999938, 56.253119208000044), (-5.4928279289999296, 56.26040273600006), (-5.4992569649999155, 56.267645575000074), (-5.512684699999909, 56.27094147300005), (-5.554269985999952, 56.26349518400008), (-5.5631404289999296, 56.26032135600008), (-5.572621222999942, 56.25385163000004), (-5.58234615799995, 56.24876536700003), (-5.592152472999942, 56.24982330900008), (-5.5980525379999335, 56.25861237200007), (-5.595570441999939, 56.26992422100005), (-5.5846248039999296, 56.29075755400004), (-5.57258053299995, 56.32807038000004), (-5.56273352799991, 56.341050523000035), (-5.543690558999913, 56.352850653000075), (-5.525217251999948, 56.34662506700005), (-5.498199022999927, 56.34833405200004), (-5.4481095039999445, 56.35968659100007), (-5.4481095039999445, 56.36591217700004), (-5.4721573559999115, 56.364935614000046), (-5.515370245999918, 56.35683828300006), (-5.5375056629999335, 56.35968659100007), (-5.517323370999918, 56.39276764500005), (-5.509632941999939, 56.40062083500004), (-5.498931443999936, 56.404730536000045), (-5.486073370999918, 56.40810781500005), (-5.4780167309999115, 56.41290924700007), (-5.482289191999939, 56.421128648000035), (-5.457020636999914, 56.44086334800005), (-5.423573370999918, 56.45001862200007), (-5.322865363999938, 56.45498281500005), (-5.242054816999939, 56.44220612200007), (-5.208729620999918, 56.44684479400007), (-5.18187415299991, 56.45966217700004), (-5.118519660999937, 56.50775788000004), (-5.085682745999918, 56.54877350500004), (-5.064564581999946, 56.56513092700004), (-5.086537238999938, 56.55849844000005), (-5.099598761999914, 56.54364655200004), (-5.1105850899999155, 56.52586497600004), (-5.125965949999909, 56.51048411700003), (-5.166900193999936, 56.49005768400008), (-5.190174933999913, 56.46865469000005), (-5.201079881999931, 56.462103583000044), (-5.243763800999943, 56.45921458500004), (-5.350168423999946, 56.47296784100007), (-5.378081834999932, 56.458970445000034), (-5.394276495999918, 56.46548086100006), (-5.4105525379999335, 56.50364817900004), (-5.42414303299995, 56.500067450000074), (-5.4359431629999335, 56.49115631700005), (-5.454986131999931, 56.46954987200007), (-5.468617316999939, 56.47573476800005), (-5.433338995999918, 56.52362702000005), (-5.427642381999931, 56.53782786700003), (-5.4037979809999115, 56.524603583000044), (-5.379261847999942, 56.519191799000055), (-5.3566788399999155, 56.51968008000006), (-5.3382869129999335, 56.52415599200003), (-5.2905167309999115, 56.54466380400004), (-5.265044725999928, 56.551214911000045), (-5.252552863999938, 56.556341864000046), (-5.242054816999939, 56.56513092700004), (-5.27562415299991, 56.553615627000056), (-5.286773240999935, 56.552069403000075), (-5.306792772999927, 56.552801825000074), (-5.3109431629999335, 56.552069403000075), (-5.327707485999952, 56.54466380400004), (-5.338693813999953, 56.542303778000075), (-5.360340949999909, 56.53221263200004), (-5.372425910999937, 56.53034088700008), (-5.384348110999952, 56.53343333500004), (-5.400502081999946, 56.54364655200004), (-5.413929816999939, 56.54466380400004), (-5.410878058999913, 56.552069403000075), (-5.407297329999949, 56.55532461100006), (-5.402699347999942, 56.55744049700007), (-5.396636522999927, 56.561712958000044), (-5.392689581999946, 56.566473700000074), (-5.3893123039999296, 56.57489655200004), (-5.386626756999931, 56.57880280200004), (-5.360707160999937, 56.60626862200007), (-5.351918097999942, 56.612941799000055), (-5.31086178299995, 56.63361237200007), (-5.304514126999948, 56.64016347900008), (-5.298451300999943, 56.64642975500004), (-5.317779100999928, 56.65387604400007), (-5.317779100999928, 56.661322333000044), (-5.309071417999917, 56.66425202000005), (-5.286773240999935, 56.674994208000044), (-5.261463995999918, 56.67332591400003), (-5.248199022999927, 56.67405833500004), (-5.218902147999927, 56.688666083000044), (-5.196441209999932, 56.688666083000044), (-5.153309699999909, 56.68121979400007), (-5.132639126999948, 56.68451569200005), (-5.093373175999943, 56.69904205900008), (-5.012806769999941, 56.70929596600007), (-4.9955948559999115, 56.71596914300005), (-5.1605525379999335, 56.69586823100008), (-5.238270636999914, 56.71662018400008), (-5.23851477799991, 56.72256094000005), (-5.228423631999931, 56.73647695500006), (-5.222075975999928, 56.741522528000075), (-5.154652472999942, 56.78229401200008), (-5.136382615999935, 56.79877350500004), (-5.119740363999938, 56.818426825000074), (-5.179066535999937, 56.78925202000005), (-5.187489386999914, 56.78115469000005), (-5.191761847999942, 56.774644273000035), (-5.202259894999941, 56.76911041900007), (-5.214670376999948, 56.76520416900007), (-5.224964972999942, 56.763739325000074), (-5.233469204999949, 56.76068756700005), (-5.237049933999913, 56.75336334800005), (-5.2389216789999296, 56.74445221600007), (-5.242054816999939, 56.73647695500006), (-5.255238410999937, 56.721584377000056), (-5.268462693999936, 56.71308014500005), (-5.283355272999927, 56.70937734600005), (-5.30101477799991, 56.70856354400007), (-5.3098038399999155, 56.70648834800005), (-5.319162563999953, 56.69749583500004), (-5.34015865799995, 56.693060614000046), (-5.348378058999913, 56.687201239000046), (-5.359364386999914, 56.674994208000044), (-5.388050910999937, 56.65521881700005), (-5.403879360999952, 56.64923737200007), (-5.4242244129999335, 56.64704010600008), (-5.434396938999953, 56.64288971600007), (-5.4487198559999115, 56.62457916900007), (-5.458119269999941, 56.620347398000035), (-5.470773891999954, 56.618394273000035), (-5.482574022999927, 56.613267320000034), (-5.493316209999932, 56.60639069200005), (-5.53343665299991, 56.57290273600006), (-5.599598761999914, 56.52903880400004), (-5.667388475999928, 56.498480536000045), (-5.67406165299991, 56.49689362200007), (-5.683013475999928, 56.50063711100006), (-5.694691535999937, 56.51386139500005), (-5.70539303299995, 56.51666901200008), (-5.721791144999941, 56.51850006700005), (-5.740834113999938, 56.52326080900008), (-5.7582087879999335, 56.52997467700004), (-5.770253058999913, 56.53782786700003), (-5.7551977199999556, 56.554022528000075), (-5.751047329999949, 56.56199778900003), (-5.749134894999941, 56.571966864000046), (-5.756662563999953, 56.571966864000046), (-5.793853318999936, 56.54328034100007), (-5.8543595039999445, 56.550482489000046), (-6.0034073559999115, 56.61871979400007), (-6.009836391999954, 56.62653229400007), (-6.008168097999942, 56.642279364000046), (-5.998036261999914, 56.64988841400003), (-5.983509894999941, 56.65281810100004), (-5.933583136999914, 56.654730536000045), (-5.899037238999938, 56.650824286000045), (-5.866851365999935, 56.64154694200005), (-5.8391820949999556, 56.62653229400007), (-5.831695115999935, 56.633978583000044), (-5.855620897999927, 56.64472077000005), (-5.865589972999942, 56.65143463700008), (-5.865834113999938, 56.661322333000044), (-5.75999915299991, 56.70075104400007), (-5.735503709999932, 56.702337958000044), (-5.672596808999913, 56.68414948100008), (-5.647368943999936, 56.68121979400007), (-5.5941462879999335, 56.68333567900004), (-5.564808722999942, 56.68764883000006), (-5.543690558999913, 56.69546133000006), (-5.636545376999948, 56.688666083000044), (-5.658558722999942, 56.690741278000075), (-5.708851691999939, 56.70856354400007), (-5.749989386999914, 56.714544989000046), (-5.859038865999935, 56.68121979400007), (-5.89679928299995, 56.675116278000075), (-5.907378709999932, 56.674994208000044), (-5.9203181629999335, 56.67796458500004), (-5.942738410999937, 56.686753648000035), (-5.955555792999917, 56.688666083000044), (-6.0248917309999115, 56.68569570500006), (-6.098622199999909, 56.696966864000046), (-6.123850063999953, 56.69562409100007), (-6.143544074999909, 56.684881903000075), (-6.161732550999943, 56.67820872600004), (-6.186594204999949, 56.68109772300005), (-6.2096248039999296, 56.68846263200004), (-6.222767706999946, 56.69546133000006), (-6.228179490999935, 56.70107656500005), (-6.232533331999946, 56.70652903900003), (-6.235340949999909, 56.71238841400003), (-6.236398891999954, 56.71906159100007), (-6.234486456999946, 56.728583075000074), (-6.229562954999949, 56.72907135600008), (-6.222767706999946, 56.72719961100006), (-6.215321417999917, 56.72964101800005), (-6.193470831999946, 56.74852122600004), (-6.1805313789999445, 56.75462474200003), (-6.026966925999943, 56.763739325000074), (-6.0148819649999155, 56.76703522300005), (-5.979888475999928, 56.78156159100007), (-5.965199347999942, 56.784857489000046), (-5.948231574999909, 56.782538153000075), (-5.937977667999917, 56.77692291900007), (-5.928537563999953, 56.769964911000045), (-5.913644985999952, 56.763739325000074), (-5.860910610999952, 56.75079987200007), (-5.8522029289999296, 56.746975002000056), (-5.853342251999948, 56.757879950000074), (-5.858143683999913, 56.768459377000056), (-5.8683975899999155, 56.77586497600004), (-5.886341925999943, 56.777411200000074), (-5.886341925999943, 56.784857489000046), (-5.874012824999909, 56.78571198100008), (-5.861805792999917, 56.78510163000004), (-5.850087042999917, 56.782456773000035), (-5.8391820949999556, 56.777411200000074), (-5.8246150379999335, 56.78758372600004), (-5.8020727199999556, 56.79181549700007), (-5.7766007149999155, 56.787990627000056), (-5.756662563999953, 56.784857489000046), (-5.831695115999935, 56.80536530200004), (-5.8508194649999155, 56.818019924000055), (-5.851185675999943, 56.82892487200007), (-5.837473110999952, 56.83661530200004), (-5.7338761059999115, 56.84479401200008), (-5.692738410999937, 56.85492584800005), (-5.66038977799991, 56.87299225500004), (-5.673573370999918, 56.87653229400007), (-5.692005988999938, 56.87531159100007), (-5.7084854809999115, 56.87055084800005), (-5.724354620999918, 56.85382721600007), (-5.744496222999942, 56.85415273600006), (-5.783924933999913, 56.85993073100008), (-5.775380011999914, 56.86994049700007), (-5.735503709999932, 56.89411041900007), (-5.7805883449999556, 56.89874909100007), (-5.874867316999939, 56.887152411000045), (-5.9211319649999155, 56.89411041900007), (-5.8875626289999445, 56.89911530200004), (-5.8522029289999296, 56.90033600500004), (-5.8522029289999296, 56.90770091400003), (-5.859852667999917, 56.91054922100005), (-5.8801163399999155, 56.92202383000006), (-5.8625382149999155, 56.93374258000006), (-5.851429816999939, 56.95425039300005), (-5.842518683999913, 56.977443752000056), (-5.831695115999935, 56.99713776200008), (-5.814116990999935, 57.00950755400004), (-5.786040818999936, 57.02057526200008), (-5.755238410999937, 57.026556708000044), (-5.729318813999953, 57.02383047100005), (-5.719878709999932, 57.017564195000034), (-5.699940558999913, 56.998114325000074), (-5.688303188999953, 56.98969147300005), (-5.67406165299991, 56.983587958000044), (-5.658558722999942, 56.97947825700004), (-5.625599738999938, 56.976629950000074), (-5.571278449999909, 56.98383209800005), (-5.523264126999948, 56.99713776200008), (-5.523264126999948, 57.003973700000074), (-5.540435350999928, 57.001166083000044), (-5.556507941999939, 56.996079820000034), (-5.571278449999909, 56.99331289300005), (-5.5846248039999296, 56.99713776200008), (-5.607085740999935, 56.98851146000004), (-5.628814256999931, 56.991888739000046), (-5.6498917309999115, 56.999660549000055), (-5.6703181629999335, 57.003973700000074), (-5.685536261999914, 57.00958893400008), (-5.681711391999954, 57.02240631700005), (-5.680043097999942, 57.03620026200008), (-5.701975063999953, 57.044907945000034), (-5.710926886999914, 57.044175523000035), (-5.731353318999936, 57.03900788000004), (-5.742339647999927, 57.03807200700004), (-5.752552863999938, 57.04059479400007), (-5.769602016999954, 57.04975006700005), (-5.780181443999936, 57.05174388200004), (-5.791127081999946, 57.05927155200004), (-5.776193813999953, 57.075832424000055), (-5.734486456999946, 57.10541413000004), (-5.722645636999914, 57.116441148000035), (-5.715646938999953, 57.12006256700005), (-5.703277147999927, 57.120754299000055), (-5.673695441999939, 57.11904531500005), (-5.663482225999928, 57.12372467700004), (-5.645863410999937, 57.12946198100008), (-5.620838995999918, 57.12409088700008), (-5.57843990799995, 57.10639069200005), (-5.558257615999935, 57.10040924700007), (-5.4598282539999445, 57.09979889500005), (-5.454986131999931, 57.10297272300005), (-5.447417772999927, 57.11017487200007), (-5.430775519999941, 57.11074453300006), (-5.41429602799991, 57.10822174700007), (-5.407215949999909, 57.10639069200005), (-5.400380011999914, 57.10639069200005), (-5.400380011999914, 57.11383698100008), (-5.420033331999946, 57.12067291900007), (-5.503895636999914, 57.11269765800006), (-5.527414516999954, 57.107489325000074), (-5.540638800999943, 57.10639069200005), (-5.5477188789999445, 57.11009349200003), (-5.573312954999949, 57.12787506700005), (-5.5846248039999296, 57.133693752000056), (-5.668446417999917, 57.147650458000044), (-5.6808975899999155, 57.157904364000046), (-5.673817511999914, 57.174994208000044), (-5.638824022999927, 57.202378648000035), (-5.625599738999938, 57.21625397300005), (-5.644154425999943, 57.23322174700007), (-5.620106574999909, 57.25214264500005), (-5.578236456999946, 57.26675039300005), (-5.543690558999913, 57.27090078300006), (-5.511586066999939, 57.25763580900008), (-5.480091925999943, 57.23700592700004), (-5.446278449999909, 57.22304922100005), (-5.407215949999909, 57.22992584800005), (-5.407215949999909, 57.23672109600005), (-5.448841925999943, 57.24209219000005), (-5.458119269999941, 57.24664948100008), (-5.47288977799991, 57.26121653900003), (-5.482899542999917, 57.268011786000045), (-5.49250240799995, 57.27090078300006), (-5.501942511999914, 57.27765534100007), (-5.4889216789999296, 57.29242584800005), (-5.464833136999914, 57.306626695000034), (-5.4406632149999155, 57.311835028000075), (-5.4406632149999155, 57.31928131700005), (-5.464995897999927, 57.32493724200003), (-5.4817602199999556, 57.31671784100007), (-5.494292772999927, 57.30442942900004), (-5.50617428299995, 57.298163153000075), (-5.523426886999914, 57.29515208500004), (-5.558461066999939, 57.28143952000005), (-5.57843990799995, 57.27765534100007), (-5.599436001999948, 57.27924225500004), (-5.637440558999913, 57.28900788000004), (-5.656971808999913, 57.29132721600007), (-5.7000626289999445, 57.28359609600005), (-5.720570441999939, 57.284491278000075), (-5.729318813999953, 57.298163153000075), (-5.7252498039999296, 57.30158112200007), (-5.701975063999953, 57.33234284100007), (-5.6937556629999335, 57.337103583000044), (-5.671986456999946, 57.34442780200004), (-5.663482225999928, 57.349676825000074), (-5.654367641999954, 57.353949286000045), (-5.647206183999913, 57.34992096600007), (-5.6414688789999445, 57.34320709800005), (-5.636545376999948, 57.33978913000004), (-5.613189256999931, 57.34198639500005), (-5.5012914699999556, 57.37099844000005), (-5.456654425999943, 57.39354075700004), (-5.4481095039999445, 57.42169830900008), (-5.46507727799991, 57.423895575000074), (-5.492054816999939, 57.40875885600008), (-5.5375056629999335, 57.373928127000056), (-5.563465949999909, 57.36310455900008), (-5.586659308999913, 57.36505768400008), (-5.610910610999952, 57.37140534100007), (-5.6399633449999556, 57.373928127000056), (-5.615589972999942, 57.382473049000055), (-5.607085740999935, 57.389105536000045), (-5.609201626999948, 57.397772528000075), (-5.617746548999946, 57.41010163000004), (-5.619618292999917, 57.41669342700004), (-5.624012824999909, 57.41640859600005), (-5.6399633449999556, 57.40802643400008), (-5.707183397999927, 57.35976797100005), (-5.732411261999914, 57.352769273000035), (-5.784575975999928, 57.34857819200005), (-5.807769334999932, 57.35492584800005), (-5.8248591789999296, 57.39435455900008), (-5.822255011999914, 57.39350006700005), (-5.817372199999909, 57.39520905200004), (-5.812855597999942, 57.398098049000055), (-5.8111873039999296, 57.40119049700007), (-5.813872850999928, 57.40452708500004), (-5.8231095039999445, 57.41233958500004), (-5.8248591789999296, 57.41547272300005), (-5.825266079999949, 57.428900458000044), (-5.821888800999943, 57.435532945000034), (-5.8111873039999296, 57.44220612200007), (-5.8215225899999155, 57.44546133000006), (-5.852528449999909, 57.450384833000044), (-5.859038865999935, 57.45270416900007), (-5.861195441999939, 57.46344635600008), (-5.870513475999928, 57.48078034100007), (-5.872670050999943, 57.49371979400007), (-5.869699673999946, 57.500881252000056), (-5.856068488999938, 57.51780833500004), (-5.8522029289999296, 57.52411530200004), (-5.8510636059999115, 57.538397528000075), (-5.851470506999931, 57.55109284100007), (-5.847075975999928, 57.55890534100007), (-5.831695115999935, 57.55882396000004), (-5.833851691999939, 57.563381252000056), (-5.837025519999941, 57.57477448100008), (-5.8391820949999556, 57.579291083000044), (-5.821400519999941, 57.583197333000044), (-5.803618943999936, 57.581366278000075), (-5.7863663399999155, 57.57518138200004), (-5.732574022999927, 57.54523346600007), (-5.715646938999953, 57.538397528000075), (-5.707020636999914, 57.542303778000075), (-5.68976803299995, 57.52789948100008), (-5.6808975899999155, 57.52411530200004), (-5.650868292999917, 57.51264069200005), (-5.6399633449999556, 57.511053778000075), (-5.645334438999953, 57.51666901200008), (-5.648304816999939, 57.52187734600005), (-5.650542772999927, 57.52680084800005), (-5.6535538399999155, 57.53156159100007), (-5.5815323559999115, 57.538397528000075), (-5.5402725899999155, 57.534491278000075), (-5.5168350899999155, 57.534857489000046), (-5.512684699999909, 57.54148997600004), (-5.543120897999927, 57.55536530200004), (-5.588368292999917, 57.56102122600004), (-5.632720506999931, 57.55768463700008), (-5.66038977799991, 57.544582424000055), (-5.694488084999932, 57.56631094000005), (-5.689198370999918, 57.56940338700008), (-5.6808975899999155, 57.579291083000044), (-5.714222785999937, 57.58270905200004), (-5.7316788399999155, 57.59829336100006), (-5.744252081999946, 57.61798737200007), (-5.762806769999941, 57.633978583000044), (-5.778146938999953, 57.63743724200003), (-5.7936091789999296, 57.63857656500005), (-5.8058975899999155, 57.642645575000074), (-5.8111873039999296, 57.65509674700007), (-5.805409308999913, 57.667181708000044), (-5.785023566999939, 57.67951080900008), (-5.790760870999918, 57.68854401200008), (-5.790760870999918, 57.69599030200004), (-5.753570115999935, 57.707464911000045), (-5.734486456999946, 57.70795319200005), (-5.704986131999931, 57.69013092700004), (-5.692494269999941, 57.691066799000055), (-5.68195553299995, 57.69871653900003), (-5.67406165299991, 57.70966217700004), (-5.685170050999943, 57.71141185100004), (-5.692290818999936, 57.716498114000046), (-5.698841925999943, 57.723089911000045), (-5.708851691999939, 57.72955963700008), (-5.720529751999948, 57.73338450700004), (-5.803822394999941, 57.743841864000046), (-5.80695553299995, 57.75462474200003), (-5.8020727199999556, 57.780585028000075), (-5.803822394999941, 57.792222398000035), (-5.801258917999917, 57.800441799000055), (-5.809925910999937, 57.82062409100007), (-5.8111873039999296, 57.833197333000044), (-5.807362433999913, 57.84393952000005), (-5.799956834999932, 57.85370514500005), (-5.789540167999917, 57.86200592700004), (-5.776519334999932, 57.86790599200003), (-5.751128709999932, 57.87335846600007), (-5.724761522999927, 57.87352122600004), (-5.698638475999928, 57.86908600500004), (-5.67406165299991, 57.86050039300005), (-5.677886522999927, 57.846909898000035), (-5.674794074999909, 57.82709381700005), (-5.667958136999914, 57.80695221600007), (-5.66038977799991, 57.792222398000035), (-5.650542772999927, 57.78180573100008), (-5.6373591789999296, 57.77423737200007), (-5.622141079999949, 57.77020905200004), (-5.60578365799995, 57.77049388200004), (-5.613270636999914, 57.77521393400008), (-5.617909308999913, 57.78021881700005), (-5.625599738999938, 57.792222398000035), (-5.613026495999918, 57.792629299000055), (-5.603260870999918, 57.791083075000074), (-5.5846248039999296, 57.784816799000055), (-5.591175910999937, 57.80442942900004), (-5.587025519999941, 57.81858958500004), (-5.5852758449999556, 57.83144765800006), (-5.598988410999937, 57.846869208000044), (-5.6375626289999445, 57.86635976800005), (-5.650380011999914, 57.87775299700007), (-5.6399633449999556, 57.88784414300005), (-5.6476944649999155, 57.88898346600007), (-5.6507869129999335, 57.89081452000005), (-5.6535538399999155, 57.89468008000006), (-5.643950975999928, 57.90420156500005), (-5.620757615999935, 57.92088450700004), (-5.6126195949999556, 57.92877838700008), (-5.598215298999946, 57.91901276200008), (-5.587310350999928, 57.91510651200008), (-5.550526495999918, 57.91510651200008), (-5.556263800999943, 57.88776276200008), (-5.527902798999946, 57.86758047100005), (-5.487049933999913, 57.85586172100005), (-5.454986131999931, 57.85370514500005), (-5.46117102799991, 57.86050039300005), (-5.449045376999948, 57.869126695000034), (-5.437123175999943, 57.897650458000044), (-5.427642381999931, 57.908270575000074), (-5.4149063789999445, 57.90814850500004), (-5.369496222999942, 57.89752838700008), (-5.355620897999927, 57.89126211100006), (-5.327504035999937, 57.87327708500004), (-5.293853318999936, 57.86204661700003), (-5.221587693999936, 57.846869208000044), (-5.236317511999914, 57.86078522300005), (-5.2475479809999115, 57.86701080900008), (-5.276763475999928, 57.87417226800005), (-5.320668097999942, 57.898504950000074), (-5.384917772999927, 57.914129950000074), (-5.39289303299995, 57.91819896000004), (-5.394398566999939, 57.923895575000074), (-5.396839972999942, 57.926214911000045), (-5.3973282539999445, 57.928900458000044), (-5.39289303299995, 57.935614325000074), (-5.386545376999948, 57.936428127000056), (-5.378977016999954, 57.93183014500005), (-5.3717341789999296, 57.93105703300006), (-5.366200324999909, 57.943060614000046), (-5.3471573559999115, 57.936712958000044), (-5.319162563999953, 57.91474030200004), (-5.297352667999917, 57.908270575000074), (-5.2860001289999445, 57.90875885600008), (-5.266957160999937, 57.91400788000004), (-5.2562556629999335, 57.91510651200008), (-5.2436417309999115, 57.91290924700007), (-5.22101803299995, 57.90403880400004), (-5.211293097999942, 57.90208567900004), (-5.198801235999952, 57.897772528000075), (-5.162261522999927, 57.87848541900007), (-5.1199845039999445, 57.86798737200007), (-5.0911352199999556, 57.84031810100004), (-5.070790167999917, 57.833197333000044), (-5.07648678299995, 57.83852773600006), (-5.083404100999928, 57.84756094000005), (-5.0893448559999115, 57.85724518400008), (-5.091867641999954, 57.86420319200005), (-5.0971573559999115, 57.87091705900008), (-5.197255011999914, 57.91787344000005), (-5.221587693999936, 57.92133209800005), (-5.221587693999936, 57.92877838700008), (-5.201893683999913, 57.92865631700005), (-5.193959113999938, 57.935980536000045), (-5.19554602799991, 57.94765859600005), (-5.204497850999928, 57.960150458000044), (-5.216704881999931, 57.96588776200008), (-5.2488907539999445, 57.96938711100006), (-5.2631729809999115, 57.976548570000034), (-5.292632615999935, 57.98061758000006), (-5.333892381999931, 58.00853099200003), (-5.359364386999914, 58.011379299000055), (-5.357167120999918, 58.01406484600005), (-5.3566788399999155, 58.014878648000035), (-5.351918097999942, 58.01752350500004), (-5.366932745999918, 58.02887604400007), (-5.386586066999939, 58.032538153000075), (-5.427642381999931, 58.03119538000004), (-5.424305792999917, 58.03554922100005), (-5.422352667999917, 58.03896719000005), (-5.419585740999935, 58.04205963700008), (-5.413929816999939, 58.04547760600008), (-5.413929816999939, 58.05231354400007), (-5.447010870999918, 58.08437734600005), (-5.428089972999942, 58.09796784100007), (-5.390044725999928, 58.09218984600005), (-5.366200324999909, 58.06598541900007), (-5.344309048999946, 58.075506903000075), (-5.322865363999938, 58.07172272300005), (-5.300770636999914, 58.07013580900008), (-5.276763475999928, 58.08641185100004), (-5.283070441999939, 58.08641185100004), (-5.278065558999913, 58.09625885600008), (-5.2787979809999115, 58.10537344000005), (-5.283558722999942, 58.11347077000005), (-5.2905167309999115, 58.12055084800005), (-5.276763475999928, 58.12055084800005), (-5.276763475999928, 58.127386786000045), (-5.297352667999917, 58.134833075000074), (-5.284087693999936, 58.14008209800005), (-5.255523240999935, 58.143784898000035), (-5.242054816999939, 58.14789459800005), (-5.242054816999939, 58.15534088700008), (-5.275054490999935, 58.15452708500004), (-5.290842251999948, 58.156317450000074), (-5.304798956999946, 58.162095445000034), (-5.297352667999917, 58.168402411000045), (-5.304798956999946, 58.17332591400003), (-5.313059048999946, 58.17731354400007), (-5.321888800999943, 58.18024323100008), (-5.331450975999928, 58.18203359600005), (-5.3293350899999155, 58.186712958000044), (-5.326161261999914, 58.198431708000044), (-5.323963995999918, 58.203111070000034), (-5.336822068999936, 58.203192450000074), (-5.346791144999941, 58.20685455900008), (-5.39289303299995, 58.24469635600008), (-5.3920792309999115, 58.261379299000055), (-5.375884568999936, 58.26422760600008), (-5.352894660999937, 58.25893789300005), (-5.31078040299991, 58.243394273000035), (-5.293853318999936, 58.24091217700004), (-5.276966925999943, 58.243394273000035), (-5.237294074999909, 58.25763580900008), (-5.2160538399999155, 58.261419989000046), (-5.194325324999909, 58.25999583500004), (-5.173207160999937, 58.25092194200005), (-5.165638800999943, 58.258246161000045), (-5.152251756999931, 58.264837958000044), (-5.138335740999935, 58.269598700000074), (-5.129383917999917, 58.27138906500005), (-5.11156165299991, 58.26825592700004), (-5.0812882149999155, 58.25409577000005), (-5.0676977199999556, 58.25092194200005), (-5.017730272999927, 58.253241278000075), (-5.002430792999917, 58.25092194200005), (-4.933583136999914, 58.22304922100005), (-4.943430141999954, 58.233587958000044), (-4.954823370999918, 58.23981354400007), (-4.982004360999952, 58.25092194200005), (-4.968861456999946, 58.25678131700005), (-4.940337693999936, 58.259466864000046), (-4.926747199999909, 58.26459381700005), (-4.990223761999914, 58.27142975500004), (-5.009917772999927, 58.27138906500005), (-5.018055792999917, 58.26862213700008), (-5.029367641999954, 58.25971100500004), (-5.040028449999909, 58.25775788000004), (-5.0501195949999556, 58.25991445500006), (-5.0707087879999335, 58.269232489000046), (-5.081654425999943, 58.27138906500005), (-5.096424933999913, 58.27676015800006), (-5.125965949999909, 58.30019765800006), (-5.1362198559999115, 58.305568752000056), (-5.137440558999913, 58.30927155200004), (-5.156361456999946, 58.32461172100005), (-5.160145636999914, 58.326605536000045), (-5.167795376999948, 58.33926015800006), (-5.171009894999941, 58.34666575700004), (-5.173207160999937, 58.353949286000045), (-5.153309699999909, 58.353949286000045), (-5.1634008449999556, 58.364569403000075), (-5.162912563999953, 58.37449778900003), (-5.155913865999935, 58.384466864000046), (-5.146473761999914, 58.394964911000045), (-5.145497199999909, 58.400051174000055), (-5.14671790299991, 58.40664297100005), (-5.146839972999942, 58.41242096600007), (-5.143055792999917, 58.41478099200003), (-5.135487433999913, 58.413763739000046), (-5.122222459999932, 58.40957265800006), (-5.116037563999953, 58.40859609600005), (-5.057972785999937, 58.38727448100008), (-5.016184048999946, 58.38812897300005), (-5.043934699999909, 58.400091864000046), (-5.0533748039999296, 58.40664297100005), (-5.0502823559999115, 58.41478099200003), (-5.0570369129999335, 58.42218659100007), (-5.066151495999918, 58.41714101800005), (-5.076161261999914, 58.414496161000045), (-5.086822068999936, 58.41388580900008), (-5.0980525379999335, 58.41478099200003), (-5.0980525379999335, 58.42218659100007), (-5.08812415299991, 58.421942450000074), (-5.085031704999949, 58.42218659100007), (-5.085031704999949, 58.429022528000075), (-5.091786261999914, 58.429754950000074), (-5.09601803299995, 58.43146393400008), (-5.105539516999954, 58.43650950700004), (-5.0501195949999556, 58.45380280200004), (-5.025542772999927, 58.447699286000045), (-4.9955948559999115, 58.43650950700004), (-5.105539516999954, 58.48737213700008), (-5.105620897999927, 58.505560614000046), (-5.103667772999927, 58.51422760600008), (-5.095855272999927, 58.518866278000075), (-5.042795376999948, 58.53546784100007), (-5.0279841789999296, 58.54409414300005), (-5.016184048999946, 58.55939362200007), (-5.0229386059999115, 58.55939362200007), (-5.015207485999952, 58.580064195000034), (-5.011586066999939, 58.60057200700004), (-5.004953579999949, 58.61774323100008), (-4.988189256999931, 58.62832265800006), (-4.859486456999946, 58.61322663000004), (-4.835926886999914, 58.60504791900007), (-4.818104620999918, 58.59292226800005), (-4.817941860999952, 58.587591864000046), (-4.81281490799995, 58.571966864000046), (-4.806752081999946, 58.55841705900008), (-4.803822394999941, 58.55939362200007), (-4.804595506999931, 58.54832591400003), (-4.807240363999938, 58.53961823100008), (-4.811634894999941, 58.53204987200007), (-4.818104620999918, 58.524644273000035), (-4.799794074999909, 58.532456773000035), (-4.791818813999953, 58.54165273600006), (-4.7899063789999445, 58.55174388200004), (-4.790150519999941, 58.562486070000034), (-4.785755988999938, 58.577053127000056), (-4.777088995999918, 58.583319403000075), (-4.771595831999946, 58.59039948100008), (-4.776519334999932, 58.60716380400004), (-4.758859829999949, 58.59910716400003), (-4.7280167309999115, 58.577460028000075), (-4.7113337879999335, 58.57306549700007), (-4.683257615999935, 58.56150950700004), (-4.670399542999917, 58.55939362200007), (-4.660023566999939, 58.555853583000044), (-4.659291144999941, 58.54755280200004), (-4.663238084999932, 58.538397528000075), (-4.6673070949999556, 58.53204987200007), (-4.6790258449999556, 58.52391185100004), (-4.714466925999943, 58.50560130400004), (-4.732411261999914, 58.480454820000034), (-4.751535610999952, 58.46161530200004), (-4.7609757149999155, 58.44798411700003), (-4.74242102799991, 58.44953034100007), (-4.682972785999937, 58.48456452000005), (-4.673451300999943, 58.48737213700008), (-4.6668595039999445, 58.50291575700004), (-4.650502081999946, 58.50995514500005), (-4.630441860999952, 58.514960028000075), (-4.612131313999953, 58.524644273000035), (-4.6010636059999115, 58.54193756700005), (-4.595122850999928, 58.56000397300005), (-4.584950324999909, 58.57416413000004), (-4.560536261999914, 58.57990143400008), (-4.517486131999931, 58.575506903000075), (-4.475493943999936, 58.565619208000044), (-4.426503058999913, 58.54637278900003), (-4.426503058999913, 58.53888580900008), (-4.427886522999927, 58.53530508000006), (-4.428700324999909, 58.53473541900007), (-4.426503058999913, 58.524644273000035), (-4.449940558999913, 58.510199286000045), (-4.464751756999931, 58.49201080900008), (-4.477650519999941, 58.47134023600006), (-4.4953507149999155, 58.44953034100007), (-4.478098110999952, 58.453558661000045), (-4.46117102799991, 58.46246979400007), (-4.43390865799995, 58.483628648000035), (-4.432728644999941, 58.487616278000075), (-4.4339900379999335, 58.49237702000005), (-4.4342341789999296, 58.49628327000005), (-4.430165167999917, 58.49799225500004), (-4.425933397999927, 58.49909088700008), (-4.385365363999938, 58.52240631700005), (-4.382394985999952, 58.524644273000035), (-4.343861456999946, 58.53888580900008), (-4.317005988999938, 58.54572174700007), (-4.306996222999942, 58.54637278900003), (-4.287180141999954, 58.54291413000004), (-4.2573136059999115, 58.52798086100006), (-4.234730597999942, 58.524644273000035), (-4.248931443999936, 58.53204987200007), (-4.238189256999931, 58.536444403000075), (-4.232248501999948, 58.54242584800005), (-4.227691209999932, 58.548163153000075), (-4.22101803299995, 58.551947333000044), (-4.209706183999913, 58.55292389500005), (-4.190785285999937, 58.54783763200004), (-4.1769913399999155, 58.54637278900003), (-4.16820227799991, 58.54938385600008), (-4.1605525379999335, 58.562567450000074), (-4.149322068999936, 58.565619208000044), (-4.111195441999939, 58.565619208000044), (-4.0902400379999335, 58.56207916900007), (-4.081450975999928, 58.561835028000075), (-4.070220506999931, 58.565619208000044), (-4.061512824999909, 58.57282135600008), (-4.048817511999914, 58.58958567900004), (-4.039784308999913, 58.59292226800005), (-4.030629035999937, 58.59406159100007), (-4.029042120999918, 58.59516022300005), (-4.027821417999917, 58.59271881700005), (-4.0092667309999115, 58.57330963700008), (-4.003773566999939, 58.57062409100007), (-3.981434699999909, 58.57306549700007), (-3.8957413399999155, 58.565619208000044), (-3.8101293609999516, 58.57306549700007), (-3.7669571609999366, 58.58372630400004), (-3.6983536449999406, 58.61115143400008), (-3.659901495999918, 58.62083567900004), (-3.597564256999931, 58.62714264500005), (-3.565500454999949, 58.626613674000055), (-3.542591925999943, 58.62083567900004), (-3.552479620999918, 58.61546458500004), (-3.556263800999943, 58.61399974200003), (-3.532053188999953, 58.60211823100008), (-3.504017706999946, 58.60333893400008), (-3.447010870999918, 58.61399974200003), (-3.3914688789999445, 58.60065338700008), (-3.364084438999953, 58.600816148000035), (-3.3508194649999155, 58.62083567900004), (-3.3677465489999463, 58.624701239000046), (-3.3860570949999556, 58.631740627000056), (-3.402251756999931, 58.64203522300005), (-3.412912563999953, 58.655585028000075), (-3.3900447259999282, 58.67177969000005), (-3.3748673169999392, 58.677069403000075), (-3.3582657539999445, 58.675482489000046), (-3.3543595039999445, 58.67015208500004), (-3.35179602799991, 58.66083405200004), (-3.34788977799991, 58.652044989000046), (-3.340565558999913, 58.648138739000046), (-3.3098852199999556, 58.648138739000046), (-3.244252081999946, 58.65900299700007), (-3.204090949999909, 58.66111888200004), (-3.1519262359999516, 58.64126211100006), (-3.118763800999943, 58.64109935100004), (-3.052886522999927, 58.648138739000046), (-3.0191137359999516, 58.640326239000046), (-3.025380011999914, 58.62213776200008), (-3.0444229809999115, 58.601629950000074), (-3.049183722999942, 58.58673737200007), (-3.060454881999931, 58.57843659100007), (-3.0754288399999155, 58.56037018400008), (-3.0845434239999463, 58.551947333000044), (-3.1107478509999282, 58.53864166900007), (-3.1180313789999445, 58.53204987200007), (-3.129261847999942, 58.51264069200005), (-3.1293025379999335, 58.49640534100007), (-3.1187231109999516, 58.484442450000074), (-3.0975235669999392, 58.47748444200005), (-3.0850723949999406, 58.47825755400004), (-3.073963995999918, 58.481675523000035), (-3.064442511999914, 58.48297760600008), (-3.056630011999914, 58.47748444200005), (-3.053334113999938, 58.46576569200005), (-3.0577286449999406, 58.45685455900008), (-3.066761847999942, 58.451157945000034), (-3.077056443999936, 58.44953034100007), (-3.0863337879999335, 58.41421133000006), (-3.129790818999936, 58.36928945500006), (-3.182769334999932, 58.32843659100007), (-3.2205297519999476, 58.305568752000056), (-3.2622777989999463, 58.292629299000055), (-3.34984290299991, 58.27610911700003), (-3.38499915299991, 58.26459381700005), (-3.438099738999938, 58.236029364000046), (-3.447010870999918, 58.22675202000005), (-3.454741990999935, 58.210150458000044), (-3.473459438999953, 58.193426825000074), (-3.515288865999935, 58.168402411000045), (-3.7350154289999296, 58.07217031500005), (-3.809193488999938, 58.05190664300005), (-3.8275040359999366, 58.04205963700008), (-3.8362524079999503, 58.03143952000005), (-3.8460994129999335, 58.01117584800005), (-3.851714647999927, 58.003892320000034), (-3.8605850899999155, 57.998928127000056), (-3.8856095039999445, 57.991400458000044), (-3.9173070949999556, 57.98745351800005), (-3.981434699999909, 57.96356842700004), (-3.990956183999913, 57.96039459800005), (-3.997670050999943, 57.954413153000075), (-4.001372850999928, 57.94611237200007), (-4.001942511999914, 57.935614325000074), (-4.018299933999913, 57.940619208000044), (-4.023060675999943, 57.943060614000046), (-4.016184048999946, 57.949286200000074), (-4.0301407539999445, 57.953192450000074), (-4.055775519999941, 57.95498281500005), (-4.0843806629999335, 57.964178778000075), (-4.0891007149999155, 57.960150458000044), (-4.0863337879999335, 57.95189036700003), (-4.0776261059999115, 57.943060614000046), (-4.062652147999927, 57.93695709800005), (-4.03148352799991, 57.93618398600006), (-4.016184048999946, 57.93219635600008), (-4.009429490999935, 57.92767975500004), (-3.988270636999914, 57.908270575000074), (-4.008941209999932, 57.88959381700005), (-4.013824022999927, 57.879339911000045), (-4.009348110999952, 57.86790599200003), (-4.025135870999918, 57.868068752000056), (-4.054839647999927, 57.874335028000075), (-4.070220506999931, 57.87417226800005), (-4.0793350899999155, 57.87026601800005), (-4.0969132149999155, 57.85736725500004), (-4.1049698559999115, 57.85370514500005), (-4.132923956999946, 57.85415273600006), (-4.190419074999909, 57.87006256700005), (-4.218169725999928, 57.87417226800005), (-4.298898891999954, 57.86277903900003), (-4.3209529289999296, 57.87103913000004), (-4.353179490999935, 57.89520905200004), (-4.3723038399999155, 57.90448639500005), (-4.392404751999948, 57.908270575000074), (-4.339588995999918, 57.86570872600004), (-4.307728644999941, 57.85146719000005), (-4.269398566999939, 57.846869208000044), (-4.229074673999946, 57.85724518400008), (-4.2082413399999155, 57.85919830900008), (-4.190581834999932, 57.85028717700004), (-4.173451300999943, 57.83901601800005), (-4.1497289699999556, 57.82982005400004), (-4.1334529289999296, 57.830145575000074), (-4.1390681629999335, 57.846869208000044), (-4.0750626289999445, 57.82318756700005), (-4.0399063789999445, 57.81818268400008), (-3.9835098949999406, 57.84235260600008), (-3.9514867829999503, 57.838324286000045), (-3.933705206999946, 57.82566966400003), (-3.9473363919999542, 57.81268952000005), (-3.914784308999913, 57.80768463700008), (-3.877674933999913, 57.81671784100007), (-3.8418676419999542, 57.83490631700005), (-3.813547329999949, 57.857123114000046), (-3.798451300999943, 57.866522528000075), (-3.786040818999936, 57.86542389500005), (-3.779449022999927, 57.85565827000005), (-3.782215949999909, 57.83942291900007), (-3.790028449999909, 57.83071523600006), (-3.92601477799991, 57.734808661000045), (-3.948841925999943, 57.72492096600007), (-3.975209113999938, 57.70327383000006), (-3.988270636999914, 57.69599030200004), (-4.00804602799991, 57.693793036000045), (-4.02367102799991, 57.69782135600008), (-4.0286352199999556, 57.70770905200004), (-4.016184048999946, 57.72333405200004), (-4.042958136999914, 57.73729075700004), (-4.077951626999948, 57.73029205900008), (-4.155344204999949, 57.692572333000044), (-4.168568488999938, 57.689439195000034), (-4.1939998039999296, 57.68854401200008), (-4.2592667309999115, 57.67869700700004), (-4.277821417999917, 57.68060944200005), (-4.294789191999939, 57.68016185100004), (-4.302154100999928, 57.66860586100006), (-4.30882727799991, 57.65485260600008), (-4.324045376999948, 57.64826080900008), (-4.33820553299995, 57.64508698100008), (-4.4031876289999445, 57.60952383000006), (-4.412180141999954, 57.60297272300005), (-4.4203181629999335, 57.592962958000044), (-4.428456183999913, 57.57754140800006), (-4.423451300999943, 57.57680898600006), (-4.409901495999918, 57.582464911000045), (-4.379872199999909, 57.58934153900003), (-4.365101691999939, 57.59723541900007), (-4.3510636059999115, 57.60736725500004), (-4.340809699999909, 57.617173570000034), (-4.328724738999938, 57.626288153000075), (-4.283111131999931, 57.64142487200007), (-4.2445369129999335, 57.66303131700005), (-4.201893683999913, 57.674994208000044), (-4.1937556629999335, 57.67552317900004), (-4.182240363999938, 57.67279694200005), (-4.169016079999949, 57.663763739000046), (-4.118723110999952, 57.65770091400003), (-4.096791144999941, 57.65810781500005), (-4.0807185539999296, 57.66498444200005), (-4.068104620999918, 57.672308661000045), (-4.0246475899999155, 57.687201239000046), (-4.009348110999952, 57.68854401200008), (-4.004505988999938, 57.67597077000005), (-4.025257941999939, 57.65521881700005), (-4.0541886059999115, 57.63572825700004), (-4.083404100999928, 57.62335846600007), (-4.118560350999928, 57.592962958000044), (-4.11546790299991, 57.58783600500004), (-4.112294074999909, 57.58413320500006), (-4.1088761059999115, 57.58144765800006), (-4.1049698559999115, 57.579291083000044), (-4.151356574999909, 57.57684967700004), (-4.170643683999913, 57.570746161000045), (-4.187489386999914, 57.55882396000004), (-4.178089972999942, 57.54954661700003), (-4.184925910999937, 57.548163153000075), (-4.207997199999909, 57.552069403000075), (-4.262603318999936, 57.552069403000075), (-4.262603318999936, 57.544582424000055), (-4.233957485999952, 57.54511139500005), (-4.220285610999952, 57.543402411000045), (-4.207997199999909, 57.538397528000075), (-4.226307745999918, 57.51544830900008), (-4.237456834999932, 57.50531647300005), (-4.248931443999936, 57.49746328300006), (-4.212798631999931, 57.492173570000034), (-4.1948136059999115, 57.49160390800006), (-4.173898891999954, 57.49746328300006), (-4.157622850999928, 57.50849030200004), (-4.150054490999935, 57.51504140800006), (-4.149322068999936, 57.51788971600007), (-4.126779751999948, 57.518866278000075), (-4.116200324999909, 57.52179596600007), (-4.097523566999939, 57.53668854400007), (-4.082997199999909, 57.54441966400003), (-4.067290818999936, 57.54995351800005), (-4.0531306629999335, 57.552069403000075), (-4.034982876999948, 57.55687083500004), (-4.046457485999952, 57.56785716400003), (-4.083851691999939, 57.58612702000005), (-4.056019660999937, 57.585150458000044), (-3.9643448559999115, 57.592962958000044), (-3.8682755199999406, 57.587876695000034), (-3.8374731109999516, 57.592962958000044), (-3.6848038399999155, 57.65444570500006), (-3.625152147999927, 57.66193268400008), (-3.632557745999918, 57.65094635600008), (-3.637684699999909, 57.64622630400004), (-3.6456192699999406, 57.64142487200007), (-3.632476365999935, 57.635646877000056), (-3.6196182929999168, 57.63621653900003), (-3.606068488999938, 57.63947174700007), (-3.590972459999932, 57.64142487200007), (-3.61156165299991, 57.66811758000006), (-3.5747777989999463, 57.66111888200004), (-3.55492102799991, 57.659857489000046), (-3.535755988999938, 57.66193268400008), (-3.521473761999914, 57.66779205900008), (-3.5054418609999516, 57.67865631700005), (-3.4959610669999392, 57.69135163000004), (-3.501698370999918, 57.702826239000046), (-3.491851365999935, 57.71312083500004), (-3.4828181629999335, 57.71401601800005), (-3.4730525379999335, 57.711004950000074), (-3.460682745999918, 57.70966217700004), (-3.447865363999938, 57.71246979400007), (-3.4212540359999366, 57.72138092700004), (-3.409169074999909, 57.72333405200004), (-3.2847387359999516, 57.72044505400004), (-3.2100723949999406, 57.69399648600006), (-3.0786840489999463, 57.66941966400003), (-3.034901495999918, 57.66860586100006), (-2.994496222999942, 57.67552317900004), (-2.932687954999949, 57.69961172100005), (-2.9160863919999542, 57.702826239000046), (-2.75804602799991, 57.702826239000046), (-2.7512100899999155, 57.70062897300005), (-2.741118943999936, 57.69086334800005), (-2.731068488999938, 57.68854401200008), (-2.719878709999932, 57.690619208000044), (-2.711537238999938, 57.69399648600006), (-2.7035212879999335, 57.69472890800006), (-2.6929418609999516, 57.68854401200008), (-2.658924933999913, 57.69745514500005), (-2.573394334999932, 57.68146393400008), (-2.541981574999909, 57.68235911700003), (-2.526112433999913, 57.66860586100006), (-2.5181371739999463, 57.67011139500005), (-2.5110570949999556, 57.677801825000074), (-2.497954881999931, 57.68235911700003), (-2.4800512359999516, 57.68121979400007), (-2.4328507149999155, 57.66811758000006), (-2.425526495999918, 57.67572663000004), (-2.4177953769999476, 57.674261786000045), (-2.4087621739999463, 57.669623114000046), (-2.398060675999943, 57.66811758000006), (-2.3865860669999392, 57.671576239000046), (-2.369496222999942, 57.680568752000056), (-2.360503709999932, 57.68235911700003), (-2.3410538399999155, 57.675848700000074), (-2.3289688789999445, 57.67405833500004), (-2.3235977859999366, 57.678941148000035), (-2.32054602799991, 57.68455638200004), (-2.313384568999936, 57.68992747600004), (-2.3040665359999366, 57.69399648600006), (-2.295643683999913, 57.69599030200004), (-2.274322068999936, 57.69383372600004), (-2.230132615999935, 57.67914459800005), (-2.209950324999909, 57.67552317900004), (-2.1840714179999168, 57.67845286700003), (-2.1243383449999556, 57.702826239000046), (-2.108143683999913, 57.70498281500005), (-1.9976700509999432, 57.702826239000046), (-1.9969376289999445, 57.69904205900008), (-1.990834113999938, 57.69037506700005), (-1.982167120999918, 57.68109772300005), (-1.9735001289999445, 57.67552317900004), (-1.961293097999942, 57.674709377000056), (-1.9447322259999282, 57.68256256700005), (-1.9324845039999445, 57.68235911700003), (-1.9256892569999309, 57.678168036000045), (-1.914214647999927, 57.66474030200004), (-1.8294571609999366, 57.61347077000005), (-1.820464647999927, 57.59634023600006), (-1.817005988999938, 57.578192450000074), (-1.8113907539999445, 57.56049225500004), (-1.7960098949999406, 57.544582424000055), (-1.7960098949999406, 57.538397528000075), (-1.8000382149999155, 57.52586497600004), (-1.7895401679999168, 57.514837958000044), (-1.7611384759999282, 57.49746328300006), (-1.7753800119999141, 57.496527411000045), (-1.7821345689999362, 57.48899974200003), (-1.7812393869999141, 57.48041413000004), (-1.7717179029999102, 57.476263739000046), (-1.7593481109999516, 57.47357819200005), (-1.7659399079999503, 57.46743398600006), (-1.7891739569999459, 57.45644765800006), (-1.8301488919999542, 57.42617422100005), (-1.8474828769999476, 57.40814850500004), (-1.849964972999942, 57.39435455900008), (-1.9544978509999282, 57.341131903000075), (-1.9802953769999476, 57.31928131700005), (-2.044667120999918, 57.22650788000004), (-2.068511522999927, 57.17462799700007), (-2.074126756999931, 57.15420156500005), (-2.0714005199999406, 57.13556549700007), (-2.052357550999943, 57.12742747600004), (-2.0493057929999168, 57.118841864000046), (-2.065256313999953, 57.10053131700005), (-2.0658259759999282, 57.09983958500004), (-2.156158006999931, 57.020697333000044), (-2.1869197259999282, 56.98468659100007), (-2.200103318999936, 56.94871653900003), (-2.1971329419999392, 56.94025299700007), (-2.1912328769999476, 56.93414948100008), (-2.186268683999913, 56.92674388200004), (-2.1863907539999445, 56.91453685100004), (-2.191314256999931, 56.90892161700003), (-2.209706183999913, 56.895819403000075), (-2.213693813999953, 56.890692450000074), (-2.219878709999932, 56.87262604400007), (-2.23460852799991, 56.861395575000074), (-2.2689509759999282, 56.84634023600006), (-2.295806443999936, 56.82526276200008), (-2.3198136059999115, 56.80158112200007), (-2.336089647999927, 56.79083893400008), (-2.3918350899999155, 56.771185614000046), (-2.4086807929999168, 56.762925523000035), (-2.4264216789999296, 56.751288153000075), (-2.4359431629999335, 56.74038320500006), (-2.4407445949999556, 56.73484935100004), (-2.4516495429999168, 56.69098541900007), (-2.4637345039999445, 56.67877838700008), (-2.4774063789999445, 56.66868724200003), (-2.487456834999932, 56.65387604400007), (-2.4875382149999155, 56.64606354400007), (-2.481271938999953, 56.63239166900007), (-2.480620897999927, 56.62653229400007), (-2.4861954419999392, 56.619574286000045), (-2.504058397999927, 56.60883209800005), (-2.514556443999936, 56.591498114000046), (-2.530018683999913, 56.58075592700004), (-2.623768683999913, 56.543402411000045), (-2.6409399079999503, 56.522365627000056), (-2.6613663399999155, 56.51422760600008), (-2.6997777989999463, 56.50364817900004), (-2.708729620999918, 56.49599844000005), (-2.7276505199999406, 56.46954987200007), (-2.737294074999909, 56.46702708500004), (-2.74437415299991, 56.46954987200007), (-2.752308722999942, 56.47361888200004), (-2.764800584999932, 56.47573476800005), (-2.819325324999909, 56.47129954600007), (-3.055653449999909, 56.45213450700004), (-3.0606176419999542, 56.45172760600008), (-3.099273240999935, 56.44188060100004), (-3.1339005199999406, 56.426947333000044), (-3.238189256999931, 56.36774323100008), (-3.280181443999936, 56.35789622600004), (-3.3234757149999155, 56.36591217700004), (-3.311512824999909, 56.35651276200008), (-3.294016079999949, 56.352769273000035), (-3.2515356109999516, 56.352850653000075), (-3.230620897999927, 56.35602448100008), (-3.188384568999936, 56.37018463700008), (-3.149566209999932, 56.37555573100008), (-2.950266079999949, 56.43187083500004), (-2.9399307929999168, 56.43854401200008), (-2.930653449999909, 56.44806549700007), (-2.909087693999936, 56.45571523600006), (-2.88499915299991, 56.45799388200004), (-2.867909308999913, 56.45184967700004), (-2.8500870429999168, 56.44204336100006), (-2.8147680329999503, 56.44041575700004), (-2.8028051419999542, 56.42796458500004), (-2.800892706999946, 56.40892161700003), (-2.808257615999935, 56.391058661000045), (-2.8216039699999556, 56.376166083000044), (-2.837554490999935, 56.36591217700004), (-2.8129776679999168, 56.36591217700004), (-2.809193488999938, 56.36286041900007), (-2.8047582669999542, 56.34910716400003), (-2.8028051419999542, 56.345404364000046), (-2.7914932929999168, 56.34247467700004), (-2.7826228509999282, 56.34162018400008), (-2.7752579419999392, 56.33942291900007), (-2.768625454999949, 56.33234284100007), (-2.6771541009999282, 56.32843659100007), (-2.655262824999909, 56.32217031500005), (-2.621205206999946, 56.30442942900004), (-2.613189256999931, 56.30190664300005), (-2.5768123039999296, 56.28392161700003), (-2.5768123039999296, 56.277777411000045), (-2.6301163399999155, 56.24852122600004), (-2.648345506999931, 56.22870514500005), (-2.672027147999927, 56.22239817900004), (-2.7202042309999115, 56.21629466400003), (-2.7835994129999335, 56.19196198100008), (-2.8061417309999115, 56.188381252000056), (-2.8307185539999296, 56.190741278000075), (-2.8920792309999115, 56.20888906500005), (-2.940052863999938, 56.209418036000045), (-2.9643448559999115, 56.20563385600008), (-2.9746801419999542, 56.19830963700008), (-2.982411261999914, 56.189113674000055), (-3.0355525379999335, 56.16791413000004), (-3.0910538399999155, 56.13226959800005), (-3.107533331999946, 56.12689850500004), (-3.127552863999938, 56.12287018400008), (-3.138295050999943, 56.112209377000056), (-3.152251756999931, 56.07851797100005), (-3.1635636059999115, 56.06386953300006), (-3.1783748039999296, 56.05809153900003), (-3.2484431629999335, 56.055975653000075), (-3.268381313999953, 56.05093008000006), (-3.3030492829999503, 56.037543036000045), (-3.342681443999936, 56.02716705900008), (-3.381825324999909, 56.02338288000004), (-3.420969204999949, 56.02488841400003), (-3.5825902989999463, 56.05174388200004), (-3.671498175999943, 56.050848700000074), (-3.710031704999949, 56.05809153900003), (-3.7454320949999556, 56.07221100500004), (-3.7464900379999335, 56.072780666000085), (-3.782215949999909, 56.09218984600005), (-3.8031306629999335, 56.107123114000046), (-3.817005988999938, 56.11225006700005), (-3.8374731109999516, 56.112616278000075), (-3.8374731109999516, 56.10643138200004), (-3.777699347999942, 56.08283112200007), (-3.769154425999943, 56.07514069200005), (-3.7608536449999406, 56.07245514500005), (-3.7264298169999392, 56.03803131700005), (-3.721424933999913, 56.03070709800005), (-3.712635870999918, 56.028998114000046), (-3.693470831999946, 56.03115469000005), (-3.6866348949999406, 56.03070709800005), (-3.6795548169999392, 56.025458075000074), (-3.674794074999909, 56.01870351800005), (-3.6682836579999503, 56.01276276200008), (-3.656239386999914, 56.010199286000045), (-3.599720831999946, 56.017238674000055), (-3.5773819649999155, 56.01703522300005), (-3.405425584999932, 55.98973216400003), (-3.3582657539999445, 55.98973216400003), (-3.340891079999949, 55.99445221600007), (-3.331044074999909, 55.99408600500004), (-3.320423956999946, 55.986029364000046), (-3.303456183999913, 55.97760651200008), (-3.121815558999913, 55.96930573100008), (-3.1147354809999115, 55.966131903000075), (-3.096831834999932, 55.95197174700007), (-3.090728318999936, 55.94818756700005), (-3.078236456999946, 55.94684479400007), (-3.0156957669999542, 55.950506903000075), (-2.9399307929999168, 55.96930573100008), (-2.9166560539999296, 55.98061758000006), (-2.900054490999935, 55.996161200000074), (-2.8828832669999542, 56.00849030200004), (-2.8579809239999463, 56.010199286000045), (-2.863636847999942, 56.02228424700007), (-2.8663223949999406, 56.02676015800006), (-2.8709610669999392, 56.03070709800005), (-2.8527725899999155, 56.03978099200003), (-2.823150193999936, 56.059759833000044), (-2.8028051419999542, 56.06484609600005), (-2.635121222999942, 56.05805084800005), (-2.615956183999913, 56.053168036000045), (-2.587554490999935, 56.030951239000046), (-2.569406704999949, 56.02448151200008), (-2.57835852799991, 56.00800202000005), (-2.583648240999935, 56.00275299700007), (-2.5695694649999155, 55.99994538000004), (-2.5440567699999406, 56.00267161700003), (-2.528960740999935, 55.99656810100004), (-2.5248103509999282, 56.00055573100008), (-2.514556443999936, 56.00576406500005), (-2.507923956999946, 56.010199286000045), (-2.4932755199999406, 56.00153229400007), (-2.4525040359999366, 55.985256252000056), (-2.4143774079999503, 55.97833893400008), (-2.3509415359999366, 55.94818756700005), (-2.307769334999932, 55.93500397300005), (-2.146839972999942, 55.917303778000075), (-2.1380102199999556, 55.91461823100008), (-2.132557745999918, 55.90643952000005), (-2.13109290299991, 55.89720286700003), (-2.1287735669999392, 55.88979726800005), (-2.1209610669999392, 55.886704820000034), (-2.0994766919999392, 55.88178131700005), (-2.080189581999946, 55.86937083500004), (-2.0228572259999282, 55.80548737200007), (-2.009673631999931, 55.79083893400008), (-1.8778376939999362, 55.69489166900007), (-1.8631892569999309, 55.67161692900004), (-1.8530981109999516, 55.65932851800005), (-1.8315323559999115, 55.65070221600007), (-1.8260798819999309, 55.64362213700008), (-1.8216853509999282, 55.636419989000046), (-1.8164770169999542, 55.632879950000074), (-1.8071182929999168, 55.63450755400004), (-1.8007706369999141, 55.63922760600008), (-1.7962947259999282, 55.644232489000046), (-1.7925919259999432, 55.646551825000074), (-1.781402147999927, 55.64565664300005), (-1.768625454999949, 55.641913153000075), (-1.7564998039999296, 55.63361237200007), (-1.7476700509999432, 55.619208075000074), (-1.7679744129999335, 55.619208075000074), (-1.7679744129999335, 55.612982489000046), (-1.7559708319999459, 55.60887278900003), (-1.720855272999927, 55.614569403000075), (-1.6991267569999309, 55.612982489000046), (-1.6308487619999141, 55.58510976800005), (-1.6308487619999141, 55.57827383000006), (-1.6363419259999432, 55.57168203300006), (-1.6346736319999309, 55.56439850500004), (-1.6276749339999128, 55.55711497600004), (-1.6171768869999141, 55.55027903900003), (-1.6308487619999141, 55.544134833000044), (-1.6308487619999141, 55.53729889500005), (-1.6222224599999322, 55.534084377000056), (-1.6029353509999282, 55.52362702000005), (-1.6029353509999282, 55.516791083000044), (-1.6113175119999141, 55.50804271000004), (-1.6063533189999362, 55.503241278000075), (-1.5963435539999296, 55.49990469000005), (-1.5893448559999115, 55.49567291900007), (-1.5849503249999088, 55.483710028000075), (-1.5813695949999556, 55.41665273600006), (-1.5831192699999406, 55.40692780200004), (-1.5882869129999335, 55.39057038000004), (-1.5891007149999155, 55.385199286000045), (-1.5893448559999115, 55.37653229400007), (-1.5833227199999556, 55.354722398000035), (-1.5585831369999141, 55.32892487200007), (-1.5558162099999322, 55.31134674700007), (-1.5570369129999335, 55.306626695000034), (-1.5589900379999335, 55.302069403000075), (-1.5619197259999282, 55.29779694200005), (-1.5657445949999556, 55.29364655200004), (-1.570057745999918, 55.28620026200008), (-1.5682266919999392, 55.27960846600007), (-1.5642797519999476, 55.27326080900008), (-1.5620824859999516, 55.26666901200008), (-1.5564672519999476, 55.25503164300005), (-1.5439346999999088, 55.24388255400004), (-1.5209854809999115, 55.229396877000056), (-1.5291641919999392, 55.21625397300005), (-1.5240779289999296, 55.21010976800005), (-1.514271613999938, 55.204779364000046), (-1.507964647999927, 55.194647528000075), (-1.510812954999949, 55.184759833000044), (-1.5175675119999141, 55.176214911000045), (-1.5221248039999296, 55.16746653900003), (-1.517933722999942, 55.157131252000056), (-1.5007218089999128, 55.141791083000044), (-1.4959610669999392, 55.13458893400008), (-1.492543097999942, 55.112982489000046), (-1.4837540359999366, 55.09170156500005), (-1.4800919259999432, 55.08539459800005), (-1.4762263659999348, 55.083644924000055), (-1.4632869129999335, 55.08030833500004), (-1.459584113999938, 55.07859935100004), (-1.458078579999949, 55.07575104400007), (-1.4547013009999432, 55.067572333000044), (-1.438303188999953, 55.042303778000075), (-1.4291886059999115, 55.033270575000074), (-1.4240616529999102, 55.02435944200005), (-1.4195043609999516, 55.011704820000034), (-1.412912563999953, 55.00031159100007), (-1.4015193349999322, 54.995428778000075), (-1.398182745999918, 54.992621161000045), (-1.3702286449999406, 54.97553131700005), (-1.3626602859999366, 54.96478913000004), (-1.3617244129999335, 54.958685614000046), (-1.3635147779999102, 54.95425039300005), (-1.3640030589999128, 54.94818756700005), (-1.3628637359999516, 54.92593008000006), (-1.3603409499999088, 54.91705963700008), (-1.3531388009999432, 54.91351959800005), (-1.355824347999942, 54.904282945000034), (-1.2967830069999309, 54.77993398600006), (-1.2754613919999542, 54.74843984600005), (-1.2404679029999102, 54.72166575700004), (-1.2250870429999168, 54.71503327000005), (-1.172230597999942, 54.701239325000074), (-1.172230597999942, 54.693793036000045), (-1.1926163399999155, 54.693793036000045), (-1.192453579999949, 54.68927643400008), (-1.1907852859999366, 54.68618398600006), (-1.1851700509999432, 54.68008047100005), (-1.1827286449999406, 54.67206452000005), (-1.1788223949999406, 54.66474030200004), (-1.172922329999949, 54.65835195500006), (-1.1647029289999296, 54.652777411000045), (-1.172922329999949, 54.644191799000055), (-1.1824845039999445, 54.63922760600008), (-1.2062882149999155, 54.63296133000006), (-1.203724738999938, 54.62571849200003), (-1.1988419259999432, 54.62156810100004), (-1.1918025379999335, 54.61977773600006), (-1.1821182929999168, 54.61928945500006), (-1.1793513659999348, 54.62091705900008), (-1.1784561839999128, 54.624212958000044), (-1.1769913399999155, 54.62677643400008), (-1.172230597999942, 54.62612539300005), (-1.1695857409999348, 54.62360260600008), (-1.1654353509999282, 54.61871979400007), (-1.1629532539999445, 54.61395905200004), (-1.1647029289999296, 54.61180247600004), (-1.1526586579999503, 54.61318594000005), (-1.1467179029999102, 54.618475653000075), (-1.1380509109999366, 54.646551825000074), (-1.1205948559999115, 54.63300202000005), (-1.1036270819999459, 54.624660549000055), (-1.0842179029999102, 54.620428778000075), (-1.042062954999949, 54.61709219000005), (-0.9934789699999556, 54.59813060100004), (-0.7879125639999529, 54.56077708500004), (-0.5629776679999168, 54.47736237200007), (-0.5346573559999115, 54.461004950000074), (-0.5228572259999282, 54.44708893400008), (-0.5217992829999503, 54.43805573100008), (-0.5235896479999269, 54.43024323100008), (-0.5204158189999362, 54.42007070500006), (-0.5099991529999102, 54.41156647300005), (-0.47679602799991017, 54.39720286700003), (-0.46275794199993925, 54.38898346600007), (-0.4477432929999168, 54.37319570500006), (-0.43057206899993616, 54.349310614000046), (-0.4184464179999168, 54.32404205900008), (-0.41803951699995423, 54.303941148000035), (-0.4145401679999168, 54.297308661000045), (-0.4090063139999529, 54.29075755400004), (-0.4011938139999529, 54.28563060100004), (-0.39073645699994586, 54.28351471600007), (-0.3948868479999419, 54.273138739000046), (-0.39757239499994057, 54.269191799000055), (-0.3892716139999379, 54.26406484600005), (-0.3704727859999366, 54.247707424000055), (-0.3627823559999115, 54.24249909100007), (-0.3220108709999181, 54.23607005400004), (-0.31191972599992823, 54.231634833000044), (-0.30011959499995555, 54.224676825000074), (-0.2770889959999181, 54.21775950700004), (-0.26960201699995423, 54.20766836100006), (-0.26256262899994454, 54.18109772300005), (-0.2603653639999379, 54.176988023000035), (-0.2338761059999115, 54.16046784100007), (-0.11143958199994586, 54.13157786700003), (-0.07551021999995555, 54.11212799700007), (-0.16392981699993925, 54.08340078300006), (-0.1946915359999366, 54.06232330900008), (-0.2194718089999128, 54.022772528000075), (-0.1974177729999269, 53.99481842700004), (-0.1686905589999128, 53.929348049000055), (-0.1511124339999128, 53.899318752000056), (-0.045155402999910166, 53.801214911000045), (0.13347415500004445, 53.642645575000074), (0.1492619150000678, 53.60960521000004), (0.13689212300005238, 53.57713450700004), (0.13119550900006516, 53.573431708000044), (0.1096297540000819, 53.56289297100005), (0.1313582690000885, 53.59369538000004), (0.1359969410000872, 53.610663153000075), (0.12020918100006384, 53.61810944200005), (0.09945722700007309, 53.622300523000035), (0.056162957000083225, 53.64126211100006), (0.034515821000070446, 53.64606354400007), (0.014821811000047092, 53.64325592700004), (-0.023915167999916775, 53.62885163000004), (-0.04503333199994586, 53.62555573100008), (-0.06940670499994894, 53.626939195000034), (-0.09227454299991678, 53.63104889500005), (-0.11261959499995555, 53.63751862200007), (-0.1300349599999322, 53.64606354400007), (-0.2253311839999128, 53.719916083000044), (-0.2603653639999379, 53.73541901200008), (-0.2956436839999128, 53.738796291000085), (-0.3051651679999168, 53.73969147300005), (-0.4311417309999115, 53.71430084800005), (-0.4496964179999168, 53.71430084800005), (-0.5104874339999128, 53.71430084800005), (-0.5444229809999115, 53.70945872600004), (-0.5515030589999128, 53.71116771000004), (-0.5762426419999542, 53.72565338700008), (-0.5791723299999489, 53.72797272300005), (-0.6370336579999503, 53.73200104400007), (-0.6583552729999269, 53.72797272300005), (-0.7264705069999309, 53.70062897300005), (-0.7173559239999463, 53.69867584800005), (-0.7085668609999516, 53.695746161000045), (-0.7001846999999088, 53.691839911000045), (-0.6924535799999489, 53.68699778900003), (-0.6774796209999181, 53.702826239000046), (-0.6498103509999282, 53.710598049000055), (-0.6195369129999335, 53.71185944200005), (-0.5961807929999168, 53.70807526200008), (-0.5554906889999529, 53.69049713700008), (-0.5447485019999476, 53.683579820000034), (-0.5299373039999296, 53.67767975500004), (-0.5140274729999419, 53.681301174000055), (-0.48631751199991413, 53.69448476800005), (-0.3072403639999379, 53.71426015800006), (-0.27936764199995423, 53.707098700000074), (-0.2603653639999379, 53.68699778900003), (-0.1886287099999322, 53.620428778000075), (-0.1440323559999115, 53.606634833000044), (-0.11318925699993088, 53.58462148600006), (-0.09593665299991017, 53.57713450700004), (-0.06094316299993352, 53.57396067900004), (-0.0466202459999181, 53.570379950000074), (9.199300006912381e-05, 53.53534577000005), (0.0959578790000819, 53.488348700000074), (0.11508222700007309, 53.48322174700007), (0.1340438160000872, 53.48061758000006), (0.15186608200008322, 53.475816148000035), (0.1678166020000731, 53.464504299000055), (0.17090905000009116, 53.457017320000034), (0.1731063160000872, 53.44676341400003), (0.17579186300008587, 53.43768952000005), (0.1814884770000731, 53.43374258000006), (0.1906030610000471, 53.43187083500004), (0.21949303500008455, 53.41950104400007), (0.21192467500009116, 53.41266510600008), (0.2293400400000678, 53.40477122600004), (0.24488366000008455, 53.39093659100007), (0.2561141290000819, 53.375067450000074), (0.26042728000004445, 53.36147695500006), (0.34213300900006516, 53.22630442900004), (0.35621178500008455, 53.18854401200008), (0.3566186860000471, 53.145738023000035), (0.3357853520000731, 53.093451239000046), (0.32984459700008983, 53.08649323100008), (0.31869550900006516, 53.083685614000046), (0.29883873800008587, 53.08120351800005), (0.2824813160000872, 53.07485586100006), (0.19304446700004974, 53.02008698100008), (0.17448978000004445, 53.01544830900008), (0.16081790500004445, 53.008978583000044), (0.08212324300006912, 52.938666083000044), (0.061167839000063395, 52.924994208000044), (0.03760826900008851, 52.919175523000035), (0.022146030000044448, 52.91258372600004), (0.008555535000084546, 52.89862702000005), (0.010264519000088512, 52.88646067900004), (0.04066002700005811, 52.88507721600007), (0.09253991000008455, 52.89252350500004), (0.10564212300005238, 52.88934967700004), (0.13347415500004445, 52.87518952000005), (0.14714603000004445, 52.87201569200005), (0.17090905000009116, 52.86212799700007), (0.22242272200008983, 52.813666083000044), (0.24675540500004445, 52.79572174700007), (0.2644962900000678, 52.80369700700004), (0.2856551440000885, 52.805568752000056), (0.32553144600007045, 52.803168036000045), (0.34180748800008587, 52.79743073100008), (0.36988366000008455, 52.77301666900007), (0.38453209700008983, 52.76837799700007), (0.38453209700008983, 52.77521393400008), (0.37924238400006516, 52.79083893400008), (0.39942467500009116, 52.80951569200005), (0.42554772200008983, 52.827378648000035), (0.4386499360000471, 52.840725002000056), (0.44402103000004445, 52.86505768400008), (0.45671634200004974, 52.89199453300006), (0.47234134200004974, 52.916449286000045), (0.48568769600007045, 52.93349844000005), (0.5202742850000845, 52.95526764500005), (0.5695906910000872, 52.96930573100008), (0.6233830090000652, 52.97565338700008), (0.6718856130000859, 52.97443268400008), (0.6643986340000652, 52.98187897300005), (0.6847436860000471, 52.986395575000074), (0.7067977220000898, 52.98322174700007), (0.7291772800000444, 52.97748444200005), (0.7504988940000885, 52.97443268400008), (0.8357039720000898, 52.97443268400008), (0.8754988940000885, 52.96816640800006), (0.9210718110000471, 52.95465729400007), (0.9684350920000497, 52.94749583500004), (1.013926629000082, 52.960150458000044), (1.0034285820000832, 52.96474844000005), (0.9915470710000704, 52.96747467700004), (0.9790145190000885, 52.968410549000055), (0.9660750660000872, 52.96759674700007), (0.9660750660000872, 52.97443268400008), (1.2746688160000872, 52.92918528900003), (1.3960067070000832, 52.89142487200007), (1.6442163420000497, 52.775824286000045), (1.6733504570000832, 52.75568268400008), (1.6970320970000898, 52.73102448100008), (1.7158309250000912, 52.68374258000006), (1.7341414720000898, 52.65460846600007), (1.747243686000047, 52.62518952000005), (1.7407332690000885, 52.60390859600005), (1.7468367850000845, 52.58852773600006), (1.7487085300000444, 52.568793036000045), (1.7475692070000832, 52.53278229400007), (1.7711694670000497, 52.48590729400007), (1.7671004570000832, 52.47695547100005), (1.7544051440000885, 52.46735260600008), (1.7292586600000845, 52.41559479400007), (1.7301538420000497, 52.405910549000055), (1.7278751960000704, 52.39630768400008), (1.6836043630000859, 52.32453034100007), (1.6518660820000832, 52.289129950000074), (1.6411238940000885, 52.28180573100008), (1.6305444670000497, 52.27045319200005), (1.6282658210000704, 52.24481842700004), (1.6308699880000859, 52.19977448100008), (1.6254988940000885, 52.18036530200004), (1.6074324880000859, 52.14594147300005), (1.6035262380000859, 52.127834377000056), (1.5892033210000704, 52.100816148000035), (1.5875757170000497, 52.08698151200008), (1.582286004000082, 52.08148834800005), (1.5036727220000898, 52.060980536000045), (1.4868270190000885, 52.04901764500005), (1.4720158210000704, 52.05621979400007), (1.4668074880000859, 52.04800039300005), (1.4638778000000912, 52.035142320000034), (1.4558211600000845, 52.028509833000044), (1.4489852220000898, 52.02496979400007), (1.4248153000000912, 52.00185781500005), (1.3548283210000704, 51.95404694200005), (1.3435164720000898, 51.94285716400009), (1.332286004000082, 51.94009023600006), (1.2644149100000845, 51.99437083500004), (1.2348738940000885, 52.00031159100007), (1.1852319670000497, 52.025091864000046), (1.1578882170000497, 52.028509833000044), (1.1578882170000497, 52.02167389500005), (1.1935327480000524, 52.00079987200007), (1.2143660820000832, 51.991441148000035), (1.2602645190000885, 51.984808661000045), (1.2707625660000872, 51.98151276200008), (1.2751570970000898, 51.976996161000045), (1.2744246750000912, 51.96088288000004), (1.2710067070000832, 51.95644765800006), (1.2507430350000845, 51.95962148600006), (1.2389429050000444, 51.958644924000055), (1.2176212900000678, 51.954331773000035), (1.2057397800000444, 51.95343659100007), (1.193207227000073, 51.955511786000045), (1.1652938160000872, 51.96702708500004), (1.1430770190000885, 51.966050523000035), (1.0944930350000845, 51.955959377000056), (1.0691024100000845, 51.95343659100007), (1.0954695970000898, 51.945746161000045), (1.2620548840000652, 51.939154364000046), (1.2819930350000845, 51.946600653000075), (1.278493686000047, 51.92792389500005), (1.1995548840000652, 51.87767161700003), (1.2122501960000704, 51.87164948100008), (1.2278751960000704, 51.86737702000005), (1.2644149100000845, 51.86399974200003), (1.2747501960000704, 51.870306708000044), (1.2822371750000912, 51.880560614000046), (1.2866317070000832, 51.88165924700007), (1.288259311000047, 51.860581773000035), (1.2763778000000912, 51.84479401200008), (1.2192488940000885, 51.811835028000075), (1.167816602000073, 51.790228583000044), (1.1354272800000444, 51.78172435100004), (1.0654403000000912, 51.77529531500005), (1.0466414720000898, 51.777044989000046), (1.0372827480000524, 51.78217194200005), (1.021332227000073, 51.80255768400008), (0.9887801440000885, 51.83026764500005), (0.9798283210000704, 51.84357330900008), (0.9770613940000885, 51.82461172100005), (0.9620874360000471, 51.813788153000075), (0.9251408210000704, 51.80255768400008), (0.8942977220000898, 51.78461334800005), (0.8869735040000819, 51.782131252000056), (0.8864038420000497, 51.776678778000075), (0.8834741550000444, 51.76471588700008), (0.8789168630000859, 51.75275299700007), (0.8737085300000444, 51.747300523000035), (0.8619897800000444, 51.74555084800005), (0.8459578790000819, 51.736761786000045), (0.8357039720000898, 51.733710028000075), (0.8234969410000872, 51.73383209800005), (0.8014429050000444, 51.73969147300005), (0.7917586600000845, 51.74115631700005), (0.7671004570000832, 51.739447333000044), (0.7208764980000524, 51.728176174000055), (0.6985783210000704, 51.720038153000075), (0.7142033210000704, 51.715277411000045), (0.7324324880000859, 51.713771877000056), (0.7492781910000872, 51.70848216400009), (0.7607528000000912, 51.692694403000075), (0.7890731130000859, 51.710150458000044), (0.8530379570000832, 51.71889883000006), (0.8835555350000845, 51.72687409100007), (0.9123641290000819, 51.741522528000075), (0.9300236340000652, 51.74359772300005), (0.9455672540000819, 51.733710028000075), (0.9474389980000524, 51.72524648600006), (0.9445906910000872, 51.71548086100006), (0.9404403000000912, 51.70799388200004), (0.9381616550000444, 51.706366278000075), (0.9401961600000845, 51.698431708000044), (0.9440210300000444, 51.69057851800005), (0.9518335300000444, 51.67841217700004), (0.9417423840000652, 51.673041083000044), (0.9379988940000885, 51.664496161000045), (0.9381616550000444, 51.64126211100006), (0.9347436860000471, 51.63589101800005), (0.9267684250000912, 51.630926825000074), (0.9114689460000704, 51.62384674700007), (0.9384871750000912, 51.624986070000034), (0.9480900400000678, 51.621527411000045), (0.9518335300000444, 51.61701080900008), (0.9244897800000444, 51.588324286000045), (0.8733016290000819, 51.559475002000056), (0.8282983730000524, 51.541856187000064), (0.8162541020000731, 51.537176825000074), (0.7712508470000898, 51.52826569200005), (0.6920679050000444, 51.536322333000044), (0.6643986340000652, 51.53506094000005), (0.6637475920000497, 51.53554922100005), (0.6505639980000524, 51.53579336100006), (0.6466577480000524, 51.53534577000005), (0.6440535820000832, 51.53506094000005), (0.6427514980000524, 51.53351471600007), (0.6233830090000652, 51.52204010600008), (0.6086531910000872, 51.51898834800005), (0.5952254570000832, 51.51862213700008), (0.5822860040000819, 51.51654694200005), (0.5688582690000885, 51.50836823100008), (0.5527449880000859, 51.51797109600005), (0.5472111340000652, 51.51772695500006), (0.5254012380000859, 51.516913153000075), (0.45606530000009116, 51.505560614000046), (0.45085696700004974, 51.49827708500004), (0.44800866000008455, 51.48822663000004), (0.4416610040000819, 51.47703685100004), (0.42847741000008455, 51.46710846600007), (0.41407311300008587, 51.46190013200004), (0.39918053500008455, 51.45840078300006), (0.38453209700008983, 51.453111070000034), (0.4484155610000471, 51.45994700700004), (0.45679772200008983, 51.46312083500004), (0.4614363940000885, 51.47016022300005), (0.46485436300008587, 51.47724030200004), (0.4695744150000678, 51.48041413000004), (0.5348413420000497, 51.49168528900009), (0.6948348320000832, 51.47703685100004), (0.7094832690000885, 51.47052643400008), (0.7219344410000872, 51.456284898000035), (0.7231551440000885, 51.44672272300005), (0.7131453790000819, 51.44122955900008), (0.6923934250000912, 51.439520575000074), (0.6565047540000819, 51.444525458000044), (0.6409611340000652, 51.44415924700007), (0.6093856130000859, 51.425116278000075), (0.5727645190000885, 51.419582424000055), (0.5545353520000731, 51.412176825000074), (0.5622664720000898, 51.40656159100007), (0.5691024100000845, 51.399603583000044), (0.5765080090000652, 51.39362213700008), (0.5859481130000859, 51.391058661000045), (0.6718856130000859, 51.391058661000045), (0.7129012380000859, 51.38422272300005), (0.7049259770000731, 51.39598216400009), (0.7003686860000471, 51.409816799000055), (0.7053328790000819, 51.41950104400007), (0.7264103520000731, 51.41901276200008), (0.7283634770000731, 51.406236070000034), (0.7392684250000912, 51.387925523000035), (0.7534285820000832, 51.371527411000045), (0.7644149100000845, 51.36440664300005), (0.9772241550000444, 51.34918854400007), (1.1009220710000704, 51.37323639500005), (1.4238387380000859, 51.39207591400009), (1.4482528000000912, 51.382879950000074), (1.4391382170000497, 51.35008372600004), (1.4355574880000859, 51.343736070000034), (1.430837436000047, 51.33779531500005), (1.4251408210000704, 51.33295319200005), (1.4186304050000444, 51.32965729400007), (1.3829858730000524, 51.329779364000046), (1.3776147800000444, 51.326239325000074), (1.3806258470000898, 51.304754950000074), (1.387868686000047, 51.28790924700007), (1.4043074880000859, 51.261379299000055), (1.4130965500000912, 51.22174713700008), (1.4047957690000885, 51.18353913000004), (1.3844507170000497, 51.151678778000075), (1.3571883470000898, 51.13100820500006), (1.2903751960000704, 51.116522528000075), (1.2629500660000872, 51.10325755400004), (1.2516382170000497, 51.10252513200004), (1.2299910820000832, 51.10370514500005), (1.2181095710000704, 51.10097890800006), (1.2082625660000872, 51.09467194200005), (1.1997176440000885, 51.087591864000046), (1.1920679050000444, 51.08258698100008), (1.1722111340000652, 51.077378648000035), (1.1067000660000872, 51.07636139500005), (1.0871688160000872, 51.07298411700003), (1.0669051440000885, 51.06439850500004), (1.027598504000082, 51.04165273600006), (0.9764103520000731, 50.99445221600007), (0.9664819670000497, 50.98273346600007), (0.9690861340000652, 50.95685455900008), (0.9798283210000704, 50.91815827000005), (0.9451603520000731, 50.909369208000044), (0.8698022800000444, 50.925116278000075), (0.8022567070000832, 50.93919505400004), (0.7624617850000845, 50.930894273000035), (0.6643986340000652, 50.870306708000044), (0.6241968110000471, 50.858710028000075), (0.4074813160000872, 50.829331773000035), (0.3702905610000471, 50.818793036000045), (0.36524498800008587, 50.81899648600006), (0.35425866000008455, 50.80963776200008), (0.34441165500004445, 50.79905833500004), (0.3422957690000885, 50.79515208500004), (0.3081160820000832, 50.780951239000046), (0.2710067070000832, 50.747381903000075), (0.23389733200008322, 50.74701569200005), (0.2141219410000872, 50.748928127000056), (0.16830488400006516, 50.759833075000074), (0.1573999360000471, 50.761053778000075), (0.12208092500009116, 50.76080963700008), (0.11304772200008983, 50.76414622600004), (0.09555097700007309, 50.775051174000055), (0.07703698000005943, 50.778998114000046), (0.034515821000070446, 50.780951239000046), (0.01754804800009424, 50.784857489000046), (-0.17316646999995555, 50.829006252000056), (-0.20612545499994894, 50.83104075700004), (-0.20889238199993088, 50.83010488500008), (-0.2331436839999128, 50.821926174000055), (-0.2696833979999269, 50.831284898000035), (-0.39757239499994057, 50.802069403000075), (-0.5689591139999379, 50.802069403000075), (-0.7327367829999503, 50.767279364000046), (-0.7415665359999366, 50.769232489000046), (-0.7498673169999392, 50.773871161000045), (-0.7582087879999335, 50.77708567900004), (-0.7675675119999141, 50.774725653000075), (-0.7731013659999348, 50.76601797100005), (-0.7662654289999296, 50.74713776200008), (-0.7709854809999115, 50.73688385600008), (-0.7899470689999362, 50.73004791900007), (-0.8128149079999503, 50.73476797100005), (-0.9041235019999476, 50.77187734600005), (-0.9114884109999366, 50.77781810100004), (-0.9058731759999432, 50.78803131700005), (-0.8924861319999309, 50.794623114000046), (-0.8636368479999419, 50.802069403000075), (-0.8636368479999419, 50.808254299000055), (-0.8736059239999463, 50.812933661000045), (-0.8931371739999463, 50.82534414300005), (-0.9046931629999335, 50.829331773000035), (-0.9095352859999366, 50.82599518400008), (-0.9217016269999476, 50.821600653000075), (-0.9289444649999155, 50.82282135600008), (-0.9190160799999489, 50.83616771000004), (-0.9297989569999459, 50.83999258000006), (-0.9391983709999181, 50.84324778900009), (-0.9707738919999542, 50.846991278000075), (-0.9948624339999128, 50.84707265800006), (-1.0018611319999309, 50.84711334800005), (-1.0207413399999155, 50.84365469000005), (-1.033558722999942, 50.82591380400004), (-1.0426326159999348, 50.80190664300005), (-1.0562231109999516, 50.78302643400008), (-1.0827530589999128, 50.780951239000046), (-1.1030167309999115, 50.79547760600008), (-1.0936173169999392, 50.812933661000045), (-1.0753067699999406, 50.83002350500004), (-1.069162563999953, 50.84365469000005), (-1.0873103509999282, 50.84979889500005), (-1.0881241529999102, 50.84975820500006), (-1.1498103509999282, 50.84666575700004), (-1.1647029289999296, 50.84365469000005), (-1.129709438999953, 50.825100002000056), (-1.1237686839999128, 50.818793036000045), (-1.1212052069999459, 50.79938385600008), (-1.1249080069999309, 50.788723049000055), (-1.1380509109999366, 50.780951239000046), (-1.1511124339999128, 50.78139883000006), (-1.1693416009999282, 50.78587474200003), (-1.1856176419999542, 50.79242584800005), (-1.1926163399999155, 50.79865143400008), (-1.1992895169999542, 50.807928778000075), (-1.231516079999949, 50.81891510600008), (-1.2551977199999556, 50.83193594000005), (-1.288156704999949, 50.839178778000075), (-1.3014216789999296, 50.84365469000005), (-1.3185929029999102, 50.85691966400009), (-1.338937954999949, 50.872707424000055), (-1.4492895169999542, 50.91205475500004), (-1.4664200509999432, 50.91815827000005), (-1.4664200509999432, 50.91193268400008), (-1.4564509759999282, 50.90875885600008), (-1.4379776679999168, 50.90131256700005), (-1.4256078769999476, 50.900091864000046), (-1.4011124339999128, 50.88117096600007), (-1.323068813999953, 50.82575104400007), (-1.3142797519999476, 50.812160549000055), (-1.3172908189999362, 50.80023834800005), (-1.3398331369999141, 50.79515208500004), (-1.4039607409999348, 50.79157135600008), (-1.4186905589999128, 50.788397528000075), (-1.4113663399999155, 50.78489817900004), (-1.4049373039999296, 50.780951239000046), (-1.4049373039999296, 50.774725653000075), (-1.4505102199999556, 50.76935455900008), (-1.4762263659999348, 50.76341380400004), (-1.4875382149999155, 50.75771719000005), (-1.491932745999918, 50.75726959800005), (-1.5247289699999556, 50.761053778000075), (-1.5571996739999463, 50.72329336100006), (-1.559396938999953, 50.71922435100004), (-1.5611873039999296, 50.71898021000004), (-1.5807185539999296, 50.722642320000034), (-1.6021215489999463, 50.731756903000075), (-1.6706436839999128, 50.74005768400008), (-1.672922329999949, 50.74005768400008), (-1.6930232409999348, 50.739935614000046), (-1.7150772779999102, 50.73578522300005), (-1.7535294259999432, 50.72284577000005), (-1.7717179029999102, 50.72011953300006), (-1.7974340489999463, 50.723171291000085), (-1.8350723949999406, 50.72768789300005), (-1.8574112619999141, 50.72695547100005), (-1.8773494129999335, 50.72284577000005), (-1.8963516919999392, 50.71629466400009), (-1.8968806629999335, 50.716050523000035), (-1.9138891269999476, 50.70742422100005), (-1.9291072259999282, 50.69586823100008), (-1.9400121739999463, 50.69082265800006), (-1.9443253249999088, 50.69765859600005), (-1.946115688999953, 50.707912502000056), (-1.9492895169999542, 50.713324286000045), (-1.9877009759999282, 50.72011953300006), (-2.01390540299991, 50.71893952000005), (-2.0219620429999168, 50.72011953300006), (-2.0254613919999542, 50.723863023000035), (-2.026193813999953, 50.72508372600004), (-2.0338435539999296, 50.73712799700007), (-2.038970506999931, 50.739935614000046), (-2.0480850899999155, 50.734808661000045), (-2.0826716789999296, 50.69896067900004), (-2.0695694649999155, 50.700100002000056), (-2.0577286449999406, 50.702826239000046), (-2.046620245999918, 50.70726146000004), (-2.0356339179999168, 50.713324286000045), (-2.0141495429999168, 50.688788153000075), (-2.0025121739999463, 50.681301174000055), (-1.984120245999918, 50.67853424700007), (-1.9674373039999296, 50.67865631700005), (-1.9527888659999348, 50.67658112200007), (-1.9458715489999463, 50.668850002000056), (-1.9529516269999476, 50.65184153900009), (-1.9382218089999128, 50.645819403000075), (-1.9324845039999445, 50.64443594000005), (-1.9672745429999168, 50.61709219000005), (-1.965199347999942, 50.60219961100006), (-1.9837133449999556, 50.59662506700005), (-2.065174933999913, 50.59552643400008), (-2.082183397999927, 50.59784577000005), (-2.1573380199999406, 50.62051015800006), (-2.3426407539999445, 50.63377513200004), (-2.377064581999946, 50.64752838700008), (-2.398345506999931, 50.64557526200008), (-2.435902472999942, 50.63751862200007), (-2.447621222999942, 50.62787506700005), (-2.4600723949999406, 50.60651276200008), (-2.465646938999953, 50.585150458000044), (-2.4564509759999282, 50.575506903000075), (-2.4312231109999516, 50.57025788000004), (-2.428700324999909, 50.55756256700005), (-2.4392797519999476, 50.54181549700007), (-2.45335852799991, 50.52765534100007), (-2.4595434239999463, 50.52765534100007), (-2.4603572259999282, 50.56549713700008), (-2.4835098949999406, 50.59039948100008), (-2.6929418609999516, 50.69281647300005), (-2.8648168609999516, 50.73379140800006), (-2.887318488999938, 50.734361070000034), (-2.94554602799991, 50.725816148000035), (-2.9627579419999392, 50.72329336100006), (-2.998199022999927, 50.708238023000035), (-3.021839972999942, 50.70648834800005), (-3.059722459999932, 50.713324286000045), (-3.071359829999949, 50.711004950000074), (-3.0941462879999335, 50.69896067900004), (-3.099232550999943, 50.69708893400008), (-3.115834113999938, 50.68797435100004), (-3.1254776679999168, 50.68528880400004), (-3.135894334999932, 50.68593984600005), (-3.1551407539999445, 50.69135163000004), (-3.1664932929999168, 50.69281647300005), (-3.1856176419999542, 50.690741278000075), (-3.2191462879999335, 50.68081289300005), (-3.2598363919999542, 50.67454661700003), (-3.271392381999931, 50.664496161000045), (-3.280425584999932, 50.65119049700007), (-3.2955623039999296, 50.63751862200007), (-3.368153449999909, 50.61709219000005), (-3.390736456999946, 50.61782461100006), (-3.4075414699999556, 50.62128327000005), (-3.420969204999949, 50.62946198100008), (-3.433338995999918, 50.64443594000005), (-3.446359829999949, 50.66828034100007), (-3.4504288399999155, 50.672308661000045), (-3.453277147999927, 50.67328522300005), (-3.455433722999942, 50.675441799000055), (-3.458607550999943, 50.67755768400008), (-3.4644262359999516, 50.67853424700007), (-3.467762824999909, 50.67641836100006), (-3.468902147999927, 50.67169830900008), (-3.467844204999949, 50.66697825700004), (-3.45531165299991, 50.657904364000046), (-3.4420466789999296, 50.62352122600004), (-3.433338995999918, 50.610256252000056), (-3.451161261999914, 50.59943268400008), (-3.4672745429999168, 50.585598049000055), (-3.4817602199999556, 50.56854889500005), (-3.494862433999913, 50.548163153000075), (-3.505970831999946, 50.520819403000075), (-3.505034959999932, 50.501206773000035), (-3.487456834999932, 50.459418036000045), (-3.509755011999914, 50.45848216400009), (-3.532134568999936, 50.454779364000046), (-3.549427863999938, 50.446519273000035), (-3.556263800999943, 50.43211497600004), (-3.5493057929999168, 50.41559479400007), (-3.531971808999913, 50.410223700000074), (-3.487456834999932, 50.41156647300005), (-3.487456834999932, 50.40477122600004), (-3.4974666009999282, 50.38735586100006), (-3.49828040299991, 50.383693752000056), (-3.5073136059999115, 50.382798570000034), (-3.5149633449999556, 50.37995026200008), (-3.520130988999938, 50.37482330900008), (-3.5269262359999516, 50.34979889500005), (-3.5388891269999476, 50.34442780200004), (-3.5545141269999476, 50.347642320000034), (-3.57054602799991, 50.35639069200005), (-3.577788865999935, 50.334051825000074), (-3.5991104809999115, 50.325832424000055), (-3.6215714179999168, 50.321926174000055), (-3.631988084999932, 50.31232330900008), (-3.6373591789999296, 50.29539622600004), (-3.6475723949999406, 50.27456289300005), (-3.653309699999909, 50.25104401200008), (-3.6456192699999406, 50.22601959800005), (-3.6606339179999168, 50.22101471600007), (-3.700917120999918, 50.21352773600006), (-3.7180069649999155, 50.21238841400009), (-3.740386522999927, 50.21588776200008), (-3.758615688999953, 50.22174713700008), (-3.774240688999953, 50.22296784100007), (-3.788970506999931, 50.21238841400009), (-3.826324022999927, 50.23419830900008), (-3.8841853509999282, 50.280462958000044), (-3.949940558999913, 50.31899648600006), (-3.9610082669999542, 50.322251695000034), (-3.9702042309999115, 50.320746161000045), (-3.995757615999935, 50.311428127000056), (-4.005604620999918, 50.30923086100006), (-4.011341925999943, 50.30695221600007), (-4.024769660999937, 50.29718659100007), (-4.032948370999918, 50.294907945000034), (-4.044056769999941, 50.29645416900007), (-4.054351365999935, 50.30036041900007), (-4.070220506999931, 50.30923086100006), (-4.067941860999952, 50.31281159100007), (-4.064035610999952, 50.322251695000034), (-4.086008266999954, 50.326239325000074), (-4.1082657539999445, 50.33661530200004), (-4.118723110999952, 50.35187409100007), (-4.1049698559999115, 50.37067291900007), (-4.141753709999932, 50.36904531500005), (-4.1527400379999335, 50.37067291900007), (-4.1655167309999115, 50.37636953300006), (-4.171457485999952, 50.382798570000034), (-4.175770636999914, 50.39085521000004), (-4.18382727799991, 50.40106842700004), (-4.191477016999954, 50.417629299000055), (-4.18390865799995, 50.431708075000074), (-4.1703181629999335, 50.44513580900008), (-4.159535285999937, 50.459418036000045), (-4.179432745999918, 50.45307038000004), (-4.189564581999946, 50.45368073100008), (-4.200550910999937, 50.459418036000045), (-4.203684048999946, 50.45140208500004), (-4.204741990999935, 50.44867584800005), (-4.2123917309999115, 50.441473700000074), (-4.222523566999939, 50.43797435100004), (-4.234730597999942, 50.43829987200007), (-4.234730597999942, 50.43211497600004), (-4.2202042309999115, 50.425848700000074), (-4.2161352199999556, 50.415716864000046), (-4.219715949999909, 50.40509674700007), (-4.228505011999914, 50.397365627000056), (-4.2414444649999155, 50.39468008000006), (-4.2899063789999445, 50.397365627000056), (-4.273019985999952, 50.38190338700008), (-4.216175910999937, 50.38776276200008), (-4.1937556629999335, 50.37689850500004), (-4.228505011999914, 50.37067291900007), (-4.228505011999914, 50.36383698100008), (-4.220122850999928, 50.365301825000074), (-4.200550910999937, 50.36383698100008), (-4.207997199999909, 50.35639069200005), (-4.180043097999942, 50.35639069200005), (-4.180043097999942, 50.35016510600008), (-4.191314256999931, 50.34756094000005), (-4.197987433999913, 50.342230536000045), (-4.199126756999931, 50.33539459800005), (-4.1937556629999335, 50.32843659100007), (-4.1937556629999335, 50.322251695000034), (-4.214995897999927, 50.323146877000056), (-4.225697394999941, 50.33539459800005), (-4.235096808999913, 50.34955475500004), (-4.2523494129999335, 50.35639069200005), (-4.337717251999948, 50.37067291900007), (-4.383697068999936, 50.36749909100007), (-4.456206834999932, 50.33820221600007), (-4.4953507149999155, 50.32843659100007), (-4.659820115999935, 50.322251695000034), (-4.659575975999928, 50.32062409100007), (-4.662709113999938, 50.31777578300006), (-4.667795376999948, 50.315334377000056), (-4.673451300999943, 50.31541575700004), (-4.687163865999935, 50.34271881700005), (-4.694325324999909, 50.343451239000046), (-4.700184699999909, 50.34088776200008), (-4.705555792999917, 50.337551174000055), (-4.7113337879999335, 50.33588288000004), (-4.731556769999941, 50.33466217700004), (-4.752105272999927, 50.33030833500004), (-4.763295050999943, 50.32208893400008), (-4.755441860999952, 50.30923086100006), (-4.755441860999952, 50.30174388200004), (-4.7623591789999296, 50.298041083000044), (-4.771636522999927, 50.29157135600008), (-4.779855923999946, 50.28432851800005), (-4.783355272999927, 50.27789948100008), (-4.7818904289999296, 50.27179596600007), (-4.776519334999932, 50.26508209800005), (-4.776519334999932, 50.26080963700008), (-4.788441535999937, 50.24209219000005), (-4.790150519999941, 50.23655833500004), (-4.800160285999937, 50.22955963700008), (-4.849720831999946, 50.23456452000005), (-4.868723110999952, 50.22943756700005), (-4.887318488999938, 50.21499258000006), (-4.904774542999917, 50.20844147300005), (-4.947255011999914, 50.19936758000006), (-4.960682745999918, 50.19049713700008), (-5.002430792999917, 50.14411041900007), (-5.014556443999936, 50.15656159100007), (-5.0203751289999445, 50.19196198100008), (-5.033192511999914, 50.19936758000006), (-5.05296790299991, 50.19578685100004), (-5.053618943999936, 50.18691640800006), (-5.051869269999941, 50.17552317900004), (-5.064564581999946, 50.16461823100008), (-5.064564581999946, 50.15839264500005), (-5.058501756999931, 50.155462958000044), (-5.043446417999917, 50.14411041900007), (-5.051869269999941, 50.144598700000074), (-5.058461066999939, 50.14272695500006), (-5.070790167999917, 50.13727448100008), (-5.08031165299991, 50.13271719000005), (-5.081613735999952, 50.12539297100005), (-5.080962693999936, 50.117173570000034), (-5.085031704999949, 50.10993073100008), (-5.093902147999927, 50.105536200000074), (-5.125965949999909, 50.09634023600006), (-5.114654100999928, 50.09662506700005), (-5.106068488999938, 50.09511953300006), (-5.091867641999954, 50.089504299000055), (-5.086903449999909, 50.089056708000044), (-5.075347459999932, 50.09048086100006), (-5.070790167999917, 50.089504299000055), (-5.068470831999946, 50.085150458000044), (-5.064930792999917, 50.07184479400007), (-5.06086178299995, 50.06903717700004), (-5.056507941999939, 50.060614325000074), (-5.069488084999932, 50.042181708000044), (-5.0980525379999335, 50.01439036700003), (-5.107289191999939, 50.013006903000075), (-5.127430792999917, 50.01544830900008), (-5.139637824999909, 50.01439036700003), (-5.146473761999914, 50.01056549700007), (-5.176136847999942, 49.987941799000055), (-5.18773352799991, 49.964504299000055), (-5.191151495999918, 49.95913320500006), (-5.200103318999936, 49.961371161000045), (-5.210357225999928, 49.96674225500004), (-5.240386522999927, 49.988348700000074), (-5.245228644999941, 49.99310944200005), (-5.2495011059999115, 50.000067450000074), (-5.253041144999941, 50.01264069200005), (-5.25226803299995, 50.020697333000044), (-5.252674933999913, 50.027777411000045), (-5.259755011999914, 50.03766510600008), (-5.2884008449999556, 50.067694403000075), (-5.304351365999935, 50.08026764500005), (-5.323963995999918, 50.089504299000055), (-5.384185350999928, 50.10797760600008), (-5.424712693999936, 50.11273834800005), (-5.458119269999941, 50.125881252000056), (-5.47484290299991, 50.13043854400007), (-5.495676235999952, 50.12962474200003), (-5.521839972999942, 50.12372467700004), (-5.540923631999931, 50.11347077000005), (-5.540638800999943, 50.09975820500006), (-5.5346573559999115, 50.08234284100007), (-5.5455623039999296, 50.06891510600008), (-5.563465949999909, 50.05963776200008), (-5.57843990799995, 50.054754950000074), (-5.61945553299995, 50.046210028000075), (-5.667388475999928, 50.04287344000005), (-5.705148891999954, 50.05231354400007), (-5.715646938999953, 50.08270905200004), (-5.705962693999936, 50.08348216400009), (-5.698801235999952, 50.08539459800005), (-5.694488084999932, 50.089504299000055), (-5.694406704999949, 50.095770575000074), (-5.697092251999948, 50.10053131700005), (-5.700306769999941, 50.103216864000046), (-5.701975063999953, 50.103176174000055), (-5.707386847999942, 50.12201569200005), (-5.70921790299991, 50.13263580900008), (-5.70539303299995, 50.13727448100008), (-5.7035212879999335, 50.140611070000034), (-5.684641079999949, 50.16152578300006), (-5.676747199999909, 50.16502513200004), (-5.647368943999936, 50.17206452000005), (-5.583607550999943, 50.19586823100008), (-5.549427863999938, 50.20351797100005), (-5.5109757149999155, 50.21946849200003), (-5.4891251289999445, 50.21979401200008), (-5.458119269999941, 50.20075104400007), (-5.437977667999917, 50.19432200700004), (-5.417388475999928, 50.202460028000075), (-5.402943488999938, 50.21735260600008), (-5.395863410999937, 50.22724030200004), (-5.39289303299995, 50.23655833500004), (-5.3875626289999445, 50.240301825000074), (-5.351918097999942, 50.240301825000074), (-5.3148494129999335, 50.253607489000046), (-5.200306769999941, 50.33075592700004), (-5.1635636059999115, 50.34723541900007), (-5.1498917309999115, 50.35016510600008), (-5.146473761999914, 50.35529205900008), (-5.145659959999932, 50.366888739000046), (-5.147043423999946, 50.37938060100004), (-5.153675910999937, 50.39948151200008), (-5.142404751999948, 50.40448639500005), (-5.12726803299995, 50.40521881700005), (-5.119740363999938, 50.40477122600004), (-5.0502823559999115, 50.42869700700004), (-5.0481664699999556, 50.43439362200007), (-5.038726365999935, 50.44790273600006), (-5.029774542999917, 50.486761786000045), (-5.0286352199999556, 50.507025458000044), (-5.025257941999939, 50.52423737200007), (-5.015614386999914, 50.53803131700005), (-4.9955948559999115, 50.548163153000075), (-4.975168423999946, 50.548163153000075), (-4.967844204999949, 50.55158112200007), (-4.954823370999918, 50.56122467700004), (-4.947255011999914, 50.56244538000004), (-4.941477016999954, 50.55695221600007), (-4.937123175999943, 50.54531484600005), (-4.9344376289999445, 50.53164297100005), (-4.933583136999914, 50.52024974200003), (-4.926869269999941, 50.52289459800005), (-4.924305792999917, 50.52448151200008), (-4.920521613999938, 50.52765534100007), (-4.902414516999954, 50.52057526200008), (-4.860951300999943, 50.519191799000055), (-4.844838019999941, 50.51406484600005), (-4.855824347999942, 50.527411200000074), (-4.87328040299991, 50.534084377000056), (-4.906239386999914, 50.54197825700004), (-4.921864386999914, 50.55487702000005), (-4.92023678299995, 50.564154364000046), (-4.915191209999932, 50.57249583500004), (-4.920521613999938, 50.58295319200005), (-4.920521613999938, 50.589178778000075), (-4.895659959999932, 50.585923570000034), (-4.821197068999936, 50.589178778000075), (-4.7924698559999115, 50.59520091400009), (-4.7766007149999155, 50.60984935100004), (-4.765044725999928, 50.62799713700008), (-4.7492569649999155, 50.64443594000005), (-4.755441860999952, 50.659369208000044), (-4.751942511999914, 50.67007070500006), (-4.741932745999918, 50.67487213700008), (-4.728138800999943, 50.672308661000045), (-4.657297329999949, 50.71112702000005), (-4.645578579999949, 50.723537502000056), (-4.637806769999941, 50.74115631700005), (-4.619007941999939, 50.754787502000056), (-4.577259894999941, 50.774725653000075), (-4.5501195949999556, 50.80955638200004), (-4.55492102799991, 50.897772528000075), (-4.543771938999953, 50.93919505400004), (-4.536854620999918, 50.94757721600007), (-4.5226944649999155, 50.972723700000074), (-4.5266820949999556, 50.98037344000005), (-4.530425584999932, 50.99469635600008), (-4.531320766999954, 51.008693752000056), (-4.526437954999949, 51.014960028000075), (-4.437326626999948, 51.014960028000075), (-4.4264216789999296, 51.01268138200004), (-4.4057511059999115, 51.00287506700005), (-4.3957413399999155, 51.00067780200004), (-4.337717251999948, 50.99664948100008), (-4.317290818999936, 51.00067780200004), (-4.302316860999952, 51.007513739000046), (-4.234730597999942, 51.05532461100006), (-4.2291560539999296, 51.06110260600008), (-4.224680141999954, 51.06708405200004), (-4.218495245999918, 51.07245514500005), (-4.207997199999909, 51.07636139500005), (-4.214263475999928, 51.086004950000074), (-4.226307745999918, 51.11322663000004), (-4.228505011999914, 51.120428778000075), (-4.2319229809999115, 51.12669505400004), (-4.249012824999909, 51.14288971600007), (-4.255767381999931, 51.15151601800005), (-4.222320115999935, 51.149725653000075), (-4.214833136999914, 51.15151601800005), (-4.208363410999937, 51.16229889500005), (-4.2098282539999445, 51.17283763200004), (-4.217274542999917, 51.18138255400004), (-4.228505011999914, 51.18622467700004), (-4.228505011999914, 51.19245026200008), (-4.152333136999914, 51.21161530200004), (-3.969471808999913, 51.22239817900004), (-3.931996222999942, 51.231350002000056), (-3.9131973949999406, 51.23338450700004), (-3.840891079999949, 51.23338450700004), (-3.818959113999938, 51.23607005400004), (-3.787098761999914, 51.24677155200004), (-3.769154425999943, 51.247707424000055), (-3.6397598949999406, 51.22638580900008), (-3.559315558999913, 51.22809479400007), (-3.434193488999938, 51.20978424700007), (-3.4043676419999542, 51.19204336100006), (-3.38499915299991, 51.18622467700004), (-3.2707413399999155, 51.18939850500004), (-3.198882615999935, 51.203558661000045), (-3.1627498039999296, 51.206732489000046), (-3.096750454999949, 51.20453522300005), (-3.057525193999936, 51.20815664300005), (-3.029286261999914, 51.220404364000046), (-3.021839972999942, 51.21356842700004), (-3.0355525379999335, 51.199286200000074), (-3.021839972999942, 51.19245026200008), (-3.004790818999936, 51.21312083500004), (-3.0013321609999366, 51.220404364000046), (-2.9995824859999516, 51.23322174700007), (-3.0015356109999516, 51.23969147300005), (-3.0049942699999406, 51.24506256700005), (-3.008168097999942, 51.25454336100006), (-3.0076391269999476, 51.29197825700004), (-3.0106095039999445, 51.310980536000045), (-3.021839972999942, 51.32282135600008), (-3.0024307929999168, 51.31907786700003), (-2.992176886999914, 51.321926174000055), (-2.992095506999931, 51.32204824400009), (-2.988392706999946, 51.33112213700008), (-2.9877823559999115, 51.34666575700004), (-2.9798884759999282, 51.35586172100005), (-2.965972459999932, 51.364935614000046), (-2.959584113999938, 51.374253648000035), (-2.9746801419999542, 51.38422272300005), (-2.9529516269999476, 51.398504950000074), (-2.9210098949999406, 51.39443594000005), (-2.8841853509999282, 51.41697825700004), (-2.816395636999914, 51.47361888200004), (-2.798573370999918, 51.48261139500005), (-2.780873175999943, 51.48908112200007), (-2.7612198559999115, 51.49286530200004), (-2.7376195949999556, 51.49408600500004), (-2.716420050999943, 51.49957916900007), (-2.6961563789999445, 51.51264069200005), (-2.6078181629999335, 51.60736725500004), (-2.599598761999914, 51.611395575000074), (-2.5892227859999366, 51.61424388200004), (-2.580433722999942, 51.61863841400009), (-2.5768123039999296, 51.62750885600008), (-2.57445227799991, 51.63572825700004), (-2.568959113999938, 51.644964911000045), (-2.562245245999918, 51.65338776200008), (-2.556385870999918, 51.65924713700008), (-2.499175584999932, 51.69676341400009), (-2.464995897999927, 51.725897528000075), (-2.4477432929999168, 51.73187897300005), (-2.404896613999938, 51.74115631700005), (-2.3885391919999392, 51.750433661000045), (-2.380767381999931, 51.76190827000005), (-2.3833715489999463, 51.77326080900008), (-2.398060675999943, 51.782131252000056), (-2.4024145169999542, 51.76357656500005), (-2.4203995429999168, 51.753119208000044), (-2.4434301419999542, 51.74843984600005), (-2.4632869129999335, 51.747300523000035), (-2.482085740999935, 51.74286530200004), (-2.495838995999918, 51.73200104400007), (-2.507964647999927, 51.71857330900008), (-2.5221248039999296, 51.706366278000075), (-2.581695115999935, 51.681708075000074), (-2.5911352199999556, 51.67536041900007), (-2.600209113999938, 51.66559479400007), (-2.6653539699999556, 51.617254950000074)]\n", + " draw_map(plot, x, y, colour)\n", + " plot.plot(\n", + " [merc_x(coord[0]) for coord in gb_boundary],\n", + " [merc_y(coord[1]) for coord in gb_boundary],\n", + " \"k-\",\n", + " )\n", + "\n", + "country = Config(\n", + " get_data=get_literal_data(),\n", + " clean=get_map_cleaner_for(\"Temperature\"),\n", + " title=\"Country wide temperature\",\n", + " ylabel=\"\",\n", + " draw=draw_map_with_gb,\n", + ")\n", + "\n", + "out = widgets.interactive(interactable_plot_multiple_charts(configs=configs + (country, )), collected_after=start, collected_before=end)\n", + "display(out)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "apd.aggregation", + "language": "python", + "name": "apd.aggregation" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/LICENCE b/Ch12/apd.aggregation-chapter12-ex01-complete/LICENCE new file mode 100644 index 0000000..86685d4 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/LICENCE @@ -0,0 +1,31 @@ +Copyright (c) 2019, Matthew Wilkes + + +All rights reserved. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + +* Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + +* Redistributions in binary form must reproduce the above copyright notice, this + list of conditions and the following disclaimer in the documentation and/or + other materials provided with the distribution. + +* Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived from this + software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND +ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. +IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, +INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, +BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY +OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE +OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED +OF THE POSSIBILITY OF SUCH DAMAGE. + + diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/Mapping.ipynb b/Ch12/apd.aggregation-chapter12-ex01-complete/Mapping.ipynb new file mode 100644 index 0000000..916e704 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/Mapping.ipynb @@ -0,0 +1,254 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "datapoints = {\n", + " (53.8667, -1.3333): -1,\n", + " (53.35, -2.2833): 1,\n", + " (52.45, -1.7333): 3,\n", + " (51.5, -0.1333): 6,\n", + " (51.55, -2.5667): 5,\n", + " (54.9667, -1.6167): -1,\n", + " (55.9667, -3.2167): -1,\n", + " (54.7667, -1.5833): 0,\n", + " (53.7667, -0.3): 1,\n", + " (53.7667, -3.0167): 0,\n", + " (51.4833, -3.1833): 4,\n", + " (53.2667, -3.5167): 2,\n", + " (52.0833, -2.8): 2,\n", + " (52.0167, -0.6): 2,\n", + " (52.6667, 1.2667): 5,\n", + " (50.4333, -4.9833): 9,\n", + " (50.35, -4.1167): 10,\n", + " (50.5167, -2.45): 9,\n", + " (50.8333, -1.1667): 9,\n", + " (56.45, -5.4333): 4,\n", + " (57.5333, -4.05): -2,\n", + " (54.5167, -3.6167): 3,\n", + " (53.0833, 0.2667): 4,\n", + " (51.35, 1.3333): 7,\n", + " (50.8833, 0.3167): 8,\n", + " (58.45, -3.1): 3,\n", + " (50.1, -5.6667): 9,\n", + " (58.2167, -6.3333): 4,\n", + " (55.6833, -6.25): 7,\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAARS0lEQVR4nO3df4hc13nG8eexYodFuJWDVkq0tiqH2oIksiV3LEJFfshuJNukjiIItPQP0RRUmyTQgJVYFTRtjbGwUtxSSqlKTEOJGlKq3YS6tqTGENM/nGQVyZVCrcQ1SuJdN5JSRFOy9Q/57R9zx9pdzXpmdufee87M9wNmd+7OaF9rtM+ee+4573VECACQn6vqLgAAsDgEOABkigAHgEwR4ACQKQIcADL1tiq/2cqVK2PdunVVfksAyN7x48cvRMTo/OOVBvi6des0OTlZ5bcEgOzZ/lG740yhAECmCHAAyBQBDgCZIsABIFMEOABkqtJVKMBiTJyY0oEjZzR9cUZrVoxoz/b12rFprO6ygNoR4EjaxIkp7T18SjOvXZIkTV2c0d7DpySJEMfQYwoFSTtw5Myb4d0y89olHThypqaKgHQQ4Eja9MWZno4Dw4QAR9LWrBjp6TgwTAhwJG3P9vUauXrZnGMjVy/Tnu3ra6oISEfyFzFZgTDcWu81/waAKyUd4KxAgNR8r3m/gSslPYXCCgQAWFjSAc4KBABYWNIBzgoEAFhYVwFu+6ztU7ZP2p4sjm20/WzrmO3N/S6OFQgAsLBeLmJujYgLsx4/KulPIuJJ2/cUjz/cz+JYgQAAC1vKKpSQ9EvF578saXrp5VyJFQgA0F63AR6SjtoOSX8TEQcl/YGkI7a/qOZUzK+3e6Ht3ZJ2S9LatWuXXjEAQFL3FzG3RMRtku6W9CnbH5R0v6TPRsQNkj4r6UvtXhgRByOiERGN0dErbqoMAFikrgI8IqaLj+ckjUvaLGmXpMPFU/6xOAYAqEjHALe93Pa1rc8lbZN0Ws057w8VT7tD0g/LKhIAcKVu5sBXSxq33Xr+oYh4yvb/SvoL22+T9H8q5rkBANXoGOAR8aKkW9sc/zdJv1ZGUQCAzpLeiQkAWBgBDgCZSrqdLKpF73UgLwQ4JNF7HcgRUyiQRO91IEcEOCTRex3IEQEOSfReB3JEgEMSvdeBHHERE5LovQ7kiADHm+i9DuSFKRQAyBQBDgCZIsABIFMEOABkigAHgEwR4ACQKQIcADJFgANApghwAMgUAQ4AmSLAASBTBDgAZIoAB4BMEeAAkCkCHAAyRYADQKYIcADIFAEOAJnilmo9mjgxxX0jASSBAO/BxIkp7T18SjOvXZIkTV2c0d7DpySJEAdQOaZQenDgyJk3w7tl5rVLOnDkTE0VARhmBHgPpi/O9HQcAMpEgPdgzYqRno4DQJkI8B7s2b5eI1cvm3Ns5Opl2rN9fU0VARhmXMTsQetCJatQAKSAAO/Rjk1jBDaAJDCFAgCZIsABIFNdBbjts7ZP2T5pe3LW8c/YPmP7+7YfLa9MAMB8vcyBb42IC60HtrdK+pikWyLiFdur+l4dhg6tCoDuLeUi5v2S9kfEK5IUEef6UxKGFa0KgN50Owceko7aPm57d3HsZkkfsP1t29+yfXu7F9rebXvS9uT58+f7UTMGFK0KgN50OwLfEhHTxTTJMdvPF6+9TtL7Jd0u6Wu23x0RMfuFEXFQ0kFJajQaIWABtCoAetPVCDwipouP5ySNS9os6SVJh6PpO5LekLSyrEIx+GhVAPSmY4DbXm772tbnkrZJOi1pQtIdxfGbJV0j6cJCfw7QCa0KgN50M4WyWtK47dbzD0XEU7avkfS47dOSXpW0a/70CdALWhUAvXGVmdtoNGJycrLzExfAEjMAw8j28YhozD+eTS8UlpgBwFzZbKVniRkAzJVNgLPEDADmyibAWWIGAHNlE+AsMQOAubK5iMkSMwCYK5sAl7gbDgDMls0UCgBgLgIcADJFgANApghwAMgUAQ4AmSLAASBTBDgAZIoAB4BMEeAAkKmsdmICg4wblqBXBDiQAG5YgsVgCgVIADcswWIQ4EACuGEJFoMABxKw0I1JrrI1cWKq4mqQCwIcSEC7G5ZI0qUI7T18ihBHWwQ4kIAdm8b0yM4NWmZf8TXmwrEQAhxIxI5NY3ojou3XmAtHOwQ4kBBu3o1eEOBAQrh5N3rBRh70FbsJl4abd6MXBDj6ht2E/cHNu9EtplDQN+wmBKpFgKNv2E0IVIsAR9+wggKoFgGOvmEFBVAtLmKib1hBAVSLAEdfsYICqA5TKACQKQIcADJFgANApghwAMhUVwFu+6ztU7ZP2p6c97UHbIftleWUCABop5dVKFsj4sLsA7ZvkPQRST/ua1UAgI6WOoXymKTPSWrfhR4AUJpuAzwkHbV93PZuSbJ9r6SpiHiutOoAAAvqdgplS0RM214l6Zjt5yXtk7St0wuLwN8tSWvXrl10oQDmovc6uhqBR8R08fGcpHFJH5J0o6TnbJ+VdL2k79l+Z5vXHoyIRkQ0RkdH+1Y4MMxavdenLs4odLn3OnevHy4dR+C2l0u6KiJ+Xny+TdKfRsSqWc85K6kx/yIn0G+MOpveqvd6Sn8fvF/l6mYKZbWkcdut5x+KiKdKrQpogzv+XJZD73Xer/J1nEKJiBcj4tbiv/dGxMNtnrOO0TfKxh1/Lsuh9zrvV/nYiYls5DDqrEoOvdd5v8pHgCMbOYw6q7Jj05ge2blBYytGZEljK0b0yM4NSU1N8H6Vj37gyMae7evnzKlK6Y06q5R673Xer/IR4MgGd/zJC+9X+RxR3S74RqMRk5OTnZ8IAHiT7eMR0Zh/nDlwAMgUAQ4AmWIOHOiA3YRIFQEOvAV2EyJlBDhKlfvoNZeeIxhOBDhKMwijV3YTImVcxERpBqEXBrsJkTICHKUZhNFrDj1HMLyYQkFp1qwY0VSbsM5p9MpuwjTlfm2lXwhwlGZQemGk3nNk2AzCtZV+YQoFpcmhYx7yMwjXVvqFEThKxegV/TYI11b6hRE4gKywMugyAhxAVlgZdBlTKACywsqgywhwANnh2koTUygAkCkCHAAyxRQKAPRZVTtFCXAA6KMqd4oyhQIAfVTlTlECHAD6qMqdogQ4APRRlTtFCXCgJhMnprRl/9O68cEntGX/05o4MVV3SeiDKneKchETqAEtUQdXlTtFCXCgBtwsebBVtVOUKRSgBrRERT8Q4EANaImKfiDAgRrQEhX9wBw4UANaoqIfCHCgJrRExVIxhQIAmWIEjoFSVRc4IAUEOAYGm2MwbLoKcNtnJf1c0iVJr0dEw/YBSb8p6VVJ/ynpdyPiYlmFAp2wOaZ8nOGkpZc58K0RsTEiGsXjY5LeFxG3SPqBpL19rw7oAZtjytU6w5m6OKPQ5TMcerjUZ9EXMSPiaES8Xjx8VtL1/SkJWBw2x5Sryj7X6E63AR6Sjto+bnt3m69/UtKT7V5oe7ftSduT58+fX2ydQEdsjikXZzjp6TbAt0TEbZLulvQp2x9sfcH2PkmvS/pKuxdGxMGIaEREY3R0dMkFAwvZsWlMj+zcoLEVI7KksRUjemTnBuZo+4QznPR0dREzIqaLj+dsj0vaLOkZ27skfVTSnRER5ZUJdIfNMeXZs339nFU+Emc4des4Are93Pa1rc8lbZN02vZdkj4v6d6I+EW5ZQKoG2c46elmBL5a0rjt1vMPRcRTtl+Q9HZJx4qvPRsR95VWKYDacYaTlo4BHhEvSrq1zfFfLaUiAEBX6IUCAJkiwAEgU/RCwVBiSzgGAQGO5JQdrjS9qh+/QPuDKRQkpYp+G2wJrxc9VfqHAEdSqghXtoTXi1+g/cMUCpJSRbiuWTGiqTZ/HlvCqzFsv0DLnC5iBI6kVNFvg6ZX9RqmniplTxcR4EhKFeHKlvB6DdMv0LKni5hCQVJaIVr2CgW2hNenqvc4BWVPFxHgSA7hOviG5T0u+3oLUygAUJKyp4sYgQNAScqeLiLAAaBEZU4XMYUCAJkiwAEgUwQ4AGSKOXAA2Rr2roYEOIAs0RaYAAcGzrCMSt9qm/og/v+2Q4ADA2SYRqXD1tWwHS5iAgNkmHptD1NXw4UQ4MAAGaZR6TB1NVwIAQ4MkGEaldIWmDlwYKDs2b5+zhy4NNij0mHpargQAhwYIMPUaxsEOCBpsJbeDfuodJgQ4Bh6w7T0DoOFAK/JII34cseGEOSKAK8BI760DNPSOwwWlhHWIKXNFhMnprRl/9O68cEntGX/05o4MVV5DXUbpqV3GCwEeA1SGfG1zgSmLs4odPlMYNhCnA0hyBUBXoNURnwpnQnUiQ0hyBVz4DVIZbNFKmcCKWDpHXLECLwGqYz4UjkTALA4jMBrksKIL5UzAQCLQ4DPMmxrs9l2DeSNAC8M69rsFM4EACxOV3Pgts/aPmX7pO3J4tg7bB+z/cPi43XlllouVmQAyE0vFzG3RsTGiGgUjx+U9M2IuEnSN4vH2WJFBoDcLGUVysckfbn4/MuSdiy9nPqwIgNAbroN8JB01PZx27uLY6sj4mVJKj6uavdC27ttT9qePH/+/NIrLgm78QDkptuLmFsiYtr2KknHbD/f7TeIiIOSDkpSo9GIRdRYCVZkAMhNVwEeEdPFx3O2xyVtlvRT2++KiJdtv0vSuRLrrAQrMgDkpOMUiu3ltq9tfS5pm6TTkr4haVfxtF2Svl5WkQCAK3UzAl8tadx26/mHIuIp29+V9DXbvyfpx5I+UV6ZAID5OgZ4RLwo6dY2x38m6c4yigIAdEYzKwDIFAEOAJlyRHUr+2yfl/Sjyr6htFLShQq/X6+ob2lSri/l2iTqW4o6avuViBidf7DSAK+a7clZW/+TQ31Lk3J9KdcmUd9SpFQbUygAkCkCHAAyNegBfrDuAjqgvqVJub6Ua5OobymSqW2g58ABYJAN+ggcAAYWAQ4AmRqKALf9GdtnbH/f9qN11zOb7T+2PVXcru6k7Xvqrqkd2w/YDtsr666lxfZDtv+9+Hs7antN3TXNZvuA7eeLGsdtr6i7ptlsf6L4mXjDdhLL4mzfVfysvmA7qbt82X7c9jnbp+uupWXgA9z2VjXvHnRLRLxX0hdrLqmdx4rb1W2MiH+pu5j5bN8g6SNqNi1LyYGIuCUiNkr6Z0l/VHdB8xyT9L6IuEXSDyTtrbme+U5L2inpmboLkSTbyyT9laS7Jb1H0m/bfk+9Vc3xd5LuqruI2QY+wCXdL2l/RLwiNXua11xPjh6T9Dk178yUjIj4n1kPlyu9+o5GxOvFw2clXV9nPfNFxH9EREp37d4s6YWIeDEiXpX0VTUHX0mIiGck/Xfddcw2DAF+s6QP2P627W/Zvr3ugtr4dHGa/bjt6+ouZjbb90qaiojn6q6lHdsP2/6JpN9ReiPw2T4p6cm6i0jcmKSfzHr8UnEMC+j2lmpJs/2vkt7Z5kv71Px/vE7S+yXdrmYP83dHhesnO9T315IeUnP0+JCkP1Pzh70yHer7QzVv4lGLt6otIr4eEfsk7bO9V9KnJX0hpfqK5+yT9Lqkr1RZW/G9O9aXELc5ltRZVWoGIsAj4jcW+prt+yUdLgL7O7bfULMZTWV3WH6r+maz/bdqzuVWaqH6bG+QdKOk54obelwv6Xu2N0fEf9VZWxuHJD2higO8U322d0n6qKQ7qxw0tPTw95eClyTdMOvx9ZKma6olC8MwhTIh6Q5Jsn2zpGuUUJez4n6iLR9X88JSEiLiVESsioh1EbFOzR+w26oK705s3zTr4b2Sur7ZdhVs3yXp85LujYhf1F1PBr4r6SbbN9q+RtJvqXnrRixg4HdiFv8QHpe0UdKrkh6IiKfrreoy23+vZm0h6ayk34+Il2stagG2z0pqREQSvwBt/5Ok9ZLeULNN8X0RMVVvVZfZfkHS2yX9rDj0bETcV2NJc9j+uKS/lDQq6aKkkxGxveaa7pH055KWSXo8Ih6us57ZbP+DpA+reQb/U0lfiIgv1VrToAc4AAyqYZhCAYCBRIADQKYIcADIFAEOAJkiwAEgUwQ4AGSKAAeATP0/KVaoHKMq6aEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "fig, ax = plt.subplots()\n", + "lats = [ll[0] for ll in datapoints.keys()]\n", + "lons = [ll[1] for ll in datapoints.keys()]\n", + "ax.plot(lons, lats, \"o\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJcAAAD4CAYAAADhPXT2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAL9UlEQVR4nO3db6ieZR0H8O/XqXEQa8bOTKfrWOmCUqc9jmikLbOplC4hqFejgpVokNBK8Y0FoTgjehWdSPBFEQZzRWHTNIpeWJ41bTOc2pi2cyTPgoHSUme/Xjz3Wc8Oz3PO/dz3/buvP/f3A2PnPOc8ey7Gl+v/dV80M4h4OCV0ASRfCpe4UbjEjcIlbhQucXNqmx+2atUqm5qaavMjxdmePXuOmNnksJ+1Gq6pqSnMzMy0+ZHijOSLo36mZlHcKFziRuESNwqXuFG4xE2ro8XU7do7ix27D2Du6DGcu3IC2zevw5bL1oQuVrQUrpJ27Z3FHTv34dibbwEAZo8ewx079wGAAjaCmsWSduw+cCJYC469+RZ27D4QqETxU7hKmjt6bKzXReEq7dyVE2O9LgpXads3r8PEaStOem3itBXYvnldoBLFL1iHPrWR10LZUipzaEHClerIa8tla6IuX2yCNIsaeXVDkHBp5NUNQcKlkVc3lAoXyUMk95F8iuRM8dp6kk8svEZyQ9kP1cirG8bp0G8ysyMD398L4Ftm9jDJ64vvP1bmH9LIqxvqjBYNwNuLr98BYG6cN2vklb+y4TIAj5A0AD80s2kAXwOwm+R96DevHxn2RpLbAGwDgLVr19YvsSSjbId+o5ldDuA6ALeQvBLAzQBuM7PzAdwG4MfD3mhm02bWM7Pe5OTQQyKSqVLhMrO54u9XADwEYAOArQB2Fr/y8+I1kROWDRfJM0ieufA1gE8C2I9+H+uq4tc+DuB5r0JKmsr0uc4G8BDJhd//qZn9huRrAL5P8lQA/0HRrxJZsGy4zOwggEuHvP5HAB/yKJTkQVtuxI3CJW46e0Ajtf1kKepkuFLdT5aaTjaL2k/Wjk6GS/vJ2tHJcGk/WTs6GS7tJ2tHJzv02k/Wjk6GC9B+sjZ0slmUdihc4kbhEjcKl7hRuMSNwiVuFC5xo3CJG4VL3Chc4kbhEjcKl7hRuMSNwiVuFC5xo3CJG4VL3Chc4iapbc46JZ2WZMKlU9LpSaZZ1Cnp9CQTLp2STk8y4dIp6fQkEy6dkk5PMh16nZJOTzLhAnRKOjXJNIuSHoVL3FS+Eq94/askD5B8huS9fsWUFFW+Eo/kJgA3ArjEzF4nubrx0kVES0/jq9OhvxnAPWb2OnDiXqAsaempmrJ9roUr8fYUV9wBwEUAPkryTyR/T/KKYW8kua24SXZmfn6+iTK3TktP1ZStuTaa2VzR9D1K8tnivWcB+DCAKwA8SPI9ZmaDbyzuZpwGgF6vZ0iQlp6qqXMl3mEAO63vzwD+C2CVV0FD0tJTNXWuxNuF/lV4IHkRgNMBHBn176RMS0/V1LkS73QA95PcD+ANAFsXN4m50NJTNWwzD71ez2ZmTkyTaXifAZJ7zKw37GfB1hY1vM9fsOUfDe/zFyxcGt7nL1i4NLzPX7BwaXifv2Adeg3v8xd0J6p2luZNmwXFjcIlbhQucaNwiRuFS9woXOJG4RI3Cpe4UbjETVLPishRzhsmFa6Act8wqWYxoNw3TCpcAeW+YVLhCij3DZMKV0Cb3j851uupUbgC+t2zw5+dMer11ChcAanPJW7U5xI3uR9S0STqIm3OmOd+SEXhGhBixjznQypqFgfkPmPeNoVrQO6jt7YpXANyH721TeEakPvorW3q0A/IffTWNoVrkZxHb21TsyhuFC5xo3CJG4VL3NS6Eq/42ddJGsksb8+Q6ipfiQcAJM8HcA2AlxotlWShbrP4PQDfQP9WM5GTVL4Sj+QNAGbN7Gm30knS6lyJdyf6l0wtqQjjNgBYu3Zt5YJ2RU4nsKteiXcVgAsAPE3yEIDzAPyF5LuGvHfazHpm1puczONUi5eF/WSzR4/B8P/9ZLv2zoYuWiXL1lzFNXinmNmrA1fifdvMVg/8ziEAvcUd/hx51ixL7Sdb7jNirPEqX4nnWqpIee9UrbqfLNZnTizbLJrZQTO7tPjzATP7zpDfmepCreW9U7XqfrJYd9Bqhn4M3jtVq+4ni3UHrcI1Bu+dqlsuW4O7b7oYa1ZOgADWrJzA3TddvGzTFusOWu3nGsP2zetO6tsAze9UrbKfrI1yVaFwjSHWnaqxlivoHdeSvqXuuFafS9woXOJGfS5HMc6at0nhchLrrHmbFK4R6tY6ddYJc6FwDdFErRPrrHmb1KEfoom1ulhnzdukcA3RRK2j506oWRzq3JUTmB0SpHFqndhmzUOMXBWuIZpaq4vluROhRq5qFoeoujshVqH2e6nmGiGWWqcJoUauqrk6INTIVeHqgFAjVzWLHRBq5KpwdUSIPqSaRXGjcIkbNYuypDoz+wqXjFR3Zl/NooxUd2Zf4ZKR6s7sK1wyUt2ZfYUrkF17Z7Hxnsdxwe2/xsZ7Ho/yGVx1Z/bVoQ8glcMbdWf2Fa4AUjq8UWdmX81iAF05vKFwBdCVwxsKVwBdObyhPlcAsR3e8KJwBZLTNupR1CyKG9VcNXT9KTbLUbgqSmUiNKRS4SpuyHgVwFsAjptZj+QOAJ8G8AaAvwP4gpkd9SpobEJPhKZQa47T59pkZusHnn/5KIAPmtklAJ4DcEfjpYtYyInQVO4IqtyhN7NHzOx48e0T6F8u1RkhJ0JjvTFjscr3LS7yRQAPD3sjyW0kZ0jOzM/PVy1ndEJOhKayfFQ2XBvN7HIA1wG4heSVCz8geSeA4wB+MuyNuV6JF/J5EqksH5Xq0A/et0jyIQAbAPyB5FYAnwJwtbX5QPtIhJoIjfXGjMWWrblInkHyzIWv0b9vcT/JawF8E8ANZvZv32LKoFSewlP5vkWSLwB4G/rXEgPAE2b2FbeSyklSWD5aNlxmdhDApUNef59LiSQbWlsUNwqXuNHaYoNSWJJpk8JV0nLBiWkhO5aQq1ksocxaXixLMjGtOypcJZQJTixLMrGEHFCzWEqZ4DRxMUITPEJetZlVzVVCmbW8WE70NL3uWKeZVbhKKBOcWJZkmg55nWZWzWIJZY+CxbAk0/SxtTrNrMJVUgzBKavJstbpS6pZlCXVaWZVc8mS6jSzCpcsq2ozq2ZR3Chc4kbhEjfqc3VI27slFK6OCLElSOGKVNO1TIhnWyhcEfKoZUJsCVKHPkIee7JCnNJWuCLkUcuE2BKkcEXIo5YJsSVIfa4IeT0Lou2dHQpXhHJ5lLjC1bCmphBS2j82isLVoJjOLsYgi3DFcgg09EN4Y5N8uGKqLWI5uxiL5Kciqkw4et3SmsrjJNuSfLjGrS08j7vHcnYxFsmHa9zawvO4eyxnF2ORfJ9r3AlH735RDlMITUm+5hq3tlC/qD3J11zAeLVFKo/ZzkH04Wp6DiuXpZUURB0urzks9YvaUarPRfIQyX0knyI5U7z2TpKPkny++PuspgsX04PMZHx1rsS7HcBjZnYhgMeK7xulGe+01Rkt3gjggeLrBwBsqV+ck2lkl7Y6V+KdbWYvA0Dx9+phb6xzJZ5mvNNWtkO/0czmSK5G/66fZ8t+gJlNA5gGgF6vN9bNZhrZpa3OlXj/JHmOmb1M8hwAr3gUUCO7dFW+Eg/ALwFsLX5tK4BfeBVS0lTnSrwnATxI8ksAXgLwWb9iSorqXIn3LwBXexRK8pD8wrXES+ESN2zz3nOS8wBedPyIVQCOOP77KfL+P3m3mU0O+0Gr4fJGcmZgeUoQ9v9EzaK4UbjETW7hmg5dgAgF+z/Jqs8lccmt5pKIKFziJrtwkbyL5GyxJfspkteHLlMoJK8leYDkCyQb3ym87Ofn1ucieReA18zsvtBlCYnkCgDPAbgGwGEATwL4vJn9ra0yZFdzyQkbALxgZgfN7A0AP0N/a3prcg3XrST/SvJ+j1NJiVgD4B8D3x8uXmtNkuEi+VuS+4f8uRHADwC8F8B6AC8D+G7QwobDIa+12geK+lDsKGb2iTK/R/JHAH7lXJxYHQZw/sD35wGYa7MASdZcSyn28y/4DPpbsrvoSQAXkryA5OkAPof+1vTWJFlzLeNekuvRbwIOAfhy2OKEYWbHSd4KYDeAFQDuN7Nn2ixDdlMREo/smkWJh8IlbhQucaNwiRuFS9woXOJG4RI3/wOfdKaAPZfJtAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "fig, ax = plt.subplots()\n", + "lats = [ll[0] for ll in datapoints.keys()]\n", + "lons = [ll[1] for ll in datapoints.keys()]\n", + "# Don't draw lines\n", + "ax.plot(lons, lats, \"o\")\n", + "# This is a map of the UK. Here, 1 degree latitude is \n", + "# 1.7x as far as 1 degree longitude\n", + "ax.set_aspect(1.7)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Set up mercator transform from https://wiki.openstreetmap.org/wiki/Mercator#Python\n", + "# Thanks to Paulo Silva and the OSM contributors\n", + "import math\n", + "\n", + "def merc_x(lon):\n", + " r_major=6378137.000\n", + " return r_major*math.radians(lon)\n", + "\n", + "def merc_y(lat):\n", + " if lat>89.5:lat=89.5\n", + " if lat<-89.5:lat=-89.5\n", + " r_major=6378137.000\n", + " r_minor=6356752.3142\n", + " temp=r_minor/r_major\n", + " eccent=math.sqrt(1-temp**2)\n", + " phi=math.radians(lat)\n", + " sinphi=math.sin(phi)\n", + " con=eccent*sinphi\n", + " com=eccent/2\n", + " con=((1.0-con)/(1.0+con))**com\n", + " ts=math.tan((math.pi/2-phi)/2)/con\n", + " y=0-r_major*math.log(ts)\n", + " return y\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJkAAAEDCAYAAAAm1qYrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAARk0lEQVR4nO2de7BdVX3HP98mgqE8biTgwA1pghNCHTU8LoJaLQ9LgE4bcGhLtUVSbEpB+pgxo4zT6gwzVSd1xjIUMsBYSlVQMI1IlWgLiFMJmAgkPLx4IWO4CZbwCLYh05Lw6x973XBycu6957HW2Wvv8/vM3Mk5a6997u+efGft9fh915KZ4Tgp+ZWyA3Dqj4vMSY6LzEmOi8xJjovMSY6LzElOqSKT9GVJz0t6rM36vy/pCUmPS/pa6vicOKjMeTJJHwD+B7jFzN4xTd2FwDeAM83sZUlHmtnz/YjT6Y1SWzIzux94qbFM0tsk3S1pg6QfSjo+XPpT4B/N7OVwrwusIuTYJ7sBuNLMTgY+AVwXyo8DjpP0n5LWSTqntAidjphZdgCNSDoYeC9wu6SJ4gPDvzOBhcDpwFzgh5LeYWY7+h2n0xlZiYyiZd1hZie0uDYOrDOz14DNkkYpRPfjfgbodE5Wj0sz+yWFgH4PQAWLw+U1wBmhfA7F4/OZUgJ1OqLsKYxbgQeARZLGJV0KfAS4VNKjwOPA0lB9LfCipCeAe4EVZvZiGXE7nVHqFIYzGGT1uHTqSWkd/zlz5tj8+fPL+vVOAjZs2PCCmR3RXF6ayObPn8/69evL+vVOAiT9vFW5Py6d5LjInOS4yJzkuMic5LjInOTktnZZGdY8vJWVa0fZtmMXRw/NYsWSRZx/4nDZYWWJi6wL1jy8latWb2LXa3sA2LpjF1et3gTgQmuBPy67YOXa0b0Cm2DXa3tYuXa0pIjypi2RSfrrkFf/mKRbJb256bokXSNpTNJGSSelCTcPtu3Y1VH5oDOtyCQNA38BjIQ8/BnARU3VzqXI7VoILAeujxxnVhw9NKuj8kGn3cflTGCWpJnAQcC2putLKcwgZmbrgCFJR0WMMytWLFnErDfN2Kds1ptmsGLJopIiyptpO/5mtlXS3wNbgF3A98zse03VhoFnG96Ph7LnGitJWk7R0jFv3ry95VUbqU3EVqWYy2RakUmaTdFSLQB2UOTf/5GZfaWxWotb90tUM7MbKIwijIyMGFR3pHb+icNZx5cT7TwuPwhsNrPtIb9+NYXZo5Fx4JiG93PZ/5HaEh+p1Z92RLYFOE3SQSosRGcBTzbVuRO4OIwyTwNeMbPnmj+oFT5Sqz/TiszMHgTuAH4CbAr33CDpMkmXhWrfoTB1jAE3Ape3G4CP1OpPWzP+ZvYZ4DNNxasarhtwRTcBrFiyaJ8+GfhIrW6UvqzkI7X6U7rIwEdqdcfXLp3kuMic5LjInOS4yJzkuMic5LjInOS4yJzkuMic5LjInOS4yJzkZLGsVDZVy8ytGgMvsqpm5laJgX9cemZuegZeZJ6Zm552fJeLJD3S8PNLSX/VVOcwSd+W9GgwAS9LF3JcPDM3Pe2kX4+a2QnhAIeTgVeBf22qdgXwhJktpjgx5IuSDogdbArcQ5meTjv+ZwFPm1nz3qAGHBKMJgdTHMq1O0J8yfHM3PR0KrKLgFtblF9L4VjaBhwC/IGZvd5caTJzb9l4Zm5a2u74h8ff7wK3t7i8BHgEOBo4AbhW0qHNlczsBjMbMbORI47Ybydup6Z0Mro8F/iJmf1Xi2vLgNVhL4wxYDNwfIt6zgDSicj+kNaPSigMwGcBSHorsAg/XMsJtNUnk3QQ8FvAnzWUXQZgZquAq4GbJW2i2Bfjk2b2QvxwnSrSrrn3VeDwprJGc+824Oy4oTl1YeBn/J30uMic5LjInOS4yJzkuMic5LjInOS4yJzkuMic5LjInOS4yJzkuMic5LjInOS4yJzkuMic5FTWQe5bC1SHSorMtxaoFlHMvaHe6eH645J+kCbcAt9aoFq0c97lKIUDCUkzgK00mXslDQHXAeeY2RZJRyaIdS++tUC16LTjP5m598MUbqUtAGb2fIzgJsO3FqgWnYpsMnPvccBsSfdJ2iDp4lY3S1ouab2k9du3b+801r341gLVou2Of4O596pJPudkipZuFvCApHVm9lRjpVYn93aDby1QLToZXU5l7h0HXjCzncBOSfcDi4GnWtSNgm8tUB1imXu/Bbxf0szg0TyV/U/3dQaUKOZeM3tS0t3ARuB14CYzeyxBvE4FiWLuDe9XAivjhebUBV+7dJJTyWWlMvE1085xkXWAr5l2hz8uO8DXTLvDRdYBvmbaHS6yDvA10+5wkXWAr5l2h3f8O8DXTLsjK5FVYXrA10w7JxuR+fRAfcmmT+bTA/UlG5H59EB9yUZkPj1QX7IRmU8P1JdsOv4+PVBfshEZ+PRAXYlm7g11T5G0R9KF8UN1qkoUc2/DtS8AayPH6FScWOZegCuBbwJJjb1O9Yhi7pU0DFwArNrvjn3rRTH3OtUi1sm9X6I4fnBPi2t78ZN7B5NY5t4R4LbinHvmAOdJ2m1mayLE6FScTkQ2qbnXzBZMvJZ0M3CXC8yZoK3HZYO5d3VD2WUTBl/HmYpo5t6G8kt6D8upE9msXTr1JatlpUGnCpnB3eAiy4Q6Zwb74zIT6pwZ7CLLhDpnBrvIMqHOmcEuskw44/jWy2yTlVcJF1km3PvT1gkDk5VXCRdZJnifzEmO98mc5NTZreWTsVPQzxn4Oru1XGSTUMYMfF3dWv64nIQ6z8D3GxfZJNR5tNdvovguJX1E0sbw8yNJi9OF3B/qPNrrN9OKzMxGzewEMzuB4iS4V9nfd7kZ+E0zexdwNeEkuCpT59Fev+m049/Sd2lmP2p4uw6Y22tgZVPn0V6/6VRkkx2q2silwHe7Cycv6jra6zexDlWdqHMGhch+Y5Lry4HlAPPmzesoUKe6dDK6nMp3iaR3ATcBS83sxVZ13Nw7mEQ5VFXSPAq73B83HwntOFEOVQX+lsIyd11wke82s5Ho0TqVJIrv0sw+BnwsbmhOXfAZfyc5LjInOS4yJzme6pMpdXKTu8gypG5uchdZD6RqbabKZWvn83NrBV1kXZKyteklly3HVtA7/l2SMnO2l1y2HDN6XWRdkjJztpdcthwzel1kXZIyc/b8E4f53IfeyfDQLAQMD83icx96Z1uPuxwzer1P1iUrlizap+8DcTNnu81lSx1XN7jIuiTXzNkc45KZlfKLR0ZGbP369aX8bicNkja0yr7xPpmTHBeZkxzvk/WB3Gbg+00sc68kXSNpLBh8T0oXcrWYmIHfumMXxhsz8Gse3lp2aH0j1qGq5wILw8+pwPXh38rTayvU6zpkHYhi7gWWArdYMVRdJ2lI0lFm9lyUKEsixjpgjjPw/SbKoarAMPBsw/vxULYPVTtUNcY6YI4z8P0m1qGqalG23wRc1XyXMVoh31Mj3qGq48AxDe/nAtt6CSwHjh6axdYWguqkFcpxBr7fo90oh6oCdwIfl3QbRYf/lar3xyDeOmBOe2qUkW8W61DV7wDPAGPAjcDlkeMshV6yIXKljHyzWOZeA66IG1oe5NQKxaCM0a4vKw0YZYx2XWQDRhmjXV+7HDDKGO26yAaQfvcz/XHpJMdbMqctepnAdZE509LrBK4/Lp1p6XUC10XmTEuvE7guMmdaep3AdZFlwJqHt/K+z9/Dgk/9G+/7/D3ZpWb3OoHrHf+SyXEXnmZ6ncB1kZVMVTwAvUzg+uOyZAbBA+AiK5lB8AC4yEpmEDwA7WbGDkm6Q9JPJT0p6T1N1w+T9G1Jj0p6XNKyNOHWjzpm3zbTbsf/H4C7zezC4Fo6qOn6FcATZvY7ko4ARiV91cz+L2awdaVu2bfNTCsySYcCHwAuAQjCaRaPAYeoOL3rYOAlYHfUSDNn0Pe7mIp2HpfHAtuBf5L0sKSbJP1qU51rgV+nsMFtAv7SzF5v/qCqmXvbxfe7mJp2RDYTOAm43sxOBHYCn2qqswR4BDiaYt+Ma0MLuA9VM/e2S9k7Tue+YtCOyMaBcTN7MLy/g0J0jSwDVlvBGLAZOD5emHlT5lxXFVrRaUVmZr8AnpU0MaY+C3iiqdqWUI6ktwKLKHyYA0GZc11lt6Lt0O482ZXAVyVtpHgc/l2Tufdq4L2SNgH/AXzSzF6IH26elDnXVYUVg3bNvY8AzRvONpp7twFnR4yrUpS530WM/TpS4wvkkShrrivHffubcZFVnBx3DWrGRVYDcl8x8AVyJzkuMic5/rhMgK9j7ouLLDI55eznInYXWRdM9Z+XS85+TmL3PlmHTLdWmMsMfE7LTS6yDpnuPy+XnP1cxA4uso6Z7j8vl5z9FGLvNqXIRdYh0/3n5ZKzH1vsvaQUece/Q9pZK8xhBj72clMvAxoXWYdUYa1wgphi76WP5yLrghxaqn7TS0qR98mctuiljxfF3BvqnB5O9n1c0g/aDd6pBr0MaKKYeyUNAdcB55jZFklHdvg3OBWg225CLHPvhyncSltCnec7jsSpLbHMvccBsyXdJ2mDpItbfVBdzb3O1MQy984ETgZ+m8Lo+zeSjmv+oLqae6tGv83A7fTJWpl7m0U2DrxgZjuBnZLuBxYDT0WLdICJmbKT5aGqbZp7vwW8X9LMcADrqcCTUSMdUGI7xMvIzohi7jWzJ4G7gY3AQ8BNZvZYioAHjdiiKCM7I4q5N9RZCayMFJcTiC2KMszAPuOfObFTdspIRXKRZU5sUZSRiuQL5JmTIuuj3wv8LrKExJp6qHrWh4ssETm5hcqmdiLLxWuYizUuB2olspxaj5zcQmVTq9FlNxOXqdbxcrHG5UCtRNZp65FyU99crHE5UCuRddp6pFzHy8UalwO16pN1urVl6n5T1aceYlGrlqzT1sP7Tf2hUi1ZO9MTnbQeVdjUtw5URmQppieqZNStMpURWarJTe83pacyfTKf3Kwu0cy9od4pkvZIujBumN5JrzLttmQT5t7jKQwi++XvS5oBfAFYGy+8N/DJzeoSy9wLhQ/gm8ApEePbi3fSq0s7Hf9Gc+9iYAPFybw7JypIGgYuAM5kCpFJWg4sB5g3b17HwXonvZrEMvd+ieL4wT3NNzfi5t7BJJa5dwS4rTjnnjnAeZJ2m9maaJE6lWVakZnZLyQ9K2mRmY3SwtxrZgsmXku6GbjLBeZM0O5k7IS59wCKY5+XNRh7V015pzPwRDP3NtS9pMeYnJohMyvnF0vbgZ+X8suLfuPAnJHeQOq/+9fMbL8RXWkiKxNJ682suWWuPWX93ZVZu3Sqi4vMSc6giuyGsgMoiVL+7oHskzn9ZVBbMqePuMic5FRWZJI+K2lrOAXlEUnnNVy7StKYpFFJSxrKT5a0KVy7RmGxVdKBkr4eyh+UNL/hno9K+ln4+WhD+YJQ92fh3gP685d3jqRzwncxJql53Tk9ZlbJH+CzwCdalL8deBQ4EFgAPA3MCNceAt4DCPgucG4ovxxYFV5fBHw9vH4LxTLaW4DZ4fXscO0bwEXh9Srgz8v+Tib5nmaE7+BY4IDw3by9nzFUtiWbgqXAbWb2v2a2GRgD3i3pKOBQM3vAim//FuD8hnv+Oby+AzgrtHJLgO+b2Utm9jLwfeCccO3MUJdw78Rn5ca7gTEze8aKhNPbKP7evlF1kX1c0kZJX5Y0O5QNA8821BkPZcPhdXP5PveY2W7gFeDwKT7rcGBHqNv8Wbkx2d/QN7IWmaR/l/RYi5+lwPXA2yi2fH8O+OLEbS0+yqYo7+aeqT4rN0qPNWvfpZl9sJ16km4E7gpvx4FjGi7PBbaF8rktyhvvGZc0EzgMeCmUn950z30Ui8xDkmaG1qzxs3Jjsu+jb2Tdkk1F6GNNcAEwcTjFncBFYcS4AFgIPGRmzwH/Lem00Ke6mOIklYl7JkaOFwL3hH7bWuBsSbPD4/hsYG24dm+oS7h34rNy48fAwjAaPoBiYHNnXyMoe/TTw6jpX4BNFKeg3Akc1XDt0xQjqlHCCDKUj1CI8WngWt5Y8XgzcDvFIOEh4NiGe/4klI8ByxrKjw11x8K9B5b9nUzxXZ1Hcc7V08Cn+/37fVnJSU5lH5dOdXCROclxkTnJcZE5yXGROclxkTnJcZE5yfl/ynbAcPHJPm4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "\n", + "x = tuple(map(merc_x, lons))\n", + "y = tuple(map(merc_y, lats))\n", + "ax.plot(x, y, 'o')\n", + "ax.set_aspect(1.0)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJkAAAEDCAYAAAAm1qYrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAdbElEQVR4nO2de3Qc9XXHP1e7MtixAwa7kZEs/MAvqsY2CGzcJCWhhUDbUMqjhBAeDXWTBkh72iRNe8jpKee0p6Q5BUIDx3XTNqENwYYk9AVpSlLSYgM2tmPFxrGNgywhGRMeMciAtLr9Y2bNaDS7OzP7m53f7M7nnD1azfPu7Hfv/T3vT1SVnJwkaUvbgJzmJxdZTuLkIstJnFxkOYmTiywncXKR5SROqiITka+IyAsi0hfy+CtEZJeI/EhE/iVp+3LMIGm2k4nI+4DXgK+qak+NYxcB9wMfUNWXReTnVPWFRtiZUx+pejJVfQx4ybtNRBaKyMMislVEfiAiS91dvwP8raq+7J6bCywj2FgmWwfcpKpnAn8EfNndvhhYLCL/JyKbReSDqVmYE4li2gZ4EZHpwBpgg4iUNx/n/i0Ci4BzgS7gByLSo6qvNNrOnGhYJTIcz/qKqq4I2DcAbFbVUeCAiOzBEd1TjTQwJzpWhUtV/RmOgC4HEIfl7u5vAe93t8/CCZ/PpmJoTiTSbsL4OrAJWCIiAyLyMeAjwMdEZAfwI+Bi9/BHgJ+KyC7ge8CnVfWnadidE41UmzByWgOrwmVOc5JawX/WrFk6b968tG4fmZ0vHDr2fva0d/Cu6dORKse3Ilu3bn1RVWf7t4cSmYj8AXADoMBO4HpVfcOzX4A7gIuAEeA6VX262jXnzZvHli1bwn+CBrDgzi9W3NfpeX9OWyfr115Ke7GNYlshecMygog8F7S9pshEpBO4GThdVY+KyP3AlcA/eg67EKc5YRGwCrjb/Wsd1YQUxLSBySWKHQxxw7oHWHFGJ5sHDvLAFVeZMq8pCRsui8BUERkFpgHP+/ZfjNP/qMBmETlRROao6pBBW0MRVUR+gkQVxI7+IXb0DzHSNV7X/VqBmiJT1UER+WugHzgKfEdVv+M7rBM46Pl/wN02QWQishZYC9Dd3R3b6HqF5CWsqKqx4M4v8uzNf2jAmuYkTLicieOp5gOv4HT5XK2q93oPCzh1UtuIqq7D6Zukt7e3atuJSSGVMSGooGvm3qw6YcLlLwMHVPUwgIg8iNO/6BXZADDX838Xk0PqJI6OjnL1NzewbTiZqJqEqCqRe7PKhPkW+oHVIjLNrUWeB+z2HfMQcI3bDbQaeDVMeay90Mbqrrm1DgvNtIG2Ca8cOwhTJntCRDYCTwNjwDZgnYh83N1/D/AfOM0X+3CaMK6veV1gtDTO5oGDtQ4NxCYR5SGzOql1K3UtXaqr/vzzoUNlWqKaPvi2eF7rrGxDWWStHDJFZKuq9vq3p9bif3jk9aoCs0FUUci9WWXsiTkeGiWw6YPjk171kkStOOvYNmgxUUyIKCc6VnoyEyThpWpR9sC5N5uIlZ5spGs8cshshIimD45XLfznBGOlyMKQh77skP8sDZOHzMlY68nihMx6mXHg6LH3R+ZPbei9m5nUPJm0px/uZhw4OuHl3xeX3JtNxFpPZpp6ROMlL/xHJ7NPq9YXXc1LNZLcm6UssuIpI1X3Z7mbxqYO/LRp2ieRF9ztIdMiS7psVG+YzSsADqmLrFbItJG8ITgaqYusFkmWy4r7B+mZOYWrfrWHZT2dtU+og1b2Zk3dhHFk/tSqIW9p73z+cuPv095e4MNj43zm5nvZ3Tdo1IZ8nFkGPFkt6imXvXvNYtrbCxSKBYrFNpavPDX0uXFCZqt6s5rfkIgsEZHtntfPROT3fcecICL/KiI73MzUNcf4e0mrKWPbcy8zOlpizH3t2DZ5ln01T5iXzcIRZiLJHmAFgIgUgEHgm77DPgnsUtVfF5HZwB4R+WdVfcu0wSbZ3TfI5y67nXevWcwPH/8xu1+Obm6YHoBWD5lRY815wH5V9f/kFZjhTpmbjpPResyAfXVTq73smS0HuP/OR3hmy4GG2NOKITOqyK4Evh6w/S5gGc6E3p3Ap1R10k9XRNaKyBYR2VL62euRja1EPeWysYX11yrDhM1W7gEI/clFZArwIWBDwO4LgO3AKTih9S4Reaf/IFVdp6q9qtpbeOc7JuzLehdTlPJZq3mzKD+vC4GnVfVQwL7rgQfVYR9wAFgacFwq1AqZZW9W3B/cfBG25T+vCAQTRWQfJjhUgpPK4DwAEXkXsIQGZ6a2ZfhNNaG1asgM9alFZBrwK8CDnm0fL6cqAG4F1ojITuC/gc+q6otRjcliF1MQYTxaK4XMUC3+qjoCnOzbdo/n/fPA+WZNm0ySQ7LHFnZWDJdxqNS00YrNGS3jv20c+tMq3qypRFZvuayaN4sz7CevCDhYJ7IkmzJs8WbekN8K3sw6kaWNicZZL7k3a0GR2eLNWgkrRVZPU4Yt7WW1aKWQmY1vxEdaTQBxx/y3esjMpMjqxZaQ2SrerClFZmPIbGVvZt+34ZL0qAxbvJmXZvVm1oqsXmz0ZkG0Qqd583/CKsTxZvVM+G3VkNnUIsuiN2vGkGn1t5D10bJBtKI3s1pkjSCvACRPaiLrmTmnIffJYshsNqz/ZI0ImVG9Wb3Zflpt5GyqIlvWETQnxTxJeLM0szdmDSNpCtzjznX3/0hE/icJY1d2zOETvWezsmNiqM1aXyYEe7NmDZk1P5Wq7lHVFaq6AjgTZz3LCWkKRORE4MvAh1T154HLTRu6smMO915yOX+w+he595LLJwmtXuJWAJL0aM0SMk2lKbgKZ95lP4CqvhD2gmFCZvGUEVZ3zaW9UKDY1hZrxd8kKwAmhdaM3sxUmoLFwEwR+b6IbBWRa4JO9qYpOHz4cKQbbx44yGipxNh4KXDF3zQqAF6SmgPQDN4sdBI8T5qCz1W4zpk4nm4qsElENqvqj70Hqeo6YB1Ab29vpCWDtw0PcfU3N7C6ay6bBw6GXvHXy2udbS3ZGJo2ptIUDAAPq+rr7qTex4DlJgz0sm14iLu3PBlLYGGxwZv5Q2bWvZmpNAXfBt4rIkV3tvkqYHfYC4ctl9UiTMi0PWN2M2IkTYGq7gYeBn4IPAmsV9U+8+ZmAxNCa6YKQKhPoqojqnqyqr7q2XaPL1XBF1T1dFXtUdXbkzC2UZjoz4witGavAFjzc2mmkFkmD50O1ojMNkyNzqgnt1mzVABykTWAVvdoucgahCmhZdGbWSUy28plQSFzWU8nV350TaxlcmoJrVk7zZt62RvTLOvp5LY7r6a9WGB0rBRrmZwZB45aORo3SbL/M2kgy1eeSnuxQKHYFnmZnHrIegWgpUUWNWTu2PYco2MlxsZKjI2NBy6TE4ZWW0pHVCP1Uxujt7dXO29fHbhv9/C7ap4/9vy0mseEKc+E+VK9oljW08nylaeyY9tzda8oVylsBok/qJz57M1/WNf9TSMiW1W11789L5OFwLuk4e6+QWPLFVYqnwUlNc5yQuOmDpc2tf4nQVbKZqk+4Uu7zmfJjPmTtptqyjBJUjXCKO1nWW3OSNXqj5z6q9zac1Og0EyRVW/WTBWAVJ9uQQoUpEDPCYtind8s3qweshAyUxXZ2HiJkpboe3XvpH0m52Ta7s0qhcxm6QFI1eJ/6f93bun7EnuOxF/QNPdm9nuzVEX2wMB3qgrMVm+WhNCaeaRG9nxvAGmsLtcojxY2ZNrszawXWaPyZZSJUjazMXTaiLFcGO6xZ4lISUQuM29qdUwNAYqKSaE1awXASC4MABEpAH8FPGLaSJu9mU3YGjJN5cIAuAl4AAidB8M0zezNsoyRXBgi0glcAtwz6YyJx03IhfHt99wV8faNI6o3S7p8luUKQOgn6cmFsSFg9+04646Xql1DVdepaq+q9s6ePTu0kWGG/pRJy5tBXhGohKlcGL3AfSLyE+Ay4Msi8hsG7EuVOGWzJCcGZ9WbGcmFoarzVXWeqs4DNgK/p6rfMmBfLNL0ZpB7ND9GcmEkSZRQmQRxa5r1Cq2ZKgDGcmF4tl+nqhtNGRi3+SJtbwbJeLQshsxsNgg1mHrazfLQ2eQis8Gbgfmkx2EHNNrizZpaZCaptxcgaY9mczeTvZYZwqQ3a1R3kzcVQr0VABu8WT4lLiL1JDf2Tq2rRFAqhCdff2nScVmaNtf0niwsUb6cJCsCaaVCSJJMiKyeURhhZprHISmhBaVCyHrIzMOlh5Gu8UgF6HpDJ0yuQe7uG+QzN98bKhVCVkJmJjyZzZiodXpflciyN2tqTxYnVEb1ZqY59VcWcNufXE6xWGBstHYOtCx4s9Q9mc1jysJismnjjNPnUiwWKBbaKLabLfin5c1SF5mNxPECpoT29K6DTqG/5BT8Nw0PH9uX1U7zzITLZR2HIo3ISKpWWQ2/0OJUCvr2DfGZm5yC/6bhYfr2DUGN9jXbQ2buySqQ5mrAu/sGue9rjzsCc6lUG41KGiEzF1kFVnbM4Yb3n8Xy7ngrBMfxYn4BmV46Jy2aUmT1hsryUtQ3XrCG9WsvjS20KIQRVNRO9kq15EZ7s6YUWb1MXIq6wFkLuyKdH9WrVBOYf1+Y/k/byEUWwMSlqEs8tX8g9LmNCFuVPFqUmeaN9GY1a5cisgT4hmfTAuDz3uUGReQjwGfdf18DPqGqO0wa2kjKS1G/d0Y3T+0fYEd/uJWCTZTDKh2T5RG2NUWmqnuAFXAsFcEgk9MUHAB+SVVfFpELcdYZX2XY1sjNGPWwbXiIPVvCd8wnJbBmwEiaAlV9XFVfdv/dDEQqxHxg1jMRzbCLRgjM5JKGZRoVMo2kKfDxMeA/g3b40xTYTJL9l63iwcqYSlNQPub9OCL7bND+amkKTHqzRibFM1mTNHWubd4sSrdStTQFiMi7gfXAhar6UxPG2Y7NDaA2YSRNgYh048wu/6iq/tiEYWliak0mPybCZBKhNmlvZipNweeBk3ESrWwXkS3GLXVpdEK8ILJQk4wSMpMuXhhJU6CqN6jqzHJGxqCVwqrxqaXfjWZ1imRBYLaRt/j7MF2rTEJg9VQAKrF4461xzalJ04osjbTrfmz0YEE/oqTH3lklsrQbZW2e6u8nCQEn5c2y81Qzhi1eLGwFIElvlossAUwLzJsbI8n7JEUmRZZEM4apUJmEwG6782qu+51zue3OqycJLQxpVwAyKTJbScKz1MqNEfeejQyZucjqpOe0OVzzobM5+x0nJXL9oNwYUek5Ldp8BdPezLopcR+Y9QyPvrjUyLWKp4yE+nXGDZU9p83hrvJs74tX15ztHYdauTFqDWb02jhaKnHDugeODcJs1LS53JPVgX+299LzTguV1yIq5SlyUQXmtzHMfIXyj9KkN7POk2WJ8mxvUMbGxnl618EJ+/0iMFVmiyJgr42jpfFI8xVMkVmRmRyKHTfJSt++IW78iw2ccfpcnt51cMJk3CCCxBFVeFE9ZNnGntXB8xWCQubY89OM9phkVmS20LdvqKa4qhHF28UNwZuPHmLz96I3+yzeeCs/vuyWWPf0kpfJLKNSeS6uwGxYuzN9CxLGho7yOIRNjleNsAKr1mZmogJgjci8Y8rS7ihvBmzwYGXssSQDZGVMfxyBJenNcpG5NKJRstw70HNaMglcXutss8qDlTGVpkCAO4CLgBHgOlV92rCtk2jkjHKY6CGierUJvQNjJW78iw111Uqr2WYbNS1T1T3lsfvAmTgi8qcpuBBY5L7WAnebNjQtlncH9/uVvUbYL3dC70CxjTNOn2vMRlMCSypkRm0nC0xTAFwMfFVVFdgsIieKyBxVNfdTTYHl3XNYv/ZS2guT+/28lL/kat6tVu9AXOIKzF88SHJUsKk0BZ2A96kNuNsmECVNgQ0zys9a2OXkKQvZ71eNcsv7uo2PGwmV9ZS/gsqfI13jNXs+4nqz0J7Mk6bgc0G7A7bppA2q63Ay/tDb2ztpv208tX+A0VIJIFSeslorlNTbO+C9T1xqVXCC9tfbzWQqTcEA4C1kdAHPx7bKEnb0D3HDugc4a2FXpDxlSZKkwMIQp6spisgqpikAHgJuFJH7cPKSvdqo8ljSHeU7+oeaXlwrO+awumsumwcOsm04+LPW481CicyTpuB3Pds+Ds5McuA/cJov9uHUPq+PZU0TEGZRr6j5/pMW2L2XXH6scnP1NzdUFFpcTKUpUFX9pKouVNVfUNXEcmFknSDBVCvEJx0eJyZhbmN1V+2mlagVAHtb8AzTyI7yuMLwi60R5a+JSZjH2TxQuWkl7kQTq0XWbB3lYUVTb/NElAJ+OQnz32x+PFKojOLN8kGLDaIR3T5xa4/bhodCiytOBcBqT5YGpjrKG92XmMZaUGG9mVUii5unzPSMctNfWJKCixoe41A8ZeTYKw5WicwmbFnGrxqNstFb4I8jtFxkCZLk+C5bfgRhQqb1Ikuzo9yWL9KPrXZVwnqR5bxNI8pflajWRnbFo18BYMaMGe8I2p+LrAa2eA1b7PCz4qRO/ul9HwVg0aJFi4OOaRqR2ZB6PSlsEViQN1s1ex7tbYXyv0FDvppHZEmS1pecZngMyxOHf8LoeKn8b+AYwVxklmK7uMpsf2mQax/7GgB79+4NXI2m5bqVwuYs8xM3KUsUlnfP4ayFXfzgSH/dw20q2VqPeCvVzre/5KS0OnLkyOuB58W+YwMxmRjPVo5NWikW+N3Sqqqd1Wmkgm/U8OuWJ0lvtuKMTtqLzrguFN47ozvSysFJUu8wqbxMZgEjXeO+cV21J63EJeqPxMQ4vKbyZI2eUW6CchmpPK6rPNZ+T3/6XszUQM+wY/xPxFkwtQenmvrbqrrJs/8E4F6g273mX6vqPxix0DJMhkx/Idw7rmtaykHG5EjisJ/kDuBhVV0KLAd2+/Z/EtilqsuBc4EvuvM0I9PoZQnrGcJSD3HmP5qi1o/E9POoKTIReSfwPuDvAVT1LVV9xXeYAjPcxCvTgZeAMZOGmu4or0dc9QrA5jawJH5wYTzZAuAw8A8isk1E1ouIvyP0LmAZzoTencCnVHXSk4ySpqDRNMqbRRFYUmJstMjDiKwInAHcraorgdeBP/YdcwGwHTgFWAHc5XrACajqOlXtVdXe2bNn12e5hVTKAFTGBg9WzYakfmhhRDYADKjqE+7/G3FE5+V64EF3/uU+4ACQSutpPR3lUR6y/8sqN6beeP4a1q+9dILQ6umDNCnMNAQG4fKTDQMH3WR44KSP2uU7rN/djoi8C1gCPGvQTuuplAGo0d6rkjdNS2AQvp3sJuCf3Rrjs8D1vjQFtwL/KCI7cYZ7fFZVX0zC4KSJ27cZlAHIlMDCNptUyqeWtMCWdRzi4v+9sfI9wlxEVbcDvb7N93j2Pw+cH8fALOP98v0ZgDaNm13IKwxeb1r+v5od9QosbNEkU91KjZpRHvfh7+gfYv33nkpEYGG8YtmbjpXGGS2V+MGR/orHNkpg0GTdSjaQZg3S602rDReqR2BxKla5yOqkHDIbIa4w99g0PsimveZDZD219kyFy7CYGO9fT3OGrcQR2LKOQ3U/z6YUmY1kcY0nU5Nz8nBZhbjNGf5rmLyeCTtqYXrmV+ZElqWh2DZ4rzTFVaalwmWc8kXsZLwVzmuE8OKMMkly3qqVnuxTS7/LHc/8srHr+R9g0iNoi6eMsOKkTlbNnscTh39ybDaPd78tNGJStJUiM0FZSKZqmmHKUmXxlKfut7cVGB0vce1jX5sktDTwCv/NKYmvr3aMphUZJPcrDcp77/VO5an7xbY2QFk1e17qIisLf0qhjbHx93BL38vsOXKgIfduapFVI2rILHuzoLz3O9v2Tzj27an7yuj4OE8c/olZ42PwawtmMaXQRkEKqEDPCYtykdmKN+89KGuWdbBzz0SRlafuVyqTNQK/F+97dS9j4yVUoKQl+l7d2zBbMikyU80YcbzZU2/sZXR8NbW81PaXBhsurmrFgz1HDnBL35foOWERfa/uNe7FlsyYT2dnZ0fQvkyKLE3q8VKmy4hRKzZ7jhxIJEQumTGfW3tu4tGOr09afhJykcVqzojipZJsIrAlJ1vPCYsovp2jbBItL7IksUUESXPNvA8BzhpbQftbqsW/EqbFYGLkQlb49nvuOvb+0KFDgWuc5iIzTKuICyYKDGBwcHA46DgjuTDcY84FbgfagRdV9ZciWx0B0x3lJrqa0hRYpaHpSQwm8IurFmHLZOVcGJe5M5Ym9LG4Ivwy8EFV7ReRn4tkhaWkIRq/WKqJJMychyjXq3X+oy8ujSwwCCEyTy6M68DJhQG85TvsKpzJvf3uMS9EtsQC0vJE1cRievJMNdHVulccgUE4T+bNhbEc2IqT68KbH3Qx0C4i3wdmAHeo6lf9FxKRtcBagO7u7lgGh6X8wGwee2bDep5hbKg301IYkZVzYdykqk+IyB04uTBu8R1zJs4s8qnAJhHZrKoTsiGr6jpgHUBvb29gdbde/A/NtkGONggrCiZSeYURWVAuDH/ClQGcwv7rwOsi8hhOHrPAlNthiDOmzOYv0GbbADqOX0bXtBUMjGxn+I3dRvPE1RSZqg6LyEERWaKqewjOhfFtnEw+RWAKsAr4G2NWhqBWuSYtb2ZaXH4xmLrmb3Z/gYK0U9JR2tuON3LdMkZyYajqbhF5GPghMA6sV9U+o5YGUBaPjV4iCZv8Yniw/9NGhNY1bQUFaadNCrRJ5e6huBjJheEe8wXgC4bsCk3YLzOMN7NRrF68YgCla9qKukTWqNSpLdl3abuYKjEwsp2SjgJKSccYGNke6fxG5+Mt01Iiy6q4ygy/sZsH+z8dqkyWlqCCaCmRNQPDb+yeJC6bBBVELrKMYbuggshFZjFZFFQQucgSJkq7VrOIyk/Liuyi6f72ZPMcP+VMOmfdBjJlUrtWswoqiKYRWSWP0QgxVWLqcecg0o64jZy/Ne9LqdmSJk0hso7jl3F5922ItKN6FYMvXsEbb21NxZZFXYEjkFuaphDZeTPnuB6jCChTjzsnlMiOn3ImU487h6NvboolylxQ4ci8yC6avoujb05F3ZZw1TGOvrmp5nlOeel+1/uN1vR+uaDik1mRectab7y1lcEXr4jkld4uL032frmgzCIVpsolTm9vr27ZsqXmcUFjykwU5suerK1tat3XynEQka2q6h9IkT1PVo/Acg+VDpkRWVRx5YKyB+tF1nvSh+nmW7zhnx/lIxeVvVgvsjWzr53U9pULKlukVvAXkcPAc5X2d3Z2dnR0dHSCk8jj0KFDz1eaBh+SWUAml0dMiCSex6mqOmlJ5tRE1mhEZEtQzadVaeTzyBOu5CROLrKcxGklka1L2wDLaNjzaJkyWU56tJIny0mJXGQ5iZMpkYnIn4nIoIhsd18XefZ9TkT2icgeEbnAs/1MEdnp7rtTRMTdfpyIfMPd/oSIzPOcc62I7HVf13q2z3eP3eueO6Uxn9wsIvJB9zntExF/8hzzqGpmXsCfAX8UsP10YAdwHDAf2A8U3H1PAucAAvwncKG7/feAe9z3VwLfcN+fhJPv4yRgpvt+prvvfuBK9/09wCfSfiYxnmHBfT4LcJLj7ABOT/KemfJkVbgYuE9V31TVA8A+4GwRmQO8U1U3qfOEvwr8huecf3LfbwTOc73cBcB/qepLqvoy8F/AB919H3CPxT23fK0scTawT1WfVSdr5n04zyIxsiiyG0XkhyLyFRGZ6W7rBA56jhlwt3W67/3bJ5yjqmPAq8DJVa51MvCKe6z/Wlmi0udLDOtEJiLfFZG+gNfFwN3AQmAFMAR8sXxawKW0yvY451S7VpZo+OewbhSGqoZKrygifwf8m/vvADDXs7sLeN7d3hWw3XvOgJu87wTgJXf7ub5zvo/TmXyiiBRdb+a9Vpao9KwSwzpPVg23jFXmEqCcaO8h4Eq3xjgfWAQ8qapDwBERWe2Wqa7ByQpZPqdcc7wMeNQttz0CnC8iM91wfD7wiLvve+6xuOeWr5UlngIWuTXlKTiVnocSvWPatZ2INaOvATtxMjo+BMzx7PtTnFrTHtwapLu9F0eM+4G7eLuX43hgA04l4Ulggeec33a37wOu92xf4B67zz33uLSfSczneBFOPt/9wJ8mfb+8WykncTIVLnOySS6ynMTJRZaTOLnIchInF1lO4uQiy0mcXGQ5ifP/zauNAradx70AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "\n", + "x = tuple(map(merc_x, lons))\n", + "y = tuple(map(merc_y, lats))\n", + "\n", + "ax.tricontourf(x, y, tuple(datapoints.values()))\n", + "ax.plot(x, y, 'wo', ms=3)\n", + "ax.set_aspect(1.0)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJwAAAEDCAYAAADA/21vAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOydd3iUVdrGf2dakknvvQEBQm8CAgqKoljAtjbs3V3b2ll33V391rK6a3cVC/aCioiC2EUEgdBBCCGk997LtPP98SaTSTKZzCSTkITc1zVXZk57zyR3ntOe5z5CSskwhtFfUB3rDgzj+MIw4YbRrxgm3DD6FcOEG0a/Yphww+hXDBNuGP2KAUs4IcSbQogSIcQBJ8tfLIQ4KIT4XQjxQV/3bxg9gxio+3BCiJOBOuAdKeWEbsomAauAU6WUlUKIMCllSX/0cxiuYcBaOCnlL0CFbZoQYqQQYoMQYqcQYpMQYmxL1o3AS1LKypa6w2QboBiwhOsCK4DbpZTTgXuBl1vSRwOjhRCbhRBbhRBnHrMeDsMhNMe6A85CCOEDzAE+EUK0Jnu0/NQAScACIAbYJISYIKWs6u9+DsMxBg3hUKxxlZRyip28PGCrlNIIZAohDqMQMKU/OziM7jFohlQpZQ0Kmf4AIBRMbsleA5zSkh6CMsRmHJOODsMhBizhhBAfAr8BY4QQeUKI64FlwPVCiL3A78DSluLfAOVCiIPAT8B9UsryY9HvYTjGgN0WGcbQxIC1cMMYmhiQi4aQkBCZkJBwrLsxjB5i586dZVLKUHt5A5JwCQkJ7Nix41h3Yxg9hBAiu6u84SF1GP2KYcINo18xTLhh9CuGCTeMfsUw4YbRrxgm3DD6FcOEG0a/YphwTsJgMPDaa6+Rn59PU1MTw0eCPcOA3PjtLQwGA7t27WLixIl4e3v3uJ3GxkYyMjIICAhgxYoVPPLIIwCoVCrGjRtHXFwc06ZN49FHH3VX14c+pJQD7jV9+nTZG9x9990SkGq1WqpUKnnbbbdJg8EgLRaLNJvNduukpKTI/fv3SymltFgs8rXXXpN+fn4S6PS6++67ZVJSkgSkVquVJpOpV/0dagB2yC7+tsecXPZevSXc9OnTJSBvvvlmK0kWL14sExISpJ+fn7z//vtldXW1TEtLk88++6xcsmSJtdzJJ58sR48eLQF56qmnyrvvvltGRkbKmTNnSi8vL/nBBx9IKaUsLCyUnp6e8uqrr+5VX4cijivCvf322xKQy5Ytk7m5uZ2s04QJE+xarZCQEHniiSfKOXPmyHPPPVeuWLHCoeW65557pEqlkmlpaT3u61DFcUU4Pz8/GRoaKouKimR1dbVcsGCBlVTBwcHyySeftH6Oj4+XycnJMjc31+XnxMbGSkCmpqb2uK9DFccV4VrJtGTJEimllBs3brSm5eXlSbVaLQG5YcOGHj9DSilvuukmCcgHH3ywV+0MRTginFOrVCHEn4EbWv5w+4FrpZRNNvkCeA44C2gArpFS7mrJO7MlTw28LqV8wrnljOv4/vvvre/Xrl0LQEhICAsXLuTxxx8nOjqa5cuX4+XlxRlnnNFteyOe/4/d9FtnzOT0RYtYsWIF8+bNc0/njxN062IuhIgGfgXGSSkbhRCrgPVSyrdsypwF3I5CuFnAc1LKWUIINZAGnI4SWZUCXCalPOjomTNmzJA98YebOXMmKSlKoNZ1113HG2+80W2drkhlD/o8ZdtyUkw42ateJuPoUX4/fJggPz+X+zqUIYTYKaWcYS/P2X04DeAlhDACeqCgQ/5SFEkGCWwVQgQIISKBBCBdSpnR0pGPWso6JFxP0Uq2DRs2MG3aNGu6K6SyRSvBOuKHT9+nZPNmLrnzAW7c8BWfXXx5j9o/HtEt4aSU+UKIp4EcoBH4Vkr5bYdi0UCuzee8ljR76bPsPUcIcRNwE0BcXJyz/cdsNmMwGBj/2sv4L1pI9bc/sOy1V9BFR6OLiULl4dF9I3RNLlvU5xyhYs8Wag7vxW/sFPZrw2gsKnS6r8NwgnBCiEAUq5QIVKFEvl8hpXzPtpidqtJBeudEKVegSDkwY8aMTmW6slIl73xA/c5d6GKiMeTlA1D+2RqlUzotCU89breeMwSzRcWeLRR+9ylqL2+CTziFsDmLUKaukhHP/4eMO+5xqb3jFc4MqacBmVLKUgAhxGoUyQVbwuUBsTafY1CGXV0X6Q4hgUajkSs+/4Td3VgQoVaIY8jLRz9pIkIlqN+zT2nHYLSWc5VgtjDWVFL4/Wp8EscSe961qDTadu02xFh63PbxBmcIlwPMFkLoUYbUhUDHGf1a4LaWOdosoFpKWSiEKAWShBCJQD5wKdDthEcAWrWK2TGx3RIu8JyzqNuudCfo3LPQhoWiz1PRVFIAAjx7QTQAc1MjeeveR6gEkQsvaEc2WwxbOefQ7V9DSrkN+BTYhbIlogJWCCFuEULc0lJsPYq0QjrwGvDHlrom4DaUyPhDwCop5e/dPhMwmi1szcvtrigafz+EWg1A1ftrrJbMMywKz9Cobus7QnNlKRnvP0djQTbRZy1DFxjSq/aGMUAj72PGjpWzHnm4S+vWSqrGolxyPnsdU0MtAKFzzyBsTvf7a86gLusweWveQahUJJ10FX5hI6mL7vr/s3VYHbZy7tkW6VeUNtR3Ipu9OVhzebGVbAAB40/o8TN98hXCSIuFrB2rKUnfipd/BGPmX4eHT1CP2x1GewxIwtlDQ4ylE+n00YnW98EnnILO33litBLMFlJKio9soSR9K+Gj5xE7ZTFqjUe7Ol1ZueHFg3MYNISzB11AMImX3U7euvcoT/kJc0MdkYv+gErT+WvZI1gr6isLKMvYQXVRGo3VRXj6hRE/7VyESu1yn4YXD44xKAlXdSCFhoIsQmaeSs6aNzE31ivpv6fgkziGaD97moVtMJsMGJtq8fQJBqC6IJWiw78AEDV+IVHjT+0R2YbRPQZVTEO1vozynb+Q//WHVO79jcwPX7SSrRV5X71Hc11FFy0oKD78K3vXPk7m9k8pz95DYEybSHpwwlSkxYKxqd5BC/bROuT39CjteMCgsXDm+gYKnnoWS0ODNc1UV2237J61jzHr8qe7bCsofjK5e9dTkr6VkvSt7fKaakpJ+/kNMFqYctHf3NP5YVgxaCycoaAAS0MDGh9/a5p/8lSiF1/G6Fv/jn/kGMKSTgRA4+njsC1Pn2DGzL/ebt6RTW/TXF9Js6Ea38zGTvmO5oIwbOW6w6CxcCovLwB8RyRTuU+xSqFzz8QjUJEhi7niZnzyLSTMuABpMXfbXqwhgdgTH0VKSV1DETV1+ZjMTRzJ/gaAaeOu7aNvcnxjQBJOaO1YkRap/Mp9W1HpPPAdOR5dQOedfyEEQt3+a9mzVLbla+sLScvegNncDEBS/JkE+Y+wlmmqK6f06HaaastRa3Xop07BJ3GsNd9YV4PF2IxQa9D6BnT5LKPRyKFDhwgJCSEqqnenIIMVA5Jw9qCLirS+txiaiTnnCqfr1iZ6dSKd0dTIkexvKCjZ2S49PHgCcZFzlOdYTFTkHSBv79c0Vhej0wdgMRkoPbodfexI/EZPxlBRQsXuzdg6wai9vFEH+aP/3wrOmzqddevWERsbi9lsJjU1FYAJEybwySefMHbsWI4nDBrCNWfnWN/HLLnKbpm6aFW3cywAKS3sT/uYiuqjnfKSR54HQF5xCqkZa63p4UlzSDjhAixmE9mFm6jav52iH1YDgsDJJ6KPScRQUUJ97lFUHp7UZaZCvoUPU9MAKCsrw9PTk1deeYWvvvqKr776inPOOYeUlBQCAwNd+VUMagxYwmmiGjAV6Ns+BypDlcrHG31kfK/a3nv4QyvZkkecx6EMxX/O3zeOorJ9VFQfpaS8zccgYuzJxE09R3m+WkNizCnUzjwVY1U5Kp0HGm/fTs+oC2tGGo2Yq6vJffwpbG7P4eabb2bLli0sWLCAu+66i7fffrtX32cwYcASriOKX3kdAEtdPWmvPop3XBKBU+bgP2ZyNzXbQ0pJWeVhAEbGnmYlG0B1bQ7VtTkIVIyMO42EqJMQQkVtolendoQQDr1HfEo8aIjRovbWtyNbK+bMmcMll1zSLvDneMCg2RaR5vYrz/qcI+StfRtTQ51T9VtJI4RgytgrmTftHjLzN7Yrc88995Censn1Vz5LYvR8hHDPr6erLZIZM2ZQUFDAwYN9EuIxIDEoCCdNJowlpfgtOBnfObMB0MeMIPqsy1F7tRerceRC1IqQwCQ8PQIICRxtTXvzjTd5+umniY+PZfaJ47ttw5m5YndexieddBIADzzwQLdtDRUM6CHVOo9TqxEaDXXbdxD3r38QdN65CLUaj6PNGCpK8AgO71H7o+PPxM87mqlTZ3LZZcswGc2YzBb27u5S9d2tyMlRFkL+/v7dlBw6GJAOmJ4jo2Xck4ozcevCofClV2lKO0LUvXdR+ML/0IaGYMjLR6XzJPnOx9rVd2R9utqTmxCoY9Kc0ezOruTQgfxO+fbmcdC9RbV1WbL1IjEYDCQmJuLv78+uXbvw9PR02M5gwqBzwLQH76mTaUo7QsHTzwJYI7TUXnpH1ZxG6o5MUndkKh9GRjtdz5GPHNj3k2tsbOSiiy6ioKCAl156aUiRrTsM+DmcJko5rNePG4vaToS7Ru/TaUHhzDyuI0wukKwjnJnPQdviYfny5Xz99de8+uqrnHfeeT1+7mDEgCdcKzQBAUTdc0en9MbCHKfOTvsajkhnu3ioq6vj9ddf58orr+Smm27qj64NKAwawgGo/f0JPGdxp/SG/Eyn2+hqLga9s3LgnKVbvXo19fX13Hjjjb161mBFt4QTQowRQuyxedUIIe7qUOY+m/wDQgizECKoJS9LCLG/Ja9XN7YJIfCdNRMAr3HJaMPDAOzuxfVkWHUERw4AtuiOdLf+92liY2OZO3euO7o16OCMtshhYApAixpSPvB5hzJPAU+1lDkX+LOU0tbt9hQpZVmPO2lzzFW7bTsAXmOS8F9wPV45IFTuI5dpZDSao/m9ntN1JHzr4qE5K4e5ixfbPX04HuDqKnUhcFRK6Wij6jLgw553qWtYmpupXLcBgIrP11LxuXK4HrPkKvzHOI5jsIU975H+gqW5mc9Tth2TZw8EuGoaLsUBmVrkIM4EPrNJlsC3QoidLQpJXdW9SQixQwixw1xjP56g9IOPQUo8k0a1Szc3Ntgtfyxhb2g1FJcgm5vRhtq9u/a4gNMWTgihA5YAyx0UOxfY3GE4nSulLBBChAHfCSFSpZS/dKxoq57kOTK60260tFhoaBGpMdfWkvCfJ5BmM0KnwzvffoSVI3clR1aut4sHe5BSUvXealSeHgSefeZxG07oioVbDOySUhY7KNPJAkopC1p+lqDM/Wa62kmAxsy2YchYVEzWPQ+S968nAfotANnVYdiW7PXZR6jPSSfw7MVojmPFTFcI53BuJoTwB+YDX9ikeQshfFvfA4uAAz3paO3GPWiCAglZdok1zWvsmEEz+a7PTgOVirDYE491V44pnBWV1qPo9N5sk3YLgJTylZak81HUMW0nYOHA5y2k0AAfSCk3uNrJup2HadirOExKg5GE/z4JQji1Ou3psOpumJsawCKtenZwfEbpO0U4KWUDENwh7ZUOn98C3uqQlgG45iFpBw0706zvyz9ZTfknq4l77BHU3u45R+1L+ORbqApsoPboQfTRCS0+dsevBsmgOGkIvf5sPJNirJ9VXp6oPNtr9zbEWDDV11L8yzqnnTLB8cmDOyClJO/LdzE3NRA690yg/VHX8Ra/OmC9Rcy1DRjyS2k6WkDNDzsx5JZY8+Iee6TTcGppbubwy38HwG/0JDT6tmBoZ4NrnIFvZqPTJLWYjWTvWkt9zhEiF/0Bn/gkt/RhMGNAEs5c10jmTU8hTZ0P5QPOPN3u3C3noX8AoPH2Q+sfhNnQhFp3bN1+cvd8TcmR34gYczKBk2a3y7N1Wzqe5nIDk3CVtQrZ1Gq8Z4xBFxlM/c7DGHJLqNrwHVUbvkNotYQuuxT9xPGUffo50qgISJvqazj8oqIJMv6+/1rbPBaLh4rcfQTGTiR++hLqBslquq8xIAmn8vHCXFmLSqehfttB7J07SKMRQ2Eh9fsOUL9rd6f8mCVX931HHaChsgBDQxURY08GunfUPF4wIAmnCfQl9vGbUPvqyb7jeUzlbSpJSZ88QtMhIyqdjtL3P6Zhf9u2XszfluNd4dVu/uYs3G3lKvOVSKyAqK4j64/HYXXA/stpg/1R6bQEXThf2XPz0OJ70iRK31yPxt+fmi1b25HNc9RIzLW11HpVULF7M/ZiNdxlYbojZm1pFsVpm9EHROLp0xa76q6Fy2DGgLRwntq2Cz38T5+ByteL4uc/o3aTcpaqDval8svv0cXGYMjNA6Ap/Sg1v2y2Dq+BU+a4/Fx3WLma4nQO/bgCD30AI0+8zCXXqePByg1IwnWE7+zxeMSGU/zKGppScyh/7zs8EuLx9/OlpIVwan9/mo5mAOAZHtPlkZe7tkhat0ektGBoqKKptoyyjJ2UZe1Epw9g/Bl3ovX07rad402MekCGCQaMDZNh/3e73bzm7CIa9qYz94zL2XjbXVRVVXUqE//04/gUd32pW0/CCDuiojqD9JzvqKnLa5fu4RPM+EV3OCRbx6G9I+EGu5VzFCY4YOdwyRH2nVI84iMIXDKPKdHedskW89ADqLT2rydqhaO5nDObuqUVh9h1cGUnsgGMO/1PTlk2W/TmHrDBhkExpNrDS3c+BEBsbCyp6elcuebTdpeJ2LvXobeoqslmT+p7mMzWy7BJiD6ZhKiT2PL7ixgaqtF5Hb+uR85gUP5rWRqbKdunHOgLX1+nbh10BV1ZOaFSW8kWEz6Tk6bfx6i401GrPfAUylZMyqqHyNj2icPQxe7mkEP5fHVAW7jkiGIOFXXWDWk6ogxlmuAgxDXL2FNc1KlMzebfqMutIWxe57BC6Nniwd8nhtNOfLRTuhCC6eOvI79kBxWUUHp0G0IIEmde5HTbx8viYVBaOEO+EgBmKq+gMTWtXZ6xtIzMO++lfNVnlP72HYDdPbnu4OwBvZQSk6kJlUpDVNh0AqWy72YxGR3WO16t3IC2cF3BZ/Y4St9cB4B+wrh2eYXPv2R9H7T0HEp/+46y7T8x+ua/ovZs7z/X2y0Ss9nAgfTPKK04iE7ri5QWjKZ6fL2jSJz1B5fbOx6s3KAkXNW636zvzfX1aPz8sDQ3U/ruB5hrlNsFA89ZTMUXX7VVcvPhudHUyO5D71BTl0dEyGSaDNUIBIkxpxDoF0+duve/2qG4ETzgCWdvHqcJadFTU6nQ+PkhpSTnb48gmxXZ+9CrloHNMOo/fgZqD+eGSGNjLUc2v0dA1Fiixp1id19OSgs7DrxOQ1MZk8ZcRljQuE5lnPGbOx4P9Ac84exB5aVs6qq9PVFH1lP6+i9WskX/5X504WHtVM9DZixwvnEBtSVHqS05Sk3REaJ9JuDtGYKfTzRCqKirL6KwdA/1jSWMTjjbSrbi8gOUVhzCQ+eHl0cgEaGT8c103aN4qA+rA/akYf7rF1s/21o4Y2kVWX9U/Nz8z5hJ7S97sTQqZAtZdglqPz+8RifR8PshSl5fCYBXRCyJy+7s8lyz4zyusaaUfV892blfvvFU1eYAkvCwaJYuXk5GWiV5RdtJzfwSjdoLi8WIRZoQQsXMibfg6x3ZLemG2slDr04anBSzWSCEqLYp87BN3plCiMNCiHQhxIO9/TKF//nI+r7hQIaVbCpvPU1p6RT/7zXKV6+xkg2Uq8rz13/g9GrVyy+UMQtu6JReVZsNSJYtu4Lly+/nT3fPJzJWQ2rmlwCcOOU2Tpn1MEH+I5HSwrZ9L5Oa8SX6dPuX0HWFoXzy4JKFsxGzmWWrLyKEWADcK6U8x075NJQQwzwgBbhMSulQtrujhYM2K3fkD1Yu43fqNGp+3AWA5+gkmtKOWPM0oSGYSjvr53gEhxN15qXoo9rueuhqpSotFqTFjPZICeVVR6ipy8ciSqmoLMZobNv2UKm0TB5zOcEBigRFs6GOorK9VNZkUlaZhrdXCBGhk9GOGolvaCKqDgsKe/O4wWzl3Cm56oyYjS1mAukt4YIIIT4ClgJu0Yn3HB1rJZwt2QAr2fSTJqLy0FGXolxx1FxeTOW+re0I19X2iFCpECoV5uRoYjOV682TJ0TzxLOXc/jwIVaufIud2wpQmxPx0LVdDuKh8yE+ai7xUXMprzrCkexvOJrzPeR8j3/kWMYsuK6dJP/xtHhwlXCOxGxOFELsBQpQrN3vQDSQa1MmD5hlr3KL0M1NAF7hXXvs+p40mdpNe9FFh+I5ovMFaT6zTqBuW4r1s37ieHxnziB+wTJMjfUYayrxCI5w9B0d4tCBfB686wMmT42Hpsno1SHg4PLo4IAkggOSMBobSMveQGHhbooPbyZi7EkOn9Nx8TBUtkic/reyEbP5xE72LiBeSjkZeAFovd7F3uaX3TFcSrlCSjlDSjlDF9B5kt3qPeIxQrnkLfiyheTc/79O5fxOnkfUfX8m9Brl8jdzba01T+PljVd4DCpN7xbnhw7k89G7W+yqnXcFrVbPuJHnE+g3gsL932M2NbfLP168gd0iZiOlrJFS1rW8Xw9ohRAhKBYt1qZoDIoF7DE84pW5XOHTyuLBZ+5EhEaN18QRRN7xR3RRkXjEROM9ZTLqgAAMecrjuttq6G5Ic0fAtBCCkXELMRjryd3zda/bG4xwi5iNECJCtLjYCiFmtrRbjrJISBJCJLZYyEuBtfbasIWn2oMLYxYxxjexU55+4kjre6/keJpSc5BS4nfyZDxHjrBufVhq65BGA9JkcuEr9j0CfOOIjZhNcdqvlGfvcVi242p1KJyvOkU4GzGb1TZpt7QK2gAXAQda5nDPA5dKBSbgNuAb4BCwqmVu5xDRXmEsiz+bRyfc3o50yRHFNGcVofLxwmt8Ip5JMZiqaon9vxvxWzDVKrEPULdjJ5b6BusthDAwrBxAUvwZ+PvGkbFtFcamtiH/eBhWnSKclLJBShkspay2SXulVdBGSvmilHK8lHKylHK2lHKLTbn1UsrRUsqRUsp/OfM8gUAt1KiFmgn+7eUR6rb+jqWukZCrz6QuJRWPxEg8R3UWEPSZPRNddBQ1GzdR+PIKLE1NncocK6hUGsaNWIrFZGDX6n9SfGRLl3uEQ83KDci1uERispgxSzMHqttvdzQdzUcT7IdHfDjGkipUHu3dyVutnFqvJ+JPN6MND6PpcBoFz76IxWgcMFbOWx/GyNiFAGSlrCbtl5WYTc1D3soNSMLlN5bwQc46/nbgBQ7Xtt3BYGo00rA3Hd95kxTvD7MZU3lNl+2ovb2J+cv9BF14HsbCIhp/P+SW/rmLdIkxCxiz4HoCYyZQlX+Q8qzOCgL2MJit3IAkXJO5mc/yvm1HNgBpsoAEdaAPhrxSAHznd1Yvt53LAWiDFWm7qh9+Ano/lwP3kS4gKtnqO1eaYf8ai6F01DWovolQK9t6Yfoaan5QTg58507stp5+fDL6iRMwlVd0W9YVuIN0vpmNaD28CYqbRGONsuM0lIfVAUm4UT5xdtOrUhWNOGNdM1XrfkPl5YE2Ishu2VYrZzEaKX59JQ37D+A1tu1CXndYOXCfpdPpAxwG3gyVxcOAJJw9mA1mUv66AX20H1HzR6L20CiSXt04H9Tv3E3D/t8JOON0Qi692GHZnqK3pPPNbERaLCi+DgqGqpUbNISTJjPG2mbizkrGNzGIwPHhijeH0cFNgh5FVKxdhzYykoDFi1Dp2q9o3WXl3AGVWoPFbMDYbP9SFHsYjFZu0BBOo9eh9fMg9bVtfHXqK5Ttyif4klM7bYvYonbr71jq6wm98rI+l9fvrZXzC09CWszUlXXtiDMUFg+D6htM/PPJhM9NIOH8CUTc9QcCz3PscWHILUHl5YEuonNsayvcaeV6Qzp9sQEAi8lgTXNmWB1sVm5QxTTEnDaamNOUib+9AGlbGMurqdtyAP2UJITagf+Qm9FTya8A3zg0Ht4UHPyR4HjnL6obbBhUFs5ZmKrrKXpmFdJiIfiyhd2Wd/dcrieWTq3WERg9nqba8nbpHa3cYB9WB3fvu0DpyvU0pecTfstSdJHBnTaC+wM9IZ2+SYfF1Iyxsbb7wjYYTMPqkCOctFhoOpSNzwnJyhGYk+iLFaurpAsNVPSAK3L3OSw3mK3c4O25HZgqa8l7+E1MFTV4Tx/dLu9YWDlwjXR+PjF4e4V28h4ZSouHQbVo6A4Fj79Hc6Yi2yXNrm+c2tOUK9/1K+UpP+EVlYBXWDTeBm80Ht5odHqqCg7h6RdGaOJ0h+06s5BInhDN5KnxyA8y+OnXd6guTCUgKtnl7zDQMaQIZyxri/+sWvcb/gvbE0ET1YCpwLUL4Yp//gJpNmOsqaQm1b43R0jCtG73+RyRLnlCNP9+/gq0GjXnXjiZ0eO+I3vXlw4JZy9CfzAE2gypIVWoVVYZCENuCRaDfcms6p83UbbqM7tOjw0xFppKCzE3N9JUVoRHUDieYdGMu+dpPMNjOpX38g93elO5q+F18tR4tBo1ao2KoKAAZk2Zh6G+0uVhdTBg0Fo4eyI3HvHhGPJK8T9zJtrQAEpeWUtzViEhV52B95Qkq3Wr+Fy5Q9jS1IypooLAcxYr8RBC0JSZReFbL7Zr12/MFKpTd9NUrAgh+owYR8y5V+BbpOoU1NwT7N2djdFkVhxPTRaMzV5YzEYaa4rR+3cd0jgYdUiGlIULOHcupvIazFX1NOzLoHbLfoxFFRQ8/j7lH/1gtXiaoEAA6nfuojkzi8r1G8hZ/jCGwiJK32uLEwqafhLRZ11O5OkXUn1wJ1q/QJJufIi4869DrfOkIU7nch9rE72sr1YcOpDPy89+w+4dWbz87DcYG8IAqMpv7zA6FBYPg9bC2YP35FEEXTifis82AuAzezzBl55K+Uc/UvHZRmo2HiD8xusIOm8JJW++jdfY0TTn5NJ8VHH0zH/iaQA0IcEknn8LuoC2O4nrc9PxHzutXRr0TtSwlXQTRkXyxz+fgVatZq57u7oAACAASURBVOKUOLIyStmTGkFV/kGixp3So7YHKgashfti3ovdF7KDoItPwWviCEAJuNGGBRJ5zyVE3HYL0mCg+LWV6KKVYGqPhHii7r7TqqKpjQgn8OzFxDz0QDtile/ahDSZ8AiNtPvM3nqVTBsXi6ZlDqfRqJg8NZ7QoLHUlmVRmec4yM3entxAtnLuUk9aJoTY1/LaIoSYbJOXJYTY31LXvg+1GyFUKsJuPNf6uWr9VgC8kkYRsuxSTGVl5D36BABqHx+0oSGE33gdic89Tczy+whYtBChapsbmeprKf75S/TRiQQ5uE6pN6TbdTAXk8mMyWzGZLawd3c2cZFzQErSflnZLn51sC8euv0tSSkPSymnSCmnANOBBuDzDsUygflSyknAo8CKDvmntLRhV1HH3dCGByJa3Jbqd7dFfenHjiHi9lvxnjIJj4R49OM7K1d2ROW+rUiziagzLkal6f7CkdaXKziQXsj9t7/H2ys2cttjn7C9vgKtxovxoy4EIH3zezTVlXfTSnsMVCvnFvUk2zhUYCuKpEOfoytZfaFSEXnvpZSs+BKPhIh2e29eo0biNWpkpzr20BBjoS7rMF6RcXgEO/ZO6Q18Mxs5RD6HDuRb53W1iV6Yi9pclfaufZzg+KkExU3G3zSaxvi2264H02rVnepJrbgesBXOkMC3QggJvCql7Gj9gPbqSXFx9mMaXIH3lCQSX74bAFMP1UwmBQWzobyQuBnzXKrnyrDXcTPYVhvYb9Y8koUaU0wAtcVHKc3YQXn2blRqLYHT5hI290xUWtdXyscS7lJPai1zCgrhHrBJniulnIYihvMnIcTJ9uraqieFhoY6260+w9SISE6va6K5sZEX/nY/k+PsLxj6EkKlxm/2PIJiJhA/fSnTLvwHY0+9maDYSZSn/Ez6yqeoy1LuqRgsiwe3qCcBCCEmAa8DS6WU1gmHlLKg5WcJytxvZs+76zpcPcpqxeyYWEJb4ll3bN/OCSOdmyX0xrp1l65SqfGPSGLknMtIXngrQqUi+5NXKN36vdPPPNZwl3pSHIrQzZVSyjSbdG8hhG/re2ARcMBeGwMNW/NyOWfpUi699FIefvhvrF23vts67iCbs/ALH8nIa+7FZ0Qypb99i8VosFtuoFk5d6knPQwEAy932P4IB35tUVXaDqyTUm5wW++dQE/dknYXFXLlmk+ZcvF1+IZHs3HFfzHWdS0r0Z9ka4VKoyVo6jykyUzul+8MCj85d6kn3SClDGzdPmnd/pBSZrQoKk1uUVdySj2pFaeGpLpS3O3YXVTIu78dIHTx5VhMBgq+XWW3XF+QzZlyPvkWfEckE3bSYuqOHqSp1P6NigPJyg38f4lu0NVFvu5Aq8XwCA7Hd9QE6rPTkFJiMRmRFoVkx8KydYT/2KkA1KYfGPBWbmD3bgDBJ3400mSics8WDj3zAGUpP2GsrbJuyJZn7yFrx5puWnENzlo5rb8id1GW8jP1eRlu7YO7MeAJd6yH1VYETJqFLjCUwu8/A6AuM5XcD19l79rHKUnfSvrm9yhO+7XL+n1l3UDRDo6/+FaEWk32x/+jOb/zxuNAGVYHPOGOFToOTSq1hsjT2y7c1WsCaKxWhvPM7Z8CoNP7222rN2Rztq5PfBIjr7obKS1UvL2K+r37rcM+HLuYjo4YJpwL8IlPInKRouVWlqnIhWk9ffGPHINa64W9WwL60rJZ+9Uyj9T6BhB15iUYqsooefNtyj9Z3a7c6E8732bd3zguCOfO/27vuFHW9/6RY5l2wd8Jjp+C2diIPqD9aYS7yOZKO/6jJ6PRK7fiqLzanDx7ugHubgxowt051rkddHevVB2t9DwCQ5l63t8IiBpL3JSzsFjMZKYo87pIG2fJ/rBstmi1cjVp+zBUlhJ73rUELTm7U7ljbeUGNOEGKnR6f8YsuAF9YBRCCKRZuQuipji9z57pLIFFyy07Kp1Hn/WlNxgUhBsoK9WOqCo4xP71/7V+Dh1xAuAe65Y8IZpLr5xD8oTOVwI4gu/I8Qi1hrqjhzpZ6oEwrA4KwvUnXNk4zUr5HGNTLdETFzF+0e14eAe6jWz/fv4KrrlxAf9+/gor6bpr2yffgkqrQx87kpoj+7CY7IdJHsthdZhwvYBQa/ANTSRm4iJ8QuLdNm+zjVNtjXFwBSEzFmCsqaT0t+865R1rK3fcEM5dK9V2R1mmJsaNTmTCqEi3LhJa41RNJjMmkxLj0ApHz5kwKpIbTjmBufMXEDBhJmXbfkTstO99eqys3JAKE+wtXBlOJ4yKpDgsmIaqfOYmGGCED9kZdW7px6ED+dx/x3tMnhrP3t3Z1msybWNZpZQ0VBag1ujw9AtlbHww50zzoaLoCP+55FwMDXWseSSV/K8/JHLyndbFxLGGS1eQ9xdmzJghd+xQPJyeSz0NgB/LxnZbrztVzO6GE2cI12rhrloyE3X1IW65+WYAFi29gmrvNuVKd2+L2JLNYjaxY9VfkNK+40B4eDh3vfQ2L7+/itzP3yR07hn4XHx6uzKtFj/tor+5tZ/g+Ary42ZIdTd2Hcxl1qzZAERERBA+dn67fNsI+46R9q6iY12zobFLsgEUFxfz8v89jHfsSNSeXpRu/gZDgX3Xpf7GoLFw0L2V608LJ6Uk+9fXqasq4twb/kVmcc9uK+zOEnZFVFNzAwgwNtbSVFtGQHQyE5OiyTy4jh8//aBTeZW3nvjHHmmXpolqGLZwxxKuhNpV5u6nOPcwYeMW9ZhsYF9rxDa9K2g89Gh0erz8wwmMGY8QKrY2FlMYPRHvuLYrP0NmnQqApd7+oqm/Fw/DhOshGmuUa5j8I0Z3U9J59Gb4bQ2+Vuk8iL/4ZkJOPB2hVlN9SNG0C52zyG397A2OK8K58xA/OGEqCEHxkd/c1mZP0THSXwgV4fMWE3v+dZibGlF7eqHx6ew61TrF6E8rN6QI15fu5h0hhAApKTz4I2aT/Yip/oAjWQnfxGRGXPVntP7BFH77CXLL0X7smX24S8xGCCGeF0KktwjaTLPJO1MIcbgl78G++BL9jeIjW9jzxWPWz60OmF1hwqhIrloykwmj3BdM7ayGiUdgKHEX3ABA1sf/Q5pMbutDT+AuMZvFQFLL6ybgfwBCuR7vpZb8ccBlQojuFWS6QH8c4tfnHKFky7cYqtvuVpUWC9WHdpP5wQsc2PIaJUV7AUg66WoAyrN2UZK+lW0f3Meu1f/E0NCmNTxhVCQv/uUP3HTRXF78yx/cQjpXxXK0Pn7ELLkKAPOvae3y+ntYdYuYDbAUeEcqeyxbhRABQohIIAFIl1JmAAghPmope9DZB9459vt2WyN9CSklOWtXYmlsonTzBoJnnoIQAkP2YWqK8vENjaChvBhzkzIXLC7Zi3/yVIWMLVbO2FSLStOm99Gq/aZRqwDJtHGxHEjv+Z5YT2TBGmIs+JonoPLwpPbIfgIX9Ph/vtdwtfddidlEA7k2n/Na0rpKHzCQUmIoLqE2ZScF//4vlkZli0Oo1ZRv/4mKHRtJjAjlw48+ojAnizPveQRdkCKJWnN4D0FT5rVTVkpeeCsaXdsqs532m8nCroO59AQ9kQFriLFYt3qa4lXoJ42n5uiBTsNqf1o5py2cjZjNcnvZdtKkg3R77btVPakrdJTOL1/1GbVbFNFCta8vIcsuISRkMiqtBxZDMzedMY/bz5iLRq3CZLZw2txZZNTfTd6696k9sh+Nty8jr70fLBZ8izp/3QPphdz22CdMGxfLroO5PbJuPbVqHeE9ZTJ1KTtpPHwE/fhjcweEK0OqIzGbPCDW5nMMUADoukjvhBYZrxWgnDS40K8eozZlJ7VbtuJz4iy8J07AM2kUKp0WdcuJg9rDkx0Z+RjNyiXARrOZlKN5qLQ6Ypdeg6m+Bm3rdoNaDdjfOD6QXtjjYdRdZAPwGjsaodXSmNY14UZ/+mifnD60whXCdSlmA6wFbmuZo80CqqWUhUKIUiBJCJEI5KMMyZf3psPdoSuRwo4o/3wtNT//gkdCPMEXnodKa1/dcm9OITes+IwTRsaQcjSPvTkKcYQQbWRrQXcC063kcTZa351kA5gSEUm+SkWYXk/He7RNBfp+CSV0inA2YjY326TdAorGCLAeOAtIR1nFXtuSZxJC3AZ8A6iBN6WUjlWS+wk1P/8CQPiN13ZJtlbszSm0Es0d6I547iYaKOKKfLoGY3Mz/7zyaj5TWdhd1P8H+u4Ss5FSyj9JKUdKKSdKKXfYlFsvpRzdkueSmI09uGNrpDUy3W/+Sah9fHrdni26Iou9dHsLgb4gm7mhkf3/fY41n3/OPffcwwUXnM/smNhO5fpj8TAwvPL6Ec2ZhRQ+9yYqb298T5xlt4y9S976Er1RQO+ObNJiofSd92hKS+etd95h2bLLMZotbDqSRs2vW6j44it0UZF4xMeh9vFGHQL1u9LYM+pcJk6ciNrNt2kfN4SzNBspe/cban7ajcrLi8g7/ojQaqnffwBjUQlIif/ppzp9b5Yr6O09DvbgjGeLlJKq736g8dBhgi86n7Ueakq2bmFT2mE2PPAXjCWlADRnZWMoLEIaDNDirjZ16lQCAgKYN28eF110EcuWLUPjBq/h44Jw0myh6LlPqU85hPfMZFQeWkreeg9DXr71FwzgPWMq2qCgXj/PdvFwrMgGULdjF1XrvwHAIy6W3UWF7C4qpPqnjRhLSgm/6fp2q1VTVRX1u/ag8jWgDvBhSXMwP/74I9dccw2PPfYYK1euZM6cru+qcAZD6vC+FbaH+FJKSt74ivqUQ4ReexYqTx21m/Yh1Gr8F55C2LVXAqCfPLEd2Ww3TQcSXOmT2scbtb8/Ki9PCp59kaYs5YCo4WAq2sjIdmTTRDXgOU6H/6kLCFw6D7/5U/h5USxHjhxhzZo1mEwm5s+fz7PPPmv3FkZnMeQtXOPvmdR8p6xhKlZvxFxdj1dyPBG33K7kH1YuDtH2gXK6u62bq/8A+uSxxD3yN8z19eT/+xkKn3nBmue/aKHdOh23RoQQLF26lPnz53Pttdfy5z//mV9//ZU333wTPz8/l7/DoLRwrqxULY2K65A2OgRdVAjCU4f/4tnWfG1YKAhBY9oRGg+ntZO4Atf/yK1wJ9l6a23V3t6EXbUMj5GJ1rSARa6dTwcEBLB69Wqeeuop1qxZwznnnIPF4nqfBnxMA2D38N6V+AZLswGVR/sLNGyPt6p/3mS9QzXmoQcUEtrgWMqYuntYN1VWYSwpxWtMUqc8exu/U4KiWXXqde3S3njjDW644QY2bNjAGWec0anOcR/T0JFsnWBR9t31kyZ0Ihu4/4/uLPriuZrAALtks4cpQdG8ffKVndIvvvhihBBs3brV5ecfF4Szh9b/ZmmxUPXdj3iOTiLs2quOca8UDJQFy6zQBLSqzvtwvr6+jB8/nm3btrnc5qAgnLM6cT2HxFxVRc0vm2nKyOzjZznGsSRaxzDKbaVZGC0dT10VTJ8+nT179tjNc4RBQbiewNn4BqFSEXDG6RhLSqn4/Auqvv3Bbrn+IMJAsGq22FORz9W/vGs3z9/fn7o616Uthvy2iDPQxbT4hKpUhFx8Yb8+e3JcJCeMjGFTbU6PDtO7WtD0hLz2Fg17KvLtlg0NDaW2tpbCwkIiI513mx+0hDs1JNUpvRFnYMhTfqmx//grGv+u95bcfcY6OS6S12++EK1azc3mWVzx+SftSNefq2NXXZNycnLQ6/Uu78UN2SHVFRgKClH5eDskW19gyrRotGo1GpUKrUrNSb5x6PNU1ld/oTuydfQesVgsrFu3jrPOOgtvb2+XnnXcE87c0Ej9nn14jXYugt5d86yGGAtb83Ixms2YLGaMFsWb2F1wlrA9cbrctWsXBQUFLFmyxOW6g3ZIdQfUkfWU/PsLpMGA/8IF/fbcVtLuLirkis8/YXZMLFvzcjmc03+B3NBzJYKnnnoKT09PzjrrLNef2aMnDhI4cje3NDZT8tpX1O/YS8CZi/CeGQg09LkkaUcL2erBAUCMe+dt+jxVlxa5p2QrKSlh1apVLF++nOCWC4xdwZAmXFeo35VG0bOfYGlsJvjShQReMNel+j1dPPT3toe7yQZQVVUFwPjx43tUf1ATztmVqpSS+h2HMRSU0rgvg4Z9R/FIiCDkmsXoxye2K9sxjNBZtG5v2Aba2MJZsrlrJdwXZAMoLFS+W0BAQI/qD2rCOQOL0UTGNY8jDS0S8kLgv3gWIZefjsqzmzNWB7AlxuS4SF6/SdneMJrN3LDis3akG2gbur3BunXrUKvVzJs3r0f1hyThjLXNaLx1NBTWUPCvdUiDEeGpI+7JW9AE+6PycByl5SpOGBmjbG+oVdbPe3MKe0w0Z61cV1bVXdbN1sumurqa2bNnk5qayoIFC/D3t39zYndwNkwwAHgdmIASOX+dlPI3m/z7gGU2bSYDoVLKCiFEFlALmAFTV24r7sKuR78j79v2gi2BS+cRcoXzgnyuDqspR/M6BUv3tVXryqq6i2yNh7LJe/gNhFZDwgt38cQTT5CamsqVV17Jk08+2eN+O2vhngM2SCkvapF8aPfXkFI+BTwFIIQ4F/izlLLCpsgpUsqyHvfSCUgpKd6STeEvyo3IAclhVB8pI/CC+QRdOL+b2j1DqyXqGCz9m8X+cVBP2u4K9qxqV891lWzG0ipKXl0LgDSayLzlaZ4Arr76at566y2X2urUl+4KCCH8gJOBawCklAbAkQKfowj9PkF1ehl7//0TVYdK0PjomPnEWUTMbVsMHCpyfRLuqpVrDZbur/laR6u6qTbHbrmeLBKCivaTlV/aLm3hwoW8+uqrrne0A5z5S4wASoGVQojdQojXhRB2zzNaIvTPBD6zSZbAt0KInS2CNXYhhLhJCLFDCLGjtLS0q2J2kfX5fqoOKZq7QeMjCJvVd2I4juBusjlqr9WqPrNtM1es+cTuwX9PyDYmuICIkxJZ+PGV+I5o22dbt24dHh69v6HQGcJpgGnA/6SUU4F6oCsly3OBzR2G07lSymkoYjh/EkKcbK+ilHKFlHKGlHJGqJ2Alq584k4NScU7tm2JXrIth9KUNkksU5P9C86cgTN/sFZnyb6ybLbtd3z9Zsnnfzu2u4VsyRHFjA7MZ/Mda1h/+go8g/WETm9TVnMH2cA5wuUBeVLKVvfOT1EIaA+d9OOklAUtP0tQlDNn9qyrXWPUpVNZsulPzHxCuZC2NrOCgp/SWXvSS6w/fQXG4jb+m6rryfvnStKXPUpzVpG7u9IOhoJCCp5/CUNh3z6nI1whW3JEsdV3cOcj31F5QOnrdxe9Q8an+/AM8WbB25e6r2/dFZBSFgkhcoUQY6SUh1FUMDspWAoh/IH5wBU2ad6ASkpZ2/J+EfBIx7ruwO8vbeboR4oHanNlI1lr2zRzVHpPCv+7isbfMzHX1FvTi15cTfzTf3TYbk83gmu3p1D2/scANGXvRhe52OU2egJnydZKsubKBjbfvoa67EprXtSpozDVG/AfE8qoy6ai9XHfZb/OrlJvB95vWaFmANd2UE8COB/4VkpZb1MvHPi8RT5BA3wgpdzglp53gErX5nvfSjwABFSs/oW63w7gPWMsKi8PDLnFNGcVYcguIv//3kYXF4Ha25PApfMQmt5radRs2Ur5x4oEq35qEoFL5mEu6XWz3cJVsgHU5VS1IxtA2Ox44ha7x9ewI5winJRyD9Bx/+yVDmXeAt7qkJYBTO5595xH8o2zkWZJ+vu72qWrdRqqvtqCytuLyHsvRahVjA0v4si7O0l9bRsNe4/SsFeRk/cYFY2pogZMFvxOnYpoEXJxxcpVfPU11d8pbuqBF5xMyGWnudyGK3B1+OyI4MlRzH/zYqrTyxFCsPtf36PS9p3X2pA6aRh3y4nEnjmGjdevwmJQtgwiTkpE6+uB5cSTEGpVyy9dED4ngdTX2kcdFfzfO9b3xpJKQpa1v4HPHsz1DQidFqSk+vufrGQLiYtmwR+vYm9lm+Bnfwj+2UN38R3+SaH4J4Wy5S4lNtfc1HfS+kOCcLaH+L4JQZy26kryvk3DO9qfyJNHAEpgtO0vvrnS/qVqwZctxFBQTuWaTfjNn4IuRlkx21qoqRGRzI6J5dvffuPHRx9TjoA8PbE0tBHq5w3fMSJpFFf/8m6XcQF9hSlB0cwKTWBbaRbNul12yzSW1lFztJyyXflIiwVTnYHyPfn4jggi+jTn4lZ7giFBuI7wDPZm1GVT26V1/C8PnRHDpHvnk/7+bsye3niNS0AbFoj/GSdgqqyjduMeil74jOiHr0Ht7WmtNzUikvfO/wPvv/MOm//2DyyNTXiNT0QaTRgKJJa6Rh76618Zn5yMyWJmVmhCvxKuNXhZp1ZhsszjbwcqOVzbPvTxwIu/kvHx3nZpKp2auLOTGXfrHDSe7j1rtsWQJJwzEEKQsHQCCUsndHLS1Ib4o5+aRMPuI+Tc+xLRf70aXXQImqgGZkfF8stPP3HjDTcwZ+4cFv7zTt7L3Enug6+ClCRdcBr3PvhAi9u4hW2lWf3yfVr/oc6JmYxOrUIt1EgBE/yT2hGu8JeMTmQDmPnE2YSd0FkV0904bglnC3uewVH3X07dtoOUvrGO/Effwmt8Imp/H1Z67SPva0Vz7elnnuHer98h++mVyGYjMY9eDyOiuGnbKuuQ1pfWzd7c7ED1EUwWM1KAWZo5UH2kXb53tD8BY8OIXpjE7y9ttqZnf3HASjgpJfW5VTQU1dJc0YBvnSf3fH4P8+bN4/zzz+9VnweFmE0rHN1I09uQwa5c0Rt+z6T8w+8xVdRirqpDGk14R4Uxae4som9eymeLb0EaTUQ9uAzv6WPsttHTS+fs9cmZtsb4JjLBP4kD1Uc6DaetMDUa2XTTJ9RmtW2J6CP98ArzobGklobC2k51AgMDqaio6JTeEY7EbIYtXAu6in/Qj09E/383Asp/vmwyIDx1lAlB5rpvkUYT/mfOsku23t5u2NP6h2szuyRaKzReWk55V7nBoD6/muwvD9JYUktjcR2+I4JJumI6PglBLB2/CP3vJm77021MmTKlR/1p99xetzCEYDGaaD6aj6mqDkNuCZ4jo9HFhKLy8kDtq0cIgfDqvOvuO29iu8/9eY2mO+Ad7c+4W060m1fqW8fCkRMAuPXWW3v9rCFDuJ5E4pubTRx5dyfFW7JoKq+nuaoJLPanGNrIYPxPm442MhhDTjFNGYXUbz8EgDS1Cb4MNrI5whfzXgSgaYxy/1hqau+vLBgyhOsJDr26lYxP9qLSqYk9YwweQXpqw0ejCfJFGx5Ec0YBxtIqzHUN1O9Mo+zdb611tdEh1vceccpQ3N9kc6fcRUe0kg0gKysLgCA3CG4PKsK5+yrLpnLl2PfkFX/Ab2Sb71frXE4/aaQ1LXDJPJozFDcgbVgAal9lE1gaTQitpt/I1lFu1p78bE9IaEveVrKlpqbywgsv8O677+Lt7d3rFSoMMsK5G6EzYin4MZ2mioZ2hOuSPJGtB/u1La/eoa8uHO7YbkcCdvXcVqKtXbuWu+++m6NHlTPmSy65hHvvvZeoqKhe9+24IFzrL/ir36M59OpWVGoVAePCOPLeLjxDvfEb0fuhoif9GUjPa3Vw3b59O+effz6TJk3iL3/5C7feeisxMTFu68uQJ5ztLzs0LYXvv1MiunI3pKL19WDO8+fhGeyaAlBv+zHQcOfY72lubkan03HfffcRGRnJzz//3ONQQEcYUoSznYfY+wNX5DeBSrD4q+tpLK3DK8zHrc6FXfXJFfz6YR71lUZOvyUBlcq91zBFeCYTo59CXsMeipoOcefY75FS8tBDD/Hkk08SFxdHZmYmCxcu7BOywRAjXCu6+iPnp9YSnuiF1tcDre/AIlorPn3kMABfv5DBI7/MIy54PBRH0OCVTUnTEfzDPXp0H1iEZzIXxD2FWmgxSyOGRjObNm3izTff5K233mLp0qU0NzeTk5PDpEmTetR3ZzDkCOfoDy0QqNR9L4nXm+HziR3zeXDGRgAePvlX4NfOZVLm4+mjwWKWFKTVYWwyYzFLjmyr5OAv5Qhg9IlBTF4URnSyD0IIYvRTUAst69d9zd///nf27t2L2WxGrVbzwAMP8Pjjj/fJxXYdMeQI1xWa6kyUZjWg06s77V8NlPlVSWYD37+e1W251/64Fw8vNdn7a6ivbItKEwLCR3gjkXz/WhbfvZpFbGwsc+bMIeGyEF7O/R933HEHo0ePZvny5cyaNYtZs2ZhL0qur3BcEE5Kycq79lOS1cA1zyjHNL0lmZSS9JQqSjLqOfBjGSqNYPKiMCYuDMXLt+tf69qn0/nxjWxOuS6OploTCEjfVoneX0tFQRO1ZUqM+UlXxHDNfYv5/V0fnnvmeR78ywOU+23jlft+4GiKIpk1/Zxwkk8OwSdIy/mxTzJu3DjrirKsrIwvvviCb775hrVr1/Lxx0pAz7x58/jqq6/6bI7WHQaVtwg49hixB2OzmZV37ufgxnKW3DuKU6+Pd7k/1SXNbHwnl0W3JlCe28j65zLI3F1FQ7Xiih0a74XJIKksbEKjU7H49hGcen1cpyHKZLBw7+Sf2qV5+mqIHuuDxSwpTKvjgofGcMLSCGvdjhP9zN1VZK+K5YorruDCC51TXK+vr2fr1q3k5uZy/vnn9znZjmtvkd9/KuPgxnJmLInglOt6FpGfuauKH9/I5sc3svH01SAEjJkTRNwEP0ZMDyBukh9CQPa+Gn58I5sv/5NO5p4qAiM82fFlEZFJ3kSM8iEw0pOz7xrJumeVDdUL/zqak5Y5dnosajrEJQlttwAyFkVMwwV4e3uzcKH92wP7G+5ST1oAfAG0+sSsllI+0pJ3JooYjhp4XUr5hNt67wDb1xTy89s5VBU24Req4+J/jO3xpDg0oS3aKiDcg6v/O4HIJJ9O5RIm+3PtH3pWHgAAB5VJREFUcxP55d1cPn+8zfHR0qRj77cl7eZbAJNOD+vURt/funNs4Rb1pBZsklKeY5sghFADLwGno0Twpwgh1kopOwVSuxPfvJzJ1y9kWD/f+cEMdF7dx5ue5dPWrfV146zvf3hdsWx3fTiD8BF6h8QVQjD/qjhGJiTx9M3rAUjbl8PqnPs4kreHlC+KqKs0kjjVn4dP3tSTrzeo0RfqSbaYCaS3xKcihPgIWIqdyH13YvtnbVHH/uEeJE5tP2exJVZjozKH9fISXZZ5fGcpJ8/Tcd3kbKf74H3+Laz9Tzq33HILaqFRhsUEoGfCkUMGzlg4W/WkycBO4M4OEfYAJwoh9gIFwL1Syt+BaCDXpkweMMveQ1qUlW4CiIvrufqRJT+C8oI6/vnPf3DZZRdRWn0HoT72+Z2TZeK0k0rx8RXsOhhht8zmTc0UF1nIPOp8rGZSjBKLevjww65/gSEOd6kn7QLipZSTgReANS3p9sYeu8vi7tSTnMHWTwu4+7T38fHx4YILLmTUqNGMTuo8WTY0S77b0MRpJymyYHW1EkzX4amb3qlsWqoy78rKtE+4pJiCTq9hdA1nLJw99aR2hJNS1ti8Xy+EeFkIEdJS13YZFoNiAXuMrnzijM1mNn2gGNP9+3cSH5+IlCbKKjbxyku1HEkzsfRCL3JzzLz1Wj15ue2vZbzxmk28+OIzmNXL0fvuB8BikWz/TZk9XHSJfphMboBb1JOEEBFAsZRSCiFmoljOcqAKSBJCJAL5KHJel7v7S5iNFtbf+xsFqc3c9xdf1Pp7KK85kcbm33j15V957j/KNYvrv1RcpceO0/DsywH8fsDIay8rM4ONG39h4sTpREb58cpKHcnjtKz9+G5++O5+AJ5+8oj9hw/DJTi18SuEmIKyLWJVTwIuAUU9SQhxG3ArYAIagbullFta6p4FPIuyLfKmlPJf3T3P0cYvKJu/UkrKchopyWhgxxsH2b3TyCOP+3HpFW2uRjtTDFx2QTkBgYKnngvA319FaJiKqGi1daVZXDCWCaM/5JZb7kQIwcaNGzGbzbz99tvcc889aLVadu/e3S/njEMFjjZ+ldC3AfaaPn26dITb35km4yf7SZT5oATkI0/4y7TcSPnb7jC5+BxPGRunliqVknftjd4yLTfS+nKEffv2tWv37LPPdlh+GJ0B7JBd/G0H3UnD8uXLeeGJXYSE6Bg1WkNdrYU33wti1GhFD+PD9xr4+itl6LzoEi/++9RhoqOjUamc8xKZOHEiBw4cYNWqVcTFxbnFj38YNuiKicfy5cjC6XQ6GRISIq+66goJSJUKOWOmTn7wWbCsqamxWqZp06ZJs9nc23/WYfQAOLBwg+q+VCklBoOBsrIyPvjgI8aOHctf//owxYXhXH9FA/v27bOW/fbbb522asPoR3TFxGP5cmThHnjgARkcHCznz58vd+/eLaWUMjc3V2q1WqnX6yUgExISZHNzc2/+SYfRC+DAwh1zctl7dbdosIezzz5bAnLmzJkyJSXF5frDcB8cEW7IjDkrV67krrvu4uOPP2bGjD69zmsYvcCgW6V2hdDQUJ555plj3Y1hdIMhY+GGMTgwTLhh/H875/NSVRDF8c8XJVtVaptoURptXAVF1C4K1NxY0MJVUruifyDc+A+0iSApCKpNVqsIQoxqF1mL/LExn7QxXBRWtAqC0+KeV7fHUyx17n15PjAw78ycYWbel7kz3DsnKSG4ICkhuCApIbggKSG4ICkhuCApIbggKaW8eS/pI7D6K1J/z07g0wa2XyaKGOseM6t7MaWUgttoJL2x5b5I/c8o21jjkRokJQQXJGWzCu5G0R1ISKnGuin3cEFxbNYVLiiIEFyQlIYVnKRhSR8kvfXUlyu7LKkiaVZST85+UNK0l12V326W1CJp1O2vJO3N+QxKmvM0mLN3eN05992SZuSrR1Kvz0FFUm08mGJY7tvzsidgmCxKU629C5gEWoAOYB5o8rIJ4ChZkJ0nwEm3XwRGPD8AjHq+jSzSQBvQ6vlWL7sPDHh+BLhQ9JzUzEOTj72TLGLCJNBVdL8adoVbgX7gnpl9N7P3QAU4LGkXsM3MXlr2j9wBTuV8bnv+IXDCV78eYNzMlszsMzAO9HrZca+L+1bbKgu/YvNZFtOvGpuvUBpdcJckTUm6JanVbfVi0u32tFDH/oePmf0AvgLtK7TVDnzxurVtlYXl+l4opRacpKeSZuqkfuA6sA84ACwCV6pudZqyFez/4rPquHcFUso+lvrWlpmtKka+pJvAY/+5XEy6Bc/X2vM+C5Kage3AktuP1fi8IHsZvkNSs69ya457twGse2y+9aDUK9xK+J6symlgxvOPgAE/eXYA+4EJM1sEvkk64nuws2SR16s+1RPoGeCZ7/PGgG5Jrf7I7gbGvOy518V9q22Vhdd4bD4/QQ+QjbNYij61rOEUdheYBqbIJnJXrmyI7IQ2i59E3X6ITJjzwDV+v2nZCjwgO2BMAJ05n/NurwDncvZOr1tx35ai56TOHPUB73y8Q0X3x8zi1VaQloZ9pAaNSQguSEoILkhKCC5ISgguSEoILkhKCC5Iyk/jxQq/5JK0ZgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "gb_boundary = [(-2.6653539699999556, 51.617254950000074), (-2.6937556629999335, 51.59617747600004), (-2.71312415299991, 51.58661530200004), (-2.760487433999913, 51.579779364000046), (-2.7980850899999155, 51.56350332200009), (-2.816395636999914, 51.555568752000056), (-2.8587133449999556, 51.546128648000035), (-2.943348761999914, 51.54254791900007), (-2.9562882149999155, 51.54572174700007), (-2.9641007149999155, 51.552801825000074), (-2.969471808999913, 51.559881903000075), (-2.9746801419999542, 51.56297435100004), (-2.984038865999935, 51.55853913000004), (-3.0102432929999168, 51.53803131700005), (-3.0156957669999542, 51.53164297100005), (-3.0737198559999115, 51.50836823100008), (-3.0764867829999503, 51.50775788000004), (-3.088937954999949, 51.505072333000044), (-3.105620897999927, 51.49721914300005), (-3.1317032539999445, 51.48041413000004), (-3.1350805329999503, 51.47630442900004), (-3.1409399079999503, 51.46478913000004), (-3.1453751289999445, 51.45994700700004), (-3.1524145169999542, 51.45718008000006), (-3.1666560539999296, 51.45600006700005), (-3.1723933579999084, 51.45327383000006), (-3.1727188789999445, 51.453111070000034), (-3.160064256999931, 51.43183014500005), (-3.167144334999932, 51.41046784100007), (-3.1848038399999155, 51.39760976800005), (-3.204009568999936, 51.401597398000035), (-3.218861456999946, 51.402777411000045), (-3.289418097999942, 51.38422272300005), (-3.539173956999946, 51.398504950000074), (-3.557443813999953, 51.40509674700007), (-3.5753067699999406, 51.420436916000085), (-3.6047257149999155, 51.44570547100005), (-3.6631973949999406, 51.476223049000055), (-3.6769913399999155, 51.47703685100004), (-3.695423956999946, 51.47150299700007), (-3.717925584999932, 51.478583075000074), (-3.7376195949999556, 51.49087148600006), (-3.748036261999914, 51.50092194200005), (-3.7494197259999282, 51.50535716400009), (-3.747670050999943, 51.507025458000044), (-3.7445369129999335, 51.50763580900008), (-3.741851365999935, 51.50836823100008), (-3.7493383449999556, 51.52806224200003), (-3.7519018219999225, 51.53306712400007), (-3.758941209999932, 51.54677969000005), (-3.770130988999938, 51.56329987200007), (-3.782215949999909, 51.57664622600004), (-3.7902725899999155, 51.58197663000004), (-3.8077286449999406, 51.589178778000075), (-3.8169652989999463, 51.59650299700007), (-3.8326716789999296, 51.61554596600007), (-3.8416235019999476, 51.621527411000045), (-3.8548884759999282, 51.62384674700007), (-3.8867895169999542, 51.62140534100007), (-3.9623917309999115, 51.61562734600005), (-3.9766332669999542, 51.61188385600008), (-3.989979620999918, 51.60651276200008), (-3.998768683999913, 51.60028717700004), (-3.999908006999931, 51.59088776200008), (-3.9922582669999542, 51.58112213700008), (-3.9818009109999366, 51.571600653000075), (-3.974598761999914, 51.56297435100004), (-4.016184048999946, 51.56297435100004), (-4.016102667999917, 51.56037018400008), (-4.0208227199999556, 51.555853583000044), (-4.026519334999932, 51.554022528000075), (-4.029204881999931, 51.55927155200004), (-4.031971808999913, 51.56313711100006), (-4.0385636059999115, 51.56622955900008), (-4.046457485999952, 51.568426825000074), (-4.0531306629999335, 51.569240627000056), (-4.056304490999935, 51.56704336100006), (-4.065581834999932, 51.55756256700005), (-4.070220506999931, 51.555568752000056), (-4.0768123039999296, 51.55695221600007), (-4.087269660999937, 51.56191640800006), (-4.112131313999953, 51.565619208000044), (-4.121652798999946, 51.56598541900007), (-4.132191535999937, 51.56297435100004), (-4.142730272999927, 51.55695221600007), (-4.156809048999946, 51.54629140800006), (-4.1664119129999335, 51.54254791900007), (-4.176503058999913, 51.544256903000075), (-4.18773352799991, 51.54877350500004), (-4.1967667309999115, 51.54938385600008), (-4.200550910999937, 51.538763739000046), (-4.213368292999917, 51.539129950000074), (-4.272450324999909, 51.554754950000074), (-4.2899063789999445, 51.555568752000056), (-4.293324347999942, 51.55914948100008), (-4.29515540299991, 51.56195709800005), (-4.297352667999917, 51.569240627000056), (-4.278309699999909, 51.578192450000074), (-4.280832485999952, 51.58881256700005), (-4.2897029289999296, 51.601548570000034), (-4.2899063789999445, 51.61701080900008), (-4.255767381999931, 51.62384674700007), (-4.252023891999954, 51.62710195500006), (-4.241281704999949, 51.63934967700004), (-4.234730597999942, 51.644964911000045), (-4.228505011999914, 51.63743724200003), (-4.234730597999942, 51.63743724200003), (-4.234730597999942, 51.631293036000045), (-4.2278539699999556, 51.628119208000044), (-4.22101803299995, 51.62384674700007), (-4.1900935539999296, 51.63027578300006), (-4.139027472999942, 51.63231028900009), (-4.0912979809999115, 51.639878648000035), (-4.070220506999931, 51.66229889500005), (-4.0698136059999115, 51.66893138200004), (-4.070383266999954, 51.67430247600004), (-4.07054602799991, 51.67597077000005), (-4.0754288399999155, 51.677801825000074), (-4.087269660999937, 51.668850002000056), (-4.095448370999918, 51.66510651200008), (-4.106841600999928, 51.66425202000005), (-4.146351691999939, 51.66705963700008), (-4.200550910999937, 51.68585846600007), (-4.214955206999946, 51.679673570000034), (-4.293690558999913, 51.67226797100005), (-4.3152970039999445, 51.67747630400004), (-4.342355923999946, 51.69086334800005), (-4.3664444649999155, 51.70848216400009), (-4.379261847999942, 51.72687409100007), (-4.338042772999927, 51.72333405200004), (-4.319976365999935, 51.72483958500004), (-4.310454881999931, 51.733710028000075), (-4.328724738999938, 51.73297760600008), (-4.3471573559999115, 51.73578522300005), (-4.3625382149999155, 51.74286530200004), (-4.371815558999913, 51.754787502000056), (-4.368763800999943, 51.75698476800005), (-4.362904425999943, 51.76386139500005), (-4.358021613999938, 51.773138739000046), (-4.358225063999953, 51.782131252000056), (-4.365101691999939, 51.789048570000034), (-4.3714900379999335, 51.78595612200007), (-4.379261847999942, 51.77529531500005), (-4.384917772999927, 51.77187734600005), (-4.3929744129999335, 51.763739325000074), (-4.399159308999913, 51.76162344000005), (-4.409331834999932, 51.76316966400009), (-4.417876756999931, 51.76788971600007), (-4.426503058999913, 51.77529531500005), (-4.445790167999917, 51.77326080900008), (-4.449330206999946, 51.76630280200004), (-4.441395636999914, 51.75678131700005), (-4.426503058999913, 51.747300523000035), (-4.460764126999948, 51.73578522300005), (-4.4988907539999445, 51.73484935100004), (-4.574208136999914, 51.74115631700005), (-4.603423631999931, 51.73924388200004), (-4.639230923999946, 51.73318105700008), (-4.6453751289999445, 51.732123114000046), (-4.678212042999917, 51.71743398600006), (-4.680287238999938, 51.692694403000075), (-4.689442511999914, 51.69159577000005), (-4.69163977799991, 51.689886786000045), (-4.69163977799991, 51.685980536000045), (-4.693959113999938, 51.67841217700004), (-4.712310350999928, 51.650091864000046), (-4.721424933999913, 51.652044989000046), (-4.734934048999946, 51.65924713700008), (-4.741851365999935, 51.65607330900008), (-4.759185350999928, 51.644964911000045), (-4.8482966789999296, 51.64630768400008), (-4.86351477799991, 51.64411041900007), (-4.878977016999954, 51.63743724200003), (-4.887806769999941, 51.62995026200008), (-4.8957413399999155, 51.621079820000034), (-4.904774542999917, 51.61383698100008), (-4.923695441999939, 51.608628648000035), (-4.931996222999942, 51.59902578300006), (-4.941029425999943, 51.59650299700007), (-4.946034308999913, 51.59760163000004), (-4.956450975999928, 51.602769273000035), (-5.021595831999946, 51.61603424700007), (-5.0457657539999445, 51.62689850500004), (-5.0366104809999115, 51.63743724200003), (-5.0511775379999335, 51.65692780200004), (-5.100493943999936, 51.66469961100006), (-5.119740363999938, 51.67841217700004), (-5.113433397999927, 51.68528880400004), (-5.0366104809999115, 51.67841217700004), (-5.038726365999935, 51.68183014500005), (-5.04133053299995, 51.68939850500004), (-5.043446417999917, 51.692694403000075), (-5.028675910999937, 51.69293854400007), (-5.002552863999938, 51.68740469000005), (-4.988189256999931, 51.68585846600007), (-4.974598761999914, 51.687933661000045), (-4.941029425999943, 51.70014069200005), (-4.892648891999954, 51.706366278000075), (-4.868275519999941, 51.716782945000034), (-4.8580623039999296, 51.71832916900007), (-4.844838019999941, 51.71381256700005), (-4.844838019999941, 51.720038153000075), (-4.873402472999942, 51.73773834800005), (-4.879017706999946, 51.76203034100007), (-4.8625382149999155, 51.78237539300005), (-4.824330206999946, 51.788275458000044), (-4.824330206999946, 51.79572174700007), (-4.836008266999954, 51.790716864000046), (-4.864979620999918, 51.783270575000074), (-4.921294725999928, 51.78001536700003), (-4.933583136999914, 51.77529531500005), (-4.9172257149999155, 51.77533600500004), (-4.905181443999936, 51.771185614000046), (-4.900542772999927, 51.76211172100005), (-4.906239386999914, 51.747300523000035), (-4.8920792309999115, 51.73940664300005), (-4.895659959999932, 51.728176174000055), (-4.9105525379999335, 51.71820709800005), (-4.988189256999931, 51.70685455900008), (-5.009917772999927, 51.706366278000075), (-5.149240688999953, 51.718085028000075), (-5.166900193999936, 51.71381256700005), (-5.156971808999913, 51.69757721600007), (-5.1686091789999296, 51.68891022300005), (-5.1828507149999155, 51.68927643400008), (-5.180653449999909, 51.70014069200005), (-5.180653449999909, 51.706366278000075), (-5.230132615999935, 51.73004791900007), (-5.2495011059999115, 51.733710028000075), (-5.228138800999943, 51.73395416900007), (-5.213937954999949, 51.73574453300006), (-5.202870245999918, 51.74079010600008), (-5.191151495999918, 51.75104401200008), (-5.176828579999949, 51.75967031500005), (-5.1432185539999296, 51.76386139500005), (-5.125965949999909, 51.76850006700005), (-5.110259568999936, 51.778509833000044), (-5.107085740999935, 51.78807200700004), (-5.112294074999909, 51.81317780200004), (-5.113392706999946, 51.82880280200004), (-5.11750240799995, 51.84369538000004), (-5.125884568999936, 51.85602448100008), (-5.139637824999909, 51.86399974200003), (-5.146473761999914, 51.85716380400004), (-5.16437740799995, 51.86676666900007), (-5.2037654289999296, 51.87018463700008), (-5.221587693999936, 51.87767161700003), (-5.2358292309999115, 51.87103913000004), (-5.2914119129999335, 51.86399974200003), (-5.3109431629999335, 51.86399974200003), (-5.304269985999952, 51.867621161000045), (-5.297352667999917, 51.87018463700008), (-5.297352667999917, 51.87767161700003), (-5.300689256999931, 51.882025458000044), (-5.302561001999948, 51.88523997600004), (-5.300160285999937, 51.888332424000055), (-5.2905167309999115, 51.89199453300006), (-5.2905167309999115, 51.898138739000046), (-5.2983292309999115, 51.91095612200007), (-5.288929816999939, 51.91693756700005), (-5.252837693999936, 51.91864655200004), (-5.234201626999948, 51.923041083000044), (-5.204172329999949, 51.942287502000056), (-5.191151495999918, 51.946600653000075), (-5.16038977799991, 51.94944896000004), (-5.1195369129999335, 51.95892975500004), (-5.088042772999927, 51.97601959800005), (-5.085031704999949, 52.00185781500005), (-5.070790167999917, 52.00185781500005), (-5.070790167999917, 52.00804271000004), (-5.082753058999913, 52.01447174700007), (-5.081206834999932, 52.021185614000046), (-5.070220506999931, 52.02635325700004), (-5.053700324999909, 52.028509833000044), (-5.0266007149999155, 52.027411200000074), (-5.015044725999928, 52.02533600500004), (-4.961740688999953, 52.007513739000046), (-4.942534959999932, 52.007473049000055), (-4.913685675999943, 52.014837958000044), (-4.920521613999938, 52.028509833000044), (-4.9016007149999155, 52.02643463700008), (-4.863189256999931, 52.01699453300006), (-4.841420050999943, 52.014837958000044), (-4.83226477799991, 52.01898834800005), (-4.833851691999939, 52.02875397300005), (-4.8382869129999335, 52.04010651200008), (-4.838002081999946, 52.04901764500005), (-4.83039303299995, 52.05292389500005), (-4.796986456999946, 52.05646393400008), (-4.77757727799991, 52.064886786000045), (-4.7631729809999115, 52.075873114000046), (-4.7386775379999335, 52.100816148000035), (-4.720285610999952, 52.113348700000074), (-4.7065323559999115, 52.11347077000005), (-4.673451300999943, 52.09739817900004), (-4.675689256999931, 52.126939195000034), (-4.637521938999953, 52.13849518400008), (-4.513824022999927, 52.13568756700005), (-4.50226803299995, 52.138373114000046), (-4.495757615999935, 52.14350006700005), (-4.490956183999913, 52.150376695000034), (-4.484283006999931, 52.156317450000074), (-4.454701300999943, 52.16205475500004), (-4.4348038399999155, 52.170355536000045), (-4.415394660999937, 52.18154531500005), (-4.385568813999953, 52.20343659100007), (-4.371245897999927, 52.20929596600007), (-4.3547257149999155, 52.212103583000044), (-4.334339972999942, 52.21283600500004), (-4.315825975999928, 52.21629466400003), (-4.197132941999939, 52.279282945000034), (-4.1390681629999335, 52.33022695500006), (-4.10960852799991, 52.365301825000074), (-4.096262173999946, 52.387884833000044), (-4.0873917309999115, 52.430121161000045), (-4.0789688789999445, 52.45302969000005), (-4.067941860999952, 52.47361888200004), (-4.056548631999931, 52.48786041900007), (-4.0618383449999556, 52.49705638200004), (-4.064035610999952, 52.50918203300006), (-4.062570766999954, 52.52098216400003), (-4.056548631999931, 52.52944570500006), (-4.048491990999935, 52.530462958000044), (-4.0266007149999155, 52.52338288000004), (-4.016184048999946, 52.52195872600004), (-3.998768683999913, 52.52594635600008), (-3.9473363919999542, 52.549261786000045), (-3.9473363919999542, 52.556708075000074), (-3.9744766919999392, 52.55654531500005), (-4.025868292999917, 52.545355536000045), (-4.0531306629999335, 52.54242584800005), (-4.068470831999946, 52.550116278000075), (-4.1141251289999445, 52.58860911700003), (-4.125477667999917, 52.60390859600005), (-4.122222459999932, 52.62872955900008), (-4.105946417999917, 52.653509833000044), (-4.0848282539999445, 52.67267487200007), (-4.067128058999913, 52.68024323100008), (-4.063547329999949, 52.68309153900003), (-4.05882727799991, 52.696600653000075), (-4.056548631999931, 52.70066966400003), (-4.052723761999914, 52.70221588700008), (-4.041981574999909, 52.70465729400007), (-4.001088019999941, 52.72410716400003), (-3.988270636999914, 52.73427969000005), (-4.014719204999949, 52.73232656500005), (-4.031971808999913, 52.723944403000075), (-4.048817511999914, 52.721584377000056), (-4.125152147999927, 52.77830638200004), (-4.144357876999948, 52.802801825000074), (-4.149037238999938, 52.81207916900007), (-4.146229620999918, 52.82021719000005), (-4.128895636999914, 52.82363515800006), (-4.117339647999927, 52.83075592700004), (-4.1197810539999296, 52.84625885600008), (-4.127756313999953, 52.86172109600005), (-4.132191535999937, 52.86831289300005), (-4.131988084999932, 52.882473049000055), (-4.129872199999909, 52.88922760600008), (-4.123605923999946, 52.89325592700004), (-4.064035610999952, 52.919175523000035), (-4.071400519999941, 52.921087958000044), (-4.074574347999942, 52.92279694200005), (-4.0776261059999115, 52.926662502000056), (-4.0891007149999155, 52.918850002000056), (-4.100493943999936, 52.914129950000074), (-4.1105850899999155, 52.915676174000055), (-4.118560350999928, 52.926662502000056), (-4.144398566999939, 52.91478099200003), (-4.171620245999918, 52.91347890800006), (-4.228505011999914, 52.919175523000035), (-4.300689256999931, 52.905585028000075), (-4.317290818999936, 52.89935944200005), (-4.337310350999928, 52.89203522300005), (-4.406605597999942, 52.89252350500004), (-4.4272354809999115, 52.885972398000035), (-4.446197068999936, 52.87592194200005), (-4.4816788399999155, 52.850897528000075), (-4.477935350999928, 52.84833405200004), (-4.475493943999936, 52.84414297100005), (-4.491363084999932, 52.83820221600007), (-4.500965949999909, 52.82680898600006), (-4.501332160999937, 52.81391022300005), (-4.4891251289999445, 52.803168036000045), (-4.501942511999914, 52.794989325000074), (-4.509185350999928, 52.791449286000045), (-4.5164688789999445, 52.789496161000045), (-4.5285538399999155, 52.79047272300005), (-4.5424698559999115, 52.80068594000005), (-4.5639542309999115, 52.80524323100008), (-4.583078579999949, 52.81464264500005), (-4.594634568999936, 52.81679922100005), (-4.606516079999949, 52.81509023600006), (-4.61351477799991, 52.81110260600008), (-4.619211391999954, 52.80654531500005), (-4.626332160999937, 52.803168036000045), (-4.648589647999927, 52.79962799700007), (-4.704497850999928, 52.803168036000045), (-4.719309048999946, 52.79751211100006), (-4.733225063999953, 52.78750234600005), (-4.747425910999937, 52.78343333500004), (-4.762847459999932, 52.789496161000045), (-4.752512173999946, 52.79877350500004), (-4.7514542309999115, 52.80320872600004), (-4.755441860999952, 52.80931224200003), (-4.7492569649999155, 52.81427643400008), (-4.734934048999946, 52.83047109600005), (-4.596058722999942, 52.92841217700004), (-4.580962693999936, 52.93349844000005), (-4.562082485999952, 52.93451569200005), (-4.543527798999946, 52.937933661000045), (-4.523996548999946, 52.944240627000056), (-4.443430141999954, 52.98216380400004), (-4.423695441999939, 53.00263092700004), (-4.358225063999953, 53.02846914300005), (-4.349964972999942, 53.04148997600004), (-4.345692511999914, 53.059475002000056), (-4.343861456999946, 53.10106028900003), (-4.340891079999949, 53.11273834800005), (-4.334339972999942, 53.11676666900007), (-4.3276261059999115, 53.11469147300005), (-4.324696417999917, 53.10789622600004), (-4.320668097999942, 53.10150788000004), (-4.312245245999918, 53.109442450000074), (-4.304758266999954, 53.12099844000005), (-4.303618943999936, 53.12531159100007), (-4.263539191999939, 53.15452708500004), (-4.2523494129999335, 53.159409898000035), (-4.234527147999927, 53.16400788000004), (-4.221302863999938, 53.175034898000035), (-4.200550910999937, 53.20099518400008), (-4.17796790299991, 53.21759674700007), (-4.151519334999932, 53.22809479400007), (-4.122222459999932, 53.23346588700008), (-4.0906876289999445, 53.23517487200007), (-4.08234615799995, 53.23354726800005), (-4.074330206999946, 53.23065827000005), (-4.066883917999917, 53.22907135600008), (-4.054107225999928, 53.234361070000034), (-4.032297329999949, 53.24070872600004), (-4.008900519999941, 53.24445221600007), (-3.974598761999914, 53.261786200000074), (-3.8653051419999542, 53.289129950000074), (-3.8312882149999155, 53.289129950000074), (-3.841420050999943, 53.30744049700007), (-3.870757615999935, 53.32562897300005), (-3.8784073559999115, 53.337591864000046), (-3.859974738999938, 53.33633047100005), (-3.840565558999913, 53.33283112200007), (-3.822987433999913, 53.32656484600005), (-3.8101293609999516, 53.31708405200004), (-3.7905167309999115, 53.323431708000044), (-3.7688695949999556, 53.31915924700007), (-3.748199022999927, 53.307806708000044), (-3.7319229809999115, 53.29287344000005), (-3.7162979809999115, 53.28693268400008), (-3.6022029289999296, 53.28888580900008), (-3.5623266269999476, 53.29441966400003), (-3.372059699999909, 53.350897528000075), (-3.33031165299991, 53.35179271000004), (-3.2923884759999282, 53.34052155200004), (-3.2713110019999476, 53.33055247600004), (-3.262074347999942, 53.32050202000005), (-3.250803188999953, 53.312567450000074), (-3.122222459999932, 53.26227448100008), (-3.107533331999946, 53.25189850500004), (-3.0951228509999282, 53.23932526200008), (-3.0877579419999392, 53.23468659100007), (-3.0845434239999463, 53.23859284100007), (-3.0845434239999463, 53.25857168200008), (-3.0845434239999463, 53.275458075000074), (-3.09593665299991, 53.28713613500008), (-3.1111954419999392, 53.302801825000074), (-3.1354060539999296, 53.33380768400008), (-3.171538865999935, 53.36225006700005), (-3.185210740999935, 53.37726471600007), (-3.186350063999953, 53.39276764500005), (-3.175526495999918, 53.40273672100005), (-3.157297329999949, 53.40875885600008), (-3.1146541009999282, 53.41266510600008), (-3.0942276679999168, 53.41738515800006), (-3.058257615999935, 53.434759833000044), (-3.0355525379999335, 53.43374258000006), (-3.0121964179999168, 53.41669342700004), (-2.9529516269999476, 53.323919989000046), (-2.9351293609999516, 53.309475002000056), (-2.9105525379999335, 53.29633209800005), (-2.8814998039999296, 53.288397528000075), (-2.850575324999909, 53.289129950000074), (-2.849598761999914, 53.29120514500005), (-2.848378058999913, 53.29555898600006), (-2.8449600899999155, 53.300116278000075), (-2.837554490999935, 53.302801825000074), (-2.8286026679999168, 53.302435614000046), (-2.813384568999936, 53.297756252000056), (-2.8061417309999115, 53.296576239000046), (-2.789784308999913, 53.29743073100008), (-2.775502081999946, 53.29987213700008), (-2.7481176419999542, 53.30963776200008), (-2.753651495999918, 53.32245514500005), (-2.750884568999936, 53.33161041900007), (-2.743153449999909, 53.33852773600006), (-2.734486456999946, 53.34442780200004), (-2.7261449859999516, 53.34198639500005), (-2.7174373039999296, 53.34271881700005), (-2.708607550999943, 53.346136786000045), (-2.6997777989999463, 53.35179271000004), (-2.7141007149999155, 53.35236237200007), (-2.764393683999913, 53.34516022300005), (-2.775380011999914, 53.341009833000044), (-2.782378709999932, 53.32636139500005), (-2.799794074999909, 53.32103099200003), (-2.810332811999956, 53.32172272300005), (-2.843658006999931, 53.323919989000046), (-2.886463995999918, 53.33356354400007), (-2.924956834999932, 53.35000234600005), (-2.956939256999931, 53.37055084800005), (-2.980824347999942, 53.39276764500005), (-3.096587693999936, 53.54433828300006), (-3.101918097999942, 53.55805084800005), (-3.0994766919999392, 53.57200755400004), (-3.087635870999918, 53.58771393400008), (-3.021839972999942, 53.65281810100004), (-2.968658006999931, 53.69403717700004), (-2.9603572259999282, 53.69757721600007), (-2.9517309239999463, 53.70807526200008), (-2.9114477199999556, 53.725043036000045), (-2.899037238999938, 53.73541901200008), (-2.9848526679999168, 53.73607005400004), (-3.021473761999914, 53.745794989000046), (-3.049183722999942, 53.769517320000034), (-3.056385870999918, 53.80304596600007), (-3.044911261999914, 53.87848541900007), (-3.056630011999914, 53.90615469000005), (-3.040679490999935, 53.923529364000046), (-3.017567511999914, 53.93195221600007), (-2.925689256999931, 53.95270416900007), (-2.909250454999949, 53.95384349200003), (-2.896107550999943, 53.94773997600004), (-2.8885391919999392, 53.94603099200003), (-2.885365363999938, 53.950506903000075), (-2.881988084999932, 53.95652903900003), (-2.874175584999932, 53.96165599200003), (-2.865142381999931, 53.96548086100006), (-2.8579809239999463, 53.96759674700007), (-2.869252081999946, 53.97882721600007), (-2.8344620429999168, 53.99982330900008), (-2.830067511999914, 54.01601797100005), (-2.8475235669999392, 54.00836823100008), (-2.864857550999943, 54.00429922100005), (-2.895497199999909, 54.00234609600005), (-2.900298631999931, 54.00495026200008), (-2.9160863919999542, 54.026556708000044), (-2.91820227799991, 54.03432851800005), (-2.911284959999932, 54.03998444200005), (-2.9007869129999335, 54.044907945000034), (-2.8920792309999115, 54.050116278000075), (-2.872670050999943, 54.071600653000075), (-2.8588761059999115, 54.08100006700005), (-2.826771613999938, 54.08881256700005), (-2.815174933999913, 54.09878164300005), (-2.795969204999949, 54.12518952000005), (-2.8128149079999503, 54.139878648000035), (-2.8364151679999168, 54.16758860900006), (-2.8509415359999366, 54.18463776200008), (-2.854237433999913, 54.19407786700003), (-2.8328751289999445, 54.19904205900008), (-2.810292120999918, 54.21190013200004), (-2.7952367829999503, 54.22947825700004), (-2.795969204999949, 54.24872467700004), (-2.8028051419999542, 54.24872467700004), (-2.806630011999914, 54.233710028000075), (-2.8208715489999463, 54.22174713700008), (-2.850575324999909, 54.20774974200003), (-2.886382615999935, 54.19627513200004), (-2.904652472999942, 54.18764883000006), (-2.9126684239999463, 54.176988023000035), (-2.9203995429999168, 54.16205475500004), (-2.939198370999918, 54.15509674700007), (-2.9842016269999476, 54.15314362200007), (-2.997710740999935, 54.15957265800006), (-3.011341925999943, 54.17413971600007), (-3.017323370999918, 54.19009023600006), (-3.008168097999942, 54.20034414300005), (-3.015370245999918, 54.21190013200004), (-3.024484829999949, 54.221584377000056), (-3.035755988999938, 54.22597890800006), (-3.049183722999942, 54.22207265800006), (-3.044667120999918, 54.208319403000075), (-3.047840949999909, 54.19432200700004), (-3.053537563999953, 54.181301174000055), (-3.056630011999914, 54.17023346600007), (-3.0610245429999168, 54.16193268400008), (-3.090728318999936, 54.13947174700007), (-3.10765540299991, 54.11855703300006), (-3.117909308999913, 54.10883209800005), (-3.145253058999913, 54.100043036000045), (-3.147450324999909, 54.08869049700007), (-3.1443985669999392, 54.07514069200005), (-3.1453751289999445, 54.063788153000075), (-3.1805313789999445, 54.09284088700008), (-3.1897680329999503, 54.09788646000004), (-3.2057185539999296, 54.098537502000056), (-3.219553188999953, 54.100775458000044), (-3.2311091789999296, 54.105129299000055), (-3.240956183999913, 54.11212799700007), (-3.2381078769999476, 54.12759023600006), (-3.232533331999946, 54.14468008000006), (-3.233143683999913, 54.15916575700004), (-3.248402472999942, 54.16681549700007), (-3.248402472999942, 54.17365143400008), (-3.215199347999942, 54.17983633000006), (-3.206776495999918, 54.20892975500004), (-3.2090551419999542, 54.24274323100008), (-3.207386847999942, 54.263006903000075), (-3.2231339179999168, 54.25763580900008), (-3.231353318999936, 54.24721914300005), (-3.240956183999913, 54.22207265800006), (-3.232167120999918, 54.20254140800006), (-3.247141079999949, 54.19794342700004), (-3.270130988999938, 54.19912344000005), (-3.2860001289999445, 54.19721100500004), (-3.306792772999927, 54.19188060100004), (-3.3285212879999335, 54.204738674000055), (-3.3644913399999155, 54.24249909100007), (-3.394195115999935, 54.26439036700003), (-3.407378709999932, 54.27773672100005), (-3.412912563999953, 54.29376862200007), (-3.41038977799991, 54.30145905200004), (-3.405995245999918, 54.30963776200008), (-3.4041235019999476, 54.31854889500005), (-3.4114477199999556, 54.33274974200003), (-3.4134415359999366, 54.342962958000044), (-3.4163305329999503, 54.344916083000044), (-3.440174933999913, 54.35175202000005), (-3.474273240999935, 54.39350006700005), (-3.497710740999935, 54.40582916900007), (-3.5918676419999542, 54.48309967700004), (-3.608143683999913, 54.488267320000034), (-3.613189256999931, 54.49164459800005), (-3.6236873039999296, 54.50608958500004), (-3.6341853509999282, 54.512884833000044), (-3.6268204419999392, 54.520412502000056), (-3.616200324999909, 54.52757396000004), (-3.61156165299991, 54.52993398600006), (-3.5903214179999168, 54.56464264500005), (-3.5638321609999366, 54.64276764500005), (-3.5301407539999445, 54.68805573100008), (-3.5160212879999335, 54.712876695000034), (-3.5091853509999282, 54.72166575700004), (-3.500721808999913, 54.72597890800006), (-3.478871222999942, 54.730902411000045), (-3.4681290359999366, 54.73529694200005), (-3.455433722999942, 54.745021877000056), (-3.439564581999946, 54.76146067900004), (-3.4309789699999556, 54.780462958000044), (-3.440174933999913, 54.79743073100008), (-3.4075414699999556, 54.85602448100008), (-3.3879288399999155, 54.88336823100008), (-3.3644913399999155, 54.89980703300006), (-3.3449600899999155, 54.90253327000005), (-3.3333634109999366, 54.89728424700007), (-3.3227432929999168, 54.889878648000035), (-3.3064672519999476, 54.88617584800005), (-3.295725063999953, 54.88690827000005), (-3.254628058999913, 54.89980703300006), (-3.267323370999918, 54.905503648000035), (-3.317290818999936, 54.92031484600005), (-3.2914932929999168, 54.93667226800005), (-3.276519334999932, 54.943426825000074), (-3.213612433999913, 54.954413153000075), (-3.2010391919999392, 54.95221588700008), (-3.1936742829999503, 54.94863515800006), (-3.1879776679999168, 54.94448476800005), (-3.1801651679999168, 54.94082265800006), (-3.14281165299991, 54.93353913000004), (-3.122792120999918, 54.93268463700008), (-3.0395401679999168, 54.94717031500005), (-3.021839972999942, 54.954413153000075), (-3.090728318999936, 54.954413153000075), (-3.090728318999936, 54.96124909100007), (-3.0715225899999155, 54.96312083500004), (-3.0562231109999516, 54.968817450000074), (-3.040923631999931, 54.97247955900008), (-3.021839972999942, 54.968085028000075), (-3.021839972999942, 54.97553131700005), (-3.0462947259999282, 54.982123114000046), (-3.0502913779999403, 54.981510325000045), (-3.1354060539999296, 54.968085028000075), (-3.453846808999913, 54.981756903000075), (-3.470692511999914, 54.984442450000074), (-3.486236131999931, 54.989488023000035), (-3.501047329999949, 54.99249909100007), (-3.515288865999935, 54.98920319200005), (-3.5123591789999296, 54.98712799700007), (-3.511463995999918, 54.98688385600008), (-3.510894334999932, 54.985988674000055), (-3.5091853509999282, 54.981756903000075), (-3.5260310539999296, 54.97711823100008), (-3.5418595039999445, 54.98065827000005), (-3.57054602799991, 54.995428778000075), (-3.583607550999943, 54.968085028000075), (-3.5756729809999115, 54.95734284100007), (-3.5706274079999503, 54.937567450000074), (-3.5687556629999335, 54.916001695000034), (-3.57054602799991, 54.89980703300006), (-3.581695115999935, 54.88361237200007), (-3.598378058999913, 54.87799713700008), (-3.691761847999942, 54.88320547100005), (-3.7176407539999445, 54.880845445000034), (-3.739247199999909, 54.859808661000045), (-3.8101293609999516, 54.86627838700008), (-3.8078507149999155, 54.86107005400004), (-3.806792772999927, 54.86090729400007), (-3.803334113999938, 54.85887278900003), (-3.8123673169999392, 54.855169989000046), (-3.8198136059999115, 54.855902411000045), (-3.826079881999931, 54.85993073100008), (-3.8312882149999155, 54.86627838700008), (-3.819976365999935, 54.878566799000055), (-3.815052863999938, 54.87714264500005), (-3.8101293609999516, 54.87250397300005), (-3.8116348949999406, 54.88003164300005), (-3.813221808999913, 54.88312409100007), (-3.8169652989999463, 54.88617584800005), (-3.828846808999913, 54.874986070000034), (-3.8443090489999463, 54.86627838700008), (-3.839751756999931, 54.855902411000045), (-3.8374731109999516, 54.851996161000045), (-3.844105597999942, 54.85097890800006), (-3.8578995429999168, 54.84454987200007), (-3.823841925999943, 54.82469310100004), (-3.833607550999943, 54.82005442900004), (-3.885731574999909, 54.80646393400008), (-3.9641820949999556, 54.771918036000045), (-4.011708136999914, 54.76821523600006), (-4.042876756999931, 54.76947663000004), (-4.042876756999931, 54.77692291900007), (-4.046783006999931, 54.77802155200004), (-4.050200975999928, 54.778550523000035), (-4.053334113999938, 54.77997467700004), (-4.055775519999941, 54.782538153000075), (-4.05296790299991, 54.78546784100007), (-4.050160285999937, 54.78900788000004), (-4.049712693999936, 54.78998444200005), (-4.051747199999909, 54.800034898000035), (-4.0477188789999445, 54.81305573100008), (-4.049956834999932, 54.82322825700004), (-4.063588019999941, 54.82684967700004), (-4.064035610999952, 54.83152903900003), (-4.078602667999917, 54.82412344000005), (-4.09007727799991, 54.809759833000044), (-4.093495245999918, 54.792669989000046), (-4.083851691999939, 54.77692291900007), (-4.122954881999931, 54.77301666900007), (-4.173939581999946, 54.792303778000075), (-4.209136522999927, 54.826239325000074), (-4.200550910999937, 54.86627838700008), (-4.215402798999946, 54.861029364000046), (-4.2397354809999115, 54.843003648000035), (-4.255767381999931, 54.838324286000045), (-4.2707413399999155, 54.83942291900007), (-4.345285610999952, 54.86017487200007), (-4.3569229809999115, 54.86554596600007), (-4.3656306629999335, 54.87250397300005), (-4.375152147999927, 54.88690827000005), (-4.379872199999909, 54.89789459800005), (-4.386789516999954, 54.90477122600004), (-4.402902798999946, 54.90729401200008), (-4.409006313999953, 54.90302155200004), (-4.416818813999953, 54.89280833500004), (-4.423573370999918, 54.88035716400003), (-4.426503058999913, 54.86945221600007), (-4.4172257149999155, 54.84593333500004), (-4.4094132149999155, 54.831244208000044), (-4.402902798999946, 54.82469310100004), (-4.386708136999914, 54.82416413000004), (-4.372425910999937, 54.82184479400007), (-4.35960852799991, 54.81663646000004), (-4.347645636999914, 54.80731842700004), (-4.344471808999913, 54.79450104400007), (-4.353179490999935, 54.78310781500005), (-4.358143683999913, 54.77098216400003), (-4.343861456999946, 54.75641510600008), (-4.356516079999949, 54.741888739000046), (-4.353260870999918, 54.72089264500005), (-4.348133917999917, 54.70197174700007), (-4.3547257149999155, 54.693793036000045), (-4.360340949999909, 54.69159577000005), (-4.365305141999954, 54.68695709800005), (-4.371896938999953, 54.68227773600006), (-4.382394985999952, 54.68008047100005), (-4.405262824999909, 54.682074286000045), (-4.426503058999913, 54.687567450000074), (-4.4518123039999296, 54.69879791900007), (-4.46117102799991, 54.701239325000074), (-4.4967341789999296, 54.70062897300005), (-4.505604620999918, 54.70465729400007), (-4.563628709999932, 54.75641510600008), (-4.596669074999909, 54.77529531500005), (-4.714466925999943, 54.81785716400003), (-4.759592251999948, 54.82534414300005), (-4.781076626999948, 54.83307526200008), (-4.799631313999953, 54.86127350500004), (-4.821034308999913, 54.86664459800005), (-4.859120245999918, 54.86627838700008), (-4.88304602799991, 54.86009349200003), (-4.905873175999943, 54.84979889500005), (-4.925770636999914, 54.83738841400003), (-4.941029425999943, 54.82469310100004), (-4.9496150379999335, 54.81582265800006), (-4.953684048999946, 54.81000397300005), (-4.954823370999918, 54.804754950000074), (-4.954701300999943, 54.79743073100008), (-4.952870245999918, 54.78896719000005), (-4.9479060539999296, 54.777329820000034), (-4.940256313999953, 54.76703522300005), (-4.930165167999917, 54.76264069200005), (-4.923247850999928, 54.75185781500005), (-4.911936001999948, 54.728216864000046), (-4.8959854809999115, 54.70453522300005), (-4.867258266999954, 54.69013092700004), (-4.866932745999918, 54.68146393400008), (-4.872141079999949, 54.663316148000035), (-4.872425910999937, 54.65403880400004), (-4.872059699999909, 54.64923737200007), (-4.859120245999918, 54.63296133000006), (-4.880604620999918, 54.63621653900003), (-4.923491990999935, 54.649725653000075), (-4.944081183999913, 54.652777411000045), (-4.953684048999946, 54.65973541900007), (-4.959868943999936, 54.67552317900004), (-4.958973761999914, 54.69196198100008), (-4.947255011999914, 54.701239325000074), (-4.954823370999918, 54.707464911000045), (-4.958892381999931, 54.714056708000044), (-4.959055141999954, 54.72093333500004), (-4.954701300999943, 54.728501695000034), (-4.973378058999913, 54.729722398000035), (-4.981556769999941, 54.731634833000044), (-4.988189256999931, 54.73529694200005), (-4.992665167999917, 54.74433014500005), (-4.997059699999909, 54.75836823100008), (-5.003285285999937, 54.77130768400008), (-5.0130102199999556, 54.77692291900007), (-5.033192511999914, 54.782416083000044), (-5.1282445949999556, 54.848944403000075), (-5.157134568999936, 54.87909577000005), (-5.175526495999918, 54.91461823100008), (-5.180653449999909, 54.954413153000075), (-5.177601691999939, 54.99054596600007), (-5.170806443999936, 55.008693752000056), (-5.156727667999917, 55.01654694200005), (-5.1356095039999445, 55.01585521000004), (-5.124582485999952, 55.016791083000044), (-5.119740363999938, 55.01992422100005), (-5.115142381999931, 55.03156159100007), (-5.105213995999918, 55.02619049700007), (-5.095529751999948, 55.01508209800005), (-5.091867641999954, 55.00971100500004), (-5.076893683999913, 54.99555084800005), (-5.069488084999932, 54.986029364000046), (-5.064564581999946, 54.97553131700005), (-5.0637914699999556, 54.96458567900004), (-5.065256313999953, 54.940334377000056), (-5.06086178299995, 54.93113841400003), (-5.0475154289999296, 54.92031484600005), (-5.030995245999918, 54.911322333000044), (-5.013091600999928, 54.90961334800005), (-4.9955948559999115, 54.92031484600005), (-4.992298956999946, 54.924261786000045), (-4.988189256999931, 54.927720445000034), (-4.988189256999931, 54.93455638200004), (-5.0240779289999296, 54.97638580900008), (-5.029774542999917, 54.98550039300005), (-5.032500779999907, 54.99371979400007), (-5.033029751999948, 54.99526601800005), (-5.047027147999927, 55.01508209800005), (-5.0502823559999115, 55.02680084800005), (-5.0496720039999445, 55.04897695500006), (-5.047596808999913, 55.05573151200008), (-5.043446417999917, 55.06427643400008), (-5.0257869129999335, 55.08869049700007), (-5.018950975999928, 55.10224030200004), (-5.016184048999946, 55.12262604400007), (-5.007801886999914, 55.14118073100008), (-4.988270636999914, 55.15265534100007), (-4.947255011999914, 55.16791413000004), (-4.882394985999952, 55.21857330900008), (-4.877552863999938, 55.22089264500005), (-4.867258266999954, 55.22247955900008), (-4.865305141999954, 55.22565338700008), (-4.865589972999942, 55.236314195000034), (-4.864816860999952, 55.24135976800005), (-4.841949022999927, 55.275091864000046), (-4.838002081999946, 55.28400299700007), (-4.8372289699999556, 55.293850002000056), (-4.839751756999931, 55.31557851800005), (-4.838002081999946, 55.32501862200007), (-4.832508917999917, 55.33112213700008), (-4.7992244129999335, 55.354722398000035), (-4.781076626999948, 55.36351146000004), (-4.773101365999935, 55.36937083500004), (-4.767160610999952, 55.37905508000006), (-4.758778449999909, 55.40228913000004), (-4.7492569649999155, 55.413763739000046), (-4.71703040299991, 55.43048737200007), (-4.650502081999946, 55.448472398000035), (-4.626332160999937, 55.468410549000055), (-4.617787238999938, 55.49559153900003), (-4.626779751999948, 55.51972077000005), (-4.6507869129999335, 55.53705475500004), (-4.687163865999935, 55.544134833000044), (-4.66624915299991, 55.562201239000046), (-4.666493292999917, 55.56329987200007), (-4.6711319649999155, 55.584418036000045), (-4.692738410999937, 55.60521067900004), (-4.7219945949999556, 55.619208075000074), (-4.776519334999932, 55.632879950000074), (-4.808745897999927, 55.63361237200007), (-4.818104620999918, 55.63719310100004), (-4.810617641999954, 55.646551825000074), (-4.810617641999954, 55.653998114000046), (-4.868560350999928, 55.67560455900008), (-4.900990363999938, 55.69232819200005), (-4.920521613999938, 55.70856354400007), (-4.876332160999937, 55.735256252000056), (-4.861073370999918, 55.756740627000056), (-4.865305141999954, 55.79047272300005), (-4.8717341789999296, 55.802435614000046), (-4.8777970039999445, 55.81102122600004), (-4.882720506999931, 55.82135651200008), (-4.888661261999914, 55.864528713000084), (-4.888824022999927, 55.865301825000074), (-4.892648891999954, 55.89288971600007), (-4.886463995999918, 55.91966380400004), (-4.872141079999949, 55.937201239000046), (-4.849354620999918, 55.94822825700004), (-4.818104620999918, 55.95563385600008), (-4.799387173999946, 55.957912502000056), (-4.7857966789999296, 55.95697663000004), (-4.722320115999935, 55.94009023600006), (-4.705433722999942, 55.93846263200004), (-4.693959113999938, 55.94135163000004), (-4.6725154289999296, 55.93378327000005), (-4.505970831999946, 55.91909414300005), (-4.4816788399999155, 55.92829010600008), (-4.590606248999961, 55.941514390000066), (-4.630034959999932, 55.94627513200004), (-4.673451300999943, 55.96185944200005), (-4.724517381999931, 55.99835846600007), (-4.765044725999928, 56.007066148000035), (-4.78343665299991, 56.017645575000074), (-4.7992244129999335, 56.030951239000046), (-4.810617641999954, 56.04376862200007), (-4.8237198559999115, 56.07367584800005), (-4.824330206999946, 56.07851797100005), (-4.8391820949999556, 56.08063385600008), (-4.844309048999946, 56.07298411700003), (-4.843739386999914, 56.06297435100004), (-4.837554490999935, 56.05060455900008), (-4.790150519999941, 56.010199286000045), (-4.778920050999943, 55.99209219000005), (-4.785308397999927, 55.984035549000055), (-4.803618943999936, 55.982082424000055), (-4.828033006999931, 55.98232656500005), (-4.851551886999914, 55.98802317900004), (-4.862294074999909, 56.00214264500005), (-4.865386522999927, 56.02020905200004), (-4.866851365999935, 56.05833567900004), (-4.865386522999927, 56.06671784100007), (-4.826324022999927, 56.124212958000044), (-4.755441860999952, 56.188381252000056), (-4.750884568999936, 56.20270416900007), (-4.755523240999935, 56.20652903900003), (-4.7662654289999296, 56.20209381700005), (-4.7799373039999296, 56.191473700000074), (-4.837269660999937, 56.12441640800006), (-4.851673956999946, 56.112616278000075), (-4.873117641999954, 56.11200592700004), (-4.880604620999918, 56.11985911700003), (-4.878977016999954, 56.15053945500006), (-4.883168097999942, 56.16400788000004), (-4.893544074999909, 56.174261786000045), (-4.9070938789999445, 56.177069403000075), (-4.920521613999938, 56.16791413000004), (-4.909087693999936, 56.14996979400007), (-4.895253058999913, 56.11473216400003), (-4.8862198559999115, 56.08038971600007), (-4.889149542999917, 56.06484609600005), (-4.901926235999952, 56.06191640800006), (-4.904367641999954, 56.054348049000055), (-4.900054490999935, 56.03412506700005), (-4.900054490999935, 56.01459381700005), (-4.898019985999952, 56.001166083000044), (-4.892648891999954, 55.98973216400003), (-4.906402147999927, 55.98574453300006), (-4.921457485999952, 55.98867422100005), (-4.937489386999914, 55.993841864000046), (-4.954701300999943, 55.99656810100004), (-4.954701300999943, 55.98973216400003), (-4.942005988999938, 55.986314195000034), (-4.928863084999932, 55.98114655200004), (-4.918446417999917, 55.97333405200004), (-4.913685675999943, 55.96185944200005), (-4.917388475999928, 55.94745514500005), (-4.9272354809999115, 55.93768952000005), (-4.9387100899999155, 55.92963288000004), (-4.947255011999914, 55.92084381700005), (-4.952137824999909, 55.90912506700005), (-4.954986131999931, 55.89935944200005), (-4.95921790299991, 55.89012278900003), (-4.96898352799991, 55.87986888200004), (-4.983143683999913, 55.87103913000004), (-4.994740363999938, 55.86981842700004), (-5.026356574999909, 55.87372467700004), (-5.0424698559999115, 55.884751695000034), (-5.056752081999946, 55.91030508000006), (-5.0668025379999335, 55.938788153000075), (-5.070790167999917, 55.958685614000046), (-5.1108292309999115, 55.98895905200004), (-5.116037563999953, 56.00169505400004), (-5.123605923999946, 56.00991445500006), (-5.139637824999909, 56.00275299700007), (-5.123768683999913, 55.986314195000034), (-5.085682745999918, 55.93187083500004), (-5.078236456999946, 55.91095612200007), (-5.086537238999938, 55.901271877000056), (-5.105620897999927, 55.90497467700004), (-5.171538865999935, 55.935532945000034), (-5.180653449999909, 55.948431708000044), (-5.180653449999909, 55.96930573100008), (-5.190825975999928, 55.96173737200007), (-5.1996150379999335, 55.948553778000075), (-5.2057185539999296, 55.93451569200005), (-5.207915818999936, 55.92462799700007), (-5.212635870999918, 55.91714101800005), (-5.242054816999939, 55.89288971600007), (-5.218129035999937, 55.86469147300005), (-5.208159959999932, 55.849269924000055), (-5.201079881999931, 55.83148834800005), (-5.2193904289999296, 55.83144765800006), (-5.2631729809999115, 55.845770575000074), (-5.296701626999948, 55.85268789300005), (-5.307118292999917, 55.86041901200008), (-5.313384568999936, 55.88544342700004), (-5.319325324999909, 55.889105536000045), (-5.327219204999949, 55.89154694200005), (-5.3348282539999445, 55.89667389500005), (-5.3382869129999335, 55.90375397300005), (-5.3391007149999155, 55.91303131700005), (-5.3382869129999335, 55.93138255400004), (-5.336089647999927, 55.93919505400004), (-5.326161261999914, 55.95026276200008), (-5.323963995999918, 55.958685614000046), (-5.325754360999952, 55.967230536000045), (-5.3382869129999335, 55.99656810100004), (-5.313628709999932, 56.01235586100006), (-5.204497850999928, 56.11945221600007), (-5.146473761999914, 56.13312409100007), (-5.104603644999941, 56.15151601800005), (-5.0949600899999155, 56.15737539300005), (-5.0594376289999445, 56.203111070000034), (-5.043446417999917, 56.21629466400003), (-5.013295050999943, 56.22760651200008), (-4.974964972999942, 56.23700592700004), (-4.9400935539999296, 56.25141022300005), (-4.920521613999938, 56.277777411000045), (-4.938099738999938, 56.27098216400003), (-4.975087042999917, 56.24799225500004), (-4.991932745999918, 56.24298737200007), (-5.0327042309999115, 56.24115631700005), (-5.049549933999913, 56.23704661700003), (-5.064564581999946, 56.22931549700007), (-5.0754288399999155, 56.21698639500005), (-5.099436001999948, 56.18195221600007), (-5.1088761059999115, 56.174709377000056), (-5.228138800999943, 56.12921784100007), (-5.3109431629999335, 56.05805084800005), (-5.319935675999943, 56.05491771000004), (-5.338042772999927, 56.05410390800006), (-5.345692511999914, 56.051214911000045), (-5.345285610999952, 56.046128648000035), (-5.350209113999938, 56.03192780200004), (-5.356353318999936, 56.01976146000004), (-5.359364386999914, 56.020738023000035), (-5.3686417309999115, 56.009426174000055), (-5.390288865999935, 56.00568268400008), (-5.415028449999909, 56.00690338700008), (-5.43382727799991, 56.010199286000045), (-5.434559699999909, 56.014960028000075), (-5.434722459999932, 56.02362702000005), (-5.437123175999943, 56.03001536700003), (-5.444406704999949, 56.02757396000004), (-5.4479060539999296, 56.02228424700007), (-5.448231574999909, 56.016058661000045), (-5.447621222999942, 56.009426174000055), (-5.454986131999931, 55.95563385600008), (-5.45140540299991, 55.95343659100007), (-5.436431443999936, 55.94896067900004), (-5.430775519999941, 55.94818756700005), (-5.420806443999936, 55.92829010600008), (-5.416737433999913, 55.91681549700007), (-5.416005011999914, 55.907416083000044), (-5.4125056629999335, 55.899603583000044), (-5.400380011999914, 55.89288971600007), (-5.400380011999914, 55.886704820000034), (-5.407215949999909, 55.886704820000034), (-5.407215949999909, 55.87986888200004), (-5.402943488999938, 55.87872955900008), (-5.39289303299995, 55.87372467700004), (-5.3976944649999155, 55.87156810100004), (-5.402495897999927, 55.868353583000044), (-5.407215949999909, 55.86627838700008), (-5.35179602799991, 55.83242422100005), (-5.326771613999938, 55.808579820000034), (-5.317779100999928, 55.78302643400008), (-5.324574347999942, 55.769232489000046), (-5.3385310539999296, 55.76264069200005), (-5.372425910999937, 55.75641510600008), (-5.3875626289999445, 55.75031159100007), (-5.433461066999939, 55.72101471600007), (-5.4445694649999155, 55.71161530200004), (-5.4539688789999445, 55.70058828300006), (-5.46117102799991, 55.68813711100006), (-5.463612433999913, 55.67983633000006), (-5.466175910999937, 55.662176825000074), (-5.468617316999939, 55.653998114000046), (-5.490101691999939, 55.644598700000074), (-5.488270636999914, 55.640326239000046), (-5.484283006999931, 55.63572825700004), (-5.482289191999939, 55.632879950000074), (-5.4838761059999115, 55.61005280200004), (-5.474761522999927, 55.603949286000045), (-5.462635870999918, 55.60203685100004), (-5.454986131999931, 55.59194570500006), (-5.461089647999927, 55.57880280200004), (-5.476918097999942, 55.57489655200004), (-5.488758917999917, 55.56907786700003), (-5.482289191999939, 55.55027903900003), (-5.503529425999943, 55.52651601800005), (-5.509632941999939, 55.516791083000044), (-5.5106095039999445, 55.51146067900004), (-5.509632941999939, 55.49258047100005), (-5.5109757149999155, 55.484442450000074), (-5.514271613999938, 55.48387278900003), (-5.5187882149999155, 55.48517487200007), (-5.523264126999948, 55.48265208500004), (-5.545521613999938, 55.44916413000004), (-5.561512824999909, 55.435532945000034), (-5.5846248039999296, 55.427435614000046), (-5.5846248039999296, 55.421210028000075), (-5.572132941999939, 55.422308661000045), (-5.562082485999952, 55.41986725500004), (-5.553089972999942, 55.41453685100004), (-5.543690558999913, 55.40692780200004), (-5.527455206999946, 55.38434479400007), (-5.5266820949999556, 55.38027578300006), (-5.5149633449999556, 55.37368398600006), (-5.525054490999935, 55.358628648000035), (-5.557972785999937, 55.33185455900008), (-5.574370897999927, 55.32200755400004), (-5.594105597999942, 55.31313711100006), (-5.616281704999949, 55.30658600500004), (-5.6399633449999556, 55.303900458000044), (-5.649525519999941, 55.30516185100004), (-5.669097459999932, 55.31085846600007), (-5.6808975899999155, 55.31134674700007), (-5.691395636999914, 55.308579820000034), (-5.714019334999932, 55.29913971600007), (-5.725575324999909, 55.29706452000005), (-5.7545466789999296, 55.29734935100004), (-5.772287563999953, 55.30125560100004), (-5.782866990999935, 55.31354401200008), (-5.794667120999918, 55.35639069200005), (-5.796701626999948, 55.37909577000005), (-5.7914119129999335, 55.39862702000005), (-5.763417120999918, 55.41205475500004), (-5.725412563999953, 55.437567450000074), (-5.715646938999953, 55.44790273600006), (-5.7152400379999335, 55.46889883000006), (-5.720122850999928, 55.491522528000075), (-5.7219132149999155, 55.51386139500005), (-5.707753058999913, 55.54336172100005), (-5.712066209999932, 55.55072663000004), (-5.718861456999946, 55.55731842700004), (-5.721831834999932, 55.56460195500006), (-5.718129035999937, 55.57575104400007), (-5.694488084999932, 55.605536200000074), (-5.6733292309999115, 55.640611070000034), (-5.6694229809999115, 55.66071198100008), (-5.6808975899999155, 55.67446523600006), (-5.626535610999952, 55.70062897300005), (-5.61945553299995, 55.71198151200008), (-5.613189256999931, 55.725775458000044), (-5.5982966789999296, 55.74298737200007), (-5.581206834999932, 55.75763580900008), (-5.5678604809999115, 55.76386139500005), (-5.539173956999946, 55.77094147300005), (-5.504628058999913, 55.78937409100007), (-5.4735001289999445, 55.815659898000035), (-5.454986131999931, 55.845770575000074), (-5.551747199999909, 55.783636786000045), (-5.587473110999952, 55.76715729400007), (-5.599436001999948, 55.76422760600008), (-5.6126195949999556, 55.76386139500005), (-5.60578365799995, 55.77684153900003), (-5.6332087879999335, 55.78278229400007), (-5.64671790299991, 55.78750234600005), (-5.66038977799991, 55.79734935100004), (-5.667958136999914, 55.81102122600004), (-5.669016079999949, 55.83783600500004), (-5.67406165299991, 55.845770575000074), (-5.631988084999932, 55.88178131700005), (-5.625599738999938, 55.889837958000044), (-5.61937415299991, 55.90314362200007), (-5.6043595039999445, 55.91364166900007), (-5.586293097999942, 55.92332591400003), (-5.571034308999913, 55.93451569200005), (-5.593495245999918, 55.92796458500004), (-5.6275935539999296, 55.90534088700008), (-5.6537979809999115, 55.89760976800005), (-5.671701626999948, 55.88690827000005), (-5.6808975899999155, 55.886704820000034), (-5.687977667999917, 55.89337799700007), (-5.694162563999953, 55.90497467700004), (-5.696400519999941, 55.91596100500004), (-5.586822068999936, 56.01203034100007), (-5.57843990799995, 56.02448151200008), (-5.5826716789999296, 56.028957424000055), (-5.576649542999917, 56.032538153000075), (-5.571034308999913, 56.037543036000045), (-5.583892381999931, 56.040716864000046), (-5.596424933999913, 56.036810614000046), (-5.609852667999917, 56.03001536700003), (-5.625599738999938, 56.02448151200008), (-5.6317032539999445, 56.005926825000074), (-5.674875454999949, 55.977728583000044), (-5.67406165299991, 55.95563385600008), (-5.690785285999937, 55.93764883000006), (-5.694488084999932, 55.93451569200005), (-5.704497850999928, 55.936753648000035), (-5.707508917999917, 55.942572333000044), (-5.705881313999953, 55.949652411000045), (-5.701975063999953, 55.95563385600008), (-5.696441209999932, 55.98216380400004), (-5.659901495999918, 56.02326080900008), (-5.5846248039999296, 56.08466217700004), (-5.5815323559999115, 56.08828359600005), (-5.580067511999914, 56.09292226800005), (-5.5774633449999556, 56.096991278000075), (-5.571034308999913, 56.09902578300006), (-5.564605272999927, 56.098089911000045), (-5.556548631999931, 56.09589264500005), (-5.550689256999931, 56.09349192900004), (-5.550526495999918, 56.09218984600005), (-5.547840949999909, 56.09003327000005), (-5.5394587879999335, 56.08685944200005), (-5.531605597999942, 56.08633047100005), (-5.530100063999953, 56.09218984600005), (-5.534738735999952, 56.098537502000056), (-5.5414119129999335, 56.10248444200005), (-5.5475154289999296, 56.10488515800006), (-5.550526495999918, 56.10643138200004), (-5.55695553299995, 56.12221914300005), (-5.558705206999946, 56.13080475500004), (-5.554676886999914, 56.13739655200004), (-5.522531704999949, 56.16575755400004), (-5.515736456999946, 56.174709377000056), (-5.509632941999939, 56.188381252000056), (-5.5399063789999445, 56.18341705900008), (-5.562489386999914, 56.16791413000004), (-5.5826716789999296, 56.15058014500005), (-5.60578365799995, 56.139960028000075), (-5.599354620999918, 56.160589911000045), (-5.586415167999917, 56.18113841400003), (-5.569406704999949, 56.20026276200008), (-5.550526495999918, 56.21629466400003), (-5.5594376289999445, 56.22955963700008), (-5.547230597999942, 56.24017975500004), (-5.52562415299991, 56.247259833000044), (-5.50617428299995, 56.24982330900008), (-5.494740363999938, 56.253119208000044), (-5.4928279289999296, 56.26040273600006), (-5.4992569649999155, 56.267645575000074), (-5.512684699999909, 56.27094147300005), (-5.554269985999952, 56.26349518400008), (-5.5631404289999296, 56.26032135600008), (-5.572621222999942, 56.25385163000004), (-5.58234615799995, 56.24876536700003), (-5.592152472999942, 56.24982330900008), (-5.5980525379999335, 56.25861237200007), (-5.595570441999939, 56.26992422100005), (-5.5846248039999296, 56.29075755400004), (-5.57258053299995, 56.32807038000004), (-5.56273352799991, 56.341050523000035), (-5.543690558999913, 56.352850653000075), (-5.525217251999948, 56.34662506700005), (-5.498199022999927, 56.34833405200004), (-5.4481095039999445, 56.35968659100007), (-5.4481095039999445, 56.36591217700004), (-5.4721573559999115, 56.364935614000046), (-5.515370245999918, 56.35683828300006), (-5.5375056629999335, 56.35968659100007), (-5.517323370999918, 56.39276764500005), (-5.509632941999939, 56.40062083500004), (-5.498931443999936, 56.404730536000045), (-5.486073370999918, 56.40810781500005), (-5.4780167309999115, 56.41290924700007), (-5.482289191999939, 56.421128648000035), (-5.457020636999914, 56.44086334800005), (-5.423573370999918, 56.45001862200007), (-5.322865363999938, 56.45498281500005), (-5.242054816999939, 56.44220612200007), (-5.208729620999918, 56.44684479400007), (-5.18187415299991, 56.45966217700004), (-5.118519660999937, 56.50775788000004), (-5.085682745999918, 56.54877350500004), (-5.064564581999946, 56.56513092700004), (-5.086537238999938, 56.55849844000005), (-5.099598761999914, 56.54364655200004), (-5.1105850899999155, 56.52586497600004), (-5.125965949999909, 56.51048411700003), (-5.166900193999936, 56.49005768400008), (-5.190174933999913, 56.46865469000005), (-5.201079881999931, 56.462103583000044), (-5.243763800999943, 56.45921458500004), (-5.350168423999946, 56.47296784100007), (-5.378081834999932, 56.458970445000034), (-5.394276495999918, 56.46548086100006), (-5.4105525379999335, 56.50364817900004), (-5.42414303299995, 56.500067450000074), (-5.4359431629999335, 56.49115631700005), (-5.454986131999931, 56.46954987200007), (-5.468617316999939, 56.47573476800005), (-5.433338995999918, 56.52362702000005), (-5.427642381999931, 56.53782786700003), (-5.4037979809999115, 56.524603583000044), (-5.379261847999942, 56.519191799000055), (-5.3566788399999155, 56.51968008000006), (-5.3382869129999335, 56.52415599200003), (-5.2905167309999115, 56.54466380400004), (-5.265044725999928, 56.551214911000045), (-5.252552863999938, 56.556341864000046), (-5.242054816999939, 56.56513092700004), (-5.27562415299991, 56.553615627000056), (-5.286773240999935, 56.552069403000075), (-5.306792772999927, 56.552801825000074), (-5.3109431629999335, 56.552069403000075), (-5.327707485999952, 56.54466380400004), (-5.338693813999953, 56.542303778000075), (-5.360340949999909, 56.53221263200004), (-5.372425910999937, 56.53034088700008), (-5.384348110999952, 56.53343333500004), (-5.400502081999946, 56.54364655200004), (-5.413929816999939, 56.54466380400004), (-5.410878058999913, 56.552069403000075), (-5.407297329999949, 56.55532461100006), (-5.402699347999942, 56.55744049700007), (-5.396636522999927, 56.561712958000044), (-5.392689581999946, 56.566473700000074), (-5.3893123039999296, 56.57489655200004), (-5.386626756999931, 56.57880280200004), (-5.360707160999937, 56.60626862200007), (-5.351918097999942, 56.612941799000055), (-5.31086178299995, 56.63361237200007), (-5.304514126999948, 56.64016347900008), (-5.298451300999943, 56.64642975500004), (-5.317779100999928, 56.65387604400007), (-5.317779100999928, 56.661322333000044), (-5.309071417999917, 56.66425202000005), (-5.286773240999935, 56.674994208000044), (-5.261463995999918, 56.67332591400003), (-5.248199022999927, 56.67405833500004), (-5.218902147999927, 56.688666083000044), (-5.196441209999932, 56.688666083000044), (-5.153309699999909, 56.68121979400007), (-5.132639126999948, 56.68451569200005), (-5.093373175999943, 56.69904205900008), (-5.012806769999941, 56.70929596600007), (-4.9955948559999115, 56.71596914300005), (-5.1605525379999335, 56.69586823100008), (-5.238270636999914, 56.71662018400008), (-5.23851477799991, 56.72256094000005), (-5.228423631999931, 56.73647695500006), (-5.222075975999928, 56.741522528000075), (-5.154652472999942, 56.78229401200008), (-5.136382615999935, 56.79877350500004), (-5.119740363999938, 56.818426825000074), (-5.179066535999937, 56.78925202000005), (-5.187489386999914, 56.78115469000005), (-5.191761847999942, 56.774644273000035), (-5.202259894999941, 56.76911041900007), (-5.214670376999948, 56.76520416900007), (-5.224964972999942, 56.763739325000074), (-5.233469204999949, 56.76068756700005), (-5.237049933999913, 56.75336334800005), (-5.2389216789999296, 56.74445221600007), (-5.242054816999939, 56.73647695500006), (-5.255238410999937, 56.721584377000056), (-5.268462693999936, 56.71308014500005), (-5.283355272999927, 56.70937734600005), (-5.30101477799991, 56.70856354400007), (-5.3098038399999155, 56.70648834800005), (-5.319162563999953, 56.69749583500004), (-5.34015865799995, 56.693060614000046), (-5.348378058999913, 56.687201239000046), (-5.359364386999914, 56.674994208000044), (-5.388050910999937, 56.65521881700005), (-5.403879360999952, 56.64923737200007), (-5.4242244129999335, 56.64704010600008), (-5.434396938999953, 56.64288971600007), (-5.4487198559999115, 56.62457916900007), (-5.458119269999941, 56.620347398000035), (-5.470773891999954, 56.618394273000035), (-5.482574022999927, 56.613267320000034), (-5.493316209999932, 56.60639069200005), (-5.53343665299991, 56.57290273600006), (-5.599598761999914, 56.52903880400004), (-5.667388475999928, 56.498480536000045), (-5.67406165299991, 56.49689362200007), (-5.683013475999928, 56.50063711100006), (-5.694691535999937, 56.51386139500005), (-5.70539303299995, 56.51666901200008), (-5.721791144999941, 56.51850006700005), (-5.740834113999938, 56.52326080900008), (-5.7582087879999335, 56.52997467700004), (-5.770253058999913, 56.53782786700003), (-5.7551977199999556, 56.554022528000075), (-5.751047329999949, 56.56199778900003), (-5.749134894999941, 56.571966864000046), (-5.756662563999953, 56.571966864000046), (-5.793853318999936, 56.54328034100007), (-5.8543595039999445, 56.550482489000046), (-6.0034073559999115, 56.61871979400007), (-6.009836391999954, 56.62653229400007), (-6.008168097999942, 56.642279364000046), (-5.998036261999914, 56.64988841400003), (-5.983509894999941, 56.65281810100004), (-5.933583136999914, 56.654730536000045), (-5.899037238999938, 56.650824286000045), (-5.866851365999935, 56.64154694200005), (-5.8391820949999556, 56.62653229400007), (-5.831695115999935, 56.633978583000044), (-5.855620897999927, 56.64472077000005), (-5.865589972999942, 56.65143463700008), (-5.865834113999938, 56.661322333000044), (-5.75999915299991, 56.70075104400007), (-5.735503709999932, 56.702337958000044), (-5.672596808999913, 56.68414948100008), (-5.647368943999936, 56.68121979400007), (-5.5941462879999335, 56.68333567900004), (-5.564808722999942, 56.68764883000006), (-5.543690558999913, 56.69546133000006), (-5.636545376999948, 56.688666083000044), (-5.658558722999942, 56.690741278000075), (-5.708851691999939, 56.70856354400007), (-5.749989386999914, 56.714544989000046), (-5.859038865999935, 56.68121979400007), (-5.89679928299995, 56.675116278000075), (-5.907378709999932, 56.674994208000044), (-5.9203181629999335, 56.67796458500004), (-5.942738410999937, 56.686753648000035), (-5.955555792999917, 56.688666083000044), (-6.0248917309999115, 56.68569570500006), (-6.098622199999909, 56.696966864000046), (-6.123850063999953, 56.69562409100007), (-6.143544074999909, 56.684881903000075), (-6.161732550999943, 56.67820872600004), (-6.186594204999949, 56.68109772300005), (-6.2096248039999296, 56.68846263200004), (-6.222767706999946, 56.69546133000006), (-6.228179490999935, 56.70107656500005), (-6.232533331999946, 56.70652903900003), (-6.235340949999909, 56.71238841400003), (-6.236398891999954, 56.71906159100007), (-6.234486456999946, 56.728583075000074), (-6.229562954999949, 56.72907135600008), (-6.222767706999946, 56.72719961100006), (-6.215321417999917, 56.72964101800005), (-6.193470831999946, 56.74852122600004), (-6.1805313789999445, 56.75462474200003), (-6.026966925999943, 56.763739325000074), (-6.0148819649999155, 56.76703522300005), (-5.979888475999928, 56.78156159100007), (-5.965199347999942, 56.784857489000046), (-5.948231574999909, 56.782538153000075), (-5.937977667999917, 56.77692291900007), (-5.928537563999953, 56.769964911000045), (-5.913644985999952, 56.763739325000074), (-5.860910610999952, 56.75079987200007), (-5.8522029289999296, 56.746975002000056), (-5.853342251999948, 56.757879950000074), (-5.858143683999913, 56.768459377000056), (-5.8683975899999155, 56.77586497600004), (-5.886341925999943, 56.777411200000074), (-5.886341925999943, 56.784857489000046), (-5.874012824999909, 56.78571198100008), (-5.861805792999917, 56.78510163000004), (-5.850087042999917, 56.782456773000035), (-5.8391820949999556, 56.777411200000074), (-5.8246150379999335, 56.78758372600004), (-5.8020727199999556, 56.79181549700007), (-5.7766007149999155, 56.787990627000056), (-5.756662563999953, 56.784857489000046), (-5.831695115999935, 56.80536530200004), (-5.8508194649999155, 56.818019924000055), (-5.851185675999943, 56.82892487200007), (-5.837473110999952, 56.83661530200004), (-5.7338761059999115, 56.84479401200008), (-5.692738410999937, 56.85492584800005), (-5.66038977799991, 56.87299225500004), (-5.673573370999918, 56.87653229400007), (-5.692005988999938, 56.87531159100007), (-5.7084854809999115, 56.87055084800005), (-5.724354620999918, 56.85382721600007), (-5.744496222999942, 56.85415273600006), (-5.783924933999913, 56.85993073100008), (-5.775380011999914, 56.86994049700007), (-5.735503709999932, 56.89411041900007), (-5.7805883449999556, 56.89874909100007), (-5.874867316999939, 56.887152411000045), (-5.9211319649999155, 56.89411041900007), (-5.8875626289999445, 56.89911530200004), (-5.8522029289999296, 56.90033600500004), (-5.8522029289999296, 56.90770091400003), (-5.859852667999917, 56.91054922100005), (-5.8801163399999155, 56.92202383000006), (-5.8625382149999155, 56.93374258000006), (-5.851429816999939, 56.95425039300005), (-5.842518683999913, 56.977443752000056), (-5.831695115999935, 56.99713776200008), (-5.814116990999935, 57.00950755400004), (-5.786040818999936, 57.02057526200008), (-5.755238410999937, 57.026556708000044), (-5.729318813999953, 57.02383047100005), (-5.719878709999932, 57.017564195000034), (-5.699940558999913, 56.998114325000074), (-5.688303188999953, 56.98969147300005), (-5.67406165299991, 56.983587958000044), (-5.658558722999942, 56.97947825700004), (-5.625599738999938, 56.976629950000074), (-5.571278449999909, 56.98383209800005), (-5.523264126999948, 56.99713776200008), (-5.523264126999948, 57.003973700000074), (-5.540435350999928, 57.001166083000044), (-5.556507941999939, 56.996079820000034), (-5.571278449999909, 56.99331289300005), (-5.5846248039999296, 56.99713776200008), (-5.607085740999935, 56.98851146000004), (-5.628814256999931, 56.991888739000046), (-5.6498917309999115, 56.999660549000055), (-5.6703181629999335, 57.003973700000074), (-5.685536261999914, 57.00958893400008), (-5.681711391999954, 57.02240631700005), (-5.680043097999942, 57.03620026200008), (-5.701975063999953, 57.044907945000034), (-5.710926886999914, 57.044175523000035), (-5.731353318999936, 57.03900788000004), (-5.742339647999927, 57.03807200700004), (-5.752552863999938, 57.04059479400007), (-5.769602016999954, 57.04975006700005), (-5.780181443999936, 57.05174388200004), (-5.791127081999946, 57.05927155200004), (-5.776193813999953, 57.075832424000055), (-5.734486456999946, 57.10541413000004), (-5.722645636999914, 57.116441148000035), (-5.715646938999953, 57.12006256700005), (-5.703277147999927, 57.120754299000055), (-5.673695441999939, 57.11904531500005), (-5.663482225999928, 57.12372467700004), (-5.645863410999937, 57.12946198100008), (-5.620838995999918, 57.12409088700008), (-5.57843990799995, 57.10639069200005), (-5.558257615999935, 57.10040924700007), (-5.4598282539999445, 57.09979889500005), (-5.454986131999931, 57.10297272300005), (-5.447417772999927, 57.11017487200007), (-5.430775519999941, 57.11074453300006), (-5.41429602799991, 57.10822174700007), (-5.407215949999909, 57.10639069200005), (-5.400380011999914, 57.10639069200005), (-5.400380011999914, 57.11383698100008), (-5.420033331999946, 57.12067291900007), (-5.503895636999914, 57.11269765800006), (-5.527414516999954, 57.107489325000074), (-5.540638800999943, 57.10639069200005), (-5.5477188789999445, 57.11009349200003), (-5.573312954999949, 57.12787506700005), (-5.5846248039999296, 57.133693752000056), (-5.668446417999917, 57.147650458000044), (-5.6808975899999155, 57.157904364000046), (-5.673817511999914, 57.174994208000044), (-5.638824022999927, 57.202378648000035), (-5.625599738999938, 57.21625397300005), (-5.644154425999943, 57.23322174700007), (-5.620106574999909, 57.25214264500005), (-5.578236456999946, 57.26675039300005), (-5.543690558999913, 57.27090078300006), (-5.511586066999939, 57.25763580900008), (-5.480091925999943, 57.23700592700004), (-5.446278449999909, 57.22304922100005), (-5.407215949999909, 57.22992584800005), (-5.407215949999909, 57.23672109600005), (-5.448841925999943, 57.24209219000005), (-5.458119269999941, 57.24664948100008), (-5.47288977799991, 57.26121653900003), (-5.482899542999917, 57.268011786000045), (-5.49250240799995, 57.27090078300006), (-5.501942511999914, 57.27765534100007), (-5.4889216789999296, 57.29242584800005), (-5.464833136999914, 57.306626695000034), (-5.4406632149999155, 57.311835028000075), (-5.4406632149999155, 57.31928131700005), (-5.464995897999927, 57.32493724200003), (-5.4817602199999556, 57.31671784100007), (-5.494292772999927, 57.30442942900004), (-5.50617428299995, 57.298163153000075), (-5.523426886999914, 57.29515208500004), (-5.558461066999939, 57.28143952000005), (-5.57843990799995, 57.27765534100007), (-5.599436001999948, 57.27924225500004), (-5.637440558999913, 57.28900788000004), (-5.656971808999913, 57.29132721600007), (-5.7000626289999445, 57.28359609600005), (-5.720570441999939, 57.284491278000075), (-5.729318813999953, 57.298163153000075), (-5.7252498039999296, 57.30158112200007), (-5.701975063999953, 57.33234284100007), (-5.6937556629999335, 57.337103583000044), (-5.671986456999946, 57.34442780200004), (-5.663482225999928, 57.349676825000074), (-5.654367641999954, 57.353949286000045), (-5.647206183999913, 57.34992096600007), (-5.6414688789999445, 57.34320709800005), (-5.636545376999948, 57.33978913000004), (-5.613189256999931, 57.34198639500005), (-5.5012914699999556, 57.37099844000005), (-5.456654425999943, 57.39354075700004), (-5.4481095039999445, 57.42169830900008), (-5.46507727799991, 57.423895575000074), (-5.492054816999939, 57.40875885600008), (-5.5375056629999335, 57.373928127000056), (-5.563465949999909, 57.36310455900008), (-5.586659308999913, 57.36505768400008), (-5.610910610999952, 57.37140534100007), (-5.6399633449999556, 57.373928127000056), (-5.615589972999942, 57.382473049000055), (-5.607085740999935, 57.389105536000045), (-5.609201626999948, 57.397772528000075), (-5.617746548999946, 57.41010163000004), (-5.619618292999917, 57.41669342700004), (-5.624012824999909, 57.41640859600005), (-5.6399633449999556, 57.40802643400008), (-5.707183397999927, 57.35976797100005), (-5.732411261999914, 57.352769273000035), (-5.784575975999928, 57.34857819200005), (-5.807769334999932, 57.35492584800005), (-5.8248591789999296, 57.39435455900008), (-5.822255011999914, 57.39350006700005), (-5.817372199999909, 57.39520905200004), (-5.812855597999942, 57.398098049000055), (-5.8111873039999296, 57.40119049700007), (-5.813872850999928, 57.40452708500004), (-5.8231095039999445, 57.41233958500004), (-5.8248591789999296, 57.41547272300005), (-5.825266079999949, 57.428900458000044), (-5.821888800999943, 57.435532945000034), (-5.8111873039999296, 57.44220612200007), (-5.8215225899999155, 57.44546133000006), (-5.852528449999909, 57.450384833000044), (-5.859038865999935, 57.45270416900007), (-5.861195441999939, 57.46344635600008), (-5.870513475999928, 57.48078034100007), (-5.872670050999943, 57.49371979400007), (-5.869699673999946, 57.500881252000056), (-5.856068488999938, 57.51780833500004), (-5.8522029289999296, 57.52411530200004), (-5.8510636059999115, 57.538397528000075), (-5.851470506999931, 57.55109284100007), (-5.847075975999928, 57.55890534100007), (-5.831695115999935, 57.55882396000004), (-5.833851691999939, 57.563381252000056), (-5.837025519999941, 57.57477448100008), (-5.8391820949999556, 57.579291083000044), (-5.821400519999941, 57.583197333000044), (-5.803618943999936, 57.581366278000075), (-5.7863663399999155, 57.57518138200004), (-5.732574022999927, 57.54523346600007), (-5.715646938999953, 57.538397528000075), (-5.707020636999914, 57.542303778000075), (-5.68976803299995, 57.52789948100008), (-5.6808975899999155, 57.52411530200004), (-5.650868292999917, 57.51264069200005), (-5.6399633449999556, 57.511053778000075), (-5.645334438999953, 57.51666901200008), (-5.648304816999939, 57.52187734600005), (-5.650542772999927, 57.52680084800005), (-5.6535538399999155, 57.53156159100007), (-5.5815323559999115, 57.538397528000075), (-5.5402725899999155, 57.534491278000075), (-5.5168350899999155, 57.534857489000046), (-5.512684699999909, 57.54148997600004), (-5.543120897999927, 57.55536530200004), (-5.588368292999917, 57.56102122600004), (-5.632720506999931, 57.55768463700008), (-5.66038977799991, 57.544582424000055), (-5.694488084999932, 57.56631094000005), (-5.689198370999918, 57.56940338700008), (-5.6808975899999155, 57.579291083000044), (-5.714222785999937, 57.58270905200004), (-5.7316788399999155, 57.59829336100006), (-5.744252081999946, 57.61798737200007), (-5.762806769999941, 57.633978583000044), (-5.778146938999953, 57.63743724200003), (-5.7936091789999296, 57.63857656500005), (-5.8058975899999155, 57.642645575000074), (-5.8111873039999296, 57.65509674700007), (-5.805409308999913, 57.667181708000044), (-5.785023566999939, 57.67951080900008), (-5.790760870999918, 57.68854401200008), (-5.790760870999918, 57.69599030200004), (-5.753570115999935, 57.707464911000045), (-5.734486456999946, 57.70795319200005), (-5.704986131999931, 57.69013092700004), (-5.692494269999941, 57.691066799000055), (-5.68195553299995, 57.69871653900003), (-5.67406165299991, 57.70966217700004), (-5.685170050999943, 57.71141185100004), (-5.692290818999936, 57.716498114000046), (-5.698841925999943, 57.723089911000045), (-5.708851691999939, 57.72955963700008), (-5.720529751999948, 57.73338450700004), (-5.803822394999941, 57.743841864000046), (-5.80695553299995, 57.75462474200003), (-5.8020727199999556, 57.780585028000075), (-5.803822394999941, 57.792222398000035), (-5.801258917999917, 57.800441799000055), (-5.809925910999937, 57.82062409100007), (-5.8111873039999296, 57.833197333000044), (-5.807362433999913, 57.84393952000005), (-5.799956834999932, 57.85370514500005), (-5.789540167999917, 57.86200592700004), (-5.776519334999932, 57.86790599200003), (-5.751128709999932, 57.87335846600007), (-5.724761522999927, 57.87352122600004), (-5.698638475999928, 57.86908600500004), (-5.67406165299991, 57.86050039300005), (-5.677886522999927, 57.846909898000035), (-5.674794074999909, 57.82709381700005), (-5.667958136999914, 57.80695221600007), (-5.66038977799991, 57.792222398000035), (-5.650542772999927, 57.78180573100008), (-5.6373591789999296, 57.77423737200007), (-5.622141079999949, 57.77020905200004), (-5.60578365799995, 57.77049388200004), (-5.613270636999914, 57.77521393400008), (-5.617909308999913, 57.78021881700005), (-5.625599738999938, 57.792222398000035), (-5.613026495999918, 57.792629299000055), (-5.603260870999918, 57.791083075000074), (-5.5846248039999296, 57.784816799000055), (-5.591175910999937, 57.80442942900004), (-5.587025519999941, 57.81858958500004), (-5.5852758449999556, 57.83144765800006), (-5.598988410999937, 57.846869208000044), (-5.6375626289999445, 57.86635976800005), (-5.650380011999914, 57.87775299700007), (-5.6399633449999556, 57.88784414300005), (-5.6476944649999155, 57.88898346600007), (-5.6507869129999335, 57.89081452000005), (-5.6535538399999155, 57.89468008000006), (-5.643950975999928, 57.90420156500005), (-5.620757615999935, 57.92088450700004), (-5.6126195949999556, 57.92877838700008), (-5.598215298999946, 57.91901276200008), (-5.587310350999928, 57.91510651200008), (-5.550526495999918, 57.91510651200008), (-5.556263800999943, 57.88776276200008), (-5.527902798999946, 57.86758047100005), (-5.487049933999913, 57.85586172100005), (-5.454986131999931, 57.85370514500005), (-5.46117102799991, 57.86050039300005), (-5.449045376999948, 57.869126695000034), (-5.437123175999943, 57.897650458000044), (-5.427642381999931, 57.908270575000074), (-5.4149063789999445, 57.90814850500004), (-5.369496222999942, 57.89752838700008), (-5.355620897999927, 57.89126211100006), (-5.327504035999937, 57.87327708500004), (-5.293853318999936, 57.86204661700003), (-5.221587693999936, 57.846869208000044), (-5.236317511999914, 57.86078522300005), (-5.2475479809999115, 57.86701080900008), (-5.276763475999928, 57.87417226800005), (-5.320668097999942, 57.898504950000074), (-5.384917772999927, 57.914129950000074), (-5.39289303299995, 57.91819896000004), (-5.394398566999939, 57.923895575000074), (-5.396839972999942, 57.926214911000045), (-5.3973282539999445, 57.928900458000044), (-5.39289303299995, 57.935614325000074), (-5.386545376999948, 57.936428127000056), (-5.378977016999954, 57.93183014500005), (-5.3717341789999296, 57.93105703300006), (-5.366200324999909, 57.943060614000046), (-5.3471573559999115, 57.936712958000044), (-5.319162563999953, 57.91474030200004), (-5.297352667999917, 57.908270575000074), (-5.2860001289999445, 57.90875885600008), (-5.266957160999937, 57.91400788000004), (-5.2562556629999335, 57.91510651200008), (-5.2436417309999115, 57.91290924700007), (-5.22101803299995, 57.90403880400004), (-5.211293097999942, 57.90208567900004), (-5.198801235999952, 57.897772528000075), (-5.162261522999927, 57.87848541900007), (-5.1199845039999445, 57.86798737200007), (-5.0911352199999556, 57.84031810100004), (-5.070790167999917, 57.833197333000044), (-5.07648678299995, 57.83852773600006), (-5.083404100999928, 57.84756094000005), (-5.0893448559999115, 57.85724518400008), (-5.091867641999954, 57.86420319200005), (-5.0971573559999115, 57.87091705900008), (-5.197255011999914, 57.91787344000005), (-5.221587693999936, 57.92133209800005), (-5.221587693999936, 57.92877838700008), (-5.201893683999913, 57.92865631700005), (-5.193959113999938, 57.935980536000045), (-5.19554602799991, 57.94765859600005), (-5.204497850999928, 57.960150458000044), (-5.216704881999931, 57.96588776200008), (-5.2488907539999445, 57.96938711100006), (-5.2631729809999115, 57.976548570000034), (-5.292632615999935, 57.98061758000006), (-5.333892381999931, 58.00853099200003), (-5.359364386999914, 58.011379299000055), (-5.357167120999918, 58.01406484600005), (-5.3566788399999155, 58.014878648000035), (-5.351918097999942, 58.01752350500004), (-5.366932745999918, 58.02887604400007), (-5.386586066999939, 58.032538153000075), (-5.427642381999931, 58.03119538000004), (-5.424305792999917, 58.03554922100005), (-5.422352667999917, 58.03896719000005), (-5.419585740999935, 58.04205963700008), (-5.413929816999939, 58.04547760600008), (-5.413929816999939, 58.05231354400007), (-5.447010870999918, 58.08437734600005), (-5.428089972999942, 58.09796784100007), (-5.390044725999928, 58.09218984600005), (-5.366200324999909, 58.06598541900007), (-5.344309048999946, 58.075506903000075), (-5.322865363999938, 58.07172272300005), (-5.300770636999914, 58.07013580900008), (-5.276763475999928, 58.08641185100004), (-5.283070441999939, 58.08641185100004), (-5.278065558999913, 58.09625885600008), (-5.2787979809999115, 58.10537344000005), (-5.283558722999942, 58.11347077000005), (-5.2905167309999115, 58.12055084800005), (-5.276763475999928, 58.12055084800005), (-5.276763475999928, 58.127386786000045), (-5.297352667999917, 58.134833075000074), (-5.284087693999936, 58.14008209800005), (-5.255523240999935, 58.143784898000035), (-5.242054816999939, 58.14789459800005), (-5.242054816999939, 58.15534088700008), (-5.275054490999935, 58.15452708500004), (-5.290842251999948, 58.156317450000074), (-5.304798956999946, 58.162095445000034), (-5.297352667999917, 58.168402411000045), (-5.304798956999946, 58.17332591400003), (-5.313059048999946, 58.17731354400007), (-5.321888800999943, 58.18024323100008), (-5.331450975999928, 58.18203359600005), (-5.3293350899999155, 58.186712958000044), (-5.326161261999914, 58.198431708000044), (-5.323963995999918, 58.203111070000034), (-5.336822068999936, 58.203192450000074), (-5.346791144999941, 58.20685455900008), (-5.39289303299995, 58.24469635600008), (-5.3920792309999115, 58.261379299000055), (-5.375884568999936, 58.26422760600008), (-5.352894660999937, 58.25893789300005), (-5.31078040299991, 58.243394273000035), (-5.293853318999936, 58.24091217700004), (-5.276966925999943, 58.243394273000035), (-5.237294074999909, 58.25763580900008), (-5.2160538399999155, 58.261419989000046), (-5.194325324999909, 58.25999583500004), (-5.173207160999937, 58.25092194200005), (-5.165638800999943, 58.258246161000045), (-5.152251756999931, 58.264837958000044), (-5.138335740999935, 58.269598700000074), (-5.129383917999917, 58.27138906500005), (-5.11156165299991, 58.26825592700004), (-5.0812882149999155, 58.25409577000005), (-5.0676977199999556, 58.25092194200005), (-5.017730272999927, 58.253241278000075), (-5.002430792999917, 58.25092194200005), (-4.933583136999914, 58.22304922100005), (-4.943430141999954, 58.233587958000044), (-4.954823370999918, 58.23981354400007), (-4.982004360999952, 58.25092194200005), (-4.968861456999946, 58.25678131700005), (-4.940337693999936, 58.259466864000046), (-4.926747199999909, 58.26459381700005), (-4.990223761999914, 58.27142975500004), (-5.009917772999927, 58.27138906500005), (-5.018055792999917, 58.26862213700008), (-5.029367641999954, 58.25971100500004), (-5.040028449999909, 58.25775788000004), (-5.0501195949999556, 58.25991445500006), (-5.0707087879999335, 58.269232489000046), (-5.081654425999943, 58.27138906500005), (-5.096424933999913, 58.27676015800006), (-5.125965949999909, 58.30019765800006), (-5.1362198559999115, 58.305568752000056), (-5.137440558999913, 58.30927155200004), (-5.156361456999946, 58.32461172100005), (-5.160145636999914, 58.326605536000045), (-5.167795376999948, 58.33926015800006), (-5.171009894999941, 58.34666575700004), (-5.173207160999937, 58.353949286000045), (-5.153309699999909, 58.353949286000045), (-5.1634008449999556, 58.364569403000075), (-5.162912563999953, 58.37449778900003), (-5.155913865999935, 58.384466864000046), (-5.146473761999914, 58.394964911000045), (-5.145497199999909, 58.400051174000055), (-5.14671790299991, 58.40664297100005), (-5.146839972999942, 58.41242096600007), (-5.143055792999917, 58.41478099200003), (-5.135487433999913, 58.413763739000046), (-5.122222459999932, 58.40957265800006), (-5.116037563999953, 58.40859609600005), (-5.057972785999937, 58.38727448100008), (-5.016184048999946, 58.38812897300005), (-5.043934699999909, 58.400091864000046), (-5.0533748039999296, 58.40664297100005), (-5.0502823559999115, 58.41478099200003), (-5.0570369129999335, 58.42218659100007), (-5.066151495999918, 58.41714101800005), (-5.076161261999914, 58.414496161000045), (-5.086822068999936, 58.41388580900008), (-5.0980525379999335, 58.41478099200003), (-5.0980525379999335, 58.42218659100007), (-5.08812415299991, 58.421942450000074), (-5.085031704999949, 58.42218659100007), (-5.085031704999949, 58.429022528000075), (-5.091786261999914, 58.429754950000074), (-5.09601803299995, 58.43146393400008), (-5.105539516999954, 58.43650950700004), (-5.0501195949999556, 58.45380280200004), (-5.025542772999927, 58.447699286000045), (-4.9955948559999115, 58.43650950700004), (-5.105539516999954, 58.48737213700008), (-5.105620897999927, 58.505560614000046), (-5.103667772999927, 58.51422760600008), (-5.095855272999927, 58.518866278000075), (-5.042795376999948, 58.53546784100007), (-5.0279841789999296, 58.54409414300005), (-5.016184048999946, 58.55939362200007), (-5.0229386059999115, 58.55939362200007), (-5.015207485999952, 58.580064195000034), (-5.011586066999939, 58.60057200700004), (-5.004953579999949, 58.61774323100008), (-4.988189256999931, 58.62832265800006), (-4.859486456999946, 58.61322663000004), (-4.835926886999914, 58.60504791900007), (-4.818104620999918, 58.59292226800005), (-4.817941860999952, 58.587591864000046), (-4.81281490799995, 58.571966864000046), (-4.806752081999946, 58.55841705900008), (-4.803822394999941, 58.55939362200007), (-4.804595506999931, 58.54832591400003), (-4.807240363999938, 58.53961823100008), (-4.811634894999941, 58.53204987200007), (-4.818104620999918, 58.524644273000035), (-4.799794074999909, 58.532456773000035), (-4.791818813999953, 58.54165273600006), (-4.7899063789999445, 58.55174388200004), (-4.790150519999941, 58.562486070000034), (-4.785755988999938, 58.577053127000056), (-4.777088995999918, 58.583319403000075), (-4.771595831999946, 58.59039948100008), (-4.776519334999932, 58.60716380400004), (-4.758859829999949, 58.59910716400003), (-4.7280167309999115, 58.577460028000075), (-4.7113337879999335, 58.57306549700007), (-4.683257615999935, 58.56150950700004), (-4.670399542999917, 58.55939362200007), (-4.660023566999939, 58.555853583000044), (-4.659291144999941, 58.54755280200004), (-4.663238084999932, 58.538397528000075), (-4.6673070949999556, 58.53204987200007), (-4.6790258449999556, 58.52391185100004), (-4.714466925999943, 58.50560130400004), (-4.732411261999914, 58.480454820000034), (-4.751535610999952, 58.46161530200004), (-4.7609757149999155, 58.44798411700003), (-4.74242102799991, 58.44953034100007), (-4.682972785999937, 58.48456452000005), (-4.673451300999943, 58.48737213700008), (-4.6668595039999445, 58.50291575700004), (-4.650502081999946, 58.50995514500005), (-4.630441860999952, 58.514960028000075), (-4.612131313999953, 58.524644273000035), (-4.6010636059999115, 58.54193756700005), (-4.595122850999928, 58.56000397300005), (-4.584950324999909, 58.57416413000004), (-4.560536261999914, 58.57990143400008), (-4.517486131999931, 58.575506903000075), (-4.475493943999936, 58.565619208000044), (-4.426503058999913, 58.54637278900003), (-4.426503058999913, 58.53888580900008), (-4.427886522999927, 58.53530508000006), (-4.428700324999909, 58.53473541900007), (-4.426503058999913, 58.524644273000035), (-4.449940558999913, 58.510199286000045), (-4.464751756999931, 58.49201080900008), (-4.477650519999941, 58.47134023600006), (-4.4953507149999155, 58.44953034100007), (-4.478098110999952, 58.453558661000045), (-4.46117102799991, 58.46246979400007), (-4.43390865799995, 58.483628648000035), (-4.432728644999941, 58.487616278000075), (-4.4339900379999335, 58.49237702000005), (-4.4342341789999296, 58.49628327000005), (-4.430165167999917, 58.49799225500004), (-4.425933397999927, 58.49909088700008), (-4.385365363999938, 58.52240631700005), (-4.382394985999952, 58.524644273000035), (-4.343861456999946, 58.53888580900008), (-4.317005988999938, 58.54572174700007), (-4.306996222999942, 58.54637278900003), (-4.287180141999954, 58.54291413000004), (-4.2573136059999115, 58.52798086100006), (-4.234730597999942, 58.524644273000035), (-4.248931443999936, 58.53204987200007), (-4.238189256999931, 58.536444403000075), (-4.232248501999948, 58.54242584800005), (-4.227691209999932, 58.548163153000075), (-4.22101803299995, 58.551947333000044), (-4.209706183999913, 58.55292389500005), (-4.190785285999937, 58.54783763200004), (-4.1769913399999155, 58.54637278900003), (-4.16820227799991, 58.54938385600008), (-4.1605525379999335, 58.562567450000074), (-4.149322068999936, 58.565619208000044), (-4.111195441999939, 58.565619208000044), (-4.0902400379999335, 58.56207916900007), (-4.081450975999928, 58.561835028000075), (-4.070220506999931, 58.565619208000044), (-4.061512824999909, 58.57282135600008), (-4.048817511999914, 58.58958567900004), (-4.039784308999913, 58.59292226800005), (-4.030629035999937, 58.59406159100007), (-4.029042120999918, 58.59516022300005), (-4.027821417999917, 58.59271881700005), (-4.0092667309999115, 58.57330963700008), (-4.003773566999939, 58.57062409100007), (-3.981434699999909, 58.57306549700007), (-3.8957413399999155, 58.565619208000044), (-3.8101293609999516, 58.57306549700007), (-3.7669571609999366, 58.58372630400004), (-3.6983536449999406, 58.61115143400008), (-3.659901495999918, 58.62083567900004), (-3.597564256999931, 58.62714264500005), (-3.565500454999949, 58.626613674000055), (-3.542591925999943, 58.62083567900004), (-3.552479620999918, 58.61546458500004), (-3.556263800999943, 58.61399974200003), (-3.532053188999953, 58.60211823100008), (-3.504017706999946, 58.60333893400008), (-3.447010870999918, 58.61399974200003), (-3.3914688789999445, 58.60065338700008), (-3.364084438999953, 58.600816148000035), (-3.3508194649999155, 58.62083567900004), (-3.3677465489999463, 58.624701239000046), (-3.3860570949999556, 58.631740627000056), (-3.402251756999931, 58.64203522300005), (-3.412912563999953, 58.655585028000075), (-3.3900447259999282, 58.67177969000005), (-3.3748673169999392, 58.677069403000075), (-3.3582657539999445, 58.675482489000046), (-3.3543595039999445, 58.67015208500004), (-3.35179602799991, 58.66083405200004), (-3.34788977799991, 58.652044989000046), (-3.340565558999913, 58.648138739000046), (-3.3098852199999556, 58.648138739000046), (-3.244252081999946, 58.65900299700007), (-3.204090949999909, 58.66111888200004), (-3.1519262359999516, 58.64126211100006), (-3.118763800999943, 58.64109935100004), (-3.052886522999927, 58.648138739000046), (-3.0191137359999516, 58.640326239000046), (-3.025380011999914, 58.62213776200008), (-3.0444229809999115, 58.601629950000074), (-3.049183722999942, 58.58673737200007), (-3.060454881999931, 58.57843659100007), (-3.0754288399999155, 58.56037018400008), (-3.0845434239999463, 58.551947333000044), (-3.1107478509999282, 58.53864166900007), (-3.1180313789999445, 58.53204987200007), (-3.129261847999942, 58.51264069200005), (-3.1293025379999335, 58.49640534100007), (-3.1187231109999516, 58.484442450000074), (-3.0975235669999392, 58.47748444200005), (-3.0850723949999406, 58.47825755400004), (-3.073963995999918, 58.481675523000035), (-3.064442511999914, 58.48297760600008), (-3.056630011999914, 58.47748444200005), (-3.053334113999938, 58.46576569200005), (-3.0577286449999406, 58.45685455900008), (-3.066761847999942, 58.451157945000034), (-3.077056443999936, 58.44953034100007), (-3.0863337879999335, 58.41421133000006), (-3.129790818999936, 58.36928945500006), (-3.182769334999932, 58.32843659100007), (-3.2205297519999476, 58.305568752000056), (-3.2622777989999463, 58.292629299000055), (-3.34984290299991, 58.27610911700003), (-3.38499915299991, 58.26459381700005), (-3.438099738999938, 58.236029364000046), (-3.447010870999918, 58.22675202000005), (-3.454741990999935, 58.210150458000044), (-3.473459438999953, 58.193426825000074), (-3.515288865999935, 58.168402411000045), (-3.7350154289999296, 58.07217031500005), (-3.809193488999938, 58.05190664300005), (-3.8275040359999366, 58.04205963700008), (-3.8362524079999503, 58.03143952000005), (-3.8460994129999335, 58.01117584800005), (-3.851714647999927, 58.003892320000034), (-3.8605850899999155, 57.998928127000056), (-3.8856095039999445, 57.991400458000044), (-3.9173070949999556, 57.98745351800005), (-3.981434699999909, 57.96356842700004), (-3.990956183999913, 57.96039459800005), (-3.997670050999943, 57.954413153000075), (-4.001372850999928, 57.94611237200007), (-4.001942511999914, 57.935614325000074), (-4.018299933999913, 57.940619208000044), (-4.023060675999943, 57.943060614000046), (-4.016184048999946, 57.949286200000074), (-4.0301407539999445, 57.953192450000074), (-4.055775519999941, 57.95498281500005), (-4.0843806629999335, 57.964178778000075), (-4.0891007149999155, 57.960150458000044), (-4.0863337879999335, 57.95189036700003), (-4.0776261059999115, 57.943060614000046), (-4.062652147999927, 57.93695709800005), (-4.03148352799991, 57.93618398600006), (-4.016184048999946, 57.93219635600008), (-4.009429490999935, 57.92767975500004), (-3.988270636999914, 57.908270575000074), (-4.008941209999932, 57.88959381700005), (-4.013824022999927, 57.879339911000045), (-4.009348110999952, 57.86790599200003), (-4.025135870999918, 57.868068752000056), (-4.054839647999927, 57.874335028000075), (-4.070220506999931, 57.87417226800005), (-4.0793350899999155, 57.87026601800005), (-4.0969132149999155, 57.85736725500004), (-4.1049698559999115, 57.85370514500005), (-4.132923956999946, 57.85415273600006), (-4.190419074999909, 57.87006256700005), (-4.218169725999928, 57.87417226800005), (-4.298898891999954, 57.86277903900003), (-4.3209529289999296, 57.87103913000004), (-4.353179490999935, 57.89520905200004), (-4.3723038399999155, 57.90448639500005), (-4.392404751999948, 57.908270575000074), (-4.339588995999918, 57.86570872600004), (-4.307728644999941, 57.85146719000005), (-4.269398566999939, 57.846869208000044), (-4.229074673999946, 57.85724518400008), (-4.2082413399999155, 57.85919830900008), (-4.190581834999932, 57.85028717700004), (-4.173451300999943, 57.83901601800005), (-4.1497289699999556, 57.82982005400004), (-4.1334529289999296, 57.830145575000074), (-4.1390681629999335, 57.846869208000044), (-4.0750626289999445, 57.82318756700005), (-4.0399063789999445, 57.81818268400008), (-3.9835098949999406, 57.84235260600008), (-3.9514867829999503, 57.838324286000045), (-3.933705206999946, 57.82566966400003), (-3.9473363919999542, 57.81268952000005), (-3.914784308999913, 57.80768463700008), (-3.877674933999913, 57.81671784100007), (-3.8418676419999542, 57.83490631700005), (-3.813547329999949, 57.857123114000046), (-3.798451300999943, 57.866522528000075), (-3.786040818999936, 57.86542389500005), (-3.779449022999927, 57.85565827000005), (-3.782215949999909, 57.83942291900007), (-3.790028449999909, 57.83071523600006), (-3.92601477799991, 57.734808661000045), (-3.948841925999943, 57.72492096600007), (-3.975209113999938, 57.70327383000006), (-3.988270636999914, 57.69599030200004), (-4.00804602799991, 57.693793036000045), (-4.02367102799991, 57.69782135600008), (-4.0286352199999556, 57.70770905200004), (-4.016184048999946, 57.72333405200004), (-4.042958136999914, 57.73729075700004), (-4.077951626999948, 57.73029205900008), (-4.155344204999949, 57.692572333000044), (-4.168568488999938, 57.689439195000034), (-4.1939998039999296, 57.68854401200008), (-4.2592667309999115, 57.67869700700004), (-4.277821417999917, 57.68060944200005), (-4.294789191999939, 57.68016185100004), (-4.302154100999928, 57.66860586100006), (-4.30882727799991, 57.65485260600008), (-4.324045376999948, 57.64826080900008), (-4.33820553299995, 57.64508698100008), (-4.4031876289999445, 57.60952383000006), (-4.412180141999954, 57.60297272300005), (-4.4203181629999335, 57.592962958000044), (-4.428456183999913, 57.57754140800006), (-4.423451300999943, 57.57680898600006), (-4.409901495999918, 57.582464911000045), (-4.379872199999909, 57.58934153900003), (-4.365101691999939, 57.59723541900007), (-4.3510636059999115, 57.60736725500004), (-4.340809699999909, 57.617173570000034), (-4.328724738999938, 57.626288153000075), (-4.283111131999931, 57.64142487200007), (-4.2445369129999335, 57.66303131700005), (-4.201893683999913, 57.674994208000044), (-4.1937556629999335, 57.67552317900004), (-4.182240363999938, 57.67279694200005), (-4.169016079999949, 57.663763739000046), (-4.118723110999952, 57.65770091400003), (-4.096791144999941, 57.65810781500005), (-4.0807185539999296, 57.66498444200005), (-4.068104620999918, 57.672308661000045), (-4.0246475899999155, 57.687201239000046), (-4.009348110999952, 57.68854401200008), (-4.004505988999938, 57.67597077000005), (-4.025257941999939, 57.65521881700005), (-4.0541886059999115, 57.63572825700004), (-4.083404100999928, 57.62335846600007), (-4.118560350999928, 57.592962958000044), (-4.11546790299991, 57.58783600500004), (-4.112294074999909, 57.58413320500006), (-4.1088761059999115, 57.58144765800006), (-4.1049698559999115, 57.579291083000044), (-4.151356574999909, 57.57684967700004), (-4.170643683999913, 57.570746161000045), (-4.187489386999914, 57.55882396000004), (-4.178089972999942, 57.54954661700003), (-4.184925910999937, 57.548163153000075), (-4.207997199999909, 57.552069403000075), (-4.262603318999936, 57.552069403000075), (-4.262603318999936, 57.544582424000055), (-4.233957485999952, 57.54511139500005), (-4.220285610999952, 57.543402411000045), (-4.207997199999909, 57.538397528000075), (-4.226307745999918, 57.51544830900008), (-4.237456834999932, 57.50531647300005), (-4.248931443999936, 57.49746328300006), (-4.212798631999931, 57.492173570000034), (-4.1948136059999115, 57.49160390800006), (-4.173898891999954, 57.49746328300006), (-4.157622850999928, 57.50849030200004), (-4.150054490999935, 57.51504140800006), (-4.149322068999936, 57.51788971600007), (-4.126779751999948, 57.518866278000075), (-4.116200324999909, 57.52179596600007), (-4.097523566999939, 57.53668854400007), (-4.082997199999909, 57.54441966400003), (-4.067290818999936, 57.54995351800005), (-4.0531306629999335, 57.552069403000075), (-4.034982876999948, 57.55687083500004), (-4.046457485999952, 57.56785716400003), (-4.083851691999939, 57.58612702000005), (-4.056019660999937, 57.585150458000044), (-3.9643448559999115, 57.592962958000044), (-3.8682755199999406, 57.587876695000034), (-3.8374731109999516, 57.592962958000044), (-3.6848038399999155, 57.65444570500006), (-3.625152147999927, 57.66193268400008), (-3.632557745999918, 57.65094635600008), (-3.637684699999909, 57.64622630400004), (-3.6456192699999406, 57.64142487200007), (-3.632476365999935, 57.635646877000056), (-3.6196182929999168, 57.63621653900003), (-3.606068488999938, 57.63947174700007), (-3.590972459999932, 57.64142487200007), (-3.61156165299991, 57.66811758000006), (-3.5747777989999463, 57.66111888200004), (-3.55492102799991, 57.659857489000046), (-3.535755988999938, 57.66193268400008), (-3.521473761999914, 57.66779205900008), (-3.5054418609999516, 57.67865631700005), (-3.4959610669999392, 57.69135163000004), (-3.501698370999918, 57.702826239000046), (-3.491851365999935, 57.71312083500004), (-3.4828181629999335, 57.71401601800005), (-3.4730525379999335, 57.711004950000074), (-3.460682745999918, 57.70966217700004), (-3.447865363999938, 57.71246979400007), (-3.4212540359999366, 57.72138092700004), (-3.409169074999909, 57.72333405200004), (-3.2847387359999516, 57.72044505400004), (-3.2100723949999406, 57.69399648600006), (-3.0786840489999463, 57.66941966400003), (-3.034901495999918, 57.66860586100006), (-2.994496222999942, 57.67552317900004), (-2.932687954999949, 57.69961172100005), (-2.9160863919999542, 57.702826239000046), (-2.75804602799991, 57.702826239000046), (-2.7512100899999155, 57.70062897300005), (-2.741118943999936, 57.69086334800005), (-2.731068488999938, 57.68854401200008), (-2.719878709999932, 57.690619208000044), (-2.711537238999938, 57.69399648600006), (-2.7035212879999335, 57.69472890800006), (-2.6929418609999516, 57.68854401200008), (-2.658924933999913, 57.69745514500005), (-2.573394334999932, 57.68146393400008), (-2.541981574999909, 57.68235911700003), (-2.526112433999913, 57.66860586100006), (-2.5181371739999463, 57.67011139500005), (-2.5110570949999556, 57.677801825000074), (-2.497954881999931, 57.68235911700003), (-2.4800512359999516, 57.68121979400007), (-2.4328507149999155, 57.66811758000006), (-2.425526495999918, 57.67572663000004), (-2.4177953769999476, 57.674261786000045), (-2.4087621739999463, 57.669623114000046), (-2.398060675999943, 57.66811758000006), (-2.3865860669999392, 57.671576239000046), (-2.369496222999942, 57.680568752000056), (-2.360503709999932, 57.68235911700003), (-2.3410538399999155, 57.675848700000074), (-2.3289688789999445, 57.67405833500004), (-2.3235977859999366, 57.678941148000035), (-2.32054602799991, 57.68455638200004), (-2.313384568999936, 57.68992747600004), (-2.3040665359999366, 57.69399648600006), (-2.295643683999913, 57.69599030200004), (-2.274322068999936, 57.69383372600004), (-2.230132615999935, 57.67914459800005), (-2.209950324999909, 57.67552317900004), (-2.1840714179999168, 57.67845286700003), (-2.1243383449999556, 57.702826239000046), (-2.108143683999913, 57.70498281500005), (-1.9976700509999432, 57.702826239000046), (-1.9969376289999445, 57.69904205900008), (-1.990834113999938, 57.69037506700005), (-1.982167120999918, 57.68109772300005), (-1.9735001289999445, 57.67552317900004), (-1.961293097999942, 57.674709377000056), (-1.9447322259999282, 57.68256256700005), (-1.9324845039999445, 57.68235911700003), (-1.9256892569999309, 57.678168036000045), (-1.914214647999927, 57.66474030200004), (-1.8294571609999366, 57.61347077000005), (-1.820464647999927, 57.59634023600006), (-1.817005988999938, 57.578192450000074), (-1.8113907539999445, 57.56049225500004), (-1.7960098949999406, 57.544582424000055), (-1.7960098949999406, 57.538397528000075), (-1.8000382149999155, 57.52586497600004), (-1.7895401679999168, 57.514837958000044), (-1.7611384759999282, 57.49746328300006), (-1.7753800119999141, 57.496527411000045), (-1.7821345689999362, 57.48899974200003), (-1.7812393869999141, 57.48041413000004), (-1.7717179029999102, 57.476263739000046), (-1.7593481109999516, 57.47357819200005), (-1.7659399079999503, 57.46743398600006), (-1.7891739569999459, 57.45644765800006), (-1.8301488919999542, 57.42617422100005), (-1.8474828769999476, 57.40814850500004), (-1.849964972999942, 57.39435455900008), (-1.9544978509999282, 57.341131903000075), (-1.9802953769999476, 57.31928131700005), (-2.044667120999918, 57.22650788000004), (-2.068511522999927, 57.17462799700007), (-2.074126756999931, 57.15420156500005), (-2.0714005199999406, 57.13556549700007), (-2.052357550999943, 57.12742747600004), (-2.0493057929999168, 57.118841864000046), (-2.065256313999953, 57.10053131700005), (-2.0658259759999282, 57.09983958500004), (-2.156158006999931, 57.020697333000044), (-2.1869197259999282, 56.98468659100007), (-2.200103318999936, 56.94871653900003), (-2.1971329419999392, 56.94025299700007), (-2.1912328769999476, 56.93414948100008), (-2.186268683999913, 56.92674388200004), (-2.1863907539999445, 56.91453685100004), (-2.191314256999931, 56.90892161700003), (-2.209706183999913, 56.895819403000075), (-2.213693813999953, 56.890692450000074), (-2.219878709999932, 56.87262604400007), (-2.23460852799991, 56.861395575000074), (-2.2689509759999282, 56.84634023600006), (-2.295806443999936, 56.82526276200008), (-2.3198136059999115, 56.80158112200007), (-2.336089647999927, 56.79083893400008), (-2.3918350899999155, 56.771185614000046), (-2.4086807929999168, 56.762925523000035), (-2.4264216789999296, 56.751288153000075), (-2.4359431629999335, 56.74038320500006), (-2.4407445949999556, 56.73484935100004), (-2.4516495429999168, 56.69098541900007), (-2.4637345039999445, 56.67877838700008), (-2.4774063789999445, 56.66868724200003), (-2.487456834999932, 56.65387604400007), (-2.4875382149999155, 56.64606354400007), (-2.481271938999953, 56.63239166900007), (-2.480620897999927, 56.62653229400007), (-2.4861954419999392, 56.619574286000045), (-2.504058397999927, 56.60883209800005), (-2.514556443999936, 56.591498114000046), (-2.530018683999913, 56.58075592700004), (-2.623768683999913, 56.543402411000045), (-2.6409399079999503, 56.522365627000056), (-2.6613663399999155, 56.51422760600008), (-2.6997777989999463, 56.50364817900004), (-2.708729620999918, 56.49599844000005), (-2.7276505199999406, 56.46954987200007), (-2.737294074999909, 56.46702708500004), (-2.74437415299991, 56.46954987200007), (-2.752308722999942, 56.47361888200004), (-2.764800584999932, 56.47573476800005), (-2.819325324999909, 56.47129954600007), (-3.055653449999909, 56.45213450700004), (-3.0606176419999542, 56.45172760600008), (-3.099273240999935, 56.44188060100004), (-3.1339005199999406, 56.426947333000044), (-3.238189256999931, 56.36774323100008), (-3.280181443999936, 56.35789622600004), (-3.3234757149999155, 56.36591217700004), (-3.311512824999909, 56.35651276200008), (-3.294016079999949, 56.352769273000035), (-3.2515356109999516, 56.352850653000075), (-3.230620897999927, 56.35602448100008), (-3.188384568999936, 56.37018463700008), (-3.149566209999932, 56.37555573100008), (-2.950266079999949, 56.43187083500004), (-2.9399307929999168, 56.43854401200008), (-2.930653449999909, 56.44806549700007), (-2.909087693999936, 56.45571523600006), (-2.88499915299991, 56.45799388200004), (-2.867909308999913, 56.45184967700004), (-2.8500870429999168, 56.44204336100006), (-2.8147680329999503, 56.44041575700004), (-2.8028051419999542, 56.42796458500004), (-2.800892706999946, 56.40892161700003), (-2.808257615999935, 56.391058661000045), (-2.8216039699999556, 56.376166083000044), (-2.837554490999935, 56.36591217700004), (-2.8129776679999168, 56.36591217700004), (-2.809193488999938, 56.36286041900007), (-2.8047582669999542, 56.34910716400003), (-2.8028051419999542, 56.345404364000046), (-2.7914932929999168, 56.34247467700004), (-2.7826228509999282, 56.34162018400008), (-2.7752579419999392, 56.33942291900007), (-2.768625454999949, 56.33234284100007), (-2.6771541009999282, 56.32843659100007), (-2.655262824999909, 56.32217031500005), (-2.621205206999946, 56.30442942900004), (-2.613189256999931, 56.30190664300005), (-2.5768123039999296, 56.28392161700003), (-2.5768123039999296, 56.277777411000045), (-2.6301163399999155, 56.24852122600004), (-2.648345506999931, 56.22870514500005), (-2.672027147999927, 56.22239817900004), (-2.7202042309999115, 56.21629466400003), (-2.7835994129999335, 56.19196198100008), (-2.8061417309999115, 56.188381252000056), (-2.8307185539999296, 56.190741278000075), (-2.8920792309999115, 56.20888906500005), (-2.940052863999938, 56.209418036000045), (-2.9643448559999115, 56.20563385600008), (-2.9746801419999542, 56.19830963700008), (-2.982411261999914, 56.189113674000055), (-3.0355525379999335, 56.16791413000004), (-3.0910538399999155, 56.13226959800005), (-3.107533331999946, 56.12689850500004), (-3.127552863999938, 56.12287018400008), (-3.138295050999943, 56.112209377000056), (-3.152251756999931, 56.07851797100005), (-3.1635636059999115, 56.06386953300006), (-3.1783748039999296, 56.05809153900003), (-3.2484431629999335, 56.055975653000075), (-3.268381313999953, 56.05093008000006), (-3.3030492829999503, 56.037543036000045), (-3.342681443999936, 56.02716705900008), (-3.381825324999909, 56.02338288000004), (-3.420969204999949, 56.02488841400003), (-3.5825902989999463, 56.05174388200004), (-3.671498175999943, 56.050848700000074), (-3.710031704999949, 56.05809153900003), (-3.7454320949999556, 56.07221100500004), (-3.7464900379999335, 56.072780666000085), (-3.782215949999909, 56.09218984600005), (-3.8031306629999335, 56.107123114000046), (-3.817005988999938, 56.11225006700005), (-3.8374731109999516, 56.112616278000075), (-3.8374731109999516, 56.10643138200004), (-3.777699347999942, 56.08283112200007), (-3.769154425999943, 56.07514069200005), (-3.7608536449999406, 56.07245514500005), (-3.7264298169999392, 56.03803131700005), (-3.721424933999913, 56.03070709800005), (-3.712635870999918, 56.028998114000046), (-3.693470831999946, 56.03115469000005), (-3.6866348949999406, 56.03070709800005), (-3.6795548169999392, 56.025458075000074), (-3.674794074999909, 56.01870351800005), (-3.6682836579999503, 56.01276276200008), (-3.656239386999914, 56.010199286000045), (-3.599720831999946, 56.017238674000055), (-3.5773819649999155, 56.01703522300005), (-3.405425584999932, 55.98973216400003), (-3.3582657539999445, 55.98973216400003), (-3.340891079999949, 55.99445221600007), (-3.331044074999909, 55.99408600500004), (-3.320423956999946, 55.986029364000046), (-3.303456183999913, 55.97760651200008), (-3.121815558999913, 55.96930573100008), (-3.1147354809999115, 55.966131903000075), (-3.096831834999932, 55.95197174700007), (-3.090728318999936, 55.94818756700005), (-3.078236456999946, 55.94684479400007), (-3.0156957669999542, 55.950506903000075), (-2.9399307929999168, 55.96930573100008), (-2.9166560539999296, 55.98061758000006), (-2.900054490999935, 55.996161200000074), (-2.8828832669999542, 56.00849030200004), (-2.8579809239999463, 56.010199286000045), (-2.863636847999942, 56.02228424700007), (-2.8663223949999406, 56.02676015800006), (-2.8709610669999392, 56.03070709800005), (-2.8527725899999155, 56.03978099200003), (-2.823150193999936, 56.059759833000044), (-2.8028051419999542, 56.06484609600005), (-2.635121222999942, 56.05805084800005), (-2.615956183999913, 56.053168036000045), (-2.587554490999935, 56.030951239000046), (-2.569406704999949, 56.02448151200008), (-2.57835852799991, 56.00800202000005), (-2.583648240999935, 56.00275299700007), (-2.5695694649999155, 55.99994538000004), (-2.5440567699999406, 56.00267161700003), (-2.528960740999935, 55.99656810100004), (-2.5248103509999282, 56.00055573100008), (-2.514556443999936, 56.00576406500005), (-2.507923956999946, 56.010199286000045), (-2.4932755199999406, 56.00153229400007), (-2.4525040359999366, 55.985256252000056), (-2.4143774079999503, 55.97833893400008), (-2.3509415359999366, 55.94818756700005), (-2.307769334999932, 55.93500397300005), (-2.146839972999942, 55.917303778000075), (-2.1380102199999556, 55.91461823100008), (-2.132557745999918, 55.90643952000005), (-2.13109290299991, 55.89720286700003), (-2.1287735669999392, 55.88979726800005), (-2.1209610669999392, 55.886704820000034), (-2.0994766919999392, 55.88178131700005), (-2.080189581999946, 55.86937083500004), (-2.0228572259999282, 55.80548737200007), (-2.009673631999931, 55.79083893400008), (-1.8778376939999362, 55.69489166900007), (-1.8631892569999309, 55.67161692900004), (-1.8530981109999516, 55.65932851800005), (-1.8315323559999115, 55.65070221600007), (-1.8260798819999309, 55.64362213700008), (-1.8216853509999282, 55.636419989000046), (-1.8164770169999542, 55.632879950000074), (-1.8071182929999168, 55.63450755400004), (-1.8007706369999141, 55.63922760600008), (-1.7962947259999282, 55.644232489000046), (-1.7925919259999432, 55.646551825000074), (-1.781402147999927, 55.64565664300005), (-1.768625454999949, 55.641913153000075), (-1.7564998039999296, 55.63361237200007), (-1.7476700509999432, 55.619208075000074), (-1.7679744129999335, 55.619208075000074), (-1.7679744129999335, 55.612982489000046), (-1.7559708319999459, 55.60887278900003), (-1.720855272999927, 55.614569403000075), (-1.6991267569999309, 55.612982489000046), (-1.6308487619999141, 55.58510976800005), (-1.6308487619999141, 55.57827383000006), (-1.6363419259999432, 55.57168203300006), (-1.6346736319999309, 55.56439850500004), (-1.6276749339999128, 55.55711497600004), (-1.6171768869999141, 55.55027903900003), (-1.6308487619999141, 55.544134833000044), (-1.6308487619999141, 55.53729889500005), (-1.6222224599999322, 55.534084377000056), (-1.6029353509999282, 55.52362702000005), (-1.6029353509999282, 55.516791083000044), (-1.6113175119999141, 55.50804271000004), (-1.6063533189999362, 55.503241278000075), (-1.5963435539999296, 55.49990469000005), (-1.5893448559999115, 55.49567291900007), (-1.5849503249999088, 55.483710028000075), (-1.5813695949999556, 55.41665273600006), (-1.5831192699999406, 55.40692780200004), (-1.5882869129999335, 55.39057038000004), (-1.5891007149999155, 55.385199286000045), (-1.5893448559999115, 55.37653229400007), (-1.5833227199999556, 55.354722398000035), (-1.5585831369999141, 55.32892487200007), (-1.5558162099999322, 55.31134674700007), (-1.5570369129999335, 55.306626695000034), (-1.5589900379999335, 55.302069403000075), (-1.5619197259999282, 55.29779694200005), (-1.5657445949999556, 55.29364655200004), (-1.570057745999918, 55.28620026200008), (-1.5682266919999392, 55.27960846600007), (-1.5642797519999476, 55.27326080900008), (-1.5620824859999516, 55.26666901200008), (-1.5564672519999476, 55.25503164300005), (-1.5439346999999088, 55.24388255400004), (-1.5209854809999115, 55.229396877000056), (-1.5291641919999392, 55.21625397300005), (-1.5240779289999296, 55.21010976800005), (-1.514271613999938, 55.204779364000046), (-1.507964647999927, 55.194647528000075), (-1.510812954999949, 55.184759833000044), (-1.5175675119999141, 55.176214911000045), (-1.5221248039999296, 55.16746653900003), (-1.517933722999942, 55.157131252000056), (-1.5007218089999128, 55.141791083000044), (-1.4959610669999392, 55.13458893400008), (-1.492543097999942, 55.112982489000046), (-1.4837540359999366, 55.09170156500005), (-1.4800919259999432, 55.08539459800005), (-1.4762263659999348, 55.083644924000055), (-1.4632869129999335, 55.08030833500004), (-1.459584113999938, 55.07859935100004), (-1.458078579999949, 55.07575104400007), (-1.4547013009999432, 55.067572333000044), (-1.438303188999953, 55.042303778000075), (-1.4291886059999115, 55.033270575000074), (-1.4240616529999102, 55.02435944200005), (-1.4195043609999516, 55.011704820000034), (-1.412912563999953, 55.00031159100007), (-1.4015193349999322, 54.995428778000075), (-1.398182745999918, 54.992621161000045), (-1.3702286449999406, 54.97553131700005), (-1.3626602859999366, 54.96478913000004), (-1.3617244129999335, 54.958685614000046), (-1.3635147779999102, 54.95425039300005), (-1.3640030589999128, 54.94818756700005), (-1.3628637359999516, 54.92593008000006), (-1.3603409499999088, 54.91705963700008), (-1.3531388009999432, 54.91351959800005), (-1.355824347999942, 54.904282945000034), (-1.2967830069999309, 54.77993398600006), (-1.2754613919999542, 54.74843984600005), (-1.2404679029999102, 54.72166575700004), (-1.2250870429999168, 54.71503327000005), (-1.172230597999942, 54.701239325000074), (-1.172230597999942, 54.693793036000045), (-1.1926163399999155, 54.693793036000045), (-1.192453579999949, 54.68927643400008), (-1.1907852859999366, 54.68618398600006), (-1.1851700509999432, 54.68008047100005), (-1.1827286449999406, 54.67206452000005), (-1.1788223949999406, 54.66474030200004), (-1.172922329999949, 54.65835195500006), (-1.1647029289999296, 54.652777411000045), (-1.172922329999949, 54.644191799000055), (-1.1824845039999445, 54.63922760600008), (-1.2062882149999155, 54.63296133000006), (-1.203724738999938, 54.62571849200003), (-1.1988419259999432, 54.62156810100004), (-1.1918025379999335, 54.61977773600006), (-1.1821182929999168, 54.61928945500006), (-1.1793513659999348, 54.62091705900008), (-1.1784561839999128, 54.624212958000044), (-1.1769913399999155, 54.62677643400008), (-1.172230597999942, 54.62612539300005), (-1.1695857409999348, 54.62360260600008), (-1.1654353509999282, 54.61871979400007), (-1.1629532539999445, 54.61395905200004), (-1.1647029289999296, 54.61180247600004), (-1.1526586579999503, 54.61318594000005), (-1.1467179029999102, 54.618475653000075), (-1.1380509109999366, 54.646551825000074), (-1.1205948559999115, 54.63300202000005), (-1.1036270819999459, 54.624660549000055), (-1.0842179029999102, 54.620428778000075), (-1.042062954999949, 54.61709219000005), (-0.9934789699999556, 54.59813060100004), (-0.7879125639999529, 54.56077708500004), (-0.5629776679999168, 54.47736237200007), (-0.5346573559999115, 54.461004950000074), (-0.5228572259999282, 54.44708893400008), (-0.5217992829999503, 54.43805573100008), (-0.5235896479999269, 54.43024323100008), (-0.5204158189999362, 54.42007070500006), (-0.5099991529999102, 54.41156647300005), (-0.47679602799991017, 54.39720286700003), (-0.46275794199993925, 54.38898346600007), (-0.4477432929999168, 54.37319570500006), (-0.43057206899993616, 54.349310614000046), (-0.4184464179999168, 54.32404205900008), (-0.41803951699995423, 54.303941148000035), (-0.4145401679999168, 54.297308661000045), (-0.4090063139999529, 54.29075755400004), (-0.4011938139999529, 54.28563060100004), (-0.39073645699994586, 54.28351471600007), (-0.3948868479999419, 54.273138739000046), (-0.39757239499994057, 54.269191799000055), (-0.3892716139999379, 54.26406484600005), (-0.3704727859999366, 54.247707424000055), (-0.3627823559999115, 54.24249909100007), (-0.3220108709999181, 54.23607005400004), (-0.31191972599992823, 54.231634833000044), (-0.30011959499995555, 54.224676825000074), (-0.2770889959999181, 54.21775950700004), (-0.26960201699995423, 54.20766836100006), (-0.26256262899994454, 54.18109772300005), (-0.2603653639999379, 54.176988023000035), (-0.2338761059999115, 54.16046784100007), (-0.11143958199994586, 54.13157786700003), (-0.07551021999995555, 54.11212799700007), (-0.16392981699993925, 54.08340078300006), (-0.1946915359999366, 54.06232330900008), (-0.2194718089999128, 54.022772528000075), (-0.1974177729999269, 53.99481842700004), (-0.1686905589999128, 53.929348049000055), (-0.1511124339999128, 53.899318752000056), (-0.045155402999910166, 53.801214911000045), (0.13347415500004445, 53.642645575000074), (0.1492619150000678, 53.60960521000004), (0.13689212300005238, 53.57713450700004), (0.13119550900006516, 53.573431708000044), (0.1096297540000819, 53.56289297100005), (0.1313582690000885, 53.59369538000004), (0.1359969410000872, 53.610663153000075), (0.12020918100006384, 53.61810944200005), (0.09945722700007309, 53.622300523000035), (0.056162957000083225, 53.64126211100006), (0.034515821000070446, 53.64606354400007), (0.014821811000047092, 53.64325592700004), (-0.023915167999916775, 53.62885163000004), (-0.04503333199994586, 53.62555573100008), (-0.06940670499994894, 53.626939195000034), (-0.09227454299991678, 53.63104889500005), (-0.11261959499995555, 53.63751862200007), (-0.1300349599999322, 53.64606354400007), (-0.2253311839999128, 53.719916083000044), (-0.2603653639999379, 53.73541901200008), (-0.2956436839999128, 53.738796291000085), (-0.3051651679999168, 53.73969147300005), (-0.4311417309999115, 53.71430084800005), (-0.4496964179999168, 53.71430084800005), (-0.5104874339999128, 53.71430084800005), (-0.5444229809999115, 53.70945872600004), (-0.5515030589999128, 53.71116771000004), (-0.5762426419999542, 53.72565338700008), (-0.5791723299999489, 53.72797272300005), (-0.6370336579999503, 53.73200104400007), (-0.6583552729999269, 53.72797272300005), (-0.7264705069999309, 53.70062897300005), (-0.7173559239999463, 53.69867584800005), (-0.7085668609999516, 53.695746161000045), (-0.7001846999999088, 53.691839911000045), (-0.6924535799999489, 53.68699778900003), (-0.6774796209999181, 53.702826239000046), (-0.6498103509999282, 53.710598049000055), (-0.6195369129999335, 53.71185944200005), (-0.5961807929999168, 53.70807526200008), (-0.5554906889999529, 53.69049713700008), (-0.5447485019999476, 53.683579820000034), (-0.5299373039999296, 53.67767975500004), (-0.5140274729999419, 53.681301174000055), (-0.48631751199991413, 53.69448476800005), (-0.3072403639999379, 53.71426015800006), (-0.27936764199995423, 53.707098700000074), (-0.2603653639999379, 53.68699778900003), (-0.1886287099999322, 53.620428778000075), (-0.1440323559999115, 53.606634833000044), (-0.11318925699993088, 53.58462148600006), (-0.09593665299991017, 53.57713450700004), (-0.06094316299993352, 53.57396067900004), (-0.0466202459999181, 53.570379950000074), (9.199300006912381e-05, 53.53534577000005), (0.0959578790000819, 53.488348700000074), (0.11508222700007309, 53.48322174700007), (0.1340438160000872, 53.48061758000006), (0.15186608200008322, 53.475816148000035), (0.1678166020000731, 53.464504299000055), (0.17090905000009116, 53.457017320000034), (0.1731063160000872, 53.44676341400003), (0.17579186300008587, 53.43768952000005), (0.1814884770000731, 53.43374258000006), (0.1906030610000471, 53.43187083500004), (0.21949303500008455, 53.41950104400007), (0.21192467500009116, 53.41266510600008), (0.2293400400000678, 53.40477122600004), (0.24488366000008455, 53.39093659100007), (0.2561141290000819, 53.375067450000074), (0.26042728000004445, 53.36147695500006), (0.34213300900006516, 53.22630442900004), (0.35621178500008455, 53.18854401200008), (0.3566186860000471, 53.145738023000035), (0.3357853520000731, 53.093451239000046), (0.32984459700008983, 53.08649323100008), (0.31869550900006516, 53.083685614000046), (0.29883873800008587, 53.08120351800005), (0.2824813160000872, 53.07485586100006), (0.19304446700004974, 53.02008698100008), (0.17448978000004445, 53.01544830900008), (0.16081790500004445, 53.008978583000044), (0.08212324300006912, 52.938666083000044), (0.061167839000063395, 52.924994208000044), (0.03760826900008851, 52.919175523000035), (0.022146030000044448, 52.91258372600004), (0.008555535000084546, 52.89862702000005), (0.010264519000088512, 52.88646067900004), (0.04066002700005811, 52.88507721600007), (0.09253991000008455, 52.89252350500004), (0.10564212300005238, 52.88934967700004), (0.13347415500004445, 52.87518952000005), (0.14714603000004445, 52.87201569200005), (0.17090905000009116, 52.86212799700007), (0.22242272200008983, 52.813666083000044), (0.24675540500004445, 52.79572174700007), (0.2644962900000678, 52.80369700700004), (0.2856551440000885, 52.805568752000056), (0.32553144600007045, 52.803168036000045), (0.34180748800008587, 52.79743073100008), (0.36988366000008455, 52.77301666900007), (0.38453209700008983, 52.76837799700007), (0.38453209700008983, 52.77521393400008), (0.37924238400006516, 52.79083893400008), (0.39942467500009116, 52.80951569200005), (0.42554772200008983, 52.827378648000035), (0.4386499360000471, 52.840725002000056), (0.44402103000004445, 52.86505768400008), (0.45671634200004974, 52.89199453300006), (0.47234134200004974, 52.916449286000045), (0.48568769600007045, 52.93349844000005), (0.5202742850000845, 52.95526764500005), (0.5695906910000872, 52.96930573100008), (0.6233830090000652, 52.97565338700008), (0.6718856130000859, 52.97443268400008), (0.6643986340000652, 52.98187897300005), (0.6847436860000471, 52.986395575000074), (0.7067977220000898, 52.98322174700007), (0.7291772800000444, 52.97748444200005), (0.7504988940000885, 52.97443268400008), (0.8357039720000898, 52.97443268400008), (0.8754988940000885, 52.96816640800006), (0.9210718110000471, 52.95465729400007), (0.9684350920000497, 52.94749583500004), (1.013926629000082, 52.960150458000044), (1.0034285820000832, 52.96474844000005), (0.9915470710000704, 52.96747467700004), (0.9790145190000885, 52.968410549000055), (0.9660750660000872, 52.96759674700007), (0.9660750660000872, 52.97443268400008), (1.2746688160000872, 52.92918528900003), (1.3960067070000832, 52.89142487200007), (1.6442163420000497, 52.775824286000045), (1.6733504570000832, 52.75568268400008), (1.6970320970000898, 52.73102448100008), (1.7158309250000912, 52.68374258000006), (1.7341414720000898, 52.65460846600007), (1.747243686000047, 52.62518952000005), (1.7407332690000885, 52.60390859600005), (1.7468367850000845, 52.58852773600006), (1.7487085300000444, 52.568793036000045), (1.7475692070000832, 52.53278229400007), (1.7711694670000497, 52.48590729400007), (1.7671004570000832, 52.47695547100005), (1.7544051440000885, 52.46735260600008), (1.7292586600000845, 52.41559479400007), (1.7301538420000497, 52.405910549000055), (1.7278751960000704, 52.39630768400008), (1.6836043630000859, 52.32453034100007), (1.6518660820000832, 52.289129950000074), (1.6411238940000885, 52.28180573100008), (1.6305444670000497, 52.27045319200005), (1.6282658210000704, 52.24481842700004), (1.6308699880000859, 52.19977448100008), (1.6254988940000885, 52.18036530200004), (1.6074324880000859, 52.14594147300005), (1.6035262380000859, 52.127834377000056), (1.5892033210000704, 52.100816148000035), (1.5875757170000497, 52.08698151200008), (1.582286004000082, 52.08148834800005), (1.5036727220000898, 52.060980536000045), (1.4868270190000885, 52.04901764500005), (1.4720158210000704, 52.05621979400007), (1.4668074880000859, 52.04800039300005), (1.4638778000000912, 52.035142320000034), (1.4558211600000845, 52.028509833000044), (1.4489852220000898, 52.02496979400007), (1.4248153000000912, 52.00185781500005), (1.3548283210000704, 51.95404694200005), (1.3435164720000898, 51.94285716400009), (1.332286004000082, 51.94009023600006), (1.2644149100000845, 51.99437083500004), (1.2348738940000885, 52.00031159100007), (1.1852319670000497, 52.025091864000046), (1.1578882170000497, 52.028509833000044), (1.1578882170000497, 52.02167389500005), (1.1935327480000524, 52.00079987200007), (1.2143660820000832, 51.991441148000035), (1.2602645190000885, 51.984808661000045), (1.2707625660000872, 51.98151276200008), (1.2751570970000898, 51.976996161000045), (1.2744246750000912, 51.96088288000004), (1.2710067070000832, 51.95644765800006), (1.2507430350000845, 51.95962148600006), (1.2389429050000444, 51.958644924000055), (1.2176212900000678, 51.954331773000035), (1.2057397800000444, 51.95343659100007), (1.193207227000073, 51.955511786000045), (1.1652938160000872, 51.96702708500004), (1.1430770190000885, 51.966050523000035), (1.0944930350000845, 51.955959377000056), (1.0691024100000845, 51.95343659100007), (1.0954695970000898, 51.945746161000045), (1.2620548840000652, 51.939154364000046), (1.2819930350000845, 51.946600653000075), (1.278493686000047, 51.92792389500005), (1.1995548840000652, 51.87767161700003), (1.2122501960000704, 51.87164948100008), (1.2278751960000704, 51.86737702000005), (1.2644149100000845, 51.86399974200003), (1.2747501960000704, 51.870306708000044), (1.2822371750000912, 51.880560614000046), (1.2866317070000832, 51.88165924700007), (1.288259311000047, 51.860581773000035), (1.2763778000000912, 51.84479401200008), (1.2192488940000885, 51.811835028000075), (1.167816602000073, 51.790228583000044), (1.1354272800000444, 51.78172435100004), (1.0654403000000912, 51.77529531500005), (1.0466414720000898, 51.777044989000046), (1.0372827480000524, 51.78217194200005), (1.021332227000073, 51.80255768400008), (0.9887801440000885, 51.83026764500005), (0.9798283210000704, 51.84357330900008), (0.9770613940000885, 51.82461172100005), (0.9620874360000471, 51.813788153000075), (0.9251408210000704, 51.80255768400008), (0.8942977220000898, 51.78461334800005), (0.8869735040000819, 51.782131252000056), (0.8864038420000497, 51.776678778000075), (0.8834741550000444, 51.76471588700008), (0.8789168630000859, 51.75275299700007), (0.8737085300000444, 51.747300523000035), (0.8619897800000444, 51.74555084800005), (0.8459578790000819, 51.736761786000045), (0.8357039720000898, 51.733710028000075), (0.8234969410000872, 51.73383209800005), (0.8014429050000444, 51.73969147300005), (0.7917586600000845, 51.74115631700005), (0.7671004570000832, 51.739447333000044), (0.7208764980000524, 51.728176174000055), (0.6985783210000704, 51.720038153000075), (0.7142033210000704, 51.715277411000045), (0.7324324880000859, 51.713771877000056), (0.7492781910000872, 51.70848216400009), (0.7607528000000912, 51.692694403000075), (0.7890731130000859, 51.710150458000044), (0.8530379570000832, 51.71889883000006), (0.8835555350000845, 51.72687409100007), (0.9123641290000819, 51.741522528000075), (0.9300236340000652, 51.74359772300005), (0.9455672540000819, 51.733710028000075), (0.9474389980000524, 51.72524648600006), (0.9445906910000872, 51.71548086100006), (0.9404403000000912, 51.70799388200004), (0.9381616550000444, 51.706366278000075), (0.9401961600000845, 51.698431708000044), (0.9440210300000444, 51.69057851800005), (0.9518335300000444, 51.67841217700004), (0.9417423840000652, 51.673041083000044), (0.9379988940000885, 51.664496161000045), (0.9381616550000444, 51.64126211100006), (0.9347436860000471, 51.63589101800005), (0.9267684250000912, 51.630926825000074), (0.9114689460000704, 51.62384674700007), (0.9384871750000912, 51.624986070000034), (0.9480900400000678, 51.621527411000045), (0.9518335300000444, 51.61701080900008), (0.9244897800000444, 51.588324286000045), (0.8733016290000819, 51.559475002000056), (0.8282983730000524, 51.541856187000064), (0.8162541020000731, 51.537176825000074), (0.7712508470000898, 51.52826569200005), (0.6920679050000444, 51.536322333000044), (0.6643986340000652, 51.53506094000005), (0.6637475920000497, 51.53554922100005), (0.6505639980000524, 51.53579336100006), (0.6466577480000524, 51.53534577000005), (0.6440535820000832, 51.53506094000005), (0.6427514980000524, 51.53351471600007), (0.6233830090000652, 51.52204010600008), (0.6086531910000872, 51.51898834800005), (0.5952254570000832, 51.51862213700008), (0.5822860040000819, 51.51654694200005), (0.5688582690000885, 51.50836823100008), (0.5527449880000859, 51.51797109600005), (0.5472111340000652, 51.51772695500006), (0.5254012380000859, 51.516913153000075), (0.45606530000009116, 51.505560614000046), (0.45085696700004974, 51.49827708500004), (0.44800866000008455, 51.48822663000004), (0.4416610040000819, 51.47703685100004), (0.42847741000008455, 51.46710846600007), (0.41407311300008587, 51.46190013200004), (0.39918053500008455, 51.45840078300006), (0.38453209700008983, 51.453111070000034), (0.4484155610000471, 51.45994700700004), (0.45679772200008983, 51.46312083500004), (0.4614363940000885, 51.47016022300005), (0.46485436300008587, 51.47724030200004), (0.4695744150000678, 51.48041413000004), (0.5348413420000497, 51.49168528900009), (0.6948348320000832, 51.47703685100004), (0.7094832690000885, 51.47052643400008), (0.7219344410000872, 51.456284898000035), (0.7231551440000885, 51.44672272300005), (0.7131453790000819, 51.44122955900008), (0.6923934250000912, 51.439520575000074), (0.6565047540000819, 51.444525458000044), (0.6409611340000652, 51.44415924700007), (0.6093856130000859, 51.425116278000075), (0.5727645190000885, 51.419582424000055), (0.5545353520000731, 51.412176825000074), (0.5622664720000898, 51.40656159100007), (0.5691024100000845, 51.399603583000044), (0.5765080090000652, 51.39362213700008), (0.5859481130000859, 51.391058661000045), (0.6718856130000859, 51.391058661000045), (0.7129012380000859, 51.38422272300005), (0.7049259770000731, 51.39598216400009), (0.7003686860000471, 51.409816799000055), (0.7053328790000819, 51.41950104400007), (0.7264103520000731, 51.41901276200008), (0.7283634770000731, 51.406236070000034), (0.7392684250000912, 51.387925523000035), (0.7534285820000832, 51.371527411000045), (0.7644149100000845, 51.36440664300005), (0.9772241550000444, 51.34918854400007), (1.1009220710000704, 51.37323639500005), (1.4238387380000859, 51.39207591400009), (1.4482528000000912, 51.382879950000074), (1.4391382170000497, 51.35008372600004), (1.4355574880000859, 51.343736070000034), (1.430837436000047, 51.33779531500005), (1.4251408210000704, 51.33295319200005), (1.4186304050000444, 51.32965729400007), (1.3829858730000524, 51.329779364000046), (1.3776147800000444, 51.326239325000074), (1.3806258470000898, 51.304754950000074), (1.387868686000047, 51.28790924700007), (1.4043074880000859, 51.261379299000055), (1.4130965500000912, 51.22174713700008), (1.4047957690000885, 51.18353913000004), (1.3844507170000497, 51.151678778000075), (1.3571883470000898, 51.13100820500006), (1.2903751960000704, 51.116522528000075), (1.2629500660000872, 51.10325755400004), (1.2516382170000497, 51.10252513200004), (1.2299910820000832, 51.10370514500005), (1.2181095710000704, 51.10097890800006), (1.2082625660000872, 51.09467194200005), (1.1997176440000885, 51.087591864000046), (1.1920679050000444, 51.08258698100008), (1.1722111340000652, 51.077378648000035), (1.1067000660000872, 51.07636139500005), (1.0871688160000872, 51.07298411700003), (1.0669051440000885, 51.06439850500004), (1.027598504000082, 51.04165273600006), (0.9764103520000731, 50.99445221600007), (0.9664819670000497, 50.98273346600007), (0.9690861340000652, 50.95685455900008), (0.9798283210000704, 50.91815827000005), (0.9451603520000731, 50.909369208000044), (0.8698022800000444, 50.925116278000075), (0.8022567070000832, 50.93919505400004), (0.7624617850000845, 50.930894273000035), (0.6643986340000652, 50.870306708000044), (0.6241968110000471, 50.858710028000075), (0.4074813160000872, 50.829331773000035), (0.3702905610000471, 50.818793036000045), (0.36524498800008587, 50.81899648600006), (0.35425866000008455, 50.80963776200008), (0.34441165500004445, 50.79905833500004), (0.3422957690000885, 50.79515208500004), (0.3081160820000832, 50.780951239000046), (0.2710067070000832, 50.747381903000075), (0.23389733200008322, 50.74701569200005), (0.2141219410000872, 50.748928127000056), (0.16830488400006516, 50.759833075000074), (0.1573999360000471, 50.761053778000075), (0.12208092500009116, 50.76080963700008), (0.11304772200008983, 50.76414622600004), (0.09555097700007309, 50.775051174000055), (0.07703698000005943, 50.778998114000046), (0.034515821000070446, 50.780951239000046), (0.01754804800009424, 50.784857489000046), (-0.17316646999995555, 50.829006252000056), (-0.20612545499994894, 50.83104075700004), (-0.20889238199993088, 50.83010488500008), (-0.2331436839999128, 50.821926174000055), (-0.2696833979999269, 50.831284898000035), (-0.39757239499994057, 50.802069403000075), (-0.5689591139999379, 50.802069403000075), (-0.7327367829999503, 50.767279364000046), (-0.7415665359999366, 50.769232489000046), (-0.7498673169999392, 50.773871161000045), (-0.7582087879999335, 50.77708567900004), (-0.7675675119999141, 50.774725653000075), (-0.7731013659999348, 50.76601797100005), (-0.7662654289999296, 50.74713776200008), (-0.7709854809999115, 50.73688385600008), (-0.7899470689999362, 50.73004791900007), (-0.8128149079999503, 50.73476797100005), (-0.9041235019999476, 50.77187734600005), (-0.9114884109999366, 50.77781810100004), (-0.9058731759999432, 50.78803131700005), (-0.8924861319999309, 50.794623114000046), (-0.8636368479999419, 50.802069403000075), (-0.8636368479999419, 50.808254299000055), (-0.8736059239999463, 50.812933661000045), (-0.8931371739999463, 50.82534414300005), (-0.9046931629999335, 50.829331773000035), (-0.9095352859999366, 50.82599518400008), (-0.9217016269999476, 50.821600653000075), (-0.9289444649999155, 50.82282135600008), (-0.9190160799999489, 50.83616771000004), (-0.9297989569999459, 50.83999258000006), (-0.9391983709999181, 50.84324778900009), (-0.9707738919999542, 50.846991278000075), (-0.9948624339999128, 50.84707265800006), (-1.0018611319999309, 50.84711334800005), (-1.0207413399999155, 50.84365469000005), (-1.033558722999942, 50.82591380400004), (-1.0426326159999348, 50.80190664300005), (-1.0562231109999516, 50.78302643400008), (-1.0827530589999128, 50.780951239000046), (-1.1030167309999115, 50.79547760600008), (-1.0936173169999392, 50.812933661000045), (-1.0753067699999406, 50.83002350500004), (-1.069162563999953, 50.84365469000005), (-1.0873103509999282, 50.84979889500005), (-1.0881241529999102, 50.84975820500006), (-1.1498103509999282, 50.84666575700004), (-1.1647029289999296, 50.84365469000005), (-1.129709438999953, 50.825100002000056), (-1.1237686839999128, 50.818793036000045), (-1.1212052069999459, 50.79938385600008), (-1.1249080069999309, 50.788723049000055), (-1.1380509109999366, 50.780951239000046), (-1.1511124339999128, 50.78139883000006), (-1.1693416009999282, 50.78587474200003), (-1.1856176419999542, 50.79242584800005), (-1.1926163399999155, 50.79865143400008), (-1.1992895169999542, 50.807928778000075), (-1.231516079999949, 50.81891510600008), (-1.2551977199999556, 50.83193594000005), (-1.288156704999949, 50.839178778000075), (-1.3014216789999296, 50.84365469000005), (-1.3185929029999102, 50.85691966400009), (-1.338937954999949, 50.872707424000055), (-1.4492895169999542, 50.91205475500004), (-1.4664200509999432, 50.91815827000005), (-1.4664200509999432, 50.91193268400008), (-1.4564509759999282, 50.90875885600008), (-1.4379776679999168, 50.90131256700005), (-1.4256078769999476, 50.900091864000046), (-1.4011124339999128, 50.88117096600007), (-1.323068813999953, 50.82575104400007), (-1.3142797519999476, 50.812160549000055), (-1.3172908189999362, 50.80023834800005), (-1.3398331369999141, 50.79515208500004), (-1.4039607409999348, 50.79157135600008), (-1.4186905589999128, 50.788397528000075), (-1.4113663399999155, 50.78489817900004), (-1.4049373039999296, 50.780951239000046), (-1.4049373039999296, 50.774725653000075), (-1.4505102199999556, 50.76935455900008), (-1.4762263659999348, 50.76341380400004), (-1.4875382149999155, 50.75771719000005), (-1.491932745999918, 50.75726959800005), (-1.5247289699999556, 50.761053778000075), (-1.5571996739999463, 50.72329336100006), (-1.559396938999953, 50.71922435100004), (-1.5611873039999296, 50.71898021000004), (-1.5807185539999296, 50.722642320000034), (-1.6021215489999463, 50.731756903000075), (-1.6706436839999128, 50.74005768400008), (-1.672922329999949, 50.74005768400008), (-1.6930232409999348, 50.739935614000046), (-1.7150772779999102, 50.73578522300005), (-1.7535294259999432, 50.72284577000005), (-1.7717179029999102, 50.72011953300006), (-1.7974340489999463, 50.723171291000085), (-1.8350723949999406, 50.72768789300005), (-1.8574112619999141, 50.72695547100005), (-1.8773494129999335, 50.72284577000005), (-1.8963516919999392, 50.71629466400009), (-1.8968806629999335, 50.716050523000035), (-1.9138891269999476, 50.70742422100005), (-1.9291072259999282, 50.69586823100008), (-1.9400121739999463, 50.69082265800006), (-1.9443253249999088, 50.69765859600005), (-1.946115688999953, 50.707912502000056), (-1.9492895169999542, 50.713324286000045), (-1.9877009759999282, 50.72011953300006), (-2.01390540299991, 50.71893952000005), (-2.0219620429999168, 50.72011953300006), (-2.0254613919999542, 50.723863023000035), (-2.026193813999953, 50.72508372600004), (-2.0338435539999296, 50.73712799700007), (-2.038970506999931, 50.739935614000046), (-2.0480850899999155, 50.734808661000045), (-2.0826716789999296, 50.69896067900004), (-2.0695694649999155, 50.700100002000056), (-2.0577286449999406, 50.702826239000046), (-2.046620245999918, 50.70726146000004), (-2.0356339179999168, 50.713324286000045), (-2.0141495429999168, 50.688788153000075), (-2.0025121739999463, 50.681301174000055), (-1.984120245999918, 50.67853424700007), (-1.9674373039999296, 50.67865631700005), (-1.9527888659999348, 50.67658112200007), (-1.9458715489999463, 50.668850002000056), (-1.9529516269999476, 50.65184153900009), (-1.9382218089999128, 50.645819403000075), (-1.9324845039999445, 50.64443594000005), (-1.9672745429999168, 50.61709219000005), (-1.965199347999942, 50.60219961100006), (-1.9837133449999556, 50.59662506700005), (-2.065174933999913, 50.59552643400008), (-2.082183397999927, 50.59784577000005), (-2.1573380199999406, 50.62051015800006), (-2.3426407539999445, 50.63377513200004), (-2.377064581999946, 50.64752838700008), (-2.398345506999931, 50.64557526200008), (-2.435902472999942, 50.63751862200007), (-2.447621222999942, 50.62787506700005), (-2.4600723949999406, 50.60651276200008), (-2.465646938999953, 50.585150458000044), (-2.4564509759999282, 50.575506903000075), (-2.4312231109999516, 50.57025788000004), (-2.428700324999909, 50.55756256700005), (-2.4392797519999476, 50.54181549700007), (-2.45335852799991, 50.52765534100007), (-2.4595434239999463, 50.52765534100007), (-2.4603572259999282, 50.56549713700008), (-2.4835098949999406, 50.59039948100008), (-2.6929418609999516, 50.69281647300005), (-2.8648168609999516, 50.73379140800006), (-2.887318488999938, 50.734361070000034), (-2.94554602799991, 50.725816148000035), (-2.9627579419999392, 50.72329336100006), (-2.998199022999927, 50.708238023000035), (-3.021839972999942, 50.70648834800005), (-3.059722459999932, 50.713324286000045), (-3.071359829999949, 50.711004950000074), (-3.0941462879999335, 50.69896067900004), (-3.099232550999943, 50.69708893400008), (-3.115834113999938, 50.68797435100004), (-3.1254776679999168, 50.68528880400004), (-3.135894334999932, 50.68593984600005), (-3.1551407539999445, 50.69135163000004), (-3.1664932929999168, 50.69281647300005), (-3.1856176419999542, 50.690741278000075), (-3.2191462879999335, 50.68081289300005), (-3.2598363919999542, 50.67454661700003), (-3.271392381999931, 50.664496161000045), (-3.280425584999932, 50.65119049700007), (-3.2955623039999296, 50.63751862200007), (-3.368153449999909, 50.61709219000005), (-3.390736456999946, 50.61782461100006), (-3.4075414699999556, 50.62128327000005), (-3.420969204999949, 50.62946198100008), (-3.433338995999918, 50.64443594000005), (-3.446359829999949, 50.66828034100007), (-3.4504288399999155, 50.672308661000045), (-3.453277147999927, 50.67328522300005), (-3.455433722999942, 50.675441799000055), (-3.458607550999943, 50.67755768400008), (-3.4644262359999516, 50.67853424700007), (-3.467762824999909, 50.67641836100006), (-3.468902147999927, 50.67169830900008), (-3.467844204999949, 50.66697825700004), (-3.45531165299991, 50.657904364000046), (-3.4420466789999296, 50.62352122600004), (-3.433338995999918, 50.610256252000056), (-3.451161261999914, 50.59943268400008), (-3.4672745429999168, 50.585598049000055), (-3.4817602199999556, 50.56854889500005), (-3.494862433999913, 50.548163153000075), (-3.505970831999946, 50.520819403000075), (-3.505034959999932, 50.501206773000035), (-3.487456834999932, 50.459418036000045), (-3.509755011999914, 50.45848216400009), (-3.532134568999936, 50.454779364000046), (-3.549427863999938, 50.446519273000035), (-3.556263800999943, 50.43211497600004), (-3.5493057929999168, 50.41559479400007), (-3.531971808999913, 50.410223700000074), (-3.487456834999932, 50.41156647300005), (-3.487456834999932, 50.40477122600004), (-3.4974666009999282, 50.38735586100006), (-3.49828040299991, 50.383693752000056), (-3.5073136059999115, 50.382798570000034), (-3.5149633449999556, 50.37995026200008), (-3.520130988999938, 50.37482330900008), (-3.5269262359999516, 50.34979889500005), (-3.5388891269999476, 50.34442780200004), (-3.5545141269999476, 50.347642320000034), (-3.57054602799991, 50.35639069200005), (-3.577788865999935, 50.334051825000074), (-3.5991104809999115, 50.325832424000055), (-3.6215714179999168, 50.321926174000055), (-3.631988084999932, 50.31232330900008), (-3.6373591789999296, 50.29539622600004), (-3.6475723949999406, 50.27456289300005), (-3.653309699999909, 50.25104401200008), (-3.6456192699999406, 50.22601959800005), (-3.6606339179999168, 50.22101471600007), (-3.700917120999918, 50.21352773600006), (-3.7180069649999155, 50.21238841400009), (-3.740386522999927, 50.21588776200008), (-3.758615688999953, 50.22174713700008), (-3.774240688999953, 50.22296784100007), (-3.788970506999931, 50.21238841400009), (-3.826324022999927, 50.23419830900008), (-3.8841853509999282, 50.280462958000044), (-3.949940558999913, 50.31899648600006), (-3.9610082669999542, 50.322251695000034), (-3.9702042309999115, 50.320746161000045), (-3.995757615999935, 50.311428127000056), (-4.005604620999918, 50.30923086100006), (-4.011341925999943, 50.30695221600007), (-4.024769660999937, 50.29718659100007), (-4.032948370999918, 50.294907945000034), (-4.044056769999941, 50.29645416900007), (-4.054351365999935, 50.30036041900007), (-4.070220506999931, 50.30923086100006), (-4.067941860999952, 50.31281159100007), (-4.064035610999952, 50.322251695000034), (-4.086008266999954, 50.326239325000074), (-4.1082657539999445, 50.33661530200004), (-4.118723110999952, 50.35187409100007), (-4.1049698559999115, 50.37067291900007), (-4.141753709999932, 50.36904531500005), (-4.1527400379999335, 50.37067291900007), (-4.1655167309999115, 50.37636953300006), (-4.171457485999952, 50.382798570000034), (-4.175770636999914, 50.39085521000004), (-4.18382727799991, 50.40106842700004), (-4.191477016999954, 50.417629299000055), (-4.18390865799995, 50.431708075000074), (-4.1703181629999335, 50.44513580900008), (-4.159535285999937, 50.459418036000045), (-4.179432745999918, 50.45307038000004), (-4.189564581999946, 50.45368073100008), (-4.200550910999937, 50.459418036000045), (-4.203684048999946, 50.45140208500004), (-4.204741990999935, 50.44867584800005), (-4.2123917309999115, 50.441473700000074), (-4.222523566999939, 50.43797435100004), (-4.234730597999942, 50.43829987200007), (-4.234730597999942, 50.43211497600004), (-4.2202042309999115, 50.425848700000074), (-4.2161352199999556, 50.415716864000046), (-4.219715949999909, 50.40509674700007), (-4.228505011999914, 50.397365627000056), (-4.2414444649999155, 50.39468008000006), (-4.2899063789999445, 50.397365627000056), (-4.273019985999952, 50.38190338700008), (-4.216175910999937, 50.38776276200008), (-4.1937556629999335, 50.37689850500004), (-4.228505011999914, 50.37067291900007), (-4.228505011999914, 50.36383698100008), (-4.220122850999928, 50.365301825000074), (-4.200550910999937, 50.36383698100008), (-4.207997199999909, 50.35639069200005), (-4.180043097999942, 50.35639069200005), (-4.180043097999942, 50.35016510600008), (-4.191314256999931, 50.34756094000005), (-4.197987433999913, 50.342230536000045), (-4.199126756999931, 50.33539459800005), (-4.1937556629999335, 50.32843659100007), (-4.1937556629999335, 50.322251695000034), (-4.214995897999927, 50.323146877000056), (-4.225697394999941, 50.33539459800005), (-4.235096808999913, 50.34955475500004), (-4.2523494129999335, 50.35639069200005), (-4.337717251999948, 50.37067291900007), (-4.383697068999936, 50.36749909100007), (-4.456206834999932, 50.33820221600007), (-4.4953507149999155, 50.32843659100007), (-4.659820115999935, 50.322251695000034), (-4.659575975999928, 50.32062409100007), (-4.662709113999938, 50.31777578300006), (-4.667795376999948, 50.315334377000056), (-4.673451300999943, 50.31541575700004), (-4.687163865999935, 50.34271881700005), (-4.694325324999909, 50.343451239000046), (-4.700184699999909, 50.34088776200008), (-4.705555792999917, 50.337551174000055), (-4.7113337879999335, 50.33588288000004), (-4.731556769999941, 50.33466217700004), (-4.752105272999927, 50.33030833500004), (-4.763295050999943, 50.32208893400008), (-4.755441860999952, 50.30923086100006), (-4.755441860999952, 50.30174388200004), (-4.7623591789999296, 50.298041083000044), (-4.771636522999927, 50.29157135600008), (-4.779855923999946, 50.28432851800005), (-4.783355272999927, 50.27789948100008), (-4.7818904289999296, 50.27179596600007), (-4.776519334999932, 50.26508209800005), (-4.776519334999932, 50.26080963700008), (-4.788441535999937, 50.24209219000005), (-4.790150519999941, 50.23655833500004), (-4.800160285999937, 50.22955963700008), (-4.849720831999946, 50.23456452000005), (-4.868723110999952, 50.22943756700005), (-4.887318488999938, 50.21499258000006), (-4.904774542999917, 50.20844147300005), (-4.947255011999914, 50.19936758000006), (-4.960682745999918, 50.19049713700008), (-5.002430792999917, 50.14411041900007), (-5.014556443999936, 50.15656159100007), (-5.0203751289999445, 50.19196198100008), (-5.033192511999914, 50.19936758000006), (-5.05296790299991, 50.19578685100004), (-5.053618943999936, 50.18691640800006), (-5.051869269999941, 50.17552317900004), (-5.064564581999946, 50.16461823100008), (-5.064564581999946, 50.15839264500005), (-5.058501756999931, 50.155462958000044), (-5.043446417999917, 50.14411041900007), (-5.051869269999941, 50.144598700000074), (-5.058461066999939, 50.14272695500006), (-5.070790167999917, 50.13727448100008), (-5.08031165299991, 50.13271719000005), (-5.081613735999952, 50.12539297100005), (-5.080962693999936, 50.117173570000034), (-5.085031704999949, 50.10993073100008), (-5.093902147999927, 50.105536200000074), (-5.125965949999909, 50.09634023600006), (-5.114654100999928, 50.09662506700005), (-5.106068488999938, 50.09511953300006), (-5.091867641999954, 50.089504299000055), (-5.086903449999909, 50.089056708000044), (-5.075347459999932, 50.09048086100006), (-5.070790167999917, 50.089504299000055), (-5.068470831999946, 50.085150458000044), (-5.064930792999917, 50.07184479400007), (-5.06086178299995, 50.06903717700004), (-5.056507941999939, 50.060614325000074), (-5.069488084999932, 50.042181708000044), (-5.0980525379999335, 50.01439036700003), (-5.107289191999939, 50.013006903000075), (-5.127430792999917, 50.01544830900008), (-5.139637824999909, 50.01439036700003), (-5.146473761999914, 50.01056549700007), (-5.176136847999942, 49.987941799000055), (-5.18773352799991, 49.964504299000055), (-5.191151495999918, 49.95913320500006), (-5.200103318999936, 49.961371161000045), (-5.210357225999928, 49.96674225500004), (-5.240386522999927, 49.988348700000074), (-5.245228644999941, 49.99310944200005), (-5.2495011059999115, 50.000067450000074), (-5.253041144999941, 50.01264069200005), (-5.25226803299995, 50.020697333000044), (-5.252674933999913, 50.027777411000045), (-5.259755011999914, 50.03766510600008), (-5.2884008449999556, 50.067694403000075), (-5.304351365999935, 50.08026764500005), (-5.323963995999918, 50.089504299000055), (-5.384185350999928, 50.10797760600008), (-5.424712693999936, 50.11273834800005), (-5.458119269999941, 50.125881252000056), (-5.47484290299991, 50.13043854400007), (-5.495676235999952, 50.12962474200003), (-5.521839972999942, 50.12372467700004), (-5.540923631999931, 50.11347077000005), (-5.540638800999943, 50.09975820500006), (-5.5346573559999115, 50.08234284100007), (-5.5455623039999296, 50.06891510600008), (-5.563465949999909, 50.05963776200008), (-5.57843990799995, 50.054754950000074), (-5.61945553299995, 50.046210028000075), (-5.667388475999928, 50.04287344000005), (-5.705148891999954, 50.05231354400007), (-5.715646938999953, 50.08270905200004), (-5.705962693999936, 50.08348216400009), (-5.698801235999952, 50.08539459800005), (-5.694488084999932, 50.089504299000055), (-5.694406704999949, 50.095770575000074), (-5.697092251999948, 50.10053131700005), (-5.700306769999941, 50.103216864000046), (-5.701975063999953, 50.103176174000055), (-5.707386847999942, 50.12201569200005), (-5.70921790299991, 50.13263580900008), (-5.70539303299995, 50.13727448100008), (-5.7035212879999335, 50.140611070000034), (-5.684641079999949, 50.16152578300006), (-5.676747199999909, 50.16502513200004), (-5.647368943999936, 50.17206452000005), (-5.583607550999943, 50.19586823100008), (-5.549427863999938, 50.20351797100005), (-5.5109757149999155, 50.21946849200003), (-5.4891251289999445, 50.21979401200008), (-5.458119269999941, 50.20075104400007), (-5.437977667999917, 50.19432200700004), (-5.417388475999928, 50.202460028000075), (-5.402943488999938, 50.21735260600008), (-5.395863410999937, 50.22724030200004), (-5.39289303299995, 50.23655833500004), (-5.3875626289999445, 50.240301825000074), (-5.351918097999942, 50.240301825000074), (-5.3148494129999335, 50.253607489000046), (-5.200306769999941, 50.33075592700004), (-5.1635636059999115, 50.34723541900007), (-5.1498917309999115, 50.35016510600008), (-5.146473761999914, 50.35529205900008), (-5.145659959999932, 50.366888739000046), (-5.147043423999946, 50.37938060100004), (-5.153675910999937, 50.39948151200008), (-5.142404751999948, 50.40448639500005), (-5.12726803299995, 50.40521881700005), (-5.119740363999938, 50.40477122600004), (-5.0502823559999115, 50.42869700700004), (-5.0481664699999556, 50.43439362200007), (-5.038726365999935, 50.44790273600006), (-5.029774542999917, 50.486761786000045), (-5.0286352199999556, 50.507025458000044), (-5.025257941999939, 50.52423737200007), (-5.015614386999914, 50.53803131700005), (-4.9955948559999115, 50.548163153000075), (-4.975168423999946, 50.548163153000075), (-4.967844204999949, 50.55158112200007), (-4.954823370999918, 50.56122467700004), (-4.947255011999914, 50.56244538000004), (-4.941477016999954, 50.55695221600007), (-4.937123175999943, 50.54531484600005), (-4.9344376289999445, 50.53164297100005), (-4.933583136999914, 50.52024974200003), (-4.926869269999941, 50.52289459800005), (-4.924305792999917, 50.52448151200008), (-4.920521613999938, 50.52765534100007), (-4.902414516999954, 50.52057526200008), (-4.860951300999943, 50.519191799000055), (-4.844838019999941, 50.51406484600005), (-4.855824347999942, 50.527411200000074), (-4.87328040299991, 50.534084377000056), (-4.906239386999914, 50.54197825700004), (-4.921864386999914, 50.55487702000005), (-4.92023678299995, 50.564154364000046), (-4.915191209999932, 50.57249583500004), (-4.920521613999938, 50.58295319200005), (-4.920521613999938, 50.589178778000075), (-4.895659959999932, 50.585923570000034), (-4.821197068999936, 50.589178778000075), (-4.7924698559999115, 50.59520091400009), (-4.7766007149999155, 50.60984935100004), (-4.765044725999928, 50.62799713700008), (-4.7492569649999155, 50.64443594000005), (-4.755441860999952, 50.659369208000044), (-4.751942511999914, 50.67007070500006), (-4.741932745999918, 50.67487213700008), (-4.728138800999943, 50.672308661000045), (-4.657297329999949, 50.71112702000005), (-4.645578579999949, 50.723537502000056), (-4.637806769999941, 50.74115631700005), (-4.619007941999939, 50.754787502000056), (-4.577259894999941, 50.774725653000075), (-4.5501195949999556, 50.80955638200004), (-4.55492102799991, 50.897772528000075), (-4.543771938999953, 50.93919505400004), (-4.536854620999918, 50.94757721600007), (-4.5226944649999155, 50.972723700000074), (-4.5266820949999556, 50.98037344000005), (-4.530425584999932, 50.99469635600008), (-4.531320766999954, 51.008693752000056), (-4.526437954999949, 51.014960028000075), (-4.437326626999948, 51.014960028000075), (-4.4264216789999296, 51.01268138200004), (-4.4057511059999115, 51.00287506700005), (-4.3957413399999155, 51.00067780200004), (-4.337717251999948, 50.99664948100008), (-4.317290818999936, 51.00067780200004), (-4.302316860999952, 51.007513739000046), (-4.234730597999942, 51.05532461100006), (-4.2291560539999296, 51.06110260600008), (-4.224680141999954, 51.06708405200004), (-4.218495245999918, 51.07245514500005), (-4.207997199999909, 51.07636139500005), (-4.214263475999928, 51.086004950000074), (-4.226307745999918, 51.11322663000004), (-4.228505011999914, 51.120428778000075), (-4.2319229809999115, 51.12669505400004), (-4.249012824999909, 51.14288971600007), (-4.255767381999931, 51.15151601800005), (-4.222320115999935, 51.149725653000075), (-4.214833136999914, 51.15151601800005), (-4.208363410999937, 51.16229889500005), (-4.2098282539999445, 51.17283763200004), (-4.217274542999917, 51.18138255400004), (-4.228505011999914, 51.18622467700004), (-4.228505011999914, 51.19245026200008), (-4.152333136999914, 51.21161530200004), (-3.969471808999913, 51.22239817900004), (-3.931996222999942, 51.231350002000056), (-3.9131973949999406, 51.23338450700004), (-3.840891079999949, 51.23338450700004), (-3.818959113999938, 51.23607005400004), (-3.787098761999914, 51.24677155200004), (-3.769154425999943, 51.247707424000055), (-3.6397598949999406, 51.22638580900008), (-3.559315558999913, 51.22809479400007), (-3.434193488999938, 51.20978424700007), (-3.4043676419999542, 51.19204336100006), (-3.38499915299991, 51.18622467700004), (-3.2707413399999155, 51.18939850500004), (-3.198882615999935, 51.203558661000045), (-3.1627498039999296, 51.206732489000046), (-3.096750454999949, 51.20453522300005), (-3.057525193999936, 51.20815664300005), (-3.029286261999914, 51.220404364000046), (-3.021839972999942, 51.21356842700004), (-3.0355525379999335, 51.199286200000074), (-3.021839972999942, 51.19245026200008), (-3.004790818999936, 51.21312083500004), (-3.0013321609999366, 51.220404364000046), (-2.9995824859999516, 51.23322174700007), (-3.0015356109999516, 51.23969147300005), (-3.0049942699999406, 51.24506256700005), (-3.008168097999942, 51.25454336100006), (-3.0076391269999476, 51.29197825700004), (-3.0106095039999445, 51.310980536000045), (-3.021839972999942, 51.32282135600008), (-3.0024307929999168, 51.31907786700003), (-2.992176886999914, 51.321926174000055), (-2.992095506999931, 51.32204824400009), (-2.988392706999946, 51.33112213700008), (-2.9877823559999115, 51.34666575700004), (-2.9798884759999282, 51.35586172100005), (-2.965972459999932, 51.364935614000046), (-2.959584113999938, 51.374253648000035), (-2.9746801419999542, 51.38422272300005), (-2.9529516269999476, 51.398504950000074), (-2.9210098949999406, 51.39443594000005), (-2.8841853509999282, 51.41697825700004), (-2.816395636999914, 51.47361888200004), (-2.798573370999918, 51.48261139500005), (-2.780873175999943, 51.48908112200007), (-2.7612198559999115, 51.49286530200004), (-2.7376195949999556, 51.49408600500004), (-2.716420050999943, 51.49957916900007), (-2.6961563789999445, 51.51264069200005), (-2.6078181629999335, 51.60736725500004), (-2.599598761999914, 51.611395575000074), (-2.5892227859999366, 51.61424388200004), (-2.580433722999942, 51.61863841400009), (-2.5768123039999296, 51.62750885600008), (-2.57445227799991, 51.63572825700004), (-2.568959113999938, 51.644964911000045), (-2.562245245999918, 51.65338776200008), (-2.556385870999918, 51.65924713700008), (-2.499175584999932, 51.69676341400009), (-2.464995897999927, 51.725897528000075), (-2.4477432929999168, 51.73187897300005), (-2.404896613999938, 51.74115631700005), (-2.3885391919999392, 51.750433661000045), (-2.380767381999931, 51.76190827000005), (-2.3833715489999463, 51.77326080900008), (-2.398060675999943, 51.782131252000056), (-2.4024145169999542, 51.76357656500005), (-2.4203995429999168, 51.753119208000044), (-2.4434301419999542, 51.74843984600005), (-2.4632869129999335, 51.747300523000035), (-2.482085740999935, 51.74286530200004), (-2.495838995999918, 51.73200104400007), (-2.507964647999927, 51.71857330900008), (-2.5221248039999296, 51.706366278000075), (-2.581695115999935, 51.681708075000074), (-2.5911352199999556, 51.67536041900007), (-2.600209113999938, 51.66559479400007), (-2.6653539699999556, 51.617254950000074)]\n", + "fig, ax = plt.subplots()\n", + "\n", + "x = tuple(map(merc_x, lons))\n", + "y = tuple(map(merc_y, lats))\n", + "\n", + "ax.tricontourf(x, y, tuple(datapoints.values()))\n", + "ax.plot(x, y, 'wo', ms=3)\n", + "ax.plot(\n", + " [merc_x(coord[0]) for coord in gb_boundary],\n", + " [merc_y(coord[1]) for coord in gb_boundary],\n", + " 'k-'\n", + ")\n", + "ax.set_aspect(1.0)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "apd.aggregation", + "language": "python", + "name": "apd.aggregation" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/Pipfile b/Ch12/apd.aggregation-chapter12-ex01-complete/Pipfile new file mode 100644 index 0000000..32814fd --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/Pipfile @@ -0,0 +1,26 @@ +[[source]] +name = "pypi" +url = "https://pypi.org/simple" +verify_ssl = true + +[dev-packages] +pytest = "*" +pytest-cov = "*" +pytest-asyncio = "*" +mypy = "*" +flake8 = "*" +black = "*" +pre-commit = "*" +wheel = "*" +twine = "*" +sqlalchemy-stubs = "*" +yappi = "*" + +[packages] +apd-aggregation = {editable = true,extras = ["jupyter"],path = "."} +apd-sensors = {editable = true,extras = ["webapp"],path = "./../code"} + +[requires] + +[pipenv] +allow_prereleases = true diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/Pipfile.lock b/Ch12/apd.aggregation-chapter12-ex01-complete/Pipfile.lock new file mode 100644 index 0000000..e3c4287 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/Pipfile.lock @@ -0,0 +1,987 @@ +{ + "_meta": { + "hash": { + "sha256": "1c3bf4b1b80582f2eba10739c2798bff13bb3d7662a9e5def7a2be63683711e8" + }, + "pipfile-spec": 6, + "requires": {}, + "sources": [ + { + "name": "pypi", + "url": "https://pypi.org/simple", + "verify_ssl": true + } + ] + }, + "default": { + "aiohttp": { + "hashes": [ + "sha256:173267050501e1537293df06723bc5e719990889e2820ba3932969983892e960", + "sha256:438f1f1555c02c50894604d94944cff188fe138b46467b7fa99fdceb51ab5842", + "sha256:90bed250d1435aef33a1f8c439c5056d5d25a44fe6caf33fcafafed805bad4dc", + "sha256:93c3b14747413f38f094a60e98f55e73831f0c9a23ae7faa3dc97d8963e13021", + "sha256:a6e70a38d883185b1921d8122759661c39ade54949770394412a9e713fec6fa7", + "sha256:b5036133c1ba77ed5a70208d2a021a90b76fdf8bf523ae33dae46d4f4380d86f", + "sha256:c138451a82cdbf65cddf952941d5c7a1a2cac8ce3bc618dee8d889e5251ec7a5", + "sha256:c94770383e49f9cc5912b926364ad022a6c8a5dbf5498933ca3a5713c6daf738", + "sha256:ea26536ae06df6dac021303a0df72c79e55512070e6a304ba93ad468a3a754dc" + ], + "version": "==4.0.0a1" + }, + "alembic": { + "hashes": [ + "sha256:035ab00497217628bf5d0be82d664d8713ab13d37b630084da8e1f98facf4dbf" + ], + "version": "==1.4.2" + }, + "apd-aggregation": { + "editable": true, + "extras": [ + "jupyter" + ], + "path": "." + }, + "apd-sensors": { + "editable": true, + "extras": [ + "webapp" + ], + "path": "./../code" + }, + "async-timeout": { + "hashes": [ + "sha256:0c3c816a028d47f659d6ff5c745cb2acf1f966da1fe5c19c77a70282b25f4c5f", + "sha256:4291ca197d287d274d0b6cb5d6f8f8f82d434ed288f962539ff18cc9012f9ea3" + ], + "version": "==3.0.1" + }, + "attrs": { + "hashes": [ + "sha256:08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c", + "sha256:f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72" + ], + "version": "==19.3.0" + }, + "backcall": { + "hashes": [ + "sha256:38ecd85be2c1e78f77fd91700c76e14667dc21e2713b63876c0eb901196e01e4", + "sha256:bbbf4b1e5cd2bdb08f915895b51081c041bac22394fdfcfdfbe9f14b77c08bf2" + ], + "version": "==0.1.0" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:8a18b4ea89d8820c5d0c7da8a64b2c324b4dabb695804dbfea19b9be9d88c0cc", + "sha256:e345d143d80bf5ee7534056164e5e112ea5e22716bbb1ce727941f4c8b471b9a" + ], + "version": "==7.1.1" + }, + "colorama": { + "hashes": [ + "sha256:7d73d2a99753107a36ac6b455ee49046802e59d9d076ef8e47b61499fa29afff", + "sha256:e96da0d330793e2cb9485e9ddfd918d456036c7149416295932478192f4436a1" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.3" + }, + "decorator": { + "hashes": [ + "sha256:41fa54c2a0cc4ba648be4fd43cff00aedf5b9465c9bf18d64325bc225f08f760", + "sha256:e3a62f0520172440ca0dcc823749319382e377f37f140a0b99ef45fecb84bfe7" + ], + "version": "==4.4.2" + }, + "flask": { + "hashes": [ + "sha256:4efa1ae2d7c9865af48986de8aeb8504bf32c7f3d6fdc9353d34b21f4b127060", + "sha256:8a4fdd8936eba2512e9c85df320a37e694c93945b33ef33c89946a340a238557" + ], + "version": "==1.1.2" + }, + "idna": { + "hashes": [ + "sha256:7588d1c14ae4c77d74036e8c22ff447b26d0fde8f007354fd48a7814db15b7cb", + "sha256:a068a21ceac8a4d63dbfd964670474107f541babbd2250d61922f029858365fa" + ], + "version": "==2.9" + }, + "ipykernel": { + "hashes": [ + "sha256:003c9c1ab6ff87d11f531fee2b9ca59affab19676fc6b2c21da329aef6e73499", + "sha256:2937373c356fa5b634edb175c5ea0e4b25de8008f7c194f2d49cfbd1f9c970a8" + ], + "version": "==5.2.1" + }, + "ipython": { + "hashes": [ + "sha256:ca478e52ae1f88da0102360e57e528b92f3ae4316aabac80a2cd7f7ab2efb48a", + "sha256:eb8d075de37f678424527b5ef6ea23f7b80240ca031c2dd6de5879d687a65333" + ], + "version": "==7.13.0" + }, + "ipython-genutils": { + "hashes": [ + "sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8", + "sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8" + ], + "version": "==0.2.0" + }, + "ipywidgets": { + "hashes": [ + "sha256:87b30e4dfd68a7c4e3c6462eedb95ac7d1a776cc182f87168d960151151de31c", + "sha256:9cb5590e583b8ea309a2d8e88fb02e44d054df2a77891f7d3356b0b883b99d3d" + ], + "version": "==8.0.0a0" + }, + "itsdangerous": { + "hashes": [ + "sha256:321b033d07f2a4136d3ec762eac9f16a10ccd60f53c0c91af90217ace7ba1f19", + "sha256:b12271b2047cb23eeb98c8b5622e2e5c5e9abd9784a153e9d8ef9cb4dd09d749" + ], + "version": "==1.1.0" + }, + "jedi": { + "hashes": [ + "sha256:cd60c93b71944d628ccac47df9a60fec53150de53d42dc10a7fc4b5ba6aae798", + "sha256:df40c97641cb943661d2db4c33c2e1ff75d491189423249e989bcea4464f3030" + ], + "version": "==0.17.0" + }, + "jinja2": { + "hashes": [ + "sha256:c10142f819c2d22bdcd17548c46fa9b77cf4fda45097854c689666bf425e7484", + "sha256:c922560ac46888d47384de1dbdc3daaa2ea993af4b26a436dec31fa2c19ec668" + ], + "version": "==3.0.0a1" + }, + "jsonschema": { + "hashes": [ + "sha256:4e5b3cf8216f577bee9ce139cbe72eca3ea4f292ec60928ff24758ce626cd163", + "sha256:c8a85b28d377cc7737e46e2d9f2b4f44ee3c0e1deac6bf46ddefc7187d30797a" + ], + "version": "==3.2.0" + }, + "jupyter-client": { + "hashes": [ + "sha256:3a32fa4d0b16d1c626b30c3002a62dfd86d6863ed39eaba3f537fade197bb756", + "sha256:cde8e83aab3ec1c614f221ae54713a9a46d3bf28292609d2db1b439bef5a8c8e" + ], + "version": "==6.1.3" + }, + "jupyter-core": { + "hashes": [ + "sha256:394fd5dd787e7c8861741880bdf8a00ce39f95de5d18e579c74b882522219e7e", + "sha256:a4ee613c060fe5697d913416fc9d553599c05e4492d58fac1192c9a6844abb21" + ], + "version": "==4.6.3" + }, + "mako": { + "hashes": [ + "sha256:3139c5d64aa5d175dbafb95027057128b5fbd05a40c53999f3905ceb53366d9d", + "sha256:8e8b53c71c7e59f3de716b6832c4e401d903af574f6962edbbbf6ecc2a5fe6c9" + ], + "version": "==1.1.2" + }, + "markupsafe": { + "hashes": [ + "sha256:06358015a4dee8ee23ae426bf885616ab3963622defd829eb45b44e3dee3515f", + "sha256:0b0c4fc852c5f02c6277ef3b33d23fcbe89b1b227460423e3335374da046b6db", + "sha256:267677fc42afed5094fc5ea1c4236bbe4b6a00fe4b08e93451e65ae9048139c7", + "sha256:303cb70893e2c345588fb5d5b86e0ca369f9bb56942f03064c5e3e75fa7a238a", + "sha256:3c9b624a0d9ed5a5093ac4edc4e823e6b125441e60ef35d36e6f4a6fdacd5054", + "sha256:42033e14cae1f6c86fc0c3e90d04d08ce73ac8e46ba420a0d22d545c2abd4977", + "sha256:4e4a99b6af7bdc0856b50020c095848ec050356a001e1f751510aef6ab14d0e0", + "sha256:4eb07faad54bb07427d848f31030a65a49ebb0cec0b30674f91cf1ddd456bfe4", + "sha256:63a7161cd8c2bc563feeda45df62f42c860dd0675e2b8da2667f25bb3c95eaba", + "sha256:68e0fd039b68d2945b4beb947d4023ca7f8e95b708031c345762efba214ea761", + "sha256:8092a63397025c2f655acd42784b2a1528339b90b987beb9253f22e8cdbb36c3", + "sha256:841218860683c0f2223e24756843d84cc49cccdae6765e04962607754a52d3e0", + "sha256:94076b2314bd2f6cfae508ad65b4d493e3a58a50112b7a2cbb6287bdbc404ae8", + "sha256:9d22aff1c5322e402adfb3ce40839a5056c353e711c033798cf4f02eb9f5124d", + "sha256:b0e4584f62b3e5f5c1a7bcefd2b52f236505e6ef032cc508caa4f4c8dc8d3af1", + "sha256:b1163ffc1384d242964426a8164da12dbcdbc0de18ea36e2c34b898ed38c3b45", + "sha256:beac28ed60c8e838301226a7a85841d0af2068eba2dcb1a58c2d32d6c05e440e", + "sha256:c29f096ce79c03054a1101d6e5fe6bf04b0bb489165d5e0e9653fb4fe8048ee1", + "sha256:c58779966d53e5f14ba393d64e2402a7926601d1ac8adeb4e83893def79d0428", + "sha256:cfe14b37908eaf7d5506302987228bff69e1b8e7071ccd4e70fd0283b1b47f0b", + "sha256:e834249c45aa9837d0753351cdca61a4b8b383cc9ad0ff2325c97ff7b69e72a6", + "sha256:eed1b234c4499811ee85bcefa22ef5e466e75d132502226ed29740d593316c1f" + ], + "version": "==2.0.0a1" + }, + "multidict": { + "hashes": [ + "sha256:317f96bc0950d249e96d8d29ab556d01dd38888fbe68324f46fd834b430169f1", + "sha256:42f56542166040b4474c0c608ed051732033cd821126493cf25b6c276df7dd35", + "sha256:4b7df040fb5fe826d689204f9b544af469593fb3ff3a069a6ad3409f742f5928", + "sha256:544fae9261232a97102e27a926019100a9db75bec7b37feedd74b3aa82f29969", + "sha256:620b37c3fea181dab09267cd5a84b0f23fa043beb8bc50d8474dd9694de1fa6e", + "sha256:6e6fef114741c4d7ca46da8449038ec8b1e880bbe68674c01ceeb1ac8a648e78", + "sha256:7774e9f6c9af3f12f296131453f7b81dabb7ebdb948483362f5afcaac8a826f1", + "sha256:85cb26c38c96f76b7ff38b86c9d560dea10cf3459bb5f4caf72fc1bb932c7136", + "sha256:a326f4240123a2ac66bb163eeba99578e9d63a8654a59f4688a79198f9aa10f8", + "sha256:ae402f43604e3b2bc41e8ea8b8526c7fa7139ed76b0d64fc48e28125925275b2", + "sha256:aee283c49601fa4c13adc64c09c978838a7e812f85377ae130a24d7198c0331e", + "sha256:b51249fdd2923739cd3efc95a3d6c363b67bbf779208e9f37fd5e68540d1a4d4", + "sha256:bb519becc46275c594410c6c28a8a0adc66fe24fef154a9addea54c1adb006f5", + "sha256:c2c37185fb0af79d5c117b8d2764f4321eeb12ba8c141a95d0aa8c2c1d0a11dd", + "sha256:dc561313279f9d05a3d0ffa89cd15ae477528ea37aa9795c4654588a3287a9ab", + "sha256:e439c9a10a95cb32abd708bb8be83b2134fa93790a4fb0535ca36db3dda94d20", + "sha256:fc3b4adc2ee8474cb3cd2a155305d5f8eda0a9c91320f83e55748e1fcb68f8e3" + ], + "version": "==4.7.5" + }, + "nbformat": { + "hashes": [ + "sha256:049af048ed76b95c3c44043620c17e56bc001329e07f83fec4f177f0e3d7b757", + "sha256:276343c78a9660ab2a63c28cc33da5f7c58c092b3f3a40b6017ae2ce6689320d" + ], + "version": "==5.0.6" + }, + "parso": { + "hashes": [ + "sha256:158c140fc04112dc45bca311633ae5033c2c2a7b732fa33d0955bad8152a8dd0", + "sha256:908e9fae2144a076d72ae4e25539143d40b8e3eafbaeae03c1bfe226f4cdf12c" + ], + "version": "==0.7.0" + }, + "pickleshare": { + "hashes": [ + "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca", + "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56" + ], + "version": "==0.7.5" + }, + "pint": { + "hashes": [ + "sha256:308f1070500e102f83b6adfca6db53debfce2ffc5d3cbe3f6c367da359b5cf4d", + "sha256:5690c85948dfb283382aa73357c3d5a333e8c7d818be7d8643db18e07597dd99" + ], + "version": "==0.11" + }, + "prompt-toolkit": { + "hashes": [ + "sha256:563d1a4140b63ff9dd587bda9557cffb2fe73650205ab6f4383092fb882e7dc8", + "sha256:df7e9e63aea609b1da3a65641ceaf5bc7d05e0a04de5bd45d05dbeffbabf9e04" + ], + "version": "==3.0.5" + }, + "psutil": { + "hashes": [ + "sha256:1413f4158eb50e110777c4f15d7c759521703bd6beb58926f1d562da40180058", + "sha256:298af2f14b635c3c7118fd9183843f4e73e681bb6f01e12284d4d70d48a60953", + "sha256:60b86f327c198561f101a92be1995f9ae0399736b6eced8f24af41ec64fb88d4", + "sha256:685ec16ca14d079455892f25bd124df26ff9137664af445563c1bd36629b5e0e", + "sha256:73f35ab66c6c7a9ce82ba44b1e9b1050be2a80cd4dcc3352cc108656b115c74f", + "sha256:75e22717d4dbc7ca529ec5063000b2b294fc9a367f9c9ede1f65846c7955fd38", + "sha256:a02f4ac50d4a23253b68233b07e7cdb567bd025b982d5cf0ee78296990c22d9e", + "sha256:d008ddc00c6906ec80040d26dc2d3e3962109e40ad07fd8a12d0284ce5e0e4f8", + "sha256:d84029b190c8a66a946e28b4d3934d2ca1528ec94764b180f7d6ea57b0e75e26", + "sha256:e2d0c5b07c6fe5a87fa27b7855017edb0d52ee73b71e6ee368fae268605cc3f5", + "sha256:f344ca230dd8e8d5eee16827596f1c22ec0876127c28e800d7ae20ed44c4b310" + ], + "version": "==5.7.0" + }, + "psycopg2": { + "hashes": [ + "sha256:132efc7ee46a763e68a815f4d26223d9c679953cd190f1f218187cb60decf535", + "sha256:2327bf42c1744a434ed8ed0bbaa9168cac7ee5a22a9001f6fc85c33b8a4a14b7", + "sha256:27c633f2d5db0fc27b51f1b08f410715b59fa3802987aec91aeb8f562724e95c", + "sha256:2c0afb40cfb4d53487ee2ebe128649028c9a78d2476d14a67781e45dc287f080", + "sha256:2df2bf1b87305bd95eb3ac666ee1f00a9c83d10927b8144e8e39644218f4cf81", + "sha256:440a3ea2c955e89321a138eb7582aa1d22fe286c7d65e26a2c5411af0a88ae72", + "sha256:6a471d4d2a6f14c97a882e8d3124869bc623f3df6177eefe02994ea41fd45b52", + "sha256:6b306dae53ec7f4f67a10942cf8ac85de930ea90e9903e2df4001f69b7833f7e", + "sha256:a0984ff49e176062fcdc8a5a2a670c9bb1704a2f69548bce8f8a7bad41c661bf", + "sha256:ac5b23d0199c012ad91ed1bbb971b7666da651c6371529b1be8cbe2a7bf3c3a9", + "sha256:acf56d564e443e3dea152efe972b1434058244298a94348fc518d6dd6a9fb0bb", + "sha256:d3b29d717d39d3580efd760a9a46a7418408acebbb784717c90d708c9ed5f055", + "sha256:f7d46240f7a1ae1dd95aab38bd74f7428d46531f69219954266d669da60c0818" + ], + "version": "==2.8.5" + }, + "pygments": { + "hashes": [ + "sha256:647344a061c249a3b74e230c739f434d7ea4d8b1d5f3721bc0f3558049b38f44", + "sha256:ff7a40b4860b727ab48fad6360eb351cc1b33cbf9b15a0f689ca5353e9463324" + ], + "version": "==2.6.1" + }, + "pyrsistent": { + "hashes": [ + "sha256:28669905fe725965daa16184933676547c5bb40a5153055a8dee2a4bd7933ad3" + ], + "version": "==0.16.0" + }, + "python-dateutil": { + "hashes": [ + "sha256:73ebfe9dbf22e832286dafa60473e4cd239f8592f699aa5adaf10050e6e1823c", + "sha256:75bb3f31ea686f1197762692a9ee6a7550b59fc6ca3a1f4b5d7e32fb98e2da2a" + ], + "version": "==2.8.1" + }, + "python-editor": { + "hashes": [ + "sha256:1bf6e860a8ad52a14c3ee1252d5dc25b2030618ed80c022598f00176adc8367d", + "sha256:51fda6bcc5ddbbb7063b2af7509e43bd84bfc32a4ff71349ec7847713882327b", + "sha256:5f98b069316ea1c2ed3f67e7f5df6c0d8f10b689964a4a811ff64f0106819ec8" + ], + "version": "==1.0.4" + }, + "pywin32": { + "hashes": [ + "sha256:300a2db938e98c3e7e2093e4491439e62287d0d493fe07cce110db070b54c0be", + "sha256:31f88a89139cb2adc40f8f0e65ee56a8c585f629974f9e07622ba80199057511", + "sha256:371fcc39416d736401f0274dd64c2302728c9e034808e37381b5e1b22be4a6b0", + "sha256:47a3c7551376a865dd8d095a98deba954a98f326c6fe3c72d8726ca6e6b15507", + "sha256:4cdad3e84191194ea6d0dd1b1b9bdda574ff563177d2adf2b4efec2a244fa116", + "sha256:7c1ae32c489dc012930787f06244426f8356e129184a02c25aef163917ce158e", + "sha256:7f18199fbf29ca99dff10e1f09451582ae9e372a892ff03a28528a24d55875bc", + "sha256:9b31e009564fb95db160f154e2aa195ed66bcc4c058ed72850d047141b36f3a2", + "sha256:a929a4af626e530383a579431b70e512e736e9588106715215bf685a3ea508d4", + "sha256:c054c52ba46e7eb6b7d7dfae4dbd987a1bb48ee86debe3f245a2884ece46e295", + "sha256:f27cec5e7f588c3d1051651830ecc00294f90728d19c3bf6916e6dba93ea357c", + "sha256:f4c5be1a293bae0076d93c88f37ee8da68136744588bc5e2be2f299a34ceb7aa" + ], + "markers": "sys_platform == 'win32'", + "version": "==227" + }, + "pyzmq": { + "hashes": [ + "sha256:0bbc1728fe4314b4ca46249c33873a390559edac7c217ec7001b5e0c34a8fb7f", + "sha256:1e076ad5bd3638a18c376544d32e0af986ca10d43d4ce5a5d889a8649f0d0a3d", + "sha256:242d949eb6b10197cda1d1cec377deab1d5324983d77e0d0bf9dc5eb6d71a6b4", + "sha256:26f4ae420977d2a8792d7c2d7bda43128b037b5eeb21c81951a94054ad8b8843", + "sha256:32234c21c5e0a767c754181c8112092b3ddd2e2a36c3f76fc231ced817aeee47", + "sha256:3f12ce1e9cc9c31497bd82b207e8e86ccda9eebd8c9f95053aae46d15ccd2196", + "sha256:4557d5e036e6d85715b4b9fdb482081398da1d43dc580d03db642b91605b409f", + "sha256:4f562dab21c03c7aa061f63b147a595dbe1006bf4f03213272fc9f7d5baec791", + "sha256:5e071b834051e9ecb224915398f474bfad802c2fff883f118ff5363ca4ae3edf", + "sha256:5e1f65e576ab07aed83f444e201d86deb01cd27dcf3f37c727bc8729246a60a8", + "sha256:5f10a31f288bf055be76c57710807a8f0efdb2b82be6c2a2b8f9a61f33a40cea", + "sha256:6aaaf90b420dc40d9a0e1996b82c6a0ff91d9680bebe2135e67c9e6d197c0a53", + "sha256:75238d3c16cab96947705d5709187a49ebb844f54354cdf0814d195dd4c045de", + "sha256:7f7e7b24b1d392bb5947ba91c981e7d1a43293113642e0d8870706c8e70cdc71", + "sha256:84b91153102c4bcf5d0f57d1a66a0f03c31e9e6525a5f656f52fc615a675c748", + "sha256:944f6bb5c63140d76494467444fd92bebd8674236837480a3c75b01fe17df1ab", + "sha256:a1f957c20c9f51d43903881399b078cddcf710d34a2950e88bce4e494dcaa4d1", + "sha256:a49fd42a29c1cc1aa9f461c5f2f5e0303adba7c945138b35ee7f4ab675b9f754", + "sha256:a99ae601b4f6917985e9bb071549e30b6f93c72f5060853e197bdc4b7d357e5f", + "sha256:ad48865a29efa8a0cecf266432ea7bc34e319954e55cf104be0319c177e6c8f5", + "sha256:b08e425cf93b4e018ab21dc8fdbc25d7d0502a23cc4fea2380010cf8cf11e462", + "sha256:bb10361293d96aa92be6261fa4d15476bca56203b3a11c62c61bd14df0ef89ba", + "sha256:bd1a769d65257a7a12e2613070ca8155ee348aa9183f2aadf1c8b8552a5510f5", + "sha256:cb3b7156ef6b1a119e68fbe3a54e0a0c40ecacc6b7838d57dd708c90b62a06dc", + "sha256:e8e4efb52ec2df8d046395ca4c84ae0056cf507b2f713ec803c65a8102d010de", + "sha256:f37c29da2a5b0c5e31e6f8aab885625ea76c807082f70b2d334d3fd573c3100a", + "sha256:f4d558bc5668d2345773a9ff8c39e2462dafcb1f6772a2e582fbced389ce527f", + "sha256:f5b6d015587a1d6f582ba03b226a9ddb1dfb09878b3be04ef48b01b7d4eb6b2a" + ], + "version": "==19.0.0" + }, + "six": { + "hashes": [ + "sha256:236bdbdce46e6e6a3d61a337c0f8b763ca1e8717c03b369e87a7ec7ce1319c0a", + "sha256:8f3cd2e254d8f793e7f3d6d9df77b92252b52637291d0f0da013c76ea2724b6c" + ], + "version": "==1.14.0" + }, + "sqlalchemy": { + "hashes": [ + "sha256:083e383a1dca8384d0ea6378bd182d83c600ed4ff4ec8247d3b2442cf70db1ad", + "sha256:0a690a6486658d03cc6a73536d46e796b6570ac1f8a7ec133f9e28c448b69828", + "sha256:114b6ace30001f056e944cebd46daef38fdb41ebb98f5e5940241a03ed6cad43", + "sha256:128f6179325f7597a46403dde0bf148478f868df44841348dfc8d158e00db1f9", + "sha256:13d48cd8b925b6893a4e59b2dfb3e59a5204fd8c98289aad353af78bd214db49", + "sha256:211a1ce7e825f7142121144bac76f53ac28b12172716a710f4bf3eab477e730b", + "sha256:2dc57ee80b76813759cccd1a7affedf9c4dbe5b065a91fb6092c9d8151d66078", + "sha256:3e625e283eecc15aee5b1ef77203bfb542563fa4a9aa622c7643c7b55438ff49", + "sha256:43078c7ec0457387c79b8d52fff90a7ad352ca4c7aa841c366238c3e2cf52fdf", + "sha256:5b1bf3c2c2dca738235ce08079783ef04f1a7fc5b21cf24adaae77f2da4e73c3", + "sha256:6056b671aeda3fc451382e52ab8a753c0d5f66ef2a5ccc8fa5ba7abd20988b4d", + "sha256:68d78cf4a9dfade2e6cf57c4be19f7b82ed66e67dacf93b32bb390c9bed12749", + "sha256:7025c639ce7e170db845e94006cf5f404e243e6fc00d6c86fa19e8ad8d411880", + "sha256:7224e126c00b8178dfd227bc337ba5e754b197a3867d33b9f30dc0208f773d70", + "sha256:7d98e0785c4cd7ae30b4a451416db71f5724a1839025544b4edbd92e00b91f0f", + "sha256:8d8c21e9d4efef01351bf28513648ceb988031be4159745a7ad1b3e28c8ff68a", + "sha256:bbb545da054e6297242a1bb1ba88e7a8ffb679f518258d66798ec712b82e4e07", + "sha256:d00b393f05dbd4ecd65c989b7f5a81110eae4baea7a6a4cdd94c20a908d1456e", + "sha256:e18752cecaef61031252ca72031d4d6247b3212ebb84748fc5d1a0d2029c23ea" + ], + "version": "==1.3.16" + }, + "tornado": { + "hashes": [ + "sha256:0fe2d45ba43b00a41cd73f8be321a44936dc1aba233dee979f17a042b83eb6dc", + "sha256:22aed82c2ea340c3771e3babc5ef220272f6fd06b5108a53b4976d0d722bcd52", + "sha256:2c027eb2a393d964b22b5c154d1a23a5f8727db6fda837118a776b29e2b8ebc6", + "sha256:5217e601700f24e966ddab689f90b7ea4bd91ff3357c3600fa1045e26d68e55d", + "sha256:5618f72e947533832cbc3dec54e1dffc1747a5cb17d1fd91577ed14fa0dc081b", + "sha256:5f6a07e62e799be5d2330e68d808c8ac41d4a259b9cea61da4101b83cb5dc673", + "sha256:c58d56003daf1b616336781b26d184023ea4af13ae143d9dda65e31e534940b9", + "sha256:c952975c8ba74f546ae6de2e226ab3cc3cc11ae47baf607459a6728585bb542a", + "sha256:c98232a3ac391f5faea6821b53db8db461157baa788f5d6222a193e9456e1740" + ], + "version": "==6.0.4" + }, + "traitlets": { + "hashes": [ + "sha256:70b4c6a1d9019d7b4f6846832288f86998aa3b9207c6821f3578a6a6a467fe44", + "sha256:d023ee369ddd2763310e4c3eae1ff649689440d4ae59d7485eb4cfbbe3e359f7" + ], + "version": "==4.3.3" + }, + "typing-extensions": { + "hashes": [ + "sha256:6e95524d8a547a91e08f404ae485bbb71962de46967e1b71a0cb89af24e761c5", + "sha256:79ee589a3caca649a9bfd2a8de4709837400dfa00b6cc81962a1e6a1815969ae", + "sha256:f8d2bd89d25bc39dabe7d23df520442fa1d8969b82544370e03d88b5a591c392" + ], + "version": "==3.7.4.2" + }, + "wcwidth": { + "hashes": [ + "sha256:cafe2186b3c009a04067022ce1dcd79cb38d8d65ee4f4791b8888d6599d1bbe1", + "sha256:ee73862862a156bf77ff92b09034fc4825dd3af9cf81bc5b360668d425f3c5f1" + ], + "version": "==0.1.9" + }, + "werkzeug": { + "hashes": [ + "sha256:2de2a5db0baeae7b2d2664949077c2ac63fbd16d98da0ff71837f7d1dea3fd43", + "sha256:6c80b1e5ad3665290ea39320b91e1be1e0d5f60652b964a3070216de83d2e47c" + ], + "version": "==1.0.1" + }, + "widgetsnbextension": { + "hashes": [ + "sha256:cb6181b4037da02deeabab39d5cb1113a7390aee7468b1f8237c2abbd6df6107", + "sha256:fee3b6ec261393db5b4ec7c4fc96bf85c146cc6e5f38069c27d54fb7892bbb15" + ], + "version": "==4.0.0a0" + }, + "yarl": { + "hashes": [ + "sha256:0c2ab325d33f1b824734b3ef51d4d54a54e0e7a23d13b86974507602334c2cce", + "sha256:0ca2f395591bbd85ddd50a82eb1fde9c1066fafe888c5c7cc1d810cf03fd3cc6", + "sha256:2098a4b4b9d75ee352807a95cdf5f10180db903bc5b7270715c6bbe2551f64ce", + "sha256:25e66e5e2007c7a39541ca13b559cd8ebc2ad8fe00ea94a2aad28a9b1e44e5ae", + "sha256:26d7c90cb04dee1665282a5d1a998defc1a9e012fdca0f33396f81508f49696d", + "sha256:308b98b0c8cd1dfef1a0311dc5e38ae8f9b58349226aa0533f15a16717ad702f", + "sha256:3ce3d4f7c6b69c4e4f0704b32eca8123b9c58ae91af740481aa57d7857b5e41b", + "sha256:58cd9c469eced558cd81aa3f484b2924e8897049e06889e8ff2510435b7ef74b", + "sha256:5b10eb0e7f044cf0b035112446b26a3a2946bca9d7d7edb5e54a2ad2f6652abb", + "sha256:6faa19d3824c21bcbfdfce5171e193c8b4ddafdf0ac3f129ccf0cdfcb083e462", + "sha256:944494be42fa630134bf907714d40207e646fd5a94423c90d5b514f7b0713fea", + "sha256:a161de7e50224e8e3de6e184707476b5a989037dcb24292b391a3d66ff158e70", + "sha256:a4844ebb2be14768f7994f2017f70aca39d658a96c786211be5ddbe1c68794c1", + "sha256:c2b509ac3d4b988ae8769901c66345425e361d518aecbe4acbfc2567e416626a", + "sha256:c9959d49a77b0e07559e579f38b2f3711c2b8716b8410b320bf9713013215a1b", + "sha256:d8cdee92bc930d8b09d8bd2043cedd544d9c8bd7436a77678dd602467a993080", + "sha256:e15199cdb423316e15f108f51249e44eb156ae5dba232cb73be555324a1d49c2" + ], + "version": "==1.4.2" + } + }, + "develop": { + "appdirs": { + "hashes": [ + "sha256:9e5896d1372858f8dd3344faf4e5014d21849c756c8d5701f78f8a103b372d92", + "sha256:d8b24664561d0d34ddfaec54636d502d7cea6e29c3eaf68f3df6180863e2166e" + ], + "version": "==1.4.3" + }, + "atomicwrites": { + "hashes": [ + "sha256:03472c30eb2c5d1ba9227e4c2ca66ab8287fbfbbda3888aa93dc2e28fc6811b4", + "sha256:75a9445bac02d8d058d5e1fe689654ba5a6556a1dfd8ce6ec55a0ed79866cfa6" + ], + "markers": "sys_platform == 'win32'", + "version": "==1.3.0" + }, + "attrs": { + "hashes": [ + "sha256:08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c", + "sha256:f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72" + ], + "version": "==19.3.0" + }, + "black": { + "hashes": [ + "sha256:1b30e59be925fafc1ee4565e5e08abef6b03fe455102883820fe5ee2e4734e0b", + "sha256:c2edb73a08e9e0e6f65a0e6af18b059b8b1cdd5bef997d7a0b181df93dc81539" + ], + "index": "pypi", + "version": "==19.10b0" + }, + "bleach": { + "hashes": [ + "sha256:cc8da25076a1fe56c3ac63671e2194458e0c4d9c7becfd52ca251650d517903c", + "sha256:e78e426105ac07026ba098f04de8abe9b6e3e98b5befbf89b51a5ef0a4292b03" + ], + "version": "==3.1.4" + }, + "certifi": { + "hashes": [ + "sha256:1d987a998c75633c40847cc966fcf5904906c920a7f17ef374f5aa4282abd304", + "sha256:51fcb31174be6e6664c5f69e3e1691a2d72a1a12e90f872cbdb1567eb47b6519" + ], + "version": "==2020.4.5.1" + }, + "cfgv": { + "hashes": [ + "sha256:1ccf53320421aeeb915275a196e23b3b8ae87dea8ac6698b1638001d4a486d53", + "sha256:c8e8f552ffcc6194f4e18dd4f68d9aef0c0d58ae7e7be8c82bee3c5e9edfa513" + ], + "version": "==3.1.0" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:8a18b4ea89d8820c5d0c7da8a64b2c324b4dabb695804dbfea19b9be9d88c0cc", + "sha256:e345d143d80bf5ee7534056164e5e112ea5e22716bbb1ce727941f4c8b471b9a" + ], + "version": "==7.1.1" + }, + "colorama": { + "hashes": [ + "sha256:7d73d2a99753107a36ac6b455ee49046802e59d9d076ef8e47b61499fa29afff", + "sha256:e96da0d330793e2cb9485e9ddfd918d456036c7149416295932478192f4436a1" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.3" + }, + "coverage": { + "hashes": [ + "sha256:00f1d23f4336efc3b311ed0d807feb45098fc86dee1ca13b3d6768cdab187c8a", + "sha256:01333e1bd22c59713ba8a79f088b3955946e293114479bbfc2e37d522be03355", + "sha256:0cb4be7e784dcdc050fc58ef05b71aa8e89b7e6636b99967fadbdba694cf2b65", + "sha256:0e61d9803d5851849c24f78227939c701ced6704f337cad0a91e0972c51c1ee7", + "sha256:1601e480b9b99697a570cea7ef749e88123c04b92d84cedaa01e117436b4a0a9", + "sha256:2742c7515b9eb368718cd091bad1a1b44135cc72468c731302b3d641895b83d1", + "sha256:2d27a3f742c98e5c6b461ee6ef7287400a1956c11421eb574d843d9ec1f772f0", + "sha256:402e1744733df483b93abbf209283898e9f0d67470707e3c7516d84f48524f55", + "sha256:5c542d1e62eece33c306d66fe0a5c4f7f7b3c08fecc46ead86d7916684b36d6c", + "sha256:5f2294dbf7875b991c381e3d5af2bcc3494d836affa52b809c91697449d0eda6", + "sha256:6402bd2fdedabbdb63a316308142597534ea8e1895f4e7d8bf7476c5e8751fef", + "sha256:66460ab1599d3cf894bb6baee8c684788819b71a5dc1e8fa2ecc152e5d752019", + "sha256:782caea581a6e9ff75eccda79287daefd1d2631cc09d642b6ee2d6da21fc0a4e", + "sha256:79a3cfd6346ce6c13145731d39db47b7a7b859c0272f02cdb89a3bdcbae233a0", + "sha256:7a5bdad4edec57b5fb8dae7d3ee58622d626fd3a0be0dfceda162a7035885ecf", + "sha256:8fa0cbc7ecad630e5b0f4f35b0f6ad419246b02bc750de7ac66db92667996d24", + "sha256:a027ef0492ede1e03a8054e3c37b8def89a1e3c471482e9f046906ba4f2aafd2", + "sha256:a3f3654d5734a3ece152636aad89f58afc9213c6520062db3978239db122f03c", + "sha256:a82b92b04a23d3c8a581fc049228bafde988abacba397d57ce95fe95e0338ab4", + "sha256:acf3763ed01af8410fc36afea23707d4ea58ba7e86a8ee915dfb9ceff9ef69d0", + "sha256:adeb4c5b608574a3d647011af36f7586811a2c1197c861aedb548dd2453b41cd", + "sha256:b83835506dfc185a319031cf853fa4bb1b3974b1f913f5bb1a0f3d98bdcded04", + "sha256:bb28a7245de68bf29f6fb199545d072d1036a1917dca17a1e75bbb919e14ee8e", + "sha256:bf9cb9a9fd8891e7efd2d44deb24b86d647394b9705b744ff6f8261e6f29a730", + "sha256:c317eaf5ff46a34305b202e73404f55f7389ef834b8dbf4da09b9b9b37f76dd2", + "sha256:dbe8c6ae7534b5b024296464f387d57c13caa942f6d8e6e0346f27e509f0f768", + "sha256:de807ae933cfb7f0c7d9d981a053772452217df2bf38e7e6267c9cbf9545a796", + "sha256:dead2ddede4c7ba6cb3a721870f5141c97dc7d85a079edb4bd8d88c3ad5b20c7", + "sha256:dec5202bfe6f672d4511086e125db035a52b00f1648d6407cc8e526912c0353a", + "sha256:e1ea316102ea1e1770724db01998d1603ed921c54a86a2efcb03428d5417e489", + "sha256:f90bfc4ad18450c80b024036eaf91e4a246ae287701aaa88eaebebf150868052" + ], + "version": "==5.1" + }, + "distlib": { + "hashes": [ + "sha256:2e166e231a26b36d6dfe35a48c4464346620f8645ed0ace01ee31822b288de21" + ], + "version": "==0.3.0" + }, + "docutils": { + "hashes": [ + "sha256:0c5b78adfbf7762415433f5515cd5c9e762339e23369dbe8000d84a4bf4ab3af", + "sha256:c2de3a60e9e7d07be26b7f2b00ca0309c207e06c100f9cc2a94931fc75a478fc" + ], + "version": "==0.16" + }, + "entrypoints": { + "hashes": [ + "sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19", + "sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451" + ], + "version": "==0.3" + }, + "filelock": { + "hashes": [ + "sha256:18d82244ee114f543149c66a6e0c14e9c4f8a1044b5cdaadd0f82159d6a6ff59", + "sha256:929b7d63ec5b7d6b71b0fa5ac14e030b3f70b75747cef1b10da9b879fef15836" + ], + "version": "==3.0.12" + }, + "flake8": { + "hashes": [ + "sha256:45681a117ecc81e870cbf1262835ae4af5e7a8b08e40b944a8a6e6b895914cfb", + "sha256:49356e766643ad15072a789a20915d3c91dc89fd313ccd71802303fd67e4deca" + ], + "index": "pypi", + "version": "==3.7.9" + }, + "identify": { + "hashes": [ + "sha256:2bb8760d97d8df4408f4e805883dad26a2d076f04be92a10a3e43f09c6060742", + "sha256:faffea0fd8ec86bb146ac538ac350ed0c73908326426d387eded0bcc9d077522" + ], + "version": "==1.4.14" + }, + "idna": { + "hashes": [ + "sha256:7588d1c14ae4c77d74036e8c22ff447b26d0fde8f007354fd48a7814db15b7cb", + "sha256:a068a21ceac8a4d63dbfd964670474107f541babbd2250d61922f029858365fa" + ], + "version": "==2.9" + }, + "keyring": { + "hashes": [ + "sha256:197fd5903901030ef7b82fe247f43cfed2c157a28e7747d1cfcf4bc5e699dd03", + "sha256:8179b1cdcdcbc221456b5b74e6b7cfa06f8dd9f239eb81892166d9223d82c5ba" + ], + "version": "==21.2.0" + }, + "mccabe": { + "hashes": [ + "sha256:ab8a6258860da4b6677da4bd2fe5dc2c659cff31b3ee4f7f5d64e79735b80d42", + "sha256:dd8d182285a0fe56bace7f45b5e7d1a6ebcbf524e8f3bd87eb0f125271b8831f" + ], + "version": "==0.6.1" + }, + "more-itertools": { + "hashes": [ + "sha256:5dd8bcf33e5f9513ffa06d5ad33d78f31e1931ac9a18f33d37e77a180d393a7c", + "sha256:b1ddb932186d8a6ac451e1d95844b382f55e12686d51ca0c68b6f61f2ab7a507" + ], + "version": "==8.2.0" + }, + "mypy": { + "hashes": [ + "sha256:15b948e1302682e3682f11f50208b726a246ab4e6c1b39f9264a8796bb416aa2", + "sha256:219a3116ecd015f8dca7b5d2c366c973509dfb9a8fc97ef044a36e3da66144a1", + "sha256:3b1fc683fb204c6b4403a1ef23f0b1fac8e4477091585e0c8c54cbdf7d7bb164", + "sha256:3beff56b453b6ef94ecb2996bea101a08f1f8a9771d3cbf4988a61e4d9973761", + "sha256:7687f6455ec3ed7649d1ae574136835a4272b65b3ddcf01ab8704ac65616c5ce", + "sha256:7ec45a70d40ede1ec7ad7f95b3c94c9cf4c186a32f6bacb1795b60abd2f9ef27", + "sha256:86c857510a9b7c3104cf4cde1568f4921762c8f9842e987bc03ed4f160925754", + "sha256:8a627507ef9b307b46a1fea9513d5c98680ba09591253082b4c48697ba05a4ae", + "sha256:8dfb69fbf9f3aeed18afffb15e319ca7f8da9642336348ddd6cab2713ddcf8f9", + "sha256:a34b577cdf6313bf24755f7a0e3f3c326d5c1f4fe7422d1d06498eb25ad0c600", + "sha256:a8ffcd53cb5dfc131850851cc09f1c44689c2812d0beb954d8138d4f5fc17f65", + "sha256:b90928f2d9eb2f33162405f32dde9f6dcead63a0971ca8a1b50eb4ca3e35ceb8", + "sha256:c56ffe22faa2e51054c5f7a3bc70a370939c2ed4de308c690e7949230c995913", + "sha256:f91c7ae919bbc3f96cd5e5b2e786b2b108343d1d7972ea130f7de27fdd547cf3" + ], + "index": "pypi", + "version": "==0.770" + }, + "mypy-extensions": { + "hashes": [ + "sha256:090fedd75945a69ae91ce1303b5824f428daf5a028d2f6ab8a299250a846f15d", + "sha256:2d82818f5bb3e369420cb3c4060a7970edba416647068eb4c5343488a6c604a8" + ], + "version": "==0.4.3" + }, + "nodeenv": { + "hashes": [ + "sha256:5b2438f2e42af54ca968dd1b374d14a1194848955187b0e5e4be1f73813a5212" + ], + "version": "==1.3.5" + }, + "packaging": { + "hashes": [ + "sha256:3c292b474fda1671ec57d46d739d072bfd495a4f51ad01a055121d81e952b7a3", + "sha256:82f77b9bee21c1bafbf35a84905d604d5d1223801d639cf3ed140bd651c08752" + ], + "version": "==20.3" + }, + "pathspec": { + "hashes": [ + "sha256:7d91249d21749788d07a2d0f94147accd8f845507400749ea19c1ec9054a12b0", + "sha256:da45173eb3a6f2a5a487efba21f050af2b41948be6ab52b6a1e3ff22bb8b7061" + ], + "version": "==0.8.0" + }, + "pkginfo": { + "hashes": [ + "sha256:7424f2c8511c186cd5424bbf31045b77435b37a8d604990b79d4e70d741148bb", + "sha256:a6d9e40ca61ad3ebd0b72fbadd4fba16e4c0e4df0428c041e01e06eb6ee71f32" + ], + "version": "==1.5.0.1" + }, + "pluggy": { + "hashes": [ + "sha256:15b2acde666561e1298d71b523007ed7364de07029219b604cf808bfa1c765b0", + "sha256:966c145cd83c96502c3c3868f50408687b38434af77734af1e9ca461a4081d2d" + ], + "version": "==0.13.1" + }, + "pre-commit": { + "hashes": [ + "sha256:487c675916e6f99d355ec5595ad77b325689d423ef4839db1ed2f02f639c9522", + "sha256:c0aa11bce04a7b46c5544723aedf4e81a4d5f64ad1205a30a9ea12d5e81969e1" + ], + "index": "pypi", + "version": "==2.2.0" + }, + "py": { + "hashes": [ + "sha256:5e27081401262157467ad6e7f851b7aa402c5852dbcb3dae06768434de5752aa", + "sha256:c20fdd83a5dbc0af9efd622bee9a5564e278f6380fffcacc43ba6f43db2813b0" + ], + "version": "==1.8.1" + }, + "pycodestyle": { + "hashes": [ + "sha256:95a2219d12372f05704562a14ec30bc76b05a5b297b21a5dfe3f6fac3491ae56", + "sha256:e40a936c9a450ad81df37f549d676d127b1b66000a6c500caa2b085bc0ca976c" + ], + "version": "==2.5.0" + }, + "pyflakes": { + "hashes": [ + "sha256:17dbeb2e3f4d772725c777fabc446d5634d1038f234e77343108ce445ea69ce0", + "sha256:d976835886f8c5b31d47970ed689944a0262b5f3afa00a5a7b4dc81e5449f8a2" + ], + "version": "==2.1.1" + }, + "pygments": { + "hashes": [ + "sha256:647344a061c249a3b74e230c739f434d7ea4d8b1d5f3721bc0f3558049b38f44", + "sha256:ff7a40b4860b727ab48fad6360eb351cc1b33cbf9b15a0f689ca5353e9463324" + ], + "version": "==2.6.1" + }, + "pyparsing": { + "hashes": [ + "sha256:67199f0c41a9c702154efb0e7a8cc08accf830eb003b4d9fa42c4059002e2492", + "sha256:700d17888d441604b0bd51535908dcb297561b040819cccde647a92439db5a2a" + ], + "version": "==3.0.0a1" + }, + "pytest": { + "hashes": [ + "sha256:0e5b30f5cb04e887b91b1ee519fa3d89049595f428c1db76e73bd7f17b09b172", + "sha256:84dde37075b8805f3d1f392cc47e38a0e59518fb46a431cfdaf7cf1ce805f970" + ], + "index": "pypi", + "version": "==5.4.1" + }, + "pytest-asyncio": { + "hashes": [ + "sha256:6096d101a1ae350d971df05e25f4a8b4d3cd13ffb1b32e42d902ac49670d2bfa", + "sha256:c54866f3cf5dd2063992ba2c34784edae11d3ed19e006d220a3cf0bfc4191fcb" + ], + "index": "pypi", + "version": "==0.11.0" + }, + "pytest-cov": { + "hashes": [ + "sha256:cc6742d8bac45070217169f5f72ceee1e0e55b0221f54bcf24845972d3a47f2b", + "sha256:cdbdef4f870408ebdbfeb44e63e07eb18bb4619fae852f6e760645fa36172626" + ], + "index": "pypi", + "version": "==2.8.1" + }, + "pywin32-ctypes": { + "hashes": [ + "sha256:24ffc3b341d457d48e8922352130cf2644024a4ff09762a2261fd34c36ee5942", + "sha256:9dc2d991b3479cc2df15930958b674a48a227d5361d413827a4cfd0b5876fc98" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.2.0" + }, + "pyyaml": { + "hashes": [ + "sha256:06a0d7ba600ce0b2d2fe2e78453a470b5a6e000a985dd4a4e54e436cc36b0e97", + "sha256:240097ff019d7c70a4922b6869d8a86407758333f02203e0fc6ff79c5dcede76", + "sha256:4f4b913ca1a7319b33cfb1369e91e50354d6f07a135f3b901aca02aa95940bd2", + "sha256:69f00dca373f240f842b2931fb2c7e14ddbacd1397d57157a9b005a6a9942648", + "sha256:73f099454b799e05e5ab51423c7bcf361c58d3206fa7b0d555426b1f4d9a3eaf", + "sha256:74809a57b329d6cc0fdccee6318f44b9b8649961fa73144a98735b0aaf029f1f", + "sha256:7739fc0fa8205b3ee8808aea45e968bc90082c10aef6ea95e855e10abf4a37b2", + "sha256:95f71d2af0ff4227885f7a6605c37fd53d3a106fcab511b8860ecca9fcf400ee", + "sha256:b8eac752c5e14d3eca0e6dd9199cd627518cb5ec06add0de9d32baeee6fe645d", + "sha256:cc8955cfbfc7a115fa81d85284ee61147059a753344bc51098f3ccd69b0d7e0c", + "sha256:d13155f591e6fcc1ec3b30685d50bf0711574e2c0dfffd7644babf8b5102ca1a" + ], + "version": "==5.3.1" + }, + "readme-renderer": { + "hashes": [ + "sha256:1b6d8dd1673a0b293766b4106af766b6eff3654605f9c4f239e65de6076bc222", + "sha256:e67d64242f0174a63c3b727801a2fff4c1f38ebe5d71d95ff7ece081945a6cd4" + ], + "version": "==25.0" + }, + "regex": { + "hashes": [ + "sha256:08119f707f0ebf2da60d2f24c2f39ca616277bb67ef6c92b72cbf90cbe3a556b", + "sha256:0ce9537396d8f556bcfc317c65b6a0705320701e5ce511f05fc04421ba05b8a8", + "sha256:1cbe0fa0b7f673400eb29e9ef41d4f53638f65f9a2143854de6b1ce2899185c3", + "sha256:2294f8b70e058a2553cd009df003a20802ef75b3c629506be20687df0908177e", + "sha256:23069d9c07e115537f37270d1d5faea3e0bdded8279081c4d4d607a2ad393683", + "sha256:24f4f4062eb16c5bbfff6a22312e8eab92c2c99c51a02e39b4eae54ce8255cd1", + "sha256:295badf61a51add2d428a46b8580309c520d8b26e769868b922750cf3ce67142", + "sha256:2a3bf8b48f8e37c3a40bb3f854bf0121c194e69a650b209628d951190b862de3", + "sha256:4385f12aa289d79419fede43f979e372f527892ac44a541b5446617e4406c468", + "sha256:5635cd1ed0a12b4c42cce18a8d2fb53ff13ff537f09de5fd791e97de27b6400e", + "sha256:5bfed051dbff32fd8945eccca70f5e22b55e4148d2a8a45141a3b053d6455ae3", + "sha256:7e1037073b1b7053ee74c3c6c0ada80f3501ec29d5f46e42669378eae6d4405a", + "sha256:90742c6ff121a9c5b261b9b215cb476eea97df98ea82037ec8ac95d1be7a034f", + "sha256:a58dd45cb865be0ce1d5ecc4cfc85cd8c6867bea66733623e54bd95131f473b6", + "sha256:c087bff162158536387c53647411db09b6ee3f9603c334c90943e97b1052a156", + "sha256:c162a21e0da33eb3d31a3ac17a51db5e634fc347f650d271f0305d96601dc15b", + "sha256:c9423a150d3a4fc0f3f2aae897a59919acd293f4cb397429b120a5fcd96ea3db", + "sha256:ccccdd84912875e34c5ad2d06e1989d890d43af6c2242c6fcfa51556997af6cd", + "sha256:e91ba11da11cf770f389e47c3f5c30473e6d85e06d7fd9dcba0017d2867aab4a", + "sha256:ea4adf02d23b437684cd388d557bf76e3afa72f7fed5bbc013482cc00c816948", + "sha256:fb95debbd1a824b2c4376932f2216cc186912e389bdb0e27147778cf6acb3f89" + ], + "version": "==2020.4.4" + }, + "requests": { + "hashes": [ + "sha256:43999036bfa82904b6af1d99e4882b560e5e2c68e5c4b0aa03b655f3d7d73fee", + "sha256:b3f43d496c6daba4493e7c431722aeb7dbc6288f52a6e04e7b6023b0247817e6" + ], + "version": "==2.23.0" + }, + "requests-toolbelt": { + "hashes": [ + "sha256:380606e1d10dc85c3bd47bf5a6095f815ec007be7a8b69c878507068df059e6f", + "sha256:968089d4584ad4ad7c171454f0a5c6dac23971e9472521ea3b6d49d610aa6fc0" + ], + "version": "==0.9.1" + }, + "six": { + "hashes": [ + "sha256:236bdbdce46e6e6a3d61a337c0f8b763ca1e8717c03b369e87a7ec7ce1319c0a", + "sha256:8f3cd2e254d8f793e7f3d6d9df77b92252b52637291d0f0da013c76ea2724b6c" + ], + "version": "==1.14.0" + }, + "sqlalchemy-stubs": { + "hashes": [ + "sha256:a3318c810697164e8c818aa2d90bac570c1a0e752ced3ec25455b309c0bee8fd", + "sha256:ca1250605a39648cc433f5c70cb1a6f9fe0b60bdda4c51e1f9a2ab3651daadc8" + ], + "index": "pypi", + "version": "==0.3" + }, + "toml": { + "hashes": [ + "sha256:229f81c57791a41d65e399fc06bf0848bab550a9dfd5ed66df18ce5f05e73d5c", + "sha256:235682dd292d5899d361a811df37e04a8828a5b1da3115886b73cf81ebc9100e" + ], + "version": "==0.10.0" + }, + "tqdm": { + "hashes": [ + "sha256:00339634a22c10a7a22476ee946bbde2dbe48d042ded784e4d88e0236eca5d81", + "sha256:ea9e3fd6bd9a37e8783d75bfc4c1faf3c6813da6bd1c3e776488b41ec683af94" + ], + "version": "==4.45.0" + }, + "twine": { + "hashes": [ + "sha256:c1af8ca391e43b0a06bbc155f7f67db0bf0d19d284bfc88d1675da497a946124", + "sha256:d561a5e511f70275e5a485a6275ff61851c16ffcb3a95a602189161112d9f160" + ], + "index": "pypi", + "version": "==3.1.1" + }, + "typed-ast": { + "hashes": [ + "sha256:0666aa36131496aed8f7be0410ff974562ab7eeac11ef351def9ea6fa28f6355", + "sha256:0c2c07682d61a629b68433afb159376e24e5b2fd4641d35424e462169c0a7919", + "sha256:249862707802d40f7f29f6e1aad8d84b5aa9e44552d2cc17384b209f091276aa", + "sha256:24995c843eb0ad11a4527b026b4dde3da70e1f2d8806c99b7b4a7cf491612652", + "sha256:269151951236b0f9a6f04015a9004084a5ab0d5f19b57de779f908621e7d8b75", + "sha256:4083861b0aa07990b619bd7ddc365eb7fa4b817e99cf5f8d9cf21a42780f6e01", + "sha256:498b0f36cc7054c1fead3d7fc59d2150f4d5c6c56ba7fb150c013fbc683a8d2d", + "sha256:4e3e5da80ccbebfff202a67bf900d081906c358ccc3d5e3c8aea42fdfdfd51c1", + "sha256:6daac9731f172c2a22ade6ed0c00197ee7cc1221aa84cfdf9c31defeb059a907", + "sha256:715ff2f2df46121071622063fc7543d9b1fd19ebfc4f5c8895af64a77a8c852c", + "sha256:73d785a950fc82dd2a25897d525d003f6378d1cb23ab305578394694202a58c3", + "sha256:8c8aaad94455178e3187ab22c8b01a3837f8ee50e09cf31f1ba129eb293ec30b", + "sha256:8ce678dbaf790dbdb3eba24056d5364fb45944f33553dd5869b7580cdbb83614", + "sha256:aaee9905aee35ba5905cfb3c62f3e83b3bec7b39413f0a7f19be4e547ea01ebb", + "sha256:bcd3b13b56ea479b3650b82cabd6b5343a625b0ced5429e4ccad28a8973f301b", + "sha256:c9e348e02e4d2b4a8b2eedb48210430658df6951fa484e59de33ff773fbd4b41", + "sha256:d205b1b46085271b4e15f670058ce182bd1199e56b317bf2ec004b6a44f911f6", + "sha256:d43943ef777f9a1c42bf4e552ba23ac77a6351de620aa9acf64ad54933ad4d34", + "sha256:d5d33e9e7af3b34a40dc05f498939f0ebf187f07c385fd58d591c533ad8562fe", + "sha256:fc0fea399acb12edbf8a628ba8d2312f583bdbdb3335635db062fa98cf71fca4", + "sha256:fe460b922ec15dd205595c9b5b99e2f056fd98ae8f9f56b888e7a17dc2b757e7" + ], + "version": "==1.4.1" + }, + "typing-extensions": { + "hashes": [ + "sha256:6e95524d8a547a91e08f404ae485bbb71962de46967e1b71a0cb89af24e761c5", + "sha256:79ee589a3caca649a9bfd2a8de4709837400dfa00b6cc81962a1e6a1815969ae", + "sha256:f8d2bd89d25bc39dabe7d23df520442fa1d8969b82544370e03d88b5a591c392" + ], + "version": "==3.7.4.2" + }, + "urllib3": { + "hashes": [ + "sha256:3018294ebefce6572a474f0604c2021e33b3fd8006ecd11d62107a5d2a963527", + "sha256:88206b0eb87e6d677d424843ac5209e3fb9d0190d0ee169599165ec25e9d9115" + ], + "version": "==1.25.9" + }, + "virtualenv": { + "hashes": [ + "sha256:5021396e8f03d0d002a770da90e31e61159684db2859d0ba4850fbea752aa675", + "sha256:ac53ade75ca189bc97b6c1d9ec0f1a50efe33cbf178ae09452dcd9fd309013c1" + ], + "version": "==20.0.18" + }, + "wcwidth": { + "hashes": [ + "sha256:cafe2186b3c009a04067022ce1dcd79cb38d8d65ee4f4791b8888d6599d1bbe1", + "sha256:ee73862862a156bf77ff92b09034fc4825dd3af9cf81bc5b360668d425f3c5f1" + ], + "version": "==0.1.9" + }, + "webencodings": { + "hashes": [ + "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", + "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923" + ], + "version": "==0.5.1" + }, + "wheel": { + "hashes": [ + "sha256:8788e9155fe14f54164c1b9eb0a319d98ef02c160725587ad60f14ddc57b6f96", + "sha256:df277cb51e61359aba502208d680f90c0493adec6f0e848af94948778aed386e" + ], + "index": "pypi", + "version": "==0.34.2" + }, + "yappi": { + "hashes": [ + "sha256:5650e28b53f624cccc4fd0f8697e7a0a823424197fc8da9ce6770e3d0bc1e392" + ], + "index": "pypi", + "version": "==1.2.4" + } + } +} diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/README.md b/Ch12/apd.aggregation-chapter12-ex01-complete/README.md new file mode 100644 index 0000000..604f0e4 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/README.md @@ -0,0 +1,128 @@ +# APD Sensor aggregator + +A programme that queries apd.sensor endpoints and aggregates their results. + +Generic single-database configuration. + +# Database setup + +To generate the required database tables you must create an alembic.ini file, as follows: + + [alembic] + script_location = apd.aggregation:alembic + sqlalchemy.url = postgresql+psycopg2://apd@localhost/apd + +and run `alembic upgrade head`. This should also be done after every upgrade of the software. + +# Defining endpoints + +Endpoints to collect from are managed with the `sensor_deployments` CLI tool. After installation +there will be no deployments defined + + sensor_deployments add --db postgresql+psycopg2://apd@localhost/apd + --api-key 97f6b3e5ceb64a6ba88968d7c3786b38 + --colour xkcd:red + http://rpi4:8081 + Loft + +The optional colour argument is the colour to use when plotting charts with the built-in charting +tools. This uses matplotlib's colour specification system, documented at https://matplotlib.org/tutorials/colors/colors.html + +The sensors can then be listed with `sensor_deployments list`: + + Loft + ID 53998a5160de48aeb71a5c37cd1455f2 + URI http://rpi4:8081 + API key 97f6b3e5ceb64a6ba88968d7c3786b38 + Colour xkcd:red + +The ID is the deployment ID, as set by the endpoint. It is only possible to add endpoints if they can be +connected to at the time. + +# Collating data + +Data can be collated from all defined endpoints with the `collect_sensor_data` command line tool. +Although you can specify URLs and an API key to explicitly load data from a one-off endpoint, running +without specifying these will use the configured endpoints from the database. + + collect_sensor_data --db postgresql+psycopg2://apd@localhost/apd + +# Viewing data + +You can write scripts to visualise the data from the database. I recommend using Jupyter for this, as it +has good support for drawing charts and interactivity. + +All configured charts can be displayed with: + + from apd.aggregation.analysis import plot_multiple_charts + display(await plot_multiple_charts()) + +More complex charting can be achieved by passing `configs=` to this function, consisting of configuration +objects as defined in `apd.aggregation.analysis`. Iteractivity can be achieved using the +`interactable_plot_multiple_charts` function with Jupyter/IPyWidgets' existing interactivity support. + +More control can be achieved using other functions from this module, such as getting all data points from +a given sensor with: + + from apd.aggregation.query import with_database, get_data + + with with_database("postgresql+psycopg2://apd@localhost/apd") as session: + points = [(dp.collected_at, dp.data) async for dp in get_data() if dp.sensor_name=="RelativeHumidity"] + +These can be called from any Python code, not just Jupyter notebooks + +# Analysis and triggers + +The aggregator allows for a long-running process that processes records as they are inserted to the database +and apply rules to them. + +This is configured with a Python-based configuration file, such as the following to log any time the +Temperature fluctuates above or below 18c: + + import operator + + from apd.aggregation.actions.action import OnlyOnChangeActionWrapper, LoggingAction + from apd.aggregation.actions.runner import DataProcessor + from apd.aggregation.actions.trigger import ValueThresholdTrigger + + + handlers = [ + DataProcessor( + name="TemperatureBelow18", + action=OnlyOnChangeActionWrapper(LoggingAction()), + trigger=ValueThresholdTrigger( + name="TemperatureBelow18", + threshold=18, + comparator=operator.lt, + sensor_name="Temperature", + ), + ) + ] + +This is run with: + + run_apd_actions --db postgresql+psycopg2://apd@localhost/apd sample_actions.py + +The optional `--historical` option causes the actions to be triggered for all events in the database. +If it's omitted then the default behaviour applies, which is to only analyse data that is added to the +database after the actions process has started. + +The possible actions are: + +* `apd.aggregation.actions.action.LoggingAction()` - Log data points +* `apd.aggregation.actions.action.SaveToDatabaseAction()` - Save data points to the db + +These can be wrapped with `OnlyOnChangeActionWrapper(subaction)` to only trigger an action when +the underlying value changes and/or with `OnlyAfterDateActionWrapper(subaction, min_date)` to +only trigger if the date on the discovered objects is strictly after `min_date`. + +The possible triggers are: + +* `apd.aggregation.actions.trigger.ValueThresholdTrigger(...)` - This compares the value of a sensor with threshold, using the specified comparator. + Any records that don't match the `sensor_name` and `deployment_id` parameters are excluded. + + +# Tips + +The `--db` argument to all command-line tools can be omitted and the `APD_DB_URI` environment variable +set instead. \ No newline at end of file diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/Yappi Profiling.ipynb b/Ch12/apd.aggregation-chapter12-ex01-complete/Yappi Profiling.ipynb new file mode 100644 index 0000000..153122f --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/Yappi Profiling.ipynb @@ -0,0 +1,3140 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAEwsAAAmZCAYAAABbjid3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdd5RkVdWw8WcPM+TMkNMgIAiISBSUJAgoiqAEBcQhmMWE8XsNmHPEHMiCooKBFzGg6IsEQVCRoIiAgkgacmZmf3+cGqm+fau7UndVM89vrV5w973nnF1xrened5/ITCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNn2mDTkCSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJElSPZuFSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSUPKZmGSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEnSkLJZmCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkjSkbBYmSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDSmbhUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJElDymZhkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0pCyWZgkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZI0pGwWJkmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA0pm4VJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJQ8pmYZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSdKQslmYJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSNKRsFiZJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNKZuFSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSUPKZmGSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEnSkLJZmCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkjSkbBYmSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDSmbhUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJElDymZhkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0pCyWZgkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZI0pGwWJkmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA0pm4VJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJQ8pmYZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSdKQslmYJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSNKRsFiZJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNKZuFSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSUPKZmGSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEnSkLJZmCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkjSkbBYmSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDSmbhUmSJEmSJPUgIrLyc/Sgc5I0dfmdIkmSJEmSJEmSJEmSJEkLlog4ulo7NpHjBiUiZtXUyM1eUNaXJEmSJKlX0wedgCRJkiRJemKLiOnARsBTgGUbPwsB9wP3ATcC1wPXZ+bDA0pTkiRJkiRJkiRJkiRJkiRJkiRJkiRJGko2C5MkSZIkSX0XEYsA+wCHAc8CFmtj2KMR8RfgYuA3wM8z8/aJy1KSJEmSJEmSJEmSJEmSJI0nImYB13Uw5GHgHuBu4FrgMuBC4KeZ+Ui/85svIp4NnFNz6meZuUef1tgJ+PUYl+ycmef2YZ1DgBPGuGSdzLy+13UkSZIkSZI0dUwbdAKSJEmSJOmJJSL2Av4OnAo8h/YahQHMAJ4OvBL4NnBLRHxhQpKUpD6JiOsjIpt+jh90TpIkSZIkSZIkSZIkSdKALQKsCKwH7A68E/ghcFNEfDwilpygdQ9vEX9ORKw1QWtWHTZk80iSJEmSJOkJwmZhkiRJkiSpL6L4MvAjYI0+TDkNmKziHEmSJEmSJEmSJEmSJEmSNLFmAm8H/hIR2/Zz4ohYFnhRi9PTgNn9XG8ML46IpXuZICKeBOzQp3wkSZIkSZL0BDF90AlIkiRJkqQnjK8Cr2xx7p/Ar4ArgNuA+4ElgeWA9YEtgKdRdhOUJEmSJEmSJEmSJEmSJEnD7X7g7y3OLQ4sD6zQ4vzawNkRsWNm/rFP+RwELDrG+UMj4oOZmX1ar5XFgQOAb/Qwx2FA9CcdSZIkSZIkPVHYLEySJEmSJPUsIvamvlHYpZRdAH81XoFNRCwO7AHs0/hZot95StKwy0yL/CRJkiRJkiRJkiRJkjQVXJKZO411QUSsAbwAOApYt3J6aeD7EfGUzHy0D/kcXjlORjbcmgXsAvyyD2tV3UnZPHW+w+iyWVhETANeXgnPoTRf0xNUZh4NHD3gNCRJkiRJ0pCbNugEJEmSJEnS1BYRAXy25tTpwHaZeU47O/Fl5gOZeXpmvgxYHXgzcE1/s5UkSZIkSZIkSZIkSZIkSZMhM2/MzK8AT6PUFFatC7yq13UiYjPg6ZXwZ4FHKrHDel2rhe8Ac5uOnxERT+lyrt2BNZqO7wJ+2m1ikiRJkiRJeuKwWZgkSZIkSerVdpQd95rdBMzOzIe7mTAz787Mz2Xm23pNTpIkSZIkSZIkSZIkSZIkDU5m3g8cBFxVc/plfVjiiOqSwOeBMyvxF0XEcn1Yr+rfwM8rsW4bk1XHnQI81OVckiRJkiRJegKxWZgkSZIkSerVc2tix2fmvZOeiSRJkiRJkiRJkiRJkiRJGjqZ+RDw0ZpTW0bE8t3OGxGLAgdWwudm5j+BEyrxRShNyybCsZXjl0XE9E4miIgVgL3GmVeSJEmSJEkLqI5+2SRJkiRJklRj7ZrYHyY9ixYiYiVgS2Clxs9c4FbgFuDCzLxngOmN0Mh1Q2BdYFlgCeBeYA5wE/D7zLxvknJZFtiqKZdpjTx+mpk3TFIOawGbA6sBywH3AdcBF2fmzZOUw2LA1sCqlPfPksAdwG3AnzLz2knIYRngGcD6wDKU5+E24NLMvHoC190EWI/yuFcAHmisez3lNXh0otZurL8QsBmwEbAysChwP/DnzDynzfFPonymVgeWBhYC7mz8XA1cnpnzJuQBDImICOCplPfPisDywN2U78HrKO+jCX8OBvU+liRJkiRJkiRJkiRJ0lA5uyY2DdgAuKDLOV9EqS9rdmLjv2dRalRWbDp3OPDFLtcay4+B24GZjeOVgec14u06GFi46fjPmfmHUgI0HBbEuqyIWJ3yeGdRap8WA+6h1FT+k1JP99DAEuyTiFiYUjO4IbAK5bWF8jjnUF7Xv05SLtMptb8bUz5T84CbKTVvF2bm3MnIo13DUGsqSZIkSVow2CxMkiRJkiT1aqWa2P2TnkWTxh/dXw8cQGk21apS5rGIuAA4HjhhsosHImIpyi6AuwE7AWuNM2RuRFwGfA04MTMf6WLN44GXN4VuyMxZTeefC7wF2JlSwFN1KOX5mhCNxkYvB15LaVZWJyPid8DHM/PMprHXM7J53QmZObuLHKZRdo88GNiB0qSq1bXXAacBn8rM2ztc53jGfi02A95NeY/MaDHHDcCnga/2o3lXRGwKvAnYndKkrZX7IuKXlNfgwg7X2An4dSW8c2ae2zi/FvB2ym6f1SI+gN8Atc3CImJ9SvHfs4FnUhrujeXuiPgF5fW7qM38Z1EKjlp5eUS8fIzzAGRm7fdSRGQl9P7MPLqd3CrzPJnyPD6PUoDUyh0R8TPKc3BZF+scz5C9jyVJkiRJkiRJkiRJkjScMvO2iLiHx5sQzTez7vo2HV45fgD4fmO9xyLiFOCNTec3i4ind1MrM5bMfCQivl1Z6zA6axZ2WOX42J4T64PJqMtqrHM5sElT6DZg9V5qiiLipcAplfDrMvPLY4yZCewD7ArsSGn8NpZHIuJCShO6H3TTKC0ijgbe1xxrVWPWT436rr0pNaPbAIuMc/1twJmU1/bKCchnZeCdwGzKRrd1bo2I04APZOZt/c6hXZNVaypJkiRJUrNpg05AkiRJkiRNeXW7oa1dE5sUEXEAcA3wCWALWjcKg9JIfXvgW8CfImKHic+wiIhPALcCJwOHMH6jMCjNu7YEvgFcGxHb9zGfJSPi+5SdFHelvlHYhGo0YfotcBytG4VBeU2fBfwkIr4bEYv3MYc9gMspO0vuxhjFGw3rAO8A/hERbxzn2nZzmBYRHwQuAV5MiwZLDWsDXwAuioi6xn3trrlqo1Dtj5SGcGM1CoOy693ewAUR8cOIWL7btSt5HA5cBbyO+kZhrcatEBGXAn8DPkZ57cYrSIOyy+O+wIUR8aOIaFVcNGVExOIR8WXgCkoh5FiNwgBWoDRm+0NEnBQRbT/v4+Qx6e9jSZIkSZIkSZIkSZIkTQn31cSqzcPaEhHrUJocNTs9M5vXOKFmaLXBWL98q3K8Z7v1MBGxJbBpU+gRSn3hwAygLuu4yvGKwJ7t5tvC7Mrxw8CprS5uNJe7Gfg6sD/jNwoDWJjSLOo04C8RsXFXmU6iiNgwIv4KXEZpUrYD4zQKa1iRUmP4l4j4RkS0M6bdnJ4HXEnZ8HSs98xKlA2Fr4qIl/Rr/U4MQ62pJEmSJGnBZLMwSZIkSZLUq//UxPaf9CyAiHgP8B1g9S6Gbwz8IiIO7G9WLW3N+MUBY1kDOCciXtZrIhGxBHAOpaHPQETEupRGYc/qcOj+wE8jYuE+5PBW4H+BjboYvhTwuYj4ZkRM7yGHaZTikXfTWcO2pwO/jYglu1jzacDvKQ2jutmJ8IWUoq4ndzG2OY+3Ad8Eumn+thTlOejFXsDvI2KNHucZmMaOlr8CXkNphtjRcMoOh+dFRDvNC8fKY9Lfx5IkSZIkSZIkSZIkSZoy6poA3dPlXIcxuubpxOaDzLyM0tSn2UER0Uv9Xq3MvBz4Q1NoOtBujd9hleMfZ+YdfUmse5Ndl3Uy8Ggldmi3CzfW3LUS/mFm3jnGsO3ovPaq2VMo9XTVdYfNKkAvNX8BHEGp9+qq2d+IySJeAPwI6GTj0hWAUyLilb2u34lhqDWVJEmSJC24/MekJEmSJEnq1flA9Q/tu0bEkZl5zGQl0WgU9oGaU48BvwZ+CdxE+X3ImsDzgGcwslBoYeDkiHgsM0+b2IxHSEox0uXAVcBtlOKnuZTCgCcBW1F2QJzRNG4G8I2IuCIzL+1h/a9TmpfN92/gLODPwK2UXRvXphTt9F1ELENpcLRmzel/AD+k7Ex4J2VXuqdSGlSt0rhmB+AzPebwMcqubVVzgF9QCrhuBR6gFKttDOwBbFC5/nDgLuCtXabyYeCgpuN/UYpKLgduB5akFBO9mLLTXLMNKLs3vr7dxRq7Uf66MW+zecD/UT7f11Ee02KUJnU7ArswsgnU+sBZEbFFZt7d7vpNdgPe2XT8cCOvcykNCR9rrL1NTa517gMupnyergHuBu6lfMaXoxTp7Ex5LputD3w3InbMzMdazP0I8Kem440Y+bm8E/hnGzn2VUQsRnnONqk5fTtwBo9/plfg8ffRapVrN6I0DNssM+d0mc6kvo8lSZIkSZIkSZIkSZI0NTQ2lazbTPAfXcw1DZhdCd9E2Tiz6kTgk03HywIvAk7pdN02HAts0XR8GPDpsQY0Gpe9tGaeYTORdVlk5q0RcRalPnC+50XESpl5axf5HgJMq8Q6eV7nApcCVwBXA3dQajuDUle5PqUO9ZmVdZYEvhMRT8/Mf3WR9yDcyeOv7bWUx3kfpW5wJqVmcjeguhHl1pRNQnvZZHgd4Bgev985KbWLZwE3No7XBJ5Lea6b634D+GpE3JGZP+ghh7YMUa2pJEmSJGkBZbMwSZIkSZLUq7OABykFAc2+EBHPAT6RmedNZAIR8UzgfTWnzgMOz8y/1Zz7UERsSyn82LB5OuDrEXFRZt7Q/2z/ax7wc0oR0s8z87bxBkTETOC9lCY684sdFgFOoDTQ6sYawIGN/38QeBfw5cys7s4H8O6J2E0R+CyjC0jupRRBfCMzszogIt4AvA04mvI7rtdSmjh1LCL2YXTxxp2U5lUnZuZDLcYFsDfwVWClplNHRcRvM/PHHaayalMe9wJHAcdm5tyatf8fpTneOyunXh0RH83Mm8ZbLCKWA77H6OZbxwFHZ2arhlcfaRTtfQnYvSm+LuXz9OLx1q7xdh5/T/8AeHOrIqkx3oN3UXaW/D5wfov3cHWu7YDPA1s2hbcD3gR8qm5MZv4b2KxpjuspzfTm+3Fmzh5v7QnwWUY3CpsLfBz4YN37OCLeDLwF+CDlu2S+NSkFXC/qIo9JfR9LkiRJkiRJkiRJkiRpSqmrLbqT0qCoU7tT6t+anZyZ82quPZmygV3zBomHMzHNwk6hNAebX+e0UURsk5kXjTHmRZTGQvPdRKkvHAaTUpfV5FhGNgubDhxMdxuKzq4c30jZeHYsjwCnUx7zr9rZPDMi1gY+ysiGbysAXwGe326yA/Af4HjKRpSXtPjs/FejZvK5wOcojdLm2y8i9s3M73eZx9t5/PNyNTC7xeflIxGxdSPn5oZ0AXwlIn6Tmbd3mcO4hqjWVJIkSZK0AKt2RZckSZIkSepIo8nVF1ucfgHwfxFxY0QcGxGviIinRUTfGpg3/oj+LUYW8UBpYrZLi0ZhAGTmBZRdxi6vnFqG1o+pX/bJzN0z89vtNAoDyMzbM/MNwKGVU5tExG5d5jH/ebsf2CMzPz9WMU+rYoZuRcQzGP147mvk8vW6RmGNPB7JzA9TGp3NpRR7LFJ37Tjrr0RpjtXsGmDTxvotH28WZ1AKmm6snP5o473ZiYUpj2MOsH1mfqOuwVJj7Ucz813ANyqnFmL089nKl4BZTcdzgYMz87AxGoXNX/9aStFP9bl7UURs0+b6zea/D48B9htrN8UWr8m/gdUy88jM/E07BWmNuc4HtgfOrpx6Qz+/pyZao2HiqyrhecChmfk/rd7HmTk3Mz9JKTasPmf7REQ3jd8m+30sSZIkSZIkSZIkSZKkKSAiVqVsIFl16nhNilo4vCZ2Yt2FmfkfRjff2jki1uli3TFl5l2U5kvNxquFqT6WE1rV3EyyQdRlnQXcUonNbmfdZo2aqvUr4RPaeK9tlZkvzswz2mkUBpCZN2TmgZTNT5s9LyI2rBkyDH4PrJmZ78rM37fzGWzUTJ4FbANcVjn9lh5ymd8o7ArgWWM11svM31PeW1dUTq1I2VhzQgxZrakkSZIkaQFmszBJkiRJktQP7wUuGOP86pRil68DfwTujYiLIuILEbFvRKzcw9p7AhtUYv8E9s/MR8YbnJlzKLvQPVidNyKq8/ZNu0UkLcaeQNmlr9kRvWXEOzPztz3O0Y3X1cTe1igWGldmfo+yA2G33khpDjffA5RGZdWCjLFy+Bfwkkp4I2CvLnM6NDP/1Oa17wSqRSa7jzeo8d4+oBL+n8z8dpvr0mjk9ipG7+r5znbnqPg98OZWDeLGyeWRzKx+htsd+xDwcsprP9+aQLcN+AbhzTWxz2XmSe0MbhRwvafm1FE95DTh72NJkiRJkiRJkiRJkiRNDRGxLqVx1IqVUw8AH+1ivpmUzUybXZKZV44x7ITqNEzchnbHVo5fEhGL1V0YEbOAnSvhalOigRhEXVZmPgacXAk/NSK26DCFutd23Oe1l9pO4APAxU3HARzWw3wTJjMfaDzX3Yy9EzikEt42IjbqIaVHgBdl5h1trH8HZYPMao3wQY3vhokwjLWmkiRJkqQFkM3CJEmSJElSzxpFHc8DftLmkEWBrYEjge8BN0fEuRFxWEQsOvbQUV5fE3trZt7f7gSZeR2jdxQL6htZDYvqDojP6mGua4Ev9TC+KxGxLLBfJXwVpalcJ94H3NXF+ksCr62EP52Z/+h0rsz8HXBOJbxPp/MAv8nMH3ew7hzKTorNNouI8X7v9zZG/m7wOuBT7a7btP6jwEcq4ed28TmG0iRuILthZuatjN7FspfP1KSJiNWBvSvhWylNHDvxGcpOh822jYjNu0hrst7HkiRJkiRJkiRJkiRJGkIRsWhErB4Re0bE14E/A5vWXPqKTprtNDkEWLgSq9bUVf0IqDaCmj1BNSrnADc0HS8DvLjFtYdS6hXn+21m/n0Ccpp0PdRlVZutAcxud92IWBzYvxL+bWZe2+4c3WhslFnd4HFK1KF1KjP/AlxaCffyWI/JzL91sP7fgGMq4UXo4H3SriGtNZUkSZIkLaC82UqSJEmSJPVFZt4FvJBShNNpoUoAOwLfAv4aEQe1NShi4ca4Zv8BzuhwfYCvAdVd0p7TxTyTpdrUZ9WIWKvLuY5rFKlMtmdSijOquczrZJLMvA/4bhfr7wosW4l9q4t55vvfynH1vdmOb3Qx5veV4yWB1VtdHBFB2VWv2fE9NOqqNnlaBNimwzmuyczfdrl+v1Q/U88YSBadezawUCV2YicNE+G/jd/q3n/dfA9O+PtYkiRJkiRJkoZd48b4XSLi8Ih4R0S8MSL2i4inDTo3SZIkSeqTHSMi636AB4EbgTOBVwCLV8Y+AByUmad0ufZhleNHgVPHGtDYFPW0SnhNYLcucxhrrQSOr4SrOdNoVPbySriuUdZU1nFdVmZeyeh6ogMjolpv2MqLgaUqsePaHNur6uPdPCJmTNLak62fNXfd1JzVbUz73B5yaGUYa00lSZIkSQuo6YNOQJIkSZIkPXHM3xUtIk4F9gAOBPYElu5gmrWAkyNiV+DVmfnwGNduDixaif0wM6tNv8aVmf+JiPOAnZrCG0TECpl5R6fzdapRxPIs4GnAJsCKlOdtSUY3AoLRuyJCee7+2cXyv+5iTD/UFYZUG0+160zgVR2OqRZY3JSZN9Re2Z7rKsezImLZRiO9dv2mi3XrdjtcBvhXi+s3BZarxM7vYl0AMnNORNzdWHO+p9PZYzm32/VbiYjVge0oj/fJlPyWBhZj5E6c861SOe62+d5ke2ZN7PtdznUa8Ik25h/PZLyPJUmSJEmSJD2BRMSTgK2ALRv/3ZyRN/XekJmzBpBaxyJiE+C9wAsY/Xes+ddcQ7lJ+dOZ+cgkpidJkiRJg3YvZWPID2RmV3UhEfEMYONK+KzMvL2N4SdQmpc1Oww4u5tcxnEc5d+H82uVdoqIdTKzuc5sV2DtpuN76b72Z1JMYl3WccDWTcfLA3sB32tj7KGV4/vaHDdKRCwJ7EB5vBsBK1Ae7xLAtJohS1aOFwFWpjTPG2oRsS6lrnNTYF3K41ya8hjqXtvqa9ltzd3VmfnXTgdl5t8i4gpGfh9sFRHTOt20dhzDWGsqSZIkSVpA2SxMkiRJkiT1XaNZ15nAmRGxELAZpRHWlpSbOzagvgFWs9mUYor9x7hm85rYJZ3m2+RiRjYLC0rTo1/2MOeYImI94J3AvoxsttSN6s5l7Ujgjz2u262nVo4fBK7ucq7LuhhTbYK0XET08lxUi3wAZgLtFnA8lJndFATdXRMb671U1/zpmIgYqzHfeKo7f87scPylPaw9QkTsC7yWUqBTV4zVrm4+T4NQ/R58DPhTNxNl5g0RcSuw0hjzj2ey3seSJEmSJEmSpriI2Al4F+XvR8sPNpveRUQA7wGOpv4G2mbrAx8BXhoRB2bmXyY4PUmSJEkaFpcAx3TbKKzh8JrYie0MzMzfRcTfgfWawi+MiJltNhtrW6MW51fALo1QUOoi39d02WGVYd/NzPv7mUe/DKAu61TgM5QmZPPNZpymXxGxNiPrQAFO6/R5jYgtgLdRGpQtNs7l41mWIW0WFhHTKJ+pV1AauPei25q7P/Sw5qWMbBa2FKWJXbe1qHWGrdZUkiRJkrQAs1mYJEmSJEmaUJk5l/KH/P/+MT8iFge2AXYG9gM2bDF8v4g4MjOPaXG+riHRVT2ke2Wba/RFRLwX+H+UXdf6oZvGOvdl5gN9Wr9TK1SO/9V4v3QsM2+KiEeBGR0MW6NyvDjwtG7WH8MKwN/bvHZOl2s8WhMb63moPm5o/RnsVvW1Hc+tvS4YEasBJwHP7nWuhqnSqKr6HXVdZj7Uw3xXMbJZWKffgZP1PpYkSZIkSZI09W0G7DboJProG4y+YX0e5Ub464GFgY0oN6zO91TgnIjYNjP/MRlJSpIkSVIf3U99bdQMYDlg1ZpzOwMXR8TszDy10wUjYgnggEp4DmVz03adCHyg6Xhh4GDgc53m04ZjebxZGMDsiHh/Zs6LiOWAvWuuHyqDqsvKzLsj4gzgwKbw7hGxambePMbQ2Yxu4n1cu8lFxAzgs8Br6K0pWrOhrEWLiKcA36ZsqtsP3T7Ov/awZl1TsJVaxLs1bLWmkiRJkqQFWL9+WSFJkiRJktS2zHwgM3+dme/NzKcAewBXtLj83Y3mYnWWq4n1srPWnTWxCdnJPiK+BLyf/jUKg+4a69zTx/U7VX397u5xvk7HT8hrW9HJjoJ1zZImQqeNvLrR6U6KPb0PI2J14Fz6V5AGU2ejhernqNfdBavfg4uM8R1cZ7Lex5IkSZIkSZKeuB4Grh10Ep2IiCMZ3SjsO8BamblNZh6Qmftk5gbA1sBlTdetBPw0IhadpHQlSZIkqV8uyczNan42zszVKHVKsxndtGdh4KSIeEEXa+4PLFWJfSczH+lgjhOBrMSq/6brl9MZWc+zFo83DzuIkfWDV2fmBROUR1eGoC6r2uRrIeBlrS6OiAAOqYSvyczz2lms0Sjse8Dr6O+9t0O3aWJEbAL8hv41CoPuH2cvtaN1Y5ftYb46w1ZrKkmSJElagNksTJIkSZIkDVxm/gzYCvhpzemVgL1aDK0W/UDZrbBbdWPr1uhJRBwMvLbm1BzgW8BhwPbALEojoMUyM5p/gHX6lM5jfZqnG9VGaZ0UbNV5uN0LG82P+tmobSqpa7I3aL2+D48H1q+J/xH4KLAPsDmwCrA0sHDNZ+r9PeYwKNXvqF6+A1uN7/v3oCRJkiRJkiQ1PEr5Xe43gVcBW1B+J3nEIJPqRESsAHykEj4mM1+ambxgrjgAACAASURBVDdVr8/Mi4EdgN83hZ8MvGnispQkSZKkyZeZczLzBGAzSkPlZgsBJ0fErA6nrWvqdWKHed1AaZLUbJOI2LrDXNpZ6yHg1Er40MZ/D6vEj+33+n1wPIOtyzoHuKESO7TuwoYdgSdVYtWGY2N5B/DCmvhNwJeBg4FtgTUpDakWrXm8O3ew3kA0mqKdBqxYc/p3wNHA84GnUWp4lwKm1zzWE/qU0tDW/S7gtaaSJEmSpCHUSRd2SZIkSZKkCZOZD0bESyg7xc+snN6F0cVCAPfWxJboIY26sXVrdK1RZPGJmlMfAz6QmQ+2OdUTYRex6o5uvRZoLN3BtQ8B8xjZTP+HmblPjzlMBXXvseUy866a+NCLiD2BXSvhW4FDGo0I2zVVP1P3MnInxF6+A1uN7+v3oCRJkiRJkiQ1nAB8tXHj9AgRMYB0unYksGTT8VXAUWMNyMz7IuIg4EpgRiP8roj4WmbeOTFpSpIkSdJgZObDEfEyYGVGNlJamrK55i7tzBMRGwDPrDl1YZ/+HXkYIxs798txwGuajveJiJ2BpzfFHgNOmoC1uzYMdVmZmRFxAvDepvCGEfGMzLywZki1kdhc2mwmFxErAe+qhB8D3gZ8MTPb3RBzKtShvRJ4SiV2LfCSzLykg3n69ViHue53Qa41lSRJkiQNoWnjXyJJkiRJkjQ5MvMeyk50VRu0GFJ3s8SyNbF21Y2d08N8dXYEVq3EjsnMd3XQKAxg+T7mNCjV12+FbieKiIUZeSPOmDJzHlBtjrVOt+tPMbfXxGZNdhJ99NLK8VzgBR0WpMHU/UxVP0e9fAfWjX84Mx/ocU5JkiRJkiRJGiUz76xrFDYFvaBy/PnMfHS8QZn5d+CHTaGlgRf1MzFJkiRJGhaNRkuHAPdUTj07Ig5oc5rD+5vVKC+NiMX7PWlmXgxc3hRaFDi5ctlZmfmffq/do2GpyzoeyEpsdvWiiFgSeHEl/PPMvKnNdfYCqq//OzLzcx00CoOpUYdWfW3vBXbtsFEY9O+xLtPnsX3bOHUBrzWVJEmSJA0hm4VJkiRJkqRhU7cz38wW195WE6vudtaJjWpidY2VevGcyvE84MNdzPOkPuQyaP+qHK8eEct1OddTgU63h7ylcvzkiFiky/WnkurjBth00rPon+pn6uzM7GaHz6n6map+D67T4/u4+j3Y7+9ASZIkSZIkSRq4iFgyInaPiEMj4u0RcVREvCwitoyItmtrI2IpYLNKuJObps+uHO/bwVhJkiRJmlIy80bgvTWnPhIRM8YaGxHTKc3GJtLSTNy/y46rHK9WOT52gtbtxVDUZWXmdcC5lfBLImLRSmx/YIlKrPq8j6X6eO8EvtjB+PmGug6t0VRt20r4xMy8vovp+vVYn9zD2LrNiG/tYb46C2qtqSRJkiRpCNksTJIkSZIkDZu7a2KtdmW7tCa2ZQ9rb1U5zhZr9GLNyvHfMrOuedN4qsUaU1Fd4dAzupyrm3HV9RcDdupy/amk7nl/7qRn0QcRsTCwUiX8f13MsxCwdV+SmnzV76jpjL4xrS0RsRajn88/dDOXJEmSJEmSJA2jRoOwXwFzKI26jgU+DnwKOBG4GLglIj7W5gYnqzGyFvf+Dm+uvbxyvIs3m0qSJEl6gvsK8I9K7EnA4eOMez6wciX2H+BPPf5UjZdHt04CHmlx7lbgfydo3a4MYV1WtenXMsA+ldjsyvEc4McdrFGt7bwoM1u9ZmMZ9trO6u8yoLvXdiX61yxsiz6OvRf4Ww/z1VlQa00lSZIkSUPIZmGSJEmSJGnYVAt6YPSuXPNdCjxUie3dKDDpSESsDGxfCf81M+d0Otc4ZlaOO56/sYvi3v1JZ6AuqIkd2OVcB3Ux5hc1sYO7XH8qOR+4vxLbs82bnoZN9fMEXXymgOcBS3aZQ7WZYcffPz06vybW7Q6n+7U5vyRJkiRJkiRNKRExMyJ+QWkQtjMwY4zLZwLvAK6JiB3GmXr5yvFdHaZWvX4GsGGHc0iSJEnSlNFovvSBmlP/M07z5LomXodm5ma9/DC6CdAOEbFet4+vlcy8HTizxemTMrPVhqqDMgx1Wc1+ANxTiR06/38iYl1G139+OzMf7mCNftR2zqT83mGY9eu1PaDXRJo8JSI26HRQRDwZ2LgSvjgz5/Unrf9aUGtNJUmSJElDyGZhkiRJkiRp2Dy7JnZt3YWZ+Sjw60p4FbprpPVKYHol9vMu5hlPtUlTXeHFeA4EVu1DLgOVmX8Crq6E942IdTqZJyKeRXe78f2M0c3mXtpN0clU0ii4O7sSXgo4agDp9Kr6eYLuPlNv6SGHeyvH/Shu68Q5wNxK7GURsUQnk0TEdOAVNacm4ntQkiRJkiRJkiZN4ybvi4BdK6fuBc4Fvgt8H7gEaL6ZdAXgFxGx+xjTP1I5HuvG9jp112/U4RySJEmSNNWcDPytEluD+toVImJV4LmV8C3UN/DpJpeqw/owb51jO4wP0jDUZf1XZj5A+fd7s10iYs3G/8+uGXZch8v0o7bzdcCiXYybTD2/to0Nb4/sTzr/dUQXY+q+M37aayI1FshaU0mSJEnScLJZmCRJkiRJ6klEvKDT5k5jzLUusH/NqVY76gF8qSb2qYhYvIN11wbeWQlni7l7dXPl+MkRMavdwRGxMvCpfiY0YF+tHC8KfDUiFmpncEQsWTNHWxq7NX69El4IOCUiFutmzinkwzWxtzcar00ZmXk38EAlvFsnc0TEEcBOPaRxZ+X4ST3M1bHM/DdwRiW8MvC+Dqd6E1AtXvpdZl7WbW6SJEmSJEmSNGiNvxedwcjf3f4V2BdYLjN3zsyXZOZ+mbkV5eb0bzRduzBwckSs3mKJOyrHy0VEJzcF120O442mkiRJkp7QMnMu8MGaU+9q8W+q2ZS6rmanNubp1XeAxyqxl7dbv9ahsyj/Dmz+WTkzr5yAtXoyJHVZVdXmX9OAQyJiGnBI5dyfuqh7qtZ2btfJho0RsTHwrg7XHITq44QOX1tKbdr6fcil2ZGNhu9taVxbbVj2MHB8P5OCBb7WVJIkSZI0ZGwWJkmSJEmSerUn8LeIOC4iNux2kohYjXKzRrXJ123AL8cYehZwdSU2i/JH+OltrLsc8KOadX+SmdXdC/vh/2piH29nYEQsT2mc1s2OdcPqWODGSmw34ISIWGSsgRGxLOX52LiH9T/K6J3yNgfOaLw3OhYRa0fEMRGxSQ95TahGIdQPKuEZlMe9QzdzRsQiEfHKiHhzzwl25rzK8U4R8bx2BkbEHsAXelz/8srxJk07Vk6Wz9bEjoqIl7QzOCJ2p76B3Kd7ykqSJEmSJEmSBu+TQPPv638KPD0zf1B3U3lm3pyZrwSOagrPpP4mdih/47iv6XghYMsO8tu2JrZMB+MlSZIkaao6hdF1f6sBr6659tCa2Mn9SCIzbwN+VpPHc/sxf2WtzMz/VH5u7fc6fTTouqwRMvMCRr9nZgO7AGtV4sd2sUS1tnNJ2tywsbFh7I+BMWseh0HjPVetjT0oIp7WzviIOJSJaYq2CHB6O3WbjWtOZ/TzfUqjsddEWCBrTSVJkiRJw8dmYZIkSZIkqR+mU4ouroqICyPi9RFRtxP6KBGxeES8GrgMeGrNJW/LzIdajc/MBA4Hqjd0vBD4+Vg7jUXENpSClmqRw12M3nGsX84G7q3E9o+Ib461C11E7AZcyOM3mNwzQflNqsy8F3hlzamDgL9ExMsiYsRNMRGxSkS8nlL4s2MjfB1wSxfr/wd4OZCVU7sDf4iIg9tsOrdERBwQEacDfwdeD9TtcjlMXkV53prNBM6JiE9GxCrtTBIR20TEp4Hrga8B6/Y1y/GdVhP7bkTs22pARCwaEe+lNAqcv7Nft5+p8yvH04DvRUQnN4P1JDPPB75Sk8dJEXF0RCxcNy4iFoqItwA/BKrXnJGZZ/Q/W0mSJEmSJEmaHI2Nao5oCl0P7JuZD443NjM/Q9mwZr6D6n5vnpmPAb+rhF/WZn4BHFxzaql2xkuSJEnSVJaZ84D315x6Z0T8d+PPiNgRWL9yzdWZ+Yc+plPXeOzwPs4/VQ26LqvOcZXj9YDPV2KPAN/uYu4fAPMqsbdFxAfHqiGMiJcCFwBPaoSmQm1n9bWdAZwdETu1GhARy0bE54Fv8fh9yf16rPNrhJ8KnBcRW4+Rx1aUxm7VeuPbgHf0KZ9RFvBaU0mSJEnSEBn3H5+SJEmSJEkd2qbxc0xEXA9cBFwJ3A7cQflD+dLA2sCmlF3dWjXJOi0zTxhvwcw8PyLeD3ygcmpn4MqIOAf4FXATZUf3NYHnAdsBUZ0OeFVm/nO8dbuRmXdGxGeB91ZOHQ7sHRHfAy4F7gSWpRSQPJ+RhQ1zgTcyuvBlSsrMn0bEh4H/qZxaDzgRmBsRt1CauM0EVmTk6/YIcAiji7aqDeRarf+DRoHSByun1gFOAj4VEecCl1AKSu6nvIeXbeS4JeW9PPS7AjbLzDsiYi9Kw7zmhmzTgbcCb4iIC4DfAjdS3pOLUB73qsDTKY99xcnMu8aJlJ0Km5uULUlp2HUp8BNKUc2jwErAFpTP1ApN11/ZuK6bYqEfAXOA5Zti2wAXR8S9wL95vJjpvzJzsy7WGstRwPZA8y6D0ym7W74mIs4A/kz5Ll4O2Ah4EbBGzVz/YuQNdJIkSZIkSZI0Fb2akRslvD8zH+hg/Kcpf0+iMc8ewPE1151MuTF0vkMj4iuZ+cdx5j+S0Te8g83CJEmSJC04TgPeDWzcFFsZeC3wqcZxXdOuk/qcx48oTY+WbortGRErZeatfV5rKhl0XVadk4CPUOpA53tK5ZqfZOYdnU6cmX+LiJMptYjN3g3MjojvU+qv7qPUim0A7MXI5+cBymOtbvw4bD5LaVK1bFNsFeDXEfFb4GeUpuvzGvHtgOdSXv/5zqHU5Fafr258AnhLY/6NgAsj4jzgp5RaNih1v3tQauTq6n5fk5m39SGXlhbUWlNJkiRJ0nCxWZgkSZIkSZpIsxo/3TiBDnbny8wPNnZgr+42OINSILBHG9M8ChyamXU74vXTh4AdGz/NVqDcuDKWpBRDndv/tAYnM98dEUkprKlaCFit8VP1MHBQZp5Xsytb27vWZeaHIuLfwJcYvUvbysABjZ8nlMz8S2OnvdMZ2WQKyo1Pde/ToZKZj0bEfpSmZ4tXTm/e+BnLTcCewOwu138oIt5M+c6qWopSFDbhMvPBiHg2cCZQ3VlxJeBVbU51FbBHZs7pZ36SJEmSJEmSNADPafr/ucD3Oxx/HvAYj9fabk99s7DvAEfz+M3BM4CfRMQemXlF3cQRcQCP3/heNa/DPCVJkiRpSsrMeY1NQqv1em+PiK9Q6sZeXB0GfLvPeTwYEaczsn5oBqUJUqt/uz3hDbouq0VON0fE2Y15Wzm2hyXeQKm92rASXwN40zhjHwX2ozQMG2qZOSciDgJ+zMjGawA7NH7G8hfKY/1sn1K6DjiIUse4EKUZ2PaNn/Ek8OrM/EGfchl7sQW01lSSJEmSNDymDToBSZIkSZI05Z1EKb65q0/z/QN4YWbOzsy5nQzMzA8ALwX+3cW6VwLPycy+FhLVycxHgRdSmvp04i5g/8z8ev+zGrzMfA+wG3BNm0P+CDyrqchjucr5uztc/1hgW+BXnYyr8RDlxqB/9jjPpMjMa4BtgM9QdrLrxSXAWT0n1aHMvAzYHbi5w6EXAs/IzOt7XP9E4Ajg3l7m6VVjZ8Sdga9SbmDraDhwCvDMzJwS711JkiRJkiRJaiUiFgW2aAr9C5gZEbPa/aFsYtL89691qZGZj1FuaH2kKbwGcGlEfDkido+IDSPiqRFxQEScSfk7wozGtTdWpuzX39wkSZIkaSr4PvDnSmxF4EjgQEY3qTovM2+YgDxOrom1vdnpE9Wg67JaGKsZ2M3Az7qdODPvBnal5N+JfwO7Zuak1851q5HrfnSwKWvDmcD2mXlnn/P5MbA3nf1eZA5ls9lJraldUGtNJUmSJEnDwWZhkiRJkiSpJ5n5u8w8GFgJ2AX4AOUP4Pd1MM0tlIZjewIbNP7o320+3wHWA94OXEppgNPKY5Rd744ANs3M33S7bqcaRSV7UW4eqRY7Vd0KfJLy3HS66/2Ukpm/ADYGng8cB1wO3A7MpTT/+hPwdUoB0uaZeQlARCzF6MKwOV2s/8fM3AV4BnAio2/QaeVmSsHYy4FVMvOlmXlrp+sPSmY+kJlHAbOAoylNv9pp1vcQ5fP+/4CNM3OrQRU8ZeZ5wNOATzB+wdAllNfqmZnZ7ms83vrfAlYHDqU0UbyM8tl9sB/zd5DHA5n5GmATSmHcf8YZMgc4FdgiMw/qdxGXJEmSJEmSJA3IKjzejAvK77+v6+JnZtMcy7daLDMvAg6m/N58voWB1wBnA1dR/h70Hcrfw+b7IXB8ZTqbhUmSJElaYGRmUuqVqt4KvKomXtfUqx9+DdxUiW0YEdtN0HpTxqDrsmr8hFJTWOfETjeprcrMm4AdgNdTNr8dyw3Ae4ANM/O3vaw7CJl5BrAp8DXGrnObB5xL2Qj4BZk5Ib+7yMwzgY2ALzF2E7PbgC9SnvdTJyKX8SyotaaSJEmSpMGL8vs0SZIkSZKk/oqIoDTOWR9YC1gaWIrSvOse4F7KH70vz8zxmtn0ksfKwFaUZmYrUhog3UZpoHNho2nXwEXEWpSdxlamPFcPUXabuwL4c/pLnDFFxHOAn1fCu2Rmrzu3ERHrUQpQVmj8LExphnc35Uahq5+IxRoRsQyPf3ZWAJahFATdS3lv/hX4R6/FVRMhIhYCtqQ0npsJTKfkfR1wyUR+5wybxnfxppTv4pWAZSnfwbfx+PMxb3AZSpIkSZIkSdJoEbET5Ubt+W7IzFkdjN+CcoNyP12fmeuMs+6WwJcpv18fy6PAR4APN64/ouncmzLz870kKkmSJEnSRFgQ67Ii4snA1pT60yWA+ymNof6cmX8dZG79FBGLANsAG1DqBadRmsNdC1ycmR1v3tpjPjMov1/ZuJHPPErN8XXABUNat7hA1ppKkiRJkiaXzcIkSZIkSZI05UXE54A3NoXmActl5li7y0mSJEmSJEmSpCHUh2Zh2wLn9zmttnNobHKyF7A9sBplI4c5wA3A/wInZeZ1jWvPA57ZNPxZmfm7PuYtSZIkSZIkSZIkSZKeAKYPOgFJkiRJkiSpFxGxPHB4JfwnG4VJkiRJkiRJkrTAur1y/PPM3H2yFs/MXwC/GO+6iJgBbNEUegy4dKLykiRJkiRJkiRJkiRJU9e0QScgSZIkSZIkdSsiAjgBWLJy6usDSEeSJEmSJEmSJA2HWyrHTx5IFuN7JrBo0/FFmfngoJKRJEmSJEmSJEmSJEnDy2ZhkiRJkiRJGriIOCQidu1wzNLA6cDzK6fuAk7uV26SJEmSJEmSJGlqycx7gCuaQrMiYv1B5TOGwyvH3xxIFpIkSZIkSZIkSZIkaejZLEySJEmSJEnDYDvgFxHx14j4WETsHBHLVy+KiBkRsVVEfAi4Dti7Zq7XZ+Z9E52wJEmSJEmSJEkaaj+rHL9iIFm0EBHrAvs2he4CvjugdCRJkiRJkiRJkiRJ0pCLzBx0DpIkSZIkSVrARcRXgVfVnLqdcnPMw8CywExgkTGm+lZmHtH/DCVJkiRJkiRJ0mSJiJ2AXzeFbsjMWR3OsR5wFTC9EXoI2DIzr+hHjr2IiIWAs4Fdm8JvzcxPDyglSZIkSZIkSZIkSZI05KYNOgFJkiRJkiRpDDOB9YCNgdUZu1HYh4BXTEZSkiRJkiRJkiRpuGXm34HjmkKLAmdFxEadzBMR/5+9e4/zqq7zB/46A8NNQJCbF0xESRMvZWqIeMPc7LJlZZZZZrVl6u5qrt1+ZdjWau5WWqubm5tJWayleasWTYW8kPdKE68p4pWLiIJchsv5/TEwzgwzw3dgmO/APJ+Px3nwfX/O5/I+MwzyePD2fXoXRXHieub0bOt+s7m1SX6Wpo3C7k5yQXvyAgAAAAAAAAC6F83CAAAAAOgK7kgyawPX3pTk0LIszyrLsuy4lAAAAAAAgE2pKIqRRVGMan4l2bbZ1J4tzVtzDW3jiDOSPNAofkOSe4ui+LeiKHZsI6++RVG8vSiKHyR5Jk2bjrXkqKIo7i2K4pTW9l3TdOz9a/I5rtGtl5OcUJblqvWcAQAAAAAAAAB0Y4X/fxIAAACArqIoir2THJzkgCS7pP5/2hmUpG+Slan/H2ZeSvJokluT3FSW5czqZAsAAAAAAGyMoihmJdlpI7eZXJbliW2csWOSG5Ps3sLtJ5M8kmRhkp5Jtk4yKsmuSXo0nliWZdHGGe9Jcn2joWeTzEyyIEltkhFJ3pJkq2ZLX0ry7rIs72ptbwAAAAAAAACApL6wAQAAAAC6hLIsH0jyQJKLqp0LAAAAAACw+SvL8pmiKPZPcnGS45vdHr3mWp+F7Tx25JqrLXckOaEsyyfbuTcAAAAAAAAA0A3VVDsBAAAAAAAAAAAAANhUyrJcXJblx5Lsk+TyJC9XsOz5JD9P8qEk265n7kNJJid5cX2pJLl1zZ4HaxQGAAAAAAAAAFSqKMuy2jkAAAAAAAAAAAAAQKcoiqImyd5J9kiyTZJBSZYleTXJrCQPl2X5zAbuPSrJXkl2TLJ16l/s+2qSvyW5qyzLlzYuewAAAAAAAACgO9IsDAAAAAAAAAAAAAAAAAAAAAAAALqommonAAAAAAAAAAAAAAAAAAAAAAAAALRMszAAAAAAAAAAAAAAAAAAAAAAAADoojQLAwAAAAAAAAAAAAAAAAAAAAAAgC5KszAAAAAAAAAAAAAAAAAAAAAAAADoojQLAwAAAAAAAAAAAAAAAAAAAAAAgC5KszAAAAAAAAAAAAAAAAAAAAAAAADoojQLAwAAAAAAAAAAAAAAAAAAAAAAgC5KszAAAAAAAAAAAAAAAAAAAAAAAADoojQLAwAAAAAAAAAAAAAAAAAAAAAAgC6qZ7UTgGorimLrJIc2GnomSV2V0gEAAAAAAAAA2Bi9kuzYKP5DWZavVCsZAFCjBwAAAAAAAABsIapan6dZGNQXIV1b7SQAAAAAAAAAADaB9yW5rtpJANCtqdEDAAAAAAAAALZEnVqfV9NZBwEAAAAAAAAAAAAAAAAAAAAAAADto1kYAAAAAAAAAAAAAAAAAAAAAAAAdFE9q50AdAHPNA6uueaa7LrrrtXKBQAAAAAAAABggz3xxBM5+uijGw8909pcAOgkavQAAAAAAAAAgM1etevzNAuDpK5xsOuuu2bs2LHVygUAAAAAAAAAoCPVrX8KAGxSavQAAAAAAAAAgC1Rp9bn1XTmYQAAAAAAAAAAAAAAAAAAAAAAAEDlNAsDAAAAAAAAAAAAAAAAAAAAAACALkqzMAAAAAAAAAAAAAAAAAAAAAAAAOiiNAsDAAAAAAAAAAAAAAAAAAAAAACALkqzMAAAAAAAAAAAAAAAAAAAAAAAAOiiNAsDAAAAAAAAAAAAAAAAAAAAAACALkqzMAAAAAAAAAAAAAAAAAAAAAAAAOiiNAsDAAAAAAAAAAAAAAAAAAAAAACALkqzMAAAAAAAAAAAAAAAAAAAAAAAAOiiNAsDAAAAAAAAAAAAAAAAAAAAAACALkqzMAAAAAAAAAAAAAAAAAAAAAAAAOiiNAsDAAAAAAAAAAAAAAAAAAAAAACALkqzMAAAAAAAAAAAAAAAAAAAAAAAAOiiNAsDAAAAAAAAAAAAAAAAAAAAAACALqpntRMAAAAAAAAAALqOsiyzevXqlGVZ7VRgi1EURWpqalIURbVTAQAAAAAAAACADqfuDKiW7lSfp1kYAAAAAAAAAHRjZVlm2bJlWbRoURYtWpS6urpqpwRbrF69emXAgAEZMGBA+vTp0y2KkwAAAAAAAAAA2PKoOwO6mu5Qn6dZGAAAAAAAAAB0U0uWLMnzzz+fFStWVDsV6Bbq6ury0ksv5aWXXkptbW2233779OvXr9ppAQAAAAAAAABAxdSdAV1Rd6jPq6l2AgAAAAAAAABA51uyZElmz56tYAuqZMWKFZk9e3aWLFlS7VQAAAAAAAAAAKAi6s6AzcGWWp+nWRgAAAAAAAAAdDNrC7bKsqx2KtCtlWW5RRYkAQAAAAAAAACw5VF3BmxOtsT6vJ7VTgAAAAAAAAAA6DxlWeb5559fp2CrtrY2AwcOTP/+/VNbW5uiKKqUIWx5yrLMihUrsnjx4rz66qtN3qy69mdyl1128XMHAAAAAAAAAECXpO4M6Kq6U32eZmEAAAAAAAAA0I0sW7asSSFEkgwYMCA77LDDFlEIAV1VbW1t+vXrl2HDhuW5557LokWLGu6tWLEiy5cvT58+faqYIQAAAAAAAAAAtEzdGdCVdZf6vJpqJwAAAAAAAAAAdJ7GBRBJfYGEgi3oPEVRZIcddkhtbW2T8VdffbVKGQEAAAAAAAAAQNvUnQGbgy29Pk+zMAAAAAAAAADoRpoXbQ0cOFDBFnSyoigycODAJmPNfzYBAAAAAAAAAKCrUHcGbC625Po8zcIAAAAAAAAAoJsoyzJ1dXVNxvr371+lbKB7a/6zV1dXl7Isq5QNAAAAAAAAAAC0TN0ZsLnZUuvzNAsDAAAAAAAAgG5i9erV64zV1tZWIROgZ8+e64y19DMKAAAAAAAAAADVpO4M2NxsqfV5moUBAAAAAAAAQDfR0lvRiqKoQiZATc26ZTtbwpsLAQAAAAAAAADYsqg7AzY3W2p9nmZhAAAAAAAAAAAAAAAAAAAAAAAA0EVpFgYAAAAAAAAAAAAAAAAAAAAAAABdlGZhAAAAAAAAAAAAAAAAAAAAAAAA0EVpFgYAAAAAAAAAAAAAAAAAAAAAAABdlGZhAAAAAAAAAAAAAAAAAAAAAAAA0EX1rHYCNFUUxe5J9kkyMknfJMuSzE3yRJK/lGX52kbsXZvkPQtRGwAAIABJREFUoCRvSLJdksVJnk/yp7IsZ21c5uuctXOSNyfZPkn/JC8keTrJjLIsV3TkWQAAAAAAAAAAAAAAAAAAAAAAAFsqzcK6gKIoBiU5LcmnUt/IqzWriqL4c5Iry7L8djv2H5bkG0k+nGSbVubMSPK9siyvqjjxlvc5JskZSQ5sZcqCoiiuSPL1siznb8xZAAAAAAAAAAAAAAAAAAAAAAAAW7qaaifQ3RVF8aEkTyQ5O203CkuSHknemuT0duz/ziR/TXJyWmkUtsb4JFcWRXF5URRbVbp/o3P6F0UxJcmv0nqjsKzJ4eQkfy2K4h3tPQcAAAAAAAAAAAAAAAAAAAAAAKA70SysioqimJTkl0mGNLs1O8lNSaYkuTrJnUle24D9D0tyTZLhjYbLJPelvqnX75PMb7bs+CRTiqKo+PdGURQ9klyR5CPNbs1LcuOas+5fc/ZaI5JcWxTFhErPAQAAAAAAAABor9mzZ+drX/taDj744IwYMSK9evVKURQN12WXXVbtFAEAAAAAAAAAALYIo0aNalKfNX369GqnBFuMntVOoLsqiuJfkpzdbHhKknPLsnywhfk1SQ5M8sEk76hg/5FJfp2kV6PhO5J8pizLhxvN653kpCTfSVK7Zvjvk3wryf+r8HG+neRdjeIVSc5I8qOyLOsanbVHkv9Z8xxJ0jvJNUVR7FWW5QsVngUAAAAAAAAAdIJRo0bl6aefboinTZuWww47rHoJbYBLLrkk//RP/5Tly5dXOxUAAAAAAAAAAACADVZT7QS6o6Io9kl9g621ViT5UFmWH22pUViSlGW5uizLO8qyPCPJPhUc840kgxvFM5K8vXGjsDX7Li/L8gdJjm22/oyiKHaq4FlGJzmt2fCHyrK8sHGjsDVnzUxyRJI/NhoekmTS+s4BAAAAAAAAAGiP3/3udznppJMqbhQ2ffr0Jm+0PPvsszdtggAAAAAAAAAAAAAV6lntBLqboih6Jrk0Tb/2J5VleWWle5RluXI9Z4xJ8olGQ3VJTizLclkbe15TFMXkRut6p76J16fWk86kJLWN4svKsry2jXOWFkVxYpIHk/RaM/zpoij+vSzLJ9dzFgAAAAAAAABARb7yla+kLMuG+KMf/Wg+/elPZ8cdd0xt7eulDkOHDq1GegAAAAAAAAAAAAAV0yys830oyb6N4pvLsvxJB5/x0SQ9GsW/Lsvy8QrWnZemTcaOLYrilNaajBVF0TfJMS3s0aayLB8riuKaJMeuGeq5JudvVZAjAAAAAAAAAECbHn300TzwwAMN8bve9a78/Oc/r2JGAAAAAAAAAAAAABuuptoJdEMnNYvP2QRnvL9ZXFEzsrIsH05yV6OhrZL8XRtL3pGkX6P4j2VZPlJRhuvm9IEK1wFdQVkm8+9KHv1BMvfWZPXKamcEAAAAAAAA0ODee+9tEh9zTPN3oQEAdBOrVyR/+0ly/5nJnOnVzgYAAAAAAAAA2EA9q51Ad1IUxa5JDm00NCvJtA4+Y9sk+zQaWpnkjnZsMT3J2xrF70xyXStzj2phbaVuS31ua38PvqUoihFlWc5pxx5ANZSrk3v/MXn8h6+P7fjB5KApSU1t9fICAAAAAAAAWGPOnKblByNHjqxSJgAAVfTa08m1o16PH/lu/a9HP5P08/cjAAAAAAAAANicaBbWuQ5vFt9clmXZwWfs2Sx+oCzL19qxfkazeGw7zvpjpYeUZflaURQPJnlLs7M0C4Ou7sWbmjYKS5Jnrkpm/SIZ/Ynq5AQAAAAAAADQyOLFi5vEtbVefAQAdEONG4U1ds2OyUc7unwVAAAAAAAAoPOUZZn7778/jzzySObOnZvly5dn2LBh2WGHHTJhwoT079+/2ilusGeeeSb33HNPnn322SxdujRDhw7NXnvtlf322y81NTUbtffcuXNz22235fnnn8/SpUuz/fbbZ/To0Rk3btxG792SmTNn5sEHH8y8efPy6quvZptttsl2222XCRMmZMiQIR1+3pZOs7DOdUCz+I9JUhRFkeSIJMcneVuSHVL/vZmf5PEkNyX537IsZ1Vwxh7N4ifamePf1rNfY2/qgLMaNwvbI8kt7dwD6Gwz/73l8QfP1iwMAAAAAAAAaLdNUbS1evXqTZApAMBmZPmCtu8vfjLpP7pzcgEAAAAAAADoIPPnz88555yTyy+/PPPmzWtxTq9evTJx4sScffbZedvb3lbRvieeeGImT57cED/11FMZNWpURWunT5+eww8/vCGeNGlSzj777Fbn17caqnfooYdm+vTpSZIZM2Zk0qRJueWWW1qsgRsxYkS++tWv5tRTT213Y68//elP+cIXvpBp06a1uPfIkSNz0kkn5ctf/nJ69uyZs88+O9/4xjca7k+bNi2HHXZYRWe99NJL+Y//+I9cfvnlee6551qcU1NTk/Hjx2fSpEl5+9vf3q5n6c46vp0bbdmvWfxwURSjUt8M7PdJTkx9A66BSfoleUPqm4idm+SxoiguKoqi33rO2LVZPLudOT7dLB5SFMXg5pOKotgmyTYbeVbz+WPauR6ohjk3tzz+2qxOTQMAAAAAAADYvM2fPz9nnHFGRowYkf322y8f+9jHcsYZZ+QrX/lK/uEf/iHvfOc7M2TIkLzzne/MXXfd1eZes2bNSlEUDVfjIqUkOfzww5vcX3tddtllDZ8bF2slyTe+8Y0W16y91hZoAQB0SS9Mbfv+s9cnZdk5uQAAAAAAAAB0gGuuuSajR4/O+eef32qjsCSpq6vL1KlTM27cuJx00klZuXJlJ2a5Yc4555wccsghuemmm1p9WeacOXPyz//8zznmmGNSV1dX8d7f+973sv/+++fmm29ude9nn302Z511Vg499NDMmTNng54hSX76059m9OjROe+881ptFJbUvxD09ttvz5FHHpmPf/zj7Xqe7qxntRPoZrZrFvdLck+SoRWsrU1ySpIDi6J4d1mWL7Qyb1CzeG57EizLcnFRFMuS9Gk0vHWSl9dzzpKyLF9rz1kt5LZ1O9cDAAAAAAAAAJuha665JieccEIWLVrU5ry1RVtTp07NZz/72Vx00UXp2VO5CwDAej33m7bv3396Mv+PyX7/mfQekpSrkxp/zwIAAAAAAAC6pksvvTSf+cxn1ml2tcsuu2SPPfZIv379Mnv27Nx9991ZtWpVw/0f/ehHmT17dq6//vouW3v2ne98J1/96lcb4t122y277bZbttpqq7zwwgu58847s2zZsob7V199dc4666ycd9556937u9/9bs4888x1xvfYY4+MGTMmvXv3zuzZs3PPPfdk1apVmTFjRo499tgccsgh7X6Or3/96/nmN7/ZZKwoiuy2224ZM2ZMBgwYkJdffjn33ntvk2Zvl19+eV544YVMnTq1y36Pugpfnc7VvMHWT/J6o7DXklyc5P+SPJtkqyT7JPlUkgmN1rwlyVVFURxaluWKFs7o3yxeugF5Lk3TZmEDNuE5jbV0TrsURTE8ybB2LttlY88FAAAAAAAAACqzJRdtAQB0CatXJs//3/rnzb6i/mpsx2OSXf4hGXFosmJR0rN/svT5pN+OSY9e655TtyDpM7zjcgcAAAAAAABo5s9//nNOPvnkJjVnb37zm3PRRRdl/PjxTebOmzcvZ511Vv77v/+7YWzq1Kn5+te/nnPOOafTcq7Ugw8+mNtuuy1JcvTRR+fcc8/N7rvv3mTOyy+/nDPOOCOXXXZZw9h3v/vdnHzyyRk1alSre99333358pe/3GTssMMOy4UXXpixY8c2GZ83b16+/vWv5+KLL86tt96amTNntus5Jk+e3KRRWE1NTU499dSceeaZecMb3tBkblmWufbaa3Paaadl9uzZSZKbb745Z511Vs4999x2ndvdqJzsJEVR9E7Su9nwyDW/zkxyVFmWzzS7f3+SnxRF8S9JvtNo/MAkX0ryrRaOat7Ea1kLc9ZnaZLBbezZkee0teeGOCXJpA7YBwAAAAAAAIDmVq9Mljxb7Sy2fP1GJjVbZknHpiraGjlyZJ566qmG+IILLsj3v//9hnjKlCkZN27cOvkMHTo0hx12WJLkzjvvzHHHHddw77TTTsvpp5/e6rNsu+2263laAIBqKZJDrkme/03y8HfWP72xZ66sv9pr6IHJyPcng9+cDH5L0mfo+tcAAAAAAADQLZQrVybz1J1tcsNGpthCX8L46U9/OnV1dQ3xhAkTcsMNN6Rfv37rzB02bFguvvji7LrrrvnCF77QMH7eeefluOOOy1577dUpOVdqwYIFSZIvfvGLOe+881qcM3jw4PzkJz/Jyy+/nGuvvTZJsmrVqvz4xz9u0qCruVNPPTUrV65siD/wgQ/kiiuuaPFlncOGDcsPf/jDjB49Ol/84hczf/78ip/h6aefzsknn9wQ9+7dO9dcc02OOuqoFucXRZGjjz4648ePz0EHHZQnnngiSfIf//Ef+exnP5udd9654rO7my3zJ7xr6tHK+CtpuVFYg7Isv1sUxQ5JPt9o+PNFUVxQluXi9ZxbtjPPrr4GAAAAAAAAgGpZ8mxynSKMTe69TyX9R1U7i01iUxVt9ezZs8kbEgcNGtRkr2233bbVNyj271//brNZs2Y1GR80aFCbb10EAOiyanokIw6tvx79QbK6bv1rNtb8P9Zfrfm7u5KhB2z6PAAAAAAAAOh65j2b8tjdqp3FFq/45aPJdqOqnUaHmzZtWu6///6GeODAgbniiitarDlr7Mwzz8wf/vCH/OY3v0mSrF69Oueff34uvfTSTZrvhpgwYULOPffc9c77t3/7t4ZmYUlyyy23tNos7J577sldd93VEG+33Xa59NJLW2wU1tgXvvCF3HTTTbnxxhsrzL6+ydfSpUsb4vPPP7/VRmGNDR8+PL/4xS9ywAH1/5a8atWqnH/++fnBD35Q8dndTU21E+guyrJckmR1C7e+11ajsEbOSn1jsbW2SfLOFuY1bx7Wt7IM21zTUkOyzjoHAAAAAAAAANgCbEzR1nve856GeG3RFgAAFdj7X6udQb0b35b8okhWLl3/XAAAAAAAAIA1Jk+e3CQ+9dRTs/3221e09tvf/naTeMqUKVm+fHmH5dZRvvrVr6amZv1toMaOHdvkBZh//vOfW507ZcqUJvE//uM/Zuutt64on7POOquieUny2muvNWnANnr06Jx00kkVr99///1z8MEHN8TXXXddxWu7I83COtdrLYz9tJKFZVm+luTXzYYPa2Fqd28W9l9J9mzn9b4OOBcAAAAAAAAAaEN3KNoCAOhy9vhStTNo6pdtN4oFAAAAAAAAaOz2229vEn/sYx+reO3YsWOz7777NsTLli3Lfffd12G5dYS+fftm4sSJFc9/05ve1PB5yZIlWby45XY9M2bMaBIfe+yxFZ8xYcKEimv7br/99ixd+vpLo4455piKGp81dvjhhzd8fvrppzN79ux2re9OelY7gW5mYZIBjeI5ZVnOasf6O5N8slH8phbmvNIsHtaO/VMURf+s28RrYQXn9CuKYqs1Tc0qNbyCc9qlLMu5Sea2Z01RFBt7LAAAAAAAAACwHh1RtHX//fcneb1oa/z48R2aIwDAFumYl5MrB1c7i9e9+ngycEy1swAAAAAAAAC6uJdffjl/+9vfGuJBgwY1aZZVifHjxzfUnSXJPffc06XqznbZZZf06tWr4vmDBzf9t99XXnkl/fv3X2feX/7yl4bPgwYNyq677tquvPbbb79cd911653XvC5w++23z6xZs9p1VvPnf/LJJ/OGN7yhXXt0F5qFda7HkuzYKH6hneufbxYPaWHO483indp5RvP5C8qyfLn5pLIsXyqK4uUkjf8EeUOShzfirOa5AwAAAAAAAABbgO5QtAUA0GX1GpQctyqZ0qPamdT7zRtf/7zzCck+5yZ9RiRFkaRY8ysAAAAAAADQ3c2bN69JPGbMmBTt/PfE3XffvUk8d+7cjc6rIzVv/rU+tbW1TeIVK1asM+e1117LsmXLGuINabxV6ZpnnnmmSXz66afn9NNPb/d5jS1YsGCj1m/JNAvrXA8lOaJRvLyd65vP79PCnObNutrX1i8Z3Sye2cbch5M0rrrdtYXz23NWe9YCAAAAAAAAAJuJ7lC0BQDQpRU1yQ5/nzx3fbUzaeqpn9ZfzQ3aOxlzSjL0wGTgG5MeLZXMAgAAAAAAAFuyl19+uUm89dZbt3uP5mu6WiOqmpqaDt9z4cKFTeIBAwa0e4+BAwdWNO+ll15q997rs2jRog7fc0uhWVjneqBZPKid65vPb+mn5a/N4r2LouhXluWSCs84aD37Nb/XuFnYgUkqqiIpimKrJHu34ywAAAAAAAAAqq3fyOS9T1U7iy1fv5HVzqDDdYeiLQCALm+PL3W9ZmGtWfhAcs/n2p5T0ys54EdJ0TNZtbS+sdigsZ2THwAAAAAAAJUbNjLFLx+tdhZbvmFbXt1ZWZZN4va+oLIlHbFHV9e7d+8mcV1dXbv3qHTNhuy9Ps2/77xOs7DO9X9JyiRr/9QYXRRFn7Isl1W4fs9m8bPNJ5Rl+UJRFA/k9UZcPZNMSHJjhWcc1iz+vzbmTk3y2TbWtuXgNP3996eyLOe0Yz0AAAAAAAAAna2mZ9J/VLWzYDOkaAsAoAsYMi4Z8rbkpbuqnUnHWF2X3Hli6/ePmJ6MOLSzsgEAAAAAAKAVRc+eyXajqp0Gm6FtttmmSfzKK6+0e4/mawYPHrxRObVk1apVHb7nxmj+jM1f9lmJSl/mOXTo0CbxjBkzcuCBB7b7PCpTU+0EupOyLJ9P8sdGQ7VJjmjHFkc1i29rZd7VzeJPVrJ5URS7J3lbo6HX0naTsRuSLG0UH7hmj0qc2CxunjMAAAAAAAAAsIXYXIq2AAC2aDU9kok3JrudlgzaJ9nxA8lOH6l2VpvOzYclvyjWvWZfWe3MAAAAAAAAgAoMGzasSfzYY4+1e49HH320STx8+PAW5/Xs2bNJvHLlyorP2JBmXJtSjx49ssMOOzTETz75ZJYsWdKuPR588MGK5o0YMaJJvCHfIyqnWVjn+0mz+IxKFhVFcXCSAxoNrU7yu1am/zxJ45aDHyiKYkwFx3ypWfzLsiyXtTa5LMslSZpXTDTfYx1FUbwxyfsbDa1M8osK8gMAAAAAAAAANkOdWbQFAEAbagcmb70gedefk4OvSg6akhy3Ktn1c0nR4/V5/XZMxk9J3rOev7ft+73kwMuTnltt2rw70u0fWreB2C1HJi/dW3+/LJMVryarWi2hBQAAAAAAADrB4MGDs8suuzTECxcuzMMPP9yuPWbMmNEk3n///VucN3DgwCbxwoULKz7joYcealdOnWHcuHENn1evXp0//OEPFa9dsGBB/vKXv1Q0d/z48U3iG2+8seJzaD/NwjrfT5I0/lNnYlEUbTYMK4pieNZtMvbLsiz/1tL8siwfTzK50VCvJJcVRdGnjTPel+TERkN1Sb7RVl5rnJ1kRaP4xKIo3tvGOX1S/yy9Gg3/uLVnAQAAAAAAAAA2f51ZtLWhiqLo0P0AADYbRU1ywA+TD76UvOvB+uZhR89ORn2k/l5rxl2W7P75ZOfjk/e/kBxyXTJiYn2jsZreSb+RnfYIG+3Fm5Ib9q9vHDalJvnV1skVfddtKvaLIpkzPVld+VvEAQAAAAAAgA03YcKEJvHPf/7zitc+/PDDue+++xriPn365K1vfWuLc5u/vHLmzJkVn/O73/2u4rmd5e1vf3uT+JJLLql47eTJk1NXV1fR3COOOCI9erz+Yqrrrrsuc+fOrfgs2kezsE5WluWqJKclWd1o+LtFUXy/KIrBzecXRfH2JHck2aXR8MtJ/t96jpq0Zt5a45PcVBTF7s32710UxT8l+VWz9d8ty/Lp9ZyRsiyfTPL9ZsNXFkXxj0VRNG4IlqIo3pTk5jW5rPVSKmtKBgAAAAAAAABsxjqraGtD9e7du0m8fPnyDt0fAKDL67V1MmjPpg3C+oxoff6QA17/XDsgGfn3yRE31zca+8iy5Ohnkh0/uOnyrZabD0/+t7blRmIz/z2pq/wN4wAAAAAAAEDbTjjhhCbxhRdemBdffLGitV/5yleaxB/5yEfWqRNba999920SX3/99RWdccMNN+Tuu++uaG5nOv744zNgwICG+Oqrr84NN9yw3nXPPfdc/vVf/7XicwYPHpzjjz++IV68eHHOPPPM9iVLxTQLq4KyLH+f+oZhjf1zkjlFUdxaFMWUoiiuKYpiVpLfJ9m10by6JMeVZfnUes54NskH1sxf66AkM4uiuKcoiiuKopia5JkkP0hS22jeb5Kc1Y5H+nKS/2sU1yb5zyTPFEXxf0VR/LIoinuTPJSmjcLqkry/LMsX2nEWAAAAAAAAALAZ6qyirQ01aNCgJvELLyhnAABIbf9k27evOz5wt2TrN61//c6f6PicurI/fym5cnDLjcSuHpnccmTy7LXJkueTsqx2tgAAAAAAANDlTZw4MW9+85sb4ldeeSXHHXdcli5d2ua6888/P9dee21DXBRFPv/5z7c6/8ADD0y/fv0a4quvvjr33ntvm2c8/vjj+cQnuua/iQ4YMCCnnda0vdGxxx6badOmtbpm1qxZOfLII7NwYftekHT22Wc3qef72c9+li996UtZtWpVu/aZOXNmbr311nat6W40C6uSsiwvTHJKkiWNhmuTHJzkI0nel2SnZsvmJDm8LMv1t+mrP2N6kvcnmddouEiyX5Jjk7wjybBmy6Yk+UhZlhX/tK2Ze2ySK5rdGp7kqCQfSvLWNWevNTfJ+8qyvK3ScwAAAAAAAACAzVdnFW1tqNGjR6dXr14N8bRp07JixYoOPwcAYLNzwI+SrUa9HvcemoyfUtnakX+fHPjTTZLWZmfpc8mLNyW3Hp1cs0Mypaa+idivt01mfDx5/IfJsvnVzhIAAAAAAAA61IsvvphZs2Zt0LXWj3/84ya1XdOnT8/BBx+cu+66a53z5s+fn1NPPTVnnHFGk/EvfvGL2XvvvVvNc8CAAfnwhz/cEK9atSrvfve7c+ONN64zt66uLpdccknGjRuXOXPmZPDgwe35knSas846K3vttVdD/Oqrr+aII47IsccemyuvvDIPPPBAHnnkkdx44405/fTTM3bs2Dz88MPp06dP3ve+91V8zs4775wf/ehHTcb+/d//PRMmTMj111+flStXtrp21qxZueiiizJx4sSMHTs2t9xyS/sftBvpWe0EurOyLH9YFMWNSc5OfXOwAa1MfTHJxUkuKMvylXae8buiKPZM8o0kH07S2p8udyb5TlmWV7Vn/0bnLE7ykaIorkzyL0nGtTJ1Qeqbik0qy3JeK3MAAAAAAAAAgC5mbdHWhhg1alSS+qKtAw88MHV1dUleL9q66KKL8ra3va3Jmvnz52fSpEn5r//6rybj6yva2lC9evXKQQcd1PDmxNmzZ+e9731vPve5z2XMmDFN3hqZJNtuu2369OnT4XkAAHQ5/XdO3vNwMm9Gsnp5MmxCUttayWsLdv54ss1+yS1vT5Y+v+79okdy4OXJgnuSR77XcXlvLpbNSWZdXn/dc8q694e8Ldl6bLLdO5IBY5IVC5NBeycpktqtk5oenZ4yAAAAAAAAVOq4447b4LVlWSZJ9t1331x44YX53Oc+l9WrVydJ7rvvvowbNy677rprxo4dmz59+uSZZ57J3XffvU5zqiOPPDLf/OY313veN7/5zVx99dVZuHBhkmTu3Ll5xzvekV133TV77713evfunTlz5uSuu+7Ka6+9lqS+juy8887LJz7xiQ1+zk2lV69e+e1vf5uJEyfmiSeeSFL/Nf3Vr36VX/3qVy2uKYoiF110UWbPnr3OSz7bcsIJJ+TFF1/MV77ylYbv0Z133pn3vve96devX97ylrdkxIgR6du3bxYtWpT58+dn5syZDV9rKqNZWJWVZfm3JB8viqJvkoOSjEyybZK6JPOS/KUsywc28oy5SU4uiuK0NWfstOaM15I8l+RPZVk+tTFnNDrryiRXFkWxc5J9k2yfZKvUNzx7OskdZVnWdcRZAAAAAAAAAEDn2ZyKtjbUGWec0dAsLEmmTp2aqVOntjh32rRpOeywwzZZLgAAXUqPPsm2Ezd8/dZvSt77ZPLSXUlZJjW1yaqlSd2CZNghSd8RyU4frm+K9dz1ycK/Jouf6Lj8N2cv3VV/PXlp63OGH5r06Jvs8PfJtkckA3erHy/LZD1F+xWrW5jMvyvpt0P996mj9gUAAAAAAIAKfOYzn8ngwYPzyU9+MosXL24Yf+KJJxoaYbXkU5/6VC6++OLU1tau94wddtghV111VY4++ugsWrRovWfsvPPO+e1vf5s5c+a082k6z4477pjbbrstp5xySq6++uo25w4ZMiSTJ0/Ou9/97nzpS19qcm/AgPW/UGrti0A/+clP5sUXX2wYX7JkSe64446K8h08eHBF87orzcK6iLIslya5aROfUZdk2nondsxZTyXpkAZkAAAAAAAAAMCWozOKtjbUe97znnzrW9/KpEmTsmrVqk12DgBAt9SjdzL8kNbvF0Wyy6fqrySZMz159AfJoseSZXOT7d+V9OyXDNor2XrP5N5Tk4UPdkrqXd7cP9T/+kLLjW5zwCXJTscmq1fWfw1ffSxZ8mwydFzSe5u2965bmFy9Q7JqSdPxYxcnPbfa+NwBAAAAAACgQsccc0wOOeSQnHPOOfn5z3+e+fPntzivtrY2hx9+eCZNmpTx48e364yJEyfm7rvvzpe//OVcd911DS/KbGzYsGE58cQT87WvfS0DBw7s0s3CkmTbbbfNr3/969x+++2ZMmVKpk+fnueffz7Lli3L9ttvn9GjR+dDH/pQPvzhD2frrbdOkixcuLDJHmvH1+eoo47KU089lUsvvTSXXHJJ/vKXv7T4NVyrtrY2+++/f/6JHjndAAAgAElEQVTu7/4uH/3oRzNmzJgNf9BuQLMwAAAAAAAAAAA6VWcUbW2or371q3n/+9+fn/3sZ5kxY0Yee+yxvPLKK1m6dGmnnA8AwBojDqu/WvPOvySLn0x69EmKnsk9Jydzbk5WvNrxuQx4Y33Tss3V3Z+pv1pz4E+TnT9e/7ksk5RJUZOsWJxc2cqbu3/zpuTo2R2eKgAAAAAAAJu3WbNmbdL9hw8fngsuuCDf+973ct999+WRRx7JvHnzsnz58gwdOjQjR47MhAkTMmDAgA0+Y/fdd88111yT+fPn5w9/+EOeffbZLFmyJCNGjMjOO++cgw8+OD17vt626bDDDmuzIVZz7Znb3GWXXZbLLrtsg9ZOmDAhEyZMqGjuzJkzGz4XRZHhw4dXfE6fPn1yyimn5JRTTsmCBQty55135oUXXsiCBQuyYsWK9O/fP8OHD88b3/jG7L777unXr1+7n6W7KjbmNw9sCYqiGJvkr2vjv/71rxk7dmwVM4Iu7hdF6/c+6r8pAAAAAAAAXdnKlSvz+OOPNxkbM2ZMk6IV6GyrV6/eZEVbXdmm+nl86KGHsueeezYe2rMsy4c2alMA2Ahq9OhUZZk88aPkns+te2/bv0vm3JSUq9u/74Qrk7/9T/LC1I3PcUty3Kr6pmIAAAAAAMAWTd0ZdC+vvfZahg8fniVLliRJdttttzzyyCNVzqp9ttT6PH/qAgAAAAAAAABQNTU1Ndl///2z//77VzsVAAA2d0WRjDkpKVclT/x3smxOst1RyX7/mdQOSOZMS2ZflaxenvQekjzyvWT1irb33OPLyY4fSOpebrtZ2G6nJ289v/7z6pXJH96TvHBDxz1bV7T0xaTf9tXOAgAAAAAAAOhAkydPbmgUliQHHnhgFbOhMc3CAAAAAAAAAAAAAIAtxxtPqb+aG3F4/bXWm7+dzJmePP7D5NVHk3JFssP7km32rW8mtvWeSZ9h9XN3+XSy+Mlk5rnr7tujb7LzCa/HNT2TPSdt+c3CVi+rdgYAAAAAAABAB3r22Wdz1llnNRk74YQTWplNZ9MsDAAAAAAAAAAAAADonkYcVn+tT1Ekbz4n2fOsZN7t9Q3GXrqzvqHYnl9LtnlL0/lDDkgGjEkWPd50fK+zkwfP7pjcq63ulWpnAAAAAAAAALThqquuyn333ZfPf/7zGTZsWJtz//SnP+WDH/xgFixY0DC2zz775PDDD29jFZ1JszAAAAAAAAAAAAAAgEr07Jtsd2T91ZaaHskRtyR3fjKZe2vSe2iy22nJm76QzPr5uk3ENkdzpq3bJA0AAAAAAADoMhYtWpRzzz033/nOd3LUUUfliCOOyD777JPhw4enZ8+eWbBgQR588MH85je/yfXXX5+yLBvW9urVK5MnT65i9jSnWRgAAAAAAAAAAAAAQEfrNzKZ+Ptk1fKkpldSFPXjB1ySTD8qWbWsPu7RN+nRJ6l7+fW12+yXDB2XPHZh5+ddqaenJG86o9pZAAAAAAAAAOuxYsWKXH/99bn++usrmt+3b9/89Kc/zT777LOJM6M9NAsDAAAAAAAAAAAAANhUevRuGo84NHnPY8kzV9U3Edv+XfWNxZ69Jpl/ZzJoz2THDyRLX0yeujxZsbA6ea/P0PHVzgAAAAAAAABow6BBg9KjR4+sWrWq4jUHHXRQLrjgguy3336bMDM2hGZhAAAAAAAAAAAAAACdaasdk91Pbzr2hmPqr7VqByZvn548dE4y+5edml5Ftt59/XPK1UndwqRuQbLVzklNj6b3lr6Y9N02KWo2XZ4AAAAAAADQTR199NGZM2dOpk6dmjvuuCMPPvhgnn766SxYsCDLli1L3759s80222SnnXbKwQcfnHe961056KCDqp02rdAsDAAAAAAAAAAAAACgKxq8TzLhiiRX1Mer6pIeveo/z701eeGGpM92yeC9k+d+mzz6/WT18s7J7Z5T6q+1dvj75OBfJ4seT24/Nnnlr+3bb5d/SIZNSHptk2y9RzJgl47NFwAAAAAAALqhIUOG5Pjjj8/xxx9f7VTYSJqFAQAAAAAAAAAAAABsDtY2CkuS4YfUX43jt5xX/7ksk1ceqr+GjkuWvpjcOG7T5vbc9cn/1m74+r/9T/3V2H4XJqM/mSybm/TdLunRe+NyBAAAAAAAANhMaRYGAAAAAAAAAAAAALAlKYpk0J71V5JstVPy0bL+8/KXknl3JDW9kxWvJPNuS17+U/1YV3PvP9ZfbXnjPyf7fb9z8gEAAAAAAACoEs3CAAAAAAAAAAAAAAC6i95DkpHvfT3e6dim95c8lzx3XbJsbrLdO5K7Pp28MrNzc2yPx35Qf6018ffJiIlJUVO9nAAAAAAAAAA6mGZhAAAAAAAAAAAAAADU67dDMubk1+Nhh3TtZmHN3XJk6/d6D0kOuTYZdlDn5QMAAAAAAADQATQLAwAAAAAAAAAAAACgZXt8MXni4mpn0TGWv5T8fkLL9/rtmLz520nRI1n0ePLKQ8keX04G79O5OQIAAAAAAAC0QLMwAAAAAAAAAAAAAABa1n/npHZgsuLVameyaS15JplxfNOxp//39c87fiDpsVUy/OBku3ckfUYkPXp3bo4AAAAAAABAt6VZGAAAAAAAAAAAAAAA/5+9O4+zs6zvh/+5Z8+QyR4SIEAgIRA2WWURbEBFpZS60J+ASou4L5VWXKi2ICLV1uen+KB1eRRtpWjdwFJErQ1UREA2EQ0JWwhhCdmTIclklvP8cZPMnCSTdTIny/v9en1fZ67ruu/r+t6RoM6Z85n+7fWaZM5/1LqL2nrqR+Xr7H/b9LUjjkym/VfSOiHp6Uqe/kmy8tlkz5cnww5J6hq3b68AAAAAAADALkdYGAAAAAAAAAAAAAAA/Zv4FmFhW2LJg8kN+27+9Xu9OnnZ9Ul9a1LfvP36AgAAAAAAAHZawsIAAAAAAAAAYDdRFMV6c5VKpQadAD09PevNbejvKAAA7BD2OiNpHJZ0Ltv6PYYdkkx+d3L/3yaV9f/38G7t2Z8lPxi1/vzolyaHX1b++fesTuqHJP5/AwAAAAAAAOyWhIUBAAAAAAAAwG6irq5uvbnOzs40NjbWoBvYvXV1da03t6G/owAAsEOob05e/pPktj9LupZv/n0TXpd0r0pGHZNM+etkyLhkr1cnz/0iaRia/O5jyarnt1/fO7uFdye3/Wn/62fNSoYdNHj9AAAAAAAAADUjLAwAAAAAAAAAdhNFUaSpqSmrV69eO9fe3p7W1tYadgW7p/b29qpxU1NTiqKoUTcAALAZxv1J8obnkgV3JkP2SoYdnCx5MFn6cLLgN8msL1ZfP+q45NQfJev+79zhh5SVJBPPS+b8IFl0TzLy6GS/v0ge+XJy/4cH55l2djdN2fD88MOTgz+QjDwmGXlUUudjAwAAAAAAALCz864fAAAAAAAAAOxG2trasnDhwrXjZcuWZezYsUKKYBBVKpUsW7asaq6tra1G3QAAwBZoaE3Gn947HnlUWfu/KWkelTz61WT10mT8K5MTv7l+UNi66luSA95S1hpTL0kaRySPfSPpXJysfC5pHpu0P7rl/Y49NZn/qy2/b2e39KHk7ndt+rqDL06O+kxS37z9ewIAAAAAAAC2ibAwAAAAAAAAANiNrBsW1tnZmaeffjr77LOPwDAYBJVKJU8//XQ6Ozur5ocNG1ajjgAAYAAURXLEZcnh/5BUupK6xm3bb/Lby+qrp7Pct9KTLP5dUtQnIw5Pnv1Z8r+vT3o6qq8/+p+T8a9KfnbC+muUZn6hrP7sf14y6phkyIQyDG7J75OxpyRjThi8HgEAAAAAAIAkwsIAAAAAAAAAYLfS0tKSxsbGqqCi5cuX57HHHsuwYcMydOjQNDQ0pK6uroZdwq6lp6cnXV1daW9vz7Jly9YLCmtsbExzc3ONugMAgAFUFEmxjUFh/VkTQFbUJaOO7p3f+7XJ6+Ymz99Wnl/XUoZZNY8u16fdlDzwd8mSB5NRx5YBYg99cgsOfjEI7feXD9ST7DyevL6sTalvTca/Mpn0tmTcaUmjMGQAAAAAAAAYaMLCAAAAAAAAAGA3UhRF9t5778yZMyeVSmXtfGdnZxYuXJiFCxfWsDvY/az5O1kURa1bAQCAnVfLmGS/N254bfwrk9e8Mqn0lEFjSdLYljz4D0n3iqRxRLLH/uXX3SuTFXN77y3qkhOuTfb50+ShK8o9WF/3iuTpn5S1xoTXJ13tZUDbonuTjgXJnn+SHPWPSX1L7XoFAAAAAACAnZSwMAAAAAAAAADYzbS2tma//fZbLzAMGFxFUWS//fZLa2trrVsBAIBd35qgsCSZ+qFkygeSF2YnbZOr13q6koW/Ldf2PDVpnVDOv/RryV1vH8yOd25zf1y+PveL3rnF9yczv9A7nvKBpG1KsvdrktZ9k/rmwe0RAAAAAAAAdiLCwgAAAAAAAABgN7QmMOyZZ55JZ2dnrduB3U5jY2P23ntvQWEAAFAr9U3JsCnrz9c1JGNPKquvSRclY09JHvpUMvu6welxVzfr/y1f793INQdemEy9JBl+6KC0BAAAAAAAADsqYWEAAAAAAAAAsJtqbW3NpEmT0tHRkWXLlmX58uVZvXp1rduCXVZTU1Pa2toybNiwNDc3pyiKWrcEAABsiWEHJyd/p6w1Vj6XLLqv/LpjQTL2ZcmQvZMFvy7XRh+fPPCxZO4NG97zuGuS5rHJHecllZ5N93DsF3uv3x08fm1ZfZ35UDLisNr0AwAAAAAAADUiLAwAAAAAAAAAdmNFUaSlpSUtLS3Zc889U6lU0tPTk0qlUuvWYJdRFEXq6uqEgwEAwK5oyPhknzPXnx//yt6vX/7jpLM9ee6/k2duSrpXJ/u+Idn3db3XNLYl93wgaX+s/7P2fWMy+V1JepKmUcnqRQP2GDuVmw9PXn13GcQGAAAAAAAAuwlhYQAAAAAAAADAWkVRpL6+vtZtAAAAwK6lcWgZDtY3IKyvvV+bnP1osvLZ5JmfJk/9KOlantS3Jq37JFM+kIw4IinqyutP/+/kV69PXnhy8J5hR/KzlybnCzoHAAAAAABg9yEsDAAAAAAAAAAAAAAAdgRD9komva2sjRl1dHL2E0n7Y0nLuKSoT373iWTm57dPX+csSppGJj8al6x6fvucsSWK+qSnK6nzkQgAAAAAAAB2D3W1bgAAAAAAAAAAAAAAANhCRZG0TU4a25KG1uTY/5ucsyQ56jNlsNeII5IjLk8OvywZc1Iy7hXJidcm+5+3ZedMfGu5X5Ics53CyLZUpTvpXlnrLgAAAAAAgF3UnDlz8olPfCKnnnpqxo0bl6amphRFsba+9a1v1bpFdkN+jQ4AAAAAAAAAAAAAAOwKmoYnh360rL6OvLz364lvTcacmDzxnWTRb5P6luTAC5N9z0me/PfksW/0Xjvm5OS4L/aO9/mzZNRxyaJ7Nnz+UZ9N/vDppHPZgD1Sv3o6t/8ZAAAAAADAFpk4cWKefPLJtePp06dn2rRptWtoK3z961/PBz7wgXR0dNS6FahSV+sGAAAAAAAAAAAAAACAQVJXnxz818lr7k7OryRvWpkc/+Vk/OnJCf9fcm5XcsZdyVkzk1fdnjSN6L23sS05/b+Tl/zj+vvu9xfJwRcnk94+OM8hLAwAAAAAABhgN998c971rndtdlDYrbfemqIo1tbll1++fRtkt9ZQ6wYAAAAAAAAAAAAAAIAdRF19Mual/a83DU8O+1hZncuSBXcmQyclQw9MiiJ5yaeT9ieSuT/etj6GHZyc+uPkvw7d8Hr3iuSZnyY9XcmeLy/7AgAAAAAA2AaXXnppKpXK2vH555+fiy66KPvuu28aGxvXzo8ZM6YW7bGbExYGAAAAAAAAAAAAAABsucZhyV5nVM/VtyQv/1Gy8rlkxVNloNjK55LRL03uvyR5+iebt/dB7y/36s9PDtz0HsMPS15+Y9I2qf9rulf19g0AAAAAAOy2Zs6cmQcffHDt+Mwzz8x1111Xw46gmrAwAAAAAAAAAAAAAABgYA0ZX1Zff3JjGRzWsTAZfmiy4DfJHW9JXnii95oxJyUHvi2Z/PZkxdxt62HpH5L/nLx5145/VXLaz5Ki2LYzAQAAAACAndI999xTNT7nnHNq1AlsmLAwAAAAAAAAAAAAAABgcPQNERt7cnL2Y8kLs5OWcUlDa/W1dc2D19dzv0iur6ue+/M5yR77Dl4PAAAAAABAzcybN69qPGHChBp1AhsmLAwAAAAAAAAAAAAAAKiNokiGHrDhteYxg9vLum7cr/frqZckR302Ker6vx4AAAAAANhptbe3V40bGxtr1AlsmLAwAAAAAAAAAAAAAABgx1MUyb5vSJ76Ua07SWZ8rqy9Xp2MPiEZc2L52jyq1p0BAAAAAMBup1Kp5L777svDDz+c559/Ph0dHRk7dmz22WefnHLKKRk6dOgW79nT07MdOoWBIywMAAAAAAAAAAAAAADYMZ3yg+T6ulp30evZn5W1RtuUMjhsTXjYiCOSusba9QcAAAAAALuwBQsW5Kqrrsp3vvOdzJ8/f4PXNDU15fTTT8/ll1+eE044od+9Zs+enQMOOKDf9dNOO22D89dee20uvPDCDa598pOfzCc/+cl+95w+fXqmTZvW7zpsjLAwAAAAAAAAAAAAAABgx1QUte5g45bPKuuJfy3H9UOSUcdVB4i17lPbHgEAAAAAYBdwww035IILLsjy5cs3et3q1atzyy235JZbbsk73/nOfOlLX0pDg5gldn7+KQYAAAAAAAAAAAAAAHZcR/8/yf0fqnUXm6d7ZTL/V2Wt0TohGX1ib4DYyGOShiG16xEAAAAAAHYy3/zmN/OOd7wjPT09VfOTJk3KoYcemtbW1syZMyd33313uru7165/7Wtfy5w5c/Kf//mfAsPY6fknGAAAAAAAAAAAAAAA2HHt+4bk95cnXcu3/N7D/z6Z+ObkpkMGvK3NtmJusuIHyVM/KMdFQzLyJdUBYkMnJUVRux4BAAAAALaXnq7y+6RsX60TkrpdM0rogQceyHve856qoLCjjjoqX/rSl3LyySdXXTt//vz8/d//fb761a+unbvlllvyD//wD7nqqquqrp0wYUKeeOKJteMvfOELufrqq9eOr7/++px44onr9TNmzJhMmzYtSXLnnXfmvPPOW7v2wQ9+MBdffHG/zzJ+/PhNPC30b9f8Gw4AAAAAAAAAAAAAAOwahk5MTv95cu/fJAvv3Pz7msckB1yQtE1ORh6TLL5vu7W4RSpdyaJ7y3rkS+Vc8+je8LDRJySjX5o0Da9tnwAAAAAAA2HF3OQnB9S6i13f2U+U30/fBV100UVZvXr12vEpp5ySn/3sZ2ltbV3v2rFjx+YrX/lKJk+enA9/+MNr5z/72c/mvPPOyxFHHLF2rqGhIRMnTlw7HjFiRNVe48ePr1rva+jQoUmS2bNnV82PGDGi33tgWwkLAwAAAAAAAAAAAAAAdmxjTkxe/ZukpzvpWp7M/3Wyx8SkZVxyx5uTeb9MKt3ltSOOTEYdk0z9cBkUliSH/E3ym7cOTC9D9kpWPjswe63RsTB55r/KSpIUyfCp1QFiww9L6uoH9lwAAAAAANiBTZ8+Pffd1/vLQIYNG5bvfe97GwwK6+uSSy7JbbfdlptuuilJ0tPTk89//vP55je/uV37he1JWBgAAAAAAAAAAAAAALBzqKtPmkYk+/xp79zpP0s6lyd1zUl904bv2+//JHNvSJ764badP+4Vyem/SFbMTRbemSy4q3xddG/SvWrb9q5SSZb+sazHX/zgUsPQZPTx1QFiQ8YN4JkAAAAAALBj+fa3v101ft/73pe99957s+79zGc+szYsLEmuv/76/Mu//Euam5sHtEcYLMLCAAAAAAAAAAAAAACAnVtj28bX65uSl303mX97sviBZMSRybCDk9Z9kse/ldzzgaSrvQziWnhn//sc/vdJUSR77FvWfn9RznevTpY8mCy4szdErP3RAXu8JGV/86aXtcYeE5MJr08OuzRpGZsseyR57hfJ0APKYLP+wtMAAAAAAGAncPvtt1eN3/KWt2z2vYcddliOOeaY3HfffUmSVatW5d57783JJ588oD3CYBEWBgAAAAAAAAAAAAAA7PrqGpJx08rq68C/KmuNjkXJ/56dzP919XXDD0vG9vMBovqmZPRxZeX95dyq+cnCu3sDxBbenXQuG5BHWeuF2cnMz5c1ZJ9k5dPV63XNSU9H7/gln04OvbQMPAMAAAAAgB3Y4sWL89hjj60djxgxIlOnTt2iPU4++eS1YWFJ8tvf/lZYGDstYWEAAAAAAAAAAAAAAABrNI9KXnV7MvfG5OH/m7Q/nuw5LTnm80ld4+bv0zI22edPy0qSSk+y7OEyPGxNgNiSh5JUBqbvdYPCkuqgsCT53cfLWmPopORl1yejjks6lyaNw5KibmD6AQAAAACAbTB//vyq8UEHHZRiC38ZxiGHHFI1fv7557e5L6gVYWEAAAAAAAAAAAAAAADrmvDnZQ2Uoi4ZfmhZk95WznUuTxbdUx0gtmoQP6jU/ljys5dueG3I3smJ3yr7qqtP9j0nGTZl8HoDAAAAAHYNrROSs5+odRe7vtYJte5gwC1evLhqPHz48C3eY917Fi1atE09QS0JCwMAAAAAAAAAAAAAAKiFxrZk3GllJUmlkrwwu0942F3J4vuSns7B723lM8n0M3rHv/t4+Tr5ncnYlydjT0r2OCApisHvDQAAAADYedQ1JEMn1roLdkKVSqVqXAzA96MHYg+oFWFhAAAAAAAAAAAAAAAAO4KiSIYeUNbE88q57lXJ4gd6A8TmfK+2PT76tbKSpGXPZMxJvTXquKShtbb9AQAAAACwSxg1alTVeOnSpVu8x7r3jBw5cpt6gloSFgYAAAAAAAAAAAAAALCjqm9JxpxYVpJ0fzv5Xktte1pj1fPJ3BvLSpKiIRn5kmT0iWV42NiTkj0OKEPQAAAAAABgC4wdO7ZqPGvWrC3eY+bMmVXjPffcc5t6gloSFgYAAAAAAAAAAAAAALCzqG9O3rgw+eHoWneyvkpXsujesh75UjnXMu7FsLOTyhp1XNLQumX7rpqf/GgzP8B11GeTSncy7JBk/CuS7tXJiifLPlonbNm5AAAAAADUzMiRIzNp0qQ89thjSZIlS5ZkxowZmTp16mbvcccdd1SNjz/++AHtsfDLMhhEwsIAAAAAAAAAAAAAAAB2Js2jkvMrveNljyQ3TaldPxuzal4y98aykqRoSEa+pDc8bMxJyR4Tk/4+UFXp2fygsCR54KP9rw07OHnZd5O2KcmCO5NfvynpWJAceGFy2MfLPrpfSCqVZPH95fVD9tr8swEAAAAAGFCnnHLK2rCwJLnuuuty5ZVXbta9M2bMyL333rt23NLSkmOPPXZA+2tubq4ad3R0DOj+0JewMAAAAAAAAAAAAAAAgJ3ZsIOS8Wckz/1809c2jkg6l2z/nvpT6UoW3VvWrGvKuZZx1eFho45LGoaUa8/+YuDOXjYz+enR688/fm1Zm7LXq5OjP5eMOHzgegIAAAAAoF8XXHBBvv3tb68dX3PNNXn/+9+f8ePHb/LeSy+9tGp87rnnrhfuta1GjBhRNX722WcHdH/oS1gYAAAAAAAAAAAAAADAzu7lNyT3vG/joVcHvS85/precWd70tOR/HivpKdz886pb026VyapbFO7VVbNS+beUFaSFA3JyKPK4LDnbx24c7bVsz8r66xZZUAbAAAAAADb1emnn56jjjoqDzzwQJJk6dKlOe+883LzzTdnyJAh/d73+c9/PjfeeOPacVEU+Zu/+ZsB7+/AAw9MU1NTVq9enSSZPn16Ojs709jYOOBngbAwAAAAAAAAAAAAAACAnV3DkOTEbyYHXJD86o3J6kW9a+Nflez7hmTyO6vvaRyaZGhywjeT37x102ccflly5OXJ6qXJwruSBb95se5KOpcM3LNUupJF95S1I7ppSnLqj5J9X1/rTgAAAAAAdmjPPfdcZs+evVX3Tpw4MUnyjW98IyeddNLaQK5bb701p556ar70pS/lhBNOqLpnwYIFueyyy/LlL3+5av4jH/lIjjzyyK3qY2Oampryspe9LNOnT0+SzJkzJ2effXbe/e5356CDDkpra2vV9ePHj09LS8uA98HuQVgYAAAAAAAAAAAAAADArmLctOQN85Ilv0/22D9pHrXpe/Y6IykaypCu/tS3JPv/n/LrpuHlPXudUY4rPcmymX3Cw36TLP1jksq2Ps2O61dvSF769WTy22vdCQAAAADADuu8887b6nsrlfJ7zMccc0yuueaavPvd705PT0+S5N57782JJ56YyZMn57DDDktLS0ueeuqp3H333enqqv5e96te9ap86lOf2vqH2IS//du/XRsWliS33HJLbrnllg1eO3369EybNm279cKuTVgYAAAAAAAAAAAAAADArqSuIRl19OZf37JncuoPkl+fm3SvKuda90uaRiZL/5CMfEly9OeS4Ydu+P6iLhk+taxJbyvnVi9NFt7VJ0DszqRz6bY9147m7nckky5KiqLWnQAAAAAA7NLe8Y53ZOTIkbnwwgvT3t6+dv7RRx/No48+2u99b3vb2/KVr3wljY2N2623s846K1deeWUuu+yydHd3b7dzQFgYAAAAAAAAAAAAAADA7m7CnydvXFgGfA2dlOyxXznf053U1W/5fk3Dk73OKCtJKj3Jsof7hIf9Jln6x4Hrv1aW/C4ZeVStuwAAAAAA2OWdc845efnLX56rrroq1113XRYsWLDB6xobG3Paaaflsssuy8knnzwovX384x/P61//+vzbv/1b7rjjjsyaNStLly7NypUrB+V8dg9FpVKpdQ9QU0VRHJbkoTXjhx56KIcddlgNO4IdUOey5IG/S+b9snyDvr6oUUkAACAASURBVD/n++8UAAAAAAAAgFr6wx/+kMMPP7zv1OGVSuUPteoHAPyMHgCwUauXJAvv7hMgdmfSubTWXW2Zk/41OeCtte4CAAAAALabrq6uPPLII1VzBx10UBoaGmrUESQ9PT2599578/DDD2f+/Pnp6OjImDFjMmHChJxyyilpa2urdYvU0Pb691atfz7Pv3UB2LhKTzL9tcmCO2rdCQAAAAAAAAAAAACwK2kakex1RllJ+bPLyx7uEx72m2TpH7ftjOOuSaa8r/z634tt22tDls4Y+D0BAAAAANiourq6HH/88Tn++ONr3QoMGmFhAGzc4gcEhQEAAAAAAAAAAAAA219Rlww/tKxJF5Vzq5ckC+5KFt6ZtD+RLJuZ7H1mMv6VydiTkvbZyW/fkzx7y/r7HfXZ5KD39o4P/Wjyx88OcNM9A7wfAAAAAADA+oSFAbBxD11Z6w4AAAAAAAAAAAAAgN1V04hk71eXtSFDJyan/TSZ/e/Jk99LKj3Jvq9PDrwwKYrqa/c/P5l5ddK9auD6W3R/+Qua2w5KGvYYuH0BAAAAAAD6EBYGwMZ1zK91BwAAAAAAAAAAAAAAGzfx/LI2ZuSRybSfJg9+Iln8YDLq2OSAt5ZhX/NvTxbfv+XnPvfz5Kc/r5477ppkyvu2fC8AAAAAAIB+CAsDAAAAAAAAAAAAAABg9zBuWvKq25NKJSmK9de7VyW/+0TyzM1Jy9jk+f/d8jPueX9Z/Wk7qOyhaVRS6UrqmjfcCwAAAAAAwIuEhQEAAAAAAAAAAAAAALB76S+cq74lOeZzZSXJynnJ9DOSJQ8O3NnLH0l+NK7/9SF7J6+5L2keldQ1Dty5m9LTmSy4KynqkuGHJUV90jh08M4HAAAAAAD6JSwMgE2o1LoBAAAAAAAAAAAAAIDaGDIuee0DyU0HlyFfg2HlM8mPx294bcLrkpf8Y9K5LBk2JWkaMTBnLvl9cvOR/a+PPTWZekky7OAkdcns7ySL70+6VyYHvi3Z/9z+A9gAAAAAAIBtJiwMAAAAAAAAAAAAAAAA+lMUyRGXJ3e8udadJHNvKGtzTHxzMu4VyZ4vL0PFmkdv+LpKJbn1Tze+1/xflbUhz/13csf5veOhByYHvScZe0pS1Cfzb0+WP5a0HZQ8/Z/JvF+W4WN7vybZ+6xkxBGCxgAAAAAAYBOEhQGwCd50BQAAAAAAAAAAAAB2c/u9KXniO8mzP611J5tv9nVlrWvvs5I99k+KuqRjYTL0gGTFUwN3bvvjyf0f3vg1a8LHfvfxDa+3HZSMOjZ5/n/L4LFDP5bU+RgUAAAAAAC7L98lBwAAAAAAAAAAAAAAgI2pq0+m/VfyzM3JspnJE99OljxY6662zjM31bqDTVv+SFlJ8uDfl9W6bzLutGTYIb01dFJS31TbXgEAAAAAYBAICwMAAAAAAAAAAAAAAIBNKYpknz8ta+rfJt8fmXQuqXVXu48VTyVP/Gv1XNGQtE2qDhAbdkgy7OCkaWRt+gQAAAAAgO1AWBgAm1CpdQMAAAAAAAAAAAAAADueKe9N/nBVrbvYvVW6kmUzy8qN1Wst4zYQInZIssd+SVFXk3YBAAAAAGBrCQsDAAAAAAAAAAAAAACALXXghcLCdmSr5pX1/G3V8/VDkrYpveFhw6eWr20HJQ2ttekVAAAAAAA2QVgYAJtQ1LoBAAAAAAAAAAAAAIAdT9vk5JgvJPddXD0/+Z3JS/4x+elRyYqnatMb/etemSz5XVlVimSP/XtDxPpWy55J4WfrAQAAAACoHWFhAAAAAAAAAAAAAAAAsDUO+WCyz1nJ/F8lbVOS0S9N6l78uM4r/ieZ/tqk/dHa9shmqiQvzC7r2VuqlxpHlKFhw9cJERt6YFLXWItmAQAAAADYzQgLA2ATKrVuAAAAAAAAAAAAAABgx9U2qaz15icnZz+SvPBkMu+2ZPF9SeeyMlRs3LRkjwOSBz6SPP+/ZUBVwx7JmJOSoZOTp36YdMwf7Cep1jQyWb1449cM2SvpWZ10LOz/mjPuSsa8tHru34ut72vo5OSFx5NKz9bvsaU6lyQL7yyrr7rGsp9h64SIDTs4aRo+eP0BAAAAALDLExYGAAAAAAAAAAAAAAAA28se+ycHXpDkgvXXTvr2hu85/BPJ3BuSe97fOzfq2KRlXPLMzdulzSoH/00y+R3Jr9+ULPn9hq8pGpJj/9/k+VuTWdds+JrWfZPRx68/P+Wvk1lf3PK+Xv9MGVDW3ZEsfzRZ9nCfmlG+dr2w5fturZ7OF8+dsf7akL02ECJ2SNI6ISnqBq9HAAAAAAB2CcLCAAAAAAAAAAAAAAAAYEfSuk8y5X1ldXckncuTljFJpZI8+/Pk2VuSJ7+bNI9KRrwkmfc/yap56+9T1CXNY5JVz2/+2XVNyaEfTYaMS858sLx30f3J4vuThqFJV3tS6U72OSsZ+ZJk79cm7bOTZ26q3qdhjzIMrSjWP+OwS5N5v0yW/mHz+9r/3DKAK0nqm5MRh5XVV6WSrHy6DA1b+nB1mNjKpzf/rIGw8tmy5k2vnq9vTYYdnAybWoaHDX8xRKztoKS+ZXB7BAAAAABgpyEsDIBN2MAbswAAAAAAAAAAAAAADI765rKSMnhr71eXdezne6/p6UrmfD+Z/+skPUldc9LYlkz482TkMcnyWcmi+8rwqgc+mlS6+j/v6H8ug8LWaNmz98wNaWhNpv1nsuKZpP3R8ozuVcn4V5ahZxsyZHxyxh3JM7ckv37Tpv8Mjrg8OezvNn1dUSStE8oa/8rqtc7lybKZ1QFiyx4u/2x6Oje990DpXlEGry2+f52FIhl6QBkctm41j9lw6BoAAAAAALsNYWEAAAAAAAAAAAAAO5GiKBqSHJPksCRjkzQlaU/ydJJZSf5QqWws/QEAgF1OXUMy8byyNmTYwWUlycijkse/WQaLVbqTlnFlWFbLnskBb00mvmXremjdu6zN1Tgs2f//lNWxKHlhdhmWtWJuMuzQlKFnjVvXywbPa0tGH1dWXz1d5dlLZ6wTJDYjWb144M7fpErS/nhZz9xcvdQ0qjc4bPjU3q/3mFj+Zw8AAAAAwC7Pd4MB2IRKrRsAAAAAAAAAAIDtriiKA5Mcn+S4F1+PSdLW55InK5XKxBq0tlZRFAcl+XCSNyUZtpFLVxZFcXuSf6lUKj8elOYAANh5jD+9rB1J86iykqRp5IuT9YNzdl1D0ja5rPxZ73ylknQsWCdA7MVqfyKD+rP2qxclC+4oq6r3pqTtoN7wsLV1cBmOBgAAAADALkNYGAAAAAAAAAAAALBbKopiWpJLUwaEjaptN/0riqIhyT+k7HVzfvZzSJJXJVmURFgYAABsjaJIWsaWteep1WtdK5P2R8vgsKUPJ8tmvBgkNjPpXjF4PfasTpb+oax1DdmnOkBs+CHJsKnJkL3LZwMAAAAAYKciLAwAAAAAAAAAAADYXR2V5IxaN7ExRVEMSfKDJGeus1RJ8ockc5IsSTI0yYFJDomfDwUAgO2rYUgy4oiy+qr0JCvmvhgctk6tfHZwe1z5dFnzflk93zC0OkRsTbVNTuqbB7dHAAAAAAA2mx8GAWAT/MYgAAAAAAAAAAB2Ox1J5iaZVMsmiqIoknw31UFhq5L8U5KvVSqVpzdwT2uSVyU5N8nqwegTAAB4UVGX7LFfWXutk0u8emmybOY6IWIzkuWPJpWuweuxqz1ZdE9Z6/V+YBkcNnydILHm0YPXHwAAAAAAGyQsDIBNqNS6AQAAAAAAAAAA2J46k/whyT1Jfvvi6++TvCzJ9Br2lSTvTXJ2n/GzSV5RqVRm9HdDpVJZkeTGJDcWReHnRAEAYEfRNDwZ89Ky+urpTNofrw4RW/pikFjn0sHrr9KTtD9a1jM3Va81j3kxOGxqb4DY8EOS1v2TuvrB6xEAAAAAYDfmh0AAAAAAAAAAAACA3dW3k3ylUqmsWnehKIoatFN1/n5JPtNnalWSV24sKGxdlUqla8AbAwAABlZdYzLs4LLy573zlUqy6vnqELE19cLswe2xY0Ey//ay+qprToZN6Q0QW1sHJw17DG6PAAAAAAC7OGFhAAAAAAAAAAAAwG6pUqksrnUPG/HxJEP7jD9dqVT+WKtmAACAQVYUyZBxZY37k+q1rhXJ8keSpTOqQ8SWz0y618tC3n56OpIlvy9rXa37VgeIDZ9avraML58NAAAAAIAtIiwMgE3wJhwAAAAAAAAAAAymoijakpzfZ+qFJFfXqB0AAGBH09CajHxJWX1VepIX5lQHiK2pVfMGt8cVT5X13C+q5xuHVYeIramhk5L6psHtEQAAAABgJyIsDAAAAAAAAAAAAGDH8qYkQ/uMf1ipVJbXqhkAAGAnUdQlQyeWtfdrqtdWL06WzewND1s6o3xtfyypdA9ej53LkoV3l9VXUV8Ghq0bIjb8kKRp5OD1BwAAAACwgxIWBsAmVGrdAAAAAAAAAAAA7G5OW2f8i5p0AQAA7DqaRiZjTiyrr+7VZWDYmhCxvtW5bPD6q3Qny2eV9fRPqtdaxq0fIjbskGSP/cqANAAAAAB2KitWrMh9992XRx55JAsWLMiqVasyZMiQjBs3LlOmTMnRRx+dpqamATlrzpw5+drXvpbbbrsts2bNyuLFi9PZ2bl2/dprr81f/dVfbfDeu+++O9dee23uuOOOPPXUU1m6dGl6enrWrj/xxBOZOHFikmTatGm57bbb1q5VKrI6GHjCwgAAAAAAAAAAAAB2LC9dZ/ybJCmKYkiS1yc5N8lhSfZO0pFkQZL7U4aKXV+pVJYPXqsAAMBOrb4pGT61rL4qlWTVc73BYUv7hIitmDO4Pa6aV9bzt1XP17ckbQdXB4gNPyRpm5I0tA5ujwAAAABsVHd3d/7jP/4j1157baZPn56urq5+r21pacmrX/3qvP3tb89ZZ5211Wd+/etfzwc+8IF0dHRs0X1dXV1573vfm69//etbfTZsD8LCAAAAAAAAAAAAAHYQRVGMSDK5z9TqJI8XRfEnSa5NcsA6t7QkGZ5kUpJzklxVFMUVlUrli4PRLwAAsIsqimTIXmWNO616rbM9WT6rNzxsbc1Kerbsg5fbpHtVsuR3Za1rj/2TYVOrg8SGHZK07Fk+GwAAAACD5n/+53/ynve8J7Nmzdqs61etWpUbb7wxN954Y4477rh89atfzTHHHLNFZ958881517velUqlssX9fvzjHxcUxg5JWBgAm+BNMAAAAAAAAAAAGETj1xk/k+QNSf4jSd1m3D86ydVFURyf5MJKpdL/r2MGAADYGo1Dk1HHlNVXT3ey4slk6bohYg8nHfMHt8cXnizr2Vuq5xtHlKFhw9cJERt6YFLXOLg9AgAAAOwGPvnJT+aTn/zkeqFdRVFk6tSpmTBhQkaPHp358+dnzpw56wWK3XPPPTnppJNyzTXX5B3veMdmn3vppZdWnXn++efnoosuyr777pvGxt7vA40ZM6bqvnnz5uULX/jC2nFTU1M+9rGP5cwzz8zYsWNTV9f7tv2ECRM2ux8YCMLCANiELU9JBQAAAAAAAAAAttqIdcZDk3wnvUFhTyb5UpLbkyxMMirJKUnel2Rin/vekmRekksGqrGiKPZMMnYLb5s0UOcDAAA7uLr6MnRr6IHJPmdWr3UsrA4PWxMo9sLjSaVn8HrsXJIsvLOsvoqGpG1ynwCxqS++Hpw0DR+8/gAAAAB2IRdffHGuvvrqqrm2trZceumlefOb35z99ttvvXseffTRfOtb38rnPve5dHR0JElWr16dd77znXnhhRdy8cUXb/LcmTNn5sEHH1w7PvPMM3PddddtVs833HBDVq9evXZ85ZVX5sMf/vBm3Qvbm7AwAAAAAAAAAAAAgB3HumFhfX+N8feT/GWlUlm5zjV3FkVxTZJ/TfIXfeY/VBTFjZVK5VcD1Nt7k1w2QHsBAAC7k+bRydiXldVXd0ey/NHqILE11dU+eP1VunrPXdeQvfqEiPWp1glJUbf+9QAAAADk29/+9npBYaecckquv/76TJgwod/7Jk+enCuvvDIXXHBB3vjGN+ahhx5au/ahD30oRx11VKZNm7bRs++5556q8TnnnLPZfW/tvbfeeutmnwFbS1gYAAAAAAAAAAAAwI6jv0+a/zbJ+ZVKpWtDi5VKZVVRFOcnmZjk+D5Ln0jy6gHtEAAAYKDUNycjDiurr0olWflMb4DX0hm9X698enB7XPlsWfOmV8/XtybDDl4/RKztoKRhyOD2CAAAALADmTVrVt7//vdXzZ188sn56U9/mqFDh27WHlOmTMkvf/nLTJs2LTNmzEiS9PT05C1veUseeOCBjBkzpt97582bVzXeWDjZQN4L25uwMAAAAAAAAAAAAIAdR3s/85f0FxS2RqVS6SqK4m+T/KrP9BlFUexZqVSeH7AOAQAAtreiSFr3KWv8K6rXOpcny2b2hoetqeWPJD2rB6/H7hXJ4vvLqlIkQw9YP0Rs2CFJ85jy2QAAAAB2YZdcckna23vf+h4xYkR++MMfbnZQ2Bp77rlnfvCDH+Too4/O6tXl932efvrpfOpTn8rVV1/d7319z06SxsbGzT5zW+6F7U1YGACb4E0oAAAAAAAAAAAYRBsKC3uyUqn87+bcXKlUbi+K4vEkB/aZ/pMk3x+A3r68FftMSnLjAJwNAABQamxLRh9XVl89XckLs9cPEVs6I1m9aBAbrCTtj5f1zM3VS02jNhwiNvSApM5H/QAAAICd38MPP5ybbrqpau4zn/lMxo8fv1X7HXroobnkkkty1VVXrZ37xje+kcsvvzwjR47c4D09PT1bdda23jsQ/vjHP+b3v/99Fi5cmMWLF6elpSVjx47N1KlTc+SRR6a5uXmr9u3q6srdd9+dxx9/PPPnz09HR0fGjh2biRMn5mUve1laWloG+EnYHnwHEYBNqNS6AQAAAAAAAAAA2J0s2cDcnVu4x12pDgubuvXt9KpUKs8neX5L7ikKv6wQAAAYJHUNSdvksvY5q3pt1fz1Q8SWPZy0P5FB/dzE6kXJgjvK6quuMWk7KBk2dZ0gsYPLcDQAAACAncTVV1+dSqX3+y1jxozJhRdeuE17Xnzxxfnnf/7ndHZ2JkleeOGFfP3rX89HPvKRJMns2bNzwAEH9Hv/aaedtsH5a6+9Nkk22l9/73k/8cQTmThx4trxtGnTctttt60d9/0z2JSnnnoq//RP/5Tvf//7mTdvXr/XDRkyJKeddlr+8i//Mm984xtTX1+/yb1nzJiRK6+8MjfddFOWLVvW775nn312rrjiikyZMmWz+2bwCQsDAAAAAAAAAAAA2HE8maQjSd9fB/zsFu7xzDrj0dvUEQAAwM6uZWxZe55aPd+9Kln+SBkctnSdILHuFYPXX09nsvSPZa1ryD7VAWLDX3wdsk8ioBkAAADYwdxyyy1V4wsuuCBNTU3btOfYsWPzZ3/2Z/nRj35Udc6asLCdVaVSyac//el86lOfyurVqzd5/cqVK3PzzTfn5ptvXi+sbF3d3d255JJL8sUvfjE9PT2b3Pd73/tefvjDH+Zzn/tcPvjBD27pozBIhIUBAAAAAAAAAAAA7CAqlUp3URQzkxzZZ7pjC7dZ9/qWbesKAABgF1Xfkow4oqy+Kj3JiqdfDA6bUR0itnJL85y30cqny5r3y+r5hqHJsIOrg8SGTU3aJif1zRveCwAAAGqgq7uSuYtr3cWub8LIpKG+tsHic+fOzezZs6vmzjjjjAHZ+4wzzqgKC7vzzjvT2dmZxsbGAdl/sHV1deXcc8/ND3/4w/XWxo8fnyOOOCJjxoxJR0dH5s2bl9/97ndpb2/frL1XrlyZ173udfn5z39eNd/Y2JijjjoqEyZMSHNzc5577rncfffdWbFixdqeLr744ixevDiXX375Nj8jA09YGAAAAAAAAAAAAMCO5cFUh4WN2ML7171+4ba1AwAAsJsp6pI99i1rr1dVr61emiybWR0gtuzhZPkjSaVr8Hrsak8W3VvWer0fWIaHDT+kOkysefTg9QcAAAAvmrs4OfDvemrdxi7v8avqMnFMbXv49a9/vd7ccccdNyB7H3vssVXjlStX5oEHHsjxxx+fCRMm5Iknnli79oUvfCFXX3312vH111+fE088cb09x4wp/8CmTZu2du7cc8/NXXfdtXbcd9++JkyYsFXPscaHPvSh9YLCzjzzzFx++eU5/vjj17u+p6cnd955Z7773e/mW9/61kb3ft/73lcVFDZ8+PBcfvnlueiii9LW1lZ17cqVK/PlL385n/jEJ7Jq1aokyRVXXJETTjghr33ta7fy6dhehIUBAAAAAAAAAAAA7FhuTvKWPuPDtvD+w9cZz922dgAAAFiraXgy5qVl9dXTmbQ/0SdAbEay9MWvO5cMXn+VnqT90bKeual6rXlMdXjYmtpjYlJXP3g9AgAAALukuXOr35oeN25cRo8emPDyww9f923w8rzjjz8+DQ0NmThx4tr5ESOqf7/W+PHjq9bXNXTo0LVft7S0VK1t7L6t9fOf/zxf/OIXq+Y+85nP5KMf/Wi/99TV1eXkk0/OySefnCuuuGK9Ptf4/ve/n2uvvXbteP/998+tt97a73MMGTIkH/rQh3LSSSflFa94RVatWpVKpZK//uu/zsyZM1NXV7flD8h2IywMAAAAAAAAAAAAYMdyU5KOJM0vjo8vimJUpVJZtKkbi6IYmWSdT6znVwPcHwAAAOuqa0yGTSkrZ/fOVyrJquf7hIj1qReeTFIZvB47FiTzby+rqvfmpO2gZPjU6hCxtilJ49AN7wUAAACwjkWLqt/SHjly5IDt3dLSkubm5nR0dPR73s7iiiuuqBq/+93v3mhQ2LrWDUNbo1KpVO3d0NCQn/zkJ5sVeLYmhOwjH/lIkuTRRx/NDTfckDe84Q2b3Rfbn7AwAAAAAAAAAAAAgB1IpVJZXhTFD5K8+cWp5iTvT3JF/3et9f4kfX+F8JNJHhrYDuH/Z+/Oo/Q66zvBf28tqpKqSqXVsmVb3m3JZgvtDvsS4gScNGEC6ZCGE5qQrUn+4EySSRqGxk13pwNZZoYJ9GShIRmm4QRCEyAhwUBiNpMQMInBlmR5lW1ZtqylqlSlUm3P/HEl1XtLJVmySm9p+XzO+Z2q+zz33uf75nBkVHF9AQAATlhVJUvX1bPuZc29qbFkZNs8RWJbk+kD7cs4czAZ+l49cy27tFkgdniWXlR/NgAAAIBD5pZ3HavU6ulasWJFHn/88SPXu3fvXtD3t8Odd96Zr3/960euBwYG8t73vndB3v13f/d3+d73Zn++88Y3vjHPetazTvj5X/7lX8673vWujI+PJ0k+85nPKAs7wygLAwAAAAAAAAAAADiNqqoqc5Z+oJRy21M89h+S/OskSw5dv6Oqqi+UUr5xnHNekOSdc5Z/q5Qy93wAAADOBF3LkpXPrqdVmUlGt89TIrYlGX98/nedLmMP17PzC831roHZ4rDBTbPf91+VdC6Z/10AAAAAp6A6B4rLv/SlLzWu3/CGN2T58uUL8u4vfKH585vXv/71J/X8smXL8v3f//35yle+kiT56le/uiC5WDjKwgAAAAAAAAAAAIDzVlVVl2T+f5/ywjnXXVVVXX6M1+wvpTy5kLlKKQ9UVfXbmS3/6klya1VVv57kg6WUycP3VlXVleRnk/xuZsvFkuSbST68kLkAAABog6oj6b+8nvWvau5N7E2Gtx5dIjZyb1Km25dxaiTZ84/1tKo668Kww+VhRwrFNiZLVrYvHwAAANB2q1atalwPDQ0t6Pv37dt33PPOBrfffnvj+uUvf/mCvftrX/ta43rVqlV58MEHT+odrcVlDz74YGZmZtLR0bEQ8VgAysIAAAAAAAAAAACA89nXklx2AvddnOSBY+z9aZI3L1SgFu9Kcl2Sf33ouj/Jf0vyX6uq+vske5KsSvL8JCvmPPtokteVUiZOQy4AAAAWy5KVyZrn19NqeiLZf39Lgdjm2e8nh9uXr0wnI/fU8+hnmnu9FxxdIrZ8U9K3oS5IAwAA4Jx0ycrk/v/q732n2yVnQEf33PKuvXv3Lti7x8fHMz4+3lhbvXr1gr2/XR577LHG9Q033LBg73744Ycb189//vOPceeJmZmZyb59+87KUrZzlbIwAAAAAAAAAAAAgDNQKaVUVfXTqUvBfrFla0WSVx3n0W8m+fFSyo7TmQ8AAIAzSOeSZHBjPa1KScZ3zhaHDW2Z/X5se3szjj9RzxNfaa539iYD1zVLxAY3JgPXJl3L2psRAACABdfVWeXyNYudgna4+OKLG9c7d+7M7t27F6TU66677nrK884Gu3fvblyvXLlwLW9z370QRkZGlIWdQZSFAQAAAAAAAAAAAJyhSikHk/y7qqo+keQ3krwiSecxbv9ekt9N8v+VUqbbFBEAAIAzWVUlSy+qZ90PNPemRpPhe2bLw4a3JMOb67WZg+3LOD2e7Pvneubqu6xZInZ4etfVnw0AAAA4Y7zwhS88au1b3/pWXvnKV57yu7/1rW81rpcuXZrnPOc5p/zexVYt4M83JiYmFuxdh5VSFvydPH3KwgAAAAAAAAAAAIDzVinl8jacccr/dm8p5UtJvlRV1dokz09yUZI1SUaSPJ7k9lLKI6d6DgAAAOeRrr5k1ffV02pmOhl7KBnaMqdIbEtycFd7M44+VM9jn2+ud6+oS8MG55SI9V+ZdHS3NyMAAACQJNmwYUM2bNiQ7du3H1m79dZbF6Qs7Atf+ELj+nnPe16WLFlyyu9ttzVr1jSu9+zZk4svvnjB3r1jx44kSW9vb8bGxha0jIzFpywMAAAAAAAAAAAA4CxRStmV5LOLnQMAAIBzWEdnXbrVf2Vy8Y809w7uToa3Hl0itv++pMy0L+PkvmT339fTqupKBq5uFogdniWD7csHAAAA56lXtXYQhwAAIABJREFUvepV+aM/+qMj1x/5yEfynve8J93dT7/ce9euXfnMZz5z1Dlno4suuqhxfffdd+eZz3zmgrx73bp1R8rCxsfHs3379lx22WUL8m7ODMrCAAAAAAAAAAAAAAAAAICn1rM6WfvCelpNH0xG7j26RGx4SzK1v335ytTsuXP1XjhbHDa4afb7ZZckVUf7MgIAAMA57G1ve1v++I//OKWUJHXR14c//OH8wi/8wtN+5/ve975MTk4eue7r68vP//zPn3LWxfCiF70on/jEJ45c33bbbXn961+/IO9+4QtfmO985ztHrm+99daz9v9OzE9ZGAAAAAAAAAAAAAAAAADw9HX2JCtuqKdVKcmBHfOXiI090t6M4zvreeK25nrnsmT5dbPlYYdn4Jqka2l7MwIAAMBZ7vrrr8/NN9+cz33uc0fWfuM3fiOvec1rsm7dupN+3913353f+Z3faaz9zM/8TFatWnXKWRfDTTfd1Lj+6Ec/mt/+7d/OwMDAKb/7la98ZT7wgQ8cuf7gBz+oLOwcoywMAAAAAAAAAAAAAAAAAFh4VZUsu7ieC3+wuTc5kozckwxtSYY3z5aIjWxLZibal3F6LNn7nXoaqqTv8tnysMHDRWKbkp419WcDAAAAjvJ7v/d7ue222zI2NpYk2bdvX1772tfm85//fPr7+0/4Pbt27cpP/MRPZGJi9ucEF110Ud71rncteOZ2ueGGG/Kyl70sX/7yl5Mkw8PDefvb3573v//9p/zum2++OVdddVXuu+++JMk3v/nNfOhDH8pb3vKWU343ZwZlYQAAAAAAAAAAAAAAAABAe3UPJKv+RT2tZqaS0Qdny8MOz9DmZGJPGwOWZPSBeh776+bWklWzJWKt039F0uHXNgEAADi/bdy4Mb//+7+fn/3Znz2ydvvtt+fmm2/Oxz72sVxyySVP+Y5t27blda97XTZv3nxkraOjIx/5yEeydu3a05K7Xd71rnflB39wtlT9Ax/4QK644or86q/+6gk9PzQ0lJ6envT29jbWu7q68p/+03/KG9/4xiNrb33rW7NixYq89rWvPamMX/ziF3PllVfmyiuvPKnnOL06FjsAAAAAAAAAAAAAAAAAAECSumxr4Ork4n+VbPq15HkfTH7oa8lP7E5euyu56avJ9/9xsvFXk/U/mvRflVRt/lXJiT3Jk7cn938o+adfT77yY8lfXpt8fFnyVzckX31d8s//e/LAR5Ld/5hMDrc3HwAAACyyt7zlLfnlX/7lxtrXvva1XH/99XnPe96Thx9+eN7n7r333rzzne/MM5/5zHz3u99t7L33ve9tlGydrV7xilccVQz2a7/2a/mxH/uxfPvb3573mZmZmXzjG9/I2972tlx66aXZuXPnvPe94Q1vyFve8pYj1xMTE3nd616XN77xjcd8d5JMT0/nO9/5Tt797nfn+uuvzw/90A9l+/btT+PTcTqpqAcAAAAAAAAAAAAAAAAAzny9a5LeFycXvLi5Pj2ejGxLhrckQ1vqr4dneqx9+WYmk6G765lr6fpk+aZk+cZ6Bg99XXpxUlXtywgAAABt8v73vz8rV67Mb/7mb6aUkiQZGRnJ29/+9rzjHe/I9ddfn0svvTQrV67M7t2789BDD2Xr1q1Hvae7uzvve9/78ta3vrXdH+G0ee9735vt27fnE5/4xJG1z372s/nsZz+b9evX55nPfGZWr16dgwcPZufOnbnzzjszMjJyQu/+gz/4g+zduzef+tSnjqx99KMfzUc/+tGsXbs2z372s7N69ep0dHRkeHg4O3bsyObNmzM+Pr7gn5OFpSwMAAAAAAAAAAAAAAAAADh7dfYmK55ZT6syk4w92iwPOzwHdrQ344Ed9Tz+peZ6V99sgVjrDFyTdPa0NyMAAAAssP/8n/9zXvayl+WXfumXsm3btiPrpZTcddddueuuu477/HOf+9z84R/+YW688cbTHbWtOjs782d/9me54YYb8pu/+ZuZnJw8srdjx47s2PH0f27R3d2dT37yk/md3/md3HLLLY0SsF27duWLX/ziCb2jr6/vaWfg9FAWdp6oqqo7yYuSbEhyUZL9SXYk+U4p5cEFPuuKJM9Jsj5Jf5LHkjyU5PZSyuTxngUAAAAAAAAAAAAAAACABVF1JH2X1nPRDzX3JoeToXlKxEa2JWWqfRmnRpM9367nqOxX1MVhg5uaRWI9q9uXDwAAAE7RTTfdlLvvvjsf//jH86EPfShf/vKXMzV17L979/T05Id/+Ifzcz/3c3n1q1+dqqramLZ9qqrKLbfckje96U35rd/6rXzyk5/Mnj17jnl/f39/brrpprz5zW/Ohg0bnvLdv/7rv543velNed/73pePfexjeeihh477zMDAQF7ykpfkR3/0R/P6178+q1f7+cOZpiqlLHaG80ZVVf8xyS2n8Io/LaW8+STPXJvk3Ulen2TVMW67Pcn/UUr55ClkS1VVP5HkV5K84Bi37EnyZ0neVUp58lTOWkhVVd2Q5HuHr7/3ve/lhhtuWMREcIa59UXJk7ef2L1v8M8UAAAAAAAAgMV011135RnPeEbr0jNKKcf/n98EgNPIv6MHAADAWWdmMtn/wNElYkObk8l9i52u1rOmWR52ePouTzo6FzsdAABwjpmamsq2bdsaa9dcc026uroWKRFnu9HR0Xz729/Ovffem127dmViYiI9PT1Zt25drr322jz3uc9NT0/PYsdsu5mZmdxxxx3ZsmVLnnzyyezfvz99fX254IILsnHjxjzrWc9Kd3f3037/Aw88kDvuuCO7du3K3r1709HRkYGBgaxfvz4bN27MNddck87Oc+PnCqfrz63F/vfz/Kl7Dquq6uYkf5Lkgqe49YVJXlhV1f9I8oullNGTPKc/yR8n+amnuHVVkrcmeW1VVf+2lPL5kzkHAAAAAAAAAAAAAAAAAE6rju5k+bX15Mdm10tJDu5qlocd/n70oSSlfRkPPpns+lo9jew9ycA1zQKxwU3JwLVJd3/78gEAAMBx9PX15aUvfWle+tKXLnaUM0pHR0duvPHG3Hjjjafl/VdccUWuuOKK0/Ju2kNZ2DmqqqqXJ/mLJEtalkuSO5Lcn2RFku9LsqZl/41JlldV9b+UUmZO8JzOJH+W5EfmbO1K8p0kQ0muOnRWdWhvXZJPV1V1Uyllzk8jgTNOVT31PQAAAAAAAAAAAAAAAHAuq6qk94J6Lpjzy8xTY8nIttnysCOzNZk+0L6MMweToe/VM9eyS5slYodn6UV+fwgAAADgLKAsbHH9myR/fxL37z+Rm6qquiTJ/0yzKOzrSX6+lLK55b6eJL+Y5HeTdB9afnWS/5LkHSeY6T1pFoVNJvmVJH9USploOev6JB9M8oJDSz1J/qKqqmeWUh47wbMAAAAAAAAAAAAAAAAA4MzStSxZ+ex6WpWZZOzhZKi1QGxz/XX88fZmHHu4np1faK53DcwWhw22lIj1X510Lpn/XQAAAAC0nbKwxbWzlPLgaXjvu5OsbLm+PclNpZTx1ptKKQeT/N9VVW1P8qmWrV+pquoPSykPHe+QqqquTPK2Ocv/upTy6bn3llLurqrqB5N8KbOFYauT3JLk353AZwIAAAAAAAAAAAAAAACAs0fVkfRdVs/6Vzb3JvYmw1tbSsQOzci9SZluX8apkWTPP9bTyN6Z9F+ZLN80WyB2uFBsycr53wUAAADAaaMs7BxTVdU1Sf5ty9JEkjfPLQprVUr5i6qq/rTluZ7UJV5veYrjbknS3XL9J/MVhbWcc6Cqqjcn+W6Sw/+TAj9bVdVvl1Luf4qzgMVSymInAAAAAAAAAAAAAAAAgHPLkpXJmufX02p6Itl//9ElYsObk8nh9uUr08nItnoe/Uxzr/eCZoHY4em7rC5IAwAAAGDBKQs797whSWfL9f8spWw7gefem2bJ2E9WVfVLxyoZq6pqaZKfmOcdx1VKuaeqqr9I8pOHlroOZf4vJ5ARAAAAAAAAAAAAAAAAAM5dnUuSwY31tColGX+8Lg0b3pIMtRSJjW1vb8bxJ+p54ivN9c7eZODalgKxTfXnGLg26VrW3owAAAAA5xhlYeeeH59z/eETeaiUsrmqqn9I8rxDS31JfjjJZ47xyCuTtP507hullC0nmPHDmS0LS5LXRlkYnLmqarETAAAAAAAAAAAAAAAAwPmtqpKlF9az7geae1OjyfA9s+VhR2ZrMnOwfRmnx5N9d9YzV99lLSViLdO7zu8vAQAAAJwAZWHnkKqqLkzy7JalqSRfP4lX3JbZsrAkuTnHLgt71TzPnqivps52+D9/31dV1bpSyuMn8Q4AAAAAAAAAAAAAAAAAoKsvWfV99bSamU7Gts+Whw1tnv3+4K72Zhx9qJ7HPt9c7x48ukBscFPSf2XS0d3ejAAAAABnMGVh55ZnzLm+s5QyehLP3z7n+oaTOOsbJ3pIKWW0qqrvJmn9yeMNSZSFwZlo6sBiJwAAAAAAAAAAAAAAAABOVkdn0n9FPetvbu4d3J0Mb50tDzs8++9Lykz7Mk4OJbv/oZ5WVVcycPXRRWLLr0uWrGhfPgAAAIAzhLKwxfWLVVW9M8mmJKuTTCbZneShJF9L8jellK+exPuun3N970nmue8p3tdq0wKc1VoWdn2Svz3JdwDtsPeOxU4AAAAAAAAAAAAAAAAALKSe1cnaF9bTavpgXRh2uDxsqKVIbGqkffnK1Oy5c/VeeHSJ2ODGZNmlSdXRvowAAAAAbaQsbHH91JzrniT9SS5L8tIk76iq6ltJ3l5K+eIJvO/qOdfbTzLPQ3OuV1dVtbKUsrd1saqqVUlWneJZc++/5iSfBwAAAAAAAAAAAAAAAAAWUmdPMnh9Pa1KSQ7smC3wap2xR9qbcXxnPU/c1lzvXJYsv+7oIrGBa5Kupe3NCAAAALDAlIWd+W5McmtVVb+V5J2llHKce1fMuX7iZA4qpeyvqmo8SW/L8mCSvXNunXvOWCll9GTOmifb4Ek+DwAAAAAAAAAAAAAAAAC0Q1Ulyy6u58IfbO5NjiQj9yRDc0rERu5JZibal3F6LNn7nXoaqqTv8tnysMGWIrGetfVnAwAAADjDKQtbHI8m+VySbybZnGRPkpkkq5M8N8m/SvLKlvurJO9I0pHk7cd5b/+c6wNPI9uBNMvCBk7jOa3mO+ekVVV1QZK1J/nYVQtxNgAAAAAAAAAAAAAAAACcd7oHklX/op5WM9PJ6APNArHhLcnQ5mRiTxsDljrH6APJY3/d3FqycrY4bPnGZPmm+mv/FUmHX8EFAAAAzhx+UtFe30xdAvaFUko5xj23J3l/VVU3Jvlokmta9v59VVV/X0r59DGenVviNf40Mh5IsvI471zIc473zqfrl5LcskDvAgBgoY1uT/bdmaz6l8nSdYudBgAAAAAAAAAAAACA06WjMxm4up6L/1Vzb/zJo0vEhrfUhV5lpn0ZJ/YmT36jnkb27mTgmjlFYhuT5dcl3cvblw8AAADgEGVhbVRK+dxJ3Putqqqen+QbSa5t2XpPVVV/WUqZPpHXnGzGM/wZAADOVqUkd/yvydb3za4957eT6/+3xcsEAAAAAAAAAAAAAMDi6F2T9L44ueDFzfXp8WTk3maB2NDm+uv0WPvyzUwmQ3fXM9fS9fOUiG1Mll2SVFX7MgIAAADnFWVhZ7BSyp6qqv5Nkm8lOfwToo1JfiDJF+d5ZP+c66VP49i5z8x9ZzvPAQDgXPHwnzeLwpLkn349ueAlyZrnL04mAAAAAAAAAAAAAADOLJ29yYpn1NOqzCRjjzZLxA7PgR3tzXhgRz2P/21zvatv/hKxgavrzwUAAGepap5S3FLKIiQBODHz/Rk1359lZxtlYWe4UsodVVXdmuSVLcuvirKwY/lvST5xks9cleTTC3Q+AADz2fJ/zb++7f9RFgYAAAAAAAAAAAAAwPFVHUnfpfVc9EPNvcnhZHjr0SViI9uSmcn2ZZwaTfZ8u56jsl8xf5FY75r25QMAgKepo6PjqLXp6el0d3cvQhqApzY9PX3U2nx/lp1tlIWdHf4mzbKwZx3jvqE512tP5pCqqvpzdInXvhM4Z1lVVX2llNGTOO6CEzjnpJVSnkjyxMk8cy60/gEAnPGevH3+9Qf+3+QFf9reLAAAAAAAAAAAAAAAnDu6lyer/2U9rWamkv33H10iNrQ5mVyQX2k8MWUm2X9fPTv+qrnXs/pQcdimZolY3+VJR2f7MgIAwHFUVZXOzs5G+c6BAwfS29u7iKkAjm1sbKxx3dnZeU50DCkLOzs8OOf6WCVg2+ZcX3aS58y9f08pZe/cm0opu6uq2ptkZcvyhiSbT+GsudkBAAAAAAAAAAAAAAAAAJ6ejq5k+bX15Mdm10tJDu5qKQ9rKRIbfTBJaV/Gg7uTXV+vp5F9STJwbbNAbHBjMnBd0t3fvnwAAHBIX19fhoeHj1yPjIxk5cqVx3kCYPHs37+/cd3ff278XVpZ2NnhwJzrpce4b25Z19Unec6Vc67vPs69m5O8cM5ZJ1MWNvesk3kWAAAAAAAAAAAAAAAAAODkVVXSe0E9F7y0uTd1IBnZlgxvni0QG96SDG9Npuf+qudpNDORDH2vnrmWXdIsEVu+qf669KL6swEAwGkwMDDQKAsbGxvLxMRElixZsoipAI42MTGRsbGxxpqyMNppzZzrJ49x39yf+jyrqqplpZSxee8+2oue4n1z91rLwl6Q5LMnckhVVX1JnnUSZwEAAAAAAAAAAAAAAAAAnF5dS5OVz6qnVZlJxh5OhrbMKRHbkozvbG/GsUfq2fnF5nrXwGyB2GBLmVj/1UmnAgcAAE5NX19f47qUkocffjiXXXZZurrU1wBnhqmpqTz88MMppTTW5/4Zdrbyp+3Z4XlzrnfMd1Mp5bGqqu7MbBFXV5IXJ7n1BM95+Zzrvz7OvX+T5BeO8+zxvCTN/+x9p5Ty+Ek8DwAAAAAAAAAAAAAAAADQHlVH0ndZPetf2dyb2JcMb20pENtcfx25NynT7cs4NZLs+cd6Gtk7k/4rZ8vDWqdnVfvyAQBwVuvs7MzAwEBGRkaOrE1MTOS+++7L8uXLs3z58nR3d6ejo2MRUwLno5mZmUxOTmZ4eDjDw8OZmZlp7A8MDKSzs3OR0i0sZWFnuKqqepO8ds7ybcd55FOZLQtLkp/JCZSFVVW1Mc1SstGneO7zSQ4kWXro+gVVVW0spWx5qrOSvHnO9adO4BkAAAAAAAAAAAAAAAAAgDPLkhXJmufV02p6Itl/f0uJWEuZ2ORw+/KV6WRkWz2Pfra517M2Gdx0dInYsg1Jx7nxi9QAACyciy66KBMTEzl48OCRtZmZmezbty/79u1bxGQA8+vp6clFF1202DEWjLKwM99vJLm45Xo6yV8d5/7/keSdSQ7/FOa1VVVdU0rZdgLntPp4KWX8WDeXUsaqqvrzJD895x0/c7xDqqq6NsmPtyxNJfnoU2QDAAAAAAAAAAAAAAAAADh7dC5JBjfW06qUZPzxeUrEtiSjD7U348FdyRO7kie+0lzv7E0Grj26RGz5tUlXX3szAgBwxujs7Myll16aBx98MFNTU4sdB+C4uru7c+mll6az89wpw1YW1iZVVf10kltLKY+fxDM/n+SWOct/Uko55k97Sinbqqr60yRvObS0JMmfVFX1g8cq/6qq6jVJ3tyyNJHk3ScQ8T8m+akk3Yeu31xV1adKKZ85xjm9ST58KNNh/72Uct8JnAUA55epsWR0e/3/RKk6FjsNAAAAAAAAAAAAAAAAC6GqkqUX1rPu5c29qdFk+J55isS2JjMH25dxejzZd2c9cy3bUBeHDW5qFon1rqs/GwAA57Tu7u5s2LAhjz/+eEZHRxc7DsC8+vr6sm7dunR3dz/1zWcRZWHt87NJ/rCqqk8k+XiS20op8/5Tr6qqG5O8I8mPz9l6NMk7T+CsWw49u/LQ9QuTfLGqqp8rpWxpOacnyS8k+b05z//e8QrJDiul3F9V1fuS/FrL8p9XVfUrSf6olDLRctamJB88lOWw3TmxUjIAOH+Ukvzz25Mt/2cyM5H0XpC86OPJupctdjIAAAAAAAAAAAAAAABOp66+ZNX31dNqZjoZ2z5PidiWZPyJ9mYc217Pzlub692DzfKwwzNwVdJxbv1yNgDA+a6npycbNmzI5ORkhoaGMjQ0lMnJyZRSFjsacJ6qqird3d0ZHBzM4ODgOVcSdpiysPZamuRNh2amqqptSR5MMpRkOsnqJM9Osm6eZ/ckeVUpZedTHVJKeaSqqtcm+XySJYeWX5Tk7qqqvp3k/iSDSZ6bZO2cx/8yyX84ic/075PckOTmQ9fdSX4/yX+oquqOJCNJrjx0Vmsl/ESSHy+lPHYSZwHAue++/57c/d7Z6/Enktt+JHnNg0nv3H9sAwAAAAAAAAAAAAAAcM7r6Ez6r6hn/c3NvYN7kuGth8rDNs+WiO2/PynT7cs4OZTs/od6WlVddWFYo0RsU7L8umTJivblAwBgwXV3d2fNmjVZs2ZNSikppWRmZmaxYwHnmY6OjlRVlaqqnvrms5yysMXTkeS6Q/NUvpTkzaWUR0705aWU26qq+vEkf5LZQrAqyY2HZj4fS/LzpZz4T39KKdNVVf1kkg8meX3L1gVJXnWMx55I8m9LKV890XMA4Lxx3wePXpseSx75dHL1z7U/DwAAAAAAAAAAAAAAAGeunlXJ2hfU02r6YLL/vtnysKEts99PjbQvX5k6VGa2Ncmnm3u9F84pEduYDG5Mll2aVB3tywgAwCk7XNTT0eG/xwGcLsrC2ud9SR5N8qIkl53A/aNJbk3ygVLKl57OgaWUz1VV9Ywk705d5LXyGLf+fZLfLaV88mmesz/JT1VV9edJfjXJ849x654kf5bkllLKrqdzFgCc8+b+r6cc9t1blIUBAAAAAAAAAAAAAABwYjp7ksHr62lVSnLgsdnisOEtyfDm+uvYI+3NOL6znidua653Lk2WX3d0kdjAtUnX0vZmBAAAgDOEsrA2KaV8KsmnkqSqqhVJbkhyaZJ1SZYl6UiyL8neJJuT3FlKmV6Ac59I8taqqt6W2aKyC1OXkT2a5DullAdO9ZxDZ/15kj+vquqKJM9Nsj5JX5KdSR5K8vVSysRCnAUAAAAAAAAAAAAAAAAAwEmqqmTZ+noufEVzb3IkGbknGdrSLBMbuSeZaeOvh04fSPb+Uz0NVdJ3+Wx52GBLkVjP2vqzAQAAwDlKWdgiKKXsS/L1Np85keTv2nTWA0kWpIAMAAAAAAAAAAAAAAAAAIA26B5IVv2LelrNTCejDzYLxIa3JMObk4O72xiwJKMP1PPYXze3lqycLQ5rnf4rkw6/Tg0AAMDZz99uAQAAAAAAAAAAAAAAAACA+XV0JgNX1XPxjzb3xp+cp0RsS13oVWbal3Fib/LkN+ppZO9O+q+ui8MGN7UUiV2XdC9vXz4AAAA4RcrCAAAAAAAAAAAAAAAAAACAk9e7Jul9cXLBi5vr0+PJyL3zF4lNjbYv38xkMry5nkc+1dxbur6lPKxlll2SVFX7MgIAAMAJUBYGAAAAAAAAAAAAAAAAAAAsnM7eZMUz6mlVSnLg0bo0bGhzs0TswI72Zjywo57H/7a53tWXDFw3Wx42uDFZvikZuLr+XAAAALAIlIUBAAAAAAAAAAAAAAAAAACnX1Ulyy6p58KbmnuTw8nw1maB2PCWZGRbMjPZvoxTo8neO+ppZO9I+q6YLRFrnd417csHAADAeUlZGAAAAAAAAAAAAAAAAAAAsLi6lyer/2U9rWamkv0PHF0iNrw5mdjbvnxlJtl/Xz07/qq517N6/hKxviuSjs72ZQQAAOCcpSwMAAAAAAAAAAAAAAAAAAA4M3V0JcuvqSevnl0vJTm4a7Y8bKilSGz0wSSlfRkP7k52fb2eRvYlycC1zQKxwY3JwHVJd3/78gEAAHDWUxYGAHBWqBY7AAAAAAAAAAAAAAAAAJw5qirpvaCeC17a3Js6kIxsmy0Pa53pA+3LODORDH2vnrmWXdIsETs8S9fXnw0AAABaKAsDAAAAAAAAAAAAAAAAAADOHV1Lk5XPqqdVmUnGHk6G5ikRG9/Z3oxjj9Sz84vN9a7+Q8Vhm5LBlhKx/quTziXtzQgAAMAZQ1kYAAAAAAAAAAAAAAAAAABw7qs6kr7L6ln/yubexL5keOvRJWIj9yZlqn0Zp/Yne75VTyN7Z9J/5Wx5WOv0rGpfPgAAABaFsjAAAAAAAAAAAAAAAAAAAOD8tmRFsuZ59bSamUz23z9bHja0efb7yaH25SvTyci2eh79bHOvZ+3RBWKDm5JlG5KOzvZlBAAA4LRRFgYAAAAAAAAAAAAAAAAAADCfju5k+XX15DWz66Uk44/PFoe1zuhD7c14cFeya1ey66vN9c7eZODao4vEll+bdPW1NyMAAACnRFkYAAAAAAAAAAAAAAAAAADAyaiqZOmF9ax7eXNvajQZ2ZYMzSkRG9maTI+3L+P0eLLvznrmWrZhtjxssKVIrPfC+rMBAABwRlEWBgBwNjjw6GInAAAAAAAAAAAAAAAAAE5EV1+y8jn1tCozyehDzQKxwzP+RHszjm2vZ+etzfXuwdnisNYZuCrp6G5vRgAAAI5QFgYAAAAAAAAAAAAAAAAAAHC6VR1J/xX1rL+5uXdwTzK89egSsf33JWW6fRknh5Ld/1BPI3tXXRg2X5HYkhXtywcAAHCeUhYGAAAAAAAAAAAAAAAAAACwmHpWJWtfUE+r6Ym6MGx4c10eNtRSJDY10r58ZepQmdnWJJ9u7vWuaykP21R/HdyYLLu0LkgDAADglCkLAwAAAAAAAAAAAAAAAAAAOBN1LkkGN9XTqpTkwGOzxWGtM/ZwezOOP17PE19urncuTZZf11IkdmgGrk26lrY3IwAAwFlOWRgAAACjH0ltAAAgAElEQVQAAAAAAAAAAAAAAMDZpKqSZevrufAVzb3J/cnIPXVx2NDm2RKxkXuSmYn2ZZw+kOz9p3oaqqTvsmaB2OCm+mvP2vqzAQAA0KAsDAAAAAAAAAAAAAAAAAAA4FzR3Z+sem49rWamk9EHZ8vDWufgk20MWOocow8mj/1Nc2vJymaJ2OHpvzLp8KvxAADA+cvfiAAAAAAAAAAAAAAAAAAAAM51HZ3JwFX1XPyjzb3xJ5ORrbPlYUNbkuHNyegDSZlpX8aJvcmT36inkb076b96niKx65Ilg+3LBwAAsEiUhQEAAAAAAAAAAAAAAAAAAJzPetfUs/ZFzfXp8WTk3tkSsdaZGm1fvpnJurxsePPRe0vXz1MitjFZdklSVe3LCAAAcBopCwMAAAAAAAAAAAAAAAAAAOBonb3JimfU06qU5MCjdWnY0JwSsQOPtjfjgR31PP63zfWuvmTgutnysMFDXweuqT8XAADAWURZGAAAAAAAAAAAAAAAAAAAACeuqpJll9Rz4U3NvcnhZPieZHhzs0RsZFsyM9m+jFOjyd476mmokv4rZkvElm+a/b53TfvyAQAAnARlYQAAAAAAAAAAAAAAAAAAACyM7uXJ6hvraTUzlex/oFkgNrylLhWb2NvGgCXZf389Oz7X3OpZ3VIi1jJ9lycdfjUfAABYPP5GAgAAAAAAAAAAAAAAAAAAwOnV0ZUsv6aevHp2vZTk4JPNArGhzfXX0QeTlPZlPLg72fX1ehrZlyQD18xfJNbd3758AADAeUtZGAAAAAAAAAAAAAAAAAAAAIujqpLetfVc8JLm3tSBZGRbs0hseEsyvDWZHmtfxpmJZOiueuZadsn8JWJL19efDQAAYAEoCwMAAAAAAAAAAAAAAAAAAODM07U0WfmselqVmWTskXlKxLYkBx5rb8axR+rZ+cXmelf//CViA1cnnT3tzQgAAJz1lIUBAAAAAAAAAAAAAAAAAABw9qg6kr4N9Vz0w829iX3J8NajS8RG7k3KVPsyTu1P9nyrnqOyX5kMbjq6SKxnVfvyAQAAZxVlYQAAAAAAAAAAAAAAAAAAAJwblqxI1jyvnlYzk8n++5sFYkNbkuHNyeRQ+/KVmWT/vfU8+tnmXs/aowvEBjcmyy5LOjrblxEAADjjKAsDAAAAAAAAAAAAAAAAAADg3NbRnSy/rp68Zna9lGT8ibo0rLVIbHhLMvpQezMe3JXs2pXs+mpzvaMnWX7toQKxTS1lYtcmXX3tzQgAACwKZWEAAAAAAAAAAAAAAAAAAACcn6oqWbqunnUvb+5NjSUj9yRDc0rERrYm0+PtyzhzMNn33XrmWrZhtjxscOPs970X1p8NAAA4JygLAwAAAAAAAAAAAAAAAAAAgLm6liUrn1NPqzKTjG5vKRDbPPv9+BPtzTi2vZ6dtzbXu5fPFoe1Tv9VSeeS9mYEAABOmbIwAAAAAAAAAAAAAAAAAAAAOFFVR9J/eT3rX9XcO7gnGd7aUiR2aPbfl5Tp9mWcHE52f7OeVlVXMnDV/EViS1a0Lx8AAHBSlIUBAAAAAAAAAAAAAAAAAADAQuhZlax9QT2tpifqwrC5JWJDm5OpkfblK1OHysy2Jvl0c6933fwlYn0b6oI0AABg0SgLAwAAAAAAAAAAAAAAAAAAgNOpc0kyuKmeVqUkBx47ukRseEsy9nB7M44/Xs8TX26udy5NBq6ts7eWiA1ck3Qta29GAAA4TykLAwAAAAAAAAAAAAAAAAAAgMVQVcmy9fVc+Irm3uT+ZOSeeYrE7klmDrYv4/SBZN8/19NQJX2XNQvEDk/vBfVnAwAAFoSyMAAAAAAAAAAAAAAAAAAAADjTdPcnq55bT6uZ6WTsoWRoSzK8uVkkdvDJNgYsyeiD9Tz2N82t7hV1adjg4QKxTfXX/iuSju42ZgQAgHODsjAAAAAAAAAAAAAAAAAAAAA4W3R0Jv1X1nPxjzT3xp9MRrbOlocNHfo6en9SZtqXcXJfsvvv62lk7076rz5UINY61yVLBtuXDwAAzjLKwgAAAAAAAAAAAAAAAAAAAOBc0LumnrUvaq5PH0xG7p0tERvekgxvrr9OjbYv38zkoXM3H7239KJ5SsQ2JssuSaqO9mUEAIAzkLIwAAAAAAAAAAAAAAAAAAAAOJd19iQrbqinVSnJgUfr0rChLc0ysQOPtjfjgcfqefzvmutdfcnAdbPlYYOHvg5ck3T2tjcjAAAsEmVhAAAAAAAAAAAAAAAAAAAAcD6qqmTZJfVceFNzb3IkGd7aLBAb3pKM3JPMTLYv49RosveOehqqpP+K2RKx1ulZU382AAA4RygLAwAAAAAAAAAAAAAAAAAAAJq6B5LVN9bTamYqGX0wGdo8p0hsczKxt40BS7L//np2fK65tWRVXRo2uKlZItZ3edKhZgEAgLOP/xYLAAAAAAAAAAAAAAAAAAAAnJiOrmTg6nry6tn1UpKDT84pEDs0+x9IUtqXcWJP8uTt9TSyL0kGrmkWiC3fmCy/ri5HAwCAM5SyMAAAAAAAAAAAAAAAAAAAAODUVFXSu7aeC17S3Js6kOy/ty4OG9qSDG8+VCS2NZkea1/GmYlk6K565lp6cbNAbHBjsnxTsnR9/dkAAGARKQsDAAAAAAAAAAAAAAAAAAAATp+upcmKZ9bTqswkY48cKg6bMwcea2/GA4/W8/iXmutd/c0SscMzcHXS2dPejAAAnLeUhQEAAAAAAAAAAAAAAAAAAADtV3UkfRvqueiHm3sTQ8nw1jklYpuTkXuTMtW+jFP7kz3fqueo7FfWxWGDc4rEela3Lx8AAOcFZWEAAAAAAAAAAAAAAAAAAADAmWXJYLLm++tpNTOZ7L+/WSI2dKhIbHKoffnKTLL/3np2/GVzr2dtszzscKHYssuSjs72ZQQA4JyhLAwAAAAAAAAAAAAAAAAAAAA4O3R0J8uvqyevmV0vJRl/olkidnhGH2xvxoO7kl27kl1fba539CTLrz26SGz5dUlXX3szAgBwVlEWBgAAAAAAAAAAAAAAAAAAAJzdqipZuq6edS9r7k2NJSP3JENzSsRGtibT4+3LOHMw2ffdeuZadmmyfFNdHjbYUiTWe2H92QAAOK8pCwMAAAAAAAAAAAAAAAAAAADOXV3LkpXPqadVmUlGtzcLxA7P+OPtzTj2cD07b22udy+fLQ5rnf6rks4l7c0IAMCiURYGAAAAAAAAAAAAAAAAAAAAnH+qjqT/8nrWv6q5N7E3Gd5aF4cNbZ4tEdt/X1Km25dxcjjZ/c16WlWddWFYa4HY4KZk+XXJkpXtywcAQFsoCwMAAAAAAAAAAAAAAAAAAABotWRlsub59bSanqgLww6Xh7XO5HD78pXpZOSeeh79THOvd12zROzw9G2oC9IAADjrKAsDAAAAAAAAAAAAAAAAAAAAOBGdS5LBTfW0KiUZ3zlbHDbUUiI2tr29Gccfr+eJLzfXO5cmA9c2C8QGN9ZrXcvamxEAgJOiLAwAAAAAAAAAAAAAAAAAAADgVFRVsvSietb9QHNvcn8ycs9sediRuSeZOdi+jNMHkn3/XM9cfZclyzc1i8SWb0x6L6g/GwAAi0pZGAAAAAAAAAAAAAAAAAAAAMDp0t2frHpuPa1mppOxh5KhuSViW5KDu9qbcfSheh77m+Z694q6NGxwTolY/5VJR3d7MwIAnMeUhQEAAAAAAAAAAPz/7N17lOZ5XR/497eq+t5VNZeenivMfbp7QBCUcI2LghG8EDWGuCbnQOK6BE1Wj3E37m4UyHGzm2w0u+we4yUq7K4aL1EwKqKgrCDKIoKCdPf0MDM9MNMzPZeequpLdXdVffePXzX1PNU1/VT1VP+e56l6vc75nHp+3+/v9/u+q2GKGWjeDQAAAAAAANC2kdGmdGv3HcnN39i9d/ap7vKwC4Vipx5I6kJ7Gc8/kzz1Z810KmPJ+F2L5WEHOorE9iVbJ9vLBwCwSSgLAwAAAAAAAAAAAAAAAAAAABgk265Nrnt1M53mzyYz93cXiV2YuZPt5atzS+fmfd17O27sKA/rmJ23JGWkvYwAABuIsjAAAAAAAAAAAAAAAAAAAACAYTC6LbnqBc10qjU582hT3jV1sLtE7Mwj7WY8c6yZx/+oe310ZzKxb6k8bPJA83X87mR0e7sZAQCGjLIwAAAAAAAAAAAAAAAAAAAAgGFWSrLz5mZueF333vmZZPpwd4HY9KFk5kiycK69jPOnkxOfbqZLSXbfvlQi1jnb9jTfGwDAJqcsDAAAAAAAAAAAAAAAAAAAAGCj2jKeXPvVzXRamEtOPdRdIDZ1MJk+mJw70WLAmpx8oJlHf7d7a+s1K5eI7b49GVGZAQBsHv7OBwAAAAAAAAAAAAAAAAAAAGCzGRlLxu9q5uZvXlqvNTn7ZHeJ2IU5+WCS2l7Gc08nT368ma7sW5Pxu1coEtvXlKMBAGwwysIAAAAAAAAAAAAAAAAAAAAAaJSSbL+umb1/s3tvfjaZOdIUh00tKxKbP91exoVzydRfN7Pcjpu7C8QmF7/uuLn53gAAhpCyMAAAAAAAAAAAAAAAAAAAAAB6G92eXPUVzXSqC8npRxaLww52l4idOdZuxjOPNPP4h7vXx3YnE/sWS8QOLJWJjd+VjG5rNyMAwBopCwMAAAAAAAAAAAAAAAAAAADg8pWRZNfzmrnx67v3zk0l04e7C8SmDyUzR5I6117GuZPJ059q5qLsdzTFYZP7l0rEJvYn265tLx8AwCUoCwMAAAAAAAAAAAAAAAAAAADgytg6mez5G810WjifnHywo0DsYDK1+Pn8M+3lqwvJyfubefS3u/e27ekuD5vYn0weSHbemoyMtpcRANj0lIUBAAAAAAAAAAAAAAAAAAAA0K6RLcnEPc3kTUvrtSazxztKxDrm1NEktb2MZ59MnvhYM13Zty1mX1YkNn5PsmV3e/kAgE1DWRgAAAAAAAAAAAAAAAAAAAAAg6GUZMf1zVz/X3TvzZ1OZo6sUCR2OJk/017GhbPJM59tZrmdz7u4RGxif7LjxuZ7AwC4DMrCAAAAAAAAAAAAAAAAAAAAABh8YzuTq1/cTKe6kJx6eIUSsUPJ7OPtZjz9xWYe+4Pu9S0TK5eI7b4zGd3abkYAYOgoCwMAAAAAAAAAAAAAAAAAAABgeJWRZPdtzdz0hu69cyeS6cMXl4jN3J/U+fYynp9Onvr/mulURpvCsOUlYpP7k61Xt5cPABhoysIAAAAAAAAAAAAAAAAAAAAA2Ji2Xp3seUUznebPJScfWCwPO9hdJHZ+ur18dT6Zua+ZR36re2/73sXysAPdRWK7nt8UpAEAm4ayMAAAAAAAAAAAAAAAAAAAAAA2l9GtyeT+ZvKtS+u1JrOPLRWHTXWUiJ1+uN2Ms8ebOf7H3euj25Pxfd0FYpP7k/F7krGd7WYEAFqhLAwAAAAAAAAAAAAAAAAAAAAAkqSUZMeNzVz/td17c6eS6fuWysOmDyXTB5u1hbPtZZyfTZ75y2aW23Vrd4nYxIHm6/a9zfcGAAwlZWEAAAAAAAAAAAAAAAAAAAAA0MvYruSalzTTaWE+OX00mTq0rEjsUHL2iXYznjrazLEPdq9vuaopDZvc310mtvuOZGRLuxkBgDVTFgYAAAAAAAAAAAAAAAAAAAAAl2tktCnd2n1HcvM3du+dfSqZPnxxidjJLyR1ob2M559JnvqzZjqVsWT8ru4CsQuzdbK9fADAJSkLAwAAAAAAAAAAAAAAAAAAAIArYdu1yXWvaqbT/Nlk5v6LS8SmDyVzJ9vLV+eWzl1u+w3J5IGLS8R23pKUkfYyAgDKwgAAAAAAAAAAAAAAAAAAAACgVaPbkqte0EynWpMzj65cInb6S+1mnH2smcf/qHt9dGcyse/iErHxu5OxHe1mBIBNQlkYAECSLMwnI6P9TgEAAAAAAAAAAAAAAAAAwGZWSrLz5mZueF333vmZZOa+ZOpgd4nYzJFk4Vx7GedPJyc+3UyXkuy6bak8bPLA0udte5rvDQC4LMrCAIDN7Yu/kXz2nc1/EXLtK5KX/WRy1Qv7nQoAAAAAAAAAAAAAAAAAALptGU+u+apmOi3MJace6i4Qmz7UlIqde7rFgDU59WAzxz7QvbX1mqXisM7ZfXsyov4EAHrxn5YAwOb1+P+bfOzNSZ1vrp/4aPLhr0u+6a+T7df1NxsAAAAAAAAAAAAAAAAAAKzGyFgyflczN39z997sk8tKxA42X08+mKS2l/Hc08mTH2+m08iWZPzulYvEtoy3lw8ABpyyMABg8zr6y0tFYRecfSI59vvJ7X+/P5kAAAAAAAAAAAAAAAAAAGC9bN+TbH9Nsvc13evzs8nMkaY4bOpQd6HY/On28i2cT6Y+38xyO27uLg+bXPy64+aklPYyAsAAUBYGAGxe9//0yuuf+IfKwgAAAAAAAAAAAAAAAAAA2LhGtydXfUUznepCcvqR7vKwC3Pm0XYznnmkmcc/3L0+tjuZ2NddJDaxPxm/Oxnd1m5GAGiJsjAAhtP8bHL/zyRHfyW5623Jbd+VjPiPNdbJwvl+JwAAAAAAAAAAAAAAAAAAgPaVkWTX85q58eu7985PJ1MrlIjNHEnqXHsZ504mT3+qmYuy394Uh00e6C4S23Zte/kA4ArQqgLA8Dn7dPKfOv5h7MmPJ3/2luTNp5OxHf3LBQAAAAAAAAAAAAAAAAAAsFFtmUj2/I1mOi2cT04+eHGJ2NTB5Pwz7eWrC8nJLzTz6O90723b010edmF23ZaMjLaXEQAuk7IwAIbPx//ByuuffUfykn/TbhYAAAAAAAAAAAAAAAAAAIDNbGRLMnFPM3nT0nqtydknusvDLnw+dTRJbS/j2SeTJz7WTFf2bcn43d0FYpMHkvF7ki2728sHAD0oCwNg+Bz7wMrrB/9XZWEAAAAAAAAAAAAAAAAAAACDoJRk+95m9n5N997c6WTmyFJ52JfncDJ/pr2MC2eTqc81s9zO53WXiF2YHTc23xsAtEhZGAAAAAAAAAAAAAAAAAAAAADQnrGdydUvbqZTXUhOfzGZ6iwQO9h8nX283Yynv9jMY3/QvT42vlQcNtlRIrb7rmR0a7sZAdg0lIUBAAAAAAAAAAAAAAAAAAAAAP1XRpJdtzZz0zd07507kUwf7igRW5yZ+5M6317GuZnk6U8205V9NNl951J5WGeh2Nar28sHwIakLAwAAAAAAAAAAAAAAAAAAAAAGGxbr072vKKZTvPnkpMPXFwiNn0wOT/dXr46n8zc18wjv9W9t33vxSViE/ubUrQy0l5GAIaWsjAAAAAAAAAAAAAAAAAAAAAAYDiNbk0m9zfTqdZk9rGl8rCpjiKx0w+3m3H2eDPH/7h7fXR7Mr6vu0Bscn8yfk8ytrPdjAAMNGVhAAyXcyf6nQAAAAAAAAAAAAAAAAAAAIBBV0qy48Zmrv/a7r25U8n0fUvlYV+ew8nC2fYyzs8mz/xlM8vturW7ROzCbL+++d4A2FSUhQEwXJY3JQMAAAAAAAAAAAAAAAAAAMBajO1KrnlJM50W5pPTDy+Vh00dXPp89ol2M5462syxD3avb5nsLg+bPNB83X1HMrKl3YwAtEZZGAAAAAAAAAAAAAAAAAAAAADAyGiy+/Zmbnpj997Zp5Lpw0vlYRfm5BeSutBexvNTyVOfaKZTGUvG7+ouEpvYn0zsS7Ze1V4+AK4IZWEAAAAAAAAAAAAAAAAAAAAAAJey7drkulc102n+bFMYdqE8bKqjSGxupr18dW7p3OW233Bxidjk/mTn85Iy0l5GAC6bsjAAhky59PbcqWRsVztRAAAAAAAAAAAAAAAAAAAA2NxGtyWT9zbTqdbkzKNLBV6dc/pL7WacfayZ4x/pXh/dmUzsu7hIbPzuZGxHuxkBuCRlYQAMmR5lYeeeURYGAAAAAAAAAAAAAAAAAABAf5WS7Ly5mRte1713fiaZuS+ZWlYiNnNfsnCuvYzzp5MTn26mS0l23bZUHjbZUSS27brmewOgVcrCANhg/EMFAAAAAAAAAAAAAAAAAAAAA2zLeHLNVzXTaWE+OfVgd4HY9KFk6mBy7ukWA9Ymx6kHk2Mf6N7aevVicdiBpQKxif3J7tuTEVU2AFeKn7AA9FCS1H6HWNKrYbiMtJMDAAAAAAAAAAAAAAAAAAAA1tPIaDJ+VzM3f3P33uyTF5eITR9qCr3qQnsZz51InvzTZrqyb0nG7+4uEJvYn0zsS7ZMtJcPYINSFgbApZWRpM73O0WHHmVhPfcBAAAAAAAAAAAAAAAAAABgyGzfk2x/TbL3Nd3r87PJzP1L5WFTB5c+z59uL9/C+WTq880st+OmjvKwA8nk4ucdNydFRwDAaigLA+DSBq4srAf/IAAAAAAAAAAAAAAAAAAAAMBmMbo9ueqFzXSqC8npR5aKwzrnzKPtZjzzaDOP/2H3+tiujhKxjhm/q/m+APgyZWEA9DBs5VvDlhcAAAAAAAAAAAAAAAAAAADWWRlJdj2vmRu/vnvv/HQyffjiErGZI8nC+fYyzp1Knv5UMxdlv/3iErHJA8m2a9vLBzBAlIUB0MOglW/Vfgdgo6j+vQQAAAAAAAAAAAAAAAAAAGxCWyaSa1/WTKeF88nJBy8uEZs6mJx/pr18dSE5+YVmHv2d7r1tey4uEZvYn+y6LRkZbS8jQMuUhQFwaWWk3wnWSAEUq3T0P/Y7AQAAAAAAAAAAAAAAAAAAwOAY2ZJM3NNM3rS0Xmty9omO8rCOIrFTD6XV/5//2SeTJz7WTFf2rcn4Pd0FYpP7k/F9yZbd7eUDuEKUhQFwaYNWFjay9dL7VVkYq3To3/U7AQAAAAAAAAAAAAAAAAAAwOArJdm+t5m9X9O9N3cmmTmSTB9cKhCbPpRMH07mz7SXceFcMvW5ZpbbectigdiB7jKxHTc23xvAEFAWBkAPA/Y3tjNHetygLIxVevqT/U4AAAAAAAAAAAAAAAAAAAAw3MZ2JFe/qJlOdSE5/cVk6tCyErFDyexj7WY8/aVmHvtQ9/rY+FJx2GRHidjuu5LRre1mBOhBWRgAl1ZG+p2g2+zxHjcoCwMAAAAAAAAAAAAAAAAAAIC+KiPJrlubuekbuvfOPZNMH14sDzu4VCI2c39S59vLODeTPP3JZrqyjya771gqD5vYn0wcSCb2JduuaS8fQAdlYQD0UPodoNvWqy+9X5WFAQAAAAAAAAAAAAAAAAAAwMDaelWy5+XNdJo/l5x8YKk87MtzMDk/3V6+Op/MHGnmkf/cvbd977ISscXZ+fxkZLS9jMCmoywMgOFSF3rd0EoMAAAAAAAAAAAAAAAAAAAAYB2Nbk0m9zfTqdZk9vGLS8SmDianH2434+zxZo7/cff66PZk/J4VisTuScZ2tZsR2JCUhQHQQ+l3gGWUhQEAAAAAAAAAsP5KKXckeVmSr178+tIk4x23HK213taHaM+qlLIzyWeT3LFs67211re2nwgAAAAAAADgCigl2XFDM9e/tntv7lQyfd/FRWLTh5OFs+1lnJ9NnvmrZpbbdesKJWL7k+3XN98bwCooCwNguNQeZWFVWRgAAAAAAAAAAKtTSnltkv8+TUHYNf1Nc1n+p1xcFAYAAAAAAACweYztSq55STOdFuaT0w+vUCJ2KJk93m7GU0ebOfbB7vUtkyuXiI3fmYxsaTcjMPCUhQEwXHqVhUVZGAAAAAAAAAAAq/aVSf5Wv0NcjlLKK5L8N/3OAQAAAAAAADCQRkaT3bc3c9Mbu/fOPp1MH06mD3aXiJ38wio6DdbR+ankqU8006mMNYVhEweWFYntS7Ze1V4+YKAoCwNgyCgLAwAAAAAAAADgijub5EtJ7ux3kJWUUrYm+bkkI4tLM0nG+5cIAAAAAAAAYIhsuya57pXNdJo/2xSGXSgPm+ooEpubaS9fnVssMzt88d72G5YViO1PJvcnO5+XlJGL7wc2DGVhAAyXXi28VVkYAAAAAAAAAABrcj7JXyf58ySfXPz62SSvTvJHfcx1KT+a5N7Fz0eT/FqSH+pfHAAAAAAAAIANYHRbMnlvM51qTc4cWyoOmz6UTB9svp7+UrsZZx9r5vhHutdHdyQT+5YViR1Ixu9Oxna0mxG4IpSFAXBppfQ7QbdeZWHptQ8AAAAAAAAAAF/23iQ/VWudXb5RBu33zSwqpbw4yT/vWHp7kpf3KQ4AAAAAAADAxldKsvOmZm74uu698zPJzH3J1KHuMrGZ+5KFc+1lnD+TnPhMM11Ksuu2pQKxyY4ysW3XDV6nBPCslIUBMFx6lYXV2k4OAAAAAAAAAACGXq31RL8zrEUpZSzJz2fp93/+cq31A6UUZWEAAAAAAAAA/bBlPLnmq5rptDCfnHqou0Bs+lAyfTA5+1SLAWty6sFmjn2ge2vr1UvFYZ2z+45kRC0RDBp/VQIwZHqUhUVZGAAAAAAAAAAAG9Z/m+Sli5+fTvIDfcwCAAAAAAAAwLMZGU3G72zm5m/q3pt9coUSsUNNoVft1amwjs6dSJ7802a6sm9Jxu9eoUhsX7Jlor18QBdlYQD0UPodoFuvv7GtysIAAAAAAAAAANh4Sin7kryjY+mf1VqP9ysPAAAAAAAAAJdp+55k+2uSva/pXp+fTWbuX7lIbO5Ue/kWzidTn29muR03rVAitj/ZeUtSBqyfAjYYZWEADJeeLbjKwgAAAAAAAAAA2FhKKSNJfi7JtsWlP6y1vqd/iQAAAAAAAABYd6Pbk6te2EynWpMzjzSlYVMHu0vEzjzabsYzjzbz+B92r4/tSsb3NcVhkweWSsTG72q+L+A5UxYGwKUNXHOrsjAAAAAAAAAAADadf5Lk1YufzyR5Wx+zAAAAAAAAANCmUpKdtzRzw+u7985PJ9OHuwvEpg8lM0eShfPtZZw7lZz4i2a6so8ku25fKg/rnO172ifL/oMAACAASURBVMsHG4CyMACGS+1RFlaVhQEAAAAAAAAAsHGUUm5L8q86lt5Va72/P2kAAAAAAAAAGChbJpJrX9ZMp4W55OSDF5eITR9Mzp1oL19dSE5+oZlHf6d7b9u1K5SIHUh23ZaMjLaXEYaEsjAAhkud73VDKzEAAAAAAAAAAKAlP5tk1+Lnv0zy4/0KUkrZm+S6NT5255XIAgAAAAAAAMAljIwlE3c3k29ZWq81OfvEUnnYVEeR2KmH0mpnw9mnkif+pJmu7FuT8Xu6S8Qm9yfj+5Itu9vLBwNGWRgAw6Uu9LqhlRgAAAAAAAAAAHCllVK+O8nrFy8XknxPrXWuj5G+N8k7+ng+AAAAAAAAAM9FKcn2vc3s/ZruvbkzycyRpfKwzpk/017GhXPJ1OeaWW7nLd0lYhdmx03N9wYbmLIwAIZLr7KwqiwMAAAAAAAAAIDhV0q5Kcm/7Vh6d631k/3KAwAAAAAAAMAGN7YjufpFzXSqC8npLyZTK5SIzT7WbsbTX2rmsQ91r4/tXiwOO5BMdpSI7b4rGd3abka4QpSFAdDDoDWn9igLi7IwAAAAAAAAAAA2hJ9MctXi56NJ/kUfswAAAAAAAACwWZWRZNetzdz0Dd17555Jpg9fXCI2c39S59rLOHcyefrPm+nKPprsvmOpPKxztl3TXj5YB8rCABguVVkYAAAAAAAAAAAbWynlO5P87Y6lt9daT/UrT4efTPJra3zmziTvvwJZAAAAAAAAAOi3rVcle17eTKeF88nJB5risKmD3UVi56fay1fnk5kjzTzyn7v3tl3XXR42eaD5uvP5ychoexlhlZSFbRKllC1JXp3k+UluTHIyyaNJPl1rfWidz7o9yVcmuSnJ7iTH0vyphh+vtZ5fz7OANpR+B+jWqyysKgsDAAAAAAAAAGB4lVL2JHl3x9Iv11o/0K88nWqtx5McX8szpQzY7z8CAAAAAAAA4Mob2ZJM7Gvmlo4/K6vWZPbx7vKwC3PqaLsZzz6RPPFE8sRHu9dHtyfj93QXiU3sTybuScZ2tZsROigLG0CllP+Y5O8tWz5aa73tMt51XZJ3Lb7vmme55+NJfqLW+p/W+v5l7/mOJD+Y5JXPcsvTpZRfSfKjtdYnn8tZwGbWoyys5z4AAAAAAAAAAAy0dye5bvHz00l+oI9ZAAAAAAAAAGD9lJLsuKGZ61/bvTd3Kpk5kkx1logdTGbuS+Zn28s4P5s881fNLLfz+UvlYZMXSsQOJNuvb743uIKUhQ2YUsqbcnFR2OW+641J3pNkb49bX5XkVaWUX0zytlrrqTWeszvJzyb5zh63XpPk7Um+vZTyllrrB9dyDkCSpPYoA6u1nRwAAAAAAAAAALDOSin7kvyXHUv/W5KdpZTbejx61bLr3cueWai1Pvxc8wEAAAAAAADAFTO2K7n6K5vptDCfnH64o0CsY2aPt5vx9MPNPPb73etbJpdKxDpn/M5kZEu7GdmwlIUNkFLKVUn+/Tq967VJ3pdka8dyTfIXSR5I8xuDXpJkT8f+308yUUr51lp7tfF8+ZzRJL+S5BuXbT2R5NNJppLcuXjWhfrD65O8v5Ty+lrrx9bwbQH0LgvLqn58AQAAAAAAAADAINqx7PpfLs5a/Z3FuWAqFxeKAQAAAAAAAMDgGxlNdt/ezE1v7N47+3QyffjiErGTX0jqfHsZz08lT32imU5lrCkMW6lIbKv/GZ+1URY2WH48yU2Ln2eSjF/OS0optyT5jXQXhf1Jku+ptR7suG9bkrcl+bdJLlQQfkuSH0vyP6zyuP8l3UVh55P8YJKfqbWe6zjr3iT/IckrF5e2JXlfKeUraq3HVnkWQHqWga2u6xAAAAAAAAAAAAAAAAAAAACAYbbtmuS6VzbTaf5ccvL+pfKwqY4isbmZ9vLVucUys8NJ3t+9t/2GiwvEJvcnO5+XlJH2MjI0lIUNiFLK65P8o8XLuSQ/muTfXebr3pXk6o7rjyd5fa11tvOmWuvZJO8upTyc5Dc7tn6wlPLTtdajPTLfkeT7ly3/3Vrr+5ffW2v9fCnldUk+nKXCsGuTvCPJP17F9wT0Syn9TtCtVxmYsjAAAAAAAAAAAAAAAAAAAACAzWt0azJ5bzOdak3OHFsqDuuc019sN+PsY80c/0j3+uiOZGLfxUVi4/ckYzvazchAURY2AEopu5L8bMfSTyT5zGW+6+4kb+lYOpfkrcuLwjrVWt9XSnlvx3Pb0pR4/aNne2bRO5Js6bh+z0pFYR3nnCmlvDXJZ5NsXVz+7lLKv6m1PtDjLICGsjAAAAAAAAAAADaoWutnkqz5T/crpbwzze/pu+C9tda3rlMsAAAAAAAAANgYSkl23tTMDV/XvXf+ZDJzX1McNnVwqURs5r5k4Vx7GefPJCc+00yXkuy6tSkOu+alyW3/IJk80F4u+k5Z2GD4n5Pctvj5gSTvTPLyy3zXdyUZ7bj+jVrrkVU896/TXTL25lLK9z5byVgpZUeS71jhHZdUa72vlPK+JG9eXBpbzPxjq8gI9MWaf+/hldWzDExZGAAAAAAAAAAAAAAAAAAAAABrsGV3U8J1zUu71xfmk1MPLZWHdc7ZJ1sMWJscpx5Kjv1e8tf/KrnlW5N7fzjZc7lVRQwTZWF9Vkp5VZLv61h6W631TCmXXc7zbcuuf2E1D9VaD5ZSPpGlkrJdSf5Wkt96lke+IcnOjus/rbUeWmXGX8hSWViSfHuUhQGr1qMMrGeZGAAAAAAAAAAAtKuUUpctfW2t9SP9yAIAAAAAAAAArMHIaDJ+ZzM3f1P33uyTyczhpfKwqUPJ9MHk1IPt9F986X3NfP3Hk+teeeXPo6+UhfVRKWVbkp9PMrK49N5a64eew/tuSPLijqW5JH+yhld8JEtlYUnyxjx7WdgbVnh2tT6aJtuFf/+9pJRyfa318TW8A9isev3NkLIwAAAAAAAAAADWoJRyS1b+/ZQ3LLseK6Xc9iyvOVlrbfOPCwYAAAAAAAAA+m37nmaue3X3+vxsMnP/UolY58ydWt8MV7042fOK9X0nA0lZWH+9M8m+xc9PJPlnz/F9L1x2/Ve11rX8dPj4susXrOGsP13tIbXWU6WUzyZ5ybKzlIXBQCr9DtCtzve4QVkYAAAAAAAAAABr8rEkt67ivpuTPPgse+9N8tb1CgQAAAAAAAAADLHR7clVL2ymU63JmUea0rCpZSViZx65vLPu/eGkDFg3CFeEsrA+KaW8NMkPdSz9QK31qef42nuXXd+/xue/0ON9nQ6sw1mdZWH3JvnDNb4D2IymPnfp/aosDAAAAAAAAAAAAAAAAAAAAIABU0qy85Zmbnh999756WT6cHeB2PShZOZIsnB+5fftviN5/ndc+dwMBGVhfVBKGUvy81n69f+9WusvrcOr71p2/fAanz+67PraUsrVtdYTnYullGuSXPMcz1p+/91rfB7YrKYPX3pfWRgAAAAAAAAAAAAAAAAAAAAAw2TLRHLty5rptDCXnHywKQ575i+Th381eeazzd6B/y4ZUSG1WfhXuj9+OMmLFz+fSvL2dXrvVcuuj6/l4VrryVLKbJLtHcuTSU4su3X5OadrrafWctYK2SbX+PyKSil7k1y3xsfuXI+zgQGhLAwAAAAAAAAAgDWotd7WwhnlCr//nUneeSXPAAAAAAAAAAD6YGQsmbi7mVu+JXnB/5gc+2By/88kd7yl3+lokbKwlpVS7k3yLzqWfqTW+tA6vX73suszl/GOM+kuCxu/gud0Wumcy/G9Sd6xTu8ChpKyMAAAAAAAAAAAAAAAAAAAAAA2oFKSm97QDJvKSL8DbCallJEkP5dk2+LSp5K8ex2PWF7iNXsZ71he4rX8nW2eAwyCckX/UNP1V5WFAQAAAAAAAAAAAAAAAAAAAAAbh7Kwdn1/klcsfp5L8l/VWuev4Hl1gz0Dm8fCXDK3vFOPJMmOGy+9rywMAAAAAAAAAAAAAAAAAAAAANhAxvodYLMopdyR5Mc6ln6i1vqZdT7m5LLrHZfxjuXPLH9nm+dcjp9M8mtrfObOJO9fp/PhuVmYS/78nyYP/WKycC656Q3JK96bbJ3sY6jSx7NXMNrrR46yMAAAAAAAAAAAAAAAAAAAAABg41AW1oJSSknys0l2Li49kOSdV+CoTV8WVms9nuT4Wp5p/uWBAfHpH0ru/6ml6y+9P/no30le96H+ZRo0tUcZWK99AAAAAAAAAAAAAAAAAAAAAIAhMtLvAJvE9yT5uo7rt9Vaz1yBc6aWXV+3lodLKbtzcYnXM6s4Z2cpZddazkqydxXnwOZSa3L0Vy5ef/zDyewT7ef5sgEr1FMWBgAAAAAAAAAAAAAAAAAAAABsImP9DrBJvKvj8+8mub+UcluPZ25Ydj22wjOP1lrPdVwfWbZ/6yrzPdv9T9daTyy/qdb6VCnlRJKrO5afn+TgczhreXbYfM4+mcw+tvLew7+a3PN97eYZWLXHvrIwAAAAAAAAAAAAAAAAAAAAAGDjUBbWjh0dn78xyYOX8Y6bV3juJUk+03G9vKzrrjWeccey689f4t6DSV617Ky1lIUtP2stzwKbWe1RBrYw304OAAAAAAAAAAAAAAAAAAAAAIAWjPQ7AOvqc8uuX1RK2bmG51/d432X2nvlag8ppexK8qI1nAWbRO13gCHRoyys5z4AAAAAAAAAAAAAAAAAAAAAwPBQFraB1FqPJfmrjqWxJK9Zwyteu+z6A5e49/d6PHspfzNNtgs+XWt9fA3PwyZU+h1gcNQeZWC99gEAAAAAAAAAAAAAAAAAAAAAhoiysBbUWq+qtZa1TJKvXfaaoyvc95kVjvvNZdf/cDUZSyn7k7y8Y+lUkt+/xCMfTHKm4/qVi+9Yjbcuu16eGTanWvudYGVl0IrKevw6KQsDAAAAAAAAAAAAAAAAAAAAADYQZWEbzy8mme+4/vZSyt2reO6fL7v+1Vrr7LPdXGs9neTXe7zjIqWUe5J8W8fSXJJfWkU+2NwGrrCrj3qWgSkLAwAAAAAAAAAAAAAAAAAAAAA2DmVhG0yt9UiS93YsbU3ynlLK9md7ppTyt5O8tWPpXJJ3reK4dyY533H91lLKmy5xzvYkv7CY6YKfq7V+YRVnwSZQ+x1gOPQqC+tZJgYDbGG+9z0AAAAAAAAAAAAAAAAAAAAAbCrKwjamdyQ50XH9qiQfKqXs77yplLKtlPJPk/zasud/vNZ6tNchtdYHkvzvy5Z/vZTyT0opnYVgKaUcSPLhxSwXPJXVlZIBKZv07BUoC2Oj+sIvJL+xt98pAAAAAAAAAAAAAAAAAAAAABgwY/0OwPqrtX6plPLtST6Y5EJp16uTfL6U8qkkDySZTPLSJNcte/y3k/zIGo774SQvSPLGxestSf6PJD9SSvmLJDNJ7lg8q7Nx6FySb6u1HlvDWQBJepWBKQtjCB3/4+QT352k9jsJAAAAAAAAAAAAAAAAAAAAAANGWdgGVWv9SCnl25K8J0uFYCXJVy/OSn45yffUWufXcM58KeXNSf5Dkr/XsbU3yRue5bHjSd5Sa/3oas8B+qn0vqVNtUeZUlUWxhB66JeiKGyNjv1B8uD/lZx7Jrn5m5O7/uukDNjPKwAAAAAAAAAAAAAAAAAAAIB1MNLvAFw5tdbfTfLCJD+V5MQlbv2zJN9Ra/2uWuupyzjnZK31O5P83cV3PZunk/z7JC+stf7eWs+BjU9R0Or0KANTFsYwuv+n+51guHzxN5OPvDF56P9JHv3t5JP/OPmLH+x3KgAAAAAAAAAAAAAAAAAAAIArYqzfAVhZrfUjSco6vOd4kreXUr4/yauT3JrkhiSnkjyS5NO11gef6zmLZ/16kl8vpdye5KVJbkqyK8ljSY4m+ZNa67n1OAs2n+f842Dj6FUGpiwMNr7P/+ukznev3fd/Ji96V7Jloj+ZAAAAAAAAAAAAAAAAAAAAAK4QZWGbxGJJ1x+1dNaDSdalgAw2lVr7nWA49CwDUxYGG95Tn7h4rc4lD/7fyT3f134eAAAAAAAAAAAAAAAAAAAAgCtopN8BAFiFUvqdYID0KFXrWSYGbFhnHu13AgAAAAAAAAAAAAAAAAAAAIB1pywMYGD0KMHql0ErKutVBqYsDDa2eomflf76BwAAAAAAAAAAAAAAAAAAADYgZWEAQ2HACrv6qlcZkLIg2LTqfL8TAAAAAAAAAAAAAAAAAAAAAKw7ZWEA9DBgRWW1RxlYr31g41IWBgAAAAAAAAAAAAAAAAAAAGxAysIAGB61ruIeZWGwsV3i54C//gEAAAAAAAAAAAAAAAAAAIANSFkYwMBYRRHWpreaXyNlQbBp1fl+JwAAAAAAAAAAAAAAAAAAAABYd8rCAIZC2aRnL1NXUQS2mnuA4VUvURo4c197OQAAAAAAAAAAAAAAAAAAAABaoiwMYFBcqgCHhrIw4FKOfbDfCQAAAAAAAAAAAAAAAAAAAADWnbIwgGFQSr8TDIjVlIXNX/kYAAAAAAAAAAAAAAAAAAAAAAAtURYGMDBqvwMMvrqKX6O6ikIxYIj5WQkAAAAAAAAAAAAAAAAAAABsLsrCAIZC6ePRfTz7IqspAlMWBgAAAAAAAAAAAAAAAAAAAABsHMrCABgedRVFYKu5Bxhi9dm3dt/VXgwAAAAAAAAAAAAAAAAAAACAligLA2B4KAsDLmXnTf1OAAAAAAAAAAAAAAAAAAAAALDulIUBDIza7wDPovQ7QIfVFIEpC4NNqw7qz1EAAAAAAAAAAAAAAAAAAACAy6csDGAoDFJhVx+tpgioKguDDU0hGAAAAAAAAAAAAAAAAAAAALDJKAsDGBQKcHpbTRGYsjDYvIpiRQAAAAAAAAAAAAAAAAAAAGDjURYGMAz6WoAzSCVmysKAS/xMUroIAAAAAAAAAAAAAAAAAAAAbEDKwgAGhpKbnlZVBKYsDAAAAAAAAAAAAAAAAAAAAADYOJSFAQyF0u8Ag2E1ZWGrKhQDAAAAAAAAAAAAAAAAAAAAABgOysIAGCJ1FbcoC4ONbRU/BwAAAAAAAAAAAAAAAAAAAAA2EGVhAAyPVRWBKQsDAAAAAAAAAAAAAAAAAAAAADYOZWEAA6P2O8AQWEUR2KoKxQAAAAAAAAAAAAAAAAAAAAAAhoOyMIChUPodYDCspghMWRhsbFWxIgAAAAAAAAAAAAAAAAAAALC5KAsDGBQKcFZhNb9GysIAAAAAAAAAAAAAAAAAAAAAgI1DWRjAMCil3wkGQ11FEdhq7gGGmGJFAAAAAAAAAAAAAAAAAAAAYHNRFgYwMAa0AKcOUC5lYQAAAAAAAAAAAAAAAAAAAADAJqMsDGAolH4HGAzKwoBLGqByQwAAAAAAAAAAAAAAAAAAAIB1oiwMgCGymiIwZWGwsSkEAwAAAAAAAAAAAAAAAAAAADYXZWEADI+6ipKgOn/lcwAAAAAAAAAAAAAAAAAAAAAAtERZGMCgWE0R1qa30PuWuop7gOHlZyUAAAAAAAAAAAAAAAAAAACwySgL4/9n786jZb3LOtF/n5MTkpAEAoEACZBAQAkgo4hMymCDaBuGRsb2ggyXi63Sja2t12aU5dWG9iIoglcFlBaQeWgmm0FGRSE0JIQxkDRNIIYEQkLGk+f+UXU8lWIP7z577xr2/nzWqlXv+3t/w7Orzq6z16rf+r7AUqh5F7AYhgSBCQtjJ/v+N5Krr5x3FQAAAAAAAAAAAAAAAAAAAADMkLAwgIXR8y5g8Q0KAhMWxg72lhOSNxybfPa5SfvMAAAAAAAAAAAAAAAAAAAAANgNhIUBLIOqeVewIAaEIw0KFIMldtX3ks8+JznrFfOuZE6EpAEAAAAAAAAAAAAAAAAAAAC7i7AwgIUhAGddQ4LAhIWxW3z1r+ZdAWydS7857woAAAAAAAAAAAAAAAAAAABgYQkLA1gKNce1FyjETFgYHHDeB+ddwZws0GcSW+fir867AgAAAAAAAAAAAAAAAAAAAFhYwsIAWCJDgsCEhQEAAAAAAAAAAAAAAAAAAAAAO4ewMACWRw8IAhvSB9ihet4FAAAAAAAAAAAAAAAAAAAAAGw5YWEAi6KF3KxvwGskLAx2Np+VAAAAAAAAAAAAAAAAAAAAwC4jLAxgKdS8C1gMg4LAhIUBAAAAAAAAAAAAAAAAAAAAADuHsDCAhdHzLmAJDHiNBgWKAcvLZ+XO5H0FAAAAAAAAAAAAAAAAAACA1QgLA1gGVfOuYDEMCQITFgYAAAAAAAAAAAAAAAAAAAAA7CDCwgAWRs+7gCUw5DUSFsZWENAHAAAAAAAAAAAAAAAAAAAAwGIQFgawFAQXJUl6QBDYkD6wLuF9i8t7AwAAAAAAAAAAAAAAAAAAAOwuwsIAWMciBfMMqEVYGAAAAAAAAAAAAAAAAAAAAACwgwgLA2B5DAkCExYGO1svUoAhAAAAAAAAAAAAAAAAAAAAwPYTFgawKATgrG/QayQsDAAAAAAAAAAAAAAAAAAAAADYOYSFASyDqnlXsCAGBIG1sDDYtYQuAgAAAAAAAAAAAAAAAAAAADuQsDCAhSHkZl1DgoCEhbElBPQtLp+VAAAAAAAAAAAAAAAAAAAAwO4iLAxgKQguGhkSFrZv+8sAAAAAAAAAAAAAAAAAAAAAAJgRYWEAC2NAENZu11cP6DSkD6zH7+PCau8NAAAAAAAAAAAAAAAAAAAAsLsICwNYCjXvAhbEgJCgQYFiACwWIXAAAAAAAAAAAAAAAAAAAACwGmFhACyPIUFgwsIAAAAAAAAAAAAAAAAAAAAAgB1EWBgAS6QHdBEWxlaoeRfAqgZ8DgAAAAAAAAAAAAAAAAAAAADsIMLCABZFL2gAziLVNSgITFgYAAAAAAAAAAAAAAAAAAAAALBzCAsDWAZV865gQQwILhsUKAYsrwUKMAQAAAAAAAAAAAAAAAAAAACYAWFhAAtDAM66hgSBCQsDAAAAAAAAAAAAAAAAAAAAAHYQYWEAy+CC0+ZdwYIYEqgmLIytILxvOXnfAAAAAAAAAAAAAAAAAAAAgJ1HWBjAwlgj5OYLL5pdGYusBwSBDekDLK8WCAYAAAAAAAAAAAAAAAAAAADsLsLCABZF71v92lUXz66OhTYgJEhYGFui5l0AAAAAAAAAAAAAAAAAAAAAACQRFgawOK6+at4VLL5BQWDCwmBnGxAaCAAAAAAAAAAAAAAAAAAAALCDCAsDWBS9b94VLIEBIUGDAsUAAAAAAAAAAAAAAAAAAAAAAJaDsDCARdFXzbuCxdfCwgB2pCGf7wAAAAAAAAAAAAAAAAAAALBLCQsDWBRXXznvClaxSAEuA4LAhIXBDrdIn0kAAAAAAAAAAAAAAAAAAAAA209YGMCiuPqqeVew+HpISJCwMAAAAAAAAAAAAAAAAAAAAABg5xAWBrAoWljY+gYEgbWwMNjRBoUGAgAAAAAAAAAAAAAAAAAAAOwcwsIAFoWwsPUNCQkSFgYAAAAAAAAAAAAAAAAAAAAA7CDCwgAWxdXCwtY3JAhMWBjsWkMCBVlQ3jsAAAAAAAAAAAAAAAAAAABYjbAwAJbHkCCg3rf9dQBzJFQKAAAAAAAAAAAAAAAAAAAA2F2EhQEsiqp5V7AErl6/Sw/oA8CC8X8gAAAAAAAAAAAAAAAAAAAArEZYGADLo3tAH2FhbAHhfYtr36XzrgAAAAAAAAAAAAAAAAAAAABgpoSFAbA8BgWB9bBQMViLf0OL65zXz7sCAAAAAAAAAAAAAAAAAAAAgJkSFgbAOhYpNGloLYtUM7ClvvPZeVcAAAAAAAAAAAAAAAAAAAAAMFPCwgAWRQu4WldfvbX9gOVT/nzdmfwfCAAAAAAAAAAAAAAAAAAAAKuRtgDAEhkYJiMsDHawWuOawCkAAAAAAAAAAAAAAAAAAABg5xEWBsASGRoEJCwMdqxa489XQYEAAAAAAAAAAAAAAAAAAADADiQsDIDlMTQISGAQm1U17wpY1Vrvjd99AAAAAAAAAAAAAAAAAAAAYOcRFgbAEumB3QQGsUk98N8as7dWkJvffQAAAAAAAAAAAAAAAAAAAGAHEhYGwPIYHAQkMAh2LmFhO5OAPgAAAAAAAAAAAAAAAAAAAFiNsDCAhSEoZX0DXyOBQbCDrREWJigQAAAAAAAAAAAAAAAAAAAA2IGEhQGwPIaGgAkLg52r1vjztffNrg622FohcAAAAAAAAAAAAAAAAAAAALC7CQsDYG3d865gwsBahIWxWSW4aHGt8d743QcAAAAAAAAAAAAAAAAAAAB2oL3zLmA7VNWtk5ya5BZJLk9yZpI3dveFcy0MgM0ZHAQkMAh2rLWC3ISFAQAAAAAAAAAAAAAAAAAAADvQwoeFVdVJSe4/0fTq7r5ilb6V5AVJnp5kz9TlP6iqX+3uV25DmQDMQvfAfgKDYOcSFgYAAAAAAAAAAAAAAAAAAADsLgsfFpbk3yf5lfHxJ7v7L9bo+7tJnjFxvj9VppIcleTPq6q6+xVbXyYA229gEJDAIDZraDAds1fTebCT/O4vL79zAAAAAAAAAAAAAAAAAAAAsJq10hYWxc9mFPaVJKuGfFXVDyX59YySBiZDwvaP7fHxS6rqhO0pFWAzBKWsa3CAk8Ag2Llq9UuCAgEAAAAAAACWRlXdoKqOnncdAAAAAAAAAACwDBY6LKyqbpDk5Immd67R/Rm55s/zjiT/JslDkrwpo2SJTnJEkt/Y2koBmI2BYWECg2AHExYGAAAAAAAAsKyq6sSq+suq+k6SbyX5TlV9vaqeX1VHzLs+AAAAAAAAAABYVAsdFpbkdhPH/9zdZ6/UqaoOySgYbH+KzHu7+9TufnN3v727H5Hk1RmlS1SSR1bVGkkTACwmYWHMiD8TFlet9eer330AAAAAAACAWaqqx1fVOePHGVV12Bp975DkH5M8Lsl1cmA/3/FJfivJP45vMAoAn/UGzgAAIABJREFUAAAAAAAAAExZ9LCwE8fPneTMNfr9aJJjM9o4lCTPX6HPb+dAysxxSU7ZigIBmKEeGha2b3vrAObn0Ousfu2Qa8+uDgAAAAAAAACS5DFJbprkhCQf7O7LV+pUVXuTvC7JDTLa59dTj0py2yRvnEHNAAAAAAAAAACwdBY9LOzYieNvr9HvPhPH53b3R6c7dPf/yjUDx26/ydoAmLmhYWFXb28ZwPwc+2OrXzvmR2ZXB1traBgkAAAAAAAAsDCqak+Se080vXmN7v9Hkh/OgXCwJDk9yaen2u5dVY/a4lIBAAAAAAAAAGDpLXpY2BETx5es0e+e4+dO8t41+n1x4vhGB1sUwO6ySAEuQ2sRFgY7Vi36n68AAAAAAAAAu8Ztk1x7fHxlkr9bo++Txs+V5LtJ7tHdd+zuuya5S5Jv5cDGkKdtQ60AAAAAAAAAALDUFj1t4aqJ4yNW7XUgLCxJPrJGv4snjo86qIoAtksvUijXghr6GrWwMNixfFbuTFXzrgAAAAAAAADYuJPHz53kS9195UqdqurGSX583K+TPL+7P7H/end/JsmvZhQkVknuXVXX287CAQAAAAAAAABg2Sx6WNhFE8c3XalDVZ2S5LiJpo+vMd9k4Ni+TdQFwFwICwPWIkgMAAAAAAAAYIZOmDj+6hr9fiIHgsCuSvIXK/R5c5Lvjo8ryZ22okAAAAAAAAAAANgpFj0s7KzxcyW5Y1UdvkKfh0wcX9jdZ64x3/Unjr+32eIAmLWhQUDCwgAAAAAAAAAAttlRE8cXrdoruff4uZN8vLu/M92hu/clOW2i6VabLw8AAAAAAAAAAHaORQ8L+3RGG4Q6yeFJnjh5sar2Jnny+LSTfHid+W4zcfz1LaoRgFnpgWFhLSwMdq41PgeGfkYAAAAAAAAAsBUOHdjvHhPHH1yj3zcnjq+z4WoAAAAAAAAAAGAHW+iwsO4+L8nHxqeV5Per6heq6tpVdVKS1ya55cSQN6w2V1XdOMlNJpq+tLXVArD9hIUB7EiC3gAAAAAAAGAZXTxxfL2VOlTVkUnuNNH00TXm2zdxfNgm6gIAAAAAAAAAgB1nocPCxl6UUVBYJzkyySuTfC/JV5I8LAeSY87NGmFhSX564vjiJF/Y6kIB2G5Dw2SEhcHOtdbngMApAAAAAAAAgBk6f+L4lFX6/FSSQ8bHneQf1pjvmInj72+iLgAAAAAAAAAA2HEWPiysu9+Y5E05EBhWE49MtP9ad1++xlQP3z9lkk90tzQJYMH4WFrX0I/uFhYGAAAAAAAAALDNTh8/V5ITq+r2K/R59Pi5k5ze3RetMd8JE8ff3oL6AAAAAAAAAABgx1j4sLCxxyb58xwICNuvklye5D909+tWG1xVN0vy4BxI4nnPdhQJwDYbGgImLAx2KaGLAAAAAAAAADN0ekahXvu/rP2Dqjp0/8WquneSR0xcf9dqE1XV3iS3nWj66taWCgAAAAAAAAAAy23vvAsYoruvSPKUqnphklOTnDi+9Pkkb+rub6wzxYNz4C6GSfL2ra8SYKdapPCdgbUIC4OdqxfpMwkAAAAAAABg9+rufVX1miS/nNGmjgck+UxVvT3JcRkFhe3J6KagneSv1pjubkmuNXF+xrYUDQAAAAAAAAAAS2opwsL26+4vJHnBQYz70yR/uvUVATBbQ0OChIXBjvW9L6x+TZDYEvPeAQAAAAAAwJJ6fpJfSHKd8fkPJ/mh8fH+kLBO8sbu/twa8zx0/NxJvtzdF25DrQAAAAAAAAAAsLT2zLsAABhsaBBQCwuDHevs1867AgAAAAAAAADGuvu8JP8myWU5EA72L5fHbV9J8rTV5qiqPUkeOTH2g9tRKwAAAAAAAAAALDNhYQAsEWFhsOtd+Ok1Lg78jGAB1bwLAAAAAAAAAA5Sd78/yR2TvC7J9zP6ArCSfDvJHyX58e7+9hpTnJrkxBz44vCd21ctAAAAAAAAAAAsp73zLmA9VXXW+LCT3Ke7v3GQ85yQ5MP75+ruk7eiPoAt00Ju1jf0NRIWBgAAAAAAAAAwK9395SSPSZKqusG47fyBw7+a5GET5+/Z2uoAAAAAAAAAAGD5LXxYWJKTxs+dzdW7d2ouAJbN0EC1FhbGZtX6XVg8QhcBAAAAAAAA5m4DIWH7+//PJP9zm8oBAAAAAAAAAIAdYc+8CwCA4YSFMStCpwAAAAAAAAAAAAAAAAAAAABYDMLCAFgiwsKAtQh5W17eOwAAAAAAAAAAAAAAAAAAAFjN3nkXMEOHThxfObcqADh4PTRMRlgYAAAAAAAAAMAiqKpjkhydpLr7nHnXAwAAAAAAAAAAy2g3hYXdaOL4e3OrAoBNGBgW1vu2twxgQQ0NFAQAAAAAAABgu1TVQ5OcmuQ+SU5Ksmd8qbPCnsWqOinJzcenl3T3J7e9SAAAAAAAAAAAWDK7KSzsQePnTvL1eRYCsFR6kcJ3hoaFXb29ZbAL1LwLAAAAAAAAAIClUlUPSvLiJLfa3zRw6MlJ/jajjSFXVNXx3X3hNpQIAAAAAAAAAABLayHCwqrq5uv3SpKcULWh8I7DktwkyQOT/NpE+6c3MgnAbCxSKNeCGhpcJiwMdqeFCjcEAAAAAAAA2D2q6llJnpVRQFjlmhthOmsEh3X3+6rqzCSnJLlWkkcledn2VQsAAAAAAAAAAMtnIcLCknwt66fkVJKPbGKNyc1Gb9rEPADMzdAgIGFhAMtF0BsAAAAAAAAsq6r61STPGZ/u//Lv8iSfSHJRkn89YJrXTczxsxEWBgAAAAAAAAAA17Bn3gVMqRUe610f8kgObEL6eJJ3bNtPAMA2Ghgm08LC2CzBRcvJ+wYAAAAAAAAwS1V16yQvzOgL284oJOw3khzb3fdN8isDp3rb/imT3KeqpvcOAgAAAAAAAADArrZoYWHbZf/GoTcm+bnuliQBsIyGfnwLCwNYMvb5AwAAAAAAwJJ6XpK9GX3pd1mSB3T3C7v70g3O85nx+CQ5Osmtt65EAAAAAAAAAABYfnvnXcDYq9a49vjxcyd5U5KLB865/y6F30lyZpK/6+6zD7pCABaAsDBgLfJgAQAAAAAAAGalqg5LcmoOfFn7n7v74wczV3dfXVVnJrnzuOk2Sb64+SoBAAAAAAAAAGBnWIiwsO7+xdWuVdXjc2Az0a919zmzqQqAxTM0CEhYGJtV8y4AAAAAAAAAABbdvZIcMT6+JMlLNznfN3IgLOz4Tc4FAAAAAAAAAAA7yp55FzCQxA5gFxgahLWL9cDXqIWFwa7kdx8AAAAAAABglk4aP3eST3T35Zuc76KJ46M3ORcAAAAAAAAAAOwoe+ddwAC/OHF8/tyqAGABCAsD1vDNv513BRw0gZkAAAAAAACwhG44cfzNLZhvzyrHAAAAAAAAAACw6y18WFh3v2reNQDsbgsU4NJDaxEWBrvWvsuTQw6bdxUAAAAAAAAAu8HlE8db8UXtsRPHF27BfAAAAAAAAAAAsGMsfFhYVT1r4vRF3X3RQc5z3SRP33/e3c/bbG0AzNrAELAWFrai7qRq3lXA9jr33clNHzLvKgAAAAAAAAB2g3+eOL7pFsx3x1XmBgAAAAAAAACAXW/hw8KSPCdJj49fmeSgwsKSHDM1l7AwgGXTvX6fRFjYtC+8OPnyy5PLz0+O/5nkri9ODj163lXB9rjyYP9UBAAAAAAAAGCDzho/V5I7VdWR3X3JwUxUVXdJcsOJpk9ttjgAAAAAAAAAANhJ9sy7gIFqQecCYKYGhoVFWNi/+OJLk08+Pfnu55LLzkvOemXyoYfMuyrYRv7UAwAAAAAAAJiRT2R0889OcmiSJ25irmdMHJ/d3WdvpjAAAAAAAAAAANhpliUsDGDn66FBWLvZwNeohYX9i7P+4gfbvvWB5OKvzbwUgFX5PxAAAAAAAACWTnfvS/LfM7qrUyV5blXdbKPzVNXDkjw2o40hneQ1W1knAAAAAAAAAADsBHvnXcAM1cTx3FNkquqIJLdJcmKS45McndHdFS9K8u0kpyc5o7uv2qL1Dk1yryQ3T3KTJBcn+UaS07r7a1uxxsRat0hyp4x+rqOSnJvk7CQf6+4rt3ItYJcZGiYjLOyACz65cvun/kPyE2+ebS0wE7V+FwAAAAAAAAC2yu8keVRGX9Yek+SDVXVqd58xZHBVPSHJn2QUElZJLk3yh9tTKgAAAAAAAAAALK/dFBZ23Ynj78+jgKr6xST3T3L3JCcn2bPOkIur6m+SvKS7P32Qa94wyXMz2pB1/VX6fCzJH3T3Gw9mjYl5HpHkGUnusUqXC6rqdUme1d3nb2YtYLcSFrZlvv6WeVcAcEAJeQMAAAAAAIBl1N2fr6qXJHl6Rhs7bpHkU1X16iR/k+SC6TFVdbMkD0zy5CQ/lgN3heokz+7u82ZROwAAAAAAAAAALJPdFBZ2p/FzJ5lXUNXvJDlhA/2PSvLEJI8fb6j69e6+aujgqnpwklcmOW6drvdMcs+q+m9Jntrdl2ygxlTVUUn+vySPXqfr9ZM8LcnDq+rx3f2ejawDMDgsLMLCAAAAAAAAAABm5NeS3DbJv8poc8ehSZ4wfmTcVklSVZckOXxibE1cf3N3v3AmFQMAAAAAAAAAwJLZFWFhVXXrJL850fS5edUy5ftJvpLknCQXJdmTUaDWjyS58US/Q5L8+yQnVdUjunvfehNX1X2TvCXJtSaaO8mnkpyV5Jgkd05yg4nrj0tynap6aHcPStqpqkOSvC7Jz0xd+uckpyX5bpKTx2vtvwPkjZK8tap+qrs/MmQdgCRJDwwLG/YRBuxEVev3AQAAAAAAAGDLdPfVVfWQJC/NKCBs/waP/V/g9kTbEZNDJ/r9RZL/a3srBQAAAAAAAACA5bUQYWFV9f6BXV9bVZdtYOrDktwkyYlT7e/bwBxb6ZIkb0vyriQfS3L6aqFcVfXjSZ6f5AETzQ9N8owkL1hrkaq6aZI35ZpBYR9N8pTuPnOi32FJnprkhRndzTFJfm687v898Gf6vVwzKOzKcY1/2t1XTKx12yR/luQe46bDkrylqn6ku88duBYwFwMDumZCWBiwHmFhAAAAAAAAALPW3ZcleWJVvSvJM5PcfrWu4+caP76S5Fnd/Zrtr3K5VdURSU5JcpskN0xyVJKLk1yQ5PQkn+3uq+ZXIQAAAAAAAAAA22khwsKS3DfrJ8BUkrsfxNyTdydMku8kefVBzLMVbt/dVw7p2N1/X1UPTPKqJP924tJvV9WLu/vyNYY/N8n1Js4/luSnxhuyJte4PMmLq+qcJG+euPSMqnp5d5+9Vo1VdcskT59q/vnufusKP8/nquoBGQW17Q8MOzbJs+OOkDC2SKFci2poWNi+7S0DgK3V/g8EAAAAAACAnaC7X5/k9VV1vyT/Ksm9k9wso71i10pyfpJvZbSn7T1J3tW9OBs9xnvi7pbkR8fPd0ly9ESXs7v7pBnWc5eMbjJ6/yQ/lgM3BV3JJVX1uiR/2N2fmUV9AAAAAAAAAADMzqKEhW2nzoG7EH4vyWO7+/y5FDIwKGyi/9VV9e+SPCzJkePm6ya5X5J3rzSmqm6d5PETTVckecJ0UNjUOm+pqldNjDssoxCvJ65T4rNzzc1Hr1wpKGxinUur6glJPpvRxq8keVJV/ZfuPmudtQA2ECZz9baWASyyWr8LAAAAAAAAANuquz+Q5APzrmOIqrpvkt/KKCDs+vOtZqSqDk9yRpJbbmDYkRnt+Xt8Vb0wyTM3umcRAAAAAAAAAIDFtWfeBUyoVR5D+qz2uCLJeUk+mFGw1W26+z3b/HNsqe6+KMlHpppvtcaQxyY5ZOL8Td39pQFL/f7U+SPHG45WVFVHJHnEOnP8gO7+YpK3TDTtzahmgAEGhoW1sDAAAAAAAAAAAAa5U5IHZkGCwsb2ZuWgsE7y+STvTfLXSd6WZPpGnYck+U9JXltVu+GGsgAAAAAAAAAAu8JChIV1957VHvu7jB8nrdV3hccR3X2T7r5/d/9Od587xx9zMy6YOj96jb4Pmzp/xZAFuvvMJP8w0XRkRhugVvOgJNeeOP94d39+yFor1PTwgeOAXU9YGAAAAAAAAAAAM3F5kq/Mu4gk+5K8K8mjkxzX3ad094O6+3Hd/ZDuPjnJjyb50NS4hyd5zmxLBQAAAAAAAABguyxEWNgANe8C5uzEqfNvrNSpqm6c5I4TTVcl+egG1vng1PmD1+j70+uMXcuHM6ptvztX1Y02MB7YrVpYGLOy2//0WGLlvQMAAAAAAACYlap6//jxvqo6bhPz3Ghyrq2scaArk3w6yZ8leWqSu2Z0U88nz6GW/S5P8scZ3WT1Z7r7dd19/kodu/uTSe6f5DVTl369qqb3HwIAAAAAAAAAsIT2zruAAT6UZH86zGXzLGQequqHktx9oqmT/N0q3W8/df6Z7r5kA8t9bOr8dmv0nV7r40MX6e5LquqzSe48tda3hs4B7FYDw8IiLIzNGvpvjcUjLAwAAAAAAABghu6bA1+yH76JeQ4fz5XM/kv7VyV5WXf/wP7Emt8Nqy5Lcqvu/vrQAd29r6qelOTeSW42br5WkkcmecHWlwgAAAAAAAAAwCztmXcB6+nu+3b3/caP8+ZdzyxV1U2SvD7JIRPNb+jur60y5LZT51/e4JJfWWe+SafMcC3YJYQTrasHvkYtLAwAAAAAAAAAYEaW+q5O3X3hSkFh89TdV20kKGxi3KVJXjHVfL+tqQoAAAAAAAAAgHnaO+8COKCq9ia5XkZBXP86yVOTXGeiy1lJfnmNKW41dX7OBks4e+r82Kq6XndfOFXn9ZNcf5NrTfe/9QbHA7uSsDBgHfO7qzMAAAAAAAAALILTps6Pn0sVAAAAAAAAAABsKWFhc1RVL0ry9IHdP5DkF7r7vDX6HDN1vlbfH9DdF1fVZUkOn2i+bpILp7pOr/P97r5kI2utUNt1NzgemJUeGNA1E0NrERYGAAAAAAAAALBEJvcyXjW3KnaG6dfvWnOpAgAAAAAAAACALSUsbPG9Lckfd/d7B/Q9aur80oNY79JcMyzs6G1cZ9JK62xYVR2X5IYbHHbyVqwNzMDQ4LIWFsZm1bwLAAAAAAAAAIDd5AYTxxu9cSXXdKup83PnUgUAAAAAAAAAAFtqacPCqurYJKckuV6S6ybZs5Hx3f2X21HXNnhwkkOq6rLu/tA6fadDvC47iPUuzeg1XW3OrVxnrTkP1i8lefYWzQUsHGFhwHoEvQEAAAAAAAAsoZ8YP3eSb8yzkB3gEVPnn5hLFQAAAAAAAAAAbKmlCgurqhtkFAb1uPzg3e82ahHCwp6X5EUT50ckOTbJnZI8LMn9kxya5GeT/GxV/XGSp3f3voHzD0zVWZoxwK439KNDWBjsXsLClpM/DQEAAAAAAGAH2NAXf1V1aJKbJHlgkt+euPTZrSxqN6mquyW511Tzm+dRCwAAAAAAAAAAW2tpwsKq6uFJ/iLJ0Tn4FIgej12INILuviDJBStc+kiSP6qqeyd5dZITx+3/LqNAsSetMuXFU+dHHERZ02Om55zlOrC79EJ8NC22oa9RCwtjs/w+AgAAAAAAAECSVNWQm1tWkq9VHfQNniYHvu1gJ9nNxuFrL59q/nB3f2Ie9QAAAAAAAAAAsLWWIiysqh6X5C+zckjYZJrH9PXpawe9E2keuvsjVXW/JP+Y5Nhx8xOr6m3d/dYVhggLS16a5PUbHHNykpVeT2DhDAwBExYGAAAAAAAAALBVhu6728z+vP03Av18kjdsYp7d7AVJ7jxxfmWSX93qRarquCQ33OCwk7e6DgAAAAAAAACA3Wbhw8Kq6hZJ/jSjjUD7NwR9Jsmbk1ya5PfGXTvJLya5TpLjk9wzyb2S7BlfOy/J85N8b4blb1p3f7WqnpfkDyeafyMrh1t9d+p8Qxtyquqo/GCI13cGrHPtqjqyuy/ZwHLHDVhnw7r7vIze68E2cTdLYNa61++TCAuD3cz/6wAAAAAAAADbYf/eve1SSf4pyaO6+8ptXGdHqqonJnn6VPNzuvvT27DcLyV59jbMCwAAAAAAAADAGhY+LCzJf8wowGp/Qsxzkzyvu7uqTsyBsLB096smB1bVrZL8lyQPzSg466lJHtjd586i8C302lwzLOzHq+qY7p4O2PrS1PmJG1xnuv8F3X3hdKfu/nZVXZjkehPNN09y5ibWmq4dYAUDw8IiLIzNEjgFAAAAAAAAAGMfyuqbNn5y/NxJPpHksoFzdpLLM7rJ5JlJPtDdH95MkbtVVf10kpdNNb8jyf8zh3IAAAAAAAAAANgmCx0WVlV7kvzbHNho9Prufu7Q8d395SQPr6rnJnlmktsmeXtV3WOZ7j7Y3edNhXPtSXKLJKdNdZ0O67rVBpe65dT559boe2aSe06ttZGwsOm1NjIW2LUGhoW1sDDYvQS9AQAAAAAAAGyl7r7vateq6uoc2NDxqO4+ZyZFkSSpqnsleWOSQyeaP5LRezH0rnwAAAAAAAAAACyBhQ4LS3KHJEePjzvJ8w5mku5+dlX9SJKHJrlzkl9N8l+3pMLZmQ43O2yFPqdPnd+hqq7d3d8fuMa91plv+tpkWNg9krx9yCJVdWRG7+3QtYC5WqB9g0P3MAoLAwAAAAAAAACYlcpCbTDZHarqrkn+e5JrTzR/IsnPbmDP4MF4aZLXb3DMyUneug21AAAAAAAAAADsGoseFnb78XMnOae7P7dW56qqNe6G91sZhYUlyZOyRGFhVXV4khtMNX9rul93n1tVn8mBIK69Se6d5L0Dl7rv1Pm71uj77iT/5xpj13KfXPPf3mnd/QM/D+w+9kyub+hrJCwMAAAAAAAAAGAGnjtx/J25VbHLVNUdMtoXeN2J5tOSPKi7L9rOtbv7vCTnbWRMVW1TNQAAAAAAAAAAu8eih4Vdf+L4jBWuT6fGHJ7k0pUm6u4vVNWZSU5J8sNVdbvuXmnORfSAJHsmzr+f5H+v0vfNORAWliS/mAFhYVV1myR3n2i6ZJ1x78notT5ifH6PqrpNd39+vbWSPGHq/M0DxgBkcFhYCwuD3csGYwAAAAAAAIBZ6e7nrt+LrVRVt03yP3LN/ZWnJ3lgdwtsAwAAAAAAAADYofas32Wujp44vnCF65es0X8lX5w4PuWgKpqxqtqT5JlTze/u7itWGfLfkuybOH94Vd16wFL/aer8b7r7stU6d/f3k7xhnTl+QFX9UJKHTTRdleSvB9QHkPTQsLB96/cBAAAAAAAAAGBTxvvbmJGq+uEk70tyw4nmzyf5qe4+fz5VAQAAAAAAAAAwC4u+UWcyDOzQFa5/b+r8hHXmu3ji+MYHVdFBqqpfqaqbbHDMoUn+PMndpy798WpjuvtLSV410XStJK+sqsPXWOchSZ4w0XRFkiF3fHxOkisnzp9QVaeusc7hSV4xrmm/P+/urwxYCyDJ0LCwq7e3DGBxVc27AgAAAAAAAIDd5JyqenZVrbd3j02qqlsleX+uuffxS0nu393fmk9VAAAAAAAAAADMyqKHhU3e6e460xe7+4qpPrdfZ77JsK6jNlHXwXhSkq9U1aur6ueq6ujVOlbVEVX1mCSn5ZohXknyV939/nXWenaSCyfO75nkf1TVbabWOayqfiXJ66fG/9fuPnudNdLdZyX5w6nmN1TVL1fVZCBYquqUjO5oeM+J5m9nWCgZwJiwMICdaeDnOwAAAAAAALBojk/yrCRfrao3VdUD513QTlRVt8goKOz4ieazMgoKO3c+VQEAAAAAAAAAMEt7513AOr44cXzrVfqckeQnx8cPSPJXK3WqqiOT/NhE04Ur9dtmRyR53PjRVfXlJF9L8p0kVyQ5OsmJSW6b5NAVxr8jyVPWW6S7v15VD0/yniT7Q7vuleRzVfXJjDYJXTfJXZLccIU1nrmBn+k3k9wuyYPH54cmeUmSZ1bVp5J8L8ktx2vVxLgrkjzMRiVgQ3pomIywMAAAAAAAAACAGdqb5CFJHlJVX03y8iSv6O7z1x7Geqrq5hkFhd1sovnsjILCvj6fqgAAAAAAAAAAmLVFDwv7XJJ9SQ5JcouqunZ3f3+qz4czCgurJD9fVc/u7rNXmOs3kxw1cX7GdhS8AZVRANpqIWiTLk3y/CQv6O4rh0ze3R+sqocleWUOBIJVkh8dP1bymiRP6e59Q9YYr7Ovqh6Z5M+SPGri0nFJfnqVYecleXx3f3joOrA7rBOE9fW3J994Z3LYDZITH50cc7vZlLVQBoaFtbAw2L1q/S4AAAAAAAAAbJUrMrqh5f5NHZXRzSV/L8nzquqNSV7W3R+ZU31LraqOT/K+JCdNNP/vjILCVtonCQAAAAAAAADADrVn3gWspbsvTvKp8WklecAK3V63v3uSI5K8t6p+Yv/FqrpuVT0/yW/nwIakC5L8w7YUvbqnZBT49fEklw8c8/kkz0zyQ939u0ODwvbr7ncmuX2SlyW5cI2uf5/kEd392O6+ZCNrjNe5uLsfneTnx3Ot5oIkf5Lk9t397o2uA7veh05Nvvyy5IznJ+/98eSfPz7vin7QvivmXcGIsDDYxYSFLaUrL553BQAAAAAAAMDBOT7JbyT5cg58Ydvj48OSPCbJ31XVZ6vql6rq6PmUOX9V1VOP+67T/7iMgsJuNdF8bpL7dfdZ21gqAAAAAAAAAAALaO+8CxjgPUnuNj4+NcnbJy929xlV9dYkD8lok9Gtk3ygqi5JclGS45IcMu5e4z5/tNHgrc3q7n9M8o9JnllVhyY5JaM7KJ6Q5Kgkhya5eFzz15Kc1t1rBXwNXfe8JE+rqqcnuVeSE5PcOMklGd1h8LTu/upm1xmv9YYkb6iqWyS5S0YbwY5M8s0kZyf5aHcvSJIQLLmrLk5O/53kfu+cdyXX9L0vJcfcbvvm716/T5JEWBjAUvnii5ObPXTeVQAAAAAAAAAb1N0XJHlhkhdU55f/AAAgAElEQVRW1QOSPC2jfX57c+DmnpXkdklekuT3q+qvk7y8uz+1wpRzUVU3zcr7KW88db63qk5aZZqLu/v8LarnmCR/m+Q2E82XJHlSkivXqGFF3f21ragLAAAAAAAAAID5WYawsNcl+c8ZbRh6TFX9x+7+7lSfpye5e5Ib5cBdCY8aP/bb3/5PSX53u4teyzio7DPjx6zWvCLJB2a01leTbEkAGbCGc981o4WGBnTNwsBaWlgY7FpV6/dh8XxrJn+mAgAAAAAAANuou9+X5H1VdaMkT0ny5CQ33385o/17R47bn1xV/5TkT5K8trsvm0PJkz6S0Y0413NCVt8b96okT9iieu6U5A5TbUcmOdg7C/oyHQAAAAAAAABgye2ZdwHr6e4zktw1yd2S/GSSfSv0OSfJA5Kcnmtuaulc8+6E70rywHFYF8APuuR/JX//xOQdt00+8ujkwk/PuyKuQVgYAAAAAAAAAMAi6+5vdffzk9wiyakZBVzt3/QxuZ/vbkn+PMk3qur/rarbzLxYAAAAAAAA+P/Zu/NoSfO6vuOfb3cP0w0DDIszAyIQBwiBsKOIAs4YZBGNgQCuOUE5xrhEj+YPj0aDmgWXRLMARlyiqEQBESOKgjoDxEFwDqMITAQGwYVpBpjNgXtn6fvLH7c6XV1zl1ruU/U8t16vc+r0rarnqef7PPfWr/ucrvO+AAADcWzVA0yjtXbVFNtcXVWPT/K8JF+Z5KFJzk9yQ5I/S/JrrbU/7HRQYNhuvT75g0uSWz68ff/mq5OTb06e8Y7kHn9/paMxK7EwWFs3vje5/3OS8kuRAQAAAAAAAFaptdaSvDHJG6vqc5J8c5JvSHK/05tkOxp2fpLvSPIdVfW2JK9I8huttTuWPzUAAAAAAAAAAPTTymNhVfXGJJeNbleNPiA0l9baqSSvHd0AZvOx3zkTCjvtthuSj7w6efQPdX/8+Ze//ug6zjPtNWpiYbC2/ux7kw+9MvmSNyd3f8iqpwEAAAAAAAAgSWvtr5N8f1W9JMlzsx0O+5KxTU5/6ORpo9t1VfVzSX6mtfbRJcz34CUcY+oP1rTWLs+ZawIAAAAAAAAAADmy6gGSfFmSH0vyJ0k+VVVvqKrvqKpHrXguYN2888U7P/7eH17uHEPWefBMLIwl6Tp8R7c+/ZfJW//xqqcAAAAAAAAAYEJr7VRr7XWttS9N8rAk/znJp7L9oZCW7UBWJbkwyfcm+VBVvb6qnrKqmQEAAAAAAAAAoA/6EAs7rZKcn+Qrkvxkkj+tqk9U1Wur6lur6uGrHQ849LZuW/UE7EssDJjSzVcnN75v1VMAAAAAAAAAsLt7JLlnkuNjj7WxW5IcTfKVSd5aVW+qqouXOyIAAAAAAAAAAPRDn2Jh4x/wOf3bAe+T5HlJ/nuS91XVtVX16qr6pqp6yIrmBGA3VaueYEQsjAW1KcN09Nu1b1r1BAAAAAAAAACMqaoTVfWNVfXOJFcmeXGSu45vkuSOJBujr8c/U/jMJH9WVc9Z4sgAAAAAAAAAANALfYiFfU+SNyX5u5yJhCU7x8MuTPJVSf5Hkr+oqr+qql+sqhdV1YOWOzYASzdtwKmJhQGxFgAAAAAAAAD0RFU9oqr+W5KPJfmZJE/Mmc8Knv584LVJfjDJg5LcP8m3J3lfzkTDWrbDYq+pqouXOT8AAAAAAAAAAKzaymNhrbUfb619eZJ7J3lSzsTDbsn+8bAHJPn6JD+X5MNV9eGq+tmq+rqquv8STwOApRALA2Yx5ZoBAAAAAAAAwIGrqruMPsv39iR/nuTbktwzZz4TmNHXlyd5YZIHtdZ+uLV2srV2c2vtFa21Ryd5TpKrx/Y7nuS7lnUeAAAAAAAAAADQB8dWPcBprbWtJH8yuv14VR3J9m8PvCTJpUm+KMl547uMfX36Q0APTvINo1uq6kNJLkvyh0kub61d190ZACyqp1Gb1qe5pp1FLAxIz9YvAAAAAAAAgPVQVQ9N8s1J/nm2f4losv0Zv9O/MLSy/ctEfynJy1trV+/1eq21N1XVZUn+T5LHj/b/0m6mBwAAAAAAAACAfupNLGzSKB72rtHtx6rqaLbjYZdmOyD2RUnuNr7L2Nen42EPTfKQJN+UJFV1dbbjYZe11l7f5fwArFATC2NBVftvwwBYCwAAAAAAAACWYfT5vucm+ZfZ/oxfcuZzfG3s/vuS/FSSV7XWbpn29Vtrm1X10iSvHT30OQsPDQAAAAAAAAAAA9LbWNik1tqpJO8c3X6kqo4l+bxsh8MuTfKFSe46vsvY16c/dPSI0e1bMqBzB2Cktf23ScTCgG3TrhkAAAAAAAAAzKWqHpTkXyT5xiQXnH4425/fa6OvTyV5Q5KXt9beusDh3j/29bkLvA4AAAAAAAAAAAzOYINZrbU7krxjdHvpKB72+dkOh12S5MnZOR5WORMPA2BQpg3/iIUByfRrBgAAAAAAAABzuiZnfyZv/HN61yZ5ZZJXttauPYBjfWbiGAAAAAAAAAAAsDYGGwubNIqHXTG6/YeqOifJk5K8IMk3xW8SBFiCrluMU37Wc+tUt2MMRfPZ2Lm5doeD7yMAAAAAAABA145k+wMdLWeiYW9L8vIkvzH6XN9BqwiGAQAAAAAAAACwZg5NLOy0qrpXki9OcmmSS5I8Mt3XawDola1VD8DQtTuST/1Jcv6jkqPHVz0Nc7MWAAAAAAAAACxBJbklyS8leUVr7X1dHKS19tFsx8kAAAAAAAAAAGDtDD4WVlXnJ3lazsTBHpWd42Djj/mtgkAPzbE0tZbUGvUQ25TXqAkEcQB+7/O3Q2FPfHly8TeuehrmMe2aAQAAAAAAAMC8rk7yiiSvaq393aqHAQAAAAAAAACAw2pwsbCqukfOjoM9JmeHwCrbxZ3JONh7krx1dHvbMmYF4KBNGf65/srkxj9Pzn9Ut+Nw+J3aTN754uRej0nu/YRVT8PMxMIAAAAAAAAAutRae+SqZwAAAAAAAAAAgHXQ+1hYVd09yVNzJg722CRHxjfJznGwq3ImDvb21toNy5gXYLkml7/Dbobwz5sel3zhryQP+qruxuk9oaQD8+FfEAsbJO8BAAAAAAAAAAAAAAAAAAAAYPh6Fwurqrvl7DjY45IcHd9kh922krw7Z8fBbu52UoAeaG0JrbCBxnbaqeRd/zL5nOcnR47uvz3s5QMvS57431c9BbNqA12/AAAAAAAAAAAAAAAAAAAAAMasPBZWVXdN8pSciYM9IfvHwW5PcmXOxMH+qLV2S7eTArBys4Z/br8xOfnm5P7P7mYeYPnu/cTk+iun3FgsDAAAAAAAAKAPquo+SV6Q5ElJLkyykeRvkvx+kt9rrd22wvEAAAAAAAAAAKD3Vh4LS3Jj9o+D3ZbkXTk7DraxhNkAem4JIZyZAl07LeEHaY7zvelqsTA4TI6emH7bttXdHAAAAAAAAABrqqrum+TRST4rya1JPpzkva3d+T9pq6qSfG+S70uy03/4fnuSj1bVt7bWfre7qQEAAAAAAAAAYNj6EAs7lu36y3hhZjPJH+dMHOyPW2ubK5gNYHlminL9/50OfIyzbN2R3H5jt8eYyRznW0cOfgxgIJYQVAQAAAAAAABYE1X12CQ/nuSSJJMfyLiuqv5Lkv/UWjs12r6S/GKSr8vZnw88/Z+5px97cJLfqqoXtdZ+pZvpAQAAAAAAAABg2PoQCxvXkvx+kh9N8rbW2h0rngdgvX3452fcoY9hntp/k8NqrgAd9N0sP9feAwAAAAAAAAAHoaq+OsmrkhzNzh/GuDDJf0zytKr6itbaVpLvTPL12f7P2/FA2On9x/9T92iSn6+qq1pr7+/gFAAAAAAAAAAAYNAmf7vfKp3+4M/Tk7wlyU1V9ftV9f1V9dSqOmeFswH0U9cxqPe9tNvXn9U851t9+qsOWCrBPAAAAAAAAICFVdXnJfmlbP9y0srZ8a+M3a8kz0ryr6vq7kl+MGdHwq5N8sYkr07yu0luyNnhsXOS/NeuzgMAAAAAAAAAAIbs2KoHSHJ1kofnzr9t8ESSS0e3JNmsqj9O8tYklyf549babcsaEqCfOg7hfPojM+6w0y+OPUhiYcAstlY9AAAAAAAAAMBh8FNJjubs8NcNST40+vriJPfKmWDYdyW5Kck9Ro99KsmLW2u/Nf6iVXUkyYuT/Jckx0f7fklVXdxau6bjcwIAAAAAAAAAgEFZeUGltfbIJBcmeWG2P1R09djTNXY7keSSJC9JclmSG6vqsqr6waq6pKrOXergACxfmyeO1nXAbKBE1BisGdaBudYMAAAAAAAAAE6rqicleXzOhMA+meR5Se7bWntSa+3zk9w3yXOTXDfa7sIk3z16iduTPH0yFJYkrbWt1trPJPma0Wuf/k/eF3R3RgAAAAAAAAAAMEzHVj1AkrTWPpnkdaNbquqCbIfBTt8ePtp0vPhyPMnTRrcfSHJbVb0ryeVJ3prkitbaZufDA6yUEM6+RLFgjVkjAQAAAAAAABb0T0d/VrbDX89orf3Z+AattZbkN6vqL5P8SbY/l/iwbP+n7S+31t6z1wFaa/+7qi5Lculonyce7CkAAAAAAAAAAMDw9bKg0lq7rrX2mtbat7bWHpHkftn+7YE/neQDY5vW2O3cJE9J8v1J3pLkxqp6e1X9u6r6R1V1YrlnAbCGqvbfZiFzhH/WOhYmlMSaa1urngAAAAAAAABg6B4/+rMlec1kKGzcKAr2qzn7l4L++pTHGd/ukTNNCAAAAAAAAAAAa+DYqgeYRmvt40l+bXRLVV2U5JJs/ybBS5I8dLTp+IeM7pLkC0e370tye1VdmeStSS5vrb1lGbMDTG+OsFPrWQyq83nmef2uA2bAUs20zvRsjQQAAAAAAAAYnoeNff3GKbb/nST/bOz+e6Y8zukIWSW5z5T7AAAAAAAAAADA2hhELGxSa+1ktn8D4a8mSVXdL2fCYZcmuXi06WQ87Mmj2/dkoOcOcLY1C+HMFSMTC9tR30Jz0AU/5wAAAAAAAACLuufY138xxfaT23xqyuN8cuzre0y5DwAAAAAAAAAArI1DEcxqrV2b5NWjW6rq/tmOhp0OiH1uzhR1VGMA1kkdWfUEwMpsrXoATmu+FwAAAAAAADBQ5419fdMU2988fqe1tjnlcca3O2fKfQAAAAAAAAAAYG0ciljYpNbax6rq/UkuSHJhkvsnOXe1UwF0oe2/yTJV1z3Gnp1v77leHEYz/Fw374HeeNc3r3oCAAAAAAAAYD7jHwY5NcX202wDAAAAAAAAAADM6NDEwqrqMUkuSXJpkqcmOX+lAwEsw9qFcOY533W7RsAZ3v+98JmPJdf87KqnAAAAAAAAAAAAAAAAAAAAgMEabCysqh6VM3GwpyW51/jTY1+3XR4H4KB1HS+b5/Xb1sHPAQyEWFgvfOBlq54AAAAAAAAAAAAAAAAAAAAABm0wsbCqemTOjoPdZ/zpsa9bzpQhauy5v0ly2dgNoGfmidr0LIRz89XJPR++6ikm9OwaAYuZJRooFtgPt1yz6gkAAAAAAAAAAAAAAAAAAABg0HobC6uqf5AzcbAvTnLf8afHvt4tDnZtksszioO11lQKgEOoZyGs9/9o8jnP7fAAc5zvLGGhteK6sA78nPeCaBsAAAAAAAAAAAAAAAAAAAAspDexsKr6+zk7DnbB+NNjX+8WB/tEzo6D/UWH4wKwk42PdXyAecI/axwLEkpj3V3/7lVPQJJELAwAAAAAAAAG7vQHEL6gqh68z7YXjd+pqqfm7M//TbUfAAAAAAAAAABwtpXHwqrqV7IdCRv/sM80cbDrk7w1Z+Jg7+t2UoAe6lsMqnUchJnrfHt2jYAFzfCevv7K7sZgen37uwoAAAAAAACYRyX5X3Psc/kM27dMFxYDAAAAAAAAAIC1s/JYWJKvydkf8tktDnZjkrflTBzsPcscEqCf+hZg6XqeOV7/Lvc5+DEAmEHHIUkAAAAAAABgGWYJeY1/wGOW+FffPggDAAAAAAAAAAC90YdY2GmnP0x0+sNBf5fk7RnFwZJc1VrzYSCAPmunVj3BnR2/YNUTAKy3JhYGAAAAAAAAh8Q8n9/zmT8AAAAAAAAAADgAfYmFVZJPJ/mjnImDXdmasgCwRubqIfbt85Rdz9O38+0714vDyM/14Oj9AgAAAAAAwJD9VfxHLQAAAAAAAAAArFwfYmE/kO042Ltaa3esehiAQelbgKXreQ5FUA1g3ViHAQAAAAAAYKhaaw9e9QwAAAAAAAAAAEAPYmGttf+w6hkAOChbHb++4AzA4LSu/24AAAAAAAAAAAAAAAAAAACAw+3IqgcAYBE9i2cJwgBdaz1b95iCvxsAAAAAAAAAAAAAAAAAAABgEWJhAEPWt2hO57Gwnp0v0G/3fsKqJyDp399VAAAAAAAAAAAAAAAAAAAAMDBiYQAcoI6DMPMEZ9Y6UrPO5w6Jf+r2RdchSQAAAAAAAAAAAAAAAAAAADjcFBQAemOesFPPYlCt6yBMz84XWIFZ1gFrRi90/ncDAAAAAAAAAAAAAAAAAAAAHG5iYQCD1rMQjiAM0Cs9WyPXlu8DAAAAAAAAAAAAAAAAAAAALEIsDIAD1HUQZp7XF6kBWCkhSQAAAAAAAAAAAAAAAAAAAFiIWBjAkLWehbC6DsL07Xz7zvXiUJrh59p7oB/EwgAAAAAAAAAAAAAAAAAAAGAhYmEAg9a3EE7X8/TtfIF+s2b0g1gYAAAAAAAAAAAAAAAAAAAALEIsDICD0/oYhBELAlipZh0GAAAAAAAAAAAAAAAAAACARYiFAfTGPDGVngVY2qmOX79n5wssn3UAAAAAAAAAAAAAAAAAAAAAWDNiYQAMiEgQMAtrBgAAAAAAAAAAAAAAAAAAADB8YmEADMgc4Z+2zrGgdT53yJq//3ukatUTAAAAAAAAAAAAAAAAAAAAwKCJhQEMWd9COIIwQOd6tu4BAAAAAAAAAAAAAAAAAAAAdEwsDIDh6FscDeg5awYAAAAAAAAAAAAAAAAAAAAwfGJhAIO2biGcec533a4RcEategAAAAAAAAAAAAAAAAAAAACAhYmFAfRFE7Xan2s0G9eLw2iGn+tjd+tuDAAAAAAAAAAAAAAAAAAAAIAlEQsDAOBwOnLOqicAAAAAAAAAAAAAAAAAAAAAWJhYGMCgtVUPsFxtjvOdZx/gkPD+BwAAAAAAAAAAAAAAAAAAAIZPLAyAARH+AWYgFtgTteoBAAAAAAAAAAAAAAAAAAAAYNDEwgCGrHchnK6DMH07X2DpZlr3rBkAAAAAAAAAAAAAAAAAAADA8ImFAXCAhHl6pXcxOViytrXqCQAAAAAAAAAAAAAAAAAAAAAWJhYG0BvCTvuaK37lusL68v4HAAAAAAAAAAAAAAAAAAAAhk8sDGDQ1i2Es27nC9zZDOtA2+puDAAAAAAAAAAAAAAAAAAAAIAlEQsD4ABVx68vFgbM4PabVj0BAAAAAAAAAAAAAAAAAAAAwMLEwgAGTTxrf+t8jdb53CHJxslVTwAAAAAAAAAAAAAAAAAAAACwMLEwAA5Qx3GqJn4FzLAO3H5jcmqzu1GYUq16AAAAAAAAAAAAAAAAAAAAABg0sTAABkQsDJjR5sdXPQEAAAAAAAAAAAAAAAAAAADAQsTCAPqizRHCmmefTlXHr38YrhGwVBsnVz0BAAAAAAAAAAAAAAAAAAAAwELEwgAAGI5ZA4CbYmEAAAAAAAAAAAAAAAAAAADAsImFAQzajNGcoZs1ErT2XC/IhlgYAAAAAAAAAAAAAAAAAAAAMGxiYQAMyDzxK8EsOFxmfE9vioUBAAAAAAAAAAAAAAAAAAAAwyYWBsDOmsgWcAhsiIWtXNWqJwAAAAAAAAAAAAAAAAAAAIBBEwsDGLQug15iYUAfzbg2bYqFAQAAAAAAAAAAAAAAAAAAAMMmFgbQGz2Lc7V55unwHOaaJ+nddV2mua8ZHCIbYmEAAAAAAAAAAAAAAAAAAADAsImFAQxZpzGorQ5fex7CV0BmX/c2xcIAAAAAAAAAAAAAAAAAAACAYRMLA2BnnYbI5tC3eYBh2LjW+gEAAAAAAAAAAAAAAAAAAAAMmlgYALsQ1wEOga1bk9tvWvUUAAAAAAAAAAAAAAAAAAAAAHMTCwMYtA6DXm2ru9eey5zn2kTP4HCZ4z29cfLgxwAAAAAAAAAAAAAAAAAAAABYErEwAHYxR5Cn0zCX6NfsXDNIkmyKha1WrXoAAAAAAAAAAAAAAAAAAAAAGDSxMIDeEOfaU6fnCgzHHGvBhlgYAAAAAAAAAAAAAAAAAAAAMFxiYQDsrG2teoIDIjIGa29TLAwAAAAAAAAAAAAAAAAAAAAYLrEwAHbRt8hW3+YBVqLNsRaIhQEAAAAAAAAAAAAAAAAAAAADJhYGMGgdBrTmCfJ0qm/zDIFrBkmSDbEwAAAAAAAAAAAAAAAAAAAAYLjEwgDYxdYc+/QxXiaYBYfLHO/pzSXGwrZOJTf/RXLDn55Zt1pL/u5Dyc0f7GGIEQAAAAAAAAAAAAAAAAAAAOi7Y6seAIBF9DHO1TMf/OnkAV+56imAVdpYUizsM3+TXPbs5Kb3bt+/12OTJ74sufI7khvePXrsccklb0pOXLicmQAAAAAAAAAAAAAAAAAAAIDBO7LqAQAY6V2c65DMc+2bko/86sGOcljcdtOqJ4DZzbNWbi4pFnbF158JhSXJDX+avOUpZ0JhSXLDVckVX7uceXqjVj0AAAAAAAAAAAAAAAAAAAAADJpYGAA7a1urnmDCAvGyj/zSwY1xmPz161Y9ASzHrZ9Itk51e4zbbkg+8fbptv34Hya3Xt/tPL3St/gkAAAAAAAAAAAAAAAAAAAADItYGMCQtS4DLD2Luyxyrh/7nYObY0j2u2bX/Pxy5oBVa1vbwbAubX5itsjiDVd1NwsAAAAAAAAAAAAAAAAAAABwqIiFAbCzTkNkAPOac23aPHmwY0yaJRSWJLVO/wyvVQ8AAAAAAAAAAAAAAAAAAAAAg7ZOlQKAQ6jLoNeM4ZvOiZcduBLwYY1sXNvxAWZdM73/AAAAAAAAAAAAAAAAAAAAgOmIhQGws9a3OFff5gFWY861YOPkwY4xqYmFAQAAAAAAAAAAAAAAAAAAAN0QCwPojb7FsHo2z17xsme8Y3lzDMp+30OxItbIZsexsFnXzPL+AwAAAAAAAAAAAAAAAAAAAKYjFgYwaB0GvdpWd6990I6cm5xz/qqnGCCxIgZor3DgXjY6joXNvGau0ftPGA0AAAAAAAAAAAAAAAAAAAAWIhYGwC46DJHNZZ95xGiAvWyKha3MvIE3AAAAAAAAAAAAAAAAAAAAIIlYGMCwdRlgmTl807U9zlUoDNbInOte17GwzLhmWrcAAAAAAAAAAAAAAAAAAACAKYmFAbCLDkNk89gzjCa6A+xjo+NY2MyBxTVat4TRAAAAAAAAAAAAAAAAAAAAYCFiYQDsomexsD0J0exoz8BaBHwYqDnXpk2xMAAAAAAAAAAAAAAAAAAAAGCYxMIABq3DoNfM4Zuu7Xeuwjuzc81YI7ffnNzxme5ef9Y1U6wPAAAAAAAAAAAAAAAAAAAAmJJYGEBvdBj+mkcb0DyiO8A0Nj/e4YvPGlhcp3Vrnc4VAAAAAAAAAAAAAAAAAAAADp5YGAC76FksbM95pgjR9C1+1gsCPgzQIu/ljZMHN8ekNmMsrNbpn+HWXwAAAAAAAAAAAAAAAAAAAFjEOlUKAA4hAZZtlZTwFbCPzQ5jYTOvx9YsAAAAAAAAAAAAAAAAAAAAYDpiYQAMxKJhtHUMq63jOXP4LfBz3WUsrG3Ntr3AIQAAAAAAAAAAAAAAAAAAADAlsTCAIWtrFIPa61ynie6s07WallgR62ajR7GwrNP7b53OFQAAAAAAAAAAAAAAAAAAAA6eWBgAu+hbXGuveSpiNLAuFlibNq49uDHuRCwMAAAAAAAAAAAAAAAAAAAA6IZYGEBftL7FuYZkmuiO63tnYkWsmc2T3b12mzEWVt5/AAAAAAAAAAAAAAAAAAAAwHTEwgAGbZ0CWOt0rgfFNeMQWiSsuNGjWNhaxfrW6VwBAAAAAAAAAAAAAAAAAADg4ImFAbCzRYI8XdhrnqrsH6Pp2fkAy7fZYSxsZusU0LL+AgAAAAAAAAAAAAAAAAAAwCLEwgAGbZ0CLHud6zpFdw6S68aa2TzZnxBief8BAAAAAAAAAAAAAAAAAAAA0xELA+AQmCK605dAUJ+IFTFIC7yXt25Pbrvh4EZZyDq9/9bpXAEAAAAAAAAAAAAAAAAAAODgiYUBMBD7BIKEr1hHIniz2zy56gkAAAAAAAAAAAAAAAAAAAAAZiIWBpD0JLgzxwydzt2HazJmr3OdKhTWs/NZhn1/PgTWGKIF38sbYmEAAAAAAAAAAAAAAAAAAADAsIiFATAQewWCxMKAKW32JRZmTQIAAAAAAAAAAAAAAAAAAACmIxYGMGhiM0mSmiYWBhwKbcF1b6MvsTAAAAAAAAAAAAAAAAAAAACA6YiFASQR3RqC/b5H+wTDFg0MHUoia6yhza5iYTOuMdYkAAAAAAAAAAAAAAAAAAAAYEpiYQDsomchmz3DOqJXO+vZ95AOrOP3eMFz3ugqFgYAAAAAAAAAAAAAAAAAAADQDbEwgEHrYSjo5g909MKLxsJ6eK1WrUTWOMSOnLvz45t9iYWt0ZpkrQEAAAAAAAAAAAAAAAAAAICFiIUBJEnrQ7SlDzMcgA//wvKPWZXpgmHA8E25Vp64386P9yYWBgAAAAAAAAAAAAAAAAAAADAdsTCAIetF5GzC+1/a0Qsveq49vFZAd3aLhW1cu9w5dmVNAgAAAAAAAAAAAAAAAAAAAKYjFgbAzvoWIttznlraGIeL68Yhtlss7NZPJlu3L3eWtWetAQAAAAAAAAAAAAAAACDdzXUAACAASURBVAAAgEWIhQEkSXoWxmIH+8TCap8YTd/iZ0ux3zkL+AzeOv5cT3vOx3eJhSXJ5nUHM8si1up7t07nCgAAAAAAAAAAAAAAAAAAAAfv2KoHWFdVdTTJQ5I8Isn9k9wzya1JbkhyTZIrW2ufPuBjnpPki5I8MMn9ktyS5GNJrmqtfeSAj/X3kjw22+d2XpJrk3w0yRWttdsP8liw3gRYkuwfCkviWsGaObFXLOxkctfPXt4sAAAAAAAAAAAAAAAAAAAAAAsQC1uiqnpgkucleXqSpya5xx6bn6qqtyR5WWvttxc87mcl+aEkX5Xk3rtsc0WSn2it/fqCx3p+ku9O8uRdNrm+qn4tyb9trX1ykWMBa6aJfR24qSJr0DdTrgXn3jepo0k7defnNk4e7EgAAAAAAAAAAAAAAAAAAAAAHTqy6gHWRVW9OslHk/xkkudk71BYkhxN8qwkb6yq36qqC+c87rOTvDfJt2SXUNjIFyZ5XVX9clXdbY7jnFdV/yvJa7N7KCyjGb4lyXur6pmzHge604MQ1TwxrE4DWj24JmfZa54a3ebdHzh06mhyfJd/Pm12EAubeT1epzVJmBAAAAAAAAAAAAAAAAAAAAAWcWzVA6yRh+3y+N8m+WCSj2f7+/G5SR6Ts0NuX57kbVX1xa21qesWVXVJkjckucvYwy3Ju5N8OMn5SR6X5L5jz39dkntU1T9prW1NeZyjSX4tyZdNPPWJJFcluSnJxaNjna5FXJjkN6vq6a21/zPtOQHrbL9YGHfSaUwOVmXKn+s6mhy/KNn42J2f2+ggFgYAAAAAAAAAAAAAAAAAAADQkSP7b0IHrkryr5I8pLX2gNbapa21r26tPb+19vgkD0zyyol9HpbktVU1VRGnqh6Q5PU5OxT2R0ke2Vp7Ymvtha21ZyR5QJLvTHL72HZfkeTfz3A+P5KzQ2G3j87vAa21Z46O9YQk/zDJO8a2OzfJG6rqfjMcCw4xYae5TbM0rmU4a79zFlkbvnX8uZ5SHUlOXLTzc5t9iIX53gEAAAAAAAAAAAAAAAAAAADTEQtbnpbkt5N8Xmvt8a21l7XWrtlxw9b+trX2zUm+beKppyT5qimP90NJ7jV2/4okT2+tXT1xrFtba/8tyQsn9v/uqnrQfgepqs/Ndmxs3AtG53fbxLHen+Qf5exg2H2SvGS/40DnBhuSGurcc9j3eyR8dSdta9UTwMGbdr2uo8nxXWJhG32IhQEAAAAAAAAAAAAAAAAAAABMRyxseV7QWvvy1tqV0+7QWntFkl+fePif7bdfVT00yT8fe+i2JC9qrW3ucaw3JPnFsYfOzXQRr5ckOWfs/i+01n5zj+NsJHnRaKbTXjyKjsGa61v4a0jzTBMK69v5LMN+sTCBNQ6xOpqc2CUWttmDWNhgI5UAAAAAAAAAAAAAAAAAAADAsomFLUlr7SNz7vryifuXTrHP1yY5Onb/9a21D06x349O3H9hVR3fbeOqOpHk+fu8xp201j6Q5A1jDx3L9szAzNYpNiMWNrO2TyysxMIYoinfy3UkOX6/nZ/b6EEsDAAAAAAAAAAAAAAAAAAAAGBKYmH9d9XE/RNVdf4++zx34v7/nOZArbWrk7xz7KG7JXnGHrs8M8ldx+6/o7X2f6c51g4zPW/K/aAjPQhJtR7MMFRVwlc72S8WBodZHU1OXLTzc5t9iIVZ8wEAAAAAAAAAAAAAAAAAAIDpiIX13x07PHaX3TauqouSPGZi/z+a4XiXT9x/9h7bPmuffffy9px9bo+rqgtn2B9YN4vG1NYxxiYWxjqro8nxXWJhd9yS3H7LcudZa2KOAAAAAAAAAAAAAAAAAAAAsAixsP57yMT9O5J8co/t/+HE/fe01j49w/GumLj/yBmO9Y5pDzKa6c9nOBasgTliVl0GsHoX19prHiGaHbVTq56AzvXtfboE065NdSQ5sUssLEk2Tx7MPPPq3RoLAAAAAAAAAAAAAAAAAAAA9JVYWP89f+L+la21rT22f8TE/Q/NeLxr9nm9cf9giceCjvUh2tKHGfps0VjYOl7fvf66SETWONTqaHJ8j1jYxkHHwtZxjQEAAAAAAAAAAAAAAAAAAACWQSysx6rqvCQvnnj4N/bZ7SET9/9qxsN+dOL+farqXjvMdu8k917wWJPbP3TG/eHg3HbTqieYkzhNkqQqwlc72LMtmdF1g6GZct2ro8k55yXH7rbz85sHHQsDAAAAAAAAAAAAAAAAAAAA6IZYWL+9NMlFY/dvTPKz++xz/sT962Y5YGvtliSbEw/fc4rjfKa19ulZjpU7z7bTcWA5/u9PrHqCpAl/7WnR67OO13e/WBgcaqN/5h6/aOenN1YdC1vDNQkAAAAAAAAAAAAAAAAAAACYy7FVD8DOquq5Sb594uF/01q7fp9dz5u4vzHH4TeSHB+7f/cOjzNup+PMpKouSPJZM+528aLH5RC4+sdWPUEP9S1ks9c8tbQphmW/WJjrxhBNuTYdObr954mLkluuufPzm6uOhQEAAAAAAAAAAAAAAAAAAABMRyysh6rqMUleNfHwm5P81BS7T0a8NucYYSPJvfZ4zYM8zl6vOY9vTfKSA3gdWIF54lx9C3p1aY9zrcr+4at1ulYjbb9YGIPX1vDnelo1ioUdv2jn51ceC1uj710JEwIAAAAAAAAAAAAAAAAAAMAijqx6AM5WVQ9M8ts5O5z10SRf39pcRZDDtg+wrvZcAqcJ0azhknPLNaueAA7etP8cOnpi+8/dYmEbq46FAQAAAAAAAAAAAAAAAAAAAExHLKxHquqCJG9J8tljD59M8qWttU9M+TK3TNw/Mccok/tMvuYyjwPrY54e4FwNQdbGR391nw2miazBQJ1zz+0/T+wSC9tccSzM+g0AAAAAAAAAAAAAAAAAAABM6diqB2BbVd07ye8nedjYw59M8vTW2gdneKl1j4W9IslrZ9zn4iS/eQDHhkOmbyGbveappPYJX61jmOevX7/38/tdM+ilKd/Lx87b/vP4LrGwjRXHwgAAAAAAAAAAAAAAAAAAAACmJBbWA1V1zyRvTvKosYdvSPKlrbX3zfhyN03c/6wZZzkvd4543TjFce5aVXdrrX16hsNdMMVxZtJauy7JdbPsU2I59MYaxqxmssf18T4GJtWR7T9P7BIL2/x40rbObLd01nwAAAAAAAAAAAAAAAAAAABgOquqIzBSVXdP8rtJnjD28M1JntVa+9M5XvKDE/cfNOP+k9tf31q7YXKj1tqnsh00G/fABY81OTuwrzWKzbS9znWaWNgaXSvWiJ/r3Y3WhRP32/npdkdy6/UHeDzfCwAAAAAAAAAAAAAAAAAAAKAbYmErVFV3S/I7Sb5g7OFbkjy7tfauOV/26on7D5lx/8+duP/+JR5r8vVgzfQsNLNnnKtvKtMFw4Dhm3JtqtE/c49ftPs2mycXH2duQ1pjAQAAAAAAAAAAAAAAAAAAgFUSC1uRqjqR5I1JnjL28GeSPKe1dsUCL/3eifuPrqq7zrD/F+3zens99+RpDzIKpT16hmMBO1qn2Myi57pO12paAmscZqOf7+MX7L7JSmNh68RaAwAAAAAAAAAAAAAAAAAAAIsQC1uBqjqe5H8nuWTs4c0k/7i19rZFXru1dm2S94w9dCxnB8n2c8nE/Tftse3v7rPvXp6a7dlOu6q19vEZ9ofDp4lZ7Wmv61NCNPNx3RigadfKGv0z98g5ybn33XmbjRXGwqz5AAAAAAAAAAAAAAAAAAAAwJTEwpasqu6S5PVJnj728K1J/klr7Q8O6DC/MXH/G6ac7eFJnjT20KeTvHmPXX4vycbY/SePXmMaL5q4PzkzwIS9wjqVfcNXwjywZsbWhOMX7bzJxrXLGQUAAAAAAAAAAAAAAAAAAABgAWJhS1RVx5K8Jsmzxx6+PcnzW2u/d4CH+pUkp8buP6+qHjrFft8zcf81rbXN3TZurX0myev2eY07qaqHJXnu2EN3JHn1FPPBITdHzKrTANaQ4lr7hMKSDOt8lqSmuW702zr+XE95zjX2z9z/x969B9121oUd/z0nJ8negRASSXICVK6xVRiVi1WD7dDWqnTGIgwC9VKZqdZRp+OUdjq1U4vM+AetlQ7VWm+tYNVKvcF4Kdh21EGitQLekTuoJIcjJAEC7z45532f/nHek7zZZ6+911p7XZ691+czk3mz195rrd+67JUzk3e+Z14RC1uc3X4cAAAAAAAAAAAAAAAAAAAAgJ6JhQ0kpXRVXIp4Pf/E4osR8ZKc8y91ua+c83si4nUnFl0TEa9NKc3WzPf8iHjZiUUPRMQra+zuu+JS8Oyyl6WU/v6a/cwi4seOZ7rsv+Sc31djX8CkTTGKBLR2MoY3q4iFHYwZC/NMAwAAAAAAAKCdlNIzU0ovSSm9/Pifl6SUnjH2XAAAAAAAAAAA9Of02ANMyH+NiBcvLftXEfGOlNITG27rbM55seEzr4iIF0TEjcev74iI/51S+sac859e/lBK6dqI+McR8b1L639vzvlDmwbJOb8/pfSaiPjnJxb/bErp5RHxwznnB07s67Mj4kePZ7nsY1EvSgYT0CYcM6HYTF5zrCejQNUb6GwUYEx1v8snngvziljYYsxYGAAAAAAAAAClSSk9OSK+ICKeffzzmRFx/YmPfCjn/MQRRouU0tUR8c8i4hsj4ikVn3lvXPodvVfnnC+s+gwAAAAAAAAAALtJLGw4/3DFsn93/E9Tfysifn3dB3LOf5FSemFEvDkirjle/JyI+JOU0tsi4v0RcUNc+mWmm5dW/6WI+M4G8/zLiHhaRDzv+PXVEfF9EfGdKaW3R8QnI+LJx/s6WfR5ICJekHO+u8G+gMlaFwhKNYNhPJxzxh5Lpx7699kAsbB1QcPVK3S3bwAAAAAAAABaSyk9NyK+Iy4Fwm4ad5rVUkq3R8RPx6XfwVvnqRHxqoj46pTSS3PO7+19OAAAAAAAAAAABiEWtsdyzr+eUnpBRLw2HgqCpbj0S03Prljtv0fEN+WcDxvs5zCl9OK49DcSvuTEW7dExFdUrHYuIr4h5/yWuvuBvdc4NNO30uZZp0b0qrjzC/TrxHOhKhZ20GEsjDWECQEAAAAAAICifX5EfNnYQ1RJKZ2JiP8VEU9Yeuu9EfHHcel/yj4tIp5y4r1nRcSvppS+KOd8bpBBAQAAAAAAAADo1amxB6BfOedfiYinR8QPRsS9az762xHxopzz1+ScP9ViP/fnnF8aEV99vK0q90TEf46Ip+ec39R0P8CyHgNYFxs/Cnom9tU9AZ+dN8UIXt1jTif+mDuviIU9cE/E4fntZ2pjitcOAAAAAAAAYLecj4j3jTlASulURLwhHh4KuzsivjznfHvO+atyzs/POT81Ip4XESf/1qwnRcQvpJT8gggAAAAAAAAAwB44PfYAU5FzHu0Xbo7/ZsBvSSl9e0Q8Jy794tCZiPhURHw4It6Rc/5AR/v62Yj42ZTSkyLimRHx2Ih4RFz6JaQPRcRbc84PdLEv2D+FhWM+8mtjT/Bw68I6KcXm8FVh5xfo2YlnwqwiFhYRsTgX8Yi/0v84AAAAAAAAAJTsQkT8cUT8bkT8v+OffxiXft9uzF+i+dqI+MITr++JiDtyzh9c/mDO+U0ppTsi4m0RcePx4jsi4iUR8dM9zwkAAAAAAAAAQM/EwibkONI1yC8uHcfHOgmQASP5w+8ae4Il62JfdXqME4uF3fXmsSeAntT8LqdTD/37fF0s7OxIsbCJPZMAAAAAAAAAyvW6iPjBnPNi+Y2URvs7QiOldFVEvHJp8ctXhcIuyzl/IKX08oj4sROLvzul9D9yzkc9jAkAAAAAAAAAwEBObf4IAMNoEY7JYjOXjPeLmcV69/dv/syIv9AK/Ttxf19zU8Spq1d/7ODsMOMAAAAAAAAAUKSc872rQmEF+JKIeNKJ1x+OiJ+osd5/O/7sZU+JiDs6nAsAAAAAAAAAgBGIhQGwIzaF0TaEr6YWVrvrl2p8SCyMXVTzu5xO/DE3pYjZmdWfW4wVC5vYMwkAAAAAAACApl6w9PrHc86Hm1Y6/sxyVOyFnU0FAAAAAAAAAMAoxMIAStEqZjWh2My685NEr5iqCT0DGlt6LlTFwg7GioUBAAAAAAAAwFpfsfT61xusu/zZ5201CQAAAAAAAAAAoxMLAyiG6M96685PnViY83slkTV2UO2w4tL9Pa+IhS3Ewnon6AgAAAAAAADQSErp2oh46tLi326wiTuXXt+eUrpmu6kAAAAAAAAAABiTWBgAuy8lMZqTaseUYI+lpT/mzvqOhTX83k3pezqlYwUAAAAAAADoxl+NiKtOvD6Xc/5E3ZWPP/vRE4uuiojP6mg2AAAAAAAAAABGIBYGUIw2MZUpBVimdKxbOjo/9gTQo5rPguWA4LwiFnZw93bjAAAAAAAAAED3nrr0+s9abGN5ndtbzgIAAAAAAAAAQAHEwgDYDVksrLZ8WO9zyzEl2GezqljY2WHneNCEnmmeNQAAAAAAAABNPXrp9bkW21he54aWswAAAAAAAAAAUIDTYw8AwLE2MaxJBbSqjjUt/Wy6PjAJ84pY2OLspWepoBUAAAAAAAAA5Xjk0uuDFttYXuf6lrM8TErploi4ueFqT+li3wAAAAAAAAAAUyYWBsBuE/i5Uu2InHO3+6YYwWt5zLOKWNjhQcTFT0Zc/aj2I7UyxWsHAAAAAAAAQE3LsbBFi20sx8KWt9nWt0bEKzraFgAAAAAAAAAANZ0aewAALhOOWc/56Z5YGBMyr4iFRUQcnB1ujknyrAEAAAAAAADYUptfnPHLNgAAAAAAAAAAe0QsDGCnTeh3+nLVsR5HaNKGGE3l+sBOaftdnt1a/d5ihFiYZxIAAAAAAAAA1e5fej1vsY3ldZa3CQAAAAAAAADADjk99gAAXCYcs96GWBgnuJfgCqcfEXH6+oiLn7zyvYMRYmGT4pkEAAAAAAAA0FDJsbAfiIifabjOUyLijR3tHwAAAAAAAABgksTCAHZZFmCJJBbWmnPHTqrx3Dv9yNXL52ciPrkiFrYYIxbm+Q0AAAAAAABApY8vvb65xTZuWXp9X8tZHibnfC4izjVZJ/kdFQAAAAAAAACArZ0aewAAjgl/ref8wJV8LypU/JLx7Mzq5QddxMJci2p+6RsAAAAAAACgofcsvX5Ci20sr7O8TQAAAAAAAAAAdohYGAA7oirEk5Z+Nl1/H9U9VgEf9lSq+CPu/LbVyxddxMIAAAAAAAAAoDPviojDE69vSSldX3fllNKjIuIxJxYdhlgYAAAAAAAAAMBOEwsDqOMjvzHATtrErASwBK+AK1U8F2ZnVi8/GCEWlqf0/AYAAAAAAACgiZzz+Yh439LiL26wiTuWXr/neJsAAAAAAAAAAOwosTCAOt75PWNPQJUkFtaac8euqRvYqrq35xWxsMUIsbBJ8awBAAAAAAAAaOFNS6+f22Dd5c/+z60mAQAAAAAAAABgdGJhAHXc9cv976NuBOfhK3U+RrE2np8NMZpW53dHTelYYaWK58GspFjYlL6nUzpWAAAAAAAAgM78wtLrr08pXbVppePPfN2GbQEAAAAAAAAAsGPEwgDYEVWxmQ2RMNhrIkwrpYrnwrwqFnYu4uiwv3kAAAAAAAAAoLm3RMQHTrx+fFwZAVvl6yLicSdevy8i3trhXAAAAAAAAAAAjEAsDKCufNT3Dnre/q4TC+vc4tzYE0BDdZ+TFc+FWUUsLB9GnP9oq4nam9Iz33MaAAAAAAAAIKWUl/557rrP55wPI+IVS4tfnVJ64pp9PDEi/sPS4n+dc++/+AQAAAAAAAAAQM9Ojz0AwM44PB9xej72FA+XpxSbqZDSw38StSNEd/1Kv2PAaCqeB/OKWFhExOJsxPzWfsYBAAAAAAAAoGgppcfH6t+nXP4fzafXxLruzzl3/TdV/WREfFtEfOHx65si4s6U0styzr968oMppS+PiNdGxI0nFt8ZEa/veCYAAAAAAAAAAEYgFgZQ19EiIvqMhQl/rbV1GM35hZ1X9zlQFQ+89ua4FBJbsZ2DsxE3fl7byZo/o8QeAQAAAAAAAErymxHxhBqfe1xEfKDivddFxMu6GigiIud8lFJ6QUT8dkR85vHi2yLizSml90TEH8el/xH+tIh46tLqH4yIF+bsf1ADAAAAAAAAAOwDsTCAuo4Ox55ghSn9Ll/VsVZEgYAJq3gunDodMbs5YnHuyvcWZ/sdCQAAAAAAAABayDnfnVL6uxHx0xHxjBNv3X78zypvj4iX5Jw/0vd8AAAAAAAAAAAM49TYAwDsjNxzLMxf4rnBpliYaNhD3EvTMbVrXfN405o/4s7OrF4+eCxsQtcueT4DAAAAAAAAbCPn/O6I+MKI+I6IeP+aj77v+DNflHN+7xCzAQAAAAAAAAAwjNNjDwCwO47GHoBVakdoJhTmqevWvz32BNCTNc+F2ZmI+IMrlx8MHQubEDFMAAAAAAAAoHA55ycOsI+t/qalnPOFiHhVRLwqpfSsiPisiHjs8dt3RcS7c85v225KAAAAAAAAAABKJRYGUFfuOxbWJqYyoQCL2Ez3rnn02BNAQ3WfA2t+v3p+ZvXyhVgYAAAAAAAAALvhOAomDAYAAAAAAAAAMCGnxh4AYGfkw7EnmLiqSFBa+kntsFrvATwYSVrzPJhVxMIOho6FTSiAuO56AAAAAAAAAAAAAAAAAAAAABuJhQHU1XtYqUU4pm4Uai9sioXRmFgYu6b2M2/Nc2F+2+rli6FjYQAAAAAAAAAAAAAAAAAAAAD1iIUB1NZzWGlS4a8OpZqxMOd3Bedk57mvK6x5LszOrF5+MHAszLUDAAAAAAAAAAAAAAAAAAAAahILA6gr9xwLYz1hnQZqniv3NPtqXURwXhELu3BfxOGin3kAAAAAAAAAAAAAAAAAAAAAtiAWBlBXPux7BwOts6uqjvU4CrQuDsRqYmHsnLrPvDXPg1lFLCwiYvGRRtM8XNPn8ZSe3wAAAAAAAAAAAAAAAAAAAMA2xMIA6hJWGllFWKd2JEyY50ruafbVmufCfE0s7OBs96MAAAAAAAAAAAAAAAAAAAAAbEksDKCu3mNhbWJWAlhro0BTlWveF3U/B8Woec+uiwhefUPEqWtXv7cYMhbm+3eFowtjTwAAAAAAAAAAAAAAAAAAAABFEgsDqK3vWBhrbQxbiYY1557efYJTq615HqQUMT+z+r2Du/sZZ/JqPp/f/2P9jgEAAAAAAAAAAAAAAAAAAAA7SiwMYGOE6vLnDsuYY7Kqzo9IWGtZLIwdU/c5mTb8EXdWFQs722yebXjmX+mPvnvsCQAAAAAAAAAAAAAAAAAAAKBIYmEAlRGq5Y8VGFaaUmym6lhT3VjYhM7VLt/T0IUbnr7+/XlFLGwxYCyMK336z8eeAAAAAAAAAAAAAAAAAAAAAIokFgZQN7jVe1hpSjGrLqWln9TnnmPX1Lxnn/6d69+fiYUNqnbUEQAAAAAAAAAAAAAAAAAAAFhFLAygbnwmH/Y8RpsY2ZRiT1M61oH0HsCDETz++RE3ft76z1TFwg6GjIVN6JlWN8oJAAAAAAAAAAAAAAAAAAAArHR67AEAxldKxES4ab2q65Rqrl7KdR5C3WN1z7FH5o+N+Ox/EXH7t0SkDT3ceUUsbDFkLAwAAAAAAAAAAAAAAAAAAACgHrEwgNoRqZ5jU1m4aa2q65TSw39Sn3tuD0wpghex9nj/xi9EPOav19vMrCIWdnD20rOm1fOk6bWY2rUDAAAAAAAAAAAAAAAAAAAA2jo19gAA4ysk2JIP26zU+Ri7RySstYufHnsC6E6TwNf8ttXLj85HXPh4N/PwEDFHAAAAAAAAAAAAAAAAAAAA2IpYGEDd4FbuOcyVj/rd/s4TRqut7r36wD39zgFd6+o5PD9T/d7B2W72sUnf/00BAAAAAAAAAAAAAAAAAAAA9oZYGEApwZY2sbBSZh9E1bGmpZ9N15+ww8XYE0CHNj0DTpjdWv3eYqBYGAAAAAAAAAAAAAAAAAAAAEBNYmEAtSNSPcem8mG/2991VWG01CAQxBIBNXZNR/fsVbOIqx+9+r2DoWJhvn8AAAAAAAAAAAAAAAAAAABAPWJhAMUEW47GHmBHiYVdqZR7mt5VRfSmqGk4cH5m9fLFULEwAAAAAAAAAAAAAAAAAAAAgHrEwgBqx3Z6jvLkwzYrdT5GuTYd66ZQ0JTOVV3OCbumw3t2NnYszPcPAAAAAAAAAAAAAAAAAAAAqEcsDKCUYEs+GnuCwlVdp02RMCrVDuXBLmj4LJhXxMIOhoqFTYnnNAAAAAAAAAAAAAAAAAAAAGxDLAygbiys77BSq1jYhGJPVec/idBcqe59MaH7h/3Q5XN4VhULu7vd9sT3AAAAAAAAAAAAAAAAAAAAgJ6IhQGUEnjJh2NPsKPEwlor5d6HTjR8FswrYmGLs9uPUofvHwAAAAAAAAAAAAAAAAAAAFCTWBhA1A229Bx2yUf9bn/nbTj/aUMoSJhnBedk97mGrc1GjoUBAAAAAAAAAAAAAAAAAAAA1CQWBlBMbKdFLGxSAayqY90QCZui2vfFlO6fJZP67uyTDq9bZSzsLyOOLna3n0ruQQAAAAAAAAAAAAAAAAAAAKAesTCAUsJK+bDf7e+6quuUxMJam3Qwa8rHvqeaPgvmFbGwyBHn/3LrcQAAAAAAAAAAAAAAAAAAAAC6IhYGUEo0aNLhpm2kpZ9VpnR+ax7rxU/2O0bJfN92VIfXbVYVC4uIg7Pd7aeKexAAAAAAAAAAAAAAAAAAAACoSSwMoG6wpciwS4kz9WVKx7qle3+v/mcvHvQ3R9HcT/tnUzBwybWPiUgVfxReDBALm5SG1wYAAAAAAAAAAAAAAAAAAAB4GLEwgNrRoL7jQuJF61WdHxGaK9z5aN2G+QAAIABJREFUdfU/+5Ff62+Oou3J963IiGGPujzeU1dFzG5d/d7BELGwiV07AAAAAAAAAAAAAAAAAAAAoDWxMIBdDrace8vYEwynKhKULsfCRMMiIuL+90dcuK/+5z/2O/3NUrKpRbYmocUzYHZm9fLFELEwAAAAAAAAAAAAAAAAAAAAgHrEwgDe+e9rfrDAuNAHfnzsCQpQNxBU4PXrw8ffOfYEO2Ii98Pe6fi6VcXCDtrEwprO5h4EAAAAAAAAAAAAAAAAAAAA6hELA6btL34x4p3fM/YUx1qEYy5+svsxiiWsU0/deNrUuZ/2Tmpx788rYmGLNrEwAAAAAAAAAAAAAAAAAAAAgH6IhQHT9oHX1f9sFhcaV8X5vxwIahMKwnljt3T9HJ6JhQEAAAAAAAAAAAAAAAAAAADlEwsDpu3Pf27sCairMhJUM3Yl9sZJe3M/7MtxdKFF+G5eEQs7GCAWtjf3IAAAAAAAAAAAAAAAAAAAANA3sTCA2noOuwjHtNQiEAQiW0REzCpiYYsBYmFTkjynAQAAAAAAAAAAAAAAAAAAYBtiYQDsiE1xJzGaiBDlqU0sbDd1fN3mFbGwC5+IuPjpbvd1BfcgAAAAAAAAAAAAAAAAAAAAUI9YGEBtfYddhGPWyhXnRxyLNqruJ3ZYi2fBrCIWFhGxONt+FAAAAAAAAAAAAAAAAAAAAIAOiYUBsCOq4k51A0HiUJzkfthNHV+3+ZpY2EHfsTD3IAAAAAAAAAAAAAAAAAAAAFCPWBhAXVnYpUx1Y2FT4XzUsy/f5305jg6kFvf+6esjrpqvfm/RdywMAAAAAAAAAAAAAAAAAAAAoB6xMIBiiP6st+n8iGRd4jzUIv63m7q+bilFzM6sfu+gaSys4WzuQQAAAAAAAAAAAAAAAAAAAKAmsTCA2oRdRlUV1kniWNuZ6vnzfd4/Le/leUUsbNE0FgYAAAAAAAAAAAAAAAAAAADQD7EwAHZEVdypbiBoInEo8bSaJnI/7J0ertv8ttXLD/qOhU3pHvRcAgAAAAAAAAAAAAAAAAAAgG2IhQHUlXsOu/S9/b11HKEpKZJ1//sj7npzxIVPjD1JDe479kXLZ8DszOrli75jYQAAAAAAAAAAAAAAAAAAAAD1nB57AACoZweiVkcXIu78+og/e/2l16eujrjjpyI+80XjzrXOVCN1Uz3undfDdauKhR2IhQEAAAAAAAAAAAAAAAAAAABlODX2AAC7Q1xoVFVxp5S2W79L73rNQ6GwiEvxsLe+NOLTH+5/361N9b7ek+MWPXtI3WfBsnlFLGzRdyzMtQMAAAAAAAAAAAAAAAAAAADqEQsDKEaLcMxNz+p+jGJVnZ+09HNE7/zeK5flw4gP/uSAQzQ9DxMNFolscdlsTSzMfQIAAAAAAAAAAAAAAAAAAAAUQCwMoLYCozHXPX7sCQpQQCTsssXZ1cvf/X3DzkENBX6f2ayPeNe8IhZ2dCHigXu7399lQmQAAAAAAAAAAAAAAAAAAABATWJhALtsUrGZXT7WgoJmyyZ1D5001ePeZy2/Z7OKWFhEdQBwlcl+l+oo+BkIAAAAAAAAAAAAAAAAAAAAO0AsDKCu3kMwbbbf40y3Pa+/bbdRdf5TevjP6g10Ok6xNp6HZRM5L8uEnXZUD9dtdkv1ewcNYmGNuQcBAAAAAAAAAAAAAAAAAACAesTCAHZZn8GjW76kv223UnWsTeNYYyh5xqkGi/bluPflOLrQ8nt21bUR19y0+r2Du9uPwwnuUwAAAAAAAAAAAAAAAAAAANiGWBhAbT3HTlqFv/qcaVf+E1FyiGsH3PO2sScYiXjRburpus3PrF6+ONvP/iLCPQgAAAAAAAAAAAAAAAAAAADUtSslGABWmlJsZtOxboiGtYqxdSQNGTRruK+739zPGKUb836gH9t8z2ZjxMKmRNQRAAAAAAAAAAAAAAAAAAAAtiEWBlBbgXGhXoNHhR1v1bEOGuJqq+BYGOySvp55VbGwgx5jYYJ1AAAAAAAAAAAAAAAAAAAAQE1iYQDFaBOOmVJspupYxbFoY0rfnanY4lkwr4iFLXqMhQEAAAAAAAAAAAAAAAAAAADUJBYGUFcWFxrXplhYydGwgme74WljTzCSffk+78txjGxWEQs7EAvrRCr4GQgAAAAAAAAAAAAAAAAAAAA7QCwMoLYSozwlzlSqEc/VkKGcpvv6jC/oZ47Sif/tqJ6u2/y21csXfcbC3IMAAAAAAAAAAAAAAAAAAABAPWJhAKVoEy+aUvCo6liHDHHto3w09gQjmdB3Zyq2eRbMz6xefv6jEUcXam7EPQUAAAAAAAAAAAAAAAAAAAD0QywMoLYSQzB9zlTa8VbNswuxsIJnFAtjp/R03WYVsbCIiMW5fvbpHgQAAAAAAAAAAAAAAAAAAABqEgsD2GkTis3kimNN6eE/qzfQ6TjNDBkLa7ivqcbCqu4ndtgW37O1sbCz7bcLAAAAAAAAAAAAAAAAAAAA0AGxMGC6msaCeo8Ltdi+4BHbyodjTzCSPfnuTO0Z0NfxXntTRDq9+r2DnmJhU7t2AAAAAAAAAAAAAAAAAAAAQGtiYcB03feHY0/QgSnFZqqONQ06xf45GnuAkezLd2dfjqMLWzwL0qmI2a2r31v0FAsDAAAAAAAAAAAAAAAAAAAAqEksDJiuxUcartB3lKfN9qcUCtoUCys4GpYKni0fjj0BNNDjM29+ZvXyg75iYVN6fhf8DAQAAAAAAAAAAAAAAAAAAIAdIBYGTFfag0dg7jE20+e226iaJ9WMhY16PEOGchruKx/1M0bpSru/W9uX4+jAtlG+WVUs7O7ttku4TwEAAAAAAAAAAAAAAAAAAGA7e1DKAWiraVimxNhJiTMN7fg6bhsK2hsN74mpxsL25buzN9Gzuno83nlFLGxxtqcdTu3aAQAAAAAAAAAAAAAAAAAAAG2JhQHTVVpcqlX0Z0qxmU3HWtj1PKm0e+2kfDj2BOPYm8jWvhxHF7b8ns2GjoVNScHPQAAAAAAAAAAAAAAAAAAAANgBYmHAhDV8BO5NXGhXVZ3/tPSz6fpDKDiUk4/GnmAkvs8sqYqFHdSMhflvBAAAAAAAAAAAAAAAAAAAANATsTBgulLBAae6phSnqTrWy9dxH67nKMTCdtu+HEdNfT7z5hWxsEXNWFhTU3p+AwAAAAAAAAAAAAAAAAAAAFsRCwOore+wS5vt9znTroRs0tLPEg05W8Prlg/7GaN0+xJq2pfj6MSW37NZRSzs4qciLty/3bYBAAAAAAAAAAAAAAAAAAAAtiAWBkzYPjwCpxQK2nSsJcfCCpaPxp5gJPvy3dmX46irx+Od31b93uJsDzuc0rXzfAYAAAAAAAAAAAAAAAAAAIBt7EMpB6Cd1DBect8f9DPHNvKUYjNVx3p8HTdezxHPVdN7bRtN7wmxMPbFtt+z2a3V7x30EQubEt83AAAAAAAAAAAAAAAAAAAA2IZYGDBhDcMy7/2hfsZ4UJuYyoQCLFURrAcDQQMGuRobcramsbDDfsYo3d6E9vblOGrq87pd/ciI049c/d6ih1jY3tyDAAAAAAAAAAAAAAAAAAAAQN/EwoAJaxhwWpzrZ4xtiM3EQ9ex5FhYyY7GHoBteAac0MEzYHZm9fKDHmJhk+L5DAAAAAAAAAAAAAAAAAAAANsQCwOmK+1DvKTHUFBxEaJN82x4f9TjGfJea3icR4f9jFG80u7vtvblOOrq+XjnFbGwRR+xsKldOwAAAAAAAAAAAAAAAAAAAKAtsTBgwgqLhbWKWU0pNlN1rGnD+xPT+D466mWM8rlf9k8Hz/TZNrEw9xQAAAAAAAAAAAAAAAAAAADQD7EwYMIKi4W10SowtqOqjjUdX8dccPQqFXyvlXze+rQv3519OY7aej7eeUUs7KBOLKypCV27kp+BAAAAAAAAAAAAAAAAAAAAsAPEwoDpSqU9AtuEYwqNzQwaMLocoSn0XAyu4XnIh/2MUbx9uV/25Tg60EWQalYRC1v0EQubkMlF7QAAAAAAAAAAAAAAAAAAAKBbpZVyAIbTRViGAW2IzWyM0YwZqxnwXmsa5clH/cxRvILiRZ/+8BYrF3Qc+2BeEQs7uHvYOQAAAAAAAAAAAAAAAAAAAABOEAsD2Gl9hoK22XYfc1VtM214vwRDhukanof7fr+fMUrXNKrWp3t/b+wJdkff121WEQtbfKT7sF5J9yAAAAAAAAAAAAAAAAAAAABQNLEwYMJKewS2CMdMKTZTdaxpF2JhhbvwibEnGEFJ98sWMbkpPQM26iDKN6+IheXDiPMf2377U5WGDCYCAAAAAAAAAAAAAAAAAADA/imtlAMwnKbxkutv72eOrRQaCho0YHR8HfPRhs+NeK4GDeW0OM6z/6f7MYpX0HcnbfPHsYKOYxA9H++sIhYWEbE42/HOpnbtAAAAAAAAAAAAAAAAAAAAgLbEwoDpahq0etxX9jPHVkqNzfQx16ZtlnouIh4Mmg2hTajtrl/ufo7SDRq022TImNw+6+A8zm6p3s5B17EwAAAAAAAAAAAAAAAAAAAAgHrEwoAJaxgLOnVtP2Nc1iZeVFTwqGeVx5o2vM9GD9w39gTTlrb549jU7vuej/fU1RHXPmb1e4uuY2FTu3YAAAAAAAAAAAAAAAAAAABAW2JhALWVGHbpc6Zttt3HXBXbTKnHfXYlbf5IZ0o+DyUp6DylLe4PkbyHbHMeT5qfWb38YFMszLUAAAAAAAAAAAAAAAAAAAAA+iEWBkxY07BLiSGYEmcaWs1YWN9RpXXb7ypiVIt7opaiIlvb/HGspOMYwBDXbVYRC1tsioU1VNQ9CAAAAAAAAAAAAAAAAAAAAJRMLAyYrqahlt7DLi22X2psppe5Ro6BbTT2/o+1Og9DxsxKUcj1ihg4JrfPOjqPVbGwg45jYZPiHgcAAAAAAAAAAAAAAAAAAIBtiIUB1FZQXOhBJc7Uk6oI1uXQUj4abpZVRo+VbWGSsaqSrtc2fxwr6TiGMMDxzitiYYuuY2FTu3YAAAAAAAAAAAAAAAAAAABAW2JhwIQ1DbX0HXZps/1SYzN9zFW1zbTh/U3rd2VdrGzIGFep90RhSoq7bRNrK+k49sVsqFgYAAAAAAAAAAAAAAAAAAAAQD1iYcB0NY3slBjl6XOmEo93pbqxsJ6tPV9iYeUp6Txtc3+UdBxj6+h7Nq+IhR2IhQEAAAAAAAAAAAAAAAAAAADjEAsDqE2Up74+ztWGbY4eNxt7/9sYMmZWipKuV0mzlG6AczWriIU9cE/E4fkOd+S6AwAAAAAAAAAAAAAAAAAAAPWIhQET1jDU0neMqtX2JxSbqTo/6XLoauRzkY+q30sDxrha3UcTjIWNHpfryr4cRwe6+p7NK2JhERGLc93sAwAAAAAAAAAAAAAAAAAAAKABsTBgwppGdkqM8pQ4U/QUYqraZt1YWN/nat32h4xxFXpPFKeg87TN92Vvomc1DXG8szWxsIO7u9vP1K4dAAAAAAAAAAAAAAAAAAAA0JpYGDBdjUMtBYZdxGbiwRBXPhp3jBLvj7rSkDEzurXD913nOrqPr7kx4tTVq99bnK1ez/N4Dc8YAAAAAAAAAAAAAAAAAAAA2IZYGEBdvYdgWmz/4K7ux3jQNsfbx7natM2RQz1rY2VDhnIEi+op6TyVNEvpBjhXKUXMzqx+b10srDHXHQAAAAAAAAAAAAAAAAAAAKhHLAyYsKahlgLDLhfvHyBiVoiq40xp/fub1u9MIdeh1XEOGTMrxN58b/blODqQOryPq2JhB13GwgAAAAAAAAAAAAAAAAAAAADqEQsDJmwPYmEREff9wdgTrNDHuaraZtrw/kDWxae6jBhtJBZWT0nf5y1m2ZvoWV0DHe+8Iha26DIWNrVrBwAAAAAAAAAAAAAAAAAAALQlFgZQV+9Rnpbb/9NXdzvGzjkOXY0eTTta896AMa73/kjzdQaNmZViX0JN+3IcXejwPp7ftnr5QZexMAAAAAAAAAAAAAAAAAAAAIB6To89AMNIKV0dEc+JiM+MiNsi4v6IuCsi3pFz/mDH+3pSRHx+RDw2Ih4ZEXdHxIci4s6c84Uu9wVbaRz/KjTKk9dFqkbSS1htwzavvz3ik+/pYb81HV0cb98nnf3V5uvMbu1+jtL1Hv9roKRZuGR2ZvXyRYexMNcdAAAAAAAAAAAAAAAAAAAAqEksbCQppSdHxBdExLOPfz4zIq4/8ZEP5Zyf2MF+bo6IV0bESyLiporP3BkRr845/9yW+3pRRLw8Ir644iP3pJReHxH/Juf80W32Bd3Yk1hYb3MVdrxVYZ2ULv284ekbYmE9H8+536h+76jwTuKpa8eeYASF3d9tTS04NdTxzitiYQcdxsIAAAAAAAAAAAAAAAAAAAAAahILG1BK6bkR8R1xKRC2MtzV8f6eFxGvjYhbNnz0joi4I6X0kxHxzTnnTzXczyMj4kci4qUbPnpTRHxLRLwwpfQNOec3N9kPjK7vSE3b7RcZC+pjpqptph721cK9v1/93mGjx+oIjsYeYAQlfW+2maWk4xhbh8+CWUUsbHH20jM3FfLcAQAAAAAAAAAAAAAAAAAAACZBLGxYnx8RXzbEjo7DZG+IiGtOLM4R8faIeH9EPDoinhERjznx/tdGxKNSSl+Vc65VjkkpXRURr4+Iv7f01l9GxDsi4uMR8ZTjfV0ua9waEW9MKX1pzvk3GxwWdKxpZKfUKE+pcw2lkGjPVbPq9y5+erg52qj3yN8vRUb22tiX46hroOOtioUdHkRc/GTE1Y9a8ea+/DcFAAAAAAAAAAAAAAAAAAAAKM2psQcgIiLOR8T7utpYSunxEfHz8fBQ2Fsj4mk552fnnF+cc/6yiHh8RHx7RFw48bmvjIjvbrC7V8XDQ2EXIuKfRMTjc85ffryvZ0XE0yPit0587tqIeENK6bYG+4JuNY4F9R12abv9EoMzfcy07TZ7Pk+nr1uz64v97ntrJd5DU+L8dyJ1GA6cV8TCIiIOzna3HwAAAAAAAAAAAAAAAAAAAIAaxMKGdyEifi8ifjQivjkinhUR10fEN3a4j1dGxI0nXt8ZEV+ac37nyQ/lnM/nnP9jRLx4af2Xp5SesGknKaUnx6XY2ElfnXP+/pzzA0v7+pOI+Dvx8GDYZ0TEKzbtB4rROC42kL7m+tjv9LPdtqqO88FA0MjX54anV793898cbo428tHYE4yg0O9zU0elh+i6NtB1m91a/d6iq1jYntyDAAAAAAAAAAAAAAAAAAAAQO/Ewob1uoh4VM75GTnnb8o5/3DO+e055wtd7SCldHtEfMOJRQ9ExMtyzouqdXLObzie7bJro17E6xURcfWJ16/NOb9xzX4OIuJlxzNd9o+Oo2Mwgn0JtfRwHIeLiLvf3H79XgJmVdtMFcsHdup09XunrxtujjamGAsrKf63zSz3vK27OXZeh8+C09dFXP2o1e8ddBULAwAAAAAAAAAAAAAAAAAAAKhHLGxAOed710W7OvI1EXHVidc/n3N+T431/u3S6xenlGZVH04pzSPiRRu2cYWc87sj4g0nFp2OSzPDCJoGevqOC7Xdfg9z3fWm7rfZm0JiYWuDTwWFqVaZYiys9GtS171vH3uCYQ0ZeZudWb180VEsrKRgXe+mdKwAAAAAAAAAAAAAAAAAAADQPbGw/fOCpdc/VmelnPM7I+L/nlj0iIj4sjWrfHlEXHfi9W/lnP+01oRXzvTCmutBtxqHWgqNnfQRnHnvD225gT7O1aZtboiG9R7mKfT+qGWXZ2+rpGPeYpZHfXZ3Y+y8jsOB84pY2MHd3e4HAAAAAAAAAAAAAAAAAAAAYAOxsD2SUjoTEZ93YtHFiHhrg038+tLr56357FdsWHedt8Sl2S57Rkrp1gbrwzh6j021VepcHas6/6njQFBra65DsffOsXw09gTDK/2a1HXd48aeYGADXrdZRSxscbajHezJPQgAAAAAAAAAAAAAAAAAAAD0Tixsvzx96fUf5Jw/1WD9O5deP63Bvn6r7k6OZ/rDBvuCnjQNtfQcdmkdL+pjrm23OeRMacP7A1l7/UqPAk0wFlbSNdkmXLYv0bMudB0OrIqFHXQVCwMAAAAAAAAAAAAAAAAAAACoRyxsv3zO0uv3Nlz/fRu2d9JnD7gv6ElhsbC2ph4L6joQ1NoOX4dJ3kNTPGYamVfEwhYdxcIm+b0DAAAAAAAAAAAAAAAAAAAA2hAL2y9PXXr9Zw3X/9DS689IKd24/KGU0k0RcdOW+1r+/O0N14fhFRt2KXCuPs7V1tvs+Tzlo/H2vbV1s++por7P28xS0nEMYMjrNr9t9fKDqljYxK4FAAAAAAAAAAAAAAAAAAAAMBixsP3y6KXX55qsnHO+PyIWS4tvqLGfT+ecP9VkX3HlbKv2A/1qHJ3pOwTTdvtTCdRUHWcadIpqa65DUWGqFdaGzvbUhY83X6fI61jiTGPp+FkwO7N6+flzEUeH3e6Lhzi3AAAAAAAAAAAAAAAAAAAAcIXTYw9Apx659PqgxTYOImJ24vX1Pe7npFX7aSyldEtE3Nxwtad0sW92UcPITpGhoOhnrq232ce5KjwWtvacFXrvPKj0+XrwrteMPcEJEzz/bT1wz3D7mlfEwvJRxPmPRsxv3XIHrvtKP3064h8cRiRNYwAAAAAAAAAAAAAAAAAAALhMLGy/LEe8Fi22cRARN67ZZpf7WbfNtr41Il7R0bZgSc9hl9aBrokHZ9JxLOyGz4n4izdUf6732NsOX4d8NPYEw7vnd1uslKOYON1lpUYM+/LBn1rzZsfXZlYRC4uIWJztIBZGpXe9JuKv/dOxpwAAAAAAAAAAAAAAAAAAAIBinBp7AHrVpiBS8jrQrcPlZt0GH/yJfubYVomxoD5m2rTN27+1+302sma+Eq/RSVOMhZWk9PujJB/+xeH2de3NEanij8oHZzvYgete6e0vH3sCAAAAAAAAAAAAAAAAAAAAKIpY2H65f+n1vMU2ltdZ3uaQ+4F+nf/o2BN0ZCrBmarjTJd+XPe4iNu/bbBprrA2+FT6NSp9vkIUGfUqcaYepdTuvTZOXXUpGLbKootYGAAAAAAAAAAAAAAAAAAAAEA9p8cegE6JhUX8QET8TMN1nhIRb+xo/+ySw/NjT7CkbfSnxFhQHzNtiIVFRDz7+yLe85962HcdOxwLy0djT7Aj+rqO22y38Hura2ngzu3sTMTiI1cu7yIWVmR8DgAAAAAAAAAAAAAAAAAAACiRWNh++fjS65ubrJxSemRcGfG6r8Z+rkspPSLn/KkGu7ulxn4ayzmfi4hzTdZJKW3+EHtqT0ItvQRndujcnPwOpxRx6pqIowdWfLDvY9qhc7ZMLIydsS4W1sN/z+dnIu77/SuXH3QQCwMAAAAAAAAAAAAAAAAAAACoaV1xgd3znqXXT2i4/vLn78k537v8oZzzxyJieflnbrmv5dmB2kqMVPUwU+0o2kgBwHXz9RJ061Lp85Wir/O0xXaLv7c6NnTgc3Zm9fJFF7GwiV07AAAAAAAAAAAAAAAAAAAAoDWxsP3yzqXXT224/pOXXv/JgPta3h70r7jITtt5SjuOvlQd50hxsCusuw6FX6N8NPYEUNO6P7r28CyYV8TCDlbEwor7bwoAAAAAAAAAAAAAAAAAAACwL8TC9ssfLb3+3JTSdQ3Wf86G7a1774vr7iSl9IiI+NwG+4Ke7EnYpcRATS8zbRsL6/s8FXgdahMLq6Wv79pW293l+66FNHAccFYRC1vc3cHGJ3btAAAA+P/s3XmcW1d9///3kWbRjD2O7Ti2Yzv7bjshJJCNAGEPhS8Uyg79krIV+m2hv/JtS6Bl+9JC+4PyZSlbCVspEAiEQCgJJBAITsKSOHHikMRZsOPE+zr7jKTz/UOzSBpd6epenXuPRq/n4yHP3HPvPfdzF8ka6egtAAAAAAAAAAAAAAAAAAAAAAAAIDLCwuYRa+0OSZvKmrokXdxEF5dUTf+4zrLXNVi3nqeqVNu0jdbaXU2sD6DcyFYHnbZRiE11eFDSYULT6gY+eX48fQyc85KPx8nHmlxK+KlrUFjY6M5k62h7nXadAgAAAAAAAAAAAAAAAAAAAAAAAAAAAADQWoSFzT9XV03/WZiVjDGnSzq/rGlY0k/qrHK9pNGy6Qun+gjjsqrp6pqBhHgWXhI1sOnw/a2toyUcHFvvA63q1Od97cW0C+hwvl8fHjH1nro6OI59AWFhk4ek/GjteQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC1GWNj881+SCmXTLzXGnBJivb+vmv62tXYsaGFr7Yikqxr0MYcx5lRJLylrykv6Roj6AHS8oCAgk2gVweoEFW27Utp7W3KlNMsWGi8DeRnq5X0QXYstPSd4nsm2fnt9RwfPG9sVr+9OO3cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAywsLmGWvtFklfLWvqkfQVY0wuaB1jzIslXVbWNCHpAyE2935Jk2XTlxljXlRnOzlJX56qadoV1tqHQmwLaD2CWhxycWxjhoW5Pt+N+v/Zc6T9G93WALecXUM8FoW24pnB8zJdrd9ebmXwvLGdrd8eAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABADYSFJcwYs8YYc3z1TVJ1GkVXreWmbssabOZ9kg6UTV8k6QZjzOlVtfQaY/5K0neq1v+YtXZro32x1j4s6RNVzVcZY/7SGFMeCCZjzBmSbpyqZdo+hQslAxzxLaDHt3rahKkOCwsZHtZyDc5ffkh6+EvJlNIsgvPaWKedu4D7d6andntc3YukbEDe6mjcsLBOO3cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCqrrQL6EC/knRciOVWS3okYN5XJV0WtKK1drsx5qWSrpc0nZ7xFEn3GmNul/SwpCM/q+KTAAAgAElEQVQknSPpqKrVr5X0jyHqm/YuSeskPX9qulvSpyT9ozHmDkmDkk6c2lZ5wseEpJdYa3c0sS1gnvMoOCZueJSL8CnfA63C1PfAp6Unfcp9LU3z/Nh6w9FxinVtd9q5C9jfRae52ZwxUm6lNPyHufPG4oaFAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhENY2Dxlrb3JGPMSSV/RbCCYkfSkqVst35T0ZmttoYntFIwxr5D0RUmvLJu1XNKlAavtlvR6a+3NYbcDuOFZyI7vYVipCzo+JqA97Pqt0sbnj2sP7cIWA2Zk3G0zKCxstDosrNn7Efc7AAAAAAAAAAAAAAAAzD/5gtXeIWn3oLRnULrkNCmbCTvODwAAAAAAAAAAAAAQhLCwecxa+9/GmPWSPqBSkNeSgEVvk/RRa+13I25nSNKrjDFXSXqnpAsCFt0v6UpJ77PW7omyLWB+m0/BMS72JWxYWEqDigJDjNrBfLr2XHJ1nGL023FBbwH7axze7/tW1m4fqw4LAwAAAAAAAAAAAAAAADrTll1Wf/yZonYflvYNV87b9bGMjhpIpy4AAAAAAAAAAAAAmE8IC0uYtfb4hLe3W9LbjDHvkPQUScdJWilpWNJjkjZaax9p0bauknSVMeYESedIWiVpgaSdkrZK2mCtnWjFtoCW8C5kx7d62oTLkKCmtPP5a+faE+TdY0YHCgzly7jbZs5RWBjXEwAAAAAAAAAAAAAAAOaJ/h7p9ztqz9s9KMLCAAAAAAAAAAAAAKAFCAvrEFMhXT9PaFuPSGpJABngVoSglslBqdvRqBWvgmPi1uJgX7w6PrX4Xl8d3h/b+S7O8e+0cxewvy5DA/sCwsJGY4aFAQAAAAAAAAAAAAAAAPNEvTCwXYeldauSqwUAAAAAAAAAAAAA5qtM2gUAQFvZdZPDzjst9KdZQccnbEiQ4+MbNnBrbLfbOiLh2gvHw+PUaUFvgfvrMCwsFxAWNhY3LKzDzh0AAAAAAAAAAAAAAADmrZ4uo8X9tec9+9+Ksp02zgkAAAAAAAAAAAAAHCAsDEAHizD45I6/bn0ZM+bRYBgXA3vChgQZh6FBdYXc5xue7raMSObRtRdWpiftCmYxEK4JxdrNxuFT2r6AsLDRnZy7sDhOAAAAAAAAAAAAAAAA897ygeB5X7uV8SMAAAAAAAAAAAAAEBdhYQDQDFtw2HfEwTC55a2to92kFg5WLeT5O3yf2zKi6MQgn4FTI6zk43HysSaHwoYGtlIuICysOC5NHnK3XQAAAAAAAAAAAAAAAKCNPLAreN7VGztsnBMAAAAAAAAAAAAAOEBYGIDO5V1AUtR6fAnLKufi2Mbs0/X59u56akY7154gZ+eY4x9eCmFhfQFhYZI0uiNGxx103r0JdQQAAAAAAAAAAAAAAIAr739R8BiRHXwnHwAAAAAAAAAAAADERlgYgA7mW1CLT2Fhvh0bKXxIUFqhNJ4cs+5FaVfQJjw5X7HNl/0IyRZrtxuHT2lzK4Lnje10t935pK3DFAEAAAAAAAAAAAAAABDGuy4NHrs3nk+wEAAAAAAAAAAAAACYpwgLA4CmOAyiihqmYtIKx6rHQTBM0PHxZv99CcOJ8l+7L7X7ztVxitFvx4UwpfA4kM1J3YtrzxstDwtr8lx03LkDAAAAAAAAAAAAAADAfNbTZfTRl9cexzM+mXAxAAAAAAAAAAAAADAPERYGoINFCWpxGe4StW9fwrLS4sn+exP8E6EOb2pPUifu8zwQeK06fhzoO7p2+9jO2u0AAAAAAAAAAAAAAABABzqir3b7eD7ZOgAAAAAAAAAAAABgPiIsDAC8MY/Ci5yET8Xt0/Xxbefz1861J8nRcYp1f+m0c1es3WwcP6XtW1m7fTROWFgnnbtO2lcAAAAAAAAAAAAAAIDO1dtVu52wMAAAAAAAAAAAAACIj7AwAJ3LSaBVDD7V41MtM4JqMg2mk+LLMYtShy+1JyjKNd5W94t5KvAcOL7f5wLCwsbihIUBAAAAAAAAAAAAAAAA80tvV+1xPBOEhQEAAAAAAAAAAABAbISFAehgvoXs+FZPHA72JSgkyKQVDlbFyyCpkNq59nmB4x9eMaA9pbCw0ThhYZx3AAAAAAAAAAAAAAAAzC89XbXbxwkLAwAAAAAAAAAAAIDYCAsDAF9EDmzyJCwrNWH333UwjyfBP5GuI09qT9Q8OU6dFvQWGBro+CltX0BY2FicsLBO0mHXKQAAAAAAAAAAAAAAQIfqJSwMAAAAAAAAAAAAAJwhLAxAB/MtvMS3euJwsS8h+zRphae18/lr59rngU4L/Iol6Fg5vt/nHISFcd4BAAAAAAAAAAAAAAAwzwSFhU0WpGKR8TIAAAAAAAAAAAAAEAdhYQDQDKfhLgyEqS+lkKCwvAn+iVCHN7Unab4cJx9rcsgWa7e7DgnsCwoL2yMV+drThry87wAAAAAAAAAAAAAAAKDVeruD500WkqsDAAAAAAAAAAAAAOYjwsIAdK5I4SUOA0+ihqk4CcmJuZ8ugmGC+nQdEhSaL2E4nl3XvvLq/h+n3047d0H76/gpbS4gLExWGt/jdtsAAAAAAAAAAAAAAABAm+jJBs8b5zv5AAAAAAAAAAAAACAWwsIAoCkug3k6LfSnVUKGhbkIMEuyf6fauXZ0lpRCA/uCwsIkje4s/Wz6MYD7HQAAAAAAAAAAAAAAAOaXTJ1hPG09xA4AAAAAAAAAAAAAPNCVdgEAkJ4II09cjlaxxYgrOg7JicTFcQrbZ1rHI+r5azFGVIUU5Ti5OrYx+h15rHVltIPAx0nH9/ueIyWTlWxh7ryxnW63PS/wuAQAAAAAAAAAAACg/RhjTpB0tqRVkhZK2iFpq6RbrLWTKda1VNKTJJ0gabFKb5ofkrRd0m+ttbyRDSA19b7zjxEkAAAAAAAAAAAAABAPYWEAOlekUCWHw1UKI+76nheCjr0nYWntHNLVzrV3ukevks79eNpVJCjgWjUZt5vNZKXccml0x9x5oxHHWHO/AwAAAAAAAAAAAAAvGWNeJulvJF0YsMh+Y8yVkt5rrd2bUE1G0isl/S9JFzdYdqOkz0n6krU2n0B5ADAjU2c4X5HhMgAAAAAAAAAAAAAQi+NkBQCYbxyNVikWoq/bvah1dcyIuZ8uQnCC+qz3VYSVHbSslHT6DytCHYWx1pfhuyjXqKtwpzj9jmxvXR3tIPBYJRAamFtZu32sRoAYAAAAAAAAAAAAAKDtGGMWGmO+Kek7Cg4Kk6Slkt4m6R5jzPMSqGulpBslfVMNgsKmPFHS5yXdZow52WVtAFCt3nA+vlsPAAAAAAAAAAAAAOLpSrsAAEhPlLCgYuvLkKR9v4m+bqa7dXW0perRRQmEBtXky0imCHUcuKMUGJbNtb6cecXVOfbl2mkDgY/BKYaFje6M2GEnnfdO2lcAAAAAAAAAAAAA7cgYk5V0paQ/qpq1R9JGSYcknaRSENf0m9QrJF1jjHm2tfZXjuo6StLPJZ1eNWtyqq6tkoqS1kg6V1L54I9zJf3cGHOxtXari/oAoFq9UTyEhQEAAAAAAAAAAABAPJm0CwCAtuIqLKw45qbfyEIE7/QdXWemi1E9no8UaveRTNu+m3YFCfPpfPlUi+8CjpVJ4Clt0GPeWNSwMAAAAAAAAAAAAACARz6iyqCwSUl/JWmNtfZ51tpXWGvPlbRe0q1ly/VK+r4xpt5Amjj+r+YGhX1uqq7zp+p6lbX2YklHT+1H+QCnNZI+76g2AJjD1Bl6yCgpAAAAAAAAAAAAAIiHsDAAHSzK0BNXw1ViPBw7CakK0eczfupgu/UE1RQi2CwRngxlino93PXu1tYxLzk6x+0eNJekoMDGeqMMW6VvZe320ahhYZx3AAAAAAAAAAAAAPCBMeZESe+oan65tfbT1tqJ8kZr7b2SnqXKwLAjJb3PQV3HS3pNVfOHrbVvs9burl7eWnvQWnu55u7L84wx57e6PgCopW5YGMNlAAAAAAAAAAAAACAWwsIAdK5II08cjVYxcR6OUxpB07OkzkwHNQWdr9AhQa6PU5uPZBrZlnYFCfPpfPlUi+9SDA3MBYSFjUUNC+sgjPQEAAAAAAAAAAAA4Lf3Seoum/6KtfaaoIWttaOSLpNUHiT2xqnQsVb6H1XTuyR9IMR6/y5pU4O+AMCJTJ1hPEWGkAAAAAAAAAAAAABALISFAUAzXAWe+BYWFmY/Q4d0uVZVR1p1eROG40sd85A357iTBYUGJvCUti8gLGx0OiysyeuD6wkAAAAAAAAAAAAAUmeM6ZP0sqrmf2m0nrX2AUnfL2vqkvSaFpYmSdXhYz+x1o43WslaayX9sKr5lJZVBQB11Bu9x3AZAAAAAAAAAAAAAIiHsDAAHSzKyBNXo1ViPBz7OILGSU0e7mcFX+rzpQ7PRbpGXR1bzllothgwI4GQwFxAWFh+UMoPu99+W+MaBwAAAAAAAAAAAOCt50nqL5u+1Vp7X8h1v1w1/dLWlDRjQdX09ibWfbRqeknMWgAglHrf9ckIEgAAAAAAAAAAAACIh7AwAGiGq2CueiNkGkprCE0C4TwVgvYzZB3OQ9UYytRePDpfPgb+eSvgWJkEntIGhYVJ0tgu99sHAAAAAAAAAAAAALhwadX0TU2se7OkfNn0E40xK2JXNGtn1XSuiXWrl90fsxYACKVuWBjDpAAAAAAAAAAAAAAgFsLCAHSwKCNPii2voiTOw7GPI2gc1BQ0UmjO6KKkQ8ym+DKSyZc65iVXx5ZzFlrg9Z3A/b6vTljYaPX47DA47wAAAAAAAAAAAADggfVV07eGXdFaOyzp7qrmdbErmnVz1fQ5Tax7btX0b2PWAgChZOoM47mf7+MDAAAAAAAAAAAAgFgICwPQuaKEKrkKYjIxHo5TC4dKOpQrxZCgUAj+aS8+nS+favFdUGBjAo8DXQulbH/teWNRwsI6SRtc42O7pb23SYWJtCsBAAAAAAAAAAAAkKwzqqYfbHL9h6qm18aopdqNku4vm36qMeasRisZY1ZL+pOypklJ32xhXQAQqN4onlf/R1EHhq0Gx6wsX4oJAAAAAAAAAAAAAE0jLAwAmuJhWJiXISw+1uSaL/vsSx3zkKsBagx8Cy/oWMV6DA3JGKlvZe15o1HCwjjvXigWpNveKH1vhfSTC6XvHik9fn3aVQEAAAAAAAAAAABIgDFmqaSlVc3bmuymevlToldUyVpblPQGSeNTTRlJVxljjg9axxizQtL3JZV/G9aHrLWPt6ouAKinWGdIzJ5B6cj/r6gj3l7U2vcW9Y1fB31xIAAAAAAAAAAAAACgFsLCAHSwKEEthIXNMPW+A9CBwJCgsHU4Pk7eBD75UofnIp0vV8eWcxZe0ADBhB6PcgFhYWNRwsLghQc+KT38pdnp/JD0yxdLY3vTqwkAAAAAAAAAAABAUhZXTY9Ya4eb7GN31fQRMeqZw1p7i6QXStoz1XSKpE3GmI8bY55njDndGHOaMeZZxph/lrRZ0pPKuvi8pP/TypoAoJ5Do+GWu3+X9KdfsvrJZsZOtZNivTS4Jvsp1OjLlo3rKxSt9g1ZWVu6HRypve1C0VasV95XrXYAAAAAAAAAAACgnXWlXQAAtBUfBw4UCw46jbmfTo5TUJ9VIUFJh5jN8PDaQGtZF/c1iWunCbFDA2PqCwgLG90pLTi+ub58/P/EFZ/39cEvzG0rjkuPflc65c+TrwcAAAAAAAAAAABAkhZWTYeMuKm7zkDEWgJZa28wxpwh6a8lvVbSCVO//3Wd1e6T9F5r7XdaXY8xZrmko5pc7aRW1wHAT8cfGX5Za6VLPxH05YElX/yfRi95otHopNSTlY5cKI3npV2HS8FkB4al3YPSCctKy69aLO08JGUz0pbd0gUnSmuWpDWmcH7Yus/qvddYXbvJ6sBI2tW48+rzjMYnrb63sbL9lOXSW55mdP8u6UebrC67yOj4ZVJ3tvxmZn7vyVbPC771dJV+ZjOSSW3sKwAAAAAAAAAAANoJYWEAOliU8BJHgSdxglTsZOvqaErSAxNChoWlxZcwHF/q8F6E41QYb30ZcR2xNu0KEhZ03jLJbD4XEBY2tjOZ7aP1Dt9Xu/33HyUsDAAAAAAAAAAAAJj/qsPCxiL0UR0WVt1nq0yP9QwzeOEWSe+XdIOjWv5C0vsc9Q2gzS0bMDrnWOmOba3p701fs3rT1+KNiXvTU40++1qjbMaTsYZtZN+Q1dP//6K27U+7Eve++Zva19mW3dLfXjU778M/rrVc/HGbYYPFqm9ZI930gDQyMdvXqSukB3ZV9n/RSdKqI6Sr7qhsX9wvHYwQAnfOsdL61UbrVknrVxmduUZavZjQMwAAAAAAAAAAANcICwPQuaKEKtn632IXXYyBAsWJxss0Le7AhQQDq0IPLHBdEyFd856T+5riBbz1LG1dHe0g6DE4qQFGQWFhozvU/GMAjxl+4/wAAAAAAAAAAAAAHcijbx6cZYx5s6SPS1oQcpWLJP1E0j3GmLdaazc4Kw4AavjaGzJa/35XYy2b98WbrU46Svpfl0iHRqWurPSbR6ShcatzjzPaPyz9/XeLunmL9NrzjR47YHVgRNozJI1PSksWSEcukJ58gtF5x0snLDPa/LjV9gPS4Jj0snONFvRK126y+vptVo8flC45TbrkNKOf3mu1cpHRMUulE4+S7nxUOmaJ9OrzjFYtTidUaXzSqmhL4VPZjNH4pNXwhLQoJxWKUjYjjU2WhmR98me2I4LCfDBZKN1aoTooTJJueaj2slGCwqRSIOAd26afBpV+HtEnrV8lrVtttH5VKUxs/apSiCAAAAAAAAAAAABag7AwAGiKq/F9ccLCJltXRlMSfvM+dKBSWoMKfAmW8aWOKjtvkB79npTpkXqWSKM7JZOVjn25tOLpKRQU4Ti5CguLdc48Pd/OBO1vQvf7vqNrt4/tTGb7basNr1Nn4aAAAAAAAAAAAAAAPDJUNd0XoY/qdar7jMUY8x5JH6pq/p2kz0i6WdLjkoqSVkq6QNJbJD1jarn1kn5hjHmjtfarrawLACTJTo3pM1Vf9Ld2ldHgpzK66CNF3f1YGpXNdfn3rC7/Xq0xLJVt//XrucvsG5YelPTrR2zNdT5x49x1rt1UCg+rtbwk/e1VtcfTLFsorVsl9XWXAp8e3ltzMUnSS58o3b5N2rqvNP28daVj/+uHbWAwFODSoVFpw0PShocqr/0ViypDxM5cbbR2lTSQI0QMAAAAAAAAAACgWYSFAehgHn0ZaOggrBqcBRjF4eI4pRwS1Mj2a9KuwF8P/of0m7fUnrfl36WLvikd/6pka4rCx7CwOI8d7Shof00mme33razdPrYrQrhUh527dmPzaVcAAAAAAAAAAAAAwD2vw8KMMc+U9H+qmt8v6YPWznkD/Q9Tt28ZY94i6XMqDarJSrrCGPOgtXZDi0r7jKTvNLnOSZIYXAO0KTs+Kl33ddnd26XvfU4aOjgzz3z9Lum40+ess6DX6K73ZTWZt7rxPum6zVafrBGqhUp7h6RfPBBu2e9trJy+frN0/WaOMfyz63DpduN9lSFixx8prV8trVtltH61tH6V0ekrpd5uT8YFAwAAAAAAAAAAeIiwMABohrNgnjhhYZOtK6MZJuk34z0PCzuwsfEyncgWpbveXX+ZW16dfFhYlPuyq7CwTgv8iiUokCuhx4FcQFhYcVKaOJBMDUjGyKNpVwAAAAAAAAAAAADAvUNV0/3GmAXW2uEm+lheNX2w5lLR/JMq3xD/qrX2A41WstZ+wRhzjKR/mGrKSvqEpCe1oihr7W5Ju5tZxyQ+zghAaxnZj/5l7Vm3/HfNsLBp3V1Gl66XnrdOOq3wkP7qpuNVVEJfDAjAa3/YV7pdu2k2RCybkU5ZLq1fJa1fY7R+KkjspKOkbIbnEwAAAAAAAAAAAISFAehgEQJ6bKH1ZUjxwoLSCgurJ8nwo7CDCV3WNLbXXd/N8DF0as8GaTzE8TmwSVpylvt64rBBQVWxO05p3TYUdI2bhAYQ9gWEhUnS6M7m+vLx/upKJ+0rAAAAAAAAAAAAgLZhrd1njDkgaUlZ87GSft9EN8dVTW+JXZgkY8xqSRdUNTcMCivzEUnvlNQ3NX2uMeYsa+2mVtQHoLOY3lzgKCX7mctlr/68zD99W+aUJ8he/w3ZD/1ZzWX/XNL5vWfpqkUv1UeW/d1Me3+PdPYx0i0Ptb52uLVGuzWpLu3S0qbWy6qggrIz0xdrk4rW6szhu3TRwGM63L9cWrZKO7NHqW/sgD7y6AUayg5U9NFvxnXhkt3aPdqjx4Z7VLBGq7sO6YxDt+u0ZZO60TxZvx4/sSX7OS1jrE5ZbpQvSpOFWjeryQKBVnEUitJ9O0u3q+6wmh4jmeu2OmOFtG6V1cpF0vC41Xkndem81RM6ZqnRiO3WQ3ukvh6jPYPSeF46YZm0bhXnAwAAAAAAAAAAzC+EhQHoXF6Fl8QJIUprPxJ+Az30+Urhjf3CSPLbbBdju8It9+DnpCd/xm0tFaLcbxzd1+I8Fnn1OJaEgMfKpMLCequ/ELrMWJNhYQAAAAAAAAAAAAAAH/xe0kVl0yerubCw6hSSZtat5+yq6YettY+EXdlaO2yMuU3SM8qaz5dEWBiA1tvxB9k3nCd75kXS3bfUXfTs8U06e88mfWjP+2cbc/3SXbNj8ArK6EcL/0hfP+LV2tB/kd574F+16JnPV1dxQrcOPFWHM4u0b8jqzNXSCUdM6PgVXVKmS2OT0jd/Y/WN33TamKpkZW1e27ecqKMKyX3J6ruaXeEx6YMhFy3KyMiGH3l679RPY2qO37OS8urSpOmuvJW1TZieOW3Tt/xU+8wyNdaf7adbkyqt85mlbw27BzOOyu9WVkXt7Ar+Es2szatgZj9y8rqD/6WnjfxK9/eeos2963RP7zpt717T9LabNTZptHG7tHH77Jn67M1WUvfUlK36OeuikVv07r3/omcO36QeteALmi99nczL/0rm1OqnawAAAAAAAAAAAO4RFgYAPogV+OPjwBYXNQX1ybd+zfLxWgh5frZ8tnPDwhCeDQpWTCgsLNsj9R4pje+bO4+wsDq47wAAAAAAAAAAAADw1j2qDAu7UNIPw6xojFkg6awa/bXC4qrpKG9KV6+zLGItABBOg6CwQGOVX9aZVVEvGrpWLxq6drbx25+VJL28QVfjAy/SN9Z8K1odDnXbCU2anrTLaIl/3XV5okFhrmWijm0KGPdrJHUrr26bl+xo9MKa9MldfyNJ+soRf6o3rfr8nPnPG/qJfvToHzvZ9sHMEdrce4Y2967T5t61uqd3re7pXad9XX489bil/yK98NhrAucfmd+r1x36hn654Gn6fc9pGsv0zcx79tANGs4s0DGT2/XDgRfouMltum/r6dJHJalQd7snL5ce3F173jueZXTno1a/eCDcPgzkpOeulYpWunrjbPvbLjG6/PlGh0el4Qnp8Kj02EGrOx+VfvuI1eolRodHrRb3G73yyUZnrpZ+t9Xq6jukK39n9eInSEsWGC1bKD37DKM/7LM6OCKtWSKN56Xv3m5192PSkgXS196Q0VlrSmOCrbWaLJSWGRyTlvRLGVPK0Bsck/7xGqvP/aJ0H+nKSPmi9JSTpPt3SXuHpGOXStv2V+7fkn7pWWcYvfv5Rictnzv2OF+wslbq7mLcOAAAAAAAAACgsxEWBqCD+RReEqOWWEFjMfo0Sb/Z6nNYmA81wDkX97VSxymt24aCwsJMQmFhkpRbWTssbLTZcdkddu4AAAAAAAAAAAAAwE/XSXpL2fQlTaz7VFWOwdxord3ViqIkHayaXhChj4VV00MRawEA6ZxLpDtuSruKhgoNvnTwbfs/r+cO36Dt3au1Ir9L3XZSB7OLlbUFPWf4Rh1V2Ktb+s7Xzq6VWlgc0tNHbtawWaCRTL9uz52jXV3L1WMn1GdHdenQTzSS6deEurWoOKh+O6IeO1ExmnDc9KjXTkiSijL6Wf8l+vTSv9C1Ay8IrHHt+L166sgGjZte3d27Xrf3nRNq31fmd2pn18rA+aeN36+37/933dd7mv7ziNfoYHaJjszv1QuHfqwXDP23rIzypkv7s0v1i/6nasT069d9T9a+rmU6dfwBXTp0vV46+H1dPHprqHqQjlcd/rbevvLfNJKpfOrwnr0fdrbNxcVDesrobXrK6G0zbVbS7uzymeCwzbl1uqd3rTb3rtVwpvopSrr2dS3TJ458e815Nyx8tiRp+qq/r/f00P0GBYVJ0idubG784OCY9N075rZ/9iarz95Ury878/Nbv5273DV3zS7z0Z8E9/PoAensDwZ92Wt9+anVNjw021YeFCaV9m9wTPryBqsvb2h8bJYPlG5dWSmbKQWSdWWmfs+W/V72sytrZn7PzLTVXj9rAvrJVvc5vawJ109A3+V1zO1bMomP2QcAAAAAAAAA+IywMADwwnwLC0qwptBvgDqsyZc3YZ2FWcXgy7GpFulY+RgW1mk8CQs7tHlu+1iUL3EGAAAAAAAAAAAAAKTsekmjkvqmpi80xpxurb0vxLqXVU1f3cK6Hq+aPs0Y02+tHWmij+p0Gd7YBhCZefcXZV92ctplNHTqxJbAeQ9vOVXH5rc37OOi0V9XTPfaCS0tHtCaocfmLHtE8XDdvqaDwiQpI6tnj/xczx75ecMa4phUl37fe7qWFA7omPzcmiXp47v+tm4fbzvwBRelIQE5O66HHjxDly//kH7Vf5FOmXhQ79z38TnXtWtG0orCbq0Y2a1njdw0016U0bbuY0oBYtNBYr1rdV/PaZrI9CZaI9rX7sHSrTkux+q6HQdsTNhAtPqhY7XDz0xFWzZE380Fq5k5ddSqLXzoW2UbQWoAAAAAAAAAOhFhYQA6WIQ35ly9oeRjyFNDCb+5FvYYdYV4/e0AACAASURBVPSbfj5eR/PofLi6n8bq18dz7pAN+ma6BMPC+gK+fXPiQJMdddK566R9BQAAAAAAAAAAANBOrLUjxpirJP1pWfPfS/qzeusZY06V9JKyprykb7SwtE2SDkhaMjWdm6rx82FWNsa8UNLqquZftaw6AB3HrDhG+ti1su98Ydql1LV+fLPOGtukTbmzKtpPnHhYx4QICpsPupXXWeP3pF0GUnRUYa++uOOtaZdRU0ZWx09u0/GT2/TCoR/PtE+qSw/2nFQRILa5d60e7DlJRZNNsWIgfdZKk4XSzUHvLjpNrP+MCRtaFiVYzcwJNKvXd6Pws7k1muB+6tQWJliNIDUAAAAAAABgfiMsDEDnihLQ4yzUKygAJyRr/QrJcnKcgvr0Yb99qMFXvh6bKNeoq/t/jH7bMmgwhqCwMJNgWFguICwMAAAAAAAAAAAAANCu3i/pVZK6p6YvM8Zcba39Qa2FjTE5SV+W1FPWfIW19qF6GzHGVL/J/wxr7U21lrXWFqZCzN5c1vwRY8wGa23dBBhjzLGSPlfVvMFau6PeegDQiDnvOdIvx6SbfyD7nlc0t/L6C6R7bnNTWBkj6eO7/rf+ZM2VOpgt5S3miqP6wo63eTuSbV7IZqWCkxQbdIhu5XXGxP06Y+J+vWzw6pn2UZPT73tPnwoRW6vNvet0V+9Z2tF9dIrVAvBF0UoT+amJyVb33t5BanPCzQJDy6IEq5k54WTN9N04WM2ED1FrMlgtYwhSAwAAAAAAQPsjLAwAfBA78MeqtaFMYepJ+k2SmGFhHRGq1An7mCYPw8I6jQ9hYX0tCgvriMckAAAAAAAAAAAAAPCftfZhY8wnJP3vsuarjDF/I+kL1tqJ6UZjzBmSvijporJl90n6gIPSPijpdZL6pqYXS7rFGPNuSV+y1o6UL2yM6ZH0akkflbSsqq/LHdQHoAMZY6SnvVj695/JXvFB6Y6b6i9/zTaZpStmpu01/yH70b+cXaB/oDSOZnSoNP30P5aWrZK++5nINT595Fe68+HzdP3C52jM5PTiwR9qTf6xyP2hyilny1xxm2StTGZ23Ja1VrrtOmnXo9LYsLR0pdS/UFpzsnT0CVJ3j7R9i/TYw9KS5dIJ60orjo9I+3ZJx5wsZbtkjCn1NTkhZTIyXd0BhUxt8+BeqbdPpn/hTFt5CIjdv0t6YKP0yL2y2x+UOfkJ0pkXlbabyUrHnV76st6enEw2W9n/4f3S3bdKgwekxVP/tWayUiYjyZR+GlMav2ZM1e9TPxsuoxr9BfRTvkz574W89OiDpeN+1Bppcly6+xbZ266TbrteOvZU6YlPl0aGpN/eIPXkpEteIrP+QmnFMaVl7/yltPGX0vDh2QOw/gJp305pxx+knl7pRW+SWXmcdPbTpurR3HFwFdM2oL1qOuh3Sf2yOlfSueXzittUvOfbuvUHt+kruZfpW12XavXk43pd/od64znD+umdo/pQ9o16qOckAUCnKhRLt4nGi0bQ/kFqzYSONResZmZ+z9QNRIsarGbq99NU6Fvl+pkMIWoAAAAAAADtgrAwAB3Mp6CWmLVYm3x2V10JHts53+zi1YGAt9+8E+EadRXuFKtfnx7HkuBBWFiuRWFhnYRgNAAAAAAAAAAAAAD+e5ekdZKePzXdLelTkv7RGHOHpEFJJ0o6R5WDUyYkvcRau6PVBVlrtxtjXivpO5Km00sGpur6V2PM7ZIeV+nN9JWSniRpYY2u3mOtvbnV9QHobOasp8h84npJki0Wpftul73hSmnLXVI2K/OMPykFC1WNHzMvfrPMi99cWm90WMr1z1lGkvTXHy8tMzEu09MrOzYi/fIa2Xt/UwqdmpyQbvyOdHDP7DpPuLgUivTDL2nN6cfqTecfJzs6JI29SCpMStsfkk5cJ7P6JGnRUinXL/XkZL/zKenXPyn1ceI6mZe8VcotkIYPSd290jNeKm3bIvvNj5XGKfUPSHu2S7+9sRTANDkhyUojgzLPfLnsF99fuS9HHi0duVJauqIUinbXr+Id/N4+aXw0Xh9RXfRHMn/32dI5qz63xkgXPj9gxSnHnla6levNlc5HdV89vQ3LMcZIS46a21Y+vXSFdMGl0gWXNj261CxaKj3lBU2ulZIlyyunTz1b5k/+Ity6a58s88p3tL4mh7JnXaSLXyNdrFKKq7RI0umSpNdP3STpunus/uiTAeMOHTph4hGdPXaXrl70xzXnrx2/V9u7Vutw9oiEKwMATAepudHeQWqtCB0LDj8zsyFndQPRGgerza3DNO6nRlvYfSRIDQAAAAAA+IawMADwQtwX7VMIYkk6BMrrsBlPavPyGM2nN0Z8PL4dxga9M5tgWFhfq8LCuJ4AAAAAAAAAAAAAwBfW2oIx5hUq5U28smzWckmXBqy2W9LrXQZxWWuvNsa8WNIVklaUzepTKR+jnmFJ77LWftpVfQAgSSaTKYUNrX1yc+v1LWi8zFRglMn1S899tcxzXz07cypQbI6/++zs+mHqOP+5jRdad57Mh64M0ZtkXn95qOVawebz0v6d0uS4tGy1TG9u7jKFgnTf76RMthSG1ttXCngbPixlu6R9O6RfXy/lJ6UT1pVC1JYdLW17QDq0XxrcL62/UDrlCTJd3YntG9AKl643Kn4hO6d9dMJqcExavqj2o8T4pJ0KEjEaPzwo+4KjVTQZ5ex4cwU8JhVllGnheMFRk9Nvc+fqRwPP10BxSEfnd+r4iT/omPx2HVE4rKMKe7Q7u1wHsot18sRDuju3Xv95xGv1pcWv12sOXalTJx7Q+aO/UY+d1FBmgQrKaqA4pHt7z9CWnpN13OQ2veHgV9SlgiTpq0e8Tl854k+1tHhAp4/fr3PGNmpx4aCsjH7T92RNmm4NFAf1dys+MlPjx3e+U2878AVlVah4HLaSRk2f+u2o8sqqSwWNmx7d23OGPrH0L/X9gRdpKDsQuO9Zm9c/7v1nLXvuC5U/9VzlpwJ/Zn4WNLdtqr28rTDTZkvzy9vs3H6q189XLTvTVlUHALSb6cey8byL3l2OnXc7Lt+YsIFotUPHGoWfZafCzkrBZOGC2cIHq5lw/YQOfav8SZAaAAAAAADpICwMQOfyKVgpdi0e7YskN/UE9enBi8uBAUZJ8+06kLw4P7VEus+5Or5x+vXxnDsUdF8zCYaF5VoVFpaQ4a3Sls9LhzZLyy6QTnu71NV4oGVHaPTYbW3ywZgAAAAAAAAAAAAAUmOtHZL0KmPMVZLeKemCgEX3S7pS0vustXsSqOtHxpi1kv5c0hslndRglV2S/lPSp621W13XBwBIj+nqkpavqb9MNiutO7+yLZORBhaXJvpPkY45Ze6Kqxv9dwO0r74eo76e4Pm93bPjxnoGFsoeuawUrBdBK4PCJKnPjulpoxv0tNENgcusLOzSysIuSdI5Y3fqnLE79fFdf1u33/PGflez/fWHvq7XH/p6zXnPHvn5zO9/s/+TjUqXkdRvRyVpJoys107oieN36Ss73izteHPDPiRJhVFlntVcQGUailNhZHFDx4ID0WzNvhuFn9XqO1+QihV12Ia1xQlWA4B2Yq2Uty4fv9o7SC0oiKw1wWpmpi0bGIgWNVjNhOunTt/19tHwOQQAAAAAgEOEhQHoYBFe9HT2Yl3MF2BTCT5L+oXLuGFhDo/Rls82XqYcATTtydn9LEa/PoUeJsKDsLC+o1vUUQLnbvhR6adPlUYeLU0/9gPp8R9Jz7xBys79FlF3PL1O7/2X+vMf+Zp04uuTqQUAAAAAAAAAAACAN6y1V0m6yhhzgqRzJK2StEDSTklbJW2w1k5E6DfyYBFr7X5JH5b0YWPMGknnSjpa0mKVBs8ckrRH0kZr7YNRtwMAAIBKxhjZ57xS+tb/TbsUTJsYS7uCUDIZox6nw1vbcyy6tVZFWycQLUToWP3QMhu677DBaoWK9W2oQLS6oW8B+1ggSA1Am7FWmiyUbo624Kpjx31LGRM2EC1KsJqpWD8Tsu/wwWomuI5IoW+zbQSpAQAAAEBrEBYGAM1wFcxj476z0+K64u5nkgFGc14kTPhFw6GHpXs/0uRKVm7q9DCQx9cXcYtNj9mVs+PbcYFfMQQ+ViYYFtazRMp0S8XJ5LYZ1UNXzAaFTduzQdp5o7T6BenU5JOt36o//7bLCAsDAAAAAAAAAAAAOpi19hFJj6RdRzVr7XZJ29OuAwAAoFOYt/6zbH5S+sEVbRNUNa8VSVRqZ8YYZacCVHqcfKLN07HrIUwHqQWFljUVrFYzEM2G6rtR+Fn5vMpt2qZC35oJVisy3B5AmylaqTgdpNbyj564flB0H6QWN3QsKLysK2sq5levX6vvRnVUBquZ8P00uY8ZQ5AaAAAAgPAICwPQwXx6xyBuLWnsS8IvQPkaqLT9B82vY207vw/ZJA931Fpp8nCUFVteSvx+Pb1fuBIUFmYSDAszGSm3Qhppg3HX93ygdvvGdyYcFubpdXpwU9oVAAAAAAAAAAAAAAAAAAA8Z7JZmXf8m+zbPyaNjcj0LZizjLVWKhSkTEYyRsYY2ccflh68Wxo8KC1aImW7pLOeIvUtlPKTMr052fFRSWb2y3lHBqVNG6RtD0jnXCLdc6vsT78ljQ5JW+8vLbNslXTymdKBPVKuX1qwSOaCS6XBg7K3/lg67YnS0CHp+v8qLT+wRLr0ddLvfyuNj0n9C6U1J8s851VSfkLasVVad77Um5OGDksDi0t1ZLJSV7d0+89k798oHdonHdxb2sfD+2We+xqpu0fq6ZV94C7puv+Uslnp4v8hc+ZFsvt3SVvukk59olTIS9sflGSlX107e+CWrZKWHS3dd3vZATf1x43H/pJuwE/lQWq9brbgpNckWGvnhpPFCFabG1pmawaiRQ1WK87px0YLfQsRrEaQGoB2U7TSRF6acNJ7ewepVQeL1Q5Eqx9+FhysZuaGqNUMRIsarGbq99NE6Ft13wSpAQAAAHMRFgYAPogbhOVdkJaLeoL6DPtij6NjtPVbEVYqSsq2uhIPrwPJyzcV88OKdD04O76EhYXnQViYJOVWxg8LS/P+evj+9LYNAAAAAAAAAAAAAAAAAEAbMsZINYLCZuZ1VX48x6w6UVp1Yu3OsqVxxKa3r7K9p1d62otnp9c+WeYVbw9f4//8+9mJf/hS6PXqOmFtw9HARpLe88W5bTEUP/h66ac1xmmTjAN0HGNMKUgkS5BatekgtTChY6GC1eYEotm6oWW1+q5XR6EQvu8owWrl7V5+vAYA6pgOxnSjvYPUwgWiRQ1WMzNtmRp9xwtWM437aSr0rbItk2nf5zAAAACIh7AwAJ3Lq1d+49aSwjckJZ7IHnCMqutIuq7iePPreBk61UEmD0Vc0dHx9eqxyHOB3waXQlhYu7M2hcdxAAAAAAAAAAAAAAAAAACAEIK+SDZwLCkAdJ7yIDV1O9mCi04TUSzaOcFitULH6oaf1Q1bs4GhZVGC1YoVbcF9hwp9qxOslue/UQBtaPoxdTzvoneXn+tz/5nBVoSOBYefmZm2euuHDVarXMc0308T+0iQGgAAmO8ICwPQwSL8se0sWCXmH/7FCUm1v6kqFYmGH6X8h3txovl1bKH1dfjKxzCiycMRV/Qw1KvTgsaCBngEDQhxpa8VYWEpn7u7PyCd9f5ktuXjdVoYS7sCAAAAAAAAAAAAAAAAAAAQJGgMcpGUEwBAY5mMUSbjKENNUuqfZYqhWBVGFjZ0rCL8rG4gmm0YWtZMsFrlNsP3HWUfAaDd5J0+frVvkJoxYQPRgkPH6oefmdl5DfpuPljNNAx4ay70rXKe8fHzvgAAoGmEhQFAM1Y+x02/cb/haPs10omXtaSUkjB/bCf8R6GPYTOSVIgQFnbgTumoC1tfS9rhQzV5+OJBlIA3yeE16ON585QvYWG5VoSFpey+f5PWv0fKuHv702uPX5d2BQAAAAAAAAAAAAAAAAAAIEjQ2NC44+4BAOhwmYxRj9OPYHj4OaIQrLUq2uDQsqaC1WoGotm6fUcKVquow4aqLWqwGgC0E2ulyULp5mgLrjp23LeUMa0JHasdfmYq2jKBgWiNw89qB6uZ4H6a6LvWPmYzBKkBANoLYWEAOliEP5q6FrS+DEmx/4DbvzGFsDCX6zfTZ8g/wFwFPdkIrxg8fIWjsLAYjKunBD7+gRz1WvAxLKzTgsY8CQvra0VYWMrnLj8o7bxBWvX8dOtIy+ShtCsAAAAAAAAAAAAAAAAAAABBMkFhYZ02dhYAACTBGKPsVIBKj5OPWPn4+apwpoPUAkPLQoaOBYeW2ab6DhOsVlmHjRb6FmIfCVID0G6KVio6C1Jz/fe6+yC1uKFjweFlpmL9bHU/sYPVTHAdIUPfgvYxYwhSAwAfERYGAM1w9U1EbfmmZcJP7oOO0Zw/MhKuy6c/cuJcRz2LW1dHOZ+Oz7TIx8lV4BxhYaEFPgYnHBaWa0VYmAcmDia0oQ67TgEAAAAAAAAAAAAAAAAAQDxBXyRbJJEBAAAgSeVBao624Kpj56y1c8PJIoSOBQei2cBAtOq+G4WfFWrUUSjaOX23KlityEeJALSZopUm8lMTk63uvb2D1CrCzRqEjjUKP5vbj5kbolYzEC1qsJqp209zoW+V6xOkBiBNhIUB6FyRAnpcPWGO22+L64odXubiOAX12YZPpNMMh1v3D9LmD81tdxWE5+X5iXj8nZ03Xv0MLeg6DRoQ4kpfC8LC2jIkEgAAAAAAAAAAAAAAAAAAIAGZgDHIzsY8AwAAAM0xxpQCRLJSr5stOOk1CdNBanUD0eqEn80JL5vTZmsGokUNVivM6cfGDn0LClbjI2UA2s104OSEk97bP0gtbuhYcLCamWnL1A1Eqx+sVrsO07ifWvWG3MdM0Ot6AFqGsDAAHSzCEzxvw4JSeIXAm7TbsHV0wqsoIfZx6TkBq3bSG+dRrwVH11Ccx5WOe3XQk7CwXAvCwgAAAAAAAAAAAAAAAAAAAFBbJmBsaLGTxjwDAAAA7ak8SM3RFlx17FyxWApSCxs6VjP8rG4gmm0YWtZMsFqxyb6jBKtNTwNAu5kOUhvPu+jd5efH3X82PVwg2tzQsUbhZ6WfZqYtG9B39GA103w/TQSrEaSGViEsDACa4iosKOZfsi0PDIrZn5MAo7B9tsOTpBRD5wJDlVy9muJhmJV3AVtx6vFtXxwLfKxMOixsRQs66aRz10n7CgAAAAAAAAAAAAAAAAAAYgsa89xRX5AMAAAAYL7JZIwyGalbmvqn1drh87W1TQepxQkdqx+IZmsGojUbrDbdXqjox9atLW6wGgC0m+nHOTfaN0jNmNpBZK0KVnvTUzN67rr2fS6A8AgLA9DBIvxn7SxkKG6/aQSxJPxEIejYG56wNCfhN87D3mdWvdDN9muKeH/x9v7fQYKu08AQPEe6F0pdC6X8ULLbbTmuPQAAAAAAAAAAAAAAAAAA4KFMwNjQIp+SBgAAAID5qCJIzYn2/SxycTrorCL8LFzoWGD4WUWbbdh3M8FqxYo6bPOhb03sIwC0E2ulvHUXpPasM6za+f87hEdYGAA0xVGwStwQopYHPfkYXhbUZ9pPWNLefpkw11Hi37IVst9sztH2a4h8f/MxWMnHmlzyJCxMkvqOlga3JL/dduQsaA8AAAAAAAAAAAAAAAAAAMxLiY95BgAAAADAT5mMUU9G6nGWDOLR56SbYK1V0bYmdKx2IJoNDlsLGX5WHaxWqGizoUPfmt1HgtSAzpRN4eP2SAdhYQA6V5TwEmdvLvoYztVI0n/8xQ0L8ymsJsVaAt84L7jZnpchQZ6FhXl5jDwV9BicRlhYbmW8sDDOOwAAAAAAAAAAAAAAAAAAQG0mYIx4kU+7AgAAAAAAyRijrCmF47gJUmvPEDVpNkitZsBYnfCzmuFlNdryRRsYiBYlWK0wpx8bLfQtRLBakY/2Yh7ryqZdAZJCWBiADhbl2ZyrZ4CehYXFDrFJ8Jly9RvBQW8Md4QQx90EPctLOwgvyb+uIm7LWbhTjH47LXAqMLAxhbCwvpXJb7PleLwEAAAAAAAAAAAAAAAAAAAeCvyCZMLCAAAAAAAA6ikPUut1swUnvSbBWjsnWKxW6FjoYLU569vA0LIowWrFOf3YhoFoYYPVqusgSK39daXwcXukg7AwAGiKo2c53gX+hAmdSviJvHfHKIY0Q6cSf+Pcw7CwyMffw7Aw3wOPhh6R7vmQtPcWafFZ0rr3SEvOit5f0HUadF27lIsbFub5uWspD/d1Pv2fAgAAAAAAAABpsUUpPyxNDkqTh0u3/OHZ6Uy3dOR50sDJaVcKAAAAAACAdpMJGBu64UfJ1gEAAAAAAIB5wxijrqzUlXW2BVcdO1ecCiKLGzoW3GZrrh82WK26jkL5Ok303Wyw2mQh7TMTXpawsI5BWBiADhYhKMRVuEjcoCbfQk+c1BPUZ8gnzc6OUbs9aU84LMzLb+/yLCzMt/tvq4ztln72bGno4dL04fuknT+VnnubtOjUiJ16FBbWFzcsDOmap/c7AAAAAAAAAGjEWqk4XhnwNXlYyldNT8/PV01XLDuoUK+3PuGfpLWXJ/9lRAAAAAAAAGhfo0OBs+zPvyctGJAWLJL6F0n9C0u/9y2UyTr7pCcAAAAAAAAwb2UyRpmM1C1N/dNq7Tt2bDpIrZnQseYC0Wxg3830c8ry9j3GaA5hYQDQFFfhInH7bXVdYfqr92QhzbCwdngSk2LoVGCoki2t3/IPaYTc10QDsyJuy1mNcfr1OPBo03tng8KmTRyQtn5LOvO90foMDJ9LISwsFzcszONz1wm8DDIEAAAAAAAAgDqKhdqBXvkaAV9B4V/TyxYnk639rvdIK54lLTs/2e0CAAAAAACgfT14d+As+95XB8/rWyD1DZTCxPqnA8Wmfy/9NOUBYwumfi9v6x8oBY9lUhifCgAAAAAAAMArFUFqTrRDPgZ8QlgYgM4VJfjHWbiIb2FhHgo6X+34DeSJBmNVCQwLk0rXUYuPZ+h9TfCYRD7+HoaFpXkt1TP4oPTQFbXnHdgYvd+gx+C617UjscPCOomP16mPNQEAAAAAAACYd6yVCiO1w7waBXpVL18YSXtv4tlxPWFhAAAAAAAACG/wQLT1RodLt/07AxcJPbq5KmRsNnRsNoDM1Aobq2gbkPoWyLTjmHcAAAAAAAAAgHcICwPQwaIEhTgKF4kb+NPqwKBQ/dV7wzLJEBbeOJ0V5rjXCVWyBQehSz4G8vgWFjYPbXqvZPMBM+OEoxVqt6cRFtYXMyzM16A3F3zcV2fhnwAAAAAAAADmhcLEVJhXyICvoPn5QV6PnDaxP+0KAAAAAAAA0E76B9KuQBoZLN32Bi8SaoRkJiPbNxUkNv1zJoBsNmTMVISRLawIJZtp7+0jeAwAAAAAAAAAOhhhYQDQFFeBJ3H7TSGIJfE3GdvwGCUtTCBPvVAlJx9W8fG4R6zJVeBRrH49PL4H7pK2fjN4fpz9HX0sYEYKYWG5mGFhXkjq+vHwOj20Oe0KAAAAAAAAALRasSDlhxoHejUMABuUiuNp7838Q2gaAAAAAAAAOlWxKA0fLt3qCDXaMpuV7asKFJsJIJtq618kExQ2Vh5S1tNL8BgAAAAAAAAAtBnCwgB0sAjhJc7CguIOjm91XTH7c3KcgvqsfoOSNyzrMtngeS4+pBG6zwTDhCJfn76GBXrmrvckv816IXiu5I5S6fHGt+vJRx7u68NfaryMyZYeLxgIAwAAAAAAALhjrVQYnQ3pygcEfNUK9JoJ/ppedyjtvUFdHr5WDAAAAAAAALSbQkEaOli61REueKxLtjxQrCKAbGAmWMwsmAoX659tKw8m04JFMt09Ldk9AAAAAAAAAEB9hIUBQFM8DQvqXdaaMmaEqSfh8JSggKd2DHHJ9jrqOMR5qxuq5OIb3UNe266C+GpvLOH1HPab6HELYc8G6fEfNVgoYs2TdT7kNfpYtD7jyHSXHnvH9yS/7XbjIogwrvxw42VsQSpOOHzMBgAAAAAAANpYcTJaoFetZW0h7b2BJGVzUvciqWtR6Wf3wNTPqVtX1fT0/Orlb7tMevR7c/v38bViAAAAAAAAtKf+AWlsWCrymlMshbx0eH/pVkeYkb+2u2cqUGwqbKxGAJmZbqsRNla+nunqbs3+AQAAAAAAAMA8RFgYgM4VKWTHw7AgSRo4pTVltIyL4xTUZ9iwMEfnLkpY2VEXt76OsOqFhbn4kIZvYVaSIl8LrvYlVr8eHV9rpTsvd9h/nQ+LLT7L3Xbr6VtJWFgoHl2nzbJ5SYSFAQAAAAAAYJ6wRSk/VBnala8K8Kob/lU2XRhLe28gSSZbP9ArKOBrzryB0pdktKqmmtr4tWIAAAAAAAB4JXP9XllrpbERaWRQGj5c+jnz+5A0Uvpphw9XtQ1Kw4OVy48OeTrmuY1MTkiH9pZuAcIeYduTmwoUG5gKIJv+fepn34DMgkWzbdUhZWXrmWzQ65UAAAAAAAAA0J4ICwOAZrj6xuu4by6m8U3cUUKynKiqI+m6ohz7wA9JxBXmOko4LCz827oOth20qajb8jQs0Bc7rpP23Nx4ucjHv871mVsRsc+Ycisl3R1xZcfnPdRxrvN40ErtPIAmjf9fAQAAAAAAgHLWSsXx4ECvfIiAr+n5+cG09wbTuhZGCPSamtdVNp3NefSe3bSAeni9FQAAAAAAAC1kjJH6FpRuR64MXi5EX7ZYlMaGK8PGagSQ2eHD0mhZ2FjFMlM/R4dat5OdamKsdDsY/IW+oUeo5/qnAsWmw8YWzQSOTYeNmQVTYWP9c8PGZgLJ+hYSPAYAAAAAAADAC4SFAehgdd4iMlnJFppbx1UtoVZv8eD62MEuLo5TQJ9pfwCieyDCSikG5/w/9u48zJX0oO/975XUi6TuPsucM3Nmxp7xzHiZzTM2xjE2PYR4lgAAIABJREFU+2IDDiFsF3ggYQ1c58YJD6uNjcGOsTEQdq6Bm7AEEogDuSwBYt/EBmMDIcF4Vo/tGY/twZ7xzJk5S3dL6kXSe/8oqVUq1VsqlWpT6/t5Hj2nJVWV3pJK6tMl1VcmKg6UwUEacbfNXGNCxykWVpIIk+1Ld78m+9twidyuM7Tu/nBJ4eI893J7/SzJdpoEB68BAAAAAAAgqX43EO2KCnpNiX/ZbtFrA0mqrE0GvWqBuNe0+NfKllRtSpVjfFCZa589+1sBAAAAAABQUqZSGcWkzlzjni7Gsmyv54XHWtujgFh7MkBmhz+3dtwBsr12eiu5rPba3unC485JYofH6k0vItbcnAyQDWJjR+Gx5lZgms3RZetNb5sDAAAAAAAAgASIhQFYYo63dU6/QHraV0j3vC5kloyCJ/N+OD71D9eXMOySa0xqBvVrpYt3zTZPZttRjOVGRZX6YYG8ecVd1zwPEEl4/5d1GyyDR353hudB0vs/ahsp6A3z+tXJ5818e4rznMopFrbQzx0OXgMAAAAAAFgq1krdVnTQqxsn/rUt9TpFrw0k732RWYJeNUfgq7YpVVeLXpsF4dpnv8j7igEAAAAAAIB4TLXqRaGaW9HTxViW7Xalzu5kbKw1DJB5P9tgkCwsUnawl84KLrNOyzs99Zhzklh7QY2RrW+MRcZGgbHRz2YYGasHYmP+SNl6Q6boL18HAAAAAAAAkCtiYQAQdOI2ud9+y+pD7PMut2Qxk0zCMK5lxnxzq1SxmgK3IxP1TfUZbEdx7/c8H5/Et1Vg5C2LedPSPwyPK6YtKhYWFcHLUv1cMbcbR5yIZG4fDijZ76hZpB7jBAAAAAAAQCZ6++HBrmlBr8MdX/xrW+rusk+oLGrN8KBXLSTwFRUAqzZy3BcKSe77m+cWAAAAAAAAMBNTq0mbJ71T1HQxlmW7h4O4mC8g1tkZhcUGITI7MU1IpOzwIJ0VXFbWDmJuO9GTxVlWpSLb2AwEx4YBslFkzBzFyQaXDedp+sJjq+uExwAAAAAAAIAFQCwMQHEuvF86eGry8sb10tazsr/9qMiO80PsJY2Fpf7h+rjjMTNMOy/H7Uw8Vnm/QZXk9ooMPEVElTI5SCPuuuZ5n5QsFjbXcksQC3v4N6SdB2eYIemYSxgLW58nFpbxYxfn+ZxXbK4MUbukOHgNAAAAAAAgO/3eIN41JegVFQDrDs73OTCpFCorg2jXDEGvsfODn2sbUoWPMiwu1z579rcCAAAAAAAARTG1FWnrtHeKmi7GsuzB/ih21fbFxobhsfa27DA21t71AmNhkbLWttTrprOCy6rfl3Yve6cIsT7JW63KNoJBsc1RZGxwMs2Qy4ORstU1wmMAAAAAAABARviELYDi3P2D0mPvmLz81ldJz3tL/uM5YuT+EHtGwZN5Qyqli5nkGYYp+k2kBOtaZHQuKqqUxXYUd5l5bsNJ7/+sHrdFDil1O9K9b8jntiK3kYJiYfV5YmFZi/OcKjj2uAhK9/sVAAAAAACgYNZKvfb0wFdY0Cs4bbdV9NpAkmTGg161aYGviOuqa0WvDMog9y9lAgAAAAAAAJAns7omra5JJ8+4p4mxHGutdLDvxcTaO6PYWGtb6gzCYq1BeKzti435A2X+AFmvl95KLqNeT9q56J0ixNrTW1uRDQbEjgJkW0c/m2BsbCJAtimzsprK6gEAAAAAAADHBbEwAEss4m0K54fYs4qGzPvh+JTHFffD+sbk98F+5+3EjYVlFXpKct8XeDBEVCwsk290j7uued4nSW+rwMhbJvOm4MFfkjqfdFxpFDq+xLG2iO0zcrvO0Po8sbCMH7s4r025HZi1yAeAEQsDAAAAAADHRO/AHfTqhgW+IqYlsF4O1Xq8oNe0+FetUdw+VhxPru2J1w4AAAAAAAAAPsYYaW3dO5260j1djGVZa6X9znhErL09HhRr78gehcZ2JiNl/ggZX34wn+6hdPkp7xQhzr1sV9ekui82NhYUG0bHfLExZ6RsU6a2ks76AQAAAAAAAAUiFgZgebnewDFG7reUyhgLUgYfrp93PbO4n+IuM248LC1J1jWrcFmM5UYd8JPJQRrHKBaW2Zu+cyy3yDeiD7elD7w5/LrKqvS0r5Ae+c8p3mAJY2H1eWJhGYv1fC469rgALN8yBwAAAAAACmT7Und3MtgVJ+gVnL6/X/TaQJJMbTLoVQsJfE3Ev4IBsE2pwlv9KCvXPvsF3lcMAAAAAAAAoNSMMdJ6wzudvso9XYxlWWulTmsQDxuPjY0iY7uyw8v8kbGjSJnvcsznYN87XX7SOUnsIxbW6qOAWH1zFBbzBciMKzbmj5Q1NmWq1XTWDwAAAAAAAJgRnyAGgFA5x8LmjTQV9k3cOYa5IuNuBUpy3xcanYqKhWUQxYm7rnluw4nv/wIjb2X0wE9L+45ve3rmK6TqmmPGpLG2EsbCVk56YbT+wezzZv64lygWtsgHgBX2+xUAAAAAACwsa6Xenjvo5Qp8hV3f3S16bTB0FO6KEfSqOQJfK1tSZa349zWArLm2cfa3AgAAAAAAAFgAxphBLGpD0tXu6WIsy/b70l4rNDbmv8wOw2T+yFgwQNZppbaOS2u/450uPuGcJHZ4bL0xCIoNYmNjkTHvMtMIhMaOImW+y+sbMpWCPgsPAAAAAACAhUQsDMASc+3GNxEfYi9rLKhkH67P5H6KeLwKlWRdCwznREWVMjlII+4y87xPShYLm2u5BW1Le+elD/5U+HW1pnT7a6UHHNcnFbl9FvQGqTHS+jmp/Ugxtx+l254+TV6hukU+AGyRxw4AAAAAAGbTPxyFu2YJek2c35Fst+i1gSRV18ODXmGBr8j410ZxX1gALCTX84X9rQAAAAAAAACWi6lUvChUYzN6uhjLsr2e1NkdD4gdBchGsTEbjIwdhcl8P+930lnBZbbX9k4X3JPEDo/VN0axsUFALBggMw1fZCwYIGtsepGyetOL3QEAAAAAAOBYIxYGoHw+8OPSHW+UKisFDcDI/XZLGWNByiBmEnc8ZXgjIe4YyvTYFTgWU42YPYODNOLGiPKKFnk3lnC2AiNvZXP/j0nd3fDrnvPd0vqVETMnvf8jts8iD9SrlzAWdvkD0p8+N8aEeW3Ti/zc4eA1AAAAAABKzfalbms86NWNE/jy/dwdnO9xUEQpmGp00KsWiHs5A1+bUnW16LUBlpNrnz3vswAAAAAAAABAYqZalTZOeKeo6WIsy3a7UmdnFBtrDcJjw9MgNmaDkbGJSNm2dLCfzgous86ud4oQaw+7MbKNYFBsGCAbhcXMMDTmj40FI2VrdcJjAAAAAAAAJUUsDEA5/a//U/qMX8v4RiJ2lzvDM2UKTvlnTzlmMveH9bO4nxzLDL4BkfcbEknu+yIPhoiMKmURxYn9fTgZ3LbDwcWEM5bx+V/AttT6e+nBt4Zft3pauuX7vJ9Tfy6WNBa2fi7hjBk+du/92pivTcTCpsoioggAAAAAwLKzVurvxw96Rca/drTQ+x6Ok1rTF++KGfQKm75az38/P4CUuZ7D7G8FAAAAAAAAgDIwtZq0eco7RU0XY1n28MAXGRsGx7ZHP7e2pc4wPOafJhApa21L3cN0VnBZWevdj63t6MniLKtSkW1sjQfFjgJkvvBYMEzW2BqPlDU2pdV1wmMAAAAAAAApIhYGoJw++pvSHT8qNa7J7jZcwSZj5HxbI6toyLzxqKJiJsbk2Jop6wFfScaV0brEuo8iokqZbEcx1zXPbfhT70w4Y5GPWwbzJnXfG7yDOcPc+mppNfrbqhKPOXIbKTAWVk8aC8vI9oPS5fvjTZvX865sr9+zjIdYGAAAAAAAI/3uKNDlD3p1tycDX6HxL9/5Ph/0L4XK6vSgV80R+PJPX9uQKtWi1wZAWbi+4IP9rQAAAAAAAABw7JiVVenEFd4paroYy7IH++Gxsfaud1l7R7Y1eVlogKzXTWcFl1W/L+1e8k4RYn0qu1qT9YfGxgJko7CYCblsNK33s1ldS2X1AAAAAAAAFhmxMADlZHvSw78m3f5DBQ3A9VZEVsGTeT8cn/aH6+dcz86j6QxjjGtMMb9hJKtYTaLlZrUdxViu6wANKZuDNGLfPznGhD7675PN9+G3Sjd/d7pjkZTrus9r+0PSw78efl39GunZr8zutqO2z6jtOmvrCWNhWR0UdeF9swwimzEUdjtxzTCenQelrWdnNxQAAAAAALJmrdRrjwe74ga9gtP32kWvDSRJZnrgy3n9MO41+LnKh+kBZCHv91kBAAAAAAAAAMeBWV2TVtekk2fc08RYjrVWOtgbj421tgdxsd2joJg9CowFQmNjAbJtL5yF5Hpdaeeid4oQ510Eu7I6Co4dBcg2vJjYIDZmmltSPTw2dhQpa27J1FbSWT8AAAAAAICcEQsDUF6X78/4BiLiU8bxFkKpglP++Yt688FxP/3Pb5Vu/JaUbytuLMwVDSpR6O1wN/1hSJo7FpZ6dG6WZS7AASK7D0kHF6XVUykveJ51z/l+u+d17teb239YqtV9F6R8MNDBBfd1RcbC6gljYVk9dq7fX2EuvC+D1+oQhf2Octh/Kv607/4y6Ss/JdWvym48AAAAAACE6R0Mwl0xA1/+67uBn8v2t/myqjbCg1614Pkp8a9qY7Z9QACQN9c+e34fAQAAAAAAAAByYIyR1ure6dSV7uliLMtaK+13vJBYa1vqjGJjo6DYjqz/sk4wUjaaLrNjkpbF4YF0+Snv5BD76+5X18YiY15QbGMsQGaa/ssCkbLhfPVNmRqH6AIAAAAAgPywJwJAeRUawMr7G69LFguL+wZE/8B93eGOdxBT1oIHRTlDbxltT0nerPnkH0m3fn8xY4mKKtleemM5WmbM+yfP53utKXVbyeb95J9IN/yTdMcz1xt+Ob5ZeOHvpEd+N/y6jWdKN31btre/94T7OlPgf2nXr042X2bb/AwHin74F6VP/4WMxuFXsje1P/622aZ/9I+lm749m7EAAAAAAI6Xfk/q7k4PenVjxL+i9r0iP6YmrZ6YLegVnHZlS6ptSBXelgWwJJzvRZVsXzEAAAAAAAAAAFMYY6T1hne6wv0l07HCY/2+tNeW2oHYmD8o1tqRbe8MptkNiZTtjs5jPgf70sF56dJ55ySxw2Nr9bHI2NjPg9iYaWx6gbF6IDbmj5TVN2Sq1XTWDwAAAAAAHFt8Kh1AiWX9gfGo5S9YLExpR2dSWM/230snbp1/OUPOoFIwFpb3AQgJ7vt6wrjQVHHGEhULyyJeFDcWluMBIs98hfTBn0o276V70h2LpIU5OObu17ivu+NfS5WVwIVpv45GzLeylXCZKai73/SNltHj7gomurQflRrXZDOWIyXbxh/6pdmm/5t/RiwMAAAAAI4za6VexxHtmhL0OtwZhL+G1ycM1CNlxot1uYJetZDAlysAVlmbfX8LACy9nL/YBwAAAAAAAACABWAqlUFAaiN6uhjLsv2+LyA2CI91JgNk9ujn3ckA2fCyvXY6K7jM9jve6cLjzklih8fqzfGAWGNzdGp6cbGj8FhjMxAp81223vS2OQAAAAAAcOwQCwOwvFxxImPcwamsgkZxlrt2Vtp6jnT+vSHzl/DD9amPKe5973rsMrqPkmwT60njQlPEWcfIA9sy2L5j3z85xoTWzrivu+YfSo/+SX5jmVdekbXH3y099o7w607eKV3/ddmPwbV9V9eLPWAz6fM5s9ftGe+Li+/PPhY263ZqMv4TJc84IQAAAAAgO/3DZEGvsOltr+i1gSRV64PIV0jgKyroFZy+1oz4UgkAQOac77OW8P1MAAAAAAAAAAAWkKlUvCBUM/pLt2OFx7pdLzzW3hmdWtuj8NggMmaHYTJ/gKy1PR4p2++ks4LLrNPyTk+5J4l9lM5YZMwfFxudN67Y2PCyxqZUb8rwJVsAAAAAAJQGsTAABSrxjkLnTsysPsQ+ZVftqedLL/4t6a5XOWYv44fr046xuJYXeKxyPwAhwXpmFi6Ls9yI510mAZ2Y65rrNuxYzyteJH32f5Hetp7jWKRcQ2lJWCvd/YPu6+98U/jzLu03g1zbyMqJdG9nVutXJZuvLLGwXMy4jdca2QzjSMmfcwAAAABwnNm+1N2NF/hyXT/8ubdX9NpAkkw1EO8KCXqFBb4mrtuUKitFrw0AIA3OYCP7ZgEAAAAAAAAAKBtTq0mbJ71T1HQxlmW7h76g2HhszAuQDcJj7e3ANIFIWWdHOthPZwWX2fB+fdI9Sax3byqVUXhsIkA2ioyZRiA21twaBMc2RpGytTrhMQAAAAAA5kQsDMASi4pPOXY8ZhJTkjsac/qF0hf8d2l1EMPJLYSVwnqmfV+5lhfcSew8AKHIQFdQkeGyqJ3qGWzfsbeDPA8QiXjuV9ekjRul3YdzHM48657D/fbJP5ae/Ovw685+pnTNy2dbXuL1dTxvnM/5nNTqXrDs8PKMM2b0OjDzG2c5vNE262Oe1e/a0Q1kvHwAAAAAOGas9cJcrqBXNyTw5Zx2p+i1wVBtI0HQK+R8dT39aDwAYMG53mct45cfAQAAAAAAAACAtJjairR12jtFTRdjWfbwYBQQa+960bGWLzzW3pEdC5MFA2SDaXcvS71uOiu4rPp9737cjT5mItan9KtV2XowKBaIjDW2ZIbXNbekum86f6RsdY3wGAAAAABgKRELA4AJEbGwzAIjrhBWZRQKG54PlfKH61MJteQVMAs+VnkF1Y4WnGCWAsNlUTvCMwn0lDAWNi08l3moKKjEsTDbl+55rfv6O38sYptK+U0X5/ZdcCxMkurnZo+FZfaaVIL7Y0LJDgDL/TkOAAAAAAXpdwPRrkDAa5b4l+WDs6VQWZsMetVC4l5T418bxQfYAQDHl/N3DPtmAQAAAAAAAABAPGZlVTpxhXdyTRNjOdZa6WB/PCA2iI2NYmQ7skeRsfHLJwJkvV56K7mMej1p95J3ihDrXaXaiuwwIDYRIBv9bAYBsqPYmD9QNoiUmZXVVFYPAAAAAIA8EAsDUF6Zxzwilu+K32Q2prKGsOaQW4wlcB85H7sCA11pzJPacqPeDikwFpZrvGfa822RYmEZ+9jvSJfuDb/u6i+VrvzsBAtNuL6u7bsMB7aun5O2PzTbPFm9Dsz6zTh5fJNO6eJcZRsPAAAAAPhYK3Vb0UGvbkjgK2z6XqfotYHk7buYJehVcwW+NqUqH04FACyCnN+rAwAAAAAAAAAAcDDGSGvr3unUWfd0MZblhcf2RiGx1jBA5guKtbZlO4MgmT8ydhQp2/XOt7ZL+Dn7BdM9lLYveKcIce5lu7I6FhhTc0uqb4wFyIwvLiZnpGxTpraSzvoBAAAAAOBALAzA8nLtVDVG7t28Ge2IjRyL//wCxcJSv69i3keuoJqyuo8SrKfN6ptEShgLi71t5rgNT3u+5f18mucNnizfHOodSPf+sPv6O980ZQFpR6hKHgubWVbbWQ7xr5nNup1m/KYnb6oCAAAAyEJvPzrw5Qp6TZzfEZHjkqg1w4NeYYEv5/WbUrWRT6wbAICyWKj3MwEAAAAAAAAAAOLxwmN173T6Kvd0MZZlrZX22qPwWHsUG1NrR+p4ATI7vMwfGRv+PAyQdXb5jPy8Dg+ky096J4e497BdXR8FxBq+sJjvMjO8rLE5GSnzzWeq1XTWDwAAAABwrBALA4AwuX+I3RUvqkSfP5L2uFLYSZz2fRV3x7Xzscs59BYpo+0ozliiDkzM5D6Kucxc35hw3ZaZcn1WSvqmzMO/Ku0+HH7ddV8nnX5+wgUnXF/na0oJYmH1BLGwzLb5WQ8+zuNg5bJt42UbDwAAAIDC9Hu+UJcv2NWdFvgKmbZ/UPTaQJIqK9LKieigVy14PmTa2qZU4QOXAAAk49pvz75ZAAAAAAAAAAAAaRAeqze9k652TxdjWbbfl/Za47GxYICsvSvb2h6PjI1Ns+Nd12mlto5L62DPO118wjlJ7PDYemMQFBvGxgaRsfooNmaGlzc23ZGy+oZMpQTH3gAAAAAAUkEsDMASiwoGuXanZhWcckVwguPIK2KWxnqmfV9NCzwNz+YVVJtjuZlF5+IsN+qtggy279hBpDIdIFKmsUyT0Vi7bem+N4ZfZ6rSHY7rxqZLOULlet44n/M5Wk8QC8vqNWnm+z2H7X3mMFrWY1qk5zgAAACACdZKvfZktCtO0Cs4bZcPOJaDGQ961cICXxHxL//11bWiVwYAALj2U2f2/hgAAAAAAAAAAMDyMpXKKBZ15hr3dDGWZXs9qbPrC4gNImL+n4/CY4NpOoN/gwGyvXZ6K7ms9tre6cLjzkliH7VV3xgFxBwBMjOMjYUFyIaXrTcJjwEAAABAwYiFAcCEAmJh84aw0v5w/cxhl4yWMb7A8IsnDjjIK6g2XG6C9cxsLCWMhcVdZq4HiEx5vqW+7U4zz+1lNNYP/4LUeSz8uhu/Tdp6VvJlJ75/SxwLqyeIhWW2zaccaUtFyQ4Ay/05DgAAAECS1DtwB726IYGviWkH13e3CU2URbURL+gVFv/yT19rph8dBwAABcr7i30AAAAAAAAAAACQBlOtShsnvFPUdDGWZbvdQXjMFxtrebExLzrmRcZsa3sUHHNFyg720lnBZdbZ9U5POY4VUswjlIzxwmNjQbFhgGwUFjsKjzVcAbJNab0hw2eGAAAAAGBmxMIALLGIXVjOb7zOKDDiWm5wHM4oThk/XJ/XmAoKqo0WnGCWAscStRM1i+079rrmGO+Z+nzLOSRUtnDRwSXpAz8efl1lTXruD8dcUMo77F3bUhliYeuLHAvL4Y2VWbfxzJ8TJXvOAQAAAGVm+1J3dzLYFSfoFZy+v1/02kCSTG0y6FULCXxNDYBtShXeYgIAACGc79WxbxYAAAAAAAAAAGBZmFpN2jzpnaKmi7Es2z0cj421tgfBseHPXlTMTkwTEik7PEhnBZeVtaP7NWqyOMuqVGQDkbHxoNggPOaPkzWH0/siZc0taXWd8BgAAACApcGRHABKLOMPjEcGg1w7h7Iak2u5wXHkHcKaQ9of+Hcur+BYWKLlFjmWqB2fWWzfcZeZ5wEi07alqLFkseN4jnXP4sCaB35SOrgYft2zXyk1njbnDSQcs3P7LkEsrF6iWFgp39wo2wFgZRsPAAAAkDJrpd6eL+YVM/AVdl13t+i1wdBYtGtK0MsV+FrZ8kLgpfzbEQAAHB+u/2uU8P1MAAAAAAAAlBfvaQEAgAFTW5G2TnunqOliLMse7A9iV4GoWGvn6HI7/Lm1I3UiAmS9bjoruKz6fWn3sneKEOsIkGpVtrE1iow5AmQmeNkwNtbclOqDaVbXUlk9AAAAAMgKsTAACOMKTuUdCwuOI7cQVhrrmfZ9FXd5eR+AkGA9Cw2XlTQWlmvwbkosLO9vtp/r9lIea+dT0gd/Nvy62qZ066tnWFjKH9JwbSPO1+scrV+dYKastvlZ7488Pkwz63ZaUCwUAAAAKFr/0B3tigp6hZ23vaLXBpJUXR/Eu2IEvvzXT8S/muX4+xcAACAO5/uZ7JsFAAAAAADADNifBAAAMmBW16TVNenkGfc0MZZjrZUO9gfRsUFYzB8TGwTFbHt3PEzW2pY6u+MBss6O1OPzXnPp9aSdi94pQpz/Ydraynh0bCxAtumFxRqbMsHYWGNzIlJmVlbTWT8AAAAA8CEWBmCJRQWDHLv12p/IaCiuaExgHIsUC8sr/hT81qjc7qM5llvkWKK+ZSuLccV+oz7HN/RdYzq6byLGcvm+1IeT67pPc/+bpF47/Lpbvk9ad78ZEl/C9X38neGXX74/+VDSsnbGe+2Z5TmU1etAGb9Jr3Qf2CnbeAAAALDQbF/qtsaDXt2QuFdU/Gs4fW+v6LWBJJlqdNCrFhL3ck1bWSl6bQAAAPLn2k+d6xfHAAAAAAAAAAAAANkxxkhr697p1JXu6WIsy1or7XdCY2NHQbH2jqz/smCkrDOarnzHcCyY7qF0+SnvFCFWeGx1bSIgdnRqenEx4wuQhUbKmltSfVOmRg4AAAAAgIe/DgAUqIRBE0mRsbDMRIXL/GcdISyV8cP1Ke5YjNxJGfc+ymhHZ/8wyUypD8MTZx0jtu0L75Ou+ry0BjMQ837f/pD06H+Trv6SHGJH055vEWN+9E/THkz07U1zEP2NFzPZ/aj00K+EX7d2Vrr5u2dbXtqP4yf+IN3lpalSldaulPY+NcNMWb35MuP9fhD95kU6Zn3NK+EbU9aWM8QGAACAZKyV+vvxg17dkMDX0fS7KuX/YZdRbSNZ0Gtla3z6ap3//wMAAMxlkd7PBAAAAAAAAAAAAIpljJHWG97pinPu6WIsy1ordVqD4Ni2FxObiIztyvrDZBORMt/PmM/BvnRwXrp03jlJ3E8f2rX6WGRM/sjY4GRcsbFGYLpqNZ31AwAAAFAIYmEAyitRhGkWEbtSLt/rvm7nIWnzmekOZfvD4ZdPHJjo+HB9Kb+JO68DZWPeR7sPZ3Pzuw/NPs/f/7/pj0OSDi5MnybqYNcPvEW65XvTG48027b55y+XnvXPpRe+Nd0xTJgSC1vWb9C49/Xu193bXuMdMJ2G43r/1s/NFgvL6nV71gPa/+obpau/WFq7IpvxSCV8zBOM5+++R3rBz6Q/FAAAAMym3x3EvGIEvqKu7+7ksN8JsVTWpge9XIEv//W1DS/kDAAAgOK5vtindPuKAQAAAAAAAAAAgOPFGDOIRW1Iuto9XYxl2X5f6uyGxsbU2j66zLa3JyNjLd9lnR0vYIb57He808UnnJPEDo/Vm1LdFxsbi4wNgmKNQGzsKFLmu6y+IVNxfZkUAAAAgKwQCwNQXpWMX6JcH0g3RupEBF/2zqcfC3vs7Y4rArvenB+uTzk6k8aH9VMdU8R4gmEc1330sf8oveQ/pDckSdqPEedysXYsv57tAAAgAElEQVT2qM8097xuvvn3n0xnHGNm3JYe/CXppu+QTj8/g7EMRD33vQmyu+0w8z7f9p+aP/R06X7po78Vfl3j6dKzXpFgoSlv32W37v72llCZRR4T3O9/9qXSl/yv9IdypGQHgCV5zn3oZ4mFAQAAJGWt1G1FB726wfOOaXvtotcGkrfvZZagV80R+FrZlKprRa8NAAAAUufaT13GLz8CAAAAAABAaaX9OWsAAADMxFQqXhSquSWdvdY9XYxl2V7PC4/5o2MtX3is44XFrD80NhYg802730lvJZdVp+WdLriPoY0fHhvEw4bhscZkgMy4YmNH82xJ9aYXuwMAAAAwFbEwAOV1uJvt8vccOzOq69HzZbHT4dxLpU/8/uTlF94XuG1XaT3tD9dP2Z3zzO/0/q1tegfwJlnGTMOZYVnG8att5WQ6Y/G7fF/yeS/dK526I72xSNLFu6KvP5VhgMslSZTn8XdlGwtzbpuD53Ym0bQocz5Xnni39PSvmm8Z9/yQexzPff3018WZlCwclZb6jLGwrA6KqtZnn+fC/05/HGNmfMzTCFZGOftZ0iNvy/Y2AAAAjoPevhfp6obEvaKCXsH4V3cnw1guZlJthAe9aiGBr4kAmO/naoMP5gMAAMAtry8/AgAAAAAAAAAAALAQTLUqbZzwTlHTxViW7XYHcTFfQOwoLrZ9FBmzwcjY2DSDYNnBfjoruMw6u94p4nC8WEcJVSqj8Njw36Ow2OhnMxYk2xyFx/yRsrU64TEAAAAca8TCAJTX4Xa2y+86YmT1a6WOu4oeb7fTjFw7HyYuz+vD9VN2wdz47d6/znhZ2qLGE7iPXPelPUxtNEe6c3wTgTOylqHnvSX/20wShtr9SPrDGDMlFhbl7GelOhLPnGGkecNKT/6N9Ik/CL9u62bphm+ab/lpOXGrdPkDk5evbOU/ljDrM8bClumgqKzjX7PaenbRIwAAAMhOv+ft75gW9IoTAOsfFL02kKTKyuxBr7BpaxtShbcDAAAAkAPn+4cl21cMAAAAAAAAAAAAYOGYWk3aPOWdoqaLsSx7eOCLiA3jYsOfB2Gxzq5sa3t0mStA1s3g2MVl0u9792Mr+pjiWO86V6uy9c3x4NhRgGwQGWtseuGxsNiYP1K2ukZ4DAAAAKXD0UEAyqubcSzMFS8xFXdwypsgg7E4ojHXf2PgpkvyTdxn/oH3r6m6p0k1DjNDLOymfyY9+qcZj2co4n6/8vO8g3I/+V8zuN0Ezr1MuvJz87/dRQwiXfEi6am/Cb9u7Uz6tzf3tjnn/He/xn3dHW+c42By12tlwvGuXxUeC3v2K5MtL231q2ebfhGfG4k5HvOTd0qX7o4/fVrKFi8DAACwVup1pge+XNf7z3dbRa8NJEnGF+4KxL1WNn0xr2nxry2pulb0ygAAAAAzcn2xzzLtFwcAAAAAAMDc+KwfAAAAMmZWVqUTV3inqOliLMse7A/iYoHYmC8oZo8iY7tedMz/89F121Kvl84KLqteT9q95J0ixAuP1WQngmKDqFjdFx5rDq/fOrrsKDzW8OY3q3weFAAAAOkgFgagvA4zjoU5/5yfsvsmixK468PxwRiX85u4C/pwvXM8eY4h8HhUVh0TZvCGcdRBDV/w/0l/9U/Tv82kPvcPCzrAuIRv1DtDgUVV/guMhX3qf0iPvyv8utMvkJ7+1cmXnTbn4xYRLczTuZeFX26qkg3bSZ/V63YZn3OOdT3zYkcsLGslvI8AAMBi6h8mC3qFTRv6f0bkrlp3B76igl5j5zelWrMc+0wAAACAIjj/L8y+WQAAAAAAAAAAAADHk1ldk1bPSqfOuqeJsRxrrXSwNwqNDcNjY0GxHdmjGNnueJTsaJ7BZX2+1Gkuva60fcE7RYjzbrhdWfUFx0ICZI1NGf/lgdjYUaSssSlTW0ln/QAAALCQiIUBKK/DnYxvICIYFPlNRHnGwoIfpnd8uD7tb+KO+01MeR34OtPj4Xp8coyF1Takykq5Dgyurhd0w2U88CNhKDD2NLOa8z5K+s1p1kp3vcZ9/Z1vni+g5po38Te9zfO45eDEzdIzXyE99MujyxpPl274p9L9b56cPqtvvCvlN+nNGujLeB1cr90n75Au3ZPtbQMAgOLZvtTdjRH4ihH/6u0VvTaQvEDvyonxoFdtWuAr7LpN7295AAAAAHNyvT/Ah9ABAAAAAAAAAAAAIIoxRlqre6fTV7mni7Esa6201x4ExLalziAsNoyMDQJkdixMFoyU+U6lPGZpgRweSJef8k4Oce9hu7o+FhlTY2v0c3NTqg/DYxuDwJj/Z9989U2ZGqkJAACARcP/4ACU1+G2twNhnlhNFOfOiSICTzFjYa74VOofro8bC6vOv4xYZoiFpR4oijLlcStTLKwopdwJWLLo1Nz3UcL5P/H70oX/HX7dlZ8nnXtp4hFlo2SPW5gXvlU690XS+fdIzeul679e+uSfhE+7TAdFler3reSOl0X9TgMAAIWy1gtzBYNdw6BXN2bg63DHuwzlMAx0xQl6RcW/quvZ7TsCAAAAMLvc3s8EAAAAAAAAAAAAALgYY6R60ztdcc49XYxl2X5/EB7zxcaGkbHhqbXjhcc6vtjYWKRscFlnN72VXFYHe97p0nnnJLHDY2v1UUSssTn4eWMsMGbGLnNEyuobMlWOzQIAAMgDsTAAJWalbkta2chu+WGMiT7INIsDUF0fji8sFhZXXqGXWWJIrscng2iV836vBP5dZiU88MMVLlrUg8uTxMb6PenuH3Jf/7wfS+H+SPm5uAiPmzHSdV/tnfyXhcrqubFAgb5c445jNxB+8bRYWJYBUwAAjqt+1x34igx6hUxvu0WvDSQvzBUMetW2wgNfE/Ev3/W1DQLbAAAAwHHl/L9+GfdfAwAAAAAAoLT4vB4AAABQGqZSGcSiNqQz17ini7Es2++PAmLtYVhsMkBmh7Gx9u4gUuYLkA0v22unt5LLar/jnS487pwkdnis3hyLjIUFyMwwNua/3h8ga25J601vmwMAAEAoYmEAChQjlHK4nV0szBkjmbZLIoM/Mm0v3m05P1xfUJAprwN7o8IxE28ElyAWNrxfOPA5h+hPEkmf+1mZ9z5KMP/HfkvafiD8umu/XDrzGfMNKRNle9ziKlvksQgle+ycr91T/jSy/elBMQAAjgM7CHdHBb2iAmD+63qdotcGkve36SxBL2fga1Oqrha9NgAAAABKz/VFEcu0XxwAAAAAAAAAAAAAEMZUKl4QqrkVPV2MZdlu1wuPBWNjw7DYIDJm28Eg2fBf388He+ms4DLrtLzTU+5JYh0JaYxsfWMsMhYWIDsKj9UDsTF/pGy9IUOMGgAAHDPEwgAUp38wfZpuK8MBRMVLIv74y+IPw2nRqSN5RWdixociY1h5RaICj4fr8ckkWkUsbLoSxsIShwKlbNYn51hYb1+650ccVxrpzjfNOZ7hotJ+LpYsOBWX63Ugs4Oiyvici/s7Li+O+6gyLQTWl0QsDABQYr39ZEGvifM7KuX/KZZRrTl70Cvs+mqdb1wGAAAAkB/nvl/+1gQAAAAAAAAAAAAApMfUatLmSe8UNV2MZdnu4SAwNoiNtbalji88NoiM2fZ2YJpApKyzIx3sp7OCy8ra0WMRNVmcZVUqssN42FFMbBggG0XGjD80NgyPBSNla3XCYwAAoBSIhQEoTpxYWKYfGncse+ofa1n8MRczpJJXdCZ2zCevP2yjxhMcg2tMGWxL0wI4xMKU6H7PJOw2dgPhF8fZUZNF4Gne9Z11/od+RWo/En7dM75ROnn7fOPJims9y76Dzfk6kFEsLPPnTxKuMRV0wJjztXtKCCyzwBsAYKn1e5OhrsNtqRuIe0XFv7qD8/3DotcGklRZkVZORAe9aiGBr4kY2EaMmCkAAAAAlFHeX6IBAAAAAAAAAAAAAMB8TG1F2jrtnaKmi7Ese7A/il21x2Nj3r/bskc/70oTATLfz71uOiu4rPp9afeyd4oQ62i2alW2EQyK+SNkg/BY03dZfRAbC0bKVtcIjwEAgMSIhQEoTi9GLCzLD407gyoFxMKc6xkzFpZ6dGaBYmHBP4idfyDnGAsbPm7TwjPLYKHCRbF21aU5kJSWOcP8h7vSfT8afp2pSXe8Yc6xjC3QcXnS9Z3ncSsSB0W5Q28FBRWd45nyp9EyPWYAgGjWSr32eLArbtArOH2vXfTaQJJkxoNetZDAV1T86ygAtilV14peGQAAAAAoluu9OvaxAgAAAAAAAAAAAACWgFldk1bXpJNn3NPEWI61VjoKj217AbFheKwzjI3tyLaCUTL/+Z3R/L1eeiu5jHo9aeeid4oQ6+jJ2orsUXQsGCAbhMWaWzLDwFhzdFkwUmZWVlNZPQAAsDiIhQEoTj9GLCyTMM+0ZRcQnnF9OH4ipFKy6ExU6CXNSNRMy3IdgJBFLMyxc+QoEhaxLZUyopWBJNtm1kV0Zygoxu1m8lzLMRb2oZ+V9s+HX/fM75Q2bpxzLAUoe0Hf+TqZ1WtAGV9bZn3OZb0OCWNhqYc5AQC56x24g17dkMCXKwDW3eEA57KoNuIFvVzxr+H0tWb5/18JAAAAAAsj7/3iAAAAAAAAOJaW5bPWAAAAAOBgjJHW1r3TqbPu6WIsy1or7Xd8QbFdLyA2DIoNw2NhkTF/jGw4P3+zzad7KG1f8E4R4tzLdnVNqvtiY80tqT4Iiw0uM41AbCw0UrYpU1tJZ/0AAECmiIUBKE5/P8ZEGf7B6Ax0GUX+eZzJAcQxY2Gu6EzqB6rHvd/zOpg6ajzBMeQYn5kWeYuKqS2NMu70mSMUmEUUYt4dY3Hn339KeuAnw6+r1qXbf2i+cUxI+bm4qDsQc3vdLjPXY1fQa6Tztbsafvm0+QAA2er3pO5ueODLGfRyxL9i/Q2KzJlaIOblCHxNu762KVXYtQkAAAAApeN6L5V9rAAAAAAAAAAAAAAAFMIYI603vNPpq9zTxViWtVbaaw8CY4PwWMsXHut4/9r2KEI2GSnzzYP5HOx7p8tPOieJe2SmXV0fRcbqg/DYUWRsQ2psybhiY75p1NiUqU45Vg8AACTGEXUAitOLcaB2pnGYpMGgDAJZccMlzvhUyh+uj/th/chwWk5hn+AYMom5uUyLvBELK2csbB5lPJAl5n38gR/3IhlhnvNdUv3q9IaUiTkib0XKPRZWwuec63e5877Jeh0cy58WG+FANgCIz1qp1xlFurrT4l6B6/3Td3eLXhtIkoxU23AHvWoxA18rW1JlLee/2wAAAAAA+crp/UwAAAAAAAAcb3y2AAAAAABKyRgj1ZveSe5jEmOFx/p9aa81Hhsbi4v5wmPByFgwQNZppbaOS+tgzztdfMI5Sezw2HpjEA4bxsb8kTHvMtMYhMaGsbGjSJnvsvqGTIVjtQEA8CMWBqA4/YM4E2U4gIjwTN5vLjpjYZXo89PmT3s8EyLup1RjL1HLCo5hypjSfGyd99PgcQrG3pZRku3g0r3pj2PMHNGpTGJB8z5XYszf/qT04V8Iv27lpHTrD8w5hhCu51ri14YFjYU5x5fR77fMQ1tJxPwdlxtXvGzaazYHsgFYAv3DQLQrZtArbHrbK3ptIEnVdV/Ma4agVzD+VWsW+LsbAAAAALBQCvuiCAAAAAAAAAAAAAAAsEhMpTKKRUVNF2NZtteTOru+6FgwQOaFxWxrezwyFhYg2++ks4LLbK/tnS64J4kdHqsPg2MbRwGxsQBZfVNmGBsLBsiOYmVbUr3pxe4AAFhwxMIAFKe/P32aLD807lr21P/oZzCmadEp5/lp8ycUd3mR91WK91PkdlDgH2bTIm9RB9Pbw/THU0oJts3z701/GH6Jn/uSPvXf0x2LNP/rXJz573uj1NsLv+7WH5BWT803hjzM87gVKa/IY5k5t1HXY5fxAWPO1+4psbBleswALBbbl7qt8aBX1xH4cgXAhtO7/r+AfJlqdNBr7PyU6yorRa8NAAAAAGDp5PwlGgAAAAAAAAAAAAAAYOmZalXaOOGdoqaLsSzb7UqdnfHYWDAoNgyPdQbTjAXIfPMdcJzG3Dq73ilCrCMSjZFtBINig6hYffMoNmaGkbGGL0AWjJStNwiPAQAKQywMQHF6MWJhmQZDIuIlJ58XMVsWY5oSnXKdHyosYJJTLGymZUWMyfYkk+avvjliYZ/4I+mqz09xLCmx/ehxz7y8Mn5L/JRw0bSgQr8rVdLcjua9j6bMv/OQ9JFfDb9u/SrpOf9qztt3STsENWtwqiRcAap+VsHABXrOpflaM5OE49l5SFq7Iv3hAFhO1nrx5LhBr7Hzwet2Vc7X/yVU2xhFumpbMYNeIdNX18sfRAUAAAAAwMX5fib7LwAAAAAAAAAAAAAAQPmZWk3aPOWdoqaLsSzbPRwFxoYBsfYgLOYLkNlWIDLWDkTKWttSN6tjEpeEtYPHYTt6sjjLqlRkG1uj4NhYgGwQG2tuyQQv888zDI+trhMeAwDMhFgYgOL0D2JMVFAs7OlfJb3vX8443zxDmTMWluc3cZ/6tNHPUWGVVD/wH7Gs4B9AUdvV438mXf3SdIYkTX/czn6m9MGfds2c3jjStPtRafOmFBdYwvV0Pm6DqNP1Xy+df697/t2Hpa1npzmgbOe/54cl2w2/7vbXSbXmnLeflwWNhdU2wi/vttKP883j4JK0ejL95Ub+LijosXMGNqeM54M/LX3W21IfDoAF0+/6wl2zBL1CzmcWjsRMKmuTQa9azMCX/3y1KVUckVAAAAAAAJaKa19rUV9+BAAAAAAAAAAAAAAAUAxTW5G2TnunqOliLMse7E/GxlqDn9vbg+jYji86FhEg6zmOOUU8/b60e8k7RYh19HC1JhsMih0FyPzhsY3BNKPLjsJjdW9+s7qWyuoBAMqNWBiA4vT3p0/jDHqkwBUwMUaqrkfNmMFYXOsZjMi4vok7xw/XP+sVvjNRf37mFYkKjKHXcU966Z58YmHDx+maL3PPW1lNbxxDpirZ3uTls8SgYkX8ZpDnthnblFDQuSnbiCu8ldS8Yb2o+S/eLX38d8Kva94g3fQd8912pJRDUFGv2WW2csJxhfVCMquu65NKuD31YvxOTiQq9lhUUCVheO7yfamPBEBOrPUijcFglz/o1Y0R+DrckXrtotcGkhfbnCXoVQsJfNU2vfNV3ggBAAAAACBVri/JKOV7RgAAAAAAAAAAAAAAAIvBrK5Jq2vSyTPuaWIsx1orHeyNwmHD8FggKGbbO+Oxsda21BlGynZG4bI+nwmZS68r7Vz0ThHiHDlqayujiFgwQDYIi5nmllQPxMaGYbKjnzdlVjI4Dh4AkApiYciEMeYGSc+TdI2kDUmPSfq4pL+y1h4WOTYsmiyDUxGxkKj4zLxhn1COP4SCH6Yvw4frN27wnckpFhZ5nwfHkGPAzHW/Dx+nasQfQlk8Zmc/U3riLyYvnykIlfb2XcI/8qc9blvPlm57rXT/m2abP/mAspv/7te6r7vjDdHbaGaSrm/CwFPRnLEwSYeX04+FJf4dldFzNer54vqdljVneK4ifeG7pHd+gWO+Er6eAcddb98LdHUdgS9X0Oso/jU4393hOVwWtWZ40Css5hUV/6o2yh8MBQAAAABgWTn3/eb1RUMAAAAAAAAAAAAAAABwMcZIa3XvdOpK93QxlmWtlfY747Gx4c+tUXzMDi9v7UidQKSs44uVZXIM/xLpHkqXn/JODnHvYbu6NoiMDcNi/p+9AJkZxsb8gTJ/pKy5JdU3ZWpkbQAgTbyqIlXGmK+R9D2SXuyY5IIx5m2Sftha+2R+I8PCyvQ/9VHhmRyDU9L0eJHr/JEc4wf+xyQq9JLqYxexrGAkIM/Qm+2FX26qo5+v/UfSJ/9ryLxZPGaOdV/ZGj9/4lbp8gfCp017XEmXZ/sZhoQiQkFDN39PjrGweTnW5/xfSo/+Sfh1J26Trv+G7IYkZRDwWNBYWFQM7PByfuOYJqvtOjIWVnVfZ22GERjXmIzUuM49W+me+0BJ9XtSd3d60MsVAPNP2z8oem0gSZWVQbhrhqBXLSTwVduQKuyGAgAAAADg+HPs22UfKwAAAAAAAAAAAAAAwLFijJHWG97pinPu6WIsy/b70l5bagdiY8OwWNuLjdn2zmCa3ZBImS9Ahvkc7EsH56VL552TxA6PrdXHImMaRsZ8cbGj8Fg9EBvzR8rqGzLViONSAWBJcJQmUmGM2ZD0byV9/ZRJT0v655K+yhjzzdbad2Q+OCy4DGNhrnCUKXEsTI54UmEfrs/pfpop8pXnYxfjccs18BY3phQVeVuCWJhzTHEeNyn9x27O7TLs+WGtdNcPuue5801SpaA/iJNG+yJfs0tsJSIWdpBFLCzp/ZvV75GoWFhWQcAporalyIAZB7LhGLNW6nWmB75c1/nPd1tFrw0kSWY86hUMeoUFvlzXV9eKXhkAAAAAALBIXPt++eZXAAAAAAAAAAAAAAAAOJhKZRCT2oieLsaybL/vBcOGEbHWjtSZDJDZsTBZIEA2nKfDsVJz2+94pwuPOyeJHR6rNwdBsWFUzB8d8/41ja1RjGwsUjaIjjW3pPWmt80BwAIiFoa5GWOqkt4m6eWBq85Ler+ky5JukvR8jf7/dZWkPzTGfJG19r15jRULKNMwR0RYKSo+k8kH2WPEi6SID9fnGTDxrX9kpCfN+ylqWcExRE2b8mMXJzqVZ+Atbkwp1xDWHLGwrMSJ80XdR6kH1ebdLkPmf+zt0vn3hE9+xYuka798ztssQtwYXslU16TKmtTfn7zuMItYWFIZPeeini9RYS5ZZffYuralSs6vj0AKegeBcFfMoNfEtNsE8cqiWo8X9KpNCXzVGsVFGQEAAAAAwHLL9Yt0AAAAAAAAcGz9g5dKH3xf0aMAAAAAAAALyFQqoyjU2Wvd08VYlu12R+Gx9nhszPt3EB4bRsaOphlM54+U7XfSW8ll1Wl5pwufck4SOzwWiIyNomOjCJlxxcaOLtuU6k2ZyOYCAKSLWBjS8BaNh8IOJX2PpP/HWnswvNAYc6ukfyfpxYOL1iT9gTHmudbax/IaLBZNlt8wHRVWyvk/ZHHiRWHnj+T44fqxsFHeUbUwgTFE3W7aY5onOpVJkCNmTCnXEFbS5RURC/PfTzneR3O/zgXmt33p7te4J7/zzVNCf2lx3UbS9V3QWJjkRVv2z09enkUsLOnrXFaRoMjlFhSxiXoNyPP1EcvL9qXu7mSwK07QKzh9WIgQ+TO1yaBXLSTwNREAC7muwm4aAAAAAACw6Bz77dnHCgAAAAAAgBmYf/wdsr/5lskrvuZf5D8YAAAAAACwtEytJm2e9E5R08VYlu0eeuGx1vYoINb2h8e8sJgdXt7aCY+UtbelA44rm9vwfn3SPUmsI3YrFdn6xlhkbBQgG0XGzFiMLDD98PK1OuExAFNxFCrmYoy5UdJ3BS7+P6y1fxic1lr7AWPMF0p6p0bBsCsk/YikV2Q6UCyuLINTzmVPi4VlMKZ5Y2G5frg+Ziws1fspYlkT/+GNut20H7s5YmGZxLDixpQWIBaW6TbtWnacx03li4UFX8se+V3p4l3h0577IuncF8x3e0VxvWYvwh+9Kyfyi4Ul3Z4ye85FLNdU3ddZm2EHzrUtVZRvKBALxVqpt+cOenUdga+w6bu7Ra8Nho7CXTGCXlHxr+r6Yvw+AgAAAAAAyIPzPZa8vmgIAAAAAAAAx4G58mnSK94k+8uvHV34jFtkvunVxQ0KAAAAAABgDqa2Im2e8k5R08VYlj08mAyIDWJjw/CYPYqM+cJkYZGy7mE6K7is+v1BAG47crJYn56qVmXrgaDYMEQ2vKyxJROMjQ1/9kfKVtcIjwHHFLEwzOtHJK34zv9GWChsyFrbMcZ8i6R7Ja0OLv52Y8xPWGsfzm6YWFxZxsJc0Q8TfbB/FgEz51iCH6Z3xcJ6aY5mSuzAt/5xp5tX5H0+QywstxBWxfFzhmOR4seU8gxhlTEWFifOF3UfpR16m/s1xTd//1C653XuSe9885y3NQvX60Par6EL8Ifqylb45YclCgZl9ZyLWm7k8yxDkb//c3zuIx/9w0HMKyTw5Qx6OeJftlv02kDywlzBoFctEPCKjH8Nrq9tFPc6BAAAAAAAcKw59tvzhQwAAAAAAACYkfnG75Ne8PnS+/5MuvoZ0oteJtN0fCYTAAAAAABgiZiVVenEFd7JNU3MZdmD/UFgzBcQG4bGBkEyG7x8LFK2O5q/l3LzYNn0etLuJe8UIV54rCbb3PICYhMBslFYzDQHcTF/bMwXJlNzy9veAJQGsTAkZoypS/qawMU/Pm0+a+2HjTF/IOlrBxfVJH2DpB9Nd4Q4FjL90LgrrFRR9H9/swiYxYgXhZ0fyvPD9WNho6joVJr30wyxsMjbTfmxmyc6lclj5lq/GWJhqcdwki6vqOf+UI5BtXm3S/82//BvSDsPhk/39K+SrnjhfLdVqJjbdxlVHH8EZxIeSro9FRELq0bNmPpQpi97SiyMA9nyY/tStzUe9OoGAl9x41+9TtFrA8l7vkcFvWpxA1+bUpUdiwAAAAAAAKVWhvczAQAAAAAAcGyYm18g3fyCoocBAAAAAABwbJnVNWn1rHTqrHuaGMux1koHe6OoWGsYHNse/dzalu3sjmJjE5GyYYBsR+rzeaO59LrS9gXvFCHO0bx2ZXUQFBvExhqBqFhzS2Z42fDysEhZY1OmtpLO+gFLjFgY5vHFkhq+839trf1gzHl/XaNYmCR9lYiFIVRBsZC8Y2FxolNh56fNnwnf+pu87qdZlpXlNhO8qTixMFcMJ4PHzBVKm3iccozhJF1eltu0c9kxIm+R8yc17zY7GE+3I937hvBJTEW6I+dfs67Xh8QhwRyf22mrOP7L3c8iFpZQVs+5yFhYVLgwQ87XyoryDSTe0mUAACAASURBVAUeQ7398GBXWNArGP8am35HC/2cP05qzdmDXmHTV+tT/t8IAAAAAACA48O1n5V9fgAAAAAAAAAAAAAAAMBxZYyR1ure6fRV7uliLMtaK+21R+Gx9ig2NgqK7cq2ticjY63A9J3dOY5thiTp8EC6/KR3coh7D9vV9VFArDEIjzU3ff8OwmPDy4KRsubm0Xym6uo4AMcbsTDM40sC5/98hnnfI6mr0Tb4fGPMVdbax9MYGI6TDP/jFTusFHO+ucYSI14Uen6ooFhYXlG1qPs8+HhFxVxSf+xcsTDffyxzDbxFBfD8Z4mFhfJvS5ERo5IFg4br8+Bbpc4nw6e54ZukE7fkN6YsJH3NLgPj+C+3zSAWlvR1LrPnXFQsrKg/wl1jMov13E9LvxeIeu34Yl5RQS/f9cNp+4dFrw0kqbI6PehVcwW+/D9vSBV2lgEAAAAAAGBGzi8TOab7WAEAAAAAAAAAAAAAAACkyhgj1ZveSVe7p4uxLNvvS3ut8diYP0LW8oXHOoPY2ESkbPBvZze1dVxaB3ve6eITzklih8fWG4Og2DA2tuXFxOqj2Jjxh8lckbL6BuExLBRiYZjH7YHzfx13Rmttyxhzr6Tn+y6+TRKxMIzLtNIaEVaKjM9kEQvrOYZSiT5/NH+OH673PyaR0am8CrvBxyrqdlMekzM6VQn/Oc68c0kjFubYFpNKurxMt+k4cb6I14DU76M5t0vb9yI9H/ix8Osrq9JzXz/fbSTiug+Trm/M7buMKjnGwhLfvxk956KeL5FhroJioXm+Ps7DWqnXngx8xQl6BafttYteG0iSzPTA17TraoOfq2tFrwwAAAAAAACWmXM/K9/OCQAAAAAAAAAAAAAAACBfplIZxaTOXOOeLsaybK/nBcP8AbH2ZIDMDn9u7YwCZO1AhGyPYzvnttf2ThfcmZrY4bH6xnhAzB8gGwTGjsJjza3ANJujy9ab3jaXA2utdPEJmdNX5XJ7KA9iYZjHLYHzD804/0c0Hgu7VdK75hoRjqEsg0FR4ZmcY2Gu9SwsFhZ3/fO6n6KWVWQszBWOqTh+jjPvHKICOOMXRCwk7W0p6fIyfO7HirwNXwdC7tPUn2/zbpd96YGfkvafCr/6ma+QmtfPeRtlEHf7LiHj+C93P4tYWEJZhbAiny/5/LE7yfWcq0yJhaXw3O8dDGJe0wJfU+Jf3Z18Q6FwqzYmY15hQa+o+NfKlrecRXg9AwAAAAAAAKYqwZcfAQAAAAAAAAAAAAAAAEDKTLUqbZzwTlHTxViW7XYH4TFfbKw1+Lk9io3ZYZDsKDgWEik72EtnBZdZZ9c7PfWYc5JYRQBjvPCYLzI2CpCNYmPmKEzmCpBtSesNGcdxp9Za2Z//XunPf1/6uXfIXPfsZOuNhUQsDIkYY05LOh24+JEZFxOc/lnJR4Rj68Fflh7902yW3dsPv9xMiYV9+BelT/xBumM53HGMJfhheseH6w8vS+///hTHczniSt9/Y6KiFh/9D9KFv01pPI77J2wMrmCWJH30N6XubjpjkqQn3uMYUyX8Z78Lf5vuYyZJbdfLcOA+inrcHvyldJ9zl+5LNt+9r5dqzfTG4Xfp3vDLw+J8YQGlB39Zeuzt6Y1n9yPzzf/If5EuO+7nWlO6/bXzLT8xx3bWeTTZtr/3xGy3UyamGn754+9K/3VgJ+H29MBPS/UMytGRr9+O+0WS3v8qqRJx/Twu3uUYj1FkwOzgYvTjZftSt+UOfB3uSH3H/z2QL1OTVk/MFvSqhQXBNqQKf1IDAAAAAAAAY5zvQ2XxhUwAAAAAAAAAAAAAAAAAsHhMrSZtnvROUdPFWJbtHg5CYr6AWMcXFmt58TE7MU1IpOzwIJ0VXFbWDmJuEcdXK+an6SoV2UYwKLbhxcTePeqd2H/1Munn3yFz3XPmGzsWBkc2I6ngb5y2tbY14zKC1Y/ofCaW0yP/uYAbNdExpY//p/yGEoyWuMJTvY70wL/JfjhSIMYVcT89+sfeKXcR/zXafTif+ylOLGz7g94pFzPElB753eyGMYsHf6mAG40ZC/v738tnOHE99T/d1z3nu6X1K/MbSxz7T6b8PFyAWJgrJnThb9OLKs7rY7+V/226Xh8l6UM/k984jkz5/S/l97sWIYwX63IFvWohga+JANjg58ra9McaAAAAAAAAQEIR+36tZd8cAAAAAAAAAAAAAAAAAKTI1FakrdPeKWq6GMuyB/uj2JUvNHYUHmtvyw5jY62dQZQsJFLW2pZ63XRWcFn1+9LuZe8U5anHZP/ly6Sfe7vMM27JZWgoFrEwJLURON9JsIzgPJsJx3LEGHOlpLMzznbTvLeL48aoNPGZYEglKqxSiDLcT4Ex2DJ8K3nF8XNBOOginon7qQSP3TxWT0u3fF9xt5/XdrcI27fhv9yhTLXoEYwr3e/YY6JaH0S+QgJfUUGvYPyr1uQxAgAAAAAAABZB1H572y/fvmEAAAAAAAAAAAAAAAAAgCTJrK5Jq2vSyTPuaWIsx1orHexL7UBsrLUtdYaxsUF4rO2LjY1FynwBsl4vvZU8ji58Sva7vlj62XfI3EAw7LijXICkgrGwvQTLCMbCgstM4v+S9CMpLAfLrLrqxShMVbIF/6ehshZ9vgjrV45+Pv3p0vn3FDcWSaqsjp+vX13MOPyqa+E/FyV4H518nvTEXxQzljILPr+qa1J/v5ixpOHWV0urJ4q7/eB2t+i3M4/qetEjKKeVuTux6aqsEnYbMtXxmFcw6FULxL6c8a9NqbJS9NoAAAAAAAAAyFVU9L8viVgYAAAAAAAAAAAAAAAAABxnxhhpbd07nbrSPV2MZVlrpf2OLyIWEhRr78j6LwtGyvzzWpveipbJ9gXpUx+TiIUdexwNj7QkeTU8pq+giO15PyHd9QNFj2KcqUqnX+jFws68WDr/3iIHI5150fhFZz7Du7zIp8+Zzxj9fMM3Sh/6meLG0niad/K78rOLGYvfmZeM//yhnytuLMMx+N38XdKHf76YsZTZ2c8cP3/mJdJjby9mLPOqXyM9+5XFjuHMi3O6nZdMn6ZoZz9T+th/LHoU5dJ8hnTuZVKtKXVbRY/Gc+Yl5Qg8zqO2kSDoFXK+ui6ZOLtYAAAAAAAAACDARMTCjuuHrAAAAAAAAAAAAAAAAAAAmTDGSOsN73T6Kvd0MZZlrZU6rUFAbDw25oXFvMusP0o2ESnzXV4WtRWZN/6OzIu/tOiRIAfEwpDUbuB8PcEygvMEl4nj7sZvlh7+NWn7g0WPZOS210qrJ7yfn/t66d1fJvX2ihnLra+S1q4Yv2z9rHTL90sP/EQxY3rhL49/wP/U86Wt50jbHypgMEa6882TMRNTkZ71L6QH/+8CxiRp62Zv2x669h9KZz+ruPDcdV8rnf608cs2bpRO3CZdvr+YMZXRuS/yTn63v046/57yhIziqq5LL/ltqZbkV3OKTt4hXf8N0sd/O7vbuPHbpM1nZbf8tFz/9dKDvyJduruY269teNvEXa+Sth8oZgx+puK9fldXpTveKP3d9xQ9IunKz5GuGfwB/KJfk/7m2/K77craZNCrFjPw5b++thF9EB4AAAAAAAAA5CLqI1f93EYBAAAAAAAAAAAAAAAAAICfMUZqbHgnXe2eLsaybL8v7bW8kFhrEB4LCZDZ9vZkZOwoQDaYpzNHz2B1TeZHfkvms/5R8mVgoRALQ1JljYW9VdLvzjjPTZL+MIXbxqzWr5S+6N3Sw//eC6hU61K1Ie0+VMBYznlRp6d95eiyc18ovfQvpY//p3yjSutXSte8XHr614Rf/7y3SKdfID3236S9J7Idy/n3SofbkqlKn/NH0rUvH7/eVKSX3yfd/RrpgZ/0LmtcJ528PdtxNW+Qrvtq6arPD7/+hb8onbhF+ttXeudXTkpnX5LtmCqr0pkXSzd+i/cYDtWa0uf9qfTwb0hP/IXUa2c7jqGVE942fMM3h8djXn6PdNerR4/b5rOyjS71D6RP/Y/R+eu+Vrp4l7Tz4fHpGk/zIlN5qTWls58j3fRtUnVt/LqzL5Fe+lfSx39HunSvpBy+7X734fGA4vN/yosGPvHnUv1a6fCy9OFf9K5bv1I6/enj85+4Xbr+6yYDcUUwRnrxb3oRtsffKR1cTG/Zq6elcy+Vbvgnk8HAMlo9JX3hu6SHf106/5dSfz+nGzbe8+kZ3+C9Lp95kfc79yP/Tmp9TDrzEqnWyGksAxs3SU//aumqz/XO3/zd0uZzpE/+odT+RL5jkbz/d1z5udJN3zq6L276VmntjPQXXz6a7pqXh88fVGuGB71qrsDXphdNAwAAAAAAAIDjYvWUdO5l3vtTpiLJjP6N9REqAAAAAAAAAAAAAAAAAADKzVQqUmPTO5291j1djGXZXk/q7AaiY4PAWGtb6gzDY77I2F5LOnedzFd8p8x1z0lvxVB6xtocwhc4dowxV0h6MnDxhrU2dq7QGPNvJH2v76Kft9Z+Vxrjm4Ux5jZJ9w3P33fffbrtttvyHgYAAAAAAAAAAAAAAMDc7r//ft1++9gXPN1urc3xG7IAABjHZ/QAAAAAAAAAAAAAAMBxUPTn8yp53RCOF2vtU5IuBi6+bsbFXB84/2DyEQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABw/xMIwjwcC55854/w3TlkeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUiMWhnncFzj/4rgzGmOaku6YsjwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIClRiwM83h74PznzTDvZ0uq+c6/31r7+NwjAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOEaIhWEe75DU8Z1/sTHm5pjzfkvg/O+nMiIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBjhFgYErPWtiX9XuDiV02bzxjzbElf6buoK+m3UxwaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAsUAsDPN6vaRD3/lvMcZ8uWtiY8y6pF+XtOq7+FettR/JZngAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACLi1gY5mKtfVjSzwUu/j1jzCuNMf4gmIwxt0h6p6SX+C5+StIbsh0lAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAYqoVPQAcC6+WdJukLx2cX5H0C5JeZ4z5O0k7km6U9GmSjG++A0lfaa19LMexAsD/z969R0+XlfWB/+6maRoaBASaq9BcjYASiJmIkrFjAEEnIEqUkGToGDUTk0xwNJlBzZpoMiYzGiauxAuJCo4XRkVBEATGxEaEeAEbRSAKSKMYGrkLLU1z2fNH1dtv1fndqn5VdersXZ/PWnuxTr116uxn1342dZ7zW7sBAAAAAAAAAAAAAAAAAAAAAJphszA2Vmv9VCnlq5P8UJKvWfinK5M84YTT/iTJM2qtr951/wAAAAAAAAAAAAAAAAAAAAAAAFp1yb47QB9qrR+ttT4tyV9P8munvPUDSX4gycNrrS8fpXMAAAAAAAAAAAAAAAAAAAAAAACNunTfHaAvtdYXJHlBKeX+SR6V5F5JrkhyQ5J3JnlNrfXmPXYRAAAAAAAAAAAAAAAAAAAAAACgGTYLYydqre9I8o599wMAAAAAAAAAAAAAAAAAAAAAAKBll+y7AwAAAAAAAAAAAAAAAAAAAAAAAMDxbBYGAAAAAAAAAAAAAAAAAAAAAAAAE2WzMAAAAAAAAAAAAAAAAAAAAAAAAJgom4UBAAAAAAAAAAAAAAAAAAAAAADARNksDAAAAAAAAAAAAAAAAAAAAAAAACbKZmEAAAAAAAAAAAAAAAAAAAAAAAAwUTYLAwAAAAAAAAAAAAAAAAAAAAAAgImyWRgAAAAAAAAAAAAAAAAAAAAAAABMlM3CAAAAAAAAAAAAAAAAAAAAAAAAYKJsFgYAAAAAAAAAAAAAAAAAAAAAAAATZbMwAAAAAAAAAAAAAAAAAAAAAAAAmCibhQEAAAAAAAAAAAAAAAAAAAAAAMBE2SwMAAAAAAAAAAAAAAAAAAAAAAAAJspmYQAAAAAAAAAAAAAAAAAAAAAAADBRNgsDAAAAAAAAAAAAAAAAAAAAAACAibJZGAAAAAAAAAAAAAAAAAAAAAAAAEyUzcIAAAAAAAAAAAAAAAAAAAAAAABgomwWBgAAAAAAAAAAAAAAAAAAAAAAABNlszAAAAAAAAAAAAAAAAAAAAAAAACYKJuFAQAAAAAAAAAAAAAAAAAAAAAAwETZLAwAAAAAAAAAAAAAAAAAAAAAAAAmymZhAAAAAAAAAAAAAAAAAAAAAAAAMFE2CwMAAAAAAAAAAAAAAAAAAAAAAICJslkYAAAAAAAAAAAAAAAAAAAAAAAATJTNwgAAAAAAAAAAAAAAAAAAAAAAAGCibBYGAAAAAAAAAAAAAAAAAAAAAAAAE2WzMAAAAAAAAAAAAAAAAAAAAAAAAJioS/fdAZiAyxYP3va2t+2rHwAAAAAAAAAAGznm7x4uO+59ADAif6MHAAAAAAAAADRv33+fV2qtY14PJqeU8qQkP7/vfgAAAAAAAAAA7MCTa60v3ncnADhc/kYPAAAAAAAAAOjUqH+fd8lYFwIAAAAAAAAAAAAAAAAAAAAAAADWY7MwAAAAAAAAAAAAAAAAAAAAAAAAmKhSa913H2CvSil3TPLFCy/9UZKb99Qd2KUHJvn5heMnJ3n7nvoCjEv+w+GS/wDtsXbD4ZL/cNisAXC45D+wC5cl+ayF41fVWj+8r84AgL/R40C4v4PDZg2AwyX/Adpi3YbDZg2AwyX/4bBZA4Bt2+vf51061oVgquYJ9+J99wN2rZQyfOnttdY37aMvwLjkPxwu+Q/QHms3HC75D4fNGgCHS/4DO3TdvjsAABf4Gz0Ogfs7OGzWADhc8h+gLdZtOGzWADhc8h8OmzUA2JG9/X3eJfu6MAAAAAAAAAAAAAAAAAAAAAAAAHA6m4UBAAAAAAAAAAAAAAAAAAAAAADARNksDAAAAAAAAAAAAAAAAAAAAAAAACbKZmEAAAAAAAAAAAAAAAAAAAAAAAAwUTYLAwAAAAAAAAAAAAAAAAAAAAAAgImyWRgAAAAAAAAAAAAAAAAAAAAAAABMlM3CAAAAAAAAAAAAAAAAAAAAAAAAYKJsFgYAAAAAAAAAAAAAAAAAAAAAAAATZbMwAAAAAAAAAAAAAAAAAAAAAAAAmCibhQEAAAAAAAAAAAAAAAAAAAAAAMBE2SwMAAAAAAAAAAAAAAAAAAAAAAAAJurSfXcAgNG8N8l3DI6BwyD/4XDJf4D2WLvhcMl/OGzWADhc8h8AAKAP7u/gsFkD4HDJf4C2WLfhsFkD4HDJfzhs1gCgK6XWuu8+AAAAAAAAAAAAAAAAAAAAAAAAAMe4ZN8dAAAAAAAAAAAAAAAAAAAAAAAAAI5nszAAAAAAAAAAAAAAAAAAAAAAAACYKJuFAQAAAAAAAAAAAAAAAAAAAAAAwETZLAwAAAAAAAAAAAAAAAAAAAAAAAAmymZhAAAAAAAAAAAAAAAAAAAAAAAAMFE2CwMAAAAAAAAAAAAAAAAAAAAAAICJslkYAAAAAAAAAAAAAAAAAAAAAAAATJTNwgAAAAAAAAAAAAAAAAAAAAAAAGCibBYGAAAAAAAAAAAAAAAAAAAAAAAAE2WzMAAAAAAAAAAAAAAAAAAAAAAAAJgom4UBAAAAAAAAAAAAAAAAAAAAAADARNksDAAAAAAAAAAAAAAAAAAAAAAAACbq0n13AGhHKeVWSR6U5KFJ7pXkjkk+nuSDSd6e5HW11hu3fM1bJ/miJPdNcs8kH03y35JcV2u9fpvXGksp5WFJ/nySuyW5TZIbkrwryWtqrTfts29jKqXcOcnDkjw4yWcmuTzJh5K8N8nra61v32P3jiil3D+z7+1eSW6f5N1J3pnktbXWT2zxOvdL8hcym+93TPKJzMblrZmNy0e2da01+yX/t0D+z7SW/4dO/m+H/J9pIf/HnPMtjAdt6nHt7jGmbRnrXqUVhz4ePeZKjzFty6HP96FDr93M+9ZdvvQY07ZYA1jUY670GNO2yH/1GwAA+uVeaDs8n59p7X5GjdcasC3WgJnW1oBDJ/+3Q/7PtJD/ary0rsd1u8eYtsWzuWXGo8986TGmbTHnlx16/abHXOkxpm2R/wz1mC89xrQt1gD1G5i8WqumadqJLbMfW89M8gtJPpykntI+meQXk3z5Fq57tyTfn+T9p1zvNUm+asPrPCDJ1yT57iTXJvnTwTWu39I43iHJtyX541Pi+dMkP5bkgXv8vnc2HkluneRLk/z7JL97xlyq87H6ziT32HMOPDXJa0/p5/vnc/WuG1zjdkn+aZLfP2NMPpXkpUkeP1Ls8n874yj/G8z/Xc+PFcbgrHbVjuOX/9sZR/nfSP6PNedbGQ+tzdbj2t1jTFv+zse4V7kiyWOSfFOSn8jsnuXTg+tcs+/5f+jj0WOu9BiT+d78eEyydjPvW3f50mNMDc75JtaAqN90lys9xrTl7/yg83+s+RH1G03TNE3TNG3k1vu9UDyfH208Wr2fiRqvNWA742gNaHAN2PX8WGEMzmpX7Th++b+dcZT/jeT/WHO+lfHQ2ms9rts9xrTl7/ygn80ZjyN96y5feozJnG9+PCZZv+kxV3qMqcH53kT+58BrN/M+dpcvPca05e/8oNeAseZH1G80beO29w5omjbdluQnN/iR/ZIkdz/ndZ+Y5D1rXOvHk1yxxudfneQVZ/yg3MrNyvx6fymzXW1XjefGJH9/xO955+MxH4MPnHMufTDJ39rD/L99kuev0c8bknzpOa7z6CR/cI5x+ckkt9th/PJf/h9c/o85PzbIrwvtqh2Og/yX/weV/2PN+VbGQ2uzjTWPj7nuztbuHmPa4ve983uVzB5evDGz4v1Zn3/Nnuf/QY9Hj7nSY0zme7vjMb/OJGs3veZLjzG1NOdbWAOiftNtrvQY0xa/74PP/7HmR9RvNE3TNE3TtJFbr/dC8Xx+9PFo8X4marzWAGvAQa4BY86PDfLrQrtqh+Mg/+X/QeX/WHO+lfHQ2mtjzeFjruvZnGdzNQfw9zlTH48e86XHmMz5dsdjfp1J1m96zJUeY2ppvreQ/1G76Tpfeoxpi9/3wa8BY82PqN9o2lbapQE42UNOeP2Pk7w1sx9ml2a2O/Ajklyy8J7/IcmvlFK+uNZ6w6oXLKVcneRFSS5beLkm+a3MbvjvlOSRSe668O9/M8lnlFK+otb66RUu8+eTPH7VPm2ilPLYzHZPvc3gn96Z5Hcye+h4n8x+2Nx6/m+3S/L9pZRLaq3fN0I3xxiPuyW58zGv35zZD9sbMtth9i5JPn/+vxfcKcmPlVKurLU+e8f9TJKUUm6V5KeSfNngn96b5Lp5Xx+Y2Vws83+7e5KfL6U8ttb6qyte59FJXpnZTcSijyT5zcxy7DZJHpTk4VnOsb+R5MpSypfVWm9eMbR1yP8Nyf9btJT/o82PiZP/G5L/t2gl/8ea862MB23qce3uMaaNjXWvkuTpSe64eY93y3gk6TNXeoxpY+b7MrWbW/SYLz3GtDFrwBL1m5kec6XHmDYm/2+hfgMAQK96vRfyfH6Z5/MDary3sAZsyBpwi5bWADXeGfm/Ifl/i1byX42X1vW4bvcY08Y8m1tmPG7RY770GNPGzPll6jdJ+syVHmPamPxfonZzUY/50mNMG7MG3EL9Blqy7d3HNE3rpyV5XS7utPlbSf5hkgee8N57J3lOju7Q+eokZcXr3SdHdwL91SSfM3jfbZL8z5n9n/7ie79rxes885h+1iQ3JXnb4LXrNxi/q3J09+S3JXncMe+9c5J/N3jvp4577w6+552PR2Y/8i58xkeS/HCSv5rktse8tyR5SmYPa4d92vl4zPvw3YPr3jyf/5cN3vfQJK8dvPd9Se65wjUuP2Z8/2w+ty8/5v0PTPLiY8bkWTsaA/kv/w8u/8eaH/NrLX7Wr83nzDrt0h2Og/yX/weV/2PN+VbGQ2uz9bh29xjTlr7rnd+rzM//0DHjWZO865h/u2aPc//gx6PHXOkxJvO9zfHIxGs3veZLjzG1Mufn509+DYj6Tbe50mNMW/qu5f+I8yPqN5qmaZqmadrIrdd7oXg+P/p4tHY/EzXeC9e0BlgDDm4NGGt+zK+1+FlqvPJf/vsbvcmMh9Ze63Hd7jGmLX3Xns0Zj4PIlx5jMufbHI9MvH7TY670GFMr831+/uTzP2o3XedLjzFt6bu2Bow4P6J+o2lbaXvvgKZp022Z7bz9C0k+f41zvvGY/7N92orn/vDgvNfkmJv6hfd/xeD9NyW53wrXeeb8h9p1Sf5jkm9I8qjM/qtBVw8+8/oNxu/5g896a5Irzzjnnw7OeVOSW+34e975eMx/uL0nyTcnuWLFc+6S5M2D67/lrB+JWxiPB+ToDcWTT3n/bXP0x/0PrnCdawbnfDrJl55xTknyM4PzPpzBDceWxkH+y/9DzP9R5sf8Woufde0u4zpH3+S//D+o/B9rzrcyHlqbrce1u8eYtvA9j3KvMj/3Q5n91zhemuQ75mvY3ef/du3gM6/Z07w3HrXPXOkxJvO9zfHIxGs38+t1ly89xtTKnJ+f28IaoH5T+8yVHmPawvcs/0eeH1G/0TRN0zRN00Zuvd4LxfP50cejpfuZqPEuXs8aYA04xDVAjbfKf/l/ePk/1pxvZTy09lqP63aPMW3he/ZszngcTL70GJM53+Z4ZOL1mx5zpceYWpnv83NbyH+1m4v96y5feoxpC9+zNWDk+RH1G03bStt7BzRNm25LctU5z3vB4P9sX7rCOQ9O8smFcz6e5MErnPe8wbV+ZIVz7nzSj8ls78HbAzL7rw4tftZjVjz3Pw/O+9odf89jjMfdVv3BNjjvblCzNwAAIABJREFUEceM41/c8Xj86OB6z13hnIfM5+yFcz6R5AFnnPOzg+u8cMX+3SNHbzweu4NxuOqc58l/+T/8nJbyf+fjsfB5i5917S7jOkffrjrnefJf/g8/p4n8H2vOtzIeWputx7W7x5i28D2Pcq8yP+/E/7JJJvAQwngsXf+qc5432VzpMaYtfM/m+x7GIxOv3cyvddU5z5tsvvQY0xa+Z2vAcj/Ub2qfudJjTFv4nuX/yPMj6jeapmmapmnayK3Xe6Ex7t/j+fzwc5q5nxnrfjdqvMNzrAEXz7UGXDzP3+jtqcl/+X9o+T/WnG9lPLT2Wo/rdo8xbeF79mzOeJzUh6vOed5k86XHmLbwPZvzexiPTLx+02Ou9BjTFr5n+b/cD7Wbi/276pznTTZfeoxpC9+zNWDk+RH1G03bSrskACeotV5/zlO/b3D8V1Y45+lJbrVw/HO11reucN7/OTj+6lLK5aedUGv9YK31phU+exNfniytsb9Wa/3VFc/9nsHx39lOl443xnjUWt9ba73xHOf9dpLhuK0yn86llHLbJE8dvDycY0fUWn8/yYsWXro0szl9mgcMjl9yZgdn17ohyW8MXn7wKueuQ/5vRP4vX6OJ/J9fc4z5MXnyfyPyf/kaTeT/WHO+lfGgTT2u3T3GtImR71VSa333Wh0cmfG4qMdc6TGmTZjvy9Rujlzr+nOeOtl86TGmTVgDjlK/mekxV3qMaRPyf5n6DQAAver1Xsjz+WWez1+kxnvkWtef81RrgDVgeI0m1oD5NdV4I/83JP+Xr9FE/qvx0roe1+0eY9qEZ3PLjMeyHvOlx5g2Yc4vU79Zus715zx1srnSY0ybkP9Hqd1c1GO+9BjTJqwBy9RvoC02CwN24brB8W1LKXc645ynDI6fu8qFaq1vSfLrCy9dkeTxq5y7Y//94PgVa5z7nzLb2fyCLyyl3HPzLjVrOJ/utcNrfWmS2y0c/5da639d8dzhnP3KM95/xeD4XSteJ0n+aHB85zXO3TX5L/+3acz8Z3PyX/5vUwv5f545v61rTXE8aFOPa3ePMSXj3qu0wHhsrsdc6TGmxHwfUrvZjh7zpceYEmsA29djrvQYUyL/t0X9BgCAXvV6L7QOz+e3x9/nHaXGO2cNOAhqGm2R//J/m1rIfzVeWtfjut1jTIlnc0PGYzt6zJceY0rM+SH1m831mCs9xpTIf3ajx3zpMabEGrAt6jewBzYLA3bhk8e8dtlJby6l3CPJIwbnv2aN6107OH7iGufuyn0Gx7+76om11o8nedvCS5dkGjHty3A+nTiXtuAJg+Nr1zj31Vnu6yNLKXc/5f03DI7X2dl4+N4PrHHursl/+b9NY+Y/m5P/8n+bWsj/teb8lq81xfGgTT2u3T3GlIx7r9IC47G5HnOlx5gS831I7WY7esyXHmNKrAFsX4+50mNMifzfFvUbAAB61eu90Do8n98ef593lBrvsmsHx1PIF2vA9qhptEX+y/9taiH/1XhpXY/rdo8xJZ7NDRmP7egxX3qMKTHnh9RvNtdjrvQYUyL/2Y0e86XHmBJrwLao38Ae2CwM2IUHDY4/meR9p7z/4YPj36m13rjG9V47OH7YGufuymcOjj+05vnD93/uBn1p3XA+vXuH1xrOxf+y6onzOfvGwcunzcVXD44fteq1jnnvb65x7q7Jf/m/TWPmP5uT//J/m1rI/3Xn/DavNcXxoE09rt09xpSMe6/SAuOxuR5zpceYEvN9SO1mO3rMlx5jSqwBbF+PudJjTIn83xb1GwAAetXrvdA6PJ/fHn+fd5Qa7zJrQN/UNNoi/+X/NrWQ/2q8tK7HdbvHmBLP5oaMx3b0mC89xpSY80PqN5vrMVd6jCmR/+xGj/nSY0yJNWBb1G9gD2wWBuzCUwfHr6u1fvqU9z90cPy2Y991sref8Xn7cPPg+DZrnj98/xRiGl0p5TOSPG7w8m/s8JKfMzje5Vz8oSzPk68tpdz2rAuUUp6S5L4LL72p1vr61bu4c/Jf/m/FHvJ/n+5bSnluKeVNpZQPllJuLqW8Z37846WUbyilDP/AZYrkv/zfiobyf905fy4NjQdt6nHt7jGmZNx7lRYYj831mCs9xpSY70NqN9vRY770GFNiDZgS9ZuZKc7BHmNK5P+2qN8AANCrXu+F1uH5/Bb4+7yj1HiPZQ3o1IHVNNR4Z+S//E/SVP6r8dK6HtftHmNKPJsbMh7b0WO+9BhTYs4Pqd9srsdc6TGmRP5PSS+1m6TPfOkxpsQasC3qN7AHNgsDtqqUcvskf3fw8gvPOG24i+cfrnnZdw6O71JKufOan7Ft7x8c33PN84fv/+wN+tKyv5fkdgvHH07yy7u40PxGcXizuO5cHL7/wSe9sdb6jiTPWnjps5I8v5RyuxNOSSnlL2ZWBLvg00n+0Zp93Bn5fwv5vx2j5f8E3D/JNZkVA+6U5NZJrpwf/80kz0nyh6WU/3ueZ5Mj/28h/7dj8vl/zjl/XpMfD9rU49rdY0zJ+PcqU2c8NtdjrvQYU2K+D6ndbEeP+dJjTIk1YILUb2YmlSs9xpTI/21RvwEAoFe93gudg+fz2+Hv85b7qMZ7PGtAvw6ppqHGOyP/5f8Fk89/NV5a1+O63WNMiWdzQ8ZjO3rMlx5jSsz5IfWbzfWYKz3GlMj/CWq+dpP0mS89xpRYA7ZF/Qb2x2ZhwLb9qyT3WDj+UJZvvo9zp8Hxn6xzwVrrR5PcNHj5jut8xg68ZXD8BaueWEq5b5J7DV7edzyjK6VcleSfDV7+3lrr8L8ItS3DefhntdYb1/yM4dw99XurtT47yT9J8on5S09O8uZSyv9WSnlMKeXBpZSHlVK+opTy3CSvycWbj08k+dpa65R+yMr/Gfm/oT3kfwuuSPLMJK8vpTxs3505hvyfkf8baij/zzPn19bQeNCmHtfuHmNK9nCvMnHGY3M95kqPMSXm+5DazXb0mC89xpRYA1qkfjMg/89N/m+H+g0AAL3q9V5oXZ7Pb8jf56nxrsoa0Cc1jWOp8Q7I/z41lP9qvLSux3W7x5gSz+aGjMd29JgvPcaUmPND6jeb6zFXeowpkf8tmnrtJukzX3qMKbEGbIv6DeyJzcKArSmlPCXJPxy8/G211g+ccepwF9+PnePyw3PucI7P2KZXDY6/6rQdzQf+x2Ne23c8oyqlXJbkp7Ic9/VJ/q8dXnYv87DW+j1JHpHkR5J8MMn9Mvtx/Ookv5/kdzPbRfeazHbDTpJfSvIFtdYfPUcfd0L+L5H/G9hT/u/LJ5Ncm+TbkzwpyaMy2z38kZkVt78nRwsGD0nyS6WU+43XzdPJ/yXyfwOt5P8Gc37d6zQxHrSpx7W7x5gWtNDHMRmPDfSYKz3GtKCFPo5J7WZDPeZLjzEtaKGPh0D9Ztlk5mGPMS1ooY+Tpn4DAECvOr8XWpfn8xvw93lqvOe4vDWgIwdW01DjXSb/j9p3PKNqJf/VeGldj+t2jzEtaKGPYzIeG+oxX3qMaUELfRyT+s0GesyVHmNa0EIfD0EXtZukz3zpMaYFLfRx0tRvYL9sFgZsRSnlEUn+n8HLr0zyAyucPvxBNdztdRXDH1TDzxzbSzPb/fSCOyX552edVEr5rCTfcsw/3aqUctvtdK0JP5Tkv1s4/lSSZ5xjV9517HMeXprk07m4A/5pfjTJN9Vaf2udju2S/D9C/m9mH/m/D9+e5N611r9Sa/0/aq0vqbVeV2t9W631DbXWF9da/0lmBe5/naQunHuPJD9XSin76Pgi+X+E/N/M5PN/wzm/rsmPB23qce3uMaYzPm+KfRyT8TinHnOlx5jO+Lwp9nFMajcb6DFfeozpjM+bYh97p34z0XnYY0xnfN4U+zhZ6jcAAPTqAO6F1uX5/Gb8fd7J1HiPZw3oy6HUNNR45f8t5P8tJp//ary0rsd1u8eYzvi8KfZxTMZjAz3mS48xnfF5U+zjmNRvzqnHXOkxpjM+b4p97F0XtZukz3zpMaYzPm+KfZws9RvYP5uFARsrpdw3swdviz9i3pnkb9Va6/FnnWqsc3am1vqRJN87ePlbSin/+KRzSin3SfLyJHc86WO31L1JK6X8iyR/e/Dys2qtvzJyV3Y+D0sptyml/Lskv53k65JcucJpz0jyxlLKi+dzZq/k/1Hy//wmlP87Ny9gDXe1P+59N9Van5XkHw3+6VFJ/sZOOrci+X+U/D+/FvJ/B3P+tGtNfjxoU49rd48x7eh6Pf//ifFYQY+50mNMO7pez/Nd7WZFPeZLjzHt6Ho9rwE7p35zrL3Pwx5j2tH1DjL/1W8AAOjVgd4Lncrz+fOb0P2MGu+KrAFHWQPOb0JrwM6p8R5L/p/wsVvq3qS1kP9qvLSux3W7x5h2dL2e/7/EeKyox3zpMaYdXa/nOa9+s4Iec6XHmHZ0vZ7zf+d6qN0kfeZLjzHt6HoHuQao38A0XLrvDgBtK6VcmeT/S3LvhZdvSPK4Wut7V/yYjw6Oz/Nf5xmeM/zMffiuJE/Mxd1KS5J/W0p5apIfTvKGzHaNvdf8fX8/F38YvSvJYqHiplrrkV1pSylXrdqZWuv1a/V+D0opz8xsN+hFz661fveK51+16rWOGY9R52Ep5dIkL0ryhMVuJXlhZrvbvy7J+5LcJsl9k3xJZjezD56/968leXQp5XG11jeco68bk/+nkv9r2nP+T16t9ftKKY9P8qSFl78xyU/uoz/y/1Tyf00t5P+W5vyq19poPOAkPa7dLcXU0r3KGIzHuFrKlVW1FJP5vqyl8eihdpO0lS+raimmlub8GHq7nx1SvzmR/D+D/F+mfgMAAMtauhfaA8/n1+Tv89R456wB1oBFk/obnX1S4z2R/D9DC/O9hfxX46V1Pa7bLcXU0r3KGIzH+FrKl1W1FJM5v6yl8eihftNSrqyqpZhamu9j6O1edmhqtZukrXxZVUsxWQOWqd/AYbFZGHBupZTPTPJLSR6y8PL7kjy21vrWNT6qux9USVJrvbmU8pVJXpbk8xb+6THzdpL3J/m7SV6x8NqHTnjvO9boUlnjvaMrpXx9kmcPXv6BWus3r/Exm4zH2PPwn2W5kPWxJE+ttb5s8L6bk7wpyZtKKf8hyfcn+dr5v901yS+UUh5Ra33/Ofp7bvL/dPJ/PRPI/1b8qywXs76glHKnWutJc2Qn5P/p5P96Wsj/Lc75Va61jfGAI3pcuxuMqaV7lTEYj5E0mCtnajAm831ZS+PRdO0maTJfztRgTC3N+TF0cz97CvWbo+T/2eT/MvUbAACYa/BeaFSez69nAs/n1XjXZA04nTVgPRNYA1qhxnuU/D/bpOd7C/mvxkvrely3G4yppXuVMRiPETWYL2dqMCZzfllL49F0/abBXDlTgzG1NN/H0M297CkmUbtJmsyXMzUYkzVgmfoNHJBL9t0BoE2llDsmeWWSz114+YOZ7fz5pjU/7sOD47ut2Zfb5+gPqtF/2B+n1vrHSb4wyXOSfGKFU345yecnuXHw+g1b7tqklFL+dpIfzPKPy+cm+QcjdmM4D29XSrlizc+4cnB87Dyc/yAe/iD9xmMKWUtqrR9P8vVJXrXw8r2TfOua/dyI/F+N/F/NRPK/Fb+RWa5dcKskDx2zA/J/NfJ/NS3k/5bn/FnXmvx40KYe1+4eYzrDaPcqjTAeK+oxV3qM6Qzm+zK1mzX0mC89xnQGa0Cb1G+W+yL/z0f+r0H9BgCAXh3gvdC5eD6/moncz6jxrsEasBprwGomsga0Qo13uS/yv3Et5L8aL63rcd3uMaYzeDa3zHisocd86TGmM5jzy9RvVtRjrvQY0xnkf5v2XrtJ+syXHmM6gzVgDeo3MD02CwPWVkq5Q5KXJ/kLCy//aZIn1FrfcI6PHO4Wer81zx++/wO11g8e+849qLXeWGv9n5J8dpJvy+xh47sy2+n8I0nekuRHkzwuyV+ttV6f5HMGH/O60To8slLK0zL7kbb4/0k/keTraq11rH7Md44fzpv7rvkxw7l40k64X5Zk8abhHZnNgTPVWj+d5DsHLz+jlDLKTt7yfz3y/3RTyf9WzPP/Dwcvr1Uo2YT8X4/8P10L+b+DOX/atSY/HrSpx7W7x5jOMvK9yuQZj9X0mCs9xnQW832Z2s3qesyXHmM6izWgTeo3R8j/c5D/q1O/AQCgV4d4L7QJz+dPN5X7GTXe1VkD1mMNON1U1oBWqPEeIf8b1kL+q/HSuh7X7R5jOotnc8uMx+p6zJceYzqLOb9M/WY1PeZKjzGdRf63ad+1m6TPfOkxprNYA1anfgPTdOm+OwC0Zb4r6suSfMHCyx9N8sRa62+c82PfMjh+0JrnP2Bw/OZz9mOnaq3vSPJd83aWRw+Of/2EzxztD1B2oZTyVUl+LLPdmy/4mSTPmN+0rWUL4/GWzP4rUxc8KEfn52mGc/Gkcx8xOP7lNX+k/kqSm5NcNj++S2Z93emNhPw/P/l/1ATzvxUfGxwPd0jfCfl/fvL/qBbyf0dz/qRrbXU84IIe1+6WY2roXmUUxmO3Ws6Vk7Qck/m+rKHxaLJ2k7SdLydpOaaG5vwoWr+fXYP6zUXy//zk/xnUbwAA6FXL90L75vn8URN8Pq/GewZrwPlZA46a4BrQCjXei+R/o1rIfzVeWtfjut1yTA3dq4zCeOxey/lykpZjMueXNTQeTdZvWs6Vk7QcU0PzfRSt38uuYS+1m6TtfDlJyzFZA5ap38BhueTstwDMlFJum+QXkjxm4eU/S/LltdbXbvDRvzs4/rxSyu3WOP+Lzvi8psx3MP+Swcuv2kdfdqmU8qQkz8/yxpUvSvL0Wuun9tOrI3Nn+ED4RPMfvJ93xuddcKfB8Q2rXidJaq2fTPL+wct3Xecz1iX/xyH/95r/rRjm+vt2fUH5Pw75P5383+GcP+5akx8P2tTj2t1jTGsa616lFcbjBD3mSo8xrcl8X6Z2c4oe86XHmNZkDWiT+s1F8v/85P8p1G8AAOiVe6FxeD7v7/POosZ7hDWgQRNdA1qhxnuR/G9QC/mvxkvrely3e4xpTZ7NLTMep+gxX3qMaU3m/DL1mxP0mCs9xrQm+d+m0Ws3SZ/50mNMa7IGnEL9BqbNZmHASkoplyd5cZKrF16+KcmTaq2/ssln11rfneR3Fl66NMs/HM5y9eD4FzfpzwR8SZKrFo5fVWvd+X+RbkyllC/LbDfXWy+8/NIkXzMv1OzLywfHV69x7l/O8o/Q62qt7znhvR8aHF+xxnUuuP3g+KPn+IyVyP9RyX9OVEq5a47uNv7fdnxN+T8e+T8Bu5zzx1xr8uNBm3pcu3uM6RzGuldphfE4Ro+50mNM52C+L1O7OUGP+dJjTOdgDWiM+s0RVw+O5f/q5P8J1G8AAOiVe6FReT6/P2q8J7AGjMoawInUeI+4enAs/yeuhfxX46V1Pa7bPcZ0Dp7NLTMeJ+gxX3qM6RzM+WXqN8foMVd6jOkc5H9j9lG7mV+3u3zpMaZzsAacQP0Gps9mYcCZSimXJfm5JI9dePnjSb6i1vqftnSZFw6O/86KfftzSf7Swks3Jnnllvq0L//r4Pg5e+nFjpRSHpfkZ5NctvDyK5N8Va315v306havSPKxheNHz+fYKq4ZHA/n9KLhzecjV7xGkqSU8uAkdxi8vNbu+WtcS/6PS/5zmqdl+ff7e5K8ZVcXk/+jk/97NtKcv3CtyY8Hbepx7e4xpnMa616lFcZjoMdc6TGmczLfl6ndHH+97vKlx5jOyRrQHvWbi32T/5uR/8dQvwEAoFfuhUbn+fz+qPEefz1rwLisAZxGjfdi3+R/Y1rIfzVeWtfjut1jTOfk2dwy43GMHvOlx5jOyZxfpn5z9Frd5UqPMZ2T/G/PqLWbpM986TGmc7IGHEP9BtpgszDgVKWUS5P8dJInLrz8iSRPrbW+YouX+okkn1o4/sr5DftZhg/tfrrWetP2ujWuUsozkjxu4aU3ZLYbahdKKV+c5OeTXL7w8n/O7Afix/fTq4tqrX+W5AWDl4dz7IhSykOSPGXhpU8m+clTTrl2cPxFpZSHrtLHub83OP69Wut71zh/JfJ/XPKf05RS7p7k2wcvv6TWWnd0Pfk/Ivm/fyPO+SbGgzb1uHb3GNN5jXiv0gTjsazHXOkxpvMy35ep3RzVY770GNN5WQPaon5zhPzfgPw/Sv0GAIBeuRcal+fz+6XGe5Q1YFzWAE6jxnuE/G9IC/mvxkvrely3e4zpvDybW2Y8juoxX3qM6bzM+WXqN8t6zJUeYzov+d+WsWs382t2ly89xnRe1oCj1G+gIbVWTdO0Y1uSWyX5qSR1oX0iyVN2dL0fHlzrNUkuP+X9Tx68/+NJ7rdhH64efOb1G37epWu89yuT3DwY60fueQ5sbTySPDrJRwaf96okt9tnjMf08wGD76EmedIp7798PlcX3/+DZ1yjJPm9wTmvT3KHFfr3hGP69y93MA7yX/4fXP6PMR5JPjvJX1vznHsk+c1j5vwDdhSr/Jf/B5X/Y875FsZDa7P1uHb3GNMW+rjze5UV+3Ht4DOv2WXcxuPM63eXKz3GtIU+mu8jj0caqN3Mr9VdvvQYUwtzfsV+TGINOKOPVw/6eP05P0f95uj15L/832v+jzk/on6jaZqmaZqmjdgO8V5oW/fvC5/n+fzFz2rifmaM+92o8Z50PWuANWDSbVvjETXe464n/+X/XtuYc76F8dDaaz2u2z3GtIU+ejZnPE7qQ3f50mNMW+ijOT/yeKSB+k2PudJjTC3M9xX7MYn8P6OPVw/6eP05P2fytZv5NbvLlx5j2kIfrQF7mB9Rv9G0jdulATjZjyT56sFr35rkulLKVWt+1g317J1b//fMdlK98/z4C5P8Uinl62qt//XCm0opt0nyDUn+zeD8f1NrfecqnSml3Cc5dg28x+D40lNi/Wit9X1nXOqNpZSXJvnZJL9ea/30MX15eJJnJXn64J++tdZ63RmfvxW7Ho9SyiOT/GKS2y+8/HtJ/kGSK0sp63T3plrrDeucsI5a6x+UUr43ybcsvPyCUsr/kuQ/1FpvvvBiKeVzkvxQZnP1gvcn+Y4zrlFLKc/KbF5c8Kgkr59f56W11rp4TinlLkn+cWZzZfG7en+S71k1vjXIf/l/cPmfjDI/7pnkxaWUNyb58SQvrLW+9YS+3CHJMzLb8f7ug3/+l7XWPzjhGpuS//L/0PJ/lDnf0HjQph7X7h5j2sgY9yoL598+yV1P+OfLB8d3PeU7eVet9ZOrXHNdxuMWPeZKjzFtxHxfpnazpMd86TGmjVgDjlK/SdJnrvQY00bk/xL1GwAAetXtvZDn80f64Pn8nBrvEmuANeDg1oBEjXdO/sv/Q8t/NV5a1+O63WNMG/FsbpnxWNJjvvQY00bM+WXqN7foMVd6jGkj8v8otZtb9JgvPca0EWvAEvUbaEmdwI5lmqZNs2V5N85N29UrXvPqzHZ6XTz305nt+PtTSV6e5E+O+fyXJLnVGrFdv4WYnrfCdd638P6PJHltZgWMn0jyylP68S9G/q53Oh5J/vkW59K1I4zHrZK87JhrvyezH6A/neR187m5+O8fT/KX17jOs0+I8X1JXjGfJz8zn/+fOOZ9NyX5Evkv/+V/U+Nx9THv/1CSX03yoiQ/luSFma0xx+V9TfKcHY+B/Jf/B5X/Y835VsZDa7ONNY8H17w6O1y7e4xpS9/1WPcq12xp7K8yHrsdjx5zpceYzPemx2OytZte86XHmBqb89dsaex3vQZcv4U+Pu+MOTF8v/qN/Jf/e8z/seZH1G80TdM0TdO0kVvP90LxfH7U8WjtfiZqvNYAa8ChrwG7Ho+rj3m/Gq/8l/97zP+x5nwr46G118aaw4NrXh3P5taKaUvftWdzxuMg8qXHmMz5psdjsvWbHnOlx5gam+/XbGnsd53/12+hj887Y04M3z+p2k2v+dJjTNaA9uZ81G80bSvtuF09Afam1nptKeUpSZ6X5G7zl0uSz5+34zw/ydfXWj+1+x5u5PZJHn3Gez6Y5Btrrf/vCP3hBLXWT5VSvjqzHX6/ZuGfrkzyhBNO+5Mkz6i1vnqNS33z/LzvSHLZwut3SfL4M859Z5Jraq3XrnG9SZP/8v+A3THJF63wvhuTfFOt9T/uuD+jk//yH2hPj2t3CzGNeK/SBOOxHy3kyrpaiMl8X6Z2sz8t5Mu6WojJGjAJ6jcN5Mq6WohJ/gMAANvWwr3QBjyfb4Qa7/5YA6wBB0yNV/7Lf6ApPa7bLcTk2dwy47E/LeTLulqIyZxfpn6zHy3kyrpaiEn+T8LB126SNvJlXS3EZA0AWnTJvjsAMFRrfVmShyf5wcwezJ3k15I8tdb69FrrjaN0bn3/Nsl1me0We5o/SvKdSR7oIeQ01Fo/Wmt9WpK/ntlcO8kHkvxAkofXWl++5jVqrfVfJ/ncJP8+p8/3C96cWRHs4T0Vsi6Q//L/ALwlyXcleU2Sj614zu8n+dbMdvzuspCVyH/5D7Sos7U7SRsxjXGv0hLjsR8t5Mq6WojJfF+mdrM/LeTLulqIyRowKvWbE7SQK+tqISb5DwAAbFsL90Jr8Hy+UWq8+2MNsAYcADXeE8h/+Q+0pbN1O0kbMXk2t8x47E8L+bKuFmIy55ep3+xHC7myrhZikv+jUrs5RQv5sq4WYrIGAK0ptdZ99wHgRKWUyzLbDfh+Se6R2a6/f5zkulrrO/bZt3WUUj4jySOT3D+znW8vz+wm5o+T/Hat9c177B4rKKXcP8mjktwryRVJbshs9/nX1Fpv3tI1SpI/l+QRSe6a5DOSfDLJhzKbK6+rtb5nG9dqgfynd6WUS5I8OMkDk9w7yZ1ycX58MMm7k/xmrfW9e+vknsh/gPb0snYvaiWmMe5VWmI8xtdKrqyjlZjM92VqN/vRSr6so5WYrAHjUL85WSvjoXbWAAAgAElEQVS5so5WYpL/AADANrVyL3QWz+fbp8a7H9YAeqfGezL5D9CWXtbtRa3E5NncMuOxH63kyzpaicmcX6Z+M75WcmUdrcQk/8ehdnO6VvJlHa3EZA0Aps5mYQAAAAAAAAAAAAAAAAAAAAAAADBRl+y7AwAAAAAAAAAAAAAAAAAAAAAAAMDxbBYGAAAAAAAAAAAAAAAAAAAAAAAAE2WzMAAAAAAAAAAAAAAAAAAAAAAAAJgom4UBAAAAAAAAAAAAAAAAAAAAAADARNksDAAAAAAAAAAAAAAAAAAAAAAAACbKZmEAAAAAAAAAAAAAAAAAAAAAAAAwUTYLAwAAAAAAAAAAAAAAAAAAAAAAgImyWRgAAAAAAAAAAAAAAAAAAAAAAABMlM3CAAAAAAAAAAAAAAAAAAAAAAAAYKJsFgYAAAAAAAAAAAAAAAAAAAAAAAATZbMwAAAAAAAAAAAAAAAAAAAAAAAAmCibhQEAAAAAAAAAAAAAAAAAAAAAAMBE2SwMAAAAAAAAAAAAAAAAAAAAAAAAJspmYQAAAAAAAAAAAAAAAAAAAAAAADBRNgsDAAAAAAAAAAAAAAAAAAAAAACAibJZGAAAAAAAAAAAAAAAAAAAAAAAAEyUzcIAAAAAAAAAAAAAAAAAAAAAAABgomwWBgAAAAAAAAAAAAAAAAAAAAAAABNlszAAAAAAAAAAAAAAAAAAAAAAAACYKJuFAQAAAAAAAAAAAAAAAAAAAAAAwETZLAwAAAAAAAAAAAAAAAAAAAAAAAAmymZhAAAAAAAAAAAAAAAAAAAAAAAAMFE2CwMAAAAAAAAAAAAAAAAAAAAAAICJslkYAAAAAAAAAAAAAAAAAAAAAAAATJTNwgAAAAAAAAAAAAAAAAAAAAAAAGCibBYGAAAAAAAAAAAAAAAAAAAAAAAAE2WzMAAAAAAAAAAAAAAAAAAAAAAAAJgom4UBAAAAAAAAAAAAAAAAAAAAAADARNksDAAAAAAAAAAAAAAAAAAAAAAAACbKZmEAAAAAAAAAAAAAAAAAAAAAAAAwUTYLAwAAAAAAAAAAAAAAAAAAAAAAgImyWRgAAAAAAAAAAAAAAAAAAAAAAABMlM3CAAAAAAAAAAAAAAAAAAAAAAAAYKJsFgYAAAAAAAAAAAAAAAAAAAAAAAATZbMwAAAAAAAAAAAAAAAAAAAAAAAAmCibhQEAAAAAAAAAAAAAAAAAAAAAAMBE2SwMAAAAAAAAAAAAAAAAAAAAAAAAJspmYQAAAAAAAAAAAAAAAAAAAAAAADBRNgsDAAAAAAAAAAAAAAAAAAAAAACAibJZGAAAAAAAAAAAAAAAAAAAAAAAAEyUzcIAAAAAAAAAAAAAAAAAAAAAAABgomwWBgAAAAAAAAAAAAAAAAAAAAAAABNlszAAAAAAAAAAAAAAAAAAAAAAAACYKJuFAQAAAAAAAAAAAAAAAAAAAAAAwETZLAwAAAAAAAAAAAAAAAAAAAAAAAAmymZhAAAAAAAAAAAAAAAAAAAAAAAAMFE2CwMAAAAAAAAAAAAAAAAAAAAAAICJslkYAAAAAAAAAAAAAAAAAAAAAAAATJTNwgAAAAAAAOD/Z+/Ow2S7qrrxf1cYwhBImAeBhEFAUEBmBEwi+DIpo4LMgQiC4MiMiAFRX15BfV9EUJQZFBAZZPKnYJhnZVCUmQgBZCYJQ0LI+v1x6krf09VDVVd3V/f9fJ6nn9yzz9l7r6pzdt0nXeuuDQAAAAAAAAAAAAAAsKQUCwMAAAAAAAAAAAAAAAAAAAAAAIAlpVgYAAAAAAAAAAAAAAAAAAAAAAAALCnFwgAAAAAAAAAAAAAAAAAAAAAAAGBJKRYGAAAAAAAAAAAAAAAAAAAAAAAAS0qxMAAAAAAAAAAAAAAAAAAAAAAAAFhSioUBAAAAAAAAAAAAAAAAAAAAAADAklIsDAAAAAAAAAAAAAAAAAAAAAAAAJaUYmEAAAAAAAAAAAAAAAAAAAAAAACwpBQLAwAAAAAAAAAAAAAAAAAAAAAAgCWlWBgAAAAAAAAAAAAAAAAAAAAAAAAsKcXCAAAAAAAAAAAAAAAAAAAAAAAAYEkpFgYAAAAAAAAAAAAAAAAAAAAAAABLSrEwAAAAAAAAAAAAAAAAAAAAAAAAWFKKhQEAAAAAAAAAAAAAAAAAAAAAAMCSUiwMAAAAAAAAAAAAAAAAAAAAAAAAlpRiYQAAAAAAAAAAAAAAAAAAAAAAALCkFAsDAAAAAAAAAAAAAAAAAAAAAACAJaVYGAAAAAAAAAAAAAAAAAAAAAAAACwpxcIAAAAAAAAAAAAAAAAAAAAAAABgSSkWBgAAAAAAAAAAAAAAAAAAAAAAAEtKsTAAAAAAAAAAAAAAAAAAAAAAAABYUoqFAQAAAAAAAAAAAAAAAAAAAAAAwJJSLAwAAAAAAAAAAAAAAAAAAAAAAACWlGJhAAAAAAAAAAAAAAAAAAAAAAAAsKQUCwMAAAAAAAAAAAAAAAAAAAAAAIAlpVgYAAAAAAAAAAAAAAAAAAAAAAAALCnFwgAAAAAAAAAAAAAAAAAAAAAAAGBJKRYGAAAAAAAAAAAAAAAAAAAAAAAAS0qxMAAAAAAAAAAAAAAAAAAAAAAAAFhSioUBAAAAAAAAAAAAAAAAAAAAAADAklIsDAAAAAAAAAAAAAAAAAAAAAAAAJaUYmEAAAAAAAAAAAAAAAAAAAAAAACwpBQLAwAAABipqmOqqkc/J+x2XDupqk4evf6Tdzum/cj7vLdV1Unjz4q9ML/nDgAAAAAAAADg0LZX814AAAAA4FCmWBgAAAAAAAAAAAAAAAAAAAAAAAAsqXPvdgAAAADAcqqqY5J8eoYuZyY5Lck3k3wyyb8meVeS13f3WYuODwAAAAAAAAAAAFaqqsqQ93b06NT3kxzd3afufFQAAAAAAFt32G4HAAAAAOwbhye5RJKrJLlVkkcneWWSU6vqyVV1xG4Gt99V1XOrqlf8fGa3YwL2l6r6zOhz5rm7HRMAAAAAAAAAwMgts7pQWJKcK8kJOxsKLEZVHTfK2+mqOm4X45GvCAtkTQEAALBZioUBAAAA2+3iSR6Z5N+q6ia7HQwAAAAAAAAAAAD71onrnLt/VdWORQIAAAAAsEDn3u0AAAAAgD3lW0k+sca5CyS5aJKLrXH+6CRvqKpju/sD2xEcAAAAAAAAAAAAh6aqumiSO65zyZWSHJfkn3ckIAAAAACABVIsDAAAAJjF+7r7uPUuqKrLJfnZJA9LcuXR6Qsn+duq+pHu/t72hMgibHSfgaS7T0py0i6HMTPrGwAAAAAAAADYp+6V5PBRWyepFccnRrGwXbdX824AAAAAYDcdttsBAAAAAPtLd3+uu5+R5NpJ/m7KJVdO8ks7GxUAAAAAAAAAAAD73P1Hxx/P6hy2O1fVkTsUDwAAAADAwigWBgAAAGyL7v5Wknsm+Y8pp++9w+EAAAAAAAAAAACwT1XV9TNscLnS85M8b9R2/iT32JGgAAAAAAAWSLEwAAAAYNt093eT/MGUU9evqovudDwAAAAAAAAAAADsSyeOjjvJC5K8PsmXNrgWAAAAAGDpnXu3AwAAAAD2vTdMaTssydWSvHPeQavqsCQ/nuSYJJdIctEkpyX5cpJPJPnX7j5n3vEXqap+KMnVM8R6ZIbdKU9L8rUk/5XkvZPCamyDqjp/khsmuUySSyY5IslXMzwrH+zuT+5ieJtSVZdIcuMkV8oQ/zczJDG+u7tP2c3YtltVHZnhtf9whvXz3SSnJnnnLK+9qi6b5AYZ1uERGdbf55K8ubtPW3DYc6mqw5PcNMkVklw6yfeT/HeSDyf5QHf3LoYHAAAAAAAAALCUJvlBdx81v+VAbklVvTjJr684d72qunZ3f3Cb4zpPhrylayS52KT5v5P8yyxzV9WFM+S9XC3JUUm+leSLSd7e3Z9baNCr575YkhsluXKSC2fIW/p8ljTvqqoul+TaGXIKL5GhaNyXk3whybt2Ik+oqn44yfWS/FCSwzPkqn0+ydu6++vbPf9+VFU/muQqGfL/Lpbk2xnu62cy5F9+b5vnt5bnn3dZ1uS1k1wuQ+7gWUm+0N0v2GR/OcDboKrOm+T6GdbDxTN8Xp6WIS/23TOMc5UMa/PAM3Zmkq9kyA99V3d/Z8GhAwAA7CrFwgAAAIBt1d1frqrTMiQXrHTxecarqpsneUiSn85QIGwtX6uq1yX5g+7+yDxzzauqLp7kTklumeTYJJfaoMtZVfWuJH+a5OWbLXJWVZ9JcvQap4+uqs0UFjq+u0+eMvbJGWI/4M3dfdwacXw4yY+uaPpykh/aSgJOVd09yYtHzQ/p7j/bZP/Dktwzyb2S/GSS861z7aeTvDTJU7r7K/NFvD2q6rgkj01yiwxF9qZd85Ekv5/kxbMUk6qqE5I8Z9R8xe7+zBxxjud9QneftEGfk5L8zsq27q4V52+Q5HFJbps1fo9ZVW9O8ujuftc68/xskkcl+YkkNeWSs6rqFUke2d3/tV7Ms76GGcY5JslJGT43xp+VB3yxqp6Z5Kndfcasc4zmOzmbWN+TuD69zlD3rar7bjTfgfdkkux2aoaEqwNO7u7jNwx6HVX1f5P86qj5Otud0AsAAAAAAAAALI2fy1DAZaXnjf7866Pz90/ya/NMNsnp+edR8//kYU02tfutJPdOcqE1xvhYkietV6ymqq6VIX/m9hmKqEy75p1JHtHdb5/tVayvqo7ND/KWzrXGNf+S5BlJ/mrWTfAWlXczGeuSSX4jyc8mueY6l55dVe9O8vQkL5l1M9L1cqQm+Wr3TfKbOTiXbqXvT/J2HrdevtOK+U7K6D0a+eeqDd+y53X3CRtdtBnbma+4xnzXyrBub5XksutcekZV/VOSJ2/mfR3NcVz2+FreRB7etq7lNcZbhjV5wSS/kuQBGTZpnWbqPdvrOcAbPdezmBLjhp8pG+WmVtU1kzwyyV2SXHDKEM9Lsm6xsKq6YobP29tm7fubJN+tqrcm+ePufv16YwIAAOwVU/+BIQAAAMCCTStss1ZBnKmq6qqT4l9vSXK3rF8oLJPz90ry4ar6y6pas1jUIk12ofxCkr9IctdsnCSQJOfNUNDqpUn+bfJF+F4y/lL/Eklut8UxTxgdn5nkrzfTsapuneTDSZ6f5H9lnUJhE1fMUEzqU1U1VwLgolXV4VX1rAwJGz+d9X+Pd40kL0zyhkmCy55Wg99N8q4MyVHrbXhwbJJ3VNXDp4xzZFW9PMmrk9w00wuFJcP6u1uSj1TVLbcU/Bwmz9y/Z0gWXO9z8dIZCor9e1VdbwdCW7jJLpAvHDUfV1U/Mu+Yk52B7zNqfqdCYQAAAAAAAABwSDlxdPztJH974KC7P5DkQ6Nr7lVVU4v2bEVV3TnJR5L8ctYoLjRx1STPr6qXjuOY5M88Psm/JPn5rFFcaOImSd5aVY/dWuT/M/e5qupPk5ycIfdqanGhiesmeVaSt0wKt+yoqjpvVT0xyaeSPDrrFyVKhjykm2bYxPKDkwJOi4jjckneluTZWbtQWDK8l7dI8s6q+r1FzL0fVdVlqupFST6Q5H5Zv1BYMmxceMcM7+srq2qj3NLNxmEtzz7nsqzJG2W4d3+Q9QtJTet7KOYA75iqelyGtX2fTC8UtlH/C0+e648meWg2vr/ny5CD+7qqemtVXWHWOQEAAJaNYmEAAADATjhqSttpm+1cVbfIsEvUbeaY+7AMyWBvrqrNfGm/VT+R9YsbbeRHkrxrN4oWbcELk3xv1Ha/eQebJE+NX/8ru/vrm+j78CSvzVBAa1YXSvInk+JyW7mHWzIpbPf6JL84Y9f/lSGhYb2knr3gmRl2Udzs7y4ryR9W1QP/p6HqqCRvTHLnGea9YJJXV9UNZuizJZOkvz9JcoEZul0hw+fZniwYlmH3xLEHbWG8u2f13zHP2MJ4AAAAAAAAAMAeUlVXyVCkZaVXdvfpo7bnjY4vmqHA0CJjuVeGImVHztDt5zMUmTowRmUo2vOErF/c56Cpk/xeVT10hnlXDzLM/cIkD5mx680y5LPMVJRnKyYFof6/JL+dOQrOZCjq9faq+tktxnGlDJsi3mTGro+tqidtZe79qKquneQ9Se6RtTeHXM8dMuRfXnWLcVjLs8+5LGvyJzMUSJu3KNShmAO8IyZFvn43c76/VXV0krdneK7PM8cQN0vynqq68TzzAwAALItd+0ePAAAAwKGhqq6c6YVwPrXJ/j+b5OVZ/cXuWUnelKGI2GeTfDPDDnHHJPmpJDcfXX/DJK+sqp/s7nFhq+3y/Qw7wv17kv9M8tUMRdIqyYWT/HCSG2fYGW1lYaQjkvxNVf14d392nfE/kuQbkz9fIclFVpz73uT8Rs7YxDXr6u4vVdXrMiTaHHDbqrpkd39pjiHvk9WFop497cKVqup/J3nUlFNfS/KPSd6f5EsZdg49KsOudbdOcrXR9SdmeF8fPlPUi/PsJMevOP5ohuJh/5nhtRyZ5MeT3CWrd637ySS/keQp2x/m4lXVryV54IqmU5L8fZJ/y/Daj0pyowyJVRcedf+TqvqHDJ8Hf5NkZTGt9yd5Q5JPJzk9w/v2U0lun4OftfMneVZVXb+7z17Qy5qqqn4zybRdIM+cxPqWJJ/PkDh1xQzr68DOoxdM8sqs2AF3m5yV5IMrjq+Rgz+Lv57kv2YZsLv/vapOTnLciub7VNVjuvvbc8T44NHxV5O8bI5xAAAAAAAAAIC96f5ZXVRoXBgsSV6U5P/k4KI9JyZ5yYLiuH6S318RyzeSvC5DIakvZchL+ZEkd82Q47bSParqld39sgz5JCeuOHdKktdkyJ/5aob8mRtOxhnnzzy5ql7T3Z+Z8zU8LMkvrDg+Pcmrkrw3yX9P5r56hryly4/6Xj7Jm6rqOt39jWyjyUaCb5/EMvZvSd6cIWfvQByXzFDM67YZNpQ84IgkL6uqm3b3++cI5UIZ8rp+aHLcSd6R5J8y5NSckeQSGfID75TkfKP+j6mqv+/ud68x/hfzg9ydI5JceXT+k9k4/2+m3J4NbGu+YlVdP8k/Z3itK52T5K0Z3ttPT2I4f5LLJTk2yS1y8Lr+4Qybbl6vu7+5iZjGrOUZ1/ISrclLJ/m7HLzW3pOhiNkpGd6Hy2TIg/v5TYx3SOQA75AH5ODidWdkyOt9e4Zn8rAMa/r4DO/7QSaFwt6d1TmzyXCP354h1/brSc6b4T7/RIZNqg9fce2lkry2qq7b3ads7SUBAADsjuru3Y4BAAAAWEJVdUyGxIqV3tzdx804ziOTPHnU/PUkF+/uczboe8UMX7QftaL57CR/nOQPu/vL6/S9TpK/zMEFg5Lkj7r7YRvMe0xWv/b7dfdz1+s36fuxJB/OsCvbmzaTbDL5EvsPktx9dOq13f0zG/WfjPHcJPdd0XRKdx+zmb5rjHdyhkSaA9a991V1+wzJJCs9rLv/aI65P5YhieKAzyU5er3nparulCHJY6WvJ3l0kud393fX6FcZdgh9ZoYElJXu0N2vnjH8mUx5n7+bHySqfDHJr3T31IJQVXVEkqdnKK620jeSXLa7v7PB3Cckec6o+YrzJBhV1fiXjE/o7pM26HNSkt8ZNZ+ZITHj2xkSlp7V3dMSPy6VoYjgTUen/iJDwsdTJ8efSvLA7n7jGjFcP8lrs/re36O7/3q9+Nd6Dd294Y6WVXW1JB/I6gTA10/i/dwa/e6U5Bn5QcLLdzIkn806/8mZYX2v6PeZJEevaHped5+wUb8p49wlqwudndjdGxYFHI1zvSTvGzU/pbsfMWtMAAAAAAAAAMDeU1XnylAM6bIrmj+f5PLTco2q6rUZitMccE6SK81aMKSqjstQ1GilA3kvSfK0JI+fVminqg7PkNvykNGpj2bIA3pnhqIpG+XPXDpD/sxPjE79RXf/0iZew0lZnbuzMnfpOUl+c43XcFiGDQ2flNX5L8/t7vvNM/9m8l4mfV+RIedrpXdM4l2r8NaBgka/nSH2lXN9Jsm1uvv0DeYd50itfL/eneSXu/tf1uh7TIb7dd3RqX/o7luvN++k/3FZ/cwd390nb9R3O2xDvuJFMuSKjsd4TpKTunvNomeTDW2fnuRWo1N/19132WDe42Itb2ktT8ZZljX5/fygcNyHkjyou9+5Rt/zTcsr3Q85wIv8vJgnZ3CN3NSV9+aZSR7X3V9do/9B96aqzpvkbUluMLr0NUke2d3/sU4sl07yh0nuNTr13iQ3mbYmAQAAlt1hG18CAAAAMJ+qukySh0859dcbFQqbeFEOLhT27SS36u5HrlcoLEm6+wMZkif+cXTqV6pqvBPaIt2gu+/S3a/Y7K503X1Kd98jyUmjU7etqmk7rS2j12XY3WulE2YdpKpumoMLhSVDcsF6hcIumdWJBR/PkCzyF2sVCkuSHrwiw26A4wJNfzApJraTDiTcfCrJjdcqFJYk3X1Ghvf4H0anjsqw499edKBQ2C27+5lrJWJ0938n+ZkMOzWudK8kT5z8+d8zJHNMLRQ2Ged9mf5ebSrJaQuekdXJVS9N8jNrFQpLksmzemx+8LrPv9a1S+6VWb3eHjzHOOM+neTP54oIAAAAAAAAANiLbpODC4UlyQvXyTV63uj4sMyR47SGA8WFfq27f3VaYZ4k6e4zu/uhWZ3zc7Ukfz+J6YwkP7VB/swXM+TPjPPofqGq5s0pOZDP8r+7+/7rvIZzuvupSX4+w+afK51QVT855/wbqqoHZnVRoj9LcrP1ihIlSXd/Y7LR6ImjU8ck+eU5wjnwfr0myXFrFQqbzP2ZJD+d1Tl2P11VV5hj7v3m6Tm4UNj3k9xr8hyuWSgsSbr7kxk+C8Y5hHeuqhvNEYu1PNjUWl6yNXmgGNXbk9x8rUJhk7nXyis9VHOAt9uBe/Ow7n7wWoXCkqn35qSsLhT26O7+2fUKhU3G+mJ33zvJE0anbpDk5zYOGwAAYPkoFgYAAABsi8lubW9IconRqW9n2EFro/4/neQmo+b7d/ebNhtDd5+VIYnhKyuaz5PkNzc7xqw2mxywhidm2K3qgEpy/61FtDO6++wMO6mt9GNVdb0Zh5pWpGmcxDP2a0mOXHH87SS3Xq/o0lh3fzbJL4yar5Hk9psdY4G+l+Sum9mxtLs705/n8S6Je8mvr5ekc8Akgekpo+YLJLlghp0R79rd42Ji08Z5W4bPqpWOr6pxMa+FqKofS3L8qPkTSe6zmSKK3X1g58k9a5L4Ni7qdf2quv5mx6iqI7N6J8Z/7O5PbDU+AAAAAAAAAGDPGBeYSZLnr3P9q5KMi+bcr6oW9W/sXtzd/2+T1/72lLZLTv77axsV2UmS7v56kqeOmi+cYZPNeZ3c3Y/ZzIXd/ZokT5py6le3MP+aqurcSR47an5Ddz9kkke1Kd39nCR/OWr+jao6fNr1G/hMhqJWa25ouWLer2V1wZrDMhQRO2RV1dWS3G3U/Fvd/aLNjjG5/7+UZFw46NFzhmUtD9Zdy0u6Jr+Z5G7dfdocfQ/ZHOAd8vLu/qNZOlTVRZL8yqj5md395FnG6e6Tsnrz6Xk/HwAAAHaVYmEAAADAQlTV+arqh6rqdlX1F0k+lORaUy59wCaLOD1qdPzW7n7JrHFNvrj/v6PmO806zk6YJEe8YNR8s92IZU7PntJ2wmY7V9UFktx11PyWyc5/a/U5Iqt3kHtqd39qs/Me0N1vT/LGUfNuPCsv7u73b/bi7v5IkvGulLMWaVsWH8vqpJ/1vHyN9hdM3pfN+tvR8bmT/NgM/WfxoCltD+vuMzc7QHf/Q4bdJ/eyv0hy1qjtwTP0v2+G4nArPXNLEQEAAAAAAAAAe0ZVXTLJ7UbN/9Ld/75Wn0l+xjgH7egkt1hASN/P6qI5a+ru9yb5rymnPpqNN1dcaZz3kiTXnaH/2KyFvp6cZJwPeIequswWYljLL2S4Xwd0VheR2awnTvofcKms3tx0M54wY3Ghv8nwrKy0V3O9FuUROfjfuX46qzeR3FB3fy/J74+abzPHppHW8g9stJaXcU3+UXefOmcMW7IPcoC30zlJHj5Hv4ckOWLF8RlZnV++WU8cHV+nqo6ZcywAAIBdo1gYAAAAMItjq6qn/ST5ToZEgdckeUBWF3H5dpJ7dveLN5qkqi6a5KdGzbMUEBp77ej46Ko6euqVu+/jo+PrVtV5diWSGU2KM71n1HyPGXZ3u0uSC43aNkqWuWWSo0Ztf7XJ+aYZPyvHbmGseT1rjj7j9/2qiwhkFzxnxh0FP5VhJ8CxWZ+Bf53SdrUZx9is24yOv5DVz91m/PkCYtk13f2lJC8bNf9CVY3X81p+aXR8avZ+ATUAAAAAAAAAYPPum2ScV/W8TfR7/pS2E7ceTv6pu0+Zsc8HprTNmj/zySSnjZrnzXt5V3d/eJYO3f3drC6Oc+4MeV2L9nOj45O7+xPzDNTdn00yfq2z5op9K8mG+ZCjeb+e1TmC25WntPSqqpLcedT83O4eF1TbrNeNjg9PcqMZx7CWf2Cjtbxsa7IzfdPbnbRnc4C32Zu6+zNz9Bs/Yy/r7vE62ax3JPnGqG03coQBAAC2RLEwAAAAYLudnqHQ19U3Uyhs4uZJatT2ji3E8OkpbT++hfE2raqOqKrbVtWjq+r5VfXaqnprVf1LVX1g/JPkT0dDHJ5hh7S9Ylzc66JJbr/JvvcbHZ+R1cWExsZf1J86R6LOSuNn5ZgZihctwneyuvDXZnxydHyuqjpi6pXL7S1z9BnvyvjtJO+fcYzPTGlb+H2f7Gh7xVHzq+ZMbvuHDAmHe9n48+4CSe6zUaeqOjbJNUbNz+rusxcVGAAAAAAAAACw9O4/Oj47yV9v1Km735HVxVzuONngcivmyXuZluf01gWMM2/eyyvn7Pd3U9puPOdYU02KSt181LyVnMJkda7YrDmF7+rus+aYd5zrdeQcY+wX1+6QKh4AACAASURBVEpykVHb3Pe1u7+W1ZtPznpfreWDTV3LS7omP9Hdn9tiDAc5BHOAt8s/z9qhqi6S5MdGzVv5fDgnq9fYjuSSAwAALNK5dzsAAAAAYN97X5KnTXb92qybTml7eVVtepe1Tbj4Asdapaqul+QRGQplnX+Lwx2VZKEJDNvor5P8UQ5+zSdkg6JfVXV0kuNGzS/t7o2KIY2flYtMEi7mNa3A1sWzejex7XJKd39vjn7jBKdkSCI7Y4vx7LR5dhU8fXR8yhxFo8ZjJNuThHe9KW2zFjZLknT32VX1oSQ32VpIu6e731VV78/B78uDkvy/Dbo+eHR8doailAAAAAAAAADAIaCqbprk6qPm13f3lzc5xPOT/O6K48OT3DPJ07YQ1iLyXhY1zrx5L3PlsST5cJLvJTnPirZpeTJb8SMZNq5c6b5V9TNbGPMKo+NZcwrHRec2a5zrdSgXC5uWK/q0qjpzC2NeYHQ86321lje3lpdxTf7LFuY+yCGcA7xd5rk3N0ly2KjtMVX10C3EcZXR8bbmkgMAAGwHxcIAAACAWXwr0xMYzpNhd7fLTDl3fJL3VtUJ3b3hzo0Tl5vSdq1N9t2siy14vCRJVZ0nyR9nKGYz/pJ6XnsmGai7v1lVr0hyjxXNt6qqy3T3F9bpekKSGrU9ZxNTjp+VCyS59ib6zeJimS9xZx5fm7PftAJj55nStuy+Pkef8WufeYzu/t6w0eFBtuP9u+SUto9uYbz/zB4uFjbxpzl4rf9IVR3X3SdPu7iqLpnkTqPmV3f3qdsUHwAAAAAAAACwfE6c0va8Gfq/IMkTc3C+0onZWrGwReS9LGqcefNe5spj6e4zq+ozSX54RfO0PJmtmJZTeLk12uc1a07honK99mKe16JMu3/jQoBbNet9tZY3t5aXcU1+aasTHuo5wNtonnsz7Vm60lYDGdmWXHIAAIDttKj/WQUAAAAODe/r7utM+blmd182w5emJ2QoYLPSeZO8oKp+dpPz7MSXr1vd6WuVSZLAy5I8JIv9vcteSwYaF/k6V5J7r3VxDVWa7jNq/nh3v20Tc413ptsOC39W1jEtaeiQ0d2LeP3L/B4eNaVtvFPoLLbSd1n8TZKvjtoetM71J2b4O2WlZyw0IgAAAAAAAABgaVXVEUnuOmr+epLXbHaM7j4lycmj5mtX1fW2ENpCclYWlD8zr0XmsUzLk9mKZcwpXOY8pb1i397XQ2AtL+O9O20rk8kB3lbz3JtlfMYAAAB2nWJhAAAAwMJ099e6+3lJrpOhAMxK50rywqo6ZhNDXWTBoe2URyW5w5T2U5P8WZJ7JblJkstnSKA4X3fXyp8kx+9YtNvnjUlOGbXdb53rj83q3b7GBcdWqaoLJDl8ttBgV11oStu3tjDeVvouhe7+bpK/GjXfuaouNb62qg5L8sBR88czfOYAAAAAAAAAAIeGX0hywVHbS7r7zBnHed6UthPnC2nfWGQey7Q8ma3YqzmFrM993R47sZaX8d6dvcX+coC3zzz3ZhmfMQAAgF137t0OAAAAANh/uvvMqrp3kkvl4C++L5yhKMwtNhjiO6Pjb3T3Un/pW1WXTPKYUfPZSR6R5E+7e7NfdO/5Xaq6u6vqeUkev6L56lV14+5+15Qu40Ji30/y/E1M9d0k5+Tggviv7O47zRQw7JzTp7SNk1dnsZW+y+TPkjw8P1jL58mQfPv7o+tuk+SYUdufd3dva3QAAAAAAAAAwDKZVtDrQVX1oAWMffeqelh3j/PXDhUXTHLaFvquNC1PZium3ZM7dverFjwPO2vafb1Id39jxyPZX3ZiLe+rNSkHeClNe8au090f3PFIAAAAlshhG18CAAAAMLvJF+P3yeqEg5+qqrtt0P0ro+OjquqohQW3PW6f5AKjtkd195/MkCSQJBddYEy76blJxgV8ThhfVFVHJLnLqPn/6+5TN5qgu89JMk4KuuLmQ2QRquo8ux3DHjItie3ILYy3lb5Lo7tPSfKaUfMDq2r8++sHj46/m+GzBgAAAAAAAAA4BFTVNZLceBunOCrJnbdx/GW3yDyWRRd7GucUJnLF9oNp9/WYnQ5iH9qJtbzf1qQc4Ol2Mz90vz1jAAAAC6FYGAAAALBtuvtzSR4/5dTvb1Bg6L+ntF1rMVFtm58eHX89yZ/OMc6VFhDLruvuTyc5edT8C1V1vlHbXbN6J7rnzDDV+Fm5alUdPkP/Q9n3prTNk9hxsa0Gcgj50pS2q21hvKtvoe+yGX9eHp3kNgcOquqg44mXdvdXtzswAAAAAAAAAGBpnLhP5lhWV52nU1WdN6sLPE3Lk9mKvZhTyMbc1+2xE2t5v927/ZQDvKjc0GR3i5/tt2cMAABgIRQLAwAAALbbM5J8atR2payfVPWeKW3jIjHL5vKj43d391lzjHOTRQSzJMZFv45McqdR2wmj468lefUMc4yflfMnOW6G/oey06a0XXiOca6y1UAOIe+f0na9eQaqqnNnfyW+/FOSj47aHrzizw/M6t9nP2NbIwIAAAAAAAAAlsZkc8p7j5rPSvLBLf58bTTmcVW1DMVedsNceSwZcljGhWim5clsxYeSfHfUdusFz8HO24u5onvBTqzl/bYm91MO8EJyQ6vqcknGGwTvpHdPafP5AAAAHPIUCwMAAAC21eTL8idOOfVbVXX4Gt3+cUrb3SbFcZbVxUfH4ySyDVXVxZMcP+f8Z4+OzzXnOIv08qxOOrjfgT9U1ZWT3Hx0/kXdfeYMc0x7Vu41Q/9D2TemtM2T6HjsVgM5VHT3l5J8etR8+6qa5/e0t0pywa1HNZNt+5zp7k7yZ6Pm21TV0ZNk33GByQ9097sWNT8AAAAAAAAAsPRun+QSo7ZXdPd1tvKT5HGjMSsrcpwOMXecs9+dp7QtNK+ju7+b5G2j5stU1S0WOc8SG+ftJLubI7ioPKJ3JPnWqO12VXWROcdjsO1reR+uyf2UA7wvckO7+5Qknxg137Cqrrob8QAAACwLxcIAAACAnfDCJB8btV0uyQOmXdzdp2b1bmRXTHLCwiNbnHHCyjhxYDMekvl34Tp9dHzEnOMsTHd/O8lLRs23qKoDO7CdMKXbc2ac5h+yene6u1fV1WYc51D00SltN5xlgKo6V5L7LyacQ8brR8eXTXK7OcaZ+vm5zbb7c+a5Sc5YcXxYkgcmuVOSS42ufcaC5wYAAAAAAAAAltt4o7FkyEvbqpckOWvUdsKcm7/tdTepqmvO0mGyYei9R81nJ/mnhUX1A6+a0nbSNsyzjMZ5O8nu5gguJI9oshntG0bNF0rysHnG43/s1FreT2tyP+UAn5qD8/CSGXNDJx64hRgWZfyMHZbk8bsRCAAAwLI4FH9pCQAAAOyw7v5+kt+dcuoxVbXWF+O/N6XtKUu8I9QXRsc/UVUX3GznSWLGY7Yw/9dHx0ctye564+JfhyW5zySZ7j6jcx/s7n+dZfDu/kqSvxg1nyvJi6vq/DNFeojp7i8l+dyo+a6TAmCb9ZDMt+PcoeyZU9qeUlXn3ewAVXXLJHdYXEibNv6cWei97+7Tkrxg1Hxikl8ZtZ2W5MWLnBsAAAAAAAAAWF5V9UNJ/teo+ctZXWRoZt39taze/O1ySW611bH3qP874/WPzPB+rfSq7h7n0y3CXyX54qjtZlX1qG2Ya9mM83aS3c3bWmS+4rRc0UdW1c3mHI/BTqzl/bQm900OcHefk+QDo+bbVdWRmx2jqm6f5CfnmX/BnprVGwrfs6ruthvBAAAALAPFwgAAAICd8uIk/zlqu2ySB027uLtfkeR9o+Yjk7x+1h3PDqiqC1XVI6rqXvP038BbR8dHJPmdzXSsqmOSvDrJ4VuY/8NT2m67hfEWorvfmdX3/YQkt0hyhVH7s+ec5g+yele36yZ5xbzJElV1dFU9rap+dM6Y9opxouMVkvz6ZjpW1S2S/J+FR7TPdfeHk/zzqPmqSZ6zmR1pq+qHs7qg1k4Zf878aFVdfsFz/Ono+FJJxol/L+zu8c6HAAAAAAAAAMD+db8MGwiu9JLuPntB479wStuJCxp7r7lFVT1pMxdW1W2S/PaUU/9vsSENuvs7mV5Y6ver6qHzjltVt66qP5s/sh3x2STfHLXtZn7gwvIVJxuMvnzUfJ4M+X9zFSuqqsOr6oFV9Rvz9N8ntn0t77M1ud9ygMe5oedPstnn4VpZvVHwrpgUq3v6lFPPrqq7zDNmVZ2rqu5WVdOeXQAAgKWnWBgAAACwIyY7VT1hyqlHV9UF1uh29yRfG7VdKcm7q+q3NrPLVVUdVlXHV9Uzk/xXhuJGl54h9M16eZJzRm2PqKrfrapzrxPf3ZO8Mz/Y5e+0Oed/15T5n1pVd6iq88w55qKMkwauktW71p2V5EXzDN7dX0xy3yQ9OnWrJO+vqnutdw8OqKoLThIA/i7JJ5I8NMn55olpD/nLKW1Prqpfqqqa1qGqzjfZ+e/1GZJbxru2sbFfzur37R5JXj3ZCXeqqrpjkrfkB59h39me8Nb0jtHxYUleVlXXX9QE3f2RrC6mNvbMRc0HAAAAAAAAACy3SQ7L/aacmlbga15/n9WFmG5fVZdY4Bx7wYF8lt+qqmetlZ83ycn79SR/l6Go00rP7e63bGOMT0/yqlHbYUmeVlWvqKprb2aQqrpiVT2qqj6UIQ9qrqJUO6W7O0Oe4Uq3rKo/qKpL7kJIi85X/KUknx61XTzJG6vqD6tqUzmfVXWjqnpqks8k+fMkV54jlv1gJ9fyflmT+y0H+LlJvj9qe2hVPWGt1zMponVikrcluWiGnNyz5ph70R6X5D2jtgsk+duq+suq2tQ6r6ofraonJvlYkr9JsqlnEwAAYNls+I8kAQAAABbopRm+tL3mirZLZSic85Txxd39iaq6a5LXJTnvilMXzLDD1WOq6m1J3p7kC0m+keEL4KOSXD7JdSc/Ry38layO9WNV9cIk9xmdelySE6rqb5N8KMkZGb5Ev1qS2+fgZJRvJ3lUkmfMMf8XquoNOXgnsUsleWWSs6rqs0m+ldUFtX6xu98363wzekGS38/Bu3v+yOiav+/ur847QXe/vKoen+R3R6euOJn/KVV1cpL3JflyhvfiwhmejaskuX6Sa2VrO7vtOd39nqp6VZI7rGg+V4ZiTA+pqldkKJx2VpJLJLlehmdsZYLZr0fxppl0939W1W8leero1O2SfKKqXp9hp8IvZNjR70oZ7tGPrbj21CQvy/D+75RXZSjgeNEVbTdK8t6qOj3J5zOleFx3X2fGeZ6e5Pg1zr2tu6ftoggAAAAAAAAA7E/H5wdFWA74eHe/e1ETdPeZVfWyJL+4ovk8Se6V5I8XNc8e8PgMm3Emw3tx16p6ZZL3JvlShlyrqye5S5IrTOl/SpLf2M4Au7ur6l4ZitmMC73cMckdq+qDSU5O8vEkB3LSjspQfOpaGXKgxs/UXvDsJLcetT06w4atX8iQ13P26Pyru/vxiw5k0fmK3f3Vqrp9hvu6srDVuZM8PMmvVtU7M2y0+LkkX8+Q63dUkssk+fEMOYCHWoG/tezYWt4va3K/5QB39+er6mlZnV/4+CT3rKqXJ/mPScwXy5CbeLsc/Dw8OcOmz0fP+noWqbu/W1V3ylBQ7fKj0ydmuD/vS/LmDIUCv5YhD/aoDLmu18nw+bDmRq4AAAB7iWJhAAAAwI7p7nOq6gkZioat9MiqekZ3f2tKnzdW1c2T/G1Wf8l7wSS3mvwsg19NcsMMSRQrXS4bF/T5XpKfz/DF+7wekeTYDO/LSufN2jvkHbGF+TZlRRLD7da57NkLmOdJVfX5DIWGzjc6fakkd5v8cLAHJblBksuO2n8sBxenmuYPu/vPq0qxsBl19x9V1cWTPGZ06nxJ7jT5Wcu3MiRS/cw2hTfVJOnmN5I8b8rpC2VIgFqEVyb5bFZ/5idzJFIBAAAAAAAAAHvaiVPaXrgN87wwBxcLOzD3oVQs7CkZCqrcdXJ84QyFc8bFc6b5XJKf6u5vbFNs/6O7z5jkFD4nQ7GjsWtnddGi/eDlSd6Y5BZTzl1m8jP2gW2MZ6H5it39b1V1gyR/l+RHp4x57OSHje3oWt5Ha3K/5QD/VpJbZvV6unKSR24Qy0sm/e++wXU7YlL87IYZ4vrJ0elzZdj09EY7HhgAAMAuOGy3AwAAAAAOOQd211rpEkl+Za0O3f2eJNfNkEjwvS3M3Rl2J3vrFsZYe/Dub2b4Yv1dM3b9fJJbdvfrtjj/R5L8dJJPbGWcbbJeMbAvJPmHRUzS3c9OcpMkb9riUN9N8jdJ/mvLQS257v5ikptltufmrCQP7+6NEkZYR3c/NsMOjLMkCH0uyfHTdgPcCd39/AyJsadv4xzfT/LnU059OUPSIwAAAAAAAABwCKiqo5LcecqpF23DdG/J6lyha1bVIVN8pLs7yT2TzLpx4NuTHNvdn1p8VNN19+nd/XNJHpzk1C0O918ZchOXWnefk+Tnkrx4t2NJtidfsbs/nqHgzx9l2FBxK96XZEs5mXvVbqzl/bAm91sOcHd/O8lxSd4zS7cMxebuMfnMWRqTXNdbJHlckq9tcbj/yOqNrwEAAPYExcIAAACAHTVJQjhpyqmHV9WF1un3le6+f5KrZPgi+t8zfCm9kdOTvDZDQZ4rdvfx3f3umQPfpO4+NcOuVQ9NslHCxClJfjvJ1bv7LQua/50ZdjW7bZI/S/K2DIkIZyTZzS/u/z7JV9Y49/xJcaCF6O4PdPctktw4yfMzFFfajC9k2CH0vkku3d137+4vLSquZdbdn05yrSSPzfA+rOWsDDuz/Xh3P3UnYtvvuvtPklwzyfOSnLbOpV9K8qQk1+zu9+5EbGvp7r9K8kNJ7pfkBUn+NUN831ngNNOKoT27u89c4BwAAAAAAAAAwHK7Z5Lzjdre2d2fXPREk7y2aUXITlz0XMusu8/u7gdnKJjzpqyfc/avSR6Q5OY7WShspe5+ZpIrTeL4p2xu075zMsT+h0mOT3LMXsmF6u5vdPc9M+QInpTkNUk+meTr2dpGrPPGs/B8xe7+dnc/LMkxGV7j+5JsJr/wuxme2cdmyLG6wVaLN+1lu7WW9/qa3G85wN391SQ3zVDEbb2/O7+f5PVJbtrdj1i2QmEHTJ7r30tydJKHZXh/ztpE17OTvCPJE5PcsLuvMdk4FQAAYM+p4feYAAAAAHtPVV0iyfWSXCLJxZIckWE3udMzFIj6zySn9C7+AqSqrprkhpMYLziJ73NJPtTdH92tuA41VXWVJNfI8JxcLMl5MyRPfDPJp5P856FSGGwzqupaSa6d5OJJLpDhffpohmTLM3Yztv2sqg5PcrMkV0hy6QzJPf+d5ENJPrCsCTjboapenOTuK5o6yVV2K7EUAAAAAAAAAOBQVFUXz7Bp45Uz5OedlmEzwn/djqJtW1VV582QU3i5DLlPF8lQJOb0DJtdfizJx7p7kZvisc2q6sgkN0hyyQz5f0dm2Njw9AyFlD6a5FOL3LR0r6iqk5L8zsq27q4p1+3KWt7ra3K/5QBPXs/1MqylC2W4D59M8o7u/tpuxjavqrpAkusnuWyGz4ejkpyZ4bV9KcPnwye6ezNFxQAAAJaeYmEAAAAAACyNSSHIzyY5fEXzG7r7NrsUEgAAAAAAAAAAwNLZbLEwAAAAYH84bLcDAAAAAACAFR6QgwuFJcnTdyMQAAAAAAAAAAAAAAAAgGWgWBgAAAAAAEuhqi6Y5NdGzZ9I8rpdCAcAAAAAAAAAAAAAAABgKSgWBgAAAADAsnhikkuO2v6ku8/ZjWAAAAAAAAAAAAAAAAAAloFiYQAAAAAA7KqqumhVPSXJb45OnZLkWbsQEgAAAAAAAAAAAAAAAMDSOPduBwAAAAAAwKGlqv4yyfUnhxdPctkkNeXSR3T3WTsWGAAAAAAAAAAAAAAAAMASUiwMAAAAAICddpUk197gmud398t2IhgAAAAAAAAAAAAAAACAZXbYbgcAAAAAAAAjL0zyi7sdBAAAAAAAAAAAAAAAAMAyOPduBwAAAAAAwCHvO0lOTfLOJM/u7pN3NxwAAAAAAAAAAAAAAACA5VHdvdsxAAAAAAAAAAAAAAAAAAAAAAAAAFMcttsBAAAAAAAAAAAAAAAAAAAAAAAAANMpFgYAAAAAAAAAAAAAAAAAAAAAAABLSrEwAAAAAAAAAAAAAAAAAAAAAAAAWFKKhQEAAAAAAAAAAAAAAAAAAAAAAMCSUiwMAAAAAAAAAAAAAAAAAAAAAAAAlpRiYQAAAAAAAAAAAAAAAAAAAAAAALCkFAsDAAAAAAAAAAAAAAAAAAAAAACAJaVYGAAAAAAAAAAAAAAAAAAAAAAAACwpxcIAAAAAAAAAAAAAAAAAAAAAAABgSSkWBgAAAAAAAAAAAAAAAAAAAAAAAEtKsTAAAAAAAAAAAAAAAAAAAAAAAABYUoqFAQAAAAAAAAAAAAAAAAAAAAAAwJI6924HALutqo5McuyKps8mOWuXwgEAAAAAAAAA2IrzJrn8iuM3d/c3dysYAJCjBwAAAAAAAADsE7uan6dYGAxJSK/a7SAAAAAAAAAAALbBHZK8ereDAOCQJkcPAAAAAAAAANiPdjQ/77CdmggAAAAAAAAA+P/Zu/M4u+r68P/vc2cmCYEAARJkUUIAQVMBqXxlCciiaLVfpZQv1dKitl9LhbZYv4D6tQjqryp1a79fqNStxKXWrwsgasEqi0DKIovSAipLCGDINpOQfe7c+/n9QWaYmdzlnJububM8nzx4mHPO55zPmZuc65B88roAAAAAAAAAAAAAAMWIhQEAAAAAAAAAAAAAAAAAAAAAAMA41d3pG4Bx4KnhG9dee20cfPDBnboXAAAAAAAAAICWPfroo3H66acP3/VUvbEAMEas0QMAAAAAAAAAJrxOr88TC4OI/uEbBx98cCxYsKBT9wIAAAAAAAAA0E79zYcAwA5ljR4AAAAAAAAAMBmN6fq80lhOBgAAAAAAAAAAAAAAAAAAAAAAAOQnFgYAAAAAAAAAAAAAAAAAAAAAAADjlFgYAAAAAAAAAAAAAAAAAAAAAAAAjFNiYQAAAAAAAAAAAAAAAAAAAAAAADBOiYUBAAAAAAAAAAAAAAAAAAAAAADAOCUWBgAAAAAAAAAAAAAAAAAAAAAAAOOUWBgAAAAAAAAAAAAAAAAAAAAAAACMU2JhAAAAAAAAAAAAAAAAAAAAAAAAME6JhQEAAAAAAAAAAAAAAAAAAAAAAMA4JRYGAAAAAAAAAAAAAAAAAAAAAAAA45RYGAAAAAAAAAAAAAAAAAAAAAAAAIxTYmEAAAAAAAAAAAAAAAAAAAAAAAAwTomFAQAAAAAAAAAAAAAAAAAAAAAAwDglFgYAAAAAAAAAAAAAAAAAAAAAAADjVHenbwAAAAAAAAAA2iGlFNVqNVJKnb4VgBGyLItSqRRZlnX6VgAAAAAAAAAAAIAJSCwMAAAAAAAAgAmpUqnEhg0bYt26dbFhw4aoVCqdviWAhqZNmxazZs2KWbNmxYwZM8TDAAAAAAAAAAAAgFzEwgAAAAAAAACYUCqVSixbtizWrVvX6VsBKKS/vz9Wr14dq1evjp6enth3331j5syZnb4tAAAAAAAAAAAAYJwrdfoGAAAAAAAAACCvcrkcTz75pFAYMOGVy+VYunRpbNy4sdO3AgAAAAAAAAAAAIxzYmEAAAAAAAAATAhbtmyJJUuWxJYtWzp9KwBtkVISDAMAAAAAAAAAAACa6u70DQAAAAAAAABAHsuXL4+BgYER+7Isi5kzZ8asWbNip512iq6ursiyrEN3CFBbSinK5XKsX78+nnvuuSiXyyOO/eY3v4mDDjrI+xcAAAAAAAAAAABQk1gYAAAAAAAAAONeuVyODRs2jNg3bdq0ePGLXxzTpk3r0F0B5NfT0xMzZ86MOXPmxDPPPBPr1q0bOlYul2PLli0xY8aMDt4hAAAAAAAAAAAAMF6VOn0DAAAAAAAAANDM2rVrR2yXSqU44IADhMKACSfLsthvv/2ip6dnxP7nnnuuQ3cEAAAAAAAAAAAAjHdiYQAAAAAAAACMe6NjYbvuumt0d3d36G4Atk+WZbHrrruO2Ldu3boO3Q0AAAAAAAAAAAAw3omFAQAAAAAAADCupZSiv79/xL7RkR2AiWaXXXYZsd3f3x8ppQ7dDQAAAAAAAAAAADCeiYUBAAAAAAAAMK5Vq9Vt9vX09HTgTgDap7u7e5t9td7vAAAAAAAAAAAAAMTCAAAAAAAAABjXUkrb7CuV/HE3MLHVeh+r9X4HAAAAAAAAAAAAYPU0AAAAAAAAAAAAAAAAAAAAAAAAjFPdnb4BxkaWZT0RcXxEvCQi9omI9RHxm4i4P6W0pM1zHRgRR0bEvhGxS0Qsi4gnI2JxSqnczrkAAAAAAAAAAAAAAAAAAAAAAAAmM7GwDsmybH5EHB0Rr9r6v0dFxKxhQ55MKc1rwzxzIuLDEfEHEbFHnTGLI+IzKaXvbOdcZ0bEeyPi2DpDerMs+2ZEfCiltGp75gIAAAAAAAAAAAAAAAAAAAAAAJgKxMLGUJZlJ0XEB+L5QFjNcFeb5/udiLg6IuY2GXpcRByXZdnXI+LclNKGgvPsEhFfiIi3Nhm6R0S8OyLOyLLs7SmlG4vMAwAAAAAAAAAAAAAAAAAAAAAAMNWIhY2tIyPitLGYaGuY7NqImDZsd4qI+yLi8YjYPSJeGRF7DTt+dkTsmmXZ6Smlas55uiLimxHxxlGHVkbE/RGxNiIO2jpXtvXY3hFxXZZlr00p3V7gywIAAAAAAAAAAAAAAAAAAAAAAJhSSp2+ASIiYktEPNaui2VZtn9EfDdGhsLuiIgFKaVXpZTOSimdFhH7R8QFEVEeNu6/R8T/V2C6T8TIUFg5Iv4yIvZPKb1+61y/HRG/FRH/MWzc9Ii4NsuyfQrMBQAAd3Xq+gAAIABJREFUAAAAAAAAAAAAAAAAAAAAMKWIhY29ckQ8EBFfjIhzI+K3I2JWRPzPNs7x4YiYPWx7cUS8NqX08PBBKaUtKaX/ExFnjTr/vVmWHdBskizL5sfzsbHh/kdK6YqUUv+ouR6KiFNjZDBsz4i4tNk8AAAAAAAAAAAAAAAAAAAAAAAAU5VY2NhaFBG7ppRemVJ6V0rp8yml+1JK5XZNkGXZIRHx9mG7+iPiHSmlzfXOSSldu/XeBk2PfBGvSyOiZ9j21Sml6xrMsyki3rH1ngb96dboGAAAAAAAAAAAAAAAAAAAAAAAAKOIhY2hlFJfo2hXm/xhRHQN2/5uSunXOc67fNT2WVmWzag3OMuynSLizCbX2EZK6VcRce2wXd3x/D0DAAAAAAAAAAAAAAAAAAAAAAAwiljY5PN7o7b/Oc9JKaWHI+KuYbt2jojTGpzy+oiYOWz7P1JKj+S6w23v6Yyc5wEAAAAAAABAU/PmzYssy4b+veWWWzp9SwAAAAAAAAAAAADQMrGwSSTLshdFxBHDdg1ExB0FLnHLqO3faTD2DU3ObeS2eP7eBr0yy7K9C5wPAAAAAAAAAAAAAAAAAAAAAAAwJYiFTS6/NWr7FymlDQXOXzxqe0GBuf4j7yRb7+nBAnMBAAAAAAAAAAAAAAAAAAAAAABMSWJhk8vLR20/WvD8x5pcb7iXjeFcAAAAAAAAAAAAAAAAAAAAAAAAU1J3p2+Atjp41PbSguc/OWp7zyzLZqeU+obvzLJsj4jYYzvnGj3+kILnAzBBlKv9kSJFREQpK0V31rN1fzlSVLfr2l1Zd3RlXXXnnFaanus61VSNUqahSnu169fV4LPSk02LLMtGHEspRYo0Yp5KGohKquS6dlfWFV1Z99Z5XnhWt0cWpegp9Wy9l0pU0kDNcc2ez5RSlFN/3WvnUU2VGBg1//D3jeE/R8Pfk4rOAwAAAAAAAADAC1K1GlnJeiwAAAAAAACAdhILm1x2H7W9osjJKaX1WZZtjogZw3bvFhF9o4aOnmdjSmlDkblq3NtuBc8HYJy7c+3N8e+918Sy/hf6kKXoimpUohRd8XziaPtiYdOzGXHozofHH+59XuzavXvctfbm+NGwOef07BMn7v47ceoeb655/qMb/yuuWfmVeGrL4/Hi6fPjjDnviINmvmy77omprZqq8YPV/xp3rr0pNlc3xhG7vDrO2vvPYkZpp8LX+uXGB+O6lV+JJzc/FimqsVvX7HjVrifG7805JyKyuG7VV+Pu526NShqIw3f5b3HK7DfHt1d8KR7b9PA2ka16urOeGEjl6Mmm5T4nj126dov1lbUxLZse/WlLzTF79uwdC3c7LU7b44wREbRqqsQ1KxfFz567LdZWRn4bmkUpXjLjoHjLXn8Uh+18RN35N1TWxTeWfy4e2vBAbK5uHHGsJ5sWA6kcu3TtGpuqG2MglSOLUsTWd6Xn58nixTMOijfvdXa8fOdXtvgqAAAAAAAAAABMLemGr0X6+qcili2JdOQJkV14RWQvOqDTtwUAAAAAAAAwKYiFTS67jNre1MI1NsXIWNisHTjPcLXmKSzLsrkRMafgaQe1Y24AXvDAujvjK8/+wzb7q1EZ8b/ba0vaHL9Yf3es7F8W/32vs2PRqDlXlpfFd1Z+OXpK0+LE3d8w4tizW56OK57+yFDI6InNv4wrnv5wvH/ep2Pvafu15f6Yen6w+hvxb6u/NbR953M3x/rKujhv/78pdJ1ntiyJf3z6oyMCXmsrffGTvuuiGpXoiu74cd+1Q8cWr/1xLF7748L3O5DKERFtDYVFRKyvrI2IqBsKi4hYXV4e1636anRn3XHqHm8Z2v/tFV+OW9b8oOY5Karx5OZfx+ee+du46CV/F/vPmLftmJTiyqc/Eks2/7rmNQa/1nVb73HwuiPnSbF086Nx1TMfiwtf8ol4yQzfLgIAAAAAAAAANJJ+el2kv/3TF3bc9aNIf3VaxFcfiGx68Q/aAwAAAAAAAGAksbDJZXTEa3ML19gUEbMbXLOd8zS6ZqvOi4hL23QtAFp0z3O3jul8y/qfim+v+FLd43etvXmbWNj96/9jm5DRlrQ5fr7urjhtzzN2yH0yuVVTNe5Y8+/b7P/PDT+LdQNrY1b3brmvdf+6/6gb8Lp77a2RZVnL9zne3PXczUOxsEqqxN053j/KqT/uX39HzVjYivJv6obCihpI5bhv3R1iYQAAAABAXSmluO++++KRRx6JFStWxJYtW2LOnDmx3377xcKFC2OXXdr1R+Fj76mnnop77rknnn766di0aVPstdde8YpXvCJe9apXRalU2q5rr1ixIm677bb4zW9+E5s2bYp999035s+fH8ccc8x2X7uWhx56KB588MFYuXJlPPfcc7HHHnvEPvvsEwsXLow999yz7fMBAMBUlG78+rY7ly2J+MUdEUe/dqxvBwAAAAAAAGDSEQub3NIkOweACeLZ/mfGfM7egZV1jz3b//Q2+65fVWNxWkRcu+orYmG05LnKmniusqbmsRXlZYViYbV+zQ7aUF1X+N7Gs2VbXvha11fWxsbq+lznPbul9mtUb3+rGv1cAAAAAABT16pVq+JjH/tYfO1rX4uVK2v/GcW0adPilFNOicsuuyxe/epX57ruO97xjli0aNHQ9hNPPBHz5s3Lde4tt9wSJ5988tD2pZdeGpdddlnd8cM/mOI1r3lN3HLLLRERsXjx4rj00kvjpptuimq1us15e++9d3zwgx+M888/v3DY6/7774+LLroobr755prX3n///ePcc8+N97///dHd3R2XXXZZfPjDHx46fvPNN8dJJ52Ua67Vq1fHJz/5yfja174WzzxT+8+uSqVSHHfccXHppZfGa18rXgAAANvlp9fV3J2+/NHIxMIAAAAAAAAAtlv7P46VThpdVtiphWuMPqdWrWGs5gFggkqx7V/u6KTxdj9MTn3lVXWPpVQZwzuZWKrDns9KgdepOkbPdTV5/wAAAAAARrr22mtj/vz58dnPfrZuKCwior+/P2644YY45phj4txzz42BgYExvMvWfOxjH4sTTzwxfvzjH9eMeUVELF++PP7qr/4qzjzzzOjv78997c985jNx9NFHx09+8pO613766afjkksuide85jWxfPnylr6GiIivfOUrMX/+/Lj88svrhsIiIqrVatx+++3xute9Lv74j/+40NcDAADktGlDp+8AAAAAAAAAYFLo7vQN0FZiYRH/GBHfKnjOQRFR++PMAGhJitTpWxhB7Iex0DdQ/y+EjVXYaiJKUY2UUmRZVuhZLRIW2x5+7gAAAACA4b785S/Hu971rm1iVwcddFC8/OUvj5kzZ8bSpUvj7rvvjkrlhd/H/PznPx9Lly6N66+/Prq7x+dSjU996lPxwQ9+cGj70EMPjUMPPTR23nnnWLZsWdx5552xefPmoePXXHNNXHLJJXH55Zc3vfanP/3puPDCC7fZ//KXvzwOOeSQmD59eixdujTuueeeqFQqsXjx4jjrrLPixBNPLPx1fOhDH4qPfvSjI/ZlWRaHHnpoHHLIITFr1qzo6+uLn/3sZyNib1/72tdi2bJlccMNN4zbnyMAAJiQuns6fQcAAAAAAAAAk4LVjZPL2lHbc4qcnGXZLrFtxGtNjnlmZlm2c0qpyEd/zc0xT2EppRURsaLIOVmWtWNqAIZJqVgs7NW7nhyv2f13co394m8+Gb0Noky1VGNsokJMbb3lBrGwwsG69gT3Xjx9frxt7z8fse9fV3w+lm5+tOF5r519ehw167jc89z93K1xy5oftHSPEc8Hubqiq9CzWi/i1e5YYXWMomQAAAAA7FhpYCBi5dOdvo3Jb87+kU3iyNIDDzwQ7373u0eEwo488si48sor47jjRv6e6sqVK+OSSy6Jf/qnfxrad8MNN8SHPvSh+NjHPjZm95zXgw8+GLfddltERJx++unx8Y9/PA477LARY/r6+uK9731vXH311UP7Pv3pT8e73/3umDdvXt1r33vvvfH+979/xL6TTjoprrjiiliwYMGI/StXrowPfehDcdVVV8VPf/rTeOihhwp9HYsWLRoRCiuVSnH++efHhRdeGC95yUtGjE0pxXXXXRcXXHBBLF26NCIifvKTn8Qll1wSH//4xwvNCwAANCAWBgAAAAAAANAWk3eV7tT061HbBxQ8f/T43pRS3+hBKaXVWZb1RcTsYbtfEhEPb8dco+8dgAks1Yn41LNHz14xb6eX5ho7vTS6a9lc8VATFNc3sKrusXphqx1t565Z2zxbO5d2aXre3Gn75H4mIyIe2/RI4Xsbrpqq0ZV1FXpWxyri1amfOwAAAADabOXTkc46tNN3Mell/++XEfvM6/Rt7DB/+qd/Gv39/UPbCxcujBtvvDFmzpy5zdg5c+bEVVddFQcffHBcdNFFQ/svv/zyeNvb3haveMUrxuSe8+rt7Y2IiIsvvjguv/zymmNmz54d//zP/xx9fX1x3XXXRUREpVKJL33pSyMCXaOdf/75MTAwMLR9xhlnxDe/+c3orhGWmzNnTnzuc5+L+fPnx8UXXxyrVtX/vffRnnzyyXj3u989tD19+vS49tpr4w1veEPN8VmWxemnnx7HHXdcHH/88fHoo89/0MYnP/nJ+LM/+7M48MADc88NAAA0IBYGMKaeXJ3iqltTvPmILI6Z78PVAQAAAABgMil1+gZoq9GxroMLnj9/1Hajj+ht91xFQmMAjHPVSIXGZwW+JSllxb99qUY1Uip2T1BUb7lBLGyMwlajlbKuGvuaP0NFnsm812xkMDBYjfyvU2WsYmEd+rkDAAAAAMaXm2++Oe67776h7V133TW++c1v1gyFDXfhhRfG7/7u7w5tV6vV+OxnP7vD7nN7LFy4MD7+8Y83Hfe3f/u3I7ZvuummumPvueeeuOuuu4a299lnn/jyl79cMxQ23EUXXRSnnXZa03sZ7pOf/GRs2rRpaPuzn/1s3VDYcHPnzo1/+Zd/GdquVCrj9ucIAAAmJLEwgDGRUoqFl1fiwA9U4/IbUhx/eTW6zq3G5rL1swAAAAAAMFmIhU0u/zlq+/AsyxqvTB7p+CbXa3Ts2LyTZFm2c0QcXmAuACaYlKqFxnfVCBrVU2rx25fBGBHsKH3llXWPVQv++mtX267W85InBFY0/tUVzZ/h7qz+X/waDH8VCYAVCYttj2rB9zMAAAAAYHJatGjRiO3zzz8/9t1331znfuITnxix/Y1vfCO2bNnStntrlw9+8INRKjX//eEFCxbEvHnzhrYfeOCBumO/8Y1vjNj+i7/4i9htt91y3c8ll1ySa1xExIYNG+LLX/7y0Pb8+fPj3HPPzX3+0UcfHSeccMLQ9ve+973c5wIAAE30TOv0HQBMCd+9L2LxY9vuf/3fWwMHAAAAAACThVjYJJJSWhYRvxi2qzsiFha4xEmjtv+twdgbmpzbyAnx/L0Nuj+ltLzA+QBMMnniRYNKBcJiwxWNNUFRfQOr6h7rVHCqVvQrT5yvlCP+1Wye0bqz+p8SOxjzK/KcjtVrOlZRMgAAAABgfLv99ttHbP/RH/1R7nMXLFgQRx111ND25s2b4957723bvbXDTjvtFKecckru8S972cuGfrxx48ZYv359zXGLFy8esX3WWWflnmPhwoW5g2y33357bNq0aWj7zDPPzBU+G+7kk08e+vGTTz4ZS5cuLXQ+AABMZanSYH1Fd/01IwC0zx9+sfaautt+PcY3AgAAAAAA7DDdzYcwwVwTEYcP235nRPyo2UlZlh0WEa8etmtDk/NujIhNEbHT1u1jsyw7LKX0SI57fMeo7WtynAPABFI0zJUnXjSo1GLrtJqqEVlLp0JT/dUtsa6ytu7xTgWnumpEv/I8Q3niXyPHN3+Gn4+Fbap5rJKef32KBMDGKgDYqdAbAAAAADB+9PX1xWOPPTa0vfvuu4+IZeVx3HHHxX333Te0fc8998Rxxx3XtnvcXgcddFBMmzYt9/jZs2eP2F67dm3ssssu24z7+c9/PvTj3XffPQ4++OBC9/WqV70qvve97zUdNzrmtu+++8aSJUsKzTX663/88cfjJS95SaFrAADAlDXQX/9Yl1gYQD2VaorFj0X8/KkUR8/L4r8dGJFlrS12LftcTAAAAAAAmPTEwiafr0fE30QMlSHOyLLskJRSs8+Ded+o7f+XUtpcb3BKaWOWZd+OiD8edY13Npoky7KXRsTvDds1EBH/0uTeAJhgUqRC44sEwIpGjAaNVViIqWnNwOqGx4sHp4o9Q/XUinjlCXsVCfhFRJRqRMlGez4WVtvg81lN+Vcr1Rtb9P2n6TwdCr0BAAAAAOPHypUrR2wfcsghhf/S5mGHHTZie8WKFdt9X+00Ov7VTE/PyN/zLZfL24zZsGFDbN78wrKDVsJbec956qmnRmy/5z3vife85z2F5xuut7d3u84HAIAppdwgFtYtFgZQS/9Aij/6YjW+PdSXT/Huk7L4v2+NKJXa++m4/QMppnX7xF0AAAAAAJjoxMImmZTSr7MsWxQRf7J117SIuDrLslPrxb+yLHtLRLxj2K7+iPhwjukui4i3RsTgn+K/I8uya1JKNT/WN8uyGRHxz1vvadCXUkqP1RoPwMSVUsFYWIEwUZ4oUS1FIkRQVF95VcPjnYrV1Xpe8sT5sgIBv4h8Eb/urP5/eqStMbVKgTBXZYye6eKhNwAAAADGpTn7R/b/ftnpu5j85uzf6TvYIfr6+kZs77bbboWvMfqc8RaiKpVa+7CWRtasWTNie9asWYWvseuuu+Yat3p14w/1aMW6devafk0AAJi0Nm+sf0wsDKCmf70nDQuFPe9zt6Q445VZnPqy9s91zrFiYQAAAAAAMNGJhY2xLMv2j9qv+4tGbXdnWTavzmXWp5QaFSkujYjfi4jBj/49LiJ+nGXZ/0wpPTLsXqZHxJ9FxKdHnf/plNKTDa4fEREppcezLPuHiLhw2O5vZ1n23oj4fEpp6GPCsix7WUR8ceu9DFod+aJkAEwwqWAYKU+8aGhsjihRLYI/7Ei9AysbHu9UrK7W85InztdVIOAXkS/i15XVX/g5GAkr8jpVC4TFtkelQ6E3AAAAANor6+6O2Gdep2+DCWr0h6Rk2fb/xcp2XGO8mz59+ojt/v7+OiPry3tOK9dupuiH4wAAwJT25CP1j02bXv8YwBT2Dz+u/XsP/3hLNU59WWsfrFvPvz8Ucc6xbb0kAAAAAADQAWJhY+/2iDggx7j9IuKJOscWRcQ76p2YUno6y7IzIuLGiJi2dffxEfFQlmX3RsTjEbFbRBwVEXNGnf79iLgkx/0Nen9ELIiI39m63RMR/zciLsmy7L6IWBcR87fONXy1c39E/F5KaVmBuQCYIFIU+8sTeeJFg7pyRIlqqYxRWIipqa/cqOMaUe1QcKpmLCxHnC8rEPCLiOjKEfHryer/p0faGvMr8jqNVQAwCQ0CAAAAwJS3xx57jNheu3Zt4WuMPmf27Nl1RrauUhlffxYy+mvs6+srfI3e3t5c4/baa68R24sXL45jj/U3YAEAYMwMlOseyvY5cAxvBGD8uv3XKb7/YIqerojTj8zi/qdqj7vm/vbP3btBFB0AAAAAACYDsbBJKqV0S5ZlvxcRV8cLQbAsIl619d9avhER70op5V5BnFKqZFl2VkR8MSL+YNihuRHxhjqnrYiIt6eUbss7DwATS9FPWs8TLxqU5YgS1SL4w47UN9AkFlbw11/R4F49teJ6tQJirYwZLk9crDvrqXtsMOZXzf9taIMAYHsXNQkNAgAAAABz5oz8DK5f/epXha/xy1/+csT23Llza47r7h65jGNgYCD3HK3EuHakrq6u2G+//eKZZ56JiIjHH388Nm7cGDNnzsx9jQcffDDXuL333nvE9q9+9SuxMAAAGEv9m+sfy7L6xwCmiKturcZ5X39hbdvl/9b+eNfuMyPWbKx97N/+s+3TAQAAAAAAHdBabYMJIaX0w4j4rYi4KiIarQq+MyLOTCn9YUppQwvzrE8pvTUi/sfWa9XTGxGfi4jfSindUHQeACaOahQLIxUJExUJiw0n+MOO1Fte2fB4kQhWO5WyGrGwGgGx0WpFxhqOrzHPaI1iYYMxtSLvHWP1mgoNAgAAAACzZ8+Ogw46aGh7zZo18fDDDxe6xuLFi0dsH3300TXH7brrriO216xZk3uO//qv/yp0T2PhmGOOGfpxtVqNW2+9Nfe5vb298fOf/zzX2OOOO27E9o9+9KPc8wAAAG2wpUEsrOAHTwJMNlvKKS7+9sj3woEdsCytXigMAAAAAACYPMTCxlhKaV5KKdvOf99RYL4VKaV3R8SLIuKUiHhnRHwgIv4qIn4/IuanlI5NKX2nDV/bt1NKx0bE/Ig4c+scH9g65ykRsU9K6byUUuOaBgCTQLEFXkUCYLXiR3kI/rAj9Q6sani8aECvXWo9W3nifFmBgN/z19y+WFja+vpUCgTAxioWJjQIAAAAAERELFy4cMT217/+9dznPvzww3HvvfcObc+YMSN++7d/u+bYuXPnjth+6KGHcs/zwx/+MPfYsfLa1752xPYXvvCF3OcuWrQo+vv7c4099dRTo6vrhd+r/t73vhcrVqzIPRcAALCdylvqHxMLA6a4Ox6LWN/gbbJdsqzx8d4N3o8BAAAAAGCiEwubIlJK/Smlm1NKV6eUPpFS+r8ppe+mlJ7YAXM9kVL6ztY5PrF1zptTSvlW8QIw4aWisbACYaIiYbHhBH/YUVJKsabcJBZWMGzVriU5tSJeeZ63roLPWVc0j4V1Zd11jw1Gwoq8TvUCbO1eziQ0CAAAAABERJxzzjkjtq+44op49tlnc537gQ98YMT2W9/61pg+fXrNsUcdddSI7euvvz7XHDfeeGPcfffducaOpbPPPjtmzZo1tH3NNdfEjTfe2PS8Z555Jj7ykY/knmf27Nlx9tlnD22vX78+LrzwwmI3CwAAtK7aaH2FOA0wtT27dmzeB2fV/u2mIes3j8ltAAAAAAAAO5BYGADQdqngp0GWcoSGBnXViB/lURX8YQfZWF0fW1LjVTT1wlY7Wq24Xp7gXlbwOctyBMi6s566x9LW16fI6zRWz7TQIAAAAAAQEXHKKafEkUceObS9du3aeNvb3habNm1qeN5nP/vZuO6664a2syyLv/7rv647/thjj42ZM2cObV9zzTXxs5/9rOEcv/71r+Ptb397sy+hI2bNmhUXXHDBiH1nnXVW3HzzzXXPWbJkSbzuda+LNWvWFJrrsssuGxFh++pXvxrve9/7olIp9vu8Dz30UPz0pz8tdA4AANBgvVjBtWQAk82m8tjMM9BkSd1zYmEAAAAAADDhiYUBAG1XNIxUyhEaGpS1+O1L6lCsicmvt7yy6ZhOxepqxfVKOUJgXQWfszzjexrEwipbX59qyv8XtsYq4iU0CAAAAACTw7PPPhtLlixp6d9BX/rSl2LatGlD27fcckuccMIJcdddd20z36pVq+L888+P9773vSP2X3zxxXH44YfXvc9Zs2bFH/zBHwxtVyqVeNOb3hQ/+tGPthnb398fX/jCF+KYY46J5cuXx+zZs4u8JGPmkksuiVe84hVD288991yceuqpcdZZZ8W3v/3t+MUvfhGPPPJI/OhHP4r3vOc9sWDBgnj44YdjxowZ8Za3vCX3PAceeGB8/vOfH7Hv7/7u72LhwoVx/fXXx8DAQN1zlyxZEldeeWWccsopsWDBgrjpppuKf6EAADCVCYIB1HXTI2MzT7nJkrofP+y9GgAAAAAAJrruTt8AADD5pEafFFlDKZrHiwZ1FQiLDVcpECGCIvoGVjUdUy0ctmrPopxaIb5SjrBXkYDf8+ObP8PdWf3/9BgMDBYJDdYPi7V3QVORgBkAAAAAMH697W1va/nctPUvvR911FFxxRVXxJ//+Z9Htfr872fee++9ccwxx8TBBx8cCxYsiBkzZsRTTz0Vd9999zZxqte97nXx0Y9+tOl8H/3oR+Oaa66JNWvWRETEihUr4vWvf30cfPDBcfjhh8f06dNj+fLlcdddd8WGDRsiIuJFL3pRXH755fH2t7+95a9zR5k2bVr84Ac/iFNOOSUeffTRiHj+Nf3Wt74V3/rWt2qek2VZXHnllbF06dK47rrrRuxv5Jxzzolnn302PvCBDwz9HN15553x5je/OWbOnBmvfOUrY++9946ddtop1q1bF6tWrYqHHnpo6LUGAABaVG2w5kNIDJjiXrRb8XNSSk1/H2S0gSbL79ZsLH4fAAAAAADA+CIWBgC0XSq4wKtImChrMRaWCkSIoIi+co5YWOrMr79aIb48z1uWIyg2cp7m47uznrrH0tYgV5GoX/EAW2uKBMwAAAAAgMnvXe96V8yePTve+c53xvr164f2P/roo0MhrFr+5E/+JK666qro6an/e6WD9ttvv/jOd74Tp59+eqxbt67pHAceeGD84Ac/iOXLlxf8asbOi1/84rjtttvivPPOi2uuuabh2D333DMWLVoUb3rTm+J973vfiGOzZs1qOtfFF18chx9+eLzzne+MZ599dmj/xo0b44477sh1v7Nnz841DgAAGNRgvZhYGDDFlVtY6tY/EDG9+W8jDalUU9O32498P8UZR6U4fP9iETIAAAAAAGD8aK22AQDQQNEwVynbNmhUT1eN+FEelQ7Fmpj8egdWNh3TqeBUrWerVkBstK4Cz2S9eba9Zv1OcWXr61PkdRqrZ1poEAAAAAAY7cwzz4zHHnssLrjggthrr73qjuvp6YnTTjst7rjjjvjSl76UKxQ26JRTTom777473vKWt0SW1f4LnHPmzImLLrooHnjggXjZy15W+OsYay960Yviu9/97lA07OUvf3nsvvvuMWPGjJg/f3689rWvjX/6p3+Kxx57LN70pjfQQVaJAAAgAElEQVRFRMSaNWtGXGO33XbLNdcb3vCGeOKJJ+LKK6+MI488su5rOKinpyeOO+64uOyyy+JXv/pVXHDBBa19kQAAMFU1LNSIhQFT26b+Fs4pFxs/kDNIduRHqvHYCu/LAAAAAAAwUdX/G/sAAC1KBRd4lQr0S7OstdZpp2JNTH595VVNx1Q7FKurFdcr5XiGsoJN4bwBsixKNeNbaevrU035P0IxRTWqqZrr69keQoMAAAAAMDEtWbJkh15/7ty58fd///fxmc98Ju6999545JFHYuXKlbFly5bYa6+9Yv/994+FCxfGrFmzWp7jsMMOi2uvvTZWrVoVt956azz99NOxcePG2HvvvePAAw+ME044Ibq7X1j2cdJJJ0Vq+Bf0RyoydrSrr746rr766pbOXbhwYSxcuDDX2Iceemjox1mWxdy5c3PPM2PGjDjvvPPivPPOi97e3rjzzjtj2bJl0dvbG+VyOXbZZZeYO3duvPSlL43DDjssZs6cWfhrAQAAtmrw3xcppWic7wWY3DYXDH9FPB8Y273Ab1WU8y+9i6/fneJDv+udGQAAAAAAJiKxMACg7QrHwrLmoaFBteJHeRSJEEERfQM5YmEFY3VFn6F6asX18oa9isgzvhRdUYpSVGq8FpV4/vks+pw+Hx4b+TVuz19uqzdHSimyzOIoAAAAAGBbpVIpjj766Dj66KN32Bx77bVX/P7v//4Ou/54tWHDhrjvvvuGtl/60pe2HF/bY4894o1vfGO7bg0AABit0XqNNq/lAJhoNvUXfx/cVDAwtmUg/9jLvpfiQ79b7PoAAAAAAMD4sG09AABgO7QS6ikV+JakVCN+lEfRWBPk1Vte2XRMp2J1XTWerTzPUJFnMvc1s1LdcdX0/PNZKyTWSGWMXlfvHwAAAAAAY2/RokWxcePGoe1jjz22g3cDAAA0lKytAKinaPirlXNamQMAAAAAAJh4xMIAgLZKLUR1SllX/rGRf+xwnYo1MblVUiXWDPQ2Hdep2FStZyvPM1TkmXz+mnkCZF11xw2+bxR9Tsfqda1a0AoAAAAAMKaefvrpuOSSS0bsO+ecczp0NwAAQFONPmCyhQ+fBJhMNvYXP2dTwXOKjgcAAAAAACYmsTAAoK1SFF/clSc0NDQ2a+3bl07Fmpjc1g705grkdSpWV+vZyvMMFXkmn79mngBZqe7cla2vT9HntNbruiOWl1ZDbBAAAAAAYHt85zvfif/9v/93rFy5sunY+++/P0488cTo7X3hwzqOOOKIOPnkk3fkLQIAANujYRBMLAyY2loJeW0q79jxAAAAAADAxNTd6RsAACaXagufBNlVIABWiuZRolqqSSyM9usrr8o1rlOxuloRrzwhsKxglC/PNUtRqhsVGwyuFY2qjdVz7f0DAAAAAGD7rFu3Lj7+8Y/Hpz71qXjDG94Qp556ahxxxBExd+7c6O7ujt7e3njwwQfj+9//flx//fWRhv1507Rp02LRokUdvHsAAKC5BmvGWlhPBjCZbBkofk7RwFgrcwAAAAAAABOPWBgA0FaphShSliM0NKhUMGI0aHiEqFn4J6UUWZa1NA9TS+/AylzjOhWb6qoVC6sT7BpxXsEoX55rlrJS3ahYZevzWY1isbBKwfGtKnpfAAAAAADUVi6X4/rrr4/rr78+1/iddtopvvKVr8QRRxyxg+8MAADYLo2CYGJhwBRXbmH52aZysfH9BWJh8/Ysdm0AAAAAAGD8aK22AQBQR2r0KZF11Aoa1VMvNtRMdVjErFn4p5XgGVNTX3lVrnFFY1OpTYskaz0veZ6holG+PHGxUnTVjYoNxtQqBaNqwyOAL2j/AtNOxd4AAAAAACaL3XffPbq6in1QxfHHHx8//elP48wzz9xBdwUAALSNWBhAXf2txML6i713FomFVb0tAwAAAADAhNXd6RsAACaXVmJhWYEAWNGI0aDhUaFm4Z9KqtaNGsFwfQM5Y2Edik3Vel7yPENFf/3nu2apbqhsMNBXO/5VX9EIW6vGah4AAAAAgMnq9NNPj+XLl8cNN9wQd9xxRzz44IPx5JNPRm9vb2zevDl22mmn2GOPPeKAAw6IE044Id74xjfG8ccf3+nbBgAA8qo2WBsjFgZMceVWYmHlYuOLBMmKXhsAAAAAABg/xMIAgLZKLSzu6ioQJipFaxGvalRr/riW1OQ4DOotr8w1rlOxqVrPS71gV9ExI8bneIZLUaobFatsjYQ1eza3PW9sntVOxd4AAAAAACaTPffcM84+++w4++yzO30rAABA2wmCAdTTP1D8nMKxsAJzrN0UcesvU/zsyRSbyxFvOjyLQ+ZGLH7s+bDZCYdEzJqRFbsBAAAAAABgTIiFAQBt1Upoq0iYqF5sqJlqqtT8cS2VJsdhUN/AqlzjisamUpsWUNaKeOUKexV8znIFyLKuurG/wfeNZs/maLXGt+u1GzFPh2JvAAAAAAAAAAATQsMPmBQSA6a2cgvLzzYXjIVtKRAL6x+IOPnTL6xpvOS6ke/TO0+PuP4vSnHSoYJhAAAAAAAw3rRW2wAAqKOVUE9WIExUJCw2XHVYxKzaJGjWSvCMqamvnDMW1qFfU121YmF5wl4Fn7Na89S6Zr0I2WCgr1IwyjVWr2vR2BsAAAAAAAAAwJTSKBbWMCQGMPn1Fwh5DdrUX3SO9r3XbtgSccbnqlFu4zUBAAAAAID2EAsDANoqtbC4qyuah4YGlXJEiWoZHvtpFv4RBiKPLdXNsaG6LtfYamrhowHbIKvx7X69YFez87Z3fCkrRanOsz4Y/UoFn72xel07FXsDAAAAAAAAAJgQxMIA6iq3sMxtU7nY+P42L6VbszFi8WPtvSYAAAAAALD9xMIAgLZKLUR1shzxokGlFr99GR77aRb+qURnwk5MLH3lVbnHdio21VUjrlcv2PXC8VJkWVZonlJWiiwan1PKuuqGygYjYUWfveoYPasCggAAAAAAAAAALRILA6a4VkJehWNhA8XnaGb5Ou/fAAAAAAAw3oiFAQBtVY3iiwO6msSLhivViB/lUU2Vmj+uJQkDkUPvwMrcYzsVm6oV16sX7Mp7vP5czSNk9WJ/la0xtaKvU6Xm+PYvUKo0ec8AAAAAAAAAAJjSqo3WfIjNAFNXtZqi0sLyweVri43/xL+1/732hv9s+yUBAAAAAIDtJBYGALRVamFxV5E4Uasho2q8sNqiWZCoEsJANNdXXpV77PBff2OpVlyvWXCvWfSr/lzNImRddeceDPQ1C/mNVnR8q1KHfv4AAAAAAAAAACaEJAgGUEu5xSVu/3J3/vfVzeUUS1a3Nk8jVy9Okby/AwAAAADAuCIWBgC0VWoS4qqlWbxoxNgWQ0bDA2HNwk2tfA1MPX0DBWJhYxS1Gq1U49v9WvtGHG8xyNf0ulv/qWUw0Fc01DdWYb9Kh37+AAAAAAAAAAAmhgYxGaEZYAprNRZ2wJ75x97yy9bmyGNp7467NgAAAAAAUJxYGADQVqnRwq86mkWGRoxtMWRUHRYVahZuahYTg4iI3vLK3GOL/ppq5TmqpatGiK9ZnK/VIF/T62ZddZ/fwUBf0VBfrWd5RywvTd4TAAAAAAAAAADqaxQEEwsDprD+FmNhs2fmH/vL5Tvuffbx/MskAQAAAACAMSAWBgC0VUuxsAIBsFZDRtVhEaJm4aZKk5gYRET0DRSIhRWMYLVLrYBXszhfq0G+ZueVtv5Ty+AzWYliz95Yhf28JwAAAAAAAAAANCAWBlBTucWlZwMFzutpbVltLo+v8h4OAAAAAADjiVgYANBWqYXFXc3iRSPGthgyqg6LEFWbhH/SGAWImNj6yqtzj232a25HqfVsNY2FtfifCF1NQn6lrFT3+R2McRWNqo1VxGusomQAAAAAAAAAABNSwzVjQjPA1NU/0Np5AwWWrHXvwL8V9MSqHXdtAAAAAACgOLEwAKCtWgltZUViYS1++zI8QtQs/DNWASImrpRS9A6szD2+eGyqPYska8W5SlmzqFdrHzPY9LpRilKdoNjg+0bRqFqt95tWgoXNdCr2BgAAAAAAAAAwEaRGHxC3A9ZyAEwU5RaXnhU5r6e1JX+5LBELAwAAAACAcaW70zcAAEwuqWDkqBSlyLIs//ga8aM8qvHCyolqo8Vp0VrwjKllfWVtDKRy7vHFY2HtUSvO1ewZajXI1+y8UtZVd+7BQF/R12mswn6d+vkDAAAAAAAAAJgQBMEAauofaO28gQJL1hotwZ2/V8Tj2xH8enxV+97fH/pNiv9zU4p7nkgxc1rESYdl8b7XZ7HLjPxriAEAAAAAYKoTCwMA2qpwLCwr9pFmXTXiR3kMD4QND4fVUmkSE4O+gWKrZ6pjFLUaravG89U86tViLCxHhKxWvCzihUBf0fjXWL2unfr5AwAAAAAAAACYEBrFwoTEgCms3OLSsydX5x+7en39Y+efnMX/+lbr78NPbEdobLhHlqV4zSersXrDC/vueCzFzY+kuPl/laKnWzAMAAAAAADyaK0EAABQR7VgaKtZuGi0rMWQ0fAIUbN7rIZYGI31lovGwjrza6pWnKt51Ku1IF+z80pZqe7cg69Ps5DfNucVHN8q7wkAAAAAAAAAAI2IhQHU0t9kidsBe27/HN//Re332cNeFLH7zO279vLnIjZs2f738S/enkaEwgYtfizitke3+/IAAAAAADBliIUBAB1VyoqFibpaDBmlYbGfZoGhlMYmQMTE1TuwstD4olGrdi2RrBXnyhP1akVXk2e5FF1144CVra9P0ahapeb49i8w7VTsDQAAAAAAAABgQmgYBBMLA6au/oH6xzZcUYqPviWre7xvQ773z5fuXfsay9ZGvGyf+tfPa8nq7b5E3P1E/a/lrgbHAAAAAACAkcTCAIC2Gh7lyqNePKierMWQUXV4LKxJ+KdS8Gtg6ukrF4yFdSg2VSvG1ywGVvSZHJQ1Oa+UlerGAdPW16da8NkrGmFrVdH7AgAAAAAAAACYUhrFwhqGxAAmt03l+sdm9EQs2Ld+zGtjf745Buosb1u7KeLoeRF77pzvOvW84rJqnPvVaqzf3Nr7+eZyitsfrX8879cJAAAAAACIhQEAbVYtuLirXjyonq4oNn7Q8FhTs/BP6lDYiYmjb2BVzf1Z1F64UzSi1y5dNb7dbxYDaxYTqztXk2e5tPWfWipbo1/VVCz+VXR8q8ZqHgAAAAAAAACACanaYG2MWBgwhW2qE8Ka0RORZVnDkFej0Nhw/3xH7ffZtx6dRVcpi2+eu/1/begLt6U4/R9bWwc58/zG5/30V/5/AgAAAAAA8hILAwDaqmgUqVm4aJvxLYaMRsTCmoR/BsNFUE9vuXYsbLfuPWrurxSNTbVpkWStGF+zQF+pxSBf0+tmXXXHDAb6ir5OtcbviGVDzQKDAAAAAAAAAABTm9ALQC31gl879Wz932kNzq0TGhuuUq3//rvH1hDZKYdlcdaran8QahE3PRLx6Ipi7/fPrm0+/rZft3pHAAAAAAAw9YiFAQBtlQou/Coa/2oWJKqnOiwA1iz8MzwsBrX0lVfW3L9Xz94193cqNlUrxtcs0NdqkK/pdbf+U8vg61MtGOobq9fVewIAAAAAAAAAQAONPhivTR+aBzARbeqv/R44GAkbjIbVPLdOaGy436ypf6x72HLbc47d/lhYRMQvni42/l/vaf7/ASce0uLNAAAAAADAFCQWBgC0VeFYWMFvR4qOHzQ89tMs/JM6FHZiYhhI5XiuUnuFzZ71YmEdik3Vius1C+6VorUgX7PIWCnrqjtm8PUp+jqN1etaNGIGAAAAAAAAADClNAyCiYUBU1e94NdgJGwwGlbz3P7Wrx8R8Tu/9UIg7ORDI2bNaH695vMVe09ftrb5mLLleQAAAAAAkJtYGADQVqlgvKdZYGi0rMVvXyrDYj/VJjGwSrLygPrWlHvrRvH27Jlbc3+zX3OjFY3u1VMr/NUsuFf0mWw01+h5640ZjHEVjXLVHt/+Baadir0BAAAAACxdujT+5m/+Jk444YTYe++9Y9q0aZFl2dC/V199dadvEQAAoHEsrGFIDGByu2dJ7f2DsbCuUhY9dZbeNQqBDVqyqv6xVx0wbL5pWfzwr0qxx87Nr9nIxhwBs+G+dmfz/w/ot2QXAAAAAABy6+70DQAAk0vRyFGzwNBoXVmx8YOGR8yahX9SwbATU0vvwMq6x+rFwopG9NqlVvir2TNUavEZy3PdeiGyytbXp2iUa6zCflUBQQAAAACYcObNmxdPPvnk0PbNN98cJ510UuduqAVf+MIX4i//8i9jy5Ytnb4VAACAJsTCAGp54Kna74E7TRv2456Ico0lanliYTf8V/332MEg2aDjD87i2U+V4v6nIubsEvGWK6vx4DPN5xhxTwVjYcvWNh+zJcfXCQAAAAAAPK/239YHAGhR4VhYnXhQu8YPqsQLKymq0Tj8M1YBIiamvnLtj+LbqbRz7FSq/bF7lSa/5naUUo1v97Mm/wlQ65xW5xp9vN7zOxjoK/o6jVXEqyogCAAAAACMsR/+8Idx7rnn5g6F3XLLLZFl2dC/l1122Y69QQAAgOGqDdZWaIUBU9iCfbOa++9Z8sKPh4fDhtvU3/wNdHp3/WO1rtvdlcXR87KYt1cWf/jq2vfWyJaBYuMPqf35qyP0W7ILAAAAAAC5NfijAQCA4lLBT4IsRdf/z96dx8lRFXob/53unp4t24QkhFV2IewoFwRUQPG64MJVr+KC2wuu9+rF5b4uiKgv6n3d8IrbVVwRdwFRQPQNICACSQCFsAVC2JMhk2XWXuq8f/T0TC91TnXVdPdMZp6vHz7prlPVVd1T1cLk9NMx108WMrJ2ckJaYP3hn6hxzG0DhU2hyxd3LHXHsGKeU3Gje2FSSsmY+sk8UcG9xLEw47+WUyblfOzyNRc3/hUW8WrGa1e3HwKCAAAAAAAAANrsox/9aNXfubzhDW/QO97xDu2xxx7q6OiYWL5kyZLpODwAAAAAqOabMxZzPhkAzCbDY+HvgcvmT97u7ghdRSP56McfyrnHwuYPVjrtSKNzL7fKxQiAxVlXkjINTBGO+5gAAAAAAAAAAMxlxMIAAEBT2ZB4j09UuGiq65cVNRn7CeQP/0SNY27bnO8PXd6XWaK0I35XnIZzyhXvigr0RUW/3NtFRMhMWsYZCyu9PmHxL59imyJecY8LAAAAAAAAAKbi3nvv1Z133jlx/6UvfakuvvjiaTwiAAAAAIhCEAwAwvxqdfjylx46GfLqzoavM9pALOyb14a//776qOhtD9jZ6HfvS+k9Fwdat0nqyUrDnviYJOVjTtlrZP0cU3YBAAAAAAAAAGgYsTAAANBUQcyJX3HDRFGhI5fABqG3o9YFag0UwmNhizuWyjiCWdNxTqUcYa7oqFeyIJ9rf5Xjacf1Xo5xBTHjX+0K+/GeAAAAAAAAAKCdbrvttqr7r3nNa6bpSAAAAACgQdY3Z4yQGADUuuGByffG7o7wdUYaiIVlUlIxZHrb/C5TvzDEKSuM7v8/aT21zWqnXin7bv9cubhhr1yhOesAAAAAAAAAAICSZCUAAAAABxs3FhbzX0eShoysKmJh8k9msBHjmNsG8ptCl/dllijtiNlNxznlCvE1EvVq5v4mx1PO67c4HgmLG+VqV8SrXVEyAAAAAAAAAJCkp556qur+7rvvPk1HAgAAAAAN8sXCvCExAJibHtg4ebvLFQvLRT/OQbuEL7/z0XjvvTsvMMqkowNjccNe+Qam3hELAwAAAAAAAACgccTCAABAU9mY8Z50RGCoVsoRY4pSjhFJUmD9sw+KEeOY2zYX+kOXL+5YIuOIYVnZtoWtylzhMmOMjOc/A5IG+Vz7m3hcpZzXbzmmVnREuTImE7q8XRGvdv/sAAAAAAAAAMxtg4ODVfc7OhyfGAUAAACAmYJYGADUGR5r7P2v2xULy0dv6wqKveCg6PBXErmYU/YaiYWNEQsDAAAAAAAAAKBh4Z+6BwAASMgq3uQuX7QoTNKQUTlGJEmB/OGfqHHMXSPFIY0Gw6FjfZml3m1L52D7Wr2+ayVtUio4AlhJg3ypiPBfyqSdx1SOcbmiXBmTVcHWzwhqV8SL9wQAAAAAAAAALtZarV69Wvfcc482btyosbExLV26VLvttptOOOEEzZs3L/ZjBgG/kwQAAACwg/HN4SAWBmCO+uI1DcbCsuHLXSGwqnUcQbEDlze069gaiX9VyjUQAssVS79jM6Y1gTMAAAAAAAAAAGYTYmEAAKCp4sbC0jHjX0lDRsWKCWk2IjDUrgARdjwDhX7nWF/HEm0rDDjHAxso3ca5LClPmMwX6Usa5PPtrzzu2m+goqy1ChQ+k6jDdGg0ZHnRxpx5lFC79gMAAAAAAABgx9Hf36/zzz9fP/nJT7Rp06bQdbLZrE4++WR96lOf0jHHHON8rPXr12vvvfd2jp900kmhy7///e/rbW97W+jYeeedp/POO8/5mCtXrtSJJ57oHAcAAACAWLxBMGJhAOamK//eYCyswyjsvdIVAmtkne6OhnYdWyPxr0qNxMWslQpFqYNPNwEAAAAAAAAAEIlfpwMAgKaKGwvzRYvCJA0ZWU0GwKLCP4GIhSHc5nz4B76MUlqUWaztha3ObYsqqtH5N3GvozAp4w7r+cJeUdEv9/4iYmEmpbTjmAIbVF2jtTIm/JULi4s147Wrf0zeEwAAAAAAAABMuvTSS3XGGWdo+/bt3vVyuZyuuuoqXXXVVTrrrLN04YUXKpNhmgYAAACAWcgbCwOAual/0D32s7Mmv3m0Oxu+zmgjsbBc+PLubLJvNj3jOUY/+qv7PT3fgliYJI0W3LGw0bzV7++UVm8oHde8Lqk3K83rLN82FberxzsybfyGVwAAAAAAAAAA2oBZqAAAoKmsjRfVccWDXFKKt35ZZSAsKgYW9zlg7hgoPB26fGGmT2mT8Z7P7T6vvLEwk3Z+aatvu6T7k0rXritEFqioouf1ccbCIsJ/zRIVGAQAAAAAAAAwd1x00UU688wzFQTVv9Pcd999tWLFCvX09GjDhg265ZZbVCxO/m7xO9/5jjZs2KDf/e53BMMAAAAAzEKeWBghMQBzUBBYrQv/blJJ0ssPm4xYdTm+hdQVAqs0OBa+vLvRbzat8e7nG/1qldWwY9+Nxr8kyVqrQoPTJkdy0vyu+uWDo1avvDDQynu9e3KOZDO1YbHS7d5OaV6nUW9deKx6fPL25J9EyAAAAAAAAAAA04kZqAAAoKmsb+JXCOOIB7mkTLz1yyoDYVGBoaIIAyHc5nz47J2+zBJJ/vO53edV2hPW811HrqBXlKjtUiblDIoFNlDgeX06HLEwX2CsmWxEYBAAAAAAAAA7gKAgDT863Ucx+/XsLqVm7zSE22+/Xe9+97urQmFHHHGELrzwQh133HFV627atEnnnHOOvv3tb08su+qqq/TJT35S559/ftW6u+++ux566KGJ+1/96ld1wQUXTNy/5JJLdOyxx9Ydz5IlS3TiiSdKkm6++WadfvrpE2Pvf//79YEPfMD5XJYvXx7xbAEAAAAgBl8QjFgYgDnohgfcY99+s1F3djI25Qp7jeT975+5gnu8O+vd1OmYfYz+3wdTOvZz4XPmcsXG39PjhMVG8uHLf3SzjQiF+eUKpX8GhsNGo56Le7wjPRkOq4+JGfV0+sd7HeNZImQAAAAAAAAAgAizd5YuAACYFnFjYWlHPMglacioMhAWRIR/bJsCRNjxDBTCY2GLO5ZK8ke44p1XU58kaTzH4g+JxbsmJx7Ts11qfH+u6zdQoMDz+mRS4TOXwgJjtgUTTIsRgUEAAAAAAADsAIYflS7fe7qPYvZ7xUPSvL2m+yha5h3veIdyudzE/RNOOEFXX321enp66tZdunSpvvWtb2m//fbThz/84YnlX/jCF3T66afr0EMPnViWyWS01157TdxftGhR1WMtX768arzSvHnzJEnr16+vWr5o0SLnNgAAAADQdMTCAKDKO37ong+3R191EMoV9hrJhS8vW/uEe8wVIGvEP+1tdPYpRl++pv79e8wR9QoTKxbmeK4r75mZ/x+SL5YCZK2KkIXHxExIeKx6vHYZETIAAAAAAAAAmH2IhQEAgKbyBX/CxI1/GWNklJKNCH7VqjyuqG2LIQEiQJIG8v2hy/sySyT5g1lRkbpmS3uuLV9ILGmQL+UNkKW8+w1sEBr+Kusw4TOXgjZFvNr9swMAAAAAAAAw86xcuVKrV6+euL9gwQL9/Oc/Dw2FVfrQhz6k6667TldccYUkKQgCfeUrX9FFF13U0uMFAAAAgLYKfGGUmRl6AYBWWhf+vaSSpOfsU33fFfYaiQhzDXliYgcu928bpctxTKOFxh8jKnZWta7juW4fbfwxZoNWRshCA2NZaV5XKULmG3cFyoiQAQAAAAAAAED7EQsDAABNZWNO7kp54kouaZNSIWaUrDIQVozYNm7wDHPH5oIjFtZRioUZT2ir2KawVZnv2kp7w17xr8nSdu7nXt6fa7+Bit7wV8YVC2tTxKtdUTIAAAAAAAAAM9cPf/jDqvvvfe97teuuuza07ec///mJWJgkXXLJJfrmN7+pzs7Oph4jAAAAAEwfz5wxSywMACot7KkOLHVnw9eLim35xnun+GsnVyys0QCYtVav+07j8/vWPy0duWf98jxT95oiX5S2DJf+qZc8QpZJSfO6KsNi1ZGxnrplNZEyxzgRMgAAAAAAAABwIxYGAACaKnYszBNXcvEFmVwqQ01R4R/bpgARdiyBDbQl/3To2OLMUkmlkJ1Lu88rX/TLeI4zyTVZ2i56f66gWGADFT2vT4cJnw3VrgBbu6JkAAAAAAAAAGauG264oer+m970poa3Pfjgg3XUUUdp9erVkqTR0VGtWrVKxx13XFOPEQAAAACmDUEwAG5Gt0gAACAASURBVJjwxJZ474ndrjBX3r+da7y7QzJmarGlpMdUdvsj0sp7G9/ft64NdNqR9XMQC46pezv1lsJSg6PS4Jg0Vmh8X2ieQtDaCFlvthQPq7zd22nU2+kfr11Wvp3NTP3aAAAAAAAAAIDpRiwMAAA0lbXxojq+oJFL2qSVjzm/rDLUFBX+aVeACDuW7cUtKip8RsnijlIszBeyK8a4NpoxfdIX/fKOeUJi3v01ECBz7TdQ4I34dZjwmUftingFMd/XAAAAAAAAAMwuAwMDWrdu3cT9RYsW6aCDDor1GMcdd9xELEySbr31VmJhAAAAAGYPXyyMkBiAOeamddHrVEoa5hp1jHc6Hi+O7vDv99RIrrHtv/bneO/916wNX553TCv8j1OMPvbSyfmIhaLV0FgpHDaUK0XEyn+WltmK25PjQ2PS4KitWXdy3PUao7VaGSHr7RwPiHXW3i5FyHzj9ctKfxIhAwAAAAAAANBOxMIAAEBTxZ3a5YsWufiCTC6VAbCo8I9tU4AIO5bN+X7nWF9miSR//K7d51Xacyy+40wpfsCv0f25gmKBDbzXZcYVC2tT2I9YGAAAAAAAADC3bdq0qer+/vvvH/vDXwceeGDV/Y0bN075uAAAAABgxiAWtsMbyVk95/OB7ny0dH+/ZdLqT6Q0r4v4CRDXcM79vrfrovplrjDX0Jh/P/li+H6yyaYAVkkaMCu77r7mvPcXHFMEO2qeYyZttLBHWtjjeqRk72XlCNlQrhQSq4yQlZbZitvVEbKhMVu9zZgmgmZEyKZHIZC2jpT+qdecCFl9TKw6QuYaDwuUESEDAAAAAAAAEIZYGAAAaKq4QSRXPKjZ2wQVxxV1jMU2BYiwYxkobApd3mGy6k3PlySlPSG7dgenfCE+71iC60vyR/zK+zOOEFmgogK5r7tMKnzmUbuuVd+xAQAAAAAAYAfRs7v0ioem+yhmv57dp/sIWmJgYKDq/sKFC2M/Ru02mzdvntIxAQAAAMDM4gtsEAub6ay16n1f9dymBzZKC/49UP5bKaVThEqAOHKe6WY3fKR+nl13h1HYe2X/oH8/+QZDWkm4YmEbGvyV1vqnp34MknTbw+HLM8mmOcbWygjZcDkwVhERK/85OGYrbk8uHx4fq16XCNl0a1WELJ1yBcaqI2S+8bDtO4mQAQAAAAAAADs0YmEAAKCpbMzJXSlHPMgnnWCbylBTVGAoiBk8w9wwkO8PXb64Y+nEX5obT2grTtjKNuEbVVPGfZ2kPcfpC4n5pD37KwfIXPsNbOB9fTImfOZRWMQr7ntQI9odegMAAAAAAEALpDLSvL2m+yiwg6r9nW0zPkjFh7EAAAAAzCqBZ25FE+bBoLX+/ph77Nb10rH7tO1QgFkhVwhfvmSetNeS+t8JdWfdj9W/3WrJ/PDfIxVaGAvrcgTMJCkIrFLTHBFsxnOcTpm00YJuaUG3a41kr28xsCHhscoYmQ0NlA15AmVDY9IIEbJpUWxThKw3K83rqrxt1FO3rHzbaF5X2DZEyAAAAAAAAIB2IRYGAACaysaM6qQ80SIXX5DJpTIAZiNiYEGMqBPmjs2FTaHL+zJLJm77QnZR512z+aJfxjOW5Jos7c8TCxvfn2u/gYre16fDhM+GalfEKyxKBgAAAAAAAGDuWLx4cdX9rVu3xn6M2m36+vqmdEwAAGDmMMakJe0naYWkXSUtlDQmaUDSOkm3WWuHmrzPDknHS9pT0i6SBiU9LmmNtXZ9M/cFAA3xBcFaFAuz1hKkaJJLbnH/jL5/o9Wx+0zv68zPGrVm+jmRc0w322Vh+PJl892PtXqD9KKDw8fyLYyF+R7j0QFpz53c40m/LDXOz3VgONEuZr10qrURMldMbHA8QlY7PuQIlBEhm17+CJnkD5H5I2TlcFhvthQSq749GSGrH6+OkFWOEyEDAAAAAAAAqhELAwAATWUjv6moWpIwkS/I5FIZACtGxMCCNkedsGPYnO8PXd7XMRkL84Xsos67ZksZ93WS9oz5ol/+/bmfe3l/rv0GNvC+PhnTEbq82KaIV7uiZAAAAAAAAABmpqVLl1bdv++++2I/xr333lt1f9myZVM6JgAAML2MMXtK+hdJL5T0XEkLPKsXjTHXSPq6tfb3U9zvUknnSXqdpMWOdW6S9GVr7a+nsi8AiKc1QbAwT2yxet8lgVbeK+29k/TBFxm94ZhkX46Hkg2b3WP/8xerdz3f6sg92xvpsNbqi3+0uugGq4Fh6dTDjS54nVFvJ7GQueyBjVb/8fNAf7lfOmgX6RMvS+llh828cyJXCF+edXx65/Dd3Y/liym1MhZ2mOeYhnP+bQfHku0zV5A6K6YKBoH7/1tW7DLzfu6zWSsjZMM5aXB0PCBWeXs8QjYUMl4ZIQsbJ0I2PYqBtG209E+4ZBGylKkPj/V2ji/rlHo7Tel+6LiZvF0z3tVBhAwAAAAAAAA7JmJhAACgqWLHwhR/opYvyORSGQCLioFZwkAIMZDfFLp8cWbyQ2K+89nGitBNfQKlLwhmPMeZJOAn+Z97eX+udYLx/7l0OGJh4ddq8yefBm2KkgEAAAAAAACYmfr6+rTvvvtq3bp1kqQtW7Zo7dq1Ouiggxp+jJtuuqnq/tFHH93UY+RDTQAAtI8x5qeSTo+xSVrSiyW92BhzhaT/Za19KsF+XyLpB5KiqqPHSTrOGHOxpHdaa4fi7gsAYrOe+Rq+sZjyBauTvhTovvF30TXD0pu+Z9XbafXKI/jvoqTyBf/P6AVfDnT7OSntuVP7XuMvXWP1n7+ePK6LbrB6fMDqD+9vQgUJO6Qtw1YnfynQowOl+397SDrtG4H+/MGUnrv/zLr+nbEwx+mbSrmP/5HNVq4QkysWlmnCZTKv0z02FBELW3Z2sjm4I/nqWFjB8zC7LEq0C8ww6ZTR/C5pfpdrjalHyIZypZDYxO1RaShnq5eN3y5tY+u3GSNCNp0C29oIWW9nWIBsMjQWPm5q1p38kwgZAAAAAAAAWo1YGAAAaKogZmgr5QkauaQVf5vATs6KiIqBFYmFIcRAoT90eV/HkonbvkBX3GtjqnzxLl8QLEnAT/I/9/L+XKG/wBarrtFaHSYburzo2aaZ2v2zAwAAAAAAADDznHDCCROxMEm6+OKL9dnPfrahbdeuXatVq1ZN3O/q6tKznvWsph5fZ2f1JzjHxsaa+vgAAKDKAY7lj0m6X9JTKs3N3EfS4VLVX8KeKul6Y8zzrbVPNrpDY8yJki6VVPmXp1bSakkPSlok6UhJSyrG3yhpgTHmVZZvTQPQat4gWPNiYTc8oIlQWKXv3xjolUcQkUrKFRwq2zIs/WaN1Qde2L7wxff+Un/eXHWX9NiA1W59BDjmomvu1kQorKwQSD++2c68WJjjmur0fHpnz8XShs31y1fea/W+k8O3cV27HU14O+wOn7InSfrrOqtnPSP8Nd8ybDXmiKVFGclJi3om7/vem5rxHDF7tTpCNjQ2HhAbq7hdESGrHR8aq46Q1Y4PRwT40BqtjJDVh8cqlxn1OMeNM2BGhAwAAAAAAABlxMIAAEBT2ZiTu5KEiVzBIZ9Ak/Nei/LPbrJijiyq5YIxbS9uDR1bnFk6cdt4zueo867Z/EEwX9gr2Swa33bl/blCf4ECb/grk+oIXR606TVt134AAAAAAAAAzFxnnHGGfvjDH07c//rXv673ve99Wr58eeS2H/3oR6vuv/71r6+Le03VokWLqu4/8cQTTX18AADgtEbSRZKutNauqx00xuwm6ZOSzqpYfICkXxpjnmett65TfozdJf1G1aGwGyWdaa1dW7Fep6R3SvqipPJfsr5c0mclfSzOkwKA2HxvZ9FvdQ37wlXh87ouv0MKAqv1T0uLe6V1m6StI9KRe0h9vUQVag2OWuWK0uLx1yYqFiZJazY0b/+5gtWjA9JeO0mpVP3PpxhY3RsShZOkn95i9eF/5mc6F/3v34Rf/9/9i9V33tzmg4mQc8Sysp5P74SFwiRpn6Xu872VsTBf2KwrfDqfJOnKfyR/zx/JV98veN6bMsm+ExWYklZFyILxCFldgGzitg0NlJVCZOGBskEiZNMmsNL20dI/4aYeIZv4MyvN6yovM55xU7Pu5Hh3lggZAAAAAADAjoZYGAAAaLKYsbAEYaJ0gsBYUPEluVFfmOuLFmFu2lJ42jnW1zH5xcy+QFecL2puxhRJfxDMFxJLNovGt115f77QX9G6v04wYxyxsJDXtHnTS/37AQAAAAAAADC3nHzyyTriiCN0++23S5K2bt2q008/XX/4wx/U3d3t3O4rX/mKLrvsson7xhj9x3/8R9OPb5999lE2m1UuV/oE2MqVK5XP59XR4fn0JgAASMpK+r2kT1lrb/OuaO1jkt5pjLlD0oUVQydIep2knzWwv/Mk9VXcv0nSC621VR89ttaOSfqaMWaDpN9WDJ1tjPm2tfbhBvYFAMn45lY0MRb25Db3WOZd7mPYckFKC7qJIGwftTrje4F+/3epaKXj95V+flaqoVhYoQnTZ4LA6oO/tPruDaXoyZJ50mdeafTO51fPKRrxxE3+89dWb/gnq936+HnONZu2u8fuftxqxa4z55zIOa4pXyzMZWjMPdbKWJgvHLNlxL3doOd4oxzx6UD/+FRKe+4UHTJsxnMEZopUypQiTi2MkIXFxCojZJXjw+NjtWGyQSJk06pVETJjQsJj47dLf5YiZOHjRvM6K9clQgYAAAAAANAOxMIAAEBTBXFjYQnCRL7QkUugyVkDRflnNwUiDIRqA/l+51hfZknV/ZTSVedbWdR512y+EF/aGxJLNovGt115zLffgs2HLjcyypjw/2xp12vKewIAAAAAAACw43vyySe1fv36RNvutddekqTvfe97es5znjMR5Lr22mv13Oc+VxdeeKGOOeaYqm36+/t17rnn6hvf+EbV8o985CM67LDDEh2HTzab1fHHH6+VK1dKkjZs2KBXvOIVete73qX9999fPT09VesvX75cXV3OT58BAAC/11pr18fZwFr7DWPMyZJeXbH4zYqIhRlj9pf0lopFOUlvrQ2F1ezrUmPMDyu265R0rqS3xzlmAIjFFwRrYizszkeTbbfo/YGC71CWedv3A112x+T9Gx6QXvbfgRa5G9gTRvNT/zl+7kqrC/48+Tj9g9K7L7bac7HVSw6djElERUhefEGgO89NEaCYYzoz7hDVSV8K9PDnU+rqmBnnRM7xvZlZz9vQ6482+tmt9dfZt66z+sYbw7dpZSxMkg7aRVr7RP3yj/zK6kMvCt/m6UH/Y552pPTbNeFjg2PSi74aaO2nS9e3L1KYSfadqMCc0s4I2VBOGhwtL7P1y3LS0GhNoKx2fAqxQSRnKyNkoWHe5BGy3qyqY2KdUm9neZlRj3Pc1Kw7OU6EDAAAAAAAgFgYAABoMuv7lsgQScJEKU9wyCewgVImpSDiGC1hINTYXNgUunxeeoGyqc6qZaVzrH4WTtxrY6p8IT7jCe4lifGV9ueJhY0fi++x845YWEpp53MJe51bIeo9AwAAAAAAAMDMd/rppyfe1o5/sP2oo47S17/+db3rXe9SEJR+b7hq1Sode+yx2m+//XTwwQerq6tLjzzyiG655RYVCtWfDD3llFP0mc98JvmTiHD22WdPxMIk6aqrrtJVV10Vuu7KlSt14okntuxYAACYzeKGwipcqOpY2EkNbPMGqeovY39jrb2/ge2+oOrI2L8aY97ji4wBwJR4g2DNi4VNxdZhq4U9czcsMDhqdcXf65ff/oi0bH709iMRAa9G/OK28HPhl6uqY2Ej4dOIJtz1eClgtGLXqR8TdhxdHe6xTdullfdILzm0fcfj44yFZdzvQT2dziEnV0yrWbEwV4xMkgpFq0y6/vn8/TH3Nh98kdHnTjPKvts9H+++p0rvS0fu6d9/s54jgPhaHSErR8SGxoNkE7dHqyNk5fGhUWkoZ6vCY1XjRMimhbXjP78xtSxCNhETq7jd22kqbteOm9BtiJABAAAAAIAdDbEwAADQVDbm5C5f0Mi5TcKYUaCiUkpFxsCKbQoQYccxkO8PXd6XWVK3LK20CqqfsRa0OUKX9oT4fGNJY3y+67K8P+O53gs2fIZUyqScUcG2xcIICAIAAAAAAAAYd+aZZ6qvr09ve9vbNDg4OLH8gQce0AMPPODc7u1vf7u+9a1vqaPD88nWKTr11FP12c9+Vueee66KRf6uAwCAGWhNzf1uY8wia+0Wzzan1dz/fiM7stauNcb8TdIx44t6Jb1I0uUNHSkAxBY+Z2xraoFuzR2iA/qt9loy9Q/fr9hFuvuJZNvetG7mhISmw2Nb3AGjjdujt48KeDXCFRH68c1WF721Yl8NhMlueMBqxa4EHeaSZfNL57HLg/1WSQM1zeaKXPkCV09vD38f7ck2dz9xPLDRPfbEVmmPxfXL91/m3ub1R5vQwFit7/zF6ptvNBr1vO9k+SQUMOtURsh2XhC2RvII2Ui+Jjw2HhErLbP1y8ak4TFpcMyGb0OEbNpURcjC1/Bt7RwpR8hcMbFyhCx83B0o6yFCBgAAAAAAWoBfkQMAgKaKHQvzRIuc2ySMGQU2kEx0DMxawkCoNlBwxMI66mNhxqRC/y4xXoRu6t+o6rtOfNGupDE+X/ivvD9fpKxgw2f2pJRyPpdiSMQr7ntQI9oVJQMAAAAAAACwY3jNa16j5z3veTr//PN18cUXq78//HfIHR0dOumkk3TuuefquOOOa8uxffzjH9dpp52mH//4x7rpppt03333aevWrRoZGWnL/gEAgFdYosWZfzDGLJd0eM32N8bY37WajIVJ0ktELAxAq9j6+Rpf63uPPrzz51XcnpE+Fuilh0i/eGdKPZ3JPyy/z9LksbBi86eU7FB80Z1GNBLw8rEh50hZsWYKUDPCZJh9jt/faM0j7vNoJp03Bcd0s4xn6us/H2J02R31z28kX7p+wkIjrY6F+bgu6TFHlFCSjtqzscceGCr9OfzwQ5KeEbpOd+t6/ABmmVRqMvLUqgjZ0FhYTMxWhcXKfw6NR8hqw2OVf6L9KiNkT4Wv4dvaOWJMKRgWHiArhcZ6PIGy8G2IkAEAAAAAMNcRCwMAAE0VN7TlCww5t0kYMwrGw0I2JDBUqSjCQKi2Ob8pdPnizNK6Za5zOuq8azbfdeK77pJck5I/BFY+Fl+krGDDZxSmTFppx3NpV8QraPPPDgAAAAAAAMDUrV+/vqWPv2zZMn31q1/Vl7/8Za1atUr33HOPNm3apLGxMS1ZskS77767TjjhBM2fPz/2Y3/qU5/Spz71qcTHtmLFCn3uc59LvD0AAGiZ/WruFySFV0dLDqm5f6e1dijG/m6quX9wjG0BIJ6aasyN3cfq7OVfrFr2h39I51xu9aXXJv9QuyuMg2hPbZva9lMNMcX52TWyr0yyKU7YgUXFoaYatGumgmO6me+8PXQ3o7DYiLWl6ycb8skfdyysOfGQpfOlTdvDx7aNhi93Xb/PfsZk1OSNxxhd/Dd3WOUXt1ldcqbV8AUfk3ovDl2nx5ncBYD2qIyQhZtahMwdE7MhYbLyP+GBssExaSjnDj2idayd/Pm0KkLWm5XmddXenoyQ1Y8bxzalf99KpYiQAQAAAAAw0xELAwAATWW9f2FRL0n4K+WJEvmUw0LFiKBZEDN4htlvcyF8fnZfR0gszHF+Rp13zea7tvxhr2TXVyMBMt9+8zZ8llDapJVS+Hbtini1K0oGAAAAAAAAYMeTSqV09NFH6+ijj57uQwEAADPfa2ru32b938i2oub+AzH3ty7i8QCgeWrezn4372Whq/3uDqsvvTb5boiFJbfmkanVIYanGGKKCjn1b7daMt80tK4kpYmFzTlRgZOpBu2aKV8MP9gOz9Q8XwxtJBcvFtasmN4Ru0vXrA0fW7PB6pDd6mMirut3n6WT6zYU+nrobo3090u94cNdEfE4ANhRVUbIloWukSzkZK3VSM4VICtFyMICZcM5aXA0PFBGhGz6VEbIHGv4tvY+dm85INZZiohV3zbqrVtWvj0ZIasd78kSIQMAAAAAoJmIhQEAgKaKHQvzBIaauY00GQGzEYGhQMwqwyRrrbbkw2NhizNL6pa5zk8b47yKex2FcQW2JMk0EPaKvb8GAmS+gFnBFhzHk3Y+dmjEqwV/49yuKBkAAAAAAAAAAACA2ckYM0/SO2oW/zZis/1q7m+IuduHa+7vZIzps9YOxHwcAIhWM1/jR4veFLraAxuntpvCFKZ1feHKQJ+/UnrmcqO9l0iH7mZ00jOlBd1z40PrDcV5PKYaYrrnSf/4O38S6DOvTGnFrka58GlEVWgNzD1BVCxsikG7ZnK9V2U8sTBf/GokLy2MsR9flCyO952c0jVrw+fOpRxTAUcd7xWVMbQj9ojed3Dz1Rox3aFjnRlLcAQAYjLGqKdT6mlhhGwoJw2O1sbE7OSyivFyhKxqm/HbQ+OPR4RsepQjZBu3h402J0LW2zkeE5u4XR0hqx43dWGy8jgRMgAAAADAXEUsDAAANFXcyFHaExhy8UWJfMrBn8D7xbzR45hbhoNBjdnR0LG+jpBYmCOI1e7zyndtpT3RLl/Qy8cbCxsPkPkiZQUbPksoZVLO59KusF9olAwAAAAAAAAAAAAAGvc5Scsr7m+R9N2IbRbV3I+V2LHWDhpjRiV1VSxeKIlYGIDmq/kk/8bMzp5VrYxJ9oHu/BSmcNy4rvTnTevKx2q1e5/0p7NTOmDn2f8B8+EphpQe35J82x//NdBbvu+fV/jbNdJv1wT65KlGR+wR/fOYyrmAHVPUzNSpBu2ayXV++iJe3Z6gn+u5ufbji5LF8YID3WOu95SRXPhPqqvi+b3qCKNPX2H11Db34w/ZLn1i2adDx7o9YTUAQHtVRsgcayR63HKErBwOm4iITcTEbFVYrHy7FLqy1duMESGbCVoVIetxBshKEbKeumWTgbLK5ZXjRMgAAAAAADMdsTAAANBUNubfnvjiQS6pBNtIk7GwYkRgyIpYGCZtzm9yji3OLK1b5jo/gzafVym5Z/wYXyws4fWVbmA7X6TMGQsb/1+YYpsCbO3+2QEAAAAAAAAAAACYPYwxp0l6X83ij1trN0dsOq/m/kiC3Y+oOhY2P8FjVDHGLJNU/5flfvtOdb8AZrgYc8ZyBakzYeil2YGoRwek914c6Jqzm1TWmcFGphgLS2pgyOrtP2z8/Pj0FVYf/ufo9a6/X3r7CVM4MOxwgogpXKMzKBZWcBxrxjPFzhfAcl2/+WL4teWLksXR02m0uFfaPFQ/dsUdVmc+t365K2xW+fx2WWR03YdTOvW/Az3gyOF+ZN0JuqPrYMdjUXkBgNmuMkK2NPQ3GckjZKP58YDYeLyqOiZmJ5dVjFdGyMLGiZBNn+HceMS0xRGy6tiYqVteGSgLC5f1dkq9RMgAAAAAAE1CLAwAADRV3KhO2sSflZDyBId8AluaLWYjAkNFy9cOYtJAoT90eUppLcjUfpGz+/wM2hS2ijoOSUp7QmKpBNekJJkGtvPFAfNB+IymtEk7j8kqUGCDqudqI79DMj7eEwAAAAAAAAAAAAAkYYw5XNKPahb/UdI3G9i8NhY2muAQRiT1eR4zifdIOrcJjwNgNqn4ZHzBMy9FKoVkZkosTJL+fI80krPqzs7uD227Aj5xPLXNaucF8V6nlfdKxZjTpq64M3r+z+AoNYa5JuonPl1BvDCu9ypfxMsbC3Ncv0n2E9fufeGxMNfPw3WsPdnq+wfsbPSHf0/pgE+Ev0F859HwUJgk9RALAwAkZIxRd1bqzrYuQhYeG7OhgbHhMXegrHw74P/2pkUrI2QTAbGsNK+r8nYpNBY+biZv14wTIQMAAACAuYdYGAAAaKq4oR5fPMgllWAbaTLWFBX+sTGDZ5jdBvLhsbBFmcWhEauUY8JjUe0NTvmuE+MJiSW9vtINbOeLAxZsIfx4TNp7TKXrNdkxNyoqMAgAAAAAAAAAAAAAtYwxe0r6vaoDXQ9LepO1NslHPdu1DQAkYPWBnb+ogsnonuwB3jVz4VNEIo3lre54NNm2UbaPloIBs9lwE0JKA0PSzgvibdM/GP//ip7YGr3Ozgv5MPxcExXKGMnPjH/t2TxktfLe8LGMLxbmeQ9yhdAKbYiF3el4310yL/wadB1rWAxt7yXJjqk7w3w+AMDM0uoImTsmZkMDY0M1EbKw7YmQTY9yhGxTkyNk3R214bHxPztLEbKeujBZedxM3q4Z78lKaSJkAAAAADAjEQsDAABNFTeqk/JEi5q5jSQF47GmqBhYkTAQKmwubApdvrhjaehy1/nZ7uBUWMhsYswT10p6ffn218h+Czb8KwVTSnsjY0VbVNq09j9rigQEAQAAAAAAAAAAAMRgjFkm6RpJu1UsflLSKdba8L+ErjdYc787waHUblP7mADQHEGgb/adpWIDczhyCb5vbzRvtezs1s3faEZIa6YbCZ+aE0uSn93DT8ffZstw9DquIBFmr6jU6hV3tuc4fB7fYvXCL7vfq3wRr460lDLh4Y4tI+Hb5NsQCzt+X+nGdfXL/7ou/Afieq8Ji6GlU0bZTPyIJLEwAMBcURkhW9LkCNlYQRocHQ+I5Spul0NjufrxocpAWcg4EbLpM5Iv/dOqCNlkeGzydm+nUW/dsvH1ymMh472dRMgAAAAAYKqIhQEAgKayMb+U1hcBckkp2UyGYDzWFESEf6LGMbcM5PtDl/dlHLEwx/kZ57xK9iXS1ZJcW1Ly68sXAisznhCZMxZmUt4QWTuu13aH3gAAAAAAAAAAAADsuIwxiyX9SdIBFYv7Jb3QWnt/jIeaqbGwb0j6Zcxt9pV0WRP2DWCmslZpW2wsFhYzCiNJl91e+kB6qzy2RdprSesefyZoRlwryc/uy9e0phZALGzuaSQ8cCqoSgAAIABJREFUMTBk1dc7feGBC/5sdc+T7vGMZ4pdOQYyFPJe9+tVVqceVv+82hELO+oZRjeGhMHufSp8fde12d0RvvyjLzE673fx3ieKTOcDAGBKjDHq6pC6OloXIRvKleJhE7dHqyNklePDOWlwtDpCVjlOhGz6TETIQkenFiGbDItN3u6tCI2Fj5u6ZUTIAAAAAMxFxMIAAEBTxY2FmQYCQ7VSnuCQT6DSzIjA+r/ikDAQKg0UHLGwjvAZgq7zM+q8a7ZG4l2h2yW8vnxBr7K0J0TmjIWN/8+lHa9rUe392QEAAAAAAAAAAADYMRljFkr6o6RDKxYPSDrFWntXzIfbWnM//But3McyT/WxsC0xj6GOtXajpI0xj2WquwUw41mlG5xfkSQ4ddENrf1k+LpNVsfvN7vfq0ZyU38NxxL87PZeIm88KamRPLWAuaaRQMS3r7f63y+Zvmv50jX+g4yKeLkiWCPhU+vaEgvzhbmstXX/nuc61u5s+PL5XfGPafUTnfE3AgAALVcVIQtfI9HjhkXIhsYqY2S2Okw2Pj40VoqQ1W1TcZsI6fQoR8j6Q7/WIHmErKujPjBWGSHrCQmQVUbIXAEzImQAAAAAZhpiYQAAoKnixsLSDQSGaqU8wSGfYDwCFsj/G33CQKi0OR/+PSiLM45YmCNsFXXeNVsj8a7Q7RJeX41cy8YTIss7YmFpk/Y+dtCGuB8BQQAAAAAAAAAAAABRjDHzJV0l6VkVi7dJerG19vYED3l/zf1nxNy+dv3N1tqBBMcBANGsVbrBL3zLJZiadc3a+Nu0i7VWl9xidcWd0sIe6c3HGi1fIH3nL1b3PWl1wv5G7znRqKsj/MPFdz1uddGNVrdvsNpnqdEb/snopAOb80HkymO7NMn/E9VIEnprVS9yJNeax93R9G+3OuUrge54tHT/+281estxyb4scqazDUxNvfouq//9ktYfi8v9ETnVTMSPZtQR2so6ps+5YmGZJsbClsxzj+UKUmdHY8fkeg7PP8AoKvoAAADmtlZHyIbGXDExW7W88k/fOBGy6TOaL/3TqghZeEzMVIXFagNlvVlpXlf4OBEyAAAAAEkRCwMAAE1lG5mRUcE4wko+KU9wyCcYj4AVIyamEQZCWdEWtbWwOXSsryP8S5tdka6o867ZXNGyyO0SXl++a7kcEUx7QmRFGz6bMKW0N2DWjrgfAUEAAAAAAAAAAAAAPsaYXkl/kHRsxeJBSS+x1t6S8GFr0zj7xdx+n5r7dyc8DgCIZq3SDc6vSBKcarWphKfOuczq/D9Mzpn79nXV8+cuvd3q6n9Y/f7fU8qkqz8IvPphqxd8OdDWkdL9lfdaff9Gq5+eafSvz5568OkTl1p97srmRXjiht6KgdXaJ5q2+yozOSDXLgNDVss+WD3X8W0/sNo0GOhDL5p9wbCggVN5OiNyNz4QfYAdERGv5+0vXV+bi5X0k79Z/egd9ctdYa6o/cTx0kONPn1F+HMbGJaWL6xe5nqP70iHhxCO2nMqRwcAAJBcZYRsp9BAavIIWa5QGx6rjIlZZ6BsyDNOhGz6tDJCVhUTqwqLlSJk4eOTEbLa8d5O1f3uAQAAAMDsQywMAAA0lVW83z6nHWElH184yCcYj4BFxcAIA6Fsa2GzAsc53ZcJ/14aV6QrzrVhm/BNeUmuLSn59ZVuIDLmC5EVbPjXIqZMyhlgk6SgJsLWjNeufh/8rRoAAAAAAAAAAACAcMaYbklXSDqhYvGwpJdZa2+awkP/o+b+YcaYHmvtcIPbHx/xeADQPNbKNDhnI25wqhEvOURa1GO0Yhdpxa5Gr/5mvLkeI+HTViJtH7X64h+jn/c1a6UbH5Ce/8zq5Rf82U6EwsoCK33mCqt/fXayYyrbNtLYscURN/R284NN3T1q/PSW8J/vR35l9aEXtflg2qCR77FNei03w/+9Ovp9JxMxNe9Zexldf3/4Ew0Cq1Sq+kP/7YiFze9yj112u9U7nz+1YzLG6JWHS5fdkfAAAQAAZhhjjDo7pM4WRsgmYmI5aXC0vMzWB8rGx4c849tHiZBNl3KE7OmhsNHkEbLOTCkeNhETq7zdZdRTu2zithkPldWPEyEDAAAAZhZiYQAAoKnihnpcYSXvNg1EicKUo0+u+FNZVEwMc8dAvt85trjDEQtzhK3aHZwyCa4tKfn11UhkzHdMeRv+tY4pk/aGyII2xP3asQ8AAAAAAAAAAAAAOx5jTJekyyWdWLF4VNIrrLXXT+WxrbVPGGPulHTY+KKMSkGyPzb4ECfW3L9yKscDAF7Waku6r6FVx1oQ8/nv01PaZ2npQ6uPb4kfyBoOn7YS6derbcMBrc9fFej5z6yeX/O7O8OP9a7Hpa3DVgt7kn8Qd9XD7mhPUnFjYede3rr5UobPKOvfLnGf69tGrBZ0z64XKWjg0t5/WeuPw+XyBmJXmYipeV2eT/c8sEk6YOfqZe2IhS3udY/d82T9siTH1NtpFBU8qHTSblslLW54fQAAgNmg1RGyqvBYOTKWkwZHbX2YbPz2cMj4UK60zuCoVOCjWdNirFD6p1URsomYWFVYbDJCVj9eHSGrHSdCBgAAAMRHLAwAADRV3CBSkjBRI1GiMIEtjv/pP8aomBjmjoFCeCysK9Wt7lT4LBjXOd3u4FTaES2LkiTgJ7kjaSV2fJ2UjExoVLBgw2cTppTyRsaKbYqwBTZIHFIDAAAAAAAAAAAAMPsYY7KSfiPphRWLxyS9ylr75ybt5reajIVJ0tvUQCzMGHOgpGMqFg01sh0AJGYbj7zkEkyh2X+ZdP9G9/jeFd/5t+sioxW7SHc/0fjjjyQMmK3b1Pi6V98lpc4q6sg9StttG/WvP5STFvYkO67NQ1ZnXNT8OTW5olWcD6D/v3uafggTrC19qN1QDQs1mpcWdDf3Ma+/z+or1wRatUEqTsMUyy3D0esctOvMPh+6s/7x5x9g9Lkrw99Ph8bql7niC82Mhe28wP2ajoVM+UsSC4t7vB858hERCwMAAGiOyghZeCg2+b9j5wp2IhxWjogNjZVjYrYqLFY5PuQZJ0I2fdoVIauOiRn1ugJl42OugBkRMgAAAMxmxMIAAEBThUWAfJKEiZIGe8oRsKhoU9G2N+qEmWtzPnxGX19miXOimeucjhvSmyp/vKsF2zV4LRulZEOuwYINn3WZNmlv+CyouV7jvgc1KlAxcUgNAAAAAAAAAAAAwOxijMlI+oWkl1Qszkt6jbX26ibu6mJJn5AmvlXtX4wx+1tr74/Y7j9r7v/CWhuRpQGAKYgTCwv/PjmvqJBM7Tye75yR0ksvCCKDXGUjufjHJEl/ezD+PJU1jzS23nDCYxrLW530xUCPbUm2vfexY/zstgy3Zg5PpdF8dHxprhpNGMBzuWmd1T9/NYh1DkyHZj/vRj2xpbHzvbvD/2H15x3gHhsMiYUlCXMlsc8S6cGQ71391nVW33jj5H1rrTPckPV8cikd83hfuOxJSYfH2wgAAABtl80YLc60LkI2ER6ruD00ZuuWVUbIwsaHxqTtRMimTSsjZO6YWHWELGw8LGDWm5U6MkTIAAAAMP2IhQEAgKaKHQtLECZKGuwpx5qiok1W/IYXJQOFkBkukvo6ljq3cZ3T7Y7QpdTa6FctX9Crdr3awJfkjoUZpbzPJSr+1yyBDaby91EAAAAAAAAAAAAAZgljTFqliNcrKxYXJL3OWntFM/dlrb3fGPNDSW8fX5SV9ANjzAtc8S9jzCslvbViUU7Sec08LgCo19pY2EjMANBx+xqt/XRKf7zbas0j0tf+7D++kZG8pM7Yx/WntbE3adjtj0j7LYu/3cp7pb8/1vzjkeL97H7/99bHwkaIhTnFvWai/M/1dsaHwqTk4b+p+uktjcbC/OOdnk/3XH+f1XP3r57A1q5Y2IkHGj14Q/hz3DpstbDHeI8n6piGYiRtu4IRmTtukI7958Y3AgAAwKzSyghZeIBMGhxzB8qGI8Z9/56M1ilHyDbHjpD5x7OZ2rBYKSI2r6sUGeupW1Y9Xr5dO06EDAAAAHEQCwMAAE0VN7SVJEyUJDAmScH4sQURx9juqBNmLlcsbHFmiXMb1znd7ghdyiSLfiXfrrHr0vX6uGJhaZP2hsjadb1GvW8AAAAAAAAAAAAAmDMukvSvNcs+JmmNMWavmI/1pCv6VeFcSadJ6hu/f5ykPxlj/pe19p7ySsaYTklnSfpSzfZfstY+HPO4ACAe23gYaqxgFffDu75I0aG7hS/fZZHRW44zOiMI9OWv90iS3rLrd3XxwjfUrTu8eauk+GWuxb2uD51O3Wg+/uskSas3tC7SFScWtXpDyw5jwkhOUuiHw9HsWNhtD7c+/tYMzX7ejbrr8cbW23mBf9wY9zXfExLGa1csbNl899idj0nP3d9/PFHHdPkdjZ9fn+j/nMy8vugVAQAAgJiyGaNsRuprYYSsPiYWHiirjJC5xomQTY9cQdrcwghZVUyss3zbqLfLPz55u3qcCBkAAMDsRCwMAAA0VYx5X5KShb/SCWNG5ahQYP3Rn3ZHnTBzbc5vCl3e1+GJhTnOzzixKRvj21adx5EgxCclj/H59lf5bIxJhf5+Ox+Ez9RKKe09pnZdrwERQQAAAAAAAAAAAAAlZ4Qs+6/xf+I6SdK1vhWstY8aY/5F0tWSypmI4yXdbYxZJelBSQslHSVpac3mV0g6J8FxAUA8MSaNJYn5+D4Ae+phER96zE02GbuD8D7jSC7ZXJ2ghf2k0YTRo+Fcc4+j0kiMx27lcZRNVxhqpnjBgdKf7wkfi/Oz8hnNW/37z2zDMazp1qzn3ar9HuKIGzZitCbWd++TVv2D4etmUs39MPjLDzP6/JXhb3iVzz1pLCzOtfzabb+WCm9pfAMAAABgmrU6QjaUkwZHq2NiQzk7uaxyPCcNjfrHczFC4WieVkbIqsNi49GxTmleZylC5hufvD35JxEyAACA6UcsDAAANFXccE+SoJFJGEEqH1sgf/SnGBETw9wxkO8PXd6XqZ1fPcl1TkdF6potnTD6lU4cGWtsu7TCj6tgw2f8pE3a+z7Rruu13T8/AAAAAAAAAAAAACiz1l5rjDlN0g80GQQzkp49/k+YSySdaS3fjASgDWLMq7jj0fgP7wvQfOJlER9OfGL9xM1uOxK6ykjC6tSW4USbNSRpCOuPd7WuYBYnADbqWffnZ6V05o8CbRtvtx2/r/TF16b0nM/Hm58zXWGomWJRj3usWSG1t//A6me3trCK12Q/u9Xqp2e2f78/v62x18iY6A9TH757+Pvk//m91UdfUrq9ddjqxC+6rxdfmCuJ5+zrPu7Ht1qVAwdJY2GNygZj2jf/kOzqa2Xe8tGpPyAAAACwA2tVhCxfsKWA2FgpIlYdE7OTyyrHx6ojZGHjRMimR65Q+mcg9HdYySNkHenJcFh9TMyop9M/3usYzxIhAwAAaAixMAAA0FQ28hdF1VIJgkZJI0hFW1Rgg8hjtApkrW1oYgZmr7FgVEPB9tCxxR1LnNu5olntjk0lubYkyTQY/arbnyMC1ujju2JhRinvNR+0aV57EDOECAAAAAAAAAAAAADNZK39gzHmEEnnSXqdpD7HqjdL+qK19tdtOzgAsI3PGfvLffHDQwXH9JDL3ptSdzZijte1v5m42RU4YmFbtsU+pmLQ2oBS0hDWqg2NrdfVIa36REqPDpQ+4Hnyl6LnxsQJULnWffsJRq99ttGph6X01welZfOlg3ctRZRGv5HSdfdJ514eaPuo9MKDjP5pb+mN3w1/rZsVxJqNRpvw2mwbsfr1av95ftqR0quPav88y/N+Z3X/xrbvti12WRgeC6uM9V11l9VTnretZsfCJGnpfGlTyHTK6+6V3npc6bbvw/9ZzyeXlsyT+gejj+GdW75burH2tuiVAQAAACTSkTFalHEFqpsTIRsaq42J2cllleNj0vCYf5wI2fTIF0sBslZFyMJjYiYkPFY9XruMCBkAAJitiIUBAICmsjEmfklSSvHDRCbBNtJ4BKzB4I9VINNg/Aiz00C+3znWl/HEwhznTaD2fllzkmtrStv5ImMV7wtpx+O7YmFpk/Je88U2va7tipIBAAAAAAAAAAAAmNmstdP2qRJr7UZJ7zbGvF/S8ZKeIWm5pCFJj0laY619aLqOD8AcZq1eNHiN/jjvlMhVD90t/tto3jFto5Egjt0+MHG7xzpiYane2Me0MX5fLJbhhLGw5+wj3bQuer33nWR00C5GB+0iDY81NucvTpxrNB/+mL3Z0p/dWaOTD6wey2aMTlkhnbJi8gdbDKw7FpbwNZotfL26gWGr9f3SbotKH/ROYt0m97VX9uZjU3rVke3/V6Ob1gW6f2P4C1AoWmXS4ceUL1g99LSUMqVzcZdFzTn2nRfIG++SStdmI7aNhi9PGU18Ce7aJ/yP0YpYWFgoTJJ2q8jX+s4X3zH928lG514e/T60R/6R0o0VR0euCwAAAGBmaXWELDwmNhkZqx0fihgfI0I2LVoZIQsNjGWleV2lCJlv3BUoI0IGAACmC7EwAADQVI3GuMpSJv6shHSCbSSpaIsKbGPHV7RBomPD7LG5sMk5tsgXC3NEsxo990qm/s2jSc/fVp/3xvX6ON47UiatlEnJyMiGvC61Ea+wdZrBdXwAAAAAAAAAAAAA0G7W2pykldN9HAAwwVq9avvlDcXChnLx53a4AjSZiO/Es9ZKv/z6xP3uwBELK8b/cr2hFoeq4oS5yq640zYUCpOkfzlq8sOMPZ1Gpx0p/XZNxDHFeM45x4dqO2N+eiGdMupIh58DSV6j2STwTGd68/esJKvlC6QLXp/Sa58d78Or1lp97LfR86WO2jPWwzbNSc80+sa14e8lo3lpXsgUuC/+MdBHflW9zdF7Sb95d0q79U3tw72NXBvnvryx95kXHGR007qweXKl6yCbiT73WxELc7nh/sljTRoLe/VRjcXCXr7996UbTz/Z6OEBAAAAmOXaFSGrj5HZquVDVSEy69iGCNl0yRelLcOlf+olj5BlUtK8rsqwWHVkrKduWU2kzDFOhAwAAEQhFgYAAJoqbqgnpfgTrZJsI5ViTY0Gf+JGzzD7DOT7Q5cvSPepI9Xh3M51frY7NpVOeJ0kvb5a9fgppSf+LKr+t+Ltel1ro2QAAAAAAAAAAAAAAAAoszpzy/e0vmNPfW3x+zSa6nauGRWkqhUEVoFjSlpkEOfHX6i6221HQ1cbKcYv63zystZ8oV1Z3BDWfU9Z/cs3GptH8/23Gh27j6lZltLQWKBr1krW8dRixcIcU22yCT690N1BLCxMI2fgk9ukN30v0IpdUzp418Y/aPqjv1pdfVf0er2dDT9kUx2ws3vsnielZ+9Vvey3a2xdKEySbl0vveLrgVadM7W6VtS5ePYpRi86uLHX/xWHG33mivCf7g9usjrreUYX/83/029FLMwVFLz+fmn7qNX8LpM4FvbM5dH7P2pkjfbPj9cQ16+N3gAAAAAApsAfIZOShsgKRTsZFstJg6O1MbLw8eGcNDhaEyirGCdCNj0KQWsjZL3ZUjys8nZvp1Fvp3+8dln5djYjGUOIDACA2YBYGAAAaKq44Z6USRALM8lmMlgFDQd/ioSB5ryBQngsrK9jiXc71/nZ7thU0usknXC7Vj1++T0iZVIqhvwetF3XartjbwAAAAAAAAAAAAAAADsMa2Uknb/pXH2y/3zdl91fP174Bn1lpw9M+aELnikbmYhpKPZ/zq263x2MhK43Uow/pf5nt7Y2FjYcI8wlSZffYb2vVdmX/9XoLcfVz9lb0G101QfSenrQ6r0/tfrFbfXPbyTf+HPOOT6kmigWlpW2hXTeRnJWST+cOxu4Inq18kXpijttrFjYb1Y39uDd7u/cbKnurHvs8jusnr1X9XP99Sr381nziLRuo9W+y5J/0NsVyfrEy4w+eapRJt34Y/te01/cZnXW86TNQ/7HaEUsrDdr5Pog85/WlmJirkhg1DGlU0Yd6fAoYNmrt/+m6r4d2ibTu8BzxAAAAAAw82TSRgt7pIVtiJBVxchytuL25PjQWClCVr3u5PjoHA+1T5dWRsh6O8cDYp21t0sRMt94/bLSn0TIAABoP2JhAACECGygx8ce1oOj96po62etpE1G+3Q9U7t2PiNR7CqMtVaP5x7Wo6MPaa/uA7SsY9cZ8x/JG3OP6/7hu5SzY971jIweGL675ceTUrLXfHN+k1Zvv6mhdZ/KParHcxs0FoxqXnqB9u0+SP35p/T42MOyEb9U6Up164CeQ7RTx84aDUZ0//A/1J9/amJ8WXZX7de9Qp2pLklSPsjpwZF7NBQM6oCeQzQvvaBq+dbigA7oPkSLOnZK9LxnolwwpnUja/Vk7lGlTUZ7dx2g3Tr3atr11Ayb85tCly/ORMTCHOfnrduv14kjL9OeXfs5g1mBLerRsYe0fvT+eAcb4ziimITb+VReM3EfP6XSa5U2aYXNN6yNsBWC1vwm+uatKzU/szByvfnpRXr2ghNacgwAAAAAAAAAAAAAAAAzUjBZqeqyYzps7B96Oh0+12np/HgP7YvHxA3i9NjQT9hpJJh5U+pHY8bCbri/sbjTiw/2z0ncaZ7R7n3hjzUWY1qOMxaWIGLkiieNzPEPrAYxvvvw8S3xHvt3dza2Xtc0xcJ273OPbQ8Jy/30Fv/18fBmad9lyY7Fdx6+/PB4oTBJeoZnmui28d7hEXtINz/oXq8VsbBnLnePre8vhft879dR1/6By6W/P+bZf65mTuXTT0jEwgAAAABAUusjZEO58ZDYeJBsIkY2ZituT44PjUlDY7Zm3clxImTToxBIW0dK/9RrToSsPiZWHSFzjYcFyoiQAQDgNvP+ZhMAgGlWtEX96IkLdOv26yPX/acFz9cZy/9dKUf4p1GBDXTJU9/UjVuvmVh2yuLT9KolZ0zrf9Baa3XF05foyqd/MW3HEMYkDEpd8fQlDa/7Xxs+kmgflY5b+ELdOXirBotb68b6Mkv0/j0+o85Up776yCf1VO5RSVKHyeo9u5+jnbO76YJHztFTudLsB6OUzlj+bzpm4UlTPq7ptjm/SRc8co425Z+sWn7U/OP0tl0+6AxptdtAITwW1tex1Lud7/3g/274Tz2z51C9a7ePT8TiyvJBXt99/L/096Fb4x9szOPwb9faYFvcn296/HjK0bBagSZnvQ0WtunS/h8lPziPqzb/sqH19uzcl1gYAAAAAAAAAAAAAACYW2z9h8WeN3yDfrTozXXLR2JGsApNjIV1ByEVIUnDwfQUj1KmFOBZ+0T92EjYt+p5+F6nsmc/wx/8Kcs6PmGQa2AfUeu6HtunOxu+PO65NNvEO0NaI5WanvmtXR3u/V7wZ6v/fLHV8oWNH9tUziXftq7QnU9vp/u4b3s4ep9Sa2Jhr3mW0TmXhZ9128bfWqcSdzzjOUYf/pX7rH7h4J+rF4yGfrIZAAAAANBErYyQDY8HxGojY6VltuL25PLh8bHqdYmQTbdWRcjSKVdgrDpC5hsP276TCBkAYBYgFgYAQI1btl3bUCistO51OrDncB278OQp7XPN9puqQmGSdM3m3+qgniN0YO/hU3rsqXhw9N4ZFwqTpLQjGjTT3LT1T86xgUK/Ln7yQs3PLJwIhUlS3ub03cf+Swf0HDIRCpMkq0A/evJrWtF7pOZnFrX0uFvtFxv/py4UJkmrt9+kA3oO0/MWvXgajqreQP7p0OV9mSXe7VLyx7buHf67/rT5Ur1syeurll+/5cqmhcJKxzEzrxMT8frUKkfPXPGzwE7OMGpVKAwAAAAAAAAAAAAAAAA+9R/q2rXweOiaIzE/tOeLz2Rifidelw2Py4zYeEWfYjD1TNPBu0rnnGq06mFp7RP1jzfc5BBWT1a68v2phj4Il3VMO8oVGt+fa13XY/u4gkujMY5nNopzGs6EsFizvf5oo5/dGv7M3vWTQJe+t/GT7TdrrF52WLIPifre05LEwiTpv083+rdLwp/bowM28n0004Kpg89cbpQy4efd56+0OvflUt5zTUbFws4+xWg0L33m97bu/eOeBw7RPDtUvXCMWBgAAAAA7KgyaaMF3dKCbtcayf4bvRjYuvBYdVTMhgbKhjyBsqGx+L/PRHMU2xQh681K87oqbxv11C0r3zaa1xW2DREyAEB7EQsDAKDGPUN3xFp/7dAdU46F/WngstDl1225clpjYWuH1rR8HxkTfzZEysSc5TVDrRtZq0D1s9mGgu1aM/jXuuVWVv8YWqXnLHxBOw6vJQJb9F5j9w7dOSNiYdZabS5sCh1b3OGPhaVN9L9i3z20pi4Wtnb49sYPsAFpR1xLkhZldmrqvqIs6Zj8StJMA69PpfT4f7KkHZGxymso7vs3AAAAAAAAAAAAAAAAmsDWf/iqOwgPuRQDKV+w6sg09sEpXyzMF5+xY6MNH1PBdKhQtMqkGzum0QY/IBh8J61iYJVOGW0fterNSrli6TXo7Szt6+7Hg9BtR5ocC7vy/SntNK+x59fpmNKX8/wsGl03m+DTC67gUrNfox1NEH7qzBnuDxRLf7xbyhWsshmjoIGq2rqNyXNqvvOwO5vsMRf1uMeu+oeNjAkmifI14pQV0tV3ucdd79cpI6VS/vcfY4w+/jKjj73UatvL95fdvkWddkyd1vFkiYUBAAAAAGqkU62NkLliYoPjEbLa8SFXoCwnDY4SIZsu/giZ5A+R+SNk5XBYb7YUEqu+PRkhqx+vjpBVjhMhAwCEIRYGAECNoWAw1vrDwfYp7/Ph0ftDl98xePOUH3sqhovxXou4ds7upgWZRbG3SzmiQTuasFBYlLt28FhYzuaUs2PO8ZFgyDnWToPFrSrY8N+49WWWerd9Rtf+kY8/VKx/3xgOWZZUd6pHy7K7OsePW/hCXd7/E9maX1Dt333NATelAAAgAElEQVTwlPZ7xLxj/z97dx4fZXXof/x7npnJCoGEJSI7IgUVVAQV3FBUXNC6VdzqdttaW6ve6rX1tu61P62296JevdRata219irudVeoaIGCogJa2fedAMlkMttzfn9MZjLLOed5ZklmknzfffkiedYzk8yUhPN8HixRvG+dVHdW4uOhFQdifXCV62MOq4w9n5YmfhaVbbPeVM9r3EFVh2N5szmAOKBsMCQktoY2uh4fERERERERERERERERERERUbenioXJzFhXXCAM+FzOYo8YgkheUxCnsSFjUZXUx2UCYaCny8BONpEqT2sgp2dF7M+KtKlvld4ooJgPl+3Fgk49pKosokW60FAo4v4Yum2ziYXJSBh4688o/3x/oDrzhq7d/YJKFw2sBMVLVCsSdbfx1NHuj9kexg/Rr2sJxy74LPNIvPKZ8+Pp2yP3cZi+D3WhOyfjhwjoLj7dus/8HtSnGhhcl9t5nSzfrF4eP58uEmgKO6YTQqBnlQXsNc+nlH+4D1izDPB4AcsT+zP+sTd5mSd1vSdtW0/atqr1imXC6hrzmImIiIiIiMhZe0bImlvDYckRMX9imUz6uG15bB+ZsowRsuKL2sC+lth/arlFyCyRGR6rLm9dVh67KUW1dr1o+zhtfYWPETIios6MsTAiIqI0tswu4BTNcvvOJJpDzCobp9Sdm9N+umgQlb6I3Tl+29QQ2aldV+czx8IOrh6P/cuGYnNonXabsOJud4V8Lzm57hx4DK+Tnt5emNzrZHy0953EMgsWptZ9M6/zTqmdjmX+T1Ie36E9jkJ/X1u47Lje07Co8e8I2M2OxxtSfgC+UTUuNj7N40mO7tnQzw79Zr9vo2p3Dyxq/FC7zSl150JC4o9bH3YcGxEREREREREREXVuzc3N+OSTT7BixQrs3LkTLS0tqKysRH19PUaNGoXDDz8cZWVZXElNKaZMmYK5c+cmPpfZXJWchTlz5uDEE09MfH7HHXfgzjvvbJdzERERERGRgSoWZpvDXPqL61L95h39zxPGAE0wc26KaUzNIaBnhbsxNWcRCzORwQAq3ngawHfzPkfYYepRNtEiXdCrILEwl1P/ZDAAeXLsRqSVg55XbpNNtK2zC0cklm0BFq+TWLwO+GSdxKcbCn+eYFjiwlmGQl+Sfz+luLGkcw4T+P6f9O8PyzcDVz1lY+0u52Pl85o27ZtNpC/Z6P306z74Shov+r12ikhECgvtkqME7n8z8zlfuT0WmdO9D2UTCQQAbNHPvUz4dC7kp3Odt2snUgh1hCwlXGY5rE+Ok5kiZl7AY6nXe70Q6WEzx3G5OK9Xsa0hnpa8LS80JiIiIiIicsdjCfSsMP1OMv8ImT8UC4klR8j8IZm6LJgaIcvYJ8gIWTHZsn0jZNXlqgBZW2hMvV6kbdv2JyNkREQdg7EwIiKiNKbYTCG270x04bQKqwp13r4AgIDdbAwrxR3X6zQMqTgAS5rmo0yUYWLNCTis59E5jcsUQcrW2OqJ+ML/z5z27ePrj3IR+23MrvB2BA13w6QYVSSrFO0Oq7+nvcKLHp4a476VnircOPgevL17Nt5teEm5TURm/nbM9F5yZM0J8MCLTcG1iX09wot+ZQMQlVHsjexCyA6iztcfh/echEm9phrHCAAX138fA8oGY6l/MXp4ajC518kYXX2o434mo6oOwfWD7sK8vW9jT2QnvlF1KE6u+2bKL3gGVQzHjYN/gb/veQPrWlbAlpmPu9yqxIFVh+DUunNRbsVeY5biDqpA6vuULrj2zb7fxuCKEbhiwI0YXDECy/2foMrqgZAMAZAoExU4suYEHNrzKABApVWNf+77O7aFNmb9HPQtM8zUIiIiIiIiIiIioqKKRqP461//iieffBIffPABIhH9Vc4VFRWYNm0avvOd72D69OkdOEoiIiIiIqJOSDH/o1Lqw1wtLi8s29QgMfO9HGNhyzPnhJnGtHRtEPXj3NXCCnZh3GtPomrtZ8AAxTkKHQvLIlqkC3qFsrgXom7bMq/LC8X+9nTiQ93XLRBqnzB1sYUiEss2t4bB1sfCYJ9vBIJZxNpy9dTHEq9+7rzdK9dZOGNscS/6618j8OEtFo77lXrendtQGJBfLEz3WhUih0hWYl+BqaOB977KXPfBv2LHVpk+Drjr7Pb7uhw2WL9u9qcSlmZgxvfqNHLX1ixHVSRSAtFI7L9iD6XYA0gjk4Nl6TExb1rQTBU2yypS5jGuF7o4mnJcSdsax5U+Rs36tHMJq7iBRSIiIiIi6j7aO0LmD7YGxIJtH8f+lCnL4h/H/pMZ+8Q/LtSNGSg77RkhywyPJS8TqNKuF5pwGSNkRETpGAsjIiJKowrXAICAgFT8EKMLanUFuudiXI+JuHLAvwMAPm9aiP/d9EvHYwkhcEzvU3BM71PyHpeFwsTCvMKHawf9DO/sfhEv7njaeYc0397vRxhVNRYA8MjGu7Hc/0lBxtWVhRWRrFK0O7JDubzW2xeWcP4H+x7eGpzX/0ocUDkGszb/v4z1qudB915yYf/vYkrtmY7nzJYlPDip7mycVHd2QY97QNUYHFA1xrjN4IoRuHS/H2Z1XEsTCYwHwqSUsKF+DodVHAggFho8pe5cnFJ3rvFch/U8OueYIREREREREREREZWm999/H9deey2+/vprV9u3tLTg5Zdfxssvv4wJEyZg1qxZGD9+fDuPMnvDhg3DunXrAABDhw7F2rVrizsgIiIiIiLqnmTmvLpKw40X3Yaw/jjfnEApN8yEl6u+yGpMj762B1PHubtJXKFiYfKj11Fp9ynIOZxiYdXZxMI0z2s2sSrdtm6jQfIP9yc+rrQ1sbDdDQD6uh9UCQpFJJZuAhavl1i8rjUMtgkIFbg/pHiJKpnifHHHHABMH1caF+Ydsr9+ndtQGJBnLEzzWq3M8wLGXpX6dbqv509Os9r1osnqcgHdxaDvLAdOGq1el00sDIs/yH5gVFqi0dh/4eJf7V1KITUphHOEzLIc1ivCZ8qImRfwWNqImUhZ5iKO5ua8HsW2hnha8ra82JuIiIiIqHNorwiZ3Roh08XEmoJSGyjzawJlTYyQFY0tgcaW2H9q+UfI1DEykbG+ugzoURGLkLV9nLq+sowRMiLqnBgLIyIiSqML9niFD2GZ+RNitAvHwqKa8E5yrMuCuzsdiRx/2Fee30WsyQ1P6+PINT6Wy/PQ3YVlsNhDcKUhvFO5vNbXL6vj+Cz1LLtIFu8lukhWd+PRvMZsxKKGEuq4IcDnkIiIiIiIiIiIqLu76667cNddd0GmXUkphMCYMWMwaNAg9OnTBzt27MD69eszgmKLFi3CpEmT8Mgjj+C73/1uRw6diIiIiIioc1CUaypsQyzMZQjrL/80Zz769DDMSbMy54tU2c3azV9c635ekNvYmY5c/y9gzovAP99Fec9zlNtkG4syxcJG9gf69XQxLv8+yJvPgm/9UGDgk3mNqcUQUHJl5+a2fTSRt0CgwEWtdhYMSyzdDCxe1xoGWy/xRTuEwfLx1VbnbawSmirZq6ow81L9ecXC1O9Trr/XNcbsL4BPs0sdVWURBczFUcP16/Y0S4Qi6q9HVrGwfVlU3og6EymBaCT2X7GHUuwBpJHpwbLkSJlXETSzdOEyN5EyTRytdZlwE0dLjEt3XlPIrXVfyzDW1uWilP4Pl4iIiIioHVmWiEWc2jFCpo6NSWWgrNkQKGOErHjaK0ImRHpYrO3j2J+xCJl6vYhFyyoy1zNCRkTtjbEwIiKiNLYmOKOLhem27wp04TRPUnjHbYRHFDCm5XER9/KJMuXXK1k8OpZrfCz5efAwRuRK2DbP9JMl8k/QDZEdyuW13uzuROkV6r9uR2QEtrRTvvdsTZzPzfd7d6B7r4m/T0UlY2FERERERERERESU6cYbb8TMmTNTlvXs2RO33norLr30UgwZMiRjn5UrV+Kpp57Cgw8+iGAwdhOMUCiE733ve/D7/bjxxhs7ZOxERERERESdR+acn0oZ0G7tNha2Lp9mzNZ1GYsqbf2YsvHZxtznOMnPP4a8+Swg0AQA8El1NCSU5T1MTbGw284UjhcmycYGyDP2AwCU9RygHpPLvkk4IhHVTOWpzCFmVKH5ugVCpTHXTCUYjoXAFq+TWLwe+GRd7HPT16k9FfKZsrrgNW75XOSpiwfm8r2e7OpjBO59PbuvXL6BMif9euq/+C98AhypiYllEwuTG1dlOSoi6vSi0dh/4eJfcV9Kf7OQQhhjYpnxM12kzHIRMfMCXo82YiaMUbYcz+tRbOv0eFvPzwvuiYiIiMiN9o6Q+UNAU0trTCz549YIWfp6f0tqhCxjfTDnh0p5kMkRsn3KLUx7a9cI0RoQS46JlQPV5fFlAlXa9SJt27b1jJARURxjYURERGl08S+f8EE15UQX1OoKdPEiKyle5DZkZBXwBxDhIu6li7sliweEco0xJQeILAadXIk4fE1Kxe7wTuXyOl92sTCf0M/4icgwykR54nNbE7vKNWbX1WhjYa3v2br3KwDwFDBWSERERERERERERJ3H008/nREKO/bYY/Hss89i0KBB2v1GjhyJX/ziF7j88stx/vnnY+nSpYl1N910Ew477DBMmTKlvYbdJcyZM6fYQyAiIiIioo4kMy+KKZdBCGlDKua+LF4nMfkA5/lkew1tr6mjHXZ+5y8Zi3xwWSlzcNerecTCfndnIhQGAD7NfKpwNLtz6CJU08cB357kYu7MC48lPiyT6ufJbcCs0XBhWy4xo0rZolweaNgLQB0260gtyWGwdbEw2NLNHRcGK/MCYwcCFxwh8MFXEm8vb9/z5RXxaweH7A8s3ZzfMfKKhWneVqryjIUNqct+n3wDZW7cerrA/3tD/f70m3fUy8uymV77wqP6dYceB0RCgB0FIhEgGol9nPiz9ePEn0nr4x/bXfcG0UTUxUjZ9v5V7KEUewBpZEokTRUZc1qvC5+pImUe43qRfiynOJrTeTPG7QG8msBb+lgszpcnIiIi6gjJEbL6GtUWhYmQ+UOxkFji45bUCFl8vb8F8Iekep8gI2TFImXr1yKIdouQJWJiSR9Xl4ukj9PXC+U+jJARdU6MhREREaXRxb+8Qj1LJdqFY2FRF/EiXcAnncjxh1wVN3EvnyhDAH5Xx3H7GNJZSQEiT47H6G7CmolkpaYhoo6F1Xr7ZXUc3fsG0BoLQ1IsTBMqZIguRve6j78Hm8KNub7GiYiIiIiIiIiIqPP6+uuvcd1116Usmzx5Mt544w306NHD1TFGjRqF9957D1OmTMGXX34JALBtG5dddhmWLFmCvn2zu8EEERERERFRl6WIhQlAGQoDzBEwtxzjQAeMBVZ9kTEmnTIrCricp5NrBEpGIsCnc1OW+XRhriy7ELoxnTnW3bw9+cRdSWNSl5OCLsf09Tb9uupy/brEWNK+nyql+hsmIHMoj+WpJSzx+cbWMNj61jDYJiDSQf2hMi9w6CBg/FCB8UOAI4YIHDIQKPPGvs6L16q/ERQv0ZytLbFYWE1l/sfIJxam2zeXMF4yj5X9nNuaivzO6UYvw/O9TXnhoz6opjRoJLBxZebyg46E9ci7WRxITUppjollxMbsto9V+6XsY1qfvH8UsKOQ6cszxhJ1WJ/NeZ2OUfwYERGRa/H3tXDxb2JeSiE1KYQxJpZY5hgps1xEzLyAVxdla42oaeNomqBa/LzJcTRtqM1Snld3XEYPiIiIqDNozwhZINwWDosHrBIft8iUsFh8fXMQaArKjPBY8v7U8VIiZOotTHtr18QjZLqYWDxCpl6vD5RVMUJG1G4YCyMiIkpjawJZuuiPja4bC9PFd5LDWO5jYYW7U4mbc/osH5y+NPHj5Br6Sn0eeCcWN8KaiWSlJCLD2BdpUK6r9WV34ZdP6G/Vl/5cuHm9dWe611j8eYsaXvAMrhEREREREREREXU/N998M5qamhKf9+7dGy+88ILrUFhc//798fzzz+Pwww9HKBT7ve6mTZtwzz33YObMmQUdMxERERERUaelmXOn43U51WpAL2DLXvU6XRxLSgk8998ZoTAn5+y/CcBwV9uWuZiKcuPJigtgQpnRqzLNfCpbCkRt6ToYpHs+fDlMm9HFuUIRuBqTKQY3qt7FAEItqeOx1Qdskfq5WYWyfLPE/3tD4pkFHZ+CKE8Kgx0xFDhiqMDBAwCfV//8xy68KqVsRfvbqnmPyEZzKPbekcuFawFdLKz9vz0z1Fa3/4V3J47O/nts/e4sNtZ9DRq2Z3VO/eFFLELiLf6lVKV0maSUMhZGS4+JRfKNlLXF0bTBNUUcTWrDZhEgauvDZ5G0MSaPK6I6r+08LruDapBERPmSEoiEART/5u6l9rdRmR5Jy4iQpcXJnCJl2vXOcTSRETwzjSub8yad3+t1eLytY7F4DRQREVF3YFltkSe1wkXIUmNiMiNM5k98LJXhMr8xgkXtKTlCpr4XSO4RsqoyXYAsFhqrMgTK1PswQkYEMBZGRESUQRf/0sbCspzo1Jnonovk8I7HZYSnkH/xdhML8xoiTYnjtAbMrBxDZsnPA2NE7kQ0d8IsJXvCuyE1P6DWeftldSyfpb89YNhOfS50sSu3Qb6uTvcasxF7Dza9FzO4RkRERERERERE1L189dVXeO2111KW3Xfffdhvv/1yOt5BBx2Em2++Gb/85S8Ty5544gnceeedqK2tzWuspWblypX4/PPPsWnTJjQ2NkIIgaqqKtTX12P48OEYO3Ysqqqq2n0cwWAQc+fOxZo1a7B79270798fgwYNwnHHHdcu59+yZQsWLFiA7du3Y9euXejRowf69++PiRMnYsSIEQU/HxERERFRlyM1c20iu7Db2ydjebPL+w3mMuVM/uZ64KXfatcf3rIEn1YclrG80nI/ryniMGXwwP7ATacoBh90HwsDYgEwj8upbQWNhdkt2nUtYdOFZbGLxE6faZjH4yZ+lvY8VUr1eALR9p0TtGyzxPh7bO1zW0gVvqQw2JBYGOwghzAYxdw2XeCqp/JLUkgJBCOxr0O2nl+sPndlDsfqDI4Ykv0+3z8hi+/jDSuUi8V538/+xOSaEKItluIrQukufTzFHkASmYioKYJoecfRTOuT42exY8qMc6WH2gp03qjLx0tE1FnE39fCxb/xfSmF1KQQxphY4nPHSJnlImLmBbz6aJvwpAXPHMeVdF5tHE2xrcvjMjxBRETkrL0jZOoAWSw0pgqM+Q2BsqYg4A9p/xmD2pGUbZG49oqQVZcBPSrSP26LkGWuF5p9Yr/TtVzewIWo2BgLIyIiSqMLzvgs9T9+6gI/XUFUOseL3EZ4RI5BLhWPi2P5NHG3lOO0jj3XGFMuz0N3F7Kd/oGl+D9xN0R2atfV+vpmdSxTtC49nGbrXm8FfO10ZpZQPw/x9ynd82fal4iIiIiIiIiIiLqmmTNnQibN8Orbty+uuuqqvI5544034oEHHkA4HPvdrt/vx+OPP45bbrklY9srr7wSTz/9dOLzNWvWYNiwYa7OM2fOHJx44omJz++44w7ceeedxuPHrVu3zjh5/YorrsBTTz2VsTwYDOKhhx7C448/jhUr1Bdkxnk8Hhx22GE455xz8OMf/1gb7poyZQrmzp2b+Fy6nHG3d+9e3H777Xjqqaewb9++jPU9e/bEjBkzcNddd2H//fd3dUydcDiMJ554Ao8++ii++OIL7XYHHnggbr75Zlx99dXwejnNhoiIiIhISfN3/okti/FWj1MzlgdcdrkChqlGqus1pH+fMRQG6GNhIdv9/BJdPOrA/sBNpwqcd7hA357uYmE+RLTnCWURLypoLExmjjNueyMw3BALW7JBv65XpcsBpMfCbPV4Anb7/oz22BzZLqGwCh9w2GBg/BCBI4bGwmBj9mvfMFjxZ+W1n8kHCBTiETaHcouFfbZRvbyjY2FnHNIx57EsgW/UA/9SX92nNLK/u+3k5tX6lX3z+z0QUa6EZcUCI97iFwBL6VJVKSWQCKklxcQiqohZJItIWXpwLWIIl7VtL9OPlbK/rYmrJQfZ3J7Xzlyffly7696Inoi6GCmBSBiA+3B2uw2l2ANII9MjYhmBMVVkzG2kLH0fcxxNmOJo2pCbm/MmxeC0wbW0sVi8LoeIiNpfcoRM/Sul3H46llIiEEoPjyXHyKQiTBb7nWFTi9SEyxghK5bkCJlmC9PexmNXxwNi5bGIWOrHAtUZy+Ift0XI0tdXlTFCRoXHWYxERERpbE38yyvU/7dpCtR0djbU/1jlSQrvuI3wFPKvsW7iXj5DpCn9OLmGvlKeBzAW5kbEcCfMUrE7vEO5vNKqRoXldsZajClaF057LnShQoboYjya11j8PVv3fmXal4iIiIiIiIiIiLqmN998M+Xzyy+/HGVlzv9uYNKvXz+cddZZmD17dsp5VLGwzmTDhg2YNm0avvzyS1fbR6NRLF68GIsXL8ZFF12EkSNHFmwsn332Gc444wxs3rxZu01jYyN+97vfYfbs2XjllVdyPtfixYtx4YUXYvVqw0WorVasWIFrrrkGjz32GF577TUMHDgw5/MSEREREXVZmqthquxm5XJTBCxZi+Ga5e8dr5iR9vUSx2P6pPqg2UShdNv++kIL08cZZsopYmFlhvlUhRiTz5P9zL2+0V3adat3AMMN91t87Qv9hTZ79Q2yVOmxME28LGC3b7jl0Tn5X+VVGQ+DDW0Ngw0RGDMA8ObwdXHD0BAvmO8eV1oXNQ3tU5jjNIeAuurs9jHF0d1GEU2+c5zA7z509324y5//+dzq1zO7WJjr75hlC/Xraurcn5CI2p0Qoi2W4svvd+8FGU+xB5BEJiJqmphYRmws+ziaNrgWSd1WZoTYdPEzU8jNxXmTo2za9V33mhsi6oLikcsSUErtESmEQ6TM0xYg0673pm2jiZRZHsDr0UbMhCqO5va8ruJoquCa5riWZbyhFxERlQYhBKrKgap2jJD5Q0BTS9ufsWUy6eO29f5gLEKWum3S/kFGyIolHiHb3qhaW5gIWXV5a0ws8XFqhCx1vcgIk8XXM0LWvTEWRkRElEYX7NHFp7p0LEzz2JLDWG4jWQKFu4OA5eJYHk3cLfU4npQ/sx9H0vPgMprW3YU1k+1KSUNEHQur8/XL+limaF0k7bmIakKFbuJ43YHueYi/T5nei/kcEhERERERERERdR8bN27E2rVrU5adeuqpBTn2qaeemhILmz9/PsLhMHy+9r04ub2EQiGcdtppGaGwuro6jB07FvX19fD5fGhsbMSWLVuwfPly+P3tc+Xp8uXLMXXqVOzalXpBen19PQ4//HD07t0b27Ztw/z58xEIBLB7925Mnz4dDzzwQNbneu211zBjxgw0N6dGCwYMGIBDDz0UdXV18Pv9WL58OVasWJFYv2TJEhx11FGYP38+Bg0alNsDJSIiIiLqstQXQegiT80uY2GmWJYyyrVrq+MxdXGusO3+goqI5p52XqcpZC3ZxcJCEddDQkgbC3PeV0ZST7R/ZEvOY1q4ugBXMKU9T5V2i3KzBrsq/3MVUFVZUhhsCHDEUIHR+7VfGCxOvv0s5Cu/A1Yvg6x7DKg6O3ObAl5Y9m/HltbFR2XewozHH8x+H9N71Kj98h/Xz89wHwvb3YGxsFMOEpi30v031dEjXD4XAcODGHeM6/MRERWTsKxYYMRb/H83KKX/x5ZStsXJkuNpkTwiZclxNGWITR9Hk9o4WlL4TLU+kjZGp/PatvO4WAAgos5CSiASBlD868JK7Z1TJiJjmkiZcX0WkTJLc6ykiJmw0o6ljaMpgmvG86YF11KCaep9hMVrLYmo60uOkGm2yOm48QhZPByWHCGLLZMpYbHkCJk/KFP3CTJCVgraK0IW/3eJ604UuOhI/n9vd8JYGBERURob6pk8XqH+B5uoZvuuIKqLhSWFdzwuIzyFrOS7Cf94hAcWPLA1AabYNlbr8XL7C3Auz0N3F7ZdzvQrooaw+s6YtV7DLTE1TNG6cNpEP13sypNjzK6r0b1Oo62BR11sLbYvn0MiIiIiIiIiou4uKqPYE9lZ7GF0eb29fYv++/KPPvooY9mECRMKcuwjjjgi5fNAIIAlS5Zg4sSJBTm+Ww8++CDuvPNOAMCxxx6LTZs2AQAGDhyIefPmaffr0aNHyudPPvkkli9fnvh82LBh+J//+R+cdtppsBQTd6WUWLx4MV577TU88cQTBXgkMeFwGJdeemlKKGzAgAGYOXMmzj///JSxNDU14de//jXuvfde7NmzB7fccktW51q+fDkuuuiilFDYaaedhrvuugtHHnlkxvaffvopbrjhBnz44YcAgE2bNuHiiy/GnDlz4PHwd89ERERERAmaaxV0kacWF9eVSim1Ua5JI4Cjhqdtb9uQd33b8bheSz3YkJtBtdIFghzDXM2ZV4H4DDdfNIWICjYmAAg2O2/TKuDwNA3pI6D7hvjmoW5P0pTyaYUmOhcu8qUQxxzQGgYb2hYG81gdm+WQb/0Z8hdXJT4XPTXFq2AAQHXe5/vZmQITh+V9mJLkNmKYLGDY58pJ+X8vDOkjMKAXsGWv87ZXTO64770bTxa44xX3VxUOqXO3ndy4UrtOVJRWHJCIiLIjhGiLpZSAkgqp2XZaIE0XMUv60zFSpgiuZaxPC65FI5Cq4yqDa3me1ynKFt+fiKiziEZL5n2rlPovUgiHSJkqfqYJm8U/9moiZZYH8KYtT1ovHONohvO6iaMlj1ETckNSyK2Q19kSUdeUHCHr11O5RU7HlVKiJdwaEGuNV6XGxGTbsqT1zcHWQFnyPkkf+4OAXUr/J9SNNIeAj1cBH6+SEMLGjIkMhnUXjIURERGlsaV6hpFPEwvTBX66Al04LTleZLkMGYkC/pOKmwuNPPDAEpbx6xMfe64xplyeh+4uYpjcVip2R3Yol4DrUf4AACAASURBVNf6so+FWcKCV3gRkZm31AwnPRdSSu3rTeQYs+tqdK9T2fq86d67Y/vyOSQiIiIiIiIi6u72RHbittXXFHsYXd49I2ahj6++qGPYuHFjyuf19fXo06dPQY59yCGHKM/X0bGwvn37om/f2O+svd62aR9erxfDhg1zfZyXX345Zd933nkHI0eO1G4vhMCECRMwYcIE3HbbbbDtwtxQ5+GHH8aSJUsSnw8YMADz5s3DiBEjMrbt0aMH7rjjDhxyyCG48MIL0dDQ4Po8tm1jxowZ8Pv9iWV33nkn7rjjDu0+hx9+ON5//33MmDEDs2fPBgDMmzcPzzzzDC6//HLX5yYiIiIi6vI0Px9USXWEqrklCjjM54gYpuXdf77iorqvPzUeL65MM80rvMfdzxe2LSE1F704hrmWfJg5HsN8qlBHxcI+zwxv7xfZiq3e/TKWt4QlTBci7d9bf5peVS7nEKaNp9JWx8IAYNV2iQP6F/4CS6n7Irf6/gkCj15a/DlJ8qVZ7jbcth7AGOMmURdXc919tujUF7T++67/xn/1uVG5LpdY2Lrd+nU9K7I/nsr/fd/Csfc7/w6mUOdzo2eFQH0NsG2fu+29bqfXLnxHvXz0EerlREREXYCwrFi0xKu+XqlDx1LsASSRUrbFyRwjZrnF0TJDbPo4mtSeNxL74VUVRLOjsXOmj9F43qjzuBx+ViEiKhlSApFw7L9iD6XYA0gjMyJp6ZExy2F9NpEyxbGS1gtVHM3pvMrgmiYGpwquaUJtnfl3TkSdhRAClWVAZVn7RcjUMTGZGShLipCp9mGELHuPzZGY0bHTGKmIGAsjIiJKY0M9a8YryrLavivQhbaSY12Wy5CRVcBYj5tjWcIDDzyIQP8LJav1cVgu4mPq/a2kjxkLcyMsc5hR08EawupYWJ23X07H84oydSzMbnsudKEwgKGrON1rLNr6PhU1hQH5+iQiIiIiIiIiIuo2du9OvUqztra2YMeuqKhAeXk5gsGg9nydybp16xIfH3roocZQWDqPxwOPJ//fvdq2jYcffjhl2W9/+1tlKCzZ+eefjx/84Ad45JFHXJ9r9uzZWLp0aeLzCy+80BgKi/N6vXj66acxb948bN++HQDw4IMPMhZGRERERJRCfbVGhSby1NwYAGC+GF4XvwJSA1gyHIpddLjiM6dBAr4y+Fr2AYqLYEKV7n5+NI3LMYhTnXlinykWljnlSCmaT8AMAHZsylhUYbcoNw3kcX3neYe7vNCooirl0/0jW7SbfrEJOKB/7mPS2dlkXl9eKldhrPzc1WZyr/PvLza66OWV6kWbRwwFFq8zb1NpN+Pe7XdgZt2PYCvmk+USCzPFsvpXRSFbQhBp38/Z2r+Xu+0qC9QXkY17gB69HL/WbkNhgMv3IQD4xnhg1ReZy79a7P5kRERE1CUIIVrjIaVxHUAp/S1Y2nZmUEwZMcs1jqZbnxw/i20rVSG3lFCbbV7v9rzRCBC1HdZ33Wv7iKgLikZL5n2rlBo8UgiHSJkn7WPV+rSImi5+Znliv8zVRMxENnE0VXDNMY7mcYyntY1VceMMohLT3hEyfUxMKgNjfkOgLP5xV4yQfbqh2COgjlQq/0xFRERUMmypjvb4LPW/pJsCNZ2d7rElh3c8LiM8hfyB1E34xxJWLOZl+Au7J+9YWPLz0DFBp85+ExCnWFgpPLyGyE7l8jpf35yO5xM+qKbORZIm+unCfABDV3EW1M9DPNhoCjfq9iUiIiIiIiIiIqKuJz3e1bt374Iev3fv3ti2bVvi8127dhX0+MUSj2B1tL///e9Yu3Zt4vOJEydi+vTprva9/fbbMWvWLITD7q5Uf+ihhxIfCyFw3333uR5njx49cM011+Cee+4BAHzxxRdYu3Ythg0b5voYRERERERdmmZSU6VUB6f2BJznkjnFwqR/H+RpWd78b8JU+L5W/wwRlu7mt21vNI/LRG5albGszDCfyvQcJPt8o2FMbq4WCGZG3SqlOvQWcAgqmcZ84mgXY1GM54Dwau2mgbBEe1y67xSOKoXr86SUQEtzyjKRxww8t99vpWj6OIHF68yPfVrTOyhDGFV2M5o8mVes5RILM70e6i4aANnSDHnI0RC3/hZi4AHZnwDAsL7uvtkq1fdDdk2+8jvIP/0K2LIO6D8YuPhGiAuu024/oBewZa+7Y3vdTq9N+34mIiIiokzCsmLREm+BarH5jKXYA0gipWwLjzlGzJIiak5xNGVwTRdqawuaSe15I0AkqgmepR/XzXmjzo+3s1+IRkTdh5Sxm0JE8rhbQaGGUuwBpJHKiFhyuEwRNFOFzVxFylRxtLb1wimO5nRe5fq0GJwqCqfYjxG1ri85Qta3wBGyYARoamkNiIWSPg4CTUGZuqz14+QImWp9sSNkjS2xm8t4LL42ugPGwoiIiNLogjNeof5Fqi4u1hXongsLVtLHLmNhBfw1sMfFOT3wOEaW4o/Dg9xCX8nj6KgYkY3O/f0Wtov/yxqTQNSPgK2ecFLrzTUWpp6FkxxOizJ05UgX5IuH1kzBNbdRQyIiIiIiIiIiIiInXWmi2ejRo7F8+XIAwIYNG/Dggw/i5ptv7tAxzJs3L+Xziy++2PW+/fr1w6mnnorXX3/dcVu/34/58+cnPp84cSKGDx/ufqAATjzxxEQsDAA+/PBDxsKIiIiIiOI0F55WaebhLNpW5XhIx1hYtqGwkeMgfjoLZb+aB+zOXB223f28N+VB/fwtUyxMRqPA7P/NWG6KhYVcxJv2BSSOvT+3MSXGtmxhxrJKWx16W7jGfKyIYcw9K9w9x/LtZ1M+N+3lFC/LlT9oXl8S11qHHAaZxM14TV+7UvfT0wSWbpJ44RP1+iMCn+B/t8bCV9WyGU1QxcKyD8/FYnUa/n2xPz+bB/mjU4Bnl0OUV2R1/LiTRgPvf2XeptKX+++s5NyXIB/4YduC7RsgZ94E9KyDmHaJcp/bpwtc+4y7F4Kb9yEAwPv/p15+0rdcHoCIiIiIuishRGs4pDSuHSmlf1GWtp0aF9NGzHKPo6nXtwbXkraV6aGzjGBa1GG9y/Mm1jmsJyLqLOLvaXD/+8D2Ugq/Fo2TQhhjYinxM6dIWXy91xQpUxyr9WORaxxNFVxT7qcJvSWPN/Gn1aXmt7UHIQQqfECFr/0iZP5QLB6W+LglNUKWvL45BDS1pEbIktdnEyFrbAF6O/8THHUBjIURERGl0cW/fLpYmCHy09npnovk8I7bCI/IMcil4hQBi2/jFBWLH8fN8ZzGkesxsmUKInUGYcPktlLQENmpXVfry3KCYStdaDAiI4mPGbpypnuNRVvfp6KGkJ6lCY0RERERERERERFR11NXV5fy+d69ewt6/D179hjP15lccsklmD17duLz//iP/8BLL72Eq666CmeccQYGDBjQ7mNYtGhRyudHHXVUVvsfddRRrmJh8+fPRzjcdkOTESNGYO3atVmdy7ZTfw+9atWqrPYnIiIiIurSNCWiSqkOTgFAc1Ciqlx/wYUplOVt1M/xURFPfwIMPwhCCPjK1HNQwrbz/JI1OyXWGE7tNR3iy38qF/uk/uaLpmBa3FvLgIDh/o2uIj1ff5qxqEIGlJv+c635ihTdmKcd7GIccau+yFg0OvgVviofnbHc9NjzsWid+XF6S2FK17b1GYtEHpfrOX2/9e2R86HbXblP4P++78G6XRIrtwNHDo9dYPXPtcDwbfMx+u4picu7dBHD5hymNur2GRJO+9rs2AR8Ogc4+rTsTwJg7ECB978yf20r1dMUXZFv/1m9/K1ntLGwmkr3x3cVLWxu1K9UvEcREREREZE7wrJioRRvHj80FGosxR5AEillanisEJGytDiaMrimiaNJ7Xmjsbq3MniWflw3542a10fa6RctRETtQcrY+1YJvHeVUkQNAGRGmCz9Y8thvSJ8poufWZpjta4XVtqxjHE0p/MqgmvK5ZqxtHNELSVCpt4ip+PGI2T+YCwc9tVW4PSZ6uup9wYYC+suGAsjIiJKo4t/6YI/EhK2tLtkjCaqeS5yiWSJAv5Kz3IRHrPgcRxbPCZmOUTF3IzDKUxWKJ09ThcxTG4rBQ1h9Ww+AQu9vbld8OWzypTLk8NpujAfwNBVnO51H39NmIJrub7GiYiIiIiIiIiIqPNJj3c1NDQU7NgtLS1oaUm90L1Pnz4FO35HO++883DeeeelBMM++ugjfPTRRwCAkSNHYvLkyTjmmGNw3HHHYcyYMQUfw7Zt21I+P/DAA7Paf9SoUa6227BhQ8rnf/nLX/CXv/wlq3Ol2717d177ExERERF1KZpYWI29T7vLhgbgG/vpD2kKF/nWL3M7MuCUiyBGtJWqynzqOShuYmHPLDBf8mMM4mxYod4H+vlUoYh2VcLnm/IYU9yBh2aMb0HlkcpNDxtsngcY0UyDcjUOALJhO1BZDQT8Kct14bn2ioU5zXY8bmQJXOK8Z4frTd1crKb72sVdfWwJPGYHQ/sIDG39VU3PCmD6OEB+tCvl8RcyFtai+f6rsDO/X+WSeRA5xsKGq68sy3obrb+/rF7+z3e1u4zoK+D2MkiP4u1VhoKxMODWdUB1DbB5jf4AG1e6Og8REREREZFbQojWcIgHQHmxh1NaITXbdhFPa42jxQNkbuJoquBayvrM4JrUHVcRXMvrvIl1hscb7dzXdBJRNxN/T0Ow2CMpqZCatCxjTEwfP9NEyuLxM21QTXGs1j+FLo6mGVe55UG5x4M6jxeVoQoAJygf4171fWCoC2IsjIiIKI0u2qOLhQGxWI2bgFVnE5Xq2UbJ4R23j7uQxV038SSPsBzHFo+JeVwGz1L2hZXymDoq6BQ1BJE6g+RAVinaHVHHwnp5a+ERuf3V2ad574jYbTOFdGE+gKGrOF38Lx4J08XCBASDa0REREREREREhN7evrhnxKxiD6PL6+3N56rEwhg4cGDK51u3bsWuXbsKEvVatizzYvT083UmQgg899xzuOOOO/Cb3/wmI4S2cuVKrFy5En/4wx8AxOJhl112GX70ox9lRNlylR5zq6mpyWr/Xr16udpu165dWR3XjcbGxoIfk4iIiIio09LMuTvZ/752F7/DNSrGWJjt/gIXccpFqftqqlUhF7Ewp5iQKYglF76jXC4AeGUYEcUcIzexsKhD4MlVpCuaeaLB4Y1YWzYsc0xR86U9uq+b0zhkcyPkbRcDmuepwlZf4RJoh+loti1xxZPmxzm18D3t7AULe9XPp+vNj/mC8aV06bJ7cumClM8rpfp5c3pPSvfVFokf/ln9nJVLxcFC6uCdG2cfKnDjc+avjym+mA/7p+dB3PkniIqqlOUTh7k/Rvr8Yfl/D0M+dHMBRkdERERERESFJiwrFkrx6q+l7bCxFHsASaSUqeExY8QstzhaZrxMsaz1Y6k9bxSIRDPPpRyLm/OqomrJ52qnkj8RUXuw7dh/JfDelU9ErQY+YMxe5TrGwroPxsKIiIiSSClhQz17xifKtPvZ0s75tw+6OFkp0I3NkxTecRvaEgX89YwuGpS+jdPY4gGhXEJC6WNwM6ZC6PyxMPMPUVJzl9GOsjusvttibR4XuHk17x3J4TRpeB/IJWbXFemiafHQmi64xtgaEREREREREREBsd+z9fHVF3sY1AEmT56csWzRokWYNm1a3sdetGhRyueVlZU47LDD8j5uMXm9Xtx77724/vrr8ac//Qkvv/wyFi5ciGAw86LWlStX4s4778R//dd/YdasWZgxY0YRRpybUKjwV48X+980iIiIiIhKiubvx30i+nCvU3jLFAvzvvg/bkYFABCTTk/53FemnksSDjvP41uxzfxzgFczDU3u2w28+5x2vzIZUsbCNjZIOE1MDDoExVzFwhQXxpzb+BL+q8+NGcudAmYRzdPotcyPQ/76em0oDNAHngLtcE3PIx+Yv86f3mahurwELlfduCpjkcjxEqNwROI7f9Dv+4erBSYMK4HHnCUZCgJ/+lXKsiq7Wbmt03tSMtuWmPbf+veMMtU8yZdmAdc/6P4kSYb1FaitAhrUQ8fg2sLe0DfFR69DPnQTxC2PpSy2LIFD9geWbjbvfstpaaGwhe8wFEZERERERESdjhAC8Hhi/6G82MMprZCabbuIp8XjaNHM5S7iaOr1yctj20pjHC2aef5cz5sIqTmsJyJqB2UIo8IOoMWqzFjHWFj3wVgYERFREqkJhQGAV+j/bzOfgJOtCdyUAt3YkuM7Au5CW263c8PjIv5jweMY8IofJ5eYkJX2eNyMqRBK+fvFjXAWd/UshoaIOhZW5+uX8zF17x3J4TRd6Apg7CrOo4n6xaOGtuZ9OJcYIBEREREREREREXVeQ4YMwZAhQ7B+/frEsrfffrsgsbB33km9aPmoo45CWZn+ZjO5iBZpsmB9fT1uuukm3HTTTQgGg/jkk0/w8ccf48MPP8R7772HpqamxLZ79+7FxRdfjPLycpxzzjl5nbe2tjbl83379qFfP/e/k9+7V32XxHR9+6beFOSXv/wlbr31VtfnISIiIiIiB5pYWBnC8MqwMoTlzyMW5vt6kX5lspq6zDHpYmGKMaZbrZ5alKANcxkiWEAsFtaM6ozli9cDVzuMKeDwPLqKhUUzC2DK2BGc42S6r5tpHDISAT56zXjcSrtFuTwQtIECzk0EgNte1kezJg4DDh1cGpdjylWfu9/WoSH2j9Xm9ZccWRqPOWufz8tYVKUJz2UTC1u8HtjQoF/vk4qDhfMLmZ85VuBPC9RfyGG53wsVcrPDFx8A/v4K5H88mhEkO3h/gaWbzd9cNRVp5/v7y9kOkYiIiIiIiIhKmLAswLIAr/PvV9t9LMUeQBIpZWp4zClSZtsOEbPkEJvtsD4zfCa1540CEU3gLafzOjxexe+iiSh7vex9mliY801oqGtgLIyIiCiJbYqFWfqLPfIJOMVDNyqFDGzlQhdBS45wWcKCgGUMrQGFvWuZUwQMADzC4xhZih/H4+J4TmNwM6ZCMH2/dAZhzSSyUtEQ3qlcXuvNfTaNT6jfOyJJE4J0oSuAsas43Wss/r6te//O5fVNREREREREREREndtpp52G3/72t4nP//jHP+K+++6Dz5f7xMQdO3bglVdeyTiPitebOhUjEnE/0a2hwXClaQcpLy/HpEmTMGnSJNx0000IhUJ48cUXcfvtt+Prr78GEJvUeP311+Pss8+GZeX+e+z6+vqUz1esWJFVLCw+nmzP43Y/IiIiIiJySx+LqbKbsc/TK2O53+Geg8ZYWM8aYM8u52ENPyhz37A6FBQSPshoFMKjn2syql7g0w36x9q/JvantG1gxWfAqi8AKSGf/bVxmHs8tcrl+9UYdwPQfrGwcqn+AoUcfsTVNbA9Kz+F/bP7gX4DIUYcDHhaf0YfcTBQ1x/w7zMet0o2K5cHAhHkcklES1hi/mpgTzNw/CigrrptfmOjuksGIBZHKhm19RmLhOG1aPKvbeb9LKuEHrdLsmkv5IuzMpZX2ervpWxiYXO/Nj9fZapY2MARkJvXAMsWAHX1wCGTIMorMrfTMJ1xjXraozvbNjpvs3cnEAwAFVUpi/fLfGvPUJn+67htG9yPjYiIiIiIiIiokxJCAF4vYr+7LC/2cEoqHSRt20U8LQpEUoNn2cTREIk4hNpi28qM46afS3EO1T7GcSUdSzeu+Hoil3pF92KbN/PfCPY0RlHoG6xQaWIsjIiIKIkpxOQz3DlQF9Vyw7SvKPKPYLqAUXp8xyMsRBwiVoV8LJaLv6hawoLHIbIUj4k5RcVUPGn7uBlTIUTzCNOVgohqEkwJ2R3RxMJ8ecTCLPV7R9huC6eZQoWMXcXoXqfx9ylt3DCH1zcRERERERERERF1bjfccAMef/zx2F06EQt9Pfnkk/je976X8zFnzpyJcLjt97rV1dX47ne/q9y2pib1au49e/a4Ps+yZcuyGlchb9aiU1ZWhhkzZmDatGk45JBDsGnTJgDAhg0bsHjxYkycODHnY0+YMAEvv/xy4vP58+dj8uTJrvdfsGCBq+0mTZoEIUTie+Kdd96BlLJDnj8iIiIiom5B6jM21ZpYWHPIfHdzYyxs71ZXwxJnXpmxrGz4gcCXivMJXyyGU9VDezyvwzQUjyUg/fsgf3Iu8Nk8V2M02dnkvE3A4d6NrmJhisi1MnYEIOQwfU33dfOtXgJsif38l/Hd0sO5OFRpqyNvu5qyv/nmim0SU39jY2Nrr9trAX/+roULjnD+GfHbR5fQz5ER9zfulA7zNw0v4U5JLnwH8j+/FXtNp9HFwpzCe8mcvguUr59NqyFnjG77vM8AYOabEENHZ26rMGOiwDML1F+obx6Wx/dlUP18ZAj4M2Jhl08SmPme+ZunMv1eq599mMXgiIiIiIiIiIioqxGWBVgW4M39po8FG0uxB5BESmmIozlEylzG0fTrM+NoUnveCBC1NcGzXM6rOFbyesXNTgiosdU3YNm7cy+A3K+Hp86DsTAiIqIkpmCP1xAL00W13J1Tv69V5AsUdM9HehgrFuMx/4W7kDEtIQQsWMavlwWPYyQoHhOzHKJiyuOn7dNRQad8vtdKQVi6n6DU0WxpY09YfcfROm+/nI/rFemzXWLCSROCTNFAxq5idK+x+HOne21YjK0RERERERERERF1OwcddBBOP/10/O1vf0ss+8lPfoJvfvObqK/PvKOek+XLl+OBBx5IWXbVVVehrq5OuX3//v0z9p8wYYKrcyWP2Y3y8ra7jwaDwaz2zVbv3r1x3nnn4eGHH04sW7NmTV6xsGOPPTbl82effRY//vGPXe27Y8cOvP3226627devHw4//HB88sknAIBNmzbhjTfewBlnnJHdgImIiIiISM0UC5N+5XK/w48wxliYyzlI4vRvZ+5bVancNiTKgECTORZmmGZ2wfjYn/KJu7MOhZ3Z+De83jPz55OH35eYeZF530DIHOpxFQtTXGyjjYU5XJcT0Uzp80rDjk17zQcFUClblMtf+KJcudzkiifbQmFAbMwXP27jxG9Y6NPDPGfzxNEldPlYJPNrJDJTbK3M3ydvfNF1amEyGID8+QxlKAwAqqU6jtWcRSzM6XVV7uamqru2QN51BcTv3YXQD+yvX3f0CFeHUAuqX1sZAk1Abeo8ykMHOe9WlTR9UkoZi44RERERERERERFRCiEE4PUilgDK/vfehVZCvwmHzAiKmSJluuCaJo6mCq4ZjitNx00Lrrk6r+7xxLdTjaulGb2iqf+u0iPaiF72PpQHQmAsrHtgLIyIiCiJKcRkioVFDcGvfM4pChjYyoUuYJQe37GEx2kuScFZwoIt9bEwj/A4RoLi63MJfSmfgw7Q6WNhdhYzajpYY3QPoproXa0v9x+OfJr3jkjSpEXT17WjQnSlThccjAcXdeHFQoYKiYiIiIiIiIiIqPP49a9/jTlz5qC5OXYB6J49e3DeeefhrbfeQo8e+gu/0+3YsQMXXHABQqG2328PGDAAt99+u3af8ePHp3z+6quv4vLLL3c811tvvYWFCxe6HhsQC3jF7dy5E+FwGD5f+9150+tNnWaSHCvLxfHHH49hw4Zh7dq1AIBFixbhtddew/Tp0x33vfvuuxEOu79JyXXXXYerr7468fnNN9+M448/PqvvByIiIiIi0jDM46qy1WEev8M0IlMszOtwY0sAwAnnKBf7KtQ/M4VEGbBqPtBnP+0hLcM0lBH9Wy+dmf+m89jSlMvc488Bhx+LygocCws6PPXhqHoiodvAm47uObJEdhMXd/sl5q/OXB61gTeXSZw1LpfRFUm4cHPxsglllbzP5hmDVJWa96Rmh/BeMqdYmO71k2HFEshdWyEM7ztxmrcuAEBtVR6X7mmiahlaMp83yxLweczv1+XJv0pavSy7sREREREREREREVG3JywLsMqcN+wApRJRm3X2RMit16FXdB9q7H3wtl5fLWY8AWBkcQdHHYJXzhMRESUxxad0wZ/YfrkHnKLQn1MU8a+NUkptfMcDj/FzFSEK+9cOy+GcFjyOkaX4MZyOpZL+mHM5Ri5M3y+dQcRx0lfx7lC4O7xTu67O20+7zolPqH8IDSfHwgzBwY4K0ZU6S/MeEn/fjmrev3X7ERERERERERERUdc2evRoPPzwwynLPv74Y5x++unYuHGjq2OsWLECU6dOxZdffplYZlkW/vjHP6JfP/3vjSdNmoSqqqrE5y+++CIWLVrkeK4rrrjC1biSjRkzJvFxJBLBBx984Gq/5uZmPPzww2hsbHR9rqamJsyePVt7/lxYloXrrrsuZdk111yDNWvWGPebPXs2Hn300azOdfnll2P06NGJz7/88kuce+65aGhoyOo4O3bsyHgeiIiIiIi6Pamf86OLhTnFiXTxGa8lXc2qE6MnKJdX9FdHeaLCi0jQPLfJ8DBxweBNsQ8atrsYXar1vsHK5fvVOO8bMDyPh+wPlPvani0ZDkH+4w3IJ38B+cFsSP++2IpI5uMu18SOQo6xMPVyj3QReDNY5RuhXD64Z3YRsh2GH4M/3wjs1jem8I36rE7V/iLuC19Or5r9e+vXXzBeu6o07Ta/BqukOo6VTTCtzOuw3m0sDIgFw179PeRzMyHXLNduNqQu9l+66nLgpNGZy11zGwvTBNhMoTAAqKlI+t5q2OZyUERERERERERERESkM6yvwPDwOtTZDYlQGABg6/riDYo6FK+cJyIiShI1BHu8plhYHgGnqGESTFFjYYbHlB4vchPjsQr8WJwCSpawIBz+qhOPiTlFxXTHTz1Wx/y1Kp8wXSkIZzMJpoM1RHYol/tEGao9PXM+ru69I5L0XOhCVwBg8a/sAPRBvvj7tjZuyNgaERERERERERFRt3X11Vfjhz/8YcqyefPm4aCDDsJ9992HDRs2KPdbuXIlfv7zn2Ps2LH4e1hguAAAIABJREFU4osvUtbdf//9mDp1qvG8PXv2xIwZMxKfR6NRnHnmmXj77bcztg2FQnj88cdx9NFHY9u2baitrXX78AAAJ554YsrnV111FR599FEsXrwYq1evxtq1axP/7dzZdtOMUCiE66+/HoMGDcLVV1+NV1991RgOW7hwIaZOnYp169Yllh199NEYNWpUVuNVuf7663HooYcmPt+8eTOOOeYYPP/887Dt1N+f+/1+3H333bjoootg23ZWz5fH48Hzzz+Pmpq2q+3fffddjBs3Do899pjx8e/evRvPPfccLr74YgwePBgPPfRQFo+QiIiIiKgb0FW0DjkaVVIdC/MHzYfUBWh8lou5enX1wMkXKldVV+jn4gQC5qCVKYpz+E8Phvz4b0DTXufxpbl077PK5Vv3Oe8bMLSybjg5KRQWDED+9DzIW86B/P09kLdfDPmDKZC7twHRzMetix2tcGihRXRfN2QX9Up3ZtMbyuXr9qlv5Khjer5awkDI8DW+55wSm8cVznwwQvdadLiHp+lxXzulxB63kz3qeYBxuoCh03tSMt33eVw2sTD5H9+E/NW1kI/cAnnlEZBv/FG5nRAC/35K5jzca08QqPDlMT/XbSysRR0L+7FiTMnGDEj6pMnFmxoRERERERERERERmdWrb0Ijt6nnQ1LX43BPEyIiou5FGoI9PqGfVBLNI+Bkij+JDgpQqRjjRWnxHY9w/iuFU7grWx5NOCixXngcA17x4JdTeEy5b9r5dSGjQtMFkTqLko6FhXcql9f5+kGI3CfT+Cz1e0dYtk3WMr0PuInxdQe66Ff8udM9hx312iQiIiIiIiIiIqLS9Mgjj6C2thb33nsvZOsFs42Njbj11lvxn//5nzjooIMwePBg1NbWYteuXVi3bh3+9a9/ZRzH5/Nh5syZuPbaa12d95577sGLL76IPXv2AAC2b9+OadOmYeTIkRg3bhzKy8uxbds2LFiwAH5/7GLL/fbbD/fffz+uuOIK14/vW9/6Fn72s59h48aNAGKhrfRAWtwVV1yBp556KmXZvn378OSTT+LJJ5+EEAIjR47EiBEj0Lt3b3i9XuzatQtLly5NHD+uqqoKv/3tb12P08Tn8+GZZ57BCSecgF27dgEAtmzZgm9961uor6/HEUccgV69emHbtm34xz/+gUAgdhFrr169cP/99+N73/ue63MdfPDBeOGFF3DBBRdg797YBfwbN27ED37wA/zoRz/C2LFjMWTIENTU1KC5uRl79uzB119/nfH4iYiIiIgojS5QNOwgVC/RhHkcphFpY2HCUD0aMgo4ZBLEpTdD7DdUuUmloS21crcH43MY06V7/wwRCkLeeZlhb70DQyu16wIhicoy/dwlXfzq2JHAvx2bNO/orWeAhe+kbrR6GeQzDwKRzIOYYkdSSu18Kt1z5M1jjqV47kvU/9stOe+fLGD4vvvLPyW+d7z+uT7+wIIMoXDCWQSpnA4VUW8xZgBw4uji3fQ2F/L5/zGu18XCmrOY2mgKBwJAmcwxjmfbkA9eB5x4PkRFVcbqG6Za6F1p488LJIIR4NzxAteflOfXJ89Y2GVHC/zmHf13WFnS9GL59p+124n7X4T8ybnuxkJERERERERERETUndUPif3pKwP6D4p93n8wxKHHFndc1GEYCyMiIkoSNYSYvJZPu84U+nFiwxDlKnBgKxumKJUnbVxuxplPbEnFKaBkweMYCYqvz+V5Tg8X5RIcy0U+Ybpis6WNiDTffbOYdkfUdxSs9fbN67heoX7vCNtts4tM7z2MXcXoXmPx91/da6OjXptERERERERERERUuu655x6ccMIJ+MEPfoAVK1YklkspsWzZMixbtsy4//jx4zFr1ixMmDDB9TkHDhyIF154Aeeccw4aGxsTy1euXImVKzMvAh8+fDhef/11bNu2zfU5AKCyshIvvvgizjnnHGzatCmrfdNJKbFixYqU50hl4MCBmD17NsaOHZvX+ZIdfPDBePfdd3HGGWdgy5YtieXbtm3D3/72t4zte/fujVdeeQXRaPb/bnLyySdj0aJFuPjii7Fo0aLE8mg0iiVLlmDJkiWOx6itrc36vEREREREXZsmFFNRiWpbHZhpDprzReGoer3P0sy3q66B9cwXxmMCQKV+GiBmfj0STxv2jWjG1Cu6L/ZBQP1YzQPqgR52k3b1P1YDJ43W766LX105OXW+nvzwVfWG814FPJmXFJhiYf/aCoweoF4X0Xx5fDnEk8R/vwlxxIkAAK/hqodt+yTqa9zNT9TF1QBgVH9zBMpXatOQIplfI+GYBVMLaR73yWM6VygMAFDVw7xaquNYhYyFVWrO4UqoBVj0HnDsWcrVV0y2cMXk3A+vPJ8bmve3HuXm3VLec3Vhsl59ISafkeN3LxEREREREREREVH3Ir79E+CyW4C6egireC0KKh7GwoiIiJJIqQ93+TTBH8Ac1nJiij8VOrCVDVMALT2+kx7OUhEodCzMIQQmPI7bxMftZvxO58/lGLmwDd+jpS6S693yOsju8E7l8lpffrEw3XtH8vOhe70JCMcwXnehi/rFg4u68GJ63JCIiIiIiIiIiIi6p5NPPhnLly/HX//6V/z+97/H3LlzEYnob3BRXl6OU089Fd/5zndw1lln5fRvNieddBIWLlyIn/70p3jllVcgZeYlj/369cOVV16Jn//856ipqck6FgYAEyZMwPLly/Hss8/izTffxNKlS7F9+3b4/X5tTKtXr16YO3cuXn/9dbz33nv47LPPjM8HAHzjG9/AFVdcgRtuuAFVVVVZj9PJYYcdhi+//BK33XYbnnrqqZTIWlyPHj1wwQUX4O6778bgwYMxZ86cnM41cuRILFy4EK+//jpmzpyJDz/8EMFg0LjPmDFjcPLJJ+PCCy/EMccck9N5iYiIiIi6LMXPOwCAimptmMffYgOGm+jpYjw+oVlR7u7nlDLD7PkXNg81xsJ0Y/LmMS9K3PE0xt96mXb9nmbz/rrAUWVZ2oL5b6o33LwG2H94xuIjWj7RnrPBMCbtc4QcbjI5pi3aPUJu1m62pxmor3F3SFMQqqYSCBmG6fnv62EHtrs7UUdYuqBgh9J93Uyvl5LVuMe4uspWfwNnEwvTRfHijmn+2P3BVNZ+pY2FFZrUBbzSaWJhI/oCfaqBXZpWYu/yKOTf/gz50izgy0Xqjfaq524SERERERERERERUSbRZ79iD4GKrDP+8w3lSAjRE8CxAAYB6AugEcBmAEullF8X8Dw+AMcAGAJgAICm1vN8KqVcW6jzEBG1h6gh+uU1xMKieQScTFEuUcTIjem5sNImaTlFuYDCPxZdOCjOA8sx4BV/HLmMLf38TuMplHzCdMXmJhZWzDvDNUTUE07qvP3yOq5PpM+8iwkn3X1TF7pKf611Z7rXczygp3svdfP+RERERERERERERN2D1+vFJZdcgksuuQR+vx+LFy/GypUrsWPHDoRCIZSXl6O+vh6jRo3C+PHjUV5envc5R48ejZdeegk7d+7E3LlzsXHjRjQ3N6O+vh7Dhw/HcccdB6+3berGlClTlFExJzU1NbjmmmtwzTXXuNpeCIHjjz8exx9/PAAgEAhg2bJlWLVqFbZu3Qq/3w8hBGpqajBkyBCMGzcOQ4cOdT2eXCNevXr1wkMPPYQHHngAc+bMwZo1a9DQ0IB+/fph0KBBOO6441BdXZ3YPtfnC4g9B9OnT8f06dPR0tKCBQsWYN26ddi1axf8fj+qq6tRW1uLkSNHYsyYMejTp09O5yEiIiIi6hZs9dwXUVmNaltdkGluiQLQz8nTxsJ00anyCtMI2/Y3TCVptvXjAfSBoJxCWABw9GnAUdO0QTUACIQlYLhRZ0AzJavSl0X0WhGPHhper918k6HFFNF93XIIqomqnomP64X+pLrnQLmtIQgVCOm/7wCg7M0nAZT2DTN1nH5y1kXSTK+XUiTXfw3s1IflAGhfb1v3uT+P6fvk6Ob5OKNJE+dzK8ffdeRk4yp327Wo38stS+C+8wW++4fMMf/6AkDeeRkw90XzsSdOdTcGIiIiIiIiIiIiIiJiLKw7EEIcA+A2AFOh+ZoLIT4D8L8AZskcZ9IKIfoBuAvADAB1mm0+BvAbKeULuZyDiKi92YbolykWZgp+OZ7TGOXK/i71hWJ6LtKjPW6CRqLAj8UpAGQJj2PAyxJW4k8BC1ITbFLJeA46KEgUzeN7rdiS41ilqCG8Q7m81tc3r+Pq3jvCSRPgdF/X+Pco6V9j8bCh/jnsZDPWiIiIiIiIiIiIqENUV1enxLLaW9++fXH++ed3yLlyUVlZiQkTJmDChAnFHgoAoLy8HNOmTeuw81VUVOCEE07osPMREREREXU9mqnH5ZWospuVq5pbzNOVtbGwlkbtudzw5jEdRzsmmVssTPzy/yC8PsiyCgwPrcGasuEZ25jiVqb1ler7G6pFMgNYAkCFHUCLlfm8/n6ejQuOUM/J0T9H+UW2Ki39/l9slDhssLv5ibH4mlqzQyzM1wlCYSLH23XqHndZJ5t6Jf/6kOM2VZqAIQDYtoRlOX8v6cKBAPDGhrNRLdXveyXJKeQVF9A/pn871sKQOomrn7ITMcFnviNwUeUCSDfHP/hod2MgIiIiIiIiIiIiIiLGwroyIYQPwMMA3Nw6+FAAjwG4WAhxmZRyQ5bnOh3AUwD6O2w6GcBkIcQzAK6RUur/tY2IqAhMsSifIRYWNQS/nEQNUa5CB7ayYQqgpQeMPC6CRkIU9rF4HAJllvA4RoKSg18eYSFi+FpkHD/t/E7jKZR8wnTFFrZLd7JU2A6hMbpXua7O2y+vY/ss9cy7iN02U0/3dU2P0nVnuihh/LnThRc76rVJRERERERERERERERERERE1G3p7lNcUYUqe5dylT+YYyzMq5mHFnQX5/HlMZVENyZvrrEwX+u8olALKmVAuU3AMOUqEpXaaFGlfrpjpt1blYtVoTAAiBqm2RX6OYqr8OpPujuLLpMpvhYIAyHNMD0yUsTZnPlzSohpX2+dberVkg8dNymXQe26lTuAUfXOp9E9X1P8c9DTbnI+gJMCz7c1GjkOWPm542ayxW98DZxykMCGX6V+w8g/zXM1BNGjl6vtiIiIiIiIiIiIiIiIsbAuSwjhBfAqgPRb7YYBLACwEUA1YpGwIUnrjwfwjhDiGCml+l/nM881BcBLAJJLGBLAJwBWA+gN4HAAfZPWXwqgRghxjpRZlFmIiNpZ1BBi8ggvBASkYtpEPgEn077CRYSrvZgCaOnxHV3EJ1mhw2fpwbJ0ntb/GY+RtD72sfsJSekhMqcwWaHYhqBdqQtLh9tcFlFDRP/XnlpfX+06N3ShwUjSBDjd19XNa6u70EUJE7EwzV8pnd4riIiIiIiIiIiIiIiIiIiIiMhMvv405F9nAmu/BOykORrjjoF48FV9LKy8CtWa+wo3h3KMhTVp5vlsWWc8XmL/PKbjRHRjQg43UTzylJRPK+0W5WZOcSudytZZ3bJhB+QzD2Q7OiNTx0g3pkqZ9PhOOAf4+8v67xsA4mdPpH7uKcw8KtNzFgjrv+/KSnjuWzLtl8ahFhbSPe7OdrXJXufLHw4Ofqld16R+GabYskfi3tfVT2i+UbwEuwNvKut2fl0g+wiabG50t+ERJ2V9bCIiIiIiIiIiIiKi7opXzndd9yMzFPYQgHop5XFSyoullGdLKYe2brc6abtvAJgthPMtaYQQgwDMRmoo7CMAB0spJ0gpL5RSngpgEIAbgJR/DT8LwC+yfWBERO1JGkJMlvBowz35BJxMUa5iMkXMcglliQL/tcMpomQJy3FcyeuzjX2lh4t0IaNCMwXtSl1Jx8LCO7Trar35xcK8oky5PPn50L3eOipC1xkIzWs+2vr+q3svZXCNiIiIiIiIiIiIiIiIiIiIKE97dwKrl6WGwgDg848gT60DIpoCU0UVqu1m5Sp/0DxNWR9t0pzrhHONx4vz5jHNSxsw043JQPzkf9s+GTgCFTKg3O7DFfrKkykkVukDZNNeyB+dDDw3M+vxAcAle59VLn97uX6fVZppWJV22+MTF/07xDUOU8hPnpH6uceH8hyCaulWbtevC4QK+zUuJdLhZq/ax92Jpl5JKYE9+nmAcT1tfcDKFJMDgF1NEic8qJ8v7Eu+Ye3gA4HpVzuOR0V+Mien/XISUr/3ZAio38uNFrztvM23rgMOOCT7YxMRERERERERERERdVOd7V4v5IIQYgyAG9MW3ySl/I1qeynl20KIY/D/2bvzOCnqO3/8r0/fPczAzDAICCIioigRLzxQsxgTr9yJWf1pbnOfZmNi3Li/VWPcJJrdmDXZ7JosmsMcRk2MV/Ai660EFRXEA5BD7hkG5uqrPt8/unumj8/7U1V9TQ+8nnnkQVd9qurzmeqqcqDf/fpkQ75m5Va/FcB5AH7n0t2VADoKlh8H8HatddGnsVrrBIAfK6XWA7ijoOmflFL/rbX2Np0XEVGdZbQlLAwBBFQAGUPtTTUBTrZQrtFkC0ArDTAKegg0CrhnUPri1mcAQQRcAryCBQFmQZ+BQqUBRI0KJHKQgdYaHjI9m07KU8GUyxSGddKdNhcJtQbHIxKIVnXssAob16d0avi9dISgqyCzfYdJgXz5Z6gjPL+9PJ+IiIiIiIiIiIiIiIiIiIiIqA7iLWiRwsJSlYUXhSDUIE0+wNOQQlWUkohj0mlzQ95HvwX88nvZ18eeBnXVLVDjO0faZ81DfJ05sOfuF+TD2oKN4mEAj98DvPGyfWwW8xIviW19QxqtseL3UGu59qtFF1wH4zugLrwEmH8K9M3XAE/+daTtY5dBffxyqFDJ1xyCIRw/+AweGXdq2bHdAp4K3bbcEr6WApKmAlEIYWEf+Lz3juutpQ3q6LdC/SYEeMx+KpQULuGxFBaG1y03y0GHQ33uu9Arn0Hk5mugtANtqEdzC56741ltDZwrehaceCbUl64FFr0f+ol7gdt+6vIDFPj7w963rdaQxwtmqN//sV951t5+/tegvvBvY7IeloiIiIiIiIiIiIhotDAsbO90KVCULPGAFBSWp7XeopT6JIClBauvUUrdqrU5xUYpdQiAjxWsSgL4eGlQWEk/f1JK3VywXxTAvwKobNocIqIaswdkBRBUQaQMtSDVBH7Z+tSjFJwE2APQSgOMAh4CjZTLzHR+lQaWlQqqoGsAWOEx3ILF3Pp3G08taThQDQonq6W042MKxwbrSe0wru8IdVV97LCKGNdrOHCQQRAhMaiwkddVs5MC+fJBa1LgGs8hERERERERERERERERERERUZUsIVBWwTDGKXNZ8UDKXq+VEAKgjKFNABCNexpSNaE0SaGkThxTvs/3fw7q01fKG/RsQ3dworFp9n7ybrZgo3gE0C89ZR2Xm85Mj9i2YhOw8ODidVt65WMVnfXx2Z9VzTsR6to7vQ1m2wbEu8zXklvAU6GTDwZuF/KLBpNyIFyk9D0+80IEvvYj7x03ym+kkCn7PSz+3GPp2yYrnxGb1Df/C2reicDalQCAuB7EgBpXtp1b8NzNj9vP4+bQ1JGFoQGoQAA44QyoE86AnjEH+j9K54MXTD3Q23a1kPAYFta/2/+x2ycBu8wTuQKAOvcLDAojIiIiIiIiIiIiIvLJXyoGNT2V/bTknSWrr/Oyr9b6bwAKPyU7CMAiyy4XAEWpDbdrrV/10NX3S5b/USkV8zJGIqJ6s4V+BRBwDauphC2UyzbTXr1Zz0UFQVmqxr92uAWUBVTQdVzFYWH+AoWCJduXLteTFCzV7FK6icPC0kJYWLj6sLBQICy2pXJFZAy6ciedi/wzVHpmeQkzJCIiIiIiIiIiIiIiIiIiIiKLSsNclEJLMG1s2p0KWevjbn7C3BZ3zME2ymNYWDWkUKoWbQ/bUV1Tre1IJdHmmIN4kubTlx2PJdioJQJgaMDer4uz+paIbQMJwzpLedhbhl4Yfq3aK6jJGuxHi2P+edwCngplLKV3gyn5fIdR3Ik64QzvnTaScK9ql8lepZ879JNvwDl/LpyffAs67eNEN5DeugHO5edDX/sFeaPDjsv+Gc1+ZUG+luw1u4+9bh/LnkDr8Gt10OHFjX6eUanKz7W+55dwPr0Qzunj4bznADhXfhS6Rw7s8hwW1rfL/2D2yIGDOGQ+1OQZ/o9JRERERERERERERLSP4zfn9z6HAyj8BDUJYKmP/e8rWT7Xsu37S5YXe+lAa70KQOFUVeMANOknpkS0r3EgV4IoBCxhNZWHN9lCubRlPPVmC0ArDU0LCiFqhZRLsYlfAeUSFmYJd8srHLeXn6H0+LbleqomnG40pVxm0BxN3SlzMUxnaFLVxw4rS1iYk62Qk54Dfq/LvZkUyJd/TkrP4UYG+RERERERERERERERERERERFRAaXQEpJr4KSAoj89q/HGTnObGMwV9T5v8e/OXC22JYbkGicplEoKMAMAfODzruNRb/9HfHLXzca29d3yfrZwrngYwD3mY3o1Pb1JbHtpc3mo0rY98rHGO5ZGLy68BHHhvf/Z37xPyvrn5+3te4bM68OFtW9nfxR424c899lICsK5cDlFKaEkMbJnG7BpDfC7/4D+gSWMa5TogT7oL58O/O0O63YqFMq+iGQDu+La/EavsWRqefHR3l+PLBx5SnGjn7AwrwFeJfRfb4H+t08DL/8dSCaAnm3AA7+H/so75LC3pMe+dlseRpKMnHaovv2//o9HREREREREREREREQMC9sLTS9ZflVrbZi7SfRCyfI7TRsppaYAmF+wKg3gMR/9LC1ZPtvHvkREdSMF9gQQgFIKQeE/ndWEN9n21W4VGnVkC0ArDd+RQtQKqUpnlxS4BoGpIIIugWKFP4db+FhZ/xWcg1qxBcw1s5S2VKeNsp70DuP6jnD1YWEhFRHb8uckIz17fF6XezMpkC//rJKepW7PCiIiIiIiIiIiIiIiIiIiIiJycezbKttPKYwLy3VoUhDWzx+R9xGDuXwE8cyaJNeyPf6yXHYthoVJAWYA1FGnug8oNg6tTr/YnM6Y6wgHhXIspYAw5JAePyYKdVV3LC8f090vyPWOw+doyoEVjUO1tosBTxmPc7I6jns95m4hLCySr31beA7UZf8DFWzWmiTzte32kyeFksSikLQHfgc9KF+no2LZg8DmN+zbHP0PI69zzwnpOfLAqupqdscV3seRkgDD0mWbSsPC/vILc8O6VcALT5Rvn04BGY/1qLt7/I1l42tim/rebVAHz/N1PCIiIiIiIiIiIiIiymL6wN6ns2R5l8/9S7c/QCk1wbBd6aczK7TWfj79e7xk+Qgf+xIR1Y0Dc9VIPghKCoSqJrzJFsql9eiFhdl+ptIAIy+BRkooQqlUaWBZqYAKQrn8qlP4fvoNFAqWbF+6XE+ZKsLpRlPKac6wMK01elJCWFioq+rjh1VYbEvniqnEZw9/XR8mPX81HDjaEZ9Zbs8KIiIiIiIiIiIiIiIiIiIiIrJThx7tK4xrZMcA9g/1is1vClXO97woH1IKjELE+/imdcj1JG9sExLBAAwI5U9igBkAKbypSKwFYctEjJuE8ySGl4U11LqV7v16sFOon5reUf5zBS2lTi3OQPbFFpdgJ0kojJ5Au7GpNertEOt2um+zR7i8hkOzZsyp+cSptaQqnKA2JZQkRgrDwlJJYMOrFR2/bl63PCxMcvW6r0TnGJsPnVLde9sfGDeyMHFycWPARy1gcqiy+mHb+Xi9dE55+Asl29Ptb0xrLc+gGYd6Pw4RERERERERERERERVh+sDep/STYo8ff1q3P9zDOnnqF7PXPfRBRNRwUthMPrBHCqvJVBEW5liCn6QAoUawBVKVBmt5CcqqdViY9F7kBRF0DxQrGLffQKHS/t3GU0uOJWCumaW1XEiXpyssVqrGgNOHhFBE2BmuRVhYRGwbDguTnj0Muhpme85oOOIzy0uYIRERERERERERERERERERERHZqQu/UcFOCpOjQvoS5LArGzGYy0eY2ZSJ8uR/Q0Np4/qMo5E0NyGuLYE7c+a7Dygax5EJOeRnUMgRG0yZa63ig93QnzzevV9JMOS6yWvbyvuWxgkAwWprIcMRHDu03NjUl/B2COn9KyQFwoV1dmc1/xRvnY0hGUeLIWmh0po/p7kmOtWJAddt1AlnjCzMOdq67ZDLM8ktmO6YoWdH+h1fMge835C5pPzsFPVZ5pk3Hc9PWFgmAwzs8b59Qh6/OuAQ78chIiIiIiIiIiIiIqIi/Ob83qd0zqOpPvc3bW+aumV2yfJ6n/2UTgs1USnV4fMYREQ1J4Uw5QN7pLCaakK9pJAgYHSCk/KkcSmosvAdL4FGqsaBPQGXX2MCKuAeKFYwJr+hTOXnoHG/VtmumWaWssx+OZp6UjvEts7QpKqPHwrIxYWpXDGVFDjIsLARtnssozPy89tDmCERERERERERERERERERERERufjIN/3vo5Q1xMsUFqa1vWYuroVwoGjM+7iicbRneoxNyzaYa01sIUJxxxLqE291H08khnFOv9i8Wzi8FM4lBqp5VRBy9JXuG4ybPL2u/L26bbn5vTut/+GRhXecX9mYwlEsHHhCbE5n3Gstf/yQ+zY/edi8TThf+3bgYa7HaEbaMtnrVXfJ5yVSWvOXabLaxVt+6L7NmReOvB43HgDw8V2/NG66+DH7NeK4XEL7pbe7j8crn2FhOm1Pw9PP/q18pZ+wMADY3e19Ww9BbkRERERERERERERE5B/DwvY+L5csT1NKTfex/0mGdRMM69pLlrf56ANa6z4ApZ9gmfohImooB0JgT+4/mVJYTTXhTVJIEABoIfymEaQANFPwjpcwHmUpNqmEWzhXAEEx3K1wm5HX/n4tKj22W1+1lBGu02aXKp1lsEl0CwU6AQQxPlT6K49/YRUR21L/JOT3AAAgAElEQVROtphKevY08rpqdrbgNAeO+BwOMnCNiIiIiIiIiIiIiIiIiIiIqGoqFAbe9iF/O2UyQDSGyemtxuahVHnyzqrN9kOKwVyWULIysRYcknzN2LT8TfPEgFIwFwC0SAFmXscVjSOu5dCeJ9eYE4pMYWtADcLC2kZqptoye8TNlpdMNb2udMrrnMnpgjLz+LjKxhSOIK7l8KQN5uy3In/8e+WTt4bztW9+rrNRoMQyTfln//WTclsYJReZ02S1iy7hggCK37Pca1s4n9yVFu+5vOH7ePKM8sZgyF+HfoO8Xnjc3r7mper78BUWJhz7QNM89kRERERERERERERE5JXPTxyo2WmttyilVgMo/BTlIwD+zW1fpdQ4AB8wNLUZ1pVOc1XJp8qDAAqn8TL144tSaj8Ak3zudnC1/RLR3sMRwrnyITVSKFY14U22fbWlQKPepBAzU0hX0CW4C/AfxuXGLUQpqILugWIFIUJ+A4VKg4tsQUa1Vk043WhKl84y2CR6UjuM69tDnTV5X4MqiAACxgC+dK6ITH72MNs3z/YMcXRGfJZ6CTMkIiIiIiIiIiIiIiIiIiIiIg8eutXf9lveyAZhCeFVpgCuV12mLxZDtfyEOEXjeCa+wNh0eEc/TCXNA5bSJ2s4l8ewsKhOiM0xc36ZGGBmCx7zZP0rwy+lUDUAeH27xrEHjqRTHT8TeGpt+XaronNHFja+XtmYwhHsn5aT5LbuBg7qsh8iWEUp1pbQlOyLjv0qP8go0tqcIqa1xlpz+RwAIOqUXJevvwA95D9oq+YiMeCwY4EJXUCv5QeY0AWMGz+y3NYBAHg9Msu4+aGT5UMl0+7ZZC35Z8HW9eWNb1lo37mU3yCv7Zvs7YfMN/QhB/AZDfR531Yaf6S5A/eIiIiIiIiIiIiIiJodw8L2Tr8G8J2C5W8qpX6ptXb5BAjfATDBsN5LWJjPT4oAZMPCOizHrMQXAPxrDY5DRPsoRwybyVaJSIFS1YQ32fY1hQs1ijQu0znwEqikIE5ZVxG3PgMq6BoSVPiz+A0UKt2+kYFEo3ldVCPpNGlYWNpcLNQZ9ps/KgupMJKGgr5ULkCNQVfubIF+GZ0Rn1kMXCMiIiIiIiIiIiIiIiIiIiKqEaXc03IKaQ1E44hpc5nxYMqwLmk/fkaqp/ERFqZCYcxIrcX68Iyytt1CRfQuS25PXPj5EAgAQQ/l+tG4tbrOdJ4A4DdPmc+VdL49a50A9PUCAM7qXyJuVhoytXqrebujh54bWZhrDmlzFYpg//SbYrMtzC0vVcUcnWf23w8AUOFI5QdpAOVzgtoh4drKK7229Q+/7HdI9ROJAkk5ZA8AcPqHoAIj9WMqGIQGcNzg33Ff65llm0vXMCDfh4VsQX1q3Hh/747fIC+3cDFTu99AsqSPMUnj9xPsSEREREREREREREREZfjN+b3TDQB6C5bbAdyrlJom7aCU+icAFwvNXhJJ/H2yWPk+RER15WjzIy8fNiMFVEn7eetTrkDRfgqrakwOTjOEhXkINFKqxmFhLn0GELCGC+W3GX7tIfCsULAkgKh0uZ4yVYTTjaa09lAtMwq6U9uN6ztCLlNN+hBW5iKxVO6c+Ann21fZ7nkn9z8TnkMiIiIiIiIiIiIiIiIiIiKiGvEb8uJkgEhcDNNa8lJ5fZxbIM/m8NSajO2DA3cZ19+13jzB4KW3yTWCcUcI3InGvdXNxbJjP2bwWWPzfS+Wn6c12zWWrzcfrsUZcO/T5owLgH94PwCgK7NT3Oyy24vHtUvo9vjBZ4Zfq4PnVTamcNgaqPbgKvday2S6sq4B4D17/gLMO6nyA4wy6ey4haxVfS3Vk1tQ2Ds/AfXla8vXH/8OzE2+LO4m1e0OegikG34WnPVh8wYtpjncBT6DvPTypS7HMzyHkz7DwnyMST/we3NDjGFhRERERERERERERETVYFjYXkhrvQvAJ0tWvwXAKqXUD5RSpymlDlVKHaWU+rhS6hEAPwSGP0PdWLLvLkM3fSXLlXxqU7pP6TGJiBpOCpvJh0oFhP90ZoRgLS8ylkxG7SmvsT4yQgCaKXjHSxiPqvGvHW7hXEEVdA0AK2z3G/ZV+vPU+uezsQXMNbOU9lAtMwp60juM6zvC5sK/SoQCYeP6lJM9J1IAnN8Qu72Z7Vw4OiOfQw9hhkRERERERERERERERERERETkgd+wsHAUiMURE8K0NveWr3MLC5ua2iyMLeZraC1BfxMfPiRnCyGuhQCdiMfzlTuv4xxzKfXW3eXr7n5BDscaCLR469c2nnjr8OL8oRXiprsGsuPY0iuPp+j8RPy9T8NC2ckaOzLdxubl693DwlJVlN3F9SDQOqHyAzSI3zld3e43Keiv2anr/4rAt34GFTLU7bVOQNyRf65Xt5nXu50rAIjlz5f0rGxtdz9Ins+wMGwr/QqIh+P57cMtoK3QkBA05/e/I0REREREREREREREVIRhYXsprfXtAL4KFKXMtAH4BoCHALwM4FkAiwGcUrDNjwE8WHK4sRQW9lMA83z+/7016JeI9hKOEJAVyAVJSaFY1YQ32fbV4nxu9ecIAWimwB5vYWG15RoEhqAY7pYXLAgR8hsoVPozK6UaFkokvTfNLuX4K7BrlO7UduP6zlBXzfoIK3NYWFpnz4kUDOh2De9LbIF+DjLis5SBa0REREREREREREREREREREQ14jfk5eR3AtE4nmg5ydg8a1J5Vdmgy3yE5/TdZ27wGsyVsyndYVw/MWQOuImG5GPFpEAlr+dr4v4AgEfGnWpsnm2Y8/C5DfLhegOWUKs5R7sOR82aB+waSUyamDFPxgiMBJltMlWb58xIrR9ZiFUYFBSJAgB6gp3G5q5W9wrFZBVld4clXgE2vFL5AZpUwi2cLy2E8zW72UfKbauW4YjES2Lzph7zerewsCOGXkIgX/Mr3fvbLDduKb9BXlMO9H+8hM8wOD9jmn6wef2LT/nrk4iIiIiIiIiIiIiIijB9YC+mtf4xgLMBrPaweR+ALwK4GMC0krYthu1L5/IyfAwtU0q1ojwszPIxsTda621a65f8/B/A69X2S0R7D0cM7MmGzUihM9WEN9n21dDQenQCw6TgnaAhEMtLSJaq8a8dbn0GVNA1xKzw/fQbKFRpaFotZIRQu2aX1i6VfKMgozPoTZtnm+wI1zIsLGJcn8qdE+k9bdQ1NRbY7vmMdsRnqS1kjIiIiIiIiIiIiIiIiIiIiIh8iMR8ba5aJwDROE4YMIfDDCbLa+NsgTzHDS7DUYnnzY0+g8xO73/IuH5nuqVsndYafQnhOH0PyhNpRr2dLxXKJpGdPPCYsd10ToYqnLdRffJy+wZd+wMLz4Z66/uGV32u50Zx8/7cebGFvJ04+PTIwsy5XoZZLhcG154xJzm9stVeZ5lxNKopxexwdgEF52SseT1lLvW3Bah9ZNevERRqapudGm8OlQMAHP92HJxaKzYPCA8htyDDT+3635EFv8GKJn7Dwl560t6eNIWF+eyjv/QrJBab15nXH3uavz6JiIiIiIiIiIiIiKgIvzm/l9NaLwFwBIAPAvgFgFUAugGkAGwC8CiASwAcorX+qc4m0hxWcphlhkO/WrLsMhVNmdLtu7XWwjw8RESNIwVkBXJhM6agLKC68KaM0GeexuiEhUnjChiCd7wEbSnlPnOfH6ZxFAqqgOu4CkOE/IYymUPTGvOrlXSdNruUrrBCrY56091iSGBHyFcWqlVIhY3r07lzIgVdeQni21fY7mdHZ8TncK2DComIiIiIiIiIiIiIiIiIiIj2WT4CcNRDe7J/RuNYNPB/xm1MmTwDlkCee9a/1xLM5S+cZ78jDhHbSif47LXk6Vy+49/kRj9jmjwDp/oIC/vt0xXWFbbvB3XHOnPbKe+CuuGBbNDSjDnDq8/u+6t4uFty47CFvEUKJ5mMVBiilDuXn9h1s7H5mXX23ZPpyrotpOYuqP4gdSbdH8uSM43rbefl2m2XuXcYDDXu/15NsX+tQc2aBwAIC5OfPrvE9NUJ+zV+3dZv4ss9/zXSR6w8dBAA8I7zrWMrkhzyvi0AbFpjb0+UH08/tcRXF/qPN3jf+E1zIJs67BhffRIRERERERERERERUTEfn5rQWKW1zgC4Pfd/K6XUAQCmF6zapLXeZNh0VcnybJ/DmlWyvNLn/kREdSGFBuUDe6SwmmrCmxyXoLHRCgtzOxeFgi7BXUDtA3vcQpQCCHraZuS1v/GJoWkNeLsyQrBUs0tpYXrNUdST2iG2dYa7atZPWEWM6/MBatIzxG+I3d7Mdo86yPAcEhEREREREREREREREREREdVbJOptu/d+Giqcq5cJhRHXu42bmYLBBoWwsHfuuQedjjAvsVJA2FyfI4kF5UKvNduBg/cbWf7DMnnbFm1JEovEfAwojpa+AWOT6Tzt1wZs22M+1GHJ1XI/0ThU11SoR1xquQrGHtNyaNGLm3JhYcL7Ns7pKw6w8hnqNrJfdjwRy4SV6YxGKGiOy0rVouQuVuHYG0jLcXoYTGrEI8XtSct5iTkuYVWdUxD48xt+hlcV57sXAff92n1DKagrL3cNdmR6sC00uax504pXACwsWy9d40GdxsXdJSFaIfPkoq5jK5SwPFtK6G0bKzveUL/38QCAU4MCWZ/PaiIiIiIiIiIiIiIiKlbb1A7aG5xesrxU2O7FkuUjlVI+Pr3CyS7HIyIaFVLYTD4YSgqdcaoIb3LbVwuhXfXmJ3jHLZQLAJSlCKUSbgFlARX0tI3ptRfm0LTGhBJVE043mlKOZWq9nNJZOeutJ20OC4uqGOKBcTXrJxwwF/+kc7MTSgFwplC6fZXt/srojPgs9fJ8IiIiIiIiIiIiIiIiIiIiIiIvvNWAqa79RxYSg4g75tAbU/jOoFBiFLeFckXjUMpffdrBbzwotvWUZHb9+klLWJhjDvjKj8uzSFz8GU3nacoE+VAf2n2bZUweA8ymjcwLbTuz8VxZ1GDKfI5K33vV0uqt/1K5c2kLLjOFquUl05V1CwCtmVwq22HHVn6QBmkNyOdnt6HJFqIW0ZYTCgDdWzyOqsHWlc6JXiJ3LZmCwgCgfdD8c4nPJsPzTQ+aQ7jU3AX2sRXyERaG3p2ej6cTQ9BL74Dzk28Bj93tvQ8A6NzPfRsAOmO5sGxtRERERERERERERETkiukDVOqikuWfmzbSWm8GsKJgVQjAKT76WVSyfK+PfYmI6sYRgrnyQVIB4T+dmSrCm9z2bXR4Ul5Gm6tjTKFaXoK2Aj6LsdyPZ+8ziKBrSFBh+FDQZ6BQpaFptSAFSzW7lFvx0CjoTm03ru8MT/JdQGgTUuawsHyAmqOFZw+DrobZ7nkHjvgs9RsESERERERERERERERERERERERVOu0DI6+PeiviQsDTsxvK1w35COQZ5ieUK6frH04T23pLutplyQOzh5h5DOYCgGgcccd8np7fWL5uhWFd3jl991n78aS1vWjxoORa42YPrc7+uUfIqJLee99y47b9bFKYE2APxXLzlZ6fAABUh7egpNF0Xssysc0UOnftffJktmG4TA7qJ/iqkd52rr09kr0vh0PgSmwOTTGuH0wKgXiGZ4A66lRz3299LzD9YPv48vyEhXnZNp2C7t8N/c33Qv/L+cDv/sP78fNWyddXkaTlvp93ov9+iYiIiIiIiIiIiIhoGMPCaJhS6hQUB36t1lovtexyR8nyJzz2cxiAEwpW9QNY4mVfIqJ6E8Nmcv/JlEJnpKAfLxyX4CeNUQoLk4LTDL8+eAnaUjX+tcMtRCmgAq4hQYU/i99AIXNoWmN+tXKqCKcbTWntUjw0CnrSO4zrO8KTatpPSEWM6/MBatJ7agql21dJYY1A9vxJYY9B/pWHiIiIiIiIiIiIiIiIiIiIqLE6C8J2WlqtQV+lk2maAo0AoMUayuU/LCw8dQZCQj3T7c8Wj+nFNy3HESbl9D2uaMwaPOY42vi61A+2fgvjHXMIkp8xqUAACI/UPH249xbjdvmQsD89KwQpFb73h8z31LdRbtwdmR5xE+naAaoLCztx4KnmDcYqMS1oOT8ll3t3v8afnzdvG9ZJuE61efw7fI2tUZRbGFWsBQBwVr/56wu/bP+Icb0URmcMxIu3msc2YSLUfz4IfOhLwKHHAEecYNwOAJDwEbS35kVv2935c2D5UvftIlHvfZsM2J5BLdUdm4iIiIiIiIiIiIhoH8dvzhMAQCnVAuBnJau/7bLbb4CihJsPKKUO8dDdpSXLf9C6VtNGERFVR0thM7nAHikUyy3wy8YtaEwKwKk3P+FFXkKylHvpiC9uIUoBFbSGC+W3GXnt79ciY2hag4KdpFC7ZpcPxmomUlhYZ6irpv2EVdi4Ph+glhGeIbUO2RvLbPeXox3xmeU3CJCIiIiIiIiIiIiIiIiIiIiIqhQrCIOJxBGzlAm/uq14eSBpDp2KWQLHEIn5GV2WJTSrp794ucU8TyAAYJzTLzdG/ISFxa2haqu2jLx+eYu4GQ5IbXTtx8+Y8gKWOsY9QxptMXN9oC6sG3SqqIXMvcctlnMkhTkBQLKKkjvb9dtsWoLySSgNU/vNU3LoXMRTrV+jJ8L1WIPqVguau661cLzDEi8b14thYaZr0nKfqa6pCHzlhwj8/AkEfvZ/wDGLjNvphOWZV6p7m/s2APTtpV8XEVgCvXQy4b7/G+ZzCABoGedtDEREREREREREREREZMT0gb2UUirkY9tWAHcDOKJg9W1a69ts+2mtXwVwc8GqCICblFLiJ+5KqfcC+HjBqiSAK72OlYio3qQQpnxgjxQ6U014k9u+pTMnNooUgBYwBKZ5C+OpbViYWxBYEEHXcRWGv0lBcOK+ptA0n8eo1GgFyFUrJczEOZq6U9uN6zvCtQ4LM1cM5gPU/ITz7atswWkZZMRnKcPCiIiIiIiIiIiIiIiIiIiIiGrFWy2bChfUykRjWDC4TNx210DxshjIYwts8hOAVbBPWpgAMFJShf2uI+Xat3antzbjisZxwuDTYnNvQW7QLkuGkO0YAPwFq02YOPxyVnKtuNnuQSAuBKq9Gi2Yh/r1F7z3XUIFsrVDcS3/8AOWfKtUFWFhYZ0CVj1T+QEaKK7kGr3S8/Pwy1WGhfmcoLVhZh1hbw9HAQCvRmYbm03Pmjue1fjSLebzZXw2RX3cZ9Jzwk9YWNiSaFio25I0WGjaLLltyBKQmJeyXD9TD/I2BiIiIiIiIiIiIiIiMmrST2ioBj6rlHpIKfVxpdQk0wZKqVal1McAvAxgUUHTOgBf8NjPvwLoKVheCOABpdRhJX1FlVJfBnBryf4/1Fq/4bEvIqK600IIU1Dlw8LM/+mUgrW8cNtXGlO9+Qne8RK0FVA1DgtzKTQJqKBr0FLhz+I3UMi0faNCiaRgqWaXctwLiHSDZxvsSe0wru8IGX99qlgoYC4sTDnZ4iwpAM7tOt+XBFRADAxzdEZ8lvoNAiQiIiIiIiIiIiIiIiIiIiKiKrROKF6OxnFQap24+d0vFNcLDQolRnHHEpxTUVhYDMcOLjc2/fm54jE9s85c0xRymzwxEvUxnjhmpDeIzdv3jLyWzhEAHJDeaB1PPnTLk84pwy9PGXhM3GzrbuCuFeZzdHrfgyMLb32v974FtuvAFhaWTFfeZxAZ4IwLKj9AA4WVg4BQX7i9r3h5tyV/L+JhYlA1/2Q/Q2ucAw+zt+eCtc7f/Qdj87Oxo4qWv3OXgw/+l1zHGzNdkz6DAo3WrfR8CL3F49cxkglv2x38FrnNS4jZwB6xSdW4lpiIiIiIiIiIiIiIaF/D9IG9lwJwGoDFALYqpV5XSt2jlPqNUuoOpdQTAHYCuAnAtIL91gJ4h9Z6m5dOtNYbAXwAQOHHqycDWKmUekYp9Xul1H0ANgD4MYDCpIy7APxLZT8eEVF9ZLT5A/18QI0UOuMI+3nhFvzU6PCkPOlnChrCi7yEZEkhP5UKuAQABXL/s25T8LO4Hc9L/8EG/WolBbk1u5SX2QYbKOEMod8xF6V0hrtq2ldYmWfuS+eKqsRwPgZdFTE9f4Bs2Jr0zGLgGhEREREREREREREREREREVGteAh5WfjO4uVoHEE4CAu1Q9+5qyQsTMgoiusah4XFWnCyEIDVW9LVWvN8hPhK9w32PnwFBsWgAMSdAWPz758ZOU/iOXIG7O9QxOd56pw8/LLFcv5veVpjR5+57fDkyyML02f767/U/FMQRkoMw3pqrVxrmaqi5C6kM8DUmZUfoIGUku+VPzxTfH4eetm4GQAg46UWMjbOz9AaJxiyt4eytXyT0sKNXaBvSOO799hreI3nuxZhYc88aF5vcs8vvW/rRVuH3LbNEkiYo5+4z9xQ8EwhIiIiIiIiIiIiIqLK8Jvz+wYFYBaAswFcAOB9AE4EUJpacSeAE7TWr/k5uNZ6KYD3A9he0udxAP4RwJkAJpXs9lsA52s9RtNOiGivJQV3BXNhWFIoVjXhTVJAWZ7WoxQWBu/hRW6hXACgvBSK+RC0BJQFEIBSyjXErDD8TQohkvuvLDStFqT3pplprYeDsZpFT0ou9ukI1TosLGxcnw9Qc3v2UJYUOpjRGWR8PLOIiIiIiIiIiIiIiIiIiIiIqE4SJWFXsRYAQEqYbA8orpEbFOYjjOshuc9I1PPwRvaJI6PkUKF0ZmRME4VMpIGAS1hSJOZ9PAP9AIDBQIuxOVhQNiOeI8cSqAb4D1WbOBLs0yZMyggAb+6SD5EsfN8HhUQxryLZQDVHquO0lGImqyi5CyJTfl03sf5Aq3F9pORynztVPsaOUGnpv0HMfK3WjfJYg+oWFhbO1vI5lprRgUT2/v/7G0AybT9c3DE8m/zca9J9ceBh3o8x70Tv23phG//WDe77t7Wb1w/IzxEiIiIiIiIiIiIiIvKGYWF7r0cB3Aqgx2W7NIB7AbxDa/1erfV2l+2NtNb3AJgH4GcufT4J4Fyt9QVa6/5K+iIiqicNc7VIPqBGCp2pJrzJbV9pTPUmBaCZArG8BBopr4UaHtmCufJtQZeQoMJj+A36MoamNSoszCVgrhllkIbG6ATfSbrT8q897TUPCzMXO+YD1PyE8+3LpGeNozMMXCMiIiIiIiIiIiJfBgYG8Oijj2Lx4sW49tpr8Z3vfAfXXXcdfvWrX+Gpp55CMil887oC69evx+WXX45TTz0VkydPRiQSgVJq+P833XSTuO/TTz+Nz3/+85g/fz46OzsRDAaL9l23bt3wtosWLSpqIyIiIiIiGhVtnUWLKhQGgkEclFwr7pIoCOMZEP461uJYwprcwoFMDpqLg5Ovi82DBfMiSlVPLY69FFr5CTHzURM2mDKPyBqoBgBRH+FlANTCc4Zfx3RC3G4gKdeFFb3vfsPKSlURTpVyCXyyCek0VKsQftRsLP8eUDpv7RGWsDBP/IThNVLIPLHnsHC2lu+QxKviJv2551CffNkPi2tDSJ+fczPYfF+pULOPlBsdD/XS0iTJQ2MndI+IiIiIiIiIiIiIqFlV8MkojQVa6+cA/KPKVgDPAXA4gOkAxiP7mfUuAK8AeEprXZMpWrTW2wB8Xin1VQAnAzgQwBQA/QA2AXhWay1/0k9E1AQyQsFNIDeDWFCYSUwK1vJCCrgZbh+lgCUpvMgUvOMlJEvVOKM0YDlePiTMbVyFQUx+Q5mMoWkNCnbKVBFON1pSTsp9owbrSe0wrh8f7EA44FIw5FNImY+XyoWFuT17KMsW2OgIwYqNCvEjIiIiIiIiIiKi5pfJZPCHP/wBixcvxsMPP4x0Wv6mcCwWw5lnnolPfepTeNe73lVxnzfeeCO+/OUvI5Hw8O3SAul0Gl/4whdw4403Vtw3ERERERFR7bnXsqlF7ytfGYnjB9v+GR+a/lvjPgNJIJYrr9kgTFkcdwyBPHmBCupDYuNw2sDfxObBJNAWGxmfyVsHHrX34RZaVECdeBb0A7/HO/fcg7vbzilrv/uFkXO/vtt8DGNoUSG/YV3Hvb1o8dT+R/DIuFPLNrvzefkQp/c/PPxaHXmyv/5L5cY/LbUJm8LTypr/9U6NS88y75qsouQuiAww97jKD9Bg5+y5F/e0nV22/tdPafzyopHlUFDByz0tqjb8rV7cwgND2bCw/dObxU12DwKT2opDAyVlz6Zo3FeIu3rre6GfeaC8IekS/ldo+VLv23oxbZbYpJc9DPX28+z7J4VnUbXPACIiIiIiIiIiIiIiqnFqBzUdnbVaa32H1vo/tdbf1Vpfo7X+qdb6gVoFhZX0mdRaP6y1vklr/b1cv7czKIyIxgIthM24hU9JITVeuAU/6dEKC5PCiwy/PngJ2gqgtjPYm0LLhvtyCXcbOUag4LW/gjFzaFpjfrVyC5hrRmktVMyNop60OSysI9xV875CQvhYysmeF/HZw6CrItIzOKMd8b6wBQsSERERERERERHRvuOhhx7C4YcfjgsuuAD333+/NSgMAIaGhvDnP/8Z7373u7FgwQIsX77cd5/33HMPPvvZz/oOCgOAb3/72wwKIyIiIiKisSneVr4uGsfcxCpxl0dfzf7pOHKtXFxbgnMC/utDVCCAcUE5CSgfEuQ4GkPCZi3OgL2TcMT7gOLjAACHJlcbm3cVdHXnc+bzZA1UA3yHO6lgEGjrGF4+cfApX/sDQIsuGHisxff+RXLj78rsNDYnLX/VT1UTFqYzzRuMVUZhTvIVT1umM1XWpjb6nHgN4HILC8vdl7ZnygOrsudmMOl+jsqO4/e8tBiemQCQ8BEWVmvRGHDgYea2uxe77y+Nff+DKh8TEREREREREREREREBAFw+CSEiItq3ZISwGZULgZJCsTLa/oWSSvrM00JoV71J4zKF9biFcmXVNixMWQKA8mN0CzErPIbfQKFKQ9NqYSyGhaW0hyn2Gqw7td24vjNU+7CwsDIX/uicLboAACAASURBVKVz50W83xp0TY0VQeE+1ciIAYcMXCMiIiIiIiIiIqIrr7wSV155JbQu/oKnUgpz587F9OnTMXHiRGzfvh3r16/HK68Uf6l22bJlOOmkk3DDDTfg05/+tOd+L7vssqI+L7jgAlx00UU44IADEA6PTDLR1VX879Jbt27Fj370o+HlSCSCb33rWzjnnHMwadIkBAq+BD99+nTP4yEiIiIiImqI1gnl63Ztx6SgXPO0vlsDUNjQIx82aKvRC1RWHxK3VNIP5OZGlILCAA9hYSEfYWG5gKHu4ERj87T2kdfzpikse6M8xGhjeJq9j0jM+3jy9oy8KS3aJYzMoCjYq9pwqf7dAIDnY0f63jVReYknQjoNxFsrP0CDJVVUbktrRELZWs5qAtQAVHY91VswmA25s8ndlx0Z+YHTk7u1+zzkv8dL7wu/17m0fdLH/RYMApka1pVGW4Bd5slYMX22+/4JYezRJrxmiIiIiIiIiIiIiIjGGIaFERERFdAQwmZygT1S6Ew14U1u+2pUOXtbhRyYxxU0hBd5CTRSXmd188gWAJQfoynYTBqT27alzKFpjQklygjXaTNL6eRoD6FMT9pczNIRnlTzvsIqbFyfPy/Sc8Dvdbm3k85HRjvICM8snkMiIiIiIiIiIqJ928UXX4zrr7++aF1bWxsuu+wyXHjhhZgxY0bZPq+99hpuuukmXHfddUgkst8KTSaT+MxnPoP+/n5cfPHFrv2uXr0aK1asGF4+55xz8Jvf/MbTmP/0pz8hmRz5d/Wrr74a3/jGNzztS0RERERENOpmzDGunpjpFnfJBzkNWEqMjky8KDdWGhZmyfIazI1l0BIWFtdD9g7C/sPCpqU2GZv7C85NUgi+6gl22vsImWuYvDqj7wFcOelffO1T9L5XGxYmXFuFUmmNcKi8VnEwWXkdZhAZYPrBFe/faMcN/V1sG0wCkdw3SNLVliFG5FCyUdPa7r5N7r60hd/ln0nd/e6HizmlYWE+A7Gk7ft6Pe2uM5naBoUB2Xu1vQvoNdRYbjc/o4pIYWGRKp8BRERERERERERERESEgPsmRERE+46MENijVPY/mQHhP51OFeFNUihXnhRgVm9+wou8hPEo1DYszNZnvs1PeJffoC9jaFqDQomqCacbLSmnCcPCUkJYWKir5n2FlLnwL6Wz1YRyOB9/XS8k3WMOMuJ9YbpXiYiIiIiIiIiIaN9w8803lwWFnXLKKVi5ciUuu+wyY1AYAMyePRtXX301VqxYgXnz5hW1ff3rX8fSpUtd+162bFnR8rnnnut53JXuu3TpUmith/9PREREREQ0GpQpkGrB2wEAXentxn3+/f7s32EGLSVGrU6f3BisfVjYk2uzY7IFmLU4A/YOQv7Dwo4bWm5s3lXQ1S1Pm//O96me/7X34Se8LO+9nxp+efTQc/73LxTxGaJUQh13uus2UribLfTNTVBngGB1QWsNoxSOG5TDwnoLMpzufkE+zPiMh6CqYBPOW9/mISys4Bk1J/GKcZNfP5m9x7pdbnHAEBroNxDLEqKnvYSAScFc1YjGoT78TbE/13FJY6o2MJCIiIiIiIiIiIiIiJg+QEREVEgK/cqHzUhBNVLImBcZbQ8DG60vc0jjCqjyXx+8BG1JQWuVClgCgPJ9+enTdjzj9qbQtAb9auUWMNeM8qFYzUJrjZ60OSysM1z7sLCwMheLpXPnRb7fGHRVSAr+yuiM+Pw2PbOIiIiIiIiIiIho7/fKK6/gS1/6UtG6hQsX4t5778X06dM9HWPOnDl48MEHMXfu3OF1juPgwx/+MHbsMP8bc97WrVuLlr32We2+RERERERETal9EgDgLYkXjc2bc7lEtkCnuLYE4lRYHxKJhqCEup3f5QK5XtxkG9OQ3Aj4C+fKhejELD/nYNJeSzjecQl4MgW5ucm9dwAQRgoBH7WSBybfKF4RrS4szEvQ0Frhr+u2IDo3IWQqO3ejxHavLFnprR416FajGAxBqdpOIOvKS39tHR4Oo4bfz0OT5rCw13O5ht2WjMK8uFNyvv0GYtnCxXq2ym15Wzf468+LaBxoHS+3r3rGvn8yYVytGBZGRERERERERERERFQ1fnOeiIiogCMUsuTDZqRQLGm/avocbsfohIVJgVSmsB4pwKdQrQtDgpYCr/z75CdoyW+gkOnYXkLTaqGacLrRktJVVFvVQV9mtzimjtAk4/pqhAPmwr90bgzS/cawsGJKuE/TljA6v0GAREREREREREREtHe45JJL0Nc38o3O9vZ23HbbbWhtbfV1nP322w9//OMfEYmM/Dvvpk2b8J3vfMe6X2HfABAOe/9ScTX7EhERERERNaVcQMzuwARzcyj7pxTopLSDiK3+KFBZfYhauxJaqEeZkMu0sQWYdWXsQdK+wsIm7Q8AaHXkdKJ1O7N/Tms3t28NTbb3EfIxnjxnJExNAXB81DO16IHiFbZQJC86snVd//Pm58VNtu8xr7e9j26COgMExs7XLiant4ltewry7aaab0cAwA+3XmrvxM+13UhvrPa2XTgKANgcmmpsntGZ/bO7371+tyw0MBL1Noa8Dsvkpls3uu/vJVDMj3AEKhAAJs+Qt1m70n6MhBBYV21gIBERERERERERERERITTaAyAiImomDsyzBObDZqTQGSnox1uf9n21MKZ6k4PTys+Bl0AjVeOMUlsAUH48XkLM8vxsm92+/OdpVCiRI8xm2cxsYU6FdIPC8XrS28W2jrCl+KZCIWX+Ildap+FoR7zf/F6XezvTfQcAKUcuBm1UiB8RERERERERERE1j5dffhl33XVX0brvfe97mDJlSkXHO/zww3HJJZfgmmuuGV73i1/8AldccQU6OjqM+zhO5f+WX82+tbBy5Uq88MIL2LlzJ3p6ehCLxTBp0iTMnTsXRx55JKJRn196zUmn03j66aexZs0abN++HYlEApMmTcLMmTNx8sknIxbjF0aJiIiIiPZauYCYUwcewd/jx5Q1J9KA42gx0CmuB2GdqjJY+/qQnf3ZPweScj1TTCfsBwl5D39WbR3QAOYm5LCjfJjagFAqc+TQCzUbz/C4jlkE/avv+94PAOJOSYhStMqwsFx40bl7bsdn8F/GTaRraJsQIuZFMKRqPllq3SigRQtBTQCeL8ieSlv++eHMvvvt/VRwLTVEqyUBrVA0Dgz24eih57AsfmxZcz50rrvf/VBxp+R8B31+RWfKTLktKb+Xw6Rgrkrl79PZR1bep9Qe4b/9EBERERERERERERFVi2FhREREBeSArEDRn6UyVYQ3ZYQ+87RuTHhSqYwQYmYKxPIWFlbbYhnpvQBGApaUZZvy4/krGDNt36hQomrC6UaLLcxpNHSnzLN6hlQIbUGPBUM+hJU8k2Jap8TngO063xdJ96ktjM7vvU1ERERERERERERj3/XXX1/0+UpXVxc+8YlPVHXMiy++GNdeey1Sqey/R/b39+PGG2/EN7/5TQDAunXrcNBBB4n7n3baacb1ixcvBgDr+KQvJK9duxYzZ84cXl60aBH+9re/DS/7+Yxpw4YN+MEPfoBbb70VW7duFbeLx+M47bTT8LGPfQwf/OAHEfTwhfxVq1bh6quvxl133YXdu3eLx33Pe96Dq666CnPmzPE8biIiIiIiGiNiLQCAc3ffjh9N/Kpxk6EUMJgy/z2mLIynVKU1Nu//LP750e/hmq5vlTU9uSb7pxQ+1Zne6X78sFwzJIlbgp5efFPjmAOVOKbDknLQGIDKAp6mzSpa/MiuX+NX7R/2tGus9GepMixMBQLQAMY7cvLXw6s13j2//O/RP1xSeR1maAyWcM0fWoHnY+VhT798QuN/PqIRCSmkhTLEz3f/NyZnttk7CPm/tqvnoQb1jAu8HSp3LZ7d91fc2HFRWXP+HusecD9U2T3r8z7LX9dGXoLANq3x1Z+raPZ5rZSCbmkDBsrvN73iMahzvygfQwo5qzYwkIiIiIiIiIiIiIiIMAY/uiIiIqofB+bQr3xgT9AQlJXdr/LwJqnPPC2XAdSVIwSgBQ2FVUEPv1LUemY9WwBQvk16v0z8Bn2ZQ9Ma86uVW8BcM0rp5goL60mbw8I6Ql11eR9DSs7oTeuU/Ozhr+tFpPvedn3xHBIREREREREREe177rvvvqLlj370o4hEqvsS66RJk/Dud7/b2s9YpLXG1VdfjdmzZ+OGG26wBoUBwODgIO655x6cd9552LBhg3XbTCaDr33ta5g3bx5uueUWMSgsf9zf//73OOKII3D99ddX9LMQEREREVETGDfeuFrlAmLiekjcdTAFDAolILb9AADBCutDoi2YkOkVmxMpLY5panqL+/H9BipNmoaITkIJtXsPrsr+PW5ICAtzDVWrJOCpJNxngiP/3c46HqUqCk8r09oOAJie2mhsfvTV8nrLvqHqajCDlV5foyFXpzk1vVnc5NHXsn+mhdLVM/ofcO+nkuC5BlBew6iiMQCGQLsCfUMa3f3uhyp7PgXlWkFRqzDBacLl2QdAv/x3c8PEqVD//aj/seTODQDg4LeYt1m70n4MadwMCyMiIiIiIiIiIiIiqloFn0QQERHtvaSArHzYjBRU41QR3uS2r3YJE6sXaVymc2AL7spTXmZ188EWBJYfj5/QJ7+BQqZwMVOAWD1UE043WpotLKw7td24vj3UVZf+wkoudEvppK/7bV8m3fdpLVRAwn8QIBEREREREREREY1tGzduxLp164rWnXHGGTU59hlnnIHbb799ePnJJ59EKpVCONycX5B1k06ncf755+O2224ra5syZQre8pa3oKurC4lEAlu3bsXzzz+Pvr4+T8ceHBzE+973PixZsqRofTgcxlFHHYXp06cjGo1iy5YtePrppzEwMDA8posvvhg9PT244oorqv4ZiYiIiIiosdSXrzOu1zuzwUVxSzDPYCr7fxPXEKxAhfUhqQRiQs0gAGzbAwyIAWYuYwKASNTfeLZvggKghbq3thjEoDBPYwpV8NWB8ROLFteED/K8a1GIUjRemwlH+3YBADaGpxubD+gsX/emnAfnSTA09uqP5iRfxX0409i2docGoJASyhCDOu3eQbP+W0hh0JV1uxYAwPiMHH73Zq8cYFgoVvp8qiRILRIHYLhQEx6eM11Tzet3bpbbbN5cO/J65VPmbWbOtR9DGjfDwoiIiIiIiIiIiIiIqsawMCIiogKOEMyVD+yRQmcyVYSFue3r6OpmtatURgikMgVieQnJqnVYmC0IzC3czXw8fwU9pv4bFUokhdo1s5QlzGk09KTNYWGd4Ul16S8ckAuAUk5KvN8YdFVMuu9t11ejQvyIiIiIiIiIiKi5pTMaG3tGexR7v+kdQChY288D/HrsscfK1h133HE1Ofaxxx5btDw4OIjnnnsOCxYswPTp07F27ciXKX/0ox/h+uuvH17+7W9/ixNPPLHsmF1d2UksFi1aNLzu/PPPx1NPjXwZs/C4haZPN38x2quvf/3rZUFh55xzDq644gosWLCgbHvHcfDkk0/id7/7HW666Sbrsb/4xS8WBYVNmDABV1xxBS666CK0tbUVbTs4OIif/vSnuPzyyzE0lP0i+VVXXYUTTjgBZ599doU/HRERERERNVxrO7DQ/Du8OvIU6D//3Br61Z+Qg3lcQ7AqDAtTJ52Fd/zln8T2qgLMAP/BOIceA6xeLjb3JeTxZMc0JDcCQFie8FCiQiEUVjAuHHwC97R5+7ta0ftW45CgrvR27AiV13rtNGRcewl8sglFmjQYy+K83lvx484vGdvy5yMtlK6G4CEsLNik58TrdZbbbnZqjbjJYBJIeyjVLHs+BSv4io4UcuYlLMy2Tdf+/scy5cCR1zMPB15/oXyb5Uvtx+gXQti8hrkREREREREREREREZGIYWFEREQFHCG4azh8CuagGilkzFOfQkhQnq7i2NWQzoUpvMhLoJESzl2lbAFA+WCyoI+QIL+hTKZjNyqUqJpwutGSdqqsuKqxntRO4/rOcFdd+gspudAupZOWZw+DrgpJ5yOl5evLbxAgERERERERERHtnTb2ALP+eexNxDDWrLkmgJn1+WdWzzZu3Fi0PHnyZEycOLEmx543b56xvwULFiAUCmHmzJnD69vb24u2mzJlSlF7qdbW1uHXsVjxFydt+1VqyZIl+PGPf1y07nvf+x4uvfRScZ9AIICFCxdi4cKFuOqqq8rGmXfrrbdi8eLFw8sHHnggli5dKv4c8XgcX//613HSSSfh9NNPx9DQELTW+MpXvoLVq1cjEKjtZ0xERERERFQf6vq/QnXsZ26cOAUAENdymNU//cHBybPNAdQxy34AgEr/3jDlQHSlzXVEADCQtAWYuYwJ8B2Qpd73Gejvfw6f2HUzFrd/rKz9l09ofPd9cki3a6haqPqAp0OSr3netihQrVZhYae8G3j0L/hsz8/x3UmXlTX/36vlu9gC1rwIRv2HrI0alb0+Thh6RtxkMAVorcUgrJD2EBZWQfBc1ZSHgHrPYWHZf9Owhf7d/qxGxktYWGlIXyX3mTBuvXwp1Ls/ad9XCgt724egAgH4na5YvesTIwsLzzGHhe3uhk4loQzXgc5Y6lsjtQ0NJCIiIiIiIiIiIiLaF7GikoiIqIAU+hVQubAwIXRGCvox6U13496df8DPNl2Dn268GjtSW63ba98f1deGeC4Mvz7kz4+N8lKo4YOXcC8/IUF+Q5lMx/ZyHmrBLWCuGaW014qrxlzv3entxvUdofp8iy2s5AKgtE7B0fZnD2VJ933aka+vIM8hERERERERERHRPqW7u7touaOjo2bHjsViiEaj1v7Giquuuqpo+XOf+5w1KKxUe3u7MSxMa1107FAohDvvvNNT4Fk+hCzvtddew5/+9CfPYyIiIiIiotGl5hwlN+aCcFqcAXGTe1+UQ51ipWE8pQIVTiYXjaNFy2MaTMpjcg3myh3fl1gLAPt5GrDM2WgLPgIAhKoPeHLto3DbwkC1iDlw2rfcOfV0/nNs58yLMRUWVmDhwOPG9YMpWEOwPIWF1SB4ri48h4Vlt7MFET75uhyoVqjsWgyGvI3BMJ4y3fb6YgDAkHAv5I/Z2m5uF8cycq+q3DPJaMVj5vWbXpf3qfQ50D6psv2IiIiIiIiIiIiIiPZC/OY8ERFRATGwJxckJQXVZDyGN/WkduC69d/CX3bcghV9T+PF/mWu+4xWWFhGCEAzhWQFPQRtmULGquElCMxPn35DmUzH9hJgVgt+wumaRUpXWXFVQ2mdwu50j7GtI1yfopKwkgvG0jolPkO83Fv7Eum+t11ffoMAiYiIiIiIiIiIaGwrDe9qb/f5hUgXpcfbuXNnTY/fCCtWrMBjj418obOtrQ3f//73a3Lshx9+GC+++OLw8oUXXogjjzzS8/5f/OIXi0LI7rzzzpqMi4iIiIiIRpnHgKchMZirTmFhk6YjqhNQQt3gQFIOmrIFeg3zGxaWC9J5OTLH2Dx7Pzm8DPBwnmoQ8HRk4kX3jXJihcFifs+F5OVszeX2oHlSyBZDmdYuD2+VJKAzULUaeyO8umL4pRTsNpSS7zUAiOmEez81CJ6rC69hVLmgq6AwqS4AjIvaQ9XyDk6uKV5RyX22erl5/X4HuO/bt8u8vnV89s9D5vsby+yC7Q9+i7zdzi3m9bstwfr7z7T3/aEvGVerr/+nfT8iIiIiIiIiIiIion0Iw8KIiIgKSCFM+SApKXTGa3jTo71/xc7UNl9j0kIhUr1JP5MpEMtLcJeCqnpMRX16+DVGKe99+g1lMv3MjQolyozSNVGNZgoL25XqFkP4OkP1CQsLKbkAKKWTlmcPg64KSfd9SsvVa36DAImIiIiIiIiIiIhs/Hz20KwefPDBouULLrgA48ePr8mx77///qLl8847z9f+LS0tOP7444eXH3nkkZqMi4iIiIiIRlkkCgCuFWSDQomRFHo0rMKwMBUMQkEOMVu3U2NLr7nOyDWYC/AfkJXb/qz+Jcbm17bJ5whwP0+q0rCwk84efjk9vcnzbkXnqFaBW7mxnDbwN2PzQBLQuvg96+6vfMLWIDK1G3sjLHj78Esp9Gvlm9oldM7lfgNqEjznm5d/kvH6Xh1/xvDLuBD899wGb4dqKT1fwQqeR7OOMK9fv9p93z3miVNVW2f2z/d9xt9Y5p8y8vq4t8nb7dxsXp+wXD/t9vpMdeaHgVhL8cpps+zjICIiIiIiIiIiIiLax/Cb80RERAUcYZawfAiUFDrjeAxvemXA+6x6eVKoUb05EMKLDIFYnsLCavzlmVoHAPkNZTL136hgJ+m9aWYpx1Jd1GA96R1iW0fYPONktZRSYmBYyknKzx6GhRWR7vu0JYyuUSF+RERERERERERE1Bw6OzuLlnt7e2t6/F27dln7Gwsef/zxouVFixbV7NiPPvpo0XJnZyfWrVvn6/+FwWXr1q2D44y9SVSIiIiIiKiExwAfKcDINbwoUEUt2eQZYsjW136vca9Q8ucaYAYAkZi/seTO0wGpjeIm/bawMLfzVGHAk1pwetHyMYPPetqv6BzVKHBLzTgUANCRMQckAeUhT939lfcX0ukxFRamps0afi1dD3c+X13oHAAgHPE7tMbw+F6pQ+YPv75o103GbdbtrHAMldxnxywyr1/5tPu+u7vN68d3AADU286FuuLXwPxTgdYJ2f9bqIL3VkXjwISJxu30z680H0AKCwuFXeuI1aFHQ133l2wo4NQDgXf8f1A/vh/KZcxERERERERERERERPuS0GgPgIiIqJk4WgjIygXUBIXQmYzH8KbetPChvG1MoxQWlhEC0ExhPUEP+aOqxhmltQ4A8hvKZLoWgjUOMJNI12kzs4U5NVp3artxfTwwDrFA/Qq7wiqMtC6vaEwKMzgC3u6tfYn0DLaF0QUZuEZERERERERERLRPKQ3v6umRvzzs19DQEIaGhorWTZxo/sJkM9u8eXPR8hFHHFGzY2/YUPyN7BNPPLGq4zmOg127do3JUDYiIiIiIioQG+dps10D5lq5uB4yrh8WqKI+JBxGGGljU18CiIaAhKE5IEwOOCwShfIbYpYLF2txBsRNnlxjPkdhnUTQbUwVhoWV7teR8VYH2aILfo5gjWp4cmMZZzlHf31J4+gZI6FEPfKmroI64z/0bTQVvFchbb6uAWCPXLKGmKWebViwSb+G4jXYreB6fLTl5NqOoZJzY9lHO479WbJnl3l9W8fwS3X6h6BO/9DwsvP5RcCLT3gbW9f+QK+P5LSE8LxuafO0u5p/CtT8U7z3R0RERERERERERES0j2nST2mIiIhGhyMUy+SDqaRAKS/hTVpr9Kb9fyFFC6Fd9eYIAWimsB4vQVv2+cD8q3UAkN9QJtPPXOsAM4nXcLpmkjKEZJk0IhqvJ20OC+sMT6prvyFlLrZLOHIxo98Qu72ddD5SljA6nkMiIiIiIiIiIgKA6R3AmmsYzl9v0zvct6m3adOmFS1v2bIFO3furEmo10svveTa31iwc2fxFzw7Omr3xpUeuxb27NnDsDAiIiIiorFuwsjfyd695y78pe1dxs227TbvHncGrYdX1QRRbXwdew5tNfcbBrpagQ2Gsr+NIZe/DwYrCOY64BAAwIKhv4ubvCnkAsUsNUjDwhH/YwLKfpYTB5/Gg62nu+4WLxzTiscq67tULnDo8MQqcZO+kqyr/irmuQwiA0SilR+g0QrutTanT9ys13JLRbxMDFpp8Fy9eQ0LS48Eqa2Izqu4uw/uvr18ZSVhYSHLvZlK2H+uoX7z+hbzcw0A1Mcvg77kPeUNF15Svm7bRvNBYi3m9Qnh4vL63hARERERERERERERkRXDwoiIiApIoV8BFcj9KYSFwYHWGkrJkVhDzoA10EaiGxKfVE4+F5WFZCmfYVxuah3M5TdQyNR/o0KJnFEKkKtGJdd+vfSkzF9U6gh11bXfsDIX9FjDwhoUQDdWSOcjbZkFM1DjZw8REREREREREY1NoaDCzPr+EyA1iYULF5atW7ZsGc4888yqj71s2bKi5Xg8jqOOOqrq44422+dbfiWTtf88QOvR+ayMiIiIiIgMKvz9XCk1XAX3zzu+L4aFbe417x/T9rAwqCrqQ2YdgUt3XIf/f78rypoGU0BCKEs5p+8++3EDFYypdQIAYFJmh7jJll7ze1DXgKfDji1a/HjvL/HdSZe57hYvfN9OP6+yvkvNygY7RSBPXrnyzeJztHZ75X+vDOl0ZcFvo2X67OGXF/beghs7LjJutseSLRf0MplppcFz1fDy7xfRmLdjzT95+GVYp5CooPazxenHV7pvKG+o4HpRJ78T+jfXmhuTQ2LQlta6snCuoxcB804CXnxiZF3HflDv/Hj5tud+EVh8dfn63d3QA3ugcgF+wxIDwng8vjdERERERERERERERGTFb84TEREVcGAOYcqHzQQt/+mU9s3rTRumF6xiTPWWEcLCgoaiCNO6UrX8ogkwEuBWs+P5DGUKGvoPNijYSQpya2ZpLRdnNVp3ertxfUe4vt8UDClzEZAtLMzLvbUvMd13AJC2FDvyHBIREREREREREe1bZsyYgRkzZhStW7JkSU2Off/99xctn3DCCYhERuHLsVXq6ir+9/Du7u66HDsWi8FxshPuVPP/mTNn1mx8REREREQ0ig44BAAwLf2muMkaISMrbqmvAQAEqqgPOeIELBr4m9jcK+TwtDtCslleBfVtSikgkg3UmZg2n4zbnzXvG/FSn1Vp6FVJyM9BqTfQ4vS77hZ3Rk6emjGnsr4tY/nA7juMm/zpueLlu1+ovLsgMkBwDM3PXhAQNT29SdzszV1ygFrQS31ipcFz9WYLyCrarmX4ZQjyRJWShQOP48E3zsLJg0+WN4YquF7Gd8hteyy1x+kU4Ag1xpZzoSJRqB/eBfXJfwEWvB04XzcwwQAAIABJREFU94tQNzwIlXtOF2176NFy/w/8vnydFF4W8fjeEBERERERERERERGRFcPCiIiICjhaCAvLhc0ELKEzbgFOvZnKwsK0MKZ6k4PTys+BW3CXqsOvHLb3ohJ+A4VMP1OtA8wkGS8z9zWZpJMY7SEM60mZw8I6Q5Pq2m84YP7CWMIy82mjrqmxQrrvU5Zix3o8f4iIiIiIiIiIiKi5nXXWWUXLv/rVr5BKVTepxfbt23HnnXda+xkrpk6dWrS8cuXKmh178uTJw6+Hhoawfv36mh2biIiIiIiaQDUTRjrZmqc2Z4/vXeOW+hoAQLCKWrJMBi2OfPyEkCMUtkxuBwAIVFizkgv4yfisZ4u4jQeoPOCppa1s1YzUBn/HKAkcq1hBAFJamUOZxpd0dVAVc0gGtVNZ+NNoibcOv2xz+sTNVm2WDxHSHsKzKg2eqzevYWEtI+fp/bv/7Lub/9n8BSwY+ruxTVUSLjduvNy2/hW5LWkJUnQ5F6qlFeoTlyPw73cj8NV/lwP9WuSx6eWGoMWEMCav7w0REREREREREREREVnxm/NEREQFHCGEKZD7T6YpKCvPLcBpd7qyWdk15Bnc6kkKPzOFatnOCwAoVFEkJgjW+NcYv6FMylD4VusAM4lbMF0zSnuZubJBeoRZNzvDVVSFeRBW5gKphCVIze3e2tdI5yMlFDsqBBi4RkREREREREREtA/66le/WvTv+Nu3b8fixYurOub1119fFDg2btw4fPrTn67qmKPl5JNPLlpeunRpzY69cOHCouUlS5bU7NhERERERDTGbVoDwB5gJIlbwrwAVB7MBQA923BYcrXv3VzDuSqtWckF6uwKdvjbTXuYzLHSsLCu/YFps4pWvRw9zHW3Wam1Iwu1CgoqOE5CRc2blPyYLeY5Hj0JIV35eRsFqiAEa2JGrllNWUoQg14mM60kEKtaXsIKQx7f7Omzh19e3P2fvodiDVSrJEht4lS5LWPpK2F5NkZqFNA39zi5rb+3bJWWxsSwMCIiIiIiIiIiIiKimuA354mIiAo42jGuz4fNmIKyRva1F0j0pnsqGtNohYVJ4WemQKyAClgDwQLVzCgpHrO2IUq1CGUKNijYyYH5Om1mqSYJCxvM9GPQGTC2dYTqGxYWUuZCpISlmJFBV8Wk85F2zNdXkOePiIiIiIiIiIhon3T44Yfj7LPPLlp36aWXYuvWrRUdb+XKlbj22mv/H3t3Hh/XWd97/PucZUarZcmWt3iJ7cRxHDv7QkIWSJzQLCQsCSmhZUnZUmhpC5d7oZQEKAVK6S0tbSlQblkulLbABUoplFKgQIA2LAkhIXscssq2vEi2pJk55/4haaSRzjpzziz25/165ZWz/M45j+acGVvWT9+nZtvLXvYyDQ0N1T3GVtq5c2fN+qc+9SkdPHgwk3M/61nPqln/yEc+ksl5AQAAABwBzpr7XmTL5D2pDu32J6ILGugRMec/O1nQ1gKxYWH1BpgVpwN+rjn4xWzHI9Ud8GSMkfnNd9ds+909fxZ73HB5ZG6lkH1Y2K/t/1RgyciCb3HDgrEKEZM8zrL9SkeFhSX1iyfC+1LtJJOZNhLQl6eE92p+yPwpk7env4yiwsLS95EGTV5b9eQj4fuiwsKK2YSFma4eqXdJ8M7vfzX5mDIaDwAAAAAAAAAAR7s2/SkNAACtERbCNBskFRXcExY0NqvusLCY8+YlLPzMCvnrQ1TYlsnhrxzR10sfThYVBJdU1gFmYSpJmnHaTMlL0Iym/MPxRsu7Q/cNusO5Xts1wY1Ik154M2OzAug6Rdj7vhTS7JhFCCAAAAAAAACAzvS+971PPT091fV9+/bpec97nsbGxlKdZ2RkRNdee62mpub+HXL16tV661vfmtlYm+2kk07SRRddVF0/cOCA3vSmN2Vy7ssvv1ybN2+urv/whz/URz/60UzODQAAAKAN+A309qw7vrp45di/pDq0O2IyPkl1hfNU9Q3ISOr10n2/GBvOVW+A2UwY1skTd6QcT4LJHBt4ncyF19Ssb556MPYYd36gUjGjsDDHrQZVLavsCS3zvLlntRzSbnds6eH4y6nceWFhm7ZXF8OC+f71zvDDI4OwZllt2pdVx70yShZ+N19koFqdoXxasTZws/+VT4QfExUWllVAnyRzwxtC9/kLxzAVFhaW3XgAAAAAAAAAADiaERYGAMA8oQFZM407UcEzFUUHOB2oMyzMyzk8KfS6ISFlYaFaUUFq9YR3xcki3Gu+LEKFwoLUshb2nLazcpJmtCYYLQWHhRlZWuoM5Xpt1yoEbo8KC2tWAF2nsEM+Z0KDHnn9AAAAAAAAgKPW1q1b9Rd/8Rc12773ve/p8ssv1y9/+ctE57j33nt1ySWX6K677qpusyxLn/jEJzQ8nO8EFHlbGHb2l3/5l3rf+96X+Pj9+/drYmLxv287jqO3v/3tNdtuuukmfe5zn0s9xq9//et64IEHUh8HAAAAoE2V58K1hirpeum6/ZiwsEaCi5ZM9wyNW32pDivGhYVZdfaSje2XJPkpe+7cuPFI9YcYzVq9obq4zx6ILa8JVFsy2Ni1ZxhjJG+6V6grou/qvpG55VJIu12vfyj2erZf6bywsJlnSEp2nxaykvSs2m34ayi2M/181GG4Ej4JaRAnql/YqfN9dnBf8PZlq8KPmQx/D2QaztUf8Rzd+9Pa9bAxERYGAAAAAAAAAEAm2vCnNAAAtE5Y4MxsMFVUQFVcgNOBlA1Os/yQMeUtLPwsLHzHNuENDnmEhUWFk7XqfFkHmIXxYoLp2lEpSTNaE+wtBzf1DDiDkc9wFpyQ80/6hIUllfb1sDMIAQQAAAAAAADQuW688Ua95jWvqdn2ne98R9u2bdO73/1uPfLII4HH3XfffXrLW96iHTt26I477qjZ9573vEeXXHJJbmNulosvvlivf/3ra7a94Q1v0NVXX63bbrst8BjP83Trrbfqda97ndatW6cnnngisO6GG27QjTfeWF2fmprS85//fL3oRS8KPbckVSoV/fjHP9bb3vY2bdu2TZdeeql27dpVx1cHAAAAoB2ZYzZXl3eOfyPVsV0R/TWSGgsL23FuXYcVYsPC6hzTU9MB16dP/CTb8UiNh4U9/nB10Uvwawju/Akmt9f3OkfZNnV36L7xybnlckgLZo83HnsNWxUZu8PCwvbP9cg95axMdajtl5MVZty/mfCi0bsbCHVL+5lkR/UL1/s+OzwWvN2L6CGejAhSzDKc6+xLw/dNLHgfhY2pQFgYAAAAAAAAAABZyDcRAQCADlMJ+QG+mWlsiQwLiwlw2l+uMyzMTzBLWw7Cws/CwneiQnnqna0tipVxCFAWQV/NCnaq+K0JkGtE24SFlUYCtw86y3O/tmMKgdsnI2a4tMn2rZH2fZ91qCAAAAAAAACAzvOBD3xAg4ODeuc731n9mcvBgwf1pje9SW9+85u1bds2rVu3ToODg9qzZ48efvhh/eIXv1h0Htd19f73v1833XRTs7+E3LznPe/Rrl279I//+I/VbV/60pf0pS99SWvWrNGOHTu0bNkyTU5O6oknntDtt9+ugwcPJjr3Bz/4QY2Ojurzn/98ddunPvUpfepTn9Lw8LBOOeUULVu2TJZl6cCBA3rsscd01113aWIiJgAAAAAAQOc64+Lq4pkT4UHCQboi+mskSVb9PSKm2C1f0qkTP9VPuk5JfFx8WFidY/qVX5P+9ZM6tR3Dwq58qfTlv0tcPn9MptjV2LXnO+OZ0m3/oT4vJFxJ0liisLBDsZdy/HJDIVStYF70BvkffYck6Y2736s/Xv4/Eh/rJA0LaySgLy8N3KfTUr7fIl+net9n17xc+sJHFm+/9Svhx4ztC95ujOQG9yvWwxyzWWGdzP7t35M5c16wflhYWBdhYQAAAAAAAAAAZIGwMAAA5vEV3BVizQT2RAXVxAU41R0WFvoj9vz4vi8v7LUICd+JCuUxcTO61SHrEKAswseyDjALU0nakNNGSl57hIWNlncHbh9yh3O/tmuCm5EmvfDZ/ZoVQNcp0ob68foBAAAAAAAAkKR3vOMduuiii/Sbv/mbuvfee6vbfd/XnXfeqTvvvDPy+NNPP11/8zd/ozPPPDPvoTaVbdv6zGc+o5NOOknvfOc7VSqVqvsee+wxPfbYY3Wf23Vdffazn9V73/te3XzzzTUhYCMjI/r617+e6By9vb11jwEAAABAm5kXFGMkbZx6UA8WNiY6tNsP76+R1Hhw0fZztWn0gWzDwuqdYHPpdB+THdK/FzoeleKLGg0LW5puQkbXnxnTxdc1dt2F1m+RbvsPFf1JGd+TH9BL+K17fF1w/PQ9KIXMA9ubICzMlifZHdaDtHSuF25V+clUh9oxk+ZWNRDQlxun/nAsI2nL5D26p7gl2aWUfViYGV6bulvY//G3g3cUu7Of5HdgmbR/z+Lt//x/pBv/YG49LCysSFgYAAAAAAAAAABZICwMAIB5vJDAr9nAmajgmT/Z9b90THG91hQ3yPM97Sk9peHCKp27ZKckX4e98brG9LHH/0zfGN1UXR9yV2iZu0KHKmN6dPJhaaY9oNdeokFnmSSjRycfrIaMdVu9OqH3ZF249FfkGFdPTj2q7+77Nz08cV9oOFpUQFlYIFbUa2PUho0hC6QNIQo+R3O+zr3lEf3prjeraHXp+O7tumjwChWtDGdezEHJT9CMJmnXxH36011vljQdMreua7POG9ipNcX18n1f3z/wDf1s7DYdrOxTl9WjE3p26MKll8u1kjX6jJZGArcPOuka2erhmuAx7i6FN2Q1K4CuU1gpP0tsXj8AAAAAAAAAM3bu3Kmf//zn+od/+Ad99KMf1be+9S2Vy+G/2FksFnXZZZfp5S9/uZ797Gdn/wuWbcIYo5tvvlkvfvGL9a53vUuf/exntXfv3tD6vr4+7dy5Uy996Uu1fv362HO/8Y1v1Itf/GK9//3v16c//Wk9/PDDkcf09/frggsu0JVXXqnrr79ey5Ytq+vrAgAAANCGBlfUrD7hrEx8aLc3EV3QaFjYk7tUKgZPBBimGBcWVm+Y0tT017q8EjwpYuh4vMn4ogbDwkx3X7Wz8Fnj/6a36pbwWt+bC546GP59Zl1mQoeMFBgUJkm981q1pkK+/e/143s6bb8iOemejZbrngveXl1+ItWhTtKJTBt9z9Uj7t9m0t6ncy6TfvC16upD7obEh9p+RKhane8zf2x/8I7u8CB1s3R5cLfvRHwQXmpBQWGStHx17fpkyOc1YWEAAAAAAAAAAGSCsDAAAObxQmZFs2YaSqKCZ8Yq+/WLQ3foF4fumNs4Lv3H6D83NKZJf0L3Hf753Ib5ywndMf5fuufQHbp6+a/pzx55i8YqB+oeT1ioVtRr0wm/QBMVdpb4HE0KJir7peozcef4j3Tn+G167dpb5Frt2ZRU8Suh760g85/3ew/fqVv3/7t+Z9079IMD39Q3Rr9YU/uz8f/W3Yd+qlcf8/uJAt/2loOb6Abd/MPCHBN8f8oRQWpZhNgdSdK+T60mBfgBAAAAAAAA6AyO4+iGG27QDTfcoPHxcd1222267777NDIyoqmpKRWLRa1cuVJbtmzR6aefrmKxWPe1brnlFt1yyy11HfvNb36zqcdJ0saNG/WhD31IH/zgB/WjH/1Id999t3bv3q2xsTH19vZqxYoV2rp1q04++WS5brqfR6xatUrvete79K53vUsPPvigfvSjH2lkZESjo6OyLEv9/f1as2aNtm7dquOPP162zb+NAwAAAEcis2SoJtRmTflx3V/YnOjYbv9wdEG9wVyzDo/rvMqt+lL/VYkP6fZixlRn34rZdrb8z/11fBjZwvHEvUZSw2FhetqzpI/cIkk6feLHkaWuX1K1a3Ddlsauu1CC0KGJmcwr3/d1KOSlHEjQR2n75c4LCzv9GdXFnePfSHWonbTPrxVhYXFS3idzwdXy54WFTVnJ/x3IUUSoWp3vM3PsicHBX4cjQu284AmDc+EWpFLAm2nPgslSp4I/iwxhYQAAAAAAAAAAZIKwMAAA5vH84B+czwZhdXLwzO1jP9TB8v6GgsKk8LCeqNfGqLmvWz3hZEaNB5plEThWj3sP36l7D/9M23pPa8n140SFYSVx2BvXl/f8ve4Y++/A/XeO/0gPTdyrzd1bI8/j+Z72lYJntxtyhhsaYxKuVYgvWqCTP3PykDY8rVkBfgAAAAAAAAA6T29vry688EJdeOGFrR5KW7EsS2eeeabOPPPMXM6/ceNGbdy4MZdzAwAAAOgsb979Hv3Gmg8lqo0N5mo0uOiaV+iaf/y83rTynYkPyS3AbMup1cU37n6v/nj5/0g4non4IqfBXx3YvKO6aCRdc/CL+kL/1YGlhXlhZ+bpVzZ23QVMsacaqnTqxE/1k65TFtX85z2+3nS5NBmR6bTESxAWpkrnhYUNrphb9PZpSWW/DtgDiQ61/aRhYW3Y15Yy3FxX3Sj9yWurqy/Z9wl9bOmvJzrU8bMPC9Pa8PBEv1ySCXoOyyG9mcedXN8YIphXvkP+X/7PxTueeqR2fTLks7HYlfmYAAAAAAAAAAA4GrXhT2kAAGgN3/flKTgszMwE9rQqDCorD078ouFzdFs9Idt7I47JZ0awsLGc3Hd2dXmJvTSw5sz+C2rWHdN4hmrYeJrhwcON39u8lFLOchnk9rEfyg95f0rSQ4fviT3Hwco+VUJm9Bt0l9c9tqR6rL5U9a4pEHa1gJXy25e04WIAAAAAAAAAAAAAAADI0eoN1cWBBEFNs2KDsOzGekRMd6964gLJ5tf7nor+ZExRnW368wJ1jp+6P/FhsYFqUv0hRjOM49a81ucdujW0dszun1spZtw/OO81WlV+IrDkBw9O//9wROvaQGV/7KVsvyLZHRYW5rg1YV7XHvx88kOVNCysDfuyUt4nY9vSxm3V9SThcbOsiF7Gul+bqPfJU78M3OxXQkLL+gfrG0OUJUOhu/xd8/o3Jw4FFxXy6SMGAAAAAAAAAOBoQ1gYAAAzooKI7Jk/Mu2jPLhn0FmuYXd14L4TesJnItvSsyN0XyNO7jsncPsp87ZfvuwFgTXPHLyqZt02jrb1np7ous8aujZw+7Hdx6towmc/u2jpFYnOX49y1Ex1LVb2Qmavy5CXoElpb2l36L4hZzjL4QQ6sXfxDJZRTug5WVa9TYNHqLSBjZ0e8AgAAAAAAAAAAAAAAHBEefzh6uL60q7Eh3XFhYU1GFzk79+j4cpIqvGYuCKrzr6foVXVxQEvPsxqbkz5h4VJkipzfVrHlB9LdkxEyFBdCnM9ej8vnhhYcvbG6f9PRbSVLfEOxl7KUXk6fKuDGGMkb64fNixQLYjtJwwLazCgry4m5l1Xz33qnpsAtNsLCblaeBm/FP3+r/e9v2xV+L69TwZvDwsLczJ4ry80L+xxkV3zJrsthST0FcJ7awEAAAAAAAAAQHKkDwAAMKPih4eFmZnAmayDZ1YW1mZ6vjwVTFEvWf266UaSAM9a9nytL25etH11YZ2evfxFuYzpmuW/phXumpptz1n+Yq0ozG07b2CnTloQAnbp0HN1bNeWRed7wYqXa6mzrLruGFfbek6rqTm2a4suG3pu4Hgc4+olq39HVkCo3LkDl+jaFb+hC5b+SvwXVockYVmtMuVHTM/YRKPl4LAw1xTUO38my5ysLqzXlct+NVHtoLNc1634jZxH1HmslN++pK0HAAAAAAAAAAAAAABAjnqXVBdPm/hJ4sNcP2aywgYn5DPbzlIxRY9Tt5cgmKvOMZmunuryRYf+M/Fx3V5MoJqUecDT5WNfTVa4ZlOm19WZF1cX15Z+GVjy1IHp/1fC20LV543FXsr2Kx0XFrbQdQc+m7jWTtqH2I6TYLqF9McsGawuPnvsy4kOceImdq03LGz5mvB9EyFBZuWQz8YsggEX2nFe+L7ReWGLYWOq5/4AAAAAAAAAAIBFcvgpAAAAnclXeFeIPRM4k2XwzLXDN+qiwSt076E79dDEvfri7k9mdu60Tu47OzDoa9agu1wn9pyqpe6y0Jpeu1+/t/6PdO+hn2nX5P3yfV9ruzZqS88OdVndeQxbS91l+l/Hvk/3HLpDe0pP6fju7VrbdWxNjWsV9Opj3qz7D9+lRycf1qburVpf3BwYeraisEZvOfb9uvvQ7ZrwDmlrzykacof12OQu3XvoZxourNZx3dtUsIqhYzq1/2m6ZeNf6e5DP9GB8j65VkGbu0/UsV1bZBlLv7riVXrakot13+Gfq+RN6sGJe3Tn+G2Jvt6rlr1Q/3Xw23py6tFF+7ykM/q1QLkJYWG+78fWjJaCZ/8cdJaHhuBlyRijK5f/qk7uO1v3HvqZJkKaBlcV12lrz8nqsfsC9x/N7JSBjWnrAQAAAAAAAAAAAAAAkB9z/e/I/+jbp5dTHBcbFtZoCNbwMZKkcw79QD/oOSe2vNtPEMxVb2CQJPX0S4cOaknlQOJDuv0EAWZZBAidcr700+9Ikga8hOMrhPfb1WXpcHXxyrGv6Hs9i0OMfvzI9P+9iLayPm889lK2vM4MC9txnnTH96YXJ+9MfFhsENYMY7VhX1Y996l/qLq4ffLnyS4TGxZW32tjjFHY4+p/8o9l5oXkVVVCxpLDM2scN3x8f3yTzLNvnF4phfSLduL7CAAAAAAAAACANkRYGAAAMyoRYUvWzCxoxhhZsuRFBIsl1WsvkW0cbe09RVt7T9F3939Ne0pPNXzeepza9zQ9bSCgkSClglXUSX1n6KS+MzIYVTJdVrdO7js7ssY2jrb07NCWnh2x5+ux+3R6f23z0Jrieq0prk88puWFlTq/8KzAfcYYbezeoo3dWyRJDx2+N1FY2NaeU3TF8uv1yOSDgWFhFb/xZzIvpbhmvSbZWw4OCxtyhwO352Vd1yat68p4tsyjhJUy/MtSGzalAQAAAAAAAAAAAAAAHK26aiedXFV+Qk84q2IPsxUzkWIjwVySVOiSJK2oBPcXLZQomMs0MKahFdKhg3JVluOXVDbxITvdIRMX1sgiLKw75QSIxe7sJ3Iszj1HXV54cNvhKV+ViLa6Hj8+LMzxy42H0bVCb3/N6mBlr0btoZDiOXbSSUsbfc/lwa4jjGpg7jVJ9B6S5CgmLKyR56V/UDo4unj7T/4zuD4sLCyL93qQdcdLj9wbuMufnJApdkmVkH5Rh19dAgAAAAAAAAAgC234UxoAAFrDjwgAmx84kzasJoxtan/wbVLNlZitrL4mpGclbISafT7skCYyL64hroVKXshMcU02WtoduH3QXd7kkaBeacO/+GwDAAAAAAAAAAAAAABoH/6B2hAcP0HPXMGbjK9y6ggJmm/tZknSQGV/ovJEoUKNhCn98v7qYpKgMEkq+gl6tLIIELo7fmLMGpPJAphSmXe/eyKC20YOSp4ffpo+byz2UrYqjT9frXDXf9esJgkKkxIE882yWtCXFddrWU8Y1RO75g5P+LU7fkxYWCOvTVBQmCQNrgjePjUZvN0p1D+GKDPBioH2zYQtlkI+i/IaEwAAAAAAAAAARxnCwgAAmFGJmBHNmhfQZKcMqwljLwixMS38YzltAA+yk/S+m5lnMOxeeUln9GuBsh8yU1yT7S2HhIU5hIV1irCwvKzqAQAAAAAAAAAAAAAAkB9z6vk16y/Z9/HYY1wl6D0qdtc7JEmS6R+UJL3owKcT1XdHBFRVNRIWFhXIE6Loh4QGzZdFWNhJZzd+jgaZeaFRO8f/PbTucEmqhM8hq17vUOy1HL/cmWFh2+q7T7FBWLMaeb7z4qYPozJnXpz6mNhQsUbCws7aGbx992PB28PC+Lp66h9DBHPVS0P3+Z94t3zfl8ohn9md+D4CAAAAAAAAAKANteFPaQAAaA1P4V0h8wOarIzCZxaHhcXPkpgXAnVaJ+l9n62zTHAjSSXpjH4tUEoya2UTjJZGArcPucNNHgnqlTbYkCBEAAAAAAAAAAAAAACANtI/VLP6yn1/G3uIm2SiwkJjYWGSpLMu0bmHfpCotNtLEBbWSE/epS+sLr589KOJDkn0OmUQFmZ2nJfugOe+quFrBtp5vSRpoHIgtOSLP/Xl+eGn6PPGYi9jqyLZnRdyZE5+es361Qe/lOg4O6KPtkY7hoXVE0a1cl3N6pt2vyf+MnGBag28Nua614bu80cD+h+nQj6LiukDBxOZ99m0yBc+It3xvfD9dYS5AQAAAAAAAACAxdrwpzQAALSG54eHLc0PCAsLa0rLNrWNN6aFgV0E6rTO/FkOI+tmwsLskHvl+QmbdFqgHcLCSt6UDlb2B+4bcggL6xRpwxqz+rwGAAAAAAAAAAAAAACApGWrGju+WBvq1ZMgdCtRCFYxg7Cw/kF1+wlCwCR1+xPxRY2EKRWL1cWuJNeSVEjSo5VBWFjq17qQU2jRzDh6/EOhJd9/wFcloq0uyX20/Up9IVStVijWrHZ5yZ4jO6KPtobVir6smF7LekLdFjyfPV748zQrPiysgdemqyd83w//bfG2yZDPrCwCFINEjU+S/63/F76zA0P3AAAAAAAAAABoR4SFAQAww4uYEc2a90dmWFhTWgvPY8U1MuSIQJ3WMQn/OjYbkhQWlhQVdtdqJS//sDBfEVNAShot7wndN+guz3o4yEnaYEOLb3cAAAAAAAAAAAAAAAAyY176+8E7Lr422QnWHlezOlwZiT3EjQvm6e6V1h2f7PpR7vpv2RE9hPMV/cn4okYmD911T3VxZfnJRIe4inmdpGzCwraclq6+nCDsrR4P/EyS1BVxL4qOkRfRVpYkGMvxy50ZFrZkWc3q5tIDiQ6zkzxHkmS3Yc9pPfdpaGXN6vbJn8ceYivmuWkkLGzzjvB9e5+oWfVLU9L3vxpcm0WAYgATd96vfCJ8n1vIdjAAAAAAAAAAAByl+O15AABAJkwjAAAgAElEQVRm+H5EWNi8MK2sgrUWnse0MCzMJiysZZLe99m6sOevEteA0kKlJLN75my0FN5YOOgQFtYp0n7+EoQIAAAAAAAAAAAAAACQoeNPlXacV7vNcWWe/RuJDjfFrtr1BMcU/JiJCq9++aLz1uX8qxKXukn6oaz62/TNeVdUl6898LlEx7hxr5OUTVjYSeekKjcXXN34NYPOe96V1eWCFxwY9tAeX5WI/LfY0CdpOkCuE8PCTr+oZvXF+z6Z6LAkAWqSGgvDy0s9z/eKtTWrl43/W+whTlyAYQNhYWbJUOg+f/fjc8uHx+W/4dnh58kpLEySVIj4vD04Gr6vE99HAAAAAAAAAAC0oTb8KQ0AAK0RFbZkzfsj08roj0/b1DYmmBY2T2T1NSE9K+F9r4aFhdwrL2mTTguUkjSiNchXxBSQkvaWg8PC+uwlKljFPIaEHKQNNrTbsSkNAAAAAAAAAAAAAACgQxnblvmTL0rXvVbatF16+pUy7/m8zJkXJz/JltNqVq88+C+R5YHBXKs2SNvOlrnpj2Re857k145g1m2RJD390Hdja2MDzKSGAoO0/Jjq4jHlxxIdkijALIOwMGPb0WFBCw2taviagVZtqC7+9t4PBJZ8/wHJi2grs3xPF45/O/IytiqdGXLU3Vezelzp/kSHzQ9QMze+Nbywkec7L/U83wtCtYoJ3tvxYWEN9qyddlHw9n/487nlL3xI+tE3w8+RRYBimGteUd9xnfg+AgAAAAAAAACgDWUwPRAAAEcGzw+fQs6aF1CTNqwmjK3a85hE8yTmI2lgFbKX9L6bmZCwsOfPU8QUiC1WTtKIlrPR0u7A7YPO8iaPBI1IG2xoqQ2b0gAAAAAAAAAAAAAAADqY6emX+e331X+CBYExvd54ZLmr2t4j89aPyVz6q/VfP0xhesLB2CAgSa5fng7MmpoILzIN9APacz0vXX7ENeZJFmCWUZ/gkiFp93SI2erS43rcXb2o5NxDt04v5BVaNC/kyY7onatEtNXZqqg75vV1/HLN/egYXT01q0mfxurzv/3c6HvXitck7j1VT4CZu3ii0b7KQY3Z/aGHOBETE9c9jpoLhIRq9S2tLvr/N+YzeEEIWqZ6wl+bSISFAQAAAAAAAACQCcLCAABHlf/c91V9e99XAveVvPBmmfkBNVZWYWGmjcLCCNRpmcRhYTONLmH3quLHNKC0UNR7q1lGyyFhYS5hYZ0k7edvVp/XAAAAAAAAAAAAAAAAyMjPf1izet7hW/UPA9eFlrsLw7t2nJvHqKTjTpEkbSjtii0t+FNS75LosLBGgrlWbZg7jXwNl5/SiLMi8hA3bkJH26n2oDVsJihMkl544O/1p8t+d1HJjfs+Nr2QV2jRvCCrffbSwJKlPZLnh5/C8j3d1nVa5GVsv9KRIUfGLSjiSw9lzwZh/exW6dLrIy7QhhPUOul7xYxlLXqdev1DGlNEWFhcoGCjQWpPhnwG9S6ZW943En2OHMPCzBnPkP+xP0p/YAe+jwAAAAAAAAAAaEdt+FMaAADyc7C8T49OPhT431Olx0KPs+Y1NmQVrGWb2sxO08LmiYXBZWgek/CvY7OBdWHhR147h4UlmbWyYdGtTXtLwc0xQ85wHoNBTuyUn79p6wEAAAAAAAAAAAAAAJCzi55Ts3r9gX+KLK8JwbriJTLzgrQytekkSdJNox+KLXX9ktQbHiYkqbEwpeE1NatvG3lH7CGFBGFhmTlrZ3XxlaN/q9Wlx2t275i4Q889+IXpldzCwubOe9nY1wNL9h2SKl74KWxV9Ov7/2/kZWxVJPvoCTmyZ/sQL3lB9L2z2rAvK6Nn/C273xV9GcWEhTXYC2yuelnwjid3ya8k7BPNMSxMO86T3EL64+o5BgAAAAAAAAAALEJYGAAACcwPaLIzCvVaGNBlKaNZ++oQFkCF/CWdrdHMPB9hz5+ndg4Li2lEa4LR8u7A7YPu8iaPBI1I+1llteMMlgAAAAAAAKhL0L+lel7Eb3sCQAcI+hxL+rMjAAAAoGNt2FqzOlzZrb7KwdByd3aiwrXHyfzPD+Y3Lmc6EOr4qftiS11/SupZEl1kNdC3siDo53kH/1/sIYW4CR0zDAszO86tLh9XekDfevgSvXH3e3XFwa/olpG36+u7LtdSb/90QV6hRfOCh/q9A6FlP3kkfBJKS552TN4ZeRnbL1efjY5z4lmpD3Fm+xDXb4kJC2tBX1bc98v1PuOnnF+zesn4NyLLHT8mLKzR12bNpvB9d3wv2TkKXY2NIYJxXJm/+mb6Azv1fQQAAAAAAAAAQJvJcIogAACOTK4pyDVzP6S2lE2wlr3gj2HTwgxPi/zQljEJQ+JmfzEk7Pmr+O37S3GluEa0nPm+r9FSSFiYM9zk0aARacMaCUIEAAAAAAA4clgBv2RXKpVUKBQCqgGgM5TLi3/BOOjzDgAAADiSmGKPFsY3DXr7NGb3B9a7MxMVmhf8lkyOf182xsiX1OuNx9a6fik+uKiRSe4KtSFNfd5YsjFFsTPso+nqqVndVHpIfzRyc3BtXgFBvQPVxYGIsLBv3BUeFmbL06Affux0TaVzQ46mJlIfYvszYWGlqehn+FB4wF/L1BsWVq597wxUop+J2LCwgWX1jWNWb0QQ4Y+/LX/b2fHnyCukb9bgivTHOPw7LgAAAAAAAAAAWaDDEACAGMf3bJdt5poIsgqfsRecJ2loVB4WjgXNkzSobTZMLuz582abdNpQ2YtpRMtAeEuXdMgb06Qf3Pg05C7PZ0DIRdpQRTujcEcAAAAAAAC0njFmUTDYgQPRv7gHAO1ubKz2F/4LhUJ1AhkAAADgiHXqBYs2PeKuCy2vhmAVcg6/mb2eYoKAJBVUklZtiC5qINjMOLWhR13+ZPyY4iZ0tDLsozntosSluX2Ps3FbdfGUidtDyw5GvHR2saAeO/p+234Hh4Xdf0fN6rmHbo09ZDYIy3T3SWuPCy8s598TmFq9YWE9tUGFKytPRZY7UZ8RW06TGVpZ3zhmnXRO6C7/o2+XDo7GnyPvsLAVa9Mf06nvIwAAAAAAAAAA2gxhYQAARFjmrtALV76qZltWwVoLQ59a2fhvEajTMknv+2yYXFj4kaf2DQsrxTWi5Wy0tDt035Az3MSRoFFpP3+zCncEAAAAAABAexgYGKhZP3DggMrl+F/gBYB25Pv+otDD/v7+kGoAAADgCLL9aYs23bT3b0LLq+FdeYffSNWQnvMPfSeyzPVLNWFVgRoIC6tHNVQtTJb9iSecnqzOLcTX1MlYVjUcyononbv7iYhzFLvV7URNUzlz7k4NOfqVX6tZ/cORm2MPqQZhnXS2tKzB0KtmqzMQzzzv1anqnfkTu84PKOvqkXnte+oaQ814unsj9/uvvyr+JDl/XhpjpOtfl+6gTn0fAQAAAAAAAADQZuqcPgUAgM50Yu9p6rJ7EtWuKqzV5u4TVbS6arZbGWVtLgy9MS3M8CRQp3WS3vfZUDHLBNdX/HYOC2vtLIJ7yyOB2y3ZWuIsbfJo0Ii0wYZZfV4DAAAAAACgPQwMDGhkZO7f+zzP08MPP6x169apUMjvl08BIGu+7+vRRx9VqVT7M5QlS5a0aEQAAABA8xjLkl/okqYmqts2lR4IrX/A3Ti9UOwKrcnMCadLd/5Azxj/tr7Tc35oWcGfkukdVmTMVEifV2Lbnyb97PvV1TMO/0i3dYeHdBUUFxaWXR+NMUZ+V480cSi6cPu5mV0z0PWvkz71PknSs8a+pq/2Xbao5OE9wYfaflkq9sSGhdl+RbI7NORo+Zqa1eFy+KSbsxx/Jiysq0cqNOE9l0Zc4J1d56/GLFu9aNOxUw/pocKxgeXV1+i618pc8RLpu1+eDsY7/yqZ9SfUN4aFdl4vff0zwfvuvyP++K78wxXNM54n/zPvT1ZsOy2dUBkAAAAAAAAAgCMJYWEAgKPKxu4t2ti9paFzZBWsZS/4Y9iodT8ItzNsBEI6Se/7bOhR2PPnyctsTFkr+VNNuEp409ZoKbjJaakzRFBeh0l7vxaGMgIAAAAAAKCzua6r3t5ejY+PV7dNTU3pgQceUE9Pj/r6+tTT0yPbtvnlMwBtx/M8lctljY2N6cCBA4uCwlzXVbFYbNHoAAAAgCabFxQmScsrIYlOku4pzvT71RsElMbU5Mx4okOVXL8k9cSE/VoN9uTtr31Ner2x+DHlOZ6F4oLCJKmYc2BRaa4vbY+9LNWhljyp2KXu/U9IA+F1jsqS3aE9SIcO1Kwuq+yNPcTWzKSlvUuk7r7wwpPOaWRkuTD1fkZ0LZ6A2Ivoqa2+Rgf3yxx3snTcyfVdN8qSocaOz/u9J0kDKd5zLhM9AAAAAAAAAACQFcLCAABIyVZGYWELQmysFv7ikpXR14T0kv7C2myoWNjz5/mVzMaUtZLXjLCwcKMhMyIOucNNHgkalTbYkDA4AAAAAACAI8/KlSu1a9culcvl6jbf9zU+Pl4TIgYAncQYozVr1hB0CAAAgKPWzvFvxBdt3p77OMz64+VLunT83yPrCv7UdJhS5MkaDOd67MGa1Q2lXfFjih5QY+OpR86BRWbz9uoUk0856XrBbL8iFbvVfSg6QMs2fsd+r2aWDtdMwbmy8lTsMc5sH+K6LTK2Lf+cy6QffK22aNlqadvZ2Q00K/WGhRW7Fm06buo+7XLXB5ZPmJmg7/6IlLkGmbN3yv/cX9d/gkITwsLWHpe8thnhZQAAAAAAAAAAHCUyniIIAIAjX1bhM7apbUwwLfxjmUCd1rES3vfZ5yPsXlXaOCysHDdrZc72lkYCtw86y5s8EjQqbbBhVuGOAAAAAAAAaB/FYlHHHnusisViq4cCAJkwxmj9+vXq6elp9VAAAACA5rn42prV1eUn4o/piQnnysLpz5QknTB1b2SZ65el3v7oc1kN9gM+/zdrVo+buj9mTDE9Wo2OZ6ETTo+vyTsgaNs51cWX7vt4qkMteVKxWz1nXxBZZ3dmTti0rWcs2nTlwX+JPMTxpwP6jT3dd2V+98+klfNCs7p7ZW7+mEzWz1MiMTfDrrNXLCBY64+eemto+UFr+r1vTr2wvuslce4VjR3fhHAuY0yyzwFJcgr5DgYAAAAAAAAAgKMIYWEAAKRkNTrj3+x5FvwxbFoxc98MAnVaJ+l9n52dMCxczFP7hoWVYmetbJzv+6H7Rsu7A7cPuulmk0TrpQ02zOrzGgAAAAAAAO3FdV1t2LBB/f0xv5QLAG3OdV2CwgAAAHB0mh8+lFQTwm9U7Koubp/4WWhZwZ+Suvuiz9Vg34rpW1qzfvzUfZH1BX9KWrs54oQZ9yeuSnAP572euZh3/n7vYKpDbb8iFbvVPTQQWedY4X1pba9r8fea5x7+fuQhjspS39xrYo7ZLPOx22Te/VmZt35M5u/vkjntosyHmgmrzj7YgM+WDaVdoeVj1sx7P8fnu+EwtmZ8XkrSmRcnq9vzeL7jAAAAAAAAAADgKOK0egAAAHSaLIK1bDnV8KdZpoWhNgTqtE7S+z4bKmaHhCV5vpfZmLJWipu1MmejpeCwsCFneZNHgkal/fy1CEIEAAAAAAA4Ytm2rbVr16pSqWh8fFxjY2MaGxtTpdK+EysAgCQVCgX19/dryZIlKhaLi35mCAAAABwV9j6Z/hi3kP04FhpaWV2csMKDgHzHldxi9LkaDftRbUjViVN3R1bb8qRTL5J+eX9wQdY9goUEYUR5BxYtnZsscnX5iVSHWvKkQpd6uqJ/naKjw8KWrV60ySj663H8sjS2v/aY3iXS06/KdGi5cOr81ZiA4L+Byv6AwmmHrZnnOu4zoFFn7ZT+6+vpj1s6LGM3p2/OLF8d80QBAAAAAAAAAICsERYGAEBKVkhYUxpBgU+zYVCtkMXXhPokve9G081aYfeqovb9BbiyP9Wya1f8ivaV9wTuG3QJC+s0aYMNw8L1AAAAAAAAcOSwbVtLlizRkiVLJEm+78vzPPk+v6YGoL0YY2RZFuFgAAAAgCSz7vjUATPN+Lu0WTJUHdf5h76n+wrHBdZVnC6pqyfmZA2Gc516Yc3q9sk744/pjhhTw+FlCyQJAss5LMz09FXv12Vj6UKVbL8iFbtlFbs0UNmn/fbSwLpu09qJMhuy7vhFm54x/u3IQ+w27kOMZdf3qzHGcRZ9HhWU4L5v3FbX9ZIy518lv56wsGYGu517ufT+1zfvegAAAAAAAAAAgLAwAADSsnTkhYXZGXxNqE/S+27NNLuFPX+e375NOiWvdWFh+8t75ckL3DfoDAduR/tKG2xIECIAAAAAAMDRxxgj2+bfhQAAAAAAaGubt6er33BCPuMIcuqF0k++rdft/Qv93dIXB5ZU3C6p2BV9nkbDuY7ZVLOaqMusqzd8X9btiXFfvySTc1iYpOmAqEpZQ95oqsMseVKxW6bYrQ8/fpNesPbTgXVdppzFKFvCGLMoBGtDaVfkMbZfls66JL9BNSIuMLDOsDBJ0o7zpDu+l+6YvJ/va14pfeHD0gMJggJnnXqhzG/9cX5jWsAcs1n++c+WvvOlpl0TAAAAAAAAAICjXcZTBAEAcOSzG53xT8EBNlYG560XgTqtYxL+dWw2VCzs+fP84ECsdlDyWxcWNlreE7pvyF3exJEgC1bKb1/S1gMAAAAAAAAAAAAAAKAJCvFBUzUGV+YzjiDrjpMk9XljoSXGceKDghrtBww4/8kTt0dfMjIsLOM+miRBSWnvcz1WH1tdXFl+MvFhtrzpwLOubq0qPxFaZ9mtmwQ2Exu21qx2+4cjyx2/LPUP5jmi/DQSFja8JnlpeWR6oZBvWJixbZk/+LvkBzz9Spk//5pM75LcxhTEXPmSpl4PAAAAAAAAAICjHb89DwBASlkEa9la3JRgMp+6LzkCdVrHipvtbsZsqJil4OevokpmY8payS+17NqjpZHA7UXTpW4rojkObclO+fmbth4AAAAAAAAAAAAAAABNsGbjok0v3ffxwNK/evy3pkOdmsVxJUmryk+qywsOVjr/sS9KAzETFVoN9q30LV206RX7PhpYeuH4t6cXlkWEqiXsU0vKBNzDhfyDo5leM9DjD1UXn3SSh8pZvjcdeFbsVrc3EVHY4f1HD99ds9rvHYwsd1TJPQQrN42EhY08tmjT2Yd/GFh6476PSbY9HRqYt5XrktcOrpTJ+H2eyJpN8TXPe3X+4wAAAAAAAAAA4ChBMggAACmFhTWlERRg06rALktWaxoEICl5SNzsPQoLq/P89gwL831f5SaEhfnyA7fvDQkLG3KHee47kEn5OZlFuCMAAAAAAAAAAAAAAACyZdYet2jb8w58ftG2bu+QLh/71+lQpyYxF1w9fW1/Qlcf/OdF+0+cvEvbpu6ScQvRJ7Ia600y9uK+l6sOfjkwwOwFBz47vdAVMXmiybg/8bwrYkvMSedke80gJz+9rsNclebCwvzgUDhJ8q0mBELlaUGPnBXSZzfL9ivNDedLI67fr5Fgt1MvWLTpBQf+adG2Xm9MV4z9a9MC1Uz/YPLasy7JcSQRNm6b/i+CecbzmzQYAAAAAAAAAACOfISFAQCQUlDQVxbnaFVwEWE6rZU0/Gi2Luz589SeYWHNCAqLMlreHbh90B1u8kiQBctYqQLDsgh3BAAAAAAAAAAAAAAAQA4WhGFdMf5VfeDx12l5eXpywI1TD+rLu67RuvKjTQ0L0/GnVhc//PhNes6BL8iZ6YE659AP9JVdV8tcfN10wfAx4eexMmjTP/vSmtV15Uf1z488RxumHpYk9VcO6M27361X7fuwNLAsOkwpi/HMY4aPiT/n0MpMrxk4jue8srr8/AOfS3yc45dlij1SsXs6ICvMnscbGV7rXf0bizb97ydeH1ruqNzc91uW7PqD3cwpi0PnXrf3A3rD7vep1xuTJG2aekD/sutqrao8KRWaF6hmXvPuZIXrT8h3ICGMMTJ/8iVp+9OC97/pwzKnXdjkUQEAAAAAAAAAcOTq8KluAABoPiuDGfZss/iP4DQBOFmyCdNpqaQhcUbTdVbIc1LxvczGlKWSP9XS64eGhTnLmjwSZMU2lsoJn3c76xlRAQAAAAAAAAAAAAAAkI3VG6Vf3lez6dX7PqxX7vuInrJXTAfyzCo0Mbyoq6e62Osf0j89+kKNmV5NWkUtq+yd3uG40//vH5RGHg0+TxZ9K/2DizY949B/6v77T9SjzhqtLD8pZ3aSyYFl0dfMYzLTs3ZKP/ha+P5mhE4V50KberxDiQ9z/PL0sYWu6YCsEN2V8YaG13LFnkWbBrwDoeX7rAGp6Oc5ovw0EBYW9DoZSe8e+QO9Y+RtGnGGtaY8LziumYFqy1Ynqys2L8BsIbNircxff0v+/j3S6FPTn0dTk9KKtS2bSBkAAAAAAAAAgCMVYWEAAKRkZRCuFRTQNRsG1WxZhJ+hMUaWfEWHH1kzDROWCX7+fHnyfK/t7mezwsJ8BTco7S2NBG4fcofzHA5yNP0ZHN6gt7gWAAAAAAAAAAAAAAAAbWdBUNgsS35tUJjU3BCcgBCgPn9cffNDo2ZDiaICg6zG+7jMxm0hXVHSMeXHajfsuif6mnn0lbnF6P3NCFTq6q0u+il6MB2VpUKX5HnaUNql4fJTGnFW1NS4/pQuHf/3zIbaEo89sGjTqvIToeW77eXSk3fkOaL82A30im04IXSXq3JtUJgkPfVI/ddKa+O2ZHXNDDALYQaWTQeFAQAAAAAAAACA3LRXmgQAAB3ANo1nbQadw7Toj+Ww8Ck0T5KguNnnIyhoblZc4FgrlLxSS68/Wt4duH3QISysU6X5zOLzDQAAAAAAAAAAAAAAoE119yWvLTQvLMyYBIFTToKwsCzCuZ75/OS1/YNS1NiTfF0pmct/PbqgGeFF80Kerjv42cSHOX5ZcguSmZ7q86X7Pr6o5toDn9MS72Amw2wVc8YzF2078/CPwuvlBx7TFuKeYbv+3l4zuCK+qFU270hW1wZhYQAAAAAAAAAAIH+EhQEAkJKdQROPHRBgk6jJKAdR4VNoDivBvZ8NFIsKP6r4lczGlJWSP9Wya096ExqvBDdrDbrLmzwaZMVK8S1M0GctAAAAAAAAAAAAAAAA2sAlL0he2+wQnIuvjd4/G0rUFTEuq/E+Q7N+S/LiZz4vJiwsh18b2HFu9P5m3Ld519g2eVfiw1y/LDmF6mv2zpGb9fsj79LGqQe1pvSYXrP3r/W3j70q8+E23Yp1izbZCu8zNPKlZavyHFF+GggLkyQtW5289tIXNnatFIwxMu//anwhYWEAAAAAAAAAABwVGvyJCAAARx8rg3At2yz+I9hSa8LCosKn0BwmQfjRbFhYVFidJy+zMWWl7Jdadu3R0u7QfUMOYWGdKs1nVpL3FgAAAAAAAAAAAAAAAFqgUEhcatzktZkoxITuzIYSucX8x7J+i7Trnvi6Ynd0QFkG4WWB12xkfyZj6Kku9niHEx9mqyy5BalvQJJkydfbdr9Db9v9DvlSi7o5c9DVs2iTHTEpqZE6N3TKbrAXtm9A2vN4stpmv0bL18TXFLryHwcAAAAAAAAAAGg5fnseAICUsgjXCgoca1WojcVfB1rOJGgtMjMhYVFhdV5EE0+rlPypll17tBweFraUsLCOZaf4zLIJQwQAAAAAAAAAAAAAAGhPh8YTl/oH9uY4kMXM5pOiC2ZDeSrl8Jrxg9kM5tH7k9W5RSliIkqZ7OOvTE+/tO744J3HnigTEFSV+RgKc4FtKypPJT7O8WfCwnact/icmYysTRx/6qJNtqLCwvw2DguLuTNRz38SD9+dvLbY5GCuNZuk/sHw/SecLpNHICAAAAAAAAAAAGg7/EQAAICU7IiwpsTnCAiwMTk04yRBmE7rJQoLm6mJCqurtGVYWKkp1/HlL9q2tzQSWLvEXirXcvMeEnKSJrCRMEQAAAAAAAAAAAAAAID2ZJ7x3OS1Zzwzx5EEuPSF0ftnwpTMpb8aWmLOvjSbsVzzymR1jhsdCNZokFLYaa9/Xartuejpn75mikMcvyw5roxbiC68KPlz2o7M4PCibXZEn2F7h4XFaLQH97wrktc2+TUyjiNz3WvD97/gt5s4GgAAAAAAAAAA0Er89jwAAClZGTTNBIaFtWg+ujTBO8iHSfBMzYYeRYW7eREz/rVK2Ztq2bVHy7sDtw+6ixug0DlShYXx+QYAAAAAAAAAAAAAANCelq9OXts3kN84Aphlq6L3d/VML6xYF16U0ZiTBqUZx5WsiD60qH0NMNe8Qubmj0tPe5a0ZqP0tF+RueWTMle9LJfrBXruq6qLm6YeSHSIo7I0GxR24pnhheu3NDKy9rC0tl/OjugznA4L68p7RPlosLfXnHZh8uJWBKq99Pdl3vAB6fRnTL/X1myUzrtC5g8/I3NZTMAhAAAAAAAAAAA4YjitHgAAAJ0mi/AZ2yz+I9i0KMPTEmE6rZYkKM7MzHpnRTwnlYgZ/1plym9dWNje0kjg9iFneZNHgizZKT6z0tQCAAAAAAAAAAAAAACgibp7k9cWWhBeVChKU5PB+2bDlAaGwo9fmtGEhklfJ9uNDksy+U1manZeL7Pz+tzOH3v9Yrf8lMc4fkVyCrNnCC+0joD+I7u2X9WSF1pqfL8177csNPqMd/clv1QLwsKMMdI1r5C55hVNvzYAAAAAAAAAAGgfrUklAQCgg2URPhN0DpNjM04Uu8HZ1NC4qACwWbOBYlFhdZ4f3sTTKuWmhYUtbvcaLe8OrBx0CQvrZFaKz6wswh0BAAAAAAAAAAAAAACQg7XHJ69tQTBPaFCYJBVmxrP+BGnVhsX7l6+RtpyazThOPCtZnetGhyUdyX2C88KtHihsSnSI45cldyYs7JF7wgutI+B12/N4zWpsp2o1RK3NxPXYNtqDe/LTk9cWOzRQDQAAAAAAAAAAdLwj4KdXAAA0V1XeIS0AACAASURBVBbhM7ZxFm1LEhiVByuD8DM0JklQnJl5PqLC6jxVMhtTVkp+qWXXHi2FhIU5Gc3aiZZI85lFGCIAAAAAAAAAAAAAAEB7MmlCmFoRzPOiN4TvmwkvM8bIvPyW2pCimW1ZTR5q+gaSFTpudCBYiyYzbYp5YXI37P90okMcledCsZ776tA6cyT0H133W4lLLXnTz1InavReHXti8tpiT2PXAgAAAAAAAAAAqNMR8NMrAACaK4tQr6DAMRM/X1susgg/Q2OS3PvZ5rGo+1Xx2zAszJtqyXV939doOTgsbMhd3uTRIEtWiqYuwhABAAAAAAAAAAAAAADa2Lazk9UVuuNrMmZOuzB857xwKvOsG2Te/1Xpua+SrnmFzJ/+i8yVL8l2MMtWx9c4rhQVwHYkhF6FmXc/Tpm4PdEhjl+W3OmwMLP2uPDCNKF2bcqceGbyWvkdHBbWWA+uMUY66ZxkxcXmfyYBAAAAAAAAAABIktPqAQAA0GnsDMK1gs6R1UyCaWXx9aAxJkEA3WygWFRQkqf2Cwsr+6WmXMf3a9fHKgdU8oODygYdwsI6WZqAQ8IQAQAAAAAAAAAAAAAA2tjURLK6Yle+4wjStzRi30DNqjntIpnTLspvLJOH4mtsNzoQrEX9iU0x717ZCXvo5oeFLWo+m8efPNyiaWBb46zD/y05L2v1MOqTRbBbV0+yukILPpMAAAAAAAAAAACkBMkUAACgRhbhM3ZAXmeSwKg8WPx1oOWSBMXN3idb4c+f53uZjSkrYYFdeRstj4TuG3SHmzgSZC3qPbColrAwAAAAAAAAAAAAAACA9tXVm6zOLeY7jiAnnC71Llm8vdAlbX9ac8cytj++xi0c2YFgUU69oLp4+uEfJzrEUXkuhG7dceGFk4cbGVl7WL9l0abnHfj8om0Fb1IvOPBPkuM2Y1TpxT7fGTz/xe5kdbNBcwAAAAAAAAAAAE1GOggAAClZKYJqwgQF2JgWzT+XRfgZGpPk3s/WRN2vip9sVsRmalVY2N7S7sDtjnHUbw8E7kNnsKJmQF1Yy7c7AAAAAAAAAAAAAAAAbctc99pkhU7zg3mM48r83p9L1rz+E2Nkfud/y3T1NHcwl784vsZxa8d6FDGDc5NHnjR1V6JjHL8sFWaCoZavDi8st6b/LVNLF0+u+YcjN2tN6bGabX/+5O+p15pMNPlpW8pi3EnDwto1UA0AAAAAAAAAABzxnFYPAACATmOnCKoJP0f7hIXZGYSfoTFJAo3MzHMXFVbnqQ3DwrxSU67jy69ZHy0Hh4UNOstThU2h/aQJbCQMEQAAAAAAAAAAAAAAoI0NrYyvMUayW9MDYi57obRpu/SDr0qVinTOZTInnNb8cazdvKA7KoDjSlF9UX7sGTrb+i3SrnvU7R1OVO6oMhcMVYgIiCodAWFhAQFYW6bu0389eJ6+3He5nnKGden4v+uMiR9Lha4WDDAjWYTlJQ0Lc5sfYAgAAAAAAAAAACARFgYAQGppgmrSnKNVAUaE6bRekpn4ZsPkosLqPL8Nw8L81jRL7S2NBG5f6ixv8kiQtaCwxdBawhABAAAAAAAAAAAAAADa19IEvTxuIVF/VV7McTuk43a07PqJ2c50sNrRas8TkqQufyJRueOX54Kx+gZC68zWMxoeWsv19AduXll5Sjfu/1jtRsdtwoDqFPd8Z/H8e16yunZ+nQAAAAAAAAAAwBGtNakkAAB0sCzCtWyzOK9zNgyq2VoVUoY5Se79bI2J+OtbRQkbVZqo7Jdact3RcnBY2JA73OSRIGtpPoMJQwQAAAAAAAAAAAAAAGhjG7bG1ziF/MfR7k46J77GcaWjuRdw/IAkyZKfqNzxy5I7/WyZrh7p9GcEF559aRajaylTKCYv7ugQrMZ7cM1JZycr5HMJAAAAAAAAAAC0yFH8E0EAAOpjZxIWtvgcUSFQebJFmE6rJbn3s6FuxhhZIffM8yuZjisLJX+qSVeqbfIaLe0JrBpyE8xGirZmpfisJAwRAAAAAAAAAAAAAACgfRmTINzHJZRHG06Ir3ELknUU98rsvD5VuaOKzLzXy7zxr6SV6+cKjJH5nx+UWbUhqxG21qaTktV1clhYFs//069MVtfJrxMAAAAAAAAAAOhoTqsHAABAp0kTVBPGNov/CE7U+JQDK4PwMzTGJJjRbn6NbezAYLC2DAvzSi257t7ySOD2QYewsE6XJrCRMEQAAAAAAAAAAAAAAIA2t2m79MDPwvc7hIWp2B1f47hHd1hYktdoHtt4NevmmM3SJ38q3f5dad9u6bQLZYaPyXKErbVhq/TAnfF1nRyClUUPbiHhc0SIIQAAAAAAAAAAaBHCwgAASCmLcK2gAJskgVF5sAjTaTlj4pu05j8fYYF1FbVhWJg/FbjdMY7KfjmXa5b9kg6URwP3DbrDuVwTzZMmsJEwRAAAAAAAAAAAAAAAgDb38N3R+wnlkbr742tsV2pRD2JbuP27qcrdBWFhkmS6eqSzL81qRO2lFNzHt4jdzr9eEvd8Z/D89y9NVtfWrxMAAAAAAAAAADiSHcXTBwEAUJ+goK/U5zCLGwXSBOBkyU4QVIV8WQmaVOYHioUFIHn+4gamVgsLC3NNtk18/rzl/eW98mu2zBlyCAvrdGkCwAhDBAAAAAAAAAAAAAAAaHOVmAkHHbc542hjxnGk3iXRRY4rWUdxL+DwMdXFy8b+LbbcCQgLO5KZM56ZrLCT328ZPP8m6ddPiCEAAAAAAAAAAGiRo/gnggAA1CdNUE0YO+AcxrRmVr8svh40xiQJC5tXE/T8SJKnSmZjykrZLwVud00xt2vuLe0O3TfoLs/tumiONAFghCECAAAAAAAAAAAAAAC0uee9Ono/oTySJPOmD0cXuAXpaO6V2bituvjGPX8SW+5YwZNRHrHOuSxZXSeHhWXVg7v93PiaTn6dAAAAAAAAAABARzuKfyIIAEB9sgifsY2zaFuSwKg8pAneQT5MgmfKzPtrW9g9q/jtFxZW8qYCt7tWfs0ye0sjgdu7rV51Wd25XRfNkeYz2PDtDgAAAAAAAAAAAAAAQHsr9kTvdwgLkyQNrYze77gxYUlHeDhWca4vrNubiC0/6sLCign75to5BCs2DCyjHtxlq+Jr+FwCAAAAAAAAAAAtwm/PAwCQUhbhWlbAH8GtCrWxDWFhrZYkKM6a1+hihYQlee0YFuaXArc7JutmmbnmrdHy7sCKIXc442uiFayEn1mWbJmsZosEAAAAAAAAAAAAAABALsza46ILCsXmDKTdrdkYvd92JDuir8bzsh1PmzGX/3p1eVPpwdh652hrKxpckayuncPC4lgZ3dTJw/E1nfw6AQAAAAAAAACAjkZYGAAAKSUNqoliG2fRtiSBUXkIC55C8yS59/NrwgLePLVfQ1fZnwrc7pr8mmVGS8FhYYPO8tyuieZJGthIECIAAAAAAAAAAAAAAEAHOO+K6P3F7uaMo82ZZauiCxxXciMmcKyUsx1Qu9mwtbo4XAnuH5vPsdqv1y5PJurZmM/u4BCsjCaWNBdcHV+U9PUEAAAAAAAAAADIGOkgAACklEUATdA5TItCu5IG7yA/Se69mffXtrB7VvErmY0pK1OhYWH5NcvsLY8Ebh90CQs7EiT9DLb4VgcAAAAAAAAAAAAAAKDtmeWrowsIC5szENH/5BamA8PCHOFhYcYYmY/cmrjeORpbiy5/cXxN1DPU9jKasPfk8+JrOvp1AgAAAAAAAAAAnexo/DEXAAANySKAxjZOwHkzalRIKYvwMzQmyb0382qskHvmtWFYWNkrBW53rWzDwnz51eXRUvDMkEPOcKbXRGtYCYMVw94nAAAAAAAAAAAAAAAA6CCEhc1Zuix8n+NKTkRP1hEeFiZJGj4mcelRGRbWNxBfY7dxz5WJ6bO0MrqpST5z7MU9wAAAAAAAAAAAAM1wNP6YCwCAhmQRQGNr8TlMi8LCrICxoLlMgr+SmXmNLnZIfUXtFxZW8qcCt7sm27Cw+UbLI4HbB92ImTXRMZIGNhKECAAAAAAAAAAAAAAA0BnMjX8Qvm/T9iaOpM09/IvwfY4ruUd5WNjSuckkP/7oyyJLHcuP3H8kMpt3xBc5bv4DyUtcmFhScaFzjlvTzwkAAAAAAAAAANBMhIUBAJBSUNBX6nMEhNgY05o/lq0WXRdzkgTFzQ8UCwus83wvszFlwfd9lfxS4D7X5NNUdLhySIe9Q4H7hhzCwo4ESQMbCUIEAAAAAAAAAAAA0AzGmE3GmOuNMe81xnzTGHPAGOPP+++hBs7tN/jfsZl9oQCQp+e8KnzfJdc1bxztbtNJ4ftsNzro6SgICzPWXI/dlWNfiax1jsa2yadfGV9DWJhM3GsQFcoHAAAAAAAAAACQs6Pxx1wAADQkaVBNFNs4i7YlCYzKQ1BwGZorySxz1rznIzQsTJXMxpQFTxX5Cg4wc022DTO+Pz3T42h5d2jNoDscug+dI2kIGEGIAAAAAAAAAAAAAPJijHmGMearxpg9ku6X9PeS3iDpIkn9LR0cAHQgMzgs83/+q3Zjd6/Mh74rs35LawbVjjZsDd/nuJIT0ZP1/9m783DJrrpe3J+1q04P6e70nAlCEkKCkESmACIqiKgggoCACCh4nQAFnO69zvycxevwu15UFBTBCQWDAgp4AZFJFBGRUTJA5jkd0un0cIZ9/+gmOX26dlWd0zV11fs+z3ly9lprr/U9u6rr7Dy9+rMXJ2tv2dCcflaSZOvSHTnr0JWNw9ozuG2ybOvjYZuTHBbWa5/lAPeLle/9+ebO/fsGtg4AAAAAAMBqHZtUAgB0NYgAmk4BXeMKC+s3eIfhKX3kt5Zl77tWw2u2WE/Whq75er6xr10NZ1PRnvmbO7aXlGxr7xjKmoxWvwGHlVxkAAAAAAAAYHgenOQbxl0EwDQp9/vylPcfHHcZk+3e92vu6xXytNC8l2uq3Hrj3d+ed+jSXLnurI7D2rO6tejU+yQ3XtXc35rgsLBe+nhoa99O2jS4uQAAAAAAAAZIWBgArFJTUNPq5jj2V3AZ4FPNVqPqM3iH4eknKG75mKbAuqVJCwtbat68N1e6PMXyONy2cEvH9q3tHWkVt77ToN8QsH5DxQAAAAAAAAAG6GCSa5KcO4S5/yXJs1d5zjVDqAOAMSmPe0bqP3nFsR0PuDilOrynpm46eWlpaHVNlEMH7v72nzZ9TeOwmQ0LO7Cve3+v0LlJNsiwsAc8fHBzAQAAAAAADNCs/jUXAKzZIMK1OoXYVH0ERg1Dy+3A2FV9bFI5KiysIbBuKZO1oWu+bn4a5bDCwvbMdw4L297eNZT1GL1+P4MFIQIAAAAAAABDNp/kP5K8Jsn3J3lYki1JvmdI6x2o6/oLq/xaGFItAIzDuRclj/yGo9uqKuXZP9z73Hqy9paNwjPv+OvGvnZrPPs1x63ne+WEDgsb4F7YL7t4cHMBAAAAAAAMUHvcBQDAiaYpqGlVc3QIsSljCu0SqDN+/bz2ZdlGlk5hc0myWC8OrKZBmK8PNfatq4YTFnbbws0d27fPCQubFk3v/5UG8VkNAAAAAAAA0OB1SV5V1/WBlR2ljweGAcBalFKSX35T8ue/kfrf3pPsPDXlCc9LedQTe5+8NFl7y4bmlHsnN12TJHnAwc82DmvP6taihz62e397gv95Sa97rAHeg5VWK/XAZgMAAAAAABicCf7bHACYTK0BPH2sU9hNNcinmq2CsLDxK+m9SWX5mKbXbCmTtaFrfmm+sa9dBhsWVh/ZmrNnvnNY2I727oGux/j0GwI2iM9qAAAAAAAAgE7qut4z7hoAmE1l3frkBT+Z8oKfXN2JS0vDKWjSPPhrkn/48yRJ3WVfXqs1o+GeJ23u3n/DVaOpYxgGHdj6qCcm//z2Y9vvdd/BrgMAAAAAALAK/gU9AKxSGcCvz1aHvM5+AqOGodVn8A7DU/oINaqWh4U1vAeX6skKC1uoDzX2zZW5oax528ItHdu3z+0aynqMXr/Biv2GigEAAAAAAAAAwNRbmqy9ZcNSHveMu7/fWO9vHNduz2hY2H3u373/YPM1m3gDfrjk8vfSUR73zIGuAwAAAAAAsBrCwgBglcoAnj7WKseG2IwrLKzf4B2Gp5/XfnlIXaf3T5Is1pP19Mf5er6xb66sG/h6S/VSbp+/tWPf9rawsGnRFJZ3zLiGPycAAAAAAAAAADBzliZrb9nQPPzxd3/7iP0faRy2VA3nYZeTrlRVyo/+n+YBiwujK2bVeuyzHMDe3qN8zVOTCx91dNsZ56Q89fsGuw4AAAAAAMAqtMddAADMolY59ldwGVNoVxWBOuPWV1jYso0sTa/ZUibr6Y/z9aGO7VVaQwhyqrN38fYspvNmpR1zuwe8HuPSFJa31nEAAAAAAAAAADD1liZrb9mwlHXrU2/eltx5ezbUBxvHLVTrR1jVZClP/b7Uv/GSzp2LJ/D7ZMBhYeWkzclvvC1555+m/vRHUu57QfINz0nZedpA1wEAAAAAAFgNYWEAMAadQmz6CYwaBoE641f1ERRXcs+YptdsqZ6sjTrzS53DwubKcJ7KeNv8LY19O9rCwqZFv0FzVcYTwAgAAAAAAAAwJPcppbw2ySOSnJFkU5I9SW5J8rEk70vyprqubxtfiQBMrBkJC0uSbN2R3Hl7diw2/0o8de7OERZ0Alns/LDOE8IQHthbTtqcPO2FKU974cDnBgAAAAAAWAv/gh4AxqDVIa+zjOnXcr/BOwxPP0Fxy8c0hYstZrI2dM3X8x3b56p1Q1lvz0LnsLC5si6bWluGsiajV6XPsDCfbQAAAAAAAMB0OSfJC5I8MMm2JHNJTjly/Nwkv5/kqlLKb5VSNo+rSAAm1NLSuCsYnYd9bZLk7Pkrc+6hy4/p3rFwax62+YZRV3ViOJFD5cp4HtgLAAAAAAAwSsLCAGAMWh1CbKoxbVSo3A6MXT9hYcvfH01hSUv1ZG3oWqgPdWyfK4MPC6uT7Jm/uWPf9vauFBuBpkarzydAtvoMFQMAAAAAAACYIpuS/FCSj5ZSLhjGAqWUU0opF6zmK8m5w6gFgFU4kUOgVql8188c/m+S373+JTlpad/dfXP1obzm+helNXfsA19Jsrgw7gqa9doDaI8gAAAAAAAwA/wtFwCMQasc+yu4n8CoYegUXMZolT4C25aPaXrNlurJ2tA1X893bB9GWFiS3LbQOSxsx9zuoazHeDSF5R0zzmcbAAAAAAAAMB0WknwgybuS/GeSa5LsTbI5yX2SfHWS70xyyrJzzk/yrlLKV9R1feWA63lxkpcPeE4Ahq2ux13ByJRdp+dLP+3X3fXe/OcVD8s7N31DFko733jnP+R+81ck7R8ba40Ta5LDwnrp8yGUAAAAAAAAJzJhYQAwBlWHTQn9BEYNg0Cd8St9PNFueZhcU1jSYiYtLOxQx/Z2mRvKenvmb+nYvn1u11DWYzz6/czq9DkLAAAAAAAAcIL56SSvruv6pob+/0jyllLKz+RwgNf/TO7eYHBakktKKRfX9QwlxADMurPun1z5X8e2P3d2w7HOnr8q33/7a45ubA9nD9sJY+vO5Iu3HtNcnvbCMRQzIH3swwQAAAAAADjR+Rf0ADAGrQ55ncvDoEap1RA8xehUfdySLQ8UawpBWqonKyxsYWm+Y/tctW4I7/Y6ty00hIW1hYVNk1afYWE+2wAAAAAAAIATXV3Xv9QlKGz5uAN1Xf9Ekpes6Hpokm8fSnEATKTyzJW/Co60f+NzR1zJZCut2Q4LK8962bGNVZU89umjL6ZfvcLAhIUBAAAAAAAzQFgYAIxYleqo4Kcv6dQ2Ck3BU4xOP0FxZdltW1NY0lKWBlbTIByqD3ZsnyvD2Wi1Z/7mju075nYPZT3Go/T5vzBVn6FiAAAAAAAAANOiruvfSfKWFc0vHvAyv5vkwlV+fcuAawCgyZO+K1kRDFZ+5H+nnPPAMRU0Jk/4ju797dkOC8u3vSx59JPuOW61Un7mj1N2nT6+mo6XvbAAAAAAAMAMaI+7AACYNa3S+ddvvwE4g1ZFoM649RMUtzxQrOk1W6wXB1bTICzU8x3b20MIC5tfms/exS927NvRFhY2TZrC8lby2QYAAAAAAADMqF9J8pRlx19RStlW1/Xtg5i8ruubkty0mnPG9QA9gFlU2u3kp/4wef5PJF/4THLBI1N2nDruskZvZ4+fuT3b/4yirN+Q/MpfH36PXHt5ctFXpmzdOe6yjo/7DQAAAAAAYAbM9t9yAcAYNAXdVBnPRoV+g3cYnn6C4qplT72rGl6zpQkLC5uvD3VsX1etH/haexZuaezbPrdr4OsxPlWfwYotT4oEAAAAAAAAZtO/JtmTZPuR41aSByb50NgqAmCkSinJmecd/ppR5dQzU3cb0B78Ay9PNKWU5JwHHv6aBsLCAAAAAACAGeBf0APAiLUasjrLmIJtmoKnGJ3SR1Dc8jFNIUhLmbCwsKX5ju3tMviNVrfN39zYt70tLGya9PuZ5bMNAAAAAAAAmEV1XS8luWpF8+5x1AIAY/OV39S9X1jYCaf0CgPzcEkAAAAAAGAG+BsRABix7XM7O7b3Exg1DJXbgbHruYklR78/qnQOQVqslwZW0yAs1Ic6ts+VdcmA3+97Fm7p2L65dXLWVesHuhbj1Wp4/6/U9OcEAAAAAAAAYAbsX3G8cSxVAMCYlFPvk1z4Fc0DWp0f+soJrI99mAAAAAAAACc66SAAMGIP2tx5A8q4wsJaRaDOuPUT2FaWjakaXrOlenFgNQ3CfD3fsX2uDP6pjPuX9nVs397eNfC1GK+m9/9KPtsAAAAAAACAGbbyL8s7P4ELAKZY+Zpvae5sDX4PG2MmLAwAAAAAAJgBHokDACNSpZVHbX1cnrDzmR37SxlPhmcVgTrj1k9QXFm2kaXV8JotZdLCwg51bG+XdSOrYfucsLBp0+rzs7Ia02cqAAAAAAAAwDiVUnYlue+K5uvGUQsAjNX6jc1969aPrg4Go9Xjn77YLwYAAAAAAMwAYWEAMGQP2vwV+cYdT89p68/Mhqp580k/gVHDUBVhYeNW0nuTyvL3R1MI0mI9YWFhS53Dwuaq0T2VcUd798jWYjT6DTgUhAgAAAAAAADMqGcnR21EuDHJZ8ZUCwCMT7ewsG59TKZ2j32HZTx7cAEAAAAAAEZJWBgADNk5G87P2RvP7zmuGlNYWMvT1Mau9LFJpVq2j7cp4G0pSwOraRDm6/mO7XNl3chq2D63a2RrMRpNYXkrtQQhAgAAAAAAADOmlHJqkp9e0fzWuq7rcdQDAGPVNSxsw+jqYDDmeuw7FBYGAAAAAADMAOkgADAhyph+LVcRqDNupY+guOWBYq2G12ypXhxYTYOwUB/q2D7SsLD27pGtxWj0+5nlsw0AAAAAAAA4UZVS7l9KefIqzzktyduSnLqs+VCSXxlkbQBwwljXJRBsXZcgMSZTW1gYAAAAAABAe9wFAACHlTFtVKiKQJ1x6ycobvmYptdsccLCwubr+Y7tc2Wur4C0Qdgxt2sk6zA6/X5mVUUuMgAAAAAAADA8pZR7p/MezNNWHLdLKWc3THNnXde3dGg/PclbSimfSPKnSd5c1/WlDXVsSfL8JD+do4PCkuQX67q+omFtAJhu5z+4c3urlZx74Whr4fjNdQkLq6qx7cEFAAAAAAAYJWFhADAh+gmMGoZWhIWNW9XHJpXl4VpVw3tlKRMWFrZ0qGN7u+rxhL8B2t4WFjZtWn2GgDX9OQEAAAAAAAAYkA8kOauPcfdK8vmGvtcleUGXcy9K8ookryilfDHJJ5PckmRvks1JzkzyoHTeC/oHdV3/Qh/1AcBUKqedlfpRT0z++e1HdzzuWSkn7xhPUaxdu8u+w6Wl0dUBAAAAAAAwRsLCAGBCLA+DGqWqz+Adhqef1375U+9apXPA21I9WRte5uvOYWFzZW4ktVapsrW9fejrMFpVnwGHVcOfEwAAAAAAAIAT1NYkj+5j3L4kP1zX9auHXA8ATLzyC29I/fs/nXz4HUmrnXzVk1O++2fHXRZrMTe6h5QCAAAAAABMKmFhADAhqjKusDCBOuNW0juwrVo2puk1W8ziwGoahPl6vmP7XFmXg/WBoa+/rb3T+3sK9fuaNoXqAQAAAAAAAJwAPpPkl5M8JslDk2zs45zPJfnjJK+u6/qW4ZUGACeOsn5Dykt/PXnpr4+7FI6XsDAAAAAAAABhYQAwKfoJjBqGVgTqjFvpIyiu5J4xVcNrtlRPVljYQn2oY3u7zOVghh8Wtn1u19DXYPT6/cxq+nMCAAAAAAAAMAh1XZ89xLlvTPJTSVJKqZKcl+TcJPdKsi3JhiT7k+xJcn2Sj9R1ffOw6gEAGDthYQAAAAAAAMLCAGBSLA+DGqWqCNQZt36C4g7v/T2sVTqPX6qXBlbTIMwvzXdsX1etz77FvUNff0d799DXYPSqhvf/WscBAAAAAAAATLK6rpeS/NeRLwCA2SQsDAAAAAAAQFgYAEyKUsYUFtZHUBXD1U9Q3PIxVToHvC3U87lj4faB1XU86ixlMQsd+9plbiQ1bJ8TFjaN+g04bDX8OQEAAAAAAAAAAOAE0xYWBgAAAAAAICwMACZEGUNoV5VqbCFl3KPq4zU4KiysISzpYH0gP375CwZV1tDMldFs2tne3jmSdRitfgMO+w0VAwAAAAAAAAAAYMJt3DTuCgAAAAAAAMZu9KkkAEBHy8OgRkWYzmToJyhu+ZjWCf66zZW5kayzY273SNZhtPp9/5/of04AAAAAAAAAAAA44tyLmvta7dHVAQAAAAAAMEbCwgBgQlRl9L+WWxGmMwn6CYqryj1jqhP8Fm6uWjeSdba3hYVNo37C9ZIT/88JAAAAAAAAAAAAh5X2XMoP/lrnvtd+ZMTVAAAAAAAAjIdHqMyQUsrGJA9OrtH0bgAAIABJREFU8oAk25NsSHJHkpuS/HuSy+q6rgewzlySRye5T5LTk9yZ5LokH6vr+gvHOz/AJHjmKd+TN970mr7GXnzyV/c1bmt7R1ppZzELHfvbpZ2FunNfJ5taW7JvcW/XMTvmTul7Poann6C45YFiu+ZOHWY5Q9Uu7Wxt78jOHu+9k1vbc8finuNaZ9e6E/c60awqVXa0d+e2hZu7juv1HgMAAAAAAAAAAODEUb7tZcnZD0j9Y0++p+0vP5tyxjljrAoAAAAAAGB0eidTcMIrpTyqlPKXSW5P8qEkf5jk15P8YpLfTvKGJJ9LcnUp5edKKTvWuM7uUsrvJrkhyT8meV2SX03yyiSXJPl8KeWDpZRvPd6fCWDcLtr08MyVdT3Hnb3hvOyY293XnBuqjXngpod07KtS5XmnvSStVeR8Pnnnc3LK3Bldxzxsy6P7no/hqdLqOaYsu23bte60nLn+vsMsaWgu2HRxNlQbc+7GB+Tk1raOY7a3d+Xpp7zguNZ58OZHZUO18bjmYHI9tMdn17b2zpyz8f4jqgYAAAAAAAAAAIBRKI/8hlTvP3j3l6AwAAAAAABglggLm2KllHYp5ZVJPpjkWUl6pdrcK8nPJvl0KeUJq1zriUk+meRFSbqFjX1lkjeVUv60lLJpNWsATJJd607Ni+71U9nRPhwEtrm1Nc8+9YX5ipMfl3aZS0nJeRsvyIvu9VOrmvcFp/9wLtx08VHhUdvaO/PdZ/z3POLkx+R77/U/sq298+6+KlUeuOmh+dH7/GrOWHdWksOhY9+089vy1duekJec+f/l7A3nHbPOurI+j932zXnCzmeu5cdnwKrSR1hYKUcdv/jeP5P7bXxgSkrDGZOlSpWLNj08zz/9ZUmSuWpdXnbmL+Re688+atyZ6++bl535C3nEyY/JBZsetqZ1HrT5K/Kc0148iLKZUN+y+3l59Nav7xjaeOb6++aHzvyFtEr/4YoAAAAAAAAAAAAAAAAAAAAwyUpd1+OugSEohxNF/irJMzp0fzbJZ5LsT7I7ycVJtq8YcyjJt9R1/Y4+1npsknfm6DCyOsm/J7kiybYkD0mya8Wpb03y1Lqul3qtMUyllAtyOOgsSfLJT34yF1xwwRgrAk4kdV3njsXbs6W1NVU5nMF5aOlgFur5nNTavOZ59y/eldsXbs1cWZedc6ccFRRV13VuW7gph5YOZVt7Rza27sle3LvwxZzU2pzWivCpOxfuyN7FLyZJSkp2rTs17TK35voYrPfc9pa86eY/auwvqfI797+kY9++xb25Y+H2YZU2MNvndmVDtbFj3x0Lt2ff4t5sbm3Jlva2u9svu+tT+c2ruwfu/bfTf/SowLFu6zB95pcO5Zb5G+8+XvkeAgAAAACAWfSpT30qF1544fKmC+u6/tS46gEAe/QAAAAAAAAAgGkw7v157VEtxMh9T44NCntfkh+o6/qTyxtLKe0k35Hkt5JsPdK8LsnrSinn13X9xaZFSin3TnJJjg4K+2CS763r+jPLxq1P8v1Jfj3Jl9JpnpzkF5P85Op+NIDJUUrJ1vbReYvrqvVZl/XHNe/G1knZ2Dqpcc2dc6d27NvS3tqxfXP75Gxun3xcNTE81Ypwt5VKSmPfptaWbGptGXRJI3Vye1tO7hDw1Ou6JMnp68/M6evPHEZZnADmqnVefwAAAAAAAAAAAAAAAAAAAKZeNe4CGJqVAVzvS/L4lUFhSVLX9UJd169N8vgkB5d1nZLkhT3W+bkky1NyPnRknc8sH1TX9cG6rn87ybNWnP8jpZSzeqwBAFOtVyhWVZrDwqZZld5hYcXtLAAAAAAAAAAAAAAAAAAAADDlpCtMoVLKRUnOXtH80rqu57udV9f1vyV59YrmJ3dZ57wkz1/WdCjJC+q6PtBljb9J8rplTeuTvLxbXQAw7Vo9QrFmNRCr1SNELUlKZjNIDQAAAAAAAAAAAAAAAAAAAJgds5k8Mf3uu+L46rquP97nuX+74vi8LmOfkxyVbnJJXdeX9rHGK1YcP6uUsqGf4gBgGlWl+y3ZrAZi9bou/Y4BAAAAAAAAAAAAAAAAAAAAOJFJV5hOm1YcX7OKc69ecby9y9inrTh+bT8L1HX9mST/sqxpU5Jv6OdcAJhG1VHZm8ea2bCwHtclSYrbWQAAAAAAAAAAAAAAAAAAAGDKSVeYTjesON6winNXjr2t06BSymlJHrSsaSHJB1exzntXHD9xFecCwFRplR5hYWU2b9l6XZckqWY0SA0AAAAAAAAAAAAAAAAAAACYHbOZPDH9PpLk4LLjB5RSNvZ57sM6zNXJhSuO/7Ou6319rpEkH1pxfMEqzgWAqVL1Cgub0UCsKr3DwkqZzWsDAAAAAAAAAAAAAAAAAAAAzA5hYVOoruu9SV6/rGlDku/udV4ppZXkB1c0v65h+ANXHF/Wd4GHXd5jPgCYGVWPW7Je/dOqKr1/7jKj1wYAAAAAAAAAAAAAAAAAAACYHdIVptePJ/nCsuNfK6U8vmlwKWUuyR8keciy5vck+euGU+634viqVdZ35YrjnaWU7aucAwCmQqu0u/aXUkZUyWRplVbPMSWzeW0AAAAAAAAAAAAAAAAAAACA2dE9mYITVl3Xt5VSvjbJJTkcALYxyTtLKW9K8qYkn02yP8muJI9K8v1J7r9sin9N8oy6ruuGJbatOL5plfXdWUo5kGTDsuatSfasZh4AmAa9QrFmNRCrSh9hYUX2LQAAAAAAAAAAAAAAAAAAADDdhIVNsbquv1BKeWSSFyT5viQPS/KsI19Nbk3ym0n+V13X813GbV5xvH8NJe7P0WFhW9Ywx1FKKack2b3K08493nUB4HhU6R54VXr0T6teIWrJ7AapAQAAAAAAAAAAAAAAAAAAALNDWNj0ax35OpikTromalyd5GeTvKFHUFhybFjYgTXUtj/J9i5zrsWLk7x8APMAwMhUPUKxSpnNQKxe1yVJKmFhAAAAAAAAAAAAAAAAAAAAwJSrxl0Aw1NKeXSSzyT5vSSPTu/X+8wkr01yVSnle1a5XL36Ctd0DgBMnVZ6hIXNaCBW1cetanE7CwAAAAAAAAAAAAAAAAAAAEw56QpTqpTydUneleTsZc3XJvnxJA9Jsi3JuiSnJXlCktclWTgybneSV5dS/qCU0pROcueK441rKHPlOSvnBICZUJXuYWH9hGZNo1aP65IkzbcqAAAAAAAAAAAAAAAAAAAAANOhPe4CGLxSyu4kf5Fkw7LmtyZ5Xl3Xd6wYfmOSdyZ5ZynlVUnelmTnkb7vTXJ5kld0WGZSw8J+N8kbV3nOuUn+dgBrA8CatEr3MLBZDcQqfYSklczmtQEAAAAAAAAAAAAAAAAAAABmh7Cw6fQjSXYvO/5skmfVdX2g20l1XX+4lPJtSd61rPnlpZTX1nV904rhX1xxvDurUErZnGPDwm5fzRydHKlzZa29ajneZQHguFRp9ejvHZo1japSpaRKnaXGMf0EigEAAAAAAAAAAAAAAAAAAACcyKQrTKdnrjh+Ra+gsC+p6/rdSd6/rGljkmd3GHrpiuOz+i+v4/jb6rres8o5AGAqVKV7WNgsB2K1SvefXegnAAAAAAAAAAAAAAAAAAAAMO1mN3liSpVSNiU5d0Xzu1c5zbtWHD+yw5jPrDi+3yrXuO+K40+v8nwAmBqtXmFhMxyIVaX7tanczgIAAAAAAAAATLab3pf8+48mb1iX/HlJ3vukZP/1464KAAAAAAAAAE4o7XEXwMBt69B2wyrnWDl+V4cxn1xx/OWllJPqur6rzzUe3WM+AJgZvQKvSmY4LKy0krq5f5avDQAAAAAAAADAxLv095KPvPjotuv+PnnzGclTPp9sPnssZQEAAAAAAADAiaZ7MgUnots7tG1a5RybVxzfuXJAXdfXJ/nPZU3tJF+1ijUeu+L47as4FwCmSlVaXfvLDN+ytdLj2hRhYQAAAAAAAAAAE2nxUPKx/9nc/6lfGl0tAAAAAAAAAHCCm93kiSlV1/W+JHesaH7IKqd52IrjGxrGvXnF8Xf1M3kp5cuSPHJZ074k/9BfaQAwfXoGYmV2A7FagtQAAAAAAAAAAE5Mez6WLOxt7r/8NaOrBQAAAAAAAABOcNIVptN7Vxx/X78nllJOS/KUFc3vbxj+Z0kWlx0/vZRyXh/LrHxM3F/VdX2gzxIBYOpUPQKxqjK7YWG9rs0sB6kBAAAAAAAAAEy0bkFhAAAAAAAAAMCqCAubTn+54vjbSinP63VSKWV9kj9JsnlZ851J3tlpfF3XlyZ53bKmdUn+uJSyocsa35LkBcuaDiX5uV61AcA0q0r3W7Iyw7dsVY+fXVgYAAAAAAAAAMCE2nfVuCsAAAAAAAAAgKkxu8kT0+0NST6+7LgkeX0p5X+XUk7vdEIp5WuTfDjJ41d0vaKu6z1d1np5kuX9X5nkXaWUL1sx//pSykuSvHHF+b9R1/WVXeYHgKnXSqtr/ywHYrVK87UpKSlldq8NAAAAAAAAAMBE+/zreo+p6+HXAQAAAAAAAABToD3uAhi8uq6XSinPSPLBJKccaS5JXprkB0sp/5nkiiT7k+xI8pAkp3WY6u+TvKLHWteUUp6e5J1J1h1pfnSST5dSPnpkna1JHppk94rT35bkZ1b30wHA9Km6BGIlSSmzm+/a7drMcogaAAAAAAAAAMDEW39K7zEHbko2njr8WgAAAAAAAADgBCcsbErVdX1ZKeUxSf4kycXLuqokDz7y1Xh6klcn+aG6ruf7WOu9pZSnJfnj3BMIVo6se3HDaX+R5Hvrul7sNT8ATLsqPcLCZjgUq9u1KZndEDUAAAAAAAAAgIl39Zt6j3nzacnTb0w29BEsBgAAAAAAAAAzTMLCFKvr+rNJHpXk+Un+OYdDwLrZn+TPknxlXdffX9f1/lWs9fdJLkzyqiR7ugz9cJJn1HX9nLqu9/U7PwBMs1bpfks2y2Fh3a5NKbN7XQAAAAAAAAAAJtpnf6v/sZecmiwtDK8WAAAAAAAAAJgC7XEXwHDVdb2Q5PVJXl9K2Zrk4iTnJNmWZH2SvTkc7vXJJJ84Mn6ta92U5EWllJcleXSSs5KclmRfkmuTfKyu688fx48DAFOp9MhvrXqEiU2zKq3GvlkOUQMAAAAAAAAAmGiX/t7qxl/zt8l9vnU4tQAAAAAAAADAFBAWNkPquv5iknePYJ1DSf5x2OsAwLQopaRKK0tZ7Nw/w6FYVWkOC6t6hKwBAAAAAAAAADAGC3cley9d3Tkfeq6wMAAAAAAAAADoQsICAMAEaHUJxZrlsLCu16XM7nUBAAAAAAAAAJhYC/tWf87SwcHXAQAAAAAAAABTRFgYAMAEqLrclpUyu7dsXa/LDIeoAQAAAAAAAABMrI//1NrO23/9YOsAAAAAAAAAgCkyu8kTAAATpCqtxr5ZDsXqfl3cygIAAAAAAAAATJzPv35t51371sHWAQAAAAAAAABTpD3uAgAASFrCwjpqpct1KbN7XQAAAAAAAAAAxmr/9cn1/5BsOjtZvodj35XJ0sG1zbn30oGUBgAAAAAAAADTSFgYAMAEqLqEYlWpRljJZKm6hqjN7nUBAAAAAAAAABiLpfnkDeuGM/cd/zWceQEAAAAAAABgCkhYAACYAFVpvi0ry5++OmO6XZcqs3tdAAAAAAAAAADG4t2PW/u5j3lrcurXNfdf+9a1zw0AAAAAAAAAU05YGADABGiVVmNfmeFbtla6XRdhYQAAAAAAAAAAI3XzB9Z+7ub7JV/3ruTMZzSP2Xfl2ucHAAAAAAAAgCk2u8kTAAATpBKK1VHVLUStuJUFAAAAAAAAAOiqrpPbP5lcfUmy//rjn2ut2puSzWcf/n7nw5vHXft3Sb209nUAAAAAAAAAYEpJWAAAmADdQ7FmOCxMiBoAAAAAAAAAwNosHkre/63J3190+L9vvldy2avXNtfSYvKv37f2Ws5+XtLacPj7s57dPO7ffiB531OTxYNrXwsAAAAAAAAAppCwMACACdDqcltWZviWrVW6XRdhYQAAAAAAAAAAjS79neSaNy9rqA8Hft35+dXPddVfJpe/Zm11PODHkotfec/xpvt0H3/tW5P/+u21rQUAAAAAAAAAU2p2kycAACZIVVrNfTMcitXtupQuQWIAAAAAAAAAADPvitc2tP/x6ue67u1rq2H3VycP+V9J1T66ff3uHuu9bW3rAQAAAAAAAMCUkrAAADABuodizXBYWISoAQAAAAAAAACsye2f6Nz+mV9f/Vz7r11bDee9sHP7zod3P++m961tPQAAAAAAAACYUsLCAAAmQKtLKFaZ4Vu2VrcQtRm+LgAAAAAAAAAAa7Z41yrHH0hu/MfuY05+QOf2M57Uuf38l66uBgAAAAAAAACYcRIWAAAmQFWab8tKyggrmSxdr0uZ3esCAAAAAAAAADAyV72xe/8z9iRP+mRy5tPvadtwWvK0G5J1Wzufc8Y3Jid/Wfd5lxZXVycAAAAAAAAATLH2uAsAACCp0mrsKzOc79r9uggLAwAAAAAAAAAYuhve3dx38SuTddsOf//Vf726ec95fvLxn2ju/+Inku0PXt2cAAAAAAAAADClhIUBAEyAVukSilVmNxSr63WZ4RA1AAAAAAAAAICRufatzX27v3rt857xTd3Dwg7dvva5AYDVufZth78O3JBUG5LdX5Xc9zuTuZPHXRkAAAAAAHCEsDAAgAlQdQnFqjK7YWFVuoWFze51AQAAAAAAAAAYiav/Jjl0W3P/tovWPve2i5Kzvj258i869y/ctfa5AYD+fepXko//5NFtV/1l8oU/Sx73D8nclvHUBQAAAAAAHKUadwEAACRVl9uyMsO3bFVp/tmrIiwMAAAAAAAAAGCo3v+05r4LfzY5nv0bpSSP+pPm/sX9a58bAOjP/J3JJ17eue/WDydXXzLaegAAAAAAgEazmzwBADBBWqXV2FdmOBSr63VxKwsAAAAAAAAAMDxL89371+04/jWqVrLx9M59wsIAYPhu+2j33/k3f3B0tQAAAAAAAF1JWAAAmABVuoVizW5YmOsCAAAAAAAAALAG17y1e39d955j4a7u/ac9vv96umlt7NwuLAwAhm/xwPH1AwAAAAAAIyMsDABgArRKt1Cs2b1lq7pdlzK71wUAAAAAAAAAoKv527v3Lx3qPcfNH+jev/WB/dfTjbAwABijpe7d9eJoygAAAAAAAHqSsAAAMAG6h2KVEVYyWVpdbldLZve6AAAAAAAAAAB0tTTfvf/gLb3n+Oxvdu8f1J6W1kmd24WFAcDw1cLCAAAAAADgRCEsDABgArTSHBZWzfAtW9cQNWFhAAAAAAAAAACdlXb3/juv6D3H/uub+879ntXV0017Y+f2hbsGtwYA0JmwMAAAAAAAOGH02AkAAMAoVKU5EGyWQ7G6hYV1u2YAAAAAAAAAADOty56LJMnSwd5z3HlZc9/9X7q6erppNYSFHbx5cGswWy591eGv/dckpz4uedhvJxtPG3dVAKN317XJ39z72PaNpyenPzF52P+fpEdY2NKhoZQGAAAAAACsnoQFAIAJ0C0Uq5TZDQtrpct1meEQNQAAAAAAAACA47Kwv3v//N5kab5zX2kl2y4aXC1NYWGX/t7g1mB2XPr7yUdelNz+8eTgrclVb0ze9ZhkUdgNMGMW9ncOCkuS/dcnV/xR8k9PSerF7vNc+5bB1wYAAAAAAKyJsDAAgAnQPRRrdm/ZqtL8swsLAwAAAAAAAABosPPhycW/09y/dKD7+Ve9qbnv4leuraYmi12Cy+64dLBrMf0uf/WxbXs/l9z8vtHXAjBON76n95ib3pvc8V+9x/UKGQUAAAAAAEZidpMnAAAmSFW6hYXNbihW1S1ErUuQGAAAAAAAAADATDv5/OT8Fycn3btzf6/Qjxv/sblv31Vrr6uT69/Z3LfnY4NdaxgW9iV3XpHc9tHk4G3jrobbPtq5/co3jLYOgHH7tx/ob9w1f9N7zJ2XHV8tAAAAAADAQLTHXQAAAEnVJcN1lsPCWkLUAAAAAAAAACZeKaUk+e9JNixrfn1d1184znnPSfIdy5ruquv6149nTpg5rY2d2xd7hIXddWVzX72w9no6WbcjOdQQsrU0P9i1Bmn+juRD35Fc+5Zj+552fbLxtNHXNOuWFpv79l09ujoAJsG+Lr/Ll7v1X3uP+fsvTx72f5L7/+Dx1QQAAAAAABwXYWEAABOgWyhWVZqDxKZdJSwMAAAAAAAA4ETwnCS/mqQ+cnzJ8QaFJUld158vpVyU5OlfaiulXFHX9SXHOzfMjLWGhR24qblv0AFeux+dXPvWzn23fzzJcwe73qB88DnJdX/Xue/NpyfPqTv3MTwLdzT33fAPo6sDYNwW7hr8nB99SbLtwuTUxw5+bgAAAAAAoC+zmzwBADBBhGJ1VnW5Xe3WBwAAAAAAAMBolFKqJD//pcMklyZ5/gCXeEGSy4/MXZL80gDnhunXGBbWJUSkrpO7rm3urwb8rOL2pua+Wz8y2LUG5dCe5Pp3dB9z5xWjqYV7XNMQOgcwa258z3DmvfT3hjMvAAAAAADQFwkLAAAToJVuYWGze8vW6haiVmY3RA0AAAAAAABggjw+yTlJ6iNfP1HXdZcUotWp63pfkh9f1nR+KeVxg5ofpt667Z3b913VfM6hPcnC3ub++37X8dW00vkvbe7bcr/BrjUod34hqRe7j/n0ryX/+qLkitcn83eMpKyZt+/K5r71u0ZXB8C47b1sOPNe9VfDmRcAAAAAAOjL7CZPAABMkKo035bNcihW1S0szK0sAAAAAAAAwCR43rLvP1rX9ZsHvUBd15ck+eiypucOeg2YWpvP7dy+99Lmc7r1rd+VnPyA46tppZ2PaO67/DVJXQ92veNVLyX/8t29x132+8llr0o+/PzkjVuTT/z88Gubddf9XXNfaY+uDoBxWlpM/v2Hhzd/vTS8uQEAAAAAgK4kLAAATIAq3UKxZjcsrNXlunQLWAMAAAAAAABgZJ6w7Ps/HOI6X5q7JPmmIa4D02XLeZ3b936u+ZyPvKi574kfTwb94LuqlZzxzc393QKgxuGyP0j2fGz1533i5cl1bx98PRxW18mt/9Lcv7h/dLUAjNMX/nS481/26uHODwAAAAAANJKwAAAwAVqlSyjWDN+yCQQDAAAAAAAAmFyllLOS7FrW9LYhLrd87lNKKWcOcS2YHief37n9rmuShbs69x24oXP75nOTk84YTF0rnXz/5r5r/nY4a67V8dQzaT/LNOkWgJcICwNmR7ewsM33Tb59KXnqNcnXvGVt8/tdBgAAAAAAY9MedwEAACRVl7CwMuinsZ5AqjRfFwAAAAAAAADG7kFH/lsnubyu62uHtVBd19eUUi5Lcr8jTQ9OcvWw1oOpseW85r47L0+2XXRse73Uefz+6wdTUyfbvry5766hfbR0t7AvufyPkuv+7nB9G89ISpVc/461z3nrRwZXH0fr9T5ZOpQsLSaV/UjAlLv5A819d16RlJKcdK9k3faktSFZPLC6+a9/ezK/N5nbcnx1AgAAAAAAqyYsDABgAlSpGvtKZjcsrNUlRG2paWMqAAAAAAAAAKOye9n3141gvetyT1jYKSNYD058m85OSjupF47t23vpsWFhSwvJgRs7z3W/7x14eXe71zc3913/9uGt22TvZclblwWtXf/Owcy7598HMw/HOnRb7zGL+5Nq8/BrARiXxQPdw792f9U937dPSs75zuSyP1j9Om88OXnSZ5KtX7b6cwEAAAAAgDVrTqUAAGBkuoVilRm+Zau6XJc69QgrAQAAAAAAAKCD7cu+v2EE6y1fY9sI1oMTX9VONp/TuW/vpce2XfkXzXOd/oTB1NTJ+h3Jud/d3H9oz/DW7uSdjxze3LU9L0Px6Vf0HrNw5/DrABinmz/QvX/rhUcfX/w7yQN/ItlyflKtT1obDweKfWWX+4Ev+fuLeo8BAAAAAAAGqj3uAgAA6B6KVVJGWMlkqboEpQkLAwAAAAAAABi7dcu+H8WTsJavsX4E68F02HJe52CwTm3XvaN5nvZJg6upk61dQkdueHdyn2cMd/0vmd+bHLptePN/8dPJtguGN/+sOnBj7zG3/2ey8bTh1wIwLnd8bnXjq3by4F8+/NWp7wPPbD63XkgO3pqs37m6NQEAAAAAgDUbxeYcAAB6qNIlLKzM7i1bq0uIWl0vjbASAAAAAAAAADq4a9n3u0ew3vI17mocBRxty3md2zuFhe2/pnme7Q8eTD1Ndj6iue/gLcNdO0nuuiZ539OTN5483HVG8bPMormtvcf8x48n17w1WVoYfj0A47Bw5+Dm2vnw3mP2XTW49QAAAAAAgJ5mN3kCAGCCtLoEglUpI6xksnQLUatTj7ASAAAAAAAAADq4Ydn3Z41gveVr3DiC9WA6NIWF3fG5o48X9ic3va95nrkhh2h1Cwvb8/Hhrr3n48nfnJlc8+a1nX/Wc5JNfX4MLso6HLi6Tr74yd7j9nwsed9Tkg89V2AYMJ1u/cjg5tp0VnLWt3cfc+3bBrceAAAAAADQk7AwAIAJ0C0Uq8xyWFjpFha2NMJKAAAAAAAAAOjg8iP/LUnOKqXcb1gLlVLOTXJ2h7WBXrac37n9wA3J/N57jq9+U/McD37FYGvqpGol2x7Uue+yVw137fd9y+rGz52cbLsoOfVxyYN/LXnU65KnfD6591N7n3vT+9dWI832/Mfqxl/1V8n17xxOLQDj1O13+Vo86vXd+z/xs4cDGwEAAAAAgJFoj7sAAAC6h2KVMrv5rq0uP/uSDSYAAAAAAAAA4/bxJIeSzB05fkqS3xzSWssTeOaTrDIZBmbYlvOa+/Zelux4yOHvb3xP87i5LYOtqUlrw2jWWa6uk31Xru6cp1yRrN95bPvXvPme7//q5GRh77FjFvcZzLkWAAAgAElEQVSvbi166/bebfKJlyf3etLgawGYJlU7uc+zDocsNrnzimTLuaOrCQAAAAAAZpiwMACACdDqFhaWMsJKJkuV5utSR1gYAAAAAAAAwDjVdX2olPJPSb7+SNP/KKX8fl3X+wa5TillU5L/ntz9F8Xvq+v60CDXgKl20plJtS5Z6vDHZu+l94SFHbi5eY5THjOc2lYax0P1OgV6dbP1gs5BYf3OO45AtGl36PbVn3PbRwdfB8A4LS0OZ96znt09LGzf5/sLC7v5n5Mr/zy547/uaSutZMdDk/v+N4FjAAAAAADQhzH8jToAACtVXW7LZjosrEuIWp2lEVYCAAAAAAAAQIO/OPLfOsnuJL82hDV+Nckpyd1/gf7nQ1gDplfVSjY3BHBcfcnh/y4tJtf9XfMcJz9g8HV1cv4PNvftu3Lw6y0tJu/9ptWd86Bf6W/cprM7t9/8/tWtR283f2DcFQCM32rDL/t1xhO797/n65NDe7qPufbvknc/JvncK5Mb/u89X9e/I/nULyf/99FHh4gBAAAAAAAdCQsDAJgA3UKxyjiemDohWukSFlbXjX0AAAAAAAAAjMyfJ7n+yPclyQtLKT85qMlLKT+e5AdyOIwsSW6MsDBYvS3ndW6/6i8P//fWf2k+98KfScqIHnbXFLCVJB//qcGvd+uHk5s/2N/Y81+SfONHkns/ub/xOx/Rub3f9ejfTe8ddwUA43fdO4Yzb+v/sXfnYXKVdfr/70/1np3ubEAgIWEXlEUWQSSICCKLgCO4IO6jP7dxwXFGR8d1FGf8juio46AiKir7IqAghLBKCEsgYUnIQvZ97XSnt3p+f1R1urr7nFPnVJ2qU1X9fl1XXVX1rJ8qYldMPX2fZuldHcFjXr0huH/hN6V0j3//ng2ZIDEAAAAAAAAAABBo5CZPAAAAVJCgUKyUynTYsgKlAoLSnAgLAwAAAAAAAAAAAICkOee6Jf2LMkFhLnv/LTP7o5ntU+i6ZjbBzK6X9J2cdZ2kf83uCSCKuhbv9jEHZ+43PeI/t7E1/np89wr4sbHi9/HvF/S6JWnSqdJ7XOb2+qultteHX7vXJ1ilYUL4NRBO0J8bABgptj+Xf8ykUwtbu74l+Gdt0OdpX5e0ZV7+PfJ9JgMAAAAAAAAAAMLCAAAAKkHK/MPCRnIkVvD7ki5jJQAAAAAAAAAAAAAAP8656yTdrsGBYf8gaYmZXWVmh4Rdy8wONrOrJC2RdGl2LWXXvdM5d22ctQMjhl/AR/srmftdi/3nTj0r/nr8jDu8fHtJ0vLrgvtnfazwtRvGebf37Ch8TXjr3pZ0BQCQPNcT3J9qkg64pPD1p77Fv2/F76Te3d59254Nt37YcQAAAAAAAAAAjGCEhQEAAFSAwFAsN3JDserk/76kR3SMGgAAAAAAAAAAAABUnMslzdfgwLBWSV+Q9JKZrTazW8zsO2Z2pZl9NHv7opl928xuNrNVkl7OzmkbstbTkt6XwOsCakNQwEf7cmnpL/37xx8Zfz1+zIL7194T314rrpd2vODf39gqTb+08PWnX+bT4aR0nkAXhLfz5aQrAIDK0Nvp32cp6eRfSfUtha//uv8I7r9hjDT0vOvuldK9J4ff44kiQjoBAAAAAAAAABgB6pMuAAAAAFJdQIarG8GhWISoAQAAAAAAAAAAAEB1cM61m9mZkq6VdJG098vu/uSf/SRdmL35yU0Jyp1/u6QrnHPtsRUMjDT1o/z75v2jf9+0i/IHeJXT3POld/fGs9ZL/x3cf/F6KdVQ+PoNY/37Nj4kTT2z8LUxYNmvk64AACpDX0BY2LmLpPGHF7f+2FnSIZ+UlvyP/5itT0ltJww8f/UP0fZY+n/SSb8orD4AAAAAAAAAAEYA/1QKAAAAlE1QKFZaIzcUK0WIGgAAAAAAAAAAAABUDefcLufcJZK+IKlTmaAvl3NTts3rpiFjTdIeSV9yzl3knNtZrtcB1KTmKf596+8rbF4SXF9M6zhp21P+/Yd8origMCn4vdv6dHFrYwDvJQBk9Prk6s76SPFBYf3GHxHcv/LGwc+3BnzW+unaEn0OAAAAAAAAAAAjBGFhAAAAFSAl/7CwkRyKZQFXph3J7wsAAAAAAAAAAAAAVDLn3P+TNF3SdyRt1+BQMOdzyx2zPTt3unPuP8tdP1CT9jmmsHn7nRtvHWG87jul3yPdLbmAC/jF8brHBQSz+AW6ILqgsDsAGEn8QrYaW+PbY99zgvuHhoP1dkTf4+aJ0q6l0ecBAAAAAAAAADACEBYGAABQAeosICzMEYrlxQUd2AQAAAAAAAAAAAAAJMo5t8U592+Spkp6k6R/k/QXSQslrZXUlb2ty7b9VdLXJJ0uaV/n3L855zYnUTtQkywljT00+rz9z4u/lnyOuLL0e+xe6d835Uxpv7cXv4eZf0DLwm8Wvz6kNX9OugIAqBzdW73bm9ri22PsLGnGe/37Nzww+Pnauwrb586DpZ6dhc0FAAAAAAAAAKCG1SddAAAAAKSU+We4OhGK5cWJEDUAAAAAAAAAAAAAqHTOuR5Jj2RvAJI05Qxp1+Lw4w/9dCbwqtxSDcH9neullqnF7bHqJv++1/8kvtc98RRprU+gVV+3VNcYzz4j1Su/SLoCAKgcfmFhfsGVhZr1YWnF7/37d6+SRh9Q/D7r7pUOfGfx6wAAAAAAAAAAUEP8UykAAABQNnWq8+0jFMtbmvcFAAAAAAAAAAAAAAAgvK5N0caPiiHoo1AHXOzft+xXUpdPIEpYXVv8+1r2LW7tXHXN/n2dq+PbZ6Rac2fSFQBA5fD7bGxqi3ef1uOD+7cvGHhcP8Z7zPgj8+/z7JfD1wQAAAAAAAAAwAhBWBgAAEAFSFlAWJgjFMuLc+mkSwAAAAAAAAAAAAAAAKgerSdEGz/tgtLUEcbR3/DvW/AV6eY26a6jpD2bC1t/xe/8+xrHF7aml2nv8O/r7YxvHww35uCkKwCA8unrlnp3efc1tsa7V8O44P6550vpnsxndG+795gjrsy/T+ea6LUBAAAAAAAAAFDjCAsDAACoAEFhYWkRiuXFiRA1AAAAAAAAAAAAAACA0Ma/Jtr4cYeVpo4wJhyVf8yORdIj74y+9rZnpT0bvPv2PSf6ekGmne/ft/SaePfCEJy5AjCCdAWEZzbFHBYmSZfkCetc8FXpsXf794+ZKZ31SPAafXui1wUAAAAAAAAAQI0jLAwAAKAC1AX8tYxQLG+OA30AAAAAAAAAAAAAAADhpRrDj23Zr3R1hNU8Nf+YjXOlzvXR1l11i3/fqGnR1sqnrsW/b82d8e6FwdqXJV0BAJTPlnn+fY1t8e/X1CYd/HH//pd/JK3/m39/XYs06VTp1D/FXxsAAAAAAAAAADWMsDAAAIAKkLI63z7nCMXyQogaAAAAAAAAAAAAAABABJNODT923GGlqyO0kGdDlvxc6t4Wftn25f59Yw8Nv04YqQb/vvpR8e6FvXospcVj2vTMhH318piJ6jGOzAOocX2d/n3Nk0uz5z7H+Pelu4LnjpmVua+Iv28AAAAAAAAAAFA96pMuAAAAAFJKAWFhhGJ5co73BQAAAAAAAAAAAAAAILSGMeHHzri8dHWEddD7pRd/kH/cwm9IC78pHfN96cgrg8c6J634nX//ARdHqzGM5qnSnvXD27c/H/9e0EtjJ+l/Z52orrqBY/JNfb366NJ5OnLXpgQrA4AS2vSwf1+qRL82NP1S6cmPR5+3/wVSU2vm8YTXBo91aYnARwAAAAAAAAAA9uJfzQEAACpAnREWFlVa6aRLAAAAAAAAAAAAAAAAqC7v6gg3btYHS1tHGId+KsJgJz37JWnjQ8HDVlzv39d2kjR2VoQ9Qzrme/59fV3x7zeC7UnV62cHDw4Kk6Suunr9/OCT1FHHdbYB1KB0n7TkZ959Yw8p3b6NE6STfxN93qk5n8Vm0huu8x+7+rbo6wMAAAAAAAAAUMMICwMAAKgAqYArnzlCsTwRogYAAAAAAAAAAAAAABBRfYt04KVJVxFO3ajoc9b8OU//nf59U8+Kvl8Y9aP9+zY9Upo9R6iXx05UT8o7EKw3VafFYyaWuSIAKIOtT/r31Y8t7d4TT442fsblwz8XR8/wH7/i95FLAgAAAAAAAACgllVVWJiZPZC93W9mk4tYZ0ruWnHWCAAAUIiU6nz70o5QLC+O9wUAAAAAAAAAAAAAACC6fY4J7g8KtyqnpjapZf9oc179g5Tu8e/fs86/r/XYaHuFFfR+dwbUg2AeZ4d2NDQHTmlvaCpVNQCQnKDPklJ9tvULCvryMmq/4W0TjvIfv3NxtPUBAAAAAAAAAKhxVRUWJmm2pNOz98Hf5gZrzq7RfwMAAEhUyvz/WjaufkIZK6keU5umJV0CAAAAAAAAAAAAAABA9Zl+qdTY6t//xhvLV0sQM+nQT0ab07FaevBcqXe3d//Gh/znTj0r2l5hjT3Yv69vT2n2HAnS3cOaulP+F2yUpLSsVNUAQHL6Ov37Zn6otHvXNUr1Y8KP96qncR/J6r3H71gouXRhtQEAAAAAAAAAUIOqLSxMEt/SAgCA2nRQ82HD2kwpnTRudvmLqSBvmvA2z/Zz2y4tcyUAAAAAAAAAAAAAAAA1YMxB0lselPY7b3jfG66T9vM+q5GII78sHX+11HZi+Dnr/yYt/knEff5ZahgbbU4Uow/ybg8KeEEwj/euuy44LMxxCh1ALQr6LJl0Sun3P/7q8GNbpnq3vyUgzHPNXdHqAQAAAAAAAACghlVjWBgAAEBNekvrhbIhfz1744S3alRdhKuu1aA3jn+rWlKjBrUd3HKkZrYMD1cDAAAAAAAAAAAAAABACBOOlmbfKb3HDb4ddHnSlQ1mJh32aensJ6TzXg4/b929w9s61vqPHz0jcmmRNLV6t/ftKe2+taxn57Cm7lR94BTHNasB1CK/z5JxR5Rn/4YIZ1zrWrzbxx/uP2fbs9HqAQAAAAAAAACghgV/I1q7cl93b2JVAAAA5Dh27Cn6/6Z9VX/f8YB29+3S0WNO0OkTzk26rMRNaz5InzvgO5q7/W5t6F6rQ0YdqbNaL1a9NSRdGgAAAAAAAAAAAAAAAMpl7CHhx3ZtGd7W7dHWr9SBKn7hKH2dpd23lrUvHdbUnaoLnEJYGICa5PdZ4vfZE7e2k8ONaz1BSvmc+2zcx39e767oNQEAAAAAAAAAUKNGaljYxJzHuxOrAgAAYIjXjD5Orxl9XNJlVJxpzQfpvVM/mXQZAAAAAAAAAAAAAAAASIqZdNwPpac/n3/s9gXD23oDgrlajy+8rjDqmr3bNz5U2n1r2a4lw5q68oWFkRUGoBbt2eDd7vfZE7fRB0gzPyAtu9Z/jNVJr/lyYeu/+APpmO9n/h4AAAAAAAAAAMAIN1LDwt6UvXeS1iZZCAAAAAAAAAAAAAAAAAAAAIAQDv+c1Ngm/f2K/GO7tkhNbQPP+wLCwupaiq8tiN/6G+4v7b61zCMsrCdfWJgImgFQg165xru91J9tuU68Rmp9vbT2L1LXpsF944+QZlwuTX1z8BrTL5Ne/aN33/bnpH1eF0+tAAAAAAAAAABUsWoOC3NRBptZg6R9Jb1V0ldyup6PsygAAAAAAAAAAAAAAAAAAAAAJTLz/ZmbJK26VXr4Yu9xGx+SDrho4LlfWFiqQcoTMlU01xfQl5YsVdr9a1HH6mFN3Xn+O6bJCgNQi/Z5beYzbyjXU74aUnXSoZ/M3ArVMM6/b8McwsIAAAAAAAAAAFAFhoWZWcC34QPDJK0wK/gb29yJdxS6CAAAAAAAAAAAAAAAAAAAiJ+ZHS/pIEldkl50zr2ScEkAKtGk0/z7urYMft7X4T2ublR89fhpnurf17dHqi9DDbWmd/ewpq5U8NF4J9LCANQg8wlK3PpMeeso1uTTpVd+4d3Xs7O8tQAAAAAAAAAAUKEq8TJUFnALOy7fzWXXeEnSTaV7KQAAAAAAAAAAAAAAAAAAjFxm1mxmM3NuPmkGe8dfYGYrJM2T9CdJt0l62cweMbMjy1AygGrSPNG/b95HJecGnndt9h5X1xJvTV5mfci/r9cnxAzB1t49rKk7FfgRQ1gYgNq0YY53+6yPlLeOYk17h3/fyhvKVwcAAAAAAAAAABWsEsPCpIEwr1IxSfMlneec6ynxXgAAAAAAAAAAAAAAAAAAjFRfkLQke5sjKe030MzeJekWSQdo+EVCT5H0hJkdX+qCAVSZCa/179v2zMDj1bd7jylHWFjTZP++zY+Xfv9a5PqGNfXkCwsjKwxArdm11L+vZd/y1RGH+lHS1LO8+3YsKm8tAAAAAAAAAABUqPqkC/DwkPzDwk7P3jtlrhq4J+SaTlKXpO2SXpQ0xzn3cDFFAgAAAAAAAAAAAAAAAACAvN6hTNiXk/RL55zn+UAz20fS/ypzEVSXvfXHuvTPGS3pFjM7zDkX9vwggFrX1Obft+kxqfW4zOPR073HdG+Lv6ahmlr9+9oDgl7gr65Z6hv8UdCdLyxMpIUBqDFbnvDvC/rsqVSW8u9L90l5fs4DAAAAAAAAAFDrKi4szDk326/PzNIaOPRzqXNuZVmKAgAAAAAAAAAAAAAAAAAAkZhZi6RjNHDu788Bwz8tabwGQsLWSLpFUq+kiyX1p/xMk/QZSVeVoGQA1WjqWdKGOd59fbsHHqd7vcf0bI+/pqGCAs3SPaXfvxb1Dc+M7MoXFpabFdayX8wFAUAC+rr8+6aeVb464jL2MGndX737etulxvHlrQcAAAAAAAAAgAoTcNmNisUlnQAAAAAAAAAAAAAAAAAAqHxHS6pT5tzfbufc0wFj36eBoLCXJR3lnPusc+4L2XWezI4zSR8oWcUAqs+hn/Lve/bLA4/X3eM9Zto74q3HT12zd3tfZ3n2ryU+wW/decLC0rnH0DvXxlkRACTjxR/4940+sHx1xGXmFf59j723fHUAAAAAAAAAAFChqi0s7BvZ2zclleEyXgAAAAAAAAAAAAAAAAAAoEAHZe+dpBf8BpnZ4ZIOzhn7Nefcjv5+51y7pE/nTDnMzA6IuVYA1aphrDTpVP/+dF/mvmO1d3/LvvHX5GXSG73bCQuLbut8z+aePGFhjmtWA6glzkk7X0y6ing1jPPvW3uX1Lm+fLUAAAAAAAAAAFCBqioszDn3jZzbzqTrAQAAAAAAAAAAAAAAAAAAvqbkPF4XMO607L1Japd069ABzrl5knKTfl5bdHUAasemRwP6Hpb69khjD/XuL1fwSF2Ld3vfnoHHLj0QbgZ/OxcPa+qTqTdfWNjQrLC+7hiLAoAy66nBX6lpmiRZwK85bX2qfLUAAAAAAAAAAFCBqiosDAAAAAAAAAAAAAAAAAAAVI1ROY93BYw7NXvvJN3vnOv1Gbcw5/GBxRQGoMYEBYvcf4b0pxZp1/CAKUnSqGmlqWkov7CwZb+W0r3S/M9Kt0yRbp4o/f1DUm9neeqqRuk9w5q68wSFSZLTkLSw7q1xVQQA5de7O+kK4tc4Xpr0Jv/+uedlgjUBAAAAAAAAABihCAsDAAAAAAAAAAAAAAAAAAClkJvK0hAw7pScxw8HjNuS83hcQRUBqE0zLi987qRT84+JQ12zd3vPDunuo6XFV0tdm6We7ZkAsb9fUZ66qtG254Y1hQoLsyFhYZ3r4qoIAMrv+a8lXUFpvOE3wf1PfLg8dQAAAAAAAAAAUIEICwMAAAAAAAAAAAAAAAAAAKWwK+fxFK8BZjZV0sE5TY8FrFefO7WIugDUmoYi8gPrWuKro9B9dr40vG3VrVL3jtLVU802D/+oCBMWlh7asPGheOoBgCQs+3XSFZTG6AOlmR/07192bdlKAQAAAAAAAACg0tTnH1K5zOwMSW+WdKykyZLGK/jqg16cc25W3LUBAAAAAAAAAAAAAAAAADDCrcnem6Sjfcacm/O4S9LTAetNyHm8u4i6ANSagz8qLf5xYXNHz4i1lNj2cb3ShjnSAe8oSTlVbfxR0rZnBjWFCQtzQ3MmjetuA6hSLp251aoJrw3u3/yElGrM/hw3yUxSyvt+75jsvTzacu8HrZFn7N69AQAAAAAAAAAoj6oMCzOzsyVdrcFXEyz0X9hd8RUBAAAAAAAAAAAAAAAAAIAhnst53GpmZzvn/jpkzAez907SPOdcT8B6M3Mer4+jQAA1YvxRhc+d4JdlGLNp75AW/Eu0Oemu0tRS7bq3Dm9K5T8W74aeNu/rjKkgACizlTcmXUFpTb9Mevpz/v33nly+WkLJE1gWKXwsIADNb2zsAWghQtiSek2lqKHY9cKODXwNhQbVxfF+AgAAAAAAAKgmVRcWZmZXSvpe/1MNhH0VEvrFv2oCAAAAAAAAAAAAAAAAAFACzrmlZrZEmQuDmqSfmtlbnHPLJcnMviDp1Jwpt/utZWZjNPgCo0tLUDKAamUmnXSN9MRHos076ZflC0kYf7i079ukdfeUZ79atvauYU3ddXV5p7mhR8fX3Ckd+aW4qgKA8uhcLz16WdJVlFbL1KQriMhJzklKF/abTUCihgaPxR2+VuYAtEoOyQsbKBcqWC6m1xT2/RxUU6X8Gel/DgAAAAAAMLJUVViYmZ0t6fvZpy576/9XnQ5J2yUFXVUQAAAAAAAAAAAAAAAAAACUzzXKnPtzkg6S9JKZLZA0WdIBGjgHuEfS7wLWma2B84K9khaVqF4A1WrckQXMOTz+OoJMv5SwsGK5tGdzdypEWNjQMIGO1XFUBADltdo3XxcACkDYHapc1EC5UoavJRWSV5bXFHG9sGPLGZJXcaGDhN0BAAAAAApTVWFhkr6Xve8/HLRKmUNEf3bOrUysKgAAAAAAAAAAAAAAAAAA4OVHkj4o6TBlzv41SDpe2hv81X/h0B865zYFrHNRzvgFzrmu0pQLoGqNjxgWZilp7KGlqcVXxAQGR2LDML27PZtDhYUNbYj6ZwYAKsGi7yZdAQAAlaM/TNj1JVsHUJCI4WNRw9eqISSvEl9T2EC5YkPyShHUV7bQQcLuAAAAgCRVTViYmc2S9DoNfE/7hKS3Oud2JVcVAAAAAAAAAAAAAAAAAADw45zrNrOzJf1F0hHZZtPARUNN0s2Svu63hpmNkXSJBs4P3l+yggFUr8bx0tSzpPX3hRu/33lS88TS1jRU24nRxu9ZX5o6qllvh2dzmLCwtIb8Muvau+OoCADKq2Nl0hWUx0m/kp74UNJVAAAAlJAbCLojKxxVJ2KgXKQQtgoPlCv3aypFoFyxIXmJhw5GCOrzrB0AAKC6VU1YmKQ3ZO9NUlrS+wkKAwAAAAAAAAAAAAAAAACgsjnnVpnZMZI+JOkCSdOzXS9Jut45d0ueJT4gaVzO87tiLxJAbTj9Dum+06St8/3HNLZK0y6UXv+T8tXVr25UtPFPf046/J9KU0u1al/q2dydyn8s3nn9LmDPLqlhbJFFAUCZpHuSrqB8Zn1Q2vmC9OJ/Jl0JAAAAgGEIu0M18wswSzJQrogAtEoOyQu7d6hwvJheU1Hva8J/Rgi7AwBkVVNY2OTsvZP0jHNuSZLFAAAAAAAAAAAAAAAAAACAcJxzPZL+N3uL6peSfpuz1o646gJQY+qapXOelFw68wuLVpf5JZq+bsn1DoyxVDL11UcMC5Mk5/gloFwb53o2d6fq8k518ngfN8yRpl1QbFUAUB6bn0i6gvI69geZ297PcZf5jB9675yk/nufMYPuc8fnuw+zXs66Ycd61l5MDQHz/faO7f2M8r4WuV6+9zPp1wQAAACgCuT+XT/pWoACRA2UK2X4WlIheeV4TWED5QbVVGEhebG8r3H9GenvBxCHagoLy/1f/iuJVQEAAAAAAAAAAAAAAAAAAMrGOdcpqTPpOgBUEUtpUCBYXaOkxsTK2atpUvQ5q26R9jtHqh8dfz3VyKU9m0OFhXn9Isqe9cVWBADl07km6QqSUSmf40A+ecPIYghAK0Wg3NBawgaqRQ1fK0dIXkUGylXJawIAAABQHfr/jdz1JVsHUIiogXJhA8uqKSSvlK9p//Ok1uNL9B8PlaSawsJyv9XI/20uAAAAAAAAAAAAAAAAAAAAAFQKM6ntRGnLvPBzHnmntM9x0pvvlZraSldbtdi+wLO5K0xYmFdjz87i6gGAcunrlh69LOkqAAQZ9MueQJXZGyoWV/CZRwBa2EC5UMFyRYa6RQ1fKzQkrxID5Urxfib9mgAAAABUh9y/v5NbHb+W/QgLGyGqKSxsUc7jAxKrAgAAAAAAAAAAAAAAAAAAAAAKcdS/SXPPjzZn29PSC1dJx36/NDVVk5U3ejb3jJ2Zd6qTDW9c/jvpiC8WWxUAlN6qm5KuAABQy/aG3UlS/iBeoKJ4ht3FHYAWcb2wY0OF4yUUklcxgXIR3teqDMkjJQMAAABx8fgeDDWpasLCnHPPm9lCSUdJOt7M9nHObUu6LgAAAAAAAAAAAAAAAAAAEJ2ZTZM0U1KrpLGSzDl3XbJVAUCJ1Y8pbN6LhIUNuuL8EN2W/xcg0l5jmlqLqQgAymf938KPrWspXR0AAACVhrA7VLugILQkAtAKCparkEA5v9dQCYFyYd/PqgrJI+wOAICKYqmkK0CZVE1YWNZ/Sfq1Mv+P/QuSvppsOQAAAAAAAAAAAAAAAAAAICwzmy7pc5IukDTdY8iwsDAzO03SGdmn25xzPy5dhQBQYq3HJ11B9erb49vVVdcgqS9wuuevLzaML6okACibbc+GH3vCT0tXBwAAAIB4mUlG0B2qVOgQshBhbn4BaKUIlIslWK5CQvLCjiUkz2MdAKg1+S+sg9pQVWFhzrnfmNl5ki6R9CUze9Q5d0/SdQEAAAAAAAAAAAAAAAAAAH9mlpL0LUlXKnPBUK+Tqn4n8zdL+vf+fjO72zm3tARlAkDpNYxNuoLq1dfp29U9+gCpd0XgdGceHz0BawJAxdjxksNsAmcAACAASURBVLTtmXBj9zlGmvaO0tYDAAAAAICUCbuTSZZKuhIgumFhYiUIQAsbwhYqHK/IULdYQtiqJFAu0vtapa8J8OL1PRhqUlWFhWVdIalBmasK3m5m35P0Q+fc9mTLAgAAAAAAAAAAAAAAAAAAQ5lZg6S7JJ2pTEjY0FAwp4DL3DrnXjSzOZLOyI59jzLBYwCAkWTbs75dPan8x+I9EykJCwNQDV78fnD/vmdL9aOl1uOlgz8uNU4oT10AAAAAAADVirA7VLO9QWclDEALGyhXcLBcmHC8MofkFV1DCQLlorz+5qlF/9FCdaiqsDAz+1r24QJJp0iaKOkrkj5vZo9LekHSNkmRohCdc9+Ms04AAAAAAAAAAAAAAAAAALDXLyW9RXtPvcokPSxpjqRuSd8OscbNyoSFSdJbRVgYgGqWapDSPdHnda6TWvaNv55qsWORb1eX+vJOd165lF1bi6kIAMpjw1z/vuN+KB3+ufLVAgAAAAAAACBZe8PuJKku4WIAlFtVhYVJ+ncNvqhT/6GhUZLenL0VgrAwAAAAAAAAAAAAAAAAAABiZmZnSnqfBs77vSLpPc65+dn+6QoXFnaXpJ9k1zjBzJqdc3tKUzUAlNjR/y4t+Er0eUt+Jr12BB97TvcOa3p57EQ93nagVnQvzzvdmUdY2I6FmautWyqOCgGgNHYH/IybUuiv0QAAAAAAAAAAgGpTC99q9l9psBAe3/gCAAAAAAAAAAAAAAAAAICYfD17b5JelXRKf1BYFM65VyVtzz5tkHR4POUBQAIO+URh8xZ+S1r03XhrqSZb5g16+tz4qfrxIW/QvLYDQk1P+3Vsf764ugCglDrW+veNmiZNeG35agEAAAAAAAAAAImqxrAwi/EGAAAAAAAAAAAAAAAAAABKwMxaJZ2igYuCftY5t7mIJV/IeXxoMbUBQKIa9yl87gs/kNI98dVSTVb+adDT+6YcrLSFPw7vzOf4+NJriqkKAErr1T/49514jeT3sw0AAAAAAAAAANSc+qQLiOiMpAsAAAAAAAAAAAAAAAAAAAChvFEDFzXd6Jy7o8j1coPGJhe5FgAk65BPSkv+J/q8nu3SzsXShNfEX1OlG/8aacciSZkEyuVjooWuOb+O3vaiygKAktr8d/++5onlqwMAAAAAAAAAACSuqsLCnHNzk64BAAAAAAAAAAAAAAAAAACEsm/23kmaH8N6u3Iej4lhPQBIzqwPFhYWJklbnhiZYWHpnr0P+8yUtlTA4OGczLtj3X3FVAUA8du+SHruq9LW+VLHav9xE44pX00AAAAAAAAAACBx0b4hBQAAAAAAAAAAAAAAAAAACKc15/G2GNZryXnc4zsKAKpB6/HS0d8obO4TH5baV8RaTlXYtXjvw+5UXeTpznzCwjrXSNsWFFoVAMRr9yrp/jOk1bcFB4VNPEUq4GchAAAAAAAAAACoXoSFAQAAAAAAAAAAAAAAAACAUtiZ83hsDOtNyXm8NYb1ACBZR39NOu8l6fgfR5+78ob466lkLj3oaXeqPvoSQZ3Lfxt5PQAoidW3Sl2b8o/b/+2lrwUAAAAAAAAAAFQUwsIAAAAAAAAAAAAAAAAAAEAp5KYcHFLMQmZWJ+nYnKZ1xawHABVj3GHSYZ+Sznwg2rwtT5Smnkq1Z+Ogp92pOt+hJ4w93bM9bea//rZnCyorUM8uqWtL5t4FRpUBwICnPhtuXMt+pa0DAAAAAAAAAABUnOiXVAKAWtO+XFr8E2nHC1LbSdIRX5QaxiRdFQAAkKSendJDF0sb7s88n3G59IbfSEGHNwEAAAAAAAAAAABUiuez9ybpMDOb5pxbXeBab5M0KvvYSfp7scUBQEWZdJrUNFHq2hxu/KpbpLkXZs5RNE4obW2VoK9j0NOgsLCmVLNnu1PAeZOOVQWV5al9uXTHzOHtx18tHfbp+PYBMLLt+7akKwAAAAAAAAAAAGVW9WFhZtYg6Q2STpM0S1KrpLGS5Jw7M8HSAFSD9hXSfadKndkLja77i7T2LumsR6S6pkRLAwBgxOvtkG4cP7htxW+lLX+Xzl+cTE0AAAAAAAAAAAAAQnPOvWhmayTtr0xg2BckfS7qOmaWkvSv/ctKWuCc2x5boQBQCVL10ux7pAfPlbo2hZuz5g7p4YulMx8obW2VoGfX4KcFhYUF2BXTWRSX9g4Kk6SnPiM1T5GmvyuevQCMbC1Tkq4AAAAAAAAAAACUWSrpAgplZqPN7KuSVkmaI+mbkq6QdL6kMyTN9pn3bjNblr3NN7OAS0QBqHlLfzkQFNZv63xp7T3J1AMAAAas/5t3+64lUveO8tYCAAAAAAAAAAAAoFC/z96bpE+Z2VkFrPFdSSfnPP+/oqsCgErU9nrporXS2fOkC1dIl/VI+54TPGfDHKljTVnKS9Tmvw962h0QFtaY8r5YrMt3bHzXK5HLGmbz48H9K34f3A8AYRxwSdIVAAAAAAAAAACABFRlWJiZvVbSU5K+IWmyMoeIwrpTUpukGZKOlVTIwSMAtWLRt73bX/iP8tYBAACGW32rf9/KG8pXBwAAAAAAAAAAAIBiXCVppyQnqU7S7Wb2sTATzWyimV0r6crsfElaL+lXJagTACpDql5qO0EaPT3zePpl+ee0Ly19XUP1dkjr7pOW/lra8KDUsba0+6XqBz31CwtrsEbVybvPebbm2LWkgMJytK+Q/nZ68Jg1dxS3Ry1pXy4tu1Z64fsDF/5tXyZ1rE60LKAqjJmZdAUAAAAAAAAAACAB9fmHVBYzO1LSXEnjlAkJc9n7/sCwwO9xnXPtZnajpA9lmy6RdG9pqgVQtbbMS7oCAACwfaF/34YHpYM/WrZSAAAAAAAAAAAAABTGObfVzD4j6Vplzvc1S/qZmV0p6SZJg9JlzOxESYdJequkCySN0cD5wD5JH3TOdZenegCoAPudm39Mb2fp68i16D+kBf86vH3qW6XTbpIaxsa/554Ng576hYU1pppk5n0daufTvldvR0GlqXODNPc8aev8cOM3PyFNPKmwvWpB5zrpzsOk3l0Dbc9+efCYyadLb7pNapxQ3tqAanHgPyRdAQAAAAAAAAAASEAq6QKiMLNmSX+WND6n+XlJH5Y0U9IRGjgUFOT2nMdnxlYgAAAAgPi4tH/fq9dLc86Vdr1SvnoAAAAAAAAAAAAAFMQ5d52kb2vwBUJnSfqSpP/OGWqSHlcmWOw9kvrTZvovIvovzjkuDgpgZGmelH/Mhr+Vvo5+q+/wDgqTpPX3SvM/XZp9F3xl0FO/sLAma5b5HCdP5ztm/vKPCipNj707fFCYJN17spTuK2yvWvDIuwYHhXnZOFd64iPlqQeoRm0nJF0BAAAAAAAAAABIQFWFhUn6jKQZGjj4c7Wk45xzv3bOrZC0J+Q6czRw4OggM5scc50AAAAAitU8Jbh/3T3SfW+UureVpx4AAAAAAAAAAAAABXPOfU3SBzVwzq//HGB/gFj/zTRw0dD+592SrnDO/WfZCgaASjL5TcH9WyIEVRVr9a35++MOwkr3DGvyCwtrSDXJfI7I93/waPRB3vtsXxC9tq6tmWCrqLY8EX1OLdizUdr0SLixq26W+sL+egAwgow7POkKAAAAAAAAAABAQqotLOzTGvie9jbn3D8559JRF3HOtUtakdN0RAy1AQAAAIjTuMPyj9mzIXPFWgAAAAAAAAAAAAAVzzn3G2XO6/1UmdCw/lAw0+CQsP62tKTrJB3hnPttGUsFgMoy+fTg/uZJ8e7X0y6tuVva+JDU1z24r315nrk747/wW+e6YU1+YWGN1igb9HEywFm2fbfPa2jZv4Da1kjRj7NLL18dfU4t6FgTbfzulaWpA6hmuxYnXQEAAAAAAAAAAEhIfdIFhGVmR0rq/wbWSbqyyCWXSuq/LNRMSQVc0glARXBOeuV/pTV3Sg3jpYOukPY7O8S8Ag5nAACAMnL5h0jSU/8kzbyitKUAAAAAAAAAAAAAiIVzbqWkT5nZlyS9MXs7QFKbpEZJmyVtkPSYpPudc9uTqhUAKsb0y6QX/0vq6/DuX3mj1Nsh1Y8qfq8t86UHzpJ6sj9+xx4qnTlHGrWf1LVV2hjiyHXXJql5YvG17DX8DEmPX1hYqklm3tfTdv0hYvufnzlzOtTOF6OX1tsZfY4krb+3sHnVroPwL6BoB16adAUAAAAAAAAAACAh3t+EVqZjsvdO0kLn3LIi18s9QDS+yLUAJOnpz0tPfkJae7f06h+kB8/JHHzJJ91bXD8AAIiPc9LOJVJfV05byGDPnhh+N6BzvbT+AcJEAQAAAAAAAAAAgDJxznU45+51zn3NOfdB59wFzrlznHPvc859wTl3M0FhAJA1/kjpzXnCpV64qvh9nJMevnjwWYxdi6UnP555vOBfwq2z+CfF15Krb8+wpu6U9zWzG61Jqf5QsCFcf/P0y/z3ciEvbtdv44PRxvfr3ial+wqbW82e/GTSFQDV74BLkq4AAAAAAAAAAAAkpJrCwiblPF4Sw3o5KQSK4TJaABLRvUNa/OPh7Y+8K/9clycMrLe9sJoAAEA06++Xbt1P+vOh0k0TpIXfyR68jHj4shC9u6XrTbp1X+mBM6U/1Emv/F/p9wUAAAAAAAAAAAAAAIhi0qnS0d/w7193T/F7bHlS6lg1vH3NnVK6R1obco8dLxRfS66+zmFN3ak6z6GNqSaZX1hYf3tdi/9eUWvfvtC73VLS+a8Ez936VLS9akHnmqQrAKpfPb/+AgAAAAAAAADASFVNYWHNOY+7fEeFNz7n8a4Y1gOQhNW3Ss7nympr7g6emy8srIcfDQAAlFzHGumBt0h71mee9+2RnvuqtPIGKZ3nszoOt88Y3jbvY1LH6tLvDQAAAAAAAAAAAAAAEEXbCf59W+ZlLpg25xypc11h629+1L+vt8M7SMxLe56QrKh6I4SFWZPMvI/IpyXp+Kul1tf779W1MVptDWO8211aGjMzeG7UvaqdK+DCgc9+OfNnD8CAfY5LugIAAAAAAAAAAJCQagoL25zzeGIM6+V++7olhvUAJGF3wMGTuW/PHLbw4xcy1q+3vbCaAABAeEt+5t2+/DrplZ+HX2f3yuh7u7TUtdm77/H3R18PAAAAAAAAAAAAAACglKackX/Mur9Kt+4nbV8U795hg8KkzEXaVt0S3959EcLCUk0ymWefSzVKB75TGn2A/15Rg9bW3efdXtcimUkz3uc/d8Xvo+1V7Xa+FH3O6lulG0ZL3TvirweoVi1Tkq4AAAAAAAAAAAAkpJrCwtZn703SscUsZGZtko7IaYr58lUAysbn6m97bQq4yl26N3huz67o9QAAgGgWfce7fe3d0daZe370vf2CwiRpw5zo6wEAAAAAAAAAAAAIxcwazOxNZvYVM/uVmd1mZveb2f1J1wYAFa2uWTrpl+HG3n1UARt4h2xJkp77WrSl5v2jlM5zUdewtswb1uQXFtZgAWFhY2ZILftmntSP8d7rpf8XrbZ2n2Po/SFhp/zWf+6rf4zvPaoGz3yp8LmLvhtfHUA1O/DSpCsAAAAAAAAAAAAJqqawsMckpbOP28zszUWs9SENfJu9W9L8YgoDkKBUY3D/ypv8+1yesLBewsIAAJBLS1vmS8t/J7UvS7oaf9ufk/Zsijana2tpagEAAAAAAAAAAADgycxGm9lXJa2SNEfSNyVdIel8SWdImu0z791mtix7m29mAWk2AFDjRk1LZt+oF17r2pw5zxGH7m3Dm3zCwhpTTTKfC9G6VP3AE/Oer9728HXtCbhQXe764w7zHxfXe1QNNgdcADifF6+Krw6gmjWOT7oCAAAAAAAAAACQoKoJC3PObZP0ZE7Ttwo58GNm+0v6siSXvd3nnEsHzwJQsfJ94bn6Fv8+l+dqbFEOfAAAUIv6uqSHLpL+eoL0+OXSHbOkF/8r6ar8PfvP0cb3dZSmDgAAAAAAAAAAAADDmNlrJT0l6RuSJmvggp9h3CmpTdIMScdKOivu+gCgarSdFH5szy7p5R9Lj71feum/pe7the/bU8DcF6+S+roL37NfXfPwcvzCwqxRKZ+PGOdczgI7vPdKNYWvK+g9GXf4wONJp/mPe+AtnmFoidv4iDT/M9LcCwZuc86VrrfM7U+jpA1zw6/X21n863zio9Kq24pbA6h2k96UdAUAAAAAAAAAACBBVRMWlvWjnMcnS/p5lMlmNkXSHZL20cBBox/GUxqARPR2Bvd3rPbvS/cGz+3ZFb0eAABqyZKfS2vuGNz2zBel7YvCr7FlvvT4B6T7TpMWfEXq3R1riYMs+3W08X15/h4Rx2FVAAAAAAAAAAAAADKzIyXNlXSIMmf3+tNaTCFCw5xz7ZJuzGm6JO4aAaBq5LvIaq4bx0lPfUZa8Vvp6c9lg6l8QrJK4dU/Sg9fLKV7ilunfemwpm6/sLBUk8zniLxTzvWlZ33Ye6/tC6Sw16H2CxyTpAMuHnh8+Of9x3VvlW5qrazAsBXXS/efLi3+sbTmzoHbunsGxvR1SvfPll69If96fXukuW8vvq6l10gPXyQ99/Xi1wIq1a5XgvunXVieOgAAAAAAAAAAQEWqqrAw59wfJT2bfWqSPmJmD5tZwOWWJDMbbWYfz849RpmDRk7Svc65R0tZM4ASyxfyEcTlCQvzOFwCAMCI8vKPvNuXXhNu/pb50v1nSMt/I216RFr0XWnO2VK6L74ah9qzKfzYvj3B/UEHOgEAAAAAAAAAAACEYmbNkv4sKTfd5nlJH5Y0U9IRChEYJun2nMdnxlYgAFSjKWcUNm/rU9LKGwMGhPlxPMTsu4P7194lbXw4+rq5Vvx+WJNvWJg1ycz7daT3ZlVKmniK/35b5oera81d/n1NrQOPxx+Rf60Vfwi3Z6m5tLTgX8MHpj16af4x6/4qbZjj33/6ndLk08PtJ2XOIJUz9A4oJ78ze5J02GelhjHlqwUAAAAAAAAAAFScqgoLy3qnpC0auLLgqZIeNLM1kq7LHWhmPzOz+yVtkvQ/kqb0d0laK+nyslQMoHT6OvKP6Wn3bnd5gkpe/VP0egAAqCW7l3u3v/zf4eYv+ZnUO+RzeNOj0sbs4b90nuDOQtwyOXwYWb7Q0bV5DrMCAAAAAAAAAAAACOMzkmZo4Mzf1ZKOc8792jm3QlKeq/zsNSe7hkk6yMwmx1xnVTCzBjObbWbvN7N/NrNPmtlFZjYj6doAlNH+FxY+9+nPxVeHJDW2SaMPCh6z7i/F7dF6wrAm37CwVJPMJ/TM5QZgNU7w32/TQ+Hq6t7q31fXMvh5vvdo/ifD7Vlqu16Rdr8abU5XwPsg5Q+LG32QdMz3w+/neqXNj4cfD1SToP+9NE8tXx0AAAAAAAAAAKAiVV1YmHNumaTzJK1X5tBP/+GffSW9MWeoSfqYpNmSmoeMXS3p7c65zWUrHEBp7FqSf8zOl7zb8wWUjD8yej0AAIwUq+/IP2bZr7zbHzgrc7/5sfjqybX46nDj8oWFLfl58bUAAAAAAAAAAAAA+LQGgsJuc879kxuU1hKOc65d0oqcpiNiqK1oZjbTzC41sx+Y2YNmttPMXM5tRUz7TDKznypzdnKOpN9I+p6kn0i6RdJyM3vUzC6JYz8AFW7mBwqfO/TCb8VqPVaaembwmC1PxLun8oWFeR+Rd3s/jiRNPj1g8R3hiujr8u+zITVMfXO4NZO288Xoc9bfF9zfscq/r3mqNP4IqfU4qbE1/J5x/zkGKsX2Bf59U2aXrQwAAAAAAAAAAFCZqi4sTJKcc/MkHSfpHmnvpZ9czr3LeZ7bZ5Luk3Sic+65MpQKoJR2LpZe/WP+cbuXe7e7PGFhXVui1wQAwEjxUPYKtek+ybnh/em+/Gus/1u8NfV7+vNSmN8t6MtzgfLenfHUAwAAAAAAAAAAAIxQZnakpP01cM7vyiKXXJrzeGaRaxXMzGab2V/NbEu2pj9K+qKk0yWNLcF+b5O0UNInJAUlqZwi6SYz+52ZjY67DgAVpHF8cYFhfszyjxkq1SAd9W/BYzY+JO1eWVhNkrT1yWFNfmFhDdYkk/frGBQW1tTmv9+ib4er6xWfC9GN88izzPceSdLOl8PtW0oPvSP6nEcvkzb5XDSwt1NaeYP/3BN/nglWSzVIJ/w0/J6d66PVCFSDbQG/4tIwXmo7qXy1AAAAAAAAAACAilSVYWGS5Jzb4Jx7u6QTJP1Omavlmc9tpzJXzjvDOXe2c45vB4Fa8OJV4ca9/CPv9rxhYRuj1QMAwEjz8D9IN02Qbp8hLfru4NCweR8Lnnu9SQu/VbraNjyQf0xfZ3C/CxF4BgAAAAAAAAAAACDIMdl7J2mhc25Zkettz3k8vsi1inGMpLcqOLgrFmY2W9JtkibnNDtJT0m6UZkLqG4eMu29kv5gZlV7RhRACCf/WnrT7dLog5KrYfp7MvejD8w/dsX1sW2bltSTqvfsa0w1KeUTeuaGXnxuWkAwVue64CJ2Lvbvm3jy8LbR04PXk6Rl1+YfU0rtRXxML/EJ+tpwv/+cKWdI0y4ceD79UuncheH2W3NH+NqAavHKL/z7TrqmsEBHAAAAAAAAAABQU6r+IIhz7inn3Pudc/tLOljSGZLeKek9yhzGeZ2kNufcO51zcxMsFUDclv4y3Li+Pd7t6TwBIF1botUDAMBIs+omqbdd6lgpLfiK9JfjpI410sobpWW/Sra2J/KElUlSX1dwfyVcrRUAAAAAAAAAAACobpNyHi+JYb3cL/lGxbBe3LokLY1rMTObpsyFUhtzmh+V9Brn3Oudc+9yzr1V0jRJn5XUkzPufEnfjqsWABVq2gXShcuk9zhp/FHl379l6sDj1hOCx26ZV9geHmdAe63Od3ijNcl8jsg7ucENzZM9x0mStswPrivo9TRN8m5vO7HwNcthcxH7+9X+0g/954w7fHjbhNeE+7M89pBwdQHVJOhnQNDPKwAAAAAAAAAAMGJUfVhYLufcMufcXOfcLc65Pzrn/uace94NuwwUSsnMGsxstpm938z+2cw+aWYXmdmMpGvDCOUXFuZ6g+ele4L7AQDAYNuele6YJT3yrqQrkXYvzz/G5QkOlaQdLxZfCwAAAAAAAAAAADByNec8znM1n1DG5zzeFcN6xeiR9KykayT9o6TjJY2V9JEY9/iGpH1ynj8m6S3OuUFfZDrnupxzV0sa+mXt581seoz1AKhkU84IP3brM/Hsuf953o+9rL41/4XdvPR2DGvqTgWEhaUaZTLPvvTQsLB9z/Hft3trcF19w+vaaz+fdfc/P3jNDQ9I8z8tORc8rlSCXtNRXwueu3uFd/uGB/3nTDrNu/2kEBcT9jsbjJFpzZ+le0+R/tgo/aFOumGM9MDZ0rbnkq4smq6N/n1tJ5evDgAAAAAAAAAAULFqKiwMGWZ2rZm5mG4rIuw7ycx+Kmm9pDmSfiPpe5J+oszVDZeb2aNmdkkpXjfga4/PF6f5wsLy9QMAgOHScZzvL5MwYWHzPlr6OgAAAAAAAAAAAIDatTnn8cQY1puZ83hLDOsV6jeSxjnnjnXOfdQ59wvn3NPOudiuTmhmh0i6IqepW9IHnHO+6SjOuduytfVrkvT1uGoCUOFe85XwY/9ynLRnk0eHd8iWpyO+JE2enfP8i9LUs4LnPP7+8Ov36+sc1hQYFmZNMvM+Iu805PrT0y703/fvHwiua/si/77c9yXX4V+QJhwdvO7in0gLIvy3jNPzAR8ZR39dmnG5f3+6R0p7ncUJCD6b8mbv9oknSvue7T9Pkpb9KrgfI8eGB6WH3iFtfjzz59Clpd7d0vp7pftnS7tXJV1heLtf9W4/8B+kusby1gIAAAAAAAAAACoSYWHIZ/g37B7M7G2SFkr6hKTWgKGnSLrJzH5nZqNjqA8jVU97+LFdmzNf/A6VzhMGlo7t7B4AAEiCx5VlB/H6+8GwNUL9dRgAAAAAAAAAAACAt/XZe5N0bDELmVmbpCNyml4pZr1iOOe2BYV2xeQ9knLTcG5xzi0JMe/7Q56/y8ya4ysLQMVqCjq+62HJzwvb54gvSectlo79vmQ54WL1o6TZ92RCbfysulnq2hptv+0LhzUFhoWlmmQ+oWfODQmuspQ05mD/vTvX+/dt+Jt3e+sJg9+XXPUt0jnPSAflCU174T/CnWuJk3NSx2rvvn2Oy7xXp1wnHXOV/xob7o+2Z12Tf98Zf5He9kzw/HzngDEyLLvW/6KR3dukVbeUtZyC7XzZv2//88tXBwAAAAAAAAAAqGiEhSGfm/MNMLPZkm6TNDmn2Ul6StKNku7T4CtEStJ7Jf3/7N15nFxVnf//96nurl6TdBKSdMhOQsK+KvsOggiKKCIyoIgC44o6+B39OeMyo6Mzysyo48Io7gqoA4qIsu/7JmsCIQnZ973Xqu46vz+qOl1dfc+te2/t3a/n41GPrns/Z0tTqW4edfI+NxjX0V1APhscmyw8Wakv5yDR3a9L956epxubCAAAY5jnSZ81pneTf921SSzb+IXFWQsAAAAAAAAAAAAwNj0qaTDtZLIx5rQCxrpc2pP+0iXp6UIWVgPOz7n+aZBO1trFkp7IutUq6cxiLQpAFYs1SE3Tgrd/8Yvh55hzUTokbPy+jjXUSTPOc/e3A9KuJeHmHOgaccs3LMw0ucPC5BHA1TrLPffOl921iY4MzF2L3X2k9PfIL1BtUNeq/G2KacDnQL1U39Dz6T4/UrZ5/GiO+4TY1Y/zX9PEw6RFV7vrvT5hbhg7drzoX9+Zp14tPIIR92ieUb51AAAAAAAAAACAqlZTQU3GmIOMMfdmHvcYY6bm7zVijGmZvoPjjMZ//X+NpHkRHrmfPFtJP/GbyBgzU9LNkuJZtx+RdKC19k3W2guttWdKminpaknJrHZvl/TVCH8+QOpdH679PTn7DP/k2KiSLZVMn5QGAMBYlL3Jr1blQO51gwAAIABJREFUCwvz2gCaa+WNRVkKAAAAAAAAAAAAMBZZa7dLeirr1r8aY7wTXHwYY2ZI+pzSe9qspLustQE+8KtNxpgOSYdm3epXel9eUPfnXJ9d6JoA1IiZ7wzXfsQeyTxv0XXN+cfc+61SrNFd9wul8tLfPeKWb1hYLK6Y4yxjK489oX7fM7+19o8MMZMkGffa9pgWIDszyCF4xTTQ6651vGXoefsh7nZe+2wS29ztff477jHd50dYf8jXEkafVFLa/qx/mzW3lmcthervdNemnFC+dQAAAAAAAAAAgKpWU2Fhkq6SdIqkkyUlrLX5/vX/CNbajUoHVg2Oc0UR11cVrLVbrLVvhH1IOiNnqPustcvzTPcVSROzrh+VdEbmdMLsNfVZa78j6cKc/p8xxsyJ8MfEWJdK5m+TbWfWaUu7lwXvN3r3FAIA4C/sz9pSOfI70v7XSB1nSAd+QZr17uB9d7zgX+fnPAAAAAAAAAAAAFAO3856foykH4bpbIyZJulWpfepDabY/Gdxlla1Dsq5fsFa60il8fRozvWBBa4HQK044lpp77cFb7/0B+HGr2vJ36ZxsnTKn931V74Rbk6P/R+usLA61avO1Ms4Qs+s1wGyCz/unnv5z921NX/wvr8gwNb0+hbp1Dv826z+ff5ximnZj9y1ff9+6Lkx7tfYjhelvq1D1zuXuMc8/FvB1jX5Te5aZ4j9wBidnvts/jZ9m6WulaVfS6H8/ix1cXcNAAAAAAAAAACMKbUWFnZe1nOfT1/zGuxrJJ1fwDijhjGmWdJFObevz9NnX0kfyLqVkHSZtdZ5tJS19g8a/t+uUdKXwq0WULQT0wY3eezy2XyQq3d9+HkAABgNbH+lV5DejLnw49Lh35ROu0s69KvS0ddLk48J1n/Jtf71oL9P9G4O1g4AAAAAAAAAAADACNbaGyX9LXNpJH3YGPOQMeZEv37GmFZjzN9n+h4myWYed1prHynlmqvAATnXr4fsn5uekjsegNGqvjUd1PXOtdJJt0qn/NW//ZISZS92nC41tHvXNtwdbqxtz4y45QoLi8fSgTqusLCUPA6WMzGpZab33BvvCbbGbEEC1SRp2mn+9ZW/DT93Id64wV2rax5+PeNcd9t1fxl6vuZmd7umqcHWlTt3tvV5AtcwutmUtPLGYG1f/3Fp11IMfY49ahNyM2QBAAAAAAAAAMBYVl/pBQRljNlH0uAnsSlJtxUw3J8kDUiqkzTPGDPbWruqwCXWugskTci63i7J5xNaSdLFSn8PB91srV0aYK5/1/CQsQuNMR/1CxkDRogUFtYvmQYpsSN4n61PujeBAAAwmqUqGBY27XTpqOukcfNH1uITpLc8LC3/ifTklf7jNO7lX7ceG0C9bH9Omn5msLYAAAAAAAAAAAAAvFwg6XFJkzPXx0u63xizQTlBWMaYH0haKOlYpQ+jNEqHhBlJayVdWqY1V9KCnOuw+xtX5lxPNsZMtNZuL2BNAGpJy97pRz6dudmCeay9VXrz/wRrm3Ts1WycEm7OcQukjfcOH9oVFmYaJUnGeJ+nbWW95+he432/ZZZ7XfGJUsLjbbUn4CG1sTzb+B1/hpJJ+Wzjbpo2/Lr9UHfb7NfUbp/XV1vujzoHv7CwusZgY2B0sFbq2yp1r5b6u6TmDql3Y7C+L39VGr+fNPEwacIBkvEOFKwYv31s/bsjDdlvk1rZu0y9A10ji8ZoZuNcTaifFGlsAAAAAAAAAABQOTUTFiZp8EgUK+lVa21n1IGstZ3GmFc1dFrewQq/mWa0+VDO9a8DhHedn3P90yATWWsXG2OekHR05larpDMl3RqkPyApWljYQJ8Ua5D6NgXvU8mgFAAAKskmyz9n2wJp0dXSoo/7t4vVSZOOyD9eYpt/PejvE7tfJywMAAAAAAAAAAAAKIC1drkx5lxJt0iarqHwr+mSOrKaGklXZj1XVts1ks611m4py6Irqz3nOsSGpz17JHslNWXdnqD0IaIAxpqD/ll66V/d9ac/IR357XQ4Vb4Anb2OCT5vxxnShrtH3u/bHHwMSeod2T7hCguLZcLC5P3nsNYRFjbpTdK2p0fe3/GCe11eQWGSNOUEd59ck4+Rtj7uXdv2dDocqVyhRrtedddyQ7n2OtbdtmfD0POBHne7yUcFW5ffnz/M4cGofgO9UtdqqXuV1LUqHQq253nmq99rKp/HLkl/bZwsvfVZqXV2cdZdDAM+/2xj1gWhh3u561ldv+6b6k35f7+OHHeCPjD9atWbhtBzAAAAAAAAAACAyqilsLA5Wc9DHmPlaZmGwsKq6JOe8jPGzJd0Us7t6/P06ZCUfSxUv6RHQkx7v4bCwiTpbBEWhjAihYX1SA1t7g0axZoHAIDRoJyBmft/Vjr8P8L1mXCQVNciDXS72/idTir5n8iY7cUvSQs/GnxtAAAAAAAAAAAAAEaw1j5pjDlC0k+U3i8mpYPAsr8O66J0SJiRdJekD1hrN3i0G43acq6jJGP0aHhY2LjoyxlijJkqaUrIbvOLMTeAiA75F/+wsNf+R2o/VFrw4fxjte0TfN79rvEOC5Okbc9Ik44MNs6aW0bcWjx+qmfTBpMOtYop5lm3cuwVWfhx6fHLvGtdq0aGCrlCxySpZaa7lustD0s3+mznf+M30ry/Cz5eVP0++2+O+dnIe8ak//tte2Zk7fUfSkf9IP3cFew087z0YYFBzbpAWv17j7muk476YfBxUDk2JfVuGh781Z0JBBt83hsqGzW6vq3SIxdJZz5anvmC2PGSuzbv0lBD7e7fqevW/pv6bf79f8/sflgd8Zk6Z6+LQs0BAAAAAAAAAAAqp5bCwrI3quwswni7sp6PL8J4texyadgRWs9aa/+Wp89BOdcvWGu7QsyZ++nagSH6AtECTHYtkZqmSIkQbyEBPigFAGBUKufPQBNi89+gukZpxtulVTe526T6pGRnOizUu0GwufrGwsHkAAAAAAAAAAAAQOlZazdKOscYc6SkqyWdLmm6o/lOSfdI+q619oEyLbFa5H7I2RthjB5JE33GjOqjkr5UpLEAVIs1fwwWFtbUEXzM+maf+W4NHhbmYVdDo+f9eCwuSTLDtkUPsZ7ZlJLqfNa67i/SvlcNv9e10t2+rsldyxWrk479lfTYJd71tX8sT1jYxnvdtfhE7/ttC7zDwqR0MJSJucPCxi0Mtz7n3h9UjWTn8OCvEaFga6RUotKrHLLlMalnvdTs+jW0zNb92V3ze3/y8ErXc4GCwga90PkkYWEAAAAAAAAAANSQWgoLy/60sBjhXtnhYwNFGK8mGWPqJH0g5/b1AboekHP9esipl+UZD/BnI/y1TSXTX/t3+bcrdB4AAEaDwZ+b5RAlLEySjrleSvWmN6y6rLtdmnOhdy3Mz3lr06eiAgAAAAAAAAAAACiYtfYZSe+XJGPMPpJmSZosKS5pi6SNkl621gY8AWjUc6TbFL0PgNGq/WBpx4vuevfqzJM8eyPmvC/4nBN8zhHuXhVsDMfBshMT3iFUb/QulSQZxx4PKytr7cj6xEPda+hZN/Je7yZ3+9Y57pqXsHOXwqYH3bX2Q7zv+4UR9XenA75cYWEhw4/U7fg+NLSHGweFSe5Ov1Z2viR1rR4eBpbYXunVhffg+dIJv5NaZ1V6JdJAt7vWOjfUUDv7t4Vqv71/a6j2AAAAAAAAAACgsmopLGxL1vOQn6J6mp31fCx/wvFWSTOyrnsk/SZAvwU51wE/td8j90itycaYidbaGvykEBURKSysL/01sbO08wAAMBqEOF2wYHufHa1ffat00h+kxA7p945TTHvWuvuH+XcFvZuk5mnh1gcAAAAAAAAAAACMccaYcZLmZd1aZq3tym5jrV0uaXlZF1b9OnOuQ6aqePbJHRPAWHLgP0mPvNdd3/G8NJDIP06YvRONk9215T+TjvxuOlDKjyNsKhHzPphuVuM+kiSjmHNIKyuTG4o2bqF7DbsWj7zXu8Hdvink/hK/ULXNj5T+gLsl/y0t/qa73jbX+/68S6XV/+ddG+hJ/7fd+qR3PWxY2Kx3SRvuHHk/uYMDAMtl12vSPaf578WqNVufkP44Wzr2l9K8Syq7lpU3umt18VBDJWxfuPap3lDtAQAAAAAAAABAZbk/Ca0+g2FURtLBxhifT5D9ZfpmH3M0ij61Cu3ynOv/s9buCNAv9ygmnyOyRrLWdkrK/WRpQpgxvBhjphpjDgzzkDS/0HlRAVFCvPoz+93W3FLaeQAAGA1SyfLM0zRN2uvYwsaI+5wSuuUJdy3Mz/mBrvxtAAAAAAAAAAAAAOR6n6TnMo8nJTVWdjk1o5rDwr4v6aCQj/OKNDeAqOZcKB3zU/82y6/3rzdOCT/vgivdtcXfyt+/K/ds4rSkIyxsUUt6e/iIMLAsVnbkTWOkjjO8O6z63ch7z3/BOb5iIc/yNkY69Ovu+uaHw40XRn+P9Oyn3fX2g901v5CzDfekvw44QojChoWN29dd23R/uLEQzZNX1U5Q2P6flY6/KXj7xy6V+raVbj359PdI3Wu8a3MuCj1cIhUyLMz2KRXm0E0AAAAAAAAAAFBRIT+NrKjHJfVJiisdGPYxSf8ScayPaigorV/SIwWvrgYZY6ZIenvO7Tyf9O+Re5SX99Fd/nokNWVdj4swRq6PSvpSEcZBtYsS4rX+TmnWu0s/DwAAo0Gqv7jj7XWc1LtJ6nx9+P2T/ySZImQYTznBe3PkqpskOU5eDLPJaceLUts+kZYGAAAAAAAAAAAAjGF7SXsSW56y1lYwiaGm7My5DpXQY4xp08iwsCCHiOZlrd2kkIeLGuMO7QFQRvtclg5pesQRPrP+DqnjTHf/+tbwc8Ynumvr75AO+bJ//80Ped5OOMLC4rF0JqXx2YtilZLk0d9vramkFGsYuu5c7t0ubAjWoOYOd239HdLUE6ONm8/qm/3rcZ+zvf1eD1secYevSVJd3H/eEXO1uGvrbpemnRpuPITT3+X8u1gyjVOk1tlSy+zM11nS2tuChcO1zkkHJG56QFr6/WDzbbxHmv2egpYcmd/3tj73n2zkl7DeYWHt9ZO1o3+rZ63fJhU3ZPoCAAAAAAAAAFALaiYszFrbZ4x5SNLgJ4fXGGNusda+GGYcY8xBkj4r7TkW6hFrbVcRl1pL3i8p65NrLZP0QMC+uZ88OY5+8tUjKfuT9fCfZmHsihLitfE+affr+dtlSxEWBgAYo2yRw8IO+Jw04xxp+9/Sp4dO2F+adrpUH3GTZK62+e6TVK1Nn8I64n6IsLBH3ie9tzva2gAAAAAAAAAAAICxazD0ykpaU8mF1JilOddzQvbPbb/NWru9gPUAGC0mH+Wu9Wz079v1RoT5jnbX+rbk7z+Q8LyddISFNZh0CFVM7pBCa608y37hV/1dUrx96Np4z6+BKGcvq/DvU1Rv/Mq/vtcx7lqTT8CZTUkJ71AiSVLrPP95c7Uf4q4l+PFWcontxT18ua45Hf41LAwsKxSsZZb3nrLdrwcLC5vzvvTXee8PHhZWyr9nhczt93fQIZHyDgtrqxvvDAvrS/XuCVsEAAAAAAAAAADVrWbCwjK+pXRYmFU6WOovxpgLrLWPB+lsjDlK0u8ltSr9Ma/NjDlWfTDn+ifWWuvZMr8o/aLOBUT70LlzWXrDRhgp740mAACMeqlkccebfJRkYtKkI9KPYvP7Gb/1Ce+NU2F+nxjoSW9k9Dl5FgAAAAAAAAAAAMAI67Oexyu2itqzOOd6Qcj+++Rcv1LAWgCMJm0+IU1bH5fmXuyu+wWNuUw/y13rDHD46/KfeN52hYUNht0Yv7Aw1/bleZdJy3/mXdvymLT32ZnJd0n9u73bLbjKOa+v8fu5a69fJx31w2jj5rP+r/71fS5317wO7hvUuUzqXOGuh30t1be4a2v+IB3943DjIZz+MAcsGql5eib8a5ZHGNhsqXGy/+vHOXTAPo2T0l8nvzn42Ovvkvb9SPg1FcPmR921me8MPVzCusPC3H16JU0IPRcAAAAAAAAAACi/mgoLs9beaYy5X9IpSgdN7S3pQWPMLyVdJ+mp3LArY4yR9CZJV0m6VFJDpq+V9JC19vay/QGqiDHmGEkHZt0akPSzEEN05lx7HN+TV26f3DGj+L6k34XsM1/SH4swN8op1R+t39YnwrVfd5u0/2eizQUAQC2zEX/WurhOVC2WRZ+QVv/eu/bsP0hnPuJRSIWbI7lr+CmxAAAAAAAAAAAAAPJ5Keu5T0INcryUc32IMabFWhs0reP4POMBGMuO+G/p2U951zbe4+7nF2jlUt8iHfUj6ckrvOs9G6TmDu9aql/a8YJnKdHQ6nm/waRzKY3PYXAp136RtrnOPnr200NhYa5AMUmaeb675seYdDCXIxxN3WullhnRxnbJd770KbdL4/f1bzP/CmnZj0beX3+HNNDr7ucX/uWy78ekpd8beb9va/ixEE7XG+7afv8gTTx0KAyseYZUV6p82ACHPO517NBzE5Mu7JbuOUXa+qR/vzW3FLSygni9riUpPikdrBZS0nFQtl9YWF/KO2AMAAAAAAAAAABUn5oKC8u4SNKzkqYrHfhVL+myzKPLGPOqpO2Z2iRJCyW1ZfqazH0jabWkC8u47mrzoZzrv1hr14XoX5VhYdbaTZI2heljopxMhMqzA9H6PRXy1Ke6CBsSgCAG+qStT0lN06RxC6KdkgYApbT0B8Udr2SbwDKmnOCubXlUWnubNOPc4ffD/j6R2EFYGAAAAAAAAAAAABCCtfY1Y8wLkg5ROvBqhrV2baXXVe2steuzvm9Sep/kCZLuDDjEKTnXfynS0gCMBvGJ7trmR921tgXR5muZ5a5tvE+a+z7vmiMoTJKSjjCwPWFhcu/Hs66QrPpxzj7a9Wo6XMsYaeO97nYNPmPk4xcKtPE+ad4l0cf20r3Gvz7pTfnHiDV432/qSAecOfs15h97RB+fvUelCFPDkM7l7tqhX5PqIvz3jMInBHCPaacNv65vls7KHDR9y0ypx+d1mdxd2N/hKPxC+5qmRhoyYb2Dv9rqJrj7pHzC/QAAAAAAAAAAQFUJ8IlJdcmEQb1V0koNhX8p87xN0pGSTpd0Rub5uExNGgoKe13SWzNjjTnGmFZJ7825fX3IYXbmXE8JuYY2jQwL2xFyDRjLooaFhcXmAZTC5kelmzuku0+Ublso3fdWqT/owa8AUCar/694Y008TGpwn0xYFPk2gz3w9pH3rOOkWJe1t4ZrDwAAAAAAAAAAAECSvpv5aiT9SyUXUmNuybn+YJBOxpj9JB2ddatLwUPGAIwFU09y1/z2Zs46P9p8ex3jriVztyMHqyVi3udlx2MBwsLk2C/SOMm9FklKJTOTb3e3mXSE/xh+/P67+H2fokrm2bbdFGBreK9jK74x/nt5ohyuOvFQd60U3x9k8fnvVa6gMClYWNiiT7prs/OcM5/cHW49xTDgE9IVNSws5QoLcweh9TkCxgAAAAAAAAAAQPWpubAwSbLWvqR0ENiNGgoAs1mPPU2zHkZSStIvJL3ZWru4nGuuMu9ROkRt0EZJt4UcY2nO9ZyQ/XPbb7PW+nx6DuQoV1hYuebB2DGQkO4/Z/hGmw13Ss9/oXJrAoBiudhKh/7b8HumTjroi5VZT67ckxjDhoUl2FgIAAAAAAAAAAAAhGWtvV7Sn5Xew3eZMeb/VXhJteLXkrI3L73LGLNvgH7/mHP9W2utTxIFgDGnba67ltjmrk04MNp88Qnu2sob3LVdrzpLSUfYVNykg4uMzxZ5K+us6eCvuGtdK9N7TzY96F1vmibVNbn759PxFnft6Y9HH9fFL/Ts8G8FG2P2e7zv96yXdr/mXZv/oWBj59r7HHdtw93RxkQwG++r9AoyAvzTF7+ALb8gMUl6+qPhllMMAz3u2n7XRBoy6Qj+aow1q8HEPWuJFL8qAgAAAAAAAABQK2oyLEySrLXbrbUXSzpA0n9JejFTMjkPSXpe0rckLbLWXmatHev/yj/3U9ZfWGv7Q46RG7a2IGT/fXKuXwnZH2Nd2cLCQoaIAPlsuNP7RL7X/qf8awEAl1TYXw2zHPh56cSbpXkfkPb9iHT6fdFPli22dbcPPe98Q+pZF67/RjYWAgAAAAAAAAAAABG9T9ItSu/p+7ox5g5jzKkVXlNVs9YulfTzrFtxST8zxjiTaIwx50m6LOtWQpJP8g2AMWvBleHaN06WHAFdgUw+2vu+K3hLkl79juftlKR+ee9taYilg3BiPmu1uYfNZXOFX0nSsh/5BpjpgM+5a0HUNUqTjnTXu0Puc8lnzR/dtUWfCjZGc0f4eaedEb6PJDWMd9de/HK0MRHMqpu8708+qrzrMHn+6cvJf/Kvt82Vzv6bu77mj1Lf1tDLKsh2n/WMXxhpyEQq4Xk/HmtUPNboWetLeQeMAQAAAAAAAACA6lNf6QUUylr7mqR/kCRjTJukaZImZ8pbJG201nZVaHlVxxizUNIJObevjzDUSznXhxhjWqy13QH7H59nPMAfYWGoVW/82vt+6MxGACihKJt/9rl86Pms86snICzbA+dKJ/1RevC8aP39NqgCAAAAAAAAAAAA8GSM+Unm6S5JuyWNk3SGpDOMMbuVPgx0U6YWlLXW5h6aWVbGmJny3oOZm5xSb4yZ6xim01q7xWeaL0k6X9LEzPVxku42xnzYWrskay2Nkq6UdG1O/2uttSt9xgcwVsUnhexQ4PnUfnsx+7uk+taR9+vbPJsnY+7t7w0mHYRjfNZr5bOW+ER3becr0pZHovUNqsknfGvLI/5hZmEN+OwPitUFG6NpWvh5o36fYg3uWn/Q7euIpL41/fc0V7m/7/kCC4O8tsYvkkydex/6lsekGeeGX1tUu3LPb8/S0B5pyIT1/rsdN3E1miZ1efzKnbC9keYCAAAAAAAAAADlVzNhYcaYDknZx888bK3dlt3GWtspqVPSsnKurcZcnnP9sLXW55grb9ba9caYFyQdkrlVr3QI2Z0Bhzgl5/ovYdeAMc71IW0sLjlORIo2D2FhKDJeUwBqQWJn+D4LP1b8dZRC1KAwSWqbX7x1AAAAAAAAAAAAAGPHZZJs1rWVNJj2MF4jD7/Mx2TGqGhYmKSHJc0J0G6GpBWO2s+V/v54stauMca8S9IdkuKZ28dLesUY84yk5ZImSDpC0pSc7rdJ+ucA6wMwFnWcIb3yjeDt84X05NN+sLTtKe+aKywssW3kPUlJ4w4CazDpt0oj93pTw34k5Wj2Ceta92epy/V2rvT3tFAdZ6Tn8RJlP4+f9UXYuj1uYfg+U8P+2M8wRqprkgY8Qo1SfZK1hb9O4c0VCtaU+6tHqeUJLZz05vxD1DVJU06QNj3gXfcKRSulVNJda44Qxicp4TgotCHWqHis0bPWlyIsDAAAAAAAAACAWlHgMU9l9S5Jt2Qev5bkc5wRvBhj6iS9P+f29QUMeUvO9QcDrmM/SUdn3epS8JAxIM32e9/f53Lp2F+mP8gNY+6ljgLBTiiyVb+t9AoAwF9ip3Tn0fnbZVtwpTTpiNKsp5r4bc4CAAAAAAAAAAAAEIbNesCHtfZ+SedL2px120h6k6QLJZ2lkUFhN0i6yFrXiYwAxrxpp4bsUGAI06Kr3bV1t4+8l0pKnd5nRyf2+4RzqMEgHOMTGmXz/ejpeIu7tvMVd61lhv+4QSy4wl170qcW1ro7pM7l3rXJIfYNRQnn8gqGC+rI77prz302+rhwsz6/rvn9vS4Fn6BATT9bqou769mO/La7tuGucGsq1MtfLfqQCev9z2ziJq54rMm7jyNgDAAAAAAAAAAAVJ9aCgtrV/qTZiPpKWttmY9tGRXeJml61vVuSb8rYLxfS8reTPQuY8y+Afr9Y871b621HEeDcFz72GL10rxLpLc8FG68Ou8PP2UJC0MRJTsrvQIAyO+5z0rda4K3n3m+/0a80YR99AAAAAAAAAAAAEBUpoiPMcdae7ukgyT9UNJ2n6aPS7rAWnsxeywB+DIx6eAvl2++xr3ctSX/OfLeJvce0GTrLGctbtJhQcZni7zNty+043T/upepJ4fv46W+VRq/n7veva4487zydXet/eBwY00MccDgxMPDjZ2r/RB3bcm10kCisPEx0o4X3bXGqeVbhyT1+/xqM891aLSHiYdK8YnetWWFnMMekrVS31bvWsT3lJRNqd96H4gZjzWq0TR61hL8Uw4AAAAAAAAAAGpGfaUXEMK2zFcraX0lF1LDPpRzfWMhG4KstUuNMT+XdHnmVlzSz4wxp7vCv4wx50m6LOtWQtJXoq4BY5grrMPUhR/rqOukbc865iEsDEW05pZKrwAA/PVtlZb9yL/NzPOkRZ+Stj4lTTo8vTEp1lCe9VUcvxcAAAAAAAAAAAAAEcyr9AJKwVo7t8zzbZL0EWPM1ZKOlzRHUoekLklrJT1nrV1RzjUBqHF+oVS5ejcWNpcrmEeSkrtG3tv2jLN5It4u9XjXGmLpsLCYT7aklXWvRZKaOvzrXhqnhO/j0jpH2rXEu7b9Wall78Ln2PSAu+YX7OalucM/xjLbQIGBRM15/tvsfk1qP6iwOTDczpfcteZp5VuHJO1a7K41Ti7OHOMXFWecIPo2F33IpHUH5sVNo+Ix78O1E6m+oq8FAAAAAAAAAACURi2FhWUHhLVWbBU1yhgzTdI5Obd/XIShvyTpfEmDn+IfJ+luY8yHrbV7Pqk2xjRKulLStTn9r7XWrizCOjDWpAKEhZ2/Xrplev6x5l8hbf+Ya6LQSwOcXv/fSq8AAPwt/WH+Ngf/izTxEGnaKSVfTtXpWZ8OEjXu02cBAAAAAAAAAAAADMf+sOKy1iYk3VfpdQAYBfZ+W/nmqm9217pWSv1dUn3W9vDeDc7myYmHSD3eB3fGTaMkyRi/sLA8+0Knn+Vf9zLj3PB9XPZ+m7Tja2WdAAAgAElEQVT+Du/agCMlrZjC/ln2fpu07vZgbSe/Ofx6srXOlpr3lnrWeddtf2HjY8hAr3STz99bSWrbpzxrGeQXNjf1pHBjNU2VEh4pd7teDTdOIRI73LWpp0Qb0if0Kx5rVGOs0bPWR1gYAAAAAAAAAAA1o5b+lftz0p6jnBZWciE16gMaHg73krX2yUIHtdaukfQuSdnH0Bwv6RVjzFPGmJuMMX+VtFrSdyQ1ZLW7TdI/F7oGjFE2QFhYc0ewE56MkfPt0I7ysLANd0tPfFh69BJptffmGRTR5of96zbPiYUAUGov/FP+Nu0Hl34dUR385eKMM/Fwd23JfxVnDgAAAAAAAAAAAAAAgEpqGCcd/ZNgbaedXvh8R37HXXv4vcOvl/yns2ki5r3f08io3jRknru3yNt8+/SaO6QFf+/fJte8S8O197PvR9y1l75a+Pjda/zrU44PN96Cq4K33e8z4cb2csLv3LVVPjWEky8orBL8wsLqmsKNdcDn3bUN94QbK6pH/85dW3BlpCET1icszDQqbry/Twnr870FAAAAAAAAAABVpWbCwqy1qyQ9LslIWmSMITAsnA/mXF9frIGttfdLOl/S5qzbRtKbJF0o6SxJU3K63SDpImtdiU9AHkHCwiTpnMXBNheYMRgW9sZvpHvPlJZdL73xa+mhd0mLr630qkavno3524zm1xuA6rfmT8Ha+Zy8WnFz3qf0r6EFmnKCu/bcNdLuZYXPAQAAAAAAAAAAAAAAUGlzLgrWrnGvwuca57P1e92fpZ4N6eedy93tZp6npE14lupNg0xmX4vx2T+SUoBDPfe5LH+bQU3T3HtQo4g1SOP29a7teKHw8V/+RuFjZIvVS4s+Haxtw7jC52s/xF1bVrTt8WNbYnv+Ns0zSr+OXGEDwfzE2921Fb8o3jwuyU5p29Puen1rpGETKXdYWEOsUY0x7+9hn08/AAAAAAAAAABQXWomLCzjm47n8GGMOV7Sflm3EpJ+Vcw5rLW3SzpI0g8l+X1C+LikC6y1F1tru4q5BowxQcPCjJGOCBCAldtvj1Ec3vTSv0q5m15e+lcp1V+R5Yx6O54P0GgUv94AVDebkh58R/52M99Z+rUUYvxC6bgCf8096jopPtG/zas+J90CAAAAAAAAAAAAAADUiqDhO/XNhc/VOtu/vmtJ+uvOV9xtWmY7w8LipnHPc+MT3mWD7NNrmZW/TZS2QSV3ed83MckGCDvzs/R77lp8UrQx8/23laRYPB2sVijnfl9JvQEOdR1LOpdLa2+XUiHP9l57e/42PWujrakQ++SenZ7Rfmj4sVp8XrN+70HF0rXCXTMxqb4t0rBJ6w79ipu44rFGz1oi1RtpPgAAAAAAAAAAUH41FRZmrf2DpJ9IMpLONcZ8zxhTX+FlVT1r7SPWWpP1aLTWbinBPJustR+R1CHpNEkflPR5SZ+U9G5J+1hrj7XW/l+x58YYFDQsLCjXxhA7SsObutcObazJltwpbXqg/OsZC4J8cO96XY9lyd3SGzdIL35F2nB34RudAHh76iP525h6ad+Pln4thZp7sXRhxEza0++VFlyZ/2TG1wgLAwAAAAAAAAAAAAAAo4Ax0rTT8rerK0JY2Pj9pPH7u+v3nColdki9m91tZp2vRMo7LKwhFt/z3Mg4h7BB9qC17C01z8jfTpJmvTtYuzA6zvC+b1PSQAlDffb/bLR+M96e3lvkZ/pZ+ffkBBF1n/BYsuUJ6TdGunW+9MA50o310r1vCd5/oErPA59+lnfA4ewLwo818TB3rXtN+PHCevIqd23WBVIs2us8kfIJC4s1qtF4B0QmfELGAAAAAAAAAABAdampsLCMqyR9W+nAsL+X9DdjzAeNMZMruywMstYmrLX3WWt/Zq39hrX2u9bam621PkfgACHZfu/7RQ8LG6XhTa5T5yT/jTaIrr8zf5vR+nqLqm+rdPcp0qMXSy9+Ob1Z5ZmrCQwDSuH1/83f5uTbpOkhNo1VUn1L+MCwU++Upp2afh4kLHS0BooCAAAAAAAAAAAAAICx5c0/zN+mGGFhxkin/Nm/zaN/Jz1xubs+7VRnqE3cNO55HvMLC1PA/Wdvfcq/buqlBX8fPWDLz6JPuWsv/FP0cfPtvYv6Zxk3XzrxZv82x/482ti58u0T3vRwceapVX1bpTuPGXl/w93Ssp8GG2PbM/nbtM4Jt65iaJkhnfwnqWlq+trUSfOvkA74fPixjJH2/3/etd4N0dcYxBs3Slsec9eP/nHkoRPWO0wxpjrVmXo1xBo9632pEoYQAgAAAAAAAACAospzhE91Mcbcm3W5W9I4SQdI+nGmvkbSpkwtKGutPb1oiwRQHq5QpVjUtzVHWFgqGXG8KucXShXxNCrk8ZxjU0E2gmeGu+9safuzw++99l1p/uX+p7oBKL4D/0na+6xKryKc+pZg7c5fJzVPz7kZ4P246w2pbZ+wqwIAAAAAAAAAAADGHGPM+4s4nFV6f+BOSRskLbGWU8cAoCCNk/K3KUZYmCS1zZOaOtxhPOtu9+m7QJKUTHmH4TTE4nueG5/ztG2QfSFSej/JxVbqWiWtvllqP2To+2Bi0oQDpIZxwcYKy+/7vfIG6Yhro427a4l/vZD9ozPf7q7NukCKT4w+djbX4cCDVv9emnpCceaqRRvucdeeuFya/8H8Y2x+JH+bptz9VmXScYZ0/vr0a7llVmF/B9sPdtd6NkrN06KP7Wfxf7hrsYaC/kyJlCNMMRMS1mi8w8Jc/QAAAAAAAAAAQPWpqbAwSadIw45zspJM5iFJszKPoJt/TIi2AKqJK+wq34lhLq5+G+6KNl61S+xw16J+D+Fvx/P52/iFuI01256RtjlOZlz6A+mo68q7HmA0S+zM32a+z4mtta6hfeS9VID3423PERYGAAAAAAAAAAAABPMzlW6fXpcx5ilJP5d0k7WWpAMACCtIiFP3muLNN36ROyzMT32rJCnpeKtvMFlhYcZ4tpGkVNiMydbZ0n6fCtenUK1z3LUge31cdr8WvW8QU06UNj808v5+ny7eHD7/bSWlDwAcy4rx33ji4dLOl/3bHPb1wueJajCsr1Ats9y17lWlCwvb/py7Nm5hQUO73h/jmZCweKzJs95newuaFwAAAAAAAAAAlE+eo3VqgvV4ABjtejd7348adOV3CtPAKNxDuP6v7pqptRzJGjDgfZLhCISFDXnhy+7ail+VbRnAmJBvY9e4fdOnutaieJ6Tb2Nxqc5jA1SQ9+Ntz0RbEwAAAAAAAAAAADB2mRI82pQ+hPSnkpYbY84s258GAEYLE2A7+dSTijffvPdH65c57C5pvffjxWONe54buQOlrFLR5i+nhjapaap3baBbCht4Jkk7XpQefKe7fuS3w4+Zy+u/7bh9pclHFz52UJ0ryjdXNcq3BziVzD9GMkAg3ZQTg62nmk05zl3b/Ghp5sy3J33eBwoaPpFyvT+mwxQbs94nh/cjLAwAAAAAAAAAgFpRi2FhxdwoBKBWdTk+zI8aFuZ36t2WEn3gW0l+36e65vKtY6xY8q1g7WwNbEIql3W3+RTJBQWKKt/Jr6feUZ51lMLh3/Svx9u9TxuddX7+sV+p4OmYAAAAAAAAAAAAQO3J/mAu6MGgQQ4RHbxvJE2X9BdjzMcKWCcAjE0Hf8W/3jyjeHPNvzz/ng4vmRCdRMo7bKfBxPc8Nz5b5G2t7D877jfu2oa7wo1lrXT7If5tFn0y3JheFnxYOvxaqWVW+hC/jjOl0++TYhH39kax44XyzVWLlvxn/jZr/+Rff8eK8v43LZVYg7v27KdKs6f3lW/41/e/pqDhE9b7/TFu0iFh8ZjHwZqS+hzvqwAAAAAAAAAAoPrkOTqmulhrazHcDEA5hQ0La5mdv19yd/T1VKsNd1d6BWPL818I1s4OlHYdo8VAT/p0O7+NGgCC693krtU1S23zyreWYtv7HP96wwTv++2HSG3zpc5l/v0TO9KBYwAAAAAAAAAAAAD8fDDzdZykL0qarHS4V0rS45KekrRK0i5JcUmTJB0s6URJHZm+VtJNkv4qqVlSu6QDMm3maHho2H8ZYxZba+8t6Z8KAEaTpmn+9foiH0K6/zXS8/9feh9YUJmDUBM24VmOZ4eFeR0el1EzYWHxSe7ail9J088MPtaO5/3rbfODj5XP/p+R9vt0+r9tXTx/+1Lo7yn+a7Zm5Hl9r71NOuAfow2932ekI66N1rdaNYyXkru8a9v/Jk06orjzrfU7SFfeB1+G4AxTjKXDwhozoWG5UhpQv02q3rAvFwAAAAAAAACAakf4FoDa43dSU3+39/39P+t9/8hvp7/Wt7nHTHlvLKlpWx5112x/+daB4QgLC+73k6SXvpY+8RBAYfp8wsLOebl86yiF5mnStNPc9clHed83Rjrlz1LrXP/x+7ZGXhoAAAAAAAAAAAAwVlhrfy7pUUkfUzooTJJ+JGmetfZ4a+2nrLX/aa39sbX2+9bar1pr3ytppqR3S1qhdAjYeyTNsdb+0Fr7DWvt+6218ySdK2l5po1V+hDVUZZkAQAlNvsC//qEg4o/Z/th4dpngqeSjj2dDbGhYKqYzxZ567cHtZqMX+SubXkk3Fiv/Lt/vbnDvx6WMaUNCtvrOP96Ynvp5q52+V7fuxbnH6Npqvd9v0Mpa9VEn/ehfAdNRtG9xl0rQmhfwnqHhQ2GKcZjTe6+jqAxAAAAAAAAAABQXQgLA1B7Bnrctakned/f5zKpoX34vQkHSR1npJ/H6t1j7loSank1L0VYWMXUyiakatDfKb3wT+kHgMK4NnHNfKfUNq+8aymFY38pNU4eeb+uSdr3o+5+4xdJ71guTTrS3YYNUgAAAAAAAAAAAEBexpgWSX+QtEhSv6T3WWuvstau9utnrU1Za2+RdIikh5Xe7/glY8xlOe1ul3SEpOeybh9ijHlL8f4UADDKNU6Wmmd41ya9WWqcVPw5F34seNv2Q/c8dYfhNO55bmScQ1nVyAGV9S3uWudyacPdwcZ5+RvSyhv92yy6Ovi6qkG+187Ge8qzjqqU5/Xdt1Xa9Zp/G9d+sulnRltSNfPbP/bwhVLv5uLNNZCQeje464MHYBfAFfgVj6XfHxsJCwMAAAAAAAAAoOYRFgag9uxe6q41jPe+P+EA6Yz7pLmXShOPkBZ+XDr9XqmhLf98626Pts5aZQkLK6oN9wZvawdKt47R6uV/k9aOsb+jQLG5Nnc1TSvvOkqlZW/prCfTwaHjF0lt+0iz3yOdepc0Jc8po8ZIB3/FXR9ggxQAAAAAAAAAAAAQwL9I2l/p9Ip/t9b+Nkxna22XpHdJ2ibJSPofY8yUnDa7JV2gdBjZYErGKEy0AIASOm+F1H7I8HvTz5bOfLQ08+3zgeBt9/v0nqfJVMKzSUMsvue5Me6wsFSthIVJ0sl/dtfuDZCJ2bVSev7z+dvNeHvwNVWDuRdLR37HXX/s/eVbS7WxAV7fT3/CXeta6a6Nlv1k2ea817/+4peLN9fK37hrcy+VZpxT8BRJ6/3+OBimmB2qmKvP9hY8PwAAAAAAAAAAKL36Si8AAEJL7HDXWue4axMPk477Rfj5tjwWvk81y7cRgMCq4rr39OBt+d5H88wnpRlvq/QqgNq15RHv+01Ty7uOUmrbRzrmp9H6TjvVXRtggxQAAAAAAAAAAADgxxhTL2kwsaNP0r9HGcdau8UYc52kz0tqlnSxpG/ntFlhjPldpmYlHR913QAwJsUapLc9X+lVeKtv3fPUFYbTkBWCY3zO07Y2Vbx1ldr4hf71rtVS6yx3fXnAPbMxd4BQ1Zr/ofTeQZeuVVLr7PKtp2oEeH1vuk8aSEh18ZG19Xe5+9W1RF9WNRu3UNr9mndtg8/3I6z1d7pr8y8vyhSJlPfhlw2Zv+ONsabQfQEAAAAAAAAAQHVxfxIKANXK78PShnHRxhy/f7R+1aK/K/19WfdXqb87T9tO/3qqv3jrGuuSu8O1r6VNSNWkc5m0c3GlVwHUpsR2qXeTd61xFIWFFaLOvUFKia3lWwcAAAAAAAAAAABQm06QtJfS4V1PWmu7Chgre9PQOx1t7sh8NZJmFjAXAKAcDvpSsHZ7HbPnqSssLG6Ggo+MjHMoqzwHrlaT1nn+9c7l7lpiu/TiF4PNY9zfr6pV3yK1+ISB9Y3RfT35DhSWpFTSvZc4sc3db9Lh0dZU7fY61l3bvbR48/h+b48szhTWO/ArnglTjPsEA/alODgTAAAAAAAAAIBaUPNhYcaYw4wxXzTG3GWMWW6M2WGMGTDGeKbdGGPajTGzM49p5V4vgCJY9uPijznTtX+wBuxcLP1poXTfWdL9Z0u3zvcPTlr1O//xLGFhRZPcFa69HSjNOsaC7jWVXgFQm1bf4q41ERYmSTIx98bCJ64o71oAAAAAAAAAAACA2pP9Ydu6Asdan/V8jqNN9qaZiQXOBwAotf0+lb/N+P2klqH8x0TKOwynISsExz8srIYO9YzV+ddf+Gfv+72bpN9PCjbHcTeEW1M1OfSr7lpyZ/nWUVUChuE9/THv+3/7R3ef+tbwy6kFiz7pX9/yZHHmWX+Huxb1sOwcrvfHwZCwetOgmLzfV1xBYwAAAAAAAAAAoLrUbFiYMeZgY8zdkp6R9CVJp0maK2m80qcCuj7lPVXSisxjqTGmpfSrBVBUfZuLP2Z9c/HHLJfHPyj1ZO2l7N0gPXapu/0TH/Ifj7Cw4gkb/kVYWHS1eLIhUA2e/ri7RljYkAn7e9/v3SB1rijvWgAAAAAAAAAAAIDaMj3reaEJE4N7/YykDkeb7VnPGx1tAADVIt4unfJX/zZHDz9gNmET3kOZ+J7nxhhnYJi1AcOUqsWiq921zQ9JPetH3l96XbCxT7pVmntRtHVVg7mXuGtr/li+dVQTGzAMb+WNI/c9da1yt+84I/qaqt2kI6Qj/stdd4XyhTHg/b4lSTr064WPn5F0BH41ZL0/Nsa8f0XuS/UWbR0AAAAAAAAAAKB0ajIszBhzmaTHlQ7+yv0kN98nuH+UtCrTr1XSu4u9PgAom+510tYnRt7f9ozUs2H4PZuSdr2Wf8wUYWFFMxD2lK0aOrGw6hAWBkQy0OOuERY2pNHne7H2tvKtAwAAAAAAAAAAAKg9u7KeH1DgWAdmPe90tGnKeu7zgSgAoGq0H+hfbxqeD5lMOcJwYvFh186wsLxbzavM5KP865seHHlv+fXBxp759vDrqSZ+h4wmd5RvHVUlxOt7433Dr1/2Ca0yddGWUyumnOCubbw7eAiby/Zn3bWGcYWNnSWRcoQpZgWExY13WFiCsDAAAAAAAAAAAGpCfaUXEJYx5t2Srlc6FWTw0yyjdADYNkmH+fW31qaMMTdJ+n+ZW++Q9MvSrBYASmzXYp/aq1JzZpPMur9Kj10i9W3NP6YlLKxo/EJ4vNiB0qxjLNj+nNRxeqVXAYwufgFZY43fz9tVN0mLPlG+tQAAAAAAAAAAAAC1ZU3mq5G0jzHmaGutx8l4gVya+Wqzxs3VkdVmc8R5AADl1DLTvz5u/rDLpHWE4eQE4BjF5HWAZ6rWDvWc+U7/ejIrl7N7jfTa96SulfnHnXpSYeuqdqbm/plEkYQIC0vkBKqtvMHdtv3QaMupFRN9/nw2JfVulJqnRx8/++9prmmnhhqqN9Wj+7b/SSt6XlNHfKZOnni2NiXW66ldD2hF76uefbLfH+OxJslju/LtW2/SQzvu0NT43jpq/Mma0ThH9+/4s5b3LFEylZQk1Zk6zW1eqJPaz9bkBvYXAgAAAAAAAABQCTX1KZgxZrqkn2cuBz/J+r6ka621K4wxcyUtDzDUH5UOCzOSTi7yMgGgfBLb3bXBU/K610j3nx18TAKrimcg5ClbfO/TbISTG1/9trT/NcVfCzCWNU6q9AqqR8fp0ranvWsD3qfVAgAAAAAAAAAAAJAkPSApqfReRSPp+8aYE6213WEGMca8V9KZGto3eJej6RFZz98It1QAQMUc9b/Sk1eOvH/syPOgdw/s9ByiwcSHXRtjPHOTbJgwpWpQ3yLNe7+04hfe9Rf+WVpwhdS9TrrrRKnrjWDjvun7RVtiRU08PH3YaK5lP5aO/lH511NpYfZfPvcP0v6fST9P9UtJ779bkqQFHn8/R5NYg3TgF6SXv+Zdv/M46e1LpVjEf37z+v+6a+P3DzxMMpXQd1d/eU8o2EtdT+vu7X/I2y8eGwoLa4w1erbZnNygzckNWt67RI/vutc51tKel/XUrgd1zexvaFLDlMBrBwAAAAAAAAAAxRGr9AJC+qKkFqU3DaUkXWit/bi1dkWmHvTTraeU3oAkSZONMfOKu0wAKDLXh/c7XnD3MbF0vz/MCjdXKpm/DYLZ+WK49rbGTiwslSjfh27XgcEAnFb9n3/d1Nr/KpRQ8wx3je8TAAAAAAAAAAAA4GSt3SXpNqX3/FlJh0m6wxgTeEOLMebDSh8yarPG+ZWj+VlZz5+PsmYAQAUsuEI67Z7h9854SJp3ybBbKZ8DORtiOWFhMp7tbC3u0zv25+5a70ZpIJEOEwsSFNa2QDpvpdR+YNGWV1F7HeuuRTm4tOaFfH13vpH+uuUx/3bNHZFWU1P8DqztekPa8mj0sVc79uo1TpGM93uVl8Xdf9sTFBZGPCtMMW6aQvfPtaN/qx7beU/+hgAAAAAAAAAAoOhq5l+2G2PqJL1P6Y0+VtK/W2vzJBx4s9b2S1qSdWu/wlcIACWwa6l075nSb9ukvxwhrb55eL1hgrvvncdIN0R4m7f94fvA2zOfCtfeZyPTmML3ASg9a6UnPuSuH/zlsi2lJkw7xV3L2WgKAAAAAAAAAAAAYIRrJPVmXR8v6RVjzA+MMacZY8bndjDGLDTGXGWMeUrSdZLiGgoKu95aO+IEt0wA2SkaOnT0oeL+MQAAJdVxmnSxHXpMPWFEk83JDc7uDWb4Ho6YY5u8DXw2dZWZdqq7tvPl/GFPg972gtQ6uzhrqgamzl3rWV++dVSLsAFpg6+bfK+fWOEBU1WvYbxU5/Pn3BwxLCyxPVo/D7dv/W2kfi114/Y8b6sf8at3JMt7luRvBAAAAAAAAAAAiq6+0gsI4RhJg59MJCT9R4HjrZF0cOZ54FMKAVRYyidEaP4V5VtHOSR2SvecIvWsS19vf056+D3SqXelN8VI/pscokolij/mWJEakLY+LnWtTJ9W198Zrj8hWRk1eHIjUGt2viwld7rrsy8s31pqwYSD3LXkTim5W9ryuNS5LL1pLD5RamiX4oOPif4byQAAAAAAAAAAAIBRzFq7whhzuaRfKn3AqZXUKunKzEPGmF2SdisdCjYh81VKB4Qp08dIekLSZxxTfU5DB6j2SrqrqH8QAEDFJVJ9ztrejcMDsIwx8soFq9mwsI4zpY33edf+ekSwMSa9SapvLt6aqsFex0mvfde7NtBd3rVUhZCv776t6a+r8oRQxUqwX7namJg0/WxpzS3e9e414cZLDUgv/5v04hfdbSYdGWrIVb2vh1uDpHpTr31bDtxzvX/LYXqh88nQ4+RKWPf7MQAAAAAAAAAAKJ1aCgtbkPlqJT1lrd1V4HjZ/YtzPAqA0vPZ6KH5HyrfOsphw11DQWGDbEp645dZYWHeJ98VZICwsEj6u6T73yZtejD6GISFpVnCwoCSsinpgXf4t6lrLM9aaoUx0uHfkp67ZmRtx4vS7YdKXSv8x4g1DoWHNUzMep4JExt23T4ycCzWUJo/GwAAAAAAAAAAAFAG1tobjTEpSf+r9H69wSSLwTCwCZnHiK5Z7e6QdJG1tssxzS8lDSZddPq0AwDUKL+wsKbY8BAss+dHzHCpWt2ftuiT0vOfL2yM435VnLVUk47T3bVND0njFrjro1HY1/czn5DaD5S2PeNu87aXCltTLTn8m+6wsKXfk478bykW8J/gPPMJaekP/Nsc9vVw6wspppgu7fjEsPfH4yacoZe7ntVLXU8XNLbf+zEAAAAAAAAAACidWgoLm5L1fHURxsv+JKyWvg/A2Ob3weJoCzbxCiSRpOU/k475afq5LcEJdynCwiJ5+RuFBYVJhGQNIjQNKK3X/idYsBWGG7evu5bv+ymlf4fp3Zh+RFHfOjw8LG/gWNZ1/fixcbonAAAAAAAAAAAAqpq19rfGmEclfUvSuzS0b89rA4zJ+rpC0testT/JM/7jxVorAKA6Jaz3HtKY6lRnhm8HN/I+jNV6/tipAfUt6T09UQN6DvuGNH5RcddUDeqa3bWlP5Dmf7B8a6kKEV7fj73fXWs/OB0mNlaMmy9NO13aeI93fcuj0tST8o/T3yUt8/3VNa1lVrj1hfCOvS7RkeOO15T49GH3G2JxXTXjc1rWs0Rv9LymAQ3oz1tuVErh9u663o8BAAAAAAAAAEBp1VJIVvYnV8X4l+6Tsp7vKMJ4AMoh1e+umYbSzbv+Lmn6W0o3vpfezQEalSBcirCwaNb8ofAxCMlKIzQNKJ3eTdIzV+dvV9dU+rXUmvik/G1Kqb8r/ehZG61/w4SsILGsMLGGAIFj9W2S8T5tFwAAAAAAAAAAAAjDWrtG0kXGmOmSLpB0nKRDJe0lqV1Sn6TtklZKelzS3ZLutLYUJ+oBAGpNwhGUFfc4GM849jrUbFiYJLXOlnYvjdZ3/P7FXUu1qG9x14Lsd+nvSe+VGi17Y6L8ytS9xl3b8WL0tdSq8fu5w8K2PRssLGz9ncGC/erHhVtbCKdNfLvne6Mk1Zl6LWw5SAtbDpIkPbj9du0c2B5qfNf7MQAAAAAAAAAAKK1aCgvLTs3ZuwjjHZT1fGsRxgNQDtYnLCxWwre0F79U/rAw432q3TClCFUiLCyanS8VPgZhYRkRX9epASlWjDxRYBRbfG2wdpUOxqpGjZMrvYLCJHemH1oZvq+py4SNTfQPHItPzHqeFTg2mjZUAj/c87UAACAASURBVAAAAAAAAAAAoCisteslfTfzAAAgkIR1hIUZj7Awee/BtLV8mOXe50qv/lf4fnXN0rTTir+eauC313aHz77OLU9IT39c2v6s1NQhLbhSOuiLo2CPSw2/vqvFjHOlpd/zru1+PdgYb/wqWLu6eLB2ETSY4GO31U8IHxbmeD8GAAAAAAAAAAClVUthYasyX42kw40xDdbaZJSBjDELJc3IuvVCoYsDUCY969y1WENhY8+9xP3h7JbHChs7ikBhYSUIlyIsrHJqeRNSMaUivq53vypNOKC4awFGm8X/kb9Ny+xRsOmtBMZygJodkBLb0o8oYvHh4WFhA8dKuCkOAAAAAAAAAAAAAADUjkTKERYWG7m3ICbv/S9WtqhrKqtD/zV9sOmGu8L1O/lWqaGtNGuqBod+TXr+CyPvD3RL/V1Sfevw+12rpHvPkPo709c966QXvyzVtUgHfLbkyy0pW+TX95QTizteLZh+lru29HvSkd/2P9h261PS6puLv64Q4qZRJsQewLa68aHncL0fAwAAAAAAAACA0qqlsLDHJPVIapLULOl9kn4RcaxPZj3faK19tcC1ASiXlTe6a6bAt7R9PxL8JKdySO7K36YU4VKEhVVOKcLfalLE1/X6uwgLw+iR6pdiRf5VffG1wdqdfGtx5x0tGsdwWFihUgmpd1P6EUVdy/DwsCCBY4PXDRP8N+cBAAAAAAAAAAAAAICakbCOsDDTOOKecYaF1fChnvWt0ql3SDcEOIx20JmPSXsdU7o1VYPmGe7ahnukme8Yfm/NH4aCwrKt+EXth4UVOwxvLB46aYw0/a3S+r9617c8Jk09wd3fb697mcRjI98T/YyrmxB6jqRNKGVTigU5HBsAAAAAAAAAABRNzYSFWWv7jDH3SDo3c+trxphbrbU7woxjjDle0lUa+iSssse2AAhn8bfctULDwqYcV1j/SihFuBRhYaUXa5BSyZH3CQtLixqC1xcxhAaoJt1rpSeukDbeKzXvLe3/D9LCjxU+bn+X9LfPBWs78dDC5xuNYg1S4xSpb3Ow9mc9md6ImNwhJbZLiR3pR/Z1MnMv9zq5ozSBoLVqoFvq6U6f4hpFw/isILFMmFiDR/iYV+BY/bixuekRAAAAAAAAAAAAAIAqlHTsb/QKxjGOAJuULXKYUrkZI005Qdr8cIC2MWncwtKvqdLa5rlru18bec8V5rTzJfc4A4l03WvvZzXpWV/pFYwOvq+pV91hYclOad3tpVlTCF4Bin5a68ZFmqffJkPPBQAAAAAAAAAAClMzYWEZX1M6LMxKmiHpTmPMudbaQOkgxphTJf1eUkySkdQvySd5CEBNiZX4LS2xIx0aUQ75NhNselCaelJpgkQICyutqf8/e/cdJslR2P//U5M2717Od7rjlFBC2coCBSRAIgiQCBLYxkYm88P4azBgE43BYBvbyCQbY0ASAgMmCCEhFJGEUECghHQn6aIu3+2FTRPq90fvamZ3u3q6e3p2Znbfr+fpZ6e7q6prZmd7d6erP/VCafcDjrAwgmEkxQ9N27cm2X4AU61UkG4+pzxA7cDT0n3v9MKKnvem2tped51kC7X3cabrO1Ladmu4spkuqXOJpCXRj2NL3uylfgFjYQLH8nujH3M6y+/1loH10eualJTtGx8wFipwbHQ93UHYGAAAAAAAAAAAgIMxJivpZEmrJc2R1CPJWGs/3tCOAQCa1ogd9t2e9QmrMfK/Xm/V4mFhkrTi0nBhYQvPldrm1L8/jTbvVPe+kf7x6wObpR13u8uXilIqPX7b41+Qfvchb8JGzAzLXyM9+R/++379Z9KyV43/2SoVpfvfLT151dT0r4psKhepfE+6L9ZxRkrDvmGNAAAAAAAAAACgfloqLMxa+2tjzLWSXicvMOxESY8bY/5Z0nWSJiXcGGPSkl4o6c8lvVZ67sqvlfQFa+0z9e85gERUm80tla39GMsvkTZ833/f4JbmCQt75prRsLCQoUqzjvZmqzrwdIhjExZWV7vuc79X44ZkTTfVQtOWvNR/5rXh7fXpDzBVdv7afybLtV+rPSys/5Ha6sPTtSJCYf/ZaUMxKSnb6y2RjjmqVJTy/RVBYqNhYq71iYFjxYH4fZ9ubGn0ddkdr34qWxEyFjVwbJaUZjAdAAAAAAAAAACYfowxZ0h6v6QXS/K7IDIpLMwYc6GkS0dXd1lr31+/HgIAmtVIyT8szC+sxh0WNg0m9Tz0ndLARumxz7rLLDxXOv3aqetTI6WyUucy7zWZ6JFPSi/4RHn9jkuC29r6S2nx+eX1zT+THnhvMv1E61h0TvD+u6+QXvjT8vrj/9Q0QWGSlPMJUAzSne6NdRxXgCMAAAAAAAAAAKiflgoLG/UWSYdJOk5e4NcsSR8dXcYl3BhjHpO0StJYKosZrWMk3SXpA1PRYQAOd79Z2v1bqTQsFYek4ujXoz8qHf6eyeUdgzyeYxI4pR39MXdY2E+fL80+Tlp4jnT030nZntqP51ItLGnNl6ST/0MKO2hlpF866YvSHa+uHgZWJCysrgr7pbZ5/vsICxtV5X296Dz/sLChrfXpDjBVnvqG//btd9TetvEf/IiIDqwPX7aRr3kq7c1cGXdm2OKIFzY2Fh6WDxs4NhqqVS30dCYp5b0wy7iBlumOyWFirsCxSQFkfVKqFf/lBwAAAAAAAAAA05UxpkvSV+RNFirJN8XFNZvgI5Ku0OisPcaYb1prH0q8kwCApuYKpvELxjHGf6I36/xV00KMkY77jHTMx6XhHZKsNLxTKg56Y2m7V0ltcxvdy6k161j/sLBKAxu9CR2DPPqZ8WFhrjHFmP7mny5t/5X/vmdvlPJ7vckgJWnD/9a9O7bapNsV/AIUg3Rn+qJ2R5I7wBEAAAAAAAAAANRPy905bK0dNMZcIOlaSeeoPDjIyJtlcCwMzMgLFXuuasW+GyVdai2pLEBD7XtS2vO7ydsL+/zLFw4Et5dEWFjXQcH7dz/oLTvuks67vXoAw/BO6cAz0qwXRAtrCHt6CltuYL209CLpwgekTT+STEraea//IIZqYWKonWMQUtWQuJmi2vu6bYH/9qFtyfcFmEr5Pe59paIXABVbyOCqRedXLzOTzT1J2nZryMKOc30rSOek9HypfX70utZ64a+VAWORAsf2EJ5ZqTgoDQ5Kg8/Gq5/pKQeJ+QaOBaxne9x/swAAAAAAAAAAAERkjOmVdIeko1Se9LPS2Ng+X9baDcaY6yVdPFr2dZIICwOAGcYVTOMXjJNy/FqJErjT9NJtUudS73Hnssb2pdEKe937rPUC1vofq97O1pvHr0eZXHA6mk4/L1H1HuEOC7MFaXCLFxZWHKoeQpeAvA0/vjtrcpHa7k7Hm0DbFeAIAAAAAAAAAADqp+XCwiTJWrvDGHO+pPePLmN3sdsJX8eMhYftkfSPkj5LUBjQBFyzFhUdFw73/qFKewmc0rIhL3buuFvacY+04Az//aWidN87pDVfkWS9wIUzvyctOjdc+6HDwiKGS8060lsk6fcfJywsKVG/D8YR+MOvJk+11zM32397vr88qAdoSQHv3dKIlOqoT9uVTvt2DceYAXoOCV92pp6LjJEyHd7SsTh6fWulwv6K8LDd5WCxUIFj/ck/p1ZW2OctAxtiVDZStq8cIBY1cCzdOXN/DgAAAAAAAAAAgJ/vSTpa5bF9I5Kuk3SLpJKk/w7Rxg/khYVJ0vmSPphsFwEAzc4VTJMzk8ejGsdEb1ZM6jktrbhM2na7/7673iidfrW07bZwbVVO7LjlxmT6h9az6gpp7Vfd+39ymDeJ8y0XTEl3hktDocv6BSgG6U73Re2OJHeAIwAAAAAAAAAAqJ+WDAuTJOtN6/SPxph/k/R6eYN/zpC0RBp3dXe3pLsk/VzSN6213D0ONIt0u/9218XMoAuukmSm+JS2+Xp3WNgT/y6t+XJ5Pb9Huu0i6ZWbpLY51dsOGz41+Gy4cn4XfVOOWaMIC4tu35rwZYNm7yMszFM1LMwxKKGU92Zoy9QSqAQ00Prr3PtKI5JqeG8b/8GPk7TPr15mJttxV/iyYV9zjGeMF96a7ZG0PHr9UtGbKXZcwNjEwDHHen6PVDiQ+FNqXdZ7TfJ7pDgvi8mUw8OeCxKbEDgWFECWjjZoEQAAAAAAAAAANC9jzGsknadyUNjdki6z1m4c3X9QyKZuGGtS0guMMd3W2v2JdhYA0NRcwTQ5n/GQxjHBVSnq5KBoDfNOde9bd410yNukRz4Vrq21X5UO+Qup/9Fk+tYoJi3NPdmbINkl1Sap5I2/9G1jBk8Ut+BM6bRrpLte7y5zw/FT1h1XWKIfvwDFID3p3qjdkRStTwAAAAAAAAAAIBktGxY2xlo7JOnro4uMd2V3tqScpJ3WWseVKwAN5woAKDouHD7138HtTfUF6QNPu/c98+3J24pD0qafSM97U/W2w4RGDWyWnv5G9XKSdMQHJm9zhYXt/HW4NlFmC+HLLnmZtPlnjp0MQpIU/P4//C+lbMAMZvm9hIVhenINxgptBg/aSlK6M0JhXvOGSKVHg6dmx6tfyksj/V6AWD5q4NhuQlcr2YI0vMNb4ki3jw8PqwwcCwogy87ygkVT2WSfDwAAAAAAAAAAqMXfVDx+WNL51tqBqI1Ya7cYY7ZJWiBvQtHnS/pNMl0EALSCvCOYJuczoapxjN2wz2VXYlpJVxk3eOtLwrf12w94YWGbr3eXOfYz0qHvCt9mI5i0lM5JP1whDWzwL3PpfklWutYxpnimO+iy4LCwKeQKS/Tjd04M0pnukZGJfH6M0icAAAAAAAAAAJCMpg8LM8a8QNKLJR0had7o5h2SHpN0k7X2wcry1loradeUdhJAPKl2/+3Focnb7BQOzlhwtrTtturlula59+1yjEN85JPhwsLChEY98N4Q7Yxafsnkba6wMEQXJtxtTPsibwBGre1MZ0EzNx7+vuDXKd8vdSxMvk9Aow1tldrnVS/nEiZQM+34vYyylW+UnrwqXFmTqm9fUB+prPezFvfnrTg0GiK2uyJILELgGH8LlBWHpOIWaWhLvPqZ7orwsBCBY5Xr2V5+hgEAAAAAAAAASIgxZrGkYys2vStOUFiFx+WFhUnSISIsDABmlBHHJF5Z4xcW5n/dt8SkntNTz+rg/YUD4dvK90tD26TBgDEL88+cHhObppr+dpLGMkaac4K06/5G90TDJZ/x9Q45n3NikLRJqzPVrQOlfZHquQIcAQAAAAAAAABA/TTt1R1jzPGS/lnSGQHFPm2M+ZWk91lr75uangFIjCuUpOgzHvDA0/XtS6WD3xouLKzaLGS1CBMUsf674dtr9wlPKkYY+IBgfgF3LnNPkp75tv8+AkJGBQzGSrcHD04ZIS8U09T666RZH4tff2eIP5VXXhG//Zmi9/AIhUMEtGH6SbdLHYu8JSprvYGpYwFjEwPHqgaQ9UvMflxW2O8t2hijspGyfeUgsaiBY5mucCGNAAAAAAAAAADMDKeOfrWSNlhrb6+xvcqBAXNrbAsA0GJGHME0uZRfWJj/dVvLtfXpKZVNtr2fHiUNb3fvn3tyssdD8zrsPdLdYSaKrq8RG36scjbGhNLdmV4dGIkWFuYKcAQAAAAAAAAAAPXTlGFhxphXSLpaUrvG32U/dnW2ctsZkm43xrzBWvvDKeoigCTkZvlvH9k9eduar9S3L5XmnBSuXGF/9Lb3PxWuXJKhUXNOlDp8wsLaFwcc3xJwEEUxwsxYC8+RM8ijlE+kOy0v6P1vUlKmR0rlJL9BBkMBg3OAVratxvHyW26sXoYBbNW5gk598XsUERkjZbu9pXNZ9Pq2JOX3BgeM+a2PPY7zt+20Zb3XJb9HipOva9KjIWOzJwSOTVx3BI5FOtcAAAAAAAAAAND0KmdZeSiB9iovanQn0B4AoIWMlBxhYWZyWFjKMQbSWsLCpq2lF0ubfpxMW0FBYUtfLqXSyRxnSjCOqSarrqgtLCzT5U0gWCPX+c+P3zmxmu50r7ZqU6Q6rgBHAAAAAAAAAABQP00XFmaMOVzSNfKCwqTxAWF+wWEaLXu1MeYEa+1j9e8lgETkZvtv9wsLe/QzwW3NekHt/RmT6wtXbu1XpeOq9GuisCFgthStXZdMj3T8P/vv636eu97ARqlreTJ9mAnCzoy15KVSpkPav9Z//8YfSoe+I7l+taqhbe59JuWFqbQv8N6nEw0H1AVa2exj63+MpRfX/xitLt0RvqxJ1a8fgB+TKgdOxVEqSPn+cAFjfoFjxfCzl057tigN7/SWOFJtFaFi1QLHZk8IH5uV/GzJAAAAAAAAAADUpnIgzt4E2qsMCOMCBQDMMK5gmlxqcjCOkf/YDauExmei+fQcMjXH6VhUvUxTISCvYRIcwxElmMvvnFhNdzrk+PkKUQLMAAAAAAAAAABAMpouLEzSl+SFf1WGhOUl3Sdpw+j6MkknSMqNlrOjdb4s6awp7i+AuHJz/LcPbY3e1orX1taXSibkbF9+oWaSVG3WOWu9sKPAMiFDxYKc8AVp6UXuULBUwK+AtV+TjvlY7X2YKcJ+v573p8H7t/yi9r60usKgdMsF7v1jP59tjrCwZ2+SVr+lPn0D6q1tvntGyqRCJF0WnCV1LKzvMaaDar+/xxeuWzeAukhlpLa53hJHcUga6S+Hh43sqQgVCxE4ZgvJPp9WVhr2/ieK83+R5M1IWxkeFjZwLDdLyvS22OzHAAAAAAAAAIAWUDnAJnoCwWRLKh7vSqA9AEALcQXT5IxfWJj/2A1LcNL0teyV0uP/VP/jzD+j/sdAcznig9Kjn45e77h/kh76QCJdGC6Fz8n1OydW053uiVwnSoAZAAAAAAAAAABIRlOFhRljjpIX9mXl3V1vJX1e0t9ba3dPKDtL0gclvb9i8+nGmGOstb+boi4DqEXncv/tB56RiiNSOuet5/cHt3PYe6QjP5hcv8KGhbkMbAjen98r5aqMfaw1LOyg10uHvTu4TNDzXP8dwsKiCPv9ihQyM0NtualKgdHZHtsX+O9+9oZEuwNMrYCBiMPb6nfYhedIp3+nfu3PVMZ/dlpg2kq3Sx3t8YIHrZWKA+WAsYmBY5XrleFjlYFjDOYuKxzwlsFN8epn+yqCxCrCxLIhAscy3fzNCwAAAAAAAACYqHLGpCNracgY0ybp2IpNPrOMAQCms7wjmCaX8gkLc4zdsNUmhEXrmneqN2an3hMzLntFfdtH8znir6KHhfUdIR30OumhZMa4u8IS/fidE6vpTkfP9Y3SJwAAAAAAAAAAkIymCguT9OrRr2NBYe+21n7Rr6C1do+kvzbGPC3pKpXvDL5EEmFhQCvofp7/dlvyAgDGgga2/MLdxvJLpBP+Jdl+1RoWtm9N8P58f4iwsBoHKoQJKDEBvwJKNYaVzTRhw8IYZFTdQx8K3j/23h7e6b9/1tHJ9geYUgHniKEaw8LmnSrtuHvy9gVnSefeXFvbM83y10gbvheiIGE5QGjGSJkub+lcGr2+LUn5fe6AsWqBY4V9yT+nVpbv9xati17XpEfDxmYHB47lZlc8rggcS7cTNgYAAAAAAAAA088Do1+NpJXGmMOttY/HbOvVkkZnH1RB0j21dg4A0DqKtqiCLfjuy5ncpG3GMXajpDoHSaFxUhnp0gHpO+31O0bnCinbW7/20Zxys6VLtkvfnx+u/DGfkA6+Umqfl1gXRhxhiX6yJnpYWE86+vs6Sp8AAAAAAAAAAEAymi0s7KTRr1bSPa6gsErW2i8ZY94o6fTReifXsX8AkpTKBuysCExZf5272KnfSqw7z6k1LKywP3h/mGCpsOFTLmGeQyrgV0Ctx59peL2S0/9w8P6x97ZrsE3hQDL9KBzwvq8M6sFUCgoU3PrL+O2O7HGfpxa8KH67M9Wso8OFhYUJ7gSQDJPywnhzfVLXQdHrlwpeONZzQWIRA8eKg8k/p1Zli9LILm+JI5UbHx4WNXAsPfkGAAAAAAAAAABAY1lrnzbGrJF08OimD0p6c9R2jDFtksZmILOSfmOtTWiQAACgFYyU3KE0udTkYBxXWJgNmtAPrS/dJvUdIfU/Wp/22xfWp100vyjBX0d9OPHDD5eGQpfNpaKPn+jOVJkI20c+4LwMAAAAAAAAAADqo9nCwp5f8fgbEer9j7ywMEk6PLnuAGgK665x78t0JH+8sGFhXav8t1cLK9r7uNTtqDum5rCwEAElQc/TMfseHAgLmzpj7+3ll0hbb568f/eDtbU/uEX6weLx2158tzTvlNraBUKpMhDRWsn4D2L0tfUW6eZzgssEBUfCX6YrZMEI3ysAjZXKSG1zvSWO4vBo2NjucrBYZZhYtcCxUj7Z59PKSiPS0DZviSPdOT48LEzg2Nh6tk9K1RgcDQAAAAAAAABw+bqkT8m7iHa5MeaX1trQ4wONMSlJX9X48YVVJyIFAEwvI9YdSpM1k8PCUo5xlNaWEusTmlUdx+3MP716GUxfR31EevgTDTl0UGDiRDmfc2I13enok+sGnZcBAAAAAAAAAEB9NFs6wKyKxw9EqDdW1kxoA0BTC7oYXxGYkspO7Q30YcPCrKNPxcHgeo//i7TkJVXarnUwSpiwsIBfAQMbajz+DDPdwtUGt0rP/lwaWO8NbJl/VhMFJ4yeN7IBgxK23CwtOjd609ZODgqTpBtPlU66Slr1ZinTOb78zl9L238l9R7uHTPdHv24QFiDm6TOZeHKDmyqHhQmhf+dh7L8vnDlwgR3Apge0m1SeoHUviB6XWu9/x8mBow5A8cmrOf3JPC/wzRSHJAGB6TBzfHqZ3srgsRGw8SyPuFjfoFjmZ5ooZ4AAAAAAAAAMLN8QdJ7JM2Xd+H/P40xh0n6pLV2IKiiMeYISf8q6UUqDyhaI+na+nUXANCM8gFBObnU5GAc4xijaqtN6IfWt/ot0gPvq0/bz39/fdpFazj8fTHCwpI55wzbodBlsz7nxGpihYWVRiLXAQAAAAAAAAAAtWm2sLC+isc7I9TbXfG4J6G+AKi3oBup+x+VOkZDe7pWSfuemJo+SeGDU1wBZtVu1t95T/W2bTFcH1x23FW9TKrZfgW0sFKN369msvt30i/PlYZ3lLcd9Abp1P/2gvvqqdrr2LG0fN7oO9Jd7pfnSW+IMbhi7x/c+37zdmnt16UXXi+1z/OCPX77Aemxz5bLzD9TeuFPpSx/iiAmW+V9m98bvq113wlXrv+R8G3CE3aGRgJjAIRhjBdGmumUtCR6fWulwj7/gLEwgWNRfrfMBPm93jKwPnpdk5KyfeMDxkIFjo2upzv43QEAAAAAAABg2rLWDhhj3izpJ/JmwEtJ+mtJ7zDGXC9p3AezxpjLJB0q6cWSTpUXMDb2IeqQpNdbW+0CKwBguhmxAWFhhrAwVMjWce7xjhjX9huOa9GJyc2SzvqhdPsrp/zQQYGJE+VMLnL7scLCAs7LAAAAAAAAAACgPpotKSZV8ThK8kpl2ZSzFIDmUjjg3rf5Z9Kic73HrqCwJS9Nvk9S+Bu0XWFhqhIWFiYIrFrgWDV7H69eJt1R2zFQFuZ7ajLSovO8x4e+S3ri3xxt2caGBNz3zvFBYZK07mrpoMukZS+vvf0n/0N6+ptSYUBa/irpyA9LqdGAvonHneicm8qPZx0TXHbzz6UlF0Tr27prgvfv+o103zukM74j7XlofFCYJG2/Q3ryKumIv452XOA5VQYi7lsr9R0RrqkH/zJcuWe+LZ32rXBl4QkbnMi9CQCmgjFSttdbulZEr18qSvn+iiCx0TCxyvWgwLHiQPLPqVXZ0ujrsrt6WT+pbEXIWNTAsVlSOvqswAAAAAAAAAAwlay1PzfGvF3SVSqP8euRdOmEokbS1RPWxy6+FSS9xVr7QD37CgBoTiMBQTm5lE9YmPEfUm6rjfFE65tzQv3aZhIozD6+IYcdjhIW5nNOrKYn3Re5TtB5GQAAAAAAAAAA1EezhYUBmEnSne59Y0EcpYK7TO/hyfYnKldYWLWgrzBBYGHCp4I874+rl2mbV9sxUBbm+7X4QikX4kL67t9Kc46rvU9xFIe8wCs/679be1jYY5+THvyr8vqeh6TBZ6WTvzR6/MHg+n3PLz9OpaVMj1TY51/21gulV++U2uZE6GCIYJ/110kHPic9cZX//kc/S1hYWPufktb+l7TsFdKcExlEJanqe3DzT6VlFyd7yHoOjJuuekMGtpl0ffsBAElIpb2/lyL9zVShOOKFjfmFibkCyCrLlEaSfT6trJSXhrd7SxzpjslhYq7AsUkBZH1Sio8IAQAAAAAAANSftfarxpi1kr4taaHGXyStfFwZEGZH13dIusxae8tU9BUA0HxGrDuUJmtyk7YZ+Y9HKjEB3PQ36+j6tLvy8vq0i9bStdwb87jrvpAVkhkbOWKHQpfNmehhYdlUTm2mXcMRjkNYGAAAAAAAAAAAU487AQE0Tu+h7n19R3pf+x91l8nFvKE9KdYRZFY1LCxEsFStYWELz6teZiyQDbUL+n6lstLil0infau8bWSXu/zexxsbFuay897a2rZWeuLfJ29/6uvScZ+Tst1Sfq+7/unf8dl2tXRbQHDS09+UDn9P+D5mesKVW3+dtPZr/vuCvrfwWCv99PnS3j946498yvt62ZCUjj5AZVqpNhBxxz3JH/PgK5Nvc7pbcmH1Mtm+cAGRANDq0jkpPV9qnx+9rrXe35+V4WFRA8dq/b9pOikOSoODXhhvHJmecpCYb+BYwHq2R3LMyg4AAAAAAAAAE1lrf2mMOVjS2yS9U9IKR9GxVIUdkq6S9HlrrWNGMQDATOAKpcmanFI+16tcYWE2zKSSaG3GSOf/Srrp9Gj1Xni9dOtL3fuP+2xt/cL0cfKXpBtOnNJDDkcI5sql4o3F7M70ajgfPiwsHxDiCAAAAAAAAAAA6oOwoFmIogAAIABJREFUMACNE3QzcWnE+/rUf7vLLAm4ID8VSnn/7UmEhalKG0HmnCQte0X8+mOKQ1K6vfZ2ZgJXcFzHEuniJ6RM14QdAbOEpRr5qzlgEFRhf21ND22VDqybvL00Im2+XjroUumJf3XXX3zB5G3VzgEPvDdaWFi2O1y5x/5Rga/V4LNSx+Lwx51p1n6tHBRW6Tvt0utL3kCtGavKQMTuVckfct4pybc53aU7q5c58Yv17wcAtDpjpEyHt8T528la72/UiQFjoQPH+pN/Tq2ssM9bBjbEqGxGgzJnxwscS3fO8L8BAQAAAAAAgJnHWntA0uckfc4Yc6ikMyQtlzRXUk5eQNhWSXdJesDaajMvAQBmghE74rs9Z/xDcVLyH6NqaxmfidYx/7TodRZfKL1qi/TkF6Udd0v7n/bGfx71EWnJy7zr24AkzTlhyg85EiGYy3VerKY73aed+W2hy7tCHAEAAAAAAAAAQP00Y1jY2MCeU4wxK0PWWVS5Yow5U4FJLBMOaO3tYcsCSFjvYf6hMWMXD3fd666bCRHWUU+24N2gPumm5gTCwkIFijmc8/PwoUdBnr1JWnZx7e3MBK7vV6bLJyhMCvwVZRr4qzko6K7WsLCS/0AtSVJ+r/d17X+6y2R7Jm8zKannUGnfE7X1bUwm5M/N0Nbg/T8+VLqUyYyd7nuXe9+dr5HO/N+p60vTqTK+PUqoyaLzpC2/qF4uTPAVxgsKOx2z6o317wcAzHTGeH8jZnvk3T8WUakoFfaWg8TyFWFjYQLICgcSf0qty3qvSX6PFOdlMZlyeNhzQWITAseCAsjS8QY5AwAAAAAAAGgO1tonJCV04R8AMJ25QmmyqZzvduOYsIYMSjgZI3UslI75eKN7kqwj/p903zsnb+85dOr7Mp1kuqZ07MBIaShUOSOjjMnGOkZ3ujdS+SgBZgAAAAAAAAAAIBnNGBYmeSkq19RQ99YI5a2a93UApr+U46be4ujFw/1Puet2H5x8f8Z0LJUGN1Uvd01Kes0u7wblMUGBS2HFDQs76Uvj+1KLTf9HWFhYru+XM/gr4D1i0jV3J7agQVBjgV5xlfLufY5BWePLOMJ5Xny39L9z3fW2/0qaf3r19iX3+Siqwn4vSCI3K5n2ppugmeQ2fF86sE7qOmjq+tNMqg1EjPJzmA05aCfNbJeRhQkLAwA0v1R6NHgq5v9Ppbw00l8OD3MGjvmt7w4O051pbEEa3uEtcaTbx4eHVQaOBQWQZWdJuT4pFW+QNAAAAAAAAAAAAKaWK5QmZ/zHfRn5j/Gw1SaExfSx8grpmW+GK/u8P6lvXxpp+WukB943+Tr1oe9oTH+miyTGi0fgCkycKGtyzrDEanqihoUx9gEAAAAAAAAAgCnXrCFZVl7oV9Q6Y+Jd3QAw9VzhPGMXNOeeIm38gaNuHUOVDr5S+v3fhiv7vTnSGypOQWEu/g5skjqXuvfHuYDcsURa/upodboPlvav8d83sid6H2YqZ1iY4z1aKrjbyu+rvT+xVQkqsjZcsJefYtCMZjUE77TNkRacLW27zX//TWdIF94nzTmheltxQ/r87Pi1tOSC5NqbSbbdLq26otG9iK84JD17k9T/e+932NyTpGdvkHbdL/UcIi15mdSxKF7bI/0R+hFyEE6GsLDoqpwHV1w6Nd0AADRWKiu1z/OWOIpD5RCxOIFjSf7t2uqKQ1JxizS0JV79THdFeFiIwLHK9WwvQaIAAAAAAAAAAABTJO8Iysk5xqEaxxgPW22cHKaPU/4rXFjYwhdJJ3yh/v1plI6F0ln/J935Wm8yVEla/efSoe9sbL9a3tSeS4Zt0DjcMtc5MYyuiGFhRRVUtAWlnZMrAwAAAAAAAACApDXzp/K1XD0JW5dQMaDRUo7T0NiNz65ZkLLRLkZGtvpPwoeFSdLglorwlxBBX4WB4P2umZZSbdLh75Me/fT47SteKx372eg3qq9+i/TQB+P1EWVRw8JsQFjYrvulVW+svU+xVPn1ufu30pzj4jVdChikYExwgFo1R37IHRYmSTecKB3/z9Lh7w1uJ8lZ3oa3JdfWdGPSweEWd79JWvnG1gxdKAxIt10kbb3FXaZ9oXTOTdKso312VvkZdIU7+hnZFa5cmrCwyKqFJs4/c2r6AQBobel273/IOCGi1kqFA+WAsbEwsefWqwWQ9WuqBy03tcL+0QHxG2NUNlK2rxwkFjVwLNMVP5AZAAAAAAAAAABghhmxjrAw4wgLc1yHKVmulc0YqYy08nLpmW+5y7z8aal75ZR1qWGWXCi9eqe0+wGpe7XUPr/RPZoGpvZa74hrTP0ErnNiGD3pvsh1Rkoj6kg3821JAAAAAAAAAABML832qfx6cbciMLO4wpRKY2FhjtCs5/1JffozpnOZdPBbpTVfCVd+w/elQ9/uPQ4TODSyU9ozLP32g9LOX0vdq6Sd91avl+6Qjv17b0lCzyHufcXBZI4xE7iCruKEhXUs9m7+f+KL0tPfkAr7pGWvlI75hJTKRuvXvrVeGNyOe7xgoqM+Is07xV2+2nt3w/fih4UVAt5PJiMN1RCutejc6mUe/Ctp1RVS29yAQgmGhRG257boPOnZnweX2X6ntOCsqelPktb+V3BQmCQNbfXO/S/8ic/OEH8GD++s8j4eFfYcXsMsgnBY+rJG9wAAMN0ZI2W7vaVzWfT6tiTl904IGJsYODZhvTJwbGymaUiy3muT3yMdiFHdpEdDxmZPCBybuO4IHEu3J/6MAAAAAAAAgHoxxqQkHSXpBZJWSJovqUPehdJBSdvkjR98SNIj1pLkAgAYzxWUk3OMfzHyn6zQJjlODM2ve7V734IXzoygsDHpnHsM6YKz/SdtPfqjde1SSzv5y97kqBMd9IbJ5e7ymUT4oNdVPUS+lNeG4bXKl0aUt44x9RNkaxgT2J2JPpn35uF1Wt35/NjHBAAAAAAAAAAA0TRVWJi1dmWj+wBgijnDlKqEhWVn1ac/lU7+srTiMun2V1S/GXrTT6KFhf3hC9K6a8vrw9vD9altXrhyoQWMqywSdhTa2Pt1Itf7e9ax0sb/c7f1+Oe9cKsxj35GGtgsnfY/4fs0tEO6+UXSwAZvfWCDtO126cV3ecFh/gcPbjNfQyhAaci9z6SkQsCd9cteEdy28R/UNY4tSBt+IB38ZwFlHN/HOLbeIh1yZXLtzTQP/rV0wd2N7kV0D380XLnNP/VCBlMT/hQPM9Z9yy+kgy4LcZCQ4+YdM6iiBt2rGt0DAACCmVQ5cCqOUkHK91cPGPNbz++RigH/G8w0tuiFwQ7vjFc/1VYRKlYtcGz2hPCxWdEDqQEAAAAAAIAYjDFnSbpS0ksk9YWsttsY81NJX7XW3lm3zgEAWsqIjRYWlpL/uBjLvNYzy4pXS498yn+S15Wvn/r+NKuDLpscFtaxRJp3WmP60woWXyBle73JuioddOn49UXnS9k+7zp7pRWvDWz+zj0/13e3/WfokLAxOZOLVL5SZ6o7cp3Pb/iglrWt1NuX/a1mZebEPjYAAAAAAAAAAAinqcLCAMxAxnEaGrsoP+QI0ZqqG1oXnSO95EHpx4cEl3v2Z9KWm6VF50phZp2rDAqLYv+aePWcAga9FAgLC80VMjUxCGjM6rdID3/M3daTX5u8fd3V0on/JuVCjpvdfH05KGxMYb/0zNXSsZ92HLvKIKhawuoKg+59tiTtX+ve/4J/iH/cSg9/okpYWIIzRq7/jqSYP+fTXZhArJ33eOVaLcgqSsjDrgekeSdP2BjitVnz5XBhYUyy3RiLL2h0DwAAqL9URmqb6y1xFIekkf7RELHRQLHnQsVCBI75DeKfqUrD0tBWb4kj0zU+PCxs4FhulpTplVKOgGwAAAAAAABAkjHmCElflHTW2KYI1edIulzS5caYWyS93Vr7RMJdBAC0mJGSIyzM+IeFGccklJZxNTPLrKOlM78v3fdOaWC9ty07Szr8/5NW/3lj+9ZMDv4LaXCrNxlyfo805wTptKultP/PFyS1L5BedJN0z5ulvY9760f93eQJctvnS+f8wivX/6jUNl866iPS8kucTT81+Liu3vofsbrlClAMoy3VHqvexuFn9NVNn9FfHfSZ2McGAAAAAAAAAADhEBYGoLGM48bSsfClvY/570/Fn/UosrDH+uV50utLyQYOTTT3j5JtL2jQS5GwsNBcYWGu93fXcndbwzv9g7NsUdrwfWn1n4Tr071v9d/+6D+4w8KqBd098gnp6I+EO/5ExaCwsIJ060vc+3uqhPVJ0vPfLz32ueAyYwN9nP2o488uKoR8nbfcJC1+cX270kg3/pH0honn4BADEbfeIg3tkNqrhfcxqLEhaglVBABgpki3Sx3tUsfC6HWt9f5XHakID3suSCxk4Bh/J5UVDnjL4KZ49bN9FUFiFWFi2RCBY5nu1gsHBgAAAAAAQGjGmEsl/ZekDpVDwvw+nAuz7xxJ9xtj/tha+7+JdhQA0FJGSiO+27PGf4xnSo6wsLDjlzB9LLtYWnqRNLBRKo1IXSuZGGciY6RjPuqFWOX7pbY5je5Ra5h3snTRY97Y39wc9zXQuSdKL3tktNxsyRFmOOb3+++L3SXXOTGMrnR37LpPD/1B+wr96smEnBQZAAAAAAAAAADEQlgYgMaqFhbmksom35ckjrXjbu9Cbr0se3my7WUCLuqWCskeazqLGhYmSQvOkrbdPnl7achdp3AgfJ8csygGqjZjYikfvc0xQX2/p0oAWphBOUtfXj0sTJL2PyN1r/TfV+28g2SEDWV78P9N77AwyQuuyM0ur4edtXTTj6TVf1qlUIi2OpaGOx7CY+ZZAADqyxgp0+UtnTH+lrElKb9vfMDYxMCxyvXK8LGRPVJhX/LPqZXl+71F66LXNenRsLHZwYFjudkVjysCx9LthI0BAAAAAAA0KWPMayVdLT2X0DJ2Ea0yGGy7pN2jS0rSLEmzJc2vaKqyXpeka4wxl1lrf1C/3gMAmlnB+o9fyzjGeBr5X0uwTC4zMxkTPNErPKk0QWFxtM1NtFx/YVfsrixpO6imuh2pLg2Wxo/5zZqc2lMd2lfsD6zfX9hNWBgAAAAAAAAAAHVGWBiAxko5TkOlQnDgRpTQpFqlIsywdNPp9euHJK16U7LtLTrXvS/Ojdcz0f6npIc/7r8vKCzMON77xYCQr7rPZBdiEJS18W7ILg5ErxPFgjPDlRvY4A4LY8bIKRJysN2eh+rbjWbwh3+Xjv5IxYaQr80T/149LCxMaFXYnxsAAIDpwqSkXJ+3dMUYIF0qSPm9wQFjQYFjxcHkn1OrskVpZJe3xJHKjQ8Pixo4lo4/mzYAAAAAAADcjDGHSfq6vACwyrCv/tHtN0m6x1q721F/rqRTJJ0v6Y8l9Va0k5H0DWPMw9baJ+v1HAAAzaso/wlQ047h8MYxzq3EODEATS9eqGHGZHVy79mxj5oxWZ3Wd65u3v2jcdtP7j1bc7IL9OMd347dNgAAAAAAAAAASAZhYQAayxWmZIvBN9EuiH8hM7IoYWH11rks2fbSbe59QaFV8NiS9Mvz3ftdgWCSVPKf5VBP/VdAe3UOC7MhBkENbJC6VkRvuzgUvU5UL75HuvGU4DLb73AHJIV5/qgdr3PZ7/9WWnW51L1qdEPIAT67HwxRKERbiy8MdzwAAAB4UhlvFu24M2kXh6V8fzk87LkwsZCBY67/I2ei0og0tM1b4kh3lsPDKsPEggLHxtazfVMQ5g0AAAAAANCy/l1Sp7wLlkberF0fl/R5a+3+apWttTsl/VTST40xH5H0fkkfGm1Lkrol/ZskLnYCwAxUtEXf7WnHuDqjlO92G2YSPgBooGpnqXnZhdqV36552UXalt+stDJa1XGoXjbv9VrRvrqmY79q/h8rl2rXfXvvUMHmdXzP6Xrl/CuUUloppXTL7h9rb3FPzJ4DAAAAAAAAAIBaERYGoLGCwsL2/sFdL9tbn/74SWWn7lhBeg+vT7snfEG6/z2Tt5emINyp1e26X9r/lHt/psu9b/sd0Y+XVFhY/+NSn9/7KcRF+qFt8cLCpiIgau7JUts8aXiHu8yu+937HIPJkLAo74Vd90tzTqhfX5rB+uukI/66Dg2H+Hle8Zo6HHeGS/HvFQAACJBuk9ILpPYF0eta64WqV4aHRQ0cI7i3rDggDQ5Ig5vj1c/2VgSJ+QWOzS7vmxg4lumRjKl+DAAAAAAAgBZjjDld0rkqB4Xtk3SJtfbmOO1Za/dJ+jtjzB2Svi+pa7Td840xp1lr70qm5wCAVlG0Bd/taceknkb+n8dbwmwANDnXeeqU3nP0psXvruuxUyali+e9QRfPe8OkfRfMfbXOnHWB3r/mct+6nF8BAAAAAAAAAKg/7mYH0FiOQRqyheDAn+6VdemOL9MkYWHpjqlttzhcn+NNJ2u+Erw/053s8ZIKC3vq69Jxn/HZEeIifd41G1g1MW9Kf8Gnwpc1Rjrz+9Ltr5RGdvmXCfqeJHnjfKYnubamnQiDQW44UbpsyAtVmK5++4FyWFiSs5ZWez+f8o3gQEMEm3uytPPeydsP/8up7wsAAJgZjJEynd6iJdHrWysV9k0IGJsYOLZ7QvhYReBYfm/iT6ml5fd6y8D66HVNSsr2jQ8YCxU4Nrqe7iBsDAAAAAAANKu3j3418i4MXxk3KKyStfYXxpgrJX1b5QvOb5NEWBgAzDBFx2SQace4OuP4PN3GHcsGAFOG0C0AAAAAAAAAAOCPsDAAjeUKP7JF7yZWl2xvffrjJ5VQQFOtXMFqtUo5QnhKhIVVtfGHwfsTD+JJJdNMacR/e5igorVfl+aeImUjBqHFDUFa/WfRyi84U3rp76UfLvXf//T/SKd+w39fkmFhDChzi/o633W5dOZ369OXphPh58TaKgEBVdp63pvCHwuTrXzj5LCwvqOkWUc3pj8AAADVGON9lpLtlbpWRK9fKkqFve6AMWfg2Oh6cSD559SqbGn0ddkdr34qWxEyFiNwLJ1L9vkAAAAAAABIMsa0SbpY5QuV/2utvTap9q211xhjLpH06tFNLzfG5Ky1jgEQAIDpqCRHWJj8x3imHOPtbJIT+gFAHbhOU0aNn1QoqA+WkDMAAAAAAAAAAOqOsDAAjRUUFpbf778vN6d+/WlmqTqdstOOsLCBjfU53nQyvCN4f9u8qelHVM6wsBAhTuuu9pbz75LmnxrhoDEHALQviF6nc4l0zCel3304YsUEA74KB5Jra7qJGha24XvS4FapY2F9+pOk7oOl/Wui17MlyUQMA9z6S2nRuQFtMuimrg59l5TfJz15lTS8U1r4IumUr1cJcAMAAGhhqfRo8NTsePWLI1K+3z9M7LnHAYFjrv9jZ6JSXhre7i1xpDsmh4lVho+NW58YQNZXv8+nAAAAAABAqztF0tisY1bSP9XhGJ9XOSysW9Kpkm6rw3EAAE2qaAu+29OOiVhdgTaE2QBofs60sCZQwySnAAAAAAAAAACgZtzZA6CxXDcYlgpSYZ//vvb59euPyxnfk+58zdQft5IrWK1W6fb6tIvg8J++o6T+h6euL5WcN1lHuEh/xyulVz0bPuAoakCUJPUeHr3OmFTWva+U999v/WeeRNJiDAZZ8xXp6I8k35WkdSyMFxa2+Xppycui1fnDF4LDwoJe57l/FO1YmMwY6agPSUf+jXdOdQVvAgAAwJPOSen58T7TsVYqDo0PD4saOMb/e2XFQWlwUBp8Nl79TE85SCxU4FjFerYnelAyAAAAAABoFWOzjVlJj1lr70n6ANbae4wxj0o6ouKYhIUBwAxSdHzen3aMrTTy/0y6lOSkkgAwhVwhiFPah4AJNYkKAwAAAAAAAACg/ggLA9BYrgAsW5TyjrCwTE/9+uOy+MVTf8yJHLPf1Sy/371vYJPUubQ+x211w7uqlwkK5Fl+SfSwsL2PRyvvkkRY2NA2afdD0pzjQlaIMQTg4Cuj1xkz7zT3vuEdUsfiydvjBJoF2fOwNOuoZNucDuK8zr//Wy8Ya37A97UZxH0P3f4q6bKhaHWq3WBvA37mVl4e7VhwM4agMAAAgHozRsp0eIvf/3LVWCsV9k8OGAsKHKtcz/cn/5xaWWGftwxsiFHZSNm+coBY1MCxdKf3fgAAAAAAAM3oyIrHv6rjce5UOSzsyKCCAIDpp2gLvtvTjrGVrkAbGzSuBgCagHWMuW2GsLAgnF8BAAAAAAAAAKg/wsIANFZQWFjBERaWbUBYWCOOOVGqTqfsA0+79+1+kLAwl6Gt1cssPNu9b+nF0sMfj3bMNV+Wjv37aHX8uC7GRw062vdk+LCwqAMA+o6SDn1ntDqVeg5x7xvaNjVhYTvuJizMl+N1Puy90h/+xV3tV5dJr4xzM/oUijvQxRakHy6JWKlKWJgroC+VlQ59e8RjAQAAAC3MGO9znWyPpOXR65dGP6PyCxgLE0BWOJD4U2pd1ntN8nukOC+LyZTDw54LEpsQOBYUQEbQLwAAAAAA9bS64vGv63icX0t6q88xAQAzQFFF3+1p+Y9DdYXqWNf4JQBAVc0eWAYAAAAAAAAAwHRHWBiAxnLM6CZbkNb+p/++TIOCu1b/mbT2a/Vpe/lrpIMuk+58rbuM67Wq1YKAQKtsb32OOR088cXg/YsvkDJd7v2pXPRjjuyKXseXa7BTxKCjdddIB11a4zEdXvSz2gLy2uZKMvJ9TkPbRrtUkDb+QNr+K6ljidT/aPzj+WJAhC9XoFbnMmnhOdLWX/rvH9hYvz4lJuB9fsFvpJ+f5N4/9r4Ma+MPqhRwvM4nXiWZakFjAAAAAJ6TSpdDqOIo5aWR/nJ4WNTAsdJwss+nldmCNLzDW+JIt48PD6sMHAtaz86Scn1e+DIAAAAAAHBZWPF4XR2PU9n2ojoeBwDQhIq24Ls97RhbaRyT8dmo4+QAYIq5zlPNH9TF+RUAAAAAAAAAgHojLAxAYxn/Gd1ki9LQVv992QaFhZ38lfqFhZ32LSndJs0+Ttr9oH+ZoOCpWsw7pT7tTndrv+ret/Jy6dT/Ca5f7xtMUzmpNOK/79kb/Le7QpxcNv4wfNmobdc6oCGVkdrmScPbJ+8b2ioVR7xwvk0/qu04gRj04M8VqGWkpRe5w8IkKb+vcb8DwnC9z5//fmnOCc3RF9Psg4UAAACAaSaVldrneUscxaHR4LA9PoFju8v7XOu2mOzzaWXFIam4RRraEq9+prsiPCxq4Fgvwc0AAAAAgOlubsXjPXU8zljbRtKcOh4HANCEio7PvNOOcagpxzgZwsIANDv3earx4/+CAss4uwIAAAAAAAAAUH+EhQForKCwMJc9v6tPX6oxRjrvdukXZyXdsBcUJnk3D7rUKywsKLSqOFyfY04HriAuSTrtm9Xrp3LJ9cVPutPdx+Gdjkr1vEwfoe1Mt9SxuPZD5mb7h4UV9knP/jx8UNi8U6Udd8foAMMefFlHWJhJSQf/ufTA+9x1110jHfzW+vQrEY7vedsC73fImd+X7rgkucMNPhvws+IKZePmdAAAAKClpNuljkXeEpW1UuFAOWBsYuBY1QCyfvG/bYXCfm/RxhiVjZTtKweJRQ0cy3QR/gwAAAAAaHZtFY/rGRbWX/G4vY7HAQA0oahhYa5Am5Jr/BIANI1WvUbXqv0GAAAAAAAAAKB1EBYGoLFSjtNQfp+7TmGwPn0JY8GZ0oUPSDccn1ybR3yg/Lgw4C4XFOpVq3SnVPQ5dnGo4vGItPMe76bRBWcHB5tNd0kMFqp3WFi1C+77n5G6V06oEuN5HdggdS0P0Z0IbR98pRccVStXwN7O+yTzQPh20p3S8f8UHGLlh0FlDo73pklVD0W898rmDgtzBqGNDjxc/qpkj/eDJdLrClLKZ8Cjdb3O3FwOAAAAzBjGSNlub+lcFr2+LUn5vRVBYhEDxwr7k39OLct6r01+j3QgRnWTHg0Zmz0hcGziuiNwLM290wAAAACAuqsMC8vX8TiFisd1HEgDAGhGxXG/BsrSxn8cqnFMqmcJswHQ5JzD/xwhiFMpqA+cXwEAAAAAAAAAqD/CwgA0lmNGNxUCwsKqhcnU25zjpAvvl244IZn22heWH4/scpfrOzKZ4/lJt/uHhZWGva+DW6Sbz5H2PuatZ7qkF/7MC0+biXbc7d4X9vuU7Yl+XMegJn9VLrgPrJ8cFhbnIv3WW6Tnvan2/oxJd0jHfiZ6P/y4zhVbbpIGNoRvx6Skw94rPfNtadf9yfRtJnOGqI0OIDnu89KDfxlQ3zZx4JXrfV7R3wVnSdtuT+6Qj35aOurD8foCAAAAAEFMqhw4FUepIOX7y+Fh+YpwsaAAsrHAscoQ+5nOFqXhnd4SR6qtIlSsWuDY7AnhY7PqO4kBAAAAAAAAAIRUtEXf7Sn5j0M1jjFGhNkAaFlNMfwvKCwMAAAAAAAAAADUG2FhABrLGRbmE1w15uC31qcvUcw5Xjr7x9JtF9feVmWg0YrLpEc+6V9uxWtrP5ZLus1/e3E0LOz+95SDwiSpcEC64xLpVVuklON7OJ3tW+ved+IXw7WRiREW1j4/fFnXtGJjCgf8KkXqjiSpFPbG3ZBtv2pzcu8pV/jerKOjhYXtut8LpzrvDum2i6StvwxZkWEPvlxhYWZ0Js/VbwkOC9t6s7TovOT7lQjXdH4Vs5TOPi7ZsLDffUQ68kM+AWqEhQEAAABosFRGapvrLXEUh6SR/nJ42MiEMLHAALLdki0k+3xaWWlYGtrqLXFkusaHh4UNHMvNkjK9M/PzQwAAAAAAAACJKzo+9804JuE0Svlut87JDgGgWfiP/zNNMP4vcK7XamOXAQAAAAAAAABAzQgLA9BYjkEa/kFGo5olJGbhi8KV61gsDT4bUKBi4EnvYe5iuTnhjheHY8Y97fuD93X9dZP3De+Qtt0qLTq3bt1qXgGDhRaeHa4uWQfwAAAgAElEQVSJODdJlqLc5FplQNO226QlLxm/Lc4gqHuvDBfgF6bvp/6PdxNpUkzWf/vm66O1MxY6lumQzv6JtO5a6dd/GuL4/Jnlr0qgVq5POv070q8u8y/36D9KC8+tMuKkQZw/QxV97VoVvd0FL/TOty57fifNfoH3eP8zXgCka9BNM75uAAAAAOAn3S51tEsdC6PXtVYqDvgHjIUNHCMEvKxwwFsGN8Wrn+2rCBKrCBPLhggcy3TzvywAAAAAAAAASVLRMc4x7QwL8/9s0fL5L4Am5zpPNUVYWEAfOL8CAAAAAAAAAFB/pFgAaCzjCEwaWO+uk+2tT1+iynRJL75buvFU//0mLR3yDql9gfS7D7vbqQxRWvZyKZWVSvnxZWYdLWU6a++zy9A2/+1rviId/TF3va23zsywMFcIT8oRTtWMHv2MdOw/TNgY8yK9tcE3bW7+mfTYZ4Pb6DlEWnl5vOO7HPIX0m/elmybmQ5p9Z9IK14t3fFaacuN7rJt85M99nQRJlBr6UXu+ltulH58sHTWD71zY1Nx/QxVPLfOZdGbPfYfpBtPce+/963S6ddIt71c6n+kSmONHywEAAAAAHVnjPfZXaZL6lwavb4tSfl9FUFiEQPHCvuSf06tLN/vLVoXva5Jj4aNzQ4OHMvNrnhcsZ5uJ2wMAAAAAKbO2AXTU4wxK+t0jEV1ahcA0OSstSrJFRbmPw415fhs0FabiBMAGqy5I7eCrrs0d88BAAAAAAAAAJgOCAsD0FgpR1hYkGYJC5OkeadIry9Kux6QioPeuklL/Y9KXSu8vj76meA2FpxZfpztlQ5+m/TEv44vc/j7k+97GENbFXjhthVvtCsVpI0/kLbfJfUeLh10mXcDYSSO16Qjxs2nSRzXt2iMC+5x6kjS4Gb3jbcHNki3vjS4fucy6cX3JP9+Snck216lbK90zs+lgc3SDx3P3TGT5YznCgszqfLjauGI+5+Srj9Gel1eSjXRn7Nhntvck6K323uodPGT0o8P8d+/817pR6tDNtaC520AAAAAmGomJeX6vKXroOj1SwUpv9cLD6sMHAtarwwcKw4m/5xalS1KI7u8JY5UriJULGLgWHaWlM4l+3wAAAAAYPozkq6p8zGsuPAJADOOKyhMktKO4fBGKd/tpbjj5ABgyvifpwx/BgMAAAAAAAAAMOM1UboCgBnJxDgNVQuRmWomJc09cfy2WUdVrPgPOHlO31Hj10/4F6lntbTxR1K2R1r1Zmn5KxPpaizTaWBMqSjdfYW07trytievks75hdQ+P3w7hf2O9odr6181wzsiFI4TFhZzxsQ1X5WO+aj/vjsuqV7/gt9IbXPiHTvInOOTaadjsXtf5xKpbZ7/94awMAfXe3PCufKEf5Xuf3dwU3e9QTrjukR6lQzXc6sYoNO1Qpp/hrT9zvDN5mZ7S7pdKg7V1MOWDHkEAAAAgFaTynifdcT9vKM4LOX7y+FhE8PEAgPHdkulfLLPp5WVRqShbd4SR7qzHB5WGSYWFDg2tp7tizdZBgAAAAC0tqkI8ppGA1kAAGEVbMG5L238P4dzhepYfpUAaHLu81Tjx/8F9YCzKwAAAAAAAAAA9UdYGIDGcgzSmFZMlbCwicEtxkiHvdtbmkLMAKlmtONX44PCJGnP76S1X5OO/GD4dtZ/13/74LPR+nPwldKaL0erM7LHu+GwqjiX3GNepn/4Y+6wsF33Bddd8lKpY1G841bTvjCZdpZcFLzfFXoYMEBtRnOF0k08F4YJhlz/XW9Z8dra+5UEV7jixN8DJ/6bdNvF0sDG6m1ecG/58fLXSM98K37/JFUNsAQAAAAANF66TUovkNoXRK9rrVQcnBwwFiVwLG6g/HRUHJAGB6TBzfHqZ3srgsT8Asdml/dNDBzL9BD6DQAAAKBVkREAAEhcMTAszH/8ljssjM9AASA+97ULwhgBAAAAAAAAAKg/wsIANFbUsLCulXXpRl0FhYXNOnrq+hFk6culTT/y3zedbg588j/8tz/0N9HCwrbfmUx/0iHCkCZ66hvS4e+pXi7W962Gi/TFISndPn7bSH+IinW84THTk0w7C18YvN91HrPFZI4/7bjemxPOlQvPCdfcnZdKL7pRWnx+Tb1KRsggtNnHSi/9vfS92dWbnHtS+fHqt9QeFsZNxgAAAAAwvRnjBXBnOiUtiV7fWqmwrxwklq8IGwsTOJbfm/hTamn5vd4ysD56XZOSsn3jA8ZCBY6Nrqc7+BwAAAAAwFRaL0LCAAB1VAwYi5V2jN8yjrGb1jUhIAA0uWb42N8VxOjh/AoAAAAAAAAAQL0RFgagsRwzujktf3V9+lFPQYFoR/zN1PUjyJzj3WFhPz54avtST+uubXQPxtv7WPQ6O3+dfD/G1DIIaniH1Lls/LYwN4cGhenVKt3utV9r4N3Si4L3u37GN18vrbqitmNPR6732cT3Qvui8G2u/c/mCAtz/gz5DI7JzZJO+7Z01xvd7WW6xq9XC64LpQlGCwEAAAAAmpcxUrbXW7pWRK9fKkqFvT4BY471iYFjxYHkn1OrsqXR12l3vPqpbEXIWIzAsXQu2ecDAAAAYFqz1q5sdB8AANNbUUFhYf7jUF2BNpYwGwBNzhVqGBzUNTVMQGIZZ1cAAAAAAAAAAOqPsDAAjZUKCNLyUxysTz/qacHZ7n3VQoimSlBo28DGqetHvaVyUmmk0b0oe/aG6HVKwyELxrnkHhCq1bFUGtzk3j+ye3JY2MYfhDhmHQcuGCNleqR8f/w2jviAd3Ns4HEc57F110qnfIMbKydxvc8mvBcyHeGbXP8d6emLpFWXx+5VIlwzmLreIysuDQ4LO/+uydsufEC64fjofXuuL40fLAQAAAAAmMZS6dHgqdnx6hdHvM9yxsLD8lECx3Y312d/jVbKS8PbvSWOdMfkMLHK8LFx6xMDyPqkFJcgAQAAAAAAkJyiLTj3peU/Nicl/4ksbdA4OQBoAu5QwyYf/1fLpMUAAAAAAAAAACAURuoDaKygkCo/s4+tTz/qadYxUvdqaf/a8duXXixluxvTp4lcQTbVKybajbpLtbX+DYPFkGFhNsaApqCL9BfcI936UmnP7/33j/gEct3/nurHrHdwUaartrCwYz9dvUzQjY/bbpMWnx//+NOR671p/AfnhXb3FdLwTunwEO+7enGdX1KOwLhURjrk7dKTV03e9/Knpe6Vk7fPOS529zwtdt4GAAAAAMws6ZyUni+1z49e11qpODQ+PKwyTCxM4JgrCHwmKg5Kg4PS4LPx6md6ykFioQLHKtazPbV/VgQAAAAAAIBppRjw2V3KMf7ROMamlWJNxAkAjdcso/+MjG+gmTvkDAAAAAAAAAAAJIWwMACNlW6PVn7uSfXpRz0ZI73o59LtL5f6H/W2LTxXOvWbje1XpdhhYS0m3SYV9jW6F2V+IXLVFIdCFgxxwd2WJtx0F1CnfbH0koekaxw36U0M5BrcWv34kuSYvTExATNKVjX3j0IeI+B123ITYWGTOF4vvxtAOxZHuyH18c9Jh727/iF0LqW8/3ZXWJgkHfc5aXi7tP57kqzUd6R01v/5B4WNOeaT0u8+HLOTzTJcCAAAAACAhBkjZTq8pWNx9PrWSoX948PDJoaJjeyueDwxcKyGwPrpqLDPWwY2xKhspGxfOUAsauBYurNxnw8BAAAAAACgLooB48DSjklrjWOcjI0zEScATCF36FazfPZtFGqcMgAAAAAAAAAASBxhYQAaK9MVrXzH0vr0o956Vksve0Ta/4yU6ZTaFzS6R+OlZsivg0yXNLzDf19h0LuRcCod9h7p/ndHq1MaDlcuKMDqubbyXoDac3UCBkEZ4y1t871go4km3gy58Yfh+llvvUdIQ9vi1V3yknDl9q9x74t6jpsJnO8zn0Esh7wjWijWwEZp35NS76GxuhZZYVAa2uIFmg0+6w4jTGXdbWQ6pDOuG72xuD84JGzMoRFfl0p+oWwAAAAAAMD77Cvb4y1aHr1+qeh9NuAXMBYmgKxwIPGn1Lqs95rk90hxXhaTKYeHPRckNiFwLCiArPIzUwAAAAAAADSFoi0696Udk6Uax0SW7hAeAGgW/ucpVwjiVCMqDAAAAAAAAACAxpkh6TAAmla6M1r59vn16cdUCRMC0wiOwTIhKibajbrLzZUOrPPfN7xNyhw0tf1Zfkn0sLBiyLCwMHY/JM07uWJD0KX70e91ts8/LGzTT6WVbyiv73syXB923huuXFxLXiptuzVe3WWvqP34/Y/V3sZ04woL8wux6j0sevuFfV5Ynol5frLWu0m3MgTM9XhiSJ5LKle9TG62t4SR7QtXLm5fAAAAAABAdKl0OYQqjlLeCxLPhwwYm7gedpKBmcAWvEkjXBNHVJNuHx8eVhk4FrSenSXl+oKD4wEAAAAAABBLSQXnvrRjOLxxjB8iLAxAs2vVsxTnVwAAAAAAAAAA6o+wMACNlelqdA8g1RAW1mKCwuaGtkldUxwW1rk0ep2AGRInFKxe5JFPSWf/X7g6YwOnOhZJ+9dM3r/uaun0b5fX+x8J1UsNbgpXLq7D3iVtv0Pa9GN3mb6jpP6Hx2879h+kWS+o/fjrvyPp2trbmVYc7zO/sLA456YbTpQ6l0uHvE064gPl926pIA1tHR/2NbhFGpr4eEvyN9cmfYNo3CA0ibAwAAAAAACaVSortc/zljiKQ6PBYaPhYWNBYqECx3ZH+NxxBigOScUt3udIcWS6K8LDogaO9fp/TgYAAAAAADDDFQM+v0o7xhgZx2So1jXZIQAgJMIYAQAAAAAAAABoFMLCADQWYWHNwca8OBv2ZqmRfmnrLVLhgLToPKljYbzj1Srb6943tG3q+lGLsDftdSyRBjcHl9n0owltu94HFRf1u58nbb/Tv9j/z96dx8lV1Xkf/56qruolSWcP2QMhCWEzggEEFFAQQVGBccUNnRkZdRSXURmXB/FRZ1HRcXdGRceFeUZxXEaQxQ0EAWUHWQIhbAlZyNpJumu55/mj0unq6ntu3Xurbq2f9+tVL/res/2qursqdJ36Xq8gpfb90yJs8Nrc08L1iyvdJ530U+nKVRMDwUadeaf0zK3S2sukgYXSQW+UJh+UbF3dzLnZzm/zSMxQrD1PSHd9uHSbtqoUAja8WU273l7P5Oas66fewWUAAAAAAKA1pPtKQf/9c6OPtbb0t9v9QWIVgWO+AWTbxtryO9S0v7u0osJQ6aYnYww2UmbqWJBY1MCxnkm1Bc0DAAAAAAC0qKItONvSxn87fEr+oeyE2QBoeY79vKZF/v7rCmMEAAAAAAAAAADJIywMQHNFCQtb+tbk6uh2cd88Xv/L6n12PSxdd4q096nScc8k6ZQrpTknxVszKXtCfnBrkyMoq1HChoVNWVE9LGwCR4hT+c/HpIAQrad+IS06Z98Y/41WExxwarh+tTAp6bhvSdccN7HtyE9IqbQ0+/jSLQmF3QQjlnOFhfn9zIT9OQqy/a7a56hFqleasbr+8x7+Eem+T8WoJ1v/WgAAAAAAQHszRspMLt0GFkYfbz0pvys4YCwocKwwVP/71LZs6bHJb5d2xxhu0vtCxqZXBI5VHjsCx9J9db9HAAAAAAAA9VAM2DfnCgVzhdl4hIUBaHGuUMNWCekyRr7XECGMEQAAAAAAAACA5BEWBqC5+ueXgku8XPW+81+SfD1dK+abx2ECtv70jrGgMKkUnHTj66Szn4wfUhaXK6RIkh78vLT8girjrXTd8+tbU2QB92GckG+473pY+sXyKp3Kvk8r3inde4l/twf/bSwsrDgSbv3lbw/Xr1YzV0sH/630yH+MnZu2qk7rO3Y9jGpEWNiWW6QHPidtvT18oFyz5Hc4GhIKC2u21V+SevrrP+8hF8YMC8vUvxYAAAAAANDdTErKTi3d4vAKpb8ZjYaHRQ0cKw7X9/60M1uURp4p3eJI9ZaFilULHJteET42jb89AQAAAACAxBTlvycqrR4Zxz5E49h7ZIP2EQJAC3CHbrVGWJizDktYGAAAAAAAAAAASSMsDEBzZaaUQsCe/Gm4vkhGUoE8xWHp6Wsnnt+7XtpyszT7+GTWdQp4E3rng6XgLC8vDa70DzLbdntypYUV9o30sBuaqgaFafzPR99sd79Nvx/72gsRFjb/rPgfIIzKpKRjvy4tfIW0+UZp8BBp4dn1Wb9nslTY5W4fWif1zal9HZett0nXPDe5+RvF73cuO7PxdcSV7pf650l9c0v/nXywtPhVpaC6JPTNLr1+rr8yYp19ydQDAAAAAAAQV6pH6p1ZusVRHJZyO8bCw3IVYWKBAWTbJFuo7/1pZ96INLyxdIujZ9L48LCwgWPZaVLPoJRK1/f+AAAAAACAjlF0/A0nbdx/TzCOMBt3CA8AtLbWiQrj+RUAAAAAAAAAgGYhLAxA8z33O9KNr5M2XBXcb0ZCgStQYm8f53e627bd3viwsGoBWqPBWYMrpVOulCYfNL79L/+STF2RhH0jvZ5XP4zx81EMCgsz0rzTpRO+H7uiWExKWvDS0q2egoLCJGnd96VZx9Z3zVFeXvpVpzw3+oQWzjxW6p0ljWxpfDmjsjPGh4CN3sqP++ZKmUH/wLMknXi59IfXVn/9LDe4Mrl6AAAAAAAAmiHdJ/X3Sf0HRB9rrVTc4x8w5gwcqzjmw09jCrtLt71PxRufmVoWJFYWJpYJETjWM7nxf58DAAAAAAANU7RF3/PxwsLqubcOAOrPHbrV2n8D5a/lAAAAAAAAAAAkj7AwAM2XnSq94Erph1XewOyd0Zh6upHxCempBxv0tq/j+22tdP+/SndeVDpedoF0zFfrVGPIt6F3PiD9/izppfeNP5+ZVocaahXyPgQ+9lFVfK8Wv0Z6/P/5dx15RuqdKa2/0r996fnSUZ8t9ekUz/5X6c4Putsf+pK08j3S5KX1X7slAuzqxO9nIpWWDv+IdPt767uW6ZH6DggRAnaAlO6t79r1lBksvX7+7CBp97pwY1KZREsCAAAAAABoK8ZIPZNKt4EF0cdbTyoMuQPGqgWOVbsQQbfJ7yjd9Fj0sSa9L2xsenDgWHZ62ddlx+k+wsYAAAAAAGhhRVvwPZ827q3wKceeQ3cIDwC0Cv/nKVcIYqO56+D5FQAAAAAAAACApBEWBgBILiws6E3fyg/dWFv6YNTvXyFt+t3Y+Ye/IT3yLem1udo/qGMjXBFwx1+k7fdJgyuk4oiUmVz6AFe7iHJfq6l83Be8zB0WdsUs6YiLpeIe//a+AzorKEyS5r04OCxMkn5+sHTWA9LgIfVd++6P1Xe+ZslMk2Ye49+28j3SwELp8R+VPvD32OXR5l71TxNDwHpnJvi81wTZ6eHCwk5xhPgBAAAAAAAgHpMqBbpnBqVJS6KP9wpSfmfpb8/7g8S2Tzx2BY4V99b/PrUrW5RyW0u3OFLZslCxiIFjmWlSOlvf+wMAAAAAAMYpquh7PigszBVm80x+k4q2EDgWAJrpwT33+J5vlesduJ5ft+Q3hhq/o7BNf9h+tZ4aWacD+1bopOlnqi/VX88SAQAAAAAAAADoWLzLCQCQErvSVEBYWKHsQ0wPfkm67d0B0xSknfdLUw+rsZyIV6y68oja1kvC8KaQHet5da6KUCVXqNOoey8JmKq39nJazfRnhet3/TnSWX+p37pRf55bVc8k6eSfSamMu8/iV5ZuUunDd2u+Fm7upedLh19Uc4kd4dAPSPPOaHYVAAAAAAAAKJfqkXpnlG5xFEek/I6x8LDKMDFXANlo+JiXr+/9aWdervT399B/g6+QHhgLDysPEwsKHBs9zkyVUun63h8AAAAAADpM0RZ8z6fl/n9qV5iNJH1z/Wf1t/M/qFQnXXAQQEf45Zb/anYJsf1o0zd12KSjdEB2gbPPzsJ2ff7xj2hTfr0k6c6hm3Xn0M26cNEn1Jvqa1SpAAAAAAAAAAC0LcLCAABSUhtegsKM7ni/dOj7pPVXBweFjbr9H6QXXFlrQTWOT8DAImnPE+H757aVPgCWrhK6VdxTW11Bc/XNiT9Xtbo72c776zvfjnuD24/+fOlDZq2s7wBpzklSZnL4MdOPCt83Mz16TZ3m+T+Rpj9bmnxQsysBAAAAAABAvaV7pfSceH+ztVYq7p0YMBYlcMx69b9P7aq4R9q7R9q7Pt74zGBZkJhf4Nj0sbbKwLGeKZJJ6qIwAAAAAAC0hqIt+p5PG/dWeBOwL/KuoZv15MhaLe5bVnNtAFAvI96wrt56RUCP1v874PXbr9Kr5vyNs/2Wnb/bHxQ2at3wQ7pv9206esqJSZcHAAAAAAAAAEDbIywMQHs47tvNrqDDNenqeLnt0u/OCNd3w1W1r9eKH1ya/1Lp4a9HG7Ppemnei9ztue3S9ntqqytILQFUqQ4NC5uyXNq1prFrDm8Obl/5nsbU0WhRfoa8keTqaBeLzml2BQAAAAAAAGhFxkg9A6Wb5kcfb61U2DUWJBY1cCy/s+53qa3ld5Zuex6PPtakSn+3Lw8YCxU4tu843U/YGAAAAACg5RVtwfd82qSdY/pS/YFzPrL3AcLCALSUx4cfUcHmne3VntcapS89oJHCsG/bI3sfCBz7P5u/43v+F1suJywMAAAAAAAAAIAQCAsD0DpMWnJc/U0Hvr6xtXSbxD4EUiWc66GvJLSui23weiEc8RHp6eukoYfDj9m1Jjgs7KEv115XkFp+Xly/4+3u1N9IP13U2DV7Btxtx/574+potIANfhNkpiRXBwAAAAAAANDNjJEyg6XbpMXRx3tFqbBzLFxsf8BY5bEjcKy4p/73qV1Zb9/jti3e+FRmfHhY1MCxdLa+9wcAAAAAAB9F+e87Sxv3Vvhl/YfJKCXr2McYFMgDAM0w4u0NbF/ef0SDKgm2ov8I/WnX9b5tI55/iFg1G3NP1lISAAAAAAAAAABdg7AwAK3DpNxBQnzQIGGpZKa1VcLC7v5oMuu6VKunGQYWSi++RbpiZvgxXpVNSnd/rLaawljxbumhL0YfN+uE+tfSCgYWhuv30FekFe+sz5rb73W3LX1LfdZoRakI/3wdPCy5OgAAAAAAAADEl0rvC56aHm98MSfld0wME/MNHNs2MXzMy9X3/rQzLy+NbC7d4kj3TwwTy5SFjQUGkE2N9jdfAAAAAEDXKtqC7/m03BceHEhP1nkHvF0/2Oh/UVPXnADQLDnr/rvl6TPO1ZK+ZQ2sxu0Vs9/oDAvLeyMNrgYAAAAAAAAAgO7CzlsALSShwCpUZ5IKC3OEvzWNbXYB/npnSIOHSDsfDNd/+53utk3+b77X3dGXSht/I+0ICKzyM+u4ZOppF3/+e2n5OyRjap/rkW+62zr5w1UBVwOdYNE5ydUBAAAAAAAAoHnSWSk9W+qbHX2stVJxuCw8LEbgWMu9/9FExb3S3r3S3g3xxvdMGQsSCxU4VnacmZLce1wAAAAAgJbiDAurspfoxGkv0s+2fE9DxZ0+c/L/9wBaS1DQ1itmvVGmHntP62BGZrZed8DbdfnGr01oy1nCwgAAAAAAAAAASFIHJ0kAaDuHf1i65+KJ56etanwtXSehN4+tl8y8cbVaPeVMJnzftd+Rjvv2xMApryBdd3Jdy5Ikrfa5smIqLb30HumHEX52jv68lIpwP9tNZqqU31G9X26r1Duz9vWeuaX2OdqRcV8NdILMlOTqaCmtsQEIAAAAAAAAaAvGSD39pVv/vOjjrZUKQ+PDwyrDxHLbpbwrcCzE35G7SWFX6bbniRiDTelv86MBYlEDx9ID9bm4BwAAAAAgca5gr3SIvUQLepfowT33hJ4TAJolZ3O+5+dk5rdMUNioqT3Tfc/nAgLPAAAAAAAAAABA7QgLA9A6DnqDdM/HJdnx55e9rRnVdJekrrpe7800uR1SdmoNE9jqXZrFJ0TLs0Z7igOa3LN7Yv+d90tTDxt/bvONydS24h3utrkvkp6+Ntw8K99Tn3pa1bK/le7/bPV+W26WFrw0+Xo6VcHn98HPlBXJ1tFK+mY3uwIAAAAAAACgexhTulBBZoqkRdHHe8VSONaEgLEqx6OBY2H/RtoVbOlxyW+X4jwspmcsPGx/kJjPsSuALN1b93sEAAAAAPBXS1hY2rFdvqhCTTUBQL25grayqWyDK6kua/z/NpazI7LWtly4GQAAAAAAAAAAnYKwMACtY/JS6fjvSje/ZSxk6qA3ScsuaG5d3SBuWJhPwNU41os3r8vep2oLC6t3PZVWvCv+WDP2kmyt9InHPqavPPUObc3P0AlT/6jvHfomLel7fKz/hmsnhoVt/E389SXpkPdKD35+7HjSgdILqwSBZaeFm3vF38cuq20c+XFp253S09cF98vvrH0t28LBd0nbtSZkv4eSraOVHPlxacPVE88v+quGlwIAAAAAAACgilR6LIQqDi9furhKPkTAmN+x4wOHXckWpJEtpVsc6b7x4WFBgWPlx5lppfe7qr3PBgAAAADYzxXs5QoCK5dyBIq5AsgAoFly1v9vdxlHMFczZVPumvI25wwTAwAAAAAAAAAAtSEsDEBrOeiN0oKXSVtulgZXSpMPbHZF3SFuWNiMY4Lb672ZZsM1EwOyIkkwYCndXwq3iys19pL85afeqUvWXbz/+A87nqdT77xWDx53qNJmX+DZjnsnzrH+qvjrS9JzLpUOfV/p969/vjTzmOofVBlYHG7ubggL65kkveAaadsd0q+e4+53+3ulA19X21o7769tfDtLhfzn68CiZOtoJTNWS9OPlrbdPnbOpKWD/6Z5NQEAAAAAAABIRioj9c0q3eIoDu8LDtseI3BsW/3f+2lnxWGp+LQ0/HS88T2Ty8LDogaODcZ/fw8AAAAA2pAr2MsVBFaux/jvNypa/wAyAGiWnCPoP5vKNriS6oLCwPI2p6wICwMAAAAAAAAAIAmEhe2U5bsAACAASURBVAFoPdlp0vwzml1FlzExh1XZaFPvzTQPfF5a+Z74460Xf+yKd0vrr5R6+qUl50kHvl668yJpy43S4GHS4RdJM1fHnz89sP/L/7fpNROa1w4frD/vWq3jBm8tndh0/cQ5tv4p/voLX1H678BCafErw4+btCRcv8FDotfUjoyRZhwtzTnJ/3skScMbSx8gSvfFX2f3E/HHtrt0f7h+C16ebB2tJNUjnXqddMcHpKd/I00+SDrkQl5LAQAAAAAAAEyU7pP655ZuUVkrFXaXBYntCxArPw4MINuhRC/s0m4KQ6Wbnowx2EiZqWNBYlEDx3omld7TSMqWm6VNv5fmv1SaeniyawEAAADoCq5gr7QjCCxMH1cAGQA0S976h4VlAoK5miWbcteU80Y0KT1lwnmP510AAAAAAAAAAGpGWBgAQLHDwqp9oGP3upjzOux5vMYJHPUe+Qnpnv/jHnb6zdKs4yT92/jzJ/6gxnrKHH6RtPHXkqSbdp7g2+WfHrtIPz3y3NLBpMXjG4cerb7GjGPcgWKr/jlspeMtOke67d3BfU5zhGZ1sqMvlX4VEB736H9Ky97WuHo6yeJXSnf8Q/V+Ia4a2lGy06XjvtnsKtqS51n901VWV9xulU1LrzvO6N0vNDJ8eA0AAAAAAAAYzxgpM7l0G1gYfbz1pPyuiQFjQcfl4WOFofrfp7ZlS49Nfru0O8Zwk94XMja9InDMcVwZOFbtgiiPfl9a85XShXcGFknzX1IKDpv7wlJQGQAAAABE5Ar2SofYI+TqU1SdL4YKADXKeTnf80HBXM2SDQgwyzlCz3LW//4BAAAAAAAAAIDwCAsDAEh9B8QbZ73g9qG18eZNiqveaoEws46rfy2VZp9UtYstD3XLbRvfeOdF1ddYer50+k3SA58b63/UZ6WD3ij1zQlfa7mgDwPNe7F07L9PDDbrBjOeUwoDe/jf/dtvvaB6WFh+p/TMrdKU5dKkJePbinvd42YeG63WdlP5WLhsviHZOtAx3vcjqy/+eixM8tZ1Vjv3Sh87i7AwAAAAAAAAoK5MSspOLd3i8ApSfkf1gDFX4FhxuL73p53ZojTyTOkWR6q3LFSsMmBsWikobNSeJ6SHv1G6HfgG6YTv1ec+AAAAAOgqrmCvdIit8K4+rgAyAGgWV8hWUDBXswQFmOU8//uRd5wHAAAAAAAAAADhERYGACiFYfUdIA1vjDau2mYZLx+/pkRY/9Mm1dgy/KSzVbuMCwvbelsp/Gy09sf/O3hwZpq0/O2lYLTDPlS61ctfPSNdMXP8udOul+Y8v35rtKNjvuYOC6vm0R9It7xl7Hdo6VulY78hpfb90+2JK9xjT7ky3pqdZtsdza4AbWAkb/XNGya+Nnz991YffamVqRYmCQAAAAAAAKBxUj1S78zSLY7isJTbMRYelisPE6sWQLZNsv4fTO9K3kjpfcWo7y3OPzOZegAAAAB0PFewV9qkq4519fEICwPQYlxhWkHBXM2SCQgwy9mc43xwWJhnPaVaYU83AAAAAAAAAAAtjLAwAEApcOpZn5BuvSDaOOtV6xC7JF89U2ob76y3PcJgrK2o89H/lJaeH27wkReXgsKS0DtDOs9Khd2lK9BPWpzMOu3GpKT+edLeDX6NkrX+35OhddIf36hxvz9rvy3NPFZavu93dN333evG/ZBUpznqc82uAG3gNw9Ie3z2JW3YIT20UTpkbuNrAgAAAAAAAJCQdJ/U3yf1HxB9rLVScU9FwFjEwLF6v2/WbkxKmvfiZlcBAAAAoE25gr3ChYX5b5cvEgoNoMW4wrQypvoFiRutx/TIKCWriXuzXaFnOc8/RGx/ux1Rn+mvS30AAAAAAAAAAHQqwsIAACXL3iYNLJaeuEJ65JshB1UJC7N1/tBDYVeNEzjqaZOrUNnKULMHPh8+LCwzte71TNAzqXTDmNVfkW4416fBSvkdUnbaxKb1v5Tvz+pjPxwLC0N1S9/c7ArQBvyCwkaNsB8UAAAAAAAAwChjxt4HGVgQfbz1pMKQT8CY47gycKzm98hawMzncsETAAAAALG5gr1cQWDj+/gHihUICwPQYnKOkK1sqrfBlVRnjFHWZDVihye0uULPXOdH5b0R9aUICwMAAAAAAAAAIAhhYQCAMfPPKN1WfUr6SYirqjuu1lfWoS5ljVPMSemYV8iyrnAzIx33TemWv5nYdOQl8dZqhO13h++7+K+SqwNu01e52574iXTwWyeev+di//6bri/918vXXlc34ANHCCEVkBXpJfASBgAAAAAAAKBLmZSUGSzdJi2JPt4rSPmdwQFjzsCxbVJxb/3vU1QLXtbsCgAAAAC0saL89yq6gsDKpeTfxzUnADRLzvpf/TJrWi8sTCqFmI0UfcLCHKFnrvP726uEiQEAAAAAAAAAAMLCAAB+emeF6+cM39rfoeZSJtj4a2n+mTEHO+oxKWnBy6WBRdKeJ8bOZ6dLS14Xc636szLxBi59a+nDJ2i83jnutlv+2j8srJo1X4tfD4BxUgFPq5awMAAAAAAAAACtItUj9c4o3eIojkj5HWPhYZVhYvu/9gsc21b7hUz65kgr3lHbHAAAAAC6WtEWfM+nQ2yFTxv/Pq45AaBZ8o4wrWyqdcPC/HIXXaFfOW9isNj4dv+wNAAAAAAAAAAAMIawMADARCYVrl+1sLAoSSun3SA99kNp42+lnQ+4+w09Gn7OCfW46jVS32zptN9Ld39MeuZWafqzpcM/LA0uj79enfmGhVlPCnpzfNqR0rHfSK4oBOuZFH2MV2UT2m0XxqsFwARBYWEeYWEAAAAAAAAAOkW6V0rPKYV2RWWtVNw7MWAsTOCYJE0/WjrqM1zYBgAAAEBNitYnjUbuILDxfdKR5gSAZnGFbGVNa4aFZUzW93zOEXrmun9h2wEAAAAAAAAAAGFhAICaVAkLU4Sklf550jFfLX299rvSzef799u7IfycYesZDUebfJB0wvdrmD9Z1vqk2ux5IjiU7ehLS1ebR3OYgCQil/yO+tfRaeadKW24yt0++lwCVBEUFlas9hIHAAAAAAAAAN3AGKlnoHTT/GZXAwAAAKBLFa3/BRhdQWDj+/jvn3PNCQDNknNcPDib8g/lajZXiJkzLMxxPmw7AAAAAAAAAACQUs0uAADQxqpdWS8oxKpSz8DY1wML3f3u+6Tkxbyin3Ulv8QIdGoVa78rFYbc7VOPbFwtqN36q4Pb9zzZmDpa3YHnudvSfdKBb2hcLWhrQWFhXoSXMAAAAAAAAAAAAAAAACSn6Nir6AoCG9dH/oFiRcXchwgACclZ/7CsjCOUq9myKUdYmON+5Kx/GFq1cQAAAAAAAAAAYAxhYQAAf31zq/fZ+WCVDhGSVtL9Y1/POTm4723vCj/vOI56THu8HFq/ULP1v5QKu92DMpOTKwjhrP6yu23H/eOP/3RB8FzDm2uvpxMc9AbpqM9NfJ6asVp68Z+lzJTm1IW2kwp4+icsDAAAAAAAAAAAAAAAoDW4gr1cQWDj+jgCxTxbqKkmAKi3nOcfluUK5Wq2rCPEzHU/XOfDtgMAAAAAAAAAAMLCAAAuz/tRuH42KE0lZNKKSUs9ZeE+qSpX+1vzNWloXbi5x5XjuQqIPlcT+IaF9c4ODgsrD2FDcwwsdLf9/uVjX1tP2v1Y8FwjW4Lb2yT4ri4OfZ909pPSq/dIr/OkVw9JZ/xJmnZ4sytDG0kFPP0HvrwBAAAAAAAAAAAAAACgYYqOYC9XENj4Pv6BYkXrH0AGAM1QtAV5jmDErMk2uJpwMo4Qs7zN+Z7PWcLCAAAAAAAAAACoVRclSgAAIpnzPOnMO6r323Gvuy1s0sqS10qp6lf4G+fxkGFm4zjqaZOAJd+wMFuUfnOqe1Cb3LeOdkDA92fo4bGvt91Zfa7fnh7cPmlpuJo6RSot9fRLxkg9k5pdDdpQUFiYR1gYAAAAAAAAAAAAAABAS3AFe7mCwMb38Q8UIywMQCsJCsrKOkK5mi1r/Oty3ZdqYWD5KmFiAAAAAAAAAACAsDAAQJDpz5bOeii4z4arAxpDJK3MPlFa/eVIZUmS7vygtD0gqMy3HM/REJAW00Ks9alzZEvjC0E0mcnB7fldpf9uv6f2tYp7ap8D6CImKCzM9ZIBAAAAAAAAAAAAAACAhiragu95VxDY+D7+gWJF+c8JAM2QszlnW8YRytVs2VTW93zOEfpVLQysWpgYAAAAAAAAAAAgLAwAUM3gcmnVp93td3wgYLAjLGzOSdIZt0svWyOddoOUnRavtmueKxX2RhjgqCcoLaaFWL9Qs61/bnwhqK8df5GslZ7+de1zHfzXtc8BdJFUUFhYiLxLAAAAAAAAAAAAAAAAJM8V7OUKAhvXR46wMFusqSYAqKd8QFBWNtWqYWH+deUdwWfVwsBcIWMAAAAAAAAAAGAMYWEAgOq8KlfQs57jvCucKy3NOEqasswd1DX3RdXrKuyWNv+her/99Tjq5OUQzVTYLd35QWnd92qfa8l5tc8BdJGgsDCywgAAAAAAAAAAAAAAAFqDK9jLFQQ2ro/pccxZZV8kADRQUFBW1rRoWJijLlco2Ei1sDDPP2QMAAAAAAAAAACMIR0FAFBdtTdfR7Y6GlxRKwHpLKPmv7R6H0la++1w/aSA8LIQ9bQAG+ZxQ/vZdrt0/2drn2fVp6WpK2ufB+giQWFhRVe+JAAAAAAAAAAAAAAAABrKFezlCgIb38c/UMwVQAYAzeAK2JKkTCrbwErCy6aihYUFBaKFaQcAAAAAAAAAAISFAQDCiH2lphrCwsJetc8VAObLlfzSKi+HwY9L5LCwU66soRY0zB0fqH2OqUdIh/9j7fMAXSYd8PTvRXl5AQAAAAAAAAAAAAAAQGJcwV6uILDxffwDxVwBZADQDEFBWVnTomFhxhEW5rgv+YBANCk4MA0AAAAAAAAAAJS0SjoKAKCVxX3z1RXkZUKEXhWHw62RGWxMPY1w9KWBzdZGrHP+mTUUg7YyZVmzKwDaUtDTv+fKlwQAAAAAAAAAAAAAAEBDuYK9XEFg4/rIP1CsKP8AMgBoBldQVo/JKBUiGLEZMilHWJjjvgQFooVpBwAAAAAAAAAAhIUBAMLwclU6OEK4nOdDhF4tOrd6H0l64opw/SS562mRl8OD3iRNW9XsKtCOimyQAOJwZUhKkhfQBgAAAAAAAAAAAAAAgMZxBXu5gsDG9XEEihUtYWEAWkfe+u/Vzhr/QK5W4KrNFfrlChEblY97cWsAAAAAAAAAALpIi6SjAABaWt+84HbnppkawsIGV0qTl1Xvl9tavc/+cjxHOSHqaYTeGdKpv3E22zCP234tcp/QGGyQAGIJygMjKwwAAAAAAAAAAAAAAKA1uIK9XEFg5VLGP1DMypPn2lMIAA3mCtLKplo4LMxRW95xkWpXiFjYdgAAAAAAAAAAQFgYACCMg98S3O4KC7OOqJUw4VzGSKf8snq/KPY87mhooZfD3hnOpkhhYYd9qA7FoG6WvDbZ+QkLA2JxvUxJksdeUAAAAAAAAAAAAAAAgKbzrCcr/40criCwckGBYq4QMgBotJz1D9jKmhYOCzNZ3/Ou0C9XIFrYdgAAAAAAAAAA0FLpKACAljWwMLjdFlwNjvMhQ68GV0jP+WK4vtUMb3G3hQkvawGRwsIWnJVcIYhu+TuSnb84nOz8QIcKDAsLaAMAAAAAAAAAAAAAAEBjBAV6BQWB7e8jd6BYUa69jwDQWK6grEzKP5CrFWRT/kFmeZuTZyeGPLoC0UaNOELGAAAAAAAAAADAGMLCAAC189uMY61qDguTpANfH6eiiTZcFdDYHi+H1kZ43LIzkisE0c15frLzF9kgAdRb0f+CtAAAAAAAAAAAAAAAAGigoECvoCCw/X2Mu48XEEQGAI2UcwRlZY1/IFcrCKot7xMMlncEooVtBwAAAAAAAAAAUvXLKaEjGWNWSlolaaGkfknDkjZJeljSXdba3TXMnZF0oqTFkuZJGpK0XtId1tp1tVUOoCV5ZRtmnviJdO8npaFHpPxO//4mQuhVb51Cr+74oLstSj1NZCcfHL5zz6TkCkHrYYMEEIsr0lKSvKBGAAAAAAAAAAAAAAAANERQoFdQENhYH/d2+YJ1B5EBQCPlHPtAs6lsgysJL5tyh4XlvBH1pvr2H1trnYFo+8dUaQcAAAAAAAAAAISFdRVjzDRJF0p6q0pBXi5FY8ydkn5srf3nCPPPlnSJpNdI8k33McbcJOlSa+0VoQsH0PpGN+NsuFa64ZUKjl+RpIjhXAe+UVr3vTiVScObpc1/kIafDuiUijd3o/XPlV7+iPTzEKFhmcHk60HrmHtasysA2pINeLmysor8egUAAAAAAAAAAAAAAIC6KgYEegUFgY3qCegTNDcANFLe5nzPZ4w7kKvZMsYdZFYZ/JW3uX178txcgWkAAAAAAAAAAGAMYWFdwhjzKklfkzQzRPe0pOdIWigpVFiYMeZMSd+RNKdK1xMknWCM+YGkC6y1u8PMD6DFjYaFPfIfqh4UJkUOX1nymnhhYU9fJ11/jlQYqlJOe4TBWCtp8lLpFeuknx0Y3Dk7rQEVoWUs+7tmVwC0paCwMM9rXB0AAAAAAAAAAAAAAADw90x+k7MtKAhsVNqknW0P7/2LDksdpUnpKbFq6wZDxZ3alFuvlFKa37tE2VTtwUUFm9fm3NOak52///uzq7BDBZvX9MysmucH2lHOG/Y9X4/fuaQE1bZ27wPaUdi6/3jY21t1vmFvr9bufcDZPik9RQdkF0QrEgAAAAAAAACADkNYWBcwxlws6eM+TY9LekjSZkl9kuZJOlLSpIjznyLpp5LKLw1jJd0uaa2kaZKOklT+7u3rJQ0aY8621hLFALS70bCwx38Urn/UcK65L4rWX5K8vHTjedWDwiSpvz3eON6faTNpiXTg66V1P2hmOWgl045sdgVAWwqKt/TCZF8CAAAAAAAAAAAAAAAgETsK2/SNpz6tdcNrnH2CgsD29wnYLn/ZhktlZHTUlOP15rnvUSaVdfbtNjlvRJdtuFR3D90qu2+XTY/p0Qumv0xnz3qTTMyLtN6w/Wr9ZNNlGrHD6ksN6NzZb9ZdQ7fovt23S5KW9C3X3y34R03tmVG3+wK0uvUjj+sPO67xbcuaFg4LC6jtsg2XRp4vb3P67OMXOdtXTX6uLljgbgcAAAAAAAAAoBukml0AkmWMeb8mBoVdLulZ1tol1toXWWvPs9aea609XtKgpOdJ+rykZ0LMv1DSTzQ+KOxGSYdba1dba19trT1d0kJJF0rKl/V7maRPxrxrAFrJaFhYaBE3iaRjbMDZcK00sjlc31nHRZ+/CWx5cM3x33N3PO5bideCFnL4R6IH8AGQVPG8WqFInC0AAAAAAAAAAAAAAEDTfHP9vwYGhUnBQWD7+1QJFLOyun3XTfqfzd+NVF+n+/Gmb+uuoVv2B4VJUsEWdO3W/9GNjlCjatbsuU+Xb/yaRuywJGnY26Mfbvza/qAwSXpseI3+/al/qa14oI0UbVFfeuJiZ3srhxhmU60bZAYAAAAAAAAAQKciLKyDGWNWSfrnslN5Sa/aFw52j98Ya61nrb3RWvs+SatCLHOJpOllxzdJOs1ae3/FvCPW2i9KenXF+PcZY5aEWAdAK7OFaP3jBBtlpkbr/9TPwvdNZaLN3QqMkc5ZP/H80rdKS89veDlootz2ZlcAtK2ArDAVCAsDAAAAAAAAAAAAAABoih2FbXpk7/1V+1ULAiv1qR4oJkl3DP0xVL9uYK3VnUM3O9vv2BXvsboz5GP86PCD2l7YGmsNoN08uvcB7Shuc7ZnTesGcqVNj1Kq/jwMAAAAAAAAAADqh7CwDmWM6ZH0bWncJbMusNb+OOwc1gan/xhjlkt6c9mpnKTzrd13uSf/OX8qqfzSW72S3JfCAdAebFEq5iIMiBEWdvDf+J8fWOx//okrws277O+i19IktjLVpn+edJ6VznpQOuln0qt2Ss/9lmR4eW9J/fOSmbewK5l5gS6XLza7AgAAAAAAAAAAAAAAgO60Lb+lap/J6UFNSg9W7ZcKESgmSTsKW1W0bBiRpLzNaai4w9m+tVD9++Pnt9v+N3Tf+3ffEWsNoN08k98c2D6vd1GDKomn1esDAAAAAAAAAKDTkCbSuV4l6eiy419bay+r8xrnSeMuBfMTa+2aEOP+peL41caYvvqVBaDhinulzX+IMCBGWNjgCv/zex73P1905haOt/yC6LU0SWVW2H6DK6SFL5cyUxpZDqJa+f5k5s3OSGZeoAtMCGEsQ1gYAAAAAAAAAAAAAABAc+TsSNU+xw2eolSIC2umx113OVjeRrloaueq9vjnverfn1pZ945JoKMEPe9MTg/qyEmrG1hNdCdMPa3ZJQAAAAAAAAAA0FUIC+tclek3n05gjXMqjkOFkVlr75d0S9mpSZJOr1dRABISdHW9v/yL9OAXIswVIywsqoGF4fpNf3aydQCjVvy9lB6o/7wHvbH+cwJdgrAwAAAAAAAAAAAAAACA1hMURjW9Z5ZOn3Guzpn95lBzpYP2PlbINSAEqx1UexxyDQhVM3EuSgu0oaBwvvcs+qSm9ExrYDXRnTLtpTp39vmak5kfadxgerokaUp6ahJlAQAAAAAAAADQscJfKgltwxizTNLJZafWSfptndeYK2lV2amCpBsjTPE7SceVHZ8p6ee1VwYgMSYtWUdyyoarpVnHh59rZGv09Tdd72578IvSgpdJkw8aOxdmg89rhqPX0URBoTZoA+le6cTLpetfEW98/3xp7/rx56atIvAOqEHQ0yphYQAAAAAAAAAAAAAAAM3hCs/Jml59cul/yES4YGnKpGSUkpVXfV3CwiRJ+SphYEFhbgCicT3vHNi3QvN7Fze4muiMMTptxtk6bcbZynv50ON6TI+MMbLWqmALocakGnGxagAAAAAAAAAAWlyq2QUgES+oOP61tXWPmDmi4vhua+3uCONvqjg+vMZ6ADTblj+G77vpd9HnH1rrbrvtQunnS6U1Xx87Vy0srH9eKbypjZAV1gEibISY4JynpGO+Kg2ulDKD0qJXSi+8VjL8cw6IK+hfyIXq+0MBAAAAAAAAAAAAAACQAFd4zkB6cqSgsFHpMBcflTukrNtUC03L2RHVf2v6eJYdk+gSeVc4Yqq99jhLUiaVCX0bfS43xoQekzY9Tb6HAAAAAAAAAAA0H38t70zHVhz/UZJM6R2VUyW9XtJxkhao9DOwRdIaSddJ+i9r7boQaxxWcfxwxBofqTIfgJbT5I0XYTaW/Ont0vyXSJMWS9vvCe7bN7c+ddVZ0AaahPfWoBHmnBxv3LwzSv9d/vbSzVqJK6QBNQt6Ws0XG1YGAAAAAAAAAAAAAAAAyuRszvd81sQLz0krrYKqX+ixWkhWt6j2OFhZFWxeGZNNrIaCLSQ2N9BKXL9vSf5+AQAAAAAAAACA9kVYWGdaXXF8vzHmQEnfkvRCn/6L991OlfQJY8x/SPqAtXZPwBrLKo4fj1jjYxXHM40x06212yLOA6BrhEzKWnuZNOM51fvNfn5t5SSEQLAO1zcr3riFZ48/JigMqIug51zCwgAAAAAAAAAAAAAAAJrDFZ6TTcULz0mbnlBbEPOOkLJuk7PVQ9NydkQZJRdmlCe4DV0i59U3HBEAAAAAAAAAAHS2VLMLQCLmVRwPSPqT/IPCKmUkvUPSH4wxlfOUm1ZxvCl8eZK1dkjScMXpqVHmANBodQwnWnZB/eaq9Oh/Sn9+d/V+qz6VXA0JIUisQ7z8keD2gYVS78zS1+k+6dAPSsvelnxdQBciLAwAAAAAAAAAAAAAAKD1uMKqMjHDc9ImXdO63cYV1ha1T0018L1Al3D9rGdThIUBAAAAAAAAAICJeppdABJRGeR1maRZ+77eLenrkq6S9KSkSZJWSXqrpOeVjTlK0hXGmJOttXmfNSZXHO+NUedeSX1lx1NizDGOMWaOpNkRhx1c67oAIlrxrhiDIiRl7X40uP2wi6RM5dNYawi6l2SFdYjJS6VpR0rb75nY9sptUnZaKcFoaK3UP1/q6W98jQAICwMAAAAAAAAAAAAAAGiSnFd5PeKSuOE5aRNuy3zSAVjtIkxQV9QwLxvxaql8L9At8q6wsJjhiAAAAAAAAAAAoLMRFtZhjDG9kirfGVq4779/kXSGtfaJivbbJV1mjHm/pM+WnT9e0ockfdJnqcqUHf935YPtlTQ9YM443iHp4jrMA2CCOkZVTTs8xvIh1x9aG9w+63hp1aejr98gQXdz/fbG1YGEnXmXdNMbpMd+WDqed6Z0yv9KJlU6NkaaQpYlkLSgVxbCwgAAAAAAAAAAAAAAAJrDFUQVNzwnbdLh1iWgSlK4xyHqY1XwvXZ1wPwRw8iAdpXzcr7ns6lsgysBAAAAAAAAAADtgLCwzuN6N3uH/IPC9rPWfs4Ys0DSe8tOv9cY8wVr7VCVdeOkCNUxeQhA56vTU8ayt5WCmFpUUFjYpl2NqwMJM0Y68QelG4CmCXrOJSwMAAAAAAAAAAAAAACgOVxBVNlUzLCwkFvm8wRUSQoX1JWz/gFHtcxZLu8IUAI6jTMcMebzHQAAAAAAAAAA6GypZheA+rLW7pHk+TRdGhQUVuZjKgWLjZoh6UyffpXhYf3hKgwcUy2QDEAzLTy7PvMMrow3bvaJ9VkfAIB9gmIoCQsDAAAAAAAAAAAAAABojpwjKCprYoaFGde1mCvXJSxMCvc45CM+VlEf26jhYkC7cv1uZGI+3wEAAAAAAAAAgM5GWFhn2u1z7j/DDLTW7pb0k4rTp/h0bdWwsK9KOiLi7RV1WBfofCv/oT7z9EyKN+6gNzV3/QYJCq4BANSX5xexu0+BsDAAAAAAAAAAAAAAAICmcAVFZVMJh4URUCUp3OMQ9bGK3J/gdyRnaAAAIABJREFUNnQJ18963Oc7AAAAAAAAAADQ2XqaXQASsV3SlLLjjdbadRHG3yzpLWXHh/r02VFxPDvC/DLGTNbEsLDtUebwY63dJGlTxFpqXRboDjNXS8v+Tnr467XNY2K+9PTOrG1dSTIpac4ptc+TIEtaGAA0jBfwnJsnLAwAAAAAAAAAAAAAAKAp8nUOz0mF3LeY83Kx5u80YYK6oj5WUcO/cpbvBbpD3hWOaLINrgQAAAAAAAAAALSDVLMLQCIeqjjeEHH8+opjv4SeNRXHSyKuUdl/q7V2W8Q5ADSSSUnHfFVa9ana5nnmlpgD6/CSNfd0qS9StiEAoIMF5TPmCqQ3AgAAAAAAAAAAAAAANEPOGZ4TLywsrXRN63abMI+DK+DIPWey4WJAu3L9rGdiPt8BAAAAAAAAAIDORlhYZ7qv4jjqu6WV/ft8+txfcbws4hpLK47/EnE8gGYwRlrwsiatXYeXrBN+UPscCSOaBgAax/PcbblC4+oAAAAAAAAAAAAAAADAGFd4TjYVMyzM9NS0brfJh3gcoj5WYeYcNz/BbegSriC9uM93AAAAAAAAAACgsxEW1pnurjieFnF8Zf9nfPrcW3H8LGPMQIQ1TqwyH4BWFXLTTP3XrfEl65ALpd4Z9aklQbZKWtj2PcSJAUC9eAFPqbli4+oAAAAAAAAAAAAAAADAGFdQVNbEDQtL17RutwnzOER9rKL2jxouBrSrvOv5jrAwAAAAAAAAAADgg7CwznSVpPLog6XGmL4I44+oOH6ysoO1doPGh5L1SHpehDVOqTi+KsJYAM2UyjRr4dqGDx5SnzKaLFdodgUA0HzWWg3naw9P9AISGnm+BQAAAAAAAAAAAAAAaI6cIygqbnhOOuRFUgmoKsl5uRB9IoaFRe1PcBu6QNEWVbD+G9XihiMCAAAAAAAAAIDORlhYB7LWrpf0x7JTGUmnRpjijIrjGxz9/qfi+C1hJjfGrJR0XNmp3ZKuCVcagKYLuWnGafGrY65b40vWwnNrG98gAbk1kqSC15g6AKBVfe4aT4s+5GnwXZ5O/kxR67bEDw3zAoaOEBYGAAAAAAAAAAAAAADQFDnrH1aViRmek1Y65LoEVEnhHoeoj1Xk/gS3oQvkHc91UvxwRAAAAAAAAAAA0NkIC+tcl1Ucvy/MIGPM8yUdW3bKk3Slo/sPJBXLjs81xiwPscyHKo7/21o7HKY+AC0gVWNY2IKXxRtXa1hY/wG1jW+QapE3hNcA6GbfucnTB35stX57KTzxhjXSyZ/xlC/ECwwLCgvL8XwLAAAAAAAAAAAAAADQFHlHUFQ2lY01X9qEDAsjoEpSuMch6mMVtX9QiBLQKYJ+L7IxwxEBAAAAAAAAAEBnIyysc10m6f6y4xcaYwIDw4wxczQxZOy/rbWP+PW31q6R9N2yU1lJ3zHG9AWs8QpJ55edykm6JKguAC3GZGob3zurPnV0KFsl72Yk35g6AKAVXX7LxCfJJ7ZJv3kw3nye527LFd1tAAAAAAAAAAAAAAAASIa1VjnrCAuLGZ6TNuEukpojoEpSyLAwx/eoljkr+9tqGyqBNhf0e5Ex8cIRAQAAAAAAAABAZyMsrENZa4uSLpRUHoHwOWPMvxljplf2N8acJulGSQeXnd4m6cNVlrp4X79RJ0i6zhizsmL+XmPMuyT9qGL856y1j1VZA0AnsTHTV7xCfetoUyM8DAC62LX3+5//6E8DUr8CeAH7CXM83wIAAAAAAAAAAAAAADRc3uZk5b+pozflvJ5xoLRJh+oXNdCqU+VDBIHlvWjBavmIQWyePBXFBh50tqDQvWwqXjgiAAAAAAAAAADobOEuk4S2ZK291hhzoaQvlZ1+t6S3G2NulvSUpH5Jz5a0pGJ4TtLrrLWPVlnjSWPMuZKuljR6+ZoTJf3FGHObpLWSpko6WtLsiuH/K+ljke8YgOZK13ilqt6ZzVm3TVS7Dh5hYQAw0cad8cYRFgYAAAAAAAAAAAAAANBagsJzMiZeeE7ahNsyH7R2NwkTmhb1sYrz2Oa8EfWkM5HHAe0iKESPsDAAAAAAAAAAAOCHsLAOZ639sjGmKOmzkgb2nc5Ien7AsI2SzrXW3hRyjd8ZY86R9B2NBYIZSav33fxcLulvrbXFMGsAaCHZ6fHHZgalmcc2ft0FL48/tsFslbQwwsIAYKKiF29cYFgY/0oFAAAAAAAAAAAAAABouKCgqrjhOemQW+bzIUKyukGYYK8wgWK19C/Vkdu/+R3oREG/FxnTHRdZBgAAAAAAAAAA0aSaXQCSZ639mqRnSfq+pF0BXZ+W9HFJh4QNCitb40pJR0j6uqRtAV1vlvRKa+151trdUdYA0ELihm8961OSacJLz/yXNH7NhIzkm10BALSeRMLCCGcEAAAAAAAAAAAAAABouLzNOdtih4WZdKh+YUKyusFIiGCvoO+TnziPbZyAMaCduH4vekxP6OctAAAAAAAAAADQXcJdJgltz1r7iKQ3GmP6JZ0oaaGkuZJykjZLustae3eNa2yS9HZjzIX71liyb43dkp6SdIe19tFa1gDQIha+XHrq59HHHfL3ta1rUpKNkQgzaUlt6zaQDQiukaQRwmsAYIKg0K/AcQEvKXHnBAAAAAAAAAAAAIB6McZ8XNLFNUzxXWvt+fWpBgAaIyggKmuyseZMm3Bb5nPeiKy1MsbEWqcTFG1BnopV+0UN8sp70cLF4qwBtBvXz3jGxAtGBAAAAAAAAAAAnY+wsC5jrd0r6bqE18hJ+m2SawBoMi/fnHXjBIVJ0pzn17eOBFXLpinEfAgAoJMVYz43BgWCxZ0TAAAAAAAAAAAAAAAA8QWGhaXiBeikTTpUP0+eiiqoR5lY63SCsAFdORstyCtqf0nKxxgDtBPX71vc5zoAAAAAAAAAAND5Us0uAADQhmJc4a1p+udLPZOaXUVotkpaWKH6BfsAoOsEhX7FHRd3TgAAAAAAAAAAAAAAAMTnCpVKKaV0zOtkRxkXNiyrU4UN9Yr6OMV5XHO2jfaqAjG4AvGyhrAwAAAAAAAAAADgL947pgCALhcja/LA19e/jDBWf7k56yakaK0k0+wyAKClJBEWVvTizQkAAAAAAAAAAAAACXqdpJsj9B9KqhAASIorVCqb6pUx8fbOpU06/Po2p4FYq3SGsKFeYUPFos5b6xignbh+xjMm2+BKAAAAAAAAAABAuyAsDAAQ3aKzpdveFdD+SumJKyTtS2GZdKD0rP9b+7pzT5Oevi7amFR7XV2rWt5NodiQMgCgrcQNC7OEhQEAAAAAAAAAAABoL09ba9c1uwgASJIrhCpr4u8FjBQW1uUBVWFDwKI+TlHDxSQpH2MM0E5yNud7Pttme58BAAAAAAAAAEDjEBYGAIhuYKG7bcYx0vN/JG2/R9pwrdQ/V5p3htQ7o/Z1F78meliYSdW+bgMFBddIhNcAgB8v5nNj0FNu3AAyAAAAAAAAAAAAAAAAxOcKoaolPCdtwm+Z7/qwMM8/vKhS3ubkWU+pkHs04zyu3f69QOdzBeIRFgYAAAAAAAAAAFwICwMAxLPktdJj/zXx/LFfL/132pGlWz3NXB19TMiNK+2iSHgNAEwQ97kxKKCRcEYAAAAAAAAAAAAAAIDGy7nCc0z88Bxb7SqeZVzhPd3C9fj7Kdh86O9LlHn3jyEsDB3OGY5Yw/MdAAAAAAAAAADobOEu5QMAQKUjL5H6Dhh/btErpenPTm7NYozgr8FD6l9HgqrtSSoUG1MHgOZYt8Xqoz/19KqvF/WF6zwN50kIDMNLINjL46EHAAAAAAAAAAAAAABoOGd4Tip+eE5RhZrX7xZR7n+UALB8jAu/xgkYA9pJzvF7kU1lG1wJAAAAAAAAAABoFz3NLgAA0KYGV0in3ySt/Y6062FpzsnSwX8tmQRzKNMR3/yefLA0ZUUytSSkWjZNMYFAHACtYe1mq5M+42n99tLxFbdbXXOf1c/emVKmxzS3uBZXjBnsFRTQ6NnSVWWN4bEHAAAAAAAAAAAAAABoFFdAVMbUEBZmw1+ls9sDqvIR7n/OG5HSIfvGeFy7PbgNnc/1e5Gt4fkOAAAAAAAAAAB0NsLCAADxTV4qPesTjVtv6pFSdoaU2zqx7awHpd+9RBp6pHTcP186+edSm4W8BAXXSFKBsDCgY33jers/KGzUr+6TbnpEOvmQ5tTULqo9dzrHhZi3zV5GAAAAAAAAAAAAAAAA2porICqbqiUsrFDz+t0iyv3P21yofp71QvcdV0uMMUA7cf2+ZWp4vgMAAAAAAAAAAJ2NsDAAQPtIpaUV75Tu/b/jzx92kTS4ohQYtv1OyStIM54jpTrvZa4YISzMWqub10q/fsDqoFnSWUcaTR0g9QZoVZ+52j+66uO/8PTbQ0JegrNDbd9j9ct7YiaCBagWMlb0pFSq7ssCAAAAAAAAAAAAQFwXGGM+KulQSTMl5SU9I+kxSX+Q9Ctr7Q1NrA8AapazjrAwU0tYWDF036u3/li37Pxdac1Ur5b3H67jp54aGFbm2aJu3vlbPbj7Hu31dmtKeqoOn3y0jpp8gkybXaluzZ77QvcNGyy2Ob8hVi237bpB60cekySlTEpL+pbr+KmnalrPjFjzwd+GkSd0687f6amRx5QyKS3qXarnTn2BZmYOaHZpHafyueKx4TW+/bIm2+DKAAAAAAAAAABAu+i8FBUAQGc78hIpO0N67HJJRlr8Kmnl+0ptqXQpJKyNVYvCKUQIC/vE/1pd8ouxGQ+fb3X1e1KaP629Nh8B3e6WR5tdQXNt2G71ws95enBj49d+Zrc0d2rj1wUAAAAAAAAAAAAAh9dWHPdKmixpiaSTJH3YGPNnSf9orb0uiQKMMXMkzY447OAkagHQmfKOAKqgsK5qiiqE7vvkyDo9ObJu//Htu27UXUO36O0LPqpMKjOhv7VW39nwBf151/isxj/u/LVOn3Guzp79pth1N9p9u2/XH3f+OnT/MGFhz+Q36tPr3hurnmfym/RMftP+47uHbtVNO67Texd9UjMyUV+K4OfRvQ/pS09+XMPenv3n7h66VTdsv1rvXfxJHZBd0LziOozrucJPLc93AAAAAAAAAACgs6WaXQAAAJEYI618j/TiW6QX3ywd+v7SuQ5hq6SFFUOGhT2yaXxQmCTdt176wnXV4sgAoLV86kqbWFBYtWfETbuSWRcAAAAAAAAAAAAAErRa0jXGmE8Zk8immndIujfi7WcJ1AGgQ+WsIyzM1BAWZouxx0rSA3vu0kN77vZte2pknTP859qtP9VQcWdNazfSL7f8V6T+ru9Vueu3/0p5+//Zu/c4ucrC/uPfc2ZnZi9JNhdCQhIQQQXBe1ER8ALipRb9obX2Z2uprVVLEduiUH+lXKzlVi8UikKtoiCKWBVQqqhAQBFUkItUsIpCLiSQJdnsJrs7c2bmPL8/NruZ2T3PmefMfXY+79drX2TPfc7OORuyz35OUOshzbO98JR+PPaDhm2v131vx9crQmEzxkujun30v9twRAvXE/kNTqEwSUrXcb8DAAAAAAAAAAALG7EwAAC6iGss7MYHoxM4n/g+sTCg2yycHGJtPnN78+5b1QKNhfrGiQIAAAAAAAAAAABAozwh6T8lvVfSMZIOk3SopKMlnSrpe3OW9yT9o6TzW3iMANAQQRgdlkr7mZq3efDAoTWvO+O3U7+KnP7o1MPWdYxC/c6yXqcphAU9nvt1onWCsHos7NFJ+/mp1aOTv2z4NnvVbycfsc6Le28jud8mOJ+D/lATjwQAAAAAAAAAAHSzvnYfAAAA2KtauKboGAv75n1EwQCgmmr33KDYmuMAAAAAAAAAAAAAAIufSXqDpB8YY/0J512SLvM87whJX5H07LJ5H/E87yfGmBubfJwA0DChogfJ+XU8I/sFi16uPq9PRVP7YJCiKUROz4VTsevlw1zN+2ylvIl/HVECUz0Wlq9yfmpR7ZzDXdy55Dw3VpLzeejQC5t4JAAAAAAAAAAAoJsRCwMAoINUS3yVHGNhSwfqPhQA6HmFUruPAAAAAAAAAAAAAEAvM8Z8J8Gy93qed6SkuyU9p2zWhZ7n3WSMadRPQD8j6b8SrnOwJIJlAJyElttVykvVvM2s3693rjpZ1zx5mcyeUXr9/qBSXkoTpV01b1eSClWCWUFYPajVCWo5Tpd1XIJiifdrgoZvsxeVTFEl2QN6hS5573YL12vh91f8kfbNrGny0QAAAAAAAAAAgG5FLAwAgC5SdIyFeV5zjwMAFoJqgUZiYQAAAAAAAAAAAAC6iTFmh+d575R0r6SZ0SOHSjpW0i0N2sc2SduSrOMxkAVAAkbRg+R8z69ru68Yfq0O6D9YD088oMWpYR0+9BJl/KwenrhfG3K/UWlPpOyB3Xdre2H+bc5YRppUC2Y1I5bVDPkwZ52X9jIqRAS6XF5bEEaHvY4aPl5rswdqR2FEKa9PB/Y/W77na0Pu0dlzujXYpIcn7ovYpv1Y4W6hvHe7he1875NepRcuOlID/qAOGXyBDh58bouPDAAAAAAAAAAAdBNiYQAAdBBTpVxTakAszBjDIEwAUPV7bmB/cCYAAAAAAAAAAAAAdCRjzH2e531f0hvKJr9RDYqFAUCzlUz0IDlP9cXCJGlt9kCtzR5YMe3Fi1+hFy9+xeznTwabI2NhtsfS2WJYMwpV5neKuDDUsr59tK2wZd50l9dm2+7zho7QixYfOW/6Cxa9bPbPPx+/0xILI2LVCNViYEGYZ7xpA9nO9/7Zg/WH+/5Fi48GAAAAAAAAAAB0q/p/agoAABqmSrdGxZLbduKGZoTVdgIAkCQVHO+5AAAAAAAAAAAAANBhbp7z+QvachQAUAOj6FhYyku1ZP+eZfSdbdhd1eBSlfmdIi7ANZRaHL2Ow2uzbTfjZ6uum/H7I6fnTa7quqiuWnQtVKiSeNpioxTquBYAAAAAAAAAAABmEAsDAKCDmCohr5Jj6CvuQW6l6LFUANBzqt1SA2JhAAAAAAAAAAAAALrT43M+X9mOgwCAWoQmeoCb16HD3qsFl6rN7xRBGB3gSqlPA6khyzrxr61kigoVPQAn42WqHlPWElEqmoJCw8CeeuUd3pvd8v7tBra4XsYjFgYAAAAAAAAAANx15k9NAQBAJNfQV0wrTKFjcAxAZ4iL/6E+1QKNBddCIwAAAAAAAAAAAAB0lqk5nw+05SgAoAYlS1zKb9Gwd886+i56HIktAOQ6v1PkbSEjP2sNexVMELvNuNBUxhICq1gmJqIUVNk3qis4vDc5z40ThNHnMuNXD+cBAAAAAAAAAADMIBYGAEAHqR6uqX8frsExAJ2h2n0B08IaSoituOcCAAAAAAAAAAAAQBvsM+fzp9tyFABQA2OiB7ilvFRL9u9ZnuxnbLGwmCCWy/xOEYS5yOlZv98a9qr62mNiVOmYENiMjN9vnZe3HC/cubw3C13y/u0GtuvBJZwHAAAAAAAAAAAwg1gYAAAdpFrqxjX0ZRmvlGgbANBuW3a6B8C2TzR+/0Gx8dsEAAAAAAAAAAAAgBZ4+ZzPt7TlKACgBqGiB7h5XnuHvdseSleICWJJ8cGsTmKLb2W8rDKWsFe111YIA+s8l0BSNmYZIlb1y5vqwbVuef92A1uczSWcBwAAAAAAAAAAMINYGAAAXaRILAzoOe65rIXn4QTD1TfuSL79aue2UEq+TQAAAAAAAAAAAABoJ8/z+iW9bc7k29twKABQk9BED3DzWzTs3ZNt8F30SBNbAMh1fqcITHTYK+v3W8NeVV97TGjKFiCrXKbfOs8ldIV4QUzMLckycGO7XlzCeQAAAAAAAAAAADOIhQEA0EFsTx+cUXQM18S0woiFAV2m2n1hIQsTvPZa7m3Vzi2xMAAAAAAAAAAAAABd6B8krS37vCTpv9t0LACQWKjoARutioXZGFssLCaIJUmFKvM7RRBGx7cyflZpLxO9TpXXFhcTcwkkxS3TLRG2Tuby3qz2NYY72/l2CecBAAAAAAAAAADMIBYGAEAHqdbFcY6FxdTCksR3AKCdktyvagl7Vdt8QCwMAAAAAAAAAAAAQJt4nvdnnuetSrjOeyWdM2fyF40xGxp3ZADQXKGJfmKc76VadARxj+qcLwiDuuZ3irwtFuZlrdGuasGuuNCULUDmugyxsPrZvublOM+NYzuXLuE8AAAAAAAAAACAGcTCAADoIKZKuaaWGM5cpeixVAA6VC/3/ZLEwlxjikk04p4LAAAAAAAAAAAAADV6j6THPM+7yvO8P/A8b8i2oOd5R3ie901Jn1Vl5eYJSf/U5OMEgIYKZYuFtWbYuy0VZiyjeAITH1yKC2Z1EttxZvx+ZbzomFGhymuzxZHSXsbp6+l7vnXf+SrnHdW5hMCqfY3hLm+7xizvcQAAAAAAAAAAgCh97T4AAADgruhYzol7tmGpl8tDQBeqFhFcyBLFwmoIIbYi0AgAAAAAAAAAAAAAdRiQdNKej9DzvN9IelzSmKSSpBWSXihpVcS6OyS90RjzZGsOFQAaIzTRAzb8Fj0j27OMvouKhRljqgaXXIJMnSAIo+NbWT+rtB8dMwrCIH6bJnp+kjhSxs8qKM0/h91yXjuZS8iO89w4tnOZsVxfAAAAAAAAAAAAUYiFAQDQQaqFa4qO4Rrf9yTLkwxLNQR1ALRPkmDWQhMmuF81IxYWFJNvEwAAAAAAAAAAAACaxJd0yJ6Pam6V9G5jzObmHhIANF6o6EEgvpdq0RFYHtUZMc6kpKL1eGe4BJk6Qd4WMvL6rXGvaq/NFkdK+xnn47LtO2+Jm8GdSwiMWFhjlExRoaIHACeJ5wEAAAAAAAAAABALAwCgg1RrAhUcY2GW4UqSiIUB3aaXr9kkoTTXmGK5Rt1zAQAAAAAAAAAAAKAJLpH0hKSjJT3DYfkJSd+X9GljzK3NPDAAaCZjLLEw+S3Zvxc3+G6OhRRbsoW/sn5WGT86ZlQIg5q2mSSOlPX7E20b7lzOIee5MeLuA7brCwAAAAAAAAAAIAqxMAAAukjRMRoUN2ApSXwHANopUSysCVG1oNj4bQIAAAAAAAAAAACAC2PM9ZKulyTP85ZKOlzS/pJWSRqU5EvaKWlU0iOSfmGM4ZFIALpeSdG3Mt9rTSzM9qhOE/FYusDEx7IkqeCwTCcIwlzk9Izfr4yXiV6nSkiqYAkkZfzo7UVJW0JK3RJh62QLKXbX6eKulSTxPAAAAAAAAAAAAGJhAAB0EFMljFNwHNIZFwsrNSGoAwDNkCQWVkvYq9o9d2wq+TYBAAAAAAAAAAAAoNGMMTsl/bjdxwEArRCa6AFuvlIt2b9niYUpKhbmEFIqmoJCU5Lvteb4a5W3xIwyXlYZS7CrYAKFJrSG3GwxtXSCOFLWsmxgouNmcOdyDl2CeKgu7l5hu74AAAAAAAAAAACitOoRSwAAwEG1Lk7RMRbmEwsDsACE1WpeZfLFBGWxPaqtsW08+TYBAAAAAAAAAAAAAABQOyNLLMwSpGo0WyzM1BgLk7ojuBSE0eGojJ9VJibuVYh5bbbzkySOlPH7E20b7oKw+vuS89wYgSXGJyn2+gIAAAAAAAAAAJiLWBgAAB2kWhen6Bj6IhYGYCEIE9yv8sXG7/+pXY3fJgAAAAAAAAAAAAAAAOxKJvqJml4HDnsvxASAKpbrguCSLQqV9ftj415xMSnb+UkSR8pa9p3vgnPa6eICVjNc3+OIFxdmSxLPAwAAAAAAAAAA6Gv3AQAAAHeF6HFQ86RixkWVqgTJRnYZXXeP0YObpRcfIL3zpZ6WDcXUxwCgScIq96tytcTCqgUaRyeSbxMAAAAAAAAAAAAAAAC1M4p+upzvtSYW5il6rJzR/IEmcaGsiuW6ILiUN7nI6RmvPzbuFffabOcnSRzJtu/AcrxwF4TVz6Hrexzx4q6TPi/dwiMBAAAAAAAAAADdjlgYAAAdpFq4phg9DiqRMGYbT4wavfZToX791N5pl99udOtpvvZdQjAMQGsliYUFTYiFuQYaAQAAAAAAAAAAAAAA0BihiR7gllKqRUeQIBbmGAELwqCuI2oFWxQq62eV9jOJ15Ps5ycuPjZvWb8/8X7hxuUcdkPorhvYznXay7QshAgAAAAAAAAAABYGfrIAAEAHqdbFcQ3X+DHf4UsxO/n07aYiFCZJv9wife7OBMUeAGiQJLGwfC2xsCrzA2JhAAAAAAAAAAAAAAAALWOMUajoWJjXoqCOZ3umZsRAE9dgVacHl0ITqmCig2YZvz827lWIeW2285PxE8TCLPsmFlY/l/cl57kxbNdJkmsBAAAAAAAAAABAIhYGAEBXKTqGa1K2AUuSStFjqSRJ3/uf6HTO1+4lFgag9ZodC6smaMI2AQAAAAAAAAAAAAAAEM1YQmGS5Lds2Hv04DsTUQtzjYB1enAp7nVkvGxs0CjutQWWAFnayzgfm23feZNz3gaiBWH016dimQ4P3XULazgvJsQHAAAAAAAAAAAQhVgYAAAdxFQJ4xRjQl/l/Jjv8HGxsPs3RU//xWa3/QJAI4WO9zxJyheSb7/aPTdwDDQCAAAAAAAAAAAAAACgfmFcLMxLtfBIokTEwhwjYJ0eXIp7HVk/q5TXJ1/R598WBIvbblx8bP7++xNtG+4Ch+Aa57kxGnEtAAAAAAAAAAAASFJfuw8AAIBWGtlldOHNRnf+xujQ1Z7OeKOnw9dEPwmwHap0a1RwDNf4MS8pLhYGAJ0krHZTLJMvJt9+tc0HNWwTAAAAAAAAAAAAAAAAtQlNTCysRc/I9hQ9+C5qnIlrBKzTg0tBaI9GZbzpWFfGzyoXTkasa39ttvOT8dwDSbZlOz3A1umMMU7vy7gYHNzlG3AtAAAAAAAAAAAASMTCAAA9ZCJv9PqLQz24efrzex43+vYvjH78D76eu1/nBMPiFNsYCyuFRqm4DQNGdf0JAAAgAElEQVRAgzU9FlZl+4XS9MA4z+PeBwAAAAAAAAAAAAAA0GyhYmJhXqtiYe5cI2CdHgvLG3ssLOtPx4wyXlY5zY+FFWKiXYUwOjSV9jPOx5bxo2NK+ZjAGaorqRh7vc0odPh7t1vYzqPt/Q0AAAAAAAAAAGDTmp+aAgDQAW55RLOhsBk7J6XP3ZmgRtNkLuGaeiWJ75Sb4gFxQNuEtV64XS7Jyw5qiIW5aMR9FwAAAAAAAAAAAAAAANWFxj5Qw2/ZsPfoXJjR/IEsQUwoq1xcUKsTBJaolyRl/P49/40OfMWtazs/Gc89kJTds//5++3sc9rpnEN3Hf7e7Ra285j23MN5AAAAAAAAAAAAErEwAEAPuey26KegXfyDzonwVIuFFas/yK3qdmqOhRVqWw9A/UqO1/5C0+xYWLV7bq3bBQAAAAAAAAAAAAAAQHKh7INkfK81w949SyxMUbEw1+BSh4etgjBnnTcTM7IFvuJiUgXL68747rGwWvaL6hbKe7db2M5jkmsBAAAAAAAAAABAIhYGAOghP9/Y7iOorlq3xjkWFjOv1lhYjlgY0DalzmkatlSYIJKWryUW5rBMYH9gLQAAAAAAAAAAAAAAABooNDGxMKVacxCWVljUQ+lcg1WdHrbKm+hYWNrLzEbabFGjuJiU7XXbAmCRy/r9kdOLpqDQMLCnVkneu8bliYyI1YhrAQAAAAAAAAAAQCIWBgDoIYsWwM/UCw0Y25IkvlNuilgY0DbFHh3XliRumC82Z1BaUEOEDAAAAAAAAAAAAAAAAMmFiomFea0Z9u7ZamERj6UrhIHTNgPH5drFFvzKloW60paokS2CZIyxbtcWHotcNiamlI8JlSFePowOxEUpmM5+/3aDRlwLAAAAAAAAAAAAErEwAEAPSbfowYL1qPYANtdgUNx2SjX2dKYY7wG0TanGyF+3SxQLqyFo6PLQyzyxMAAAAAAAAAAAAAAAgJYIjX2AnN+iYe+2WJiJiIXZQlm1LtcutnBUeagr42cil7FFkEoqWuNvcQGwucqDZfP23eHntZMFCQJgnOf62c5hxrO/vwEAAAAAAAAAAKIQCwMA9Iy+LviuV61bExopdKjnxC0R1hgdmqohxAOgMWqN/HW7RLGwGqJeLpsPiIUBAAAAAAAAAAAAAAC0hLHEpSTJ9zpvAKAtlFXrcu1iCxmVh7psgS/bunGvOW0Jj0XJ+PawWGCJnKG6QoL3ZKe/f7uB7RzGvb8BAAAAAAAAAACidN5PTQEAaJK+VLuPoDGKNca+ZsTFd7J99nlT7g+SA9BgpTqv+25lmh0Lc9h+YH9gLQAAAAAAAAAAAAAAABqoZOyDZLwWDXv35EVONxGPpXONKBVMZw++s4eM9sbC0paokS06FcS8Zlt4LOmyeSJWNcsnCK11+vu3G9jOYcZzD+cBAAAAAAAAAABIUkwSBACAhaWvCxKZLuGaYknKVPkOHreduOiQFz3OSZI0VYjfJ4DmKfZosCoubjhXUEMsrJ3bBQAAAAAAAAAAAAAAQCUj++C2lNeqp4VGD6KbLO3WptzvtLRvuRb3LZUkBcYtuDRW3KFNud9pwB/SivS+8uIG6rVYaErakPtN5LzykJEt2jVWHNWm3O/mTd9Z3G7dZ8YSHouSLQuWzbU5/5iMQu2bWRO7XLmJ0i7tKIzMfr48vVJDqcXOx9OJcuGUSqaofn8w8jrJhVMaCbZWTNuQe9R5+5tyv5sNymX8rFamV8tv2fW4MNjibEmuBQAAAAAAAAAAAIlYGACghyyUWFjBIRoUt524+E7cPJf9AmiOUoJo1kKSJBaWryHq5XLPJRYGAAAAAAAAAAAAAADQGqGxx8J8tWYAoGeJhT0y+YAe2fCAJOmZ/Yfo+OX/R5vzjztt81eTD+qCDadJklak99V79vuwDhx4TkOOtx537vy+rh+5SlPhROT8TFmAyxY1Kj8vrmzhsSjpsmDZXFc/eYkkKaU+vXTJq/Snq/9GKS/61yOmShP6/JZP6JHJB2S0d9CQJ0+HDr5Qf7XmdA2khpyPqxOEJtQPdlyv7+34hnLhpJb17aM/W32qDh16oSSpEBb0pScv1X277lKo2geAXrn1kxWfL0kt05/td6oOH3pJXcffKzbkHtXm/GOR85JcCwAAAAAAAAAAABKxMABAD0nHPMgsDI18v/1P63Pp4hTt46GchMbI9vTDuHAOwRygfUp1XvfdqumxMIdlAkKJAAAAAAAAAAAAAAAALVEy9oEanteip4U6DCN8LPe/+s8t/1rT5rcXtunSzefovIM+19Y41f9OPqSvPPWZ2GWyZYGwRkaNbOGxKJ7nKeNlFZi8dZmSivrJ+G1a3Dest67888hlvrj13/Tw5P3zphsZPTL5gK568hL99dp/dD6udgtNSV968jL9dHz97LTR4tO64onzdd7Bn9NQarG+PvJ53bvrRw3f93hpVJ974l/1T8+8VCvS+zZ8+wvJVGlSl2w62zo/ybUAAAAAAAAAdAJjjMIwlIn7hXQAaAPP8+T7vjyv/c2QZiMWBgDoGX0xsbBCScq2aCxRvVxiYXH/ixUXHYqNhZXskTEAzVXs0WBVmCCSVlMszOHfo/KF5NsFAAAAAAAAAAAAAABAckb2wSK+WjPAz2vBGLlcOKVHJh/QSxYf3fR92dy/666qy2S8/r1/9jMN23efl060fMbvV1Cyx8Jm3LfrrshYWC6c0sMT80Nh5X65+z7lwin1+wOJjq0dSqaoq7ZeEhkCC0xePx1br2OXvVkP7vpp044hb3K6ZccN+uNV72vaPhaCX00+oFw4aZ1PLAwAAAAAAADdoFAoaGxsTGNjYyoUCoTCAHQsz/OUTqc1PDys4eFhpdPJfibVLbokiwIAQP36Yr7rBR0S4nH5/6Oxqfr2EcbsI273QQ0hHgCNUerRfzuJu1/NVUsszEWnfH8AAAAAAAAAAAAAAABY6MK4WJgX87TQBto3s6Yl+9le2NaS/dSz/1WZtZF/rse+6TXyvWS/wrA6s85puR2FbZG/pDZe3KmS4gcXlVTUeHFnouNqh6Ip6HNbPhEZCpuxOf/49OspjTb1WO4eu1W7S+NN3Ue3q3ad7ZtuzHUFAAAAAAAANEM+n9fGjRv16KOPamRkREEQEAoD0NGMMQqCQCMjI3r00Ue1ceNG5fPVH0jTbYiFAQB6Rl/MWKFCh8RgXP4X6XcjDtuJ2VBcfCduHrEwoH1K9nGQC1qiWFgh+fZdNv/rp/jHKwAAAAAAAAAAAAAAgFYIjX0gn9+iYe8vGHqZ+v2Bpu8nCNv7iwnV9p/xsnrx4qNmP3/u0Iu1JLW07v0eOXxs09YxMiqa+YOISsZt8KPrcu1SCAN99omL9ODun8Qu92Sw2enBtfUKTF4/HP1u83fUxeKus/2zB2lt9hktPBoAAAAAAADAXaFQ0MaNGzUxMdHuQwGAmk1MTGjjxo0qFGr4JfQORiwMANAz0l0QC2uUuHEecfGduAEiwQI7R0A3Kfbo9ZckFlbLPcplUNxpXzP6zkMEwwAAAAAAAAAAAAAAAJotNPYn6vlea4a975NZpVPXnasD+58jr4ah9qcfcJGePfA8pdQXu1xg2hsLK8Ts/4D+Z+nUdedq38x+s9P6/QH9/QHn6VkDh1d9bVGG+5brTSv+WG9Y/vbE6x41fLzevu97tCK9b9Vlo85rKSZCV8ty7RCEeV3xxPn6n4l7qy77VLBZbo9RjLa8b6Xzsrfv/I4KYVDzvha6wNjPzanrzpXneS08GgAAAAAAAMBNqVTSpk2bVCx29gMWAMBFsVjUpk2bVCp17s+Bkkr+kzoAALpUX8y4nU6JhbmEa/J1/r9VyTKeylTZecD/0wFtU+rRVlWSWFgt90bXJ2ie8O+hilf48n0GZwEAAAAAAAAAAAAAADRLqJhYmGKeFtpgzxw4RGc8418VhHkVTUEfe+xUjZVGq653xOJX6pkDh+jvD/gXFcJABRPoi1v/LTLwFITtjYXZ9v+Wfd6lN66IDnqtyqzVaQecN/vakhjwh+oKIx237M06btmbNVWa0EjhSV244UORywVhXkOpxRXTQrkNLHJdrtXyYU6XP3Gefj35kNPyU+GkxorV369RXr7kWJ20+oPKhZMyZcGx9aM36b+3f3Xe8rtLY/rp+Hods/QNNe1vobNdZy9Y9DIt6lvS4qMBAAAAAAAA3GzdulX5fOW/bfm+ryVLlmjJkiVKp9Py/dY84AMAXIVhqEKhoPHxcY2PjysM9/7cMZ/Pa+vWrVq3bl0bj7BxiIUBAHpGXCysU0JYLuEal2ON244tvlNt30GHBNWAhcrz7NehLfK30IUJXndQnI4eVhtUaJ7cIG3bLB16hKS08/YvvsXoQ68nFgYAAAAAAAAAAAAAANAsobEPUvO91v/iUcbPKqOssv6A5BALy/r9s39O+xmlldGAPxS5bGDaHAuz7H9RqnrAaOa1tcNAakhLzDLr/KjXVYp5X9WyXCtNlSb1mSc+pt9OPZJova3Bppr2l/Gz8jxPA6nK9+2xy07QLTtuUN7k5q1zy44bddTw69pyjXa6guU6y3jZFh8JAAAAAAAA4KZUKmnXrl0V0zKZjJ7xjGeor488DYDOlslkNDQ0pJUrV2rDhg0Kgr0Pv9m1a5dKpZJSqdY9oKhZ+IkMAKBnpGK+63VKiMehFaagVH2p2FiY5bVW22qnBNWAhSouaFjsvHFoLWGLG9rE3adMkFd45jtk/ug5MqccJ/PmtTIjTzhv+/SvJzwYAAAAAAAAAAAAAAAAJBIqenCb3+Yh7xnfLYyVjggA2dYthEHk9FYJLPvP+J0fMcp49q9HEEbFwtwGP7ou1yqTpd36983nJg6FSdKTweaa9mmLWA2mFumopcdHzttW2KKHdt9T0/4Wuqj3o9Qd1xkAAAAAAAB608TERMXnnudp//33JxQGoKv09fVp//33l+d5FdPn3uO6FbEwAEDPSPmedV6xQ2JhLvKF+ta3tcbiAmMSsTCg2WKDhj3YqTLGKHzsV4nWycfFwq6+UPrhjXsnTO6Suftm5233pxMdCgAAAAAAAAAAAAAAABKyxsK89j7hOyoCFiUqAGSLAuXDXF3HVK+CsUSMHF9rO8WFlqJjYW5PanRdrhV2l8Z1yaaz9Xju19ZlFqWWaGV6v8h5T+Y31bTfuHN73LI3W8N9t4zeUNP+Frqgi68zAAAAAAAA9KZdu3ZVfD44OKhMxu2BGgDQSTKZjAYHByum7d69u01H01jEwgAAPSMuxFNs0BiPXMFoKqi96lMt2CVJQZ3HGlrCaGG1WFjnjIMBFqSYnqFKXRQ0bBTzmY/I/PimROvExcL0navmTyu5VxBzdYYaAQAAAAAAAAAAAAAAEC80llhYm4e8xwWUKpbz5v/ClC0KZIsItUoQBpHTXV9rO6XUZ31PRJ3XkhxjYY7LNduu4k5dsulsbcr/zrrMktRS/d3+/6JDBp8fOX9rUFssLOv1W+etSK/SSxYfHTnvt1OP6HdTyR4M2Qui4nVSd1xnAAAAAAAA6E0TExMVny9evLhNRwIA9Vu0aFHF58TCAADoMnGxsEKdYzwm80Z/8p+hlv/d9Mcf/0eoiXzyaJjLGrExnJntxGzIFgWrFioL3Js6AGrQiqBhtzCjI9J1l8h4MQW1CLH3qZEn5u9HybZvXIqOAAAAAAAAAAAAAAAAqEloogfJ+F57h7xnfXtAqVxUAMgWBbJFhFqhZIoqKXqgTToieNZpPM9LdF5Lxm3wo+tyzTRW3KGLN/2Tnsg/bl1muG+5/v6A87Qme4BWZdZFLvNksLmm/af9+K//8ctPtM67ZccNNe1zIbNFAbvhOgMAAAAAAEDvMcaoVKr8d/qBgYE2HQ0A1G9wcLDi81KptCB+V5xYGACgZ8SGeKIfSOjsvV8y+uo9RrnCdMzrv35u9BdfqHOjFvVGu6yxsGr77bFYEdBqcdmqUnNuJ53re1+uXjCM4BJTLJc0Fra7vQ90BQAAAAAAAAAAAAAAWNBCRQ+S8do85D3jRYepXJazrVuwRIRaIQgD6zxbhKvT2M5rVJypZInQ1bpcs4wWntbFG/8pNvS1vG+lTtv/PK3KrJUkrc5Gx8Jy4WRNx1DtvX5A/8E6ZPD5kfMe3P1TbQu21LTfhcoWBeyW6wwAAAAAAAC9JQzn/xt9KpVqw5EAQGNE3cOi7nXdhlgYAKBn+DFNmHpiYZN5o+vvnx+1+dYvpN25ZLEblzaOSwwnbjO26FC1v9fUGykDULt6g4bdxjz28PR/E8a8mh0Lu+PXybYPAAAAAAAAAAAAAAAAd8YSC0t57f1lpLSfcVou4/dHrGuJWsUEu5otKqg1wzWM1m728xoVC3MbVOS6XDNsLzylT206U9sK9tjWPulV+vsDztPKzH6z01bviYY1SjbiPTzX8ctOjJxuZHTrjm819Hi6XWCir/Nuuc4AAAAAAADQW0zEL7l7XrLfwQSAThJ1D4u613WbvnYfAAAArZKKSWQW63gg3P2bpFxh/vSgKN3zuHTsoe7bcvm7Rb3RrtCyj2q7LrR4HMxPfmf0sZtCPbxVOupgT+e/1dMzVvA/lVi44q7BXouFqcbafNJYWFJfu8fohBdU3oeMMbpsvdFXf2b02xFpyYC0dEAaHpCWDkpLBjwtHayctnTA2/vnwenpS/olP65qCQAAAAAAAAAAAAAAsMCVTPRAPr/Nz8d2DftkIgJWtnXjgl3NVogIas3IOIbR2i3JeS3JbYCo63KNNhJs1SWbztaO4oh1mX3Ta/S3+/+zlqX3qZi+rG+l0l5GBUuUKqmo9/Bchw29RGsyB2hLsHHevJ+M36YT9vm/Wty3tCHH0+1s15rLeQYAAAAAAAAAAIhCLAwA0DPiGiz1hHgKMeNDSk0I/LjEcOKiY9ZYWJVaWNDCcTAPbjJ67SdDTe2JsG3YbnTXb43uP8vX0kFiOug99UYCu44/HQszSna95yPCjXGSbj+Tnj/twpuNzrx+7w102675e4na81yeJy3OVgbElg5ISwe96QBZRXCsLDZWFiHL9HF/BAAAAAAAAAAAAAAA3Ss00QPuPK/NsTDHsE/Gmx/asq0bxAS7mi2ICUu5htHazXZeC+H811YyboOvXJdrpKeCJ/Rvm87SWHGHdZn9Mvvrg/t/VMN9y+fN8z1fqzJrtTn/WEOOx+Xr73mejl9+oq5+8tJ58wom0B07v6sT9nlnQ46n29migOkuuc4AAAAAAAAAAEDnIRYGAOgZcS2sYh0hLFt8S5L8hGOUqvS6JEk5hxhOXPjLFjCrtu+g6HJ0jXHlj81sKGzGhu3Stx40OukVxHDQe6avvx5676dq+98UW0zRhNE3vqSxsGDOfckYo/+4ozH3RmOk8dz0x8aKsX9usTFJGkjvDYftDY6VxcbmRMjmBseGstOD+QAAAAAAAAAAAAAAANrBKHqMR0qpFh9JJdeAVlTAKiogJtkjQq0QFypLO4bR2i3JeS0ZtwGirss1ypb8Bl266RyNl3Zal1mbPVAfXPdRLe4bti6zOrOucbEwx6//EUteqRufviYycnbHzu/o9cvf5rythcx2rWX86PcvAAAAAAAAAABANcTCAAA9Iy6gVbQEtOrdri3MVcu2ZrjEwuLY4maWls6soIUPzfv326IP8t1fMDrpFa07DqBTBK0dh9Z+e2JhiWNetvtUMfrGaRKGscamKu9NOyfnhr3aa6ow/fHkePlU2zeW+dNTfnlMbG94bHjAi4yQzZ02PCClfGJjAAAAAAAAAAAAAACgNrZYk+clfGpng7lGj6KiYrZ1i6ag0JTke60PocWFymwRrk5jO69RcaaScRv86LpcI2zOPaZLN5+j3aVx6zL7Zw/Sqfufq0WpJbHbWp1Z17Djcg3j9XlpHbv0BN3w9NXz5k2UdunusVv16mVvathxdSNjjPVacz3PAAAAAAAAAAAAcxELAwD0jLgOV7GOEE9c4GsqaNy2ZuQdxqPEbcYWC6u260KvxYqAFou7/lsZ6+sIqdoGQVrvU5ZYWFLjucrPbffTblUKpR0T0x+Vol5o9Itf3B8VHPO0JCJCFhUc608TGwMAAAAAAAAAAAAAoFcZRT/x0lebY2GOYZ+M359o3cAE6vcGaj6uWhUiglqS1Of1tSVeVgvbeY2KM5XkNvjRdbl6bcg9qn/fdK4mw93WZQ7sf44+sO5sDaYWVd3e6mwDY2GOYTxJeuXSN+jmHf+lXDg1b95to9/SK5e+oWveT81QMPYBxEnOMwAAAAAAAAAAQDliYQCAnhEX4ilGjzFy227MvKmCkdTY8EnOoXkT91pLltdaLVRGLAxon6DXrr9UWpJkEt4/rfep/GTk5KTbH5s/rg1z7MpNf2weLZ9q+wYzf3q2rywoNrA3NjY8GB0hmzttcb/keQTHAAAAAAAAAAAAAADoRqGxxMLaHBxyDftEBazi1i2EefX7rY+FRQW1JCntGEXrBGnLeQ0iQmgl4xgLc1yuHr+b+pUu2/zPyoXR45kk6eCB5+qUdWc7vzdWZxoYC0vwHhhIDeno4dfr1tEb580bKTypB3f/VC9efFTDjq3b2K4zKdl5BgAAAAAAAAAAKEcsDADQM+JjYbVHveK2O2l/MFj0thyWyRVclrILLavbps/ouVgR0EGCYruPoMVKDlXECHNjYSafk7n8/0nf+Ezk8kljYTsm5qwfc99891GesmlpbFLaOWk0NiXtnJJ2Tk5Hx5J+f+gV+aL01Pj0x17usTHfm46GDe8JiJUHx5ZETFsaESHrSxEbAwAAAAAAAAAAAACgHUqKHqTmy2/xkVRyDftEhcHi1o2LCTVTVFBLco+idQLbeY06pyXjNvjKdbla/Wbyl/rM5o8pb3LWZQ4ZfL7+eu2Zyvr9zttdmV4jT76M6nhq7h5J3wPHLjtB60dvUhhx7f5gxw160aJX9OyD/2zXmdRd1xoAAAAAAAAAAOgsxMIAAJBUrCOEFdfYShwLc+iA5RwaOnGbCS3jQarte26EB0Dr9Nz1F0wPlEoa8yoPP5rJ3TJvWNHQw9q4QzLGOA1gO+11np631r5cUJwOiI2VBcR2Tko7p0zZn6XxqenY2Owye9YZm3L7ntFrQiONTk5/aHv5nKiTFX0Ch7LzA2JLBz1rhGzutIGMenaQIwAAAAAAAAAAAAAA9TAmenCb77U5FuYY9olaLh2zbhC252lzBRO9X9coWiewfU2iAk2hcRt85bpcLX418aCueOL82EDcYYMv1vvWfiRxSCrtp7VPepVGClvrPczE+16eXqkjlhyjn43fMW/e47lf67dTj+hZg4fVfVzdyHadSd11rQEAAAAAAAAAgM5CLAwA0DPioirFOh6oFrfdKYewV1JOsbCYYwot86o1Z3ouVoSOZozRJbcaXX230a6c9JYXebrgrZ4yfd0b6Im7BoPmPrSy80zurmm1mfuUGd0m85b9qy6fNEYmSU/vllYunlm/dpk+TysX793WXm7HFIbT7/2ZgNje4JiZDYrNTBubM21mee7r0Sby0x9bdpZPtX21509Pp8oiY2XBseGZsFh5hGzAKwuSTc9b3C/5fvfeywAAAAAAAAAAAAAAqFUoSyxMbY6FOYZ90l4m0bpx4ahmigpqSclDUe1kO6+FiHNaktvgK9flkvrlxH367BMXxsajnjd0hN675gyl/fnvIRerMmvrjoX58pWq4ddLjl92YmQsTJJuGb2hZ2NhtutM6q5rDQAAAAAAAACiHHjggdqwYcPs5+vXr9drXvOa9h0Q0EOIhQEAekZc1KVYRzDFFt+SpMmED/5zCc+4xMLilCxhtLjXIfVOVMYYo0e3SY9slY48SNp3CcGWTvSJ7xv9wzf2vmkv/oHRk2PSl/9qYX69gh65/mbd/KXp/3rJvp6FkmSKBZm/fpXT8rXEvu59XPr951dfLuGhJ+b7noYHpeFB6YDKPTutb4xRrlAWGZsqi41NVkbIxi0Rst3tGa/a8QolaWTX9EelqHfc/GmeJy3prwyOTcfE9nzNK4JjXmV8bM9/uzmcCAAAAAAAAAAAAADoXaGxxMK8VIuPpJJL2KfP61Mq4jgzMfGnuJhQM9kiZa5RtE5gO69BOH/QZsm4Db5yXS6JX+z+mT635V9VNPYQ2YsWHam/XPMh9XnpmvezOrNO/zNxb83rS1LG75dXw6Cndf3P1HMHX6RHJh+YN+8Xu3+mJ/ObtTq7rq5j60Zx13e6i641AAAAAAAAAADQWYiFAQB6hompwtQTworb7lTSWJhDuSbn8PC6uO3YomDV9h0056F5HaVYMnrv1UZX3T19MjxP+vSfePrrV7f3yZSoZIzR5bfPf8Ne+zOjy95ptGxo4UVyeuH6a4RCSdIt10lbHnNa3jiGtcptnzCaCXK53LM7led5GshIAxlpv6UVc5y3USwZjZUFxGzBsXFLhGxsqnqoshcZo9nzOmdO1NKR2xhIVwbEpoNj07GxqAjZ0jkRssGMahr8CQAAAAAAAAAAAABAPUJFD+Tz1d7xWy5hn4zXHzk95fUppT6VNH8AkC3a1WxRQS1JSseEzTqNLWwWdU5LMaGuWpZzdd+uu3Tllk9a39eSdMTiV+rP9/u7yNBcEo2IcdUTizt++YmRsTBJunX0Rv3p6lNq3na3sl3fnnz1efwaDwAAAAAAAAAAqA0/ZQAA9Iy4qEsx+oGEbtuNmTdVSLgtl1hYwm3OVWssrJ6gWrf4wl17Q2HS9Dn5my8bvfo5Rs/dj2hKp9iVkx7fHj3vwpuNLvrDhfe1Cnrg+pthcpN7/5ww5lUoSea89zT6kCqcdKXRSVeWtGxQuva99oGoC+9dOF9fytOKRdKKRXPnuL16Y4x25/eGw/bGxEzFNFtwbGyq/u+JC9VUQZoak7aOlU+1faOfPz3l7w2HDZf9d3jAi4yQLZ0TIVsyIKX8XrgKAAAAAAAAAAAAAACNFL1YBTAAACAASURBVJrogXy+195YWMZ3iIXFLJPxM5oKI2JhYZtiYZaIUT2xqFazne+oc1qyvK/mL9e4QVr3jN+hq7ZeolD2fR+55Fi9a/UH5NcZCpOk1ZkGxMLqiMUdOvhCrcs+U5vz8x/y+NPx9Tphnz/RcN+yeg6v6xRMdJQv42V4iB8AAAAAAAAAAKgZsTAAAFRnLCwmstWMwJZLGCWu+1WyvFZbRGxGL8TCvvjj6JPwtXuNznkzgzM6Rdx78Yo7jC76w9YdSyPF3UuCGh9aWSgabdslrVmq7hlgtHOk5lULu3YlWj5pjKzc6KT0xkvs3zy65XS3k+d5WtwvLe6X9q+c47yNXMFobKosLGYJjo1bImS7co1+VQtDKZS2T0x/VIq6UUXfvBb3z8TEVBYT8yriY3sDY/MjZNk0FxEAAAAAAAAAAAAA9BpbWMlXe2NhWZdYWExoK+NlNaXJedPbFguz7LeeWFSrpS3nOyqEVpLb4KtGxcLuHrtV1zx5mUzMSM6jh1+nd646uWEhvIbEwrz+mtf1PE/HLz9RX9x68bx5RVPUHaPf0VtW/mk9h9d17NdZ90T5AAAAAAAAAABA5yEWBgDoGXEtrGIdYzwaGfip0uuS5BgLi9mQLQpWbd+dEgsrhUYpvzkBkbt/Fz39o982OufNTdklahB3XS3U8E8tsbB/+e9QH/+e0a6cdOAK6dr3+nr5QV0Q39n5dM2rBvfdmWh5Q9Gr6/WnPfWnpVVL5s5x+9qWQrMnJLY3Ijb9X1MxbTo4Nj2tPDg2NlVfcHQh25Wb/tg0Wj7V9reN+dOzfXvDYXvDYp6GB6MjZEvnRMgWZbsokggAAAAAAAAAAAAAkCSFxhILa1BQqVZxIbDZZWJCWxk/K0WMvytEhK1aoWCCyOkur7NT2IJLUYGm0DEC5hoVi3Pnzu/pK09dHrvMq5e+SX+071819H09mFqkJamlGi/trHkb9Uasfm/x0bpx5EsaLc4f//XDnd/V61e8Tf3+QF376CZR4TqJWBgAAAAAAAAAAKgPsTAAQM+IC2jVE/qwxbckKZiYlLTIeVtxxzjDJRYWxxoLq7LvoENiYUFRGuieBxiiCfL1j8nqOkljfdf8JNTZN+69qB/fLr3u4lAbLvS1bKjD4zmj22b/aByDTzMKD9xddZmtfav17UV/oK19q3X3wJGJD89Vh59l7JHyPS0bkpYNzZ3j9hU0xmgyKAuIzUbEzHRkrCw4Nm6JkE3V+X19ocoXpafGpz/2co+N+V55ZExlMbH5wbHhAS8iTCb1pbiSAQAAAAAAAAAAAKCVQkUP5PPU5liYQ9wnHRPass2LClu1gm2/6S6KGNm+JlEBtpJxG3BWcoyK2awfvUn/te1zscu8dtlb9LaVf9GUB6CtyqzV+FT7YmEpr0/HLXuzvjHyhXnzJsPdunvsVh277IS69tFNbNdZN0X5AAAAAAAAAABA5yEWBgDoGXEtrGIdYzzithvcfYvMmw6V94xDa9/BHDmHcSsmpvxli4XFRc+k5LGiZiEWhnqDed0oSBhI++Z98y/o3Xnp278wOukVHR6/GR2pedWCl46d/5urRvTajxe0pbS05n0A5TzP01BWGspKa5dVzHHeRlA0s/Gwiv/uCY7NRMjGbBGynFtstNeERhqdnP6oFHWyok/gULY8MrYnJjboWSNkc4Nj/Wk1ZXAvAAAAAAAAAAAAACxUoSXWlPJSLT6Sufvvk6+UQtkH0cWFlmzzgoiwVSvY9ttNESPbsRZNUSVTqnjPuEbAXKNiUX6w4wZdP/LF2GXesPztess+f9q0sQSrM/vrN1O/rHn9Rnz9j176en1n+3WaCucN2NBto9/Sq5b+ftuv51ZZCFE+AAAAAAAAAGg3Y4zuu+8+/epXv9K2bduUz+e1cuVKrV27Vsccc4wWLVrU7kOs2aZNm3TPPfdo8+bNmpqa0j777KPnP//5OuKII+T79T1IZ9u2bfrRj36kLVu2aGpqSmvWrNFBBx2kI488su5tR3n44Yf10EMPaWRkROPj41q+fLn2228/HXPMMVqxYkXD99friIUBAHpGXEijGP1Awrq3GwQlmSs/Ju+jX3bblsMyQVEKQyPftw8YidtOyfJaq4VGOiYW1iHHcc/jRmdeH+rnG6Tfe4Z04dt8veQZBEFaobRAozix95Jishd9wwPR00/7mtFJr0i0qdYb3Tb7R5MguCTFx8K8f/yc/vm2RdrSojcQfSC4yvR5WrlYWrl47hy3N1EYGu3KVQbEds6ExSriY9L45PxpOyc753t8p5nIT388UfHQXds9ZP70dErzAmJLB6Qlg978CNlMbKxs2uJ+xf59DwAAAAAAAAAAAAAWmlDRg9s8Nf6XFpLK+FnlIgJIM7J+f+y6UYIwqPu4amGLGGX87nmKZ1ycrWACpbyB2c9LcouAuUbF5vru9v/St5+OHyN6wop36vdXvKOpDx1blV1b1/px59RVvz+gVy59o76/45vz5m0vbNP9u+7WEUuOqXs/3WAhRPkAAAAAAAAAoF2efvppnX/++brmmms0MjISuUwmk9Fxxx2nc889Vy9/+cudtvvud79bV1111eznjz32mA488ECndW+//XYde+yxs5+fc845Ovfcc63Ll/9M4NWvfrVuv/12SdJdd92lc845R7fddpvCcP7PxlatWqUzzzxTp5xySuKw1/3336/TTz9d69evj9z2unXr9P73v18f+chH1NfXp3PPPVcf/ehHZ+evX79er3nNa5z2tX37dn384x/XNddcoyeeeCJyGd/3ddRRR+mcc87R8ccfn+i1wI5YGACgZ7QlFuZlpNu+LrnGwhwbNvmiNFDjuJzQso9quy6Upuu7zRys4iKo/eF9sYzryZf06Daj118camxq+vNbHpGOvzjUvWf6OmglUY9mS/ClWjByDXrfT7ZnfKETk5uU/udumZuvqXkbOctAKu/SH8h78at07fsoImHh8X1Pw4PS8ODcOW7fj4wxyhX2RMbKgmNjUyZimjQWERybaM+DjjteoSSN7Jr+qBT1jWz+NM+TlvTPD44ND0x/zSsjZN7eP+8Jjg0PTMfoAAAAAAAAAAAAAKBbhCZ6IJ/vdUAszMsqJ3ssLC4AZJtniwk1W8Gy33QXRYzizncQ5tXvl8XCHCNgrlGxGcYY3bT9Wn13+9dilztxn5P0+hVvS7TtWqzOrKtr/UZFrF6z7ATduuNbkefzlh3X6/cWH932caitYI/ydc91BgAAAAAAAADtcMMNN+ikk07Srl3zfjGvQhAEuvnmm3XzzTfrfe97nz796U+rr6+zM0rnn3++zj77bJVK9p9dPPXUU/rgBz+o9evX66tf/aoyGbeoxKc+9SmdccYZsdvevHmzzjrrLH33u9/VN785/8Efrq6++mqdeuqpGh8fj10uDEPdeeedet3rXqd3vetd+vznP+/8emDX2e9yAAAaKK4vVKyjHxO33cBLJ9uWYwTpsaelw9bUtp2ICKzTvo2RSqHUl6p+fM2Ub1IsrNp2y0Np37jPzIbCZuyclK6/3+hDr1/4g1jarRdjYY2KfOUKjdlOo5lNv5H50B9IWzdUTneMHc14OrVP5HTvxa+q+dhq1QPj2bBAeJ6ngcx0hHS/pRVznLdRKBqN5yoDYlHBsbGYCJktZtrLjNlz3qakuXfHiKUjtzGQrgyILR2Qlg56WjIwP0K2NCJCNphRTwzQBQAAAAAAAAAAANAZjCyxMHVALMzPSDHjDNO+/RcbbHEgW0yo2RZCxCjuWOe+PudYmONy0vR4whuevlo/2HF97HJ/uPIv9drlb3Hebj3qjYVl/f6GHMfSvuV66ZJX6Sfjt82btzH/W/1m6n/0nMHnN2Rfnaxgogf9pT1+CQoAAAAAAAAAbK688kq9973vVTgniHDwwQfrsMMO0+DgoDZu3Kif/exnFVGsz372s9q4caO+/e1vd2ww7BOf+ITOPPPM2c8POeQQHXLIIRoaGtLWrVv1k5/8RLlcbnb+9ddfr7POOksXXXRR1W1/8pOf1Ic//OF50w877DA9+9nPVjab1caNG3XPPfeoVCrprrvu0jve8Q696lXJf//67LPP1sc+9rGKaZ7n6ZBDDtGzn/1sLV68WKOjo7r33ns1MjIyu8w111yjrVu36uabb+7Yr1G34OwBAHpGXGCoaAlouQhjNhzs+aF+eWiqETaPVomFxaxri3G4RDoKpdpjYcYYXX230Y0PGPX50p+9wtebX5j8nARNioXtysXPH5+Shgen//z/vhl9sk7/utGHXt/gA0MimQX6t9uJ9owLbBnzJ89ryHZ2+Ysbsp1GIK2DXpLu87RikbRi0dw5bleCMUa789PhsPLg2GxYrHyaJTjWrJhot5sqSFNj0tax8qm2v/TNn97nl8XEyoJjw4Pe7PTyCNnwnAjZkgEp5XNHBAAAAAAAAAAAAODGFmvyvTY/4VJSxosPKWU8e7zKNi8wbYqFWfYb9xo6Tdyxzn19JeM2qMB1OWOMvj7yea0fvSl2uT/e93169bI3OW2zEZb17aOs16+8qTIY0qKREavjl58YGQuTpB/suKEnYmHWKF8XXWcAAAAAAACAK1MsSiOb230YvWHlOnkLNLT0wAMP6OSTT64Ihb3oRS/Spz/9aR111FEVy46MjOiss87Sf/zHf8xOu/nmm3X22Wfr/PPPb9kxu3rooYf0ox/9SJJ04okn6oILLtChhx5asczo6KhOO+00ffGLX5yd9slPflInn3yyDjzwQOu2f/7zn+sjH/lIxbTXvOY1uuyyy3T44YdXTB8ZGdHZZ5+tK664Qj/84Q/18MMPJ3odV111VUUozPd9nXLKKfrwhz+sAw44oGJZY4xuvPFG/e3f/q02btwoSbr11lt11lln6YILLki0X1RamHcAAAAimJioV7EkbdlpNJCWlg0lCxrERchmYmEqFqR09YEUDr0uSdLTu41qTdGEljBa3OuYUShJAzXtVTr320Yfu2nvTr5+X6gvvNvTnx+V7KmPgfvD+xLZXWXc1VRBGm7OrpFQ3Fv12ENadhgNF/e6FnIsLPzEKdZ5JuF9ruCl503zTv904mMC0Fqe52lxv7S4X9p/ecUc523kCmY2HDbz351Te6fNTB+zRMiqRUN7VTGUtk9Mf1SK+q4V/Z1sSb8qw2KD0tIBT0vmRci8imVmImTZNLExAAAAAAAAAAAAoFcYRQ9u85VsjFkzZPz4wE/cfNu8giUm1GyFMIicXu01dpK4Y50baSrJbdChLVZXLjShrnvqs/rR2M3WZTx5+pNVf6Ojl77Oab+N4nmeVmXWamP+tzWt38iv/5rsATp86CX65cR98+b9cuLn2pLfqDXZAyLWXDisUT6/cVE2AAAAAAAAoGOMbJZ5Rxf/gm8X8b72v9J+B7b7MJriPe95j4Jg788wjjnmGH3ve9/T4ODgvGVXrlypK664Qs961rN0+umnz06/6KKL9M53vlPPf35nPbRix44dkqQzzjhDF110UeQyy5Yt0xe+8AWNjo7qxhtvlCSVSiV9/vOfrwh0zXXKKaeoWNz7QJS3ve1tuu6669QXEZVbuXKlLr/8ch100EE644wz9PTTTzu/hg0bNujkk0+e/TybzeqGG27QG9/4xsjlPc/TiSeeqKOOOkpHH320Hn30UUnSxz/+cb3vfe/TM5/5TOd9oxKxMABAz4gL8Vxyq9Eltxp5nvSWF0hf/itfg1m3MEFcZKswEwsr5N1iYY61sFyh9u2Elnkuuy7UGOqazBtd/IP5e7jgu0Z/flTECjHybg/vS6xaJGSqyjlHZ0gt0J5IrddepzPFonTj5xq2vSAiFqYT/rJh20/CW6DvRaBT9ac99aelVUvKp7pfiKXQaHxPOKw8ODY2ZSKnzY2Q7ZySSpYga68bz01/bBotn+oeG+tP7w2H7Y2JeRoeiI6QDc+JkC3KTv/DIgAAAAAAAAAAAIDOFxpLLMzr/FhY1uu3r+tFr2uLCTWbNWJkOc5OlPbs4zHnvr6ScRt0GFaJioWmpC8/9RndPXardRlPvk5afapePnys0z4bbVVmXe2xsAZ//Y9f/tbIWJgk3brjRv3Zfqc2dH+dZm60bkY3RfkAAAAAAAAAoFXWr1+v++7b+2/KS5Ys0XXXXRcZCiv34Q9/WHfccYduuukmSVIYhrr44ot15ZVXNvV4a3HMMcfoggsuqLrceeedNxsLk6TbbrvNGgu755579NOf/nT28/32209XXnllZCis3Omnn65bbrlF3//+9x2PfjryNTU1Nfv5xRdfbA2Fldt33331la98RS972cskTQfQLr74Yl166aXO+0YlYmEAgJ7hEuIyRrrxQekD1xpd+W7HWFjMvNlwTT4nDS522p6LoI5wkC0WFjoELoIaQ13//ZC0O2Lcw6+fknZMGC0fcg841HoM1UQdX7mp6Icpog3iruXiAg21dGsszOwaldZ/Q+axh+U996XSq98qL1s2MHLzb+LXTxh3KcyJhXn/fos8f3qwqHGtMQLoSSnf07IhadnQ3Dmu8VijyWBPQGxKZTExMxsTmwmLjVkiZIRJo+UK0x9PjZdPtd3T50/3vfKYWNmfBz0tiYiQLZ0TIRsekPoWao0UAAAAAAAAAAAA6DChLLEwpVp8JPNVCymlYwJAtjiQLSbUbEEYPRgu7Vd/IGqn8D1faS+jgpn/Wgrh3FiY2+CruKhYyZT0pScv1c/G77Afk3y9e7/TdMSSY5z21wyrs+ukXbWtm/Ia+6slzxl4ng7IHhwZL/vZ+B1688o/1dK+5Q3dZydZCFE+AAAAAAAAAGiVq666quLzU045RWvWrHFa98ILL5yNhUnStddeq8svv1zZbGf9e+yZZ54p36/+gJzDDz9cBx54oB5//HFJ0gMPPGBd9tprr634/AMf+ICGh4edjuess85yjoVNTExUBNgOOuggvf/973daV5Je+tKX6pWvfKV+9KMfSZK+9a1vEQurA7EwAEDPSJKJuf5+o/88ySjlVw8DxPVngpmn1xXcBvW4HmO1cFDcMZUsMSWXfdcaLPrtiH3rtuOxaVosLBc/n4BH54h7ryZ9P3WLboygmae3ypz2Jumxh6c/l6TvXi1d+E152YHphSZqHJlmEZQ9MdS76Hp5L3rl7Oetfm+QlQF6i+d5GspKQ1lp7bKKOc7bCIpmb2RsT1RsOjxmKiJkY7YI2VT1ffSi0Eijk9MflaL+RhH9t4xF2ajgmKfhmcjYnAjZ8JwIWX96+j0CAAAAAAAAAAAAIF5oiTr5XvVfnGi2TJWQVsazz7fFgYKI0FWzlUxRJUUPwuu2iFHGy0bGwuZGmuIiYJXLRb//SqaoL2z9lO7bdZd13ZT69J41H9aLFh/ptK9mWZ1Z29b9l/M8T8cvf6uu3PqJefNKKur20Zt04sqT2nBkrWGLAdrigQAAAAAAAADQy+68886Kz9/1rnc5r3v44YfrJS95ie677z5JUi6X089//nMdddRRDT3GegwMDOi4445zXv65z33ubCxscnJSu3fv1qJFi+Ytd9ddlT+7eMc73uG8j2OOOUZr1qzRli1bqi575513ampq7y8wvv3tb3cKn5U79thjZ2NhGzZs0MaNG3XAAQck2gamEQsDAPSMuIDWXGNT0vbd0r5Lqi8b/n/27jxOjrLA//j3qb577iQzOUgg4QiXnCZyQ0K4YQMIihhFQEHlJyusLoKLogvi6rrKroAskYVwihgCxCCHyn0IhACBAOHKTc65p++u5/dHT09f9VQ9fc3R/X2/XvPKdD1V1dVnZnqqPlXJWJjmNjoFs+xjStajOtddaizMLtKTKHKd0SrFwpzWG2EsbEyo1VhYqa+94SalBO64HvIvi4BP1xbO8NrfgeceAY47J3U5bB8Lk0Umt+LCM/S9OPyUnLFafW4QUe3wugXam4D2pvwRvffCpCnRF8FQcCwTHsuLkIWBnpDMzBPOzDtW/r8Zbv3R1NfG7uypqh+eC6d73blBsaHAWDoslhcha82LkDX5AUMjYkxEREREREREREREREQ01pmw3sHDwCiIhTmEtOwCQB5FaGxLbCMWbvwFPIYPuwf2wSHNc5TzVsKqgRV4tfdZ5fhYixh5DC+snjJPdC7Ba73PDV1eH/1Ya33rox9j4cZfFEzfkdiGdZEPlcu5hQcXTfkB9mucpXU91TTJO63kZavxV+mDmg7D+O0d2BHfWjD2XPdjOGn8F+A3AiWte3VoJd7qfwVd8e1FLRd0NWLvhgNxUOPhVT3xV1wqYmFjLMpHREREREREREREVG1dXV346KOPhi63trZi7733Lmodhx9++FAsDABeffXVURUL22233eD16v8NqK2tLedyT0+PZSzszTffHPq+tbUVu+++e1HbNWvWLDzyyCOO8+XH3KZMmTIUM9OVf/s//vhjxsJKxFgYERHVjWJiYQCQ0AzL2K13KBYW04uF6XrHOdCqpLpddtGztFIDEm6X/jqlwwPlFEorlVNIKDz8J3EkBbuniO7rdjSqidt1x88g/+9a21nky49DpGNhof6KXv2rgdmIww2PxdlPh/s+rOJ+ZEREllxGKjLVGgR2GZ89oveGJKVEOJYJiGWCYzInKNYTzkzPj5ANVPZH3poRSwBb+1Jfuaz+8y+cJkQqGpYOiA3FxAZjY7kRsqzYWFaEzOPmf0xEREREREREREREREQ0+plSEQsTNjugDROPQ0jLLgCkGouYIazofwkA8Erv03i97wV8e6er4TE8lvOX42+dj2Dxtv+znWesRYxU27s28gHW4oOS1pl+PHR5hBff3Okq7NNwUEnXV2nt3kkwYCjDe8PNJVw4tm0+Htj6+4KxsBnCC91PYt64+UWv9/nuJ3DvlptL3q4Xep7EnNbT8MWJ3yh5HU5ipvVOp07vJURERERERERERET1Ztu2bTmX99hjj6JP9rDXXnvlXN66tfAkFiMpP/7lxOPJ/VtRPB4vmGdgYACRSGTocinhLd1l1q9fn3P5sssuw2WXXVb09WXr7Owsa/l6xlgYERHVjSJbYYgU/sxU9HpjYvAHMc1YmG7Q7PF37Ge0W48qiqVz3bESY2Eem3218gM+TttR6jY4cQoJhTWfD1R9pTy/x7pElZ73lSSlhFxqv0MhAODxe4CrB+cLFVRTctdZwvkqT9n5YTz4jQRa8qaPhfuQiGgkCSEQ9AFBHzC5NWdEex3xhERvJDcg1h3KCosNXu4NF05LR8h0Arb1Rsr0/QiszR2xmttyHUFvdlAsKzYWtIiQ5QXHWgKp5at5RmUiIiIiIiIiIiIiIiIiADBhvYOHAWOYt6SQT/htx702ASC7sWzvhd7Ee6E3sF/j7KK2zUnMjOKR7Xc7zuc19M9oPxro3q/V4hN+fHvqv2FmcL8R3Y5sbuHBBM8kbI2XcUbaCjusZR6Wbf8DQmbhiSX/3vUI5rSdApfQP6wlKZN4ePtdZW/X091/xrxx8zHe01H2uqzEpPV+w2MtykdERERERERERKSlfSrEH98f6a2oD+1TR3oLKq6rqyvncktL/hHCzvKXGW0hKsOo/N+6uru7cy43NTUVvY7m5mat+Xbs2FH0up309dkfY05qjIUREVHd0A1xpenGoezWGxODO8/ENWNheleJ2dNLX48qiqVz3fESYzsum59f89fptB3RhEQx0QpdSYcyRTRR8aukKnCKvo1Vpb72hlVfF7BtY3HLOMTCSvFUw1zc0Gvimrzpwx38Y0+FiOqRxy0wvhEY35g/ovemaJoS/dGsyNhQcEwWTOuxiJB1h4EYf2azFIqlvjblfAas+vm3cLrbQE5ALB0cawkKywhZawBoCWYiZM1+wDD4nyMRERERERERERERERHZM6X1zj+GGPlYWMDVYD9uqMeDNmP5Pgi9U/FY2LrIh4jLmON8fiNY0eutNrv7vNr8RgD/b6cfY7fg3iO2DSqTfFNLioVN8e1Sha1J3VdHt56MxzofKBjrSmzH8r4X8LnmY7TX92l0PQaSldnv7MPQOxjfUp1YWNy0fs2NtSgfERERERERERGRDuF2A5Onj/Rm0Bgl82INogIH6FZiHaOdz5d7copYzPlvQfl0lyll3U7yH3fSx1gYERHVjWJ/XAhr/sxit96hWFgsorcuzY185E29+awkFNEhh1YWgNLjC26bfbWKjTtVK5qUdNiOVEys9n8xGAtsY3hjIapVgjERQduxRW++9p2GvpWfrLKdVZb4mvvTCgPXnJ47rVfvbRgA0CoG8JW5jdhvJ+Clj4A7Xiz+F06+WxARFc8wBJoDQHMAmDYue0T/XTUSl+gOZYJjqZhY7rTuMNA7GCHLzJP6t6+I/y/qScIEtvenvnJZ/R9p/f9ms98qOCbQYjGtNYiCCJnPw/9diYiIiIiIiIiIiIiIap0J651kBEY+FrZncD8sVYz5jQB28e+hXHbXwN5wwY0knHfAi5jhErewvHVO8+2KBlfxZ5wfSXsG98MH4beH/XoDRhDfmfoTzAjMHPbr1rFfw2y81f+K5dhU33T4jQZ8GH4nZ3qDqwl7BD9TtW06pu0U/LVrCRKy8DXw186HMLvpaO0Dt6IVfI1U4/WWlpDWZ7d08RAeIiIiIiIiIiIiohzjxuUcSIaenp6i15G/TFtbW1nbZCWZHF0Hseffxq6urqLX0dnZqTXfhAkTci6/+OKLOOyww4q+PqoM/qWBiIjqRrFx0Yj13+kLmDYRn6FYWDxa3JVrGIhKNPisd46wu63lRIdKjYW5bPbVyo9/OT1OpW6DE6f7ZUzEmuqE3XNEJ3o3WtlterUieRX14jK9+ZpaM98/9WBVNuUdixNj9haxX9dXdizC/3zpUgDAqfvJkmJhREQ0MvwegUktwKSW7Kn6kalEUqI3khUWUwTHesJAj0WErCfsHKGtV70Rq3infmzM78mEwzIxMTF0OeffweBYdoSswVcfZwUhrnALzQAAIABJREFUIiIiIiIiIiIiIiIay0xpvZOMS7iGeUsKTffPxBEtx+OFnidzpgsY+GLHRfAYHuWyAVcQZ3VcgD9uXeh4PTFZ+X0NY9L+zKk+4cdZHRdW/Hqr7ei2k/Fm/z+wPvrxsF1ns6sNl0y9Gjv7dxu26yzW7Oaj8UrvMwUhNZ/w4wsdF8EjPPjthp8ibA4AAAwYOKfj4qq+zlrcbTikeW7B6wcANkQ/wfuht7BXwwFa66rka8TptVGOJEbv+xkRERERERERERHRaNLe3p5zefXq1UWv4/3338+53NHRYTmf252bWUok9MMFpcS4qsnlcmGnnXbCxo0bAQAff/wxQqEQgsGg9jpWrlypNd/EiRNzLq9evZqxsBHEWBgREdWNYmNhYY1Y2FPvSXz/T+oVJ4QHJgRcMb2dE4rZxKfeB07bX7EemxWp4gU690+kxFCXewzEwpyiDow+jA21+jglTUBKOaoDF/KPv9WbMTyQ+X6f2cBLf1Gvs4i4S8GyefdXYZzEnnmUD3C5MPkH/4sLjliA218o7j+RUfxQERGRDbdLYFwDMK4hf0TvjV1KiYFoJhyWiYnJnGndoVTI0ipCpvN7SD2KxIHNcWBzb/ZU1f/PhdNdRjoklhcWC6aCY/kRsta8CFmzP/X8ICIiIiIiIiIiIiIiouoxYb3zj4DNDmjDxBAGzp34bRzYeCg+CK9C1Ayj2d2GzzR8FtP8uzouP6ftVEz374FVAyvQl+zBB6F3sCm2tmC+uFmFWJjNOs9uvxD7Nc5Gu3dyxa+32hpdzbhs2nVYOfAq1kY+gCkzz5+oGcHLvX8ved2zm45B0JX7h+MO7xQc0jwHQVdjyesdDl7Dh0unXYMVfS9hbeRDJGUC7d7J2K9h1tDj/MPpv8Fb/a8gZkaxb8NnMdU/verbNa/tdMtYGAA82blEPxameD674MaRrSdYjr3R/zJ6Ep0F06vxektLKuOHPISHiIiIiIiIiIiIKFtbWxt22203fPTRRwCA7u5uvPvuu9h777211/Hiiy/mXJ49e7blfM3NzTmXu7u7ta/jnXfe0Z53uBx66KFYvHgxAMA0TTzzzDM4+eSTtZbt7OzEm2++qTXv4Ycfjt/85jdDl5944gl87WtfK36DqSL4lwYiIqobRbbCEHI4YdivnzTx/Qec1xoXHv1YWBEbuaFLQjdakC1RRkwpWmK4wGNzIrREfizMYV0x6/0nyuYUmcrfTpUNXRJT2xgRqCa750iy2Bf6GJI0AfdoPqlg52a9+UL9me+j4epsC4BoAvBnnbC1t4irEulnWTIJef03cMtJz2HfL9yi9Z5PRET1TQiBRj/Q6AemtuWMaK8jGpfoSYfF8oJj2dN6VRGyIgOZ9SJpAp0Dqa9cVv+/W/+f3+jLCogFMmGxlqB1hKw1L0Lm9/D3BCIiIiIiIiIiIiIiIjvZsadshhj5WBiQ2o59Gz+LfRs/W9Ly0wMzMT0wEwDw4NY7LGNhMVmFWJhinR2eKTh23PyKX99wCriC+FzzMfhc8zE50/uTvWXFwk5v/wrGedrL3bwR4xYezG4+GrObj7YcH+/pwNy204Z1myb5pmK/htlYOfBqwdi7oTewIbJGK1qmej4HXQ04Z+LFlmNbYhstY2Ex6bCjcIlMaUIq4ocuMZp3AiQiIiIiIiIiIiIaGUceeeRQLAwA7rnnHlx33XVay7777rtYvnz50GW/34/Pftb6bzkdHR05l1etWoVZs2ZpXc+jjz6qNd9wOu6444ZiYQCwcOFC7VjYokWLEIvpfU4+b948uFwuJJOp4MIjjzyCrVu3FtyfNDwYCyMiorpRTIgLALb3q2Nc/RGpHY2JCS/8scofsR/0qsfstkwVvdK5f6IJ53msuGz21Yrnx8IctiNW4jY4cYqo6UbWnlwlccERjABUk91zxCn6NpbFk6M8FqYrnIqFyY0fAa8/bTurVLwHHxxegdcDB9ku2x/JjYVF4vr/CYi8d1HXY4tw+bevxYHTOnDcr/WeZHwXICKiUvk8Ah0eoKM5f0Tvf5ekKdEXyY6MpcNjMuv7dHAsNS0/OFZOYLiW9UdTXxu6sqeqfsYonO51Z0fG0t8LNBdMS0XIWvMiZI0+wDD4UwYREREREREREREREdUuE9Y7t7lQCzvN5PIaPsvpMbPysbC4Yp2qbagFPuEva/lavm9G0vHjzrCMhQHAX7sewvmTL3Nch+o1YveYDefrDQCSUn12WhcP4SEiIiIiIiIiIiIqcN5552HRokVDl2+88UZ85zvfwaRJkxyXveqqq3Iuf+lLX4LPZ/258MEHH5xzeenSpTjvvPMcr+Pxxx/HK6+84jjfcFuwYAGuuOIK9PX1AQCWLFmCxx9/HCeeeKLtchs3bsS///u/a19PW1sbFixYgDvvvBMA0N/fj+9///tDl2l48S8NRERUN4psheGy+yW+fqT12A1/019bTHiBaFhr3mKCZu9v1p83WzkH/qdiO8UfnC5sFsnfHqe7ID8uVilOkSndCFVf5btwVASz2Bf6KOL0+h/N0Q75ybv6M8cikAO9kF/ap+Trmxlb7RgL64sCE5oyl4t677B6MB67Gx3H/EsRKyEiIhoZLmMwMhXMH9H7OV5KiXCsMCDWE5ZDkbF0cKw3DHSHCiNkoeqcfHnMiyWArX2prwz92JghkAqLZQXEWgNAS1AMXc6OkOVPawkAHjdjY0RERERERERERERENHqZ0noHGSFszlY5RnmFIl4kK//HtphUxJUU21AL3MIDAQFZ9J6jKbV834yk3QL7YLp/JtZEVheMvdb7HOZPWIBxnnbbdcQVrxG7x0w1Fle8NsqlCh8CgEvUXvyQiIiIiIiIiIiIqFzHHnssDjzwQLzxxhsAgJ6eHpx77rl49NFHEQgElMv95je/wcMPPzx0WQiByy+/XDn/YYcdhmAwiFAoBCAV13rttdcwa9Ys5TIffPABvva1rxV7k4ZFU1MTvvvd7+K6664bmvbFL34RDz30EObOnWu5zJo1a3DKKaegu7u7qOv6yU9+gvvvvx/RaOqz9bvuuguTJ0/G9ddfD5dL/7PvVatWYfv27Tj66KOLun7KYCyMiIjqRjEhLgAYiKYOlBcWpas/La9SLEx7rcCzq9Vz291WVfRK57qjCY2ZrNZts/L8gI/T4xSrUizsmkfsr1g31KQbFaPSlfL8rgWJKj33K0H+pcjy82N3661XURoUkPhq9924q/UrymX788J95YYG5cqX0GQf0s5hF0kkIiIazYQQCPqAoA+Y0pozor2OeEIOxcN6sgNjIVkwrSdUGCHrCRf/+1s9MGUm3pbL6s6yvgOD3qzIWDo4FhTWEbJAJjyXDo4FvLD8HZmIiIiIiIiIiIiIiKgSJKx3/jFQg7EwQxELMysfL1KtU7UNtUAIAa/wISpLO/unR3grvEUEpB6X48edgYWbflkwZiKJp7uW4fMd59uuQ/V89tg8n4fz9QYASane2dYleAgPERERERERERER1Z7NmzdjzZo1JS07ffp0AMBtt92Gww47DLFY6qQRTz/9NI466ijcdNNNOOSQQ3KW2b59O6655hrcfPPNOdOvuOIK7L///srrampqwjnnnIPbb78dAJBMJnHqqafirrvuwgknnJAzbywWw6JFi3DllVeis7MTbW1t6OrqKuk2VtOPfvQjPPzww1i5ciUAoLe3F/PmzcPZZ5+NL37xi5g5cya8Xi/WrVuHRx99FAsXLkQoFILf78eJJ56YE1uzM2PGDNx666054bRf/vKXePbZZ/HDH/4QJ598Mtxu68/A16xZg2XLlmHx4sV46qmncM011zAWVgb+pYGIiOpGKQeb//Vd4Ph9CqdPbQXe2qC3jhg8QFRvh5NitnHPyYUHaK/vlLj+LxKPvaNeTjd6ZWVUxMJK3AY72/skOgfs59ENNSUZNRhRtRwLKzd2VVX3/bqo2eUN6iq3rhnxNbbjfXn7cRVz/wmbuAYRERE587gFJjQBE5ryR/QiU6Yp0R/NDYilvpepWFZWcKzXIkLWHa7O7w21IBRLfW3KOfmH6peYwukeVyYolg6ItQaB5nRYLCc4JnLnDQLNfsAwGBsjIiIiIiIiIiIiIiJrplTEwoT+2cjHCmW8SFYhFqZYZy3HwgDAZ/gRTRYfC/MKH0+gU0UHNB6Cds8kbItvLhh7vudxnDz+Cwi4GpTLK5/PQv18VsXfqvF6A4CkVO+s5qrB9zMiIiIiIiIiIiKic889t+Rl5WBc4OCDD8aNN96Ib33rWzDN1N+Mli9fjkMPPRS777479t13X/j9fqxfvx6vvPIKEoncg4eOP/54XHvttY7Xd+2112LJkiXo7k4dXLN161aceOKJ2H333bH//vvD5/Nhy5Yt+Mc//oGBgVSAYNKkSfjFL36RE8oaLbxeL5YtW4Zjjz0WH374IYDUffrAAw/ggQcesFxGCIGbbroJ69aty4mFOf195LzzzsPmzZtx1VVXDT1GL7/8MubPn49gMIiDDjoIEydORCAQQF9fH7Zv345Vq1YN3ddUGYyFERFR3Sil4XTab01Ef5f7h/nNPRIvf6K/jpjwQkZDmofF6xvI24dlW5/EnF+Z+GS7/XKq6JVOqCwS19u2YuhGuNKqcdD/46ucb7xuaMis4VjVaGH3aJk1HGsb1bGwYSYg4XPYUWtbX+7lYkKJlrEwIdBQRCyM+wsSERGVzjAEmgNAcyB/RP8/2Eh8MCyWFRwbio1lT1NEyPqrs0/4mBdPAtv7U1+5rH4QL5wmBNDkG4yJ5QTHUo95/rRMeCwTHPO6+YMWEREREREREREREVGtMmG9g4wBY5i3pPpUYaO4WYVYmGKddnGlWuA1fFA8pZyXo6oxhAvHts3H/VtvLRiLmGE83/MEjh93pnJ55fPZ5nFTjcXNmMPWliZp88RzCR7CQ0RERERERERERKRy0UUXoa2tDRdccAH6+zMHr3z44YdDISwrF154IW655RZ4PB7H69hpp52wePFinHHGGejryxyMrLqOGTNmYNmyZdiyZUuRt2b4TJs2Dc899xwuueQSLFmyxHbe8ePHY9GiRTj11FPxgx/8IGesqanJ8bquuOIK7L///rjggguweXPmxCChUAgvvPCC1va2tbVpzUfW+JcGIiKqGzoxrHzZcZ5wTOLLC008/GZx64gJLxANa80ri0iafdqTO++SFdIxFAYAyTJiVtESQ112tyo/gOR0D8SqEEy66Snn+103FlDLsarRwu61XM7ze6Q5vUfVXSysrQPycycAq62HnWJhf3lb4vQDMyGJYu6/uNWZJHfeE0GffpiCCQsiIqKR5fcITGoBJrVkT9X/HzqRlOiNZIXFQtbBsR5FhKw7xN8NrEgJ9EZSX+s6c0as5rZcR8CTCYdlYmKZ2JgqOJae1uBzPtMJERERERERERERERGNDFNa7/xjiBqMhSniRTGHfWJKEVMEkTxGEWfOG4NKjaHVekRtNDisZR6W7fgD+pO9BWNPdf0Zc9tOg1tYH9AVl4rns9U+X4NUj2k1Xm8AkJTqnW1dcCnHiIiIiIiIiIiIiAg4++yzcfTRR+P666/HPffcg+3brQMKHo8Hc+fOxTXXXIPDDz+8qOs49thj8corr+DKK6/EI488AmlxkHd7ezvOP/98XH311Whubh7VsTAAmDRpEh588EE8//zzuO+++/D0009j06ZNiEQimDJlCnbddVd84QtfwDnnnIOWltQBV93d3TnrSE93ctJJJ+GTTz7B//3f/2HhwoV48803Le/DNI/Hg9mzZ+OEE07Al7/8Zeyxxx6l31BiLIyIiOpHqcdpSykhhMBVS2TRoTCgyFhYERv57Ae5ly+7X2/hhCKmpLN0ybEwm5UnTInsg/ad7oNYidtgZ8YEgZc/tr/ivojeutgDGFljORbmpBqhvFHJH4S44zVgyq7AnRJYXfiqEpDwO5xFtT0vXl1MLOxt3z6FE92pX53OPAhYskJ/XURERDQ2uV0C4xqAcQ35I3qRKSklBqKZcFjP0L/SYpp1cCwSr/jNqgnheOprc85xA6rfxAqnu4zsmFh2eExYRsha8iJkLQHAZTA2RkRERERERERERERUDSYUsTDUYCxMFS8yo0P7LFaKKohU61Esr+EvaTmPIuRGleM1fDi69WQ8uuP+grHuxA681vs8Dm2Za7lsTLHfmN3zWRnnc9gHrVRJqd5ZzRCMhREREREREREREdHYt2bNmqquv6OjAzfccAN+/etfY/ny5Xjvvfewbds2RKNRTJgwAVOnTsWRRx6JpqYm55Up7LXXXnjooYewfft2PPPMM9iwYQNCoRAmTpyIGTNm4KijjoLbnckyzZkzxzaIla+YefPdcccduOOOO0pa9sgjj8SRRx6pNe+qVauGvhdCoKOjQ/t6/H4/LrnkElxyySXo7OzEyy+/jE8//RSdnZ2Ix+NobGxER0cHZs6cib322gvBYLDo20LWGAsjIqK6UerPUzv6gQlNwL3/KG0FqViYZmmqSKYpYQwepKx7ILkyFqZx80o9WN1u1fkBH6fNSFQhmLTnJOd5ejUfwlqOVZXKNCWSJuBxV2YHNrvniFnDtbZqhPIqQSYqW7EQX/8xxE67pdZt88bkczirYyjvBJKq9z4rM2MfFk5MpB6AS481sGSF88oquL8mERERjUFCCDT6gUY/MLUtZ0R7HdG4HAqHpcNiVsGxHkWETPd3mHqTNIHOgdRXLqufPa1/Hm3yZ4JjmZiYQLNFhKzVIkLm9/CHRSIiIiIiIiIiIiIiK6ZUxMJqMK6jClKZMJFEAm54KnZdcVVcqcajWL4Sb59XeCu8JWTlmNZT8GTnEsRlrGDsr50P4ZDmOZbRPGX8zlA/bso4n8M+aKVKSvXOfq4afD8jIiIiIiIiIiIiqhbDMDB79mzMnj27atcxYcIEnHXWWVVb/2g1MDCA119/fejyzJkzS46vjRs3DqecckqlNo0cMBZGRER1o9RYWMf3TIRuMrC9v7TlY8IDRMNa8xa7jWt2ALu2F7dMObGtaImxIrvbVRALc7gPYlWIhelE0PrCmQ2b3AJ82lP6uuqFlBJXPyRx2/MS/VHghH2A275moK2hvAPj7Z4jtRxrG62xMKx9v7Lr8zqf0VNICb+0r1/kx8Ly32vsfL5vSeHEZOrFPa5Bfz1ERERE5fB5BDo8QEdz/ojez9NJU6IvMhgZG4yKpcJjMjMtHRgLZcJk2cGxYoKr9aQvkvra0JU9VfWLSuF0nzs7Jpb+XqAlaB0ha8mLkDX5YXlgBBERERERERERERHRWGfCegcPA8Ywb0n12QWpYmYUblflYmHKuJIioFQrvMJ5PyTL5Wo8ojZaNLlbcGjzsXiu57GCsU2xtVgVWoF9Gw4uGLOKiwH2j5tHERJTratcSaneWc3FQ3iIiIiIiIiIiIiIaBRYtGgRQqHQ0OXDDjtsBLeGisG/NBARUd0osRUGADjtt6UfIR0TXiCWGwuT6z8AVjwLjOsADp4LEWwsaRtXfVp8LEwVU9IJlVUjFpYfL3OMhSXKeSSthTX29+jL2l/qwGmMhem4bpnEz/+SebweegPY1mfiuR9U78x4YzkW5vTMrkYoryLWrVaPNbUBfV3qcSsz9tWa7YjQi7bjobx9HIuJhc0deKZwYjL1BtikuQ8h0w1EREQ00lyGGIxN5Y/o/aQipUQ4VhgQ6w7LrO9T03tC1hGy/IArpUQTwNa+1FeGfmzMEKloWEtWQKx1MDjWbBEhy50n9b3bxZ9YiYiIiIiIiIiIiGj0MaX1zj+GqMFYmE3YKGZGEXQ1Vuy6oqb1SflqPYpV6u2r9YjaaDJv3Hw83/M4pMXfxP7a+ZBlLCxmFh+/U42p1lUuE+qdbV2ievtPEhERERERERERERHp2LBhA370ox/lTDvvvPNGaGuoWIyFERFR3dCJYan8/b3Sl40JLxDNxMLkY3dD/sfFQHKwXLPLXsANf4GYMKXobeyPSBSbpEmUEVOKViGElR/wcQwmlRgss6NzAHt2BMzuHmcsLOPefxQ+mi98BHy8TWLX9tIPTLd7nZiVb8mNGtV47leCfH+5ckx877eQP/mK/sqCTcABRzrOJiDRkdxmO8+HW3OfDMXEwtxWZ6nt7wUANHFfQCIiIqoTQggEfUDQB0xpzRnRXkc8MRgWywuO9YRlzrTUdIsIWbi83+VrlSmBrlDqCzuyR6zuLOs7sMFXGBBrDYqcCFl2cCx/WsCbeo4QEREREREREREREVWSCUUsDDUYC7MJG8VkZQNGMWm9g1ytR7FKjoXVeERtNOnwTsH+jYfgzf6XC8beD72FdZGPsLN/t5zpyliYzeOmGqtWLCwp1TuruQQP4SEiIiIiIiIiIiKiylq8eDGWL1+Oyy+/HO3t7bbzrlixAmeddRY6OzuHph1wwAGYO3dutTeTKoR/aSAioroxUscXx4UX6N+c2oZQH+TPvp47w9r3IH//U4gr/7fodf/lbeBLnytuGVUsTOf+KTWEZbfu/O1xOhA8VkTwR5fO7cqex24TI6M06DQS3t9iPf3W5yT+4/NlxMJsxpJlxPBGu9EaC8M9v1KPjZ9U1KrElbdCGJmdO+3eD/wOO0W+9HHu5YTme8e0+Hrrgb/cCfxwIZr8euthN4GIiIgI8LgFJjQBE5ryR/R+WDJNif5obkCsO5QVFssOjllM6woVF42tJwPR1Nem7uypqh/AC6d7XFmRsazgWEs6LJYdIQuIrCBZaqzJDxgGf2gmIiIiIiIiIiIiolymVMTCRA3GwmzCRpUOGMVLiCvVAp/Q3NEnT61H1Eab48edYRkLA4C/dj6EC6d8L2eaKqbnEV7ldage05iMQUpZ8ZPkJKV6Zz+XcFX0uoiIiIiIiIiIiIiI+vr68POf/xy/+tWvcNJJJ2HevHk44IAD0NHRAbfbjc7OTqxcuRJ//vOfsXTpUsisA7i9Xi8WLVo0gltPxWIsjIiI6oZThKpaulytQNfK1IUliiDYE/cCV/5v0UGzu16WWHRhccvoBnOshGKl3Yl2933+gdtO1xC2PslhWXRuVzRr3w272xMtMahWT3rD1Vt3cqSqgMOgGqG8ckm7F8MhJwC77FXU+sTcz+vNV0L+UTcS8fXu260HJkwBAPg8ejuGMRZGREREVD7DEGgOAM0BYOecEb0ftqSUiMSzImNDwTFZMK1HESHrr87JxMe8eBLY1pf6ymX1s3rhNCGAZn9uQCz1vUBLQYRMpMaDuREyr5s/dBMRERERERERERHVGhPWsTCB2ovr2AWpVDGkUqnjSrUdxSo1hlbrEbXRZtfAXtgtsDc+Cr9bMPZ63ws4Pf5VjPd0DE1TxfTsXlOqkJiEiYRMwCM8RW61vaRU76xm1OD7GRERERERERERERGNDvF4HEuXLsXSpUu15g8EArjzzjtxwAEHVHnLqJIYCyMioroxUrGwR5pOw9e2LYY0Tchb/s16pniqgFXKNsYTEp4iDpBNWu9PpXXdpYa67FatG/BJ2zFQ2jbY0bldkawImN3ticZruFZVIaEyg292z1VT8fweC5xegzH1yQZHzkCveswfhGhr1896feawgklOy57ffSfuaD3PcsxtAKYpYRip90fd95pd4uusBzyZHcaEGLn/U4iIiIhInxACAS8Q8AKTWnJGtNeRSEr0RgbDYoMBsW6L4Fjv4LTsedLjJn92LCDlYKQtDKzrzBmxmttyHQFPJhw29G8gKzaWFyFrzYuQBb2o+FniiYiIiIiIiIiIiKg8Ulrv/GMIY5i3pPrcwgMBAWnxObgqhlQqZVzJsA4o1Qq7eJSdWo+ojUbHtZ1hGQszYeKprqU4u+PrQ9NU8Tu7yJvdWFxG4UGFY2Gw3lnNgIt/nyIiIiIiIiIiIiKiimttbYXL5UIyqR9uOOKII3DDDTdg1qxZVdwyqgbGwoiIqG6M1LG5O8fXA9EwsPQ22/lkPIZS/mt+51PgwGn68ydMQEpZ0g4HpUae7KI6ibz9u5wCPF2h4q//6fclFr8u4TKAsw8WOHKP3NsejisWzBLRmAcAIqMx6DTKlBqdS7N7jiRr+CD8WFKimKjBsOjaqhwSX/xuwbSQCGBR61fxin8W9ou+jfN67sGE5I7U4LaN2lebvhcu7bxJGQtLmMBADGjypy7rxsKO3NMFvGIx8OmaoW99buf3hFH2SBERERFRidwugXENwLiG/BG9n/iklOiPZsJhmZiYLJjWYxEh6wnr/z5ab8JxINwDfNqTPVX1S2HhdJeRHRPLBMdaAiInQtaqmNYcAFwGf/InIiIiIiIiIiIiqiR1YKf2YmFCCHiFD1EZKRhTxZBKIaVUx5VqPIrlM/wlLWcXlqLq2K9xNjo8U7A1vqlg7IXuJ3HK+HMQdDUCAOKm9Q6IpcbCYjKGYJHb6yQprXckdQlXha+JiIiIiIiIiIiIiAg444wzsGXLFjz22GN44YUXsHLlSqxduxadnZ2IRCIIBAIYN24cdtllFxx11FE45ZRTcMQRR4z0ZlOJGAsjIqK64RShqpZOVxsAwPzVdxASQTRIRe0q1Acp24pe/wsfSszsKG4ZUwKuvONZde4enaiWFbv7Pj/g4/Q4DRS5H9RdL5k4/w45tN6bnpK480KBcz+X2YFMJ4KWfXC23TbyIG5n8SoWvaQsPYY32sVGY4iua5t6bI8DUv82tQF9XYgIH+ZPW4ynG+YMzbKo5av427qTUsGwSOF7o9P7wQHRlbh/w5dxztR7LccHoplYWNL6xLMFdj32KMhX7rIckwO9EA3N8Lr4WiciIiIiPUIINPlTP5dOzfmVX/93lmh8MCAWzoqNhQqDY72KCFlv4TFGhNTvCDsGUl+5rH4Rsf7lpMlvFRwTg9Gx3AhZa15wrCUA+D2197srERERERERERERUTmktN7BwxC1FwsDAI/hQzRpEQtTxJBKEZfqddV6FMtbaixMeCvnkyHBAAAgAElEQVS8JeTEEAaOG3c67t3yu4KxqIzg2e7HcNL4swGoY3oem/idx+YxjZmVi/OlJaV1+NAlePgOEREREREREREREVXH+PHjsWDBAixYsGCkN4WqjH9tICKiujFCrTD0G434XdvFuH78D7DZPRGzIstx26ZvYp/Ye7kzhvogYR0Lm9oGbOiyXv+l90lcfn9xty5pAq4S9p/a3Fv8Mk4S+bEwh/n7o/oxKCklrloic4JDSRP40UMSX5qdWYdOgCySFWpiLKw85UavnJ4jVjG8WjAqY2HdiliYPwgRaEh9f8bFwF2/wOMNJ+SEwgDgHf++uLvlXFzWeSNw2vnaVyuyngWfjbyunG9dJzCpJfV9fphQKdioHJJ3/RLiW9ch6HUOLtRgr46IiIiIRojPI9DhATqa80f0fuhMmhK9YVgExwojZD0hie4wCoJjCc34br3pi6S+1ud8ZqP6rbVwus+dHRPLio0FrSNk+dMafajJWDYRERERERERERHVLxOKWBhqMxamilLFFTGkUqjCSqnrr/FYWInRr1qPqI1WhzTPxdLt96Iv2VMw9nTXMsxrOx0u4VIG8OweN7ux6sTCrHf2cwlXxa+LiIiIiIiIiIiIiIjqC2NhRERUN+wCT9mO3gO4+lQDJ9xQmSNhH26aj4eb5g9dfjUwG/N2eQyrP/oMmsz+zIyhfoulU5wO+yz2oN1EEvDm/RSgc/9s6gZuf8HESfsKTG7VPxjVbtX5AR+n7UiaqWXyt9/K2xtT25zv4+3Au58C+0xJXR7QOBFjdgTMbhMZC0uRNg9kTDfapFy3/XgiWVoMb7Qr936rBvmPx60H2tqHvhVePySAqzqutZz1+xN/ics6b4TwBQvXr/G+1Ja0eJEP+mS7xOdmpN6rdGJhXz1UAAcerZ7hnv+EPPI0eGN7AigoNRARERERjUouQ6CtAWhryB/R+71eSolQLCsgFgZ6QkB3WGbCY4NjvYMRsuzgWE8YCGn83l2PoglgS2/qK0M/NmaITDzMKjiWP601L0LWEgDctVjbJiIiIiIiIiIiojErKa138DBqNLCjChhVMl5kt65aj2J5DX9py9V4RG208hheHNN6Cv68476Csd5kF17tewazmo5SLm8Xh7N7TCsZ50tLwvq9zMXDd4iIiIiIiIiIiIiIqEz8awMREdUN3VjYmh3AcfsI/PM8gf/5m+ZCRdrm7sBfG+bhzL6HMxMHem23ca9JwHubK3P9xcbFsn19kURbUGLZPxs4dFfdA4vVYwWxMI31xRJ6sbDOAfXY5t6sWJjGvh7RROoAaSHsbzNjYSnFPOaVFk8CPk91r6ManJ77MeuTDY6s1W9YT2/tyHzf1Jqa1TfTfl1e/Z3sRNa91WL2KufrCWe+jyed310Wnicg3O22j4X89jFYt3dIYxuJiIiIiGqDEAINPqDBB0xpzRnRXkcsIdGTFRDLRMZyg2NDsbH8CFlE/3OdemJKoCuU+spldWdZ34ENvtyAWGsAaAkKZYQsf5rfA8fPSoiIiIiIiIiIiIh0SVjv2GagBs8cCHXAKFbBeFFcqs/oUetRLF+psbAaj6iNZke3nYwnOh+0fA38tfMh7NcwS7msx+b57BbqHQpjNq+RUiWl9c5+rhoNHxIRERERERERERER0fBhLIyIiOqG7jGlXzk0dYDjz8+sXiwMAL4w9T7MHXgKl3TdmoqGhfuU2yhE5UJhgHUsrJiDbrtCwAW3m3j3Wr0dF+xWnb8tOtsR04xN+W2CUeGs/TvCGoEvKVMRKq/bfhsjozHoNMqUG71yjGpVOUY2Uip1u0xTwjAqdCB36wTr6V1bM98fNR+44XLndQUaCibpvC2Ji34KPG89dvPTEhcfnfo+YXP/uQ1g0YUCXrfe/fKV7ntwd+sCrXmJiIiIiAjwugXam4D2pvwRvZ/BTVOiL5KKh6WDYz3psFh2hCwM9FpM6w5VP1w9Vg1EU18bu7Onqn4bK5zucWVFxrKCY81BkRUZS4+nYmPZ05r8qNzvqERERERERERERDSmmdKEVHw+aYgajYUpolQxs3KxMLt11XoUq9QYWq3fL6NZo6sZh7XMwzPdjxaMbY5twIq+l5TL2j1uhjDgEV7LeF4lX29pSWn9hynGwoiIiIiIiIiIiIiIqFyMhRERUd3QjWE1DZ5MLuAViNxsYMHvTSx+vTrb9FTDXDzVMBf3b/gyzu7vhVScyE4IwOcGohUKUdlFc3S9vwXY1C0xpdX5gE67+z7/YF2tWJjm/eCziYVFsgJhIc0Tw0Xig7Ewm3miGuGxemB3H730cXWvu1YPAC83spYWTwIr10l43cB+OwFClHFQdvd26+kTpw19Kzqm6sUaW9u1r1YccCTEaT8FDp4D8ZlDsfdHSbz7aeF8rqybtvQt63W5DWDFjw3sO0X/fjgk8iruhn0srJy7lYiIiIiIchmGQEsQaAnmj+j94C2lRCSeFRkbCo7Jgmm9igjZQOWPE6kJ8SSwrS/1lcvqN8HCaUIAzf7C4FhLIPWY50bIRNZ45l/d8DMRERERERERERGNbhIWZ8AcZKA2AzuqmFVMDk8szFNiTGusKDX6Vev3y2g3r20+nu1+zPI94fHOxcrlnB5vr+FDPFm4s2i8gq+3tKS03tnPJXj4DhERERERERERERERlYd/bSAiorqh2QqDN2u/Iq9b4IFvufDntyTm36jeGalc50y9F7GuW4HJ1uMCqYMftxYceFkaq5iS7v2TbdlKiYuOKi8WVkq4rBIxqEhCAhCIJySSmg9tJA40B+xvT6RCQaexTjfOV411VyqqNdpU6nbt+kMTn/akvt9/KvD4ZQYmNpd4YPV7yy0ni3lfzJ3wueMBp/evtsJYmPKxnrY7xHlXDl20CoUBeoHFfz1RFITCxO2vQV4wS7nMuT3349JJN9iul7EwIiIiIqLRQwiBgBcIeIHJrTkj2utIJCV68gJiPemwWFZwrCcrQpYdHOsJA2YVf1ceq6TE0P26NnfEam7LdQQ8gzGxdEQsALQGBZoD+dNSEbL8MFnQW2ZIm4iIiIiIiIiIiCrClDaxMGEM45YMH48ibmQX+CqWKjwmYMBd4+Ein6E4e6uDUiNjVBkTvJNwUNOheL3vxYKxroTi5JYAvMJru16PYrySr7e0JKx3cnXVaPiQiIiIiIiIiIiIiIiGT23/hY+IiCiLbrzIY/G3+NP2F/iPzwtc+WD1jur82TszMW2SevxHpwlcel9lrj9mFQsrYdW6kS07+bEwnc3QjSbZbV8knvo3HNdbV/YytrGwItZXz6SUJR+I6/RcrURMbiQ43a5KhejSoTAAeGsD8PU7TPz5nyu8E1JjS85F8d1fA9c5LNNaGAvT9fUjBW57vvAOXJUVEZvUDGzuLVx2i0XETOy+n+17UavZgwU99+Keli8Xv7FERERERDQmuV0C4xuB8Y35I3q/20op0R/NhMMyMbHBsFhWcKzXIkLWHdILItejcBwI9+T+vqv+hKlwutvIhMPS/7YGgOZ0WCwvQtaSFyFrDgAug7ExIiIiIiIiIiKicpmwiYWhNmNhXqGIhSkCX6VQhZC8wlvzJ1JQ3b/VWo4q57i2My1jYXacIm/q11usqOvRkZSKWFiNB/qIiIiIiIiIiIiIiKj6+NcGIiKqG7oxLK/if8dGsw9AwRGhFfPTjXOwUDEmBHDmQRWMhVXo4NKtFpEdK3ZbnR920nmcrGJnVuxiYeHB/TuKioVp3G+MhaU4PY494dSBtdVQqef3aPPW+urECh99GxiISjT4itv5T67/QD3ozj0Lo9h5JqA4W+KQrFiYlKmD4lW3OH9LD94ZuE0x7yNvSMw/UCgPqp8xXnEdP/w95PXfUG7uHZu+YRsLq+1dKYmIiIiIqFhCCDT5gSY/MC13RHsdkbgcCo3l/BuWBdOsImR9kUrfqtqQMIEdA6mvXFa/lVr/ptrkT8fEsoNjAs3p74fiYpnYWHZwzOfhb5FERERERERERESmIq4DAIao0ViY4bWcHjcrFy9Shcecwkq1oNTbqHpcaPhMD+yBPQL74oPwO1rzCxhwORwao3o+xBVBvXIkpfXOai5R4ZN6EhERERERERERERFR3WEsjIiI6oZuZsej+Ft8w/svAjihUptj6aI7rbdSAJjSKjB9PLBmR/nXYxXN0Y2pZdvcozef3boTZu6gzmboxqDsYmHpSFm4iP2q0iEwp/hZ0pRwGTzI0862vtJjYU7PkfwAXa14TG+/p5Js6AL2nFTcMvLWH6sHw/3Fb0RTGwDgoRUS33vAxCfb9Rf1e9RjZ9xswrzVhZDitX7QzorX6glfBmxiYQLARV23YWHb1/U3lIiIiIiIqAx+j4DfA0xszh/R+wwiaUr0DobD0mGxVExMojsvQtZrMa07bP9ZSz3ri6S+1ndlT9WPjfk9mXBYJjg2GBuziJDlB8cafakgHRERERERERER0VhmQv0BpIHaDOyo4kWqwFcpYooQUl3EwoS/xOVq/74ZC44bdyY+2Ki305xXeB0/J1c9rpV8vaWp4ocuwcN3iIiIiIiIiIiIiIioPPxrAxERUR6v4n/Hho9eRbVjYU6e+r6BGVeVf1SmbmzLyS3PSNy8wHk+p7hWzrwatbCYZgzK7gDW9DrCcb11AZnImtM2RuNAsM73F3J6GH/zV4nxjRKHzBA4fm/A59E/oNXp/td9fow1MydWb90lHU/89IPqsZkHFb8NbjdWrJM451bTMfiWv73H7S1g96z71ROmZSQRAAKK0JhwuYDLfgN5w+XK9boVZ4C02kYiIiIiIqKR5jIE2hqAtob8Eb1fYKSUCMUy4bCecFZsLH+aIkJWzOcw9SQST31t6c2eqvo9t3C6IbJjYlnfWwbHREGYrCUAuF38RZaIiIiIiIiIiEaWKW1iYcIYxi0ZPsp4kSLwVQpVCKkegljuEsNM9RBSGwv2bTgYk7xTsTm2wXFencfMY3gtp1fy9ZaWhPV+ZbUaPiQiIiIiIiIiIiIiouHDWBgREdUNnQgVAHgUf4tv+PAfwM6V255ipKMzu4yvzEF7VjElzbunJHb3faKUWJhm7Gwg5ryOsM08Besb3CfEaRMjCcbCnB7HW55JzyBx/N7AkksMBH0Ven5XKIY32vRFqrfuYu95aTpEC3f7TEnbsWSFdAyFWZk2zv4WXPEn9RMyaL0PWMqZ3wJsYmEu1GiZjoiIiIiIyIIQAg0+oMEH7NSWM6K9jlhCZkXGssNjucGxHkWErDei/xlfPTEl0BVKfeWyurOs78BGn1VwbDA2ZhEhyw+O+T2p5wgREREREREREVGpTKj3RxGo0ViYInBUyXhR3LTeQc5TB0GsUj+zrIeQ2lhgCAPHjTsDd2++0XFenViYMs6nCOqVIymt9ytzCcbCiIiIiIiIiIiIiIioPIyFERFR3dA9jtDrst5BpNHsr9zGFCl7n5XV1xmYebVDqMdBpWJKHhcgpXTcqcbuIM78MJDO46S7/b98TH0/RdOxsLjeugDgo20Sc/YUjgelRotYJwFPvgvc/Q+Ji4/W2znL6TlSSmxqLKhqLKzY/eK22Z+tsdQd7a5bpvdObbX20w8AHn6z+OsM2MTChGFA7nkw8P7rluMuqX4z4uHRREREREREhbxugfYmoL0pf0TvtyjTlOiLpAJi2cGxnrDMnRYGekIyL0iW+r5WPzcoV3809bWxO3uq6vf0wuleNwoCYq0BoCUdFsuLkOVPa/IDhsHfpomIiIiIiIiI6pmpiOsAtRvYGY54kWpdDGKp6YSnaHjMbjoGj2y7B73JLtv5dJ7PqsdVFdQrR1KxX5lL8PAdIiIiIiIiIiIiIiIqD//aQEREdcMp8JTmUexX1NAcrNzGFCn7MLndO8o/aM4qtqV7/2SLJ1MBo+ZA6dtSEAvT2I6Y5kGdT72vHktHwsJF7Ofx0Ta9+SIVirGNZcU+nZa9JXHx0Zrrdlh5pWJ4o004rhfnK0XRr//3V6jHDp5TzqaUbNGFBlq/W3xIMWgTCwMANLcph1zgEeZERERERETDyTAEWoJASxDYZXz2iGaAXEpE4oUBse50WCwrONYzGBzLj5ANVO4YvZoSSwDb+lJfuaw+dCicJkQqGlYQHAsKNBdEyETWeCY45nEzNkZERERERERENJaZUO/3YcAYxi0ZPh5FvChmVjAWplgXg1hqDDqNHh7Dgzltp+KR7XfbzyecdgIbnjhfWlIRP6zV8CEREREREREREREREQ0f/iWLiIjqhm4Mx6v437HRPXoKRPdfbOCcW4uP4qTpxrZ0DESdY2F2d30yb1DnYapEDCodCQsVEQvrH9wnxOm5FImXtk21pNj41NK3Knfd+QG6WpE0U7dN9R6VTYjiHoNDfm7ig+sMjG/UPKi2T32mRnHDY/pXnPaly4ua3aqX1hwQ+MJnBR5YXtyTL+BxmGHGvsCrf7Mc8kr1i70KTTciIiIiIiIqkxACAS8Q8AKTW3NGtNcRT0j0RgqDYz1hmTOtxyZCZpYQ7a91UqbDbcDa3BGruS3XEfQWBsRag4OBOYvgWEswd1rQi6pE2omIiIiIiIiISI+U6v3hhKjNWNhwxItU6/JqxJWIRoOjW0/C4zv+hKiMKOfRid+p5qlknC9NGQvj4TtERERERERERERERFQm/rWBiIjqhu4xeF7FibsaIjuA5optTlHyj1H7pwPKW59VbKvUYxQ7Q/kHV1qs22bliRLCTjqxMOlQSkoHvaJFhMcG0rEwh/lUsbCPt0n87hmJD7dIHLGHwPwDBBa9KPHupxKH7Cpw6VyBoI8HJDpximCNxViY0/M1LRzTi4UZojDEZ6c7BFx6n8S9F2k+/7q2KYdKOahWnHlx0ctY+d1XBN5YL/HBVv1lgg77PYrTL4L84/9YjvlsdszkscVERERERES1yeMWGN8IjG/MH9H7RVBKif5oJoyViYnJofBYdnAsP0LWFapMSL8WhWKpr097sqeqPiApnO42smJiWcGxlqCwjJC1BpATHGvyAy6DHwgQERERERERERWjL9GDgWQfAGBHQr3DhwuKnfrGOFW8KGqGsTm6Yehys7sVQVfmQ8nu+A5EzDCa3C1ocDXZXocqhKQTVyIaDYKuRhzRejz+3rVUOY8qvJfNowjkbYyugSmTMETl3meSsP4g31XB6yAiIiIiIiIiIiIiovrEWBgREdUNzRYPGv2K6WF1HKfa8g8x83sEfrdA4Nv3lJb4iiWkxVpL8+QqiX2n2K/LbisTeSeE1HmcYknn7f/FY/YrCsdS/8aLKCqF0rEwh0WsYmGrt0js82MT5uCyD78pccWfMit66A2Jv6yUePwyAz7P2D+oUPf1VtK6HcaLiWSNNeE40KIxn8sAkuqTrVr6w6sS93xDasW+ZJdi58xDTrCcvL3P/kERU3Z1vM6c+RWbOK5B4KWrDEy4XP/GB5xOkjp5unLILhZGREREREREZEUIgSZ/Kiw1bVzOiPY6IvGssNhQcKxwWo8iQtYXqfjNqgkJE9jen/rKZfW5hvVnHc3+rNhYOjwWEGgpiJAJyzBZLXwuSERERERERESkY1vsU/x+039iffRjrfmFMKq8RSPDq4gXhc0Q/n3Nd4YuCwjsHtgHx7bNx4Pbbse2+Oah6TP8e+IbU/4VrZ7xBevpSXTi5d6/K66bsTAaO+a2/ROe7loGE9b7hXk04neqQN62+Gb864fn4fhxZ+Kk8WeXtZ1pSWl9xlOX4OE7RERERERERERERERUHv61gYiI6oZuP6jBYv8bKSWC4R0V3Z5yXXRUGbEwi/0QSo07PbpS4rLj7OexW3cib1u0YmHWJ13L8cMl9isaiKXG49b7ZNgu4yQ/FrapW2KvHznHi579AHh6NXDivvrbNFqV8nRKJCXcrvIPiCw2kjWWhC1CdFZKvRuTJuDWOXlhlyKe2NpuOfn+14av4DauQWDLfxmY+D29J4LP4Tci4fFCTt4F+HRt4bKKM68Cxb23EBERERERERXD7xHwe4CJzdlT9T8MSJoSveFUPGwoNhZSBceswmS1/flLOXojqa/1XdlT9WNjfk8mHJYJjgm0FExLRcjyg2MNPmiF4ImIiIiIiIiIRpIpk/jv9T9GZ0L/5J0GajQWphE4AgAJiQ/C7+CD8DsF0z+OvIcbN/wU/zb9vws+G7ppw7U21604qyrRKDTe04GDm47Aa33PWY7rxO/s5gmbA3hk+91odY/DoS3HlrydaUlpvZOrS+jsnEdERERERERERERERKTGWBhVlBDCA+AIADsDmAygH8AmACuklGtGcNOIiLRjWA1W+wNEw3DJJAJmCGEjWNZ23HrKZvz2wW1Y6d9Pexmr47vEQA++t2Mh/mv8vxS9DVGN2JaucQ3OB5/Z3ffJvDGdh8kqdgYAL30kcex/mVq3ry9ivy4rA4NdIKdtzI+FTb1C/+jJKxebOHHf+twhpD+aOrDRidNrOWlKFHOA7FgSjqnHXvxI4u/vSewyTj8qlk87Fta91Xp6m3Us7NL7KhsLc3p025sE4rcY8HzL/rXXFtQ7gFZ85QrI//x/BdMPiryhXCbgcVwtERERERER0YhwGQJtDUBbQ/6I3ucpUkoMRDPhsExwTBZM61FEyEr97KLWReLA5jiwuTd7qupzlcLpLiMdEstExFL/WgXHBFpz5gGa/ahIzJ+IiIiIiIiIyM4n4dVFhcIAwBA1GgvTCBzp2BRbhy2xjZjkmzo0bUtsIzZEP6n6dRMNl+PHnamOhRkWZwnO49GY5/W+FysUC7PeMdXFw3eIiIiIiIiIiIiIiKhM/GtDDRJC/ATANWWsYpGU8vwir7MdwE8BnANgnGKeFwH8Wkq5uIxtIyIqWVmxsPAAAKDR7C87Fnb+nAD27N+CY54tLxaGeBTjk50lbUPMIqale//k++NrEgvPk2jyl3YQWSJvnwid7YhaHEz427+b+O4f9G9EOhYWLyUW5nA12bGy19cWd8e+uaGo2UetUp5PfRHNWJjDeFK/zTZq6N5fIUUs7No/m7jmkfKDXNr33at/s5wsWq1jYZWms50uQ6DrBgP/9pDEzU9b3zcn7qv3viXmfwPw+CCv/0bO9KPCL2BKfBM2eabkTJ8zEwh4eWAtERERERER1SYhBBr9QKMf2KktZ0R7HbFEVkBsKCpWGBzrVUXIwhW/WTUhaQKdA6mvXFafjVh/XtLoywqIBTJhsZagdYSsNS9C5vfwMxEiIiIiIiIisrc9vrmo+RtdzQgYBeX7mjDBMwkCBiTK3+FpR3xLTixse3yL7fwd3sllX+dYcMr4c/DojvsLphswYFrc759rPmY4NotKMM2/K/YM7o/3Q28VjHV4d3JcvsM7xXGezrjiJJpFMqGIhYn6PJEsERERERERERERERFVDmNhVDYhxMkA7gDQ4TDr4QAOF0LcA+CbUsqCQxWIiCpBSgn5i28Dy24fmiZueAwSR2st32B18rCP3wYAtJi92Ob4dmfP1diMA0+fAzxb1moqHgsrxz3/kPjWMeqDwOwSRom8/W10ckfRvO1PJGVRoTAA6B8MfxUTCwsPRsqcwk6RuAQgsPRNidNvGoPlqgooJVuVDriVayzGwnSFLUJ563bIioTCACCpsRoZi6oH28p7f5w9HXh1jfN8a3fo3d6WoMCNXxb4z7MlzrnVxJ+z9hPbdQLw88/rH7wqTv4q5KZPgDt+lpkG4LZPL8bnp/5xKCQ5sRm4aUFtns2WiIiIiIiIqFK8boH2JqC9KX9E73f1pCnRF0EmODYYEesO50XIwkBPSGaNZ+bP/1ySUvqjqa8NXdlTVZ/FFE73urMjY5nAWEtQWEbIWvMiZI0+wDAYHCMiIiIiIiKqZTGpOFuewqymo2CI2twXo9HdjH0aDsI7A8vLXlcyL04UM9X7+ASMBuzb8Nmyr3MsOLjpCDzRuRgJmdnp0C08OG/Sd3Hn5v9GQubukDW7SW8/UxoZp0/4Kn69/qqcx9MjvDio8VDHZWcG9kOLexx6Eur9biuzFx6QlIyFERERERERERERERFRdTAWRmURQswB8BCA7LSOBPA6gI8BtAI4CMCErPEFAJqFEGdIKXkoBhFVnLzhspxQGADIy06CPLwLgM9xea/F/45y2SIAQHtiGz707l7W9gm3G01NbkBx5jDLZawmRiOlx8Isrlq1k4PLAJZfbeDMm018st16nuuWSXzL5oR6dnGtRN62OIW4gMJg0ssfOy+TLx2mKiYWlo6UOW1iJAE8uUri87/jf3PF6M/bP60vIvHcB8CkZuCAaYBr8CBBp+eITvBqrApb7Cu58PnK3WCt0NqqV9Rjbe0Fk3pC+tvn9+jNt2K99ioBAAGvwIPfNvDMauCVNRIzOwSO2zt1kGoxRENzwev/+IG/452PDsTfvvkYgrvuhhP2ERjfyANaiYiIiIiIiKrJZQxGpoLALuOzR/R+J5dSIhzLDYilImNyKDKWDo71Dk7Pj5AN2PTU61ksAWztS33lsvqMqHCaELmRsaGYWFAMXc6MZ54H2ct43PxshoiIiIiIiGg0s4tYZQsYDZjVfBTO6riwyls0sr4+5fu4e/Nv8Xb/csRk6R86JWXuGTjt7ufLpl2LJndLydc1lkzx7Yxv73Q1Htj6e2yObcBk7844q+MC7NNwEIKuBizeejs+ja3DeE8HTh3/JezbWB8RtbFqemAPXDj5+1i6/V5sjq3HJO80LJh0CSZ4Jzku6zE8+JdpP8Odm/8HH4XfVcxVqZN2Wp/R1yV4+A4RERERERERERHRaLJu3TrceuuteOaZZ7B69Wp0dXUhHs+EDG6//Xacf/75I7eBRBb414b6cC6Al4uYv19nJiHEVAAPIjcU9gKAi6SU72bN5wPwTQC/ApBOQPwTgOsA/LCI7SIiciQTCeDBW6zH+roBTHRchxAWBxI9eR8AoCO5rZzNwz/7lgGYDwAYuPQNNPz2QK3lrDYJ8ZnPwowAACAASURBVBjGJXaUtB0xi/0QVAEmAWD/qQL/eqLAJfdYz7Sp2/767HafSOTFiXRiYZG8WNjKjcXvoJEOU5USC3MSiQO3PS/1wks1SudxzNcbznz/9/ck5t9oIjQYxzp8N2DZpYZW3KmW7/f8UB4APPb2MMfCOreox/Y7POfioyslzioimpcfD1Rpcu4+FnC7BObtDczbu4yDRVsnWE7eObEBF7z9Ixhf+kPp6yYiIiIiIiKiYSOEQNAHBH3A5NacEe11xBOpgJhVcCx7Wq8iQtYTLu0ztFon5eB9FCoYsZrbch1Bb1ZkbCgwJtAStIiQWQTHAl7F3wmIiIiIiIiIqCJUQaydfbvh21OvHrrc5GqGIVzDtVkjxm8E8I0pVyAh4xhIZnbh/sXa76O7iP0DkzJ3x5u44n5u90zGNP+upW3sGLV3w4H48YwbETOj8BqZHY/2aTgI+8w4CBEzDL8RGMEtpGIc2HQoDmg8BAkZh8fwOi+Qpd07Gd/b+ed4YseDeGj7nQXjslKxMMXJhF118J5GRERERERERERE9WH69OlYu3bt0OWnnnoKc+bMGbkNKsHChQtx6aWXIhrlGYRpbGEsrD5sllKuqcJ6fwqgLevyiwCOk1JGsmeSUkYB/I8QYh2AJVlD/yKE+F8p5VoQEVXKp58oh2SoH/A6x8IKlss6Yqs9sb2kzQKAqYmN+M7Xdh667G9uwKzwcrwWcD4TneVhSbEIxic7S9qWWBGBrLSpbQKlnjXN7qC3gliYxvryg0kTGovftv5o6rEtJhaWjpQ5HcQXiQN/fK2+j/Qr5UDHe1+ROG4fgWhc4sybM6EwAHjxI+CqJRI3LxCO6x6LsTDdu6s/KpH/jmBU8LjFE28wcdw+At+ZKwZf8xa6tiqXF42ZM472RyTOvsXUiuxJKSGE0H7sfnjKCB2sOXGaeuyZJeoxIiIiIiIiIqo5HrfAhCZgQlP+iN7nFqYp0R8tDIh1h2QmPOYQHLM6KQQBoVjqK/ckF6pP4Aqnuw0UBMRag0BzOiyWFyFrDWTNGwSa/YBRyQ/tiIiIiIiIiGpMzLQ+4CLgakCLu81yrB64hSfn9vuKjFclZe6HRar7OTuWVW9Ut52hsLFHCAGPKC4Uls1n+C2nV2qvz/zXY5qLh+8QERERERH9f/buPEyOqtAC+LnV+8xkZpJMhiQECCRhCQJ5yBIgSAIiyuMhID5AAWUHQREQnoBAEAVFEURZREB4GlaVHQMICY/VmEREMGFNCIRAtslklt7rvj9quqeq+t7qqu6e/fy+r7901V3qTk3PpKf63lNEREREg8KTTz6JM844w5Ej4WXhwoWYM2dOcfuKK67A3Llz+2h0RN74aQNVRAgxDcA3bLsyAL7pDgqzk1I+LIS429YuBuAKACf32UCJaOTpbNcWSZ+LtEqseqv4tNHU9+/lh5MW4BtHbIOtdp3Ru7NuFK799Fs4cPIzlY0rm648LEwxD0H3Vlb0nLYDdwjSv8Qn7cBWY6xJGV7vkysJdkpmnNuxCt7RSGktGAuyoK4QelTubf8tC6ubMrJohcRe2468xWR3vSxx5zeBp/8NdCjeUdz6vMTNXy9//odiWJhfqvNSy1fK0lXA0lUSDy6WePEiAxOaS3uXr7+sbvyZfRybzy3vDdgrJ5cHIuHS8ECVSAg4fLcB+vnYddbAHJeIiIiIiIiIhh3DEGhMAI0J6zpqL//XPVJZW7BYMXDM2mcPHNusCSHr5I3QlHImsL7TejiprkyW7hMCGBUrDRxrSgg0lYSQiWLImD2ELBoeedeHiYiIiIiIaOTISk2IlRi5IVYq0YBBSHk475qZ4Xkm0hLa67C1iQvLS/VdbA0Rqkn/RERERERERERERFSdiy++2BEU9rWvfQ2nnHIKttpqK0QikeL+lpaWgRgekSeGhVGlvgbA/mnVn6WU7/ho91M4Q8b+WwjxLa+QMSIiv2TXZsjT99OXVxipI//w8+Lzpvxm3+3O3XAjrjNugfHg2wA+X1qhbhQ+l3wJJ2z6A37ffLxnX0I19EwaY2oYFlbu2HUx7/O3ZpPEhGaBnz1l4sdPSGxOAROagHtONTzb5VxzIvwE8LoDiNIBvh67jhSQVc/JUNrUbf1bbozvrK1sPAU3Pivxh1OH9mKwSqfMrNog8dA/qptwM5zDwjYnS/cZ3j9iFVmxHrhnkcQFX1C8Dp97UN1o9DjH5jPL/H8fsz1hYeW+dw0x4L7TDbSMGpifDxEK1ezukURERERERERE1YpHBMY3AeOb7Hv9XzfJ5a3ruPbAMStMTJbsa0+qgsmG97W4SkkJbE5Zj1WOS/j+wsYAIB4phInBFiZmBcypQsjc++pj1o08iIiIiIiIiAajjKkJsTIYYmUX9Hy4w4kyZkZZL2oECyEjGpY0186knwmsPuSlelJrSHD5DhEREREREREREdFAe+utt/D6668Xtw899FDMmzdvAEdEFAw/baBKHena/p2fRlLKZUKIvwHYu2dXPYAvAHi0hmMjohFKXnOad7mPRVIH7ajYuWxR8Wmj6T8s7Oub7wNGe1RINAAAfrfm9IrCwuSCPyKKLAyZhxnwbmMZRUCWnzkOd50k8M3fqSs+s0yiPgr8z596y9e0A4f80sTpn9Of+5xrMZmfqRbusLDOdGUTNDrTwcLCAGsBXY3mg2jds0jiD6f27TEG0oQm67Wh8tJ7EqEy4Vflzn9+GKc5bVbEq/bVkr8L/yhxwRcUBTvtASxbXLo/4xzca6v8fyMKvwfcvw8KzjtY4Jg9BHabBMQiXORIRERERERERFQL4ZDAmHpgTL27xN/1FyklutK9wWGbugvhYrJk32ZFCNmmZOm1XrKkssAnWeATx0cSuuttpftDRm9wmD1wrCkhbM97Q8iaXCFkTQkgZPA6HBEREREREfWNjNSEhQmGhdkFPR/ucCLdeY7wPBNB9NmsO4s7vK8gFHCuLxERERERERERERHV3uLFzjXSRx999ACNhKgyDAujwIQQ4wHsZtuVA/BSgC4WojcsDAC+BIaFEVGVZLILeP5h7zo+Ptw/bi9FnQ/eKj5tMLt8j2m7zApAjNGWC8OATNQDyS7s3/UCXqjf33ffAIAlCwAAMZlGUtQFappR37RMyX5GTpipDwt7/J8SEcU7i0wO+ONifWhQSViYj3yhZMZZafkn5duobE4GDwt74l+VHWuk8fo+3nCMgWNuU6dCnXufxNGf9QiXy8uygXJ5TeDUcNCeLN3X72v2ujvV+12phi+957/Lwu8B3fduyjhgr225OJGIiIiIiIiIaDARQqAhDjTEgUmOG2f4v46Tzkq0F4LFkrCFiTkDx9ptIWT2wDFVuD5Z19k2dlkPJ9XVVfUV14ZYIUzMFixWJ9CoCCFrVoSQxRn6T0RERERERBoZUxMWZjDEyi7o+XCHE/E8E+n19ZWrPDRhYWBYGBEREREREREREdFA+/TTTx3bkyZNGqCREFWGYWFUic+4tl+XUvpPzwFedm3vXOV4iIiAJc+VrSKF98f7R/4H8LW9nXWk6UyuqQ8QFtZobgbEWO9KiVFAsgv1stuzmnLko1uB1e8jKjNIovqwMD8hXcLjHP5xKaBbVPTJZn2fOdecCD/jaLOdLiklfvaUutGB6RfxF+MixCMvKcPiNnYFDwv79r0mWhqCtRmJvL6N22+hL1vfCaxu07dObdwIQB/CBwzNsDA/r3sA2KDI6TKM2o6lrJT695XY/8sVd1n4OdR978L9/TV6EKfOhbx9bmnB+G36eyhERERERERERENeLCLQGgFaG90l/pbr5U2JjpQzQMwKGZO25z3BYop9m7pLb2hBls609fiozb5XdyGzdH8sbA8TKzwXaCoEirlCyJpcIWQNMcDo9zslEBERERERUX/IyIxyf0RE+3kkg1tUBA0Lc04KzEhNWFjAfolGkvK3MvXHlOo7+oYEl+8QERERERERERERDbTOTudi7UgkMkAjIaoMP20YGc4QQvwAwE4AxgLIAtgA4AMALwKYL6V8IUB/013b7wYcz3tl+iMiCkw+/3D5OprFRftsB/z0Kwb2mQKE3AtP7r/BsTkx97Gv8YRkDgYkUCagDHX1wMbyIWTKbt54FQAQ1Uye8qIKCwt07BpyhwP5mWqxamPv84sf0rcYnV6L0OrXMHbaeqwPjyspX9shA4eFTR3nDCvrK1JKz3C2oUwIKzDs7U/V5c/82wSgTodKLfo/yAlHePY/GMLC5MfvA8uWANvPACZNrdn3ckNn6eu9318l3R3q/fW9Kzql3/SzHoXQQN3CzNAgCgvDuC3V+z/5oH/HQURERERERERECBmiJ2zKXeLvqpmUEsmMFSBmDxxrT0rnviTQ3q0OIesOfol+REjngLUd1qOX/7AxQ1ihYU22ALHmnsCxRlUImWtfUwKIhIfnNXYiIiIiIqKhLmNqQqwMhljZBT0feTgnwmV5nok86K4b1SYsLC/VE1NDIlST/omIiIiIiIiIiIhGCiklli5diuXLl2Pt2rVIp9MYN24cttxyS8yaNQsNDQ2B+zTNQbAQnagKDAsbGY51bccANADYBsDnAFwihFgM4GIp5V999DfVtb0q4HjcSQpjhRCjpZRtytpERH4s+FPZKrqwsDMOEJg1TV0m//cnju29kosxOr8RbaExnsc6ZvOD1hNRJuEmYk28aSgXFuYely2IJyqz3sdQyORLJzT4neJw0I7As8sDH1IrZzqDsfxkDK3cAHSmJBriAtfO1zf4MDIJANCaX6cJCwOyAYLTACAeqdV0EG/ZPBAdwu/Uyn0fdUFhAJDK6X9u0p9+Ajneu++BDAuTUkLeeilwz3W9O7/6beDbP6tJYFhK8Xrtz0w5mcsCHZq3bE1ji0+XrQnWbyG0b8V6dfmgCgsL6X8wpWlCGINpsERERERERERE5EUIgboYUBcDJjY7Snz3kc3J3kCxngAxVeBYexJo71aEkCX9XRcfaUxp3bijrRvWbbCKVCdLfQLrY/aQsd5gsUb3Pk3gWCKKYXtTDyIiIiIiooGUkZoQK8EQK7tIwPORl86JRTzPRHpCc/1P1iwsTD0x1QDDwoiIiIiIiIiIiIj8WL9+Pa6++mr84Q9/wLp165R1otEoDjzwQMydOxd77723tq+VK1di22231ZbPmTNHuf93v/sdTjrpJGXZlVdeiSuvvFLb54IFCzB79mxtOVE1hnAEBdXYHgCeFkJcA+AHUnpOSW92ba8NciApZacQIgUgbtvdBIBhYURUuVn/BTz7gGcVXViY5zKPznbHZhRZXL32cpw14dfaJuNya3Hhhl/0dF5mEUk4CgCoLxMWViLZWXyakMlgbQFkAgRkub+Cs2YbeHZ5bdOYTAmEeg7kd6rFsk+ALZu9a39n400AgHG5dVZUpsslD0mkAmatzX8T2HVSsDYFVx8pcMlD/r7CZGb4hoVVs7QqlVbfcc9OkYXXfxY94wwKA4AHfwV8djaw32FVd59WvF67M1V369+nHhmxo1uLT29aGOybsLELmPuY/vdKeDDlb0Wi+rL29Y7zQEREREREREREw18kLNAyCmgZ5S7xdyXUNCU6084AsWLYWLczhKy9W7rqWM+DXPMfSbrS1uPjTfa9umuXpfsjIZQEiDXXAU2FYDFH4JiwBZJZ/zbGAcNg2BgREREREZFb1tSEWBkMsbILej7y0jmvKsPzTBRYraYe5qGe5xgSQ3hSKBEREREREREREVE/efjhh3HiiSeio6PDs14mk8H8+fMxf/58nH766bjpppsQDvM6LA1/fJUPb6sBPAlgEYBlADYCMAGMBbA7gMMAHGKrLwBcAsAAcLFHvw2u7eApNVYbe1hYyfT5SgghWgGMC9hsSi2OTUQDbMLkslW0YWEB12mctulObJ95G4+d8gwMAXx+J4GVF5+NVxN7YVrmXRy3+X5Mzq7y13lP6ExdmbCwkm46ele2fCb1Jt6NTg30NagWDnnGRNr8166BDuVLLg+EAoYBvfmxxPw3vOsc0fEoAKA1r04MDhoUVuD3XLlNbRXwO52kOwM01VV2nMEu6M+cXSqdL3sG87XNsgtEPnybev8Dv4LwCAvz+5pKK352+3Wt2dP36ctG974F61LPNdTa48fe37TIYLqh4k576Mva1jEsjIiIiIiIiIiIAjEMgcYE0Jhwl/i/8JfK9gSLOQLHZDFkrBA41q4JIesMeD1vpMjmgfWd1sNJdUG3dJ8QVmBYaeCYQFMxZKx3X3PC+lzAHkIWDTNsjIiIiIiIhp+MZIiVH1HhcUM7hbx0TizKSPUdCKOC55lIaCcx1iYuzP3zWBASg2kiHBEREREREREREdHgc+edd+K0006DaTrXHU+ZMgXTp09HXV0dVq1ahUWLFiGf771xw2233YZVq1bhscceY2AYDXt8hQ9Pi2CFgD0jpTZ64mUAvxZC7AHgHgDTbGXfF0K8KqV8RNPWHRaWqmCMSQCjPfqs1LcAXFGjvohoKGlfX7ZKrcLCAOAA/BNz/rs33crcdAdO33SHovMyCVg9YWETc2s8q4Xd3Sx+rvj0qx1/wsONX/Y+jktGfdMyJff5ifTBwpScCRSmIPkNTXpjNfD0m/rKZ7bdhnjPxLLWnDosrBKj6yoLCzvjAIEtGv3X71bP1Royyp2im78u8K15wU9kKp0re/7NWt3erxIvPqbev3RhTbpXBdztNEHgbyv654uW836mL7SFZO2xDfC/r9TuuLtNGkQL4lomaovkafsAj62GqKtJDi4REREREREREZEv8YjA+CZgfJN9r/9rarm8xOYUSgLHisFiPfvaNSFkm7oH+LrsICVl73lbtdFRoqqt7CMR6Q0OK/6bsIWNuULIml0hZPUxr8WvREREREREAyNjasLCGGLlEDQ8zYRzUqDuPEeMYCFkRMOR0Fw70y+9CCYv1ZN0GRZGRERERERERETDlpkDuj8a6FGMDHWTAGN4RgW99tprOOussxxBYTNmzMBNN92Efffd11F33bp1uOyyy/Cb3/ymuG/+/Pm4/PLLcfXVVzvqTpo0CStWrChu33DDDfjlL39Z3L733nsxc+bMkvG0tLRg9uzZAIBXX30Vxx13XLHs3HPPxXe/+13t1zJ+/PgyXy1R5Ybnb4ARTkr5ZIC6i4UQMwG8AmB7W9FPhBCPS6n5pMrVTdAxVtiGiEivrXwYlNQshtDeHyyv/xUovv49P6MCjDJhYeEIAGBSbrVntajIAeidJCAf6H0DeljHk9gxvRzLYzv6GxOATCbv6A8I9ov5ssMErnq8dr/K87ZwX79zLf79scSUccAbH6vLf/LppcXnEc1dEr1MbQXeXVu6vzNd2X9i3zs4WFhYUhEKNZR4fR+FAE6cWVlY2J7vfRdX7+rdLm96Fg9pacUNB2s0P8nnAJLaIvuCs1CZX31B7Thh8CxmE5Eo5KjRQEdbaWEmDXlIC+Sx3wViCYhoHIjGgGjc9YgBsYRzX6y0nij3fwgREREREREREVENhEMCY+qBMfXuEn/X5aSU6Epb4WHFsLFuYFPSFixmCxxzh5BtSqpvlEDWZwXJdmBNu32v7qJw6f6QYQ8T6w0ca0oIZQhZsyuErDEBhIzBc32WiIiIiIiGB21YWMBwrOEuasQD1c9J58SijGQoG9FA0YeFcfkOERERERERERENU90fAY9uO9CjGBkOXwE0TB7oUfSJU045BZlMbybArFmz8NRTT6Gurq6k7rhx43Drrbdi6tSpuPDCC4v7f/rTn+K4447DLrvsUtwXDocxefLk4nZzc7Ojr/HjxzvK7RoaGgAAK1eudOxvbm7WtiHqa/y0gSCl3CiEOA7AYvTO+N4RwBwAf1U06XRtJyo4rLuNu08iomDaFKlOLlKzqEUIayFLyZ3V//mCvrOZX/Q3rkSDd/nYCQCAPZJLPKuF3/sHZNt2EKNbrR3vv1ksq5fdWPjBwfhxy/fxUmJfbJX7EN/Y9AdMyK3BPtuqv4bMirch2ydANI0t+yWoMtYur3FYWM4eFuazzb9WA6s36csbZFfx+dbZDwOPaUKTOiwsm1cHNnmZMg6Y0iogpUTYcH69Ot3B882GDAGgLiaw8hoDky8Onux1yUMMC7Pz83rqb0F/Roac0ePUYWEF990AoPp0XBmJloaMOQLG4p6BYyKWUISVufvoqePuKxwp/X+RiIiIiIiIiIhIQQiBhjjQEAcmjXaU+O4jnZXF4DB74Fh7Ujr2tWtCyDanav5lDQt5E9jQZT2cVFcv1Vc0R8WdgWPWv6IndMwZQqYKHItFeJ2RiIiIiIh6SSmR0dz4kSFWTkHPR94VFpZlKBuRlghw3SooKSXyUE+gC7lu8ktERERERERERERElgULFmDp0qXF7cbGRtx///3KoDC7733ve3j++efx+OOPAwBM08T111+PO++8s0/HSzSQGBZGAAAp5VIhxNMADrHt/iKGXljYzQAeDNhmCoBHanR8IhoovsLCNG65BPLyOyB3nw1x/o0QLVaAl3zwV/rOJk1xbu9/OPDCoyXVxGlXeo5J7Hso5NP3oF52e9aLdm8CHv4tcNKlPTtiQKZ3Mk9LfgOu//TCknbXf3IBzht/Xcn+TDoHPP474OvfK+6TAVJtan0X+ZztJmp+x+EVFHbR+p85tvdLvhJ4TGM8/nboDLDoaItG4I9nGgCsBVOtjcDHHmMvSA7xsDA/38atx/bNhJuhGBbm98evSzGHL6e+CWHNyW6Pt2vT93Js1jIs7Mu71a6vmln1dv8cJ5uxHl2bK2peVViZEJDFMDFFyFhhOxYHoomSsDLhqJNQh5XFXP8WHpEYRIgT44iIiIiIiIiIRpJYRKA1ArQ2ukv8XUfOmxIdqZ4AsWKoGLCpuzSErF2xb1P34Lwxw2DQkbIeHzrun6C7+ujcbwhg3ynADccY2H0bhoYRERERERGQkzlIqP8AizDEyiFoqFdeOicRZaQmLIyhbETQXXOSVd8eEjA1v+MAICS4fIeIiIiIiIiIiIhI5e6773Zsn3322Zg4caKvtj/5yU+KYWEAcO+99+KWW25BLMbPRGh44qcNZDcfzrCwXTX12l3b44IcRAjRgNKwMB+xKeVJKdcCKJ8Y5BxPLQ5NRAOtbV3ZKlLz4b74dJUVxPLCo5Cr3gLuWgIRjgDppLYvUTfKuX3I1yHdYWETtwV22dd7UPseCgAIS+9knYjMQt75Q4iTLoVcscwRFFYiXgekrPCxqMwqq2REFPKV+RA+wsJ0vyVv+brAWfOqnxgBOBfg1KLHMXnHihXUm12B+xhdL7Sj6fA4/Xb7TQEe+7aB5rres1gf9de2e6iHhXl8I+3/9T53gYEDr6vtCqyhGBbm12ZFUF02X5ufw7LWfaQtEid+37Fdy7CwvgqVq8rus4GlCwd6FH1LSuv/QY//Cz2bV3v4cMQZIOYOFIvGnPtc5UIVcObuI+YOL+sJNQtH+DcCEREREREREdEQEzIEmuuA5pIbgfi7ziOlRHemNzisN3BMOvcV9isCx4b6df2+YErgxXeBOdeZWP5DAxOaed2NiIiIiGiky2oCrAAgKnxOrBohgp4Pe1iYlBIZUxMWxlA2Iq1ahIXlPeYDhwRvoEhERERERERERESk8uKLLzq2jz/+eN9td955Z+y+++5YunQpACCVSmHJkiXYd98yOQ9EQxTDwshupWtbFwL2jmt7m4DHcdffKKVsU9YkIvJB5rLAVtOAt//hWW9duFW5X9g/3P/gLeDff4dsmQD8/VnfYxAHHAFc/FvI+28A1qwEdtsf4sKbIKLeE2tEoh7yy6ch/Og8z3pR2bvCRJ44Q1/x8FOsca9ZWdLOLi1iwD9f8DxmOWccYOC8B/JIqfPIAsnZbmrY5TOIy0tLfoNju7KwMH2Z3zF+dQ/hCAoDgHqfc62G86Ii+xnZb0rt+++v7KyB8ulmiS0ae89irr/C0bxCGfc40LGZrsHvhYLYIPyLRezzJcjhHhY20HJZ69HdUVHzqn4NCAHpDiazh4kVt9V1lEFlxYCzhKttaT0R4qRAIiIiIiIiIqL+JoRAfcy6hj+x2VHiu49srjRAbJMicGxz0hY2Zg8hS3rfiGMo60gB9yySuOALDAsjIiIiIhrp0qbiTnk9GGLlFPR85JFzPDehnlQUFTzPRH15hcIe3OcWEoNwMhwRERERERERERHRAGtra8N7771X3G5ubsZOO+0UqI999923GBYGAH//+98ZFkbDFj9tILukazuhqbfMtT014HG2c23/O2B7IiIHEY5A3PEqzNn1QF59Ry6vtRXCVSrv/CFgGPoGR5yu7ufQEyEOPRHSNCG82rvbTdkFEemdrFMnu62xrXD/Cnb1NX4yZNfm4rYuLCyjuOug7hwJj1kRG28wUHd29UlFuRXLgbHWm/Ybn62+vwm5NY7terM7cB+j66oeBuoUN3dc5zP3JpmV6NspKX3L74KmSLj2X2O+v8KzBsj5D0jMO7X3vGX1c4tqSxcWlmiAiDnfNqb1N0cMLB6pXV81wzCn4U1KIJ20HpU0r/bw4UhpyJg7nEwVVFYIG4slFCFkMVd7VZ04EIlCeP3HT0REREREREREWpGwQMsooGWUu8Tf9RbTlOhIQRE4VhpC1t4tiyFjhcCxTd39eL24Av9YNdAjICIiIiKiwSAj9XdpZIiVU9DzYQ8oypj68xwxFJPaiEYc9fUaWfXMH2dwn1sInHdGRERERERERERE5LZunXP98rRp0wKvc9xxxx0d22vXrq16XESDFcPCyK7Ftb1eU+8N1/auQog6KaXfJJb9yvRHRFQR8YM7Ia88UVm2IjLZf0ddm4HlS/TH2cU7RTZIUBgAIFGPsMfkAAAYk28DAMgTZ3j39bnDgXuuK27qw8L8p+94vZWORwTabzTQ9J3q0pmyF30F8n8fhZg0FQ+/VlVXAIDdU85O6mVX4D6aElZQmt/QK5Vxo0rPXs7n7zmaLQAAIABJREFUqepWfOuklHh3LdBcp+57qOjrHJqhGBYW5HV27yKJeaf2buf6a/HXJk1Y2OhxJbtS3vmHgXTobyg7cEI+/oz6zEzr33QKyBQeaevfdNL6l0gll7Ue3T7TJV2qDisrhom5gshi9uCxhDKsTDjCzRL6sLKSwLOe9gziIyIiIiIiIqIRzDAEmuqApjpga0eJv4vqUkqkss4AsULYWDF4rKdssyaErFO/lrxq76ytfrEtERERERENfV4hVlGDYWF2Qc9HXvbOQcxo5g0CDGUjAqBfZFbNhNEe9uA+t5Dg8h0iIiIiIiIiIhqm6iYBh68Y6FGMDHWTBnoENdfW1ubYbmpqCtyHu83GjRurGhPRYMZPG8hub9f2x6pKUso1QojXAezasysMYBaAp30eZ7Zr+y9+B0hE5EV8/hjI5x8GFv65pKwtNFrbbnp6mXPHxk+9D/QZ96/LKsXrYZSJ9vg01Fq+n6POgthmR8g5RwGP3QkAiGnDwqy7A8q2dRA9QT+VznEYFRdYfKmBo24xsarC9805EYa87tsQ19fmv4RxeWfeZVRmEJI55ANMtIiGgPpodQtjRsVL9/38qwIn3FH+ZGdc+XFvfixx+K9NrFhvhW199bMCd58kEIsMztAwr6/QPc/mmqMELv5z7RYJDcWwsGr4DaCrmjYsrPT3U9o7/zCQT9pr11fNGOUDjcRV90G0TNCWSymBbMYWJGYLFEungExPoFjaFjJmqyMLgWPuIDJHm6QtrMzVR66GiW40vBReIxWoOqgsFFaHicVKg8lUgWNCF3BWEkxmr9MTahaJBr7bABERERERERHRYCKEQCIKJKLAeMe8J//XPHJ5K0BMFThm37dZE0LWngRMzUWid3mjRiIiIiIiQrkQK8VkqxEsaKiXaQsoYigbkTfd1ZJazGK0B/e5hQRvpEdERERERERERMOUEQYaJg/0KGiIkq6Qg1qs8+NaQRrOGBZGAAAhRBzAUa7dCz2aPITesDAAOAk+wsKEEDvCGUrW5acdEZFfxlX3QmbSwN+eglzwZ+CZewEAJgxtm62zHzp3rP3I8xhi4nZVj9MhUVe2yhEdj5atI87+qfXv7KMge8LCImXCwvDsA8DRZ3v3m+yAecHxEPv9J3DQf0M0jS2ps/s2AiuuMbD8rBOws3l32bG65UQYWPxc4HYqJ276fck+AaDe7MLmkP8k4VgEaIhVFxYWU7zT+sruPsPCbDeXy+QkdpnbmwglJfDAYonGBLDbJIl/rwH23hY4dk+BaHhw/PESJHzunDnDKCwsHOmXECYpZfEP1az+RoS1PaYuLKy5pWSXO+yuGolo7fqqme0+U75OOOJZLIToCSyKAQiecl7tT7rM59VBZcWwsRSQTiqCynrCyjKaOu5wsmKomaufGtyFk4ahfA5IdlqPClQdVuYIIisEiiX0YWWF7ViiNKisGFIW6w0kU4WVFYLOwrw8Q0REREREREQDLxwSGNsAjG1wl/i7IimlxF/eAA77VemF+rZuYEOnxNiGwfE5BhERERERDYysJsRKwEA4wI0gR4JIwFCvPHon7HiGhQUMISManvouLswe3OfGsDAiIiIiIiIiIiKiUmPGjHFst7e3B+7D3Wb06NFVjYloMOOnqlTwPwC2tG3nATzhUX8egB8AKHxidZQQYpqU8h0fx7F7QEqZCjRSIqIyRDQG7H845OsvFfdJj0UMBvwnC4kzf1zV2JQSJSsuSozJbyxbR0R7JvHM+FxxX7RMWJj8YHnxzGinOJh5YNEzkIueAR76DfDLpyDGbFF6fCGww5sPYvT216MtNEbRkV6u5y1JMlP9RIuvdDzUO6Z5r0M+egewfCnqu7oDhYU1xgUa4hLYXPlYoop3WvGIwJwdgAVvebcthC3lTYn4t9Sv0dtf6D1ftywEHvi7xJ+/ZQyawDAd9+jqkhvwydu7Yvz2HyrrB2UOZAbRqNFA21plkcxmICK1Sb5qTwLNPTmDuf4KR3tlvnp/c2vJrnQNw8JKF6UNAjvvXb5OmbCwgSZCISBRbz0qaV/FsaWUVqieI3CsJ1AsrQgwK5a7gspKAsoKz90BZ64++iHQj4aowmukAlUHlYXCpSFjJcFj+sAxEUs496kCztx1bH3xTglEREREREREVAtCCPzHVvorJe+sHaTXfImIiIiIqN9kpDrEKiqi/NzSJWioV94WUJTVnGcAiAYMISMajkTVt2rUy8MjLIzLd4iIiIiIiIiIiIhKjBs3zrH99ttvB+7jrbecC/dbW0vXPhMNF/y0YZgRQpwA4Gkp5acB2pwG4ArX7ruklB/o2kgp3xFC3A3g5J5dUQB3CSEO0oV/CSG+DOCbtl0ZAFf6HScRUWCxuuJT0+ODfREk3uHos6sZkVq8fFDL9Mxyz3Lx4wd6n0djxa9IFxZmihDyMBDaWP6/C8f5WbkMeOxO4BsXO+rI9Wsgf3I6AKDB7AocFpbvuVvaP2qQFTUq31F8LrbeAeKcawEA9d9PAeUz14qaEsCK9dWNJaZ5p/WHUwxseZF3wlOmZ77ITQv8vz6ffAPY88cmll5mIGQM7OS5QKEpb/4NLfkNyC3r/Zk9aOu/4Pn6Ayo6dr6/wrNU4gl9WbITiKh/NoKGzKzt6A0Ly+rnFtXWmpXq/c0tJbvS2dolth35H4NvIqgIhcp/z+ob+2MoQ5IQAohErUcF56naV4TM54FsWh04lnaFjDnqJEvDytJpKEPP3GFl9nI5kImGNGjlc9b/E8nOippXHVYWjQHRRE+omDpQzAobKw0hE8XyuK0PReCZMvQsDhHmpSkiIiIiIiKi4WR8E1AfA7oU69LfXycxc7vBd82XiIiIiIj6T8bUhIUxwKpE1Ah2U0J7WJjuPANAWAzuG+AR9Q/19QlZ9QwMIC/1d9oMiZC2jIiIiIiIiIiIiGikGj16NKZMmYL33nsPALBp0yYsW7YMO+20k+8+Xn75Zcf2nnvuWdMx8qY3NJhwRebwcwqA3wghHgTwAICFUsouVUUhxB4ALgFwpKtoNYAf+DjWFT1tR/ds7wvgr0KIU6WUxVQbIUQMwOkArnO1v84rkIyIqGrZ3gkv0uMNmAH/yUIi5hEEVKl4XdkqE3NrvCvsvLdyd1RmtU0yIorE6N6kXV3AkjtMTd4+F8IWFiZNE/KUmcDGTwAAo8wOBJWDNQHigw3VT7QYn7cC0MRV9zn219dFAoWFjYoDs7cHnvXOafMU1czrmNAscPkeH+KHi7fStp33qsQ2Y0x89/5g5+Rfq4GL/yxx7dF9+0eHlBLpHNCdsRb8FP7tyljPP9yoH7f7x1F+/6iSOnGPu1uWM6BhYTGPn+dkF9AYLEhPZ+1mYPstrOe5fggLk1ICoRCQLz2YUIQ9pfXznQKZPgHYe9va9NWvEvX8w38QE6EQEKrz9f+vsn0Vx5ZSArmsIqjMFSimCR2TjnJXWFlJ2Jmij6w6RJTIeq1U9n9v1UFloVCZQLGYZ7kzrCxuCzVzh5XZtm11+PuaiIiIiIiIqLaEEDhyhoApgamt1mNaq8C0LYAx9fw7nIiIiIhopMto5gQxLKxUSIQRQhh5+JuIYw8o0p3niIjCEEZNxkc0HNXiFoD24D63kODyHSIiIiIiIiIiIiKVWbNmFcPCAGDevHn40Y9+5KvtsmXLsGTJkuJ2PB7HZz/72ZqOLxZzfpaVTle+Dp6oWvy0YXhKADix52EKId4BsBJAO4A8gLEAdgOwhaLtRgBflFJ+Uu4gUsqPhBBHAXgKQOH2VfsB+LcQYgmA9wE0AdgdwDhX88cBXBbsyyIiCsjsTQwyoZ/gYkifyUL/+c0qB6SRqK+6CzF2vHPHrMOAFx9HVOpDQTIiioS0pjZIKXHe/erzkDBT3gd//M5iUBgANJid/gZtk+uZAPHeusBNS0zLvGs9OeAIx/76gPPJQgZw8iyBZ5dXPv0j6vFO67L2nyG2tgmXtl6lLH9nLXDSXZUd++dPS1xzlEQ62xvepQr06kpL619bnUI96yEd7Qp1C8/NCk+NfSmQ1ATXxIZqWJhX+FBKmd9akbW2TL5aTFAqK9mpDAoDAIxpLdmV0ucU+rbNWOC5CwyEjKG3eEyczLe5pCaEACJR66EI2ivbvsrjS9N0hYmpAseSiqCynrCyYiBZsrSdPZysGGqWdvYr++U3Fg01+bwVqJms7P/JqsPKVKFixTAxj9CxWKI0qEzbhzusLA5EExBhXpYjIiIiIiKi4el/T+HCcyIiIiIiUsuYmrAwwbAwlagRRdL0GRaG3rk92vPMUDYiAF5zcKqf22IP7nMzhOYOtEREREREREREREQj3Iknnoi77767uP3rX/8a55xzDsaPH+/RynLxxRc7to899tiScK9qNTc3O7bXrFlT0/6JguCqxOHPALBDz6OcZwF8U0r5kd/OpZQLhRBHArgLvYFgAsAePQ+VewGcJqXHbXOIiGpAfPUcyPuuB+AdFiZ8frgvvnFx+UqViFthYae33Y7bRp9aUnz12h94t9+m9Fe82OMgyDJhYS3bf4zJ76/HitO9fx3Xm/rgBrluNeTPznbsqyYs7PJHqptosWV2tTWJY/peViCLTX1U2URrhy2ADZ0C1Uz+iHm80xKP3o7/AfBqYm88Nuqwio+hEzlzIBOzAnjzb8rd1YWFDWAYTcwjLKzCEBSVtR0S1ccGBfDRe/qy3WaV7Er7m6Po6c9nGWhtHHpBYQAA3oGVBilhGFaooVewoVf7Ko4tpQTyOWeYWDqlDSbrDRzrrSPT9lAzTVCZrg9NOCWR9dpJw8pXD6bqoLJQSB8oVgwVUwSR9ZSJaEIfVtYTaKYOKosDkZj1O4GIiIiIiIiIiIiIiIioH+lCrCIMsVKKGnEkzW5fde0BRRnN3CuGshFZ3PNLC2RNwsL0c3JDXL5DREREREREREREpHTggQdixowZeO211wAA7e3tOO644/Dkk08ikUho211//fV45JFHittCCJx33nk1H992222HaDSKTMZap7hgwQJks1lEIpGaH4uoHH7aMPz8EsBqAPsB2MZH/S4ATwO4SUr5bCUHlFI+KYT4DIArARwDYLSm6qsAfi6l/FMlxyEiCkq0ToLcdT/g9ZcgPeItDPgLVRITJtdoZC4JKyzsiI5HSsLCwjKLIzc/omrVO66LbindGbL+i/cKC5PCwIp8a9nh1cmkun1nO+RR25XsH1VJWFiN3pKcuulOAIA44IiSsvoA85ymTwAa4gIzt6tu4kdU82XJ1b3BS17fo+EqbLs5nnzsTmWduJmquP/8QOakxeL6Mo+wMBnwpfbsMokzD6isbUXe/oe+rKmlZFctwsLCQzm/hOErRCWEEEA4Yj3qRlXWRxXHl6YJZNPOoLGSwDFX6FgxbCwN6aivrqPsp1BuDpEQT+pf+bz1/qDCQNGqw8oiUVugmCKsLBrTlotY+TrK0LPC81BYO/maiIiIiIiIiIiIiIiIhi+GWAUT5LzYA4p0oWxRhrIR9dB8Xl2DuXh56CfPhURIW0ZEREREREREREQ0lH3yySdYuXJlRW0nT54MALjjjjuwzz77FAO5Fi5ciP333x833XQT9t57b0eb9evX44orrsDNN9/s2H/RRRdh1113rWgcXqLRKPbbbz8sWLAAALBq1SocfvjhOPPMMzFt2jTU1dU56o8fPx7xuMeac6IqMCxsmJFSPgTgIQAQQjQD2BnAVgC2AFAHwACwCUAbgGUAXpfS4/Y1/o+7FsBZQohz0RtUNh5WGNlqAP+QUq6o9jhEREGJH94DecQ2MIU+uEX4+XT/2O/WcFSu44cjkOEIvtD1LH71yXfxg3Fz0R5qRktuHW5fcyamZd/Ttz3/Rohd91MUWBMZYprJVUGEdP9N/PlW5e6GCsLC8iKEDaExgdu5bZFbaz0Jl6bw1scE/M7keOl/rNfLqCrfg8d0YWHXnFF8PtLCwsaNArbqiRWVC/4EPH2Psl6sivOS74/wLB2vkKhUZUEgKo+/3vu8X8LCkvqfazGquWRfTcLChvK8KIafEA06wjCsQKNYAqggq6yqoDIpgXxOEVDmChRThY711JeqdvZtrz4y1b8fpGEqm7EeaA/ctOq3H4YBWQwQS6iDyhyBY7Y6sTiEu04xsEwVVhZz1onErN8JRERERERERERERERE1O8YYhVMkPOSl70TdjKauVcMZSOy6OaByBqkheU1c24FDBgec5mJiIiIiIiIiIiIhrLjjjuu4rayZ6H07rvvjl//+tc488wzYZomAGDJkiWYOXMmpk6dip133hnxeBwffvghFi1ahFzOuZj54IMPxlVXXVX5F1HG+eefXwwLA4D58+dj/vz5yroLFizA7Nmz+2wsNLIxLGwYk1JuAvBSPx8zA2BB2YpERP1EjB0PXHUf5DU36+v46eeLJ9RuUCq5LADgrLbbcFrbHVgV2QqTsx/A8Jh4IOavg6hv1BRaX1VUZqse2s7pN5X75W8vV+4fVUFYWE6E8VT9wYHbubXk11tPItGSsrrSXSWebrkWn7/64uK2EAJbjwFWbaxsPFHdO61/vtBbpwbfo6Hk0kMFDENAfvw+5OVf09aLy1TFx8ibFTetnulx8GTtwsJ237pmXXkyTWl9v/54E56sPwTzGw7BmPxGHLP5QeyUeUvbriZhYYN9XtSBXwWee1BdtosixJGIRiwhhBVkGo4AdRUklaHKsDLTBLJpfVhZMbBMFVSWhvSqoww9c/Xr9X8jjVymCaS6rUcFqp2eLSPR0nCyYuCYKqwsBkStchHT1Cnpo7DPFXoWClu/F4iIiIiIiIiIiIiIiEagrDbEysfkrhEoSLhXHr0BRVmGshGVof7MtjZhYerJcyExlO+eSURERERERERERNQ/TjvtNIwePRonnXQSOjt7MwveffddvPvuu9p2J598Mm699VZEIpE+G9thhx2GH/3oR7jiiiuQz6tvHEHUHxgWRkREw9+4iTChTp0R0md4wZjWGg7IWxh5bJdd6V1ppz31QWEAChMZoprJVUEc3vlEoPoN+Y7Ax8gjjCXx/wjczq0p3249CZW+ka/3Mc9p0rK/ALjYsW/cqCrCwnzM7ajF92iwCRvW+a6LWv/WR4HtxgHH7mngq3tYr015/42efUQnbQ1Ulh0xsGFh0mOyUA3Dwl5533bImvVaavknwPSJwDXxM3BZ03eK+3855hz8ZdV/YeZeE5XtMrUICxvkc6PEEadB6sLCtp/Rv4MhIvIgDMMKKIolgAqyyqqNNJK5nCtMLKUPHbPXcYeVlYSdafpxB6IRqWQz1qNrc+CmVb/3MgxId6CYPUysJISsEFYW7wkr09Qp7LMHlsVK6wljsCeyEhERERERERERERHRcJZhiFUgUcN/iFpe9i5KyUj1eY4wlI0IACCqng2hZ/9ZtAthkE+IIyIiIiIiIiIiIhokjj76aHzuc5/D1VdfjXnz5mH9+vXKepFIBHPmzMEVV1yBfffdt1/Gdumll+LII4/E73//e7z88st4++230d7ejmQy2S/HJwIYFkZERCOBMGAK9YJoAz5ThZpaajgghc/MBN541Xd1cdnvylSoXVjYlzseDVR/lNlZvpJLToQgazD5osnsWewfKZ3UtMlH8FS0fU3JvtYKQjUAYPoEwDDKf00DERYWC9vCvKK9oV694V4CCdc+Z13hCAJz14mEfXwv/3yLZ3Fi+gxgcWVf38CGhXkcPFW7sDDHIfswLeyRf0psNQb4Yewsx/6OUCOuGncpnnj/AmW7moSFDfYcixmfA/7rZOCxOx27xe2vQoi+m0xGRDTUiHAYCDcAdQ2Vta/i2NI0rUAoR5hYUhEylrYFjSXVQWWOeklNWFna1kcSMAfyTQkNWqYJpLqtRwWqfesnwxFnoFhJ8FjMM3BMRONATBNUVmzj+rfwCEf4PomIiIiIiIiIiIiIaITThVhFBcPCVCIBzkte9k7YYSgbUaWqn4yXhyYsTHDpDhEREREREREREQ0fK1eu7NP+W1tbccMNN+AXv/gFlixZguXLl2PdunVIp9NoaWnBpEmTMGvWLIwaFTwIYO7cuZg7d27FY5s+fTquueaaitsTVYufOBAR0fAnhDaIyldYWDQGYfRxak2iPlB1sdW0MhWsrzcuU5WOCABw8fqfwlBMfpBt67RtmrYYHXi+RA5hrAuPCzq80mPn260n4UhJ2cHTgbte9m4flVnHtjRNtGx6F8DUwGM5ZZb6NSc//dB1TPXErGpccqjAgTsKZRBYXRQI+QgxG2ixiVuh0ok3AxsW5jHmpD4srJLAr86URENc1GB6kp4hgHl/k8ii9GfqqYYvANMPUbbLqOc7BVI/yOcmCiEgLroF8vgLIf98K8SkqcAXj4eI1w300IiIqIcwDCusKBavrH2Vx5e5nCtMTBU4Zg8Zs4eapVxhZemS8pK+0646RCq5rPXo2lxR86reewoBWQwUS6iDyhwhYwlHWJlwB5MVQ81ipUFlxb566kRiECHeqZuIiIiIiIiIiIiIaKAxxCqYIOfFlL0TdhjKRuRNaGYE1GIunv1n0S4k+HklERERERERERERUVCGYWDPPffEnnvuOdBDIRo0GBZGRETDnxAwoQ77Ej4SesQ5P6v1iEqtWVnb/nrCwsKaO5T5VW+qw43kGbO0bZr23AdYFOw4eRHC2lANwsLMngXv4WhJ2fQJAuWmcsRkGvKjdyEmTYXMZSHnNGBc64+Bsef5HsNu8Y9x0pe3xHcO0gTMffi2Y9MdUFYLVxwmEAkP3kAwmcuVrRMrzabyLd+X6VnlrHpbWyRTXVWHjti9/B7whZ1r2KGCIYB/faQ/oWLKLsr96fLfYk/xCDCmfvC+hu3ExO0gzrl2oIdBRESDkAiHgXADUNdQWfsqji2lLA0Yc4eOpZO28DJnHemoowgrKwk9cwWe5at8M0DDk5TWayadBDragjev9vDhSGk4WTFwrLCtLy8JK1P1EVPUiSWAcARCDI33t0RERERERERERERE1ejIteNP6+7Uln+Qele5P8IQK6Ug4V555NCea8OSjhfxcvtf1f0xlI3IU8ZM464112vLoyKOaXU7Y/dR+yIk1EtxPs2sVu7X1SciIiIiIiIiIiIiIgqCnzgQEdHwJwSkZqm9AbN8+/Fb13hApcSh34S87TJ/leN1fnqsajwFo8xOdcGaldo2TTvtFDgsLCfC2BxqDNZIdWyz3XpSV19SNtZHRkNUZiD/dDPEub+AvOtqAEAe/u/mdtfqU3D87DoYB92srSNv/UHJMWvp118b3EFhAIBNa73LjzwD8WrCwnz8WPeZdeqJPgCApDp8r1LrOyXk2tWQ6wBgQk37LjAEkEtnAJQG8AGADEWUv20yVeaD/OU7mrA9IiIi8kUIYYUWxeKVta/y+DKXA7JpW5iYInAsXQgZS5YEkcmSeqqgMo86RCq5rPXo7qioeVVhZUJAukPG7GFihW13WFkhqMxepySsLA5EE7a2pfVEiHcpJyIiIiIiIiIiIqL+kZEpLNr8fOB2DLFSC3JecjKHn6/6H2zI6udmBQkfIxrOdDf6MZEv+zvsxfan8FrHKzh54vcQEs7P4Val3sMTG+5TtnPXJSIiIiIiIiIiIiIiqgTDwoiIaAQQMIU6eEb4We6758E1Ho9Cc4vvquLbP+/DgTiNy60L3Ka5pRHwE8Jmk0MYKaEOMtgh/Ra+s/EmnD3hRs8+mvKbECsEb42bVFJer846cojKDPDHmyCPPhu42woL2z/5Mn6J75RvjJ7XU7JbWy67O4C3lpYes4ZO3m+QB4UBwJKFnsVi9zmIVZEVNVBhYTKT9q6Q1ITvVej/3kzh2GtnQzY8CsT6JiysMQH89lX9D4+580y4v1VSSmTzlR/znR8ZmNI6BF7HREREpCXCYSAcBhKlIb6+2ldxbCklkM24gsmS+rCyYrkiqCyjruMMKHOV56tMTaXhSUrrNZJOVta82sOHwj2hZK5AMXvAmKq8EDZWEmRmDyqzPUrqxIFIVLvYgoiIiIiIiIiIiIiogCFWakHPi1dQGMBQNqJa+UfnK3in+w3sWL+bY/+TG+7Xtglx6Q4REREREREREREREdUAP3EgIqLhTwiYJXE2FsNHqJUI98N/l4kG/3UPO6l8HdtC3MM6nsDjo/6zgkEB+yVfCdZgdCvGVpAHkBNhdBt1yrLvbvwVjmu/H99v/RE6Qo3aPlrtwWatirAwH/OcIjILAJDHTi/um9O1sHzDHmkRA1JtyjL50K2QN36vZH+tw8JiQ+DdnfxRmdfw7gcg/mbl/W/S57X1rXSZA6f05Wvagx/utldjuHnth0CAXx9BbTNGwCuaIDdmYskfFJkq8jGO31swKIyIiIiqIoToCTqKAWgK3r7K48tcDsimSwPHimFjrqAyV4CZVAWVOcLJXM8ddSoLoqIRIJ8DujusRwWqDisrhoklnEFkMUU4mauOUJZrwspKQs/iECHeoZ2IiIiIiIiIiIhoKEiE1HPHRrpan5e4Zo4e0UhTi4DCd5P/LgkLe7v7DW39mKG+oS4REREREREREREREVEQQyBOgoiIqEpCQLfk25Dlw8L6xR4H+qt34vchDHXwmYMtLOyCDdfjufrZ6DZ6U7xCModb15yDc8bfgLTHBIQtcx/7G1fhsN+5Dq36PC+tnAgjKRLKsoSZRIPswoUbfoHLW+dq+xiX7w0LEw2loQDRsPey/7DMwlAsgW4yN3u2s2sLNQOpj0r2y2WLIX9xrrJNLcPCYuGecIRBTHaow9SKjjkXonEMYuHKfzbf+rTiptXJZb3Lk53aokNu0H+9iQiQ1HT9YmIfvBXbwc/oKrJivXcsgBktnUCYyVd+vEM+U3lbIiIiosFAhMNAOAwkKkhRRnVhZVJKIJspDSHLpG0BY0lNWFnaCiqzh5qVhJWle0PJ3OWZVPn3wzRyFV4jnZsCN606qCwUdoWTxYBoQh1Upggsv1z7AAAgAElEQVQcKw0rcwedafqJJYBIdND/jU5EREREREREREQ0WGyf2GWghzAo1fq87FDH80wEAJMT2yOEMPKo/M6YGTPt2JZSImXqbyg6rW7nio9FRERERERERERERERUwLAwIiIa/oSACXXAlii37LR5XB8MSDGO5payC2DF+TdCHHmGzw57F6Pun3wZz31wCO5uOgHLYjtgz+RinNn2W2yT+xDT08tw85gzMK/payVdnL/h+gBfQeFgh2NsBe8ucgih21CHhdVJa/LEJRuu9QwLa82t05b54RXadXrb7bht9Kll+1gXagGSpZM95FkHeBy3dgvqY0Phnd1LT3oWi7N/CgCIRwSqXxbezzIp7/Jkl3J3R0ri/fX6Zl5nYfbkZ8uPqwqvvu9dnlNknGUqnz+F5gQX0hMRERFVSgjRE1gUA1AaoFy2fZXHl/k8kE2rA8fS7vCypDqszBFO5n7uCidz9JkC5BD7+4H6Rz5nBTd7hDd7qTqszBEgFnOGienCygpBZbGEIoTMVscWalbaT9wKLyQiIiIiIiIiIiIaAj4/+gi0RLcY6GEMStsmdsBejbOxaPPCqvua2XggtolPq35QRMNA3EjgqNZv4sG1t1fchwnn5LlsmRvHHjT6yxUfi4iIiIiIiIiIiIiIqICrRYiIaAQQkEK97NmAIunG3vLi2/piQGqGAZj68fgOCrNqO7b2SC3FHqmlJbX2Tv0de3/8dxzb/gCOmTQP3UY9AODArudw2fprAhwPwDcugYjFK3pzkRNhJIU6LCxu9gYwbZ1dhVWRrZX1WvM9YWGGOhgOAOadKvD129VLfUMyr23347WX+wsLC7cCb7zi2Ce7O63FyRpeIWVBxSM166rvrFnpWSx6flarDT6TUhb76jeZtHd5Sn3XwPVl1qyfM0fg508PTPDB3a94H7c9CTS6fnTb9DdHLGtIvIaJiIiISEmEQkCoDojXVda+imNLKYFc1hUmluwJJkuVBJP1liuCyjIpIF0IJkv2tE9795GrXQg0DTOF10wFqg4qC4XVIWP2gDGPwDFRbGfvQ9FPLF4SVIZorP//JiciIiIiIiIiIqJBISYS2KfpIF9164wG7FQ/AzvVzejjUQ1dhjBw4vjvYEbDTLyTfAMpM4lkvguvdb7qu4+xkVZ8ZdzJ2LVhLxhCP7eOaKSZM/owbBXbDm92LcXmfJu23ltdr2Oj4ma2pmvOaUbq5w9+Z9KVGB1pqXywREREREREREREREREPRgWRkREw58QMDXLjkW5pZd7H9IHA9KQNQwDCrgg80tdT+Ojd7bDy4mZ2DL3MXZO/xtGwGWp4vBTAtW3y4go0kZcWVYne5OHDu58FneMPklZb3zuE+uJR+DajuMFdMttuw39gvbR5ib8bcV+2Hvbl7R1AOCgrucAAHL9GoiWCdbORc94thnuYWGyuxNY/CzwyQfA7rMh7/yhvrLtdZuo8mvJm0A4VF0fgSW7ypSrU8Gy+pw6AMAJMwcuLKycJ/4lceYBzt8375XOi/JtW86HIiIiIqIKCCGASNR61DcGb1/l8WU+D2TT6sCxYiiZKnQsBaRTzrCytLufpD6srFBey+sJNHzkc9bfoZq/RcupOqysGCqWAGLuoDJb6FgxsCzmDCqLxmxBZAlN4Jkq9CwOEeZHX0RERERERERERAOlIdyIE8Z/e6CHMawYwsCMUTMxY9RMAMDazMeBwsK+tsW3sFM9A9mIVKbWTcfUuumedW7/+Fps7FCEhbluVpwx9WFhYyKtlQ2QiIiIiIiIiIiIiIjIhSsmiIho+BMCUrP015D6YCkAEKF+TBsawLAwAGg0O/DFLu9gK89Dtk4qPr/oiwLXzvf/9XQYo7RlCTNVfH7+xhu0YWFf7Hy67HFGqfPIAAB54f226LOpf3iWC2nikML5e/lJoCc8TV52rGe74RwWJtvWQl5wGPDOP33VFyddVnw+tqG6Y5sDsVZ+U5mULE2YWLmwsJ0nAluPAVZtrHBcfei1D0v35b1/rWrtsiWw3bhqYxqIiIiIiPqfCIWAUB0Q14dQe7av4thSSiCXLQkgKwkUU4aVWdvSHmjmDivLuEPPXOXZ2v1NS8NMJm090B64adVBZaFQmUAxRehYLO4RVlYINXO3i7naW3VEBdfliIiIiIiIiIiIiPwKiWBzGqMi1kcjIRoZDKh/5kzpnPiX9ZgLGjP4c0hERERERERERERERLXBsDAiIhr+hIAJQ1lkoMJUm8Gunxclimsfdmx/9yCB+W9IvP6Rv/ZdRr22LC57w8J2yLyDi9b/DNe2XOioc2bbbdgztdja2OtgbV/1UX/jqcQvP70AY/NWmpN85zUIAHLlsrLtojJbszEMurCwe67zHRQGADjqzOLTlirDwjZ1A62N1fURWHend3mqW7m7PalvcsvXBQxD4NbjDRx64+D7fbVti3PbNCXmPhp8nA0x4JfHqn9PExERERGRnhACiEStR31lfwRVFVZmmkA2bQsTUwWO9YSM2ev07JPFcDPbv6qwsmJgmWu7lsHrNHzk81Zgtya0u5yqw8p0oWLFwDJ9uTKoTNmHKqwsDhEeZBeHiIiIiIiIiIiIqOZCAaf/RxlSRFQVQ6jnteXhDAvLmGltHwztIyIiIiIiIiIiIiKiWmFYGBERDX9CYIfM27hw/c9hCgMSVniYhECd9Ejpmb5X/42xnDFbBKvf32Fh+3zJsT2+SeCFiww8+S+J435bfollt6jTlsWkcwLF1euuwKGd87Gw/gDkEcL+3S9iTvfzxcXN4qiztH3VVznf4q8fHILPb/NUyf4vdD6Db7X9pndHz/mXvzi3bJ8Rj7vJBRUfbO/s7rvBd1Vx5o8hmsYWt0fFqzv0wdebeO1yw1o431+y+sk+AICkOkzsv36lD9c6fqY1/i9Mr3hUWtNagXfWVtdHl+tLPv9BicUf+G9/+WECWzQCX/yMwLYt/ft7i4iIiIiIqicMwwoviiUqa1/FsaWUQD7nDBpzB4q5Q8eKgWXWtkyXr6Mtz9bu73kaZjJp64H2wE2rDioLhdQhY/ZtR+CYPYgs3hNWFteHlRUDy0qDyhCJWb8TiIiIiIiIiIiIqE+FRChQfYaFEVXH0NysWErnvD/PsDD+HBIRERERERERERERUY0MtkgJIiKi2hMCu6bfwK7r3gjWbsb+fTMenc/OAZYsUJftNitgZ/0YuqMZ26i4wDF7Ctz9ch7z3/TuosvQh4VF7WFaXz4NeOS3mJV8BbOSr6gbzPyitq+YxzufqMdEjYLZ3S/g0nXX4MfjLi7u26/7JTzx4ZedFXNZyHWrgX88X7bPaA3DwmIfvwWZmwYRjtSsz34zdRfHZl20uu7+tRpY8gGwx+Tq+gkkU+Y1lOqGNE3Hwtl3PpVo69Y3ifTM7TOM2v9MH7qLwM4TgfMekCWhX36t7eh93pWWuPFZ/8ua559r4As7MyCMiIiIiIgqI4QAwhHrUTeqsj6qOL40TSs02h5W5n6uCh3rKZeOuu46qtCztLPc1AdP0wiWzwPJLutRgarDyiJRW6CYJqxMUy5i5esoQ88K7ULh/g2NJyIiIiIiIiIiGiAhEWz6f0RUORGLaIQzNAF9eXdYmFRPwjMQCvxzS0REREREREREREREpMNPHYiIaPirdJFYtnYhTr7UN+rLwgEn7PTjwjjxlW95lm9Klu+j2zMsLNt7rP/+NuQjv9WP5fwbIUL6OydGPd75xGXKe5A9rlx/FeauvwpvR6dhauY9hKBYnJtJQ/7oZF/9RT//FeAdX1XLim9cBfzxKeDY82rTYX8Szrvv1WJx5+9elthjcj8uEs34eA2lk0Civri54C3vZbgR28v5iW8b+M9f1W4xeMgATt3fwCmzJKJnmchX0PUmW9DZ/73tXXeHLYC/XWJgYxcwuYWLd4mIiIiIaGgThmGFFcUSQAVZZdX+VSRzWUU4mStQTBtWloYslivqFLZ1fZQLy6aRK5uxHl2bAzetNqgMhgFpDxSLKQLG3KFjsd5/hapOLKFp5wo0i8Qc4fBERERERERERER9SRdcpBM1Yn00EqKRwYD6Z0665o5mNDes5c8gERERERERERERERHVEsPCiIhoBKg0LKyfFz5O3FZfFjQ4qR/DwrDfYZ7F9jAhnS6hDwuLFe62NmkKxNY7eC4cFEee4XkcrwCqmOaubsp+AOyQ8Uj42rQOWLrQV1+xo04Bflr1ckgAQFymIZ9/BGIQhIVJGfBr6oMFle9+Wpvz6puf3xndHY6wsM4yTeyv2S/tIvDs+QYO+kVtAsPCod5jtI4C1rQH7+OBxRL3nW49X/yB9/lubQQaEwKNieDHISIiIiIiIicRjgDhCFBXQVIZqgsrk6ZpBUJlkvqwssK2PZSsEFRWEl7mfrhDz1zbZu2CtGkYMU0g1W09KlDtVSQZiarDyQqBYiVBZIXtBERMF2jm7qNnnzsILRypSfA+ERERERERERENDaGA0/+jgkFFRNUwhHpuY17mHdsZzRxU/gwSEREREREREREREVEtMSyMiIiGv0oXSmWztR1HGeKI0yHvu0FTWPuwMPGrv0LM2B/yvushb/p+sP4Lxm8DEfWeyHD8TIEfPOy93K7b0IeFRWUGACBue9na8dk5wJIFJfXEFb8vM1hvRiSi3C/OvxHyibuAt5b67+xvT/uqJm79P8TCAtUvR7TEZBp44xVfdWU+by2wTXX1LqRMdVvbyS6rLNkFpLuBZBekvTzlbqfoI/DCzNovaExEa96lt2ymfJ32DcDY8cXNhoDzgObsKGDeFsK8/zwBJ2x5V7DGLiHbKTdqcPpvWuD9Ov6PrblolYiIiIiIaDgQhmGFFcXiQAVZZdX+dShzOWe4mDtQzBFWlrJCzXRhZYV2xVAzRT/pdG8fmX6+uQANHdmM9ejaHLhp1VcGDQNSFTJWDCZzhYs5wsriELo69n4KgWUxd6BZ3PqdQERERERERERE/SYkQoHqR0R/T6IiGl4MqH/mTLjCwkxNWJjBn0EiIiIiIiIiIiIiIqodhoUREdHwV2FYmNj9gBoPpIyJ22mLxK77BuzMx9fcs4hLHHse5IplwJN3BzwGgHFblq3y/+zdd5xU1f3/8fe5U7YvLG0lIE1EQFFQEEHBRsQaEQtijC2JRBPLT42mfCMYS/SrJl9LTGxfMMao+SqimMRoTDCWoIFILJgIikRQKUtfts/5/bGw7MzO3LnTd2dez8djH+w999xzPjPM3YWZc9/3oP7xw7Dq4oWFTTxRpqK7JMlc8hPZb02SmtuFufUdKB1+kqeSYwmVVEiBYHjgU+9+0pSz5Jw2S6FJab6724ix0ohxKvoifUMWh+olSaGbLooR+rWzLfxLjfXpmzgdMnBRYXlRlsOpvDynW2vCNm2SV4PO3PZbPVl5pp6vSP5172v3lKcSFlbbYPXvL6T122P3KSuSvn44YWEAAAAAgNQZv1/yl0ul5ckdn8LcNhRqfe+oQ6BYlKCyyPaG+oigsohwsqihZw3txqiTWlriF4nCEwrtCfFPQqphZdYfCA8UiwwrCxbtCiOLHjhm2h8Ta4yi3eOUhLf7AzLJ3iwEQMbY2m2yN10klXeTyiql8m4ypRWt20efLlNRlesSAQAAAKBLc4wjI0dWobh9g6aI90+AFDkm+trGkA0/BxttjLAwk+a1pwAAAAAAAAAAoKARFgYAyH/JLnY54pT01hGHMUb2kKOlpX/puPPwkxMdzEunPd9W9Uls/N169Y3b5ZjhUkWxtN0lR2mnKYm5L2gbZb4+u23b7DdGuvsl2Udvk/7zb2nkeJlLb5EpKUuo9Egh45e5b5HsI7dIH78vjRgn862b2i5aMbc9I3vdaSnN0ebUb8p862YZx1FpMNXL8fYo3r3Y5I+PpW3MrImxoCYVxVm+IZ9tjL7YJ8z2zWGbjUlc42vn3ixJ6tucWtJc+1deKlltOxulb/3affHhy1c5GtWfhYcAAAAAgK7NOE5raFFRcXLHpzi/bW7uGFTWIXAsMmRsTz/btr8+ejBZ2Bj1UkNEHyCa5qbWr50uSfIuUnp31BjZDqFiEUFlke1FMYLK2vaXhLcVRY61K7AsUCTj86VSPZC/ttZIry0Ma9p9rptDjpYICwMAAACAlPmMT83WQ1iYQ0gRkCpHMcLCFL74rzEUIyyM8xAAAAAAAAAAAKQRYWEAgPyXRFiY+cFDMqXlGSgmzrxX3SV7+VSp5vM9bZffIdNzrwQH8vKY91yGZU65UPax2zt26bO3NGR/afEL0ac55aK4s5QEje77qtEF/xtSi41eV60TPejLsS3yKST1HRg+76gJMv+9IO7ciQhZyQw/ROYnT0fvcOhx0nHnSC/+JqV5zILVYX+fZWkMtCq2XfiizQzcwXJHtp+OpvhhYfbFx2Umn9q23dic2BS2fqfs//5YklQS2pnYwREamvZ876Tw9Nc2SEtWx95/55lGhw4mKAwAAAAAgFQZv1/yl0tJvm+Zyv/OrbVSU2N4mFi00LGGiD93B5WF9alzCSurlxrrOgaetST4JgoKg7Wtr6eGuuQOT3V6fyBGOFnJnu2i2PujhpW1HVPSLqwssk+xFAjKZOA9VSAt3MIDSyuzVwcAAAAA5DGffGpWU9x+QUNIEZAqn4l+04AWGxEWZqOvHwxwHgIAAAAAAAAAgDQiLAwAUACSCAs74WsZqMPDvAP2k+Ytkf7+J6nmC2nsMTJDD0xiIA+PuXFPkpLpt4/siLHSB0vC+5zwNZnzvy97w9ekVyLCufrsLY05ylM5Xx3v6ODGd7X/owdE3b/ViX5xSNA2tn6ThYtH4l0YZvx+6YcPS6MmyN55WdLzRAa/laVxHUhRVw4LczrefW/aaGnBsuSH3FaX6uV+CfIQFhbZp6klRr9YXlvY9m1RjMVFXjW0u8Y2lbCwv3/ivv/MsVy0CAAAAABAV2eM2RVYlNybWam+O2Cbm1vfV3ELHGtoHzpWFzusrEOf9kFl7fq0HwOIprmp9cstGMlFSu9eGiMbLaisLWAsyvft+pgO+yLDyiJCzyL6GV/0CyQBSdKOrbH3lXfLXh0AAAAAkMd8xu/pzYWAQ0gRkCrHdFzbKElWobDtxlD09XxBzkMAAAAAAAAAAJBGhIUBAPKfl+Cs9t2v/FmGCvE4f/de0pfPzvxEDXXh8962QPamC6V/LJKKy6QTz5O56EcyjiPd+IT06G2yv71b2r5ZGjFO5vp5rQFaHg3v0aBZmx/U/VXf7LBvh68i6jG7w5CyceFRSyh+H+M40rSLpX5DZK86KfFJ9h3doakkEP+w/evfV7/mz/Ri+Zdd+xXHWGzSJURZUPPgeY4WLPPwFxPDtmxfx9nUGL9PcWnYZmOCYWH24Rv2DJViWFhdu5uLphIWdv5c97+j/lWEhQEAAAAAgNQYv1/y+6WSsuSOT2Fua23r+z5hgWOR4WIRYWXt2mzkcY0xQs8aouxvrG8NowIiWdv6+ol4n9/z4alO7/NHDxQriggmixE4ZtqCyUqiB5WFtZWEtwWCrQGG6LxqY4SFBYtlAsHs1gIAAAAAecpnvK2nCxr+HwakylH0863FRoSFxVjPFzSEhQEAAAAAAAAAgPQhLAwAkP8SuWhkyP7ZCerKNC+PuSE8SclU9Za583nZ+p1SoCgsoMsYI533Penca6X6nTKl5UmV5bfNCfUPWg/hS2kSSuDqKDNuisyrDbKrlsueN8b7cdf9skOb4yGladmqcfqv3jfEDwuzaUrHCha3XnhZVCqVlLaGxxWXtvsqk4pL2tpN2P52+z56V/bea73N6XQMC+tZbnTd8Ua3vZDcpWtvfCRd/GhIFcVSeZHa/mz93rT7fld7sVRRJAX8SV5o1uzh9d0YviCoMYFTwlorrfmobbsoxbCw+nanVyphYfUu16tO3jf5cQEAAAAAADoDY8yuoKMiSd0SPz7F+W1zs9TUED1wrKFeaqyLHlS2q59tqIsRVNauLWaf5IKoUABamqW6Ha1fSUg5rKx9eFhRtO/Dw8na9zFR95fEDisLCz0rzsrNTbq82u3R28sT/xkKAAAAAIjOZ7xdAhB0CCkCUuVEuRGqJFmFh4U1xbjZK+chAAAAAAAAAABIJ8LCAAD5z0tw1pfPlhlygHTqN2QqqjJfU2dQVBK12RSXxjzEOI6UZFCYJPkSDAsrD9VKx5yR9HyJ2LdPEgf1+pL3vn32ltnPe7DYbhdueURG3oKhwsLCuvWSTjxvV5hX+yCviNCvkrLW18LucLDi0ta/5zSwMV5j0UU/T38y3dHBA6z+uNyqqqhZd76c2IVYD70a67Kz2JejBf3RwsX2hIyVxQgZK90+QuWlk1QR2qH+TWtV3bK+4+Bvv9L27c4Gqy+2eX8s9qeXh22nGha23157vk/TX3kHj1yUoYEBAAAAAAAKhPH7Jb+/9f27ZI5PYW5rrdTcFBEmtjtgrD48VKxDWFmDbKNLn8iAs2hjNLuk1KOw7X6NJCHloDKfPyKELDJQrMg1cKxDWFlRx0Cz6OO0tplEbpCTK7Vbo7eXVmS3DgAAAADIYz7jbQ1V0BBSBKTKUfTzrcW2hG03xljPx3kIAAAAAAAAAADSibAwAEABiHPhxAET5Fz/SHZKyRYvF4uMPSbzdbRnjAJK7OKuslCtzPceSGsZlxxl9ItFHS8HumlaEqFGJd6D08zPfh9z33EjpReXd2wvDdXqznXXSpKCtjHuHMXtFpuYK+6U+fLZnuvLiG013vu6pFWdOdbozLFGUlB3vtwSs1+6NDZLm5qlTbXR9rpdSnaFNPCKtq2JO9/Q42vPU7/mz/Z0qd2m5harb//G6tHFVvUup8T/+3LEebwg/FwoTjEsbMa4PeM7Gbi+rEeZNLBnF7hwDQAAAAAAAFEZY6RAsPVL3RI/PsX5bUuL1BQjUKwhIrysbX+ssLIGqbEu4tiOAWdhY9hUY6WQl1qapbodrV9JSDmsrH14WFFEoFhRSeywst1BZZGhZEWR4WWxQs+KW8MLvdgR4y4Z5Yn/HAEAAAAAROfzeAlA0CGkCEiVEyOcLxQZFhaKvsYz6ATTXhMAAAAAAAAAAChchIUBAPKfSwiRpNYLHvKNh7AwU1SShULC+W1iQU+OQlJxaVpruOhwo1/9zaq2Xc7SAV+SjhqW+FjG72+9MKexPn7fAbEn+PbRjv70QUihdlcJDWj6jz5aObztgroiD8FQRaF2fQaPjNs/4wbs571vSZmnbqcU/UMLGw5OsqDseqN0ok7d+2n9fdWEPRdGFpXo+uesHnw1/iVhF0zYcx7brR2D18L+vhN0yoHS0D6ZDQt74ptJBPABAAAAAAAAuxifT/KVJv0ecSpveVlrpeam8DCxhvooQWVRQsca6sODytrCyqKEnkUbo6GudW4gmt2vkySkHFTm80nBkughY+0DxtZ+FH2AssoUKwAAAAAA7OYzHsPCTB6ujQSyzFH0dXAhhcK2G2Os8SS0DwAAAAAAAAAApBNhYQCA/BcvOMuXj78OM5D8kypj5LfNCR3yTvGBMh6CzxJxyECjF6909NOXQvrXF9LhQ41uPNWotCjJeUrK41+YEycI65SDjBZ829E9v1qhjeu368jaV3TjhhvC/haDNv7FYcV2Vx17DZT2GRW3f8b1H+qtX7denoPFpnT/RAvXdY2wMElaVnyQPgoM0dCmj1sbGur0f0tCineOHjpIGtW/XVjY//y/Dn28BMhFc+3xRjecEj5/JsLCJu2b/jEBAAAAAACAbDDGSIFg61cSAUepvt1mW1qkpsgQssjAsShBZbvabNv+iOPah5O17xMZVmZTjZVCXmppkep2tH4lg7AwAAAAAEgbn/F56kdIEZA6x8QIC4u4eW5jjJt/BgjtAwAAAAAAAAAAaZSP6SgAAEQowLCweAFb0y/JTh0R/EosLOz2dddJuiPtdUzYx+j/9vG2YCqu0nJp60bXLuYbc+IOc/KBRicOf1x685ao+70EQxXbeqmkTOYHD6U9ZC0Zxhhp9qOyN3wtdqdAUOZH/yvjRF9QE6mqMiCtS1OBWbI6MED9m9dqxD7v6NPA3tKG+MecMKpdUJi10p+e7NCnLRwuAa+tOlITTvmzTCAY1p7usLDD95GKArl/DQIAAAAAAABdkfH5JF+pVFya3PEpzG2tlVqaw8PEGmIEkzVECSFrrJdta6+LElYWGXoWsb+pMYXq0amVdct1BQAAAACQN3zG25pHQoqA1DmKvraxRaGw7VhhYYT2AQAAAAAAAACAdMrDdBQAACLEC03y5+GvwziP2Uy7OEuFtJ/UKGCbEjrka1t/o0yEhaVVSXn8Pl8+29tYLoFZnsLCjjtD5tz/ken1JW/zZYGZcpa03xjZ+74nbd8ic/GPpSEHSK8skJoapCNOkenV1/N41d29hYp9qekzHV/0jrbvNVw7WgKqbfZre3NAO5r92rH7+5ZAsg8rIS3Gpz7D1minU+b5mD4VrX/apkbp2Qei9gnaxC+aM5K0tUaKeM49ZrV59ocr0jwgAAAAAAAAgKwwxkj+QOtXWWVyY6Qwvw2FWt87bgsjixY41i50rH2oWWODbFiIWfQ+HcbZvb+hTrI2herhqqJ7risAACDvGGMGSxot6UuSyiV9Lmm1pDesTXCBBgCgS/HJ240yCSkCUucz0c83a8PDwppirPEMEtoHAAAAAAAAAADSKA/TUQAAiBAvLMyXh78O44WFDR6ZpULC+W2z575LPj5MvVpqMlhNmpRWxO1iqvp4GsoYR7EuQ6pq2Rz3+OIjpsr06uZprmwye+8r85OnwxtPOj+psQ4baKW/x94/oOk/+m7NT3XJ5l0BW+/H7huS0U5Tqh1OuXY4ZdruVGiHU7Zru7xDe61Tru272nf/Wdtu/wZ/9L/ntf5+CQWFSVKfCiNb84XstdOkD9+O2sdLgFxU2zZ1DAtL5eq9CPMvcVRenMYBAQAAAAAAABQM4xfCeVIAACAASURBVDhSUUnrV/y33zsen8Lc1lqppbldUFl9x+9jhY7t6mMbYvRpqIseVNZ+f1PiN4joSszBR+a6BAAA8oYx5gxJV0maEKPLJmPMk5Kut9ZuzF5lAIBsiRVeFCloghmuBMh/TozzrUUtYduNoRhhYYT2AQAAAAAAAACANMrDdBQAACIQFhZu4H7Zq6M9Y+SXt7Cwyzfdq9EN72S4oDQpSSwEyo1tif389PQQnFZcHEhbLZ1V+YTJ0lOx93+0crjni8EcWZXbWpW31Cpi3U5Suu23XrVOeYf25ypOTnisPpWS/fl1MYPCJKk4VJ/wuEZW2trxtZTOsLBpYwgKAwAAAAAAAND1GGMkf6D1y8ONQqKOkcL8NhSSmhqiBJQ1tAscixVU1iDbWNfuuMhgsl1tbWNECSsLhVKoPo5DjpbGfTlz4wMAUCCMMeWSHpR0dpyuPSRdImm6MeZ8a+0fM14cACCrfMbbmkdCioDUOXKitlsb/l5KY4ybfwYN5yEAAAAAAACAwrNz50794x//0IoVK7Rx40bV19erpKRE1dXVGjZsmMaMGaNgkJueJOuoo47SK6+80rZtrc3IPIsWLdLRRx/dtj179mzNmTMnI3PBuzxMRwEAIFIBhoW5PeaybtkrI4LfegsLO3frbzJcSRolecFQVMtejbmrOMZd59orKsn/sDBTUaXKlk3a5uv4Oq5uXpfShVip8tnoiWMLkwgL61VupZeecO1TZBsTHtfISts2dWhPZ1gYAAAAAAAAACBxxnGkopLWryQ+ekj1bV7b3CyFBY5FCyarcwkri9InEJTZf7x04vkyQS6MBQAgFcYYn6QnJZ0YsWuDpLclbZW0j6Qx2vNPg2pJzxpjplhrX8tWrQCAzPMZn6d+hBQBqXNinG8tEXcobQxFX89HaB8AAAAAAACAQtHS0qLf/va3mjt3rv7yl7+ouTl2rkBxcbGmTp2qb3zjGzr55MSvwwYKWT6mowAAEM4UYFiY22Muq8xeHWGMAh7Cwu5Yd60Orl/WujFuSoZrSoOKqvSN9c/YYWFFMe46196+fb0tAuvqLtt0n27u/f0O7Zdu+mUOqtnDaxieF31WvRG3j5fXRCQjK22t6dCerrCw+75K6hgAAAAAAAAAdEXG75f8FUnfJIV3hwEAyLhbFR4U1iTpKkkPWLvnTlPGmJGSHpI0YVdTkaQFxphR1trPs1UsACCzfMbbmkdCioDUOYq+LjPU7uaiLbZZLYq+fjBoghmpCwAAAAAAAAA6kz//+c+65JJL9OGHH3rqX19fr2effVbPPvusxo4dq/vvv18HH3xwhqtM3KBBg7R69WpJ0sCBA/XJJ5/ktiBAkpPrAgAAyDjCwsKVd8teHRH8MRZD7Hbz+h/pyk33tm74fDKnX5qFqlLUvZf7/sEj0zKNl2Co7qWF8U+7c3ssU8/mjWFtvZvXa+a2J3NUUStfxJ0CU9HtuvhBeWVjJyY8bsywsARfOv0qop/L5xzK5WAAAAAAAAAAAAAAkE7GmCGSrohoPtNae2/7oDBJstYul3SspL+1a+4paXZmqwQAZJMvRnhRJMLCgNQ5JvriupBCbd83hhqj9pE4DwEAAAAAAADkvxtuuEFTpkzpEBRmjNHIkSN13HHHaebMmZoyZYqGDRvW4fglS5ZowoQJevDBB7NVMtCl5WE6CgAAEeKGhXlbONOluD3mqt7Zq6M9Y1Qcqnft0rf5C2ngftKA/WRO/YbM+KlZKi55pnsvWbcOoya47fWsyMZeTFJohh05Ti//6njd2eNKvV08WofUv61ran6qIU2f7OlUUhY/yC3NfO0W/6TKcX9VSZIGnjhVvt9ILQlMa2Rl33ldkT8h1m9LrL7Fl27S9xdV69dvttbZo0x6b46jyhLCwgAAAAAAAAAAAAAgzWZLCrTbnmetfTZWZ2ttnTHmAknvSgruav66Mea/rbUfZ65MAEC2+Iy3SwAChpAiIFWOYoSF2T03F210uRks5yEAAAAAAACAfHbllVfqrrvuCmurqKjQ97//fX31q1/VgAEDOhyzcuVKzZs3T3fccYcaGlrfX21sbNTFF1+s2tpaXXnllVmpHeiqCAsDAOS/uGFh+fjr0OUxl1Zmr4wIJbbOdX+3Gx+WM6aLhQ0Fi113m5Mv8j5WVR9p8/qou6qb17keOq5pmaRDvM/VlZWW6YCG5Zr7+cXR91f2kPO7z7NbkyT/rC/kIeMrrplbn/DUr2j0YRrwgrRqY4ITLH6hQ9N/NiU2RKC4SL/6uqNffT3BuQEAAAAAAAAAAAAAnhljSiSdEdF8W7zjrLUfGmMWSDprV5Nf0jmSbkpvhQCAXHCMtxukBk0wficArhwTKyxsz10+m0Kxw8KCDmFhAAAAAAAAAPLTI4880iEo7IgjjtDjjz+u/v37xzxu6NChuummm3Teeefp9NNP13vvvde27+qrr9bo0aN11FFHZarsvLBo0aJcl4Aciv7JBQAAeaUAw8LcAtJy9XiNUXGo3rVLRVdcEzH2GPf9+x3sfawjTo65K6Bm10PPb4x50+A8FOecjrE4J9N8JaVpGefizQ956mcqe6jSPauu4zE2eppZXVOC4wS74skKAAAAAAAAAAAAAF3OVEntP4z+m7X2Xx6PnRuxPT09JQEAcs3nNSyMkCIgZT5FP99C2hMW1mhdwsIM5yEAAAAAAACA/PPhhx/qO9/5TljbxIkT9Yc//ME1KKy9YcOG6eWXX9aIESPa2kKhkM4991xt3LgxrfUC+YSwMABA/nPi/LorsLAw4/O2UCgTim2csLAEg486hf5DXXebeK+/9n2nX+q6/5JN90dtn7jzDc2y8z3P0+W5heFJ8c/5DPGVlqVlnAl1b8btY+b+XZJUnuA6ohaPCwXjzh/siicrAAAAAAAAAAAAAHQ5x0dsL0rg2FelsDuTjTHGVKdcEQAg53zytuYxQEgRkDInxpq7FtvS9n1jyCUsjNA+AAAAAAAAAHnommuu0Y4dO9q2u3fvrqefflrl5eUJjdOnTx899dRTCgaDbW1r167VjTfemLZagXyTh+koAABEiBcsVGBhYXJyFBZmjEpsnWuXrhgWZoyRTddg+xwgnXSh9LvIm/u2umrT/+h3FSfoP4EBbW3H7nhZz605XaZ3Aa3njXdOm9yEhfkTOLVKQ7W6c911uqTvvW1txob04OeXyK8WlyN36bePpMTPmTqTnpPM5ydzGAAAAAAAAAAAAACy4ICI7b95PdBaW2uMeVfSmHbN+0tal47CAAC54/N4w0BCioDUOYq+Vs4q1PZ9o40dFhYwwZj7AAAAAAAAAKAr+te//qXnn38+rO3WW2/VXnvtldR4I0eO1DXXXKNbbrmlre3hhx/WnDlzVFVVlVKtnc3KlSv1zjvvaO3atdq+fbuMMSotLVV1dbUGDx6sUaNGqbS0NON1NDQ06JVXXtGqVau0adMm9enTR/3799ekSZMyMv/nn3+uN998U+vXr1dNTY3Ky8vVp08fjRs3TkOGDEn7fPkuD9NRAACIFCdYyB/IThlZ5fKYcxSkJEnFLndPk7pmWFg6GWOka++T9fukZx/qsH9w02q9/slRerzyLH0YHKZD6/6ur257XEW2UVr/aQ4qzpF4YWFObl7jvgSmPXX7Qn1zy/9qv4Z/a2HFSTKyOnX7Qh1et9jT8aakTJJUUWykBOLqap3W42xjg0ywqO37RP9bEO+vAAAAAAAAAAAAAACQFiMitlcmePxHCg8LGynpzylVBADIOZ/xttaHsDAgdU6McD4rq5ANyTGOGmKsjQ2YoJwcrtkFAAAAAAAAgEy46667ZO2ea5t79eqlCy+8MKUxr7zySt1+++1qamqSJNXW1urBBx/Utdde26HvBRdcoEceeaRte9WqVRo0aJCneRYtWqSjjz66bXv27NmaM2eO6/i7rV69ujULIIbzzz9f8+bN69De0NCgu+++Ww8++KBWrFjhWp/P59Po0aM1bdo0XXXVVTGDu4466ii98sorbdvt/z7cbN26Vddff73mzZunbdu2ddhfUVGhGTNm6IYbbtCXvvQlT2PG0tTUpIcfflj33Xef3n333Zj99t13X11zzTW66KKL5PcTg+UFzxIAIP/FS7Xx5eGvQ7fHnKMgJcmoxNa59ij0sDBJMo4jnfIN2ShhYZLUt/kLXbXp7ixX1cnEWzyTo9e4P4FpL9/0c0nS5LrXNbnu9aTnLE/wnKlzWv9TaI+tlD1tlkz1ANm5N0lDahIah6wwAAAAAAAAAAAAAMgsY0wPST0imv+T4DCR/fdNviIAQGfhixFeFCloghmuBMh/jmIvDAypRY4cNdnoYWFBQ2AfAAAAAAAAgPzzwgsvhG2fd955CgZT+0yid+/eOuWUUzR//vyweaKFhXUln376qaZOnaoPPvjAU/+WlhYtXbpUS5cu1dlnn62hQ4emrZZ//vOfOvHEE/XZZ5/F7LN9+3Y99NBDmj9/vp577rmk51q6dKnOOussffzxx3H7rlixQrNmzdIvfvELPf/88+rXr1/S8xaKPExHAQAgQpywMFNoYWHxwtMyqNjWu+4nLGyX3kkk7R5xSvrr6KzivYZzdCc+XwLTHlL/j7TMWZ7gWqID6t/bs/HM/fKWE91RzjIHAQAAAAAAAAAAAKBwdI/Y3mmtrU1wjPUR291SqAcA0En4PF4CEHQIKgJS5biE84VsSI22QQ99dnvU/QGHwD4AAAAAAAAA+WXNmjX65JNPwtqOO+64tIx93HHHhYWFLV68WE1NTQoEAmkZP9saGxt1/PHHdwgK69Gjh0aNGqXq6moFAgFt375dn3/+uZYvX67a2kSXBHizfPlyHXvssaqpqQlrr66u1pgxY9S9e3etW7dOixcvVl1dnTZt2qSTTz5Zt98e/f1vN88//7xmzJihnTt3hrX37dtXBx10kHr06KHa2lotX75cK1asaNu/bNkyjR8/XosXL1b//v2Te6AFIg/TUQAAiBAvWMjxdpe9vOHL0eM1RiUh97Awn5O7ILPOxPSoTjjEyXxjTgYq6aTintO5eR15DQt79tPpcpKO6QqXSMDe0MaV2rfpo7TMy5kKAAAAAAAAAAAAABlXHrFdl8QYkcdUJFlLG2NMH0m9Ezxsn1TnBQDs4XMJL9rNkeM5VAxAbD6Xm5eGFNLjX/wi5v6gIbAPAAAAAAAAhaHFtmhL88Zcl1EQuvt7efqcIFNef/31Dm1jx45Ny9iHHHJI2HZdXZ2WLVumcePGpWV8r+644w7NmTNHknTEEUdo7dq1kqR+/frptddei3lceXn4R/xz587V8uXL27YHDRqkn//85zr++OPlOB3fe7bWaunSpXr++ef18MMPp+GRtGpqatJXv/rVsKCwvn376q677tLpp58eVsuOHTt055136uabb9aWLVt07bXXJjTX8uXLdfbZZ4cFhR1//PG64YYbdOihh3bo//bbb+uKK67Qq6++Kklau3atZs6cqUWLFsmXq0yMLoBPAAEABSBesJDHhJ+uxC1MKYfhaMXWPSwMSZp5lcw+B+S6iiyKc067LM7JJL/HaU/Y8ce0zdmjzHvfx9aen7Z54+W1AQAAAAAAAAAAAABSFhkWlsyii8iwsMgxk3GppNlpGAcAkCQvFwEFnSIZFvkAKTOKvTCwIVSvZTsWx9wfdAgLAwAAAAAAQGHY0rxRP/p4Vq7LKAg3DrlfPQPVOZt/zZo1YdvV1dXq2bNnWsY+4ICO18qvWbMm62FhvXr1Uq9evSRJfv+eWCa/369BgwZ5HufZZ58NO/all17S0KFDY/Y3xmjs2LEaO3asfvSjHykUCiVefBT33HOPli1b1rbdt29fvfbaaxoyZEiHvuXl5Zo9e7YOOOAAnXXWWdq8ebPneUKhkGbMmKHa2tq2tjlz5mj27NjLC8aMGaM///nPmjFjhubPny9Jeu211/TYY4/pvPPO8zx3ocnDdBQAACLEW/CSj2FhbmFKuXq8xqgklMxNbgvUvgfF3GWuuFP6ytelky6UmbdUzqU/yWJhnUAnPad9HqYd2rhSjmza5tz/S94W9I2r+7sOqX87bfM6rCMEAAAAAAAAAAAAgGxL5sPm9H1ADQDoNHoF+sbt09tDHwDxuYXzbW7aqCbbGHN/78BemSgJAAAAAAAAAHJm06ZNYdtVVVVpG7u4uFhFReE3YYicrytZvXp12/cHHXSQa1BYJJ/Pp0AgkHINoVBI99xzT1jbAw88EDUorL3TTz9dl156aUJzzZ8/X++9917b9llnneUaFLab3+/XI488oj59+rS13XHHHQnNXWjyMR0FAIBw8YKF8vHueW6PyeTu139ATTmbu6sx/zU3+o6+g2TO+I6c794n53u/lNmnY0py3ot7TnfesLCVQe//kfPiiKFS99L4/R7+LL2J7Pn4YxMAAAAAAAAAAAAAOpkdEdslSYwReUzkmACALmhk2WiVOuWufcZWTs5SNUB+My6X3DS7BIVJ0tjKSekuBwAAAAAAAAByKjK8q3v37mkdP3K8mpqatI6fK+vXr8/JvH/961/1ySeftG2PGzdOJ598sqdjr7/++oQCy+6+++62740xuvXWWz0fW15erlmz9lwL/+6774bVjXCEhQEA8l8nDRbKKLfH7OTo8Roj8oW8M0P2l77y9fDGfkNk7n05NwV1JvHO6Ry9xv0epp1+UEta5ywrMvrJacb1KfnW5gc0svFfaZ2XcxkAAAAAAAAAAAAAMq6zhoXdJ+mABL9OTcO8AIBdSn3lunLvG9WvaFCHfSVOmab2OF1TqvjRC6SDz/hi7mt0CQs7oedZGlMxMRMlAQAAAAAAAEDeMvGuIe9Chg8f3vb9p59+qjvuuCPrNbz22mth2zNnzvR8bO/evXXcccd56ltbW6vFixe3bY8bN06DBw/2PJckHX300WHbr776akLHFxJ/rgsAACDz4oWF5c8/Gtu4PaYch6NVtmzVNl+3Du3TRuegmE7OXPNzafxU2Xdel+k3RDrqdJmq3rkuqxOIc862pDeQyyufh1NrQG+/VNlD2rYpfmePZh3paFR/q4X/tPL9+ieasHOxPg4O0arAQE3e+bpO2fF82ubazcnDH5sAAAAAAAAAAAAA0MlsjdguNcaUWWtrExijT8T2lhRrkrV2vaSEbnucTwu6AaCz6F88WD8c9D/a0bxN9aE6Sa3LBqv8veS4hBsBSIyj2OdTUyh2WNgxVadkohwAAAAAAAAAyKkePXqEbW/dGvmxdmq2bAn/SDtyvq7knHPO0fz589u2v/vd72rBggW68MILdeKJJ6pv374Zr2HJkiVh2+PHj0/o+PHjx+t3v/td3H6LFy9WU1NT2/aQIUP0ySefJDRXKBQK2/7oo48SOr6QEBYGAMh/8RYcOrkNz8oMl8fs5HYh0KnbF+rR7ud2bB/NwtBIxhhp8qkyk7nLY5h453RLk/v+DPESFlbkl8y9L8ueNyatc0/cx2jiPkahRx+Saj+TElkangTWcQMAAAAAAAAAAABAZllra4wxmyVVtWseIOmDBIYZGLG9IuXCAACdSrm/UuWqzHUZQN5yXG7Q22Rjr1X0GS7VAQAAAAAAAJB/IsO7Nm/enLax6+vrVV9fH9bWs2fPtI2fbdOnT9f06dPDAsNef/11vf7665KkoUOHauLEiTr88MM1adIkjRgxIu01rFu3Lmx73333Tej4YcOGeer36aefhm0/8cQTeuKJJxKaK9KmTZtSOj6f8QkEACD/xQ0Dy8PUG7ckn5yFo7XW9O3Nv9QzFadqh6+ibc/wphU6bcx+OaoLXU4nTaryewwLU/+hmSsiEMzc2O100r8CAAAAAAAAAAAAAMg3H0ia2G57qBILCxsSZTwAAAB45JjYN+htsg0x9/mU2xv7AgAAAAAAANnU3d9LNw65P9dlFITu/l45nb9fv35h21988YVqamrSEur1/vvvx52vKzHG6Mknn9Ts2bP105/+tEMQ2sqVK7Vy5Ur96le/ktQaHnbuuefqsssu6xDKlqzIMLfKysRuQNOtWzdP/WpqahIa14vt27enfcx8QVgYACDvGWNk3TrkLDwrg9ySfFzucpYNY+v/ob+sPk739fiW/hUcpvF1b+l7TXNVWfJuTutCFxIvqcr1hM8cn5ewsIBkAsHMlRgsztTIYRzCwgAAAAAAAAAAAAAgG95TeFjYBEkLvRxojCmTdGCU8QAAAOCRT7EXBjbZptjHuYSMAQAAAAAAAPnGZ3zqGajOdRnIgokTJ3ZoW7JkiaZOnZry2EuWLAnbLikp0ejRo1MeN5f8fr9uvvlmXX755fr1r3+tZ599Vm+99ZYaGjrejGLlypWaM2eOfvazn+n+++/XjBkzclBxchobG9M+prU5CgzoAvIwHQUAgChcw7PyMPXG7THlKhytXUljGv6pBz+/RK+uPlZ3rP++ejldPNn17CujNpvvPZDlQgpEvH/ch0LZqSOCp7Cw3VG9Bx+VmSJW/ysz40Yw+fhzEwAAAAAAAAAAAAA6nxcito9K4NhJCr+h7NvW2nUpVwQAAFBAjMsNeptC0S9+MjJyCAsDAAAAAAAAkIcGDBigAQMGhLW9+OKLaRn7pZdeCtseP368gsFgWsberaWlJa3jeVVdXa2rr75af/3rX7V161a98cYbuuOOO3TqqaeqvLw8rO/WrVs1c+ZMLViwIOV5q6qqwra3bduW0PFbt2711K9Xr15h27fccoustSl9zZs3L6FaCwlhYQCAwuAWkOXyQX6X5RqO1gkfr69rL4owU2ZIweLwxh7V0oTjc1NQvosXFmZzExbmd+IHaO0OCzNfv961n/n2bckV0X+fpA4b0fBBcvMBAAAAAAAAAAAAADLpj5Lq2m1PMMYM93jsBRHbz6SlIgAAgALiU+z1rU22IfoxBIUBAAAAAAAAyGPHHx9+/fyjjz6qpqamlMbcsGGDnnvuOdd5dvP7/WHbzc3NnufZvHlz4sWlWVFRkSZMmKCrr75aCxYsUE1NjZ544gkNGzasrY+1VpdffrlCodSuma+urg7bXrFiRULHf/jhh0nN4/U4JKcTpoUAAJABjssH727BWl2Wy2NyC07LJLfnuauHhe13sMxtz0gHHSGVd5PGHydz1x9lelTHPxiJixcWluJ/fJLl83BqtYWFHXh462smmr33lWZckVwRR56W1GFzNtzoua+HTDQAAAAAAAAAAAAAQBpYa3dKeiqi+bp4xxljhklq/wFys6TfpLE0AACAgmBcbtDbZKNf/OaTP2o7AAAAAAAAAOSDK664QqZdbsCGDRs0d+7clMa86667wgLHysrK9M1vfjNq38rKyrDtLVu2eJ7n/fffT6guk4UcimAwqBkzZujNN99Uv3792to//fRTLV26NKWxx44dG7a9ePHihI5/8803PfWbMGFC2HP10ksvycbLA0DSCAsDABQGlw/rXfd1VW7/8HQLTsuVzlhTgszYY+Tc+7LM79fJuWOhzKARuS4pj8X5z4HtvGFhDe3Cqc3EE2VufVoKFu1pDBbLXHZ763+ITrow6hjm27fGnsAf8FhtuJN3/F4nbf+9p755ma8IAAAAAAAAAAAAAJ3XHEntkyguMMZ8JVZnY0yxpLmSgu2aH7bWfpSZ8gAAAPKXT7HXtzaFGqO2O6brr4kFAAAAAAAAgFhGjhypE044Iaztuuuu07p165Iab/ny5br99tvD2i688EL16NEjav8+ffp0ON6r3//e27XUuxUV7bkGvKGhIaFjE9W9e3dNnz49rG3VqlUpjXnEEUeEbT/++OOej92wYYNefPFFT3179+6tMWPGtG2vXbtWf/jDHzzPhcTkYToKAABROG5hYXmYfOMaFpajX/9uNfny5y5q2UgILnihOGFg8fZniN/DqXXo4PDXhzn8ZJmHFstcfKPMrJtav5/Q+h9kc9S0jgMEgtKkmGu+ZXzJhYUV2Ub9du05+u2amXH78goHAAAAAAAAAAAAgOyx1n4s6a6I5qeMMd8xxrQPBJMxZoSklyVNbNdcI+mGzFYJAACQn9yCv5ps9LAwn8mfNbEAAAAAAAAAEM2dd96p0tLStu0tW7Zo+vTp2rFjR0LjbNiwQWeccYYaG/e839q3b19df/31MY85+OCDw7YXLlzoaa4//vGPeuuttxKqr3v37m3fb9y4UU1NTS69U+f3h7+/3D6sLBmTJ0/WoEGD2raXLFmi559/3tOxP/7xjxN6vN/5znfCtq+55pqEXw/whrAwAEBhcFzu0pWr8KxMcgusMp3w8br9/QCRrI2zPzdhYV5+lPQo7dhmBo+U+dq1Mud+V2bwiD3thx0vc+XPpPJuuw6ulvnJUzL99ok5vt2yPtGy2xTZRk3f/mzcfvn4IxMAAAAAAAAAAAAAOrnvSWp/292ApHskfWqM+YMx5rfGmCWS3ld4UFijpNOstZ9nr1QAAID84bhcchM7LIw1sQAAAAAAAADy2/Dhw3XPPfeEtb3xxhs64YQTtGbNGk9jrFixQscee6w++OCDtjbHcfToo4+qd+/eMY+bMGFCWFDZM888oyVLlsSd6/zzz/dUV3sjRuy57ru5uVl/+ctfPB23c+dO3XPPPdq+fbvnuXbs2KH58+fHnD8ZjuN0CPGaNWuWVq1a5Xrc/Pnzdd999yU013nnnafhw4e3bX/wwQc67bTTtHnz5oTG2bBhQ4fnAeG41B8AUBhc021cgrXyUc6SflyeZx93UUMi4oSFhXITFubzcGr1Kk9sTHP6pTILP5P57b9lFqyWGT/V/YCXnkxsgiQU2E9MAAAAAAAAAAAAAMg5a22LpLMkRX4o3EfS8ZLOlHSIwj/SXS/pVGvtq1kpEgAAIA8ZY2RiXHbTFIoRFibCwgAAAAAAAADkv4suukjf/va3w9pee+01jRw5Urfeeqs+/fTTqMetXLlS//Vf/6VRo0bp3XffDdt322236dhjj3WdTJBsJAAAIABJREFUt6KiQjNmzGjbbmlp0UknnaQXX3yxQ9/GxkY9+OCDOuyww7Ru3TpVVVV5fXiSpKOPPjps+8ILL9R9992npUuX6uOPP9Ynn3zS9rVx48aweS+//HL1799fF110kRYuXOgaHPbWW2/p2GOP1erVq9vaDjvsMA0bNiyheqO5/PLLddBBB7Vtf/bZZzr88MP11FNPKRRxTX5tba1+/OMf6+yzz1YoFEro+fL5fHrqqadUWVnZ1vanP/1JBx54oH7xi1+4Pv5NmzbpySef1MyZM7X33nvr7rvvTuARFh6SOQAAhcFx+eA9Z+FZGeQWlmQ6YdSPP5DrCtCV2DhhYfW12akjgt/Dj5JupYmff8bvl/oO8tY5WJzw+JFGNizX8qKRsevphD9CAAAAAAAAAAAAACDfWWt3SDrbGPOUpKslHRaj6ya1horNttZuyFZ9AAAA+cqRoxZ1XJfbZGOEhRku0wEAAAAAAABQGO69915VVVXp5ptvlt11/ff27dv1/e9/Xz/4wQ80cuRI7b333qqqqlJNTY1Wr16tf//73x3GCQQCuuuuu3TJJZd4mvfGG2/UM888oy1btkiS1q9fr6lTp2ro0KE68MADVVRUpHXr1unNN99UbW3rded77bWXbrvtNp1//vmeH9+ZZ56pH/7wh1qzZo2k1qCtyIC03c4//3zNmzcvrG3btm2aO3eu5s6dK2OMhg4dqiFDhqh79+7y+/2qqanRe++91zb+bqWlpXrggQc81+kmEAjoscce05FHHqmamhpJ0ueff64zzzxT1dXVOuSQQ9StWzetW7dOf/vb31RXVydJ6tatm2677TZdfPHFnufaf//99fTTT+uMM87Q1q1bJUlr1qzRpZdeqssuu0yjRo3SgAEDVFlZqZ07d2rLli368MMPOzx+uONTCABAYTAuKT75mHxjXcLCchWO5vY8B4LZqwNdX7ywsKboC3AyLRDnZoDdSrJQxNRzpN/cmdIQ39j8v7pqrzti7nfy8EcmAAAAAAAAAAAAAHQV1tqnJD1ljBks6WBJX5JUJukLSaslvW5tjOQKAAAAJMwxjlqiLFuMHRYWZzEhAAAAAAAAAOSRG2+8UUceeaQuvfRSrVixoq3dWqv3339f77//vuvxBx98sO6//36NHTvW85z9+vXT008/rWnTpmn79u1t7StXrtTKlSs79B88eLB+97vfad26dZ7nkKSSkhI988wzmjZtmtauXZvQsZGstVqxYkXYcxRNv379NH/+fI0aNSql+drbf//99ac//UknnniiPv/887b2devW6fe//32H/t27d9dzzz2nlpaWhOeaMmWKlixZopkzZ2rJkiVt7S0tLVq2bJmWLVsWd4yqqqqE5y0kOUoLAQAgy3wuH7y7BYl1VW7/8HI64SIEXyDXFaArcQvDy6FgnBjeg/pnvgbz5Zkpj1EUZ814PuYrAgAAAAAAAAAAAEBXY61dZa192lp7j7X2VmvtPGvtXwgKAwAASK9Y4V+NoVhhYXEWEwIAAAAAAABAnpkyZYqWL1+uxx57TMcee6z8fvf3SYuKinTKKafo2Wef1ZIlSxIKCtvtmGOO0VtvvaVTTz1VJsbFz71799Z3v/tdLVu2TCNGjEh4DkkaO3asli9frl/+8peaNm2ahg4dqsrKSvlc8iu6deumV155Rddee60OOeSQuM+HJO2333665ZZb9OGHH+rQQw9NqlY3o0eP1gcffKDLLrtMFRUVUfuUl5frggsu0DvvvKNJkyYlPdfQoUP11ltvaeHChZoyZYqKioriHjNixAhddtllevXVVzV//vyk5y4EfAoBACgMboFg+Zh84xam5Baclkluz3OAsDAkwEa5RV8nUBTnX9YVxVkoYp8DUh7Cd/l/S/8Xe38e/sQEAAAAAAAAAAAAAAAAACAqo+hrkJttU9R2nzrhTX0BAAAAAAAAIMP8fr/OOeccnXPOOaqtrdXSpUu1cuVKbdiwQY2NjSoqKlJ1dbWGDRumgw8+2FOAVDzDhw/XggULtHHjRr3yyitas2aNdu7cqerqag0ePFiTJk0KC+o66qijZJO4Tr2yslKzZs3SrFmzPPU3xmjy5MmaPHmyJKmurk7vv/++PvroI33xxReqra2VMUaVlZUaMGCADjzwQA0cONBzPYsWLUr4MUitIWZ33323br/9di1atEirVq3S5s2b1bt3b/Xv31+TJk1SWVlZW/9kny+p9Tk4+eSTdfLJJ6u+vl5vvvmmVq9erZqaGtXW1qqsrExVVVUaOnSoRowYoZ49eyY1TyEiLAwAUBjcArIclyCxrirkEhbmFpyWK37CwpCAThoWFowbFpb5mC1jjFJ5dswLGxRYViK5jLKjIYUJAAAAAAAAAAAAAAAAAADoQnwm+hrkJht9MZ3PcJkOAAAAAAAAgMJWVlYWFpaVab169dLpp5+elbmSUVJSorFjx2rs2LG5LkWSVFRUpKlTp2ZtvuLiYh155JFZmy/fdcK0EAAAMsA1ICvzAT5ZF2qJvS9X4WjG5Xn2sTACCYgXFlZcmp06IgTj3AywLPWAa29mXJH0oaasUj7+hwAAAAAAAAAAAAAAAAAAgCTJiXHZTZNtitoeK1wMAAAAAAAAAAAgVUQBAAAKg+MSVJWr8KxMCoVi73MNTssRfyDXFaBLiRMWNnladsqIUBQn866iODt1mKPPcO/QZ+/ox/1hvSTJ3wl/RAAAAAAAAAAAAAAAAAAAkAtOjPCvplBj1HbCwgAAAAAAAAAAQKbEiTQAACBPOC4fvBuXILGuyrqEhbk9F5nk9jz7+CcJEuAWhifJHBMnLCtDgp0kLEzBItfdztMrJUl25w7prZek0ZNkuvdq2+8jLAwAAAAAAAAAAAAAAAAAAEmSo+iL6hptjLAwLtMBAAAAAAAAAAAZwqcQAIDCYFzSb9z2dVVuYUpOJ3y8uQowQ9dkrfv+8cdlp44I8cLCyt0zvNLHH/TUzZSWS0ed1qH9gH5GUpznGAAAAAAAAAAAAAAAAACAAuDEWGfcHCMszDGsiQUAAAAAAAAAAJnRCdNCAADIAJ/LB++dMTwrVdYlLCxn4Wgm9i4f+aVIgEtYmJn9qIw/kMVi9iiK8zKuKs1OHQqk9viH75WmOgAAAAAAAAAAAAAAAAAA6OIcRV+D3BiKHhbmM6yJBQAAAAAAAAAAmZGH6SgAAESRs4CsHKkeEHtfn37Zq8Mrh7uoIQHGJXhu9BHZqyNCMM7LuLrSpe50CgRTOtznZKlOAAAAAAAAAAAAAAAAAAA6OSfGGuSQWqK2+wxrYgEAAAAAAAAAQGYUWHIKAKBguYVROfn369AMGCbtvW/HHUMOkNlrYPYLktwDnnzcRQ0JqKiKva+xIXt1RAj63UO2+lRkqRAR9gUAAAAAAAAAAAAAAAAAQDo4Siz8yyfWxAIAAAAAAAAAgMzIv3QUAACicQsEcwux6sLMd++Tikv3NJSUy1x9d+4KcuPjnyRIwMQTo5/TpRVSn/7Zr2eX4oD7/h5l2alDPffK0kQAAAAAAAAAAAAAAAAAAOQ3n0kwLCzB/gAAAAAAAAAAAF5xyxIAQGEwbmFh+RlUZcZMln71trT4hdbHeNhUmb0G5rAgl1A2H/8kgXemey/Z8VOlv/0hfMfkaTL+OIldGVQWjLO/KDt1GH9ANjtTAQAAAAAAAAAAAAAAAACQ10yC64wJCwMAAAAAAAAAAJlCMgcAoDD4XD54dwux6uJM30HSad/KdRnxOSyMQGLM9Y/I3nyR9LcXWs/vI0+TuebenNYULwysNE6YGAAAAAAAAAAAAAAAAAAA6Fx8SmyNq89wmQ4AAAAAAAAAAMgMPoUAABQGt7t6OYnd8QtJcgtl8/FPEiTGlHeT+cnTsg11UigkU1KW65LUt5v7/rIuFBZ2wUSjeW/YXJcBAAAAAAAAAAAAAAAAAEBOOW5rkKPwExYGAAAAAAAAAAAyhHQUAEBh8Lnd1cslxArZQVgYkmSKSjpFUJgk9aty/1kS8HednzUnjopd6//M6DqPAwAAAAAAAAAAAAAAAACAVDgJXnbjyG3NMgAAAAAAAAAAQPIICwMAFAa3u3o5/DrMOYeFEUBnctqY2PsunkxYGAAAAAAAAAAAAAAAAACgMDgmsTWuPsMNdAEAAAAAAAAAQGaQjgIAKAxuYVSG4JvscHmefSyMADoTn2P0gxM7nrPXHm9UHOBnJgAAAAAAAAAAAAAAAACgMDgJXnbjSzBcDAAAAAAAAAAAwCuSOQAAhcFx+aDekJ2Za8bHwgigs7nxVKOqUunxt6z8jnTGWKOrv0xQGAAAAAAAAAAAAAAAAACgcDgJhn/5DJfpAAAAAAAAAACAzOBTCABAYTAuATdu+5A+bs+zj3+SAJ2NMUZXH2d09XG5rgQAAAAAAAAAAAAAAAAAgNzwJRoWJm6gCwAAAAAAAAAAMsPJdQEAAGSFa1gYvw5zjrAw5Ikxe0dv71mW3ToAAAAAAAAAAAAAAAAAAEDqTIKX3fgMa2IBAAAAAAAAAEBmkI4CAIBbkBjSx+159nEXNeSHy46N/jq/ZTo/ZwAAAAAAAAAAAAAAAAAA6Gp8Cd6U2GdYEwsAAAAAAAAAADKDsDAAQGFwC6py+HWYcw4LI5Afpo8xGjswvG303tJZhxAWBgAAAAAAAAAAAAAAAABAV+MosTWuPuPPUCUAAAAAAAAAAKDQ8SkEAAAixCcr3ALb/IHs1QFkUGWJ0Uv/z9HcN6yWrpYO7C/NmmxUWcLPGQAAAAAAAAAAAAAAAAAAuhrHJHZTYp/hBroAAAAAAAAAACAzCAsDABQGt6AqJ7EP8ZGkUCj2PsLCkEe6lRpdOYVwMAAAAAAAAAAAAAAAAAAAujpHiYV/+RLsDwAAAAAAAAAA4BXpKAAAuAWJIX1ammPv8xEWBgAAAAAAAAAAAAAAAAAAgM7FMYldduMz/gxVAgAAAAAAAAAACh1hYQCAAuESCJbgh/hIUnNT7H1+wsIAAAAAAAAAAAAAAAAAAADQuTjyJdTfZxLrDwAAAAAAAAAA4BXpKAAAGJcgMaRPc3PsfYSFAQAAAAAAAAAAAAAAAAAAoJNxErwpsc/4M1QJAAAAAAAAAAAodISFAQAKg1sgmMOvw6woq4i9r3e/7NUBAAAAAAAAAAAAAAAAAAAAeODIl1B/X4L9AQAAAAAAAAAAvCIdBQAAuQSJIW1Mn/7SwP067ujZVxo1IfsFAQAAAAAAAAAAAAAAAAAAAC58JrHLbnzGn6FKAAAAAAAAAABAoSMsDABQGIxLIJjDr8NsMbNuknztFkEYI/Otm2Tc/n4AAAAAAAAAAAAAAAAAAACAHDAJXnbjGF+GKgEAAAAAAAAAAIWOW5YAAEBQVdaYSV+R7lsk+8ozUkuzzKSvyBx0RK7LAgAAAAAAAAAAAAAAAAAAADrwJRj+5TNcpgMAAAAAAAAAADKDTyEAADCJ3fELqTEjx8mMHJfrMgAAAAAAAAAAAAAAAAAAAABXTqJhYUqsPwAAAAAAAADkm//P3r2HSVbV98L/ru65MTDIAMPNAUa5HAW8BqKir2JQCJxovJ3ogTyJlxDjJZG8GJXEEwHR4zVHjJqL0dHXiDFGRTQmQY34KsQQRINc5CIgIELGYbgMMswMs88f3TRdNTM9XV3VVbV3fT7Psx5m7dpr7bV2rd+i96rq1b/4xS9y2WWX5brrrsvPf/7zbNiwITvttFP23nvvHHrooXnSk56URYsW9eRaN998c/76r/863/rWt3Lttddm3bp12bRp09Trq1evzstf/vJtlr3kkkuyevXqXHzxxbnlllty9913Z8uWLVOv33jjjVm1alWS5Jhjjsm3vvWtqdeqqupJ+6FTNgsDgFIG3QIAAAAAAAAAAAAAYMiMpbM/Sjze4eZiAAAAAABN8OCDD+bv//7vs3r16nzzm9/M5s2bt3vukiVLcvzxx+d3fud38mu/9mtzvuZHP/rR/P7v/34eeOCBjspt3rw5r33ta/PRj350zteGQensUwsAaKLif4cAAAAAAAAAAAAAQKuxDjf/Gi8L5qklAAAAAADD6V//9V9z2GGH5aSTTsrXvva1GTcKS5INGzbkS1/6Up73vOflqKOOymWXXdbxNb/61a/m1a9+dccbhSXJn/zJn9gojNryKQQAo6GUGV7rXzMAAAAAAAAAAAAAgHoYS2d/lHi8w83FAAAAAADq7Mwzz8yZZ56ZqqpajpdS8tjHPjYrV67MHnvskTVr1uTmm2/Otdde23LepZdemqc97Wn50Ic+lFNOOWXW1z399NNbrnnSSSflVa96Vfbff/8sXLhw6viee+7ZUu6OO+7IBz7wgan8okWL8pa3vCUnnnhiVqxYkbGxh9eEV65cOev2QL/YLAyAETHDjmBjnX2IDwAAAAAAAAAAAAA031iHm3+N+zUdAAAAAGBEnHrqqTnnnHNaji1btiynn356Tj755BxwwAFblbn++uvziU98Iu973/vywAMPJEk2btyY3/3d3819992XU089dYfXveaaa3L55ZdP5U888cR8+tOfnlWbzzvvvGzcuHEqf/bZZ+eP/uiPZlUWhoHdUQAYDcuWz/DiDBuJAQAAAAAAAAAAAAAjabzDX7sZ73BzMQAAAACAOvrkJz+51UZhz3jGM3LVVVfl9NNP3+ZGYUly8MEH5+yzz87ll1+eI444ouW10047LRdeeOEOr33ppZe25F/ykpfMut1zLXvhhRemqqqpBINiszAARsMuu27/tTH/OwQAAAAAAAAAAAAAWpXS6WZhC+apJQAAAAAAw+Haa6/N61//+pZjRx99dP7pn/4pK1eunFUdhx56aL7xjW/ksY997NSxLVu25Dd/8zfz85//fMayd9xxR0t+ttfstiwMA7ujADAaStn+azYLAwAAAAAAAAAAAADajGe8s/NLZ+cDAAAAANTNG9/4xqxfv34qv9tuu+Xzn/98dtlll47q2WuvvfIP//APWbRo0dSxn/70p3n7298+Y7np106ShQsXzvqa3ZSFYeBPlgBAZthIDAAAAAAAAAAAAAAYSWOlsz9KPF78mg4AAAAA0Fw/+tGP8pWvfKXl2Lve9a7ss88+c6rvsMMOyxvf+Ma8853vnDr2sY99LGeccUaWL1++zTJbtmyZ07W6LdsLV111VX74wx9m7dq1WbduXZYsWZIVK1bksY99bB7/+Mdn8eLFc6p38+bNueSSS3LDDTdkzZo1eeCBB7JixYqsWrUqT3/607NkyZIe94RB8SkEAIx19iE+AAAAAAAAAAAAANB8Y2W8o/PH09n5AAAAAAB1cs4556Sqqqn8nnvumVe84hVd1Xnqqafmve99bzZt2pQkue+++/LRj340b3rTm5IkN910Ux71qEdtt/yzn/3sbR5fvXp1kszYvlLKNo/feOONWbVq1VT+mGOOybe+9a2p/PR7sCO33HJL3vOe9+Rzn/tc7rjjju2et9NOO+XZz352fvu3fzsvfvGLMz6+4/Xmq6++OmeffXa+8pWv5J577tluvc9//vNz1lln5dBDD511uxlOdkcBgO38AAcAAAAAAAAAAAAAjK6xDjf/Gu9wczEAAAAAgDr553/+55b8b/3Wb2XRokVd1blixYo873nPm/E6dVRVVc4+++wcfPDB+dCHPjTjRmFJcv/99+erX/1qXvrSl+aWW26Z8dwHH3wwf/iHf5gjjjgi55577nY3Cnuo3s9+9rM5/PDDc84558ypLwyPBYNuAAD0xwwbghV7ZwIAAAAAAAAAAAAArcY6+J5xScmYzcIAAAAAgIa69dZbc9NNN7UcO+6443pS93HHHZcvfOELU/nvfve72bRpUxYuXNiT+vtt8+bNednLXpbPf/7zW722zz775HGPe1z23HPPPPDAA7njjjvyn//5n1m/fv2s6r7//vvzghe8IBdccEHL8YULF+aJT3xiVq5cmcWLF+f222/PJZdckl/84hdTbTr11FOzbt26nHHGGV33kcGwWRgAlBk2EgMAAAAAAAAAAAAARtJYZr/517iNwgAAAAAYQZsfrHLrukG3YjSsXJ4sGB/c3ggXXXTRVseOPPLIntT9S7/0Sy35+++/Pz/4wQ9y1FFHZeXKlbnxxhunXvvABz6Qc845Zyr/mc98Jk996lO3qnPPPfdMkhxzzDFTx172spfl3//936fy0+udbuXKlXPqx0NOO+20rTYKO/HEE3PGGWfkqKOO2ur8LVu25Lvf/W7+7u/+Lp/4xCdmrPt1r3tdy0Zhj3jEI3LGGWfkVa96VZYtW9Zy7v3335+PfOQjeetb35oNGzYkSc4666w85SlPyQknnDDH3jFINgsDYDTMtCFYB3/xCwAAAAAAAAAAAAAYDWMdfM943K/oAAAAADCCbl2XPPqPtwy6GSPhhneOZdWeg7v+rbfe2pLfe++9s8cee/Sk7iOOOGKb1zvqqKOyYMGCrFq1aur4brvt1nLePvvs0/J6u1122WXq30uWLGl5baZyc3XBBRfkgx/8YMuxd73rXXnzm9+83TJjY2M5+uijc/TRR+ess87aqp0P+dznPpfVq1dP5Q888MBceOGF2+3HTjvtlNNOOy1Pe9rTcuyxx2bDhg2pqip/8Ad/kGuuuSZjY/baqBvvGADMtJEYAAAAAAAAAAAAADCSxjr4tZuxMj6PLQEAAAAAGKw777yzJb98+fKe1b1kyZIsXrx4xuvVxVlnndWS/73f+70ZNwprt9tuu21zs7CqqlrqXrBgQc4///xZbXj20CZkD7n++utz3nnnzbpNDA+bhQGA3U4BAAAAAAAAAAAAgDbjHWwANl4WzGNLAAAAAAAGq33zrt12262n9bfXt3bt2p7W3w+XX355Lrrooqn8smXL8u53v7sndX/zm9/MFVdcMZU/+eST8/jHP37W5V/3ute1bEJ2/vnn96Rd9JfdUQAgZdANAAAAAAAAAAAAAACGzFgHv3bTycZiAAAAAAC0KqX++z584xvfaMmfdNJJ2XXXXXtS99e+9rWW/Etf+tKOyi9dujS//Mu/PJX/9re/3ZN20V/+bAkAo2GmHwzH7J0JAAAAAAAAAAAAALQa62ADsPHYLAwAAAAAaK7dd9+9JX/33Xf3tP677rprxuvVwcUXX9ySP+aYY3pW93e+852W/O67756bbrqpozqmb1x20003ZcuWLRmz30at2CwMABqwwywAAAAAAAAAAAAA0FsdbRZW/IoOAAAAANBc7Zt3rVu3rmd1b9iwIRs2bGg5tscee/Ss/n752c9+1pI//PDDe1b3Lbfc0pJ/6lOf2lV9W7ZsyV133VXLTdlGmU8iABgNM20IVux0CgAAAAAAAAAAAAC0Gsvsv2c83sHGYgAAAADQFCuXJze80+/r98PK5YO9/iMf+ciW/O233561a9f2ZFOvK6+8cofXq4O1a9e25Jcv792b1l53L9x77702C6sZm4UBwEwbiQEAAAAAAAAAAAAAI2msgw3Axotf0QEAAABg9CwYL1m156BbQT8cffTRWx279NJLc/zxx3dd96WXXtqS32mnnfLEJz6x63oHrfRwL4uNGzf2rK6HVFXV8zqZX7ZmBGA0PPjg9l9bsLB/7QAAAAAAAAAAAAAAamGsg1+7Gc/sNxYDAAAAAKibAw44IAcccEDLsQsuuKAndX/ta19ryT/lKU/JokWLelJ3P+25Z+vOeXfeeee81L1kyZJs2bIlVVV1lVatWtWz9tEfNgsDYDQ8uHn7r9ksDAAAAAAAAAAAAABoM1462CysLJjHlgAAAAAADN6v/uqvtuQ/9alPZdOmTV3VuWbNmpx//vkzXqcu9t1335b8VVdd1bO6995776l/b9iwITfffHPP6qY+bBYGwGh48MHtvzbug3kAAAAAAAAAAAAAoNVYxmd97niZ/bkAAAAAAHX0hje8IaWUqfyaNWuyevXqruo855xzWjYc23nnnXPKKad0VeegPP3pT2/JX3jhhT2r++ijj27JX3DBBT2rm/qwWRgAo2HL9jcLm/7DKAAAAAAAAAAAAABAkoyV2f/ajc3CAAAAAICmO+yww3LCCSe0HHvzm9+cO+64Y071XXXVVXnve9/bcuwVr3hFdt999zm3cZCe85zntOTPPffc3HvvvT2p+/jjj2/J/83f/E1P6qVebBYGwGiYYbMwAAAAAAAAAAAAAIB2Y5n9BmDjWTCPLQEAAAAAGA7vf//7s3Tp0qn8XXfdlRe96EVZv359R/WsWbMmL3nJS7Jx48apY/vuu2/+9E//tGdt7bfDDz88z3rWs6by99xzT04//fSe1H3CCSfkoIMOmspfcskl+fjHP96TuqkPm4UBMBp2ecSgWwAAAAAAAAAAAAAA1MhYmf2v3YyV2W8sBgAAAABQV495zGPy53/+5y3HLr744pxwwgm59dZbZ1XHddddl2OPPTZXX3311LGxsbF86lOfyooVK3ra3n5r3+zswx/+cN7//vfPuvzdd9+dDRs2bHV8wYIFOeuss1qOveY1r8kXvvCFjtv49a9/PTfccEPH5Rg8m4UBMBLKC1+97Ree8Iz+NgQAAAAAAAAAAAAAqIWxzH4DsPGyYB5bAgAAAAAwPF75ylfmda97Xcux73znOznssMPyrne9K7fccss2y11//fV561vfmsc97nH54Q9/2PLau9/97hx77LHz1uZ++ZVf+ZWcdtppLcfe+MY35vnPf36+973vbbPMli1b8m//9m95wxvekP333z+33377Ns876aST8spXvnIqv3Hjxrz4xS/OySefvN26k+TBBx/M97///Zx55pk57LDD8tznPjc333zzHHrHoPkkAoDRsP+hyRP+n+Q/v91yuPzaK7dTAAAAAAAAAAAAAAAYZWNlbNbnjpfZbywGAAAAAFB3H/rQh7J8+fK84x3vSFVVSZJ77703p59+ev74j/84hx12WPbff/8sX77r4kpmAAAgAElEQVQ8a9euzU9+8pNcc801W9WzcOHCnHPOOXnNa17T7y7Mm3e/+925+eab87nPfW7q2Je//OV8+ctfzn777ZfHPe5x2WOPPfLAAw/k9ttvz+WXX5577713VnX/5V/+ZdatW5cvfvGLU8fOPffcnHvuuVmxYkWe8IQnZI899sjY2Fjuueee3Hbbbbn66quzYcOGnveT/rNZGAAjoZSSvOeLqf78TcklX0v22CflBb+b8qsnD7ppAAAAAAAAAAAAAMAQGutgA7Bxv6IDAAAAAIyYt7/97XnWs56V1772tbnuuuumjldVlSuvvDJXXnnljOWf/OQn56/+6q9y5JFHzndT+2p8fDyf/exnc/jhh+cd73hHNm3aNPXabbfdlttuu23OdS9cuDCf//zn8973vjdve9vbWjYBW7NmTb7+9a/Pqo6dd955zm1gcGb/J04AoObK0mUZe/NfZOzz12fsr7+TcuJvDbpJAPPjf7x+m4fLKWf2uSEAAAAAAAAAAABQX7uML8vismRW5+6xcK95bg0AAAAAwPB5znOek6uuuiqf/vSnc+yxx2bBgpn/sMLixYvzvOc9L1/60pdy6aWXNm6jsIeUUvK2t70t11xzTU455ZTsvvvuM56/yy675AUveEHOO++8HHDAATus+01velNuvPHGvOUtb8mBBx64w/YsW7YsJ554Yj784Q/nZz/7WY466qiO+sNwKFVVDboNMFCllMOTXPFQ/oorrsjhhx8+wBYBAHSnuvziVK//lWT6z/oLF6V87JKURz12cA0DAAAAAADm3ZVXXpkjjjhi+qEjqqqa+U90AsA88h09AKDuVt/2f/If935rxnPGMpY3HfieHLDk4D61CgAAAAB6Z/Pmzbnuuutajh1yyCE73PQJtuW+++7L9773vVx//fVZs2ZNNm7cmMWLF2fvvffOoYcemic/+clZvHjxoJvZd1u2bMlll12WH/3oR/n5z3+e9evXZ+edd85ee+2VxzzmMXn84x+fhQsXzrn+G2+8MZdddlnWrFmTdevWZWxsLMuWLct+++2XxzzmMTnkkEMyPj7ewx4Nt/ma1wb9/TyzMgAANEx5/NHJW1en+vBbkjtvT/baP+W0D9ooDAAAAAAAAAAAADp08j6vzeZqYy5f/x95MJu3ev0R48vzP/Y+xUZhAAAAAABJdt555zzzmc/MM5/5zEE3ZaiMjY3lyCOPzJFHHjkv9T/qUY/Kox71qHmpm+FhszAAAGigctz/TJ77suTOO5Ld904pZdBNAgAAAAAAAAAAgNpZNLY4pzzyzXlgy4bcuWlNy2sLy6LssXAv39EDAAAAAADmnc3CAACgoUopyR77DLoZAAAAAAAAAAAAUHuLx5Zk38X7D7oZAAAAAADAiLJZGD1VSlmY5OlJDkiyb5L1SW5L8v2qqm4aYNMAAAAAAAAAAAAAAAAAAAAAAABqx2ZhI6yU8ndJXtp2+CdVVa2aQ10rkpw5Wd/u2znn4iR/VlXV5zutHwAAAAAAAAAAAAAAAAAAAAAAYBSNDboBDEYp5fnZeqOwudZ1QpIrkrwm29kobNLRSf6hlPK3pZSde3FtAAAAAAAAAAAAAAAAAAAAAACAJlsw6AbQf6WU3ZL8RY/qOibJeUkWTTtcJbksyQ1JdkvypCR7Tnv95CS7llJeUFXVll60AwAAAAAAAAAAAAAAAAAAAAAAoInGBt0ABuL9Sfab/Pe9c62klLIyyRfSulHYRUkOr6rqyKqqfqOqquOSrEzyhiSbpp33vCRnz/XaAAAAAAAAAAAAAAAAAAAAAAAAo8BmYSOmlPKcJK+czG5O8qddVHdmkuXT8hcneU5VVVdPP6mqqgeqqvpgkt9oK///llIO7OL6AAAAAAAAAAAAAAAAAAAAAAAAjWazsBFSStk5yUenHfqzJD+YY12HJPntaYc2Jnl5VVUbtlemqqrzknxy2qHFSd42l+sDAAAAAAAAAAAAAAAAAAAAAACMApuFjZb/nWTV5L9vSHJGF3WdlGR8Wv4LVVVdN4ty727L/0YpZUkX7QAAAAAAAAAAAAAAAAAAAAAAAGgsm4WNiFLK0UleN+3Qq6uqur+LKl/Yll89m0JVVV2d5N+nHdo5yXFdtAMAAAAAAAAAAAAAAAAAAAAAAKCxbBY2Akopi5N8PA+/35+squrrXdS3T5InTDu0OclFHVRxYVv+hLm2BQAAAAAAAAAAAAAAAAAAAAAAoMlsFjYazkjy3yb/vSbJaV3Wd0Rb/vKqqu7roPzFbfnDu2wPAAAAAAAAAAAAAAAAAAAAAABAI9ksrOFKKU9O8sZph06tqmptl9Ue1pa/vsPyP95BfQAAAAAAAAAAAAAAAAAAAAAAAMRmYY1WSlmQ5ONJFkwe+ueqqs7tQdUHt+Vv7rD8T9rye5RSlnfRHgAAAAAAAAAAAAAAAAAAAAAAgEayWVizvSXJEyb/fV+S1/So3t3a8v/VSeGqqtYn2dB2+BFdtQgAAAAAAAAAAAAAAAAAAAAA6EgpZatjVVUNoCUAvbFly5atjm1rrqubBYNuAPOjlHJYkrdOO/S/qqq6qUfV79KWv38OddyfZMm0/LK5N+dhpZS9kqzosNhBvbg2AAAAAAAAAAAAAAAAAAAAANTJ2NjYVsc2bdqUhQsXDqA1AN3bvHnzVse2NdfVjc3CGqiUMpbkY0kWTx76XpIP9vAS7ZuFbZhDHfcnWT5DnXP12iRv61FdAAAAAAAAAAAAAAAAAAAAANBYpZQsWrQoGzdunDq2fv36LF26dICtApi79evXt+QXLVqUUsqAWtM79d/ujG15Q5KnTv57c5LfqarqwXm8XtWnMgAAAAAAAAAAAAAAAAAAAABADy1btqwlf88996SqbA0C1E9VVbnnnntajrXPcXVls7CGKaU8OsnZ0w79WVVVP+jxZda35XeaQx3tZdrrBAAAAAAAAAAAAAAAAAAAAADmWftGOps2bcpPf/pTG4YBtVJVVX76059m06ZNLcd33XXXAbWotxYMugH0TimlJPlokqWTh25IcsY8XGqYNwv7SJLPdVjmoCRf6tH1AQAAAAAAAAAAAAAAAAAAAKA2lixZkoULF7ZssHPvvffmxz/+cXbdddfssssuWbBgQcbGxgbYSoCtbdmyJZs3b8769etzzz33bLVR2MKFC7N48eIBta63bBbWLKck+ZVp+VdXVXX/PFzn7rb8ik4Kl1J2ydabhd3VVYsmVVX1X0n+q8P29OLSAAAAAAAAAAAAAAAAAAAAAFA7pZTst99+ufnmm1NV1dTxTZs2Ze3atVm7du0AWwcwNw/NbU3ZX8hmYc1y5rR/fzXJ9aWUVTsos09bfsE2ytxWVdXGafnr2l4/cJbt2975d1ZVta7DOgAAAAAAAAAAAAAAAAAAAACAHli6dGkOOOCArTYMA6ijUkoOOOCALF26dNBN6RmbhTXLTtP+fWKSG+dQxyO3Ue5JSX4wLX912+sHd3iNR7flr+qwPAAAAAAAAAAAAAAAAAAAAADQQw9tGHbbbbdl06ZNg24OwJwsXLgw++23X6M2CktsFsbcXNGWf3wpZWlVVb+YZfmn76A+AAAAAAAAAAAAAAAAAAAAAKDPli5dmoMOOigPPPBA7rnnntx7773ZuHHjoJsFMKNFixZl2bJl2XXXXbN48eKUUgbdpJ6zWRgdq6rqZ6WUy5M8fvLQgiTPSHLBLKs4pi3/Tz1qGgAAAAAAAAAAAAAAAAAAAADQhVJKlixZkiVLlmSvvfZKVVXZsmVLqqoadNMAWpRSMjY21sjNwdrZLKxBqqrardMypZRjknxz2qGfVFW1ahZFv5iHNwtLkldkFpuFlVIek+Qp0w7dN5tyAAAAAAAAAAAAAAAAAAAAAED/lVIyPj4+6GYAjLSxQTeA2vp0kgen5V9USjlkFuXe3Jb/+6qqNvSuWQAAAAAAAAAAAAAAAAAAAAAAAM1hszDmpKqq65J8ctqhRUk+UUpZsr0ypZRfT/LyaYc2JjlzXhoIAAAAAAAAAAAAAAAAAAAAAADQADYLoxtvS7JuWv7oJF8vpTxm+kmllMWllN9P8rm28u+vquon89xGAAAAAAAAAAAAAAAAAAAAAACA2low6AZQX1VV3VpKeVGSf0myaPLw05NcVUr5XpIbkjwiyZOTrGgr/pUk/6tfbQUAAAAAAAAAAAAAAAAAAAAAAKgjm4XRlaqqLiylvDDJJ/LwhmAlyZGTaVs+k+SUqqoenP8WAgAAAAAAAAAAAAAAAAAAAAAA1NfYoBtA/VVV9dUkRyT5yyTrZjj1u0leUlXVSVVV3deXxgEAAAAAAAAAAAAAAAAAAAAAANTYgkE3gMGqqurCJKUH9fxXkteUUt6Q5OlJDkyyT5L7kvw0yferqrqx2+sAAAAAAAAAAAAAAAAAAAAAAACMEpuF0VNVVW1M8s1BtwMAAAAAAAAAAAAAAAAAAAAAAKAJxgbdAAAAAAAAAAAAAAAAAAAAAAAAAGDbbBYGAAAAAAAAAAAAAAAAAAAAAAAAQ8pmYQAAAAAAAAAAAAAAAAAAAAAAADCkbBYGAAAAAAAAAAAAAAAAAAAAAAAAQ8pmYQAAAAAAAAAAAAAAAAAAAAAAADCkbBYGAAAAAAAAAAAAAAAAAAAAAAAAQ8pmYQAAAAAAAAAAAAAAAAAAAAAAADCkFgy6ATAEFk3PXH/99YNqBwAAAAAAAABAV7bxvYdF2zoPAPrId/QAAAAAAAAAgNob9PfzSlVV/bweDJ1SyvOTfGnQ7QAAAAAAAAAAmAe/XlXV+YNuBACjy3f0AAAAAAAAAICG6uv388b6dSEAAAAAAAAAAAAAAAAAAAAAAACgMzYLAwAAAAAAAAAAAAAAAAAAAAAAgCFVqqoadBtgoEopj0jyrGmHbkmycUDNgfl0UJIvTcv/epIfD6gtQH+Jfxht5gCAejFvw2gzB8DoEv8wusQ/MB8WJdl/Wv5bVVXdPajGAIDv6DEiPN/BaDMHwOgS/wD1Yt6G0WYOgNEl/mG0mQOAXhvo9/MW9OtCMKwmA+78QbcD5lsppf3Qj6uqunIQbQH6S/zDaDMHANSLeRtGmzkARpf4h9El/oF59P1BNwAAHuI7eowCz3cw2swBMLrEP0C9mLdhtJkDYHSJfxht5gBgngzs+3ljg7owAAAAAAAAAAAAAAAAAAAAAAAAMDObhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADKkFg24AAH2zJsmZbXlgNIh/GG3mAIB6MW/DaDMHwOgS/zC6xD8AAEAzeL6D0WYOgNEl/gHqxbwNo80cAKNL/MNoMwcAjVKqqhp0GwAAAAAAAAAAAAAAAAAAAAAAAIBtGBt0AwAAAAAAAAAAAAAAAAAAAAAAAIBts1kYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADKkFg24AUB+llPEkByc5LMl+SR6R5IEk65L8OMmlVVXd1+NrLkzy9CQHJNk3yfoktyX5flVVN/XyWv1SSjk8yROTrEiyOMntSW5NclFVVRsG2bZ+KqUsT3J4kkOS7J5kSZK7kqxJ8r2qqn48wOZtpZTyqEy8b/sl2SXJz5L8JMnFVVVt6uF1DkzyS5kY749IsikT9+W6TNyXe3t1rQ7bJf57QPxPqFv8Yw7oFXPAhDrMAf0c83W4H9RPE+ftJvapV/r1rFIX7kcz46WJfeoVY76V9ZvmxUoT+9Qr4p/pmhgrTexTr4h/azcAADSXZ6He8Nn8hLo9z4z6+u5k28wBPWAOmFC3OWDUif/eEP8T6hD/1nipuybO203sU6/4bK6V+9HMeGlin3rFmG816us3TYyVJvapV8Q/7ZoYL03sU6+YA6zfwNCrqkqSJGm7KRM/bJ2a5CtJ7k5SzZA2J/mnJP+9B9ddkeQjSdbOcL2Lkry4y+s8OslLk7w3yYVJ7mm7xk09uo/LkvxJkp/O0J97knwqyUEDfL/n7X4kWZjk+CQfSnLFDsZSNXmvzkqyz4Bj4CVJLp6hnWsnx+qeXVxjaZI3Jbl2B/fkwST/mOS4PvVd/PfmPor/Gsb/fI+PWdyDHaVVfbgH5oDe3EdzQE3mgH6N+brcD6l+qYnzdhP71OP3vB/PKjsneUaSP0zy6Uw8s2xpu87LBz3+3Y9mxksT+2TM1/5+WL9pva74b/Z4r0X8Z8TXb5oYK03sU4/f85GO/36Nj1i7kSRJkiRJkvqcmv4sFJ/N9+1+1PV5JiO8vjvZNnNAb+6jOaCGc8B8j49Z3IMdpVXz3H/x35v7KP5rEv/9GvN1uR9S/VIT5+0m9qnH7/lIfzbnfmzVtsbFSxP7ZMzX/n4M5fpNE2OliX2q4XivRfxnxNduJtvYuHhpYp96/J6P9BzQr/ER6zeS1HUaeAMkSRrelOTcLn7I/nKSved43ROS3NHBtf42yc4d1H9Mkn/ZwQ+UPXlYmbzeUzKxq+1s+3Nfktf08X2e9/sxeQ/unONYWpfkNwcw/ndJ8pkO2nl7kuPncJ2nJblhDvfl3CRL57H/4l/8j1z893N8dBFfD6VV83wvzAHmgJGaA/o15utyP6T6pX6N4W1cd97m7Sb2qYfv97w/q2Tiw4sfZmLxfkf1v3zA43/k70cT46WJfTLm63s/Jq9j/aZPsdLEPtVpvNch/mP9prGx0sQ+9fD9Hvn479f4iLUbSZIkSZIkqc+pqc9C8dl83+9HHZ9nMuLru5NtMweYA0ZuDujn+Ogivh5Kq+bxPoh/8T9S8d+vMV+X+yHVL/VrDG/juj6b89lclRH4bs6w348mxksT+2TM1/d+TF5nKNdvmhgrTexTncZ7HeI/1m4aHS9N7FMP3++RnwP6NT5i/UaSepIWBGD7Dt3O8Z8muS4TP5gtyMTuwE9IMjbtnF9L8v+XUp5VVdXts71gKeWYJOclWTTtcJXkskw88O+W5ElJ9pz2+slJdi2lvKCqqi2zuMwTkxw32zZ1o5TynEzsnrq47aWfJLk8Ex86rszEDzYLJ19bmuQjpZSxqqo+3Idm9uN+rEiyfBvHN2biB9vbM7HD7B5Jjpz870N2S/KpUspeVVX92Ty3M0lSShlP8tkkJ7a9tCbJ9yfbelAmxmKZfG3vJF8qpTynqqrvzPI6T0tyQSYeIqa7N8l/ZCLGFic5OMkRaY2x/5lkr1LKiVVVbZxl1zoh/rsk/qfUKf77Nj5qwBzQJXPAlLrMAf0a83W5H9RPE+ftJvapa/16VklyUpJHdN/i+eV+TGlivDSxT10z5ltZv0nSzFhpYp+6Jv5bWL+Z0MRYaWKfuib+p1i7AQCgqZr6LOSz+VY+m29jfXeKOaBL5oApdZoDrPFOEP9dEv9T6hL/1nipuybO203sU9d8NtfK/ZjSxHhpYp+6Zsy3sn6TpJmx0sQ+dU38t7B287AmxksT+9Q1c8AU6zdQJ73efUySpOakJJfm4Z02L0vy+iQHbefcRyb5q2y9Q+e3k5RZXm9ltt4J9DtJHtt23uIkf5CJ/+lPP/eds7zOqdtoZ5VkQ5Lr247d1MX9W5Wtd0++Pslzt3Hu8iR/3nbug9s6dx7e53m/H5n4Ie+hOu5N8rEkxybZaRvnliQvzMSHte1tmvf7MdmG97Zdd+Pk+F/Udt5hSS5uO/fnSfadxTWWbOP+/mJybC/ZxvkHJTl/G/fk9Hm6B+Jf/I9c/PdrfExea3pd350cM52kBfN8L8wB5oCRmgP6Nebrcj+k+qUmzttN7FOP3ut5f1aZLH/XNu5nleTWbbz28gGOffejofHSxD4Z8/W8H7F+0/dYaWKf6jLeJ8sPffzH+k1jY6WJferRey3++zg+Yu1GkiRJkiRJ6nNq6rNQfDbf9/tRt+eZWN996JrmAHPAyM0B/Rofk9eaXpc1XvEv/n0/b2juh1S/1MR5u4l96tF77bM592Mk4qWJfTLm63k/MuTrN02MlSb2qS7jfbL80Md/rN00Ol6a2KcevdfmgD6Oj1i/kaSepIE3QJKk4U2Z2Hn7K0mO7KDMa7fxP9uXzbLsx9rKXZRtPNRPO/8FbedvSHLgLK5z6uQPat9P8tEkv5vkyZn4q0HHtNV5Uxf37zNtdV2XZK8dlHlTW5krk4zP8/s87/dj8ge3O5KclmTnWZbZI8lVbde/ekc/JPbgfjw6Wz9Q/PoM5++UrX+4/8tZXOflbWW2JDl+B2VKks+1lbs7bQ8cPboP4l/8j2L892V8TF5rel0Xzme/5tg+c4A5YKTmgH6N+brcD6l+qYnzdhP71IP3uS/PKpNl78rEX+P4xyRnTs5fe0++dmFbnS8f0Lh3Px5uX+PipYl9MubreT9i/abvsdLEPtVlvE+WrUP8W7+pmhkrTexTD95n8d/n8RFrN5IkSZIkSVKfU1OfheKz+b7fjzo9z8T67vTrmQPMAaM4B1jjrcS/+B+9+O/XmK/L/ZDql5o4bzexTz14n302536MTLw0sU/GfD3vR4Z8/aaJsdLEPtVlvE+WrUP8W7t5uH2Ni5cm9qkH77M5oM/jI9ZvJKknaeANkCRpeFOSVXMs9w9t/7P9x1mUOSTJ5mllHkhyyCzKfaLtWh+fRZnl2/thMr374O3RmfirQ9PresYsy/5rW7lXzvP73I/7sWK2P7C1lXvCNu7jUfN8Pz7Zdr3Vsyhz6OSYfajMpiSP3kGZz7dd54uzbN8+2frB4znzcB9WzbGc+Bf/7fXUKf7n/X5Mq296XRfOZ7/m2L5VcyxnDjAHtNdTizmgX2O+LvdDql9q4rzdxD714H3uy7PKZLnt/mWTDMGHEO7HVm1YNcdyQxsvTexTD95nY34A9yPWb6aXEf9z7FMP3mfx39oO6zdVM2OliX3qwfss/vs8PmLtRpIkSZIkSepzauqzUD+e3+Oz+fZ6avM806/n3Qz5+u7ktVbNsZw5wBzQXk+d5gBrvJX4F/+jF//9GvN1uR9S/VIT5+0m9qkH77PP5tyP7bVh1RzLDW28NLFPPXifjfkB3I8M+fpNE2OliX3qwfss/lvbYe3m4fatmmO5oY2XJvapB++zOaDP4yPWbySpJ2ksANtRVdVNcyz64bb8s2dR5qQk49PyX6iq6rpZlHt3W/43SilLZipQVdW6qqo2zKLubvz3pGWO/W5VVd+ZZdn3teVf0ZsmbVs/7kdVVWuqqrpvDuX+M0n7fZvNeJqTUspOSV7Sdrh9jG2lqqprk5w37dCCTIzpmTy6Lf/lHTZw4lq3J7mk7fAhsynbCfHfFfHfeo1axP/kNfsxPmrBHNAVc0DrNWoxB/RrzNflflA/TZy3m9inbvT5WSVVVf2sowb2mfvRqonx0sQ+dcOYb2X9puU6N82x6NDGShP71A3xvzXrNxOaGCtN7FM3xH8razcAADRVU5+FfDbfymfzD7O+u9W1bppjUXOAOaD9GrWYAyavaY034r9L4r/1GrWIf2u81F0T5+0m9qkbPptr5X60amK8NLFP3TDmW1m/abnOTXMsOrSx0sQ+dUP8b83azcOaGC9N7FM3zAGtrN9AvdgsDJgP32/L71RK2W0HZV7Yll89mwtVVXV1kn+fdmjnJMfNpuw8e2Zb/l86KPuNTOxs/pCjSyn7dt+k2mofT/vN47WOT7J0Wv7fqqr60SzLto/ZF+3g/J3b8rfO8jpJcktbfnkHZeeb+Bf/vdTP+Kc3zAHmgF6qwxwwlzHfq2sN4/2gfpo4bzexT0l/n1XqwP3ojSbGSxP7lBjz7azfdK+JsdLEPiXin95rYqw0sU+J+O8VazcAADRVU5+FOuGz+d7x/bytDfP6bmIOSMwBvWRNo17Ev/jvpTrEvzVe6q6J83YT+5T4bK6d+9EbTYyXJvYpMebbWb/pXhNjpYl9SsQ/86OJ8dLEPiXmgF6xfgMDYLMwYD5s3saxRds7uZSyT5IntJW/qIPrXdiWP6GDsvNlZVv+itkWrKrqgSTXTzs0luHo06C0j6ftjqUe+NW2/IUdlP12Wtv6pFLK3jOcf3tbvpOdjdvPvbODsvNN/Iv/Xupn/NMb5gBzQC/VYQ7oaMz3+FrDeD+onybO203sU9LfZ5U6cD96o4nx0sQ+JcZ8O+s33WtirDSxT4n4p/eaGCtN7FMi/nvF2g0AAE3V1GehTvhsvnd8P29rw7y+m5gDEnNAL1nTqBfxL/57qQ7xb42XumvivN3EPiU+m2vnfvRGE+OliX1KjPl21m+618RYaWKfEvHP/GhivDSxT4k5oFes38AA2CwMmA8Ht+U3J/n5DOcf0Za/vKqq+zq43sVt+cM7KDtfdm/L39Vh+fbzH9dFW+qufTz9bB6v1T4W/222BSfH7A/bDs80Fr/dln/ybK+1jXP/o4Oy8038i/9e6mf80xvmAHNAL9VhDuh0zPfyWsN4P6ifJs7bTexT0t9nlTpwP3qjiQNOiPoAAB9ASURBVPHSxD4lxnw76zfda2KsNLFPifin95oYK03sUyL+e8XaDQAATdXUZ6FO+Gy+d3w/b2vDvL6bmAMSc0AvWdOoF/Ev/nupDvFvjZe6a+K83cQ+JT6ba+d+9EYT46WJfUqM+XbWb7rXxFhpYp8S8c/8aGK8NLFPiTmgV6zfwADYLAyYDy9py19aVdWWGc4/rC1//TbP2r4f76C+QdjYll/cYfn284ehT31XStk1yXPbDl8yj5d8bFt+Psfi36R1nLyylLLTji5QSnlhkgOmHbqyqqrvzb6J8078i/+eGED8D9IBpZTVpZQrSynrSikbSyl3TOb/tpTyu6WU9i+4DCtzgDmgJ2o0B3Q65uekRveD+mnivN3EPiX9fVapA/ejN5oYL03sU2LMt7N+070mxkoT+5SI/2HSlPWbJsZKE/uUiP9esXYDAEBTNfVZqBM+m+8B38/bWg3WdxNzQGIO6IkRW9OwxjtB/Iv/JLWKf2u81F0T5+0m9inx2Vw796M3mhgvTexTYsy3s37TvSbGShP7lIj/YdKUtZukmfHSxD4l5oBesX4DA2CzMKCnSim7JHlV2+Ev7qBY+y6eN3d42Z+05fcopSzvsI5eW9uW37fD8u3n/7cu2lJnr06ydFr+7iTfnI8LTT4otj8sdjoW288/ZHsnVlV1Y5LTpx3aP8lnSilLt1MkpZSjMrEI9pAtSX6/wzbOG/E/Rfz3Rt/ifwg8KsnLM7EYsFuShUn2msyfnOSvktxcSvk/k3E2lMwBU8wBvTH0c8Acx/xcDf39oH6aOG83sU9J/59Vhp370RtNjJcm9ikx5ttZv+leE2OliX1KxP8Qqv36TRNjpYl9SsR/r1i7AQCgqZr6LDQHPpvvDd/Pa23jUK/vJuaAacwBvTFKaxrWeCeIf/H/kKGPf2u81F0T5+0m9inx2Vw796M3mhgvTexTYsy3s37TvSbGShP7lIj/IVT7tZukmfHSxD4l5oBesX4Dg2OzMKDX/neSfabl70rrw/e27NaW/69OLlhV1fokG9oOP6KTOubB1W35p862YCnlgCT7tR0edH/6rpSyKsn/ajt8TlVV7X8Rqlfax+Evqqq6r8M62sfujO9bVVV/luSPkmyaPPTrSa4qpbyllPKMUsohpZTDSykvKKWsTnJRHn742JTklVVVDdMPsuJ/gvjv0gDivw52TnJqku+VUg4fdGO2wxwwwRzQpRrNAXMZ8x2r0f2gfpo4bzexT8kAnlWGnPvRG02Mlyb2KTHm21m/6V4TY6WJfUrEfx0N+/pNE2OliX1KxH+vWLsBAKCpmvos1CmfzXfJ9/Nqub6bmAMeYg7okjWNbbLG20b8N1ON4t8aL3XXxHm7iX1KfDbXzv3ojSbGSxP7lBjz7azfdK+JsdLEPiXiv46Gfe0maWa8NLFPiTmgV6zfwIDYLAzomVLKC5O8vu3wn1RVdecOirbv4nv/HC7fXmbZHOropW+15V88047mbX5rG8cG3Z++KqUsSvLZtPb7piTvmcfLDmQcVlX1viRPSPLxJOuSHJiJH46/neTaJFdkYhfdl2diN+wk+XqSp1ZV9ck5tHFeiP8W4r8LA4r/Qdmc5MIkb03y/CRPzsTu4U/KxOL2+7L1gsGhSb5eSjmwf83cMXNAC3NAF+oyB3Qx5ju9Ti3uB/XTxHm7iX2apg5t7Cf3o0tNjJcm9mmaOrSxn6zfdKGJsdLEPk1ThzaOgkas3zQxVprYp2nq0MahZu0GAICmavizUKd8Nt8F38+r3/puYg5oYw7owoitaVjjbSX+tzbo/vRVXeLfGi9118R5u4l9mqYObewn96NLTYyXJvZpmjq0sZ+s33ShibHSxD5NU4c2joJGrN0kzYyXJvZpmjq0cahZv4HBslkY0BOllCck+f/aDl+Q5C9mUbz9B6r23V5no/0HqvY6++0fM7H76UN2S3LGjgqVUvZP8sZtvDReStmpN02rhb9J8svT8g8m+e057MrbiUGOwwVJtuThHfBn8skkf1hV1WWdNGw+if+tiP/uDCL+B+GtSR5ZVdWzq6p6R1VVX66q6vtVVV1fVdUPqqo6v6qqP8rEAve7klTTyu6T5AullDKIhrczB2zFHNCdoZ8DuhzznRr6+0H9NHHebmKfdlDfMLaxn9yPLjQxXprYpx3UN4xt7CfrN3PUxFhpYp92UN8wtrHpGrF+08RYaWKfdlDfMLZxaFm7AQCgqUbgWahTPpvvju/nbd//be/ug6a96vqAf09IQwpBsMRIxYGI4tsgDNSZGtHpM9Q4YEcUpEqZOklb6AtOx7Y604G20/oytDOtjE5rBVtbOhZfUAtFiYHaGmhxquIESyGlzkhooQZJhJZEkvBy+sfeT7K79+69e+29e+11zv35zFx/7HXv7nV+5zm/X+7rdz3PyeT6u4kasIIacD4Xpaehxyv/HyL/HzL5/NfjpXU91u0eY9rwfVMc45jMxzn0mC89xrTh+6Y4xjHp3+yox1zpMaYN3zfFMfaui95N0me+9BjThu+b4hgnS/8Gjs9mYcC5lVKelNmDt/lfYj6Y5M/XWuvqT51prM8cTK31E0l+ZOn095ZSvnvdZ0opX5jk1iSPXfe1exrepJVSfiDJdy6dfkWt9R0jD+Xg67CU8shSyj9N8ttJXprkui0+dlOS95RS3nyyZo5K/p8m/3c3ofw/uJMG1vKu9qved3+t9RVJ/vrSj56V5M8dZHADqAGnqQG7a6EGHGDNn3Wtyc8H7emxbvcY04Gu1/N/S8zHlnrMlx5jOtD1el7z+jdb6DFXeozpQNfrOf8Prof+TY+50mNMB7rehcx/vRsAAHp1Qe+FzuTZ/O4mdD+jv7slNeA0NWB3E6oBB6fHu5L8X/O1exrepLWQ/3q8tK7Hut1jTAe6Xs//LTEfW+oxX3qM6UDX63nN699socdc6TGmA12v5/w/uB56N0mf+dJjTAe63oWsAfo3MA1XHnsAQNtKKdcl+Q9Jnjh3+q4kN9ZaP7rl19y79HqX/zvP8meWv/MYXpXkeXl4t9KS5IdLKS9K8hNJ3p3ZrrFfcPK+v5aHfzH6UJL5RsX9tdZTu9KWUq7fdjC11jsHjf4ISil/I7PdoOe9utb6j7f8/PXbXmvFfIy6DkspVyZ5U5Lnzg8ryRsz293+XUnuTvLIJE9K8pzMbmafevLeb05yQynlxlrru3cY67nJ/zPJ/4GOnP+TV2v90VLKNyZ5/tzplyf5qSMNSQ04mxowUAs1YE9rfttrnWs+YJUe63ZLMbV0rzIG8zG+lvJlWy3FZM0vamk+9G8eMql12FJMLa33MfR2L7tsav2blnJlWy3FJP8X6d0AAMDuWroXOgLP5gfy9/Pa6u8masAGasBALfz9nGPS411L/m/QwnpvIf/1eGldj3W7pZhaulcZg/kYX0v5sq2WYrLmF7U0Hz30b1rKlW21FFNL630Mvd3LLpta7yZpK1+21VJMasAi/Ru4WGwWBuyslPLHkvxKki+dO313km+otf7OgK/q7heqJKm1PlhKeWGSW5I8fe5HX3dyrHNPkr+U5K1z5z6+5r0fGDCkMuC9oyulvCzJq5dO/1it9XsGfM155mPsdfj3stjI+mSSF9Vab1l634NJ3pvkvaWUH0/yz5P8xZOfXZvkl0opz6i13rPDeHcm/88m/4eZQP634h9msZn1NaWUx9Va162Rg1EDzqYGDNNCDdjjmt/mWvuYD1jQY91uMKaW7lXGYD5G1GC+bNRgTNb8opbmQ/9mZjLrsMGYWlrvY+jmXvYMk+jfNJgrGzUYk/xfpHcDAAA7aPBeaFSezQ8zgWfz+rsDqQFnUwOGmUANaIUe72nyf7NJr/cW8l+Pl9b1WLcbjKmle5UxmI8RNZgvGzUYkzW/qKX5aLp/02CubNRgTC2t9zF0cy97hkn0bpIm82WjBmNSAxbp38AFcsWxBwC0qZTy2CRvS/JVc6c/ltnOn+8d+HX/d+n15w0cyzU5/QvV6L/Yr1Jr/XCSr03y2iSf2uIjv5rkq5Pct3T+rj0PbVJKKd+Z5DVZ/OXyXyf5rhGHsbwOH1VKefTA77hu6fXKdXjyC/HyL6QvX9HIWlBrfSDJy5K8fe70E5O8cuA4z0X+b0f+b2ci+d+K38gs1y57RJKvHHsQasB21IDttFAD9rzmN11r8vNBe3qs2z3GtMFo9yqNMB8D9JgvPca0gTW/SP9mSz3mSo8xbSD/23T0/k2PudJjTBvI/wH0bgAA6NUFvBfaiWfz25nI/Yz+7gBqwHbUgO1MpAa0Qo93cSzyv3Et5L8eL63rsW73GNMGns0tMh8D9JgvPca0gTW/SP9mSz3mSo8xbSD/23T03k3SZ770GNMGasAA+jcwPTYLAwYrpTwmya1J/sTc6f+X5Lm11nfv8JXLu4U+eeDnl9//B7XWj6185xHUWu+rtf7VJF+W5O9k9rDxQ5ntdP6JJHck+TdJbkzyp2utdyb5iqWveddoAx5ZKeXFmf2SNv/fpNcneWmttY41jpOd45fXzZMGfs3yWly3E+43JZm/afhAZmtgo1rrZ5N8/9Lpm0opo+zkLf+Hkf9nm0r+t+Ik///X0ulBjZLzUgOGUQPO1kINOMCaP+tak58P2tNj3e4xpk1GvleZPPOxvR7zpceYNrHmF+nfbKfHXOkxpk3kf5uO3b/pMVd6jGkT+b89vRsAAHp1Ee+FzsOz+bNN5X5Gf3d7asAwasDZplIDWqHHe4r8b1gL+a/HS+t6rNs9xrSJZ3OLzMf2esyXHmPaxJpfpH+znR5zpceYNpH/bTp27ybpM196jGkTNWB7+jcwTVceewBAW052Rb0lydfMnb43yfNqrb+x49fesfT6SwZ+/ilLr9+34zgOqtb6gSSvOjk2uWHp9a+v+c7R/gLKIZRSvi3JT2a2e/NlP5fkppObtkH2MB93ZPZ/mbrsS3J6fZ5leS2u++wzll7/6sBfUt+R5MEkV528fnxmYz3ojYT83538P22C+d+KTy69Xt4h/WDUgN2pAae1UAMOtObXXWuv8wFJn3W75ZgaulcZhfk4vJbzZZ2WY7LmFzU0H/o3D5P/p8n/HbR+LzvAUfo3LefKOi3HJP8X6d0AAMD2Wr4XOjbP5k+b4LN5/d0N1IDdqQGnTbAGtEKP92Hyv1Et5L8eL63rsW63HFND9yqjMB+H13K+rNNyTNb8oobmo8n+Tcu5sk7LMTW03kfR+r3sAP595SI1YHdqwAb6NzBdV2x+C8BMKeWPJvmlJF83d/oPk/yZWuuvneOr//vS66eXUh414PPP3vB9TTnZwfw5S6fffoyxHFIp5flJfjqLG1e+KclLaq2fOc6oTq2d5QfCa538wvv0Dd932eOWXt+17XWSpNb66ST3LJ2+dsh3DCX/xyH/j5r/rVjO9bvHuKgaMA41YDo14IBrftW1Jj8ftKfHut1jTAONda/SCvNxhh7zpceYBrLmF+nfrNFjrvQY00Dyv02j9296zJUeYxpI/p9B7wYAgF65FxqHZ/P+ft4mx+jvJmrAWNQAPY0t6PE+TP43qIX81+OldT3W7R5jGsizuUXm4ww95kuPMQ1kzS/Sv1mjx1zpMaaB5H+b/PvKRWrA7tSAM+jfwLTZLAzYSinl6iRvTnJp7vT9SZ5fa33Heb671vp7Sf7b3Kkrs/iLwyaXll7/8nnGMwHPSXL93Ou311oP/n+kG1Mp5Zsy2831j8ydfkuS7zhp1BzLrUuvLw347Ndn8ZfQ22utH1nz3o8vvX70gOtcds3S63t3+I6tyP9RyX/WKqVcm9O7jf+fEa6rBoxHDZiAQ675Fdea/HzQnh7rdo8x7WCse5VWmI81esyXHmPagTW/SP9mhR5zpceYdiD/G3OM/k2PudJjTDuQ/2vo3QAA0Cv3QqPybP549HfXUANGpQawlh7vKZeWXsv/iWsh//V4aV2PdbvHmHbg2dwi87FGj/nSY0w7sOYX6d+s0GOu9BjTDuR/Y/z7ypUuLb1WA7anBqyhfwPTZ7MwYKNSylVJ/l2Sb5g7/UCSb621/sc9XeaNS6//wpZj+/Ikf3Lu1H1J3ranMR3L3156/dqjjOJASik3JvmFJFfNnX5bkm+rtT54nFE95K1JPjn3+oaTNbaNm5deL6/pecs3n8/c8hpJklLKU5M8Zun0oN3zB1xL/o9L/nOWF2fx9/ePJLnjkBdUA0anBhzZSGv+8rUmPx+0p8e63WNMOxrrXqUV5mOFHvOlx5h2ZM0v0r85fa3ucqXHmHYk/9szav+mx1zpMaYdyf8V9G4AAOiVe6HReTZ/PPq7q6+nBoxLDeAserwPj03+N6aF/NfjpXU91u0eY9qRZ3OLzMcKPeZLjzHtyJpfpH9z+lrd5UqPMe1I/rfHv69cHJsacD5qwAr6N9AGm4UBZyqlXJnkDUmeN3f6U0leVGt96x4v9fokn5l7/cKTG/ZNlh/avaHWev/+hjWuUspNSW6cO/XuzHZD7UIp5U8l+fdJrp47/Z8y+wXxgeOM6mG11j9M8vNLp5fX2CmllC9N8oK5U59O8lNnfOS2pdfPLqV85TZjPPFXll6/v9b60QGf34r8H5f85yyllM9P8neXTv9irbUe8JpqwIjUgOMbcc03MR+0p8e63WNMuxrxXqUJ5uO0HvOlx5h2Zc0v0r9Z1GOu9BjTruR/W8bu3/SYKz3GtCv5f5reDQAAvXIvNC7P5o9Lf/c0NWBcagBn0eM9Rf43pIX81+OldT3W7R5j2pVnc4vMx2k95kuPMe3Kml+kf7Oox1zpMaZdyf+2+PeVK6kB56AGnKZ/Aw2ptTocDsfKI8kjkvxskjp3fCrJCw50vZ9YutY7k1x9xvu/Zen9DyR58jnHcGnpO+885/ddOeC9L0zy4NJcP/PIa2Bv85HkhiSfWPq+tyd51DFjXDHOpyz9OdQkzz/j/VefrNX5979mwzVKkvcvfea3kjxmi/E9d8X4fvAA8yD/5f+Fy/8x5iPJlyX55oGfeUKS31yx5p9ywHjVADXgQtWAMdd8C/PhaO/osW73GNMexnjwe5Utx3Hb0nfefMi4zcdWY+guX3qMaQ9jtOZHno/o36y6nvyX/0fP/w1jvLQ0xjt3/J7J9296zJUeY9rDGOX/EdZH9G4cDofD4XA4HCMeF/FeaF/373Pf59n8w9/VxP3MGPe7aaC/e3ItNUANuHA1YIz5iB7vquvJf/l/1GPMNd/CfDjaO3qs2z3GtIcxejZnPtaNobt86TGmPYzRmh95PtJA/6bHXOkxphbW+5bjmET+bxjjpaUx3rnj90y+d3Nyze7ypceY9jBGNeAI6yP6Nw7HuY8rA7Dev0ry7UvnXpnk9lLK9QO/6666eefWv5/ZTqqfe/L6a5P8SinlpbXW/3H5TaWURyb5y0l+aOnzP1Rr/eA2gymlfGGysgY+Yen1lWfEem+t9e4Nl3pPKeUtSX4hya/XWj+7YixPS/KKJC9Z+tEra623b/j+vTj0fJRSnpnkl5NcM3f6/Um+K8l1pZQhw72/1nrXkA8MUWv93VLKjyT53rnTP19K+VtJfrzW+uDlk6WUr0jyLzNbq5fdk+T7NlyjllJekdm6uOxZSX7r5DpvqbXW+c+UUh6f5LszWyvzf1b3JPkn28Y3gPyX/xcu/5NR1scfT/LmUsp7kvzbJG+stf7OmrE8JslNme14//lLP/7BWuvvrrnGPqgBasBFqwGjrPmG5oP29Fi3e4zpXMa4V5n7/DVJrl3z46uXXl97xp/Jh2qtn97mmkOZjwU95kuPMZ2LNb9I/+YhPeZKjzGdi/w/Tf8mSZ+50mNM5yL/F+jdAADQq27vhTybPzUGz+ZP6O8uUAPUgAtXAxI93hPyX/5ftPzX46V1PdbtHmM6F8/mFpmPBT3mS48xnYs1v0j/5iE95kqPMZ2L/D9N7+YhPeZLjzGdixqwQP8GWlInsGOZw+GY5pHF3TjPe1za8pqXMtvpdf6zn81sx9+fTXJrkt9f8f2/mOQRA2K7cw8xvW6L69w99/5PJPm1zBoYr0/ytjPG8QMj/1kfdD6S/IM9rqXbRpiPRyS5ZcW1P5LZL6BvSPKuk7U5//MHknz9gOu8ek2Mdyd568k6+bmT9f+pFe+7P8lz5L/8l/9NzcelFe//eJL/kuRNSX4yyRszqzGr8r4mee0I86AGqAEXqgaMteZbmQ9He8dYa3jpmpdywLrdY0x7+rMe617l5j3N/fXm4/Dz0WO+9BiTNd/0fOjfyH/5P738v3MPY3zdhjWx/P5J9W96zJUeY5L/7a356N04HA6Hw+FwOEY+er4Ximfzo85Ha/cz0d9VA9SAi14DDj0fl1a8X49X/sv/I+b/WGu+lflwtHeMtYaXrnkpns0NimlPf9aezZmPC5EvPcZkzTc9H5Pt3/SYKz3G1Nh6v3lPc3/o/L9zD2N83YY1sfz+SfVues2XHmNSA9pb89G/cTj2cqza1RPgaGqtt5VSXpDkdUk+7+R0SfLVJ8cqP53kZbXWzxx+hOdyTZIbNrznY0leXmv9mRHGwxq11s+UUr49sx1+v2PuR9clee6aj/1+kptqrf95wKW+5+Rz35fkqrnzj0/yjRs++8EkN9dabxtwvUmT//L/Antskmdv8b77kvzNWuu/OPB4jkINUAOAtvRYt1uIacR7lSaYj+NpIV+GaiEma36R/s1xtJArQ7UQk/yfhAvfv2khV4ZqISb5DwAA7FsL90Ln4Nl8I/R3j0cNUAMuMD1e+S//gab0WLdbiMmzuUXm43hayJehWojJml+kf3McLeTKUC3EJP8n4cL3bpI28mWoFmJSA4AWXXHsAQAsq7XekuRpSV6T2YO5df5rkhfVWl9Sa71vlMEN98NJbs9st9iz/O8k35/kiz2EnIZa67211hcn+bOZrbV1/iDJjyV5Wq311oHXqLXWf5Tkq5L8s5y93i97X2ZNsKf11Mi6TP7L/wvgjiSvSvLOJJ/c8jP/M8krM9vxu8tG1mVqgBoAtKWzup2kjZjGuFdpifk4nhbyZagWYrLmF+nfHEcLuTJUCzHJ/1Hp36zRQq4M1UJM8h8AANi3Fu6FBvBsvlH6u8ejBqgBF4Ae7xryX/4DbemsbidpIybP5haZj+NpIV+GaiEma36R/s1xtJArQ7UQk/wfld7NGVrIl6FaiEkNAFpTaq3HHgPAWqWUqzLbDfjJSZ6Q2a6/H05ye631A8cc2xCllM9J8swkX5TZzrdXZ3YT8+Ekv11rfd8Rh8cWSilflORZSb4gyaOT3JXZ7vPvrLU+uKdrlCRfnuQZSa5N8jlJPp3k45mtlXfVWj+yj2u1QP7Tu1LKFUmemuSLkzwxyePy8Pr4WJLfS/KbtdaPHm2QR6QGALSll7o9r5WYxrhXaYn5OI5W8mWIVmKy5hfp34yvlVwZopWY5P849G/WayVXhmglJvkPAADsUyv3Qpt4Nt8+/d3jUAPonR7vevIfoC291O15rcTk2dwi83EcreTLEK3EZM0v0r8ZXyu5MkQrMcn/cejdnK2VfBmilZjUAGDqbBYGAAAAAAAAAAAAAAAAAAAAAAAAE3XFsQcAAAAAAAAAAAAAAAAAAAAAAAAArGazMAAAAAAAAAAAAAAAAAAAAAAAAJgom4UBAAAAAAAAAAAAAAAAAAAAAADARNksDAAAAAAAAAAAAAAAAAAAAAAAACbKZmEAAAAAAAAAAAAAAAAAAAAAAAAwUTYLAwAAAAAAAAAAAAAAAAAAAAAAgImyWRgAAAAAAAAAAAAAAAAAAAAAAABMlM3CAAAAAAAAAAAAAAAAAAAAAAAAYKJsFgYAAAAAAAAAAAAAAAAAAAAAAAATZbMwAAAAAAAAAAAAAAAAAAAAAAAAmCibhQEAAAAAAAAAAAAAAAAAAAAAAMBE2SwMAAAAAAAAAAAAAAAAAAAAAAAAJspmYQAAAAAAAAAAAAAAAAAAAAAAADBRNgsDAAAAAAAAAAAAAAAAAAAAAACAibJZGAAAAAAAAAAAAAAAAAAAAAAAAEyUzcIAAAAAAAAAAAAAAAAAAAAAAABgomwWBgAAAAAAAAAAAAAAAAAAAAAAABNlszAAAAAAAAAAAAAAAAAAAAAAAACYKJuFAQAAAAAAAAAAAAAAAAAAAAAAwETZLAwAAAAAAAAAAAAAAAAAAAAAAAAmymZhAAAAAAAAAAAAAAAAAAAAAAAAMFE2CwMAAAAAAAAAAAAAAAAAAAAAAICJslkYAAAAAAAAAAAAAAAAAAAAAAAATJTNwgAAAAAAAAAAAAAAAAAAAAAAAGCibBYGAAAAAAAAAAAAAAAAAAAAAAAAE2WzMAAAAAAAAAAAAAAAAAAAAAAAAJgom4UBAAAAAAAAAAAAAAAAAAAAAADARNksDAAAAAAAAAAAAAAAAAAAAAAAACbKZmEAAAAAAAAAAAAAAAAAAAAAAAAwUTYLAwAAAAAAAAAAAAAAAAAAAAAAgImyWRgAAAAAAAAAAAAAAAAAAAAAAABMlM3CAAAAAAAAAAAAAAAAAAAAAAAAYKJsFgYAAAAAAAAAAAAAAAAAAAAAAAATZbMwAAAAAAAAAAAAAAAAAAAAAAAAmCibhQEAAAAAAAAAAAAAAAAAAAAAAMBE2SwMAAAAAAAAAAAAAAAAAAAAAAAAJspmYQAAAAAAAAAAAAAAAAAAAAAAADBR/x+Xhcjgi63IuAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from apd.aggregation.analysis import interactable_plot_multiple_charts, configs\n", + "from apd.aggregation.utils import jupyter_page_file, profile_with_yappi, yappi_package_matches\n", + "import yappi\n", + "\n", + "with profile_with_yappi():\n", + " plot = interactable_plot_multiple_charts()\n", + " plot()\n", + "\n", + "with jupyter_page_file() as output:\n", + " yappi.get_func_stats(filter_callback=lambda stat:\n", + " yappi_package_matches(stat, [\"apd.aggregation\"])\n", + " ).print_all(output)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r\n", + "Clock type: WALL\r\n", + "Ordered by: totaltime, desc\r\n", + "\r\n", + "name ncall tsub ttot tavg \r\n", + "..futures\\thread.py:52 _WorkItem.run 7 0.000092 3.204091 0.457727\r\n", + "..tion\\analysis.py:373 run_in_thread 1 0.000053 1.844382 1.844382\r\n", + "..38\\Lib\\threading.py:859 Thread.run 2/1 0.000025 1.839877 0.919939\r\n", + "..rrent\\futures\\thread.py:66 _worker 2/1 0.000022 1.839852 0.919926\r\n", + "..lectorEventLoop.run_until_complete 1 0.000027 1.839745 1.839745\r\n", + "..ndowsSelectorEventLoop.run_forever 1 0.000088 1.839611 1.839611\r\n", + "..WindowsSelectorEventLoop._run_once 17 0.000408 1.839497 0.108206\r\n", + "..alysis.py:327 plot_multiple_charts 1 1.643447 1.839309 1.839309\r\n", + "..py:635 ThreadPoolExecutor.__exit__ 1 0.000005 1.837286 1.837286\r\n", + "..py:230 ThreadPoolExecutor.shutdown 1 0.000009 1.837281 1.837281\r\n", + "..8\\Lib\\threading.py:979 Thread.join 1 0.000006 1.837272 1.837272\r\n", + "..:1017 Thread._wait_for_tstate_lock 1 0.000011 1.837263 1.837263\r\n", + "..gation\\analysis.py:291 plot_sensor 1 0.000000 1.407986 1.407986\r\n", + "..query.py:88 get_data_by_deployment 1 1.397146 1.397188 1.397188\r\n", + "..d\\aggregation\\query.py:41 get_data 1 1.283592 1.375576 1.375576\r\n", + "..lchemy\\orm\\query.py:3232 Query.all 6 0.004333 1.362649 0.227108\r\n", + "..ctors.py:319 SelectSelector.select 17 0.000177 1.362418 0.080142\r\n", + "..tors.py:313 SelectSelector._select 17 0.000069 1.362216 0.080130\r\n", + "..y\\orm\\query.py:3400 Query.__iter__ 6 0.000054 0.958316 0.159719\r\n", + "..:3425 Query._execute_and_instances 6 0.000073 0.956631 0.159439\r\n", + "..ine\\base.py:916 Connection.execute 9 0.000062 0.740051 0.082228\r\n", + "..:589 PGDialect_psycopg2.do_execute 11 0.000042 0.738361 0.067124\r\n", + "..y:1159 Connection._execute_context 9 0.000307 0.734166 0.081574\r\n", + "..:291 Select._execute_on_connection 6 0.000047 0.731436 0.121906\r\n", + ".. Connection._execute_clauseelement 6 0.000127 0.731389 0.121898\r\n", + "..b\\asyncio\\events.py:79 Handle._run 29 0.000071 0.476528 0.016432\r\n", + "..lchemy\\orm\\loading.py:35 instances 10836 0.002535 0.400000 0.000037\r\n", + "..esult.py:1257 ResultProxy.fetchall 6 0.000339 0.363463 0.060577\r\n", + "..py:1217 ResultProxy._fetchall_impl 6 0.000013 0.359396 0.059899\r\n", + "..query.py:3440 Query._get_bind_args 6 0.000028 0.225079 0.037513\r\n", + "..419 Query._connection_from_session 6 0.000021 0.224996 0.037499\r\n", + "..session.py:1057 Session.connection 6 0.000029 0.224975 0.037496\r\n", + "..:1136 Session._connection_for_bind 6 0.000016 0.224937 0.037489\r\n", + "..onTransaction._connection_for_bind 6 0.000041 0.224921 0.037487\r\n", + "..py:2248 Engine._contextual_connect 1 0.000009 0.224836 0.224836\r\n", + "...py:2282 Engine._wrap_pool_connect 1 0.000003 0.223656 0.223656\r\n", + "..pool\\base.py:354 QueuePool.connect 1 0.000005 0.223653 0.223653\r\n", + "..alchemy\\pool\\base.py:770 _checkout 1 0.000011 0.223648 0.223648\r\n", + "..lalchemy\\pool\\base.py:490 checkout 1 0.000034 0.223632 0.223632\r\n", + "..pool\\impl.py:112 QueuePool._do_get 1 0.000011 0.223585 0.223585\r\n", + "..y:305 QueuePool._create_connection 1 0.000003 0.223563 0.223563\r\n", + "...py:434 _ConnectionRecord.__init__ 1 0.000013 0.223560 0.223560\r\n", + "..py:644 _ConnectionRecord.__connect 1 0.000043 0.223547 0.223547\r\n", + "..egation\\analysis.py:313 4 0.000024 0.186344 0.046586\r\n", + "..184 clean_temperature_fluctuations 4 0.000000 0.186293 0.046573\r\n", + "..gregation\\query.py:116 subiterator 4 0.000000 0.186226 0.046557\r\n", + "..sycopg2\\_json.py:164 typecast_json 10822 0.016073 0.181846 0.000017\r\n", + "..n38\\Lib\\json\\__init__.py:299 loads 10822 0.032198 0.165773 0.000015\r\n", + "..regation\\query.py:24 with_database 2 0.000043 0.140628 0.070314\r\n", + ".._GeneratorContextManager.__enter__ 141 0.000202 0.140299 0.000995\r\n", + "..ngine\\__init__.py:85 create_engine 1 0.000022 0.138392 0.138392\r\n", + "..s.py:52 PlainEngineStrategy.create 1 0.000087 0.138370 0.138370\r\n", + "..lib._bootstrap>:986 _find_and_load 10/2 0.000144 0.134169 0.013417\r\n", + "..strap>:956 _find_and_load_unlocked 10/2 0.000091 0.134084 0.013408\r\n", + "..lib._bootstrap>:650 _load_unlocked 10/2 0.000096 0.131844 0.013184\r\n", + "..>:777 SourceFileLoader.exec_module 9/2 0.000063 0.131659 0.014629\r\n", + "..y\\engine\\strategies.py:106 connect 1 0.000007 0.125748 0.125748\r\n", + "...py:488 PGDialect_psycopg2.connect 1 0.000005 0.125741 0.125741\r\n", + "..es\\psycopg2\\__init__.py:82 connect 1 0.000015 0.125737 0.125737\r\n", + "..rap>:211 _call_with_frames_removed 14/2 0.000022 0.122924 0.008780\r\n", + "..\\decoder.py:332 JSONDecoder.decode 10822 0.046535 0.121966 0.000011\r\n", + "..es\\psycopg2\\extras.py:686 10830 0.021009 0.119481 0.000011\r\n", + "..s\\postgresql\\psycopg2.py:735 dbapi 1 0.000004 0.113976 0.113976\r\n", + "..es\\psycopg2\\__init__.py:1 1 0.000046 0.102701 0.102701\r\n", + "..on38\\Lib\\uuid.py:130 UUID.__init__ 10830 0.069266 0.098473 0.000009\r\n", + "..lection.exec_once_unless_exception 1 0.000007 0.097685 0.097685\r\n", + "..y:316 _ListenerCollection.__call__ 2 0.000017 0.097680 0.048840\r\n", + "..ListenerCollection._exec_once_impl 1 0.000016 0.097677 0.097677\r\n", + "..ion\\database.py:77 from_sql_result 10822 0.019580 0.089918 0.000008\r\n", + "..ngine\\strategies.py:183 on_connect 2 0.000008 0.075679 0.037840\r\n", + "..tgresql\\psycopg2.py:847 on_connect 2 0.000013 0.075669 0.037834\r\n", + "..tgresql\\psycopg2.py:815 on_connect 2 0.000012 0.075598 0.037799\r\n", + "...py:903 PGDialect_psycopg2.oneshot 1 0.000013 0.075586 0.075586\r\n", + "..02 PGDialect_psycopg2._hstore_oids 1 0.000026 0.075573 0.075573\r\n", + "..ycopg2\\extras.py:909 type.get_oids 1 0.000038 0.075520 0.075520\r\n", + "..gregation\\analysis.py:63 draw_date 4 0.000031 0.072437 0.018109\r\n", + "..\\matplotlib\\__init__.py:1535 inner 4 0.000037 0.072405 0.018101\r\n", + "..axes.py:1651 AxesSubplot.plot_date 4 0.000035 0.072294 0.018074\r\n", + "..xes\\_axes.py:1412 AxesSubplot.plot 4 0.000082 0.071675 0.017919\r\n", + ".._collections.py:121 result._asdict 10826 0.061631 0.063835 0.000006\r\n", + "..nal>:849 SourceFileLoader.get_code 9 0.000243 0.063569 0.007063\r\n", + "..._bootstrap>:1017 _handle_fromlist 20/18 0.000074 0.061614 0.003081\r\n", + "..nal>:969 SourceFileLoader.get_data 9 0.000317 0.060499 0.006722\r\n", + "..b._bootstrap>:549 module_from_spec 10/9 0.000052 0.059592 0.005959\r\n", + ".. ExtensionFileLoader.create_module 1 0.000007 0.059071 0.059071\r\n", + ".._base.py:1842 AxesSubplot.add_line 4 0.000108 0.055449 0.013862\r\n", + "..68 AxesSubplot._update_line_limits 4 0.000106 0.053296 0.013324\r\n", + "..tlib\\lines.py:1018 Line2D.get_path 10 0.000046 0.052416 0.005242\r\n", + "..lotlib\\lines.py:664 Line2D.recache 10 0.001214 0.052370 0.005237\r\n", + "...py:168 AxesSubplot.convert_xunits 48 0.000078 0.048491 0.001010\r\n", + "..b\\axis.py:1562 XAxis.convert_units 12 0.000042 0.048443 0.004037\r\n", + "..s\\matplotlib\\dates.py:1911 convert 6 0.000028 0.048202 0.008034\r\n", + "..s\\matplotlib\\dates.py:401 date2num 6 0.000082 0.048174 0.008029\r\n", + "..on_base.py:2063 vectorize.__call__ 4 0.000117 0.047604 0.011901\r\n", + "...py:2154 vectorize._vectorize_call 4 0.003677 0.047487 0.011872\r\n", + "..\\figure.py:1259 Figure.add_subplot 1 0.000035 0.043835 0.043835\r\n", + "..ubplots.py:18 AxesSubplot.__init__ 1 0.000041 0.043601 0.043601\r\n", + "..tplotlib\\dates.py:210 _to_ordinalf 8467 0.029289 0.041988 0.000005\r\n", + "..oder.py:343 JSONDecoder.raw_decode 10822 0.037424 0.037424 0.000003\r\n", + "..\\_base.py:378 AxesSubplot.__init__ 1 0.000143 0.036550 0.036550\r\n", + "..chemy\\orm\\loading.py:83 6 0.013648 0.033343 0.005557\r\n", + "..\\psycopg2\\extensions.py:1 1 0.000186 0.025350 0.025350\r\n", + "..\\axes\\_base.py:948 AxesSubplot.cla 1 0.000154 0.024886 0.024886\r\n", + "..lchemy\\util\\langhelpers.py:1506 go 1 0.000010 0.021983 0.021983\r\n", + "..ne\\strategies.py:194 first_connect 1 0.000039 0.021972 0.021972\r\n", + "..:715 PGDialect_psycopg2.initialize 1 0.000026 0.021725 0.021725\r\n", + "..2456 PGDialect_psycopg2.initialize 1 0.000048 0.021698 0.021698\r\n", + "..l\\psycopg2.py:747 _psycopg2_extras 2 0.000024 0.020241 0.010120\r\n", + "..:779 PGDialect_psycopg2.on_connect 1 0.000012 0.020232 0.020232\r\n", + "..:307 PGDialect_psycopg2.initialize 1 0.000057 0.019880 0.019880\r\n", + "..53 _process_plot_var_args.__call__ 8 0.000061 0.015955 0.001994\r\n", + ".. _process_plot_var_args._plot_args 4 0.000148 0.015865 0.003966\r\n", + "..\\axis.py:884 XAxis.set_tick_params 8 0.000121 0.015507 0.001938\r\n", + "..\\axis.py:687 _LazyTickList.__get__ 6/4 0.000042 0.013303 0.002217\r\n", + "..tplotlib\\axis.py:56 XTick.__init__ 6 0.000433 0.013213 0.002202\r\n", + "..n\\query.py:76 get_deployment_by_id 4 0.010913 0.013115 0.003279\r\n", + "..function__ internals>:2 atleast_1d 24 0.000048 0.012936 0.000539\r\n", + "..y\\core\\shape_base.py:24 atleast_1d 24 0.000157 0.012825 0.000534\r\n", + "..b\\cbook\\__init__.py:1320 _check_1d 8 0.000033 0.012712 0.001589\r\n", + "..mpy\\core\\_asarray.py:88 asanyarray 72 0.000061 0.012631 0.000175\r\n", + "..xes\\_base.py:2716 AxesSubplot.grid 2 0.000022 0.012290 0.006145\r\n", + "..matplotlib\\axis.py:1456 XAxis.grid 4 0.000042 0.012264 0.003066\r\n", + "..ages\\psycopg2\\extras.py:1 1 0.000066 0.010984 0.010984\r\n", + "..chemy\\orm\\loading.py:84 10830 0.010873 0.010873 0.000001\r\n", + "..otlib\\lines.py:269 Line2D.__init__ 30 0.001371 0.010610 0.000354\r\n", + "..on-68gteq6k\\lib\\re.py:287 _compile 85 0.000336 0.010565 0.000124\r\n", + "..q6k\\lib\\sre_compile.py:759 compile 12 0.000126 0.009982 0.000832\r\n", + "..es\\_axes.py:299 AxesSubplot.legend 1 0.000023 0.009283 0.009283\r\n", + "..tlib\\legend.py:306 Legend.__init__ 1 0.000569 0.009178 0.009178\r\n", + "..ct_psycopg2._check_unicode_returns 1 0.000050 0.009017 0.009017\r\n", + "..portlib._bootstrap>:890 _find_spec 10 0.000165 0.009003 0.000900\r\n", + "..thon38\\Lib\\uuid.py:231 UUID.__eq__ 10834 0.006940 0.008965 0.000001\r\n", + "..y\\util\\_collections.py:112 __new__ 10830 0.004995 0.008821 0.000001\r\n", + "..my\\engine\\default.py:415 1 0.000011 0.008803 0.008803\r\n", + "..ngine\\default.py:378 check_unicode 2 0.000053 0.008793 0.004396\r\n", + "..bootstrap_external>:1334 find_spec 10 0.000027 0.008728 0.000873\r\n", + "..bootstrap_external>:1302 _get_spec 10 0.000084 0.008701 0.000870\r\n", + "..ib\\axis.py:967 XAxis.set_clip_path 2 0.000036 0.008564 0.004282\r\n", + "..e.py:1134 Connection._execute_text 3 0.000057 0.008541 0.002847\r\n", + "..es\\matplotlib\\pyplot.py:427 figure 1 0.000053 0.008060 0.008060\r\n", + "..xternal>:1431 FileFinder.find_spec 17 0.000331 0.007932 0.000467\r\n", + "..ion-68gteq6k\\lib\\re.py:248 compile 10 0.000012 0.007849 0.000785\r\n", + "..d_bases.py:3325 new_figure_manager 1 0.000026 0.007841 0.007841\r\n", + "..tlib\\figure.py:275 Figure.__init__ 1 0.000636 0.007679 0.007679\r\n", + ".._psycopg2._get_server_version_info 1 0.000022 0.007530 0.007530\r\n", + "..end.py:727 Legend._init_legend_box 1 0.000729 0.007464 0.007464\r\n", + ".._bootstrap_external>:80 _path_stat 40 0.000085 0.007435 0.000186\r\n", + "..py:1293 Connection._cursor_execute 2 0.000014 0.007370 0.003685\r\n", + "..8gteq6k\\lib\\sre_parse.py:937 parse 12 0.000138 0.007321 0.000610\r\n", + "..ation\\analysis.py:191 datapoint_ok 10826 0.007280 0.007280 0.000001\r\n", + "..rrent\\futures\\thread.py:158 submit 7 0.000144 0.007162 0.001023\r\n", + "..6k\\lib\\sre_parse.py:435 _parse_sub 59/12 0.000420 0.007081 0.000120\r\n", + "..s.py:129 AxesSubplot.update_params 1 0.000018 0.006972 0.006972\r\n", + "..ec.py:586 SubplotSpec.get_position 1 0.000379 0.006954 0.006954\r\n", + "..gteq6k\\lib\\sre_parse.py:493 _parse 75/14 0.002524 0.006897 0.000092\r\n", + "..dPoolExecutor._adjust_thread_count 7 0.000109 0.006843 0.000978\r\n", + "..kages\\psycopg2\\_json.py:1 1 0.000022 0.006798 0.006798\r\n", + ":1 Select. 8 0.000037 0.006789 0.000849\r\n", + "..sql\\elements.py:405 Select.compile 8 0.000033 0.006752 0.000844\r\n", + "..l\\elements.py:470 Select._compiler 8 0.000041 0.006719 0.000840\r\n", + "..y:527 PGCompiler_psycopg2.__init__ 8 0.000111 0.006678 0.000835\r\n", + "..otlib\\axis.py:1944 XAxis._get_tick 3 0.000021 0.006665 0.002222\r\n", + "..otlib\\axis.py:2231 YAxis._get_tick 3 0.000021 0.006593 0.002198\r\n", + "..y:274 PGCompiler_psycopg2.__init__ 8 0.000058 0.006562 0.000820\r\n", + ":1 DataPoint.__init__ 10822 0.006522 0.006522 0.000001\r\n", + "..py:349 PGCompiler_psycopg2.process 8 0.000029 0.006504 0.000813\r\n", + "..rs.py:86 Select._compiler_dispatch 97/8 0.000331 0.006475 0.000067\r\n", + "..5 PGCompiler_psycopg2.visit_select 8 0.000210 0.006430 0.000804\r\n", + "..ib\\axis.py:334 XTick._apply_params 14 0.000333 0.006152 0.000439\r\n", + "..\\artist.py:731 XAxis.set_clip_path 26 0.000415 0.005825 0.000224\r\n", + "..\\Lib\\threading.py:834 Thread.start 2 0.000033 0.005717 0.002858\r\n", + "..ib\\threading.py:270 Condition.wait 4 0.000112 0.005571 0.001393\r\n", + "..egation\\analysis.py:212 8613 0.005513 0.005513 0.000001\r\n", + "..tplotlib\\artist.py:1095 Line2D.set 70 0.000373 0.005507 0.000079\r\n", + "..38\\Lib\\threading.py:540 Event.wait 2 0.000027 0.005495 0.002747\r\n", + "..otlib\\axis.py:825 XAxis._set_scale 16 0.000049 0.005371 0.000336\r\n", + "..ap_external>:90 _path_is_mode_type 13 0.000052 0.005363 0.000413\r\n", + "..ootstrap_external>:99 _path_isfile 12 0.000029 0.005197 0.000433\r\n", + "..et_default_locators_and_formatters 16 0.000126 0.005196 0.000325\r\n", + "..base.py:553 AxesSubplot._init_axis 1 0.000047 0.005155 0.005155\r\n", + "...py:89 HandlerLine2D.legend_artist 4 0.000047 0.004979 0.001245\r\n", + "..lib\\artist.py:974 Rectangle.update 140 0.001036 0.004733 0.000034\r\n", + "..y:229 HandlerLine2D.create_artists 4 0.000094 0.004674 0.001168\r\n", + "..s\\matplotlib\\axis.py:841 XAxis.cla 12 0.000087 0.004533 0.000378\r\n", + "..my\\sql\\compiler.py:2127 8 0.000069 0.004473 0.000559\r\n", + "..iler_psycopg2._label_select_column 29 0.000356 0.004404 0.000152\r\n", + "..hes.py:260 Rectangle.get_transform 18 0.000077 0.004024 0.000224\r\n", + "..plotlib\\axis.py:744 XAxis.__init__ 2 0.000070 0.003973 0.001986\r\n", + "<__array_function__ internals>:2 dot 67 0.000177 0.003854 0.000058\r\n", + "..\\transforms.py:1986 Affine2D.scale 13 0.000153 0.003812 0.000293\r\n", + "..ib\\axis.py:229 XTick.set_clip_path 6 0.000032 0.003711 0.000619\r\n", + "..:776 Rectangle.get_patch_transform 18 0.000038 0.003626 0.000201\r\n", + ".. Rectangle._update_patch_transform 18 0.000235 0.003587 0.000199\r\n", + "..se.py:2873 AxesSubplot.tick_params 2 0.000242 0.003572 0.001786\r\n", + "..tlib\\artist.py:217 Rectangle.stale 171.. 0.002093 0.003507 0.000002\r\n", + "..sSelectorEventLoop.run_in_executor 6 0.000084 0.003206 0.000534\r\n", + "..\\__init__.py:1640 normalize_kwargs 74 0.002561 0.003200 0.000043\r\n", + "..icker.py:2848 AutoLocator.__init__ 16 0.000044 0.003190 0.000199\r\n", + "..icker.py:2051 AutoLocator.__init__ 16 0.000061 0.003118 0.000195\r\n", + "..t.py:1240 ResultProxy.process_rows 9 0.000037 0.003098 0.000344\r\n", + "..y\\engine\\result.py:1253 9 0.003062 0.003062 0.000340\r\n", + "..ker.py:2126 AutoLocator.set_params 16 0.000144 0.003058 0.000191\r\n", + "..gine\\base.py:908 Connection.scalar 2 0.000026 0.002811 0.001405\r\n", + "..es\\numpy\\core\\_methods.py:32 _amin 2 0.000005 0.002705 0.001352\r\n", + "..10 PGCompiler_psycopg2.visit_label 29 0.000329 0.002675 0.000092\r\n", + "..ges\\numpy\\core\\_methods.py:47 _all 1 0.000018 0.002555 0.002555\r\n", + "..matplotlib\\text.py:170 Text.update 65 0.000382 0.002549 0.000039\r\n", + "..b\\patches.py:42 Rectangle.__init__ 7 0.000199 0.002508 0.000358\r\n", + "..teq6k\\lib\\sre_compile.py:598 _code 12 0.000055 0.002475 0.000206\r\n", + "..ation-68gteq6k\\lib\\re.py:186 match 70 0.000140 0.002414 0.000034\r\n", + "..ages\\psycopg2\\_range.py:1 1 0.000042 0.002367 0.002367\r\n", + "..tplotlib\\text.py:121 Text.__init__ 24 0.000320 0.002354 0.000098\r\n", + "..ent\\base.py:295 dispatcher.__get__ 10 0.000075 0.002312 0.000231\r\n", + "..yncio\\events.py:756 new_event_loop 1 0.000022 0.002309 0.002309\r\n", + "..ib\\axis.py:485 XTick._get_gridline 3 0.000044 0.002301 0.000767\r\n", + "..ctorEventLoopPolicy.new_event_loop 1 0.000014 0.002285 0.002285\r\n", + ".._WindowsSelectorEventLoop.__init__ 1 0.000031 0.002271 0.002271\r\n", + ".. _GeneratorContextManager.__exit__ 142.. 0.000276 0.002267 0.000016\r\n", + "..arkers.py:222 MarkerStyle.__init__ 38 0.000106 0.002225 0.000059\r\n", + "..alect_psycopg2.get_isolation_level 1 0.000009 0.002224 0.002224\r\n", + "..otlib\\axes\\_base.py:363 4 0.000021 0.002202 0.000550\r\n", + "..\\orm\\session.py:1554 Session.query 6 0.000028 0.002200 0.000367\r\n", + "..1 _process_plot_var_args._makeline 4 0.000055 0.002180 0.000545\r\n", + "..y:930 AxesSubplot._gen_axes_spines 1 0.000012 0.002176 0.002176\r\n", + "..my\\orm\\query.py:164 Query.__init__ 6 0.000024 0.002172 0.000362\r\n", + "..lotlib\\axes\\_base.py:945 5 0.000015 0.002164 0.000433\r\n", + "..lib\\ticker.py:2103 _validate_steps 16 0.001337 0.002151 0.000134\r\n", + "..plotlib\\spines.py:517 linear_spine 4 0.000037 0.002150 0.000537\r\n", + "..m\\query.py:193 Query._set_entities 6 0.000089 0.002148 0.000358\r\n", + "..init__.py:791 RcParams.__getitem__ 1343 0.001641 0.002147 0.000002\r\n", + "..sSelectorEventLoop._make_self_pipe 1 0.000029 0.002112 0.002112\r\n", + "..\\numpy\\core\\_asarray.py:16 asarray 176 0.000180 0.002109 0.000012\r\n", + "..psycopg2\\_range.py:290 RangeCaster 1 0.000006 0.002101 0.002101\r\n", + "..py:133 GridSpec.get_grid_positions 1 0.000057 0.002062 0.002062\r\n", + "..lchemy\\event\\base.py:87 5 0.000156 0.002010 0.000402\r\n", + "..hon38\\Lib\\socket.py:579 socketpair 1 0.000134 0.001971 0.001971\r\n", + "..kers.py:289 MarkerStyle.set_marker 42 0.000327 0.001957 0.000047\r\n", + "..lib\\sre_parse.py:254 Tokenizer.get 1519 0.001009 0.001919 0.000001\r\n", + "..lotlib\\spines.py:36 Spine.__init__ 4 0.000116 0.001912 0.000478\r\n", + ".._axes.py:147 AxesSubplot.set_title 4 0.000101 0.001903 0.000476\r\n", + "..ap_external>:578 _compile_bytecode 9 0.000053 0.001885 0.000209\r\n", + "..ray_function__ internals>:2 cumsum 3 0.000009 0.001882 0.000627\r\n", + "..alchemy\\engine\\url.py:221 make_url 1 0.000009 0.001880 0.001880\r\n", + "..ine\\url.py:234 _parse_rfc1738_args 1 0.000020 0.001870 0.001870\r\n", + "..py\\core\\fromnumeric.py:2358 cumsum 3 0.000009 0.001860 0.000620\r\n", + "..y\\core\\fromnumeric.py:55 _wrapfunc 3 0.000014 0.001851 0.000617\r\n", + "..my\\util\\deprecations.py:115 warned 21/20 0.000099 0.001850 0.000088\r\n", + "..ery.py:4539 _ColumnEntity.__init__ 32/7 0.000771 0.001838 0.000057\r\n", + "..mpy\\core\\fromnumeric.py:42 _wrapit 3 0.000024 0.001835 0.000612\r\n", + "..otlib\\artist.py:74 Figure.__init__ 88 0.001132 0.001813 0.000021\r\n", + "..pg2\\extras.py:1007 CompositeCaster 1 0.000009 0.001811 0.001811\r\n", + "..py:1960 Affine2D.rotate_deg_around 18 0.000105 0.001796 0.000100\r\n", + "<__array_function__ internals>:2 any 76 0.000151 0.001772 0.000023\r\n", + "..q6k\\lib\\sre_compile.py:71 _compile 111.. 0.000776 0.001769 0.000016\r\n", + "..nContext_psycopg2.get_result_proxy 9 0.000073 0.001769 0.000197\r\n", + "..ib\\axis.py:603 YTick._get_gridline 3 0.000039 0.001746 0.000582\r\n", + "..ttr.py:227 _EmptyListener.__init__ 77 0.000409 0.001742 0.000023\r\n", + "..b\\axis.py:459 XTick._get_tick1line 3 0.000093 0.001732 0.000577\r\n", + "...py:1247 BboxTransformFrom.__add__ 78 0.000260 0.001679 0.000022\r\n", + "..result.py:767 ResultProxy.__init__ 9 0.000119 0.001671 0.000186\r\n", + "..ction__ internals>:2 unravel_index 1 0.000005 0.001658 0.001658\r\n", + "..s\\matplotlib\\colors.py:157 to_rgba 51 0.000440 0.001653 0.000032\r\n", + "..nction__ internals>:2 column_stack 12 0.000039 0.001614 0.000135\r\n", + "..forms.py:817 Bbox.update_from_path 4 0.000067 0.001561 0.000390\r\n", + "..ery.py:3929 Query._compile_context 6 0.000129 0.001552 0.000259\r\n", + "...py:793 ResultProxy._init_metadata 9 0.000094 0.001552 0.000172\r\n", + "..t.py:49 Spine._stale_axes_callback 302 0.000583 0.001530 0.000005\r\n", + "..s.py:880 memoized_property.__get__ 99/89 0.000358 0.001519 0.000015\r\n", + "..lib\\shape_base.py:597 column_stack 12 0.000149 0.001496 0.000125\r\n", + "..e\\fromnumeric.py:73 _wrapreduction 85 0.000478 0.001495 0.000018\r\n", + "..4 PGCompiler_psycopg2.visit_column 37 0.000844 0.001478 0.000040\r\n", + "..numpy\\core\\fromnumeric.py:2189 any 76 0.000191 0.001477 0.000019\r\n", + "..ycopg2\\extras.py:805 HstoreAdapter 1 0.000007 0.001458 0.001458\r\n", + "..ult.py:269 ResultMetaData.__init__ 9 0.000173 0.001445 0.000161\r\n", + "..res\\_base.py:517 Future.set_result 7 0.000077 0.001440 0.000206\r\n", + "..ger.py:619 FontProperties.__init__ 23 0.000332 0.001434 0.000062\r\n", + "..unction__ internals>:2 concatenate 29 0.000060 0.001405 0.000048\r\n", + "..y:2462 composite_transform_factory 78 0.000261 0.001376 0.000018\r\n", + "..sql\\operators.py:358 Column.__eq__ 10/5 0.000033 0.001365 0.000136\r\n", + "..sql\\elements.py:740 Column.operate 5 0.000015 0.001345 0.000269\r\n", + "..ansform.contains_branch_seperately 4 0.000037 0.001339 0.000335\r\n", + "..b\\axis.py:574 YTick._get_tick1line 3 0.000036 0.001315 0.000438\r\n", + "..teGenericTransform.contains_branch 4 0.000029 0.001287 0.000322\r\n", + ":1 Comparator. 5 0.000021 0.001285 0.000257\r\n", + "..\\sqlalchemy\\event\\api.py:34 listen 3 0.000015 0.001278 0.000426\r\n", + "..\\type_api.py:64 Comparator.operate 5 0.000039 0.001264 0.000253\r\n", + ".. QueryEventsDispatch._for_instance 8 0.000024 0.001262 0.000158\r\n", + "..se.py:325 Future._invoke_callbacks 7 0.000055 0.001261 0.000180\r\n", + "..b\\axis.py:589 YTick._get_tick2line 3 0.000027 0.001250 0.000417\r\n", + "..116 QueryEventsDispatch._for_class 8 0.000031 0.001238 0.000155\r\n", + "..ine\\base.py:69 Connection.__init__ 2 0.000042 0.001217 0.000608\r\n", + ".._comparator.py:41 _boolean_compare 5 0.000056 0.001207 0.000241\r\n", + "..py:77 QueryEventsDispatch.__init__ 8 0.000082 0.001206 0.000151\r\n", + "..cio\\futures.py:364 _call_set_state 6 0.000042 0.001206 0.000201\r\n", + ".. _ClsLevelDispatch.update_subclass 77 0.000399 0.001202 0.000016\r\n", + "..sycopg2\\extensions.py:146 make_dsn 1 0.000017 0.001179 0.001179\r\n", + "..ib\\axis.py:1504 XAxis.update_units 14 0.000096 0.001168 0.000083\r\n", + "..cbook\\__init__.py:1933 _setattr_cm 280 0.000727 0.001165 0.000004\r\n", + "..ctorEventLoop.call_soon_threadsafe 6 0.000037 0.001160 0.000193\r\n", + "..t\\registry.py:193 _EventKey.listen 4/3 0.000077 0.001157 0.000289\r\n", + "..xesSubplot._set_title_offset_trans 5 0.000122 0.001149 0.000230\r\n", + "..er.py:72 HandlerLine2D.update_prop 8 0.000034 0.001139 0.000142\r\n", + "..__init__.py:2073 _check_isinstance 94 0.000869 0.001139 0.000012\r\n", + "..offsetbox.py:783 TextArea.__init__ 5 0.000093 0.001137 0.000227\r\n", + "..MetaData._merge_cursor_description 9 0.000098 0.001134 0.000126\r\n", + "..py:1240 Line2D.set_markerfacecolor 30 0.000106 0.001118 0.000037\r\n", + "..5 CompositeGenericTransform.__eq__ 12/8 0.000035 0.001090 0.000091\r\n", + "..es.py:341 Rectangle._set_facecolor 20 0.000067 0.001055 0.000053\r\n", + "..ms.py:1639 TransformWrapper.__eq__ 4 0.000010 0.001052 0.000263\r\n", + ".._psycopg2._get_default_schema_name 1 0.000004 0.001048 0.001048\r\n", + "..y:163 TransformedBbox.set_children 149 0.000873 0.001042 0.000007\r\n", + "..rms.py:2093 BlendedAffine2D.__eq__ 4 0.000027 0.001042 0.000260\r\n", + "..\\sre_parse.py:233 Tokenizer.__next 1696 0.001032 0.001032 0.000001\r\n", + "..wsSelectorEventLoop._write_to_self 6 0.000028 0.001026 0.000171\r\n", + "..t_comparator.py:359 _check_literal 5 0.000066 0.001021 0.000204\r\n", + "..s.py:1709 IdentityTransform.__eq__ 9/8 0.000612 0.001013 0.000113\r\n", + "..\\spines.py:226 Spine.register_axis 4 0.000008 0.001009 0.000252\r\n", + "..b\\axis.py:470 XTick._get_tick2line 3 0.000027 0.000999 0.000333\r\n", + ".._api.py:527 NullType._dialect_info 26 0.000128 0.000985 0.000038\r\n", + "..matplotlib\\spines.py:238 Spine.cla 4 0.000004 0.000982 0.000246\r\n", + "..9 PoolEventsDispatch._for_instance 2 0.000005 0.000975 0.000488\r\n", + "..:116 PoolEventsDispatch._for_class 2 0.000007 0.000971 0.000485\r\n", + "...py:77 PoolEventsDispatch.__init__ 2 0.000046 0.000963 0.000482\r\n", + "..lements.py:4145 Column._bind_param 5 0.000049 0.000942 0.000188\r\n", + "..pe_api.py:450 VARCHAR.dialect_impl 34 0.000097 0.000924 0.000027\r\n", + "..arkers.py:244 MarkerStyle._recache 80 0.000208 0.000923 0.000012\r\n", + "..nsforms.py:1972 Affine2D.translate 36 0.000172 0.000893 0.000025\r\n", + "..ents.py:942 BindParameter.__init__ 5 0.000112 0.000893 0.000179\r\n", + "..6k\\lib\\abc.py:96 __instancecheck__ 141 0.000157 0.000879 0.000006\r\n", + ".._function__ internals>:2 full_like 4 0.000014 0.000867 0.000217\r\n", + "..ist.py:358 Rectangle.set_transform 85 0.000295 0.000867 0.000010\r\n", + "..umpy\\core\\numeric.py:341 full_like 4 0.000030 0.000839 0.000210\r\n", + "..GIdentifierPreparer_psycopg2.quote 105 0.000165 0.000838 0.000008\r\n", + "..tplotlib\\artist.py:1006 140 0.000107 0.000834 0.000006\r\n", + "..piler_psycopg2._setup_select_stack 8 0.000088 0.000830 0.000104\r\n", + "..ib\\transforms.py:727 Bbox.__init__ 41 0.000282 0.000827 0.000020\r\n", + "..text_psycopg2.get_result_processor 30 0.000083 0.000823 0.000027\r\n", + "..otlib\\axis.py:544 YTick._get_text1 3 0.000044 0.000805 0.000268\r\n", + "..ry.py:4056 Query._simple_statement 6 0.000093 0.000802 0.000134\r\n", + "..sforms.py:1940 Affine2D.rotate_deg 18 0.000166 0.000798 0.000044\r\n", + "..\\patches.py:704 Rectangle.__init__ 2 0.000027 0.000793 0.000396\r\n", + "..threading.py:394 Semaphore.acquire 7 0.000100 0.000787 0.000112\r\n", + "..function__ internals>:2 empty_like 4 0.000014 0.000772 0.000193\r\n", + ":1 select 8 0.000064 0.000770 0.000096\r\n", + "..otlib\\axis.py:559 YTick._get_text2 3 0.000038 0.000762 0.000254\r\n", + "..CompositeGenericTransform.__init__ 69 0.000255 0.000761 0.000011\r\n", + "..ernal>:1479 FileFinder._fill_cache 1 0.000077 0.000740 0.000740\r\n", + ".. NullType._cached_result_processor 30 0.000178 0.000739 0.000025\r\n", + "...py:978 Rectangle._update_property 42 0.000194 0.000726 0.000017\r\n", + "..my\\engine\\result.py:463 6 0.000119 0.000720 0.000120\r\n", + "..lib\\transforms.py:782 from_extents 20 0.000102 0.000710 0.000036\r\n", + ":1 Select.__init__ 8 0.000126 0.000706 0.000088\r\n", + "...py:3065 Select._get_display_froms 8 0.000363 0.000704 0.000088\r\n", + "..hon38\\Lib\\contextlib.py:238 helper 141 0.000235 0.000704 0.000005\r\n", + "..arse.py:164 SubPattern.__getitem__ 707 0.000520 0.000702 0.000001\r\n", + "..tplotlib\\ticker.py:2118 _staircase 16 0.000089 0.000697 0.000044\r\n", + "..ok\\__init__.py:2108 _check_in_list 449 0.000565 0.000690 0.000002\r\n", + "..lines.py:1143 Line2D.set_linestyle 34 0.000284 0.000683 0.000020\r\n", + "..orm\\session.py:1002 Session.commit 1 0.000010 0.000682 0.000682\r\n", + "..ult.py:924 ResultProxy._soft_close 9 0.000043 0.000679 0.000075\r\n", + "..n.py:500 SessionTransaction.commit 1 0.000042 0.000673 0.000673\r\n", + "..xternal>:1265 _path_importer_cache 19 0.000032 0.000670 0.000035\r\n", + "..sSelectorEventLoop._read_from_self 6 0.000062 0.000662 0.000110\r\n", + "..otlib\\axis.py:427 XTick._get_text1 3 0.000032 0.000661 0.000220\r\n", + "..hreading.py:249 Condition.__exit__ 61 0.000614 0.000660 0.000011\r\n", + "..b\\sre_compile.py:536 _compile_info 12 0.000120 0.000648 0.000054\r\n", + "..1254 Line2D.set_markerfacecoloralt 30 0.000080 0.000645 0.000021\r\n", + "..93 vectorize._get_ufunc_and_otypes 4 0.000076 0.000640 0.000160\r\n", + "..sql\\type_api.py:546 NullType.adapt 13 0.000055 0.000638 0.000049\r\n", + "..Preparer_psycopg2._requires_quotes 22 0.000133 0.000636 0.000029\r\n", + "..otstrap_external>:1252 _path_hooks 1 0.000024 0.000636 0.000636\r\n", + "..1333 Connection._safe_close_cursor 9 0.000021 0.000635 0.000071\r\n", + "..transforms.py:1924 Affine2D.rotate 18 0.000301 0.000632 0.000035\r\n", + "..ms.py:986 TransformedBbox.__init__ 21 0.000147 0.000625 0.000030\r\n", + "..hes.py:348 Rectangle.set_facecolor 12 0.000023 0.000619 0.000052\r\n", + "..>:1010 SourceFileLoader.path_stats 9 0.000024 0.000617 0.000069\r\n", + "..egation-68gteq6k\\lib\\re.py:201 sub 5 0.000024 0.000614 0.000123\r\n", + "..ray_function__ internals>:2 hstack 16 0.000025 0.000608 0.000038\r\n", + "..ing>:1 PGDialect_psycopg2.__init__ 2 0.000012 0.000593 0.000296\r\n", + "..\\matplotlib\\transforms.py:763 unit 19 0.000080 0.000585 0.000031\r\n", + "..nghelpers.py:1167 constructor_copy 13 0.000121 0.000583 0.000045\r\n", + "..ase.py:3767 AxesSubplot.xaxis_date 4 0.000017 0.000583 0.000146\r\n", + "..sion.py:3236 sessionmaker.__call__ 1 0.000014 0.000579 0.000579\r\n", + "..qlalchemy\\orm\\base.py:222 generate 6 0.000049 0.000578 0.000096\r\n", + "..nd.py:558 Legend._set_artist_props 9 0.000085 0.000576 0.000064\r\n", + "..iler_psycopg2._compose_select_body 8 0.000089 0.000575 0.000072\r\n", + "..otlib\\axis.py:1812 XAxis.axis_date 4 0.000045 0.000566 0.000141\r\n", + ":1 Session.__init__ 1 0.000005 0.000563 0.000563\r\n", + "..velDispatch._assign_cls_collection 77 0.000249 0.000561 0.000007\r\n", + "..atplotlib\\lines.py:632 Line2D.axes 42 0.000206 0.000552 0.000013\r\n", + "..rm\\session.py:655 Session.__init__ 1 0.000024 0.000551 0.000551\r\n", + "..y\\orm\\session.py:893 Session.begin 3 0.000013 0.000548 0.000183\r\n", + "..b\\artist.py:336 Rectangle.pchanged 373 0.000436 0.000548 0.000001\r\n", + "..selectable.py:2760 Select.__init__ 8 0.000175 0.000540 0.000068\r\n", + "..ansforms.py:1701 Affine2D.__init__ 165 0.000352 0.000537 0.000003\r\n", + "..py:220 SessionTransaction.__init__ 3 0.000029 0.000535 0.000178\r\n", + "..tist.py:804 Rectangle.get_animated 1714 0.000533 0.000533 0.000000\r\n", + "..nsforms.py:126 Affine2D.invalidate 76 0.000275 0.000533 0.000007\r\n", + "..38\\Lib\\socket.py:285 socket.accept 1 0.000037 0.000532 0.000532\r\n", + ".._psycopg2._setup_crud_result_proxy 3 0.000016 0.000524 0.000175\r\n", + "..\\patches.py:436 Rectangle.set_fill 7 0.000032 0.000523 0.000075\r\n", + "..nits.py:197 Registry.get_converter 24/14 0.000201 0.000520 0.000022\r\n", + "..otlib\\axis.py:444 XTick._get_text2 3 0.000025 0.000517 0.000172\r\n", + ".._bootstrap>:477 _init_module_attrs 10 0.000100 0.000517 0.000052\r\n", + "..is.py:1670 XAxis.set_minor_locator 16 0.000092 0.000517 0.000032\r\n", + "..py:663 PGDialect_psycopg2.__init__ 1 0.000027 0.000515 0.000515\r\n", + "..k\\lib\\abc.py:100 __subclasscheck__ 85/14 0.000067 0.000514 0.000006\r\n", + "..:382 WeakKeyDictionary.__getitem__ 248 0.000508 0.000508 0.000002\r\n", + "..\\lines.py:730 Line2D.set_transform 38 0.000085 0.000508 0.000013\r\n", + "..ckages\\cycler.py:349 Cycler.by_key 10 0.000223 0.000505 0.000051\r\n", + "..\\asyncio\\futures.py:351 _set_state 6 0.000023 0.000503 0.000084\r\n", + "..umpy\\core\\shape_base.py:285 hstack 16 0.000116 0.000487 0.000030\r\n", + ".._base.py:3093 AxesSubplot.set_xlim 1 0.000060 0.000483 0.000483\r\n", + "..artist.py:695 Rectangle.set_figure 95 0.000217 0.000482 0.000005\r\n", + "..es.py:2396 FancyBboxPatch.__init__ 1 0.000023 0.000480 0.000480\r\n", + "..on__ internals>:2 broadcast_arrays 10 0.000034 0.000478 0.000048\r\n", + "..e_parse.py:174 SubPattern.getwidth 138.. 0.000375 0.000478 0.000003\r\n", + "..lalchemy\\event\\base.py:243 _listen 3 0.000010 0.000476 0.000159\r\n", + "..__.py:138 CallbackRegistry.connect 33 0.000252 0.000473 0.000014\r\n", + "..ler_psycopg2._truncated_identifier 34 0.000151 0.000470 0.000014\r\n", + "..is.py:1654 XAxis.set_major_locator 17 0.000121 0.000470 0.000028\r\n", + "..gine\\default.py:753 _init_compiled 6 0.000166 0.000470 0.000078\r\n", + ".. _GeneratorContextManager.__init__ 141 0.000401 0.000469 0.000003\r\n", + "..istry.py:246 _EventKey.base_listen 3 0.000082 0.000467 0.000156\r\n", + "..:903 AxesSubplot._set_artist_props 7 0.000135 0.000464 0.000066\r\n", + "..py:913 AxesSubplot._gen_axes_patch 1 0.000004 0.000464 0.000464\r\n", + "..\\futures.py:315 _copy_future_state 6 0.000106 0.000461 0.000077\r\n", + "..lib\\transforms.py:82 Bbox.__init__ 306 0.000454 0.000454 0.000001\r\n", + "..ore\\numerictypes.py:365 issubdtype 4 0.000025 0.000451 0.000113\r\n", + "..lotlib\\colors.py:123 _is_nth_color 51 0.000107 0.000451 0.000009\r\n", + "..ansforms.py:1831 Affine2D.__init__ 49 0.000156 0.000449 0.000009\r\n", + "..offsetbox.py:175 TextArea.__init__ 16 0.000049 0.000449 0.000028\r\n", + ":1 Query.order_by 1 0.000002 0.000428 0.000428\r\n", + "..r.py:63 HandlerLine2D._update_prop 8 0.000011 0.000425 0.000053\r\n", + "..re\\numerictypes.py:293 issubclass_ 8 0.000019 0.000425 0.000053\r\n", + "..53 _ListenerCollection.__getattr__ 45/24 0.000285 0.000424 0.000009\r\n", + "..e_compile.py:276 _optimize_charset 34 0.000263 0.000415 0.000012\r\n", + "..HandlerLine2D._default_update_prop 8 0.000010 0.000414 0.000052\r\n", + "..y\\orm\\query.py:1856 Query.order_by 1 0.000007 0.000413 0.000413\r\n", + ".. Line2D._split_drawstyle_linestyle 64 0.000256 0.000413 0.000006\r\n", + "..ide_tricks.py:206 broadcast_arrays 10 0.000179 0.000412 0.000041\r\n", + "..s.py:424 Spine.get_spine_transform 28/24 0.000181 0.000406 0.000014\r\n", + "..query.py:329 Query._adapt_col_list 1 0.000003 0.000405 0.000405\r\n", + "..b\\lines.py:1327 Line2D.update_from 8 0.000061 0.000403 0.000050\r\n", + "..lchemy\\orm\\query.py:330 1 0.000009 0.000402 0.000402\r\n", + "..ine\\default.py:981 _init_statement 3 0.000233 0.000401 0.000134\r\n", + "..sql\\elements.py:4087 Column._label 10 0.000026 0.000394 0.000039\r\n", + "..y:4564 _literal_as_label_reference 3 0.000009 0.000390 0.000130\r\n", + "..es.py:315 Rectangle._set_edgecolor 20 0.000076 0.000387 0.000019\r\n", + "..array_function__ internals>:2 diff 16 0.000028 0.000387 0.000024\r\n", + "..pg2\\extras.py:303 NamedTupleCursor 1 0.000019 0.000382 0.000382\r\n", + "..py:120 ThreadPoolExecutor.__init__ 2 0.000074 0.000374 0.000187\r\n", + "..xis.py:1525 XAxis._update_axisinfo 13 0.000026 0.000368 0.000028\r\n", + "..elements.py:4099 Column._gen_label 10 0.000123 0.000368 0.000037\r\n", + "..rtist.py:937 Rectangle.set_visible 69 0.000142 0.000366 0.000005\r\n", + "..hreading.py:222 Condition.__init__ 13 0.000311 0.000361 0.000028\r\n", + "<__array_function__ internals>:2 all 9 0.000071 0.000355 0.000039\r\n", + "..zipimport>:63 zipimporter.__init__ 1 0.000016 0.000350 0.000350\r\n", + "..\\langhelpers.py:301 get_cls_kwargs 35/16 0.000206 0.000348 0.000010\r\n", + "...py:399 _ListenerCollection.append 3 0.000007 0.000345 0.000115\r\n", + "..atplotlib\\path.py:96 Path.__init__ 14 0.000076 0.000344 0.000025\r\n", + "...py:1624 FigureCanvasBase.__init__ 2 0.000173 0.000339 0.000170\r\n", + "..ry.py:267 _EventKey.append_to_list 3 0.000231 0.000338 0.000113\r\n", + ".._bootstrap_external>:62 _path_join 82 0.000138 0.000338 0.000004\r\n", + "..ap_external>:294 cache_from_source 18 0.000119 0.000335 0.000019\r\n", + "...py:1626 XAxis.set_major_formatter 17 0.000066 0.000330 0.000019\r\n", + "..ase.py:1731 RootTransaction.commit 1 0.000019 0.000326 0.000326\r\n", + "..._bootstrap>:376 ModuleSpec.cached 19 0.000049 0.000324 0.000017\r\n", + "..mpy\\lib\\function_base.py:1147 diff 16 0.000281 0.000320 0.000020\r\n", + "..er.py:512 ScalarFormatter.__init__ 16 0.000165 0.000317 0.000020\r\n", + "..422 WeakKeyDictionary.__contains__ 387 0.000313 0.000313 0.000001\r\n", + "..l\\selectable.py:3036 Select._froms 8 0.000141 0.000313 0.000039\r\n", + "..9 PGCompiler_psycopg2.visit_binary 5 0.000029 0.000312 0.000062\r\n", + "..tlib\\axis.py:1951 XAxis._get_label 1 0.000030 0.000311 0.000311\r\n", + "..base.py:563 AxesSubplot.set_figure 1 0.000026 0.000308 0.000308\r\n", + "..fierPreparer_psycopg2.format_label 29 0.000027 0.000306 0.000011\r\n", + "..py:1765 RootTransaction._do_commit 1 0.000012 0.000304 0.000304\r\n", + "..5 Rectangle._stale_figure_callback 134 0.000139 0.000303 0.000002\r\n", + "..otlib\\lines.py:645 Line2D.set_data 30 0.000098 0.000302 0.000010\r\n", + "..asyncio\\futures.py:377 wrap_future 6 0.000060 0.000301 0.000050\r\n", + "..tlib\\axis.py:2238 YAxis._get_label 1 0.000024 0.000300 0.000300\r\n", + "..py:4442 _anonymous_label.apply_map 7 0.000252 0.000300 0.000043\r\n", + "..ons.py:971 lightweight_named_tuple 6 0.000162 0.000300 0.000050\r\n", + "..my\\engine\\result.py:496 3 0.000020 0.000296 0.000099\r\n", + "...py:543 NullType._gen_dialect_impl 13 0.000038 0.000295 0.000023\r\n", + "..chemy\\orm\\loading.py:59 6 0.000037 0.000293 0.000049\r\n", + "..ase.py:746 Connection._commit_impl 1 0.000022 0.000292 0.000292\r\n", + "...py:1640 XAxis.set_minor_formatter 16 0.000053 0.000286 0.000018\r\n", + ".._init__.py:1610 safe_first_element 24 0.000070 0.000285 0.000012\r\n", + "..tionContext_psycopg2.create_cursor 9 0.000085 0.000276 0.000031\r\n", + "..ootstrap_external>:424 _get_cached 10 0.000043 0.000275 0.000027\r\n", + "..py:2408 CompositeAffine2D.__init__ 9 0.000044 0.000273 0.000030\r\n", + ".._.py:1309 _to_unmasked_float_array 34 0.000116 0.000273 0.000008\r\n", + "..py:3730 Select._columns_plus_names 8 0.000046 0.000270 0.000034\r\n", + "..y:542 PGDialect_psycopg2.do_commit 1 0.000014 0.000268 0.000268\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..hreading.py:388 Semaphore.__init__ 2 0.000014 0.000267 0.000134\r\n", + ".._psycopg2._generate_generic_binary 5 0.000033 0.000264 0.000053\r\n", + "..s.py:1398 Line2D.set_dash_capstyle 30 0.000145 0.000262 0.000009\r\n", + "..\\cbook\\__init__.py:1938 140 0.000205 0.000262 0.000002\r\n", + "..nal>:1520 path_hook_for_FileFinder 1 0.000022 0.000261 0.000261\r\n", + "..hes.py:330 Rectangle.set_edgecolor 12 0.000025 0.000260 0.000022\r\n", + "..es.py:768 Rectangle._convert_units 18 0.000084 0.000258 0.000014\r\n", + "..y:4696 _ColumnEntity.row_processor 27 0.000176 0.000257 0.000010\r\n", + "..k\\lib\\encodings\\utf_8.py:15 decode 48 0.000188 0.000257 0.000005\r\n", + "..PGDialect_psycopg2.type_descriptor 13 0.000030 0.000257 0.000020\r\n", + "..:136 Affine2D._invalidate_internal 90/76 0.000214 0.000256 0.000003\r\n", + "..:395 WeakKeyDictionary.__setitem__ 97 0.000253 0.000256 0.000003\r\n", + "..chemy\\orm\\query.py:4625 27 0.000065 0.000250 0.000009\r\n", + "..tplotlib\\lines.py:59 _scale_dashes 83 0.000123 0.000249 0.000003\r\n", + "..24 AxesSubplot.get_yaxis_transform 29/15 0.000047 0.000249 0.000009\r\n", + "..numpy\\core\\fromnumeric.py:2277 all 9 0.000041 0.000249 0.000028\r\n", + "..atplotlib\\artist.py:192 Spine.axes 831 0.000248 0.000248 0.000000\r\n", + "..b\\sre_parse.py:96 State.closegroup 27 0.000035 0.000243 0.000009\r\n", + "..s.py:266 MarkerStyle.set_fillstyle 38 0.000124 0.000241 0.000006\r\n", + "..ger.py:810 FontProperties.set_size 27 0.000167 0.000241 0.000009\r\n", + "..s\\_base.py:31 _process_plot_format 4 0.000033 0.000239 0.000060\r\n", + "..chemy\\sql\\elements.py:4327 __new__ 17 0.000109 0.000239 0.000014\r\n", + "..py:2644 ScaledTranslation.__init__ 17 0.000081 0.000238 0.000014\r\n", + "..r.py:774 FontProperties.set_weight 27 0.000211 0.000237 0.000009\r\n", + "...py:180 AxesSubplot.convert_yunits 48 0.000064 0.000233 0.000005\r\n", + "..units.py:58 _is_natively_supported 12 0.000072 0.000232 0.000019\r\n", + "..my\\sql\\type_api.py:1475 adapt_type 13 0.000077 0.000227 0.000017\r\n", + "..s.py:2544 BboxTransformTo.__init__ 20 0.000076 0.000226 0.000011\r\n", + "..48 AxesSubplot.get_xaxis_transform 29/15 0.000037 0.000223 0.000008\r\n", + "..b\\sre_parse.py:249 Tokenizer.match 311 0.000150 0.000222 0.000001\r\n", + "..py:1137 Text.set_verticalalignment 33 0.000098 0.000222 0.000007\r\n", + "..il\\_collections.py:775 unique_list 41 0.000166 0.000221 0.000005\r\n", + "..x.py:690 DrawingArea.get_transform 4 0.000006 0.000220 0.000055\r\n", + "..>:147 _ModuleLockManager.__enter__ 10 0.000027 0.000219 0.000022\r\n", + "..tlib\\text.py:535 Text.set_clip_box 15 0.000057 0.000216 0.000014\r\n", + "..sre_parse.py:172 SubPattern.append 182 0.000164 0.000209 0.000001\r\n", + "...py:523 YTick._get_text1_transform 3 0.000015 0.000208 0.000069\r\n", + "..800 AxesSubplot._update_transScale 2 0.000024 0.000206 0.000103\r\n", + "..indowsSelectorEventLoop._call_soon 23 0.000097 0.000204 0.000009\r\n", + "..xis.py:1969 XAxis._get_offset_text 1 0.000012 0.000204 0.000204\r\n", + "..b\\threading.py:761 Thread.__init__ 2 0.000128 0.000203 0.000101\r\n", + "..manager.py:855 FontProperties.copy 3 0.000012 0.000199 0.000066\r\n", + "..ootstrap_external>:104 _path_isdir 1 0.000003 0.000198 0.000198\r\n", + "..re_parse.py:160 SubPattern.__len__ 261 0.000148 0.000197 0.000001\r\n", + "..on.py:579 SessionTransaction.close 2 0.000022 0.000197 0.000098\r\n", + "..ib\\artist.py:719 Text.set_clip_box 23 0.000038 0.000195 0.000008\r\n", + "..xis.py:2258 YAxis._get_offset_text 1 0.000013 0.000195 0.000195\r\n", + "..lines.py:1092 Line2D.set_linewidth 30 0.000090 0.000192 0.000006\r\n", + "..sSubplot.get_yaxis_text1_transform 3 0.000033 0.000192 0.000064\r\n", + "...py:2266 blended_transform_factory 8 0.000033 0.000190 0.000024\r\n", + "..s.py:749 MarkerStyle._set_tickdown 3 0.000018 0.000189 0.000063\r\n", + "..xis.py:325 XTick._set_artist_props 30 0.000038 0.000188 0.000006\r\n", + "..til.py:368 surface_column_elements 54 0.000119 0.000185 0.000003\r\n", + "..setbox.py:661 DrawingArea.__init__ 4 0.000023 0.000184 0.000046\r\n", + "..lors.py:193 _to_rgba_no_colorcycle 8 0.000103 0.000183 0.000023\r\n", + ":1 __new__ 91 0.000108 0.000181 0.000002\r\n", + "..\\offsetbox.py:356 HPacker.__init__ 7 0.000017 0.000180 0.000026\r\n", + "..WindowsSelectorEventLoop.call_soon 17 0.000051 0.000178 0.000010\r\n", + "..lines.py:1058 Line2D.set_drawstyle 34 0.000088 0.000178 0.000005\r\n", + "..yncio\\futures.py:335 _chain_future 6 0.000060 0.000177 0.000029\r\n", + "...py:1352 Line2D.set_dash_joinstyle 30 0.000088 0.000176 0.000006\r\n", + "..y:4713 _ColumnEntity.setup_context 27 0.000148 0.000173 0.000006\r\n", + "..b._bootstrap>:157 _get_module_lock 18 0.000077 0.000172 0.000010\r\n", + ".._bootstrap_external>:64 82 0.000128 0.000171 0.000002\r\n", + "..pool\\impl.py:35 QueuePool.__init__ 1 0.000011 0.000171 0.000171\r\n", + "..y:2175 XAxis.set_default_intervals 1 0.000018 0.000170 0.000170\r\n", + "..y:949 Text.set_horizontalalignment 28 0.000075 0.000170 0.000006\r\n", + "..ib\\sre_parse.py:286 Tokenizer.tell 171 0.000133 0.000169 0.000001\r\n", + "..text.py:240 Text.set_rotation_mode 24 0.000106 0.000169 0.000007\r\n", + "..539 PGDialect_psycopg2.do_rollback 2 0.000010 0.000169 0.000085\r\n", + "..:220 Spine._ensure_position_is_set 28/24 0.000023 0.000169 0.000006\r\n", + ":1 Query.filter 5 0.000016 0.000169 0.000034\r\n", + "..\\lib\\function_base.py:257 iterable 97 0.000125 0.000168 0.000002\r\n", + "..68gteq6k\\lib\\weakref.py:44 __new__ 33 0.000135 0.000168 0.000005\r\n", + "...py:407 XTick._get_text1_transform 3 0.000009 0.000166 0.000055\r\n", + "..xesSubplot._set_lim_and_transforms 1 0.000026 0.000165 0.000165\r\n", + "...py:1412 Line2D.set_solid_capstyle 30 0.000083 0.000165 0.000006\r\n", + "..uture.set_running_or_notify_cancel 7 0.000124 0.000165 0.000024\r\n", + "..y\\util\\_collections.py:822 to_list 14 0.000064 0.000164 0.000012\r\n", + "..xternal>:1426 FileFinder._get_spec 10 0.000056 0.000162 0.000016\r\n", + "..sql\\elements.py:4451 _as_truncated 10 0.000028 0.000162 0.000016\r\n", + "..\\axis.py:1605 YAxis.set_label_text 5 0.000022 0.000161 0.000032\r\n", + "..es.py:375 FancyBboxPatch.set_alpha 1 0.000006 0.000160 0.000160\r\n", + "...py:526 YTick._get_text2_transform 3 0.000012 0.000159 0.000053\r\n", + "..GCompiler_psycopg2.visit_bindparam 5 0.000043 0.000159 0.000032\r\n", + "..045 AxesSubplot._process_unit_info 6 0.000020 0.000159 0.000026\r\n", + "..reading.py:246 Condition.__enter__ 61 0.000111 0.000158 0.000003\r\n", + "..py:1367 Line2D.set_solid_joinstyle 30 0.000079 0.000158 0.000005\r\n", + "..er.py:1712 AutoLocator.nonsingular 2 0.000009 0.000157 0.000078\r\n", + "..sSubplot.get_xaxis_text1_transform 3 0.000040 0.000156 0.000052\r\n", + "..asyncio\\tasks.py:653 ensure_future 2 0.000023 0.000154 0.000077\r\n", + "..axes.py:256 AxesSubplot.set_ylabel 4 0.000017 0.000150 0.000037\r\n", + "..q6k\\lib\\sre_compile.py:423 _simple 45 0.000051 0.000150 0.000003\r\n", + "..atplotlib\\legend.py:813 1 0.000026 0.000149 0.000149\r\n", + "..otlib\\axis.py:1579 XAxis.set_units 12 0.000039 0.000148 0.000012\r\n", + "..lib\\transforms.py:2779 nonsingular 2 0.000031 0.000148 0.000074\r\n", + "..b\\spines.py:381 Spine.set_position 4 0.000023 0.000147 0.000037\r\n", + "..sSubplot.get_yaxis_text2_transform 3 0.000019 0.000146 0.000049\r\n", + "..s.py:729 MarkerStyle._set_tickleft 3 0.000015 0.000146 0.000049\r\n", + "..\\lib\\enum.py:828 RegexFlag.__and__ 12 0.000068 0.000143 0.000012\r\n", + "..ts.py:724 ColumnClause.__getattr__ 9 0.000082 0.000143 0.000016\r\n", + "..lalchemy\\orm\\query.py:4148 __new__ 32 0.000063 0.000141 0.000004\r\n", + "..\\offsetbox.py:489 HPacker.__init__ 5 0.000012 0.000141 0.000028\r\n", + ".._base.py:2048 _process_single_axis 12 0.000029 0.000139 0.000012\r\n", + "..lib\\lines.py:1282 Line2D.set_xdata 39 0.000084 0.000139 0.000004\r\n", + ".._base.py:3484 AxesSubplot.set_ylim 1 0.000020 0.000137 0.000137\r\n", + "..ib\\path.py:188 Path._update_values 14 0.000068 0.000137 0.000010\r\n", + "..e-packages\\cycler.py:371 20 0.000137 0.000137 0.000007\r\n", + ":1 QueuePool.__init__ 1 0.000002 0.000136 0.000136\r\n", + "..er.py:755 FontProperties.set_style 23 0.000065 0.000136 0.000006\r\n", + "..tures\\_base.py:316 Future.__init__ 7 0.000034 0.000135 0.000019\r\n", + "..orm._iter_break_from_left_to_right 8 0.000027 0.000134 0.000017\r\n", + "..34 new_figure_manager_given_figure 1 0.000007 0.000134 0.000134\r\n", + "..ches.py:458 Rectangle.set_capstyle 11 0.000066 0.000134 0.000012\r\n", + "...py:1423 Figure._add_axes_internal 1 0.000015 0.000134 0.000134\r\n", + "..s.py:2221 BlendedAffine2D.__init__ 6 0.000039 0.000133 0.000022\r\n", + "..book\\__init__.py:1296 is_math_text 30 0.000081 0.000133 0.000004\r\n", + "..tlib\\lines.py:31 _get_dash_pattern 41 0.000103 0.000132 0.000003\r\n", + "..chemy\\sql\\base.py:38 _from_objects 21 0.000045 0.000131 0.000006\r\n", + "...py:410 XTick._get_text2_transform 3 0.000011 0.000129 0.000043\r\n", + "..py:1225 Line2D.set_markeredgewidth 30 0.000057 0.000129 0.000004\r\n", + "..033 PGCompiler_psycopg2.visit_cast 2 0.000013 0.000128 0.000064\r\n", + "..pool\\base.py:63 QueuePool.__init__ 1 0.000050 0.000128 0.000128\r\n", + "..re_compile.py:249 _compile_charset 34 0.000098 0.000127 0.000004\r\n", + "..plotlib\\scale.py:718 scale_factory 16 0.000053 0.000126 0.000008\r\n", + "..ib\\sre_parse.py:84 State.opengroup 27 0.000072 0.000125 0.000005\r\n", + "..ffsetbox.py:187 VPacker.set_figure 16/1 0.000045 0.000124 0.000008\r\n", + "...py:792 FontProperties.set_stretch 23 0.000090 0.000124 0.000005\r\n", + "...py:735 MarkerStyle._set_tickright 3 0.000013 0.000124 0.000041\r\n", + "..chemy\\sql\\elements.py:4279 __new__ 17 0.000095 0.000123 0.000007\r\n", + "..\\Lib\\socket.py:219 socket.__init__ 3 0.000122 0.000122 0.000041\r\n", + "..hes.py:402 Rectangle.set_linestyle 7 0.000053 0.000122 0.000017\r\n", + "...py:3168 BinaryExpression.__init__ 5 0.000064 0.000121 0.000024\r\n", + "..otlib\\text.py:1227 Text.set_usetex 24 0.000053 0.000120 0.000005\r\n", + "..ngine\\base.py:863 Connection.close 1 0.000008 0.000119 0.000119\r\n", + "..selectable.py:2169 Select.__init__ 8 0.000024 0.000118 0.000015\r\n", + "..lib\\sre_parse.py:295 _class_escape 30 0.000080 0.000118 0.000004\r\n", + "..ib\\artist.py:1037 Spine.set_zorder 18 0.000045 0.000118 0.000007\r\n", + "..ib\\lines.py:1196 Line2D.set_marker 4 0.000008 0.000117 0.000029\r\n", + "..sSubplot.get_xaxis_text2_transform 3 0.000017 0.000117 0.000039\r\n", + "..ndowsSelectorEventLoop.create_task 2 0.000057 0.000117 0.000058\r\n", + "..ide_tricks.py:185 _broadcast_shape 10 0.000112 0.000116 0.000012\r\n", + "...py:765 FontProperties.set_variant 23 0.000054 0.000115 0.000005\r\n", + "..lib\\text.py:1042 Text.set_fontsize 4 0.000013 0.000115 0.000029\r\n", + "..r.py:742 FontProperties.set_family 23 0.000047 0.000115 0.000005\r\n", + "..uery.py:4762 QueryContext.__init__ 6 0.000109 0.000115 0.000019\r\n", + "..\\sql\\selectable.py:3746 6 0.000021 0.000115 0.000019\r\n", + "..\\matplotlib\\dates.py:1893 axisinfo 2 0.000024 0.000114 0.000057\r\n", + "..umpy\\core\\getlimits.py:365 __new__ 2 0.000023 0.000113 0.000057\r\n", + "..teq6k\\lib\\sre_parse.py:355 _escape 30 0.000088 0.000113 0.000004\r\n", + "..essionTransaction._remove_snapshot 1 0.000037 0.000113 0.000113\r\n", + "..forms.py:1669 TransformWrapper.set 2 0.000009 0.000112 0.000056\r\n", + "..my\\util\\langhelpers.py:963 oneshot 21 0.000055 0.000112 0.000005\r\n", + "..ase.py:1009 _ConnectionFairy.close 1 0.000008 0.000111 0.000111\r\n", + "..\\result.py:1362 ResultProxy.scalar 3 0.000010 0.000110 0.000037\r\n", + "..threading.py:441 Semaphore.release 7 0.000035 0.000110 0.000016\r\n", + "..yncio\\events.py:32 Handle.__init__ 24 0.000093 0.000110 0.000005\r\n", + "..Subplot._validate_converted_limits 4 0.000026 0.000109 0.000027\r\n", + "..hes.py:382 Rectangle.set_linewidth 12 0.000039 0.000107 0.000009\r\n", + "..ndowsSelectorEventLoop._add_reader 1 0.000026 0.000106 0.000106\r\n", + "..b\\cbook\\__init__.py:2090 type_name 94 0.000106 0.000106 0.000001\r\n", + "..alchemy\\event\\api.py:23 _event_key 3 0.000022 0.000106 0.000035\r\n", + "..bootstrap_external>:68 _path_split 18 0.000082 0.000105 0.000006\r\n", + "..plotlib\\text.py:933 Text.set_color 24 0.000056 0.000104 0.000004\r\n", + "..ers.py:743 MarkerStyle._set_tickup 3 0.000012 0.000104 0.000035\r\n", + "..e.py:853 _ConnectionFairy._checkin 1 0.000008 0.000103 0.000103\r\n", + "..gistry.py:67 _stored_in_collection 3 0.000028 0.000103 0.000034\r\n", + "..y:556 String.coerce_compared_value 5 0.000019 0.000103 0.000021\r\n", + "..py:2249 BlendedAffine2D.get_matrix 4 0.000017 0.000103 0.000026\r\n", + "..lib\\legend.py:938 Legend.set_title 1 0.000008 0.000102 0.000102\r\n", + "..ql\\elements.py:895 Cast.anon_label 2 0.000018 0.000102 0.000051\r\n", + "..lib\\lines.py:1294 Line2D.set_ydata 39 0.000054 0.000101 0.000003\r\n", + "..e\\result.py:1335 ResultProxy.first 3 0.000030 0.000100 0.000033\r\n", + "..tstrap_external>:493 _classify_pyc 9 0.000056 0.000099 0.000011\r\n", + "..otlib\\artist.py:197 Rectangle.axes 117 0.000099 0.000099 0.000001\r\n", + "..:2165 FigureCanvasBase.mpl_connect 7 0.000012 0.000099 0.000014\r\n", + ":1 cast 2 0.000004 0.000098 0.000049\r\n", + "..\\artist.py:1074 Line2D.update_from 8 0.000065 0.000097 0.000012\r\n", + "..lotlib\\dates.py:1921 default_units 8 0.000033 0.000096 0.000012\r\n", + "..\\orm\\session.py:1288 Session.close 1 0.000011 0.000096 0.000096\r\n", + "..y\\pool\\base.py:667 _finalize_fairy 1 0.000012 0.000096 0.000096\r\n", + "..tist.py:1017 AxesSubplot.set_label 5 0.000025 0.000095 0.000019\r\n", + "..sql\\elements.py:2489 Cast.__init__ 2 0.000010 0.000094 0.000047\r\n", + "..compile.py:461 _get_literal_prefix 19/12 0.000068 0.000094 0.000005\r\n", + "..logging\\__init__.py:2003 getLogger 4 0.000010 0.000094 0.000023\r\n", + "..ql\\selectable.py:3735 name_for_col 27 0.000047 0.000094 0.000003\r\n", + "..ines.py:1268 Line2D.set_markersize 30 0.000057 0.000093 0.000003\r\n", + "..317 VARCHAR._has_column_expression 12 0.000092 0.000092 0.000008\r\n", + "..ernal>:629 spec_from_file_location 10 0.000070 0.000091 0.000009\r\n", + "..Context_psycopg2.should_autocommit 9 0.000058 0.000091 0.000010\r\n", + "..ngs\\__init__.py:70 search_function 1 0.000030 0.000089 0.000089\r\n", + "..Compiler_psycopg2._bind_processors 6 0.000020 0.000089 0.000015\r\n", + "..syncio\\base_futures.py:13 isfuture 37 0.000051 0.000089 0.000002\r\n", + "..nes.py:1035 Line2D.set_antialiased 30 0.000046 0.000089 0.000003\r\n", + "..ements.py:1946 ClauseList.__init__ 1 0.000012 0.000088 0.000088\r\n", + "..\\threading.py:341 Condition.notify 15 0.000069 0.000088 0.000006\r\n", + "..-68gteq6k\\lib\\enum.py:278 __call__ 26 0.000057 0.000087 0.000003\r\n", + "..e_parse.py:111 SubPattern.__init__ 135 0.000087 0.000087 0.000001\r\n", + "..\\axis.py:618 YTick.update_position 3 0.000022 0.000086 0.000029\r\n", + "..lalchemy\\sql\\base.py:39 21 0.000053 0.000086 0.000004\r\n", + "..lib\\artist.py:923 Line2D.set_alpha 7 0.000019 0.000085 0.000012\r\n", + "..piler_psycopg2._truncate_bindparam 5 0.000012 0.000085 0.000017\r\n", + "..ession.py:1333 Session._close_impl 1 0.000012 0.000085 0.000085\r\n", + "..y:2463 FancyBboxPatch.set_boxstyle 2 0.000023 0.000085 0.000042\r\n", + "..my\\sql\\compiler.py:2252 6 0.000017 0.000084 0.000014\r\n", + "..__init__.py:1272 Manager.getLogger 4 0.000024 0.000084 0.000021\r\n", + "..38\\Lib\\asyncio\\tasks.py:717 gather 1 0.000016 0.000083 0.000083\r\n", + ":1 VARCHAR.__init__ 9 0.000026 0.000083 0.000009\r\n", + "..\\core\\getlimits.py:398 finfo._init 1 0.000044 0.000082 0.000082\r\n", + "..\\legend.py:1215 _parse_legend_args 1 0.000010 0.000082 0.000082\r\n", + "..bootstrap>:58 _ModuleLock.__init__ 10 0.000026 0.000082 0.000008\r\n", + "..tlib\\axis.py:864 XAxis.reset_ticks 16 0.000077 0.000082 0.000005\r\n", + "..t\\futures\\_base.py:381 Future.done 6 0.000031 0.000082 0.000014\r\n", + "..bootstrap>:194 _lock_unlock_module 8 0.000018 0.000081 0.000010\r\n", + "..\\result.py:777 ResultProxy._getter 27 0.000037 0.000081 0.000003\r\n", + "..123 ConnectionEventsDispatch._join 1 0.000078 0.000080 0.000080\r\n", + "..ections.py:361 OrderedSet.__init__ 8 0.000050 0.000080 0.000010\r\n", + "..ges\\numpy\\core\\_methods.py:44 _any 4 0.000009 0.000079 0.000020\r\n", + "..elements.py:4692 _literal_as_binds 2 0.000005 0.000079 0.000040\r\n", + "..sSelectorEventLoop._process_events 17 0.000043 0.000079 0.000005\r\n", + "..otlib\\figure.py:111 _AxesStack.add 1 0.000033 0.000079 0.000079\r\n", + "..session.py:1588 Session._autoflush 6 0.000022 0.000079 0.000013\r\n", + "..xt.py:1214 Text.set_fontproperties 1 0.000004 0.000079 0.000079\r\n", + "..copg2\\extensions.py:171 1 0.000005 0.000078 0.000078\r\n", + "..e-packages\\cycler.py:227 110 0.000078 0.000078 0.000001\r\n", + "..qlalchemy\\inspection.py:38 inspect 16 0.000051 0.000076 0.000005\r\n", + "..py:1210 Line2D.set_markeredgecolor 30 0.000040 0.000075 0.000003\r\n", + "..tlib\\transforms.py:773 from_bounds 1 0.000008 0.000075 0.000075\r\n", + "..b\\text.py:1059 Text.set_fontweight 4 0.000009 0.000074 0.000019\r\n", + "..__init__.py:1632 sanitize_sequence 8 0.000015 0.000074 0.000009\r\n", + "..alchemy\\log.py:174 instance_logger 3 0.000011 0.000073 0.000024\r\n", + "..init__.py:1677 Logger.isEnabledFor 5 0.000041 0.000073 0.000015\r\n", + "..8gteq6k\\lib\\sre_parse.py:432 _uniq 22 0.000044 0.000073 0.000003\r\n", + "..g2\\extensions.py:180 _param_escape 3 0.000005 0.000073 0.000024\r\n", + "..ase.py:971 _ConnectionFairy.cursor 6 0.000013 0.000073 0.000012\r\n", + ".._range.py:297 RangeCaster.__init__ 6 0.000022 0.000072 0.000012\r\n", + "..y:2444 PGDialect_psycopg2.__init__ 1 0.000008 0.000072 0.000072\r\n", + "..lib\\offsetbox.py:199 TextArea.axes 16 0.000042 0.000072 0.000004\r\n", + "..emy\\orm\\query.py:1790 Query.filter 5 0.000032 0.000072 0.000014\r\n", + "..b._bootstrap>:222 _verbose_message 90 0.000071 0.000071 0.000001\r\n", + "..py:366 GridSpec.get_subplot_params 1 0.000011 0.000071 0.000071\r\n", + "..artist.py:841 TextArea.set_clip_on 16 0.000026 0.000071 0.000004\r\n", + "..\\orm\\session.py:2462 Session.flush 9 0.000021 0.000071 0.000008\r\n", + "..s.py:1642 _fix_ipython_backend2gui 2 0.000025 0.000071 0.000035\r\n", + "..alchemy\\events.py:328 _accept_with 3 0.000026 0.000071 0.000024\r\n", + "..re_parse.py:267 Tokenizer.getuntil 7 0.000040 0.000070 0.000010\r\n", + "..figure.py:199 SubplotParams.update 2 0.000018 0.000070 0.000035\r\n", + "..b\\cbook\\__init__.py:2088 188 0.000070 0.000070 0.000000\r\n", + "..\\axis.py:501 XTick.update_position 3 0.000018 0.000069 0.000023\r\n", + "..hemy\\sql\\compiler.py:650 6 0.000010 0.000069 0.000011\r\n", + "..\\core\\fromnumeric.py:74 85 0.000069 0.000069 0.000001\r\n", + "..my\\sql\\elements.py:1955 1 0.000009 0.000069 0.000069\r\n", + "..ist.py:371 Rectangle.get_transform 31 0.000050 0.000068 0.000002\r\n", + "..ctions.py:933 LRUCache.__setitem__ 3 0.000026 0.000068 0.000023\r\n", + "..lib\\lines.py:1047 Line2D.set_color 30 0.000032 0.000068 0.000002\r\n", + "..bootstrap>:103 _ModuleLock.release 18 0.000061 0.000068 0.000004\r\n", + "..t_manager.py:1043 get_default_size 22 0.000028 0.000067 0.000003\r\n", + "..lib\\axis.py:922 _translate_tick_kw 8 0.000058 0.000067 0.000008\r\n", + "..otlib\\axis.py:666 Ticker.formatter 33 0.000048 0.000067 0.000002\r\n", + "..p>:151 _ModuleLockManager.__exit__ 10 0.000020 0.000066 0.000007\r\n", + "..re_parse.py:224 Tokenizer.__init__ 13 0.000043 0.000065 0.000005\r\n", + "..aggregation\\query.py:82 4 0.000013 0.000065 0.000016\r\n", + "..eading.py:364 Condition.notify_all 7 0.000022 0.000065 0.000009\r\n", + "..\\lib\\sre_compile.py:411 _mk_bitmap 5 0.000029 0.000065 0.000013\r\n", + "..ImmutableColumnCollection.__iter__ 5 0.000030 0.000064 0.000013\r\n", + "..gure.py:168 SubplotParams.__init__ 1 0.000009 0.000064 0.000064\r\n", + ".._WindowsSelectorEventLoop.__init__ 1 0.000024 0.000064 0.000064\r\n", + "..plotlib\\text.py:1151 Text.set_text 46 0.000052 0.000064 0.000001\r\n", + "..k\\lib\\sre_parse.py:81 State.groups 80 0.000048 0.000064 0.000001\r\n", + "..ghelpers.py:281 _inspect_func_args 18 0.000064 0.000064 0.000004\r\n", + "..tstrap_external>:51 _unpack_uint32 27 0.000044 0.000064 0.000002\r\n", + "..GCompiler_psycopg2.order_by_clause 1 0.000003 0.000063 0.000063\r\n", + "..yEventsDispatch._event_descriptors 46 0.000040 0.000063 0.000001\r\n", + "..__.py:185 CallbackRegistry.process 26 0.000047 0.000062 0.000002\r\n", + ".._bootstrap>:78 _ModuleLock.acquire 18 0.000056 0.000061 0.000003\r\n", + "..py:834 XAxis.limit_range_for_scale 2 0.000019 0.000061 0.000031\r\n", + "..pes.py:2997 _resolve_value_to_type 5 0.000017 0.000061 0.000012\r\n", + ".. SessionTransaction._take_snapshot 3 0.000027 0.000061 0.000020\r\n", + "..tableColumnCollection.__contains__ 10 0.000041 0.000060 0.000006\r\n", + "..ib\\axis.py:529 YTick.apply_tickdir 3 0.000024 0.000059 0.000020\r\n", + "..ures\\_base.py:443 Future.exception 6 0.000042 0.000059 0.000010\r\n", + "..schema.py:1640 Column.get_children 27 0.000049 0.000059 0.000002\r\n", + "..hemy\\sql\\compiler.py:652 11 0.000017 0.000059 0.000005\r\n", + "..emy\\util\\langhelpers.py:1188 _next 7 0.000036 0.000058 0.000008\r\n", + "..futures\\_base.py:412 Future.result 7 0.000034 0.000058 0.000008\r\n", + "..\\session.py:2508 Session._is_clean 10 0.000041 0.000057 0.000006\r\n", + ".. interactable_plot_multiple_charts 1 0.000009 0.000057 0.000057\r\n", + "..matplotlib\\patches.py:1818 __new__ 2 0.000037 0.000057 0.000028\r\n", + "...py:1623 TransformWrapper.__init__ 2 0.000009 0.000057 0.000028\r\n", + "..ging\\__init__.py:1412 Logger.debug 2 0.000008 0.000057 0.000028\r\n", + "..ager.py:936 _normalize_font_family 46 0.000041 0.000057 0.000001\r\n", + "..elements.py:4483 _select_iterables 8 0.000017 0.000057 0.000007\r\n", + "..Python38\\Lib\\threading.py:81 RLock 8 0.000056 0.000056 0.000007\r\n", + "..packages\\psycopg2\\tz.py:1 1 0.000016 0.000056 0.000056\r\n", + "..se.py:392 Future.add_done_callback 6 0.000030 0.000056 0.000009\r\n", + "..ericTransform._invalidate_internal 4/3 0.000013 0.000055 0.000014\r\n", + "..py:193 PGDialect_psycopg2.__init__ 1 0.000024 0.000055 0.000055\r\n", + "..til\\_collections.py:779 41 0.000042 0.000055 0.000001\r\n", + "..Compiler_psycopg2.visit_clauselist 1 0.000004 0.000054 0.000054\r\n", + "..eral_and_labels_as_label_reference 3 0.000012 0.000054 0.000018\r\n", + "..my\\engine\\result.py:372 6 0.000054 0.000054 0.000009\r\n", + "..ResultMetaData._merge_cols_by_none 6 0.000022 0.000054 0.000009\r\n", + "..plotlib\\axis.py:653 Ticker.locator 33 0.000047 0.000054 0.000002\r\n", + "..rm\\query.py:418 Query._bind_mapper 6 0.000024 0.000054 0.000009\r\n", + "..s.py:1247 AutoDateLocator.__init__ 2 0.000023 0.000054 0.000027\r\n", + "..plotlib\\transforms.py:177 39 0.000031 0.000053 0.000001\r\n", + "..\\offsetbox.py:410 VPacker.__init__ 2 0.000003 0.000053 0.000027\r\n", + "..se.py:593 _column_stack_dispatcher 12 0.000030 0.000053 0.000004\r\n", + "..EventLoop._asyncgen_firstiter_hook 10 0.000023 0.000053 0.000005\r\n", + "..ation-68gteq6k\\lib\\re.py:323 _subx 3 0.000008 0.000052 0.000017\r\n", + "..on\\database.py:107 from_sql_result 4 0.000025 0.000052 0.000013\r\n", + "..t_psycopg2._use_server_side_cursor 9 0.000044 0.000052 0.000006\r\n", + "..hes.py:475 Rectangle.set_joinstyle 7 0.000030 0.000052 0.000007\r\n", + "..e.py:516 _ConnectionRecord.checkin 1 0.000008 0.000052 0.000052\r\n", + "..elements.py:724 Column.__getattr__ 3 0.000026 0.000051 0.000017\r\n", + "..e._process_projection_requirements 1 0.000008 0.000050 0.000050\r\n", + "..y\\orm\\base.py:353 _is_mapped_class 7 0.000026 0.000050 0.000007\r\n", + "..lEventsDispatch._event_descriptors 36 0.000030 0.000050 0.000001\r\n", + "..\\lib\\_weakrefset.py:81 WeakSet.add 14 0.000040 0.000050 0.000004\r\n", + "..Compiler_psycopg2.visit_typeclause 2 0.000008 0.000049 0.000025\r\n", + "..ernal>:526 _validate_timestamp_pyc 9 0.000023 0.000049 0.000005\r\n", + ".._.py:118 CallbackRegistry.__init__ 19 0.000049 0.000049 0.000003\r\n", + "..tgresql\\psycopg2.py:800 on_connect 2 0.000007 0.000049 0.000024\r\n", + "..quoted_name._memoized_method_lower 21 0.000041 0.000048 0.000002\r\n", + "..py:436 prefix_anon_map.__missing__ 7 0.000034 0.000048 0.000007\r\n", + "..ion\\analysis.py:367 wrap_coroutine 1 0.000014 0.000047 0.000047\r\n", + "..eq6k\\lib\\_weakrefset.py:38 _remove 11 0.000037 0.000046 0.000004\r\n", + "..kages\\numpy\\ma\\core.py:666 getdata 8 0.000036 0.000046 0.000006\r\n", + "..ib\\threading.py:505 Event.__init__ 2 0.000008 0.000046 0.000023\r\n", + "..emy\\sql\\compiler.py:1000 4 0.000005 0.000046 0.000011\r\n", + "..y:208 _arrays_for_stack_dispatcher 28 0.000026 0.000045 0.000002\r\n", + "..b\\transforms.py:909 Bbox.intervalx 3 0.000024 0.000045 0.000015\r\n", + "...py:2680 AxesSubplot.set_axisbelow 1 0.000010 0.000045 0.000045\r\n", + "..\\elements.py:4610 _literal_as_text 16 0.000021 0.000045 0.000003\r\n", + "..tras.py:657 UUID_adapter.getquoted 4 0.000022 0.000044 0.000011\r\n", + "...py:311 RangeCaster._create_ranges 6 0.000040 0.000044 0.000007\r\n", + "..b\\function_base.py:2164 4 0.000006 0.000044 0.000011\r\n", + "..gteq6k\\lib\\re.py:313 _compile_repl 1 0.000010 0.000044 0.000044\r\n", + "...py:235 SubplotParams._update_this 12 0.000021 0.000043 0.000004\r\n", + "..sult.py:700 ResultMetaData._getter 27 0.000043 0.000043 0.000002\r\n", + "..lib\\functools.py:33 update_wrapper 2 0.000026 0.000043 0.000022\r\n", + ":176 cb 10 0.000031 0.000043 0.000004\r\n", + "..is.py:197 XTick._set_labelrotation 6 0.000026 0.000043 0.000007\r\n", + "..ib\\axis.py:413 XTick.apply_tickdir 3 0.000017 0.000042 0.000014\r\n", + "..base.py:375 QueuePool._return_conn 1 0.000003 0.000042 0.000042\r\n", + "..:486 String._cached_bind_processor 5 0.000027 0.000042 0.000008\r\n", + "..b\\scale.py:97 LinearScale.__init__ 16 0.000035 0.000042 0.000003\r\n", + "..ycopg2\\extras.py:664 register_uuid 2 0.000027 0.000041 0.000021\r\n", + "..CompositeGenericTransform. 16/8 0.000035 0.000041 0.000003\r\n", + "..external>:1394 FileFinder.__init__ 1 0.000023 0.000041 0.000041\r\n", + "..init__.py:882 Grouper.get_siblings 6 0.000022 0.000041 0.000007\r\n", + "..iler.py:399 PGTypeCompiler.process 2 0.000006 0.000041 0.000021\r\n", + "..emy\\sql\\compiler.py:1002 4 0.000006 0.000041 0.000010\r\n", + "..tors.py:180 SelectSelector.get_key 1 0.000010 0.000041 0.000041\r\n", + "..s\\_base.py:597 AxesSubplot.viewLim 2 0.000005 0.000041 0.000020\r\n", + "..mpiler_psycopg2._add_to_result_map 29 0.000032 0.000040 0.000001\r\n", + "..ation-68gteq6k\\lib\\copy.py:66 copy 1 0.000013 0.000040 0.000040\r\n", + "..ib\\stride_tricks.py:262 10 0.000024 0.000040 0.000004\r\n", + "..654 _WindowsSelectorEventLoop.time 17 0.000028 0.000040 0.000002\r\n", + "..process_plot_var_args._getdefaults 4 0.000018 0.000040 0.000010\r\n", + "..tplotlib\\legend.py:1253 1 0.000006 0.000040 0.000040\r\n", + "..my\\sql\\elements.py:4488 8 0.000029 0.000039 0.000005\r\n", + "..ttr.py:269 _EmptyListener.__bool__ 17 0.000039 0.000039 0.000002\r\n", + "..l.py:103 QueuePool._do_return_conn 1 0.000005 0.000039 0.000039\r\n", + "..y:3229 BinaryExpression.self_group 5 0.000009 0.000039 0.000008\r\n", + "..r.py:234 _EmptyListener.for_modify 2 0.000013 0.000038 0.000019\r\n", + "..til\\_collections.py:981 3 0.000020 0.000038 0.000013\r\n", + "..util\\langhelpers.py:1175 46 0.000038 0.000038 0.000001\r\n", + "..arse.py:168 SubPattern.__setitem__ 48 0.000030 0.000038 0.000001\r\n", + "..y\\engine\\default.py:796 6 0.000020 0.000037 0.000006\r\n", + "..p>:867 _ImportLockContext.__exit__ 30 0.000026 0.000037 0.000001\r\n", + "..mportlib._bootstrap>:800 find_spec 10 0.000013 0.000037 0.000004\r\n", + "..tplotlib\\figure.py:1959 Figure.sca 1 0.000008 0.000037 0.000037\r\n", + "..ib\\figure.py:1070 Figure._make_key 1 0.000006 0.000037 0.000037\r\n", + "..pe_base.py:219 _vhstack_dispatcher 16 0.000014 0.000037 0.000002\r\n", + "..cbook\\__init__.py:1868 Text.method 5 0.000009 0.000036 0.000007\r\n", + "..ray_function__ internals>:2 copyto 4 0.000014 0.000036 0.000009\r\n", + "..ib\\figure.py:778 Figure.set_canvas 2 0.000008 0.000036 0.000018\r\n", + "..ql\\elements.py:2428 literal_column 2 0.000010 0.000036 0.000018\r\n", + "..y:583 AxesSubplot._unstale_viewLim 2 0.000010 0.000036 0.000018\r\n", + "..owsSelectorEventLoop._add_callback 6 0.000025 0.000036 0.000006\r\n", + "..38\\Lib\\socket.py:512 socket.family 1 0.000006 0.000035 0.000035\r\n", + "..768 IdentityTransform.is_separable 8 0.000031 0.000035 0.000004\r\n", + "..tplotlib\\figure.py:1651 Figure.clf 1 0.000016 0.000035 0.000035\r\n", + "..es\\numpy\\core\\_methods.py:28 _amax 2 0.000003 0.000034 0.000017\r\n", + "..ib\\sre_parse.py:969 parse_template 1 0.000016 0.000034 0.000034\r\n", + "..owsSelectorEventLoop.create_future 6 0.000031 0.000034 0.000006\r\n", + "..:4707 _interpret_as_column_or_from 29 0.000022 0.000034 0.000001\r\n", + "..tions.py:946 LRUCache._manage_size 3 0.000029 0.000034 0.000011\r\n", + "..b\\legend.py:701 get_legend_handler 8 0.000028 0.000034 0.000004\r\n", + "..ngine\\base.py:1869 Engine.__init__ 1 0.000005 0.000034 0.000034\r\n", + "..legend.py:1169 _get_legend_handles 5 0.000016 0.000034 0.000007\r\n", + "..lib\\lines.py:743 Line2D._is_sorted 3 0.000015 0.000034 0.000011\r\n", + "..py:2538 FigureManagerBase.__init__ 1 0.000012 0.000034 0.000034\r\n", + "..alchemy\\util\\queue.py:92 Queue.put 1 0.000018 0.000034 0.000034\r\n", + "..ib\\socket.py:97 _intenum_converter 2 0.000010 0.000034 0.000017\r\n", + "..ures\\_base.py:371 Future.cancelled 6 0.000017 0.000034 0.000006\r\n", + "..b\\sre_compile.py:65 _combine_flags 39 0.000033 0.000033 0.000001\r\n", + "...py:900 AutoDateFormatter.__init__ 2 0.000016 0.000033 0.000017\r\n", + "..m\\state.py:328 type._detach_states 2 0.000020 0.000033 0.000017\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..ession.py:1339 Session.expunge_all 1 0.000012 0.000033 0.000033\r\n", + "..lections.py:316 OrderedDict.values 5 0.000018 0.000032 0.000006\r\n", + "..\\core\\getipython.py:17 get_ipython 2 0.000022 0.000032 0.000016\r\n", + "..m\\query.py:345 Query._adapt_clause 35 0.000032 0.000032 0.000001\r\n", + "..y:528 Text._update_clip_properties 15 0.000032 0.000032 0.000002\r\n", + "..94 QueryEventsDispatch.__getattr__ 8 0.000027 0.000032 0.000004\r\n", + "..._bootstrap>:389 ModuleSpec.parent 14 0.000022 0.000032 0.000002\r\n", + "..etaData._colnames_from_description 6 0.000030 0.000032 0.000005\r\n", + "..\\elements.py:688 Column.self_group 13 0.000031 0.000031 0.000002\r\n", + "..ompat.py:61 inspect_getfullargspec 2 0.000019 0.000031 0.000016\r\n", + "..compile.py:492 _get_charset_prefix 10 0.000024 0.000031 0.000003\r\n", + "..ticker.py:224 AutoLocator.set_axis 67 0.000031 0.000031 0.000000\r\n", + "..kref.py:436 WeakKeyDictionary.keys 1 0.000015 0.000031 0.000031\r\n", + "..tbox.py:739 DrawingArea.add_artist 8 0.000023 0.000031 0.000004\r\n", + "..l\\sqltypes.py:412 Unicode.__init__ 2 0.000013 0.000031 0.000015\r\n", + "..s\\matplotlib\\axis.py:342 70 0.000031 0.000031 0.000000\r\n", + "..6k\\lib\\sre_compile.py:595 isstring 24 0.000025 0.000031 0.000001\r\n", + "..ase.py:867 _ConnectionFairy._reset 1 0.000012 0.000030 0.000030\r\n", + "..n-68gteq6k\\lib\\enum.py:557 __new__ 26 0.000030 0.000030 0.000001\r\n", + "..ool\\base.py:235 QueuePool._creator 1 0.000005 0.000030 0.000030\r\n", + "..s\\numpy\\core\\multiarray.py:707 dot 67 0.000030 0.000030 0.000000\r\n", + "..\\lib\\sre_compile.py:413 5 0.000030 0.000030 0.000006\r\n", + "..owsSelectorEventLoop._check_closed 34 0.000030 0.000030 0.000001\r\n", + "..hemy\\orm\\query.py:537 Query._clone 6 0.000021 0.000030 0.000005\r\n", + "..portlib._bootstrap>:35 _new_module 9 0.000030 0.000030 0.000003\r\n", + "..\\sql\\selectable.py:3079 8 0.000014 0.000029 0.000004\r\n", + "..sql\\operators.py:1497 is_precedent 5 0.000018 0.000029 0.000006\r\n", + "..\\log.py:59 Engine._should_log_info 2 0.000006 0.000029 0.000015\r\n", + "..py:69 _SelectorMapping.__getitem__ 1 0.000022 0.000029 0.000029\r\n", + "..iler.py:410 _CompileLabel.__init__ 29 0.000029 0.000029 0.000001\r\n", + "..:221 Query._set_entity_selectables 6 0.000025 0.000029 0.000005\r\n", + "..per._iter_break_from_left_to_right 8 0.000010 0.000029 0.000004\r\n", + "..:94 PoolEventsDispatch.__getattr__ 12 0.000023 0.000029 0.000002\r\n", + "..ne\\result.py:956 ResultProxy.close 3 0.000008 0.000029 0.000010\r\n", + "..ngine\\base.py:590 Connection.begin 1 0.000006 0.000029 0.000029\r\n", + "..l\\_collections.py:910 LRUCache.get 6 0.000018 0.000028 0.000005\r\n", + "..\\cbook\\__init__.py:1737 74 0.000028 0.000028 0.000000\r\n", + "..ion-68gteq6k\\lib\\weakref.py:51 _cb 2 0.000007 0.000028 0.000014\r\n", + "..y:4590 _expression_literal_as_text 5 0.000009 0.000028 0.000006\r\n", + "..b\\function_base.py:2144 4 0.000013 0.000028 0.000007\r\n", + "..romnumeric.py:2185 _any_dispatcher 76 0.000028 0.000028 0.000000\r\n", + "..n38\\Lib\\socket.py:496 socket.close 1 0.000004 0.000028 0.000028\r\n", + "..ors.py:298 SelectSelector.register 1 0.000009 0.000027 0.000027\r\n", + "..array_function__ internals>:2 tile 1 0.000003 0.000027 0.000027\r\n", + "..ts.py:4056 ColumnClause._get_table 49 0.000027 0.000027 0.000001\r\n", + "..:513 Figure.set_constrained_layout 1 0.000010 0.000027 0.000027\r\n", + "..it__.py:1323 Manager._fixupParents 3 0.000018 0.000027 0.000009\r\n", + "..reading.py:261 Condition._is_owned 11 0.000017 0.000027 0.000002\r\n", + "..>:863 _ImportLockContext.__enter__ 30 0.000019 0.000027 0.000001\r\n", + "..ib\\figure.py:104 _AxesStack.bubble 1 0.000009 0.000027 0.000027\r\n", + "..8 SessionTransaction._prepare_impl 1 0.000013 0.000027 0.000027\r\n", + "..q6k\\lib\\sre_parse.py:921 fix_flags 12 0.000024 0.000026 0.000002\r\n", + "..compiler.py:419 _CompileLabel.type 29 0.000026 0.000026 0.000001\r\n", + "..is.py:1048 XAxis._set_artist_props 4 0.000005 0.000026 0.000007\r\n", + "..utionContext_psycopg2._log_notices 9 0.000026 0.000026 0.000003\r\n", + "..ents.py:3947 ColumnClause.__init__ 2 0.000010 0.000026 0.000013\r\n", + "..\\core\\getlimits.py:239 _get_machar 1 0.000013 0.000026 0.000026\r\n", + "..s.py:302 Rectangle.set_antialiased 8 0.000012 0.000026 0.000003\r\n", + "..io\\coroutines.py:18 _is_debug_mode 1 0.000010 0.000026 0.000026\r\n", + "..ages\\cycler.py:225 Cycler.__iter__ 12 0.000021 0.000026 0.000002\r\n", + "..ine\\url.py:161 URL._get_entrypoint 1 0.000006 0.000026 0.000026\r\n", + "..orms.py:1652 TransformWrapper._set 4 0.000023 0.000025 0.000006\r\n", + "..e.py:1907 Figure._set_artist_props 1 0.000007 0.000025 0.000025\r\n", + "..\\cbook\\__init__.py:1742 74 0.000025 0.000025 0.000000\r\n", + "..etbox.py:303 TextArea.get_children 33 0.000025 0.000025 0.000001\r\n", + "..240 QueuePool._should_wrap_creator 1 0.000005 0.000025 0.000025\r\n", + "..\\elements.py:709 Column.comparator 4 0.000019 0.000025 0.000006\r\n", + "..rl.py:152 URL._instantiate_plugins 1 0.000007 0.000025 0.000025\r\n", + "..base.py:321 _inspect_mapped_object 4 0.000025 0.000025 0.000006\r\n", + "..b\\function_base.py:2120 4 0.000024 0.000024 0.000006\r\n", + "..urceFileLoader._check_name_wrapper 9 0.000020 0.000024 0.000003\r\n", + "..xt_psycopg2.should_autocommit_text 3 0.000008 0.000024 0.000008\r\n", + "..y\\sql\\elements.py:4594 _literal_as 16 0.000016 0.000024 0.000001\r\n", + "..y:355 _ListenerCollection.__init__ 2 0.000018 0.000024 0.000012\r\n", + "...py:343 WeakKeyDictionary.__init__ 13 0.000024 0.000024 0.000002\r\n", + "..b\\socket.py:492 socket._real_close 1 0.000009 0.000023 0.000023\r\n", + "..llections_abc.py:72 _check_methods 14 0.000023 0.000023 0.000002\r\n", + "..\\__init__.py:43 normalize_encoding 1 0.000017 0.000023 0.000023\r\n", + "..ase.py:3227 AxesSubplot.get_xscale 4 0.000017 0.000023 0.000006\r\n", + "..gging\\__init__.py:214 _acquireLock 7 0.000015 0.000023 0.000003\r\n", + "..e.py:1757 RootTransaction.__init__ 1 0.000008 0.000023 0.000023\r\n", + "..lalchemy\\util\\compat.py:148 raise_ 12 0.000023 0.000023 0.000002\r\n", + "..\\encodings\\utf_8.py:33 getregentry 1 0.000010 0.000022 0.000022\r\n", + "..langhelpers.py:344 get_func_kwargs 1 0.000003 0.000022 0.000022\r\n", + "..y\\log.py:221 echo_property.__set__ 1 0.000001 0.000022 0.000022\r\n", + "..tlib\\axis.py:2166 XAxis.get_minpos 1 0.000011 0.000022 0.000022\r\n", + "..my\\util\\queue.py:43 Queue.__init__ 1 0.000009 0.000022 0.000022\r\n", + "..rms.py:1632 TransformWrapper._init 2 0.000008 0.000022 0.000011\r\n", + "..b\\asyncio\\futures.py:269 _get_loop 8 0.000018 0.000022 0.000003\r\n", + "..ok\\__init__.py:2125 _check_getitem 4 0.000018 0.000022 0.000006\r\n", + "..ery._adjust_for_single_inheritance 6 0.000019 0.000022 0.000004\r\n", + "..psycopg2\\_json.py:94 register_json 2 0.000010 0.000022 0.000011\r\n", + "..sion.py:3188 sessionmaker.__init__ 1 0.000021 0.000021 0.000021\r\n", + "..y:102 WeakValueDictionary.__init__ 1 0.000013 0.000021 0.000021\r\n", + "..l\\sqltypes.py:141 VARCHAR.__init__ 9 0.000021 0.000021 0.000002\r\n", + "..syncio\\tasks.py:751 _done_callback 1 0.000012 0.000021 0.000021\r\n", + "..29 _process_plot_var_args.__init__ 2 0.000005 0.000021 0.000011\r\n", + "..y\\sql\\operators.py:1409 is_boolean 6 0.000011 0.000021 0.000003\r\n", + "..dates.py:1496 YearLocator.__init__ 2 0.000012 0.000021 0.000010\r\n", + "..ok\\__init__.py:601 _AxesStack.push 2 0.000011 0.000021 0.000010\r\n", + "..157 CallbackRegistry._remove_proxy 2 0.000017 0.000021 0.000010\r\n", + "..nts.py:709 ColumnClause.comparator 4 0.000012 0.000021 0.000005\r\n", + "..mn._render_label_in_columns_clause 10 0.000014 0.000020 0.000002\r\n", + "..alect_psycopg2.create_connect_args 1 0.000009 0.000020 0.000020\r\n", + "..\\matplotlib\\transforms.py:768 null 1 0.000004 0.000020 0.000020\r\n", + "..\\lines.py:547 Line2D.set_markevery 30 0.000020 0.000020 0.000001\r\n", + ".._json.py:133 register_default_json 1 0.000003 0.000020 0.000020\r\n", + "..lib\\stride_tricks.py:266 30 0.000020 0.000020 0.000001\r\n", + "..58 PGCompiler_psycopg2.visit_table 6 0.000012 0.000020 0.000003\r\n", + "..ctions_abc.py:271 __subclasshook__ 5 0.000009 0.000020 0.000004\r\n", + "..\\numpy\\lib\\shape_base.py:1155 tile 1 0.000007 0.000020 0.000020\r\n", + "..patches.py:491 Rectangle.set_hatch 7 0.000011 0.000019 0.000003\r\n", + "..idspec.py:200 GridSpec.__getitem__ 1 0.000011 0.000019 0.000019\r\n", + "..tlib\\axis.py:2466 YAxis.get_minpos 1 0.000017 0.000019 0.000019\r\n", + "..range.py:449 RangeCaster._register 6 0.000011 0.000019 0.000003\r\n", + "..pg2\\extras.py:790 _solve_conn_curs 1 0.000005 0.000019 0.000019\r\n", + "..59 WeakValueDictionary.__setitem__ 1 0.000013 0.000019 0.000019\r\n", + "..7 BlendedGenericTransform.__init__ 2 0.000007 0.000019 0.000010\r\n", + "..hon38\\Lib\\uuid.py:271 UUID.__str__ 4 0.000019 0.000019 0.000005\r\n", + "..tlib\\legend.py:569 Legend._set_loc 1 0.000007 0.000019 0.000019\r\n", + "..otlib\\axis.py:662 Ticker.formatter 65 0.000019 0.000019 0.000000\r\n", + "..lements.py:2553 Cast._from_objects 2 0.000005 0.000019 0.000009\r\n", + "..book\\__init__.py:833 Grouper.clean 8 0.000016 0.000019 0.000002\r\n", + "..tlib\\transforms.py:274 Bbox.frozen 1 0.000003 0.000019 0.000019\r\n", + "..ments.py:4065 Column._from_objects 10 0.000013 0.000019 0.000002\r\n", + "..ib\\axis.py:819 XAxis.get_transform 4 0.000005 0.000019 0.000005\r\n", + "..my\\engine\\result.py:322 9 0.000019 0.000019 0.000002\r\n", + "..er_psycopg2._get_operator_dispatch 5 0.000015 0.000019 0.000004\r\n", + "..elpers.py:355 get_callable_argspec 1 0.000004 0.000019 0.000019\r\n", + "..g\\__init__.py:1392 Logger.__init__ 3 0.000013 0.000018 0.000006\r\n", + "..\\gridspec.py:246 GridSpec.__init__ 1 0.000008 0.000018 0.000018\r\n", + "..s.py:1096 _importlater.__getattr__ 1 0.000005 0.000018 0.000018\r\n", + "..m\\query.py:3551 Query._select_args 6 0.000018 0.000018 0.000003\r\n", + "..ns.py:738 PopulateDict.__missing__ 5 0.000010 0.000018 0.000004\r\n", + "..my\\engine\\result.py:460 6 0.000018 0.000018 0.000003\r\n", + "..bootstrap_external>:36 _relax_case 17 0.000018 0.000018 0.000001\r\n", + "..ors.py:234 SelectSelector.register 1 0.000009 0.000018 0.000018\r\n", + "..Compiler_psycopg2.construct_params 6 0.000017 0.000017 0.000003\r\n", + "..rm\\query.py:398 Query._entity_zero 6 0.000013 0.000017 0.000003\r\n", + "..nctools.py:524 decorating_function 1 0.000005 0.000017 0.000017\r\n", + "..ctions_abc.py:392 __subclasshook__ 40 0.000017 0.000017 0.000000\r\n", + "..bootstrap_external>:1508 1 0.000012 0.000017 0.000017\r\n", + "..tplotlib\\text.py:554 Text.set_wrap 24 0.000017 0.000017 0.000001\r\n", + "..:171 DynamicClassAttribute.__get__ 4 0.000015 0.000017 0.000004\r\n", + "..packages\\cycler.py:138 Cycler.keys 12 0.000017 0.000017 0.000001\r\n", + "..ler_psycopg2.escape_literal_column 2 0.000013 0.000017 0.000008\r\n", + "..utableColumnCollection.__getattr__ 10 0.000017 0.000017 0.000002\r\n", + "..y\\sql\\type_api.py:1465 to_instance 9 0.000013 0.000017 0.000002\r\n", + "..\\matplotlib\\figure.py:1089 fixlist 1 0.000007 0.000017 0.000017\r\n", + "..ents.py:180 _run_until_complete_cb 1 0.000012 0.000016 0.000016\r\n", + "..ocess_plot_var_args.set_prop_cycle 2 0.000008 0.000016 0.000008\r\n", + "..56 WeakInstanceDict.check_modified 10 0.000016 0.000016 0.000002\r\n", + "...py:258 Condition._acquire_restore 4 0.000012 0.000016 0.000004\r\n", + "..ollections_abc.py:657 _Environ.get 1 0.000004 0.000016 0.000016\r\n", + "..d_inline.py:59 draw_if_interactive 1 0.000010 0.000016 0.000016\r\n", + "..lib\\sre_parse.py:76 State.__init__ 12 0.000016 0.000016 0.000001\r\n", + "..nghelpers.py:248 PluginLoader.load 1 0.000004 0.000016 0.000016\r\n", + "..ections.py:396 OrderedSet.__iter__ 8 0.000012 0.000016 0.000002\r\n", + "..ib\\figure.py:70 _AxesStack.as_list 2 0.000012 0.000016 0.000008\r\n", + "..ql\\elements.py:4475 _expand_cloned 6 0.000013 0.000015 0.000003\r\n", + "..ts.py:4059 ColumnClause._set_table 2 0.000007 0.000015 0.000008\r\n", + "..bootstrap>:342 ModuleSpec.__init__ 10 0.000015 0.000015 0.000002\r\n", + "..registry.py:154 _EventKey.__init__ 4 0.000012 0.000015 0.000004\r\n", + "..WindowsSelectorEventLoop.get_debug 33 0.000015 0.000015 0.000000\r\n", + "..276 PGDialect_psycopg2._type_memos 1 0.000009 0.000015 0.000015\r\n", + "..ler.py:161 HandlerLine2D.get_xdata 4 0.000011 0.000015 0.000004\r\n", + "..s.py:1059 AutoDateLocator.__init__ 4 0.000005 0.000015 0.000004\r\n", + "..tableColumnCollection.__contains__ 10 0.000015 0.000015 0.000001\r\n", + "..til\\_collections.py:317 5 0.000015 0.000015 0.000003\r\n", + "..type_api.py:60 Comparator.__init__ 8 0.000014 0.000014 0.000002\r\n", + "..uery.py:698 Query.is_single_entity 6 0.000012 0.000014 0.000002\r\n", + "..matplotlib\\text.py:1115 Text.set_y 6 0.000006 0.000014 0.000002\r\n", + "..gging\\__init__.py:223 _releaseLock 7 0.000010 0.000014 0.000002\r\n", + "..e.py:117 LinearScale.get_transform 4 0.000005 0.000014 0.000003\r\n", + "..elements.py:4056 Column._get_table 20 0.000014 0.000014 0.000001\r\n", + "..tionContext_psycopg2.no_parameters 4 0.000012 0.000014 0.000003\r\n", + "..ncio\\coroutines.py:177 iscoroutine 2 0.000011 0.000014 0.000007\r\n", + "..nal>:939 SourceFileLoader.__init__ 9 0.000013 0.000013 0.000002\r\n", + ".._api.py:436 Unicode._type_affinity 2 0.000009 0.000013 0.000007\r\n", + "..\\rcsetup.py:163 validate_axisbelow 1 0.000006 0.000013 0.000013\r\n", + "..\\__init__.py:631 _AxesStack.bubble 1 0.000006 0.000013 0.000013\r\n", + "..lib\\figure.py:453 Figure._get_axes 1 0.000004 0.000013 0.000013\r\n", + "..19 ResultProxy._cursor_description 9 0.000013 0.000013 0.000001\r\n", + "..:3361 PGTypeCompiler.visit_VARCHAR 2 0.000008 0.000013 0.000007\r\n", + "..:2053 IdentityTransform.get_matrix 23 0.000013 0.000013 0.000001\r\n", + "..n\\Python38\\Lib\\typing.py:255 inner 1 0.000007 0.000013 0.000013\r\n", + "..py:1202 ResultProxy._fetchone_impl 3 0.000008 0.000013 0.000004\r\n", + "..rs.py:330 MarkerStyle._set_nothing 30 0.000013 0.000013 0.000000\r\n", + "..tlib\\dates.py:174 _get_rc_timezone 6 0.000006 0.000013 0.000002\r\n", + "..b\\function_base.py:2115 4 0.000007 0.000013 0.000003\r\n", + "..es\\thread.py:46 _WorkItem.__init__ 7 0.000012 0.000012 0.000002\r\n", + "..ib\\transforms.py:969 Bbox.mutatedx 2 0.000012 0.000012 0.000006\r\n", + "..-68gteq6k\\lib\\codecs.py:94 __new__ 1 0.000011 0.000012 0.000012\r\n", + "..Figure.set_constrained_layout_pads 1 0.000006 0.000012 0.000012\r\n", + "..y:154 to_unicode_processor_factory 1 0.000012 0.000012 0.000012\r\n", + "..ctions_abc.py:349 __subclasshook__ 5 0.000007 0.000012 0.000002\r\n", + ".. SessionTransaction._assert_active 8 0.000012 0.000012 0.000002\r\n", + "..base.py:707 Connection._begin_impl 1 0.000010 0.000012 0.000012\r\n", + "..\\_internal.py:830 npy_ctypes_check 4 0.000012 0.000012 0.000003\r\n", + "..py:210 WeakInstanceDict.all_states 2 0.000011 0.000012 0.000006\r\n", + "..lib\\os.py:668 _Environ.__getitem__ 1 0.000005 0.000012 0.000012\r\n", + "..b\\figure.py:66 _AxesStack.__init__ 1 0.000006 0.000012 0.000012\r\n", + "..matplotlib\\text.py:1104 Text.set_x 6 0.000005 0.000012 0.000002\r\n", + "..lotlib\\axes\\_base.py:232 8 0.000009 0.000012 0.000001\r\n", + "..208 _EmptyListener._adjust_fn_spec 4 0.000008 0.000012 0.000003\r\n", + "..ib\\threading.py:1110 Thread.daemon 2 0.000010 0.000011 0.000006\r\n", + "..chemy\\orm\\query.py:4634 27 0.000011 0.000011 0.000000\r\n", + "..ql\\base.py:1142 TIMESTAMP.__init__ 1 0.000006 0.000011 0.000011\r\n", + "..ib\\sre_compile.py:453 _get_iscased 29 0.000011 0.000011 0.000000\r\n", + "..200 BinaryExpression._from_objects 5 0.000011 0.000011 0.000002\r\n", + "..\\psycopg2\\_ipaddress.py:1 1 0.000011 0.000011 0.000011\r\n", + "..core\\multiarray.py:145 concatenate 29 0.000011 0.000011 0.000000\r\n", + "..b\\threading.py:1306 current_thread 3 0.000009 0.000011 0.000004\r\n", + "..tions.py:906 LRUCache._inc_counter 6 0.000011 0.000011 0.000002\r\n", + "..ments.py:765 Cast._select_iterable 29 0.000011 0.000011 0.000000\r\n", + "..y\\dialects\\__init__.py:24 _auto_fn 1 0.000006 0.000011 0.000011\r\n", + "..plots.py:214 subplot_class_factory 1 0.000006 0.000011 0.000011\r\n", + "..\\__init__.py:1837 _str_lower_equal 4 0.000008 0.000011 0.000003\r\n", + "..elements.py:4080 Column._key_label 10 0.000010 0.000010 0.000001\r\n", + "..:536 ScalarFormatter.set_useOffset 16 0.000010 0.000010 0.000001\r\n", + "...py:193 URL.translate_connect_args 1 0.000006 0.000010 0.000010\r\n", + "..ql\\operators.py:1386 is_comparison 6 0.000010 0.000010 0.000002\r\n", + "..ger.py:835 FontProperties.set_file 23 0.000010 0.000010 0.000000\r\n", + "..ages\\psycopg2\\compat.py:1 1 0.000010 0.000010 0.000010\r\n", + "..set.py:26 _IterationGuard.__exit__ 1 0.000009 0.000010 0.000010\r\n", + "..stry.py:169 _EventKey.with_wrapper 5 0.000006 0.000010 0.000002\r\n", + "..py:2606 BboxTransformFrom.__init__ 1 0.000004 0.000010 0.000010\r\n", + "..artist.py:1052 Line2D.sticky_edges 32 0.000010 0.000010 0.000000\r\n", + "..m\\session.py:1429 Session.get_bind 6 0.000010 0.000010 0.000002\r\n", + "..Compiler_psycopg2.bindparam_string 5 0.000010 0.000010 0.000002\r\n", + "..my\\engine\\result.py:319 9 0.000010 0.000010 0.000001\r\n", + "..ler.py:396 PGTypeCompiler.__init__ 1 0.000010 0.000010 0.000010\r\n", + "..lements.py:365 Column.get_children 27 0.000010 0.000010 0.000000\r\n", + "..ist.py:605 FancyBboxPatch.set_snap 1 0.000007 0.000009 0.000009\r\n", + "..__init__.py:60 _StrongRef.__hash__ 6 0.000006 0.000009 0.000002\r\n", + "..ure.py:487 Figure.set_tight_layout 1 0.000005 0.000009 0.000009\r\n", + "..tion-68gteq6k\\lib\\re.py:268 escape 1 0.000005 0.000009 0.000009\r\n", + "..on._memoized_attr__exec_once_mutex 1 0.000003 0.000009 0.000009\r\n", + "..pes.py:295 String.result_processor 5 0.000009 0.000009 0.000002\r\n", + "..b\\gridspec.py:31 GridSpec.__init__ 1 0.000007 0.000009 0.000009\r\n", + "..\\elements.py:232 Table._cloned_set 2 0.000008 0.000009 0.000005\r\n", + "..:3418 PGTypeCompiler.visit_unicode 1 0.000004 0.000009 0.000009\r\n", + "..gistry.py:263 _EventKey._listen_fn 16 0.000009 0.000009 0.000001\r\n", + "..\\futures.py:357 _call_check_cancel 6 0.000008 0.000009 0.000002\r\n", + "..CompositeGenericTransform. 3 0.000009 0.000009 0.000003\r\n", + "..\\figure.py:152 _AxesStack.__call__ 2 0.000005 0.000009 0.000005\r\n", + "..teq6k\\lib\\copy.py:257 _reconstruct 1 0.000005 0.000009 0.000009\r\n", + "..on.py:159 _create_json_typecasters 2 0.000006 0.000009 0.000005\r\n", + ".._.py:1663 Logger.getEffectiveLevel 3 0.000009 0.000009 0.000003\r\n", + "..y:980 _ConnectionFairy.__getattr__ 2 0.000005 0.000009 0.000004\r\n", + "..lib\\patches.py:2146 Round.__init__ 2 0.000009 0.000009 0.000004\r\n", + "..abc.py:816 WeakKeyDictionary.clear 1 0.000005 0.000009 0.000009\r\n", + "..ttr.py:257 _EmptyListener.__call__ 8 0.000009 0.000009 0.000001\r\n", + "..ing.py:255 Condition._release_save 4 0.000007 0.000009 0.000002\r\n", + ".._base.py:20 _atleast_1d_dispatcher 24 0.000009 0.000009 0.000000\r\n", + "..ctions_abc.py:367 __subclasshook__ 4 0.000005 0.000009 0.000002\r\n", + "..ler_psycopg2.get_select_precolumns 8 0.000009 0.000009 0.000001\r\n", + "..extensions.py:103 register_adapter 12 0.000009 0.000009 0.000001\r\n", + "..tgresql\\psycopg2.py:807 on_connect 2 0.000004 0.000009 0.000004\r\n", + "..tplotlib\\pyplot.py:612 get_fignums 1 0.000005 0.000009 0.000009\r\n", + "..lchemy\\util\\queue.py:135 Queue.get 1 0.000007 0.000008 0.000008\r\n", + "...py:284 WeakValueDictionary.update 1 0.000007 0.000008 0.000008\r\n", + "..ors.py:293 SelectSelector.__init__ 1 0.000003 0.000008 0.000008\r\n", + ":1 Deployment.__init__ 4 0.000008 0.000008 0.000002\r\n", + "..tplotlib\\path.py:197 Path.vertices 16 0.000008 0.000008 0.000001\r\n", + ".._memoized_property.expire_instance 2 0.000006 0.000008 0.000004\r\n", + "...py:299 NullFormatter._set_locator 31 0.000008 0.000008 0.000000\r\n", + "..mportlib._bootstrap>:725 find_spec 10 0.000005 0.000008 0.000001\r\n", + "..ure.py:155 _AxesStack.__contains__ 1 0.000002 0.000008 0.000008\r\n", + "..p>:143 _ModuleLockManager.__init__ 10 0.000008 0.000008 0.000001\r\n", + "..uery.py:505 Query._no_limit_offset 6 0.000008 0.000008 0.000001\r\n", + "..\\util\\_collections.py:771 5 0.000008 0.000008 0.000002\r\n", + "...py:1689 TransformWrapper. 6 0.000008 0.000008 0.000001\r\n", + "..\\Lib\\threading.py:944 Thread._stop 1 0.000006 0.000008 0.000008\r\n", + "..py:275 SelectSelector._key_from_fd 6 0.000008 0.000008 0.000001\r\n", + "..romnumeric.py:2273 _all_dispatcher 9 0.000008 0.000008 0.000001\r\n", + "..ty.py:17 WeakInstanceDict.__init__ 2 0.000008 0.000008 0.000004\r\n", + "..lotlib\\figure.py:78 _AxesStack.get 2 0.000006 0.000008 0.000004\r\n", + "..chemy\\orm\\query.py:4642 27 0.000008 0.000008 0.000000\r\n", + "..my\\sql\\compiler.py:2125 8 0.000007 0.000007 0.000001\r\n", + "..xesSubplot._request_autoscale_view 8 0.000007 0.000007 0.000001\r\n", + "..\\base.py:364 Connection.connection 11 0.000007 0.000007 0.000001\r\n", + "..py:4065 ColumnClause._from_objects 2 0.000005 0.000007 0.000004\r\n", + "..on38\\Lib\\socket.py:518 socket.type 1 0.000002 0.000007 0.000007\r\n", + "..\\matplotlib\\axis.py:372 14 0.000007 0.000007 0.000001\r\n", + "..artist.py:827 Line2D.get_clip_path 4 0.000007 0.000007 0.000002\r\n", + "..on38\\Lib\\uuid.py:259 UUID.__hash__ 4 0.000006 0.000007 0.000002\r\n", + "..axis.py:215 XTick.get_tick_padding 6 0.000007 0.000007 0.000001\r\n", + "..py:4335 _truncated_label.apply_map 27 0.000007 0.000007 0.000000\r\n", + "..b\\transforms.py:914 Bbox.intervaly 1 0.000005 0.000007 0.000007\r\n", + "..otlib\\transforms.py:394 Bbox.width 1 0.000006 0.000007 0.000007\r\n", + ".. HandlerLine2D.adjust_drawing_area 4 0.000007 0.000007 0.000002\r\n", + "..b\\_pylab_helpers.py:109 set_active 1 0.000006 0.000007 0.000007\r\n", + "..rtist.py:350 Text.is_transform_set 15 0.000007 0.000007 0.000000\r\n", + "..60 ScalarFormatter.set_useMathText 16 0.000007 0.000007 0.000000\r\n", + "..n-68gteq6k\\lib\\os.py:738 encodekey 1 0.000004 0.000007 0.000007\r\n", + "..rms.py:1284 TransformWrapper.depth 24 0.000007 0.000007 0.000000\r\n", + "..215 SelectSelector._fileobj_lookup 2 0.000003 0.000007 0.000003\r\n", + "..\\matplotlib\\axis.py:361 14 0.000007 0.000007 0.000000\r\n", + "..esql\\json.py:177 _PGJSONB.__init__ 1 0.000005 0.000006 0.000006\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..teq6k\\lib\\copyreg.py:99 _slotnames 1 0.000004 0.000006 0.000006\r\n", + "..lotlib\\axis.py:822 XAxis.get_scale 5 0.000006 0.000006 0.000001\r\n", + "..\\matplotlib\\axis.py:383 14 0.000006 0.000006 0.000000\r\n", + "..ckages\\psycopg2\\_range.py:36 Range 1 0.000006 0.000006 0.000006\r\n", + "..:493 Query._no_statement_condition 6 0.000006 0.000006 0.000001\r\n", + "...py:56 QueuePool._should_log_debug 1 0.000005 0.000006 0.000006\r\n", + "..b\\artist.py:819 Line2D.get_clip_on 3 0.000006 0.000006 0.000002\r\n", + "..b\\scale.py:43 LinearScale.__init__ 16 0.000006 0.000006 0.000000\r\n", + "..ycopg2.py:741 _psycopg2_extensions 1 0.000003 0.000006 0.000006\r\n", + "..otlib\\__init__.py:1267 get_backend 1 0.000002 0.000006 0.000006\r\n", + "..json.py:146 register_default_jsonb 1 0.000001 0.000006 0.000006\r\n", + "..otlib\\rcsetup.py:123 validate_bool 1 0.000005 0.000006 0.000006\r\n", + "..my\\engine\\default.py:855 11 0.000006 0.000006 0.000001\r\n", + "..y\\util\\_collections.py:140 __new__ 1 0.000005 0.000006 0.000006\r\n", + "..ngine\\url.py:299 _rfc_1738_unquote 1 0.000005 0.000006 0.000006\r\n", + "..ping.py:717 _GenericAlias.__hash__ 1 0.000004 0.000006 0.000006\r\n", + "..f.py:385 WeakKeyDictionary.__len__ 2 0.000005 0.000006 0.000003\r\n", + "..ib\\__init__.py:1285 is_interactive 2 0.000002 0.000006 0.000003\r\n", + "..07 ExtensionFileLoader.exec_module 1 0.000003 0.000006 0.000006\r\n", + "..ib\\cbook\\__init__.py:1575 10 0.000006 0.000006 0.000001\r\n", + "..ates.py:593 DateFormatter.__init__ 2 0.000002 0.000006 0.000003\r\n", + "..:687 Legend.get_legend_handler_map 1 0.000005 0.000006 0.000006\r\n", + ".._init__.py:44 get_projection_class 1 0.000005 0.000006 0.000006\r\n", + ".._init__.py:573 _AxesStack.__init__ 1 0.000003 0.000006 0.000006\r\n", + "..tion_base.py:1143 _diff_dispatcher 16 0.000006 0.000006 0.000000\r\n", + "..ig\\configurable.py:426 initialized 2 0.000003 0.000006 0.000003\r\n", + "..bootstrap_external>:1400 8 0.000005 0.000005 0.000001\r\n", + "..y:202 _broadcast_arrays_dispatcher 10 0.000005 0.000005 0.000001\r\n", + "..ng.py:1177 _make_invoke_excepthook 2 0.000005 0.000005 0.000003\r\n", + "..idspec.py:508 SubplotSpec.__init__ 1 0.000005 0.000005 0.000005\r\n", + "..ent\\registry.py:165 _EventKey._key 3 0.000004 0.000005 0.000002\r\n", + "..s.py:697 _GatheringFuture.__init__ 1 0.000005 0.000005 0.000005\r\n", + "..eq6k\\lib\\sre_parse.py:978 addgroup 1 0.000004 0.000005 0.000005\r\n", + "...py:112 PoolEventsDispatch._listen 3 0.000005 0.000005 0.000002\r\n", + "..s\\_base.py:386 Future.__get_result 7 0.000005 0.000005 0.000001\r\n", + "..qltypes.py:2793 TIMESTAMP.__init__ 1 0.000004 0.000005 0.000005\r\n", + "..ors.py:209 SelectSelector.__init__ 1 0.000004 0.000005 0.000005\r\n", + "..k\\__init__.py:827 Grouper.__init__ 2 0.000004 0.000005 0.000002\r\n", + "..elpers.py:1079 _importlater.module 1 0.000004 0.000005 0.000005\r\n", + "..is.py:1412 XAxis.get_major_locator 2 0.000004 0.000005 0.000002\r\n", + "..68gteq6k\\lib\\weakref.py:345 remove 2 0.000005 0.000005 0.000002\r\n", + "..esql\\base.py:1226 _PGUUID.__init__ 2 0.000005 0.000005 0.000002\r\n", + "..PGTypeCompiler._render_string_type 2 0.000005 0.000005 0.000002\r\n", + "..matplotlib\\colors.py:225 4 0.000005 0.000005 0.000001\r\n", + "..entifierPreparer_psycopg2.__init__ 1 0.000005 0.000005 0.000005\r\n", + "..oop._set_coroutine_origin_tracking 2 0.000005 0.000005 0.000002\r\n", + "..onfig\\configurable.py:381 instance 2 0.000002 0.000005 0.000002\r\n", + "...py:96 _AxesStack._entry_from_axes 1 0.000003 0.000005 0.000005\r\n", + "..ile.py:432 _generate_overlap_table 2 0.000004 0.000005 0.000002\r\n", + "..ry.py:390 Query._query_entity_zero 6 0.000004 0.000004 0.000001\r\n", + "..copg2\\tz.py:36 FixedOffsetTimezone 1 0.000004 0.000004 0.000004\r\n", + "..py:352 PGCompiler_psycopg2.__str__ 8 0.000004 0.000004 0.000001\r\n", + "..lotlib\\axes\\_base.py:321 12 0.000004 0.000004 0.000000\r\n", + "..packages\\psycopg2\\_json.py:47 Json 1 0.000004 0.000004 0.000004\r\n", + "..ctions_abc.py:252 __subclasshook__ 1 0.000002 0.000004 0.000004\r\n", + "..plotlib\\gridspec.py:382 1 0.000003 0.000004 0.000004\r\n", + "..process_plot_var_args._setdefaults 4 0.000004 0.000004 0.000001\r\n", + "..9 _ConnectionRecord.get_connection 1 0.000004 0.000004 0.000004\r\n", + "..et.py:20 _IterationGuard.__enter__ 1 0.000003 0.000004 0.000004\r\n", + "..py:155 HandlerLine2D.get_numpoints 4 0.000004 0.000004 0.000001\r\n", + "..se.py:2960 AxesSubplot.set_axis_on 1 0.000002 0.000004 0.000004\r\n", + "..f.py:463 WeakKeyDictionary.popitem 1 0.000003 0.000004 0.000004\r\n", + "..elpers.py:1381 parse_user_argument 2 0.000003 0.000004 0.000002\r\n", + "..ore\\numerictypes.py:239 obj2sctype 1 0.000003 0.000004 0.000004\r\n", + "..:964 SourceFileLoader.get_filename 9 0.000004 0.000004 0.000000\r\n", + "..ib\\artist.py:1013 Line2D.get_label 8 0.000004 0.000004 0.000000\r\n", + "..ges\\psycopg2\\extras.py:157 DictRow 1 0.000004 0.000004 0.000004\r\n", + "..teq6k\\lib\\codecs.py:952 getencoder 1 0.000003 0.000004 0.000004\r\n", + "..xtras.py:650 UUID_adapter.__init__ 4 0.000004 0.000004 0.000001\r\n", + "..8gteq6k\\lib\\weakref.py:323 __new__ 1 0.000003 0.000004 0.000004\r\n", + "..y:886 AxesSubplot.set_axes_locator 1 0.000002 0.000004 0.000004\r\n", + "..tenerCollection._memoized_attr_ref 2 0.000004 0.000004 0.000002\r\n", + "..reading.py:1095 _MainThread.daemon 2 0.000004 0.000004 0.000002\r\n", + "..chemy\\util\\queue.py:199 Queue._put 1 0.000003 0.000004 0.000004\r\n", + "..k\\__init__.py:626 _AxesStack.clear 3 0.000004 0.000004 0.000001\r\n", + "..tlib\\artist.py:1201 Text.mouseover 7 0.000004 0.000004 0.000001\r\n", + "..lotlib\\axis.py:645 Ticker.__init__ 4 0.000004 0.000004 0.000001\r\n", + "..py:357 String._has_bind_expression 2 0.000004 0.000004 0.000002\r\n", + "..py:140 _AxesStack.current_key_axes 2 0.000003 0.000004 0.000002\r\n", + "..s.py:1355 AutoDateLocator.set_axis 1 0.000003 0.000004 0.000004\r\n", + "..se.py:1699 RootTransaction._parent 1 0.000004 0.000004 0.000004\r\n", + "..ib\\function_base.py:2116 8 0.000004 0.000004 0.000000\r\n", + "..kers.py:286 MarkerStyle.get_marker 8 0.000003 0.000003 0.000000\r\n", + "..xecutionContext_psycopg2.post_exec 6 0.000003 0.000003 0.000001\r\n", + "..ansaction._is_transaction_boundary 4 0.000003 0.000003 0.000001\r\n", + "..ker.py:2004 _Edge_integer.__init__ 2 0.000003 0.000003 0.000002\r\n", + "..til\\_collections.py:991 3 0.000003 0.000003 0.000001\r\n", + "..Lib\\selectors.py:21 _fileobj_to_fd 2 0.000003 0.000003 0.000002\r\n", + "..WindowsSelectorEventLoop.set_debug 1 0.000003 0.000003 0.000003\r\n", + "..b\\cbook\\__init__.py:886 6 0.000003 0.000003 0.000001\r\n", + "..b\\cbook\\__init__.py:836 8 0.000003 0.000003 0.000000\r\n", + "..lchemy\\orm\\query.py:4795 6 0.000003 0.000003 0.000001\r\n", + "..strap>:397 ModuleSpec.has_location 10 0.000003 0.000003 0.000000\r\n", + "..ylab_helpers.py:29 get_fig_manager 1 0.000002 0.000003 0.000003\r\n", + "..s.py:263 MarkerStyle.get_fillstyle 8 0.000003 0.000003 0.000000\r\n", + "..ckages\\psycopg2\\extras.py:698 Inet 1 0.000003 0.000003 0.000003\r\n", + "..ctable.py:1982 Table._from_objects 6 0.000003 0.000003 0.000001\r\n", + ".._weakrefset.py:36 WeakSet.__init__ 1 0.000003 0.000003 0.000003\r\n", + "..ctions_abc.py:302 __subclasshook__ 6 0.000003 0.000003 0.000001\r\n", + "..__init__.py:51 _StrongRef.__init__ 3 0.000003 0.000003 0.000001\r\n", + "..gine\\default.py:295 get_pool_class 1 0.000001 0.000003 0.000003\r\n", + "..lectorEventLoop._process_self_data 6 0.000003 0.000003 0.000000\r\n", + ".. _ClsLevelDispatch._adjust_fn_spec 4 0.000003 0.000003 0.000001\r\n", + "..ogging\\__init__.py:189 _checkLevel 3 0.000002 0.000003 0.000001\r\n", + "..hemy\\engine\\url.py:56 URL.__init__ 1 0.000003 0.000003 0.000003\r\n", + "..\\matplotlib\\axis.py:153 6 0.000003 0.000003 0.000000\r\n", + "..ections.py:151 immutabledict.union 6 0.000003 0.000003 0.000000\r\n", + "..b\\path.py:251 Path.should_simplify 4 0.000003 0.000003 0.000001\r\n", + "..774 SourceFileLoader.create_module 9 0.000003 0.000003 0.000000\r\n", + "..copg2._check_max_identifier_length 1 0.000003 0.000003 0.000003\r\n", + "..y\\sql\\selectable.py:2987 6 0.000003 0.000003 0.000000\r\n", + "..g2.py:558 _PGUUID.result_processor 2 0.000003 0.000003 0.000001\r\n", + "..stgresql\\psycopg2.py:711 4 0.000003 0.000003 0.000001\r\n", + "..\\Lib\\threading.py:513 Event.is_set 5 0.000003 0.000003 0.000001\r\n", + "..ython38\\Lib\\inspect.py:80 ismethod 2 0.000002 0.000003 0.000001\r\n", + "..d_bases.py:2556 notify_axes_change 1 0.000003 0.000003 0.000003\r\n", + "..b\\weakref.py:328 KeyedRef.__init__ 1 0.000003 0.000003 0.000003\r\n", + "..ffsetbox.py:240 VPacker.set_offset 1 0.000001 0.000003 0.000003\r\n", + "..ath.py:230 Path.simplify_threshold 4 0.000003 0.000003 0.000001\r\n", + "..y:330 _ListenerCollection.__bool__ 1 0.000003 0.000003 0.000003\r\n", + "..tlib\\transforms.py:400 Bbox.height 1 0.000002 0.000003 0.000003\r\n", + "..tlib\\units.py:81 AxisInfo.__init__ 2 0.000003 0.000003 0.000001\r\n", + "..on38\\Lib\\inspect.py:158 isfunction 3 0.000002 0.000003 0.000001\r\n", + "..i.py:279 NullType.result_processor 4 0.000002 0.000002 0.000001\r\n", + "..lib\\transforms.py:931 Bbox.minposx 1 0.000002 0.000002 0.000002\r\n", + "..hemy\\util\\queue.py:195 Queue._full 1 0.000002 0.000002 0.000002\r\n", + "..ExecutionContext_psycopg2.pre_exec 6 0.000002 0.000002 0.000000\r\n", + "..n-68gteq6k\\lib\\os.py:732 check_str 1 0.000002 0.000002 0.000002\r\n", + "..gure.py:2059 Figure.add_axobserver 1 0.000002 0.000002 0.000002\r\n", + "..py:843 TextArea.set_minimumdescent 1 0.000001 0.000002 0.000002\r\n", + "..e.py:1694 RootTransaction.__init__ 1 0.000002 0.000002 0.000002\r\n", + "..teq6k\\lib\\copyreg.py:90 __newobj__ 1 0.000002 0.000002 0.000002\r\n", + "..6k\\lib\\enum.py:659 RegexFlag.value 4 0.000002 0.000002 0.000001\r\n", + "..dConnectionEventsDispatch.__init__ 1 0.000002 0.000002 0.000002\r\n", + "..vents.py:719 get_event_loop_policy 1 0.000002 0.000002 0.000002\r\n", + "..68gteq6k\\lib\\functools.py:63 wraps 1 0.000002 0.000002 0.000002\r\n", + "...py:1006 Legend.set_bbox_to_anchor 1 0.000002 0.000002 0.000002\r\n", + "..ng\\__init__.py:772 Logger.__init__ 3 0.000002 0.000002 0.000001\r\n", + "..ycopg2\\extras.py:65 DictCursorBase 1 0.000002 0.000002 0.000002\r\n", + "..mpl.py:143 QueuePool._inc_overflow 1 0.000002 0.000002 0.000002\r\n", + "..postgresql\\base.py:2708 1 0.000002 0.000002 0.000002\r\n", + "..meric.py:337 _full_like_dispatcher 4 0.000002 0.000002 0.000001\r\n", + "..idspec.py:67 GridSpec.get_geometry 3 0.000002 0.000002 0.000001\r\n", + "..plotlib\\gridspec.py:204 _normalize 1 0.000002 0.000002 0.000002\r\n", + "..my\\sql\\elements.py:4480 6 0.000002 0.000002 0.000000\r\n", + "..\\matplotlib\\path.py:211 Path.codes 4 0.000002 0.000002 0.000000\r\n", + "..mpy\\core\\multiarray.py:1043 copyto 4 0.000002 0.000002 0.000000\r\n", + "..set.py:16 _IterationGuard.__init__ 1 0.000002 0.000002 0.000002\r\n", + "..nit__.py:1220 PlaceHolder.__init__ 4 0.000002 0.000002 0.000000\r\n", + "..e.py:3867 AxesSubplot.set_navigate 1 0.000002 0.000002 0.000002\r\n", + "..tlib\\axis.py:1559 XAxis.have_units 2 0.000002 0.000002 0.000001\r\n", + "..b\\sre_parse.py:98 State.checkgroup 1 0.000001 0.000002 0.000002\r\n", + "..ib\\weakref.py:73 WeakMethod.__eq__ 1 0.000002 0.000002 0.000002\r\n", + "..g2\\extras.py:405 LoggingConnection 1 0.000002 0.000002 0.000002\r\n", + "..\\psycopg2\\extensions.py:109 SQL_IN 1 0.000002 0.000002 0.000002\r\n", + "..2.py:540 _PGJSONB.result_processor 1 0.000002 0.000002 0.000002\r\n", + "..g2\\extras.py:538 ReplicationCursor 1 0.000002 0.000002 0.000002\r\n", + "..\\transforms.py:939 Bbox.get_points 3 0.000002 0.000002 0.000001\r\n", + "..hemy\\util\\queue.py:183 Queue._init 1 0.000002 0.000002 0.000002\r\n", + "..nit__.py:1974 _OrderedSet.__init__ 1 0.000002 0.000002 0.000002\r\n", + "..ase.py:3618 AxesSubplot.get_yscale 1 0.000001 0.000002 0.000002\r\n", + "..end.py:666 get_default_handler_map 2 0.000002 0.000002 0.000001\r\n", + "..plotlib\\patches.py:1833 2 0.000002 0.000002 0.000001\r\n", + "..\\psycopg2\\extras.py:132 DictCursor 1 0.000002 0.000002 0.000002\r\n", + "..ib\\_pylab_helpers.py:99 get_active 1 0.000001 0.000002 0.000002\r\n", + "..\\sql\\selectable.py:3751 2 0.000002 0.000002 0.000001\r\n", + "..e.py:737 _ConnectionFairy.__init__ 1 0.000002 0.000002 0.000002\r\n", + "..:1088 ExtensionFileLoader.__init__ 1 0.000002 0.000002 0.000002\r\n", + "..ib\\axes\\_subplots.py:229 2 0.000002 0.000002 0.000001\r\n", + "..lotlib\\axes\\_base.py:586 4 0.000002 0.000002 0.000000\r\n", + "..plotlib\\axis.py:649 Ticker.locator 3 0.000002 0.000002 0.000001\r\n", + "..ec.py:93 GridSpec.set_width_ratios 1 0.000002 0.000002 0.000002\r\n", + "..lib\\transforms.py:935 Bbox.minposy 1 0.000002 0.000002 0.000002\r\n", + "..ib\\widgets.py:34 LockDraw.__init__ 2 0.000002 0.000002 0.000001\r\n", + "..610 _WindowsSelectorEventLoop.stop 1 0.000002 0.000002 0.000002\r\n", + "..sqltypes.py:2182 _PGJSONB.__init__ 1 0.000001 0.000001 0.000001\r\n", + "..nsaction._iterate_self_and_parents 1 0.000001 0.000001 0.000001\r\n", + "..matplotlib\\axis.py:1486 4 0.000001 0.000001 0.000000\r\n", + "..numeric.py:2354 _cumsum_dispatcher 3 0.000001 0.000001 0.000000\r\n", + "..q6k\\lib\\functools.py:486 lru_cache 1 0.000001 0.000001 0.000001\r\n", + "..Python38\\Lib\\inspect.py:260 iscode 2 0.000001 0.000001 0.000001\r\n", + "..hon38\\Lib\\inspect.py:285 isbuiltin 1 0.000001 0.000001 0.000001\r\n", + "..types.py:256 String.bind_processor 1 0.000001 0.000001 0.000001\r\n", + "..ements.py:1315 TypeClause.__init__ 2 0.000001 0.000001 0.000001\r\n", + "..y\\core\\multiarray.py:77 empty_like 4 0.000001 0.000001 0.000000\r\n", + "..copg2\\extras.py:233 RealDictCursor 1 0.000001 0.000001 0.000001\r\n", + "..indowsSelectorEventLoop.is_running 2 0.000001 0.000001 0.000001\r\n", + "...py:635 Legend._approx_text_height 2 0.000001 0.000001 0.000001\r\n", + "..matplotlib\\figure.py:97 1 0.000001 0.000001 0.000001\r\n", + "..copg2\\extensions.py:164 1 0.000001 0.000001 0.000001\r\n", + "..s\\psycopg2\\tz.py:108 LocalTimezone 1 0.000001 0.000001 0.000001\r\n", + "..matplotlib\\figure.py:74 2 0.000001 0.000001 0.000001\r\n", + "..WeakKeyDictionary._commit_removals 1 0.000001 0.000001 0.000001\r\n", + "..lotlib\\axes\\_base.py:588 4 0.000001 0.000001 0.000000\r\n", + "..ctionRegistry.get_projection_class 1 0.000001 0.000001 0.000001\r\n", + "..as.py:472 MinTimeLoggingConnection 1 0.000001 0.000001 0.000001\r\n", + "..sycopg2\\_range.py:242 RangeAdapter 1 0.000001 0.000001 0.000001\r\n", + "..psycopg2\\extras.py:261 RealDictRow 1 0.000001 0.000001 0.000001\r\n", + "..sycopg2\\extras.py:643 UUID_adapter 1 0.000001 0.000001 0.000001\r\n", + "..matplotlib\\figure.py:1073 fixitems 1 0.000001 0.000001 0.000001\r\n", + "..ycopg2\\extras.py:456 LoggingCursor 1 0.000001 0.000001 0.000001\r\n", + "..3883 AxesSubplot.set_navigate_mode 1 0.000001 0.000001 0.000001\r\n", + "...py:113 GridSpec.set_height_ratios 1 0.000001 0.000001 0.000001\r\n", + "..copg2\\extras.py:125 DictConnection 1 0.000001 0.000001 0.000001\r\n", + "..plotlib\\patches.py:1832 2 0.000001 0.000001 0.000000\r\n", + "..matplotlib\\figure.py:76 2 0.000001 0.000001 0.000000\r\n", + "..opg2\\extensions.py:133 NoneAdapter 1 0.000001 0.000001 0.000001\r\n", + "..opg2.py:548 _PGUUID.bind_processor 1 0.000001 0.000001 0.000001\r\n", + "..365 _ListenerCollection.for_modify 2 0.000001 0.000001 0.000000\r\n", + "..y:632 ThreadPoolExecutor.__enter__ 1 0.000001 0.000001 0.000001\r\n", + "..:505 Figure.get_constrained_layout 2 0.000001 0.000001 0.000000\r\n", + ".. LinearScale.limit_range_for_scale 2 0.000001 0.000001 0.000000\r\n", + "..38\\Lib\\urllib\\parse.py:624 unquote 1 0.000001 0.000001 0.000001\r\n", + "..ib\\threading.py:1095 Thread.daemon 1 0.000001 0.000001 0.000001\r\n", + "..b\\cbook\\__init__.py:828 2 0.000001 0.000001 0.000000\r\n", + "..util\\langhelpers.py:1500 only_once 1 0.000001 0.000001 0.000001\r\n", + "..sqltypes.py:786 TIMESTAMP.__init__ 1 0.000001 0.000001 0.000001\r\n", + "..chemy\\util\\langhelpers.py:906 memo 2 0.000001 0.000001 0.000000\r\n", + "..rs.py:63 _SelectorMapping.__init__ 1 0.000001 0.000001 0.000001\r\n", + "..emy\\engine\\url.py:129 URL.password 1 0.000001 0.000001 0.000001\r\n", + "..b\\gridspec.py:532 SubplotSpec.num2 1 0.000001 0.000001 0.000001\r\n", + "..y\\dialects\\__init__.py:52 1 0.000001 0.000001 0.000001\r\n", + "..ages\\psycopg2\\errors.py:1 1 0.000001 0.000001 0.000001\r\n", + "..y\\lib\\shape_base.py:1227 2 0.000001 0.000001 0.000000\r\n", + "..6 PGCompiler_psycopg2.default_from 2 0.000001 0.000001 0.000000\r\n", + "..ions.py:145 immutabledict.__init__ 1 0.000001 0.000001 0.000001\r\n", + "..emy\\util\\queue.py:191 Queue._empty 1 0.000001 0.000001 0.000001\r\n", + "..tors.py:272 SelectSelector.get_map 1 0.000001 0.000001 0.000001\r\n", + "..extras.py:296 NamedTupleConnection 1 0.000001 0.000001 0.000001\r\n", + "..y:512 LogicalReplicationConnection 1 0.000001 0.000001 0.000001\r\n", + "..ist.py:961 Rectangle.set_in_layout 1 0.000001 0.000001 0.000001\r\n", + "..py:536 PGDialect_psycopg2.do_begin 1 0.000001 0.000001 0.000001\r\n", + "..opg2\\extras.py:526 StopReplication 1 0.000001 0.000001 0.000001\r\n", + "..b\\gridspec.py:528 SubplotSpec.num2 1 0.000001 0.000001 0.000001\r\n", + "..:519 PhysicalReplicationConnection 1 0.000001 0.000001 0.000001\r\n", + "..s\\matplotlib\\dates.py:225 2 0.000001 0.000001 0.000000\r\n", + "..b\\_pylab_helpers.py:115 1 0.000001 0.000001 0.000001\r\n", + "..2\\extras.py:226 RealDictConnection 1 0.000001 0.000001 0.000001\r\n", + "..extras.py:500 MinTimeLoggingCursor 1 0.000001 0.000001 0.000001\r\n", + "..py:2459 AxesSubplot._get_axis_list 1 0.000000 0.000000 0.000000\r\n", + ".. FontProperties.get_size_in_points 1 0.000000 0.000000 0.000000\r\n", + "..ool\\base.py:231 QueuePool._creator 1 0.000000 0.000000 0.000000\r\n", + "..sycopg2\\_range.py:457 NumericRange 1 0.000000 0.000000 0.000000\r\n", + "..re\\multiarray.py:990 unravel_index 1 0.000000 0.000000 0.000000\r\n", + "..ib\\artist.py:800 XAxis.get_visible 2 0.000000 0.000000 0.000000\r\n", + "..2\\_range.py:486 NumberRangeAdapter 1 0.000000 0.000000 0.000000\r\n", + "..ec.py:549 SubplotSpec.get_gridspec 1 0.000000 0.000000 0.000000\r\n", + "..py:117 AxesSubplot.get_subplotspec 1 0.000000 0.000000 0.000000\r\n", + "..hape_base.py:1151 _tile_dispatcher 1 0.000000 0.000000 0.000000\r\n", + "..n\\Python38\\Lib\\typing.py:1146 cast 1 0.000000 0.000000 0.000000\r\n", + "..ycopg2\\_range.py:471 DateTimeRange 1 0.000000 0.000000 0.000000\r\n", + "..lib\\legend.py:918 Legend.get_frame 1 0.000000 0.000000 0.000000\r\n", + "..e\\interfaces.py:901 engine_created 1 0.000000 0.000000 0.000000\r\n", + "..opg2\\_range.py:476 DateTimeTZRange 1 0.000000 0.000000 0.000000\r\n", + "...py:101 State.checklookbehindgroup 1 0.000000 0.000000 0.000000\r\n", + "..chemy\\engine\\url.py:156 1 0.000000 0.000000 0.000000\r\n", + "..s\\psycopg2\\_range.py:466 DateRange 1 0.000000 0.000000 0.000000\r\n", + "..\\interfaces.py:856 get_dialect_cls 1 0.000000 0.000000 0.000000\r\n", + "..ion\\utils.py:58 profile_with_yappi 1 0.000000 0.000000 0.000000\r\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACdsAAAUsCAYAAADFYdzDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdeZhkVX0//vcZhhmQRVDBDRQV0a8YURGMkQhGTdyCRBOXaCIuWYxmMcZoXNFo8jOJ+s3XJXvcSUjcFZfEfUHAFTdQZFdAZWeG2fv8/rjVTnd1VdfaXTU1r9fz9NNd5957zumqe6qYmTefU2qtAQAAAAAAAAAAALpbM+kJAAAAAAAAAAAAwLQTtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAACYMaWUU0opdeHX7jQ+AAAAAMBKELYDAAAAAAAAAACAHoTtAAAAgF1GaVzcXjWtlLK9lHL7Sc8PAAAAAIDZJWwHAAAA7EoemuSOHdr3SHLy6k4FxqOUckKHAOkJE5zPW9vmcvGk5gKzwJoCAACA2SFsBwAAAOxKnrHMsaeXUsqqzQQAAAAAgN2KsB0AAACwSyil3CLJScuccuckJ6zObAAAAAAA2N0I2wEAAAC7iqckWd/WVtseL1f5jlVSaz2l1loWfk16TgAAAAAAoxK2AwAAAHYVT297fH6S97a1PbaUcvNVmg8AAAAAALsRYTsAAABg6pVS7pfkqLbmtyd5W1vb3kl+c1UmBQAAAADAbkXYDgAAANgVtG8PW5O8I8lHk/ykx7kAAAAAADCytZOeAAAAAMBySil7J3lSW/Pnaq2XtI6fmuRPFhw7upRyVK31nBWe155Jjk1yjyS3bDX/OMnXBhm7lLJ/kmOS3C3JAUk2JrkyyRdrrT8c66SXjn3LJPdPcpck+ye5PsnlSc6ptV6wkmMPo5RySJoKhwe1vmqSnya5IsmZtdYbVmEOd01ydJLbJ1mf5Oo0z9kXaq3XrvT4s6iUcs8khyc5OM1auinN63pxki/XWret8PjW8vDjTsuaPCrJIUn2TbI1yRW11nf0ef3tk9w9yWFJbp6mQuoNSa5Jcmmae3Dz+Gc+20op65LcL816uFWa98sbkpxVaz1rgH4OT7M25++xLUmuSvLDNPfYpjFPHQAAAJYlbAcAAABMu19PE4BY6G1tP/9J2/GnJ/njYQYrpZyQ5NNtzQ+utX6mdfx2SV6c5LeS7Nelj+8nedVyYY9Syr2SvCTJiWlCCJ3O+VKS59davzjYb7G8UsrxSV6U5CFJ9uhyzteS/EOSf6u11gH7PyXJyxe21VrLkHM9OMlzk/xqkiOXOXV7KeWsJG9KclqtdW7Acdp/x1fUWk9pHVuT5KlJ/jTJPbt0saOU8pkkL6m1ntnHeKek7Tlq8+lSej5lb6u1ntzrpH6UUi5Ocscuh+/Y4fnp5GfrpI/x7pVm3f5Kktstc+qGUsonkrymn+e1bYwTsouv5V5raaXXcpf+pmFN7pPkD5P8TpI7d+mi42tWSrlVkl9L8tAkxye5dY+pbC2lnJnkjUne0+/vsVJrqtd9PYgOc+z5nlJKOTnJW9qa71Rrvbh1/Mgkf57kcUn26dDF25IsG7YrpdwpzfvtI9P99U2SzaWUzyd5fa31o8v1CQAAAONiG1kAAABg2rVvC3tTknfPP6i1fiPJN9vOeUoppWPoZRSllMcm+W6SP0iXcE7LEUneXkr5r/Z5lMbLknwtyW+kSzin5QFJPl9KedFoM//Z2HuUUt6Y5DNJfjldwjkt903yL0k+1wo+rKpSyrpSyiuTXJjkhVk+1JM0/1PpA5OcmuScVgBqHPM4JMkXkvx7ugftkua5fEiSL5VSXj2OsWdRKeW2pZR3JflGkqdl+aBd0lQqOynN8/r+UsotxjQPa3nwMadlTd4/zWv311k+iNXp2lPTVN375ySPT++gXZKsS/KgJP+V5NutMBkdlFJekmZt/3Y6B+16Xb9/677+XpLnpPfru1eShyX5SCnl86WUOww6JgAAAAxK2A4AAACYWq3t4x7U1vz+WuuNbW1va3t8izQBnXHO5SlpQn7tVfaW8xtpQlrzfZQ0oZdXZPlwzKKhk7y6lPKcAcZd2kkz9juTPHvAS49L8tlSykChllG0AlX/k+SlGSKwkSYU98VSyq+OOI87JzkzTVBqEC8qpbxqlLFnUSnlqCRnJ/nNNPf1oB6T5MxSyhEjzsNaHnzMaVmTD0oTMBw2VPULGW23l/+T5h586Ah9zKRWSO4vM+TzW0q5Y5Ivprmv9xyii+OSnF1K+flhxgcAAIB+2UYWAAAAmGZPz9JQTnuwLkneleRvsjj08owkp41pHvdL8lcL5nJdko+kCWL9JMneaUIYj09yWNu1v1lKeX+t9b/TbPe4sFLfJUk+nOTbSa5OckCSY1v97N/Wz2tKKR+e36pvCM9L8sQFj29M8oEkX07y49bYd0+z9d+hbdcemuRTpZR711qvG3L8vpRSDkgTuLh7h8PfTvLZJN9J8xokycFpwnCPzOIKZfsm+e9SygNrrV8dYir7Jfloktu3HtckZyT5RJJLk2xIclCayl2/lqbC0kJ/UUr5UK2123aJVyY5Z8Fc79J2/ILWGMu5tMfxQXw3O5/TOyQ5cMGxba3jvXSdbynlfmm2vty37dBcks+neW4vas1h7ySHpNnis3171LumqWJ1dK31+j7m1M5aHnAtT9GavE2S92bxWjs7TQjwkjTPw22T3CNNOLKXHWmqEn4nyXlpXrcb0twb+6e5134+zRpf+D+t75vkP0sp96m1XrZM/yu6pqbM72Rx+HNDkv9Nc9/8OM3zd0iSB6d53hdpBe3OSudKg2e3+vlekmvTVBq8bZrg5COyuKLkrZOcXkq5b631ktF+JQAAAOis1FonPQcAAACAJUope6QJEy3cZvLyJIfWWuc6nH96mnDHvLkkdx70H9xLKSekCQUttCU7/0H/DUle1imo0tpm8rVZWnHqe2m21ftSmtDBTWkCM/9Sa+0UPLhNkvekCRMs9M+11t/r43c4JcnL25o3Z2dI5S1J/rTL77AmyXOTvCpLA2RvrbU+bZjxa619VTIrpbwvS6sSntGab7fg2nwg6KVp5r5wrIuT3KtDNcT269v/kmzh83VWkj+otX6ty7WHpXm97tt26OO11ocvN27r+hOy9J57cK31M72uXQmllLcmeeqCpktqrYeN0N+BaUJN7X28JckptdauocFSyl2SvCnJr7Qdem+t9XE9xj0h1vJIa7nVz7SsyR3ZGbz8ZpLfr7V+qcu1e9VaN3do/36Sb6WpDPipfgKbrSDYXyd5Utuh02utj+51fauPt2ZMa2qc7xellIuT3HFB09tqrSf3uObkNPfdQgtfm39M8pJa69Vdrl/02pRS1qXZqvuYtlM/nOTPa63nLjOX2yT52yRPaTv05SQP6LQmAQAAYFS2kQUAAACm1SOyOGiXJO/sFLRraa94tybJyWOay3w4549rrX/UrSJUrXVLrfU5ST7eduhuST7UmtOGJL9Ua/3HbkGAWuuVSR6d5Kdth55YStl7yN9hPmzz/9Van77M7zBXa31tmspQ29sOn9zaxnFFlFJ+N0tDPW9OctxyoZ4kqbVeV2t9XhZXG0uagNcfDDGd+efrw0lO6Ba0a419cZKHpangtNDDSinDbnc5S96UxUG7HUme0roPl63OV2u9IM17QXu457GllPsPMRdrudHXWp6yNTkf5vpikl/sFrRrjb0kaNdyTK31cbXW9/VbGbHWekmt9TeTnNJ26JGllE7V/nZH86/N82qtz+oWtEs6vjanZGnQ7oW11l9dLmjX6uvKWutvpdnOeaFjkvx672kDAADA4ITtAAAAgGnVHtBIkrcvc/4HsnPLvnlPa1V3GodTa63/r89zX9qh7eDW9z/uFVJJklrrtWkqay20f5ZWyBrEZ2qtf9HPibXWD6epiNXuj0YYv6tSyto0W3Mu9LFa67PrAFsz1FrfkuRf25qf26pUNqiL04TCugV3Fo57TZYGPtakCeHttkopd0vyhLbmF9da39VvH63X//eStAdvXjjktKzlxrJreUrX5PVJnlBrvWGIazPk1sPzXpmmYtq8kmarcxrvqbW+bpALWlUv/7Ct+R9rra8ZpJ9a6ylptq1daNj3BwAAAFiWsB0AAAAwdUopByd5VFvz12qt3+l2Ta11S5LT2prvmOQhY5jSjiwNnXRVa/1ymi1w230vSyt0LefdHdratyodxKBBudck+WFb22NKKbcdYQ7dPDGLtzOsWRrC6NcrW9fPu3WSBwzRzysGDOf8Z5p7ZaGjhxh3ljw/i/8O8qIkfzdoJ7XWbUn+qq35EaWU9u1Re7GWd+q1lqdxTb6u1vqjIecwklbA8B1tzcdNYi5TaC7Jnw1x3bOT7Lvg8YYkLxhyDq9se3zv1hbfAAAAMFbCdgAAAMA0emqSPdva2reJ7aRT5btOFfIG9Yla6yUDXvONDm1vGbAi1AVJ2is43W3Aecw7s9b6rUEuaFV0aw+XrE3y0CHnsJz2Lf8+U2v9wTAd1VovS9L+ux4/YDcbk5w64LjXJjm/rXnY12uXV0opSR7b1vzWbluu9uEjbY/XJxl0K1lreadea3na1mRN8u/DjD9G7ev7vqWU9s+q3dGnWttpD6r9HvvvYasWJjkjS6vbDnqPAQAAQE/CdgAAAMA0at+ab3uS/+h1Ua31jCwNQ5xUSrnFiPP53BDXdAr0fH4M/RwwRB9J8v4hr3tvh7afH7KvjlqhrF9saz5jxG4vant8nwGvP7PWunWIcS9oe3zzIfqYFfdKcmBb29Cva2ur3vZKg4O+rtbyYh3X8pSuyR/UWtur842klLJvKeWRpZQXllLeXko5vZTy+VLK10op32j/SvLGti7Wp6nSt7v79KAXtLaQ/bm25lHeH+aydI0Neo8BAABAT2snPQEAAACAhUopD0xy97bmj9Zaf9pnF29P8pcLHq9P8uQkbxhhWsNUc7pxhfoZNrz11SGv+1aSbVlcaXDcW6P+nyTtgcinllIePUKfd2h7fKsBr28PbfarPQy2O4ftHtih7Q2llC0j9HmztseDvq7Wcn9reRrX5NdGGHuRUsrRabY4PjHJ3iN2d0CWbtG7uxnmtXlAlhYD+ItSynNGmMfhbY8HvccAAACgJ2E7AAAAYNp02va1ny1k570jySuTlLY+RwnbXTvENdtWqJ9htyz83jAX1Vq3lFIuTnLXBc0HDzmHbg7p0tapfVi3HPD8a4YcZ1yv1yzo9Pq1B2lHNejrai33t5ancU3+ZNQBW1u+vj7JszK+XV9250DtvGFem0730p1HnUibQe8xAAAA6Mk2sgAAAMDUKKXsm+Txbc3XJvlwv33UWi9J8pm25qNalYyG1SlsM7Ba61j6GVJ7xbVRrh12+8tuViMQMWj1qkm+VrNiZl/X3WAtT+Nrd8Mog7WCdv+d5NkZ79+L786B2nnDvDbTeI8BAABAT8J2AAAAwDR5YpJ92tpOq7UOuu1kp0p4nSrm7U42jvHa/UaZSAcHjrk/poPXdWWsxlqextdu+4jXvyDJYzq0/yjJm5M8Jc3WpoemCSHuVWstC7+SPHjEOcyqYV6babzHAAAAoCfbyAIAAADTpFMg7vdLKb8/hr6fVEp5Xq110xj62hXtk+ErQ7UHIG8ccS7tOr0mJ9VaPzDmcVhdnV7XA2ut1636TGbLaqzlmVqTpZSDk/xFW/P2JM9P8sZaa79hMZXSxqfTPXbvWus5qz4TAAAAGIDKdgAAAMBUKKXcI8nPr+AQByR57Ar2P+1uPsZrxx2WuqpD253GPAarr9PrethqT2IGrcZanrU1eWKSm7W1vaDW+n8HCNolyS3GOKdpMMktcGftHgMAAGA3IWwHAAAATIvV2OZ1d95K9ohhLiqlrMvSgNRPRp7NYj/u0HavMY/B6vO6rozVWMuz9to9rO3xtUneOEQ/dx7DXEa1rUPbsKG5SYYHZ+0eAwAAYDdhG1kAAABg4kopeyb5rbbmrUnOHbHrQ7M4THBCKeXOtdYLR+x3V3R0kk8Ocd29sjTI8dXRp7PIN5NsTrLXgraHj3kMVt/ZHdoekeTtqz2RGbMaa3nW1uShbY/PqrVuHaKfB4xjMiPqtIXw/oN2Uko5JItf39V2Voe2RyR55WpPBAAAAAahsh0AAAAwDU5MclBb2/tqrfce5SvJS9r6LEmetiq/0fQ5acjrOm29e+YoE2lXa92c5AttzbctpTxknONMsU7bWO6x6rPYqX0+w87ljCQb29oeVUo5cMj+aKz4Wp7BNXmrtsfXDNpBKeVWSR485PjjWlNJ561/h6m4d/wIcxhZrfWSJD9oaz62lDJU5UYAAABYLcJ2AAAAwDTotL3rO8fQ72lpKuQtdHIpZXf8O5EHlFKOHOSCUsr6LK04uD3JJ8Y2q50+0KHtlBUYZxrd2KFt31WfxU7t8xlqLq3KYR9ra94vyfOG6Y+fWa21PEtrsj302R6+68ezM3wluLGsqZYfJdnQ1nbsEP387ghzGJf2e2xNkpdNYiIAAADQr93xL5YBAACAKVJKuX2SX25r/mmWhnQGVmu9JslH25oPSfIro/a9i/r7Ac//8zTP10IfqLVeMab5LPRvSa5sazuulPKCFRhr2lzboW2YSlXj0j6fA0aoRvfqDm1/Xko5bsj+aKzGWp6lNdn+e/5CKWWffi9uhRv/YoTxx7amaq1zSb7R1vyoUsrN++2jlHJikgcNM/6YvTbNdsULPbmU8oRJTAYAAAD6IWwHAAAATNrTsnRLvdNqrZ221hxGpwp5nSrp7Q4eUkp5VT8nllIekeSlHQ79v/FOqVFr3ZTOway/KqU8Z9h+SykPL6W8efiZrYrLklzf1vbISUyk5Vsd2oaaT63160ne09a8Z5L3lVKGCvuUUtaXUn63lPLcYa6fESu+lmdsTX6+7fG+SV7ez4WllMOSfDDJ+hHGH9uaamkPke+dpN/74V5J3jLC2GPTCnu+qcOhfy+lPG6YPkspe5RSnlBK6XTvAgAAwMiE7QAAAICJKaWUNGG7duPYQnbeh7I0yHRiKeWgMY6xK5ivHvTiUsq/dKuCVEpZU0r5kyTvTROKWuittdbPreAc35TO2wq+oZTyvlLKUf10Ukq5UynlBaWUb6YJpUxDBaeuaq01yZfamh9aSvnrUsrBE5jSmUnm2tpeW0p5TCml/Z7ox+8luait7VZJPllK+dtSym366aSUcv9SymuTXJzkn5LcZYi5zILVXMuzsibfk6X39PNLKX9ZSlnb7aJSypPSrM35SpM3DDn+uNfUW5PsaGt7TinlFd1+n1YI7RlJvpDkFklqlm6zPgkvSXJ2W9vNkry7lPKvpZS+1nkp5Z6llFcm+X6S/0zS170JAAAAg+r6FwkAAAAAq+DBWbpd5vm11rPGNUCtdUsp5b+TPHNB855JnpLk9eMaZxfwsiR/0/r5mUkeX0p5f5IvJ/lJkgOS3D3J45LcocP1lyRZ0UpitdZaSnlKmjBIe1DipCQnlVLOSfKZJOcnubp17IA04a17JTk6k92CdVj/nuThbW0vTPLCUsoVSa5J0l7t8YO11peNeyK11itKKR/L4spbt07y/iRbSymXJdmYJqyz0DNrrV/p0N/VrW0rv5BkYTBsbZI/S/JHpZQvJflckh+m2XJzfZrX9bZJ7pPkfkl2t4BsN6u2lmdlTdZav19KeWeS32479JIkJ5dS3p3km0k2pAmi3S3JiVkc6LwpyQuS/MMQ4497TV1eSnlDkj9pO/SyNNuwvifJua053zLJzyV5VBbfD69J8qQkdxz09xmnWuvmUsqvpQkkHtp2+BlpXp+vJPlsmqDtNWmq4R6Q5OAk907z/nD71ZozAAAAuzdhOwAAAGCSOm3nOs6qdgv7fGZb2zOye4Xt/i5NIOHxrcf7pwmetIdPOvlhkl+qtV63QnP7mVrrhlLKL6bZ5rDTNoJHZTYrFr0nySeTPKTDsdu2vtp9YwXn8/wkxyfZp619XbpXlNu3W2e11m+XUo5JU2Xtnh36PL71RW+rupZnaE3+UZJj0wQRFzokS0Nr7bYl+Y004bVhjXVNJXlxkodm6Xq6S5I/7zGX01rXP6nHeauiFR48Ns282qse7pHk/q0vAAAAmDjbyAIAAAATUUo5IMljOxx61woM97kkl7a1HVlK2W3+8b61VemTk/zjgJd+McnxtdYLxz+rzmqtN9Zafz3Js5L8aMTuLk0TEppqtda5JL+e5NRJzyVJaq3fTfKwJD8YY5/npwnMvC5NFa9RfCXJR0ae1C5oEmt5FtZkrfX6NOG0Mwe89PIkD621jnS/jXtN1VpvSnJClm7BuuxlacKav9l6z5katdYr04SNX5Kmet0ozk3yXyNPCgAAADoQtgMAAAAm5clJ9mpr+1Kt9YJxD9QKp3QK8XWqrDezaq3ba63PShM4+VSS5cIWX0/yO0l+cTWDdgvVWv8xzfaTv5PkE+mvqtRcmrn/bZptig+rtb52xSY5RrXW62qtT05TeeuUJB9OckGabVW3TWA+X2rN5ZFJ3pxmK9HL02y1OVRQp9Z6U631eUkOS/M7fiXJjj4u3Zzmnn1RkiNrrceMGn7alU1qLe/qa7LW+qM0ldOek6TXc3FJkpcmuXut9XNjGn+sa6rWenWSB6YJQS732bkjyUeTPLDW+vxpC9rNa93Xr06zte3z0jw/W/u4dHuSM5K8MsmxtdZ71FrfvnIzBQAAYHdWmr9rBgAAAGB3U0q5VZKfT7Pt4L5JbkhyRZKvr0TocVSllHVJjk6z7eOtkhyYJmRxY5Krknw/yfdrrZsmNkkGVkq5eZJjkhyc5JZJbp5kU5rX9fIk30tyYa21n1DeTCmlnJLk5Qvbaq2lw3kTWcu7+pospRyRZmvZg9Js77oxzVa736y1fm+ScxtG6/c5Os1a2i/N63BBkjNqraNWi5uIUsrN0mybfLs07w8HJNmS5nf7SZr3hx/UWvsJ5QEAAMDIhO0AAAAAAKZQv2E7AAAAAFaHbWQBAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAeSq110nMAAAAAAAAAAACAqaayHQAAAAAAAAAAAPQgbAcAAAAAAAAAAAA9CNsBAAAAAAAAAABAD8J2AAAAAAAAAAAA0IOwHQAAAAAAAAAAAPQgbAcAAAAAAAAAAAA9CNsBAAAAAAAAAABAD8J2AAAAAAAAAAAA0IOwHQAAAAAAAAAAAPQgbAcAAAAAAAAAAAA9CNsBAAAAAAAAAABAD2snPQHoppRy8yTHL2i6LMnWCU0HAAAAAAAAAACYvHVJDl3w+LO11utXY2BhO6bZ8Uk+MOlJAAAAAAAAAAAAU+sxST64GgPZRhYAAAAAAAAAAAB6ELYDAAAAAAAAAACAHmwjyzS7bOGD97///Tn88MMnNRcAAAAAAAAAAGDCfvCDH+Skk05a2HRZt3PHTdiOabZ14YPDDz88Rx555KTmAgAAAAAAAAAATJ+tvU8ZD9vIAgAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAbDbqFs2pZ7zhdSf/mjSUwEAAAAAAAAAdjHCdgDsFuoXT0991G1Tn/OQ1MfeOXOvenrq9u2TnhYAAAAAAAAAsIsQtgNg5tVrf5r6kickWzbtbPz4u5J3v2FykwIAAAAAAAAAdinCdgDMvk+elmzftqS5nv62CUwGAAAAAAAAANgVCdsBMPPqf/595wMXn7u6EwEAAAAAAAAAdlnCdgDMvg5V7QAAAAAAAAAABiFsB8Ds27510jMAAAAAAAAAAHZxwnYAzL5twnYAAAAAAAAAwGiE7QCYfbaRBWiT9noAACAASURBVAAAAAAAAABGJGwHwOzbIWwHwGIf/VbNmt/d8bOvr15SJz0lAAAAAAAAppywHQCzb8eOSc8AgCny6fNqHvWGuUVtx7x6Lt+7UuAOAAAAAACA7oTtAACA3cpj3jTXsf05p3ZuBwAAAAAAgETYDgAA2M1s2NK5/ZPnre48AAAAAAAA2LWsnfQEAAAAuvnxDTXv/VrNpdckv3T3kofdo0x6SgAAAAAAAOymhO0AAICpdPFVNb/02rlcfHXz+DUfq3nRI0teddLKFejesq1m/Z4CfQAAAAAAACxlG1kAAGAqvebj9WdBu3l/9ZGaS6+uKzbmh7+5Yl0DAAAAAACwixO2AwAAptI/fbZzqO5fv7ByYbtPf2/l+gYAAAAAAGDXJmwHAABM3I65mq9cXPOhc2qu3bh84O0T565cIO6GTSvWNQAAAAAAALu4tZOeAAAAsHu7ekPNr/zfuXzt0ubx2jXJqb8zmf8v6MKrVLYDAAAAAACgM5XtAACAifrT/6o/C9olyfa55PH/NDeRuZxxwUSGBQAAAAAAYBcgbAcAAEzUh765etXkrumxRW2SbN2uuh0AAAAAAABLCdsBAAATs31HzXU3rd54V2/ofc6GLSs/DwAAAAAAAHY9wnYAAMDEbNq2uuNt29H7nE1bV34eAAAAAAAA7HqE7QAAgIm5aYhg25kXDj9eP2G7y64dvn8AAAAAAABml7AdAAAwMd+4bHXH2z7X+5z/+W5d+YkAAAAAAACwyxG2AwAAJmbjlsGvucMthh+vn8p2ZfjuAQAAAAAAmGHCdgDMtFpVJwKYZpu2Df4+vaOP6nTd9BO2e/kHa07/ps8PAAAAAAAAFhO2A2C27egjVQHAxGzaOsQ124Yfb3ufHwu/+sa5fPw7AncAAAAAAADsJGwHwGybE7YDmGbDBOeGCejN66ey3bxXfGiEEnoAAAAAAADMHGE7AGZbFZQAmGbDVrYbdpvwrQOE7c68cKghAAAAAAAAmFHCdgDMNtvIAky1YbeE3bJ9yPFGqIoHAAAAAADA7k3YDoDZZhtZgKl205Dht2FDczdtHa4iHgAAAAAAAAjbATDbhO0Aptqwle1W67pht6sFAAAAAABg9gjbATDbbCMLMNU2DxuaG7Ky3aDjbR1yu1oAAAAAAABmj7AdALNNZTuAqbZtyDDbsJXtBg3PDTsOAAAAAAAAs0fYDoDZJmwHMNW2Dfk2PWwIbsugYbshK+gBAAAAAAAwe4TtAJhtwnYAU23r9jrUdcOG4LYO+LGgsh0AAAAAAADzhO0AmG07hO0Aptmwle0220YWAAAAAACAVbZ20hMAgBVV5yY9AwCWMWiluXnDhuAGDtttTS66qmbbjmRNSQ67ZbJ2j5IbNtVctSG5062SUspwkwEAAAAAAGCXImwHwGxT2Q5gqg1b2W7T1ppk8JDboOG+Y/+qc2h7jzXJjrnk0AOTdzxjTR50hMAdAAAAAADArLONLACzbU7YDmCaDVppbt5qVbbrZkcrg3fZtckj/n4uV15fx9MxAAAAAAAAU0vYDoDZNmcbWYBpNnRluyHDdsOOt5xN25LTvyVsBwAAAAAAMOuE7QCYbSrbAUy1Qbd1nbdp65DjjamyXbtPnrsy/QIAAAAAADA9hO0AmG07hO0AptlqV7Y788KVqUD3kxtVtgMAAAAAAJh1wnYAzDaV7QCm2rCV5s4aIjR30VU1F1893Hi9fOq8pFaBOwAAAAAAgFkmbAfAbBO2A5hqw1a2+/h3Br/m37+4smG4z5+/ot0DAAAAAAAwYcJ2AMy2ubnux9b4GASYtGEr2x1/xODXvPr0lQ3bffp7KtsBAAAAAADMMikDAGbbcpXt1uyxevMAoKNhK9vtWCZLPSmXrNAWtQAAAAAAAEwHYTsAZttyYbtSVm8eAHS0dciw3bAhvW6OuPXofVxxvcp2AAAAAAAAs0zYDoDZtmPMaQwAxmrY0Nz2MVe2WzuGPxldes3ofQAAAAAAADC9hO0AmG3LVbarKhABTNrW7cNdN+6w3eOOHr3a6UVXJdVnCwAAAAAAwMwStgNgtgnbAUy1oSvbDXHdfe/Q/dhjjho9bLd5W3Ll9SN3s8S1G2ve/dWav/7oXN7yxblcdo3PLwAAAAAAgElYO+kJAMCKWnYbWWEFgEnaMVczN+Rb8XlXDn7NjZs7t5/8CyX3WSaIN4gLr0pue8B4+kqS866oecjr5nLFghDfurU17/79NXn0vUYPCAIAAAAAANA/le0AmG3LVbYDYKJ6VbW7y0HJSx7VOVC2ZYjtZ8//SfdxShlPcO2iq8Yb5H7OfywO2iXN1ru/9W9z2bZdaBwAAAAAAGA1CdsBMNuW2yrWNrIAE7V1mcDc2S9ak/NfvUduv0yVuO07xvM+Ps5PgwuvGl9fm7fVfO77nY9dvyn58iXjGwsAAAAAAIDehO0AmG1zc92PCdsBTNTmbd2P7b2u+b7P+u7n3LR1sPH23KNz+3yVvF+7z2D9dfKuM2uuunE8ny83bEq2L/MxdvWGsQwDAAAAAABAn4TtANh9CdsBTNSm5cJ2ezbf73OH7tu7Lnd9ux1zteu2tScc0Yzx3IeO/sej83+SHPy8uTz2zTuyaetonzMnvnGZpF2STdt8jgEAAAAAAKwmYTsAZptAHcDU2rRMZbr5sN3890Gvb/ftH3U/tt9ezffj7lpy1ovG80ek938j+bN3D/8Z9F9fmcvZFy9/zpd7HAcAAAAAAGC8hO0AmHHLBx2qMB7AxCxb2a61jexyYbvltqFt94Fzur/fLxzjmMO6V9Ib1Pu+NvxnzB/+R+9rz7vCZxgAAAAAAMBqErYDYLb1CtMJ2wFMTD/byM6H7ga9vt11N3U/dueDFj9+3H3773c5V96QbNs+3OfMT2/sfc6htxhfMBAAAAAAAIDehO0AmG3CdABTq9s2sKUk69Y2P++13DayA4Ttljt3n/WLQ2tP/YU1KWPKsQ0yx0Ft3bFyfQMAAAAAALCUsB0AuzdhPICJueL6zu/Be++ZlFbabf3adA2+dQvrdfJPn+081hOPWdr5o+9V8q5nlNzn0GYuD75b/+O0W8mw3bbtK9c3AAAAAAAAS62d9AQAYEXZRhZgan3qvM7tC6vZlVKy19rOobVxBNn226tz+xOPXZMnHpvUWlNKyTGv3pGvXjJ4/4MEAued/+P+Ppu2CtsBAAAAAACsKpXtAJhxvQILwnYAk3L7Azu3X7Nx8eO913U+r98gWxOY63xs45blr52vsPfY+w63r+zmIQKB37m8v/O27vAZBgAAAAAAsJqE7QCYbSrbAUyt7Tv6O2/vPTu3b9rW33v4lu3d3+6Pu2t/czjxqNI1sLecbX3+jsNcs2UFt6gFAAAAAABgKWE7AGabsB3A1PrWDzu/Bz/k7osfj1rZbrnz7n+n/hJ0R96u5J3PKNlnfX9jzts6RNiu34p1w/QNAAAAAADA8ITtAACAifjItzu3f7ttG9Xule36G+dH13U/1q3vTp507Jpc/fo1OetFa3LF363J0x7YO6i3dXv//c/rt7LdMH0DAAAAAAAwvLWTngAArCiV7QB2OT++YfHjUcN2F/60+7Fb7NNfH/PWrS055rDm5xs2zfU8fyW3kVXZDgAAAAAAYHWpbAfAbOsZphO2A5h2o24ju1x47eD9+9tGtpN+8trDVJ/r9xqV7QAAAAAAAFaXsB0AM05lO4BpdNWN/b//jlrZbtO2lXmv76fXYarP2UYWAAAAAABgOgnbATDbbCMLMJX+7n8HCNuNWNmuWyjvLgf1PYWO+vkIsY0sAAAAAADA7BC2A2D3JmwHMBGfPHeQynadt3rtt7LdTV1Ced0q5vXrqEN7b0G7ktvIblHZDgAAAAAAYFWtnfQEAGBF9QzTCdsBTMK1G7sfe/0TFofY9upS2W5zv9vIdgvbdem3X888ruQVH1r+c2TrjpqkdyhvoX4r2/Vb2W/jlpqvX5psn0v2XZ/ss37x93VrB5sfAAAAAADA7krYDoDZpnIdwFS68Krux57+wMXhr24V6DZt7e89vlsFvFEr293+wJJnnVDyD5/pPo9hKtv1HbbrI2z4z5+by7NPrdkx1/2cPffYGbxbFMZbl+y7V8k+65c/vm+X40J8AAAAAADArBG2A2DG9QhiCOMBrLovX9z9vfffnlqy3159hu36rGz3li92Hm/UynZJ8sYnldz/TsnJb+k8Rr/BuWGu6VXZ7uyLan7/nb0/57btSK67qflaavgKsWvXJPvutTCYtzikd7Mlba3v61shvy7H161NShHkAwAAAAAAVp+wHQCzrVeYTtgOYNW96L3dy6zdZv+lIapuobh+t1HtFl7bawx/Giql5LcfUPI3H9uR716x9PiWISrbbe0zbLd9Ltm2vWbPLhXkPvzNyX7GbZ9b2RDfzmDezp/3Wd9U4lvueHubEB8AAAAAANAvYTsAdm/CdgCr7pPndT/2c4csbRu1st0Rt05+fMPS9rMu6u/6fqzv8ierzX3OcaFBquFt2pbs2WXsy68ffOxdwUqG+Dpth7swxLfc8e7b6QrxAQAAAADArBC2A2C29QzTCdsBTJNDDhx/Zbtu5z38nuMLQHWb46Bhu+07av7hM/1/Nm3aluy/d+djO4bYwnZ3tn0uuX5T87XU8P89sceabgG9ZN+2EF+3452uF+IDAAAAAIDVJ2wHwGyzjSzAVLl24+Dvu6NWtusWeLv3oQNPpatR5zjvj08b7Pn5+qXJw+/Z+dggFfJYOTtWOMTXOYy3M8S33PFO168X4gMAAAAAgK6E7QCYccJ2ANPk499Z/bBdt/P26tLvMEatvpck27bXnHrWYM/PO86sXSv0bZ/rfM1T7l/y0keXbNiSbNySbGh9bdxSF/y883vzc207d+f3QQOFjMdqhfj2WZfsu9fCn0tutqRt/ueSfffqdI0QHwAAAAAAs0HYDoDZJkwHMFXOu3Lwa/ZeV9IpHNRvkG3r9s7tYw3b7dlljgME0c67sltwqrv/OLvmXc/sfGzbjs6fgQfsk9z11p1CT8MFoXbM1QWhvKVhvA2tEF/78Y3dAn5bkw2bhfgmZfkQX7J8kG/5EN988G6fda1qeot+3hniW3p8cYhv4XEhPgAAAAAAVpOwHQCzzTayu50zLqg57jU7yzm99Wklv/2ANROcEbDQ1mW2Nn3xozoHZrpVtrtxc39jdttOdc89+ru+H90q23XbwraTbpXohrW9y++9dsxviXusKdl/72T/vbudMXyI76ZW8G5hCG/jz9rqgp93tjfX1EVtQnyTt2MuuWFz89XZcCG+NWVpcG/x1ritLXM7Ht+5nW778b32FOIDAAAAAGApYTsAdm/CdjPl7IsWB+2S5OS31GzaOpffO17gDqZBtypzSfLKE7uE7boE2bbPJbXWnoGYbmG7tWvGF6TpViXvE+f2/zlzydVjmkzL/57buX2cIcOVtMeakv32Svbbq9sZo4f4Nm5tVdvbvDDMVxe3bVkc4ltyzRYhvkmaqysb4vvZdrqLAnw7g3qdj5e2c3d+F+IDAAAAANi1CdsBMNt6humE7WbJs0/tXBbqWe+q+b3jV3kyQEfdKtuddO/uAZRule2S5LtXJEfebvkxV6WyXZc5Xn5d/3386+fHW9quW1W9cVe229WsdIhvXNvpzv98U5/bJTNeKxniWxrcW1xt72Zdj5cuwT8hPgAAAACA1SJsB8CMs43s7uSrl3Q/tmVbzfo9/SM0TFq3ynbr1nZfn7fat3t/X7+05sjbDVfZbpxhu+s3dW6/zf799zHubWQPuFly3U1L239843jHobFSIb65+Up8XcJ4G7bUrgG/jV0CfhuE+CZmrjZbYHffBnv0EF/nMF9Zcnyfdc32ufuuLwt+Xnx873VCfAAAAAAACwnbATDbeoXpVihsV2vNJ85NPn9+zRG3Tk48qmT/vf1D5SR97DvJY+496Vkk126s+eA5NRf8NDn+iJJfurt/xGY4l19X84Fv1FyzMfmVI0vud9iucR91DdstE3w7/ODux7pVb1toNcJ2B+032NidnHfleOYyr9suube7+XjHYWWtWVOaENQKhvg6h/U6V9u7aZmAnxDf5KxUiK+U9mDezp+b763tdDseb22nu9fS40J8AAAAAMCuSthuQkopeyQ5PMk9ktwuyc2TbElybZILknyl1rpxzGPumeSBSe6Q5LZJNiS5PMnXa60Xj3MsgKkxgbBdrTV/fFrNGz+1s++jDqn5n+euyUH7+UfFSfm1N8/lxY8q+cvHTG7/xCuvr3no6+by3Suax686veZ5v1zyt7/uvmAw515R8+C/m8tPWhXKXvbBmn94csnvPmj69wftGnxb5k8mywUyru1QuW2hWmvXinHjDNsdd3jJ33586WfK1X3+F/0ZF9Rces1wY++Yq9mjQ7Ku23N99B2957DyIb6NW5MNm1thvIU/z1fbazu+cfPiEN+S41uG/lUZQV0Y4ruh4xnLXd31SCmtAN7CMN76xSG+m3U93rad7oLjQnwAAAAAwEoTtltFpZQ7JHlskocm+cUky20qtaOU8r9J3lhrPX3EcQ9K8ookT0hyiy7nnJHkdbXW94wyFgDJOT/MoqDdfNubPl1zyon+8W+SXn16zTOPq7njLSfzOrz+E/VnQbt5r/2fZk53u417g/696L07g3ZJE4b4k9NqnnL/mputn+57acu2zuGL9T3+ZHL0HTtvFX3qWTXP///Zu/Mwuaoyf+DfU11dXdWdfSUJkJAQVtmRHVlF0BHBDUVRQUZHBweH8aeijsLM6LggboMO4AKKouiALLIkskPYCQGSACEhCQnZ916qqqvr/f1RXd236p5z7rlVt5bu/n6ep59U33PvubfWdN361vu+y7xdzlJZLsqwXarVPCYigeGPE75XeQ/Znqw+MGW67lFeb6Jy3hDfVO073mhCfF3F1rrFy+nSEF9xvCsNdGXFF/zr8lT1o/oTGayGWKsQn2s73cHLSrsNQ3xERERERERERETkxbBdnSil/gDgoyE2aQFwJoAzlVJ3AbhYRDZUsN+zANwAwNJ8CwBwHIDjlFK/B/DZqKvqERE1TGDluugr213zoH7O/7hLcMXZke+OQrp/qeCiExrzYamu6hUA/O/Dgh+dxw9wyd3ti/zL0r3Azc8IPt2gx7errCEAlgh4Z5I3ZNGmj7NvZ2vjGmXorM0StnttA7Dvbubxnmx1/xf19OrDdqbrHm/+AohEPrUM8fX0lgX3vK1x0+Jf5mmnq92GIb6GKQnx6dewbW0cKYb4TGG8YohPP24O+LUzxEdERERERERERDTkMGxXP/sYlq8FsAzABhTuj9kADgHg/QjsHwA8opQ6SUTWu+5QKXUygL8CSHgWC4DnAawAMA7AYQAmecY/BmCMUuocEam8vAYRUdOofxvZPz9rnnNnj+DZVcCWTmDRGsGtzwtaYsBPPxLDyfvywzZXmV7BkysK4ZYjZwLxFvfbbUdPtMciIli+CVj0JnDw7sDeU8Lfj9c+IvjRedEeF41MC5YDnz6h0Udhl83plycCgm8L39Qvb0/olxeZWsgC0Ybt9reE6Xal7dtWG8pZtwOYPLp0Wb3a5xINdbHYYEiqViG+rowujCclwbziv12Z0na6uu2p/rwhPv23IKMJ8emq7bVbAn6mCn4M8REREREREREREdUOw3aNsRDArwHcIyLLyweVUjMAfBPAZzyL9wHwZ6XUO0SCkyFKqd0B3IrSoN3jAP5RRJZ61msD8FkAVwEo1uN4L4D/AvC1MFeKiKgpBb1k1iBs12eZctyl+uTDaVcXlu/6WQwdTd4CstGeWyU488d5bOmvwbrXJGD+v8Ywe7Lb7dbTG92xZHoFH/tlHrcuHFx29iHAHz8TQ7LV/X5M9wKX35rHd85V/GCUqvKbxwVXni3YfXzzPo4qrWz3kbcr/PEZ/wvs8k327WyV7eIRhs7Gpsxjmzvt26YNAUQv0/UHgEP/I48bLlT4xLGD39fps4QMo7zeRKTnDfHpVRfiM4fxRBvQ67IE/IrtdWvwZzEFqGWIr73YTjdRqAhZenkwxOcfLw3xecdTrYXHNhERERERERER0UjGsF39CIC/AbhCRJ61riiyFsBnlVKLAFzjGToBwHkA/uiwvysBjPf8vgDA6SJSUldDRDIAfqqUWg3gNs/QZUqpa0VklcO+iIiaVwPCdtVUKDrpB3k8+w2mIEzyecE51wwG7QDgjc3Ax3+Vx6NfduuLGGXY7qp5UhK0A4A7FgHfvUdwxdnhPoj83r2CY2crnH1odMdHI9Onb8jjvn9t3tcRY2W7gHcme03SL3/BUPGuqF5tZG0Bto9en8e2n5hX2N5tn/sv/xTDKfvCGLYDgAtvEJywtwwEj+tV0Y+I6ssb4puiXaOyIJSIoCdrrqZnqrbXnS202tW10WWIr3FEBislGtawbW2duzyE19Ef6itcVuhImsaVNvjXkSgEAxniIyIiIiIiIiKioYJhu/r5kIisDLOBiPxcKXUqgA94Fl+AgLCdUmougE96FmUBfKo8aFe2r78qpW70bNcG4FsALgpzzEREQ09zffr3/OpGH0FzW/gmsHa7f/mTK4C3NMt1erLRHc9dL+ofP3e9KLji7PDz/e0lwdmH8oNGqs4DrxaqFzVrlUxT2C4oAJZsNY91ZwTthutbr7CdrSplUPvq51eb/y86Zjbw/sMVMr32/69EgD89K7j8rMJxWCv6uWWTiWgEUapQ6ay9hiG+rizQmS4P48ngMs94McRXsk3ZZYb4GqOWIb5iME/XTrcjaRpXnrCfv50uQ3xERERERERERBQ1hu3qJGzQzuMalIbtTnHY5nwA3o8ObxWRZQ7bfQ+lIb0PK6U+bwvpERE1PcuncAJga5eCoVhSxca3A9sCqhRRZV5aa74/12xzm6M7wrDdU2/ol+tCkw5d4HH9o4JrL6jyoGjE68sDW7tsrQsbyxQCSwQE30YnzWNbuwsBkTD7A5qnwpstBnDZOwvJuDaH1tRX3CG4/KzC5bSliqctuEhEFCVviM+wRkXzFkN8XcVqfOnBMF5hmXguDy4vaaerGe/MMMTXKMUQ38ZdutHKQ3zFdrolrXEHwnqD7XT948oQ/GOIj4iIiIiIiIhopGPYrvmVNadDSik1TkRs9XvOLfv9Ny47EpGlSqmnABzdv6gDwBkA7nA6UiKiZqT5tEwAfHfi/8PPJnweG787FXMm9+H7H4zh3MOi+cBkzmTgWTbhrgnbPRTUhrHIFkCppYyhmhdRWC7BzShDpVEzhd+Cgm/vOUjhslv0191WsXIohO1s99e7DnSfx3tduzdtBTBOu16KYTsiGuK8Ib7Jo7VrVDSviCDd62+H6w3xadvlekJ8unGG+BqnO1v4qVWITxfG62hTvmCfN+Cn36ZQmY8hPiIiIiIiIiKi5sewXfPTfTSfMK2slNoNwCFl2z8eYn8PYTBsBwBngWE7IhrS/B+SXDfuYvz7lCsHfl++CfjwtXk8/pUYjtqr+g83bMEOp+1zgtY4P2TRWbnFPHbFnXmnOaJsI2sjIiVtJeu1Xxr+XD6s72lQqNRFzvBUjQcE38a3m8ds17dZwna5PkG8Rf/abjr+yaOB0cnBbT51nMINC9zSGl3fvQTATdqxlPHdBBHRyKaUQipReJ2sVYhPH8aTkuBecbw7Yw74FS/nGeJriGKIDzUI8WnDeAlgVLIQ1NOPK4xK6gOADPEREREREREREUWLYbvmt3fZ7zkAmy3rv63s9xdFpCvE/haU/R6ilgYRURPSpFJ+P/YjvmV9eeBPz0okYTtTkMRVTy/Qyv+htZ5+w/zh1DMr3ebo6a3PJ5KL1gCH7uHdb112SyOAyyO4mcOdlVa2swXEhkJluzc2A3On6sdMrw97TSz93aX965ptghndK9CzYjkwW78OK9sREdVXrUN85jCevtpelyXgV7zMEF9jFEN8myIO8aVaMRjGS5RfVoVKfdrxQojPvw1DfEREREREREQ0cvGj/Ob3wbLfnxURW4zjgLLfXw+5v+UB8xERDXkL2o/TLv/N44Iffqj6+autbNfTC4xJVX8cw9FekxTcokZmUYWQcn3243h9Y2nYjm1kKSp5h0BvM4c7jZXtYvbtbAGxZqlsZ6s8t36nJWxneF0qDxjOmRx8DMs3AtMfvhE9saRxnXZWtiMiGha8Ib5JNQzxdWULrXQ7PUG9kja6/eMl7XS923guM8TXGD29hZ9ahfg6+tvqei8PtNPVjnva6ZaNtyeAFob4iIiIiIiIiKiJMWzXxJRSowB8umzxbQGblVfCWx1yt6vKfp+olBovIttCzkNE1Bxc+i32294dzS5zVYbtpn2pNIkyZzLwrgMVvvVehcmjR/aHDt0RBOWimGPjTsGX/8/+2PrwtXnMmgh851yFjxwVQ9YhbHfUrOqPjYa/kVrZLhZTSMShfS7Zrq+t2mhQwC+sfz7FHLZLWwKBprBgecDwfYcqfOOvYg3vdmcB5PN4PVH+tqBAKSDBd4FERGRRyxBfJtcfzMv2V9NLe8N4Mhjc84x3Z4HOdGmIzzvOEF/jDIT4tKPVhfh07XK9IT79+GCIz9dOt40hPiIiIiIiIiKKBj9maW7/DWA3z+/bAfwyYJtxZb9vDLNDEelUSqUBeEthjAVQVdhOKTUFgEMtjhJzqtknERGAUGG7qFRb2a7c8k3Azx8SPPSq4MnLYxiVHLkfENjCKq4eL6/hGtKutOCUH+axdF3wuiu3AOf/UtCZyeNohxbFT6+s7thoZHD5MLmpK9sZXiNdgm+pVkPYzlbZzhJMi7qy3REzzc/zLZ0CUzjBtbLd3lMU7rwkhs/elMcbm/Xb3LBAcGS+AxdNv14/Z6tAqZH7/wgRETWOUgrJ1kJb9En6NSqaVxfiG2iNmwa6slIa7PO2002LP/jn2b7PoaIwRa8Y4tvcqRuNJsTnUFNSuAAAIABJREFUD+uVhvjKA376bRjiIyIiIiIiIhqJGLZrUkqpcwFcUrb46yKyNWDTUWW/91Sw+x6Uhu2032MO6fMAvhXBPEREVVmc2L/m+4g6bFe0ZB0wfylw7mG1mX8o6M42vmTFvS/DKWjn9eO/C268iB/AUDRcMsQ9WXOwq9HMle2CjzfVCuzQ/HXb02u+vqb9xVShWl7UJo3SfzB872LgI0fptzFXtvMf3+kHKCz/Tgtin9FfsT8/J3jXXub/62zteImIiIaiWof4BoJ73ta5una6mbIgn2GcIb7GqVWIL9lqCvAVQnztloBfeXBvFEN8RERERERERE2PYbsmpJQ6BMBvyxbPA/ALh83Lw3bpCg6hB8B4y5xERENHWSrlheQhxlWjOo+drVHYDgAee11w7mEj94R7VK0x+/JS8QcXz64KH/hbss6tTTGLTZGLIV/ZzvDhctyhylx5pbci22tDpW1rK6X/8BaYNta8jalqZ9JwfQFgTBLYqflLXyng31a/07hdqrXxoWUiIqKhwBvim6g9M1Z5iC+bMwX4+tvpGgJ+XZZxhvgaJ91b+Kl1iK8jAYxKlrbT1Y+rsnUHxzvagLjDl1yIiIiIiIiIyIxhuyajlNoTwN9QGnBbBeDjIhX1QqzXNkRETeumMR/FIx0nog8tuHHcBcb1Zk2sfl9vbhVs7ap+HpNMEwdo6qE7orBdNmcO7dTqGHTVuMqJVBcEpJFhKIftnlgu2GX4KohL+M1Ulc3aRrbOYbuwxwEUKxH62arQHbw78Njr/uUiwI6+pH+gXzvDdkRERA2llEJbK9BWwxCfPqwn2oBe18CPf7wrC+xKM8TXKLUM8RXDeB2J/mp6xcvJ/na62nFVtu7gOEN8RERERERENJIwbNdElFJTAMwHMMOzeD2Ad4rIJsdpyk+/pCo4lPJtDPU5Qvk5gD+H3GYOgNsj2DcRjWQieKz9ePx63KcCV622/esr6wQHfKu2n0K8sXlkhySiChBVE7Z7/PXK7oMHXnHbLt1b+KCCyMTl6xdXzxNcelrtjyWMXz+Wxz/+znzw8VjwHKbn7WsbzNvUO2x3xgHAvCX+5U+/Yb7uphCvLWz3X+fEcPJV4f/PScVH9v8jREREw1WtQ3xdWaAzPRjC60wX/5WSZd7L3QHjporHVFvFEN8W7RcFKw/xtcXLgnve1rhJhfbyYJ+hnS5DfERERERERNTsGLZrEkqpCQD+DmAfz+LNAE4XkWUhpmrKsJ2IbASwMcw2ir30iCgKImiBW4qu2vavX7ut9p8U3PNyzXfR1CIL21VxX7/wZmXb/fwht4BLT5ZhO7JzqWz35rbaH0cYuT7Bl/4i1qCgUxtZQ/jsmgcFP/uofqy3T7/TWoXtJo9W0H0QqatCV2R6bbOFgidpP0QPlnd5ABERERH184b4JnRo16h47myuv5peMbiXKQ3x+ZZlSkN8pnGG+Bojkyv81CrENxDG87bG1bXTHVhPGbYp/MsQHxEREREREVWKYbsmoJQaC2AegIM8i7ehUNFuccjpdpT9PjnksYyCP2y3PeQxEBE1EUGLOIbtctXt6a8vVLe9i5kRtLodyqJsI9usorqONHy5VLYDgOUbBXOmNMcHSC+uAbZ329dxCb+ZqtTZ2oDXu7JdJVVS06awnaWy3dhKvlID4KUNlkmJiIiI6igRV5gQr12IL6p2ugzxNVYtQ3zmMF5/O13LuC4A2JEAWuPN8R6MiIiIiIiIaodhuwZTSo0GcC+AIzyLdwI4U0QqiW2UV8GbGXL78vW3ikiT1UYhIgqhjpXt6iGqcIiI4NX1wEtrgaP3AvacqCAiWPwW8Mp64Lg5wPRx9hPExfWfWSmYOkbhxLnA6GT0J5XzecFLa4HnVglWbYlmzkyFYbucoUJWlKKq3jecpXsFNy4QPP46cNkZCofuMbI+zHAtTLZxFzBnSm2PxdWOnuB1XNrIbjbUW7a9NprCby6V9CoxKmnYn+X6mQLACcu7tenj3I+JiIiIaCSpZYhPF+Dzhvj0AT/z+C6G+BqmGOLbGjrEZx9PxP0BPW9Ir10T4CsJ+SUK7ylKAn4M8RERERERETUVhu0aSCnVAeBuAMd4FncCOEtEnq5w2qVlv+8dcvvZZb8vqfA4iIiaRqxOle3Cmj4OeCtk7dCeCKqe9eUFn71J8OvHBk8Of+u9CovXCv7y/OB615yv8LmT9emQbE7w8V/mPesLxrUD914aw1F7RXcCON0rOO/aPO58MbIpAVR+X3dmoj0OHYbt7F7fKNjnG4OfRt30lODY2cBjX4mNmBb0rpXtmqlZ6HWPBB+NS5j4n09RuOwW/1zLNpq3MX14WavKdh8+QpW8vnqPI9cn2nZVlVTfU0rhohP0+yIiIiKi6CXiCok4ML6GIT5/WE98wb3ieHf/uCkAWEnFZapeNgdsrWGIrySM13+5I6HQkbSPj2orXi4dZ4iPiIiIiIgoPIbtGkQplQJwF4ATPIu7AbxHRBZUMfXLZb8frJRqF5GAxl0Djg+Yj4hoaAlR2a63r1CtrZLATp9DqakrzlZYvRWY2AGceaDC9h7gA78I9xX2KFqM3vy0+MIZV97pP/5//oPg9P0Fc6f6b4//fbg0mAcUWkR++No83vjv6EJPP71fIg/aAZVXMbzmwdqHWlZvAQ7do+a7GbK8QbuiJ1YA85cAZxzYgANqANfKdvkmqZDx1nbBn54NPmiXSnMzximYPoDasLNQZbNcvdvI6j98LXh0GXDKfv7llR7jhwzBPiIiIiIaOmod4uvKFtrglobxPAE/73gW6Erbx+v9RUUqqGWIryOB0jBeW2mIzzZeUqHPM84QHxERERERDWcM2zWAUioJ4A4AJ3sWpwGcLSKPVDO3iKxTSr0I4OD+RXEUAn3zHKc4uez3e6o5HiKihhNBi2NlO6AQeLC17TNxqTh32ekKozxtVu9bHD4gEUXVs1+FCGbc9JTgyrP9J0jveVk/x+qtwNJ1wAHTKz68Ene/VJsQSaUfDvz77bUPtSxeJzj7UJ6U1tnZY779L7oxjzXfr1F6qsm4hu2apTW262udSxvZ9oR5bN5iwQXHNj5sZzvGexcLTtnP/RgTAceYag1xYP1aY3kAI+O5QkRERDSS1SvEVxrGk5Jg3sB4phDis40zxNcY2VzhZ5v2q/rRhPi07XKTAeOGdrsM8RERERERUTNg2K7OlFIJALcCON2zOAPgHBG5P6Ld3IbBsB0AXAiHsJ1Saj8AR3sWdblsR0TU3AQtcC/vlM1VGLZzCMF5g3YAcPiegFLuLSEBIN1befW9oodfc1/3P+8SXPFewdrtwPSxQCymsGGn4L7F5m027gIOqPjoSi1dH9FEZTJNfBK/kvDMSLGjxzwWtiVzJUQEq7YUnoeNtKnTbb0o2k5HYeMut/WSDo/9w/cMv596h+3mTjGPmaqTVnqMlfx/9ZOTVwOYE35DIiIiIiLULsTXm5OB4J03xFdYJqXBPU07XdM4Q3yNUasQX2uLKaBXCOm1awJ63vEOw3iCIT4iIiIiIgqBYbs6UkrFAdwC4CzP4l4AHxSR+yLc1e8BfAODJSver5SaKyLLArb7Stnvt4hIOsLjIiKqOxFBLEzYrsJKUJWEWiaPVvjksQo3LAhXLS3dC6QslZOi1vLZcL0oowj4bNwpOO+6PDY5hnTCquRke961nFiVoqheOFzV6S7Q+utCwSU35+sS6otKszyWXG8zl6DptHHmD0BM17feYTvbhzSvrdc/iE3/9wQdYyXX4QOzNoFhOyIiIiJqNq1xhXFxYFy7bjSaEN9Aa1xNO93y8a6A8Wb+Et9w1ttXCPDVOsRXGsbzh/TKx8uDfcV/GeIjIiIiIhqeGLarE6VUCwohuPd5FucAnCcid0W5LxFZppS6EcBF/YsSAG5QSp1mCs8ppd4H4FOeRVkAV0Z5XEREjRKmjWyl33gOCrXEDOfWrv+Ewr67AX97UfDY62776s5WHraTMGX0KvTqBsFZB1V3MvGcn+fx5IqIDkijklDlD+bVKWzXJNXImlEdHr5ai94UfOjaPPrC5U4bricrqOZDqaj87AG3O86lsh0AnLSPvkLnnYsE33iPf3m9w3YAcOHxCr953H+95y/VVyc1H6P9/nNpves1O7sCk3Kbwm1ERERERDSE1TrEZwrjdWbEV2Wva+BHDNswxNcotQzxDQTwEsCopPdyIcRnGx9lGGeIj4iIiIiosRi2q59fA/hw2bKvAViolJoVcq71DhXnvgXgXADj+38/DsDflVIXi8grxZWUUm0APgPgh2Xb/1BEVoU8LiKi5iOCFrgnqyo9qRkUtpugba8CtMQUvnKmwlfOLPye/8HngTt+hdcSe+OAOS9WtC+bF96sfFtX1YbkVm2RmgbtACBTwW14yzOsbNdojapsd+tCGXJBO8DcsrSeNu1yv9NcWyiPatMvX27IkDUibNduCUS/8CZwWFk7XNMxBrWJDXsd5mSXQ15+EuqE94bbkIiIiIiISthDfEClQb5cn7manq0aX3cW6EzrA34M8TVObx+wvbvw41d5iC8eKw/m9f/bVgjptfuCe6Xj/mBf4d9EHL4vhxERERERkR/DdvXzCc2y7/f/hHUKgIdsK4jIGqXU+wHch0JlOwA4HsASpdRzAFYAGAvgcACTyza/C8C/V3BcRETNRyRUZbt0hUGnoPDW+w93PFF1x68AAKl8j3GVaiqfrahDQaPp46rbvh7HmM6Fr/i1YnNtjqUcK9uZNSpst7JO933UmiG4uXKL+7quFTsXGkLDh+yuX24KsoWtChfGPlPNYys2uYftgsJ08ZBhuy9v+SHU2LPCbURERERERHUTb1EY2w6MrWGIrysLdKbLwnxZGVzmGS+G+Eq28VxmiK8xcvnahvgGg3mDlwfa6ZYs07TT1YwzxEdEREREww3DdsOYiDyklDoXwA0YDNQpAEf2/+jcDOAfRUIkU4iImlq4ynaVhlNyAVWvPvr2cCeU2sUStqsiQNPTW/u0UrUBn3oEhCoJtNmOa9IoYHNn6bKT9wEWrwM27YpuPyOdLWxnqnZWjb684D/vEvzuyQal/KrUDI+lMM811xPvR84E7tjuX761y7+sNyf4wX36+6+Wle3ed4jCpX/U77fwOuzaRta+n7DX4fjuJ4DMKeE2IiIiIiKiIa/WIb6ubH81vfRgGK+wTDyXB5eXtNPVjFf6ZViqTi1DfKXBPO+/pe10deP+YB9DfERERETUWAzbDXMicrdS6m0ArgRwHgbbypZ7EsBVIvJ/dTs4IqJ6CFnZbldQk24DU1ACAP5wscJJ+4Y78WOrbFdNa0hTm8UopauszLZ2e7hg07SxwIadwFF7ubewDRtC6ssLsoZvax+9F/Dol2P44p8ENz8tyOSA9xyk8MtPKqzfAbzjB3ls2Om+L55QNhPLQyNshS8X/3ST4FePDc2gHQDctUhweYOLmJWHUE3OPNB9znfso3DHIv/9smiNf91P3WC+/2oZtttzovk1v7xKZl9ejI/twMp2IarzXbblR0igF/LyExV+jEZERERERFSqliG+7qy/Ha43xGdqt1sM8enGec6lMXJ5YEdP4cev8hBfS8wfwDOF+Ezjuu0Z4iMiIiKiIAzb1YmINOwvcxHZCOBzSqlLUWglOxPAbgC6AKwFsFBE3mjU8RER1VqYynYPvCI4cW74l+ycYRcxBXzkKLc0hKx5feByUsypv2rajN6pCahErZowIADc/aL7Mf7tCzGc+bbCydJUQiH2Gbf7OuxtaDsZ+5OPxBBvUfif8xV+8hFBXx5IxAuPodFJYN1VLehMF070JlsLp5njLcBXbxVc86D/uvZkh264q9Zsle2CWjmHtbNH8Nsn7PfFhccrfPucxp98/cSv8/j7Uv/yJxzDp7V072K3x3NHiMqEqVbz2OsbBXtPKdwnm3YJ/viMLWxX2/vuwOnA4rf8y//2ouCb/zD4uynIC0Rb2e6AzCuFC0/Nc9+IiIiIiIioAeItCmNSwJiUaY3K3s/15aUkmOcL82X0490Zc8CPIb7G6atxiE9bbS8BjEpaqvElFEYl9du3McRHRERENGwwbDeCiEgWwIONPg4ioroSwdTcRufVwwQ+vCptAVhi2aKBizEI2vJpZGJJ32rVtIY8aIbC86trG+aqtlXtrEkKwSfECqaNK5ykSiUKv196msJP7g/eNuxtaDtpmvQEf1piCi2abOWoZOFEm1eq1dRiMtyxjSTWsJ0lsFSJJevsFSuBwjeddxvb+JOkWwzV42ZPqu9x6Ewd47beOYe5347TxppfI55fPRi2e3GNvRpiLSvbAeZKogdOd2shCxQeYzZjjR88+U3NbShcOPh4942IiIiIiIiGkZZYbUN8pjCeqdpelyXg15XhOaJGsYf4APt5S3uIrxDW8wb3SkN87cbxwrlF3fYM8RERERHVH8N2REQ0vIng1K6HEJde5JSlHFK/Sr+JGknYbmNpD8SU9CADf9iuO50DEHxddHb01L5qWjWV9zK9gp8+4HaMe4wHDtm9dNlFx9cmbGerPNVW4V9TxYBguWpuv+HOFpzKC/Dde/JYthE4YibwiWMURiUrP9H45Irgx9EB0yqePlJ7TQIWvulfHlRlcuNOwW+fFPz33YJt3cC5hwHnHqZw/lEKsVg0J2ldH89nHui+v9P2d9tf0PWvddjO9P/J5s7Sx5YtbBd0jKmE++12UvejhQvZCvulExERERERkVa9Qnxd2UIr3U5PUK9TM+5tp6sbZ4ivMfrywM504Uev+hBfR6K/ml7J5cEQn3/c0063bJwhPiIiIiIzhu2IiGh4E8HUvo24Zc3H8NEZv9VWivN6Y3Nlu8nl9cvjjmEO2b4Z8j9fLlnWnu/B9pbxvnW7u3pRSdgumxP89YXQm4VWaRvZbE5wzs/z1kBV0eTRwO2XxHwnfA7aXeG6CxQ+9/tCO1eTsIG2bBWVp0xMrTB5wtPMVtkOAL52W2GF3zwO/PFpwbx/jSHZGv6k4EOvCi67JfiBeNCM5jjh+JGjYrh1of8Bv34nICLaE6PrtgtOvqoQTiy6bSFw20LBA68Av/pkNCdUXR7PN31aYeIo932NtoQor54v+ORxhcvbu+33oevrc6U+d7LCLx7yH8NdLwK70jJwPaoJ2wHA+Ucp/OFp+3X9r43fRLv0fyX/leeCJyUiIiIiIqKGq2WIr9sb3CuG9AaWSemyTOFyYRvxb5NhiK+RahXiiylzO93CZXM7XW+Ir3w82coQHxEREQ19DNsREdEwVzhhcHbnXdj02gwsSB2DpKTx7UlfxfxR7/St/ZvHBb/6ZPi99PbpT0y4Vk6SX13pW5YSfa+Cnp4sgHbXQxvw4KuhN6lIpSfWHngFuG+x27pvfi+GRFx/UubiE2P48JGCZ1YCV9yRx+PLqz9GW2W7RIWBHVa2Cy8obOf12OvArc8Lzj86/Mm7K++0JDU9TIHJerMdx4trgEP28C+//jEpCdp53bBA8KUzFA6YXv2x2R7P/3O+wiePVehoC38fHbx74bqVe2kt0JsTtMYV7lhkf8DUurLdKEtb8tsWCj5xbDRhu1kO7YLP7JxX8rvkclBxvhUkIiIiIiIaiVpiCqOTwGjjd5KrD/EVQ3gDrXHTQFdWPJfL2ummpSS45x2v9Iu9VJ281CfE5w/rlYb4ygN+5cG+4r8M8REREVE98RMWIiIa3jxl0tqlB6d3PwgA6DW0lD16r8p2Y6ps5xzm+Ot1vkWpvD5sl+6xJL8sbnk22hayx8wGnlzhX15pWGz+UrfjO+ttMAbtisakFE7bH7hxgcLjy/3zNnNlu3Rld++IkHfLwA14dhVw/tFh9yF4+DW3dU2ByXobZ8nePrJMcMge/ufLn56xP98eWSY4YHr1JyhNrVQvPlHh8yfHKp7XFmR7aS1w+ExgQoeC7eRurSvb2e8X4BPHFi5XG+a17adobH5H6YI3FgNzDwnekIiIiIiIiMhRrUN8A8E9b2tcTTtdb4hP2063/1+G+BqjliE+c4CvEOJrtwT8TAFAhviIiIhIh2E7IiIakVa37qldHqvwfbOpMlG88iwJkqI/49BTYRrrnpeiDdu95yCFJ1f456z0RNX2brf13nuI+53UavhLx1ZJSqcmle1MbWR5os8o7CPYdr+ZhHlsNEtluyNnmsfe3KpfvnSdfc7OTOXH49Wd1d9r1d52p+6nsEATpAUGjz3oPGitK9uduq857NfleXmvtrLdafvZQ4UzetdiVu+q0oXdu4InJiIiIiIiImoCtQrx5YuV+AxhvM6MaAN+3ZaAH0N8jZMXYFe68KMXXYivIwGMSpa209WPq7J1B8dTCYb4iIiIhjKG7YiIaHgT/RvlT27/Hb415Vu+5ZW2QDWFJaoJc7Tn9emz7p6QSbEauPJshb2n6McqvQ0Nd1WJU/cDLjjG/SSEqepc2BCWNWxXaWW7hD4gU+ntNxKEaSMLhA/nAfYqhuXam6SyXVur+Tlx1TzBBccIDto93Mm7dTuC13FhCo9WWxXw0tMU/utv+nt4xWbBO/ZRxqp6RbUO2719lnnspbWDx15t2O7QPYAvnKrwswf0t8e16z7v/9gho6+cSkRERERERDRSxGKqEIKqYYhPX43PX23PG+LTbcMQX+PUKsSnlCa413+58G9/O13vsrbiZeW5XDrOEB8REVF9MGxHRETDmyHBNSG/Tbu80qpiuRqE7VKmynbbdwCYUfnEAa67QGHlFuCt7cCYFLClE9jZI9hzosLEDuD0/RVOmKtw5yJBlGGxTEAA7oS9gTsvifWH1Ny0GcN24WJYtWgjm2Rlu9DCtpGtRJggZrO0kQUK7ZXveVk/dvFv83jqa+FejH40X/DDD1V/XKbXg2or200cpaCU/iX+0j8KPnVc8HOp1mG7WEzhS2coXDXPf5BLPJUFqw3bKaXw4/OAsw9RuOdlwZ/uXoO1rTPwye2/w1e2/AD7ZF/3b8SwHREREREREVFN1DrE15UFOtP9Ybz+y4V/pWRZ8XJXGujKim+bgfGIuhtQOOIN8e3UrmHb2jiiVHkwr6w1blKh3TiuytZliI+IiMiEYTsiIhrmDC0M8/qgQdSV7VzayIohEGg8xu2drodVIuZwLBM7gItPdOt9awrLdGcL1ynsm+8eQ7vJovOPVqGCdoC5xWuY6mWAOYAVU4VWFpUwtpHtrez2GwmibYSsF6aNbLNUtgMKJ75MnlkJbO0STOgoPKZcwqbVtMD2qlXYDgDGtwNbu/zLi9807um1X8+orqONLYyb7hUkW5X1Meca5lVK4bT9gVNnZ/D9n84N3oBhOyIiIiIiIqIhxRvimzpGt0blIb6e3v4KesXgXqY0xOdblikN8WnHGeJrCJHBaoi1CvENhPG8rXE17XS9IT7dNgzxERHRUMawHRERDW+mIJtEG7bLGSpuOVVO6tWXXzIeo2pzPKpSc6cUqtXZhAkzmap6iRTCaW0hwzRBFcUqCefUuo1spVXtJJ9Hcu0rAPbVjmdy5sp3I1noNrIVpPNcHxuzJgJJS/vWejt6tsJfnjdf4a1dwISOwuXFbwXPN3l0NMdlqi4XRVDRFoIVkcDKdsfNqf39N77dPLYrXXie28K/oavvde9yWk2WPgvMPQSItQAt8f6f/sveZQOXW3jik4iIiIiIiGgYisX625W21S7EF2U7XYb4GqMkxKdfw7a1caQY4tMH+AaDeqaAny7A19FWOPfIc1lERFRLDNsREdGIlMobWrRW0MIznxd86c/6N4xOQQlDhaF2Q2W7LZnKUlhRv7VMPXs3gDO1Yz294cN2QRXF2kNWtQMsYbuwle0M65sq59nIgrshXzkXybZDgNlPaNfpyTJsV5TpFby0FnhulWD+ktrWttvRLTjlh269ar9zbnOdrDn/KIUr7xTjCa/uLLBsg+Ccn+exdJ1+nfL1o2CaJ4oWvJe/W+Hrt/kfE3kpvJ7YwtPHzwHe4VAArlrvPkjh//1F/7jd0VMINdpe+1rCVt/LOlasu+WnkFt+GmpqicXMYbx48XJZYC/WUhgrC+65hfxajOPKO1eL5nh8x1W+X12gsGxd3XFptlMuZWOJiIiIiIiIRhhviE+vuhCfOYwn2oBeV1mIT7c91Z83xLdBv4Zta+OIUhhsl2uottduqLbXUd5O13OZIT4iIipi2I6IiIY3Q2mrZISV7X58v/lNXdwljLXhTe1iU2W7O7bpq6EFqbRqn44seQbJX14OzNaH7bqzwDhLRSedoLBdJeEcYxvZkJXtMoa2m2Er28n6VZCvnAvAfP8ChftqfLiph4V0r+DFNcDzqwXPrQKeXyV4+a1wrV29wkbzLv5tHm9sDl7vb1+I4ayDmuukyrRxCs98PYb9v6kPC27YCXz2d3ms3OI2X1Rhu1q2kT3jAH3YDgBufd5c2a6jDbj70hja6lCZcGzKPPalP+fx139uMT6+W1sqOHn3zP3h1g8jnwfyET0wqlSPltKuBLCG8QqXYw4hP0Nw0Bf4M4Qe43GoksBhzOG4HPZrDCwa5mU1RCIiIiIiIqohb4hvinaNaEJ8/jCelFXm8wb5/FX6Bv7NVtZ9g6ojMhiyrFWIryNRaOtcenkwxOcfV4ZtCudKYzGeRyEiGkoYtiMiouHN1EbWUDWuLw/05gStcfc3Nv/3nPnNl1Nlu6fnaRdvbplo3KQvL2gJ+eYr0rDdI7cj1ddt3lcFeYzAsF2EbWQzjWoju+DugYumxyBQ2e031PRkC8G65zzBusVvmVsy11q6V/C3l4LX++hRqumCdkVz9WcYAQC/eMg9aAcUno9hXwt1TI/lVAWVKn1zWF4T/vycGF/zvvcBhdHJ+tyHtmO888XCv7awXVjieY2hOurLFX4arNnO3Ys38GcM8VkqCIYO+ZkrFwZWQwwTLgyqhuhbzmqIREREREREza5WIT6RwhdCTWG8kmp7WaAz3d8jHaF4AAAgAElEQVRONwt0psUX3CuOM8TXGN4Qn2EN29bWuTuKAby2Qgiv9LJCh29Z8fJgiK98vD3BEB8RUa0wbEdERMOcIWwn+jayAJDOAa0h/od8YoV5bIlDu0bk9ImQv3ecatxka1eh/WAYLgEu57ddzz+IpJhr64dt0woEh+322y38nFFVtksbQjttYSvbPXHvwGXbYzDKYGQz6MkKFq0ptIJ9blWhct3itwrh1mbx6nrz/exVSevgerGdOHl+dfj5urPA2CrfLdSyst0scx4Zu9KWFrZ1bNFsq2zX0n93mV77Qod5gUI1M6JmUayG2Nv4BHkzff4gSjm0NNZUJgzRallbDVHT4lmVBwOdWi0H7DeuWddxXlZDJCIiIiKi4UapQqWz9hqG+IohvNIwnpQE84rjXZlCiK88uDewfYYhvkYphvg27tKNRhPi07XT9Yb4dO10R2nGGeIjImLYjoiIhruQle2AQihtdDKa3b/7bcFvOCSjPxZbmK2StprLNgavY33Lls1AfnE58PhdwLpVSMTGGdcNG2YD7NfpnfsDM8a7vXkTEchX3w8suBuJcRcC067xH1/I288Uwgod2ukdvE+D2sgOVd2ZwWDd86sL/y5Z15hgXZgTQ04tn1FhAKoJrN4afpvuLDA2ZDtor1yfGJ/X7RW0hfbN0WZ+TXjgFSBpeH7WM2wXiykcNwdYsNw/lssXbyP9A7WSynbo6apgIyKqKxFWQzQIrIboDQRaqx06VEMMCBeqksBgQDXEMPt1qbJYFlJkNUQiIiIiIirnDfEZ1qho3mKIrxi884b4CsukJJinbaerGWeIr3FqFeJrNwb4ytrpagJ+3uXecYb4iGgoGaIfFxIREVUnGVFVMQl4h/jOAxwmef5h7eIo24yu3Vb9O1n5z08BD9068HurmG+oqCvb/eVz7h8yyhUfH2jXmhD9DRU2DPjiWv1yU5jH6LkHBy4Ohzay3RnBC8Vg3arCv0vX1y9YN74duORUhVfWFdqGViPu+BBr9rDdyfsAD70WzVymynCubK+lqQjCdgDw7XMVvn6b/77Pi6WyXQQtbMP44YdiOPa7+ifFMyvNVQcrCts9Pb+CjYiImgSrIWqVVkM0VRXUVEMM0Wo5sBpi/3bmaoghqjBqqiyaqyHa52U1RCIiIiKiaHlDfPrOOpWH+NK9bu10vcu7+8fKg3ve7fPN9AZuBOnO9p9/rXGIr7zaXvlyb8BPF/wrVvZjiI+IotbkHxcSERFVyVTZzhK2e+FNYKalPaHX4rfs406hjpef0G8bYeWz2xZW945Ttm0CHr6tZJkpyAZUVnnPtM015yuMTjpWtcvngQf+MvB7VGG7+UsMj6MqKmTF0Ye49CKn/JM0Y2W7rozghTdLK9YtXVe/kxmpVuDQPYDDZyocMRM4Yk+F/acB8RaFj16nDzKF+bak6/VYv6O5z95EFWIDIgjbWbaPqrrcmAqqkNazsh1QOKFj8qvHBQ+9Ek1lO8mZX9jUZ/4T+PC/AH29hWpauRyQ7ytcLv7blyskZYuXvcsHLnuXedbt08xVsk3hsvSZ9tvnn8M3rtlvvq/0ugxs1xd8XPkm6mNNRGTDaohGYqp2qKuGaG1p7NLy2B4uVKZwYYStlgOrIfYvZzVEIiIiImo2SimkEoVzl7UK8enDeOJb5g3xmQJ8nQzxNUwtQ3wDAbxEoT3u4OVCUE8/rgYvl40zxEc0sjFsR0REw5shbTOhz9xTsTsrcH1z9/Ja+x/wTqGOtx0DvPykb/GXt/wQH59xo3YTU1tTk5cDQoFF3/wHw/VeucR3W7bCUtkuwjayoQIna0t7NbYZwnbpkMf39pnAqi3+5a9uCDcPdp8DrBk8xlS+B7ta/A+S7p4+NPLPtM50f7Bu9WDFulfW1+8EQ3vCE6zbEzhipsJ+uxWCdTpRFDVxDYi+ur76fdVSRdXQDGpa2S6iwNvu4xXCfvQ/Y3w0+3Y1bax5bN12wb67ASs2+8d0rzlWW9aZx1paoNqSACLqkV6hZjr1JCJlIT7HkF8x4OcQLtSPe0OA+dIQonHePv2xVrTfvuDjIiIaKoqva6yGWMJYDbGkqmBANcSSdWwhQIdqiKFaPDvstySk6NJamtUQiYiIiIarWof4zGE8fbW9LkvAjyG+xiqG+DZFHOJLtZYH9/r/bSuE+Np9wb7iuBq8XDbengBaGOIjanoM2xER0TCn/0M4KRnjFmGCbEGhLVugRDJpyC+/pQ3aAcCZnfOM24atHOeyfiIOfPAIwx/wGX+VPQUYK7M1LGxX9kFb0tCqNWyb1kdf1y9vCVs0oq/0SqakB7swxrdaT08W9fozTUTw+6cE37m7EKgDCuG1MFXhqtGeAA7zVqzrD9bV+81kzvE51dfkJ0P23U0Bi6I5yJpWtouoAt9p+4Xf5oBp0ezb1cRR5sfy6xuB3Q3hv9CvL5rX6QFHnhZysuFPKVWoLhRv/FviZjp1JiL9rTzLgnvaCoIu1RD94UJ/kLE8JGiohhgqXBhQDdG3X9125dUWWQ2RiIYIVkM0ElO1w8BqiCFCfkHVEIsVCOvQahnx8sAhqyESERERufCG+CZFHOLL5IDOdH8AL+u5XKy2l/WPe0N8unGG+Bqnp7fwU6sQ32Bwb/DyQDtd7binnW7ZOEN8RNFq/CcLREREtWRJDE3JbcDG+FTf8jABk6DQlilQIrleyKePBla9Ytx29NEnAtv1Y2HDdkFBotFJ4OZ/jGH6OFPYTt92t9UQtouyjWyosF3ZB+GmVryZHJDPi1OJ7wdeEWzYqR+76PiQb0zKbsdUXn+79tSxj+z/+4vg6vmlz5NaBe062jzBuv6KdfvWMFgX5mq4PmZdQ3mN8i+nKvzgvuYI2+mqtRW1RxS2G+XYYtqrERVNPneywi8e8t8vyzYWfnT+3VRp1OStFeax3fYMNxeNWEqpwVaFrRH2pa70eBp9AB7GaohhWi0HhAuDqywWKhNKYAtnh1bKzvt1aPFMRDRUsBqilijl0NK4JWDcUDFRF16MG1pA66ohOrVa7t+vU7gw5lYNsX9dVkMkIiKiKCmlkGwFkq21C/F1Zfur6aW9YbzBEJ93vDtb6HLj2ybDEF+jDYT4tKPVhfgGwnje1rhtg0E9/bjyLSte7mhjiI9GJobtiIhoxJqRW6cN24XJOQWta6xst+gxa9AOAFo6OhDb1oe88qfNoqps98HDgS+fGcMhuwOtccsfw4aKSQnJogftvuXZSMN2If5IX/Fyya+mMBsAbOsGJo4KnvLrt5kr2YQODGVLb0dTGDAdts9thbZ0Cn7899q8Wx7VBhy2J3D4noMV6/aZWps3XVF8/pFzLFjU7CcXbC1Lw6o2bHfdI+YbNao2smEdOL0x+917cvhtRreFW19uv9482JYKfwBEVILVEPV81RC9FQSrbbVc0vbYFnR0qYboqcSoG/ceb1A1xJJ1LMfFaohENFSIALleAPX70pfxUBp9AGWM1RAHQnoO1RCdQ34O1RBr3Gq5JLBoCTqyGiIREVFzKQnx6deoaN5iiE/XDrcQzDO30/WG+HTb9/Etc0MUQ3ybO3WjlYf4kq3+gJ43xNeuCfB5Q3ymACBDfNTMGn+WmIiIqJYsJbpS+W7t8jABk6CWs+M7DAMvPh48uVJolV5kNGG7sG1ac4bel5PHKBw5y+GPVUvYTqe3TxD2DVwkle06S0sBjssbSgMCWLIOOHFu8JRPvWEeM96/JpnysJ2psl19wna/e1IiCY+NTpa1gt2zEKxzqRxYS2Eq9Lk+p857e3O/uYvyNu/Khn8el2xv7taNRIPeheywdFqtpQlhXytQKPgRSrf2DElBIhn+AIiIHLAaopkMhBAdw4VB1RA14cLgKouGaoiVtFJ23q9Di2cioqGC1RC1/NUQQ7RSDqqG6AsBllVDLJtDhW7xbKiGaAwXxgLGWQ2RiIiGL2+IT1+4IJoQnz+MVxri6yoP8mVEHwBkiK9h0r2Fn1qF+EzV9josAb+ORKF9rm6cIT6KAsN2REQ0vFnDdvrURVBrWC9bhbn9dgN2H6//g012mUNgRWrOQWhd1YsM/CGJbMgwW9VBtow+mNgq+g/LwoYBgdq0kd0nu8y4aiaCL+2/c3/3+0A0J+iTpsdguj69SpeuC7/N6CRw+J6lrWDnTql/sE5WLgWefQCycyuw/GwAb6tqPteKlhceN3LehFVb2c4W5IzyA4j3HQLcvsht3TXbItttKKftrxD247FjZ4e8jSz/3/EDHyKi+lOxWOED+niDyrl6j6XRB+BhrYYYUatlf5DR3GpZrPPmzfvNlR1j4H41YUpWQySioYrVEI2kPNynq4ZoHQ8T8rO3WvZVQ4y01XJ/ANIYWCwNOrIaIhERedUyxJfNmavpeUN62mp8hnGG+BqnliG+kjBeSTCvv51uovB52LGzFU7dD2hrbaazK9QMGLYjIqJhzvwHVbuhhWeYNrK2sN21F+hPJEm6G/jzz4InnzzDWDkum80DcD9RZTrOuOsUnTu1i43H16CwnWxaW/K77U9fl06t+YCyb3OnhvjjWlMd0NRGdtW2+pyEdKlqd8q+wGGeVrB7T26CinV3/BJy1SWD4aLps4Gx/rCdhCht5xIs+/a5CnOmjJw3VNWG7V5co1/+iWOjvQ1/c2EME77odrbj40c35v7bfbzC9HHAW8E56wGzJobcyYrF+uVnXhByIiIiotphNUQzXzXEUOHCoGqItvChNzzoUA3RtZWyUzVET6jRVv2RiGioKL72NYFmCiJaqyE6tlL2V0w0VRhscauGGCZcGFgN0Rsu1AUlzVUW+eU4IqLoKKXQ1gq01SHE15UttNItLBNfsK843mUZ35VmiK9RiiG+LV260fK/ogQnzgXu+kIMo5P8f5sGMWxHRETDWwWV7cIETEwBsQOnAyfONfzRdeev3CZvH4VW6BNhvb19CPPfeM7wB7trkE3u+o1+e9EnE20hRO38IlUfIwDgDz/0LZqQ24KtcX9qxaWCoemYKtLtDyym8vo2sr9eMhm/jHDXJvMW20+9PvP1GI6Y2VxvHmTnVsjV/+LWI3bTWgB7Os07f4l9vjMOAC4/a/h9E/s/Nl6Bb065QjtWbdhO/0YVOHj36uYtN65d4WvvVvjO3cGPid3GRrvvML7+boV//oP7xx2hXvsAYMdm7WI19+CQExEREVEjsBqinnM1xDAhv7JwobWFc1A1xJLLmmqI3uMNqoZYst+A1tKshkhEQwmrIRr5qiH6qhUGjduqIZaH/Oytlq3VEKtuteyphhhU3ZHVEImoydQ6xFcS3CuG9LJAZ1r8yzKFy90B45F+tkV4dBnw84cEXzmzmd4tU6MxbEdERCNWSvRBp56Me9U4U6jMVpFInrnfaW50jDFXjtu0EcAebvPAUtnONcwxYSqwYbVvsfH4Qobtcpb1QwVORo0DOktLRxnv597gVrxhQ4NWy1/yLWqBfgetsTyAsEmb8Eb7OxSXaG98sRG/5x/2fUtcmU6VblkP17BdUDXGt+81dN5EnbA38NjrwetdtP0GfG3L9/FI+wn4+6jTfePVhO1sVQVrURhx8mi39VINfEyPagu3vvPrc5Bc4z/MICIiIqoUqyGaWash+toxV9ZqObiVcuF3Cayy6NBK2aUKY1CLZ1ZDJKKhhtUQtZyrIbqG/FyqIRpCgNpqiGHChUHVEL3H6FBlkdUQiYYPb4hvQod2jYrnzuZkIHhXDOENtMZNS0kwzzveZRkf6SG+eYsFXzmz0UdBzYRhOyIiGt5MgY9YDO35bu1QT9q9apxr61NZ/Rrw0gLglA8Cu7YFTzz3UGCfw9AqG/T7TWecji/scRqN0peDShi+kRo2pGZbP1zYbqwmbKevYJh2yJ/YQoD7TwtxXADQ608ubW7RpzLHtfYCqH1Fi8P2VFiyznwqLdn4ohp+O7c6ryo5937GY9vt46lmvC0M3neowmOvB58iPa77CQBAh+hfC6sJ29meX+3xPOSVhcCY8VDTZ1e+E4/j5ii4nBaO8n6UTA/w6kJg8nSoabMC13c9xqLQle1MUtozNUREREQ0xLEaot5ANURTC+ZqWy1rg4zmVsvWaoi5Pn1g0Fe90aEaoktraZcK8UREzYDVEI3s1RDjQIumPXIlLY8dWi2rmrZaNlRD1AUdWQ2RyCcRV5gQr12IbyC4522Nq2mX6w3xadvpZgrtdIdCiG/TrkYfATUbhu2IiGh4M70bnnMQkjv0Iaw1W93fQptCYol44Y9V2bUN8u7dBge++9ngSVtaoD55OdA+Gq2yRr/frPuJhk27xFjlyiXMISLAM3/XjsUNbWSDqoSV+8kD5ts8VOBk/SrfIlO74B6Hm9AWAgxdLjrjr7D3qe2/w4L243zLe/rqc3KgM21/rDdlwCzrvz+Nle1CCAqINuVtYfDxYxSufUTw+kbzOgenX8Q5u+4AAGPwuJqwne35deTVZ0C2PQ4AkP2PhPreX6HGT658ZwCOcCtgGFm1Rrn9eshP/w3IFoLPcuDRUN+7DWqsuazpnCnhXjPiIV4GbJUEMWv/UPslIiIiIhrKSqohNoGmCiK6VkOsotVycCvl8mqIpqCjQytll/0GtXhmNUQiGmpYDVFroBqiteqgvX2xr9KgKTyoq4bouRxcDTFEuDCoGmJQlUVWQ6SI1TLEpw/wAZ0Zc8CvO2A8yu5Vho+UaQRj2I6IiIY3UwChrd3YXvTpNe6pmqCKcXLR0c5zAQDecyHUu86HOuwdAIAE9Km13oz7X4gX/sb8lRCnMMejdxiHomgj+9gywddviyhsp9Em+iqAdy4SXHqafVvbH+JHzQr3xkHm3+xbtntOH6bs6avPhwK3L7KPN2PATBbc7b5uiHltVQyBQin3oWLqGIWHvxTDtY8InlslOHh3hfEdwMLVwLYuwXETN+Ofrj8L4/I7AADtpkBqNWE7y7btXZ6KnUufhXz7Iqir7qx8ZwBiMYWj9wKeesO+XhRtZGXxU5CrLilduPgpyH//I9R3b7Vuu/80YOm64H3EVOE6OXvlOcsgT6gRERERERGrIZoEVkMME/ILrIYYHC4Ua5XFPv1yXTXEwCqMDq2lWQ2RiIaKYjXEHKshlnOuhhgm5BdUDdEQAlS6cGFkrZZdqiEObscQYnNJxBUScWB8DUN8/jCePuD3yjrB/KX+uRi2o3IM2xER0TBneGuTTBmrOQGFcsYdbcF/wJkCOq0tgPRmtZXWTNTl10O9+xOl8yj9Dnodv46xKy24+2XnQ9CSx+4yjrUaKtuF+bbI7Yvsbz9dw3bSuUO73FTZbuPO4DltpatDhwBXvepbZDq2PomhNydojTf2DV8UwaTIbfG3VlYRnPwNesxG1tKzTqaNU7jibP3jR+67H5IfbGfdbmgj25Wp/Ha1VbbzPe6ffQDSvQuqfXTF+wOAMcngdaIIkIopgPz0fEi6Gypp7knc4ficiod8vMkjt4fbgIiIiIiIiACwGqLNYDXESsOFQa2WLS2cc6Xraqshhm2l7GnxHFjt0BZ6bJKqYkRETlgNUUtfDTFcK+WSkF9gK2Vzi2cVusWza7gwoBqi93iHaTXESkJ8f18imL/U/+HgzjTQlxe0hPmSPA1rDNsREdHwZgrhJDswOt9p3GzTLqCjLXh6U0An3gKgc3vwBF5z3uZbZArbZR1Lxy15yz6+3Zw3HLTxTeNQIoI2sg++Ek3YDlv9ISwAeLTjRO3yuVODp7QFsMKEYUQEmDwDWFPaz7ddzF+F6ekFWmv8l9qEDmBrl3k80eCwn9aM2cAKxwRpiHfvQZXtjpzZhLdFpcreLKdq0EY2Y3kNSJZXm+zLAds2AlWG7d62u8L8pfY7/aAZEdyPix7TL+/NAju2AJawnWuANeg1VHK9hf/fiv/H/fU688rD6OQIERERERER1Q+rIeqFqoboGvJzqYZYEnTUVEPUBiEN1RB9QUeX/Tq0lmY1RCIaKlgN0Ui0LYkDqiGGCfmFaLWsrYYYWavlsuX9643NtwHQf1axKw2MM5/+pxGGYTsiIhrejGG7dpzVeS8uxdXaYVtVJq9sTj9/awuATMiawvsc5p9H6UuruVa2C/ojPebSRva5B41DUVS2ywccpHPYzvDtrBO6H8Nj7Sf4lrsEAqutbCddOyFXXwo8cQ+wa5tv3FTZDigEncakgvdRqZfXijVo9+1zm+k0pkeI51WYN6k3PWVe+4iZwKF7hJisycmyF0p+N4U+Kw3bdaYF519vfvJo209n9G29w/j40Qo/mm+/1w/everdFE4eG8gXTgd+fA/U9Nna8c+8Q+HRZcGPzNmTDPM//FfIr//TPXBKRERERERERJFiNUSzwGqIYcKFQdUQja2U+6shRtFK2aUKY3k1RF3osUmqihERORmohpgJXLXWGhFEHNM6B9j7Je3Yjh6G7WgQw3ZERDS8mcJ28VZMgLmPaI9jyMQUKmttARCmrd/7/0lbmrk1pg+sZLZscpo2ExAaDKrmJXf/1jquDc0AmLc4uj+B3cN2+it7fPcTFYftbKFBp7Dd5R8EFj5sHE8FVLarlQ07BQdfaQ5DHTUL+OqZzXSqzuPp+b5Fqsq3XDc9aUlVApj3xeFTOl12bAH++OOSZaaW2pWG7T7wizxeWmse175urHkdmH1gZTvsd9ie9vtozwmI5n5c+qx5bN1KyCWnAzct0rbFPeMABZdTBF883X+c8tyDkG9+tHCiN4xh8tglIiIiIiIioubGaoh6JdUQa9RqObjK4mC4UFsNcWDesv0Z53XZb0Br6SaoKEZEVG5s3vzZ8Y6QNVZoeGPYjoiIhjlTqEEh1Wp+y+0adLKF7eTOG9wmAaAmzdAuTxjCdr3r1znN+9Qb9lBHUAbDGrbbcx8kcvo0zhK3w3PiHrbTp+fayltW9rO1uSyyhRHjAVUB5a03rEE7AEjlzdW8XAOflbhzkf1xcfV5wyNc5hrBu2GBec0vnKowvmPo3xYDnrjHt6jdUGGxkrDd2m2C+Uvt6+jCdvLI7VDveF/4HZZ55/4w7n/6uKqnL3xDO8imtcAz9wMnneMbSjmea27XtJuVe38fPmhHREREREREREQNVVoNsa3Rh9NcQcQw1RC91QhDtFo2zttXuq4YxwOqIYbZb1A1RG9QkYgaYmx+h3GMYTvyYtiOiIiGN1NlO6WQaGuBkjxE+VNTkVS2C2OKvrdha9dWoEOz3/HTnKbVBTa83rl/wFvrRY+ax8ZMxLLOudqho2bZp/WKBRyC822Z06fnTNX3sg7vV6upbCf33hQ4f6Mq233hZnsMbY/xtdt31RJJIFsaUqy2st0Dr1h2N8z+WpY3lviWdYi+n3AlYbsFy+3jLZJDCzSBsWQ0tddtz5uN5i+kudux2W29lUu1Ybug1+SilG69lf77zskwCM4SEREREREREdHww2qIeuZqiNG1Wg6e11sN0VZlMajFsm2/QdUQy/bLaohUB22SRVs+jUws6Rtj2I68htnHh0RERGVMYbtYDKothZT0oFv502xRVLZDJsRfXUefYZ5Ht1+HqmyAPSwGAMfvPXhZFj8FuesGYPlLcKoJNmY89tr2Bp5PHeYbSjseHwCkA27ratvIGsN2VbaRjZ0xFvli1bxYDNj38MLlyTOgTnwf0Lk9cP6UoaIYUF1lu7XbBD+5X/D0G4J9dlO4+ASFo/YaPF0QVNVvjwnNdGqhjKGaYq24ViJrdrJyKeS2a4Fbf+Ebi7KNbF/e/tphej5i1zbIb78HWfgQoBTUEacCH/oCVCLct31P21/hsdf1x3DM7Age146v65Lp0Z6gi8UU4jEgF1CgTlt5tXuX076JiIiIiIiIiIho6GI1RLPSaohBrZb7HEKAusqFAdUQ+9c1VkP0hgdDtHgOrHaY01VJZDXEWhib34GNmrDdti5Bcz0jqJEYtiMiouFNTIkGBbQl0Z7vRndMF7Zz+4PJGrZbu8LpENWX/gdq3CTtWGLaDGCbZr/r1zrNHRToSMQL11EWPgz50tm+imFWYybi1K6H8H9j3u8benGN+zRBwcZq28hWE7az3X6t4jnwfB5Y+mzh8tJnIY/cHjw5gFb0IiZ9yCv/ldwZ4q7w2rBTcNIP8ljRX4DrkWWC3z8puPeLMZw4N/gx/efPBvTHbSDp6wvVRrO6encF2gpjQ4y8sRTyhdOAHVu046bQZyVhu9YWBdstbwzbPfAXyAN/GfhVnrkfeOER4Pu3h2pp/J6DFK68U7//Dx1Zv7Cdbb1rL1D49I32R2f5405EgNWvue3bh2/+iYiIiIiIiIiIaOhjNUQ9ESkN7kUR8itrtRw8r6Eaoq/Koq0aYoj9BlVDLP5UYGzfTmyMT/Ut37m9G8CoKu8tGi4YtiMiouHN0kYWiRRSok80uYZMjGG7MHklQ1U7AGht0U+UVW5vJIIq2xXJH38cLmgHAKPHISVbjcM9WUEqEfx2I6iCW7zqsJ0+zRdU3Q0IqGyna4UZkkKhlWyX8v9xPm+J4N0HhX+7dvPTMhC0K+rpBX7y9zxOnBt8Y86ZEnqX9WOoalfNm9qebEDoqfHv2asmd1xvDNoBQLvoK9ulewuV6lqCej17BOXijGE7nSfvA15bOFg1skqRnPzIOL5OWl5PJ3bYA4mA5nG3ytLrOAjbyBIRERERERERERENW0opIB5HIf7DaohexmqI2lbLfcC2Dfje17+OXhXH2L4dGJvfibH5HRjbtxMTZt0F4JBGXyVqEgzbERHR8GYM2wHo3IZUSl99yLWFpzFs1xPcQrRwHAoYPd44nDCEATMtKafpbZXZLjnV8+fu4qed5isxaizG9b1hHF60BjhmdvA0tsp27Qm4V7XK6SdqK7Z6LZN1CCLmTPevZCN7s9AV038LZrS/QrWTm5/WP+ZvXei2/UR/ocfm0Ruu1JpI8L306gb7+KTh8CWlxU9Zh9sD2hmPCvFYzAW0kW0LE7YDgJefDBW227Yof1sAACAASURBVHOCeeyA6eF2reVc2c4StnN4TPme/5W8RhMRERERERERERERjWBhqyHKnvvg7J73aAt8qM2rwLAdFTVvnzAiIqIo2CrbQRkr2wW1Ni0yhu369AEvnwOPgeoYYxxOjdKH6tJoK5SFDmCrzPae1ucKbTkBIN0VOFc5tc+hOLn7YeN4l+NNYLut3/02/zLZuRVy3x+Qv+6bkEduhxRDLTVoI2u8fw3V8kLb/0jjkCnoF+SZlcHr2IJ8e0xopu8clTGE7VQVDWMzAXfl6fs38e3hqsf+/DZVtgPCt5INetyGqmwHAOluyKsLITf9AHLb/0LWr7KuPmWMwtF7+ZcfMA3Ye0pztJE9albw5geWBwMreI0ewMp2RERERERERERERESBVEsLMGWGfnDDm/U9GGpqDNsREdEwZw7bqY98EUlDRadqK9vFXQIlE6ZCffnn1lXaJ+qr3v294xRjJTcvW9jutB+fCPn2pyG5nHuAxGv0eIzJ7zIOb3XIhvTlxRp6u/q80j9VZMObkM+eAPmvC4HffQ/y9Q9DvnIOpKerUOJZwxTuWbcj+PhMlQHj4pDUC7LXAVCnfABH9egrVr3lWByxEmMNhRE/d3KTh3IMbWSrYXuO/M/5CruNbfLbxMXKpdbh9nx0Ybug1tVhw3Zyy88gFx8DufYbkKsvhXzqSMhLT1i3ue6CGKaMHvx9fDvwmwsjetvj+lqZNa/XGlc4aR/75ol46eNO1q82rzxtltsxERERERERERERERGR3dSZ2sXCsB15sI0sERENb8bqbwoYMwEpMYTtqq1slzcHStTFVwCz9gcOPwnK0kIWAFJt+oBIV2wUkOkEWhPW7U1Vps7qvBcxCDD/ZuDQE61zGCXbgVgME3JbsDU+0Td844I8PnRki3WKtOV2vv+yGHYfXxY4+e1/A2uWl6743IPAvD8Y2/EmLFXoMr2CtlZzmKomle0OPxnq/MuAt78TuP16zOxdjadTR/lW+92Tghsvqnw3Or05QWtcGa/XCXtHu7/IhW0j6zKlJRz2uZOGftBOHEK5tjayoSvbWVpXAxVUttu6vvT3rp2Qn1wG9Utz4O6g3RWW/kcMD74K9PYJTttPYdLoiO7LrLk9bImAUN4HDld4+LUQFRn/+CPjkLrhOWDhQ5CvfsCwwtB/HBMRERERERERERER1cVh7wDGTgCm7AE1dQ9gt5nA1D2AGbMbfWTURBi2IyKi4c0UtovFgESyhm1kDYGMWAz4xFehHMMPK3a1G8fe2pTBjFEVHp8nLCY/+LzTsfiMmWAddrkNbUGeSbrr9uid2nXl0Tug3vUx7VjKUrXrmZXACXPNx5Dr0z9+4qiwxyuA2E/uG7gsbYYScwBmT6p4F0aL1wGH7mFuodva0uShHENlu2rayGYNd2UiDufnaVN77YXAVTrEXIYy6sp2KUuwz9mrz0N2bbOGlcd3KLz/cACI+D5Mm19PSmTsoTxbK2et8VOAbRv9yw86Dqp9FESxYDkRERERERERERERUbViF/17ow+BhgCG7YiIaHgTQ5klpYC2FFL5ndrhatvItuYz+oG2VKgAz5pOc+W6dVuymLGXffuatUGduS/UtFmQfF5b1Q4A2u1F9wDYb+eUbntd2AQAnpoHnPZh7dBR6WeN+9gekPupSWU7r3grlrfO0Q51tFU25R7jgTe36cc6+/M/xuvVvRXy2AIgH1CerFE2WFppahgLW3oYbwt7UcahozO4H7EtABe6sl1A2O6EnsfDTWjStdNYzbKmXNvIBqx34lyFoNqLIlJoAbz8JfNrX3nlP61hEBolIiIiIiIiIiIiIiJqEgzbERHR8GZrI9uWQko2aEd7MnkAwZWCzJXtTGE7c6U6nWTC0uI0Exz4qlVYTF18ZeFC+2i8Z9fd+Nvod/vWcalsZ1sn1RryoPr0AcIx+V3GTTrTAlsQxXT7VRxWPPPjZRO14rydt+D51GG+Vd/YXNkubFnOYnDKeL2+/SlI17zKdtxAVVW2M9yViWEStpP7/xy4Thx9SOQzyMb8Cc8oK9vt2bsan9t2XbgJTVxDb1Fz3e+GN63DsycrfOYdCtc94n/sPvhvMcj2zZAvvRd49XnrPOqcz7odDxEREREREREREREREUWC/YaIiGh4M4Xt+ivbtRsqOvVk3NqEmoIliVUv6wcsbUN1Um3mxM/WTZ2B25uqTMVRRWW7Uz8EdfK5hcuHn4Sjep7RruZSHdAatiurbCdBZcpy5slm9K7VLr96vn1OU2VAX1hxt5nWeYrUgUeXLmiJY0rfJu26nYa8ZhDbbVocM7VOjaxiX5MQh4pevYZWwcOhsp1sWQ/cfaPTuu2ib4/67KpwQUbTcwYAHl55Gmb1hqtOaJRuTNhOHrndbcXt+ue11y8+pvC7Tysk+4PFo5PAU1+L4aR9FeSqSwKDdgCA6QHlTQF7ApeIiIiIiIiIiIiIiIhCYdiOiIiGN1vYLtmOlOgDG93p6sJ28R36inlIhOsN2p40/1f90qvB7SFNYbvWKtrIqqNOH/wlkTLehk6V7WxtZMsr2/UGpPcMle0AIClp7fIVAdXjjPdvWVhRnX+ZfaKiUWPLJopbW3h2ZcJXbLPdpj1ZQV9ejE+LhIQsYzYMGCvbDYf6z0+5VylM5fXPkWWGlzIT03Pm6O6nsEdOH3qtSKMq23WbK2WWk6w9MauUwseOjqH7mhbkr2vBjp+24O2zFCTXCzx1n9tO2pLOx0NERERERERERERERETVY9iOiIiGNNmxpdBur/izbRMk503P2CrbJZE0VrZzCzkZ27S2G9rFvrnMad6iNktlu9FtwcdYkzayR5wyePm1hUgZgmzVVrZLloft0l32ybL64wCA5Yk52uXTxmoXD+7ScHxt5aG0A44CZu5rnwwAjj2r9PeWODry5uu1NeAqlxMRa9vPnl57m89WDM3Kdiqo6qGF8TkyDCrbYct651XXtU7TLp80OtwujdUgyx9b73hfuInLZRsUtnOsYgkA6AwORGt17QTS+kqDPnMOrmwfREREREREREREREREVBGG7YiIaEiT898Gee+MwZ+zd4ec0oH8xw+GZNKWynax/qps+oBWt0PYri8vyBtWa33mHv3A1D0D53WVyVr6NfbLGQ4wXmllu0QSyhs2Oe7dxspsb+0Ins4UDEu1Fqo+AYD09SH/0y9B3qMPAxXJzT8yjn1w5/9ply9dZz8+UxjQF9Lc5zCoc//JPlnHGKiOMaXL4q04KLM49P5NevtgfEwW5zNVcgOAxHBrI+uQwTO21B0GYTtxqcIWK7wdaDNUtnMJzRbduCCPK+5we81R/3IVMNH+nLZqVGW7MPu1BIAj2cdJ50BNquI2JCIiIiIiIiIiIiIiotAYtiMiouFp1auQfz0LyBsCaUoBbSljUOyJtanAXVgrhJlCS8eeGTivq4dWVX6MLhXM1P9n776jJbnKc/8/+3Q4fc7MmZyzRqNRlkYRJZRFkJAsIcAiWbbwxTY22NjGXF/jCzZOF9YPJ0zwta9tAbYMNhhMEkgIAUIBhAIKKI3izGjyzMmhu+v3R/fp06H2rl1d3X3CfD9rsaa6au+q3dXVrfGax+/7yx+q3bFsjczXa3tKmo3HWdvIDnjkTGxBnp7s1HbwqT+QvvC30Sc7uMd66OqBr4XuLwbSeN6eyPr2Y+HHat7z0tUyxshc/y6Z930i/EQbj5X5akiyL5W23j8pXtDJZ/zIeBPP7fxFM/d/J50r8/5PyazbHO9GVbHdj+wcCNvpsx+xH9t4nPSW35H58C2SpDcMfDF0mK26Y72v/zTQL/2z/btU82yl0jIrN8h8/Dbp0jf4XaBO8OAPmpqXWJwAXbOBwL0e7XZveK/M/765ufMDAAAAAAAAAACgaenpXgAAAIm4Wov+9IfStgvDj02G7SyV7aRSS87J6mph3KElS/mw7uiAXDX71aUfj0ZXybOtMeVT2e7t71fXjb/vHpPNqcdSEUuSntkT6OgV9ncxMmEJs5VbyAbFovStf4tcahRXoO17T0qXnxB+7IEXLOerfs9LVlQ2zTXvkLnmHf4LS2XUW7S3i4xb2e7Z/e7jUZXt6sN25sO3yFx8XbxFTIfbvxO626e5rO1+zPbKdoEtaCxJF12nrj8pheyC+++QJPXaWmp7Bj7/9V733U6r6sdo5XpJklm3ReaPPif90ecU7N2h4PUxQpP33ir9+l/4j2+VOAG6seYq2wV3WyqjVumajvcOAAAAAAAAAAAAKtsBAGa58TH38d3PWw4YKZPVSJc9/OYK00nSmCMIlQ0sCZWYYbtfv8QeVDut+8XI+WOWIJFPu1DT5fHXBGO0aeI56+End1sPSfKobDc8IB14OXodEY4af8567Mk99pDQ2UeF73+s+/ipF0891OSqJK3aoJwj8Glrs2tzwJE9laIr2zU8t6s3xVvANHGFUqNYK9vN9v+XlMFD9mNBVRCv/JtkC6QOj/tEFqV/vc897pHuE6de7Hy2cUDM38ZWtuSOJU7Ybqi/uWu4gpKSdPVN8c7nCI0DAAAAAAAAAAAgntn+z4gAALiNWoIRxsgYo3PyD1qnjoy7AzeuKmK2amUmZqDk1HX2Y8PF6P+M28JsrmpqkqRM1n180vFn6OSxR+zXj8j02Y5PVrZrug1jnW1j9kCcq3KX7dgx409NvZi/qMlVSWbFOhlJueKIRkOCn3HbyEYFREcmYrSRXXe0tHVbvAXMQuOW+5F+ebuKN71NWrtZ5qobZc5pXQvodgqGBxXc/BfSt/7VOsa88pqpF+XfpJytsl3M6oo2R41XBeyWrGocEDdsF6edq0XwtX9RcMd/SLuekxavKH3GN7xXJu34bR2N+O2sNnCwuYVF/O6ZS66Pd77ALzAJAAAAAAAAAACAaFS2AwDMbbbKQuVKP0vT9lCDq6rYwaFAr/gze/Uha3vabM5+0hDGGP3yyvCg2J3FUyPnW8NsjraqkmT+792R5y6daL6zqtjOQ+6QR2TYbsczfuuIYCStndgReuz2x+1rvHt7+P4rhm6fenHVjQlWJqm3z/p5PLE7XkjmyYjxIxP2cJkkZVQuhXjs6TIf+7qzjfKMYllm4FHzzlrZbt/z0lMPSt/9ooL3X6fge19OsMDOCPJ5Bb/zOulzH5X2hj/vkqTTLpra7i79Jtl+s257vDVre+3grZVt88bfaBwQ87cxaRA3+MxHFPzFO6V7vyW98KT00A8UfPoDCv4sog10nNawzYbt7vhP6yHzvr+TOevy5s4LAAAAAAAAAACAxAjbAQBmt20Xuo/bqh+VQ0SVUFeIp/faj335IXeoyRpmi1u9SdLxC+ytCPMF9zpsgUFrGHBS7/yoZZXkeiVJm8fDU2lfibhP1sp75cJ6wddv9luHzY2/X9k8dvyJ0CHffDR86kTevvaa+9fEZ1pj+Vr1FMM/j5vvjhe2+6e7ou+3TxvZrn+4W2aWtJCVHG1kPSp6jVtaLWeCqgPFooLP/23sdXXcI3eX/hel+pmdbCNrqWznI/C4zzW/id2NwbrYwc4EYbugUFDw738dfvDbtyhwBRXHY1y3/0C8hU2yXf+KN8tc88vNnRMAAAAAAAAAAAAtQdgOADCrmbf8dpMTS/8JXJKxh8522zNu+pcfRoTtbMGVJoJZuaz9P9fPOAKBUoI2sguWRKyqLFt6P7vSIW0hJW1e7g7QWMOAk11sBw/7rcPC9C2ubB9ILQ0dsyl8t57aYz9vzeebcI3KZLUzsyb00PrFobutHnzRfXx0wh4uk+rayM4BiSrbBXUP50Pfb8GK2uzxH/mN6+2b2u4rfdeHu3qbvuyegegxY6Z76sX4WNPXmjphgsp2u56VDu+zH3/8xy25btDfZGU7W5W/0SH7nNlShRIAAAAAAAAAAGCWI2wHAJjdmm2nVw4mLOi2t4Idd1Q2u/NJ9+lztspxTYTtLlltr45ka8MadTyqipWZtyBqWSXZbskYjViCOq5gl2RfX27PdhX/7v3SnV/yW4dNVWhwWT48mThoyf242ghfPHxnZdus3tjU0ioyWeshVxW6ZuQLgVdlu9nGKF4FwGqHLLnTWRk8HI0I0ZaZ7FTwzZSrWJ4wZu8X66ryKLm/K5NOGqsqIXnUCdETosRp51pvNCIwZ6mIGhQK0kSM78hA/Mp2QRBIE5YfpQ1bY58PAAAAAAAAAAAArUXYDgAwq5l0RuYvv97ExHIVIEf4LSrIZpMrjqjLFv4JaZ8YZeNieyDQVrmuctwWtotqI+vJGCNlc3rz4VtCjz++q7k2sj1P3Svd8ldJlyctmCoNd9Ohfwkdsm9QGp1oXKcrQLR2YufUiy2nNr08SVI6q/fuD3+vd4d35w01FvIe6uWL7ipkmWBCuvad/hed5fpHAv2zpUrlbAweBk8/HDnG3PSHofs3TTxvnTMaFZr1uFXrJqpao67cED0hSpLKdoOHIo5bqlXa2pLbNFPZbmLc2v7YnHdV/PMBAAAAAAAAAACgpQjbAQBmPXPmZfEn9ZcrDnX36HhLRSefAEkYa1W78vXi6u7pth77yQv2gFUQBNb3kAscQZW4Vae6e7SssD/00L3PuqeOWivvtSYMONkiU5LmFwetw74aklG6Z3v4vU0HE8qoKn2Ua779piQpk9XyQnhLy4EYt+ErD0WPmShIf/+98PCmCYpKqSizdLX/RWeM8BaaUfHDm++2jwirbBdYQlAzxve+HD1mw7GN+zaf5Kx2edDRvVSSntwdfdme6t+cXPzfwQZxg29VgoiKmcEd/xl+IG7Arz9+ZTvnNZr47wcAAAAAAAAAAABai7AdAODI9PVylbNszhrsslWFi6ogdii12H6wibCEcQRT9tvzYxrPS0XLUnuLjnaT2ZjV97p7lFc69NCiiBzayHj4AntcYcA4lq6sbC4o9luH3fFE4zr6LVmevMnU7sjNa2ppFemMii34K9mdT3pUtivYn5nAlNfQNfv+ethsG9kvPeAI2ymknFvRXmVyRsjag7kVPSHPayGvvqK95OFju9ynfOFA9P2vqabZ2xc5PtJ4gt+IwxEhuIVLw/fHDdsNRFTQi3uNJiqjAgAAAAAAAAAAoLXC/2UcAIC5bnys9Geu11rlzRa2GxxLcN1mKhM55pQCQdnQY642uM42snHX2J3TaCE8BNId8TeNIVvlPUeVrVjWbK5snjn6E+uw/pDLZVKe19h0fMxF1V8oq0UFS9tKSYVioFRXeOW2akMez+VEQerORAxK+n6mg7FVtnPftzuesB8LrfT28F0Kdr8QZ2WdsXqTdMLZUjo79dsWJpWSTj6vcf+u57Q+b/9NyEdkDD0ez5r7aRaviJ4QpVBQkJ+QSUc90CFSET9MGUtoMW7YrplWt64QYbOV7WZ6RUYAAAAAAAAAAIBZhLAdAODI1t1jbZ84aMmeuEJskbLNhe3mFwY0mGqsBjU4bA/bvWzPbzlbRsaunpTt0av3fkv/tOjGhkO77cXkNDQW6LbwDr7qbVFlO2OMgoXLpMP7lAvsIaTP3RvoM++o3bfHUuhreX5P7TXSCf86lc7q9NEHrIdHxqX5Hh/JeCF6zERBuuuZ8GPX93+xtHHC2dEnmmGarWznEhbCDd5zRcuv0zIr1kvD9up0kmRu+qBM36LGAzf8lszNf2GdNzQWyNaqV/L7TXRW05z02l+QvnFz9LhJYyNSM2G7w+Ftm2vOGyZu69pmWt2OOeYkbVkNAAAAAAAAAACAxGZfnzAAAFqpO2et8vbxO8IDPCOWamy+12tmzvkjd4ce+uRd9qDJez9vL0flbNMat3pSrlfzi45+thZ/8jV7QMoZBpSkVRujL7ByQ+nPV7yqsuu9+//KOvyJl2vX88nvhq/v3JF7p170OVoG+8pk1RvYg0jPRuSCJk3kowNntqCdJF0wfFdpYy4FehJU9LK1l56x9rxoP3bs6TIf+5rML7w/9LBZe7Qkae3EjtDj/3SX+z76hO0yKg/aeJx90Mr10Seq1kzlOEm6+xvNnTd2ZbsmnqG94Z+BpOYr2wEAAAAAAAAAAKBlCNsBAI5s3T3qtlQ8W2TJNUQFSzKBI43XTFgi16ucJRDY12Wv1nbnk/ZT9rrCbHGr72W6reuTpB0Hw4M6X33YEbZzhQHXbpa59p3R65oMNmanAo6u9/2NR/yCWTXPi63dZBzprLPq1+0/81uXT2U7l+7J5zbbRCB02jXXRtbF+QzOMuZ3Py5z1uX2AdnSc2z7Ldx5yH1+nwBy5ZNw/AaaqPau9ZoN20WxVaSLez1XS1ibpx+2H2umMioAAAAAAAAAAABairAdAOCIZD58S2kj26P7c6eHjtmwJHzucESw5F0HPmU/2EzYbvk6/Th3Ruih9fPsYQ5XUa/lhb32g3HX+ND3tXHiBethWzvWR3faT2mrNihJ2rFdOu2i6HUdW75nY1NBtjMc7Vrr17nAkjnbk1o+9eLAy9HriNLd7bx/43m/00wkDNsdO/6EJMlkWxAg7DB7G9nmK9udMfqTpufOOJuOdx/vLbWo3p7dHHp45QL39LGIZ/TCoe9NvXBUTgwO7rEeC79wk2G7hUubO2/ssF0Tle0c37/ELasBAAAAAAAAAACQGGE7AMCR6ZxXS5JMd4+uHfhy6BBbBTtXFaf5hQH90uGb7QOaCNuZri5dZ1nj4bFU6P5iMbAGYF438DV3va+4YasLrtbqvD105tNisp6zjezqTdJxZ0y1iQ2T7Za59n9Iksxlb6zsvnzoduuUQ3XF5Wzrfkv/v0+9aEVbx2yPUrK3/PW9f76hPJtzRu5LdoLpZHmghwL3s7x6of3YRUPfT7CgmcVEtQbefKIk6fLB20IPDw65E8auZ68rKOjdBz85tcPRStucdZnzOg2aadMqSYf3R5zXFraLeb3xMQVF+3e7JdeYZJqv4ggAAAAAAAAAAAB/lEcAABxxzFdemgqfdOe0dfzp0HHWsJ0j/HTbC6/VSWOPhR/s6pLSmRgrnXJsbl/o/kf7w9NC/Y68xv/c9xH3xWIGyMyxp6v7B/9tPe7TYrKes7LdWZfJdHVJNz+g4ENvk+7+Ru3xi66VecNvyJxyfun1ivWVQ73BiC4e+q6+O+/ihtN+6s5An3hrabtQDKyV4rZUPy8XXO3xbiKU7/flg7fptvmNrT4/9u1AH/S4TNLKdtlgXLryxmQnmSa2mNGtoyc75+UtOahP7Hq3svJIOWZz0qLl0eNarZCX9u/yG7v1tOgx5WfwiqHbQ5/Be1/MKggCGUugy9XC+D9fukFXD36t4VqhFljKido0UdkuOLC7+fM+93js62moX+pb5D08uO/b4QdOvSD+tQEAAAAAAAAAANByhO0AAEeW86+SWVwVjsn1qicID1bYQmK2/YsKB3Wmq/Vkd481rBKlN2VPsxSKgVJdtef95iP29pm9lvdbEbdaW3dORlJvcUjDXfMaDoeFE3f3u9t79hSH7QfL6zO982U+8l9e66u2fuIl69CJfKBM2jgDgj3FqiBgCyrbme4eBbJ/LgOeha5cgSevdUjOqmOz1fBYoN5uS0jMUpFtZd6vnan56k6ZnsZnvt2CPS8puP5ov8E+6ys/x86Q67OPVSrg1Zuw3Me3H/psbdBOkrKO70zc79N4E21kHcHgCkt1ueDRe+Nf78e3S5dc7z/eFujLzr3vJgAAAAAAAAAAwGxEG1kAwJFloi5FNTZibVk6Mh4eCBuZCN9fE8IK4wqZRAj229u0Hg5Z/of+2x5mc7ZoVSn8FctkUMdy3uGQ+/jCAfcpjx7fbj8Y9z4uX1fzMi17Km3fYOlPV/XCmnDmi0/FW0uYcsBtR3pt6OFVC/xOk7SynSRpnqOv6gzWa+zpyJ2H7fNsYbtM4FmOMao960zg84yWv1NDxv5+Jv7jk9ZjtqBnNgj5Ij1nqfwpSas2liqA+mqmst3uF5s/7+qNsa+nQ+FVSa22nBK+/8kH418bAAAAAAAAAAAALUfYDgBwRDEXXVe74+TzlLNUczowHF4NyxbEslXIq0hQBe3s4k+tx8KqsE2GxsI4q1dJ8aubRVTFClufq3LcttGHdMzEM9bjccOA9ZXHruu3V8Ob/Gzdle2qPucTzoq1llDl93Pp0Heca4piC475WFeu9mfiVOCaQa6Z97D1mO2zLBYD673Neobtmq1U2VHbXhk5xKTTUiqtc0fusY4Zyaesx8bz4eHe0Pt47Bn2dSxcKp39KvtC61kq0DmNe8wZm6qsGXzlH1X8jctVfP1m6Uufjn+9uIHA8bHw/UefFP/aAAAAAAAAAAAAaDnCdgCAI8vpF9W+nr/QWektCBpDJLbwTq+r9amUqEVn38WvsR7bGxKsOzBkP1fLQ4ERle3uCsnNPb3HXnnv6y9cE3G9Ju5jb19l84zRB6zDdveX/nRXtpsK65hjtsVfS73y/btw+Aehh33Ddkkq231g35+XNjYd3/xJptHJ2Z3WY7b79+5b7M+gV9juihuix8wA5oKr/QZ292hR0V4GcKTgCtuF7w+rEGhOPNu5DPOhz0gX/pyU7S7tmO+otthEZTs9FP49qzFa+i0PbvlLBR99l/TQ96W9O+zjX3eTtcVu8Mwj8db34PdCd5uzLo93HgAAAAAAAAAAALQFYTsAwJGlPkjW3eMMnz30UuO+YUsOx1Yhz3rtGHpyaeuxrzxkDw2FniuijayyMcNs5fG2+/jZexrX92/3ha+5r9CvFYW97us1cx8XLqlsuj7vLz1QWtePn/dswxv3XoWpVAYMX9d4XioUoz/jJJXteovDkjFSJtv8SaZRT5c9kRgWjh0aC/TJ7yYM2/XO91lae8SpqOf7fcn1On8bnhpfZj1mbyMbch8j1mPmLVDXn35e5uu7Zf7jKZmv7pLWbQkf3EzY7vEfew0LBg8r+MLf+Z2zOyctWh5+7Af/7bmwCJPhQwAAAAAAAAAAAEwrwnYAgCNL3+La1909WpXfbR3+dhpawwAAIABJREFU05dCKtvZ2shGhdgShO0W9NjDNWMh61m5wH6ulocCy5XmdqTXhB4+ZW3jvhULwt/PQMqx8Mr1mriPualWsvOK9rJ/k5k2V3Ctrzgw9SJlr/blzZT+OtbreH5GParbJals1x2MSUEwO9qihkiZQNliePvNsO/rNyOKjWXlccMPRoRCZ4rFK/zGZXNaXthnPbw3P896zPZ9Cb2Pnt9f090js3KDTCpln9NM2O6YU/3GPXqPtOdFv7G5Xmn3C+HHTnqF3zkUXkm1YjSicioAAAAAAAAAAAA6grAdAOCIYnK9tTu6e7R54jnr+NGQEImtjWxPGyvbdffYqxqFrfHE8NybJKlLEVXSYle2K72vvmJIP1tJYyHrG52IV42vRjP3sSpwlFLROmwy1OYKt2VU9Ya2nBJ/LfW2llrRuiru2aopVrNVF/ORDhJMngmM/f6F3buDw+7nLxN4hO2WOb5kM8nxZ/mNy2S1oDpIWmes2Bgs3XUo0Me+XdQdT4TPCa1s10yFNtt3fjw8YOk0HvE7Pan/oPcpTXePVLR8h+Ks0bW2o0/2P0+DBL+3AAAAAAAAAAAAqEHYDgBw5Dj29MZ95RCHCcIDWB+9NUZlO0dYSlKylqO5Hp03/MPQQ997snGN3/lZ+GnefcCjLWLsynal8b914G9CD4e14rUFFn/l4P/1vl4sS1fVvLx88LbQYZ8pt7z92cvhp1mVrzvQ2xd/LfXmL5Tkroxou1/VklS2SynfmuDgNLKFXV862Pj9KNjzlpL82siaba/0Wtd0M2l7C+oaES2EDxRqg8ov7A90wUeK+t0vxGzH28z31/LbGdiqybk8b0kG1p/76Yf9z5nNyVz5i+HHfvJd//O4KvWtWOd/HgAAAAAAAAAAALQNYTsAwJFj7dENu0w6I6XSOmP0gdApT+9prMI2HW1kle3RUZYKfPc/73+a9RMebRGbDNvZKttJ0kTe7x4uy9vbWE5dr4nQYl0rzQ35kASgpIHRUivHv/1OeIBo43jdzU4SoJxUvn+uyogvehTZcrW+jZIKCg2BxNnG9v371J2Nn+Xd293n8gnbteSzb5Zvu99ykNNLuhS2O3YsPIz2hZHaCnl/e0egZyO+ruGV7Zr4HbR95//7H+Ofy9e//n/+Y7t7pFyC3/dJB+wtzZv63QMAAAAAAAAAAEDLEbYDABw58pYATXePFhQPW6fVh9lGLafpbWdlO0kTyniNCwJ7pam88ahyFXed5UDPfEfY7uEdta/trXgj7qHUVFjHLFtd89rVJvTFA9LmZeHHxrrq7k2SAOWk8vtZUOy3Dnl2X3QbyGSV7QrNteScKYzRmAlvT7o8pPjggoiPLevTRrYVn327pTyr2kmVyna2+7imqzbxGVZRs17ofWzmvtmeTd8WuWXBIY8wbzOKBalg/wK6fpNrvPCk/di8GMFJAAAAAAAAAAAAtA1hOwDAkcPW8rO7R5cM3WmdNlBXcGx4PDw4EVnZLk7wpd7azVpesAdFisWpNY06ckJrJ3ZGXysbHraxKrc3vHD4B9Yh/XW3punqgFJzYZ2zX1Xz8qyRH1uHDoxJKcvfkPq7ap8hk0rFX0sdk05LqbSzMqBPVmc8QdguHeSll55u/gQzwM7MmtD9qZAicAsi8qQ5R5XBqUG90WOmW5zfnHJlu+eym8JPFdQ+YPW/i2FyxZBBzVRosz2bcX9ThwfiX9vHqo3SsvDnT5J/kNUR2DOzvPIkAAAAAAAAAADAXEHYDgBwxDCXvTH8QHeP3nnI3o6wPlTywoHwcbmoqmxdCf6zu3qjru//ovVwdcDOFmSTpBPHHou+Vtqvgt4kU25p6QoD1q/ppzvCx7laqVY0EbYzR59U8/qaga9ax/aPSE/tCT/2Gwc+EfvaXiLe00uH3NMLxcArkGeTUkG68sbmTzDdjNGvH/hk6KG7nmncly+6T9e20GfLeLaRjfNdzpTGXtf/X6GHf1aoDZO5Qr2TQitVNnPfrvrF8P1jHp9TkvG+1h8jHXWC/fi453WTrM+3tTAAAAAAAAAAAAASIWwHADhy9C0O39+d09LCAc2zVBb7f3fVJnN+8kL4aXrCqjhV60pQBS3bo4WONqPVYbZhS4tWSeoNhqOvVW4nGcvKDZKkxYXwJOI92/2SYF4VxZqpjCVJ2y6sbLpatn7qTvta1+R3Tb04+bzm1hGmHEDaPL499PAffMl9/8bzyS6fCgoyi5YmO8k0s927sPa6US132/ocdlKcyovlynYbJ54PPXx/YUvNa1eod1JoeLaZsOxCy7MZN5y215LyTao7534e7rvN7zy2UN7azfHXBAAAAAAAAAAAgLYgbAcAOHLYQh7lkMlSS1Bsn727Z41s4Ei5SfbepD66e8KrRJVVB19GHMvwqtiVbiJsVw6aZIPwBM6uw1PbQ2P24FjkPZSaryiWmarylVZBJggvb3bX0671Vb2/VoatygHH7dnmQjVR4bEo6SCfLAw6A+QCe6vO5/fXfqZR96tLHuHQaa1s5ylOm9XyM+j6Do5NTN0X1+/MpFzY700z9802J27Y7rnH41/bR7ZHys2zHg4esLcpr2F7P7PhWQMAAAAAAAAAADhCELYDABw5Nh4Xvv+Zn0qSXshsCD28pLf2dcaSSRrqsoctJCULM3X3OINy1cEXV8Wp3qhWt1Jzle3KYZDd6ZWhhxdV3cODjuJ6y/L2VrQVme44K5uyq7ZiV2DC/xo06qgStzZfVRmrlQGYPS8lmu5TZcwlpWLz93VGMDp+zB6kqg/M5hOGEyXNjvvV0+c/tvy9X1AcsA6ZbKmdLwTq9yj+17I2stawncciqjXz2+aju0davtZ+vOj5wNneT9LfmiQ9pgEAAAAAAAAAAFCDsB0A4IhhbEGLk86VJL1q8Nuhhx+t6hxaKAbWqliXDt0RsYAE/9nNZNXraG3p20bWq7JdU2G7UppuSX5/6OGaMKBjfceNPxl9rXQmekwIc9Uv1rx+xfC9oeN2HrKfY+NEVQ/hVobtTr84ckjgCMz4VBlzSakgbd2W7CTT7JyR+6zH6u9P0kqAktoX3PJhjN+4vkX+5yxXtLxq8BvWIZO/M4c8ulFLIa21UymZZr6/tu/agZfjnSduOM9Xrlemy/H77tm+NrBVtstS2Q4AAAAAAAAAAGCmIGwHADgyLFxqP3bi2ZLsYbmdh6RisRR0coWa+ooR/WZTzVe2M8aox5Ht+a8Hp4JYLx20j8s5AnsVCdrIvnooPLD499+bWp+rsp2rVW5FsyGnTbWVDW/o/3zsU/QWqxbfwgCMOePSyDHjjop7SSvbpYO8lGouxDhTZGW/CT+oaw38zz9sQaWv2XC/+hb7jy1/r5YU7D8gT+8p/bl/yO+UDd/nZr8zLWrZHNwX/vuUSFfXVAD4ul8JH3PPrX7nsraRbWHLagAAAAAAAAAAACRC2A4AcGQ4HF5xTVKlalKPI4j2k3JBM1eoKTIolqSNrKRc1l7N6puPTIWH7tkeHiTKFUfUJY+QUYI2srlgLPRwvji1bVuf5Fl5r9mQU111LNfnbVMTVmxlACYb3ZL0qT32Y4kr2wUFKZVOdpLpVK70Nr8Q3gL1zidrn7lCMXRYPE1WWOyoOGG78vtxfQdvfax0Hw/4hu3qz9VsNUjHvODgXv/zvPR0c9d36e6Rmaw06FrnIY8W2dawHZXtAAAAAAAAAAAAZgrCdgCAI54pBxmOHXvCOua5clbPFWqKDIolaSMrqeuwPawxvyqrtbg3fMxol2dgo5nQ1ZMPSpKeyB4TeviE1VPbWcfpIwOLxjRfIXDD1pqXayZ2xpreXRytDSu2MAATDJdCYn+36z3WMfschROTVrZLqZCo8uJMMZjqC92/dF5tUHXbevs5fm/fR/0uNp1hO982sju3+5+zHPhcVLT3Ue4qX9Y7bFcfaPUIlYZastJ+zLNFqyRp0/HNXd+lqlqfWbrKPm7PS9HnsrW5Tfpb4/u8AAAAAAAAAAAAIBJhOwAAsqUKZRcO/8A6ZGS83EbWWdkuolJaC8JM3cXwawxVFZRLFLzKZKeqNMVRbsV7wfBdoYcPVWXoXIHFyCunM82tT5JZuaHm9SXDd8aa3xAEbGHYzpx6gSTp5/u/YB3jum9JK9ulg/zsqNRmE/FM/PCZ2sp2EwX72Df1/2f09VIpma6Z/9don/bEFd2llK6r+uXkc3ZgyK8Nb0MAudnqias22Y/ZqsElHeur+nfgouvs48Y9KmmOt6myXdCCtskAAAAAAAAAAACQRNgOAHCk2Hyi/ViuFDLJakKZIDy1NBlgc4btoirbJWwjq0vfoA/t/XDooburCljZ1vjawW9GXyPdRAtZSebk8yRJJ489Gnp8Z1WxLNv6zhz5cfSFmlxfxcKllc1czDayPXVBR9PK1o4LlkiSFhUPW4c8+JI9MPOpO5P1RS1VtpvFbWTLfnv/X4buf26/9NTuqfuXt4Ttfm7gK9o29nD0hZI+h52yPrzSZJjq5/m6/v8KHfPtyTayw37nbPiONfuMuSrixQnQ/eS7obvNOz4ovfV98dY0KVf1O7Bqo31c/4Hoc1nbyLawZTUAAAAAAAAAAAASIWwHAEBVyOTYsSdDh4xOhu1cbWSjWqAmDdtle5zXGJ0oBWGGLWvsLXokZDJNhojK99BV3W/XIXd1wPlFR5/USUmrrx3eX9k0kub5XLOs4d432xIzTFWYZlX+5dAhn/+RPWz3xQeSXT4VFGZ3Zbuy+kBktVuq7l/ekk187eCtfheaLfcqTkiraqztu/jYrtKf+z2/Ng1huybvmzHGXt2tFdXqcj3q+tU/aa6CXNUcY0ylUmq94P47os9ley/ZFgZ7AQAAAAAAAAAAkAhhOwDAEcG8+XfsB4tTyZtcMBY6xKeyXWSltKRtJ4f71ecIhz2zt/TnqCVsF1l5T2q+Ytey1ZKk1RO7rEMe3lH60xYGjGzDKzUfBrQY6prvPbbh/rWyst3ilZXNl9OrQodsWGKfnk1YlC6tWR62K7eRXZO3P38PvRgdtksHeb/rTXdlO99WynGe0aqxL2TWhw45dV3pzyHPtsUNLWmTVE+0vRef9qySAlcr1ZGh0p/NBPdefsFrPaaqqqbVmOW9tPK3BgAAAAAAAAAAAIkQtgMAzH3Zbun8K+3Hjz2tspmzVI6brGg3agnb5Yojioq/mISV7cwJZ+uyIXt1pMk12gKBXmG2ZtsVnn6JJOnM0futQyrrSxQGnL5AWMP9a2EAxvQtihxje/YKxUDjnhkxm1RQmBOBHler5Or7N2FpI5sJHGnaarMlmNhk2G5dfkfokMnfFlsb3khJ7lu53XcD34DceHiQWpK09TT7sShLVngNC3xCgZb30tKW1QAAAAAAAAAAAEiEsB0AYM4zf/6fMn2L7QPmL6xs2gJff/zVcgtUa1U2j8BH0jayp11kbTEqTVWMGxkPr+DktUZboCWC6S1ViEvJUjJM0oGh0rpsoTGv9SWpjBXissHbvcc2BDHbFID5n/s+Err/24+Hj7fdzzhSKljbX84OpajrhvxLOm7sZ6EjqkOotrBYWr6V7eZ22O6SoTtDhzy5u1QhzlYZMFKS76/t+Tyw22/+uOP3Zfna0p+nXxxrSZJkrv/12h3bLgwfePNfRJ/s8R+F7/cKQXtWOwQAAAAAAAAAAEAihO0AAHOeOfsK94CqkImr+tt4PtDIhCXIVvSoWpS0jWyuV2kVlAnCE3+TYSJrm1afynFJAmSbT5QkbRp/LvTwlx6ICCz63MMWt5FdUjzoPba3/v61Opy27mhJ0qLCoVjTbPczjnQmJZP0+Zwh3nL4ltD91aHExG1kM7MkbJft9h9b9d13tcR+eo9UaDZslySkaPltCm7/gt98VwW8yTDbAkevZpueulbUtnaxQaDAVV3Phcp2AAAAAAAAAAAAM8bc+FdVAACSqAoy7E7ZWwJ+6zFXi1afynYJ/7NbbjVqC80NR7aRbXPYrjx3sGte6OGVC0uVl6yBRZ/1Ja0odvTJNS9NEL6WMA3ra3UAZnhIkjRu4gUKh1oQtktlWxti7LiBqYCi7Tka8Wgjmw48+6Ompjts51nFLM4zWlV1zhX4vOuZaapsNzwQvn/9MZ7zB+3HJit6erRzbtC3sPb1vAX2sU89ZD0UuMKARY/ncvVG+7Hla6LnAwAAAAAAAAAAwAthOwAAslOBFFcbyef3B9YqYjmvynbJ2siacqtDW/W9yfax9spxHmG2JNXayvdxX3q5c5j9HvqE7ZKFwswNv1XzetuYPfxSr+H+tTpsd6DUInh9/iXrkIl8YzjwwFDyS8/6sN341HciF4RXD6t+7qzPoE/gU2p5hcW2ifOMbjq+snn+yN3WYSPjUrHpynYJwna7nmt+rlQTyGxQbjNuzrws/nlPfWXNS3OW4xyjji/riOPY+q2RyzAbjpXWbWk8sPkkmZUbIucDAAAAAAAAAADAD2E7AMARz6TTUqoUhHtT/39axwWBq2qcR9gulSxsN6m3OBy6/0fPlf584MXweV5rnKzw1IxyK8bXDXwt9PCjO8phQMs97O1EZbtTzqt5+fOHPVtQKuT+tTpsd9G1kqTjx35mHRLWIni/o2CXr3R3ghDUDGAuuLqybQuVPrG79Ge+YK/MZvtuNUj6HHZKnGe0qqpbX9H+UO0blPKeBQAbJKls9+q3hu9/8gG/+f37w/en0lOtYF95TeV76MvMr6tsd9F19sGH9tmPuSrbrVzvt5bf+2Ttb3hvn8zvftxrLgAAAAAAAAAAAPzM7n9ZBQCgVbI90sigsoG9J+ePnpOOWhZ+zKsilmlBxn3VRmubzL++PdBf/rx9qldluyQBsnLIY8NEeNrv3mdLf1oDiz7rS1pRLFfb4nZB0dKaMkTbK9utWBd+nSpfeSjQ28+tbSF6YNi/Fa5Nqrs78TmmVc/U55pzhEr3DgTKOXJyXoFUKXGFxcSMZxvZbIxn1HPsn3490OtP87x+vSQhxaWrwve/+JTf/P6D4fsXLJEp30+TyUof+px0/3cU/PRuaXxUZsESBZ/+gPcyTSaroGe+NNIYWAw+91GZy94YPtEVtvP8rTGnXSh95kHp7m+W2paf8xoZz6AeAAAAAAAAAAAA/BC2AwBAqlRcWp3fZR0yNBZoZCI8ZOIVFGtFZbtUSpnA3up2T789eJWSRzmqJG1ky/fQ1Yq3ULS34vWrDpjwry51YbvewLOSmUIClbkWh+3K722+o6rYD56W3n5u7b6DLWgj2zXbw3ZV7UnnOarT3f54oMuOtwfFXEG92uvNgsp2qXSpaqevrN8zMJ6XCh5tZLeNhrRoTvL9dbThDsZGZKICaQO2sN3impcmnZZe8SqZV7xq6vy2sF25tXeDbC40bKfDlup6Uk0r5AYxgr1m1Ubpul/xHg8AAAAAAAAAAIB4aCMLAIAkDR6SJF0xdLt1yFHLTbI2so6wiLcd27Umv9N6+EVLnkSSVuT3RJ8/Tjin3jM/leRuxTkyLo1bMn/dwVj0NRKGnEzv/LprjmtlfrfX3J5i3We8alOitTQ4uFeStCFv6QMsaSLk3oW1lpWkBYXDXpdNBXmZOBXQZqLVR1U2zx75kXXY/qHwezjJVdmyRmYWhO1iVl40vtXyJOWL0dUUP7j3Txp3ppq/b2aRpayoJA17VKi0VY7rmR++v/rav/4X4ft/9U/DJxy2tIudt8B+kRZUtgMAAAAAAAAAAED7EbYDAECSFiyRVApf2ew4KHtVNp/Kdq1oI3vMNv3m/r+1Hj7sWMaW8Weiz59gjebyUg/bawa+ah0zMlGqjBXGK+iUtI1siD/a+8de4+rb95qu1v41ypz72tKfjjEHhhpDTrYA6KaJ572umwoKUneCioYzwbLVlc2VBXuodGTCXZUtFXhUf5QShcY6po0BrXzEbTp75D5dHhZcTlLZrqrSXANXUK0ssI3xuU9XvFlac1Ttvi2nSOdfFT7+yhvD9z/7mP0arveQpOIoAAAAAAAAAAAAWoqwHQAAknTmpZXNNx++JXTILT8KNJqksl0r2siecJa2jT1sPbzb0UbWq3JckgBZuaXiksIB65Dn9ktjScJ2rWjfufW0mpdvsXze9WoClSvWJ19Hvb5Flc3fOPCJ0CFfCenM+YUfh3/miwqHvC6bVl7K9XqNnbHqAlPnDN8TOuzLDwTKu8J2Pq2WpelvI+tTha6ZsN2WU7yG7Xe0Lv7Q3j/WrS+8Lvw3Mcl9m7/QfmwoQWU7jyCbWbpK5uO3S299n3TOq6Vf/AOZv75VxlKpzpx+sfVcwT3fjL2+Vgd7AQAAAAAAAAAA0LwE5SUAAJhDqtpo9jqq1O0dCA82eVW2a0Ub2WzOea0fPO2YGliSgtWSVN8rh3t6A/v6vvVokKyyXSsqitWFa3I+QUnVBSrbUQmuKvDW42jFWywG6uqaClsdsASfeoMRdRdHNdblXmupst0sb1NZ95nOK4bflJf73ZXt0r6V7aY7bOejmWc00+017IeWIpm/t++j+sC+8JarkpJVtnM9oz+7Xzr6JPf8JJXtJJnla2V+NaQ1bsxzBnd+Weac1zQeGE22PgAAAAAAAAAAAHQGZRIAAJCk7Y9UNhcW7RXBntsfvj/nCJhVtCJst3O7egN7EMvFK8yWpIJSORSyMr/bOiRflMYteaaMTxiwFW1kjzq+5mWX7NUAq42YqvBSOwIwVeecMPYwV33b2ONXh4/7fu/5kUE7qVzNzTNkNVOZukpvd/eeEzpu68qINrKzpbKdj2Y+08d/VNm8vv+Lsaen5Li5kpROELabv8h+zKdq6JglVNuO73Ldb0yNPS+G708YBgQAAAAAAAAAAEBnELYDAECSzriksnlD/xesw2xVxLzayLagFaA54xK5Gkj2OzJ/XmG7JJXtsqVwjytwc3BYCSvbJS/Ka1791qbmnTty79SLdgRgqqorvm7w69ZhI3W3acKSD7t46Htel00H+da0OJ5BXjl8V+j+wTG528j6VrZL8j1pBZ82ss0EAk85v7L5vv0fiz09HVi+3JMSBI7rA5U1bEE1nzHt+C5vONZ+7ODe8P3jtvW1oYomAAAAAAAAAAAAmkbYDgAASWbTVCWirWNPWcftGwzf37E2sis3SJLOGPlJ6OG7nrZXaetUZTtJumogPCz2N7cH1nCYX9gu+T00p14gveZtNfveefAfIufVtJttS2W7qVDN2omd1mH1le1s4bEzR+/XJUN3RF42peLsqNQW5bSLKpsXWMJ2338qqo1sRFhs0mwIJ6abqAJ5wtmVzTNHw39jnJeMun9J79vmE0N3B/fcGj23g2E2Y4z0tt8LP/jUg+H7qWwHAAAAAAAAAAAwKxC2AwBAqgk09Pi0hK3jNacVYbvyOnssrWRtbW5NUFRaHkGiRJXtpu7hvKKlBKBreocq20mSufj1Na8HuuZHzqlZX7YN1aZqnkF7pcQH67pQ2sKL6SCvrEdr3lRQaNl9nVZVoSnX93FozH4K7zayrfgut1szAcq64JktNGsTef+S3rfu3vD9P/xa9NwOh9nM0pXWY8GLIYHuTra5BQAAAAAAAAAAQNMI2wEAIEkr1lU2XW1QbXqKnWkjqxXrJUlPZLeGHs5aMlPZYNzZfrYiSeWpZasqmy9k1see3t3BsJ165tW8fC6zMXJKpjq4Nn9ha9ZRbcGSyuaywj7rsJGJ2uqFeUu+KRNMeAUY08rPjcp2+3ZVNuc7wp7P7LVXf5w1bWR9pON/V0xdiHRpwZLetV0yqrJd0vv28vPh+4/ZFj133JKybFeYbYXjN/DZxxp2BbYwYJawHQAAAAAAAAAAwEwyC/6lEACADqhqnyhJS/P2sFMYv8p2LfjP7qbjJEkLi/2hh8ctWRevqnFSsjBMVbhk29jDsad3srKdNp8Ue0r1+uor47WCyUy1/cwF9vJrI3W3yVrZTnmvezpnKtttObWyecXgbdZhA45crFf1R0lKTfNfoY1HdLaZAGW2u+bl6wf+K9b0yPuX9Ddw7ebw/bagmscY064w25mXxluL7T3kCNsBAAAAAAAAAADMJITtAACQZOoquv3N7t+ONb+n2Jk2ssYYaeOxesvhW2LN8w7bJQjDmKoA0HnDd8ee39GwXc7SjtIhU12164KrW7OOeqdeUNlcnt8TOmTn4drXtrBdJvAM26kwJyrbmQuvqWyvLITfO0n6lx+2oLLdrGgjm40eU6+ust1Vg9+INT3y/iW8b+bKG8MPPPd49ORH7w3fXxcwbBXT22c9Ftx/R+PODre5BQAAAAAAAAAAQHMI2wEAMGn52srm4sLBWFNzgUcb2SQtWqsddaJfuK9KtroFqkvSNo8LlzU9taNhu7pQkdeUyfWlMw3hzJZZsrKyuTr/cuiQz/+oro2spetxOsh7fe7pIC8zFyrbVYWSuoMxmSD8xtz3nP0UKfmG7WbBX6GbCVBmaoNnRlKvoyVvwyWj7l/S740jeBYE9hBls+dMbONx4fu/9s+N+8Ys/w0hbAcAAAAAAAAAADCjzIJ/KQQAoEMGpgJ2SwsHYk31Cr8lDbJNGjwUe32dqGwnSRos3cOTxh6NPdUrENiiUJipe59v6P9i5JyMyuvLewYXm1EVrDmYWhw65PjVtS1Eba2DM8FEjDays7+ynRYurWwaSUHM75sJiuqSZ2BrVlS2a+IzXXd0w67hrnne0yMr2yX9DXS1zz1kb/0d5B3tbX1a0DZrxBJUnL+ocd+4ZR3tanMLAAAAAAAAAACAphC2AwBg0uhwZXPb6EOxpvYEHoGNVlVDGxvV5UO3x5ritT5JJmkYplAK25w89kjsqT5rbFcFtjf3fz5yTMa3OmASVWG7FzPrQ4cU6gq2jViW1ROM+LeRbVelvk7acmrNyxNH4wU+vavaSTMgbOcInU1qpo3syefFn1Ml6jtikt63zSfZj406KvDlHd+DDVubX0+URZZKn8WQZ63qvz81uuMrzsapAAAgAElEQVRX4QQAAAAAAAAAAED7ELYDAGDSua+tbKZk6c1pkQvGoge1KKBjLn+TNuRfijWn17ftbNLKdlffJKkUBTp19OFYU72qA7YybPf6X6tsrijsjRxeCRJddG3r1lCvKmz3joP/FDrkid211ddGLDminmBUGY+wXTooNFcFbYapb+37l7t/N9b8yKps1eZoG1mTztR8LyTpzJH7/S8pRwU5KXmos6p6YQNXhbqCY11LVzW/ngjmbe8LPzA80Nj21rZ+2sgCAAAAAAAAAADMKLPgXwoBAOiQ5WtqXl7b/2XvqR1tI9vbJ0k6evwZ7yk5z8p2SddoVm6obN9w+N9jzc0Fo9GDWliBzWw8tub17+z/mH1sUJwKYK5tbLXZMlXBmmWF8LaYD9flLG2V7XJFv8p2XSq0NsQ4nTafWNk8dvypWFMjg2LVpr2ynYd0c5+pueT6mtdHTTzrf8kg4h4mvW+u4NnLz9uPucJ27WyhvGi5/dgzP619PWb5/SNsBwAAAAAAAAAAMKMQtgMAYFJd0MwosAxs1NE2suXASqz1daqyXdU9zMi/7Wp3cVRdPu+nlaGwus87V7RXJwyqxxqPFp7Nqgoj+Xy+xWKgCUtBtlIb2ejPIDVHKtuVTH0284uDsWbGq2w3zWE7n2ew2c+0LtwVGaCrEnkPk353cr32Yy86wpXOsF0bg6a98+3H7vt27evx8LCdIWwHAAAAAAAAAAAwoxC2AwBg0rwFNS+HuxzBjjo+oaaWBXRWrJMkPZ3d4j2lx6dqnJQ8DFMVKDxu7Anvab3BsN/AJqt1haprSXn26I/85llCMa1gVm+sbE+Y8Pfam53aLji6HaeDvFe1wLTyc6ey3fZHKpsLi/2xpqY019rIZqPHhJm/sOblxokX/C/Z5jayJuN4T65nOO/4fW5htcwGm0+yHgqG68KgeUsVStd7BgAAAAAAAAAAQMfNgn8pBACgM8yFP1fz+hcOf9Z7bqaTYbvVmyRJ/+PgP3pP8aq8JyUPEZ18XmXzFSOe4TVJPUXPAFsrQ2FVLUcl6YrB272mmTMva90a6p1xSWXz0qHvhg4ZHpeCoFT1ruAofpcKCl4VDedUZbvzr6p5eenQd7ynxqngNu2V7Xw0+5kuWFLz8q2H/83/klGV7dp434Jdz9kPuirbtfHZd4YDf/Ld2tcTlrDdXPluAgAAAAAAAAAAzBGE7QAAmNS3uObl6old3lOzgSUoUa1V1bDKbQVPHX3Ye4p3G1mTcI1VbR69A35xxrYybFfXnjHr2/a2t691a6jXM9V20tUGtb98u4qOynZdCrwqGs6pynabjq95+dbDt3hPTclxM+uYuRy2m7+o5uWq/G7vqamoynatuG8nnRu+/5a/ss+ZrjaykvTKa8L3//SHCsaqvp+26nuE7QAAAAAAAAAAAGYUwnYAAEyqC195t15VhyvbldcZL8zm+V6SBgK7c1ObwZj3NO8wYBvDdm2f5yM7df9cn9l3yh16nZXtVFBvMbo971yqbGfqv8O+z5XK98HXdLeR9Wj37Kyq5pqXStW0ko3zOxNZHbAV9y3bbT0UDFlaBzvbyLY5bOf6vXjwzqlta9iONrIAAAAAAAAAAAAzCWE7AAAmLVtT8/K48Se8p3qF7ZoMvzQoV487ZfSn/lN8Q0dJwzCrj6psRseBpnT7VAaUWhuMWbS8uXkbj23dGupVVQY8duxJ67CDQ6WUnbOyXVD0CkqlVJwzle2CA7VV2FoaFKs2GyrbJflMBw9XNnMxQrPRYbsW3Le6Nrc1Du4J3z/ueA+O8F4rmKNPth/cV1U9lcp2AAAAAAAAAAAAswJhOwAAykyqNgjS52jjWS/j04K0RRXRjDFSOqNtYw95z/GubJewjaxpMriSmYawnWkyWGja2EbWVFUsmxfYq9KNlB+3qMp2OZ82skFeSs+NsJ056/Ka13FaLac0iyrb+WhhSMs3rJvuQBtZc/VN9oNjlud9zLH+dlaqlKRL32A9FHzqAwqC8pd4wvIb2KqQNgAAAAAAAAAAAFpiFvxLIQAAHbTmqJqX/7jznZFTUkHer4pbC0Md5sb/JSPpssHbvcZ7t9NsRYhoyarK5q8d+LTXFK/KgFLrK7BtPC7e+C2ntPb6YV791srmKZaw2P/5ZnRlu1RQ8PrcUyrMmcp2Wri05mVvjMp2c62NbKKQVl1A7Pf3fcRrWmRlu1QLKtudfJ792P3fCd/vCttVtW5uB7PmKPvzcmiv9NmPlrYLVLYDAAAAAAAAAACYDQjbAQBQrS4Q11cciJziHRRrZQWlXOlcqwq7IwaW9AQj0vpjogcmrGxXuthUK9ScZ9gpOx1tZKWatq1e2ljVrqJ7Kvwz31Jd8aWDpT9dle265NlGNijMnUBP3XfMO2Qqj6ps1WZDG9kkn2m27j56fo/TUYHFVvy+OH5Hg9s+H37AFrbr7qmpJtk2J7zCeij4xs2lDVtlu7ny3QQAAAAAAAAAAJgjCNsBAOaGay0V6N72e/HO88KTNS83TrwQOcUrKLZgidQzP95aHILhUgjrmcxmr/G5YEza+Wz0wFZU7NqxvbK5vLDPa0rWpw2v1JrKWNUO74833uceJvXy1DN3MLU4dEhPOX/jrGynglbnX468XDrIz53KdivX17z0DYlJMSvbtfo5bIckn+nO7TUvN0087zWtI21kXb9RPfPC99vay7a7heykwUP2Yy8+paBYlPJUtgMAAAAAAAAAAJgNCNsBAOYEc8UNja0VUymZy94Y70Qbtta8PG30wcgpXpXtLrxWpoUBHXPi2ZKkE8Z/5jU+G4xLm0/yOHFr/2pwXf+XvcZNWxvZ0y6KN37rttZeP0xVq9rLhu4IHTIyIQVB4K5sFxS9wqKlNrJzI9BjFq+oed2lQD3FYa+5acUI27X4e9IWST7To46veXn5kKU9a52OtJF1GW8M1QWH9yv4698OH9+psN1Zl7mPj49KBcu9I2wHAAAAAAAAAAAwo8yCfykEACCaOeV8mfd/WuorVwJbuEzmg5+RqQoueZ2nrkJelxxpprJMWDWnbLkVaFeXdNF1Mr/1sVjriLSoFCo6b/hur+GZYELmmndEh11a0R7zdTdVNrdMPOM1ZbrayJorfyHe+Mve1NLrh15j62mV7Tf1f8E6bjwfXdnOnHRO5PVSQWHuVLaTpOVra15+4uX3eE2rrmxn/uqb0tU32QdPextZj9an6eY/U3P82TWvF3i005bKwU3niVvzf3qYd344/MAj99S8DIYHFLznVdL+XeHjq1o2t5O57OfdA1yV79LZ1i4GAAAAAAAAAAAAicyhf1kFABzpzFU3Sq95m7T7BWnVRne7QZvu3oZdG8ef1/PZjdYpYVXZzDf2SC88UVrH/IXx1xElV6rI1OtZtSsbjEu53lKoquAIxLSijWxuqlqUkTS/MKDBVJ9zyrRVtss1ft5OnaiEVRUAygVj1mF7BhRZ2U59i7V4/wEdTC2xjkurMLeqZ61cL+3dUXm5qOAIMlXpmgyKGSOdfrF0z632wbOhjWySQGDIc755fLu2Z91tqyMr27Xi90WS5i+wHgryEzKTz/Pd35S2P2I/T7ZDle2ifjd+7KgcOJe+mwAAAAAAAAAAAHMAle0AAHOKSaVk1hzVXNBOkoLGUmHzgiHnlIag2Dmvlsl2y2w5pT1BO0lasFSStLSw32t4JpgoBT6iwmqtqDw1UBtuWuaxxux0he0WLq15eamlXeYvHfqX0kYnKmFVBXOW5fdZhz21Ryo4K9sVpQVLNGrca55zle0O7K552e0ILFarBMWCQMYYd0BqVrSRTfCZ1rfkll+wNzps16KQYm6e/djzT1Q2g09/wH2eTrWRXbTUeTh44Un7wQyV7QAAAAAAAAAAAGaSWfAvhQAAdFBI29krBm9zTqkP25nzrmzpksKYxcslSeeP+LWRzfqG7VpReWrRspqXrxpy3z9p+irbmdWbal6/ZvBboeOuGfjv0kZHKttNXWND/iXrsLEJqeiqbKeitGCxRrrc1ftSKiRqOTrj7NtZ8/KUUUdlsyr1LVCN67Oe9jayHpJU39tycsOuS4fuiJyWDmupXa1Vle1Ov9h+bLQqFLjrOfd5OhS2M8vWSJtPtA8YdQS6qWwHAAAAAAAAAAAwoxC2AwCgWl1QTJL+974/c07JBuNTLy66VnrdTa1eVbiFy5QLxrQkH105Lt3BsJ055fya13+8948i59TcQ5c2V2B718FP68qBb9Ts+9WDf6+rBsv7OtF20jMA9MzewF3ZLijILFiq6/u/6DxPOsjPrcp2r39Xzcu+4oDXtFRQDtttOr70p6uK4XS3kQ2pPNcgyWfat7hh1x/u+/PIaenA0aJaat19W77WfuzZR/3P04lKlWXmD/6f/eAXPm4/RtgOAAAAAAAAAABgRiFsBwBAtZCg08Jiv1KO9oiZyWPrtsj80b/KdKrt3/FnSpLeOOAOU0nlMFun2sjW3cNlhf1aXDjgnJKerjayklQVDswFY/rSS2/U3c++Un+/89f04PYz9bcv/5a6VC4hl3NXiWuJuvu3Kv9y6LA//XrgVdnu6PFnnJcrVbabO4Ge+tbNPcGI17xKC9TJaodHchvZkPe+uHgoZGCtyDayLbpvpqvL2l41+PQf+p+oU21kJZmt26STzo0/cQ59NwEAAAAAAAAAAOaCOVTGBACAFuiZH7o7FRRUMOH/2UyrHBQ79QKZTla8CkplzbqLo5FDM5qQcvM600Y22914/YgwnX9luzbc32JtebiUijpr9H6dNXp/49je8OejpXr7al4WZa9iFlXZTguWaknhOefluoLC3KpsV/d5VoKSEVIqzyt/r5zV4/Ke4dDplChsFx4q7QoKKhr7dzCyjezS1c2vqV7R8vAPHfY/h+V9ts2KdfHnELYDAAAAAAAAAACYUWZBWQ4AADrHWCqXjXc1BsgmVYJkHWxJKEmaKAXUQkNhdbLBuHTUCZ2pbDfZhrPKnvRK55RMVEhnUlcbwnZxAnSrNrb++vXqWmTa7l1PRl6V7eYFw87LpZWfW4GekLCnj0pVtud/VvrTFYwqeD6v7eLTRjbBd8Wkw38nXEE7KaKy3Yr10tZtTa+pQWAJ202MK7AF8ep1sLKdJJltF8SflO5QpVQAAAAAAAAAAAB4IWwHAEC9485o2HXR0J3W4ZWwXbbDwY2rflGSdPXA1yLHZoJ8qepeVOW6VlS261vcsOuMkZ84p3hXtvMJGcVkXv+r/mPbcP3Qa6w/pvL6D/b+eei45/ZHVLZTQVqwRD1FdxvV1FyrbHfC2Q27Lh+8LXJapSrba95e+nPdllauqvOSfqanXdSwa2l+n3PKZNjOvPujtdfv6pL5tT9r6ffHvOND1mPBL5+j4PD+6JN0OiB9+Q3x58ylICwAAAAAAAAAAMAcQNgOAIA65vzXNew7Z+Q+6/gxU66k1eEqSVpSqng2LxiKHJrtLa8tsrJd8jCMSWca2r2eOvawc05Um9mpk7ch7LZyg9+4Fetbf20Lc/27KtvbHPfOWdkuKFW26wkiwnYqzq1AT0h1yp8b/GrktFRQkCSZ8vdKmVleUSxh2M684lUN+84fuds5pxJYvOIGmU98V3rL70g3vFfm49+RufxNidbT4ORz7ceeekjBx94TfY5OV7brWySdcUm8SbP9OQQAAAAAAAAAAJhj5lAZEwAAWiSkDWVv0d6K8+7eUujDZDtcJakcFDGSeotDGu6aZx2ayZbDb1EBnFZUtpOkbE4amQoBuu6fFKOyXavWV3Nxz8+tk1WwqtbUXRy1Dts3YD9FSgWpb4l6HPOlcjWyuVTZLiRAFfX8SVVBsUz5++9q39m3qJmVdZalFay3kPvoVSWxPNeccJbMCWclW4NLVFDuO/+R/BztsMTdUrvBXArCAgAAAAAAAAAAzAFUtgMAoF5IGOK00QcjpwWDh9qxGrvNJ1Y2XUE7ScpmyhXhIivbteivBiO11faWFdztJ70r26kNle3WHOU3rpPBnHVHVzZXFPZah73cby9t15XJSPMXKhdZ2a4wtwI9a49u2OXz/Z1sgVqpJLZkpbR6Y+PAbLd0zmuSrDA5nwqPSQOUIc/7ttGH3JdUuTpgb1+ya/vYdHziU5hpCNuZrdv8B3d1za0gLAAAAAAAAAAAwBxA2A4AgHpnXtaw65LhOyOnmbMa57WTmbegsn3joc84x2YzHa5sV2fL+DPO41nfsF0b1md8g2adDOaceE5lc/P4s9ZhQ2P2U6SyWRlj/KqRzaFAjwmpQHjy2COR8yphu+POKJ3HGJnXv6tx4JU3yvS4w60zQhvCdj/f/wXnlC45+hq3mOmdn7zFaierVU669I3+Y7t7ZNrROhsAAAAAAAAAAABNI2wHAEC9qhDbpJ7A3YqzNG9hGxYTYeNxkqS3Hf6cc1imuxwo61RluwuurnkZFbarVLarqtYXql3Bk2Vrosd0MmxXFSLqcVSm++Yjjsp23aV2qD3rNjgvlTbFuRfo6Vtc89JIes3grc4pKRVLG1Wfs7nht2Te93fSqRdIx50h8z/+WOa9f93q1bZHKpVsfsjzviH/UvS8clixE8z7P53sBNlpqGy3Yl2c0W1bBwAAAAAAAAAAAJozd8qYAADQKs2GqqahJaF650tSZPWybLbDle3q7sUx4087h2eDcen0i2Vu+kMFv+GoENiqMGC9nMdnl+1cFSxjjIKeedLIkHKOoOfXLQXbTFCsVHjryUqTObIwKdO5amQdk+uVBg7W7FqWd7cyrlS2q3t2zTW/LHPNL7d0ecl5hLC6kobtmnzeO/k7mLTCYNLKeM1aulravyt63Mhg+9cCAAAAAAAAAACAWKhsBwBAHdNs4CxWxaIW6T8gSTpq4nnnsEx3OWQXFS5pVZjt0N6alwuL/c7h3cFYKaQTdf02tbn1qnDV6TDlyJAkd6zKVpAupUIpcCZpfbf73meMI4k3W+3d0bDrQGqJc0pa5bDd/EXtWFHnJW0ju/bo5ub97P5k141jzeZk89cf05p1xLWuyXsLAAAAAAAAAACAaUfYDgCAFjF90xDSOfe1kqSVhT3OYdnJNrJR1apaFGYzZzZWpztr5EfW8blgtBy2i6jY1a52pz5BuumoXBghsBSl6wqKlfUuiPjIe8x4i1c1Ayxc2rDr8qHbnVMmK9uZ9Bwp/JwwbGeaDaKtOSrRdWM5+iRp0/HNzV29STr+rJYux5e57I3Tcl0AAAAAAAAAAAAkR9gOAIAwJ50bb3y2uz3riGAue1Nl+5TRh63jMt3linZRgbFWVbY76ZyGXX+094+twythu6iwX7vayHqF7TrXRlaSdN6Vlc0/3fOHsaamVJiq1tfdo5t3/JJ1bE9XvqnlzWTmTe9p2HfmqLviWirIT1+ls3ZIWtlOktKZ+HMu/Lnk1/VkjJH52NfiTzzhbJm/vlUmlbDVbrOu/ZXpuS4AAAAAAAAAAAASI2wHAECYnnnxxi9a0Z51RKkKia3I26vbdU0GxaLapbaqTWtIeC0b2CuopYJCKcwWFaZrW2U7jyBdpyvbldvAStL84lCsqV0qTr2n7l4tK+yzjp2Tle2yjZ9nT3HUOSWlwuxpIevzPWhF2G7VxthTjE9L5hYyy9dKb32f/4TTLlLXp78vs3pT29YUxRgjvfHd03Z9AAAAAAAAAAAANI+wHQAAYQ7vb9h1+sgDoUPfc+Djna96Nmnx8srmGwa+FDpkeX6PtOfF0ouDu93n62pRpacljeHDdRM7rMPX5XdIB/dOX2W7xSujx4Q8E50yZrKxxpfCi5OV7XLqKY5Yx6bn4t8GxxuDdVGtltNBfka2Cm5aK8J2+3Y27PrN/X8TOvSVQ98vbUxDlU8T8ntjH9ymwG5MZonHb86lb2j/QgAAAAAAAAAAABDLXPznVQAAklu2umHXrx38dOjQXzx0c2glrU4wy9ZUtq8a/IZMUGwY89rBW6XF5TDKvIXuE7aosp1ZuaFh39ET27V17MmG/VvGn9Yx40+XAnpRQZg2BWXMOa+OHrRiXVuubWNOOb+yfcroT2PNrQmOdfcoF4zZB7eqmuFMsvnEhl1r8rucU9IqTF9oth1a0SI1CBp2XTX4jdChlf3TEVj0+f5OWrO5feuIw2PN5twrI8cAAAAAAAAAAACgs+bgv64CAJCcufLGhn2/cPizuvHQZ2r2/eXLv6NTxh6Z3opYJ5wtSVqdf1n/svMdSgX5yqHTRx7QR/f8vsxpF0qSzHkR4Y1WVo6ruydG0r/teLuW5fdW9i3L79UtL71NRpI5/ZLo67crGHbJ9ZFDzImvaM+1bS78ucpmVFCsXlq1YTujxtDUpLCA5qwXEvaUpLcc/jfrFCrbNTI3/q+GfZcM36kP7P2zmn3X9n9Z7znwd6UX03APzYZj/cde8vo2rsSf2XKKzLs/ah/wupukV725cwsCAAAAAAAAAACAlxb0lwIAYA7K9TbsSqmof9j1K/r9ff9Hj3afqFeM3KdVhXJb1ukM6WzdJj12nyTpLf3/rlcN3aYf9J6vtRM7dProA0qpKKUzfutsZZjtuDOkh35Qs+vUsZ9q+9PH6a7ecyVJ5w/frd6g3OK0OzdtbWRNV5eCo06Qnn3MPijkmWirqs+qJ7C3gQ2TDqaqtJmIzzw4uC/+2mY6S4W600Yf1L8uDA8w1bTenel8Kjy2oo3s/MZKmEbSh/b9id5x6J90T88rdOLYYzp+/GeqrGi67uFr3iZ987PR4zr9PXYwb3qPdOkbpYfvkoYHpInx0v075Txp7dEyM6TlLQAAAAAAAAAAAKYQtgMAIEy2O3S3kbRlYru2TGyvPTCd7SfrKpMtK+zXtQNfqR0zGbyJWmcrw2zzFoTu7g1GdMXQdxoPpDPR129n+CSkZWaNToeIcvMqmwuKA7GmZoIJKVtab/DS01qZ320du37ixebWN5NZ2iWngoJ1ysvpVdLEU+1aUed1taCNrOOZX5/fofUDX2w8MF0BMcvvTYMZFqg0y1ZLl75hupcBAAAAAAAAAAAAT7SRBQAgzKYT4o2fxgCHWbY2etA0VLabbF3rbdMJ0UGddrWRlaS1m93HO/wZm6rA59LCgVhz08pPBUYP79f6/A6dOPpow7j1Ey9q29hDidY5E5mlq0L3nzb6oHXOuMlKB/daj88qXV0yrfiunHJe/Dkbtia/bhPMaRf5DczOrLAdAAAAAAAAAAAAZhfCdgAAhOlbFG98dhor2513ZfSYSmW7iBaKraxsd+WN8cYvWOJx/fZVzTI3vNc9YJpDOpvHt0cPKksHeZl0tvSiHBL8yJ7fV644UjVmQh/b/XttvKMzz9bxp63HjAKZS6/v4GoSiAqltqKFrCStiQighlmysjXXjuvc1/qNm84qpAAAAAAAAAAAAJj1CNsBABDCpDNSKkYbxukMYs3rix5TCdt1sLLdgiVS32L/Cd09Utc0VrZbvcl9fDpCOsefWdl83cDXvKelg7yUqQ3bvXroNt377AX68J4P6oN7P6x7nn2lrhv4ckuXO6OEVCpMyd5G1iiI97zOZC0K25muLmtLbatcRKC3TUy2W+aDn4keOMPayAIAAAAAAAAAAGB2aVHZCwAA5qBMt1QY9hybae9aXKKq1UlSuvyf/FznwnaSpEXLpIGD0eMyWZmuLgVRFbtaWXmvXlRIaDpCRJmpoFN3MOY9La1CpXWw2bBVQXn/ieOP68T9j7dyhTNXpjEk1hUUrcONgrkTxOqKERSOkumWxv2fvWkNHvctjB4zTWFAAAAAAAAAAAAAzA1UtgMAwGbUM2gnSTuead86oixdFT1mMgCz9mj3uHVbkq+n2p6X/MZNBqOiwnRRYbwkFiyxV7dbsV5avKJ917YZ6q9s7sis9Z5WU9nuyl9o9apmh+caQ4WRle3mSovRVoZmq57BSKm0THoa/395tp7m/o1Yf4zMvAWdWw8AAAAAAAAAAADmHMJ2AADYrFjvPdSc/7o2LiTi2sZ4tEAthe1M2l2BL+p4bNe/y2/c5HWjQkJtbCNrjJF583vDj93wm6X73GHm2ndWtl8z+C3veSlNhe3MsjXuwRdM37PbVpe+oWFXKogI22VnS9gu6lls4bO6Yav/2GmuDGgWr5Be83b78Z//zQ6uBgCA/5+9Ow+z9KrrBP49VdV7d/ZOOk12spBASAiLgbAm7MhiDMIICo4OoojKICMgIIoo4jrOiKKjgDqgoiCLgmwyLBKWsCRsIfva2ZdOr9VV9c4f1Z2u6rrvvbdu3aXq1ufzPPepW+d33vf8qrq6q5L7rXMAAAAAgGEkbAcAdZ50YftzDz+6d320obz4Nc0nDCgEU855YnsT94XtWh4T29vAW/mRl6e86T3JuU9Pjnlgcu7TUt7wrpTnv7Kn69Y69WH3Pz1s8q62LxurJpKxlfsHmu3Kd/zpnXS26JWHnjdnrOnOdlU12CNQu6mbodTHP6/9uYvgGN7yq3+e8vK3Jg89b/rv8DEPTB79jJRf/9uU5/63QbcHAAAAAADAEjfAc54AYJGbT3Bk0MdPtgoJDaq/dj+H+4JhrXaP6+HOdvuUp7ww5Skv7Pk6bZmx09qaamfbl806RjZJ1qxL7q6Z3IfP6UA0+NprubPdIgiLdUUXd2Esq9akanfyIvj8ldHR5EW/kvKiXxl0KwAAAAAAAAyhIX11FQC6oOUuazMMOmRy7CnN66vX3v+0vOqPG8+58OVdbGivY05ub97Y3vx/q+DXfP5MhsGMkOQp41e1fdlYDtjZ7uZr6iePjHbS2eLX4O/ESKaaX7NyZfP6YtEyTNfFHSBb/dsy06BDxwAAAAAAANBjy+wVawBoX3n009ufPOiw3emPaF6f2d9jn52sWT+7PjKScsELut5WOaLN43XbPUa2izt2LQkz/tw2T2xp+7KxanJ2cOy4U+snD+vOdg8+d85Qs2NkRzK1/+twqevmn+kPPbX9uavWtp4DAJMLjsUAACAASURBVAAAAAAAS9iQvroKAF1w5DHtzx1w2K6MjDQPCs04ZrYceUzKH30sOeWs6fDaMSenvPn/pjz0Mb1prp3P4/1hu8EfI7uoHPB1tWnilrYuG6tm72xXnvXS2rllSHcLLGNjybqDZo81m58qGR2SsF03j5Fdf/D0McTtGHToGAAAAAAAAHpsOF9dBYBuWD2PXZpWLoLjE486tr62ctWsd8uDH5WRv/5Kyifvycj7vpPypAt719dhR7Wesy8Y1iL4VZbxznZJsmni1rYuG8tEsmLGznbNvpaHOcDYbEe/A5RUw7OzXTePkU2SU89pb55jZAEAAAAAABhyQ/zqKgAs0JoN7c9dDCGTJ13UePywTbUhtdKPvm+7qfWcfSGnYQ5+deKAEOcNYw9o67IDd7bL+K7audXkREetLQk3Xd321Ofc95GlE7br9w6Q7f47sRhCxwAAAAAAANBDXtEGgBplbKz9yStWtZ7TY+W8ZzUunPfM/jZyoEM3tp5z/zGyfjSZqRwQmjps8u62rhurJmbvinfqw+on7xnvpLWlYee2OUM/ffe75owdNXFrHrfji0snbNdKt3eAbPd42Jm7KQIAAAAAAMAQ8oo2ADTz7P/a3rxFEDIpDzk35RfePjtoc9ZjU17xu4NrKkm58OdaT7o/bLfMjoltx/Nfef/TX7z7T9u6ZCwTs3cjO7TJUb4TQxy2a/C193u3vTaP3fGF+98/fOKOfPiGCzOaKWG7Ou2G7UaH5PMHAAAAAAAANeaxZQ8ALD/lyGNTtTNxbPBhuyQpL/il5Bk/kXzny8nmE5PjTqs9QrZv1qxrPccxsrXKxs33fw2un5q7U1sjc3a2W9Vk58Xx3Z03t9itXjtn6KCp+/If1z01P1h5Su4YPTyP3HlJVmbPdHFYwmLd3iHSznYAAAAAAACQRNgOAJobGW1v3iIKmZSDDkse/YxBt7HfuoNaz3GMbL2JiXlfMpbJZOWMne3WHVw7t2w+sZOulojGQdOS5LTxK3JarphdGG3z7/ugtQrQdjtg2+7nZVh2BgQAAAAAAIAaXtEGgGZOe1h780bl12ud9djWc+xsV++Io+9/etruH7R1yVg1MSsAWg4+PDn5oY0nn/u0BbW3mJW6j7mRsRWD3wWyW7r8YZQHPaK9iWP+HQQAAAAAAGC4eUUbAJo57ZzWc1asHJ6QTg+Uee1s5/M4xwmn3//06IktbV2yotozZ5ex8kt/mKxZP3vii16THHfagltctB78qPbnDtOubN3eIfJxz2lv3iI5ThsAAAAAAAB6xfYTANDMqjWt5wiYtHbokcndt9XX930OHSM714yvwTXVrrYuGa0mktEDwnZnPy5591eT//xYqnvvTDnnicnZjxvuoOjqte3PXUJhu1JKquYTurvg2g3tzVtCn0MAAAAAAADohLAdADTTTthuhbBdSytWNa87RrbejMDY6qn2wnZjmWgYfCqbT0ouekW3TxldvFbNI2w3TEdBdzts1+6/cYLHAAAAAAAADDmvaANAE6Wd8JeASWvHtziqdGxf0GnZxMDat+n4+5+ur7a3dclYNSG4mKSsbBHynGl0iHZl6/IOkW3vfmhnOwAAAAAAAIacV2EBYKEETFoqL35N8wl2tqvVVuDzAGOlGu7jYefj2FPamzdMf4978Wd/0GGtl7XLJwAAAAAAAEPOK9oA0Mo5T2xeXzFEIZ1eOfvxzev7dgfs8o5cw+jNt/9myzljI1UfOlkayjN+sr2JY46Rber8i1rPGabAIgAAAAAAADTgFW0AaGXl6uZ1x8i2VEZGkmZHetrZrm1rpna2nDNWhO3ut6rF3999hiko1ovQ6qo1reeMDlFgEQAAAAAAABrwijYAtHLCg5rXm4XI2G98d31tX9DJ0aeNPe459z990PjlLafb2W6GE05vb95Qhe26//eoHHpk60mOkQUAAAAAAGDICdsBQAvlyS9oPmHV2v40stRtPrG2VPbuDliE7RoqT3/x/c/P3/7ZlvPtbDdDqyOM9xldYmG7Zn9XevH36Ek/2nrOMAUWAQAAAAAAoAFhOwBooZx2TvMJ7R5TucyVH391fVFIp6ny+Ocme3cWW1Ptajnfznb7lZWr2jueeJi+BntxjOym41vPcaQ2AAAAAAAAQ07YDgAWatWaQXewNDT7PI2O9q+PpeqZL2l7qrDdAY45ufWcoQrb9eAY2ZGR1kdmD9PnEAAAAAAAABoQtgOAdpxydn1t4+b+9bGUTU3Vlqqd2/vYyBJ15y33P/2hHV9uOnVMdnG2yYnWc4YpKNar45jHdzevr7CzHQAAAAAAAMNN2A4A2lBe+fb62mOf3cdOlrBmx/FOTfavjyWqnPCg+5+/4Y7faTp3rEdZqyXrEee3njM21vs+uqlZoK4Xx8gmybGnNK8PU2ARAAAAAAAAGhC2A4A2lIc9IXnWS+eO/+xvpZz79P43tBStP6i+Nils19KJZ9z/9BnbP9F0qmNkZysvfFXrSaNDFBTr0c525ZW/13zC6BILLAIAAAAAAMA8eUUMANo08tp3pvrF308++ffJxgckZz8uZe2GQbe1dKxcXV+zs11rB3z+ztj93Xx31RkNpzpG9gCr17WeM0y7svXqGNkNhzavO0YWAAAAAACAISdsNyCllJOSPDLJI/a+PSfJzMTGdVVVndDhvRe6nc2JVVVdu8B7AAylsnZD8tz/Nug2lqYmwcRy6tl9bGSJWjM7MLZ1pH6nwLER58jOsq7Jror7DFXYrkebVx/UImw3TJ9DAAAAAAAAaEDYro9KKU9M8rpMB+wOG2w3ANBfZdWaVGc/Pvnm52YXRkaSRz1lME0tJSc+eNa7N644pnaqne1mK2vWpeVvIiy1oFiz3et6tbPdsac2r69a05t1AQAAAAAAYJHo0bYX1Dg7yVMjaAfAMlV+6Q+TQzbOHnv1/0o5yLfGllavnfXui+59b+1UYbsGfvTnm9dHh+h3UHoUtiulJI98cv2EVWvrawAAAAAAADAEhuhVxSVtd5IbkzywB/f+cpIXzvOaG3vQBwCknHxm8jdfT778yeS+u5JHXJBy4hmDbmtJKCMjs3Zn2zRxS+3cMb9OMUd58A+l+ud31E9YajvbNdOrY2STlEdekOqrn2pcXLW6Z+sCAAAAAADAYiBs1397knwnydeSfHXv28uSnJfkP3qw3q6qqq7twX0BoCPl0COTp79o0G0seaPVZG1tbLRHx4guZWvWNa/fc3t/+uiaARwjmySHbaqvtfocAwAAAAAAwBInbNdf70ny51VV7TqwUHr5oigAMHS2jWyorY2N+blijgf/UPP6zu396aMfevlz5aOeMn3/qpo9fvTxyeFH925dAAAAAAAAWAQcMtZHVVXd3ShoBwDQlp96w/1Pn7z9M7XT7Gw3Vzn0yOT8i+onTNbvFLjk9PIY2UM3Jhe94oDBkvJTb/TLIwAAAAAAAAw9O9sBACwR5REXpHrXbyVJ1lQ76ueNjvarpSWlvOFdqT7zT42LkxP9baaXehx6K6/8/eSUs1Nd/PFkzfqU8y9KedRTeromAAAAAAAALAbCdgAAS8WqNfc/XT1Vv1luNbKiH90sOWXFylR1xakltrNds0Bdr8N2pSTP+ImUZ/xET9cBAAAAAACAxcYxsgAAS8WxJ9//9KG7v52xas+cKaPVRM5au6WfXQ0HO9sBAAAAAAAALQjbDb/jSinvKqV8p5RydyllvJRy6973/66U8rJSymGDbhIAaK2s3ZAcMx24O3hqa16w9f1z5ly09QM5eOUS26VtMRC2AwAAAAAAAFpwjOzwO3HvY6Yj9z7OSPKiJH9YSvnLJG+sqmpbL5oopRyZZOM8L3tgL3oBgKWsvPHdqX72sUmSv7z553LExB350IbnpErJc7d9JG+79deSsZ8bcJdLkGNkAQAAAAAAgBaE7UiSdUl+OckzSykXVlX1nR6s8fNJfr0H9wWA5WXdhvufrsye/MFtr80f3Pba2XPGVvS5qSFgZzsAAAAAAACgBcfIDq+JJJ9N8oYkz0lyTpJTkjwsyXOT/H6S2w645tQknyqlHN+/NgFgtvKytzQuPP3F/W1ksTr86NZzhO3qPfS8hsPlZ36jz430UPEjPgAAAAAAAPSCV+KG0xuSPKCqqidVVfXWqqo+UlXVN6qqurKqqm9WVfXhqqpek+T4JG9LUs24dlOSD5RiSxQABuSJP5KMzt18tzzxwgE0s/iU9Qe3niNsV6s8+QVzB9esTx7+pP430yt+jAMAAAAAAICeELYbQnsDdgfuWtdo3q6qql6X5JUHlM5J8l+63NY7kjxkno/ndrkHAJaAcuwpKW95X7Lh0OmB1WtTXvG2lPOeNdjGFpOTHtK8PipsV+t5L0te+Kr9u/8dfnTKH3w0ZcMhg+1rvpoF6oTtAAAAAAAAoCfmbhvDslNV1Z+WUp6a6eNm9/n5JO/t4hq3Ze6xtU3ZXA9g+SqPe07ymGclN16RHH1iyspVg25pcTnyAcnV366vj/kRr04pJeUVb0v1029KbrsxOfaU4fuZwzGyAAAAAAAA0BNeiWOf3zng/XNLKUtsixcAhkkZHU05/kGCdo0cfETzumNkWyqr16Ycd+rwBe0SO9sBAAAAAABAjwjbsc9Xktw94/3RJGcMqBcAoInyyCc3nyBst7wJ2wEAAAAAAEBPCNuRJKmqairJ9QcMbxxELwBACxc8v3l91DGyw69JoM4xsgAAAAAAANATXoljpp0HvL9mIF0AAE2VsRXJC3+5foKd7ZY3O9sBAAAAAABATwjbMdMRB7x/x0C6AABaW72uvjYqbDf0mgXqhO0AAAAAAACgJ4TtSJKUUo5IctIBwzcPohcAoLWyem19cZXNaYdes90LHSMLAAAAAAAAPeGVOPZ5YWZ/Pdya5HsD6gUAaGXV6s5qDIexlfU1O9sBAAAAAABATwjbkVLKUUnecMDwR6qqqgbRDwDQhpXNwnZ2tht6K4TtAAAAAAAAoN+E7YZIKeW0Usqz53nNpiQfTXLUjOHxJL/Tzd4AgC5rtrOZsN3wW9HsGFlhOwAAAAAAAOiFsUE3sNyUUo5J48/7pgPeHyulnFBzm21VVd3RYPzoJB8upVyW5O+SfLCqqitq+tiQ5CWZ3tHuqAPKv1VV1dU1awMAi8Hpj2g8PrYiOfGM/vZC/zULW476ER8AAAAAAAB6wStx/feFJMe3Me8BSa6pqb0nyUubXHtmkt9N8rullHuTfDvJHUnuS7I+ybFJzkrjP/+/qKrqLW30BwAM0gmnJ2c/Pvnm52aPP+1FKesOGkxP9E+zY2RHm+x6BwAAAAAAAHRM2G74HZzkvDbmbU/yqqqq/rLH/QAAXVBKSX73g6ne+YbkK59IVq5OHvfclJf+2qBbox9WrKqvjY72rw8AAAAAAABYRoTthsv3kvx2kickOSfJmjau+UGSdyf5y5qjaQGARaqsXZ/yqj8edBsMwrZ76muXf71/fQAAAAAAAMAyImzXZ1VVndDDe9+a5NeSpJQykuSUJA/M9JG0hyRZnWRnkruTbEny1aqqbu9VPwAA9MhNV9fXrry0f30AAAAAAADAMiJsN6SqqppKcvneBwAAAAAAAAAAAAswMugGAAAAAAAAAAAAYLETtgMAAAAAAAAAAIAWhO0AAGCpueDH6muPfkb/+gAAAAAAAIBlRNgOAACWmPLEC+trL39rHzsBAAAAAACA5UPYDgAAlprHPzd55AVzx897VspJD+5/PwAAAAAAALAMjA26AQAAYH7KyEjyB/+aXHlpqrf9bLJzW8pb/j7lgQ8ZdGsAAAAAAAAwtITtAABgCSqlJKeclfJXFw+6FQAAAAAAAFgWHCMLAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALYwNugGArtt9Z7LjxmRqT7LhlGTlwYPuCAAAAAAAAACAJU7YDhgeu+9MPn9RcttnZ4+v2Zw8+4pkbO1A2gIAAAAAAAAAYOlzjCwwPL7wgrlBuyTZeXPyxRf2vR0AAAAAAAAAAIaHsB0wHHbdkdz6mfr6TR+ZPlYWAAAAAAAAAAA6IGwHDIcdNySpWsy5sS+tAAAAAAAAAAAwfITtgOEwuXPQHQAAAAAAAAAAMMSE7YDhsPX7redMjfe+DwAAAAAAAAAAhpKwHTAcrvuH1nPu/Frv+wAAAAAAAAAAYCgJ2wHDYfXG1nOqyd73AQAAAAAAAADAUBK2A4bDTR9tPefilyS3/2fvewEAAAAAAAAAYOgI2wFL35X/J9lzb3tzP3lecvPHe9sPAAAAAAAAAABDR9gOWNqqqeTSN87vms8+oze9AAAAAAAAAAAwtITtgKVt29XJrlvmf1011f1eAAAAAAAAAAAYWsJ2wNK2577OrttxY3f7AAAAAAAAAABgqAnbAUvblo93dt11f9/dPgAAAAAAAAAAGGrCdsDSVVXJt17f2bXf/NXu9gIAAAAAAAAAwFATtgOWrq2XL+z6nbd2pw8AAAAAAAAAAIbe2KAbAGhq27XJHf+ZrD0mSdk/PjWeXPkXC7v3+F3JmqMWdg8AAAAAAAAAAJYFYTtgcdqzLXn/hs6vf9jvJZe9OZnYXj9nYlvn9wcAAAAAAAAAYFlxjCywOH1w08KuP/1XkqdenJz4k/VzLvuNha0BAAAAAAAAAMCyIWwHLD7VVPMd6VpZdfj020Mekpz77sw6fnamWz/T+RoAAAAAAAAAACwrwnbA4rNn68KuP/jB+5+XkqRqPG/FAo6pBQAAAAAAAABgWRG2AzpXVcn3/yj56BnJBzcnF//0wnak23fP775tYfc46b/Ofv/IJzSet+u25J+PTLZ8YmHrAQAAAAAAAAAw9ITtgM5d/ifJ1/97svV7yc4tydV/nXzuwgXe838m3/3dzq5dcVDyqHcmJ71k9vgZr6u/ZvftyX88Lbnjy52tCQAAAAAAAADAsiBsB3Tu6r+aO3bLJ5Lt13V+z6v+T+fXPvuK5OSXzR0fW9P62mv/rvN1AQAAAAAAAAAYesJ2QOfuuazx+JV/0dn9qiq59zud97PikMbja49tfe2tn+18XQAAAAAAAAAAhp6wHdB9u+/o7LrJXa3nPPxPGo8f+fhkdGXj2voTk0POWvjaAAAAAAAAAAAsW8J2QPdtu6az6675m+b18z+ZnPoLydFPm1t7/IebX/uEDzWvb7uyeR0AAAAAAAAAgGVtbNANAEPolk92dt2lb6ivPet7ycEPmn7+pI8ne7YmN/1rsvG8ZN1xre+97vhk3QnJ9mvr50yO1++OBwAAAAAAAADAsmZnO6AzU5P1tZWHzv9+E9ubHz+76vDZ7684KDnhv7QXtNtn87Oa1+/9Tvv3AgAAAAAAAABgWbGzHdCZqd31tTI6//vt2VZfG1mRrN44/3se6AHPTq740/r6xPaFrwEALA+7bktu/niy9XvT7x90WnL0M5I1Rw22LwAAAAAAAHpG2A7ozOSu7t2rmkr+9fT6+mP+b3fWOfopyckvT67888b1yZ3dWQcAGG73fjf59PnJrltnj6/amFzw6eSQMwfTFwAAAAAAAD3lGFmgM90M2932+WT87vr6xsd2Z50ykjzyHfX1yR3dWQcAGG6XvGpu0C5Jdt+efO0X+98PAAAAAAAAfSFsB3RmqlnYrprfva55T/P62Lr53a+ZUqZ3nWlkws52AEALU5PJ7Z+rr9/xxWRyvH/9AAAAAAAA0DfCdkBn7vhKfa2aZ9ju6nfV18Y2JCsOmt/9Whld03jcMbIAQCvVRPMdfqf2JFO7+9cPAAAAAAAAfSNsB3Tme79bXxu/q3vrPKzJOp0aE7YDADpUTbUxZ7L3fQAAAAAAANB3wnZAZ5rt6DIfu+9sXj/+x7uzzkx2tgMAOiZsBwAAAAAAsFwJ2wGdWXV48/rE9vbuc8unmtdHV7V3n/kQtgMAOtXWznZtzAEAAAAAAGDJEbYDOnPQg5rXd9/R3n12bmleH13d3n3mQ9iOxWZqcvoBwOBNTSYTO5LJ3cmercme+2bXHSMLAAAAAACwbI0NugFgSE20GVzbc2997YzXdqeXA42ubTx+3xW9WQ/qTOxMvvYLyY0fnA5mPODZySP/PFmxftCdASw/E9uTf6z593f9Sclpr0pO+4U4RhYAAAAAAGD5ErYDOjOysnm93V3iLntzfe3s32m7nXkZq9nZ7vr3J1N7kpEVvVkXDnTxS6a/7va59v8mu+9MnvSxwfUEsFzVBe2SZNvVySWvnA5DP+DZre9173eTtQ/oXm8AAAAAAAAsCo6RBTrzyHckL2gSqGsnbLfrtu71Mx/Njn+7/Qv964Plbfze5IYPzh3f8vFk5y397wdgOWv3Z5Kr39PeMbLX/f3C+gEAAAAAAGBRErYDOjeyKklpXGsnbHfvd7raTttu+VR97Y4v968Plrf7rkiqica1u77e314Alrsb/6W9eVu/194Rsde8e0HtAAAAAAAAsDgJ2wGdKyUZXd24Nrmr9fXbru1qO23bcHJ9bWq8f310w84tySX/PXlvmf349lsH3RmtTO2ur7UT5ACge/Zsa2/erluTfzuz9bxqKvn3RycTbfzyAQAAAAAAAEuGsB2wMKNrGo+3s7Pd9mu72krbDj27vrb9uv71sVC770w+9YTk8j+aW7v0Dcmlb+p/T7Rv+/VNatf2rQ0Aknzj1e3P3X1He/PuvDj5x7XtHTsLAAAAAADAkiBsByzMUgzbNXP9+wfdQftu+Ofpo0jrfPst/euF+bvyz+trV7+rf30ALHe72gzPderOr/T2/gAAAAAAAPSNsB2wMCvWNx7fdWvra5vtInfkEzrrpx2bf7i+tvExvVu329p58b7dY/Hov7qgapKs3tS/PgCWu7su6e39v/v23t4fAAAAAACAvhG2AxZm3QmNx5vtuLbP1u/V105+WUfttGXzM+prO27s3brddvO/tZ7zyfOS95bpx1denmy/ofd90Z77rqyvVXv61wfActfOLwgshJ3tAAAAAAAAhoawHbAwG05pPN4qbDd+T7Lrtsa1VYcnx71gYX01M7oqOfxRjWv3fie576rerd0tl/56snNL63n3XLr/+ZXvTD50XHL3N3vXF+2Z2Jlsa/J11s4xzAAs3K47kotf0ts1dt6UTO7q7RoAAAAAAAD0hbAdsDCdhu2++7v1tfM/k4yMdt5TO5qF+b79lt6uvVDbr0++/ZudX//N13evFzpz1f9pXp8QtgPoiyv+rHn9se9PzvuH5Jw/Tk55Refr3Pihzq8FAAAAAABg0RgbdAPAElcXtttxYzKxIxlb27jeLIy3/oQFt9XSioPqa7d+uvfrL8St/7Gw67d8LKmqpJTu9MP8bbumeX1yR3/6AFjubvpI8/pxF+1/vvOW5Io/7WydWz6dHN/DXXsBAAAAAADoC2E7YGHqwnbJ9DGZh5zZuLbnvvrrmgXhuuXIx9fXxu/t/frt2LMtue59ycT25KDTk/G7p8evfOfC7z01Pn2cLoOxp8XXmGNkAfpj25Xtz12zafrnnla79zZy3XuTR74jGfGfXwAAAAAAAEuZV3uAhVl3QlLGkmpibm3rD+rDdrd8ovH4EY/pWmtNHXRqsu74ZPt1c2sT9w1+57cbP5x87rm9u//kTmG7Qbr7683rjb4uAeiu8bv3B9kbWfOAuWNnvy35wgsa/9zTzMT25O9XJD/8g+SgJr+oAAAAAAAAwKI2MugGgCVuZCxZf2LjWt3OL7d/qf5+xzxn4T2169z31Ndu/GD/+jjQ+D29DdolyS2f6u39ae7ubw66AwC21AT/91l/0tyxYy9MnvLF5IxfTY69aPpxxuuSp301ecGu1mv+64M66xUAAAAAAIBFYaA725VSSpLXJFk9Y/hvqqq6doH3PTHJT8wY2lFV1e8v5J5AE3VHqtWF7W7+aP29Rtd0p6d2jK2rr93wL9MvqA/CTR/p/RpbPpEcd1Hv12Gudnet23V7snpjb3sBWM46OQ42SY541PSjkTN/M7nsTfXXVlPJ9huSdcd2tjYAAAAAAAADNehjZH88yduSVHvf/8BCg3ZJUlXVNaWUM5Pcn5QppVxdVdUHFnpvoIENpyb5t7njdS9i79xSf6/DHt6Vltpy8On1tWbHyvXSrtuTb76us2uPe35y/fvbm1vt6WwNFm7nLe3N23Z1suqIwR5nDDDMJnZ0/56HndN6zl1fFbYDAAAAAABYogZ2jGwpZSTJb+57N8kVSV7SxSVemuSqvfcuSd7axXsDM204pfF4Xdjuhia518PPXXg/7Wq2s92O6/vXR5Jc/e7kvSX5wJHJzpvmf/2Kg5Mzf6P9+RM7578G3THZZrjjE+cmHzouueKdve0HYLnac0/373nU+cnBZzSfs6OD7/MAAAAAAAAsCgML2yV5cpITM72rXZXkdVVVdW17iaqqtid57YyhU0sp53fr/sAMdWG7Xbcke7bOHrvnsmTPvY3nn/iTychod3tr5cw3Nx6/59L+9XDb55KLf2p+16w+Mll9VLL2mOTYi5ILPjO9U98Ldidrj2t9/fX/0FmvLNxlv9l6zj47bky++vLpY40B6K4r/qz79xxbk1zw2eZzLvnF6eNkAQAAAAAAWHIGGbZ78Yznl1RV9cFuL7D32NhLZgy9qNtrAKkPc8IFfwAAIABJREFU2yXJfVfOfv/6f6qfu3pTd/qZj2a72239QX96uPrd85s/ujq58NbkwluS592QPO79+4+tG12ZPO+65Mer6ccZv9r1dlmg2z47/2uEIwG6a3K8d/devTE58onN59x1SfM6AAAAAAAAi9Igw3ZPn/H8r3q4zr57lyTP7OE6sHytPTYZWdm4duBRsnVHyybJhgd2r6d2rW+y5oFBwV65+l3zm9+s5wPt3NJ4fPWR81uT7hldM/9rrvv77vcBsJzturW39z/mec3r/foZAwAAAAAAgK4aSNiulHJ8kiNmDH20h8vNvPeRpZRje7gWLE8jo/UBsAPDdduvrb/P5h/uWktt2/SU+trk9t6vP7l7/tcc/8L25x7x6Mbj43fPf10WrqqSyZ2D7gKAdv4tLqXz+x/z3Ob1+exYOrkr+davJR9/RPKhE/c/PvzA5PMXTR9HDwAAAAAAQF8Mame7s/a+rZJcVVXVTb1aqKqqG5PM3Dri7F6tBcta3VGyl75x//M9W5M7vtR43sbHJms3d7+vVlasr6994cd6v/7nL5rf/NNelTz49e3PX39S4/GpPfNbl+4QtANYHLZ+v7f3X39Ccv6n6+s3fii5/v2t71NVyecuTL7z29NHz26/dv9j29XJDf+cfOapAncAAAAAAAB9MjagdTfOeH5zH9a7OcnJe587OxF6oS5sN9PNH6+vHXVB93qZr1Ubk923N65N7kpGV/dm3a1XJDe32Njz6ZckZTQZW5esOz4ZWTG/NZodWXrvd5ODz5jf/ViY2z4/6A4ASJKr/qr3a2w6Pzn0Ycnd32hcv/xPkuOe3/weWy9Ptnys+Zyp3ckVf5Yc+fjO+gQAAAAAAKBtg9rZ7tAZz2/pw3oz1zikD+vB8tMs1DU1Of32rq/Vz1k9wBxsXdAumQ6k9cpdl7Sec9g5yaFnJRtOnn/QLklWH9Vk/ZoX/+mdbVe2ngNAH1Stp5zwEwtfptnPN3d+tfX1zX52mu+9AAAAAAAAWLBBhe1W9rmHmWus6sN6sPwc8ej62tSu6bc7mpwYvfnp3e2nWyZ39e7e93yreX3zMxe+RrMdB6d6+LHRWC+/ngBo39R48/rIita7zrXj6Gc06WF3sv265tff3uaOqNuuar8nAAAAAAAAOjaosN2OGc831s7qnplr7KidBXRu3bH1tW3XJrtuT657b/2c9Sd1vaW2Hf6o+tonz+vNmndcnHz3bc3nnPvuha9TSpMevrTw+zM/l75p0B0AkCSTO+trIyuSx/5TsvLgha9z6s8na4+rr3/ohOTe7zeuXf/PyZV/0f5a3/jVebUGAAAAAADA/A0qbDfzWNfj+7DezDVu7cN6sPw0O0b28j9OrvrL+voDf6b7/czH6Orm9Z09OO36W29oXn/hnmR1l7LIhz288fhVf9Wd+9Oe8XuSSXlvgEVhoiZst/G85MLbkmOe0511RlYkT/hQ8zn/+aK5Y1WVfOPV81vre29Ppibndw0AAAAAAADzMqiw3b5zjkqS40spJ/dqoVLKA5Oc0GBtoJtWHFRfu+ey5NbPdnZtPxx1fvP65X/c3fWqqeS2/1dfP/KJychY99ab2tO9e9G527846A4A2Gdye+PxY5+frDyku2utaLFD3t1fnzu2/brWR8w2cttn538NAAAAAAAAbRtU2O5bScaTVHvf79LWEQ09b8bzPUm+2cO1YPlafWR9rZpM9mytrx/1pO73Mx8P/Onm9S3/3t31Jncl1UR9vdufj7owY+lioI/Wmv0dAKC/xu9uPL7y0O6vte6E5kfJNtLp94yr/trudgAAAAAAAD00kLBdVVXjSf5fpne2K0n+RyllXbfX2XvP12Q61Fcl+dzetYFe2PzMxuN3fS2588v11216am/6adfaY+qPWk2S3Xd1d72JFkeJnvLy7q532i83Hq8m7HrXT5f9+qA7ACCZPqJ1952Na6sO6/56pSQP/5/N5xz4s8FkzTG3rVz33uRfNid77uvsegAAAAAAAJoa1M52SfK+vW+rJBuTvL0Ha7wtyZGZDvQlyXt7sAawzzE/Mv9rHv6/ktGV3e9lvp7w0frajuu7u9bNTdZ62lea7xLYibXH1teu+ZvurkVjd38zue+KxrW1xw5+d0eA5WRyRzJV8/s3Kw/vzZrHPq95/Yo/n/3+fT+on/uw32t+r123Jd9+S3t9AQAAAAAAMC+DDNu9N8mWvc9LkpeXUl7frZuXUl6b5BXZf1TtrRG2g94aXTP/a1Ye3P0+OjHSx8DfrZ+tr63Z3P31xtbW127+ePfXY66r/qq+trIHuygBUK9uV7ukNzvbteO6981+f+v3G88rY8mGU1rf73stAnkAAAAAAAB0ZGBhu73Hub4u00G7au/bt5RS/r6Ucmin9y2lHFJKeW+St864b5Xk9Y6QhR5rdhRr7TWP7H4fnWj14vpdlyTj93ZnrWqyvtaLsN2GU+trE9u7vx5z/eB/19fu+Vb2b8AKQM+NNzkevpcB6Ic0OU78vitnvz+2rvG8aiLZ9NTu9QQAAAAAAMC8DHJnu1RV9TdJPpTZgbvnJ7milPL2Ukob2zZMK6WcXEp5e5Irkrwg+5MLVZKPVFX17m72DjRw8IPmf81Bp3W/j06taLLL3scfkfzTIcmnnpCM37Owda79u/pa6UHoqtkxvXd8qfvrMT8n/dSgOwBYXnY3C9t1/Ds/rZ38M/W1Pfck3/md6edVlVz2G/Vzx9Ykh5zV3d4AAAAAAABoy0DDdnv9RJKvZXbg7rAkr07y/VLKjaWUD5RS3lpKeU0p5b/tffxKKeW3Sin/XEq5Icnle685/IB7fT3JiwfwcQGtbP7h3oTLOvXIP2s957bPJV98YedrXPu++tppr+r8vq2c9dbG43vuSfbc17t1aW3jeQsPcALQvjv+s/H4ioOTkbHerbv2mOSCz9bXv/X65OaPJdf9QzJVsyH30U+ffvuMbySbn9V8vakmO+kCAAAAAADQkR6+mtSeqqq2lVIuSPLuJD+S6ZBcsn9nus1Jnrv3UWdmWmfm9R9K8pKqqrZ1rWGge1YeMugOZhtd0968Lf8+vStOq6NnG7n+H+prY22u34nRtfW1LZ9IjvvR3q1Nc6Nrkru/PuguAJaPu2r+zV11eO/XPvJx0//uT+5sXL/+H5OdW+qv3/ezSinJEz6SvK/J707defF0oBsAAAAAAICuWQw726WqqvuqqvrRTO9MtzP7d6bb98jesUaPHDC3JNmV5H9UVfUjVVVt7dfHAczThlMH3cFsB82jnx3Xd7bGtqvra738fDS7d7Oe6L31Jw26A4DlZdURjcf78f2wjDQ/Anbb1ck9l9bXZ/6sUsr0bnx1tl83//4AAAAAAABoalGE7fapquqPkhyf5K1J7snsUF1V85g555691x5fVdXv97t/IMkZr21/7nEX9a6PThx0evtzP/aw5NPnJ9e/f35r3HNZfW3zM+d3r/k46kn1tbrddei5Las35C93/7+87syn5jVnPT1vOeNJ+cADzsiesqi+PQMMl7suaTzebBfYbjr5ZfW127/YfGe7435s9vunv6Z+rmPiAQAAAAAAum7RvZpfVdWdVVW9McmmJI9P8sYkH0/y7SQ3J9m997Fl79i/J3lTkickObqqqjdWVXXHIHoHkpz9O0kZbW/uwfMIt/VDKcnpv9L+/Fv/I/nCjyXX/WN78y//3/W1016VrN7Y/trzNbYmWXdC49r3fq9361LrzpVr8oennZdvbPtS7l25JtvHVmXLmoPyqU2n5K9PfMSg2wMYTtuvqz+6+6SX9KeHk16arD22ca2arL/u4f8zOeyc2WMPfn39/K++fN6tAQAAAAAA0NzYoBuoU1XVniRf2PsAlpInfSL5zAWD7qIza4+f/zVXvCM5/sfamNckbLfxMfNfd74OOTPZfu3c8YltvV+bOS459AHZPraqYe1bhx6de1asziF7dvW5K4Ah1ywg36+d7UpJHvKG5Cs/O49rxpJTfr7xvQ57eP1ufTu3JGuO7qxPAAAAAAAA5lh0O9sBQ6CdF3XPfnvv++hEJy9I3/2N1nMmdyVbL6+vr940/3Xna3J3k5pQV7/dsPbgpvUb1xzUp04AlpFm37PX9OF78T6r5/nzRjWRjNT8nlSze91Vs4sfAAAAAAAAHRG2A7rvoAcl609qPuekn+pPL/O16cnJSOPdxmrt2Zrc8MGkqurnTOxofo8jzp3fmp3Y+Nj62uTO3q+/nB0+9893fKT5cctVKb3qBmD5avb9bvOz+tfHpvPnN3/9A+trD/jh+tp9V85vHQAAAAAAAJoStgO6r5Tk8R+q363tEf87WX1Ef3tq18qDk8f/y/yPkvv8hcmlb6ivT2yvr537nvrdarrpuOfX1yaE7XqqQbBuvMWfeRVhO4CuqwvbrdqYHHx6//oYW5cc8tD25z+kyc8YD/yZ+tp3f7v9NQAAAAAAAGipD+kOYFk65CHJ865P7vxactclyR1fSg59aHLKK5IV6wfdXXObn5786B3TPU/cl3zuee1d9923JQ/678mqw+fWbvts/XVHPbGTLudvbE19bcoxsj3VYGfDVjvbTfWqF4DlrC5sd8rP9bePZHonvXsubW/uygY/W+wzMpqc/LLkyr+YW9t12/TOu3ZLBQAAAAAA6AphO6B3RlYkGx89/TjtFwbdzfyMrZk+4m1yHiG0aiq5/T+TY549t3bfFfXXrTh4/v11YmR1fc3Odr01ftfcIcfIAvRf3fe70SaB9F5Zecg85rb4WWH1UfW1nVuStZvbXwsAAAAAAIBajpEFaGZ0dbJmHi9QT9zXeLyarL+m1Qvo3WJnu8GY3JVsv37OcMuwXa/6AVjO6na2G0TY7qjz25s3ti45/FHN52x8XH1tYlv7PQEAAAAAANCUsB1AK0/4cPtzG4SqktTvpLNiHrvaLFSzIMH43f3rY7nZdnUaRefGR5pvLmtnO4AeuPfbjcebBdJ75bCHJ6e22Pm3jCSP+NPp8H/Te51TX7v9C/PvDQAAAAAAgIYcIwvQymEPT553Q/KN1yQ3/1uy6anJDf/UeO63Xpc8+LVzx+t20tn05O712UoZm37RvpqaW/v+H/e3l+Wk5gjh1jvbCdsB9M0gdrYrJXn4nyTHPC+59bNzd8ddvSnZ/PTk0LNb36tZ/1/+6eSB/3VBrQIAAAAAADBN2A6gHWuPSc573/73/+2s5J5L279+MRxbV0pSViTV7rm1bVf3r4/lZvt1DYfHRx0jC9BXe2qOek+mA+mDUEqy6YLpx0K02vlux43TP8sAAAAAAACwII6RBejEnq2Nx8fWNx6f3FEzf213+mnXVIOgXVLfNws3sW3O0GRKJkvzb8FTjpEF6K7xe+pra47uXx+9UEaSDafU13ff2b9eAAAAAAAAhpiwHUAnTvulxuMT25Lxu+eO1+2m0+9j6zY/s/H4tqv628dyMjF3V8NWR8gmjpEF6Lq64HuSbDi5f330ypm/UV+baPKxAwAAAAAA0DZhO4BOHPaI+toX/8vcsS0fbzy332G7Y57beHz8rv72sZxc+7dzhtoK28naAXTX5X9SX+v39+NeOP6F9bVr/qZ/fQAAAAAAAAwxYTuATow1eVF+y78ne+YeHdpQv1/cb7be9hv618dy0uDoPjvbAQzAzR+rrw1D2K6UZHR149pt/9HfXgAAAAAAAIaUsB1AJ9a3OG5u1y2z3x9b13je7tu600+7mvW94/r+9bGcHHLmnKHdo2MtL6t60QvAcja6skltCMJ2STK5q/H4ikP72wcAAAAAAMCQErYD6MTKg5Ojzq+vT+zY/7yqkontjecd9aTu9tXKET9UX5vc2b8+lpM9984dausY2QN2tqumutURwPK09fLG4+uOn94VbhisO7Hx+J0X+z4CAAAAAADQBcJ2AJ167Pvra9//g/3Pp8br560+qnv9tKM0+Wd/QtiuJ+797pyhdo6RnTrwGNm63YoAaG3nlvraWb/Tvz567Yz/UV/7RpMaAAAAAAAAbRm6sF0p5eGllItKKc8upbQ45xFgAVYeUl+75m/2P9/e5HjWQRxbt+rwxuN2tuu+8XsaDu9ua2e7Awa2XdWFhgCWqRv/pb5Wd9T7UtTs54or/0KwHgAAAAAAYIEWbdiulLK6lHLSjEfTZEIp5TmllGuTfCXJPyT5lySXl1K+UEo5ow8tA8tNs13iZtp5U31tzdHd6WU+6l6It3Na9937vYbD7exsVx24s92OJl9HADR3zd/W10ZW9q+PXlt7TH1t4r7kviv61wsAAAAAAMAQGht0A028Oslv7n1+Y5IT6iaWUn4syXuTlL2PmR6T5MullCdWVXVJD/oEaOy9JTn83GRqd/2cxRS2237N9Nvxu5Mr/iy565Lk0IclJ788WX1E//obJlONA4x7Rlp/+50Tthu/qxsdASxP93y7vtb8d3qWlo2PTVYclOzZ2rh++R8l576rvz0BAAAAAAAMkUW7s12S52V/cO6vqqqqGk0qpRya5J3Z/7HMnFftfaxL8oFSyuoe9QrQ2J0XJ3d/Y9BdzDZa80/hZW9Otl6efPr85Fu/ltzwgeTSNyafflKyW9CrIzVhh46Okb33O11oCGAZ2rN1ele3Ou3uVLsUjK5Kzv9Uff3qd08/AAAAAAAA6MiifGWplLImydnZH5z7aJPpr0xy8N65JcnNSf5Xkj9Kcn32B/aOSfKLvegXoCOD2NUuqd/ZLkk+9yPJ3d+cPXbvt5Pr/7G3PQ2rLZ9oODy+Yn3LS+fsbHe1nYgAOnLDB1tMODDdvMQd/shk05Pr6xf/VP96AQAAAAAAGDKLMmyX5Mwko5l+5Wt7VVVfbzL3xdkftLs8yUOqqvqlqqpevfc+X907ryR5ac86BpanQ87s/NqVh3avj3mte1h9bev3Go9//dW96WXYrdjQcHi8Gm956dSB2Y9DzupCQwDL0O1fHHQH/bfh1Ob13Xf2pw8AAAAAAIAhMzboBmqcuPdtleS7dZNKKQ9KcnL2Hxf7pqqq7t1Xr6pqWynllUku3jt0Winl2KqqbuhN28Cy84h3JJ96XGfXbnpKd3tpe90nJ1s+Pr9rJnf0ppdhV001HB5v5xjZA3damtzVjY4Alp+7vtp6zrA55nnJFe+or3/r15K1xyalJBlp8bbsPWq3nbcNrq+bW3efbq5d10u792t37Vm9AwAAAAAAw2yxhu2OmvF8S5N5+xIuJcl9SeacEVVV1VdKKTdm+hjZJHloEmE7oDs2ntf5tQ9+fff6mI+Tfzb5xq8MZu3lZuvlDYfH125ueemcsN2Bx/sC0No1f7s8//3cdEHz+pXv7E8fy1Kr4N8ggoMLCBA2DEEu5TBkN8KlbXwM7X4svfja6PjPZ99bAAAAAACaWaxhu7Uznt/XZN6+lEuV5NNVVU3UzPt29oftjltgbwD7lZKc+ebksjfP77ojHp2sPrIXHbW2Yn1y1lund7Wht276cMPh8ZUHJZlseml14Gude+7pTk8Ay8XURPKlnxx0F4NRRgbdwTJWJVWVZGr6v1JhqVmMQcyFBhIXtMPmIglDzvfPpR9/PvMN/fb8a0NYFAAAAID+WKxhu5n/h2xFk3mPmfH8803m3Tnj+UEddQRQZ+0xreccaPVRref00uja1nPomfE2Xgeas7NdMn0srQAFQHvu+NKgOwBYeqqpvW+b/2IILE49DmJ2uitl13fYnMfHNNAwZJc/lnmFS7v8sfTq8zlrPgAAALBULNaw3czd7BomUkopm5KcPGPoP5vcb+bH6f9eAN21+Znzv2Yhx892w+iawa6/HFRVUkYbvlA5XlpvdTNnZ7skmdyVjAlKArRl2zWD7mCwNpya3PeDQXcBAH1U7f/vL7uLsuS0Cv51KUA43+BguztsDnIH1Hl9TB18LIsxKNvTHWXne799bwEAAJaPxRq2u2nv25LkzJo5M9Mtu5N8vcn9DpnxfPsC+gKYa83RyYkvSa55T3vz15+cnPDi3vbUyuGPGuz6y8HUntodQcbXHJVMbml+eaNs+MQOYTuAdu24YdAdDNZj35987KxBdwEAQFscRc8StxiDmI6ib39uP/98OgqX9vJrQ1gUAID5W6xhu0tnPD+slPK0qqr+/YA5P7X3bZXkK1VV7Wlyv5NmPL+lGw0CzHLuu5JDH5Z8/Zdnjx/28GRs/fTzkZXJEY9OTnl5smZT/3ucqZOd7e79XnLw6d3vZVjtqv92M15GWl7e8BjZq/4iefDrF9IVwPJx6RsG3cFgHfrQ5Bnfmh24G12bHHZOpl/Mndr7gu7e5+28nXVd3dt53K/VfQAAgKXBUfQsaT0OYna6K+Vi3mGzb2HIJR6U7dXnc9Z8AGAQFmXYrqqqq0opV2T6mNiS5B2llCdXVXVNkpRSXp1k5hmMH6q7VyllfWYfN3tVD1oGlrtSkgf90vRjKRjrIGx300eE7eZjyydqS+P5/+zdd5xkVZn/8e+pzmF6ch4mAkPOSJYM4ioIKiAmzO4aWVdXXVcU/RlWMaBiREURQQyYkBwEhjggzMBEYHLOMz2d6/z+qO7p6up7Tt1bdau7wuftq19ddc655zxdXV09Uk8/T/b/8BjYRnbNX0m2A4AwOraFX1vO/2Fy9BHSFSWctGYDEv2yJe/FmjgYJYEw4LpsZ2d+jvPsuJIhoz6eeX8tEb6mqM+NbN+XuL8/AAAAAEqEFa3oUbqyJf7FlAwZNXGwIBU2SzEZssgSZWlFDwCxKcpku14/k/R1pf5pO0vSYmPMc5ImSNqvd9xIapd0k2efM3rXSVK3pBcKFC8AlI6GqdGvqfR2fFF173ZOdSqZ9fLAynb8dTAAhNO2Lvxay39JL1rGSKZquKMAcrMvGW8YkyFDJQzGlAwZNXkx1wqbsT+eMXwtxZgom+1ryroPAAAAgNKQ/v8BhjsWIAexJGLGnTiY575DVmGzgMmQsSbKxvS15JRcGvPjaKp61wPFnWz3XaVaxc5V6p8HNZKOlfZlH/T+10F9y1q72bPPxWnrn7PWdhQmXAAoIYlqqWWutGtJ+GuWfl/a+pR05FekSWcVLrZy0b3XOdXp7XyeYoP+oqenNZ+IAKBybLh3uCMAUOn2/Qc9SSJpFCVmQLJokSRDDnlyaYivIVKFzQhnh/oahisRM+LXEulriuu5xrvMAAAAQMno+4Mvik2gFJz+d2nqa4c7ChSJok22s9Z2GmPOl3SnpL6+hUap/2LS+1+t9QdJV7v26G0h+0b1/1eW+woWMACUmmO/Jz1wXrRrtj4hPfha6fwnpNFHFiaucvH854LHx5+mzhB534H1JHa+mFdIAFARdi6Wnrkq/HraFQAAMNCAZFGgBJV6MuSQVdiMkigbcb+oiZhD+bVEfW6E/Zri+v4AAAAAKE68l4A0RZtsJ0nW2tXGmKMkvVvShZJm9E4tlnSztfaPWba4UlJL2v2/xx4kAJSq6qbcrkt2SCtvIdnOx9OS0NaMUGeyPfsWrne2kj1SguooAOC06tbhjgAAAADDiVb0KGWDkvGKIBmSVvTh9i2HRNm8vz8AAADljBay6FfUyXaSZK3tkvTj3o+obpD067S9dsYVFwCUvKbpuV/74teko74aXyzlpsfdQranp0NJ1WTdwrr+OKJzq1Q/IcfAAKACRK0COvqYwsQBAAAAAFHtqy7KG3koQbSiD/c1Ra2wWRaJmDl+LaG+Lzk+N2hFDwCIisp2SFP0yXb5sNa2SWob7jgAoCg1ThvuCMpXt/tXT+eU8yTNy7qFs7JdD7/WAMBr3R3h105+jVQ7snCxAAAAAABQKWhFj1JXrq3oIyWXxpzYGenxzCERM7ZE2bi/lghfk/e5FeFrAVB4/EEM0pR1sh0AAMOie5dzqnPy2dLGEMl2rr+O8CTyAUDFW/MXqXtPuLUTXi2d/JvCxgMAAAAAAIDSQCt6lLJcWtEXOhmykFUp86qwGXMiZlm2oh/q70+p4C8K0I9kOwAA4rb+HudUZ8i/enD+HRKV7QDA7cWvu+dmXymd8HOpfaMkKzVMHqqoAAAAAAAAAKBwaEWPUjagFX2RJEMGzY06bGgfFxS1kky2M8ZMkzRb0hhJIyQZa+2vhjcqAChBM66QVt483FGUn/aNzqnO6rpQWyRdfx3RvimXiACg/FkrbX3cPT/muNR/dGqYNHQxAQAAAAAAAAAAtwGt6KkwitJQMsl2xpgZkq6SdKGkGQFLBiXbGWNOk3Rm793t1trvFS5CAChB09+Ue7Ld9uek0UfGG0+5SHYNGuoyCb3QMkH3bw3XstC6KhHvWS7p/NxjA4Bylezwl5yfdN7QxQIAAAAAAAAAAICyVPTJdsaYhKQvSfqkUmmsQekHrm57WyR9oW/eGHOHtfalAoQJAKVp6oW5X/uPo6RTbpFmXBZfPOVi1+IBdzsSVfrRnBO0pGW81PZCqC2sq7Ld8h9LB34o3wgBoPzsecU9N/NtUssBQxcLAAAAAAAAAAAAylJRN+02xtRIulPSpxWcGOhKsktNWrtI0gPqT9C7ItYAAaDUJaqkA/JI3Hryg4FV3Cre6t8PuPvUmGmpRLsIrHEk2+1YkGtUAFDeFnzBPXfoZ4csDAAAAAAAAAAAAJSvok62k3SDpHN6b1ulkuYelnSNpM8puMpdpj+k3aZ3FABkGnV47td27ZC2PRtfLOXCVA24u3hEtEQ7KUs2+d61kfcDgLK39Un3XHXz0MUBAAAAAAAAAACAslW0yXbGmLMlvU39SXYvSXqVtfZ0a+0XJP0m5FZ/79tS0vHGmPq4YwWAkjbjskHJYZF07YgvlnKRkdSxt7om8hbONrKS1MljDgCSpGSPtPVpaccL/kqrjdOGLiYAAAAAAAAAAACUraJNtpN0de9nI2mlpJOttU9H3cRau1JSX1ZCjaSD4gkPAMpE7aj82uv98yKppzO+eMpB184BdzsT0ZMZk642spK0/q7I+wG0xh1nAAAgAElEQVRA2dm9XPrrHOmu46U7DpPaHFU/p10s+V5TAQAAAAAAAAAAgJCKMtnOGDNG0slKVbWzkj5mrd2Sx5Yvpt0+MJ/YAKAsHf5F6bQ/SdPfLFU1RLu2p11a/M3CxFWKkj2DhnJJtvO2kX32E6nHHQAq2cNvlFpXZl83592FjwUAAAAAAAAAAAAVoSiT7SSdqlRsRtJma+1f8twvPVFvQp57AUD5MUba7w3Sqb+TLtsb/fo1f40/plK1e+mgoc5EdeDSyyd+UKeMPDdwzmarwrTpn5FDA4Cysfslacfz4dZGTSIHAAAAAAAAAAAAHIo12W5y72crKXLr2AC70243x7AfAJS3w6+Jtn7X4sLEUYo6tg4aclW2qzV1Mo5fxd7KdpLUtj5iYBH0tEtde6TutsBKfQAw7KIkHI86onBxAAAAAAAAAAAAoKIUa7LdmLTb22PYL72cRVcM+wFAeZv5FqlmVPj1XTukvx0krf5T4WIqFT2DKwN2uZLtEnUyjgp2Vlkq2wWck7e2jdLNRrq1QbpthPS7RumWaumJ90vJ7vjPA4ChUD9+uCMAAAAAAAAAAABAmSjWZLtdabdHxLDfxLTb22LYDwDK24j9pXMekKZdLDXNkiZfIE06x3/NriXSI2+WNj82NDEWqz0vDxpyV7arVcJV2S5bG9mFX44cmpe10p8mBc+99FPp2U/Gex4A5CPba2Sfo68tbBwAAAAAAAAAAACoKMWabLc57fYB+WxkjKmSdHTaUAH77gFAGRl9lPTqP0oXvSydeYd01j3SGXf6r7E90srfDk18xWrTQwPuJpWlsp2jgl2y78bYE4PPaVuXW3wuO1/0zy//ES1lARSRkMl2NS2FDQMAAAAAAAAAAAAVpViT7Rb0fjaS5hpjpuWx1wWSGntvW0mP5xMYAFS05tnZ1+xaUvg4ilnjwF9ZrkQ7Sao1njayfeOdjoKsibqcwnNa/hP/fE+71L4x3jMBoNCaZw13BAAAAAAAAAAAACgj1cMdQBBr7SJjzFpJU5VKuPuEpKui7mOMSUj6bN+2kp6z1u6ILVAAqDQtIYqN9rQVPg6fjQ9Kj18pta7sH5vyWmnmW6WZVxT+/K49A+66WshKfZXtHG1k+25MPl/avXTwgmSHZJOSySNvvnNHqh3tpoekbU9nX7/9WalxSu7nlbuND0gPvEZKdvaPjTpcmniWtPWpVLLqgR+SxjmqFQKI3/jThjsCAAAAAAAAAAAAlJFirWwnSb/p/WwkfdgYc24Oe3xFUvo72j/NOyoAqHSHftY/v/nhoYkjyIZ7pfvOHJhoJ0nr7pDmvVVacl3hY1j+owF3vcl2xt1G1vaNz3iL+6z2ze65bHo6pPvPkRZfGy7RTpIeep20Z0XuZ5azDfdK9501MNFOknYskJZ8V9oyT1pxk3Tf2dIWiuwC+QvRRnbaG6Sq2sKHAgAAAAAAAAAAgIpRzMl2/ydpl1LFfaok/dkY8/4wFxpjxhljfinpk+ovDrRB0s8LECcAVJbmOdnXJLsLH0eQbMl0i76RqgZXKG2D26z6ku1qEp5ku742stUN7vPW/DFSeANsfEDaNj/6df/6VO5nlrPF3w23rmevtOyHhY0FQMroo4c7AgAAAAAAAAAAAJSZok22s9Zuk/RRpcpWWEn1kn5ojFlmjPmqpAvT1xtjXmWMebsx5teSXpL09t5rjaQeSe+y1maUmwEARFY/IfuaPS8VPo4g6+/yz+9dI7WtK9z5K349aKgrS2W7hKMN7L42snWex3vXkgjBZdj6ZG7Xrbot9zPL2aYHw6995VcFCwOoGCZEZbv68YWPAwAAAAAAAAAAABWlergD8LHW/soYs7+kzymVd2AkzZGUWVbHSHos475Nu+Yz1tq7Cx8xAFSACWdIiTop2eFe091amLO3PJ5qCVs7JtUesHnmwPnMFp5BOrZJjdMKEp5aVw8a8raRTdQ6K9sl+xJJGqe4z+vxfA+y6dmb+7UYrHvPcEcAVJgQyXaTzy98GAAAAAAAAAAAAKgoRVvZro+19vOS3iWpvW+o93N6Ql1fUp1JW2MkdUp6p7X2m0MWMACUu5pm6dRb/WvmvS3+dq3LfyLdfZK08EvSM1dJdx4jbXs2bf5n4fbZ8Xy8cWXhSrarUrWqTLWM41exTU8kGX1U8Oab/5l7YLm0kO3TviX3a8tR24bhjgBAkObZwx0BAAAAAAAAAAAAykzRJ9tJkrX2RkkHS7peqaS7vgwEo4FJdn1jSUm/knSwtXZwTz8AQH6mXSRdstk9v2uRtO2Z+M7raZfmf2zgWOd26bnP9s53SE9/ONxez38uvrhC6EgEF5GtTdRKkoyjFaJNvzP2hODNd76Ye2Ab7nXPjTjAf+1LP8393HK0+NvDHQGATA2ThzsCAAAAAAAAAAAAlKGibiObzlq7StKHjTGfknRq78d+ksZKqpW0RdJGSfMk3Wet3TFcsQJARagfJ9WMlLp2Bs9vfEAae1w8Z63+YyrhLtP6O1Oftz3tb2ubztTEE1OQgMQ6V2W7WlOXCsfRCtEaI1U3997xVAm0ScnEmDu/35uk026Tbva0aNz4gHToZ+I7s9RtenC4IwCQyfYMdwQAAAAAAAAAAAAoQyWTbNfHWrtX0t29HwCA4TThdGntX4Ln/vUpac3t0kFXSdMulhxJZ6HsWOCf79oVfq/2jbnHkU3duEFDXa5ku0Qq2S7hbCMr6djvpu7UT3Sf2dMhVTdEiTIlURecoFhVn/o8533uCnauBMtK1d0a/ZotT0pjj5cclQ0BZJPlZyfg9RgAAAAAAAAAAADIV0m0kQUAFKnDr/bPb5knPfJm6ZZqqX1L4eLwtUTN1L1bWv6TwsTRvWfQkKuyXU1fZTtXG9makdL0S1N3pl3oPrOnLVqMUqoanqsS4Iy3pD4f9VX39VuflHo6o59bjnrapZ0vRL/u7hOk34+Wkl3xxwRAOuzzwx0BAAAAAAAAAAAAyhDJdgCA3I05Rhp1ZLi1f55emBiS3dLib0W75skPSLuWxB/Lsh8NGnK2kU3428gmRx4i1fS2ka1pcZ/Z10o3ii2Pu+fqxvR+Hisd9TX3uqXfj35uOVr0zdyv7dqZ3/VAJctWFXLUEUMTBwAAAAAAAAAAACoKyXYAgPyMOizculwqsO3jSarY+kRuW677R27X+dSMGDSUPdnO0UY2PZGkqtF95ob7wsfXZ90d7rmqtJa0DVNz26OS5Ps4PPfZeOIAKk6W/xtTlUN7bQAAAAAAAAAAACCL6uEOIApjTI2kkySdJmmOpDGSRkiStfbsYQwNACrXmGOlFb8JtzbZIyWqUq0ze9oDk9MC+SoYtW0It0emvWtyu86ncZrUunLAkDPZzvgr21nZtH09SW+2O1qMktS1yz3XMrf/9phj3et2vRj93OHUtUvqCGhlnOySqkdIjVNy2zfX51+6vWtSiY3ZKnUB6FdV556rGy817jd0sQAAAAAAAAAAAKBilESynTGmSdJVkj4saXzmtJSekTDgurdI+n+9d7dJOt5aG7gWAJCj6ZdKz/xnuLWbHpRW/0l65cZUpbsJp0sn3yw1TMz9/Mff5Z5rmCy1rQ+eW3yt1L1HOu77UiKmX4cBSWzuyna1kiRjHJXtbLL/jmONJGnnC+Hj69O9xz1XVd9/u+Ug97q29dLNRjr/KWnscdFjGCptG6V5b5U2PSClP6ZBzn5Qmnh6+L3X/FlqfSWv8CRJt++XStQ8+pvSjMvy3w+oBJseds/N/WgqsRsAAAAAAAAAAACIWdG3kTXGHCFpvqQvSpogby/BQf4qaaykmZKOlnRu3PEBQMXzVV3LdP850rIfpJK9bI+08X7poX/L7/zu3e65i1b5r13+Y+lfn87v/HQ7Fgwa6nQk8vVVtkuEqWwnSXM/HnzmtvlSMmJ1u5d/ETw++8qB942RXvUT/153HS+1B1SMKxYPXyxtvC97op0k3XeG1JrlOdNn+7+kh9/knj/5t9JJvw63l5SqbjfvCmnL4+GvASrV3rXSkm+75w/9n6GLBQAAAAAAAAAAABWlqJPtjDGHSHpI0gEaWMHOKETSnbV2j6Tb0obeGHeMAIA8bZsv7X4p/n1bDk5VrJv1Tv+6lbdIcRQ9dSRzdTmqK9UksrWRzdivutF99uZHs8cXRlXT4LHaMdmvW3dHPOfHbeciactj0a5Z85dw61b9wd/Ct3akNOtt0nE/CH+2TUorfxd+PVCp1v7VPVc3npbMAAAAAAAAAAAAKJiiTbYzxtRL+pukkWnDCyS9R9JsSQcrXJW7P6fdPju2AAEA/ea8J7/rX/5lLGEM0Lkt9XnE/v51bWulZEf+5wW0kJU8bWR7K9u52sgmMxMAmz1fx54IyYrJLvdcT+vgsWyPnyQ9+4nw5w+lHc9Hv2ZtyGS7Pcv9833fr5YDo50f5XsJVKrdnp+/5jlDFwcAAAAAAAAAAAAqTtEm20n6qFLtX/uyDa6TdIy19hfW2hWS2kPu80DvHkbSLGPMhJjjBAAckmcrVtuTZUEOVYqmvDb1eb8QRU07d0bfP1NPW/DWrmS7rJXtMpLtpnra7ToS/QI54pQkTQk4Y9QR2ffsKNI2shvuzeGae6T2zdnXbX3KPTfmOKnlgNTtCadLjdPCn+/7/gBI2bXYPTfj8qGLAwAAAAAAAAAAABWnmJPtPqL+RLvbrbUft9bRo8+jt5XsirShg2OIreQYY2qMMWcYY95hjPlvY8yHjDEXG2NmDndsAMrAiP2lU24p4AE5JNvt/4HU55EHS+NP9a99+OLo+2eKmmxnIraRrffkij9zVfb4+qy6zT3XEvAr0hjpjBBtYvesCB/DUGjfJL30s9yuve8MqXuve37Py/4KdGf8vf92okY65yFp7Inhzt5wT7h1QKVq3yyt+7t7fu5Hhy4WAAAAAAAAAAAAVJyiTLYzxhwiaar6sys+meeW6e+Iz85zr1gYY2YbYy4zxnzDGPOgMWaXMcamfayI6ZzxxpjrJW1QqsrfjZK+Jun7kv4o6RVjzKPGmBClnwDAY8Zl0hVWuniddNHK8MlFUiqhK241aV3Ip17oX7vlMWnvmvzO2/Zs4HDWynaONrKDKttJ0riT3Oe3rffH12fRN91z1Q3B480hfnWu/G2484fK6j+652rH+K/d+aK04T73/LIfuecOu3pwYmTzbOn8x/xnAghnzZ/dc3PeW5jfJwAAAAAAAAAAAECvoky2k3RU72craaG19uU899uRdnukc1WB9VaWu8sYs1WpBMBbJP2XpNMljSjAeRdIWijp3yX5MgtOlvR7Y8xNxpimuOMAUGEaJktN0/2JYUMSx8S025Oyr9/2TH7n9QRXQstW2S7hqmxnA5Lt6j1fhyPZb5D2Te65unGO8fHZ9902P9z5Q8X3/TzgP7Jfv91z/aJvuOdcj6EkHfW17Oc6ki8B9PL9bPpeIwEAAAAAAAAAAIAYFOs7uunv6i+LYb+OtNuNMeyXq6MknSd/4lssjDFnSLpdUnp5HStpvqTbJN0jaUvGZW+V9FvjKrMEAFFM/bfwa1/4ihSUXJarCWdItaP77086TzLBSW/75J1s1x443JWtsp3jV/GgNrKSNPV1nvOD29gOXhccpySppiV4vG6MNO5k/76r/yBtuDdcDEPBkfwoSZr7sRDXh3w8M/m+R3Pem/16m5SSXbmdDfTp3CktvV6a93bpkcukRy5Pvc7uyffvV4qAr8XzlNcOXRwAAAAAAAAAAACoSMWaVFWfdrvDuSq89Gp2u2PYL24dGtjqNi/GmGlKtYitTRt+VNKh1trjrLWXWmvPkzRN0sckpb+r/3pJX44rFgAVbOJZ0dbfdXw855pq6cRfDBxrmCidcov/uoVflDbPy/3ctg2Bw52J6sDxvsp2xtHyMBnURnbWO93nPxui47q17iS0E27wX3vyTdn3v/9cacl12dcNhRW/CR6vGyfVj5NetzjL9Tm2xW2e6Z6rGysd853se3TuzO1sQJI6t0v3nSU9/SFpxU3Sqt9Jq26Vnvsf6a4TpB0LhjvC/Lxyo3tu/DBXVAUAAAAAAAAAAEDZK9Zku/SKa55+bKHNTru9NYb98tEl6V+SfibpA5KOVaqFbIhyN6F9UVJaSSfNk3SOtXZR+iJrbYe19jpJl2Zc/5/GmBkxxgOgEhkjNe8ffv22+c6EtVDmflw69xHpsrbghKfpb5LetGPweLoFV+d+fkACiJWnjey+ynauNrIBle0SVVLz7MHjktT6itSeWbA0g6/aW8tc/7XNs6TLO6VJ5/rXzf+Y1BNHnnwefM+jvoTFlrnSZR1S7/dhkL2r4q222Oegj0lv2iZNv8y9Zu2f4z8XleOVm9ytVju2SC98dWjjiVPQ62KfMBUrAQAAAAAAAAAAgDwVa7Jd37vkRtLR+WxkjBkr6eC0oeX57JenGyW1WGuPtta+z1r7E2vtM9ba2PrFGWMOkJRe+qhT0pXWWmffQGvt7b2x9amTlEfGCQD0ap4Vbf3SHwSPO6q/7TP2BOnYb0vjT5EcleQkSbUjU2tdNj2Ue4JVQLJajzFKOmLfV9nO2UbWEUfNyOBxSdryqD/GHQvdc9XN/mslKVEjTbso+7r1d2ZfU0ibH3bPpT9+VbXSrHe417aujC+mdLWjpWOudc/n29IYlW3TQ1nm/zk0cRTCbs8/4xO17jkAAAAAAAAAAAAgJsWabDdPUl/pirHGmIi9CAd4t7SvbFCrpKfzCSwf1trtvqS3mFwhKb2M0h+ttctCXPf1jPuXGmPqA1cCQFhT/i3a+vV3OSayJNtVNYQ/Y+KZ7rlkl5TsDL/XAIN/pbqq2kkhKtu5ku188Xdl6ZTe0+aeG3mo/9ow5/fZtSTcXoXiexwmZfyTYuyr3Gv3BCT2JHtyiylT41T3nO2O5wxUpvaN+c0Xs27Pz/b4U4cuDgAAAAAAAAAAAFSsoky2s9Zul/RU2tCXjMlW1mgwY8xUSZ9WqpOflXSPDezLV1Yuzrj/izAX9baYfSJtqEnSeXEFBaBCzb5SGndS+PXbnpK6Pa1OXaIk22VrNdi1K/r5ktS6YtBQp6fKXl+yXcLx68356+qgT7hj2LvKPSf5H1tfRcB0LQdnfwz3rg23V6FsuNc9l/l8nPV299plPxo81rHJvf7k3/rjylQ/MXh819Jo+wB99rwibX7Ev8Z2S61ZXiuKle+1ZTL/bAUAAAAAAAAAAEDhFWWyXa/vpt0+UVLAO95uxpiJkv4iabT6SyJ9K57QipMxZpKkI9OGuiVl6Sk4wIMZ9y/INyYAFa52pHTm3dLJv5FGHRHumkWe9pou1RGS7RomSefOc88v/X708yVp5+AWrb7KdjUm1fIwchvZxilSw5Tguef+xx/jlsccwYzyX5fOGOmYb/vXLL0u/H5xs1Za6Uh6G3WkZDIe76o6aczxwetX/0FKZlSZ8z3GIw8JH6ckTcvMj++16cFo+wB9nvr3cOue/VRh4yiUf/23Y8JIVRRkBgAAAAAAAAAAQOEVbbKdtfYWSf/qvWskvdcY87Ax5jTfdcaYJmPMB3uvPUr9Ve3uttZGSTwrRYdl3H/eWtsa4frM7JOQPQUBwKOmWZp5hfTa56QrrHRJlhaGrkQpn90vRVvva+EZY6JTPm1kk65kO0mqn5RbQG3rgseraqPtE6bYrPXEX0gBSY/7VDcGj/uS5LY+OfD+xvuj7++S8DzucbWrReXo6ZA2PhBu7apbpZ5cW2YPoz2O13oS7QAAAAAAAAAAADBEQvaMGzZvkvS4pLG990+R9KAxZoOk5ekLjTE/lHSgpJMk1SmVoGd7P6+V5OkTVzYyswWWB65yy3wHM2KJHgAIoX6Cf37Xouh77ngu2vrGae45m0OSk7WpimkZrV+7fMl2pjfZLrPSWt+W8nQ9d7W6zZZwUuuoYNfuaY2aq2TH8CTAtG92z409IXh8/KnSKzcGz3VsGXi/p8O9f9Msf2yZfEmOPW1Sojnafqg83W2pJNqaEZKMlIyQQLfsemm/N6ZeF2pGFCzEWFU3S53bB4/3tOW1rbVWm7s2qCMZvE9jVZPGVE+QCZNoDAAAAAAAAAAAgLJW1Ml21tqXjTGvk/QnSZPVnzw3WVJ6WR8j6f1pt5W2do2k11lrM94tL0v7Z9xfFfH6lRn3xxpjRltrA97VBIA8zLhCWnmze/7pj0jHfEfal6yWJcGheXa0800i1Yo1qNLb5hyKoCa7BiXaSWHbyAZ/bdZXGW7uR6X5Hx083tPem/jneLxcCSl149xnuZz8G2neW93zHVv8SY2F4ku62f99weMzLpeedMx1ZxSIde0/9sS052tI0y6RFn0zeK6nLVUVEpXLJqW2DdLe1dLeVVJr78feVamx1lVShye5NJtnrkp9SNL0N0sn/ar4K8QFJdpJ0gEfynnLJXsX6Mb139GO7q3edeNqJuo9Uz6pGfWZ/9wGAAAAAAAAAABAJSnqZDtJstY+aYw5RtLPJV3QN5zxecAlSmVlGEn3SHqntXZDwQMtDpkliyKVKrLW7jHGtEtKf6d1pKS8k+2MMRMkjY942Zx8zwVQpI77nj/Zbun3U8lwh34mdT9bNaGmGdFjOOQz0vyPBM+1bZAaIrRq7QxO0thc1xQ4Xmvq9lVIcibb+SrbjTnOPbf+TmnKBcFzy34YPD7Zsd5n5hXSriXSwmuC5x97p3T2fdH3zdeS69xzrnaxNc1SVaPUs3fw3ItflWa+pf++K9nu8M+Hj7FPvefXYts6/zxKX9fuwclzffdbV0lta1KJvENh1W1S7WjpVT8emvNy0bbePTf9jTltuaNrq65f8yV12ewVAbd0bdR3V39eX5lzg+oTDTmdBwAAAAAAAAAAgNJX9Ml2kmSt3Sjp34wxx0r6mKSzlapuF2SnpPskfc9a+9AQhVgsMkvg5NJTq00Dk+3i6iv2H5KujmkvAKUuTPWkVbf1J9tlUz8x3hjW/V2a857we62/J3B4ZWNw29baRN2+2wlnG1lPZTtf7CtvcSfbuVTnmDgy573uZLuN96cShRI1ue2dq82PBI83TPFf17RfKnkw044F/beTPe42nVWN4eIbcI3ncV9/tzT6yOh7ojgku1MJk+nJc3tXSa1pVeq6dgx3lAOt/oN0/A9TlT+L0Zo/u+d8P0seC1qfDpVo16c9uVeLWp/V0SNOzuk8AAAAAAAAAAAAlL6SSLbrY62dL+kdkmSMmS1pP0ljJdVK2iJpo6QXrA3o5VcZMpPt2nPYo03SaM+eAJC/MIkRrSvC73fwJ6PH0HKQe25PhLMlZ9JMc3dwEseenl37bufURtbXNrfD0zW9ZW5wQlnQWBjZqv91bJMackiEzEfDFGnP8sHjQS2D07U6Oq83pOX2+1rU5pLs40sStd3R98PQsDbVzjQzeS79c9u6wNbSRa1jq9S1M1Xhrhj5foabc2vturUrUhFoSdKWHK4BAAAAAAAAAABA+SjKZDtjzAhJs9KGXrLWtqavsda+LOnlIQ2s9HgyNWK9BgCiMUY67H+lhV9yr+mM0MF69NHRYxh3kntuxW+kIz2xZXIkYXUlsleIciXbJX1tZGtHuud8j5srqW7C6e5rfBI10uTzpfV3Bc8HtWUtpKc+HJxoJ0kTz/ZfO+3i4NbG6a0rfcl2uVQHTHj+Gda9J/p+KKyVt0pLvydte8b/XCg2Iw5MJW/uCfHP5t+PkSaeKR3/I6nlwMLHFkXbBvdc/bictuxMdkS+piuHawAAAAAAAAAAAFA+irRPlN4i6dnejycl1fmXo1fmO/O59NTKvCaud/uvl3RYxI+LYjobQDE6/AvS/h/wr1n+sxAbmVTyXlSJKnfCXesr0tq/hd9r1W2Bw52NwR3Pj0lrQWhyaSMrSYd+Nnh8y2PB475ElZaD/Wf5nOD5Hi25Lvd9o3r2U9KyH7jnD/ig//pZb3PPdfcmVnV62n7m2MZSk84JHn/hK7nth8JYdZv06OXS5kdLK9FOko7+pnT2/dkTTvtsfEC69zSpbWNh44rCJqWXfho8N/n8nLftstET5zpsLoWjAQAAAAAAAAAAUC6KNdlunCTT+/GUtXbbMMdTKoo22c5au8la+0KUD0kvxXE2gCJlEtKrfiSdO8+9Zsl3su/TPCv7GpcRB7jnljsSO4Jsmx843FVVHzheY/pzyHNqIytJtWPcc60rB4+t+ZN7vSPOUGpa3HNLhzDZbtE3/PPZkuF88xvuTX1e/4/c93ep9nRr79qd256I37IfD+/5VQ2pNtCTzpXmvCda62yTkJpmSGffG/6a9k3Smtujx1ko255xz9XlVtVOcle2O37E6Tqs6bhI1wAAAAAAAAAAAKAyFGUbWUk7ez9bSWuGM5ASszPj/vgoFxtjmjU42c5TxgcAYtA41T23r+2pp3JdmNaILg1T3HM7ngu/T9OMwAS3rmS7pKZB47VpyXYJR9679bWRlfyxb38+FdOAsX/ltlc2VYO/vn2sTX3kUnkwbtm+Rt/8zgXStNdL3a3uNb7kR5+6se65XUukscEJPxhiUV4PIjOp51/TdKlxv97P0wd+rh0z8OeofUv2BNM+Y9KeQ2NfJW19Mtx1Bf2aIyrQ61eno7JdY1WT82WrI0llOwAAAAAAAAAAgEpWrMl269Nu1w5bFKVnWcb9GYGr3DLXb7PWbs8jHgDIrmm6e852S8keeZPt8jH1QunFrwXPRakqFlRJTlJnzQgpIGmuJtH/q81Z2S5bG9nJ57nnevYGBJOZj51mzLH+s3wSVamEoL2rAiatlOySqgr8qzzZ5Z9v3E8afaR/ja/KYV8bWV/70OocK9tNu1h66YbguVJrV1rOugN+psKqHpFKft2XPLffwGS6xqlSoibano7204EaJvbfPuQz0sMXh7uumJ5/vlimXpjztl3JzsDxGlOrHtMTONdJG1kAAAAAAAAAAICKVqzJdgvTbufRH7DiLMq4v3/E63EHdDMAACAASURBVGdn3H8xj1gAILyTb5bmXRE8t/UJ/7Wz3pH7ueNPkiaeJW28f/Bc5zbJJrMntbQGJZmldDVMlJLrB43XmLRkO0f5JCsra61z3lsR7Yn3STMu67+f7JJW3Rq8duyJqYS5fJx4g3T/ucFzW5+QJpyW3/7ZZKvUdfrfsn8fjZGaZwdXStzdW2Hxha8EXzv6mOwxukz9N/fczoWFf+yQnbXBCax9mmZkVKLLSKarHRl/TGGT7U769cD70y6S9nujtPoP2a99+ZfSib+IHFpBvORp6z3h1Jy3dVW2q03UOauLdtBGFgAAAAAAAAAAoKJFKIsxdKy1SyU9r1QpoyOMMZ4eg0izMOP+EcaYxgjXn5JlPwAojFGHu+cWftl/bVWOFcX6HPLf7rmtT2W/fvmPnVOdJrg6Xe2AynbuX8VZq9u1zA0e794t7V3Xf3/Tw+49xp/sPyOMBs+v6YVfyn//bLI9R0YfEW6f0UcHj6+6TerplGxwpatBLXujqh4RPL7o2vz2RTy6PFUhz3lYumiFdO4/pZNvko76inTAv6eSKEcdXphEOyl8sl3jfhnXGem030uXbJaODtGGtm1j9NjiZq20Y0Hw3PjcE+0kqdOROFdr6lSbqAuc66SNLAAAAAAAAAAAQEUrymS7Xt/r/WwkXTOcgZQKa+16pZIU+1RLivIu5BkZ9/+Rb0wAEErtaPfcjuelak/ecMtBhTt7sydJbd+aR5xTXY7KSLWmP4nD1UZWCpFsV+OL/ZHg24P2GOU/IwzfY7jzhfz3z8aViCNJs94Zfh8b/P3S6KOknZ4zqpvDnxGke0/weKLA7XcRzk5PoV/fc7+gQv4T3tWmu36cdPB/SZMcFSn7bHk0WliFsHeNe87kV5XTV9mu1tQHznU4rgEAAAAAAAAAAEBlKNpkO2vtDZL+rlSy3ZXGmE8Nc0il4k8Z998V5iJjzEGSTkgbapV0d1xBAYBXo6cyWk+bP6Fl2kX5ne2qZiZJXY4kqHTdrc6pzkRwt/aBbWR9le0cyV99Jp3tiSst9u7dnj3O8Z8RRsMk95yvKlhckp3uucOvDr9Pu6OKV0+H1OV5DCefF/6MQI6kSlclPQytnjb33MiDhy6OdGEr2zXP8s9ne/3sHIKf32xcyaiSNO6kvLZ2VrZLUNkOAAAAAAAAAAAAwYo22a7XW5RKHjOSvmqMucsYc+Ywx1TsfiMp/d35S4wxB4S4LrOP4u+stbybCGDoHPjR4PHObf5Ep2zJJNk4EuIkSetDFPjcNj94fMLp6rLBSWA1aRXLEr7KdjZLZbuDrnLPbXm8//bqP7rXjTvBPRfFXEcs3a1S24Z4znDp2Oyei/L8mPPu4PFdi/xnTH9z+DOCHPb54PHdS6VkV357I3++52/YpLe4hTn3lFuzr5l9pTTxLPf8E+8e/uegL9nxwA/ltXWn4zW61tSpLhFc2c6VoAcAAAAAAAAAAIDKULTJdsaYn0u6TtIuSbuVSrg7R9K9xpgdxpiHjDG3GWN+HuHjhuH8moaCtXaZpBvThmol/dIYRy8sScaYiyRdmTbUKemLBQkQAFymXOCee+mnweNNeSba9XFVd9r6pORLePNVfZr5NmeyXWxtZOvGSiMODJ7re8yS3dKel4PXzLgivmShyee7557/XDxnBPFUFtSZd0Xbq95Toe+5/wker26SqoIrYIXWMtc9t+Lm/PZG/hY6/klUO2Zo4xjA/bqxz4xLs6+pbpLOuMO/Zrifg+s9hZbrxue1dZevsp2zjSx/iwIAAAAAAAAAAFDJPOV8ht2VGthXzar/ncUWSadG3M/07vGevCPLgzFmmoIf98x3+KuNMTMd2+yx1m7xHHO1pIsl9fVdPFmpJMX3WmsXp8VSJ+n9kq7NuP5aa+1Kz/4AEL/qJvfczheCx02IhJMwqhrcc7sWSSMPCZ7b+ID7uuomdXYGJ3KkV7bztZFNZmsjK/lb7HZsk3Yvd8/7HvOofHv5kmXytemf7rmoX58veWr3suDxKmcue3i+ODfcI81+Z/5nIHed24PHfVUxCy1bkmyU535VXaod65bHgufX3z28z8HdS91zaa+lUVlrnZXtakytTCL49wuV7QAAAAAAAAAAACpbMSfbBclS4qckPCJpRoh1UyW94pi7UQMr0Q1grV1jjLlE0l1KVbaTpFMkvWiMmS/pZUkjJR0jKbMkyN8k/W+I+AAgXqOPzuGimJLtxp4grbwleK5jq/u6TvecHXuiutb9LnAudGW7bG1kJalpprT1ieC5ji3eGDX+5Oz7hzXG8/3r3BbfOYP2diRCSdGfU6OPjH6+7/kR1lhPK9849kd+qkekfpYytW8a+lj2yZJsN/ZV0bbzJdv5XkOGQsJTOTKPhOtu2y3rSGiuNXVKmKrAuS7bqaTtcc4DAAAAAAAAAACgvBVtG9leJsaPimKtfVCp6nab04aNpOMkXSrpfA1OtPutpMuttT1DESMADFDTLI05LuJFMb28z3yre65tnXtu7xrnVHfTNGcb2JpE2DayISrbzf2oe+5vc6VnPuGen/aG7PuHVd3kTvDpbpV6CtB60VrpMU/FrerGaPtFXS9Js98d/ZpMDZ72tevvlLr25H8Gctfq+NuHAz8ytHGky1bZ7lBH22OX/T/gntuxINpecds2P3jcV9UzhC7rrlBXm6hTnXEn+bkq4gEAAAAAAAAAAKD8FXOy3awCfMwe0q9gmFlr75B0mKQfSfKU/tHjkt5krb3CWts6JMEBQJBTHNXlXOJqI1ufmXuc5tHL3XMLvhA8PvoofyKHSWsj6/lV7ErWG2DU4f75XYuCxxM1Uu2o7PtHcXRmV/I0vqS/XL38c8l2B8+1HJTbnqOOiLZ+4lm5nZPpyP/nnnv6Q/GcgeisJ+F14hlDFsYg2V77Jp0dbb+WA92Jo23rUomtwyHZI217Knhu+pvz2trXDrY2UafahLtFNK1kAQAAAAAAAAAAKlfRtpG11q4c7hgKwVo7c4jP2yTp340xH1OqlewMSZMktUpaK+lZa62rXS0ADK2m6ZKpkkIX2IyxcGndeKljc/Bc997BVc981caqm7yVj2rSku0SnqSZUG1kqxqyrwnSMC2363x8leFW3Sod/4N4z1txs3su18cl6nXVOZ4z6Nwm99yav6SSjhK0rRxy2591z+X6HCtWvkTTnQuzJ/YWgivRTsr78e/0JETXmFpVG3eiZWeyAJU6AQAAAAAAAAAAUBKKNtkO8bLWdkp6YLjjAACvRI006khp+zPh1u9eGt/Z1c3uZLv2TVLzzIyxDe69akapy1P5qCYRtrJdiDayiWqpZa60a0n2tekaC5BsN2J/91zH1lR1rLiqEUrSxvvdc2mPcSQjD5W2PhFtfRxGefbp2iH17JUSI+I5C+G1rnLPxfW9Lxa+52Dr6uFJttu72j038rC8ts5W2c6X7NxhSbYDAAAAAAAAAACoVMXcRhYAUIkOjNAys8pTSS3yuf/hntv86OCxnjb3+jnv9VZNqjV1+24bT3W+ZJg2sr3nRRblcQ6rpkVqmuWeH8rWi/u/L7frZr0j2vqWubmdk2n8q/3zoas9IhatK6WbjfTwJe41TdOHLp6h4HsOtm8cujjS7XjBPTf19Xlt3eWpPlpr6lRHG1kAAAAAAAAAAAAEINkOAFBc5rxbqp8Ubu2My2M815Ow9tjbpD0ZHbef/1/3+knnqCvpaSObXtnO10Y2bLLdQZ8Ity7d9EujXxPGKb91z218KL5z2rIk/0x5XW77TjxdGndyuLVTL8ztjCBVtdIZd7jnN9wb31nw62mX/jzTv6Zu/JCEkpMxx+d2XZWnGuQT785tz3x07pQWftE93zAxv+191UdN7YB235k6aCMLAAAAAAAAAABQsUi2AwAUn4OuCreuqiG+M7PttfoP/betldb82btXp7dqUsg2sjZEG1kp1Zp19FHh1kpSdVO87VzT1Yx0z730s/jOWf4T/3x1Hs+NsImI9fkl+wzSuJ977uVfxHsW3NbdmX2NqSp8HLmqac792ubZ7rmorarztd7zfYihpa2r+miNqZUxRsaYAVVIw1wLAAAAAAAAAACA8keyHQCg+PiSjtLlk1CVKVEr1U9wz+9Y2H/b10JWkhJVzhaF1aZaibREnYSnjWzoynaSNPHs8GvDPr65aJjsnuvcGt85Cz7vn69qyn3vppCPT9yPoy+Ba52n6h3iFaaKW/uGwseRTfP+weOz35X7nr7n9E5PS9dCSH/NzRTDz56rsl1toi7tdnArWSrbAQAAAAAAAAAAVK7q4Q7AxRjzjhi3s5J2S9opaYOkxdbaCBkMAIAhNfn8cOvirGxnjDTtDe6Kaa/cKB1xjdQ0Xere695n/KmS3Ikcma0J/W1kQ1a2k6T9LpYWXxtu7bSLw+8bVa2nst2OBYU7N93Mt0mJPCqPTTonVf2vu9WzyEjTYmwjKxV3tbRS0NMp/evT0pJv94+d85A04dXR9uncHm9chTLtQmnxtwaOJeqkyRfksefF0iZHu+fuLEnGcbJWeuHL7vn9Lsn7CFd1uvRqdnWJOu3pCbjW04IWAAAAAAAAAAAA5a1ok+0k/VKKUtInklZjzFOSbpR0q7X0ggKAolI3Rpr6emntX/3r4ky2k6Rjvu1vT3rPqdK5j0qbHnSvOe4HkuSsbFeT0ZbQ30Y2wq/B8adIx31fevrDnkVGmnG5dPgXwu+bi0P+W3rx64PHO7ZIu5ZKLQcW9vzjr8/v+poW6cy7Ut9vl5N+JY0+Mr9zMmVLtmtb768cWMlsUrr31dLWJwaO33u6dPb90sQz4z2v5aB498vFkV+RWlf1tri2Uu0Y6dTbpPpxue859yPSMx8PnhvKynbz3uqfnx2i+mAWoSrbGUdlO0tlOwAAAAAAAAAAgEpVzMl2fdwlf3LXLOmM3o+vGmPeZa29uwDnAAByNfk1Q59sV90oHfJp6cWvBc/vXS29/EvplV+596gbI0nqSjqS7RIZle08v+aSUXPOD/yQNOe90vq7pZ0LpXEnal/HeGOkkYdKdWOj7ZmLxunuuWU/ko79lns+jLYsLTxrRuS3v5RKXvSZ9bb8z8iULdnulZukQz4Z/7nlYMfzgxPt+tx3lnRFzH+/UdUY7345xVAnnXab1L5FalsrjTwsv4qOkmQS0shDpJ0vDp5b9kPpqK/kt38YHduklb91z898a+r1LE+uhOjMynZBOmkjCwAAAAAAAAAAULGKPdku/Z006xjPlPluatBamzY3WdI/jDEftdb+IHqIAICCCJMUVohWftnO3TJPalvjnq9JtVEN06JQkozxVLaL0ka2T1WdNO31qY/hUjvGPbdlXv77b3k8/z3CmHyBtP4fg8fHnVSY8zzPBUnxPHblaqieE31mvX1oz/OpH5dfNbtMrja6ha5I2Wfrk/553+tLBKEq2yUcle1oIwsAAAAAAAAAAFCxijnZ7l29n0dI+ryksUolxyUlPS7pKUmrJO2SVCtpjKTDJZ0maVLvtVbSrZLulNQgaZSkQ3rXzNDApLtvG2MWWWvvL+hXBQAIZ+JZ2dcUopXjpPMkeaqHrb/Tf31vVbU4KttFaiNbTCZ5vnfdrfntba2/4uGYY/PbP92BHw5Otpv7sfjOGCDL9zvfx66cJbvi26uqQepp86+Z/c74zis2rudZ+6bhPb/PpHNjOabT2eq7/zU6Mzm6T5cjmRoAAAAAAAAAAADlL0sJleFjrb1R0jxJH1Iq0U6SfipplrX2FGvtx62137LW/sxae7219svW2sskTZP0RkmvKJVE92ZJM6y1P7LWfs1a+w5r7SxJr5P0cu8aq1Ti4bVD+kUCANzqx2df0zQr/nNHHS4ddnVu1x5//b6b7sp2A5PtEr5ku6htZItF/QR30tvOhamEuVxYKz39Yenln7vXnHlXbnsHmfKaVFvedDOukPZ7Y3xnpMv2uGy4pzDnlgObpQrk1qfD75Ut0e7gT0q1o8PvV2oO+XTweOsKac/LhT3bWumZq/xrprw2lqPCVLarc1a2o40sAAAAAAAAAABApSraZDtjTKOk2yXNldQt6S3W2g9Ya1f7rrPWJq21f5J0hKRHlPoarzbGXJmx7g5Jx0h6Nm34CGNMPOUyAACFV9UQ/57GSEd8QZrznujXjjl+301nIkdmG1nPr+Kc2sgWC1/1t03/zG3PHc9Ly653zzfvH679cFgmIb3qx9J5j0vHfV869xHppF9JiUIVBi7h7/ewy5Ko+PRHwm2T7HHPmUTquXD0/4UPqxTVT3DPPfe5wp69c6G01/NP/REHSomqWI5yVadLf41OT7xL53p9BwAAAAAAAAAAQPkr2mQ7SddIOlipd0+/bq39XZSLrbWtki6RtE2p6nXfN8aMz1izW9KblErm63uX9rw84wYAxCVbK9nqpsKdPe6U6NdUN++72eVqUZjZRta4K9slS7WNrDTgsRhkzZ9z23P5j/3zYaohRmUS0rgTpAM/JI0/JbZEn0BVIZ7Pe9cW7vySluVnZevjUtfu7NvsWuSeO+eR1HOh3Pl+djfcW9izs+0//tTYjnIlzKW/RtcZR2U7S2U7AAAAAAAAAACASlWUyXbGmGpJ7+i92yHp67nsY63dIqnvnfkGSVcErHlF0m3Svj5+OWRXAAAK4rDP++cbJhfu7FySOkYcsO+mM9kuo42s8baRLeFKZ+NOds/tXprbnst+6J+PMRFnWDRMlEYe6l/TuX1oYik12drISlLXrvzWjMryvSkX4z3/FO7YXNizsz2/fRUzox4VqrJdcLIdle0AAAAAAAAAAAAqV1Em20k6VdI4pcqUPNlbpS5Xd6fdfoNjzV29n42kaXmcBQCIky/p44QbUi1fC6XlAGn2leHX108cUPWsKxmcbJfZltDfRraEK9s1THTPrfu7tHNx+L16OqS7Tsq+7oB/D79nsTriGv/8poeGJo6SE+JnZd0/sq/p9vyTs3pE+HBKWeM0aeRh7vn5/ykVqurm+rvcc6OOkEYdHttRYV6j6xxtZDuSVLYDAAAAAAAAAACoVMWabDc97fa6PPdan3Z7hmNNes+w0XmeBwCIS6JauqxDmvGWgeNn3CHNeXfhzz/hhvBrD7pqwF1X1aRBle08CYMlnWwnSafc4p77+8Hh91n45VQb0GyaZ4Xfs1jtd4l0jieh7ukPSz3BSUIVLUzy15Pvy95Kdsl3g8erGgqb3FtsfK99S74trfxt/Gd2t0pbn3TPv2Z+rN+DUJXtTHCynetaAAAAAAAAAAAAlL9iTbZL7wvYlOdejb2fjaRJjjXpPauC31UDAAyPqlrplJulK2z/x5QLhuZsE+HXZEa7QVfVpMxku4Svsl2Y1pjFbMT+/vk9K8Lts/R7eYdSUia8WkrUuOe3PDp0sZSMkD8rG+71z29/Nni8KridaNmqbvTPr/lz/GduuN89N+OKVPJ1jFytYNNfo91tZKlsBwAAAAAAAAAAUKmKNdluV9rtQ/Lc69C023sca9LfSWvL8zwAQCUafeSAu502bBvZMq5s13KQf37jA+H26dqZfU1TGVS1SzfqSPfc3nyL/pahsG1N27I8dnVjg8c7twePl6sR+0tVnoS7bI9jLtrWuudGe34ecuSsbJfIXtmuw5GoBwAAAAAAAAAAgPJXrMl2a3o/G0mzjTEn5LHX23s/27R9M01KW7M5j7MAAOXm2JBV1cafMuBumBaFkr+NbLLUk+2qmyRPMqG2P+O/fvdy6eaQbSOP/0HosErCAR90z/XwdwGDhfxZefHr/vkdC4LHJ5wRKZqSV1Uvzb7SPb/5kfAJjmH5ntfTL433LLkr26Un29W5KttZKtsBAAAAAAAAAABUqmJNtntIUpdS75waSdcbY7L0sxrMGHOZpPPU/w7sPY6lx6TdXhH1HABAGZv7YX+FJ0k65+FBbT+dbWQTA9vImnJuIytJx1zrnlv6fWmvo5pV1x7prweEO+PEG4eutfBQmfMe99ya24cujlIR9mdl72rppZ8Hzy35vvu62e+KHlOpO/Y6qXa0e37JdfGet+Ca4PGqeql5ZrxnyVN9NC0hOrMSaZ+OZIds3MmGAAAAAAAAAAAAKAlFmWxnrd0l6W9KJdpZSUdJussYs1/YPYwx75V0o/oT9qykmxzLz0+7/VwuMQMAytiRX/bP148fNNTlqGxXYzKT7cq4jawkmWr//Nq/BI9vcOXHB5j9jvBrS8mYY4PHozw2FSPCz8orNwaPz/+I+5qq4ApnZS1RJR39Dff8y46kxVx17QgeH5tPgWvPcWEq25ng77tVUt22qyBxAQAAAAAAAAAAoLgVZbJdr/+SlN6j6RRJLxpjfmiMOcsY05J5gTHmQGPMB4wxT0n6saRa9Sfa3WCtHdQbrDeB7wz1v0v7cLxfBgCg5E272D/fNGvQUKejsl1mpSR/sl0ZVLab9gb//M7FweO7HOOZjvxqtHhKye7lweMjDxvaOEpBlCpjYZ9b6ZpmRL+mHDTNdM/tWhRfK1nfPl274zljwHE2r8p2krtVOAAAAAAAAAAAAMpblnIzw8da+4ox5t2Sfq1UUqCV1CTp/b0fMsbskrRbqaS6kb2fJe3LXOiraveEpP90HPVp9ScdtsvdahYAUKl8LQyb95eqagcNh65sZ4yMTGAVu7JoU9iUpShtx5aB9/e8Ii3+VqrFbBjTLsotrlIw6nBp8yODx7t2DX0sRS9CYmr7pujbjz0++jXlYPxp7rlkl9T6itQ8O/9zHFXmJEmTz3fPebT17NXd2/6gl9sWa2LtNJ05+nVqrhqhu7f9SUv2Pu9MZq5Jr2yXcFc0vHbVZ1RlqjWqeqyOaj5RJ488Ry+0ztfjux7Qxs7+9tjVpkaz6ufqnDEXaUzN4CqoAAAAAAAAAAAAKC1Fm2wnSdbaW4wxSUk/kdSi/upzfcl0I3s/Bl2atu4uSZdba1sdx/xa0u96b+/xrAMAVLI3rJZuD0gcu+DZwOVtyb2B47VmcGKeM9muHNrIStIb1ki3TwueW3mzdNIvpUSN1Lpauuc0qW1t8NpMp/1BGnlwbGEWndlXBifb7VmeqgRm3FURK07UxNR1d0pTXtN//5Wb/OtNMReDLqCqWum0P0oPXxI8f8cRqZ/v2lH5nbPuDvfcjEsjb9eV7NR1a67WyvZlkqRlbS9o3s57ZHv/55P+Gl3rSbbb0LlGkrS2Y4VeaJ2vu7f9QVu6Ngbuv7J9mZ7f84Q+OePrGlk9JvLXAwAAAAAAAAAAgOJR9O8cWmt/J+kwpRLiejSwal3mRx8jaYWk91prL7DW7vTs/7i19qHej/kF+BIAAOWgcZp0hZUufFk6/a/SG7ek7tc0D1ra6anSVBPQltA4fh0ny6GNrCQ1TpUO+A/3fF9C2YqbwiXaJWqlt/RI+zkSgMpFVYN7bteSoYujJERMtlv4pYH3F/1ffKGUG191u+5Wae3f8j/jBU876KrGyNst2fv8vkS7PkklQyUwp7eOrTPuNrKZNndt8O6/rXuz5u8KSJ4FAAAAAAAAAABASSn6ZDtJstausdZeLmmGpI9JulXSEklblUrA2ytpraRHJV0r6QJJ+1trfz48EQMAylbzLGnq66S6sc4l6S0EM9UHVEoyjgplZVPZTpLqxrnntjyR+rz1yXB7Hf2Nyqg05nvMtj4xdHGUhIg/K1vm9d/ubpN2LHCvbSnj6olh1I6SqtwV3mJ5Lrau9JwfvRLcHVt/l32RQ1NixL7bdYn6Qa2/87EiIwEQAAAAAAAAAAAApaeo28hmstaul/S93g8AAIqSr7Ld5NoZg8aMHMl2tkwq20nS5NdIC68JnnvuM1L7JmnN7eH2mnF5fHEVM19FsZ7gNsUVK5+fle49/vnjr89973KQqE79/Lp+Pjt35L735sekVb+TOja719R7kk4dVrQvzSmc6fX7q7m6Zd/9hKnSQY1HakHrUzntl6kj2R7LPgAAAAAAAAAAABg+FVAWBgCAodVp3cl21WZwnnvC8eu4rCrbjTvRP7/k2+H2OfEXUv2E/OMpBdWeNrLr/jF0cZSEHH5Wts2Xkj3SP452r6kbK004PfewysWx33HPrbhJ6skhiWzxt6V7TpaWePY++pvR981RS9UovWPSRwaNXzrxfRpfMymWM3y/GwAAAAAAAAAAAFAaSqqyHQAApcBV2a4+0RDYMtYYE5grVFbJdsZI0y6W1vwp9z0mny/NvjK2kErC2BOC23Su/evQx1LMbA4/K/M/Lh1xjdTmbvus1zybeu5WuqYZ0ux3Sy//PHh+zV+kGZeG369zu/TsJ7OvG3Nc+D1zlFCV3j/1v3VAw2FqqGocND+2ZoL+Z+Z3tbztRW3oXCNJunfb7drRvTXyWb6qpwAAAAAAAAAAACgNJNsBABAzV/WiWlMXOO5qI5sspzayklTTkn2NT8sh8cRRSkyVe65ja6ryGiTl8LOy+RFpdZbWxTUjcgunHNVPdM9tvC9ast2K30q2J/u6qvrwe+bo/LFv1BHNr/KuqU3U6ZCmo3VIU6oK4oI9T+aUbNdFZTsAAAAAAAAAAICSV3JtZI0xNcaYU4wx7zDGfNwY87/GmM8Pd1wAAPRxVS+qSbiS7SqgjawkTXh1ftdPrMB2niMPds917fRfm+yRtj0jrf1bqpJYOculsp0kLb3OP187Krd9y5Hv57czy3Mx08YHwq1rOTDavjlwJUH7NFeNzOmszmRnTtcBAAAAAAAAAACgeJRMZTtjzKmS/kvSeZKC3hW7JuCa10jqK7OxzVr7X4WLEACAlMiV7RxtKssu2W76m6XlP5W2Ph792knnptrIVpoDPyq9dEPwnC/BqW2j9MC50o4FqfsmIb3qJ9Kc98QfY1Eos5+VYjTxLPfcqlsl+9twLXc7t0urfx/uTFMTbl0eah1J0D7NVblV6XT9bgAAAAAAAAAAAEDpKPrKdsaYJmPMbyQ9JOn1kuolmYwPlxckfoLv6gAAIABJREFUvV3SOyVdZYw5ssDhAgCgLkf1IldSh7OyXdm1kR0hnXV39OsO/Ih0+l+GpKVk0Wme6Z5b+CX33FMf7E+0kySblJ54r7RzcWyhFZVy+1kpRlW10tyr3PNr/xZun2c+Ef7MMMl7eaoxtZGvGZFzZTuS7QAAAAAAAAAAAEpdUSfbGWNaJM2T/j97dx4na17Xh/7zVG9nnX3fGBgGGIYd2RQVQQORmGjQRG80JuqNV3LRJGoSREWNJt5cgyt6oy+D0ShGRWMStgEuhEVWQZB1gGGYfeYwyzlzzszpperJH30O02dO/Z6up6q6uqr7/X69zut017P9urrrqZlXf87nm29P/1BdY41JXdc3J3nDhmO/fawLBIA+ys12/UMdnUJufMc12yXrgbtHfne7Yx7zst0ZtEuSub3lbXe/v//jvdXk9jf133bb60df01Taga+VadQ0VnfQn61BQ3lJmv9NzXgM02y3f+7gUNfSbAcAAAAAADD7pn2M7J8keWIe+g3qSpI/SvL2JL0kvzPAOf4s6414SfINSV4+3iUCwKlK7UXlZrtS2G6HtnU99oeSL/znwfZdOKu53W2n6zSM0SwFEFePJN3j/bfd8ZbkmoZmsd5qcvzOwdc3LVaPbPcKdodznlbedvyOzY9fOZwsH2pxwQmE7QrjvZscnB+u2W6tXk2v7qZTzQ11PAAAAAAAANtvasN2VVV9a5Kvz0NBu/cm+ft1Xd9yYvsjBjzVyWqXKsmTq6o6UNf10bEuFgA2KDfbFcJ2Vf+i2V69Q9u6zn5Kcv5XJ4fetfm+j3lpc+BsN7jga5K73nn640dv6L//J/5t+VzLd/d/vLucfPAHkpv+KFk71n6N7A4XvqC87ZY/T+54W3JRn33u+Ujy/u9J7v2rdtcr3BvHaZhmuwNzZwx9vdV6NUvCdgAAAAAAADNrmsfI/tiGjz+e5BtOBu3aqOv6jiR3nfi0k+SaMawNAIpKzXYLrZvtdmjYrqqS571hveGuZPGc5GmvSp70s5Nb17R6zMvK29YeOPXzG343+fSryvvf86H+j3/wpckNrxG0o9n83uTql5a3v+PFyZHrT31s+e7kbc9vH7RLMplmu/7jvZscmBuu2S4pvz8AAAAAAAAwG6ay2a6qqouTPGXDQy+r6/qB0v4D+HSSC058fHWSD45wLgBo1LrZbreNkU2ShQPJ039p/Q/N5vaWt93xtuSyb3ro8y/+webnO3pDcuBRD33eXUlu+uPh18fusv+K8rbecnLz65JrX/7QY7e9MVm9b7hrVe3Ddt2622r/STfbld4fAAAAAAAAmA3T2mz3nBN/10luruu6z+y0Vu7Z8PG5I54LABqVmotKoY7SGNkd22xHOweuKm87+rlTP7/9zZuf78bXnvr58l3J2v3t18Xu1PTzmCT3P+xn8iM/PMLF2oft2jbHLRRC0E32zx1sfcxJmu0AAAAAAABm27SG7S7a8PFHx3C+oxs+PjCG8wFA0WrLZrtOqdmuFrYjyRmPLW/78L9I2v6cHL/z1M8fPop2pyiEWBnRxX8jWTy7vP2G//TQz9QX/kty/K4RLjZE2K4+3mr/YZrt5qq57O8MF7grvT8AAAAAAAAwG6b1t5Bnbvj4yBjOtzFg1+43cADQ0kpvpe/ji53Fvo9XhbfjHT1GlsFVVXLG48rb3/Hi9b+v//XBznf9r66Pjj3p8789/Nqm1d5Lk+f83navYmdaOCN5wdub9/mj/es/j+/9rtGuNcQY2bbNcaUQ9GYOzA83SlazHQAAAAAAwGyb3+4FFNy74eMzi3sN7pINH99T3AsAxmClZbNdVQiU9IyR5aT9j0yOfLr/ttvfmKw9mHz6VYOf79C7kotesP7xp/59eb+/+dFkft/g550GncVk3+XrQa2/+Af997ns7yTP+I31VsD/cXXS3aHtflvl7Ccn1/xo8qn/t7zPh/7pGC7UPmy33HaMbCEEvZkDc2fkztza+riVun8YGwAAAAAAgNkwrWG7Qxs+vnaUE1VVtZTkKRseumWU8wHAZkrNRaVxhVVxjKxmO05YONC8/eY/SY5+fvDz3fCa9bDdZiNoz3rCzh3HuvfiEx8ItQ5lz4Vbf41hmu3ajpGthg/bDUOzHQAAAAAAwGyb1t+efvjE31WSK6uqapidtqmXJDn5W7S1JO8bZWEAsJlSs91CqdmuOEZWCIgTLn5R8/YHbm53vht/PznymaQp+LPvsp0btGN0l3zjeM6zdO54znNCmzDbfLWQTjU31HWGDtsV3h8AAAAAAACYDVP5G9S6rr+Q5HMbHnr5MOc50Wr3ipOnTfLBuq6Pjbg8AGg0tmY7YTtOeuQ/bN5+0+van/NNz0iuf3V5+7N+u/052T3OvCZ5wk+Odo4rvys5/7njWc8JbcJspdHegzgwd+ZQx2m2AwAAAAAAmG1TGbY74TUn/q6SfGdVVd/d5uCqqjpJfivJNRsebviNMgCMx2oh7FEK23UKoxKNkeXLOvPN2+/9cPP2ftbuTz7yI+Xt+x/R/pzsLtf88GjHP+EVm+/T0nJv8DGypXvyIDTbAQAAAAAA7E7THLb75SR3Zb2Rrkry21VV/duqqvZtdmBVVY9Pcl2Sf3Di+DrrTXl/uHXLBYCkW3ezVq/13bZkjCyzZGG4MBG7yNze0Y5fPHs869igTXPcaM12Q4btNNsBAAAAAADMtKkN29V1/UCS707Sy3pYrpPkXyW5vaqq1yZ56cb9q6r6+1VV/URVVe9K8rEkX5f1kF6VZDnJd9R1LbUAwJZarVeK29qOke0J27HRec+Z7PX2XjzZ622b/q8/BtBZGP7Ys5+a7LlgfGs5Yblu02y3OPR1Ds4PN0a21HwKAAAAAADAbJjasF2S1HX95qyH6k4G7pLkYJK/l2Tj3LMqyR8k+akkX5lTv661JN9b1/UQ89UAoJ2m1qKFUrNdVWi2M0aWjZ75m5O71tUv3XwfSJLnvbH9MXN7k6f+wvjXknbNcaV78iA02wEAAAAAAOxOUx22S5K6rn8ryQuzPlK2Sk6p+ak3/Kke9niV5EtJXljX9Wsns1oAdrumIEXbZjtjZDnFWU9I/uZfTeZal79kMtdh9l3youRFLf5NyxN/OnnRXyYXPX9LltNqjGzhnjyI4cN25fZTAAAAAAAApt/Uh+2SpK7r/z/Jo5P8yyQ356HxsBv/ZMPHdyf5mSRX1XX99okvGIBda6VhROBiqdmuGLbTbMfDnPHYyVxnft9krjMVhFpHds5TB9/32lckZ16zZUtZaTFGdqEafozs0GE7Y2QBAAAAAABm2vx2L2BQdV0fS/ILSX6hqqrHJHluksuTnJtkMestdncm+YskH67r2m9OAZi4YZrtOqUxskJAPNzcnslc58wnTOY67CAPL6Au7ba1/9ZnuTd42G6UZrvFzlKWqj1ZbhHuS4yRBQAAAAAAmHUzE7bbqK7r65Ncv93rAICHa2otKrUoFZvt5MbZDnN7k4UD270KZs1X/2nyrm/ZfL+q//1uXNqMaS21jQ7qwPwZWV5tGbbTbAcAAAAAADDTZmKMLADMitVCa9FCtVhssCuF7XrGyNLPgau29vzP+P+29vzTQJB1/C7/5uSSb9zuVbQaIztKs12SHJg7s/Uxmu0AAAAAAABmm7AdAIxRqbWoqUGpMkaWNhbP3trzz+/d2vNPna1tWttVrvmXQxw03ue/1RjZUZvt5g62PmZVsx0AAAAAAMBME7YDgDEqtRYtdPqPkE2MkaWlJ75yuOMKoc7THHzMcOeHM69NqrltXUKb5jjNdgAAAAAAALQ1v90LaFKtV/08IcmTk1yR5Pwke5PUSR5McleSm5J8NMknaqkEALbZSr3S9/HGZrtS2M4YWfq58PnDHbfnwmTfFcnd7y/vc/Dq5KwnDXd+2HNecvnfTW76421bQqldtJ/Rm+3OaH1Mm/UBAAAAAAAwfaYybFdV1dck+f4kfzPJoJUR91ZV9fokv1XX9bu3bHEA0KDUWtTUoNQpFM0aI0tf8/uSv/WZ5H8+tt1xdZ08/7rkuuckhz95+vYDj06+/l1JZawqI3j2a1qG7cZ7n2vTHNfUODqIg0M12/UPZAMAAAAAADAbpipsV1XV45O8OsnXnHyoxeHnJPnOJN9ZVdXbk7y0ruvrx7xEAGhUai1qbLYrhJt6tWY7Cs4YctTrwhnJiz+RdFeS3vH1x+o66Swm83vHt76ZItQ6VvP7k0u+MbntDdty+eX6+MD7jtpst3/uYOtjNNsBAAAAAADMtv5VOtugqqq/l+QDWQ/aVSf+1H3+nNRv28njnp/kL6uqesmk1g8AyXDNdpVmOybhmh956OO5xfXg3cIZyeKZOzhoV/h3G4/8zskug4lZ6bUI243abDc/TLOdsB0AAAAAAMAsm4qwXVVV35bkD5Lsy6khu5PhuSQ5lOT6JO/Leijvs0m+tGGfjcclyf4kr62q6lsm81UAQLJSaFVqDtv1DwQJ29HojMcNvm81nzzi27duLdNqY8DwpPkDySV/a8MDxuZur/E+/23GtC6M2Gx3YO6M1sf00k23XhvpugAAAAAAAGyfbQ/bVVX12CSvObGWjSG7I0l+KcmLk5xX1/VFdV1fU9f1V9Z1/ey6rh9X1/WFSc5P8k1JfiXJ/Tk1dDef5D9XVXX1pL8uAHanYrPdEGNk6xgjS4MXfnCw/TpLyXP/a7Lv0q1dzzR64k+vjzQ9aeGM5Hmv38FNfrtbt15LN4MH2ZpC0IM4MNe+2S7RbgcAAAAAADDL5rd7AUl+LeuNdidDdr0kP5PkP9R1fXSzg+u6vjvJ65O8vqqqn0jyI0lekYdqMg4k+dUkLxr/0gHgVKVWpYWGcYXFMbK1ZjsaLBxIrvyu5MbfK+/zvDckF3xNMr9/cuuaJvN718N1R29IHrglOfdZydxoASsGsE33ruUWI2ST5hD0IA7MHRzquJV6OXuzS1+TAAAAAAAAM25bm+2qqvqqJC/IQ0G7+5O8sK7rnx4kaPdwdV3fX9f1K7MerDuWh0bKfkNVVV85pmUDQNFK3b7ZrmOMLMNaPKu8rbOYXPzC3Ru02+jAo9ZDh/2Cdpd98+TXs9Nd+LzB9z3/uWO7bNvGuFGb7fZ2hnttabYDAAAAAACYXds9RvalJ/4+Ofr1++u6ftuoJ63r+q1Jvn/DeZPkB0Y9LwBsZrU0RrYh1FEaI9szRpbNXPj8hm0vSKrt/k+9GXDND/d//En/ZrLr2Eke9T1JvxDxVd/bZ99/3H/fR373QJc6unYkHzry7rz1nv+Wd9z3hlbLHLXZrnTv3szb7v3vuX35Zu2lAAAAAAAAM2jbfgNbVdVSkm/KehiuTvK6uq7/cFznr+v6tUlel/Xf3lVJ/nZVVeUZfgAwBsM02xkjy9AufXFy+bee/vjS+clTfn7y65lFZz81eewPnfrYOV+RPOb/3p717AR7zkue9h9OfezAo5In/OTp+y6dkzz9l059bP+VyRN/atPLfP7BT+cnbvgn+U+3/0L+9NDv5Lp7XtdqmaM22w3rnfe9Mf/mxpflv3/p993nAQAAAAAAZsz8Nl772UkOnPi4TvKqLbjGf0jykhMfH0jynCT/awuuAwBJyuMBG5vtimNkNduxic5C8lWvTW7/R8mhdyfdB5MzH59c8uJk36XbvbrZUFXJ034xuezvJHe9Kznjcckl35gsHNj8WMoe98+T874qufOtyd7L1oOhS+f23/exP5ic95zkjrckey9d//ndc17j6eu6zn+67ReyXB8feomjNtuN6s33/EmesP/puWrfNdu6DgAAAAAAAAa3nWG755z4u07yqbqu3zfuC9R1/b6qqj6Z5PEbrilsB8CWKTXbLTSUqxab7aLxiAF05teDTJe+eLtXMruqKrnw69b/MD7nPXP9zyDOfcb6nwEdWr0j9659aciFrRtHs12Vqu+9+uz583Kse3/xPeGkzzzwMWE7AAAAAACAGbJtY2STXLvh4/ds4XXeXbgmAIxdt17r+/h8tVA8pqoKzXbGCwL09UD36EjHX7p05VjCdt92wff1ffyF57wkj9z7mE2Pf6B3bOQ1AAAAAAAAMDnbGba7asPH79/C62w891XFvQBgDLp1t+/jc9Vc8ZiOMbIAE1Olyt845++O5VxfcfCrc/7CRac8dsHCJXnawa/K15/zLZnb1iJxAAAAAAAAxm07f/tz4YaPv7iF19l47ouKewHAGJSa7eaq8ltuaYxszxhZgILy/fGypStTpZOLl67IZUtX5q6V23LT8g2p614uXLw0zzrjebn2wNPHsooD82fkh6/4+bzlnj/NLctfyBV7Hp2vO/ubcmD+jFw7/7T84OU/nfcefmved+Ttrb8OAAAAAAAAps92hu3O3fDxfVt4nZPnrpKcs4XXAYB0U2i2S7nZzhhZgHaa7o4/csX/M5YRsYM6Y/6svOSC7+m77ep91+bqfdfmgd6xfOzoB07bXgvbAQAAAAAAzJTtHCO78TdgWxm2O7zh4z1beB0AGLLZzhhZgHZ2RkhNphoAAAAAAGC2TEvYbnULr7Mx9bCwhdcBgHTrQrNd1dBsV3g71ngE0N+s3R9LoeqdEhoEAAAAAADYLbYzbAcAO045bNfQbFcaI6vZDqCvpohaOdi2nUr3eWE7AAAAAACAWSJsBwBjUtd1uimMkU252a5TarYzXxCgv8b74/SF7aZvRQAAAAAAAAxD2A4AxqTX0ETXPEa2fwyjp/EIoLVCWei2ms62PQAAAAAAANoqz7SbjJMpgmdXVXXlFl3joi06LwCcolv3b7VLjJEFGKem8auzFGwzRhYAAAAAAGC2bHfYLlmfqvTaLb5GHdObANhi3bpb3NbcbGeMLEA7szVGtrQmYTsAAAAAAIDZMg1hu0kE4fwWC4At10252a7T8JZbamESwgDob+aidqVFuc0DAAAAAADMlGkI2yV+zQTADjB8s50xsgBtzF4YWagaAAAAAABgJ9jOsN1NEbIDYAfp1uVmu7mq/JbbqYyRBWhntrrtSqFq/zsEAAAAAAAwW7YtbFfX9ZXbdW0A2Aq9MTfb9TTbAfTVHLWbnbCdZjsAAAAAAIDZ0r9KBwBorZumsF05314V3o6FMADaq6rpC9sBAAAAAACwMwjbAcCYNI6RTUOzXSEYImwHUGDMNgAAAAAAANtA2A4AxqQ75jGydW2MLEA/pTDyNI6QTYyRBQAAAAAA2CmE7QBgTBqb7RrGyHaMkQUYk+kM25XW5T4PAAAAAAAwW4TtAGBM1hrDdsbIAoxLudluOhVu83GbBwAAAAAAmC3CdgAwJt00jJFNudmuNF6wZ4wsQF+zF0YWqgYAAAAAANgJhO0AYExKY2Q7mSu21yVJZYwswJhMZ7ddKVQNAAAAAADAbBG2A4Ax6db9m+2aRsgm5RCGsB1AO7MXanOfBwAAAAAAmCXCdgAwJqVmu7mqPEI2Saqq0GxnjCxAX6UwckOJ6LYqLUvUDgAAAAAAYLYI2wHAmPQyXLNdR7MdQDt16f44pWk793kAAAAAAIAdQdgOAMak2GyXTZrtiiEMzXYA/RSb7aY0bFdel7AdAAAAAADALBG2A4Ax6dbDNduVxsj2is1NALvbzN0dC1k7t3kAAAAAAIDZImwHAGMydNjOeEGAlmbr/qjZDgAAAAAAYGcQtgOAMSmOka2MkQWYhNkbIwsAAAAAAMAsEbYDgDHpptBsl+HGyGq2A+ivdH+ctVCb+zwAAAAAAMBsEbYDgDEZttmuU2q2q4UwAAAAAAAAAGBaCNsBwJh060KzXbVJs13h7dgYWYD+SmHkqprOZrvyuHChagAAAAAAgFkibAcAYzJss10pHNITwgDoqxxSm86wXWldwnYAAAAAAACzRdgOAMakm/7Ndp1s1mxXGiOr2Q6gjemN2pVWJmwHAAAAAAAwS4TtAGBMxj9GVggDoJ+Za7YrLKswDRcAAAAAAIApJWwHAGMy9BhZ4wUBdrRysx0AAAAAAACzRNgOAMZk2Ga7TmWMLEA7/cPIsxdqE6oGAAAAAACYJcJ2ADAm3RSa7bJZs50xsgBtlIfITmfYToMpAAAAAADAziBsBwBj0huy2a4UwugJYQAUFO6P05m1Kxr2Lr/aWx3rOgAAAAAAABhMc9UOADCwtbrQbFdt0mxX9c++H+0ezqeO/VWu2f+UkdcGsFP06l7+/NDv9d02a812Hz36vhxeuzdnzp890Hned/jtecPdf5i7Vw/lEXsene+86J/mkqVHjHOpAAAAAAAANNBsBwBj0i2G7YZrtkuS37j153Lb8hdHWhfATvKmu/84h1bvKGydzrBd07p+5eZXpq4377j7xNG/zO/e8cv50uqdqdPLjcevzy/e/ON5oHt0nAsFAAAAAACggbAdAIxJtzRGdpMi2aaw3Vq9mo/c/96R1gWwk7z/yDuK26Y2atewsNtXbsrNyzdseo4PHPlfpz12rHt/PnHsw6MsDQAAAAAAgBaE7QBgTLoZrtnu3IULGrfftXLb0GsC2El6dS+HVm8vbj9nk/vpdjlnfvT7/Afvf2ffx//bod8dak0AAAAAAAC0J2wHAGNSbLbbJGx36dKVOX/h4vJ5CyE+gN1mtV5p3P7UA8+Z0EraecKBp2e+WihuX6mXhz73se79Qx8LAAAAAABAO8J2ADAm3brUbFcOWCRJp+rkBy//qYbz9g/xAew2K71yKO2afU/J15/zzRNczeAuXLw033/py4vbm74uAAAAAAAApoewHQCMybDNdkly7sKFef7Zf7vVeQF2m6YGuO+48P9Kp5re/725dv/TcsWeR/fdNkrYrk499LEAAAAAAAC0M72/jQKAGdNLIWyXzcN2STmUV2rMA9htmkJpC52lCa5kOEtV/zWOMkYWAAAAAACAyRG2A4AxKY+RnR/o+Ln0369bCPEB7Dar9Upx22IhyDZNSoHAzZrt6lp7HQAAAAAAwDQQtgOAMRlljGzTfprtANY1hdIWO4sTXMlwFqv+a2wKESbJWr26FcsBAAAAAACgJWE7ABiTkZvtimE7zXYASXnc6lzmB77XbqfFIZvtmsbMVqlGWhMAAAAAAACDE7YDgDEpjXudy6DNdoUxsprtAJKUQ2kLM9Bql5RH3TaF6ZLNw3gAAAAAAABMhrAdAIzJyM12hVCeZjuAdauFUFopxDZttqLZDgAAAAAAgMkRtgOAMSmF4krjYU/fr9BsV2jMA9htVnorfR9fnJFmuwXNdgAAAAAAADNN2A4AxmSrwnY9Y2QBkpRDaTu/2a5/yBAAAAAAAIDJErYDgDHpZsQxsoVQnjGyAOtWi812MxK2K4QCS+Nxv7y9IYzX034KAAAAAAAwMcJ2ADAmpVBcJyOOkdVsB5Ck3GxXGs86bcrNds3Ndcu948Vta/VaekLZAAAAAAAAEyFsBwBjUgrFDdxsVwjldbUWASQpj1udnWa7xb6Pl0KEg283ZhYAAAAAAGAShO0AYExKzXal8bCn76fZDqBJKXRWCrFNm3Kz3SZhuk22N42ZBQAAAAAAYHyE7QBgDOq6Tq/QQDdws10hlFcK8QHsNqXQ2cLMNNsVwnYjN9sJ2wEAAAAAAEyCsB0AjEE35fa50njY0/YrNtsJ2wEkTc12sxG2K4UC1+rV9Bru9au95jGxK5tsBwAAAAAAYDyE7QBgDJoCcQM32xVCed2spa7rodYFsJOUQmel8azTpikUuFKXA3Oa7QAAAAAAAKaDsB0AjEG3bmi2K4yHbbNfL73WawLYaWa92a4pFNjUXlcanzvodgAAAAAAAMZD2A4AxqC52W60MbLr5y+H+QB2i1KobLGzOOGVDKe52a4cmNu02a53fOg1AQAAAAAAMDhhOwAYg24awnYZcIxsQyivKcwHsFusFkJnCzPSbLfQEApsaqfbtNnOGFkAAAAAAICJELYDgDEYxxjZTkMorxvNdgArhVGrTeNZp0lTs10pSJgM0mwnbAcAAAAAADAJwnYAMAbNY2Q12wGMQyl0tljNyBjZLWu26x9CBAAAAAAAYLyE7QBgDMbRbNcUyms6P8BusTrjzXZz1XxxtHhTYK6p9S7RbAcAAAAAADApwnYAMAaNzXYN42FP2a+x2U7YDqDcbDcbYbuk3G7XFJhb3rTZTtgOAAAAAABgEoTtAGAMemlqths0bNfUbGeMLLC79epeVgvtbwsz0myXlIOBTYG5TcfIarYDAAAAAACYCGE7ABiDxma7QcfIpqHZriHMB7AblIJ2SbJY9W+Lm0alkbdNgbnNxshuth0AAAAAAIDxELYDgDFoGvM6eLNd0xhZzXbA7tYURisF2KbRgmY7AAAAAACAmSVsBwBj0BSG6wz4dmuMLEBZUxitNJp1Gg3TbNf0tQ+yHQAAAAAAgPEQtgOAMeimfxhuLvOpqmqgc8w3hu2MkQV2t6Yw2sIMNduVwnZNo2BXeuURuuvbhe0AAAAAAAAmQdgOAMagFIZrGg37cJ00jJEthPkAdovVuhw4m6lmu9IY2UJgrluvpZvmwPVKw3MDAAAAAADA+AjbAcAYlMa8tgnbVVVVDNxptgN2u6b2tsXO4gRXMprSWkvtdZu12q3vo9kOAAAAAABgEoTtAGAMys125dGw/fcvhe002wG720phzOpc5lvfa7dTsdmu8PWVHm+7DwAAAAAAAKMTtgOAMSiNeZ1rGA3bd/9CYESzHbDbldrbFmao1S5JFjrtxsiuDtBaN8g+AAAAAAAAjE7YDgDGYKub7XqFMB/AbrFaaG8rNcVNK812AAAAAAAAs0vYDgDGoDTmtRSeK5mLZjuAflZ6K30fX5yxZrvFls12pcc3WtZsBwAAAAAAMBHCdgAwBqUwXGdMzXalMB/AblFqb5u1ZruFqn84sNTctzxAa50xsgAAAAAAAJMhbAcAY1AcI5uWzXbCdgB9rRab7WYrbLcVzXYr9XLquh5pXQAAAAAAAGwQFdyCAAAgAElEQVSuXd0OAHCKL63cmfceeVveePcf9d3eeoxsoQnv9+98df762AfzqD2Py3PP+hvZN3eg9Vp3sy88eH0+dP87c+fKbUmSSxavyDPP+NpctueRI597pbecdx++Ljc+eH0uXroiX3XmN2Tf3P6857635PMPfioXLV6W55z5gpy9cN7I14Ldqlf38r/ue0PfbQsz1mxXauI7tHpHfu2Wnznt8SNr9256zjp1fu2Wn05Vlf8t1TMOfnWedebXDb5QAAAAAAAATiNsBwBDunPl1vziTa/Ike59xX1K4bni/g1NeB87+oF87OgH8qH735l/dvnPCtwN6K+Pfii/eevPp5uH2gc/eezDedd9b8o/vewn8+h9jx/63Ku9lbz6lp/JZx/8xPoD9yfvPfzW7O3sz83LN3x5v784/Nb88yt+LucuXDD0tWA3+/07X517177Ud9tip/9Y1mlVarZbrVfyyWMfHvq8n3rgrxq3X7nn6qHPDQAAAAAAwDpjZAFgSO+49/WNQbtkfM12G92yfGM+fP97Wp13N3vD3f/1lKDdScv18bz5nteNdO5PPfBXDwXtTvjS6p2nBO2S5J61Q3n3fdeNdC3Yre5auS3vPfy24vZSU9y0mrX1AgAAAAAA8BBhOwAY0ucf/OSm++zp7Gt1zkHDeZ8b4Nqsj3j94vHPFrd/7oFPFLcN4o13//HA+775nj8Z6VqwW33+wU81bp+1ls99c/u3ewkAAAAAAAAMSdgOAIZ0vPfgpvs8dt8TW51z0LGzy73jrc67W630lhu3L9fHU9f10OdvCvIB47HZvfax+548oZWMxyP3PDZL1Z7tXgYAAAAAAABDELYDgCGt9FYatz967+Pz3LNe2OqcnQzWbLdZiIx1K/Xmz9NavTqBlQDDWm241z75wLPzlIPPmuBqRrfQWcx3XPQD6fhfMQAAAAAAgJkzWH0OAHCaUpDr4sXL83fO/648bt+Ts9hZanXOQcfIDhIiY7BQ4kq9nIUsTmA1wDCa7nffd8mPDnzfnCbPPONrc/nSo/LJYx/Jke69Ax/XSSdX7Hl0Llq8LJ9/8JM5tHrHwMc+au/jhlkqAAAAAAAAGwjbAcCQSkGul1zwPXn8/qcOdc5Bx8hqthvMIKHEld5y9s8dnMBqgGGU7nfX7n/aTAbtTrp46fJcvHT5SMcDAAAAAAAwWWYXAcAQuvVaeun23bZU7Rn6vIM32zWPsGXdoM12wPQqvUYXKo2UAAAAAAAATJawHQAMoSnE1XZ07EZzA5bOrmq2G8igzXaT0qt7E7sW7BSl1+go91oAAAAAAAAYhrAdAAyhKcQ1SgBkftAxstrYBjJYs93kWgLX6tWJXQt2itL9brEStgMAAAAAAGCyhO0AYAjLDSGuUUYbDjpGdrVnjOwgVgcIJU6yJXCSLXqwU2i2AwAAAAAAYFoI2wHAELZsjGyLZru6roe+zm6xMkAocZItgRoJob1SaHZBsx0AAAAAAAATJmwHAENoakwbZbRhZ8Bmuzq1kaQDGCTcNsm2udUJjqyFnaIUmtVsBwAAAAAAwKQJ2wHAEJoCWiONkc1gzXaJlrRBDBKkm2iznTGy0Fop3DxKsBkAAAAAAACGIWwHAEMoBbQWq6VUVTX0eecGbLZLBLcGMUiQbnWAUbP9dOu11sf4nkF7mu0AAAAAAACYFsJ2ADCEUmhq1PDHXKXZbpy2stmuFADaimvBblZ63YzSIgoAAAAAAADDELYDgCE0NduNQrPdeA0Sbhv2eRwmOOd7Bu1tVbgZAAAAAAAA2hK2A4AhlMIfC6M226VF2K4ebvzpbrK6hc12g5x7XNeC3awcbtZsBwAAAAAAwGQJ2wHAEErhj6WRm+0GHyM7TNhrt1keJGw3wWa7VQFJaKVXd7NWr/bdptkOAAAAAACASRO2A4AhbNVYw1ZjZLWkbWqgMbJDPo/DhPSMkYV2mho8Rx3bDQAAAAAAAG0J2wHAEMpjDSfXbCe4tblBnqPV3nBtc8OM8fU9g3aaGjw12wEAAAAAADBpwnYAMIRSaGph1Ga7aLYbp9UtbLYbZoyv7xm0o9kOAAAAAACAaSJsBwBD0Gw3GwZ5joZ9HocJzvmeQTtNr5mFzuIEVwIAAAAAAADCdgAwlNLo0cURwx9zVYtmO8GtTQ0SiFsdYhxsMtzzP+y1YLdqaqfUbAcAAAAAAMCkCdsBwBCKzXajjpFtE7YzknRTK4VQ5Kn7DNts1z44JyAJ7TS9Zka93wIAAAAAAEBbwnYAMIRSAMQY2ekySCBx2NCiZjvYeqVQaydzre6XAAAAAAAAMA7CdgAwhGLYbsSmpU4Gb7YT3NrcIIG44Zvt2h+njRDa2ap7LQAAAAAAAAxD2A4AhrBSH+/7uGa76dGt19JLd9P9Jtls53sG7RRHdo94rwUAAAAAAIBhCNsBwBBWev1b5RZGbFuaqwZvttOS1mzQYNuwAbjVYZrthO2glXKz3eKEVwIAAAAAAADCdgAwlK1qW5rXbDc2g4YRV+uV9Ope+/MP02wnIAmtlMZla7YDAAAAAABgOwjbAcAQSkGrpVGb7dIibCe41ahNGG6tXm1/fs12sOVKr5lRW0QBAAAAAABgGMJ2O1BVVT9VVVU9wp/f2e6vAWDabVWzXasxsoJbjdqE4YZqqdNsB1uufK81RhYAAAAAAIDJE7YDgJZ6dbfYhDZq29JcizGyq4JbjVZ6/cdP9t13mJa6wnjLJqWRmEB/pVDromY7AAAAAAAAtoGwHQC01BSymmyzneBWkzYBumFCcJNqw4PdbKtaRAEAAAAAAGAYg9fnMMu+I8n7Wux/dKsWArATrDYEpkZtW2rTbGckabM2wbZJjYRdrVfSq3vpVP69AwyidL8dtUUUAAAAAAAAhiFstzvcUdf1jdu9CICdYrkpbDdqs13aNNsJ2zVpM2Z3mOeyKXTZZK1e1coFA9JsBwAAAAAAwDRRqwIALTU1mo3abNdpM0ZWs12j5d7xgfcd5rlsGifceJyQJAysNC571HstAAAAAAAADEPYDgBaagpLTXKM7Fq9ml7dHel6O9lWj5EdttlOSBIGV3q9LFSLE14JAAAAAAAACNsBQGtNYalRAyBzLZrt1tcyXLvabtDmuRmu2W640Nyq7xkMbFWzHQAAAAAAAFNE2A4AWio1ms1X863Dcg83l8Gb7ZrWQrvnpm2zXV3XQ4+DNUYWBlcKtS5WwnYAAAAAAABMnrAdALRUHms4evijfbOd4FZJm+em7fPYzVp66bVd0vq1hO1gYKXXi2Y7AAAAAAAAtkO7+hxm1fdXVfXjSa5Jcm6S1SR3J/likncneVNd1+/axvUBzJRS+GOps2fkc89V7d6aP3z/e3PW/DlJkipVLll6RC5evDxVVQ10/JdW7sgXj38uvfRy/sJFuWLPVemM2M43Le7vHh5439KoypLl3vG2y/myjx/7UO5ZO/Tlz3fa8z5r7lk9lBuPfzbdei3nzJ+fK/de3fp1yPj06m5uOv75HFq9I0lyrHt/3/0WRxzZDQAAAAAAAMPwm8Td4dsf9vlSkgNJHpHka5L8WFVVH0ry8rqu3zrpxQHMmpW6fzBrHGMNOy1LZ//s0O+c9tij916bl17249nT2Vs8rluv5Xdv/5V88P53nvL4BQuX5Acv/+mcs3B+q3VMm08f+2jee/htA+/fptnuge7R/Lsb/8Uwy0qSvPme15322IWLl+UHL/upnL1w3tDnpZ1e3c0f3vkf8+7D153y+Nnz5+WHLv+ZXLB4yTatbPe6Z/VQfuXmV+au1ds23VezHQAAAAAAANvBGFlO+ook11VV9XPVoHVILVRVdUFVVde2+ZPkqnGvA2AcymMNR29aGsct+HMPfiL/7dDvNu7zzvvedFrQLknuWr0tv3fHr468hu200lvOf7z137U+ZlCvu+s1pzTTjcOdK7fkv9zxa2M9J83ed+TtpwXtkuTetS/lt2/7hW1YEf/ljl8bKGiXjCfcDAAAAAAAAG1pttvZbk3yhiQfSPKpJPck6WV9lOzTkvytJC/csH+V5MeyHsJ8+ZjX8tIkrxzzOQG2RakFbWGKwh+fPPbhxu1/ffSDxW2ffeATOd57sLEZb5p99oGPZ7luN+Z1tdBW2M/Hj32o7ZIGcv0DH89y7/hYxhGzub8+Wv4+3rx8Qw6v3ZMzT4xoZust947n+gc+PvD+C2MINwMAAAAAAEBbwnY70weyHqJ7S13XdWGfv0jya1VVfUWSP0hy9YZt/7qqqvfVdf3nW7xOgJnUrdf6Pj5Xjedt9aq91+TzD35qpHMc7R5p3H5k7b7itl66Oda9f2bDdoe797Y+ZtBmu17dzf3dw63PP4hu1nKse7+w3YQcWWv+OTmydp+w3QQd696fXroD7dtJJ5cuXbm1CwIAAAAAAIA+jJHdgeq6fkNd19c1BO027vuhJM9Ocv3DNv18VVVzW7JAgBnXq3t9H5+rxvO2+rVnvThVRhsnu9lbwGqhne+kNmNVp81yr12rXVJuKzx9v8Eb8IYxy8/7rNn0NbDF32tO1eZn/5lnPC/75w5u4WoAAAAAAACgP812pK7re6qq+o4kH0q+nO54XJKvS/LWMV3m15P8cctjrkqiXQ+YOr30D9tVY8qwf8UZz81c1cm777su93cP5/H7n5oXn/sd+djR9+c9h9+S25Zv+vK+q/VKHuwda32NzYItmwWRplnT1/bUA8/JR46+t9UxG6027HfuwoW5cPHS3Hr8C6mTnLtwQfbN7U+VTm5evmFDALLOkW7/ZsFBQ3+MbqXXHKZr+l4zfk0/+wfnzkyVTs6cPztPOvDMvOjcb5vgygAAAAAAAOAhwnYkSeq6/nBVVddlffzsSS/KmMJ2dV3fleSuNsdU1WitTgBbpVf3H3XYGWMh6FMPfmWeevArT3ns6Wc8N08/47mnPPbXRz+Y37j151qff7NQ1yw3rK3U/Zvtrt57bS5YvLRwzKDNduX9fuiyn8l5ixdueo5uvZaXXf+t/c8/RCsfw9n0NSD4OFFN95x/e9Vvj21MNwAAAAAAAIzCGFk2etPDPn/StqwCYMqVmu062/K22j+YXKd5jOxmrV6zPEKzFNpZ7OzJYmex1TGn71d+XhY7SwOdY66az1zh3zssC3hNzGbf81kOnM6iUrhxLvOCdgAAAAAAAEwNYTs2uvFhn5+/HYsAmHa9uhC2q6bnbbUpbNet19LNWuPxsxw0Wi6sfamzlMWqfyBu0LG5TfsNGrZr2neWn/dZo9luupRDsv0DsgAAAAAAALAdpicVwDR48GGf792WVQBMuXqKmu2GGbg9SKBrloNGpTGyi9VSFooht8Ga/Jqeu4Vq8FDQUmdP4fzGyE5Cr+5mrV5t3EfwcbJK95xSQBYAAAAAAAC2g7AdG533sM+/tC2rAJhy3brb9/HtaLarhhgjO0iQbnXA8Nk0KjXbLXb2FIM7g4YLS+N156v5zFVzgy0w5QCRMbKTMciYZGG7ySo32wnbAQAAAAAAMD2E7djoWQ/7/LZtWQXAlCs32w0ethqbqtRt1xC22+nNdoV2uMVqqRjcGTRcWHruFlq2b5XXMbvP+ywZ5Hme5dfALCo9321fWwAAAAAAALCVhO1IklRVtSfJ333Yw+/YhqUATL1eXQjbTVOzXTlrN1CIaJZbvUpf31JnTxYLo14Hb7YrjbocfITsybX0s2yM7ETs9NfALNJsBwAAAAAAwCwQtuOkf5Xk0g2fd5O8fpvWAjDVuimMkZ2it9XGMbIDtLjNcqtXObSzp9woV68UQ5SDnbtdIGhhxNAfoxnkNbA6wKhZxme1FGQVtgMAAAAAAGCKTE8qgLGoquq7qqq6sOUx/2eSVz7s4d+p6/qL41sZwM5RF5vtJj9GttRs1zhGdoe3epXa4ZaqpSw2jKQcJFw1rlGXmu22105/DcyiYpDVGFkAAAAAAACmiLDdzvO9Sb5QVdV/rqrqxVVV7S/tWFXVV1RV9adJfjM5Ja1xa5If3+J1AsysXgphu214Wy2OkW04ZpAQ0Sw3rBVHvXaWGluyBnpextRst1j1D9vN8vM+S1Z3+GtgFpXaBhc77UY0AwAAAAAAwFaa3+4FsCX2JvmHJ/70qqr6bJIbkxzO+njYc5M8OUm/Brx7kryorus7JrNUgNlTGjdaVdOUYS/H7UrjGk/ZZ4ZbvUrtcIudPY0tWYOEq8Y16rIUINKmNhkrg7QY+l5MVDEkq9kOAAAAAACAKSJst/N1kjz2xJ/NvC3JP6rr+patXRLAbOul2/fxuUzTGNmynd5sVwrELVVLWdiqZjtjZGfKTn8NzKLS96TpNQsAAAAAAACTJmy38/xy1sfAflWSRwyw/7Ek1yV5dV3Xb9vKhQHsFKVmu852NNtVpTGy5Wa7wUJlmzd/TaNu3c1avdZ323qzXXkk5SCNf6VGtLajLktjZAdZA6MbJEin2W6yNNsBAAAAAAAwC4Ttdpi6rv8syZ8lSVVVZyW5NsnlWR8Zuy/rTXf3Jbk3yaeSfKyu6/4VTQD01UthjGwmH7Zr32s3YNBoRkNfKw3NcEudpcZxr4OEq0rjddsGgkrrWBbwmoiBvtcz+hqYVcXWSM12AAAAAAAATBFhux2sruv7krxnu9cBsNP0ChnlbWm2a1DXdao+zXejjEuddssNAanFak/mqvl0Mtd3FHCpte7UfcYz6rIUIGoKCzI+gzXbzWa746wqhRs12wEAAAAAADBNpisVAAAzoNRs18nchFeSNHXblUbJDhQqm9GwXVNY7WTArRx0Gz6A1TSetp+lwhjZWW0UnDUDfa99LyZKsx0AAAAAAACzQNgOAFrq1YWw3TY021WNg2QLYbsB2tNmdYTm8iBhu0JT1iBfcymA1TYQNErgj9EN9L32vZioUiulZjsAAAAAAACmibAdALTUbwRpknS24W21fdRu0BGasxk0amrtO9kmt9jp30I3yNjQ0vOy0DIQVAoQNYUFGR/NdtNntdhs1641EgAAAAAAALaSsB0AtFRutpuuMbLlZrtBgkabB8+mUam1r0on89VCknLQbZQQYttmu6VOaYzsSuq6FJNkXAYJVq7Vq+nV/YO1jF+xNbIwchkAAAAAAAC2g7AdALRUpxC225Zmu3LYri6F7QYIle20MbJLnaVU1fpzNcoI19Lz0nbUZWkNdXpZq1dbnYv2Bm2tm9XQ6ayp63psQVYAAAAAAADYSsJ2ANBSt9B21am24W21agjbFQrSBgmVrdVrxa9zmg3SjlUa+TrJZrumcN5ybZTsVht0THJptCnj1c1aeoUQc9sgKwAAAAAAAGwlYTsAaKncbDf5MbJNQ2RLY2RXB2zrGnS/aVIaI7vYWdzw8fDNduUwX9tmu/JozEGDYAxv8GY734tJaPqZ12wHAAAAAADANBG2A4CWenUhbLcNzXZDjZEdMMw1i6GvYvPchma7xWqx7z6DNdv1DyC2DQQtNew/i8/7rBn8NTB7gdNZ1DSuV9gOAAAAAACAaSJsBwAtlcYddrblbbW5266fgVu9ZjD0tVz42pY2NMktFMI7m40M7dbddLPWd1spwFfS1IS3YozsllvVbDdVmu41Cy1fWwAAAAAAALCVhO0AoKVys920jZHtb+BWrxkMGpXHyD4UbisF3ZratZLmsbqlAF9J0xjZ5RkMOc6andzuOIuMkQUAAAAAAGBWCNsBQEu9dPs+Pm3NdsUxsju52a6w5o3NdqXwzmZfb2MgqKGprp+5ai7z1Xz/68xgyHHWDPwa8L2YiKamwbavLQAAAAAAANhKwnYA0FK52W663laLYbud3GxXGMG6MbBTCu9sNlq0uX2r/ajLxap/u12pnY/xWek1txg+tN/svQZmkTGyAAAAAAAAzIrpSgUAwAzopX/YrtqGt9WqajdItlf3GsehbrQ6g0GjUmjnlDGyhWDcZgGspvDhMO1bpYY9Y2S33k5ud5xFpe/HYrXU+h4HAAAAAAAAW0nYDgBaKjXbzW1Ds11TDKWuT2+2W6tXBz73bDbblUI7G8bIFoJxm329je1bheBck2HXwegGDdFt1nbIeAwSkgUAAAAAAIBpIGwHAC2Vm+3mJryS9auWnR62W24xonQWW71KX9/SKc12hZDbJl9vc7Nd+1GXSx1jZLdDt15LL92B9p3F18Asamq2AwAAAAAAgGkibAcALfXq/kGdzrY025XDdnWfsF2b1rSVAcfNTpNyQ9ZDwbaFIRvlSmN156uFdKr2QcthQ3+Mps3zq2VwMkrfk2EaIwEAAAAAAGArCdsBQEulZrvODLyttgoazWDoq9hsV21ds92w7VvGyG6PVoHT3uwFTmdR+bXVvjESAAAAAAAAttL0pwIAYMrUdSFsNwPNdqutmu1mL/RV+vo2NtuVAjybPTfl1rwhw3aFMbJtRv3Snma76TPu1xYAAAAAAABsFWE7AGhpuprtWo6RbRE0Wp3BVq/lAUI7pdGUa/VacURwUh6ruzBk+1ax2W4GGwVnSbtmO9+LSRh3ayQAAAAAAABsFWE7AGipWwhkdaq5Ca8kqcpZu/TJ2hUDY/3MYqvXSt2/FW5jaKcpwNP0/KyOuX1rqXDccuFrYDzahEhn8TUwizTbAQAAAAAAMCuE7QCgpXqKmu2axsj202qE5oy1etV1XWy2W9o4RrYhwFMK1CXjb98qjZGdted91rQJ0DX9PDA+5ddW/9cIAAAAAAAAbJf57V4AAMySXt3rO541STrVdI2R/def/8epUuW8xQvzjINfkxee+6153aHXDHzm9xy+Lu89/LZUVZXLlx6VbzjnW/KUg88ex6LH6t7VL+VP7vrtfPLYR4pByI3BtqZw3Ms//73FAGNpfPBiZ7xjZD9+7EN52We+NVWVXLL4iHzt2d+Y55z5gk3P96773px33/fm3LZ805cfW+gs5qq9j8s3n/8Pc+nSlUOtc9o80D2aN9/zuvzlkXdnqbMnzz/7b+crz/z6VBtqHj997KN50z1/ki88+Jn06lO/b92sDXytjxx9b172mW/98ufz1XwesffqvOT8f5zL9zxq9C+GHF07kvceflvfbcO+tgAAAAAAAGCrCNsBQAulMFcyfc12vayPu71z5db8z7tfm/9592tbnbtOvR5MqpMvHP9Mfuu2f5+XXvbjuXb/00Za8zgt947nVTe/Inev3tm439LGMbINzXYnn7M2FoZutisfd/J5v2n58/m9O341VTp59plfV9z/3fe9Oa+98zdOP09vLZ849uHcePyzefkjXpVzFs4faq3T4vDavfmVm1+Z21ceChT+/p2vzmq9kued/eIkyRcevD6/fuvPZq1eHcs1N4bzuvVarn/gr/PLN/9kfvzKX85ZC+eO5Rq7Va/u5pdu/onidmNkAQAAAAAAmDbGyAJACw9vydqoU81NcCWTV6eXv7jvLdu9jFN8+thHNw3aJQ9rthtzgGfY8y0Vxsj2857D1zVuf/fh5u/Lse79+ejR9w98vWl03+rd+cWbXnFK0O6kt93756nr9cbJDxx5x9iCdiUP9Nbb9RjNFx68PretfLG4fdgRzQAAAAAAALBVhO0AoIXSKNFke5rtDs6f2dhuN263LpeDMdvh1uUbN92nk7kcnDvzy58vVkvZ29k/tjWcNT9cu1mb4zZ73m8b4PsyyD7T6p7VQ/nFm1+Ru1Zv67v97tW7cqR7X5Lk9pWbJ7Kmvzj81hztHpnItXaqWxuCdsnwry0AAAAAAADYKsJ2ANBCry6PGe1Uk39bPTB3Rh6193ETu95KvTyxaw1ipV7ZdJ/H7XtS9s7t+/LnnaqTJx54xtjW8OQDzxrquMfte/LAzV2rveavs9vwc9lmn2n0pZU78qqbfiyHVu9o3O/OlVuSJHVD++Q4rdYreee9b5zItXaq1V75ftJJJ0848PQJrgYAAAAAAAA2J2wHAC00N9ttzxjZ773kR3PJ4iOGPv6rzvyGfN8lPzpQ8Guz0NekrTSEdZLkiqWr8t0X/9Bpj//9C/5JHrPviSNdey7z+bYLvi9X77t2qOP3zu3LSy/7iezvHNx0327W0q3X+m7r1b3UDT+XXz7HDIbt7ly5Na+6+RW5Z+3QpvvesXwibDfC9fZ29m2+0wbvuO8Nm/4MUtYU3v2+S/5lzl24cIKrAQAAAAAAgM3Nb/cCAGCW9Bpas7aj2S5Jzpo/J6+48pdy1+ptuXv1rvTqbn791p8d+Pj/48KXpqqqPHH/M3PT8uez3HswXzz+ufyPL/3+aftOW7PdamE9+zsH86OP+Pc5f+GiVNXpY3b3zu3LP7v83+Se1UO540QjWhsL1WKu2HNVljp7Wh+70WP2PSE//+jfyc3Hb8gDvaM5tHJ7/utdv9l335XeSvbOnf6fboOG6LrpH9abVrcv35xfvvknc6R770D737Fy64mPhovbPX7fU/MDl73ixPfi2CnbPn70Q3nHfa8/7Zij3cP5wJF35LlnvXCoa+52paDio/dem6ccfPaEVwMAAAAAAACbE7YDgBZ6KQebqm0sjK2qKhcuXpoLFy9NXdfppNPYwnfSUrXny2G0hc5Crjoxkna+6v+fCKv1Snp1b9uChQ9XCus86eAzc8HixZsef87C+Tln4fxxL6uVuWouV+69Okly+/x5xf1W6uXszenNa4OG6Gap2e6W4zfmV255ZY52Dw98zB0rNydJ6iHDdgudpcxV87ly72NO23bl/2bv3sOjqu99j3/WTGZyIVdIIFwLiIpQFVG2iEEBRa1atdXaum3dtR63Vdt6OdrqtijWVmttS9sj3V6OVrp1e9zd3ahUi4qCilRBvFZECwoB5RIMhEtCZjKzzh9KzJD1m6w1t6zJvF/P4/O4Zt1+ycwQ43z4fEsO1N9anlW7vbfbvkXNj2lK1UzfvCfyiSm8Wxbsl+OVAAAAAAAAAAAAAO7wqSAAAB4ka7YLWr0zRnZ/lmUpHOh5JKwk43HJRlWNPk4AACAASURBVMpGbf+Mko0Y1uJmJK4fJXveooZgYdxts51hDK3fNO5dq99umOUpaCcppYbCroqTfO/LguU6tnqm476t0Y/11u7lad27UJnCsiErnOOVAAAAAAAAAAAAAO4QtgMAwINkbXEBH/1YdRs2M4btkgSPTAGZ3mAKoLkNG/pNsufNqVVNch+icxvK600ftr2v326YpT3xXcZjKoM1jo/v6PhEe+Ntsu3Umu3CVvKRwNNrvmx8jy9qfjSlexa6SLxvhWUBAAAAAAAAAADQ9/knFQAAQB6wkzTbWT4aIxly22xnCLUkC7uYRj/2BtNa8jWskzzk6BxMcjse1u242d6ypnWVfrfhRrXFW43HHFj6Rf1g+Gzj/i2Rj1IeI9tTQHNAaKAmVhzruO+Dvau1tm11SvctZMb3b56GZQEAAAAAAAAAAND3+ScVAABAHojJHGwKyh9jZCX3YTNTKC9ZWM9PzXZ9bQxlsnWbgkluQ3RuQ3m94b09b+nOjTcb2/skaWzZ4bp82CzVh4cbv0+b21MfJZtsjOw+M/t/xbiPdjvvTM2U+fr+BQAAAAAAAAAAQN9H2A4AAA/iedJs5yY4JKXWbBfNh2a7PG3GClgBY9DIFCx03Wzn07Ddqj2v6/cf/TRpY+L4fkfq0qE3KBwoVsAKaFB4iONxmyOph+16GiMrScNLRuvgssMc9721+xVtiXyU8v0LUV97/wIAAAAAAAAAAKDv808qAACAPGDLHLYL+OjHashls50plBcOJGlYy4Nmu3wO65iCjqaQo/uwnf/GyL69e4Xu+uhnitrOI3Il6fDyo3XJ0OsU6vKarA8Pdzx2S2Rj1sbI7mNqt7Nl67nmBSndu1AZ3795OgYaAAAAAAAAAAAAfZ9/UgEAAOSBZMGmgI+a7dwGh0yhlqBVpKCKHPdFkgSjcs0U0srnsE7IEHQ0N9u5HCObZARyb3h91990z0e3qyPJ+idWHKv/NeRaFVmhhMcHhYc6Hv9ps12KYTuXr5lDyiZoSPgLjvte3vmcdnXsSOn+hcj4/s3jsCwAAAAAAAAAAAD6Nv+kAgAAyAPJm+2COVxJcm6DQ6EkoRZTux3Ndtlleu6MYTuXITo/Ndu9uvNF3ffxHYrJvKZ/qjxeFw6+WkGre+izPjzM8ZymyOaUx+UWB3oeIytJlmXpxP5nOe6L2hE9v+OvKd2/EDFGFgAAAAAAAAAAAPmGsB0AAB7E7SRhuz7UbJdsnykgk2u2bRtb9vK52c703Jm+766b7VIMoWXayy2L9YdNcxRPElw9puoEXVD/AwUt5wDrIEPYLqYONUU3p7QuLwGvoyobVF00wHHf8zue9FUg1c8YIwsAAAAAAAAAAIB8459UAAAAeSCWtNnOPz9W3YZVkgWMjKEvnwSJOuwOY9NgssY+v/PcbOcyROeHZruXdjyj/9j8u6QNkVOrT9H5gy5XwBC0k6RB4SGyZDnu2xtvTWltXgJeRVZI02tOd9y3J7ZLf2t5NqU1FJq+2EwJAAAAAAAAAACAvs0/qQAAAPKAnSTYlCwclGumEbD7K04Sagn5vNkummQdYcvd1+9H5mY75xY/1812LsfNZsvz25/UQ1vmypZtPGZGzZf1jYGX9NgSGQqENSA0MKPrcztGdp+GqpNUEih13Pfc9scV90mToF/11WZKAAAAAAAAAAAA9G2E7QAA8CDZ6EtfNdu5bIYyBeqSXcMvzXbJ1pHPzVhev+9uQ3S9OUb22ebH9cjWe5Iec1L/r+rsuu/Ispwb6/ZXHx6eiaV1SvZecFIa7KeGqpMd9zVFN+uN3a9kYll9Vl9tpgQAAAAAAAAAAEDf5p9UAAAAeSBuO4dDLFmuQ0K5ELbctXSlMkY2WaNcLiVr2Avlc7OdIfRl+r67brbrpTGyCz/5b/256f6kx5w64Os6s/Zbnt5Dg8JD011agmQtjybTa05XQM6Nloua58u2zS1+ha6vNlMCAAAAAAAAAACgbyNsBwCAB6ZmO1Pgpre4bXZLNq7RtM8/zXbOIyil/G62CxlGABub7Vw21uV6rKlt2/rLtof1+LYHkx53Ru35Or32PM9h1frwsHSW103Y4xhZSaoJ1eqoyqmO+9bt/YfWtq1Kd1l9Vl9tpgQAAAAAAAAAAEDfRtgOAAAPTIGlgOWvH6nJQnQJxyVttjOFvswht1xK3oyVv2EdY8jR2GzncoysctdsZ9u2Htv2oJ785JGkx3217ts6ZcDXUrpHfXFmx8im+po5seYs475nmh9NdTl9XrJmynx+/wIAAAAAAAAAAKBv81cyAAAAnzM32/nrR6opKNftuFSa7fwyRjZJM1Zej5E1BCDNzXZux8jmptnOtm39uekPerr5z0mPO3fgxTqxvzmo1pN6H4yRlaRhJSM1ruwIx31v71mhTe0b0llWn0WzHQAAAAAAAAAAAPKRv5IBAAD4XNw2hO181mwXykCzXchj6CvXTKG/kBX2PJLUT7yGHONyF6KzZWd9lGzcjuuRrffoue2PG4+xZOmfB12qaTWnpXWvfsEKVQSr0rrGPkVWSAEr9VHQyUKDyb4XhYxmOwAAAAAAAAAAAOQjfyUDAADwOXOzXepBnWxw2wzVF5vt8r0VK1vNdp8em72wXdyO6+Et/64XdvzVeIylgL5V/301VJ+ckXsOCg/LyHXSDXcdXHaYhhWPctz3ys7FaunYntb1+yLT69mSpSIrlOPVAAAAAAAAAAAAAO4QtgMAwANTs53ls2Y7t+GhZME0r6GvXDOF/vK9Fcsccow4Pu4lQBdz2YLnVcyO6Y+bf6eXWp4xHhNQQN8efKUmV83I2H3rMxW2SzOgaVmWZhra7TrsDi3Z/kRa1++L+mozJQAAAAAAAAAAAPo2fyUDAADwOdPIzoDPfqQWB0pcHZdKs13UJ8120bhz+KyvNttFM9Js5/5YL9d8YNMcLd+5xHhMQEFdNOQaTao8LqP3rg8Pzch13L5fkplYcaz6F9U57ntxx0LtjbelfY++JNJH378AAAAAAAAAAADo2/yVDAAAwOdMzXYBvzXbuR0jS7Od73gd3+ulrS7TY2Q77Kj+78e/1MpdS43HFFlF+tehP9IRFVMyem9Jqi8enpHrZOI1E7SKNL3my477WuO79beWZ9O+R19iCu3m+/sXAAAAAAAAAAAAfVtRby8AAIB8YssQtvNZfj1khV0dlzRs5zH0lWum0F++N2N5DTn2VrNdNB7RvR//Qn/f86rxmJAV1r8OvU7j+03M2H27GpShZrtMvWaOrZ6pJz/5f2qLt3bb99z2x3Vc9ZcUtIIZuVe+M72eQ3n+/gUAAAAAAACAbLJtW/F4XLZt9/ZSAKAby7IUCARkWVZvLyWrCNsBAOCBqRksb5vtko2RDTgH9kzjH3MtYjuvw23Q0K+ShRxt2+72H6de2uoy1WwXibfr7o9u07utbxiPCVvF+u7Qf9PYfodn5J5OaopqFbaK0w6AFlvpj5GVpJJAqaZWf0lPN/+5275Polv1+q5lOqpyakbule9M799wnr9/AQAAAAAAACDTotGoWlpa1NLSomg0StAOgK9ZlqVQKKSqqipVVVUpFAr19pIyzl/JAAAAfC5ubLbzV1uV21GMyYJpIWPoa29Ka8q0Qmu2k6SoQ0Ap7mWMrNJvttsbb9PvP/pp0qBdsVWi7w27MatBO+nTkGsm2u0y2aY2reY0BQ1/n+WZ5vn8T5DPRPvo+xcAAAAAAAAAMqW9vV2NjY1as2aNmpqaFIlE+H/MAHzPtm1FIhE1NTVpzZo1amxsVHu7PyanZQphOwAAPLBtQ9jOZ812btrdwlZx0grfZONM/fDLXNTQZuY2aOhXppCj5DzCN5fNdm2xVs3d+BO93/q28ZiSQJm+P3y2xpSNT+tebtWHh6V9jeIMBryqi/rrnyqPd9y3of0Dvd/294zdK5+Z2gjz/f0LAAAAAAAAAJkQjUbV2NioPXv29PZSACAte/bsUWNjo6LRaG8vJWP8lQwAAMDnzM12/vqRallWj6GVcCD56EzT+XHFM9KQli5Ts13IMP42XyRr9nL6mmO2++fCy7H7a43t1v/ZOFtr2941HlMWKNcVw3+i0aVjU76PV5lotgtnaIzsPif0P9O4b1Hz/IzeK1/11WZKAAAAAAAAAEhXLBbThg0b1NHR+5/FAEAmdHR0aMOGDYrF0isG8QvnGVcAAMBR3NAMFrD8NUZW+jRMF4mZK3nDPbTf9RT6KgqGUl5bJkQcRqpK+d+M5XWMbC6a7XbHdur/bJitDe0fGI8pD1bqB8Nu1rCSUSndI1X1xcNdHWfJki3nRsZMB7yGFI/Q+H5H6p09K7vte2fPa/q4fb2GFH8ho/fMNzTbAQAAAAAAAICzTZs2dRu5GAgEVFlZqcrKSoVCIQUC/iqBAABJisfjikaj2rlzp3bu3Kl4/PMim/b2dm3atEnDhqU/taq3EbYDAMCDfGm2k9IL0316frJxphGVpbSqzIn20WasZM+bc7Odh7CdvIftdnXs0G833KSPI+uNx1QGq/WD4T/RkOIRnq+frnqXzXZhq1jt9l7HfZkcI7vPzP5nOYbtJGlR82O6YPAPMn7PfEKzHQAAAAAAAAB0F4vFtGvXroTHwuGwvvCFL6ioiHgHAP8Lh8Pq16+f6urqtH79ekUin5eJ7Nq1S7FYTMGg/4psvPBfMgAAAB+L24awneW/H6nphOl6Ot8UlMmlvtqM5XmMrIeRvl7HyLZ0NGvOhh8nDdpVFfXXVSN+1itBO0mqCw2R5eI/aYuTjE3O9BhZSTqw9IsaUTLGcd+KnS9oR/STjN8zn5jev6E8f/8CAAAAAAAAQDr27NmTsG1ZloYPH07QDkDeKSoq0vDhw2VZVsLj+/85l4/8lwwAAMDH4oZmMDdhn1xLJ0zX0/m+CNsZ1hDqodHP74IqMjYlOgWUvDTbmcYgO9ke3aY5jT/W5shG4zH9i+p09fCfaZDLdrlsCAVCqgvV93hcstd7NtrULMvSzJqzHPfF1KHFO/6S8XvmE5rtAAAAAAAAAKC7/VvtysrKFA7n9+ceAApXOBxWWVnivLTdu3f30moyx3/JAAAAfMzUbBe0/Fd122OYLknTV0/nRw2tVLlkbLbL87COZVnGr8F5jGzmm+0+iW7RrzfcoK3Rj43H1IYG6aoRP1NdeLDr+2eLm7Bfsva6bLUhTqg4RgNCAx33vbjjKbXFWrNy33wQtSOOj/c0/hoAAAAAAAAA+rL9G58qKip6aSUAkBnl5eUJ24TtAAAoMHE5h+3ystmuh1BLkRUy7vNzs12+h+0k83MXsfd2e8xLs13M0MzY1dbIJs1p/LE+iW4xHjMwNERXDf+ZMUiWa/XFw3o8JtkY2WT70hG0gppRc4bjvr3xVi1reSYr980Hffn9CwAAAAAAAACpsG1bsVji/8cvLS3tpdUAQGbs32wXi8Vk23YvrSYz/JcMAADAx0xjOAOW/36khnpstku+P2AFjCNZTa1yuWRuxsr/sI7puYvEu3/NMWWu2W5z+0bN2XCDmjuajMcMDg/XVSN+qppQrev7Zlt9uOewXa7HyO4zpepElQXKHfc9t32Bp2bCvsTYTNkH3r8AAAAAAAAAkIp4vHvhQzDov8lKAOCF059jTn/e5RP/JQMAAPAxU7NdUP77ZafnZrueQy1expnmWl9uxjI32zmNkfXQbJfk2I/b1+s3G36slo5m4zFDi0fqyuE/VVVRf9f3zAU3YTtTcFTKbsCrOFCi46q/5Lhve8c2rdz1Utbu7Wd9+f0LAAAAAAAAAKlwanqyLKsXVgIAmeP051i+N9sV9fYCAADIJ3HbMEbWh812xWk220mfhpD2aFe3x5/f8Ve92/qGwlaxDig9RBMqJitoZf8/K+J2XG/tXq41be+o3WGkqtQ3mrFMz83ync/ro/Z1CY+9s2el6+v+cfNvtbr1Tcd9b+1ert2xncZzhxeP1veHz1Z5sNL1/XJlUHhoj8cka5/M1hjZfabVnKZF2x9Vhx3ttm9R83xNqjgurf9hYtu23tmzUu+1vq22+B7P55cFyjWu3xEa2+/wlNfglbGZkrAdAAAAAAAAAAAAfIywHQAAHtiGZruAD8tiewqthK2eA0ama6xpe0dr2t6RJC3Z8YQO33W0LhpyjYqskPeFuhS343pw8516eedzSY9L1mCWL8KGr2H93n9o/d5/pHzdDrtDy1oWeT5vZMlB+t6wG1UWdB6H2tvKguWqDNZoZ2x7SudnOyhaWVStoyun6aWWZ7rt29i+Tqtb39Qh/SakdG3btvWnrfdpyY6/pLXGRdsf1ZcGnKsv1/5zWtdxy9RsF+oDYVkAAAAAAAAAAAD0Xf5LBgAA4GOmMZwBy39jZHsKrYQDPYfS3LbEvbn7Fb27x7kxLVPW7/1Hj0E7qW80Y/npazig9BD9YPjNvg3a7eOm3c7EUvZr+E/sf5Zx3zPN81O+7ubIxrSDdvv89ZP/0o4kY4QzxbZtx5HIkjloCgAAAAAAAAAAAPgBYTsAADyI51GzXWmgLOn+kh72f3pMqev7vd/6tutjU/Gey+t7WbNfuXlucuHgskP1vWE35cX3tL54WNL9ycJ4/YIVmV6O4/0PK/8nx32rW9/Uxr0fpnTdf7T+PZ1lZf16TkwjZCUp5CIEDAAAAAAAAAAAAPQW/yUDAADwMds2hO0s//1IPbDsi0n3H1R2aI/XcHPMPnvjra6PTYWb69cU1ao2VJ/VdeRCT89dLowrO0KXDv2xigM9jxv2g/H9JibdP73my6oq6t/t8cHhEeofqsvWshKcWGNut1u0/dGUrtmW4ffd3nhbRq/nxNQQKklFWR7pCwAAAAAAAAAAAKTDf8kAAAB8LCbDGFn5b4zsF0rG6J8qj3fcd2zVTA0OD+/xGg3VJ6s+nLwxbJ9I3HksZKb0dP2AAvpq3bdlWdkfCZptkyqmamTJQb12/8PLj9YlQ6/31Tjbnnyx35EaV3aE476T+5+j6qL+OrvuwoQWyiIrpK/UXZCrJeqA0kM0quRgx32v7lyq5miT52uaxrGmKtvvY0mKqcO4LyDCdgAAAAAAAAAAAPAvPs0CAMCDfGq2C1gBXVD/Ax3ab5Leb/u79sbaVBbsp4PKDtWE8smuQmlVRTW6esStWrlzqdbv/YdidlyN7Wu0JfJRt2MzHfrxcv1T+n9Nh1ccrS+UjMnqGnKlNNhPPxh+s1buXKoP9q5WRzwxnLQrtkOrW99M+fpBFWlixbHdHi8JlOqgsi9qYsWxeRdaDFhBXTrsx1q+c4k+aFutSDyi8qIKjSs7QuM+a707qnKqakOD9Obu5QpaQU0on6xhJaNytkbLsnRi/zN178e/6LYvrpgWb/+Lzh54oadrmsJxVUX9dVCpuZny3dY3tDvW0v16WX4fS8mb7YKW/4LLAAAAAAAAAAAAwD6E7QAA8CAuQ9jOp2WxASuoIysbdGRlQ8rXKA9W6viaUzu35zfN0zPN87sd11vNdsdWzdQZdedn9d69oSRQqmOrZ+pYzey274O21VrdmHrYrjxYoQuHXJXO8nwpaAV1TNUJOqbqBOMxI0sP0sjS3m0NrAsNVlN0U7d9L7U8rVMHnKvSYD/X1zOF40aXHJz0Of7thhv1Xutb3a+Xi2Y729xsF2SMLAAAAAAAAAAAAHzMn8kAAAB8Kp5HzXbZEracR4v2VrNdyLCevixslaR3fh6Nh+1rAlZQJ9Sc4bhvb7xNL+54ytP1ooZwXKiH59j0Po7aEU/3T0WcZjsAAAAAAAAAAADkqcJJBgAAkAFxOYdEAiqcgIgpqNVbzXaFGBwrTvNrLsSAop9Mrpqh8mCl477FO/6iDjvq+lqmEKopTLdPKBB2vl4umu0Mf45KNNsBAAAAAAAAAODWyJEjZVlW5z9Llizp7SUBBYGwHQAAHtBsl6zZLruNWKbGrbDlHBrqy8IBmu3yWThQrOOqv+S4r6WjWa/ufNH1tSJxw/vCEKbr3N9LDZVSD2NkCyi4DAAAAAAAAAAAgPxTOMkAAAAyIC7nsJ1VQD9STUEt0zjLTKHZ7nM9tZb1eH4Bfs/85vjqUxUyBEUXNT8q27ZdXSea4njl3nofS1KMMbIAAAAAAAAAAADIU4WTDAAAIANMzXbBAmq2M4V4st2Ileq4zL4o3TGyhfg985uKoipNrprhuO/jSKNW7XnN1XXMzXY9hO382mzHGFkAAAAAAAAAAAD4WOEkAwAAyACa7czjKU3Nc5lCs93nAlZQRVYo5fN7GjGK3Dih5gxZshz3Ldr+qKtrpBpCDRnfx9kdBy3RbAcAAAAAAAAAAID8VTjJAAAAMiBuCIkECiggkqwRy+3oy1QYQ0UFGLaTpGKrJOVzabbzh4HhITq8/GjHfe+1vq3GvWt7vEaqIVTTa8A0ljaTYkrSbCea7QAAAAAAAAAAAOBfhO0AAPDA1GxXSGNkk4V4onb2WrFMoSLTWNu+ztRM5u7cwvye+dHM/l8x7lvU3HO7nbnZLvnrw/Q+znZDpWRutgsoIMtybvoDAAAAAAAAAAAA/IDqCAAAPIjbjJFN1ooWsdsVVuaDXHE7bgzyFWyzXYBmu75gVOnBOqD0EK1te7fbvtd2vaQzo9/UgNAg4/lRw9jXngKVyRoqsy1mOzfbBS1+NQEAAAAAAAAAwG9s29Zrr72m1atXa+vWrWpvb1ddXZ2GDh2qhoYGlZeX9/YSU7ZhwwatWLFCGzduVFtbm2pra3XooYfqqKOOUiCQ3ue/W7du1YsvvqiPP/5YbW1tGjJkiEaPHq3JkyenfW0nq1at0ttvv62mpibt3LlT/fv31+DBg9XQ0KABAwZk/H6FjE+0AADwwDY02wUKKWyXJMQTibdLWZio22FHzesp0OBYOl93oQYU/erEmrMcw3ZxxfXc9gX62sD/ZTw39WY75/2m8F4mmZrtggU0jhsAAAAAAAAAAL/btm2bbr31Vj344INqampyPCYcDmvGjBmaPXu2jj76aFfX/fa3v6158+Z1bn/44YcaOXKkq3OXLFmi6dOnd27fdNNNmj17tvH4rhN1jj/+eC1ZskSStGzZMt1000167rnnFI93//x30KBBuuGGG3T55Zd7Dsa9/vrruvbaa7V48WLHaw8bNkyXXHKJrrvuOhUVFWn27Nm6+eabO/cvXrxY06ZNc3WvTz75RHfccYcefPBBffTRR47HBAIBTZkyRTfddJNOPPFET18LnBVOMgAAgAwwjj8soJBIspBXtsbIJhttaQoN9XU02/Udh5ZP0qDwUMd9y3YsUmtst+O+uB0zBlF7ClSaxi/npNlOhrAdfw8IAAAAAAAAAABfePTRRzV69GjNmTPHGLSTpEgkooULF2ry5Mm65JJL1NHhPN3GT2699VYdd9xxWrRokWMYTpK2bNmiH/zgBzrnnHMUibj//PPXv/61Jk2apGeffdZ47Y0bN2rWrFk6/vjjtWXLlpS+Bkn64x//qNGjR+v22283Bu0kKR6Pa+nSpZo5c6a+9a1vefp64IxPtAAA8CBOs13PzXZZkCwAVKjBMZrt+o6AFdAJNWfqP7f8vtu+dnuvXtjxV50y4Gvd9kWShFt7en2YXgORnDTbmcbIFk5oGQAAAAAAAAAyze7okJo29vYy+r66YbKK+nbU5v7779fFF1/cLSx2wAEHaNy4cSorK1NjY6OWL1+uWOzzv2B/zz33qLGxUQsWLFCRT79Hv/zlL3XDDTd0bh988ME6+OCD1a9fP23atEkvv/yy9u7d27l//vz5mjVrlm6//fYer/2rX/1K11xzTbfHx40bpwMPPFDFxcVqbGzUihUrFIvFtGzZMp177rk67rjjPH8dN954o2655ZaExyzL0sEHH6wDDzxQFRUV2r59u1599dWEsOSDDz6oTZs2aeHChb59jvIB3zkAADywbUPYziqcsJ2pEUvKYtguabNdYQbH0vm6CzWg6GdHV07Tgm0PaVespdu+Jduf0Ak1Zyq0X4tjNI33hWnMbEwditkdClrZ+zWBhlAAAAAAAAAAyIKmjbLPPbi3V9HnWf/1njR4ZG8vI2veeOMNXXrppQlBuwkTJmju3LmaMmVKwrFNTU2aNWuW7r777s7HFi5cqBtvvFG33nprztbs1ttvv60XX3xRknTWWWfptttu09ixYxOO2b59u66++mo98MADnY/96le/0qWXXpp01O3KlSt13XXXJTw2bdo03XnnnRo/fnzC401NTbrxxht111136YUXXtCqVas8fR3z5s1LCNoFAgFdfvnluuaaazRixIiEY23b1mOPPaYrrrhCjY2NkqRnn31Ws2bN0m233ebpvvhc4SQDAADIAGNIpIB+pBZZRbIMX2+2RlDSbNddOJ0xsgU6etfPQoGwptWc5rhvZ2yHlu98vtvj2Wi2k7LfbmdutuPvAQEAAAAAAAAA0JsuuuiihDGjDQ0Neumll7oF7SSprq5Od911l+64446Ex2+//Xa9/fbbWV+rV83NzYrH4/rhD3+o+fPndwvaSVJNTY3+8Ic/6Mwzz+x8LBaL6b777kt67csvvzxhhO5Xv/pVPfPMM92CdtKn37d///d/1y9+8QtJ0rZt21x/DevXr9ell17auV1cXKwnnnhCv/vd77oF7aRP2+7OOussrVixQmPGjOl8/I477tCHH37o+r5IVDjJAAAAMsA2jZEtoEYmy7KMrVg02+VOsZV62C5ZOyF6z9TqU4whuUXbH1N8v2bNZO+L/Vvwuu1P8hqIJgnxZUJMzqHloArnz1EAAAAAAAAAAPxm8eLFeu211zq3Kysr9cgjj6isrCzpeddcc41OP/30zu14PK45c+ZkbZ3paGhocNXo9rOf/Sxh+7nnnjMeu2LFCr3yyiud24MHD9b999/f45jWa6+9VieddFKPa+nqjjvuUFtbW+f2nDlzdMopp/R43sCBA/Wf//mfnduxWMy3z1E+IGwHpzTaMAAAIABJREFUAIAHcVPYrsB+pJoCbrlutgsoWLBtWOm00xVqQNHvyoOVOqbqBMd9WyIb9fc9ryY8Fk2j8THZ6ydbodl9aLYDAAAAAAAAAMB/5s2bl7B9+eWXa8iQIa7O/fnPf56w/fDDD6u9PbufN6TihhtuUCDQ8+e648ePTxgb+8YbbxiPffjhhxO2v/e976mqqsrVembNmuXqOEnas2eP7r///s7t0aNH65JLLnF9/qRJkzR16tTO7ccff9z1uUhUWMkAAADSFDeNkbUK60eqMWyX42a7Qg6NpTVGlmY73zqh5kzjmOZFzY8lbKfT+JjsNZCt0Ow+pj9HgwXUEAoAAAAAAAAAgN8sXbo0Yfub3/ym63PHjx+viRMndm7v3btXK1euzNjaMqG0tFQzZsxwffwhhxzS+e+tra3avXu343HLli1L2D733HNd36OhocF1oHHp0qUJrXbnnHOOq+BgV9OnT+/89/Xr16uxsdHT+fgU9REAAHhgbLYrsJCIKaiTrZCOqcGrkENj6YyRLeSQot/VhgfpiIpj9Nqul7rtW9P2jta1va+RpQdJkiKGca9uGh9DSV4D2W+2M4Xt+NUEAAAAAAAAAIDesH37dq1du7Zzu7q6OiFs5saUKVMSxtCuWLFCU6ZMydga03XAAQcoHHY/OaqmpiZhu6WlReXl5d2Oe/PNNzv/vbq6WmPGjPG0rqOOOspVy9z+YcghQ4Zo3bp1nu61/9f/wQcfaMSIEZ6uAcJ2AAB4ErcZIyuZgzrRuHP4J10Rw3XTGaWa70LpjJEt4JBiPpjZ/yuOYTtJeqb5UV089IeS0mt8DFvm10/UEOLLlJgMY2RVWKFlAAAAAAAAAMioumGy/uu93l5F31c3rLdXkBVNTU0J2wceeKAsy/J0jbFjxyZsb926Ne11ZdL+4bmehEKhhO1oNNrtmD179mjv3r2d26kE19yes2HDhoTtK6+8UldeeaXn+3XV3Nyc1vmFirAdAAAemJrtTGMf+6pcN9uZrlvIobHidMbI0mzna18oGaMDS8frH23vdNv3xu6X1RTZpLrw4CSNjz0HMQNWUEVWkTrs7sG3bI+RNTfbEbYDAAAAAAAAgFRZRUXS4JG9vQzkqe3btydsV1VVeb7G/uf4LcjldeSqGzt27EjYrqio8HyNyspKV8d98sknnq/dk127dmX8moWgsJIBAACkKU5IRJI5rJWt8ZPpNHj1VeF0xsgWcEgxX5zY/yuOj9uK67ntCySZGx+TjYhNOM4Ums36GFlDsx1jZAEAAAAAAAAA6BW2bSdse221c5KJa/hdcXHiZy2RiPfpQW7PSeXaPdn/eYc7hO0AAPDA1GwXsArrR6qpOSvXzXamsFAhKE4jaFjIIcV8Mb7fRA0OD3fct6xlkXZ37Ey78THXodl9aLYDAAAAAAAAAMBf+vfvn7Dd0tLi+Rr7n+N1bKsbsZjzZwy9Zf+vcf+GQDfcNgDW1tYmbC9btky2baf1z7e//W3P6wVhOwAAPInbjJGVaLbzg3Ta6YqsUAZXgmwIWAGd0P9Mx31RO6IXdvw17feF6TUUtTP/N6O6iolmOwAAAAAAAAAA/KSuri5h+/333/d8jffeey9he+DAgY7HFRUlfh7Q0eH8uYGTVMJs2RQMBjV06NDO7Q8++ECtra2ervH222+7Om7QoEEJ26k8R8iMwkoGAACQJtMY2UCB/Ug1hXRy3WxXyONQw4HUxsiGrHDBNTHmq0kVx6sq6Py3vpbseFJ7Yrsc95maJ7sdZwrNZul9vI+x2U402wEAAAAAAAAA0Btqamp0wAEHdG7v2LFD7777rqdrLFu2LGF70qRJjsdVVlYmbO/YscP1Pd555x1Pa8qFyZMnd/57PB7X888/7/rc5uZmvfnmm66OnTJlSsL2008/7fo+yCw+aQUAwAPzGNnCConkutkuSrNdN6mOkS3k71m+CQVCmlZzuuO+3bEWvbJzseM+t89xyDQOOutjZGm2AwAAAAAAAADAbxoaGhK2H3roIdfnvvvuu1q5cmXndklJiY488kjHY/dvvFu1apXr+zz55JOuj82VE088MWH73nvvdX3uvHnzFIm4mzh0wgknKBj8/DPpxx9/XFu3bnV9L2QOYTsAADywjWG7wvqRGjKOn8xOSKfdFLYr5GY7K/VmO+SPqdUnq9jwXO+KtTg+7vY5NoXysvU+3sfUbFdooWUAAAAAAAAAAPzkggsuSNi+8847tXnzZlfnXn/99Qnb3/jGN1Rc7Pw5xMSJExO2FyxY4OoeTz31lJYvX+7q2Fw6//zzVVFR0bk9f/58PfXUUz2e99FHH+knP/mJ6/vU1NTo/PPP79zevXu3rrnmGm+LRUYUVjIAAIA0xWxD2K7AfqSam+3c/c0Lr4xjZAOFGxxLtaGO9rD8UhYs17HVMz2d4/a1YRwHnfVmO8MYWcJ2AAAAAAAAAAD0mhkzZmjChAmd2y0tLTrvvPPU1taW9Lw5c+boscce69y2LEtXXXWV8fhjjjlGZWVlndvz58/Xq6++mvQe//jHP/Qv//IvPX0JvaKiokJXXHFFwmPnnnuuFi92nlAkSevWrdPMmTM9jdCVpNmzZyeEGP/jP/5DP/rRjxSLOX/2YrJq1Sq98MILns7B5worGQAAQBps207SbFdYIRFjSCdLjVim8E8hj0RNOWynwnqt9gXTa77sKdDrtvHRFFaN2NkJze4Tk2GMrAiCAgAAAAAAAACQqs2bN2vdunUp/bPPfffdp3D4888PlixZoqlTp+qVV17pdr9t27bp8ssv19VXX53w+A9/+EMddthhxnVWVFTo61//eud2LBbTaaedpqeffrrbsZFIRPfee68mT56sLVu2qKamxsu3JGdmzZqlQw89tHN7586dOuGEE3Tuuefqv//7v/XWW29p9erVevrpp3XllVdq/Pjxevfdd1VSUqIzzzzT9X1GjRqle+65J+GxX/ziF2poaNCCBQvU0eH8GYz0acBv7ty5mjFjhsaPH6/nnnvO+xcKSeITLQAA3DIF7SSa7fbJViOWaaylaZxtIUh1hC7NdvlnQGigjqxo0Ipd7v6GkdsgpnEcNM12AAAAAAAAAADknfPOOy/lc23blvTpiNc777xT3/3udxWPf/rZ6MqVKzV58mSNGTNG48ePV0lJiTZs2KDly5d3C3fNnDlTt9xyS4/3u+WWWzR//vzOZretW7fq5JNP1pgxY3TYYYepuLhYW7Zs0SuvvKI9e/ZIkurr63X77bf7suEuHA7riSee0IwZM7RmzRpJn35P//SnP+lPf/qT4zmWZWnu3LlqbGzs1gyYzAUXXKDNmzfr+uuv73yOXn75ZZ1xxhkqKyvTEUccoUGDBqm0tFS7du3Stm3btGrVKs8tejDj01YAAFyKE7brFLZMjVg02+VKwErtNUegKT+d2P8s12E7tyHUXDdU7hOzDc12vDYBAAAAAAAAAOh1F198sWpqanThhRdq9+7dnY+vWbOmM0jm5Dvf+Y7uuusuhUKhHu8xdOhQ/fnPf9ZZZ52lXbt29XiPUaNG6YknntCWLVs8fjW5M3z4cL344ou67LLLNH/+/KTHDhgwQPPmzdNpp52mH/3oRwn7KioqerzXvvbACy+8UJs3b+58vLW1VS+99JKr9fq1JTAfFFYyAACANMTtJGG7AguJ5LrZzhT+SbXdrZDRbJefhpeM1sFl5sr1rtyGUI1jZOPZHSMbNzTbBRhxDAAAAAAAAACAL5xzzjlau3atrrjiCtXW1hqPC4VCOumkk/TSSy/pvvvucxW022fGjBlavny5zjzzTGObW11dna699lq98cYbOuSQQzx/HblWX1+v//mf/+kM3Y0bN07V1dUqKSnR6NGjdeKJJ+ruu+/W2rVrddppp0lSt8a5qqoqV/c65ZRT9OGHH2ru3LmaMGFCj414oVBIU6ZM0ezZs/X+++/riiuuSO2LBM12AAC4lbTZLsWWsXxlCrmZxr2myxT+KeRmu1QFCTTlrZn9v6L3Wt/q8ThT82S34wzvn2y9j/eJydRsx68mAAAAAAAAAAC4tW7duqxef+DAgfrNb36jX//611q5cqVWr16tpqYmtbe3q7a2VsOGDVNDQ4OrJjaTsWPH6tFHH9W2bdv0/PPPa+PGjWptbdWgQYM0atQoTZ06VUVFn39+MG3atM6Rt254OXZ/DzzwgB544IGUzm1oaFBDQ4OrY1etWtX575ZlaeDAga7vU1JSossuu0yXXXaZmpub9fLLL2vTpk1qbm5WNBpVeXm5Bg4cqIMOOkhjx45VWVmZ568F3fGJFgAALpnamKTCGyMbMoR0OuwOxexYxsdB0myXOYzqzF+HlE3QkPAX9HFkfdLjTO/PbseZxshmudkuZvizlNcmAAAAAAAAAAD+EwgENGnSJE2aNClr96itrdXZZ5+dtev71Z49e/Taa691bh900EEphxf79++vU089NVNLQxKFlQwAACANycfIFtaP1GQht6id+aCOaTwtzXbe0R6WvyzL0on9z+rxOLchVFMDnincminmsB2vTQAAAAAAAAAAUDjmzZun1tbWzu1jjjmmF1cDt/hECwAAg9bYbn3cvl52l22TQIGN5kwWcntvz1sqC5Z3bg8KD1VlUbWkT6uam6Kb1NKxXUVWSMOKRykUCCW9V8zuUFzO4Ry34zLxOdrD8ttRlQ16fNuD2tHxifEYtyFU03Efta/T1sjHqgsNlmVZKa0zmZhtGCNbYH+OAgAAAAAAAACAwrVx40bNmjUr4bELLrigl1YDLwjbAQCwn5gd00Ob5+qVnUtky9xm1xXNdp+7++Pbuj32xX5H6Yzab+q+TXdoS+SjzsdDVlhfrfu2jq9xrjS2bVsPb7nLvA6a7TyjPSy/FVkhTa/5suY3PWA8xm0I1TRGVpJmf3iZBoWH6rKhP1ZdeLDXZSZlCs/y2gQAAAAAAAAAAPnqz3/+s1auXKmrrrpKdXV1SY99/fXXdfbZZ6u5ubnzscMPP1zTp0/P9jKRAXyiBQDAfp765L/18s7nPJ1jFdhkdq8ht7/veVV/3/Nqt8ejdkSPbL1H9cXDdXDZod32v9TytJa1LDJeN1lYCM5oD8t/DVUz9ddPHtHeeJvj/nSb7fbZEvlIczfeoptGzc1ow515jCyvTQAAAAAAAAAAkJ927dql2267Tb/85S91yimn6IQTTtDhhx+ugQMHqqioSM3NzXr77bf1l7/8RQsWLJBt253nhsNhzZs3rxdXDy8I2wEAsJ83dr/s+ZwAYbu0vLX7Fcew3Ru7kj8XNNt5V/HZSF/kr9JgPzVUnaxF2x913O82hOqmAW9r9GNtjmzU4OLhntaYjDlsx68mAAAAAAAAAAAgv0WjUS1YsEALFixwdXxpaan++Mc/6vDDD8/yypAphZUMAADAhe0d2zwdXxIoVU1oQJZW40/FVon6FyWvP/ZiR7TZ8fFkz0VpoJ+qi/pnbA356Ct1/+L4+OkDztPA0BDHfRMrjs3mkpAj02tOV8ChpTCgoAaFnZ/7/Q0uHuHquJYO5/dnqmLqcHycZjsAAAAAAAAAAJCvqqurFQx6+6zj2GOP1QsvvKBzzjknS6tCNhC2AwBgP5F4u6fj/6lyWsE1MlmWpSlVJ2bseqbwTcQ2PxeTq6YX3Pd9f0eUT1FJoCzhsWKrRBMrjnV8fgaFh+qA0kNytTxkUU2oVqcM6P6L18SKKSoLlru6Rv9QncaW5f5vSRmb7RhxDAAAAAAAAAAA8tRZZ52lLVu26MEHH9Sll16qhoYGDR8+XP369VMwGFR5eblGjBihqVOn6t/+7d+0dOlSLV26VEcddVRvLx0eFfYn1AAA7CduxxW1I66O7V9UpyMrG3Rm7TezvCp/+tKAc2VZAb3Sslhbox+ndS1T+MYUfBwQGqiz6y5M6559QW14kK4cfov+p+kBNe5dq+HFo3RG7TdVXzxMg8JDJUl/2/msdnZs19iyw/X1QZfQHtaHnDrg6woooL/tfFaS9MV+R+nsgd7eF/869Dr9acv/1d/3vKpdsRbHY2zZaa+1q5htarbjVxMAAAAAAAAAAJC/BgwYoPPPP1/nn39+by8FWcQnWgAAdNFhR437/veIn2tUyUGd25YsWZaVi2X5kmVZ+tKAr+lLA76muB3vfHxnx3b92wcXebqWKXxjCtudU3eRAoTGJEkjSg7QlcNvkW3bCa9Hy7J00oCv6qQBX+22D31DwAro1Nqv69Tar6d8jZJAqb41+PuybVvfe/9s2Yp3OybzYTtDsx3vaQAAAAAAAAAAAPgcYTsAALpINkK22CpRwGICu5Ou35fiQInn853CdrZtK2JoGQwHij3fo69LFqYjaIeeWJalgAKKOYTtMo1mOwAAAAAAAAAAAOQrEgMAAHQRsc1hOwJe7qTyfXJquuqwOxxbtiQpbPFcAJlmymRmvNlOhmY70WwHAAAAAAAAAAAAfyNsBwBAF0mb7QjbuRK0ihTwGJpxCt9ECT4COWZK2+VqjCzNdgAAAAAAAAAAAPA3wnYAAHSRtNmONjXXvIbhnMZKJgs+ErYDMs8yhO0y2WwXt+PGxsqARbMdAAAAAAAAAAAA/I2wHQAAXRDwygyvwUSnpqtkwceQFfa8JgC9z9RqJ9FsBwAAAAAAAAAAAP8jbAcAQBemgFdAQYIgHoQD3sJwNNsB/pXJIbIxdX+v7xP0OH4aAAAAAAAAAAAAyDXCdgAAdGEKeBHu8sZzs528Ndsx0hfIPNMY2UzG7eJJm+0I2wEAAAAAAAAAAMDfCNsBANBF1BDwItzljddwotdmO8bIAplnCtvZGQzbOb3X96E9FAAAAAAAAAAAAH5H2A4AgC4i8Yjj417Hoha6kMdwolPblanZLmwVy7JMDVwA/CxGsx0AAAAAAAAAAADyGGE7AAC6SBbwgnvem+0cwnbG4CPPBZANphCrbWew2U5Jmu1Esx0AAAAAAAAAAAD8jbAdAABdmEaXEvDyxms40SmAw0hfINdyMUaWZjsAAAAAAAAAAADkL8J2AAB0YWq28zoWtdBlptnO8FwQfASyIhfDmZOH7Wi2AwAAAAAAAAAAgL8RtgMAoAua7TLDe9iue7OdeaRvOKU1AehJ9uN2Tu/1fWi2AwAAAAAAAAAAgN8RtgMAoAtj2I5mO0+8fr/iisu2E0dVEnwE/CGjY2RFsx0AAAAAAAAAAADyF2E7AAC6MLapEfDyJJXvV0yJjVfmZjueCyAbLGOzXQbDdsma7USzHQAAAAAAAAAAAPyNsB0AAF3QbJcZqXy/YnZi4xXNdkBumcJ2mYvadX+fd8UYWQAAAAAAAAAAAPgdYTsAALowN9uFc7yS/JZSs51Nsx3Qq0zFdjlotrNkKUDYDgAAAAAAAAAAAD5H2A4AgC5oU8uMTDTbReMR52vzXABZYWy2szMYtpNzsx2tdgAAAAAAAAAAAMgHhO0AAOgiamhTC9Gm5kkqTYD7h3BMzXY8F0C25GKMrHOzXVBFGbwLAAAAAAAAAAAAkB2E7QAA6IJmu8xIJRDXbYwszwWQU8Ypshm0f4PlPoyQBQAAAAAAAACgMDU2NurHP/6xpk6dqkGDBikcDsuyrM5/Hnjggd5eIpCACgkAALowtamlMha1kKUSiOs2RtY2jJG1vLfmAeiZaYxsJrvtTGE7xsgCAAAAAAAAAODNyJEjtX79+s7txYsXa9q0ab23oBTce++9+v73v6/2dufPaAE/otkOAIAuInFDwIs2NU9SCSfSbAf4k53RsJ1pjCxhOwAAAAAAAAAACsmTTz6pSy65xHXQbsmSJQmNd7Nnz87uAgEDmu0AAOiCZrvMyESzHc8FkGvZb7aLy9Rsx68lAAAAAAAAAAAUkuuvv162/flnEP/8z/+siy66SMOHD1coFOp8vLa2tjeWBxjxqRYAAF3QppYZqQTi4qLZDuhN2Y/aJWm2Y4wsAAAAAAAAAAAF47333tNbb73VuX3qqafqoYce6sUVAe4xRhYAgM/E7A5j61LYCud4Nfktq812hO2A7LCc43Zd/1ZZuvZ/n+8ToNkOAAAAAAAAAICC8eqrryZsn3POOb20EsA7wnYAAHzG1KQmEfDyKpXvV4ftrtkuxBhZICusHHTbGZvtRLMdAAAAAAAAAACFYsuWLQnbw4YN66WVAN4RtgMA4DOmJjWJgJdXqYyR7RrCidtxRe2I87UJPgJ5K2ZoD2WMLAAAAAAAAAAAhWP37t0J26FQqJdWAnjHvCYAAD5Ds13mhFIYu9s1hNNhR43HpRLkA9AzU7Nd5nrtkjTbMUYWAAAAAAAAAABfsm1br732mlavXq2tW7eqvb1ddXV1Gjp0qBoaGlReXu75mvF4PAsrBXKDT7UAAPhMsmY7Al7eWJalsFWc9Hu6v64hnOTBR+9BPgA9y80YWZrtAAAAAAAAAADIB9u2bdOtt96qBx98UE1NTY7HhMNhzZgxQ7Nnz9bRRx9tvNa6des0atQo4/7p06c7Pv6HP/xBF154oeO+m2++WTfffLPxmosXL9a0adOM+4FUMUYWAIDPROLOY0slmu1S4fV71jWEQ/AR8A87J2E7/g4QAAAAAAAAAAB+8eijj2r06NGaM2eOMWgnSZFIRAsXLtTkyZN1ySWXqKPDecIN0JfwqRYAAJ9JFvBKZSxqofMaiksI2zHSF+iTYjKMkRXNdgAAAAAAAACQlniH1Lqxt1fR95UNkwJ9O2pz//336+KLL+426vWAAw7QuHHjVFZWpsbGRi1fvlyx2Oef791zzz1qbGzUggULVFTUt79HKGy8ugEA+Iwp4BWywgpYlMF6FfLcbNdljCzNdkDOWZbzGFma7QAAAAAAAAAgD7RulB43j+lEhpzxoVQ+srdXkTVvvPGGLr300oSg3YQJEzR37lxNmTIl4dimpibNmjVLd999d+djCxcu1I033qhbb7014dhhw4bpww8/7Nz+zW9+o9/+9red2w8//LAmT57cbT21tbWdo2BffvllnXfeeZ37rrjiCl155ZXGr6W+vr6HrxZIDZ9qAQDwmagh4EWTWmrCHtsA46LZDuhdhrCdncmwnaHZzqLZDgAAAAAAAACA3nbRRRcpEol0bjc0NOipp55SWVlZt2Pr6up01113acyYMbr22ms7H7/99tt13nnn6dBDD+18rKioSCNHjuzcrq6uTrhWfX19wv6uysvLJUnr1q1LeLy6utp4DpBN1PQAAPAZU8CLJrXUeA3FuWm2CyhIAxaQJc5Ru8wyN9sRtgMAAAAAAAAAoDctXrxYr732Wud2ZWWlHnnkEcegXVfXXHONTj/99M7teDyuOXPmZG2dQG8jbAcAwGeMYTua1FLiNaTYNYTDcwHknpWDuF1MhmY7CrcBAAAAAAAAAOhV8+bNS9i+/PLLNWTIEFfn/vznP0/Yfvjhh9Xebp5kBeQzPtUCABSMJ7c9omUti4z798bbHB+n2S41qTTbrWl9R4u3/0Wv7/6b8zV5LoAscg7bPdr0R/31k/9KemZ9eJiOrpqmSZXHG4+JxNv1t5ZnHffRbAcAAAAAAAAAQO9aunRpwvY3v/lN1+eOHz9eEydO7GzG27t3r1auXKkpU6ZkdI2AHxC2AwAUjNb4bjV3NHk+jza11IStEk/Hv9/2dz267T/UYUfN1wyE010WAANTs92e+C7tie9Kem5zR5NWtb6u9vheNVSf3G2/bdv6949+Zjyf8dAAAAAAAAAAAPSe7du3a+3atZ3b1dXVOuSQQzxdY8qUKQljaFesWEHYDn0Sn2oBANCDkEXAKxVeg3Fv7V7e8zVptgN87bntCxzDdh+1r9d7rW8ZzwvQbAcAAAAAAAAA6SkbJp3xYW+vou8rG9bbK8iKpqbEwpIDDzxQluX8l/RNxo4dm7C9devWtNcF+BFhOwAAelARrO7tJeSlyqLMf98qiqoyfk0An+oXrJDMxZKubI5sVCTe3q0RtLF9TdLzKoK8twEAAAAAAAAgLYEiqXxkb68CeWr79u0J21VV3v+//f7nNDc3p7UmwK8Cvb0AAAD87ovlE3t7CXlpfL8j8+KaAD51SL8JGblOXPFuj0Xi7UnPGdfviIzcGwAAAAAAAAAAeGfbdsK211Y7J5m4BuBHhO0AAEhiavUpOrJiam8vIy+NLh2rM2u/lbHrHVE+RdNqTsvY9QAkOrn/2RrfL/1wcdyOdXssWdjuzNpvaXTpWON+AAAAAAAAAACQXf3790/Ybmlp8XyN/c+pqalJa02AXzFGFgBQMI6qmKqhxSNdHVtkFWlUycGqDddnd1F93MkDztbRVdO1tnWVIna7yoNVeqZ5vta0veP6GkdWNOi0Ad/QoPBQ/gYMkEWhQFiXDZ2lTZENaty7VrZDQ90+OzqatWDbQ477Yk5hO9s5bFcXGqyTB5yd2oIBAAAAAAAAAEBG1NXVJWy///77nq/x3nvvJWwPHDgwrTUBfkXYDgBQMEaWHqSRpQf19jIKTnVRfx1Z2dC5vaxlkafzG6pPVn3xsEwvC4ADy7I0pHiEhhSPSHrcpvYNxrCdlzGydeHB3hcJAAAAAAAAAAAyqqamRgcccIDWrl0rSdqxY4feffddHXLIIa6vsWzZsoTtSZMmZXSNlHLALxgjCwAAcipoBT0dH7aKs7QSAKlK9j52GiMbtSOOx4atcMbWBAAAAAAAAAAAUtfQ0JCw/dBDzn/p3sm7776rlStXdm6XlJToyCOPzNjaJKm4OPEzw/Z257/oD2QbYTsAAJBTQY/FuuEAYRzAbwJKErbz0GwXDhCmBQAAAAAAAADADy644IKE7TvvvFObN292de7111+fsP2Nb3yjWzguXdXV1QnbmzZtyuj1AbcI2wEAgJyi2Q7IfwHL/GuEU7NdxDaE7Xh/AwAAAAAAAADgCzNmzNCECRM6t1taWnTeeeepra0t6Xlz5szRY4891rltWZauuuqqjK9v9OhI9A+jAAAgAElEQVTRCoc/L+lYvHixotFoxu8D9MRbtQwAAECaPIftaL4CfCeQbIwszXYAAAAAAAAAAOTc5s2btW7dupTOHTlypCTpvvvu0zHHHKNIJCJJWrJkiaZOnaq5c+fq6KOPTjhn27Ztuummm/T73/8+4fEf/vCHOuyww1JaRzLhcFjHHnusFi9eLElqbGzUGWecoe9+97s68MADVVZWlnB8fX29SkpKMr4OgLAdAADIqaDlcYwszVeA7wSSFGTHbYewnb3X8dgQ728AAAAAAAAAADLivPPOS/lc27YlSRMnTtSdd96p7373u4rHP/3//StXrtTkyZM1ZswYjR8/XiUlJdqwYYOWL1+ujo6OhOvMnDlTt9xyS+pfRA+uvvrqzrCdJC1cuFALFy50PHbx4sWaNm1a1taCwkXYDgAA5BTNdkD+SzZGNuY0RjYecTyW9zcAAAAAAAAAAP5y8cUXq6amRhdeeKF2797d+fiaNWu0Zs0a43nf+c53dNdddykUCmVtbaeffrp++tOf6qabblIs1v3zCCAXzJ+SAQAAZEHQQ9Y/oKDnJjwA2ReUOTRrO42RtQ1jZGm2AwAAAAAAAADAd8455xytXbtWV1xxhWpra43HhUIhnXTSSXrppZd03333ZTVot88NN9ygt956S9ddd52OO+441dfXq7S0NOv3Bfbh02sAAJBTXprtaL0C/Mny3GxnCNvxHgcAAAAAAAAAICXr1q3L6vUHDhyo3/zmN/r1r3+tlStXavXq1WpqalJ7e7tqa2s1bNgwNTQ0qKKiwvO1Z8+erdmzZ6e8tnHjxum2225L+XwgHYTtAABATnlpqqP1CvCnZM12cTmE7YzNduGMrQkAAAAAAAAAAGReIBDQpEmTNGnSpN5eCuALjJEFAAA55a3ZjiAO4EeBJM12cdthjCzNdgAAAAAAAAAAAOgDCNsBAICcCnoo1qXZDvAnK8mvEU7NdlFjsx3vcQAAAAAAAAAAAOQPwnYAACCnvDTbhWi9AnwpYAWMgbv9m+1idkwddofjsbzHAQAAAAAAAAAAkE8I2wEAgJwKeBkjazFGFvCrgClsp8SwXdSOGK9Bsx0AAAAAAAAAAADyCWE7AACQU0HLwxhZWq8A3wpYzr9KxOzEMbKRuPMIWYn3OAAAAAAAAAAAAPILYTsAAJBTQXlptiOIA/iVaSS0vV+zXdKwHe9xAAAAAAAAAAAA5BHCdgAAIKe8NNuFaL0CfMsy/CrRrdnOptkOAAAAAAAAAAAAfQNhOwAAkFOmNiwntF4B/mV6L8cZIwsAAAAAAAAAAIA+irAdAADIKS/NdgRxAP8KGH6ViO8/RjZJs13ICmd0TQAAAAAAAAAAAEA2EbYDAAA5FRTNdkBfEHDZbBc1NNsVWUWemi4BAAAAAAAAAACA3kbYDgAA5JSnMbIBWq8Av0q32S5EmBYAAAAAAAAAAAB5hrAdAADIKU9jZAnjAL4VsAxhO3u/sJ2h2a44UJLxNQEAAAAAAAAAAADZRNgOAADklLdmO8J2gF8FDCOhY0ocIxuxI47HEaYFAAAAAAAAAABAvnFfLYM+wbKsUZImSBoiqVzSJknrJS2zbTvam2sDABSGoBVyfSxjJgH/MjXb2S6b7RgTDQAAAAAAAAAAgHxD2K5AWJZ1jqSrJR1jOKTZsqxHJN1o2/a23K0MAFBogoY2LCc02wH+5b7ZzjlsR5gWAAAAAAAA/5+9O4+yqyzzxf/dVUkqhCRkDkiIAUOahEHARAQZG5qppaUBZXIp2K1eUZRuEBsnRllwwV4dQbuV9gavP1RaQKZWWxxCiwjcgDSQoCTKEKYYQkIGyFj790dCmVOp6VSdqkpVPh/WXuR9z36Hvc85u2qf89TzAgD0NZaR7eeKohhaFMX3kvwgrQfaJcmoJB9P8kRRFMf0yOQA2CZZRhb6h9bey41ls2C7VjPbeX8DAAAAAADQtwi268eKoqhPcnOS05o9tDjJT7MxAO+RJOVmj41PckdRFAf3yCQB2ObUFx1PrDtI5ivYahWtLCPb2GwZ2XWtZLbz/gYAAAAAAKCvEWzXv12V5PjNyuuSnJtkQlmWx5Rl+f6yLN+RZK8kv9lsv4YktxdFsVPPTRWAbYXMdtA/tLYkdGPzZWRltgMAAAAAAKCfEGzXTxVFsVuSTzerfl9ZlteXZbl288qyLOclOTKVAXejk1zcvbMEYFtUH5ntoD+o62Bmu7Uy2wEAAAAAANBPCLbrvy5OMnCz8o1lWd7R2s5lWb6R5Kwkmwfi/d2moD0AqJnqMtsN6saZAF1R18qtRGOaBdvJbAcAAAAAAEA/IdiuHyqKYrskpzSrvrq9dmVZPpXk9s2qBiQ5o4ZTA4DUFzLbQX9Q10rg7Iay2TKylUmVmwwsBNMCAAAAAADQtwi265+OSTJks/JvyrL8XQfbzmpWPqk2UwKAjarJbDdQ5ivYarWW2a6U2Q4AAAAAAIB+SrBd/3Rss/LsKtr+Ksn6zcr7FUUxvsszAoBNqstsJ/MVbK06ntmulWA7mSsBAAAAAADoYwTb9U97NSv/pqMNy7JcleTxZtV7dnlGALBJfTqW2W5AMbDVYB6g97WWpbJ5Zrt1MtsBAAAAAADQTwi265+mNisvqLL9H5qVp3VhLgBQoaPLyMp6BVu3opVbiQ5nthNsBwAAAAAAQB8j2K6fKYpiVJJRzaqfq7Kb5vvv3vkZAUCluqI+RYp29xOIA1u3+qLlW4nG8s+Z7dY0rs6SdX9qcT8BtQAAAAAAAPQ1gu36nxHNyq9vWhq2Gs2/Ed2hC/MBgC10JLudQBzYutW1siR0YzZmtlu5YXn++bnPtdpeQC0AAAAAAAB9zYDengA1N7RZ+Y1O9NG8zbBOzqVJURTjkoytstnbujouAFun+gzI+qxvc59BdYN6aDZAZ9S1k9nuv5bcmoVr/thqewG1AAAAAAAA9DWC7fqf5sF2qzvRR/Ngu+Z9dsY5SS6uQT8A9AMD6wZlzYa2f0QNKgb30GyAzmg9s93GYLunXn+8zfYNdd7jAAAAAADQXV5//fU88sgjmT9/fl555ZWsXr062223XcaPH58pU6Zkv/32y6BBkl901uGHH5577723qVyWZbeMM3v27BxxxBFN5YsvvjiXXHJJt4xFxwi26/86827unisAAGyy6+C/yOOr/l+b+7xtyNQemg3QGa1nttu4jOzrjatabTuoaMiEhl27ZV4AAAAAALCt2rBhQ/7jP/4js2bNyi9/+cusX9/6SlODBw/OMccck7//+7/Pe97znh6cJfRtLX9DRl+2sll5u0700bxN8z4BoEuOHnVSGtrIXLfDgFE5eIeje3BGQLVay2y3IRuD7TaUrd/AHzP6lAy0VDQAAAAAANTML37xi0ybNi1nnHFG7rnnnjYD7ZJk9erVueOOO3LCCSdkxowZeeSRR3poptWZNGlSiqJIURSZNGlSb08HZLbrh7bWYLuvJ/lBlW3eluSOGowNwFbmbUOm5h8nXpkHl/8yz695pimtcn1Rn7cOnpx373B0xgwa38uzBNrSWma7sty4jOybGe6a23fou3Lc6Pd127wAAAAAAGBbc+mll+bSSy/dYinToigyderUTJgwIaNHj87ixYvz3HPP5amnnqrYb86cOTnwwANz/fXX5yMf+UhPTh36HMF2/c9rzcpDiqLYvizL1tfx2tK4ZuVlXZxTyrL8U5I/VdOmKIquDgvAVmyXwbtll8G79fY0gE5qP7Ndy8F204cf2m1zAgAAAACAbc15552XmTNnVtQNGzYsF110Uc4888xMnDhxizYLFizIjTfemGuvvTZr1qxJkqxduzYf/ehHs2rVqpx33nk9Mnfoiywj28+UZbkkydJm1VteOdv21mbl+Z2fEQAA/VF9K5ntGjdlttuQltPT17cSpAcAAAAAAFTn29/+9haBdgcffHDmzZuXiy66qMVAuySZPHlyrrjiijz22GPZa6+9Kh47//zzM3v27O6acr8xe/bslGXZtLHtEGzXPz3ZrDy5yvbN0ww17w8AgG1c0cqtRGM2Bdu1ktmuvhBsBwAAAAAAXfXUU0/lk5/8ZEXdQQcdlB//+MeZMGFCh/qYMmVKfv7zn2fq1KlNdY2NjfnABz6QV155pabzhf5CsF3/9ESz8oEdbVgUxfZJ9mmnPwAAtnGtBc01lm8uI9tKZrtiQLfNCQAAAAAAthUXXHBBVq5c2VQeMWJEbr311gwdOrSqfsaNG5dbbrklgwYNaqp74YUXcvnll9dsrtCf+Karf/pJko9uVj68iraHpPJ18duyLBfVYlIAAPQfda0F26UxZVk2ZbhrTmY7AAAAAADomt/97ne5++67K+quuuqq7Ljjjp3qb9q0abngggty5ZVXNtV961vfyiWXXJKRI0d2aa5bmwULFuSxxx7LCy+8kBUrVqQoigwZMiTjx4/Prrvumr333jtDhgzp9nmsWbMm9957b55++um8+uqrGTduXCZMmJBDDjmkW8Z/6aWX8uCDD+ZPf/pTlixZkqFDh2bcuHGZMWNGdtut+QKYtEWwXf/0X0neSLLdpvKBRVHsUZbl7zrQ9qxm5R/WcmIAAPQPda0tI1tuyIa0nNUuSerdggAAAAAAQJfMnDkzZVk2lceMGZOzzz67S32ed955ueaaa7Ju3bokyapVq3LDDTfkwgsv3GLfs846K9/+9rebyk8//XQmTZrUoXFmz56dI444oql88cUX55JLLmmz/zc9++yzKYqi1b4/9KEP5cYbb9yifs2aNfnqV7+aG264IfPnz29zfvX19dl3331z4okn5h//8R9bDXw7/PDDc++99zaVN38+2vLaa6/lS1/6Um688cYsX758i8eHDRuWU089NZdeemne8pa3dKjP1qxbty7f+ta38vWvfz2PP/54q/vtvvvuueCCC/LhD384Awb4Hqc9lpHth8qyfD3JLc2qP9teu6IopiT5282q1if5bg2nBgBAP9FaZrsN5YZs2LSUbEtktgMAAAAAgK75yU9+UlH+4Ac/WLEMbGeMHTs2J5xwQpvj9EULFy7MfvvtlwsvvLDdQLsk2bBhQx5++OF88YtfzIsvvljTufzP//xPpk2blq9+9astBtolyYoVK/Lv//7v2XvvvfPrX/+602M9/PDD2WOPPfLxj3+8zUC7JJk/f34+9rGPZcaMGXnhhRc6Pea2Qjhi/3VJktOSDNxUPqsoih+WZXlnSzsXRTE4yawkm199v1WW5R+6dZYAAPRJrWW2K9OYDWUbme0KtyAAAAAAALW2odyQZetf6e1p9HsjBozp9T8qf/755/PMM89U1B199NE16fvoo4/Obbfd1lR+4IEHsm7dugwcOLCNVluvtWvX5thjj82TTz5ZUT9q1KjsvffeGT9+fAYOHJgVK1bkpZdeyrx587Jq1apumcu8efNy5JFHZsmSJRX148ePz3777ZcRI0Zk0aJFeeCBB/LGG2/k1VdfzXve855cc801VY91991359RTT83rr79eUb/TTjvl7W9/e0aNGpVVq1Zl3rx5FQGIjz76aA444IA88MADmTBhQucOdBvgm65+qizLPxZFMTPJBZtV31IUxT8m+WZZlmvfrCyKYmqSf09y0Gb7LklyaY9MFgCAPkdmOwAAAACArcey9a/ki3/8WG9Po9+7fLdvZPTA8b06h5aynU2fPr0mfb/jHe+oKL/xxht59NFHM2PGjJr031HXXntt09KyBx98cFO2tZ133jn33Xdfq+2GDh1aUZ41a1bmzZvXVJ40aVK+9rWv5dhjj01d3ZZJBcqyzMMPP5y777473/rWt2pwJButW7cuZ555ZkWg3U477ZSZM2fm5JNPrpjLypUr85WvfCVf/vKXs2zZshaX8W3LvHnzctppp1UE2h177LG59NJL8853vnOL/X/729/m05/+dH71q18lSV544YWcfvrpmT17durrfafTEsF2/ds/JdkzyXGbygOTXJfki0VRPJJkRZLdkuyfZPNFrdcm+duyLF/qwbkCANCH1LeV2S5tBdu5BQEAAAAAgM56/vnnK8rjx4/P6NGja9L3Xnvt1eJ4PR1sN2bMmIwZMyZJMmDAn79XGDBgQCZNmtThfu64446Ktvfcc08mT57c6v5FUWT69OmZPn16vvjFL6axsbH6ybfguuuuy6OPPtpU3mmnnXLfffdlt91222LfoUOH5uKLL85ee+2V97///Vm6dGmHx2lsbMypp55akZ3vkksuycUXX9xqm/322y+/+MUvcuqppzZlNbzvvvty00035YMf/GCHx96WtPwNGf1CWZYbkrw/yc3NHhqX5Ngk70vyjlQG2v0pyXvLsvxVj0wSAIA+qShavpXYULazjGz8FRQAAAAAAHTWq6++WlEeOXJkzfoePHhwGhoa2hyvL3n22Web/v32t7+9zUC75urr62uyfG5jY2Ouu+66irpvfvObLQbabe7kk0/OOeecU9VYt912W5544omm8vvf//42A+3eNGDAgHz729/OuHHjmuquvfbaqsbelgi26+fKslxZluVp2RhY90Abu76a5F+T7FWW5U96ZHIAAPRZrQXNNabtZWRbW34WAAAAAABoX/PgtxEjRtS0/+b9bb70aV/2pz/9qVfG/e///u8888wzTeUZM2bkPe95T4fafulLX6oq4O+rX/1q07+LoshVV13V4bZDhw7Nxz7256WoH3/88Yp582eC7bYRZVneUpblgdm4bOwpST6V5KIkZyf5yyQ7lWV5TlmWi3txmgAA9BF1rWS2a2wvs51lZAEAAAAAYKtVFEX7O/URe+yxR9O/Fy5c2CvZ2u67776K8umnn97htmPHjs3RRx/doX1XrVqVBx74cw6uGTNmZNddd+3wWElyxBFHVJR/9SuLYrbEN13bmLIsn07ydG/PAwCAvq21DHXtZbarl9kOAAAAAAA6bdSoURXl1157rab9L1u2rM3x+pIzzjgjt912W1P5M5/5TG6//facffbZOf7447PTTjt1+xzmzJlTUT7ggAOqan/AAQfkP//zP9vd74EHHsi6deuayrvttlvVmekaGxsryn/4wx+qar+tEGwHAABUra61ZWTLxjSmjcx2bkEAAAAAAGpuxIAxuXy3b/T2NPq9EQPG9PYUtgh+W7p0ac36Xr16dVavXl1RN3r06Jr139NOOumknHTSSRUBd7/+9a/z61//OkkyefLkHHTQQXn3u9+dQw45JFOnTq35HBYtWlRR3n333atqP2XKlA7tt3Dhwory97///Xz/+9+vaqzmmi9ZzEa+6QIAAKrW+jKyMtsBAAAAAPS0+qI+oweO7+1p0AN23nnnivLLL7+cJUuW1CQobu7cue2O15cURZGbb745F198cf75n/95i0DCBQsWZMGCBfm///f/JtkYfPeBD3wg5557bs0y+jUPhhw+fHhV7XfYYYcO7bdkyZKq+u2IFStW1LzP/qDlb8gAAADa0Fpmuw1pzIayjcx2hb/3AQAAAACAzjrooIO2qGu+VGlnNe9nu+22y7777luTvnvLgAED8uUvfznPPPNMrr322hxyyCFpaGhocd8FCxbkkksuyW677Zabb765h2faNWvXrq15n2VZ1rzP/kCwHQAAULXWMtuVZWObme3q3IIAAAAAAECnTZw4MRMnTqyo++lPf1qTvu+5556K8gEHHJBBgwbVpO83bdjQ+ncI3Wn8+PE5//zz89///d957bXXcv/99+faa6/Ne9/73gwdOrRi39deey2nn356br/99i6PO3LkyIry8uXLq2r/2muvdWi/MWMqlzi+8sorU5Zll7Ybb7yxqrluK3zTBQAAVK21oLkNm/5rSX0GpCiK7pwWAAAAAAD0e8cee2xF+Tvf+U7WrVvXpT4XL16cO++8s81x3jRgQOUqNuvXt77iTXPNl1XtDQ0NDTnwwANz/vnn5/bbb8+SJUvy/e9/P1OmTGnapyzLfOpTn0pjY2OXxho/vnJ55/nz51fV/qmnnurUOB1tR/UE2wEAAFWrL1peRrax3NDqMrKttQEAAAAAADru05/+dMUfty9evDizZs3qUp8zZ86sCNjbfvvt85GPfKTFfYcPH15RXrZsWYfHmTt3blXz6ok/4h80aFBOPfXUPPjgg9l5552b6hcuXJiHH364S31Pnz69ovzAAw9U1f7BBx/s0H4HHnhgxbm65557LAPbTQTbAQAAVWsts11jWl9GVrAdAAAAAAB03bRp03LcccdV1H32s5/NokWLOtXfvHnzcs0111TUnX322Rk1alSL+48bN26L9h31ox/9qKq5NTQ0NP17zZo1VbWt1ogRI3LSSSdV1D399NNd6vPggw+uKH/ve9/rcNvFixd3eIngsWPHZr/99msqv/DCC/nxj3/c4bHoOMF2AABA1eo6ldluQIv1AAAAAABAdb7yla9kyJAhTeVly5blpJNOysqVK6vqZ/HixTnllFOydu3aprqddtopX/rSl1pts//++1eU77rrrg6N9V//9V956KGHqprfiBEjmv79yiuvdHm53PY0XyJ382C/zjj00EMzadKkpvKcOXNy9913d6jtZZddVtXxfvKTn6woX3DBBVW/HmifYDsAAKBqrQbbpTEb0kpmu8hsBwAAAAAAtbDHHnvkuuuuq6i7//77c9xxx+X555/vUB/z58/PkUcemSeffLKprq6uLt/5zncyduzYVtsdeOCBFYF+P/zhDzNnzpx2x/rQhz7UoXltburUqU3/Xr9+fX75y192qN3rr7+e6667LitWrOjwWCtXrsxtt93W6vidUVdXt0UQ3Mc+9rF2M+bddttt+frXv17VWB/84Aezxx57NJWffPLJ/O3f/m2WLl1aVT+LFy/e4jzwZ4LtAACAqrW2jGySrGtc22K9zHYAAAAAAFA7H/7wh/OJT3yiou6+++7LtGnTctVVV2XhwoUttluwYEG+8IUvZO+9987jjz9e8djVV1+dI488ss1xhw0bllNPPbWpvGHDhvz1X/91i0uerl27NjfccEPe9a53ZdGiRRk5cmRHDy9JcsQRR1SUzz777Hz961/Pww8/nD/+8Y955plnmrZXXnmlYtxPfepTmTBhQj784Q/nrrvuajPw7qGHHsqRRx6ZZ599tqnuXe96V6ZMmVLVfFvyqU99Km9/+9ubyi+++GLe/e5355ZbbkljY2PFvqtWrcpll12W0047LY2NjVWdr/r6+txyyy0ZPnx4U93Pfvaz7LPPPvnXf/3XNo//1Vdfzc0335zTTz89u+yyS7761a9WcYTbFt92AQAAVWsts12SrC9bTmle30YbAAAAAACgetdff31GjhyZL3/5yynLMkmyYsWKXHTRRfnc5z6XadOmZZdddsnIkSOzZMmSPPvss/n973+/RT8DBw7MzJkz8/GPf7xD415++eX54Q9/mGXLliVJ/vSnP+WYY47J5MmTs88++6ShoSGLFi3Kgw8+mFWrViVJdtxxx1x99dVVZbh73/vel89//vNN2fpefPHFLQIM3/ShD30oN954Y0Xd8uXLM2vWrMyaNStFUWTy5MnZbbfdMmLEiAwYMCBLlizJE088sUU2wCFDhuSb3/xmh+fZloEDB+amm27KYYcdliVLliRJXnrppbzvfe/L+PHj8453vCM77LBDFi1alN/85jd54403kiQ77LBDrr766nz0ox/t8Fh77rlnbr311pxyyil57bXXkiTPP/98zjnnnJx77rnZe++9M3HixAwfPjyvv/56li1blqeeeqrD2RARbAcAAHRCW5nt1pYtZ7ark9kOAAAAAABq7vLLL89hhx2Wc845J/Pnz2+qL8syc+fOzdy5c9tsv//+++cb3/hGpk+f3uExd95559x666058cQTKzKmLViwIAsWLNhi/1133TX/+Z//mUWLFnV4jCTZbrvt8sMf/jAnnnhiXnjhharaNleWZebPn19xjlqy884757bbbsvee+/dpfE2t+eee+ZnP/tZjj/++Lz00ktN9YsWLcqPfvSjLfYfMWJE7rzzzmzYsKHqsY466qjMmTMnp59+esXyvhs2bMijjz6aRx99tN0+qs1AuC2xjCwAAFC1+qL1W4n1rQTb1UdmOwAAAAAA6A5HHXVU5s2bl5tuuilHHnlkBgxo+w/gGxoacsIJJ+SOO+7InDlzqgq0e9Nf/uVf5qGHHsp73/veFEXR4j5jx47NZz7zmTz66KOZOnVq1WMkyfTp0zNv3rz827/9W0488cRMnjw5w4cPT31969877LDDDrn33ntz4YUX5h3veEe75yNJ/uIv/iJXXnllnnrqqbzzne/s1Fzbsu++++bJJ5/Mueeem2HDhrW4z9ChQ3PWWWflscceyyGHHNLpsSZPnpyHHnood911V4466qg0NDS022bq1Kk599xz86tf/Sq33XZbp8fu74o3U0jC1qYoij2TPPFm+Yknnsiee+7ZizMCAOBNz69+Olc++w8tPnbMqFPyX6/eskX9Lg275aJJ/9zdUwMAAAAA6HPWr1+/Rbat3XffvUMBQtCSVatW5eGHH86CBQuyePHirF27Ng0NDRk/fnymTJmS/fffv0MBWB31yiuv5N57783zzz+f119/PePHj8+uu+6aQw45ZKt4Hb/xxhuZO3du/vCHP+Tll1/OqlWrUhRFhg8fnokTJ2afffbJW9/61h6bz5o1azJ79uw8/fTTWbp0acaOHZsJEybkkEMOyfbbb1/z8VavXp0HH3wwzz77bJYsWZJVq1Zl++23z8iRIzN58uRMnTo1o0ePrvm43XVtmzt3bvbaa6/Nq/Yqy7LtFI410vuvZgAAoM+payOz3brWMttZRhYAAAAAAHrE9ttvn0MPPTSHHnpoj4w3ZsyYnHzyyT0yVmdst912mT59eqcy+HWHhoaGHHPMMT023uDBg3PYYYf12Hj9mWVkAQCAqtW1sSRs69rj1N4AACAASURBVMF2lpEFAAAAAACg7xJsBwAAVK3NzHaNMtsBAAAAAADQ/wi2AwAAqtapzHZttAEAAAAAAICtnWA7AACgam1mtmt1GVmZ7QAAAAAAAOi7BNsBAABVqyvayGzX6jKyMtsBAAAAAADQdwm2AwAAqlbfxq3EunJdy20E2wEAAAAAANCHCbYDAACq1mZmu9aWkY1lZAEAAAAAAOi7BNsBAABVq2srs13jmhbrZbYDAAAAAACgLxNsBwAAVK3tzHatLSMrsx0AAAAAAAB9l2A7AACgam1mtmtlGdm2AvQAAAAAAABgayfYDgAAqFrbme1aDrarj8x2AAAAAAAA9F2C7QAAgKq1mdmusZVgO5ntAAAAAAAA6MME2wEAAFUriiJFK7cTrWa2K2S2AwAAAAAAoO8SbAcAAHRKfdHy7USZspX9ZbYDAAAAAACg7xJsBwAAdEprme1aUx/BdgAAAAAAAPRdgu0AAIBOqTZTnWVkAQAAAAAA6MsE2wEAAJ1SV2WmOsvIAgAAAAAA0JcJtgMAADqlrqhyGVmZ7QAAAAAAAOjDBNsBAACdUnVmuyr3BwAAAAAAgK2JYDsAAKBTZLYDAAAAAABgWyLYDgAA6JS6Km8n6guZ7QAAAAAAAOi7BNsBAACdUm3wnGA7AAAAAAAA+jLBdgAAQKcUVWe2s4wsAAAAAAAAfZdgOwAAoFOqzVRXF5ntAAAAAAAA6LsE2wEAAJ1SV/UysjLbAQAAAAAA0HcJtgMAADqlruplZGW2AwAAAAAAoO8SbAcAAHSKzHYAAAAAAABsSwTbAQAAnVJ1ZrvIbAcAAAAAAEDfJbUEAADQKXVFtcvIuv0AAAAAAICe8Prrr+eRRx7J/Pnz88orr2T16tXZbrvtMn78+EyZMiX77bdfBg0aVJOxnnvuuXzzm9/Mvffem6eeeipLly7NunXrmh6fNWtWzjrrrBbbPvTQQ5k1a1buv//+LFy4MK+99loaGxubHn/66aczadKkJMnhhx+ee++9t+mxsixrMn+ohm+7AACATqmrMlNdfZXLzgIAAAAAAB23YcOG/Md//EdmzZqVX/7yl1m/fn2r+w4ePDjHHHNM/v7v/z7vec97Oj3mDTfckHPPPTdr1qypqt369etzzjnn5IYbbuj02NAbLCMLAAB0SvWZ7QTbAQAAAABAd/jFL36RadOm5Ywzzsg999zTZqBdkqxevTp33HFHTjjhhMyYMSOPPPJI1WP+6Ec/ysc+9rGqA+2S5POf/7xAO/okme0AAIBOqa82s53bDwAAAAAAqLlLL700l1566RbLqhZFkalTp2bChAkZPXp0Fi9enOeeey5PPfVUxX5z5szJgQcemOuvvz4f+chHOjzuRRddVDHmGWeckb/7u7/LLrvskoEDBzbVjxkzpqLdokWL8i//8i9N5UGDBuWf/umfcvzxx2fs2LGpq/vzH/tPmDChw/OBnuDbLgAAoFMKme0AAAAAAKBXnXfeeZk5c2ZF3bBhw3LRRRflzDPPzMSJE7dos2DBgtx444259tprm7LSrV27Nh/96EezatWqnHfeee2O+/vf/z6PPfZYU/n444/PTTfd1KE533777Vm7dm1T+YorrshnPvOZDrWF3mYZWQAAoFOqDZ6rL/ytDwAAAAAA1Mq3v/3tLQLtDj744MybNy8XXXRRi4F2STJ58uRcccUVeeyxx7LXXntVPHb++edn9uzZ7Y49Z86civIpp5zS4Xl3tu3s2bNTlmXTBr1BsB0AANApdVXeTshsBwAAAAAAtfHUU0/lk5/8ZEXdQQcdlB//+McdXnp1ypQp+fnPf56pU6c21TU2NuYDH/hAXnnllTbbLlq0qKJczXKvXWkLvU2wHQAA0Cl11S4jG5ntAAAAAACgFi644IKsXLmyqTxixIjceuutGTp0aFX9jBs3LrfccksGDRrUVPfCCy/k8ssvb7Pd5mMnycCBAzs8ZlfaQm/zbRcAANApdal2GVmZ7QAAAAAAoKt+97vf5e67766ou+qqq7Ljjjt2qr9p06blggsuyJVXXtlU961vfSuXXHJJRo4c2WKbxsbGTo3V1ba1MG/evDz++ONZsmRJli5dmsGDB2fs2LGZOnVq9tlnnzQ0NHSq3/Xr1+ehhx7KH//4xyxevDhr1qzJ2LFjM2nSpLz73e/O4MGDa3wk9AbBdgAAQKdUndmucPsBAAAAAABdNXPmzJRl2VQeM2ZMzj777C71ed555+Waa67JunXrkiSrVq3KDTfckAsvvDBJ8swzz2TXXXdttf0RRxzRYv2sWbOSpM35FUXRYv3TTz+dSZMmNZUPP/zw3HvvvU3lzc9BexYuXJj//b//d37wgx9ssYzt5rbbbrscccQR+dCHPpSTTz459fXtJxJ48sknc8UVV+Tuu+/O8uXLW+33b/7mb3LZZZdlypQpHZ43Wx/LyAIAAJ0isx0AAAAAAPS8n/zkJxXlD37wgxXLwHbG2LFjc8IJJ7Q5Tl9UlmWuuOKKTJ48Oddff32bgXZJ8sYbb+RHP/pRTj311CxcuLDNfTds2JB/+Id/yF577ZXvfve7rQbavdnvzTffnD333DMzZ87s1LGwdZBaAgAA6JRqg+eqDc4DAAAAAKBj1m8o8/zS3p5F/zdhZDKgvuUsbD3l+eefzzPPPFNRd/TRR9ek76OPPjq33XZbU/mBBx7IunXrMnDgwJr039PWr1+f0047LbfeeusWj+24447Ze++9M2bMmKxZsyaLFi3K//zP/2TlypUd6vuNN97IiSeemJ/+9KcV9QMHDsy+++6bCRMmpKGhIS+//HIeeuihvP76601zOu+887J06dJccsklXT5Gep5gOwAAoFOKKhJl16W+1TTwAAAAAAB0zfNLk90+19jb0+j3/nhlXSaN6d05/PrXv96ibvr06TXp+x3veEdF+Y033sijjz6aGTNmZMKECXn66aebHvuXf/mXigxt3/ve9/Kud71riz7HjNl4wg4//PCmutNOOy0PPvhgU3nzfjc3YcKETh3Hm84///wtAu2OP/74XHLJJZkxY8YW+zc2NuaBBx7I97///dx4441t9v2JT3yiItBuhx12yCWXXJK/+7u/y7Bhwyr2feONN/L1r389X/jCF7J69eokyWWXXZYDDjggxx13XCePjt4i2A4AAOiUajLbWUIWAAAAAAC67vnnn68ojx8/PqNHj65J33vttVeL482YMSMDBgzIpEmTmupHjBhRsd+OO+5Y8XhzQ4cObfr34MGDKx5rq11n/fSnP81Xv/rVirqrrroqn/3sZ1ttU1dXl4MOOigHHXRQLrvssi3m+aYf/OAHmTVrVlP5rW99a2bPnt3qcWy33XY5//zzc+CBB+bII4/M6tWrU5ZlPvWpT+X3v/996uo6ntyA3ufZAgAAOqWu6PjtRH3h73wAAAAAAKCrXn311YryyJEja9b34MGD09DQ0OZ4fcVll11WUf5f/+t/tRlo19yIESNaDLYry7Ki7wEDBuTOO+/sUMDgm0F8b1qwYEFuv/32Ds+JrYNgOwAAoFPqqridkNkOAAAAAAC6rnnwW/MMc13VvL8lS5bUtP+e8Nhjj1Ustzts2LBcffXVNen7l7/8ZZ544omm8plnnpl99tmnw+0/8YlPVATx3XnnnTWZFz1HsB0AANApddUsIxuZ7QAAAAAAYGtXFEVvT6HLfv7zn1eUzzjjjAwfPrwmfd9zzz0V5VNPPbWq9kOGDMk73/nOpvKvfvWrmsyLnuMbLwAAoFNktgMAAAAAgJ41atSoivJrr71W0/6XLVvW5nh9wf33319RPvzww2vW93333VdRHjVqVJ555pmq+tg88O+ZZ55JY2Nj6urkS+srBNsBAACdUlVmO8F2AAAAAADdZsLI5I9XCtbpbhNG9vYMtgx+W7p0ac36Xr16dVavXl1RN3r06Jr131NeeumlivKee+5Zs74XLlxYUX7Xu97Vpf4aGxuzbNmyPhnUuK0SbAcAAHRKfaoJtnPrAQAAAADQXQbUF5k0prdnQU/YeeedK8ovv/xylixZUpOguLlz57Y7Xl+wZMmSivLIkbWLkmzedy2sWLFCsF0fIqwZAADolKKoYhnZKgLzAAAAAACAlh100EFb1M2ZM6cmfTfvZ7vttsu+++5bk757U1EUNetr7dq1NevrTWVZ1rxPuo9gOwAAoFNktgMAAAAAgJ41ceLETJw4saLupz/9aU36vueeeyrKBxxwQAYNGlSTvnvSmDGVaR5fffXVbul78ODBaWxsTFmWXdomTZpUs/nR/QTbAQAAnVJVZrtCZjsAAAAAAKiFY489tqL8ne98J+vWretSn4sXL86dd97Z5jh9xU477VRRnjdvXs36Hj9+fNO/V69eneeee65mfdM3CLYDAAA6pb6K2wmZ7QAAAAAAoDY+/elPVyyNunjx4syaNatLfc6cObMiYG/77bfPRz7ykS712Vve/e53V5Rnz55ds76bL+Nbq6yC9B2C7QAAgE7Zrn77ju9b1/F9AQAAAACA1k2bNi3HHXdcRd1nP/vZLFq0qFP9zZs3L9dcc01F3dlnn51Ro0Z1eo696aijjqoof/e7382KFStq0vcxxxxTUf73f//3mvRL3yHYDgAA6JS/GLJPh/fdo4p9AQAAAACAtn3lK1/JkCFDmsrLli3LSSedlJUrV1bVz+LFi3PKKadk7dq1TXU77bRTvvSlL9Vsrj1tzz33zGGHHdZUXr58eS666KKa9H3cccflbW97W1P5oYceyv/5P/+nJn3TNwi2AwAAOmXUwLF537i/b3e/aUP2y8Ejjml3PwAAAAAAoGP22GOPXHfddRV1999/f4477rg8//zzHepj/vz5OfLII/Pkk0821dXV1eU73/lOxo4dW9P59rTmwYJf+9rX8pWvfKXD7V977bWsXr16i/oBAwbksssuq6j7+Mc/nttuu63qOf7sZz/LH//4x6rb0bsE2wEAAJ12xMj35EuTrs+p4z6aE8acWbGdOOaDOW+Xy/PxCZ/PoLqG3p4qAAAAAAD0Kx/+8IfziU98oqLuvvvuy7Rp03LVVVdl4cKFLbZbsGBBvvCFL2TvvffO448/XvHY1VdfnSOPPLLb5txT/vIv/zLnn39+Rd0FF1yQv/mbv8nDDz/cYpvGxsb85je/yac//enssssuefnll1vc74wzzsiHP/zhpvLatWtz8skn58wzz2y17yTZsGFDfvvb3+bSSy/NtGnT8ld/9Vd57rnnOnF09KYBvT0BAACgb9uxYUJ2bJjQ29MAAAAAAIBtzvXXX5+RI0fmy1/+csqyTJKsWLEiF110UT73uc9l2rRp2WWXXTJy5MgsWbIkzz77bH7/+99v0c/AgQMzc+bMfPzjH+/pQ+g2V199dZ577rn84Ac/aKq76667ctddd+Utb3lL9t5774wePTpr1qzJyy+/nMceeywrVqzoUN//9m//lqVLl+aHP/xhU913v/vdfPe7383YsWPz9re/PaNHj05dXV2WL1+eF198MU8++WSL2fLoWwTbAQAAAAAAAABAH3X55ZfnsMMOyznnnJP58+c31Zdlmblz52bu3Llttt9///3zjW98I9OnT+/uqfao+vr63Hzzzdlzzz3z5S9/OevWrWt67MUXX8yLL77Y6b4HDhyYW2+9Nddcc00uvvjiiiC6xYsX52c/+1mH+th+++07PQd6h2VkAQAAAAAAAACgDzvqqKMyb9683HTTTTnyyCMzYEDb+bcaGhpywgkn5I477sicOXP6XaDdm4qiyMUXX5zf//73+chHPpJRo0a1uf/QoUNz4okn5vbbb8/EiRPb7fvCCy/M008/nX/6p3/KW9/61nbnM2zYsBx//PH52te+lpdeeikzZsyo6njofcWbKSRha1MUxZ5Jnniz/MQTT2TPPffsxRkBAAAAAAAAQO2tX7++IiNZkuy+++7tBkxBa1atWpWHH344CxYsyOLFi7N27do0NDRk/PjxmTJlSvbff/80NDT09jR7XGNjYx555JH87ne/yyuvvJKVK1dm++23z7hx47LHHntkn332ycCBAzvd/9NPP51HHnkkixcvztKlS1NXV5dhw4blLW95S/bYY4/svvvuqa+vr+ERbd2669o2d+7c7LXXXptX7VWWZdspHGvEVRkAAAAAAAAAAPqR7bffPoceemgOPfTQ3p7KVqWuri7Tp0/vtkx+u+66a3bddddu6Zutg2VkAQAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAHpRURRb1JVl2QszAaidxsbGLepaut71JYLtAAAAAAAAAAB6UV3dluEb69at64WZANTO+vXrt6hr6XrXl/Tt2QMAAAAAAAAA9HFFUWTQoEEVdStXruyl2QDURvPr2KBBg2S2AwAAAAAAAACga4YNG1ZRXr58uaVkgT6rLMssX768oq75da4vEmwHAAAAAAAAANDLmgehrFu3Li+88IKAO6DPKcsyL7zwwhbLYQ8fPryXZlQ7A3p7AgAAAAAAAAAA27rBgwdn4MCBFcEpK1asyB/+8IcMHz48Q4cOzYABA1JXJ68SsPVpbGzM+vXrs3LlyixfvnyLQLuBAwemoaGhl2ZXO4LtAAAAAAAAAAB6WVEUectb3pLnnnuuIpvdunXrsmTJkixZsqQXZwfQeW9e34qi6O2pdJlwZwAAAAAAAACArcCQIUMyceLEfhGQApBsDLSbOHFihgwZ0ttTqQnBdgAAAAAAAAAAW4k3A+4GDhzY21MB6JKBAwf2q0C7xDKyAAAAAAAAAABblSFDhuRtb3tb1qxZk+XLl2fFihVZu3Ztb08LoF2DBg3KsGHDMnz48DQ0NPS7TJ2C7QAAAAAAAAAAtjJFUWTw4MEZPHhwxo0bl7Is09jYmLIse3tqAFsoiiJ1dXX9LriuOcF2AAAAAAAAAABbuaIoUl9f39vTANim1fX2BAAAAAAAAAAAAGBrJ9gOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoxoLcnAG0YtHlhwYIFvTUPAAAAAAAAAABgK9BCDNGglvbrDkVZlj01FlSlKIq/SXJHb88DAAAAAAAAAADYar23LMs7e2Igy8gCAAAAAAAAAABAOwTbAQAAAAAAAAAAQDssI8tWqyiKHZIctlnVwiRre2k60Be8LZVLL783yR96aS5A/+Q6A3Q31xkAusrPEqC7uc4A3c11BuhurjNAfzAoyS6ble8ty/K1nhh4QE8MAp2x6U3QI+spQ39QFEXzqj+UZTm3N+YC9E+uM0B3c50BoKv8LAG6m+sM0N1cZ4Du5joD9CO/7Y1BLSMLAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0QbAcAAAAAAAAAAADtEGwHAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0QbAcAAAAAAAAAAADtEGwHAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0QbAcAAAAAAAAAAADtEGwHAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0Y0NsTAKBmFie5tFkZoJZcZ4Du5joDQFf5WQJ0N9cZoLu5zgDdzXUGoAuKsix7ew4AAAAAAAAAAACwVbOMLAAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtEOwHQAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtEOwHQAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtEOwHQAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtGNAb08A2HoURVGfZHKSaUnekmSHJGuSLE3yhyRzyrJcVeMxByZ5d5KJSXZKsjLJi0l+W5blM7Ucq6cURbFnkn2TjE3SkOTlJM8n+XVZlqt7c249qSiKkUn2TLJ7klFJBidZlmRxkofLsvxDL05vC0VR7JqNz9tbkgxN8lKSZ5PcX5bluhqO89Yk78jG1/sOSdZl43mZn43nZUWtxtoauc7UhuvMRn3tOkPPcJ2pDdeZjfrCdaYnX/N94XxALfTHnyX98ZhqpafuBfsK56Nn9Mf3ZH88plrxvqrkM7ie0R/fk/3xmGrFdYbe0B/fk/3xmGrFdcZncEAzZVnabLZteMvGX97OS3J3kteSlG1s65P8OMlf12DcsUm+nmRJG+P9OsnJXRxntySnJrkmyewky5uN8UyNzuOwJJ9P8kIbx7M8yXeSvK0Xn+9uOx9JBiY5Jsn1SZ5o57VUbjpXlyXZsZffA6ckub+NeS7Z9Fod04UxhiS5MMlT7ZyTDUn+M8nRvXlOuuEcu87U5jy6zvTB60x3vz46cA7a2yb11rmp8Xl2nanNeXSd6SPXmZ56zfeV82Gz1WLrjz9L+uMx1fg574l7we2THJzkH5LclI33hI3Nxjmrt1//zkePneN+957sj8dU4+fc+6rnz4fP4PrZe7I/HlONn3PXmT/P02dwPXOe+917sj8eU42f8236OtNTr4/4DM5m63Nbr0/AZrP13pbku124MbgryfhOjntckkVVjPX/Jdm+iv4PT/Jf7fyCWpMbrE3jHZCNf2XS0eNZleTjPfg8d/v52HQOXu3ka2lpkg/0wut/aJLvVTHPl5Mc04lxDkzyx06cl+8mGdLT56UbzrPrjOvMNned6cnXRxfeX29uk3rqvHTj+XadcZ3Zpq4zPfWa7yvnw2arxdZT76sWxu22nyX98Zhq+Hx3+71gNn7Z9Hg2ftnSXv9n9fLr3/nomfPc796T/fGYvK/67vnYNI7P4PrZe7I/HlNfel/1hetMfAbX0+e7370n++Mx1fD53uavMz31+ojP4Gy2PrlZRha2bVNaqX8hG9PpL8rG5aZ3S/L2JHWb7fOeJP9dFMVhZVm+3NEBi6I4PMntSQZtVl0meSQbPwwZkWS/JGM2e/zMJMOLojixLMvGDgyzb5KjOzqnriiK4qhs/GuGhmYPPZvksWz8InpCNv6iNHDTY0OSfL0oirqyLL/WA9PsifMxNsnIFurXZuMvyi9n4198jE4yfdP/3zQiyXeKohhXluU/d/M8kzSler45yfHNHlqc5Leb5vq2bHwtFpseG5/kjqIojirL8r4OjnNgkp9m403J5lYk+X/Z+B5ryMa003ul8j12epJxRVEcX5bl2g4e2tbIdaaLXGea9KXrTI+9PkjiOtNlrjNN+sp1pqde833lfEAt9MefJf3xmLqsp+4Fk5yRjUsKbdWcjx7VH9+T/fGYusz7qpLP4HpUf3xP9sdj6jLXmQo+g+tZ/fE92R+PqctcZ5r4DA5oXW9H+9lstt7bkszJnyPfH0nyybSyJFiSnZN8I1tGzP8qSdHB8SZky8j8+5JMbbZfQ5JPZeMvEZvve2UHxzmvhXmWSVYnWdCs7pkunL9J2fIvphYk+asW9h2Z5Lpm+25oad9ueJ67/Xxk4y+Nb/axIsm3khyZZLsW9i2S/G02foHffE7dfj42zeGaZuOu3fT6H9Rsv2nZMj32K0l26sAYg1s4v69vem0PbmH/tyW5s4VzclFPnJNuPNeuM64z29x1pqdeH5vG2ryvBza9ZqrZBnT3+eiB8+064zqzTV1neuo131fOh81Wi60//izpj8dUo+e62+8FN7Vf1sL5LJM838JjZ/Xia9/56Llz3e/ek/3xmGr0XHtf9fD5iM/g3jyufvee7I/HVKPn2nXmz3P0GVzPnu9+957sj8dUo+fadaYHXx/xGZzN1ie3Xp+AzWbrvS0b/6rv7iTTq2hzTgs/vE/rYNtvNWv367Twgcdm+5/YbP/VSd7agXHO2/SL32+T3JDko0n2z8ZMLIc36/OZLpy/5umT5ycZ106bC5u1mZukvpuf524/H5t+EVyU5Px0PD336CTzmo3/ZHu/dNbgfOyWLW9Q3tvG/ttly5uFf+vAOGc1a9OYdlJob/ol+Qf/f3v3HjVJUd5x/PfICstNFkFYQGFZXbyhBKIJKEkWAwT0eAGJGhKzK94SjEeNehK8nKgxahIkehKDGhVJvESjYsBFMCiLBC8ILsrNW2RRiCC7LIRF9gZP/uh52Z56Z6a7Z3q6u2q+n3P6j+q3q7uqpurp6Xq7e4J8dyu4gIlpIc4QZ2Y0zjTSP3rHyu9r9TTr1dWFOEOcmbU401Sfj6U9WFjqWFI8l6RYpxo+50auBXt571L29oFVkt7ei6n79v62Otjnypb6Pe3RbHsnNyZTrFMNnzPjqoX2EHNwc3VKbkymWKcaPmfiTH8ZmYNrtr2TG5Mp1qmGz5k403D/EHNwLCxRLq0XgIWFpb1F0pIx830uOHmvKpFnmaRtuTybJS0rke/jwbE+ViLPnsO+nKq+f8YuVfYml/y+ji6Z92tBvtOm/Dk30R6PKPsFMMh32IB2fOqU2+Pc4HjnlMhzSK/PzuXZKmlpQZ7PB8c5r2T5Fmv+hcyx02yTKbf3kjHzEWeIM+F+YoozU2+P3P7y+1o9zXp1dSHOEGdmLc401edjaQ8WljqWFM8lKdaphs+5kWvBXr6hjyZEhAAAGD9JREFUb3JQB/5pRHu00t5LxszX2TGZYp1q+JwZVy20h5iDm6vPkjHzdXZMplinGj5n4kx/OZiDa7a9l4yZr7NjMsU61fA5E2ca7h9iDo6FJcol/7vRAGaMu68dM+sHgvQxJfKcKmmHXPoL7v7jEvn+Nki/wMwWjsrg7hvcfVOJfU/iWVJfDP2Wu/93ybxnBumX1FOkwZpoD3e/w93vHSPf95S9IjuvTH8ai5ntLOmUYHXYx+Zx9x9J+mJu1QJlfXqUpUH6gsICZse6TdKVweplZfJ2EXFmIsSZ/mNEEWd6x2yif6CHODMR4kz/MaKIM031+VjaA6hDiueSFOs0iYavBeXuv6hUwIbRHs1LcUymWKdJMK76MQfXvBTHZIp1mgRxZj7m4JqV4phMsU6TIM70Yw4OwCjcbAdgHGuC9M5mtqggz0lB+pwyB3L3GyV9O7dqV0nHl8k7Zb8dpC+ukPeryp6anPM0M9tv8iJFK+xP+0/xWL8naZdc+pvu/oOSecM+e3LB9rsG6VtKHkeSfh6k96yQNxXEGeJMnZqMM4gHcYY4U6cY4sw4fb6uY3WxPYA6pHguSbFOUrPXgjGgPeKR4phMsU4S4yrEHFw8UhyTKdZJIs4gXimOyRTrJBFn6sIcHDADuNkOwDi2DVi347CNzWyxslfZ5vNfUeF4q4P0iRXyTssjg/R1ZTO6+2ZJP8mteoi6Uae2hP1paF+qwQlBenWFvJerv6yHm9m+I7a/LUhXedIo3PbOCnlTQZwhztSpyTiDeBBniDN1iiHOVOrzNR+ri+0B1CHFc0mKdZKavRaMAe0RjxTHZIp1khhXIebg4pHimEyxThJxBvFKcUymWCeJOFMX5uCAGcDNdgDG8ZggvU3SuhHbHxqkv1/xdbjfCNJPrJB3Wh4epO+qmD/c/kkTlCV2YX+a5mujw774zbIZe3322mD1qL54eZA+ouyxBmz7nQp5U0GcIc7Uqck4g3gQZ4gzdYohzlTt83Ueq4vtAdQhxXNJinWSmr0WjAHtEY8Ux2SKdZIYVyHm4OKR4phMsU4ScQbxSnFMplgniThTF+bggBnAzXYAxnFKkL7K3R8Ysf0TgvRPBm413P8U7K8NW4L0ThXzh9t3oU6NM7OHSTouWH3lFA/5+CA9zb74EfX3k9PMbOeiA5jZSZIOzK263t2vLl/EZBBniDO1aCHOtOlAMzvHzK43sw1mtsXMbu+lP2FmrzCz8OaqWUacIc7UIqI4U7XPjyWi9gDqkOK5JMU6Sc1eC8aA9ohHimMyxTpJjKsQc3DxSHFMplgniTjTJczBVZPimEyxThJxpi7MwQEzgJvtAFRiZrtJemmw+ryCbOFd9T+reNibg/ReZrZnxX3UbX2Q3q9i/nD7x05Qlpi9UtIuufTdki6dxoF6F7fhBW7Vvhhuv2zYhu5+k6QzcqseJenTZrbLkCwys6cqmyCc84CkV1csY/SIMw8iztSjsTjTAQdLWqlsEmORpIdK2qeX/kNJH5L0MzP7h944m1nEmQcRZ+rR+TgzZp8fV+fbA6hDiueSFOskNX8t2HW0RzxSHJMp1kliXIWYg4tHimMyxTpJxJkOYg6upBTHZIp1kogzdWEODpgd3GwHoKp3S1qcS9+l/omJQRYF6V9WOaC7b5S0KVi9R5V9TMGNQfrIshnN7EBJ+wer265P48xsiaS3Bqvf7+7hW3bqEvbDX1V8Tbc0v++O/Nzc/SxJb5S0tbfquZJuMLO/NLOjzWyZmT3RzJ5nZudIukLbL2a2SjrN3WfxizFxJkOcmVALcSYGu0p6raSrzWxWX+MvEWfmEGcmFFGcGafPVxZRewB1SPFckmKdpBauBTuO9ohHimMyxTpJjKsQc3DxSHFMplgniTgTI+bgMimOyRTrJBFn6sIcHDAjuNkOQGm9V+v/WbD6ze5+Z0HW8Mmd+8Y4fJhn9zH2UafLgvTzRz0tGfjjAevark+jzGxHSZ9Rf73XSvq7KR62lX7o7mdKOkzSxyRtkHSQsi/bl0v6kaTrlD3VslLZE3CSdImkI9393DHKGDXiTB/izARaijNt2SZptaS3SHqOpCOUPTV4uLJ/MJyp+RMdh0i6xMwOaq6Y3UCc6UOcmUAscWaCPl/1OFG0B1CHFM8lKdYpJ4YyNon2iECKYzLFOuXEUMYmMQcXgRTHZIp1yomhjLOAObgKUhyTKdYpJ4YydhpzcMBs4WY7AKWY2WGS/jVY/RVJZ5fIHn5BC5++KCP8gtb2q7dXKXsaYc4iSW8rymRmj5L0hgF/2sHMdq6naFH4iKTfyKXvl7RijKdkqmizHy5Q9nMUW4s2lHSupNe5+3erFCwFxJl5iDOTaSPOtOEtkg5w92Pc/W/c/QJ3X+PuP3H3a9z9fHd/o7J/MrxHkufyLpb0BTOzNgreBuLMPMSZyXQ+zkzY56vqfHsAdUjxXJJinQr218UyNon26LgUx2SKdSrYXxfL2CTm4DouxTGZYp0K9tfFMqaOObgKUhyTKdapYH9dLGNnMQcHzB5utgNQqPczYavU/6XoZkl/5O4+ONdITeWZGne/R9L7g9VvMLPXDMtjZo+UdJGGvza5U3WcFjP7a0kvDlaf4e5fb7goU++HZraTmf2jpO9JepmkfUpkWyHpWjM7v9dnZgJxZj7izPg6FGemrje5V/izA+6+yd3PkPTq4E9HSPqDqRSuY4gz8xFnxhdDnJlCnx91rM63B1CHFM8lKdZpSsdL+fxGe3RIimMyxTpN6Xgpjyvm4DokxTGZYp2mdLyU48zUMQdXXopjMsU6Tel4MxlnmIMDZtOCtgsAoNvMbB9J/yXpgNzq2yQd5+53lNzNxiA9zhtPwjzhPtvwLkknavvTAybpfWZ2iqSPSrpG2VMc+/e2+1Nt/6J1i6T8JM4md5/3lIiZLSlbGHdfW6n0LTCz1yp7AizvLHf/+5L5l5Q91oD2aLQfmtkCSV+UdEK+WMp+ruJcSVdJWidpJ0kHSnqGsgvwZb1tny3pKDM7zt2vGaOs0SDOjEScqajlONN57v4BMzte2U9dzDld0qdaKlIjiDMjEWcqiiHO1NTnyx5rovYAYpHiuSSmOsV0LdgE2iNNMY3JsmKqE+OqX0ztwRxceTGNybJiqlNM46oJqc0VhJiD6/6YLCumOhFn+jEHB2CauNkOwFBm9nBJl0g6JLd6naRj3f3HFXaV3Bc0SXL3LWZ2sqQLJT0596eje8sw6yW9VNLFuXV3Ddn2pgpF6vQryM3s5ZLOClaf7e6vr7CbSdqj6X74VvVP8t0n6RR3vzDYbouk6yVdb2YflvTPkk7r/W1vSV8ys8Pcff0Y5e084sxoxJlqOhBnYvFu9U/0HWlmi9x9WB+JGnFmNOJMNTHEmRr7fJlj1dEeQOeleC6JsE4xXQs2gfZITIRjslCEdWJc9YupPZiDKyHCMVkowjrFNK6akMxcwQjMwXV7TBaKsE7EmX7MwQGYGn5GFsBAZraHst+Sf1Ju9QZld+JfX3F3dwfpR1Qsy26a/wWtExcj7n6rpKdJ+pCkrSWyXCrpKZLuDdbfVnPROsXMXizpg+r/snqOpFc1WIywH+5iZrtW3Ef4ExQD+2HvC3b4Bff0AZN8fdx9s6SXS7ost/oASW+qWM4oEGfKIc6U05E4E4srlY21OTtIekJLZZkq4kw5xJlyYogzNff5omN1vj2AOqR4LkmxTgUauxaMBO3RMSmOyRTrVIBx1Y85uI5JcUymWKcCxJk4MQcX8ZhMsU4FiDMVMAcHgJvtAMxjZrtLukjSr+dW/5+kE8Z8lX549/5BFfOH29/p7hsGbtkCd7/X3f9E0mMlvVnZP6BvUfYU5T2SblT2kwXHSfrd3quIHx/s5qrGCtwwM3uRsi99+XPOJyW9zN29qXL0nkoN+82BFXcT9sVhT6Y8U1L+IuQmZX2gkLs/IOkdweoVZhbr03sDEWeqIc6M1pU4E4tenPlZsLrSBE8MiDPVEGdGiyHOTKHPjzpW59sDqEOK55IU61Sk4WvBzqM9uiXFMZlinYowrvoxB9ctKY7JFOtUhDgTJ+bg4h2TKdapCHGmPObgAEj8jCyAQO8phQslHZlbvVHSie5+5Zi7vTFIP6Zi/qVB+oYxyzFV7n6TpHf1liJHBelvD9ln1JM7ZvZ8Sf+m7ImtOf8haUXvQrOSGtrjRmVv7pnzGM3vn6OEfXFY3sOC9KUVv/R+XdlPW+zYS++lrKxJXJgQZ8ZHnJmvg3EmFvcF6XF+FqCziDPjI87MF0OcmVKfH3asWtsD6KoUzyUx1ymia8FG0B5piHlMDhNznRhX/SJqD+bgRoh5TA4Tc50iGleNiH2uoALm4KojzsxHnBkDc3AApok32wF4kJntLOlLko7Orf6VpGe5+zcm2PV1QfrJZrZLhfxPL9hfVHpPRz4jWH3ZoG1jZmbPkfRp9d/Y/UVJp7r7/e2Ual7fCW8SGKr3BfrJBfubsyhIV/pZPXffJml9sHrvKvvoKuJMM4gzrcaZWIQxZV0rpZgC4kwziDPdiTNT7PODjtX59gDqkOK5JMU6VdTUtWAsaI+WpTgmU6xTRYyrfszBtSzFMZlinSoizsSJObjqiDPzEWc6gDk4AHncbAdAkmRmCyWdL2l5bvUmSc9x969Psm93/4Wk7+dWLVD/F5Eiy4P0lycpTwc8Q9KSXPoyd0/iack5ZvZMZU9XPDS3epWkF/YmsdpyUZBeXiHvb6n/S+0ad799yLZ3BeldB2412m5BeuMY++gU4kyjiDMYysz21vynDP+3jbLUjTjTKOJMB0yzzw84VufbA6hDiueSFOs0hqauBWNBe7QoxTGZYp3GwLjqxxxci1IckynWaQzEmcgwBzce4sxAy4M0caZhzMEBCHGzHQCZ2Y6SviDp2NzqzZKe5+5frekw5wXpl5Qs2+Mk/WZu1b2SvlJTmdryF0H6Q62UYkrM7DhJn9f2n1+Qss/s+e6+pZ1SPehi9b+2/aheHytjZZAO+3ReeMF8eMljSJLMbJmk3YPVlZ7M7RriTOOIMxjlReq/DrhdCfz0F3GmccSZljXU5+eO1fn2AOqQ4rkkxTqNqalrwVjQHi1JcUymWKcxMa76MQfXkhTHZIp1GhNxJj7MwY2POLO9bMSZljEHB2AQbrYDZpyZLZD0WUkn5lZvlXSKu19c46E+KSn/WtuTe5MZRcJ/5H7W3TfVV6xmmdkKScflVl2j7OmEJJjZ70j6T0kLc6u/puwL5+Z2SrWdu/9K0ueC1WEfm8fMDpF0Um7VNkmfGpFldZB+upk9oUwZe14ZpH/o7ndUyN8pxJlmEWcwipntK+ktweoL3N3bKE9diDPNIs60r8E+H0V7AHVI8VySYp3G1eC1YBRoj3akOCZTrNO4GFf9mINrR4pjMsU6jYs4Exfm4CZGnNmOONMi5uAADOXuLCwsM7pI2kHSZyR5btkq6aQpHe+jwbGukLRwxPbPDbbfLOmgCcuwPNjn2gn3t6DCtidL2hK09eEt94Ha2kPSUZLuCfZ3maRd2qzjgHIuDT4HV/aa52HbL+z11fz2Hyw4hkn6YZDnakm7lyjfCQPK9862222C9ibOEGdmLs400R6SHivp2RXzLJb0nQF9fmnb7TJhmxJniDMzFWea7PMxtAcLSx1LiueSFOtUQxmnfi1Yshyrg32unGa9aY9uLCmOyRTrVEMZGVcNt4eYg8vXJ7kxmWKdaigjcaZ8GZcHZVw75n6Yg9ter+TGZIp1qqGMxJkW+oeYg2NhiW7J/242gNnzMUkvCNa9SdIaM1tScV+3efGTFH+l7MmGPXvpp0m6xMxe5u4/mNvIzHaS9ApJ7w3yv9fdby5TGDN7pDQwxi0O0gtG1HWju68rONS1ZrZK2St9v+3uDwwoy6GSzpB0avCnN7n7moL912La7WFmh0v6sqTdcqt/KOlVkvYxsyrF3eTuU/u5Bnf/qZm9X9Ibcqs/Z2Z/LunDnnsNs5k9XtJHlPXVOeslvb3gGG5mZyjrF3OOkHR17zir3N3zecxsL0mvUdZX8p/Veklnlq1fBxFniDMzF2ekRvrHfpLON7NrJX1C0nnu/uMhZdld0gplT9PuG/z5ne7+0yHHiAVxhjgza3GmkT4fUXsAdUjxXJJinSbSxLVgLv9ukvYe8ueFQXrvEZ/JLe6+rcwxq6I9GpfimEyxThNhXPVjDq5xKY7JFOs0EeLMfMzBNSrFMZlinSZCnOnDHByAoSy4zgAwQ8yszgBwjLuvLnHM5ZIuVv9vzc89cfhTSXsomxB5RJD1S8pek3u/SjCztZIOKrPtCOe6+8qC46yTtFcvuVHStZJ+IWmTsjocMqQc73T3t05YvtKm3R5m9jZlFwl1uMzdl9e0r4HMbAdJF6j/tc+S9EtJ31X29MhSZX0x/y12i6Rj3f3yksc5S9LrBvxpvbI+v07ZWFgi6dc0f1Jgs6RnuvvXyhyvi4gzhYgz/VKKM2s13fZYLunSYPXdkq5TFlvuUXZx/ihJh2nwpOOH3T38yZzoEGcKEWf6RR9nmurzsbQHUIcUzyUp1qkODV4LrpR0zqTllXSwu6+tYT8D0R7NSXFMplinOjCu+jEH15wUx2SKdaoDcaYfc3DNSXFMplinOhBnMszBARiFN9sBaJS7rzazkyR9XNu/KJqkp/SWQT4t6eVNfIGc0G7KXvM7ygZJp7v7vzdQHgzh7veb2QuUPXHzwtyf9lH2ExKD/FLSirIXCT2v7+V7u/ovnPaSdHxB3puVvRZ7dYXjQcQZEWdm2R6Snl5iu3slvc7d/2XK5UkWcYY4AwCTSvFcEkOdGrwWjALtkbYYxmRVMdSJcdWPObi0xTAmq4qhTsSZTmAOriExjMmqYqgTcQYAij2k7QIAmD3ufqGkQyV9UNk/a4f5lqRT3P1Ud7+3kcJV9z5JayTN+7m1wM8lvUPSo/nHdDe4+0Z3f5Gk31fW14a5U9LZkg5194sqHsPd/T2SniTpnzS6v8+5QdkE4aFM8o2POEOcmQE3SnqXpCsk3Vcyz4+UveZ+CZN8kyPOEGcAYFKJnUskxVGnJq4FY0J7pC2GMVlVDHViXPVjDi5tMYzJqmKoE3GmUczBtSyGMVlVDHUizgDAaPyMLIBWmdmOyp4AOkjSYmVP+twqaY2739Rm2aows4dJOlzSwcqeRFmo7MLrVknfc/cbWiweSjCzg5W98np/SbtKuk3Zk61XuPuWmo5hkh6n7HXye0t6mKRtku5S1leucvfb6zgWtiPOIHVm9hBJyyQ9WtIBkhZpe//YoOznQL/j7ne0VsjEEWcAAJNK5VySF0udmrgWjAntka5YxmQVsdSJcdWPObh0xTImq4ilTsSZZjAH175YxmQVsdSJOAMA/bjZDgAAAAAAAAAAAAAAAACAAvyMLAAAAAAAAAAAAAAAAAAABbjZDgAAAAAAAAAAAAAAAACAAtxsBwAAAAAAAAAAAAAAAABAAW62AwAAAAAAAAAAAAAAAACgADfbAQAAAAAAAAAAAAAAAABQgJvtAAAAAAAAAAAAAAAAAAAowM12AAAAAAAAAAAAAAAAAAAU4GY7AAAAAAAAAAAAAAAAAAAKcLMdAAAAAAAAAAAAAAAAAAAFuNkOAAAAAAAAAAAAAAAAAIAC3GwHAAAAAAAAAAAAAAAAAEABbrYDAAAAAAAAAAAAAAAAAKAAN9sBAAAAAAAAAAAAAAAAAFCAm+0AAAAAAAAAAAAAAAAAACjAzXYAAAAAAAAAAAAAAAAAABTgZjsAAAAAAAAAAAAAAAAAAApwsx0AAAAAAAAAAAAAAAAAAAW42Q4AAAAAAAAAAAAAAAAAgALcbAcAAAAAAAAAAAAAAAAAQAFutgMAAAAAAAAAAAAAAAAAoAA32wEAAAAAAAAAAAAAAAAAUICb7QAAAAAAAAAAAAAAAAAAKMDNdgAAAAAAAAAAAAAAAAAAFOBmOwAAAAAAAAAAAAAAAAAACnCzHQAAAAAAAAAAAAAAAAAABbjZDgAAAAAAAAAAAAAAAACAAtxsBwAAAAAAAAAAAAAAAABAAW62AwAAAAAAAAAAAAAAAACgADfbAQAAAAAAAAAAAAAAAABQgJvtAAAAAAAAAAAAAAAAAAAowM12AAAAAAAAAAAAAAAAAAAU4GY7AAAAAAAAAAAAAAAAAAAKcLMdAAAAAAAAAAAAAAAAAAAFuNkOAAAAAAAAAAAAAAAAAIAC3GwHAAAAAAAAAAAAAAAAAEABbrYDAAAAAAAAAAAAAAAAAKAAN9sBAAAAAAAAAAAAAAAAAFDg/wFRlxEKZVemhQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import yappi\n", + "\n", + "from apd.aggregation.analysis import interactable_plot_multiple_charts, Config\n", + "from apd.aggregation.analysis import clean_temperature_fluctuations, get_one_sensor_by_deployment\n", + "from apd.aggregation.utils import profile_with_yappi\n", + "\n", + "yappi.set_clock_type(\"wall\")\n", + "\n", + "filter_in_db = Config(\n", + " clean=clean_temperature_fluctuations,\n", + " title=\"Ambient temperature\",\n", + " ylabel=\"Degrees C\",\n", + " get_data=get_one_sensor_by_deployment(\"Temperature\"),\n", + ")\n", + "\n", + "with profile_with_yappi():\n", + " plot = interactable_plot_multiple_charts(configs=[filter_in_db])\n", + " plot()\n", + "\n", + "yappi.get_func_stats().print_all()" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r\n", + "Clock type: CPU\r\n", + "Ordered by: totaltime, desc\r\n", + "\r\n", + "name ncall tsub ttot tavg \r\n", + "..futures\\thread.py:52 _WorkItem.run 7 0.000000 9.515625 1.359375\r\n", + "..lchemy\\orm\\query.py:3232 Query.all 6 0.187500 6.390625 1.065104\r\n", + "..lchemy\\orm\\loading.py:35 instances 67353 0.046875 6.140625 0.000091\r\n", + "..esult.py:1257 ResultProxy.fetchall 6 0.000000 5.109375 0.851562\r\n", + "..py:1217 ResultProxy._fetchall_impl 6 0.000000 5.078125 0.846354\r\n", + "..38\\Lib\\threading.py:859 Thread.run 2/1 0.000000 3.125000 1.562500\r\n", + "..rrent\\futures\\thread.py:66 _worker 2/1 0.000000 3.125000 1.562500\r\n", + "..b\\asyncio\\events.py:79 Handle._run 29 0.000000 3.125000 0.107759\r\n", + "..WindowsSelectorEventLoop._run_once 17 0.000000 3.125000 0.183824\r\n", + "..lectorEventLoop.run_until_complete 1 0.000000 3.125000 3.125000\r\n", + "..ndowsSelectorEventLoop.run_forever 1 0.000000 3.125000 3.125000\r\n", + "..gation\\analysis.py:291 plot_sensor 1 0.031250 3.046875 3.046875\r\n", + "..egation\\analysis.py:313 4 0.015625 2.703125 0.675781\r\n", + "..and_clean_temperature_fluctuations 4 0.046875 2.687500 0.671875\r\n", + "..184 clean_temperature_fluctuations 4 0.062500 2.640625 0.660156\r\n", + "..sycopg2\\_json.py:164 typecast_json 67339 0.312500 2.562500 0.000038\r\n", + "..-input-1-879b7ebf06b8>:7 4 0.234375 2.515625 0.628906\r\n", + "..gregation\\query.py:116 subiterator 4 0.390625 2.281250 0.570312\r\n", + "..n38\\Lib\\json\\__init__.py:299 loads 67339 0.515625 2.250000 0.000033\r\n", + "..es\\psycopg2\\extras.py:686 67347 0.156250 1.796875 0.000027\r\n", + "..on38\\Lib\\uuid.py:130 UUID.__init__ 67347 1.000000 1.640625 0.000024\r\n", + "..\\decoder.py:332 JSONDecoder.decode 67339 0.718750 1.546875 0.000023\r\n", + "..d\\aggregation\\query.py:41 get_data 1 0.312500 1.531250 1.531250\r\n", + "..ion\\database.py:77 from_sql_result 67339 0.468750 1.218750 0.000018\r\n", + "..chemy\\orm\\loading.py:83 6 0.328125 0.984375 0.164062\r\n", + ".._collections.py:121 result._asdict 67343 0.375000 0.515625 0.000008\r\n", + "..thon38\\Lib\\uuid.py:231 UUID.__eq__ 67351 0.281250 0.359375 0.000005\r\n", + "..chemy\\orm\\loading.py:84 67347 0.343750 0.343750 0.000005\r\n", + "..y\\util\\_collections.py:112 __new__ 67347 0.234375 0.312500 0.000005\r\n", + "..\\matplotlib\\__init__.py:1535 inner 4 0.000000 0.296875 0.074219\r\n", + "..axes.py:1651 AxesSubplot.plot_date 4 0.000000 0.296875 0.074219\r\n", + "..xes\\_axes.py:1412 AxesSubplot.plot 4 0.000000 0.296875 0.074219\r\n", + "..gregation\\analysis.py:63 draw_date 4 0.000000 0.296875 0.074219\r\n", + ".._base.py:1842 AxesSubplot.add_line 4 0.000000 0.281250 0.070312\r\n", + "..oder.py:343 JSONDecoder.raw_decode 67339 0.265625 0.265625 0.000004\r\n", + "..s\\matplotlib\\dates.py:1911 convert 6 0.000000 0.265625 0.044271\r\n", + "..on_base.py:2063 vectorize.__call__ 4 0.000000 0.265625 0.066406\r\n", + "..b\\axis.py:1562 XAxis.convert_units 12 0.000000 0.265625 0.022135\r\n", + "...py:168 AxesSubplot.convert_xunits 48 0.000000 0.265625 0.005534\r\n", + "..lotlib\\lines.py:664 Line2D.recache 10 0.000000 0.265625 0.026562\r\n", + "..s\\matplotlib\\dates.py:401 date2num 6 0.000000 0.265625 0.044271\r\n", + "..tlib\\lines.py:1018 Line2D.get_path 10 0.000000 0.265625 0.026562\r\n", + "..68 AxesSubplot._update_line_limits 4 0.000000 0.265625 0.066406\r\n", + "...py:2154 vectorize._vectorize_call 4 0.046875 0.265625 0.066406\r\n", + ":1 DataPoint.__init__ 67339 0.234375 0.234375 0.000003\r\n", + "..tplotlib\\dates.py:210 _to_ordinalf 8467 0.140625 0.218750 0.000026\r\n", + "..alysis.py:327 plot_multiple_charts 1 0.000000 0.078125 0.078125\r\n", + "..ine\\base.py:916 Connection.execute 9 0.000000 0.062500 0.006944\r\n", + "..:291 Select._execute_on_connection 6 0.000000 0.062500 0.010417\r\n", + "..y\\orm\\query.py:3400 Query.__iter__ 6 0.000000 0.062500 0.010417\r\n", + ".. Connection._execute_clauseelement 6 0.000000 0.062500 0.010417\r\n", + "..:3425 Query._execute_and_instances 6 0.000000 0.062500 0.010417\r\n", + "..y:1159 Connection._execute_context 9 0.000000 0.046875 0.005208\r\n", + "..:589 PGDialect_psycopg2.do_execute 11 0.000000 0.046875 0.004261\r\n", + "..t.py:1240 ResultProxy.process_rows 9 0.000000 0.031250 0.003472\r\n", + "..y\\engine\\result.py:1253 9 0.031250 0.031250 0.003472\r\n", + "..\\_base.py:378 AxesSubplot.__init__ 1 0.000000 0.031250 0.031250\r\n", + "..ubplots.py:18 AxesSubplot.__init__ 1 0.000000 0.031250 0.031250\r\n", + "..ation\\analysis.py:191 datapoint_ok 10826 0.031250 0.031250 0.000003\r\n", + "..s.py:52 PlainEngineStrategy.create 1 0.000000 0.031250 0.031250\r\n", + "..regation\\query.py:24 with_database 2 0.000000 0.031250 0.015625\r\n", + ".._GeneratorContextManager.__enter__ 141 0.000000 0.031250 0.000222\r\n", + "..\\figure.py:1259 Figure.add_subplot 1 0.000000 0.031250 0.031250\r\n", + "..ngine\\__init__.py:85 create_engine 1 0.000000 0.031250 0.031250\r\n", + "..lib\\sre_parse.py:254 Tokenizer.get 1519 0.000000 0.015625 0.000010\r\n", + "..y:527 PGCompiler_psycopg2.__init__ 8 0.000000 0.015625 0.001953\r\n", + "..my\\util\\langhelpers.py:963 oneshot 21 0.000000 0.015625 0.000744\r\n", + "..rs.py:86 Select._compiler_dispatch 94/8 0.000000 0.015625 0.000166\r\n", + "..Preparer_psycopg2._requires_quotes 22 0.000000 0.015625 0.000710\r\n", + "..\\sre_parse.py:233 Tokenizer.__next 1696 0.015625 0.015625 0.000009\r\n", + "..on-68gteq6k\\lib\\re.py:287 _compile 84 0.000000 0.015625 0.000186\r\n", + ":1 Select. 8 0.000000 0.015625 0.001953\r\n", + "..iler_psycopg2._label_select_column 29 0.000000 0.015625 0.000539\r\n", + "..y:274 PGCompiler_psycopg2.__init__ 8 0.000000 0.015625 0.001953\r\n", + "..fierPreparer_psycopg2.format_label 29 0.000000 0.015625 0.000539\r\n", + "..my\\sql\\compiler.py:2127 8 0.000000 0.015625 0.001953\r\n", + "..gteq6k\\lib\\sre_parse.py:493 _parse 75/14 0.000000 0.015625 0.000208\r\n", + "..GIdentifierPreparer_psycopg2.quote 103 0.000000 0.015625 0.000152\r\n", + "..10 PGCompiler_psycopg2.visit_label 29 0.000000 0.015625 0.000539\r\n", + "..py:349 PGCompiler_psycopg2.process 8 0.000000 0.015625 0.001953\r\n", + "..8gteq6k\\lib\\sre_parse.py:937 parse 12 0.000000 0.015625 0.001302\r\n", + "..5 PGCompiler_psycopg2.visit_select 8 0.000000 0.015625 0.001953\r\n", + "..quoted_name._memoized_method_lower 21 0.000000 0.015625 0.000744\r\n", + "..q6k\\lib\\sre_compile.py:759 compile 12 0.000000 0.015625 0.001302\r\n", + "..sql\\elements.py:405 Select.compile 8 0.000000 0.015625 0.001953\r\n", + "..6k\\lib\\sre_parse.py:435 _parse_sub 59/12 0.000000 0.015625 0.000265\r\n", + "..._bootstrap>:1017 _handle_fromlist 20/18 0.000000 0.015625 0.000781\r\n", + "..l\\elements.py:470 Select._compiler 8 0.000000 0.015625 0.001953\r\n", + "..rrent\\futures\\thread.py:158 submit 7 0.000000 0.015625 0.002232\r\n", + "..dPoolExecutor._adjust_thread_count 7 0.000000 0.015625 0.002232\r\n", + "..\\Lib\\threading.py:834 Thread.start 2 0.000000 0.015625 0.007812\r\n", + "..>:777 SourceFileLoader.exec_module 9/2 0.000000 0.015625 0.001736\r\n", + "..\\artist.py:731 XAxis.set_clip_path 26 0.000000 0.015625 0.000601\r\n", + "..s\\postgresql\\psycopg2.py:735 dbapi 1 0.000000 0.015625 0.015625\r\n", + ".. _process_plot_var_args._plot_args 4 0.000000 0.015625 0.003906\r\n", + "..icker.py:2848 AutoLocator.__init__ 16 0.000000 0.015625 0.000977\r\n", + "..es\\_axes.py:299 AxesSubplot.legend 1 0.000000 0.015625 0.015625\r\n", + "..b\\cbook\\__init__.py:1320 _check_1d 8 0.000000 0.015625 0.001953\r\n", + "..53 _process_plot_var_args.__call__ 8 0.000000 0.015625 0.001953\r\n", + "..lib._bootstrap>:650 _load_unlocked 10/2 0.000000 0.015625 0.001563\r\n", + "..plotlib\\axis.py:744 XAxis.__init__ 2 0.000000 0.015625 0.007812\r\n", + "..ib\\axis.py:967 XAxis.set_clip_path 2 0.000000 0.015625 0.007812\r\n", + "..tlib\\artist.py:217 Rectangle.stale 171.. 0.015625 0.015625 0.000009\r\n", + "..__init__.py:2073 _check_isinstance 94 0.000000 0.015625 0.000166\r\n", + "..sSelectorEventLoop.run_in_executor 6 0.000000 0.015625 0.002604\r\n", + "..y\\core\\shape_base.py:24 atleast_1d 24 0.000000 0.015625 0.000651\r\n", + "..et_default_locators_and_formatters 16 0.000000 0.015625 0.000977\r\n", + "..ine\\url.py:234 _parse_rfc1738_args 1 0.000000 0.015625 0.015625\r\n", + "..end.py:727 Legend._init_legend_box 1 0.000000 0.015625 0.015625\r\n", + "..otlib\\axis.py:825 XAxis._set_scale 16 0.000000 0.015625 0.000977\r\n", + "..alchemy\\engine\\url.py:221 make_url 1 0.000000 0.015625 0.015625\r\n", + "..\\psycopg2\\extensions.py:1 1 0.000000 0.015625 0.015625\r\n", + "..mpy\\core\\_asarray.py:88 asanyarray 72 0.000000 0.015625 0.000217\r\n", + "..otlib\\axis.py:2231 YAxis._get_tick 3 0.000000 0.015625 0.005208\r\n", + "...py:89 HandlerLine2D.legend_artist 4 0.000000 0.015625 0.003906\r\n", + "..icker.py:2051 AutoLocator.__init__ 16 0.015625 0.015625 0.000977\r\n", + "..tplotlib\\axis.py:56 XTick.__init__ 6 0.000000 0.015625 0.002604\r\n", + "..b\\axis.py:589 YTick._get_tick2line 3 0.000000 0.015625 0.005208\r\n", + "..\\axis.py:687 _LazyTickList.__get__ 6/4 0.000000 0.015625 0.002604\r\n", + "..ines.py:1268 Line2D.set_markersize 30 0.000000 0.015625 0.000521\r\n", + "..ages\\psycopg2\\_range.py:1 1 0.000000 0.015625 0.015625\r\n", + "..y:229 HandlerLine2D.create_artists 4 0.000000 0.015625 0.003906\r\n", + "..otlib\\lines.py:269 Line2D.__init__ 30 0.000000 0.015625 0.000521\r\n", + "..tlib\\legend.py:306 Legend.__init__ 1 0.000000 0.015625 0.015625\r\n", + "..ms.py:986 TransformedBbox.__init__ 21 0.000000 0.015625 0.000744\r\n", + "..function__ internals>:2 atleast_1d 24 0.000000 0.015625 0.000651\r\n", + ".._function__ internals>:2 full_like 4 0.015625 0.015625 0.003906\r\n", + "..strap>:956 _find_and_load_unlocked 10/2 0.000000 0.015625 0.001563\r\n", + "..\\axes\\_base.py:948 AxesSubplot.cla 1 0.000000 0.015625 0.015625\r\n", + "..base.py:553 AxesSubplot._init_axis 1 0.000000 0.015625 0.015625\r\n", + "..rap>:211 _call_with_frames_removed 14/2 0.000000 0.015625 0.001116\r\n", + "..lib._bootstrap>:986 _find_and_load 10/2 0.000000 0.015625 0.001563\r\n", + "..ion-68gteq6k\\lib\\re.py:248 compile 10 0.000000 0.015625 0.001563\r\n", + "..es\\psycopg2\\__init__.py:1 1 0.000000 0.015625 0.015625\r\n", + "...py:343 WeakKeyDictionary.__init__ 13 0.000000 0.000000 0.000000\r\n", + "..pool\\impl.py:112 QueuePool._do_get 1 0.000000 0.000000 0.000000\r\n", + "..6k\\lib\\abc.py:96 __instancecheck__ 141 0.000000 0.000000 0.000000\r\n", + "..py:3730 Select._columns_plus_names 8 0.000000 0.000000 0.000000\r\n", + "..y:330 _ListenerCollection.__bool__ 1 0.000000 0.000000 0.000000\r\n", + "..yncio\\events.py:32 Handle.__init__ 24 0.000000 0.000000 0.000000\r\n", + "..py:4065 ColumnClause._from_objects 2 0.000000 0.000000 0.000000\r\n", + "..ions.py:145 immutabledict.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..ections.py:396 OrderedSet.__iter__ 8 0.000000 0.000000 0.000000\r\n", + "..qltypes.py:2793 TIMESTAMP.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..ib\\sre_parse.py:286 Tokenizer.tell 171 0.000000 0.000000 0.000000\r\n", + "..q6k\\lib\\sre_parse.py:921 fix_flags 12 0.000000 0.000000 0.000000\r\n", + "..\\sql\\selectable.py:3079 8 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\result.py:496 3 0.000000 0.000000 0.000000\r\n", + "..opg2.py:548 _PGUUID.bind_processor 1 0.000000 0.000000 0.000000\r\n", + "..es\\psycopg2\\__init__.py:82 connect 1 0.000000 0.000000 0.000000\r\n", + "..ib\\sre_parse.py:84 State.opengroup 27 0.000000 0.000000 0.000000\r\n", + "..gging\\__init__.py:223 _releaseLock 7 0.000000 0.000000 0.000000\r\n", + "..ql\\elements.py:2428 literal_column 2 0.000000 0.000000 0.000000\r\n", + "..dConnectionEventsDispatch.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..y\\engine\\strategies.py:106 connect 1 0.000000 0.000000 0.000000\r\n", + "..tras.py:657 UUID_adapter.getquoted 4 0.000000 0.000000 0.000000\r\n", + "..hemy\\sql\\compiler.py:652 10 0.000000 0.000000 0.000000\r\n", + "..query.py:3440 Query._get_bind_args 6 0.000000 0.000000 0.000000\r\n", + "..b\\sre_parse.py:96 State.closegroup 27 0.000000 0.000000 0.000000\r\n", + "..ctions.py:933 LRUCache.__setitem__ 3 0.000000 0.000000 0.000000\r\n", + "..eq6k\\lib\\sre_parse.py:978 addgroup 1 0.000000 0.000000 0.000000\r\n", + "..yEventsDispatch._event_descriptors 46 0.000000 0.000000 0.000000\r\n", + "..tgresql\\psycopg2.py:815 on_connect 2 0.000000 0.000000 0.000000\r\n", + "..ne\\strategies.py:194 first_connect 1 0.000000 0.000000 0.000000\r\n", + "..sult.py:700 ResultMetaData._getter 27 0.000000 0.000000 0.000000\r\n", + "..ry.py:4056 Query._simple_statement 6 0.000000 0.000000 0.000000\r\n", + "..elements.py:4692 _literal_as_binds 2 0.000000 0.000000 0.000000\r\n", + "...py:56 QueuePool._should_log_debug 1 0.000000 0.000000 0.000000\r\n", + "..session.py:1057 Session.connection 6 0.000000 0.000000 0.000000\r\n", + "..xecutionContext_psycopg2.post_exec 6 0.000000 0.000000 0.000000\r\n", + "..y:3229 BinaryExpression.self_group 4 0.000000 0.000000 0.000000\r\n", + "..py:4335 _truncated_label.apply_map 27 0.000000 0.000000 0.000000\r\n", + "..68gteq6k\\lib\\weakref.py:345 remove 2 0.000000 0.000000 0.000000\r\n", + "..123 ConnectionEventsDispatch._join 1 0.000000 0.000000 0.000000\r\n", + "..lalchemy\\pool\\base.py:490 checkout 1 0.000000 0.000000 0.000000\r\n", + "..y\\engine\\default.py:796 6 0.000000 0.000000 0.000000\r\n", + "..ctable.py:1982 Table._from_objects 6 0.000000 0.000000 0.000000\r\n", + "..emy\\sql\\compiler.py:1000 4 0.000000 0.000000 0.000000\r\n", + "..\\encodings\\utf_8.py:33 getregentry 1 0.000000 0.000000 0.000000\r\n", + "..ery._adjust_for_single_inheritance 6 0.000000 0.000000 0.000000\r\n", + "..ler_psycopg2.get_select_precolumns 8 0.000000 0.000000 0.000000\r\n", + "..ycopg2\\extras.py:664 register_uuid 2 0.000000 0.000000 0.000000\r\n", + "..:3418 PGTypeCompiler.visit_unicode 1 0.000000 0.000000 0.000000\r\n", + "..on._memoized_attr__exec_once_mutex 1 0.000000 0.000000 0.000000\r\n", + "..ngs\\__init__.py:70 search_function 1 0.000000 0.000000 0.000000\r\n", + "..uture.set_running_or_notify_cancel 7 0.000000 0.000000 0.000000\r\n", + "..lalchemy\\sql\\base.py:39 20 0.000000 0.000000 0.000000\r\n", + "..422 WeakKeyDictionary.__contains__ 386 0.000000 0.000000 0.000000\r\n", + "..4 PGCompiler_psycopg2.visit_column 36 0.000000 0.000000 0.000000\r\n", + "..py:536 PGDialect_psycopg2.do_begin 1 0.000000 0.000000 0.000000\r\n", + ".. _ClsLevelDispatch.update_subclass 77 0.000000 0.000000 0.000000\r\n", + ":1 VARCHAR.__init__ 9 0.000000 0.000000 0.000000\r\n", + "..tions.py:946 LRUCache._manage_size 3 0.000000 0.000000 0.000000\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..g2\\extensions.py:180 _param_escape 3 0.000000 0.000000 0.000000\r\n", + "..\\elements.py:232 Table._cloned_set 2 0.000000 0.000000 0.000000\r\n", + "..419 Query._connection_from_session 6 0.000000 0.000000 0.000000\r\n", + "..my\\sql\\type_api.py:1475 adapt_type 13 0.000000 0.000000 0.000000\r\n", + "..y\\sql\\elements.py:4594 _literal_as 14 0.000000 0.000000 0.000000\r\n", + "..94 QueryEventsDispatch.__getattr__ 8 0.000000 0.000000 0.000000\r\n", + ".._.py:1663 Logger.getEffectiveLevel 3 0.000000 0.000000 0.000000\r\n", + "..ngine\\strategies.py:183 on_connect 2 0.000000 0.000000 0.000000\r\n", + "..e.py:737 _ConnectionFairy.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..lalchemy\\util\\compat.py:148 raise_ 12 0.000000 0.000000 0.000000\r\n", + "..sre_parse.py:172 SubPattern.append 182 0.000000 0.000000 0.000000\r\n", + ":1 cast 2 0.000000 0.000000 0.000000\r\n", + "..\\langhelpers.py:301 get_cls_kwargs 35/16 0.000000 0.000000 0.000000\r\n", + "..ler_psycopg2._truncated_identifier 33 0.000000 0.000000 0.000000\r\n", + "..ler_psycopg2.escape_literal_column 2 0.000000 0.000000 0.000000\r\n", + "..s.py:880 memoized_property.__get__ 97/87 0.000000 0.000000 0.000000\r\n", + "..nts.py:709 ColumnClause.comparator 4 0.000000 0.000000 0.000000\r\n", + "..\\orm\\session.py:2462 Session.flush 9 0.000000 0.000000 0.000000\r\n", + "..gine\\default.py:753 _init_compiled 6 0.000000 0.000000 0.000000\r\n", + "..n-68gteq6k\\lib\\enum.py:557 __new__ 26 0.000000 0.000000 0.000000\r\n", + "..y\\util\\_collections.py:140 __new__ 1 0.000000 0.000000 0.000000\r\n", + "..WindowsSelectorEventLoop.get_debug 33 0.000000 0.000000 0.000000\r\n", + "..indowsSelectorEventLoop._call_soon 23 0.000000 0.000000 0.000000\r\n", + "..:715 PGDialect_psycopg2.initialize 1 0.000000 0.000000 0.000000\r\n", + "..t_psycopg2._use_server_side_cursor 9 0.000000 0.000000 0.000000\r\n", + "..lection.exec_once_unless_exception 1 0.000000 0.000000 0.000000\r\n", + "..iler_psycopg2._compose_select_body 8 0.000000 0.000000 0.000000\r\n", + "..sqltypes.py:2182 _PGJSONB.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..ements.py:1315 TypeClause.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..tionContext_psycopg2.no_parameters 5 0.000000 0.000000 0.000000\r\n", + "..:395 WeakKeyDictionary.__setitem__ 97 0.000000 0.000000 0.000000\r\n", + "..xt_psycopg2.should_autocommit_text 3 0.000000 0.000000 0.000000\r\n", + "..ts.py:724 ColumnClause.__getattr__ 9 0.000000 0.000000 0.000000\r\n", + "..qlalchemy\\inspection.py:38 inspect 16 0.000000 0.000000 0.000000\r\n", + "..ons.py:971 lightweight_named_tuple 6 0.000000 0.000000 0.000000\r\n", + "..m\\query.py:3551 Query._select_args 6 0.000000 0.000000 0.000000\r\n", + "..sycopg2\\extensions.py:146 make_dsn 1 0.000000 0.000000 0.000000\r\n", + "..chemy\\sql\\base.py:38 _from_objects 20 0.000000 0.000000 0.000000\r\n", + "..er_psycopg2._get_operator_dispatch 4 0.000000 0.000000 0.000000\r\n", + "..ine\\base.py:69 Connection.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..l\\psycopg2.py:747 _psycopg2_extras 2 0.000000 0.000000 0.000000\r\n", + "..tionContext_psycopg2.create_cursor 9 0.000000 0.000000 0.000000\r\n", + "..til\\_collections.py:779 41 0.000000 0.000000 0.000000\r\n", + "..\\base.py:364 Connection.connection 11 0.000000 0.000000 0.000000\r\n", + "..my\\sql\\compiler.py:2252 6 0.000000 0.000000 0.000000\r\n", + "..033 PGCompiler_psycopg2.visit_cast 2 0.000000 0.000000 0.000000\r\n", + "..ngine\\default.py:378 check_unicode 2 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\result.py:319 9 0.000000 0.000000 0.000000\r\n", + "..chemy\\sql\\elements.py:4327 __new__ 16 0.000000 0.000000 0.000000\r\n", + "..mpiler_psycopg2._add_to_result_map 29 0.000000 0.000000 0.000000\r\n", + ":1 Select.__init__ 8 0.000000 0.000000 0.000000\r\n", + "..py:4442 _anonymous_label.apply_map 6 0.000000 0.000000 0.000000\r\n", + "..py:2248 Engine._contextual_connect 1 0.000000 0.000000 0.000000\r\n", + "..:307 PGDialect_psycopg2.initialize 1 0.000000 0.000000 0.000000\r\n", + "..\\log.py:59 Engine._should_log_info 2 0.000000 0.000000 0.000000\r\n", + "..pg2\\extras.py:790 _solve_conn_curs 1 0.000000 0.000000 0.000000\r\n", + "..k\\lib\\encodings\\utf_8.py:15 decode 48 0.000000 0.000000 0.000000\r\n", + "..tions.py:906 LRUCache._inc_counter 6 0.000000 0.000000 0.000000\r\n", + "..ctorEventLoop.call_soon_threadsafe 6 0.000000 0.000000 0.000000\r\n", + "..y\\sql\\selectable.py:2987 6 0.000000 0.000000 0.000000\r\n", + ".._psycopg2._get_default_schema_name 1 0.000000 0.000000 0.000000\r\n", + "..ns.py:738 PopulateDict.__missing__ 5 0.000000 0.000000 0.000000\r\n", + "..tgresql\\psycopg2.py:847 on_connect 2 0.000000 0.000000 0.000000\r\n", + "..e\\result.py:1335 ResultProxy.first 3 0.000000 0.000000 0.000000\r\n", + ".._psycopg2._generate_generic_binary 4 0.000000 0.000000 0.000000\r\n", + "..se.py:325 Future._invoke_callbacks 7 0.000000 0.000000 0.000000\r\n", + "..\\sql\\selectable.py:3751 2 0.000000 0.000000 0.000000\r\n", + "..:4707 _interpret_as_column_or_from 29 0.000000 0.000000 0.000000\r\n", + "..compile.py:461 _get_literal_prefix 19/12 0.000000 0.000000 0.000000\r\n", + "..ts.py:4059 ColumnClause._set_table 2 0.000000 0.000000 0.000000\r\n", + "..317 VARCHAR._has_column_expression 12 0.000000 0.000000 0.000000\r\n", + "..my\\sql\\elements.py:4488 8 0.000000 0.000000 0.000000\r\n", + "..emy\\util\\queue.py:191 Queue._empty 1 0.000000 0.000000 0.000000\r\n", + "..tgresql\\psycopg2.py:800 on_connect 2 0.000000 0.000000 0.000000\r\n", + "..9 PGCompiler_psycopg2.visit_binary 4 0.000000 0.000000 0.000000\r\n", + "..ery.py:3929 Query._compile_context 6 0.000000 0.000000 0.000000\r\n", + "..til\\_collections.py:981 3 0.000000 0.000000 0.000000\r\n", + "..i.py:279 NullType.result_processor 4 0.000000 0.000000 0.000000\r\n", + "..1333 Connection._safe_close_cursor 9 0.000000 0.000000 0.000000\r\n", + "..ation-68gteq6k\\lib\\re.py:186 match 70 0.000000 0.000000 0.000000\r\n", + "..my\\sql\\elements.py:1955 1 0.000000 0.000000 0.000000\r\n", + "..276 PGDialect_psycopg2._type_memos 1 0.000000 0.000000 0.000000\r\n", + "..mn._render_label_in_columns_clause 10 0.000000 0.000000 0.000000\r\n", + "..sqltypes.py:786 TIMESTAMP.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..ments.py:765 Cast._select_iterable 29 0.000000 0.000000 0.000000\r\n", + "..200 BinaryExpression._from_objects 4 0.000000 0.000000 0.000000\r\n", + "..extensions.py:103 register_adapter 12 0.000000 0.000000 0.000000\r\n", + "..y\\util\\_collections.py:822 to_list 14 0.000000 0.000000 0.000000\r\n", + "..res\\_base.py:517 Future.set_result 7 0.000000 0.000000 0.000000\r\n", + "..ngine\\base.py:590 Connection.begin 1 0.000000 0.000000 0.000000\r\n", + "..eading.py:364 Condition.notify_all 7 0.000000 0.000000 0.000000\r\n", + "..ase.py:971 _ConnectionFairy.cursor 6 0.000000 0.000000 0.000000\r\n", + "..gine\\base.py:908 Connection.scalar 2 0.000000 0.000000 0.000000\r\n", + "..rm\\query.py:418 Query._bind_mapper 6 0.000000 0.000000 0.000000\r\n", + "..result.py:767 ResultProxy.__init__ 9 0.000000 0.000000 0.000000\r\n", + "..:3361 PGTypeCompiler.visit_VARCHAR 2 0.000000 0.000000 0.000000\r\n", + "..l\\sqltypes.py:141 VARCHAR.__init__ 9 0.000000 0.000000 0.000000\r\n", + "..my\\sql\\elements.py:4480 6 0.000000 0.000000 0.000000\r\n", + "..e_parse.py:174 SubPattern.getwidth 138.. 0.000000 0.000000 0.000000\r\n", + "..ResultMetaData._merge_cols_by_none 6 0.000000 0.000000 0.000000\r\n", + "...py:488 PGDialect_psycopg2.connect 1 0.000000 0.000000 0.000000\r\n", + "...py:2282 Engine._wrap_pool_connect 1 0.000000 0.000000 0.000000\r\n", + "..session.py:1588 Session._autoflush 6 0.000000 0.000000 0.000000\r\n", + "..\\threading.py:341 Condition.notify 15 0.000000 0.000000 0.000000\r\n", + "..ections.py:361 OrderedSet.__init__ 8 0.000000 0.000000 0.000000\r\n", + "..ql\\operators.py:1386 is_comparison 5 0.000000 0.000000 0.000000\r\n", + "..6 PGCompiler_psycopg2.default_from 2 0.000000 0.000000 0.000000\r\n", + "..58 PGCompiler_psycopg2.visit_table 6 0.000000 0.000000 0.000000\r\n", + "..elements.py:4483 _select_iterables 8 0.000000 0.000000 0.000000\r\n", + "..b\\sre_compile.py:65 _combine_flags 39 0.000000 0.000000 0.000000\r\n", + "..lchemy\\util\\langhelpers.py:1506 go 1 0.000000 0.000000 0.000000\r\n", + "..utionContext_psycopg2._log_notices 9 0.000000 0.000000 0.000000\r\n", + "..ation-68gteq6k\\lib\\re.py:323 _subx 3 0.000000 0.000000 0.000000\r\n", + "..py:486 UUID._cached_bind_processor 4 0.000000 0.000000 0.000000\r\n", + "..ttr.py:227 _EmptyListener.__init__ 77 0.000000 0.000000 0.000000\r\n", + "..ghelpers.py:281 _inspect_func_args 18 0.000000 0.000000 0.000000\r\n", + "..re_compile.py:249 _compile_charset 34 0.000000 0.000000 0.000000\r\n", + "..nContext_psycopg2.get_result_proxy 9 0.000000 0.000000 0.000000\r\n", + "..uery.py:4762 QueryContext.__init__ 6 0.000000 0.000000 0.000000\r\n", + "..gging\\__init__.py:214 _acquireLock 7 0.000000 0.000000 0.000000\r\n", + "..type_api.py:60 Comparator.__init__ 8 0.000000 0.000000 0.000000\r\n", + "..hon38\\Lib\\uuid.py:271 UUID.__str__ 4 0.000000 0.000000 0.000000\r\n", + "..velDispatch._assign_cls_collection 77 0.000000 0.000000 0.000000\r\n", + "..e_parse.py:111 SubPattern.__init__ 135 0.000000 0.000000 0.000000\r\n", + "..compile.py:492 _get_charset_prefix 10 0.000000 0.000000 0.000000\r\n", + "..arse.py:164 SubPattern.__getitem__ 707 0.000000 0.000000 0.000000\r\n", + "..2456 PGDialect_psycopg2.initialize 1 0.000000 0.000000 0.000000\r\n", + "..hreading.py:249 Condition.__exit__ 61 0.000000 0.000000 0.000000\r\n", + ".. NullType._cached_result_processor 30 0.000000 0.000000 0.000000\r\n", + "..116 QueryEventsDispatch._for_class 8 0.000000 0.000000 0.000000\r\n", + "..compiler.py:419 _CompileLabel.type 29 0.000000 0.000000 0.000000\r\n", + "..m\\session.py:1429 Session.get_bind 6 0.000000 0.000000 0.000000\r\n", + "..\\elements.py:4610 _literal_as_text 14 0.000000 0.000000 0.000000\r\n", + "..Compiler_psycopg2.bindparam_string 4 0.000000 0.000000 0.000000\r\n", + "..53 _ListenerCollection.__getattr__ 45/24 0.000000 0.000000 0.000000\r\n", + ".._psycopg2._get_server_version_info 1 0.000000 0.000000 0.000000\r\n", + "..teq6k\\lib\\sre_compile.py:598 _code 12 0.000000 0.000000 0.000000\r\n", + "..sql\\operators.py:1497 is_precedent 4 0.000000 0.000000 0.000000\r\n", + "..\\sql\\selectable.py:3746 6 0.000000 0.000000 0.000000\r\n", + "..Compiler_psycopg2.visit_clauselist 1 0.000000 0.000000 0.000000\r\n", + "..ExecutionContext_psycopg2.pre_exec 6 0.000000 0.000000 0.000000\r\n", + "..\\elements.py:688 Column.self_group 11 0.000000 0.000000 0.000000\r\n", + "..init__.py:1677 Logger.isEnabledFor 5 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\default.py:415 1 0.000000 0.000000 0.000000\r\n", + "..ql\\base.py:1142 TIMESTAMP.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..l\\_collections.py:910 LRUCache.get 6 0.000000 0.000000 0.000000\r\n", + "..ttr.py:269 _EmptyListener.__bool__ 17 0.000000 0.000000 0.000000\r\n", + "..pes.py:295 String.result_processor 5 0.000000 0.000000 0.000000\r\n", + "..b\\sre_parse.py:249 Tokenizer.match 311 0.000000 0.000000 0.000000\r\n", + "..copg2._check_max_identifier_length 1 0.000000 0.000000 0.000000\r\n", + "..gteq6k\\lib\\re.py:313 _compile_repl 1 0.000000 0.000000 0.000000\r\n", + "..lchemy\\orm\\query.py:4795 6 0.000000 0.000000 0.000000\r\n", + "..ult.py:269 ResultMetaData.__init__ 9 0.000000 0.000000 0.000000\r\n", + "..iler.py:399 PGTypeCompiler.process 2 0.000000 0.000000 0.000000\r\n", + "..GCompiler_psycopg2.order_by_clause 1 0.000000 0.000000 0.000000\r\n", + "..y:305 QueuePool._create_connection 1 0.000000 0.000000 0.000000\r\n", + "..sql\\type_api.py:546 NullType.adapt 13 0.000000 0.000000 0.000000\r\n", + "..rm\\query.py:398 Query._entity_zero 6 0.000000 0.000000 0.000000\r\n", + "..py:1202 ResultProxy._fetchone_impl 3 0.000000 0.000000 0.000000\r\n", + ".._psycopg2._setup_crud_result_proxy 3 0.000000 0.000000 0.000000\r\n", + "..esql\\base.py:1226 _PGUUID.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..nghelpers.py:1167 constructor_copy 13 0.000000 0.000000 0.000000\r\n", + "..piler_psycopg2._setup_select_stack 8 0.000000 0.000000 0.000000\r\n", + "..MetaData._merge_cursor_description 9 0.000000 0.000000 0.000000\r\n", + "..ttr.py:257 _EmptyListener.__call__ 8 0.000000 0.000000 0.000000\r\n", + "..wsSelectorEventLoop._write_to_self 6 0.000000 0.000000 0.000000\r\n", + "..q6k\\lib\\sre_compile.py:423 _simple 45 0.000000 0.000000 0.000000\r\n", + "..\\result.py:777 ResultProxy._getter 27 0.000000 0.000000 0.000000\r\n", + "..ycopg2\\extras.py:909 type.get_oids 1 0.000000 0.000000 0.000000\r\n", + "..arse.py:168 SubPattern.__setitem__ 48 0.000000 0.000000 0.000000\r\n", + "..text_psycopg2.get_result_processor 30 0.000000 0.000000 0.000000\r\n", + "..k\\lib\\sre_parse.py:81 State.groups 80 0.000000 0.000000 0.000000\r\n", + "..l\\sqltypes.py:412 Unicode.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..alchemy\\pool\\base.py:770 _checkout 1 0.000000 0.000000 0.000000\r\n", + ".. SessionTransaction._assert_active 8 0.000000 0.000000 0.000000\r\n", + ":1 select 8 0.000000 0.000000 0.000000\r\n", + ".. QueryEventsDispatch._for_instance 8 0.000000 0.000000 0.000000\r\n", + "..elements.py:4080 Column._key_label 10 0.000000 0.000000 0.000000\r\n", + "..ine\\default.py:981 _init_statement 3 0.000000 0.000000 0.000000\r\n", + "..\\lib\\enum.py:828 RegexFlag.__and__ 12 0.000000 0.000000 0.000000\r\n", + "..py:644 _ConnectionRecord.__connect 1 0.000000 0.000000 0.000000\r\n", + "..GCompiler_psycopg2.visit_bindparam 4 0.000000 0.000000 0.000000\r\n", + "..emy\\util\\langhelpers.py:1188 _next 7 0.000000 0.000000 0.000000\r\n", + "..py:77 QueryEventsDispatch.__init__ 8 0.000000 0.000000 0.000000\r\n", + "..\\__init__.py:43 normalize_encoding 1 0.000000 0.000000 0.000000\r\n", + "..util\\langhelpers.py:1175 46 0.000000 0.000000 0.000000\r\n", + "..ql\\elements.py:895 Cast.anon_label 2 0.000000 0.000000 0.000000\r\n", + "..y\\sql\\operators.py:1409 is_boolean 5 0.000000 0.000000 0.000000\r\n", + "..-68gteq6k\\lib\\codecs.py:94 __new__ 1 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\result.py:460 6 0.000000 0.000000 0.000000\r\n", + "..selectable.py:2169 Select.__init__ 8 0.000000 0.000000 0.000000\r\n", + "..ry.py:390 Query._query_entity_zero 6 0.000000 0.000000 0.000000\r\n", + "..re_parse.py:224 Tokenizer.__init__ 13 0.000000 0.000000 0.000000\r\n", + "..teq6k\\lib\\sre_parse.py:355 _escape 30 0.000000 0.000000 0.000000\r\n", + "..uery.py:698 Query.is_single_entity 6 0.000000 0.000000 0.000000\r\n", + "..19 ResultProxy._cursor_description 9 0.000000 0.000000 0.000000\r\n", + "..y:4696 _ColumnEntity.row_processor 27 0.000000 0.000000 0.000000\r\n", + "..ents.py:3947 ColumnClause.__init__ 2 0.000000 0.000000 0.000000\r\n", + "...py:543 NullType._gen_dialect_impl 13 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\default.py:855 10 0.000000 0.000000 0.000000\r\n", + "..lements.py:2553 Cast._from_objects 2 0.000000 0.000000 0.000000\r\n", + "..til\\_collections.py:991 3 0.000000 0.000000 0.000000\r\n", + "..PGTypeCompiler._render_string_type 2 0.000000 0.000000 0.000000\r\n", + "..reading.py:261 Condition._is_owned 11 0.000000 0.000000 0.000000\r\n", + "..ult.py:924 ResultProxy._soft_close 9 0.000000 0.000000 0.000000\r\n", + "..Compiler_psycopg2.construct_params 6 0.000000 0.000000 0.000000\r\n", + "..l\\selectable.py:3036 Select._froms 8 0.000000 0.000000 0.000000\r\n", + "..ging\\__init__.py:1412 Logger.debug 2 0.000000 0.000000 0.000000\r\n", + "..9 _ConnectionRecord.get_connection 1 0.000000 0.000000 0.000000\r\n", + "..Compiler_psycopg2.visit_typeclause 2 0.000000 0.000000 0.000000\r\n", + "..etaData._colnames_from_description 6 0.000000 0.000000 0.000000\r\n", + "..postgresql\\base.py:2708 1 0.000000 0.000000 0.000000\r\n", + "..ct_psycopg2._check_unicode_returns 1 0.000000 0.000000 0.000000\r\n", + "...py:434 _ConnectionRecord.__init__ 1 0.000000 0.000000 0.000000\r\n", + ".._api.py:527 NullType._dialect_info 25 0.000000 0.000000 0.000000\r\n", + "..lib\\sre_parse.py:76 State.__init__ 12 0.000000 0.000000 0.000000\r\n", + "..lchemy\\util\\queue.py:135 Queue.get 1 0.000000 0.000000 0.000000\r\n", + "..py:352 PGCompiler_psycopg2.__str__ 8 0.000000 0.000000 0.000000\r\n", + "..alect_psycopg2.get_isolation_level 1 0.000000 0.000000 0.000000\r\n", + "..owsSelectorEventLoop._check_closed 34 0.000000 0.000000 0.000000\r\n", + "..\\session.py:2508 Session._is_clean 10 0.000000 0.000000 0.000000\r\n", + "..q6k\\lib\\sre_compile.py:71 _compile 111.. 0.000000 0.000000 0.000000\r\n", + "..e.py:1694 RootTransaction.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..eral_and_labels_as_label_reference 3 0.000000 0.000000 0.000000\r\n", + "...py:903 PGDialect_psycopg2.oneshot 1 0.000000 0.000000 0.000000\r\n", + "..ql\\selectable.py:3735 name_for_col 27 0.000000 0.000000 0.000000\r\n", + "...py:3065 Select._get_display_froms 8 0.000000 0.000000 0.000000\r\n", + "..e.py:1134 Connection._execute_text 3 0.000000 0.000000 0.000000\r\n", + "..tgresql\\psycopg2.py:807 on_connect 2 0.000000 0.000000 0.000000\r\n", + "..chemy\\sql\\elements.py:4279 __new__ 16 0.000000 0.000000 0.000000\r\n", + "..copg2\\extensions.py:171 1 0.000000 0.000000 0.000000\r\n", + "..2.py:540 _PGJSONB.result_processor 1 0.000000 0.000000 0.000000\r\n", + "...py:793 ResultProxy._init_metadata 9 0.000000 0.000000 0.000000\r\n", + "..ts.py:4056 ColumnClause._get_table 48 0.000000 0.000000 0.000000\r\n", + "..\\util\\_collections.py:771 5 0.000000 0.000000 0.000000\r\n", + "..hemy\\sql\\compiler.py:650 6 0.000000 0.000000 0.000000\r\n", + "..pool\\base.py:354 QueuePool.connect 1 0.000000 0.000000 0.000000\r\n", + "..cio\\futures.py:364 _call_set_state 6 0.000000 0.000000 0.000000\r\n", + "..365 _ListenerCollection.for_modify 2 0.000000 0.000000 0.000000\r\n", + "..Context_psycopg2.should_autocommit 9 0.000000 0.000000 0.000000\r\n", + "..xtras.py:650 UUID_adapter.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..ne\\result.py:956 ResultProxy.close 3 0.000000 0.000000 0.000000\r\n", + "..y\\sql\\type_api.py:1465 to_instance 8 0.000000 0.000000 0.000000\r\n", + "..threading.py:441 Semaphore.release 7 0.000000 0.000000 0.000000\r\n", + "..ib\\sre_parse.py:969 parse_template 1 0.000000 0.000000 0.000000\r\n", + "..il\\_collections.py:775 unique_list 41 0.000000 0.000000 0.000000\r\n", + "..56 WeakInstanceDict.check_modified 10 0.000000 0.000000 0.000000\r\n", + "..m\\query.py:345 Query._adapt_clause 34 0.000000 0.000000 0.000000\r\n", + "..my\\util\\deprecations.py:115 warned 21/20 0.000000 0.000000 0.000000\r\n", + "..-68gteq6k\\lib\\enum.py:278 __call__ 26 0.000000 0.000000 0.000000\r\n", + "..:1136 Session._connection_for_bind 6 0.000000 0.000000 0.000000\r\n", + "..b\\sre_compile.py:536 _compile_info 12 0.000000 0.000000 0.000000\r\n", + "..539 PGDialect_psycopg2.do_rollback 2 0.000000 0.000000 0.000000\r\n", + ".._memoized_property.expire_instance 2 0.000000 0.000000 0.000000\r\n", + "..ections.py:151 immutabledict.union 6 0.000000 0.000000 0.000000\r\n", + "..ListenerCollection._exec_once_impl 1 0.000000 0.000000 0.000000\r\n", + "..reading.py:246 Condition.__enter__ 61 0.000000 0.000000 0.000000\r\n", + "..chemy\\util\\langhelpers.py:906 memo 2 0.000000 0.000000 0.000000\r\n", + "..g2.py:558 _PGUUID.result_processor 2 0.000000 0.000000 0.000000\r\n", + "..piler_psycopg2._truncate_bindparam 4 0.000000 0.000000 0.000000\r\n", + "..ql\\elements.py:4475 _expand_cloned 6 0.000000 0.000000 0.000000\r\n", + "..02 PGDialect_psycopg2._hstore_oids 1 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\result.py:463 6 0.000000 0.000000 0.000000\r\n", + "..ements.py:1946 ClauseList.__init__ 1 0.000000 0.000000 0.000000\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..copg2\\extensions.py:164 1 0.000000 0.000000 0.000000\r\n", + "..ent\\base.py:295 dispatcher.__get__ 10 0.000000 0.000000 0.000000\r\n", + "..6k\\lib\\sre_compile.py:595 isstring 24 0.000000 0.000000 0.000000\r\n", + "..:382 WeakKeyDictionary.__getitem__ 245 0.000000 0.000000 0.000000\r\n", + "..py:1293 Connection._cursor_execute 2 0.000000 0.000000 0.000000\r\n", + "..onTransaction._connection_for_bind 6 0.000000 0.000000 0.000000\r\n", + "..e_compile.py:276 _optimize_charset 34 0.000000 0.000000 0.000000\r\n", + "..pe_api.py:450 VARCHAR.dialect_impl 33 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\result.py:322 9 0.000000 0.000000 0.000000\r\n", + "..selectable.py:2760 Select.__init__ 8 0.000000 0.000000 0.000000\r\n", + "..my\\sql\\compiler.py:2125 8 0.000000 0.000000 0.000000\r\n", + "..sql\\elements.py:2489 Cast.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..PGDialect_psycopg2.type_descriptor 13 0.000000 0.000000 0.000000\r\n", + "..Compiler_psycopg2._bind_processors 6 0.000000 0.000000 0.000000\r\n", + "..\\result.py:1362 ResultProxy.scalar 3 0.000000 0.000000 0.000000\r\n", + "..mpl.py:143 QueuePool._inc_overflow 1 0.000000 0.000000 0.000000\r\n", + "..e.py:1757 RootTransaction.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..emy\\sql\\compiler.py:1002 4 0.000000 0.000000 0.000000\r\n", + "..y:357 _PGUUID._has_bind_expression 1 0.000000 0.000000 0.000000\r\n", + "..esql\\json.py:177 _PGJSONB.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..lchemy\\event\\base.py:87 5 0.000000 0.000000 0.000000\r\n", + "..base.py:707 Connection._begin_impl 1 0.000000 0.000000 0.000000\r\n", + "..ib\\sre_compile.py:453 _get_iscased 29 0.000000 0.000000 0.000000\r\n", + "..iler.py:410 _CompileLabel.__init__ 29 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\result.py:372 6 0.000000 0.000000 0.000000\r\n", + "..re_parse.py:160 SubPattern.__len__ 261 0.000000 0.000000 0.000000\r\n", + "..y:4713 _ColumnEntity.setup_context 27 0.000000 0.000000 0.000000\r\n", + "..chemy\\orm\\loading.py:59 6 0.000000 0.000000 0.000000\r\n", + "..py:436 prefix_anon_map.__missing__ 6 0.000000 0.000000 0.000000\r\n", + "..y:316 _ListenerCollection.__call__ 2 0.000000 0.000000 0.000000\r\n", + "..py:635 ThreadPoolExecutor.__exit__ 1 0.000000 0.000000 0.000000\r\n", + "..rs.py:63 _SelectorMapping.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..reading.py:1095 _MainThread.daemon 2 0.000000 0.000000 0.000000\r\n", + "..b\\threading.py:1306 current_thread 3 0.000000 0.000000 0.000000\r\n", + "..tors.py:180 SelectSelector.get_key 1 0.000000 0.000000 0.000000\r\n", + "..\\lib\\_weakrefset.py:81 WeakSet.add 22 0.000000 0.000000 0.000000\r\n", + "..n-68gteq6k\\lib\\os.py:732 check_str 1 0.000000 0.000000 0.000000\r\n", + "..hreading.py:222 Condition.__init__ 13 0.000000 0.000000 0.000000\r\n", + "..ctorEventLoopPolicy.new_event_loop 1 0.000000 0.000000 0.000000\r\n", + "..8\\Lib\\threading.py:979 Thread.join 1 0.000000 0.000000 0.000000\r\n", + "..y:632 ThreadPoolExecutor.__enter__ 1 0.000000 0.000000 0.000000\r\n", + "..ion\\analysis.py:367 wrap_coroutine 1 0.000000 0.000000 0.000000\r\n", + "..ib\\threading.py:1110 Thread.daemon 2 0.000000 0.000000 0.000000\r\n", + "..tures\\_base.py:316 Future.__init__ 7 0.000000 0.000000 0.000000\r\n", + "..ors.py:209 SelectSelector.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..y:102 WeakValueDictionary.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..futures\\_base.py:412 Future.result 7 0.000000 0.000000 0.000000\r\n", + "..b\\threading.py:761 Thread.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..\\Lib\\socket.py:219 socket.__init__ 3 0.000000 0.000000 0.000000\r\n", + "..lib\\os.py:668 _Environ.__getitem__ 1 0.000000 0.000000 0.000000\r\n", + "..b\\socket.py:492 socket._real_close 1 0.000000 0.000000 0.000000\r\n", + "..\\Lib\\threading.py:513 Event.is_set 5 0.000000 0.000000 0.000000\r\n", + "..ib\\threading.py:270 Condition.wait 4 0.000000 0.000000 0.000000\r\n", + "..n38\\Lib\\socket.py:496 socket.close 1 0.000000 0.000000 0.000000\r\n", + "...py:284 WeakValueDictionary.update 1 0.000000 0.000000 0.000000\r\n", + "..hreading.py:388 Semaphore.__init__ 2 0.000000 0.000000 0.000000\r\n", + ".._weakrefset.py:36 WeakSet.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..38\\Lib\\socket.py:285 socket.accept 1 0.000000 0.000000 0.000000\r\n", + "..215 SelectSelector._fileobj_lookup 2 0.000000 0.000000 0.000000\r\n", + ":1 __new__ 91 0.000000 0.000000 0.000000\r\n", + "..tion\\analysis.py:373 run_in_thread 1 0.000000 0.000000 0.000000\r\n", + ".. interactable_plot_multiple_charts 1 0.000000 0.000000 0.000000\r\n", + "..ib\\socket.py:97 _intenum_converter 2 0.000000 0.000000 0.000000\r\n", + "..indowsSelectorEventLoop.is_running 2 0.000000 0.000000 0.000000\r\n", + "..WindowsSelectorEventLoop.set_debug 1 0.000000 0.000000 0.000000\r\n", + "..ing.py:255 Condition._release_save 4 0.000000 0.000000 0.000000\r\n", + "..\\Lib\\threading.py:944 Thread._stop 1 0.000000 0.000000 0.000000\r\n", + "..ors.py:298 SelectSelector.register 1 0.000000 0.000000 0.000000\r\n", + "..lib\\functools.py:33 update_wrapper 2 0.000000 0.000000 0.000000\r\n", + "..ng.py:1177 _make_invoke_excepthook 2 0.000000 0.000000 0.000000\r\n", + "..Lib\\selectors.py:21 _fileobj_to_fd 2 0.000000 0.000000 0.000000\r\n", + "..on38\\Lib\\socket.py:518 socket.type 1 0.000000 0.000000 0.000000\r\n", + "..n\\Python38\\Lib\\typing.py:1146 cast 1 0.000000 0.000000 0.000000\r\n", + "..ion\\utils.py:58 profile_with_yappi 1 0.000000 0.000000 0.000000\r\n", + "..68gteq6k\\lib\\functools.py:63 wraps 1 0.000000 0.000000 0.000000\r\n", + "..ollections_abc.py:657 _Environ.get 1 0.000000 0.000000 0.000000\r\n", + "..38\\Lib\\threading.py:540 Event.wait 2 0.000000 0.000000 0.000000\r\n", + "..py:230 ThreadPoolExecutor.shutdown 1 0.000000 0.000000 0.000000\r\n", + "..:1017 Thread._wait_for_tstate_lock 1 0.000000 0.000000 0.000000\r\n", + "..ndowsSelectorEventLoop._add_reader 1 0.000000 0.000000 0.000000\r\n", + "...py:258 Condition._acquire_restore 4 0.000000 0.000000 0.000000\r\n", + ".._WindowsSelectorEventLoop.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..ors.py:293 SelectSelector.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..eq6k\\lib\\_weakrefset.py:38 _remove 19 0.000000 0.000000 0.000000\r\n", + "..38\\Lib\\socket.py:512 socket.family 1 0.000000 0.000000 0.000000\r\n", + "..vents.py:719 get_event_loop_policy 1 0.000000 0.000000 0.000000\r\n", + "..n-68gteq6k\\lib\\os.py:738 encodekey 1 0.000000 0.000000 0.000000\r\n", + ".._WindowsSelectorEventLoop.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..py:120 ThreadPoolExecutor.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..yncio\\events.py:756 new_event_loop 1 0.000000 0.000000 0.000000\r\n", + "..io\\coroutines.py:18 _is_debug_mode 1 0.000000 0.000000 0.000000\r\n", + "..threading.py:394 Semaphore.acquire 7 0.000000 0.000000 0.000000\r\n", + "..py:69 _SelectorMapping.__getitem__ 1 0.000000 0.000000 0.000000\r\n", + "..es\\thread.py:46 _WorkItem.__init__ 7 0.000000 0.000000 0.000000\r\n", + "..ib\\threading.py:505 Event.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..ors.py:234 SelectSelector.register 1 0.000000 0.000000 0.000000\r\n", + "..hon38\\Lib\\socket.py:579 socketpair 1 0.000000 0.000000 0.000000\r\n", + "..sSelectorEventLoop._make_self_pipe 1 0.000000 0.000000 0.000000\r\n", + "..s\\_base.py:386 Future.__get_result 7 0.000000 0.000000 0.000000\r\n", + "..tors.py:272 SelectSelector.get_map 1 0.000000 0.000000 0.000000\r\n", + "..Python38\\Lib\\threading.py:81 RLock 8 0.000000 0.000000 0.000000\r\n", + ".. _GeneratorContextManager.__exit__ 142.. 0.000000 0.000000 0.000000\r\n", + "..1254 Line2D.set_markerfacecoloralt 30 0.000000 0.000000 0.000000\r\n", + "..HandlerLine2D._default_update_prop 8 0.000000 0.000000 0.000000\r\n", + "..y:980 _ConnectionFairy.__getattr__ 2 0.000000 0.000000 0.000000\r\n", + "..\\axis.py:618 YTick.update_position 3 0.000000 0.000000 0.000000\r\n", + "..y:583 AxesSubplot._unstale_viewLim 2 0.000000 0.000000 0.000000\r\n", + "..py:133 GridSpec.get_grid_positions 1 0.000000 0.000000 0.000000\r\n", + "..lib\\transforms.py:782 from_extents 20 0.000000 0.000000 0.000000\r\n", + "..istry.py:246 _EventKey.base_listen 3 0.000000 0.000000 0.000000\r\n", + "..copg2\\tz.py:36 FixedOffsetTimezone 1 0.000000 0.000000 0.000000\r\n", + "..y\\orm\\session.py:893 Session.begin 3 0.000000 0.000000 0.000000\r\n", + "..ok\\__init__.py:2108 _check_in_list 449 0.000000 0.000000 0.000000\r\n", + "...py:556 UUID.coerce_compared_value 4 0.000000 0.000000 0.000000\r\n", + "..:1088 ExtensionFileLoader.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\colors.py:225 4 0.000000 0.000000 0.000000\r\n", + "..otlib\\axes\\_base.py:363 4 0.000000 0.000000 0.000000\r\n", + "..__.py:185 CallbackRegistry.process 26 0.000000 0.000000 0.000000\r\n", + "..array_function__ internals>:2 tile 1 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:229 XTick.set_clip_path 6 0.000000 0.000000 0.000000\r\n", + "..xesSubplot._set_title_offset_trans 5 0.000000 0.000000 0.000000\r\n", + "..plotlib\\spines.py:517 linear_spine 4 0.000000 0.000000 0.000000\r\n", + "..:776 Rectangle.get_patch_transform 18 0.000000 0.000000 0.000000\r\n", + "..rtist.py:350 Text.is_transform_set 15 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\figure.py:76 2 0.000000 0.000000 0.000000\r\n", + "..gistry.py:67 _stored_in_collection 3 0.000000 0.000000 0.000000\r\n", + "..set.py:16 _IterationGuard.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..nits.py:197 Registry.get_converter 24/14 0.000000 0.000000 0.000000\r\n", + "..tenerCollection._memoized_attr_ref 2 0.000000 0.000000 0.000000\r\n", + "..ler.py:396 PGTypeCompiler.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..lotlib\\dates.py:1921 default_units 8 0.000000 0.000000 0.000000\r\n", + "..base.py:563 AxesSubplot.set_figure 1 0.000000 0.000000 0.000000\r\n", + "..k\\lib\\abc.py:100 __subclasscheck__ 85/14 0.000000 0.000000 0.000000\r\n", + "..lib\\axis.py:922 _translate_tick_kw 8 0.000000 0.000000 0.000000\r\n", + "..manager.py:855 FontProperties.copy 3 0.000000 0.000000 0.000000\r\n", + "..pool\\impl.py:35 QueuePool.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..y:2462 composite_transform_factory 78 0.000000 0.000000 0.000000\r\n", + "..ctions_abc.py:252 __subclasshook__ 1 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:334 XTick._apply_params 14 0.000000 0.000000 0.000000\r\n", + "..t_manager.py:1043 get_default_size 22 0.000000 0.000000 0.000000\r\n", + "...py:1624 FigureCanvasBase.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..owsSelectorEventLoop.create_future 6 0.000000 0.000000 0.000000\r\n", + "..b\\_pylab_helpers.py:109 set_active 1 0.000000 0.000000 0.000000\r\n", + "..y:930 AxesSubplot._gen_axes_spines 1 0.000000 0.000000 0.000000\r\n", + "..es.py:375 FancyBboxPatch.set_alpha 1 0.000000 0.000000 0.000000\r\n", + "..x.py:690 DrawingArea.get_transform 4 0.000000 0.000000 0.000000\r\n", + "..ase.py:867 _ConnectionFairy._reset 1 0.000000 0.000000 0.000000\r\n", + "..ycopg2\\extras.py:805 HstoreAdapter 1 0.000000 0.000000 0.000000\r\n", + "..:536 ScalarFormatter.set_useOffset 16 0.000000 0.000000 0.000000\r\n", + "..emy\\orm\\query.py:1790 Query.filter 4 0.000000 0.000000 0.000000\r\n", + "..text.py:240 Text.set_rotation_mode 24 0.000000 0.000000 0.000000\r\n", + "..ages\\psycopg2\\errors.py:1 1 0.000000 0.000000 0.000000\r\n", + "..lEventsDispatch._event_descriptors 36 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\text.py:170 Text.update 65 0.000000 0.000000 0.000000\r\n", + "..py:913 AxesSubplot._gen_axes_patch 1 0.000000 0.000000 0.000000\r\n", + "..set.py:26 _IterationGuard.__exit__ 1 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:544 YTick._get_text1 3 0.000000 0.000000 0.000000\r\n", + "..rms.py:1632 TransformWrapper._init 2 0.000000 0.000000 0.000000\r\n", + "..:221 Query._set_entity_selectables 6 0.000000 0.000000 0.000000\r\n", + "..\\__init__.py:631 _AxesStack.bubble 1 0.000000 0.000000 0.000000\r\n", + "..6k\\lib\\enum.py:659 RegexFlag.value 4 0.000000 0.000000 0.000000\r\n", + "..CompositeGenericTransform.__init__ 69 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:603 YTick._get_gridline 3 0.000000 0.000000 0.000000\r\n", + "..stry.py:169 _EventKey.with_wrapper 5 0.000000 0.000000 0.000000\r\n", + "..langhelpers.py:344 get_func_kwargs 1 0.000000 0.000000 0.000000\r\n", + "..lib\\patches.py:2146 Round.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..b\\path.py:251 Path.should_simplify 4 0.000000 0.000000 0.000000\r\n", + "..ges\\numpy\\core\\_methods.py:44 _any 4 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:559 YTick._get_text2 3 0.000000 0.000000 0.000000\r\n", + "..xis.py:1969 XAxis._get_offset_text 1 0.000000 0.000000 0.000000\r\n", + "..base.py:375 QueuePool._return_conn 1 0.000000 0.000000 0.000000\r\n", + "..qlalchemy\\orm\\base.py:222 generate 5 0.000000 0.000000 0.000000\r\n", + "..orm._iter_break_from_left_to_right 8 0.000000 0.000000 0.000000\r\n", + "..ngine\\base.py:863 Connection.close 1 0.000000 0.000000 0.000000\r\n", + "..py:1240 Line2D.set_markerfacecolor 30 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:662 Ticker.formatter 65 0.000000 0.000000 0.000000\r\n", + "..7 BlendedGenericTransform.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..lchemy\\orm\\query.py:330 1 0.000000 0.000000 0.000000\r\n", + "..legend.py:1169 _get_legend_handles 5 0.000000 0.000000 0.000000\r\n", + "..tlib\\figure.py:275 Figure.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..t.py:49 Spine._stale_axes_callback 302 0.000000 0.000000 0.000000\r\n", + "..py:834 XAxis.limit_range_for_scale 2 0.000000 0.000000 0.000000\r\n", + "..otlib\\artist.py:74 Figure.__init__ 88 0.000000 0.000000 0.000000\r\n", + ".._base.py:3093 AxesSubplot.set_xlim 1 0.000000 0.000000 0.000000\r\n", + "..774 SourceFileLoader.create_module 9 0.000000 0.000000 0.000000\r\n", + "..34 new_figure_manager_given_figure 1 0.000000 0.000000 0.000000\r\n", + "..xis.py:1525 XAxis._update_axisinfo 13 0.000000 0.000000 0.000000\r\n", + "..ngine\\url.py:299 _rfc_1738_unquote 1 0.000000 0.000000 0.000000\r\n", + "..lotlib\\axis.py:645 Ticker.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..sSubplot.get_xaxis_text1_transform 3 0.000000 0.000000 0.000000\r\n", + "..y:2463 FancyBboxPatch.set_boxstyle 2 0.000000 0.000000 0.000000\r\n", + "..24 AxesSubplot.get_yaxis_transform 29/15 0.000000 0.000000 0.000000\r\n", + "..psycopg2\\_range.py:290 RangeCaster 1 0.000000 0.000000 0.000000\r\n", + "..owsSelectorEventLoop._add_callback 6 0.000000 0.000000 0.000000\r\n", + "..l.py:103 QueuePool._do_return_conn 1 0.000000 0.000000 0.000000\r\n", + "..e-packages\\cycler.py:227 110 0.000000 0.000000 0.000000\r\n", + "..ure.py:487 Figure.set_tight_layout 1 0.000000 0.000000 0.000000\r\n", + "..nal>:1520 path_hook_for_FileFinder 1 0.000000 0.000000 0.000000\r\n", + "..ib\\transforms.py:727 Bbox.__init__ 41 0.000000 0.000000 0.000000\r\n", + "..s.py:1247 AutoDateLocator.__init__ 2 0.000000 0.000000 0.000000\r\n", + "...py:1640 XAxis.set_minor_formatter 16 0.000000 0.000000 0.000000\r\n", + "..:171 DynamicClassAttribute.__get__ 4 0.000000 0.000000 0.000000\r\n", + "..nal>:939 SourceFileLoader.__init__ 9 0.000000 0.000000 0.000000\r\n", + "..610 _WindowsSelectorEventLoop.stop 1 0.000000 0.000000 0.000000\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..b\\function_base.py:2120 4 0.000000 0.000000 0.000000\r\n", + "...py:1423 Figure._add_axes_internal 1 0.000000 0.000000 0.000000\r\n", + "..mportlib._bootstrap>:800 find_spec 10 0.000000 0.000000 0.000000\r\n", + "..:94 PoolEventsDispatch.__getattr__ 12 0.000000 0.000000 0.000000\r\n", + "..axes.py:256 AxesSubplot.set_ylabel 4 0.000000 0.000000 0.000000\r\n", + "..lines.py:1058 Line2D.set_drawstyle 34 0.000000 0.000000 0.000000\r\n", + "..sforms.py:1940 Affine2D.rotate_deg 18 0.000000 0.000000 0.000000\r\n", + "..>:1010 SourceFileLoader.path_stats 9 0.000000 0.000000 0.000000\r\n", + "..b\\cbook\\__init__.py:836 8 0.000000 0.000000 0.000000\r\n", + "..lib\\lines.py:743 Line2D._is_sorted 3 0.000000 0.000000 0.000000\r\n", + "..\\elements.py:709 Column.comparator 4 0.000000 0.000000 0.000000\r\n", + "..tlib\\axis.py:1951 XAxis._get_label 1 0.000000 0.000000 0.000000\r\n", + "..ore\\numerictypes.py:365 issubdtype 4 0.000000 0.000000 0.000000\r\n", + "..\\axis.py:1605 YAxis.set_label_text 5 0.000000 0.000000 0.000000\r\n", + "..copg2\\extras.py:125 DictConnection 1 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\transforms.py:768 null 1 0.000000 0.000000 0.000000\r\n", + "..lib\\offsetbox.py:199 TextArea.axes 16 0.000000 0.000000 0.000000\r\n", + "..nction__ internals>:2 column_stack 12 0.000000 0.000000 0.000000\r\n", + "..ap_external>:90 _path_is_mode_type 13 0.000000 0.000000 0.000000\r\n", + ".._base.py:20 _atleast_1d_dispatcher 24 0.000000 0.000000 0.000000\r\n", + "..py:193 PGDialect_psycopg2.__init__ 1 0.000000 0.000000 0.000000\r\n", + "...py:765 FontProperties.set_variant 23 0.000000 0.000000 0.000000\r\n", + "...py:523 YTick._get_text1_transform 3 0.000000 0.000000 0.000000\r\n", + "..ath.py:230 Path.simplify_threshold 4 0.000000 0.000000 0.000000\r\n", + "..sql\\operators.py:358 Column.__eq__ 8/4 0.000000 0.000000 0.000000\r\n", + "..\\core\\fromnumeric.py:74 85 0.000000 0.000000 0.000000\r\n", + "..sql\\elements.py:4087 Column._label 10 0.000000 0.000000 0.000000\r\n", + "..WeakKeyDictionary._commit_removals 1 0.000000 0.000000 0.000000\r\n", + "..elements.py:724 Column.__getattr__ 3 0.000000 0.000000 0.000000\r\n", + "..k\\__init__.py:626 _AxesStack.clear 3 0.000000 0.000000 0.000000\r\n", + "..ool\\base.py:235 QueuePool._creator 1 0.000000 0.000000 0.000000\r\n", + "..s.py:302 Rectangle.set_antialiased 8 0.000000 0.000000 0.000000\r\n", + "..tlib\\transforms.py:773 from_bounds 1 0.000000 0.000000 0.000000\r\n", + "..68gteq6k\\lib\\weakref.py:44 __new__ 33 0.000000 0.000000 0.000000\r\n", + "..ction__ internals>:2 unravel_index 1 0.000000 0.000000 0.000000\r\n", + "..ycopg2\\_range.py:471 DateTimeRange 1 0.000000 0.000000 0.000000\r\n", + "..asyncio\\futures.py:377 wrap_future 6 0.000000 0.000000 0.000000\r\n", + "..sion.py:3188 sessionmaker.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..07 ExtensionFileLoader.exec_module 1 0.000000 0.000000 0.000000\r\n", + "..\\interfaces.py:856 get_dialect_cls 1 0.000000 0.000000 0.000000\r\n", + "..es.py:341 Rectangle._set_facecolor 20 0.000000 0.000000 0.000000\r\n", + ":1 Session.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..nsaction._iterate_self_and_parents 1 0.000000 0.000000 0.000000\r\n", + "..e\\fromnumeric.py:73 _wrapreduction 85 0.000000 0.000000 0.000000\r\n", + "..\\legend.py:1215 _parse_legend_args 1 0.000000 0.000000 0.000000\r\n", + "..2\\extras.py:226 RealDictConnection 1 0.000000 0.000000 0.000000\r\n", + "..ches.py:458 Rectangle.set_capstyle 11 0.000000 0.000000 0.000000\r\n", + "..chemy\\util\\queue.py:199 Queue._put 1 0.000000 0.000000 0.000000\r\n", + "..as.py:472 MinTimeLoggingConnection 1 0.000000 0.000000 0.000000\r\n", + "..y\\dialects\\__init__.py:52 1 0.000000 0.000000 0.000000\r\n", + "..idspec.py:200 GridSpec.__getitem__ 1 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\text.py:121 Text.__init__ 24 0.000000 0.000000 0.000000\r\n", + "..lotlib\\axes\\_base.py:586 4 0.000000 0.000000 0.000000\r\n", + "..n\\Python38\\Lib\\typing.py:255 inner 1 0.000000 0.000000 0.000000\r\n", + "..extras.py:296 NamedTupleConnection 1 0.000000 0.000000 0.000000\r\n", + "..tion_base.py:1143 _diff_dispatcher 16 0.000000 0.000000 0.000000\r\n", + "..s\\psycopg2\\_range.py:466 DateRange 1 0.000000 0.000000 0.000000\r\n", + "..plotlib\\transforms.py:177 39 0.000000 0.000000 0.000000\r\n", + "..ger.py:835 FontProperties.set_file 23 0.000000 0.000000 0.000000\r\n", + "..py:210 WeakInstanceDict.all_states 2 0.000000 0.000000 0.000000\r\n", + "..8gteq6k\\lib\\sre_parse.py:432 _uniq 22 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\figure.py:74 2 0.000000 0.000000 0.000000\r\n", + "..b\\spines.py:381 Spine.set_position 4 0.000000 0.000000 0.000000\r\n", + "..ib\\function_base.py:2116 8 0.000000 0.000000 0.000000\r\n", + "..mportlib._bootstrap>:725 find_spec 10 0.000000 0.000000 0.000000\r\n", + "..ernal>:629 spec_from_file_location 10 0.000000 0.000000 0.000000\r\n", + ":1 QueuePool.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..:519 PhysicalReplicationConnection 1 0.000000 0.000000 0.000000\r\n", + "..ures\\_base.py:371 Future.cancelled 6 0.000000 0.000000 0.000000\r\n", + ".._init__.py:1610 safe_first_element 24 0.000000 0.000000 0.000000\r\n", + "..cbook\\__init__.py:1933 _setattr_cm 280 0.000000 0.000000 0.000000\r\n", + "..ool\\base.py:231 QueuePool._creator 1 0.000000 0.000000 0.000000\r\n", + "..ker.py:2126 AutoLocator.set_params 16 0.000000 0.000000 0.000000\r\n", + "..\\offsetbox.py:410 VPacker.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..se.py:1699 RootTransaction._parent 1 0.000000 0.000000 0.000000\r\n", + "..__init__.py:60 _StrongRef.__hash__ 6 0.000000 0.000000 0.000000\r\n", + "..lors.py:193 _to_rgba_no_colorcycle 8 0.000000 0.000000 0.000000\r\n", + "..es\\matplotlib\\pyplot.py:427 figure 1 0.000000 0.000000 0.000000\r\n", + "..s.py:1355 AutoDateLocator.set_axis 1 0.000000 0.000000 0.000000\r\n", + "..s.py:263 MarkerStyle.get_fillstyle 8 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\axis.py:1456 XAxis.grid 4 0.000000 0.000000 0.000000\r\n", + "..hes.py:330 Rectangle.set_edgecolor 12 0.000000 0.000000 0.000000\r\n", + "..portlib._bootstrap>:35 _new_module 9 0.000000 0.000000 0.000000\r\n", + "..tlib\\transforms.py:274 Bbox.frozen 1 0.000000 0.000000 0.000000\r\n", + "..plotlib\\text.py:933 Text.set_color 24 0.000000 0.000000 0.000000\r\n", + "..s.py:2221 BlendedAffine2D.__init__ 6 0.000000 0.000000 0.000000\r\n", + ".. HandlerLine2D.adjust_drawing_area 4 0.000000 0.000000 0.000000\r\n", + "..b\\lines.py:1327 Line2D.update_from 8 0.000000 0.000000 0.000000\r\n", + "..ocess_plot_var_args.set_prop_cycle 2 0.000000 0.000000 0.000000\r\n", + "..alchemy\\log.py:174 instance_logger 3 0.000000 0.000000 0.000000\r\n", + "..pe_base.py:219 _vhstack_dispatcher 16 0.000000 0.000000 0.000000\r\n", + "..s\\psycopg2\\tz.py:108 LocalTimezone 1 0.000000 0.000000 0.000000\r\n", + "..mpy\\lib\\function_base.py:1147 diff 16 0.000000 0.000000 0.000000\r\n", + "..lib\\transforms.py:82 Bbox.__init__ 306 0.000000 0.000000 0.000000\r\n", + "..nctools.py:524 decorating_function 1 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\axis.py:1486 4 0.000000 0.000000 0.000000\r\n", + "..emy\\engine\\url.py:129 URL.password 1 0.000000 0.000000 0.000000\r\n", + "..sSelectorEventLoop._process_events 17 0.000000 0.000000 0.000000\r\n", + "..lib\\lines.py:1294 Line2D.set_ydata 39 0.000000 0.000000 0.000000\r\n", + ".._.py:1309 _to_unmasked_float_array 34 0.000000 0.000000 0.000000\r\n", + "..>:147 _ModuleLockManager.__enter__ 10 0.000000 0.000000 0.000000\r\n", + "..\\sqlalchemy\\event\\api.py:34 listen 3 0.000000 0.000000 0.000000\r\n", + "..gure.py:2059 Figure.add_axobserver 1 0.000000 0.000000 0.000000\r\n", + "..teq6k\\lib\\copy.py:257 _reconstruct 1 0.000000 0.000000 0.000000\r\n", + "..artist.py:827 Line2D.get_clip_path 4 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\legend.py:1253 1 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\figure.py:1073 fixitems 1 0.000000 0.000000 0.000000\r\n", + "..r.py:742 FontProperties.set_family 23 0.000000 0.000000 0.000000\r\n", + "..ap_external>:294 cache_from_source 18 0.000000 0.000000 0.000000\r\n", + "..forms.py:1669 TransformWrapper.set 2 0.000000 0.000000 0.000000\r\n", + "..tlib\\units.py:81 AxisInfo.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..ncio\\coroutines.py:177 iscoroutine 2 0.000000 0.000000 0.000000\r\n", + "..\\psycopg2\\extensions.py:109 SQL_IN 1 0.000000 0.000000 0.000000\r\n", + "..plotlib\\gridspec.py:382 1 0.000000 0.000000 0.000000\r\n", + "..xternal>:1265 _path_importer_cache 19 0.000000 0.000000 0.000000\r\n", + "..kages\\psycopg2\\_json.py:1 1 0.000000 0.000000 0.000000\r\n", + "..process_plot_var_args._setdefaults 4 0.000000 0.000000 0.000000\r\n", + "..b\\axis.py:459 XTick._get_tick1line 3 0.000000 0.000000 0.000000\r\n", + "..y\\lib\\shape_base.py:1227 2 0.000000 0.000000 0.000000\r\n", + "..ages\\psycopg2\\extras.py:1 1 0.000000 0.000000 0.000000\r\n", + "..\\transforms.py:939 Bbox.get_points 3 0.000000 0.000000 0.000000\r\n", + "..tlib\\legend.py:569 Legend._set_loc 1 0.000000 0.000000 0.000000\r\n", + "..tlib\\axis.py:2466 YAxis.get_minpos 1 0.000000 0.000000 0.000000\r\n", + "..s.py:1398 Line2D.set_dash_capstyle 30 0.000000 0.000000 0.000000\r\n", + "..on38\\Lib\\uuid.py:259 UUID.__hash__ 4 0.000000 0.000000 0.000000\r\n", + "..otlib\\artist.py:197 Rectangle.axes 117 0.000000 0.000000 0.000000\r\n", + "..py:2459 AxesSubplot._get_axis_list 1 0.000000 0.000000 0.000000\r\n", + "..\\orm\\session.py:1288 Session.close 1 0.000000 0.000000 0.000000\r\n", + "..\\offsetbox.py:356 HPacker.__init__ 7 0.000000 0.000000 0.000000\r\n", + "..ion-68gteq6k\\lib\\weakref.py:51 _cb 2 0.000000 0.000000 0.000000\r\n", + "..opg2\\_range.py:476 DateTimeTZRange 1 0.000000 0.000000 0.000000\r\n", + "..ycopg2\\extras.py:65 DictCursorBase 1 0.000000 0.000000 0.000000\r\n", + "..lectorEventLoop._process_self_data 6 0.000000 0.000000 0.000000\r\n", + "..y:154 to_unicode_processor_factory 1 0.000000 0.000000 0.000000\r\n", + "..:116 PoolEventsDispatch._for_class 2 0.000000 0.000000 0.000000\r\n", + "..hemy\\engine\\url.py:56 URL.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..otlib\\rcsetup.py:123 validate_bool 1 0.000000 0.000000 0.000000\r\n", + "..b\\scale.py:97 LinearScale.__init__ 16 0.000000 0.000000 0.000000\r\n", + "..b._bootstrap>:157 _get_module_lock 18 0.000000 0.000000 0.000000\r\n", + "..ping.py:717 _GenericAlias.__hash__ 1 0.000000 0.000000 0.000000\r\n", + "..y:512 LogicalReplicationConnection 1 0.000000 0.000000 0.000000\r\n", + "..r.py:774 FontProperties.set_weight 27 0.000000 0.000000 0.000000\r\n", + "..er.py:72 HandlerLine2D.update_prop 8 0.000000 0.000000 0.000000\r\n", + "..til\\_collections.py:317 5 0.000000 0.000000 0.000000\r\n", + "..ig\\configurable.py:426 initialized 2 0.000000 0.000000 0.000000\r\n", + "..t\\registry.py:193 _EventKey.listen 4/3 0.000000 0.000000 0.000000\r\n", + "..otlib\\transforms.py:394 Bbox.width 1 0.000000 0.000000 0.000000\r\n", + "..s\\matplotlib\\axis.py:841 XAxis.cla 12 0.000000 0.000000 0.000000\r\n", + "..ootstrap_external>:99 _path_isfile 12 0.000000 0.000000 0.000000\r\n", + "..d_bases.py:3325 new_figure_manager 1 0.000000 0.000000 0.000000\r\n", + "..sSubplot.get_yaxis_text2_transform 3 0.000000 0.000000 0.000000\r\n", + "..nit__.py:1974 _OrderedSet.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..lotlib\\axis.py:822 XAxis.get_scale 5 0.000000 0.000000 0.000000\r\n", + "..s\\_base.py:597 AxesSubplot.viewLim 2 0.000000 0.000000 0.000000\r\n", + "..f.py:385 WeakKeyDictionary.__len__ 2 0.000000 0.000000 0.000000\r\n", + "...py:526 YTick._get_text2_transform 3 0.000000 0.000000 0.000000\r\n", + "..bootstrap_external>:1508 1 0.000000 0.000000 0.000000\r\n", + "..plotlib\\axis.py:649 Ticker.locator 3 0.000000 0.000000 0.000000\r\n", + "..y:528 Text._update_clip_properties 15 0.000000 0.000000 0.000000\r\n", + "..lotlib\\axes\\_base.py:232 8 0.000000 0.000000 0.000000\r\n", + "..ing>:1 PGDialect_psycopg2.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..hes.py:260 Rectangle.get_transform 18 0.000000 0.000000 0.000000\r\n", + "..bootstrap>:103 _ModuleLock.release 18 0.000000 0.000000 0.000000\r\n", + "..lib\\artist.py:974 Rectangle.update 140 0.000000 0.000000 0.000000\r\n", + "..py:2249 BlendedAffine2D.get_matrix 4 0.000000 0.000000 0.000000\r\n", + "..tlib\\dates.py:174 _get_rc_timezone 6 0.000000 0.000000 0.000000\r\n", + "..e.py:117 LinearScale.get_transform 4 0.000000 0.000000 0.000000\r\n", + "..ase.py:746 Connection._commit_impl 1 0.000000 0.000000 0.000000\r\n", + "..ges\\numpy\\core\\_methods.py:47 _all 1 0.000000 0.000000 0.000000\r\n", + "..sSubplot.get_xaxis_text2_transform 3 0.000000 0.000000 0.000000\r\n", + "..ib\\axes\\_subplots.py:229 2 0.000000 0.000000 0.000000\r\n", + "..egation\\analysis.py:212 8613 0.000000 0.000000 0.000000\r\n", + "..mpy\\core\\fromnumeric.py:42 _wrapit 3 0.000000 0.000000 0.000000\r\n", + "..lib\\transforms.py:935 Bbox.minposy 1 0.000000 0.000000 0.000000\r\n", + "...py:2266 blended_transform_factory 8 0.000000 0.000000 0.000000\r\n", + "..93 vectorize._get_ufunc_and_otypes 4 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\artist.py:1006 140 0.000000 0.000000 0.000000\r\n", + "..py:2538 FigureManagerBase.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..json.py:146 register_default_jsonb 1 0.000000 0.000000 0.000000\r\n", + "..chemy\\engine\\url.py:156 1 0.000000 0.000000 0.000000\r\n", + ":1 Comparator. 4 0.000000 0.000000 0.000000\r\n", + "..ib\\stride_tricks.py:262 10 0.000000 0.000000 0.000000\r\n", + "..b\\sre_parse.py:98 State.checkgroup 1 0.000000 0.000000 0.000000\r\n", + "..extras.py:500 MinTimeLoggingCursor 1 0.000000 0.000000 0.000000\r\n", + "..syncio\\base_futures.py:13 isfuture 37 0.000000 0.000000 0.000000\r\n", + "..lalchemy\\event\\base.py:243 _listen 3 0.000000 0.000000 0.000000\r\n", + "..ok\\__init__.py:601 _AxesStack.push 2 0.000000 0.000000 0.000000\r\n", + "..s.py:2544 BboxTransformTo.__init__ 20 0.000000 0.000000 0.000000\r\n", + "..ist.py:961 Rectangle.set_in_layout 1 0.000000 0.000000 0.000000\r\n", + "..opg2\\extras.py:526 StopReplication 1 0.000000 0.000000 0.000000\r\n", + "..nghelpers.py:248 PluginLoader.load 1 0.000000 0.000000 0.000000\r\n", + "..1 _process_plot_var_args._makeline 4 0.000000 0.000000 0.000000\r\n", + "..ation-68gteq6k\\lib\\copy.py:66 copy 1 0.000000 0.000000 0.000000\r\n", + "..entifierPreparer_psycopg2.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..asyncio\\tasks.py:653 ensure_future 2 0.000000 0.000000 0.000000\r\n", + "..yncio\\futures.py:335 _chain_future 6 0.000000 0.000000 0.000000\r\n", + "..alchemy\\util\\queue.py:92 Queue.put 1 0.000000 0.000000 0.000000\r\n", + "..48 AxesSubplot.get_xaxis_transform 29/15 0.000000 0.000000 0.000000\r\n", + "..romnumeric.py:2185 _any_dispatcher 76 0.000000 0.000000 0.000000\r\n", + "...py:77 PoolEventsDispatch.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..b._bootstrap>:222 _verbose_message 90 0.000000 0.000000 0.000000\r\n", + "..mpy\\core\\multiarray.py:1043 copyto 4 0.000000 0.000000 0.000000\r\n", + "..\\lib\\sre_compile.py:411 _mk_bitmap 5 0.000000 0.000000 0.000000\r\n", + "..ctors.py:319 SelectSelector.select 17 0.000000 0.000000 0.000000\r\n", + "..ffsetbox.py:240 VPacker.set_offset 1 0.000000 0.000000 0.000000\r\n", + ".._comparator.py:41 _boolean_compare 4 0.000000 0.000000 0.000000\r\n", + "...py:1352 Line2D.set_dash_joinstyle 30 0.000000 0.000000 0.000000\r\n", + "..ase.py:3767 AxesSubplot.xaxis_date 4 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:485 XTick._get_gridline 3 0.000000 0.000000 0.000000\r\n", + "..\\numpy\\lib\\shape_base.py:1155 tile 1 0.000000 0.000000 0.000000\r\n", + "..s\\matplotlib\\dates.py:225 2 0.000000 0.000000 0.000000\r\n", + "..y:2175 XAxis.set_default_intervals 1 0.000000 0.000000 0.000000\r\n", + "..tstrap_external>:493 _classify_pyc 9 0.000000 0.000000 0.000000\r\n", + "..external>:1394 FileFinder.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..py:140 _AxesStack.current_key_axes 2 0.000000 0.000000 0.000000\r\n", + "..y:355 _ListenerCollection.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:444 XTick._get_text2 3 0.000000 0.000000 0.000000\r\n", + "..copg2\\extras.py:233 RealDictCursor 1 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\path.py:197 Path.vertices 16 0.000000 0.000000 0.000000\r\n", + "..t_comparator.py:359 _check_literal 4 0.000000 0.000000 0.000000\r\n", + "..ctions_abc.py:271 __subclasshook__ 5 0.000000 0.000000 0.000000\r\n", + "..es\\numpy\\core\\_methods.py:28 _amax 2 0.000000 0.000000 0.000000\r\n", + "..nal>:969 SourceFileLoader.get_data 9 0.000000 0.000000 0.000000\r\n", + "..ib\\weakref.py:73 WeakMethod.__eq__ 1 0.000000 0.000000 0.000000\r\n", + "..e.py:853 _ConnectionFairy._checkin 1 0.000000 0.000000 0.000000\r\n", + "..artist.py:841 TextArea.set_clip_on 16 0.000000 0.000000 0.000000\r\n", + "..e\\interfaces.py:901 engine_created 1 0.000000 0.000000 0.000000\r\n", + "..b\\weakref.py:328 KeyedRef.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..\\lines.py:730 Line2D.set_transform 38 0.000000 0.000000 0.000000\r\n", + "..s.py:1709 IdentityTransform.__eq__ 9/8 0.000000 0.000000 0.000000\r\n", + "..\\cbook\\__init__.py:1737 74 0.000000 0.000000 0.000000\r\n", + "..\\spines.py:226 Spine.register_axis 4 0.000000 0.000000 0.000000\r\n", + "..ng\\__init__.py:772 Logger.__init__ 3 0.000000 0.000000 0.000000\r\n", + "..Figure.set_constrained_layout_pads 1 0.000000 0.000000 0.000000\r\n", + "..nal>:849 SourceFileLoader.get_code 9 0.000000 0.000000 0.000000\r\n", + "...py:235 SubplotParams._update_this 12 0.000000 0.000000 0.000000\r\n", + "..y\\log.py:221 echo_property.__set__ 1 0.000000 0.000000 0.000000\r\n", + "..s\\matplotlib\\axis.py:342 70 0.000000 0.000000 0.000000\r\n", + "..:136 Affine2D._invalidate_internal 90/76 0.000000 0.000000 0.000000\r\n", + "..n.py:500 SessionTransaction.commit 1 0.000000 0.000000 0.000000\r\n", + "..b\\transforms.py:914 Bbox.intervaly 1 0.000000 0.000000 0.000000\r\n", + "...py:311 RangeCaster._create_ranges 6 0.000000 0.000000 0.000000\r\n", + "...py:1689 TransformWrapper. 6 0.000000 0.000000 0.000000\r\n", + "..ents.py:942 BindParameter.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..ib\\artist.py:800 XAxis.get_visible 2 0.000000 0.000000 0.000000\r\n", + "..ib\\threading.py:1095 Thread.daemon 1 0.000000 0.000000 0.000000\r\n", + "..e._process_projection_requirements 1 0.000000 0.000000 0.000000\r\n", + "..b._bootstrap>:549 module_from_spec 10/9 0.000000 0.000000 0.000000\r\n", + ".. Rectangle._update_patch_transform 18 0.000000 0.000000 0.000000\r\n", + "..\\cbook\\__init__.py:1742 74 0.000000 0.000000 0.000000\r\n", + "..book\\__init__.py:1296 is_math_text 30 0.000000 0.000000 0.000000\r\n", + "..ray_function__ internals>:2 copyto 4 0.000000 0.000000 0.000000\r\n", + "..is.py:1048 XAxis._set_artist_props 4 0.000000 0.000000 0.000000\r\n", + "..59 WeakValueDictionary.__setitem__ 1 0.000000 0.000000 0.000000\r\n", + "..hes.py:402 Rectangle.set_linestyle 7 0.000000 0.000000 0.000000\r\n", + "..y\\pool\\base.py:667 _finalize_fairy 1 0.000000 0.000000 0.000000\r\n", + ".._bootstrap>:477 _init_module_attrs 10 0.000000 0.000000 0.000000\r\n", + ".._bootstrap_external>:80 _path_stat 40 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\dates.py:1893 axisinfo 2 0.000000 0.000000 0.000000\r\n", + "..tbox.py:739 DrawingArea.add_artist 8 0.000000 0.000000 0.000000\r\n", + "..lib\\lines.py:1047 Line2D.set_color 30 0.000000 0.000000 0.000000\r\n", + "..py:2606 BboxTransformFrom.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..\\offsetbox.py:489 HPacker.__init__ 5 0.000000 0.000000 0.000000\r\n", + "..bootstrap_external>:68 _path_split 18 0.000000 0.000000 0.000000\r\n", + "..teGenericTransform.contains_branch 4 0.000000 0.000000 0.000000\r\n", + "..elements.py:4056 Column._get_table 20 0.000000 0.000000 0.000000\r\n", + "..y\\core\\multiarray.py:77 empty_like 4 0.000000 0.000000 0.000000\r\n", + "..offsetbox.py:175 TextArea.__init__ 16 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:529 YTick.apply_tickdir 3 0.000000 0.000000 0.000000\r\n", + "..nsforms.py:126 Affine2D.invalidate 76 0.000000 0.000000 0.000000\r\n", + "...py:792 FontProperties.set_stretch 23 0.000000 0.000000 0.000000\r\n", + "..ib\\__init__.py:1285 is_interactive 2 0.000000 0.000000 0.000000\r\n", + "..it__.py:1323 Manager._fixupParents 3 0.000000 0.000000 0.000000\r\n", + "..sycopg2\\_range.py:457 NumericRange 1 0.000000 0.000000 0.000000\r\n", + "..ib\\artist.py:1037 Spine.set_zorder 18 0.000000 0.000000 0.000000\r\n", + "...py:399 _ListenerCollection.append 3 0.000000 0.000000 0.000000\r\n", + "..lements.py:4145 Column._bind_param 4 0.000000 0.000000 0.000000\r\n", + ".._axes.py:147 AxesSubplot.set_title 4 0.000000 0.000000 0.000000\r\n", + "..tlib\\transforms.py:400 Bbox.height 1 0.000000 0.000000 0.000000\r\n", + "..ler.py:161 HandlerLine2D.get_xdata 4 0.000000 0.000000 0.000000\r\n", + "..e.py:3867 AxesSubplot.set_navigate 1 0.000000 0.000000 0.000000\r\n", + "..bootstrap_external>:36 _relax_case 17 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\axis.py:361 14 0.000000 0.000000 0.000000\r\n", + "..\\axis.py:884 XAxis.set_tick_params 8 0.000000 0.000000 0.000000\r\n", + "..800 AxesSubplot._update_transScale 2 0.000000 0.000000 0.000000\r\n", + "..b\\patches.py:42 Rectangle.__init__ 7 0.000000 0.000000 0.000000\r\n", + "..ib\\path.py:188 Path._update_values 14 0.000000 0.000000 0.000000\r\n", + "..ages\\cycler.py:225 Cycler.__iter__ 12 0.000000 0.000000 0.000000\r\n", + "..er.py:512 ScalarFormatter.__init__ 16 0.000000 0.000000 0.000000\r\n", + "..:220 Spine._ensure_position_is_set 28/24 0.000000 0.000000 0.000000\r\n", + "..function__ internals>:2 empty_like 4 0.000000 0.000000 0.000000\r\n", + "..lib\\legend.py:918 Legend.get_frame 1 0.000000 0.000000 0.000000\r\n", + "..ide_tricks.py:185 _broadcast_shape 10 0.000000 0.000000 0.000000\r\n", + "..tlib\\artist.py:1201 Text.mouseover 7 0.000000 0.000000 0.000000\r\n", + "..y:202 _broadcast_arrays_dispatcher 10 0.000000 0.000000 0.000000\r\n", + "..lib\\shape_base.py:597 column_stack 12 0.000000 0.000000 0.000000\r\n", + "..init__.py:882 Grouper.get_siblings 6 0.000000 0.000000 0.000000\r\n", + "..045 AxesSubplot._process_unit_info 6 0.000000 0.000000 0.000000\r\n", + "..ap_external>:578 _compile_bytecode 9 0.000000 0.000000 0.000000\r\n", + "..y:542 PGDialect_psycopg2.do_commit 1 0.000000 0.000000 0.000000\r\n", + "..ile.py:432 _generate_overlap_table 2 0.000000 0.000000 0.000000\r\n", + "<__array_function__ internals>:2 all 9 0.000000 0.000000 0.000000\r\n", + "..alchemy\\event\\api.py:23 _event_key 3 0.000000 0.000000 0.000000\r\n", + "..._bootstrap>:376 ModuleSpec.cached 19 0.000000 0.000000 0.000000\r\n", + "...py:1247 BboxTransformFrom.__add__ 78 0.000000 0.000000 0.000000\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..plotlib\\gridspec.py:204 _normalize 1 0.000000 0.000000 0.000000\r\n", + "..figure.py:199 SubplotParams.update 2 0.000000 0.000000 0.000000\r\n", + ".._json.py:133 register_default_json 1 0.000000 0.000000 0.000000\r\n", + "..p>:143 _ModuleLockManager.__init__ 10 0.000000 0.000000 0.000000\r\n", + "..:513 Figure.set_constrained_layout 1 0.000000 0.000000 0.000000\r\n", + ".. FontProperties.get_size_in_points 1 0.000000 0.000000 0.000000\r\n", + "..60 ScalarFormatter.set_useMathText 16 0.000000 0.000000 0.000000\r\n", + "..er.py:755 FontProperties.set_style 23 0.000000 0.000000 0.000000\r\n", + "...py:900 AutoDateFormatter.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..ok\\__init__.py:2125 _check_getitem 4 0.000000 0.000000 0.000000\r\n", + "..py:1210 Line2D.set_markeredgecolor 30 0.000000 0.000000 0.000000\r\n", + "..psycopg2\\extras.py:261 RealDictRow 1 0.000000 0.000000 0.000000\r\n", + "...py:978 Rectangle._update_property 42 0.000000 0.000000 0.000000\r\n", + "..rm\\session.py:655 Session.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..per._iter_break_from_left_to_right 8 0.000000 0.000000 0.000000\r\n", + "..stgresql\\psycopg2.py:711 4 0.000000 0.000000 0.000000\r\n", + "..lotlib\\spines.py:36 Spine.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..b\\asyncio\\futures.py:269 _get_loop 8 0.000000 0.000000 0.000000\r\n", + "..dates.py:1496 YearLocator.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..\\type_api.py:64 Comparator.operate 4 0.000000 0.000000 0.000000\r\n", + "..b\\figure.py:66 _AxesStack.__init__ 1 0.000000 0.000000 0.000000\r\n", + "...py:299 NullFormatter._set_locator 31 0.000000 0.000000 0.000000\r\n", + "..\\axis.py:501 XTick.update_position 3 0.000000 0.000000 0.000000\r\n", + "..re\\numerictypes.py:293 issubclass_ 8 0.000000 0.000000 0.000000\r\n", + "..init__.py:791 RcParams.__getitem__ 1343 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\axis.py:383 14 0.000000 0.000000 0.000000\r\n", + "..b\\transforms.py:909 Bbox.intervalx 3 0.000000 0.000000 0.000000\r\n", + "..ase.py:1731 RootTransaction.commit 1 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:1579 XAxis.set_units 12 0.000000 0.000000 0.000000\r\n", + "..sql\\elements.py:740 Column.operate 4 0.000000 0.000000 0.000000\r\n", + "..se.py:593 _column_stack_dispatcher 12 0.000000 0.000000 0.000000\r\n", + "..tlib\\axis.py:864 XAxis.reset_ticks 16 0.000000 0.000000 0.000000\r\n", + "..bootstrap_external>:1334 find_spec 10 0.000000 0.000000 0.000000\r\n", + "..\\gridspec.py:246 GridSpec.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..is.py:197 XTick._set_labelrotation 6 0.000000 0.000000 0.000000\r\n", + "..__.py:138 CallbackRegistry.connect 33 0.000000 0.000000 0.000000\r\n", + "..ib\\figure.py:70 _AxesStack.as_list 2 0.000000 0.000000 0.000000\r\n", + "..b\\artist.py:819 Line2D.get_clip_on 3 0.000000 0.000000 0.000000\r\n", + "..\\rcsetup.py:163 validate_axisbelow 1 0.000000 0.000000 0.000000\r\n", + "..ession.py:1333 Session._close_impl 1 0.000000 0.000000 0.000000\r\n", + "..ib\\figure.py:778 Figure.set_canvas 2 0.000000 0.000000 0.000000\r\n", + "...py:1623 TransformWrapper.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..otlib\\lines.py:645 Line2D.set_data 30 0.000000 0.000000 0.000000\r\n", + "..er.py:1712 AutoLocator.nonsingular 2 0.000000 0.000000 0.000000\r\n", + "..is.py:1654 XAxis.set_major_locator 17 0.000000 0.000000 0.000000\r\n", + "..y\\dialects\\__init__.py:24 _auto_fn 1 0.000000 0.000000 0.000000\r\n", + "..240 QueuePool._should_wrap_creator 1 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\text.py:1115 Text.set_y 6 0.000000 0.000000 0.000000\r\n", + "..plotlib\\scale.py:718 scale_factory 16 0.000000 0.000000 0.000000\r\n", + "..\\__init__.py:1837 _str_lower_equal 4 0.000000 0.000000 0.000000\r\n", + "..se.py:392 Future.add_done_callback 6 0.000000 0.000000 0.000000\r\n", + "..hemy\\util\\queue.py:195 Queue._full 1 0.000000 0.000000 0.000000\r\n", + "..on\\database.py:107 from_sql_result 4 0.000000 0.000000 0.000000\r\n", + ".. _GeneratorContextManager.__init__ 141 0.000000 0.000000 0.000000\r\n", + "..\\lib\\function_base.py:257 iterable 97 0.000000 0.000000 0.000000\r\n", + "..tion-68gteq6k\\lib\\re.py:268 escape 1 0.000000 0.000000 0.000000\r\n", + "..ger.py:619 FontProperties.__init__ 23 0.000000 0.000000 0.000000\r\n", + "..ments.py:4065 Column._from_objects 10 0.000000 0.000000 0.000000\r\n", + "..xis.py:325 XTick._set_artist_props 30 0.000000 0.000000 0.000000\r\n", + "..xternal>:1426 FileFinder._get_spec 10 0.000000 0.000000 0.000000\r\n", + "..py:1137 Text.set_verticalalignment 33 0.000000 0.000000 0.000000\r\n", + ".._bootstrap_external>:64 82 0.000000 0.000000 0.000000\r\n", + "..hes.py:475 Rectangle.set_joinstyle 7 0.000000 0.000000 0.000000\r\n", + "..py:843 TextArea.set_minimumdescent 1 0.000000 0.000000 0.000000\r\n", + "..s.py:1059 AutoDateLocator.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..ges\\psycopg2\\extras.py:157 DictRow 1 0.000000 0.000000 0.000000\r\n", + "..til.py:368 surface_column_elements 54 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\pyplot.py:612 get_fignums 1 0.000000 0.000000 0.000000\r\n", + "..teq6k\\lib\\copyreg.py:90 __newobj__ 1 0.000000 0.000000 0.000000\r\n", + ".. LinearScale.limit_range_for_scale 2 0.000000 0.000000 0.000000\r\n", + "..b\\scale.py:43 LinearScale.__init__ 16 0.000000 0.000000 0.000000\r\n", + "..umpy\\core\\getlimits.py:365 __new__ 2 0.000000 0.000000 0.000000\r\n", + "..psycopg2\\_json.py:94 register_json 2 0.000000 0.000000 0.000000\r\n", + "..hes.py:348 Rectangle.set_facecolor 12 0.000000 0.000000 0.000000\r\n", + ".. Line2D._split_drawstyle_linestyle 64 0.000000 0.000000 0.000000\r\n", + "..\\orm\\session.py:1554 Session.query 6 0.000000 0.000000 0.000000\r\n", + "..\\__init__.py:1640 normalize_kwargs 74 0.000000 0.000000 0.000000\r\n", + "..\\core\\getlimits.py:398 finfo._init 1 0.000000 0.000000 0.000000\r\n", + "..lib\\sre_parse.py:295 _class_escape 30 0.000000 0.000000 0.000000\r\n", + "..xesSubplot._set_lim_and_transforms 1 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\figure.py:97 1 0.000000 0.000000 0.000000\r\n", + "..q6k\\lib\\functools.py:486 lru_cache 1 0.000000 0.000000 0.000000\r\n", + "..y:4564 _literal_as_label_reference 3 0.000000 0.000000 0.000000\r\n", + "..\\figure.py:152 _AxesStack.__call__ 2 0.000000 0.000000 0.000000\r\n", + "..\\core\\getipython.py:17 get_ipython 2 0.000000 0.000000 0.000000\r\n", + "..on__ internals>:2 broadcast_arrays 10 0.000000 0.000000 0.000000\r\n", + "..:779 PGDialect_psycopg2.on_connect 1 0.000000 0.000000 0.000000\r\n", + "..ec.py:549 SubplotSpec.get_gridspec 1 0.000000 0.000000 0.000000\r\n", + "..ages\\psycopg2\\compat.py:1 1 0.000000 0.000000 0.000000\r\n", + "..s.py:129 AxesSubplot.update_params 1 0.000000 0.000000 0.000000\r\n", + "..tableColumnCollection.__contains__ 10 0.000000 0.000000 0.000000\r\n", + "..chemy\\orm\\query.py:4634 27 0.000000 0.000000 0.000000\r\n", + "..lib\\legend.py:938 Legend.set_title 1 0.000000 0.000000 0.000000\r\n", + "..essionTransaction._remove_snapshot 1 0.000000 0.000000 0.000000\r\n", + "..\\asyncio\\futures.py:351 _set_state 6 0.000000 0.000000 0.000000\r\n", + "..units.py:58 _is_natively_supported 12 0.000000 0.000000 0.000000\r\n", + "..my\\orm\\query.py:164 Query.__init__ 6 0.000000 0.000000 0.000000\r\n", + "..ray_function__ internals>:2 hstack 16 0.000000 0.000000 0.000000\r\n", + "..b\\gridspec.py:31 GridSpec.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..ython38\\Lib\\inspect.py:80 ismethod 2 0.000000 0.000000 0.000000\r\n", + "..tist.py:804 Rectangle.get_animated 1714 0.000000 0.000000 0.000000\r\n", + "..ericTransform._invalidate_internal 4/3 0.000000 0.000000 0.000000\r\n", + "..plotlib\\axis.py:653 Ticker.locator 33 0.000000 0.000000 0.000000\r\n", + "..query.py:88 get_data_by_deployment 1 0.000000 0.000000 0.000000\r\n", + "..otlib\\__init__.py:1267 get_backend 1 0.000000 0.000000 0.000000\r\n", + "...py:407 XTick._get_text1_transform 3 0.000000 0.000000 0.000000\r\n", + "..bootstrap>:58 _ModuleLock.__init__ 10 0.000000 0.000000 0.000000\r\n", + "...py:635 Legend._approx_text_height 2 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:1812 XAxis.axis_date 4 0.000000 0.000000 0.000000\r\n", + "..on.py:579 SessionTransaction.close 2 0.000000 0.000000 0.000000\r\n", + "..ures\\_base.py:443 Future.exception 6 0.000000 0.000000 0.000000\r\n", + "..ompat.py:61 inspect_getfullargspec 2 0.000000 0.000000 0.000000\r\n", + "..aggregation\\query.py:82 4 0.000000 0.000000 0.000000\r\n", + "..patches.py:491 Rectangle.set_hatch 7 0.000000 0.000000 0.000000\r\n", + "...py:410 XTick._get_text2_transform 3 0.000000 0.000000 0.000000\r\n", + "..zipimport>:63 zipimporter.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..__init__.py:1632 sanitize_sequence 8 0.000000 0.000000 0.000000\r\n", + "..es.py:768 Rectangle._convert_units 18 0.000000 0.000000 0.000000\r\n", + "..numpy\\core\\fromnumeric.py:2189 any 76 0.000000 0.000000 0.000000\r\n", + "..base.py:321 _inspect_mapped_object 4 0.000000 0.000000 0.000000\r\n", + "..re\\multiarray.py:990 unravel_index 1 0.000000 0.000000 0.000000\r\n", + "<__array_function__ internals>:2 any 76 0.000000 0.000000 0.000000\r\n", + "..registry.py:154 _EventKey.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..ist.py:605 FancyBboxPatch.set_snap 1 0.000000 0.000000 0.000000\r\n", + "..s.py:697 _GatheringFuture.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..38\\Lib\\asyncio\\tasks.py:717 gather 1 0.000000 0.000000 0.000000\r\n", + "..elpers.py:1381 parse_user_argument 2 0.000000 0.000000 0.000000\r\n", + "..kers.py:289 MarkerStyle.set_marker 42 0.000000 0.000000 0.000000\r\n", + "..s.py:424 Spine.get_spine_transform 28/24 0.000000 0.000000 0.000000\r\n", + "..chemy\\orm\\query.py:4642 27 0.000000 0.000000 0.000000\r\n", + "..ib\\lines.py:1196 Line2D.set_marker 4 0.000000 0.000000 0.000000\r\n", + "..sSubplot.get_yaxis_text1_transform 3 0.000000 0.000000 0.000000\r\n", + "..portlib._bootstrap>:890 _find_spec 10 0.000000 0.000000 0.000000\r\n", + "..__init__.py:51 _StrongRef.__init__ 3 0.000000 0.000000 0.000000\r\n", + "..b\\legend.py:701 get_legend_handler 8 0.000000 0.000000 0.000000\r\n", + "..py:155 HandlerLine2D.get_numpoints 4 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\axis.py:372 14 0.000000 0.000000 0.000000\r\n", + "..orms.py:1652 TransformWrapper._set 4 0.000000 0.000000 0.000000\r\n", + "..opg2\\extensions.py:133 NoneAdapter 1 0.000000 0.000000 0.000000\r\n", + "..kers.py:286 MarkerStyle.get_marker 8 0.000000 0.000000 0.000000\r\n", + ".._bootstrap>:78 _ModuleLock.acquire 18 0.000000 0.000000 0.000000\r\n", + "..nsforms.py:1972 Affine2D.translate 36 0.000000 0.000000 0.000000\r\n", + "..hape_base.py:1151 _tile_dispatcher 1 0.000000 0.000000 0.000000\r\n", + "..r.py:63 HandlerLine2D._update_prop 8 0.000000 0.000000 0.000000\r\n", + "..arkers.py:244 MarkerStyle._recache 80 0.000000 0.000000 0.000000\r\n", + "..y:163 TransformedBbox.set_children 149 0.000000 0.000000 0.000000\r\n", + "..EventLoop._asyncgen_firstiter_hook 18 0.000000 0.000000 0.000000\r\n", + "..packages\\psycopg2\\tz.py:1 1 0.000000 0.000000 0.000000\r\n", + "..b\\function_base.py:2144 4 0.000000 0.000000 0.000000\r\n", + "..b\\cbook\\__init__.py:886 6 0.000000 0.000000 0.000000\r\n", + "..syncio\\tasks.py:751 _done_callback 1 0.000000 0.000000 0.000000\r\n", + "...py:2680 AxesSubplot.set_axisbelow 1 0.000000 0.000000 0.000000\r\n", + "..plotlib\\patches.py:1832 2 0.000000 0.000000 0.000000\r\n", + "..ib\\figure.py:104 _AxesStack.bubble 1 0.000000 0.000000 0.000000\r\n", + "..lotlib\\axes\\_base.py:321 12 0.000000 0.000000 0.000000\r\n", + "..Subplot._validate_converted_limits 4 0.000000 0.000000 0.000000\r\n", + "..romnumeric.py:2273 _all_dispatcher 9 0.000000 0.000000 0.000000\r\n", + "..ates.py:593 DateFormatter.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..CompositeGenericTransform. 3 0.000000 0.000000 0.000000\r\n", + "..hemy\\orm\\query.py:537 Query._clone 5 0.000000 0.000000 0.000000\r\n", + "..ase.py:3227 AxesSubplot.get_xscale 4 0.000000 0.000000 0.000000\r\n", + "...py:735 MarkerStyle._set_tickright 3 0.000000 0.000000 0.000000\r\n", + "..is.py:1670 XAxis.set_minor_locator 16 0.000000 0.000000 0.000000\r\n", + "..>:863 _ImportLockContext.__enter__ 30 0.000000 0.000000 0.000000\r\n", + "..etbox.py:303 TextArea.get_children 33 0.000000 0.000000 0.000000\r\n", + "...py:113 GridSpec.set_height_ratios 1 0.000000 0.000000 0.000000\r\n", + "..ry.py:267 _EventKey.append_to_list 3 0.000000 0.000000 0.000000\r\n", + "..umpy\\core\\numeric.py:341 full_like 4 0.000000 0.000000 0.000000\r\n", + "..alect_psycopg2.create_connect_args 1 0.000000 0.000000 0.000000\r\n", + "..lib\\lines.py:1282 Line2D.set_xdata 39 0.000000 0.000000 0.000000\r\n", + "..atplotlib\\artist.py:192 Spine.axes 831 0.000000 0.000000 0.000000\r\n", + "..py:275 SelectSelector._key_from_fd 6 0.000000 0.000000 0.000000\r\n", + "..lotlib\\figure.py:78 _AxesStack.get 2 0.000000 0.000000 0.000000\r\n", + "..._bootstrap>:389 ModuleSpec.parent 14 0.000000 0.000000 0.000000\r\n", + "..sion.py:3236 sessionmaker.__call__ 1 0.000000 0.000000 0.000000\r\n", + "..util\\langhelpers.py:1500 only_once 1 0.000000 0.000000 0.000000\r\n", + "..book\\__init__.py:833 Grouper.clean 8 0.000000 0.000000 0.000000\r\n", + "..ib\\cbook\\__init__.py:1575 10 0.000000 0.000000 0.000000\r\n", + "..s\\numpy\\core\\multiarray.py:707 dot 67 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:819 XAxis.get_transform 4 0.000000 0.000000 0.000000\r\n", + "..g\\__init__.py:1392 Logger.__init__ 3 0.000000 0.000000 0.000000\r\n", + "..5 CompositeGenericTransform.__eq__ 12/8 0.000000 0.000000 0.000000\r\n", + "..otlib\\text.py:1227 Text.set_usetex 24 0.000000 0.000000 0.000000\r\n", + "..ents.py:180 _run_until_complete_cb 1 0.000000 0.000000 0.000000\r\n", + "..\\lines.py:547 Line2D.set_markevery 30 0.000000 0.000000 0.000000\r\n", + ".. _ClsLevelDispatch._adjust_fn_spec 4 0.000000 0.000000 0.000000\r\n", + "..se.py:2873 AxesSubplot.tick_params 2 0.000000 0.000000 0.000000\r\n", + "..b\\function_base.py:2164 4 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:427 XTick._get_text1 3 0.000000 0.000000 0.000000\r\n", + "..ist.py:358 Rectangle.set_transform 85 0.000000 0.000000 0.000000\r\n", + "..core\\multiarray.py:145 concatenate 29 0.000000 0.000000 0.000000\r\n", + "..re_parse.py:267 Tokenizer.getuntil 7 0.000000 0.000000 0.000000\r\n", + "..ms.py:1639 TransformWrapper.__eq__ 4 0.000000 0.000000 0.000000\r\n", + "..tableColumnCollection.__contains__ 10 0.000000 0.000000 0.000000\r\n", + "..b\\function_base.py:2115 4 0.000000 0.000000 0.000000\r\n", + "..ide_tricks.py:206 broadcast_arrays 10 0.000000 0.000000 0.000000\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + ":176 cb 10 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\artist.py:1095 Line2D.set 70 0.000000 0.000000 0.000000\r\n", + "..ogging\\__init__.py:189 _checkLevel 3 0.000000 0.000000 0.000000\r\n", + "..k\\__init__.py:827 Grouper.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..tlib\\axis.py:2166 XAxis.get_minpos 1 0.000000 0.000000 0.000000\r\n", + "..lalchemy\\orm\\query.py:4148 __new__ 32 0.000000 0.000000 0.000000\r\n", + "..abc.py:816 WeakKeyDictionary.clear 1 0.000000 0.000000 0.000000\r\n", + "..lections.py:316 OrderedDict.values 5 0.000000 0.000000 0.000000\r\n", + "..lements.py:365 Column.get_children 27 0.000000 0.000000 0.000000\r\n", + ".. ExtensionFileLoader.create_module 1 0.000000 0.000000 0.000000\r\n", + "..d_inline.py:59 draw_if_interactive 1 0.000000 0.000000 0.000000\r\n", + "..157 CallbackRegistry._remove_proxy 2 0.000000 0.000000 0.000000\r\n", + "..768 IdentityTransform.is_separable 8 0.000000 0.000000 0.000000\r\n", + "..hon38\\Lib\\contextlib.py:238 helper 141 0.000000 0.000000 0.000000\r\n", + "..29 _process_plot_var_args.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..ession.py:1339 Session.expunge_all 1 0.000000 0.000000 0.000000\r\n", + "..ent\\registry.py:165 _EventKey._key 3 0.000000 0.000000 0.000000\r\n", + "..lib\\stride_tricks.py:266 30 0.000000 0.000000 0.000000\r\n", + "..ib\\transforms.py:969 Bbox.mutatedx 2 0.000000 0.000000 0.000000\r\n", + "..ist.py:371 Rectangle.get_transform 31 0.000000 0.000000 0.000000\r\n", + "..end.py:666 get_default_handler_map 2 0.000000 0.000000 0.000000\r\n", + "..tlib\\axis.py:2238 YAxis._get_label 1 0.000000 0.000000 0.000000\r\n", + "..Python38\\Lib\\inspect.py:260 iscode 2 0.000000 0.000000 0.000000\r\n", + "..egation-68gteq6k\\lib\\re.py:201 sub 4 0.000000 0.000000 0.000000\r\n", + "..ers.py:743 MarkerStyle._set_tickup 3 0.000000 0.000000 0.000000\r\n", + ".._bootstrap_external>:62 _path_join 82 0.000000 0.000000 0.000000\r\n", + "..teq6k\\lib\\copyreg.py:99 _slotnames 1 0.000000 0.000000 0.000000\r\n", + "..py:663 PGDialect_psycopg2.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\text.py:554 Text.set_wrap 24 0.000000 0.000000 0.000000\r\n", + "..onfig\\configurable.py:381 instance 2 0.000000 0.000000 0.000000\r\n", + "..ctions_abc.py:367 __subclasshook__ 4 0.000000 0.000000 0.000000\r\n", + "..ansforms.py:1831 Affine2D.__init__ 49 0.000000 0.000000 0.000000\r\n", + "..ycopg2\\extras.py:456 LoggingCursor 1 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\figure.py:1959 Figure.sca 1 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\patches.py:1818 __new__ 2 0.000000 0.000000 0.000000\r\n", + "..ImmutableColumnCollection.__iter__ 5 0.000000 0.000000 0.000000\r\n", + "..ckages\\psycopg2\\extras.py:698 Inet 1 0.000000 0.000000 0.000000\r\n", + "..py:1367 Line2D.set_solid_joinstyle 30 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:413 XTick.apply_tickdir 3 0.000000 0.000000 0.000000\r\n", + "..offsetbox.py:783 TextArea.__init__ 5 0.000000 0.000000 0.000000\r\n", + "..orm\\session.py:1002 Session.commit 1 0.000000 0.000000 0.000000\r\n", + "..ker.py:2004 _Edge_integer.__init__ 2 0.000000 0.000000 0.000000\r\n", + ".._range.py:297 RangeCaster.__init__ 6 0.000000 0.000000 0.000000\r\n", + "..urceFileLoader._check_name_wrapper 9 0.000000 0.000000 0.000000\r\n", + ".._base.py:3484 AxesSubplot.set_ylim 1 0.000000 0.000000 0.000000\r\n", + "..p>:867 _ImportLockContext.__exit__ 30 0.000000 0.000000 0.000000\r\n", + "..es.py:315 Rectangle._set_edgecolor 20 0.000000 0.000000 0.000000\r\n", + "..8 SessionTransaction._prepare_impl 1 0.000000 0.000000 0.000000\r\n", + ".. SessionTransaction._take_snapshot 3 0.000000 0.000000 0.000000\r\n", + "..pool\\base.py:63 QueuePool.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..b\\cbook\\__init__.py:2088 188 0.000000 0.000000 0.000000\r\n", + "..y:886 AxesSubplot.set_axes_locator 1 0.000000 0.000000 0.000000\r\n", + "..ckages\\cycler.py:349 Cycler.by_key 10 0.000000 0.000000 0.000000\r\n", + "..kages\\numpy\\ma\\core.py:666 getdata 8 0.000000 0.000000 0.000000\r\n", + "..rl.py:152 URL._instantiate_plugins 1 0.000000 0.000000 0.000000\r\n", + "..es.py:2396 FancyBboxPatch.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..utableColumnCollection.__getattr__ 9 0.000000 0.000000 0.000000\r\n", + "..plotlib\\patches.py:1833 2 0.000000 0.000000 0.000000\r\n", + "..y\\orm\\query.py:1856 Query.order_by 1 0.000000 0.000000 0.000000\r\n", + "..ngine\\base.py:1869 Engine.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..\\psycopg2\\_ipaddress.py:1 1 0.000000 0.000000 0.000000\r\n", + "..\\psycopg2\\extras.py:132 DictCursor 1 0.000000 0.000000 0.000000\r\n", + "..p>:151 _ModuleLockManager.__exit__ 10 0.000000 0.000000 0.000000\r\n", + ":1 Deployment.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..is.py:1412 XAxis.get_major_locator 2 0.000000 0.000000 0.000000\r\n", + "..axis.py:215 XTick.get_tick_padding 6 0.000000 0.000000 0.000000\r\n", + "..b\\axis.py:574 YTick._get_tick1line 3 0.000000 0.000000 0.000000\r\n", + "..bootstrap>:194 _lock_unlock_module 8 0.000000 0.000000 0.000000\r\n", + "..lib\\transforms.py:931 Bbox.minposx 1 0.000000 0.000000 0.000000\r\n", + "..setbox.py:661 DrawingArea.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..ootstrap_external>:424 _get_cached 10 0.000000 0.000000 0.000000\r\n", + "..\\core\\getlimits.py:239 _get_machar 1 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:1504 XAxis.update_units 14 0.000000 0.000000 0.000000\r\n", + "..elpers.py:1079 _importlater.module 1 0.000000 0.000000 0.000000\r\n", + "..gine\\default.py:295 get_pool_class 1 0.000000 0.000000 0.000000\r\n", + "..xt.py:1214 Text.set_fontproperties 1 0.000000 0.000000 0.000000\r\n", + "..ec.py:586 SubplotSpec.get_position 1 0.000000 0.000000 0.000000\r\n", + "..\\numpy\\core\\_asarray.py:16 asarray 176 0.000000 0.000000 0.000000\r\n", + "..ndowsSelectorEventLoop.create_task 2 0.000000 0.000000 0.000000\r\n", + ".._init__.py:573 _AxesStack.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..lib\\figure.py:453 Figure._get_axes 1 0.000000 0.000000 0.000000\r\n", + "..s\\_base.py:31 _process_plot_format 4 0.000000 0.000000 0.000000\r\n", + "..packages\\cycler.py:138 Cycler.keys 12 0.000000 0.000000 0.000000\r\n", + "..numeric.py:2354 _cumsum_dispatcher 3 0.000000 0.000000 0.000000\r\n", + "..atplotlib\\lines.py:632 Line2D.axes 42 0.000000 0.000000 0.000000\r\n", + "..logging\\__init__.py:2003 getLogger 4 0.000000 0.000000 0.000000\r\n", + "..\\_internal.py:830 npy_ctypes_check 4 0.000000 0.000000 0.000000\r\n", + "..ckages\\psycopg2\\_range.py:36 Range 1 0.000000 0.000000 0.000000\r\n", + "..:687 Legend.get_legend_handler_map 1 0.000000 0.000000 0.000000\r\n", + "..ger.py:810 FontProperties.set_size 27 0.000000 0.000000 0.000000\r\n", + "..lib\\transforms.py:2779 nonsingular 2 0.000000 0.000000 0.000000\r\n", + "..unction__ internals>:2 concatenate 29 0.000000 0.000000 0.000000\r\n", + "..b\\_pylab_helpers.py:115 1 0.000000 0.000000 0.000000\r\n", + "..m\\state.py:328 type._detach_states 2 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\lines.py:59 _scale_dashes 83 0.000000 0.000000 0.000000\r\n", + "..\\futures.py:357 _call_check_cancel 6 0.000000 0.000000 0.000000\r\n", + "..b\\cbook\\__init__.py:2090 type_name 94 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\path.py:211 Path.codes 4 0.000000 0.000000 0.000000\r\n", + "..py:1765 RootTransaction._do_commit 1 0.000000 0.000000 0.000000\r\n", + "..s.py:749 MarkerStyle._set_tickdown 3 0.000000 0.000000 0.000000\r\n", + "..ffsetbox.py:187 VPacker.set_figure 16/1 0.000000 0.000000 0.000000\r\n", + "..pes.py:2997 _resolve_value_to_type 4 0.000000 0.000000 0.000000\r\n", + "..cbook\\__init__.py:1868 Text.method 5 0.000000 0.000000 0.000000\r\n", + "..rtist.py:937 Rectangle.set_visible 69 0.000000 0.000000 0.000000\r\n", + "..artist.py:1052 Line2D.sticky_edges 32 0.000000 0.000000 0.000000\r\n", + "..xesSubplot._request_autoscale_view 8 0.000000 0.000000 0.000000\r\n", + "..b\\axis.py:470 XTick._get_tick2line 3 0.000000 0.000000 0.000000\r\n", + "..e-packages\\cycler.py:371 20 0.000000 0.000000 0.000000\r\n", + "..ore\\numerictypes.py:239 obj2sctype 1 0.000000 0.000000 0.000000\r\n", + "..t\\futures\\_base.py:381 Future.done 6 0.000000 0.000000 0.000000\r\n", + "..ase.py:3618 AxesSubplot.get_yscale 1 0.000000 0.000000 0.000000\r\n", + "..bootstrap_external>:1400 8 0.000000 0.000000 0.000000\r\n", + "..elpers.py:355 get_callable_argspec 1 0.000000 0.000000 0.000000\r\n", + "..nit__.py:1220 PlaceHolder.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..lotlib\\colors.py:123 _is_nth_color 51 0.000000 0.000000 0.000000\r\n", + "..rms.py:1284 TransformWrapper.depth 24 0.000000 0.000000 0.000000\r\n", + "..py\\core\\fromnumeric.py:2358 cumsum 3 0.000000 0.000000 0.000000\r\n", + "..xis.py:2258 YAxis._get_offset_text 1 0.000000 0.000000 0.000000\r\n", + "..uery.py:505 Query._no_limit_offset 5 0.000000 0.000000 0.000000\r\n", + "..strap>:397 ModuleSpec.has_location 10 0.000000 0.000000 0.000000\r\n", + "..py:2644 ScaledTranslation.__init__ 17 0.000000 0.000000 0.000000\r\n", + "..sycopg2\\extras.py:643 UUID_adapter 1 0.000000 0.000000 0.000000\r\n", + "..hon38\\Lib\\inspect.py:285 isbuiltin 1 0.000000 0.000000 0.000000\r\n", + "..b\\cbook\\__init__.py:828 2 0.000000 0.000000 0.000000\r\n", + "..ycopg2.py:741 _psycopg2_extensions 1 0.000000 0.000000 0.000000\r\n", + "..s.py:1096 _importlater.__getattr__ 1 0.000000 0.000000 0.000000\r\n", + "..lib\\artist.py:923 Line2D.set_alpha 7 0.000000 0.000000 0.000000\r\n", + "..654 _WindowsSelectorEventLoop.time 17 0.000000 0.000000 0.000000\r\n", + "...py:3168 BinaryExpression.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..e.py:1907 Figure._set_artist_props 1 0.000000 0.000000 0.000000\r\n", + "..9 PoolEventsDispatch._for_instance 2 0.000000 0.000000 0.000000\r\n", + "..packages\\psycopg2\\_json.py:47 Json 1 0.000000 0.000000 0.000000\r\n", + "..py:117 AxesSubplot.get_subplotspec 1 0.000000 0.000000 0.000000\r\n", + ":1 Query.order_by 1 0.000000 0.000000 0.000000\r\n", + "..tlib\\lines.py:31 _get_dash_pattern 41 0.000000 0.000000 0.000000\r\n", + "..b\\text.py:1059 Text.set_fontweight 4 0.000000 0.000000 0.000000\r\n", + "<__array_function__ internals>:2 dot 67 0.000000 0.000000 0.000000\r\n", + "..se.py:2960 AxesSubplot.set_axis_on 1 0.000000 0.000000 0.000000\r\n", + "..py:1960 Affine2D.rotate_deg_around 18 0.000000 0.000000 0.000000\r\n", + ".._base.py:2048 _process_single_axis 12 0.000000 0.000000 0.000000\r\n", + "..pg2\\extras.py:303 NamedTupleCursor 1 0.000000 0.000000 0.000000\r\n", + ":1 Query.filter 4 0.000000 0.000000 0.000000\r\n", + "..m\\query.py:193 Query._set_entities 6 0.000000 0.000000 0.000000\r\n", + "..nd.py:558 Legend._set_artist_props 9 0.000000 0.000000 0.000000\r\n", + "..hemy\\util\\queue.py:183 Queue._init 1 0.000000 0.000000 0.000000\r\n", + "..idspec.py:508 SubplotSpec.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:666 Ticker.formatter 33 0.000000 0.000000 0.000000\r\n", + "...py:112 PoolEventsDispatch._listen 3 0.000000 0.000000 0.000000\r\n", + "..\\patches.py:704 Rectangle.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..s.py:266 MarkerStyle.set_fillstyle 38 0.000000 0.000000 0.000000\r\n", + ".._init__.py:44 get_projection_class 1 0.000000 0.000000 0.000000\r\n", + "...py:101 State.checklookbehindgroup 1 0.000000 0.000000 0.000000\r\n", + "..llections_abc.py:72 _check_methods 14 0.000000 0.000000 0.000000\r\n", + "..\\futures.py:315 _copy_future_state 6 0.000000 0.000000 0.000000\r\n", + "..nes.py:1035 Line2D.set_antialiased 30 0.000000 0.000000 0.000000\r\n", + "..kref.py:436 WeakKeyDictionary.keys 1 0.000000 0.000000 0.000000\r\n", + "..elements.py:4099 Column._gen_label 10 0.000000 0.000000 0.000000\r\n", + "..atplotlib\\path.py:96 Path.__init__ 14 0.000000 0.000000 0.000000\r\n", + "..b\\artist.py:336 Rectangle.pchanged 373 0.000000 0.000000 0.000000\r\n", + "..y\\core\\fromnumeric.py:55 _wrapfunc 3 0.000000 0.000000 0.000000\r\n", + "..5 Rectangle._stale_figure_callback 134 0.000000 0.000000 0.000000\r\n", + "..process_plot_var_args._getdefaults 4 0.000000 0.000000 0.000000\r\n", + "..ansaction._is_transaction_boundary 4 0.000000 0.000000 0.000000\r\n", + "..gure.py:168 SubplotParams.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..ure.py:155 _AxesStack.__contains__ 1 0.000000 0.000000 0.000000\r\n", + "..ib\\widgets.py:34 LockDraw.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..atplotlib\\legend.py:813 1 0.000000 0.000000 0.000000\r\n", + "..ansforms.py:1701 Affine2D.__init__ 165 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:1944 XAxis._get_tick 3 0.000000 0.000000 0.000000\r\n", + "...py:1626 XAxis.set_major_formatter 17 0.000000 0.000000 0.000000\r\n", + "..plots.py:214 subplot_class_factory 1 0.000000 0.000000 0.000000\r\n", + "..xes\\_base.py:2716 AxesSubplot.grid 2 0.000000 0.000000 0.000000\r\n", + "..:903 AxesSubplot._set_artist_props 7 0.000000 0.000000 0.000000\r\n", + "..8gteq6k\\lib\\weakref.py:323 __new__ 1 0.000000 0.000000 0.000000\r\n", + "...py:1412 Line2D.set_solid_capstyle 30 0.000000 0.000000 0.000000\r\n", + "..gistry.py:263 _EventKey._listen_fn 16 0.000000 0.000000 0.000000\r\n", + "..es\\numpy\\core\\_methods.py:32 _amin 2 0.000000 0.000000 0.000000\r\n", + "..xternal>:1431 FileFinder.find_spec 17 0.000000 0.000000 0.000000\r\n", + "..s\\matplotlib\\colors.py:157 to_rgba 51 0.000000 0.000000 0.000000\r\n", + "..lotlib\\axes\\_base.py:588 4 0.000000 0.000000 0.000000\r\n", + "..otlib\\figure.py:111 _AxesStack.add 1 0.000000 0.000000 0.000000\r\n", + "..2\\_range.py:486 NumberRangeAdapter 1 0.000000 0.000000 0.000000\r\n", + "..:505 Figure.get_constrained_layout 2 0.000000 0.000000 0.000000\r\n", + "..my\\util\\queue.py:43 Queue.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..on.py:159 _create_json_typecasters 2 0.000000 0.000000 0.000000\r\n", + "..bootstrap>:342 ModuleSpec.__init__ 10 0.000000 0.000000 0.000000\r\n", + "..tlib\\axis.py:1559 XAxis.have_units 2 0.000000 0.000000 0.000000\r\n", + "..ctions_abc.py:302 __subclasshook__ 6 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\figure.py:1651 Figure.clf 1 0.000000 0.000000 0.000000\r\n", + "..array_function__ internals>:2 diff 16 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\transforms.py:763 unit 19 0.000000 0.000000 0.000000\r\n", + "..schema.py:1640 Column.get_children 27 0.000000 0.000000 0.000000\r\n", + "..ib\\artist.py:719 Text.set_clip_box 23 0.000000 0.000000 0.000000\r\n", + "..umpy\\core\\shape_base.py:285 hstack 16 0.000000 0.000000 0.000000\r\n", + "..pg2\\extras.py:1007 CompositeCaster 1 0.000000 0.000000 0.000000\r\n", + "..on38\\Lib\\inspect.py:158 isfunction 3 0.000000 0.000000 0.000000\r\n", + "..rs.py:330 MarkerStyle._set_nothing 30 0.000000 0.000000 0.000000\r\n", + "..y\\orm\\base.py:353 _is_mapped_class 7 0.000000 0.000000 0.000000\r\n", + "..et.py:20 _IterationGuard.__enter__ 1 0.000000 0.000000 0.000000\r\n", + "..f.py:463 WeakKeyDictionary.popitem 1 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\axis.py:153 6 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\spines.py:238 Spine.cla 4 0.000000 0.000000 0.000000\r\n", + "..ray_function__ internals>:2 cumsum 3 0.000000 0.000000 0.000000\r\n", + "...py:1006 Legend.set_bbox_to_anchor 1 0.000000 0.000000 0.000000\r\n", + "..lotlib\\axes\\_base.py:945 5 0.000000 0.000000 0.000000\r\n", + "...py:96 _AxesStack._entry_from_axes 1 0.000000 0.000000 0.000000\r\n", + "..tstrap_external>:51 _unpack_uint32 27 0.000000 0.000000 0.000000\r\n", + "..ernal>:526 _validate_timestamp_pyc 9 0.000000 0.000000 0.000000\r\n", + "..\\cbook\\__init__.py:1938 140 0.000000 0.000000 0.000000\r\n", + "..g2\\extras.py:405 LoggingConnection 1 0.000000 0.000000 0.000000\r\n", + "..__init__.py:1272 Manager.getLogger 4 0.000000 0.000000 0.000000\r\n", + "..bootstrap_external>:1302 _get_spec 10 0.000000 0.000000 0.000000\r\n", + ".._.py:118 CallbackRegistry.__init__ 19 0.000000 0.000000 0.000000\r\n", + "..numpy\\core\\fromnumeric.py:2277 all 9 0.000000 0.000000 0.000000\r\n", + "..CompositeGenericTransform. 16/8 0.000000 0.000000 0.000000\r\n", + "..lines.py:1092 Line2D.set_linewidth 30 0.000000 0.000000 0.000000\r\n", + "..ib\\_pylab_helpers.py:99 get_active 1 0.000000 0.000000 0.000000\r\n", + "..38\\Lib\\urllib\\parse.py:624 unquote 1 0.000000 0.000000 0.000000\r\n", + "..ty.py:17 WeakInstanceDict.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..tist.py:1017 AxesSubplot.set_label 5 0.000000 0.000000 0.000000\r\n", + "..ansform.contains_branch_seperately 4 0.000000 0.000000 0.000000\r\n", + "..\\patches.py:436 Rectangle.set_fill 7 0.000000 0.000000 0.000000\r\n", + "..ticker.py:224 AutoLocator.set_axis 67 0.000000 0.000000 0.000000\r\n", + "..sycopg2\\_range.py:242 RangeAdapter 1 0.000000 0.000000 0.000000\r\n", + "..s.py:729 MarkerStyle._set_tickleft 3 0.000000 0.000000 0.000000\r\n", + "..s.py:1642 _fix_ipython_backend2gui 2 0.000000 0.000000 0.000000\r\n", + "..b\\gridspec.py:528 SubplotSpec.num2 1 0.000000 0.000000 0.000000\r\n", + "..py:1225 Line2D.set_markeredgewidth 30 0.000000 0.000000 0.000000\r\n", + "..ager.py:936 _normalize_font_family 46 0.000000 0.000000 0.000000\r\n", + "..oop._set_coroutine_origin_tracking 2 0.000000 0.000000 0.000000\r\n", + "..arkers.py:222 MarkerStyle.__init__ 38 0.000000 0.000000 0.000000\r\n", + "..ylab_helpers.py:29 get_fig_manager 1 0.000000 0.000000 0.000000\r\n", + "..alchemy\\events.py:328 _accept_with 3 0.000000 0.000000 0.000000\r\n", + "..:2053 IdentityTransform.get_matrix 23 0.000000 0.000000 0.000000\r\n", + "..n\\query.py:76 get_deployment_by_id 4 0.000000 0.000000 0.000000\r\n", + "..query.py:329 Query._adapt_col_list 1 0.000000 0.000000 0.000000\r\n", + "..py:2408 CompositeAffine2D.__init__ 9 0.000000 0.000000 0.000000\r\n", + "..meric.py:337 _full_like_dispatcher 4 0.000000 0.000000 0.000000\r\n", + "..ine\\url.py:161 URL._get_entrypoint 1 0.000000 0.000000 0.000000\r\n", + "..d_bases.py:2556 notify_axes_change 1 0.000000 0.000000 0.000000\r\n", + "..ctions_abc.py:392 __subclasshook__ 40 0.000000 0.000000 0.000000\r\n", + "..otstrap_external>:1252 _path_hooks 1 0.000000 0.000000 0.000000\r\n", + "...py:180 AxesSubplot.convert_yunits 48 0.000000 0.000000 0.000000\r\n", + "..g2\\extras.py:538 ReplicationCursor 1 0.000000 0.000000 0.000000\r\n", + "..sql\\elements.py:4451 _as_truncated 10 0.000000 0.000000 0.000000\r\n", + "..y:4590 _expression_literal_as_text 4 0.000000 0.000000 0.000000\r\n", + "..idspec.py:67 GridSpec.get_geometry 3 0.000000 0.000000 0.000000\r\n", + "..y:949 Text.set_horizontalalignment 28 0.000000 0.000000 0.000000\r\n", + "..ernal>:1479 FileFinder._fill_cache 1 0.000000 0.000000 0.000000\r\n", + "..ootstrap_external>:104 _path_isdir 1 0.000000 0.000000 0.000000\r\n", + "..:964 SourceFileLoader.get_filename 9 0.000000 0.000000 0.000000\r\n", + "..py:366 GridSpec.get_subplot_params 1 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\ticker.py:2118 _staircase 16 0.000000 0.000000 0.000000\r\n", + "..forms.py:817 Bbox.update_from_path 4 0.000000 0.000000 0.000000\r\n", + "..lines.py:1143 Line2D.set_linestyle 34 0.000000 0.000000 0.000000\r\n", + "..ctionRegistry.get_projection_class 1 0.000000 0.000000 0.000000\r\n", + "..b\\gridspec.py:532 SubplotSpec.num2 1 0.000000 0.000000 0.000000\r\n", + "..:2165 FigureCanvasBase.mpl_connect 7 0.000000 0.000000 0.000000\r\n", + "..e.py:516 _ConnectionRecord.checkin 1 0.000000 0.000000 0.000000\r\n", + "..rms.py:2093 BlendedAffine2D.__eq__ 4 0.000000 0.000000 0.000000\r\n", + "..artist.py:695 Rectangle.set_figure 95 0.000000 0.000000 0.000000\r\n", + "..:493 Query._no_statement_condition 5 0.000000 0.000000 0.000000\r\n", + "..y:208 _arrays_for_stack_dispatcher 28 0.000000 0.000000 0.000000\r\n", + "..lib\\ticker.py:2103 _validate_steps 16 0.000000 0.000000 0.000000\r\n", + "..WindowsSelectorEventLoop.call_soon 17 0.000000 0.000000 0.000000\r\n", + "..tors.py:313 SelectSelector._select 17 0.000000 0.000000 0.000000\r\n", + "..ase.py:1009 _ConnectionFairy.close 1 0.000000 0.000000 0.000000\r\n", + "..range.py:449 RangeCaster._register 6 0.000000 0.000000 0.000000\r\n", + "..3883 AxesSubplot.set_navigate_mode 1 0.000000 0.000000 0.000000\r\n", + "..ib\\figure.py:1070 Figure._make_key 1 0.000000 0.000000 0.000000\r\n", + "..\\artist.py:1074 Line2D.update_from 8 0.000000 0.000000 0.000000\r\n", + "...py:193 URL.translate_connect_args 1 0.000000 0.000000 0.000000\r\n", + "..chemy\\orm\\query.py:4625 27 0.000000 0.000000 0.000000\r\n", + "..r.py:234 _EmptyListener.for_modify 2 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\figure.py:1089 fixlist 1 0.000000 0.000000 0.000000\r\n", + "..teq6k\\lib\\codecs.py:952 getencoder 1 0.000000 0.000000 0.000000\r\n", + "..plotlib\\text.py:1151 Text.set_text 46 0.000000 0.000000 0.000000\r\n", + "..ib\\artist.py:1013 Line2D.get_label 8 0.000000 0.000000 0.000000\r\n", + "..transforms.py:1924 Affine2D.rotate 18 0.000000 0.000000 0.000000\r\n", + "..py:220 SessionTransaction.__init__ 3 0.000000 0.000000 0.000000\r\n", + "..hes.py:382 Rectangle.set_linewidth 12 0.000000 0.000000 0.000000\r\n", + "..208 _EmptyListener._adjust_fn_spec 4 0.000000 0.000000 0.000000\r\n", + "..tlib\\text.py:535 Text.set_clip_box 15 0.000000 0.000000 0.000000\r\n", + "..y:2444 PGDialect_psycopg2.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..lib\\text.py:1042 Text.set_fontsize 4 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\text.py:1104 Text.set_x 6 0.000000 0.000000 0.000000\r\n", + "..ec.py:93 GridSpec.set_width_ratios 1 0.000000 0.000000 0.000000\r\n", + "..\\transforms.py:1986 Affine2D.scale 13 0.000000 0.000000 0.000000\r\n", + "..sSelectorEventLoop._read_from_self 6 0.000000 0.000000 0.000000\r\n", + "..ctions_abc.py:349 __subclasshook__ 5 0.000000 0.000000 0.000000\r\n", + "..ery.py:4539 _ColumnEntity.__init__ 32/7 0.000000 0.000000 0.000000\r\n", + "..\\lib\\sre_compile.py:413 5 0.000000 0.000000 0.000000\r\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACdsAAAUsCAYAAADFYdzDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdeZhkVX0//vcZhhmQRVDBDRQV0a8YURGMkQhGTdyCRBOXaCIuWYxmMcZoXNFo8jOJ+s3XJXvcSUjcFZfEfUHAFTdQZFdAZWeG2fv8/rjVTnd1VdfaXTU1r9fz9NNd5957zumqe6qYmTefU2qtAQAAAAAAAAAAALpbM+kJAAAAAAAAAAAAwLQTtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAACYMaWUU0opdeHX7jQ+AAAAAMBKELYDAAAAAAAAAACAHoTtAAAAgF1GaVzcXjWtlLK9lHL7Sc8PAAAAAIDZJWwHAAAA7EoemuSOHdr3SHLy6k4FxqOUckKHAOkJE5zPW9vmcvGk5gKzwJoCAACA2SFsBwAAAOxKnrHMsaeXUsqqzQQAAAAAgN2KsB0AAACwSyil3CLJScuccuckJ6zObAAAAAAA2N0I2wEAAAC7iqckWd/WVtseL1f5jlVSaz2l1loWfk16TgAAAAAAoxK2AwAAAHYVT297fH6S97a1PbaUcvNVmg8AAAAAALsRYTsAAABg6pVS7pfkqLbmtyd5W1vb3kl+c1UmBQAAAADAbkXYDgAAANgVtG8PW5O8I8lHk/ykx7kAAAAAADCytZOeAAAAAMBySil7J3lSW/Pnaq2XtI6fmuRPFhw7upRyVK31nBWe155Jjk1yjyS3bDX/OMnXBhm7lLJ/kmOS3C3JAUk2JrkyyRdrrT8c66SXjn3LJPdPcpck+ye5PsnlSc6ptV6wkmMPo5RySJoKhwe1vmqSnya5IsmZtdYbVmEOd01ydJLbJ1mf5Oo0z9kXaq3XrvT4s6iUcs8khyc5OM1auinN63pxki/XWret8PjW8vDjTsuaPCrJIUn2TbI1yRW11nf0ef3tk9w9yWFJbp6mQuoNSa5Jcmmae3Dz+Gc+20op65LcL816uFWa98sbkpxVaz1rgH4OT7M25++xLUmuSvLDNPfYpjFPHQAAAJYlbAcAAABMu19PE4BY6G1tP/9J2/GnJ/njYQYrpZyQ5NNtzQ+utX6mdfx2SV6c5LeS7Nelj+8nedVyYY9Syr2SvCTJiWlCCJ3O+VKS59davzjYb7G8UsrxSV6U5CFJ9uhyzteS/EOSf6u11gH7PyXJyxe21VrLkHM9OMlzk/xqkiOXOXV7KeWsJG9KclqtdW7Acdp/x1fUWk9pHVuT5KlJ/jTJPbt0saOU8pkkL6m1ntnHeKek7Tlq8+lSej5lb6u1ntzrpH6UUi5Ocscuh+/Y4fnp5GfrpI/x7pVm3f5Kktstc+qGUsonkrymn+e1bYwTsouv5V5raaXXcpf+pmFN7pPkD5P8TpI7d+mi42tWSrlVkl9L8tAkxye5dY+pbC2lnJnkjUne0+/vsVJrqtd9PYgOc+z5nlJKOTnJW9qa71Rrvbh1/Mgkf57kcUn26dDF25IsG7YrpdwpzfvtI9P99U2SzaWUzyd5fa31o8v1CQAAAONiG1kAAABg2rVvC3tTknfPP6i1fiPJN9vOeUoppWPoZRSllMcm+W6SP0iXcE7LEUneXkr5r/Z5lMbLknwtyW+kSzin5QFJPl9KedFoM//Z2HuUUt6Y5DNJfjldwjkt903yL0k+1wo+rKpSyrpSyiuTXJjkhVk+1JM0/1PpA5OcmuScVgBqHPM4JMkXkvx7ugftkua5fEiSL5VSXj2OsWdRKeW2pZR3JflGkqdl+aBd0lQqOynN8/r+UsotxjQPa3nwMadlTd4/zWv311k+iNXp2lPTVN375ySPT++gXZKsS/KgJP+V5NutMBkdlFJekmZt/3Y6B+16Xb9/677+XpLnpPfru1eShyX5SCnl86WUOww6JgAAAAxK2A4AAACYWq3t4x7U1vz+WuuNbW1va3t8izQBnXHO5SlpQn7tVfaW8xtpQlrzfZQ0oZdXZPlwzKKhk7y6lPKcAcZd2kkz9juTPHvAS49L8tlSykChllG0AlX/k+SlGSKwkSYU98VSyq+OOI87JzkzTVBqEC8qpbxqlLFnUSnlqCRnJ/nNNPf1oB6T5MxSyhEjzsNaHnzMaVmTD0oTMBw2VPULGW23l/+T5h586Ah9zKRWSO4vM+TzW0q5Y5Ivprmv9xyii+OSnF1K+flhxgcAAIB+2UYWAAAAmGZPz9JQTnuwLkneleRvsjj08owkp41pHvdL8lcL5nJdko+kCWL9JMneaUIYj09yWNu1v1lKeX+t9b/TbPe4sFLfJUk+nOTbSa5OckCSY1v97N/Wz2tKKR+e36pvCM9L8sQFj29M8oEkX07y49bYd0+z9d+hbdcemuRTpZR711qvG3L8vpRSDkgTuLh7h8PfTvLZJN9J8xokycFpwnCPzOIKZfsm+e9SygNrrV8dYir7Jfloktu3HtckZyT5RJJLk2xIclCayl2/lqbC0kJ/UUr5UK2123aJVyY5Z8Fc79J2/ILWGMu5tMfxQXw3O5/TOyQ5cMGxba3jvXSdbynlfmm2vty37dBcks+neW4vas1h7ySHpNnis3171LumqWJ1dK31+j7m1M5aHnAtT9GavE2S92bxWjs7TQjwkjTPw22T3CNNOLKXHWmqEn4nyXlpXrcb0twb+6e5134+zRpf+D+t75vkP0sp96m1XrZM/yu6pqbM72Rx+HNDkv9Nc9/8OM3zd0iSB6d53hdpBe3OSudKg2e3+vlekmvTVBq8bZrg5COyuKLkrZOcXkq5b631ktF+JQAAAOis1FonPQcAAACAJUope6QJEy3cZvLyJIfWWuc6nH96mnDHvLkkdx70H9xLKSekCQUttCU7/0H/DUle1imo0tpm8rVZWnHqe2m21ftSmtDBTWkCM/9Sa+0UPLhNkvekCRMs9M+11t/r43c4JcnL25o3Z2dI5S1J/rTL77AmyXOTvCpLA2RvrbU+bZjxa619VTIrpbwvS6sSntGab7fg2nwg6KVp5r5wrIuT3KtDNcT269v/kmzh83VWkj+otX6ty7WHpXm97tt26OO11ocvN27r+hOy9J57cK31M72uXQmllLcmeeqCpktqrYeN0N+BaUJN7X28JckptdauocFSyl2SvCnJr7Qdem+t9XE9xj0h1vJIa7nVz7SsyR3ZGbz8ZpLfr7V+qcu1e9VaN3do/36Sb6WpDPipfgKbrSDYXyd5Utuh02utj+51fauPt2ZMa2qc7xellIuT3HFB09tqrSf3uObkNPfdQgtfm39M8pJa69Vdrl/02pRS1qXZqvuYtlM/nOTPa63nLjOX2yT52yRPaTv05SQP6LQmAQAAYFS2kQUAAACm1SOyOGiXJO/sFLRraa94tybJyWOay3w4549rrX/UrSJUrXVLrfU5ST7eduhuST7UmtOGJL9Ua/3HbkGAWuuVSR6d5Kdth55YStl7yN9hPmzz/9Van77M7zBXa31tmspQ29sOn9zaxnFFlFJ+N0tDPW9OctxyoZ4kqbVeV2t9XhZXG0uagNcfDDGd+efrw0lO6Ba0a419cZKHpangtNDDSinDbnc5S96UxUG7HUme0roPl63OV2u9IM17QXu457GllPsPMRdrudHXWp6yNTkf5vpikl/sFrRrjb0kaNdyTK31cbXW9/VbGbHWekmt9TeTnNJ26JGllE7V/nZH86/N82qtz+oWtEs6vjanZGnQ7oW11l9dLmjX6uvKWutvpdnOeaFjkvx672kDAADA4ITtAAAAgGnVHtBIkrcvc/4HsnPLvnlPa1V3GodTa63/r89zX9qh7eDW9z/uFVJJklrrtWkqay20f5ZWyBrEZ2qtf9HPibXWD6epiNXuj0YYv6tSyto0W3Mu9LFa67PrAFsz1FrfkuRf25qf26pUNqiL04TCugV3Fo57TZYGPtakCeHttkopd0vyhLbmF9da39VvH63X//eStAdvXjjktKzlxrJreUrX5PVJnlBrvWGIazPk1sPzXpmmYtq8kmarcxrvqbW+bpALWlUv/7Ct+R9rra8ZpJ9a6ylptq1daNj3BwAAAFiWsB0AAAAwdUopByd5VFvz12qt3+l2Ta11S5LT2prvmOQhY5jSjiwNnXRVa/1ymi1w230vSyt0LefdHdratyodxKBBudck+WFb22NKKbcdYQ7dPDGLtzOsWRrC6NcrW9fPu3WSBwzRzysGDOf8Z5p7ZaGjhxh3ljw/i/8O8qIkfzdoJ7XWbUn+qq35EaWU9u1Re7GWd+q1lqdxTb6u1vqjIecwklbA8B1tzcdNYi5TaC7Jnw1x3bOT7Lvg8YYkLxhyDq9se3zv1hbfAAAAMFbCdgAAAMA0emqSPdva2reJ7aRT5btOFfIG9Yla6yUDXvONDm1vGbAi1AVJ2is43W3Aecw7s9b6rUEuaFV0aw+XrE3y0CHnsJz2Lf8+U2v9wTAd1VovS9L+ux4/YDcbk5w64LjXJjm/rXnY12uXV0opSR7b1vzWbluu9uEjbY/XJxl0K1lreadea3na1mRN8u/DjD9G7ev7vqWU9s+q3dGnWttpD6r9HvvvYasWJjkjS6vbDnqPAQAAQE/CdgAAAMA0at+ab3uS/+h1Ua31jCwNQ5xUSrnFiPP53BDXdAr0fH4M/RwwRB9J8v4hr3tvh7afH7KvjlqhrF9saz5jxG4vant8nwGvP7PWunWIcS9oe3zzIfqYFfdKcmBb29Cva2ur3vZKg4O+rtbyYh3X8pSuyR/UWtur842klLJvKeWRpZQXllLeXko5vZTy+VLK10op32j/SvLGti7Wp6nSt7v79KAXtLaQ/bm25lHeH+aydI0Neo8BAABAT2snPQEAAACAhUopD0xy97bmj9Zaf9pnF29P8pcLHq9P8uQkbxhhWsNUc7pxhfoZNrz11SGv+1aSbVlcaXDcW6P+nyTtgcinllIePUKfd2h7fKsBr28PbfarPQy2O4ftHtih7Q2llC0j9HmztseDvq7Wcn9reRrX5NdGGHuRUsrRabY4PjHJ3iN2d0CWbtG7uxnmtXlAlhYD+ItSynNGmMfhbY8HvccAAACgJ2E7AAAAYNp02va1ny1k570jySuTlLY+RwnbXTvENdtWqJ9htyz83jAX1Vq3lFIuTnLXBc0HDzmHbg7p0tapfVi3HPD8a4YcZ1yv1yzo9Pq1B2lHNejrai33t5ancU3+ZNQBW1u+vj7JszK+XV9250DtvGFem0730p1HnUibQe8xAAAA6Mk2sgAAAMDUKKXsm+Txbc3XJvlwv33UWi9J8pm25qNalYyG1SlsM7Ba61j6GVJ7xbVRrh12+8tuViMQMWj1qkm+VrNiZl/X3WAtT+Nrd8Mog7WCdv+d5NkZ79+L786B2nnDvDbTeI8BAABAT8J2AAAAwDR5YpJ92tpOq7UOuu1kp0p4nSrm7U42jvHa/UaZSAcHjrk/poPXdWWsxlqextdu+4jXvyDJYzq0/yjJm5M8Jc3WpoemCSHuVWstC7+SPHjEOcyqYV6babzHAAAAoCfbyAIAAADTpFMg7vdLKb8/hr6fVEp5Xq110xj62hXtk+ErQ7UHIG8ccS7tOr0mJ9VaPzDmcVhdnV7XA2ut1636TGbLaqzlmVqTpZSDk/xFW/P2JM9P8sZaa79hMZXSxqfTPXbvWus5qz4TAAAAGIDKdgAAAMBUKKXcI8nPr+AQByR57Ar2P+1uPsZrxx2WuqpD253GPAarr9PrethqT2IGrcZanrU1eWKSm7W1vaDW+n8HCNolyS3GOKdpMMktcGftHgMAAGA3IWwHAAAATIvV2OZ1d95K9ohhLiqlrMvSgNRPRp7NYj/u0HavMY/B6vO6rozVWMuz9to9rO3xtUneOEQ/dx7DXEa1rUPbsKG5SYYHZ+0eAwAAYDdhG1kAAABg4kopeyb5rbbmrUnOHbHrQ7M4THBCKeXOtdYLR+x3V3R0kk8Ocd29sjTI8dXRp7PIN5NsTrLXgraHj3kMVt/ZHdoekeTtqz2RGbMaa3nW1uShbY/PqrVuHaKfB4xjMiPqtIXw/oN2Uko5JItf39V2Voe2RyR55WpPBAAAAAahsh0AAAAwDU5MclBb2/tqrfce5SvJS9r6LEmetiq/0fQ5acjrOm29e+YoE2lXa92c5AttzbctpTxknONMsU7bWO6x6rPYqX0+w87ljCQb29oeVUo5cMj+aKz4Wp7BNXmrtsfXDNpBKeVWSR485PjjWlNJ561/h6m4d/wIcxhZrfWSJD9oaz62lDJU5UYAAABYLcJ2AAAAwDTotL3rO8fQ72lpKuQtdHIpZXf8O5EHlFKOHOSCUsr6LK04uD3JJ8Y2q50+0KHtlBUYZxrd2KFt31WfxU7t8xlqLq3KYR9ra94vyfOG6Y+fWa21PEtrsj302R6+68ezM3wluLGsqZYfJdnQ1nbsEP387ghzGJf2e2xNkpdNYiIAAADQr93xL5YBAACAKVJKuX2SX25r/mmWhnQGVmu9JslH25oPSfIro/a9i/r7Ac//8zTP10IfqLVeMab5LPRvSa5sazuulPKCFRhr2lzboW2YSlXj0j6fA0aoRvfqDm1/Xko5bsj+aKzGWp6lNdn+e/5CKWWffi9uhRv/YoTxx7amaq1zSb7R1vyoUsrN++2jlHJikgcNM/6YvTbNdsULPbmU8oRJTAYAAAD6IWwHAAAATNrTsnRLvdNqrZ221hxGpwp5nSrp7Q4eUkp5VT8nllIekeSlHQ79v/FOqVFr3ZTOway/KqU8Z9h+SykPL6W8efiZrYrLklzf1vbISUyk5Vsd2oaaT63160ne09a8Z5L3lVKGCvuUUtaXUn63lPLcYa6fESu+lmdsTX6+7fG+SV7ez4WllMOSfDDJ+hHGH9uaamkPke+dpN/74V5J3jLC2GPTCnu+qcOhfy+lPG6YPkspe5RSnlBK6XTvAgAAwMiE7QAAAICJKaWUNGG7duPYQnbeh7I0yHRiKeWgMY6xK5ivHvTiUsq/dKuCVEpZU0r5kyTvTROKWuittdbPreAc35TO2wq+oZTyvlLKUf10Ukq5UynlBaWUb6YJpUxDBaeuaq01yZfamh9aSvnrUsrBE5jSmUnm2tpeW0p5TCml/Z7ox+8luait7VZJPllK+dtSym366aSUcv9SymuTXJzkn5LcZYi5zILVXMuzsibfk6X39PNLKX9ZSlnb7aJSypPSrM35SpM3DDn+uNfUW5PsaGt7TinlFd1+n1YI7RlJvpDkFklqlm6zPgkvSXJ2W9vNkry7lPKvpZS+1nkp5Z6llFcm+X6S/0zS170JAAAAg+r6FwkAAAAAq+DBWbpd5vm11rPGNUCtdUsp5b+TPHNB855JnpLk9eMaZxfwsiR/0/r5mUkeX0p5f5IvJ/lJkgOS3D3J45LcocP1lyRZ0UpitdZaSnlKmjBIe1DipCQnlVLOSfKZJOcnubp17IA04a17JTk6k92CdVj/nuThbW0vTPLCUsoVSa5J0l7t8YO11peNeyK11itKKR/L4spbt07y/iRbSymXJdmYJqyz0DNrrV/p0N/VrW0rv5BkYTBsbZI/S/JHpZQvJflckh+m2XJzfZrX9bZJ7pPkfkl2t4BsN6u2lmdlTdZav19KeWeS32479JIkJ5dS3p3km0k2pAmi3S3JiVkc6LwpyQuS/MMQ4497TV1eSnlDkj9pO/SyNNuwvifJua053zLJzyV5VBbfD69J8qQkdxz09xmnWuvmUsqvpQkkHtp2+BlpXp+vJPlsmqDtNWmq4R6Q5OAk907z/nD71ZozAAAAuzdhOwAAAGCSOm3nOs6qdgv7fGZb2zOye4Xt/i5NIOHxrcf7pwmetIdPOvlhkl+qtV63QnP7mVrrhlLKL6bZ5rDTNoJHZTYrFr0nySeTPKTDsdu2vtp9YwXn8/wkxyfZp619XbpXlNu3W2e11m+XUo5JU2Xtnh36PL71RW+rupZnaE3+UZJj0wQRFzokS0Nr7bYl+Y004bVhjXVNJXlxkodm6Xq6S5I/7zGX01rXP6nHeauiFR48Ns282qse7pHk/q0vAAAAmDjbyAIAAAATUUo5IMljOxx61woM97kkl7a1HVlK2W3+8b61VemTk/zjgJd+McnxtdYLxz+rzmqtN9Zafz3Js5L8aMTuLk0TEppqtda5JL+e5NRJzyVJaq3fTfKwJD8YY5/npwnMvC5NFa9RfCXJR0ae1C5oEmt5FtZkrfX6NOG0Mwe89PIkD621jnS/jXtN1VpvSnJClm7BuuxlacKav9l6z5katdYr04SNX5Kmet0ozk3yXyNPCgAAADoQtgMAAAAm5clJ9mpr+1Kt9YJxD9QKp3QK8XWqrDezaq3ba63PShM4+VSS5cIWX0/yO0l+cTWDdgvVWv8xzfaTv5PkE+mvqtRcmrn/bZptig+rtb52xSY5RrXW62qtT05TeeuUJB9OckGabVW3TWA+X2rN5ZFJ3pxmK9HL02y1OVRQp9Z6U631eUkOS/M7fiXJjj4u3Zzmnn1RkiNrrceMGn7alU1qLe/qa7LW+qM0ldOek6TXc3FJkpcmuXut9XNjGn+sa6rWenWSB6YJQS732bkjyUeTPLDW+vxpC9rNa93Xr06zte3z0jw/W/u4dHuSM5K8MsmxtdZ71FrfvnIzBQAAYHdWmr9rBgAAAGB3U0q5VZKfT7Pt4L5JbkhyRZKvr0TocVSllHVJjk6z7eOtkhyYJmRxY5Krknw/yfdrrZsmNkkGVkq5eZJjkhyc5JZJbp5kU5rX9fIk30tyYa21n1DeTCmlnJLk5Qvbaq2lw3kTWcu7+pospRyRZmvZg9Js77oxzVa736y1fm+ScxtG6/c5Os1a2i/N63BBkjNqraNWi5uIUsrN0mybfLs07w8HJNmS5nf7SZr3hx/UWvsJ5QEAAMDIhO0AAAAAAKZQv2E7AAAAAFaHbWQBAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAeSq110nMAAAAAAAAAAACAqaayHQAAAAAAAAAAAPQgbAcAAAAAAAAAAAA9CNsBAAAAAAAAAABAD8J2AAAAAAAAAAAA0IOwHQAAAAAAAAAAAPQgbAcAAAAAAAAAAAA9CNsBAAAAAAAAAABAD8J2AAAAAAAAAAAA0IOwHQAAAAAAAAAAAPQgbAcAAAAAAAAAAAA9CNsBAAAAAAAAAABAD2snPQHoppRy8yTHL2i6LMnWCU0HAAAAAAAAAACYvHVJDl3w+LO11utXY2BhO6bZ8Uk+MOlJAAAAAAAAAAAAU+sxST64GgPZRhYAAAAAAAAAAAB6ELYDAAAAAAAAAACAHmwjyzS7bOGD97///Tn88MMnNRcAAAAAAAAAAGDCfvCDH+Skk05a2HRZt3PHTdiOabZ14YPDDz88Rx555KTmAgAAAAAAAAAATJ+tvU8ZD9vIAgAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAbDbqFs2pZ7zhdSf/mjSUwEAAAAAAAAAdjHCdgDsFuoXT0991G1Tn/OQ1MfeOXOvenrq9u2TnhYAAAAAAAAAsIsQtgNg5tVrf5r6kickWzbtbPz4u5J3v2FykwIAAAAAAAAAdinCdgDMvk+elmzftqS5nv62CUwGAAAAAAAAANgVCdsBMPPqf/595wMXn7u6EwEAAAAAAAAAdlnCdgDMvg5V7QAAAAAAAAAABiFsB8Ds27510jMAAAAAAAAAAHZxwnYAzL5twnYAAAAAAAAAwGiE7QCYfbaRBWiT9noAACAASURBVAAAAAAAAABGJGwHwOzbIWwHwGIf/VbNmt/d8bOvr15SJz0lAAAAAAAAppywHQCzb8eOSc8AgCny6fNqHvWGuUVtx7x6Lt+7UuAOAAAAAACA7oTtAACA3cpj3jTXsf05p3ZuBwAAAAAAgETYDgAA2M1s2NK5/ZPnre48AAAAAAAA2LWsnfQEAAAAuvnxDTXv/VrNpdckv3T3kofdo0x6SgAAAAAAAOymhO0AAICpdPFVNb/02rlcfHXz+DUfq3nRI0teddLKFejesq1m/Z4CfQAAAAAAACxlG1kAAGAqvebj9WdBu3l/9ZGaS6+uKzbmh7+5Yl0DAAAAAACwixO2AwAAptI/fbZzqO5fv7ByYbtPf2/l+gYAAAAAAGDXJmwHAABM3I65mq9cXPOhc2qu3bh84O0T565cIO6GTSvWNQAAAAAAALu4tZOeAAAAsHu7ekPNr/zfuXzt0ubx2jXJqb8zmf8v6MKrVLYDAAAAAACgM5XtAACAifrT/6o/C9olyfa55PH/NDeRuZxxwUSGBQAAAAAAYBcgbAcAAEzUh765etXkrumxRW2SbN2uuh0AAAAAAABLCdsBAAATs31HzXU3rd54V2/ofc6GLSs/DwAAAAAAAHY9wnYAAMDEbNq2uuNt29H7nE1bV34eAAAAAAAA7HqE7QAAgIm5aYhg25kXDj9eP2G7y64dvn8AAAAAAABml7AdAAAwMd+4bHXH2z7X+5z/+W5d+YkAAAAAAACwyxG2AwAAJmbjlsGvucMthh+vn8p2ZfjuAQAAAAAAmGHCdgDMtFpVJwKYZpu2Df4+vaOP6nTd9BO2e/kHa07/ps8PAAAAAAAAFhO2A2C27egjVQHAxGzaOsQ124Yfb3ufHwu/+sa5fPw7AncAAAAAAADsJGwHwGybE7YDmGbDBOeGCejN66ey3bxXfGiEEnoAAAAAAADMHGE7AGZbFZQAmGbDVrYbdpvwrQOE7c68cKghAAAAAAAAmFHCdgDMNtvIAky1YbeE3bJ9yPFGqIoHAAAAAADA7k3YDoDZZhtZgKl205Dht2FDczdtHa4iHgAAAAAAAAjbATDbhO0Aptqwle1W67pht6sFAAAAAABg9gjbATDbbCMLMNU2DxuaG7Ky3aDjbR1yu1oAAAAAAABmj7AdALNNZTuAqbZtyDDbsJXtBg3PDTsOAAAAAAAAs0fYDoDZJmwHMNW2Dfk2PWwIbsugYbshK+gBAAAAAAAwe4TtAJhtwnYAU23r9jrUdcOG4LYO+LGgsh0AAAAAAADzhO0AmG07hO0Aptmwle0220YWAAAAAACAVbZ20hMAgBVV5yY9AwCWMWiluXnDhuAGDtttTS66qmbbjmRNSQ67ZbJ2j5IbNtVctSG5062SUspwkwEAAAAAAGCXImwHwGxT2Q5gqg1b2W7T1ppk8JDboOG+Y/+qc2h7jzXJjrnk0AOTdzxjTR50hMAdAAAAAADArLONLACzbU7YDmCaDVppbt5qVbbrZkcrg3fZtckj/n4uV15fx9MxAAAAAAAAU0vYDoDZNmcbWYBpNnRluyHDdsOOt5xN25LTvyVsBwAAAAAAMOuE7QCYbSrbAUy1Qbd1nbdp65DjjamyXbtPnrsy/QIAAAAAADA9hO0AmG07hO0AptlqV7Y788KVqUD3kxtVtgMAAAAAAJh1wnYAzDaV7QCm2rCV5s4aIjR30VU1F1893Hi9fOq8pFaBOwAAAAAAgFkmbAfAbBO2A5hqw1a2+/h3Br/m37+4smG4z5+/ot0DAAAAAAAwYcJ2AMy2ubnux9b4GASYtGEr2x1/xODXvPr0lQ3bffp7KtsBAAAAAADMMikDAGbbcpXt1uyxevMAoKNhK9vtWCZLPSmXrNAWtQAAAAAAAEwHYTsAZttyYbtSVm8eAHS0dciw3bAhvW6OuPXofVxxvcp2AAAAAAAAs0zYDoDZtmPMaQwAxmrY0Nz2MVe2WzuGPxldes3ofQAAAAAAADC9hO0AmG3LVbarKhABTNrW7cNdN+6w3eOOHr3a6UVXJdVnCwAAAAAAwMwStgNgtgnbAUy1oSvbDXHdfe/Q/dhjjho9bLd5W3Ll9SN3s8S1G2ve/dWav/7oXN7yxblcdo3PLwAAAAAAgElYO+kJAMCKWnYbWWEFgEnaMVczN+Rb8XlXDn7NjZs7t5/8CyX3WSaIN4gLr0pue8B4+kqS866oecjr5nLFghDfurU17/79NXn0vUYPCAIAAAAAANA/le0AmG3LVbYDYKJ6VbW7y0HJSx7VOVC2ZYjtZ8//SfdxShlPcO2iq8Yb5H7OfywO2iXN1ru/9W9z2bZdaBwAAAAAAGA1CdsBMNuW2yrWNrIAE7V1mcDc2S9ak/NfvUduv0yVuO07xvM+Ps5PgwuvGl9fm7fVfO77nY9dvyn58iXjGwsAAAAAAIDehO0AmG1zc92PCdsBTNTmbd2P7b2u+b7P+u7n3LR1sPH23KNz+3yVvF+7z2D9dfKuM2uuunE8ny83bEq2L/MxdvWGsQwDAAAAAABAn4TtANh9CdsBTNSm5cJ2ezbf73OH7tu7Lnd9ux1zteu2tScc0Yzx3IeO/sej83+SHPy8uTz2zTuyaetonzMnvnGZpF2STdt8jgEAAAAAAKwmYTsAZptAHcDU2rRMZbr5sN3890Gvb/ftH3U/tt9ezffj7lpy1ovG80ek938j+bN3D/8Z9F9fmcvZFy9/zpd7HAcAAAAAAGC8hO0AmHHLBx2qMB7AxCxb2a61jexyYbvltqFt94Fzur/fLxzjmMO6V9Ib1Pu+NvxnzB/+R+9rz7vCZxgAAAAAAMBqErYDYLb1CtMJ2wFMTD/byM6H7ga9vt11N3U/dueDFj9+3H3773c5V96QbNs+3OfMT2/sfc6htxhfMBAAAAAAAIDehO0AmG3CdABTq9s2sKUk69Y2P++13DayA4Ttljt3n/WLQ2tP/YU1KWPKsQ0yx0Ft3bFyfQMAAAAAALCUsB0AuzdhPICJueL6zu/Be++ZlFbabf3adA2+dQvrdfJPn+081hOPWdr5o+9V8q5nlNzn0GYuD75b/+O0W8mw3bbtK9c3AAAAAAAAS62d9AQAYEXZRhZgan3qvM7tC6vZlVKy19rOobVxBNn226tz+xOPXZMnHpvUWlNKyTGv3pGvXjJ4/4MEAued/+P+Ppu2CtsBAAAAAACsKpXtAJhxvQILwnYAk3L7Azu3X7Nx8eO913U+r98gWxOY63xs45blr52vsPfY+w63r+zmIQKB37m8v/O27vAZBgAAAAAAsJqE7QCYbSrbAUyt7Tv6O2/vPTu3b9rW33v4lu3d3+6Pu2t/czjxqNI1sLecbX3+jsNcs2UFt6gFAAAAAABgKWE7AGabsB3A1PrWDzu/Bz/k7osfj1rZbrnz7n+n/hJ0R96u5J3PKNlnfX9jzts6RNiu34p1w/QNAAAAAADA8ITtAACAifjItzu3f7ttG9Xule36G+dH13U/1q3vTp507Jpc/fo1OetFa3LF363J0x7YO6i3dXv//c/rt7LdMH0DAAAAAAAwvLWTngAArCiV7QB2OT++YfHjUcN2F/60+7Fb7NNfH/PWrS055rDm5xs2zfU8fyW3kVXZDgAAAAAAYHWpbAfAbOsZphO2A5h2o24ju1x47eD9+9tGtpN+8trDVJ/r9xqV7QAAAAAAAFaXsB0AM05lO4BpdNWN/b//jlrZbtO2lXmv76fXYarP2UYWAAAAAABgOgnbATDbbCMLMJX+7n8HCNuNWNmuWyjvLgf1PYWO+vkIsY0sAAAAAADA7BC2A2D3JmwHMBGfPHeQynadt3rtt7LdTV1Ced0q5vXrqEN7b0G7ktvIblHZDgAAAAAAYFWtnfQEAGBF9QzTCdsBTMK1G7sfe/0TFofY9upS2W5zv9vIdgvbdem3X888ruQVH1r+c2TrjpqkdyhvoX4r2/Vb2W/jlpqvX5psn0v2XZ/ss37x93VrB5sfAAAAAADA7krYDoDZpnIdwFS68Krux57+wMXhr24V6DZt7e89vlsFvFEr293+wJJnnVDyD5/pPo9hKtv1HbbrI2z4z5+by7NPrdkx1/2cPffYGbxbFMZbl+y7V8k+65c/vm+X40J8AAAAAADArBG2A2DG9QhiCOMBrLovX9z9vfffnlqy3159hu36rGz3li92Hm/UynZJ8sYnldz/TsnJb+k8Rr/BuWGu6VXZ7uyLan7/nb0/57btSK67qflaavgKsWvXJPvutTCYtzikd7Mlba3v61shvy7H161NShHkAwAAAAAAVp+wHQCzrVeYTtgOYNW96L3dy6zdZv+lIapuobh+t1HtFl7bawx/Giql5LcfUPI3H9uR716x9PiWISrbbe0zbLd9Ltm2vWbPLhXkPvzNyX7GbZ9b2RDfzmDezp/3Wd9U4lvueHubEB8AAAAAANAvYTsAdm/CdgCr7pPndT/2c4csbRu1st0Rt05+fMPS9rMu6u/6fqzv8ierzX3OcaFBquFt2pbs2WXsy68ffOxdwUqG+Dpth7swxLfc8e7b6QrxAQAAAADArBC2A2C29QzTCdsBTJNDDhx/Zbtu5z38nuMLQHWb46Bhu+07av7hM/1/Nm3aluy/d+djO4bYwnZ3tn0uuX5T87XU8P89sceabgG9ZN+2EF+3452uF+IDAAAAAIDVJ2wHwGyzjSzAVLl24+Dvu6NWtusWeLv3oQNPpatR5zjvj08b7Pn5+qXJw+/Z+dggFfJYOTtWOMTXOYy3M8S33PFO168X4gMAAAAAgK6E7QCYccJ2ANPk499Z/bBdt/P26tLvMEatvpck27bXnHrWYM/PO86sXSv0bZ/rfM1T7l/y0keXbNiSbNySbGh9bdxSF/y883vzc207d+f3QQOFjMdqhfj2WZfsu9fCn0tutqRt/ueSfffqdI0QHwAAAAAAs0HYDoDZJkwHMFXOu3Lwa/ZeV9IpHNRvkG3r9s7tYw3b7dlljgME0c67sltwqrv/OLvmXc/sfGzbjs6fgQfsk9z11p1CT8MFoXbM1QWhvKVhvA2tEF/78Y3dAn5bkw2bhfgmZfkQX7J8kG/5EN988G6fda1qeot+3hniW3p8cYhv4XEhPgAAAAAAVpOwHQCzzTayu50zLqg57jU7yzm99Wklv/2ANROcEbDQ1mW2Nn3xozoHZrpVtrtxc39jdttOdc89+ru+H90q23XbwraTbpXohrW9y++9dsxviXusKdl/72T/vbudMXyI76ZW8G5hCG/jz9rqgp93tjfX1EVtQnyTt2MuuWFz89XZcCG+NWVpcG/x1ritLXM7Ht+5nW778b32FOIDAAAAAGApYTsAdm/CdjPl7IsWB+2S5OS31GzaOpffO17gDqZBtypzSfLKE7uE7boE2bbPJbXWnoGYbmG7tWvGF6TpViXvE+f2/zlzydVjmkzL/57buX2cIcOVtMeakv32Svbbq9sZo4f4Nm5tVdvbvDDMVxe3bVkc4ltyzRYhvkmaqysb4vvZdrqLAnw7g3qdj5e2c3d+F+IDAAAAANi1CdsBMNt6humE7WbJs0/tXBbqWe+q+b3jV3kyQEfdKtuddO/uAZRule2S5LtXJEfebvkxV6WyXZc5Xn5d/3386+fHW9quW1W9cVe229WsdIhvXNvpzv98U5/bJTNeKxniWxrcW1xt72Zdj5cuwT8hPgAAAACA1SJsB8CMs43s7uSrl3Q/tmVbzfo9/SM0TFq3ynbr1nZfn7fat3t/X7+05sjbDVfZbpxhu+s3dW6/zf799zHubWQPuFly3U1L239843jHobFSIb65+Up8XcJ4G7bUrgG/jV0CfhuE+CZmrjZbYHffBnv0EF/nMF9Zcnyfdc32ufuuLwt+Xnx873VCfAAAAAAACwnbATDbeoXpVihsV2vNJ85NPn9+zRG3Tk48qmT/vf1D5SR97DvJY+496Vkk126s+eA5NRf8NDn+iJJfurt/xGY4l19X84Fv1FyzMfmVI0vud9iucR91DdstE3w7/ODux7pVb1toNcJ2B+032NidnHfleOYyr9suube7+XjHYWWtWVOaENQKhvg6h/U6V9u7aZmAnxDf5KxUiK+U9mDezp+b763tdDseb22nu9fS40J8AAAAAMCuSthuQkopeyQ5PMk9ktwuyc2TbElybZILknyl1rpxzGPumeSBSe6Q5LZJNiS5PMnXa60Xj3MsgKkxgbBdrTV/fFrNGz+1s++jDqn5n+euyUH7+UfFSfm1N8/lxY8q+cvHTG7/xCuvr3no6+by3Suax686veZ5v1zyt7/uvmAw515R8+C/m8tPWhXKXvbBmn94csnvPmj69wftGnxb5k8mywUyru1QuW2hWmvXinHjDNsdd3jJ33586WfK1X3+F/0ZF9Rces1wY++Yq9mjQ7Ku23N99B2957DyIb6NW5MNm1thvIU/z1fbazu+cfPiEN+S41uG/lUZQV0Y4ruh4xnLXd31SCmtAN7CMN76xSG+m3U93rad7oLjQnwAAAAAwEoTtltFpZQ7JHlskocm+cUky20qtaOU8r9J3lhrPX3EcQ9K8ookT0hyiy7nnJHkdbXW94wyFgDJOT/MoqDdfNubPl1zyon+8W+SXn16zTOPq7njLSfzOrz+E/VnQbt5r/2fZk53u417g/696L07g3ZJE4b4k9NqnnL/mputn+57acu2zuGL9T3+ZHL0HTtvFX3qWTXP///Zu/Mwuaoyf+DfU11dXdWdfSUJkJAQVtmRHVlF0BHBDUVRQUZHBweH8aeijsLM6LggboMO4AKKouiALLIkskPYCQGSACEhCQnZ916qqqvr/f1RXd236p5z7rlVt5bu/n6ep59U33PvubfWdN361vu+y7xdzlJZLsqwXarVPCYigeGPE75XeQ/Znqw+MGW67lFeb6Jy3hDfVO073mhCfF3F1rrFy+nSEF9xvCsNdGXFF/zr8lT1o/oTGayGWKsQn2s73cHLSrsNQ3xERERERERERETkxbBdnSil/gDgoyE2aQFwJoAzlVJ3AbhYRDZUsN+zANwAwNJ8CwBwHIDjlFK/B/DZqKvqERE1TGDluugr213zoH7O/7hLcMXZke+OQrp/qeCiExrzYamu6hUA/O/Dgh+dxw9wyd3ti/zL0r3Azc8IPt2gx7errCEAlgh4Z5I3ZNGmj7NvZ2vjGmXorM0StnttA7Dvbubxnmx1/xf19OrDdqbrHm/+AohEPrUM8fX0lgX3vK1x0+Jf5mmnq92GIb6GKQnx6dewbW0cKYb4TGG8YohPP24O+LUzxEdERERERERERDTkMGxXP/sYlq8FsAzABhTuj9kADgHg/QjsHwA8opQ6SUTWu+5QKXUygL8CSHgWC4DnAawAMA7AYQAmecY/BmCMUuocEam8vAYRUdOofxvZPz9rnnNnj+DZVcCWTmDRGsGtzwtaYsBPPxLDyfvywzZXmV7BkysK4ZYjZwLxFvfbbUdPtMciIli+CVj0JnDw7sDeU8Lfj9c+IvjRedEeF41MC5YDnz6h0Udhl83plycCgm8L39Qvb0/olxeZWsgC0Ybt9reE6Xal7dtWG8pZtwOYPLp0Wb3a5xINdbHYYEiqViG+rowujCclwbziv12Z0na6uu2p/rwhPv23IKMJ8emq7bVbAn6mCn4M8REREREREREREdUOw3aNsRDArwHcIyLLyweVUjMAfBPAZzyL9wHwZ6XUO0SCkyFKqd0B3IrSoN3jAP5RRJZ61msD8FkAVwEo1uN4L4D/AvC1MFeKiKgpBb1k1iBs12eZctyl+uTDaVcXlu/6WQwdTd4CstGeWyU488d5bOmvwbrXJGD+v8Ywe7Lb7dbTG92xZHoFH/tlHrcuHFx29iHAHz8TQ7LV/X5M9wKX35rHd85V/GCUqvKbxwVXni3YfXzzPo4qrWz3kbcr/PEZ/wvs8k327WyV7eIRhs7Gpsxjmzvt26YNAUQv0/UHgEP/I48bLlT4xLGD39fps4QMo7zeRKTnDfHpVRfiM4fxRBvQ67IE/IrtdWvwZzEFqGWIr73YTjdRqAhZenkwxOcfLw3xecdTrYXHNhERERERERER0UjGsF39CIC/AbhCRJ61riiyFsBnlVKLAFzjGToBwHkA/uiwvysBjPf8vgDA6SJSUldDRDIAfqqUWg3gNs/QZUqpa0VklcO+iIiaVwPCdtVUKDrpB3k8+w2mIEzyecE51wwG7QDgjc3Ax3+Vx6NfduuLGGXY7qp5UhK0A4A7FgHfvUdwxdnhPoj83r2CY2crnH1odMdHI9Onb8jjvn9t3tcRY2W7gHcme03SL3/BUPGuqF5tZG0Bto9en8e2n5hX2N5tn/sv/xTDKfvCGLYDgAtvEJywtwwEj+tV0Y+I6ssb4puiXaOyIJSIoCdrrqZnqrbXnS202tW10WWIr3FEBislGtawbW2duzyE19Ef6itcVuhImsaVNvjXkSgEAxniIyIiIiIiIiKioYJhu/r5kIisDLOBiPxcKXUqgA94Fl+AgLCdUmougE96FmUBfKo8aFe2r78qpW70bNcG4FsALgpzzEREQ09zffr3/OpGH0FzW/gmsHa7f/mTK4C3NMt1erLRHc9dL+ofP3e9KLji7PDz/e0lwdmH8oNGqs4DrxaqFzVrlUxT2C4oAJZsNY91ZwTthutbr7CdrSplUPvq51eb/y86Zjbw/sMVMr32/69EgD89K7j8rMJxWCv6uWWTiWgEUapQ6ay9hiG+rizQmS4P48ngMs94McRXsk3ZZYb4GqOWIb5iME/XTrcjaRpXnrCfv50uQ3xERERERERERBQ1hu3qJGzQzuMalIbtTnHY5nwA3o8ObxWRZQ7bfQ+lIb0PK6U+bwvpERE1PcuncAJga5eCoVhSxca3A9sCqhRRZV5aa74/12xzm6M7wrDdU2/ol+tCkw5d4HH9o4JrL6jyoGjE68sDW7tsrQsbyxQCSwQE30YnzWNbuwsBkTD7A5qnwpstBnDZOwvJuDaH1tRX3CG4/KzC5bSliqctuEhEFCVviM+wRkXzFkN8XcVqfOnBMF5hmXguDy4vaaerGe/MMMTXKMUQ38ZdutHKQ3zFdrolrXEHwnqD7XT948oQ/GOIj4iIiIiIiIhopGPYrvmVNadDSik1TkRs9XvOLfv9Ny47EpGlSqmnABzdv6gDwBkA7nA6UiKiZqT5tEwAfHfi/8PPJnweG787FXMm9+H7H4zh3MOi+cBkzmTgWTbhrgnbPRTUhrHIFkCppYyhmhdRWC7BzShDpVEzhd+Cgm/vOUjhslv0191WsXIohO1s99e7DnSfx3tduzdtBTBOu16KYTsiGuK8Ib7Jo7VrVDSviCDd62+H6w3xadvlekJ8unGG+BqnO1v4qVWITxfG62hTvmCfN+Cn36ZQmY8hPiIiIiIiIiKi5sewXfPTfTSfMK2slNoNwCFl2z8eYn8PYTBsBwBngWE7IhrS/B+SXDfuYvz7lCsHfl++CfjwtXk8/pUYjtqr+g83bMEOp+1zgtY4P2TRWbnFPHbFnXmnOaJsI2sjIiVtJeu1Xxr+XD6s72lQqNRFzvBUjQcE38a3m8ds17dZwna5PkG8Rf/abjr+yaOB0cnBbT51nMINC9zSGl3fvQTATdqxlPHdBBHRyKaUQipReJ2sVYhPH8aTkuBecbw7Yw74FS/nGeJriGKIDzUI8WnDeAlgVLIQ1NOPK4xK6gOADPEREREREREREUWLYbvmt3fZ7zkAmy3rv63s9xdFpCvE/haU/R6ilgYRURPSpFJ+P/YjvmV9eeBPz0okYTtTkMRVTy/Qyv+htZ5+w/zh1DMr3ebo6a3PJ5KL1gCH7uHdb112SyOAyyO4mcOdlVa2swXEhkJluzc2A3On6sdMrw97TSz93aX965ptghndK9CzYjkwW78OK9sREdVXrUN85jCevtpelyXgV7zMEF9jFEN8myIO8aVaMRjGS5RfVoVKfdrxQojPvw1DfEREREREREQ0cvGj/Ob3wbLfnxURW4zjgLLfXw+5v+UB8xERDXkL2o/TLv/N44Iffqj6+autbNfTC4xJVX8cw9FekxTcokZmUYWQcn3243h9Y2nYjm1kKSp5h0BvM4c7jZXtYvbtbAGxZqlsZ6s8t36nJWxneF0qDxjOmRx8DMs3AtMfvhE9saRxnXZWtiMiGha8Ib5JNQzxdWULrXQ7PUG9kja6/eMl7XS923guM8TXGD29hZ9ahfg6+tvqei8PtNPVjnva6ZaNtyeAFob4iIiIiIiIiKiJMWzXxJRSowB8umzxbQGblVfCWx1yt6vKfp+olBovIttCzkNE1Bxc+i32294dzS5zVYbtpn2pNIkyZzLwrgMVvvVehcmjR/aHDt0RBOWimGPjTsGX/8/+2PrwtXnMmgh851yFjxwVQ9YhbHfUrOqPjYa/kVrZLhZTSMShfS7Zrq+t2mhQwC+sfz7FHLZLWwKBprBgecDwfYcqfOOvYg3vdmcB5PN4PVH+tqBAKSDBd4FERGRRyxBfJtcfzMv2V9NLe8N4Mhjc84x3Z4HOdGmIzzvOEF/jDIT4tKPVhfh07XK9IT79+GCIz9dOt40hPiIiIiIiIiKKBj9maW7/DWA3z+/bAfwyYJtxZb9vDLNDEelUSqUBeEthjAVQVdhOKTUFgEMtjhJzqtknERGAUGG7qFRb2a7c8k3Azx8SPPSq4MnLYxiVHLkfENjCKq4eL6/hGtKutOCUH+axdF3wuiu3AOf/UtCZyeNohxbFT6+s7thoZHD5MLmpK9sZXiNdgm+pVkPYzlbZzhJMi7qy3REzzc/zLZ0CUzjBtbLd3lMU7rwkhs/elMcbm/Xb3LBAcGS+AxdNv14/Z6tAqZH7/wgRETWOUgrJ1kJb9En6NSqaVxfiG2iNmwa6slIa7PO2002LP/jn2b7PoaIwRa8Y4tvcqRuNJsTnUFNSuAAAIABJREFUD+uVhvjKA376bRjiIyIiIiIiIhqJGLZrUkqpcwFcUrb46yKyNWDTUWW/91Sw+x6Uhu2032MO6fMAvhXBPEREVVmc2L/m+4g6bFe0ZB0wfylw7mG1mX8o6M42vmTFvS/DKWjn9eO/C268iB/AUDRcMsQ9WXOwq9HMle2CjzfVCuzQ/HXb02u+vqb9xVShWl7UJo3SfzB872LgI0fptzFXtvMf3+kHKCz/Tgtin9FfsT8/J3jXXub/62zteImIiIaiWof4BoJ73ta5una6mbIgn2GcIb7GqVWIL9lqCvAVQnztloBfeXBvFEN8RERERERERE2PYbsmpJQ6BMBvyxbPA/ALh83Lw3bpCg6hB8B4y5xERENHWSrlheQhxlWjOo+drVHYDgAee11w7mEj94R7VK0x+/JS8QcXz64KH/hbss6tTTGLTZGLIV/ZzvDhctyhylx5pbci22tDpW1rK6X/8BaYNta8jalqZ9JwfQFgTBLYqflLXyng31a/07hdqrXxoWUiIqKhwBvim6g9M1Z5iC+bMwX4+tvpGgJ+XZZxhvgaJ91b+Kl1iK8jAYxKlrbT1Y+rsnUHxzvagLjDl1yIiIiIiIiIyIxhuyajlNoTwN9QGnBbBeDjIhX1QqzXNkRETeumMR/FIx0nog8tuHHcBcb1Zk2sfl9vbhVs7ap+HpNMEwdo6qE7orBdNmcO7dTqGHTVuMqJVBcEpJFhKIftnlgu2GX4KohL+M1Ulc3aRrbOYbuwxwEUKxH62arQHbw78Njr/uUiwI6+pH+gXzvDdkRERA2llEJbK9BWwxCfPqwn2oBe18CPf7wrC+xKM8TXKLUM8RXDeB2J/mp6xcvJ/na62nFVtu7gOEN8RERERERENJIwbNdElFJTAMwHMMOzeD2Ad4rIJsdpyk+/pCo4lPJtDPU5Qvk5gD+H3GYOgNsj2DcRjWQieKz9ePx63KcCV622/esr6wQHfKu2n0K8sXlkhySiChBVE7Z7/PXK7oMHXnHbLt1b+KCCyMTl6xdXzxNcelrtjyWMXz+Wxz/+znzw8VjwHKbn7WsbzNvUO2x3xgHAvCX+5U+/Yb7uphCvLWz3X+fEcPJV4f/PScVH9v8jREREw1WtQ3xdWaAzPRjC60wX/5WSZd7L3QHjporHVFvFEN8W7RcFKw/xtcXLgnve1rhJhfbyYJ+hnS5DfERERERERNTsGLZrEkqpCQD+DmAfz+LNAE4XkWUhpmrKsJ2IbASwMcw2ir30iCgKImiBW4qu2vavX7ut9p8U3PNyzXfR1CIL21VxX7/wZmXb/fwht4BLT5ZhO7JzqWz35rbaH0cYuT7Bl/4i1qCgUxtZQ/jsmgcFP/uofqy3T7/TWoXtJo9W0H0QqatCV2R6bbOFgidpP0QPlnd5ABERERH184b4JnRo16h47myuv5peMbiXKQ3x+ZZlSkN8pnGG+Bojkyv81CrENxDG87bG1bXTHVhPGbYp/MsQHxEREREREVWKYbsmoJQaC2AegIM8i7ehUNFuccjpdpT9PjnksYyCP2y3PeQxEBE1EUGLOIbtctXt6a8vVLe9i5kRtLodyqJsI9usorqONHy5VLYDgOUbBXOmNMcHSC+uAbZ329dxCb+ZqtTZ2oDXu7JdJVVS06awnaWy3dhKvlID4KUNlkmJiIiI6igRV5gQr12IL6p2ugzxNVYtQ3zmMF5/O13LuC4A2JEAWuPN8R6MiIiIiIiIaodhuwZTSo0GcC+AIzyLdwI4U0QqiW2UV8GbGXL78vW3ikiT1UYhIgqhjpXt6iGqcIiI4NX1wEtrgaP3AvacqCAiWPwW8Mp64Lg5wPRx9hPExfWfWSmYOkbhxLnA6GT0J5XzecFLa4HnVglWbYlmzkyFYbucoUJWlKKq3jecpXsFNy4QPP46cNkZCofuMbI+zHAtTLZxFzBnSm2PxdWOnuB1XNrIbjbUW7a9NprCby6V9CoxKmnYn+X6mQLACcu7tenj3I+JiIiIaCSpZYhPF+Dzhvj0AT/z+C6G+BqmGOLbGjrEZx9PxP0BPW9Ir10T4CsJ+SUK7ylKAn4M8RERERERETUVhu0aSCnVAeBuAMd4FncCOEtEnq5w2qVlv+8dcvvZZb8vqfA4iIiaRqxOle3Cmj4OeCtk7dCeCKqe9eUFn71J8OvHBk8Of+u9CovXCv7y/OB615yv8LmT9emQbE7w8V/mPesLxrUD914aw1F7RXcCON0rOO/aPO58MbIpAVR+X3dmoj0OHYbt7F7fKNjnG4OfRt30lODY2cBjX4mNmBb0rpXtmqlZ6HWPBB+NS5j4n09RuOwW/1zLNpq3MX14WavKdh8+QpW8vnqPI9cn2nZVlVTfU0rhohP0+yIiIiKi6CXiCok4ML6GIT5/WE98wb3ieHf/uCkAWEnFZapeNgdsrWGIrySM13+5I6HQkbSPj2orXi4dZ4iPiIiIiIgoPIbtGkQplQJwF4ATPIu7AbxHRBZUMfXLZb8frJRqF5GAxl0Djg+Yj4hoaAlR2a63r1CtrZLATp9DqakrzlZYvRWY2AGceaDC9h7gA78I9xX2KFqM3vy0+MIZV97pP/5//oPg9P0Fc6f6b4//fbg0mAcUWkR++No83vjv6EJPP71fIg/aAZVXMbzmwdqHWlZvAQ7do+a7GbK8QbuiJ1YA85cAZxzYgANqANfKdvkmqZDx1nbBn54NPmiXSnMzximYPoDasLNQZbNcvdvI6j98LXh0GXDKfv7llR7jhwzBPiIiIiIaOmod4uvKFtrglobxPAE/73gW6Erbx+v9RUUqqGWIryOB0jBeW2mIzzZeUqHPM84QHxERERERDWcM2zWAUioJ4A4AJ3sWpwGcLSKPVDO3iKxTSr0I4OD+RXEUAn3zHKc4uez3e6o5HiKihhNBi2NlO6AQeLC17TNxqTh32ekKozxtVu9bHD4gEUXVs1+FCGbc9JTgyrP9J0jveVk/x+qtwNJ1wAHTKz68Ene/VJsQSaUfDvz77bUPtSxeJzj7UJ6U1tnZY779L7oxjzXfr1F6qsm4hu2apTW262udSxvZ9oR5bN5iwQXHNj5sZzvGexcLTtnP/RgTAceYag1xYP1aY3kAI+O5QkRERDSS1SvEVxrGk5Jg3sB4phDis40zxNcY2VzhZ5v2q/rRhPi07XKTAeOGdrsM8RERERERUTNg2K7OlFIJALcCON2zOAPgHBG5P6Ld3IbBsB0AXAiHsJ1Saj8AR3sWdblsR0TU3AQtcC/vlM1VGLZzCMF5g3YAcPiegFLuLSEBIN1befW9oodfc1/3P+8SXPFewdrtwPSxQCymsGGn4L7F5m027gIOqPjoSi1dH9FEZTJNfBK/kvDMSLGjxzwWtiVzJUQEq7YUnoeNtKnTbb0o2k5HYeMut/WSDo/9w/cMv596h+3mTjGPmaqTVnqMlfx/9ZOTVwOYE35DIiIiIiLULsTXm5OB4J03xFdYJqXBPU07XdM4Q3yNUasQX2uLKaBXCOm1awJ63vEOw3iCIT4iIiIiIgqBYbs6UkrFAdwC4CzP4l4AHxSR+yLc1e8BfAODJSver5SaKyLLArb7Stnvt4hIOsLjIiKqOxFBLEzYrsJKUJWEWiaPVvjksQo3LAhXLS3dC6QslZOi1vLZcL0oowj4bNwpOO+6PDY5hnTCquRke961nFiVoqheOFzV6S7Q+utCwSU35+sS6otKszyWXG8zl6DptHHmD0BM17feYTvbhzSvrdc/iE3/9wQdYyXX4QOzNoFhOyIiIiJqNq1xhXFxYFy7bjSaEN9Aa1xNO93y8a6A8Wb+Et9w1ttXCPDVOsRXGsbzh/TKx8uDfcV/GeIjIiIiIhqeGLarE6VUCwohuPd5FucAnCcid0W5LxFZppS6EcBF/YsSAG5QSp1mCs8ppd4H4FOeRVkAV0Z5XEREjRKmjWyl33gOCrXEDOfWrv+Ewr67AX97UfDY62776s5WHraTMGX0KvTqBsFZB1V3MvGcn+fx5IqIDkijklDlD+bVKWzXJNXImlEdHr5ai94UfOjaPPrC5U4bricrqOZDqaj87AG3O86lsh0AnLSPvkLnnYsE33iPf3m9w3YAcOHxCr953H+95y/VVyc1H6P9/nNpves1O7sCk3Kbwm1ERERERDSE1TrEZwrjdWbEV2Wva+BHDNswxNcotQzxDQTwEsCopPdyIcRnGx9lGGeIj4iIiIiosRi2q59fA/hw2bKvAViolJoVcq71DhXnvgXgXADj+38/DsDflVIXi8grxZWUUm0APgPgh2Xb/1BEVoU8LiKi5iOCFrgnqyo9qRkUtpugba8CtMQUvnKmwlfOLPye/8HngTt+hdcSe+OAOS9WtC+bF96sfFtX1YbkVm2RmgbtACBTwW14yzOsbNdojapsd+tCGXJBO8DcsrSeNu1yv9NcWyiPatMvX27IkDUibNduCUS/8CZwWFk7XNMxBrWJDXsd5mSXQ15+EuqE94bbkIiIiIiISthDfEClQb5cn7manq0aX3cW6EzrA34M8TVObx+wvbvw41d5iC8eKw/m9f/bVgjptfuCe6Xj/mBf4d9EHL4vhxERERERkR/DdvXzCc2y7/f/hHUKgIdsK4jIGqXU+wHch0JlOwA4HsASpdRzAFYAGAvgcACTyza/C8C/V3BcRETNRyRUZbt0hUGnoPDW+w93PFF1x68AAKl8j3GVaiqfrahDQaPp46rbvh7HmM6Fr/i1YnNtjqUcK9uZNSpst7JO933UmiG4uXKL+7quFTsXGkLDh+yuX24KsoWtChfGPlPNYys2uYftgsJ08ZBhuy9v+SHU2LPCbURERERERHUTb1EY2w6MrWGIrysLdKbLwnxZGVzmGS+G+Eq28VxmiK8xcvnahvgGg3mDlwfa6ZYs07TT1YwzxEdEREREww3DdsOYiDyklDoXwA0YDNQpAEf2/+jcDOAfRUIkU4iImlq4ynaVhlNyAVWvPvr2cCeU2sUStqsiQNPTW/u0UrUBn3oEhCoJtNmOa9IoYHNn6bKT9wEWrwM27YpuPyOdLWxnqnZWjb684D/vEvzuyQal/KrUDI+lMM811xPvR84E7tjuX761y7+sNyf4wX36+6+Wle3ed4jCpX/U77fwOuzaRta+n7DX4fjuJ4DMKeE2IiIiIiKiIa/WIb6ubH81vfRgGK+wTDyXB5eXtNPVjFf6ZViqTi1DfKXBPO+/pe10deP+YB9DfERERETUWAzbDXMicrdS6m0ArgRwHgbbypZ7EsBVIvJ/dTs4IqJ6CFnZbldQk24DU1ACAP5wscJJ+4Y78WOrbFdNa0hTm8UopauszLZ2e7hg07SxwIadwFF7ubewDRtC6ssLsoZvax+9F/Dol2P44p8ENz8tyOSA9xyk8MtPKqzfAbzjB3ls2Om+L55QNhPLQyNshS8X/3ST4FePDc2gHQDctUhweYOLmJWHUE3OPNB9znfso3DHIv/9smiNf91P3WC+/2oZtttzovk1v7xKZl9ejI/twMp2IarzXbblR0igF/LyExV+jEZERERERFSqliG+7qy/Ha43xGdqt1sM8enGec6lMXJ5YEdP4cev8hBfS8wfwDOF+Ezjuu0Z4iMiIiKiIAzb1YmINOwvcxHZCOBzSqlLUWglOxPAbgC6AKwFsFBE3mjU8RER1VqYynYPvCI4cW74l+ycYRcxBXzkKLc0hKx5feByUsypv2rajN6pCahErZowIADc/aL7Mf7tCzGc+bbCydJUQiH2Gbf7OuxtaDsZ+5OPxBBvUfif8xV+8hFBXx5IxAuPodFJYN1VLehMF070JlsLp5njLcBXbxVc86D/uvZkh264q9Zsle2CWjmHtbNH8Nsn7PfFhccrfPucxp98/cSv8/j7Uv/yJxzDp7V072K3x3NHiMqEqVbz2OsbBXtPKdwnm3YJ/viMLWxX2/vuwOnA4rf8y//2ouCb/zD4uynIC0Rb2e6AzCuFC0/Nc9+IiIiIiIioAeItCmNSwJiUaY3K3s/15aUkmOcL82X0490Zc8CPIb7G6atxiE9bbS8BjEpaqvElFEYl9du3McRHRERENGwwbDeCiEgWwIONPg4ioroSwdTcRufVwwQ+vCptAVhi2aKBizEI2vJpZGJJ32rVtIY8aIbC86trG+aqtlXtrEkKwSfECqaNK5ykSiUKv196msJP7g/eNuxtaDtpmvQEf1piCi2abOWoZOFEm1eq1dRiMtyxjSTWsJ0lsFSJJevsFSuBwjeddxvb+JOkWwzV42ZPqu9x6Ewd47beOYe5347TxppfI55fPRi2e3GNvRpiLSvbAeZKogdOd2shCxQeYzZjjR88+U3NbShcOPh4942IiIiIiIiGkZZYbUN8pjCeqdpelyXg15XhOaJGsYf4APt5S3uIrxDW8wb3SkN87cbxwrlF3fYM8RERERHVH8N2REQ0vIng1K6HEJde5JSlHFK/Sr+JGknYbmNpD8SU9CADf9iuO50DEHxddHb01L5qWjWV9zK9gp8+4HaMe4wHDtm9dNlFx9cmbGerPNVW4V9TxYBguWpuv+HOFpzKC/Dde/JYthE4YibwiWMURiUrP9H45Irgx9EB0yqePlJ7TQIWvulfHlRlcuNOwW+fFPz33YJt3cC5hwHnHqZw/lEKsVg0J2ldH89nHui+v9P2d9tf0PWvddjO9P/J5s7Sx5YtbBd0jKmE++12UvejhQvZCvulExERERERkVa9Qnxd2UIr3U5PUK9TM+5tp6sbZ4ivMfrywM504Uev+hBfR6K/ml7J5cEQn3/c0063bJwhPiIiIiIzhu2IiGh4E8HUvo24Zc3H8NEZv9VWivN6Y3Nlu8nl9cvjjmEO2b4Z8j9fLlnWnu/B9pbxvnW7u3pRSdgumxP89YXQm4VWaRvZbE5wzs/z1kBV0eTRwO2XxHwnfA7aXeG6CxQ+9/tCO1eTsIG2bBWVp0xMrTB5wtPMVtkOAL52W2GF3zwO/PFpwbx/jSHZGv6k4EOvCi67JfiBeNCM5jjh+JGjYrh1of8Bv34nICLaE6PrtgtOvqoQTiy6bSFw20LBA68Av/pkNCdUXR7PN31aYeIo932NtoQor54v+ORxhcvbu+33oevrc6U+d7LCLx7yH8NdLwK70jJwPaoJ2wHA+Ucp/OFp+3X9r43fRLv0fyX/leeCJyUiIiIiIqKGq2WIr9sb3CuG9AaWSemyTOFyYRvxb5NhiK+RahXiiylzO93CZXM7XW+Ir3w82coQHxEREQ19DNsREdEwVzhhcHbnXdj02gwsSB2DpKTx7UlfxfxR7/St/ZvHBb/6ZPi99PbpT0y4Vk6SX13pW5YSfa+Cnp4sgHbXQxvw4KuhN6lIpSfWHngFuG+x27pvfi+GRFx/UubiE2P48JGCZ1YCV9yRx+PLqz9GW2W7RIWBHVa2Cy8obOf12OvArc8Lzj86/Mm7K++0JDU9TIHJerMdx4trgEP28C+//jEpCdp53bBA8KUzFA6YXv2x2R7P/3O+wiePVehoC38fHbx74bqVe2kt0JsTtMYV7lhkf8DUurLdKEtb8tsWCj5xbDRhu1kO7YLP7JxX8rvkclBxvhUkIiIiIiIaiVpiCqOTwGjjd5KrD/EVQ3gDrXHTQFdWPJfL2ummpSS45x2v9Iu9VJ281CfE5w/rlYb4ygN+5cG+4r8M8REREVE98RMWIiIa3jxl0tqlB6d3PwgA6DW0lD16r8p2Y6ps5xzm+Ot1vkWpvD5sl+6xJL8sbnk22hayx8wGnlzhX15pWGz+UrfjO+ttMAbtisakFE7bH7hxgcLjy/3zNnNlu3Rld++IkHfLwA14dhVw/tFh9yF4+DW3dU2ByXobZ8nePrJMcMge/ufLn56xP98eWSY4YHr1JyhNrVQvPlHh8yfHKp7XFmR7aS1w+ExgQoeC7eRurSvb2e8X4BPHFi5XG+a17adobH5H6YI3FgNzDwnekIiIiIiIiMhRrUN8A8E9b2tcTTtdb4hP2063/1+G+BqjliE+c4CvEOJrtwT8TAFAhviIiIhIh2E7IiIakVa37qldHqvwfbOpMlG88iwJkqI/49BTYRrrnpeiDdu95yCFJ1f456z0RNX2brf13nuI+53UavhLx1ZJSqcmle1MbWR5os8o7CPYdr+ZhHlsNEtluyNnmsfe3KpfvnSdfc7OTOXH49Wd1d9r1d52p+6nsEATpAUGjz3oPGitK9uduq857NfleXmvtrLdafvZQ4UzetdiVu+q0oXdu4InJiIiIiIiImoCtQrx5YuV+AxhvM6MaAN+3ZaAH0N8jZMXYFe68KMXXYivIwGMSpa209WPq7J1B8dTCYb4iIiIhjKG7YiIaHgT/RvlT27/Hb415Vu+5ZW2QDWFJaoJc7Tn9emz7p6QSbEauPJshb2n6McqvQ0Nd1WJU/cDLjjG/SSEqepc2BCWNWxXaWW7hD4gU+ntNxKEaSMLhA/nAfYqhuXam6SyXVur+Tlx1TzBBccIDto93Mm7dTuC13FhCo9WWxXw0tMU/utv+nt4xWbBO/ZRxqp6RbUO2719lnnspbWDx15t2O7QPYAvnKrwswf0t8e16z7v/9gho6+cSkRERERERDRSxGKqEIKqYYhPX43PX23PG+LTbcMQX+PUKsSnlCa413+58G9/O13vsrbiZeW5XDrOEB8REVF9MGxHRETDmyHBNSG/Tbu80qpiuRqE7VKmynbbdwCYUfnEAa67QGHlFuCt7cCYFLClE9jZI9hzosLEDuD0/RVOmKtw5yJBlGGxTEAA7oS9gTsvifWH1Ny0GcN24WJYtWgjm2Rlu9DCtpGtRJggZrO0kQUK7ZXveVk/dvFv83jqa+FejH40X/DDD1V/XKbXg2or200cpaCU/iX+0j8KPnVc8HOp1mG7WEzhS2coXDXPf5BLPJUFqw3bKaXw4/OAsw9RuOdlwZ/uXoO1rTPwye2/w1e2/AD7ZF/3b8SwHREREREREVFN1DrE15UFOtP9Ybz+y4V/pWRZ8XJXGujKim+bgfGIuhtQOOIN8e3UrmHb2jiiVHkwr6w1blKh3TiuytZliI+IiMiEYTsiIhrmDC0M8/qgQdSV7VzayIohEGg8xu2drodVIuZwLBM7gItPdOt9awrLdGcL1ynsm+8eQ7vJovOPVqGCdoC5xWuY6mWAOYAVU4VWFpUwtpHtrez2GwmibYSsF6aNbLNUtgMKJ75MnlkJbO0STOgoPKZcwqbVtMD2qlXYDgDGtwNbu/zLi9807um1X8+orqONLYyb7hUkW5X1Meca5lVK4bT9gVNnZ/D9n84N3oBhOyIiIiIiIqIhxRvimzpGt0blIb6e3v4KesXgXqY0xOdblikN8WnHGeJrCJHBaoi1CvENhPG8rXE17XS9IT7dNgzxERHRUMawHRERDW+mIJtEG7bLGSpuOVVO6tWXXzIeo2pzPKpSc6cUqtXZhAkzmap6iRTCaW0hwzRBFcUqCefUuo1spVXtJJ9Hcu0rAPbVjmdy5sp3I1noNrIVpPNcHxuzJgJJS/vWejt6tsJfnjdf4a1dwISOwuXFbwXPN3l0NMdlqi4XRVDRFoIVkcDKdsfNqf39N77dPLYrXXie28K/oavvde9yWk2WPgvMPQSItQAt8f6f/sveZQOXW3jik4iIiIiIiGgYisX625W21S7EF2U7XYb4GqMkxKdfw7a1caQY4tMH+AaDeqaAny7A19FWOPfIc1lERFRLDNsREdGIlMobWrRW0MIznxd86c/6N4xOQQlDhaF2Q2W7LZnKUlhRv7VMPXs3gDO1Yz294cN2QRXF2kNWtQMsYbuwle0M65sq59nIgrshXzkXybZDgNlPaNfpyTJsV5TpFby0FnhulWD+ktrWttvRLTjlh269ar9zbnOdrDn/KIUr7xTjCa/uLLBsg+Ccn+exdJ1+nfL1o2CaJ4oWvJe/W+Hrt/kfE3kpvJ7YwtPHzwHe4VAArlrvPkjh//1F/7jd0VMINdpe+1rCVt/LOlasu+WnkFt+GmpqicXMYbx48XJZYC/WUhgrC+65hfxajOPKO1eL5nh8x1W+X12gsGxd3XFptlMuZWOJiIiIiIiIRhhviE+vuhCfOYwn2oBeV1mIT7c91Z83xLdBv4Zta+OIUhhsl2uottduqLbXUd5O13OZIT4iIipi2I6IiIY3Q2mrZISV7X58v/lNXdwljLXhTe1iU2W7O7bpq6EFqbRqn44seQbJX14OzNaH7bqzwDhLRSedoLBdJeEcYxvZkJXtMoa2m2Er28n6VZCvnAvAfP8ChftqfLiph4V0r+DFNcDzqwXPrQKeXyV4+a1wrV29wkbzLv5tHm9sDl7vb1+I4ayDmuukyrRxCs98PYb9v6kPC27YCXz2d3ms3OI2X1Rhu1q2kT3jAH3YDgBufd5c2a6jDbj70hja6lCZcGzKPPalP+fx139uMT6+W1sqOHn3zP3h1g8jnwfyET0wqlSPltKuBLCG8QqXYw4hP0Nw0Bf4M4Qe43GoksBhzOG4HPZrDCwa5mU1RCIiIiIiIqohb4hvinaNaEJ8/jCelFXm8wb5/FX6Bv7NVtZ9g6ojMhiyrFWIryNRaOtcenkwxOcfV4ZtCudKYzGeRyEiGkoYtiMiouHN1EbWUDWuLw/05gStcfc3Nv/3nPnNl1Nlu6fnaRdvbplo3KQvL2gJ+eYr0rDdI7cj1ddt3lcFeYzAsF2EbWQzjWoju+DugYumxyBQ2e031PRkC8G65zzBusVvmVsy11q6V/C3l4LX++hRqumCdkVz9WcYAQC/eMg9aAcUno9hXwt1TI/lVAWVKn1zWF4T/vycGF/zvvcBhdHJ+tyHtmO888XCv7awXVjieY2hOurLFX4arNnO3Ys38GcM8VkqCIYO+ZkrFwZWQwwTLgyqhuhbzmqIREREREREza5WIT6RwhdCTWG8kmp7WaAz3d8jHaF4AAAgAElEQVRONwt0psUX3CuOM8TXGN4Qn2EN29bWuTuKAby2Qgiv9LJCh29Z8fJgiK98vD3BEB8RUa0wbEdERMOcIWwn+jayAJDOAa0h/od8YoV5bIlDu0bk9ImQv3ecatxka1eh/WAYLgEu57ddzz+IpJhr64dt0woEh+322y38nFFVtksbQjttYSvbPXHvwGXbYzDKYGQz6MkKFq0ptIJ9blWhct3itwrh1mbx6nrz/exVSevgerGdOHl+dfj5urPA2CrfLdSyst0scx4Zu9KWFrZ1bNFsq2zX0n93mV77Qod5gUI1M6JmUayG2Nv4BHkzff4gSjm0NNZUJgzRallbDVHT4lmVBwOdWi0H7DeuWddxXlZDJCIiIiKi4UapQqWz9hqG+IohvNIwnpQE84rjXZlCiK88uDewfYYhvkYphvg27tKNRhPi07XT9Yb4dO10R2nGGeIjImLYjoiIhruQle2AQihtdDKa3b/7bcFvOCSjPxZbmK2StprLNgavY33Lls1AfnE58PhdwLpVSMTGGdcNG2YD7NfpnfsDM8a7vXkTEchX3w8suBuJcRcC067xH1/I288Uwgod2ukdvE+D2sgOVd2ZwWDd86sL/y5Z15hgXZgTQ04tn1FhAKoJrN4afpvuLDA2ZDtor1yfGJ/X7RW0hfbN0WZ+TXjgFSBpeH7WM2wXiykcNwdYsNw/lssXbyP9A7WSynbo6apgIyKqKxFWQzQIrIboDQRaqx06VEMMCBeqksBgQDXEMPt1qbJYFlJkNUQiIiIiIirnDfEZ1qho3mKIrxi884b4CsukJJinbaerGWeIr3FqFeJrNwb4ytrpagJ+3uXecYb4iGgoGaIfFxIREVUnGVFVMQl4h/jOAxwmef5h7eIo24yu3Vb9O1n5z08BD9068HurmG+oqCvb/eVz7h8yyhUfH2jXmhD9DRU2DPjiWv1yU5jH6LkHBy4Ohzay3RnBC8Vg3arCv0vX1y9YN74duORUhVfWFdqGViPu+BBr9rDdyfsAD70WzVymynCubK+lqQjCdgDw7XMVvn6b/77Pi6WyXQQtbMP44YdiOPa7+ifFMyvNVQcrCts9Pb+CjYiImgSrIWqVVkM0VRXUVEMM0Wo5sBpi/3bmaoghqjBqqiyaqyHa52U1RCIiIiKiaHlDfPrOOpWH+NK9bu10vcu7+8fKg3ve7fPN9AZuBOnO9p9/rXGIr7zaXvlyb8BPF/wrVvZjiI+IotbkHxcSERFVyVTZzhK2e+FNYKalPaHX4rfs406hjpef0G8bYeWz2xZW945Ttm0CHr6tZJkpyAZUVnnPtM015yuMTjpWtcvngQf+MvB7VGG7+UsMj6MqKmTF0Ye49CKn/JM0Y2W7rozghTdLK9YtXVe/kxmpVuDQPYDDZyocMRM4Yk+F/acB8RaFj16nDzKF+bak6/VYv6O5z95EFWIDIgjbWbaPqrrcmAqqkNazsh1QOKFj8qvHBQ+9Ek1lO8mZX9jUZ/4T+PC/AH29hWpauRyQ7ytcLv7blyskZYuXvcsHLnuXedbt08xVsk3hsvSZ9tvnn8M3rtlvvq/0ugxs1xd8XPkm6mNNRGTDaohGYqp2qKuGaG1p7NLy2B4uVKZwYYStlgOrIfYvZzVEIiIiImo2SimkEoVzl7UK8enDeOJb5g3xmQJ8nQzxNUwtQ3wDAbxEoT3u4OVCUE8/rgYvl40zxEc0sjFsR0REw5shbTOhz9xTsTsrcH1z9/Ja+x/wTqGOtx0DvPykb/GXt/wQH59xo3YTU1tTk5cDQoFF3/wHw/VeucR3W7bCUtkuwjayoQIna0t7NbYZwnbpkMf39pnAqi3+5a9uCDcPdp8DrBk8xlS+B7ta/A+S7p4+NPLPtM50f7Bu9WDFulfW1+8EQ3vCE6zbEzhipsJ+uxWCdTpRFDVxDYi+ur76fdVSRdXQDGpa2S6iwNvu4xXCfvQ/Y3w0+3Y1bax5bN12wb67ASs2+8d0rzlWW9aZx1paoNqSACLqkV6hZjr1JCJlIT7HkF8x4OcQLtSPe0OA+dIQonHePv2xVrTfvuDjIiIaKoqva6yGWMJYDbGkqmBANcSSdWwhQIdqiKFaPDvstySk6NJamtUQiYiIiIarWof4zGE8fbW9LkvAjyG+xiqG+DZFHOJLtZYH9/r/bSuE+Np9wb7iuBq8XDbengBaGOIjanoM2xER0TCn/0M4KRnjFmGCbEGhLVugRDJpyC+/pQ3aAcCZnfOM24atHOeyfiIOfPAIwx/wGX+VPQUYK7M1LGxX9kFb0tCqNWyb1kdf1y9vCVs0oq/0SqakB7swxrdaT08W9fozTUTw+6cE37m7EKgDCuG1MFXhqtGeAA7zVqzrD9bV+81kzvE51dfkJ0P23U0Bi6I5yJpWtouoAt9p+4Xf5oBp0ezb1cRR5sfy6xuB3Q3hv9CvL5rX6QFHnhZysuFPKVWoLhRv/FviZjp1JiL9rTzLgnvaCoIu1RD94UJ/kLE8JGiohhgqXBhQDdG3X9125dUWWQ2RiIYIVkM0ElO1w8BqiCFCfkHVEIsVCOvQahnx8sAhqyESERERufCG+CZFHOLL5IDOdH8AL+u5XKy2l/WPe0N8unGG+Bqnp7fwU6sQ32Bwb/DyQDtd7binnW7ZOEN8RNFq/CcLREREtWRJDE3JbcDG+FTf8jABk6DQlilQIrleyKePBla9Ytx29NEnAtv1Y2HDdkFBotFJ4OZ/jGH6OFPYTt92t9UQtouyjWyosF3ZB+GmVryZHJDPi1OJ7wdeEWzYqR+76PiQb0zKbsdUXn+79tSxj+z/+4vg6vmlz5NaBe062jzBuv6KdfvWMFgX5mq4PmZdQ3mN8i+nKvzgvuYI2+mqtRW1RxS2G+XYYtqrERVNPneywi8e8t8vyzYWfnT+3VRp1OStFeax3fYMNxeNWEqpwVaFrRH2pa70eBp9AB7GaohhWi0HhAuDqywWKhNKYAtnh1bKzvt1aPFMRDRUsBqilijl0NK4JWDcUDFRF16MG1pA66ohOrVa7t+vU7gw5lYNsX9dVkMkIiKiKCmlkGwFkq21C/F1Zfur6aW9YbzBEJ93vDtb6HLj2ybDEF+jDYT4tKPVhfgGwnje1rhtg0E9/bjyLSte7mhjiI9GJobtiIhoxJqRW6cN24XJOQWta6xst+gxa9AOAFo6OhDb1oe88qfNoqps98HDgS+fGcMhuwOtccsfw4aKSQnJogftvuXZSMN2If5IX/Fyya+mMBsAbOsGJo4KnvLrt5kr2YQODGVLb0dTGDAdts9thbZ0Cn7899q8Wx7VBhy2J3D4noMV6/aZWps3XVF8/pFzLFjU7CcXbC1Lw6o2bHfdI+YbNao2smEdOL0x+917cvhtRreFW19uv9482JYKfwBEVILVEPV81RC9FQSrbbVc0vbYFnR0qYboqcSoG/ceb1A1xJJ1LMfFaohENFSIALleAPX70pfxUBp9AGWM1RAHQnoO1RCdQ34O1RBr3Gq5JLBoCTqyGiIREVFzKQnx6deoaN5iiE/XDrcQzDO30/WG+HTb9/Etc0MUQ3ybO3WjlYf4kq3+gJ43xNeuCfB5Q3ymACBDfNTMGn+WmIiIqJYsJbpS+W7t8jABk6CWs+M7DAMvPh48uVJolV5kNGG7sG1ac4bel5PHKBw5y+GPVUvYTqe3TxD2DVwkle06S0sBjssbSgMCWLIOOHFu8JRPvWEeM96/JpnysJ2psl19wna/e1IiCY+NTpa1gt2zEKxzqRxYS2Eq9Lk+p857e3O/uYvyNu/Khn8el2xv7taNRIPeheywdFqtpQlhXytQKPgRSrf2DElBIhn+AIiIHLAaopkMhBAdw4VB1RA14cLgKouGaoiVtFJ23q9Di2cioqGC1RC1/NUQQ7RSDqqG6AsBllVDLJtDhW7xbKiGaAwXxgLGWQ2RiIiGL2+IT1+4IJoQnz+MVxri6yoP8mVEHwBkiK9h0r2Fn1qF+EzV9josAb+ORKF9rm6cIT6KAsN2REQ0vFnDdvrURVBrWC9bhbn9dgN2H6//g012mUNgRWrOQWhd1YsM/CGJbMgwW9VBtow+mNgq+g/LwoYBgdq0kd0nu8y4aiaCL+2/c3/3+0A0J+iTpsdguj69SpeuC7/N6CRw+J6lrWDnTql/sE5WLgWefQCycyuw/GwAb6tqPteKlhceN3LehFVb2c4W5IzyA4j3HQLcvsht3TXbItttKKftrxD247FjZ4e8jSz/3/EDHyKi+lOxWOED+niDyrl6j6XRB+BhrYYYUatlf5DR3GpZrPPmzfvNlR1j4H41YUpWQySioYrVEI2kPNynq4ZoHQ8T8rO3WvZVQ4y01XJ/ANIYWCwNOrIaIhERedUyxJfNmavpeUN62mp8hnGG+BqnliG+kjBeSTCvv51uovB52LGzFU7dD2hrbaazK9QMGLYjIqJhzvwHVbuhhWeYNrK2sN21F+hPJEm6G/jzz4InnzzDWDkum80DcD9RZTrOuOsUnTu1i43H16CwnWxaW/K77U9fl06t+YCyb3OnhvjjWlMd0NRGdtW2+pyEdKlqd8q+wGGeVrB7T26CinV3/BJy1SWD4aLps4Gx/rCdhCht5xIs+/a5CnOmjJw3VNWG7V5co1/+iWOjvQ1/c2EME77odrbj40c35v7bfbzC9HHAW8E56wGzJobcyYrF+uVnXhByIiIiotphNUQzXzXEUOHCoGqItvChNzzoUA3RtZWyUzVET6jRVv2RiGioKL72NYFmCiJaqyE6tlL2V0w0VRhscauGGCZcGFgN0Rsu1AUlzVUW+eU4IqLoKKXQ1gq01SHE15UttNItLBNfsK843mUZ35VmiK9RiiG+LV260fK/ogQnzgXu+kIMo5P8f5sGMWxHRETDWwWV7cIETEwBsQOnAyfONfzRdeev3CZvH4VW6BNhvb19CPPfeM7wB7trkE3u+o1+e9EnE20hRO38IlUfIwDgDz/0LZqQ24KtcX9qxaWCoemYKtLtDyym8vo2sr9eMhm/jHDXJvMW20+9PvP1GI6Y2VxvHmTnVsjV/+LWI3bTWgB7Os07f4l9vjMOAC4/a/h9E/s/Nl6Bb065QjtWbdhO/0YVOHj36uYtN65d4WvvVvjO3cGPid3GRrvvML7+boV//oP7xx2hXvsAYMdm7WI19+CQExEREVEjsBqinnM1xDAhv7JwobWFc1A1xJLLmmqI3uMNqoZYst+A1tKshkhEQwmrIRr5qiH6qhUGjduqIZaH/Oytlq3VEKtuteyphhhU3ZHVEImoydQ6xFcS3CuG9LJAZ1r8yzKFy90B45F+tkV4dBnw84cEXzmzmd4tU6MxbEdERCNWSvRBp56Me9U4U6jMVpFInrnfaW50jDFXjtu0EcAebvPAUtnONcwxYSqwYbVvsfH4Qobtcpb1QwVORo0DOktLRxnv597gVrxhQ4NWy1/yLWqBfgetsTyAsEmb8Eb7OxSXaG98sRG/5x/2fUtcmU6VblkP17BdUDXGt+81dN5EnbA38NjrwetdtP0GfG3L9/FI+wn4+6jTfePVhO1sVQVrURhx8mi39VINfEyPagu3vvPrc5Bc4z/MICIiIqoUqyGaWash+toxV9ZqObiVcuF3Cayy6NBK2aUKY1CLZ1ZDJKKhhtUQtZyrIbqG/FyqIRpCgNpqiGHChUHVEL3H6FBlkdUQiYYPb4hvQod2jYrnzuZkIHhXDOENtMZNS0kwzzveZRkf6SG+eYsFXzmz0UdBzYRhOyIiGt5MgY9YDO35bu1QT9q9apxr61NZ/Rrw0gLglA8Cu7YFTzz3UGCfw9AqG/T7TWecji/scRqN0peDShi+kRo2pGZbP1zYbqwmbKevYJh2yJ/YQoD7TwtxXADQ608ubW7RpzLHtfYCqH1Fi8P2VFiyznwqLdn4ohp+O7c6ryo5937GY9vt46lmvC0M3neowmOvB58iPa77CQBAh+hfC6sJ29meX+3xPOSVhcCY8VDTZ1e+E4/j5ii4nBaO8n6UTA/w6kJg8nSoabMC13c9xqLQle1MUtozNUREREQ0xLEaot5ANURTC+ZqWy1rg4zmVsvWaoi5Pn1g0Fe90aEaoktraZcK8UREzYDVEI3s1RDjQIumPXIlLY8dWi2rmrZaNlRD1AUdWQ2RyCcRV5gQr12IbyC4522Nq2mX6w3xadvpZgrtdIdCiG/TrkYfATUbhu2IiGh4M70bnnMQkjv0Iaw1W93fQptCYol44Y9V2bUN8u7dBge++9ngSVtaoD55OdA+Gq2yRr/frPuJhk27xFjlyiXMISLAM3/XjsUNbWSDqoSV+8kD5ts8VOBk/SrfIlO74B6Hm9AWAgxdLjrjr7D3qe2/w4L243zLe/rqc3KgM21/rDdlwCzrvz+Nle1CCAqINuVtYfDxYxSufUTw+kbzOgenX8Q5u+4AAGPwuJqwne35deTVZ0C2PQ4AkP2PhPreX6HGT658ZwCOcCtgGFm1Rrn9eshP/w3IFoLPcuDRUN+7DWqsuazpnCnhXjPiIV4GbJUEMWv/UPslIiIiIhrKSqohNoGmCiK6VkOsotVycCvl8mqIpqCjQytll/0GtXhmNUQiGmpYDVFroBqiteqgvX2xr9KgKTyoq4bouRxcDTFEuDCoGmJQlUVWQ6SI1TLEpw/wAZ0Zc8CvO2A8yu5Vho+UaQRj2I6IiIY3UwChrd3YXvTpNe6pmqCKcXLR0c5zAQDecyHUu86HOuwdAIAE9Km13oz7X4gX/sb8lRCnMMejdxiHomgj+9gywddviyhsp9Em+iqAdy4SXHqafVvbH+JHzQr3xkHm3+xbtntOH6bs6avPhwK3L7KPN2PATBbc7b5uiHltVQyBQin3oWLqGIWHvxTDtY8InlslOHh3hfEdwMLVwLYuwXETN+Ofrj8L4/I7AADtpkBqNWE7y7btXZ6KnUufhXz7Iqir7qx8ZwBiMYWj9wKeesO+XhRtZGXxU5CrLilduPgpyH//I9R3b7Vuu/80YOm64H3EVOE6OXvlOcsgT6gRERERERGrIZoEVkMME/ILrIYYHC4Ua5XFPv1yXTXEwCqMDq2lWQ2RiIaKYjXEHKshlnOuhhgm5BdUDdEQAlS6cGFkrZZdqiEObscQYnNJxBUScWB8DUN8/jCePuD3yjrB/KX+uRi2o3IM2xER0TBneGuTTBmrOQGFcsYdbcF/wJkCOq0tgPRmtZXWTNTl10O9+xOl8yj9Dnodv46xKy24+2XnQ9CSx+4yjrUaKtuF+bbI7Yvsbz9dw3bSuUO73FTZbuPO4DltpatDhwBXvepbZDq2PomhNydojTf2DV8UwaTIbfG3VlYRnPwNesxG1tKzTqaNU7jibP3jR+67H5IfbGfdbmgj25Wp/Ha1VbbzPe6ffQDSvQuqfXTF+wOAMcngdaIIkIopgPz0fEi6Gypp7knc4ficiod8vMkjt4fbgIiIiIiIiACwGqLNYDXESsOFQa2WLS2cc6Xraqshhm2l7GnxHFjt0BZ6bJKqYkRETlgNUUtfDTFcK+WSkF9gK2Vzi2cVusWza7gwoBqi93iHaTXESkJ8f18imL/U/+HgzjTQlxe0hPmSPA1rDNsREdHwZgrhJDswOt9p3GzTLqCjLXh6U0An3gKgc3vwBF5z3uZbZArbZR1Lxy15yz6+3Zw3HLTxTeNQIoI2sg++Ek3YDlv9ISwAeLTjRO3yuVODp7QFsMKEYUQEmDwDWFPaz7ddzF+F6ekFWmv8l9qEDmBrl3k80eCwn9aM2cAKxwRpiHfvQZXtjpzZhLdFpcreLKdq0EY2Y3kNSJZXm+zLAds2AlWG7d62u8L8pfY7/aAZEdyPix7TL+/NAju2AJawnWuANeg1VHK9hf/fiv/H/fU688rD6OQIERERERER1Q+rIeqFqoboGvJzqYZYEnTUVEPUBiEN1RB9QUeX/Tq0lmY1RCIaKlgN0Ui0LYkDqiGGCfmFaLWsrYYYWavlsuX9643NtwHQf1axKw2MM5/+pxGGYTsiIhrejGG7dpzVeS8uxdXaYVtVJq9sTj9/awuATMiawvsc5p9H6UuruVa2C/ojPebSRva5B41DUVS2ywccpHPYzvDtrBO6H8Nj7Sf4lrsEAqutbCddOyFXXwo8cQ+wa5tv3FTZDigEncakgvdRqZfXijVo9+1zm+k0pkeI51WYN6k3PWVe+4iZwKF7hJisycmyF0p+N4U+Kw3bdaYF519vfvJo209n9G29w/j40Qo/mm+/1w/everdFE4eG8gXTgd+fA/U9Nna8c+8Q+HRZcGPzNmTDPM//FfIr//TPXBKRERERERERJFiNUSzwGqIYcKFQdUQja2U+6shRtFK2aUKY3k1RF3osUmqihERORmohpgJXLXWGhFEHNM6B9j7Je3Yjh6G7WgQw3ZERDS8mcJ28VZMgLmPaI9jyMQUKmttARCmrd/7/0lbmrk1pg+sZLZscpo2ExAaDKrmJXf/1jquDc0AmLc4uj+B3cN2+it7fPcTFYftbKFBp7Dd5R8EFj5sHE8FVLarlQ07BQdfaQ5DHTUL+OqZzXSqzuPp+b5Fqsq3XDc9aUlVApj3xeFTOl12bAH++OOSZaaW2pWG7T7wizxeWmse175urHkdmH1gZTvsd9ie9vtozwmI5n5c+qx5bN1KyCWnAzct0rbFPeMABZdTBF883X+c8tyDkG9+tHCiN4xh8tglIiIiIiIioubGaoh6JdUQa9RqObjK4mC4UFsNcWDesv0Z53XZb0Br6SaoKEZEVG5s3vzZ8Y6QNVZoeGPYjoiIhjlTqEEh1Wp+y+0adLKF7eTOG9wmAaAmzdAuTxjCdr3r1znN+9Qb9lBHUAbDGrbbcx8kcvo0zhK3w3PiHrbTp+fayltW9rO1uSyyhRHjAVUB5a03rEE7AEjlzdW8XAOflbhzkf1xcfV5wyNc5hrBu2GBec0vnKowvmPo3xYDnrjHt6jdUGGxkrDd2m2C+Uvt6+jCdvLI7VDveF/4HZZ55/4w7n/6uKqnL3xDO8imtcAz9wMnneMbSjmea27XtJuVe38fPmhHREREREREREQNVVoNsa3Rh9NcQcQw1RC91QhDtFo2zttXuq4YxwOqIYbZb1A1RG9QkYgaYmx+h3GMYTvyYtiOiIiGN1NlO6WQaGuBkjxE+VNTkVS2C2OKvrdha9dWoEOz3/HTnKbVBTa83rl/wFvrRY+ax8ZMxLLOudqho2bZp/WKBRyC822Z06fnTNX3sg7vV6upbCf33hQ4f6Mq233hZnsMbY/xtdt31RJJIFsaUqy2st0Dr1h2N8z+WpY3lviWdYi+n3AlYbsFy+3jLZJDCzSBsWQ0tddtz5uN5i+kudux2W29lUu1Ybug1+SilG69lf77zskwCM4SEREREREREdHww2qIeuZqiNG1Wg6e11sN0VZlMajFsm2/QdUQy/bLaohUB22SRVs+jUws6Rtj2I68htnHh0RERGVMYbtYDKothZT0oFv502xRVLZDJsRfXUefYZ5Ht1+HqmyAPSwGAMfvPXhZFj8FuesGYPlLcKoJNmY89tr2Bp5PHeYbSjseHwCkA27ratvIGsN2VbaRjZ0xFvli1bxYDNj38MLlyTOgTnwf0Lk9cP6UoaIYUF1lu7XbBD+5X/D0G4J9dlO4+ASFo/YaPF0QVNVvjwnNdGqhjKGaYq24ViJrdrJyKeS2a4Fbf+Ebi7KNbF/e/tphej5i1zbIb78HWfgQoBTUEacCH/oCVCLct31P21/hsdf1x3DM7Age146v65Lp0Z6gi8UU4jEgF1CgTlt5tXuX076JiIiIiIiIiIho6GI1RLPSaohBrZb7HEKAusqFAdUQ+9c1VkP0hgdDtHgOrHaY01VJZDXEWhib34GNmrDdti5Bcz0jqJEYtiMiouFNTIkGBbQl0Z7vRndMF7Zz+4PJGrZbu8LpENWX/gdq3CTtWGLaDGCbZr/r1zrNHRToSMQL11EWPgz50tm+imFWYybi1K6H8H9j3u8benGN+zRBwcZq28hWE7az3X6t4jnwfB5Y+mzh8tJnIY/cHjw5gFb0IiZ9yCv/ldwZ4q7w2rBTcNIP8ljRX4DrkWWC3z8puPeLMZw4N/gx/efPBvTHbSDp6wvVRrO6encF2gpjQ4y8sRTyhdOAHVu046bQZyVhu9YWBdstbwzbPfAXyAN/GfhVnrkfeOER4Pu3h2pp/J6DFK68U7//Dx1Zv7Cdbb1rL1D49I32R2f5405EgNWvue3bh2/+iYiIiIiIiIiIaOhjNUQ9ESkN7kUR8itrtRw8r6Eaoq/Koq0aYoj9BlVDLP5UYGzfTmyMT/Ut37m9G8CoKu8tGi4YtiMiouHN0kYWiRRSok80uYZMjGG7MHklQ1U7AGht0U+UVW5vJIIq2xXJH38cLmgHAKPHISVbjcM9WUEqEfx2I6iCW7zqsJ0+zRdU3Q0IqGyna4UZkkKhlWyX8v9xPm+J4N0HhX+7dvPTMhC0K+rpBX7y9zxOnBt8Y86ZEnqX9WOoalfNm9qebEDoqfHv2asmd1xvDNoBQLvoK9ulewuV6lqCej17BOXijGE7nSfvA15bOFg1skqRnPzIOL5OWl5PJ3bYA4mA5nG3ytLrOAjbyBIRERERERERERENW0opIB5HIf7DaohexmqI2lbLfcC2Dfje17+OXhXH2L4dGJvfibH5HRjbtxMTZt0F4JBGXyVqEgzbERHR8GYM2wHo3IZUSl99yLWFpzFs1xPcQrRwHAoYPd44nDCEATMtKafpbZXZLjnV8+fu4qed5isxaizG9b1hHF60BjhmdvA0tsp27Qm4V7XK6SdqK7Z6LZN1CCLmTPevZCN7s9AV038LZrS/QrWTm5/WP+ZvXei2/UR/ocfm0Ruu1JpI8L306gb7+KTh8CWlxU9Zh9sD2hmPCvFYzAW0kW0LE7YDgJefDBW227Yof1sAACAASURBVHOCeeyA6eF2reVc2c4StnN4TPme/5W8RhMRERERERERERERjWBhqyHKnvvg7J73aAt8qM2rwLAdFTVvnzAiIqIo2CrbQRkr2wW1Ni0yhu369AEvnwOPgeoYYxxOjdKH6tJoK5SFDmCrzPae1ucKbTkBIN0VOFc5tc+hOLn7YeN4l+NNYLut3/02/zLZuRVy3x+Qv+6bkEduhxRDLTVoI2u8fw3V8kLb/0jjkCnoF+SZlcHr2IJ8e0xopu8clTGE7VQVDWMzAXfl6fs38e3hqsf+/DZVtgPCt5INetyGqmwHAOluyKsLITf9AHLb/0LWr7KuPmWMwtF7+ZcfMA3Ye0pztJE9albw5geWBwMreI0ewMp2RERERERERERERESBVEsLMGWGfnDDm/U9GGpqDNsREdEwZw7bqY98EUlDRadqK9vFXQIlE6ZCffnn1lXaJ+qr3v294xRjJTcvW9jutB+fCPn2pyG5nHuAxGv0eIzJ7zIOb3XIhvTlxRp6u/q80j9VZMObkM+eAPmvC4HffQ/y9Q9DvnIOpKerUOJZwxTuWbcj+PhMlQHj4pDUC7LXAVCnfABH9egrVr3lWByxEmMNhRE/d3KTh3IMbWSrYXuO/M/5CruNbfLbxMXKpdbh9nx0Ybug1tVhw3Zyy88gFx8DufYbkKsvhXzqSMhLT1i3ue6CGKaMHvx9fDvwmwsjetvj+lqZNa/XGlc4aR/75ol46eNO1q82rzxtltsxERERERERERERERGR3dSZ2sXCsB15sI0sERENb8bqbwoYMwEpMYTtqq1slzcHStTFVwCz9gcOPwnK0kIWAFJt+oBIV2wUkOkEWhPW7U1Vps7qvBcxCDD/ZuDQE61zGCXbgVgME3JbsDU+0Td844I8PnRki3WKtOV2vv+yGHYfXxY4+e1/A2uWl6743IPAvD8Y2/EmLFXoMr2CtlZzmKomle0OPxnq/MuAt78TuP16zOxdjadTR/lW+92Tghsvqnw3Or05QWtcGa/XCXtHu7/IhW0j6zKlJRz2uZOGftBOHEK5tjayoSvbWVpXAxVUttu6vvT3rp2Qn1wG9Utz4O6g3RWW/kcMD74K9PYJTttPYdLoiO7LrLk9bImAUN4HDld4+LUQFRn/+CPjkLrhOWDhQ5CvfsCwwtB/HBMRERERERERERER1cVh7wDGTgCm7AE1dQ9gt5nA1D2AGbMbfWTURBi2IyKi4c0UtovFgESyhm1kDYGMWAz4xFehHMMPK3a1G8fe2pTBjFEVHp8nLCY/+LzTsfiMmWAddrkNbUGeSbrr9uid2nXl0Tug3vUx7VjKUrXrmZXACXPNx5Dr0z9+4qiwxyuA2E/uG7gsbYYScwBmT6p4F0aL1wGH7mFuodva0uShHENlu2rayGYNd2UiDufnaVN77YXAVTrEXIYy6sp2KUuwz9mrz0N2bbOGlcd3KLz/cACI+D5Mm19PSmTsoTxbK2et8VOAbRv9yw86Dqp9FESxYDkRERERERERERERUbViF/17ow+BhgCG7YiIaHgTQ5klpYC2FFL5ndrhatvItuYz+oG2VKgAz5pOc+W6dVuymLGXffuatUGduS/UtFmQfF5b1Q4A2u1F9wDYb+eUbntd2AQAnpoHnPZh7dBR6WeN+9gekPupSWU7r3grlrfO0Q51tFU25R7jgTe36cc6+/M/xuvVvRXy2AIgH1CerFE2WFppahgLW3oYbwt7UcahozO4H7EtABe6sl1A2O6EnsfDTWjStdNYzbKmXNvIBqx34lyFoNqLIlJoAbz8JfNrX3nlP61hEBolIiIiIiIiIiIiIiJqEgzbERHR8GZrI9uWQko2aEd7MnkAwZWCzJXtTGE7c6U6nWTC0uI0Exz4qlVYTF18ZeFC+2i8Z9fd+Nvod/vWcalsZ1sn1RryoPr0AcIx+V3GTTrTAlsQxXT7VRxWPPPjZRO14rydt+D51GG+Vd/YXNkubFnOYnDKeL2+/SlI17zKdtxAVVW2M9yViWEStpP7/xy4Thx9SOQzyMb8Cc8oK9vt2bsan9t2XbgJTVxDb1Fz3e+GN63DsycrfOYdCtc94n/sPvhvMcj2zZAvvRd49XnrPOqcz7odDxEREREREREREREREUWC/YaIiGh4M4Xt+ivbtRsqOvVk3NqEmoIliVUv6wcsbUN1Um3mxM/WTZ2B25uqTMVRRWW7Uz8EdfK5hcuHn4Sjep7RruZSHdAatiurbCdBZcpy5slm9K7VLr96vn1OU2VAX1hxt5nWeYrUgUeXLmiJY0rfJu26nYa8ZhDbbVocM7VOjaxiX5MQh4pevYZWwcOhsp1sWQ/cfaPTuu2ib4/67KpwQUbTcwYAHl55Gmb1hqtOaJRuTNhOHrndbcXt+ue11y8+pvC7Tysk+4PFo5PAU1+L4aR9FeSqSwKDdgCA6QHlTQF7ApeIiIiIiIiIiIiIiIhCYdiOiIiGN1vYLtmOlOgDG93p6sJ28R36inlIhOsN2p40/1f90qvB7SFNYbvWKtrIqqNOH/wlkTLehk6V7WxtZMsr2/UGpPcMle0AIClp7fIVAdXjjPdvWVhRnX+ZfaKiUWPLJopbW3h2ZcJXbLPdpj1ZQV9ejE+LhIQsYzYMGCvbDYf6z0+5VylM5fXPkWWGlzIT03Pm6O6nsEdOH3qtSKMq23WbK2WWk6w9MauUwseOjqH7mhbkr2vBjp+24O2zFCTXCzx1n9tO2pLOx0NERERERERERERERETVY9iOiIiGNNmxpdBur/izbRMk503P2CrbJZE0VrZzCzkZ27S2G9rFvrnMad6iNktlu9FtwcdYkzayR5wyePm1hUgZgmzVVrZLloft0l32ybL64wCA5Yk52uXTxmoXD+7ScHxt5aG0A44CZu5rnwwAjj2r9PeWODry5uu1NeAqlxMRa9vPnl57m89WDM3Kdiqo6qGF8TkyDCrbYct651XXtU7TLp80OtwujdUgyx9b73hfuInLZRsUtnOsYgkA6AwORGt17QTS+kqDPnMOrmwfREREREREREREREREVBGG7YiIaEiT898Gee+MwZ+zd4ec0oH8xw+GZNKWynax/qps+oBWt0PYri8vyBtWa33mHv3A1D0D53WVyVr6NfbLGQ4wXmllu0QSyhs2Oe7dxspsb+0Ins4UDEu1Fqo+AYD09SH/0y9B3qMPAxXJzT8yjn1w5/9ply9dZz8+UxjQF9Lc5zCoc//JPlnHGKiOMaXL4q04KLM49P5NevtgfEwW5zNVcgOAxHBrI+uQwTO21B0GYTtxqcIWK7wdaDNUtnMJzRbduCCPK+5we81R/3IVMNH+nLZqVGW7MPu1BIAj2cdJ50BNquI2JCIiIiIiIiIiIiIiotAYtiMiouFp1auQfz0LyBsCaUoBbSljUOyJtanAXVgrhJlCS8eeGTivq4dWVX6MLhXM1P9n776jJbnKc/8/+3Q4fc7MmZyzRqNRlkYRJZRFkJAsIcAiWbbwxTY22NjGXF/jCzZOF9YPJ0zwta9tAbYMNhhMEkgIAUIBhAIKKI3izGjyzMmhu+v3R/fp06H2rl1d3X3CfD9rsaa6au+q3dXVrfGax+/7yx+q3bFsjczXa3tKmo3HWdvIDnjkTGxBnp7s1HbwqT+QvvC30Sc7uMd66OqBr4XuLwbSeN6eyPr2Y+HHat7z0tUyxshc/y6Z930i/EQbj5X5akiyL5W23j8pXtDJZ/zIeBPP7fxFM/d/J50r8/5PyazbHO9GVbHdj+wcCNvpsx+xH9t4nPSW35H58C2SpDcMfDF0mK26Y72v/zTQL/2z/btU82yl0jIrN8h8/Dbp0jf4XaBO8OAPmpqXWJwAXbOBwL0e7XZveK/M/765ufMDAAAAAAAAAACgaenpXgAAAIm4Wov+9IfStgvDj02G7SyV7aRSS87J6mph3KElS/mw7uiAXDX71aUfj0ZXybOtMeVT2e7t71fXjb/vHpPNqcdSEUuSntkT6OgV9ncxMmEJs5VbyAbFovStf4tcahRXoO17T0qXnxB+7IEXLOerfs9LVlQ2zTXvkLnmHf4LS2XUW7S3i4xb2e7Z/e7jUZXt6sN25sO3yFx8XbxFTIfbvxO626e5rO1+zPbKdoEtaCxJF12nrj8pheyC+++QJPXaWmp7Bj7/9V733U6r6sdo5XpJklm3ReaPPif90ecU7N2h4PUxQpP33ir9+l/4j2+VOAG6seYq2wV3WyqjVumajvcOAAAAAAAAAAAAKtsBAGa58TH38d3PWw4YKZPVSJc9/OYK00nSmCMIlQ0sCZWYYbtfv8QeVDut+8XI+WOWIJFPu1DT5fHXBGO0aeI56+End1sPSfKobDc8IB14OXodEY4af8567Mk99pDQ2UeF73+s+/ipF0891OSqJK3aoJwj8Glrs2tzwJE9laIr2zU8t6s3xVvANHGFUqNYK9vN9v+XlMFD9mNBVRCv/JtkC6QOj/tEFqV/vc897pHuE6de7Hy2cUDM38ZWtuSOJU7Ybqi/uWu4gpKSdPVN8c7nCI0DAAAAAAAAAAAgntn+z4gAALiNWoIRxsgYo3PyD1qnjoy7AzeuKmK2amUmZqDk1HX2Y8PF6P+M28JsrmpqkqRM1n180vFn6OSxR+zXj8j02Y5PVrZrug1jnW1j9kCcq3KX7dgx409NvZi/qMlVSWbFOhlJueKIRkOCn3HbyEYFREcmYrSRXXe0tHVbvAXMQuOW+5F+ebuKN71NWrtZ5qobZc5pXQvodgqGBxXc/BfSt/7VOsa88pqpF+XfpJytsl3M6oo2R41XBeyWrGocEDdsF6edq0XwtX9RcMd/SLuekxavKH3GN7xXJu34bR2N+O2sNnCwuYVF/O6ZS66Pd77ALzAJAAAAAAAAAACAaFS2AwDMbbbKQuVKP0vT9lCDq6rYwaFAr/gze/Uha3vabM5+0hDGGP3yyvCg2J3FUyPnW8NsjraqkmT+792R5y6daL6zqtjOQ+6QR2TYbsczfuuIYCStndgReuz2x+1rvHt7+P4rhm6fenHVjQlWJqm3z/p5PLE7XkjmyYjxIxP2cJkkZVQuhXjs6TIf+7qzjfKMYllm4FHzzlrZbt/z0lMPSt/9ooL3X6fge19OsMDOCPJ5Bb/zOulzH5X2hj/vkqTTLpra7i79Jtl+s257vDVre+3grZVt88bfaBwQ87cxaRA3+MxHFPzFO6V7vyW98KT00A8UfPoDCv4sog10nNawzYbt7vhP6yHzvr+TOevy5s4LAAAAAAAAAACAxAjbAQBmt20Xuo/bqh+VQ0SVUFeIp/faj335IXeoyRpmi1u9SdLxC+ytCPMF9zpsgUFrGHBS7/yoZZXkeiVJm8fDU2lfibhP1sp75cJ6wddv9luHzY2/X9k8dvyJ0CHffDR86kTevvaa+9fEZ1pj+Vr1FMM/j5vvjhe2+6e7ou+3TxvZrn+4W2aWtJCVHG1kPSp6jVtaLWeCqgPFooLP/23sdXXcI3eX/hel+pmdbCNrqWznI/C4zzW/id2NwbrYwc4EYbugUFDw738dfvDbtyhwBRXHY1y3/0C8hU2yXf+KN8tc88vNnRMAAAAAAAAAAAAtQdgOADCrmbf8dpMTS/8JXJKxh8522zNu+pcfRoTtbMGVJoJZuaz9P9fPOAKBUoI2sguWRKyqLFt6P7vSIW0hJW1e7g7QWMOAk11sBw/7rcPC9C2ubB9ILQ0dsyl8t57aYz9vzeebcI3KZLUzsyb00PrFobutHnzRfXx0wh4uk+rayM4BiSrbBXUP50Pfb8GK2uzxH/mN6+2b2u4rfdeHu3qbvuyegegxY6Z76sX4WNPXmjphgsp2u56VDu+zH3/8xy25btDfZGU7W5W/0SH7nNlShRIAAAAAAAAAAGCWI2wHAJjdmm2nVw4mLOi2t4Idd1Q2u/NJ9+lztspxTYTtLlltr45ka8MadTyqipWZtyBqWSXZbskYjViCOq5gl2RfX27PdhX/7v3SnV/yW4dNVWhwWT48mThoyf242ghfPHxnZdus3tjU0ioyWeshVxW6ZuQLgVdlu9nGKF4FwGqHLLnTWRk8HI0I0ZaZ7FTwzZSrWJ4wZu8X66ryKLm/K5NOGqsqIXnUCdETosRp51pvNCIwZ6mIGhQK0kSM78hA/Mp2QRBIE5YfpQ1bY58PAAAAAAAAAAAArUXYDgAwq5l0RuYvv97ExHIVIEf4LSrIZpMrjqjLFv4JaZ8YZeNieyDQVrmuctwWtotqI+vJGCNlc3rz4VtCjz++q7k2sj1P3Svd8ldJlyctmCoNd9Ohfwkdsm9QGp1oXKcrQLR2YufUiy2nNr08SVI6q/fuD3+vd4d35w01FvIe6uWL7ipkmWBCuvad/hed5fpHAv2zpUrlbAweBk8/HDnG3PSHofs3TTxvnTMaFZr1uFXrJqpao67cED0hSpLKdoOHIo5bqlXa2pLbNFPZbmLc2v7YnHdV/PMBAAAAAAAAAACgpQjbAQBmPXPmZfEn9ZcrDnX36HhLRSefAEkYa1W78vXi6u7pth77yQv2gFUQBNb3kAscQZW4Vae6e7SssD/00L3PuqeOWivvtSYMONkiU5LmFwetw74aklG6Z3v4vU0HE8qoKn2Ua779piQpk9XyQnhLy4EYt+ErD0WPmShIf/+98PCmCYpKqSizdLX/RWeM8BaaUfHDm++2jwirbBdYQlAzxve+HD1mw7GN+zaf5Kx2edDRvVSSntwdfdme6t+cXPzfwQZxg29VgoiKmcEd/xl+IG7Arz9+ZTvnNZr47wcAAAAAAAAAAABai7AdAODI9PVylbNszhrsslWFi6ogdii12H6wibCEcQRT9tvzYxrPS0XLUnuLjnaT2ZjV97p7lFc69NCiiBzayHj4AntcYcA4lq6sbC4o9luH3fFE4zr6LVmevMnU7sjNa2ppFemMii34K9mdT3pUtivYn5nAlNfQNfv+ethsG9kvPeAI2ymknFvRXmVyRsjag7kVPSHPayGvvqK95OFju9ynfOFA9P2vqabZ2xc5PtJ4gt+IwxEhuIVLw/fHDdsNRFTQi3uNJiqjAgAAAAAAAAAAoLXC/2UcAIC5bnys9Geu11rlzRa2GxxLcN1mKhM55pQCQdnQY642uM42snHX2J3TaCE8BNId8TeNIVvlPUeVrVjWbK5snjn6E+uw/pDLZVKe19h0fMxF1V8oq0UFS9tKSYVioFRXeOW2akMez+VEQerORAxK+n6mg7FVtnPftzuesB8LrfT28F0Kdr8QZ2WdsXqTdMLZUjo79dsWJpWSTj6vcf+u57Q+b/9NyEdkDD0ez5r7aRaviJ4QpVBQkJ+QSUc90CFSET9MGUtoMW7YrplWt64QYbOV7WZ6RUYAAAAAAAAAAIBZhLAdAODI1t1jbZ84aMmeuEJskbLNhe3mFwY0mGqsBjU4bA/bvWzPbzlbRsaunpTt0av3fkv/tOjGhkO77cXkNDQW6LbwDr7qbVFlO2OMgoXLpMP7lAvsIaTP3RvoM++o3bfHUuhreX5P7TXSCf86lc7q9NEHrIdHxqX5Hh/JeCF6zERBuuuZ8GPX93+xtHHC2dEnmmGarWznEhbCDd5zRcuv0zIr1kvD9up0kmRu+qBM36LGAzf8lszNf2GdNzQWyNaqV/L7TXRW05z02l+QvnFz9LhJYyNSM2G7w+Ftm2vOGyZu69pmWt2OOeYkbVkNAAAAAAAAAACAxGZfnzAAAFqpO2et8vbxO8IDPCOWamy+12tmzvkjd4ce+uRd9qDJez9vL0flbNMat3pSrlfzi45+thZ/8jV7QMoZBpSkVRujL7ByQ+nPV7yqsuu9+//KOvyJl2vX88nvhq/v3JF7p170OVoG+8pk1RvYg0jPRuSCJk3kowNntqCdJF0wfFdpYy4FehJU9LK1l56x9rxoP3bs6TIf+5rML7w/9LBZe7Qkae3EjtDj/3SX+z76hO0yKg/aeJx90Mr10Seq1kzlOEm6+xvNnTd2ZbsmnqG94Z+BpOYr2wEAAAAAAAAAAKBlCNsBAI5s3T3qtlQ8W2TJNUQFSzKBI43XTFgi16ucJRDY12Wv1nbnk/ZT9rrCbHGr72W6reuTpB0Hw4M6X33YEbZzhQHXbpa59p3R65oMNmanAo6u9/2NR/yCWTXPi63dZBzprLPq1+0/81uXT2U7l+7J5zbbRCB02jXXRtbF+QzOMuZ3Py5z1uX2AdnSc2z7Ldx5yH1+nwBy5ZNw/AaaqPau9ZoN20WxVaSLez1XS1ibpx+2H2umMioAAAAAAAAAAABairAdAOCIZD58S2kj26P7c6eHjtmwJHzucESw5F0HPmU/2EzYbvk6/Th3Ruih9fPsYQ5XUa/lhb32g3HX+ND3tXHiBethWzvWR3faT2mrNihJ2rFdOu2i6HUdW75nY1NBtjMc7Vrr17nAkjnbk1o+9eLAy9HriNLd7bx/43m/00wkDNsdO/6EJMlkWxAg7DB7G9nmK9udMfqTpufOOJuOdx/vLbWo3p7dHHp45QL39LGIZ/TCoe9NvXBUTgwO7rEeC79wk2G7hUubO2/ssF0Tle0c37/ELasBAAAAAAAAAACQGGE7AMCR6ZxXS5JMd4+uHfhy6BBbBTtXFaf5hQH90uGb7QOaCNuZri5dZ1nj4bFU6P5iMbAGYF438DV3va+4YasLrtbqvD105tNisp6zjezqTdJxZ0y1iQ2T7Za59n9Iksxlb6zsvnzoduuUQ3XF5Wzrfkv/v0+9aEVbx2yPUrK3/PW9f76hPJtzRu5LdoLpZHmghwL3s7x6of3YRUPfT7CgmcVEtQbefKIk6fLB20IPDw65E8auZ68rKOjdBz85tcPRStucdZnzOg2aadMqSYf3R5zXFraLeb3xMQVF+3e7JdeYZJqv4ggAAAAAAAAAAAB/lEcAABxxzFdemgqfdOe0dfzp0HHWsJ0j/HTbC6/VSWOPhR/s6pLSmRgrnXJsbl/o/kf7w9NC/Y68xv/c9xH3xWIGyMyxp6v7B/9tPe7TYrKes7LdWZfJdHVJNz+g4ENvk+7+Ru3xi66VecNvyJxyfun1ivWVQ73BiC4e+q6+O+/ihtN+6s5An3hrabtQDKyV4rZUPy8XXO3xbiKU7/flg7fptvmNrT4/9u1AH/S4TNLKdtlgXLryxmQnmSa2mNGtoyc75+UtOahP7Hq3svJIOWZz0qLl0eNarZCX9u/yG7v1tOgx5WfwiqHbQ5/Be1/MKggCGUugy9XC+D9fukFXD36t4VqhFljKido0UdkuOLC7+fM+93js62moX+pb5D08uO/b4QdOvSD+tQEAAAAAAAAAANByhO0AAEeW86+SWVwVjsn1qicID1bYQmK2/YsKB3Wmq/Vkd481rBKlN2VPsxSKgVJdtef95iP29pm9lvdbEbdaW3dORlJvcUjDXfMaDoeFE3f3u9t79hSH7QfL6zO982U+8l9e66u2fuIl69CJfKBM2jgDgj3FqiBgCyrbme4eBbJ/LgOeha5cgSevdUjOqmOz1fBYoN5uS0jMUpFtZd6vnan56k6ZnsZnvt2CPS8puP5ov8E+6ys/x86Q67OPVSrg1Zuw3Me3H/psbdBOkrKO70zc79N4E21kHcHgCkt1ueDRe+Nf78e3S5dc7z/eFujLzr3vJgAAAAAAAAAAwGxEG1kAwJFloi5FNTZibVk6Mh4eCBuZCN9fE8IK4wqZRAj229u0Hg5Z/of+2x5mc7ZoVSn8FctkUMdy3uGQ+/jCAfcpjx7fbj8Y9z4uX1fzMi17Km3fYOlPV/XCmnDmi0/FW0uYcsBtR3pt6OFVC/xOk7SynSRpnqOv6gzWa+zpyJ2H7fNsYbtM4FmOMao960zg84yWv1NDxv5+Jv7jk9ZjtqBnNgj5Ij1nqfwpSas2liqA+mqmst3uF5s/7+qNsa+nQ+FVSa22nBK+/8kH418bAAAAAAAAAAAALUfYDgBwRDEXXVe74+TzlLNUczowHF4NyxbEslXIq0hQBe3s4k+tx8KqsE2GxsI4q1dJ8aubRVTFClufq3LcttGHdMzEM9bjccOA9ZXHruu3V8Ob/Gzdle2qPucTzoq1llDl93Pp0Heca4piC475WFeu9mfiVOCaQa6Z97D1mO2zLBYD673Neobtmq1U2VHbXhk5xKTTUiqtc0fusY4Zyaesx8bz4eHe0Pt47Bn2dSxcKp39KvtC61kq0DmNe8wZm6qsGXzlH1X8jctVfP1m6Uufjn+9uIHA8bHw/UefFP/aAAAAAAAAAAAAaDnCdgCAI8vpF9W+nr/QWektCBpDJLbwTq+r9amUqEVn38WvsR7bGxKsOzBkP1fLQ4ERle3uCsnNPb3HXnnv6y9cE3G9Ju5jb19l84zRB6zDdveX/nRXtpsK65hjtsVfS73y/btw+Aehh33Ddkkq231g35+XNjYd3/xJptHJ2Z3WY7b79+5b7M+gV9juihuix8wA5oKr/QZ292hR0V4GcKTgCtuF7w+rEGhOPNu5DPOhz0gX/pyU7S7tmO+otthEZTs9FP49qzFa+i0PbvlLBR99l/TQ96W9O+zjX3eTtcVu8Mwj8db34PdCd5uzLo93HgAAAAAAAAAAALQFYTsAwJGlPkjW3eMMnz30UuO+YUsOx1Yhz3rtGHpyaeuxrzxkDw2FniuijayyMcNs5fG2+/jZexrX92/3ha+5r9CvFYW97us1cx8XLqlsuj7vLz1QWtePn/dswxv3XoWpVAYMX9d4XioUoz/jJJXteovDkjFSJtv8SaZRT5c9kRgWjh0aC/TJ7yYM2/XO91lae8SpqOf7fcn1On8bnhpfZj1mbyMbch8j1mPmLVDXn35e5uu7Zf7jKZmv7pLWbQkf3EzY7vEfew0LBg8r+MLf+Z2zOyctWh5+7Af/7bmwCJPhQwAAAAAAAAAAAEwrwnYAgCNL3+La1909WpXfbR3+dhpawwAAIABJREFU05dCKtvZ2shGhdgShO0W9NjDNWMh61m5wH6ulocCy5XmdqTXhB4+ZW3jvhULwt/PQMqx8Mr1mriPualWsvOK9rJ/k5k2V3Ctrzgw9SJlr/blzZT+OtbreH5GParbJals1x2MSUEwO9qihkiZQNliePvNsO/rNyOKjWXlccMPRoRCZ4rFK/zGZXNaXthnPbw3P896zPZ9Cb2Pnt9f090js3KDTCpln9NM2O6YU/3GPXqPtOdFv7G5Xmn3C+HHTnqF3zkUXkm1YjSicioAAAAAAAAAAAA6grAdAOCIYnK9tTu6e7R54jnr+NGQEImtjWxPGyvbdffYqxqFrfHE8NybJKlLEVXSYle2K72vvmJIP1tJYyHrG52IV42vRjP3sSpwlFLROmwy1OYKt2VU9Ya2nBJ/LfW2llrRuiru2aopVrNVF/ORDhJMngmM/f6F3buDw+7nLxN4hO2WOb5kM8nxZ/mNy2S1oDpIWmes2Bgs3XUo0Me+XdQdT4TPCa1s10yFNtt3fjw8YOk0HvE7Pan/oPcpTXePVLR8h+Ks0bW2o0/2P0+DBL+3AAAAAAAAAAAAqEHYDgBw5Dj29MZ95RCHCcIDWB+9NUZlO0dYSlKylqO5Hp03/MPQQ997snGN3/lZ+GnefcCjLWLsynal8b914G9CD4e14rUFFn/l4P/1vl4sS1fVvLx88LbQYZ8pt7z92cvhp1mVrzvQ2xd/LfXmL5Tkroxou1/VklS2SynfmuDgNLKFXV862Pj9KNjzlpL82siaba/0Wtd0M2l7C+oaES2EDxRqg8ov7A90wUeK+t0vxGzH28z31/LbGdiqybk8b0kG1p/76Yf9z5nNyVz5i+HHfvJd//O4KvWtWOd/HgAAAAAAAAAAALQNYTsAwJFj7dENu0w6I6XSOmP0gdApT+9prMI2HW1kle3RUZYKfPc/73+a9RMebRGbDNvZKttJ0kTe7x4uy9vbWE5dr4nQYl0rzQ35kASgpIHRUivHv/1OeIBo43jdzU4SoJxUvn+uyogvehTZcrW+jZIKCg2BxNnG9v371J2Nn+Xd293n8gnbteSzb5Zvu99ykNNLuhS2O3YsPIz2hZHaCnl/e0egZyO+ruGV7Zr4HbR95//7H+Ofy9e//n/+Y7t7pFyC3/dJB+wtzZv63QMAAAAAAAAAAEDLEbYDABw58pYATXePFhQPW6fVh9lGLafpbWdlO0kTyniNCwJ7pam88ahyFXed5UDPfEfY7uEdta/trXgj7qHUVFjHLFtd89rVJvTFA9LmZeHHxrrq7k2SAOWk8vtZUOy3Dnl2X3QbyGSV7QrNteScKYzRmAlvT7o8pPjggoiPLevTRrYVn327pTyr2kmVyna2+7imqzbxGVZRs17ofWzmvtmeTd8WuWXBIY8wbzOKBalg/wK6fpNrvPCk/di8GMFJAAAAAAAAAAAAtA1hOwDAkcPW8rO7R5cM3WmdNlBXcGx4PDw4EVnZLk7wpd7azVpesAdFisWpNY06ckJrJ3ZGXysbHraxKrc3vHD4B9Yh/XW3punqgFJzYZ2zX1Xz8qyRH1uHDoxJKcvfkPq7ap8hk0rFX0sdk05LqbSzMqBPVmc8QdguHeSll55u/gQzwM7MmtD9qZAicAsi8qQ5R5XBqUG90WOmW5zfnHJlu+eym8JPFdQ+YPW/i2FyxZBBzVRosz2bcX9ThwfiX9vHqo3SsvDnT5J/kNUR2DOzvPIkAAAAAAAAAADAXEHYDgBwxDCXvTH8QHeP3nnI3o6wPlTywoHwcbmoqmxdCf6zu3qjru//ovVwdcDOFmSTpBPHHou+Vtqvgt4kU25p6QoD1q/ppzvCx7laqVY0EbYzR59U8/qaga9ax/aPSE/tCT/2Gwc+EfvaXiLe00uH3NMLxcArkGeTUkG68sbmTzDdjNGvH/hk6KG7nmncly+6T9e20GfLeLaRjfNdzpTGXtf/X6GHf1aoDZO5Qr2TQitVNnPfrvrF8P1jHp9TkvG+1h8jHXWC/fi453WTrM+3tTAAAAAAAAAAAAASIWwHADhy9C0O39+d09LCAc2zVBb7f3fVJnN+8kL4aXrCqjhV60pQBS3bo4WONqPVYbZhS4tWSeoNhqOvVW4nGcvKDZKkxYXwJOI92/2SYF4VxZqpjCVJ2y6sbLpatn7qTvta1+R3Tb04+bzm1hGmHEDaPL499PAffMl9/8bzyS6fCgoyi5YmO8k0s927sPa6US132/ocdlKcyovlynYbJ54PPXx/YUvNa1eod1JoeLaZsOxCy7MZN5y215LyTao7534e7rvN7zy2UN7azfHXBAAAAAAAAAAAgLYgbAcAOHLYQh7lkMlSS1Bsn727Z41s4Ei5SfbepD66e8KrRJVVB19GHMvwqtiVbiJsVw6aZIPwBM6uw1PbQ2P24FjkPZSaryiWmarylVZBJggvb3bX0671Vb2/VoatygHH7dnmQjVR4bEo6SCfLAw6A+QCe6vO5/fXfqZR96tLHuHQaa1s5ylOm9XyM+j6Do5NTN0X1+/MpFzY700z9802J27Y7rnH41/bR7ZHys2zHg4esLcpr2F7P7PhWQMAAAAAAAAAADhCELYDABw5Nh4Xvv+Zn0qSXshsCD28pLf2dcaSSRrqsoctJCULM3X3OINy1cEXV8Wp3qhWt1Jzle3KYZDd6ZWhhxdV3cODjuJ6y/L2VrQVme44K5uyq7ZiV2DC/xo06qgStzZfVRmrlQGYPS8lmu5TZcwlpWLz93VGMDp+zB6kqg/M5hOGEyXNjvvV0+c/tvy9X1AcsA6ZbKmdLwTq9yj+17I2stawncciqjXz2+aju0davtZ+vOj5wNneT9LfmiQ9pgEAAAAAAAAAAFCDsB0A4IhhbEGLk86VJL1q8Nuhhx+t6hxaKAbWqliXDt0RsYAE/9nNZNXraG3p20bWq7JdU2G7UppuSX5/6OGaMKBjfceNPxl9rXQmekwIc9Uv1rx+xfC9oeN2HrKfY+NEVQ/hVobtTr84ckjgCMz4VBlzSakgbd2W7CTT7JyR+6zH6u9P0kqAktoX3PJhjN+4vkX+5yxXtLxq8BvWIZO/M4c8ulFLIa21UymZZr6/tu/agZfjnSduOM9Xrlemy/H77tm+NrBVtstS2Q4AAAAAAAAAAGCmIGwHADgyLFxqP3bi2ZLsYbmdh6RisRR0coWa+ooR/WZTzVe2M8aox5Ht+a8Hp4JYLx20j8s5AnsVCdrIvnooPLD499+bWp+rsp2rVW5FsyGnTbWVDW/o/3zsU/QWqxbfwgCMOePSyDHjjop7SSvbpYO8lGouxDhTZGW/CT+oaw38zz9sQaWv2XC/+hb7jy1/r5YU7D8gT+8p/bl/yO+UDd/nZr8zLWrZHNwX/vuUSFfXVAD4ul8JH3PPrX7nsraRbWHLagAAAAAAAAAAACRC2A4AcGQ4HF5xTVKlalKPI4j2k3JBM1eoKTIolqSNrKRc1l7N6puPTIWH7tkeHiTKFUfUJY+QUYI2srlgLPRwvji1bVuf5Fl5r9mQU111LNfnbVMTVmxlACYb3ZL0qT32Y4kr2wUFKZVOdpLpVK70Nr8Q3gL1zidrn7lCMXRYPE1WWOyoOGG78vtxfQdvfax0Hw/4hu3qz9VsNUjHvODgXv/zvPR0c9d36e6Rmaw06FrnIY8W2dawHZXtAAAAAAAAAAAAZgrCdgCAI54pBxmOHXvCOua5clbPFWqKDIolaSMrqeuwPawxvyqrtbg3fMxol2dgo5nQ1ZMPSpKeyB4TeviE1VPbWcfpIwOLxjRfIXDD1pqXayZ2xpreXRytDSu2MAATDJdCYn+36z3WMfschROTVrZLqZCo8uJMMZjqC92/dF5tUHXbevs5fm/fR/0uNp1hO982sju3+5+zHPhcVLT3Ue4qX9Y7bFcfaPUIlYZastJ+zLNFqyRp0/HNXd+lqlqfWbrKPm7PS9HnsrW5Tfpb4/u8AAAAAAAAAAAAIBJhOwAAsqUKZRcO/8A6ZGS83EbWWdkuolJaC8JM3cXwawxVFZRLFLzKZKeqNMVRbsV7wfBdoYcPVWXoXIHFyCunM82tT5JZuaHm9SXDd8aa3xAEbGHYzpx6gSTp5/u/YB3jum9JK9ulg/zsqNRmE/FM/PCZ2sp2EwX72Df1/2f09VIpma6Z/9don/bEFd2llK6r+uXkc3ZgyK8Nb0MAudnqias22Y/ZqsElHeur+nfgouvs48Y9KmmOt6myXdCCtskAAAAAAAAAAACQRNgOAHCk2Hyi/ViuFDLJakKZIDy1NBlgc4btoirbJWwjq0vfoA/t/XDooburCljZ1vjawW9GXyPdRAtZSebk8yRJJ489Gnp8Z1WxLNv6zhz5cfSFmlxfxcKllc1czDayPXVBR9PK1o4LlkiSFhUPW4c8+JI9MPOpO5P1RS1VtpvFbWTLfnv/X4buf26/9NTuqfuXt4Ttfm7gK9o29nD0hZI+h52yPrzSZJjq5/m6/v8KHfPtyTayw37nbPiONfuMuSrixQnQ/eS7obvNOz4ovfV98dY0KVf1O7Bqo31c/4Hoc1nbyLawZTUAAAAAAAAAAAASIWwHAEBVyOTYsSdDh4xOhu1cbWSjWqAmDdtle5zXGJ0oBWGGLWvsLXokZDJNhojK99BV3W/XIXd1wPlFR5/USUmrrx3eX9k0kub5XLOs4d432xIzTFWYZlX+5dAhn/+RPWz3xQeSXT4VFGZ3Zbuy+kBktVuq7l/ekk187eCtfheaLfcqTkiraqztu/jYrtKf+z2/Ng1huybvmzHGXt2tFdXqcj3q+tU/aa6CXNUcY0ylUmq94P47os9ley/ZFgZ7AQAAAAAAAAAAkAhhOwDAEcG8+XfsB4tTyZtcMBY6xKeyXWSltKRtJ4f71ecIhz2zt/TnqCVsF1l5T2q+Ytey1ZKk1RO7rEMe3lH60xYGjGzDKzUfBrQY6prvPbbh/rWyst3ilZXNl9OrQodsWGKfnk1YlC6tWR62K7eRXZO3P38PvRgdtksHeb/rTXdlO99WynGe0aqxL2TWhw45dV3pzyHPtsUNLWmTVE+0vRef9qySAlcr1ZGh0p/NBPdefsFrPaaqqqbVmOW9tPK3BgAAAAAAAAAAAIkQtgMAzH3Zbun8K+3Hjz2tspmzVI6brGg3agnb5Yojioq/mISV7cwJZ+uyIXt1pMk12gKBXmG2ZtsVnn6JJOnM0futQyrrSxQGnL5AWMP9a2EAxvQtihxje/YKxUDjnhkxm1RQmBOBHler5Or7N2FpI5sJHGnaarMlmNhk2G5dfkfokMnfFlsb3khJ7lu53XcD34DceHiQWpK09TT7sShLVngNC3xCgZb30tKW1QAAAAAAAAAAAEiEsB0AYM4zf/6fMn2L7QPmL6xs2gJff/zVcgtUa1U2j8BH0jayp11kbTEqTVWMGxkPr+DktUZboCWC6S1ViEvJUjJM0oGh0rpsoTGv9SWpjBXissHbvcc2BDHbFID5n/s+Err/24+Hj7fdzzhSKljbX84OpajrhvxLOm7sZ6EjqkOotrBYWr6V7eZ22O6SoTtDhzy5u1QhzlYZMFKS76/t+Tyw22/+uOP3Zfna0p+nXxxrSZJkrv/12h3bLgwfePNfRJ/s8R+F7/cKQXtWOwQAAAAAAAAAAEAihO0AAHOeOfsK94CqkImr+tt4PtDIhCXIVvSoWpS0jWyuV2kVlAnCE3+TYSJrm1afynFJAmSbT5QkbRp/LvTwlx6ICCz63MMWt5FdUjzoPba3/v61Opy27mhJ0qLCoVjTbPczjnQmJZP0+Zwh3nL4ltD91aHExG1kM7MkbJft9h9b9d13tcR+eo9UaDZslySkaPltCm7/gt98VwW8yTDbAkevZpueulbUtnaxQaDAVV3Phcp2AAAAAAAAAAAAM8bc+FdVAACSqAoy7E7ZWwJ+6zFXi1afynYJ/7NbbjVqC80NR7aRbXPYrjx3sGte6OGVC0uVl6yBRZ/1Ja0odvTJNS9NEL6WMA3ra3UAZnhIkjRu4gUKh1oQtktlWxti7LiBqYCi7Tka8Wgjmw48+6Ompjts51nFLM4zWlV1zhX4vOuZaapsNzwQvn/9MZ7zB+3HJit6erRzbtC3sPb1vAX2sU89ZD0UuMKARY/ncvVG+7Hla6LnAwAAAAAAAAAAwAthOwAAslOBFFcbyef3B9YqYjmvynbJ2siacqtDW/W9yfax9spxHmG2JNXayvdxX3q5c5j9HvqE7ZKFwswNv1XzetuYPfxSr+H+tTpsd6DUInh9/iXrkIl8YzjwwFDyS8/6sN341HciF4RXD6t+7qzPoE/gU2p5hcW2ifOMbjq+snn+yN3WYSPjUrHpynYJwna7nmt+rlQTyGxQbjNuzrws/nlPfWXNS3OW4xyjji/riOPY+q2RyzAbjpXWbWk8sPkkmZUbIucDAAAAAAAAAADAD2E7AMARz6TTUqoUhHtT/39axwWBq2qcR9gulSxsN6m3OBy6/0fPlf584MXweV5rnKzw1IxyK8bXDXwt9PCjO8phQMs97O1EZbtTzqt5+fOHPVtQKuT+tTpsd9G1kqTjx35mHRLWIni/o2CXr3R3ghDUDGAuuLqybQuVPrG79Ge+YK/MZvtuNUj6HHZKnGe0qqpbX9H+UO0blPKeBQAbJKls9+q3hu9/8gG/+f37w/en0lOtYF95TeV76MvMr6tsd9F19sGH9tmPuSrbrVzvt5bf+2Ttb3hvn8zvftxrLgAAAAAAAAAAAPzM7n9ZBQCgVbI90sigsoG9J+ePnpOOWhZ+zKsilmlBxn3VRmubzL++PdBf/rx9qldluyQBsnLIY8NEeNrv3mdLf1oDiz7rS1pRLFfb4nZB0dKaMkTbK9utWBd+nSpfeSjQ28+tbSF6YNi/Fa5Nqrs78TmmVc/U55pzhEr3DgTKOXJyXoFUKXGFxcSMZxvZbIxn1HPsn3490OtP87x+vSQhxaWrwve/+JTf/P6D4fsXLJEp30+TyUof+px0/3cU/PRuaXxUZsESBZ/+gPcyTSaroGe+NNIYWAw+91GZy94YPtEVtvP8rTGnXSh95kHp7m+W2paf8xoZz6AeAAAAAAAAAAAA/BC2AwBAqlRcWp3fZR0yNBZoZCI8ZOIVFGtFZbtUSpnA3up2T789eJWSRzmqJG1ky/fQ1Yq3ULS34vWrDpjwry51YbvewLOSmUIClbkWh+3K722+o6rYD56W3n5u7b6DLWgj2zXbw3ZV7UnnOarT3f54oMuOtwfFXEG92uvNgsp2qXSpaqevrN8zMJ6XCh5tZLeNhrRoTvL9dbThDsZGZKICaQO2sN3impcmnZZe8SqZV7xq6vy2sF25tXeDbC40bKfDlup6Uk0r5AYxgr1m1Ubpul/xHg8AAAAAAAAAAIB4aCMLAIAkDR6SJF0xdLt1yFHLTbI2so6wiLcd27Umv9N6+EVLnkSSVuT3RJ8/Tjin3jM/leRuxTkyLo1bMn/dwVj0NRKGnEzv/LprjmtlfrfX3J5i3We8alOitTQ4uFeStCFv6QMsaSLk3oW1lpWkBYXDXpdNBXmZOBXQZqLVR1U2zx75kXXY/qHwezjJVdmyRmYWhO1iVl40vtXyJOWL0dUUP7j3Txp3ppq/b2aRpayoJA17VKi0VY7rmR++v/rav/4X4ft/9U/DJxy2tIudt8B+kRZUtgMAAAAAAAAAAED7EbYDAECSFiyRVApf2ew4KHtVNp/Kdq1oI3vMNv3m/r+1Hj7sWMaW8Weiz59gjebyUg/bawa+ah0zMlGqjBXGK+iUtI1siD/a+8de4+rb95qu1v41ypz72tKfjjEHhhpDTrYA6KaJ572umwoKUneCioYzwbLVlc2VBXuodGTCXZUtFXhUf5QShcY6po0BrXzEbTp75D5dHhZcTlLZrqrSXANXUK0ssI3xuU9XvFlac1Ttvi2nSOdfFT7+yhvD9z/7mP0arveQpOIoAAAAAAAAAAAAWoqwHQAAknTmpZXNNx++JXTILT8KNJqksl0r2siecJa2jT1sPbzb0UbWq3JckgBZuaXiksIB65Dn9ktjScJ2rWjfufW0mpdvsXze9WoClSvWJ19Hvb5Flc3fOPCJ0CFfCenM+YUfh3/miwqHvC6bVl7K9XqNnbHqAlPnDN8TOuzLDwTKu8J2Pq2WpelvI+tTha6ZsN2WU7yG7Xe0Lv7Q3j/WrS+8Lvw3Mcl9m7/QfmwoQWU7jyCbWbpK5uO3S299n3TOq6Vf/AOZv75VxlKpzpx+sfVcwT3fjL2+Vgd7AQAAAAAAAAAA0LwE5SUAAJhDqtpo9jqq1O0dCA82eVW2a0Ub2WzOea0fPO2YGliSgtWSVN8rh3t6A/v6vvVokKyyXSsqitWFa3I+QUnVBSrbUQmuKvDW42jFWywG6uqaClsdsASfeoMRdRdHNdblXmupst0sb1NZ95nOK4bflJf73ZXt0r6V7aY7bOejmWc00+017IeWIpm/t++j+sC+8JarkpJVtnM9oz+7Xzr6JPf8JJXtJJnla2V+NaQ1bsxzBnd+Weac1zQeGE22PgAAAAAAAAAAAHQGZRIAAJCk7Y9UNhcW7RXBntsfvj/nCJhVtCJst3O7egN7EMvFK8yWpIJSORSyMr/bOiRflMYteaaMTxiwFW1kjzq+5mWX7NUAq42YqvBSOwIwVeecMPYwV33b2ONXh4/7fu/5kUE7qVzNzTNkNVOZukpvd/eeEzpu68qINrKzpbKdj2Y+08d/VNm8vv+Lsaen5Li5kpROELabv8h+zKdq6JglVNuO73Ldb0yNPS+G708YBgQAAAAAAAAAAEBnELYDAECSzriksnlD/xesw2xVxLzayLagFaA54xK5Gkj2OzJ/XmG7JJXtsqVwjytwc3BYCSvbJS/Ka1791qbmnTty79SLdgRgqqorvm7w69ZhI3W3acKSD7t46Htel00H+da0OJ5BXjl8V+j+wTG528j6VrZL8j1pBZ82ss0EAk85v7L5vv0fiz09HVi+3JMSBI7rA5U1bEE1nzHt+C5vONZ+7ODe8P3jtvW1oYomAAAAAAAAAAAAmkbYDgAASWbTVCWirWNPWcftGwzf37E2sis3SJLOGPlJ6OG7nrZXaetUZTtJumogPCz2N7cH1nCYX9gu+T00p14gveZtNfveefAfIufVtJttS2W7qVDN2omd1mH1le1s4bEzR+/XJUN3RF42peLsqNQW5bSLKpsXWMJ2338qqo1sRFhs0mwIJ6abqAJ5wtmVzTNHw39jnJeMun9J79vmE0N3B/fcGj23g2E2Y4z0tt8LP/jUg+H7qWwHAAAAAAAAAAAwKxC2AwBAqgk09Pi0hK3jNacVYbvyOnssrWRtbW5NUFRaHkGiRJXtpu7hvKKlBKBreocq20mSufj1Na8HuuZHzqlZX7YN1aZqnkF7pcQH67pQ2sKL6SCvrEdr3lRQaNl9nVZVoSnX93FozH4K7zayrfgut1szAcq64JktNGsTef+S3rfu3vD9P/xa9NwOh9nM0pXWY8GLIYHuTra5BQAAAAAAAAAAQNMI2wEAIEkr1lU2XW1QbXqKnWkjqxXrJUlPZLeGHs5aMlPZYNzZfrYiSeWpZasqmy9k1see3t3BsJ165tW8fC6zMXJKpjq4Nn9ha9ZRbcGSyuaywj7rsJGJ2uqFeUu+KRNMeAUY08rPjcp2+3ZVNuc7wp7P7LVXf5w1bWR9pON/V0xdiHRpwZLetV0yqrJd0vv28vPh+4/ZFj133JKybFeYbYXjN/DZxxp2BbYwYJawHQAAAAAAAAAAwEwyC/6lEACADqhqnyhJS/P2sFMYv8p2LfjP7qbjJEkLi/2hh8ctWRevqnFSsjBMVbhk29jDsad3srKdNp8Ue0r1+uor47WCyUy1/cwF9vJrI3W3yVrZTnmvezpnKtttObWyecXgbdZhA45crFf1R0lKTfNfoY1HdLaZAGW2u+bl6wf+K9b0yPuX9Ddw7ebw/bagmscY064w25mXxluL7T3kCNsBAAAAAAAAAADMJITtAACQZOoquv3N7t+ONb+n2Jk2ssYYaeOxesvhW2LN8w7bJQjDmKoA0HnDd8ee39GwXc7SjtIhU12164KrW7OOeqdeUNlcnt8TOmTn4drXtrBdJvAM26kwJyrbmQuvqWyvLITfO0n6lx+2oLLdrGgjm40eU6+ust1Vg9+INT3y/iW8b+bKG8MPPPd49ORH7w3fXxcwbBXT22c9Ftx/R+PODre5BQAAAAAAAAAAQHMI2wEAMGn52srm4sLBWFNzgUcb2SQtWqsddaJfuK9KtroFqkvSNo8LlzU9taNhu7pQkdeUyfWlMw3hzJZZsrKyuTr/cuiQz/+oro2spetxOsh7fe7pIC8zFyrbVYWSuoMxmSD8xtz3nP0UKfmG7WbBX6GbCVBmaoNnRlKvoyVvwyWj7l/S740jeBYE9hBls+dMbONx4fu/9s+N+8Ys/w0hbAcAAAAAAAAAADCjzIJ/KQQAoEMGpgJ2SwsHYk31Cr8lDbJNGjwUe32dqGwnSRos3cOTxh6NPdUrENiiUJipe59v6P9i5JyMyuvLewYXm1EVrDmYWhw65PjVtS1Eba2DM8FEjDays7+ynRYurWwaSUHM75sJiuqSZ2BrVlS2a+IzXXd0w67hrnne0yMr2yX9DXS1zz1kb/0d5B3tbX1a0DZrxBJUnL+ocd+4ZR3tanMLAAAAAAAAAACAphC2AwBg0uhwZXPb6EOxpvYEHoGNVlVDGxvV5UO3x5ritT5JJmkYplAK25w89kjsqT5rbFcFtjf3fz5yTMa3OmASVWG7FzPrQ4cU6gq2jViW1ROM+LeRbVelvk7acmrNyxNH4wU+vavaSTMgbOcInU1qpo3syefFn1Ml6jtikt63zSfZj406KvDlHd+DDVubX0+URZZKn8WQZ63qvz81uuMrzsapAAAgAElEQVRX4QQAAAAAAAAAAED7ELYDAGDSua+tbKZk6c1pkQvGoge1KKBjLn+TNuRfijWn17ftbNLKdlffJKkUBTp19OFYU72qA7YybPf6X6tsrijsjRxeCRJddG3r1lCvKmz3joP/FDrkid211ddGLDminmBUGY+wXTooNFcFbYapb+37l7t/N9b8yKps1eZoG1mTztR8LyTpzJH7/S8pRwU5KXmos6p6YQNXhbqCY11LVzW/ngjmbe8LPzA80Nj21rZ+2sgCAAAAAAAAAADMKLPgXwoBAOiQ5WtqXl7b/2XvqR1tI9vbJ0k6evwZ7yk5z8p2SddoVm6obN9w+N9jzc0Fo9GDWliBzWw8tub17+z/mH1sUJwKYK5tbLXZMlXBmmWF8LaYD9flLG2V7XJFv8p2XSq0NsQ4nTafWNk8dvypWFMjg2LVpr2ynYd0c5+pueT6mtdHTTzrf8kg4h4mvW+u4NnLz9uPucJ27WyhvGi5/dgzP619PWb5/SNsBwAAAAAAAAAAMKMQtgMAYFJd0MwosAxs1NE2suXASqz1daqyXdU9zMi/7Wp3cVRdPu+nlaGwus87V7RXJwyqxxqPFp7Nqgoj+Xy+xWKgCUtBtlIb2ejPIDVHKtuVTH0284uDsWbGq2w3zWE7n2ew2c+0LtwVGaCrEnkPk353cr32Yy86wpXOsF0bg6a98+3H7vt27evx8LCdIWwHAAAAAAAAAAAwoxC2AwBg0rwFNS+HuxzBjjo+oaaWBXRWrJMkPZ3d4j2lx6dqnJQ8DFMVKDxu7Anvab3BsN/AJqt1haprSXn26I/85llCMa1gVm+sbE+Y8Pfam53aLji6HaeDvFe1wLTyc6ey3fZHKpsLi/2xpqY019rIZqPHhJm/sOblxokX/C/Z5jayJuN4T65nOO/4fW5htcwGm0+yHgqG68KgeUsVStd7BgAAAAAAAAAAQMfNgn8pBACgM8yFP1fz+hcOf9Z7bqaTYbvVmyRJ/+PgP3pP8aq8JyUPEZ18XmXzFSOe4TVJPUXPAFsrQ2FVLUcl6YrB272mmTMva90a6p1xSWXz0qHvhg4ZHpeCoFT1ruAofpcKCl4VDedUZbvzr6p5eenQd7ynxqngNu2V7Xw0+5kuWFLz8q2H/83/klGV7dp434Jdz9kPuirbtfHZd4YDf/Ld2tcTlrDdXPluAgAAAAAAAAAAzBGE7QAAmNS3uObl6old3lOzgSUoUa1V1bDKbQVPHX3Ye4p3G1mTcI1VbR69A35xxrYybFfXnjHr2/a2t691a6jXM9V20tUGtb98u4qOynZdCrwqGs6pynabjq95+dbDt3hPTclxM+uYuRy2m7+o5uWq/G7vqamoynatuG8nnRu+/5a/ss+ZrjaykvTKa8L3//SHCsaqvp+26nuE7QAAAAAAAAAAAGYUwnYAAEyqC195t15VhyvbldcZL8zm+V6SBgK7c1ObwZj3NO8wYBvDdm2f5yM7df9cn9l3yh16nZXtVFBvMbo971yqbGfqv8O+z5XK98HXdLeR9Wj37Kyq5pqXStW0ko3zOxNZHbAV9y3bbT0UDFlaBzvbyLY5bOf6vXjwzqlta9iONrIAAAAAAAAAAAAzCWE7AAAmLVtT8/K48Se8p3qF7ZoMvzQoV487ZfSn/lN8Q0dJwzCrj6psRseBpnT7VAaUWhuMWbS8uXkbj23dGupVVQY8duxJ67CDQ6WUnbOyXVD0CkqlVJwzle2CA7VV2FoaFKs2GyrbJflMBw9XNnMxQrPRYbsW3Le6Nrc1Du4J3z/ueA+O8F4rmKNPth/cV1U9lcp2AAAAAAAAAAAAswJhOwAAykyqNgjS52jjWS/j04K0RRXRjDFSOqNtYw95z/GubJewjaxpMriSmYawnWkyWGja2EbWVFUsmxfYq9KNlB+3qMp2OZ82skFeSs+NsJ056/Ka13FaLac0iyrb+WhhSMs3rJvuQBtZc/VN9oNjlud9zLH+dlaqlKRL32A9FHzqAwqC8pd4wvIb2KqQNgAAAAAAAAAAAFpiFvxLIQAAHbTmqJqX/7jznZFTUkHer4pbC0Md5sb/JSPpssHbvcZ7t9NsRYhoyarK5q8d+LTXFK/KgFLrK7BtPC7e+C2ntPb6YV791srmKZaw2P/5ZnRlu1RQ8PrcUyrMmcp2Wri05mVvjMp2c62NbKKQVl1A7Pf3fcRrWmRlu1QLKtudfJ792P3fCd/vCttVtW5uB7PmKPvzcmiv9NmPlrYLVLYDAAAAAAAAAACYDQjbAQBQrS4Q11cciJziHRRrZQWlXOlcqwq7IwaW9AQj0vpjogcmrGxXuthUK9ScZ9gpOx1tZKWatq1e2ljVrqJ7Kvwz31Jd8aWDpT9dle265NlGNijMnUBP3XfMO2Qqj6ps1WZDG9kkn2m27j56fo/TUYHFVvy+OH5Hg9s+H37AFrbr7qmpJtk2J7zCeij4xs2lDVtlu7ny3QQAAAAAAAAAAJgjCNsBAOaGay0V6N72e/HO88KTNS83TrwQOcUrKLZgidQzP95aHILhUgjrmcxmr/G5YEza+Wz0wFZU7NqxvbK5vLDPa0rWpw2v1JrKWNUO74833uceJvXy1DN3MLU4dEhPOX/jrGynglbnX468XDrIz53KdivX17z0DYlJMSvbtfo5bIckn+nO7TUvN0087zWtI21kXb9RPfPC99vay7a7heykwUP2Yy8+paBYlPJUtgMAAAAAAAAAAJgNCNsBAOYEc8UNja0VUymZy94Y70Qbtta8PG30wcgpXpXtLrxWpoUBHXPi2ZKkE8Z/5jU+G4xLm0/yOHFr/2pwXf+XvcZNWxvZ0y6KN37rttZeP0xVq9rLhu4IHTIyIQVB4K5sFxS9wqKlNrJzI9BjFq+oed2lQD3FYa+5acUI27X4e9IWST7To46veXn5kKU9a52OtJF1GW8M1QWH9yv4698OH9+psN1Zl7mPj49KBcu9I2wHAAAAAAAAAAAwo8yCfykEACCaOeV8mfd/WuorVwJbuEzmg5+RqQoueZ2nrkJelxxpprJMWDWnbLkVaFeXdNF1Mr/1sVjriLSoFCo6b/hur+GZYELmmndEh11a0R7zdTdVNrdMPOM1ZbrayJorfyHe+Mve1NLrh15j62mV7Tf1f8E6bjwfXdnOnHRO5PVSQWHuVLaTpOVra15+4uX3eE2rrmxn/uqb0tU32QdPextZj9an6eY/U3P82TWvF3i005bKwU3niVvzf3qYd344/MAj99S8DIYHFLznVdL+XeHjq1o2t5O57OfdA1yV79LZ1i4GAAAAAAAAAAAAicyhf1kFABzpzFU3Sq95m7T7BWnVRne7QZvu3oZdG8ef1/PZjdYpYVXZzDf2SC88UVrH/IXx1xElV6rI1OtZtSsbjEu53lKoquAIxLSijWxuqlqUkTS/MKDBVJ9zyrRVtss1ft5OnaiEVRUAygVj1mF7BhRZ2U59i7V4/wEdTC2xjkurMLeqZ61cL+3dUXm5qOAIMlXpmgyKGSOdfrF0z632wbOhjWySQGDIc755fLu2Z91tqyMr27Xi90WS5i+wHgryEzKTz/Pd35S2P2I/T7ZDle2ifjd+7KgcOJe+mwAAAAAAAAAAAHMAle0AAHOKSaVk1hzVXNBOkoLGUmHzgiHnlIag2Dmvlsl2y2w5pT1BO0lasFSStLSw32t4JpgoBT6iwmqtqDw1UBtuWuaxxux0he0WLq15eamlXeYvHfqX0kYnKmFVBXOW5fdZhz21Ryo4K9sVpQVLNGrca55zle0O7K552e0ILFarBMWCQMYYd0BqVrSRTfCZ1rfkll+wNzps16KQYm6e/djzT1Q2g09/wH2eTrWRXbTUeTh44Un7wQyV7QAAAAAAAAAAAGaSWfAvhQAAdFBI29krBm9zTqkP25nzrmzpksKYxcslSeeP+LWRzfqG7VpReWrRspqXrxpy3z9p+irbmdWbal6/ZvBboeOuGfjv0kZHKttNXWND/iXrsLEJqeiqbKeitGCxRrrc1ftSKiRqOTrj7NtZ8/KUUUdlsyr1LVCN67Oe9jayHpJU39tycsOuS4fuiJyWDmupXa1Vle1Ov9h+bLQqFLjrOfd5OhS2M8vWSJtPtA8YdQS6qWwHAAAAAAAAAAAwoxC2AwCgWl1QTJL+974/c07JBuNTLy66VnrdTa1eVbiFy5QLxrQkH105Lt3BsJ055fya13+8948i59TcQ5c2V2B718FP68qBb9Ts+9WDf6+rBsv7OtF20jMA9MzewF3ZLijILFiq6/u/6DxPOsjPrcp2r39Xzcu+4oDXtFRQDtttOr70p6uK4XS3kQ2pPNcgyWfat7hh1x/u+/PIaenA0aJaat19W77WfuzZR/3P04lKlWXmD/6f/eAXPm4/RtgOAAAAAAAAAABgRiFsBwBAtZCg08Jiv1KO9oiZyWPrtsj80b/KdKrt3/FnSpLeOOAOU0nlMFun2sjW3cNlhf1aXDjgnJKerjayklQVDswFY/rSS2/U3c++Un+/89f04PYz9bcv/5a6VC4hl3NXiWuJuvu3Kv9y6LA//XrgVdnu6PFnnJcrVbabO4Ge+tbNPcGI17xKC9TJaodHchvZkPe+uHgoZGCtyDayLbpvpqvL2l41+PQf+p+oU21kJZmt26STzo0/cQ59NwEAAAAAAAAAAOaCOVTGBACAFuiZH7o7FRRUMOH/2UyrHBQ79QKZTla8CkplzbqLo5FDM5qQcvM600Y22914/YgwnX9luzbc32JtebiUijpr9H6dNXp/49je8OejpXr7al4WZa9iFlXZTguWaknhOefluoLC3KpsV/d5VoKSEVIqzyt/r5zV4/Ke4dDplChsFx4q7QoKKhr7dzCyjezS1c2vqV7R8vAPHfY/h+V9ts2KdfHnELYDAAAAAAAAAACYUWZBWQ4AADrHWCqXjXc1BsgmVYJkHWxJKEmaKAXUQkNhdbLBuHTUCZ2pbDfZhrPKnvRK55RMVEhnUlcbwnZxAnSrNrb++vXqWmTa7l1PRl6V7eYFw87LpZWfW4GekLCnj0pVtud/VvrTFYwqeD6v7eLTRjbBd8Wkw38nXEE7KaKy3Yr10tZtTa+pQWAJ202MK7AF8ep1sLKdJJltF8SflO5QpVQAAAAAAAAAAAB4IWwHAEC9485o2HXR0J3W4ZWwXbbDwY2rflGSdPXA1yLHZoJ8qepeVOW6VlS261vcsOuMkZ84p3hXtvMJGcVkXv+r/mPbcP3Qa6w/pvL6D/b+eei45/ZHVLZTQVqwRD1FdxvV1FyrbHfC2Q27Lh+8LXJapSrba95e+nPdllauqvOSfqanXdSwa2l+n3PKZNjOvPujtdfv6pL5tT9r6ffHvOND1mPBL5+j4PD+6JN0OiB9+Q3x58ylICwAAAAAAAAAAMAcQNgOAIA65vzXNew7Z+Q+6/gxU66k1eEqSVpSqng2LxiKHJrtLa8tsrJd8jCMSWca2r2eOvawc05Um9mpk7ch7LZyg9+4Fetbf20Lc/27KtvbHPfOWdkuKFW26wkiwnYqzq1AT0h1yp8b/GrktFRQkCSZ8vdKmVleUSxh2M684lUN+84fuds5pxJYvOIGmU98V3rL70g3vFfm49+RufxNidbT4ORz7ceeekjBx94TfY5OV7brWySdcUm8SbP9OQQAAAAAAAAAAJhj5lAZEwAAWiSkDWVv0d6K8+7eUujDZDtcJakcFDGSeotDGu6aZx2ayZbDb1EBnFZUtpOkbE4amQoBuu6fFKOyXavWV3Nxz8+tk1WwqtbUXRy1Dts3YD9FSgWpb4l6HPOlcjWyuVTZLiRAFfX8SVVBsUz5++9q39m3qJmVdZalFay3kPvoVSWxPNeccJbMCWclW4NLVFDuO/+R/BztsMTdUrvBXArCAgAAAAAAAAAAzAFUtgMAoF5IGOK00QcjpwWDh9qxGrvNJ1Y2XUE7ScpmyhXhIivbteivBiO11faWFdztJ70r26kNle3WHOU3rpPBnHVHVzZXFPZah73cby9t15XJSPMXKhdZ2a4wtwI9a49u2OXz/Z1sgVqpJLZkpbR6Y+PAbLd0zmuSrDA5nwqPSQOUIc/7ttGH3JdUuTpgb1+ya/vYdHziU5hpCNuZrdv8B3d1za0gLAAAAAAAAAAAwBxA2A4AgHpnXtaw65LhOyOnmbMa57WTmbegsn3joc84x2YzHa5sV2fL+DPO41nfsF0b1md8g2adDOaceE5lc/P4s9ZhQ2P2U6SyWRlj/KqRzaFAjwmpQHjy2COR8yphu+POKJ3HGJnXv6tx4JU3yvS4w60zQhvCdj/f/wXnlC45+hq3mOmdn7zFaierVU669I3+Y7t7ZNrROhsAAAAAAAAAAABNI2wHAEC9qhDbpJ7A3YqzNG9hGxYTYeNxkqS3Hf6cc1imuxwo61RluwuurnkZFbarVLarqtYXql3Bk2Vrosd0MmxXFSLqcVSm++Yjjsp23aV2qD3rNjgvlTbFuRfo6Vtc89JIes3grc4pKRVLG1Wfs7nht2Te93fSqRdIx50h8z/+WOa9f93q1bZHKpVsfsjzviH/UvS8clixE8z7P53sBNlpqGy3Yl2c0W1bBwAAAAAAAAAAAJozd8qYAADQKs2GqqahJaF650tSZPWybLbDle3q7sUx4087h2eDcen0i2Vu+kMFv+GoENiqMGC9nMdnl+1cFSxjjIKeedLIkHKOoOfXLQXbTFCsVHjryUqTObIwKdO5amQdk+uVBg7W7FqWd7cyrlS2q3t2zTW/LHPNL7d0ecl5hLC6kobtmnzeO/k7mLTCYNLKeM1aulravyt63Mhg+9cCAAAAAAAAAACAWKhsBwBAHdNs4CxWxaIW6T8gSTpq4nnnsEx3OWQXFS5pVZjt0N6alwuL/c7h3cFYKaQTdf02tbn1qnDV6TDlyJAkd6zKVpAupUIpcCZpfbf73meMI4k3W+3d0bDrQGqJc0pa5bDd/EXtWFHnJW0ju/bo5ub97P5k141jzeZk89cf05p1xLWuyXsLAAAAAAAAAACAaUfYDgCAFjF90xDSOfe1kqSVhT3OYdnJNrJR1apaFGYzZzZWpztr5EfW8blgtBy2i6jY1a52pz5BuumoXBghsBSl6wqKlfUuiPjIe8x4i1c1Ayxc2rDr8qHbnVMmK9uZ9Bwp/JwwbGeaDaKtOSrRdWM5+iRp0/HNzV29STr+rJYux5e57I3Tcl0AAAAAAAAAAAAkR9gOAIAwJ50bb3y2uz3riGAue1Nl+5TRh63jMt3linZRgbFWVbY76ZyGXX+094+twythu6iwX7vayHqF7TrXRlaSdN6Vlc0/3fOHsaamVJiq1tfdo5t3/JJ1bE9XvqnlzWTmTe9p2HfmqLviWirIT1+ls3ZIWtlOktKZ+HMu/Lnk1/VkjJH52NfiTzzhbJm/vlUmlbDVbrOu/ZXpuS4AAAAAAAAAAAASI2wHAECYnnnxxi9a0Z51RKkKia3I26vbdU0GxaLapbaqTWtIeC0b2CuopYJCKcwWFaZrW2U7jyBdpyvbldvAStL84lCsqV0qTr2n7l4tK+yzjp2Tle2yjZ9nT3HUOSWlwuxpIevzPWhF2G7VxthTjE9L5hYyy9dKb32f/4TTLlLXp78vs3pT29YUxRgjvfHd03Z9AAAAAAAAAAAANI+wHQAAYQ7vb9h1+sgDoUPfc+Djna96Nmnx8srmGwa+FDpkeX6PtOfF0ouDu93n62pRpacljeHDdRM7rMPX5XdIB/dOX2W7xSujx4Q8E50yZrKxxpfCi5OV7XLqKY5Yx6bn4t8GxxuDdVGtltNBfka2Cm5aK8J2+3Y27PrN/X8TOvSVQ98vbUxDlU8T8ntjH9ymwG5MZonHb86lb2j/QgAAAAAAAAAAABDLXPznVQAAklu2umHXrx38dOjQXzx0c2glrU4wy9ZUtq8a/IZMUGwY89rBW6XF5TDKvIXuE7aosp1ZuaFh39ET27V17MmG/VvGn9Yx40+XAnpRQZg2BWXMOa+OHrRiXVuubWNOOb+yfcroT2PNrQmOdfcoF4zZB7eqmuFMsvnEhl1r8rucU9IqTF9oth1a0SI1CBp2XTX4jdChlf3TEVj0+f5OWrO5feuIw2PN5twrI8cAAAAAAAAAAACgs+bgv64CAJCcufLGhn2/cPizuvHQZ2r2/eXLv6NTxh6Z3opYJ5wtSVqdf1n/svMdSgX5yqHTRx7QR/f8vsxpF0qSzHkR4Y1WVo6ruydG0r/teLuW5fdW9i3L79UtL71NRpI5/ZLo67crGHbJ9ZFDzImvaM+1bS78ucpmVFCsXlq1YTujxtDUpLCA5qwXEvaUpLcc/jfrFCrbNTI3/q+GfZcM36kP7P2zmn3X9n9Z7znwd6UX03APzYZj/cde8vo2rsSf2XKKzLs/ah/wupukV725cwsCAAAAAAAAAACAlxb0lwIAYA7K9TbsSqmof9j1K/r9ff9Hj3afqFeM3KdVhXJb1ukM6WzdJj12nyTpLf3/rlcN3aYf9J6vtRM7dProA0qpKKUzfutsZZjtuDOkh35Qs+vUsZ9q+9PH6a7ecyVJ5w/frd6g3OK0OzdtbWRNV5eCo06Qnn3MPijkmWirqs+qJ7C3gQ2TDqaqtJmIzzw4uC/+2mY6S4W600Yf1L8uDA8w1bTenel8Kjy2oo3s/MZKmEbSh/b9id5x6J90T88rdOLYYzp+/GeqrGi67uFr3iZ987PR4zr9PXYwb3qPdOkbpYfvkoYHpInx0v075Txp7dEyM6TlLQAAAAAAAAAAAKYQtgMAIEy2O3S3kbRlYru2TGyvPTCd7SfrKpMtK+zXtQNfqR0zGbyJWmcrw2zzFoTu7g1GdMXQdxoPpDPR129n+CSkZWaNToeIcvMqmwuKA7GmZoIJKVtab/DS01qZ320du37ixebWN5NZ2iWngoJ1ysvpVdLEU+1aUed1taCNrOOZX5/fofUDX2w8MF0BMcvvTYMZFqg0y1ZLl75hupcBAAAAAAAAAAAAT7SRBQAgzKYT4o2fxgCHWbY2etA0VLabbF3rbdMJ0UGddrWRlaS1m93HO/wZm6rA59LCgVhz08pPBUYP79f6/A6dOPpow7j1Ey9q29hDidY5E5mlq0L3nzb6oHXOuMlKB/daj88qXV0yrfiunHJe/Dkbtia/bhPMaRf5DczOrLAdAAAAAAAAAAAAZhfCdgAAhOlbFG98dhor2513ZfSYSmW7iBaKraxsd+WN8cYvWOJx/fZVzTI3vNc9YJpDOpvHt0cPKksHeZl0tvSiHBL8yJ7fV644UjVmQh/b/XttvKMzz9bxp63HjAKZS6/v4GoSiAqltqKFrCStiQighlmysjXXjuvc1/qNm84qpAAAAAAAAAAAAJj1CNsBABDCpDNSKkYbxukMYs3rix5TCdt1sLLdgiVS32L/Cd09Utc0VrZbvcl9fDpCOsefWdl83cDXvKelg7yUqQ3bvXroNt377AX68J4P6oN7P6x7nn2lrhv4ckuXO6OEVCpMyd5G1iiI97zOZC0K25muLmtLbatcRKC3TUy2W+aDn4keOMPayAIAAAAAAAAAAGB2aVHZCwAA5qBMt1QY9hybae9aXKKq1UlSuvyf/FznwnaSpEXLpIGD0eMyWZmuLgVRFbtaWXmvXlRIaDpCRJmpoFN3MOY9La1CpXWw2bBVQXn/ieOP68T9j7dyhTNXpjEk1hUUrcONgrkTxOqKERSOkumWxv2fvWkNHvctjB4zTWFAAAAAAAAAAAAAzA1UtgMAwGbUM2gnSTuead86oixdFT1mMgCz9mj3uHVbkq+n2p6X/MZNBqOiwnRRYbwkFiyxV7dbsV5avKJ917YZ6q9s7sis9Z5WU9nuyl9o9apmh+caQ4WRle3mSovRVoZmq57BSKm0THoa/395tp7m/o1Yf4zMvAWdWw8AAAAAAAAAAADmHMJ2AADYrFjvPdSc/7o2LiTi2sZ4tEAthe1M2l2BL+p4bNe/y2/c5HWjQkJtbCNrjJF583vDj93wm6X73GHm2ndWtl8z+C3veSlNhe3MsjXuwRdM37PbVpe+oWFXKogI22VnS9gu6lls4bO6Yav/2GmuDGgWr5Be83b78Z//zQ6uBgCA/5+9Ow+z9KrrBP49VdV7d/ZOOk12spBASAiLgbAm7MhiDMIICo4OoojKICMgIIoo4jrOiKKjgDqgoiCLgmwyLBKWsCRsIfva2ZdOr9VV9c4f1Z2u6rrvvbdu3aXq1ufzPPepW+d33vf8qrq6q5L7rXMAAAAAgGEkbAcAdZ50YftzDz+6d320obz4Nc0nDCgEU855YnsT94XtWh4T29vAW/mRl6e86T3JuU9Pjnlgcu7TUt7wrpTnv7Kn69Y69WH3Pz1s8q62LxurJpKxlfsHmu3Kd/zpnXS26JWHnjdnrOnOdlU12CNQu6mbodTHP6/9uYvgGN7yq3+e8vK3Jg89b/rv8DEPTB79jJRf/9uU5/63QbcHAAAAAADAEjfAc54AYJGbT3Bk0MdPtgoJDaq/dj+H+4JhrXaP6+HOdvuUp7ww5Skv7Pk6bZmx09qaamfbl806RjZJ1qxL7q6Z3IfP6UA0+NprubPdIgiLdUUXd2Esq9akanfyIvj8ldHR5EW/kvKiXxl0KwAAAAAAAAyhIX11FQC6oOUuazMMOmRy7CnN66vX3v+0vOqPG8+58OVdbGivY05ub97Y3vx/q+DXfP5MhsGMkOQp41e1fdlYDtjZ7uZr6iePjHbS2eLX4O/ESKaaX7NyZfP6YtEyTNfFHSBb/dsy06BDxwAAAAAAANBjy+wVawBoX3n009ufPOiw3emPaF6f2d9jn52sWT+7PjKScsELut5WOaLN43XbPUa2izt2LQkz/tw2T2xp+7KxanJ2cOy4U+snD+vOdg8+d85Qs2NkRzK1/+twqevmn+kPPbX9uavWtp4DAJMLjsUAACAASURBVAAAAAAAS9iQvroKAF1w5DHtzx1w2K6MjDQPCs04ZrYceUzKH30sOeWs6fDaMSenvPn/pjz0Mb1prp3P4/1hu8EfI7uoHPB1tWnilrYuG6tm72xXnvXS2rllSHcLLGNjybqDZo81m58qGR2SsF03j5Fdf/D0McTtGHToGAAAAAAAAHpsOF9dBYBuWD2PXZpWLoLjE486tr62ctWsd8uDH5WRv/5Kyifvycj7vpPypAt719dhR7Wesy8Y1iL4VZbxznZJsmni1rYuG8tEsmLGznbNvpaHOcDYbEe/A5RUw7OzXTePkU2SU89pb55jZAEAAAAAABhyQ/zqKgAs0JoN7c9dDCGTJ13UePywTbUhtdKPvm+7qfWcfSGnYQ5+deKAEOcNYw9o67IDd7bL+K7audXkREetLQk3Xd321Ofc95GlE7br9w6Q7f47sRhCxwAAAAAAANBDXtEGgBplbKz9yStWtZ7TY+W8ZzUunPfM/jZyoEM3tp5z/zGyfjSZqRwQmjps8u62rhurJmbvinfqw+on7xnvpLWlYee2OUM/ffe75owdNXFrHrfji0snbNdKt3eAbPd42Jm7KQIAAAAAAMAQ8oo2ADTz7P/a3rxFEDIpDzk35RfePjtoc9ZjU17xu4NrKkm58OdaT7o/bLfMjoltx/Nfef/TX7z7T9u6ZCwTs3cjO7TJUb4TQxy2a/C193u3vTaP3fGF+98/fOKOfPiGCzOaKWG7Ou2G7UaH5PMHAAAAAAAANeaxZQ8ALD/lyGNTtTNxbPBhuyQpL/il5Bk/kXzny8nmE5PjTqs9QrZv1qxrPccxsrXKxs33fw2un5q7U1sjc3a2W9Vk58Xx3Z03t9itXjtn6KCp+/If1z01P1h5Su4YPTyP3HlJVmbPdHFYwmLd3iHSznYAAAAAAACQRNgOAJobGW1v3iIKmZSDDkse/YxBt7HfuoNaz3GMbL2JiXlfMpbJZOWMne3WHVw7t2w+sZOulojGQdOS5LTxK3JarphdGG3z7/ugtQrQdjtg2+7nZVh2BgQAAAAAAIAaXtEGgGZOe1h780bl12ud9djWc+xsV++Io+9/etruH7R1yVg1MSsAWg4+PDn5oY0nn/u0BbW3mJW6j7mRsRWD3wWyW7r8YZQHPaK9iWP+HQQAAAAAAGC4eUUbAJo57ZzWc1asHJ6QTg+Uee1s5/M4xwmn3//06IktbV2yotozZ5ex8kt/mKxZP3vii16THHfagltctB78qPbnDtOubN3eIfJxz2lv3iI5ThsAAAAAAAB6xfYTANDMqjWt5wiYtHbokcndt9XX930OHSM714yvwTXVrrYuGa0mktEDwnZnPy5591eT//xYqnvvTDnnicnZjxvuoOjqte3PXUJhu1JKquYTurvg2g3tzVtCn0MAAAAAAADohLAdADTTTthuhbBdSytWNa87RrbejMDY6qn2wnZjmWgYfCqbT0ouekW3TxldvFbNI2w3TEdBdzts1+6/cYLHAAAAAAAADDmvaANAE6Wd8JeASWvHtziqdGxf0GnZxMDat+n4+5+ur7a3dclYNSG4mKSsbBHynGl0iHZl6/IOkW3vfmhnOwAAAAAAAIacV2EBYKEETFoqL35N8wl2tqvVVuDzAGOlGu7jYefj2FPamzdMf4978Wd/0GGtl7XLJwAAAAAAAEPOK9oA0Mo5T2xeXzFEIZ1eOfvxzev7dgfs8o5cw+jNt/9myzljI1UfOlkayjN+sr2JY46Rber8i1rPGabAIgAAAAAAADTgFW0AaGXl6uZ1x8i2VEZGkmZHetrZrm1rpna2nDNWhO3ut6rF3999hiko1ovQ6qo1reeMDlFgEQAAAAAAABrwijYAtHLCg5rXm4XI2G98d31tX9DJ0aeNPe459z990PjlLafb2W6GE05vb95Qhe26//eoHHpk60mOkQUAAAAAAGDICdsBQAvlyS9oPmHV2v40stRtPrG2VPbuDliE7RoqT3/x/c/P3/7ZlvPtbDdDqyOM9xldYmG7Zn9XevH36Ek/2nrOMAUWAQAAAAAAoAFhOwBooZx2TvMJ7R5TucyVH391fVFIp6ny+Ocme3cWW1Ptajnfznb7lZWr2jueeJi+BntxjOym41vPcaQ2AAAAAAAAQ07YDgAWatWaQXewNDT7PI2O9q+PpeqZL2l7qrDdAY45ufWcoQrb9eAY2ZGR1kdmD9PnEAAAAAAAABoQtgOAdpxydn1t4+b+9bGUTU3Vlqqd2/vYyBJ15y33P/2hHV9uOnVMdnG2yYnWc4YpKNar45jHdzevr7CzHQAAAAAAAMNN2A4A2lBe+fb62mOf3cdOlrBmx/FOTfavjyWqnPCg+5+/4Y7faTp3rEdZqyXrEee3njM21vs+uqlZoK4Xx8gmybGnNK8PU2ARAAAAAAAAGhC2A4A2lIc9IXnWS+eO/+xvpZz79P43tBStP6i+Nils19KJZ9z/9BnbP9F0qmNkZysvfFXrSaNDFBTr0c525ZW/13zC6BILLAIAAAAAAMA8eUUMANo08tp3pvrF308++ffJxgckZz8uZe2GQbe1dKxcXV+zs11rB3z+ztj93Xx31RkNpzpG9gCr17WeM0y7svXqGNkNhzavO0YWAAAAAACAISdsNyCllJOSPDLJI/a+PSfJzMTGdVVVndDhvRe6nc2JVVVdu8B7AAylsnZD8tz/Nug2lqYmwcRy6tl9bGSJWjM7MLZ1pH6nwLER58jOsq7Jror7DFXYrkebVx/UImw3TJ9DAAAAAAAAaEDYro9KKU9M8rpMB+wOG2w3ANBfZdWaVGc/Pvnm52YXRkaSRz1lME0tJSc+eNa7N644pnaqne1mK2vWpeVvIiy1oFiz3et6tbPdsac2r69a05t1AQAAAAAAYJHo0bYX1Dg7yVMjaAfAMlV+6Q+TQzbOHnv1/0o5yLfGllavnfXui+59b+1UYbsGfvTnm9dHh+h3UHoUtiulJI98cv2EVWvrawAAAAAAADAEhuhVxSVtd5IbkzywB/f+cpIXzvOaG3vQBwCknHxm8jdfT778yeS+u5JHXJBy4hmDbmtJKCMjs3Zn2zRxS+3cMb9OMUd58A+l+ud31E9YajvbNdOrY2STlEdekOqrn2pcXLW6Z+sCAAAAAADAYiBs1397knwnydeSfHXv28uSnJfkP3qw3q6qqq7twX0BoCPl0COTp79o0G0seaPVZG1tbLRHx4guZWvWNa/fc3t/+uiaARwjmySHbaqvtfocAwAAAAAAwBInbNdf70ny51VV7TqwUHr5oigAMHS2jWyorY2N+blijgf/UPP6zu396aMfevlz5aOeMn3/qpo9fvTxyeFH925dAAAAAAAAWAQcMtZHVVXd3ShoBwDQlp96w/1Pn7z9M7XT7Gw3Vzn0yOT8i+onTNbvFLjk9PIY2UM3Jhe94oDBkvJTb/TLIwAAAAAAAAw9O9sBACwR5REXpHrXbyVJ1lQ76ueNjvarpSWlvOFdqT7zT42LkxP9baaXehx6K6/8/eSUs1Nd/PFkzfqU8y9KedRTeromAAAAAAAALAbCdgAAS8WqNfc/XT1Vv1luNbKiH90sOWXFylR1xakltrNds0Bdr8N2pSTP+ImUZ/xET9cBAAAAAACAxcYxsgAAS8WxJ9//9KG7v52xas+cKaPVRM5au6WfXQ0HO9sBAAAAAAAALQjbDb/jSinvKqV8p5RydyllvJRy6973/66U8rJSymGDbhIAaK2s3ZAcMx24O3hqa16w9f1z5ly09QM5eOUS26VtMRC2AwAAAAAAAFpwjOzwO3HvY6Yj9z7OSPKiJH9YSvnLJG+sqmpbL5oopRyZZOM8L3tgL3oBgKWsvPHdqX72sUmSv7z553LExB350IbnpErJc7d9JG+79deSsZ8bcJdLkGNkAQAAAAAAgBaE7UiSdUl+OckzSykXVlX1nR6s8fNJfr0H9wWA5WXdhvufrsye/MFtr80f3Pba2XPGVvS5qSFgZzsAAAAAAACgBcfIDq+JJJ9N8oYkz0lyTpJTkjwsyXOT/H6S2w645tQknyqlHN+/NgFgtvKytzQuPP3F/W1ksTr86NZzhO3qPfS8hsPlZ36jz430UPEjPgAAAAAAAPSCV+KG0xuSPKCqqidVVfXWqqo+UlXVN6qqurKqqm9WVfXhqqpek+T4JG9LUs24dlOSD5RiSxQABuSJP5KMzt18tzzxwgE0s/iU9Qe3niNsV6s8+QVzB9esTx7+pP430yt+jAMAAAAAAICeELYbQnsDdgfuWtdo3q6qql6X5JUHlM5J8l+63NY7kjxkno/ndrkHAJaAcuwpKW95X7Lh0OmB1WtTXvG2lPOeNdjGFpOTHtK8PipsV+t5L0te+Kr9u/8dfnTKH3w0ZcMhg+1rvpoF6oTtAAAAAAAAoCfmbhvDslNV1Z+WUp6a6eNm9/n5JO/t4hq3Ze6xtU3ZXA9g+SqPe07ymGclN16RHH1iyspVg25pcTnyAcnV366vj/kRr04pJeUVb0v1029KbrsxOfaU4fuZwzGyAAAAAAAA0BNeiWOf3zng/XNLKUtsixcAhkkZHU05/kGCdo0cfETzumNkWyqr16Ycd+rwBe0SO9sBAAAAAABAjwjbsc9Xktw94/3RJGcMqBcAoInyyCc3nyBst7wJ2wEAAAAAAEBPCNuRJKmqairJ9QcMbxxELwBACxc8v3l91DGyw69JoM4xsgAAAAAAANATXoljpp0HvL9mIF0AAE2VsRXJC3+5foKd7ZY3O9sBAAAAAABATwjbMdMRB7x/x0C6AABaW72uvjYqbDf0mgXqhO0AAAAAAACgJ4TtSJKUUo5IctIBwzcPohcAoLWyem19cZXNaYdes90LHSMLAAAAAAAAPeGVOPZ5YWZ/Pdya5HsD6gUAaGXV6s5qDIexlfU1O9sBAAAAAABATwjbkVLKUUnecMDwR6qqqgbRDwDQhpXNwnZ2tht6K4TtAAAAAAAAoN+E7YZIKeW0Usqz53nNpiQfTXLUjOHxJL/Tzd4AgC5rtrOZsN3wW9HsGFlhOwAAAAAAAOiFsUE3sNyUUo5J48/7pgPeHyulnFBzm21VVd3RYPzoJB8upVyW5O+SfLCqqitq+tiQ5CWZ3tHuqAPKv1VV1dU1awMAi8Hpj2g8PrYiOfGM/vZC/zULW476ER8AAAAAAAB6wStx/feFJMe3Me8BSa6pqb0nyUubXHtmkt9N8rullHuTfDvJHUnuS7I+ybFJzkrjP/+/qKrqLW30BwAM0gmnJ2c/Pvnm52aPP+1FKesOGkxP9E+zY2RHm+x6BwAAAAAAAHRM2G74HZzkvDbmbU/yqqqq/rLH/QAAXVBKSX73g6ne+YbkK59IVq5OHvfclJf+2qBbox9WrKqvjY72rw8AAAAAAABYRoTthsv3kvx2kickOSfJmjau+UGSdyf5y5qjaQGARaqsXZ/yqj8edBsMwrZ76muXf71/fQAAAAAAAMAyImzXZ1VVndDDe9+a5NeSpJQykuSUJA/M9JG0hyRZnWRnkruTbEny1aqqbu9VPwAA9MhNV9fXrry0f30AAAAAAADAMiJsN6SqqppKcvneBwAAAAAAAAAAAAswMugGAAAAAAAAAAAAYLETtgMAAAAAAAAAAIAWhO0AAGCpueDH6muPfkb/+gAAAAAAAIBlRNgOAACWmPLEC+trL39rHzsBAAAAAACA5UPYDgAAlprHPzd55AVzx897VspJD+5/PwAAAAAAALAMjA26AQAAYH7KyEjyB/+aXHlpqrf9bLJzW8pb/j7lgQ8ZdGsAAAAAAAAwtITtAABgCSqlJKeclfJXFw+6FQAAAAAAAFgWHCMLAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALYwNugGArtt9Z7LjxmRqT7LhlGTlwYPuCAAAAAAAAACAJU7YDhgeu+9MPn9RcttnZ4+v2Zw8+4pkbO1A2gIAAAAAAAAAYOlzjCwwPL7wgrlBuyTZeXPyxRf2vR0AAAAAAAAAAIaHsB0wHHbdkdz6mfr6TR+ZPlYWAAAAAAAAAAA6IGwHDIcdNySpWsy5sS+tAAAAAAAAAAAwfITtgOEwuXPQHQAAAAAAAAAAMMSE7YDhsPX7redMjfe+DwAAAAAAAAAAhpKwHTAcrvuH1nPu/Frv+wAAAAAAAAAAYCgJ2wHDYfXG1nOqyd73AQAAAAAAAADAUBK2A4bDTR9tPefilyS3/2fvewEAAAAAAAAAYOgI2wFL35X/J9lzb3tzP3lecvPHe9sPAAAAAAAAAABDR9gOWNqqqeTSN87vms8+oze9AAAAAAAAAAAwtITtgKVt29XJrlvmf1011f1eAAAAAAAAAAAYWsJ2wNK2577OrttxY3f7AAAAAAAAAABgqAnbAUvblo93dt11f9/dPgAAAAAAAAAAGGrCdsDSVVXJt17f2bXf/NXu9gIAAAAAAAAAwFATtgOWrq2XL+z6nbd2pw8AAAAAAAAAAIbe2KAbAGhq27XJHf+ZrD0mSdk/PjWeXPkXC7v3+F3JmqMWdg8AAAAAAAAAAJYFYTtgcdqzLXn/hs6vf9jvJZe9OZnYXj9nYlvn9wcAAAAAAAAAYFlxjCywOH1w08KuP/1XkqdenJz4k/VzLvuNha0BAAAAAAAAAMCyIWwHLD7VVPMd6VpZdfj020Mekpz77sw6fnamWz/T+RoAAAAAAAAAACwrwnbA4rNn68KuP/jB+5+XkqRqPG/FAo6pBQAAAAAAAABgWRG2AzpXVcn3/yj56BnJBzcnF//0wnak23fP775tYfc46b/Ofv/IJzSet+u25J+PTLZ8YmHrAQAAAAAAAAAw9ITtgM5d/ifJ1/97svV7yc4tydV/nXzuwgXe838m3/3dzq5dcVDyqHcmJ71k9vgZr6u/ZvftyX88Lbnjy52tCQAAAAAAAADAsiBsB3Tu6r+aO3bLJ5Lt13V+z6v+T+fXPvuK5OSXzR0fW9P62mv/rvN1AQAAAAAAAAAYesJ2QOfuuazx+JV/0dn9qiq59zud97PikMbja49tfe2tn+18XQAAAAAAAAAAhp6wHdB9u+/o7LrJXa3nPPxPGo8f+fhkdGXj2voTk0POWvjaAAAAAAAAAAAsW8J2QPdtu6az6675m+b18z+ZnPoLydFPm1t7/IebX/uEDzWvb7uyeR0AAAAAAAAAgGVtbNANAEPolk92dt2lb6ivPet7ycEPmn7+pI8ne7YmN/1rsvG8ZN1xre+97vhk3QnJ9mvr50yO1++OBwAAAAAAAADAsmZnO6AzU5P1tZWHzv9+E9ubHz+76vDZ7684KDnhv7QXtNtn87Oa1+/9Tvv3AgAAAAAAAABgWbGzHdCZqd31tTI6//vt2VZfG1mRrN44/3se6AHPTq740/r6xPaFrwEALA+7bktu/niy9XvT7x90WnL0M5I1Rw22LwAAAAAAAHpG2A7ozOSu7t2rmkr+9fT6+mP+b3fWOfopyckvT67888b1yZ3dWQcAGG73fjf59PnJrltnj6/amFzw6eSQMwfTFwAAAAAAAD3lGFmgM90M2932+WT87vr6xsd2Z50ykjzyHfX1yR3dWQcAGG6XvGpu0C5Jdt+efO0X+98PAAAAAAAAfSFsB3RmqlnYrprfva55T/P62Lr53a+ZUqZ3nWlkws52AEALU5PJ7Z+rr9/xxWRyvH/9AAAAAAAA0DfCdkBn7vhKfa2aZ9ju6nfV18Y2JCsOmt/9Whld03jcMbIAQCvVRPMdfqf2JFO7+9cPAAAAAAAAfSNsB3Tme79bXxu/q3vrPKzJOp0aE7YDADpUTbUxZ7L3fQAAAAAAANB3wnZAZ5rt6DIfu+9sXj/+x7uzzkx2tgMAOiZsBwAAAAAAsFwJ2wGdWXV48/rE9vbuc8unmtdHV7V3n/kQtgMAOtXWznZtzAEAAAAAAGDJEbYDOnPQg5rXd9/R3n12bmleH13d3n3mQ9iOxWZqcvoBwOBNTSYTO5LJ3cmercme+2bXHSMLAAAAAACwbI0NugFgSE20GVzbc2997YzXdqeXA42ubTx+3xW9WQ/qTOxMvvYLyY0fnA5mPODZySP/PFmxftCdASw/E9uTf6z593f9Sclpr0pO+4U4RhYAAAAAAGD5ErYDOjOysnm93V3iLntzfe3s32m7nXkZq9nZ7vr3J1N7kpEVvVkXDnTxS6a/7va59v8mu+9MnvSxwfUEsFzVBe2SZNvVySWvnA5DP+DZre9173eTtQ/oXm8AAAAAAAAsCo6RBTrzyHckL2gSqGsnbLfrtu71Mx/Njn+7/Qv964Plbfze5IYPzh3f8vFk5y397wdgOWv3Z5Kr39PeMbLX/f3C+gEAAAAAAGBRErYDOjeyKklpXGsnbHfvd7raTttu+VR97Y4v968Plrf7rkiqica1u77e314Alrsb/6W9eVu/194Rsde8e0HtAAAAAAAAsDgJ2wGdKyUZXd24Nrmr9fXbru1qO23bcHJ9bWq8f310w84tySX/PXlvmf349lsH3RmtTO2ur7UT5ACge/Zsa2/erluTfzuz9bxqKvn3RycTbfzyAQAAAAAAAEuGsB2wMKNrGo+3s7Pd9mu72krbDj27vrb9uv71sVC770w+9YTk8j+aW7v0Dcmlb+p/T7Rv+/VNatf2rQ0Aknzj1e3P3X1He/PuvDj5x7XtHTsLAAAAAADAkiBsByzMUgzbNXP9+wfdQftu+Ofpo0jrfPst/euF+bvyz+trV7+rf30ALHe72gzPderOr/T2/gAAAAAAAPSNsB2wMCvWNx7fdWvra5vtInfkEzrrpx2bf7i+tvExvVu329p58b7dY/Hov7qgapKs3tS/PgCWu7su6e39v/v23t4fAAAAAACAvhG2AxZm3QmNx5vtuLbP1u/V105+WUfttGXzM+prO27s3brddvO/tZ7zyfOS95bpx1denmy/ofd90Z77rqyvVXv61wfActfOLwgshJ3tAAAAAAAAhoawHbAwG05pPN4qbDd+T7Lrtsa1VYcnx71gYX01M7oqOfxRjWv3fie576rerd0tl/56snNL63n3XLr/+ZXvTD50XHL3N3vXF+2Z2Jlsa/J11s4xzAAs3K47kotf0ts1dt6UTO7q7RoAAAAAAAD0hbAdsDCdhu2++7v1tfM/k4yMdt5TO5qF+b79lt6uvVDbr0++/ZudX//N13evFzpz1f9pXp8QtgPoiyv+rHn9se9PzvuH5Jw/Tk55Refr3Pihzq8FAAAAAABg0RgbdAPAElcXtttxYzKxIxlb27jeLIy3/oQFt9XSioPqa7d+uvfrL8St/7Gw67d8LKmqpJTu9MP8bbumeX1yR3/6AFjubvpI8/pxF+1/vvOW5Io/7WydWz6dHN/DXXsBAAAAAADoC2E7YGHqwnbJ9DGZh5zZuLbnvvrrmgXhuuXIx9fXxu/t/frt2LMtue59ycT25KDTk/G7p8evfOfC7z01Pn2cLoOxp8XXmGNkAfpj25Xtz12zafrnnla79zZy3XuTR74jGfGfXwAAAAAAAEuZV3uAhVl3QlLGkmpibm3rD+rDdrd8ovH4EY/pWmtNHXRqsu74ZPt1c2sT9w1+57cbP5x87rm9u//kTmG7Qbr7683rjb4uAeiu8bv3B9kbWfOAuWNnvy35wgsa/9zTzMT25O9XJD/8g+SgJr+oAAAAAAAAwKI2MugGgCVuZCxZf2LjWt3OL7d/qf5+xzxn4T2169z31Ndu/GD/+jjQ+D29DdolyS2f6u39ae7ubw66AwC21AT/91l/0tyxYy9MnvLF5IxfTY69aPpxxuuSp301ecGu1mv+64M66xUAAAAAAIBFYaA725VSSpLXJFk9Y/hvqqq6doH3PTHJT8wY2lFV1e8v5J5AE3VHqtWF7W7+aP29Rtd0p6d2jK2rr93wL9MvqA/CTR/p/RpbPpEcd1Hv12Gudnet23V7snpjb3sBWM46OQ42SY541PSjkTN/M7nsTfXXVlPJ9huSdcd2tjYAAAAAAAADNehjZH88yduSVHvf/8BCg3ZJUlXVNaWUM5Pcn5QppVxdVdUHFnpvoIENpyb5t7njdS9i79xSf6/DHt6Vltpy8On1tWbHyvXSrtuTb76us2uPe35y/fvbm1vt6WwNFm7nLe3N23Z1suqIwR5nDDDMJnZ0/56HndN6zl1fFbYDAAAAAABYogZ2jGwpZSTJb+57N8kVSV7SxSVemuSqvfcuSd7axXsDM204pfF4Xdjuhia518PPXXg/7Wq2s92O6/vXR5Jc/e7kvSX5wJHJzpvmf/2Kg5Mzf6P9+RM7578G3THZZrjjE+cmHzouueKdve0HYLnac0/373nU+cnBZzSfs6OD7/MAAAAAAAAsCgML2yV5cpITM72rXZXkdVVVdW17iaqqtid57YyhU0sp53fr/sAMdWG7Xbcke7bOHrvnsmTPvY3nn/iTychod3tr5cw3Nx6/59L+9XDb55KLf2p+16w+Mll9VLL2mOTYi5ILPjO9U98Ldidrj2t9/fX/0FmvLNxlv9l6zj47bky++vLpY40B6K4r/qz79xxbk1zw2eZzLvnF6eNkAQAAAAAAWHIGGbZ78Yznl1RV9cFuL7D32NhLZgy9qNtrAKkPc8IFfwAAIABJREFU2yXJfVfOfv/6f6qfu3pTd/qZj2a72239QX96uPrd85s/ujq58NbkwluS592QPO79+4+tG12ZPO+65Mer6ccZv9r1dlmg2z47/2uEIwG6a3K8d/devTE58onN59x1SfM6AAAAAAAAi9Igw3ZPn/H8r3q4zr57lyTP7OE6sHytPTYZWdm4duBRsnVHyybJhgd2r6d2rW+y5oFBwV65+l3zm9+s5wPt3NJ4fPWR81uT7hldM/9rrvv77vcBsJzturW39z/mec3r/foZAwAAAAAAgK4aSNiulHJ8kiNmDH20h8vNvPeRpZRje7gWLE8jo/UBsAPDdduvrb/P5h/uWktt2/SU+trk9t6vP7l7/tcc/8L25x7x6Mbj43fPf10WrqqSyZ2D7gKAdv4tLqXz+x/z3Ob1+exYOrkr+davJR9/RPKhE/c/PvzA5PMXTR9HDwAAAAAAQF8Mame7s/a+rZJcVVXVTb1aqKqqG5PM3Dri7F6tBcta3VGyl75x//M9W5M7vtR43sbHJms3d7+vVlasr6994cd6v/7nL5rf/NNelTz49e3PX39S4/GpPfNbl+4QtANYHLZ+v7f3X39Ccv6n6+s3fii5/v2t71NVyecuTL7z29NHz26/dv9j29XJDf+cfOapAncAAAAAAAB9MjagdTfOeH5zH9a7OcnJe587OxF6oS5sN9PNH6+vHXVB93qZr1Ubk923N65N7kpGV/dm3a1XJDe32Njz6ZckZTQZW5esOz4ZWTG/NZodWXrvd5ODz5jf/ViY2z4/6A4ASJKr/qr3a2w6Pzn0Ycnd32hcv/xPkuOe3/weWy9Ptnys+Zyp3ckVf5Yc+fjO+gQAAAAAAKBtg9rZ7tAZz2/pw3oz1zikD+vB8tMs1DU1Of32rq/Vz1k9wBxsXdAumQ6k9cpdl7Sec9g5yaFnJRtOnn/QLklWH9Vk/ZoX/+mdbVe2ngNAH1Stp5zwEwtfptnPN3d+tfX1zX52mu+9AAAAAAAAWLBBhe1W9rmHmWus6sN6sPwc8ej62tSu6bc7mpwYvfnp3e2nWyZ39e7e93yreX3zMxe+RrMdB6d6+LHRWC+/ngBo39R48/rIita7zrXj6Gc06WF3sv265tff3uaOqNuuar8nAAAAAAAAOjaosN2OGc831s7qnplr7KidBXRu3bH1tW3XJrtuT657b/2c9Sd1vaW2Hf6o+tonz+vNmndcnHz3bc3nnPvuha9TSpMevrTw+zM/l75p0B0AkCSTO+trIyuSx/5TsvLgha9z6s8na4+rr3/ohOTe7zeuXf/PyZV/0f5a3/jVebUGAAAAAADA/A0qbDfzWNfj+7DezDVu7cN6sPw0O0b28j9OrvrL+voDf6b7/czH6Orm9Z09OO36W29oXn/hnmR1l7LIhz288fhVf9Wd+9Oe8XuSSXlvgEVhoiZst/G85MLbkmOe0511RlYkT/hQ8zn/+aK5Y1WVfOPV81vre29Ppibndw0AAAAAAADzMqiw3b5zjkqS40spJ/dqoVLKA5Oc0GBtoJtWHFRfu+ey5NbPdnZtPxx1fvP65X/c3fWqqeS2/1dfP/KJychY99ab2tO9e9G527846A4A2Gdye+PxY5+frDyku2utaLFD3t1fnzu2/brWR8w2cttn538NAAAAAAAAbRtU2O5bScaTVHvf79LWEQ09b8bzPUm+2cO1YPlafWR9rZpM9mytrx/1pO73Mx8P/Onm9S3/3t31Jncl1UR9vdufj7owY+lioI/Wmv0dAKC/xu9uPL7y0O6vte6E5kfJNtLp94yr/trudgAAAAAAAD00kLBdVVXjSf5fpne2K0n+RyllXbfX2XvP12Q61Fcl+dzetYFe2PzMxuN3fS2588v11216am/6adfaY+qPWk2S3Xd1d72JFkeJnvLy7q532i83Hq8m7HrXT5f9+qA7ACCZPqJ1952Na6sO6/56pSQP/5/N5xz4s8FkzTG3rVz33uRfNid77uvsegAAAAAAAJoa1M52SfK+vW+rJBuTvL0Ha7wtyZGZDvQlyXt7sAawzzE/Mv9rHv6/ktGV3e9lvp7w0frajuu7u9bNTdZ62lea7xLYibXH1teu+ZvurkVjd38zue+KxrW1xw5+d0eA5WRyRzJV8/s3Kw/vzZrHPq95/Yo/n/3+fT+on/uw32t+r123Jd9+S3t9AQAAAAAAMC+DDNu9N8mWvc9LkpeXUl7frZuXUl6b5BXZf1TtrRG2g94aXTP/a1Ye3P0+OjHSx8DfrZ+tr63Z3P31xtbW127+ePfXY66r/qq+trIHuygBUK9uV7ukNzvbteO6981+f+v3G88rY8mGU1rf73stAnkAAAAAAAB0ZGBhu73Hub4u00G7au/bt5RS/r6Ucmin9y2lHFJKeW+St864b5Xk9Y6QhR5rdhRr7TWP7H4fnWj14vpdlyTj93ZnrWqyvtaLsN2GU+trE9u7vx5z/eB/19fu+Vb2b8AKQM+NNzkevpcB6Ic0OU78vitnvz+2rvG8aiLZ9NTu9QQAAAAAAMC8DHJnu1RV9TdJPpTZgbvnJ7milPL2Ukob2zZMK6WcXEp5e5Irkrwg+5MLVZKPVFX17m72DjRw8IPmf81Bp3W/j06taLLL3scfkfzTIcmnnpCM37Owda79u/pa6UHoqtkxvXd8qfvrMT8n/dSgOwBYXnY3C9t1/Ds/rZ38M/W1Pfck3/md6edVlVz2G/Vzx9Ykh5zV3d4AAAAAAABoy0DDdnv9RJKvZXbg7rAkr07y/VLKjaWUD5RS3lpKeU0p5b/tffxKKeW3Sin/XEq5Icnle685/IB7fT3JiwfwcQGtbP7h3oTLOvXIP2s957bPJV98YedrXPu++tppr+r8vq2c9dbG43vuSfbc17t1aW3jeQsPcALQvjv+s/H4ioOTkbHerbv2mOSCz9bXv/X65OaPJdf9QzJVsyH30U+ffvuMbySbn9V8vakmO+kCAAAAAADQkR6+mtSeqqq2lVIuSPLuJD+S6ZBcsn9nus1Jnrv3UWdmWmfm9R9K8pKqqrZ1rWGge1YeMugOZhtd0968Lf8+vStOq6NnG7n+H+prY22u34nRtfW1LZ9IjvvR3q1Nc6Nrkru/PuguAJaPu2r+zV11eO/XPvJx0//uT+5sXL/+H5OdW+qv3/ezSinJEz6SvK/J707defF0oBsAAAAAAICuWQw726WqqvuqqvrRTO9MtzP7d6bb98jesUaPHDC3JNmV5H9UVfUjVVVt7dfHAczThlMH3cFsB82jnx3Xd7bGtqvra738fDS7d7Oe6L31Jw26A4DlZdURjcf78f2wjDQ/Anbb1ck9l9bXZ/6sUsr0bnx1tl83//4AAAAAAABoalGE7fapquqPkhyf5K1J7snsUF1V85g555691x5fVdXv97t/IMkZr21/7nEX9a6PThx0evtzP/aw5NPnJ9e/f35r3HNZfW3zM+d3r/k46kn1tbrddei5Las35C93/7+87syn5jVnPT1vOeNJ+cADzsiesqi+PQMMl7suaTzebBfYbjr5ZfW127/YfGe7435s9vunv6Z+rmPiAQAAAAAAum7RvZpfVdWdVVW9McmmJI9P8sYkH0/y7SQ3J9m997Fl79i/J3lTkickObqqqjdWVXXHIHoHkpz9O0kZbW/uwfMIt/VDKcnpv9L+/Fv/I/nCjyXX/WN78y//3/W1016VrN7Y/trzNbYmWXdC49r3fq9361LrzpVr8oennZdvbPtS7l25JtvHVmXLmoPyqU2n5K9PfMSg2wMYTtuvqz+6+6SX9KeHk16arD22ca2arL/u4f8zOeyc2WMPfn39/K++fN6tAQAAAAAA0NzYoBuoU1XVniRf2PsAlpInfSL5zAWD7qIza4+f/zVXvCM5/sfamNckbLfxMfNfd74OOTPZfu3c8YltvV+bOS459AHZPraqYe1bhx6de1asziF7dvW5K4Ah1ywg36+d7UpJHvKG5Cs/O49rxpJTfr7xvQ57eP1ufTu3JGuO7qxPAAAAAAAA5lh0O9sBQ6CdF3XPfnvv++hEJy9I3/2N1nMmdyVbL6+vr940/3Xna3J3k5pQV7/dsPbgpvUb1xzUp04AlpFm37PX9OF78T6r5/nzRjWRjNT8nlSze91Vs4sfAAAAAAAAHRG2A7rvoAcl609qPuekn+pPL/O16cnJSOPdxmrt2Zrc8MGkqurnTOxofo8jzp3fmp3Y+Nj62uTO3q+/nB0+9893fKT5cctVKb3qBmD5avb9bvOz+tfHpvPnN3/9A+trD/jh+tp9V85vHQAAAAAAAJoStgO6r5Tk8R+q363tEf87WX1Ef3tq18qDk8f/y/yPkvv8hcmlb6ivT2yvr537nvrdarrpuOfX1yaE7XqqQbBuvMWfeRVhO4CuqwvbrdqYHHx6//oYW5cc8tD25z+kyc8YD/yZ+tp3f7v9NQAAAAAAAGipD+kOYFk65CHJ865P7vxactclyR1fSg59aHLKK5IV6wfdXXObn5786B3TPU/cl3zuee1d9923JQ/678mqw+fWbvts/XVHPbGTLudvbE19bcoxsj3VYGfDVjvbTfWqF4DlrC5sd8rP9bePZHonvXsubW/uygY/W+wzMpqc/LLkyr+YW9t12/TOu3ZLBQAAAAAA6AphO6B3RlYkGx89/TjtFwbdzfyMrZk+4m1yHiG0aiq5/T+TY549t3bfFfXXrTh4/v11YmR1fc3Odr01ftfcIcfIAvRf3fe70SaB9F5Zecg85rb4WWH1UfW1nVuStZvbXwsAAAAAAIBajpEFaGZ0dbJmHi9QT9zXeLyarL+m1Qvo3WJnu8GY3JVsv37OcMuwXa/6AVjO6na2G0TY7qjz25s3ti45/FHN52x8XH1tYlv7PQEAAAAAANCUsB1AK0/4cPtzG4SqktTvpLNiHrvaLFSzIMH43f3rY7nZdnUaRefGR5pvLmtnO4AeuPfbjcebBdJ75bCHJ6e22Pm3jCSP+NPp8H/Te51TX7v9C/PvDQAAAAAAgIYcIwvQymEPT553Q/KN1yQ3/1uy6anJDf/UeO63Xpc8+LVzx+t20tn05O712UoZm37RvpqaW/v+H/e3l+Wk5gjh1jvbCdsB9M0gdrYrJXn4nyTHPC+59bNzd8ddvSnZ/PTk0LNb36tZ/1/+6eSB/3VBrQIAAAAAADBN2A6gHWuPSc573/73/+2s5J5L279+MRxbV0pSViTV7rm1bVf3r4/lZvt1DYfHRx0jC9BXe2qOek+mA+mDUEqy6YLpx0K02vlux43TP8sAAAAAAACwII6RBejEnq2Nx8fWNx6f3FEzf213+mnXVIOgXVLfNws3sW3O0GRKJkvzb8FTjpEF6K7xe+pra47uXx+9UEaSDafU13ff2b9eAAAAAAAAhpiwHUAnTvulxuMT25Lxu+eO1+2m0+9j6zY/s/H4tqv628dyMjF3V8NWR8gmjpEF6Lq64HuSbDi5f330ypm/UV+baPKxAwAAAAAA0DZhO4BOHPaI+toX/8vcsS0fbzy332G7Y57beHz8rv72sZxc+7dzhtoK28naAXTX5X9SX+v39+NeOP6F9bVr/qZ/fQAAAAAAAAwxYTuATow1eVF+y78ne+YeHdpQv1/cb7be9hv618dy0uDoPjvbAQzAzR+rrw1D2K6UZHR149pt/9HfXgAAAAAAAIaUsB1AJ9a3OG5u1y2z3x9b13je7tu600+7mvW94/r+9bGcHHLmnKHdo2MtL6t60QvAcja6skltCMJ2STK5q/H4ikP72wcAAAAAAMCQErYD6MTKg5Ojzq+vT+zY/7yqkontjecd9aTu9tXKET9UX5vc2b8+lpM9984dausY2QN2tqumutURwPK09fLG4+uOn94VbhisO7Hx+J0X+z4CAAAAAADQBcJ2AJ167Pvra9//g/3Pp8br560+qnv9tKM0+Wd/QtiuJ+797pyhdo6RnTrwGNm63YoAaG3nlvraWb/Tvz567Yz/UV/7RpMaAAAAAAAAbRm6sF0p5eGllItKKc8upbQ45xFgAVYeUl+75m/2P9/e5HjWQRxbt+rwxuN2tuu+8XsaDu9ua2e7Awa2XdWFhgCWqRv/pb5Wd9T7UtTs54or/0KwHgAAAAAAYIEWbdiulLK6lHLSjEfTZEIp5TmllGuTfCXJPyT5lySXl1K+UEo5ow8tA8tNs13iZtp5U31tzdHd6WU+6l6It3Na9937vYbD7exsVx24s92OJl9HADR3zd/W10ZW9q+PXlt7TH1t4r7kviv61wsAAAAAAMAQGht0A028Oslv7n1+Y5IT6iaWUn4syXuTlL2PmR6T5MullCdWVXVJD/oEaOy9JTn83GRqd/2cxRS2237N9Nvxu5Mr/iy565Lk0IclJ788WX1E//obJlONA4x7Rlp/+50Tthu/qxsdASxP93y7vtb8d3qWlo2PTVYclOzZ2rh++R8l576rvz0BAAAAAAAMkUW7s12S52V/cO6vqqqqGk0qpRya5J3Z/7HMnFftfaxL8oFSyuoe9QrQ2J0XJ3d/Y9BdzDZa80/hZW9Otl6efPr85Fu/ltzwgeTSNyafflKyW9CrIzVhh46Okb33O11oCGAZ2rN1ele3Ou3uVLsUjK5Kzv9Uff3qd08/AAAAAAAA6MiifGWplLImydnZH5z7aJPpr0xy8N65JcnNSf5Xkj9Kcn32B/aOSfKLvegXoCOD2NUuqd/ZLkk+9yPJ3d+cPXbvt5Pr/7G3PQ2rLZ9oODy+Yn3LS+fsbHe1nYgAOnLDB1tMODDdvMQd/shk05Pr6xf/VP96AQAAAAAAGDKLMmyX5Mwko5l+5Wt7VVVfbzL3xdkftLs8yUOqqvqlqqpevfc+X907ryR5ac86BpanQ87s/NqVh3avj3mte1h9bev3Go9//dW96WXYrdjQcHi8Gm956dSB2Y9DzupCQwDL0O1fHHQH/bfh1Ob13Xf2pw8AAAAAAIAhMzboBmqcuPdtleS7dZNKKQ9KcnL2Hxf7pqqq7t1Xr6pqWynllUku3jt0Winl2KqqbuhN28Cy84h3JJ96XGfXbnpKd3tpe90nJ1s+Pr9rJnf0ppdhV001HB5v5xjZA3damtzVjY4Alp+7vtp6zrA55nnJFe+or3/r15K1xyalJBlp8bbsPWq3nbcNrq+bW3efbq5d10u792t37Vm9AwAAAAAAw2yxhu2OmvF8S5N5+xIuJcl9SeacEVVV1VdKKTdm+hjZJHloEmE7oDs2ntf5tQ9+fff6mI+Tfzb5xq8MZu3lZuvlDYfH125ueemcsN2Bx/sC0No1f7s8//3cdEHz+pXv7E8fy1Kr4N8ggoMLCBA2DEEu5TBkN8KlbXwM7X4svfja6PjPZ99bAAAAAACaWaxhu7Uznt/XZN6+lEuV5NNVVU3UzPt29oftjltgbwD7lZKc+ebksjfP77ojHp2sPrIXHbW2Yn1y1lund7Wht276cMPh8ZUHJZlseml14Gude+7pTk8Ay8XURPKlnxx0F4NRRgbdwTJWJVWVZGr6v1JhqVmMQcyFBhIXtMPmIglDzvfPpR9/PvMN/fb8a0NYFAAAAID+WKxhu5n/h2xFk3mPmfH8803m3Tnj+UEddQRQZ+0xreccaPVRref00uja1nPomfE2Xgeas7NdMn0srQAFQHvu+NKgOwBYeqqpvW+b/2IILE49DmJ2uitl13fYnMfHNNAwZJc/lnmFS7v8sfTq8zlrPgAAALBULNaw3czd7BomUkopm5KcPGPoP5vcb+bH6f9eAN21+Znzv2Yhx892w+iawa6/HFRVUkYbvlA5XlpvdTNnZ7skmdyVjAlKArRl2zWD7mCwNpya3PeDQXcBAH1U7f/vL7uLsuS0Cv51KUA43+BguztsDnIH1Hl9TB18LIsxKNvTHWXne799bwEAAJaPxRq2u2nv25LkzJo5M9Mtu5N8vcn9DpnxfPsC+gKYa83RyYkvSa55T3vz15+cnPDi3vbUyuGPGuz6y8HUntodQcbXHJVMbml+eaNs+MQOYTuAdu24YdAdDNZj35987KxBdwEAQFscRc8StxiDmI6ib39uP/98OgqX9vJrQ1gUAID5W6xhu0tnPD+slPK0qqr+/YA5P7X3bZXkK1VV7Wlyv5NmPL+lGw0CzHLuu5JDH5Z8/Zdnjx/28GRs/fTzkZXJEY9OTnl5smZT/3ucqZOd7e79XnLw6d3vZVjtqv92M15GWl7e8BjZq/4iefDrF9IVwPJx6RsG3cFgHfrQ5Bnfmh24G12bHHZOpl/Mndr7gu7e5+28nXVd3dt53K/VfQAAgKXBUfQsaT0OYna6K+Vi3mGzb2HIJR6U7dXnc9Z8AGAQFmXYrqqqq0opV2T6mNiS5B2llCdXVXVNkpRSXp1k5hmMH6q7VyllfWYfN3tVD1oGlrtSkgf90vRjKRjrIGx300eE7eZjyydqS+P5/+zdd5xkVZn/8e+pzmF6ch4mAkPOSJYM4ioIKiAmzO4aWVdXXVcU/RlWMaBiREURQQyYkBwEhjggzMBEYHLOMz2d6/z+qO7p6up7Tt1bdau7wuftq19ddc655zxdXV09Uk8/T/b/8BjYRnbNX0m2A4AwOraFX1vO/2Fy9BHSFSWctGYDEv2yJe/FmjgYJYEw4LpsZ2d+jvPsuJIhoz6eeX8tEb6mqM+NbN+XuL8/AAAAAEqEFa3oUbqyJf7FlAwZNXGwIBU2SzEZssgSZWlFDwCxKcpku14/k/R1pf5pO0vSYmPMc5ImSNqvd9xIapd0k2efM3rXSVK3pBcKFC8AlI6GqdGvqfR2fFF173ZOdSqZ9fLAynb8dTAAhNO2Lvxay39JL1rGSKZquKMAcrMvGW8YkyFDJQzGlAwZNXkx1wqbsT+eMXwtxZgom+1ryroPAAAAgNKQ/v8BhjsWIAexJGLGnTiY575DVmGzgMmQsSbKxvS15JRcGvPjaKp61wPFnWz3XaVaxc5V6p8HNZKOlfZlH/T+10F9y1q72bPPxWnrn7PWdhQmXAAoIYlqqWWutGtJ+GuWfl/a+pR05FekSWcVLrZy0b3XOdXp7XyeYoP+oqenNZ+IAKBybLh3uCMAUOn2/Qc9SSJpFCVmQLJokSRDDnlyaYivIVKFzQhnh/oahisRM+LXEulriuu5xrvMAAAAQMno+4Mvik2gFJz+d2nqa4c7ChSJok22s9Z2GmPOl3SnpL6+hUap/2LS+1+t9QdJV7v26G0h+0b1/1eW+woWMACUmmO/Jz1wXrRrtj4hPfha6fwnpNFHFiaucvH854LHx5+mzhB534H1JHa+mFdIAFARdi6Wnrkq/HraFQAAMNCAZFGgBJV6MuSQVdiMkigbcb+oiZhD+bVEfW6E/Zri+v4AAAAAKE68l4A0RZtsJ0nW2tXGmKMkvVvShZJm9E4tlnSztfaPWba4UlJL2v2/xx4kAJSq6qbcrkt2SCtvIdnOx9OS0NaMUGeyPfsWrne2kj1SguooAOC06tbhjgAAAADDiVb0KGWDkvGKIBmSVvTh9i2HRNm8vz8AAADljBay6FfUyXaSZK3tkvTj3o+obpD067S9dsYVFwCUvKbpuV/74teko74aXyzlpsfdQranp0NJ1WTdwrr+OKJzq1Q/IcfAAKACRK0COvqYwsQBAAAAAFHtqy7KG3koQbSiD/c1Ra2wWRaJmDl+LaG+Lzk+N2hFDwCIisp2SFP0yXb5sNa2SWob7jgAoCg1ThvuCMpXt/tXT+eU8yTNy7qFs7JdD7/WAMBr3R3h105+jVQ7snCxAAAAAABQKWhFj1JXrq3oIyWXxpzYGenxzCERM7ZE2bi/lghfk/e5FeFrAVB4/EEM0pR1sh0AAMOie5dzqnPy2dLGEMl2rr+O8CTyAUDFW/MXqXtPuLUTXi2d/JvCxgMAAAAAAIDSQCt6lLJcWtEXOhmykFUp86qwGXMiZlm2oh/q70+p4C8K0I9kOwAA4rb+HudUZ8i/enD+HRKV7QDA7cWvu+dmXymd8HOpfaMkKzVMHqqoAAAAAAAAAKBwaEWPUjagFX2RJEMGzY06bGgfFxS1kky2M8ZMkzRb0hhJIyQZa+2vhjcqAChBM66QVt483FGUn/aNzqnO6rpQWyRdfx3RvimXiACg/FkrbX3cPT/muNR/dGqYNHQxAQAAAAAAAAAAtwGt6KkwitJQMsl2xpgZkq6SdKGkGQFLBiXbGWNOk3Rm793t1trvFS5CAChB09+Ue7Ld9uek0UfGG0+5SHYNGuoyCb3QMkH3bw3XstC6KhHvWS7p/NxjA4Bylezwl5yfdN7QxQIAAAAAAAAAAICyVPTJdsaYhKQvSfqkUmmsQekHrm57WyR9oW/eGHOHtfalAoQJAKVp6oW5X/uPo6RTbpFmXBZfPOVi1+IBdzsSVfrRnBO0pGW81PZCqC2sq7Ld8h9LB34o3wgBoPzsecU9N/NtUssBQxcLAAAAAAAAAAAAylJRN+02xtRIulPSpxWcGOhKsktNWrtI0gPqT9C7ItYAAaDUJaqkA/JI3Hryg4FV3Cre6t8PuPvUmGmpRLsIrHEk2+1YkGtUAFDeFnzBPXfoZ4csDAAAAAAAAAAAAJSvok62k3SDpHN6b1ulkuYelnSNpM8puMpdpj+k3aZ3FABkGnV47td27ZC2PRtfLOXCVA24u3hEtEQ7KUs2+d61kfcDgLK39Un3XHXz0MUBAAAAAAAAAACAslW0yXbGmLMlvU39SXYvSXqVtfZ0a+0XJP0m5FZ/79tS0vHGmPq4YwWAkjbjskHJYZF07YgvlnKRkdSxt7om8hbONrKS1MljDgCSpGSPtPVpaccL/kqrjdOGLiYAAAAAAAAAAACUraJNtpN0de9nI2mlpJOttU9H3cRau1JSX1ZCjaSD4gkPAMpE7aj82uv98yKppzO+eMpB184BdzsT0ZMZk642spK0/q7I+wG0xh1nAAAgAElEQVRA2dm9XPrrHOmu46U7DpPaHFU/p10s+V5TAQAAAAAAAAAAgJCKMtnOGDNG0slKVbWzkj5mrd2Sx5Yvpt0+MJ/YAKAsHf5F6bQ/SdPfLFU1RLu2p11a/M3CxFWKkj2DhnJJtvO2kX32E6nHHQAq2cNvlFpXZl83592FjwUAAAAAAAAAAAAVoSiT7SSdqlRsRtJma+1f8twvPVFvQp57AUD5MUba7w3Sqb+TLtsb/fo1f40/plK1e+mgoc5EdeDSyyd+UKeMPDdwzmarwrTpn5FDA4Cysfslacfz4dZGTSIHAAAAAAAAAAAAHIo12W5y72crKXLr2AC70243x7AfAJS3w6+Jtn7X4sLEUYo6tg4aclW2qzV1Mo5fxd7KdpLUtj5iYBH0tEtde6TutsBKfQAw7KIkHI86onBxAAAAAAAAAAAAoKIUa7LdmLTb22PYL72cRVcM+wFAeZv5FqlmVPj1XTukvx0krf5T4WIqFT2DKwN2uZLtEnUyjgp2Vlkq2wWck7e2jdLNRrq1QbpthPS7RumWaumJ90vJ7vjPA4ChUD9+uCMAAAAAAAAAAABAmSjWZLtdabdHxLDfxLTb22LYDwDK24j9pXMekKZdLDXNkiZfIE06x3/NriXSI2+WNj82NDEWqz0vDxpyV7arVcJV2S5bG9mFX44cmpe10p8mBc+99FPp2U/Gex4A5CPba2Sfo68tbBwAAAAAAAAAAACoKMWabLc57fYB+WxkjKmSdHTaUAH77gFAGRl9lPTqP0oXvSydeYd01j3SGXf6r7E90srfDk18xWrTQwPuJpWlsp2jgl2y78bYE4PPaVuXW3wuO1/0zy//ES1lARSRkMl2NS2FDQMAAAAAAAAAAAAVpViT7Rb0fjaS5hpjpuWx1wWSGntvW0mP5xMYAFS05tnZ1+xaUvg4ilnjwF9ZrkQ7Sao1njayfeOdjoKsibqcwnNa/hP/fE+71L4x3jMBoNCaZw13BAAAAAAAAAAAACgj1cMdQBBr7SJjzFpJU5VKuPuEpKui7mOMSUj6bN+2kp6z1u6ILVAAqDQtIYqN9rQVPg6fjQ9Kj18pta7sH5vyWmnmW6WZVxT+/K49A+66WshKfZXtHG1k+25MPl/avXTwgmSHZJOSySNvvnNHqh3tpoekbU9nX7/9WalxSu7nlbuND0gPvEZKdvaPjTpcmniWtPWpVLLqgR+SxjmqFQKI3/jThjsCAAAAAAAAAAAAlJFirWwnSb/p/WwkfdgYc24Oe3xFUvo72j/NOyoAqHSHftY/v/nhoYkjyIZ7pfvOHJhoJ0nr7pDmvVVacl3hY1j+owF3vcl2xt1G1vaNz3iL+6z2ze65bHo6pPvPkRZfGy7RTpIeep20Z0XuZ5azDfdK9501MNFOknYskJZ8V9oyT1pxk3Tf2dIWiuwC+QvRRnbaG6Sq2sKHAgAAAAAAAAAAgIpRzMl2/ydpl1LFfaok/dkY8/4wFxpjxhljfinpk+ovDrRB0s8LECcAVJbmOdnXJLsLH0eQbMl0i76RqgZXKG2D26z6ku1qEp5ku742stUN7vPW/DFSeANsfEDaNj/6df/6VO5nlrPF3w23rmevtOyHhY0FQMroo4c7AgAAAAAAAAAAAJSZok22s9Zuk/RRpcpWWEn1kn5ojFlmjPmqpAvT1xtjXmWMebsx5teSXpL09t5rjaQeSe+y1maUmwEARFY/IfuaPS8VPo4g6+/yz+9dI7WtK9z5K349aKgrS2W7hKMN7L42snWex3vXkgjBZdj6ZG7Xrbot9zPL2aYHw6995VcFCwOoGCZEZbv68YWPAwAAAAAAAAAAABWlergD8LHW/soYs7+kzymVd2AkzZGUWVbHSHos475Nu+Yz1tq7Cx8xAFSACWdIiTop2eFe091amLO3PJ5qCVs7JtUesHnmwPnMFp5BOrZJjdMKEp5aVw8a8raRTdQ6K9sl+xJJGqe4z+vxfA+y6dmb+7UYrHvPcEcAVJgQyXaTzy98GAAAAAAAAAAAAKgoRVvZro+19vOS3iWpvW+o93N6Ql1fUp1JW2MkdUp6p7X2m0MWMACUu5pm6dRb/WvmvS3+dq3LfyLdfZK08EvSM1dJdx4jbXs2bf5n4fbZ8Xy8cWXhSrarUrWqTLWM41exTU8kGX1U8Oab/5l7YLm0kO3TviX3a8tR24bhjgBAkObZwx0BAAAAAAAAAAAAykzRJ9tJkrX2RkkHS7peqaS7vgwEo4FJdn1jSUm/knSwtXZwTz8AQH6mXSRdstk9v2uRtO2Z+M7raZfmf2zgWOd26bnP9s53SE9/ONxez38uvrhC6EgEF5GtTdRKkoyjFaJNvzP2hODNd76Ye2Ab7nXPjTjAf+1LP8393HK0+NvDHQGATA2ThzsCAAAAAAAAAAAAlKGibiObzlq7StKHjTGfknRq78d+ksZKqpW0RdJGSfMk3Wet3TFcsQJARagfJ9WMlLp2Bs9vfEAae1w8Z63+YyrhLtP6O1Oftz3tb2ubztTEE1OQgMQ6V2W7WlOXCsfRCtEaI1U3997xVAm0ScnEmDu/35uk026Tbva0aNz4gHToZ+I7s9RtenC4IwCQyfYMdwQAAAAAAAAAAAAoQyWTbNfHWrtX0t29HwCA4TThdGntX4Ln/vUpac3t0kFXSdMulhxJZ6HsWOCf79oVfq/2jbnHkU3duEFDXa5ku0Qq2S7hbCMr6djvpu7UT3Sf2dMhVTdEiTIlURecoFhVn/o8533uCnauBMtK1d0a/ZotT0pjj5cclQ0BZJPlZyfg9RgAAAAAAAAAAADIV0m0kQUAFKnDr/bPb5knPfJm6ZZqqX1L4eLwtUTN1L1bWv6TwsTRvWfQkKuyXU1fZTtXG9makdL0S1N3pl3oPrOnLVqMUqoanqsS4Iy3pD4f9VX39VuflHo6o59bjnrapZ0vRL/u7hOk34+Wkl3xxwRAOuzzwx0BAAAAAAAAAAAAyhDJdgCA3I05Rhp1ZLi1f55emBiS3dLib0W75skPSLuWxB/Lsh8NGnK2kU3428gmRx4i1fS2ka1pcZ/Z10o3ii2Pu+fqxvR+Hisd9TX3uqXfj35uOVr0zdyv7dqZ3/VAJctWFXLUEUMTBwAAAAAAAAAAACoKyXYAgPyMOizculwqsO3jSarY+kRuW677R27X+dSMGDSUPdnO0UY2PZGkqtF95ob7wsfXZ90d7rmqtJa0DVNz26OS5Ps4PPfZeOIAKk6W/xtTlUN7bQAAAAAAAAAAACCL6uEOIApjTI2kkySdJmmOpDGSRkiStfbsYQwNACrXmGOlFb8JtzbZIyWqUq0ze9oDk9MC+SoYtW0It0emvWtyu86ncZrUunLAkDPZzvgr21nZtH09SW+2O1qMktS1yz3XMrf/9phj3et2vRj93OHUtUvqCGhlnOySqkdIjVNy2zfX51+6vWtSiY3ZKnUB6FdV556rGy817jd0sQAAAAAAAAAAAKBilESynTGmSdJVkj4saXzmtJSekTDgurdI+n+9d7dJOt5aG7gWAJCj6ZdKz/xnuLWbHpRW/0l65cZUpbsJp0sn3yw1TMz9/Mff5Z5rmCy1rQ+eW3yt1L1HOu77UiKmX4cBSWzuyna1kiRjHJXtbLL/jmONJGnnC+Hj69O9xz1XVd9/u+Ug97q29dLNRjr/KWnscdFjGCptG6V5b5U2PSClP6ZBzn5Qmnh6+L3X/FlqfSWv8CRJt++XStQ8+pvSjMvy3w+oBJseds/N/WgqsRsAAAAAAAAAAACIWdG3kTXGHCFpvqQvSpogby/BQf4qaaykmZKOlnRu3PEBQMXzVV3LdP850rIfpJK9bI+08X7poX/L7/zu3e65i1b5r13+Y+lfn87v/HQ7Fgwa6nQk8vVVtkuEqWwnSXM/HnzmtvlSMmJ1u5d/ETw++8qB942RXvUT/153HS+1B1SMKxYPXyxtvC97op0k3XeG1JrlOdNn+7+kh9/knj/5t9JJvw63l5SqbjfvCmnL4+GvASrV3rXSkm+75w/9n6GLBQAAAAAAAAAAABWlqJPtjDGHSHpI0gEaWMHOKETSnbV2j6Tb0obeGHeMAIA8bZsv7X4p/n1bDk5VrJv1Tv+6lbdIcRQ9dSRzdTmqK9UksrWRzdivutF99uZHs8cXRlXT4LHaMdmvW3dHPOfHbeciactj0a5Z85dw61b9wd/Ct3akNOtt0nE/CH+2TUorfxd+PVCp1v7VPVc3npbMAAAAAAAAAAAAKJiiTbYzxtRL+pukkWnDCyS9R9JsSQcrXJW7P6fdPju2AAEA/ea8J7/rX/5lLGEM0Lkt9XnE/v51bWulZEf+5wW0kJU8bWR7K9u52sgmMxMAmz1fx54IyYrJLvdcT+vgsWyPnyQ9+4nw5w+lHc9Hv2ZtyGS7Pcv9833fr5YDo50f5XsJVKrdnp+/5jlDFwcAAAAAAAAAAAAqTtEm20n6qFLtX/uyDa6TdIy19hfW2hWS2kPu80DvHkbSLGPMhJjjBAAckmcrVtuTZUEOVYqmvDb1eb8QRU07d0bfP1NPW/DWrmS7rJXtMpLtpnra7ToS/QI54pQkTQk4Y9QR2ffsKNI2shvuzeGae6T2zdnXbX3KPTfmOKnlgNTtCadLjdPCn+/7/gBI2bXYPTfj8qGLAwAAAAAAAAAAABWnmJPtPqL+RLvbrbUft9bRo8+jt5XsirShg2OIreQYY2qMMWcYY95hjPlvY8yHjDEXG2NmDndsAMrAiP2lU24p4AE5JNvt/4HU55EHS+NP9a99+OLo+2eKmmxnIraRrffkij9zVfb4+qy6zT3XEvAr0hjpjBBtYvesCB/DUGjfJL30s9yuve8MqXuve37Py/4KdGf8vf92okY65yFp7Inhzt5wT7h1QKVq3yyt+7t7fu5Hhy4WAAAAAAAAAAAAVJyiTLYzxhwiaar6sys+meeW6e+Iz85zr1gYY2YbYy4zxnzDGPOgMWaXMcamfayI6ZzxxpjrJW1QqsrfjZK+Jun7kv4o6RVjzKPGmBClnwDAY8Zl0hVWuniddNHK8MlFUiqhK241aV3Ip17oX7vlMWnvmvzO2/Zs4HDWynaONrKDKttJ0riT3Oe3rffH12fRN91z1Q3B480hfnWu/G2484fK6j+652rH+K/d+aK04T73/LIfuecOu3pwYmTzbOn8x/xnAghnzZ/dc3PeW5jfJwAAAAAAAAAAAECvoky2k3RU72craaG19uU899uRdnukc1WB9VaWu8sYs1WpBMBbJP2XpNMljSjAeRdIWijp3yX5MgtOlvR7Y8xNxpimuOMAUGEaJktN0/2JYUMSx8S025Oyr9/2TH7n9QRXQstW2S7hqmxnA5Lt6j1fhyPZb5D2Te65unGO8fHZ9902P9z5Q8X3/TzgP7Jfv91z/aJvuOdcj6EkHfW17Oc6ki8B9PL9bPpeIwEAAAAAAAAAAIAYFOs7uunv6i+LYb+OtNuNMeyXq6MknSd/4lssjDFnSLpdUnp5HStpvqTbJN0jaUvGZW+V9FvjKrMEAFFM/bfwa1/4ihSUXJarCWdItaP77086TzLBSW/75J1s1x443JWtsp3jV/GgNrKSNPV1nvOD29gOXhccpySppiV4vG6MNO5k/76r/yBtuDdcDEPBkfwoSZr7sRDXh3w8M/m+R3Pem/16m5SSXbmdDfTp3CktvV6a93bpkcukRy5Pvc7uyffvV4qAr8XzlNcOXRwAAAAAAAAAAACoSMWaVFWfdrvDuSq89Gp2u2PYL24dGtjqNi/GmGlKtYitTRt+VNKh1trjrLWXWmvPkzRN0sckpb+r/3pJX44rFgAVbOJZ0dbfdXw855pq6cRfDBxrmCidcov/uoVflDbPy/3ctg2Bw52J6sDxvsp2xtHyMBnURnbWO93nPxui47q17iS0E27wX3vyTdn3v/9cacl12dcNhRW/CR6vGyfVj5NetzjL9Tm2xW2e6Z6rGysd853se3TuzO1sQJI6t0v3nSU9/SFpxU3Sqt9Jq26Vnvsf6a4TpB0LhjvC/Lxyo3tu/DBXVAUAAAAAAAAAAEDZK9Zku/SKa55+bKHNTru9NYb98tEl6V+SfibpA5KOVaqFbIhyN6F9UVJaSSfNk3SOtXZR+iJrbYe19jpJl2Zc/5/GmBkxxgOgEhkjNe8ffv22+c6EtVDmflw69xHpsrbghKfpb5LetGPweLoFV+d+fkACiJWnjey+ynauNrIBle0SVVLz7MHjktT6itSeWbA0g6/aW8tc/7XNs6TLO6VJ5/rXzf+Y1BNHnnwefM+jvoTFlrnSZR1S7/dhkL2r4q222Oegj0lv2iZNv8y9Zu2f4z8XleOVm9ytVju2SC98dWjjiVPQ62KfMBUrAQAAAAAAAAAAgDwVa7Jd37vkRtLR+WxkjBkr6eC0oeX57JenGyW1WGuPtta+z1r7E2vtM9ba2PrFGWMOkJRe+qhT0pXWWmffQGvt7b2x9amTlEfGCQD0ap4Vbf3SHwSPO6q/7TP2BOnYb0vjT5EcleQkSbUjU2tdNj2Ue4JVQLJajzFKOmLfV9nO2UbWEUfNyOBxSdryqD/GHQvdc9XN/mslKVEjTbso+7r1d2ZfU0ibH3bPpT9+VbXSrHe417aujC+mdLWjpWOudc/n29IYlW3TQ1nm/zk0cRTCbs8/4xO17jkAAAAAAAAAAAAgJsWabDdPUl/pirHGmIi9CAd4t7SvbFCrpKfzCSwf1trtvqS3mFwhKb2M0h+ttctCXPf1jPuXGmPqA1cCQFhT/i3a+vV3OSayJNtVNYQ/Y+KZ7rlkl5TsDL/XAIN/pbqq2kkhKtu5ku188Xdl6ZTe0+aeG3mo/9ow5/fZtSTcXoXiexwmZfyTYuyr3Gv3BCT2JHtyiylT41T3nO2O5wxUpvaN+c0Xs27Pz/b4U4cuDgAAAAAAAAAAAFSsoky2s9Zul/RU2tCXjMlW1mgwY8xUSZ9WqpOflXSPDezLV1Yuzrj/izAX9baYfSJtqEnSeXEFBaBCzb5SGndS+PXbnpK6Pa1OXaIk22VrNdi1K/r5ktS6YtBQp6fKXl+yXcLx68356+qgT7hj2LvKPSf5H1tfRcB0LQdnfwz3rg23V6FsuNc9l/l8nPV299plPxo81rHJvf7k3/rjylQ/MXh819Jo+wB99rwibX7Ev8Z2S61ZXiuKle+1ZTL/bAUAAAAAAAAAAEDhFWWyXa/vpt0+UVLAO95uxpiJkv4iabT6SyJ9K57QipMxZpKkI9OGuiVl6Sk4wIMZ9y/INyYAFa52pHTm3dLJv5FGHRHumkWe9pou1RGS7RomSefOc88v/X708yVp5+AWrb7KdjUm1fIwchvZxilSw5Tguef+xx/jlsccwYzyX5fOGOmYb/vXLL0u/H5xs1Za6Uh6G3WkZDIe76o6aczxwetX/0FKZlSZ8z3GIw8JH6ckTcvMj++16cFo+wB9nvr3cOue/VRh4yiUf/23Y8JIVRRkBgAAAAAAAAAAQOEVbbKdtfYWSf/qvWskvdcY87Ax5jTfdcaYJmPMB3uvPUr9Ve3uttZGSTwrRYdl3H/eWtsa4frM7JOQPQUBwKOmWZp5hfTa56QrrHRJlhaGrkQpn90vRVvva+EZY6JTPm1kk65kO0mqn5RbQG3rgseraqPtE6bYrPXEX0gBSY/7VDcGj/uS5LY+OfD+xvuj7++S8DzucbWrReXo6ZA2PhBu7apbpZ5cW2YPoz2O13oS7QAAAAAAAAAAADBEQvaMGzZvkvS4pLG990+R9KAxZoOk5ekLjTE/lHSgpJMk1SmVoGd7P6+V5OkTVzYyswWWB65yy3wHM2KJHgAIoX6Cf37Xouh77ngu2vrGae45m0OSk7WpimkZrV+7fMl2pjfZLrPSWt+W8nQ9d7W6zZZwUuuoYNfuaY2aq2TH8CTAtG92z409IXh8/KnSKzcGz3VsGXi/p8O9f9Msf2yZfEmOPW1Sojnafqg83W2pJNqaEZKMlIyQQLfsemm/N6ZeF2pGFCzEWFU3S53bB4/3tOW1rbVWm7s2qCMZvE9jVZPGVE+QCZNoDAAAAAAAAAAAgLJW1Ml21tqXjTGvk/QnSZPVnzw3WVJ6WR8j6f1pt5W2do2k11lrM94tL0v7Z9xfFfH6lRn3xxpjRltrA97VBIA8zLhCWnmze/7pj0jHfEfal6yWJcGheXa0800i1Yo1qNLb5hyKoCa7BiXaSWHbyAZ/bdZXGW7uR6X5Hx083tPem/jneLxcCSl149xnuZz8G2neW93zHVv8SY2F4ku62f99weMzLpeedMx1ZxSIde0/9sS052tI0y6RFn0zeK6nLVUVEpXLJqW2DdLe1dLeVVJr78feVamx1lVShye5NJtnrkp9SNL0N0sn/ar4K8QFJdpJ0gEfynnLJXsX6Mb139GO7q3edeNqJuo9Uz6pGfWZ/9wGAAAAAAAAAABAJSnqZDtJstY+aYw5RtLPJV3QN5zxecAlSmVlGEn3SHqntXZDwQMtDpkliyKVKrLW7jHGtEtKf6d1pKS8k+2MMRMkjY942Zx8zwVQpI77nj/Zbun3U8lwh34mdT9bNaGmGdFjOOQz0vyPBM+1bZAaIrRq7QxO0thc1xQ4Xmvq9lVIcibb+SrbjTnOPbf+TmnKBcFzy34YPD7Zsd5n5hXSriXSwmuC5x97p3T2fdH3zdeS69xzrnaxNc1SVaPUs3fw3ItflWa+pf++K9nu8M+Hj7FPvefXYts6/zxKX9fuwclzffdbV0lta1KJvENh1W1S7WjpVT8emvNy0bbePTf9jTltuaNrq65f8yV12ewVAbd0bdR3V39eX5lzg+oTDTmdBwAAAAAAAAAAgNJX9Ml2kmSt3Sjp34wxx0r6mKSzlapuF2SnpPskfc9a+9AQhVgsMkvg5NJTq00Dk+3i6iv2H5KujmkvAKUuTPWkVbf1J9tlUz8x3hjW/V2a857we62/J3B4ZWNw29baRN2+2wlnG1lPZTtf7CtvcSfbuVTnmDgy573uZLuN96cShRI1ue2dq82PBI83TPFf17RfKnkw044F/beTPe42nVWN4eIbcI3ncV9/tzT6yOh7ojgku1MJk+nJc3tXSa1pVeq6dgx3lAOt/oN0/A9TlT+L0Zo/u+d8P0seC1qfDpVo16c9uVeLWp/V0SNOzuk8AAAAAAAAAAAAlL6SSLbrY62dL+kdkmSMmS1pP0ljJdVK2iJpo6QXrA3o5VcZMpPt2nPYo03SaM+eAJC/MIkRrSvC73fwJ6PH0HKQe25PhLMlZ9JMc3dwEseenl37bufURtbXNrfD0zW9ZW5wQlnQWBjZqv91bJMackiEzEfDFGnP8sHjQS2D07U6Oq83pOX2+1rU5pLs40sStd3R98PQsDbVzjQzeS79c9u6wNbSRa1jq9S1M1Xhrhj5foabc2vturUrUhFoSdKWHK4BAAAAAAAAAABA+SjKZDtjzAhJs9KGXrLWtqavsda+LOnlIQ2s9HgyNWK9BgCiMUY67H+lhV9yr+mM0MF69NHRYxh3kntuxW+kIz2xZXIkYXUlsleIciXbJX1tZGtHuud8j5srqW7C6e5rfBI10uTzpfV3Bc8HtWUtpKc+HJxoJ0kTz/ZfO+3i4NbG6a0rfcl2uVQHTHj+Gda9J/p+KKyVt0pLvydte8b/XCg2Iw5MJW/uCfHP5t+PkSaeKR3/I6nlwMLHFkXbBvdc/bictuxMdkS+piuHawAAAAAAAAAAAFA+irRPlN4i6dnejycl1fmXo1fmO/O59NTKvCaud/uvl3RYxI+LYjobQDE6/AvS/h/wr1n+sxAbmVTyXlSJKnfCXesr0tq/hd9r1W2Bw52NwR3Pj0lrQWhyaSMrSYd+Nnh8y2PB475ElZaD/Wf5nOD5Hi25Lvd9o3r2U9KyH7jnD/ig//pZb3PPdfcmVnV62n7m2MZSk84JHn/hK7nth8JYdZv06OXS5kdLK9FOko7+pnT2/dkTTvtsfEC69zSpbWNh44rCJqWXfho8N/n8nLftstET5zpsLoWjAQAAAAAAAAAAUC6KNdlunCTT+/GUtXbbMMdTKoo22c5au8la+0KUD0kvxXE2gCJlEtKrfiSdO8+9Zsl3su/TPCv7GpcRB7jnljsSO4Jsmx843FVVHzheY/pzyHNqIytJtWPcc60rB4+t+ZN7vSPOUGpa3HNLhzDZbtE3/PPZkuF88xvuTX1e/4/c93ep9nRr79qd256I37IfD+/5VQ2pNtCTzpXmvCda62yTkJpmSGffG/6a9k3Smtujx1ko255xz9XlVtVOcle2O37E6Tqs6bhI1wAAAAAAAAAAAKAyFGUbWUk7ez9bSWuGM5ASszPj/vgoFxtjmjU42c5TxgcAYtA41T23r+2pp3JdmNaILg1T3HM7ngu/T9OMwAS3rmS7pKZB47VpyXYJR9679bWRlfyxb38+FdOAsX/ltlc2VYO/vn2sTX3kUnkwbtm+Rt/8zgXStNdL3a3uNb7kR5+6se65XUukscEJPxhiUV4PIjOp51/TdKlxv97P0wd+rh0z8OeofUv2BNM+Y9KeQ2NfJW19Mtx1Bf2aIyrQ61eno7JdY1WT82WrI0llOwAAAAAAAAAAgEpWrMl269Nu1w5bFKVnWcb9GYGr3DLXb7PWbs8jHgDIrmm6e852S8keeZPt8jH1QunFrwXPRakqFlRJTlJnzQgpIGmuJtH/q81Z2S5bG9nJ57nnevYGBJOZj51mzLH+s3wSVamEoL2rAiatlOySqgr8qzzZ5Z9v3E8afaR/ja/KYV8bWV/70OocK9tNu1h66YbguVJrV1rOugN+psKqHpFKft2XPLffwGS6xqlSoibano7204EaJvbfPuQz0sMXh7uumJ5/vlimXpjztl3JzsDxGlOrHtMTONdJG1kAAAAAAAAAAICKVqzJdgvTbufRH7DiLMq4v3/E63EHdDMAACAASURBVGdn3H8xj1gAILyTb5bmXRE8t/UJ/7Wz3pH7ueNPkiaeJW28f/Bc5zbJJrMntbQGJZmldDVMlJLrB43XmLRkO0f5JCsra61z3lsR7Yn3STMu67+f7JJW3Rq8duyJqYS5fJx4g3T/ucFzW5+QJpyW3/7ZZKvUdfrfsn8fjZGaZwdXStzdW2Hxha8EXzv6mOwxukz9N/fczoWFf+yQnbXBCax9mmZkVKLLSKarHRl/TGGT7U769cD70y6S9nujtPoP2a99+ZfSib+IHFpBvORp6z3h1Jy3dVW2q03UOauLdtBGFgAAAAAAAAAAoKJFKIsxdKy1SyU9r1QpoyOMMZ4eg0izMOP+EcaYxgjXn5JlPwAojFGHu+cWftl/bVWOFcX6HPLf7rmtT2W/fvmPnVOdJrg6Xe2AynbuX8VZq9u1zA0e794t7V3Xf3/Tw+49xp/sPyOMBs+v6YVfyn//bLI9R0YfEW6f0UcHj6+6TerplGxwpatBLXujqh4RPL7o2vz2RTy6PFUhz3lYumiFdO4/pZNvko76inTAv6eSKEcdXphEOyl8sl3jfhnXGem030uXbJaODtGGtm1j9NjiZq20Y0Hw3PjcE+0kqdOROFdr6lSbqAuc66SNLAAAAAAAAAAAQEUrymS7Xt/r/WwkXTOcgZQKa+16pZIU+1RLivIu5BkZ9/+Rb0wAEErtaPfcjuelak/ecMtBhTt7sydJbd+aR5xTXY7KSLWmP4nD1UZWCpFsV+OL/ZHg24P2GOU/IwzfY7jzhfz3z8aViCNJs94Zfh8b/P3S6KOknZ4zqpvDnxGke0/weKLA7XcRzk5PoV/fc7+gQv4T3tWmu36cdPB/SZMcFSn7bHk0WliFsHeNe87kV5XTV9mu1tQHznU4rgEAAAAAAAAAAEBlKNpkO2vtDZL+rlSy3ZXGmE8Nc0il4k8Z998V5iJjzEGSTkgbapV0d1xBAYBXo6cyWk+bP6Fl2kX5ne2qZiZJXY4kqHTdrc6pzkRwt/aBbWR9le0cyV99Jp3tiSst9u7dnj3O8Z8RRsMk95yvKlhckp3uucOvDr9Pu6OKV0+H1OV5DCefF/6MQI6kSlclPQytnjb33MiDhy6OdGEr2zXP8s9ne/3sHIKf32xcyaiSNO6kvLZ2VrZLUNkOAAAAAAAAAAAAwYo22a7XW5RKHjOSvmqMucsYc+Ywx1TsfiMp/d35S4wxB4S4LrOP4u+stbybCGDoHPjR4PHObf5Ep2zJJNk4EuIkSetDFPjcNj94fMLp6rLBSWA1aRXLEr7KdjZLZbuDrnLPbXm8//bqP7rXjTvBPRfFXEcs3a1S24Z4znDp2Oyei/L8mPPu4PFdi/xnTH9z+DOCHPb54PHdS6VkV357I3++52/YpLe4hTn3lFuzr5l9pTTxLPf8E+8e/uegL9nxwA/ltXWn4zW61tSpLhFc2c6VoAcAAAAAAAAAAIDKULTJdsaYn0u6TtIuSbuVSrg7R9K9xpgdxpiHjDG3GWN+HuHjhuH8moaCtXaZpBvThmol/dIYRy8sScaYiyRdmTbUKemLBQkQAFymXOCee+mnweNNeSba9XFVd9r6pORLePNVfZr5NmeyXWxtZOvGSiMODJ7re8yS3dKel4PXzLgivmShyee7557/XDxnBPFUFtSZd0Xbq95Toe+5/wker26SqoIrYIXWMtc9t+Lm/PZG/hY6/klUO2Zo4xjA/bqxz4xLs6+pbpLOuMO/Zrifg+s9hZbrxue1dZevsp2zjSx/iwIAAAAAAAAAAFDJPOV8ht2VGthXzar/ncUWSadG3M/07vGevCPLgzFmmoIf98x3+KuNMTMd2+yx1m7xHHO1pIsl9fVdPFmpJMX3WmsXp8VSJ+n9kq7NuP5aa+1Kz/4AEL/qJvfczheCx02IhJMwqhrcc7sWSSMPCZ7b+ID7uuomdXYGJ3KkV7bztZFNZmsjK/lb7HZsk3Yvd8/7HvOofHv5kmXytemf7rmoX58veWr3suDxKmcue3i+ODfcI81+Z/5nIHed24PHfVUxCy1bkmyU535VXaod65bHgufX3z28z8HdS91zaa+lUVlrnZXtakytTCL49wuV7QAAAAAAAAAAACpbMSfbBclS4qckPCJpRoh1UyW94pi7UQMr0Q1grV1jjLlE0l1KVbaTpFMkvWiMmS/pZUkjJR0jKbMkyN8k/W+I+AAgXqOPzuGimJLtxp4grbwleK5jq/u6TvecHXuiutb9LnAudGW7bG1kJalpprT1ieC5ji3eGDX+5Oz7hzXG8/3r3BbfOYP2diRCSdGfU6OPjH6+7/kR1lhPK9849kd+qkekfpYytW8a+lj2yZJsN/ZV0bbzJdv5XkOGQsJTOTKPhOtu2y3rSGiuNXVKmKrAuS7bqaTtcc4DAAAAAAAAAACgvBVtG9leJsaPimKtfVCp6nab04aNpOMkXSrpfA1OtPutpMuttT1DESMADFDTLI05LuJFMb28z3yre65tnXtu7xrnVHfTNGcb2JpE2DayISrbzf2oe+5vc6VnPuGen/aG7PuHVd3kTvDpbpV6CtB60VrpMU/FrerGaPtFXS9Js98d/ZpMDZ72tevvlLr25H8Gctfq+NuHAz8ytHGky1bZ7lBH22OX/T/gntuxINpecds2P3jcV9UzhC7rrlBXm6hTnXEn+bkq4gEAAAAAAAAAAKD8FXOy3awCfMwe0q9gmFlr75B0mKQfSfKU/tHjkt5krb3CWts6JMEBQJBTHNXlXOJqI1ufmXuc5tHL3XMLvhA8PvoofyKHSWsj6/lV7ErWG2DU4f75XYuCxxM1Uu2o7PtHcXRmV/I0vqS/XL38c8l2B8+1HJTbnqOOiLZ+4lm5nZPpyP/nnnv6Q/GcgeisJ+F14hlDFsYg2V77Jp0dbb+WA92Jo23rUomtwyHZI217Knhu+pvz2trXDrY2UafahLtFNK1kAQAAAAAAAAAAKlfRtpG11q4c7hgKwVo7c4jP2yTp340xH1OqlewMSZMktUpaK+lZa62rXS0ADK2m6ZKpkkIX2IyxcGndeKljc/Bc997BVc981caqm7yVj2rSku0SnqSZUG1kqxqyrwnSMC2363x8leFW3Sod/4N4z1txs3su18cl6nXVOZ4z6Nwm99yav6SSjhK0rRxy2591z+X6HCtWvkTTnQuzJ/YWgivRTsr78e/0JETXmFpVG3eiZWeyAJU6AQAAAAAAAAAAUBKKNtkO8bLWdkp6YLjjAACvRI006khp+zPh1u9eGt/Z1c3uZLv2TVLzzIyxDe69akapy1P5qCYRtrJdiDayiWqpZa60a0n2tekaC5BsN2J/91zH1lR1rLiqEUrSxvvdc2mPcSQjD5W2PhFtfRxGefbp2iH17JUSI+I5C+G1rnLPxfW9Lxa+52Dr6uFJttu72j038rC8ts5W2c6X7NxhSbYDAAAAAAAAAACoVMXcRhYAUIkOjNAys8pTSS3yuf/hntv86OCxnjb3+jnv9VZNqjV1+24bT3W+ZJg2sr3nRRblcQ6rpkVqmuWeH8rWi/u/L7frZr0j2vqWubmdk2n8q/3zoas9IhatK6WbjfTwJe41TdOHLp6h4HsOtm8cujjS7XjBPTf19Xlt3eWpPlpr6lRHG1kAAAAAAAAAAAAEINkOAFBc5rxbqp8Ubu2My2M815Ow9tjbpD0ZHbef/1/3+knnqCvpaSObXtnO10Y2bLLdQZ8Ity7d9EujXxPGKb91z218KL5z2rIk/0x5XW77TjxdGndyuLVTL8ztjCBVtdIZd7jnN9wb31nw62mX/jzTv6Zu/JCEkpMxx+d2XZWnGuQT785tz3x07pQWftE93zAxv+191UdN7YB235k6aCMLAAAAAAAAAABQsUi2AwAUn4OuCreuqiG+M7PttfoP/betldb82btXp7dqUsg2sjZEG1kp1Zp19FHh1kpSdVO87VzT1Yx0z730s/jOWf4T/3x1Hs+NsImI9fkl+wzSuJ977uVfxHsW3NbdmX2NqSp8HLmqac792ubZ7rmorarztd7zfYihpa2r+miNqZUxRsaYAVVIw1wLAAAAAAAAAACA8keyHQCg+PiSjtLlk1CVKVEr1U9wz+9Y2H/b10JWkhJVzhaF1aZaibREnYSnjWzoynaSNPHs8GvDPr65aJjsnuvcGt85Cz7vn69qyn3vppCPT9yPoy+Ba52n6h3iFaaKW/uGwseRTfP+weOz35X7nr7n9E5PS9dCSH/NzRTDz56rsl1toi7tdnArWSrbAQAAAAAAAAAAVK7q4Q7AxRjzjhi3s5J2S9opaYOkxdbaCBkMAIAhNfn8cOvirGxnjDTtDe6Kaa/cKB1xjdQ0Xere695n/KmS3Ikcma0J/W1kQ1a2k6T9LpYWXxtu7bSLw+8bVa2nst2OBYU7N93Mt0mJPCqPTTonVf2vu9WzyEjTYmwjKxV3tbRS0NMp/evT0pJv94+d85A04dXR9uncHm9chTLtQmnxtwaOJeqkyRfksefF0iZHu+fuLEnGcbJWeuHL7vn9Lsn7CFd1uvRqdnWJOu3pCbjW04IWAAAAAAAAAAAA5a1ok+0k/VKKUtInklZjzFOSbpR0q7X0ggKAolI3Rpr6emntX/3r4ky2k6Rjvu1vT3rPqdK5j0qbHnSvOe4HkuSsbFeT0ZbQ30Y2wq/B8adIx31fevrDnkVGmnG5dPgXwu+bi0P+W3rx64PHO7ZIu5ZKLQcW9vzjr8/v+poW6cy7Ut9vl5N+JY0+Mr9zMmVLtmtb768cWMlsUrr31dLWJwaO33u6dPb90sQz4z2v5aB498vFkV+RWlf1tri2Uu0Y6dTbpPpxue859yPSMx8PnhvKynbz3uqfnx2i+mAWoSrbGUdlO0tlOwAAAAAAAAAAgEpVzMl2fdwlf3LXLOmM3o+vGmPeZa29uwDnAAByNfk1Q59sV90oHfJp6cWvBc/vXS29/EvplV+596gbI0nqSjqS7RIZle08v+aSUXPOD/yQNOe90vq7pZ0LpXEnal/HeGOkkYdKdWOj7ZmLxunuuWU/ko79lns+jLYsLTxrRuS3v5RKXvSZ9bb8z8iULdnulZukQz4Z/7nlYMfzgxPt+tx3lnRFzH+/UdUY7345xVAnnXab1L5FalsrjTwsv4qOkmQS0shDpJ0vDp5b9kPpqK/kt38YHduklb91z898a+r1LE+uhOjMynZBOmkjCwAAAAAAAAAAULGKPdku/Z006xjPlPluatBamzY3WdI/jDEftdb+IHqIAICCCJMUVohWftnO3TJPalvjnq9JtVEN06JQkozxVLaL0ka2T1WdNO31qY/hUjvGPbdlXv77b3k8/z3CmHyBtP4fg8fHnVSY8zzPBUnxPHblaqieE31mvX1oz/OpH5dfNbtMrja6ha5I2Wfrk/553+tLBKEq2yUcle1oIwsAAAAAAAAAAFCxijnZ7l29n0dI+ryksUolxyUlPS7pKUmrJO2SVCtpjKTDJZ0maVLvtVbSrZLulNQgaZSkQ3rXzNDApLtvG2MWWWvvL+hXBQAIZ+JZ2dcUopXjpPMkeaqHrb/Tf31vVbU4KttFaiNbTCZ5vnfdrfntba2/4uGYY/PbP92BHw5Otpv7sfjOGCDL9zvfx66cJbvi26uqQepp86+Z/c74zis2rudZ+6bhPb/PpHNjOabT2eq7/zU6Mzm6T5cjmRoAAAAAAAAAAADlL0sJleFjrb1R0jxJH1Iq0U6SfipplrX2FGvtx62137LW/sxae7219svW2sskTZP0RkmvKJVE92ZJM6y1P7LWfs1a+w5r7SxJr5P0cu8aq1Ti4bVD+kUCANzqx2df0zQr/nNHHS4ddnVu1x5//b6b7sp2A5PtEr5ku6htZItF/QR30tvOhamEuVxYKz39Yenln7vXnHlXbnsHmfKaVFvedDOukPZ7Y3xnpMv2uGy4pzDnlgObpQrk1qfD75Ut0e7gT0q1o8PvV2oO+XTweOsKac/LhT3bWumZq/xrprw2lqPCVLarc1a2o40sAAAAAAAAAABApSraZDtjTKOk2yXNldQt6S3W2g9Ya1f7rrPWJq21f5J0hKRHlPoarzbGXJmx7g5Jx0h6Nm34CGNMPOUyAACFV9UQ/57GSEd8QZrznujXjjl+301nIkdmG1nPr+Kc2sgWC1/1t03/zG3PHc9Ly653zzfvH679cFgmIb3qx9J5j0vHfV869xHppF9JiUIVBi7h7/ewy5Ko+PRHwm2T7HHPmUTquXD0/4UPqxTVT3DPPfe5wp69c6G01/NP/REHSomqWI5yVadLf41OT7xL53p9BwAAAAAAAAAAQPkr2mQ7SddIOlipd0+/bq39XZSLrbWtki6RtE2p6nXfN8aMz1izW9KblErm63uX9rw84wYAxCVbK9nqpsKdPe6U6NdUN++72eVqUZjZRta4K9slS7WNrDTgsRhkzZ9z23P5j/3zYaohRmUS0rgTpAM/JI0/JbZEn0BVIZ7Pe9cW7vySluVnZevjUtfu7NvsWuSeO+eR1HOh3Pl+djfcW9izs+0//tTYjnIlzKW/RtcZR2U7S2U7AAAAAAAAAACASlWUyXbGmGpJ7+i92yHp67nsY63dIqnvnfkGSVcErHlF0m3Svj5+OWRXAAAK4rDP++cbJhfu7FySOkYcsO+mM9kuo42s8baRLeFKZ+NOds/tXprbnst+6J+PMRFnWDRMlEYe6l/TuX1oYik12drISlLXrvzWjMryvSkX4z3/FO7YXNizsz2/fRUzox4VqrJdcLIdle0AAAAAAAAAAAAqV1Em20k6VdI4pcqUPNlbpS5Xd6fdfoNjzV29n42kaXmcBQCIky/p44QbUi1fC6XlAGn2leHX108cUPWsKxmcbJfZltDfRraEK9s1THTPrfu7tHNx+L16OqS7Tsq+7oB/D79nsTriGv/8poeGJo6SE+JnZd0/sq/p9vyTs3pE+HBKWeM0aeRh7vn5/ykVqurm+rvcc6OOkEYdHttRYV6j6xxtZDuSVLYDAAAAAAAAAACoVMWabDc97fa6PPdan3Z7hmNNes+w0XmeBwCIS6JauqxDmvGWgeNn3CHNeXfhzz/hhvBrD7pqwF1X1aRBle08CYMlnWwnSafc4p77+8Hh91n45VQb0GyaZ4Xfs1jtd4l0jieh7ukPSz3BSUIVLUzy15Pvy95Kdsl3g8erGgqb3FtsfK99S74trfxt/Gd2t0pbn3TPv2Z+rN+DUJXtTHCynetaAAAAAAAAAAAAlL9iTbZL7wvYlOdejb2fjaRJjjXpPauC31UDAAyPqlrplJulK2z/x5QLhuZsE+HXZEa7QVfVpMxku4Svsl2Y1pjFbMT+/vk9K8Lts/R7eYdSUia8WkrUuOe3PDp0sZSMkD8rG+71z29/Nni8KridaNmqbvTPr/lz/GduuN89N+OKVPJ1jFytYNNfo91tZKlsBwAAAAAAAAAAUKmKNdluV9rtQ/Lc69C023sca9LfSWvL8zwAQCUafeSAu502bBvZMq5s13KQf37jA+H26dqZfU1TGVS1SzfqSPfc3nyL/pahsG1N27I8dnVjg8c7twePl6sR+0tVnoS7bI9jLtrWuudGe34ecuSsbJfIXtmuw5GoBwAAAAAAAAAAgPJXrMl2a3o/G0mzjTEn5LHX23s/27R9M01KW7M5j7MAAOXm2JBV1cafMuBumBaFkr+NbLLUk+2qmyRPMqG2P+O/fvdy6eaQbSOP/0HosErCAR90z/XwdwGDhfxZefHr/vkdC4LHJ5wRKZqSV1Uvzb7SPb/5kfAJjmH5ntfTL433LLkr26Un29W5KttZKtsBAAAAAAAAAABUqmJNtntIUpdS75waSdcbY7L0sxrMGHOZpPPU/w7sPY6lx6TdXhH1HABAGZv7YX+FJ0k65+FBbT+dbWQTA9vImnJuIytJx1zrnlv6fWmvo5pV1x7prweEO+PEG4eutfBQmfMe99ya24cujlIR9mdl72rppZ8Hzy35vvu62e+KHlOpO/Y6qXa0e37JdfGet+Ca4PGqeql5ZrxnyVN9NC0hOrMSaZ+OZIds3MmGAAAAAAAAAAAAKAlFmWxnrd0l6W9KJdpZSUdJussYs1/YPYwx75V0o/oT9qykmxzLz0+7/VwuMQMAytiRX/bP148fNNTlqGxXYzKT7cq4jawkmWr//Nq/BI9vcOXHB5j9jvBrS8mYY4PHozw2FSPCz8orNwaPz/+I+5qq4ApnZS1RJR39Dff8y46kxVx17QgeH5tPgWvPcWEq25ng77tVUt22qyBxAQAAAAAAAAAAoLgVZbJdr/+SlN6j6RRJLxpjfmiMOcsY05J5gTHmQGPMB4wxT0n6saRa9Sfa3WCtHdQbrDeB7wz1v0v7cLxfBgCg5E272D/fNGvQUKejsl1mpSR/sl0ZVLab9gb//M7FweO7HOOZjvxqtHhKye7lweMjDxvaOEpBlCpjYZ9b6ZpmRL+mHDTNdM/tWhRfK1nfPl274zljwHE2r8p2krtVOAAAAAAAAAAAAMpblnIzw8da+4ox5t2Sfq1UUqCV1CTp/b0fMsbskrRbqaS6kb2fJe3LXOiraveEpP90HPVp9ScdtsvdahYAUKl8LQyb95eqagcNh65sZ4yMTGAVu7JoU9iUpShtx5aB9/e8Ii3+VqrFbBjTLsotrlIw6nBp8yODx7t2DX0sRS9CYmr7pujbjz0++jXlYPxp7rlkl9T6itQ8O/9zHFXmJEmTz3fPebT17NXd2/6gl9sWa2LtNJ05+nVqrhqhu7f9SUv2Pu9MZq5Jr2yXcFc0vHbVZ1RlqjWqeqyOaj5RJ488Ry+0ztfjux7Qxs7+9tjVpkaz6ufqnDEXaUzN4CqoAAAAAAAAAAAAKC1Fm2wnSdbaW4wxSUk/kdSi/upzfcl0I3s/Bl2atu4uSZdba1sdx/xa0u96b+/xrAMAVLI3rJZuD0gcu+DZwOVtyb2B47VmcGKeM9muHNrIStIb1ki3TwueW3mzdNIvpUSN1Lpauuc0qW1t8NpMp/1BGnlwbGEWndlXBifb7VmeqgRm3FURK07UxNR1d0pTXtN//5Wb/OtNMReDLqCqWum0P0oPXxI8f8cRqZ/v2lH5nbPuDvfcjEsjb9eV7NR1a67WyvZlkqRlbS9o3s57ZHv/55P+Gl3rSbbb0LlGkrS2Y4VeaJ2vu7f9QVu6Ngbuv7J9mZ7f84Q+OePrGlk9JvLXAwAAAAAAAAAAgOJR9O8cWmt/J+kwpRLiejSwal3mRx8jaYWk91prL7DW7vTs/7i19qHej/kF+BIAAOWgcZp0hZUufFk6/a/SG7ek7tc0D1ra6anSVBPQltA4fh0ny6GNrCQ1TpUO+A/3fF9C2YqbwiXaJWqlt/RI+zkSgMpFVYN7bteSoYujJERMtlv4pYH3F/1ffKGUG191u+5Wae3f8j/jBU876KrGyNst2fv8vkS7PkklQyUwp7eOrTPuNrKZNndt8O6/rXuz5u8KSJ4FAAAAAAAAAABASSn6ZDtJstausdZeLmmGpI9JulXSEklblUrA2ytpraRHJV0r6QJJ+1trfz48EQMAylbzLGnq66S6sc4l6S0EM9UHVEoyjgplZVPZTpLqxrnntjyR+rz1yXB7Hf2Nyqg05nvMtj4xdHGUhIg/K1vm9d/ubpN2LHCvbSnj6olh1I6SqtwV3mJ5Lrau9JwfvRLcHVt/l32RQ1NixL7bdYn6Qa2/87EiIwEQAAAAAAAAAAAApaeo28hmstaul/S93g8AAIqSr7Ld5NoZg8aMHMl2tkwq20nS5NdIC68JnnvuM1L7JmnN7eH2mnF5fHEVM19FsZ7gNsUVK5+fle49/vnjr89973KQqE79/Lp+Pjt35L735sekVb+TOja719R7kk4dVrQvzSmc6fX7q7m6Zd/9hKnSQY1HakHrUzntl6kj2R7LPgAAAAAAAAAAABg+FVAWBgCAodVp3cl21WZwnnvC8eu4rCrbjTvRP7/k2+H2OfEXUv2E/OMpBdWeNrLr/jF0cZSEHH5Wts2Xkj3SP452r6kbK004PfewysWx33HPrbhJ6skhiWzxt6V7TpaWePY++pvR981RS9UovWPSRwaNXzrxfRpfMymWM3y/GwAAAAAAAAAAAFAaSqqyHQAApcBV2a4+0RDYMtYYE5grVFbJdsZI0y6W1vwp9z0mny/NvjK2kErC2BOC23Su/evQx1LMbA4/K/M/Lh1xjdTmbvus1zybeu5WuqYZ0ux3Sy//PHh+zV+kGZeG369zu/TsJ7OvG3Nc+D1zlFCV3j/1v3VAw2FqqGocND+2ZoL+Z+Z3tbztRW3oXCNJunfb7drRvTXyWb6qpwAAAAAAAAAAACgNJNsBABAzV/WiWlMXOO5qI5sspzayklTTkn2NT8sh8cRRSkyVe65ja6ryGiTl8LOy+RFpdZbWxTUjcgunHNVPdM9tvC9ast2K30q2J/u6qvrwe+bo/LFv1BHNr/KuqU3U6ZCmo3VIU6oK4oI9T+aUbNdFZTsAAAAAAAAAAICSV3JtZI0xNcaYU4wx7zDGfNwY87/GmM8Pd1wAAPRxVS+qSbiS7SqgjawkTXh1ftdPrMB2niMPds917fRfm+yRtj0jrf1bqpJYOculsp0kLb3OP187Krd9y5Hv57czy3Mx08YHwq1rOTDavjlwJUH7NFeNzOmszmRnTtcBAAAAAAAAAACgeJRMZTtjzKmS/kvSeZKC3hW7JuCa10jqK7OxzVr7X4WLEACAlMiV7RxtKssu2W76m6XlP5W2Ph792knnptrIVpoDPyq9dEPwnC/BqW2j9MC50o4FqfsmIb3qJ9Kc98QfY1Eos5+VYjTxLPfcqlsl+9twLXc7t0urfx/uTFMTbl0eah1J0D7NVblV6XT9bgAAAAAAAAAAAEDpKPrKdsaYJmPMbyQ9JOn1kuolmYwPlxckfoLv6gAAIABJREFUvV3SOyVdZYw5ssDhAgCgLkf1IldSh7OyXdm1kR0hnXV39OsO/Ih0+l+GpKVk0Wme6Z5b+CX33FMf7E+0kySblJ54r7RzcWyhFZVy+1kpRlW10tyr3PNr/xZun2c+Ef7MMMl7eaoxtZGvGZFzZTuS7QAAAAAAAAAAAEpdUSfbGWNaJM2T/j97dx4na17Xh/7zVG9nnX3fGBgGGIYd2RQVQQORmGjQRG80JuqNV3LRJGoSREWNJt5cgyt6oy+D0ShGRWMStgEuhEVWQZB1gGGYfeYwyzlzzszpperJH30O02dO/Z6up6q6uqr7/X69zut017P9urrrqZlXf87nm29P/1BdY41JXdc3J3nDhmO/fawLBIA+ys12/UMdnUJufMc12yXrgbtHfne7Yx7zst0ZtEuSub3lbXe/v//jvdXk9jf133bb60df01Taga+VadQ0VnfQn61BQ3lJmv9NzXgM02y3f+7gUNfSbAcAAAAAADD7pn2M7J8keWIe+g3qSpI/SvL2JL0kvzPAOf4s6414SfINSV4+3iUCwKlK7UXlZrtS2G6HtnU99oeSL/znwfZdOKu53W2n6zSM0SwFEFePJN3j/bfd8ZbkmoZmsd5qcvzOwdc3LVaPbPcKdodznlbedvyOzY9fOZwsH2pxwQmE7QrjvZscnB+u2W6tXk2v7qZTzQ11PAAAAAAAANtvasN2VVV9a5Kvz0NBu/cm+ft1Xd9yYvsjBjzVyWqXKsmTq6o6UNf10bEuFgA2KDfbFcJ2Vf+i2V69Q9u6zn5Kcv5XJ4fetfm+j3lpc+BsN7jga5K73nn640dv6L//J/5t+VzLd/d/vLucfPAHkpv+KFk71n6N7A4XvqC87ZY/T+54W3JRn33u+Ujy/u9J7v2rdtcr3BvHaZhmuwNzZwx9vdV6NUvCdgAAAAAAADNrmsfI/tiGjz+e5BtOBu3aqOv6jiR3nfi0k+SaMawNAIpKzXYLrZvtdmjYrqqS571hveGuZPGc5GmvSp70s5Nb17R6zMvK29YeOPXzG343+fSryvvf86H+j3/wpckNrxG0o9n83uTql5a3v+PFyZHrT31s+e7kbc9vH7RLMplmu/7jvZscmBuu2S4pvz8AAAAAAAAwG6ay2a6qqouTPGXDQy+r6/qB0v4D+HSSC058fHWSD45wLgBo1LrZbreNkU2ShQPJ039p/Q/N5vaWt93xtuSyb3ro8y/+webnO3pDcuBRD33eXUlu+uPh18fusv+K8rbecnLz65JrX/7QY7e9MVm9b7hrVe3Ddt2622r/STfbld4fAAAAAAAAmA3T2mz3nBN/10luruu6z+y0Vu7Z8PG5I54LABqVmotKoY7SGNkd22xHOweuKm87+rlTP7/9zZuf78bXnvr58l3J2v3t18Xu1PTzmCT3P+xn8iM/PMLF2oft2jbHLRRC0E32zx1sfcxJmu0AAAAAAABm27SG7S7a8PFHx3C+oxs+PjCG8wFA0WrLZrtOqdmuFrYjyRmPLW/78L9I2v6cHL/z1M8fPop2pyiEWBnRxX8jWTy7vP2G//TQz9QX/kty/K4RLjZE2K4+3mr/YZrt5qq57O8MF7grvT8AAAAAAAAwG6b1t5Bnbvj4yBjOtzFg1+43cADQ0kpvpe/ji53Fvo9XhbfjHT1GlsFVVXLG48rb3/Hi9b+v//XBznf9r66Pjj3p8789/Nqm1d5Lk+f83navYmdaOCN5wdub9/mj/es/j+/9rtGuNcQY2bbNcaUQ9GYOzA83SlazHQAAAAAAwGyb3+4FFNy74eMzi3sN7pINH99T3AsAxmClZbNdVQiU9IyR5aT9j0yOfLr/ttvfmKw9mHz6VYOf79C7kotesP7xp/59eb+/+dFkft/g550GncVk3+XrQa2/+Af997ns7yTP+I31VsD/cXXS3aHtflvl7Ccn1/xo8qn/t7zPh/7pGC7UPmy33HaMbCEEvZkDc2fkztza+riVun8YGwAAAAAAgNkwrWG7Qxs+vnaUE1VVtZTkKRseumWU8wHAZkrNRaVxhVVxjKxmO05YONC8/eY/SY5+fvDz3fCa9bDdZiNoz3rCzh3HuvfiEx8ItQ5lz4Vbf41hmu3ajpGthg/bDUOzHQAAAAAAwGyb1t+efvjE31WSK6uqapidtqmXJDn5W7S1JO8bZWEAsJlSs91CqdmuOEZWCIgTLn5R8/YHbm53vht/PznymaQp+LPvsp0btGN0l3zjeM6zdO54znNCmzDbfLWQTjU31HWGDtsV3h8AAAAAAACYDVP5G9S6rr+Q5HMbHnr5MOc50Wr3ipOnTfLBuq6Pjbg8AGg0tmY7YTtOeuQ/bN5+0+van/NNz0iuf3V5+7N+u/052T3OvCZ5wk+Odo4rvys5/7njWc8JbcJspdHegzgwd+ZQx2m2AwAAAAAAmG1TGbY74TUn/q6SfGdVVd/d5uCqqjpJfivJNRsebviNMgCMx2oh7FEK23UKoxKNkeXLOvPN2+/9cPP2ftbuTz7yI+Xt+x/R/pzsLtf88GjHP+EVm+/T0nJv8DGypXvyIDTbAQAAAAAA7E7THLb75SR3Zb2Rrkry21VV/duqqvZtdmBVVY9Pcl2Sf3Di+DrrTXl/uHXLBYCkW3ezVq/13bZkjCyzZGG4MBG7yNze0Y5fPHs869igTXPcaM12Q4btNNsBAAAAAADMtKkN29V1/UCS707Sy3pYrpPkXyW5vaqq1yZ56cb9q6r6+1VV/URVVe9K8rEkX5f1kF6VZDnJd9R1LbUAwJZarVeK29qOke0J27HRec+Z7PX2XjzZ622b/q8/BtBZGP7Ys5+a7LlgfGs5Yblu02y3OPR1Ds4PN0a21HwKAAAAAADAbJjasF2S1HX95qyH6k4G7pLkYJK/l2Tj3LMqyR8k+akkX5lTv661JN9b1/UQ89UAoJ2m1qKFUrNdVWi2M0aWjZ75m5O71tUv3XwfSJLnvbH9MXN7k6f+wvjXknbNcaV78iA02wEAAAAAAOxOUx22S5K6rn8ryQuzPlK2Sk6p+ak3/Kke9niV5EtJXljX9Wsns1oAdrumIEXbZjtjZDnFWU9I/uZfTeZal79kMtdh9l3youRFLf5NyxN/OnnRXyYXPX9LltNqjGzhnjyI4cN25fZTAAAAAAAApt/Uh+2SpK7r/z/Jo5P8yyQ356HxsBv/ZMPHdyf5mSRX1XX99okvGIBda6VhROBiqdmuGLbTbMfDnPHYyVxnft9krjMVhFpHds5TB9/32lckZ16zZUtZaTFGdqEafozs0GE7Y2QBAAAAAABm2vx2L2BQdV0fS/ILSX6hqqrHJHluksuTnJtkMestdncm+YskH67r2m9OAZi4YZrtOqUxskJAPNzcnslc58wnTOY67CAPL6Au7ba1/9ZnuTd42G6UZrvFzlKWqj1ZbhHuS4yRBQAAAAAAmHUzE7bbqK7r65Ncv93rAICHa2otKrUoFZvt5MbZDnN7k4UD270KZs1X/2nyrm/ZfL+q//1uXNqMaS21jQ7qwPwZWV5tGbbTbAcAAAAAADDTZmKMLADMitVCa9FCtVhssCuF7XrGyNLPgau29vzP+P+29vzTQJB1/C7/5uSSb9zuVbQaIztKs12SHJg7s/Uxmu0AAAAAAABmm7AdAIxRqbWoqUGpMkaWNhbP3trzz+/d2vNPna1tWttVrvmXQxw03ue/1RjZUZvt5g62PmZVsx0AAAAAAMBME7YDgDEqtRYtdPqPkE2MkaWlJ75yuOMKoc7THHzMcOeHM69NqrltXUKb5jjNdgAAAAAAALQ1v90LaFKtV/08IcmTk1yR5Pwke5PUSR5McleSm5J8NMknaqkEALbZSr3S9/HGZrtS2M4YWfq58PnDHbfnwmTfFcnd7y/vc/Dq5KwnDXd+2HNecvnfTW76421bQqldtJ/Rm+3OaH1Mm/UBAAAAAAAwfaYybFdV1dck+f4kfzPJoJUR91ZV9fokv1XX9bu3bHEA0KDUWtTUoNQpFM0aI0tf8/uSv/WZ5H8+tt1xdZ08/7rkuuckhz95+vYDj06+/l1JZawqI3j2a1qG7cZ7n2vTHNfUODqIg0M12/UPZAMAAAAAADAbpipsV1XV45O8OsnXnHyoxeHnJPnOJN9ZVdXbk7y0ruvrx7xEAGhUai1qbLYrhJt6tWY7Cs4YctTrwhnJiz+RdFeS3vH1x+o66Swm83vHt76ZItQ6VvP7k0u+MbntDdty+eX6+MD7jtpst3/uYOtjNNsBAAAAAADMtv5VOtugqqq/l+QDWQ/aVSf+1H3+nNRv28njnp/kL6uqesmk1g8AyXDNdpVmOybhmh956OO5xfXg3cIZyeKZOzhoV/h3G4/8zskug4lZ6bUI243abDc/TLOdsB0AAAAAAMAsm4qwXVVV35bkD5Lsy6khu5PhuSQ5lOT6JO/Leijvs0m+tGGfjcclyf4kr62q6lsm81UAQLJSaFVqDtv1DwQJ29HojMcNvm81nzzi27duLdNqY8DwpPkDySV/a8MDxuZur/E+/23GtC6M2Gx3YO6M1sf00k23XhvpugAAAAAAAGyfbQ/bVVX12CSvObGWjSG7I0l+KcmLk5xX1/VFdV1fU9f1V9Z1/ey6rh9X1/WFSc5P8k1JfiXJ/Tk1dDef5D9XVXX1pL8uAHanYrPdEGNk6xgjS4MXfnCw/TpLyXP/a7Lv0q1dzzR64k+vjzQ9aeGM5Hmv38FNfrtbt15LN4MH2ZpC0IM4MNe+2S7RbgcAAAAAADDL5rd7AUl+LeuNdidDdr0kP5PkP9R1fXSzg+u6vjvJ65O8vqqqn0jyI0lekYdqMg4k+dUkLxr/0gHgVKVWpYWGcYXFMbK1ZjsaLBxIrvyu5MbfK+/zvDckF3xNMr9/cuuaJvN718N1R29IHrglOfdZydxoASsGsE33ruUWI2ST5hD0IA7MHRzquJV6OXuzS1+TAAAAAAAAM25bm+2qqvqqJC/IQ0G7+5O8sK7rnx4kaPdwdV3fX9f1K7MerDuWh0bKfkNVVV85pmUDQNFK3b7ZrmOMLMNaPKu8rbOYXPzC3Ru02+jAo9ZDh/2Cdpd98+TXs9Nd+LzB9z3/uWO7bNvGuFGb7fZ2hnttabYDAAAAAACYXds9RvalJ/4+Ofr1++u6ftuoJ63r+q1Jvn/DeZPkB0Y9LwBsZrU0RrYh1FEaI9szRpbNXPj8hm0vSKrt/k+9GXDND/d//En/ZrLr2Eke9T1JvxDxVd/bZ99/3H/fR373QJc6unYkHzry7rz1nv+Wd9z3hlbLHLXZrnTv3szb7v3vuX35Zu2lAAAAAAAAM2jbfgNbVdVSkm/KehiuTvK6uq7/cFznr+v6tUlel/Xf3lVJ/nZVVeUZfgAwBsM02xkjy9AufXFy+bee/vjS+clTfn7y65lFZz81eewPnfrYOV+RPOb/3p717AR7zkue9h9OfezAo5In/OTp+y6dkzz9l059bP+VyRN/atPLfP7BT+cnbvgn+U+3/0L+9NDv5Lp7XtdqmaM22w3rnfe9Mf/mxpflv3/p993nAQAAAAAAZsz8Nl772UkOnPi4TvKqLbjGf0jykhMfH0jynCT/awuuAwBJyuMBG5vtimNkNduxic5C8lWvTW7/R8mhdyfdB5MzH59c8uJk36XbvbrZUFXJ034xuezvJHe9Kznjcckl35gsHNj8WMoe98+T874qufOtyd7L1oOhS+f23/exP5ic95zkjrckey9d//ndc17j6eu6zn+67ReyXB8feomjNtuN6s33/EmesP/puWrfNdu6DgAAAAAAAAa3nWG755z4u07yqbqu3zfuC9R1/b6qqj6Z5PEbrilsB8CWKTXbLTSUqxab7aLxiAF05teDTJe+eLtXMruqKrnw69b/MD7nPXP9zyDOfcb6nwEdWr0j9659aciFrRtHs12Vqu+9+uz583Kse3/xPeGkzzzwMWE7AAAAAACAGbJtY2STXLvh4/ds4XXeXbgmAIxdt17r+/h8tVA8pqoKzXbGCwL09UD36EjHX7p05VjCdt92wff1ffyF57wkj9z7mE2Pf6B3bOQ1AAAAAAAAMDnbGba7asPH79/C62w891XFvQBgDLp1t+/jc9Vc8ZiOMbIAE1Olyt845++O5VxfcfCrc/7CRac8dsHCJXnawa/K15/zLZnb1iJxAAAAAAAAxm07f/tz4YaPv7iF19l47ouKewHAGJSa7eaq8ltuaYxszxhZgILy/fGypStTpZOLl67IZUtX5q6V23LT8g2p614uXLw0zzrjebn2wNPHsooD82fkh6/4+bzlnj/NLctfyBV7Hp2vO/ubcmD+jFw7/7T84OU/nfcefmved+Ttrb8OAAAAAAAAps92hu3O3fDxfVt4nZPnrpKcs4XXAYB0U2i2S7nZzhhZgHaa7o4/csX/M5YRsYM6Y/6svOSC7+m77ep91+bqfdfmgd6xfOzoB07bXgvbAQAAAAAAzJTtHCO78TdgWxm2O7zh4z1beB0AGLLZzhhZgHZ2RkhNphoAAAAAAGC2TEvYbnULr7Mx9bCwhdcBgHTrQrNd1dBsV3g71ngE0N+s3R9LoeqdEhoEAAAAAADYLbYzbAcAO045bNfQbFcaI6vZDqCvpohaOdi2nUr3eWE7AAAAAACAWSJsBwBjUtd1uimMkU252a5TarYzXxCgv8b74/SF7aZvRQAAAAAAAAxD2A4AxqTX0ETXPEa2fwyjp/EIoLVCWei2ms62PQAAAAAAANoqz7SbjJMpgmdXVXXlFl3joi06LwCcolv3b7VLjJEFGKem8auzFGwzRhYAAAAAAGC2bHfYLlmfqvTaLb5GHdObANhi3bpb3NbcbGeMLEA7szVGtrQmYTsAAAAAAIDZMg1hu0kE4fwWC4At10252a7T8JZbamESwgDob+aidqVFuc0DAAAAAADMlGkI2yV+zQTADjB8s50xsgBtzF4YWagaAAAAAABgJ9jOsN1NEbIDYAfp1uVmu7mq/JbbqYyRBWhntrrtSqFq/zsEAAAAAAAwW7YtbFfX9ZXbdW0A2Aq9MTfb9TTbAfTVHLWbnbCdZjsAAAAAAIDZ0r9KBwBorZumsF05314V3o6FMADaq6rpC9sBAAAAAACwMwjbAcCYNI6RTUOzXSEYImwHUGDMNgAAAAAAANtA2A4AxqQ75jGydW2MLEA/pTDyNI6QTYyRBQAAAAAA2CmE7QBgTBqb7RrGyHaMkQUYk+kM25XW5T4PAAAAAAAwW4TtAGBM1hrDdsbIAoxLudluOhVu83GbBwAAAAAAmC3CdgAwJt00jJFNudmuNF6wZ4wsQF+zF0YWqgYAAAAAANgJhO0AYExKY2Q7mSu21yVJZYwswJhMZ7ddKVQNAAAAAADAbBG2A4Ax6db9m+2aRsgm5RCGsB1AO7MXanOfBwAAAAAAmCXCdgAwJqVmu7mqPEI2Saqq0GxnjCxAX6UwckOJ6LYqLUvUDgAAAAAAYLYI2wHAmPQyXLNdR7MdQDt16f44pWk793kAAAAAAIAdQdgOAMak2GyXTZrtiiEMzXYA/RSb7aY0bFdel7AdAAAAAADALBG2A4Ax6dbDNduVxsj2is1NALvbzN0dC1k7t3kAAAAAAIDZImwHAGMydNjOeEGAlmbr/qjZDgAAAAAAYGcQtgOAMSmOka2MkQWYhNkbIwsAAAAAAMAsEbYDgDHpptBsl+HGyGq2A+ivdH+ctVCb+zwAAAAAAMBsEbYDgDEZttmuU2q2q4UwAAAAAAAAAGBaCNsBwJh060KzXbVJs13h7dgYWYD+SmHkqprOZrvyuHChagAAAAAAgFkibAcAYzJss10pHNITwgDoqxxSm86wXWldwnYAAAAAAACzRdgOAMakm/7Ndp1s1mxXGiOr2Q6gjemN2pVWJmwHAAAAAAAwS4TtAGBMxj9GVggDoJ+Za7YrLKswDRcAAAAAAIApJWwHAGMy9BhZ4wUBdrRysx0AAAAAAACzRNgOAMZk2Ga7TmWMLEA7/cPIsxdqE6oGAAAAAACYJcJ2ADAm3RSa7bJZs50xsgBtlIfITmfYToMpAAAAAADAziBsBwBj0huy2a4UwugJYQAUFO6P05m1Kxr2Lr/aWx3rOgAAAAAAABhMc9UOADCwtbrQbFdt0mxX9c++H+0ezqeO/VWu2f+UkdcGsFP06l7+/NDv9d02a812Hz36vhxeuzdnzp890Hned/jtecPdf5i7Vw/lEXsene+86J/mkqVHjHOpAAAAAAAANNBsBwBj0i2G7YZrtkuS37j153Lb8hdHWhfATvKmu/84h1bvKGydzrBd07p+5eZXpq4377j7xNG/zO/e8cv50uqdqdPLjcevzy/e/ON5oHt0nAsFAAAAAACggbAdAIxJtzRGdpMi2aaw3Vq9mo/c/96R1gWwk7z/yDuK26Y2atewsNtXbsrNyzdseo4PHPlfpz12rHt/PnHsw6MsDQAAAAAAgBaE7QBgTLoZrtnu3IULGrfftXLb0GsC2El6dS+HVm8vbj9nk/vpdjlnfvT7/Afvf2ffx//bod8dak0AAAAAAAC0J2wHAGNSbLbbJGx36dKVOX/h4vJ5CyE+gN1mtV5p3P7UA8+Z0EraecKBp2e+WihuX6mXhz73se79Qx8LAAAAAABAO8J2ADAm3brUbFcOWCRJp+rkBy//qYbz9g/xAew2K71yKO2afU/J15/zzRNczeAuXLw033/py4vbm74uAAAAAAAApoewHQCMybDNdkly7sKFef7Zf7vVeQF2m6YGuO+48P9Kp5re/725dv/TcsWeR/fdNkrYrk499LEAAAAAAAC0M72/jQKAGdNLIWyXzcN2STmUV2rMA9htmkJpC52lCa5kOEtV/zWOMkYWAAAAAACAyRG2A4AxKY+RnR/o+Ln0369bCPEB7Dar9Upx22IhyDZNSoHAzZrt6lp7HQAAAAAAwDQQtgOAMRlljGzTfprtANY1hdIWO4sTXMlwFqv+a2wKESbJWr26FcsBAAAAAACgJWE7ABiTkZvtimE7zXYASXnc6lzmB77XbqfFIZvtmsbMVqlGWhMAAAAAAACDE7YDgDEpjXudy6DNdoUxsprtAJKUQ2kLM9Bql5RH3TaF6ZLNw3gAAAAAAABMhrAdAIzJyM12hVCeZjuAdauFUFopxDZttqLZDgAAAAAAgMkRtgOAMSmF4krjYU/fr9BsV2jMA9htVnorfR9fnJFmuwXNdgAAAAAAADNN2A4AxmSrwnY9Y2QBkpRDaTu/2a5/yBAAAAAAAIDJErYDgDHpZsQxsoVQnjGyAOtWi812MxK2K4QCS+Nxv7y9IYzX034KAAAAAAAwMcJ2ADAmpVBcJyOOkdVsB5Ck3GxXGs86bcrNds3Ndcu948Vta/VaekLZAAAAAAAAEyFsBwBjUgrFDdxsVwjldbUWASQpj1udnWa7xb6Pl0KEg283ZhYAAAAAAGAShO0AYExKzXal8bCn76fZDqBJKXRWCrFNm3Kz3SZhuk22N42ZBQAAAAAAYHyE7QBgDOq6Tq/QQDdws10hlFcK8QHsNqXQ2cLMNNsVwnYjN9sJ2wEAAAAAAEyCsB0AjEE35fa50njY0/YrNtsJ2wEkTc12sxG2K4UC1+rV9Bru9au95jGxK5tsBwAAAAAAYDyE7QBgDJoCcQM32xVCed2spa7rodYFsJOUQmel8azTpikUuFKXA3Oa7QAAAAAAAKaDsB0AjEG3bmi2K4yHbbNfL73WawLYaWa92a4pFNjUXlcanzvodgAAAAAAAMZD2A4AxqC52W60MbLr5y+H+QB2i1KobLGzOOGVDKe52a4cmNu02a53fOg1AQAAAAAAMDhhOwAYg24awnYZcIxsQyivKcwHsFusFkJnCzPSbLfQEApsaqfbtNnOGFkAAAAAAICJELYDgDEYxxjZTkMorxvNdgArhVGrTeNZp0lTs10pSJgM0mwnbAcAAAAAADAJwnYAMAbNY2Q12wGMQyl0tljNyBjZLWu26x9CBAAAAAAAYLyE7QBgDMbRbNcUyms6P8BusTrjzXZz1XxxtHhTYK6p9S7RbAcAAAAAADApwnYAMAaNzXYN42FP2a+x2U7YDqDcbDcbYbuk3G7XFJhb3rTZTtgOAAAAAABgEoTtAGAMemlqths0bNfUbGeMLLC79epeVgvtbwsz0myXlIOBTYG5TcfIarYDAAAAAACYCGE7ABiDxma7QcfIpqHZriHMB7AblIJ2SbJY9W+Lm0alkbdNgbnNxshuth0AAAAAAIDxELYDgDFoGvM6eLNd0xhZzXbA7tYURisF2KbRgmY7AAAAAACAmSVsBwBj0BSG6wz4dmuMLEBZUxitNJp1Gg3TbNf0tQ+yHQAAAAAAgPEQtgOAMeimfxhuLvOpqmqgc8w3hu2MkQV2t6Yw2sIMNduVwnZNo2BXeuURuuvbhe0AAAAAAAAmQdgOAMagFIZrGg37cJ00jJEthPkAdovVuhw4m6lmu9IY2UJgrluvpZvmwPVKw3MDAAAAAADA+AjbAcAYlMa8tgnbVVVVDNxptgN2u6b2tsXO4gRXMprSWkvtdZu12q3vo9kOAAAAAABgEoTtAGAMys125dGw/fcvhe002wG720phzOpc5lvfa7dTsdmu8PWVHm+7DwAAAAAAAKMTtgOAMSiNeZ1rGA3bd/9CYESzHbDbldrbFmao1S5JFjrtxsiuDtBaN8g+AAAAAAAAjE7YDgDGYKub7XqFMB/AbrFaaG8rNcVNK812AAAAAAAAs0vYDgDGoDTmtRSeK5mLZjuAflZ6K30fX5yxZrvFls12pcc3WtZsBwAAAAAAMBHCdgAwBqUwXGdMzXalMB/AblFqb5u1ZruFqn84sNTctzxAa50xsgAAAAAAAJMhbAcAY1AcI5uWzXbCdgB9rRab7WYrbLcVzXYr9XLquh5pXQAAAAAAAGwQFdyCAAAgAElEQVSuXd0OAHCKL63cmfceeVveePcf9d3eeoxsoQnv9+98df762AfzqD2Py3PP+hvZN3eg9Vp3sy88eH0+dP87c+fKbUmSSxavyDPP+NpctueRI597pbecdx++Ljc+eH0uXroiX3XmN2Tf3P6857635PMPfioXLV6W55z5gpy9cN7I14Ldqlf38r/ue0PfbQsz1mxXauI7tHpHfu2Wnznt8SNr9256zjp1fu2Wn05Vlf8t1TMOfnWedebXDb5QAAAAAAAATiNsBwBDunPl1vziTa/Ike59xX1K4bni/g1NeB87+oF87OgH8qH735l/dvnPCtwN6K+Pfii/eevPp5uH2gc/eezDedd9b8o/vewn8+h9jx/63Ku9lbz6lp/JZx/8xPoD9yfvPfzW7O3sz83LN3x5v784/Nb88yt+LucuXDD0tWA3+/07X517177Ud9tip/9Y1mlVarZbrVfyyWMfHvq8n3rgrxq3X7nn6qHPDQAAAAAAwDpjZAFgSO+49/WNQbtkfM12G92yfGM+fP97Wp13N3vD3f/1lKDdScv18bz5nteNdO5PPfBXDwXtTvjS6p2nBO2S5J61Q3n3fdeNdC3Yre5auS3vPfy24vZSU9y0mrX1AgAAAAAA8BBhOwAY0ucf/OSm++zp7Gt1zkHDeZ8b4Nqsj3j94vHPFrd/7oFPFLcN4o13//HA+775nj8Z6VqwW33+wU81bp+1ls99c/u3ewkAAAAAAAAMSdgOAIZ0vPfgpvs8dt8TW51z0LGzy73jrc67W630lhu3L9fHU9f10OdvCvIB47HZvfax+548oZWMxyP3PDZL1Z7tXgYAAAAAAABDELYDgCGt9FYatz967+Pz3LNe2OqcnQzWbLdZiIx1K/Xmz9NavTqBlQDDWm241z75wLPzlIPPmuBqRrfQWcx3XPQD6fhfMQAAAAAAgJkzWH0OAHCaUpDr4sXL83fO/648bt+Ts9hZanXOQcfIDhIiY7BQ4kq9nIUsTmA1wDCa7nffd8mPDnzfnCbPPONrc/nSo/LJYx/Jke69Ax/XSSdX7Hl0Llq8LJ9/8JM5tHrHwMc+au/jhlkqAAAAAAAAGwjbAcCQSkGul1zwPXn8/qcOdc5Bx8hqthvMIKHEld5y9s8dnMBqgGGU7nfX7n/aTAbtTrp46fJcvHT5SMcDAAAAAAAwWWYXAcAQuvVaeun23bZU7Rn6vIM32zWPsGXdoM12wPQqvUYXKo2UAAAAAAAATJawHQAMoSnE1XZ07EZzA5bOrmq2G8igzXaT0qt7E7sW7BSl1+go91oAAAAAAAAYhrAdAAyhKcQ1SgBkftAxstrYBjJYs93kWgLX6tWJXQt2itL9brEStgMAAAAAAGCyhO0AYAjLDSGuUUYbDjpGdrVnjOwgVgcIJU6yJXCSLXqwU2i2AwAAAAAAYFoI2wHAELZsjGyLZru6roe+zm6xMkAocZItgRoJob1SaHZBsx0AAAAAAAATJmwHAENoakwbZbRhZ8Bmuzq1kaQDGCTcNsm2udUJjqyFnaIUmtVsBwAAAAAAwKQJ2wHAEJoCWiONkc1gzXaJlrRBDBKkm2iznTGy0Fop3DxKsBkAAAAAAACGIWwHAEMoBbQWq6VUVTX0eecGbLZLBLcGMUiQbnWAUbP9dOu11sf4nkF7mu0AAAAAAACYFsJ2ADCEUmhq1PDHXKXZbpy2stmuFADaimvBblZ63YzSIgoAAAAAAADDELYDgCE0NduNQrPdeA0Sbhv2eRwmOOd7Bu1tVbgZAAAAAAAA2hK2A4AhlMIfC6M226VF2K4ebvzpbrK6hc12g5x7XNeC3awcbtZsBwAAAAAAwGQJ2wHAEErhj6WRm+0GHyM7TNhrt1keJGw3wWa7VQFJaKVXd7NWr/bdptkOAAAAAACASRO2A4AhbNVYw1ZjZLWkbWqgMbJDPo/DhPSMkYV2mho8Rx3bDQAAAAAAAG0J2wHAEMpjDSfXbCe4tblBnqPV3nBtc8OM8fU9g3aaGjw12wEAAAAAADBpwnYAMIRSaGph1Ga7aLYbp9UtbLYbZoyv7xm0o9kOAAAAAACAaSJsBwBD0Gw3GwZ5joZ9HocJzvmeQTtNr5mFzuIEVwIAAAAAAADCdgAwlNLo0cURwx9zVYtmO8GtTQ0SiFsdYhxsMtzzP+y1YLdqaqfUbAcAAAAAAMCkCdsBwBCKzXajjpFtE7YzknRTK4VQ5Kn7DNts1z44JyAJ7TS9Zka93wIAAAAAAEBbwnYAMIRSAMQY2ekySCBx2NCiZjvYeqVQaydzre6XAAAAAAAAMA7CdgAwhGLYbsSmpU4Gb7YT3NrcIIG44Zvt2h+njRDa2ap7LQAAAAAAAAxD2A4AhrBSH+/7uGa76dGt19JLd9P9Jtls53sG7RRHdo94rwUAAAAAAIBhCNsBwBBWev1b5RZGbFuaqwZvttOS1mzQYNuwAbjVYZrthO2glXKz3eKEVwIAAAAAAADCdgAwlK1qW5rXbDc2g4YRV+uV9Ope+/MP02wnIAmtlMZla7YDAAAAAABgOwjbAcAQSkGrpVGb7dIibCe41ahNGG6tXm1/fs12sOVKr5lRW0QBAAAAAABgGMJ2O1BVVT9VVVU9wp/f2e6vAWDabVWzXasxsoJbjdqE4YZqqdNsB1uufK81RhYAAAAAAIDJE7YDgJZ6dbfYhDZq29JcizGyq4JbjVZ6/cdP9t13mJa6wnjLJqWRmEB/pVDromY7AAAAAAAAtoGwHQC01BSymmyzneBWkzYBumFCcJNqw4PdbKtaRAEAAAAAAGAYg9fnMMu+I8n7Wux/dKsWArATrDYEpkZtW2rTbGckabM2wbZJjYRdrVfSq3vpVP69AwyidL8dtUUUAAAAAAAAhiFstzvcUdf1jdu9CICdYrkpbDdqs13aNNsJ2zVpM2Z3mOeyKXTZZK1e1coFA9JsBwAAAAAAwDRRqwIALTU1mo3abNdpM0ZWs12j5d7xgfcd5rlsGifceJyQJAysNC571HstAAAAAAAADEPYDgBaagpLTXKM7Fq9ml7dHel6O9lWj5EdttlOSBIGV3q9LFSLE14JAAAAAAAACNsBQGtNYalRAyBzLZrt1tcyXLvabtDmuRmu2W640Nyq7xkMbFWzHQAAAAAAAFNE2A4AWio1ms1X863Dcg83l8Gb7ZrWQrvnpm2zXV3XQ4+DNUYWBlcKtS5WwnYAAAAAAABMnrAdALRUHms4evijfbOd4FZJm+em7fPYzVp66bVd0vq1hO1gYKXXi2Y7AAAAAAAAtkO7+hxm1fdXVfXjSa5Jcm6S1SR3J/likncneVNd1+/axvUBzJRS+GOps2fkc89V7d6aP3z/e3PW/DlJkipVLll6RC5evDxVVQ10/JdW7sgXj38uvfRy/sJFuWLPVemM2M43Le7vHh5439KoypLl3vG2y/myjx/7UO5ZO/Tlz3fa8z5r7lk9lBuPfzbdei3nzJ+fK/de3fp1yPj06m5uOv75HFq9I0lyrHt/3/0WRxzZDQAAAAAAAMPwm8Td4dsf9vlSkgNJHpHka5L8WFVVH0ry8rqu3zrpxQHMmpW6fzBrHGMNOy1LZ//s0O+c9tij916bl17249nT2Vs8rluv5Xdv/5V88P53nvL4BQuX5Acv/+mcs3B+q3VMm08f+2jee/htA+/fptnuge7R/Lsb/8Uwy0qSvPme15322IWLl+UHL/upnL1w3tDnpZ1e3c0f3vkf8+7D153y+Nnz5+WHLv+ZXLB4yTatbPe6Z/VQfuXmV+au1ds23VezHQAAAAAAANvBGFlO+ook11VV9XPVoHVILVRVdUFVVde2+ZPkqnGvA2AcymMNR29aGsct+HMPfiL/7dDvNu7zzvvedFrQLknuWr0tv3fHr468hu200lvOf7z137U+ZlCvu+s1pzTTjcOdK7fkv9zxa2M9J83ed+TtpwXtkuTetS/lt2/7hW1YEf/ljl8bKGiXjCfcDAAAAAAAAG1pttvZbk3yhiQfSPKpJPck6WV9lOzTkvytJC/csH+V5MeyHsJ8+ZjX8tIkrxzzOQG2RakFbWGKwh+fPPbhxu1/ffSDxW2ffeATOd57sLEZb5p99oGPZ7luN+Z1tdBW2M/Hj32o7ZIGcv0DH89y7/hYxhGzub8+Wv4+3rx8Qw6v3ZMzT4xoZust947n+gc+PvD+C2MINwMAAAAAAEBbwnY70weyHqJ7S13XdWGfv0jya1VVfUWSP0hy9YZt/7qqqvfVdf3nW7xOgJnUrdf6Pj5Xjedt9aq91+TzD35qpHMc7R5p3H5k7b7itl66Oda9f2bDdoe797Y+ZtBmu17dzf3dw63PP4hu1nKse7+w3YQcWWv+OTmydp+w3QQd696fXroD7dtJJ5cuXbm1CwIAAAAAAIA+jJHdgeq6fkNd19c1BO027vuhJM9Ocv3DNv18VVVzW7JAgBnXq3t9H5+rxvO2+rVnvThVRhsnu9lbwGqhne+kNmNVp81yr12rXVJuKzx9v8Eb8IYxy8/7rNn0NbDF32tO1eZn/5lnPC/75w5u4WoAAAAAAACgP812pK7re6qq+o4kH0q+nO54XJKvS/LWMV3m15P8cctjrkqiXQ+YOr30D9tVY8qwf8UZz81c1cm777su93cP5/H7n5oXn/sd+djR9+c9h9+S25Zv+vK+q/VKHuwda32NzYItmwWRplnT1/bUA8/JR46+t9UxG6027HfuwoW5cPHS3Hr8C6mTnLtwQfbN7U+VTm5evmFDALLOkW7/ZsFBQ3+MbqXXHKZr+l4zfk0/+wfnzkyVTs6cPztPOvDMvOjcb5vgygAAAAAAAOAhwnYkSeq6/nBVVddlffzsSS/KmMJ2dV3fleSuNsdU1WitTgBbpVf3H3XYGWMh6FMPfmWeevArT3ns6Wc8N08/47mnPPbXRz+Y37j151qff7NQ1yw3rK3U/Zvtrt57bS5YvLRwzKDNduX9fuiyn8l5ixdueo5uvZaXXf+t/c8/RCsfw9n0NSD4OFFN95x/e9Vvj21MNwAAAAAAAIzCGFk2etPDPn/StqwCYMqVmu062/K22j+YXKd5jOxmrV6zPEKzFNpZ7OzJYmex1TGn71d+XhY7SwOdY66az1zh3zssC3hNzGbf81kOnM6iUrhxLvOCdgAAAAAAAEwNYTs2uvFhn5+/HYsAmHa9uhC2q6bnbbUpbNet19LNWuPxsxw0Wi6sfamzlMWqfyBu0LG5TfsNGrZr2neWn/dZo9luupRDsv0DsgAAAAAAALAdpicVwDR48GGf792WVQBMuXqKmu2GGbg9SKBrloNGpTGyi9VSFooht8Ga/Jqeu4Vq8FDQUmdP4fzGyE5Cr+5mrV5t3EfwcbJK95xSQBYAAAAAAAC2g7AdG533sM+/tC2rAJhy3brb9/HtaLarhhgjO0iQbnXA8Nk0KjXbLXb2FIM7g4YLS+N156v5zFVzgy0w5QCRMbKTMciYZGG7ySo32wnbAQAAAAAAMD2E7djoWQ/7/LZtWQXAlCs32w0ethqbqtRt1xC22+nNdoV2uMVqqRjcGTRcWHruFlq2b5XXMbvP+ywZ5Hme5dfALCo9321fWwAAAAAAALCVhO1IklRVtSfJ333Yw+/YhqUATL1eXQjbTVOzXTlrN1CIaJZbvUpf31JnTxYLo14Hb7YrjbocfITsybX0s2yM7ETs9NfALNJsBwAAAAAAwCwQtuOkf5Xk0g2fd5O8fpvWAjDVuimMkZ2it9XGMbIDtLjNcqtXObSzp9woV68UQ5SDnbtdIGhhxNAfoxnkNbA6wKhZxme1FGQVtgMAAAAAAGCKTE8qgLGoquq7qqq6sOUx/2eSVz7s4d+p6/qL41sZwM5RF5vtJj9GttRs1zhGdoe3epXa4ZaqpSw2jKQcJFw1rlGXmu22105/DcyiYpDVGFkAAAAAAACmiLDdzvO9Sb5QVdV/rqrqxVVV7S/tWFXVV1RV9adJfjM5Ja1xa5If3+J1AsysXgphu214Wy2OkW04ZpAQ0Sw3rBVHvXaWGluyBnpextRst1j1D9vN8vM+S1Z3+GtgFpXaBhc77UY0AwAAAAAAwFaa3+4FsCX2JvmHJ/70qqr6bJIbkxzO+njYc5M8OUm/Brx7kryorus7JrNUgNlTGjdaVdOUYS/H7UrjGk/ZZ4ZbvUrtcIudPY0tWYOEq8Y16rIUINKmNhkrg7QY+l5MVDEkq9kOAAAAAACAKSJst/N1kjz2xJ/NvC3JP6rr+patXRLAbOul2/fxuUzTGNmynd5sVwrELVVLWdiqZjtjZGfKTn8NzKLS96TpNQsAAAAAAACTJmy38/xy1sfAflWSRwyw/7Ek1yV5dV3Xb9vKhQHsFKVmu852NNtVpTGy5Wa7wUJlmzd/TaNu3c1avdZ323qzXXkk5SCNf6VGtLajLktjZAdZA6MbJEin2W6yNNsBAAAAAAAwC4Ttdpi6rv8syZ8lSVVVZyW5NsnlWR8Zuy/rTXf3Jbk3yaeSfKyu6/4VTQD01UthjGwmH7Zr32s3YNBoRkNfKw3NcEudpcZxr4OEq0rjddsGgkrrWBbwmoiBvtcz+hqYVcXWSM12AAAAAAAATBFhux2sruv7krxnu9cBsNP0ChnlbWm2a1DXdao+zXejjEuddssNAanFak/mqvl0Mtd3FHCpte7UfcYz6rIUIGoKCzI+gzXbzWa746wqhRs12wEAAAAAADBNpisVAAAzoNRs18nchFeSNHXblUbJDhQqm9GwXVNY7WTArRx0Gz6A1TSetp+lwhjZWW0UnDUDfa99LyZKsx0AAAAAAACzQNgOAFrq1YWw3TY021WNg2QLYbsB2tNmdYTm8iBhu0JT1iBfcymA1TYQNErgj9EN9L32vZioUiulZjsAAAAAAACmibAdALTUbwRpknS24W21fdRu0BGasxk0amrtO9kmt9jp30I3yNjQ0vOy0DIQVAoQNYUFGR/NdtNntdhs1641EgAAAAAAALaSsB0AtFRutpuuMbLlZrtBgkabB8+mUam1r0on89VCknLQbZQQYttmu6VOaYzsSuq6FJNkXAYJVq7Vq+nV/YO1jF+xNbIwchkAAAAAAAC2g7AdALRUpxC225Zmu3LYri6F7QYIle20MbJLnaVU1fpzNcoI19Lz0nbUZWkNdXpZq1dbnYv2Bm2tm9XQ6ayp63psQVYAAAAAAADYSsJ2ANBSt9B21am24W21agjbFQrSBgmVrdVrxa9zmg3SjlUa+TrJZrumcN5ybZTsVht0THJptCnj1c1aeoUQc9sgKwAAAAAAAGwlYTsAaKncbDf5MbJNQ2RLY2RXB2zrGnS/aVIaI7vYWdzw8fDNduUwX9tmu/JozEGDYAxv8GY734tJaPqZ12wHAAAAAADANBG2A4CWenUhbLcNzXZDjZEdMMw1i6GvYvPchma7xWqx7z6DNdv1DyC2DQQtNew/i8/7rBn8NTB7gdNZ1DSuV9gOAAAAAACAaSJsBwAtlcYddrblbbW5266fgVu9ZjD0tVz42pY2NMktFMI7m40M7dbddLPWd1spwFfS1IS3YozsllvVbDdVmu41Cy1fWwAAAAAAALCVhO0AoKVys920jZHtb+BWrxkMGpXHyD4UbisF3ZratZLmsbqlAF9J0xjZ5RkMOc6andzuOIuMkQUAAAAAAGBWCNsBQEu9dPs+Pm3NdsUxsju52a6w5o3NdqXwzmZfb2MgqKGprp+5ai7z1Xz/68xgyHHWDPwa8L2YiKamwbavLQAAAAAAANhKwnYA0FK52W663laLYbud3GxXGMG6MbBTCu9sNlq0uX2r/ajLxap/u12pnY/xWek1txg+tN/svQZmkTGyAAAAAAAAzIrpSgUAwAzopX/YrtqGt9WqajdItlf3GsehbrQ6g0GjUmjnlDGyhWDcZgGspvDhMO1bpYY9Y2S33k5ud5xFpe/HYrXU+h4HAAAAAAAAW0nYDgBaKjXbzW1Ds11TDKWuT2+2W6tXBz73bDbblUI7G8bIFoJxm329je1bheBck2HXwegGDdFt1nbIeAwSkgUAAAAAAIBpIGwHAC2Vm+3mJryS9auWnR62W24xonQWW71KX9/SKc12hZDbJl9vc7Nd+1GXSx1jZLdDt15LL92B9p3F18Asamq2AwAAAAAAgGkibAcALfXq/kGdzrY025XDdnWfsF2b1rSVAcfNTpNyQ9ZDwbaFIRvlSmN156uFdKr2QcthQ3+Mps3zq2VwMkrfk2EaIwEAAAAAAGArCdsBQEulZrvODLyttgoazWDoq9hsV21ds92w7VvGyG6PVoHT3uwFTmdR+bXVvjESAAAAAAAAttL0pwIAYMrUdSFsNwPNdqutmu1mL/RV+vo2NtuVAjybPTfl1rwhw3aFMbJtRv3Snma76TPu1xYAAAAAAABsFWE7AGhpuprtWo6RbRE0Wp3BVq/lAUI7pdGUa/VacURwUh6ruzBk+1ax2W4GGwVnSbtmO9+LSRh3ayQAAAAAAABsFWE7AGipWwhkdaq5Ca8kqcpZu/TJ2hUDY/3MYqvXSt2/FW5jaKcpwNP0/KyOuX1rqXDccuFrYDzahEhn8TUwizTbAQAAAAAAMCuE7QCgpXqKmu2axsj202qE5oy1etV1XWy2W9o4RrYhwFMK1CXjb98qjZGdted91rQJ0DX9PDA+5ddW/9cIAAAAAAAAbJf57V4AAMySXt3rO541STrVdI2R/def/8epUuW8xQvzjINfkxee+6153aHXDHzm9xy+Lu89/LZUVZXLlx6VbzjnW/KUg88ex6LH6t7VL+VP7vrtfPLYR4pByI3BtqZw3Ms//73FAGNpfPBiZ7xjZD9+7EN52We+NVWVXLL4iHzt2d+Y55z5gk3P96773px33/fm3LZ805cfW+gs5qq9j8s3n/8Pc+nSlUOtc9o80D2aN9/zuvzlkXdnqbMnzz/7b+crz/z6VBtqHj997KN50z1/ki88+Jn06lO/b92sDXytjxx9b172mW/98ufz1XwesffqvOT8f5zL9zxq9C+GHF07kvceflvfbcO+tgAAAAAAAGCrCNsBQAulMFcyfc12vayPu71z5db8z7tfm/9592tbnbtOvR5MqpMvHP9Mfuu2f5+XXvbjuXb/00Za8zgt947nVTe/Inev3tm439LGMbINzXYnn7M2FoZutisfd/J5v2n58/m9O341VTp59plfV9z/3fe9Oa+98zdOP09vLZ849uHcePyzefkjXpVzFs4faq3T4vDavfmVm1+Z21ceChT+/p2vzmq9kued/eIkyRcevD6/fuvPZq1eHcs1N4bzuvVarn/gr/PLN/9kfvzKX85ZC+eO5Rq7Va/u5pdu/onidmNkAQAAAAAAmDbGyAJACw9vydqoU81NcCWTV6eXv7jvLdu9jFN8+thHNw3aJQ9rthtzgGfY8y0Vxsj2857D1zVuf/fh5u/Lse79+ejR9w98vWl03+rd+cWbXnFK0O6kt93756nr9cbJDxx5x9iCdiUP9Nbb9RjNFx68PretfLG4fdgRzQAAAAAAALBVhO0AoIXSKNFke5rtDs6f2dhuN263LpeDMdvh1uUbN92nk7kcnDvzy58vVkvZ29k/tjWcNT9cu1mb4zZ73m8b4PsyyD7T6p7VQ/nFm1+Ru1Zv67v97tW7cqR7X5Lk9pWbJ7Kmvzj81hztHpnItXaqWxuCdsnwry0AAAAAAADYKsJ2ANBCry6PGe1Uk39bPTB3Rh6193ETu95KvTyxaw1ipV7ZdJ/H7XtS9s7t+/LnnaqTJx54xtjW8OQDzxrquMfte/LAzV2rveavs9vwc9lmn2n0pZU78qqbfiyHVu9o3O/OlVuSJHVD++Q4rdYreee9b5zItXaq1V75ftJJJ0848PQJrgYAAAAAAAA2J2wHAC00N9ttzxjZ773kR3PJ4iOGPv6rzvyGfN8lPzpQ8Guz0NekrTSEdZLkiqWr8t0X/9Bpj//9C/5JHrPviSNdey7z+bYLvi9X77t2qOP3zu3LSy/7iezvHNx0327W0q3X+m7r1b3UDT+XXz7HDIbt7ly5Na+6+RW5Z+3QpvvesXwibDfC9fZ29m2+0wbvuO8Nm/4MUtYU3v2+S/5lzl24cIKrAQAAAAAAgM3Nb/cCAGCW9Bpas7aj2S5Jzpo/J6+48pdy1+ptuXv1rvTqbn791p8d+Pj/48KXpqqqPHH/M3PT8uez3HswXzz+ufyPL/3+aftOW7PdamE9+zsH86OP+Pc5f+GiVNXpY3b3zu3LP7v83+Se1UO540QjWhsL1WKu2HNVljp7Wh+70WP2PSE//+jfyc3Hb8gDvaM5tHJ7/utdv9l335XeSvbOnf6fboOG6LrpH9abVrcv35xfvvknc6R770D737Fy64mPhovbPX7fU/MDl73ixPfi2CnbPn70Q3nHfa8/7Zij3cP5wJF35LlnvXCoa+52paDio/dem6ccfPaEVwMAAAAAAACbE7YDgBZ6KQebqm0sjK2qKhcuXpoLFy9NXdfppNPYwnfSUrXny2G0hc5Crjoxkna+6v+fCKv1Snp1b9uChQ9XCus86eAzc8HixZsef87C+Tln4fxxL6uVuWouV+69Okly+/x5xf1W6uXszenNa4OG6Gap2e6W4zfmV255ZY52Dw98zB0rNydJ6iHDdgudpcxV87ly72NO23bl/2bv3sOjqu99j3/WTGZyIVdIIFwLiIpQFVG2iEEBRa1atdXaum3dtR63Vdt6OdrqtijWVmttS9sj3V6OVrp1e9zd3ahUi4qCilRBvFZECwoB5RIMhEtCZjKzzh9KzJD1m6w1t6zJvF/P4/O4Zt1+ycwQ43z4fEsO1N9anlW7vbfbvkXNj2lK1UzfvCfyiSm8Wxbsl+OVAAAAAAAAAAAAAO7wqSAAAB4ka7YLWr0zRnZ/lmUpHOh5JKwk43HJRlWNPk4AACAASURBVMpGbf+Mko0Y1uJmJK4fJXveooZgYdxts51hDK3fNO5dq99umOUpaCcppYbCroqTfO/LguU6tnqm476t0Y/11u7lad27UJnCsiErnOOVAAAAAAAAAAAAAO4QtgMAwINkbXEBH/1YdRs2M4btkgSPTAGZ3mAKoLkNG/pNsufNqVVNch+icxvK600ftr2v326YpT3xXcZjKoM1jo/v6PhEe+Ntsu3Umu3CVvKRwNNrvmx8jy9qfjSlexa6SLxvhWUBAAAAAAAAAADQ9/knFQAAQB6wkzTbWT4aIxly22xnCLUkC7uYRj/2BtNa8jWskzzk6BxMcjse1u242d6ypnWVfrfhRrXFW43HHFj6Rf1g+Gzj/i2Rj1IeI9tTQHNAaKAmVhzruO+Dvau1tm11SvctZMb3b56GZQEAAAAAAAAAAND3+ScVAABAHojJHGwKyh9jZCX3YTNTKC9ZWM9PzXZ9bQxlsnWbgkluQ3RuQ3m94b09b+nOjTcb2/skaWzZ4bp82CzVh4cbv0+b21MfJZtsjOw+M/t/xbiPdjvvTM2U+fr+BQAAAAAAAAAAQN9H2A4AAA/iedJs5yY4JKXWbBfNh2a7PG3GClgBY9DIFCx03Wzn07Ddqj2v6/cf/TRpY+L4fkfq0qE3KBwoVsAKaFB4iONxmyOph+16GiMrScNLRuvgssMc9721+xVtiXyU8v0LUV97/wIAAAAAAAAAAKDv808qAACAPGDLHLYL+OjHashls50plBcOJGlYy4Nmu3wO65iCjqaQo/uwnf/GyL69e4Xu+uhnitrOI3Il6fDyo3XJ0OsU6vKarA8Pdzx2S2Rj1sbI7mNqt7Nl67nmBSndu1AZ3795OgYaAAAAAAAAAAAAfZ9/UgEAAOSBZMGmgI+a7dwGh0yhlqBVpKCKHPdFkgSjcs0U0srnsE7IEHQ0N9u5HCObZARyb3h91990z0e3qyPJ+idWHKv/NeRaFVmhhMcHhYc6Hv9ps12KYTuXr5lDyiZoSPgLjvte3vmcdnXsSOn+hcj4/s3jsCwAAAAAAAAAAAD6Nv+kAgAAyAPJm+2COVxJcm6DQ6EkoRZTux3Ndtlleu6MYTuXITo/Ndu9uvNF3ffxHYrJvKZ/qjxeFw6+WkGre+izPjzM8ZymyOaUx+UWB3oeIytJlmXpxP5nOe6L2hE9v+OvKd2/EDFGFgAAAAAAAAAAAPmGsB0AAB7E7SRhuz7UbJdsnykgk2u2bRtb9vK52c703Jm+766b7VIMoWXayy2L9YdNcxRPElw9puoEXVD/AwUt5wDrIEPYLqYONUU3p7QuLwGvoyobVF00wHHf8zue9FUg1c8YIwsAAAAAAAAAAIB8459UAAAAeSCWtNnOPz9W3YZVkgWMjKEvnwSJOuwOY9NgssY+v/PcbOcyROeHZruXdjyj/9j8u6QNkVOrT9H5gy5XwBC0k6RB4SGyZDnu2xtvTWltXgJeRVZI02tOd9y3J7ZLf2t5NqU1FJq+2EwJAAAAAAAAAACAvs0/qQAAAPKAnSTYlCwclGumEbD7K04Sagn5vNkummQdYcvd1+9H5mY75xY/1812LsfNZsvz25/UQ1vmypZtPGZGzZf1jYGX9NgSGQqENSA0MKPrcztGdp+GqpNUEih13Pfc9scV90mToF/11WZKAAAAAAAAAAAA9G2E7QAA8CDZ6EtfNdu5bIYyBeqSXcMvzXbJ1pHPzVhev+9uQ3S9OUb22ebH9cjWe5Iec1L/r+rsuu/Ispwb6/ZXHx6eiaV1SvZecFIa7KeGqpMd9zVFN+uN3a9kYll9Vl9tpgQAAAAAAAAAAEDf5p9UAAAAeSBuO4dDLFmuQ0K5ELbctXSlMkY2WaNcLiVr2Avlc7OdIfRl+r67brbrpTGyCz/5b/256f6kx5w64Os6s/Zbnt5Dg8JD011agmQtjybTa05XQM6Nloua58u2zS1+ha6vNlMCAAAAAAAAAACgbyNsBwCAB6ZmO1Pgpre4bXZLNq7RtM8/zXbOIyil/G62CxlGABub7Vw21uV6rKlt2/rLtof1+LYHkx53Ru35Or32PM9h1frwsHSW103Y4xhZSaoJ1eqoyqmO+9bt/YfWtq1Kd1l9Vl9tpgQAAAAAAAAAAEDfRtgOAAAPTIGlgOWvH6nJQnQJxyVttjOFvswht1xK3oyVv2EdY8jR2GzncoysctdsZ9u2Htv2oJ785JGkx3217ts6ZcDXUrpHfXFmx8im+po5seYs475nmh9NdTl9XrJmynx+/wIAAAAAAAAAAKBv81cyAAAAnzM32/nrR6opKNftuFSa7fwyRjZJM1Zej5E1BCDNzXZux8jmptnOtm39uekPerr5z0mPO3fgxTqxvzmo1pN6H4yRlaRhJSM1ruwIx31v71mhTe0b0llWn0WzHQAAAAAAAAAAAPKRv5IBAAD4XNw2hO181mwXykCzXchj6CvXTKG/kBX2PJLUT7yGHONyF6KzZWd9lGzcjuuRrffoue2PG4+xZOmfB12qaTWnpXWvfsEKVQSr0rrGPkVWSAEr9VHQyUKDyb4XhYxmOwAAAAAAAAAAAOQjfyUDAADwOXOzXepBnWxw2wzVF5vt8r0VK1vNdp8em72wXdyO6+Et/64XdvzVeIylgL5V/301VJ+ckXsOCg/LyHXSDXcdXHaYhhWPctz3ys7FaunYntb1+yLT69mSpSIrlOPVAAAAAAAAAAAAAO4QtgMAwANTs53ls2Y7t+GhZME0r6GvXDOF/vK9Fcsccow4Pu4lQBdz2YLnVcyO6Y+bf6eXWp4xHhNQQN8efKUmV83I2H3rMxW2SzOgaVmWZhra7TrsDi3Z/kRa1++L+mozJQAAAAAAAAAAAPo2fyUDAADwOdPIzoDPfqQWB0pcHZdKs13UJ8120bhz+KyvNttFM9Js5/5YL9d8YNMcLd+5xHhMQEFdNOQaTao8LqP3rg8Pzch13L5fkplYcaz6F9U57ntxx0LtjbelfY++JNJH378AAAAAAAAAAADo2/yVDAAAwOdMzXYBvzXbuR0jS7Od73gd3+ulrS7TY2Q77Kj+78e/1MpdS43HFFlF+tehP9IRFVMyem9Jqi8enpHrZOI1E7SKNL3my477WuO79beWZ9O+R19iCu3m+/sXAAAAAAAAAAAAfVtRby8AAIB8YssQtvNZfj1khV0dlzRs5zH0lWum0F++N2N5DTn2VrNdNB7RvR//Qn/f86rxmJAV1r8OvU7j+03M2H27GpShZrtMvWaOrZ6pJz/5f2qLt3bb99z2x3Vc9ZcUtIIZuVe+M72eQ3n+/gUAAAAAAACAbLJtW/F4XLZt9/ZSAKAby7IUCARkWVZvLyWrCNsBAOCBqRksb5vtko2RDTgH9kzjH3MtYjuvw23Q0K+ShRxt2+72H6de2uoy1WwXibfr7o9u07utbxiPCVvF+u7Qf9PYfodn5J5OaopqFbaK0w6AFlvpj5GVpJJAqaZWf0lPN/+5275Polv1+q5lOqpyakbule9M799wnr9/AQAAAAAAACDTotGoWlpa1NLSomg0StAOgK9ZlqVQKKSqqipVVVUpFAr19pIyzl/JAAAAfC5ubLbzV1uV21GMyYJpIWPoa29Ka8q0Qmu2k6SoQ0Ap7mWMrNJvttsbb9PvP/pp0qBdsVWi7w27MatBO+nTkGsm2u0y2aY2reY0BQ1/n+WZ5vn8T5DPRPvo+xcAAAAAAAAAMqW9vV2NjY1as2aNmpqaFIlE+H/MAHzPtm1FIhE1NTVpzZo1amxsVHu7PyanZQphOwAAPLBtQ9jOZ812btrdwlZx0grfZONM/fDLXNTQZuY2aOhXppCj5DzCN5fNdm2xVs3d+BO93/q28ZiSQJm+P3y2xpSNT+tebtWHh6V9jeIMBryqi/rrnyqPd9y3of0Dvd/294zdK5+Z2gjz/f0LAAAAAAAAAJkQjUbV2NioPXv29PZSACAte/bsUWNjo6LRaG8vJWP8lQwAAMDnzM12/vqRallWj6GVcCD56EzT+XHFM9KQli5Ts13IMP42XyRr9nL6mmO2++fCy7H7a43t1v/ZOFtr2941HlMWKNcVw3+i0aVjU76PV5lotgtnaIzsPif0P9O4b1Hz/IzeK1/11WZKAAAAAAAAAEhXLBbThg0b1NHR+5/FAEAmdHR0aMOGDYrF0isG8QvnGVcAAMBR3NAMFrD8NUZW+jRMF4mZK3nDPbTf9RT6KgqGUl5bJkQcRqpK+d+M5XWMbC6a7XbHdur/bJitDe0fGI8pD1bqB8Nu1rCSUSndI1X1xcNdHWfJki3nRsZMB7yGFI/Q+H5H6p09K7vte2fPa/q4fb2GFH8ho/fMNzTbAQAAAAAAAICzTZs2dRu5GAgEVFlZqcrKSoVCIQUC/iqBAABJisfjikaj2rlzp3bu3Kl4/PMim/b2dm3atEnDhqU/taq3EbYDAMCDfGm2k9IL0316frJxphGVpbSqzIn20WasZM+bc7Odh7CdvIftdnXs0G833KSPI+uNx1QGq/WD4T/RkOIRnq+frnqXzXZhq1jt9l7HfZkcI7vPzP5nOYbtJGlR82O6YPAPMn7PfEKzHQAAAAAAAAB0F4vFtGvXroTHwuGwvvCFL6ioiHgHAP8Lh8Pq16+f6urqtH79ekUin5eJ7Nq1S7FYTMGg/4psvPBfMgAAAB+L24awneW/H6nphOl6Ot8UlMmlvtqM5XmMrIeRvl7HyLZ0NGvOhh8nDdpVFfXXVSN+1itBO0mqCw2R5eI/aYuTjE3O9BhZSTqw9IsaUTLGcd+KnS9oR/STjN8zn5jev6E8f/8CAAAAAAAAQDr27NmTsG1ZloYPH07QDkDeKSoq0vDhw2VZVsLj+/85l4/8lwwAAMDH4oZmMDdhn1xLJ0zX0/m+CNsZ1hDqodHP74IqMjYlOgWUvDTbmcYgO9ke3aY5jT/W5shG4zH9i+p09fCfaZDLdrlsCAVCqgvV93hcstd7NtrULMvSzJqzHPfF1KHFO/6S8XvmE5rtAAAAAAAAAKC7/VvtysrKFA7n9+ceAApXOBxWWVnivLTdu3f30moyx3/JAAAAfMzUbBe0/Fd122OYLknTV0/nRw2tVLlkbLbL87COZVnGr8F5jGzmm+0+iW7RrzfcoK3Rj43H1IYG6aoRP1NdeLDr+2eLm7Bfsva6bLUhTqg4RgNCAx33vbjjKbXFWrNy33wQtSOOj/c0/hoAAAAAAAAA+rL9G58qKip6aSUAkBnl5eUJ24TtAAAoMHE5h+3ystmuh1BLkRUy7vNzs12+h+0k83MXsfd2e8xLs13M0MzY1dbIJs1p/LE+iW4xHjMwNERXDf+ZMUiWa/XFw3o8JtkY2WT70hG0gppRc4bjvr3xVi1reSYr980Hffn9CwAAAAAAAACpsG1bsVji/8cvLS3tpdUAQGbs32wXi8Vk23YvrSYz/JcMAADAx0xjOAOW/36khnpstku+P2AFjCNZTa1yuWRuxsr/sI7puYvEu3/NMWWu2W5z+0bN2XCDmjuajMcMDg/XVSN+qppQrev7Zlt9uOewXa7HyO4zpepElQXKHfc9t32Bp2bCvsTYTNkH3r8AAAAAAAAAkIp4vHvhQzDov8lKAOCF059jTn/e5RP/JQMAAPAxU7NdUP77ZafnZrueQy1expnmWl9uxjI32zmNkfXQbJfk2I/b1+s3G36slo5m4zFDi0fqyuE/VVVRf9f3zAU3YTtTcFTKbsCrOFCi46q/5Lhve8c2rdz1Utbu7Wd9+f0LAAAAAAAAAKlwanqyLKsXVgIAmeP051i+N9sV9fYCAADIJ3HbMEbWh812xWk220mfhpD2aFe3x5/f8Ve92/qGwlaxDig9RBMqJitoZf8/K+J2XG/tXq41be+o3WGkqtQ3mrFMz83ync/ro/Z1CY+9s2el6+v+cfNvtbr1Tcd9b+1ert2xncZzhxeP1veHz1Z5sNL1/XJlUHhoj8cka5/M1hjZfabVnKZF2x9Vhx3ttm9R83xNqjgurf9hYtu23tmzUu+1vq22+B7P55cFyjWu3xEa2+/wlNfglbGZkrAdAAAAAAAAAAAAfIywHQAAHtiGZruAD8tiewqthK2eA0ama6xpe0dr2t6RJC3Z8YQO33W0LhpyjYqskPeFuhS343pw8516eedzSY9L1mCWL8KGr2H93n9o/d5/pHzdDrtDy1oWeT5vZMlB+t6wG1UWdB6H2tvKguWqDNZoZ2x7SudnOyhaWVStoyun6aWWZ7rt29i+Tqtb39Qh/SakdG3btvWnrfdpyY6/pLXGRdsf1ZcGnKsv1/5zWtdxy9RsF+oDYVkAAAAAAAAAAAD0Xf5LBgAA4GOmMZwBy39jZHsKrYQDPYfS3LbEvbn7Fb27x7kxLVPW7/1Hj0E7qW80Y/npazig9BD9YPjNvg3a7eOm3c7EUvZr+E/sf5Zx3zPN81O+7ubIxrSDdvv89ZP/0o4kY4QzxbZtx5HIkjloCgAAAAAAAAAAAPgBYTsAADyI51GzXWmgLOn+kh72f3pMqev7vd/6tutjU/Gey+t7WbNfuXlucuHgskP1vWE35cX3tL54WNL9ycJ4/YIVmV6O4/0PK/8nx32rW9/Uxr0fpnTdf7T+PZ1lZf16TkwjZCUp5CIEDAAAAAAAAAAAAPQW/yUDAADwMds2hO0s//1IPbDsi0n3H1R2aI/XcHPMPnvjra6PTYWb69cU1ao2VJ/VdeRCT89dLowrO0KXDv2xigM9jxv2g/H9JibdP73my6oq6t/t8cHhEeofqsvWshKcWGNut1u0/dGUrtmW4ffd3nhbRq/nxNQQKklFWR7pCwAAAAAAAAAAAKTDf8kAAAB8LCbDGFn5b4zsF0rG6J8qj3fcd2zVTA0OD+/xGg3VJ6s+nLwxbJ9I3HksZKb0dP2AAvpq3bdlWdkfCZptkyqmamTJQb12/8PLj9YlQ6/31Tjbnnyx35EaV3aE476T+5+j6qL+OrvuwoQWyiIrpK/UXZCrJeqA0kM0quRgx32v7lyq5miT52uaxrGmKtvvY0mKqcO4LyDCdgAAAAAAAAAAAPAvPs0CAMCDfGq2C1gBXVD/Ax3ab5Leb/u79sbaVBbsp4PKDtWE8smuQmlVRTW6esStWrlzqdbv/YdidlyN7Wu0JfJRt2MzHfrxcv1T+n9Nh1ccrS+UjMnqGnKlNNhPPxh+s1buXKoP9q5WRzwxnLQrtkOrW99M+fpBFWlixbHdHi8JlOqgsi9qYsWxeRdaDFhBXTrsx1q+c4k+aFutSDyi8qIKjSs7QuM+a707qnKqakOD9Obu5QpaQU0on6xhJaNytkbLsnRi/zN178e/6LYvrpgWb/+Lzh54oadrmsJxVUX9dVCpuZny3dY3tDvW0v16WX4fS8mb7YKW/4LLAAAAAAAAAAAAwD6E7QAA8CAuQ9jOp2WxASuoIysbdGRlQ8rXKA9W6viaUzu35zfN0zPN87sd11vNdsdWzdQZdedn9d69oSRQqmOrZ+pYzey274O21VrdmHrYrjxYoQuHXJXO8nwpaAV1TNUJOqbqBOMxI0sP0sjS3m0NrAsNVlN0U7d9L7U8rVMHnKvSYD/X1zOF40aXHJz0Of7thhv1Xutb3a+Xi2Y729xsF2SMLAAAAAAAAAAAAHzMn8kAAAB8Kp5HzXbZEracR4v2VrNdyLCevixslaR3fh6Nh+1rAlZQJ9Sc4bhvb7xNL+54ytP1ooZwXKiH59j0Po7aEU/3T0WcZjsAAAAAAAAAAADkqcJJBgAAkAFxOYdEAiqcgIgpqNVbzXaFGBwrTvNrLsSAop9Mrpqh8mCl477FO/6iDjvq+lqmEKopTLdPKBB2vl4umu0Mf45KNNsBAAAAAAAAAODWyJEjZVlW5z9Llizp7SUBBYGwHQAAHtBsl6zZLruNWKbGrbDlHBrqy8IBmu3yWThQrOOqv+S4r6WjWa/ufNH1tSJxw/vCEKbr3N9LDZVSD2NkCyi4DAAAAAAAAAAAgPxTOMkAAAAyIC7nsJ1VQD9STUEt0zjLTKHZ7nM9tZb1eH4Bfs/85vjqUxUyBEUXNT8q27ZdXSea4njl3nofS1KMMbIAAAAAAAAAAADIU4WTDAAAIANMzXbBAmq2M4V4st2Ileq4zL4o3TGyhfg985uKoipNrprhuO/jSKNW7XnN1XXMzXY9hO382mzHGFkAAAAAAAAAAAD4WOEkAwAAyACa7czjKU3Nc5lCs93nAlZQRVYo5fN7GjGK3Dih5gxZshz3Ldr+qKtrpBpCDRnfx9kdBy3RbAcAAAAAAAAAAID8VTjJAAAAMiBuCIkECiggkqwRy+3oy1QYQ0UFGLaTpGKrJOVzabbzh4HhITq8/GjHfe+1vq3GvWt7vEaqIVTTa8A0ljaTYkrSbCea7QAAAAAAAAAAAOBfhO0AAPDA1GxXSGNkk4V4onb2WrFMoSLTWNu+ztRM5u7cwvye+dHM/l8x7lvU3HO7nbnZLvnrw/Q+znZDpWRutgsoIMtybvoDAAAAAAAAAAAA/IDqCAAAPIjbjJFN1ooWsdsVVuaDXHE7bgzyFWyzXYBmu75gVOnBOqD0EK1te7fbvtd2vaQzo9/UgNAg4/lRw9jXngKVyRoqsy1mOzfbBS1+NQEAAAAAAAAAwG9s29Zrr72m1atXa+vWrWpvb1ddXZ2GDh2qhoYGlZeX9/YSU7ZhwwatWLFCGzduVFtbm2pra3XooYfqqKOOUiCQ3ue/W7du1YsvvqiPP/5YbW1tGjJkiEaPHq3JkyenfW0nq1at0ttvv62mpibt3LlT/fv31+DBg9XQ0KABAwZk/H6FjE+0AADwwDY02wUKKWyXJMQTibdLWZio22FHzesp0OBYOl93oQYU/erEmrMcw3ZxxfXc9gX62sD/ZTw39WY75/2m8F4mmZrtggU0jhsAAAAAAAAAAL/btm2bbr31Vj344INqampyPCYcDmvGjBmaPXu2jj76aFfX/fa3v6158+Z1bn/44YcaOXKkq3OXLFmi6dOnd27fdNNNmj17tvH4rhN1jj/+eC1ZskSStGzZMt1000167rnnFI93//x30KBBuuGGG3T55Zd7Dsa9/vrruvbaa7V48WLHaw8bNkyXXHKJrrvuOhUVFWn27Nm6+eabO/cvXrxY06ZNc3WvTz75RHfccYcefPBBffTRR47HBAIBTZkyRTfddJNOPPFET18LnBVOMgAAgAwwjj8soJBIspBXtsbIJhttaQoN9XU02/Udh5ZP0qDwUMd9y3YsUmtst+O+uB0zBlF7ClSaxi/npNlOhrAdfw8IAAAAAAAAAABfePTRRzV69GjNmTPHGLSTpEgkooULF2ry5Mm65JJL1NHhPN3GT2699VYdd9xxWrRokWMYTpK2bNmiH/zgBzrnnHMUibj//PPXv/61Jk2apGeffdZ47Y0bN2rWrFk6/vjjtWXLlpS+Bkn64x//qNGjR+v22283Bu0kKR6Pa+nSpZo5c6a+9a1vefp64IxPtAAA8CBOs13PzXZZkCwAVKjBMZrt+o6AFdAJNWfqP7f8vtu+dnuvXtjxV50y4Gvd9kWShFt7en2YXgORnDTbmcbIFk5oGQAAAAAAAAAyze7okJo29vYy+r66YbKK+nbU5v7779fFF1/cLSx2wAEHaNy4cSorK1NjY6OWL1+uWOzzv2B/zz33qLGxUQsWLFCRT79Hv/zlL3XDDTd0bh988ME6+OCD1a9fP23atEkvv/yy9u7d27l//vz5mjVrlm6//fYer/2rX/1K11xzTbfHx40bpwMPPFDFxcVqbGzUihUrFIvFtGzZMp177rk67rjjPH8dN954o2655ZaExyzL0sEHH6wDDzxQFRUV2r59u1599dWEsOSDDz6oTZs2aeHChb59jvIB3zkAADywbUPYziqcsJ2pEUvKYtguabNdYQbH0vm6CzWg6GdHV07Tgm0PaVespdu+Jduf0Ak1Zyq0X4tjNI33hWnMbEwditkdClrZ+zWBhlAAAAAAAAAAyIKmjbLPPbi3V9HnWf/1njR4ZG8vI2veeOMNXXrppQlBuwkTJmju3LmaMmVKwrFNTU2aNWuW7r777s7HFi5cqBtvvFG33nprztbs1ttvv60XX3xRknTWWWfptttu09ixYxOO2b59u66++mo98MADnY/96le/0qWXXpp01O3KlSt13XXXJTw2bdo03XnnnRo/fnzC401NTbrxxht111136YUXXtCqVas8fR3z5s1LCNoFAgFdfvnluuaaazRixIiEY23b1mOPPaYrrrhCjY2NkqRnn31Ws2bN0m233ebpvvhc4SQDAADIAGNIpIB+pBZZRbIMX2+2RlDSbNddOJ0xsgU6etfPQoGwptWc5rhvZ2yHlu98vtvj2Wi2k7LfbmdutuPvAQEAAAAAAAAA0JsuuuiihDGjDQ0Neumll7oF7SSprq5Od911l+64446Ex2+//Xa9/fbbWV+rV83NzYrH4/rhD3+o+fPndwvaSVJNTY3+8Ic/6Mwzz+x8LBaL6b777kt67csvvzxhhO5Xv/pVPfPMM92CdtKn37d///d/1y9+8QtJ0rZt21x/DevXr9ell17auV1cXKwnnnhCv/vd77oF7aRP2+7OOussrVixQmPGjOl8/I477tCHH37o+r5IVDjJAAAAMsA2jZEtoEYmy7KMrVg02+VOsZV62C5ZOyF6z9TqU4whuUXbH1N8v2bNZO+L/Vvwuu1P8hqIJgnxZUJMzqHloArnz1EAAAAAAAAAAPxm8eLFeu211zq3Kysr9cgjj6isrCzpeddcc41OP/30zu14PK45c+ZkbZ3paGhocNXo9rOf/Sxh+7nnnjMeu2LFCr3yyiud24MHD9b999/f45jWa6+9VieddFKPa+nqjjvuUFtbW+f2nDlzdMopp/R43sCBA/Wf//mfnduxWMy3z1E+IGwHpzTaMAAAIABJREFUAIAHcVPYrsB+pJoCbrlutgsoWLBtWOm00xVqQNHvyoOVOqbqBMd9WyIb9fc9ryY8Fk2j8THZ6ydbodl9aLYDAAAAAAAAAMB/5s2bl7B9+eWXa8iQIa7O/fnPf56w/fDDD6u9PbufN6TihhtuUCDQ8+e648ePTxgb+8YbbxiPffjhhxO2v/e976mqqsrVembNmuXqOEnas2eP7r///s7t0aNH65JLLnF9/qRJkzR16tTO7ccff9z1uUhUWMkAAADSFDeNkbUK60eqMWyX42a7Qg6NpTVGlmY73zqh5kzjmOZFzY8lbKfT+JjsNZCt0Ow+pj9HgwXUEAoAAAAAAAAAgN8sXbo0Yfub3/ym63PHjx+viRMndm7v3btXK1euzNjaMqG0tFQzZsxwffwhhxzS+e+tra3avXu343HLli1L2D733HNd36OhocF1oHHp0qUJrXbnnHOOq+BgV9OnT+/89/Xr16uxsdHT+fgU9REAAHhgbLYrsJCIKaiTrZCOqcGrkENj6YyRLeSQot/VhgfpiIpj9Nqul7rtW9P2jta1va+RpQdJkiKGca9uGh9DSV4D2W+2M4Xt+NUEAAAAAAAAAIDesH37dq1du7Zzu7q6OiFs5saUKVMSxtCuWLFCU6ZMydga03XAAQcoHHY/OaqmpiZhu6WlReXl5d2Oe/PNNzv/vbq6WmPGjPG0rqOOOspVy9z+YcghQ4Zo3bp1nu61/9f/wQcfaMSIEZ6uAcJ2AAB4ErcZIyuZgzrRuHP4J10Rw3XTGaWa70LpjJEt4JBiPpjZ/yuOYTtJeqb5UV089IeS0mt8DFvm10/UEOLLlJgMY2RVWKFlAAAAAAAAAMioumGy/uu93l5F31c3rLdXkBVNTU0J2wceeKAsy/J0jbFjxyZsb926Ne11ZdL+4bmehEKhhO1oNNrtmD179mjv3r2d26kE19yes2HDhoTtK6+8UldeeaXn+3XV3Nyc1vmFirAdAAAemJrtTGMf+6pcN9uZrlvIobHidMbI0mzna18oGaMDS8frH23vdNv3xu6X1RTZpLrw4CSNjz0HMQNWUEVWkTrs7sG3bI+RNTfbEbYDAAAAAAAAgFRZRUXS4JG9vQzkqe3btydsV1VVeb7G/uf4LcjldeSqGzt27EjYrqio8HyNyspKV8d98sknnq/dk127dmX8moWgsJIBAACkKU5IRJI5rJWt8ZPpNHj1VeF0xsgWcEgxX5zY/yuOj9uK67ntCySZGx+TjYhNOM4Ums36GFlDsx1jZAEAAAAAAAAA6BW2bSdse221c5KJa/hdcXHiZy2RiPfpQW7PSeXaPdn/eYc7hO0AAPDA1GwXsArrR6qpOSvXzXamsFAhKE4jaFjIIcV8Mb7fRA0OD3fct6xlkXZ37Ey78THXodl9aLYDAAAAAAAAAMBf+vfvn7Dd0tLi+Rr7n+N1bKsbsZjzZwy9Zf+vcf+GQDfcNgDW1tYmbC9btky2baf1z7e//W3P6wVhOwAAPInbjJGVaLbzg3Ta6YqsUAZXgmwIWAGd0P9Mx31RO6IXdvw17feF6TUUtTP/N6O6iolmOwAAAAAAAAAA/KSuri5h+/333/d8jffeey9he+DAgY7HFRUlfh7Q0eH8uYGTVMJs2RQMBjV06NDO7Q8++ECtra2ervH222+7Om7QoEEJ26k8R8iMwkoGAACQJtMY2UCB/Ug1hXRy3WxXyONQw4HUxsiGrHDBNTHmq0kVx6sq6Py3vpbseFJ7Yrsc95maJ7sdZwrNZul9vI+x2U402wEAAAAAAAAA0Btqamp0wAEHdG7v2LFD7777rqdrLFu2LGF70qRJjsdVVlYmbO/YscP1Pd555x1Pa8qFyZMnd/57PB7X888/7/rc5uZmvfnmm66OnTJlSsL2008/7fo+yCw+aQUAwAPzGNnCConkutkuSrNdN6mOkS3k71m+CQVCmlZzuuO+3bEWvbJzseM+t89xyDQOOutjZGm2AwAAAAAAAADAbxoaGhK2H3roIdfnvvvuu1q5cmXndklJiY488kjHY/dvvFu1apXr+zz55JOuj82VE088MWH73nvvdX3uvHnzFIm4mzh0wgknKBj8/DPpxx9/XFu3bnV9L2QOYTsAADywjWG7wvqRGjKOn8xOSKfdFLYr5GY7K/VmO+SPqdUnq9jwXO+KtTg+7vY5NoXysvU+3sfUbFdooWUAAAAAAAAAAPzkggsuSNi+8847tXnzZlfnXn/99Qnb3/jGN1Rc7Pw5xMSJExO2FyxY4OoeTz31lJYvX+7q2Fw6//zzVVFR0bk9f/58PfXUUz2e99FHH+knP/mJ6/vU1NTo/PPP79zevXu3rrnmGm+LRUYUVjIAAIA0xWxD2K7AfqSam+3c/c0Lr4xjZAOFGxxLtaGO9rD8UhYs17HVMz2d4/a1YRwHnfVmO8MYWcJ2AAAAAAAAAAD0mhkzZmjChAmd2y0tLTrvvPPU1taW9Lw5c+boscce69y2LEtXXXWV8fhjjjlGZWVlndvz58/Xq6++mvQe//jHP/Qv//IvPX0JvaKiokJXXHFFwmPnnnuuFi92nlAkSevWrdPMmTM9jdCVpNmzZyeEGP/jP/5DP/rRjxSLOX/2YrJq1Sq98MILns7B5worGQAAQBps207SbFdYIRFjSCdLjVim8E8hj0RNOWynwnqt9gXTa77sKdDrtvHRFFaN2NkJze4Tk2GMrAiCAgAAAAAAAACQqs2bN2vdunUp/bPPfffdp3D4888PlixZoqlTp+qVV17pdr9t27bp8ssv19VXX53w+A9/+EMddthhxnVWVFTo61//eud2LBbTaaedpqeffrrbsZFIRPfee68mT56sLVu2qKamxsu3JGdmzZqlQw89tHN7586dOuGEE3Tuuefqv//7v/XWW29p9erVevrpp3XllVdq/Pjxevfdd1VSUqIzzzzT9X1GjRqle+65J+GxX/ziF2poaNCCBQvU0eH8GYz0acBv7ty5mjFjhsaPH6/nnnvO+xcKSeITLQAA3DIF7SSa7fbJViOWaaylaZxtIUh1hC7NdvlnQGigjqxo0Ipd7v6GkdsgpnEcNM12AAAAAAAAAADknfPOOy/lc23blvTpiNc777xT3/3udxWPf/rZ6MqVKzV58mSNGTNG48ePV0lJiTZs2KDly5d3C3fNnDlTt9xyS4/3u+WWWzR//vzOZretW7fq5JNP1pgxY3TYYYepuLhYW7Zs0SuvvKI9e/ZIkurr63X77bf7suEuHA7riSee0IwZM7RmzRpJn35P//SnP+lPf/qT4zmWZWnu3LlqbGzs1gyYzAUXXKDNmzfr+uuv73yOXn75ZZ1xxhkqKyvTEUccoUGDBqm0tFS7du3Stm3btGrVKs8tejDj01YAAFyKE7brFLZMjVg02+VKwErtNUegKT+d2P8s12E7tyHUXDdU7hOzDc12vDYBAAAAAAAAAOh1F198sWpqanThhRdq9+7dnY+vWbOmM0jm5Dvf+Y7uuusuhUKhHu8xdOhQ/fnPf9ZZZ52lXbt29XiPUaNG6YknntCWLVs8fjW5M3z4cL344ou67LLLNH/+/KTHDhgwQPPmzdNpp52mH/3oRwn7KioqerzXvvbACy+8UJs3b+58vLW1VS+99JKr9fq1JTAfFFYyAACANMTtJGG7AguJ5LrZzhT+SbXdrZDRbJefhpeM1sFl5sr1rtyGUI1jZOPZHSMbNzTbBRhxDAAAAAAAAACAL5xzzjlau3atrrjiCtXW1hqPC4VCOumkk/TSSy/pvvvucxW022fGjBlavny5zjzzTGObW11dna699lq98cYbOuSQQzx/HblWX1+v//mf/+kM3Y0bN07V1dUqKSnR6NGjdeKJJ+ruu+/W2rVrddppp0lSt8a5qqoqV/c65ZRT9OGHH2ru3LmaMGFCj414oVBIU6ZM0ezZs/X+++/riiuuSO2LBM12AAC4lbTZLsWWsXxlCrmZxr2myxT+KeRmu1QFCTTlrZn9v6L3Wt/q8ThT82S34wzvn2y9j/eJydRsx68mAAAAAAAAAAC4tW7duqxef+DAgfrNb36jX//611q5cqVWr16tpqYmtbe3q7a2VsOGDVNDQ4OrJjaTsWPH6tFHH9W2bdv0/PPPa+PGjWptbdWgQYM0atQoTZ06VUVFn39+MG3atM6Rt254OXZ/DzzwgB544IGUzm1oaFBDQ4OrY1etWtX575ZlaeDAga7vU1JSossuu0yXXXaZmpub9fLLL2vTpk1qbm5WNBpVeXm5Bg4cqIMOOkhjx45VWVmZ568F3fGJFgAALpnamKTCGyMbMoR0OuwOxexYxsdB0myXOYzqzF+HlE3QkPAX9HFkfdLjTO/PbseZxshmudkuZvizlNcmAAAAAAAAAAD+EwgENGnSJE2aNClr96itrdXZZ5+dtev71Z49e/Taa691bh900EEphxf79++vU089NVNLQxKFlQwAACANycfIFtaP1GQht6id+aCOaTwtzXbe0R6WvyzL0on9z+rxOLchVFMDnincminmsB2vTQAAAAAAAAAAUDjmzZun1tbWzu1jjjmmF1cDt/hECwAAg9bYbn3cvl52l22TQIGN5kwWcntvz1sqC5Z3bg8KD1VlUbWkT6uam6Kb1NKxXUVWSMOKRykUCCW9V8zuUFzO4Ry34zLxOdrD8ttRlQ16fNuD2tHxifEYtyFU03Efta/T1sjHqgsNlmVZKa0zmZhtGCNbYH+OAgAAAAAAAACAwrVx40bNmjUr4bELLrigl1YDLwjbAQCwn5gd00Ob5+qVnUtky9xm1xXNdp+7++Pbuj32xX5H6Yzab+q+TXdoS+SjzsdDVlhfrfu2jq9xrjS2bVsPb7nLvA6a7TyjPSy/FVkhTa/5suY3PWA8xm0I1TRGVpJmf3iZBoWH6rKhP1ZdeLDXZSZlCs/y2gQAAAAAAAAAAPnqz3/+s1auXKmrrrpKdXV1SY99/fXXdfbZZ6u5ubnzscMPP1zTp0/P9jKRAXyiBQDAfp765L/18s7nPJ1jFdhkdq8ht7/veVV/3/Nqt8ejdkSPbL1H9cXDdXDZod32v9TytJa1LDJeN1lYCM5oD8t/DVUz9ddPHtHeeJvj/nSb7fbZEvlIczfeoptGzc1ow515jCyvTQAAAAAAAAAAkJ927dql2267Tb/85S91yimn6IQTTtDhhx+ugQMHqqioSM3NzXr77bf1l7/8RQsWLJBt253nhsNhzZs3rxdXDy8I2wEAsJ83dr/s+ZwAYbu0vLX7Fcew3Ru7kj8XNNt5V/HZSF/kr9JgPzVUnaxF2x913O82hOqmAW9r9GNtjmzU4OLhntaYjDlsx68mAAAAAAAAAAAgv0WjUS1YsEALFixwdXxpaan++Mc/6vDDD8/yypAphZUMAADAhe0d2zwdXxIoVU1oQJZW40/FVon6FyWvP/ZiR7TZ8fFkz0VpoJ+qi/pnbA356Ct1/+L4+OkDztPA0BDHfRMrjs3mkpAj02tOV8ChpTCgoAaFnZ/7/Q0uHuHquJYO5/dnqmLqcHycZjsAAAAAAAAAAJCvqqurFQx6+6zj2GOP1QsvvKBzzjknS6tCNhC2AwBgP5F4u6fj/6lyWsE1MlmWpSlVJ2bseqbwTcQ2PxeTq6YX3Pd9f0eUT1FJoCzhsWKrRBMrjnV8fgaFh+qA0kNytTxkUU2oVqcM6P6L18SKKSoLlru6Rv9QncaW5f5vSRmb7RhxDAAAAAAAAAAA8tRZZ52lLVu26MEHH9Sll16qhoYGDR8+XP369VMwGFR5eblGjBihqVOn6t/+7d+0dOlSLV26VEcddVRvLx0eFfYn1AAA7CduxxW1I66O7V9UpyMrG3Rm7TezvCp/+tKAc2VZAb3Sslhbox+ndS1T+MYUfBwQGqiz6y5M6559QW14kK4cfov+p+kBNe5dq+HFo3RG7TdVXzxMg8JDJUl/2/msdnZs19iyw/X1QZfQHtaHnDrg6woooL/tfFaS9MV+R+nsgd7eF/869Dr9acv/1d/3vKpdsRbHY2zZaa+1q5htarbjVxMAAAAAAAAAAJC/BgwYoPPPP1/nn39+by8FWcQnWgAAdNFhR437/veIn2tUyUGd25YsWZaVi2X5kmVZ+tKAr+lLA76muB3vfHxnx3b92wcXebqWKXxjCtudU3eRAoTGJEkjSg7QlcNvkW3bCa9Hy7J00oCv6qQBX+22D31DwAro1Nqv69Tar6d8jZJAqb41+PuybVvfe/9s2Yp3OybzYTtDsx3vaQAAAAAAAAAAAPgcYTsAALpINkK22CpRwGICu5Ou35fiQInn853CdrZtK2JoGQwHij3fo69LFqYjaIeeWJalgAKKOYTtMo1mOwAAAAAAAAAAAOQrEgMAAHQRsc1hOwJe7qTyfXJquuqwOxxbtiQpbPFcAJlmymRmvNlOhmY70WwHAAAAAAAAAAAAfyNsBwBAF0mb7QjbuRK0ihTwGJpxCt9ECT4COWZK2+VqjCzNdgAAAAAAAAAAAPA3wnYAAHSRtNmONjXXvIbhnMZKJgs+ErYDMs8yhO0y2WwXt+PGxsqARbMdAAAAAAAAAAAA/I2wHQAAXRDwygyvwUSnpqtkwceQFfa8JgC9z9RqJ9FsBwAAAAAAAAAAAP8jbAcAQBemgFdAQYIgHoQD3sJwNNsB/pXJIbIxdX+v7xP0OH4aAAAAAAAAAAAAyDXCdgAAdGEKeBHu8sZzs528Ndsx0hfIPNMY2UzG7eJJm+0I2wEAAAAAAAAAAMDfCNsBANBF1BDwItzljddwotdmO8bIAplnCtvZGQzbOb3X96E9FAAAAAAAAAAAAH5H2A4AgC4i8Yjj417Hoha6kMdwolPblanZLmwVy7JMDVwA/CxGsx0AAAAAAAAAAADyGGE7AAC6SBbwgnvem+0cwnbG4CPPBZANphCrbWew2U5Jmu1Esx0AAAAAAAAAAAD8jbAdAABdmEaXEvDyxms40SmAw0hfINdyMUaWZjsAAAAAAAAAAADkL8J2AAB0YWq28zoWtdBlptnO8FwQfASyIhfDmZOH7Wi2AwAAAAAAAAAAgL8RtgMAoAua7TLDe9iue7OdeaRvOKU1AehJ9uN2Tu/1fWi2AwAAAAAAAAAAgN8RtgMAoAtj2I5mO0+8fr/iisu2E0dVEnwE/CGjY2RFsx0AAAAAAAAAAADyF2E7AAC6MLapEfDyJJXvV0yJjVfmZjueCyAbLGOzXQbDdsma7USzHQAAAAAAAAAAAPyNsB0AAF3QbJcZqXy/YnZi4xXNdkBumcJ2mYvadX+fd8UYWQAAAAAAAAAAAPgdYTsAALowN9uFc7yS/JZSs51Nsx3Qq0zFdjlotrNkKUDYDgAAAAAAAAAAAD5H2A4AgC5oU8uMTDTbReMR52vzXABZYWy2szMYtpNzsx2tdgAAAAAAAAAAAMgHhO0AAOgiamhTC9Gm5kkqTYD7h3BMzXY8F0C25GKMrHOzXVBFGbwLAAAAAAAAAAAAkB2E7QAA6IJmu8xIJRDXbYwszwWQU8Ypshm0f4PlPoyQBQAAAAAAAACgMDU2NurHP/6xpk6dqkGDBikcDsuyrM5/Hnjggd5eIpCACgkAALowtamlMha1kKUSiOs2RtY2jJG1vLfmAeiZaYxsJrvtTGE7xsgCAAAAAAAAAODNyJEjtX79+s7txYsXa9q0ab23oBTce++9+v73v6/2dufPaAE/otkOAIAuInFDwIs2NU9SCSfSbAf4k53RsJ1pjCxhOwAAAAAAAAAACsmTTz6pSy65xHXQbsmSJQmNd7Nnz87uAgEDmu0AAOiCZrvMyESzHc8FkGvZb7aLy9Rsx68lAAAAAAAAAAAUkuuvv162/flnEP/8z/+siy66SMOHD1coFOp8vLa2tjeWBxjxqRYAAF3QppYZqQTi4qLZDuhN2Y/aJWm2Y4wsAAAAAAAAAAAF47333tNbb73VuX3qqafqoYce6sUVAe4xRhYAgM/E7A5j61LYCud4Nfktq812hO2A7LCc43Zd/1ZZuvZ/n+8ToNkOAAAAAAAAAICC8eqrryZsn3POOb20EsA7wnYAAHzG1KQmEfDyKpXvV4ftrtkuxBhZICusHHTbGZvtRLMdAAAAAAAAAACFYsuWLQnbw4YN66WVAN4RtgMA4DOmJjWJgJdXqYyR7RrCidtxRe2I87UJPgJ5K2ZoD2WMLAAAAAAAAAAAhWP37t0J26FQqJdWAnjHvCYAAD5Ds13mhFIYu9s1hNNhR43HpRLkA9AzU7Nd5nrtkjTbMUYWAAAAAAAAAABfsm1br732mlavXq2tW7eqvb1ddXV1Gjp0qBoaGlReXu75mvF4PAsrBXKDT7UAAPhMsmY7Al7eWJalsFWc9Hu6v64hnOTBR+9BPgA9y80YWZrtAAAAAAAAAADIB9u2bdOtt96qBx98UE1NTY7HhMNhzZgxQ7Nnz9bRRx9tvNa6des0atQo4/7p06c7Pv6HP/xBF154oeO+m2++WTfffLPxmosXL9a0adOM+4FUMUYWAIDPROLOY0slmu1S4fV71jWEQ/AR8A87J2E7/g4QAAAAAAAAAAB+8eijj2r06NGaM2eOMWgnSZFIRAsXLtTkyZN1ySWXqKPDecIN0JfwqRYAAJ9JFvBKZSxqofMaiksI2zHSF+iTYjKMkRXNdgAAAAAAAACQlniH1Lqxt1fR95UNkwJ9O2pz//336+KLL+426vWAAw7QuHHjVFZWpsbGRi1fvlyx2Oef791zzz1qbGzUggULVFTUt79HKGy8ugEA+Iwp4BWywgpYlMF6FfLcbNdljCzNdkDOWZbzGFma7QAAAAAAAAAgD7RulB43j+lEhpzxoVQ+srdXkTVvvPGGLr300oSg3YQJEzR37lxNmTIl4dimpibNmjVLd999d+djCxcu1I033qhbb7014dhhw4bpww8/7Nz+zW9+o9/+9red2w8//LAmT57cbT21tbWdo2BffvllnXfeeZ37rrjiCl155ZXGr6W+vr6HrxZIDZ9qAQDwmagh4EWTWmrCHtsA46LZDuhdhrCdncmwnaHZzqLZDgAAAAAAAACA3nbRRRcpEol0bjc0NOipp55SWVlZt2Pr6up01113acyYMbr22ms7H7/99tt13nnn6dBDD+18rKioSCNHjuzcrq6uTrhWfX19wv6uysvLJUnr1q1LeLy6utp4DpBN1PQAAPAZU8CLJrXUeA3FuWm2CyhIAxaQJc5Ru8wyN9sRtgMAAAAAAAAAoDctXrxYr732Wud2ZWWlHnnkEcegXVfXXHONTj/99M7teDyuOXPmZG2dQG8jbAcAwGeMYTua1FLiNaTYNYTDcwHknpWDuF1MhmY7CrcBAAAAAAAAAOhV8+bNS9i+/PLLNWTIEFfn/vznP0/Yfvjhh9Xebp5kBeQzPtUCABSMJ7c9omUti4z798bbHB+n2S41qTTbrWl9R4u3/0Wv7/6b8zV5LoAscg7bPdr0R/31k/9KemZ9eJiOrpqmSZXHG4+JxNv1t5ZnHffRbAcAAAAAAAAAQO9aunRpwvY3v/lN1+eOHz9eEydO7GzG27t3r1auXKkpU6ZkdI2AHxC2AwAUjNb4bjV3NHk+jza11IStEk/Hv9/2dz267T/UYUfN1wyE010WAANTs92e+C7tie9Kem5zR5NWtb6u9vheNVSf3G2/bdv6949+Zjyf8dAAAAAAAAAAAPSe7du3a+3atZ3b1dXVOuSQQzxdY8qUKQljaFesWEHYDn0Sn2oBANCDkEXAKxVeg3Fv7V7e8zVptgN87bntCxzDdh+1r9d7rW8ZzwvQbAcAAAAAAAAA6SkbJp3xYW+vou8rG9bbK8iKpqbEwpIDDzxQluX8l/RNxo4dm7C9devWtNcF+BFhOwAAelARrO7tJeSlyqLMf98qiqoyfk0An+oXrJDMxZKubI5sVCTe3q0RtLF9TdLzKoK8twEAAAAAAAAgLYEiqXxkb68CeWr79u0J21VV3v+//f7nNDc3p7UmwK8Cvb0AAAD87ovlE3t7CXlpfL8j8+KaAD51SL8JGblOXPFuj0Xi7UnPGdfviIzcGwAAAAAAAAAAeGfbdsK211Y7J5m4BuBHhO0AAEhiavUpOrJiam8vIy+NLh2rM2u/lbHrHVE+RdNqTsvY9QAkOrn/2RrfL/1wcdyOdXssWdjuzNpvaXTpWON+AAAAAAAAAACQXf3790/Ybmlp8XyN/c+pqalJa02AXzFGFgBQMI6qmKqhxSNdHVtkFWlUycGqDddnd1F93MkDztbRVdO1tnWVIna7yoNVeqZ5vta0veP6GkdWNOi0Ad/QoPBQ/gYMkEWhQFiXDZ2lTZENaty7VrZDQ90+OzqatWDbQ477Yk5hO9s5bFcXGqyTB5yd2oIBAAAAAAAAAEBG1NXVJWy///77nq/x3nvvJWwPHDgwrTUBfkXYDgBQMEaWHqSRpQf19jIKTnVRfx1Z2dC5vaxlkafzG6pPVn3xsEwvC4ADy7I0pHiEhhSPSHrcpvYNxrCdlzGydeHB3hcJAAAAAAAAAAAyqqamRgcccIDWrl0rSdqxY4feffddHXLIIa6vsWzZsoTtSZMmZXSNlHLALxgjCwAAcipoBT0dH7aKs7QSAKlK9j52GiMbtSOOx4atcMbWBAAAAAAAAAAAUtfQ0JCw/dBDzn/p3sm7776rlStXdm6XlJToyCOPzNjaJKm4OPEzw/Z257/oD2QbYTsAAJBTQY/FuuEAYRzAbwJKErbz0GwXDhCmBQAAAAAAAADADy644IKE7TvvvFObN292de7111+fsP2Nb3yjWzguXdXV1QnbmzZtyuj1AbcI2wEAgJyi2Q7IfwHL/GuEU7NdxDaE7Xh/AwAAAAAAAADgCzNmzNCECRM6t1taWnTeeeepra0t6Xlz5szRY4891rltWZauuuqqjK9v9OhI9A+jAAAgAElEQVTRCoc/L+lYvHixotFoxu8D9MRbtQwAAECaPIftaL4CfCeQbIwszXYAAAAAAAAAAOTc5s2btW7dupTOHTlypCTpvvvu0zHHHKNIJCJJWrJkiaZOnaq5c+fq6KOPTjhn27Ztuummm/T73/8+4fEf/vCHOuyww1JaRzLhcFjHHnusFi9eLElqbGzUGWecoe9+97s68MADVVZWlnB8fX29SkpKMr4OgLAdAADIqaDlcYwszVeA7wSSFGTHbYewnb3X8dgQ728AAAAAAAAAADLivPPOS/lc27YlSRMnTtSdd96p7373u4rHP/3//StXrtTkyZM1ZswYjR8/XiUlJdqwYYOWL1+ujo6OhOvMnDlTt9xyS+pfRA+uvvrqzrCdJC1cuFALFy50PHbx4sWaNm1a1taCwkXYDgAA5BTNdkD+SzZGNuY0RjYecTyW9zcAAAAAAAAAAP5y8cUXq6amRhdeeKF2797d+fiaNWu0Zs0a43nf+c53dNdddykUCmVtbaeffrp++tOf6qabblIs1v3zCCAXzJ+SAQAAZEHQQ9Y/oKDnJjwA2ReUOTRrO42RtQ1jZGm2AwAAAAAAAADAd8455xytXbtWV1xxhWpra43HhUIhnXTSSXrppZd03333ZTVot88NN9ygt956S9ddd52OO+441dfXq7S0NOv3Bfbh02sAAJBTXprtaL0C/Mny3GxnCNvxHgcAAAAAAAAAICXr1q3L6vUHDhyo3/zmN/r1r3+tlStXavXq1WpqalJ7e7tqa2s1bNgwNTQ0qKKiwvO1Z8+erdmzZ6e8tnHjxum2225L+XwgHYTtAABATnlpqqP1CvCnZM12cTmE7YzNduGMrQkAAAAAAAAAAGReIBDQpEmTNGnSpN5eCuALjJEFAAA55a3ZjiAO4EeBJM12cdthjCzNdgAAAAAAAAAAAOgDCNsBAICcCnoo1qXZDvAnK8mvEU7NdlFjsx3vcQAAAAAAAAAAAOQPwnYAACCnvDTbhWi9AnwpYAWMgbv9m+1idkwddofjsbzHAQAAAAAAAAAAkE8I2wEAgJwKeBkjazFGFvCrgClsp8SwXdSOGK9Bsx0AAAAAAAAAAADyCWE7AACQU0HLwxhZWq8A3wpYzr9KxOzEMbKRuPMIWYn3OAAAAAAAAAAAAPILYTsAAJBTQXlptiOIA/iVaSS0vV+zXdKwHe9xAAAAAAAAAAAA5BHCdgAAIKe8NNuFaL0CfMsy/CrRrdnOptkOAAAAAAAAAAAAfQNhOwAAkFOmNiwntF4B/mV6L8cZIwsAAAAAAAAAAIA+irAdAADIKS/NdgRxAP8KGH6ViO8/RjZJs13ICmd0TQAAAAAAAAAAAEA2EbYDAAA5FRTNdkBfEHDZbBc1NNsVWUWemi4BAAAAAAAAAACA3kbYDgAA5JSnMbIBWq8Av0q32S5EmBYAAAAAAAAAAAB5hrAdAADIKU9jZAnjAL4VsAxhO3u/sJ2h2a44UJLxNQEAAAAAAAAAAADZRNgOAADklLdmO8J2gF8FDCOhY0ocIxuxI47HEaYFAAAAAAAAAABAvnFfLYM+wbKsUZImSBoiqVzSJknrJS2zbTvam2sDABSGoBVyfSxjJgH/MjXb2S6b7RgTDQAAAAAAAAAAgHxD2K5AWJZ1jqSrJR1jOKTZsqxHJN1o2/a23K0MAFBogoY2LCc02wH+5b7ZzjlsR5gWAAAAAAAA/5+9O4+yqyzzxf/dVUkqhCRkDkiIAUOahEHARAQZG5qppaUBZXIp2K1eUZRuEBsnRllwwV4dQbuV9gavP1RaQKZWWxxCiwjcgDSQoCTKEKYYQkIGyFj790dCmVOp6VSdqkpVPh/WXuR9z36Hvc85u2qf89TzAgD0NZaR7eeKohhaFMX3kvwgrQfaJcmoJB9P8kRRFMf0yOQA2CZZRhb6h9bey41ls2C7VjPbeX8DAAAAAADQtwi268eKoqhPcnOS05o9tDjJT7MxAO+RJOVmj41PckdRFAf3yCQB2ObUFx1PrDtI5ivYahWtLCPb2GwZ2XWtZLbz/gYAAAAAAKCvEWzXv12V5PjNyuuSnJtkQlmWx5Rl+f6yLN+RZK8kv9lsv4YktxdFsVPPTRWAbYXMdtA/tLYkdGPzZWRltgMAAAAAAKCfEGzXTxVFsVuSTzerfl9ZlteXZbl288qyLOclOTKVAXejk1zcvbMEYFtUH5ntoD+o62Bmu7Uy2wEAAAAAANBPCLbrvy5OMnCz8o1lWd7R2s5lWb6R5Kwkmwfi/d2moD0AqJnqMtsN6saZAF1R18qtRGOaBdvJbAcAAAAAAEA/IdiuHyqKYrskpzSrvrq9dmVZPpXk9s2qBiQ5o4ZTA4DUFzLbQX9Q10rg7Iay2TKylUmVmwwsBNMCAAAAAADQtwi265+OSTJks/JvyrL8XQfbzmpWPqk2UwKAjarJbDdQ5ivYarWW2a6U2Q4AAAAAAIB+SrBd/3Rss/LsKtr+Ksn6zcr7FUUxvsszAoBNqstsJ/MVbK06ntmulWA7mSsBAAAAAADoYwTb9U97NSv/pqMNy7JcleTxZtV7dnlGALBJfTqW2W5AMbDVYB6g97WWpbJ5Zrt1MtsBAAAAAADQTwi265+mNisvqLL9H5qVp3VhLgBQoaPLyMp6BVu3opVbiQ5nthNsBwAAAAAAQB8j2K6fKYpiVJJRzaqfq7Kb5vvv3vkZAUCluqI+RYp29xOIA1u3+qLlW4nG8s+Z7dY0rs6SdX9qcT8BtQAAAAAAAPQ1gu36nxHNyq9vWhq2Gs2/Ed2hC/MBgC10JLudQBzYutW1siR0YzZmtlu5YXn++bnPtdpeQC0AAAAAAAB9zYDengA1N7RZ+Y1O9NG8zbBOzqVJURTjkoytstnbujouAFun+gzI+qxvc59BdYN6aDZAZ9S1k9nuv5bcmoVr/thqewG1AAAAAAAA9DWC7fqf5sF2qzvRR/Ngu+Z9dsY5SS6uQT8A9AMD6wZlzYa2f0QNKgb30GyAzmg9s93GYLunXn+8zfYNdd7jAAAAAADQXV5//fU88sgjmT9/fl555ZWsXr062223XcaPH58pU6Zkv/32y6BBkl901uGHH5577723qVyWZbeMM3v27BxxxBFN5YsvvjiXXHJJt4xFxwi26/86827unisAAGyy6+C/yOOr/l+b+7xtyNQemg3QGa1nttu4jOzrjatabTuoaMiEhl27ZV4AAAAAALCt2rBhQ/7jP/4js2bNyi9/+cusX9/6SlODBw/OMccck7//+7/Pe97znh6cJfRtLX9DRl+2sll5u0700bxN8z4BoEuOHnVSGtrIXLfDgFE5eIeje3BGQLVay2y3IRuD7TaUrd/AHzP6lAy0VDQAAAAAANTML37xi0ybNi1nnHFG7rnnnjYD7ZJk9erVueOOO3LCCSdkxowZeeSRR3poptWZNGlSiqJIURSZNGlSb08HZLbrh7bWYLuvJ/lBlW3eluSOGowNwFbmbUOm5h8nXpkHl/8yz695pimtcn1Rn7cOnpx373B0xgwa38uzBNrSWma7sty4jOybGe6a23fou3Lc6Pd127wAAAAAAGBbc+mll+bSSy/dYinToigyderUTJgwIaNHj87ixYvz3HPP5amnnqrYb86cOTnwwANz/fXX5yMf+UhPTh36HMF2/c9rzcpDiqLYvizL1tfx2tK4ZuVlXZxTyrL8U5I/VdOmKIquDgvAVmyXwbtll8G79fY0gE5qP7Ndy8F204cf2m1zAgAAAACAbc15552XmTNnVtQNGzYsF110Uc4888xMnDhxizYLFizIjTfemGuvvTZr1qxJkqxduzYf/ehHs2rVqpx33nk9Mnfoiywj28+UZbkkydJm1VteOdv21mbl+Z2fEQAA/VF9K5ntGjdlttuQltPT17cSpAcAAAAAAFTn29/+9haBdgcffHDmzZuXiy66qMVAuySZPHlyrrjiijz22GPZa6+9Kh47//zzM3v27O6acr8xe/bslGXZtLHtEGzXPz3ZrDy5yvbN0ww17w8AgG1c0cqtRGM2Bdu1ktmuvhBsBwAAAAAAXfXUU0/lk5/8ZEXdQQcdlB//+MeZMGFCh/qYMmVKfv7zn2fq1KlNdY2NjfnABz6QV155pabzhf5CsF3/9ESz8oEdbVgUxfZJ9mmnPwAAtnGtBc01lm8uI9tKZrtiQLfNCQAAAAAAthUXXHBBVq5c2VQeMWJEbr311gwdOrSqfsaNG5dbbrklgwYNaqp74YUXcvnll9dsrtCf+Karf/pJko9uVj68iraHpPJ18duyLBfVYlIAAPQfda0F26UxZVk2ZbhrTmY7AAAAAADomt/97ne5++67K+quuuqq7Ljjjp3qb9q0abngggty5ZVXNtV961vfyiWXXJKRI0d2aa5bmwULFuSxxx7LCy+8kBUrVqQoigwZMiTjx4/Prrvumr333jtDhgzp9nmsWbMm9957b55++um8+uqrGTduXCZMmJBDDjmkW8Z/6aWX8uCDD+ZPf/pTlixZkqFDh2bcuHGZMWNGdtut+QKYtEWwXf/0X0neSLLdpvKBRVHsUZbl7zrQ9qxm5R/WcmIAAPQPda0tI1tuyIa0nNUuSerdggAAAAAAQJfMnDkzZVk2lceMGZOzzz67S32ed955ueaaa7Ju3bokyapVq3LDDTfkwgsv3GLfs846K9/+9rebyk8//XQmTZrUoXFmz56dI444oql88cUX55JLLmmz/zc9++yzKYqi1b4/9KEP5cYbb9yifs2aNfnqV7+aG264IfPnz29zfvX19dl3331z4okn5h//8R9bDXw7/PDDc++99zaVN38+2vLaa6/lS1/6Um688cYsX758i8eHDRuWU089NZdeemne8pa3dKjP1qxbty7f+ta38vWvfz2PP/54q/vtvvvuueCCC/LhD384Awb4Hqc9lpHth8qyfD3JLc2qP9teu6IopiT5282q1if5bg2nBgBAP9FaZrsN5YZs2LSUbEtktgMAAAAAgK75yU9+UlH+4Ac/WLEMbGeMHTs2J5xwQpvj9EULFy7MfvvtlwsvvLDdQLsk2bBhQx5++OF88YtfzIsvvljTufzP//xPpk2blq9+9astBtolyYoVK/Lv//7v2XvvvfPrX/+602M9/PDD2WOPPfLxj3+8zUC7JJk/f34+9rGPZcaMGXnhhRc6Pea2Qjhi/3VJktOSDNxUPqsoih+WZXlnSzsXRTE4yawkm199v1WW5R+6dZYAAPRJrWW2K9OYDWUbme0KtyAAAAAAALW2odyQZetf6e1p9HsjBozp9T8qf/755/PMM89U1B199NE16fvoo4/Obbfd1lR+4IEHsm7dugwcOLCNVluvtWvX5thjj82TTz5ZUT9q1KjsvffeGT9+fAYOHJgVK1bkpZdeyrx587Jq1apumcu8efNy5JFHZsmSJRX148ePz3777ZcRI0Zk0aJFeeCBB/LGG2/k1VdfzXve855cc801VY91991359RTT83rr79eUb/TTjvl7W9/e0aNGpVVq1Zl3rx5FQGIjz76aA444IA88MADmTBhQucOdBvgm65+qizLPxZFMTPJBZtV31IUxT8m+WZZlmvfrCyKYmqSf09y0Gb7LklyaY9MFgCAPkdmOwAAAACArcey9a/ki3/8WG9Po9+7fLdvZPTA8b06h5aynU2fPr0mfb/jHe+oKL/xxht59NFHM2PGjJr031HXXntt09KyBx98cFO2tZ133jn33Xdfq+2GDh1aUZ41a1bmzZvXVJ40aVK+9rWv5dhjj01d3ZZJBcqyzMMPP5y777473/rWt2pwJButW7cuZ555ZkWg3U477ZSZM2fm5JNPrpjLypUr85WvfCVf/vKXs2zZshaX8W3LvHnzctppp1UE2h177LG59NJL8853vnOL/X/729/m05/+dH71q18lSV544YWcfvrpmT17durrfafTEsF2/ds/JdkzyXGbygOTXJfki0VRPJJkRZLdkuyfZPNFrdcm+duyLF/qwbkCANCH1LeV2S5tBdu5BQEAAAAAgM56/vnnK8rjx4/P6NGja9L3Xnvt1eJ4PR1sN2bMmIwZMyZJMmDAn79XGDBgQCZNmtThfu64446Ktvfcc08mT57c6v5FUWT69OmZPn16vvjFL6axsbH6ybfguuuuy6OPPtpU3mmnnXLfffdlt91222LfoUOH5uKLL85ee+2V97///Vm6dGmHx2lsbMypp55akZ3vkksuycUXX9xqm/322y+/+MUvcuqppzZlNbzvvvty00035YMf/GCHx96WtPwNGf1CWZYbkrw/yc3NHhqX5Ngk70vyjlQG2v0pyXvLsvxVj0wSAIA+qShavpXYULazjGz8FRQAAAAAAHTWq6++WlEeOXJkzfoePHhwGhoa2hyvL3n22Web/v32t7+9zUC75urr62uyfG5jY2Ouu+66irpvfvObLQbabe7kk0/OOeecU9VYt912W5544omm8vvf//42A+3eNGDAgHz729/OuHHjmuquvfbaqsbelgi26+fKslxZluVp2RhY90Abu76a5F+T7FWW5U96ZHIAAPRZrQXNNabtZWRbW34WAAAAAABoX/PgtxEjRtS0/+b9bb70aV/2pz/9qVfG/e///u8888wzTeUZM2bkPe95T4fafulLX6oq4O+rX/1q07+LoshVV13V4bZDhw7Nxz7256WoH3/88Yp582eC7bYRZVneUpblgdm4bOwpST6V5KIkZyf5yyQ7lWV5TlmWi3txmgAA9BF1rWS2a2wvs51lZAEAAAAAYKtVFEX7O/URe+yxR9O/Fy5c2CvZ2u67776K8umnn97htmPHjs3RRx/doX1XrVqVBx74cw6uGTNmZNddd+3wWElyxBFHVJR/9SuLYrbEN13bmLIsn07ydG/PAwCAvq21DHXtZbarl9kOAAAAAAA6bdSoURXl1157rab9L1u2rM3x+pIzzjgjt912W1P5M5/5TG6//facffbZOf7447PTTjt1+xzmzJlTUT7ggAOqan/AAQfkP//zP9vd74EHHsi6deuayrvttlvVmekaGxsryn/4wx+qar+tEGwHAABUra61ZWTLxjSmjcx2bkEAAAAAAGpuxIAxuXy3b/T2NPq9EQPG9PYUtgh+W7p0ac36Xr16dVavXl1RN3r06Jr139NOOumknHTSSRUBd7/+9a/z61//OkkyefLkHHTQQXn3u9+dQw45JFOnTq35HBYtWlRR3n333atqP2XKlA7tt3Dhwory97///Xz/+9+vaqzmmi9ZzEa+6QIAAKrW+jKyMtsBAAAAAPS0+qI+oweO7+1p0AN23nnnivLLL7+cJUuW1CQobu7cue2O15cURZGbb745F198cf75n/95i0DCBQsWZMGCBfm///f/JtkYfPeBD3wg5557bs0y+jUPhhw+fHhV7XfYYYcO7bdkyZKq+u2IFStW1LzP/qDlb8gAAADa0Fpmuw1pzIayjcx2hb/3AQAAAACAzjrooIO2qGu+VGlnNe9nu+22y7777luTvnvLgAED8uUvfznPPPNMrr322hxyyCFpaGhocd8FCxbkkksuyW677Zabb765h2faNWvXrq15n2VZ1rzP/kCwHQAAULXWMtuVZWObme3q3IIAAAAAAECnTZw4MRMnTqyo++lPf1qTvu+5556K8gEHHJBBgwbVpO83bdjQ+ncI3Wn8+PE5//zz89///d957bXXcv/99+faa6/Ne9/73gwdOrRi39deey2nn356br/99i6PO3LkyIry8uXLq2r/2muvdWi/MWMqlzi+8sorU5Zll7Ybb7yxqrluK3zTBQAAVK21oLkNm/5rSX0GpCiK7pwWAAAAAAD0e8cee2xF+Tvf+U7WrVvXpT4XL16cO++8s81x3jRgQOUqNuvXt77iTXPNl1XtDQ0NDTnwwANz/vnn5/bbb8+SJUvy/e9/P1OmTGnapyzLfOpTn0pjY2OXxho/vnJ55/nz51fV/qmnnurUOB1tR/UE2wEAAFWrL1peRrax3NDqMrKttQEAAAAAADru05/+dMUfty9evDizZs3qUp8zZ86sCNjbfvvt85GPfKTFfYcPH15RXrZsWYfHmTt3blXz6ok/4h80aFBOPfXUPPjgg9l5552b6hcuXJiHH364S31Pnz69ovzAAw9U1f7BBx/s0H4HHnhgxbm65557LAPbTQTbAQAAVWsts11jWl9GVrAdAAAAAAB03bRp03LcccdV1H32s5/NokWLOtXfvHnzcs0111TUnX322Rk1alSL+48bN26L9h31ox/9qKq5NTQ0NP17zZo1VbWt1ogRI3LSSSdV1D399NNd6vPggw+uKH/ve9/rcNvFixd3eIngsWPHZr/99msqv/DCC/nxj3/c4bHoOMF2AABA1eo6ldluQIv1AAAAAABAdb7yla9kyJAhTeVly5blpJNOysqVK6vqZ/HixTnllFOydu3aprqddtopX/rSl1pts//++1eU77rrrg6N9V//9V956KGHqprfiBEjmv79yiuvdHm53PY0XyJ382C/zjj00EMzadKkpvKcOXNy9913d6jtZZddVtXxfvKTn6woX3DBBVW/HmifYDsAAKBqrQbbpTEb0kpmu8hsBwAAAAAAtbDHHnvkuuuuq6i7//77c9xxx+X555/vUB/z58/PkUcemSeffLKprq6uLt/5zncyduzYVtsdeOCBFYF+P/zhDzNnzpx2x/rQhz7UoXltburUqU3/Xr9+fX75y192qN3rr7+e6667LitWrOjwWCtXrsxtt93W6vidUVdXt0UQ3Mc+9rF2M+bddttt+frXv17VWB/84Aezxx57NJWffPLJ/O3f/m2WLl1aVT+LFy/e4jzwZ4LtAACAqrW2jGySrGtc22K9zHYAAAAAAFA7H/7wh/OJT3yiou6+++7LtGnTctVVV2XhwoUttluwYEG+8IUvZO+9987jjz9e8djVV1+dI488ss1xhw0bllNPPbWpvGHDhvz1X/91i0uerl27NjfccEPe9a53ZdGiRRk5cmRHDy9JcsQRR1SUzz777Hz961/Pww8/nD/+8Y955plnmrZXXnmlYtxPfepTmTBhQj784Q/nrrvuajPw7qGHHsqRRx6ZZ599tqnuXe96V6ZMmVLVfFvyqU99Km9/+9ubyi+++GLe/e5355ZbbkljY2PFvqtWrcpll12W0047LY2NjVWdr/r6+txyyy0ZPnx4U93Pfvaz7LPPPvnXf/3XNo//1Vdfzc0335zTTz89u+yyS7761a9WcYTbFt92AQAAVWsts12SrC9bTmle30YbAAAAAACgetdff31GjhyZL3/5yynLMkmyYsWKXHTRRfnc5z6XadOmZZdddsnIkSOzZMmSPPvss/n973+/RT8DBw7MzJkz8/GPf7xD415++eX54Q9/mGXLliVJ/vSnP+WYY47J5MmTs88++6ShoSGLFi3Kgw8+mFWrViVJdtxxx1x99dVVZbh73/vel89//vNN2fpefPHFLQIM3/ShD30oN954Y0Xd8uXLM2vWrMyaNStFUWTy5MnZbbfdMmLEiAwYMCBLlizJE088sUU2wCFDhuSb3/xmh+fZloEDB+amm27KYYcdliVLliRJXnrppbzvfe/L+PHj8453vCM77LBDFi1alN/85jd54403kiQ77LBDrr766nz0ox/t8Fh77rlnbr311pxyyil57bXXkiTPP/98zjnnnJx77rnZe++9M3HixAwfPjyvv/56li1blqeeeqrD2RARbAcAAHRCW5nt1pYtZ7ark9kOAAAAAABq7vLLL89hhx2Wc845J/Pnz2+qL8syc+fOzdy5c9tsv//+++cb3/hGpk+f3uExd95559x666058cQTKzKmLViwIAsWLNhi/1133TX/+Z//mUWLFnV4jCTZbrvt8sMf/jAnnnhiXnjhharaNleWZebPn19xjlqy884757bbbsvee+/dpfE2t+eee+ZnP/tZjj/++Lz00ktN9YsWLcqPfvSjLfYfMWJE7rzzzmzYsKHqsY466qjMmTMnp59+esXyvhs2bMijjz6aRx99tN0+qs1AuC2xjCwAAFC1+qL1W4n1rQTb1UdmOwAAAAAA6A5HHXVU5s2bl5tuuilHHnlkBgxo+w/gGxoacsIJJ+SOO+7InDlzqgq0e9Nf/uVf5qGHHsp73/veFEXR4j5jx47NZz7zmTz66KOZOnVq1WMkyfTp0zNv3rz827/9W0488cRMnjw5w4cPT31969877LDDDrn33ntz4YUX5h3veEe75yNJ/uIv/iJXXnllnnrqqbzzne/s1Fzbsu++++bJJ5/Mueeem2HDhrW4z9ChQ3PWWWflscceyyGHHNLpsSZPnpyHHnood911V4466qg0NDS022bq1Kk599xz86tf/Sq33XZbp8fu74o3U0jC1qYoij2TPPFm+Yknnsiee+7ZizMCAOBNz69+Olc++w8tPnbMqFPyX6/eskX9Lg275aJJ/9zdUwMAAAAA6HPWr1+/Rbat3XffvUMBQtCSVatW5eGHH86CBQuyePHirF27Ng0NDRk/fnymTJmS/fffv0MBWB31yiuv5N57783zzz+f119/PePHj8+uu+6aQw45ZKt4Hb/xxhuZO3du/vCHP+Tll1/OqlWrUhRFhg8fnokTJ2afffbJW9/61h6bz5o1azJ79uw8/fTTWbp0acaOHZsJEybkkEMOyfbbb1/z8VavXp0HH3wwzz77bJYsWZJVq1Zl++23z8iRIzN58uRMnTo1o0ePrvm43XVtmzt3bvbaa6/Nq/Yqy7LtFI410vuvZgAAoM+payOz3brWMttZRhYAAAAAAHrE9ttvn0MPPTSHHnpoj4w3ZsyYnHzyyT0yVmdst912mT59eqcy+HWHhoaGHHPMMT023uDBg3PYYYf12Hj9mWVkAQCAqtW1sSRs69rj1N4AACAASURBVMF2lpEFAAAAAACg7xJsBwAAVK3NzHaNMtsBAAAAAADQ/wi2AwAAqtapzHZttAEAAAAAAICtnWA7AACgam1mtmt1GVmZ7QAAAAAAAOi7BNsBAABVqyvayGzX6jKyMtsBAAAAAADQdwm2AwAAqlbfxq3EunJdy20E2wEAAAAAANCHCbYDAACq1mZmu9aWkY1lZAEAAAAAAOi7BNsBAABVq2srs13jmhbrZbYDAAAAAACgLxNsBwAAVK3tzHatLSMrsx0AAAAAAAB9l2A7AACgam1mtmtlGdm2AvQAAAAAAABgayfYDgAAqFrbme1aDrarj8x2AAAAAAAA9F2C7QAAgKq1mdmusZVgO5ntAAAAAAAA6MME2wEAAFUriiJFK7cTrWa2K2S2AwAAAAAAoO8SbAcAAHRKfdHy7USZspX9ZbYDAAAAAACg7xJsBwAAdEprme1aUx/BdgAAAAAAAPRdgu0AAIBOqTZTnWVkAQAAAAAA6MsE2wEAAJ1SV2WmOsvIAgAAAAAA0JcJtgMAADqlrqhyGVmZ7QAAAAAAAOjDBNsBAACdUnVmuyr3BwAAAAAAgK2JYDsAAKBTZLYDAAAAAABgWyLYDgAA6JS6Km8n6guZ7QAAAAAAAOi7BNsBAACdUm3wnGA7AAAAAAAA+jLBdgAAQKcUVWe2s4wsAAAAAAAAfZdgOwAAoFOqzVRXF5ntAAAAAAAA6LsE2wEAAJ1SV/UysjLbAQAAAAAA0HcJtgMAADqlruplZGW2AwAAAAAAoO8SbAcAAHSKzHYAAAAAAABsSwTbAQAAnVJ1ZrvIbAcAAAAAAEDfJbUEAADQKXVFtcvIuv0AAAAAAICe8Prrr+eRRx7J/Pnz88orr2T16tXZbrvtMn78+EyZMiX77bdfBg0aVJOxnnvuuXzzm9/Mvffem6eeeipLly7NunXrmh6fNWtWzjrrrBbbPvTQQ5k1a1buv//+LFy4MK+99loaGxubHn/66aczadKkJMnhhx+ee++9t+mxsixrMn+ohm+7AACATqmrMlNdfZXLzgIAAAAAAB23YcOG/Md//EdmzZqVX/7yl1m/fn2r+w4ePDjHHHNM/v7v/z7vec97Oj3mDTfckHPPPTdr1qypqt369etzzjnn5IYbbuj02NAbLCMLAAB0SvWZ7QTbAQAAAABAd/jFL36RadOm5Ywzzsg999zTZqBdkqxevTp33HFHTjjhhMyYMSOPPPJI1WP+6Ec/ysc+9rGqA+2S5POf/7xAO/okme0AAIBOqa82s53bDwAAAAAAqLlLL700l1566RbLqhZFkalTp2bChAkZPXp0Fi9enOeeey5PPfVUxX5z5szJgQcemOuvvz4f+chHOjzuRRddVDHmGWeckb/7u7/LLrvskoEDBzbVjxkzpqLdokWL8i//8i9N5UGDBuWf/umfcvzxx2fs2LGpq/vzH/tPmDChw/OBnuDbLgAAoFMKme0AAAAAAKBXnXfeeZk5c2ZF3bBhw3LRRRflzDPPzMSJE7dos2DBgtx444259tprm7LSrV27Nh/96EezatWqnHfeee2O+/vf/z6PPfZYU/n444/PTTfd1KE533777Vm7dm1T+YorrshnPvOZDrWF3mYZWQAAoFOqDZ6rL/ytDwAAAAAA1Mq3v/3tLQLtDj744MybNy8XXXRRi4F2STJ58uRcccUVeeyxx7LXXntVPHb++edn9uzZ7Y49Z86civIpp5zS4Xl3tu3s2bNTlmXTBr1BsB0AANApdVXeTshsBwAAAAAAtfHUU0/lk5/8ZEXdQQcdlB//+McdXnp1ypQp+fnPf56pU6c21TU2NuYDH/hAXnnllTbbLlq0qKJczXKvXWkLvU2wHQAA0Cl11S4jG5ntAAAAAACgFi644IKsXLmyqTxixIjceuutGTp0aFX9jBs3LrfccksGDRrUVPfCCy/k8ssvb7Pd5mMnycCBAzs8ZlfaQm/zbRcAANApdal2GVmZ7QAAAAAAoKt+97vf5e67766ou+qqq7Ljjjt2qr9p06blggsuyJVXXtlU961vfSuXXHJJRo4c2WKbxsbGTo3V1ba1MG/evDz++ONZsmRJli5dmsGDB2fs2LGZOnVq9tlnnzQ0NHSq3/Xr1+ehhx7KH//4xyxevDhr1qzJ2LFjM2nSpLz73e/O4MGDa3wk9AbBdgAAQKdUndmucPsBAAAAAABdNXPmzJRl2VQeM2ZMzj777C71ed555+Waa67JunXrkiSrVq3KDTfckAsvvDBJ8swzz2TXXXdttf0RRxzRYv2sWbOSpM35FUXRYv3TTz+dSZMmNZUPP/zw3HvvvU3lzc9BexYuXJj//b//d37wgx9ssYzt5rbbbrscccQR+dCHPpSTTz459fXtJxJ48sknc8UVV+Tuu+/O8uXLW+33b/7mb3LZZZdlypQpHZ43Wx/LyAIAAJ0isx0AAAAAAPS8n/zkJxXlD37wgxXLwHbG2LFjc8IJJ7Q5Tl9UlmWuuOKKTJ48Oddff32bgXZJ8sYbb+RHP/pRTj311CxcuLDNfTds2JB/+Id/yF577ZXvfve7rQbavdnvzTffnD333DMzZ87s1LGwdZBaAgAA6JRqg+eqDc4DAAAAAKBj1m8o8/zS3p5F/zdhZDKgvuUsbD3l+eefzzPPPFNRd/TRR9ek76OPPjq33XZbU/mBBx7IunXrMnDgwJr039PWr1+f0047LbfeeusWj+24447Ze++9M2bMmKxZsyaLFi3K//zP/2TlypUd6vuNN97IiSeemJ/+9KcV9QMHDsy+++6bCRMmpKGhIS+//HIeeuihvP76601zOu+887J06dJccsklXT5Gep5gOwAAoFOKKhJl16W+1TTwAAAAAAB0zfNLk90+19jb0+j3/nhlXSaN6d05/PrXv96ibvr06TXp+x3veEdF+Y033sijjz6aGTNmZMKECXn66aebHvuXf/mXigxt3/ve9/Kud71riz7HjNl4wg4//PCmutNOOy0PPvhgU3nzfjc3YcKETh3Hm84///wtAu2OP/74XHLJJZkxY8YW+zc2NuaBBx7I97///dx4441t9v2JT3yiItBuhx12yCWXXJK/+7u/y7Bhwyr2feONN/L1r389X/jCF7J69eokyWWXXZYDDjggxx13XCePjt4i2A4AAOiUajLbWUIWAAAAAAC67vnnn68ojx8/PqNHj65J33vttVeL482YMSMDBgzIpEmTmupHjBhRsd+OO+5Y8XhzQ4cObfr34MGDKx5rq11n/fSnP81Xv/rVirqrrroqn/3sZ1ttU1dXl4MOOigHHXRQLrvssi3m+aYf/OAHmTVrVlP5rW99a2bPnt3qcWy33XY5//zzc+CBB+bII4/M6tWrU5ZlPvWpT+X3v/996uo6ntyA3ufZAgAAOqWu6PjtRH3h73wAAAAAAKCrXn311YryyJEja9b34MGD09DQ0OZ4fcVll11WUf5f/+t/tRlo19yIESNaDLYry7Ki7wEDBuTOO+/sUMDgm0F8b1qwYEFuv/32Ds+JrYNgOwAAoFPqqridkNkOAAAAAAC6rnnwW/MMc13VvL8lS5bUtP+e8Nhjj1Ustzts2LBcffXVNen7l7/8ZZ544omm8plnnpl99tmnw+0/8YlPVATx3XnnnTWZFz1HsB0AANApddUsIxuZ7QAAAAAAYGtXFEVvT6HLfv7zn1eUzzjjjAwfPrwmfd9zzz0V5VNPPbWq9kOGDMk73/nOpvKvfvWrmsyLnuMbLwAAoFNktgMAAAAAgJ41atSoivJrr71W0/6XLVvW5nh9wf33319RPvzww2vW93333VdRHjVqVJ555pmq+tg88O+ZZ55JY2Nj6urkS+srBNsBAACdUlVmO8F2AAAAAADdZsLI5I9XCtbpbhNG9vYMtgx+W7p0ac36Xr16dVavXl1RN3r06Jr131NeeumlivKee+5Zs74XLlxYUX7Xu97Vpf4aGxuzbNmyPhnUuK0SbAcAAHRKfaoJtnPrAQAAAADQXQbUF5k0prdnQU/YeeedK8ovv/xylixZUpOguLlz57Y7Xl+wZMmSivLIkbWLkmzedy2sWLFCsF0fIqwZAADolKKoYhnZKgLzAAAAAACAlh100EFb1M2ZM6cmfTfvZ7vttsu+++5bk757U1EUNetr7dq1NevrTWVZ1rxPuo9gOwAAoFNktgMAAAAAgJ41ceLETJw4saLupz/9aU36vueeeyrKBxxwQAYNGlSTvnvSmDGVaR5fffXVbul78ODBaWxsTFmWXdomTZpUs/nR/QTbAQAAnVJVZrtCZjsAAAAAAKiFY489tqL8ne98J+vWretSn4sXL86dd97Z5jh9xU477VRRnjdvXs36Hj9+fNO/V69eneeee65mfdM3CLYDAAA6pb6K2wmZ7QAAAAAAoDY+/elPVyyNunjx4syaNatLfc6cObMiYG/77bfPRz7ykS712Vve/e53V5Rnz55ds76bL+Nbq6yC9B2C7QAAgE7Zrn77ju9b1/F9AQAAAACA1k2bNi3HHXdcRd1nP/vZLFq0qFP9zZs3L9dcc01F3dlnn51Ro0Z1eo696aijjqoof/e7382KFStq0vcxxxxTUf73f//3mvRL3yHYDgAA6JS/GLJPh/fdo4p9AQAAAACAtn3lK1/JkCFDmsrLli3LSSedlJUrV1bVz+LFi3PKKadk7dq1TXU77bRTvvSlL9Vsrj1tzz33zGGHHdZUXr58eS666KKa9H3cccflbW97W1P5oYceyv/5P/+nJn3TNwi2AwAAOmXUwLF537i/b3e/aUP2y8Ejjml3PwAAAAAAoGP22GOPXHfddRV1999/f4477rg8//zzHepj/vz5OfLII/Pkk0821dXV1eU73/lOxo4dW9P59rTmwYJf+9rX8pWvfKXD7V977bWsXr16i/oBAwbksssuq6j7+Mc/nttuu63qOf7sZz/LH//4x6rb0bsE2wEAAJ12xMj35EuTrs+p4z6aE8acWbGdOOaDOW+Xy/PxCZ/PoLqG3p4qAAAAAAD0Kx/+8IfziU98oqLuvvvuy7Rp03LVVVdl4cKFLbZbsGBBvvCFL2TvvffO448/XvHY1VdfnSOPPLLb5txT/vIv/zLnn39+Rd0FF1yQv/mbv8nDDz/cYpvGxsb85je/yac//enssssuefnll1vc74wzzsiHP/zhpvLatWtz8skn58wzz2y17yTZsGFDfvvb3+bSSy/NtGnT8ld/9Vd57rnnOnF09KYBvT0BAACgb9uxYUJ2bJjQ29MAAAAAAIBtzvXXX5+RI0fmy1/+csqyTJKsWLEiF110UT73uc9l2rRp2WWXXTJy5MgsWbIkzz77bH7/+99v0c/AgQMzc+bMfPzjH+/pQ+g2V199dZ577rn84Ac/aKq76667ctddd+Utb3lL9t5774wePTpr1qzJyy+/nMceeywrVqzoUN//9m//lqVLl+aHP/xhU913v/vdfPe7383YsWPz9re/PaNHj05dXV2WL1+eF198MU8++WSL2fLoWwTbAQAAAAAAAABAH3X55ZfnsMMOyznnnJP58+c31Zdlmblz52bu3Llttt9///3zjW98I9OnT+/uqfao+vr63Hzzzdlzzz3z5S9/OevWrWt67MUXX8yLL77Y6b4HDhyYW2+9Nddcc00uvvjiiiC6xYsX52c/+1mH+th+++07PQd6h2VkAQAAAAAAAACgDzvqqKMyb9683HTTTTnyyCMzYEDb+bcaGhpywgkn5I477sicOXP6XaDdm4qiyMUXX5zf//73+chHPpJRo0a1uf/QoUNz4okn5vbbb8/EiRPb7fvCCy/M008/nX/6p3/KW9/61nbnM2zYsBx//PH52te+lpdeeikzZsyo6njofcWbKSRha1MUxZ5Jnniz/MQTT2TPPffsxRkBAAAAAAAAQO2tX7++IiNZkuy+++7tBkxBa1atWpWHH344CxYsyOLFi7N27do0NDRk/PjxmTJlSvbff/80NDT09jR7XGNjYx555JH87ne/yyuvvJKVK1dm++23z7hx47LHHntkn332ycCBAzvd/9NPP51HHnkkixcvztKlS1NXV5dhw4blLW95S/bYY4/svvvuqa+vr+ERbd2669o2d+7c7LXXXptX7VWWZdspHGvEVRkAAAAAAAAAAPqR7bffPoceemgOPfTQ3p7KVqWuri7Tp0/vtkx+u+66a3bddddu6Zutg2VkAQAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAHpRURRb1JVl2QszAaidxsbGLepaut71JYLtAAAAAAAAAAB6UV3dluEb69at64WZANTO+vXrt6hr6XrXl/Tt2QMAAAAAAAAA9HFFUWTQoEEVdStXruyl2QDURvPr2KBBg2S2AwAAAAAAAACga4YNG1ZRXr58uaVkgT6rLMssX768oq75da4vEmwHAAAAAAAAANDLmgehrFu3Li+88IKAO6DPKcsyL7zwwhbLYQ8fPryXZlQ7A3p7AgAAAAAAAAAA27rBgwdn4MCBFcEpK1asyB/+8IcMHz48Q4cOzYABA1JXJ68SsPVpbGzM+vXrs3LlyixfvnyLQLuBAwemoaGhl2ZXO4LtAAAAAAAAAAB6WVEUectb3pLnnnuuIpvdunXrsmTJkixZsqQXZwfQeW9e34qi6O2pdJlwZwAAAAAAAACArcCQIUMyceLEfhGQApBsDLSbOHFihgwZ0ttTqQnBdgAAAAAAAAAAW4k3A+4GDhzY21MB6JKBAwf2q0C7xDKyAAAAAAAAAABblSFDhuRtb3tb1qxZk+XLl2fFihVZu3Ztb08LoF2DBg3KsGHDMnz48DQ0NPS7TJ2C7QAAAAAAAAAAtjJFUWTw4MEZPHhwxo0bl7Is09jYmLIse3tqAFsoiiJ1dXX9LriuOcF2AAAAAAAAAABbuaIoUl9f39vTANim1fX2BAAAAAAAAAAAAGBrJ9gOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoxoLcnAG0YtHlhwYIFvTUPAAAAAAAAAABgK9BCDNGglvbrDkVZlj01FlSlKIq/SXJHb88DAAAAAAAAAADYar23LMs7e2Igy8gCAAAAAAAAAABAOwTbAQAAAAAAAAAAQDssI8tWqyiKHZIctlnVwiRre2k60Be8LZVLL783yR96aS5A/+Q6A3Q31xkAusrPEqC7uc4A3c11BuhurjNAfzAoyS6ble8ty/K1nhh4QE8MAp2x6U3QI+spQ39QFEXzqj+UZTm3N+YC9E+uM0B3c50BoKv8LAG6m+sM0N1cZ4Du5joD9CO/7Y1BLSMLAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0QbAcAAAAAAAAAAADtEGwHAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0QbAcAAAAAAAAAAADtEGwHAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0QbAcAAAAAAAAAAADtEGwHAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0Y0NsTAKBmFie5tFkZoJZcZ4Du5joDQFf5WQJ0N9cZoLu5zgDdzXUGoAuKsix7ew4AAAAAAAAAAACwVbOMLAAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtEOwHQAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtEOwHQAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtEOwHQAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtGNAb08A2HoURVGfZHKSaUnekmSHJGuSLE3yhyRzyrJcVeMxByZ5d5KJSXZKsjLJi0l+W5blM7Ucq6cURbFnkn2TjE3SkOTlJM8n+XVZlqt7c249qSiKkUn2TLJ7klFJBidZlmRxkofLsvxDL05vC0VR7JqNz9tbkgxN8lKSZ5PcX5bluhqO89Yk78jG1/sOSdZl43mZn43nZUWtxtoauc7UhuvMRn3tOkPPcJ2pDdeZjfrCdaYnX/N94XxALfTHnyX98ZhqpafuBfsK56Nn9Mf3ZH88plrxvqrkM7ie0R/fk/3xmGrFdYbe0B/fk/3xmGrFdcZncEAzZVnabLZteMvGX97OS3J3kteSlG1s65P8OMlf12DcsUm+nmRJG+P9OsnJXRxntySnJrkmyewky5uN8UyNzuOwJJ9P8kIbx7M8yXeSvK0Xn+9uOx9JBiY5Jsn1SZ5o57VUbjpXlyXZsZffA6ckub+NeS7Z9Fod04UxhiS5MMlT7ZyTDUn+M8nRvXlOuuEcu87U5jy6zvTB60x3vz46cA7a2yb11rmp8Xl2nanNeXSd6SPXmZ56zfeV82Gz1WLrjz9L+uMx1fg574l7we2THJzkH5LclI33hI3Nxjmrt1//zkePneN+957sj8dU4+fc+6rnz4fP4PrZe7I/HlONn3PXmT/P02dwPXOe+917sj8eU42f8236OtNTr4/4DM5m63Nbr0/AZrP13pbku124MbgryfhOjntckkVVjPX/Jdm+iv4PT/Jf7fyCWpMbrE3jHZCNf2XS0eNZleTjPfg8d/v52HQOXu3ka2lpkg/0wut/aJLvVTHPl5Mc04lxDkzyx06cl+8mGdLT56UbzrPrjOvMNned6cnXRxfeX29uk3rqvHTj+XadcZ3Zpq4zPfWa7yvnw2arxdZT76sWxu22nyX98Zhq+Hx3+71gNn7Z9Hg2ftnSXv9n9fLr3/nomfPc796T/fGYvK/67vnYNI7P4PrZe7I/HlNfel/1hetMfAbX0+e7370n++Mx1fD53uavMz31+ojP4Gy2PrlZRha2bVNaqX8hG9PpL8rG5aZ3S/L2JHWb7fOeJP9dFMVhZVm+3NEBi6I4PMntSQZtVl0meSQbPwwZkWS/JGM2e/zMJMOLojixLMvGDgyzb5KjOzqnriiK4qhs/GuGhmYPPZvksWz8InpCNv6iNHDTY0OSfL0oirqyLL/WA9PsifMxNsnIFurXZuMvyi9n4198jE4yfdP/3zQiyXeKohhXluU/d/M8kzSler45yfHNHlqc5Leb5vq2bHwtFpseG5/kjqIojirL8r4OjnNgkp9m403J5lYk+X/Z+B5ryMa003ul8j12epJxRVEcX5bl2g4e2tbIdaaLXGea9KXrTI+9PkjiOtNlrjNN+sp1pqde833lfEAt9MefJf3xmLqsp+4Fk5yRjUsKbdWcjx7VH9+T/fGYusz7qpLP4HpUf3xP9sdj6jLXmQo+g+tZ/fE92R+PqctcZ5r4DA5oXW9H+9lstt7bkszJnyPfH0nyybSyJFiSnZN8I1tGzP8qSdHB8SZky8j8+5JMbbZfQ5JPZeMvEZvve2UHxzmvhXmWSVYnWdCs7pkunL9J2fIvphYk+asW9h2Z5Lpm+25oad9ueJ67/Xxk4y+Nb/axIsm3khyZZLsW9i2S/G02foHffE7dfj42zeGaZuOu3fT6H9Rsv2nZMj32K0l26sAYg1s4v69vem0PbmH/tyW5s4VzclFPnJNuPNeuM64z29x1pqdeH5vG2ryvBza9ZqrZBnT3+eiB8+064zqzTV1neuo131fOh81Wi60//izpj8dUo+e62+8FN7Vf1sL5LJM838JjZ/Xia9/56Llz3e/ek/3xmGr0XHtf9fD5iM/g3jyufvee7I/HVKPn2nXmz3P0GVzPnu9+957sj8dUo+fadaYHXx/xGZzN1ie3Xp+AzWbrvS0b/6rv7iTTq2hzTgs/vE/rYNtvNWv367Twgcdm+5/YbP/VSd7agXHO2/SL32+T3JDko0n2z8ZMLIc36/OZLpy/5umT5ycZ106bC5u1mZukvpuf524/H5t+EVyU5Px0PD336CTzmo3/ZHu/dNbgfOyWLW9Q3tvG/ttly5uFf+vAOGc1a9OYdlJob/ol+Qf/f3v3HjVJUd5x/PfICstNFkFYQGFZXbyhBKIJKEkWAwT0eAGJGhKzK94SjEeNehK8nKgxahIkehKDGhVJvESjYsBFMCiLBC8ILsrNW2RRiCC7LIRF9gZP/uh52Z56Z6a7Z3q6u2q+n3P6j+q3q7uqpurp6Xq7e4J8dyu4gIlpIc4QZ2Y0zjTSP3rHyu9r9TTr1dWFOEOcmbU401Sfj6U9WFjqWFI8l6RYpxo+50auBXt571L29oFVkt7ei6n79v62Otjnypb6Pe3RbHsnNyZTrFMNnzPjqoX2EHNwc3VKbkymWKcaPmfiTH8ZmYNrtr2TG5Mp1qmGz5k403D/EHNwLCxRLq0XgIWFpb1F0pIx830uOHmvKpFnmaRtuTybJS0rke/jwbE+ViLPnsO+nKq+f8YuVfYml/y+ji6Z92tBvtOm/Dk30R6PKPsFMMh32IB2fOqU2+Pc4HjnlMhzSK/PzuXZKmlpQZ7PB8c5r2T5Fmv+hcyx02yTKbf3kjHzEWeIM+F+YoozU2+P3P7y+1o9zXp1dSHOEGdmLc401edjaQ8WljqWFM8lKdaphs+5kWvBXr6hjyZEhAAAGD9JREFUb3JQB/5pRHu00t5LxszX2TGZYp1q+JwZVy20h5iDm6vPkjHzdXZMplinGj5n4kx/OZiDa7a9l4yZr7NjMsU61fA5E2ca7h9iDo6FJcol/7vRAGaMu68dM+sHgvQxJfKcKmmHXPoL7v7jEvn+Nki/wMwWjsrg7hvcfVOJfU/iWVJfDP2Wu/93ybxnBumX1FOkwZpoD3e/w93vHSPf95S9IjuvTH8ai5ntLOmUYHXYx+Zx9x9J+mJu1QJlfXqUpUH6gsICZse6TdKVweplZfJ2EXFmIsSZ/mNEEWd6x2yif6CHODMR4kz/MaKIM031+VjaA6hDiueSFOs0iYavBeXuv6hUwIbRHs1LcUymWKdJMK76MQfXvBTHZIp1mgRxZj7m4JqV4phMsU6TIM70Yw4OwCjcbAdgHGuC9M5mtqggz0lB+pwyB3L3GyV9O7dqV0nHl8k7Zb8dpC+ukPeryp6anPM0M9tv8iJFK+xP+0/xWL8naZdc+pvu/oOSecM+e3LB9rsG6VtKHkeSfh6k96yQNxXEGeJMnZqMM4gHcYY4U6cY4sw4fb6uY3WxPYA6pHguSbFOUrPXgjGgPeKR4phMsU4S4yrEHFw8UhyTKdZJIs4gXimOyRTrJBFn6sIcHDADuNkOwDi2DVi347CNzWyxslfZ5vNfUeF4q4P0iRXyTssjg/R1ZTO6+2ZJP8mteoi6Uae2hP1paF+qwQlBenWFvJerv6yHm9m+I7a/LUhXedIo3PbOCnlTQZwhztSpyTiDeBBniDN1iiHOVOrzNR+ri+0B1CHFc0mKdZKavRaMAe0RjxTHZIp1khhXIebg4pHimEyxThJxBvFKcUymWCeJOFMX5uCAGcDNdgDG8ZggvU3SuhHbHxqkv1/xdbjfCNJPrJB3Wh4epO+qmD/c/kkTlCV2YX+a5mujw774zbIZe3322mD1qL54eZA+ouyxBmz7nQp5U0GcIc7Uqck4g3gQZ4gzdYohzlTt83Ueq4vtAdQhxXNJinWSmr0WjAHtEY8Ux2SKdZIYVyHm4OKR4phMsU4ScQbxSnFMplgniThTF+bggBnAzXYAxnFKkL7K3R8Ysf0TgvRPBm413P8U7K8NW4L0ThXzh9t3oU6NM7OHSTouWH3lFA/5+CA9zb74EfX3k9PMbOeiA5jZSZIOzK263t2vLl/EZBBniDO1aCHOtOlAMzvHzK43sw1mtsXMbu+lP2FmrzCz8OaqWUacIc7UIqI4U7XPjyWi9gDqkOK5JMU6Sc1eC8aA9ohHimMyxTpJjKsQc3DxSHFMplgniTjTJczBVZPimEyxThJxpi7MwQEzgJvtAFRiZrtJemmw+ryCbOFd9T+reNibg/ReZrZnxX3UbX2Q3q9i/nD7x05Qlpi9UtIuufTdki6dxoF6F7fhBW7Vvhhuv2zYhu5+k6QzcqseJenTZrbLkCwys6cqmyCc84CkV1csY/SIMw8iztSjsTjTAQdLWqlsEmORpIdK2qeX/kNJH5L0MzP7h944m1nEmQcRZ+rR+TgzZp8fV+fbA6hDiueSFOskNX8t2HW0RzxSHJMp1kliXIWYg4tHimMyxTpJxJkOYg6upBTHZIp1kogzdWEODpgd3GwHoKp3S1qcS9+l/omJQRYF6V9WOaC7b5S0KVi9R5V9TMGNQfrIshnN7EBJ+wer265P48xsiaS3Bqvf7+7hW3bqEvbDX1V8Tbc0v++O/Nzc/SxJb5S0tbfquZJuMLO/NLOjzWyZmT3RzJ5nZudIukLbL2a2SjrN3WfxizFxJkOcmVALcSYGu0p6raSrzWxWX+MvEWfmEGcmFFGcGafPVxZRewB1SPFckmKdpBauBTuO9ohHimMyxTpJjKsQc3DxSHFMplgniTgTI+bgMimOyRTrJBFn6sIcHDAjuNkOQGm9V+v/WbD6ze5+Z0HW8Mmd+8Y4fJhn9zH2UafLgvTzRz0tGfjjAevark+jzGxHSZ9Rf73XSvq7KR62lX7o7mdKOkzSxyRtkHSQsi/bl0v6kaTrlD3VslLZE3CSdImkI9393DHKGDXiTB/izARaijNt2SZptaS3SHqOpCOUPTV4uLJ/MJyp+RMdh0i6xMwOaq6Y3UCc6UOcmUAscWaCPl/1OFG0B1CHFM8lKdYpJ4YyNon2iECKYzLFOuXEUMYmMQcXgRTHZIp1yomhjLOAObgKUhyTKdYpJ4YydhpzcMBs4WY7AKWY2WGS/jVY/RVJZ5fIHn5BC5++KCP8gtb2q7dXKXsaYc4iSW8rymRmj5L0hgF/2sHMdq6naFH4iKTfyKXvl7RijKdkqmizHy5Q9nMUW4s2lHSupNe5+3erFCwFxJl5iDOTaSPOtOEtkg5w92Pc/W/c/QJ3X+PuP3H3a9z9fHd/o7J/MrxHkufyLpb0BTOzNgreBuLMPMSZyXQ+zkzY56vqfHsAdUjxXJJinQr218UyNon26LgUx2SKdSrYXxfL2CTm4DouxTGZYp0K9tfFMqaOObgKUhyTKdapYH9dLGNnMQcHzB5utgNQqPczYavU/6XoZkl/5O4+ONdITeWZGne/R9L7g9VvMLPXDMtjZo+UdJGGvza5U3WcFjP7a0kvDlaf4e5fb7goU++HZraTmf2jpO9JepmkfUpkWyHpWjM7v9dnZgJxZj7izPg6FGemrje5V/izA+6+yd3PkPTq4E9HSPqDqRSuY4gz8xFnxhdDnJlCnx91rM63B1CHFM8lKdZpSsdL+fxGe3RIimMyxTpN6Xgpjyvm4DokxTGZYp2mdLyU48zUMQdXXopjMsU6Tel4MxlnmIMDZtOCtgsAoNvMbB9J/yXpgNzq2yQd5+53lNzNxiA9zhtPwjzhPtvwLkknavvTAybpfWZ2iqSPSrpG2VMc+/e2+1Nt/6J1i6T8JM4md5/3lIiZLSlbGHdfW6n0LTCz1yp7AizvLHf/+5L5l5Q91oD2aLQfmtkCSV+UdEK+WMp+ruJcSVdJWidpJ0kHSnqGsgvwZb1tny3pKDM7zt2vGaOs0SDOjEScqajlONN57v4BMzte2U9dzDld0qdaKlIjiDMjEWcqiiHO1NTnyx5rovYAYpHiuSSmOsV0LdgE2iNNMY3JsmKqE+OqX0ztwRxceTGNybJiqlNM46oJqc0VhJiD6/6YLCumOhFn+jEHB2CauNkOwFBm9nBJl0g6JLd6naRj3f3HFXaV3Bc0SXL3LWZ2sqQLJT0596eje8sw6yW9VNLFuXV3Ddn2pgpF6vQryM3s5ZLOClaf7e6vr7CbSdqj6X74VvVP8t0n6RR3vzDYbouk6yVdb2YflvTPkk7r/W1vSV8ys8Pcff0Y5e084sxoxJlqOhBnYvFu9U/0HWlmi9x9WB+JGnFmNOJMNTHEmRr7fJlj1dEeQOeleC6JsE4xXQs2gfZITIRjslCEdWJc9YupPZiDKyHCMVkowjrFNK6akMxcwQjMwXV7TBaKsE7EmX7MwQGYGn5GFsBAZraHst+Sf1Ju9QZld+JfX3F3dwfpR1Qsy26a/wWtExcj7n6rpKdJ+pCkrSWyXCrpKZLuDdbfVnPROsXMXizpg+r/snqOpFc1WIywH+5iZrtW3Ef4ExQD+2HvC3b4Bff0AZN8fdx9s6SXS7ost/oASW+qWM4oEGfKIc6U05E4E4srlY21OTtIekJLZZkq4kw5xJlyYogzNff5omN1vj2AOqR4LkmxTgUauxaMBO3RMSmOyRTrVIBx1Y85uI5JcUymWKcCxJk4MQcX8ZhMsU4FiDMVMAcHgJvtAMxjZrtLukjSr+dW/5+kE8Z8lX549/5BFfOH29/p7hsGbtkCd7/X3f9E0mMlvVnZP6BvUfYU5T2SblT2kwXHSfrd3quIHx/s5qrGCtwwM3uRsi99+XPOJyW9zN29qXL0nkoN+82BFXcT9sVhT6Y8U1L+IuQmZX2gkLs/IOkdweoVZhbr03sDEWeqIc6M1pU4E4tenPlZsLrSBE8MiDPVEGdGiyHOTKHPjzpW59sDqEOK55IU61Sk4WvBzqM9uiXFMZlinYowrvoxB9ctKY7JFOtUhDgTJ+bg4h2TKdapCHGmPObgAEj8jCyAQO8phQslHZlbvVHSie5+5Zi7vTFIP6Zi/qVB+oYxyzFV7n6TpHf1liJHBelvD9ln1JM7ZvZ8Sf+m7ImtOf8haUXvQrOSGtrjRmVv7pnzGM3vn6OEfXFY3sOC9KUVv/R+XdlPW+zYS++lrKxJXJgQZ8ZHnJmvg3EmFvcF6XF+FqCziDPjI87MF0OcmVKfH3asWtsD6KoUzyUx1ymia8FG0B5piHlMDhNznRhX/SJqD+bgRoh5TA4Tc50iGleNiH2uoALm4KojzsxHnBkDc3AApok32wF4kJntLOlLko7Orf6VpGe5+zcm2PV1QfrJZrZLhfxPL9hfVHpPRz4jWH3ZoG1jZmbPkfRp9d/Y/UVJp7r7/e2Ual7fCW8SGKr3BfrJBfubsyhIV/pZPXffJml9sHrvKvvoKuJMM4gzrcaZWIQxZV0rpZgC4kwziDPdiTNT7PODjtX59gDqkOK5JMU6VdTUtWAsaI+WpTgmU6xTRYyrfszBtSzFMZlinSoizsSJObjqiDPzEWc6gDk4AHncbAdAkmRmCyWdL2l5bvUmSc9x969Psm93/4Wk7+dWLVD/F5Eiy4P0lycpTwc8Q9KSXPoyd0/iack5ZvZMZU9XPDS3epWkF/YmsdpyUZBeXiHvb6n/S+0ad799yLZ3BeldB2412m5BeuMY++gU4kyjiDMYysz21vynDP+3jbLUjTjTKOJMB0yzzw84VufbA6hDiueSFOs0hqauBWNBe7QoxTGZYp3GwLjqxxxci1IckynWaQzEmcgwBzce4sxAy4M0caZhzMEBCHGzHQCZ2Y6SviDp2NzqzZKe5+5frekw5wXpl5Qs2+Mk/WZu1b2SvlJTmdryF0H6Q62UYkrM7DhJn9f2n1+Qss/s+e6+pZ1SPehi9b+2/aheHytjZZAO+3ReeMF8eMljSJLMbJmk3YPVlZ7M7RriTOOIMxjlReq/DrhdCfz0F3GmccSZljXU5+eO1fn2AOqQ4rkkxTqNqalrwVjQHi1JcUymWKcxMa76MQfXkhTHZIp1GhNxJj7MwY2POLO9bMSZljEHB2AQbrYDZpyZLZD0WUkn5lZvlXSKu19c46E+KSn/WtuTe5MZRcJ/5H7W3TfVV6xmmdkKScflVl2j7OmEJJjZ70j6T0kLc6u/puwL5+Z2SrWdu/9K0ueC1WEfm8fMDpF0Um7VNkmfGpFldZB+upk9oUwZe14ZpH/o7ndUyN8pxJlmEWcwipntK+ktweoL3N3bKE9diDPNIs60r8E+H0V7AHVI8VySYp3G1eC1YBRoj3akOCZTrNO4GFf9mINrR4pjMsU6jYs4Exfm4CZGnNmOONMi5uAADOXuLCwsM7pI2kHSZyR5btkq6aQpHe+jwbGukLRwxPbPDbbfLOmgCcuwPNjn2gn3t6DCtidL2hK09eEt94Ha2kPSUZLuCfZ3maRd2qzjgHIuDT4HV/aa52HbL+z11fz2Hyw4hkn6YZDnakm7lyjfCQPK9862222C9ibOEGdmLs400R6SHivp2RXzLJb0nQF9fmnb7TJhmxJniDMzFWea7PMxtAcLSx1LiueSFOtUQxmnfi1Yshyrg32unGa9aY9uLCmOyRTrVEMZGVcNt4eYg8vXJ7kxmWKdaigjcaZ8GZcHZVw75n6Yg9ter+TGZIp1qqGMxJkW+oeYg2NhiW7J/242gNnzMUkvCNa9SdIaM1tScV+3efGTFH+l7MmGPXvpp0m6xMxe5u4/mNvIzHaS9ApJ7w3yv9fdby5TGDN7pDQwxi0O0gtG1HWju68rONS1ZrZK2St9v+3uDwwoy6GSzpB0avCnN7n7moL912La7WFmh0v6sqTdcqt/KOlVkvYxsyrF3eTuU/u5Bnf/qZm9X9Ibcqs/Z2Z/LunDnnsNs5k9XtJHlPXVOeslvb3gGG5mZyjrF3OOkHR17zir3N3zecxsL0mvUdZX8p/Veklnlq1fBxFniDMzF2ekRvrHfpLON7NrJX1C0nnu/uMhZdld0gplT9PuG/z5ne7+0yHHiAVxhjgza3GmkT4fUXsAdUjxXJJinSbSxLVgLv9ukvYe8ueFQXrvEZ/JLe6+rcwxq6I9GpfimEyxThNhXPVjDq5xKY7JFOs0EeLMfMzBNSrFMZlinSZCnOnDHByAoSy4zgAwQ8yszgBwjLuvLnHM5ZIuVv9vzc89cfhTSXsomxB5RJD1S8pek3u/SjCztZIOKrPtCOe6+8qC46yTtFcvuVHStZJ+IWmTsjocMqQc73T3t05YvtKm3R5m9jZlFwl1uMzdl9e0r4HMbAdJF6j/tc+S9EtJ31X29MhSZX0x/y12i6Rj3f3yksc5S9LrBvxpvbI+v07ZWFgi6dc0f1Jgs6RnuvvXyhyvi4gzhYgz/VKKM2s13fZYLunSYPXdkq5TFlvuUXZx/ihJh2nwpOOH3T38yZzoEGcKEWf6RR9nmurzsbQHUIcUzyUp1qkODV4LrpR0zqTllXSwu6+tYT8D0R7NSXFMplinOjCu+jEH15wUx2SKdaoDcaYfc3DNSXFMplinOhBnMszBARiFN9sBaJS7rzazkyR9XNu/KJqkp/SWQT4t6eVNfIGc0G7KXvM7ygZJp7v7vzdQHgzh7veb2QuUPXHzwtyf9lH2ExKD/FLSirIXCT2v7+V7u/ovnPaSdHxB3puVvRZ7dYXjQcQZEWdm2R6Snl5iu3slvc7d/2XK5UkWcYY4AwCTSvFcEkOdGrwWjALtkbYYxmRVMdSJcdWPObi0xTAmq4qhTsSZTmAOriExjMmqYqgTcQYAij2k7QIAmD3ufqGkQyV9UNk/a4f5lqRT3P1Ud7+3kcJV9z5JayTN+7m1wM8lvUPSo/nHdDe4+0Z3f5Gk31fW14a5U9LZkg5194sqHsPd/T2SniTpnzS6v8+5QdkE4aFM8o2POEOcmQE3SnqXpCsk3Vcyz4+UveZ+CZN8kyPOEGcAYFKJnUskxVGnJq4FY0J7pC2GMVlVDHViXPVjDi5tMYzJqmKoE3GmUczBtSyGMVlVDHUizgDAaPyMLIBWmdmOyp4AOkjSYmVP+twqaY2739Rm2aows4dJOlzSwcqeRFmo7MLrVknfc/cbWiweSjCzg5W98np/SbtKuk3Zk61XuPuWmo5hkh6n7HXye0t6mKRtku5S1leucvfb6zgWtiPOIHVm9hBJyyQ9WtIBkhZpe//YoOznQL/j7ne0VsjEEWcAAJNK5VySF0udmrgWjAntka5YxmQVsdSJcdWPObh0xTImq4ilTsSZZjAH175YxmQVsdSJOAMA/bjZDgAAAAAAAAAAAAAAAACAAvyMLAAAAAAAAAAAAAAAAAAABbjZDgAAAAAAAAAAAAAAAACAAtxsBwAAAAAAAAAAAAAAAABAAW62AwAAAAAAAAAAAAAAAACgADfbAQAAAAAAAAAAAAAAAABQgJvtAAAAAAAAAAAAAAAAAAAowM12AAAAAAAAAAAAAAAAAAAU4GY7AAAAAAAAAAAAAAAAAAAKcLMdAAAAAAAAAAAAAAAAAAAFuNkOAAAAAAAAAAAAAAAAAIAC3GwHAAAAAAAAAAAAAAAAAEABbrYDAAAAAAAAAAAAAAAAAKAAN9sBAAAAAAAAAAAAAAAAAFCAm+0AAAAAAAAAAAAAAAAAACjAzXYAAAAAAAAAAAAAAAAAABTgZjsAAAAAAAAAAAAAAAAAAApwsx0AAAAAAAAAAAAAAAAAAAW42Q4AAAAAAAAAAAAAAAAAgALcbAcAAAAAAAAAAAAAAAAAQAFutgMAAAAAAAAAAAAAAAAAoAA32wEAAAAAAAAAAAAAAAAAUICb7QAAAAAAAAAAAAAAAAAAKMDNdgAAAAAAAAAAAAAAAAAAFOBmOwAAAAAAAAAAAAAAAAAACnCzHQAAAAAAAAAAAAAAAAAABbjZDgAAAAAAAAAAAAAAAACAAtxsBwAAAAAAAAAAAAAAAABAAW62AwAAAAAAAAAAAAAAAACgADfbAQAAAAAAAAAAAAAAAABQgJvtAAAAAAAAAAAAAAAAAAAowM12AAAAAAAAAAAAAAAAAAAU4GY7AAAAAAAAAAAAAAAAAAAKcLMdAAAAAAAAAAAAAAAAAAAFuNkOAAAAAAAAAAAAAAAAAIAC3GwHAAAAAAAAAAAAAAAAAEABbrYDAAAAAAAAAAAAAAAAAKAAN9sBAAAAAAAAAAAAAAAAAFDg/wFRlxEKZVemhQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import yappi\n", + "\n", + "from apd.aggregation.analysis import interactable_plot_multiple_charts, Config, clean_temperature_fluctuations, get_data_by_deployment\n", + "from apd.aggregation.utils import profile_with_yappi\n", + "\n", + "async def filter_and_clean_temperature_fluctuations(datapoints):\n", + " filtered = (item async for item in datapoints if item.sensor_name==\"Temperature\")\n", + " cleaned = clean_temperature_fluctuations(filtered)\n", + " async for item in cleaned:\n", + " yield item\n", + "\n", + "filter_in_python = Config(\n", + " clean=filter_and_clean_temperature_fluctuations,\n", + " title=\"Ambient temperature\",\n", + " ylabel=\"Degrees C\",\n", + " get_data=get_data_by_deployment,\n", + ")\n", + "\n", + "with profile_with_yappi():\n", + " plot = interactable_plot_multiple_charts(configs=[filter_in_python])\n", + " plot()\n", + "\n", + "yappi.get_func_stats().print_all()" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from apd.aggregation.utils import yappi_package_matches\n", + "import yappi\n", + "\n", + "yappi.get_func_stats().save(\"callgrind.filter_in_python\", \"callgrind\") " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "apd.aggregation", + "language": "python", + "name": "apd.aggregation" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/pyproject.toml b/Ch12/apd.aggregation-chapter12-ex01-complete/pyproject.toml new file mode 100644 index 0000000..4d3bb67 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/pyproject.toml @@ -0,0 +1,5 @@ +[build-system] +requires = [ + "setuptools", +] +build-backend = "setuptools.build_meta" diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/pytest.ini b/Ch12/apd.aggregation-chapter12-ex01-complete/pytest.ini new file mode 100644 index 0000000..8c26fbc --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/pytest.ini @@ -0,0 +1,4 @@ +[pytest] +markers = + functional: these tests are significantly slower as they start a HTTP server + performance: very slow tests that provide performance guarantees \ No newline at end of file diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/setup.cfg b/Ch12/apd.aggregation-chapter12-ex01-complete/setup.cfg new file mode 100644 index 0000000..704c6bf --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/setup.cfg @@ -0,0 +1,89 @@ +[mypy] +namespace_packages = True +mypy_path = src +plugins = sqlmypy + +[mypy-alembic] +ignore_missing_imports = True + +[mypy-alembic.config] +ignore_missing_imports = True + +[mypy-alembic.script] +ignore_missing_imports = True + +[mypy-alembic.runtime.environment] +ignore_missing_imports = True + +[mypy-matplotlib] +ignore_missing_imports = True + +[mypy-matplotlib.axes._base] +ignore_missing_imports = True + +[mypy-matplotlib.figure] +ignore_missing_imports = True + +[mypy-matplotlib.pyplot] +ignore_missing_imports = True + +[mypy-IPython.core] +ignore_missing_imports = True + +[mypy-yappi] +ignore_missing_imports = True + +[mypy-pint] +ignore_missing_imports = True + +[mypy-pytest] +ignore_missing_imports = True + +[mypy-setuptools] +ignore_missing_imports = True + +[flake8] +max-line-length = 120 +ignore = E501,E712 + +[metadata] +name = apd.aggregation +version = attr: apd.aggregation.VERSION +description = A programme that queries apd.sensor endpoints and aggregates their results. +long_description = file: README.md, CHANGES.md, LICENCE +long_description_content_type = text/markdown +keywords = +license = BSD +classifiers = + Programming Language :: Python :: 3 + Programming Language :: Python :: 3.7 + +[options] +zip_safe = False +include_package_data = True +package_dir = + =src +packages = find_namespace: +install_requires = + sqlalchemy + aiohttp + pint + psycopg2 + alembic + click + +[options.package_data] +apd.aggregation = py.typed + +[options.extras_require] +jupyter = ipywidgets +yappi = yappi + +[options.packages.find] +where = src + +[options.entry_points] +console_scripts = + collect_sensor_data = apd.aggregation.cli:collect_sensor_data + sensor_deployments = apd.aggregation.cli:deployments + run_apd_actions = apd.aggregation.cli:run_actions \ No newline at end of file diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/setup.py b/Ch12/apd.aggregation-chapter12-ex01-complete/setup.py new file mode 100644 index 0000000..6068493 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/setup.py @@ -0,0 +1,3 @@ +from setuptools import setup + +setup() diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/__init__.py b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/__init__.py new file mode 100644 index 0000000..3277f64 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/__init__.py @@ -0,0 +1 @@ +VERSION = "1.0.0" diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/actions/__init__.py b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/actions/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/actions/action.py b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/actions/action.py new file mode 100644 index 0000000..d192b19 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/actions/action.py @@ -0,0 +1,74 @@ +import asyncio +import dataclasses +import datetime +import logging + +from ..database import DataPoint +from ..collect import handle_result +from ..query import db_session_var +from .base import Action + +logger = logging.getLogger(__name__) + + +@dataclasses.dataclass +class OnlyOnChangeActionWrapper(Action): + """An action that requires another action as a parameter. + The `wrapped` action will be delegated to so long as the previous + invocation's `data` attribute is different to the current one. + The first invocation will always be delegated.""" + + wrapped: Action + + async def start(self) -> None: + self.last_value = None + return await self.wrapped.start() + + async def handle(self, datapoint: DataPoint) -> bool: + if datapoint.data == self.last_value: + return False + else: + self.last_value = datapoint.data + return await self.wrapped.handle(datapoint) + + +@dataclasses.dataclass +class OnlyAfterDateActionWrapper(Action): + """An action that requires another action and a date + as parameters. The `wrapped` action will be delegated to + for all data points with a date strictly after `date_threshold`.""" + + wrapped: Action + date_threshold: datetime.datetime + + async def start(self) -> None: + return await self.wrapped.start() + + async def handle(self, datapoint: DataPoint) -> bool: + if datapoint.collected_at <= self.date_threshold: + return False + return await self.wrapped.handle(datapoint) + + +class SaveToDatabaseAction(Action): + """An action that stores any generated data points back to the DB""" + + async def start(self) -> None: + return + + async def handle(self, datapoint: DataPoint) -> bool: + loop = asyncio.get_running_loop() + session = db_session_var.get() + await loop.run_in_executor(None, handle_result, [datapoint], session) + return True + + +class LoggingAction(Action): + """An action that stores any generated data points back to the DB""" + + async def start(self) -> None: + return + + async def handle(self, datapoint: DataPoint) -> bool: + logger.warn(datapoint) + return True diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/actions/base.py b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/actions/base.py new file mode 100644 index 0000000..0589ba4 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/actions/base.py @@ -0,0 +1,62 @@ +import typing as t + +from ..typing import T_value +from ..database import DataPoint +from ..exceptions import NoDataForTrigger + + +class Trigger(t.Generic[T_value]): + name: str + + async def start(self) -> None: + """ Coroutine to do any initial setup """ + return + + async def match(self, datapoint: DataPoint) -> bool: + """ Return True if the datapoint is of interest to this + trigger. + This is an optional method, called by the default implementation + of handle(...).""" + raise NotImplementedError + + async def extract(self, datapoint: DataPoint) -> T_value: + """ Return the value that this datapoint implies for this trigger, + or raise NoDataForTrigger if no value is appropriate. + Can also raise IncompatibleTriggerError if the value is not readable. + + This is an optional method, called by the default implementation + of handle(...). + """ + raise NotImplementedError + + async def handle(self, datapoint: DataPoint) -> t.Optional[DataPoint]: + """Given a data point, optionally return a datapoint that + represents the value of this trigger. Will delegate to the + match(...) and extract(...) functions.""" + if not await self.match(datapoint): + # This data point isn't relevant + return None + + try: + value = await self.extract(datapoint) + except NoDataForTrigger: + # There was no value for this point + return None + + return DataPoint( + sensor_name=self.name, + data=value, + deployment_id=datapoint.deployment_id, + collected_at=datapoint.collected_at, + ) + + +class Action: + async def start(self) -> None: + """ Coroutine to do any initial setup """ + return + + async def handle(self, datapoint: DataPoint) -> bool: + """ Apply this datapoint to the action, returning + a boolean to indicate success. """ + raise NotImplementedError diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/actions/runner.py b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/actions/runner.py new file mode 100644 index 0000000..b544c21 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/actions/runner.py @@ -0,0 +1,75 @@ +from __future__ import annotations + +import asyncio +import collections +import dataclasses +import time +import typing as t + +from ..database import DataPoint +from .base import Action, Trigger + +Decorated_Type = t.TypeVar("Decorated_Type", bound=t.Callable[..., t.Any]) + + +@dataclasses.dataclass(unsafe_hash=True) +class DataProcessor: + name: str + action: Action + trigger: Trigger[t.Any] + + def __post_init__(self): + self._input: t.Optional[asyncio.Queue[DataPoint]] = None + self._sub_tasks: t.Set = set() + self.last_times = collections.deque(maxlen=10) + self.total_in = 0 + self.total_out = 0 + + async def start(self) -> None: + self._input = asyncio.Queue(64) + self._task = asyncio.create_task(self.process(), name=f"{self.name}_process") + await asyncio.gather(self.action.start(), self.trigger.start()) + + @property + def input(self) -> asyncio.Queue[DataPoint]: + if self._input is None: + raise RuntimeError(f"{self}.start() was not awaited") + if self._task.done(): + raise RuntimeError("Processing has stopped") from self._task.exception() + return self._input + + async def idle(self) -> None: + await self.input.join() + + async def end(self) -> None: + self._task.cancel() + + async def push(self, obj: DataPoint) -> None: + coro = self.input.put(obj) + return await asyncio.wait_for(coro, timeout=30) + + async def process(self) -> None: + while True: + data = await self.input.get() + start = time.time() + self.total_in += 1 + try: + action_taken = False + processed = await self.trigger.handle(data) + if processed: + action_taken =await self.action.handle(processed) + if action_taken: + elapsed = time.time() - start + self.total_out += 1 + self.last_times.append(elapsed) + finally: + self.input.task_done() + + def stats(self) -> str: + if self.last_times: + avr_time = sum(self.last_times) / len(self.last_times) + elif self.total_in: + avr_time = 0 + else: + return "Not yet started" + return f"{avr_time:0.3f} seconds per item. {self.total_in} in, {self.total_out} out, {self.input.qsize()} waiting." diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/actions/source.py b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/actions/source.py new file mode 100644 index 0000000..d044d4d --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/actions/source.py @@ -0,0 +1,80 @@ +import asyncio + +from apd.aggregation.query import db_session_var, get_data + + +async def get_newest_record_id(): + from apd.aggregation.database import datapoint_table + from sqlalchemy import func + + loop = asyncio.get_running_loop() + db_session = db_session_var.get() + max_id_query = db_session.query(func.max(datapoint_table.c.id)) + return await loop.run_in_executor(None, max_id_query.scalar) + + +async def get_data_ongoing(*args, historical=False, **kwargs): + last_id = 0 + if not historical: + kwargs["inserted_after_record_id"] = last_id = await get_newest_record_id() + db_session = db_session_var.get() + while True: + # Run a timer for 300 seconds concurrently with our work + minimum_loop_timer = asyncio.create_task(asyncio.sleep(300)) + async for datapoint in get_data(*args, **kwargs): + if datapoint.id > last_id: + # This is the newest datapoint we have handled so far + last_id = datapoint.id + yield datapoint + # Next time, find only data points later than the latest we've seen + kwargs["inserted_after_record_id"] = last_id + # Commit the DB to store any work that was done in this loop and + # ensure that any isolation level issues do not prevent loading more + # data + db_session.commit() + # Wait for that timer to complete. If our loop took over 5 minutes + # this will complete immediately, otherwise it will block + await minimum_loop_timer + + +async def wait_for_notify(loop, raw_connection): + waiting = True + while waiting: + # SQLAlchemy isn't asynchronous, poll in a new thread + # to make sure we've received any notifications + await loop.run_in_executor(None, raw_connection.poll) + while raw_connection.notifies: + # End the loop after clearing out all pending + # notifications + waiting = False + raw_connection.notifies.pop() + if waiting: + # If we had no notifications wait 15 seconds then + # re-check + await asyncio.sleep(15) + + +async def get_data_ongoing_psql_pubsub(*args, historical=False, **kwargs): + last_id = 0 + if not historical: + kwargs["inserted_after_record_id"] = last_id = await get_newest_record_id() + db_session = db_session_var.get() + db_session.execute("LISTEN apd_aggregation;") + loop = asyncio.get_running_loop() + while True: + async for datapoint in get_data(*args, order=False, **kwargs): + if datapoint.id > last_id: + # This is the newest datapoint we have handled so far + last_id = datapoint.id + yield datapoint + # Next time, find only data points later than the latest we've seen + kwargs["inserted_after_record_id"] = last_id + # Commit the DB to store any work that was done in this loop and + # ensure that any isolation level issues do not prevent loading more + # data + db_session.commit() + + connection = db_session.connection() + raw_connection = connection.connection + await wait_for_notify(loop, raw_connection) + # Always yield new records from this point on diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/actions/trigger.py b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/actions/trigger.py new file mode 100644 index 0000000..d5c0def --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/actions/trigger.py @@ -0,0 +1,77 @@ +import dataclasses +import typing as t +import uuid + +from ..database import DataPoint +from ..exceptions import IncompatibleTriggerError, NoDataForTrigger +from .base import Trigger + + +@dataclasses.dataclass(frozen=True) +class ValueThresholdTrigger(Trigger[bool]): + name: str + threshold: float + comparator: t.Callable[[float, float], bool] + sensor_name: str + deployment_id: t.Optional[uuid.UUID] = dataclasses.field(default=None) + + async def match(self, datapoint: DataPoint) -> bool: + if datapoint.sensor_name != self.sensor_name: + return False + elif self.deployment_id and datapoint.deployment_id != self.deployment_id: + return False + return True + + async def extract(self, datapoint: DataPoint) -> bool: + if datapoint.data is None: + raise IncompatibleTriggerError("Datapoint does not contain data") + elif isinstance(datapoint.data, float): + value = datapoint.data + elif isinstance(datapoint.data, dict) and "magnitude" in datapoint.data: + value = datapoint.data["magnitude"] + else: + raise IncompatibleTriggerError("Unrecognised data format") + return self.comparator(value, self.threshold) # type: ignore + + +@dataclasses.dataclass +class ValueDifferenceTrigger(Trigger[float]): + name: str + sensor_name: str + target_deployment_id: uuid.UUID + reference_deployment_id: uuid.UUID + + def __post_init__(self): + self.last_reference = None + self.last_target = None + + async def match(self, datapoint: DataPoint) -> bool: + if datapoint.sensor_name != self.sensor_name: + return False + elif datapoint.deployment_id in ( + self.target_deployment_id, + self.reference_deployment_id, + ): + return True + return False + + async def extract(self, datapoint: DataPoint) -> float: + if datapoint.data is None: + raise IncompatibleTriggerError("Datapoint does not contain data") + elif isinstance(datapoint.data, float): + value = datapoint.data + elif isinstance(datapoint.data, dict) and "magnitude" in datapoint.data: + value = datapoint.data["magnitude"] + else: + raise IncompatibleTriggerError("Unrecognised data format") + + if datapoint.deployment_id == self.target_deployment_id: + self.last_target = value + elif datapoint.deployment_id == self.reference_deployment_id: + self.last_reference = value + + if self.last_reference is None or self.last_target is None: + # We need to have seen both items before we can calculate a difference + raise NoDataForTrigger("Insufficient data processed") + + return self.last_target - self.last_reference diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/alembic/README b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/alembic/README new file mode 100644 index 0000000..7d90be0 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/alembic/README @@ -0,0 +1,12 @@ +Generic single-database configuration. + + +# Database setup + +To generate the required database tables you must create an alembic.ini file, as follows: + + [alembic] + script_location = apd.aggregation:alembic + sqlalchemy.url = postgresql+psycopg2://apd@localhost/apd + +and run `alembic upgrade head`. This should also be done after every upgrade of the software. diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/alembic/env.py b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/alembic/env.py new file mode 100644 index 0000000..4c8a2c2 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/alembic/env.py @@ -0,0 +1,80 @@ +from logging.config import fileConfig + +from sqlalchemy import engine_from_config +from sqlalchemy import pool +from alembic import context + +from apd.aggregation.database import metadata + + +# this is the Alembic Config object, which provides +# access to the values within the .ini file in use. +config = context.config + +# Interpret the config file for Python logging. +# This line sets up loggers basically. +if config.config_file_name: + fileConfig(config.config_file_name) + +target_metadata = metadata + + +def include_object(object, name, type_, reflected, compare_to): + if object.info.get("is_view", False): + return False + return True + + +def run_migrations_offline(): + """Run migrations in 'offline' mode. + + This configures the context with just a URL + and not an Engine, though an Engine is acceptable + here as well. By skipping the Engine creation + we don't even need a DBAPI to be available. + + Calls to context.execute() here emit the given string to the + script output. + + """ + url = config.get_main_option("sqlalchemy.url") + context.configure( + url=url, + include_object=include_object, + target_metadata=target_metadata, + literal_binds=True, + dialect_opts={"paramstyle": "named"}, + ) + + with context.begin_transaction(): + context.run_migrations() + + +def run_migrations_online(): + """Run migrations in 'online' mode. + + In this scenario we need to create an Engine + and associate a connection with the context. + + """ + connectable = engine_from_config( + config.get_section(config.config_ini_section), + prefix="sqlalchemy.", + poolclass=pool.NullPool, + ) + + with connectable.connect() as connection: + context.configure( + connection=connection, + target_metadata=target_metadata, + include_object=include_object, + ) + + with context.begin_transaction(): + context.run_migrations() + + +if context.is_offline_mode(): + run_migrations_offline() +else: + run_migrations_online() diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/alembic/script.py.mako b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/alembic/script.py.mako new file mode 100644 index 0000000..2c01563 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/alembic/script.py.mako @@ -0,0 +1,24 @@ +"""${message} + +Revision ID: ${up_revision} +Revises: ${down_revision | comma,n} +Create Date: ${create_date} + +""" +from alembic import op +import sqlalchemy as sa +${imports if imports else ""} + +# revision identifiers, used by Alembic. +revision = ${repr(up_revision)} +down_revision = ${repr(down_revision)} +branch_labels = ${repr(branch_labels)} +depends_on = ${repr(depends_on)} + + +def upgrade(): + ${upgrades if upgrades else "pass"} + + +def downgrade(): + ${downgrades if downgrades else "pass"} diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py new file mode 100644 index 0000000..ef671bd --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py @@ -0,0 +1,32 @@ +"""Add indexes to datapoints + +Revision ID: 4b2df8a6e1ce +Revises: 6d2eacd5da3f +Create Date: 2019-12-02 16:07:41.123116 + +""" +from alembic import op + + +# revision identifiers, used by Alembic. +revision = "4b2df8a6e1ce" +down_revision = "6d2eacd5da3f" +branch_labels = None +depends_on = None + + +def upgrade(): + op.create_index( + op.f("ix_datapoints_collected_at"), + "datapoints", + ["collected_at"], + unique=False, + ) + op.create_index( + op.f("ix_datapoints_sensor_name"), "datapoints", ["sensor_name"], unique=False, + ) + + +def downgrade(): + op.drop_index(op.f("ix_datapoints_sensor_name"), table_name="datapoints") + op.drop_index(op.f("ix_datapoints_collected_at"), table_name="datapoints") diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py new file mode 100644 index 0000000..eb02455 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py @@ -0,0 +1,38 @@ +"""Add daily summary view + +Revision ID: 6962f8455a6d +Revises: 4b2df8a6e1ce +Create Date: 2019-12-03 11:50:24.403402 + +""" +from alembic import op + + +# revision identifiers, used by Alembic. +revision = "6962f8455a6d" +down_revision = "4b2df8a6e1ce" +branch_labels = None +depends_on = None + + +def upgrade(): + create_view = """ + CREATE VIEW daily_summary AS + SELECT + datapoints.sensor_name AS sensor_name, + datapoints.data AS data, + count(datapoints.id) AS count + FROM datapoints + WHERE + datapoints.collected_at >= CAST(CURRENT_DATE AS DATE) + AND + datapoints.collected_at < CAST(CURRENT_DATE AS DATE) + 1 + GROUP BY + datapoints.sensor_name, + datapoints.data; + """ + op.execute(create_view) + + +def downgrade(): + op.execute("""DROP VIEW daily_summary""") diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py new file mode 100644 index 0000000..b4a3545 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py @@ -0,0 +1,31 @@ +"""Create datapoints table + +Revision ID: 6d2eacd5da3f +Revises: N/A +Create Date: 2019-09-29 13:43:21.242706 + +""" +from alembic import op +import sqlalchemy as sa +from sqlalchemy.dialects import postgresql + +# revision identifiers, used by Alembic. +revision = "6d2eacd5da3f" +down_revision = None +branch_labels = None +depends_on = None + + +def upgrade(): + op.create_table( + "datapoints", + sa.Column("id", sa.Integer(), nullable=False), + sa.Column("sensor_name", sa.String(), nullable=True), + sa.Column("collected_at", postgresql.TIMESTAMP(), nullable=True), + sa.Column("data", postgresql.JSONB(astext_type=sa.Text()), nullable=True), + sa.PrimaryKeyConstraint("id"), + ) + + +def downgrade(): + op.drop_table("datapoints") diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/alembic/versions/d8cdc709086b_add_deployment_table.py b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/alembic/versions/d8cdc709086b_add_deployment_table.py new file mode 100644 index 0000000..204e096 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/alembic/versions/d8cdc709086b_add_deployment_table.py @@ -0,0 +1,32 @@ +"""Add deployment table + +Revision ID: d8cdc709086b +Revises: d8d4cf6a178f +Create Date: 2019-12-17 16:28:58.585616 + +""" +from alembic import op +import sqlalchemy as sa +from sqlalchemy.dialects import postgresql + +# revision identifiers, used by Alembic. +revision = "d8cdc709086b" +down_revision = "d8d4cf6a178f" +branch_labels = None +depends_on = None + + +def upgrade(): + op.create_table( + "deployments", + sa.Column("id", postgresql.UUID(as_uuid=True), nullable=False), + sa.Column("uri", sa.String(), nullable=True), + sa.Column("name", sa.String(), nullable=True), + sa.Column("colour", sa.String(), nullable=True), + sa.Column("api_key", sa.String(), nullable=True), + sa.PrimaryKeyConstraint("id"), + ) + + +def downgrade(): + op.drop_table("deployments") diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py new file mode 100644 index 0000000..88d5219 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py @@ -0,0 +1,34 @@ +"""Add deployment id to DataPoint + +Revision ID: d8d4cf6a178f +Revises: 6962f8455a6d +Create Date: 2019-12-03 20:58:11.285509 + +""" +from alembic import op +import sqlalchemy as sa +from sqlalchemy.dialects import postgresql + +# revision identifiers, used by Alembic. +revision = "d8d4cf6a178f" +down_revision = "6962f8455a6d" +branch_labels = None +depends_on = None + + +def upgrade(): + op.add_column( + "datapoints", + sa.Column("deployment_id", postgresql.UUID(as_uuid=True), nullable=True), + ) + op.create_index( + op.f("ix_datapoints_deployment_id"), + "datapoints", + ["deployment_id"], + unique=False, + ) + + +def downgrade(): + op.drop_index(op.f("ix_datapoints_deployment_id"), table_name="datapoints") + op.drop_column("datapoints", "deployment_id") diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/analysis.py b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/analysis.py new file mode 100644 index 0000000..eeb4ab2 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/analysis.py @@ -0,0 +1,401 @@ +from __future__ import annotations + +import asyncio +import collections +from concurrent.futures import ThreadPoolExecutor +import dataclasses +import datetime +import functools +import math +import typing as t +from uuid import UUID +import warnings + +import matplotlib.pyplot as plt +from matplotlib.axes._base import _AxesBase +from matplotlib.figure import Figure +from pint import _DEFAULT_REGISTRY as ureg + +from apd.aggregation.query import ( + get_data, + get_data_by_deployment, + with_database, + get_deployment_by_id, +) +from apd.aggregation.database import DataPoint, deployment_table +from .utils import merc_x, merc_y, convert_temperature +from .typing import IntermediateMapData, T_key, T_value, CleanerFunc, Cleaned +from .typing import ( + CLEANED_COORD_FLOAT, + CLEANED_DT_FLOAT, + COORD_FLOAT_CLEANER, + DT_FLOAT_CLEANER, +) + +# Static UUID to represent aggregation of other deployments +GLOBAL = UUID("bd02526e-7619-4a59-b04b-1fafd1c262d1") + + +@dataclasses.dataclass +class Config(t.Generic[T_key, T_value]): + title: str + clean: CleanerFunc[Cleaned[T_key, T_value]] + draw: t.Optional[ + t.Callable[ + [t.Any, t.Iterable[T_key], t.Iterable[T_value], t.Optional[str]], None + ] + ] = None + get_data: t.Optional[ + t.Callable[..., t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]] + ] = None + ylabel: t.Optional[str] = None + sensor_name: dataclasses.InitVar[str] = None + + def __post_init__(self, sensor_name: t.Optional[str] = None) -> None: + if self.draw is None: + self.draw = draw_date # type: ignore + if sensor_name is not None: + warnings.warn( + DeprecationWarning( + f"The sensor_name parameter is deprecated. Please pass " + f"get_data=get_one_sensor_by_deployment('{sensor_name}') " + f"to ensure the same behaviour. The sensor_name= parameter " + f"will be removed in apd.aggregation 3.0." + ), + stacklevel=3, + ) + if self.get_data is None: + self.get_data = get_one_sensor_by_deployment(sensor_name) + if self.get_data is None: + raise ValueError("You must specify a get_data function") + + +def draw_date( + plot: _AxesBase, + x: t.Iterable[datetime.datetime], + y: t.Iterable[float], + colour: t.Optional[str], +) -> None: + plot.plot_date(x, y, color=colour, linestyle="-", marker="", xdate=True) + + +def draw_map( + plot: _AxesBase, + x: t.Iterable[t.Tuple[float, float]], + y: t.Iterable[float], + colour: t.Optional[str], +) -> None: + lon = [merc_y(coord[0]) for coord in x] + lat = [merc_x(coord[1]) for coord in x] + + for axis in "x", "y": + plt.tick_params( + axis=axis, + which="both", + bottom=False, + top=False, + left=False, + right=False, + labelbottom=False, + labelleft=False, + ) + + plot.tricontourf(lat, lon, y) + plot.plot(lat, lon, "wo", ms=3) + plot.set_aspect(1.0) + + +def get_map_cleaner_for(sensor_name: str,) -> COORD_FLOAT_CLEANER: + """Given a sensor_name that represents a float, return a coroutine that acts as a cleaner + extracting that sensor's data keyed by the value of a Location sensor.""" + + async def clean_latest_coord_and_value( + datapoints: t.AsyncIterator[DataPoint], + ) -> CLEANED_COORD_FLOAT: + + # We will iterate over data points and build an entry in cleaned_data + # for each deployment. This lets newer data replace older data, as + # datapoints is assumed to be in date order + # IntermediateMapData is a typing hint for a dictionary with specific key/values + cleaned_data: t.Dict[UUID, IntermediateMapData] = {} + async for datapoint in datapoints: + # Get the existing data for this deployment, if we've seen it before + row_data = cleaned_data.get(datapoint.deployment_id, None) + if row_data is None: + # This is the first time we've seen this deployment + row_data = {"coord": None, "value": None} + if datapoint.sensor_name == "Location": + # Coord is a 2-tuple of floats + row_data["coord"] = ( + float(datapoint.data[0]), + float(datapoint.data[1]), + ) + elif datapoint.sensor_name == sensor_name: + # Value is a single float + row_data["value"] = float(datapoint.data) + # Store the info about this deployment back into the cleaned_data set + cleaned_data[datapoint.deployment_id] = row_data + + for data in cleaned_data.values(): + if data["coord"] is None or data["value"] is None: + # We only got a partial record, don't plot this + continue + yield data["coord"], data["value"] + + # Return the set up cleaner coroutine + return clean_latest_coord_and_value + + +async def clean_watthours_to_watts( + datapoints: t.AsyncIterator[DataPoint], +) -> CLEANED_DT_FLOAT: + last_watthours = None + last_time = None + async for datapoint in datapoints: + if datapoint.data is None: + continue + time = datapoint.collected_at + if datapoint.data["unit"] == "watt_hour": + watt_hours = datapoint.data["magnitude"] + else: + watt_hours = ( + ureg.Quantity(datapoint.data["magnitude"], datapoint.data["unit"]) + .to(ureg.watt_hour) + .magnitude + ) + if last_watthours: + seconds_elapsed = (time - last_time).total_seconds() + hours_elapsed = seconds_elapsed / (60.0 * 60.0) + additional_power = watt_hours - last_watthours + power = additional_power / hours_elapsed + yield time, power + last_watthours = watt_hours + last_time = datapoint.collected_at + + +async def clean_magnitude(datapoints: t.AsyncIterator[DataPoint],) -> CLEANED_DT_FLOAT: + async for datapoint in datapoints: + if datapoint.data is None: + continue + yield datapoint.collected_at, datapoint.data["magnitude"] + + +def convert_temperature_system( + cleaner: DT_FLOAT_CLEANER, temperature_unit: str, +) -> DT_FLOAT_CLEANER: + async def converter(datapoints: t.AsyncIterator[DataPoint],) -> CLEANED_DT_FLOAT: + results = cleaner(datapoints) + async for date, temp_c in results: + yield date, convert_temperature(temp_c, "degC", temperature_unit) + + return converter + + +async def clean_temperature_fluctuations( + datapoints: t.AsyncIterator[DataPoint], +) -> CLEANED_DT_FLOAT: + allowed_jitter = 2.5 + allowed_range = (-40, 80) + window_datapoints: t.Deque[DataPoint] = collections.deque(maxlen=3) + + def datapoint_ok(datapoint: DataPoint) -> bool: + """Return False if this data point does not contain a valid temperature""" + if datapoint.data is None: + return False + elif datapoint.data["unit"] != "degC": + # This point is in a different temperature system. While it could be converted + # this cleaner is not yet doing that. + return False + elif not allowed_range[0] < datapoint.data["magnitude"] < allowed_range[1]: + return False + return True + + async for datapoint in datapoints: + if not datapoint_ok(datapoint): + # If the datapoint is invalid then skip directly to the next item + continue + + window_datapoints.append(datapoint) + if len(window_datapoints) == 3: + # Find the temperatures of the datapoints in the window, then average + # the first and last and compare that to the middle point. + window_temperatures = [dp.data["magnitude"] for dp in window_datapoints] + avr_first_last = (window_temperatures[0] + window_temperatures[2]) / 2 + diff_middle_avr = abs(window_temperatures[1] - avr_first_last) + if diff_middle_avr > allowed_jitter: + pass + else: + yield window_datapoints[1].collected_at, window_temperatures[1] + elif len(window_datapoints) == 1: + # The item in the iterator can't be compared to both neighbours + # so should be yielded + yield datapoint.collected_at, datapoint.data["magnitude"] + else: + # Otherwise, let the window fill up, it will be yieleded later + pass + # When the iterator ends the final item is not yet in the middle + # of the window, so the last item must be explicitly yielded. + if len(window_datapoints) > 1 and datapoint_ok(datapoint): + yield datapoint.collected_at, datapoint.data["magnitude"] + + +async def clean_passthrough( + datapoints: t.AsyncIterator[DataPoint], +) -> CLEANED_DT_FLOAT: + async for datapoint in datapoints: + if datapoint.data is None: + continue + else: + yield datapoint.collected_at, datapoint.data + + +def get_one_sensor_by_deployment( + sensor_name: str, +) -> t.Callable[..., t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]]: + return functools.partial(get_data_by_deployment, sensor_name=sensor_name) + + +def get_all_data() -> t.Callable[ + ..., t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]] +]: + async def get_all_data_inner( + *args: t.Any, **kwargs: t.Any + ) -> t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]: + yield GLOBAL, get_data(*args, **kwargs) + + return get_all_data_inner + + +configs = ( + Config( + sensor_name="SolarCumulativeOutput", + clean=clean_watthours_to_watts, + title="Solar generation", + ylabel="Watts", + ), + Config( + sensor_name="RAMAvailable", + clean=clean_passthrough, + title="RAM available", + ylabel="Bytes", + ), + Config( + sensor_name="RelativeHumidity", + clean=clean_passthrough, + title="Relative humidity", + ylabel="Percent", + ), + Config( + sensor_name="Temperature", + clean=clean_temperature_fluctuations, + title="Ambient temperature", + ylabel="Degrees C", + ), +) + + +def get_known_configs() -> t.Dict[str, Config[t.Any, t.Any]]: + return {config.title: config for config in configs} + + +async def plot_sensor( + config: Config[t.Any, t.Any], + plot: _AxesBase, + location_names: t.Dict[UUID, str], + **kwargs: t.Any, +) -> _AxesBase: + locations = [] + if config.get_data is None: + raise ValueError("You must provide a get_data function") + async for deployment_id, query_results in config.get_data(**kwargs): + if deployment_id == GLOBAL: + name = "Global" + else: + try: + deployment = await get_deployment_by_id(deployment_id) + except IndexError: + name = str(deployment_id) + colour = None + else: + name = deployment.name or str(deployment_id) + colour = deployment.colour + # Mypy currently doesn't understand callable fields on datatypes: https://github.com/python/mypy/issues/5485 + points = [dp async for dp in config.clean(query_results)] # type: ignore + if not points: + continue + locations.append(name) + x, y = zip(*points) + plot.set_title(config.title) + plot.set_ylabel(config.ylabel) + if config.draw is None: + raise ValueError("You must provide a get_data function") + config.draw(plot, x, y, colour) + plot.legend(locations) + return plot + + +async def plot_multiple_charts(*args: t.Any, **kwargs: t.Any) -> Figure: + # These parameters are pulled from kwargs to avoid confusing function + # introspection code in IPython widgets + location_names = kwargs.pop("location_names", None) + configs = kwargs.pop("configs", None) + dimensions = kwargs.pop("dimensions", None) + db_uri = kwargs.pop("db_uri", "postgresql+psycopg2://apd@localhost/apd") + + with with_database(db_uri) as session: + loop = asyncio.get_running_loop() + coros = [] + if configs is None: + # If no configs are supplied, use all known configs + configs = get_known_configs().values() + if dimensions is None: + # If no dimensions are supplied, get the square root of the number + # of configs and round it to find a number of columns. This will + # keep the arrangement approximately square. Find rows by multiplying + # out rows. + total_configs = len(configs) + columns = round(math.sqrt(total_configs)) + rows = math.ceil(total_configs / columns) + if location_names is None: + location_query = session.query( + deployment_table.c.id, deployment_table.c.name + ) + location_data = await loop.run_in_executor(None, location_query.all) + location_names = dict(location_data) + + figure = plt.figure(figsize=(10 * columns, 5 * rows), dpi=300) + for i, config in enumerate(configs, start=1): + plot = figure.add_subplot(columns, rows, i) + coros.append(plot_sensor(config, plot, location_names, *args, **kwargs)) + await asyncio.gather(*coros) + return figure + + +_Coroutine_Result = t.TypeVar("_Coroutine_Result") + + +def wrap_coroutine( + f: t.Callable[..., t.Coroutine[t.Any, t.Any, _Coroutine_Result]] +) -> t.Callable[..., _Coroutine_Result]: + """Given a coroutine, return a function that runs that coroutine + in a new event loop in an isolated thread""" + + @functools.wraps(f) + def run_in_thread(*args: t.Any, **kwargs: t.Any) -> _Coroutine_Result: + loop = asyncio.new_event_loop() + wrapped = f(*args, **kwargs) + with ThreadPoolExecutor(max_workers=1) as pool: + task = pool.submit(loop.run_until_complete, wrapped) + # Mypy can get confused when nesting generic functions, like we do here + # The fact that Task is generic means we lose the association with + # _CoroutineResult. Adding an explicit cast restores this. + return t.cast(_Coroutine_Result, task.result()) + + return run_in_thread + + +def interactable_plot_multiple_charts( + *args: t.Any, **kwargs: t.Any +) -> t.Callable[..., Figure]: + with_config = functools.partial(plot_multiple_charts, *args, **kwargs) + return wrap_coroutine(with_config) diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/cli.py b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/cli.py new file mode 100644 index 0000000..a27e96f --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/cli.py @@ -0,0 +1,287 @@ +import asyncio +import functools +import importlib.util +import logging +import signal +import typing as t +import uuid + +import aiohttp +import click +from sqlalchemy import create_engine +from sqlalchemy.orm import sessionmaker + +from . import collect +from .actions.runner import DataProcessor +from .actions.source import get_data_ongoing +from .database import Deployment, deployment_table +from .query import with_database + +logger = logging.getLogger(__name__) + + +@click.command() +@click.argument("server", nargs=-1) +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +@click.option("--api-key", metavar="", envvar="APD_API_KEY") +@click.option( + "--tolerate-failures", + "-f", + help="If provided, failure to retrieve some sensors' data will not abort the collection process", + is_flag=True, +) +@click.option("-v", "--verbose", is_flag=True, help="Enables verbose mode") +def collect_sensor_data( + db: str, server: t.Tuple[str], api_key: str, tolerate_failures: bool, verbose: bool +) -> t.Optional[int]: + """This loads data from one or more sensors into the specified database. + + Only PostgreSQL databases are supported, as the column definitions use + multiple pg specific features. The database must already exist and be + populated with the required tables. + + The --api-key option is used to specify the access token for the sensors + being queried. + + You may specify any number of servers, the variable should be the full URL + to the sensor's HTTP interface, not including the /v/2.0 portion. Multiple + URLs should be separated with a space. + """ + if tolerate_failures: + attempts = [(s,) for s in server] + else: + attempts = [server] + success = True + for attempt in attempts: + try: + collect.standalone(db, attempt, api_key, echo=verbose) + except ValueError as e: + click.secho(str(e), err=True, fg="red") + success = False + return success + + +def load_handler_config(path: str) -> t.List[DataProcessor]: + # Create a module called user_config backed by the file specified, and load it + # This uses Python's import internals to fake a module in a known location + # Based on an SO answer by Sebastian Rittau and sample code from Brett Cannon + module_spec = importlib.util.spec_from_file_location("user_config", path) + module = importlib.util.module_from_spec(module_spec) + loader = module_spec.loader + if isinstance(loader, importlib.abc.Loader): + loader.exec_module(module) + try: + return module.handlers # type: ignore + except AttributeError as err: + raise ValueError(f"Could not load config file from {path}") from err + else: + # No valid loader could be found + raise ValueError(f"Could not load config file from {path}") + + +def stats_signal_handler(sig, frame, original_sigint_handler=None, handlers=None): + for handler in handlers: + click.echo( + click.style(handler.name, bold=True, fg="red") + " " + handler.stats() + ) + if sig == signal.SIGINT: + click.secho("Press Ctrl+C again to end the process", bold=True) + handler = signal.getsignal(signal.SIGINT) + signal.signal(signal.SIGINT, original_sigint_handler) + asyncio.get_running_loop().call_later(5, install_ctrl_c_signal_handler, handler) + return + + +def install_ctrl_c_signal_handler(signal_handler): + click.secho("Press Ctrl+C to view statistics", bold=True) + signal.signal(signal.SIGINT, signal_handler) + + +@click.command() +@click.argument("config", nargs=1) +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +@click.option( + "--historical", + is_flag=True, + help="Also trigger actions for data points that were already present in the database", +) +@click.option("-v", "--verbose", is_flag=True, help="Enables verbose mode") +def run_actions( + config: str, db: str, verbose: bool, historical: bool +) -> t.Optional[int]: + """This runs the long-running action processors defined in a config file. + + The configuration file specified should be a Python file that defines a + list of DataProcessor objects called processors.n + """ + logging.basicConfig(level=logging.DEBUG if verbose else logging.WARN) + + async def main_loop(): + with with_database(db): + logger.info("Loading configuration") + handlers = load_handler_config(config) + + logger.info(f"Configured {len(handlers)} handlers") + starters = [handler.start() for handler in handlers] + await asyncio.gather(*starters) + + logger.info(f"Ingesting data") + data = get_data_ongoing(historical=historical) + + original_sigint_handler = signal.getsignal(signal.SIGINT) + signal_handler = functools.partial( + stats_signal_handler, + handlers=handlers, + original_sigint_handler=original_sigint_handler, + ) + + for signal_name in "SIGINFO", "SIGUSR1", "SIGINT": + try: + signal.signal(signal.signals[signal_name], signal_handler) + except AttributeError: + pass + + async for datapoint in data: + for handler in handlers: + await handler.push(datapoint) + + asyncio.run(main_loop()) + return True + + +@click.group() +def deployments(): + pass + + +@deployments.command() +@click.argument("uri") +@click.argument("name") +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +@click.option("--api-key", metavar="", envvar="APD_API_KEY") +@click.option("--colour") +def add( + db: str, uri: str, name: str, api_key: t.Optional[str], colour: t.Optional[str], +): + """This creates a record of a new deployment in the database. + """ + deployment = Deployment(id=None, uri=uri, name=name, api_key=api_key, colour=colour) + + async def http_get_deployment_id(): + async with aiohttp.ClientSession() as http: + collect.http_session_var.set(http) + return await collect.get_deployment_id(uri) + + deployment.id = asyncio.run(http_get_deployment_id()) + insert = deployment_table.insert().values(**deployment._asdict()) + + engine = create_engine(db) + sm = sessionmaker(engine) + Session = sm() + Session.execute(insert) + Session.commit() + return True + + +@deployments.command() +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +def list(db: str): + """This creates a record of a new deployment in the database. + """ + engine = create_engine(db) + sm = sessionmaker(engine) + Session = sm() + deployments = Session.query(deployment_table).all() + for deployment in deployments: + click.secho(deployment.name, bold=True) + click.echo(click.style("ID ", bold=True) + deployment.id.hex) + click.echo(click.style("URI ", bold=True) + deployment.uri) + click.echo(click.style("API key ", bold=True) + deployment.api_key) + click.echo(click.style("Colour ", bold=True) + str(deployment.colour)) + click.echo() + Session.rollback() + return True + + +@deployments.command() +@click.argument("id") +@click.option("--uri") +@click.option("--name") +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +@click.option("--api-key", metavar="", envvar="APD_API_KEY") +@click.option("--colour") +def edit( + db: str, + id, + uri: t.Optional[str], + name: t.Optional[str], + api_key: t.Optional[str], + colour: t.Optional[str], +): + """This creates a record of a new deployment in the database. + """ + update = {} + if uri is not None: + update["uri"] = uri + if name is not None: + update["name"] = name + if api_key is not None: + update["api_key"] = api_key + if colour is not None: + update["colour"] = colour + deployment_id = uuid.UUID(id) + + update_stmt = ( + deployment_table.update() + .where(deployment_table.c.id == deployment_id) + .values(**update) + ) + + engine = create_engine(db) + sm = sessionmaker(engine) + Session = sm() + Session.execute(update_stmt) + deployments = Session.query(deployment_table).filter( + deployment_table.c.id == deployment_id + ) + Session.commit() + + for deployment in deployments: + click.secho(deployment.name, bold=True) + click.echo(click.style("ID ", bold=True) + deployment.id.hex) + click.echo(click.style("URI ", bold=True) + deployment.uri) + click.echo(click.style("API key ", bold=True) + deployment.api_key) + click.echo(click.style("Colour ", bold=True) + str(deployment.colour)) + click.echo() + + return True diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/collect.py b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/collect.py new file mode 100644 index 0000000..2ec7c01 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/collect.py @@ -0,0 +1,118 @@ +import asyncio +from contextvars import ContextVar +import datetime +import typing as t +import uuid + +import aiohttp +from sqlalchemy import create_engine +from sqlalchemy.orm import sessionmaker +from sqlalchemy.orm.session import Session + +from .database import DataPoint, datapoint_table, Deployment, deployment_table + +http_session_var: ContextVar[aiohttp.ClientSession] = ContextVar("http_session") + + +async def get_deployment_id(server): + http = http_session_var.get() + if not server.endswith("/"): + server += "/" + url = server + "v/2.1/deployment_id" + async with http.get(url) as request: + if request.status != 200: + raise ValueError(f"Error loading deployment id from {server}") + result = await request.json() + return uuid.UUID(result["deployment_id"]) + + +async def get_data_points(server: str, api_key: t.Optional[str],) -> t.List[DataPoint]: + if not server.endswith("/"): + server += "/" + url = server + "v/2.1/sensors/" + headers = {} + if api_key: + headers["X-API-KEY"] = api_key + http = http_session_var.get() + + # Get the deployment ID in parallel to the sensor data + deployment_id = asyncio.create_task(get_deployment_id(server)) + + async with http.get(url, headers=headers) as request: + result = await request.json() + ok = request.status == 200 + now = datetime.datetime.now() + if ok: + points = [] + for value in result["sensors"]: + points.append( + DataPoint( + sensor_name=value["id"], + collected_at=now, + data=value["value"], + deployment_id=await deployment_id, + ) + ) + return points + else: + raise ValueError( + f"Error loading data from {server}: " + result.get("error", "Unknown") + ) + + +def handle_result(result: t.List[DataPoint], session: Session) -> t.List[DataPoint]: + for point in result: + insert = datapoint_table.insert().values(**point._asdict()) + sql_result = session.execute(insert) + point.id = sql_result.inserted_primary_key[0] + return result + + +async def add_data_from_sensors( + session: Session, servers: t.Iterable[Deployment] +) -> t.List[DataPoint]: + tasks: t.List[t.Awaitable[t.List[DataPoint]]] = [] + points: t.List[DataPoint] = [] + async with aiohttp.ClientSession() as http: + http_session_var.set(http) + tasks = [get_data_points(server.uri, server.api_key) for server in servers] + for results in await asyncio.gather(*tasks): + points += results + loop = asyncio.get_running_loop() + await loop.run_in_executor(None, handle_result, points, session) + return points + + +def standalone( + db_uri: str, servers: t.Tuple[str], api_key: t.Optional[str], echo: bool = False +) -> None: + engine = create_engine(db_uri, echo=echo) + sm = sessionmaker(engine) + Session = sm() + deployments: t.Iterable[Deployment] + if servers: + deployments = tuple( + Deployment(id=None, name=None, colour=None, api_key=api_key, uri=server) + for server in servers + ) + else: + deployment_data = Session.query(deployment_table).all() + deployments = tuple( + Deployment.from_sql_result(deployment) for deployment in deployment_data + ) + asyncio.run(add_data_from_sensors(Session, deployments)) + + if "postgresql" in db_uri: + # On Postgres sent a pubsub notification, in case other processes are waiting + # for this data + Session.execute("NOTIFY apd_aggregation;") + + Session.commit() + + +if __name__ == "__main__": + standalone( + db_uri="postgresql+psycopg2://apd@localhost/apd", + servers=("http://pvoutput:8080/",), + api_key="h3hdfjksfhwkjehnwekj", + ) diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/database.py b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/database.py new file mode 100644 index 0000000..f28b469 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/database.py @@ -0,0 +1,129 @@ +from __future__ import annotations + +from dataclasses import dataclass, field, asdict +import datetime +import typing as t +import uuid + +import sqlalchemy +from sqlalchemy.dialects.postgresql import JSONB, DATE, TIMESTAMP, UUID +from sqlalchemy.ext.hybrid import ExprComparator, hybrid_property +from sqlalchemy.orm import sessionmaker +from sqlalchemy.schema import Table + + +metadata = sqlalchemy.MetaData() + +deployment_table = Table( + "deployments", + metadata, + sqlalchemy.Column("id", UUID(as_uuid=True), primary_key=True), + sqlalchemy.Column("uri", sqlalchemy.String, index=False), + sqlalchemy.Column("name", sqlalchemy.String, index=False, nullable=True), + sqlalchemy.Column("colour", sqlalchemy.String, index=False, nullable=True), + sqlalchemy.Column("api_key", sqlalchemy.String, index=False), +) + +datapoint_table = Table( + "datapoints", + metadata, + sqlalchemy.Column("id", sqlalchemy.Integer, primary_key=True), + sqlalchemy.Column("sensor_name", sqlalchemy.String, index=True), + sqlalchemy.Column("collected_at", TIMESTAMP, index=True), + sqlalchemy.Column("deployment_id", UUID(as_uuid=True), index=True), + sqlalchemy.Column("data", JSONB), +) + +daily_summary_view = Table( + "daily_summary", + metadata, + sqlalchemy.Column("sensor_name", sqlalchemy.String), + sqlalchemy.Column("data", JSONB), + sqlalchemy.Column("count", sqlalchemy.Integer), + info={"is_view": True}, +) + + +class DateEqualComparator(ExprComparator): + def __init__(self, fallback_expression, raw_expression): + # Do not try and find update expression from parent + super().__init__(None, fallback_expression, None) + self.raw_expression = raw_expression + + def __eq__(self, other): + """ Returns True iff on the same day as other """ + other_date = sqlalchemy.cast(other, DATE) + return sqlalchemy.and_( + self.raw_expression >= other_date, self.raw_expression < other_date + 1, + ) + + def operate(self, op, *other, **kwargs): + other = [sqlalchemy.cast(date, DATE) for date in other] + return op(self.expression, *other, **kwargs) + + def reverse_operate(self, op, other, **kwargs): + other = [sqlalchemy.cast(date, DATE) for date in other] + return op(other, self.expression, **kwargs) + + +@dataclass +class DataPoint: + sensor_name: str + data: t.Any + deployment_id: uuid.UUID + id: t.Optional[int] = None + collected_at: datetime.datetime = field(default_factory=datetime.datetime.now) + + @classmethod + def from_sql_result(cls, result) -> DataPoint: + return cls(**result._asdict()) + + def _asdict(self) -> t.Dict[str, t.Any]: + data = asdict(self) + if data["id"] is None: + del data["id"] + return data + + @hybrid_property + def collected_on_date(self): + return self.collected_at.date() + + @collected_on_date.comparator # type: ignore + def collected_on_date(cls): + return DateEqualComparator( + fallback_expression=sqlalchemy.cast(datapoint_table.c.collected_at, DATE), + raw_expression=datapoint_table.c.collected_at, + ) + + +@dataclass +class Deployment: + id: t.Optional[uuid.UUID] + uri: str + name: t.Optional[str] + colour: t.Optional[str] + api_key: t.Optional[str] + + @classmethod + def from_sql_result(cls, result) -> Deployment: + return cls(**result._asdict()) + + def _asdict(self) -> t.Dict[str, t.Any]: + data = asdict(self) + return data + + +def main() -> None: + engine = sqlalchemy.create_engine( + "postgresql+psycopg2://apd@localhost/apd", echo=True + ) + sm = sessionmaker(engine) + Session = sm() + if False: + metadata.create_all(engine) + print(Session.query(DataPoint).all()) + pass + + +if __name__ == "__main__": + main() diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/exceptions.py b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/exceptions.py new file mode 100644 index 0000000..6200e90 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/exceptions.py @@ -0,0 +1,14 @@ +class NoDataForTrigger(ValueError): + """An error that's raised when a trigger is passed + a data point that cannot be handled due to an incompatible + value being stored""" + + pass + + +class IncompatibleTriggerError(NoDataForTrigger): + """An error that's raised when a trigger is passed + a data point that cannot be handled due to an incompatible + value being stored""" + + pass diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/query.py b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/query.py new file mode 100644 index 0000000..14144ff --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/query.py @@ -0,0 +1,154 @@ +import asyncio +import contextlib +from contextvars import ContextVar +import datetime +import typing as t +from uuid import UUID + +from sqlalchemy import create_engine +from sqlalchemy.orm import sessionmaker +from sqlalchemy.orm.session import Session + + +from apd.aggregation.database import ( + datapoint_table, + DataPoint, + deployment_table, + Deployment, +) + + +db_session_var: ContextVar[Session] = ContextVar("db_session") + + +@contextlib.contextmanager +def with_database(uri: t.Optional[str] = None) -> t.Iterator[Session]: + """Given a URI, set up a DB connection, and return a Session as a context manager """ + if uri is None: + uri = "postgresql+psycopg2://localhost/apd" + engine = create_engine(uri) + sm = sessionmaker(engine) + Session = sm() + token = db_session_var.set(Session) + try: + yield Session + Session.commit() + finally: + db_session_var.reset(token) + Session.close() + + +async def get_data( + sensor_name: t.Optional[str] = None, + deployment_id: t.Optional[UUID] = None, + collected_before: t.Optional[datetime.datetime] = None, + collected_after: t.Optional[datetime.datetime] = None, + inserted_after_record_id: t.Optional[int] = None, + order: bool = True, +) -> t.AsyncIterator[DataPoint]: + db_session = db_session_var.get() + loop = asyncio.get_running_loop() + query = db_session.query(datapoint_table) + if sensor_name: + query = query.filter(datapoint_table.c.sensor_name == sensor_name) + if deployment_id: + query = query.filter(datapoint_table.c.deployment_id == deployment_id) + if collected_before: + query = query.filter(datapoint_table.c.collected_at < collected_before) + if collected_after: + query = query.filter(datapoint_table.c.collected_at > collected_after) + if inserted_after_record_id: + query = query.filter(datapoint_table.c.id > inserted_after_record_id) + + if order: + query = query.order_by( + datapoint_table.c.deployment_id, + datapoint_table.c.sensor_name, + datapoint_table.c.collected_at, + ) + + rows = await loop.run_in_executor(None, query.all) + for row in rows: + yield DataPoint.from_sql_result(row) + + +async def get_deployment_ids() -> t.List[UUID]: + db_session = db_session_var.get() + loop = asyncio.get_running_loop() + query = db_session.query(datapoint_table.c.deployment_id).distinct() + return [row.deployment_id for row in await loop.run_in_executor(None, query.all)] + + +async def get_deployment_by_id(deployment_id: UUID) -> Deployment: + db_session = db_session_var.get() + loop = asyncio.get_running_loop() + query = db_session.query(deployment_table).filter( + deployment_table.c.id == deployment_id + ) + return [ + Deployment.from_sql_result(row) + for row in await loop.run_in_executor(None, query.all) + ][0] + + +async def get_data_by_deployment( + *args: t.Any, **kwargs: t.Any +) -> t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]: + """Return an Async Iterator that contains two-item pairs. + These pairs are a string (deployment_id), and an async iterator that contains + the datapoints with that deployment_id. + + Usage example: + + async for deployment_id, datapoints in get_data_by_deployment(): + print(deployment_id) + async for datapoint in datapoints: + print(datapoint) + print() + """ + # Get the data, using the arguments to this function as filters + data = get_data(*args, **kwargs) + + # The two levels of iterator share the item variable, initialise it with the + # first item from the iterator. Also set last_deployment_id to None, so the + # outer iterator knows to start a new group. + last_deployment_id: t.Optional[UUID] = None + try: + item = await data.__anext__() + except StopAsyncIteration: + # There were no items in the underlying query, return immediately + return + + async def subiterator(group_id: UUID) -> t.AsyncIterator[DataPoint]: + """Using a closure, create an iterator that yields the current + item, then yields all items from data while the deployment_id matches + group_id, leaving the first that doesn't match as item in the enclosing + scope.""" + # item is from the enclosing scope + nonlocal item + while item.deployment_id == group_id: + # yield items from data while they match the group_id this iterator represents + yield item + try: + # Advance the underlying iterator + item = await data.__anext__() + except StopAsyncIteration: + # The underlying iterator came to an end, so end the subiterator too + return + + while True: + while item.deployment_id == last_deployment_id: + # We are trying to advance the outer iterator while the underlying iterator + # is still part-way through a group. Speed through the underlying until we + # hit an item where the deployment_id is different to the last one (or, is not + # None, in the case of the start of the iterator) + try: + item = await data.__anext__() + except StopAsyncIteration: + # We hit the end of the underlying iterator: end this iterator too + return + last_deployment_id = item.deployment_id + # Don't yield an iterator for unclassified deployments + if last_deployment_id is not None: + # Instantiate a subiterator for this group + yield last_deployment_id, subiterator(last_deployment_id) diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/typing.py b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/typing.py new file mode 100644 index 0000000..5db1337 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/typing.py @@ -0,0 +1,48 @@ +import datetime +import typing as t +from typing_extensions import Protocol + +from apd.aggregation.database import DataPoint + + +# Aliases for common types +# These type variables allow for generic functions. T_key represents the place +# in a chart that an item will be placed, and T_value the kind of data that is plotted. +T_key = t.TypeVar("T_key") +T_value = t.TypeVar("T_value") + +# Cleaned is a placeholder type, representing an async iterator of key and value functions +# Cleaned[float, float] is equivalent to typing.AsyncIterator[Tuple[builtins.float, builtins.float]] +Cleaned = t.AsyncIterator[t.Tuple[T_key, T_value]] + +# T_cleaned represents a placeholder for the result of a cleaner function, and is *covariant* +# because it can accept compatible types (such as ints where floats were declared). +# It is bound to Cleaned, so only items that match the specification for Cleaned (for any values +# of T_key or T_value) are valid +T_cleaned = t.TypeVar("T_cleaned", covariant=True, bound=Cleaned) + + +# CleanerFunc is a generic protocol, it matches any Callable that converts an async iterator +# of datapoints to its type. So, CleanerFunc[float] would be equivalent to t.Callable[[t.AsyncIterator[DataPoint]], float] +class CleanerFunc(Protocol[T_cleaned]): + def __call__(self, datapoints: t.AsyncIterator[DataPoint]) -> T_cleaned: + ... + + +# CLEANED_DT_FLOAT is a Cleaned represents datetime/float pairs, for simple charts +CLEANED_DT_FLOAT = Cleaned[datetime.datetime, float] +# and CLEANED_COORD_FLOAT represents (lat/lon), float pairs +CLEANED_COORD_FLOAT = Cleaned[t.Tuple[float, float], float] + +# The _CLEANER variants are functions that return their matching iterators from above +DT_FLOAT_CLEANER = CleanerFunc[CLEANED_DT_FLOAT] +COORD_FLOAT_CLEANER = CleanerFunc[CLEANED_COORD_FLOAT] + + +# When drawing a map we will be building a dictionary of UUID to dictionary +# That inner dictionary should contain coord (float, float) +# and value (float) only. Either or both can be None. +# This class is abstract, it's just for type checking. +class IntermediateMapData(t.TypedDict): + coord: t.Optional[t.Tuple[float, float]] + value: t.Optional[float] diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/utils.py b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/utils.py new file mode 100644 index 0000000..75bf6b3 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/src/apd/aggregation/utils.py @@ -0,0 +1,100 @@ +from __future__ import annotations + +import contextlib +import functools +import importlib +import io +import logging +import math +import os +import typing as t + +from pint import _DEFAULT_REGISTRY as ureg + + +# Set up mercator transform from https://wiki.openstreetmap.org/wiki/Mercator#Python +# Thanks to Paulo Silva and the OSM contributors +def merc_x(lon: float) -> float: + r_major = 6378137.000 + return r_major * math.radians(lon) + + +def merc_y(lat: float) -> float: + if lat > 89.5: + lat = 89.5 + if lat < -89.5: + lat = -89.5 + r_major = 6378137.000 + r_minor = 6356752.3142 + temp = r_minor / r_major + eccent = math.sqrt(1 - temp ** 2) + phi = math.radians(lat) + sinphi = math.sin(phi) + con = eccent * sinphi + com = eccent / 2 + con = ((1.0 - con) / (1.0 + con)) ** com + ts = math.tan((math.pi / 2 - phi) / 2) / con + y = 0 - r_major * math.log(ts) + return y + + +@functools.lru_cache +def convert_temperature(magnitude: float, origin_unit: str, target_unit: str) -> float: + # if origin_unit == "degC" and target_unit == "degF": + # return (magnitude * 1.8) + 32 + temp = ureg.Quantity(magnitude, origin_unit) + return temp.to(target_unit).magnitude + + +@contextlib.contextmanager +def jupyter_page_file() -> t.Iterator[io.StringIO]: + from IPython.core import page + + output = io.StringIO() + yield output + output.seek(0) + page.page(output.read()) + + +@contextlib.contextmanager +def profile_with_yappi() -> t.Iterator[None]: + import yappi + + yappi.clear_stats() + yappi.start() + try: + yield None + finally: + yappi.stop() + + +@functools.lru_cache +def get_package_prefix(package: str) -> str: + mod = importlib.import_module(package) + prefix = mod.__file__ + if prefix.endswith("__init__.py"): + prefix = os.path.dirname(prefix) + return prefix + + +def yappi_package_matches(stat, packages: t.List[str]): + """ This object can be passed to yappi's filter_callback to limit + by Python package.""" + for package in packages: + prefix = get_package_prefix(package) + if stat.full_name.startswith(prefix): + return True + return False + + +class AddSensorNameDefault(logging.Filter): + def filter(self, record): + if not hasattr(record, "sensorname"): + record.sensorname = "none" + return True + + +class SensorNameStreamHandler(logging.StreamHandler): + def __init__(self, *args, **kwargs): + super().__init__() + self.addFilter(AddSensorNameDefault()) diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/tests/__init__.py b/Ch12/apd.aggregation-chapter12-ex01-complete/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/tests/conftest.py b/Ch12/apd.aggregation-chapter12-ex01-complete/tests/conftest.py new file mode 100644 index 0000000..309a30c --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/tests/conftest.py @@ -0,0 +1,127 @@ +import datetime +from uuid import UUID + +from apd.aggregation.database import datapoint_table +from apd.aggregation.query import db_session_var + +from alembic.config import Config +from alembic.script import ScriptDirectory +from alembic.runtime.environment import EnvironmentContext +import pytest + + +@pytest.fixture +def db_uri(): + return "postgresql+psycopg2://apd@localhost/apd-test" + + +@pytest.fixture +def db_session(db_uri): + from sqlalchemy import create_engine + from sqlalchemy.orm import sessionmaker + + engine = create_engine(db_uri, echo=False) + sm = sessionmaker(engine) + Session = sm() + reset = db_session_var.set(Session) + yield Session + db_session_var.reset(reset) + Session.close() + + +@pytest.fixture +def migrated_db(db_uri, db_session): + config = Config() + config.set_main_option("script_location", "apd.aggregation:alembic") + config.set_main_option("sqlalchemy.url", db_uri) + script = ScriptDirectory.from_config(config) + + def upgrade(rev, context): + return script._upgrade_revs(script.get_current_head(), rev) + + def downgrade(rev, context): + return script._downgrade_revs(None, rev) + + with EnvironmentContext(config, script, fn=upgrade): + script.run_env() + + try: + yield db_session + finally: + # Clear any pending work from the db_session connection + db_session.rollback() + + with EnvironmentContext(config, script, fn=downgrade): + script.run_env() + + +@pytest.fixture +def populated_db(migrated_db, db_session): + datas = [ + { + "id": 1, + "sensor_name": "Test", + "data": "1", + "collected_at": datetime.datetime(2020, 4, 1, 12, 0, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 2, + "sensor_name": "Test", + "data": "2", + "collected_at": datetime.datetime(2020, 4, 1, 12, 1, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 3, + "sensor_name": "Test", + "data": "3", + "collected_at": datetime.datetime(2020, 4, 1, 12, 2, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 4, + "sensor_name": "Test", + "data": "4", + "collected_at": datetime.datetime(2020, 4, 1, 12, 3, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 5, + "sensor_name": "OtherTest", + "data": "5", + "collected_at": datetime.datetime(2020, 4, 1, 12, 4, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 6, + "sensor_name": "Test", + "data": "1", + "collected_at": datetime.datetime(2020, 4, 1, 12, 0, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + { + "id": 7, + "sensor_name": "Test", + "data": "1", + "collected_at": datetime.datetime(2020, 4, 1, 12, 1, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + { + "id": 8, + "sensor_name": "Test", + "data": "2", + "collected_at": datetime.datetime(2020, 4, 1, 12, 2, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + { + "id": 9, + "sensor_name": "OtherTest", + "data": "3", + "collected_at": datetime.datetime(2020, 4, 1, 12, 3, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + ] + for data in datas: + insert = datapoint_table.insert().values(**data) + db_session.execute(insert) diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/tests/test_actions_actions.py b/Ch12/apd.aggregation-chapter12-ex01-complete/tests/test_actions_actions.py new file mode 100644 index 0000000..1429fb3 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/tests/test_actions_actions.py @@ -0,0 +1,118 @@ +import datetime +import unittest.mock + +import pytest + +from apd.aggregation.actions.base import Action +from apd.aggregation.actions.action import ( + OnlyOnChangeActionWrapper, + OnlyAfterDateActionWrapper, + SaveToDatabaseAction, +) +from apd.aggregation.query import db_session_var, get_data + +from .test_analysis import generate_datapoints + + +class TestOnlyAfterDateActionWrapper: + @pytest.fixture + def subject(self): + return OnlyAfterDateActionWrapper + + @pytest.mark.asyncio + async def test_minimum_date_before_passing(self, subject): + wrapped = unittest.mock.Mock(spec=Action) + wrapper = subject( + wrapped, date_threshold=datetime.datetime(2020, 4, 1, 14, 0, 0) + ) + await wrapper.start() + + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 13, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 14, 0, 0), 22.0), + (datetime.datetime(2020, 4, 1, 15, 0, 0), 22.0), + (datetime.datetime(2020, 4, 1, 16, 0, 0), 21.0), + ] + datapoints = generate_datapoints(data) + all_datapoints = [] + async for datapoint in datapoints: + all_datapoints.append(datapoint) + await wrapper.handle(datapoint) + + assert len(wrapped.handle.mock_calls) == 2 + passed = [call.args[0] for call in wrapped.handle.mock_calls] + assert passed == [all_datapoints[3], all_datapoints[4]] + + +class TestOnlyOnChangeActionWrapper: + @pytest.fixture + def subject(self): + return OnlyOnChangeActionWrapper + + @pytest.mark.asyncio + async def test_initial_value_always_passed(self, subject): + wrapped = unittest.mock.Mock(spec=Action) + wrapper = subject(wrapped) + await wrapper.start() + + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + ] + datapoints = generate_datapoints(data) + first = await datapoints.asend(None) + await wrapper.handle(first) + assert len(wrapped.handle.mock_calls) == 1 + assert wrapped.handle.mock_calls[0].args[0] == first + + @pytest.mark.asyncio + async def test_subsequent_values_only_passed_when_differing(self, subject): + wrapped = unittest.mock.Mock(spec=Action) + wrapper = subject(wrapped) + await wrapper.start() + + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 13, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 14, 0, 0), 22.0), + (datetime.datetime(2020, 4, 1, 15, 0, 0), 22.0), + (datetime.datetime(2020, 4, 1, 16, 0, 0), 21.0), + ] + datapoints = generate_datapoints(data) + all_datapoints = [] + async for datapoint in datapoints: + all_datapoints.append(datapoint) + await wrapper.handle(datapoint) + + assert len(wrapped.handle.mock_calls) == 3 + passed = [call.args[0] for call in wrapped.handle.mock_calls] + assert passed == [all_datapoints[0], all_datapoints[2], all_datapoints[4]] + + +class TestSaveToDatabaseAction: + @pytest.fixture + def subject(self): + return SaveToDatabaseAction + + @pytest.mark.asyncio + async def test_datapoints_are_persisted(self, subject, migrated_db): + db_session_var.set(migrated_db) + + wrapper = subject() + await wrapper.start() + + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + ] + generated_datapoints = [] + async for datapoint in generate_datapoints(data): + generated_datapoints.append(datapoint) + await wrapper.handle(datapoint) + + stored_datapoints = [ + point async for point in get_data(sensor_name="TestSensor") + ] + assert stored_datapoints[0].data == generated_datapoints[0].data + assert ( + stored_datapoints[0].deployment_id == generated_datapoints[0].deployment_id + ) diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/tests/test_actions_runner.py b/Ch12/apd.aggregation-chapter12-ex01-complete/tests/test_actions_runner.py new file mode 100644 index 0000000..f263420 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/tests/test_actions_runner.py @@ -0,0 +1,110 @@ +import asyncio +import datetime +import operator + +import pytest + +from apd.aggregation.actions.runner import DataProcessor +from apd.aggregation.actions.base import Trigger +from apd.aggregation.actions.action import ( + OnlyOnChangeActionWrapper, + SaveToDatabaseAction, +) +from apd.aggregation.actions.trigger import ValueThresholdTrigger +from apd.aggregation.database import DataPoint +from apd.aggregation.query import get_data +from .test_analysis import generate_datapoints + + +class AlwaysTrueTrigger(Trigger[bool]): + name = "AlwaysTrue" + + async def start(self): + pass + + async def match(self, datapoint: DataPoint) -> bool: + return True + + async def extract(self, datapoint: DataPoint) -> bool: + return True + + +class StoreAction(Trigger[bool]): + async def start(self): + self.data = asyncio.Queue() + + async def handle(self, datapoint: DataPoint) -> None: + await self.data.put(datapoint) + + +class TestRunner: + @pytest.fixture + @pytest.mark.asyncio + async def runner(self, event_loop): + processor = DataProcessor( + name="Test data runner", action=StoreAction(), trigger=AlwaysTrueTrigger(), + ) + await processor.start() + yield processor + await processor.end() + + @pytest.mark.asyncio + async def test_simple_flow(self, runner, event_loop): + data = [(datetime.datetime(2020, 4, 1, 12, 0, 0), 65.0)] + datapoints = generate_datapoints(data) + async for datapoint in datapoints: + await runner.push(datapoint) + + output = await runner.action.data.get() + assert output.sensor_name == runner.trigger.name + assert output.collected_at == data[0][0] + assert output.data == True + + +class TestRealWorldRunner: + @pytest.fixture + @pytest.mark.asyncio + async def runner(self, migrated_db, event_loop): + processor = DataProcessor( + name="TemperatureAbove20", + action=OnlyOnChangeActionWrapper(SaveToDatabaseAction()), + trigger=ValueThresholdTrigger( + name="TemperatureAbove20", + threshold=20, + comparator=operator.gt, + sensor_name="Temperature", + ), + ) + await processor.start() + yield processor + await processor.end() + + @pytest.mark.asyncio + async def test_real_usecase(self, runner, event_loop): + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 19.0), + (datetime.datetime(2020, 4, 1, 13, 0, 0), 18.0), + (datetime.datetime(2020, 4, 1, 14, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 15, 0, 0), 22.0), + (datetime.datetime(2020, 4, 1, 16, 0, 0), 21.0), + ] + + async for datapoint in generate_datapoints(data, sensor_name="Temperature"): + await runner.push(datapoint) + + # Wait up to 10 seconds for the runner to be idle + await asyncio.wait_for(runner.idle(), timeout=10) + + stored_datapoints = [ + point async for point in get_data(sensor_name="TemperatureAbove20") + ] + + assert len(stored_datapoints) == 2 + assert stored_datapoints[0].data == False + assert stored_datapoints[0].collected_at == datetime.datetime( + 2020, 4, 1, 12, 0, 0 + ) + assert stored_datapoints[1].data == True + assert stored_datapoints[1].collected_at == datetime.datetime( + 2020, 4, 1, 14, 0, 0 + ) diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/tests/test_actions_triggers.py b/Ch12/apd.aggregation-chapter12-ex01-complete/tests/test_actions_triggers.py new file mode 100644 index 0000000..275c8e8 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/tests/test_actions_triggers.py @@ -0,0 +1,127 @@ +import datetime +import operator + +import pytest + +from apd.aggregation.actions.trigger import ValueThresholdTrigger + +from .test_analysis import generate_datapoints + + +class TestValueThresholdTrigger: + @pytest.fixture + def subject(self): + return ValueThresholdTrigger + + @pytest.mark.asyncio + @pytest.mark.parametrize( + "comparison,expected", + [ + (operator.gt, [False, False, False, True]), + (operator.eq, [False, False, True, False]), + (operator.le, [True, True, True, False]), + ], + ) + async def test_simple_value(self, subject, comparison, expected): + trigger = subject( + name=f"TestSensor{comparison.__name__}21", + threshold=21, + comparator=comparison, + sensor_name="TestSensor", + ) + + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 19.0), + (datetime.datetime(2020, 4, 1, 12, 0, 0), 20.0), + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 0), 22.0), + ] + datapoints = generate_datapoints(data) + + outputs = [] + async for datapoint in datapoints: + assert await trigger.match(datapoint) + outputs.append(await trigger.extract(datapoint)) + + assert outputs == expected + + @pytest.mark.asyncio + @pytest.mark.parametrize( + "comparison,expected", + [ + (operator.gt, [False, False, False, True]), + (operator.eq, [False, False, True, False]), + (operator.le, [True, True, True, False]), + ], + ) + async def test_magnitude_value(self, subject, comparison, expected): + trigger = subject( + name=f"TestSensor{comparison.__name__}21", + threshold=21, + comparator=comparison, + sensor_name="TestSensor", + ) + + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 19.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 20.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 22.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + + outputs = [] + async for datapoint in datapoints: + assert await trigger.match(datapoint) + outputs.append(await trigger.extract(datapoint)) + + assert outputs == expected + + @pytest.mark.asyncio + async def test_different_data_format_fails_to_extract(self, subject): + trigger = subject( + name="TestSensorAbove21", + threshold=21, + comparator=operator.eq, + sensor_name="TestSensor", + ) + + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), "21.0"), + ] + datapoints = generate_datapoints(data) + + async for datapoint in datapoints: + assert await trigger.match(datapoint) + with pytest.raises(ValueError): + await trigger.extract(datapoint) + assert await trigger.handle(datapoint) is None + + @pytest.mark.asyncio + async def test_different_sensors_are_not_matched(self, subject): + trigger = subject( + name="TestSensorAbove21", + threshold=21, + comparator=operator.eq, + sensor_name="OtherSensor", + ) + + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + ] + datapoints = generate_datapoints(data) + + async for datapoint in datapoints: + assert not await trigger.match(datapoint) diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/tests/test_analysis.py b/Ch12/apd.aggregation-chapter12-ex01-complete/tests/test_analysis.py new file mode 100644 index 0000000..053272e --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/tests/test_analysis.py @@ -0,0 +1,525 @@ +import collections.abc +import datetime +import functools +import uuid +import warnings + +import pytest + +from apd.aggregation import analysis +from apd.aggregation.database import DataPoint, datapoint_table +from apd.aggregation.query import db_session_var + + +async def generate_datapoints(datas, sensor_name="TestSensor"): + deployment_id = uuid.uuid4() + for i, (time, data) in enumerate(datas, start=1): + yield DataPoint( + id=i, + collected_at=time, + sensor_name=sensor_name, + data=data, + deployment_id=deployment_id, + ) + + +@functools.singledispatch +def consume(input_iterator): + items = [item for item in input_iterator] + + def inner_iterator(): + for item in items: + yield item + + return inner_iterator() + + +@consume.register +async def consume_async(input_iterator: collections.abc.AsyncIterator): + items = [item async for item in input_iterator] + + async def inner_iterator(): + for item in items: + yield item + + return inner_iterator() + + +class TestPassThroughCleaner: + @pytest.fixture + def cleaner(self): + return analysis.clean_passthrough + + @pytest.mark.asyncio + async def test_float_passthrough(self, cleaner): + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 65.0), + (datetime.datetime(2020, 4, 1, 13, 0, 0), 65.5), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == data + + @pytest.mark.asyncio + async def test_Nones_are_skipped(self, cleaner): + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), None), + (datetime.datetime(2020, 4, 1, 13, 0, 0), 65.5), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 13, 0, 0), 65.5), + ] + + +class TestTemperatureCleaner: + @pytest.fixture + def cleaner(self): + return analysis.clean_temperature_fluctuations + + @pytest.mark.asyncio + async def test_window_not_full(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [(datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0)] + + @pytest.mark.asyncio + async def test_window_exactly_full(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 1), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 21.0), + ] + + @pytest.mark.asyncio + async def test_window_overfilled(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 3), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 4), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 1), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 3), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 4), 21.0), + ] + + @pytest.mark.asyncio + async def test_outlier_dropped(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 61.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 21.0), + ] + + @pytest.mark.asyncio + async def test_limited_to_DHT22_range(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 91.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 91.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 91.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [] + + @pytest.mark.asyncio + async def test_Nones_dropped(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 31.0, "unit": "degC"}, + ), + (datetime.datetime(2020, 4, 1, 12, 0, 1), None,), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 32.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 31.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 32.0), + ] + + +class TestWattHourCleaner: + @pytest.fixture + def cleaner(self): + return analysis.clean_watthours_to_watts + + @pytest.fixture(scope="class") + def huge_data_set(self): + date = datetime.datetime(2020, 4, 1, 12, 0, 0) + power = 500 + data = [] + for i in range(50_000): + date += datetime.timedelta(hours=1) + power += i + data.append((date, {"magnitude": power, "unit": "watt_hour"},)) + return data + + @pytest.mark.asyncio + async def test_one_entry_insufficient_to_find_diff(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [] + + @pytest.mark.asyncio + async def test_two_entries_provides_diff_with_second_time(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 13, 0, 0), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 1 + assert output[0][0] == datetime.datetime(2020, 4, 1, 13, 0, 0) + assert output[0][1] == pytest.approx(9.0, 0.0001) + + @pytest.mark.asyncio + async def test_nonstandard_units_can_be_used(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 13, 0, 0), + {"magnitude": 10000.0, "unit": "joule"}, + ), + ( + datetime.datetime(2020, 4, 1, 14, 0, 0), + {"magnitude": 3.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 2 + assert output[0][0] == datetime.datetime(2020, 4, 1, 13, 0, 0) + assert output[0][1] == pytest.approx(1.7777, 0.001) + assert output[1][0] == datetime.datetime(2020, 4, 1, 14, 0, 0) + assert output[1][1] == pytest.approx(0.22222, 0.001) + + @pytest.mark.asyncio + async def test_fractional_hour(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 23, 42), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 1 + assert output[0][0] == datetime.datetime(2020, 4, 1, 12, 23, 42) + assert output[0][1] == pytest.approx(22.7848, 0.001) + + @pytest.mark.asyncio + async def test_diff_happens_pairwise(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 23, 42), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 13, 23, 42), + {"magnitude": 13.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 2 + assert output[0][0] == datetime.datetime(2020, 4, 1, 12, 23, 42) + assert output[0][1] == pytest.approx(22.7848, 0.001) + assert output[1][0] == datetime.datetime(2020, 4, 1, 13, 23, 42) + assert output[1][1] == pytest.approx(3, 0.001) + + @pytest.mark.asyncio + async def test_None_ignored(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + (datetime.datetime(2020, 4, 1, 12, 58, 0), None,), + ( + datetime.datetime(2020, 4, 1, 13, 0, 0), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 1 + assert output[0][0] == datetime.datetime(2020, 4, 1, 13, 0, 0) + assert output[0][1] == pytest.approx(9.0, 0.0001) + + @pytest.mark.asyncio + @pytest.mark.performance + async def test_performance_of_cleaner(self, cleaner, huge_data_set): + import cProfile + + # Generate data point objects before profiling starts + datapoints = await consume(generate_datapoints(huge_data_set)) + profiler = cProfile.Profile() + profiler.enable() + + # Run the cleaner to completion + await consume(cleaner(datapoints)) + + profiler.disable() + cleaner_stat = [ + stat for stat in profiler.getstats() if stat.code == cleaner.__code__ + ][0] + # Assert that the cleaner may take no more than 0.5 seconds to process + # these 50k data points + assert cleaner_stat.totaltime < 0.5 + + +class TestTemperatureMap: + @pytest.fixture + def temperature_data(self): + return { + (53.8667, -1.3333): -1, + (53.35, -2.2833): 1, + (52.45, -1.7333): 3, + (51.5, -0.1333): 6, + (51.55, -2.5667): 5, + (54.9667, -1.6167): -1, + (55.9667, -3.2167): -1, + (54.7667, -1.5833): 0, + (53.7667, -0.3): 1, + (53.7667, -3.0167): 0, + (51.4833, -3.1833): 4, + (53.2667, -3.5167): 2, + (52.0833, -2.8): 2, + (52.0167, -0.6): 2, + (52.6667, 1.2667): 5, + (50.4333, -4.9833): 9, + (50.35, -4.1167): 10, + (50.5167, -2.45): 9, + (50.8333, -1.1667): 9, + (56.45, -5.4333): 4, + (57.5333, -4.05): -2, + (54.5167, -3.6167): 3, + (53.0833, 0.2667): 4, + (51.35, 1.3333): 7, + (50.8833, 0.3167): 8, + (58.45, -3.1): 3, + (50.1, -5.6667): 9, + (58.2167, -6.3333): 4, + (55.6833, -6.25): 7, + } + + @pytest.fixture + def temperature_datapoints(self, migrated_db, db_session, temperature_data): + datas = [] + now = datetime.datetime.now() + for (coord, temp) in temperature_data.items(): + deployment_id = uuid.uuid4() + datas.append( + DataPoint( + sensor_name="Location", + deployment_id=deployment_id, + collected_at=now, + data=coord, + ) + ) + datas.append( + DataPoint( + sensor_name="Temperature", + deployment_id=deployment_id, + collected_at=now, + data=temp, + ) + ) + return datas + + @pytest.fixture + def populated_db(self, migrated_db, db_session, temperature_datapoints): + for data in temperature_datapoints: + insert = datapoint_table.insert().values(**data._asdict()) + db_session.execute(insert) + + @pytest.fixture + def cleaner(self): + return analysis.get_map_cleaner_for("Temperature") + + @pytest.fixture + def get_data(self, db_session): + db_session_var.set(db_session) + return analysis.get_all_data() + + @pytest.mark.asyncio + async def test_latest_coord_temp_cleaner( + self, temperature_data, populated_db, get_data, cleaner + ): + data = get_data() + deployments = 0 + async for deployment, data_points in data: + deployments += 1 + cleaned = {a async for a in cleaner(data_points)} + # There should only be one deployment + assert deployments == 1 + expected = set(temperature_data.items()) + assert cleaned == expected + + @pytest.mark.asyncio + async def test_newer_items_superceed_older( + self, db_session, temperature_datapoints, populated_db, get_data, cleaner + ): + # Pick any of the deployment ids and find the pair of DataPoints in that deployment id + deployment_1 = temperature_datapoints[0].deployment_id + existing = [ + datapoint + for datapoint in temperature_datapoints + if datapoint.deployment_id == deployment_1 + ] + old_location = [ + datapoint for datapoint in existing if datapoint.sensor_name == "Location" + ][0] + old_temperature = [ + datapoint + for datapoint in existing + if datapoint.sensor_name == "Temperature" + ][0] + + new_location = DataPoint( + sensor_name="Location", + deployment_id=deployment_1, + collected_at=datetime.datetime(2031, 4, 1, 12, 0, 0), + data=(-10.5, 150.1), + ) + new_temperature = DataPoint( + sensor_name="Temperature", + deployment_id=deployment_1, + collected_at=datetime.datetime(2031, 4, 1, 12, 0, 0), + data=21, + ) + for data in [new_location, new_temperature]: + insert = datapoint_table.insert().values(**data._asdict()) + db_session.execute(insert) + + data = get_data() + deployments = 0 + async for deployment, data_points in data: + deployments += 1 + cleaned = {a async for a in cleaner(data_points)} + # There should only be one deployment + assert deployments == 1 + + # We expect the newer one, not the older + assert (new_location.data, new_temperature.data) in cleaned + assert (old_location.data, old_temperature.data) not in cleaned + # The cleaner converts two data points to one plottable + assert len(cleaned) == len(temperature_datapoints) / 2 + + +def test_deprecation_warning_raised_by_config_with_no_getdata(): + with warnings.catch_warnings(record=True) as captured_warnings: + warnings.simplefilter("always", DeprecationWarning) + analysis.Config( + sensor_name="Temperature", + clean=analysis.clean_passthrough, + title="Temperaure", + ylabel="Deg C", + ) + assert len(captured_warnings) == 1 + deprecation_warning = captured_warnings[0] + assert deprecation_warning.filename == __file__ + assert deprecation_warning.category == DeprecationWarning + assert str(deprecation_warning.message) == ( + "The sensor_name parameter is deprecated. Please pass " + "get_data=get_one_sensor_by_deployment('Temperature') " + "to ensure the same behaviour. The sensor_name= parameter " + "will be removed in apd.aggregation 3.0." + ) diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/tests/test_cli.py b/Ch12/apd.aggregation-chapter12-ex01-complete/tests/test_cli.py new file mode 100644 index 0000000..5cab441 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/tests/test_cli.py @@ -0,0 +1,155 @@ +from unittest import mock +import uuid + +from click.testing import CliRunner +import pytest + +import apd.aggregation.cli +from apd.aggregation.database import Deployment, deployment_table + + +@pytest.mark.functional +def test_sensors_are_passed_to_get_data_points(db_uri): + runner = CliRunner() + with mock.patch("apd.aggregation.collect.get_data_points") as get_data_points: + runner.invoke( + apd.aggregation.cli.collect_sensor_data, + [ + "http://localhost", + "http://otherhost", + "--db", + db_uri, + "--api-key", + "key", + ], + ) + calls = get_data_points.call_args_list + assert len(calls) == 2 + details = {call[0] for call in get_data_points.call_args_list} + assert details == { + ("http://localhost", "key"), + ("http://otherhost", "key"), + } + + +@pytest.mark.functional +def test_add_deployment_to_db(db_uri, db_session, migrated_db): + runner = CliRunner() + deployment_id = uuid.UUID("76587cdd42dc489ea1d220e9b0bc62ca") + with mock.patch("apd.aggregation.collect.get_deployment_id") as get_deployment_id: + get_deployment_id.return_value = deployment_id + runner.invoke( + apd.aggregation.cli.deployments, + ["add", "http://otherhost", "Other", "--db", db_uri, "--api-key", "key"], + ) + deployments = db_session.query(deployment_table).all() + assert len(deployments) == 1 + deployment = Deployment.from_sql_result(deployments[0]) + assert deployment.uri == "http://otherhost" + assert deployment.api_key == "key" + assert deployment.id == deployment_id + + +@pytest.mark.functional +def test_use_stored_deployments(db_uri, migrated_db): + runner = CliRunner() + + deployment_id = uuid.UUID("76587cdd42dc489ea1d220e9b0bc62ca") + with mock.patch("apd.aggregation.collect.get_deployment_id") as get_deployment_id: + get_deployment_id.return_value = deployment_id + runner.invoke( + apd.aggregation.cli.deployments, + [ + "add", + "http://specifiedhost", + "Specified", + "--db", + db_uri, + "--api-key", + "an_api_key", + ], + ) + + with mock.patch("apd.aggregation.collect.get_data_points") as get_data_points: + runner.invoke( + apd.aggregation.cli.collect_sensor_data, ["--db", db_uri], + ) + calls = get_data_points.call_args_list + assert len(calls) == 1 + details = {call[0] for call in get_data_points.call_args_list} + assert details == { + ("http://specifiedhost", "an_api_key"), + } + + +@pytest.mark.functional +def test_list_deployments(db_uri, migrated_db): + runner = CliRunner() + + deployment_id = uuid.UUID("76587cdd42dc489ea1d220e9b0bc62ca") + with mock.patch("apd.aggregation.collect.get_deployment_id") as get_deployment_id: + get_deployment_id.return_value = deployment_id + runner.invoke( + apd.aggregation.cli.deployments, + [ + "add", + "http://specifiedhost", + "Specified", + "--db", + db_uri, + "--api-key", + "an_api_key", + ], + ) + + result = runner.invoke(apd.aggregation.cli.deployments, ["list", "--db", db_uri],) + expected = """Specified +ID 76587cdd42dc489ea1d220e9b0bc62ca +URI http://specifiedhost +API key an_api_key +Colour None + +""" + assert result.output == expected + + +@pytest.mark.functional +def test_edit_deployment(db_uri, migrated_db): + runner = CliRunner() + return + deployment_id = uuid.UUID("76587cdd42dc489ea1d220e9b0bc62ca") + with mock.patch("apd.aggregation.collect.get_deployment_id") as get_deployment_id: + get_deployment_id.return_value = deployment_id + runner.invoke( + apd.aggregation.cli.deployments, + [ + "add", + "http://specifiedhost", + "Specified", + "--db", + db_uri, + "--api-key", + "an_api_key", + ], + ) + + result = runner.invoke( + apd.aggregation.cli.deployments, + [ + "edit", + "--db", + db_uri, + deployment_id.hex(), + "--colour", + "red" "--name", + "New name", + ], + ) + expected = """New name +ID 76587cdd42dc489ea1d220e9b0bc62ca +URI http://specifiedhost +API key an_api_key +Colour red + +""" + assert result.output == expected diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/tests/test_http_get.py b/Ch12/apd.aggregation-chapter12-ex01-complete/tests/test_http_get.py new file mode 100644 index 0000000..df575c6 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/tests/test_http_get.py @@ -0,0 +1,188 @@ +from concurrent.futures import ThreadPoolExecutor +import datetime +import typing as t +from unittest.mock import patch, MagicMock +import wsgiref.simple_server + +import aiohttp +from apd.sensors.base import Sensor +from apd.sensors.sensors import PythonVersion, ACStatus +from apd.sensors.wsgi import set_up_config +import flask +import pytest + +from apd.sensors.wsgi import v21 + +from apd.aggregation import collect +from apd.aggregation.database import Deployment + +pytestmark = [pytest.mark.functional] + + +@pytest.fixture +def sensors() -> t.Iterator[t.List[Sensor[t.Any]]]: + """ Patch the get_sensors method to return a known pair of sensors only """ + data: t.List[Sensor[t.Any]] = [PythonVersion(), ACStatus()] + with patch("apd.sensors.cli.get_sensors") as get_sensors: + get_sensors.return_value = data + yield data + + +def get_independent_flask_app(name: str) -> flask.Flask: + """ Create a new flask app with the v20 API blueprint loaded, so multiple copies + of the app can be run in parallel without conflicting configuration """ + app = flask.Flask(name) + app.register_blueprint(v21.version, url_prefix="/v/2.1") + return app + + +def run_server_in_thread( + name: str, config: t.Dict[str, t.Any], port: int +) -> t.Iterator[str]: + # Create a new flask app and load in required code, to prevent config conflicts + app = get_independent_flask_app(name) + flask_app = set_up_config(config, app) + server = wsgiref.simple_server.make_server("localhost", port, flask_app) + + with ThreadPoolExecutor() as pool: + pool.submit(server.serve_forever) + yield f"http://localhost:{port}/" + server.shutdown() + + +@pytest.fixture(scope="module") +def http_server(): + yield from run_server_in_thread( + "standard", + { + "APD_SENSORS_API_KEY": "testing", + "APD_SENSORS_DEPLOYMENT_ID": "a46b1d1207fd4cdcad39bbdf706dfe29", + }, + 12081, + ) + + +@pytest.fixture(scope="module") +def bad_api_key_http_server(): + yield from run_server_in_thread( + "alternate", + { + "APD_SENSORS_API_KEY": "penny", + "APD_SENSORS_DEPLOYMENT_ID": "38cf2bae9adb445fad946c82e290487a", + }, + 12082, + ) + + +class TestGetDataPoints: + @pytest.fixture + def mut(self): + return collect.get_data_points + + @pytest.mark.asyncio + async def test_get_data_points( + self, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + # Get the data from the server, storing the time before and after + # as bounds for the collected_at value + async with aiohttp.ClientSession() as http: + collect.http_session_var.set(http) + time_before = datetime.datetime.now() + results = await mut(http_server, "testing") + time_after = datetime.datetime.now() + + assert len(results) == len(sensors) == 2 + + for (sensor, result) in zip(sensors, results): + assert sensor.from_json_compatible(result.data) == sensor.value() + assert result.sensor_name == sensor.name + assert time_before <= result.collected_at <= time_after + + @pytest.mark.asyncio + async def test_get_data_points_fails_with_bad_api_key( + self, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + with pytest.raises( + ValueError, + match=f"Error loading data from {http_server}: Supply API key in X-API-Key header", + ): + async with aiohttp.ClientSession() as http: + collect.http_session_var.set(http) + await mut(http_server, "incorrect") + + +class TestAddDataFromSensors: + @pytest.fixture + def mut(self): + return collect.add_data_from_sensors + + @pytest.fixture + def mock_db_session(self): + return MagicMock() + + @pytest.mark.asyncio + async def test_get_get_data_from_sensors( + self, mock_db_session, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + results = await mut( + mock_db_session, + [ + Deployment( + id=None, colour=None, name=None, uri=http_server, api_key="testing" + ) + ], + ) + assert mock_db_session.execute.call_count == len(sensors) + assert len(results) == len(sensors) + + @pytest.mark.asyncio + async def test_get_get_data_from_sensors_with_multiple_servers( + self, mock_db_session, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + results = await mut( + mock_db_session, + [ + Deployment( + id=None, colour=None, name=None, uri=http_server, api_key="testing" + ), + Deployment( + id=None, colour=None, name=None, uri=http_server, api_key="testing" + ), + ], + ) + assert mock_db_session.execute.call_count == len(sensors) * 2 + assert len(results) == len(sensors) * 2 + + @pytest.mark.asyncio + async def test_data_points_not_added_if_only_partial_success( + self, + mock_db_session, + sensors: t.List[Sensor[t.Any]], + mut, + http_server: str, + bad_api_key_http_server: str, + ) -> None: + with pytest.raises( + ValueError, + match=f"Error loading data from {bad_api_key_http_server}: Supply API key in X-API-Key header", + ): + await mut( + mock_db_session, + [ + Deployment( + id=None, + colour=None, + name=None, + uri=http_server, + api_key="testing", + ), + Deployment( + id=None, + colour=None, + name=None, + uri=bad_api_key_http_server, + api_key="testing", + ), + ], + ) + assert mock_db_session.execute.call_count == 0 diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/tests/test_query.py b/Ch12/apd.aggregation-chapter12-ex01-complete/tests/test_query.py new file mode 100644 index 0000000..9b6e0aa --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/tests/test_query.py @@ -0,0 +1,111 @@ +import datetime +from uuid import UUID + +import pytest + +from apd.aggregation.query import ( + get_data, + get_deployment_ids, + get_data_by_deployment, + db_session_var, +) + + +class TestGetData: + @pytest.fixture + def mut(self): + return get_data + + @pytest.mark.asyncio + @pytest.mark.parametrize( + "filter,num_items_expected", + [ + ({}, 9), + ({"sensor_name": "Test"}, 7), + ({"deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd")}, 5), + ({"collected_after": datetime.datetime(2020, 4, 1, 12, 2, 1)}, 3), + ({"collected_before": datetime.datetime(2020, 4, 1, 12, 2, 1)}, 4), + ( + { + "collected_after": datetime.datetime(2020, 4, 1, 12, 2, 1), + "collected_before": datetime.datetime(2020, 4, 1, 12, 3, 5), + }, + 2, + ), + ], + ) + async def test_iterate_over_items( + self, mut, db_session, populated_db, filter, num_items_expected + ): + db_session_var.set(db_session) + points = [dp async for dp in mut(**filter)] + assert len(points) == num_items_expected + + @pytest.mark.asyncio + async def test_empty_db(self, mut, db_session, migrated_db): + db_session_var.set(db_session) + points = [dp async for dp in mut()] + assert len(points) == 0 + + +class TestGetDeployments: + @pytest.fixture + def mut(self): + return get_deployment_ids + + @pytest.mark.asyncio + async def test_get_all_deployments(self, mut, db_session, populated_db): + db_session_var.set(db_session) + deployment_ids = await mut() + assert set(deployment_ids) == { + UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + } + + @pytest.mark.asyncio + async def test_empty_db(self, mut, db_session, migrated_db): + db_session_var.set(db_session) + deployment_ids = await mut() + assert deployment_ids == [] + + +@pytest.mark.usefixtures("populated_db") +class TestGetDataByDeployment: + @pytest.fixture + def mut(self): + return get_data_by_deployment + + @pytest.mark.asyncio + @pytest.mark.parametrize( + "filter,num_items_expected", [({}, 9), ({"sensor_name": "Test"}, 7)] + ) + async def test_iterate_over_all_items( + self, mut, db_session, filter, num_items_expected + ): + db_session_var.set(db_session) + num_items = 0 + num_deployments = 0 + async for deployment_id, items in mut(**filter): + num_deployments += 1 + async for item in items: + num_items += 1 + assert num_deployments == 2 + assert num_items == num_items_expected + + @pytest.mark.asyncio + @pytest.mark.parametrize( + "filter,num_items_expected", [({}, 5), ({"sensor_name": "Test"}, 4)] + ) + async def test_skip_first_deployment( + self, mut, db_session, filter, num_items_expected + ): + db_session_var.set(db_session) + num_items = 0 + num_deployments = 0 + async for deployment_id, items in mut(**filter): + num_deployments += 1 + if num_deployments == 2: + async for item in items: + num_items += 1 + assert num_deployments == 2 + assert num_items == num_items_expected diff --git a/Ch12/apd.aggregation-chapter12-ex01-complete/tests/test_sensor_aggregation.py b/Ch12/apd.aggregation-chapter12-ex01-complete/tests/test_sensor_aggregation.py new file mode 100644 index 0000000..655521d --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01-complete/tests/test_sensor_aggregation.py @@ -0,0 +1,199 @@ +from __future__ import annotations + +import contextlib +from dataclasses import dataclass +import json +import typing as t +from unittest.mock import patch, Mock + +import pytest +import sqlalchemy + +import apd.aggregation.collect +from apd.aggregation.database import Deployment + + +@pytest.fixture +def data() -> t.Any: + return { + "sensors": [ + { + "human_readable": "3.7", + "id": "PythonVersion", + "title": "Python Version", + "value": [3, 7, 2, "final", 0], + }, + { + "human_readable": "Not connected", + "id": "ACStatus", + "title": "AC Connected", + "value": False, + }, + ] + } + + +@dataclass +class FakeAIOHttpClient: + responses: t.Dict[str, str] + + @contextlib.asynccontextmanager + async def get( + self, url: str, headers: t.Optional[t.Dict[str, str]] = None + ) -> t.AsyncIterator[FakeAIOHttpResponse]: + if url in self.responses: + yield FakeAIOHttpResponse(body=self.responses[url]) + else: + yield FakeAIOHttpResponse(body="", status=404) + + +@dataclass +class FakeAIOHttpResponse: + body: str + status: int = 200 + + async def json(self) -> t.Any: + return json.loads(self.body) + + +@pytest.fixture +def mockclient(data) -> FakeAIOHttpClient: + return FakeAIOHttpClient( + { + "http://localhost/v/2.1/sensors/": json.dumps(data), + "http://localhost/v/2.1/deployment_id": json.dumps( + {"deployment_id": "b29ba0ee10f14552b6b21327bb96d3fb"} + ), + } + ) + + +class TestGetDataPoints: + @pytest.fixture + def mut(self): + return apd.aggregation.collect.get_data_points + + @pytest.mark.asyncio + async def test_get_data_points(self, mut, mockclient, data) -> None: + # Mark the mock client as the same type as the one it's mocking + # So we can set it into the context variable without warnings + token = apd.aggregation.collect.http_session_var.set(mockclient) + try: + datapoints = await mut("http://localhost", "") + finally: + apd.aggregation.collect.http_session_var.reset(token) + + assert len(datapoints) == len(data["sensors"]) + for sensor in data["sensors"]: + assert sensor["value"] in (datapoint.data for datapoint in datapoints) + assert sensor["id"] in (datapoint.sensor_name for datapoint in datapoints) + + +class TestAddDataFromSensors: + @pytest.fixture + def mut(self): + return apd.aggregation.collect.add_data_from_sensors + + @pytest.fixture(autouse=True) + def patch_aiohttp(self, mockclient): + with patch("aiohttp.ClientSession") as ClientSession: + ClientSession.return_value.__aenter__.return_value = mockclient + yield ClientSession + + @pytest.fixture + def db_session(self): + session = Mock() + sql_result = session.execute.return_value + sql_result.inserted_primary_key = [1] + return session + + @pytest.mark.asyncio + async def test_datapoints_are_added_to_the_session(self, mut, db_session) -> None: + assert db_session.execute.call_count == 0 + datapoints = await mut( + db_session, + [ + Deployment( + id=None, colour=None, name=None, uri="http://localhost", api_key="" + ) + ], + ) + assert db_session.execute.call_count == len(datapoints) + + +@pytest.mark.usefixtures("migrated_db") +class TestDatabaseConnection: + @pytest.fixture(autouse=True) + def patch_aiohttp(self, mockclient): + with patch("aiohttp.ClientSession") as ClientSession: + ClientSession.return_value.__aenter__.return_value = mockclient + yield ClientSession + + @pytest.fixture + def table(self): + return apd.aggregation.database.datapoint_table + + @pytest.fixture + def daily_summary_view(self): + return apd.aggregation.database.daily_summary_view + + @pytest.fixture + def model(self): + return apd.aggregation.database.DataPoint + + @pytest.fixture + def mut(self): + return apd.aggregation.collect.add_data_from_sensors + + @pytest.mark.asyncio + async def test_datapoints_are_added_to_the_session(self, db_session, table) -> None: + datapoints = await apd.aggregation.collect.add_data_from_sensors( + db_session, + [ + Deployment( + id=None, colour=None, name=None, uri="http://localhost", api_key="" + ) + ], + ) + num_points = db_session.query(table).count() + assert num_points == len(datapoints) == 2 + + @pytest.mark.asyncio + async def test_datapoints_can_be_mapped_back_to_DataPoints( + self, mut, db_session, table, model + ) -> None: + datapoints = await mut( + db_session, + [ + Deployment( + id=None, colour=None, name=None, uri="http://localhost", api_key="" + ) + ], + ) + db_points = [ + model.from_sql_result(result) for result in db_session.query(table) + ] + assert db_points == datapoints + + @pytest.mark.asyncio + async def test_daily_summary_view_matches_query( + self, db_session, model, table, daily_summary_view + ) -> None: + await apd.aggregation.collect.add_data_from_sensors( + db_session, + [ + Deployment( + id=None, colour=None, name=None, uri="http://localhost", api_key="" + ) + ], + ) + + headers = table.c.sensor_name, table.c.data + value_counts = ( + db_session.query(*headers, sqlalchemy.func.count(table.c.id)) + .filter(model.collected_on_date == sqlalchemy.func.current_date()) + .group_by(*headers) + ) + + daily_summary_view = db_session.query(daily_summary_view) + assert value_counts.all() == daily_summary_view.all() diff --git a/Ch12/apd.aggregation-chapter12-ex01/.coveragerc b/Ch12/apd.aggregation-chapter12-ex01/.coveragerc new file mode 100644 index 0000000..e766c69 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/.coveragerc @@ -0,0 +1,3 @@ +[run] +branch = True +omit = tests/* diff --git a/Ch12/apd.aggregation-chapter12-ex01/.pre-commit-config.yaml b/Ch12/apd.aggregation-chapter12-ex01/.pre-commit-config.yaml new file mode 100644 index 0000000..995b49f --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/.pre-commit-config.yaml @@ -0,0 +1,25 @@ +repos: + +- repo: local + hooks: + - id: black + name: black + entry: pipenv run black + args: [--quiet] + language: system + types: [python] + + - id: mypy + name: mypy + exclude: (?x)^( + (.*)/setup.py + )$ + entry: pipenv run mypy + language: system + types: [python] + + - id: flake8 + name: flake8 + entry: pipenv run flake8 + language: system + types: [python] diff --git a/Ch12/apd.aggregation-chapter12-ex01/CHANGES.md b/Ch12/apd.aggregation-chapter12-ex01/CHANGES.md new file mode 100644 index 0000000..bd0d9b6 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/CHANGES.md @@ -0,0 +1,8 @@ +## Changes + +### 1.0.0 (2020-01-27) + +* Added management of known sensor endpoints +* Added CLI script to collate data +* Added analysis tools for Jupyter +* Added long-running data synthesis and actions system diff --git a/Ch12/apd.aggregation-chapter12-ex01/Connect to database.ipynb b/Ch12/apd.aggregation-chapter12-ex01/Connect to database.ipynb new file mode 100644 index 0000000..98a74f0 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/Connect to database.ipynb @@ -0,0 +1,577 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "53635\n" + ] + } + ], + "source": [ + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.database import datapoint_table\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " print(session.query(datapoint_table).count())" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "53635\n" + ] + } + ], + "source": [ + "from apd.aggregation.query import with_database, get_data\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " count = 0\n", + " async for datapoint in get_data():\n", + " count += 1\n", + " print(count)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nO2df5RV5Xnvv88czuAZIhnGAMWJk1FK8cYMMOmk4KXXaiwlkahHIyFW1vKu5uptb1dbSjvtULnFZEEgkhC6bu+695L+olcWRQ0dTTASitqueoUuzIDERIpGRUcKNDhRYYRheO4fZ+9hz56999m/z95zvp+1Zp05++wfz373u9/nfd/neZ9HVBWEEEKIGw21FoAQQki2oaIghBDiCRUFIYQQT6goCCGEeEJFQQghxJMJtRYAAD7ykY9oe3t7rcUghJBc8cILL/y7qk5N+jqZUBTt7e04cOBArcUghJBcISJvpHEdTj0RQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+qej2JyF8B+ByAk6r6CWNbC4AdANoBvA7gC6r6jvHbKgBfAjAM4HdVdXcikhOSIr19/XjwiZcwMDgU6TxNxUrf7OzQRQDAlKYi1tx6HcqdrSPX2bj7CN4eGMSVzSV0L5498htJjiDlbq8LU5qKWDJnBp55+RTeHhjEh0tFnL8wPPKM/WCvB1lDqkWPFZEbALwP4G8tiuIhAKdVdYOI9ACYoqp/LCIfB7AdwC8BuBLAPwD4BVUd9rpGV1eX0j2WZJXevn50P3oIQxeTibRcLAg23jUXALBq52EMDl16XUrFAtbf2ZHZBmQ80NvX77vck6wLZj0I8qxF5AVV7YpdGBtVp55U9Z8AnLZtvh3AVuP/rQDKlu1/p6rnVPU1AK+gojQIyS0bdx9JTEkAwNCwYuPuI9i4+8ioxgoABoeGsXH3kcSuTRCo3JOsC2Y9yCJhF9xNV9XjAKCqx0VkmrG9FcA+y35vGdvGICL3A7gfANra2kKKQUjyvD0wWNNrpHH9esatfJ22J/0ssvqs4zZmi8M2R/WrqltUtUtVu6ZOTXwFOiGhubK5lMo13K6TxvXrmSDlnvSzyOqzDqsoTojIDAAwPk8a298CcJVlv48CeDu8eITUnu7Fs1FscOoDxUOxIOhePBvdi2ejVCyM+q1ULKB78ezErk0QqNyTrAtmPcgiYRXFEwDuNf6/F8Djlu1fFJGJInI1gFkA/iWaiITUlnJnKzYunYvmUjHyuZqKDSOeT0DF28U0YJY7W7H+zg60NpcgAFqbSzRkp0CQcneqC1Oaili+oG3k+OZScdQz9oO1HmQRP15P2wHcCOAjAE4AWAOgF8AjANoAHAOwVFVPG/s/AOA3AFwAsEJVv1dNCHo9EUJIcNLyeqpqzFbVu11+utll/3UA1kURihBCSHbgymxCCCGeUFEQQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhCRUEIIcQTKgpCCCGeUFEQQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhSNR8FIWHp7evHg0+8hIHBoTG/TWosYN0d/rO39fb1Y+PuI3h7YBBXNpfQvXh2bNnAvOQ0mdJUxJpbr0O5szWwLOb+/QODKIhgWBXNpSLOXxjG2aGLsdwDUElYXywIzg9fSkY2pamIJXNm4JmXT43I235FCft+8g6GVVEQwd3zr8LackdscvjFXu7WMq4FTvXA/tyr1RMrbveTZF1OiqoZ7tKAGe7GH719/eh+9BCGLrrXr0KD4BtLq6d/7O3rx6qdhzE4NDyyrVQsxJIm1I+cJsWCYNmnrsK3X+j3LYuT7Flk+YK2VJWFW7kXC1KTlKBe9cB87jv+5U1f9cR+rPV+4q7LaWW449QTSYSNu49UfamGLyo27j7i61z2hnZwaNjXsX7O7fflHxpWbN//ZiBZnGTPItv3v5nq9dzKfWjYX51ISx7g0nMPqiTMY633k2RdThIqCpIIbw8Mxraf2z5+rxH1+laGXUbgScqYBm73lRRe5VKLMqt2zSjlYz13XusJFQVJhCubS7Ht57aP32tEvb6Vgkig88QhYxq43VdSeJVLLcqs2jWjlI/13HmtJ1QUJBG6F89GscH75So0CLoXz/Z1rlKxMGpbqVjwdayfc1eT06RYqBh+g8jiJHsWuXv+Valez63ciwV/dSIteYBLz91vPbEfa72fJOtyklBRkEQod7Zi49K5aC4VHX+f1FjwZcg2z7X+zg60NpcgAFqbS7EYsv3IaTKlqYiNd83F2nJHIFmssgOXeqbNpSKaivG+fgKgsTC6MZvSVMTyBW2j5F04s2VEjoJI6oZswLnczTKuhQeQWz2wPnc/9cTpWOv9JFmXk4ReT4QQklPo9UQIISQTUFEQQgjxJJKiEJHfE5EfishLIrLC2NYiIntE5KjxOSUeUQkhhNSC0IpCRD4B4D4AvwRgLoDPicgsAD0A9qrqLAB7je+EEEJySpQRxX8AsE9Vz6rqBQD/COAOALcD2GrssxVAOZqIhBBCakkURfFDADeIyBUi0gTgFgBXAZiuqscBwPic5nSwiNwvIgdE5MCpU6ciiEEIISRJQisKVf0xgK8B2APgKQCHAFwIcPwWVe1S1a6pU6eGFYMQQkjCRDJmq+pfquonVfUGAKcBHAVwQkRmAIDxeTK6mIQQQmpFVK+nacZnG4A7AWwH8ASAe41d7gXweJRrEEIIqS1RExd9W0SuADAE4LdV9R0R2QDgERH5EoBjAJZGFZLUH1lLakNIPRNJUajqf3LY9lMAN0c5L6lvnJLIvHN2CN2PHQIAKgtCUoYrs0nmyFpSG0LqHebMJqlizR8tAOzqwGmblf6BQXz8v38vUK7pKU1FfHzG5Xju1dO+9rVOccU1Bba69zC2739zTJ5qr/zJ1t8+XCpCBBg4O+S436qdL2LQKJMGAa6/pgUvvf3emPzPZv5st/JvEODX56cfTdYtX/WSOTPw3UPHazIFubr3MLbtO+ZYH1tzkus6Lhg9lqRGXvJHm3mOAcSS13l172E8vO/YmO0LZ7bgB8d+5pg/GYBnWVn3W7njIPyrTX+kGXo8SN5yIJ282m7PzEpcedujkFb0WCoKkhoLNzyN/oynfDQx80e4ydvaXMJzPZ/2da6Zq54MlEqz2rWD7heGggheXX9L7Od1Iky9CFL+YfD7zJKWoxppKQpOPZFYqPQKD8JpRmhSYwHr7ujIfF5gK9VkDXIvQfMtx5lvPCxp5tAOcx9J1yW/95+nOh0FGrNJZHr7+rFih7OSAIAz54fxB48eQnOT/+xgtebK5lJseZ2D5luudu2g+4UhzRzaYe4h6RzTfu8/67mu44KKgkTGjyfS8EWFKnKRP9rMcxxXXme3fNQLZ7a45k+ulmvbul8SL3GaObSD5C0H0smr7ef+85DrOi6oKEhk/A6/fzY4NCp/tFPTYM/73FRsGJVb2v7dD1Oailg4s8X3vqahNK68zmvLHVi+oG1Mnupt913vmj/Znlu5uVTElKai436bls1DyVImDVJRQk75n8382YBz+TdIuoZswDtf9fIFbTXJq20+Mzf1lZdc13FBYzaJjF9jZK0Nf4SMN5gzm+QGP8PvQkPy0wWEkGSgoiCRKXe2YvOyeXCbEZrUWMA3liY/XUAISQa6x5JYMOfLCSHjD44oCCGEeEJFQQghxBMqCkIIIZ5QURBCCPGEioIQQognVBSEEEI8oXssyQT2JDFmxFm63BJSe6goSM1xShJjRpwFmCObkFrDqSdSc7bvf9Nx+/BF5sgmJAtwREFSx54L2itJjDUyrT3v9IJrpozKC91UbMDEYmEkr/RN104dlW8ZSDfncpbwys1t/h5HbvCgctifkVOebDNasD1Per0+y1rA6LEkVYLmzTYjzvrJYeyXNHIuZwmnMrfme3bLWR13OSWRM73enqUdRo8l45KNu4/4biisEWfdpqfCMDRcX1NaTmU+ODQ8UgYbdx8ZoySA+MspyLP3S709y1oRSVGIyO+LyEsi8kMR2S4il4lIi4jsEZGjxueUuIQl+cdvkiN7xNm4czjXS65jwP1eze1eZRFnOSVV5vX0LGtFaEUhIq0AfhdAl6p+AkABwBcB9ADYq6qzAOw1vhMCwF+O4dbmEl76ymdGTSfEncO5XnIdA+73am6PKzd4WDmyel5yiahTTxMAlERkAoAmAG8DuB3AVuP3rQDKEa9BxhF+c0HbiTOHcxo5l7OEU5lbyzmu3OBh5IhKvT3LWhFaUahqP4CvAzgG4DiAn6nq9wFMV9Xjxj7HAUyLQ1AyPvCbC9qOU95pe17opmLDqHPZ8y0D6eVczhL2MreXc1y5wcPI4ZQT277NLU96PT7LWhHa68mwPXwbwDIAAwAeBfAYgD9X1WbLfu+o6hg7hYjcD+B+AGhra/vFN954I5QchBBSr+TB6+lXAbymqqdUdQjATgD/EcAJEZkBAMbnSaeDVXWLqnapatfUqVMjiEEIISRJoiiKYwAWiEiTiAiAmwH8GMATAO419rkXwOPRRCSEEFJLQq/MVtX9IvIYgB8AuACgD8AWAB8C8IiIfAkVZbI0DkEJIYTUhkghPFR1DYA1ts3nUBldEEIIGQdwZTYhhBBPqCgIIYR4QkVBCCHEEyoKQgghnlBREEII8YSKghBCiCdUFIQQQjyhoiCEEOIJc2YTUidUy5udNfIm73iGioKQOsCer7p/YBCrdh4GgEw2vnmTd7zDqSdC6oBqebOzRt7kHe9QURBSB1TLm5018ibveIeKgpA6oFre7KyRN3nHO1QUhNQB1fJmZ428yTveoTGbkDrANADnxYsob/KOd0LnzI6Trq4uPXDgQK3FIISQXJGHnNmEEELqACoKQgghntBGYeGebz2P5149PfJ94cwWbLvv+hpKRAghtYcjCgO7kgCA5149jUWbnq2NQIQQkhHqZkRxdc8uWM32AuC1DUtGvtuVhMnRk2fQ29dPbwtCSN1SFyOKdpuSAAA1tvth1c4XY5eJEELywrhXFPd863nP3+ev21P1HINDF+MShxBCcse4VhS9ff2uU0omJ947n5I0hBCST8a1ovjjb/ubMpqz5qmEJSGEkPwSWlGIyGwROWj5e1dEVohIi4jsEZGjxueUOAUOwrkL/qaM3j03XH0nQgipU0IrClU9oqrzVHUegF8EcBbA3wPoAbBXVWcB2Gt8J4QQklPimnq6GcCrqvoGgNsBbDW2bwVQjukaNaW3r7/WItQVvX39WLjhaVzdswsLNzzN8iekhsSlKL4IYLvx/3RVPQ4Axuc0pwNE5H4ROSAiB06dOhWTGKOZNW1SbOdiZq30WLTpWazYcRD9A4NQVNJgrthxkMqCkBoRecGdiDQCuA3AqiDHqeoWAFuASvTYqHI4cfZ8fG6tWcisVQ/J5u/51vM4evKM428rHzmYi/uth+dEorO69zC2738Tw6ooiODu+Vdhbbmj1mI5EsfK7M8C+IGqnjC+nxCRGap6XERmADgZwzVCEWfj/uFSMbZzhWHOmqdGGd3Ha7J5L3fmi7WPiF+VRZueHaXozNEQML6eE4mGvZ4Mq+LhfccAIJPKIo6pp7txadoJAJ4AcK/x/70AHo/hGqFonBCf9++7g0OxnSso89ftcfTMGm/J5q994MlaixAJr9HQih0Hcc2qXZw+I1jde9i1npjKImtEGlGISBOARQD+q2XzBgCPiMiXABwDsDTKNcLS29fv2z3WD0mvzXaKXLu0qw0bdx/xXBTYn4EpsThY3XsYHwznYMjgQbXFnRcVHF2QzCoDLyIpClU9C+AK27afouIFVVO6Hz1YaxEccZq/fvTAMcfItdUaHqAS3DCvWMsi3yoiGH/02CEqijplde/hWosQinEbPbZaeKZJjQWcOZ/uQrvevn78/o6DI41i/8DgqO9hyGsD29vXj1U7D2NwqP4WO57P+ciJBKe3r39kNOlFVjt+uVYUUbxL1t3RMaahKhULng1Xe8+uSN4Jf/TYIccotvXIxt1HAiuJgmT1NQrO6t7DmTRaEm/CeCr5VRIAcM+CtjjEjJ3cKorevn50P3oIQ4YrTP/AILofPQQAOPCG95RNqdgwolDsiqbaA3XyTvCrsNiTvEQY28qwjp/ye3jfMSqKnBHWU+nBJ17yfY2s1oncKooHn3hpREmYDF1UPPjESxio4qG0/s45ACoGRXuD7lfzbzNedHtvge6Q/hAEH021NpeSEIWQqlTzVPJq4Ku1RyaTJxZCyZYGuVUUboXv56F4NeClYoOv/BNmI+emWFbsGL04jG6RowkzNmi/Il5FYe8hzpo2CXtW3hjqXEk8X7sn3MQJDfja5yudHC7oS5ft+98MdVy1fDhWXvzyZ0JdIw1yqyiSYv2dc3yPKqphTaGa5HqHepnvfu7V07GlpbUrCaCS9nbRpmerKguneeowLo/tPbuwfEGb47NzyuF+7sLFMXXTHMH+ae/hTDc0Tlz7wJNjXKInTyxk8j6qTXs6vYNOdcyNUjHbGR9EMzDv29XVpQcOHAh0jN80pnYmNAhe+eotnvvMXv09X2swFs5s8eXCmgavW/J/54Gwz880Z1frSVezG3ld36ssV/ceTsQP3q4wwpTPZQXBy+u863ZWcFISVtKsz15u2hMEeGX9Esxc9WRVZWGVOYgBGwA2L5sXqgMkIi+oalfgAwOSbTWWAF9fOrfqPubwvhppKYnNy+alcp08oMafGcLEacrHdL21BhX8/R0HY/FhT2qx1MP7jkWW74NhzY2ffrXFlVeH7EgExV5X7FzQitJecE2wtDpf/o5/A/bCmS2ZnzqsK0WxfEGbrweSlYfW2lwK3dPIMkHmbb1wC2Hi5HqrqDTGfmwJ7T27atLgxqGE8rjq1wlF+FFnEPy6afvpFFqV2ztn/Rmwly9ow7b7rve1by3JraJoLAT3qc/TPP5lBcFzPZ8eURILZ7bUWKJ4WN17uOpL1xDg0Tq52XoFg/TrqhhHDz8M7T27Umkg80LSSjvOwKGK4Cuv89Im5VZRTJoYzA4fdPomzlwWYbDPNVfrdeQl0Y+fHu+mLwR7VvZ79YoF6ddVEYindz5r2iQsz+giqlpyWYCOXpJK+8qYXa7NOtPsI9q0n32yQm4Vhd+hnUnQ6Zs9K2+sibKYPLEQypC38pHRiX7c5u+TIG4lFfRZ2UcJ1bybg8j386su9e4XbXo2iFgAKvVobbmDdiYbG+6qbiu08vC+Y7i6J/7ou92LZ8d6PqAyCvLTIXnwtutiv3ZS5NY9tiCS+ErdPStvxMINTyceoTUODw97rgZz/j5p+0aQBYdJ9QqDjBKAimJpbS75eq4XtGJTeeXk+55RfJ2YfnnjyP9mWcTlep13wriLKyrl94ePHsLXl87Nte1u1rRJuZI/tyOKtMI5JNHjsBIkflFTQF9r+/xrEtNTKz0WHNrZ5mMqx2xcJ8aYS8TOwOBQoOf63KunAysJANj/wKJR38udramMLPLg+RTFNnDhomLFjoNo79mF2au/F6ke1yKfS5SFnbUit4oiCFHmiMudrYnOMd89/yrf+371Tn9uuybWrHxOLqNxTE95zfK0WxRSb19/1dXY0y9vHGlc/booO+FnyjDpnr3bKLHc2Zr4GoGwtpVrH3hyxJje3rMr0URScdkGzl24iJWPhM+nXot8LnlTEkCdKIqongXmHHPcsYYWzmwJJFvQoap1sOLkBjg4NDzSM3P6i6Nnak5FVWuYly9oG9UDjzIs//f3g/f+42LWtEmZWPw4f92eQPtf3bNrzNqGD4Y1MWVx07VTYzvXRQ0/MhhPEYmTJLeKIu0HXO5sxXM9n8brG5Zg+YK2Mdf3WoK/edm8EUUjuLQ+Imn/aavBP0zPKU0X0ajK3JRzde/hwI4OcbF52TzfvcVJjcEDwF1WkJH6V40T750fZYj3YnXvYdfRXlJZB595+ZTj9rChLMJOZXlNYdMB4RK5NWb7ja+TxLTR2nKHY8O2uvcwtu07NvLSTWosYN0dHSO947SNV0HWI7hRLTLm9MsbQ83f24kaw+nhfcfQ9bGWmi04a7KErvfDujs6Ak9/mS7Ta8sdvu7zglZGCq9VGeHUoszcGvYPfATkdCLsVJabU0Nrc2kkuvScNU855qw3FUk9OCjkVlGsLXfgtVPvV128leaCFjcFUivsnlBh8WrEJxTiCY0ch4dWrV5YQXD7URAvKKvtxqSp2ICzPqMcz1+3Z+R4p4CGteBKlwb6yuYSbrp2amDlFdbppHvxbMcEZtbzVQtSeOCN0+NmRbwbuVUUQGURGlexJs+qnS+6NuJxrWx1Ok+YnBVpM6WpiDW3XhdKyZk91jCZGr8aIMqxOeL7+VW7cMFSoNbEO2nj1UCb924qND+E7WS4JTALcj6zc+inLPM6nZVrRQEAxQb3BVb1viI2rsjFg0MXMWfNU449K7eeYVCcpg7uWdCWekM2QTCqMfVi8sQC+v701yJf0ymBlp9j/vDRQ7jgc9gYtkOVVMNWrYE2R+dpdATDlL+dteUOPPPyKdd3oTXneUNya8w22bjUuSIH9SjKC1Oa/C/7H7oYX0Kdd88NY86ap8Zs7148G6VitOkn+1DfZG25I1VlP3liAa+sX+I7wX2t8yZ8fencWOxQXiTZsJkOIq9tWDIqrpkVPz4rWekQOr0LpWIBm5fNc72/vJB7RWEuYkrbo6hWrLn1OhQDxMl58ImXsHDD07Fc+91zw2MUT7mzFXoxuAFyQoOMPK/1d3a4vkRryx2hAkAGZfrljSMN/2sbloxaVW0nbJiVuCl3tmLTF+J3284S98yvrgSy0iEsd7Zi/Z0do9oir7qdJ3KbuKie6e3r95UbPAlam0t4rufTgbJ3AZWeVdiX5uqeXZFtFW6Z5LywZ5lbOLMl0x2QuKdpzGdda7ySHGU1I15apJW4iIoixzilywzLpMYCzpyvHpcf8O8S29pciiWvc9R4W+Mxp4cTQbOqVSNL5TZ/3Z4xda7elQSQE0UhIs0A/gLAJ1BxUPkNAEcA7ADQDuB1AF9Q1Xe8zkNFEZ6oqTmtaz06v/L9WBerxTU909vXj+5HD2EohL+vmcqyXohrVJH10ROpkJdUqH8G4ClVvRbAXAA/BtADYK+qzgKw1/hOEiLq/GxzU+NIr3HNrdclbhwNQ7mzFR+6LJyDXj0piTihkiBWQisKEZkM4AYAfwkAqnpeVQcA3A5gq7HbVgDlqEISb6I07tb1C6ZxNA4mT4xnIZ7JQIiRTpDkOOOFOAzbWfEiItkhyojiGgCnAPy1iPSJyF+IyCQA01X1OAAYn9OcDhaR+0XkgIgcOHXKOe4L8UeUFdj29QtxhcKOe+74wwGzgV1WkDFZAuuB7sWzfbv3OiHIjhcRyQ5RFtxNAPBJAL+jqvtF5M8QYJpJVbcA2AJUbBQR5Kh7/CbhccJp/UK5szWSUTQJ19GhYW8X3Cy4q2aBcmdr6JAS9apcSXWiKIq3ALylqvuN74+hoihOiMgMVT0uIjMAnIwqJPGme/Hs0A173F4tSTXYfj2ySGVE0PWxFnQ/etA1akHeVwrXgjChVsYLoRWFqv6biLwpIrNV9QiAmwH8yPi7F8AG4/PxWCQlrmQlzWaW4tg4Bb+rpymVOMJSkEuYib/M2FRm4i8g/ajQtSCq19PvANgmIi8CmAfgq6goiEUichTAIuM7SZhyZ6uvcAdW4ooFBSTvc98cwEZhugybAeXM4Hd5SBFKsolb4q9apFKtBZGaClU9qKpdqjpHVcuq+o6q/lRVb1bVWcZnPCvCSFX8hDuw4hYnKyiTJxYS71U9eNt1rr/ZkwBt3/+m435u2wmphluU5FqkUq0FuY/1RC6xttzhK180UHGB9Grcg3iWprE61ktWu/3CLTS135DVhNhp9gjGGVfgzSxDRTHO2LPyRixf0DbKRbKxIJjSVBwVNLHafP03fK6nSNPn3k131d9qCZI2Xn2Meph+yn0+CjKWODLtmT14a/DBYgMwrJV1G7UwELu9q2HHCfbAhrOmTfKd85rUFz/zCMBZD9NPVBTEFb+eM1nzMCqIOE4zWUceTtFvj548g0WbnqWyIGPwStBVCOpFkkM49UQikUUPIzdbhOLSfLJbiPQgodNJ/eCVk7sebF9UFCQS21xWALttTwOveEf1MJ9M4qfc2eoaU40jCkKqELfdICxWzxOv3p+bmyMh1XCLqcYRBSEJ0tvXj4UbnsbVPbuwcMPTVd0MvaLkWkcK5c5W19zi9iCIhJDq0JhNakJvXz9WPnJwpJfWPzCIlY9UQpC4GdC9ouTaDY1L5sxwDIx307VTfckWdgFh3tKnEuIHjihIYniNEP5k54tjGv6LWtnuhpftwT7YeOZl59D15na3EQdQcQkOg1Nq2udePY17vvV8qPMRkhU4oiCRcHNFBSrTQW4987MuYU3dtgPeUXLtEri5Mprb19x6neu5Bjx85r1wy18eNq951tyOawnLorZQUZBI3D3/KtfcB2EXIkWZ+jFpEOepKtNDJWrOjaAEvSd7LnTT7RgAuj7WUlfhrr3KIk1lIXB20nAznY0n5capJxKJteUOzxAafozUdpymn8wwz37o7etP1ENlde9hzFz1JNp7dmHmqid9rRkJ6pbrpnwf3ncMq3YeRv/AIBSXwl2P53hDXmWRJkE8/LK4vigKVBQkMl5Nr1tDZo/4asVp+skpzLMbXo1ykHDlToRtAOIM81DP4a7zwniLYExFQSJTrfF1asjW3RFsCB5k/YPXvlHXRnk1ACWPBB9JL8mqh3hDeWK8RTCmoiCROX+hek/f2pDNWfNUVfuAvYfuZ/3Dok3PVt134GzFUB12qsarAfjAwxCfRvMwnqef8obXau08PicqChIZL08lK6t7D6O9ZxfePVddsdhDgHQvno1S0X26CqjEabrnW8979q4/bIx+kpiqiWsxX9h57LBuvVlngstKS7ftWeDu+Ve5/pbHaUJ6PZHUCGJ8VADtPbtGvi+c2YL1d3ZUHYlUc0U1O3pJhPLwct8NQlgjbVi33jQJ4wl0wcUzwW17Flhb7nB9jnkMI0NFQXKBqQAmNRbGZLQLwjGz98wAAA/USURBVDvG1JNX2Og06e3rH+PqOl7JiptrEji5PzeXio7K+8MRHSpqAaeeSG547tXTgY3gdsy542oNcnvPrsBTQEGnFHr7+rFyx8FRrq4rU1zbkTZJeAKlOd8fdDW/m5liYHAolNt4LaGiIJFIu7JHndoxjdF+FqgF9XsPOqWwaueLsFt3/Fl78omXI0B7zy7MX7fH8fckwq2EYc2t17n+5jRyMEevTuRt/QsVBYlE3gxzQc2fQewFQY3Zgz6dAIJijco778vfR+dXvu87Qm8tOfHeeUdlEbSBToqgq9+r5akYHBrOjQMCbRQkMFaDZN6IKrFXmlU/xuw5a57y5fUVFqsDADC6Ie0fGET3o4cABG/00uLEe+fHbEs73EoUrDYnP3VtYHAolpA1SUNFQQLhFCE1r7jFg7Jz7QNP4orLL/N8+f00CkkrCT8MXVSs2vliphsmJwO/27PKkoesGWbGbwQBkxU7DuLAG6czbdCPNPUkIq+LyGEROSgiB4xtLSKyR0SOGp9T4hGV1Jrevv5xoyQA4Nfnt/na74NhHTE4e1FtGqHWSsJkcOhipqegVtgM/Ct2HHRV6HF5yAZNouVEkDAzdrIeByoOG8VNqjpPVbuM7z0A9qrqLAB7je9kHJCX4b9f4u7B5WEdg8kfPJL+s5w4IX6TaBz5qs2RQNRAi1HdrbMcByoJY/btALYa/28FUE7gGiRlstwDDYo1kdDyBf5GFX7x8tDJEsM1MC997fNzYp8qisNO5jQSCBNoMeq9ZdnmF9VGoQC+LyIK4P+o6hYA01X1OACo6nERmRZVSFJ78ubd5IU5fbZo07M4evJMrOf2conMGnbDt5VJjQWsu6MjVluGea6Nu4/EttgxajRgoHqSK79keKF4ZKKOKBaq6icBfBbAb4vIDX4PFJH7ReSAiBw4dco5bSXJDmmHHZg80TuuU1Tae3bFriTGE2fOD2PFjoOZH0nGMPMUCK/w+HGQ1fKOpChU9W3j8ySAvwfwSwBOiMgMADA+T7ocu0VVu1S1a+rU6gnvSW2JK+BdNVqbS3h9wxK8+OXPpHI94k2cdimrLSAukh7B2RvuqJEBqpHVdRWhFYWITBKRy83/AfwagB8CeALAvcZu9wJ4PKqQpPakEYOoVCyMuk7c9gNSW6J4BbkRhzHbi1WWbIs/v2pX4g4dWXWIiDKimA7gn0XkEIB/AbBLVZ8CsAHAIhE5CmCR8Z3knHJnKxbObIntfJuXzcPmZfPQ2lyCoDKSWH/n6DnxLPuVk+AkMX2ZtAHYXD3f3rMLF8axDaIaoY3ZqvoTAHMdtv8UwM1RhCLZZNt918eyKnvhzJYRhVDNWOqW0J7kj8YJDTh3If6wJUmvbM7y+oa0YKwnEoi15Q68uv4WvL5hSajjZ02bhG33Xe97/3sCTj8tX9CG1zcswfTLG4OKVhM2L5tXaxE8mRDjzE4SSgJIfk1I2PwgYfBKp1tLsikVyQVBlYUA2LPyxkDH+J1+EkMec/9F1/1coOvUiiyH0sgLUdaEZM3L6LIqWRxrBRUFSY3XQo5CqjF5YmHMudPsBY5n8jIvH7bBz5qX0UBG1+FQUZDQBHk5Gwvh5zCqhX5I2pV28sRCrIZ8k1nTJgHI/vRTHvjyd8I1+FnzMspq9jsqChKaIKu1H7prjN+Db772+TmuvyXtQrtwZgte/PJnsO2+62NVFtMvbxyZhit3tkZSpOMJQfCcIUC+VsR7kfYCQr9QUZDQ+HV3XL6gLdJcfLmzFZuXzRtl6GuQynnDuNCWig2jXHObS0XHF2H5grZRhvcwysLJDXjzsnnY/8CiUfs9dNdc11hB5jFhlGJrc2lk5JIHrmwu4Zt1PMLK6tQT81GQ0FzZXPJcZdtq5BKIw2Bb7mz1fZ5qU2Lr75wT6HxWtt13vWeMJDt+3YCtcZCseRisx5U7W0cUox8ZrM4GQWS2Eue02PIFbZ62I3PBZZiYUHHEfMoCaUVACAoVBQnNTddO9Xzxn+v5dIrSXKLalFhankZBG9kgymtSYwFnzruvcraPfESAoEtfNi+bF2tZmUrOXIcjAJoaCzh7fniMYjTLwm+irAdvc0+Xmiduujab4YyoKEhonnnZPZhjaw17RmkHMLQzpamINbdel6hCWndHh2c4CftalXvme/fmnUhC/rXljkDThX5GcFEUmt8sh2mxff+xTEYkoI2ChMarQa5lz8hr+J50bCAA6PvTX0t81OJ1fqc7XFvuCGTjSDp6b5xEKessKQmgNnlC/EBFQULj1SB7jTaSxiuAYdKxgdI0HLuN2tyey9pyh6/psMkTC3UTvbeWI988QUVBQuM1aqj19I8bcTQMXpnMgq48j0L34tko2Vby2iPw2jE9yOxeWK9vWDLyVy9KAog3KvKUpuK4jXhMGwUJjdeooZbeG27GbEE8DUNWpiv8eEq5HcfQIRXKna2xhA4vFmTELrVt/7HAjgMmWXVlpqIgofFyXUwjf4UbbqMZxfiLrVTvjX4aUyJOMc16+/pdFXQYxwFg9CLMrEFFQUJTEHGd869l4+W2viOu+Wi30OcZXVSbe7zq2aaEF+e5TSV5Kei15Y5AimJCg+DrS+dmWuFTUZDQeBmGk84R4EX34tlYtfPwqGxq1ebug+B21xmZkRp33D3/KseG15rXJCnCuqq6LS4MG02g1tCYTULj1UMPEgcqbsqdrVh/Z4dn9rwouLnYpuF6W4+Yrr1m+RZExoRXyRpuMudRSQAcUZAIdC+e7WoI9Bt6ISmSnLt3G0kl7XpbzwRdqBeEhTNbHFd/Rw0CmaTMacMRBQlNludUk8RtJEWf/HziFOxx4cyWTI9Y0oYjCkICkrQNhKQPlYI3VBQkEvXoARR2/QIheYWKgkSicUIDzl246Lh9PFPv6xdIdbzWWuQNKgoSCScl4bWdkHqgt69/1PRk/8AgVu08DCCftr3x3e0jhJAasHH3kVE2LAAYHBquqdt4FKgoSCTcMouNl4xjhITBLYxMVoNlViOyohCRgoj0ich3je8tIrJHRI4an1Oii0myyoO3XYeiLZxqsUHGTcYxQsLgFhQzq6lOqxHHiOL3APzY8r0HwF5VnQVgr/GdjFPKna3YuHTuqFXQGzMet4aQpAkTAj7LRDJmi8hHASwBsA7ASmPz7QBuNP7fCuBZAH8c5Tok29ADiJDRjDcX6qheT5sB/BGAyy3bpqvqcQBQ1eMiMs3pQBG5H8D9ANDWNj6TfRBC6pfx1IEKPfUkIp8DcFJVXwhzvKpuUdUuVe2aOrV2+ZUJIYR4E2VEsRDAbSJyC4DLAEwWkYcBnBCRGcZoYgaAk3EISgghpDaEHlGo6ipV/aiqtgP4IoCnVXU5gCcA3Gvsdi+AxyNLSQghpGYksY5iA4BFInIUwCLjOyGEkJwSSwgPVX0WFe8mqOpPAdwcx3kJIYTUHtEMJFsRkVMA3jC+fgTAv9dQnLBQ7nSh3OlCudPFr9wfU9XEvYEyoSisiMgBVe2qtRxBodzpQrnThXKnS9bkZqwnQgghnlBREEII8SSLimJLrQUICeVOF8qdLpQ7XTIld+ZsFIQQQrJFFkcUhBBCMgQVBSGEEG9U1fMPwFUAnkEl58RLAH7P2N4CYA+Ao8bnFGP7Fcb+7wP4c9u5lgF40TjPQx7XXAfgTQDv27avBPAj4xx7UfEhdjp+IiqhRM4CGATwrxa5hwG8B+AcKnGoMi83gJsAHLbIPQzgnqzLbfz2Z4Zs54zzZKm8bzDK9SKAtzC6fu8FMATgDLJXvx3lBvAxAAct9eTHeZA7B++lW3ln/b28AcAPAFwAcJftt68B+KHxt8xNhpH9q+4AzADwSeP/y1FpBD4O4CEAPcb2HgBfM/6fBOCXAfymtYCMgjsGYKrxfSuAm12uucC4rr2AbgLQZPz/WwB2uBz/3wD8LYBPohKH6tsWuc/nVO6HDHlbUGmQv5EDuX8TwOsA/sSQ8y0A38yQ3O0APg3guwDuwuj6/XcA/sb4LWv1xE3uuQC+Ycj7IQDvAPifOZA76++ll9xZfi/bAcxB5d28y7J9CSqdnwmGnAcATHY6h/lXdepJVY+r6g+M/99DpZfSikqCoq3GblsBlI19zqjqPwP4wHaqawD8q6qeMr7/A4DPu1xznxo5LWzbn1HVs8bXfQA+6iL27QD+lyH3YwB+xSL3hJzKbZb3XQC+B+BzOZD7k6hUxL9W1TMA/gmV3lQm5FbV11X1aRgrYG31uxOVURKQsXriIfc0VOrFVlRGeWcALM6B3Jl+L6vIndn30pD7RVRGQlY+DuAfVfWC8V4eAvAZp3OYBLJRiEg7Ki/QftgSFKFSSb14BcC1ItIuIhNQqQhXBbm+jS+h8mCcaEVlyAZVvYDKC/OLhtwC4Dsisg/A/BzJbZb3FwH8dU7kfhLAFAA/E5GPoNJDas6Q3KOw128Ap4FM1u9R2OT+OQC7UXke61HpwXqRFbmz/F6OwqUdzOJ76cYhAJ8VkSbjvbypmgy+gwKKyIdQmVJYoarvikggyVT1HRH5LQA7UNFw/w8V7RoYEVkOoAuVnqvjLja5fw7AfYbc76pql4hcA+BpVFGWGZIbRn6PDlQaAk8yIneviAwZ1z4F4HkAd2RIbiuXIT/124pdblXVOSJyJYBeWJ5NxuXO8nvpJXeW30s3Gb4vIp/C6PfygtcxvkYUIlJEpXC2qepOY/MJo4DMgqqaoEhVv6Oq81X1egBHABwVkYKIHDT+vuJDll8F8ACA21T1nLFtnXkOY7e3AFxlyL0TFaPk/zV++zcjsdJPUOkRvJ8TuU8A+C8A/h6VgGF5Ke9jAD6rqosAlGD00jMi98juAP4QtvqNyrxzFuu3p9xG/X4bwE9QGd3lQe4sv5decmf5vfSSYZ2qzjPeS0HFKcnzAM8/4yR/C2CzbftGjDY+PWT7/T9jrLV/mvE5BRXvjF+ocm27EacTwKsAZlU57rcB/G9D7icBPGK57iZDXjM6419mXW5LeR9DZZiYl/IuAPgfhrxzAPwbgI1ZkdtSv18B8F2H+r0Fl4zZmSlvN7lRmav+piHvFFR6i3+VA7kz/V76qCeZfC8t+/8NRhuzCwCuMP6fg4rn0wTPc/i4yC8DUFRcsQ4af7egMve5FxVNtBdAi+WY11HpOb6PSm/z48b27ai4df0IwBc9rvmQcZzpjvagsf0fUNHgphxPuBx/GSrDV0XFE+FHxv5/YPxvurP9KCdy3wJgHiqGsTyV9+2o9JjOoOI2uz9jcn8KlR6gojL0HrSU9/OoeOJcNMr9rhzI/QAqLpdW99g8lHfW30uvepLl9/JTxnFnAPwUwEuW99W8/j4A87x0gKoyhAchhBBvuDKbEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhCRUEIIcQTKgpCCCGe/H9DmsqiQBIg1AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from apd.aggregation.query import with_database, get_data\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "async def plot():\n", + " points = [(dp.collected_at, dp.data) async for dp in get_data() if dp.sensor_name==\"RelativeHumidity\"]\n", + " x, y = zip(*points)\n", + " plt.plot_date(x, y, \"o\", xdate=True)\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " await plot()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nO2df5RV5Xnvv88czuAZIhnGAMWJk1FK8cYMMOmk4KXXaiwlkahHIyFW1vKu5uptb1dbSjvtULnFZEEgkhC6bu+695L+olcWRQ0dTTASitqueoUuzIDERIpGRUcKNDhRYYRheO4fZ+9hz56999m/z95zvp+1Zp05++wfz373u9/nfd/neZ9HVBWEEEKIGw21FoAQQki2oaIghBDiCRUFIYQQT6goCCGEeEJFQQghxJMJtRYAAD7ykY9oe3t7rcUghJBc8cILL/y7qk5N+jqZUBTt7e04cOBArcUghJBcISJvpHEdTj0RQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+qej2JyF8B+ByAk6r6CWNbC4AdANoBvA7gC6r6jvHbKgBfAjAM4HdVdXcikhOSIr19/XjwiZcwMDgU6TxNxUrf7OzQRQDAlKYi1tx6HcqdrSPX2bj7CN4eGMSVzSV0L5498htJjiDlbq8LU5qKWDJnBp55+RTeHhjEh0tFnL8wPPKM/WCvB1lDqkWPFZEbALwP4G8tiuIhAKdVdYOI9ACYoqp/LCIfB7AdwC8BuBLAPwD4BVUd9rpGV1eX0j2WZJXevn50P3oIQxeTibRcLAg23jUXALBq52EMDl16XUrFAtbf2ZHZBmQ80NvX77vck6wLZj0I8qxF5AVV7YpdGBtVp55U9Z8AnLZtvh3AVuP/rQDKlu1/p6rnVPU1AK+gojQIyS0bdx9JTEkAwNCwYuPuI9i4+8ioxgoABoeGsXH3kcSuTRCo3JOsC2Y9yCJhF9xNV9XjAKCqx0VkmrG9FcA+y35vGdvGICL3A7gfANra2kKKQUjyvD0wWNNrpHH9esatfJ22J/0ssvqs4zZmi8M2R/WrqltUtUtVu6ZOTXwFOiGhubK5lMo13K6TxvXrmSDlnvSzyOqzDqsoTojIDAAwPk8a298CcJVlv48CeDu8eITUnu7Fs1FscOoDxUOxIOhePBvdi2ejVCyM+q1ULKB78ezErk0QqNyTrAtmPcgiYRXFEwDuNf6/F8Djlu1fFJGJInI1gFkA/iWaiITUlnJnKzYunYvmUjHyuZqKDSOeT0DF28U0YJY7W7H+zg60NpcgAFqbSzRkp0CQcneqC1Oaili+oG3k+OZScdQz9oO1HmQRP15P2wHcCOAjAE4AWAOgF8AjANoAHAOwVFVPG/s/AOA3AFwAsEJVv1dNCHo9EUJIcNLyeqpqzFbVu11+utll/3UA1kURihBCSHbgymxCCCGeUFEQQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhCRUEIIcQTKgpCCCGeUFEQQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhSNR8FIWHp7evHg0+8hIHBoTG/TWosYN0d/rO39fb1Y+PuI3h7YBBXNpfQvXh2bNnAvOQ0mdJUxJpbr0O5szWwLOb+/QODKIhgWBXNpSLOXxjG2aGLsdwDUElYXywIzg9fSkY2pamIJXNm4JmXT43I235FCft+8g6GVVEQwd3zr8LackdscvjFXu7WMq4FTvXA/tyr1RMrbveTZF1OiqoZ7tKAGe7GH719/eh+9BCGLrrXr0KD4BtLq6d/7O3rx6qdhzE4NDyyrVQsxJIm1I+cJsWCYNmnrsK3X+j3LYuT7Flk+YK2VJWFW7kXC1KTlKBe9cB87jv+5U1f9cR+rPV+4q7LaWW449QTSYSNu49UfamGLyo27j7i61z2hnZwaNjXsX7O7fflHxpWbN//ZiBZnGTPItv3v5nq9dzKfWjYX51ISx7g0nMPqiTMY633k2RdThIqCpIIbw8Mxraf2z5+rxH1+laGXUbgScqYBm73lRRe5VKLMqt2zSjlYz13XusJFQVJhCubS7Ht57aP32tEvb6Vgkig88QhYxq43VdSeJVLLcqs2jWjlI/13HmtJ1QUJBG6F89GscH75So0CLoXz/Z1rlKxMGpbqVjwdayfc1eT06RYqBh+g8jiJHsWuXv+Valez63ciwV/dSIteYBLz91vPbEfa72fJOtyklBRkEQod7Zi49K5aC4VHX+f1FjwZcg2z7X+zg60NpcgAFqbS7EYsv3IaTKlqYiNd83F2nJHIFmssgOXeqbNpSKaivG+fgKgsTC6MZvSVMTyBW2j5F04s2VEjoJI6oZswLnczTKuhQeQWz2wPnc/9cTpWOv9JFmXk4ReT4QQklPo9UQIISQTUFEQQgjxJJKiEJHfE5EfishLIrLC2NYiIntE5KjxOSUeUQkhhNSC0IpCRD4B4D4AvwRgLoDPicgsAD0A9qrqLAB7je+EEEJySpQRxX8AsE9Vz6rqBQD/COAOALcD2GrssxVAOZqIhBBCakkURfFDADeIyBUi0gTgFgBXAZiuqscBwPic5nSwiNwvIgdE5MCpU6ciiEEIISRJQisKVf0xgK8B2APgKQCHAFwIcPwWVe1S1a6pU6eGFYMQQkjCRDJmq+pfquonVfUGAKcBHAVwQkRmAIDxeTK6mIQQQmpFVK+nacZnG4A7AWwH8ASAe41d7gXweJRrEEIIqS1RExd9W0SuADAE4LdV9R0R2QDgERH5EoBjAJZGFZLUH1lLakNIPRNJUajqf3LY9lMAN0c5L6lvnJLIvHN2CN2PHQIAKgtCUoYrs0nmyFpSG0LqHebMJqlizR8tAOzqwGmblf6BQXz8v38vUK7pKU1FfHzG5Xju1dO+9rVOccU1Bba69zC2739zTJ5qr/zJ1t8+XCpCBBg4O+S436qdL2LQKJMGAa6/pgUvvf3emPzPZv5st/JvEODX56cfTdYtX/WSOTPw3UPHazIFubr3MLbtO+ZYH1tzkus6Lhg9lqRGXvJHm3mOAcSS13l172E8vO/YmO0LZ7bgB8d+5pg/GYBnWVn3W7njIPyrTX+kGXo8SN5yIJ282m7PzEpcedujkFb0WCoKkhoLNzyN/oynfDQx80e4ydvaXMJzPZ/2da6Zq54MlEqz2rWD7heGggheXX9L7Od1Iky9CFL+YfD7zJKWoxppKQpOPZFYqPQKD8JpRmhSYwHr7ujIfF5gK9VkDXIvQfMtx5lvPCxp5tAOcx9J1yW/95+nOh0FGrNJZHr7+rFih7OSAIAz54fxB48eQnOT/+xgtebK5lJseZ2D5luudu2g+4UhzRzaYe4h6RzTfu8/67mu44KKgkTGjyfS8EWFKnKRP9rMcxxXXme3fNQLZ7a45k+ulmvbul8SL3GaObSD5C0H0smr7ef+85DrOi6oKEhk/A6/fzY4NCp/tFPTYM/73FRsGJVb2v7dD1Oailg4s8X3vqahNK68zmvLHVi+oG1Mnupt913vmj/Znlu5uVTElKai436bls1DyVImDVJRQk75n8382YBz+TdIuoZswDtf9fIFbTXJq20+Mzf1lZdc13FBYzaJjF9jZK0Nf4SMN5gzm+QGP8PvQkPy0wWEkGSgoiCRKXe2YvOyeXCbEZrUWMA3liY/XUAISQa6x5JYMOfLCSHjD44oCCGEeEJFQQghxBMqCkIIIZ5QURBCCPGEioIQQognVBSEEEI8oXssyQT2JDFmxFm63BJSe6goSM1xShJjRpwFmCObkFrDqSdSc7bvf9Nx+/BF5sgmJAtwREFSx54L2itJjDUyrT3v9IJrpozKC91UbMDEYmEkr/RN104dlW8ZSDfncpbwys1t/h5HbvCgctifkVOebDNasD1Per0+y1rA6LEkVYLmzTYjzvrJYeyXNHIuZwmnMrfme3bLWR13OSWRM73enqUdRo8l45KNu4/4biisEWfdpqfCMDRcX1NaTmU+ODQ8UgYbdx8ZoySA+MspyLP3S709y1oRSVGIyO+LyEsi8kMR2S4il4lIi4jsEZGjxueUuIQl+cdvkiN7xNm4czjXS65jwP1eze1eZRFnOSVV5vX0LGtFaEUhIq0AfhdAl6p+AkABwBcB9ADYq6qzAOw1vhMCwF+O4dbmEl76ymdGTSfEncO5XnIdA+73am6PKzd4WDmyel5yiahTTxMAlERkAoAmAG8DuB3AVuP3rQDKEa9BxhF+c0HbiTOHcxo5l7OEU5lbyzmu3OBh5IhKvT3LWhFaUahqP4CvAzgG4DiAn6nq9wFMV9Xjxj7HAUyLQ1AyPvCbC9qOU95pe17opmLDqHPZ8y0D6eVczhL2MreXc1y5wcPI4ZQT277NLU96PT7LWhHa68mwPXwbwDIAAwAeBfAYgD9X1WbLfu+o6hg7hYjcD+B+AGhra/vFN954I5QchBBSr+TB6+lXAbymqqdUdQjATgD/EcAJEZkBAMbnSaeDVXWLqnapatfUqVMjiEEIISRJoiiKYwAWiEiTiAiAmwH8GMATAO419rkXwOPRRCSEEFJLQq/MVtX9IvIYgB8AuACgD8AWAB8C8IiIfAkVZbI0DkEJIYTUhkghPFR1DYA1ts3nUBldEEIIGQdwZTYhhBBPqCgIIYR4QkVBCCHEEyoKQgghnlBREEII8YSKghBCiCdUFIQQQjyhoiCEEOIJc2YTUidUy5udNfIm73iGioKQOsCer7p/YBCrdh4GgEw2vnmTd7zDqSdC6oBqebOzRt7kHe9QURBSB1TLm5018ibveIeKgpA6oFre7KyRN3nHO1QUhNQB1fJmZ428yTveoTGbkDrANADnxYsob/KOd0LnzI6Trq4uPXDgQK3FIISQXJGHnNmEEELqACoKQgghntBGYeGebz2P5149PfJ94cwWbLvv+hpKRAghtYcjCgO7kgCA5149jUWbnq2NQIQQkhHqZkRxdc8uWM32AuC1DUtGvtuVhMnRk2fQ29dPbwtCSN1SFyOKdpuSAAA1tvth1c4XY5eJEELywrhXFPd863nP3+ev21P1HINDF+MShxBCcse4VhS9ff2uU0omJ947n5I0hBCST8a1ovjjb/ubMpqz5qmEJSGEkPwSWlGIyGwROWj5e1dEVohIi4jsEZGjxueUOAUOwrkL/qaM3j03XH0nQgipU0IrClU9oqrzVHUegF8EcBbA3wPoAbBXVWcB2Gt8J4QQklPimnq6GcCrqvoGgNsBbDW2bwVQjukaNaW3r7/WItQVvX39WLjhaVzdswsLNzzN8iekhsSlKL4IYLvx/3RVPQ4Axuc0pwNE5H4ROSAiB06dOhWTGKOZNW1SbOdiZq30WLTpWazYcRD9A4NQVNJgrthxkMqCkBoRecGdiDQCuA3AqiDHqeoWAFuASvTYqHI4cfZ8fG6tWcisVQ/J5u/51vM4evKM428rHzmYi/uth+dEorO69zC2738Tw6ooiODu+Vdhbbmj1mI5EsfK7M8C+IGqnjC+nxCRGap6XERmADgZwzVCEWfj/uFSMbZzhWHOmqdGGd3Ha7J5L3fmi7WPiF+VRZueHaXozNEQML6eE4mGvZ4Mq+LhfccAIJPKIo6pp7txadoJAJ4AcK/x/70AHo/hGqFonBCf9++7g0OxnSso89ftcfTMGm/J5q994MlaixAJr9HQih0Hcc2qXZw+I1jde9i1npjKImtEGlGISBOARQD+q2XzBgCPiMiXABwDsDTKNcLS29fv2z3WD0mvzXaKXLu0qw0bdx/xXBTYn4EpsThY3XsYHwznYMjgQbXFnRcVHF2QzCoDLyIpClU9C+AK27afouIFVVO6Hz1YaxEccZq/fvTAMcfItdUaHqAS3DCvWMsi3yoiGH/02CEqijplde/hWosQinEbPbZaeKZJjQWcOZ/uQrvevn78/o6DI41i/8DgqO9hyGsD29vXj1U7D2NwqP4WO57P+ciJBKe3r39kNOlFVjt+uVYUUbxL1t3RMaahKhULng1Xe8+uSN4Jf/TYIccotvXIxt1HAiuJgmT1NQrO6t7DmTRaEm/CeCr5VRIAcM+CtjjEjJ3cKorevn50P3oIQ4YrTP/AILofPQQAOPCG95RNqdgwolDsiqbaA3XyTvCrsNiTvEQY28qwjp/ye3jfMSqKnBHWU+nBJ17yfY2s1oncKooHn3hpREmYDF1UPPjESxio4qG0/s45ACoGRXuD7lfzbzNedHtvge6Q/hAEH021NpeSEIWQqlTzVPJq4Ku1RyaTJxZCyZYGuVUUboXv56F4NeClYoOv/BNmI+emWFbsGL04jG6RowkzNmi/Il5FYe8hzpo2CXtW3hjqXEk8X7sn3MQJDfja5yudHC7oS5ft+98MdVy1fDhWXvzyZ0JdIw1yqyiSYv2dc3yPKqphTaGa5HqHepnvfu7V07GlpbUrCaCS9nbRpmerKguneeowLo/tPbuwfEGb47NzyuF+7sLFMXXTHMH+ae/hTDc0Tlz7wJNjXKInTyxk8j6qTXs6vYNOdcyNUjHbGR9EMzDv29XVpQcOHAh0jN80pnYmNAhe+eotnvvMXv09X2swFs5s8eXCmgavW/J/54Gwz880Z1frSVezG3ld36ssV/ceTsQP3q4wwpTPZQXBy+u863ZWcFISVtKsz15u2hMEeGX9Esxc9WRVZWGVOYgBGwA2L5sXqgMkIi+oalfgAwOSbTWWAF9fOrfqPubwvhppKYnNy+alcp08oMafGcLEacrHdL21BhX8/R0HY/FhT2qx1MP7jkWW74NhzY2ffrXFlVeH7EgExV5X7FzQitJecE2wtDpf/o5/A/bCmS2ZnzqsK0WxfEGbrweSlYfW2lwK3dPIMkHmbb1wC2Hi5HqrqDTGfmwJ7T27atLgxqGE8rjq1wlF+FFnEPy6afvpFFqV2ztn/Rmwly9ow7b7rve1by3JraJoLAT3qc/TPP5lBcFzPZ8eURILZ7bUWKJ4WN17uOpL1xDg0Tq52XoFg/TrqhhHDz8M7T27Umkg80LSSjvOwKGK4Cuv89Im5VZRTJoYzA4fdPomzlwWYbDPNVfrdeQl0Y+fHu+mLwR7VvZ79YoF6ddVEYindz5r2iQsz+giqlpyWYCOXpJK+8qYXa7NOtPsI9q0n32yQm4Vhd+hnUnQ6Zs9K2+sibKYPLEQypC38pHRiX7c5u+TIG4lFfRZ2UcJ1bybg8j386su9e4XbXo2iFgAKvVobbmDdiYbG+6qbiu08vC+Y7i6J/7ou92LZ8d6PqAyCvLTIXnwtutiv3ZS5NY9tiCS+ErdPStvxMINTyceoTUODw97rgZz/j5p+0aQBYdJ9QqDjBKAimJpbS75eq4XtGJTeeXk+55RfJ2YfnnjyP9mWcTlep13wriLKyrl94ePHsLXl87Nte1u1rRJuZI/tyOKtMI5JNHjsBIkflFTQF9r+/xrEtNTKz0WHNrZ5mMqx2xcJ8aYS8TOwOBQoOf63KunAysJANj/wKJR38udramMLPLg+RTFNnDhomLFjoNo79mF2au/F6ke1yKfS5SFnbUit4oiCFHmiMudrYnOMd89/yrf+371Tn9uuybWrHxOLqNxTE95zfK0WxRSb19/1dXY0y9vHGlc/booO+FnyjDpnr3bKLHc2Zr4GoGwtpVrH3hyxJje3rMr0URScdkGzl24iJWPhM+nXot8LnlTEkCdKIqongXmHHPcsYYWzmwJJFvQoap1sOLkBjg4NDzSM3P6i6Nnak5FVWuYly9oG9UDjzIs//f3g/f+42LWtEmZWPw4f92eQPtf3bNrzNqGD4Y1MWVx07VTYzvXRQ0/MhhPEYmTJLeKIu0HXO5sxXM9n8brG5Zg+YK2Mdf3WoK/edm8EUUjuLQ+Imn/aavBP0zPKU0X0ajK3JRzde/hwI4OcbF52TzfvcVJjcEDwF1WkJH6V40T750fZYj3YnXvYdfRXlJZB595+ZTj9rChLMJOZXlNYdMB4RK5NWb7ja+TxLTR2nKHY8O2uvcwtu07NvLSTWosYN0dHSO947SNV0HWI7hRLTLm9MsbQ83f24kaw+nhfcfQ9bGWmi04a7KErvfDujs6Ak9/mS7Ta8sdvu7zglZGCq9VGeHUoszcGvYPfATkdCLsVJabU0Nrc2kkuvScNU855qw3FUk9OCjkVlGsLXfgtVPvV128leaCFjcFUivsnlBh8WrEJxTiCY0ch4dWrV5YQXD7URAvKKvtxqSp2ICzPqMcz1+3Z+R4p4CGteBKlwb6yuYSbrp2amDlFdbppHvxbMcEZtbzVQtSeOCN0+NmRbwbuVUUQGURGlexJs+qnS+6NuJxrWx1Ok+YnBVpM6WpiDW3XhdKyZk91jCZGr8aIMqxOeL7+VW7cMFSoNbEO2nj1UCb924qND+E7WS4JTALcj6zc+inLPM6nZVrRQEAxQb3BVb1viI2rsjFg0MXMWfNU449K7eeYVCcpg7uWdCWekM2QTCqMfVi8sQC+v701yJf0ymBlp9j/vDRQ7jgc9gYtkOVVMNWrYE2R+dpdATDlL+dteUOPPPyKdd3oTXneUNya8w22bjUuSIH9SjKC1Oa/C/7H7oYX0Kdd88NY86ap8Zs7148G6VitOkn+1DfZG25I1VlP3liAa+sX+I7wX2t8yZ8fencWOxQXiTZsJkOIq9tWDIqrpkVPz4rWekQOr0LpWIBm5fNc72/vJB7RWEuYkrbo6hWrLn1OhQDxMl58ImXsHDD07Fc+91zw2MUT7mzFXoxuAFyQoOMPK/1d3a4vkRryx2hAkAGZfrljSMN/2sbloxaVW0nbJiVuCl3tmLTF+J3284S98yvrgSy0iEsd7Zi/Z0do9oir7qdJ3KbuKie6e3r95UbPAlam0t4rufTgbJ3AZWeVdiX5uqeXZFtFW6Z5LywZ5lbOLMl0x2QuKdpzGdda7ySHGU1I15apJW4iIoixzilywzLpMYCzpyvHpcf8O8S29pciiWvc9R4W+Mxp4cTQbOqVSNL5TZ/3Z4xda7elQSQE0UhIs0A/gLAJ1BxUPkNAEcA7ADQDuB1AF9Q1Xe8zkNFEZ6oqTmtaz06v/L9WBerxTU909vXj+5HD2EohL+vmcqyXohrVJH10ROpkJdUqH8G4ClVvRbAXAA/BtADYK+qzgKw1/hOEiLq/GxzU+NIr3HNrdclbhwNQ7mzFR+6LJyDXj0piTihkiBWQisKEZkM4AYAfwkAqnpeVQcA3A5gq7HbVgDlqEISb6I07tb1C6ZxNA4mT4xnIZ7JQIiRTpDkOOOFOAzbWfEiItkhyojiGgCnAPy1iPSJyF+IyCQA01X1OAAYn9OcDhaR+0XkgIgcOHXKOe4L8UeUFdj29QtxhcKOe+74wwGzgV1WkDFZAuuB7sWzfbv3OiHIjhcRyQ5RFtxNAPBJAL+jqvtF5M8QYJpJVbcA2AJUbBQR5Kh7/CbhccJp/UK5szWSUTQJ19GhYW8X3Cy4q2aBcmdr6JAS9apcSXWiKIq3ALylqvuN74+hoihOiMgMVT0uIjMAnIwqJPGme/Hs0A173F4tSTXYfj2ySGVE0PWxFnQ/etA1akHeVwrXgjChVsYLoRWFqv6biLwpIrNV9QiAmwH8yPi7F8AG4/PxWCQlrmQlzWaW4tg4Bb+rpymVOMJSkEuYib/M2FRm4i8g/ajQtSCq19PvANgmIi8CmAfgq6goiEUichTAIuM7SZhyZ6uvcAdW4ooFBSTvc98cwEZhugybAeXM4Hd5SBFKsolb4q9apFKtBZGaClU9qKpdqjpHVcuq+o6q/lRVb1bVWcZnPCvCSFX8hDuw4hYnKyiTJxYS71U9eNt1rr/ZkwBt3/+m435u2wmphluU5FqkUq0FuY/1RC6xttzhK180UHGB9Grcg3iWprE61ktWu/3CLTS135DVhNhp9gjGGVfgzSxDRTHO2LPyRixf0DbKRbKxIJjSVBwVNLHafP03fK6nSNPn3k131d9qCZI2Xn2Meph+yn0+CjKWODLtmT14a/DBYgMwrJV1G7UwELu9q2HHCfbAhrOmTfKd85rUFz/zCMBZD9NPVBTEFb+eM1nzMCqIOE4zWUceTtFvj548g0WbnqWyIGPwStBVCOpFkkM49UQikUUPIzdbhOLSfLJbiPQgodNJ/eCVk7sebF9UFCQS21xWALttTwOveEf1MJ9M4qfc2eoaU40jCkKqELfdICxWzxOv3p+bmyMh1XCLqcYRBSEJ0tvXj4UbnsbVPbuwcMPTVd0MvaLkWkcK5c5W19zi9iCIhJDq0JhNakJvXz9WPnJwpJfWPzCIlY9UQpC4GdC9ouTaDY1L5sxwDIx307VTfckWdgFh3tKnEuIHjihIYniNEP5k54tjGv6LWtnuhpftwT7YeOZl59D15na3EQdQcQkOg1Nq2udePY17vvV8qPMRkhU4oiCRcHNFBSrTQW4987MuYU3dtgPeUXLtEri5Mprb19x6neu5Bjx85r1wy18eNq951tyOawnLorZQUZBI3D3/KtfcB2EXIkWZ+jFpEOepKtNDJWrOjaAEvSd7LnTT7RgAuj7WUlfhrr3KIk1lIXB20nAznY0n5capJxKJteUOzxAafozUdpymn8wwz37o7etP1ENlde9hzFz1JNp7dmHmqid9rRkJ6pbrpnwf3ncMq3YeRv/AIBSXwl2P53hDXmWRJkE8/LK4vigKVBQkMl5Nr1tDZo/4asVp+skpzLMbXo1ykHDlToRtAOIM81DP4a7zwniLYExFQSJTrfF1asjW3RFsCB5k/YPXvlHXRnk1ACWPBB9JL8mqh3hDeWK8RTCmoiCROX+hek/f2pDNWfNUVfuAvYfuZ/3Dok3PVt134GzFUB12qsarAfjAwxCfRvMwnqef8obXau08PicqChIZL08lK6t7D6O9ZxfePVddsdhDgHQvno1S0X26CqjEabrnW8979q4/bIx+kpiqiWsxX9h57LBuvVlngstKS7ftWeDu+Ve5/pbHaUJ6PZHUCGJ8VADtPbtGvi+c2YL1d3ZUHYlUc0U1O3pJhPLwct8NQlgjbVi33jQJ4wl0wcUzwW17Flhb7nB9jnkMI0NFQXKBqQAmNRbGZLQLwjGz98wAAA/USURBVDvG1JNX2Og06e3rH+PqOl7JiptrEji5PzeXio7K+8MRHSpqAaeeSG547tXTgY3gdsy542oNcnvPrsBTQEGnFHr7+rFyx8FRrq4rU1zbkTZJeAKlOd8fdDW/m5liYHAolNt4LaGiIJFIu7JHndoxjdF+FqgF9XsPOqWwaueLsFt3/Fl78omXI0B7zy7MX7fH8fckwq2EYc2t17n+5jRyMEevTuRt/QsVBYlE3gxzQc2fQewFQY3Zgz6dAIJijco778vfR+dXvu87Qm8tOfHeeUdlEbSBToqgq9+r5akYHBrOjQMCbRQkMFaDZN6IKrFXmlU/xuw5a57y5fUVFqsDADC6Ie0fGET3o4cABG/00uLEe+fHbEs73EoUrDYnP3VtYHAolpA1SUNFQQLhFCE1r7jFg7Jz7QNP4orLL/N8+f00CkkrCT8MXVSs2vliphsmJwO/27PKkoesGWbGbwQBkxU7DuLAG6czbdCPNPUkIq+LyGEROSgiB4xtLSKyR0SOGp9T4hGV1Jrevv5xoyQA4Nfnt/na74NhHTE4e1FtGqHWSsJkcOhipqegVtgM/Ct2HHRV6HF5yAZNouVEkDAzdrIeByoOG8VNqjpPVbuM7z0A9qrqLAB7je9kHJCX4b9f4u7B5WEdg8kfPJL+s5w4IX6TaBz5qs2RQNRAi1HdrbMcByoJY/btALYa/28FUE7gGiRlstwDDYo1kdDyBf5GFX7x8tDJEsM1MC997fNzYp8qisNO5jQSCBNoMeq9ZdnmF9VGoQC+LyIK4P+o6hYA01X1OACo6nERmRZVSFJ78ubd5IU5fbZo07M4evJMrOf2conMGnbDt5VJjQWsu6MjVluGea6Nu4/EttgxajRgoHqSK79keKF4ZKKOKBaq6icBfBbAb4vIDX4PFJH7ReSAiBw4dco5bSXJDmmHHZg80TuuU1Tae3bFriTGE2fOD2PFjoOZH0nGMPMUCK/w+HGQ1fKOpChU9W3j8ySAvwfwSwBOiMgMADA+T7ocu0VVu1S1a+rU6gnvSW2JK+BdNVqbS3h9wxK8+OXPpHI94k2cdimrLSAukh7B2RvuqJEBqpHVdRWhFYWITBKRy83/AfwagB8CeALAvcZu9wJ4PKqQpPakEYOoVCyMuk7c9gNSW6J4BbkRhzHbi1WWbIs/v2pX4g4dWXWIiDKimA7gn0XkEIB/AbBLVZ8CsAHAIhE5CmCR8Z3knHJnKxbObIntfJuXzcPmZfPQ2lyCoDKSWH/n6DnxLPuVk+AkMX2ZtAHYXD3f3rMLF8axDaIaoY3ZqvoTAHMdtv8UwM1RhCLZZNt918eyKnvhzJYRhVDNWOqW0J7kj8YJDTh3If6wJUmvbM7y+oa0YKwnEoi15Q68uv4WvL5hSajjZ02bhG33Xe97/3sCTj8tX9CG1zcswfTLG4OKVhM2L5tXaxE8mRDjzE4SSgJIfk1I2PwgYfBKp1tLsikVyQVBlYUA2LPyxkDH+J1+EkMec/9F1/1coOvUiiyH0sgLUdaEZM3L6LIqWRxrBRUFSY3XQo5CqjF5YmHMudPsBY5n8jIvH7bBz5qX0UBG1+FQUZDQBHk5Gwvh5zCqhX5I2pV28sRCrIZ8k1nTJgHI/vRTHvjyd8I1+FnzMspq9jsqChKaIKu1H7prjN+Db772+TmuvyXtQrtwZgte/PJnsO2+62NVFtMvbxyZhit3tkZSpOMJQfCcIUC+VsR7kfYCQr9QUZDQ+HV3XL6gLdJcfLmzFZuXzRtl6GuQynnDuNCWig2jXHObS0XHF2H5grZRhvcwysLJDXjzsnnY/8CiUfs9dNdc11hB5jFhlGJrc2lk5JIHrmwu4Zt1PMLK6tQT81GQ0FzZXPJcZdtq5BKIw2Bb7mz1fZ5qU2Lr75wT6HxWtt13vWeMJDt+3YCtcZCseRisx5U7W0cUox8ZrM4GQWS2Eue02PIFbZ62I3PBZZiYUHHEfMoCaUVACAoVBQnNTddO9Xzxn+v5dIrSXKLalFhankZBG9kgymtSYwFnzruvcraPfESAoEtfNi+bF2tZmUrOXIcjAJoaCzh7fniMYjTLwm+irAdvc0+Xmiduujab4YyoKEhonnnZPZhjaw17RmkHMLQzpamINbdel6hCWndHh2c4CftalXvme/fmnUhC/rXljkDThX5GcFEUmt8sh2mxff+xTEYkoI2ChMarQa5lz8hr+J50bCAA6PvTX0t81OJ1fqc7XFvuCGTjSDp6b5xEKessKQmgNnlC/EBFQULj1SB7jTaSxiuAYdKxgdI0HLuN2tyey9pyh6/psMkTC3UTvbeWI988QUVBQuM1aqj19I8bcTQMXpnMgq48j0L34tko2Vby2iPw2jE9yOxeWK9vWDLyVy9KAog3KvKUpuK4jXhMGwUJjdeooZbeG27GbEE8DUNWpiv8eEq5HcfQIRXKna2xhA4vFmTELrVt/7HAjgMmWXVlpqIgofFyXUwjf4UbbqMZxfiLrVTvjX4aUyJOMc16+/pdFXQYxwFg9CLMrEFFQUJTEHGd869l4+W2viOu+Wi30OcZXVSbe7zq2aaEF+e5TSV5Kei15Y5AimJCg+DrS+dmWuFTUZDQeBmGk84R4EX34tlYtfPwqGxq1ebug+B21xmZkRp33D3/KseG15rXJCnCuqq6LS4MG02g1tCYTULj1UMPEgcqbsqdrVh/Z4dn9rwouLnYpuF6W4+Yrr1m+RZExoRXyRpuMudRSQAcUZAIdC+e7WoI9Bt6ISmSnLt3G0kl7XpbzwRdqBeEhTNbHFd/Rw0CmaTMacMRBQlNludUk8RtJEWf/HziFOxx4cyWTI9Y0oYjCkICkrQNhKQPlYI3VBQkEvXoARR2/QIheYWKgkSicUIDzl246Lh9PFPv6xdIdbzWWuQNKgoSCScl4bWdkHqgt69/1PRk/8AgVu08DCCftr3x3e0jhJAasHH3kVE2LAAYHBquqdt4FKgoSCTcMouNl4xjhITBLYxMVoNlViOyohCRgoj0ich3je8tIrJHRI4an1Oii0myyoO3XYeiLZxqsUHGTcYxQsLgFhQzq6lOqxHHiOL3APzY8r0HwF5VnQVgr/GdjFPKna3YuHTuqFXQGzMet4aQpAkTAj7LRDJmi8hHASwBsA7ASmPz7QBuNP7fCuBZAH8c5Tok29ADiJDRjDcX6qheT5sB/BGAyy3bpqvqcQBQ1eMiMs3pQBG5H8D9ANDWNj6TfRBC6pfx1IEKPfUkIp8DcFJVXwhzvKpuUdUuVe2aOrV2+ZUJIYR4E2VEsRDAbSJyC4DLAEwWkYcBnBCRGcZoYgaAk3EISgghpDaEHlGo6ipV/aiqtgP4IoCnVXU5gCcA3Gvsdi+AxyNLSQghpGYksY5iA4BFInIUwCLjOyGEkJwSSwgPVX0WFe8mqOpPAdwcx3kJIYTUHtEMJFsRkVMA3jC+fgTAv9dQnLBQ7nSh3OlCudPFr9wfU9XEvYEyoSisiMgBVe2qtRxBodzpQrnThXKnS9bkZqwnQgghnlBREEII8SSLimJLrQUICeVOF8qdLpQ7XTIld+ZsFIQQQrJFFkcUhBBCMgQVBSGEEG9U1fMPwFUAnkEl58RLAH7P2N4CYA+Ao8bnFGP7Fcb+7wP4c9u5lgF40TjPQx7XXAfgTQDv27avBPAj4xx7UfEhdjp+IiqhRM4CGATwrxa5hwG8B+AcKnGoMi83gJsAHLbIPQzgnqzLbfz2Z4Zs54zzZKm8bzDK9SKAtzC6fu8FMATgDLJXvx3lBvAxAAct9eTHeZA7B++lW3ln/b28AcAPAFwAcJftt68B+KHxt8xNhpH9q+4AzADwSeP/y1FpBD4O4CEAPcb2HgBfM/6fBOCXAfymtYCMgjsGYKrxfSuAm12uucC4rr2AbgLQZPz/WwB2uBz/3wD8LYBPohKH6tsWuc/nVO6HDHlbUGmQv5EDuX8TwOsA/sSQ8y0A38yQ3O0APg3guwDuwuj6/XcA/sb4LWv1xE3uuQC+Ycj7IQDvAPifOZA76++ll9xZfi/bAcxB5d28y7J9CSqdnwmGnAcATHY6h/lXdepJVY+r6g+M/99DpZfSikqCoq3GblsBlI19zqjqPwP4wHaqawD8q6qeMr7/A4DPu1xznxo5LWzbn1HVs8bXfQA+6iL27QD+lyH3YwB+xSL3hJzKbZb3XQC+B+BzOZD7k6hUxL9W1TMA/gmV3lQm5FbV11X1aRgrYG31uxOVURKQsXriIfc0VOrFVlRGeWcALM6B3Jl+L6vIndn30pD7RVRGQlY+DuAfVfWC8V4eAvAZp3OYBLJRiEg7Ki/QftgSFKFSSb14BcC1ItIuIhNQqQhXBbm+jS+h8mCcaEVlyAZVvYDKC/OLhtwC4Dsisg/A/BzJbZb3FwH8dU7kfhLAFAA/E5GPoNJDas6Q3KOw128Ap4FM1u9R2OT+OQC7UXke61HpwXqRFbmz/F6OwqUdzOJ76cYhAJ8VkSbjvbypmgy+gwKKyIdQmVJYoarvikggyVT1HRH5LQA7UNFw/w8V7RoYEVkOoAuVnqvjLja5fw7AfYbc76pql4hcA+BpVFGWGZIbRn6PDlQaAk8yIneviAwZ1z4F4HkAd2RIbiuXIT/124pdblXVOSJyJYBeWJ5NxuXO8nvpJXeW30s3Gb4vIp/C6PfygtcxvkYUIlJEpXC2qepOY/MJo4DMgqqaoEhVv6Oq81X1egBHABwVkYKIHDT+vuJDll8F8ACA21T1nLFtnXkOY7e3AFxlyL0TFaPk/zV++zcjsdJPUOkRvJ8TuU8A+C8A/h6VgGF5Ke9jAD6rqosAlGD00jMi98juAP4QtvqNyrxzFuu3p9xG/X4bwE9QGd3lQe4sv5decmf5vfSSYZ2qzjPeS0HFKcnzAM8/4yR/C2CzbftGjDY+PWT7/T9jrLV/mvE5BRXvjF+ocm27EacTwKsAZlU57rcB/G9D7icBPGK57iZDXjM6419mXW5LeR9DZZiYl/IuAPgfhrxzAPwbgI1ZkdtSv18B8F2H+r0Fl4zZmSlvN7lRmav+piHvFFR6i3+VA7kz/V76qCeZfC8t+/8NRhuzCwCuMP6fg4rn0wTPc/i4yC8DUFRcsQ4af7egMve5FxVNtBdAi+WY11HpOb6PSm/z48b27ai4df0IwBc9rvmQcZzpjvagsf0fUNHgphxPuBx/GSrDV0XFE+FHxv5/YPxvurP9KCdy3wJgHiqGsTyV9+2o9JjOoOI2uz9jcn8KlR6gojL0HrSU9/OoeOJcNMr9rhzI/QAqLpdW99g8lHfW30uvepLl9/JTxnFnAPwUwEuW99W8/j4A87x0gKoyhAchhBBvuDKbEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhCRUEIIcQTKgpCCCGe/H9DmsqiQBIg1AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from apd.aggregation.query import with_database, get_data\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "async def plot():\n", + " points = [(dp.collected_at, dp.data) async for dp in get_data(sensor_name=\"RelativeHumidity\")]\n", + " x, y = zip(*points)\n", + " plt.plot_date(x, y, \"o\", xdate=True)\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " await plot()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nO2de5wU1ZX4v3eaAQbUGZHXgOBoQsQX8pgoRFeTEDUKyMQH6C/+Vo0/XROzwbg+cEUZIsTnGtk1a1Y3UbLJqmgMChOTuGRN1kTMAhpMJEZFfM3wiDqjwgDzuL8/qmqmu6equp7dVdPn+/n0p7tv1+P0rap77j333HOU1hpBEARBcKKi1AIIgiAIyUYUhSAIguCKKApBEATBFVEUgiAIgiuiKARBEARXBpRaAIDhw4frurq6UoshCIKQKjZs2PBXrfWIuM+TCEVRV1fH+vXrSy2GIAhCqlBKvVmM84jpSRAEQXBFFIUgCILgiigKQRAEwRVRFIIgCIIroigEQRAEVwp6PSmlfgDMBnZorY82y4YBjwB1wFZgntb6A/O364FLgC7gG1rrX8QiuSAUkaYtTdzy/C207WsLdZyqTBUA7V3tANQMqmHhcQuZddisnvMs37icbbu2MXroaBZMXdDzmxAffuo9/16oGVTDaXWn8Zt3fsO2Xds4YOAB7Ova13ONvZB/HyQNVSh6rFLqJOBj4IdZiuJ24H2t9a1KqYXAgVrr65RSRwIPAccBY4D/Aj6lte5yO0d9fb0W91ghqTRtaWLRs4vo1J2xHL+yopKbT7gZgMbfNbKna0/Pb4Mzg2n8TGNiG5D+QNOWJs/1Hue9YN0Hfq61UmqD1ro+cmHyKGh60lr/Bng/r3gusML8vAJoyCp/WGu9V2v9BvAahtIQhNSyfOPy2JQEQEd3B8s3Lmf5xuU5jRXAnq49LN+4PLZzC/iq9zjvBes+SCJBF9yN0lq3AGitW5RSI83yscC6rO3eMcv6oJS6DLgMYPz48QHFEIT42bZrW0nPUYzzlzNO9WtXHve1SOq1jnoyW9mU2dq2tNb3aa3rtdb1I0bEvgJdEAIzeujoopzD6TzFOH8546fe474WSb3WQRXFdqVULYD5vsMsfwcYl7XdwUBzcPEEofQsmLqAASq+aDeVFZUsmLqABVMXMDgzOOe3wZnBLJi6ILZzC/iq9zjvBes+SCJB//GTwIXAreb7E1nl/6mUugtjMnsC8PuwQgpCKbEmF4vh9QSI11ORserXS73b3Qvi9QQopR4CPgsMB7YDi4FVwEpgPPAWcK7W+n1z+xuArwCdwJVa66cKCSFeT4IgCP4pltdTwRGF1vp8h59mOmy/DFgWRihBEAQhOcjKbEEQBMEVURSCIAiCK6IoBEEQBFdEUQiCIAiuiKIQBEEQXBFFIQiCILgiikIQBEFwRRSFIAiC4IooCkEQBMEVURSCIAiCK6IoBEEQBFdEUQiCIAiuiKIQBEEQXBFFIQiCILgiikIQBEFwJb78jkLZ07SlyTEr3JABQ7hpxk2eM3o1bWmKLfObm5wW2RnI/Mpibd+yq4UKVUG37qZ6YLXvLGheqFSVdOiOHLmzs6+NHjqaQ/Y/hN9v/z3dupsKVcG5nzqXRdMXRSqHF/LrvdRZ3uzug/zr7ifLodP/ifNejouCGe6KgWS46380bWli0bOL6NSdjttkVIZlJy4r+JA0bWmi8XeN7Ona01M2ODOYxs80hn7AvMhpUVlRyVkTzuKJ157wLIud7Elk/uHzi6osnOq9sqKSm0+4uegNp9t9YF33n/zlJ57uk/x9s/9P1PdysTLciaIQYuHUx06lZVdLwe1qh9byy3N+GehYXvYthFc5LawRgVdZ/B6/VFSoCv7wt38o2vnc6iWK6xqlPOB83b2Q/X+ivpeLpShkjkKIhW27tkW2ndM2Xs8R9vzZODUWccpYDII2gkFxq5dS1Fmhc4apn+xjp/U+EUUhxMLooaMj285pG6/nCHv+bCqU/SMTp4zFwOl/xYVbvZSizgqdM0z9ZB87rfeJKAohFhZMXcAA5e4rkVEZFkxd4OlYgzODc8oGZwZ72tfLsQvJaVFZUcm5nzrXlyx2sieRcz91blHP51TvlRWVkVzXqOSB3uvu9T7J3zf7/8R5L8eJeD0JsWBNzEXh9WRtE4enSCE5LbI9WKaMnOJZlmzZxeupF7t6L6XXk9N9kH/dw3o9xXkvx4lMZguCIKQUmcwWBEEQEoEoCkEQBMGVUIpCKbVAKfVHpdSflFJXmmXDlFJPK6VeNd8PjEZUQRAEoRQEVhRKqaOBS4HjgGOB2UqpCcBCYK3WegKw1vwuCIIgpJQwI4ojgHVa691a607g18CXgLnACnObFUBDOBEFQRCEUhJGUfwROEkpdZBSaghwBjAOGKW1bgEw30fa7ayUukwptV4ptX7nzp0hxBAEQRDiJLCi0FpvBm4DngZ+DvwB8BwxS2t9n9a6XmtdP2LEiKBiCIIgCDETajJba/19rfVUrfVJwPvAq8B2pVQtgPm+I7yYgiAIQqkI6/U00nwfD5wFPAQ8CVxobnIh8ESYcwiCIAilJWwIj58opQ4COoArtNYfKKVuBVYqpS4B3gKKG0RG6BckLamNIJQzoRSF1vpvbMreA2aGOa5Q3tglkWnd28qNv70RQJSFIBQZWZktJI7lG5fbZhLr6O5g+cblJZBIEMobiR4rFJXs/NFBaNnVwnE/Os5X1NWaQTVMPHAi67at87RttokrKhPY0nVLefQvj/aJ2OqWPzn7twMGHoBSira9bbbbLfndkp46USiOH308m9/f3CcSqhVJ1qn+FYp5h88rejRZp3zVp9Wdxs/f+HlJTJBL1y3lkVcesf2tdmhtKqK+RoVEjxWKRlryR1t5joFI8jo7NTjTR0/nxZ0v2uZPBlzrKnu76//nejTRPsfFzKHtJ285FCevtpuSsIgqb3sYJGe20O9IS/5oMHqMQCR5nY/94bG+UmkWOrff7YJQzBzaQe6LuPNqe71mpcjvnU2xFIWYnoRIaNrSxI3P3piTNMfCSlKU9LzA2RSS1c9/8ZtvOcp840EpZg7tIP8j7nvJ6/9P0z0dBpnMFkLTtKWJhf+z0FZJAOzu3M0Nz95A9aDqIksWnNFDR0eW19lvvuVC5/a7XRCKmUM7yH+IO8e01/+f9FzXUSGKQgiNF0+kLt2F1joV+aOtPMdR5XV2ykc9ffR0x/zJhXJtZ2+nUJ5l8Uoxc2j7yVsOxcmr7eX/pyHXdVSIohBC43X4/eG+D2n8TGOPbd2JSlXZ87kqU0VVpsrxuxdqBtUwffR0z9taE6WzDpvF0hOXUj2w2vZ3ryyavoj5h8/v6aVWqArmHz6f+0+7v6c+FIraobU9k6OzDpuV81v1wGpqBtXYbnfL39ySUycKxfTR03PktmSff/h81/pXqKJOZAO29Qy98oat/yBY18yJ7GtQDshkthAar5ORpZ74E4T+huTMFlKDl+F3RmXKZpguCP0NURRCaGYdNotb/+bWHJNRNkMGDGHZicvKZpguCP0NcY8VIsGylwuC0P+QEYUgCILgiigKQRAEwRVRFIIgCIIroigEQRAEV0RRCIIgCK6IohAEQRBcEfdYIRHkx/+3Is6Ky60glB4ZUQglxy5JjBVxtmlLU4mkEgTBQhSFUHIe/cujtuVduktyZAtCAhDTk1B08nNBuyWJyY5Mm593+rhRx+Xkha7KVDFowKCevNInHXxSTr5lKG7O5SThlpvb+j2K3OB+5ci/RnZ5sq3IuPl50sv1WpYCiR4rFBW/ebOtiLNechh7pRg5l5OEXZ1n53t2ylkddT3FkTO93K5lPhI9VuiXLN+43HNDkR1x1sk8FYSO7o6yMmnZ1fmerj09dbB84/I+SgKiryc/194r5XYtS0UoRaGU+qZS6k9KqT8qpR5SSg1WSg1TSj2tlHrVfD8wKmGF9OM1yVF+xNmocziXS65jcP6vVrlbXURZT3HVeTldy1IRWFEopcYC3wDqtdZHAxngPGAhsFZrPQFYa34XBMBbjuHaobU8/+Xnc8wJUedwLpdcx+D8X63yqHKDB5UjqccVegn79A0AqpRSA4AhQDMwF1hh/r4CaAh5DqEf4TUXdD5R5nAuRs7lJGFX59n1HFVu8CByhKXcrmWpCKwotNbvAncCbwEtQJvW+pfAKK11i7lNCzAyCkGF/oHXXND52OWdzs8LXZWpyjlWfr5lKF7O5SSRX+f59RxVbvAgctjlxM4vc8qTXo7XslQE9noy5x5+AswHWoFHgceAe7TWNVnbfaC17jNPoZS6DLgMYPz48dPefPPNQHIIgiCUK2nwevoC8IbWeqfWugN4HPgMsF0pVQtgvu+w21lrfZ/Wul5rXT9ixIgQYgiCIAhxEkZRvAVMV0oNUUopYCawGXgSuNDc5kLgiXAiCoIgCKUk8MpsrfXzSqnHgI1AJ/ACcB+wH7BSKXUJhjKJbhZSEARBKDqhQnhorRcDi/OK92KMLgRBEIR+gKzMFgRBEFwRRSEIgiC4IopCEARBcEUUhSAIguCKKApBEATBFVEUgiAIgiuiKARBEARXRFEIgiAIroiiEIQyoWlLE6c+diqTVkzi1MdOpWlLU6lFciVt8vZnQq3MFgQhHeTnq27Z1ULj7xoBEhmmO23y9ndkRCEIZUChvNlJI23y9ndEUQhCGVAob3bSSJu8/R1RFIJQBhTKm5000iZvf0cUhSCUAYXyZieNtMnb35HJbEEoA6wJ4OUbl7Nt1zZGDx3NgqkLEjsxnDZ5+zuBc2ZHSX19vV6/fn2pxRAEQUgVaciZLQiCIJQBoigEQRAEV2SOIpsVZ8Ibv+79fujJcOGTpZNHEAQhAciIwiJfSYDx/Z7jSyOPIAhCQiifEUXjgUB3VkEFNH7Q+zVfSVj89c+waSVMmhendIIgCImlPEYUjdXkKgmM743V3vZffWXUEgmCIKSG/q8oVpzp/vudEwsfo2NXNLIIgiCkkP6tKDatdDYpWXzcUhxZBEEQUkr/VhRPfN3bdreMj1cOQRCEFBNYUSilDldKvZj1+lApdaVSaphS6mml1Kvm+4FRCuyLrr3ettvbFq8cgiAIKSawotBav6K1nqy1ngxMA3YDPwUWAmu11hOAteZ3QRAEIaVEZXqaCbyutX4TmAusMMtXAA0RnaO0bFpZagnKi00r4TtHQ2ON8S71LwglIypFcR7wkPl5lNa6BcB8H2m3g1LqMqXUeqXU+p07d0YkRh7DPXg0eWXtt6I7luDOPcfD45dC29uANt4fv1SUhSCUiNCKQik1EDgTeNTPflrr+7TW9Vrr+hEjRoQVw54o3Vrb3onuWEEph172ijONRY52/PTviitLUMrhOgnhWXMVLBlmrOdaMsz4nlCiWJl9OrBRa73d/L5dKVWrtW5RStUCOyI4RzCibNyrSjcnDxieWdmT7m1vw+pvGJ/706pxN3dmnb9oMoHcc3yuorNGQ9C/rpMQjvz7RHfB+u8bn2ffVRqZXIjC9HQ+vWYngCeBC83PFwJPRHCOYGQGRnes9hJ6Rt050d4zq6O9f5nEbk55mku30dDjl8KSA2V0IRgjB6f7xFIWCSPUiEIpNQQ4Bci2CdwKrFRKXQK8BZwb5hyB2bTSu3usJ7oiPJYNdpFrp1xgKAK3RYFtb8crV7FYcxV0tZdainAUWtypu2V0ISRWGbgRSlForXcDB+WVvYfhBVVaVl1Ragns2bTSaPzb3oHqg2HmTfDCj+wj1xZqeABQsYhZFLLrgtJnWiwaT1whiqJcSfA8hBv9N3ps9z733wcOhX1FjuG0aSU8fhk9jWLb27nfA5HSBnbTSmOOpSPlo4ggdBW4N4X+R/6z70gyO37pDuERxrtk9t1QWZVblv89n7DeCU9cQd8bJaUNfVjWfsu/klCZeGQpBSntWZY9QTyVNq00TY4envX6r4QWMQ7Sqyg2rYRVX8v1tV/1NaO80MWrHGoM/ef8M1SPA5TxPuefC5/X8k7IPodXhSU9yV6CzK3omOeJikkK7dRlzz3HG9fNug/t2gI7nrrO+zkS6PEEaTY9PXUddHfklnV3GOXt77vvO+du433SvL62YmuysRDrf2Bc1J7egom4Q3pE4Xs0VT0uFkkEoSCFPJXcGvhC7ZHFII/5cUpAehWFU+V7uShuDXjlUI8L9cxGzkmxPH5p7nnELTKPACa3YYdFK0K+L/vwifD154MdK47rm+8JlxkEc+8xPuc7REinJF42PBhsv0L5cLK5/q1g5ygC6TU9xYU12oiC7MYjzvUO5WLvfuPX0TXI+UoCjO9ecqTb2am9jkSzaax2vnZ2Ody79hrnsQtvksZQ+TePNuog+5XU/1HI7Gl3He853qPnIkYHNcEorUs/mVpfX6/Xr1/vbyevaUzzqRgAN73nvs3NI72twTj0ZO83Qtw0pixUetDrZ3mFFOpJ27khZ2/rdn63ulxzVTzzC/WX5JovgtRPpgpu3BadTHFy82j3dTPFvJ/d3LRVJSz+q9EhKKQssmXON0kX4qz7A40KlVIbtNb1vnf0SfmNKBruLbyNNbwvRLGUxFn3F+c8qUDT05Ne/Q37EYblepvT674smpFXXJPQXiZFC9HVnp7RZaHFlY1FCpmTf6/kozsMpV13or/j+pnAPvTkxJsOy0tR1F/i7YIk5aJVjwvc00g0fuy2bjiFMLF1vdVGY+zFdOVmEoqTKJRQv/Gm6g4x6vSBVzdtL53CbOXmdQK7/hK48Elv25aQ9CqKIHGcEup6ZkumCr75x14lcejJpZUnKtZcVfih87News7N1i0YpNeeXhQ9/CBYtnrBIG6lHWlU6G7/sqakTUqvohi4n7/t/ZpvosxlEYR8W3OhXkdaQlt76fF+6Xv+jpn/Xysqnbf12tODaHrnwycavUYhl0yBxa3ZxKm0qw+O9njWPVM1rPC2XrZJCOlVFH4eePBvvvn686VRFoOqg03k/fTvcm3yTvb7OIhaSfm9VvmjhELhW/zIt2R472cvHlH5fP15o9co80y5zPWwuDWb9d837q+o7+mZN0V7PDBGQV7ap9Nvi/7cMZHedRQqE/9K3a8/bzR8cUdojcLDIz9Xg2W/j3t+w8+Cw7h6hX47DU9dZ8z/eLmuusOYU9n5F/covnbsV9v72aqLIG60/ZFA7uLaqL9VXzWcUtI8dzd8YqrkT++IoljhHOLocWTjxx7v19c63/4ah3nq8csdym0axPU/KHw8q3HNDAouUyHa3/d3Xd/4tX8lAXB13jqNSfOKM7JIg+dTmLmB7k7j/mqsNlzZw9zHpcjnEmZhZ4lIr6LwQxgb8aR58dqYp13kfVu/iwGzs/LZuYxGYp5yUdiN1b0KadNKCq7G3q+2t3H16qJshxeTYdw9e6dR4qR58a8RCDq3kr8ALs5EUlHNDXTtNcyuQe/jUuRzSZmSgHJRFGE9Cywbc9Sxhg492Z9sYYaqdm6AHe29PTO7VxQ9U8sUVahhrr8ktwce5r/uKl32XYZPTMbixzt9zq81Hth3bUNXe3zKYsKp0R1LdwcfGfSniMQxkl5FUewLPGme4a7a2GY0avnndzMLnXV/lqJRvesj4vafzrbdB+k5FdNFNKwyt+Rcc5X/OYuoOOt+773FgQFCNmSqeu+/QnzckjsR78aaqwCHfORxZR189Zf25UFDWQQ1ZbmZsMUBoYf0TmZPu8jbEDsOs9Hsu+wbtjVXmXZ408QycKiR98LqHRd78kpF0A8oFBlzv9pg9vt8Nq0sWD9tW6vYsWl/OndnGDCki5GTPqK6rr1XzvHTS7fgzApd75XZd/s3f1ku07Pv8vY/dYcxUmj8wH27UtSZU8PesTvY8YKaspycGqrH9UaXvmW8fc56S5GUgYNCehXF7LvgvdcKL94q5oIWJwVSKvI9oYLi1ohnIrqFCnhotW2touX3NehuI9ZT5+4BtPy+BqBXWZTsgVX+54/8eEFlz91YeI5y3G2Yoaz911xlRELVXcao2M8cWZRUH+zQQB9smKX8Kq+gTiczb+qbabGyKvd4haK6vrWuH62Itye9pidIxdL3fsHqK51/i2plq+1xetNCbt94QI+SsNDdiu0bD4jm/EGpGgZn3RdstGhNbNuZJRvbel/5SgL8KSZrxLdkuH3inVIw8yb7DJMzbzI6W3bmXTeCjtadEpj5Gh3e5d1ykVJzVnpHFBYVA50XWJX7itiKAGFO7OjYZQy/7XpWTj1Dv9iZDuq/0tOQde2z79M4lQdGVRomGy8Mqobr3gh/TrsEWl72WfVVw1XUC0HDgsTVsFn/1ynCrzU6L0Y4kyD1n8/su4x5F6dnoXpcqvOGpHtEAdDwXWwTkvv1KEoLfpb9d++LbiXr3jb7XAF2PUO/5A/1Lfz01KJgULURUtrrY1HqRDMN90YzD+VGnA1bj4NIa25cs2y8/L+kdAidRkln3e/8/1JC+hXFpHnG0L/YHkWl4vTb/AVEfOo6Yy1DFOxt66t4Js1zdJhxpWIAnob6s++CzEBUpf1JnMp9s19tb8Pf+EHuqup8goZZiZpJ8+BL/9a/U8ROu7jwNknpEEZhxkoo6U1cVM5sWuktN3gcVI8zekd2GeLcqKwK/tA01tC2dTDNz1eDzurbqG7GHN/WO5ntRn5iIC/kZ5k79ORkd0CiNtNY17rUuCU5GlRd+pFdCSlW4iJRFGnGLl1mUAYOhX1evGjw7hJbPS6avM5mvK2W/z2A1i1DDe9jBTWH7aL20x8W3r8/5vSww29WtUIkqd7unNj3nitzJQEpURRKqRrg34GjMR7frwCvAI8AdcBWYJ7W2tWRWxRFCMKm5sxe63HbodGOUqIyz2xaSdvyf6Bl3RB0V7a1VFPziQLKwkplWS5ENapI+uhJANKTCnU58HOt9UTgWGAzsBBYq7WeAKw1vwtxEdY+WzWst9d4+m3JDGkwaR47XhmbpyQAFK2vD6Vtq8tkejkpiSgRJSFkEVhRKKUOAE4Cvg+gtd6ntW4F5gIrzM1WAA1hhRQKEMbzJXv9wqR5/pMGOTEoWnt553tOowZFywaHtRR+kuP0F6KY2E6KF5GQGMKMKA4DdgIPKKVeUEr9u1JqKDBKa90CYL6PtNtZKXWZUmq9Umr9zp07Q4ghhFqBnb9+IapQ2BHbjlW1s+LRHTa3caaqb5bAcmDmTdi6i3umIjleREJiCLPgbgAwFfh7rfXzSqnl+DAzaa3vA+4DY44ihByC1yQ8dtitX5g0L9ykaByuo/vcstapZLirJoFJ84KHlChX5SoUJMyI4h3gHa21FS7zMQzFsV0pVQtgvpcw5nOZECa5UtReLTE12Hp3wGBx5YgVFt9tZb5dqBBREq60rV7Nq5+fyeYjjuTVz8+kbfXqUotUNAKPKLTW25RSbyulDtdavwLMBF42XxcCt5rvT0QiqeBMUtJsJiiOTcuSJbSufBS6uiCToWbeudQuXlxqsYpHFGEphB7aVq+m5cab0Hv2ANDZ3EzLjUYHrXrOnFKKVhTCej39PfBjpdQmYDLwbQwFcYpS6lXgFPO7EDeT5vmf1I4qFhTE7nOvamo8b9uyZAmtDz1sKAmAri5aH3qYliVLYpJO6O/s+M7dPUrCQu/Zw47v+IwanFJCKQqt9Yta63qt9SStdYPW+gOt9Xta65la6wnme4myyJQhXsIdZNPw3WjOO6g69t5r7Q3/6PibGjIk53vrykdtt3MqF4RCdLbYLzDtbG4usiSlIf2xnoReZt/lLV80GC6Qbo27n/UURVgd6za87zN/YY0k8nEqF4QCZFy87sphrkIURX/j68+bfvBZLpKZgWbU2aygiYVcIL2upyimz71ycPt0KheEiHBzQC8H81P681EIfYki05412sgOPlgxEHSnsW7Dyo5WTJ97p3AzAcPQvDZ7Nh2vvd7zvfKTn+CTa9YEOpbQv9Ftzt585WB+EkUhOOPRcyZxHkaZjL2ZKWvkka8kADpee53XZs8WZSH0YUBtrbNCyCQw7E3EiOlJCEUiPYyc5iK07rEn5ysJC6dyobwZ+U2XdMBlMPclikIIRevDj/gqLwYDxoxx/K0c7MlC9FTPmeM8FyYjCkEoQMTzBkHJ9jxx6/05uTkKQkGc7mkZUQhCfPgOieDi3ZQ9UqieM4eMwwK9AbUuKU4FQbBFFIVQEtpWr6b5uoXGBKHWdDY303zdQndl4TJKyZ9o3P/0L9put9/JJ3mSLShbL76YzROP6HltvdjnIkhBSCCiKITYcGtwW25aDN153und3Ua5A25zD/mjjY9//RvbzaxypxEHQMuybzufx4WtF19M+3Prcsran1snykJIPaIohHC4TOS5TRzr9nZf5VDA8yRvtOHkymiVj3IJCaJbW53P40K+kihUXoiWJUvYfNTRxujkqKPLOlaV1EVpEUUhhKJm3rmOvwVZiKSJKCRCAQ+VYkf89Puf3NyOyy3cdWJcsH1GBuhPyk0UhRCK2sWLXSeZ/TZkCnhryc19yq0wz15oW706Vg+VIA2AX7fc1ocedixvufGmnLmdlhtv6tfKwq0uiooPD7/EKLeIEEUhhKfAJLNdQ5Yf8TWbzMcf9SmzC/PshFuj7CdcuR1BG4AowzyUc7jrtNDfIhiLohBCU6jxtWvIapc04melhZ/1D27bhr3hXRuAqirnHWMOXFgO8YZSRT+LYCyKQgjP3r0FN8luyDZ/+jiar7nWdftFq17K+e5l/cNrs2cX3LbLDO4W2FTj1gC4jXiKsACxP5ufUoeLk0car5MoCiE0bp5K2bQsWcLmiUfAR4ZpyamPrYEfr8vNcTHym1eiBg92PX7Ha6+z9eKLXXvXyswrEIepJqrFfEHt2EHdehPPAIfYpU7lCcDNySONZkJRFELR8Dr5qDCURd3Cpp7X17YNp/bmbxXct5ArqnXDxxHKw9V91wdBJ2mDuvUWk0CeQJ2d/soTgFv05DSGkRFFISSSplVX8+AvlvLZtzcA8NvX3+dr24a7ToJ7octsTJMSyqOcXF37mydQNnbXzWnuTrlky0sqoiiExKEwbsxR7a1cu+EhfrbqappWXU3lM09Tu6Qx3MFN23Gh3v/miUf4bsD8mhTaVq+m+drrchv9cwIAABT/SURBVMOYXHudr2OkiTg8gYqpWP2u5ndqXHVra+o6BaIohFDEfbMrehXHtRseKjgJXhCzN+tlwZ3f3q5fk0LzTYv7TnIXOepuUXFxBNg88QheOelk25/jCLcSBL+r+btcTIFpW/8iikIIRTEn5iJxMPXppupnvsC3OcujE4Bfss1Zf54+g79Mn5EK01b3jh22yiKOcCtB8L2av0CeCr1nT2ocEJLrNiAklkWrXuKh59+mS2uampvT1dsI22N3SbM68ptXFhzxbP70cT1eX3GweeIROd91ayuWtJ3NzTRfbzS6xQ5h4pXuHTv6lFXPmRN+JFkk2lavZsd37jZGlx7uNd3aStvq1Ym9HhaiKARffPn+5/jt6+/3fN9ZVcOo9uR729iilKeHefOxkxlw0EHuD7+X48SsJDzR2UnzTYsT3TBlN7YDamuN+SSnaxXzQkY/WGFmvEYQsGi+5lp2b9xY2jzzBQjVGVRKbVVKvaSUelEptd4sG6aUelop9ar5fmA0ogqlZtUL7+YoCYAHjzydPZlK1/20+YqSKI5Xc958b+fau7dnwtmNgmaEUisJi/b2RJug3r3m2pwJ/reuvT72TIqrXniXE279FYcubOKEW3/Fqhfe9X0MP2Fm8km691cUVoPPaa0na63rze8LgbVa6wnAWvO70A+48pEX+5Q9M24ayyef49hwa+CMhjtpzwyMVBYFdONfYWRv77UH57XPmoZ1DBbN1xX/sVQDvd0D+fU9QHc5X+cI8lWveuFdrn/8Jd5tbUcD77a2c/3jL/lWFmHDqCQ5DlQc5uW5wArz8wqgIYZzCEXG7aH5wpv/W3D/f5l8duSjigrgw8oq3wrj/sX/2vO55vzzIpNH4+6hkyjyk0YVgdplS6EiWJPjqKwjiJ10xy9eob0j9zjtHV3c8YtX/B0orBkswXGgwioKDfxSKbVBKXWZWTZKa90CYL6PDHkOIQE4PTRLn/0eU//6WsFe9zPjpvk6n1dz1QEd7cxquNPzcRUw4cn/AODbV93FK6t+3qNowioyDXQWaVQRhdLNTtma//rz1GmRm6eq58xhzG23umcq9EnYaMBgjCD8lDvSj12bwyqKE7TWU4HTgSuUUoUTEpsopS5TSq1XSq3fuXNnSDGEuGl2eGjclIQGNg7/ZM53N3TWq+PAg7h92vmBzEuFGNneyssTj6DhZ/czqr2VCnrDhoQ5l7XmIw0UvBa7d9N8zbWJnsuA4vv3h40MUIik1neoetZaN5vvO4CfAscB25VStQDme19/N2Of+7TW9Vrr+hEjRoQRQygCY2pcQmjbYCmJRSde3lO2pm6G61zGh5lBXHrRdznyz5s59rlneWbcNM+jhR2D9vfcyCvsG/WwjU4QJRFUMRU6V6HjepU1SrdUyyso25YfthPgtqgtCvJNrqEjAxQgqesqAj8bSqmhSqn9rc/AqcAfgSeBC83NLgSeCCukUHquOe1w3/tkKwmAeyefzeq6GXQplTN6sJTKxWfdmnOeC6aP93yui05f3KMssl9+icNDy+1caTpuWOy8gqyRXGAimMx24/rHN/V83nzU0bGv50iqQ0SYdRSjgJ8qYwJnAPCfWuufK6X+F1iplLoEeAtwjrcrpIaGKWN5dP1bfdxj39hvJId+vCOnh6rNcjvunXw2904+m7vnTwaMuY/m1nbG1FRxy2mH0zBlbM+2SxuO4Ud54cbzyW5kLjo914vpZ6uuLvi/8tlZVcODR57ONRseSpUpKZ8uIEOy5HcKcWJdw0CyxjwB3N5hTPrnL2QsNwIrCq31FuBYm/L3gJlhhBKSyY8vnZGzKhtgaNe+Pg+4MsudOOETw3oUQrZisENhr4zAaGDW1M3w9R/c0BjrQp4ZN41nxk3rmai35IgSaxT1yQ+bqd63u+C2fs7/YWUV5826mTWrru6Zf0kCrfsNo+aj9/qU76yqYf89H1GljUbfr7xxr2xO8vqGYpGq6AtC6VnacAyv33IGW2+dBcAIh1XZTuUTRg7lx5d6b9y/PH08V3zhWt7Yb2Qfs9LquhncO/nsnO0vmD6erbfOYtT+/tdtaHK9sxadeDln+PCo8suiEy/niGWNBWXyQzfwvUmGR/rskLJriNS082+fOrXP4sw9mUoePPJ0zp57W+C6jntNSND8IIFwS6dbQiSEhxCYrbfO4plfLLUN4bGzqq/bogKevuqzvs5hmZ+u+IK7bVgBb5jKC+CUo0azY9D+jNz7kaceqgbumHa+L9miwEsco43DP1nQBVkDnaqCu6bOz1F2Hw4cUnDE4sacM2/jtcB752LJddHLTzGivbXHzJctr0ah/KrHEGtCVr3wLp99e4OjTEuf/V7gYwchM2hQUc/nFRlRCKGwC+Fh9RLzyW7Io+SAQZk+x/7RurccJ7jzmyFrdOK01mPj8E9GOjHuNodjx6ITL3edZLeOd+bc2/v8h+8dMzfwZHG3UnRGPDP+zLhpXHTaImY13MlFpy3qI++auumBVtsHdSv9zb/+BwtefKzHTXpUeyvXmDlQfrbq6h7TY7GwcronDVEUQmBWvfBuTwiP7VU1dAPbq2pYPvmcPg3AwExwS/mgAe636aYlX3T87aLTF3NGw505r9unnZ8j7+3Tzu9jwsrm9plXMGTG9ECyf5gZ1EdJvbHfSK74wrVMGDkUgDF33F7wOLMa7rRdU2K5FTuNuPwudMw+btMhwf5zGO6dfLbvOQoFvHlbMLPVmeufYHBXR06ZNa9TyJkhDg+5pGa/E9OTEBhrtbY1+evG7ef08XvwzG1nT7KNMwX+XGgtvMhrccInhplzKl9k68UXs/u5db4asvPmLLMtH7X/wB4zXPWcOTT/4w3Q0dFnu/as0drshjv56os/Ydab66jQmm6laDpkuquSC0Ncx3VDgeeovtkM+Kvtcq2COM2lecUyb4K/SXgnB4Wk9tyTKpeQApxWa+dzwfTxBb2b3GiYMpa750+mqrL3dq1QxnGXNhzj+3hVlRXcPX8yY2uqUEBNVaXtg3DB9PE5E+91DzzAkBn+TCN3z5+cc66xNVXcPX8yz99wSs52Y769rE8cpE4U90w+p2efC6aP597JZzN77h2c0XAns+feUbAxH1tTxa6jpzqawJLGmJoqxtx+m+/9dtjMiXnho8rgk8ea3hGr3/2cSKrpSUYUQmDG1FS5xsMZW1PFNXlrI4LSMGWs5+MUivp5y1mTfB0vm7oHHuBlDz71GvjroP09uwFb7p3ZeRjGfPNKHshy+2yYMrZHMdYtbCoow9aeeZvP86MT5+TY2/dVDGBgd2fBY1jrXaLggunjXdfFVFVmuOa0w6k262rHd+5mX3NzQRNQF4on6+fy2SBCBQzkl++a7XUS3jI9Du3aZ+sE4jtLYpEQRSEE5nMTR7g++L9d+PkiStNLoaifUSguJ6ymYseg/Wl98Ke+9q2eM8fzeoChAzPs2ue82OyETwzL+X7j31zex5pTaEHi3fMnR1pXlpKz1uEoYMjADLv3dTEmr1Nh1cWX73+Oa/7pEgai+yzqBEPh3T3lXBq+9n8DybR/CI+w7NHcmrrpzNn6nCfz0xVfuJbPvr2BBS8+ljM/sidTyftfupAJgSWKD1EUQmD++8/OwRzH+owNFSVeTWJx8eX/s5zFc46KVSEt+9IxjvM2QJ+1Kl8+vm9v3sl92PICuy4G+Zc2HOPLXPjjS2dQ9/odrnMzYRSaqqjw7V6rMeoum3snn82crc952hecXYX/p/kgXvclTXEQRSEExq1B/tzE0gV6dDOJZSJIndmtFBmHyVYFvHDTqaHPUYiGKWMdFYXdP7Qa52xlcdHpi3nwqSU9k7EWq+tm8OPj53FdZNKGxwr9YkcYhawKKAm7q7xj0P59wsVY2xbykspeq2PrVJHEiSNEUQghcGuQ3UYbcXPNaYc7NqJdEeQMaDrE3syggYGf/ETo43tlrEP9O0X6XdpwDPWHDMupG7sG74BBGVeX4/7EgDFjCmam8zpZvaZuhqP5qdBanaQjikIIjNscRanNP05EYRL7tylGz3Z2XqPwxn4jmbVmTejje+Wa0w7n+sdfysnOZk0IO2H1vrODMUblcJBGRn7zysgiwj78mfP42xmH8N7Dj1CR1SHZYbMCPW2IohAC4zZq8Ju/IkqcJrMVwcKl59OtnU0h8aw9tydoox/U46s/4iWEihcqM4rFc46idsqpfGZPfeBkd9YizKQhikIIjJtrbBQNclCcRjOaeD2eSkG5N/pxLwRTZLsZ97LqhXcdFbSd44AXshdhJg1RFEJgMko52vxL2Xg5zZ1E5YnllGwnKeG8+xtu99ldEa7zsKPm/PNsy90UtJc8KtkMqFDcee6xiVb4oiiEwLhNDK964d2S3fhBbPd+cAvOJ0TP+cePs214s/OaxEXt4r6T/V5wWlwYNJpAqZEQHkJg3HrohRa9xUnDlLHcctYxOWEzbjnrmMgaFScX2yhcb4W+LG04hgumj++p34xSfcKrJA0nmdOoJACUjsBdMCz19fV6/fr1pRZD8MmqF951XfRlZ9vtD7iFz+iv/7k/s/Xii2l/bl2f8qoZ06l74IESSOQdpdQGrXV93OeREYUQmCTbVOPEaSRVytXoQnDqHniAqrww8mlQEsVE5igEwSdxz4EIxUeUgjuiKIRQlKMHkCxaE8oNURRCKAYOqGBvZ994OQMLZKVLO+W+fkEojNtai7QhikIIhZ2ScCsXhHJg1Qvv5pgn321t5/rHXwLSObfXv7t9giAIJeCOX7ySM4cF0N7RVVK38TCIohBCUVNV6atcEMoBpzAySQ2WWYjQikIplVFKvaCUWmN+H6aUelop9ar5fmB4MYWk0njmUVRW5E5dV1YoGs88qkQSCULpcQqKWcpgmWGIYkSxANic9X0hsFZrPQFYa34X+ikNU8Zyx7nH5qyCviPhcWsEIW6uOe1wqiozOWVpdqEONZmtlDoYI7LyMuAqs3gu9OQ5XwE8A4lKliVEjHgACUIu/c2FOqzX093AtUB2AtlRWusWAK11i1JqpN2OSqnLgMsAxo8fH1IMQRCEZNGfOlCBTU9KqdnADq31hiD7a63v01rXa63rR4woXX5lQRAEwZ0wI4oTgDOVUmcAg4EDlFI/ArYrpWrN0UQtsCMKQQVBEITSEHhEobW+Xmt9sNa6DjgP+JXW+gLgSeBCc7MLgSdCSykIgiCUjDjWUdwKnKKUehU4xfwuCIIgpJRIQnhorZ/B8G5Ca/0eMDOK4wqCIAilJxGJi5RSO4E3za/Dgb+WUJygiNzFReQuLiJ3cfEq9yFa69i9gRKhKLJRSq0vRsamqBG5i4vIXVxE7uKSNLkl1pMgCILgiigKQRAEwZUkKor7Si1AQETu4iJyFxeRu7gkSu7EzVEIgiAIySKJIwpBEAQhQYiiEARBENzRWru+gHHAf2PknPgTsMAsHwY8Dbxqvh9olh9kbv8xcE/eseYDm8zj3O5yzmXA28DHeeVXAS+bx1iL4UNst/8gjFAiu4F24C9ZcncBHwF7MeJQJV5u4HPAS1lydwFfTrrc5m/LTdn2msdJUn2fZNZrN/AOuff3WqAD2EXy7m9buYFDgBez7pPNaZA7Bc+lU30n/bk8CdgIdALn5P12G/BH8zXfSYae7QtuALXAVPPz/hiNwJHA7cBCs3whcJv5eShwInB5dgWZFfcWMML8vgKY6XDO6eZ58yvoc8AQ8/NXgUcc9v8a8ENgKkYcqp9kyb0vpXLfbso7DKNB/qcUyH05sBX4R1POd4DvJEjuOuDzwBrgHHLv74eBB83fknafOMl9LPBPprz7AR8A302B3El/Lt3kTvJzWQdMwng2z8kqn4XR+RlgyrkeOMDuGNaroOlJa92itd5ofv4Io5cyFiNB0QpzsxVAg7nNLq31s8CevEMdBvxFa73T/P5fwNkO51ynzZwWeeX/rbXebX5dBxzsIPZc4F5T7seAk7PkHpBSua36Pgd4CpidArmnYtyID2itdwG/wehNJUJurfVWrfWvMFfA5t3fUzBGSZCw+8RF7pEY98UKjFHeLuC0FMid6OeygNyJfS5NuTdhjISyORL4tda603wu/wB80e4YFr7mKJRSdRgP0PPkJSjCuEndeA2YqJSqU0oNwLgRxvk5fx6XYFwYO8ZiDNnQWndiPDDTTLkVsFoptQ44PkVyW/V9HvBASuT+GXAg0KaUGo7RQ6pJkNw55N/fwPuQyPs7hzy5RwO/wLget2D0YN1IitxJfi5zcGgHk/hcOvEH4HSl1BDzufxcIRk8BwVUSu2HYVK4Umv9oVLKl2Ra6w+UUl8FHsHQcL/D0K6+UUpdANRj9FxtN8mTezRwqSn3h1rreqXUYcCvKKAsEyQ3Zn6PYzAaAlcSIvcqpVSHee6dwHPAlxIkdzaDSc/9nU2+3FprPUkpNQZYRda1SbjcSX4u3eRO8nPpJMMvlVKfJve57HTbx9OIQilViVE5P9ZaP24WbzcryKqoggmKtNartdbHa61nAK8AryqlMkqpF83XtzzI8gXgBuBMrfVes2yZdQxzs3eAcabcj2NMSv6H+ds2M7HSFowewccpkXs78P+An2IEDEtLfb8FnK61PgWowuylJ0Tuns2Bq8m7vzHszkm8v13lNu/vZmALxuguDXIn+bl0kzvJz6WbDMu01pPN51JhOCW57uD6Mg/yQ+DuvPI7yJ18uj3v94voO9s/0nw/EMM741MFzp0/iTMFeB2YUGC/K4DvmXL/DFiZdd67THmt6IzfT7rcWfX9FsYwMS31nQH+xZR3ErANuCMpcmfd368Ba2zu7/voncxOTH07yY1hq/6OKe+BGL3FH6RA7kQ/lx7uk0Q+l1nbP0juZHYGOMj8PAnD82mA6zE8nOREQGO4Yr1ovs7AsH2uxdBEa4FhWftsxeg5fozR2zzSLH8Iw63rZeA8l3Pebu5nuaM1muX/haHBLTmedNh/MMbwVWN4Irxsbv8P5mfLne3llMh9BjAZY2IsTfU9F6PHtAvDbfb5hMn9aYweoMYYerdn1fdzGJ443Wa9n5MCuW/AcLnMdo9NQ30n/bl0u0+S/Fx+2txvF/Ae8Kes59U6/zpgspsO0FpLCA9BEATBHVmZLQiCILgiikIQBEFwRRSFIAiC4IooCkEQBMEVURSCIAiCK6IoBEEQBFdEUQiCIAiu/H8KgxuCBe2ajgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import collections\n", + "\n", + "from apd.aggregation.query import with_database, get_data\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "async def plot():\n", + " legends = collections.defaultdict(list)\n", + " async for dp in get_data(sensor_name=\"RelativeHumidity\"):\n", + " legends[dp.deployment_id].append((dp.collected_at, dp.data))\n", + "\n", + " for deployment_id, points in legends.items():\n", + " x, y = zip(*points)\n", + " plt.plot_date(x, y, \"o\", xdate=True)\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " await plot()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nO2de5hU1ZXof6u7C+juIA3ysJuHRHQQFVDTRtQEJ2HUSQAlGRW8yTfEyeBkXtHkXhJUFFBUlEnUezPf3Gsmk5A7+QxqDLEhGXVIJsmMaXPxBWpLUIOK3QpRQYVG+rHvH+dUU1V9zqnzrDrVtX7f11917TqPVfucOmvvtdZeS4wxKIqiKIobNeUWQFEURUk3qigURVEUT1RRKIqiKJ6oolAURVE8UUWhKIqieFJXbgEAxo4da6ZOnVpuMRRFUSqKJ5544g/GmHFJnycVimLq1Kls27at3GIoiqJUFCLySinOo6YnRVEUxRNVFIqiKIonqigURVEUT1RRKIqiKJ6oolAURVE8KRr1JCL/AiwA9hpjTrPbxgAbganAbuByY8w79mfXAl8E+oAvG2MeTkRyRSkhm556ndUPPcf+7p5Ix2nIWGOzQz39AIxuyLBq4aksOmPiwHnWP7yTzv3dtDTVs/yi6QOfKckRpN8L74XRDRnmz2rmFy/so3N/N6PqMxzp7Ru4xn4ovA/ShhTLHisic4H3ge/nKIo7gLeNMetEZAUw2hjzdRE5BbgX+CjQAvw78EfGmD6vc7S2thoNj1XSyqanXmf5/c/Q059MpuVMrbD+0tkAXPvgDrp7jv5c6jO13PbZmal9gAwFNj31uu9+T/JeyN4HQa61iDxhjGmNXZgCipqejDG/At4uaL4E2GD/vwFYlNP+Q2PMB8aY3wMvYikNRalY1j+8MzElAdDTZ1j/8E7WP7wz72EF0N3Tx/qHdyZ2boVA/Z7kvZC9D9JI2AV3E4wxXQDGmC4RGW+3TwTac7bbY7cNQkSuAq4CmDJlSkgxFCV5Ovd3l/UcpTh/NePWv07tSV+LtF7ruJ3Z4tDmqH6NMfcYY1qNMa3jxiW+Al1RQtPSVF+Sc7idpxTnr2aC9HvS1yKt1zqsonhTRJoB7Ne9dvseYHLOdpOAzvDiKUr5WX7RdDI1TmOgeMjUCssvms7yi6ZTn6nN+6w+U8vyi6Yndm6FQP2e5L2QvQ/SSFhF8RCw1P5/KfCTnPYlIjJcRD4MnAT8NpqIilJeFp0xkfWXzaapPhP5WA2ZmoHIJ7CiXbIOzEVnTOS2z85kYlM9AkxsqldHdgkI0u9O98LohgyfnzNlYP+m+kzeNfZD7n2QRvxEPd0L/DEwFngTWAVsAu4DpgCvApcZY962t78e+AugF7jGGPOzYkJo1JOiKEpwShX1VNSZbYy5wuWjeS7b3wLcEkUoRVEUJT3oymxFURTFE1UUiqIoiieqKBRFURRPVFEoiqIonqiiUBRFUTxRRaEoiqJ4oopCURRF8UQVhaIoiuKJKgpFURTFE1UUiqIoiieqKBRFURRPVFEoiqIonqiiUBRFUTxRRaEoiqJ4oopCURRF8aRoPQpFCcump15n9UPPsb+7Z9BnjcNqueUz/qu3bXrqddY/vJPO/d20NNWz/KLpsVUD85Izy+iGDKsWnsqiMyYGliW7/ev7u6kVoc8YmuozHOnt41BPfyzfAayC9Zla4Ujf0WJkoxsyzJ/VzC9e2Dcg79Rj62l/+R36jKFWhCvOnszaRTNjk8Mvhf2e28flwOk+KLzuxe6TXNy+T5L3clIUrXBXCrTC3dBj01Ovs/z+Z+jpd7+/amuEb1xWvPzjpqde59oHd9Dd0zfQVp+pjaVMqB85s2RqhcVnTeZHT7zuWxYn2dPI5+dMKamycOv3TK2UpSSo132Qve4bf/uar/ukcN/c7xP3vVyqCndqelISYf3DO4v+qPr6Desf3unrWIUP2u6ePl/7+jm23x9/T5/h3sdfCySLk+xp5N7HXyvp+dz6vafP3z1RKnng6HUPqiSy++Z+nyTv5SRRRaEkQuf+7ti2c9vG7zminj+XPpcZeJIylgK375UUXv1Sjj4rds4o/ZN77Eq9T1RRKInQ0lQf23Zu2/g9R9Tz51IrEug4cchYCty+V1J49Us5+qzYOaP0T+6xK/U+UUWhJMLyi6aTqfH+cdXWCMsvmu7rWPWZ2ry2+kytr339HLuYnFkytZbjN4gsTrKnkSvOnlzS87n1e6bW3z1RKnng6HX3e58U7pv7fZK8l5NEFYWSCIvOmMj6y2bTVJ9x/LxxWK0vR3b2WLd9diYTm+oRYGJTfSyObD9yZhndkGH9pbNZu2hmIFlyZYejI9Om+gwNmXh/fgIMq81/mI1uyPD5OVPy5D1v2pgBOWpFSu7IBud+z/ZxOSKA3O6D3Ovu5z5x2jf3+yR5LyeJRj0piqJUKBr1pCiKoqQCVRSKoiiKJ5EUhYhcLSLPishzInKN3TZGRB4VkV326+h4RFUURVHKQWhFISKnAcuAjwKzgQUichKwAthqjDkJ2Gq/VxRFUSqUKDOKGUC7MeaQMaYX+CXwGeASYIO9zQZgUTQRFUVRlHISRVE8C8wVkWNFpAH4NDAZmGCM6QKwX8c77SwiV4nINhHZtm/fvghiKIqiKEkSWlEYYzqA24FHgX8DngF6A+x/jzGm1RjTOm7cuLBiKIqiKAkTyZltjPmOMeZMY8xc4G1gF/CmiDQD2K97o4upKIqilIuoUU/j7dcpwGeBe4GHgKX2JkuBn0Q5h6IoilJeohYu+pGIHAv0AH9rjHlHRNYB94nIF4FXgcuiCqlUH2kraqMo1UwkRWGM+bhD21vAvCjHVaobpyIy7xzqYfkDzwCoslCUEqMrs5XUkbaiNopS7WjNbKWk5NaPFqBQHTi15fL6/m5OueFngWpNj27IcErzSP7rpbd9bZtr4orLBLZy0w7uffy1QXWqveon5342qj6DCOw/1OO43bUPbqfb7pMagXNOGMNzne8Nqv+crZ/t1v81Av/t7NJnk3WrVz1/VjObn+kqiwly5aYd/KD9Vcf7cWKF1LqOC80eq5SMSqkfna1zDMRS13nlph38a/urg9rPmzaGJ1894Fg/GfDsq9ztvrrxafyrTX+UMvV4kLrlUJq62m7XLJe46rZHoVTZY1VRKCXjvHU/5/WUl3zMkq0f4SbvxKZ6/mvFJ30da9q1Pw1USrPYuYNuF4ZaEV667dOxH9eJMPdFkP4Pg99rlrQcxSiVolDTkxIL1qjwaZwsQo3DarnlMzNTXxc4l2KyBvkuQestx1lvPCylrKEd5nskfS/5/f6VdE9HQZ3ZSmQ2PfU612x0VhIAB4/08d/vf4amBv/VwcpNS1N9bHWdg9ZbLnbuoNuFoZQ1tMN8h6RrTPv9/mmvdR0XqiiUyPiJROrrNxhDRdSPztY5jquus1s96vOmjXGtn1ys1nbudkn8iEtZQztI3XIoTV1tP9+/Empdx4UqCiUyfqffB7p78upHOz0aCus+N2Rq8mpLF773w+iGDOdNG+N726yjNK66zmsXzeTzc6YMqlP9g2XnuNZPLqyt3FSfYXRDxnG7by4+nfqcPqkRSwk51X/O1s8G5/6vkdI6ssG7XvXn50wpS13t7DVzU1+VUus6LtSZrUTGrzOy3I4/RRlqaM1spWLwM/2urUneXKAoSjKoolAis+iMidy1+HTcLEKNw2r5xmXJmwsURUkGDY9VYiFrL1cUZeihMwpFURTFE1UUiqIoiieqKBRFURRPVFEoiqIonqiiUBRFUTxRRaEoiqJ4ouGxSiooLBKTzTirIbeKUn5UUShlx6lITDbjLGiNbEUpN2p6UsrOvY+/5tje1681shUlDeiMQik5hbWgvYrE5GamLaw7PeeE0Xl1oRsyNQzP1A7Ulf7EyePy6i1DaWsupwmv2tzZz+OoDR5UjsJr5FQnO5stuLBOerVey3Kg2WOVkhK0bnY246yfGsZ+KUXN5TTh1Oe59Z7dalbH3U9J1EyvtmtZiGaPVYYk6x/e6ftBkZtx1s08FYaevuoyaTn1eXdP30AfrH945yAlAfH3U5Br75dqu5blIpKiEJGviMhzIvKsiNwrIiNEZIyIPCoiu+zX0XEJq1Q+foscFWacjbuGc7XUOgb375pt9+qLOPspqT6vpmtZLkIrChGZCHwZaDXGnAbUAkuAFcBWY8xJwFb7vaIA/moMT2yq57mb/jTPnBB3DedqqXUM7t812x5XbfCwcqT1uMpRopqe6oB6EakDGoBO4BJgg/35BmBRxHMoQwi/taALibOGcylqLqcJpz7P7ee4aoOHkSMq1XYty0VoRWGMeR34B+BVoAs4YIx5BJhgjOmyt+kCxschqDI08FsLuhCnutOFdaEbMjV5xyqstwylq7mcJgr7vLCf46oNHkYOp5rYhW1uddKr8VqWi9BRT7bv4UfAYmA/cD/wAPAtY0xTznbvGGMG+SlE5CrgKoApU6Z85JVXXgklh6IoSrVSCVFPfwL83hizzxjTAzwInAu8KSLNAPbrXqedjTH3GGNajTGt48aNiyCGoiiKkiRRFMWrwBwRaRARAeYBHcBDwFJ7m6XAT6KJqCiKopST0CuzjTGPi8gDwJNAL/AUcA/wIeA+EfkiljK5LA5BFUVRlPIQKYWHMWYVsKqg+QOs2YWiKIoyBNCV2YqiKIonqigURVEUT1RRKIqiKJ6oolAURVE8UUWhKIqieKKKQlEURfFEFYWiKIriiSoKRVEUxROtma0oVUKxutlpo9LkHcqoolCUKqCwXvXr+7u59sEdAKl8+FaavEMdNT0pShVQrG522qg0eYc6qigUpQooVjc7bVSavEMdVRSKUgUUq5udNipN3qGOKgpFqQKK1c1OG5Um71BHndmKUgVkHcCVEkVUafIOdULXzI6T1tZWs23btnKLoSiKUlFUQs1sRVEUpQpQRaEoiqJ4oj6KHHZfeSXdv2kfeF9/zhymfve7ZZRIURSl/OiMwqZQSQB0/6adFxcsKJNEiqIo6aBqZhQdM06BXMe9CDM6nh94W6gksvS8+BIH2toYtXBh0iIqiqKkkqqYUXScPCNfSQAYY7X7oPPGVQlIpSiKUhkMeUWx+8orPT/fOff84gfp1rQBiqJUL0NaURxoa3M1KWXp37u3RNIoiqJUJkNaUXRdv9LXdh1nfTRhSRRFUSqX0IpCRKaLyNM5f++KyDUiMkZEHhWRXfbr6DgFDoI5csTfhu+9l6wgiqIoFUxoRWGM2WmMOd0YczrwEeAQ8GNgBbDVGHMSsNV+ryiKolQocZme5gEvGWNeAS4BNtjtG4BFMZ2jrBxoayu3CFXFgbY2dn1yHh0zTmHXJ+dp/ytKGYlLUSwB7rX/n2CM6QKwX8c77SAiV4nINhHZtm/fvpjEyCdz4rTYjrX3zrtiO5bizYsLFtC5/Gv0dnaCMfR2dtK5/GuqLBSlTERWFCIyDLgYuD/IfsaYe4wxrcaY1nHjxkUVw/kch+ILa+3t6ortWGGphlH27iuvpOfFlxw/6/x6ZVgxq+E6KdHpWrOGjlNPo+PkGXScehpda9aUWyRX4liZ/SngSWPMm/b7N0Wk2RjTJSLNQNniT+N8uMuoUbEdKwwdZ300z+ne29lJ1w03AgypVeOe4cz9/aUTJCQvLliQp+iysyEYWtdJiUbhfUJfH/vv/SEAzavSt8A3DtPTFRw1OwE8BCy1/18K/CSGc4RCMpnYjmXefTe2YwVl59zzHSOzzOHDQ8ok1jH79HKLEAnP2dDyr9Fxyqk6u1DoWrPG9T7JKou0EWlGISINwAXAX+U0rwPuE5EvAq8Cl0U5R1gOtLX5D4/1Q8KjWafMtaM/+1n23nmX56LA3s7OROUqFV1r1sAHH5RbjEgUW9xJf7/OLpTUKgMvIikKY8wh4NiCtrewoqDKSud115dbBEcOtLWx98676O3qoq65mfFfuYZ3HnzQMXNt0QcPgEhCkiZPbl8MysU1hOm87npVFFVKmv0QXgzd7LE9PZ4fS0MD5tChEgljcaCtjc6vfX3godjb2Zn3PhQV+oA90NZG1w03Yg4fLrcopafIvakMPQ60tQ3MJj1J6cCvolN4RIkuaV6zGhkxIq+t8H0hUaMTOq+73jGLbTWy9867giuJ2tpkhCkDlTqyrHbCRCr5VhJA05LFUUVMhIpVFAfa2ui89rr8WPtrr7NGqsUuXn09oxYupPnmm6hraQER6lpaaL75puIntqMTcs/hW2HpSHKAUL6Vvr74BSkTlWinrnZeXLDAum7Z+9DhWeBE1y23+j5HGiOeoIIVRdctt0Jvb35jby9dt9xa9EfYcpN1YUctXMhJP9/KjI7nOennWwPZjff/cCNwdLSgi8MCEmKKXdfSkoAgilKcKJFKZv9+fycZOTKoWCWjYn0Ubp3v56J4KoT6en/1J2yTkduUsnP51/LOo4qjgBAmt8zxU2IVoTCWPXPiNE7cvDnUsZK4voWRcDJsGM23rAUYFBChzvFk2X9foPXEAxSrh5PLjP/321DnKAUVO6NIiuxsIw5yHx5JrneoFnt392/aY3sgD1rwhFX21k+NdCc7tV8bdC4dJ89wvXZONdzNkSN0Lv+a4wy2ElPld8w+3erD3L+0fo8iZk+n6/jiggX+IhfBGqCmGDEpcKa2traabdu2BdrHbxnTQdTVMePZHZ6bvDBrtq81GPXnzPF/IyTMjBc6yi1CIEJfP9tkVWwk7RSGnLut1/m9+rJrzZpE/AtNVyzJs0+H6p/hw5nxzNMxSpUcHbNP91w3U8r72TNMu7aWGc89S8eppxVVFrkyB3FgA7SsvyPUrFBEnjDGtAbeMSBVN6Noua24Yyk7vS9GqZREy/o7SnKeisCYgZF01w03Os4wsqG3haPuOGZeSTmh/ThFi/LBB5UzuyyyuLJjxiklEaPwXhlEXx8dJ8+g/qNnBTrumwEc2PXnzEm96bCqFEXTFUt8XZC0XLS6lpbQI400E8Ru64VbChO30Nv99/7Ql+nKyySUJHEooSETTWVM+FlnAPyGafsZFOYqtz6fDuymK5Yw9bvf9bVtOalcRREij1NaQ88cGT48LxKr/pw5ZRYoHrrWrCn+o6vxf1s6hdl6JYP0G6oYywg/BFlbvWKRtNKONSu0MYFlrZRnUsUqitrGxkDbBzXfxFnLIgyFtuZio45KSW3tZ8Tbcvu6QMcc9F3r3IP5fIcqEs/oPHPiNJquWBL5OEOO4cN9b5qk0q5rbo71eNl7Rpqaim7rZ5u0ULGKwu/ULktQ882JmzeXR1mMHBnKkdf59RV5Nnk3+30SxK2kgl6rQbOEIgsbg8jXceppA//7iYgq5MTNm2letUr9TAW0rL050Pb77/0hHTNOif2eHv+Va2I9HlizID8Dkubrr4v93ElRsYqiFOkcTty8uSSLvGa80HH0L2wsdUF221KlIA+y4DCpUWGQWQJYisX3de3rY/eVV7Jz7vmuC67cqBl/tLjjqIULVVnkEOreNMYKBT5tZmpnzH7JnDitonyPlasoSpTOIYkRRx4BFJ4EjLUutL8mYZ5yqzrnFBqYXc3uRfbhKsOGRRPMA7N/f6Dr2v2bds9U725M/9Uv896XSllUQuRTJN9Ab6+lME6ewQuzZke6j8tRzyXKws5yUbmKIgBRbMSjFi5M1MbcdLn/ch3NARcD5lblcwoZjcU85VGno+PkGQMK6UBbW9HV2DXjxw88XP2GKDvhx2QYZoFcENzMh6MWLkx8jUBY38qgBXAJFpKKyzdgjhyh8+srQt/H5ajnUmlKAqpEUUSNLMjamOM2Q9WfMyeQbEGnqrkX1ykM0Bw+PDAyc/qLY2SaNUUVezA3XbEkbwQeZVre/4e3Qu8blcyJ01Kx+HHn3PMDbd8x45TBaxs++CAxZfGh8+fGd7D+/vAzgyGUkThJKldRlPgCDyQQfKHDmmEUnt/DLNSy/o6jisbOVNuy/o7E46dzHf5hRk6lDBGNqsyzcnatWRM40CEuWtbf4Xu0KA0NwU8wfPjR+68I/Xv35jnivehas8Z9tpdQ1cH3f/kr5w9CprIIbcryMGGrT+koFaso/JpskjAbNa9axYznns13Qj/1pHWunKyo0tAwsGAuSqba0MRQBKWYGSPXYRuFqCaw7GK6ci04Ezt1vV+a16wOfI5syLRvpdrX52uFczn6zPXBHrKQVVhTlpuVoK6l5aiZ0CWra3YAWA1UbPbY5lWr+GD37qKLt0q5oKV51ap0LaCJKY/XgbY214dgTV0dcVQT33vnXZGVZ9J+B1dEAvuPst/Vj8y5vpuBU9bXY3xmOd459/yB/bvWrLEyofb1QW1tIB9ZnNQ1NzvOcuuam/nQ+XMDK6+wQSfjv3LNoEqLMmJE3vGKRSIeevLJobMi3oWKnVFA8UVoSjx03uiu/OJa2ep4nJSWhcyltqmJljtuD6XksiNWJ7Nk7my1UElAsMCGbMRWx6mnORbeKQfjv3KNY4XJ8V+5huZVq5zNux6EHWS4FTALNDvMyuuDSp2BVGz22CwdM2e5LrAqzMg5FAiU3iGTYcaO7cH3c2LkSMeR1a5PzoslcqSupYWTfr41ry2pTK2e1Nb6D7126ZNS0XHazMHFu2ImyVxjxTL8gv/7Ng0BBF6/hbqWlkTqhmj2WJ+03HqLY3vQiKJKoTbIsv+envgWJr33nmOtAKeRYVAKp/pZgozUYmHkSGY896zvmUy5C8203HZroLxYYUjSl+bLb+fjWqQlRYrbLKll/R2l80smRMUriuwiplJHFJWLCddfhwRIiNh1y63s+uS8eE7+3nuDFM+ohQsJNSutq/M11W9etSpUAsig1IwfP/Dgn9HxvLeTPmSalbgZtXAhLbevG9IlYpuWLC66TVoGhHGYsdJKxZueqpEDbW103XJr4NQVcZA1ETlViPNCRowI/aPpmHFKZMd8GDNkYZW5+nPmpHoAEnfWWSdzYDnwLHJUZvNfuSmV6UkVRQXjVC4zLNLQgDl0yNe2NePH+0ppUdfSEktd56h+kKFY08OJoFXVipGmfts59/zB91yVKwmoEEUhIk3APwOnAQb4C2AnsBGYCuwGLjfGvON1HFUU4Ynq8JWGBprXrGbUwoX8bs45sS5Wi8s8c6Ctja7rr8ccyQ1aMIAPX4JdyrJaiGtWkfbZk2JRKc7su4F/M8acDMwGOoAVwFZjzEnAVvu9khBR7bO1TU0Do8YJ11+XuHM0DKMWLqT5Y73UNfQCZuDV+vOmmpREnKiSUHIJveBORI4B5gJfADDGHAGOiMglwB/bm20A/gP4ehQhlSKIhLbh565fCLIIrCguq1nDMmp8J6Muzv+OHT88zv7PZWYRoDjOUKGupSVyuHJaooiU9BBl+HgCsA/4rog8JSL/LCKNwARjTBeA/eoYPiIiV4nINhHZtm/fvghiKFEcvYWpD+JKhR277bh+9OBzLHmDpmkHcZxZDB8+qEpgNRA5Lb5IaqKIlPQQRVHUAWcC/2SMOQM4SAAzkzHmHmNMqzGmddy4cRHEUKKERzo9WKI6MBMJHe1zjnppPutdZizpys+79UJHVSoJiJgWf/hwZnQ8H69AypAgiqLYA+wxxjxuv38AS3G8KSLNAPZr8IovSiCijCLjjmpJbH3BkYPJHHcIMlB61WP9iVOqkGpVrr7Zfh/ceRqsbrJet99XbolKRmgfhTHmDRF5TUSmG2N2AvOA5+2/pcA6+/UnsUiquBKrbyECqcpjs/mr8MT3wPSB1MJHvgALvlluqUpGNmOxEhPb74O2L0OPnYjxwGvWe4BZl5dPrhIRNcTl74EfiMh24HTgViwFcYGI7AIusN8rCTNq4cLgSfRiXPGceMx9/Rj/227+Kmz7jqUkwHrd9h2rXVHCsPWmo0oiS0+31V4FRFIUxpinbT/DLGPMImPMO8aYt4wx84wxJ9mvb8clrOKNn3QHubjlyQrMyJHJj14/dbv7Z8Ma898/8T3n7dzaFaUYB/a4tL9WWjnKRPqC5pXQNK9a5ateNFghkJ4P9wApnkuyOtZrel/ovzAu2V/d2hWlGA5RdwNUga9CFcUQ48TNmwdV2iOTsbLO5iRNLBYC2bLuNl/nK23MvZtpLf11K5QhTBWYnyq2wp3iThyV9rKzjbzkg5mMVf/AmIHqaKWNuXdbLxJyHcm3zoY/vHD0/diT4e8ed99eqV66PbIQVYH5SRWF4orvyJm0RRhJrYuZKWfmUagkwHr/rbNVWSiDGTXJXSGIfzNtpaKmJyUaaYwwcvVFmKP25EIlkcWtXalu5t3o/lkV+L5UUSjR2PYvwdpLwajJ7p9VgT1ZSYBZl4O4PC51RqEoxYjZbxCW3MgTr9GfW5ijohTD9Lu064xCUZIjaEoEtxEd5M8UZl3uvkBv1KTgcipKlaOKQikP2++DH3/JdhAa6/XHX/JWFm4jOhjsaDz1M87bnXShP9nCsuFiWD3q6N+Gi8MfS1FSgioKJTm8Hrht1wyesps+q90NL99D4VqKXY84b5Zt90oJ8rOQ5VM2XAy//2V+2+9/qcpCqXhUUSjR8HLkeTmOe1yywbq1g7fvodAn4hbKmG33SgnSHTLrTKGSKNZejM1fhTVjrJnJmjHVnatK+6KsqKJQovGRL7h/5mMh0pbGBi6c1MKsqZO5cFILWxob4kmJUCxCpdQZP4N+J6+w42pLd52aEOyAmQGGkHJTRaFEY8E38Uyh4fEg29LYwLXjjqUrU4cRoStTx7XjjmXLL64fvHE2zbMftt+XbIRKmAdA0LDcbd9xb2/7cr5vp+3LQ1tZePVFSQkQ4Zca5RYPqiiUGPAIhXV7kA1r5IaxYzAFqdGNCDccM2zwcZzSPLvh9VAOkq7cibAPgDjTPFRxuuuKYYhlMFZFoUSn2MPX6UG24C56XOpnOLYHWf+Q5FoJrwdAptH5MyDxxIVVkG+oohhiGYxVUSjR6XWuZ51H7oPstinw4DLPzde2r81v8LP+4VtnF982m9wtrKnG6wHQc8hrx3DnC8JQNj9VGl5BHhV4nVRRKNHxilTKZfNXLbv+Bwe8txNh486N+W3zboRMvfd+f3jBCkX1Gl1n6wokYaqJazFfWDt22HXEKREAABUoSURBVLDetFPjkrvUrT0NeAV5VKCZUBWFUjoCOh9nbpg58Les61FY+D+L7+Q3FDUJ85Rn+G4Awjppw4b1lpIwgQD9vcHa04BX9uQKTCOjikJJJybfVNP+RrulLArLngYl+zBNSyqPagp1HWKRQHk4XTc3351XtbyUoopCSScODu32N9phwV0Rj2vbjouN/lePCv4AC2pS2H4fPPhX+aGuD/5VsGNUEklEApVSsca1mr/77YobFKiiUKIR4GY/d3ILM6dOHvgLjDFFneDFj2GPZv0suAs62g1qUmi7Bihc7+GRz6rS8QoEWD0K/uFk58+TSLcShqCr+b1MgRW2/kUVhRINn6Pocye38F5trTVTyP0LyOnHO5uMHFd4OxLwnEH8BUHNWX6DAIKSa866/cPWXyWYtt7vclYWSaRbCUPQ1fzF6lT0dFdMAIIqCiUwa9vXMvv7s5m5YSazR8PaMU1F9xlQElEQoU+ERS0T8pq3NDawomCF94pxxzJz6mSWTRhbcJCIYaquP37x58y+bcrRzLJJsHqUNevKmrO637YfprZpa9PfpF9ZFFLqdCtRyFXSftZMdL+d7uthk+L4MiWNLHt4meUrsOkXYeMxI/lpYwOPvdbpuI/76D4EIrw0LH/l9oqxYwYrIft9e3098yY1s3WPwwNIarxTl2e5+Tj40FjbtBShUNNtU4qHBidNf49l8krzw3f7fdZM9cAea5Y270b3a+VVo6TUZNPM+M0gkOXBZfBqe3nrzBchUi+LyG4R2SEiT4vINrttjIg8KiK77NfKc/Erjmx5eUuekhhAhPdqaweN9LOsGHds9NlEoSy5ysfr2CLsratznvV85Epf51o7ajizR8PMqZOYPXWy+wyqmBkhR0kU+muyf26mtVjpOZjqUeyi9pXMtPt75mhY1H6DR+6ueHw6W17ewoUPXMisDbO48IEL2fLyluAHCZJmppCUR3/FoY4/YYw53RjTar9fAWw1xpwEbLXfK0OAFb/2uJQOI32AeZOaY1cSiLBi3LFcOKnFl9kLe9Yz6CHvYwS3dkwTG48ZSb/tU8nOoOZNah68sQ97+bxJzcycOtnZX2Ob1maWQln8+EvJn6OQ2uFFN5l5/CTrPsrpk5eGZVwHIXHUq97y8hZWP7aaroNdGAxdB7tY/djq4MoiahqVFOeBSmLedgmwwf5/A7AogXMoJcbvj+bs4yflOZT31kWwbhoPc47ti9h4zEh/iijnIb928xeOtrd+0XM3x+Pbs5R5k5qZbc8EBpSQR4TOzOMnWf3h5ci3P0tcWZQj59Al3/I0Fc08fpJz37gMQoBYvsfdT97N4b7DeW2H+w5z95N3BztQVDNYivNARfVRGOARETHA/zHG3ANMMMZ0ARhjukRkfFQhlfLj60cjwiH7R551KIfGS0kUnDMQImz8wzZWAsseWEj7+7+HnFDdpv5+Vrz1DvMPHnJwhOcfZ+ChjxXUuvGYkcB7rHSwPpw7ucV/pJe9zazjJ7H9FeeQ27Vjmrj/mJH0Y432Lnv3PVa+vX/QdssmjKW9Pj/1ybQjR9jU+aa3Q31Yo7VmJU5fRvZYW28aNPp2VRI5bGlsYP7BgnxaUbMBA10HHfxXHu2uxGQGSyNRZxTnGWPOBD4F/K2IzPW7o4hcJSLbRGTbvn37IoqhJM0bB98IvlOYEFhjaO7pZd17ffGbrHKY988nW0qiwPSzv7aW68cdy8zjJ1kP2CL+j8L3G48ZyZbGBs48flKe7yFw1JcIRsRRWbmZwwrNcOdObjn6HfJMOcPcTTlZjhy0nKwJ+zK2NDb4UhKIcMPY6EohMlEzAxQjpb6jSIrCGNNpv+4Ffgx8FHhTRJoB7Ne9LvveY4xpNca0jhs3LooYSgk4rvG4eA/oMmNo/lALj/xlB/P/viPe8+VSMBsopC/COg+wnPc9NTWR14wgQnt9PWvHNOWZuNzMYdaMxmLZhLHuysnLlFNI1AWOuWSjguzZRDasmWxfFcEx/XzC6ygGmVyjZgYoRkrXVYRWFCLSKCIjs/8DFwLPAg8BS+3NlgI/iSqkUn6uPvPqeA9oDCP686fqI2pH5J1n8fTF8Z4zl2IPpiizmZhnQoWzh2K0TplYfDZEzGHLfiiICoolGi4GZ7YXax5bk/NmrKfiXNQyIW8WWXTW5kRKEztGmVFMAP5TRJ4BfgtsMcb8G7AOuEBEdgEX2O+VCmf+CfOZc9yc2I637vw7WH3+HTQ3NiMIzY3NrD53NfNPmD+wzco5K2M7X8Xi4tx1Y+bxk/jAzwhdhBVjx0R/sAXhwB6WTRgbPoULDivzE3YAd/fZim31KDA9rtvNm9TsEK3lw8RXIYR2ZhtjXgZmO7S/BcyLIpSSTr590bdZ276W+393P/0RHHdzjpszoBByFYMTgmBKUfQnLkL4ZELv63Z+v8cp2PalYcMGHuAj+/pcF1CGZdnESbRnCP89RejDGrlv6nzzaPv2+5JdQFhkfcNAdF+QaK0KI0XLGpVKYOWclTzz58+wY+kOq8FvdJLNtGOm8e2Lvu17+8unB3sALJ6+mB1LdzB+xHhLtoDylZodZ97Ijt0xlTEN6gtxmqnYf+/V1tpO5kw8sgHtw8L7fQawH755+bySXhNSJN9XMRNaIBOfZznd8qGKQgnNgLLwiSBs+symQPv4NT8Jwo6lOwa2/8Txn7A/iMlfkJTSsUfC6/a9lS6lZiuM06eWoW5Hsb7Oyee1bMLYSOanUCuwcyi63sVeHJo1t3mGXAPUFV+UWA5UUSjRCPAg3r50eyIijKwbOejYG3dujNWpXGsMtYnNUIT5Bw8xsq8vdcqijzIsAguwhqa9vt56+IYMK727/baisjitws86rn3N4nJmagPyupGt6Z4yVFEooQkyGstEMGEMq/G28z72ucdCH9sPI+tG8nTNNJ5+ZU/wB7nH9tOOmWb989l7ACyfQAWYy5Jmxyt7GN7f768f7Ifvll+Hq0PddWTwIsXC4++tq2PW8ZPY0tjAbHt9TJ7jOgi2vK6ktPqdKgolNEFSHNz8sZtDn+em89wfAomG0GI53h/73GOw9CH48Pms+8PbwR7kLg+S8SPGHzXDzbocai1luCOrjOJUFhWkfAQBhG2vvh5gJ+Hu4eFmPr4e8/bixxXjjqU/d31MBD5SkOom7aiiUELjd7X24umLi0Y3eTH/hPms+/g66muPjsQEYfH0xaFCaOtr61n38XUDobmjho2ixuGnsHj64nzH+9KHmD/+LBr8PnSNYd3H1+Wdq7mxmXUfX8fWxVvzt73kHwfWBOx4ZQ/r9r1Fc28vAgP7hFGKzY3NrJPKWdB6XONxAzOsOd3dvhXcG3Xh1lP4Vp8xKIfcYx2pqRmonbJ67JijyiKlpietR6GE5rjG4zzz4TQ3NnP1mVdHUhJZ5p8w3/dxipnEVp27KtDx8lj6EIe+d5qvTTMG32HA+XmQ9jC/7ljmn3VjXtjn/BPmDyjGmRtmFj1/brDBCh/bO7Hu4/Etg1o8fbHlO3JhYMGl3Vff3noTMz2sNLkcN8xHFuGUcrimhuvsvGjz6yLkR0sQVRRKaOZOmuv5w3/k0kdKKM1RipnE4lBcxagxhpvP9yjh6cSsy32vB2ioa+BQ7yHXzwsXRwZej2IM6+beHmtfZZVc7jqchroGunu7Oa7xuPxBhd0Xcx5eRnvXb4qO5q+ec20omZr6+9lfG+PqbmNCzTz6bdMWUz9D8ndncNT0pITmV3t+5fpZc6NDvYYSESqBYRzYvoCm4U3cGvNDtpAbz/Euu1q4ViXoehREEpE/dx3OjqU7ePxzj7N96XYeufQRx/N9+6JvF33wrvv4utCyrnj7AJm4/DdRjyPCda88FI8sMaOKQgmN1wN57iTfiYRjxyuBYU3CpTN37H6NXy/5deKzFq/ji4OLduWclYF8HCPrRhbfKCVE8n+9/z4373uL5p5exBjwG22VEP2kM1W5KgolNF4PZK/ZRtJ4JTCMknpkAK8R7tiTox/fJ26zNrfrsnLOSl8+h5F1IxMPOU4NoyYz/+AhHtnTyfbdr7HjlT1MO3IkXKSYCIvffa9iIsyCoIpCCY3XrKFs5p8ixGEScxqxD7T/3eORj++Xq8+8mhG1I/LaCjPwFpKNICuMwsqagnYs3VE9SgJg3mAT3qbON9mx+zXG9/YGeug3DW9i5Ql/Fqd0qUGd2UpovGYNsdevCICXMzuOdOluTmGTXJ0lR7Iml7ufvJs3Dr4x2CHssV8pHPoVwazLXVOHb93TxaKWCbw0vHhajUxNhhUfXQEnzEc2zAqdyHJgEWbKUEWhhMYrNDb2+hUB8JrNDLUHZLU/9J3Wv8SJVTL2wKD2LS9vcVXQl0+/3DMa0I28RZgpQxWFEpoaqXG1+Zfz4eW2vqOckVhKeLzus1s/fmuyJ2/9omOzl4JeOWdlIEVRJ3Ws/djaVCt89VEoofFyDEfNyhmFMLZ7Jb1c9keXObbn1jVJjAXfDLWbW4RZNg1+7t9Tf/5UqpUEqKJQIuA1Qg+SBypu5p8wn9XnrvasnhcFtxDbpENvq5VsaG+2f2ukZnB6lZThJnOlVm0Uk4JQrtbWVrNt27Zyi6EEZMvLW1jx6xWunwetV1EpeKXPGKrfeUiz4WL4/S8Ht3/4fCsZZIoRkSeMMa1Jn0eHQEpo0j5dTgq3mZT6QCoUOzNwHhWgJEqJOrMVJSBXn3k1qx9bzeG+wwNt6gOpcFQpeKKKQlECEnb9gqJUKqoolEgMqxnGkf4jju1DmWpfv6AUx2utRaWhikKJhJOS8GpXlGpgy8tb8syTXQe7WP3YaqAyfXvqzFYURYmZu5+8O8+HBXC473BZw8ajoIpCicSoYaMCtStKNeCWRiatyTKLEVlRiEitiDwlIpvt92NE5FER2WW/jo4uppJWrj37Wuok34JZJ3Vce3a4imOKMhRwS4pZzmSZUYhjRnE10JHzfgWw1RhzErDVfq8MUeafMJ+1H1ubtwo67XlrFCVphloamUjObBGZBMwHbgG+ajdfAvyx/f8G4D+Ar0c5j5JuNAJIUfIZaiHUUaOe7gK+BuTWTZxgjOkCMMZ0ich4px1F5CrgKoApU6ZEFENRFCVdDKUBVGjTk4gsAPYaY54Is78x5h5jTKsxpnXcuHFhxVAURVESJsqM4jzgYhH5NDACOEZE/hV4U0Sa7dlEM7A3DkEVRVGU8hB6RmGMudYYM8kYMxVYAvzcGPN54CFgqb3ZUuAnkaVUFEVRykYS6yjWAReIyC7gAvu9oiiKUqHEksLDGPMfWNFNGGPeAubFcVxFURSl/KSicJGI7ANesd+OBf5QRnHConKXFpW7tKjcpcWv3McbYxKPBkqFoshFRLaVomJT3KjcpUXlLi0qd2lJm9ya60lRFEXxRBWFoiiK4kkaFcU95RYgJCp3aVG5S4vKXVpSJXfqfBSKoihKukjjjEJRFEVJEaooFEVRFG+MMZ5/wGTgF1g1J54DrrbbxwCPArvs19F2+7H29u8D3yo41mJgu32cOzzOeQvwGvB+QftXgeftY2zFiiF22n84ViqRQ0A38LscufuA94APsPJQpV5u4BPAjhy5+4DPpV1u+7O7bdk+sI+Tpv6ea/drP7CH/Pt7K9ADHCR997ej3MDxwNM590lHJchdAb9Lt/5O++9yLvAk0AtcWvDZ7cCz9t9iNxkGti+6ATQDZ9r/j8R6CJwC3AGssNtXALfb/zcCHwO+lNtBdse9Coyz328A5rmcc4593sIO+gTQYP//18BGl/3/Bvg+cCZWHqof5ch9pELlvsOWdwzWA/kbFSD3l4DdwHW2nHuAO1Mk91Tgk8Bm4FLy7+8fAt+zP0vbfeIm92zgG7a8HwLeAf6xAuRO++/SS+40/y6nArOwfpuX5rTPxxr81NlybgOOcTpG9q+o6ckY02WMedL+/z2sUcpErAJFG+zNNgCL7G0OGmP+EzhccKgTgN8ZY/bZ7/8d+DOXc7Ybu6ZFQfsvjDGH7LftwCQXsS8B/smW+wHg/By56ypU7mx/Xwr8DFhQAXKfiXUjftcYcxD4FdZoKhVyG2N2G2N+jr0CtuD+PgNrlgQpu0885B6PdV9swJrlHQQuqgC5U/27LCJ3an+XttzbsWZCuZwC/NIY02v/Lp8B/tTpGFkC+ShEZCrWD+hxCgoUYd2kXrwInCwiU0WkDutGmBzk/AV8EevCODERa8qGMaYX6wfzEVtuAdpEpB04u4Lkzvb3EuC7FSL3T4HRwAERGYs1QmpKkdx5FN7fwNuQyvs7jwK5jwMexroet2GNYL1Ii9xp/l3m4fIcTOPv0o1ngE+JSIP9u/xEMRl8JwUUkQ9hmRSuMca8KyKBJDPGvCMifw1sxNJwj2Fp18CIyOeBVqyRq+MmBXIfByyz5X7XGNMqIicAP6eIskyR3Nj1PWZiPQg8SYncm0Skxz73PuA3wGdSJHcuI6ic+zuXQrmNMWaWiLQAm8i5NimXO82/Sy+50/y7dJPhERE5i/zfZa/XPr5mFCKSweqcHxhjHrSb37Q7KNtRRQsUGWPajDFnG2POAXYCu0SkVkSetv9u8iHLnwDXAxcbYz6w227JHsPebA8w2Zb7QSyn5P+1P3vDLqz0MtaI4P0KkftN4C+BH2MlDKuU/n4V+JQx5gKgHnuUnhK5BzYH/gcF9zeW3TmN97en3Pb93Qm8jDW7qwS50/y79JI7zb9LLxluMcacbv8uBSsoyXMHzz/7IN8H7ipoX0++8+mOgs+/wGBv/3j7dTRWdMYfFTl3oRPnDOAl4KQi+/0t8L9tuX8K3Jdz3m/a8mazM34n7XLn9PerWNPESunvWuB/2fLOAt4A1qdF7pz7+0Vgs8P9fQ9Hndmp6W83ubFs1Xfa8o7GGi3+SwXInerfpY/7JJW/y5ztv0e+M7sWONb+fxZW5FOd5zF8nORjgMEKxXra/vs0lu1zK5Ym2gqMydlnN9bI8X2s0eYpdvu9WGFdzwNLPM55h71fNhxttd3+71gaPCvHQy77j8CavhqsSITn7e3/u/1/Npzt+QqR+9PA6ViOsUrq70uwRkwHscJmH0+Z3GdhjQAN1tS7O6e/f4MVidNv9/ulFSD39Vghl7nhsZXQ32n/XXrdJ2n+XZ5l73cQeAt4Luf3mj1/O3C6lw4wxmgKD0VRFMUbXZmtKIqieKKKQlEURfFEFYWiKIriiSoKRVEUxRNVFIqiKIonqigURVEUT1RRKIqiKJ78f6S57F/6hNcgAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import collections\n", + "\n", + "from apd.aggregation.query import with_database, get_data, get_deployment_ids\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "async def plot(deployment_id):\n", + " points = []\n", + " async for dp in get_data(sensor_name=\"RelativeHumidity\", deployment_id=deployment_id):\n", + " points.append((dp.collected_at, dp.data))\n", + "\n", + " if points:\n", + " x, y = zip(*points)\n", + " plt.plot_date(x, y, \"o\", xdate=True)\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " deployment_ids = await get_deployment_ids()\n", + " for deployment in deployment_ids:\n", + " await plot(deployment)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAE0YAAAUsCAYAAAC9bUPVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdd7x0Z1Uv8N9KBwIJEAJSQ+9NihSBBJAqIL2HkCCCXq5cURD13ovYr6BwQakGCKFKByHIRQOitCAogjSBCKEESEIPIWTdP/a8Zt79zilzzpwzb/l+P5/5kL32fp5nzZk5w+eds/Z6qrsDAAAAAAAAAAAAAAAAAAAAAAAAsEz7LTsBAAAAAAAAAAAAAAAAAAAAAAAAAI3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAEaq6qiq6tHjuGXntZ2q6tTR8z912Tntjfyc92xV9bTxZ8WesL73HQAAAAAAAAAAwO5jE7VgS61hm9ey63OXvT4AAACwfhqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMRoAAAAw0wq7oq32OLeqzqyqz1bVKVX1R1V1n6o6aNnPBQAAAAAAAAAAANiYPaWesKruuEI+pyxwjaPXeO5HL2idY9dY56hFrAMAAAAAuyON0QAAAIBFOTjJZZJcI8ldk/xmkjclOaOq/qSqDl1mcnu7qnrpqOjpi8vOCdi7VNUXR58zL112TgAAAAAAAAAA7JaWVU94wgrxn6uqK2/RmmPH72bzAAAAAMAeR2M0AAAAYKsdkeTJSf6tqm697GQAAAAAAAAAAACApdiyesKqOjzJ/VY4vV+S4xa53iruX1WX2MwEVXW1JLdfUD4AAAAAsMc5YNkJAAAAAHuU7yf53ArnLprkUkkuvcL5qyQ5paru0N0f24rkAAAAAAAAAAAAgG2xu9UTPjzJIaucf3RV/V5394LWW8lFkzw4yYs2McfxSWox6QAAAADAnkdjNAAAAGAep3X30atdUFVXTHKvJE9KcvXR6UskeV1VXbe7f7w1KbIIa73OQNLdT0vytCWnMTe/3wAAAAAAAAAALMDuVk94wui4s3NzsaOS3CnJ/1vAWmNnJ7nk1PHx2WBjtKraL8mjRuGzMjSaYy+1p9aiAQAAAGyV/ZadAAAAALB36e4vd/fzktw4yRtmXHL1JL+0vVkBAAAAAAAAAAAA22m76gmr6iZJbjoK/3mS80ax4ze71gpeneQnU8e3qqrrbnCuuya54tTxOUnesdHEAAAAAGBPpDEaAAAAsCW6+/tJHp7k32ecfuQ2pwMAAAAAAAAAAAAswTbUEz5mvGSSZyd52yh+v6q65ALWG/tKkr8dxTbahG087pVJzt3gXAAAAACwR9IYDQAAANgy3X1ukj+acermVXWp7c4HAAAAAAAAAAAA2H5bVU9YVYckedgofGp3/2eSl43iB2do0LYVThwdP7KqDphngqq6dJJ7rzEvAAAAAOz15vpiDQAAAGADTpkR2y/JtZO8f6OTVtV+SW6a5Kgkl0lyqSTfSfKNJJ9L8tHuvmCj8y9SVV0hyXUy5HpYkotkyPWsJP+Z5MOToi+2QFVdJMktk/xUkiOTHJrkWxneK//S3f+xxPTWpaouk+RWSa6WIf9vJzkzyQe7+/Rl5rbVquqwDM/9mhl+f85NckaS98/z3Kvq8klukeH38NAMv39fTvKe7v7OgtPekKo6OMltk1w5yeWS/CTJ15N8PMnHuruXmB4AAAAAAAAAAGzWVtQT3i/JJUexkyb/+/YMdWKXmTp3QpLnbnCt1bwlyTeTHDE5vmySe0zi6/WIJAdNHf9rd3+kqhaT4QJU1f4Z6tiuk+QKSS6RZP8kZ08en0ry8d2lfnMR9pUa0Ko6KMk1MjzXy2V4bZPheZ6V4XX99DblckCSmye5fobfqQuSfDXJF5J8oLt/sh15rNfeUKcKAAAAuxuN0QAAAIAt1d3fqKrv5MICiR2OmHX9Wqrqdkl+JcnPZWiGtpKzqurtSf6ouz+5kbU2qqqOSHLfJHdOcocMBU6rOa+qPpCh2Or16y0IqqovJrnKCqevUlXraaJ0THefOmPuUzPkvsN7uvvoFfL4eJIbTIW+keQK3f3jdaw/U1U9NMkrR+Ff6e6/XOf4/TLs7PmIJLdPcsgq134hyWuTPKO7v7mxjLdGVR2d5LeS3ClDAeCsaz6Z5A+TvHKexllVdVySl4zCV+3uL24gz/G6v9vdT1tjzNOS/O/pWHfX1PlbJPmdDMWBM7/HrKr3JPnN7v7AKuvcK8lTktwmyawKwfOq6o1JnjzZJXbd1noOc8xzVJKnZfjcGH9W7vC1qnp+kmd29/fmXWO03qlZx+/3JK8vrDLVo6rqUWutt+NnUlWXyNDU7tCp06d29zFrJr2Kqnp2kv8+Ct+ku/9lM/MCAAAAAAAAALBYi64nnDhhdPyDJK+brHd+Vb0yya9Onb9JVd20uz+6iTV30d3nVdUrRmsdn/kaox0/Oj5x04ktQFVdM0MDujtm2PjxYmsM+XZVvStDTd4H51hnt6hF3K4a0NGaT8sCatE2sO5NkvxCkmOS/EySg9e4/htJ3pbhtV14bW5VXTbJbyY5LsnhK1x2ZlW9NsnTu/sbi85hvfaWOlUAAADYXc28mRIAAABgwWY18Vmp+c9MVXWtSaOz9yZ5cFZvipbJ+Uck+XhVvbiqViw4WKRJEdVXk7wwyYOydkFMMuzwePsMRQ//VlXX37oMt8S4udZlktxzk3MeNzr+UZJXrWdgVd0tyccz7Pp5l6xSbDJx1QyNsz5fVb+6xrXboqoOrqoXJfn7DE0AV/se73pJTk5ySlWtVXC226vB7yX5QJJ7Z/XNHe6Q5J+q6tdnzHNYVb0+Q2HhbTO7KVoy/P49OMknq+rOm0p+AybvuU8keVRW/1y8XIbmaZ+oqpttQ2oL193fyfBenXZ0VV13o3NOdto8dhR+v6ZoAAAAAAAAAAC7rU3XE+5QVVfN0NBp2htGGw++bMbQcTO1Rfmr0fE9q+rI9QysqpsnudFU6LzsWmuzrarq0lX1z0k+k+SPM9TjradG7bAkD0jygap6c1Wt1OBqbOm1iPtKDWhVXaeqPp3koxkast0+azRFm7hMkkdneJ4vqqr1jFlvTvdI8skkT8zKTdGS5Mgk/y3Jv1fVQxa1/jz2hjpVAAAA2N1pjAYAAABsh1kFCt9Z7+CqulOSDya5+wbW3i9DEdN7JjvJbbXbZPVGTmu5boZioG1v0LQJJycZ78j46I1OVlVXzLDT4rQ3dffZ6xj760n+JkOzsHldPMmzJo30NvMabsqkid87kjxmzqF3SfL2qtp/8Vltq+cn+Z2s/7vLSvKnVfXY/woMhXTvzrBL6XpdLMlbquoWc4zZlKr6gyTPSnLROYZdOcPn2R7ZHC3Drqhjj9vEfA/Nrv8f87xNzAcAAAAAAAAAwNbaVD3hyPHZdcPEk6YPuvujGRoYTXv4Vmy22t0fT/KRqdABSR65zuHHj47f0t3fWkhiG3fxJDfd5Bz3TvKhSV3gWnaHWsR9pQb0ckmutYnxlaHG8b1VtaHGhjtNVnWvJG/O2psmT7t0kldO1w5uh72hThUAAAD2BP7hDAAAAGypqrp6Zjf9+fw6x98ryeuTHDg6dV6Sv8vQMO1LSb6d5NAkRyW5Y5Lbja6/ZZI3VdXtu3tcOLNVfpLkn5N8IsmnknwrQwFXZdjh8ppJbpXkttm5CdShSV5dVTft7i+tMv8nk5wz+e8rJ7nk1LkfT86vZdbum3Pp7jOr6u1J7jMVvkdVHdndZ25gymOza1OsE9caVFV/nGFHvbGzkrwrQ8HZmUl+kKG47vpJ7pbk2qPrT8jwc/31ubJenBOz8y6mn87QKO1TGZ7LYRmKze6fXXejvH2S/5HkGVuf5uJNdkKcLlI6Pclbk/xbhud+eJKfSfLA7LpL7LOq6p0ZPg9enWS6cdhHkpyS5AtJvpvh53bHDEV30++1iyR5UVXdvLvPX9DTmqmqfi3Jb8049aNJru9N8pUMDduumuH36waTay6W5E1JXreVOWb4nP2XqePrZefP4rOT/Oc8E3b3J6rq1CRHT4WPraqndvcPNpDj40fH30ry1xuYBwAAAAAAAACALbbZesLRXPslOW4UPiPDhopjJyX506njwzNsuvjKedddhxOzc+3S8UmeudqASZO2h86YZ3fzvSQfTvLvST6boW7zu0kOylC/eL0MtW/XHY27ZpLXVNUdVqvL2l1qEadsdQ3o7uTsXPja/keG5/m9DDV1R2Sot7xLhlrVabdM8uIkD9rE2ldN8pxceL9zJ/mnJG9P8uXJ8ZUybK582+zcDLGSPL+qvtXdr99EDuuyF9WpAgAAwG5PYzQAAABgq91/RuzsDMUTq6qqq2YoSJpuxHN+kj9P8qfd/Y0Vhj6tqm6SodhiusDoVkn+OMmT1pH3Rp2X5A0Zdi78u+7+9loDquoqSf4oOxc2XTrJ85L8/ErjuvseU3O8NMmjpk5/pbtvMlfmm3Nidi5GOiDJI5L82QbmOm50/OUk/2+1AVV13+xabHJ2kt9MclJ3n7vCuEryC0men+TIqVNPqqr3dvdb5sh7EX4myY6dSL+W5AndPbP5VVU9JclfZCjemvbbVfUX3f3DrUtzy/zJ5H9/kOH39EXd/ZPRNS+qqt/O0DDxtlPxi2RoNPbpJHedxD6f5LHdPavY8TlVdfMMOzdOv/Y3ztB47VWbeSKrqaprJ/mDGafekSHfL8849zuT9/nzMjR2u2KSX9qqHJOku7+S5L8+R6rqi0muMnXJW7r7uA1M/dzs3Bjt8CQPyZzFnFV1syQ3H4VfstLvOwAAAAAAAAAAS7fhesIZ7pqhhmbayd19wYxrT85QO7j/VOyEbE1jtFdmaIS2ow7selX1M939wVXG3C9DDc0OZyT52y3IbSPOyfDze12Sf1rPxrRVdZskz87OtT23SfLErL3p51JrEbONNaC7ga8leWmSNyY5bYXfnf8yqbe8e5JnZWgKt8MDq+oBK9U6rsOTc+Hvy6eSHLfC78sfVtUtJzlPN9+rJM+rqvd09zc3mMOa9qI6VQAAANgjjLvdAwAAACxMVf1UZu9m9qq1CigmXpGdi31+kOSu3f3kVZqiJUm6+2MZCmneNTr1hKq60jrW3qhbdPf9u/uN6ymISZLuPr27H5bkaaNT96iq6yw8w63x9iRfH8WOm3eSqrptdi6YSZKXrfZ+qaojk7xkFP5skht19wtXa5LUgzdmKMAaN6P6o0lBynbaUdzz+SS3Wq1QqLu/l+Fn/M7RqcMzu4BwT3Bwht/zO3f382c0RUuSdPfXMxSMjXcBfUSSp0/++xNJbr1CU7Qd85yW2T+rR8+b+Jyelwtf6x1em+TnV2iKliSZvFfvkAuf90W2Jr0t96bs+vv2+A3MMx7TSV6woYwAAAAAAAAAANhSC6gnHDthRuykWRd299eya6OxYyabty5Ud5+TodHUtLXqkcbP5WUr1U5ts68kuXx3P6G737OepmhJ0t3/lOR2SU4ZnfrvVXXAGsOXVos4sa/UgH4oyZW6+6nd/aH1/A5O6i3fnmED2I+OTv/aJnLZUUv3iSQ/u1oTwe7+UIb31idGpy6TCzdmXbi9rE4VAAAA9ggaowEAAABboqqunqGo5TKjUz/IsDPeWuN/LsmtR+Hju/vv1ptDd5+X5IFJpneAOzCbK8BYa811FcKs4OlJPjx1XEmO31xG26O7z8+wQ+K0G1bVzeacalYB2LiYZOxXkxw2dfyDJHdbrcHUWHd/KclDRuHrJbn3eudYoB8neVB3n77Whd3dmf1+vuvCs9o+T+zu96910aSAcLx76EWTXCzJuRl+huPGabPmeV92LcA7pqrGjcsWoqpumOSYUfhzSY5dZ3HZp5McuxW5bZdJ0ea4gdnNq+rms66fpaoOy847rCbJu7r7c5vNDwAAAAAAAACAxdpsPeGM+Y5Icq9R+LTu/uQqw142niZbt4HiiaPjh1TVzE0Qq+qo7FpPtFbN3Lbo7vO6+4cbHHtukkdleI13uFKSu6wxbpm1iPtMDWh3/2Dys97I2LOzaw3bravqeptI6bwk9+vub61j/W8lud9kzLSHTz4btsLeVqcKAAAAuz2N0QAAAICFqKpDquoKVXXPqnphkn9NcqMZl/7iOgsBnjI6/ofufs28eU2KVJ49Ct933nm2w6TJ1ctH4Z9dRi4bNC7mSubYqbGqLprkQaPwe7v7P1YZc2iSXx6Fn9ndn1/vujt09z8mefcovIz3yiu7+yPrvXhSzPfPo/C8RWC7i88kefEc179+hfjL1yhyHHvd6PiAJDecY/w8Hjcj9qTu/tF6J+judyZ56+JSWooXZtfCtMfPMf5RGRrhTXv+pjICAAAAAAAAAGAhtqCecOzYJAeNYietMebNScZNr46rqq24x/LdSaY3xjwsyf1XuPbRGRpo7fDevWVzwMnGluNNK9dTE7nttYiLsBfUgK5bd/9bdq1b3MxzfU53f2aO9T+T5Dmj8MGZ432yXntpnSoAAADs9jRGAwAAAOZxh6rqWY8kP0zy5SRvS/KL2bVhzQ+SPLy7X7nWIlV1qSR3HIXnaZY09jej46tU1VU2Md9W+uzo+Ker6sClZDKnSSOqD43CD6uqg9c5xf2TXHwUW2uHxjsnOXwU+6t1rjfL+L1yh03MtVEv2sCY8c/9WotIZAleMikOW5dJYdGsHTrnfQ98dEbs2nPOsV53Hx1/Nbu+79bjBQvIZWkmRY9/PQo/pKrGv88r+aXR8RnZ85vFAQAAAAB7kUkTgDtV1QlV9ZSq+tWqemBV3XjZuQEAACzIttQTruD40fGPk7xqtQHdfW6S147CV0pylw3msNpaneSlo/A450yasj1qFJ7VFGxPNq6JvNVaA5ZUi7goe2wN6AbM/dquYiN1ky+cERvX5y3C3linCgAAALu9A5adAAAAALDX+26S1yR5end/aZ1jbpedd0BMkn/aRA5fmBG7aXbekXFLTHaKu32G3S6vl+TSSS6R5GKZ3bT+0NHxwUkum6FIbE/wkiS3nDq+VJJ7Z9cGSLM8enT8vXWMGxeEnNHdm3ldx++Vo6rq8O4+ZxNzzuOH2bWgaz3GO1nuX1WHdvf3FpDTdnrvBsb8Z5IbTh3/IMlH5pzjizNi623QtW5VdWSSq47Cb+7un2xguncm+X6Gz5I91XOTPHzq+KIZdvP9v6sNqqo7ZPg8nfai7j5/sekBAAAAANulqq6W5BZJbj7535/Ozjcwn97dRy0htblV1Q2S/K8k90pyyArXfDbD31Se2d3nbWN6AAAAy7aResKdVNWtklx/FH57d39zHcNflqFR27Tjk5yykVzW8JIM/z7cUQt5dFVdtbuna9TunGR6k9fvJnndFuSyMFV1hSS3yVATea0kh2WoibxIdq37TJLLjY6vvM6ltrsWcaZ9qQa0qq6eobnZjZJcPcPzvESG5zDrtR2/lut9bcc+1d2fnndQd3+mqj6RnT8PblFV+3X3BRvMZZa9rU4VAAAA9ggaowEAAABb7bQkz5mziOm2M2Kvn+wkuShHLHCuXVTVzZL8RoZCnItscrrDswcUxUy8KsmfZefnfFzWKCqqqqskOXoUfm13f3+N9cbvlUtW1cfWTnNF46KkZHivbFfByend/eMNjPv2jNhhGQq69iSf28CY746OT99Ag6zxHMnw81u0m82IzdvELUnS3edX1b8mufXmUlqe7v5AVX0kO/9cHpc1GqMlefzo+PwkL15kbgAAAADA1quqo5M8NUMztEstN5vNq6pK8j+TPC2zbxaeds0kf5jkoVX1sO7+ty1ODwAAYHexkXrCsRNmxE5az8Du/seq+lySa0yF71NVR6yzsdq6dffpVfV3Se40CVWGWrr/PXXZ8aNhr1lHzdxSVNUDkvxyhiZRsxqCrdd6N6zc7lrE8Tz7RA1oVe2X4XfqFzM0q9+MjW5GuqEauol/zs6N0S6eoWHfpzYx59jeVqcKAAAAewSN0QAAAIB5fD+zGxcdmOSSSX5qxrljkny4qo7r7letc50rzojdaJ1j1+vSC54vSVJVByb58wyNezZT/DNtKxo0bYnu/nZVvTHJw6bCd62qn+rur64y9LjsepPQS9ax5Pi9ctEkN17HuHlcOhtr2LURZ21w3KxmagduJpElOXsDY8bPfe45uvvHw/1qO9mKn9+RM2Jz73Q55VPZgxujTTw3O/+uX7eqju7uU2ddXFVHJrnvKPyW7j5ji/IDAAAAALbOTZLcZdlJLNCLsuvN+RdkuOn/i0kOSnK9DDfn7nDDJO+uqlt39+e3I0kAAIAF2q56wv9SVRdL8uBR+Kwkb5tjmpOSPH3q+KAkj0jyrHnzWYcTc2FjtCQ5rqp+t7svqKpLJvmFGdfvVqrq8klenuSOC5pyXfWQS6hFTLJv1YBW1XWTvCLJTRc05Uaf52Zr6MaOXCG+UXtbnSoAAADsERb1xQwAAACwbzitu28y43H97r58hj/MH5ddCwoOSvLyqrrXOtfZkqZlI5vdwW8Xk4KYv07yK1ns9y57WoOrcRHR/kkeudLFNXSkOnYU/mx3v28da11qztw2YuHvlVXManC2z+juRTz/3flnOGtHzG9vYr7NjN1dvDrJt0axx61y/QkZ/j9l2vMWmhEAAAAAsGw/SvIfy05iHlX1hOzaFO3VSa7c3T/T3Q/u7vt297WT3DLJR6euOzLJO6rqkG1KFwAAYFG2q55w2oOSXHwUe3V3nzfHHCcl6VFs/G+6RXlDknOmjq+cCxulPTzJwVPnPtXd79+iPDakqq6Q5NQsrilakhwwx7XbWYu4T9WAVtUNkrwni2uKlmz8eS66hm5Wnd5m7G11qgAAALBH0BgNAAAAWJjuPqu7X5bkJhlu9pi2f5KTq+qodUx1yQWntl2ekuQ+M+JnJPnLDLtK3jrJlTIUXhzS3TX9yLAj5p7u3UlOH8Uevcr1d0hytVFszR0aq+qi2bkwDHZ346LMZNg5d6M2M3a30N3nJvmrUfh+VXXZ8bVVtV+Sx47Cn83wmQMAAAAA7Jl+nORjSV6c5JeS3CzDd6mPWWZS86iqSyf5w1H4Od390O4+Y3x9d384ye2TfGgqfK0kT9y6LAEAALbfAusJp81qYHbSnHmdnqEh1LQbVNUt58xlPWudm+RVo/COWrrjR/ETF73+Arw0yTVnxD+W5I+S3DfJTye5XJJLJDloRk3k725i/W2pRZyyT9SAThrAvTbJZWac/sckT0vy80lunKGh+8WTHDDjub5sQSktuoZuVp3ehqhTBQAAgOWZp7s+AAAAwLp094+q6pFJLpudizwukaEBzp1mDrzQD0fH53T3bt0sraqOTPLUUfj8JL+R5Lndff46p9rjd33r7q6qlyX5X1Ph61TVrbr7AzOGjAuVfpL1Faudm+SC7Nz8/03dfd+5Eobt890ZsYttYr7NjN2d/GWSX8+Fv8sHZihiHd9IePckR41iL+ju8Q6+AAAAAMCe4WVJnj+5SXwnVbWEdDbsCUkOnTr+9yRPWm1Ad3+vqh6e5JMZvhNNkqdW1Qu6++ytSRMAAGA5FlBPmCSpqmsnue2MUx9Y0L8jj8/OTawX5SVJHj91fN+qOibJTadi5yd5+RasvWFVdc8kdx6Fz0xybHe/c46pNlwTuY21iPtaDehjk1x3FPuPJA/p7tPmmGdRz3XRNXSz6vQ2Sp0qAAAALMl+a18CAAAAML9JEcixSb4zOnXHqnrwGsO/OTo+vKoOX1hyW+PeSS46ij2lu581R0FMklxqgTkt00uTjJsVHTe+qKoOTXL/Ufhvu/uMtRbo7guSnDMKX3X9KbIIk90jWZ/x+zVJDtvEfJsZu9uY7ML7tlH4sVU1/v768aPjczN81gAAAAAAe6DuPntWU7Q90L1Gx8/u7h+vNai7P5fkTVOhSyS53yITAwAA2F1ssp5whxMWm9UuHlpV4xrATevuDyf5+FTokCQnjy57e3d/bdFrb9JDR8c/SXKvOZuiJZuviXxptrgWcWJfqgEdv7bfTXLnOZuiJYt7rouuoZtVp7ch6lQBAABgeTRGAwAAALZMd385O+/Ut8MfrtFM6eszYjdaTFZb5udGx2cnee4G5rnaAnJZuu7+QpJTR+GHVNUho9iDsuuOfS+ZY6nxe+VaVXXwHOP3ZbNuytpIk7NLbzaRfciZM2LX3sR819nE2N3N+PPyKknuvuOgqnY6nnhtd39rqxMDAAAAAPY+VXVoVd21qh5dVU+uqidV1SOr6uYzNm1YbZ6LJ2JdggYAACAASURBVLnJKDzPDeKnjI4fMMdYAACAPcom6glTVQdkaKy2lS6Rrft32bgm7vKj4xO3aN3NGNdEntLdH9rAPJuqidzGWsR9ogZ00kDu1qPwSd39xQ1Mt6jneq1NjJ1VfzerTm8z1KkCAADAEmiMBgAAAGy15yX5/Ch2tay+e+Os4plxQ5zdzZVGxx/s7vM2MM+44GRPNi4qOizJfUex40bHZyV5yxxrjN8rF0ly9Bzj92Xj3VeTobhvXtfYbCL7kI/MiN1sIxNNij1394aR8/h/ST49ij1+6r8fm12/z37elmYEAAAAAOx1Js3Q/i7D3yNOyXDj+Z8keUaSk5J8OMnXq+qPq+qS65jy8tn5u8vvz3kj8cdHx3dyYy0AALCX20g9YZL8fJLLjmJfS/Ivm3yMrZXHRr08yUr1hGcm+ZstWndDquqgJEeOwv+wgXn2T3LLBaS0HbWI+0oN6Pi7jGRjr+2RWVxjtA3V0K0w9rtJPrOJ+WZRpwoAAABLoDEaAAAAsKUmhSFPn3Hqt1e5seNdM2IPnjQC2l0dMTo+a94JquqIJMdscP3zR8f7b3CeRXp9dm2+9egd/1FVV09yu9H5V3T3j+ZYY9Z75RFzjN+XnTMjtpFCpTtsNpF9RXefmeQLo/C9q2oj39PeNbvucLrVtuxzprs7yV+OwnevqqtMdgQeF51+rLs/sKj1AQAAAIC9W1UdUVXvytAM7ZgkB65y+RFJnpLks1V1+zWmvtToeNZ376sZX39gkuvMOQcAAMAeY4P1hMnshmWP7u6bbOaRXRse3b6qFr5RZHd/M8nbVjj98u4e1+Us27geMtlATWSSeyQ5dJO5JNtTi7jsGtDtsqjX9sGbTWTKdavq2vMOqqprJbn+KPzh7r5gMWn9F3WqAAAAsAQaowEAAADb4eTsugPbFZP84qyLu/uMJB8Zha+aXXf02518f3Q8q3hkLb+S5JANrv/d0fEiiok2pbt/kOQ1o/CdqmrHzorHzRg23tlxLe9Mcu4o9tCNFMnsgz49IzbX7pyTHT2PX0w6+4x3jI4vn+SeG5hn5ufnFtvqz5mXJvne1PF+SR6bYXfX8Y6/z1vw2gAAAADAXmpyQ/sHk9x5dOq7SU7N8LeM1yU5Lcn0jbOXTvKuqrrrKtOfNzpe7Sb+WWZdf7055wAAANjTzFVPWFU/leTuo/DXM7tZ0UZyGduqeqgT54wv07geMtlYTeSvbTaRZNtqEZddA7pdNv3aTja6fMJi0vkvj9nAmFmfGeP6vEVQpwoAAABLoDEaAAAAsOW6+ydJfm/GqadW1UpFIH8wI/aMyQ5vu6Ovjo5vU1UXW+/gqrp+kqduYv2zR8eHV9UlNzHfooyLi/ZLcmxV7Zfk2NG5f+nuj84z+WQnzReOwvsneWVVXWSuTPcx3X1mki+Pwg+aNDtbr19JcrXFZbVPeP6M2DOq6qD1TlBVd05yn8WltG7jz5mFvvbd/Z0kLx+FT8iuRXTfSfLKRa4NAAAAAOydquqiSd6Ynb/P/HSSByS5ZHcf090P6e4HdvctMtyI/6Kpaw9KcnJVXWGFJb41Or7kKn/7muWnZsTcVAsAAOzVNlBPeFyGmrBpr5rMs1mvTnL+KPaoOWuo1uvtGf4dOP24bHd/cgvW2pTu/naSH4zCd5lnjqp6TJKjF5VTtrgWMcuvAd0u4+eZzPnaJvnfSa65gFymPWHS3H5dJteO68p+lGFzzoVSpwoAAADLoTEaAAAAsF1emeRTo9jlkzxu1sXd/cYkp43ChyV5x6SAZG5VdfGq+o2qesRGxq/hH0bHh2Yo/lhTVR2V5C1JDt7E+h+fEbvHJuZbiO5+f3Z93Y9LcqckVx7FN7rz5R9l110MfzrJGzfaHK6qrlJVz6mqG2wwpz3FeHfEKyd54noGVtWdkvyfhWe0l+vujyf5+1H4WkleMinSW1VVXTO7Ng/bLuPPmRtM7bq6KM8dHV82yc+OYid39/cWvC4AAAAAsHf60yTT3/W/I8lNu/v1s26g7+6vdvdjkzxpKnxEZt+wnwwbkEx/X7l/kpvPkd+tZ8QOm2M8AADAnmqeesJHz4idvIgkuvsbSd45I4+7L2L+0Vrd3V8bPc5c9DoL9L7R8dFVta6axKq6W5L/u8hktqEWcdk1oNti8p77zCj88Kq68XrGV9WjszUN4A5O8ob11HxOrnlDdv15v3LSxGwrqFMFAACAbaYxGgAAALAtuvuCJL8749RvVtVFVxj20CRnjWJXS/LBqvrtqlrzxpCq2q+qjqmq5yf5zwyNnC43R+rr9fokF4xiv1FVv1dVB6yS30OTvD/D80qS72xw/Q/MWP+ZVXWfqjpwg3MuyninxmskefYodl6SV2xk8u7+WpJHJenRqbsm+UhVPWK112CHqrpYVT24qt6Q5HNJ/luSWTuQ7k1ePCP2J1X1S1VVswZU1SFV9ZQMN48dnOTcrUxwL/XL2fXn9rAkb6mqK6w0qKp+Icl7c+Fn2A+3Jr0V/dPoeL8kf11V89zkt6rJDrjjxnFjz1/UegAAAADA3quqLp/kMVOhLyZ5QHev+d1qd/9ZkrdPhR5eVbv8fam7z0/yj6PwI9eZXyWZtZnPxdczHgAAYE+23nrCqrpDkmuOrvlUd39kgenMarJ2wgLn31O9dkbsNVX1gJUGTGrL/leSNye5yCS80ZrIWbayFnHZNaDbafzaHpjklKo6eqUBVXV4VT07yV/lwvuSF/Vcd9TS3TDJ+6rqlqvkcYsMTexuODr1jSRPWVA+u1CnCgAAANtvzX9oAwAAACzQa5P8TpLrT8Uum6FJ0DPGF3f356rqQRluPDlo6tTFkvx+kqdW1fsy3HDy1STnJLloksOTXCnDbmw/PTneUt39mao6Ocmxo1O/k+S4qnpdkn9N8r0kl0py7ST3TnL1qWt/kKEw43kbWP+rVXVKkukdGS+b5E1JzquqL2XYrW5clPGY7j5t3vXm9PIkf5hk/6nYdUfXvLW7v7XRBbr79ZOCqt8bnbrqZP1nVNWpSU7LUADz/SSXyPDeuEaSmye5UfaAHRsXqbs/VFVvTnKfqfD+GRpP/UpVvTFD8c15SS6T5GYZ3mNHTl3/xGhUNZfu/lRV/XaSZ45O3TPJ56rqHRmKt76aoUDwahleo+lirjOS/HWGn/92eXOGZpWXmor9TJIPV9V3k3wlMxrldfdN5lznL5Ics8K593X3x+ecDwAAAADYNz0uO/996Xe7+wdzjH9mLvy7y0FJ7pbkpTOuOznDTbA7PLqqntfdH1tj/idk15v7E43RAACAfcd66glnNSh7+YLzeHOGBk+XmIrds6qO7O4zF7zWnuSkJE/NzjWOh2bYSPGfk7w1Q23ZjzPUk90syc8nufTU9Z+cXLeohlVbVou47BrQbfbnGRpyTdfWXi7J31fVe5O8M0OD+Qsm8dskuXuG13+Hd2eoYRv/vDbi/yT5tcn810vygUlt8DuSfGlyzZUyfDdzuyTjTV87yeO7+xsLyGVF6lQBAABge2mMBgAAAGyb7r6gqn43u+429+TJDSLfnzHm3VV1uySvy1DYMO1iGW40uet43JL89yS3THKdUfyKWbt50Y+TPDBDYcxG/UaSO2T4uUw7KDsX30w7dIX4wkw1bbvnKpeduIB1fr+qvpKhqdJ4B73LJnnw5MHOHpfkFkkuP4rfMLvuqjj2p939gqrSGG1O3f1nVXVEhuLBaYckue/ksZLvJ/mFDIWE26a7z62q/5HkZTNOXzxDsd8ivClDQdv4Mz/Z/YsGAQAAAIDdx89N/fdPMvytaR7vS3J+Lqy1vV1mN0Z7dZKn5cK/xRyY5K1Vdbfu/sSsiavqwZmxadDEBXPmCQAAsEdaq54wQ/Or+4+HJXnFgvP4YVW9IclxU+EDMzR8Wunfbnu97v5xVT0ww7+PLzo6vWPT2tWckaFm8LgF5rTVtYjLrgHdFt19VlU9PMlbsnOTuSS5/eSxmn/L8Fz/fEEpfSHJw5O8YZJPZfge5nbrGNtJHtfdr19QLqsvpk4VAAAAts1+y04AAAAA2Ofs2DVv2mWSPGGlAd39oQxFNC/JUDyyUZ3k1CT/sIk5Vp68+9tJ7pzkA3MO/UqSO3f32ze5/icz3OTzuc3Ms0VWKzb6aoYdBjetu09Mcuskf7fJqc7NcCPTf246qd1cd38tyc9mvvfNeUl+vbufvDVZ7Ru6+7eS/I/MVwz35STHdPdpW5PV6rr7pCSPSfLdLVzjJ0leMOPUN5JsSwEbAAAAALBnq6pDktxsKvSlJEdU1VHrfWTYUOScqTlmbkLT3ednuHn3vKnwFZP8c1X9ZVXdtaquU1U3rKoHV9XbMvwN4sDJtV8eTXlOAAAA9h2r1RM+LLs25Hpfd5++BXmcPCN2whass0fp7o9m2Lj2q3MO/UCSW3X3Fxee1BbWIi67BnQ7TXJ9YJLvzDn0bUlu191nLzift2TYLHSe70XOSvLw7n7hInNZizpVAAAA2B4aowEAAADbqrs7ydNmnPr1qrr4KuO+2d3HJ7lGhl0YP5Gh0dlavpvkbzI0H7pqdx/T3R+cO/F16u4zMuyW99+SfH6Ny09P8j+TXKe737ug9d+fYbfCeyT5ywy7NX4lyfeSXLCINTborUm+ucK5kyaNkBaiuz/W3XdKcqskJ2XXG4pW8tUMBW6PSnK57n5od5+5qLx2Z939hSQ3SvJbWb2I7bwkr0ly0+5+5nbktrfr7mcluX6Sl2X1IrMzk/x+kut394e3I7eVdPdfJblCkkcneXmSj2bI74cLXGZW47cTu/tHC1wDAAAAANh7XS4XNh5LkqOSfGEDjyOm5rjUSotN/vb0iAw3tO5wUJLHJzklyb9nuNH/1UnuOXXNm5K8dDSdxmgAAMA+Y7V6wiS/NCM+q4HZIvx9kjNGsetU1W22aL09Rne/L8mNk/yfrP1v1tMy1N/dtrvXW7c3ry2tRVx2Deh26u43ZqgbfEFWr/26IMOmxPfp7nt195Z8d9Hdb0tyvSR/kdVr6b6R5LkZfu6v2opc1qJOFQAAALZeDd8dAgAAAOx5quoySW6WYYfISyc5NMn3MzRD+3KSTyU5vZf4BUhVXSvJLSc5XmyS35eT/Gt3f3pZee1rquoaGQpmLj15HJShWdy3M9zY9CnFJReqqhtlKGY7IsOuq99O8ukk7+/u7y0zt71ZVR2c5GeTXDnDTXsXJPl6hpvlPtbdy2xuuK2q6pVJHjoV6iTX6O61ig0BAAAAgL1AVR2d4ab0HU7v7qPmGH+zzN6AYTO+2N1XXWPdm2fYuOYWa8z14yR/mOQPJtc/ZurcE7v72ZtJFAAAALZCVe2f5OYZNoI8IskBGeo1v5DktO7+2hLT2xL7Sg3opHbtZ5JcO0ON5X4ZGuH9R5IPd/dZ25zPgRm+X7n+JJ8LMjQV+0KGOsaFbca7KOpUAQAAYLE0RgMAAAAAYLcxaXr5pSQHT4VP6e67LyklAAAAAGCbLaAx2q2T/NOC01p3DlX1c0nuneR2SS6f5PAkZyU5PcnfJHl5d39hcu37ktx2avjPdvc/LjBvAAAAAAAAAIA9ygHLTgAAAAAAAKb8YnZuipYkf7GMRAAAAACAPdY3R8d/29133a7Fu/tdSd611nVVdWCSm02Fzk/yz1uVFwAAAAAAAADAnmC/ZScAAAAAAABJUlUXS/Kro/Dnkrx9CekAAAAAAHuur4+Or7WULNZ22ySHTB1/sLt/uKxkAAAAAAAAAAB2BxqjAQAAAACwu3h6kiNHsWd19wXLSAYAAAAA2DN193eSfGIqdFRVXXNZ+azihNHxi5eSBQAAAAAAAADAbkRjNAAAAAAAlqqqLlVVz0jya6NTpyd50RJSAgAAAAD2fO8cHf/iUrJYQVVdPckDpkLnJHnNktIBAAAAAAAAANhtaIwGAAAAAMC2qqoXV9XHJo8vJ/lmkifNuPQ3uvu8bU4PAAAAANg7PC/J+VPHT6iq6y8rmWlVtX+S5yc5ZCr8+939wyWlBAAAAAAAAACw29AYDQAAAACA7XaNJDeePK6QpGZcc1J3//W2ZgUAAAAA7DW6+3NJXjIVOiTJ26vqevPMU1UHV9Vxa1xzwBzzHZjk5UnuPBX+UJJnzZMXAAAAAAAAAMDeSmM0AAAAAAB2NycnecyykwAAAAAAtlZVXbGqjho/klxudOkBs66bPI5YZYlfS/KvU8dXTnJaVf1BVV1plbwuUlV3rqr/m+RL2bnB2ix3q6rTquqXV5p30mDtvpN8Hjp16uwkx3b3T9ZYAwAAAAAAAABgn1DdvewcAAAAAADYh1TVqUnuMBX6YZIzkrw/yYndfeoS0gIAAAAAtllVfTHJVTY5zcu6+7hV1rhSkr9Ncp0Zpz+f5FNJzklyQJLDkhyV5BpJ9p++sLtrlTV+Pslbp0JfTvLJJGclOTDJZZPcNMnFRkO/leSe3f3BleYGAAAAAAAAANjXHLDsBAAAAAAA2Ld099HLzgEAAAAA2Dd095eq6hZJnp/k4aPTV5s81nLOnMtecfJYzT8mOba7Pz/n3AAAAAAAAAAAe7X9lp0AAAAAAAAAAAAAAGyV7v5edz8iyY2TnJzk7HUM+0qSVyR5YJLLrXHtJ5K8LMnX1kolyXsnc95OUzQAAAAAAAAAgF1Vdy87BwAAAAAAAAAAAADYFlW1X5IbJblekkslOTzJuUm+k+SLSf69u7+0wbmPSnLDJFdKcliGTYy/k+Q/knywu7+1uewBAAAAAAAAAPZuGqMBAAAAAAAAAAAAAAAAAAAAAAAAS7ffshMAAAAAAAAAAAAAAAAAAAAAAAAA0BgNAAAAAAAAAAAAAAAAAAAAAAAAWDqN0QAAAAAAAAAAAAAAAAAAAAAAAICl0xgNAAAAAAAAAAAAAAAAAAAAAAAAWDqN0QAAAAAAAAAAAAAAAAAAAAAAAICl0xgNAAAAAAAAAAAAAAAAAAAAAAAAWDqN0QAAAAAAAAAAAAAAAPj/7N15fFT1vf/x93cykw0SCJCwIzsoihtUQVzAurfWqkWtrbWLWpeuV722FtFqtdaqvfdqa7Uu1K3WqiAu2F8VFMUFQZQWUVH2NZAEsicz8/39cSBkJufMQiaZYfJ6Ph55JN/v+S6fcxLwjMx5BwAAAAAAAAAAAEg7gtEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApJ0/3QUA6WaM6SHp+FZd6yU1pakcAAAAAAAAAAAAAACA9siVNLhV+3Vr7c50FQMAAO/RAwAAAAAAAAAAAAAAWYL353USgtEA5w1Xc9JdBAAAAAAAAAAAAAAAQAf4mqTn010EAKBL4z16AAAAAAAAAAAAAAAgG/H+vA7iS3cBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAwGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIC086e7ACADrG/dmD17tkaOHJmuWgAAAAAAAAAAAAAAAPbZqlWrdNZZZ7XuWu81FgCATsJ79AAAAAAAAAAAAAAAwH6P9+d1HoLRAKmpdWPkyJEaN25cumoBAAAAAAAAAAAAAABIpab4QwAA6FC8Rw8AAAAAAAAAAAAAAGQj3p/XQXzpLgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACEYDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkHYEowEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIO4LRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKQdwWgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0o5gNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABpRzAaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgLQjGA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA2hGMBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACDtCEYDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkHYEowEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIO4LRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKQdwWgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0o5gNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABp5093AUBXZK1VOByWtTbdpQBAG8YY+Xw+GWPSXQoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACALoRgNKATWGvV0NCg6upqVVdXq6mpKd0lAUBcubm5KioqUlFRkfLz8wlKAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANChCEYDOlhdXZ02bdqk5ubmdJcCAElpamrSjh07tGPHDgUCAQ0YMECFhYXpLgsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAlvKluwAgm9XV1WndunWEogHY7zU3N2vdunWqq6tLdykAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAshTBaEAH2ROKZq1NdykAkBLWWsLRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHQYf7oLALKRtVabNm1qE4oWCARUXFys7t27KxAIyBiTpgoBwJu1Vs3NzaqpqdGuXbvU3NwccWzTpk0aMWIEf4cBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASCmC0YAO0NDQEBEkJElFRUUaOHAgQUIA9guBQECFhYUqLS3Vxo0bVV1d3XKsublZjY2Nys/PT2OFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALKNL90FANmodYCQ5AQMEYoGYH9kjNHAgQMVCAQi+nft2pWmigAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkK4LRgA4QHYxWXFxMKBqA/ZYxRsXFxRF90X/PAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEB7EYwGpJi1Vk1NTRF93bt3T1M1AJAa0X+PNTU1yVqbpmoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZCOC0YAUC4fDbfoCgUAaKgGA1PH7/W363P6+AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB9RTAakGLW2jZ9xpg0VAIAqePztb1lcPv7DgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2FcFoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANKOYDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaUcwGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIC0IxgNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQNoRjAYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg7QhGAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJB2/nQXgM5hjAlIOkbSEEn9JdVI2iTpA2vtmhTvNUzSYZIGSOouabOktZIWWWubU7kXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsgPBaGlijBkuaaKkCbs/HyGpqNWQtdbaoSnYp1TSTZLOk9TLY8wiSXdZa59p517nSvq5pEkeQyqMMU9JusFau709ewEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACC7EIzWiYwxJ0j6hZwwNNeQshTvd5qkRySVxRk6WdJkY8zjki6z1tYmuU93SQ9IOj/O0F6SLpd0tjHmO9baV5LZBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANnLl+4CupjDJJ2szglFO0HSbEWGollJSyQ9Len/SdoeNe1CSU8aYxL+uTDG5Eh6Sm1D0col/XP3Xkt3771HX0lzjDFTEt0HyGZDhw6VMablY8GCBekuCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACATkcwWmZolPR5qhYzxgyS9Kyk3Fbdb0kaZ62dYK2dbq09WdIgST+R1Nxq3Fcl3ZLEdr+VdHqrdrOkH0kaZK09ZfdeR0o6WNLbrcblSZptjOmfxF4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIUgSjdb5mScsk/UXSZZKOlFQk6Qcp3OMmSSWt2oskfdla+3HrQdbaRmvt/0qaHjX/58aYA+JtYowZLidYrbVvWGvvsdY2Re21QtKJigxH6y1pZrx9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkP0IRutcsyQVW2sPt9ZeYq2931q71FrbnKoNjDGjJH2nVVeTpIuttQ1ec6y1s3fXtkeeEgssmykp0Kr9iLV2Tox96iVdvLumPb6/O2ANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXRjBaJ3IWlsZK6AsRb4pKadV+1lr7WcJzLs9qj3dGJPvNdgYUyDp3DhrtGGt/VTS7FZdfjk1AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoAsjGC37fD2q/XAik6y1H0t6t1VXN0knx5hyiqTCVu23rbUrE6qwbU1nJzgPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWYpgtCxijOkn6dBWXUFJbyWxxIKo9mkxxp4aZ24sC+XUtsfhxpi+ScwHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAlvGnuwCk1MFR7Y+stbVJzF8U1R6XxF5vJ7qJtbbWGLNc0uFRe21NdA0AybPWaunSpVq5cqW2bdumxsZGlZaWauDAgZoyZYq6d++e7hL32fr167V48WJt2LBB9fX16tOnjw455BBNmDBBPl/7MkC3bdumhQsXatOmTaqvr9eAAQM0fPhwHX300e1e282KFSu0fPlylZeXa9euXerVq5f69++vKVOmqHfv3infDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyBcFo01ZDSQAAIABJREFU2eWgqPaqJOd/Hme91g5MwV6tg9EOkvRakmsASMD27dt166236rHHHlN5ebnrmNzcXE2bNk033nijjjrqqITWvfjiizVr1qyW9urVqzV06NCE5i5YsEBTp05tac+cOVM33nij53hjTMvXxx9/vBYsWCBJWrRokWbOnKnXXntN4XC4zby+ffvq+uuv15VXXpl0iNkHH3yga665RvPnz3dde9CgQbrssst03XXXye/368Ybb9RNN93Ucnz+/Pk64YQTEtprx44duuOOO/TYY49p48aNrmN8Pp8mT56smTNn6stf/nJS5wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+wOC0bLLyKj2uiTnr41q9zbGlFhrK1t3GmN6SerVzr2ix49Kcj6ABMyePVsXXXSRqqurY45ramrSvHnzNG/ePF166aW699575fdn9n8ibr31Vt1www0KhUKeY7Zu3aof//jHmj9/vv72t78pNzc3obXvuusuXXvttTHX3rBhg2bMmKGXX35Zzz77bNL17/HXv/5VP/rRj7Rr166Y48LhsN58802ddNJJ+ta3vqUHH3ww4fMBAAAAkN3qQ3Va3fCJmsKNSc3rE+inAXlD5DOxg6RDNqT1DZ+rKljRnjKzRq4vT8PyR6sgp1vK164J7dLa+s/UbJvbHMvz5WtYwRjl+wpSvm+qNIebtbbhM5UEeqt3oG+6ywEAANgv1IR2aUvjevXLG6zuOcXpLicjVTSXa0PjaoVt219kU5TTQwcUjJTfBFK+785gpbY2bdSQ/BHtug9vCNdrTf2nagjXp7C6jtM3d6D65Q6K+MVFbpz7/09VE4r975CFOd01uvDgVJYIAACAfRUOSrtWSsFaqfdEKc6/DwAAAAAAAAAAAAAAAKRLZqfeIFk9o9rbkplsra0xxjRIym/V3UNSZdTQ6H3qrLW1yezlUluPJOcDiOOhhx7SJZdconA48iGRESNG6KCDDlJhYaHWrVun9957LyIA7P7779e6des0d+7cjA1H+/3vf6/rr7++pT1mzBiNGTNG3bp10+bNm/XOO++ooaGh5fhzzz2nGTNm6Pbbb4+79p133qmrr766Tf9BBx2kUaNGKS8vT+vWrdPixYsVCoW0aNEiTZ8+Xccdd1zS53HDDTfo5ptvjugzxmjMmDEaNWqUioqKVFlZqffff1/l5eUtYx577DFt3rxZ8+bNy9jvEQAAAIDO8XrlS3p6218UVtuAgEQMyB2iqwbfqJ7+6Ax8x+bG9fq/DTeqKrijHVVmH598ml52iY4rOS0l61lr9fKOv+vFHX+TlY2xb44u7HeFJvU4MSX7ptKndct138bb1BCukySN7/4lfb//1Qr4CPUGAADw8tL2pzSv4mkFbVBGRueWfV9TS76S7rIyRsgG9fDmu7W0+q2Y47r5inTFoF9pWMGYlOwbtmE9te1+LayaJ0nKkV8X9f+xJhYn/29B7+5coMe23KOQgimprbMckD9KVw6a4RnW90ndcv15460Jhb0NzR+law+4I9UlAgAAIBnBOum9S6U1j7sfP/Q30kHXEZQGAAAAAAAAAAAAAAAyBmkq2aV7VHtffuV0vSKD0Yo6cJ/W3PZJmjGmTFJpktNGpGLvVLHBoFS+Id1lZL/SQTJZHCi1bNkyXX755RGhaIcddpjuvfdeTZ48OWJseXm5ZsyYoT//+c8tffPmzdMNN9ygW2+9tdNqTtTy5cu1cOFCSdJZZ52l2267TWPHjo0YU1lZqZ///Od65JFHWvruvPNOXX755Ro6dKjn2kuWLNF1110X0XfCCSfonnvu0bhx4yL6y8vLdcMNN+i+++7TG2+8oRUrViR1HrNmzYoIRfP5fLryyit19dVXa8iQIRFjrbWaM2eOfvKTn2jdunWSpFdffVUzZszQbbfdltS+AAAAALLHuoZVemrb/e1aY1PTOj26+X/1o8E3tjlmrdWfN95GKJqLsML627Y/a1jBGA3OH97u9VbUfaAXdjyZwL4hPbrl/zQ0f7T65w1u976p0hRu1J82/EaNdm9I+Uc17+nlHU/rzNIL01gZAABA5lpeszjiHtDK6ultf9HQ/FEpC/ja3/2z4tm4oWiSVBuu1h833qLfjnhYOab9//739s5XW0LRJCmkoB7ZfLeG5Y9Rn9y+Ca+zrWmTZm35Q7vrSYe1DZ/pqa336/sD2v4yocZwg+6Luv8HAABABmuqlF47Wap433vMh9dLDdulI+/qvLoAAAAAAAAAAAAAAABiyN5UoK4pOrBsX96JXC+pJMaaqdwn1pr76gpJM1O0VnqUb5CdzsMOHc38/ROp/9B0l9Fhvv/976upqamlPWXKFL3yyisqLCxsM7a0tFT33XefRo4cqWuuuaal//bbb9cFF1ygQw45pFNqTlRFRYUk6dprr9Xtt9/uOqakpEQPP/ywKisrNWfOHElSKBTSgw8+GBFGFu3KK69UMBhsaZ999tl66qmn5HcJ0SstLdWf/vQnDR8+XNdee622b9+e8DmsXbtWl19+eUs7Ly9Ps2fP1qmnnuo63hijs846S5MnT9YxxxyjVatWSZLuuOMOXXrppRo2bFjCewMAAADIHv+uWZKSdT6pW66GcL3yfQUR/duaN2lb86aU7JGtPqp5LyXBaB9Vv5fU+OU1izMqGO2TuuWuoQgf1bxLMBoAAICHl3c87dq/rOYdgtF2S+Y1T22oWp/Xr9TowoPbve/y2sVt+qysltcu1tTcryS+Tk3bdfYn/655XyEbUo7Jiej/1OP+HwAAABnIWmnRRbFD0fZY9Wdp/K+lQKreygkAAAAAAAAAAAAAALDvfOkuAB3KZtkcAAmYP3++li5d2tIuLi7WU0895RqK1trVV1+tr3xl78Mc4XBYd999d4fV2R5TpkzRbbfdFnfcb37zm4j2a6+95jl28eLFevfdd1va/fv310MPPeQaitbaNddco5NPPjluLa3dcccdqq/fmw959913e4aitVZWVqYnnniipR0KhTL2ewQAAACg4+0MVqZknbBCqgnuatNf1bwjJetns53BipSsUxVM7lrvDKVm31TZ6VF/qn5GAQAAss26hlVa0/Cp67Gq5sy610un6lBVUuNTdn/u8Voo2fvbZO/zM02jbVBjOPr3nUlVKbrOAAAA6ARrnpA2vZDY2FCdtHNFx9YDAAAAAAAAAAAAAACQIILRsktNVLtgH9aInhO9ZmfuA2AfzJo1K6J95ZVXasCAAQnN/e1vfxvRfvLJJ9XY2Jiy2lLl+uuvl88X/z9h48aN09ChQ1vay5Yt8xz75JNPRrSvuuoq9ejRI6F6ZsyYkdA4SaqtrdVDDz3U0h4+fLguu+yyhOdPnDhRxx57bEv7+eefT3guAAAAgOwStM0pW6vRtn3YvcHlAXhEStU1arQNadk3VRrD7vW7/VwBAABAer3qZc9j3EPtlexv2vK6L02W1/25W0hYLJl2374v3M4h2esAAACANKnfKi35cXJzPr6jbZ8NSxVLndA0G05NbQAAAAAAAAAAAAAAAHH4010AUopgNOmPkp5Ocs4ISXNStD+Qdm+++WZE+1vf+lbCc8eNG6cjjjhCS5culSQ1NDRoyZIlmjx5ckprbI+CggJNmzYt4fEHHnig1qxZI0mqq6tTTU2Nunfv3mbcokWLItrTp09PeI8pU6ZowIAB2rRpU9yxb775purr9z4wcu655yYU8tba1KlTtXDhQknS2rVrtW7dOg0ZMiSpNQAAAADs/7yC0XLkV64vt02/ldQQrnOd0+ASIBArrKvAV5hYkVmi2TYpaINt+lMWvJDkOqnaN1W86gnaoIK2WX4T6OSKAAAAMldtqFrv71roeTzT7vXSK7lotFQFdnkFmqUqGM3rNVu6WNkY59z259FrrE8+5fny2/S79QEAAKAT7NqHILP1/5Cq/i31PHj3Gp9Kb3xN2rXSaZceKx3zpFQ4MLW1AgAAAAAAAAAAAAAARCEYLbvsjGqXJjPZGNNdbQPLqhLYp9AY081aW5vEdmUJ7JM0a+02SduSmWOMScXWQEaorKzU559/3tLu2bOnDjzwwKTWmDx5ckswmiQtXrw4o4LRRowYodzcxB8WKSkpiWjv3LnTNRjtww8/bPm6Z8+eGjlyZFJ1TZgwQc8//3zccdHBdQMGDGgJbktU9Pl/8cUXBKMBAAAAXZBbUJckTe75ZV3Q94dt+q21+tGn5yistg9CuT3g7/Wwe2mgv24a/qckq92/PV/+uOZVtM3i97pGyfIKWPAbf4cGsqVKrOvQGG6QP4dgNAAAgD3e3vmqmm2T5/FUhXtlA2uTDUbr2ODiZNf3CqY+oeR0nVP2vaTr6igN4Xr9/LMLXI+5/Tx6XYcDux2mKwfdkNLaAAAA0A59p0pfWSEtvkLaMDvxeS8d4nzuNkyqXR15rHyhNHuQNPa/pG5DpZ6HSH0mSbLSJ3+Qts6XcntLPcdJRWMkhSVfrlT+llS/WSo5TBp6oVTQz1nPWon3bwIAAAAAAAAAAAAAABcEo2WXz6LaByQ5P3p8hbW2MnqQtXaHMaZSUuu0oSGSPm7HXtG1A9gH5eXlEe1Ro0YlHf43duzYiPa2bUllDXa46KCzeAKByIevm5ub24ypra1VQ8Pehzj2JWQs0Tnr16+PaP/0pz/VT3/606T3a62ioqJd8wEAAADsn4K27esbSQoY9xAqY4zyfAWqD7fNtk/mYfd8X3SufvbzOudGm5rgBa9gseKcElUEy9v0Z1pYRqyAiMZwg7rlFHViNQAAAJkrbMNaWDUv5phMC8Hdn6QiuNham8JgNPd68jLsNVWuyZORkVXbIDq3c/Z6PZJp5wUAAABJBf2lY5+V1j0tvX+V1FguHTxTskHpP7+JPTc6FK21lXfGnrvWo3/NY9IHV7sf8+VJg8+RAt2ljXOdIDVJ6n+qNPhsKbdE6neSlNvD6d/+rrTxBcnkSMMvds5110opv0wyfim/VKr8SFr9V0nWCWTrdUTsuqPVbZCaq6XiMZLxeY+zVqr+VNr8T8mGnPPoNji5vQAAAAAAAAAAAAAAQASC0bJLdDDZyCTnD49qr4iz1+SovZIJRoveK5m52a10kMzfP0l3FdmvdFC6K+gQlZWRWYY9evRIeo3oOZkWuuXzxXiT2T6qqqqKaBcVJf/AdnFxcULjduzYkfTa8VRXV6d8TQAAAACZzysYLcd4/y+/PF++RzBaMg+75ydYYfbwOudUBZR5BSz08PfyCEbLrLCMRut9HTKtVgAAgHT6uPYDlTdviTmG+6e93IK6YknFtWu2TbIKux5LNnjNa3yBrzDpujqSz/iUa/Jcg5/dzsHrOnfF14oAAAD7BWOkA6ZLfadJK38vjfultGtF/GC0zhZulNY+0bZ/8zznI5Z/3xR//ZV3OZ8Hny2FGpwws8IB0ohLpD5HSTYsrX1KWnadVLfOfY0BX5E2vRB/r6U/k3IKpeHfkXIKpKYKKdBDGvZtqaFcqt8obX/bOdZ9pFQ2xelv3imVHSfteN/5uvQYqfuw+PsBAAAAAAAAAAAAAJCFCEbLLv+Oao83xhRaa+sSnH9MnPWij7UORpskaW4imxhjukkan8ReXYrx+6X+Q9NdBvZT1kY+IGKMafeaqVgj0+Xl5UW0m5qakl4j0Tn7snY80d93AAAAAF2DVzCa3wQ85+T5Clz7kwtGc18jmyVz3ZJlrfVcp9hf4tqfbCBDR4t1HTKtVgAAgHR6verluGMIRtvLKxjNJ5/CLuFlsQJ7ExUr/NgtOCwWr3vhTHxNlecrUGPI5XWhyzl7XYc8k3nnBQAAgFby+0iH/db5uuQwaeCZ0sbn01tTOqx/NrL9xcPS5CekiqXSx7+LPTeRULQ9QnXSZ3+K7PvkfxKfv0fJ4dLYn0sDv+q0a1ZJ9ZulDXOkHYudALXaNXvH9zhIKj1WChRLvlyp21Cp71SpaETyewMAAAAAAAAAAAAAkEYEo2URa+1mY8xH2hs65pc0RdI/E1zihKh2rHfmz5N0aYy5sRyryJ+9D6y1W5OYD8BDr169Ito7d+5Meo3oOSUl7g9ht0coFEr5mu0RfY6VlZVJr1FRUZHQuD59+kS0Fy1apEmTJiW9HwAAAAAEbdC1P1YwWr7HA/huD+x7P8Sfn0B12cXrnFMR+hW0QYXl/jq52N/TtT/TwjJi1RMrWAIAAKAr2d60Vf+pXRJ3XCrCvbJdnq9A9eHaNv2puE9O5b1tQ9j995fl+wqTWqcz5PsKtCvU9t/Hknmt6PV6EwAAABlq8qPS0z3SXUX62bD01vnprsJb5QfS299OfPzOFc6Hm27DpCPulAZ/PTW1AQAAAAAAAAAAAADQgXzpLgAp91xU+7uJTDLGjJV0VKuuWsUOVHtFUut3PE/avUYiLo5qR9cMYB+VlpZGtD/99NOk1/jkk08i2mVlZa7j/P7IbM1g0P2BfDf7EjzWkXJycjRw4MCW9hdffKG6OveHVbwsX748oXF9+/aNaO/L9wgAAAAAJClom137YwWjeQV8uT387xUI0BUfdvc658Zwg6y17Vo7VvBFjxz3sPJMCxuLFRCXaSFuAAAA6fJG1cuyin/vGLRBz3v9rsbreiUT+JysWGs0JHlv63Xfnp+BYdOpeK3YFUO0AQAA9muBYumbVjr2WalodLqrQWeoXS0tPFvaMDfdlQAAAAAAAAAAAAAAEBfBaNnncUmhVu2zjTGjEpj331Htv1trPd/Zba2tk/SPOGu0YYwZLan1r5sLSnoigfoAJKCkpEQjRoxoaVdVVenjjz9Oao1FixZFtCdOnOg6rri4OKJdVVWV8B7/+c9/kqqpMxx99NEtX4fDYb3++usJz62oqNCHH36Y0NjJkydHtP/5z1gZlAAAAADgLWjdA6r9xu/aLyUXIOAVCNAVH3b3OmersJptU7vWjhVy1sPfy32ObVDYhtu1byrFCj9LRTgFAADA/q4p3Ki3d76a8HjCZXfzCCGOFVzcXrHWSCaguDnc7PmaLd9XmHRdHc07GK3tOXtdh674WhEAACArDP669NVPpNOWSQPPlHwByd8t3VWhI33yh3RXAAAAAAAAAAAAAABAXN5PSWK/ZK39zBgzS9L3dnflSnrEGHOiV9CZMeZrki5u1dUk6aYEtrtR0vmSArvbFxtjnrPWPu+xT76kh3fXtMeD1trPE9gLQIKmTJmizz/f+8fq8ccf1y233JLQ3I8//lhLlixpaefn5+vII490HVtWVhbRXrFihSZMmJDQPi+99FJC4zrTl7/8ZT3zzDMt7QceeECnnXZaQnNnzZqlpqbEHoQ/8cQTlZOTo1DIybB8/vnntW3btjbXEwAAAADiCXkGowVc+yUpz3g87G7dHnZ3DwTwCiHIZrHOuSFcr1xf3j6vHSt4odjf0/NYk21UvsmM70WsgIhG79+9AAAA0GUsrX5LteHqhMc3hhvULaeoAyvaP7jHonkHi6UkGC3G/WuzbVLYhuQzOfHXiXGPnImvqfI8w+YSD9HOxPMCAABAEkoOlY6fE9lnw1K4WcrJk2rXS3OGxF6j/ylSbolUu06yIWnIuVLP8dL8UzqubiRv62vSwnOl5l1SToFU0E/K7S11Gyw1bJdkpQGnS4Fi5+uCAc7nQHGchQEAAAAAAAAAAAAASB1fugvoaowxg4wxQ6M/JPWLGup3G7f7o0+cbWZKqmzVnizpX8aYsVG15BljfiTp6aj5d1pr18Y7F2vtF5L+J6r7H8aYq4wxrcPPZIw5UNKru2vZY4cSC2ADkISLLrooon3PPfdoy5YtCc39xS9+EdE+//zzlZfn/nD3EUccEdGeO3duQnu88soreu+99xIa25kuvPBCFRXtfcjoueee0yuvvBJ33saNG/XrX/864X1KSkp04YUXtrRramp09dVXJ1csAAAAAEgK2mbXfr/x/l0IeT6PYDSXAAGvB/nzMiSMqzN5XTcpduBBImKFN/Twl3TYvqkUKzwiFeEUAAAA+7vXq15Oajz3UA6rsGu/9+ua9t8je4V+7d0jse9NrHW8gt3SKbnXiu7XINbrJgAAAOynjM8JRZOc0Cwv3YZJ37TS1HnSMU9KJ78lnfKOdODVUv+TY+/xTa9I5ASUneB9zN9NGnzOvq+d7dY/I235f9LG56VV90srbpMWXyEtv0FaPlN6ZaL0whjphbHS08XS0z2kJ4zzsegi6dUT97bfvlja+IIU3v0LfUKNUuMOKdQg1a6Vdn4shWL80tEQr4EBAAAAAAAAAAAAAG15PyWJjvKmpAMSGDdQ0mqPY7MkXew10Vq7wRhztqRXJO0JKDtG0gpjzBJJX0jqIekISaVR01+QNCOB+va4TtI4Saftbgck/Z+kGcaYpZKqJQ3fvZdpNa9J0tettZuT2AtAAqZNm6bDDjtMy5YtkyTt3LlTF1xwgV566SUVFHg/vH733Xdrzpy9v/XTGKOf/exnnuMnTZqkwsJC1dXVSXKCxN5//31NmDDBc85nn32m73znO8meUqcoKirST37yE91yyy0tfdOnT9fs2bM1depU1zlr1qzR6aefrqqqqqT2uvHGG/XUU0+psbFRkvToo4+qf//+uvXWW5WTk5PwOitWrND27dt13HHHJbU/AAAAgOzgHYwW8JyT53N/XegWIOAVdtUVH3b3um5S/OCEeLxCBYyMuuf0SHpeOsSqJZMC3AAAANJhTf1nWtvwWVJz2nuPmS284hHyPV/XtP8eOd79a2O4QQU53eKu0xCu8zzmVX86JRqMZq31DtHOwPMCAABAipVOkcrfbNs/7rrY83ofLe14p23/2J+3r55jnpSe6+9+7KS3pJJDpeZq6fO/OHXnlUr5/aR/t/P3+V4Qkj78pbTidvfjx78g9TxYKhwsrXpA2jBbatwulRwmjbhEUlj68FfS1lfbV0e6rHk0sr16lvMRS6Cnc/6VyyRfQCo7Xlr/j8gxg8+RRv3QGRusltY/J1UskYyRhl4ojbzMCetrzVop3LQ3wC8clHy8NR4AAAAAAAAAAAAAsgH/+pulrLULjDFfl/SI9oafGUkTdn+4eVLSJdbaUBL7hIwx0yX9RdJ5rQ6VSTrVY9o2Sd+x1i5MdB+gK9myZYvWrFmzT3OHDh0qSXrwwQc1adIkNTU5v2lxwYIFOvbYY3XvvffqqKOOipizfft2zZw5U3/84x8j+q+99lqNHz/ec6+ioiKdd955evjhhyVJoVBIZ5xxhh599FGdfHLkb/psamrSrFmzdN1116miokIlJSWqrKzcp3PsSDNmzNCcOXO0fPlySdKuXbt04okn6txzz9X06dM1evRo5ebmat26dXrppZf0wAMPqK6uTvn5+TrllFMiguViGTZsmO6///6IkLjf/e53euONN/TLX/5Sp512mvx+9/9Er1mzRi+++KKeeeYZzZ8/XzNnziQYDQAAAOiimj2D0bz/l1+iD7tL3mEMXfFh9zzjfc7tDV/wvs75MQMTMiUsI2SDniF9EsFoAAAAb1S9lPQc7qH2cI9Gy/cVuvY32vZft3j32V4B0smsk4mvqbxee0SfR9A2K6yw69hMPC8AAACk2OBz2gajGb806Oux5w35hnsw2gEXxJ6XUygN+5a06v62x0b+UCroJ/WaKFUsjjzW7QCp5yHO14EiaezPnA9Jql3bvmC0HuOccK6BX3UPRsvvKw08Y2971GXOR7TRV3kHo522zDmHf5R41zHkPGndU+7Heh8lfel+qXCg9Ewf7zU6U3OVtG3B3nZ0KJokrX/G+XBT/pa0+IrE9ys7Xhr/a+f7tXW+1LBVsmGp15FSQX/n5za/zAlUa65xAtv8hVK3oVJuiRPGVr5IWvJTyeQ434+Rl0h9pznHWmuscMYEitse26Opyvl5zsl1Pw4AAAAAAAAAAAAAaINgtCxmrX3JGHOwpJvkhJZ5vUviHUm/t9Z6vKMg7j41ks43xvxD0n9JOtpjaIWkpyTNtNaW78teQFdwwQVx3vAVg7XOAyJHHHGE7rnnHv3whz9UOOw8nLBkyRIdffTRGjlypMaNG6f8/HytX79e7733noLBYMQ6J510km6++ea4+91888167rnnVFVVJUnatm2bTjnlFI0cOVLjx49XXl6etm7dqnfffVe1tbWSpH79+un222+PCAXLFLm5uXrxxRc1bdo0rVq1SpJzTZ9++mk9/fTTrnOMMbr33nu1bt26iGA04/Ump90uuugibdmyRb/4xS9avkfvvPOOzjzzTBUWFurwww9X3759VVBQoOrqam3fvl0rVqxoudYAAAAAELJB136/CXjOSfRhd8k78CtWWFe2CvgCypFfIbW95u0NrfCan+cr8Ayyc+a1L5AtVeLVkSl1AgAApENNcJfer37T9djYwkO1uv4T16At7qEcNslgtODu0N5Yr4niiX9/m9j9f0O4zrXfb/wK+Pa9vo7iFQYd/fMZ6/rkGe/XLwAAAMgSo6+UKpZKax512jkF0uQnpPzS2PNG/kDa+Ly07fW9fWN+4oRUSdJBv5BW3NZ23vibpR4HuQejDTnH+Xzk3dKCrzjBW5KUky9NuMcJL3PT7QD3MLVEHXC+87nPJCdEq3ZN5PGh30psndLJTo02Kng4p0AqGuWEdBUOkuo2tJ2bWyId9YATIub2b0VT/i51G+J8PeIH0ud/SaymbLLtdelfx6duvR3veAfRtTb0207gmr9Qat4lrX9WqlsfOabvNOfntP9p0ojvSatnSQ3bpb5TpdJjnHC1UINU/ZnzvS4YIMl4h64BAAAAAAAAAAAAQJYiGK2TWWuHdvJ+2yRdboz5iaRjJB0gqZ+kWkkbJX1grV2dor3+Iekfxphhko6QNEBSN0lbJK2V9Ja1tikVewGI75JLLlFJSYm++93vqqampqV/1apVLaFfbr73ve/pvvvuUyAQ/6GMgQMH6plnntFZZ52l6urquHsMGzZML76U+kb1AAAgAElEQVT4orZu3Zrk2XSewYMHa+HChbriiiv03HPPxRzbu3dvzZo1S2eccYb++7//O+JYUVFR3L2uvfZajR8/Xt/97ne1ZcuWlv66ujq99dZbCdVbUhLjN4MCAAAAyGpB2+zaHysEIM8j1Cz64XZrrecD77HCurJZvq9AteHqNv1uQRbJ8LzOJl85xi+/Cbh+r93C7NIhXh2EegAAgK5s0c5/ed63H9fzNG1qXKfGkEswWjvvMbOGey5azLDmxnCD/DkdF4yW6H14g+frqcwMmva6ptHXI9b5d8UQbQAAgC7HF5Am/1U69DdS7Won2MzfLf68QLE09RVpy7+kXSudULHSyXuPD/u29On/SsHavX25JdLQC6T8ftKB10gf37H32EHXSX1PdL4uPUY6/SNp04tSuMkJmyoeFbueCf8nvfE1qSHOe9iOnyu99U0puPvfBgafK439L+dr45NOeMlZp/ozp2/IeU6YWyLyy6T+p0ubXojsP+A8J1RLkkZfJS27ru3cA6+RAkXSwDOkDXMij5UeszcUbc/YjXPjnytSY09oYCxbX3M+b3pJWvKjvf3L48zrNVE67llp+7tS5QdS4WAnNC1Q7PxZDHR3xlUslWq+kHp/KfJnAQAAAAAAAAAAAAD2MwSjdRG7A8nmd9JeqyWlJGwNQPuce+65Ou6443Trrbfq8ccf1/bt213HBQIBTZ06VTNnztTkyZNdx3iZNm2a3nvvPV133XV6/vnnZW3bp1RKS0t18cUX61e/+pWKi4szOhhNkvr166dnn31Wb775pp588kktWLBAmzZtUkNDgwYMGKDhw4frG9/4hs477zz16NFDklRVVRWxxp7+eE499VStXr1aDz30kB544AF9+OGHrtdwj0AgoIkTJ+rkk0/WN7/5TY0aFeeNfAAAAACyUtiGFFbY9VjsYDT3ULPoh92bbZOsx/pd9WH3PF++azBaewPKvEIv9nyv8n0Fqgm1DdPIlMCxVAVHAAAAZJuwDWnhznmux0r8fXRI94l6rnyWFGp7PFPu9dLNeiSjxQtG65YT/5fXeM9PTfBvQ7jOtT/fV5h0TZ3B67Vi9P18o/W+Pl01RBsAAKBL6jbY+UhGTp4T5DXwjLbHehwoTfuX9OGvpKoPnZCnI+6SCvo7xw//nTTqcqlymVRyqNR9eNt6Rv0w8Vr6HCWdtkx653vS5pfdxxSPlQZ+RTpnm7Tj/d3nfEDbur/yiVS9SsrrLeX1SrwGSZr8mPTOxU6om3zS4HOkCX/ce3zot6WP75Qay/f25fWRhl/sfP2lB6T6rdKOd5x2z0OkyU9Encdo6ZTF0vtXSRufT64+ZJaKxdLsJP/cSc7PUW5P589P+cK2x7uPdAL56jdKhQc4P8s9D94dtla8d5y1kg1Ltlmq3+z8+cxp9Tow1CD58iRjkq8RAAAAAAAAAAAAAFwQjAYAabZmzZoOXb+srEx/+MMfdNddd2nJkiVauXKlysvL1djYqD59+mjQoEGaMmWKior2/SGRsWPHavbs2dq+fbtef/11bdiwQXV1derbt6+GDRumY489Vn7/3v/knHDCCTHDv6IlMzbaI488okceeWSf5k6ZMkVTpkxJaOyKFStavjbGqKysLOF98vPzdcUVV+iKK65QRUWF3nnnHW3evFkVFRVqbm5W9+7dVVZWptGjR2vs2LEqLMzMh2YAAAAAdJ6gDXoe8xvv/+XnFSAQ/fB/rDCrrvqwe57ntWtfaIXX/D375fnyVRPa5TIvMwLH4p2/V/AbAABAtvtP7VLtaN7memxKz1OUY3ISDqPqqvY1GK094t7fJri+1/16pgZNe4doRwWjxTj/rvpaEQAAACnS52jpxH95H+8+zPlIlYJ+0uRHpWf6uB/P3R1ylpMvlcV4/5gxUvE+/mLL3B7Scc9JwTrJ+CJDpiSpcIB08iLpo5lS1TKp56HS+Jv3Bsbll0qnvC3VrJbCzVLRKPdQqm6DpePnOMFWf/M74VboOtY8Gvt4zSrpP7+JPab7SKn2i7Y/O7m9nJ/DXZ/sbpdIQ86Txv1Cyu8r7fyPVP6mFKqXBn5VKj5QsiHJl+TjC6EGKRyUAt2TmwcAAAAAAAAAAABgv0YwGgB0ET6fTxMnTtTEiRM7bI8+ffronHPO6bD1M1Vtba2WLl3a0h49evQ+B8316tVLp59+eqpKAwAAAJClgrbZ85jfBDyP5RmPh91tg8I2LJ/xOe2YwWiZ+SB/R+uo0Aqva71nvzyTWJhdusSro73BFAAAAPur16tedu3PkV/H9DhJUuLBxV2XezBarNck7b4/t7HnJ7p+fbjOtT9zg9ESC4L2On+ffAqY3JTXBQAAAHSoPeFnbnoc1Hl1+GP8ksyikdIxj8een2hgnDHSuOulf9+ceG3tMeQ8qe/xUvMuadl1nbMnOkbNKvf+pgrno6VdKa26z/mI5vYz0PdEJzQtv0ySdUL+6tY763jp/SVp0NelwoFS+VtSU5VU+YHU6wgnmK3yQ+fP9shLpV6HS43bpZovpK0LpGC1tOU1qfcEadjF0sAznD2DtVLxWCmH17UAAAAAAAAAAABAJiEYDQCAdpo1a5bq6vY+4DJp0qQ0VgMAAACgKwjaoOexmMFoMR7Cb7KNyt8dwhXrYX+vgLBs5x1a0b7gL69rvWc/r+vdaDMjcCxeHe0NpgAAANgflTdt1orapa7HjiiarGJ/T0kx7vUIl5XkFYvmXDcjI+syor2hcg1xrn2i3xuvOjI3GM3rZ7Fe1loZY3a33c8/z5ffMgYAAADYbxgj9ZooVSxue2zYtzu/ns4w8Ez3YLS83lLjjtTtU3KYNOVve9sjL5PW/k3auULqfZR0wPmSL0cKNUn/uUXa+KITVlU2Veo5TnppfOpqQeba+mryc3a853xEq/40sr3pBe816tZJ65+Ns5GRDrpWql7lhPvZkFR2nBQOOu1ug6URP3BC1XJ7OWvuXOEEuxUOkvpMkkyOZPxSTn7sAEQAAAAAAAAAAAAArghGAwCgHTZs2KAZM2ZE9F100UVpqgYAAABAVxG0zZ7Hcoz3//KLFWrWGK5veUg/1sP+mfogf0eLFRTQHrGCBWLtmymBY/HOv73XBwAAYH/0RtU8z2PHlZze8jXBaPG4R6MZGeX58l3vidt77VJ1f+sdgJyZD0J7hWiHFVbQNitgciXFev3SNV8nAgAAIAuM/IH0XlQwWvGBUumU9NTT0XodKQ3/nvTFQ3v7ig+Ujn5E+ufRcn0dNvbn0sq72vb3Ptr5vOOdtsfG/DSyndtTGvXDtuNycqXxv3Y+Itb+knv4VY+DpTOWS5XLpHXPSKE6acg3pD5HS6+fKW2c23aOJA38qjThXql8obToQvcx8XQfKdWs2re52A9ZacXtkV1bX4tsf3DNvi/vy5XCTVJ+mTTgDCmnUPL5ndC1vic6IWzGSPVbnIC1hi1SyRFS7Rpp10qpaLQTQGiDzkduyb7XAgAAAAAAAAAAAGQogtEAAGjlmWee0ZIlS/Szn/1MpaWlMcd+8MEHOuecc1RRUdHSd+ihh2rq1KkdXSYAAACALi5WMJp/n4PRGlp97f4Qf4788ptAAhVmH68H/Ts6GM0riC5TwjLi1ZEpdQIAAHSWpnCj3t75quuxQXnDNDx/TEs7z2T2vV66WesRjGaM8ky+GtT2Xry9AcLxrn2i63sHo2VmgFh+nNeKAd+eYDT38yIYDQAAAPutEZdIwVpp5R+kxnKp71TpqAcl40t3ZR3DGOmov0iDviaVvykVjZSGTN8bXPbZnyLHFwyUxt8irf2bVL8p8tiI7znXLjoYzZcnDTqzfXUO/ZZ7MNqYHzufSw5zPiJq7e+93uirpG6DpYJveAejTfyT9O9fS/Wb2x47+mFp+MXO1407pGCNlN9Pyslz+p4wMU/H1Zf+LIWbpfevSn4u9n/hJudzwzbpi4cjj0W3E+XLlWSlkiOlgn7ShtlOf06B1Hea1HO8ZJulpkopWO8EvTVskfqfJo28ROp/irR1vlS7VtrxrtTjIKnHOGnA6W3/TmyqlIxfChTtW60AAAAAAAAAAABAAghGAwCglerqat122236/e9/r1NPPVUnnniiDj30UJWVlcnv96uiokLLly/XCy+8oLlz50Y8lJObm6tZs2alsXoAAAAAXUXQBj2PBWIEl8V6CL/1g/uN1j0MIFMf4u8MXqFy7Q5e8LjWe0IyvAIG2rtvqsSrozHcIGutjNmHh4IAAAD2Q+9XL1RduMb12PE9T4+4L/IM37WZca+XyfJ8BVKosk2/1/11ouIFHye6/v4WjOYV0ic559JdxZLiBzsDAAAA+x1jpLE/k8b8VLIhydcF3lZtjBNcFh1eduT/OEFnax53rkX34dJxcyR/gfTl16VFu8PKckukA6+WRvxAskFp57+lzx901ggUS8f83RnTHkO/KX32R2nXyr19PQ6WDrjAe06fY6RV97sfKz7Q+ewLSH0mSdvfjjxucqSBZ0qVH0qr7os65neCo/bI6+18RKw/NrLWPcbf7JxHdNjaAedLIy91vo4VjHZB2Kn1oxukyqVSqEE6/PfS+1d6z0HXtSdsLTqsMFQvbXrR+XCz+WXnI5Z+Jzl/rk2OtPbJvf09xjmhgf1Pcf6MGiOFQ87Pa7BG+vwhqWGrVDRKOvC/nL9XJCkcdNbi3w8BAAAAAAAAAAAQQxf4F3wAAJLX3NysuXPnau7cuQmNLygo0F//+lcdeuihHVwZAAAAAEhB2+x5zB8jGM0reEGKfMDd6yH+rvywu1eAgVcwQKLiXeuO2jdV4tURVkhB26yAye2kigAAANLHWqvXK19yPVbgK9TE4uMi+rzur+OFc3UVYYVd+41MjGvX3mC02PMTXb8hXOfaH+s1WTrFeq3XOqjP8/WL6bqvFQEAAJAljHECsLoyX0D6/+zdd3wc5YH/8c9s0aoXq1hWsS33btwwNrYxxWBMTSCUQAIJBFIuR5IjdwdJCKRwyd3lF3IJKZBASMhBOpcQSiAB23SI6QkYjLtxl9ykXWm18/vjsZBWO88WWbJW0vf9es1rd59nnjKzK2lmV/PdBXfB7G9DWxMUNHSGFhWNg9OegbYDECgAx2fKnSDM/zHMvBkOboCyY8DfC58HhMrhlNUmVKzxJdPvpM9AsNDepv598I9vwr6/x5dXnwoF9Z2Pp34BVp1rQt06jP8E5NfA1Oth5+PxIWez/gvyhiefb/158PrXE8tHXgCVi2DVOdC235SVTodjvtG5Ts0Z3oFVkz5n9n/lQjj50fi6wjHw+OmJbQCmfRleu8m7rvw4WLbKPFfrfgzh7dCy3QTRlU6Hoglm+1eeZd/WslnQ+GLn41AlRHbZ15fBYfsj3uX7XocXP2+WVO3f+n7qcQIFJmhw5IVwcB3sfcEEshVNhBGngi8H8kbAgbehYJRZcGDnY9C6D8rnmt8XAM1bYcdj4A+Z3wM5Jd5jxtqg6VXzO7Bkaufvt65cd+iEZ4qIiIiIiIiIiIiIiGQRfTojIiLSRWlpKX6/n/b29rTbHH/88dxyyy3MnTu3D2cmIiIiIiLSKVkwmj/JhTt+x0/QyaHNbU2o63qBu+1i/2y9iP9osF3obwsGSJdtX3cEomV7WEY6wRCRWJigT8FoIiIiMvhtCK9lc+Qdz7oFJSeT4wvFlfVVuNfg51jPTY70ODl1MFp6/dvWy/PlZzyno8EWyAzx+6RrSFq67UVEREREZIAJDTOLl2CRd3lulVl6U24FTL8h/fWDRXDKKvjbZ2DrHyHWCjWnw/w74terPQNO/iu8cye0NkLNChh7pakrqIfTnoVtD0LLNhh+YmfIUjITr4FtD8QHhk29HoonmOWcjbBzJQRLoWI++Lu8H1B3rncwWv159vFyyux1hWNMwFPM47PEmV8zdcXjYdY3vdtXLbX3DXD6GnPb3mqCojq25R6PMCmRTEUPwd6/maWr7Y/CW7ceWd8l06BiAQQKYc8zsPvpxHVC5VBzJpROg2izCf1b+73O+rpzYe53ze+XgtEmRC3aYgIFw7tgxDIT3JZM2wE48JYJnAwWH9k2iYiIiIiIiIiIiIiIDHIKRhMREeni3HPPZceOHTz00EM8+eSTvPrqq2zcuJG9e/cSDofJy8tj2LBhjBo1isWLF7NixQqOP/74/p62iIiIiIgMMcmC0QJOMGnbkC+XtvbEYLSuF7vbwr5swQ1Dge1C/yMNrbAFJnTsa3vgQ3aEZaQVjOa2UIj+sV9EREQGv5VND1jrlpSenlCmYLTkXFzPch9OnwQIx9wYETdVMFp6z02L9Tg/OwPEAk4QHz5ixBLq0gvRHrrniiIiIiIikkVC5bDw5xCLghsDv+VLW6oWm8VLsBhGXZjZuLmVsGy1CVQ7+A5ULobKBZ31OaVQd45324ZLTZDb1j90lk38jAlwsgmW2Ovy62DE6fH9AYQqoHJR6m0JFpoAt7amxLqyWZ33bfu2u7FXQKgK/v4f3vVnHQ6I+l/H3scHXdixEv6y1Lt+8e+h/lxzv+VdE1K390UonmRCqtpbTIBVfp3Zd2/fZgKvgsWwczWUTIUtv09ve2Tg2veaWZKJ7IH1d9nrt9xnlmQqFpqgxncfTm9e026AwrFQs9wETLZHYMv/Qds+GH6SCWHDgZJJ4Lrw7p/Na9xtN+GN9e8zr2+xa3kX9rwApdNNmONL/wbrf2bqSqbAsqcgJ8nvVRERERERERERERER6TcKRhMREemmvLycSy65hEsuuaS/pyIiIiIiIuIp6kY9y3348aX4x+eQL5eD7fsTyiNpXOxuCwcbCqwBZW7PgxcgdbBAXwQ+9KZ0tt8WtCciIiIymByINrHmwJOedZPzj6Eqpyah3HZ8reOnDt7BaDjJgtF6HirX6kZSrpNu/7bj9Ww9p3IO79OWWHNCnUK0RURERERkwPH1w7/HBwpg5PmZt/PnwuLfwq4nYd/rUH4slM9N3qZovAlQCu/sNociqDgO8muh8UVo3mzKfSGY90Pwh9KbU+0ZsOEXieWjk/w/5egPwYafJ5Y3XGa2yyZvhLmtXAS7nvDuF0x4EQ6e7xVUzI/vb+wVMNY+JPNu9S53XRMIt/o82PGY9zonPQJls+HBWdC8yXudJfdBtNmEL3U8B12N/AD4crz3sQx8u5/KbP3XvtLzsd46/FquXmYC1JpegdZGUzbmcvM7Ia/G/F7w50L0IOx/E8K7gJgJcYtF4NBmKBgJtWeaELEdj0GgEIonwLqfwObfmfJjf2h+Jve/AXueMeGC1ctM+GM22v8WvHwdbP6tfZ19f4fflMKKV0xwmoiIiIiIiIiIiIiIZBUFo4mIiIiIiIiIiAwwUbfNszzoBFO2DTmWgK+4YDRd7N6dNRjtCIIXXNdNEoxmxgs53vs8W8Iy0pnHkewjERERkYHiyX2PWgOMTyhb4VneF8eYg4lry0XD6ZNQuXTCh9PtP+wRMAbZG4wG5vXoHYymEG0REREREZE+5QvA8BPMktb6fph4Dbz8hfjyCZ+EQD4UT4QVL8O7f4a2/VB9MhSOSX8+026Anavjg7/GfMSMaTPpGtjyO4ge6iyrOsEEnhWOgec/SUKoWdEEEygHMPJC72C0hkvNbW6l2Y7tj8bXDz+pM1ztSDkO5JTBmCu8g9EKx0H1KeZ++bH2YLSaM8xzOvpiaA+b7coZBiXTwJ/Tud6Cn0PTyyYUz58L/nzAgUAehKqgZRs4Ptj9DLz7sAmpKptl9ltbkwnA2vaACZ7rGpLnFZrXXd4IE3Qlg8P2RxLL3vlp74/zzEfM0t38O6D+/RA9APv+AWXHmJ/ZTLQ2waGNUDw5/uekJ8K7TeDcWz8Ay/u1CVaeBedsOLJxRURERERERERERESk1ykYTUREREREREREZICxBS74ndRv99nCzSJu5wXu9mC0oXuxu22/HUnwQtRtI0a7ZTyzr20BA12fr/6UTmiHgj1ERERksIu57TzR9LBn3bBAJdMK5njWWY/NdfwEgNv9guku+mLfpRf6m3qdtlib9ZwtmwPE0gnqSxXsLCIiIiIiIkfJlOtM2NaG/wViUH9+fHBZThmMurBnfRdPgOUvwNb7IbzdhIGVz0veZtgcOGU1rP0eHFoPlUtg6r+bsLH8Wqg/Dzb/Jr5N1/mO+TBsuteEhHUYeQEMP7nz8XE/hZVnQuNL5nHpDDjuzp5tYzK1Z5igsvZu58Bd92fDhxO3B0x4mq/L57X+3M4wte4cxwRIlR2TfD7174NZ3/Sum3ytuW3eCsEiCBabx02vwwPTvNvM/DpMvR7cGLz2Vdj0K2g7CJXHmyC7muWw6v0mtE0kHc9+1Cw2TiA+oMyfBxULoGQKHNwA2+6PXz9UDgWjoe0AlM+H9hY4tAGKxsG4q6DieHDbYPtfIbIbgoWw/S+w7zXY8xzEvL9kLqlDG6FlB+QNz7ytiIiIiIiIiIiIiIj0GQWjiYiIiIiIiIiIDDBR1/ufeQNOMGVb24X4XUMAbIEAtvCBocC236JuG+1uNK1Quu6ShTaEHLOv7YEPPQ9k603pBE8cSXiciIiIyEDw2qG/sTe6y7NucelyfI7fs67jmK+7dqJE3ba0ju8HN+9gNAeHkNP7AcJphf6m0X+yY/VcX35Gczqa0gmbs4doD91zRRERERERkX7hODD+42bpC7mVMPYjmbUZNguO+4l33cK74ZXRsPWPECyFsVfAuI911geL4cRHYMv/wb7XoXwu1J4Fjq9znfxaWL4G9r9hyosmmP3Q23JKYcHd8NQlEIuYsuplMOVfO9cZscxsR1tTfNtRF/T+fNKRX5v8cVdlhwP8HR9M/7JZulvxUuf9/Wvh6Q+ZwKlgqQljm3o9vPh5eONb9nFGXQzbH4WI93tmMoR0/wKB9hbY8VezeInsMQvAgbWd5XtfgI339s0cAVq2KBhNRERERERERERERCTLKBhNRERERERERERkgGnv/s/DhwXSCOdK72J374v9beFgQ0GyC/0jsTD5/sKM+4y4yQITcg/f2gLZsiMsI63wiDTWERERERnIVjY+4FkecAIsLDnF2i7VMWbAP7SD0bxj0UwwWjqBz5lK79g2df/J5pDN51Tp7FPbPgpl8XaJiIiIiIhIFvCHYNZ/mcUmkAejL0rej+NAyeTenZuXkefB8KWw6ynIr4PSGeDrEnzvz4UT/gCrzoXWvaas7n0w9Yt9P7d05JTCsLkmSKqrYCkMPyGzvoonwGnPQtt+CBR2htXlVdvbzPpvmPwvnY9dF5o3wY7HTWhb5SKzDwHeuQueudy7n1NWQ9lMaN4Mr9wAm39rykPlMOV68AXBnwfEYOv9sO8fcPDtzLZPpEPLu/09AxERERERERERERER6UbBaCIiIiIiIiIiIgNMm9vmWZ5OSJbtgvWuF7jbLuQPOfbghsEuWYBBONbSs2C0JMELHSEZyQIGWmORfg/LSCcYIp11RERERAaqHa1b+UfzS551s4sWURQosbZNdYxZ4C864vkNbLZotPQCnzOVTqhaOgHF4ViztS7Xl9+juR0NtvO9roHOOlcUERERERGRISNUDnVn2eurFsP7t8PeNZBXAwX1R29u6Zj5dVh1DrSH48v8PTyHDxbHP85Psr1lM+MfOw4UjIIxlyWuO2yOvZ+icRAsgpIpsPg30NpkgtD8ocR1x12VWLb3RXhotnff026AGTfBr8ugrcl7nfMb4Tdl9vmN/hA0roF9r9vXkYHjiQvgQvv7eiIiIiIiIiIiIiIicvQpGE1ERERERERERGSAiVqD0VK/3WcLX+h6gbstTCBZcMNgZwtegJ6HLyQPRstLOW5PA9l6UzrbfiThFCIiIiLZbnXTQ9a6E0pXJG2bLARXx1DgWoLRHJwkwWg9D+VNd5+nCihOFrCW7Dnvb7bzva77xbZ/h/K5ooiIiIiIiAxhviBUzO/vWXgbcSqc+ixs+hVEm6HubBi+tPf6r15mtj/W7XPr8uOg6sT0+ymZAgUNcGh9fPmweZBXHV+WU5rZHLu3j6sbcbjPEnswWrLxpl5vguZcF+7xea/jC8FFYWjeCut+AgfXmSC40ZdAeAf8aaq9/1AlRHbZ66X3tbdA20EI9u/n7yIiIiIiIiIiIiIi0snyKYyIiIiIiIiIiIhkq3Y36lkecOwX53dIJ0Ag4npf7J7NF/H3teShFT0LX7AFJjj4CDo5aYzb/2EZttdKpuuIiIiIDESRWJin9/3Fs64+NIbRueOTtu+L8N0hwXGsx8lHFoyWXttkwWemvtmzPOAECPpSn7P1F9vrsWN7Y26MVjeSUVsRERERERER6UdlM2Dm12DO/+vdUDSA0DCY/xNwulyOMmweLP4N+Pzp9+P4YN73wZ/fWZZTBnNu6YU5VkGo3LtuxHJzO+la7/qqpfHrdTfqInPrOPbxqxab2/xamH4DLLgLJv6zmVPJFHu7QAHMv91ef8pKWPaEvb5gNHzQ+wsH3rPileT1ACMvSL3OYNP0an/PQEREREREREREREREulAwmoiIiIiIiIiIyAATdds8y9MLRrMFCIQ976fTdijIcULWulTBCDb2/ZyLc/if6JMFDPR03N4SdduIWkL6ulKoh4iIiAxWz+9fRYslBOuEshXvHdPZBJ0cHLzXOZKAr8HAde0XbzokC3wOJ22bTLr7PNXxbXiAnk8l26cArW4EF+99m+3bJiIiIiIiIiJ9oOFDcPYGOO6ncOKfYdlqEwKWqZrlcMZrMPdWOPZ2E9pVufDI5+fzw+gPJZYPPwkKR5v79efGh7t1GHWhuZ38L9A96L7mTCid3mXdi7zHH/+J5PMbfYl3+fSboGy2pZEDJVMhL8l+Lhpnbid9zrt++Mlm/uOutvcRqkgezlZ+rJlHtprwaXj/DsgbkVm79kN9Mx8REREREREREREREekRBaOJiIiIiIiIiIgMMNZgtO7/lO3BfrF7ZwiALXArWUjXYDn/xKEAACAASURBVOdzfIQc7+3veTBa6v2c44SyNiyjNRZJaz0Fo4mIiMhg5Louq5oe8KzL9xUyt2hxyj58js8awNvfIbj9zRbAZTjWIK4YMev5UioRN73j1lTH4bb6XF9+xnM6mlKFaCc7rs9VMJqIiIiIiIjI0FRQD2MugxHLwG//oqmUChtgwidh3JWQX9d785v1nyagLFAEvhyoPRsW/6azPr8OFt4Dvi5zH/sxGHuluV99Cpz4CIy8ACoXm9Cyxb+NH2Pcx8Hxd9ueMSZALZmGDyeW+XJg1MVmvw6bl1g/4lQIlUPBKCgc591v+bHmttYy/qgLzG1ejX1uBaPMPrMpGt85jpeL2uCCZnj/Lvs6ODD7Fnv1pM/BnP8xz0cyoy6CqqVQdgwc+yM4ZxPM/R/IrYLxn/QYNsklVFEFo4mIiIiIiIiIiIiIZJNAf09AREREREREREREMtMWswSjpfF2ny3cqyMEoN2NWoMEhvrF7iFfHpH2xDCAngZ/2dp1fY46wjK8Qhr6Oywj3fH7e54iIiIifeGdljfYEtngWbeg5GRyfOldCJrby8eYg0WyYDQfDrlJQpvDsRaCvpyMx0x3n6c6vg3Hmj3Ls/18yh6M1nL41r5/hnKItoiIiIiIiIhkMV8Q5n0f5nwH3Hbwe7yHMeoCqD0D9rwAReMgvza+fvgJZrEZfgKccD/8/T/gwDqoPB7m3AL+FO9PjTjVBHm9fD1E9kD+SFhwF+QfDixbeDc8dhoc2mAel0yBeT809x0HZnwVnr7UbFeHYDE0XG7uV51gAt7W/bizvvpUGH3p4fGXw6tf9p5bzZlmjNIZ0PRKYv3YK8GNwjt3JtaVTANfwCyBJO+Hjb4EiifZ66dcB7kVsOFeWHe79zqnrIaqRfY+pn7BPOfv/BTaW6D2HJhxI/y6xHt9BaOJiIiIiIiIiIiIiGQVBaOJiIiIiIiIiIgMMO1EPcsDvmDKtraL8cO62D2lXF8e+9sbE8ojPQz+8go7g8T9nK1hGemO39/zFBEREekLq5oe9Cx3cFhSujztfkK+PPA6xrQcKw4d9mA0cAg59osqI7EwRVgubkwi3UDfVMe3tn6yPxjNEqJ9eHuTnfcM9XNFEREREREREclyviCQ5LP0QEHy8LNUapabJVPjrjIhY+FdkDc8vq54Apz1Fux9AXw5JqTM1+Xyn9EXmRC3f/yXCS8rnQHTb4Ti8abe8cGxt5kgtL3PQ/FkGHFaZx/l82DM5SY0rKthc2Hip839hg/Bi5+Pry8cB1VLwI1Bfj00b46vH3NZ/OOJ18Cb30nc9rFXmDn486G92xcNlM6AUPnh/TAxsW2HgpH2OjDhbpOvNUtXeTXQsi1x/Ve+BMPmQdFYs/96gxvrvb66a9kO+16Hg+9A234TSld2jKl75yemvvoUs5+aXjP7snwetOyAyE4oGA3BosR+Y20mrC+nDPyHvwCk7QDseBxatoAThOhBs7SHoWAUFI4xQXfdgwVFRERERERERERERI6AgtFEREREREREREQGmGjMEozmpH67L9XF7snCALL9Qv6+Zt13PQytSDcwIVvDMtINhOtpcJyIiIhIttofbWLNgac866YUzKIyZ0TafaU6Ph+q3CTBaA5O0iCuiNvD4OJ0g39THIeHY82e5dl+PmWbX+S9EG0Fo4mIiIiIiIiI9DrHlxiK1sEXgIrj7G2rFpvF2rdjAt+8Qt8cB+bfAbXnwD/+0wRrTfosjLoYAvlmnUn/ApG98Nb3IXoAKhbAwl+YOTs+OOkv8OSF0PiiCTib8CmY9Ln4ccZ/CjbeC+EdnWXVp5hwNccH074AL3+hy7wCJuDNcczjspmQVwstW+P7LZ1ugtl6ImeYdzDawXfg/gmdcxx5oQn/Wv8z2P8G1J5p9lfN6bDhbnjjFvDnmHalx0DJZBMq1vIu7Hw8vu+RH4C8Oqg9A4afmF5YmhuDt38EW/4Ptj9iHo+7Gvx58OYt6W3r2u+mtx5A7dmw9Q+J5cPmwN6/pd9PXg2MWA5T/s0E/LVHYNuDsP8f0NoEB9aaELXqU6B0JjS9DIUNsOcFE/SWVw117zc/F+2t5uegr8LlRERERERERERERCSrKRhNRERERERERERkgIm6bZ7lASfJt1wfZrvYPeq20e5Gk4YBDPWL3UOWfZcsTC4Z277uPo49LKN/A8fSDo4Y4qEeIiIiMvg8ue8R2vEOK15SuiKjvrL1WK+/ufZcNHCcpCFj4R4ef6Z7XJ9qPVu97XwiW4Qc79di+L1gNO/9GnACaZ2LioiIiIiIiIhIlnEcqD/XLLb6Y26GGV+B9jAEC+Pri8fD6WsgvBtySsDn8R5R8Xg49Wl4+3YTiFV5vAlL6wi6mnq9Ccna/HsIFsHoS8w6783BB3O+DU9+ENzD78n68+CY/+oMT8tUoCD1OtsfNUtXm35tFi97nzeLTUe7N79tbstmQ+UiGHEaVC2CYHFimxf+Cd76QXzZ2z9KPfee8gpFg8xC0cCEzr1zh1mS+fs37HXPfzL+ccEoOPFhaG+Bkqner7Wu2iNwaBP4/JA/EnBN6F5PXzMiIiIiIiIiIiIi0i8UjCYiIiIiIiIiIjLA2ILR/E7qt/uSXYwfiYWTBjBk+4X8fc0WvtDT4C/bvu4ejmHb7/0dOBZx0xu/p8FxIiIiItmo3W1nddNDnnXlweFMLZiVUX/2Y72hfgxlT0ZzMKHQPnzEiCXU93Tfpdsu1XG47fg3z5ef8ZyOJltIX6sbIebG7IFvztA+TxQRERERERERGfR8AfAV2utzK5K3L2wwAWs29e83i83ID0DReNjyB/DlQN05UDI5+ZjJBJJsy9HSuMYsa/+nv2cyMBzaCPdP6nxcPBH2v9n52J8HbjvEWlP3lVsF4Z3J1ymbBSXTTFBf8QTY9zps/KW5bXwRChpMYF/NitQhbSIiIiIiIiIiIiLSYwpGExERERERERERGWCiHd+E3E3ASf0Pl7aL3cFcwJ8sxCrHCaWe3CBm23c9D17wDlRIDEbzHre/A8fSHT/dADURERGRgeDVg8/TFN3jWbekdDk+x59Rf/ZjzKF9DOUmDUZzcByHkC+XllhzQn3Pg4vTa5fq+N8aIJblQdO2IGgXlza31Xpcn+wcU0REREREREREpFeUHWOW3pA3onf6kf7TNRQNoD2D/51IFYoGJvys8UXY8HPv+kPrYdW5nY8X3A1lMyBYDE4QcsrgnTth2wPQsg0mfRaqToCCkenPU0REREREREREREQUjCYiIiIiIiIiIjLQRN02z/JgWsFo9ovxI7GwPazLycXn+NKb4CBlCwro7eCF7sEC9nH7Nxgt/eCIoR3qISIiIoPLyqYHPMsDTpAFJSdn3J+C0XrCAcy5Te8Go6UZ/Jui/7DHnMB+XJ8tkp0rJgvRzvbANxERERERERERkTijLoQNd/f3LGQwefrSFPUf7rxfOh1CFRA9BIEiCL8L+CBYBKUzoO59MOJUcJz0xj60GZo3mwC2QxuheBLUrDDtY+3gtoH/8OcQrfsgUAA+XUooIiIiIiIiIiIiA4PezRQRERERERERERlgbMFofif123224AUwQQC62N3Otu9s+ywVW7vugQnZGpaRSXCE67o46f7jroiIiEiW2h7ZwpvNr3jWzS1aRKG/OOM+Q44lBNcd2sFoLq61ruOo0naO0tMA4XT3ear+bfXZH4yW7FwxSYh2knYiIiIiIiIiIiJZp+YMmPBPsPZ7/T0TGYqaXrXX7X4a3v6Rue/PhfbD78nm15vwMwBfEEJVMGw2bP1j5uMHCqByCdScDi1bIX8kFI6F4olQONqEqfn8qftxXdj/pumvoD7zeYiIiIiIiIiIiIikQcFoIiIiIiIiIiIiA4wtGC3gBFO2zXFCODieQQORWNgaBpDtF/EfDUcreKF7OIZt3/c0kK23pBvM5hKjzW0lxwn18YxERERE+taqpgetdUtKV/Soz94O3x0skgWjdUSj9XaAcLrtUq3XYg1Gy894TkdTsnO+SKzFut06VxQRERERERERkQHFcWDud6FiAWz+vQmH2v10f88qfTnDIFQBgXwoPxbevi2z9mWzoXiC6UPhcNmrvcv7sR2haACxNvOa3bq1Z/1GD8G7D5ollfyRMGwOVC6C3U+BP88sW/8I4e3x6467Gnb81cw1VGmC1/LqoGAUDJsF4Z0Q3gFFE0zZwXfg4DoIlpoQuGGzzLZFdpvAtZxh5n7Ty2ZflEyFkilQdowJhxMREREREREREZEhQcFoIiIiIiIiIiIiA0zUjXqWpxOM5nN85Dghz1CucKzFGvJlCx0YSkJO74ZW2IIFuu/r3g586C2ZjB+JtZDjUzCaiIiIDFzhWAvP7H/Ms25U7nhG543vUb+2UKn+PtbLZo5zOBjNcnwecXt2fJ7ucb0t4Pi9emswWnYHiCU754voXFFERERERERERAab0R80C0DLDvh9tfd6+XUw6Vpw26HxRWjeBDtXmZCm6tPgzW97tysYBedsgFgUNv4Snv0oxFp7Pt+8WtOfr9tlYMmC0U5/CUpnQNt+EyYV6PblDXO/C64LTa/Cuh9D9CDUrIB37oJt93v3Oe+H8PzHvesuOAS/KrDP58y1sP5n8Nat0NoIReOhcCyEymHDL+ztpH80bzLLlt+nXvftH3VptznzwL6eqFgIs79tXkst20xoWm4V4Jjb6AETvLbjL3BwPQyba15zzVuAGOQOh8heyBsOweLOft0YOL6+n7+IiIiIiIiIiIikpGA0ERERERERERGRASbqtnmWpxOMBhDy5RFpT7yYP+KGk4R1ZfdF/EdDb4dWpBssEHJs4/Ys8KG3ZBIIF461UERpH85GREREpG89t38l4VizZ90Jpaf3uF97CG7/Huv1N9d1rXXO4Vvb8XlPgovb3aj1PCvT/m2vk2wPRvM7AQJO0HM/RGLhJOcv2b1dIiIiIiIiIiIiKeVW2utqz4JJ19jrbcFo+fXm1heAhkvMEovCX5fBzsczm1/1Mljw88RQNICp18PrNyeW170Pymaa+zkl9r4dB8pmwNz/iS/3CkarXgYjTvPuZ+SFicFrXQVLoHg8zPwqzPjK4dCqLmFUde+DJ863txfpbvdT8Of5vdtnoACih8z9ykWQVwP7/m7Ky2aCEzBhiWXHQMk0EwIX3mley4ECwAF/jglr84XAHzLhg3k1JojN5+8cy3Wh5V0TWrj/H6a+eGLvbUtrE7Rsh6Jx3r87REREREREREREBgC9syUiIiIiIiIiIjLARN2oZ3nASe/tvlxfHvvbGxPKw7EW60X+tsCGoaS3QyvSDaGzjuv2LJCtt2QSCNfT8DgRERGRbOC6LqsaH/SsK/AXMadoUY/7th9jDvXjJ3swWkc0Wm/uu946to26bdbztWwPRgOzT6PticFo4VhLkvMXnSuKiIiIiIiIiMgA5/igbBY0vphYN+qi5G2rlsDOVYnlEz3C1HwBWPQruK8WYim+qOHi2OG5OcnXq3ufdzBa/XnJ2yVTe6YJaQrviC8fdzUUjoYJ/wxruwSphcpNQBtA+bGw57nEPqff2HnfceJD0QCGLzUBUd33S/5IOGc93OMnYyc9Cn89JfN2oUqI7Mq8nQx8HaFoALueiK/b8+zRmUPVEhM02NoIhzZCy1bw55twtWAh5NVC8SSIRWDz700428R/horjoHUfvHw9bLynsz9fCKbfAFOu6/x94rqw7U+w+bfQvAVqzjB9OD7zM7hztSkvm2FC4LpqbQTHb36GY+1AzPzsioiIiIiIiIiI9AEFo4mISK/YtGkTt912GytXrmTt2rU0NjbS1tb5weSdd97J5Zdf3n8TFBERERERGUSirvc/yAac9P7RLFmAgC3kayBcxN/XugeWdehJQJnrutZ93f35sY1rC7E7WiJu+uMr2ENEREQGsnUtf2db60bPuoUlpxD05fS4b+sx5hA/fnKTBKM5fRCMlsmxdbJg5GT95PryM5pTfwg5uRziQEJ5xA3bQ7QdBaOJiIiIiIiIiMggMPZKeOFT8WVF46EyxRdjjL40MRgtpwxqVnivn1sJx94Oz14Jli9ZACd1IFqHYXNgxtfglS92lo35CIy6IL32Xvy5cMpqePajsPtpE8Q07Qsw8nDY2pxbTHjT9j+buoYPQWGDqas71yMYzYH69yUfM1QODZfDutvjyyd9zoQ1+UImCCpdEz4NxRPTX78rpwchbEsfhIPrTJhU44sQKITqk+HVGyG8s2fzkKFp5yrvsMVk3n3IXheLwMtfMIvN9kdhzWfN767WxC/aTClQCBM/A9O+BP4caDtofg7y66DpFdj6J/NzPP6TUFBvgtdClVA+14SquW7877zuj0VEREREREREZMhSMJqISD8bPXo0Gzd2Xkzz2GOPsXTp0v6bUA/cfvvtfPrTnyYSyeDDRhEREREREemxdss/xwac9N7uswcItFhDBGxthhJbOFwkFsZ1XZwM/ikv6rYRI+ZZ1z0cI9m4/SmT8XsSHiciIiKSLVY2PehZ7uCwuGT5EfVtO84Ox1oyPsYcTNIJRrMdJ/ckQDiTY9tk/YfbkwWjZX/YdLJzD9s+GgjbJSIiIiIiIiIiktL4T0DbPnjzOxDZY4K/FtxlwnySGXulCcN641sQPWTCuI7/JQSSfFHCmMtMaNYfxkKsNbF+5s3pz9txTGjZ6Etg7/NQMhWKJx95qFDxeFi2GtpbTdBR9zFHntcZlNbVhE/Djsdg+yMdK8Oc70DBqNRjzvuBWW/LfWb/NXwYxl5h6qZ9EV75UmKbmjNMKJTbHl/e8GHIHW4Cm6IHE9vl15nnrbv680wY3prPpp5vh8pFUGP5rKDpdXjr1vT7EulPPQlFA/Mz9vrXzJLM2z9K3VegCIJFULHA/D5t3moCJX05Zn7tERPe2HAZVBxr76e10fTV+BJED0DJNNOPiIiIiIiIiIgMKApGExGRI/LAAw9w9dVX47r2C1S6evzxxznxxBPfe/zlL3+ZG2+8sY9mJyIiIiIiMjhF3TbP8oATTKt99+CtDpFYi/Uif13sbt9vLi6tboSQk354XLLghe792IPsMg9k6029FR4hIiIiks32Rffy4oGnPeumFsyhImf4EfWf63gfY8ZoJ+pGCaZ5jD/YJAtG43Awmv28JvNQ3oxCf5Osm+y4N9eX5ELILGHbp+Ek54q2NiIiIiIiIiIiIgOK48DU62DKv0PscPBOuu1m3GSCuyJ7IK86vXb5dbDk/+Dx07v154fRF2c2d4DC0Wbpbd1D0VIJFsLSB2DP83BwHVQuhMIx6bX1+U3I27QvJNY1fAhe/w9ob+6yfg7M+k8YdxU8/3FoeRdyq2DOd6F8rlmn/jxYf1d8X/l1cMpqeGgOtO6Nrxt7JRRP8A5Gm/pF2PQrOLA2vnzc1fZtKpthrwuWQltTYnnNGbD4N3BwPYTKzTZ1aHzFbE97BEZdBFWLOutcF8I7IVRh5vinKd7jTv0izPwq7H8TGl+G3c+YAMBD62Hz7+zzFTkaogfMsvm3ydd76/sw4nTzM/Duw7BzFebzoySfL+UMg1n/DcNPhO2Pwr7XoOk1aNkG+/9h6qtPgeplUDrd/B3Iq4Xcit7cQhERERERERERyYCC0URE5Ihcd911caFoH/zgB7niiiuor68nGOy8WKeiQh8GiIiIiIiI9JY2azBaem/3JQvailgvdk8/9GuwSrYPwrGWjPZRxE0WmJBeMJpLjDa3lRwnlPa4vcn2WjnSdUVERESyyZNNjxCj3bPuhLIVR9x/smPIiNtCkKEZjJbsupWOXGD7eU3mx56ZHdvaA4rDsWaPFsZACBBLeq7oegfC6VxRREREREREREQGFcdJPxStK18w/VC0DjXLYc534OUvQPSgCbRa8DMoGJX5+NnEF4DKBWbpLQWj4OTH4G//DI0vmdCiWf8NJVPMUnuWCQXLrep8Exlg3q0mfGzLHwAXyo+D439hQuSWrYZnr4Q9z5n+p99onhOAmf8BL1/X2U/5cTDpszDhk/DsVbDjr5BfC5M+Bw2X2uddcyaeYU3D5sGI0+D1ryW2GXe1eQ2WTE6sK5sBZd/yHstxIO/wl7nk19nnNHypuS2eaJZRF3TWRZvh7dth52OQOwImX2uC7e6rM+FRXurfb9rl15twurzhUNAA5cfCc1ebwDWRvvDug2Z5T7Iv3cEEIT770eT1m35lllTKZpvfAfkjTUhjyxbYvxaCxeZn5uA6KDvG/K6qOgECRbDtftjzgqkrbIDKxSb00fEl9u+6cGij+bnOr/deR0RERERERERkCFAwmoiI9Nibb77JK6+88t7jFStW8Itf/KIfZyQiIiIiIjI0tLtRz/KAk15oQq7lgvxwrIVIzHKxu5P9F/H3Ndt+A6z7rSfrdw9MSD5uCzm+/gpGS3+bM90/IiIiItmg3Y2yet/DnnWVwWom5x9zxGMkDUaLhSn0Fx/xGAORm+TiFQdzUZstaKwnx5620C8vMdqJum0EnRyPsb0D1vwECPqyP+TOvk/t54rJzldEREREREREREQkhYn/DOM/Ac1bTDiXwm/sKo6F054BN5a4n7qGgnUVKIAl95nQNBwTPtcRnFYyBU59Ctpbwd/t/d6p/w41K2DnKhNyNPxECBx+L3TpH73n4CW/BsZcDu/c2WWuPpjyr1A+H9b/DJo3ddZVLoKa01P3m0qwCCqPh11PxpeHys0YNoF8mHSNWbqqXGQPi1r8W3t/x/wHPHmRd90FB83zAxBrh1ir2cfrfwFPW8LmVrwCudXw4udh/V2mLFgKE/4Jqk+G7Y/C2u9B277ONgUNJrytcIwZr3weRA/Bw8fa5y2SSuMas3jZtfrw7RP29juAdT+BZy5Pb7z682HYHDjwJuAzr+WcUvP3I2+EWWfnE7DzcROMWHs2hIaZ8i1/MIGSuVUw6iLTrruOn8FDG2D3UxAsMeGNwaL05iciIiIiIiIi0kcUjCYiIj32wgsvxD0+//zz+2kmIiIiIiIiQ0vUbfMsTzcYzRa+EImFCVsu5E8W2DBUJA+t8N5vNrb97DVOsnHDsRaK8PiHtaMgk8CJZNsrIiIikq1ePvgc+6J7PesWly7H1wsXqNmCqCDzY8zBxR6MRkcwmmM7r8l8v2XaJhILE/QlBqO1WPrJ9Q+M8DD7uWKLdR/pXFFEREREREREROQI+YJQ2NDfsxg4evLefG6Vva57KFqHshlmOdI5HHu7CWHb+icTTDb2is7ws1Ofgrd/BPv+ARXzTcCXr5cu9Zv5DVh5BrTtPzxnP8z6Fvh78OV7Yz7iHYxWfUrydiNOBV8IYpH48vJjO0PRAHx+6Pi8pPJ47758QRNyFiyEBT81S3fDl8L0L0PLdrOvA/lJJueQ/LOIo2T0pbDh7sTyQIEJcBMB2Pwbs3T32lcz6+f5T2Q+dv355vfHvteheAJE9prgyNY9EG2GfX83v+NireDPM7e5VRCq7Lxta4I9z0P0IFQtgRHLzXoH10PpNGhtAlyzbkd4pYiIiIiIiIgICkYTEZEjsGPHjrjHdXV1/TQTERERERGRoSPmthMj5lmXdjCa431RfsQNE3G9w65ykwQ2DBW9GYxmCxVz8BF04v/pNnlYRvrhZL0t4qa/zf05TxEREZGeWtn4gGd50MlhQcnJvTJGsuPsoXwMlTwW7XAwmi3Ey3JOk0w4w30dcVsopDix3BaMNkDOp2z7tDl2iDa3NaM2IiIiIiIiIiIiIoIJ/Zp8rVm6y6+FGV/pm3GrFsHyNbDlPhOwVXsGDJvTs76qTzahZIfWx5ePuzp5u5wys92vf72zzBeEaV+ytykcDcPmwt4X4strVphQtFR8QSioT73e1Ovg9ZsTy3OrILwzdft0lEw1YVI252yEgpGw8OfmcdsBaN4CeSMgpxTW3QHPXuHd1uv56HDMN6F0Jjy+3D72yAth0y/t9Sf80Yy/5ff2dWRo6BrItu81c7vz8fh1dvwl/f7e/I69LlAE0QPmfv5IqFgAw2YDDrjtEGszgWrRQ3DwbTjwlglZG3UxVBwLbQdNefMWaNkGG+81ZXtfMKGU9edBjeXnwnUPh7tlEB4Zi/ZemKWIiIiIiIiIeNKZt4iI9NjBgwfjHgeD6V2ALyIiIiIiIj0XdaPWuoCT3tt9tovyw7EW64X8ycK5hoqAEyTgBDyfg3AvBaOFfLk43b750hZk15Nxe0vUbUv6WuxuKId6iIiIyMC0LbKJt1pe86ybW7yYAn9Rr4wTdHJwcHA9osCG8jGU1/7oznZeE4mFcV034bg6mUyDjm3H4eFYs2d5ri8/o/77i22fHojuy7iNiIiIiIiIiIiIiPSzorEw+V+OvB9fEJatgueuhh2PmzCvyZ+Hkeenbjvjq1AyDbb+EXJKYPSHoHJB8jbH3wuPn25Cj8AEpc370RFvRpzas7yD0cb/E2y4Gw6sTawLlkJbU/pjjLwQNt0L+/7uUemYALS4/ougZHLn48Kx9r6X/A4ePtYERcV1G4CxV0LLu/a2s75lgvJswWjjroLaM03g1L2Wa4TGfRxm3ASvfsWEp0X2QNE4qDwe9rwAjWvs44vYdISiATRvgk2bkgf4Aex/A968JXXf635sllRyq81teHt8efUy8zM57ipYfxds+AVEdpu6k/4CFfPNz+PB9eA4sHMVtIehaglUHJd6XBERERERERHxpGA0EZEhwnVd1qxZwxtvvMHOnTuJRCJUVlZSW1vLokWLKCxM49tzuonFYn0wUxEREREREUkm6rZZ6wJOeoHVIV+uZ3kk1mINX9DF7kbIl0e0/UBCeaahFfYAusTnJugL4idAO4lBZBG3f8Iyemt7RURERLLV6qaHrHUnlK7otXEcxyHky/UM2uqvENzsYA9GczCBZ7bwZheXVjdCyPE+7/GS+fGt9/q252ygnE/Z9tm+6F57mwGybSIiIiIiIiIiIiJyBPLrYOmf2bgopgAAIABJREFUwI2B40u/nePA6IvMkq6isXDmG9D0GvhDUDTB9NObyudDw2Um4KhD6QwY/3Fz/9Ub4tcvGAXH3QWPLzdhRx1qz4a8anj7tsQxRn8QfAF4+frEusrjTeBcMhXzvcPYChrMXOvPg433xtfVnQuhYcn7HTYbcofb632hw7cBKJ0OTa8mrjPqQsitgnnfM4uXlneheYvpw58L/5vkORx3NbxtCb+rOgF2rrS3FelN3QPROmx/BHgE3v5hYt1fT07db+ViyK+H4klQNvPwz7/PBEYWTYCcMmjZZoLV/LnmZzyyG1obIb8G2iMmPHHbA4f7W2TCFWNR87N6aBPgQttB2Pu8uR15vvn9JCIiIiIiIjKAKRhNRGSQ2717NzfffDN33303u3bt8lwnJyeHk046iRtvvJH58+db+9qwYQMNDQ3W+hNPPNGz/M477+QjH/mIZ91NN93ETTfdZO3zscceY+nSpdZ6ERERERGRoSbqJoZjdUg/GM37wvUD0X24lgACW5jaUBNycjlEYjBapqEVmQbQhXy5NMcOevTTP2EZGQdHuEM51ENEREQGmnCshWf3P+ZZ15A7kZG5Y3t1vJCTS5jE46VMj7kGE3ssmgmTg+TnKJFYOKNzmN46ng/Hmj3LB0wwmmWe+9sb7W0yCKATERERERERERERkQEuk1C0Ix2nbEYf9u/AcXeYcLHdT5lgopHnm+ChqddBeAes+zHEIlA6Exb9GorHw8mPw1s/gJatMPwkmHwtHNpowoqat3T2P/EaE/A2/uOw7UHYtbqzzpcDU7+Yeo7+XJh6Pbz0r10nDtNvMPvn2NvBdWHL701V3Tkw/w5zPzQMhs2FvS/E9xmqNKFsTgCCJdC2L3HckR/ovD/mCljzmfj6wnFQtST1/PNGmKVD5eL4/dBh+k0mZM1m3g/hT5NTj9fdol+b53TnE/DCJ03AW6jChFMNmwsH3oSK46G92Tx3oXLzOBYx+/fZKzMfU8TG67Xf1/72afN7pOEywDGv//J50NpkAtOiB83vgmFzTfhaV64bH0gZPQSO3/QnIiIiIiIichQpGE1EZBC77777+PCHP8yBA4kXbHfV2trKQw89xEMPPcRVV13FrbfeSiCgPxEiIiIiIiLZKOq2WesCTnrncraAAK/grc42A+NC/r5mCzSIuJmFVtiCF2yhAvZgtP4Jy8g4GG0Ih3qIiIjIwPPsvsesx2tLSk/v9fFCvjzwCJ7qrxDcrOAmi0YzkgWfhWMtFFOa9nCZHq/aXh/W4/wBcj5lO99JFtA9ULZNRERERERERERERCSO44O6s8zSlS8A874Hs/8bWvdB3vDOuor5ZumqaByc+ixs+pUJSRt+ItQe7jOnDE56BN65E3auMmFkYy6DiuPSm+OUz0NhA2z+nQlUG3Ux1Jxm6oKFsOheaA+bz1UC3d6vP+YbsPJsE/zVsb2z/hN8h794s+5cWH9XfJu8EVCxoPPxxH+G1kZY+10TolZ5PCz4ec8C8mrP8g6HGnkBuO3ebXw5ZvtrzoRt9yfWVy2B3c9ArDW+3PGZIDaAqkWw4hWIHR7D509vvhUL4I1bzPbXnA6jLzX77h7Ltte9D5b8zozz9o9gz3OQO9wEseWNgMaX4PWvpTe2SG9pD5vXY28ac7l5ne9/w/xeyBthAtZ2PWF+VvJHmqA1X44JWswph433mt83FcdBw+VQMikxfM11TQBboCC+XERERERERIY0pd6IZJtYNP5bQqRv5NeZDysGsTvuuIOPfexjxGKxuPKxY8cyZcoU8vPz2bRpE8899xzt7Z0fItx2221s2rSJP/7xjwpHExERERERyULJgtH8RxiM1tttBiPbRf+ZhlbYgtRs+9kWUGALXuhrGW+vgtFERERkgHBdl1VND3rWFfpLmF10fK+PaTsGzDR8dzBxsQejOZh/hLcdI0PfH6/a1rcdn+f58jPqv7/07Fwx1AczERERERERERERERHpZ/5cyEvzffP8Gpj0GUs/IRj/cbP0xMjzzWLjt8yx+mRY/gJs+g3EwiaYrGsg26z/gn2vw94XzOOcMlj06/hrrRwHZtwI028wAUuBI/i8Y/wn4N2HYcdfOstmfLUzIKl4kgla6qr+/Wb/jfyAdzDaxM9A3m9g4//Gl49YHh9oB+kHonUomQLzb0ssL5sNjWsSy8d+tHOcCZ8EPhlfP/I8eOv70Lo3s3l4Of0l+Ns1sHNlZ1mwBGpWwMZ7Mu/P8ZtwupKp5rb789ATBQ0Q2Q3RA0fel2SXd34a//jA2s77W+6Lr1vzufjHO1fC37/Zs3Fzh0N4Bww/CUZdCIFCE4pY0AD5taa+PWJec74cwIG86p4FOYqIiIiIiEjWUOKNSLZp3gJ/aOjvWQx+Z6+HwtH9PYs+89JLL/GJT3wiLhTtmGOO4dZbb2XhwoVx6+7atYsvfelL/OhHnd8A8dBDD3HDDTdw8803x61bV1fH+vXr33t8yy238J3vfOe9x/fccw/HHZf4zTUVFRUsXboUgGeeeYaLL774vbprrrmGz3zG8gEQUF1dnWJrRUREREREhpaoG7XWBZ1gWn0kCxDozTaDkS0oINOAMluQgi14zRqW0U/BaJlub38FuImIiIhk6q2W13i3dbNn3fElpxD0pXfMnQl7+K6C0bx0BKMlC/HKOOjMzfR43nt923Gv7TnONpkGowWdHHxOhhcSiYiIiIiIiIiIiIjI0VEyGaZ/ybsutxJOfQaaXoLWRig/DoKF3us6viMLRQPT94kPwq4nTZBSxQIonX64fwcW/xYeWw7Nhz+nK58Ps28x90d+ADb8Arb/ubO/unOg9kyoXmaC37b8H+BC9Wmw8O4jm2syDR9ODEbLq4ERp6VuO+ZyeOP/Hdn4/lwomwmnPG4etzZCsNTsQ4BNvzLhZl4+aP/8LUHbAfh1sb2+ZKoJ1vNyfiPklJr70RYTkObPhUABrH6/CcjriWFz4cDb0NbUs/YysIV3mNsdfzVLJsZeATNvhtyq3p+XiIiIiIiI9CkFo4mIDEJXXHEFra2t7z1etGgRDz/8MPn5iR9EVFZW8sMf/pBx48bx+c9//r3yb37zm1x88cVMnz79vbJAIMDo0aPfe1xaWhrXV3V1dVx9V4WF5gOSDRs2xJWXlpZa24iIiIiIiEiiqNtmrQukGYyW6cXuPW0zGPVWaIUtSMEWQJdtYRmZb+/QDfUQERGRgWVl44Oe5Q4+FpWmcUFDD2RbCG626whGCzhB/ARoJzE8OtN9l/n63se3mR7nZ5tMA9wGynaJiIiIiIiIiIiIiIgHnx+GzTmK4wVh+FKzdFcyBc5+B/augWARFE80gWwAgTw44Q+w7QFofAnKZkHtWWb+vqAJVYseglgUckr6dhsmftoENK39HzNm6Qw4/pdmHqlM+BRsvAda3u0sG34i1KyAFz9vb9fV9JviH+eUxT+e9iV49cbEdmM+ml7/HYJF5jnZ93fv+pxS73KAYJfnIJAHgfrOxyNOtwejTbsBXvuKd92pT0PFcfFl79wFL3waogc6yyZfC2M+YuYe3mnGanwZdj4Oe//WuZ4vxwTIdQ+Ry683z2+sFRlE1v0Edq42gYJ5I/p7NiIiIiIiIpIBBaOJiAwyjz32GGvWdH77SHFxMb/85S89Q9G6uvbaa1m5ciX3338/ALFYjG9/+9vccccdfTpfERERERERyUxvBKNlevF6wAmk3fdgZ9t34V4KUrCFYtjKMx23t0RcBaOJiIjI4NPUtoeXDz7jWTe9cC7lwb75BulsO9bLBi6xJLXOe/dyfXkcih1IWKOvj1cjrvdzE441e5YPlACx3AwDsRWgLSIiIiIiIiIiIiIivcYXgIpjvev8Iah/n1m8BAr6bl5dOT445maYcRO07oPcivTbFo4xAV9v3wYH3oKKBTD+UybY652fwr7XO9f150N7t8+d/Pkw+oPJxxh1sQkXc7t91tbw4fTn2WHyv8IzlyeWVyw08971ZGJdyTRwnMTyDjWnw5rPJJbn10PJVHu7glGJZWMuM9t7aKOp9+fE1+dWQcOHzGLjutC8CXDMHBwH2iPwS8tnYKFyOOF+eOajsP8f9n4l+xxYC2/fDtNv6O+ZiIiIiIiISAYUjCYiMsjcddddcY8/9alPUVNTk1bbb3zjG+8FowHcc889/OAHPyAUCvXqHEVERERERKTnkgWj+Z303u4LOZldlJ/p+oOZ7cL/TIMUbCEXtv5tQQr9FTiWcXDEEA71EBERkYHjiX1/JmYJ5FpSenqfjZttx3rZwHXtdV2vpQj5cr2D0Xrp+NzG1r+tn1xf8i8wyhahDAPcBkrgm4iIiIiIiIiIiIiISK/yBTMLRetQMApmfj2+zF8Oy1bDujth32swbC6M/ShsfxRe+jfY/waUzoR5P4T8uuT9F0+Axb+HZ6+EyC4IFsOsb8HwEzKfa93Z4M+F9m6fi428AGpWgC8EsUh8Xf15qedXdQLsXBlfPu4qGH4iOH5w2+Pr8usht9q7P38OFI9PvS02jpMYuuYPQV4NtGxLXH/u96HiOCieaA9Guzhm+o3sgT3PwY7HIVQBvhzIKYNDGyBQCLEwvPyFxPb158Pm30DZbGhc0/Ntk0Q7HlMwmoiIiIiIyACjYDQRkUHmiSeeiHt86aWXpt126tSpzJ49mzVrzBun4XCYv/3tbyxcuLBX5ygiIiIiIiI9F3WjnuU+/PgcX1p92MK3emv9wcweWtE7QQq2fW0Lp+uvwLGMt9cNE3Njab9GRURERI62qNvGE01/9qyrCtYwKX9mn43dW+G7g0uSZDQ6k9Fs+663gs5sbP3bg9EGRoBYpsFoma4vIiIiIiIiIiIiIiIiHnLKYPLn4stqzzRLrM0EsaWr7myo3Q7NmyGvDnz+ns9pyR/giQ9A2z5TNu5qmPBPps9Fv4YnL+gMTqs5E6b8a+p+l9wHz10N2x4wwW1jPwZTrwfHB6MvgfU/i19/0mfjvznpaKg7B976QXyZPw9GnGbuj70CttyX2K5sdudcQ+VQc7pZbKZcB1vvh0PrTSBeZbfr9/43yXZ/0E1ef2GLeW62PwprPmdeDx1GXwIb700MoRvsWhv7ewYiIiIiIiKSIQWjiYgMIo2Njaxbt+69x6WlpUyePDmjPhYuXPheMBrA888/r2A0ERERERGRLBJ12zzLg076//wUcIL48BMjvX9s0cXunWz7ItMghYhrCUazBKBlW1iGLfAh4AStr9FWN0KuZftERERE+tvLB55lf7v3P0IvKV3epwGv1hBcyzHjUOAmCUZz4oLR+ja4uMBXxKHYgbTXtx0nD5RzqpCTYYh2huuLiIiIiIiIiIiIiIhIhjIJRevg+KBg1JGPPWIZnLcLml6B/FGQW9FZV3cWvH8n7H4GCkZC0YT0AsxySmHRLyHWbubZtc38n0D+SBM6FiyChstg/NVHvh2ZmnYD7H4aGl8yj31BOPY2yCkxj6uXQagCIrvj2zVcmtk4jmP2o03DZbD+rsTyydea27FXwLqfJNZXnwr+XLOMPB9qz4bILhPW5j/8+d6Mr8IfxniPO/ULMOMr8Ms8iLV6r3Pac7BzlQkbe/3r9m1IV+5wCO848n6SaWvq2/5FRERERESk1ykYTSTb5NfB2ev7exaDX35df8+gT+zatSvu8fjx43Ey/FaMSZMmxT3euXPnEc9LREREREREek/UjXqW+5303+pzHIeQL5eW2KG01s8dIBfxHw22gDJbAIKNLUjB1r/tOeivsAzb/EsCZexp834vIRIL67UkIiIiWWtl04Oe5TlOiONKTurTsbMtBDcb2GPR4vXGvnNd13o8Xxwo5VBresFoUbfNGhKcN0COg0O+UIbrD4ztEhERERERERERERERkR7yBWHYHO+6YJEJT+tRv36PsgDM/KpZ+lNeNSx7CnathpbtULUECkd31vtDcNJf4Inz4cBb4MuB8Z+Cidf07jxGnu8djDbyAnNbc6Z3MNqYy+Mf+3Mgvza+LK/GPm71ySa0bs534PlPJNZXHg/l88ziuvZgtJIpZj8+dxVs+pX3OufvhZyyzsdt+8GfB4c2mr4LG8zrItYOe56Dtd+FPc9C82aItZlrRCd+1gTVOQ7seQHW/9T0013rPvs2i4iIiIiISFZSMJpItvEF4t8oE8lAY2Nj3OOSkpKM++jeZu/evUc0JxEREREREeldtgvtA05m3wyZ68tLOxjNFjYwFFkDyjIORvNe3xYs0FuBbL3FFjRR7E8WjNYClHnWiYiIiPSnrZENvN3yumfdvOIl5PsL+3T8bDvWyw72aDSHzi8F6o1gtKgbJUa7Z11xoIx3Wzd79J/43CR7vgZKgJjP8ZPjhGh1I2mtr3NFERERERERERERERERGZQCeTDiVHt92Qw4ay0c2mxCuQJ98HlgzRkw9Yvw+tfMY8cHs79tAsmA/8/encfHUR72H//O7C3r9CFfMsjGF+bwgc0NxpyOCwRCEiAHOZq7JKGE8kubNnZ+ISRpaBNISEgoDTQl9JcmpKQOkNJgm9MhmBsbbIMNvvAtWedqj/n9MdjSaueZ3ZVWK630eb9e85LmeeZ55pnZtfyMtPMdTf4LNyStZ+jY5EukKe/L3XcgIk1cKu16OLM8MkYae4b7fcN7pWf/SnLSmdtM+UD395Ylo4bLpHCNNP2z3sFo4dFSqDazLFTtfq2anlluB6Rxp7mLn6kflSZfLK3yeO0Sze6xWLZ/HwAAAACAIYMrOAAYRhwn8yYRy++Xi3kqRh8AAAAAgOJJOUnP8qBV2DMQCrmBvVxu4i+FiNX/4AV3e1Mwmnf/pteg0EC2YjEGowVrPcv92gAAAAy2xw4+bKxbXLtswPdfrPDd4cTJMxjNdO4KCZXzO881Qe9gX6/+O1PmfmJ2Rd7jGWyFXSsSjAYAAAAAAAAAAIARbNSUgQlFk9zQsbnflN63RzrvUemKfdKsL3XX2yHp9F9KS/4gzfuOtPj30lm/dUPP8jHvu1J0QmZ/C38sBcLuemyidPp9kh3u3qbxo9KMz2f2M+2T3v03ftT9Wn+WFBmXXX/UB/2D1foqbPoMoyO9tFzavabvfae6pMShvrcHAAAAABSksLslAQBD2ujRozPWm5ubC+6jd5u6Ou8bPgAAAAAAgyPhJDzLg1aooH4KCTvjZvduxtAKJ//gBcdxjCFh5mA07/LOQQobMx1vtSE4QhrZwR4AAGDo6ki16ZlDqz3rjokdq4bo1AEfg2muR7CsQY8Px0csU6hc/ufOby5fHfCe33r17xfGVk5h01E7ppZUfn9jNF0fAQAAAAAAAAAAACiS6DgpusS7zg5IEy90l0LVnSi95wVp10Nu2NfEi6TqWZnbHP1BadJ7pP3PSFXTpVFHZ/dz7FeknSulzj3dZdM+KdXMfneMIems+6U1l0iJJrds3FnS3G8VPuZ8hMwPd9WrN7lLxvY10ugFkh11g+5qTpAsW5pwgRQZLXXulcJ10ssrpC13S6m4G/Z22r+5561lszTmZKlicu6xpbqk9relQ6+721fNcvfVsVMa1ej+Lbz5NSnVJlVOl0JVbj0AAAAAjFAEowHAMDJuXObTEzZu3FhwH6+//nrGen19fb/GBAAAAAAorqQxGK2wX/VFCwg7Ixitm+lcJJ2kkk4ir4C6pJNQWmlD/97BAuawjMEJGzPtt8KuVNAKeb5P/YIiAAAABsvaQ6sUd7xDtM6uXVqSMZjmgPF0pxzHkTUQT8ke4hzHMdb1PBvGebLhNfXc1idErcYQ/OvVf2e63dhP1K7IezyDrZDrP64VAQAAAAAAAAAAgDIWGy9N+7j/NqEqacJ55vqaOdKFa6Utv3BDv+qXSI0fytym/kzp8p3S/rVSZJzbZqACv8I1hW2faJZ2ryqszZ7HpAcazfUVDVKqQ4rvdwPOWjcX1n9P486S5nzVfQ3ssJTukgIRKdEqBSskWZKTlKyg5KSk1jek2EQ3qK51izT6JDfgzUuixW0fqsx/PJ173Nc61SE1XC7VHtf3YwMAAACAHAhGA4BhpK6uTsccc4zeeOMNSVJTU5M2bNigY489Nu8+nnrqqYz1RYsWFXWMI/HmHQAAAAAopmTaFIyWO5CrJ1P4gpdoAdsOd37nLZ7uVDCQ+3XwC14wBdaZXoOE06WUk1LACuTcbzGZjiFiRxWxo0qmst+nfscNAAAwGBzH0WNND3vWVQVqNK/y9JKMI2J5zwHTSinpJBSywiUZx1DiyC8YrfsD8qZ5ciEBwn4BvtWmYDSPNqZ9BhRUyC7sem0wFXKtWMi2AAAAAAAAAAAAAIapyqnSCV/33yYYk8YvGfixhAoMRhsI7du7v+9PKJok7X1cWvN4//robfwSqe0td3FSbtnML0pdTVK03g0/2/oLqW6eNOkvpMkXSzv+W3r15sx+XvoHaeaXpOpZUstGKZ2UGi5120XrJceRvO4ldRwp1S5ZASnAw7gAAAAAmBGMBgDDzJlnnnkkGE2S7r33Xt100015td2wYYPWrVt3ZD0ajeqkk04q6vgikUjGejweL2r/AAAAADDcpZT0LC84GM0q4GZ3Q1DDSOR3439nukOjAlU5+4g75uAF0+vit9+udKdigVE591tMfsFoUTumtlRLdhuHYDQAADC0vN7+knZ3bfesO6PmwpKFWeUK3w3ZIy8YzU/Pj01HDMHChQSjmea2lmxVBqqNbRzHyXggUIdhn9FAeYWHEaINAAAAAAAAAAAAoGwFIlLFUVL724M9kqFr96rsso0/zC47+IK7vPotc18bb8tc33R7YWMZc7I0+VLJDrqBaWMWSvWLpTJ6+BgAAACAgUMwGgAMM9dcc43uueeeI+s/+tGPdO2112rChAk52/7t3/5txvpVV12VFWTWX7W1tRnru3btKmr/AAAAADDcJZ2EZ3mwwA8BmAIEvHCzeze/c2EKVOit0yekwfS65NrvUAlGi9oxY5Ce33EDAAAMhjVND3mWW7J1Zu2FJRtH1GduHnc6VCnvcK7hzJHjU9sdRmYORss/lDdX6K9pfAmnS2Gr++9opjC2crueKiQYu5DrSgAAAAAAAAAAAAAoiakfkV69ebBHgXzsf8Zdept8qRSulWqOk0LV0oFn3UC39m3SpL+QImOlQExqeK9Uf45kWZJll3z4AAAAAAYWwWgAMMyce+65mjdvnl544QVJUnNzs66++mo9+OCDisXMN158//vf1wMPPHBk3bIs/fVf/3XRxzdt2jSFw2F1dXVJklatWqVEIqFQiBR/AAAAAMhHIm0IRivwV32F3MAeKbMb+QeS33kzBSFkb2cOaTD17xdOMBiBY6Z9Ruyo8f1SSDgFAADAQDuY2KeXWj0+XCvpxMqTNTo0rmRj8Z9jjtQ5lDkYzcojGK2QObJp26gd870W6kx3KGxHMta9+6nIeyxDQUHXigWEqAEAAAAAAAAAAABASZzwf6VEq7TxtsEeCfpqx+/Mddv/q/v7jT/s/j5UK4XrpMho92vG0rusx3qo2g1WAwAAADDkEIwGAEPMO++8o61bt/apbWNjoyTprrvu0mmnnXYkfGz16tU666yzdPvtt+uUU07JaLNv3z4tX75cP/7xjzPKb7zxRp144ol9GoefcDisM844Q6tWrZIkvf3227r00kv1uc99TjNmzFBFRebNIRMmTFA0yk0VAAAAAHBYSknP8qBdWOB0tICwM4LRuoWtiCxZcjyCGvINrTBtZ8lWyAp71vm9BnGn9GEZpmOI2DFjkMLIDfUAAABD0RPNf5CjtGfd4tr3lHQsvnO9ETqHSjvmYLQeuWhFCeU1BRy7ob+5gpFrj6x3pts9tyvk2mso4FoRAAAAAAAAAAAAQFmzA9LCW6UFt0g7Vkr7nnbDtFo2DfbIMJASTe7StqWwdpb9bqiaR6BaVshar/VgJaFqAAAAwAAiGA0Ahpirr766z22dd28SWbBggX70ox/pc5/7nNJp96aedevW6dRTT9X06dN13HHHKRqNatu2bXrmmWeUTGbeVH/BBRfom9/8Zt8PIofrr7/+SDCaJD388MN6+OGHPbddtWqVzjnnnAEbCwAAAACUm2TaEIxmFfarPr8b/Puz7XBnWZYidlSdHuEJXmVeTCENUTsqy/ABiYgdMfaX736LJekkjAF9ESvqE05R2nECAACYJJ2Enmx6xLNufLhBsyqK/+AYPyErLEu2Z1Bbqed6Q4c5GM3qkYxmmnt2OXGlnZRsK5BzT8bQXytXMFpmO9NrVW7BaFwrAgAAAAAAAAAAABgW7JA05XJ3OeZT0spZ3tud9ENp+mek302TOnZ4bzN+idS6RWrbOmDDxSBx0lLXAXcplBXMDlPLK2CtTgpUEKoGAAAA5EAwGgAMU5/+9KdVV1enT3ziE2ptbT1SvnnzZm3evNnY7pOf/KTuuOMOhUKhARvbxRdfrJtuuknLly9XKpUasP0AAAAAwHCUdBKe5UGrsOu4Qm7OL7cb+QdaxI55hh7kG/xl2s4U6iBJthVQyAor4XT1eb/FYgqOkNxgBFM4AsFoAABgqHi+5WkdSjV51p1du9QYVjtQusN327Pq/OZew5mTbzCa5RdcFlcsUJFzX3HHPD/3uxbqfU3g9fod7qecFBaMVl7HBgAAAAAAAAAAAGCEGnWUZEekdDy7bsJ5UiAszfyC9OLXvNuf96jkONILX5U23ialOqW6+dIp/yKNXtC93S8NnzeITZQu39m9vv4fpRf+j/e2l213A7feus/dX88xh+uksadJHTul8BgpEJV2/t7d3unxwNvq2W5Z8yvZ/QdiUorPcxaFk5Tie92lUHY4d6CaKWQtwEPMAAAAMDIQjAYAw9j73/9+nX322br55pt17733at++fZ7bhUIhLVmyRMuXL9fpp59ekrF97Wtf0+WXX65f/OIXeuqpp7Rx40Y1Nzero4NfqgEAAACAH1MwWsAq7Fd9hd3szh+o44m2AAAgAElEQVTQezKFL3iFpRWyXa7zHLVjSqSGejBazCcYbWSGegAAgKHnsaaHPMsjVlSnVi8p8Wje3bcxGI2/m/jxCy6LO52KKY9gNMM8NWJHFbRCCiiolJJZ9XEns52pn5idewxDSSFhZ4RoAwAAAAAAAAAAACgLgag05X1u2FhPdfPcEDFJmnSxdzDajM+7Xy1Lmv9d6YSvS+kuKVQjWXbmtpGxUtzjHs5jPpO5PuECSR7BaMEqN0TNsqXZ17lLPtIp96sdyK7r3CPteUyqminVHi81b5AePN67n+rZ0qHXvOtq5kjLXpGeu156/Qf5jQtm6S6pc7e7FCoQLTBQrcd6IFz8YwEAAAAGCMFoADDItm7dOqD919fX6wc/+IH++Z//WevWrdNrr72mvXv3Kh6Pa+zYsWpoaNCZZ56pqqqqgvtesWKFVqxY0eexzZkzR9/+9rf73B4AAAAARqKkk31DviQFrVBB/XCze9+Zzke+wV/G4AVD4NqRejuqllRzn/dbLH4BcBE72u/zAwAAMJC2d27RGx0bPOtOrj5HscCoEo/IZZoLjtQ5lCPHWGep+wnbfuHC+YbKmc7x4XltxI6qPd2as12HR7Cd2768rqcKuf4jRBsAAAAAAAAAAABA2Vj4I6ljp7RnjbtePUs68z/dwDNJqjtRmvYJ6c2fd7eJTZZmfyWzn+AoSYbPFjR+xDs0rPHqzPW6eVLVDKllU2b50Vdlh63lwysQ7bBovXTU+7vXYxPM2055n/Tqzd51jR91z9VJ33eD3faskZykNOtL0qijpWc+L22+w9z3pW9KO/5bWvdl7/rj/s4Nldv8M3MfcKU6pY5d7lKoQIUbkBbpFZ4W8ijLCFirlezCPqsOAAAA9BfBaAAwQti2rUWLFmnRokWDPRQAAAAAQD8knYRneWgAg9G42T2T6XzEnTyDFxxDMFqO12SoBI757S9qx4yhHn6BagAAAKWypulBY93ZdUtLOJJM5jnmyAxGk08wmoocjGaapx7uO2rHDMFoHb7rh5Vb0HS+14qWLIWtyACPBgAAAAAAAAAAAACKJDJaOn+11LpVSnVI1bO7Q9EOO+UuaeJF0u7VUmWjGwZWMSn/fcy+XtqxUmrd3F026zo3hK0ny5LO/p205mKp9Q23bOJSacEthR9XocJ1UqhGSmQ/qFdT3iftXiXtezq7rme42uRl7tLT1I/4B6ONapQmnO9dV3GUNPdb7vdjT5fWftx7u6kfk7bc41034QJ3jPEDUtfBXkuPMq/jHklS7VJHu9Sxo/C2wcpeYWl5BqyFav3D+wAAAAADgtEAAAAAAACAMmIKRgsWGoxmCK/y3LbMbuQfaKbzkW9AmWm7XAF0pv2WOnDMFPhgyVLICpvPz4gN9QAAAENFe6pVfz70mGfd9NgcTY40lnZAPZjCs0ZquKxvLJrVMxjNfK3S2e/5eezdr/kF/3am2z23K79gtPyuFSN2NOO1AAAAAAAAAAAAAICyUNlorrMs6egr3aUvRk2RLlorbfuN1LpFql/sBq15qZktXbJJOrTBDSqrmNy3fRbKst0AsTfuyiyvminVLZBmf0V64gPK+Mv9lCukqun+/Y49XQpWScmW7Lrx57nntmaONO4sae/jmfUzr+3+flSjeR+1J5jrZn9FmmQ41z2lU1KiyT887fDSO2TN69hGkmSru7S/XXjbUE1mWFrvgDWvkLXwaClU7b5nAQAAMCIRjAYAAAAAAACUEVMwWsAq7Fd9hdycH7YiBfU93PU3tMIULJbrNelvIFuxmPYXtiKyLdt4HKbjBgAAKJW1zY+qy4l71p1du8yzvFSGylxvqHAcv2i0bgEroJAVVsLpyqrLP7jYf35uCgrr3b/peqDsgtHyDNEuJGwbAAAAAAAAAAAAAEaMyBhp+mfy2/ZwWFipLfi+1LZNeud/3PXKadLZD7jjOeoK9/vNP5Xie6WJS6Xj/z53n5YlvXeL9JuxmeV2SDr2b7rXF/9O+vPnpR2/d4Owpn9WOvaG7vqxp7ghWonmzH4qjpKqZpj3H6rKPUZJsgPuaxQZk9/2PaUTUlfvUDWPQLXeZfEDUsr7YWsjRqLZXdq2FtjQksK1PoFqPgFrwSr3fQkAAICyRTAaAAAAAAAAUEaSTtKzPGiFCurHdHN/1nZWVDZP2sqQbzCCiWm7XK+JKXgg30C2Yok7pvEXFhwBAABQSmknrceaHvasqw7UaV7VKSUeUSbzHGqkhsuag9FsZV6fROyoEimvYLT8zp1pPn34NTGH1mW2MwejVeQ1jqEi3yA303kBAAAAAAAAAAAAAAxxoSrp3D+44WiJQ1LNsVLPzwo3XOIuhYqMka5KSK/9k7TrD1J0ohsSN35x9zbhWumM+yQnnbnPwwJRac6N0otfyyw//mvSmJO992sFpJrjCh9voeyQFB3nLoVKdeUIVPMJWEuN5M/fOt3no1BWwH2/hXqEpfkFqvUsC44iVA0AAGAIIBgNAAAAAAAAKCNJJ+FZPmDBaNzsnsV0TvINKMsVvGDe79AIHMsdHDE0AtwAAAB6er39Je1J7PSsO7P2woLn08U2VOZ6Q4U5Fi1bxI6pNXUoq7zfwcWW//y2dzvzPLm8rqnyv1bMbzsAAAAAAAAAAAAAwBA1akrx+7SD0pz/4y5+/B7afNzfSaMapbd/LQUi0tFXSw2XunXjzpL2Pp65/cSLpHBNv4Y94AJhKTbeXQqV6nSDweI+4WmmsnT2g+ZGDCclxfe7S2uBbe2QFKp1A9VCdVLNbGn656WxhnC+QqTi0r6npMhYN9CPB5gDAAAYEYwGAAAAAAAAlJGkk/QsD1qF/aov35vzo2V2E38pmM5JPM/gL2PwQo5zbdyvU9rAMdP4D4/PFJCQcLqUdlKyrcCAjQ0AAMBkTdODnuW2bJ1Zc2GJR5ONcNnezNFoljKfyHs4wKy3vOfnjv/8PGKZ5v/d7ZJOwhhiHSuza6p8rxXLLfANAAAAAAAAAAAAAFBGGj/kLr2d8Utp9TKp6WV3ffQi6ZR/Le3YSi0QlWIT3aUQjiOlOrzD07JC1jy2MXxmfURIJ6T4XneRpP1rpTfvdt9v486QxpwiVc+UAjEpOEoKVrpf7bBkWeZ+3/qV9Nx1Useu7rKTbpUmXCDVHJvf2BIt0p7H3PC2qunS3qeldFxqfUOKTpQmLXXLAQAAhgGC0QAAAAAAAIAyYrrZPmiFCuonYAUUssJKOP5PAjMFNIxkpnNiCgzL2s4UvGAIdMi931IHo3nv7/D4/ML04um4YoGKARkXAACAyYHEXr3c+qxn3dzKU1UbGlPiEWUzh+/mN8ccbhyfYDT1DkbrZ6hcX+e3Pfv321e5BYjlG45NiDYAAAAAAAAAAAAAoOQqGqT3vCgdet0Nhqqc5h9ENZJZlhSscJeKhsLaOo6UbM0OS+sdoNY7YC1xOFQtPTDHNNgO/NldTKxgZlDaka+jpP3PuOevt3VfNvcXGSPFGqT4HindJcX35x7jOkkTzpfmfls6sE5q3ybVnihN/gt3HJL7+qbj0rb/csPfxp4qjVmU2U/63XsW7MLuUQAAACgmgtEAAAAAAACAMpIyPH0raBX+q76IHVMilSsYjZvdezOdk/yDFwzBaDlC6Ez7LXVYRq7x+71n4ukOgtEAAEDJPd70sBx5f+Bycd17SjwabxHLMNczhOoOd45jDkbr/XlmY6hcHufOcRzj/PZwv8aA4h79d6bM1wIxu7zmvyErLEtWjnA6QrQBAAAAAAAAAAAAAIPEsqSa2YM9iuHNsqRQlbuMOqqwtk5aSrSYw9RMZfEDUqJZyvF5hSHNSbrHkGguTn/x/fmFofX2zv+6S2+BmBQZJ7W/7d3uwrXS/j9Lr39fan3TLas5Tjr2b6SjPuAGEsqRaua43zdvkNKdUuUxbvjaroelZJtUv1iqOqbwcQMAAPRCMBoAAAAAAABQRpJOwrM8aBX+NKaIHVVryv8Pr9zsni1iGYIR8gwoixsC1HKF0Jlei3wD2YrFPP53g9EM50caucEeAABg8CTSCT3Z7PFBP0kTw1M0I3Z8iUfkzRi+VeIQ3KHCL5TLUmYyWn/OXcLpMu4rkisYrce82G9OXm5h05ZlKWJHc15ncK0IAAAAAAAAAAAAAACyWLYUrnEXNRbW1km7oWKHg9JyBqr1WE8cGoijGV5SHeZQNEn6n1Ozy5pfldZ+3F0KMXqhVDFZsoLue6JqphSuk2Z8QerYKb34Nent/+duG6yUjvs7KTrBfS2j46TJl0qpTskKSJExUvN6qe0tafQCKdUubf6Z+5pH6qX6s6Sxp0nBCslxsp+6CAAAyhbBaAAAAAAAAEAZSRiD0Qr/VZ9fgNVh0TK7ib8UTOfEFBiW73a5ggXM+y1tWIZpf93BEeb3TL7nCAAAoFiea3nSGAZ8du17ZA2RD8LlE741svg9/bd3MJr3/DOfAGH/QDP3Ncln/u/3OkXtipzjGGoidizn+eNaEQAAAAAAAAAAAAAAFJVlu+FZ4TqpclphbdNJN1Std6Bawitkrdd6snVgjmckO/Csu/T2/A3ZZclW6cW/K96+Q7Xueygy+t33U6+vkdHeZYEKQtUAABhiCEYDAAAAAAAAykjSGIwWKrivfG5kzxXWNRIZgxGcTqWdtGzLNrZ1HMcYLJbr9ehP4EMxxR1DMJp1OBgtYmxb6rECAAA81vSQZ3nEiurk6nNKOxgfBKNlyj8Wze/c5Q4Q9ju/h/vNp//OdLvnNgEFFbILv1YbbPmEaHOtCAAAAAAAAAAAAAAAhgw7KEXGuEuh0olewWkHpd2rpA3fK/44MfASTe7StqWwdnaoV2Da6DwD1mrdtgAAoOgIRgMAAAAAAADKSMpJepb3JRgtnxvZ8wlPG2n8zluXE1fUMp+zpJNQWumC+/Wrj6c75TiOrBI9ocoUHnF4fLYVUMgKK+F0ebTNHU4BAABQLG93vqEtna971p1Ss0SxQEWJR2RmCsEt9VxvqHAKiEYzBhfnESrnNz893G9+wWje+4oGyvN6Kp9rxYjPdQ8AAAAAAAAAAAAAAEDZsENStN5dDpv0HqnhMmndddKBPw/e2FA66YTUudtdChWsMoeo+QWrBaukEfa5MAAACkEwGgAAAAAAAFAm0k7KGKrVl2C0fELP8rkhfqQxhVZIbviC33n1C17Ida5NgWtppZR0EgpZYd/2xWI6hp7jj9oxJVIEowEAgMG1pulBY93Zte8p4UhyM80x00qXdK43dJiD0axewWj5BJeZmALNevbrF1qXq59yDZrmWhEAAAAAAAAAAAAAAIx4406Xlj4jtWyW9r/71Q5LkbFSxRSp7kQp2SYlW92viVYp1eZdlmiVNt8x2EeEgZJscZf2twtrZwXMoWm5AtYCkYE5luEgnZT2PSUdeF6qmSONPVUKVkrxvVKoJvvcOWnJst1/px27pIpJUnCUuW/73ZiedEpS2g1XBAAMCILRAAAAAAAAgDKRdJLGuqBV+K/68rmRPWII4xrJ/M5bZ7pDNT5tfYMXcpxrv/3G050K2aUJyzAdQ8/xReyoWlLNWdsQjAYAAEqlPdWqZw897lk3I3a8JkWOKvGI/EWsoTHXGyrMsWiS1espqaZzF/eZex/ZxvGenwYUPBI+bQxGczqVdtKyLds8Ry7T6ym/MOhCtgEAAAAAAAAAAAAAACh7VdPdpb+6Dkpv/7/s8tN/KbVskl5e7t1u4e3SqKPcMKxHzvTeZuJF0mm/kLY/ID3z6ez6iilS7Vxp58q+jx/F56Sk+D53KVSgwiNEzSdY7XB5qMYNARuuWt6QnvigdPA573orIMUmSe3b/PupniUd8xk3IK1jl/TO/0iHXpe6DnhvHxkjTVwqVU6T9j/rBihOeZ/UcGn3+U51Sa98Q9rzuBSulWZ8Xpr07gNe0ynJSbj76Njlth+9wG3rOFLbFrcuFZcOrXdfz4bLpNjEvp0nACgTBKMBAAAAAAAAZSLpJIx1h2/aL0R+N7vnDk8baaI+5y1X8Ffc8QlGy3GufffrdKhS1b7ti8V0jD3HZ3pv+QXDAQAAFNPTzX9UwunyrFtct6zEo8ktmiN8t1RzvSHD8Y5Gs2RllfkFl+ViCk/LmNv6hNZ1OXFFrZg60+2e9bFARc4xDEV+1x6FbAMAAAAAAAAAAAAAAIB3Tf+MtO0/JSfdXRabLE25XNq92txu2selYIXbLjbRDU3qrfZEKTpOmv4p6ZhPukFrbW9LdXOlaH33do4jHXjWDeSqOV4KVUrxA9LeJ92wpdp50thTpa33SnvWuPvc9uvMfY09TQpWuWFxiWZp1x+kZJuU4nPiJZVqlzrapY4dBTa03FAur9C0XAFrgZhkZX9+a8hItEqrlkqtm83bOKncoWiSG0L2/Ffy33d8v/vvpqetv3C/BiulUFX2v90d/52739gkqWOnd91LX5fOfkByklKyQxp3hiTH3ZfjSJ17pJaNUvVs9+dDvnY+JL349264XN0CaeFt7/YtN3iu/W0pOkGKTXDfFyZdze5YTEF8Tto9z21vuT9XwjX5jxHAiEEwGgAAAAAAAFAmkk7SWDdQwWjc7J7N77zlCv7yC07Lda79gtNKGThmOoZIHuERpuAJAACAYko7aT3W9JBnXU1wtOZWnlziEeXmN8f0C9cdrhx5B6OpkGC0HKHFftv0nHv7ByN3KGrHjPPxfK65hqJ8ArIJ0QYAAAAAAAAAAAAAACjAhHOls34rvfotqWWzGzS08EdSICrVL3bDxpItmW3GneWGokluuNCiO6THL88MV7PD0tSPda9btlQ9y116syxpzKLMsshoqeESSZd0l838grscluqS7KA54OiwfWul3Y9KrVul2uOlUVOldFx64gPmNstelg6+KMX3SVv+zQ1j6qtQrXTsV6TIOKnrgNR1sPtrvOf6ATfMbURy3j0PBwtvakd6BKb1Ck3zC1gL17rvn4H29q/8Q9EGS7LVXfrCFIomuf9mHjnDu86yM39OTL7E/fkRqpLsd+89CkSldEra+4S072k38Gzbb6XOd7rbHXxOeuTMvo29p+pjpeh4ac9q8zbRCdLs66TwGCkQkYKjpPadUmSMNP5cN4Rx/5/c91X92W7g3Fv3Sa1bpNEnSXP+xm0DYFghGA0AAAAAAAAoE0knYawLWoX/qi+/m93L80b+gRSwAgpZYSWcrqy6XOELpnpbds5wO9+wjDxCH4qlP+ERcad04wQAACPXhvYXtDfxjmfdWTUXKdCHufNA85ubl3KuN9R5PW/UdO7yCQ82B5pFPb/3al8jqTPd7llfrkHTBKMBAAAAAAAAAAAAAAAMgIZL3aW3YEya/13pzz3CyIKV0tybstsv+YP07JekQ6+54WPzvifVHjew4w6E89tu7Knukq/Ri9xjqD3eXZ/9ZTcIqWWjG6QUGy/9Z62UaM5uO+YU6aK17ved+6R0l1QxKf99p7q6A8Jyhaj1rvN54P2wlo67oVmd3p/N8xWqNoSo+QWr1bn/DiyvT415OPh84eMarnqGoknSjv92l8FyaIO7+Ol8R3rhq/n192qv9Z0rpTf/VTr3Ee9QSABla+h94hsAAAAAAACAJ79gtL6EO+RzI3u53sg/0CJ2VImUVzCaf/iCX6iYleMPdiErLEu2HKWz6vIJfSiGpJNQSt5/yI1YucMjSjVOAAAwsq05+KBnua2Azqi9oMSjyY/fXG8kBqM5cgw12XNm0zVL0kko5SR9r5VM8/eeocT5hNaZXqNyvZ7KJyC7XI8NAAAAAAAAAAAAAABgSJrxeanmeDe8KFQtHfUB74CfCedLF6+X0knJLpO4kPHnSrsfzS6f9cXssopJmQFnM6+VXv1W9nYzPt/9fXRs4WMKhN3gtdj4wto5jpRsywxMix/IL2AtcajwcQ4XiUPu0ra1sHZWMDsszRSm1vTSgAwdZaJ9m7RytjT1Y1JwlBsON+4MafRJUrhWik7IP2QPwJBRJjMdAAAAAAAAAEmfJwuFrFDB/eVzI3s+4WkjUcSOqTWV/YfJXKEVpmCwfIIHLMtSxI6qM91e8H6LxS/YrOd7xfS+GYmhHgAAoLT2de3Wq23rPOvmVZ2qmuDoEo8oP0NhrjeUmILRLI9gtFzBZRWBSt96L5lzW/Nc/XD7Do/XTZKidoWx7VDWM/TYuA3XigAAAAAAAAAAAAAAAMVVf5a75KNcQtEkN6iodzBaqEZquDx322M+Jb1xp9S5p7usepYbHDcYLEsKVbrLqKMKa5tOSl1NPiFqPgFr6fjAHM9Q5yTd177n6w/42XJP9/eb78isO+dBaeJSAtKAMlJGsx0AAAAAAABgZEs6CWNdsA/BaPnd7J47sGskMp07v+AwSYr3IxhNcsPsvMMy/PdbLH6hHD2D9kzHMxJDPQAAQGk93vywMVRrce2yEo+mMKZgtFxzzJHE6/NIfgFdnemOfgejBayAQlZYCafLs3+3H+/XKJ8w6qEon9CziFWexwYAAAAAAAAAAAAAAIASm/pRqWO7tP67UuKQG2x2+i/dcLFcKhulC56UNtwiNb8qjV4kHf/3UrAMH1hoB6XoWHcpVLIjMzAt7hOidmT9gBvEZvg8HTDirF4mHfOX0sIfS4HwYI8GQB4IRgMAAAAAAADKRLGD0fK5ST+fG+JHItO5yxVQlk/wgh/TdqUKHPPbTySvYDRCPQAAwMBJpLv0VPP/etZNCh+l6bE5JR5RYaJ2TM0e5SNxDuU4aUNNdjKa33VNrnmyKXSud58RO6pEKjsY7XD/XoF2ucY2lOV3rViexwYAAAAAAAAAAAAAAIASsyzpuL+Tjr3RDe2KjiusfdV06eQ7BmZs5SIYk4KTpYrJhbVz0lKi2SM0LY+AtZT3Z6LKzqKfSH/+vHdd9SzpL9ZLlu2upxPSyyuk12+VUh1S/RJp3nekPyzybj/3ZmnOV6WWTdKh16Snr3HPd19M/ZjUcJm0c6W080E3RDDZJgWiUt0CKVwrJVqkvY/3rX+43rjLfV2nfniwRwIgDwSjAQAAAAAAAGXCLxgtYBX+q758wrjK9Ub+gWY6d6ZghcPijiEYzco3GM0UODYUgtGint/n2x4AAKC/1rU8obZUi2fd2XXLZFnZoVpDiWlOOBLnUI7hKaWWRzCaX0BXrnNnDC62egejxdSaOuTR3p3/5xuwVi5yhZ7ZCijYh2tQAAAAAAAAAAAAAAAAjGB2sPBQNPSPZUvhOnepnFZY21Q8OyzNFKLWu8xJDczx9MXEC6VgpZRsza6bfEl3KJok2SFp7rekE2+SUp1uIJ0k1S+W9qzJbj/l/W7wX/VMdxmzSHrH++GuOuUu6U9/6V13ZYcbgCZJUy7zP57OPdJz10tb73XXq2dLoVp37O3bpcar3fJEq7TxNv++vDRcLm3/rbl+yvukjl3SvqcL7/sw0/ksle33E4wGlAk+qQoAAAAAAACUiaST9Cy3FZDd848xecp1s7u7TX6BXSONKeDAFHx2pN4QmJDveTaFZeQKZCsW0/gtWQpbkSPr5mC00owTAACMTI81PeRZHrUrdHL14hKPpnDGOVSOOeZw5B2L5q3nPLS3XPNPY3Bxr9fCHFp3OBjNu5+oXeG7/6Eq1/VJxI4O+aBBAAAAAAAAAAAAAAAAAP0QiEixCe5SCMeRki3mMDW/gLWk94NR+2z8uW4g3NSPSpt+klkXqJBm/JV3O8vqDkWTpGNvkPY+kRn4NuX9UvWMzHaTLzUHo02+WLIC2aFx9Wd3h6LlI1ovnf7v7uI47lhN5n9X2ni7G2LWsVMK1UgtG6XWN723P365dOIK6eGF0oF13tuc9Rsp2SH9yuezcSfdJq37kmH8E6TzVkn3+dwDFaqREs3edXULpOmfkbb9RnrnEXMffkzHD2DIIRgNAAAAAAAAKBNJJ+FZHrJCfeovVzBa0Aoq2Me+h7u+Bn/FjYEJuUPqfPfrlCZwzBTA1jsYoa/BcQAAAH31Vudmbe3c5Fl3avWSvOdbg8k0Px+Z4bLe0WiWsj/EZVu2IlbUc67Z1+Di3u+XXKF1nel2z/p8wqiHolz/Xsrh3xMAAAAAAAAAAAAAAACAQWBZUqjaXUYdXVjbdELqasoMSzOFqGWUHXDb9jT2dOn0e93vF/xActLS1n+X0klp3BnSop9IlY35jWvyxdKSh6VNP5U6d0sTL5Lm3Ji9XcNl0rovK+vzb0d/yA00m329tOF73eWBqBtG1le5Hm4ZiErHfiWzrH2n9F+TvbcfNcX9OvNaae0nsusnLnW/Bn0+Pzbjr6RZXzQHox31fv9xW7Z00q3S2o9715+zUopNdI+tr8Fo8X19aweg5AhGAwAAAAAAAMpE0kl6lvc1vMx0c/+Reoub3U3MoRW5ghe863O9FoeZAghMgWXFZhy/FfVdP6xU4wQAACPPmoMPGuvOrn1PCUfSd8Zw2RxzzOHIKSAYTXLn0/GURzBazuBic/BvT36vTdJJGEOsY2UaIJbzWjHP6xcAAAAAAAAAAAAAAAAAyJsdkqLj3KUQjiOl2rtD02ITM/sIhKWT75BOuk2yg274VqEmnO8ufkZNcYPINtzSXRatl477qvv9vO9KdfOlnb+XIuOkqddIo+cXPpb+iI6XImOk+P7susPH13CZFLxWSrZl1k/9WPf345dIu1dl9zH1o+7XY/5SeuMuj/pr/McXHi1NOE+SpayAuegEd/yHtzM5+U7pmU+b63uH6AEYsvrw0xoAAAAAAADAYDDdbB+w+vb8A9PN/Ydxs7uZKRgtV/CXqd7UX/Z23q9JqcIy4o4p2C3Wa31wxwkAAEaW1tQhrWt5wrNuVsWJmhBpKPGI+oY5VN+Zzl1nn4OL85vfdqY7fK8B8p3nDzW5g9HK87gAAAAAAAAAAAAAAAAADEOWJQVHSRUNUt2J5mC1QLhvoWiFmPeP0tkPSDOvleZ+W7roGan2hO5xNl4tnf7v0knfL30omkVmrdIAACAASURBVCTZgcyAs8PGnyuNOtr9PlwrnfuoVDndXQ9Vu8d19JXd28+8NruPMadKY052v591XXZ42eRLpdEL3e8b3us9vhO/6b6Oky/Orpvxue7XL1jh3V5yg/GqZ5vru5rMdQCGlL7dMQkAAAAAAACg5FJO0rM82MdgtJAVliVLTu+nqLyLm93Non0MrTAHL+QXQmcKs4vnCGQrlnzHbxpn0kko5ST7HOYHAADg5enmPyrhdHnWLa5dVuLR9J1f+NZI4zje1yiW4UNp5lC5vgYXR3utm+bhnb77yBVGPVTluhY0XQ8BAAAAAAAAAAAAAAAAwIhmWVLDpe4yVM37rpTukrb8m5SKS5PeI53688xtxp4sXbpJ6tgtRca6gWo9TXmfdOavpNdvk9p3SBPOlxbc4h6/JNUeL134tPTGnVLrFql+sTTj8931R10pbX8gs087JDVc5n5/xn9I677kbhOqlqZ+XDr+a93bBqvMxxetl475tPT8V7zr03GpdavU9LK0f60UHiNNvUaKjpWctOQ42ccLYFBw9xkAAAAAAABQJhJOwrM8aIX61J9t2QpbEcUd77Crcr2JvxTMwQj+wQum+oiVX7CAXyBDKRjHn2dwhNtHpyoClUUdFwAAGLnSTkqPNT3sWVcbHKMTKheVeER9Zw73Ks1cbygxhTdbhu37Ok/ub/BvPN2hjpRfMJrPUymHsIjlfy1IiDYAAAAAAAAAAAAAAAAAlCk7KC38obTgB5KTlAIR87ax8ea6oz7gLibVM6X53/OuO/oqqWWT9OrNblBZZKx0xn1SbIJbH6yQTvkX6eQ7u8PUeqqb6wamJQ5llodHS7VzpYoGczCaJP1uauZ6723Do6WKKVL92e6+Nv5Yan7FDZSb9WVpwffdcXXuk+L7pMho6dBGN5Qt1S4l26TRC/3PLYCcCEYDAAAAAAAAykTSGIzW91/zRe2Y4qn8wgDQzRyMkCN4wRBCl++5HuywDHMwWqzXuvl4OtMdBKMBAICiebXtee1P7PasO6v2IgWs8nlqnymMKlf47sjiHY1mCurq9Dl3aSelLifuWdd7vm+a33amO3xfn3INmw5aQdkKKK2UZ32+wc4AAAAAAAAAAAAAAAAAgCHKDkgapM9YWpZ0wtelOTdKbW9JVTMky/bezksgIs34grT+O5nlM6+VAmEpNlE69xHp0Qv6Nr6uA+7S9GJ23eu3uku+Kqa4gWqxiVKkXho1RWr8iNS6xQ2Fa3ivW1eIdEJ69ovSsX8jVR1TWFugjBCMBgBDXHt7u5577jlt2rRJ+/btU2dnp2KxmMaPH6+ZM2dq/vz5CofDgz3MsnXOOedozZo1R9YdxxmQ/axevVpLliw5sr58+XKtWLFiQPYFAAAAYPhKpk3BaKE+9xmxY1LqoLkOnvyCEfyYAszyDUzoS+BDMZnG3/t8+L13ShXiBgAARobHmh70LA8oqDNqLizxaPrHGIJrCNcdzhx5/73GMgWjGYK6/Oae8bR3KJqUf/BvPN2pznS7Z11AwX5dqw0my7IUtWNqT7d61nOtCAAAAAAAAAAAAAAAAADot0BUqp7Vt7Zzb5Yi46S3/kOyQ9LRV0ozv9hdP/a04oyxv9q3uV87ezwE+I27ur//8+f73vfmn0on3SbN/CvvYDmgzBGMBgBDUCqV0q9+9Sv9/Oc/16pVq5RMJo3bRqNRXXTRRfrUpz6liy++uISjBAAAAACUWkre14f9C0bzvsE/V91I5xdQ5jiOLMNTaeKGALN8gwX6EvhQTPkHo5nfOwSjAQCAYtnbtUvr2573rJtfdZqqg7UlHlH/mOaEI3P+VFgwmilo2DcYzSdwrve8228ebgopjtox43VBOYjYUZ9gNK4VAQAAAAAAAAAAAAAAAACDyLKkY693Fy+BCqlymtT6ZmnHVWrrviRt+4106r+6xwsMI8T9AcAQ8+ijj2rOnDn60Ic+pEceecQ3FE2SOjs79cADD+iSSy7RokWL9Nxzz5VopIVpbGyUZVmyLEuNjY2DPRwAAAAAKEtJJ+FZHrT7E4xmDuQyhQvAHIyQVkpJx/ta3nGcvIPFTMyBD95hDMVmCo+IWJnjClsRcx8lGisAABj+Hm/6gxxDgNbi2mUlHk3/meaEI3H+5P2qSoZcNPO5c8znzu+89p53G0PrnA5zMFqgvK+n/K4HuVYEAAAAAAAAAAAAAAAAAAxpliU1fmSwR1Eae9ZIvz9B2vHgYI8EKCqC0QBgCPnGN76h888/Xxs3bswotyxLc+bM0YUXXqirr75a559/vmbOnJnV/tlnn9Vpp52mO++8s1RDBgAAAACUUCJtCEZTsM99+gVy5RvWNRL5BQGYAhYSTpfSSnvW5XuuzYEPnUo73n0Xkyn0ofe4bMs2hseZwtUAAAAK0ZWO6+nmP3rWNUQaNS02u8Qj6j/TXK8z3SnHMUaFDVPex2sZktH6EirnV9e7P2MwWrrTPEe2yjs8jGtFAAAAAAAAAAAAAAAAAEBZm3OjVLdgsEdRGoGINHr+YI8CKKq+3zEJACiq6667TrfeemtGWVVVlf72b/9WH/7wh3XUUUdltdm8ebPuvvtu3XLLLYrH45Kkrq4ufeYzn1FbW5uuu+66kowdAAAAAFAaSSfpWR60Q33u0y/gy69upPMLAog7HapUdXZ52hwIlm+wgN9r0uXEFR3g8AXTMXiNK2LHFE9lb+8XQAEAAJCvdS1PqC3d4ll3du0yWZZ3gNZQZprrOUor4XQpbEVKPKLBkzYGwZmC0czBZSadPnXhrGA0U/BapzrT7Z51sUCFsf9y4B+MxrUiAAAAAAAAAAAAAAAAAGCIC46SzntUWv9tac/jUmySVL9YClVL8X1S1wGp9U0pXCvtXi2lu6TWNwZ71H1z0g+l2MTBHgVQVASjAcAQcM8992SFop155pm677771NDQYGw3ffp03XTTTbrmmmt0xRVX6JVXXjlS95WvfEXz5s3TOeecM1DDHhZWr1492EMAAAAAgLylTMFoVt9/zed7s7uVX1jXSOQXUNZpCP7yC2XIN4TOL4Agnu4Y8DA7U6iZ1/soYkelVPa2fgEUAAAA+XAcR2sOPuhZF7MrtKj67BKPqDh8w3fTnQrbIycYTfIORjPF3ZnOnWluLpnn5yErrIAVyCgzzbMTTpfa062GMZV3eJjf+KN5BjsDAAAAAAAAAAAAAAAAADCowjXSvO8U3s5xpPZt0tpPSodekyJjpOh46Z1Hij/G/mp4r9T4ocEeBVB09mAPAABGuo0bN+raa6/NKDv99NP10EMP+Yai9TRz5kz98Y9/1LHHHnukLJ1O6yMf+Yj27dtX1PECAAAAAAZP0kl4lgetUJ/79AvSKvcb+QeSf0CZd8BC3DGHMkSsfIPR/MMyBpppH8ZgNM8+zOcBAAAgH1s7N+ntuPcT+U6rOc93zjSU+c0JSzHXG0ocYzCadzSa6brG77yZQ3+z+/J7TzUnDxY0pnLh937kWhEAAAAAAAAAAAAAAAAAMKxZljTqKOm8/5Uu3y4te1E669d96+uiP0tzvy1V9MgPmfVl6dxHpOP+XrIjUqg6u11kTO6+Ry+STvlXd7zAMBMc7AEAwEh3ww03qLW1+0nytbW1+s1vfqPKysqC+qmvr9evf/1rzZ8/X11dXZKkHTt26Jvf/KZuvfXWoo4ZAAAAADA4TMFoAavvv+bzu8Gfm93NQlZYlmw5SmfVdRoCFvxCGfIN7/ALVzDtt5jMwWjZ4+pLOAUAAEA+1jQ9aKw7q3ZpCUdSXL4huD4hu8OTdzCaDMFopmsX/2C0/of+SlJz8oBnedkHo/ldK1rlGT4IAAAAAAAAAAAAAAAAAECfBavMdWNPl/Y9lV1eO1cas9Bdjvtqdv2E86W53zT3+0ufwLPFv5cmnCcFIuZtgDJGMBoADKLXXntNK1euzCj7zne+owkTJvSpvzlz5uiGG27QzTfffKTsrrvu0ooVK1RXV9evsQ41mzdv1ksvvaQdO3aopaVFlmWpoqJC48eP19SpU3XCCSeooqJiwMcRj8e1Zs0abdmyRQcOHFB9fb0aGhp01llnDcj+d+3apT/96U/as2eP9u/fr8rKStXX12vRokWaNm1a0fcHAAAAYGgxBaMFrVCf+4xY5pv1o3mGdY1ElmUpakfVkW7PqjMFLJiCy2zZeb+GvmEZAxw45jiO8RgKCY8oRYAbAAAYvlqSzXqu5QnPutkVczU+PLnEIyoev7le5wgLlzXGohmeaOg393Qcx7Nd3DAv9Qo08ws5MwejDfzfqQaS3zETog0AAAAAAAAAAAAAAAAAGHEsSxp/nrT7j9l1J/9MWnWh1LEzs3zaJ/q3z/Boqcvjc4oTl0qTl/Wvb2CIIxgNAAbRrbfeKsfpvrVj7Nix+sQn+jexue666/S9731PiYR7s3xbW5vuvPNO3XjjjVnbfvzjH9c999xzZH3Lli1qbGzMaz+rV6/WkiVLjqwvX75cK1as8O3/sLfeest444okfexjH9Pdd9+dVR6Px3Xbbbfpzjvv1KZNm3zHFwgENG/ePF122WW6/vrrjSFl55xzjtasWXNkvefr4ae5uVlf//rXdffdd+vQoUNZ9VVVVbryyiv1jW98Q5MmTcqrT5NEIqG77rpLP/7xj/Xyyy8bt5sxY4ZuuOEGffKTn1QwyH/xAAAAwHCUdJKe5aH+BKP5hC9ws7u/iB0zBKN5ByyYgssidsz3OrmngBVU0Ap5huQNdOBY0kkqrZRnXdQjYM/03hroADcAADC8PdX8v8Z58eLa8v6AR8gKy5attNJZdaY55nBl+nuNJUMwmuU990wrpaST9LxmMob+evTld23UnDzoWe4XLFYO/K8VCdEGAAAAAAAAAAAAAAAAAIxAs6+X9qyWnB731zRcLtUeJ537R+nJq6SmF6VAhTTrS9KsL/Zzf38tvfQP2eXTP9O/foEyQGoKAAyihx9+OGP9mmuuUTgc7lef48aN0yWXXKL7778/Yz9ewWjlZNu2bbrooou0YcOGvLZPpVJat26d1q1bp6uuukrTp08v2lhefPFFLVu2TDt37jRu09LSon/5l3/R/fffr9/97nd93te6dev0wQ9+UG+++WbObTdt2qTPfvaz+slPfqKVK1dq8uTJfd4vAADlpjl5UK+2rdM78e0Dup+QHda02GzNrpirgBUY0H2NVK3JQ3q1bZ0OpZo1Z9Q8TY40DvaQMEy0JJv0Sts67YpvG+yhZAhYQTVGZ2jOqPkK2bmvB73CsCQp2K9gNPPN+uV+I/9AM507U/CXORitsFCBiB1VMpX9Xniy+X+0qf0VSZJlWZoUPkrHVZ6kykC1sS/HcfR6+0t6o2NDzsAy0/vv8Jiyy7zPzxsd63X/nruPrNcER2vOqPmaGJniu//dXTv0aus6NSU9nnQj9/06veI4zYgd5xs0V6p5Q6HCduTIPMO27D71sb1zqza0P6+WZHPebYJWSFNjszRn1DwFrOL+yeBgYp/Wtz2vuNOp40ctVH14YlH73xHfqvVtLyiRjmt6xRzNiB2fd8gggNxy/R8RtEKaFpulWRVzFbL7PhcBCpF2Unq86WHPutHBcTqhcmGJR1RclmUpYkc9w3cfb3pYr7W96NvetmxNjhyt40ctVCwwaqCG2S97unbp1bZ1OpjY57vdrq7Crt38rl1+u/duz2umzR3rPbf3mtuGrYix/4TTZeinvK+nCEYDAAAAAAAAAAAAAAAAAKCXycukJQ9Lm34qdb4jTbhQOu6rbl3NbGnZC1LnXilcJ9lFuEfjmL+U3vy51Nojb2Ls6dKk8n6YMJAPgtGAISblpNSU9L8RAP1XGxw76EEW27dv19atWzPKLrzwwqL0feGFF2YEo61du1aJREKhUHnenNbV1aWlS5dmhaKNHj1aJ5xwgsaPH69QKKSWlhbt2rVL69evV1tb24CMZf369TrvvPO0f//+jPLx48dr/vz5qq2t1e7du7V27Vp1dHTowIEDuvjii/W9732v4H2tXLlSV155pdrbM2+AmjhxoubOnavRo0erra1N69ev16ZNm47Uv/DCCzrllFO0du1aNTQ09O1AAQAoIzvjb+m2bct1KNVUsn0uqDpdn5h4fdHDQ0a6PV07ddu25TqQ3CtJ+q+9lj484a90es35gzwylLt34tt12/blakruz73xIJlVcYI+N/lrOW8uNwVT9efnkV+AADe7+zOdn850h2d53FBeaGBC1I6pLdWSVf5S6zNZZaOD4/TlKf9X4zwCqdJOWr/c/WM91fy/Be3fi2cwmuV9XLu6tmUFXfx2b0CfnHS9FlSd4dnmhZa1umvnLUop6T+Q/dKSuov1/nF/6RmQNRjzhkItqlqsayZ+qeDfXT3Z9Ih+ufvHcuT0ab/Hj1qoT0+6Ma+Qxnxs7dio27d/U21p9736X9Y9+sykr+r4IgXWPN38R/37O7fLUdot2C8trl2mD9Z/mnA0oAgcx9F9u+/QE81/yLntnFEL9NlJXy3azw/Azytt645cM/Z2Zu1FsodBiHnEjnkGo73Y+qe8+5gQbtCXGr6h2tCYYg6t315pfVZ37vxHY5BYPix5/z/vd+2yuun3Be3D6xrJtmxFrKjijn+YcE+xMg9G87tWJEQbAAAAAAAAAAAAAAAAADBiTTjfXUyi44q3r9hE6YKnpM0/lZpflcacLM34ghQwP/AVGC64gxsYYpqS+/QPb352sIcx7H1z2k81JjR+UMfw5JNPZpUtXFicG0NPOumkjPWOjg698MILWrRoUVH6z9ctt9yiFStWSJLOPPNM7dixQ5I0efJkPfHEE8Z2lZWVGes///nPtX79+iPrjY2Nuv3227V06VLZtp3V3nEcrVu3TitXrtRdd91VhCNxJRIJffjDH84IRZs4caJuvfVWXXHFFRljaW1t1T/90z/pW9/6lpqamnTjjTcWtK/169frqquuyghFW7p0qb7xjW/o5JNPztr++eef15e//GU9/vjjkqQdO3bo6quv1urVqxUIlP+NYAAA+Pnt3ntKHm7yXMtTWlh1tuZVnVrS/Q53K/fdl3GDuyNH/7H7Di2oOoMbbtEvv9v370M6FE2SXm9/WX9qXqWz697ju13S8Q6FClp9D8L2CxAoNLBrpDH9bIqnvcMSTOWFBtBFrPy3P5Dcq5X7/kOfmPTXWXWbO9YXJRRN8n6vFHJcaaV03zt3aG7lqVmBYGknpV/u/knuULR3rTq4UqdWn6sp0WlZdb/d+29DOhRNkv7cskYn1yzWcaMW5N2mM92hX+25s8+haJL0StuzWtfypE6tWdLnPnr6zd6fHwlFk9yfX/e+c7tuPuZf+x1c1pWO6z92/7Q7FO1da5oe1CnVS9QYm9Gv/gFIWzpfzysUTZLWtz2nZw6t0Rm1FwzwqADpsYMPeZYHraDOqBke78FihBO/07Vdjxz8rT5Q/6kijKg4HMfRL3f/pF+haJJfMFrxrl1Mr0HEjiqeyj8Yrdyvp/yvFQnRBgAAAAAAAAAAAAAAAACgJGLjpRO+PtijAEouO00GAFAS27dvz1gfP368xowZU5S+jz/++Jz7K4WxY8eqsbFRjY2NCga7sziDweCRcq9l7NixGf088MADGW0feeQRLVu2zDMUTZIsy9LChQu1YsUKbd26VUcffXRRjueHP/yhXnjhhSPrEydO1BNPPKEPfOADWWOprKzU8uXLdd9998m2bR08eDDv/aTTaV155ZVqa2s7UrZixQo99NBDnqFokjR//nw9+uijet/73nek7IknntC9996b934BAChHaSel19tfGpR9b2h7IfdGKMiG9uxzmnSSerPjtUEYDYaTcvn3ur79+ZzbJJ2EZ3l/gtFidoWxjlBCf6aAss50h2d53PEuLyToTJJigVEFbe/181WSXmt7saB+/Hi9V/zeW17a0i16u/ONrPId8bfUmmouqK/1bdn/ntx5Q/GOeSBt8Bi/nzc6NvQ7ZKQv+zXpTHfojY4NWeXNqYPa3bWj3/37He+GPH6WAsjt5dZnC9p+U8crAzQSoNuerp3GOfOCqjNUFawp8YgGRqFzKJNXCvx3PNDe6dpelMDqgOX97LdiXrtEDa+BqdykWK/lYIna3tcdIStsfB0AAAAAAAAAAAAAAAAAAACAYiAYDQAGyYEDBzLW6+rqitZ3NBpVJBLx3V85eeutt458P3fuXE2fPj3vtoFAQKFQ3wMCDkun0/rhD3+YUfazn/1M06ZN8213xRVX6Atf+EJB+7r//vv1yivdNxJ+8IMf1PLly3O2CwaDuueee1RfX3+k7JZbbilo3wDw/9m79zA56/r+/6/PHHZmctzNgUAJMWCMBAQRQQUMAaFgUBRRi1C/IlrlVxWlFbXW1hNopdJ+C/qzVdofWmurVRBPUMEDQUSI0SIIKIST4RSSzW4OuzOzc/j8/lg22Z293/fe95x39/m4Lq4rc99z3/dnDvchS+7nAtNNsVpU2Zc7su2h6q6ObHemqvqKhiq7A+cVqsNtHg1mklJ1REVf6PQwIrH2gfGsY16qgZvSD8wcHBgRWJF5rjKJeMGu2cYKIxSNMFq+Ejw9l4wXTFiVOyzW84cqu+W9nzQ9bmzMsiK7Sj2JzKTpq+bEG6ckDVUmn1/3BEybej2T96ditdCx64a49kQ4Hkx4frk5n2U973WQoM9xTL4J5/Ww726zXgMw2+0obYv1/GK12KKRAPvcOvg/5rx1vWe0cSSt9dyY13qWgfJ2VX21KetqhrDrgzgOyR0aOL0nkdFzss9ryjZWzTncmB79s0koaY51ujgk93wlAv5JyfPmTP4FTQAAAAAAAAAAAAAAAAAAAEAzEUYDgA6pDZX19vY2df216+vv72/q+jvlmWee6ch2b731Vj366KN7Hx977LF69atfHWnZj370o7HibFddddXePzvn9JnPfCbysvPmzdOFF1649/E999wzYdwAAMw0VnimHfIVYl3NVKza4apStdTGkWCmmU5hvSjHlbIP3h9Srv4gdDqR1qsWv6lmfSm9asm5da9ztsgmJwflJPt7V6gOBa/HCKxZXt57uhallkZ+vldVI35ysKbQhPNoyqUmfX/GrMyu1pHzXhJrfUHRrHpCWvmA97oZQa52iXvsasZnKTXvPRquBH/XJfs4Fkc+5PUWjAAhgHgGyvHCaNLkACfQTCPVon6x88eB8w7KHKKV2dVtHlHrrOtdr97U4obXU/blpsXImiHs/B3V3OR8nbroteb8Vy0+p6FotCQ9N7dGL5j74sB5r+h7jeYlF0Raz2mLztac5LyGxtJpc5Pz9ceLXjdhWsZl9cpFr+/QiAAAAAAAAAAAAAAAAAAAADBbNPavggEAXcs51+khNM2hhx6q++67T5K0ZcsWXXHFFbrkkkvaOobbbrttwuNzz40eCFi6dKlOO+00/eAHP5jyuUNDQ7rjjjv2Pj722GN18MEHRx+opJNPPlmXXnrp3sc/+9nPtHLlyljrAABguih6O6b1/DlHNBQKGrNt5Gk9U3py0vRmBUgwKizE0oyACmavsO/W6jlHKN2E40Rcg+UdeqL46KTpUUJIFV8OnN7ozf+nLHqt9us5UHfvuVOZRFYvnr9WB+dmTlyiVXJG0Mz63lkxCGs9lsXp/fT+FX+nX+z8sR4rbFZVFUlSsVrU5vy9gcsUqsPKJLI14wmOVy1OL9P+PQdOOY5lPQeGflcSLqF3/NEHdfvOH+uB4XsmfMc3D98XeB4POr9a+0ba9WhecoEGytsbWo8kPX/OkQ3vR/V4ZuQpbSs9NWl63ACr9VnmEnN1SO75k6bvKG3XUyN/iLyeuMKOvSU/0vD6CyHvT7NeAzDbBR1bJckpIa/qpOmeMBpa7Je7bjWP8ev6zphR/09kSc/+umTFZ3THzp/o0cKDgfvceBVf0e+GfxM4b6Dcr/mp5v5innpZ12Ipl9Lz5xwZuqxTQgdlD9FLFqzTspDr1BfMO0Z/edCntWn3bdo68nis8fW4jJ6bW6MTek9TTyIT+Jw/yqzQJSsu1527fqothYcDP5v5yV69YN4xetG842Jtv1u9ZsmbdVD2EN2759eam5yvlyw4ScuzKzs9LAAAAAAAAAAAAAAAAAAAAMxwhNEAoEMWLVo04fHOnTubuv7BwcHQ7U0n5513nq677rq9jz/wgQ/o+uuv1wUXXKAzzjhDBxxwQMvHsGnTpgmPX/rSl8Za/qUvfWmkMNodd9yhUmlf+OOQQw7Ro48+Gmtb1erEG3EeeuihWMsDADCdFEPiZO/8o79SLjm34W38dOD7+uYz/zppepSAEaILi5gQRkMjwvbVd/7RhzQnOa+Noxn1692361+f/PtJ08NCQmOs/aEZIcgj5h2jI+Yd0/B6ZpNMIhc43YpnFoxjXTZmGE2S+tJLdMaScyZMGyzv0F8/9DZzTAsjjvO4Ba+YtO56JV1Ka3tP19re0ydM/7tH/1Jbig9Pen6+Mvk9siJYS9MHaM3cF+rHA9+dvEzA/mSF6STpzw/8iBnAaKWbd3xb3972lUnT415nWJ/lc7Kr9O7lH500/c6dP9VXnr5y0vS4QTZL0Oc4phnn9bDjJfFaoHFVX9FgaUfgvL7UYu0ob2vziDDbee+1YfCGwHlzEvN0zPy1bR5R6y1KL418PVb1Vb3vgT9RRZMjygOl7VqRfW6zh1cX6/zdl1oaeL1Sr5W51VrZwsjzfj0H6Mwl57Vs/d3GOaej55+go+ef0OmhAAAAAAAAAAAAAAAAAAAAYBYhjAZ0md7UEl16yBc7PYwZrze1pNNDmBQqGxgYaNq6C4WCCoXChGmLFy9u2vrb7eyzz9bZZ589IY7285//XD//+c8lSatWrdLxxx+vE044QWvXrtWaNWuaPoatW7dOePy85z0v1vKrV0e7CWfLli0THn/961/X17/+9VjbqrVjR/BNjAAAzARh4YtMItuUbeSMWE2U/1AGSQAAIABJREFUgBGiK1Tsz5IwGhoRFvnJGlGrVrO2W6jm5b2Xc85cttTCMBrisz/L4O+dFeayzjXNGo8UHKqy4lXt2DesGFzQud063+eSc2KuJ/hzSSiptOuxhtpS9vjjXWdYxzrrs7TisWGh0ljjCRl/2U+OtsQV9v5wjQY0bldlZ2BgSRqNNRFGQ7s9XPi9Hi8+EjjvuIWv6EjctJskXEK96UXqLz0zad5gub8DIwpmxW479fcyAAAAAAAAAAAAAAAAAAAAAN2LMBrQZZIuqcXpZZ0eBtrgwAMPnPD46aefVn9/f1MCZvfee++U25tOnHP6xje+oY997GP6x3/8x0nRt82bN2vz5s3693//d0mjobQ3v/nNuuiiiyYF6OpVG65bsGBBrOUXLlwY6Xn9/c2/SWn37t1NXycAAN2iWC0ETk+7HiVcsinbaFawBOHCQiwlP9LGkWCmsQI5GZdt2nEirlwiOEjkVVXRF5R1dhjACgWmHD/m6wQraGaFvFodg8i4rJycvHykMdnBseDvaDPlktHPr9Y5IpvImefp4BBc8PufS8wJDRK2kvXZWxE9i3VdYh1vrOklP6KyLzUcWww7rzcjeBoWP+MaDWjcQGm7OW9ReqkUcIjyfvK5B2iWWwduMOet7V3fxpF0r97U4sAw2kA3hdGM6xvreg4AAAAAAAAAAAAAAAAAAADA7JXo9AAAYLY6/vjjJ03btGlTU9Zdu55cLqejjjqqKevulFQqpU996lN69NFHdcUVV2jt2rXKZDKBz928ebM+/vGP65BDDtE3vvGNNo+0MSMjzY9+cFMiAGAms2+qbU5gRgqP3lR9pWnbme3CAidlX27jSDDTWIGcrBFlaoewY5QVzhpTMfaHRiNGqI8dzzTCaFa8qknfR+dcSGgrXnCs1cygWcA4zYBbYm5IYC0oBNd9xwP7OsMOiwWxzqPZZPBnaYXRJDsgF2s8AWG6Mc0Io4XFz5oxfmC2GyhvC5yedj2al4z3CyOARu0qD+rXu28PnHfY3KO1X88BbR5Rd+pLLQmcHhY6bLdWXwsDAAAAAAAAAAAAAAAAAAAAmDkIowFAh6xYsUIrVqyYMO2mm25qyrpvvvnmCY9f+tKXqqenpynrHlOpdCYCsmzZMr3//e/Xrbfeqp07d+r222/XFVdcode+9rWaN2/ehOfu3LlT5557rq6//vqGt9vX1zfh8a5du2Itv3PnzkjPW7Jk4s1Ln/70p+W9b+i/L3/5y7HGCgDAdFKsFgKnZxLZpm0jLJZibR/xWdEbqTkBFcxeVizIihG1Qy4ZEiQKif1UfUVVVQPnEUbrDCsgVqzmVfWTPyszXtXE76Mda5u4be99aHCs1ewgWFDAzXrfcjEDa9bxoPUhOIs1/rIvq1SNfv6zX1vwZxkWILGCeXGEraNUbTwKHxY/C4umAYjGCimNhpdc4DwvfjkDWuP2nTerouA48Lre9W0eTffqTS0OnD5Y7v4wWjuivAAAADOVcy7lnHuJc+4C59wHnXN/45y72Dn3RufcC51zqU6PEQAAAAAAAAAAAAAAAKgHYTQA6KBXvvKVEx5/9atfVanUWPRh27Zt+u53vxu6nTGp1MR//1guB99cFGRgYCD+4Josk8nouOOO0/vf/35df/316u/v19e//nWtXr1673O893rve9+rajU4HhDVsmXLJjx+8MEHYy3/wAMP1LWdqMsBADBbFY2gS6aJN9WGxZPCAkaIJ18JCaj4xgMqmL3sm+87GEYL2XZY0Kfs7b+zpbi/rSOs75GX14gvTphW9iXzeNbMUJ8dRpt4ziz6ghmxaUecIlbQzIhgZRNzzLEWqnl5P/H1tSNMF1dYoKwQI1AWFo8LMickfteM65vhkLGHHcuiCjtWjviiKk3YBjCbDRghpb70YiOLBrRGxVf0s8EfBs5bnN5Ph889us0j6l596SWB0639uRPyxs9wOnktBgAAEMQ5d4hz7hzn3Gedc7c453Y55/y4/x7tgjE+zzn3JUn9ku6U9P9JulzSpZL+r6T/lnSXpF3OuZucc6/r2GABAAAAAAAAAAAAAACAOhBGA4AOet/73ifn9t1Ktm3bNl1zzTUNrfPKK6+cEFebO3eu3vGOdwQ+d8GCBRMeDw4ORt7OvffeG2tc419nq/T09Oicc87RnXfeqQMPPHDv9C1btuhXv/pVQ+s+5phjJjy+4447Yi1/5513RnrecccdN+G9uvnmmyfdyA0AAPYpVguB05sZdAm7QTcsyoF4aoM945WrxE1Qv7wRVGpmiCquHpdRwvixXFiQqOztkHbKpRseF+ILO9/UxrwKFfs418wYhB0Kqx2P/V3LJe1oVrNY+2DQuMKiXzkj8OVVVdFPvE7oxlBi2LateEjgc43AqPX+ZBI5OSNvFBYrjSrs+xV2LIu8/imuwcKuKwBMbUdpW+D0vtRSiTQa2uiePb80w15rF75SCZds84i6V18qOIw2WO7vmv/HYEVfO/l3MwAAgDHOuZOccz90zvVLekjS1yVdImmdpPkdHdw4zrmUc+6Tku6T9A5JC6ZYJCfpjyWd0+qxAQAAAAAAAAAAAAAAAM1EGA0AOuiwww7T+vXrJ0z70Ic+pK1bt9a1vvvuu0+f/exnJ0y74IILtGjRosDn77fffpOWj+qGG26INbZMJrP3z8ViMdaycfX29urss8+eMO2RRx5paJ0vf/nLJzz+r//6r8jLbtu2TTfddFOk5y5dulQvetGL9j5+4okndOONN0beFgAAs40Vvci4bNO2ERa9iRMsQbi8cYO01JyACmavbgwhOefM7YfFfsrejgQSRuuMbDIsalUTIgv5bHMh64nLiprVRgLDInzNDIya2zBec9C4rPN9Ljk3PE5Xs5wVp+tkjCNs23ECrNZ7ZL0/CZdQxpgXdk6OarjF5/WprsGsKCaAaAbK/YHT+9LB4SVJ8uqO8BJmllsHg382nnJpHb/w1DaPprv1phYHTi/7svZUdrV5NMGs83cn/24GAAAwzlGSTpMU/A9suoBzLifpO5L+VlJq3Cwv6beSbpD0n5K+++xjfusMAAAAAAAAAAAAAAAApi3CaADQYf/wD/+gOXP23fQxODios88+W3v27Im1nm3btukNb3iDRkZG9k474IAD9NGPftRc5uijj57w+Hvf+16kbf3whz/Uxo0bY42vt7d375+3b9+uUqm1cYtUKjXh8fgwWz1OPPFErVy5cu/jTZs26fvf/36kZT/5yU/Ger3vec97Jjy+5JJLYn8fAACYLYrVQuB0K/RRj7TrUVKpwHlxgiUIFxboKfkRcx4wFTuo1Nmb761YUVjMJywmlHLBxym0VpwoV3iIrHnfR2tMtees0FBbIjiu1ky5iOO0pkmjrzU0LDYpBhcc6+pkjCM8wBrtOsN7b75HVihPkuYYn/NwpfEwWtjYmxFGK0wRb+MaDWjMQGl74PRFqaVycsZShNHQXFtHntDvhn8TOO+Y+S/XvNSCNo+ou4WFCwfKwft0u9Vem41pR5QXAACgAUVJD3V6EM45J+nrks4YN7kg6ZOSDvLeH+G9f5X3/k+996/13h8haaGks55drrW/wRAAAAAAAAAAAAAAAABoMsJoANBhhx56qD73uc9NmHb77bdr/fr1evzxxyOt48EHH9Qpp5yi+++/f++0RCKhr371q1q6dKm53HHHHTchyvbtb39bmzZtmnJb559/fqRxjbdmzZq9fy6Xy/rpT38aabnh4WF97nOf0+7duyNva8+ePbruuuvM7dcjkUhMCpZdeOGFeuSRR0KXu+666/SFL3wh1rbe8pa36NBDD937+P7779frXvc6DQwMxFrPtm3bJr0PAADMNFbwKJPINm0bzjllk/EDRognLGDSjIAKZq9uDCFJdqzIGq8Uvi8kCaN1RMZlzUBMsUNhNCsUFjXUllBCadfTtPFYrNccdG63xppNzFE2JHJYu5x13WCd59sh4ZLKuODrFiseUmvEF1VVNXBeWDjO/gwav77Jh8TVSg2e10vVksq+HL59wmhA3UrVknZVgn8OGRZeApptw8CN5rwTe9e3cSTTw/zkQjPqPljub/NogpnXYh3+uxkAAMA4JUl3SfpXSRdKerGk+ZL+rJODeta7JL1m3OOnJB3tvf+Y9/6JoAW898Pe++9478+V9PZ2DBIAAAAAAAAAAAAAAABoFsJoANAF3va2t+nd7373hGm33XabDjvsMH3mM5/Rli1bApfbvHmz/uZv/kZHHHGE7rnnngnzLr/8cp1yyimh250/f77OOeecvY8rlYpe9apX6aabbpr03JGREV199dV62ctepq1bt6qvry/qy5MknXzyyRMeX3DBBfrCF76gX/3qV3r44Yf16KOP7v1v+/btE7b73ve+V8uXL9fb3vY2fe973wuNpG3cuFGnnHKKHnvssb3TXvayl2n16tWxxhvkve99r174whfuffzkk0/qhBNO0Le+9S1VqxNvQB4aGtInP/lJvelNb1K1Wo31fiWTSX3rW9/SggUL9k770Y9+pCOPPFL//M//HPr6d+zYoW984xs699xzddBBB+mqq66K8QoBAJh+it66qba5gZNWhkMwKiwyN1X8BAhj3XwfFgtqB+s4ZY1XCg+jpV264TEhPuec+VlOjnIFH+d6XEZJl2zamBodTy4xV84Fx96aydoHS35kwne96quTInPj1xEWp6t9jfZr7vDxwIi7Rb3OqDe6N8cMNDYhjNbC4GmU94VrNKB+O0MCSn0pO4zmWzEYzFqFal537PpJ4LwV2VVamWv85/0zTcIl1JteFDhvoLQ9cHq7mddiIaFbAACANvqKpAXe+xd579/hvf+S9/7X3nf+N7c451ZI+sy4SQVJp3rv7zcWmcR7/kcLAAAAAAAAAAAAAAAAppfgXxsNAGi7z3/+8+rr69OnPvUpeT96G9nu3bv14Q9/WH/913+tww47TAcddJD6+vrU39+vxx57TL///e8nrSedTuvKK6/Un//5n0fa7qWXXqpvf/vbGhwclCQ988wzOv3007Vq1SodeeSRymQy2rp1q+68804NDQ1Jkvbff39dfvnlOv/88yO/vje+8Y36yEc+oscff1zSaFSsNgY35vzzz9eXv/zlCdN27dqla665Rtdcc42cc1q1apUOOeQQ9fb2KpVKqb+/X7/97W/3rn/MnDlz9KUvfSnyOMOk02l97Wtf07p169TfP3qD4FNPPaU3vvGNWrZsmV784hdr4cKF2rp1q37xi18onx+9cXvhwoW6/PLL9c53vjPytg4//HBde+21esMb3qCdO3dKkh5//HG9613v0kUXXaQjjjhCK1as0IIFCzQ8PKzBwUE98MADk14/AAAznRVKySSyTd2OFUxpRjgEo8ICJo0GVDC75StDgdPDYkHtkEtYQaLg8UrhkcAUYbSOySbmBJ4Pao9rVgCy2VGuqDFPazzZZHPjopawfbBQyWteavQ7PeKL8kZuJ5uYszdOF+kzMM41nT4eZBNztFM7Jk2Pep1RCImLhn2/rNc9bBw3o/Lem8deqfHzepT3hWs0oH47ytvMeX3pJXY805NGQ/P8ctet5t8R1/Wub/Nopo/e1GL1l56ZNH0gJHjYLhVf1ogvBs7r9LUYAACAJHnvBzo9hhAfkTRv3ONPee/v69RgAAAAAAAAAAAAAAAAgHYgjAYAXeTSSy/VunXr9K53vUsPPvjg3unee91777269957Q5c/+uij9cUvflHHHHNM5G0eeOCBuvbaa3XWWWdp9+7de6dv3rxZmzdvnvT8gw8+WD/4wQ+0devWyNuQpFwup29/+9s666yz9MQTT8Ratpb3Xg8++OCE9yjIgQceqOuuu05HHHFEQ9sb7/DDD9ePfvQjnXHGGXrqqaf2Tt+6datuuOGGSc/v7e3Vd7/7XVUqldjbOvXUU7Vp0yade+652rRp097plUpFd911l+66664p19HX1xd7uwAATCfFaiFweibR3KhL1MgM6hf2Xpb8SBtHgpmmYAQUc8lOh9GM40oleLxSeEyIMFrnZI1zTu13zzrOZZv8XbTPWdHG0+xQmyVsH8xXhzRPC0b/HBLYGluHFaernWYFxDod48iZ36Fo1xlhEbCw75cVaCyEBBqjKPkRVWSHHBsNo0V5X8JicQDCDZS2B07PJeYqm8jJyQijAU3ivdeGgck/a5ekuYn5evH8l7d5RNNHX2pJ4PTBcvB+3U7W38uk9l1/AgAATEfOufmSzhs3aUjSlR0aDgAAAAAAAAAAAAAAANA2iU4PAAAw0amnnqr77rtPX/va13TKKacolQpvWGYyGZ155pn6zne+o02bNsWKoo15xSteoY0bN+q1r32tnAu+sW3p0qX6wAc+oLvuuktr1qyJvQ1JOuaYY3TffffpX/7lX3TWWWdp1apVWrBggZLJpLnMwoULtWHDBn3wgx/Ui1/84infD0l6/vOfr09/+tN64IEH9JKXvKSusYY56qijdP/99+uiiy7S/PnzA58zb948vfWtb9Xdd9+ttWvX1r2tVatWaePGjfre976nU089VZlMZspl1qxZo4suukg/+9nPdN1119W9bQAApgPrxtpMItvU7djRG6IbzRIWdSl7O64CTCVvBH46HUKytm+NVwqPCSUdv/+gU6LGM63jXLNDEFHPWdZ42rVvhG1n/Pk9LKIx9lrt0GBNGM0KJXbt8SDadYZ1PeLklHH2NdGcZHAYbbjBMFrYcUySStXGwmhR3peo7x2AyQaMgNKi9NLQ5bx8K4aDWeih/P16cuSxwHnHLTxFPYmpf0Y+W/WmFgdOt4KH7RT28xPr+hUAAACSpHMkzRv3+Frv/W7ryQAAAAAAAAAAAAAAAMBMwR2TANCFUqmUzjvvPJ133nkaGhrSr371K23evFnbtm3TyMiIMpmMli1bptWrV+voo4+OFMuayqGHHqrrr79e27dv14YNG/T4449reHhYy5Yt08EHH6y1a9dOiJKddNJJ8j7+zW4LFizQhRdeqAsvvDDS851zOvHEE3XiiSdKkvL5vO6991499NBDevrppzU0NCTnnBYsWKAVK1boyCOP1HOe85zI47nllltivwZpNNh21VVX6bOf/axuueUWPfLIIxoYGNDSpUu1fPlyrV27VnPn7rvBuN73Sxp9D1796lfr1a9+tQqFgu6880499thj6u/v19DQkObOnau+vj6tWrVKa9as0eLFwTc/AQAwExWrhcDpzb6pNpcIDofkK0Q3miXsJumwGBQQxnvftSGkXNKKadkRKCsSmFBSCcfvP+gU65xTe46wPttmh8hyRuxq8ni6N4w2PmoVdn4YOz/bcbp973nFV1T0xnWDsT+2ix12s48H49mRu5wZwB+dbwTZGry+Ga6Eh9EaPa/XBu8Cn0MYDajbDiOg1Jda8uyfgo8rhNHQLLcO3hg43cnpxN71bR7N9NKXXhI4fbDc3+aRTJYPua7pdLQaAACgy51c8/jmjowCAAAAAAAAAAAAAAAAaDPCaADQ5ebOnTshDNZqS5Ys0etf//q2bKseuVxOxxxzjI455phOD0WSlMlkdPrpp7dte9lsVuvWrWvb9gAA6HZWZCbT5DBaNhm8PqIbzVGqjpjBp7H5QD2KvmBGOjp9870Z06ojEph26aaMCfWxvku18c58NTgW1eyYp7W+QnVY3vu9oSwrftWuaGDSJdXjMhrxxUnzxp9frX0ioYTSrkeSHTYbv2wxJDqYa/JnEJc1/qjXGdbzrLDrmDlGRK/R65uplm80jBZ2nIzzHADBBsrhYTQ7twg0bmd5QP+7+xeB8w6f+2It6VnW5hFNL72p4F+aMlDun3Ad2Alh1wed/rsZAABAl3tJzeNfSJJzLifpdZLeJOlwSX8kqShpu6T/1WhA7b+897vbN1QAAAAAAAAAAAAAAACgeRKdHgAAAAAAAPXw3k+KzoxpdmTGCotYYTbEM1W8pNGACmavghF+ktoXf7K3Hz9IZAUEU4TROipqPLNQCT5nTBWvisv6bldVVcnvC01a3zUr0tUKVgRjfLTNHGdizt64h/WaowTWRtfV3M8gLmv8UeNeVuRuqusha7vDRsQvqqmWb/S8HiXcRrwWqN9AaVvg9L70kjaPBLPRzwdvUkXB17zrete3eTTTz1jAsFbZl7SnsqvNo5nIOjenXErpBH+fAQAACOKc65W0atykEUkPO+fWSbpX0tcknSnpEElZSQslPVfSGyR9UdIjzrn3tnXQAAAAAAAAAAAAAAAAQJMQRgMAAAAATEtlX1ZVlcB5GZdt6rassEjUYAnCTRUvsWJQwFRCQ0htjD8Fbj9CEKqWFRNKulRTxoT6RI1a5Y1YlBVWq5f13aodk7V/tDMamDP2wwlBM2OfGL9slPN02Lkm1+SgalzWZxY17mU9L5cMD76ZgcaQ41AU+cpUYbTGzutRrr/CjqUAwg2UtwdO3xdccoHzvXyLRoTZouIrum3nTYHzlqSXac3cF7V5RNNPX3qxOW+w3N/GkUxmnb87HagFAADocvvXPH5S0tmSfiLp4AjLL5Z0pXPuq87xQ2QAAAAAAAAAAAAAAABML/yDFwAAAADAtFSs5s15mSYHTqxITNRgCcJNFTgp+ZE2jQQzTXgIqbNhNCsIZcWzJKlixIRS3NPWUdY5p1Bznqp9PMaKU9XLioSNjmFYC9W398/By7dv3zADgROCZsHv2/hl7bDYvmXDQlntfM1Bosb1LHZoJPx6yAqn5atD8t7LueD4Ub3jGdPoeT3K9RfxWqA++cqwuf/0pUfDaM4IowGNunvPnWa8a23veiUcv+9rKvOTvUooGRiRHyhv10E6pAOjGmVfC3c2UAsAANDlemsez5P0H9r3y3Afk/T/SrpNUr+kRZJeLundklaOW+7NkrZKuqRZA3PO7SdpaczFntus7QMAAAAAAAAAAAAAAGDm465JAAAAAMC0VPR2GC2byDZ1W2ZwJSSygujyFTsEJUllX2rTSDDTWGGPhBLqcZk2j2Yi67hS8iOq+LKSAbGzkrEvpFy6qWNDPHaUa7jmcfCxbqp4VbPGMzqGcaEwY/9oZzQwSnjUigWOf9/MsNi484sV00q5lNKJninH2kpRv0MW63lTRfes962qqoq+oKyr77vZ6vN6WORuDPFaoD4D5e3mvEWpqe53980dDGadDYM3Bk5Pux4dv/CUNo9mekq4hHpTi7SjvG3SvIGSvX+3QzdEeQEAAKah2jDaknF//qak872f9D/L7nDOfV7Sv0t647jp73fOfcd7/7Mmje1dkj7WpHUBAAAAAAAAAAAAAAAAk/CrtQEAAAAA09L4uEutTJMjM7mkEVwhutEUYZ+lJJV9Wd4TWkB8YTffO+faPJqJwuJT1rHFigkRRuusnHHOqf3+5Y1j3VTxqrgyIXHQ8UFPK+7ZzjiFFYUbvw9Y54jx71vWOE+PX9ZaTzfEOKz3oVAJPz+OsUJhU0X3wr57U8XNQsdjxOzGNBpGixI94xoNqI8VRnNy6k0vGv2zcQnF1Toa8VRxix4Yvidw3jHz12pucn6bRzR99aWXBE4fKPe3eSQT2X83a+7PbwAAAGYY6992/lLSeQFRNEmS974g6bxnnzfe3zRxbAAAAAAAAAAAAAAAAEBLEUYDAAAAAExLxWrBnBcWhamHdaPuiC+q4itN3dZsNFVAxauqqnifEV+9saB2CAujWTGkctUKo6WaMibUxwprFWrOU+2KQSRcIlJwzApHWTHQVjDfu8r4oNnU75u1PxUivN6uOB4kgwNl+epQpDCodR6dKvoW9lk3EhYbnjKMVq573dLUQdXR5xBGA+oxUNoWOH1BsndciLWzcVnMTLcO3mjOW9e3vo0jmf76UsFhtEEjfNgueePvON0QqQUAAOhie4zpl3gf/gOWZ+f/Zc3k05xz+zVlZAAAAAAAAAAAAAAAAECLcdckAAAAAGBasqIYTgmlXU9Tt5VLBAdLRscxrLnJ+U3d3mwTJXBS8iUliT8hJiuMY0WI2iksAGBFjioKvtdtX6gEnWCFtcZ//7z3ZqivFd/HbGJO4LF1bEwVX9GIL5rLtosV5hq/D9iBwzmBfx5v/GdgHg9CzvHtYn2Hqqqq5EfU4zKhy1vn0am+W2GvvZEwWsH4zMaUfXDkMaqpgqrS6PfGey/nCDgBcQwY4aS+dHBoabwoIUcgSKGa1527fho4b2V2tVZkV7V5RNNbb2px4PSBUn+bRzKRHbsljAYAABAiKIz2mPf+1igLe+9vc849LOmQcZPXSfpmE8b2hTrW81xJ32nCtgEAAAAAAAAAAAAAADALcEcxAAAAAGBaKlYLgdOziWzTIxhWsEQijNYM+crUgZPRiIr9OQBBrLBP2D7dLlYQSrIjR1ZMKJUgjNZJVsyh7EsqVUtKJ9Iq+RFVVTGWb/73MZeYo0FNjl+M7RNWmGJs2Xaxg2b5cX+eej+2xlyo5lX1VSVcItJ6OiU8UDaknkR4GK3eY13a9SipVGB0MV8Juu82muEpwmWl6kjd65aiBVWrqkSKygGYaKBkhNFS+8JoTtbftQijoT4bd95iHtvX9a5v82imPytkOGiED9vFul4J+3sRAAAANBgw7Y6Y67hTE8Noa+ofzj7e+2ckPRNnGQL2AAAAAAAAAAAAAAAAiCPR6QEAAAAAAFCPonHjdKYlgZmQYEll6jgHwlk3SI9XrgYHoYAwVggpbJ9ul6RLKe16AufljahQydgPUo4wWieFxafGzlVhx7lWfB+nCo51SxjNDpoNjftz8Hk2l9z3vlmfgZfXiC9KkvIVKx7W+RhHeIB16uuMeo91zrkJ7+N4Uc7NlqmCp2U/OcTWzPXvfV4DrwGYrXYY4aS+9NI2jwSzhfdeGwZvDJw3L7lAR88/oc0jmv56U4sDpw+U++V95wKGdqS289diAAAAXewxScWaaU/FXMeTNY+DLxgBAAAAAADVtCxFAAAgAElEQVQAAAAAAACALkMYDQAAAAAwLRWrhcDprQijha2zYASMEF1YoGdM2RNGQ3x2CKn5x4l6WFEoa9xWTCjlUk0bE+ILizmMHd/CjnOt+D5a6xwbh/UdG122fXEKa1v5cTEwO6KRG/fnkM+gEv4ZdEOMI2wMYZ/VmEIDxzr7OFT/9c1UQbKKyqr6at3rjxKLG30eYTQgroGSEUZLLZly2c7lljCdPZi/V0+N/CFw3vEL/1jpRHBIGLY+I4xW9iXtqexq82j2sc7f3fJ3MwAAgG7kva9I+n3N5NpQ2lRqn5+tf0QAAAAAAAAAAAAAAABA+xBGAwAAAABMS9ZNtZlE8+/pSCfSSrl04Lx8xDgHbFMFVCSpRBgNdbCiOLnE3DaPJJgVQ7LGXSGM1pWyybB45ug5IixulUs2//tofrcqz44nLNQW8nqazYpyjd8HrLGOXzaXDAmLjcXgjPN12LLtkklk5eQC500V96r6ioo+OBYb5btlhtEaiIrlI0RjrePZVLz3kYNnUaJyAPbx3mugHBxGW5TeF0azjlek0VCPWwdvCJzulNDa3tPbPJqZoS9thwwHy/1tHMlE9t/NOn8tBgAA0OXurnncG3P52ud37qIQAAAAAAAAAAAAAAAAiIEwGgAAAABgWipWgyMg2URrgi5R4i2oTyFCuKRMGA11sMI+7Qw/hckaQSZr3NZ+YIUb0R5h552xc4R1rnBy6nGZ5o/J+I6PBaus8aRdT1u/T+Y+UBmW96OBHWus4+NvVghu/PIFI9YVtmy7JFxCGeN7NFWgzArFSlIuwjWRFU+LEjez5CtTL1vyI3Wte8QXVVU10nO5RgPi2VPZaV5r9KWihNGAeAbLO3TX7jsD5x0x7xgtTu/X5hHNDPOTC5VQMnCeFT9sB+vv/a36GQ4AAMAMUlsTPjzm8i+oefx4A2MBAAAAAAAAAAAAAAAA2oYwGgAAAABgWrJCIBmXbcn2rHDKVMESTC3Ke0gYDfWwojhW6LDd7OBi8PHN2g+SLtW0MSG+lEsr7XoC5+Wf/Syt41wmkVPCNf9HtFN9t6zxtHvfsM6tVVVU8iOq+qq5P4wfa4/LKGH8qHvsteaN9XRLjKPeAGvYOTSbCI6eRdluPkK0NEjFV1T0wfHa8cq+XNf641x3cY0GxBMWTOpLLzHnjfHyzRwOZoHbBn+oqiqB807sXd/m0cwcCZdUb2pR4LyBUgfDaNY1nRFpBQAAwF7fl1Qc9/hY51zwBV8N51yfpJfUTP5ZswYGAAAAAAAAAAAAAAAAtBJhNAAAAADAtFT07Q2cWOst1BkOwT5TRV8kqUQYDXWwojhWjKnd7ODiUOB0K4yWcummjQn1Mc8Rz34H2x3ps75be8djnLvavW+Evf58dVhFI6AhSdnkvmWdcyGveXQd1mvullBivQHWsIBZLsI1kRUjsY5DU4m6XL3B0zjXXVGuLwDss8MIJiWV0vxkb5tHg5mu4sv6+eBNgfOWpg/QoXNe2OYRzSxWzHCw3N/mkYwKC6d2S6QWAACgW3nvd0v61rhJGUnvibj4eySN/21Cj0n6bZOGBgAAAAAAAAAAAAAAALQUYTQAAAAAwLRkxVIyiWzg9EbZ4RCiG42K8h7WG1DB7NbtISRrHIVK8PGt7MuB09OE0TrODqONfpbtjvSZ361nx2GOJ9nefSMshFGoDoeeH2qXtdaVrww9uz4rqNodx4N6A6xh8a9sIvjaZbyc8Zx6w2hRw2X1ntfjXHdxjQbEM1AODqP1phcr4fb970TnXLuGhBnsrt13aGdlIHDeib3rJ3znEF9vanHg9IEOhdFCY7ddci0GAADQLs45X/PfSREW+1tJI+Me/7Vz7rgptnOcpL+pmfx33nsfb8QAAAAAAAAAAAAAAABAZ6Q6PQAAAAAAAOpRrBYCp2dCIiuNsKM3RDcaFeU9JIyGerQ7RhVXzohQWUEiaz9IEUbrOOs7NXZ8a3ekzxpP/tkohXXczbXoHGqxolzSaMis4iqRl7U/g7E4XfB+Ze2H7VZvgNWan3IppRNTHxvmWGG0iIGzWsMRg2r1ntfjXHdFjbQBGDVQCg6jLUotibQ899Yjjg2DNwZOT7seHbfwFW0ezczTZ+y31n7eauGx2+64FgMAAJAk59xyBf97yv1rHqeccyuN1ezx3jf1wst7/4hz7u+1L3SWkXSTc+6Dkv7V+30/aHHOpSS9XdIVknrGrWajpGuaOS4AAAAAAAAAAAAAAACglQijAQAAAACmpbHQSa1MItuS7VnxFmsciKbqK5HeQ8JoiKviKxrxxcB53RJCmiqmVcvaD5KOH/F1mh3PHItyGZG+Fn0Xp4p52tFAO1TWCplEVk5OXpNjOvnKkCqJsrls7Wu09utCdVgVX1bJjxjr6ZbjQX0BVmt+1M/S+g5aIbmpTBVyG1Oq87wedf1xnwtA2lHeFji9L10bWHKBzws6lgNBniw+ps35ewPnvWTBOs1JzmvziGae3vTiwOmD5f42j2RU2PVMu8O8AAAAU7hN0nMiPO9ASY8Y874i6a3NGtA4H5X0fElvfPbxPElfkPRp59wdknZIWiTpZZJ6a5Z9QtLrvTd+QAYAAAAAAAAAAAAAAAB0Ie6aBAAAAABMS8VqIXC6FRZplLXeesMhGGV9jrVKVcJoiCfs5vtuCSHlYofRgiNRKZdu2phQn6kid9Znan0HGh6PFQmr5OW9DxlPe8MUCZdQJpELHE+hmldFleDllFTa9UyYZn0G+epwaICzVZ9BXPbxIDweasW/on6W1nbrjYrlK9Gui8p1ntenCsXV+1wA0kBpe+D0vlRtGA1ozIbBG815J/aub+NIZq6+lB1G897LueDAYasUKvb1TLf83QwAAKDbee+9c+7/aDSAduG4Wb2SXhmy6EZJr/PeP9nK8QEAAAAAAAAAAAAAAADNRhhtFnHOzZf0cknLJS2RtFvSk5J+671/oInbSUs6QdIKSQdI2vPsdv7Xe/9os7YDAAAAYHazglqZloXR6guWIFzU8ErZE0ZDPGFBnG4JIYWFnIJY+wFhtM4zzxHPRiCsz7R1Mc/g8VRUVsmPKF+xxjO3JeMJkzXCaPnqkCpGDDCXnDMp6BEWGrRe79j2u0Hc48GYgvlZRjvO5YzPPGrgbNJyEYOx9Z7XrdcbPBbCaEAcA2UjjJZeOuFxe3NKmGnylWFt3HlL4LxDsofqoOwh7R3QDGUFDUt+REOV3ZqXWtDW8VjXBymXUjrREzgPAAAAk3nvi5L+H+fcNyV9SNIrJCWNp/9W0hWS/sN7H/zbBwAAAAAAAAAAAAAAAIAuRhhtFnDOnSDpbyWdIuMzd879RtK/SPqi997XuZ2lkj4h6RxJi4zn3C7pH73319azDQAAAAAYUzSCZNlEtiXbM4MrMQIdmKzVARXMXuEhpO4Io9nHleDjW9mIRKUcP+LrtGwyOK41FvyyIppWlKpRuZDYV6GaN8OBOeN1tFIuMUeD6p80vVDNq+qqgcsE7cN2wHR4ilBi+2NwQeq9zrDiX7lktNdlPa/oC6r4ipLOurfWGE/EoFq95/U4sTPitUB0FV/RzvJA4LzJgaXgNJpXXf9rCbPMnbt+qqIPjpyv61vf5tHMXL3p4DCaNBpBbHcYzTond8vfywAAAMZ471e2YRsN96a99z+W9ONn/63eyzT6i0vHfknqVkm3e+8fb3Q7AAAAAAAAAAAAAAAAQCdx1+QM5pxLS/qcpAsjPP2Fkv5Z0rnOuTd777fE3NZ6SV+WtN8UTz1e0vHOua9JutB7H+1OOQAAAACoUawG30ydCYnBNCKbDL5hN06gA5NZAahahNEQV1gIqVtuwLePK0Py3su5iffIWftByqWbPjbEkzXOPWPnCCtuZS3X+Hjs73ihOmyeu7IdiIRZY81XhlRJBMcAg8Jv5mdQCQ+jteq6Ia56rzOs1xb1uzUn5DMvVIc1Nzk/0nrGDEcMnpbqPK+HfZa1okbaAEg7yzvkFRyjXBQSWALi8N7r1sEbA+fNTy7UUfOOb/OIZq4FyYVKKKmqKpPmDZS36yAd0tbxNHq9AgAAgGDe+22SvtfpcQAAAAAAAAAAAAAAAACtQBhthnLOpTT6D59Or5lVknSnpMclzdVoEG3FuPknSrrZOXeC974/4rZOknS9pJ5xk72kX0t6WFKvpBdp9DdTjvlTSQucc2d574PvtgEAAAAAQ9VXVfTtDaMFRVikeIEOTJaPHFAZafFIMNNYMaGUSyud6I6QWM4IQlVVVcmPqMdlJkyv+OBIVMrxI75Os+Jehepo/NH6PuaSrQmRWd+t0THZobCw5VrF2mahmlfViPQEBdxyRlisUM1P6+PBVNcZ5ncrYuQu7DPPV4Zih9GiXhfVGzyNE6Qd2/8ATG1HaZs5ry81MYzm5Ixn+iaOCDPRA8P36OmRxwPnHb/wj7vmnDwTJFxSvalF2lGevG8PliL979+myhvn5G4JVgMAAAAAAAAAAAAAAAAAAADoPolODwAtc7kmR9GukrTMe7/We3+u9/413vvnPPu8h8c97/mSrnPOWXe37OWcWy7pOk2Mov1c0uHe+2O893/ivT9N0nJJ79NomG3MmZIui/vCAAAAAGDEF815GZdtyTaDIiwS0Y1GRX3/ykYQCrB0U/jJEhYuCooGWiGhlCMi0WlZI55ZfPYYZ30freUalUnY58J8SCisE3GKrBk0swNuQe+bHafrrhCcJWz8YRr9boXF+eJEyMYMV6IFT+sNo8UJ0kaNrwKQBsrbA6dnXHbS9YoVRiOLhqlsGLwhcLpTQmt7a/+XJhrVm1ocON3a31vJvl7pnmsxAAAAAAAAAAAAAAAAAAAAAN2FMNoM5JxbI+nimsnv996/z3s/UPt87/1Nkk7QxDjaiZLOibC5T0jqG/f4dkmneu/vr9lG0Xt/laQ/qVn+L51zz4mwHQAAAADYKyymFRaDaUTOCIyU/EjdcQ9Ej67wHiOufKX7b74PCxcFjb9EGK1rWYGtsWOcdawLi+M1IuGSZig0XxlSoRJ8Hs0ZkbJWCnvvrP04aJnQ9RjXDd10PLDGX6jmVfVVczn7PYr23Qp7D4brCIu1+rxuvd4gxGuB6AZKwaGkRemlivA7dIApDZS26+49GwPnHTnvWC1KL23ziGa+vvSSwOkD5f42j6T9kWAAAAAAAAAAAAAAAAAAAAAA0x9htJnpQ5r42f7Ie/+PYQt475+W9LaayZ92ziWtZZxzz5N0/rhJI5Le6r0vhGzneklfGTcpI+ljYWMDAAAAgFrFkNBFq26szYYERqzADKaWr0SLrhBGQ1xWEMeKD3VCLhlyXAmIB1j7QcqlmjYm1MeKS41FrazzVitjEFkjcranslMVlY3xtH//sN6DQnU4JKIxeZz2ZzCsghlK7J4YhzUWL68RXzSXazQ0kpwiohdXPmJMzQo9TiVO7Kw4RVQOwD4D5eAwWl8qOKwUxMs3aziYgW7b+UNVFXxMXtd7RptHMzv0phYHTh/sQBit0ZArAAAAAAAAAAAAAAAAAAAAgNmHMNoM45xzkl5VM/mKKMt67zdI+uW4SQdLOilkkfMkjQ+nXee9fzDCpi6vefwnzhl33wEAAABAgLAwWibRmr9e5JJ2YCRqBASTRQ2clKqE0RCPtV9asahO6HEZObnAefmA2FHFB8esUi7d1HEhPitCVazmVazmzVhMK0Nk1rqt+I3UmXCgFcTIV4YD9wNJygXsx3ZgLa9h63gwTUKJYYEyK4wWtr6oz63n+qbVwdM4Y/LyKlbN3+EBYBwzjJaeHEYb/d9QATxhNAQr+5J+Pnhz4LxlPQfq+XOObPOIZoc+I4w2ULKvBVvFDLmG/JwFAAAAAAAAAAAAAAAAAAAAwOxGGG3mOUzS+DtVRiTdEmP5/6l5/IaQ576u5vE1UTbgvb9f0p3jJs2VdFqUZQEAAABAkgohkYuMEUZpVFg8JWrcC5NFDZzUG1DB7GXtl50IP1kSLhESc5oYD6j6iqqqBj6XMFrnWZ+jl9dgeYe5XFDgq1lyxpjCYhjW62ilsH3A2o+DlgkLge00PoNWvv9xhb33YdcZVjwuzmdpHRetdYdp9Xk97jUX8Vogmh2lbYHT+1KTw2hAXHftvkO7KoOB807sXW/H9tCQoLChJA2W++XbHDKcDn83AwAAAAAAAAAAAAAAAAAAANBdUp0eAJpuec3jB733xRjL31Pz+FVBT3LO7S/pheMmlSX9PMZ2bpH00nGP10v6bozlgVljeHhYv/71r/Xggw9q+/btKhQKyuVyWrZsmVavXq0XvehF6unpacq2/vCHP+hLX/qSNmzYoAceeEADAwMqlfbdqHrNNdforW99a+CyGzdu1DXXXKPbb79dW7Zs0c6dO1Wt7rtp/5FHHtHKlSslSSeddJI2bNiwd167b8IBAADTX9G4qTbtepR0yZZsMyyMVk84BKOivneE0RCXFcMJ25c7IZeYG7gf1E4r+7K5DsJonRf2vRos99e1XKOsdQ+EjCeXsONirWIFzQrVvCpGDDDotYWFwAbKwTG4bjoehAdY7XOlNS9OaMT63AuVOsJoEZep97yer8QLnRGvBaKxjpPBYaXgiJUXP+NFsA2DNwROz7isXrbg5DaPZvboNcKGJT+iocpuzUstaNtYrOuVTkR5AQAAAAAAAAAAAAAAAAAAAEwPhNFmnkU1j4N/Bbut9vkHOecWeu931kx/Qc3ju733ce5Ku73m8eExlgVmvEqlov/+7//WNddco5/+9Kcql+0b4LPZrE4//XT92Z/9mV796lfXvc2rr75aF110kYrFOC1FqVwu613vepeuvvrqurcNAAAQV7FaCJyeaeFNtUmXVI/LaCSgPR0WLEG4qO9dyY+0eCSYaawYTpxYUDtYMYDaIFFYRCjl+BFfp2WT9YXRWvl9tNY9UAqO3zg5ZRLZlo3HYu0D+eqQKqoEzgt6bWFhMes1d9PxoMdllFBC1YAYnBURLVVHzGhinOhbzvj+DhuBSYv33oxS1ipV44fRqr6iog++BrQQrwWmNlItaqiyO3DeotTSSdOCs2hAsMcLj+qh/P2B845dsM4MpKJxwWHDUQPl7W0No+WNv5t1U6QWAAAAAAAAAAAAAAAAAAAAQHdJdHoAaLraO8UzMZcPev5hEaZtjrmdhyJsA5iVfvKTn+iwww7Teeedp5tvvjk0iiZJhUJB3/nOd3TmmWfq2GOP1a9//evY27zhhht04YUXxo6iSdJHPvIRomgAAKDtrOBRq4Mu1k27+QrRjXpFfe+s8AtgyVeC4zzddvO9FYOojfmE7QMpl27qmBCfFfeS7ChXQkmlXU+rhmR+1wfKwePJJHJKuPb/uDiXCN4HCtX8pEDgmKDXFhY5s+J03XQ8cM6Z47EiomFxUSt2Fvhc4zOIGjkbU/SFwLBbkHrO61YYNwzxWmBq1nlBCg8rAVHcOniDOe/E3vVtHMnssyC5UAnjnwKEhXtbwTofd1OkFgAAAAAAAAAAAAAAAAAAAEB3SXV6AGi62n/JfkDM5YOe/3xJv6iZtqrm8R9ibuexmseLnXN93vuBmOsBZpRPfOIT+sQnPiHv/YTpzjmtWbNGy5cv1+LFi7Vt2zb94Q9/0AMPPDDheZs2bdJxxx2nz3/+83rHO94Rebsf/vCHJ2zzvPPO09vf/nYddNBBSqf33WC/ZMnEG+G2bt2qf/qnf9r7uKenR3/1V3+lM844Q0uXLlUise+mm+XLl0ceDwAAwFSsMEZYmKYZcsk52lWZ/NcWohv1i/relX2pxSPBTGMFFOPEgtrBOm7V7hth+0DK8SO+Tsu4rJycvPykeVZwJpecI+dcy8aUTQZ/t0q+9vcqPPv8Fp9DLdZ2vbyK3jjfB+zHadejhJKqqjJpnvWauy3GkUvO0XB1z6TpVkS0NqA4XpzomxlGMwKTFitkF6RsfCZhwl6vuQzxWmBKVsBTknpTiydNcwo+dwWdAzG7DVf2aOOuDYHznptbo+XZle0d0CyTcEktTC0KvBYN2+9bIU7sFgAAAAAAAAAAAAAAAAAAAAAkwmgz0e9qHh/onFvuvX884vLHBUxbGDCtt+bxMxHXL0ny3u9xzhUkZWu201AYzTm3n6SlMRd7biPbBJrl4osv1pVXXjlh2vz58/XhD39Yf/qnf6oVK1ZMWmbz5s368pe/rCuuuELFYlGSNDIyone+850aGhrSxRdfPOV2f//73+vuu+/e+/iMM87Q1772tUhjvv766zUysu9G1ssuu0wf+MAHIi0LAADQiKIRPMq4bOD0ZrFu2q0n1IFRUcNoVtQGsOSrwUGfbrv53gwSxQqjpc15aA/nnLKJXOD5YKBc+3sMRrX6uxh3/dZ3sdXqeR9yATE155xyiTkaqu6Ose3OxOAs1nthnSvDrj/iRN+sYGTc65th47gbpJ7gadg1Q4/LaMQXA5aJF3cDZqMd5W2B0+clF6onkQmY07qoJ2aWO3b9NPDYLEnres9o82hmp77UkuAwmnF92gpVX4kVuwUAAAAAAAAAAAAAAAAAAAAASUp0egBoLu/905J+XzP5/0RZ1jk3V9LZAbPmB0ybV/M4uEoQrnaZoO3E9S5Jv43533easF2gIV/5ylcmRdFe/vKX67777tOHP/zhwCiaJK1atUqXXXaZ7r77br3gBS+YMO/973+/brnllim3vWnTpgmP3/CGN0Qed73L3nLLLfLe7/0PAAAgroIRRmt14MRavzUeTC1qdKXsyy0eCWYaa7+MEwtqB+u4kq/ECaPxuw+6Qcb4LAdLk2MUUuu/i3GDY52KhFlRrjBZI+IWN65Rz7ZbyTweGOfKQsU+h8b5PM1AYyVeVCzO8+s5r9ceF8frSwf/row812jAlAaM81RfanHMNfFzXuxT9VXdOnBj4LwFyV4dNf9lbR7R7NSbDt6Pg2JprRL285Kg2C0AAAAAAAAAAAAAAAAAAAAASITRZqr/qHn8QefcgRGWu1TSwoDpUcJowb/qO1ztv4SvXScwKzzwwAN6z3veM2Ha8ccfrxtvvFHLly+PtI7Vq1frxz/+sdasWbN3WrVa1Zvf/GZt3x5+g8vWrVsnPI66zUaXBQAAaESxGvxXkEwi29LtWhGbfDVeOAT7FCKH0ewoFFDLe28GdDoVf7JY8arafSMsIpRy6aaOCfWxzhED5f7A6XHDZXHFDU3kksFxrFar532wXlvc19zqzyAuK1BmnSutYFrGZZVwyRjbta5vop2j9z0/+vVQqY7zuvU+JJXS/GTQj7WlAtdowJSsQNIiIzjojPWQRcN4vx++W8+Ungycd0LvaVy/tklfakng9EHj+rQVwsJo3XYtBgAAAAAAAAAAAAAAAAAAAKB7EEabmT4vaee4x72SbgyLoznn/lLSxcbsaoRt1nPPC/fJAJIuueQS7dmzZ+/j3t5eXXvttZo3L14rcL/99tO3vvUt9fT07J32xBNP6NJLLw1dbvy2JSmdjn5DUiPLAgAANKLog2+szbQ4eGQGjCr2jb6wlaojobGn2ucCUZV9SRUFf7es8FCnWDGq2iBRWByQsER3sM4RVizKilE1S9zQRKeigT0uo0TMH1Nbry3+a+6uGIf1GViBMisUFjdyF/U4NJU4YbR6gqfWeLLJnB134xoNmNKO0rbA6VZQSc5KowH73Dp4Y+D0hBJau/D0No9m9upLLQ6cPlhqZxjNvp7otmsxAAAAAAAAAAAAAAAAAAAAAN0j1ekBoPm894POubdJunbc5CMk3e+c+xdJN0p6UlJO0lGS3i7p5eOe+7ik5eMeDwZsZk/N43runKxdpnad9fiCpG/GXOa5kr7ThG0Dsf3ud7/T97///QnTPvOZz2j//feva32HHXaYLrnkEn3605/eO+3f/u3f9PGPf1x9fX2By1SrUdqHwRpZthnuu+8+3XPPPerv79fAwICy2ayWLl2qNWvW6Mgjj1Qmk6lrveVyWRs3btTDDz+sbdu2qVgsaunSpVq5cqVOOOEEZbPZJr8SAAAQV7FaCJyeSbT2PJ1LGmG0mOEQjIoTXKknoILZK+y7lU12Jv5ksUJItceVsH0g6fgRXzeIGxZrdQgibnit1aE2i3NO2cQcDVej/Wgw5VJKJ3oC58V9Tzv1mi1WuLFQCT6mmaGwmN9FOyo2JO+9XMQIUt4YZ5Cyjx88NUNwiTkh12jRY23AbDVQDg4k9aWNMJrBe34XDkbtKG3T3Xt+GTjvhfNeqt50cKwLzddr7McD5e2xzvGNCLs+6LZrMQAAAAAAAAAAAAAAAAAAAADdg7smZyjv/XXOufdJ+r+SEs9Oni/pA8/+Z7lK0kJJ54+bNm3CaN77ZyQ9E2eZdvyjf8By5ZVXTrhhbMmSJbrgggsaWufFF1+sz372syqVRm+aHxoa0tVXX60PfvCDkqRHH31UBx98sLn8ySefHDj9mmuukaTQ8Vn70yOPPKKVK1fufXzSSSdpw4YNex/HuWluy5Yt+vu//3t985vf1NatW83n5XI5nXzyyTr//PP1+te/Xslkcsp133///brsssv0/e9/X7t27TLX+5rXvEaf/OQntXr16sjjBgAAzVWo5gOnxw2BxGUFV+IEvrBPnKBc2ZdbOBLMNGHfLSs81CnWeGqPK9Y+kFBSCZcInIf2ih3lMkJOzRJ3PK0OtYXJJaOH0cLGGTeu0cnXHMQKN1rXGXYoLN5xLpecFzi9orJKfkQ9Llp4fjhGhKye87odgpsTco0WfM0IYJT3XgOlbYHz+lJLA6c7Wf9PhTAaRv1s8IfyCv6lKif2ndHm0cxufangMFrJj2ioulvzkgtaPgbreiWplFIu3fLtAwAAAAAAAAAAAAAAAAAAAJieuGtyBvPeXyVpvaTfR3j6HknvlnSxpANr5j0d8PydNY+D75AxOOfmaXIYLSjABsxo//M//zPh8Vve8hb19PQ0tM6lS5fqzDPPDN3OdOS915tUPcUAACAASURBVGWXXaZVq1bp85//fGgUTZLy+bxuuOEGnXPOOdqyZUvocyuViv7iL/5CL3jBC/Sf//mfZhRtbL3f+MY3dPjhh+vKK6+s67UAAIDGFauFwOmZRLal27WiG3ECX9gnTlCu7EstHAlmmrDvVqsDinFZ4ylUasNowftAmphA17CiVubzWxzlijueuFGxZorzXoTtw7FjcDHfo1azrzOC4175ihUKa95nn48RO4tzPVSq47xuh+DmmK+hEGP8wGw0XN2jEV8MnNeXDg4qAWFK1ZJ+vvPmwHkH9Byk1bkXtHlEs1tfarE5b7DU35YxWJHSbDLHL68CAAAAAAAAAAAAAAAAAAAAYEp1egBoLe/9Tc65wyW9VtIZko6XtEzSfEnPSHpE0vWSvua9f1qSnHOH1qxmU8CqH6x5/JyYQ6t9/g7v/UDMdQDT2uOPP65HH310wrTTTjutKes+7bTTdN111+19fMcdd6hUKimdnp43zJfLZb3pTW/StddeO2ne/vvvryOOOEJLlixRsVjU1q1b9Zvf/EZ79uyJtO58Pq+zzjpLN91004Tp6XRaRx11lJYvX65MJqOnn35aGzdu1PDw8N4xXXzxxRoYGNDHP/7xhl8jAACIp2jcWJtpcfDIjm4QRqtHbfgpTMmPtHAkmGnCvlvdFkbLJecGTi/6gqq+ooRLSpLKvhz4vBRhtK4R97vV6u9i/EhYJ8No0d+LXCJ4n5GkXMzX0MkYXBBrPFbs0QyFNfF9yFeGtTC1KNJ6hivRI2Tlavwwmh2Cm2N+360YC4BRA6Xt5rxFqXhhNN/oYDAj/O+e27WnUvu7lUad2LueEFabLUj1KqGEqqpOmjdQ3q7lOrjlY7CuV1odCQYAAAAAAAAAAAAAAAAAAAAwvRFGmwW89xX9/+zdfZQkdX34+09VVz/OzM70zC4Py7LsCioBAYVFYIHFCIjL+cXEh9zk4rm/E0n8/WLIifeGXP3pzxuQHHz4eTw3JOolud5o4g1Jfh4fovcnETHyrCgPigIiyOOygLOzPTtP3T3dXd/7xzLLTPf3U13VD9XVM+/XORy3q7qrvtVdXVUza71X5Ksv/xfIcZzjRWTbqknPG2Oetzz10abHJ0Uc1quaHj8S8fXrVr1hZB+JuL7bVhTxUoO9Aefuu+9umbZr166eLPuss85a87hcLsuPf/xjOfvss2Xbtm3y1FNPHZn3l3/5l3LDDTccefxP//RPcu6557Ysc/PmwzfCvelNbzoy7Xd/93fl3nvvPfJ49XJX27Ztm3V6WFdffXVLFO3yyy+Xa6+9Vs4+++yW5/u+Lz/4wQ/kn//5n+WLX/xi4LKvuuqqNVG08fFxufbaa+X3f//3ZWxsbM1zy+WyfO5zn5OPfOQjUqlURETkuuuuk3POOUf27t3b4dYBAIBOVP2KdfqgIjNasATBorxvWhQKsNH2rayTOxIaS4p8wHGr4pelkBoVEZG6sUeEUg6/3kuKqHGHfke5oi5/kJGwoNhZs6BzfZTrgLSTSdz3R9uHtKCIdqyLvC8qgcagddifGyGMphzTggSF4NR4bYQIK7ARHaxPW6e74sq4V7TOc0T7vTppNIjcXvqWdXrWyckbN70p3sFAXCcl496klOqtEcRSfSaWMajn74QFqwEAAAAAAAAAAAAAAAAAAAAkS7Lu/EISXNz0+DbleT9reny64zgFY0zYO83Ob7O8DWtfSeRVH279l9vRW09+zJUdmwc7hn379q15fPTRR8vU1FRPlv26173Our6zzz5bPM+THTt2HJk+MTGx5nnHHHPMmvnNRkdHj/w5l8utmRf0uk7dcsst8ld/9Vdrpn3iE5+QD37wg+prXNeV3bt3y+7du+W6665rGeeKL3/5y/KFL3zhyOMTTjhBbrvtNnU78vm8XH311XLeeefJxRdfLJVKRYwx8id/8ify2GOPieu60TcQAAB0pOKXrdOzrv283yvajbuVRlmMMeI4g43vDpsoARUjvjRMQ1IJi1ohmfR4Tvj4UlxyAUGosr/UNozmJSzstJFFjVFFfX5U2YixiX6PJ3jd4ccaNM4o2zDIEJwmatxLD41E27askxNXXPGl9XeSUc7V0YKn0cNoZeX6L+cWJJeKFpUDcFip1hpLEhEZ9ybVmKweRsNG91zlSXmq8ph13hvH3yR55ViN/prwpuxhNOX732va728Gee0JAAAAAAAAAAAAAAAAAAAAIPkouKDZ7zc9/rztScaYF0TkoVWTPBG5IMJ63tT0+OYIrwXWhYMHD655XCwWe7bsXC4n2Ww2cH3D4rrrrlvz+A//8A8Do2jNJiYmrGE0Y8yaZXueJ9/4xjdCxd1WgmsrnnjiCfn6178eekwAAKB7Vb9inR41AhNVTokqNaTeUeBjo9NukNbUzHKfRoL1RovzRIkvxSUoYFReFUOqm7r1OZ6T7vmY0Bktnqk+v89xkJSTkoyTbf/Elw0yFJYPCAQ2C4poRNmGJMY4tLhX1VTEN42W6WUlmBZ12xzHUT+DciNCGC3Cczu5bqookba8W1A/+yixNmAjssWSREQm01siL8uI6XY4GHK3z35LnXfRxOUxjgSrFdP2fyVotj4Ty/q1yGoSr8UAAAAAAAAAAAAAAAAAAAAAJAdhNBzhOM4FsjZu9pgx5raAl3yt6fF7Qq7nZBE5Z9WkRRG5JcxrgfWkOVQ2MTHR0+U3L29mJp6bXHrpoYcekrvvvvvI47GxMfnkJz/Zk2V/73vfk5/97GdHHr/73e+W008/PfTrr7rqqjXBtW984xs9GRcAAGiv5tekIfZAUNZpDaL2UlD0hvBGdFECKiKdRVSwMVWU72OU+FJcgoIAq7dD2/8JoyVH1LhDHDGIYQmF5VLho3JBQbko26BFyAYp6DrDFhPVj3XRt017P7SYSbfPrXVwTi8rQdWcW1A/+5pZ5voBCFCq2cNoRc8eUgpCFm1jW2osyI/m7rDOe3X+VNma3R7ziLCi6E1Zp88qYcReqzTs5+9BRnkBAAAAAAAAAAAAAAAAAAAAJB9hNIiIiOM4BRG5sWnyf23zsn8Ukcaqx+9wHOfVIVb3wabH/90YUwnxOgAROI4z6CF07bvf/e6ax1dccYVs2rSpJ8v+zne+s+bx7/zO70R6faFQkDe+8Y1HHt955509GRcAAGivauw31YqI5AKCIr0QNmCEcKLG5OrGHsQDmpUb9n2r38eITqTdtBo3W/0dqftaGM3ry7gQXdT9K44YRJT4V1BwrN8iBc0CnhtpexN4PMgFxBtt50ztPNpJ9K2grDvKuTpK8LSTWFkl4Nge9H3SgiwAREpKGKmY1sNojgz/753Re98/9F2pmWXrvIuKl8c8Gqw2oYQOS7V4/jEd7Xclg4zyAgAAAAAAAAAAAAAAAAAAAEg+7pxcpxzH8YwJd8e44zijIvJNETl11eSvGGO+EvQ6Y8zjjuP8vYhc+fKkjIh80XGci7XQmeM4vykiv7dq0rKIfDTMOIH1ZnJycs3jQ4cO9XT5s7OzgesbBvfcc8+ax29605t6tuy77rprzePJyUl5+umnIy1jdaTt6aefFt/3xXVpjgIA0G9VX49bZN1cX9cdFN2IGvlC9Jhc3bffaA800/atQYafguTcgiw0Wn8mXL0dDbH/mkeLqiF+iQyj9Sg41m9R3oug9zlK7CyJMY6g8duOa9q1Ryf7lvZ+LEWInS350cJoxphIYX/92D7SNl47Kr0J7QPrzcHatHV6UQkpBTPdDQZDyze+3DH7b9Z5496knDF6Tswjwmpa6LBUPxD5XNwJPeSavEgtAAAAAAAAAAAAAAAAAAAAgOQgjLZ+/WfHcd4pIv8gIv/DGNNyd8vLQbR3isj1InLcqllPi8gfhVzPNSLydhEpvvx4t4jc6jjOHxhjfr5qXVkR+U8i8umm13/aGPNMyHUB60pzqKxUKvVs2ZVKRSqVtX3Cqampni0/Li+88MKax6eeeqryzOiee+65NY/PPffcrpbn+77Mzs4OZYAOAIBhU/WtHWYRiR6liSoovFZpEEaLKmpMrmZqfRoJ1puKElBMYghJ5HDEyBZGW/0dqSv7v+cSRkuKqPtXLoZQX5TzYhyhNk2U9y5onDl3pCfLGZSg8Vcaa49rvvHVWGw+wvtw5DXK/hg2Ylo3NamZ8AFTI0Z8aUgqwl9RqGEVNx8YviReC9j5piGz9YPWeYFhNCWiZAxhtI3q50s/kenaC9Z5F4y/RVIOfx09SEXP/ndDNbMsi/68jKb6Gw8dtp/NAAAAAAAAAAAAAAAAAAAAACQD/0/09csRkV9/+T/jOM5TIvKYiJREpCAix4jImSKSaXrdUyLyFmPMr8KsxBizz3Gcd4jIt1ct63wRecRxnPtF5EkRGX95XVuaXv7/icj/EXG71r1tRZEnP+YOehjr3rZi++f023HHHbfm8YsvvigzMzM9CZg9/PDDbdc3DGZmZtY8LhZ798E1L7sX5ufnCaMBABAD7aZaEZFsn8NorpOSnJu3joHoRnRBn6WNFoYCmpX9Rev0JIaQRPR41ergYs1XwmgOYbSkiBp3iGN/DDsmV1KSdpp/TRifKO9F0DblI1wHJDHGkXbT4jme1E29ZV7zca3qV8SIPULUSSi2oMTUtONpy/M6CMTWTC10LCcovJZ3RwK3mWs0wG6ucUh8aVjnTaab/zrnFY7Yw2jYuG4vfcs63ZWUXDDxlphHg2YTShhNRGS2NhNDGM1+Hk7qz2YAAAAAAAAAAAAAAAAAAAAAkoEw2sbgiMirXv4vyDdE5A+MMdNRFm6Muc1xnLeLyBfllfiZIyK7Xv7P5p9E5L3GGPtdNxuYl3Jkx+ZBjwJx2L17d8u0++67Ty677LKul33fffeteZzP5+X1r39918sdNMfp3U13y8v2m2m7YYz9hmQAANBbVb9ine6IG0vUJecWrEEv7WZf6MqNcLGVFYTREJYW3UtiCElEJJ/SgkSvHFdsoSQRES9kVAj9l0uFj1GlnUzoIFQ3wobC8qlCT3/mjiqXCv/dzAc8N8p3PKnHg5xbkIXGXMv05uNa0HWHdkwJXq/9NUshz9WdxMcOn9fD7aOVhh5Tzbl5STmeZJysLJtq62u5RgOsSjX9r4KKHn9JgXBmai/Jzxbvs857/di5Mu7xD4kM2rhXFFdc8cVvmVeqz8g22dnX9WvXCEm9FgMAAAAAAAAAAAAAAAAAAACQDO6gB4C+uUtEviwipTbPq4vIzSJyqTHmN6NG0VYYY74lIq8TkRvbrPMHIvIuY8wVxphod8AD68z27dtl+/bta6bdcsstPVn2d77znTWPzznnHMlk+h8J6bXNm9fegHfw4MG+LDuXy4nv+2KM6eq/HTt29Gx8AABApwWPsm4ulqhLTonMdBIE2eiihkpqhNEQkhbdyyf05nttXKu/Iw3CaImnnR9s4toXwwYnBh2miPJ+BL3PaTcT+jsRFFgbJO29aL7OCLruiLIvrigoMbWw5+qyH/1XvVrwMeo48i9H3bT9uNzgGg2wKdUPWKennYyMpMbU12k/cRnhH43YiO6c/bb62V80cXnMo4GN66Rkk1e0ztOOA71UUc7DnVyvAAAAAAAAAAAAAAAAAAAAANg4CKOtU8aYHxtj/icRmRKRk0XkHSLyJyLyERH5ryJylYhcKiKTxpjLjTG39mCdvzLGvE9EjhGRN4vIe0TkQy+v950i8ipjzHnGmK90uy5gvXjrW9+65vGXvvQlqdW6iz1MT0/LN77xjcD1DItjjz12zeNHHnmkZ8s++uijj/y5UqnIs88+27NlAwCA/qr6Fev0uG6qXYlvNNOCbdBFjcnVCaMhJO37mEtoCEmN+az6jmj7v+ek+zImROc5aUk74aLkcYXIwsa/Bh0NjPJ+aOfhqMsadAxOo42rOQwWJhQWhbYPLCmhyWZakDJI3V8O/dzAEFzq8DWgtr9HDbECG8XBmv3fySl6m9sEp/sfo8ZwqPnLcveh71jnHZvZLiflT4l5RNAUvc3W6bO1mb6u1zcNqRr773AGff0JAAAAAAAAAAAAAAAAAAAAINkIo61z5rDHjDFfM8b8tTHmemPMx4wxnzPG3GqMme/DOpeNMd8zxnzRGPOJl9f7VWPMU71eFzDs3v/+96+5yWx6elq+8IUvdLXMG264YU1cbWRkRN773vd2tcxBOf/889c8vu2223q27N27d695fMstt/Rs2QAAoL+qSvAo6+ZiWb8WYOskCLLRRQ2VEEZDWGXf/n1M6s332rgqhNGGTjZkpDOuSN+wRMLyEeKm7UKoYUOpcQVVo9LG1XzO1EJhrrihA31r19tdVEw77gapRTivB4XRVo6hYSKTAF5Rqh+wTi+m7QGl9kzng8FQun/+blls2P+a8aKJvW0Ce4hTMT1lna4dB3pFC9uLJDdaDQAAAAAAAAAAAAAAAAAAACAZCKMBwACdcsopsnfv3jXTPvjBD8pLL73U0fIeeeQR+dSnPrVm2nve8x6ZnJzseIyDdMkll6x5fNNNN8n8fG96jpdddtmax5///Od7slwAANB/2o21YWM03corN+9WlGAb7HzTiPyeEUZDGMYYdd8adPxJo8Z8Gu3DaCnH68uY0Jmwga8oIbBuhN3nBx0NzLkjEZ4bPNZ8yGUNeps1+ZR9/KuPByIilYY99pV3RzoK0RSU9S6FDJ4tKYHYoM8rynldC7SlncyR42CYyCSAV5Rq9iDSpLcl8HWO2I8xhjDahnPH7Les03NuXt44/qZ4B4NAE549eDjb5zBaUJw0qZFaAAAAAAAAAAAAAAAAAAAAAMlAGA0ABuzTn/60FAqv3Lg5Ozsr73jHO2RhYSHScqanp+Vd73qXLC8vH5l27LHHyp//+Z/3bKxxO/XUU+Wiiy468nhubk4+9KEP9WTZe/fulRNPPPHI4x/+8Ifyd3/3dz1ZNgAA6K+qsQePsk4ulvVrgQ+iG9FogbsgNZ8wGtqrmooa5khuCKn9caVu6tbnpJ10X8aEzoQNkUUJgXUjbHBi0NHAtJsWL2Tkr91Yh2WbNdr4m68ztNBILtVZZEQLylX9svjGb/t67TpoLDWuvkY7rtk0h+FWrB639t4FRVmAjeygEkQqpu0BJWC1ZypPyNOVx63zztn060SvEqaohNFKtZm+rjfo9yRhY7YAAAAAAAAAAAAAAAAAAAAANibCaAAwYCeffLL89V//9Zpp99xzj+zdu1f27dsXahmPP/64XHzxxfLoo48emea6rnzpS1+SLVu29HS8cWsOu332s5+VT3/606Fff+jQIalUWqMbnufJddddt2ba+973PvnqV78aeYy33nqrPPnkk5FfBwAAOlPx7WG0uG681kIqRDei6eT9qhvCaGivosRzRJIbQtKCbWV/8ciftf3fI4yWKGHPRfkBn7OaaXG+OIWJxXlOWtJu8D4fPk43+G220SIhzedNLTTSaQAyn7Kv14iRqnLttdrSquPVapu8CfU1NbOszmumbe/q75z23gWdF4CNbLamhNGUgFI79iwt1qs7Sjer8/ZM7I1xJAijmJ6yTi/VD4gx/fv2lgOuIYjnAQAAAAAAAAAAAAAAAAAAAAhCGA0AEuDKK6+Uq666as20u+66S0455RT5xCc+Ic8995z1dU888YR85CMfkdNOO01++tOfrpn3yU9+Ui6++OK+jTkub37zm+Xqq69eM+3P/uzP5G1ve5vcf//91tf4vi/f//735f3vf78cf/zx8uKLL1qfd8UVV8iVV1555PHy8rK8853vlHe/+93qskVEGo2GPPjgg/LRj35UTjnlFLn00kvl2Wef7WDrAABAJ6p+a/RURCTr5mJZvxYc0YIdsAt6v0bcMet0wmgIIyi6l4T4k40WaFodgiSMNhzCR7naR8B6IWyALQmRsDBjDTPOsN/z5B4P7O9D83lTO9Z1+lkGBdW06Nma8SjxsYI7Kq7y1xBRzuva9q4OuuVS9veOeC3QqubXZK4xa51XTAeH0RzHUeaQRtsoFhpzct/8ndZ5ry2cJsdmj495RGhHCx7WzLIs+Qt9W6/2c78rKUk7mb6tFwAAAAAAAAAAAAAAAAAAAMDw8wY9AADAYZ/5zGekWCzK9ddfL8Ycvolsfn5ePvShD8mHP/xhOeWUU+T444+XYrEoMzMz8swzz8hjjz3Wspx0Oi033HCDvO9974t7E/rmk5/8pDz77LPy5S9/+ci0b37zm/LNb35Ttm7dKqeddppMTU1JtVqVF198UR566CGZn58Ptewbb7xRSqWSfO1rXzsy7aabbpKbbrpJtmzZImeccYZMTU2J67oyNzcn+/fvl0cffVQqFXuQBQAA9N/qUNBqWkik17TgiBYEgV3Q+zXqjcvicuv1HGE0hBEU3UtC/MlGCxKVG0tijBHHcaRu6tbnpBx+vZckYfexvBJw6rXQ40nAdyNU9CzEc4Zpm23U64ym6x/tWNd5GE2P9ZUbSyJtGoxlJZ6WT41I2slI1bT+HiXKeT3M9Z+2DcRrgVaz9QPqPC2gtMIRLYyGjeL7h/5dambZOm/PxOUxjwZhTHhT6rxS7YCMpOxx8m5VlJ/7824hILIIAAAAAAAAAAAAAAAAAAAAAITRACBR/uIv/kIuuugi+aM/+iN5/PHHj0w3xsjDDz8sDz/8cODrzzzzTPmbv/kb2bVrV7+HGqtUKiX/8i//Iqeeeqpcf/31Uqu9cuPs/v37Zf/+/R0vO51Oy1e+8hX51Kc+Jddcc82a4Nn09LTceuutoZYxMqLfQAwAAHqr6tsDpVk3F8v6tQAb0Y1otIBKSjw1VlMjjIYQysp30RVXMk425tGEo4WMGlKXuqlJ2smoASHPaVMrQqzCRjpzARGqXgobyYorLho8hjDRs/bjDLvN2QRss412DmwOi2iB0U6Db/mU/jrtnB3mOXm3IJ6TVsJo9uBjlOWv/ry5RgPCKwWF0dLBYTTNyj/2gfXNN77cOXuzdd6ENyWnj74x5hEhjE1eURxxxYjfMq9Un5FtsrMv61XDpjFFggEAAAAAAAAAAAAAAAAAAAAML3fQAwAArHXJJZfII488Iv/4j/8oF198sXhecMMym83Kb/zGb8i//uu/yn333bfuomgrHMeRa665Rh577DF573vfK5OTk4HPHx0dld/6rd+Sr3/967J9+/a2y/7ABz4gTz31lPyX//Jf5IQTTmg7nrGxMbn88svls5/9rLzwwgty9tlnR9oeAADQuapyY21cgZN8yh6z0W74hZ32fuVTBUkroSctDAWspgVwcm5BHMeJeTThBAeJDm+PFhDyHP7dgyQJG3nIx3bOChfJ0s5tcQoz1jDRszBhsKyTk5STCjWuuOWU96H52KYe60J+5s08Jy1pJ2OdFyqM1rA/p5AaUY9TUc7rlYZy3bDq884rwUEtmAlsZAdr9jBawR1NRCwTyfXI4gNyoPaSdd6FE5cl9vy60aWclIx7Reu82fpM39Yb9LMZAAAAAAAAAAAAAAAAAAAAAAThzkkASCDP8+SKK66QK664QhYXF+X++++XJ554Qqanp2V5eVmy2awcffTR8prXvEbOPPNMyWazHa/r2muvlWuvvbaj1952222xvk5EZOfOnfK3f/u3cuONN8oDDzwgP//5z+XAgQOysLAgIyMjctRRR8nJJ58sp59+uqTT9qCG5phjjpGPf/zj8vGPf1yeeuopeeCBB2R6elpKpZK4ritjY2OydetWOfnkk+XVr361pFLc5AUAwCBU/Yp1elxhNC0UUPGXxBiT2PBS0miRkrxbEI8wGrpQbij7VoexoDgEhQEq/pJskgl1/9e+LxiMsJGHnBJw6rWwcZskRHBCRc9CxdPab0sStlejhd2az5tB59HO1z0itcZy67qV6Nna8difk3dHxHPTIo3WeTW/dV1Rl796v1Gv0ZSoGrCRler2MNpkenPb1zrCzzsb2e2zN1unp8ST3eOXxjwaRFH0NlsjaCUllNgL/bheAQAAAAAAAAAAAAAAAAAAALAxEEYDgIQbGRmRPXv2yJ49ewY9lERxXVd27dolu3bt6svyd+7cKTt37uzLsgEAQHcqvj1ukXVzsaw/r8RsfPFl2VQl68QzjmGnRVZyhNHQpYpy833YYNUgBIUBVmICehiNX+8lSdjgVj6mMFfK8STtZKRmggNU2rktTmECGWG+x6GeM4ShxJpZloapS+rl77wWGunmWJdPFWSuUWqZrq0rzHPy7oh4TsY6L8p5Xbv+Wx3Ly6fs+3HZXyReCzQp1aat0ye89mE0jRHT8WsxHA4svyiPLD5gnfeGsfNk3CvGPCJEMeFNWafPKqHEXhjGn80AAAAAAAAAAAAAAAAAAAAAJIM76AEAAAAAABBF1a9Yp4eN0XQraD3aTb9opQVOgsJoNZ8wGtrT4zzJvfk+G3RcaRzenoapW+dr3xcMRtj9LKcEnPohXHAsnnNo8BjajzPMtuRDRM+SHOMI+ixWH99Wjg3NujnWaYG8MGG0JSV4mk+NSFoJONaV45pNxdeDqq/82f7ercRrAbyipISQiukwYTR7ZJAw2vp3x+y/qZ/znom9MY8GUWnfb+140At6yHXw154AAAAAAAAAAAAAAAAAAAAAko0wGgAAAABgqFSVoFbWycWy/qDgSFmJlKBVWQmc5FMFSbv20FPdEEZDe1qgMMkhJNdx1TjASkygpuz/hNGSJex+lo8xBhEuOBZfqE0fQ28Cbr0KrA1K0GexOobWj2Od9r6UlejZCt/4avA0HxA8jXJeLwcs/5U/B7x3xGuBNUo1ewhp0tvS9rX2LBrWu2W/Kt8/9F3rvOOyO+TE/K/FPCJEVfSmrNNLtZm+rbPS0IPoAAAAAAAAAAAAAAAAAAAAABCEMBoAAAAAYGj4xpeqqVjnhYml9EIupd/AS3QjPC2gkutRQAUblxYoTHIISUSPA6xEBLX933O8vo0J0YU9F8UZgwgVE0vFvHdLFwAAIABJREFUF2pTxxBinGECbr0KrA1K0GdRXnWdUVauOfIB1ynt5FP291eLma6o+hUx4tuX6Y705LxeUY7tq79LQZ8r8VpgrYN1exitmN4c80gwLO6fv0sW/XnrvIsm9orjkMxLOu37PVufEWNMX9aph1yTey0GAAAAAAAAAAAAAAAAAAAAIBkIowEAAAAAhsayqarzsm4uljFknZw4Yr/pW4uUoJUWWckTRkOX9Jvvkx1G02JOKxHBuqlb52vfFwxG2MhDnKG+oKDniiSEA8MEvUJF3kI9Z/Dbqwn6LFaOBw1Tl5pZtj6nm23T1t0ujBY0P5/Sz+u1kOd1Y0yoEJwWdhMhXgusVm4sqd+JohcmjGb/WchIf8JKSIbbZ2+2Ts+7BTl700UxjwadmPCmrNOXTVWW/IW+rFMLogedswEAAAAAAAAAAAAAAAAAAABAhDAaAAAAAGCIVJWbakVEsiFjNN1yHEeNrhDdCK/cUAIn7oikuwyoYGMLE89JIi1mVG4sim8aYsS3zieMlixho1RxxTxF2kfP0k5GUo4X02h0Yd67cJG39qGNJB8PUo4naSdjnbcSIAsKsXYTudPeO+2c3Twum4I70nXwtGaWxZeGdd7q/SbjZInXAiGU6gfUeZPp9mE0x7F/z7B+PV3+hTxbecI679zxN8d6XYPOaWE0EZFSbaYv69SuEcLGhAEAAAAAAAAAAAAAAAAAAABsXIO/4w0AAAAAgJAqgWG0OCMzI9bARtD41osfzd0h3z/0XTWoMJraJKePvlHeXHybpJyUuhwtIpdz82J8ewAqbEAFG1vQvpVkWsyo4pelburq6wijJUuYcFfOzYsbcHzstXbBsTAhsTiECXqF+R6HCaWGDdgNSt4tSK2x3DJ95TqjEhAq6yqMllLCaAHhM5HDAUdNLiB4Gva8HjYE5zqu5Ny8co1GGA1YUapNW6c74gSGk9oypvPXItFun71ZnbdnYm+MI0E3xr1JccS1Bpdn6wdkm+zo+Tq135F0c70CAAAAAAAAAAAAAAAAAAAAYGMgjAYAAAAAGBpVv6LOizN6pK0rKAyyHtxRuln++Vd/E/icl+R5+WX5UfnV8n559zFXqc/TAiX51IjUTGsMRoQwGsLRAjpJiT9ptKBW2V8M3Pc9h1/vJUmYc1HcUa52Y0pKNDDM+xLme5x20+I56cDvTdLDaDm3IHON2ZbpK9cZQaGwMHE+jRYpCVpf0Py0kznyediEPa8HRc2a99+cW7COp902ABuJFjje5BUlFeK6wlGmk0Vbnxbqc3L//F3WeScXzpCjM8fFPCJ0KuWkZNwrymx9pmVeyTKtF/RodbKvxQAAAAAAAAAAAAAAAAAAAAAMnjvoAQAAAAAAEFbFL6vzsrGG0ew38QaNb9jV/Jp888BNoZ9/96HvyEvLz6vztUBJzs1L2snYx0AYDSFUGvq+lWRakKjil6Vu6urrtOAQBiPr5MRRkzGHaZ91v7QLT+RTyYgG5kMEvcJ+j9u9x3F/BlFpcbOV64ygyFc326aF58rKcXXFkhKGXVmedpyq+eHO60Hrb95e9VjaZhuAjeRgzR5GK3qbQy4h+DyH9eWeQ7eqIcs9E3tjHg26pX3PZ5VgYjd846u/I0n6z2YAAAAAAAAAAAAAAAAAAAAABo8wGgAAAABgaFT9inV62slIyknFNg4t3hIUKhl2jyw+IIv+fKTX3D93lzqvorxXebcgnuNZ52k35AOrad/DpMSfNFq8quwvBe772vcFg+E4TttQZ7tQWa+1C2UlJUwR5n0JG/1qt6y4P4Oo9FDi0pr/bXb4eqjzY4J+fWMPn7Wbv7I8z7WH0cKe17XtFWkN4wYdSwEcVlICSOHDaBrT5euRNL5pyB2zN1vnFb3Nctro2TGPCN2a8Kas00tKMLEb2u9vRJJ/LQYAAAAAAAAAAAAAAAAAAABg8AijAQAAAACGhnZjbdbNxToO7SbeoHDHsPvR/B2RX3P/vD2MVvOXpW7q1nl5d0Q8p7uACjauhmnIsqla5yUl/qTRQkjlxmKbMJr9+4LBabevhY179UrSxqMJ8x3NKeGuqMvKJ/x40C7uVW7ocdFuFFx7QLJmlqXm68chNUj58vLSXZ7XteXn3Ly4ztq/4tDibuv5Gg2ISgujTabDhdEccazTDWG0dedni/fLwfq0dd6FE5fFGidHbxTTShitPtPzdQWFVbXzNQAAAAAAAAAAAAAAAAAAAACsIIwGAAAAABgaVb9snZ6NOXCiBozWaXSj4pflpws/ivy6F5afk/3VZyzL09+nXCovaTdjnVfzlyOPARtL0L6VV4I/SaEFnyp+uU0YzevXkNChdnGqXCrec1a7mJgW4YpbyvEk42QDnxM2cJhPBX/fc23mD5oWbls5xmnHum4/y1zAcbISEDcpN+zzVkJr3QZPo2xvu6gcAJFSzR66KnrhwmiihNGw/txRutk63XM8OX/80phHg17QvuezfQijVZTf34gk5/oTAAAAAAAAAAAAAAAAAAAAQHIRRgMAAAAADA01jObkYh2HdhNvpbE+oxs/mb9XasYeJbts8p3y20f9gThKIOG+ubtapgXFSfLuiBp6qpt6iNFiIwuM7sUcUIxKDy4uBu77WnAIg9Mu9BB3pK9dqC3fJpwWp6D3Lu1kQu/v7b7vWngsKbRAWfnl6wztPNougtdO0L4QdO4uK9G0lfF0G0bT1m3bt7X9Pej8AGwkvvGlpASQiuktXS3bdPVqJM2vlvfLI0sPWue9YfR8GfMmYh4RemHCm7JOL9UOiDG9/RYHR6uTc/0JAAAAAAAAAAAAAAAAAAAAIJkIowEAAAAAhkZFCaPFHTzS1hcUDRlm983faZ2+KTUhv7H5Cvn14n+QE/OnWJ9z//xdLTdYB4fRCl0HVLBxlQPihHHHqKJSg4t+OXDfJ4yWPO3OSfGfs4LDE+3mxykozBXlfRumbbbJp+zbuhIY0UIj3UZGCgHHyaWGPX4moofRVpanBU9rIc/rWnjW9jlqn23Q+QHYSBYac+p1RdHbHGoZ9hyyCGm09eXO2X9T511U3BvjSNBLE2n793zZVNXzeae039+44krayfR0XQAAAAAAAAAAAAAAAAAAAADWH8JoAAAAAIChUTUV6/Ssm4t1HPmUPRyi3fg7zObrh+TRxQet884cu0BcJyUiIrvGLrA+Z7r2gjxXfXLNNC1wInL4s9RCTzWzHGbI2MC0WJCISE4JDSWFFjSq+mWp+fq+n1KCQxicdtGtuCN97YJi3ca0einovYvyvrXbpiRts01QKFFED4x2u11ZNy+OkjwKOr5q0bGV7dDiJ2GDp1G2V4vrrcdrNKATpfoBdV5RCSZh41n2q3LPoe9a5x2ffZXszL025hGhV4relDrvYE0/PnRCu3bIuQVxHD2xCAAAAAAAAAAAAAAAAAAAAAAihNEAAAAAAENEi1rEHUbTIjNlfzHWccThwfl7xBffOu/sTXuO/PkNY+eJo/ya4f75u9Y81gInOTcvrpMKCKjUwwwZG5i2b6WdjBrcSwotuGjEyKI/b53nSkpch1/vJU27EFm7+b3WLpbVLuQWp6CxRnnf2m1T3NcNUWnvw8p1hhYY7fazdB23o2scbV7h5eOadvwNG0ZTwyqWCJr2HqzHazSgEyUlfOQ5noylxkMtQwsaGTEdjwvJ8qO5O9Tj5p6JvUSthti4N6n+3D4bEE7shB5OTXawGgAAAAAAAAAAAAAAAAAAAEAycOck0GO2G0KM4YYgAMPN91tjKNwABwAYhKpfsU6P+8ZaLbqhhduG2X3zd1qnb04fLTtyrz7yeMybkNcWTrM+9/65u9b8XKTdZL/yvnqOZ51vxJeGaYQaNzYmNZ4zBDffB41xvn7IOj2d8NjbRpVLtQmjWWJO/dQultUunBanoO9BlPctaJuyTk5cJxVpXHFrd52hRSDzPdi38q490rjU0MNi2ryVZXUfRrNfX9k+Z+2zX4/XaEAnDtanrdMnvKkIsVXld4L8Nci6YIyRO2Zvts7LuyNr4tgYPiknJeNe0Tpvtj7T03VpP5tpQWgAAAAAAAAAAAAAAAAAAAAAWI0wGtBjrtv6tarVwt3kBwBJVa/XW6bZjncAAPRbVYlaZGOOHmnRjapfFt+0BkWH1cHatDxRfsQ6b9fYnpZQ6lljF9iXU5+Wpyu/OPK4XeBEC6iIhI+oYGMqN5Sb75XQT5IEjXGhMWedHvRdweAkLUTW7hwZd6gtSNB7F+V961VgbVC0bS03lsQYExCB7EEYTYmVaOsMmreyLC14Wjetv2uw0UJwtu3V3oNyQNgN2EhKtQPW6UVvS8wjQVI9VXlMnqs+aZ133vjFknGzMY8IvTbhTVmnl+r240On9PN38qPVAAAAAAAAAAAAAAAAAAAAAAaPognQY47jSCaTWTNtYWFhQKMBgN5oPo5lMpmWEAoAAHGo+hXr9LjDaFp0w4hRxziM7p+/S523a9OFLdNeP3auuJJquywtTpI7EkbLWOeLiNTMsjoP0KJ7w3DzfdAY5xuHrNO12BAGq12cqhfxqijSbjowohd3qC1IPiBaFuV9C1pOkrZXo21rQ+pSNzU9RNaLMJqyjCVfD4tp81aCj9r+F/acXlGjl61jVeO1piK+aYRaH7CeaeGjYnpz6GVovxE0YjoYEZLm9tLN6rw9E2+NcSTol6IWRqvN9HQ9+s9myb8WAwAAAAAAAAAAAAAAAAAAADB4hNGAPhgbG1vzeG5uTozhpiAAw8kYI3Nzc2umNR/nAACIi3ZjbdbNxTqOoOCKFisZRj+au8M6/bjsDtma3d4yfSQ1Jr828nrrax6Yv0d844uI/jmuxEzSrh7wqZt64JixsZW1OE/AdzYp0k5GUmIPnS0oYbQUYbREyrcJ8Q0izBW0ziTFKYLGEiVwGLyc5GyvJpfSt7XiL0lZudboxbZpyygrcbKavyx1U7POe+W8bg+e1n3761rWrW2v5dhum7ZCu/4ANpJSTQmjeeHDaFoajTDa8Juvz8qDC3db551SeIMcldka84jQD1oIUQsndqqfIVcAAAAAAAAAAAAAAAAAAAAA6x9hNKAPmoNBtVpNnn/+eeJoAIaOMUaef/55qdXW3qy8adOmAY0IALDRVf2KdXqUWEovBIVH1kt044Xqc7Kv+pR13tlje9TXnTV2gXX6bH1Gniw/KiJ6vGolZuIFxJ7CRlSwMWnfv2EIITmOowbc5utz1umeo0cEMTjt9rdB7I9B60xSnCJoLHl3JPRyehVYG5SgbS37S1JpBAdGu1FI2dddUc7dWrRs9bK0Y1XY2GmUsErQe7BertGAbmjho8n0lphHgiS6+9B31GPznuLemEeDfpnwpqzTZ+szPV2Pdv4ehmsxAAAAAAAAAAAAAAAAAAAAAIOn32kMoGO5XE7S6fSakND8/Lz88pe/lE2bNsno6Kh4nieuS5sQQPL4vi/1el0WFhZkbm6uJYqWTqclm80OaHQAgI2uqgQtsm4u1nEERTe06NewuW/+TnXeWZvs8TMRkTNG3yie41lvqL9//m45qXCqGlFZeV89J6Muv2aW1XmA9v1LUvgpSM7Ny0KjNYJmmyZCGC2psm1iD1oAr5+CAhR5JYQ1CL0KmvUqsDYoQdta9pfaBka7ob0/S2oYTb/uybnBwdOG1MU3vrhO8O9ItesG2/sUtA8dHivxJ2xcDVOXQ/WD1nlFJZRk44ijzOEfhhlmDdOQO2e/bZ036W2R142cFfOI0C9Fb7N1+mxtRowx4jjadzwaLeQ6DNFqAAAAAAAAAAAAAAAAAAAAAINHGA3oA8dxZOvWrfLss8+KMa/cDFSr1WRmZkZmZnr7r64DQFxWjm+9ujkKAICoqn7FOj1KLKUX0k5GXEmJL42WeRUl3jZMjDFy39wd1nkn5n9NptJHqa/Np0bklJEz5aGFH7bMe2D+bnnXUb+vvkcrN0inA2JPdVNT5wHt9q2k04JE841D1ulabAiDlW9zThrE/qit0xFHMk5ywteBYbQI0a/g5cR7zdCJoOuaufqs+OJb5/UiAqkdh8oNe5ys3NDDaIXUqIgERxzrpha4D/rGV8O4trEGvQdaoAXYKGbrB8Uo8bLJdPfRQLJow+1nC/dJqX7AOm/PxF5xnVTMI0K/TKTtYbSqqUjZXzxy/u6WGkQfQCQYAAAAAAAAAAAAAAAAAAAAwPDh7kmgTwqFgmzfvr0ljgYAw8pxHNm+fbsUCty4BAAYHC16lHVysY7DcRzJuwVZ9Odb5gUFQkREDtUPyrOVJ8VYoiY5Ny87cq+RjNs+UjNbPyjPVZ6UozPHyZb0MR2HS33TkH3Vp2S2fvDItFLtgEzXXrQ+f9fYhW2XuWvsQmsYbb5xSP699E05WPuV9XUrMZPggEq97fpFDsfdpmsvyIvL+0I9f8Wm1IQcnztRUiFu/F/2q/J05ReRYniuuLI9d5Js8ibaPrfmL8vTlcel7AfvU82Oy+4IjNd1quKX5enyL2TZVHu+7F45sPySdfqw3HyvxZAWG63HGpHg7woGp134bBAhMu07kHPz4jpuzKPRBX1X2wXnVguKn/UiHtZvrpOSrJOTqmkNwj6y+ID6ul5E97TPoFSftp7b91Wesj7fEffI9Vnayajrq5uaZET/TlT9ihpysh0z025GPMezXi88uvRj67VbGCnHkxNyJ8loalNHrweSoFSzR69ERIqePZTUSw3TkOcqv5S5xmyk123NnCCbM0f3fDzGGHlh+Vk5ULNfPx6V3ipHZ47bMP9AxO2z37JO95y07B6/JObRoJ+K3pQ670dzd0hRCadFdWjV7xhWG5ZoNQAAAAAAAAAAAAAAAAAAAIDBIowG9NFKHG3//v1Sq9UGPRwA6Fg6nZatW7cSRQMADFTd1KQh9ihWNkIspVdyqbw1rqFFshqmITe99Dn5/qHvBi437WTkPcf+qbx+7Fx9OS9+Tr4/98pyXls4Tf7zcR9Wo0qal5afl8/s+6jMKKGyZq64cubY7rbPe93oLkk7GamZ5ZZ5X5v+ovq6fGpEREQ8R/91hW2ZzcqNRbnx+Y/J4+WH2z7XZjxVlKu2XSPbcjvU5zw4f4988YW/DDUemwsn3iq/c9R/UoNEDy/cL5/f/ylrFCeMM0bPkSuPvVrSrh6jieIHh/5d/vHFz6nfwaQblpvvV74DzWwhRRERzyWMlkTt9rdBBFa080PSvhtB48m59u+HTVD8LGnbrMmlClKtt54DtHCNSG+ib3nlfT5Qe0lufP5jEZZTOLKvdxM8rfhL+jqUY2bOLchCY65l+rdm/iVwXWG8dfK35Tc2X7FhQklYX0r1aev0nJtXv082jmj7v/4PxOyrPCWf2XedzDVKodez2qkjZ8ofbP2AZN3eBLEP1Q/KXz/3Udm//Ezg87ZnT5Q/3naNjHrrO4r40vLz8vOln1jnnTV2wbrf/o1m3CuKI671Z4x/+dXf9n39UX9vAQAAAAAAAAAAAAAAAAAAAGBjst99C6BnCoWCnHjiibJz506ZmpqSTKY3N6UDQL9lMhmZmpqSnTt3yoknnkgUDQAwcFpwTER6doN8FFp8RAt43DF7c9somsjh8Nfn9/83OVQ/qC9nbu1yHlv6qXz1V19su+xm//fz/y10FE1E5OSR18uYN9H2eTk3L6eN7oo8npUbpF0nJa6krM+pm/bR6a9Of7HjKJqIyKFGSW58/noxxh53OFiblv9n/6c7jqKJiNw5+29yz6FbrfOWGgvyN/s/3nEUTUTkJwv3ys0zX+749au9WN0n//DiXw1tFE2kN7GgOESNBATFhjA4uVTyYg9aDCxp342g8eQjfD9Sjidpx/47uKRts6aTcfYi+tar92d1ZCkoeNruvF4OCKNpx8x+fsb/dvDL8pOFe/u2fKCfSrUZ6/SityXScqKGAX3jy//1/PUdR9FERB5efEC+eeCmjl/f7O9fuKFtFE1E5NnqL+X/fekzPVtvUt0xe7M676KJvTGOBHFIOZ5sCvFzfb8MS6QWAAAAAAAAAAAAAAAAAAAAwGDpdyQB6BnHcSSXy0kul5OjjjpKjDHi+756kz0ADJLjOOK6buSbHAEA6Leqr0eiosaEekG7mVcLeDwUIaLhiy8/W7hfzp+4tGWeFuN4aOFeuULeF3od08svhIoBrLZr7MLQzz1r7AJ5YP6eSMvPu69EVNJOWqqm0fKcMGG0XgRLDtanZV/1KTk+96qWeY8u/lh8aR1bVA8t/FAumHhLy/SHFx+Quuk+QvaThXvlbVve3fVyHlr4YdfLGLRhufl+9XcgjKDYEAYn6Jw0qCiX9h1I2ncj6L2LOta8W5BaozVgmbRt1kQdpyNOT0Kxq4NmXS1n1fiDIo7tzutacFZkcPv1Qws/lNePndvXdQD9cLA+bZ1eTG/uyfK1v+/YV31SSvUDXS//Jws/kHcddWXXy6n4ZfnF0s9CP//niz+RhqlLap1ed1X9ivzg0L9b523PnSQ78q+JeUSIQ9GbUmPs/TYskVoAAAAAAAAAAAAAAAAAAAAAg7U+/1/8QMI5jiOpVGrQwwAAAACGSlAYLZugMJoW8CjVZiItX4sH/GLpp9bpc41ZqZtaYHwkzPI1aScjZ4yeE/r5p46cJTk3LxW/HPo127I7j/zZc9JSNa2febuASs2vyUJjLvQ6g8zWZ+R4aQ2jzTVme7R8+2cwW4+2r0RdfvTl9GY8g7R630qyqOMclu3aaDwnLcdmjpcXlp9rmXd6hONoL2n7yrZcsvahCW9SRlPjstA4tGZ62snIUZmtkZa1LbtTHll6sHV6wrZZsy27U56u/CLS813H7Xq9x2V3iCOOGOnuH3RoPqdraqY1Xrdmvq/PzzhZdd3PVZ9sM8LOrYfzIjamUs1+bTjp9SaMpq+3N9+ZUm1GjDFd/2MOi435SJHjZVOVql+RQmq0q/Um1Y/mblfj3hdN7I15NIjL9txJ8nTl8djX64gjW7MnxL5eAAAAAAAAAAAAAAAAAAAAAMOn+zulAAAAAACIQTUgsJUbQBgtr4TRyg37TeVRAmGHn29fThBt3TaLjYVIy7508u2ST9m32SbjZuWyyXeFfv4pI2fK5szRRx57rj2iUvODw2gVfzH0OtvRAgHSZSym3fKjfI5BKn5ZfOP3YDm9Gc+gvLZwmhyT3TboYYRyxug5Mu5Nhnpuzi3IrrEL+zwidGqPJSSSEk/OH79kAKMRed3oWTKVPmrNtLSTkfPGLx7IeDSuk5ILJy5rmb57/BLJuPYIlubCibeKI2vjOTtyr5Ht2RO7GmNcdo9fHDp2KmLf5zox7hXl9aPndbUMz/Hk/PFLjzxOuxn1uXVTD1yWFkT1HE+NI+2euFQ8p3//JsywnxexcWlh5GI6Whit+djaTq++M740ZNlUu15Ou9CyTbexyKQyxsjtszdb5424Y3LW2AUxjwhxuWD8LZJ29PNzv7xhbLds8iZiXy8AAAAAAAAAAAAAAAAAAACA4dO/u4MAAAAAAOihql+xTnfEHcgNvTklElZWwlzadE0ncayyvyhjMh7quUtKGM0RR7Ju7sjjordFzh3/dbm4+LbI47l08u2SdtJyz6HvysH6r6zPGUuNy6kju+S3tvwva6ZrMZh2IYNyQIAu6+SsEZWqX7HGDirKZ2CMPYzgiCtZS7inYRpSM8utY1WWr+0rrrjWMJBvfGskwoiRql+JFLSzj8c+zpR4klYCdkkwmtokp46cJb+15T8OeiihjXqb5OrjPyZfm/4H+WX5EevnmnI8eVXuZLl88+8MTfBtI7qoeLmknJTcc+i78qvl/bI9d6JcOvl2Oalw6kDGk3Pz8qfHf0y+Nv338mT553JM9nh56+Q75YTcSQMZT5D/MPU/S87Ny31zd0rd1OXMsd2yd+q3Iy/njLFz5A+2/u9yW+l/SKl+QF5bOF3eseU9akwraXbkXyN/vO0auWXmK/J05XHxpWF93rGZ7XLBxFt6Grl7z9b/Taamj5KHFn4oc41S6Nc54soJuZPkLZPvkBMLv3ZkelCkrN4meFpTw2j6td+J+ZPlquP+XL598CvyTOUJMdJZJLRu6tbrDj2cCiRbqaaE0bxoYTSNFg/TvjPNP3ccWY4xUjX2n/3K/pL1NVG0Cy3brNcw2i/Lj8rz1aet884bvzhylBTDY1tup/zJto/KzTP/XZ6pPCENCQ6Vdmvcm5TTRs6Wt215d1/XAwAAAAAAAAAAAAAAAAAAAGD9IIwGAAAAABgKFSV4lXXtsat+y7v22JRtnA1Tt4axRESOyWyTF5f3WZbTGhBoFwVbaoSPry359jDacdkd8uEd/2fo5QRxHVfePPk2efNk9Khap2E02/u24voTPy+F1GjL9E8882fybOWJlulaxEELI5yYP1n+dPvHWqY/svigfGbfR61jNca07L/avr5r0x75vWP/15bpLy0/Lx996irrayr+UtdhNO09vWTyN+U3m4J26N7mzDHy3uM+MOhhoAcumLhMLpi4bNDDOKKY3ixXbr160MNoy3EcuXTy7XLp5Nu7XtYbxnbLG8Z292BUg/GawuvkNYXXxb5ez0nLO476PXnHUb/Xk+WlAv4aot15vW7soRbtOmHFa0dOl9eOnN5+cAHuPfQ9+fsXb2iZroVTgSSr+hVZ9Oet84rpLRGXZv/ZS7tG1q4lT8idJB844VMt02frB+XDv7zS+ppyY1EmvMmQ47Rrd9yx0cLIw+6O2Zut0x1xZM/EW2MeDeJ2YuHX5I8L1wx6GAAAAAAAAAAAAAAAAAAAAABg5Q56AAAAAAAAhFENCKMNQk4Jo9liWlpgS0Sk6G0OvZxKw/4evPKa8GG0xYY9jDZiCYcNQrrDMFrQe51z89bpWuQuahhNi0Roy/fFl2VTtazX/jlqy9H2xcPL6j7eUlYCMHl3pOtlAwDWP8dxOg6e1pWwrOf0/998yafs57lenFuBuJVqB9R52s+qBbXHAAAgAElEQVQjmqhJai36q13Date8ItF+3tF0EkYT9fp/eB2ql+TB+e9b550ycqZszhwT84gAAAAAAAAAAAAAAAAAAAAAAHgFYTQAAAAAwFDQbqjPOoMJo6kxrUbrzfpBQbNiOnwYrV0IYEmJndmfO2+dXnCTEUbTAiq1NiGDihLxyjo5cZ2UdZ4WZahEDJ84SiYiargsaogsOB7RfbxFj1nYQ3MAADTTgqftzutawEhbXi9p57llU5WGafR9/UAvlepBYbSpvq5bv7a1X8NmnKy4Yr9ut/2sFVUnYbT1l0UTuefQd6Qhdeu8iyb2xjwaAAAAAAAAAAAAAAAAAAAAAADWIowGAAAAABgKVb9inT6oOJMe02qNSAUFtoqePYxme40WqFrRLpy22pJvj6gVUskOo7ULGWghsFxKj4fpkTv7soz41umOYw+jBYbLbCE9bRuUfT3tZNR4RNS4m422X+UD3lMAAFbr9LyuhdO05fVSUNi02uaaDEgaLYw2lhqXtJuJtCwtBmyUfJh+bWv/jjmOo15n9iL62y7IaKNt27BqmIbcOftt67zN6aPllJEzYx4RAAAAAAAAAAAAAAAAAAAAAABrEUYDAAAAAAyFqrEHKLJuLuaRHKbfrN8akQq6gb+YtofRbFGuduGzJUtkS7PYsIfRRlJjoZfRT+kOAypRwwtB87RlGaWLYE9EBEfZooT08qkR+3qD4hFK3C0KLcgX9J4CALBap2G0uqlHWl4vBYZNI8RogSQ4WJu2TtcizYGUGLBG+1koKLJbcO3XvUs9+O61O+7YrLcw2kMLP5TZ+ox13oUTe8V1+OtjAAAAAAAAAAAAAAAAAAAAAMBg8f9sBwAAAAAMhapfsU7PuvmYR3JYXrlZv2aWpdEU8dBCV2knI6OpTdZ5ttdogaoVUSIdS0oYreCOhl5GP3UaUFHDCwFxEz1yp4TRlDCCo/yaJevk1HlRQnqB26DG3bqLR9RNTWpm2TqPMBoAIKzOw2j2c1AcYbSg81y5EXxNBiRNqX7AOr2Y3tLDtdivkXsaLu5B9Fc7rgTSyshD6o7Zb1mnp52MnDf+5phHAwAAAAAAAAAAAAAAAAAAAABAK8JoAAAAAIChoEXBcgMKowWttzlspcUA8m5BXc6yqbYE1sqN4MjVUpQwmq+E0VLJDqPV2gRU9PCC/nnpUbFoYTSN4zjq+pvXYYyRshJ8CNoGLR5RbhPTa6cSEH4JCrUBALBap+d1LZw26DBat+FRIG6lmhJG8zZHXpYjjnW61g7r5Pq8kLJHqKP8vKOpN/2MFUbU6/8ke6H6nDy29FPrvLPGLlDD3QAAAAAAAAAAAAAAAAAAAAAAxIkwGgAAAABgKFT9inV61s3FPJLD8q79Zn0RkUpT2EoPXRUCl9McWGt+3PL8NuG01RYbyQ6jpV178KTuBwdUtPc66H3Wo2La+20PI2iRiMPrV9bRNN66qUlD7LGGoG3Q427dxSO0kIVIcDAGAIDV0krITAufragp531teb2UdtNqgK3b8CgQt1JdCaOlo4fRotK+L8HX5/Z55R6E0bQgoxvwV6brKYx2x+zN6ryLipfHOBIAAAAAAAAAAAAAAAAAAAAAAHSE0QAAAAAAQ6Gi3FCfdfMxj+SwfEqPQjUHtbSx59y85ALGX2msfV1QpEpEZClkKKBhGuqyRtxkhNG0EEm7gIq2XbmU/j7rUTH7snzjW6c7jv5rlnzKHndoXkdQ/C5on9OWr4Xiwup0PAAArNbpeb1u7LFQTwmo9poWAW13TQYkiTFGSjV7GG3S610YTYuHNUejVwT9HFTQwmgRQtAa7biTdjLqa9ZLGK3il+Xeue9Z5+3IvVpOyJ0U84gAAAAAAAAAAAAAAAAAAAAAALAjjAYAAAAAGApVv2KdHnRDfT8Frbc5JlVWgmX5VEHyyk3/ttcFRapEwocCgp5XSA13GE17j4Le55wS+Co3lsSY8BEEJ2Cetr+E3VcOL0MPkWnL7zbcErTPDeq7BwAYPlrIrH0YzT5fu07oNS2e2u6aDEiSRX9elk3VOq+Yjh5Gc9Sr3tbrZmOM+n3RrsFF9ABvL757dV8Jo7l6GM22bcPoh4duU6PdeyYuj3k0AAAAAAAAAAAAAAAAAAAAAADoCKMBAAAAAIZCVbmBO+vmYh7JYSnHk4yTtc5rjlFpN5/n3ILkUuEDa5WGfTkrlgKiWqst+vPqvKSH0WptAipaCCwo4qVFT3xpSM0st0w3ahhBT6NpYbaw+8rhZQTEI5TldxuP0N7PtJORlON1tWwAwMahnteVQNGKuuU8HLS8XlPDow3CaBgepdoBdd6ktyXy8vQwWquaWRZfGtZ5HV3bhgxBB+kkuBihlZxYxhi5Y/Zm67zR1CY5a+z8mEcEAAAAAAAAAAAAAAAAAAAAAICOO1gBAAAAAJH9wws3yHTtxVjX+eLyPuv0bEDwqt/ybkGWG9WW6eWmWIYWp8q5BfGctKSdjDXA1RylKrcJn4UNBSwFPG8kNRZqGf2WVsIEWshgRfN7vyIovJALmFf2lyTjrg3gaWG0oEiEtv6WfUX5bBxxAvd1bRu6DaPp76c9VgEAgI2nxDTbndfrpm6drl0n9Fo+pYVNg2O1QJKU6vYwmisp2eRN9Gw9tivkoGvRoGtw9dq5y2tbET20rEWvDxv+MtoT5Udk//Kz1nm7xy+RtJuJeUQAAAAAAAAAAAAAAAAAAAAAAOgIowEAAAAAIttXfUr2VZ8e9DBERCTr5Aa27lyqIIcapZbpzUGz5scrVm74z7sFqTVaw2jNUap2EY524bQVS41563RXUgN9P1fzOgyjae91J+GFleWNS7FpavQwmh4uW2x6bB9/1s2L67jq8rVtqChhs7D093NwQUIAwPBJO/bgTrvzuhYw0q4Tek0734W95gKSoFSzh9EmvElxnVQP19R6jaxdS4oEX09qUcJefPe0405QGMxfB2G022e/ZZ3uiCMXTlwW82gAAAAAAAAAAAAAAAAAAAAAAAim31ELAAAAAMAQGGSgSYtRtcSulDjVSixLi2Y1hwTahQBqZllqfmtgrdmSv2CdXkiNiuPoca84dR5Gs8fj8ik9fhYUTbN9dkYLowW8d9r6m8fbaYgspyxfC62Fpb1ei1UAAGDT6Xldmx9fGC3c+RtIslLdHkYrpjd3tLygGHCzoO9K3tWvJ7V55UYfw2iBx5XhDqMdqh+UH8//wDrvdSO7ZCp9dMwjAgAAAAAAAAAAAAAAAAAAAAAgGGE0AAAAAMBQG0mNDWzdYWMZWuxqJZYVNmoVJsKx1CaeJiKy2LCH0UZSo21fGxctTFALCKgYYwLCYnr8LOvm1MCDbXnGKGG0gEiEtv7mz1gNkQWEIw7P708YTdvnBhkkBAAMH8/xrNPrph74ukGH0cJGcIEkO1ibtk4vep2F0TS2eHBQyCzr5tR5WoS3airSMI3og1tFP65k1NdoYeRhcdfsLeKL/X27qHh5zKMBAAAAAAAAAAAAAAAAAAAAAKA9wmgAAAAAgKGVdwuyM/+aga7fptxoDpoFx7q05TS/LigsEOU5S0oYreAmJ4ymBU+0kIGIyLKpii++dZ72HouIuI6rhr5sYTE9jKCH0fR9Ze3nVWloYTR9/CJBkb7uwmha+KXdeAAAWE07rwcFT0X0874WUO21sBFcIMlK9QPW6ZPpLZ0t0NGveZsFRXZdR/8ryqBrzW6vb7XjTiYgjDbMGqYud81+2zpvS/pYOblwRswjAgAAAAAAAAAAAAAAAAAAAACgPcJoAAAAAICh5Dme/Mdj3i8pxxvYGHIpJXbVFJMqBwQBRAKiWX5zYK19hEMLWa225CthtFSCwmhu9DCaLWK2QgubtJsfJbwQlIgIG1bRtkHb11Zo+1Dd1KTmB0dnglQa2r5LGA0AEF5aCQ7VzXLg67SAkRZa6zU1XquETIEkKtXsYbSit7mj5YXPorUPRGsK7og6rzlCHZUaXHT1MJpv7PHlYfCThXvlUKNknbdn4q2BgToAAAAAAAAAAAAAAAAAAAAAAAZlcHePAwAAAACG1p6Jy2W+MTuw9W9KFeXkkTNkKn3UwMYgEhDLaIpdVZRY2crr1WjWqpv+jTGhIl1LIcJoiw17GG0kQWG0tBI8CYp8BUVKtM9q9XxbLsAWKvPFHkZwAvrz+ZARPe0zbjv+gHBaxV+UtDsR+Hr9tZ3FLAAAWE0LmQUFT0VE6sp534spjKtHcAmjYTj4piGz9RnrvGK6szBaEGOMOM4r6TTtu9Lu2jYoChwmBB1EDaMpAcdhd3vpW9bpaScj541fHPNoAAAAAAAAAAAAAAAAAAAAAAAIhzAaAAAAACCyCybeMughJIIWh1p9s37Nr0nd1ANfr0ezXgkJLJuqGuRa85pG+1DAkhJGK7jJCaN1ElAJipQExRVEwsXpjjD2ZaxqQIRefs0sS8PUJfVy4EULPbSNRwTML/tlGZPOwmhqzKLN+wkAwGpayEy7RnplvhJGc+MJGOXdvHV6mFgtkARz9Vn1Z4ii12kYTb/oNWLEWTW/08hu3h1R53UdRlODi/afP0QOb9cw2l99Rh4vP2ydd/amPVJIUBgbAAAAAAAAAAAAAAAAAAAAAIDV3EEPAAAAAACAYaXdsP//s3evQZKlaWHfn5OXqszq7umunu7dZXeBXeEFA+Ky2l2WhWUGDCzM2FgXK5AEtqyLwxC6IFsKhxwmwjYKO8L2B4fsT3bYDiFHOPzFJqQIxw7Cus0uC5JASIAkECIwIUBcZnaqZ3q6srrzcvyhJ6ezqt/n5MlLZVX3/H5ftuu855aXOufNGvLPyWy08O88nDGPS+X7ebRtU/Rr0XGLUMDxLAmjXaIvxq8TRsue6yo6sV8NGo+Xx+kefz7zMEIeiWgKmy2+tifTUXGd5fGIfPxkg3jEujELAFiU3dfHDff1iPy+328IGG3TIJmjtZ2XwUV7bfJKOnbYXy+MVjXMec8alSLDsTz626266fz9uEUIukl23ek3BhefzDDay3deSseev/HiDs8EAAAAAAAAAAAAAABWI4wGAAAAaxp0hsXlo4Uv6zeFM+ZxqXQ/p4JZ7QIcoxahgHvTu8XlV7rXWh1jF/pVOUzQFFDJnutBZxhV1RxwyEJfi5G7uTpmxXU7DX9myeJ3Eadf2+wxZOG2uew9FJEHKdpIz0cYDYAV9DpJ8HT2oHG7LIzWq3obn1Mbw+T+OqnHMZ41R93gMjgav1pcvlftx5XOecz9TwfE0shuN5+7zg27y+PR68iuK3vJ54+IiFn95IXRRtPj+Aev/93i2AcHXxZfOPhduz0hAAAAAAAAAAAAAABYgTAaAAAArCn7sv6poFnDF/fncaksmrW4bVNgbdHx7M3l6yTxtIOGeNeuZcGTOmYxrafFsey5bhPxytYZzZaH5tpoij+MTr3O5eNl4ba5TtWN/WqwdP+rSmMWwmgArCALnk7qSeN2WRC1V5VDa9s2aJgb3S/EU+GyOZqUw2iH/VtLw8GZpq3O5sNKkeGIdnPJbH5+vOH8PA8u5mG0xx/Z5fcP3vi7cb8+KY49f/jijs8GAAAAAAAAAAAAAABWI4wGAAAAa8q+rH8yG0VdP/zyfFOUatAZnvrfs0bTdoG109s0hwLquo7j2d3i2EH3Wqtj7EJT8CSLGSw+X4vahBeydU6mj8cc6iSMUDVkIpribKdDeuV4RKu4WxLqa/veOauu6/Q5HXaF0QBoLwueZvf0ZePNAaPtGTaGTbcTT4Xz9No4CaP1bm2w1/ZBteyzUJu5bT4/Xz/6G5FfV/Y6+XUlm/9fVnVdx8t3Pl0cu9q9Hh+++g07PiMAAAAAAAAAAAAAAFiNMBoAAACsKfuyfh2zuF+fRET+xf39ahCdqhsRzUGrNoG1RcdLIh0P6vsxqSfFsYPu1VbH2IWmMNq4flBcngXA2kS8snVKz/v8NTmrqvJIRLfqxV61XxxbPO8sbNcm7pYFJtq+d84a1w9iFtO1zwcA5rL7elMYra7rdM7Sb5gnbFPT/S6LmcJlcjRJwmj9TcJoTU7Pk7P5eZu55EHyGWnZ551lLjq4uAu/NPon8VsPfr049o3Xvz36nd1cQwEAAAAAAAAAAAAAYF3CaAAAALCmLEQV8SiIlscAhkv3M4tZPKjvR0QezDpr2XrH0zfTsSudyxNG63fyMEEWSckCYG3CC9k6pdevjnIYLSIPozUdY/6azerp20G9s7J4Xpv9Z+/BZZqCL8OF9y8ALJOF0cYNYbRZTKOOWbK/3lbOa5mmOcRowzgT7EIaRuutH0arGua8Z+fJoyQS3fQ56tE65fnvpr972XVnryGMll2LLqvPHH26uLyKTnzTje/Y8dkAAAAAAAAAAAAAAMDqhNEAAABgTcNuUyzj+NT/njVYCF01RzfmgbU8UnV6/eZQwL2mMFr38oTRmoInk1k5ZpAFwNqFF5JoWXGf5TBaUyQiIn+/tHmN24TI0seQBCmWaXovtYnNAcBcPwmjTRrCaE3RtCy0tm3dqht71X5xrO3cDC7S0fiV4vKb/dvr77RqnvMuSiPRDZ+j5tIwWstgdCa77jRdV7Is8mV0NH41fvbNv18c+6qrH93stQcAAAAAAAAAAAAAgB0RRgMAAIA1NcWhTt6OXWWxruHCvxvCaG998X9Z8GzueEko4HiWh9EOLlUYLQ8TjOsHxeVpeKFFVCx7LUv7nK0bRltyjCyi9/D8ymGIU+uk4bX14hHNoTZhNADay+7rk3ocdV2+rzZF03YVRovI5wjrhkdhV8azB3F3+npx7LB361yOefbXOY1EtwkXL4kKryu7tux19tJtsuvUZfTjr/9YzGJWHHv+xos7PhsAAAAAAAAAAAAAAFiPMBoAAACsaa/aj07y0Xr0dhitHJdajAFkQavF7ZsiVYuOl0SwjqflMNp+NYhu1Wt1jF3oV3mYIIsZZIGSVuGFNFo2ilk9PbN0vTBaGlaZh9EaAittQmRNj2Edo4bI3n6L2BwAzGUhszrqmMXZ++xDk3qS7q/fEDDatizOlAVZ4bI4mnw+HdskjNY84300T67rOp2HtpvblsPATXPUNrLPEr2Gzx/Z/P+ymdTj+NydHyuOvav/3viyg6/e8RkBAAAAAAAAAAAAAMB6hNEAAABgTVVVpV/YP1kSu1qMAexXg6jSwNq9U/+7zGh6L+o6/+L+vend4vKD7tVW+9+VLKASkYdS0vBCQ3iuzTpn95s+vc2ViDQAMX+PnDS8xm3ibsvCa6vKo37D6FT+pARAe0339XESKZrMHjTsb3cx123fX2FXjiavpmOH/U3CaEsmvW+5X59EHbPi2Cbh4k1+92b1LP0ssdcQRqufkDDaP7779+KN6Z3i2HOHL5jDAwAAAAAAAAAAAADwxPB/AQ8AAAAbGHSHxeWPYlflL+4vxgCqqopBp7yf+fYn03Kk6qxpTGJc5yGR4yS+deXShdHy4MkkCahk8bhNomIRhTBaEnjoLPkzyyCJr70d0UtCZL2qH/1OHpSZy8Nr7aJ6j223wfMJAIuag6fl+3oWTFu2v23L7q/ZHA8ui6NxOYx2pXMt9juDcznmYkAsi+xGRPrZZ9GwWw5Qtw1Gl0yTKFpERK/z5IfRPnPnpeLyvWo/vv6Zb9nx2QAAAAAAAAAAAAAAwPqE0QAAAGADaYzqrS/sj5JoxvBMJCuPWs2jWe0DAFn8LCLieHq3uPyge631/nehU3WjE93iWBZ+y+IL2XPbdp1N4gunj5HFHeYRvfJx2px/RFN4rV1Ur+12bc8HAOaaAp+TWTmAlgXTInYbRssCTtkcDy6Lo8krxeWH/Vsb7rlqtdbJNP8dyaJnp9Zp+HxU1+uFypquK3tVUxjt8vuN+78avzz6Z8Wxr3vm+Ti4ZCFsAAAAAAAAAAAAAABoIowGAAAAGxgkX9ifR6VOkmjG2e3y/cyjWe3jVqNpHvK6N32zuPwgiXZdpH4SPcmCBtnjzp7btuucTE8/93WSRqiW/JklC6vMX+NREo/IgmqPr9cc6VtV2/cuACzTFDLL7uuTepJu028IGG1bOkebrhcehV05Gr9aXH7Y2yyM1i6L1hwPzObFi4ZJyGsakzSUvMzawcU1Q2y79PLRS+nYczde3OGZAAAAAAAAAAAAAADA5oTRAAAAYANZLGMeo8rjUqdjAMNutp/jU//bxnFDCOt4Vg6jXelea73/XcniBKVQyqyexv36pLh+Fgxb1O/sRa/qFcfOhsXqmBXXq5ZkIrLA2TyIlsXv2oQjmvafvQeXyUNtwmgArKYpODROw2hNAaPyPfs85HO09cKjsCuvTZIwWn+zMFqTxYBwNgetohP71WDpvprmnOv+/mXXm4iIvc5+OpbN/y+L0fRe/NQbLxfHvmT45fH+wQd2e0IAAAAAAAAAAAAAALAhYTQAAADYQBqjmj6MXGVBs7PbLYtarRK3Op6W42dNYwfdq633vyu9TjmiMp49eGxZFhWLyIMmZ2WRu7P7ruviarGki5aex8nb8bty4KH9+ZcDaiezUczq1WMOadSv2y7UBgBz/YYwWhZAG9eP3+8jIjrRiU7V3cp5tdF2fgCXzdG4HEa72bu94Z7zSW+bMNqgM4yqWjJxjoiD5PNRRMTxdL0wWnNwMb9OZdP/y+LvvfF30kj08zde3PHZAAAAAAAAAAAAAADA5oTRAAAAYANZJGoeuZoH0h7b7kzEKotajaZvhdGm7cNoWWAroiGM1rmEYbQkTlAKGjTFSbKgyVnDZL3H43blNEJnyZ9ZsvOYv15ZRG/QEIVYNOzm691fI97SNuoHAMs0BYeyUFG2vGlf5yGbH6wSrYWLcDQph9EO+89utN82UbOIprlky+hvQxx43d+/pjDaXrWXjtWXOI1W13V85s5LxbFnujfia699/Y7PCAAAAAAAAAAAAAAANieMBgAAABvIIlGj2XHUdZ1Gys5GrLL9nMyOY1ZP43590vqcRtM8jHZvVg6jXek+2WG0phhc6/hCy/DJbM0wQh5WGUVd12ngYZhE89ruPyIPUzTJzieL+AFApilmNk7DaJOV93Ue8rCpMBqX12h6L53LHfZu7eQcsrBz27nkfjVIw8PHDXP/Jk1htF5DGC0LI18G//z45+K3H/xGcewbb3z7zq+ZAAAAAAAAAAAAAACwDcJoAAAAsIGm2NW4fhCzmBXHzwYBht08unEyG610Tk2hgOPp3eLyg0sYRutXveLyUtDgZJo/R1nQpO16o8eiDuUwQhVV4/6z90odddyvTwrHmZ9XOZr3+Hr548zCGE2y913b5xMA5jpVJzrRLY5loaJsef+ShNHWubfCrhxNXk3HDvu3N9p304y3rh/Nk7O55NlAdHqcqsoj1Mm8eZnxrCmMll9bFh/XZfPynU8Xl3eiE5+8/h07PhsAAAAAAAAAAAAAANgOYTQAAADYwNnA2dxoei9GDcGMs5GNdD+z48b9ZMcumdXTdF8HncsXRutVe8Xl41IYLXlcvaoX/U55P2flcbrTz2edhdGq5jBaU1Cs6f2Snddj6zXuf/V4RPY+ajoOAGSyoFkWQBvPHhSX9zq7DaOl84Pp8aWOJfHO9tr4leLyKqq40bu54d6b57xzZ+fQc9nnnpK28/O2sutNxMPPDVnoOJv/X7TXxq/Ez735U8Wxr776dXHYv7XjMwIAAAAAAAAAAAAAgO0QRgMAAIANDLtXistPZsdprCvi8bjUsJPvZ9WoVRYKOG4ICFzpXlvpGLvQWyGgkkXFmmJkbdc9mY1O/ZxFULKQwlxT4OxkNkrfL20fQ7+zF72qVxxbJx5x9nG/fT4tQ20AsCi/r0+S5eWAUbaf85Ldh2cxjXFdjrfBRTuafL64/HrvZnST+eJ2PJonp3PJFebn2WekLOC7TNN15WHkuF307bL48Ts/FnXMimPP33hxx2cDAAAAAAAAAAAAAADbI4wGAAAAGzgbOJsbLQmanQ0CDDrD8n6mzYG1kuPpmystj4g4SAJvFymLfJWCBtlzlL0+q6x7NipWRzmMtiykkIUd5sfI4m6rPIa2cbc2spjaKucDAHO9TjloNp6V42JZMG3XYbSm+94691fYhaPxq8Xlh71bG++7KQa8OE/extw2i1CvE/2NiBgvCS5mjy2f/1+c8Wwcn3v9x4pj79l7f3zpwVft+IwAAAAAAAAAAAAAAGB7hNEAAABgA1mIalw/iHuzu8WxKqrY7wxOLcu+9H8yO06jApnjJBTQGEbrXFvpGLvQr/aKy0thtOw5yl6fVdZtGz1pikREPHw8neRPMaPZcZwkIb3txN1Wew/VdZ0+7lWeUwCYy4Jmpft60/Jdh9GyeG3E+nEmOG+vTV4pLj/sP7uzc8jmtqvMJbc1t51bdl15ksJo//jNn4i709eLY8/deCGqqvmzCQAAAAAAAAAAAAAAXGbCaAAAALCBpmjV0fjV4vL9zjA61emP5Fkg4EF9P+5Ny4G1zGhajnTcm5XDaJ3oNEY/LkoWPhkXggYnWwijpeGFM89nHbPiesvCaFVVxbBTDuCNpnkAb9DdPO6WvScy9+uTNACxSqgNAOa2FUbr7ziM1nTfaxtPhV3LPocc9m7v7BzycHH7zx353Hm9KOGy60rWEruMYbSXj14qLt+vBvHxZ75lx2cDAAAAAAAAAAAAAADbJYwGAAAAGxg2RKuOJuUgQSkG0BhYS/aTGc3KoYDjaTmMdtC9GlVWAbhAqwRURtNyeKHp9TkrC5CdjZ5skkXIjnF3eidmMS2OrRIiy8Joq4ZbTpLns+kYANCkX/WKyyf1pLi8FEKNyOcH52W/IeK0bpwJztud5PPDYf/WxvtuigEvBsSy+eewW46dlddNor9JdG2ZLIz26LqSldEuVxjt105+JX7l5BeLY193/ZtX+gwEAAAAAAAAAAAAAACXkTAaAAAAbKApEnU0LgcJhp3HYwCNYbRkP5njVcNonasr7X9X+jPjmQsAACAASURBVJ0kjDZ7PGhwksQRShG6TPYaPBZeSMIInWr5n1mGyfm8Nn6lYZttxCNWC7c0xSayuBsANFkleNq0fNdhtE7VSecTq4ZHYRdm9SwNK9/s3d7ZeWTzz9Xm5+V58Kpz27llwcUs+lZvlEbevs/ceSkde/7GCzs8EwAAAAAAAAAAAAAAOB/CaAAAALCBxjDapBy7KsUAmmJTWdggM5rei7oQ77o3vVtc/6B7OcNoqwRUspDXKlGx7LU8G12bxSzZQzmkcPoY5fNpeo23E4/IQ2clWWju4TGE0QBYXa/aKy4f1w+Ky/MwWm9r59RW2zkCXAZvTt+IST0pjh32b23hCPmcdzEgloUDmz4/nZXObafrhdGWXVeehDDa8fTN+AdvvFwc+9eGXxnv3f/iHZ8RAAAAAAAAAAAAAABsnzAaAAAAbKBbdWOv2i+OHY0/X1xeCks1xaaOxuVo1vXuYXH5LGZxvz55bPnxrBwQuPKEhdHGhaBBFiZZLSpWfg0m9TjGs3JEYdHyLFp+jOw1jogYdleJu5Uf76rhliyk1olO+n4HgCZZ0CwLOGUBo34SWDtP2f171fAo7MJr43KcOSLisLd5GK1qmvS+1Q+b1bO4n4TRVonsHiTz4HV/95ZdV56EMNpPvv6306Dk8zde2PHZAAAAAAAAAAAAAADA+RBGAwAAgA2lsatJOXY16D6+frfqpaGPbD+H/dvpOR1P3ywsu1tc96BzLd3PReonYbRS0GA0LccRhp1VomJ5pOFkISqXhRGqFn9myY6RvcZVVLFfDZbudy57vNnzk8lDcwdRNdYwAKAsC55moaJsebaf85Tdv1cNj8IuZPPKXtWPq91ndnIO92cn6Zy5ac7ddt1REnxeJr2udHZ/XVnHrJ7FZ+68VBy73j2Mr7329Ts+IwAAAAAAAAAAAAAAOB/CaAAAALChQbccoxrXD4rLs5BaGrVKvvh/syGMVtrmXiGWFhFxkJz/RVsloHIyGxXXHXSGrY83LATr5kYL+0/DaC16YdkxXp+8Vlw+6AxXCpFl+1813JKF1FZ5PgFg0SrB04iI8ezyhNGyuduq4VHYhTSq3Hs2OtXm/1mwinxuOp8nN809m+bcZx0kn49OZqOY1dPW+5lbdl2pkuenrsvz/137xeOfjVfGv1kc+8Ybn4pu1dvxGQEAAAAAAAAAAAAAwPkQRgMAAIANDVeMRQ2SuMaq0ambvYYw2vTxMNrxrBxGu9K9ttJxd2WVMFoWj1slvJBFTyIiThb2n4cRlgfMsmNksbUslpfJ3lurhtHy0Fz75xMAFvWqveLyLCSbBdN6nd2Hfwbd8hxt1fsr7MLR+JXi8sOGqPJqmua88zBaeS4Zsdp8smku33SMTHpdeSsolj2ybK6+a5+581JxeSe68ckb37HjswEAAAAAAAAAAAAAgPMjjAYAAAAbWjUWlcWxht3VIljXetejn0RGjguhsONpOYx20L260nF3JQujjQtBg22EvJrCdKOF/WdhhKpFGG3V98q23lujFcMt2wjNAcCiLGg2mU3Ky9OAUXl+cJ7y8OjqYSY4b0eTV4vLD3u3dnYO2VwyojlG/Pi6+eejpmNksuvKo89U5fn8ZQijfX78O/Hzb/50cexrr308bvRu7viMAAAAAAAAAAAAAADg/AijAQAAwIaavrBfkgW4VokEPNzPQRwkxx5NVwijdS5nGK2fhE/OBg0m9TjG9YPiuqs8p52qG/vVoDh2+vlcP4y26mu8aogsDaNNj6Ou2wcdthGaA4BFWdAsCxUtDxjtTh4eXT3MBOfttfH5htGa5rzz2WY2l+xEZ6Xf4abPWceFzzvLLAsu5o/t4sNon73zN6KOWXHsuRsv7vhsAAAAAAAAAAAAAADgfAmjAQAAwIYG3XLoLDPslr/gnwXT0v10DtJ9HZ8JddR1Hfdm5TDale7lDKP1Ou0CKifTcnghYvWQ1yAJkS3GHepNwmgrhs5WPv9k/WlM0hBESRZ6WTXsBgBzbYOnc+M0YNTb2jm1ld1fs/gTXKSjSTmMdrO/nTBaGyez4+LyYedKVNXyOfPb6zfMnUfJMZosu65k53bRWbTx7EH8xOv/b3HsC/a+KD40/ModnxEAAAAAAAAAAAAAAJwvYTQAAADY0LBTjpNlsgDaOvvJthlNT4etxvWDNDxy0LmkYbQkoDKenQmjNUQRVg2RZeGvxVBYXSdhtBaRh1VDZ6uGyLYVj8hic6uePwDMZff1bH6SLc/2c57S+cG0HBKFizKtJ/HG5Kg4dtg7/zDaPCA8mpbnnasGpbtVL/aq/eLYOr9/y64rWei4rmcrH2ubfubu5+LN6RvFsedufOdKsTkAAAAAAAAAAAAAAHgSCKMBAADAhlaNV2VxqdUjXlfioFsOox3PTocCjqdvpvs56F7OMFq/ZUClKfi1asgrW/9k9igUNg8+PG55kGDl0NnKsbymMFr7eES27qrvUQCYS4OnT0AYbZDc/xbnB3AZ3Jl8Pp2rHvZvb+UYWTzsoYfHzsLF60R2h8nnnVWiv3PZdaVf7b31rySMtvKRtuvlOy8Vlw86w/j49W/Z8dkAAAAAAAAAAAAAAMD5E0YDAACADa36Bf8sjrVyxKs7TMNZo+npsNW92d10P1e611Y67q5k4ZPzDKNlr83Z57NkeRYtYrBq6Kw7XGn9pvDaKvGWbN11YhYAENH+vr5s+aOA0e5k9791wkxwno7Gr6Zjh71bWzlGVS2f9Wa/G6tGgpu2WSX6O7csuNhJZ/QXl0b7lye/HL968kvFsY8/8y0x6Kz2eQEAAAAAAAAAAAAAAJ4EwmgAAACwoWF3xaBZ8uX+VUMBw86VGHbLoa3jM6GA44aw10Gyj4vWNqBykoQX9qr96FbdlY6ZvTaLx6hjVlynavFnluEWQ2cl+51hVEnQoU3cbS57ToUXAFhXf+Uw2qS4vFf1tnZObWX345PZKOr64oJJcNbRpBxGG3QOVv7Mso75b0M+l1wnjNYuBN3GeJaF0ebXlfI8ur7AMNrLRy+lY8/deGGHZwIAAAAAAAAAAAAAALsjjAYAAAAbWjlolkQJVg0FDDrDOOhcLY6NzoTR7k3vFtfbrwZpgOyiZQGVWcxiWk/f/nk0LYcXVn1dIvLX5mQ2evvfWRYhC5KdPqfVInSrrt+pOrGfxMtGSaBilXVXPR8AmGsbPJ0b1w9W2s95yuZodczifn2y47OB3GvjchjtZu/Wbk7grVBgNpdcJ7KbhaDPft5pI7vezK8r2Wz+osJob07fiJ+++9ni2JcefFV8wf4X7viMAAAAAAAAAAAAAABgN4TRAAAAYEOrB83K62dRrnw/wzjIQgHT06GA49mbyTEvb+iqKXyyGDU4ycILKz6fEXlMbTG8sEkYYdUYxDrxiGyb7HkqrpvE5tY5HwCIWD2MNpk1B4x2qSm2uhhPhYt2NCmH0Q772wujtYkBn0zLvxfrRHbz+Xn7ue1cdr3pd/Ye/qMqP7a6vpgw2t97/W+nkcjnb7yw47MBAAAAAAAAAAAAAIDdEUYDAACADTXFMs7qRCf2qv3i2CqBtf1qEJ2qm8YFzobQjqflMNqV7rXWx9y1tmG0LIqwyusyl70Gi9GTup4V16mq5X9m6VTd2K8Grc9nnXBd9p5oG4+Y1dO4X59s7XwAICK/r4+zMFo9Ke+ns/swWlNs9WyMFi7Sa+NXissPe7d3cvx5QHgxKrxo0F09spvObdf43UuvK29dn/Lo2+7DaLN6Fp+986PFsRu9Z+Orr358x2cEAAAAAAAAAAAAAAC7I4wGAAAAG1olaDboHERVlb9wv0rIax6oOkhCVcdnQgH3kjDaQedq62PuWr+zl44tRlROkuDXKq/LXPYatAkvZBmFs5riKo+tu8XHcDJtF0ZbjMA9vu/VYxYAEBHRT4Jmk0IYbVbPYhrlgFG/IZx6XgYN97+m+ybs2p3Jq8Xlh/1bWzxKPuudh9Gy34t1wsXDZO7cNvq7aFw/KC7vVb2IyMNou8+iRfzCvX8Ur4x/qzj2yeufim7V3fEZAQAAAAAAAAAAAADA7gijAQAAwIayL+uXNIU1VgusPdzPsFMOo53MjmNWz97++TgLo3UvbxhtHigomcweRVSyKELTc53JomWLcYc6SSNkIYWzVgrgrRGPyB5D23hE03qD5P0GAMv0kqDZ4j397WWFWNqy/Zyn/WoQVfKfU0az5fFU2JWj8eeLyw972wujtZnx5vPzdaK/SQh6jd+97Noyv67kYbRZcfl5evnOS8XlnejGN9741I7PBgAAAAAAAAAAAAAAdksYDQAAADaUfVm/uG43X7dpLDtmduw66ri/EPM6npXDaFcudRgtD58sRg1OpuXwwiqvy6NtsqjYo/DCpmG0VYIQ64TRsm1OWobRmtYbrhGbA4CIhjBaPSksu1xhtKqq0uDqYjwVLtL92Uncm90tjt3sby+M1kY2n1wvjJbMbZPPAE2ya0u/2lt5X+fp1Qe/Hf/03j8sjn342ifieu9wx2cEAAAAAAAAAAAAAAC7JYwGAAAAG+pXe9Fp+RE7i2osG8vWPWgImx0vxLzuTcuRhIPOkxlGG9cP3v73KAsvdFePeGWxhpPZKOr6YRBt/r+PqdqF0VaJnQ2624tHLMbdmpxM88DLOjELAIjI7+vTmMSsnp1aVoqlLdvPeds0PArn7Wj8ajp22NteGK0pBjwPCOfh4tXnkgdJPPq45dx2UXZt6VW9iIioqvJnuiyMfF4+c+el9JjP33hhp+cCAAAAAAAAAAAAAAAXQRgNAAAANlRVVQw75S/sn9UUltqvBq0Da8O3glkHDccdTR/FArJwQFNY7aL1q710bDFqcDIrh7zaviantym/PnXUcb8+efunkqZIxKljrBA7WycekcbdGoJni7KAWq/qRb+TvyYA0KTfEDSb1OPGn9vu5zxl99dREoCCXXtt8ko6dmOLYbRYMued1dOFefNp60R/B8mc/mR2Lw8WF9R1fSquvGgeXMwe2SrH2dSD2f34ydf/VnHsvXtfHF8y/IqdnQsAAAAAAAAAAAAAAFwUYTQAAADYgrZf8m8KXVVV1RhOO3W8t9Zrimwdz9589O/p3eI6V7rXWh3vIvSqXjq2GEw5SUJeg85w5WM2Pf/z0Fy9YRit7Wvcr/ai2/AcZLL3xGjWLtyShebanjcAlPS2FEZr2s95yu6vJy3vr3DejsavFpc/070R/c6ufm/qdC4ZETFcY36ehaAn9SQNnZVMY5KOzYPM2Xw+m/+fh39498fj3qz82e35wxejqtp95gAAAAAAAAAAAAAAgCeZMBoAAABsQdsv+S+LS7WNec0Da92qF/vVoLjO8fRRMOze9M3iOllo4DLoVN3oJH+6WIwgjJL4wnCNx9YUmptHHjYNozXF8U6vt95rk73HRklA7vH1yoGXtucNACXNYbTTwaKm2NFFhdHy+6swGpfD0aQcRrvRv7XV4zR1ueo6j+xGRAy2PD9f5ffv7HVmUe/tcFz24HYXRnv5zkvF5YPOQXzsmed2dh4AAAAAAAAAAAAAAHCRhNEAAABgC9p+yX9Z+GzYbbufR4GAbJt5CGtWT+MkiQZc6V5rdbyL0q/2issn9fjtf59My4+tbWTu9DZN4YWHz+emWYS2wbN1zv/h/suPoSlScXq97PkURgNgff3GMNr4zM8NAaMLCqPl91dhNC6Ho3E5jHazt90wWh4Pe6gpxts2Jn16m3zuPJq2C/9GRExm43SsV/UiIg8d7yqL9qujfxH/8uSXi2Nf/8y/sfbnAwAAAAAAAAAAAAAAeNIIowEAAMAWZLGMx9ZbEj5rvZ/FMFoSC5iHAkaz46iTr/MfdK+2Ot5FyeIn82BKXdcxSoIkbSNzi/aq/egkfy6Zh8XqelYcr6p2f2YZdLfzXkn3n7yH2oYj8jCaEAMA62sKmo3rB6d+bg4YXUwYLbsPCqNxWRxNymG0w/62w2hN6jiZ5jHedUK7TXPi7HNAydnrzKL5daWqsjDabtJon7nz6XTs+cMXdnIOAAAAAAAAAAAAAABwGQijAQAAwBa0/ZL/srhU6/0sxLUOkljA8exhCOve9M10Pwedyx5G6xWXT+qHwZRx/SBmMS2us07Iq6qqpaG5dNsohxTOWid+t4osHnG/PolZXX6uFo2m2wvNAcBcU9Bsfl/Pfj69n/Lc4Lzl4VFhNC6H18avFJcf9rYbRmua89ZRp7HAXtWLfmdv5ePtV4Ookv+cOZq1C/9GNF9X+tX8vJIwWhJG3qY3J2/ET9/98eLYv37wNfHuvfed+zkAAAAAAAAAAAAAAMBlIYwGAAAAWzDsto1dNcel1olmpSGvt0IBxw1htCvdSx5GS+IJ49mDiIgYJeGFiOXPdWbQLQfVTmajiHgYfChpl0XbXkQvM2zYbv4YmmQxi3XPBwAiInqdpjDa5NTP4/pBeR9VP6qq7R13u7K5Xpt7K5y3uq7jaPJqcexm//ZOzyWbn7edA5/1MFychQlXCaNN0rF5uPFiri4P/cTrfzONtz1344Udnw0AAAAAAAAAAAAAAFwsYTQAAADYgrZBs2VxqbbBgMXo10G3HAA7fisUcDwrh9E60Vk7ULAr80jBWfNoQBbxitgkLJaEF94KzdUxK45XLf/M0j5+t2bYrWG7ppDcsnXWPR8AiIjoVb10bDI7HQPKAkbZvGAXsjnTfH4AF+ne7G4aFDzs3drZedRxPpHdYfJ5Z5Xfvyw6FvHo+pTN57Mw8rbM6ml89vUfLY4d9m7FV1392LkeHwAAAAAAAAAAAAAALhthNAAAANiC9kGz5vWG3dUDa1mwah4KOJ6Ww2jD7pWoqqrV8S5KP4mozIMpo2ke+soCCstkr+XJbBQRsXEWofV7peV74bHtGvbf9HzNnUfMAgC60YsqyvOOs8GiLGB0kWG07P46nx/ARToav5qOHfZvb/VY2e/xQ3WMkt+JTSK7ebh4+dx2LgvHRTy6tmSP7LzDaP/03s/E58e/Uxz75I3viG7VPdfjAwAAAAAAAAAAAADAZSOMBgAAAFuwLHj29npLYlfto1mPwgIHSQDsePowjHZverc4fqVzrdWxLlKv2isun4cNsohXFVXsVftrHTN7DeahuSyN1qna/ZmlffxuvTBa03bZ87Uoi6dtErMAgKqq0rDZ2WBRHkYrB1N3IQ+ntg8zwXk5mpTDaJ3oxjPd61s9VnMYLeLk7TnzaZtEdrN56PzzThvZdSViMbpYfmznHUZ7+c5LxeXd6MU3Xv/2cz02AAAAAAAAAAAAAABcRsJoAAAAsAWDLcWu2gbWFsMCWShgHvI6nr1ZHM+CapdJFlCZhw1GSYxk0Bm2DpWdlb0G82BYXW8WRmgbGGv7Xjir3+mnz1v2fC06mY2KyzeJWQBARB42m9STMz+XA0b9JJi6C9l9+WQ2ilk93fHZwGlH43IY7UbvZnSq7s7Oo446RtNsLrne3DYiDwuvEiY8e52Z60bv7c8NVZVE3zac/zf5nQe/Gf/s3s8Ux37PtW+IZ3o3zu3YAAAAAAAAAAAAAABwWQmjAQAAwBa0jVgtW69tMGAxrpWG0aZvhdGmWRjtWqtjXaRlAZUshrBJeCGL3M2PVUc5jFBFElI4u/+WgbGN4hFpvOXe0m3T57Rl/A8AMsuCp3PjJIyWbb8LTffB+7OTHZ4JPO61ySvF5Tf7t7d/sCwe9pZsLpnFzdo4WBKCbmM8e1Bcvvh5I5vPn18WLeKzd15Kx547fPEcjwwAAAAAAAAAAAAAAJeXMBoAAABsQdsw2rLYVZtgQCc60a/23v75oHu1uN7xW6GAe0kY7UqnvN1lkgdUHoYNRucQRstey9GWwmj9ai+6UQ6+nTqPbjkA0Ub2+Eez0dJts+e07XscADJtw2hnf360/fL753lpug9m907YlaPxq8Xlh71bWz/WshnveczPB0kY7XjaPoyWXlc6j65LeRht1vo4q3gwux8/+frfLo69f/+D8bsGX3YuxwUAAAAAAAAAAAAAgMtOGA0AAAC2oM0X/bvRS4Mgq+xn2LkSVfXoS/sHSSjgZHYcs3oax7NyGC0Lql0miwG4ReO3wgYn0+1HvLLX4OStqFgWRlueiXhrrapqFcAbdIat9leSPf7s+Zqb1OMYvxWde/x8hNEA2Myy+/pcHkZrnkedp6b74IkwGhfsaJKE0fq3d3oedV2nvw+bzCUPkmDwKr972XUluy4tymb/m/rpu59NP6s9f+PFU5/5AAAAAAAAAAAAAADgnUQYDQAAALagTehq2D1Y+uX2NkGvQfd0MGuYhAIiIkaz4ziePrlhtCyAMg8bjLLwQovXI5O9BqPpvYf/qMtphFXCBW2iZ8MkeNdq/8njH83uNW53Mh01nI8wGgCb6VW94vKzwaI0YNRZHjA6L0337tEsv3/CLhyNkzBa79lzOFo+562jfjsmfNYmc8ls2+Np89x20aSeFJcvXpeq9LFtP41W13W8fPTp4tiwcyU+9sxzWz8mAAAAAAAAAAAAAAA8KYTRAAAAYAvaRKy2FcM6GwY4aNhmNL0X95Iw2pXOExBG6yQBldnDYMpJEkbbJLwwSLadRx6yLEIeUnjcOq/zKrJts1DFo/Hy8xmRPy8A0Nay4OnceFYOo2Xb70K/2otulOclJyvEmWDbZvU07kw+Xxw77N/a+vGWzXlHye9Dm89CmSwE3TR3PWtcPyguX7yuVFX5P5vWSRh5E7968kvxa/d/pTj2ievfGnud/a0fEwAAAAAAAAAAAAAAnhTCaAAAALAF+y2+6N8mLDXorr6fLBQQEXE8uxfHs3IY7aB7+cNo/WqvuHweUBklMYTNwgvl12k0exh5qGNWHF8ljNbuvbD9MNr8MWSy5zMif14AoK22YbSzPz/avhwm24WqqtJ52mhJeBTO0+uTo5gl89Obvds7Pps8xLtJZDeb2x4vmdsuyq8rC2G0ZNs6TSOv7+U7n07HnrvxnVs/HgAAAAAAAAAAAAAAPEmE0QAAAGALulU39qtB4zrZF/pXXeexMFrDNqPpvTiePrlhtCygMn4rbJCFF4adPBa3TBZtGNcPYlpPGrII7cNobSJjbd4LmewxjKZ5+CyiOYy2SWwOACIi+p1Nw2jl7XcluzefNNw/4bwdTV5Nxw77t7Z+vKYZbx11+vuwSWQ3m9vfn41iVpejcGdl15XTIebyo9t2GO3u5E78zN3PFce+/OBr4117793q8QAAAAAAAAAAAAAA4EkjjAYAAABbMljyZf8sVrWoW/Vir9pvXOdslKNTddN9/+hr/1eM6wfFsYPOkxtGm4cNRtN7xfFNIl6NobnZcUQSRuhU7cNoy94LnegsfR80ycITy8It2Xi/2otu1Vv7fAAgoiF4OnsywmhpeFQYjQv02rgcRtuvBuc038/nvNN6Eg/q+8WxNp+FMsNuOYzWFGI7a1JPist7C3PcKn1s2w2jfe71v5mez/OHL271WAAAAAAAAAAAAAAA8CQSRgMAAIAtWfZl/yxWtep+SgG2g045FvDPj38u3c+V7rVW53OR+kvCaCezUXE8iye00RRGO5keR11nYYT2YbSmY0Q8fA9UK4TWHt++/PiXhVtG0/L4MNkfAKxiWfD00c/lYFA2L9iVbI7WNswE5+FoUg6j3ejf2mg+uY5sbh6xfP7bpGku2jZMmMWiF69LWRhtm1m0WT2NH7/zN4pjN3u343df+cgWjwYAAAAAAAAAAAAAAE8mYTQAAADYkjaxq1b7WRJQKx1nnRDYQffqytvs2rKAymh2rzg+6AzXPmYpPDc3mh1HnaQRVslObCuil26fPP5l4Ygs7LLJ8wkAc23DaG0CRhchm+tlYVHYhaNxOYx22Hv2XI6XxcMi8rl5xKZhtIb5+TQ/5qKz15m5U2G0JCRX17NWx2jj59/86Xht8kpx7JtufGd0qu7WjgUAAAAAAAAAAAAAAE8qYTQAAADYkq2F0dbYz5XutVb7nquiioPOkx9GO5mNiuPDzuqhuEfbrhtGa/9nlmWv8SbhiIiIQfL4s/DZXBZOWye8BwBntQ2jtQkYXYRsLrfs/grn6SiJbN3s3z6fAzbUgJsigW0/C5U0RYOXhX/nJrNJcXm/s9vryst3Pl1c3qt68Q3Xv22n5wIAAAAAAAAAAAAAAJeVMBoAAABsybIv+7eNXa2zny87+OpW+577kuFX7DwCsI5+EkAZ1+OY1bO4n4TRBp3h2sfsVr3oV3vFsZOGMNoqloXGNglHPNx/efvR9DjqOj//LDS3yfMJAHPZfX1ST878fDnDaNn9VRiNi3Q0frW4/LB3a8dn0vy7MOiuP5/sVf10fj6a3Wu1jzbXlSqpvm1j/h8R8dsPfiN+8fhni2O/59on41rv+laOAwAAAAAAAAAAAAAATzphNAAAANiSLJYx1zYutSygVopmffL6t8cX7H1Rq/3vV4P4rlvf02rdi9ZL4m2Tehz3ZydppGBZeGyZ7DUYTY8jkmNmIYWSZe+FTcNo2fazmMa4fpBul8UsNj0fAIjIw2Zn701nQ2lzWVhtV7L74UgYjQv02qQcRrvZv30ux2ua82aRsn61t3HYcNgpz+9H03ZhtGwOvMsw2mfv/Gg69vyNF7dyDAAAAAAAAAAAAAAAeBr0LvoEAAAA4GmxLB7VNi61bL1SgO1a70b8+S/6r+MfvvHj8asnvxTTelbc9j3774sPX/2GeM/++1udy0XLAgqT2TiNeEW0j9Dl2x/EG9M7jy0/mR1HXSdhtKp9GG1Z/C4LP2xj/6PZcex19stj0/Jzuux8AaCN9L5ej0/9PD7z87LtdyWbX5zMRjs+E3hoPHsQb05fL44d9m6dyzGbw2hZZHezuXnEw/DxG9Ojx5YfJzG2s85eZ+ZOX1fOL4x2f3YSP/n63yqOfdH+l8QHBh/a+BgAAAAAAAAAAAAAAPC0EEYDAACALVkauyoEzdZZLwunXeleorFgUAAAIABJREFUi+cOX4jn4oVWx3kSZAGUcT1OwwsRm4fFBt2DiEI7YTQ7TsMITZGIs5ad36C7WTyi6b14MjuO63GYjhXPRxgNgC1oG0abzB6Ut+9cbBgtu7+Opu3CTLBtR5PPp2OH/fMJozXJIrvbmEtmv39NseRFk3pSXN5fuC7loePNw2g/9cZn0s8vzx++uFJkGQAAAAAAAAAAAAAAnnadiz4BAAAAeFosC6O1DQIsW2/ZcZ4m/YaASlMEYdA5n7DYSUMYLVYIoy0Ln20cdmt4jzTFW7JYQ9uoHwA06Sdhs7PBoixglIXVdiW7v57MRjs+E3joaPxKOnbY230YLZufb+Pzy0EyPz5uGSY8G2CcW7yupFm0DbtodV3HZ+58ujh20LkaH7n2yc0OAAAAAAAAAAAAAAAATxlhNAAAANiSwZJ4VNsgwLL13klhtCyAMqnHacSrG73oV3sbHTd7jkcNYbTOCmG0ZeGzTV/j/c4gquR8muItWcyibdQPAJpk9/XxmWBRFjDKgqm7koVCm2KtcJ6OJq8Wl1/pXou9zv65HDObY0ZEjGblSNmyz0ltZPto+/s3rh8Ul58Oo5X/s2keRm7nV0a/GL9+/1eLY5+4/q3n9loBAAAAAAAAAAAAAMCTShgNAAAAtmRbQbNlEap3UqQqC6jMYhbH07vFsUF3GFXVPlJW3EfyHJ9MjyOyMMIKxzzv+F2n6sSgMyyOZcGKh2PlsMQ7KcYHwPlJg6ez08GiLIyWbb8r2fzgQX0/pvVkx2cDeRjtZu/2js/kodE0i+yW56WrOEjCwsfTfG67aJL8jra5rmwaRnv5zqeLy6uo4rkb37nRvgEAAAAAAAAAAAAA4GkkjAYAAABbMky+rD/XNmg27C7ZT3fzsMCTot8QKrg7faO4fBvhuGG3vI/R7DjqrIsW7cNo+51B4/ggOf4qsuchi59FRJwkY++kGB8A5ycNo50JFo3rB8X1LjqM1hQKPZmNdngm8NBr41eKyw/7t87xqPmcN4/sNn++aSOf27YNo5WDi4ufN/L5/PphtDcmd+If3f3J4thXXPlw3N77grX3DQAAAAAAAAAAAAAATythNAAAANiSQac5WNY2aNa0n361d+FRkF1qeqx3J68XlzdFS9rKwgsns+OoY1YcWyWM1qm6ja/zNh5Dto+TaTlYUdd1nEzLUZfhkvc2ALTRq3rF5WeDRWdDaY+2v7xhtFFyf4XzdDT5fHH5Ye/8wmhV1RRGK0fKln1OauMgiUc3RX8XZWG0XoswWr1BGO1zr/9YTKN8TXvuxotr7xcAAAAAAAAAAAAAAJ5mwmgAAACwJcPky/oRqwXNhp18P9sIZj1Jmp6zN6flMFoWNVtFGhWbHadZhFXCaBHN57mVMNqK8Yhx/SCNNgwa3tsA0Fa/2isuXwwW1XWdBoz6FxxGa7p3n7SMM8E2HY1fKS4/zzBak+z3oOnzTVvZPkbTcoztrPHsQXF5r7MQRkuib3W9XhhtWk/js3f+RnHs2f674yuvfHit/QIAAAAAAAAAAAAAwNNOGA0AAAC2ZFuhq6Z1txH9epL0O3kA5W4SRttGVCx7nh9GxdYLI5x13q/zoDMsLs/CaCezUbqvYbIvAFhFFjwd14+CRbOYRp3ca9tGZs/LoJvfD4XRuAhHk1eLyw/7FxVGK88ns3npKvLob7sw2qQuB4BPX1eSMNqa8/+ff/On4s7k88Wx5258Z3Sq7lr7BQAAAAAAAAAAAACAp50wGgAAAGzJtkJXg27DfhrGnkZNAZS7k3IYbRtRsey1PJmO0jBCVa32Z5bGkN4WXudhpxyPyMItTVGJd1qQD4Dz0at6xeWLwaJxPW7Y/mLDaL2qH/1qrziWhUfhvIym99IQ2WHvYsJomW18hsnm521/9ybJtaW/cF2pkjDaumHkl+98OjnmXnzi+reutU8AAAAAAAAAAAAAAHgnEEYDAACALelXe9GJbnFs0Bm23k9TYK1p7GnUFEB5c1oOo20jKpbFG5riYVlGITPslsNlEXnUbBVZzGw0LccjsrDGw/N5Z73vADgf2X19Uo+jrh+GhyazyxtGi8jndFl4FM7La5NX0rGb/dvndtw8Hpbbxlwymx9P6nGMZw+Wbj+uy+u0ua6sk0X7rfu/Hv/8+OeKYx+59sm42n1mjb0CAAAAAAAAAAAAAMA7Q++iTwAAAACeFlVVxbB7EPemdx8bWyXWtVftRyc6MYvZY2NZ7Opp1a/20rE3JneKy7fxHGXxhtJr8shqkYimWN7+CiG9Vfd/b3a3+B69M/58w/kMNj4fAMgCRHXUMYtpdKMXkzoPo/U7Fx9GG3auxN1CnPX1yVHx/grn5bfu/3pxeRWduN67eW7HXSeMtpX5ecPnqdcmr7wdGht0htGtHv/Pn5N6Utx28brUqcr//6TGswcr/37/nTv/Tzr23I0XVtoXAAAAAAAAAAAAAAC80wijAQAAwBYNOuUw2ioxgKqqYtA5iOPZm4+NZcGup1WvEDWYu1+fFJdv4zkadq6svE1nxUhEdp771SC6VXfl4z+2/275MfzS8c/Hf/LL/17r/Qw6w+hs4XwAoN/Jg6fjehzdqjmM1jQv2JUsPPojr/xw/MgrP7zbk4GC673Drcwlt2m4hehv0/z8h/6/P/32v/erQXzFlQ/H977nT8dB92pEREzradRJ4DgLNi767Os/Gp99/UdXPOOyLx58KD4w/NBW9gUAAAAAAAAAAAAAAE+r8v/rcwAAAGAtWexqlTBaRMSwu539POk6VTc6K/75IguWnP8+Vg2jleMOg+S1X9W2InrvtPccAOenKWw2mT0Moo0bw2h5WG1XtnWfhvNy2Lt10afwmMEa0eGz2oaL79cn8Y/e/Mn4n3/jv3l7WVNwsb8QRqtWnM+v4/kbL5z7MQAAAAAAAAAAAAAA4EknjAYAAABblEWkVo1Upft5B8Y4eguxgjaG3S2EF9bYx6ohhSy+tq0Q2bb2s63AGgA03dPn4aK2AaOL4r7IZXfYP98w2jrxsGF383DxfmcQ1Qr/WfNfjP5JfH78OxERMa4fpOudvi6dbxjtSvdafOTaJ8/1GAAAAAAAAAAAAAAA8DQQRgMAAIAtut1/T3H5s/13r7SfW8l+bq24n6fBqs/dquuX7FeDuNq9vtI2N/u3V1r/9t75vsbZe3FV23g+ASAiYq/aT8fu1ycR0RxGWzWWeh7eiXMxnizv2Xv/ue6/V/Xj2grz5H61F9e6NzY+bqfqrPz799sPfiMiIib1JF1n8bry7Irz+VV9w/Vvi35n71yPAQAAAAAAAAAAAAAATwNhNAAAANiijzzzyceW9apefO21j6+2n2uP72ev2o/ffeWja5/bk+rD1z7Ret2bvdvxwcGXbnzMqqriI9e+sfX6Hxh8KA77t1Y6xlde+UjsV4PHlpde+3V8cPilcbO3edzho8980xbOBgAiBp2DdGw0PY6IiHFjGK239XNa1e+59o1RRXXRpwFFVXTiY888d77HqKr42qvt5+dfc/XjsdfJo4irWHWefDJ7eF2ZzNoFF7/m6tef2+/3oHMQ33Lj3zqXfQMAAAAAAAAAAAAAwNNGGO0dpKqqYVVVn6iq6k9UVfUXqqr6waqq/mxVVX+oqqoPVVW1lW97VFXVr6rqm6uq+qNVVf3Fqqr+dFVVv7+qqg9sY/8AAACX2Vdc+XD84Xd9Xww7VyIi4nr3ML7/fT8Yz/bfvdJ+PvrMJ+P33fqjMegMI+Jh8OvPvv+/jGu961s/58vuxWe/O77pxneeihaUvG//A/EDX/iXolNt588df+D2H4+PXXs+OtFtXO9Lhl8e3/++H1x5/wfdq/EDX/iX3n5v7FeD+K5b3xMff+ab1zndx3SqbvzAF/5QvG//A2ttv18N4t++9b3xsWvnG9cA4J1jvzNIo0NvB4ySMFonOtGpmu/Ju/DB4ZfFH33Pn4sr3WsXfSpwytXu9fi+9/2n8e699537sf7gu/5kfPTaN0U38lhhFZ346qtfF9/znj+1teP+m7f+cHzy+qdaRxLnwcXsuhIR0e88+ozxoYOvjH/3PX8mrnaf2exEz7jRezb+w/f+xbjRf3ar+wUAAAAAAAAAAAAAgKdVu28O8ESrquoTEfEfRcTvi4i9hlV/o6qq/y0i/oe6rl9b4zi3I+KHIuIPRcTNZJ2fiIj/vq7r/3vV/QMAADwpnjt8IT5541NxZ/JaHPZuxbod6k89+wfiW2/+3nhjchQ3es+uvZ8nXafqxh959/fHv3P7j8cr49+Mun58nau9Z+JGr/hRdG39Tj/++Hv/4/gjs++PVx/8dnGd673DjWJ1Hxx+afylD/5PcWfy+XimdyO6LSMPbb1r773xgx/4y3Fn8lq8OXmj9XadqhPv3nvv1s8HgHe2TtWJ/c7w7QjaotGSMFq/avrT9m59/Po3x8eeeS5eGf9mjGd5cAl2Za+zF7f7X7Czzwv9Tj/+xHv/QpzMRuk8+dn+7Rh2r2z1uN2qG9/znj8Vf/Bdf/LU54L/9V/9d/E743/12Prza824fpDu82x8+RPXvzU+/sy3bO33e7+zH8/23721eDMAAAAAAAAAAAAAALwT+HbrU6yqql5E/OWI+FMR0ebbMO+LiP88Ir6vqqo/Vtf1j65wrBci4ocj4l1LVv2GiPiGqqr+j4j4vrqu77U9BgAAwJOkU3XjZv/2xvvpVt047N/awhk9+fY6+/G+/Q/s/LiDzjDePzi/41ZVde6v8Y3eza2H4wBgHcPOQTGMdrIkjHY2XnTRHkZE33fRpwEX6rznyZmznwuu9a4Xw2iPgouTdF+la4vfbwAAAAAAAAAAAAAAuFjCaE+pqqqqiPg/I+IPFoZ/MSJ+ISJGEXE7Ij4aEYcL4++OiL9eVdXvbRNHq6rqmyPir0XE3sLiOiJ+JiJ+JSJuRMSHI2LxW97fGxHPVFX1++q6nrV8WAAAAAAAPMEGnYPi8nnAaDzLwmj+cwZQNuxcKS5fFlyMuHzRRQAAAAAAAAAAAAAAIKJz0SfAufkP4vEo2mci4qvquv7yuq7/QF3X31vX9aci4l0R8Sci4vWFdfci4q9WVXW96SBVVb0/In4kTkfRPhcRX1nX9Ufruv7ut47x/oj4cxGx+O2T74qI/2qNxwYAAAAAwBNomITRTqbNAaNeR7wIKBt0hsXloyVhtE50olt1z+28AAAAAAAAAAAAAACA9QijPb3+szM/fyYivq2u639ydsW6rid1Xf+ViPi2iLi/MPSuiPj+Jcf5oYg4XPj5J946zi+cOcb9uq7/x4j47jPb//mqqr54yTEAAAAAAHgKDLrlMNqygFGv2isuBxh2rhSXz4OL4/pBcbxXCS4CAAAAAAAAAAAAAMBlJIz2FKqq6qsi4gNnFv9AXSffKHtLXdc/HRH/y5nF39VwnA9FxL+/sOhBRPyxuq5PGo7x1yLiry4s2o+I/6LpvAAAAAAAeDoMO+Uw2snbYbRJcbxf9c7tnIAn26A7LC4fLbmuCKMBAAAAAAAAAAAAAMDlJIz2dPpdZ37+tbquf7bltn/9zM8falj3eyKiu/Dzj9R1/S9aHOO/PfPzd1dVNWhzcgAAAAAAPLkGneaA0bh+UBwXMAIyeXBxFBERk+T/b1DfdQUAAAAAAAAAAAAAAC4lYbSn05UzP//6Ctv+2pmfDxvW/f1nfv4rbQ5Q1/UvRMTfX1h0JSI+1WZbAAAAAACeXMPO2T9fP7QsYCSMBmQGSRhtHlxMrysd1xUAAAAAAAAAAAAAALiMhNGeTr915ufBCtueXfe10kpVVb0nIr5mYdEkIj63wnH+7pmfX1hhWwAAAAAAnkCDzrC4fDS9FxERk3pSHBdGAzJZGO3krTDaePagOO66AgAAAAAAAAAAAAAAl5Mw2tPppyLi/sLPX15VVfnbZo/7SGFfJb/7zM8/V9f1vZbHiIj4iTM/f+UK2wIAAAAA8AQadq8Ul5/MRhERManHxXEBIyAzzMJo04dhNMFFAAAAAAAAAAAAAAB4sgijPYXqur4bEf/7wqJBRPzJZdtVVdWNiD/z/7N370G2ZXV9wL+/3af7njN3YAaZGWAQGRkUmBJ5WoIgD8dIElO+5ZEyajQ+sICglq8KAYZoKkS0EsoiRKPySAoJQQQJhDg8FA1ItBBmBJIBh3dgiscwj3vvzNzbK390X+6hp0/3OX37nN2n7+dT1XX2Xnvtdb63qFpVQ+/+7i3DL58w/Yot5x+eOuCGj+yyHgAAAAAAh8yw2/4dHsfXN967cUe7fdvrqwqMgAmGK9sXo93WTmS9nZpYuGhfAQAAAAAAAAAAAACAg0kx2uH1y0k+Onb+b6vq2ydNrqrVJL+d5GFjw29L8toJt9x/y/nHZ8z3sS3nd6+qu824BgAAAAAAS2TUHd12/MT68SSZWGA0UGAETDDqti9GSzb2FvsKAAAAAAAAAAAAAAAsF8Voh1Rr7QtJnpjkvZtDoyRvqapXV9UPVtWDq+r+VfWoqvrZJNck+bGxJd6T5Adaa23CV1y45fyGGfPdkuTEluELZlkDAAAAAIDlMuxG247ftn486209J9dPbntdgREwyXCHYrTj68dyh2I0AABgBlV1v6p6SlX9elW9o6puqqo29vPRvjNuVVXnVdVHtuRsVfWyvrMBAAAAAAAAAMBeDPoOwPy01j5aVd+c5EeT/GSSRyR58ubPJJ9P8ptJfr21CX8psuH8LefH9xDxeJLh2Pld9rDGV6iqS5JcPONtl5/t9wIAAAAAsLvRytFtx1tabls/kZOTCow6BUbA9kY7FKOdWD82eV9RjAYAAGyqqick+ZUkj0zyVf2m2ZNfS3K/vkMAAAAAAAAAAMB+UYx2+K1s/tyWpCWpHeZ+Islzk/zBLqVoyZ2L0U7sIdvxJHfbYc29+Jkkz9uHdQAAAAAA2GfDbjTx2vH1WycWGK0qMAImGO5QjHb81ORiNPsKAAAw5qFJvqPvEHtRVY9K8qy+cwAAAAAAAAAAwH7q+g7A/FTVY5J8MMl/SPKY7P6/932S/H6Sj1fVP5vx69rsCfd0DwAAAAAAS2rUHZ147cT68dzRbt/22kCBETDBarc6cY84sX7MvgIAAJyN25J8pO8Qk1TVWpLfzZnnAm/uMQ4AAAAAAAAAAOwbxWiHVFVdmeTqJJeNDX8qyS8neViSC5OsJblnkr+f5OVJTm7OuzjJ71TVb1dVTfiKW7acj/YQc+s9W9cEAAAAAOAQGXaT/6/k4+vHcrKd3PaaAiNgJ8PuvG3Hj68fy8l1+woAADCVO5L8TZL/lOSnkjwiyV2SzPqC0UV6bpIrNo8/luQ/9pgFAAAAAAAAAAD2zaDvAOy/qro4yauSDMeG/zjJD7XWbtoy/bNJ3pLkLVX10iRvTHL3zWs/kY03Xr5wm685qMVoL0nymhnvuTzJ6/fhuwEAAAAA2MFqrWUlg5zKnYuKTqwfy8l2x7b3DcqvM4DJRt0ot5z60p3GT6wf32FfUYwGAAB82cuTvLS1dmLrhcnvFe1XVT0kyS+NDT09yTf3FAcAAAAAAAAAAPaVvyQ6nH4uycVj5x9K8uTtHtwa11p7d1U9JcnVY8PPq6rfb63dsGX61r8uuTgzqKrzc+ditBtnWWM7mzm3Zt0ty9l+LQAAAAAAU6iqDFdGufXUzXe6dvzU5GK01VqbdzRgiQ2787YdP37q1sn7SqcYDQAA2NBa+2LfGWZRVYMkv5czz3++qrX25qpSjAYAAAAAAAAAwKHQ9R2AufjBLecv3K0U7bTW2luTvHNsaJTkqdtMvW7L+X2nj7ft/C8s2wNmAAAAAADMbjShwOjE+rHcMaHAaFAKjIDJJhWjnVg/njva7dtes68AAABL7BeSPHzz+AtJnt1jFgAAAAAAAAAA2HeK0Q6Zqjqa5PItw2+dcZmrt5xv9ybJD245v/+M33G/LecfmPF+AAAAAACW0KQCo+Prx3JSMRqwB6OVyYWLJ9vJba/ZVwAAgGVUVQ9I8ryxoZ9vrd3QVx4AAAAAAAAAAJgHxWiHz4XbjH1mxjW2zr9omznXbjn/xqra/q9OtveYXdYDAAAAAOAQGk0oRjuxYzHaYJ6RgCW3t8JF+woAALBcqqpL8rtJjmwOva219rL+EgEAAAAAAAAAwHwoRjt8btxm7OiMa5y/5fyWrRNaa/8vyfvHhgZJHjvDdzxhy/mbZ7gXAAAAAIAlNbHA6NTkAqPVbm2ekYAlt5fCxdWyrwAAAEvnGTnzQtLjSX6qxywAAAAAAAAAADA3itEOmdbarUlu2jL8sBmXecSW889MmPe6Lef/dJrFq+qBSb55bOjWJP9zumgAAAAAACyz0coOBUbr2xcYDWp1npGAJTexcHH9WO6YUIxmXwEAAJZJVV2W5F+PDV3VWvtwP2kAAAAAAAAAAGC+Bn0HYC7ekeS7xs5/Msnbp7mxqu655d4keeeE6f8lyXOSrGyef19VfV1r7bpdvuaXtpz/19baiWnyAQAAAACw3BQYAfttNGFfOXHqWE7aVwAAgMPhd5Ic3Tx+X5Lf6CtIVV2S5OIZb7t8HlkAAAAAAAAAADicFKMdTq/OV5abPaWq/ntr7T/vdFNVHUnyyiTnjw3fkuQt281vrV1XVS9P8mObQ2tJXlZVV04qOquq707yo2NDtye5aqdcAAAAAAAcHpMKjI6v35r1nNr22qD8OgOYbLgyuXBxcjGafQUAAFgOVfXjSb5983Q9yU+01k72GOlnkjyvx+8HAAAAAAAAAOCQ6/oOwFz8QTbeCnlaJXlFVf37qrrXdjdU1ROTvDtnHqA67YWttS/u8F3PSzJ+/VuSXF1VD9yy/pGqemaS12y5/zdaax/bYX0AAAAAAA6R4YRitFtOfmniPYNanVcc4BAYdaNtx0/sUIy22q3NMxIAAMC+qKpLk7xobOjFrbX/3VceAAAAAAAAAABYBK9CP4Raa+tV9QNJ/iLJJZvDleRZSZ5RVe9P8ndJjif5qiQPS3LPbZZ6U5IX7vJdn6yq70vyliSn/4LkMUk+UFV/vfk9FyR5eJKLt9z+xiT/crZ/HQAAAAAAy2w0oRjt5lOTi9FWS4ERMNmwO7rt+In14+kmvCdK4SIAALAkXpLkws3jjyV5To9ZAAAAAAAAAABgIRSjHVKttQ9X1eOTvDLJI8cudUkeuvkz8fYkv5Pk2a21O6b4rndU1fcmeVnOlJ/V5vc+csJtr0ryE621U7utDwAAAADA4TFc2b4Y7ZZTN0+8R4ERsJNRN9p2/I52eyq17TX7CgAAcNBV1VOTfPfY0NNba7f2lWfMS5K8ZsZ7Lk/y+jlkAQAAAAAAAADgEFKMdoi11j5UVY9O8o+T/HSSRyUT/vpjw/Ekf5jkt1pr757xu95UVd+Q5KokT0lytwlT353kRa21186yPgAAAAAAh8Oo274YrWV94j2D8usMYLJhd3TitZa27bh9BQAAOMiq6qIkLx4belVr7c195RnXWrshyQ2z3FO102OLAAAAAAAAAADwlTzxf8i11k4meUWSV1TVBUkemeRrk1yY5EiSm5N8Mcm1Sa7ZnL/X77ohydOr6p8neUyS+ya5Z5Jbk3wqyXtba9efxT8HAAAAAIAlN5xQjLaTQa3OIQlwWIxWRjPfs1prc0gCAACwb16c5OLN4y8keXaPWQAAAAAAAAAAYKEUo51DWmtfSvLWBXzP7UnePu/vAQAAAABg+YwUowH7bNQdnfke+woAAHBQVdUDkjxtbOjfJTmvqi7b5dYLt5yfv+We9dbax882HwAAAAAAAAAAzJtiNAAAAAAAYGGGeyhGW+3W5pAEOCyOdKOZ71GMBgAAHGBb/yPnBZs/s/r+zZ/TvpQ7l6cBAAAAAAAAAMCB0/UdAAAAAAAAOHeMVmYvRhuU97wAk63UStbqyEz32FcAAAAAAAAAAAAAAOBgUowGAAAAAAAszLAbzXzPShQYATsbdbOVLq7W2pySAAAAAAAAAAAAAAAAZ0MxGgAAAAAAsDArNchaHZl6/qBWU1VzTAQcBsOV2YrRBrU6pyQAAABnp7X2N621mvUnyVVblnr5ljkX9vHvAQAAAAAAAACAWSlGAwAAAAAAFmrYTV9gtKq8CJjCaIZ9JUkGnb0FAAAAAAAAAAAAAAAOIsVoAAAAAADAQo1Wpi8wGihGA6YwS+FikgxqMKckAAAA26uqtuXnCX1nAgAAAAAAAACAg8gT/wAAAAAAwELNUmCkGA2YxmiGfaVSWfFrUgAAYExVfXW2f57ynlvOB1V12YRlbmmtfW4/cwEAAAAAAAAAwLnIE/8AAAAAAMBCzVJgpBgNmMashYtVNcc0AADAEvrzJPedYt69k1w/4drLk/zofgUCAAAAAAAAAIBzVdd3AAAAAAAA4Nwy7EZTz1WMBkxjtDJLMZp3RwEAAAAAAAAAAAAAwEGlGA0AAAAAAFioUXd06rmritGAKQy7WYrR7CsAAAAAAAAAAAAAAHBQeR06AAAAAACwUMOV0dRzFRgB0xh20+8rq7U2xyQAAMAyaq1dtoDvqDmv//wkz5/ndwAAAAAAAAAAwCJ0fQcAAAAAAADOLaPu6NRzB51iNGB3M+0rChcBAAAAAAAAAAAAAODAUowGAAAAAAAs1LAbTT1XgREwjdn2lcEckwAAAAAAAAAAAAAAAGdDMRoAAAAAALBQo+7o1HNXFaMBUxitTL+vKFwEAAAAAAAAAAAAAICDSzEaAAAAAACwUMNuNPVcBUbANGbZV1a7tTkmAQAAAAAAAAAAAAAAzoZiNAAAAAAAYKFGK0ennqsYDZjGqJtlXxnMMQkAAAAAAAAAAAAAAHA2FKMBAAAAAAALNexGU89VYARMY7Z9ReEiAAAAAAAAAAAAAAAcVIrRAAAAAACAhRp1R6eeq8AImMawO2/qufYVAAAAAAAAAAAAAAA4uBSjAQAAAAAACzXsRlPPXa21OSYBDosYiZDCAAAgAElEQVQj3TCVmmqufQUAAAAAAAAAAAAAAA4uxWgAAAAAAMBCjVaOTj13UKtzTAIcFl11OTJl6eKgBnNOAwAAAAAAAAAAAAAA7JViNAAAAAAAYKHW6kgqNdVcBUbAtEbdeVPNU7gIAAAAAAAAAAAAAAAHl2I0AAAAAABgobrqMuxGU81VYARMazh1MdranJMAAAAAAAAAAAAAAAB7pRgNAAAAAABYuGkLjFY7BUbAdEZTF6MN5pwEAAAAAAAAAAAAAADYK8VoAAAAAADAwk1bjDao1TknAQ6L4cq0hYv2FQAAAAAAAAAAAAAAOKgUowEAAAAAAAs3mroYbTDnJMBhMf2+ohgNAAAAAAAAAAAAAAAOKsVoAAAAAADAwg1XFBgB+2vYjaaaN6i1OScBAAAAAAAAAAAAAAD2SjEaAAAAAACwcKNOMRqwv4ZT7yuDOScBAAAAAAAAAAAAAAD2SjEaAAAAAACwcMNuNNW8VcVowJSmLVy0rwAAAAAAAAAAAAAAwMGlGA0AAAAAAFi4UXd0qnkDBUbAlIYr0xWj2VcAAAAAAAAAAAAAAODgUowGAAAAAAAs3LAbTTVPgREwrVE3bTHa2pyTAAAAAAAAAAAAAAAAe6UYDQAAAAAAWLjRytGp5ilGA6Y1nLoYbTDnJAAAAAAAAAAAAAAAwF4pRgMAAAAAABZu2I2mmqcYDZjWaMpitFX7CgAAAAAAAAAAAAAAHFiK0QAAAAAAgIUbdUenmrfaKTACpjOcshhN4SIAAAAAAAAAAAAAABxcitEAAAAAAICFG3ajqeYpMAKmNVqZshitW5tzEgAAAAAAAAAAAAAAYK8UowEAAAAAAAs3Wjk61TzFaMC0ht10xWirNZhzEgAAAAAAAAAAAAAAYK8UowEAAAAAAAs37EZTzVtVjAZMaTRlMZrCRQAAAAAAAAAAAAAAOLgUowEAAAAAAAs36o5ONU+BETCt1VpLl5Vd59lXAAAAAAAAAAAAAADg4FKMBgAAAAAALNywG001T4ERMK2qyqg7b9d59hUAAAAAAAAAAAAAADi4FKMBAAAAAAALt1prWclgxzldVtKVX2UA0xuu7F6MtqoYDQAAAAAAAAAAAAAADix/TQQAAAAAACxcVWW4MtpxjvIiYFajbud9JUkG9hYAAAAAAAAAAAAAADiwFKMBAAAAAAC9GHXn7XhdeREwq2F3dNc59hYAAAAAAAAAAAAAADi4FKMBAAAAAAC9GO5WjNYpLwJmM+xGu85RjAYAAAAAAAAAAAAAAAeXYjQAAAAAAKAXo92K0ZQXATPafV8ZpKoWlAYAAAAAAAAAAAAAAJiVYjQAAAAAAKAXQ8VowD4brthXAAAAAAAAAAAAAABgmSlGAwAAAAAAejHapcBotQYLSgIcFiOFiwAAAAAAAAAAAAAAsNQUowEAAAAAAL0Y7lpgtLagJMBhsfu+ohgNAAAAAAAAAAAAAAAOMsVoAAAAAABAL0YKjIB9ttu+smpfAQAAAAAAAAAAAACAA00xGgAAAAAA0IvhrsVogwUlAQ6L3fcVxWgAAAAAAAAAAAAAAHCQKUYDAAAAAAB6MVJgBOyz0Yp9BQAAAAAAAAAAAAAAlpliNAAAAAAAoBfDXQqMVhUYATMaKlwEAAAAAAAAAAAAAIClphgNAAAAAADoxWjXAqO1BSUBDovd9xXFaAAAAAAAAAAAAAAAcJApRgMAAAAAAHox3K3AqBssKAlwWAy70Y7XVxWjAQAAAAAAAAAAAADAgaYYDQAAAAAA6MVot2I0BUbAjEbd0R2vDzr7CgAAAAAAAAAAAAAAHGSK0QAAAAAAgF4MdylGW1WMBsxouDLa8brCRQAAAAAAAAAAAAAAONgUowEAAAAAAL0YrexcjDaotQUlAQ6LQa1mdYe9QzEaAAAAAAAAAAAAAAAcbIrRAAAAAACAXgy70Y7XBzVYUBLgMNlpb1lVjAYAAAAAAAAAAAAAAAeaYjQAAAAAAKAXKzXIWh2ZeH2gwAjYg1F3dOI1+woAAAAAAAAAAAAAABxsitEAAAAAAIDeDLvzJl5bVWAE7MGwG028phgNAAAAAAAAAAAAAAAONsVoAAAAAABAb0Yrk4vRFBgBe2FfAQAAAAAAAAAAAACA5aUYDQAAAAAA6M2wU2AE7K+d9pVV+woAAAAAAAAAAAAAABxoitEAAAAAAIDejBSjAftM4SIAAAAAAAAAAAAAACwvxWgAAAAAAEBvht1o4rXVToERMLsdCxftKwAAAAAAAAAAAAAAcKApRgMAAAAAAHoz6o5OvDYoBUbA7IY7FaPZVwAAAAAAAAAAAAAA4EBTjAYAAAAAAPRmuDKaeE2BEbAXo5XJxWir9hUAAAAAAAAAAAAAADjQFKMBAAAAAAC9GXVHJ15TjAbsxbCbXIxmXwEAAAAAAAAAAAAAgINNMRoAAAAAANCbYTeaeG1VgRGwByPFaAAAAAAAAAAAAAAAsLQUowEAAAAAAL0ZdUcnXlNgBOzFToWL9hUAAAAAAAAAAAAAADjYFKMBAAAAAAC9UWAE7Ldhd97Ea6v2FQAAAAAAAAAAAAAAONAUowEAAAAAAL0ZrRydeE2BEbAXo5XJxWgKFwEAAAAAAAAAAAAA4GBTjAYAAAAAAPRm2I0mXlNgBOzFsFOMBgAAAAAAAAAAAAAAy0oxGgAAAAAA0JsLBnfbdrxLl+HK5HIjgEnOX7lrugm/Bj1/5a4LTgMAAAAAAAAAAAAAAMxCMRoAAAAAANCbu6/eI/dau8+dxi8fPSjDbtRDImDZHemG+frzHnyn8UtWL81Fa/foIREAAAAAAAAAAAAAADAtxWgAAAAAAECvfuRez875Kxd8+fxug4vyQ/d8Ro+JgGX31Hv8dO6+esmXz8/rzs+PXfrzPSYCAAAAAAAAAAAAAACmMeg7AAAAAAAAcG77muHlueprX5KPHP9gulrJ/UdXZK070ncsYIldsnavPOeyF+f64/8nt7fb8vXnPTjDbtR3LAAAAAAAAAAAAAAAYBeK0QAAAAAAgN6NVo7mG85/ZN8xgEPkSDfMA48+pO8YAAAAAAAAAAAAAADADLq+AwAAAAAAAAAAAAAAAAAAAAAAAAAM+g4wi6p62+ZhS/K01toNe1znHkledXqt1tqV+5EPAAAAAAAAAAAAAAAAAAAAAAAA2JulKkZL8oRslKIlyfAs1hlurpWx9QAAAAAAAAAAAAAAAAAAAAAAAICedH0H2IPqOwAAAAAAAAAAAAAAAAAAAAAAAACwv5axGA0AAAAAAAAAAAAAAAAAAAAAAAA4ZM7VYrTB2PHJ3lIAAAAAAAAAAAAAAAAAAAAAAAAASc7dYrSLxo5v7S0FAAAAAAAAAAAAAAAAAAAAAAAAkOTcLUZ73OZnS/LpPoMAAAAAAAAAAAAAAAAAAAAAAAAAyaDvAGehzTK5qlaT3CvJdyT5F2OXrtnPUAAAAAAAAAAAAAAAAAAAAAAAAMDsDlwxWlWdmmZako9W1Z6/Zuz4DXtdBAAAAAAAAAAAAAAAAAAAAAAAANgfB64YLV9ZWrYf87bTNu//UJL/dhbrAAAAAAAAAAAAAAAAAAAAAAAAAPug6zvABG3O61eSv0ryj1prd8z5uwAAAAAAAAAAAAAAAAAAAAAAAIBdDPoOsI0/y+RitMdvfrYk70lyYso1W5LbktyY5INJ3t5ae+fZhAQAAAAAAAAAAAAAAAAAAAAAAAD2z4ErRmutPWHStapaz5nStKe01j6+kFAAAAAAAAAAAAAAAAAAAAAAAADAXHV9B9iD6jsAAAAAAAAAAAAAAAAAAAAAAAAAsL8GfQeY0VVjxzf2lgIAAAAAAAAAAAAAAAAAAAAAAADYV0tVjNZau2r3WQAAAAAAAAAAAAAAAAAAAAAAAMCy6foOAAAAAAAAAAAAAAAAAAAAAAAAAKAYDQAAAAAAAAAAAAAAAAAAAAAAAOidYjQAAAAAAAAAAAAAAAAAAAAAAACgd4O+A5yNqnpikm9L8rAklyS5IMnqjMu01trl+50NAAAAAAAAAAAAAAAAAAAAAAAAmN5SFqNV1ZOSvDjJ/ceH97hcO/tEAAAAAAAAAAAAwLSq6qIkt7XWbu47CwAAAAAAAAAAcHB0fQeYVVX9QpI3ZaMUbbwMre3hBwAAAAAAAAAAAFiAqrpvVb2iqm5M8tkkN1bVJ6vqV6tq1Hc+AAAAAAAAAACgf4O+A8yiqp6U5IWbp6fLzU6Xox1LcmOSO3qIBgAAAAAAAAAAAOeUqvqRJP9q8/TmJA9vrd02Ye43Jrk6yd3zlS9FvTTJryT5nqp6Qmvtc3OMDAAAAAAAAAAAHHBLVYyW5N9sfp4uRPtENorS3tha+3hvqQAAAAAAAAAAAODc87QkX52NZ/peukMp2iDJq5NctDnUtk5JckWS1yZ5/HyiAgAAAAAAAAAAy2BpitGq6vIkD8mZB6L+Msl3tNZu7i8VAAAAAAAAAAAAnHuqqkvy2LGh1+0w/YeTPCBfWYh2bZKT2XguMNkoR3tsVT2ltfbq/cwKAAAAAAAAAAAsj67vADN49OZnZePhqB9WigYAAAAAAAAAAAC9uCLJeZvHdyT50x3m/vjmZyX5UpJHt9Ye0lp7RJKHJ/lszpSmPX0OWQEAAAAAAAAAgCWxTMVol2x+tiTvba1d12cYAAAAAAAAAAAAOIddvvnZklzXWrtju0lVdc8kj9qc15L8amvtPaevt9ben+RZ2ShNqySPraq7zTM4AAAAAAAAAABwcC1TMVqNHX+4txQAAAAAAAAAAADAvceOr99h3uNypvTsZJLf22bO65J8afO4kjx0PwICAAAAAAAAAADLZ5mK0T41drzSWwoAAAAAAAAAAADg/LHjm3aY99jNz5bkXa21G7dOaK2dSvLesaH7n308AAAAAAAAAABgGS1TMdrfjh3fp7cUAAAAAAAAAAAAwOqU8x49dvyOHeZ9Zuz4rjOnAQAAAAAAAAAADoWlKUZrrV2T5NokleQRVXW3niMBAAAAAAAAAADAueqWseNtn+erqqNJHjo29Bc7rHdq7PjIWeQCAAAAAAAAAACW2NIUo236jc3PlSQ/32cQAAAAAAAAAAAAOId9buz4QRPmfHs2nvdLkpbkL3dY78Kx42NnkQsAAAAAAAAAAFhiS1WM1lp7eZLXJqkkv1hV/6DnSAAAAAAAAAAAAHAuunbzs5Lct6q+YZs5T938bEmuba3dtMN69x47/vw+5AMAAAAAAAAAAJbQUhWjbfqRJG9IMkjy+qp6QVVduMs9AAAAAAAAAAAAwP65NhsFZm3z/DeravX0xap6bJIfGLv+5kkLVdUgyRVjQ9fvb1QAAAAAAAAAAGBZDPoOMIuqeu7m4fuSfEuSi5L8iyQ/V1XvSvKBJF9Msj7Luq21F+xnTgAAAAAAAAAAADjMWmunqupVSZ6RjfKzK5O8v6r+OMkl2ShF65LU5vVX7rDcNyVZGzv/27mEBgAAAAAAAAAADrylKkZL8vyceXtkNo8ryXlJvm3zZy8UowEAAAAAAAAAAMBsfjXJP0ly183zByT5+s3j04VoLclrW2sf2GGd79n8bEk+3Fr74hyyAgAAAAAAAAAAS6DrO8A+OP3g1F7UfgYBAAAAAAAAAACAc0Vr7YYk35/kRM4UoX358ubYR5I8fdIaVdUlefLYve+YR1YAAAAAAAAAAGA5LGMxWu3jDwAAAAAAAAAAALBHrbW3JXlIklcnOZYzz+d9PslvJXlUa+3zOyzxXUnumzPP9L1pfmkBAAAAAAAAAICDbtB3gBk9se8AAAAAAAAAAAAAwBmttQ8neVqSVNVFm2Ofm/L265N879j5W/Y3HQAAAAAAAAAAsEyWqhittfanfWcAAAAAAAAAAAAAtjdDIdrp+e9L8r45xQEAAAAAAAAAAJbMUhWjAXCI3XhN8n9/Kzl1IvmaH0wu/c6kqu9UAAAAAAAAAAAAAAAAAAAAAAAsiGI0APr3mauTtz8paesb59e/InnwVcmDn9tvLgAAAAAAAAAAAAAAAAAAAAAAFqbrOwAA57jWkr965plStNP+9teSY5/sJxMAAAAAAAAAAPuiqi6sqvtU1df0nQUAAAAAAAAAADj4FKMB0K8b35fc9KE7j6/fnnziDxefBwAAAAAAAACAPauq76mq36uq66rqjiSfT/LRJH83Yf5lVfW4zZ9HLDIrAAAAAAAAAABw8Az6DnC2qmo1yaOTfGuSy5N8VZK7JElr7coeowEwjU//j8nXPv6a5AHPWlwWAAAAAAAAAAD2pKqelOTFSe5/emjKWy9P8idJWpLbq+rS1toX5xARAAAAAAAAAABYAktbjFZVR5P8bJJnJLl46+VsPCS13X1PS/Jrm6dfSPJNrbVt5wKwADdeM/na596V3Pb55MjdF5cHAAAAAAAAAICZVNVzkzw3G8/ubX1+r2WHkrTW2lur6oNJHpRkLclTkrx0fmkBAAAAAAAAAICDrOs7wF5U1Tcm+eskVyW5JNO/WTJJ/jjJ3ZNcluRhSf7efucDYAY3fWjytXYq+dQbF5cFAAAAAAAAAICZVNWzkjw/X/k84m1J/izJGzPd832vHjv+zn0LBwAAAAAAAAAALJ2lK0arqiuS/GmSr8tXvlny9Jsmd9RauyXJa8aGvn+/MwIwpba+czFaknzyjxaTBQAAAAAAAACAmVTV1yV5UTae42vZKET7xSR3b609Ickzp1zqDaeXTPKtVTXLy1IBAAAAAAAAAIBDZKmK0apqmI03SF4wNnxNkh9Pcr8kD8p0b5d8/djxlfsWEIDZHP9McurYznM+978WkwUAAAAAAAAAgFm9IMkgG8/tnUhyZWvtRa214zOu8/7N+5PkLtl4cSoAAAAAAAAAAHAOWqpitCTPSnJZNt4smSQvTvLw1trvt9Y+mjMPRu3m7ZtrVJKvrapL9jknwN7d+onkz5+cvO7eydWPTz7ztr4Tzc/xT+0+58QNye03zj8LAAAAAAAAAABTq6ojSb4rG8/itSTPaa29ay9rtdbWk3xwbOiBZ58QAAAAAAAAAABYRstWjPbMnClF+6PW2rM3H4iaSWvtliQfHRt60D5kAzh7J48lf/LY5OOvSY5/Ornhz5K3XZlc/8qktd3vXzbHpihGS5Kbr5tvDgAAAAAAAAAAZvWYJKNsvKD0WJKXnOV6nx47vvQs1wIAAAAAAAAAAJbU0hSjVdUVSe6djYeokuQXznLJj4wd3+8s1wLYH598Q3Ls43cef9cPJ3/01ckN71x8pnk6PmUx2o3XzDcHAAAAAAAAAACzumzzsyV5T2vttrNc76ax47uc5VoAAAAAAAAAAMCSWppitCQP3fxsSa5trf3dWa5349jxBWe5FsD++NirJl87/unk6scl17wg+ezbk7a+uFzzcmzKYrRPvXG+OQAAAAAAAAAAmNXFY8ef2Yf1ugnHAAAAAAAAAADAOWTQd4AZjD9Edd0+rDf+dsrz9mE9gLP3mT/Zfc41z9v4vPQfJt/6umRlbb6Z5un4/2fvvsPsLOv8j7/vaUlIIYUSCL1X6cIKCAKCggIWUHRXEVzLFt1V17KuhdV1159tXde2gmVVRBGkCdKb9F4iUhISkgAJ6ckkmUz5/v44MztnJqefM+fMmbxf13Wu8zz3/b3v5zuUk0nyzOd5sbS6xbdABKQ0sv1IkiRJkiRJkiRJkiSpVNn34I2rwX4zso5X1GA/SZIkSZIkSZIkSZIkSU2omZ6qOD7ruCtvVem2zDpeU4P9JKl67VNKr33xWnjuhyPXSz30lPjx270K1r80sr1IkiRJkiRJkiRJkiSpHK9kHe9Qg/0OyrO3JEmSJEmSJEmSJEmSpM1IMwWjLc063qoG++2WdbysBvtJUvVaxxevyTb3JyPTR730rC+9dvWfR64PSZIkSZIkSZIkSZIklWtu/3sCDk4pTax0o5TSocDWWUMPV9OYJEmSJEmSJEmSJEmSpObVTMFoL/e/J+CQajZKKc0A9s0aeq6a/SSpJiKga2nxumwrHoEVj41MP/XQazCaJEmSJEmSJEmSJElSk7ofWA0E0A6cV8VeH8s6nh8R86tpTJIkSZIkSZIkSZIkSVLzaqZgtLuBvv7jGSmlE6rY6zwyAWsAncCD1TQmSTXRtQx6Ostfd93BmVC1ZtS7ofRag9EkSZIkSZIkSZIkSZJGjYjoBX5P5l68BFyQUtqx3H1SSm8B3kUmYC2AX9WyT0mSJEmSJEmSJEmSJEnNpWmC0SJiBfBA1tCXUkopX30+KaVZwKcZvInqxojoK7xKkupgzTOVr33igtr1UU+960uvfeY7I9eHJEmSJEmSJEmSJEmSKvElMg88DWAqcFtKaf9SF6eUzgUu7l+fgA3At2vfpiRJkiRJkiRJkiRJkqRm0TTBaP2yb3g6CvhBOYtTStsCVwHTyNxEBfDN2rQmSVVa82zla5+8ALpX166XeiknGA1g2YMj04ckSZIkSZIkSZIkSZLKFhF/Br5D5n68AHYFHk4pXZRSOgXYZvialNKOKaXzU0r3ABcB47LWfyEiltTtC5AkSZIkSZIkSZIkSZI06jRVMFpEXAI82n+agPenlO5MKR1baF1KaWJK6UP9aw8mcwNVADdExF0j2bMklWzNM9Wtf+Gy2vRRT+UGoz39nyPThyRJkiRJkiRJkiRJkir1ceBGBsPN2oFzgWuBe/vHAEgpdQLzgP8BXp21BuB3EfH1ejUtSZIkSZIkSZIkSZIkaXRqa3QDFXg7mZulZvSfHw3cllJ6GXguuzCl9H1gL+AvGPpUyQQsAv6qTj1L0qZWPwPP/y9sWALbnZw5z2XaIdC9CtbOLbzffefDLu+C1nG173WklBuMtuj30NcNLe0j048kSZIkSZIkSZIkSZLKEhF9KaUzgO+RCUQbCDpLAyVZYxOyl2bV/Rj40Mh2KkmSJEmSJEmSJEmSJKkZtDS6gXJFxFzgTcDLDA062w44Jqs0AR8AjgfGD6tdCJwWEUvr1rgkZVv2IFz/apj9bzDnR/DHs2DBb3PXznozvOlpeP1dRTYNuOl46Oupdbcjp9xgtO6VsOSOkelFkiRJkiRJkiRJkiRJFYmIDRFxHvAOYDaDoWiblDI0EG0O8O6IeH9ENNFNL5IkSZIkSZIkSZIkSZJGStMFowFExP3AocB1DH2q5MB79s1T2XMJuBF4dUQ8XodWJSm3J78E3atKq528F7S0wdavgTc/W7h22b3w/M+r769eejfkHj/6kvxrFl09Mr1IkiRJkiRJkiRJkiSpKhFxaUS8CjgR+A/gj8ALQCfQDbwEPAp8Fzgd2CciftWgdiVJkiRJkiRJkiRJkiSNQm2NbqBSEbEYOC2ldBjwUTI3Um2Xp3wVcDPwnYi4vU4tSlJu0QeLriq9fvKeWcd7wHFXw+1vzl8//xLY/X2V91cvfd0QvbnnJsyCnc6GF36z6dyq2SPblyRJkiRJkiRJkiRJkqoSEbcCtza6D0mSJEmSJEmSJEmSJEnNp2mD0QZExEPAewBSSrsBOwIzgA5gKbAYmB0RfQ1rUpKydb5Qeu24rWD6IUPHtjkO2iZBz9rcaxbfAhtXQsfUynush971+efaJsC0Q3IHo21cMXI9SZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIapumD0bJFxFxgbqP7kKSCFt9Seu0+H4eW9qFj7ZPh0G/A/R/MvSZ64MXrYJdzKu+xHnoKBKO1jM8f7LZx5cj0I0mSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJElqqDEVjKbRIaXUDhwN7ARsB6wFXgQeiYh5DWxNarzVz8B955dWu+V+sM/Hcs/t8QGYfhj84fDc8y/fNPqD0XoLBKO1TYD2PMFo3QajSZIkSZIkSZIkSZIkjQYppYEnBAZwTkQsqXCfbYFfDewVESfWoj9JkiRJkiRJkiRJkiRJzcdgtDEopfRT4L012m5+ROxS4nW3Bi4A3gFMz1NzN/DNiLisRv1JzeX+D5Ree/j3oLUj//z0w2DPD8Oz3990bu6PoXs1zHoz7PJuaGktv9daWf8yPPc/MOciWPcCzDodDv0m9G3Mv6Z1AnTkCUbbuBIiIKWR6VeSJEmSJEmSJEmSJEmlOp5MKBrA+Cr2Gd+/F1n7SZIkSZIkSZIkSZIkSdoMGYymYtaXUpRSeiPwU2CbIqWvAV6TUvol8MGI6KyuPamJdK+BV+4srXbGq2Hb44rXTTsk/9yC32Zei66CYy5tTJDY2nlww5GwIethwIuuyrwO/Vb+da0ToGNa7rnohZ5OaJ9U01YlSZIkSZIkSZIkSZJUkYRhZpIkSZIkSZIkSZIkSZJqpKXRDZQjpXRASumW/tfNKaViIVy59ti2f+3APnuNRK9jyGXFClJKxwNXMDQULYCHgEuBG4Glw5a9G/hVSqmp/huUqtK1DKKvtNoZR5ZWN2Wf4jULLoOl95S2X6098cWhoWjZHv7H/OvaJkHH1Pzz6xZW1ZYkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkafRptlCqDwLHA8cBGyMiT9pOfhGxGOjO2ueva9jfaPEJYNcKXmcN2yeAHxe6UEppB+ByoCNr+C5g/4g4PCLOjoiTgR2Aj5L5Zz/gzcCXK/j6pObUs6b02hlHlFY3ucRsx+d/Xvq1a6W3KxPKVq62ydDSBu0FgtFuOArCBw1LkiRJkiRJkiRJkiSNEW1Zxz0N60KSJEmSJEmSJEmSJElSwzVbMNoZWcc/q2KfgbUJeEsV+4xKEbE0IuaV+wJOGrbVrRExt8jlLgCmZZ3fDZwUEU8N66krIv4LOHvY+o+llHau4MuUmk93GcFo00sMRuuYVrwGYG7BjMORsfgW6Flb/rqO/kC0ji3z13SvghWPVNaXJEmSJEmSJEmSJEmSRputso47G9aFJEmSJEmSJEmSJEmSpIZrmmC0lNJuwA79p33ANVVsdxzVuxAAACAASURBVDXQ23+8a0ppp2p6GwtSShOAdw4bvqjImj2B92YNbQTOjYgN+dZExBUMDbUbB3yhvG6lJlVqMFr7FJiyV2m1Le1kMh6LKaWmxhZeUdm6gWC01vEwbqv8dcsfrmx/SZIkSZIkSZIkSZIkjTav7X8P4MVGNiJJkiRJkiRJkiRJkiSpsZomGA04oP89gKcjYm2lG/WvfTpr6MBqGhsj3g5smXW+Ari8yJp3Aa1Z55dHxLMlXOurw87PTimNL2Gd1Nx6SgxG2/VcSCV+PKeUCRArpq+rtP1qJfpg4VWVre2YNng86/T8dT0+HFiSJEmSJEmSJEmSJGkUiXKKU0rtKaWdUkrvBz6bNfVEbduSJEmSJEmSJEmSJEmS1EyaKRht56zjOTXYL3uPnWqwX7M7f9j5LyNiQ5E1bxl2/pNSLhQRTwH3ZQ1NBE4uZa3U1LpLCEbb9gQ48PPl7VtKMBrAytnl7VuNZffDhpcrW9s+dfD40K/nr+upOB9TkiRJkiRJkiRJkiRJJUop9eZ7ZZcB8wrV5li7AXge+CEwJWuvCp/GJ0mSJEmSJEmSJEmSJGksaKZgtMlZx6tqsN/qrOMpeas2Ayml3YHXDhu+qMiamcBBWUM9wF1lXPa2YedvLGOt1Jx68gSjTdwVTrgJTn0cXncDjJtR3r6lBqMtvKK8favxSjkfB8Ok1sHjjmmZsLhcejorv4YkSZIkSZIkSZIkSZJKlQq8Sq0r9or+Pf4M/HbkvhRJkiRJkiRJkiRJkiRJo10zBaOtzzquRZBZdtBab96qzcN5DL1J7eGIeLTImgOGnT8eEeWkFN097Hz/MtZKzak7TzDa+G1g5okw9UBoac1dU0hLicFonfPK37tSa57JPb7tiXDmosJrezcMPW+fnLuuZ235fUmSJEmSJEmSJEmSJKkSUbykKgl4EHhTRHSP8LUkSZIkSZIkSZIkSZIkjWJtjW6gDEuzjneuwX47ZR0vq8F+TSml1Aq8d9jwRSUs3W/Y+XNlXnpOkf2ksacnTzBavuCvUrWWGIy2rkggWS2tfjr3+Jb7ZYLgCtnqL4aet07MXddTThajJEmSJEmSJEmSJEmSKnQH+YPRjut/D+B+YEOeuuEC6AJWAk8Bt0bEndU0KUmSJEmSJEmSJEmSJGlsaKZgtBf63xNwYEppRkRUFGiWUpoBvCprqI5pQaPOG4BZWefrgYtLWLfHsPMXclblN3/Y+YyU0rSIWFHmPlLz6M4TjNZWp2C0l66r7jqlWng1LLk999zkvaClyC89s04det4+KXddz9rye5MkSZIkSZIkSZIkSVJZIuL4fHMppT4GQ9PeERHl3kcmSZIkSZIkSZIkSZIkSUM0UzDavWSeENlBJhztb4F/rXCvvwFa+o97gLuq7q55nTfs/LKIWFnCuqnDzpeUc9GIWJtS2gBkJzptCVQVjJZS2gbYusxlu1dzTalk+YLR2qsMRmsZV3rt6mdgyl7VXa+QlbPhjtPzz0/ZO/M+9VWw8vEcBQmmHTp0qHVi7r16OitqUZIkSZIkSZIkSZIkSTWVGAxHkyRJkiRJkiRJkiRJkqSqNE0wWkR0pZTuBE7qH/pESul3EfFEOfuklA4A/onBG7HuiojNMl0npbQ18OZhwxeVuHzSsPP1FbSwnqHBaFWmQwGZ0Lsv1GAfqfZ68gSjtVX5n370ll57zd5wTh+kVN0185l/cf65lnaY8erM8azTcwejvX3Zpr21D/+46deztrIeJUmSJEmSJEmSJEmSVCsXZB2X8kBOSZIkSZIkSZIkSZIkSSqopdENlOnr/e9BJpjrupTSUaUuTim9GrgWmEjmKZXZe26O3gO0Z53PAW4vce3wpKINFVx/eJhanvQjaYzozhOM1l5lMFpfmf/73XQcbFhS3TXzWfFo/rltjoeOLTPH+38GtnvD4FzrFnDsZdAxbdN1bRNz72cwmiRJkiRJkiRJkiRJUkNFxAVZr9WN7keSJEmSJEmSJEmSJElS82uqYLSIuAG4jUyoWQDbA3eklC5KKb06pZSGr0kZR6SULgTuBHYY2A64MyKurU/3o9L7hp3/OCKiwr0qWVfptaTm1DNCwWi9ZQajvXInXH8kdM6v7rrDda+BFwt8pO73ycHjti3g+Gvh1CfhddfDmQtgx7fmXteWJzNx+UNQ8UeWJEmSJEmSJEmSJEmSqpVSaqp7ECVJkiRJkiRJkiRJkiSNfm2NbqAC7wQeBrYjE6zVBpzb/+pMKT0NrOifmw7sBQyk6gwEqiVgAXB2HfseVVJKRwH7Zw31Aj8tY4u1w84nVNDG8DXD96zE94BLy1yzO3BlDa4tFdadJxitrc7BaACd8+COt8AbH67u2tk9XL5t/vnpR8DMk4aOpQRT98+8CmmbmH9u1ZMw9cDS+5QkSZIkSZIkSZIkSVItvZBS+hFwYUQsanQzkiRJkiRJkiRJkiRJkppf0wWjRcSSlNIbgKuAXcgEnUEm7GwScNiwsf9bymAo2nPAGRGxpB49j1LnDzu/LiJeLGP9qAxG6/93Wta/15RS8SKpFnryBKO1NyAYDWDFI/DyLTDzhNzzfb0QPbBxOfT1wLitgIDoha5lmZqWdpiwPdx+OvSuz3+tAz9fWY8A7VPzzy2+zWA0SZKkRupeDa0ToaW10Z1IkiRJkiRJkqTG2B74PPDZlNI1wA8i4oYG9yRJkiRJkiRJkiRJkiSpiTVdMBpARDyZUjoM+C5wNtDCYBjakNKs4wT0Ar8EPhoRq0a80VEqpTQReMew4YvK3Gb4P7+ty+xhEpsGo60sswepuXTnCUZra1AwGsAtJ8Lu74fD/xtaxw2OL7gC7nxLdX1lm7B95Wu3OTb/XE/VeYqSJEmqxJo5cPe7YNkD0DEN9v4oHPA5MHhakiRJkiRJkqTNVRtwBnBGSul54IfATyJiaWPbkiRJkiRJkiRJkiRJktRsWhrdQKUiYkVEvAvYD/gW8ET/VBr2AngM+Dqwd0ScuzmHovU7C8hOYloMXFPmHs8OO9+5zPXD65dHxIoy95CaRwT05AlGa68yGK2vimA0gDkXwsP/OHi+6s+1DUUDmFjuR0SWcTPyz1UTCidJkqTK9HXDzcfDsvuBgI3L4YkvwLPfb3RnkiRJkiRJkiSp/jaSuU9v4CGmCdgN+A9gQUrpFymlYxrVnCRJkiRJkiRJkiRJkqTm07TBaAMi4pmI+HhEHAxsCewJHNX/2gOYEhGHRsQnI2JuI3sdRc4fdv6/EdFT5h5PDTvfo8z1uw07/1OZ66Xm0rseoi/3XFuVwWgd0/LPvelp2Oms4ns8+31Y8Vjm+KmvVdfPcFP2LRxuVoqZJ+ce7+uqbl9JkiSVb8kdsG7hpuPzL65/L5IkSZIkSZIkqdG2Bz4JPMfgg0yj/3gccA5we0rpiZTS36SUqrxRRpIkSZIkSZIkSZIkSdJY1zTBaCmlmSml07Ne04fXRMTaiJgTEff3v+ZGRGcj+h2tUkp7AcOfwHlRBVs9Oez8VSmlLcpYf3SR/aSxpXtN/rn2Ku/3POgrucd3+SuYshcc8xuYelDxfa47GC5OMPfH1fUz3LGXV79H6/jc470bqt9bkiRJ5Xnq67nHX7mrvn1IkiRJkiRJkqSGi4jlEfH1iNgbeD1wOdA7MN3/noD9ge8AL6aUfphSOrT+3UqSJEmSJEmSJEmSJElqBk0TjAa8Ffhd/+uXQFdj22la5w07/2NEPF3uJhHxEvB41lAbmwauFXL8sPPryu1Baio9IxiMtv2p0JZjj13ePXi8199Wd41K7fMx2HKf6vfJG4zmLwWSJEl1t3F5ozuQJEmSJEmSJEmjUETcHBFvB3YEPg8sIBOKBpmQtARMBN4PPJBSui+ldG5KKc+NIZIkSZIkSZIkSZIkSZI2R80UjDaVzI1RCXggIjob3E/TSSm1Au8ZNnxRFVv+btj5+0rsYx/gyKyhTuCGKvqQRr+edfnnWidWt/eE7eCEG2DL/QfPj7wItj9lsGa38+Cgr1R3nXJtc3ztrtkyLvd434ba7C9JkqTC+nrgyS/D9X8By+7PXxdRv54kSZIkSZIkSdKoFBGLI+LLwK7A6cC1ZILRyHpPwBFk7l97MaX0rf77yiRJkiRJkiRJkiRJkiRt5popGG15/3sALzWykSZ2KrBd1vka4NIq9vsl0Jt1/taU0p4lrPvUsPPfRITpRhrbetfnn2ubUP3+Wx0Fpz0Jb18BZy6C3c8bOt/SCvt/Bt4VsM1x1V+vmJmvh5NuhdY8gWblas3zYOBePzokSZLq4t73weOfg2X3Fq4r9H2vJEmSJEmSJEnarETGNRHxJjIhaV8BXiYTigaZewETmYemfgSYnVK6NaV0VkqprSFNS5IkSZIkSZIkSZIkSWq4ZgpGyw5Dm9iwLprb+cPOL4mIzko3i4hngZ9lDXUAP00p5UkwgpTSGcC5WUMbgQsq7UFqGoUCIlprEIw2oGMqpFS4Zud31u56+Rx3VW33yxew1ttV2+tIkiRpU53zYd4vS6vtqfi3mJIkSZIkSZIkaQyLiAUR8S/ATsDZwM3DSlL/67XAJcCClNKXU0o717dTSZIkSZIkSZIkSZIkSY3WTMFoj5B5QiTAXo1spBmllLYFThs2fGENtv4CsCLr/DXATSmlfYZdf1xK6e+BS4et/0ZEzK9BH9Loli8YraUDUp0/ind9D0x9Ven1bWVkUU7aDc5cAK158xErk2+/3g21vY4kSZKGWjsPHvkUg78dL8JgNEmSJEmSJEmSVEBE9EbEbyPi9WTuA/wGsIzMX0YEgwFp2wKfAZ5LKV2eUjqmUT1LkiRJkiRJkiRJkiRJqq+mCUaLiBeAe8nc9LR3SslwtPK8F2jLOn8yIu6vdtOIWAi8FdiYNXw08KeU0gMppV+nlP4ALAD+C2jPqrsG+Fy1PUhNIV8wWuuE+vYB0LYFnPIAHPqfhet2OhuO+gmcMPwBvVm23A+Ovw72/Sc45Bvwxkdgix1q2y9Ay7jc431dtb+WJEmSIAKe+BJcvTu88OvS1xmMJkmSJEmSJEmSSjcF2BLIfmJeZL0AWoEzgNtTStellHavb4uSJEmSJEmSJEmSJEmS6q2teMmo8jXg8qzjMxrYS7N537Dzi2q1cUTcllJ6C/BTYOv+4QQc3v/K5VfAX0dEb636kEa1nlEUjAbQ2gH7fBR2OgtuPBo65w2df+2VsMPpmeOVs/PvEwHbvyHzGkmt43OP924Y2etKqo3u1TD/N7DmGdj6WJh1GqSmyeeVpM3T0nvgic+Xv65nbe17kSRJkiRJkiRJY0ZKaQJwDvBBct9bloDu/tcWDAakJeAU4LGU0jsi4vd1aFeSJEmSJEmSJEmSJElSAzRVIkVEXAH8mMxNTm9KKX03pdRs4W51l1I6Gtgna2gj8ItaXiMirgUOAH4ArChQei/w9oh4V0R01rIHaVTrHWXBaAO22B7e/ByccDPs9xk4+tfwtmWDoWgAbYV6jAJzNWQwmtS8NiyBG4+B+/8anvoa3HE63Pd+iL5GdyZJKmTexZWt6/G3eZIkSZIkSZIkaVMppf1SSv8FvAj8iEwoWhqY7n+9BHwR2BnYHvg7YHb/XPS/tgB+k1LavZ79S5IkSZIkSZIkSZIkSaqfZgwV+yCwBvgo8CHguJTSN4CrImJZQzsbpSLiLgZvIhvJ6ywBPpxS+ihwNJkb1GYCncAi4JGIeH6k+5BGpXzBaAVDx+qkpRVmnpB55VIwvK1OwWgt43KP93XV5/qSKvfsD2HlE0PH5v4E9vgAbHVUY3qSJBX34rWVrTMYTZIkSZIkSSseh9lfga6lMP0QOPCL0Dax0V1JkhogpdQBnEXmPr/XDAz3v0fW+W3A94DfRURv1hbfA76XUnoj8DVgv/7x8cA/kglOkyRJkiRJkiRJkiRJkjTGNFUwWkrplqzTNcBkMjc7Xdg/vxBY0j9XqoiIE2vWpIiIjcCtje5DGlXyBaMVDB0bJUZDj63jc4/3bqhvH5LK98Tnc4+/8FuD0SRpNOusMNPaYDRJo0FfL0QPtOYJ2ZYkSZIkjZzVz8INRw7+Pd7im2HxrXDK/ZBaGtubJKluUkp7knkA6nuB6QPDZMLQov94LfBz4LsR8VSh/SLiupTSrcAfgUP7179+ZLqXJEmSJEmSJEmSJEmS1GhNFYwGHM/gkyJh8CapgadI7tj/CkozcLOVJI2ssRqMFnX6CG3J88PsfV31ub6k2ptzERz69UZ3IUkaLgKe/3nl63sNRpPUQH3d8PAn4PmfZn4Af7tT4KifwLgZje5MkiRJkjYfj35q04cbLX8IXroetn9jY3qSJNVFSqkVeAvwIeB1A8P975F1Phv4PvC/EbG21P0jYkNK6d+BS/uHdqy6aUmSJEmSJEmSJEmSJEmjUrMFo+VisJmk0a+Zg9FaOgpM1ukjuHV87vF1C+tzfUmVib78cx1T69eHJKl0L90A97638vXdJf/8kiTVRgSsnQOrn4FHPwmrZg/OLboa7nwbnHRbw9qTJEmSpM3KxlWw8He55xbfZjCaJI1RKaWdgQ8A5wHbDAyTualk4MGnvcAVwHcj4vYqLvenrOM8T9mTJEmSJEmSJEmSJEmS1OyaMRgtFS+RpFGmp4mD0VKBj91CoUe1lC8YDeCJL8EB/1K4T0mN8dz/5J8zGE2SRqdnvlPd+t7O2vQhSaXo7YL73g/zfpG/ZsntmdC0KXvVry9JkiRJ2lw9/vn8cwsuh0O+Wr9eJEn1NIfMPX0DN24MPGUvAS8B/wP8T0S8VINrrRt2DUmSJEmSJEmSJEmSJEljUFMFo0VES6N7kKSK9DZxMFpBdbrPdNzW+eee+Dxs93rY6qj69CKpNF3L4YEP559v37J+vUiSCls5GxZeARuWwIu/L23N9MNg+UObjvcYjCapjuZcWDgUbcBLNxiMJkmSJEkjbc1z8Ox/Fyio0wOXJEmN0ELmBpJgMCDtDuC7wO8iomcErpkwHE2SJEmSJEmSJEmSJEkas5oqGE2SmtacH+Ueb9uivn3UWtTpHtPph0DbxPxBG8//wmA0abRZeGXh+baJ9elDklTYgivgrrOhr7v0Ncf/AZ79LmAwmqQGm3dxaXWd80a0DUmSJEkSmd+jRYHws8550NsFrePq1pIkqa4SsBb4OfC9iJg9EheJiPlkgtgkSZIkSZIkSZIkSZIkjWHeJCRJI617bf651gn162NE1CkYrXU8bH1s/vlnv1ufPiSV7tnvFZ7v3VCfPiRJ+UUfPPT3ZYSiJTji+7D9KfkDLg1Gk1RPS+8urW79opHtQ5IkSZJU/IEp0Qdrnq1PL5KkensK+HtgVkT87UiFokmSJEmSJEmSJEmSJEnafLQ1ugFJGvNeuTP/XPvk+vUxEmaeVL9rTZhZv2tJqs7838DyBwvXGJwjSY23+mlYt7C02ld9Gfb/DKT+fPW2SbnregqEAktSLXUtK7121VP55/p6YeOKzHH7pEwwtyRJkiSpPJ0LYMXDxetWPwVTDxj5fiRJdRUR+ze6B0mSJEmSJEmSJEmSJEljS0ujG5CkMW/xLfnntn5t/fqoxt4fzTP+kfr10DGj8HznC/XpQ1Jxs79SvMZgNElqvGX3lV67/z8PhqIBtE3MXefnu6R6Wf1M6bUrH4NLp8Kjn4bejZmx3o1w/4fhsulw+daZ16VT4OYTMz/QL0mSJEkq3cIr88+1tMOs02HfT8LkPevXkyRJkiRJkiRJkiRJkiRJkppWW6MbkKQxLfrgqa/nn595Uv16qcbeH4UFv4N1WeFju50LW9bxie7jtio8f/2R8NaX6tOLpPw2rsgETxTTu27ke5EkbaqvN/M53dcN976veH3HdDjhJkhp6LjBaJIabf2i8uq7V8GfvpoJRDvsm/DwP8BzPxha09edCTe//nA480XoWQPLH4It94cJM2vXuyRJkiSNNYvyBKNN2Rve9Of69iJJkiRJkiRJkiRJkiRJkqSm1/TBaCmlg4HTgWOB3YHpwGQgImKTry+lNBWY0n/aFRGL69WrpM3Q0nvzz+3+19DaUb9eqjFpVzj5Hpj/K1jzHGxzHOx89qYBGSMpX/jGgA0vw7qFsMUO9elHUm6rny6tzuAcSaq/zvlw22mwanZp9ft8DPb6W5i026ZzbZNyr/HzXVK9dC2rbN3T34Ldz4e5P8tfs2EJXNKe+T1v9GXG9vk4HPK1+v4+WJIkSZKawcaVsPi23HM7nV3XViRJo1tKaQZwFnAksC2wHlgI3ARcHxEbG9ieJEmSJEmSJEmSJEmSpFGkaYPRUkoHAt8CXpc9XMLS1wG/7T/uTCnNjIh1te5PkoiAP38r//yMI+rXSy1ssT3s+/EGNlDCR/yL18Eefz3yrUjK78U/lFZncI4k1d99Hyg9FG2398Gh38g/ny+0tmdt+X1JUiU2VhiMBnDtASUUReb39QP+/A3Y6kjY6azKrytJkiRJY82qp+CPZ0P05J7f4cz69iNJqpuU0lbAq4CtgS5gLvBkxMCTBobUJuAzwD8DE3Js93fA/JTS30REiX/hLEmSJEmSJEmSJEmSJGksa2l0A5VIKZ0L3Esm5Gx4Uk5ssmCoK4EX+tdNBN5W6/4kiQi473xY8Nv8NT4hvTwTti1e0+fDg6WGWngVPHlBabU9nUODJiRJI6trObx8Y+n1+/5T4fm8wWgGX0qqk64qgtEqtfDK+l9TkiRJkkarZ38Iv98fVj2Ze36LHWHaIfXtSZI04lJKB6eUbgReAm4ELgYuAx4BFqWUPpVSas2qT8DPgC8BW5C5Zy/7fr+B812Aq1NK767H1yFJkiRJkiRJkiRJkiRpdGu6YLSU0tuAixj69MgELAAeZdOgtCH6n0r566yh02vdoySx9B6Y+5P88y3t0LFl/foZC2aelPnnVkjrFvXpRaq13g3w+Bfg5hPg3vfB8oca3VH5etbBHWeUsSCge9WItSNJGmbVnyieI55ly30Lz7cajCapwTYur/815/2y/teUJEmSpNFo/cvwyCco+OdNs06HVPD2DUlSk0kpvRO4HzgBaGUw1GzgtS3wFeCqlNLAfYkfBf6y/zgY/MVjYE1kvVqBH6eU9hvxL0aSJEmSJEmSJEmSJEnSqNZUwWgppe3IPEESBm+S+h6we0TsAry1xK2uHNgSOK5mDUrSgBevKzy/3Rvr08dY0jENdn1P4ZpiwWnSaBQBt54CT/4rLL4V5v4UbjoOlj3Y6M7Kc80+5a/pWlb7PiRJuW14qfTaPT5YvKZ9Uu7xnjWlX0eSquH3kpIkSZLUOAsuh561hWt2KOdhKpKk0S6ldATwc6CNoYFmAwbOE/AG4OMppcnAFxkahvYScA1wMfAHYAVDH4TaDnx7pL4OSZIkSZIkSZIkSZIkSc2hqYLRgM8DW5C5GaoPODsi/i4inu+fL/A44iEeALr7j2eklHatbZuSNnuzv1x4vmNqffoYa474QeH5znl1aUOqqSW3w5I7ho71dMIz/92YfiqxZg6sW1D+OsMsJKl+1j5fvGbA9qcVr2nfMvd47wbo7Sr9WpJUKb+XlCRJkqTGmf2VwvPtU2Abn1EnSWPM94FWhgagrSRzH96D/ccpa+4fgXOAKf3rlwFnRMQOEXF6RPxlRJwKbAN8ENjA4L1/J6SUdq/LVyVJkiRJkiRJkiRJkiRpVGqaYLSUUiuZm6UGbq76akRcVsleEdED/DlraJ/qO5SkLK3jC8+3G4xWkZa2wvOPfw6i1IxMaZR45ju5x5//WX37GNC7AZbeDyufKPz/U/TB8kdg+cPwxBcru1bX0srWSZLKV06A7HYnF68pFPTbvar0a0lSpbpXNua6i65pzHUlSZIkabToXgvrFxWu2f5UaO2oTz+SpBGXUjoSOJTB0LOlwFuBrSLiyIh4NbAV8BZgSX/dtsDH+rfoBk6KiKuH7x0RfRHxIzL3BQ4EqwGcNXJfkSRJkiRJkiRJkiRJkqTRrmmC0YCjyDxBMpG5Wer/VbnfwqzjHavcS5KGaptceL5QkISqs+yBRncglWfB5Y3uYNArd8E1+8INR8K1r4JbT4aNKzatW7coM/+HQ+EPh8G8X1R2vY3LqutXklS6tfNKqzt9DrSOK17XMS3/XK5fOySp1no6i9cc+K+1v+4z36v9npIkSZLUTB75p+I1O5w58n1Ikurpbf3vA/ftnRwRV0QMPmkrMq4ETgF6+of3IhN09ouIeLzQBSLiKuDW/msAHF7D/iVJkiRJkiRJkiRJkiQ1mWYKRtuj/z2AByJidZX7Za+fUuVekjRUX3fh+egpPK/8Dvr3wvNzLqxPH1ItrH6m8Hz0jXwP616EZ38A938YbjwGOucNzr18Ezz6z5uuuee9sGp2afuPm5F/rstgNEmqi1fugpeuK153+H/DpN1K27O9QNDvxpWl7SFJ1ehZV7zmwM/Bdm+o7XVL+TyVJEmSpLGkrxfm/wae+kbm/bkfFK5vaa/978UkSY12aP97AL+JiMfyFfYHoF3CYMAZwGUlXie7bv+yOpQkSZIkSZIkSZIkSZI0pjRTMNrWWccLarBfdtJIWw32k6SM7rXQXSQMYtIeheeV345vLTy//sX69CHVwqJrCs8//ImRvf7yR+C6g+GBD+f/Qaa5P4buNYPnG1fCkltL2//Af4U3PQ3bvDb3fNfS8vqVJJXviQsywZfFpDbY629L37dtIqTW3HMGo0mqh57O0urGbVX7a/s5J0mSJGlz0bsx82dLd70DHvlE5r2Y3c6Dji1HvjdJUj3tlXVc5C+5Abh22PnjJV5nIHAtAQWewCVJkiRJkiRJkiRJkiRprGumYLTIOs7z09dlmZ517E8zSqqdNc8Ur5lx+Mj3MVZN2avwfPTUpw81r+7V8Nhn4eYT4YG/gzXPNa6X9YsKzz/9LVhXpGa46IOnvwPX7AMXp8zr0U/DxlWb1j72z9D1SuH9+jbCpVMyU3VtCgAAIABJREFU+9z3flh4VeYaxUzeCw74Fxg3Azry3LPetaz4PpKkys25CJ74Ymm1O59T3t4pQcfU3HMbV5S3lySVK/qgd11ptTNeXfvrryz15zglSZIkqck9/Z+w7N7S63d8Oxz81ZHrR5LUKNmJl0+XUD+8ptS/GM5+staUEtdIkiRJkiRJkiRJkiRJGoPaGt1AGbJTO7avwX4HZB2byiGpdlYXuQd062Nh6oH16WWsmn44LH8w91xfd317UXPp7YKbjocVj2TOF98CL/wGTr4HJu9e/3561havWXQN7PGBTADNgL5eaMmTE3v/h2DOj4aO/emr8MKlcNpsaB0PfT2ZIImXri+v3zkXZV6lOPCLgz2P2yp3zUa/BZOkvCKGfvaX6/lfZAItS5HaYM8Pln+N9mm5Qy67zR6XNMJ615deu/M5mZDIjcsL142fCa/5BdxyUvE9bzoOzumr7nNakiRJkkar7L+DmPuT0te9bRmMm168TpLUjCZlHed4ItcmVmefRMSGEq+TXdde4prNSkppArAvsA+wNZl/N2uB5cCTwBMRPlFQkiRJkiRJkiRJkiRJza+ZgtFe6H9PwCEppfaIqCj9JqW0FzAra+jxapuTpP+z+s/55/b8Gzjka/XrZazq68o/t2p2/fpQ83nx2sFQtAFdr8BzP4RD/l/9++npLF7zwIcyL4CdzoJlD8KGxTDzRDjyQhi/TWau8wW47dT8/w+snQu/nlCbvov5i1/ALucMno+bkbuua2nucUnanEUfPP65zK9NvRth1pvhsP+E8VuXsUdkQjFLsc3xcNCXYeujy++1Y2ru8Y0Go0kaYaV8Hz1g/Fbwhofg3vfCkjvy1237usz32G94EB77bPEQ4aV3V/bZKUmSJEmj1ZI74eGPwcrHYOrBsNffFf57z2w7vMVQNEka27KfENBbQn0pNaNWSmk34Ajg8P73Q4HJWSXzI2KXOvZzKHAmcALwagqHxnWmlH4NfDsivCdSkiRJkiRJkiRJkiRJTaul0Q2U4R5gPRDABOCcwuUFfSTreHFEPF1NY5I0ROe83OM7vg2O+C60bVHXdsak3gLBaBsWwyv3ZEJFpOGe+2Hu8acaFFhYTqADwAuXQufz0LsOFl0NNx6bCb/p64HrDh4dwYDH/BZ2fffQsbzBaMtGvh9JajZPXACzv5L5jOxZA/Mvhnvek/m8L9XGFbDqydJqT7q18mCf9im5x7tXV7afJJWqZ1159ZN2gZNuhzc8DLu/H1qHBQZ3TIP9Pp05nn4YvO4PcMJNhfec+9PyepAkSZKk0ahnHbx8Czz1TbjptbD8QejrhuUPZAKmS7Xl/iPXoyRJdZBSOj6ldH1KaRkwB7gE+ARwHEND0erZ0/iU0hzgIeBzwNEUDkUDmAicBzycUvqPlFKxekmSJEmSJEmSJEmSJGlUamt0A6WKiK6U0s3Am/qH/i2ldFVErCxnn5TS0cAHyQSsAVxewzYlCdYtyj0+cef69jGW9RUIRgO48TUwZW847vcweff69KTm8NL1je5gqJ611a1f80wmPGfFw5kQnEYbvy1s/4ZNx8dtlbveYDRJGioC5v540/GX/pD5odQZR5S2T9fS2vaVT8u43OPRXZ/rS9p8lRswPGD6IXDkj+CQr8H8X8GyBzPfw+72Ppiy59DamSfChO1h/Yu595pzYWYvSZIkSWpWz/8S7vnL2uw1Ybva7CNJUuMcDJzc6CaGaQN2yzEewNPAC8BSYBJwwLDaVuBTwJ4ppXdERM8I9ypJkiRJkiRJkiRJkiTVVEujGyjTv/W/BzALuCGltE2pi1NKrwOuIvN1J6AX+Hqtm5S0mVtyW+7xCdvXtY0xrbdIMBrA6qfLe5K9FH31v2algQ7ZHv8XWDBKcl6PvBDaJm463jEjd33X0kwIkCQpo3cDrFuYe272v+Uez6VewWitHbnHezfW5/qSNl/Vfh/dMRX2/DAcdREc/JVNQ9EGTD2o8D6r/lRdH5IkSZLUKGueq10oGsDkPL+vkiSp+XUBcxrdBJn7HK8D3glsExH7RsQpEfHuiDgjInYHDgfuGLburcAX69uqJEmSJEmSJEmSJEmSVL2mCkaLiPuAS8iEmgWZm3n+nFL6XEppb3J8PSml1pTSiSmlS4CbgGlZ678dEfPq1b+kzcDCqyF6c89NmFXfXsayUn+44pW7YO28EW1FY0jXsvpfsxbBaLW23SmVrdvmeJj1ptxz4/IEo/V15Q8AkqTNUc/a/HMLryx9n1KD0aYfUfqeubTkCUbrMxhN0gjrrdP30X1FQrl/vz/0ddenF0mSJEmqpQW/q91e42fCtq+r3X6SJDVON/AocCHwQeAwYDLw/gb21AV8F9glIk6NiF9HRM6/CIqIh4ATgF8Nm/qnlNLOI9ynJEmSJEmSJEmSJEmSVFNtjW6gAucDewOHkAk3m0rmqYZfBIb89HVK6SlgV6B9YKh/TQLuBj5dj4YlbSb6euG+8/LPb7F9/XoZ6/b7JNx+Z2m1y+6HSbuMaDtqEp3zC8+vXwTjt65PLwMKBeA0wgFfgAO/AE9/Gx7+x/LWzjot/9ykXfPPvXgN7Pnh8q4lSWNVscDMNXNg8u7F9yk1GG3vj5RWl0++YLQwJEjSCOtZV5/r9G4oXvPUN2B//4hRkiRJ0ii28EqY9yugD3Z8O0w/DB79ZG32Hr8tnHATtDTjrSeSpDJF//tRKaVditTOzD5JKR1L5n69YmYWLxkxPwN+EBGb/KFgSqW0PiI2AHtERMlPG4uI3pTS+cAxwI79wx3A2cDXat+iJEmSJEmSJEmSJEmSNDKa7u7UiFifUjoFuITMEw4HbrpKwDgGg88SmQC1/1uaNXcDcHZE9Narb0mbgVf+WDiEYoLBaDWz7QkweU9Y82zx2rveATufPfI9aXRb/xJce1DhmnULYdrB9elnQLEAnHra6+/hVV/MHO/6VzD7y9C1rLS1HdNh53fmn5+wHUw9EFY+sencikfLblWSxqxivy4svBL2/VjxfbpeKV4zYRbscGZpfeXT0p57vHdj7nFJqpXeOgWjbXcyLL27cM2T/wq7vAsm7lSfniRJkiSpHM/+EB740OD5C5fWbu8dzoRjL4fGhcVIkuovAb+qYM1tZdQP3N9XVxGxot7XLCYieoCSQ9Gy1q1PKf0E+HzW8OswGE2SJEmSJEmSJEmSJElNpKXRDVQiIpYCrwc+BSxl8GaoyHrPftFfswr4LHBaRKyuW8OSxr71L8PNxxeu6ZhWl1Y2C21bwIm3wc7nlFa/fvGItqMmMPen0L2qcM3tb4Ybj4XlD9elJQB61tbvWvlM2RsOvAAO/ebg2LgZ8Pp7YNbpxddv90Z4/Z2wxQ6F62YcmXt848rSe5Wksa7YrwsLryhhj3Xw6Kfzz0+YBTu+DU6+B9onldffcC0ducf7DEaTNMJ6N9TnOju9o3hN73p4+r9GvhdJkiRpLFnxGFx/FFw6DW54DSy+tdEdjU0RMPvfRmbvg/4djvmtoWiStPnJfmBpsVf2vXulrvEXltp5ZNi5T3OUJEmSJEmSJEmSJElSU2lrdAOViogAvpZS+g5wDpmgtGPI3MSTHfi2ArgbuB74eUQUSUWRpDJFH9xyYvG61i1GvpfNyRbbw9EXwy7vygRaFTL/Ytj7H/zhjM3ZsgdKq3vlj3DzCXDqEzBxx5HtKSITXjNS9vs0HPzvla+fsiccdyVcsTOse2HT+SMvhN3PL32/9im5x7vXVNafJI1FPZ2F51+5EzYsgfHb5J5fOxduOy3/+l3eDa/5ReX9DWcwmqRG6e2qz3W23Ad2OzcTtFzIgsvgkK/5e05JkiSpFOsWwQ1/kQkZBlh6T+bveU59Eibt0tDWxpw1z8K6BbXf99BvwT7/UPt9JUnNIoqX1GSNqtMz7DzPX+pIkiRJkiRJkiRJkiRJo1PTBqMNiIgNwE/6X6SUEjCNzM08yyKiu4HtSdocLLkdVv2peF3r+JHvZXM08ySYMAvWL8pf8/DHYMHlcNzV0DG1fr1p9Fj4u9Jru1dl6vf+yMj1A/0/9JXn/u9tjoONK2HlY5XtvddHqgtFy7bjW+Dpbw8da2mHHc4sb5+2ybnHe1ZX1pckjUU9a4vXXL4tnLkQtpg1ONa7Ae7+K1jw28Jrpx9eXX/DGYwmqVH66hSMBnDkRZnvz1++GeblCZfsnAcrH4dpB9WvL0mSJKlZzfvlYCjagJ5OmP3lzAM5VDul/FlTJWYcMTL7SpJGsxcw3KzZ7DHs/KWGdCFJkiRJkiRJkiRJkiRVaNQHo6WUDgJOBvYDtuofXgo8BdwYEY9k10dEAMvr2qSk8kXAK3dlwqzWLcw8HX59/+uw78D0QxrdYemWPVhaXUoj28fmqnU8HPkj+OPZhX/A45U/wqOfhlf/oPieq/4EL/4h84M5Wx8D27zWf3/Nrn0KdJcRwFVK2GG1etblnzvsv2DKPnDZ9MwPhJVr/09X3tcme30WltwJKx7OnKdWOOL7/H/27js8ivNe+/h3dlWQRG+miI7pxQ2DjSvYuANuiUuKE6cnTk+cN8mJneqT3k5OihM7iePesA1umGLjgjumY3rvIARqSLvz/jHmSEgzszO7M7O70v25Ll1in/pDoN3ZlZ57Ke7mb53Cjvbt9Yczq09EpDXxep//1pfgnCahn8t/nDoUDaB8enp1OYkV2rcnlU8uIiFLRBiMZsRg8E3Wx6m/h8d6gploOW7r4wpGExERERHx4uAS+/b1/4AJf4VYPNp6WjO75y6ZKu4O3SYFv66IiOQ00zQHZrsG8e2aZrffyEoVIiIiIiIiIiIiIiIiIiIiIiJpytlgNMMwTgF+C5zlMuwOwzBeAb5umqbHZCIRyRkLprV8R3iAI+vzKxhtybezXYH0uQQuXwXPnAR1+53HbboXJvyvdbDdyYZ/w+s3g9nQ2Db0M1YQlNs8yW0lff0Fo6UTRuZX0iXMIV4M8SIovwo23eN/7Xa90q+rxVo9YNorsPtFqNkGPc+FDs3fXNqDwg727QpGExFptPNZb+O2zbKChUv7WuFAa/7obV7ZoPRrsxMrsm9PHg12HxGR5tyupcNU3NW6Ht49v2XfnoWRlyMiIiIikpc23+/cd3gtdBoRXS2tXRg/6xjxDYXXiYiI5DjDMCYAk5s1P243VkREREREREREREREREREREQkV+VkMJphGDOA+4B2gNGkyzw2pEnbWcBLhmHcYJrmrIhKFJFMGYYVVHRkXcu+6u3R15Ou5T/NdgVyTGm5FV728oecxzQcgaot0H6gfX/tPlj88Zbt6/4GA26AE84NpNRImSZsvAe2PwmFHWHQR+GE87NdVfSaBt150XAknDqacg1Ga2d9nvAnOLofdjztb23DSD3Gj3g76HNRZmsUOASjNSgYTUTk/2z8t/exs8qtYDI/IWRBPz4oGE1EsiWRpWA0gL6X2wejVa6KvhYRERERkXxTtcW9v3aXgtGCFPTPOnqeByO+HuyaIiIiEijDMAqBvzZrXmSa5hsB79MT6OFz2pAgaxARERERERERERERERERERGR1i3ngtEMwxgB3I8VigbHh6HZhaTxwdj7DMM41TRNnUIUyRelDsFoNXkSjLbhX7D0+9muQprqOz31mMrVzsFoj7n8zubO5/IzGO2978HKOxpvb/w3TH4Q+l+dvZqyoaHK5/iQg9FM0z3MIVZsfS7sAOfNgdq9VpDavtfh5Wvc1x5wQ3B1BqnQIRitXsFoIiIAVO/wP8dPAFn5TP/rp6JgNBHJFreQ4WM6DAtn787j7Ntr90DdASjuGs6+IiIiIiL5rmYnzD3bfUzdvmhqaSv8/mzETdcJcMGC4NYTERGRsPwSOLnJ7XrgyyHs8wXgthDWFREREREREREREREREREREREBIJbtAmz8BSvozPzgwwAagNeAh4CHP/hzPY1BaeYHc5q/26GI5LLScvv26jwIRtu9EBbflO0qpLl4MczY7D7m0Ar79n0p3hy3bm96NWXT0QpY/Zvj28wErPhJdurJpoZqf+N3vQCvfgzqK4OtY92dMGc0PNIVXrzceVy8+Pjb7XpY95ll/VPv0fuizGoMi1MwWrIOEgrQERGheku46/f/UPBrxgrt25P1we8lItKUW8jwMeN/Fs7eHUc49x1aGc6eIiIiIiKtwfq7Ur/+4fQzHElPUG8CU9QVLlgYzFoiIiISGsMwPgl8pVnz7aZpLslGPSIiIiIiIiIiIiIiIiIiIiIimcipYDTDMMYA59AYiAbwa6CXaZqTTdO8zjTND5umORnohfUOh01NNgxjXHQVi0hGSvrat9fkeDDaoVUw7/xsVyFOyvpDpzHO/bvm2bdvech93aMV6deULTuft0Knmju4BOoPR19PNiWq/M/ZdA8svCy4Gjb+B974jBWWUF8BRzY4j40V27e7hTAAdBwJA65Lv8YwFXZ07tu7KLo6RERyVc2OcNfvd1Xwa8aK7NuTCrwUkZDZPc9pqsdk6HNJOHuX9IECh9Dfnc+Fs6eIiIiISGtw4O3UY5bdDqYZeiltRn1AwWgXvgIFpcGsJSIiIqEwDONirDekbWo2cEcWyhERERERERERERERERERERERyVhOBaMBV3/w2cAKR/uyaZrfMk3zYPOBpmlWmKZ5K/DFJuMBQjjtLSKhKHUIRqvaHG0dfphJmDMq21VIKm7BH7vnQ0OzkCzThG2z3Nesz8NgtEPLnfvCDl/JJcl66yMde1+GtX8Npo71//A+1ikYrdAhgOGYS96BuENITbY5hUcArP97dHWIiOSq6hDDgftOh7jDY0smFIwmItniFox28q/gvGfCO7RvGND9DPu+VM8rRURERETasm2Pexu358Vw62grTBPe+Wrm63QeC51SvGmLiIiIZJVhGJOBR4HCJs0vAx82zdBSZ/8XGOPzY0ZItYiIiIiIiIiIiIiIiIiIiIhIK5RrwWgTPvhsAotN0/xTqgmmaf4FeAUrHA3g9JBqE5Gglfa3b6/aBDW7Ii3Fs5euzHYF4sXwr4Dh8BCXrINdLxzfdmgFHFnvvubRFhmduc/t91sPvBNdHdnWPAjPrzc/B/WHM69jz0Jv44wCiMWd+/tcZt9+0n9DvJ3vsiJT0su5b9/i6OoQEclVNSEGo/WaGs66TsFoiZpw9hMROSbhEMA4+CYY+Y3UgcKZKnc4v3doORxeF+7eIiIiIiL5ql1Pb+O2PRFuHW3FlocyXyNeAhP+kvk6IiIiEhrDME4F5gBN3yniDeAy0zSrw9rXNM09pmmu8PMBpPjFHBERERERERERERERERERERGRRrkWjDayyZ//5WPev5v8WW9XLJIvuk1w7tu7KLo6vHrzi7D9yWxXIV4Ud4VrXYKs9r12/O09L6Ve88DbkExkVlfUjh5w7nv1BtjxXHS1ZFNDAL/rOzvDyws/b8IcL3bvH/zxlm1GHAbc4K+mqBWUOfdVbYL1d0dWiohITqreYd/u9dCwEyMO/T+U2RpOYoX27TU7INkQzp4iImAFXtuJpbiWDkr5dOc+hTiIiIiIiNjrPM7buM0P+HtNXextfTz1mME3WW825GT6BuhxZmAliYiISLAMwxgHPA90atL8LnCRaZqV2alKRERERERERERERERERERERCQYuRaM1rnJn9/xMe/YWKPZGiKSy0r7Qvsh9n07no62llTW/A+s/d/U44bdYt9+yu+CrUdSKyiFftfY99XtP/521WZva27PswPuO59173/jM5CojaaWbGqoynyNmh1w8L305/v5OqcKc+h3DYy9HYwC63ZhJzj7USjrl3Z5kRnzX859b34e6l0CDUVEWru6vfbtncamv2ZRFzh3NpT0Sn8NN7Ei575ts8LZU0TapqrN8M434MUZsPIXUH/IflxUwWil5dDVIez93W9GU4OIiIiISL4xPb75TO0uOLQi3Fragj0LUo8Zcxuc+AX7vs7jw3tNSURERDJmGMYo4AWga5Pm5cA00zQrslOViIiIiIiIiIiIiIiIiIiIiEhwci0Yrem7F+53HNXSwSZ/7hBQLSIShZ7n2rdvvAcOrYq2FidbHoa3HQLPmjrxC9ZHQdnx7UVdod9V4dQm7oo62bc3D8qq2eFtvc0PZFZPlPYthiMb3MdUb4Fd86KpJ5sS1cGss+k/6c91Cm6wE08R5mAYMPY2uLYCLl0GV++D8hnp1xal0v7Ofck62PZkdLWIiOSaun327Z1G+V9r7A9hxma4ajf0uTizuty4BqPpPl1EAnJ4PTw7AVb/BrY/CUtuhZ3P2Y9NdS0dpH4znfvW/CG6OkRERERE8oXXYDSwrv0lM7V73Pv7XAbtB0LHYXDClJb9J342lLJEREQkc4ZhDAfmAT2aNK8GLjBN0+EHTiIiIiIiIiIiIiIiIiIiIiIi+SXXgtGa1uPjN6OPG5trfycRcdN7mn27mYBN90Vbi51EHbz8IW9jT/kNdBoBU16AE6ZCcTfofRFMXQBl/cKtU+zFy+zbN98PidrG2zuf9bbeloczrykqS2/zNm777HDryAWJmmDWWfUreOFcOPC2/7l+gtFi7byNKyiDzmMgVuC/nmwp7Ojev2NONHWIiOQip2C0zmOg/VB/a5WWQ1l/iBVmXpcbt2C0TfeEu7eItB1rfg91e72NjUUYjFbuEoy29DYwzehqERERERHJB76C0drAzy7CVuDyfnKFneCsJj/zOucJGHIzlPSBzmPhtD/BiZ8Pv0YRERHxzTCMocB8oFeT5rXAFNM0d2enKhERERERERERERERERERERGR4OVRkoaItErlM6G4h/0h5/1vRF9Pc2/dknqMUQDnzIL4Bwewu0+CqS+EW5d4U+AQjAbw2sfhrAehdp9zEImdZEPuB1GZJux/3dvYw++HW0suaBqC19zMrTDLR3Dhnpfg2dOsA0MdhkGn0RCLp55X6zHIARrvS1qjQpeDWCIibZ3T9UhxDxj3Q3j1I4DHkB23a6AguQWjiYgE5f0/eh8b5bV0x5FQNhCqNrXsq6+Amh1Q2je6ekREREREcl2ywfvY/W+AmQRD74mWNrfA/JlboaCk8XZhe5j49/BrEhERkYwYhjEIKxStT5PmDVihaDuzU5WIiIiIiIiIiIiIiIiIiIiISDj0m8Qikl3xYuh7mX1f8mi0tTR39CCsv9N9TL+r4eI3nf8Okl1uoSBbH4GanbD2T/7WPLIhs5qiULsb6g95G7t7PiQT4daTbYka+/ZYMZSWQ8fh/td8+Vp4ZjzMKoe9r7mP3XgPvHC297VjrTgYrUDBaCIithK10HDEvq+4Gwy8AabMhUEfs9pSHQqOLBjN5YCtiEgQ/AQnQLTX0oZhvSbgpC2EUIuIiIiI+GH6+FmEmYBVvwqvltbONKG+0r7vzPv1JiYiIiJ5yDCM/lihaE3f+W0zVijatuxUJSIiIiIiIiIiIiIiIiIiIiISHgWjiUj2lQ106EhGWUVL2+e490/6F5z9CHQ5KZp6xD+3UBAzCQfehTW/97dm7Z7MaopC5Sp/49f+OZw6ckWi1r493s76PPFuiJc2tvsJ76rdBS9eDg0O4WsVy+C1j3lfD6zAyNYq5WErI5IyRERyTt1+577i7tbnXlPhjH/BDSZcn4Bzn3KeU9A+2PqcOIWPiogEpWKpv/FRX0uP+5Fz37wpsPVxSGQ59D0f1eyG9f+A9XfB6t/Cxnvh8LpsVyUiIiIimfITjAaw5FZdB4IVcLblYVh6O7z9det5Rv1h9znJOjAdgqbL+tm3i4iISM4yDKMPMA8Y2KR5O1Yo2uasFCUiIiIiIiIiIiIiIiIiIiIiErKCbBdgw/zg8yTDMAZ6nNOr6Q3DMM7GR7KGaZoveR0rImFwyGjck+VvzT0LnfsKOsBgn2FHEj23YDSAd74KRw/6W7PhSPr1RMXvQaGtD8PwL4VTSy5wCm05FozW4wyYsQm2zYJYEfS+CJ6bCNVbvK1/9ADsfAb6XdWyb8vD/uuNteFgtM33weR7o6lFRCSX1O1z7jsWjNaCS855ZI8lLk+7DeWwi0iGDq2GZ0/1Nyfqa+mCUuh2Oux/w75/0VXQ9TSYMheKOkdbW77a+yosuKjlc+94iRUQ2v/a7NQlIiIiIpnzG4wGsOleGHtb8LXki6rNMG8qHFnf2Lbmt9BpFJw7G9oPcpjn8vONwo7B1igiIiK+GIZhNms63zTNhS7je2KFog1t0rzzg3kbgq9QRERERERERERERERERERERCQ35GIwGlinq+/PYO5CH+NNcvfrINI2xOLOfQffgy7jo6vlGNOE9f9w7h/00ehqkfSlCkY7vNb/mg2H06slSvWV/sZnO4QwbIla+/Z4SeOf2/WAoZ9uvN3zHNj0H+97LLoaupwEB5ekV+NxdbXLfI1cVZAiGA2gaiuU9Qu/FhGRXNJQ5dyXzmFVw3NOeGa6T3LuM5NQ+T50HBZNLdK6HdlgPT/b/6Z1kL5sIAy4DnpfmO3KJExL/8v/nE6jg68jla6nOgejARx4Cx7pAsNugZHfhLL+0dWWj16/2T6QPFEDb34e+s6AeFFj+5GNsOrXUF8BJ5wPg25yf50pSGYS1t0Ju+dDSW8YcjN0HhvN3iIiIiL5KJ1gtD2Lgq8jnyz57vGhaMccWgnLfwKTHH6WufLnzmt6eZ1eRESkjTIMoxz73yPs1ex2gcsbvh4xTdPlHXF81dMZmAuMaNJcBdwM1Pt401kATNPcFERdIiIiIiIiIiIiIiIiIiIiIiJRyNVAMBMr4MzvnGMiOgUuIoFINjj3bX0sO8FoS2517x/2xWjqkMykCkZz0uVkqNsP1Vta9tXnQTBasi7bFeQWx2A0lwCy4V/2F4wGwYSiAcdf0rQyXsJ9nugP19VDLFcvU0VEQuD0WAUQK7Zvb9fDeU5h58zq8aowxUHauWfC1IXQeUwk5UgrVbkWXjgHancd377hbph0Fwy+KStlSci9gnImAAAgAElEQVQStbDtcX9zOo1yD2wMy5BPwbq/pQ55eP+PVsDfpe9Bh6HR1JZvqrdD5Wrn/rr9sPdl6DXFun1oFTxzcuNz4E33wu6FcOY9oZcKwOJPwMZ/N95efxdMeQG6nx7N/iIiIiL5xumauXwmbJtl37d7HtQfgcL24dWVy3Y+49y3/Unnvg13OfelE8IvIiLSdrwMDPAwri+w0aHvX8BNAdVzEjCuWVsZ8HSa6+l3KkVEREREREREREREREREREQkb8SyXYAL0+dHOnNFJBeYSee+Qyuiq+OYimWw6pfO/ePvsA5cS+5LNxit/4ecgz7yIRjNLVzFSUN18HXkikSNfXu8xHlOtwkwZV449aRS2Ck7+0Yh7hDu09zeV8KtQ0Qk17iFeBoOZ1S6nALterZsL+0PHYcHV1sqZ97n3Fe3H9b8IbpapHVa+78tQ9EAMGHpDyCZIoxK/Nn7Ksy7AGb1h/kXQuX72amjck3qoLFjjALofy1MXZCdcN2up8CEv3gbm6iGp06E+wvgiYHw7rchWR9qeXmlelvqMUfWwXvfh/sMmDOqZTD4pv9YffOmBBhebePQquND0QAaDru/niQiIiLS1jld4/e+GPpd4zxv0VXh1JPrErVw9KBzf90+++fEqZ4npwq6FxERERERERERERERERERERERERERyQFZOC3oagsKLBNpe0r7OPfV7IyuDgDThKebv9lqM4M/EU0tEoA08z+HfQm2zbLvaziSfjlRSdSlHtNc3T4o6B98LbnALWzGTa8pcIMJtfvgsR7B1+WkqHN0e2VD/w/Blofcx2y6B044N5p6RERyQdLhsSrm8lgVi8OYH8BbXzq+fewPnMPUwlDUxb1//Z0w8W/R1CKtk1tgavVWOLIeOg6Lrp7WrGoLLLio8TlP9VZ49jSYvh7aRXg9DLBvceoxZz0C/a+2nsdHeb9nZ+inoL4C3v2Wt/FmAqo2WyFa1Vth8v3h1pcv3ILzj3njs97W2r0A5p4Fl62Csn6Z1WVn07327VsfgcRRiBcFv6eISNSObICa3VDSC8oGZv/xVkTyX7LBvt2Iw+jvWtdSdnbNtUJvu5wUXm25qG5/6jENlS1fm6na5D4nVph2SSIiIiIiIiIiIiIiIiIiIiIiIiIiIlHJqWA00zQHZrsGEcmCXhc490UdQrVrrnt/9zOg5IRoapHMJev9zzlhKhS2h8IO9v0NhzOrKQrJNIPRylprMFqNfXu8xNv8dt2hx2T3UI4gnTA1mn2yZeS3Ugejrf8HjL8j+gAOEZFsSTfEc9gXobQfbHnECkrrdy30vTT4+twUlEa7n7Q9Ttdyx1SuVjBaUJb/pOVz8IbDsOk/MOJr0dRgJq1wsdW/cR939uPQb6b151wJaRn5Teg8HhZM8zdv8wNQ0AFO/wsYaYZ7txZBvwbUUAUb7oKxtwW7LsDWR537HiqF0++EIQrWF5E8VbML5p4NR9Y1tpUNhClzocPQrJUlIq2AmbBvjxVAl/Huc9f+xbpmbku8BKMdPdQyGK1ytfP4XhdmVpOIiEgrF8XvLpqm6fkFTdM0FwI58gKoiIiIiIiIiIiIiIiIiIiIiEi02vhpOxHJCe0HQ8eR9n01O6KtZeN/3PtP+V00dUgwup6K798R7THZ+lzgEIxWnwfBaIk0gtG2zwHTDL6WXJBu2ExTp/wWirsHUw9AcTe45gAM/Ojx7f2vhf7XBLdPLup2Goz+bupxb381/FpERHJFJo9V5dPhzH/DpLujD0UDiHsIRks2hF+HtF7Jo+79bge+xbtkAtbfad934O3o6lh3Z+pQtFP/0BiKlmt6XwhXrEs9rrn1d8KSW4OvJ980VAW/pluAWSbcXhswE/D6J+HlD8O2J9N7ji4ikk2vXHd8KBpA1SZ46kRYcAm8ciOs+Bls+CfU7MxGhSKSr5yC0Yy4FRJ8+l+d5+5/M5yaclndvtRj6g+1bKva7Dy+rYXLiYiIiIiIiIiIiIiIiIiIiIiIiIhI3lIwmojkhtP+YN9ety+6A6TV22DTPc79Az8C3U+PphYJRrvu0OMsf3MG3mh9LszjYLSkQ7iKm2U/gLe+CGYy+HqyzTFspsT7Gt0mwKXLrNCZCX/OvKaZ26GoC5zxT5i6EE7+NUydD2feB7HCzNfPdeN/Ct0muY/Z8gDU7o2mHhGRbAvisSpbCjwEox09GH4d0nolUzwfVDBaMA6/79y36d7o6th8n3t//2th+C3R1JKuDkPgqjSuY1f9yvpoy8IIRqtYBttnB7+ul1q3PAQvzYC5k6HuQPA1iIiEoe4A7HnRuX/ns9bj9Xvfg8WfgNmjYLfLeBGRptyC0QCGfsZ57uE1rffNXZx4CUY7WtGyrWa7/djOY603qxIREREREREREREREREREREREREREckDCkYTkdxQ0se5r3ZXNDW8+QX3/vKZ0dQhwZr8AJQN8Db2jHug4zDrzwXt7cdsugcWXg6vfwpeuQGenQD3GfDC+fD+nyDZEEzdmUg3THDtn2H3wkBLyQmJGvv2eDt/65T0gsE3wYmfg37XpF/PkE9DvNj6sxGDE86FkV+HE86HWEH66+abY99rTsxkOAEGIiK5yDEYzedjVTbEPQSjeTnIK+IkedS9f8PdUBPRc8bWrGaHc19pv+jq2POSe/+A66OpI1PtusM1FVA+w9+8d78Fc8bAyl9Ag8PzmNas4Ug46y6+Kfivp59A8gNvw4qfBbu/iEhYanb6G19fAW98GpIOYUciIk2lCkYDOOsR+zENVdYbHLUlXl5Pafoz1K2zYPEnna89O44Kpi4REREREREREREREREREREREREREZEIKBhNRHKDWzBaze5oajjwlnNfURf/B5olN5T2gekbU4+7fDUM+kjj7cIOzmN3zIH1/4DN9zf+v9mzEN76Eiy6Ckwzo5IzlkwzGA1g+1PB1ZErwgibOfHzgOF/nlEAI7+Z/r6tSddTU4/Z92r4dYiI5AKncJV8CEYr8BCMtuOZ8OuQ1itVMBrA02Ogcm34tbRmRw8499UfiqaGnc+nHtNpdPh1BKWoE5z9OMzcBuc/B+c/D6XlqecdWgFLboV550PCw///1qShKpx16/bD7nnBrddQ7fw808mme6zwZxGRXGfW+59zeC3sfz34WkSk9fESjNZrqvP8vYuCrSfXHVqeeswr11lvlrPiDlh0pRUe7qS0b3C1iYiIiIiIiIiIiIiIiIiIiIiIiIiIhEzBaCKSGwo7OvclQjoY21QyAbUuAWyXLoVYQfh1SDgMA3qe69zfbSJ0HH58W3HP9Pba/hTsmpve3KA4HdAe8fXUc9f8LthacsGWh+zb4yXpr9lrCpz9KLQfat8/6ONw9mPQ5SQwYtbBri6nwJQXoOOw9PdtTfpdlXpM5Zrw6xARyQVhhHhGpahb6jFLvx9+HdJ6eQmGqtsPq38Tfi2tWd1+5776Sqg/En4Ni1JcH5b0hvZDwq8jSIZhhQ/0nga9L4STfu597v7XYdkPGm8nG2D17+Cp4fDkEFj6g/CCxLIlzL9PkCGddfv8z6ndAweXBFeDiEhYkmkEowHMnQwPlsAzJ8OmB4KtSaQ1OloBi2+Gx8vhuYmw8V5/87c8as17sBQeaAcPd4b5F0KFhyCtbPISjFbUGcoG2Y979Uao3Rt8Xblqx7Pexr3xWXjvu6nHlSgYTURERERERERERERERERERERERERE8odSfkQkNxgxK6QoUdOyr6E6/P3rK8BM2vdN/DuUlodfg4Rr1Hdg36stD/cZMTjtjy3Hl2ZwQOSdr8FlK9Kfn6lEnX17rBj6ToftT7rPP7weOgQcONBQBZWrrQNOnUZDrDD1HNOEqs0QK4K6Pdbfy4hDxxFQ2N7bvrsXgNlg31fgcQ0n/a60Pkzzg3o/uA8xYlYAwrExyQbAgFjcdpk2y8v9auXq8OsQEckFTsFosTwIRvPy+FbYIbz9kwk4sg7KBkK8OLx98k3VFuvrXtQl25VkLulwbdvcTo8HxsWeWzAaWEFQXq/B01H5fupQrGG35P81df9rYcUdcMhjYMXKn8Pwr0BBB1h8E2x9tLFv+Y+tsK3T/xJKqVnREGIAX5ChZOkEowEcWgVdTwmuDhGRMCQ9hNI6SdRa97evXm+FPPebGVxdIq2JacLCS2Hfa9btmu3w2kes174HXpd6/rYn4eVrjm9L1sGuF6yQwivWQrs03/glbE6v1RvNrvP7Xgbv/4/92HnnwSVL8/+5QSrJBqja6G3sxn95G6efdYqIiIiIiIiIiIiIiIiIiIiIiIiISB6JZbsAEZH/U1Bq357qcHQQ3A619poW/v4Svj4Xw9QFMOTmxrZBH4dLlkC3CS3Hl2QQjHZoJay/O/35mXIKj4i38xZMsum+4GoxTVj2I3i4Ezx7GjxzMjzSBTakOKhzeD08PQ6eHASz+lrznp8Ez02ARzrBe99zDjM8JlEL86Y493ce5//vY8cwrI9Y3Po4Fop2TKyg9R/SStcpv3Pvr9sLdQeiqUVEJJucgtHieRCMBlbAsZuwgo63z4bHesDsEfBIV1j163D2ySdVm+Hpk+CJAfBIN1h0DTTYhE/nC9P0Hs5RtSm//67ZlioYLRFyYPnO5937O46EEd8It4YoxArhotdhzH95n/N4H3i4w/GhaMes+ysc2RBcfdkW5us/h9cEt1aq7xcnr30EEhkEDomIRKH5m0qka9GVUB9i4KVIPju0vDEUram1/5t67rYn4KUZzv31lbDG5o1gcoWZsG83mr2XW7lLsOKhlbBjTnA15SqnELlMdDst+DVFRERERERERERERERERERERERERERCUpB6iIhIROKlgM3h0rAPYIN7MFpxt/D3l2j0mGx9TPx76rGl5Znt9fonYdfz0OFEqN4KBe1h0Meg62ktg7OClnAKRiuGAg/BaLueh7E+Durbqa+0wg1W/Qr2v358X0MVLL4JijpDuc0hLtOEl2ZaB8TsmElY8TOoWA5nP2YfOnb0oBXE5sQogD6XeP7rSEi8fC9UroEeZ4Rfi4hINuV7MNqoW2HZ7c79DVXW43uQ10BHNlrXC8cOVSeq4d1vQodhUH5FcPvkE9OEhZc3uYYyrSCldj1hgocD9rnI70Hwg0t03ZCuoymCnsIKrDJN2D0flnzbfdzZj0G8KJwaolZQCuN+BKO+Aw+VZb7egovh7Eeh89jM18q2hMP/s4Efsf4Pbnu8Zd+wL0O3063nmG73GXX7Ye9rwdxHuL2GlMrKn2f+fFtEJExuobSxQn/BaQ93gEl3Q68LMn+tVaQ12XiPffveRdbnhmrYvQCqt4ERs15rNxNQtQXW/in1+it+Ah2GQlEX6D0tt15bcAxGa/Yaf89zoLAz1FfYj3/rFqjZCV1OtsK+jFb4XnDJgIPROo2B9oODXVNERERERERERERERERERERERERERCRErfC3hEUkbxWU2rc3RBCMtvcV+/Z4iXNd0rqV9Ml8jc0PwPIfw4Z/wvv/A8+dDm98FpIOh3+CknQIV4kVQ2HH1PP3vgzb56S//+F18PRJ8PK1LUPRmnppJmx9rGX7wXecQ9Ga2v4kzCq3Drg3VbEMnhoORzY4z+15thXMJtnldBCuqcNrwq9DRCTb8j0YbeCNKQaYzn/HdG191P5xZJvNtUVbcXit/TXUlkes8Kl85BT462TumVC1OZxaWrtUQU9hPC9vqIYXr4D5F0Cixnnc+J9BpxHB759tBaXBBLEfXgtPj4cVd2S+VrY5BfAVlMGQT7ZsjxXDsC/CoBvh0qVwyu/gpP92Xn/umbD2r5nXmUkw2sZ/Zb6/iEiYnILP4iVw2Uo49Q/+1lv8CZg9ErY/nXltIq2F27XEkU3w/CR48XJ483PwxmesEPAlt3oLRTtm8U3w0gzrZxJHNmVYcICcXg9u/uYnsUIY+hnndaq3WF+f5yda9zNBh4jlAr9B4amM+Fqw64mIiIiIiIiIiIiIiIiIiIiIiIiIiIRMwWgikjviDgFkiQiC0Zbcat9e3D38vSU3xYuCOaTe3Po7Yeczwa/blFOARLwYDI8P/S9/CKq2+tt36yxYfDM8dSJUbfQ2Z9HVUF95fNuOZ73vWbsLFl5+fNsbn4O6ve7zJj/ofQ8Jj5cDa5Wrw69DRCTbnEJN8yUYrcNQOOMe9zFOYTfpevdb9u0b/hnsPvlky8P27XV7gw+mi0ryqP85Cy4Jvo624Mh69/5558GCi+HQysz2aaiGlb+E+wx4qAx2eAhkHvGNzPbMZT3OCWghE5Z+Hyo8BEznMseg0BLocymMvR2MD0IzirrC6X+BjsOs251GwoivwMhvQ0F75z3e/Bwsvd3//WLVVlj2Q3j1I7D61/7mNnVkffCPiSIiQXIKRosVWtf9w2+BGVug6wTvazYcgRcvgwaXIFSRtsTtzUve/or1xh9BqVgGK34S3HqZME0wk/Z9Rrxl25jve1t3479h2xPp15WrnO6P0zX4pmDXExERERERERERERERERERERERERERCZmC0UQkdxSU2bc3hByM5ra+gtHatqIQgtEA1v0tnHWPSToEo8XaQf1hb2skqp0DR+ws+zEsuhI23OV9zjGP9z3+9lKPB56O2b+4MUztaAXse819/Cm/hXY9/O0h4Sjrn3rMkQ3h1yEikm1O4SyxPAlGAxj0Ebh0qXN/QiEwWZWvITzpBKNVrmqdh+LDlGyAwymC0QB2PgdzRsPuF9PbJ1EL8y+EJd/2Pue8Z6zQ6tZq+C3BrWUmYWOKkMpclyrke+xtcOUOuOQ9mLHRPtzBMKDjcPd9lv8QXrzCe9jEkY0w90xYdjtsuheqNnub56Ty/czmi4iEyen6K1bY+OeyfnDRYrhspfVYPejj3tZ+fmLm9Ym0BoWdnPu2Pxn8fpvudw4ki5JbDXbBaIUd4FqPP8/Y8XR6NeUy08Obinh1yRLvb5ojIiIiIiIiIiIiIiIiIiIiIiIiIiKSI/QbsCKSO+Kl9u2JkIPRKtc497UfEu7ekttiBeGsu/0peOOz3kPKjknUwrvfhgdL4D7D+nhxOhx4p+U4O/FiaPCx55YHoWZ36nH1lbDip97Xba7hCDzaEyrXetvPzsJLrINVdfsB033s8K+kt4cEr89lEEsRdHH0YDS1iIhEYetj8PxkmDUAXvs41B2w2hM19uPjeRSMBlDsEjxasSK6Otoqu4Pkx7z1Je8BQLkknWA0gDc+F2wdrV3VJn+H7t/5Wnr7bJ8N+171Pj5WCN0mpLdXvjjhfDjnCSvIK9V1sRerfpEboRfpcgz5Lm78c7ue0GUcFHZ0XqfDsNR77XoBHiiCF86HJd+BuWfB7JHwyo1Qu/f4se//Caq3pV7Tq8rVwa0lIhI0p2vG5o9TRgw6jYQ+F8Oku72tXbEs83BJkdbA7TomDIlquD9u/TzhqeEwfxrsez3aGgDMhHOf0/PZwvbQeVzqtTfcBfVH0qsrVyUDDEbrMj64tURERERERERERERERERERERERERERCKiYDQRyR0FDsFoDSEHo70007lv7A/C3VvarnV/gxcvB9MlxKuhCmp2QaLOChOZMxpW/fL44LPtT8H8C44PFEu4HCbvc5m/Or0EF+xb7HyA3au6vTB7GGx/Mv013v5K6uC3S5eDYaS/hwSrsD2MSBGscbQimlpERMK27SlYdI312Fq9BTb+G+adbwXYNA9gOSZeEm2NmSooc+578TL/obDij1sw2pYHYfHN0dUSFKfrWoBupzv31e6CyveDr6e1qtnhb/zBd/1/fU0T1v7F35yBN0JxN39z8lH5dLh8NVxXBx+uzTwg7dUbg6krG5zCEP1+TToO9z52z0JY+XPY+4oVWLb5Ppg7GZJNgjtW/9rf/qnUbA92PRGRIDndFxuFznMMA6avh4IOqdd/73vW65xBBv6IiHeH34ddc2H+1OiDCt3CmA2XN6mZ4PF5xCvX+asn1/kJr3bT5/Jg1hEREREREREREREREREREREREREREYmYgtFEJHfEHYLREiEGozXUWMEUdow4dB4b3t4ie16CimX2fWv+CLP6w+O94cF28PQYOLLBfuzRg7DiZ423nULK4u2g9zT3Q0bNpQpJ2PsKLLjI+3qpvPGZ9Oeu+yvU7XPuv2QJdB6d/voSjvF3wMS7nPsVjCYircXaPwHNAlErlsKuF+DwGvs57QeGXVWwnK7nj9l8fzR1tFVuwWhgff2dQvhylVMwB8DZj7vP3fFMsLW0Zsl6/3N2Pu997KGV8FhP2D3P3x4n/cLf+NYgXgxX7XIf0/0M6Hqqc/+Wh8MPmA+LUxhivNjfOt0mZlbH4bWZhXan0lAT3toiIpkyHa4LUoVUth8Ml7wLQz7tPm7TvdbrnI92g033pVejSL5L5/r7mLKBx//cqvsZ6a3TUAXLbk+/jnSYCec+t+ezPTz+HXfMgQPv+KsplwUVIHni54JZR0REREREREREREREREREREREREREJGIKRhOR3FHgEKQQ5oHeytXOfX31LuoSgbdvafw/3lBjBQwsuhre/jIcPeB9nff/AKYJdQcg4XDIuqA9FHWG0/7gfd3qrdbn+iNWuMTGe6Dmg4P6Rytg/jTva2Wq9yXW38FJsh62PWXfFyuGLuPDqUsyYxgw5BNwpsNh2PpD0dYjIhKGhirY+Zx934KLIFFr39dxZHg1hSEWt4JYnWz4Z2SltEmG4d5vNsDWR6KpJShuwWgFpXC1SyjuoeXB19NapRPM8O43YOfc4++/qrbAhn/Bqt/Ae/8FS38Ai66FOaPdA4ztDP4ktOvhv67WoKgLTN8Ipf2bNBpw8q/hBhOmvQoXvwXdJtnPNxOwe0EkpQbO6Xs+VRhPcyec7/7c0Yt9r0HFcnj32+nNL+7m3Of0nF1EJBc4XRfEClPP7TAEJv4Nrk+mHltfCa/eCK9/yrp2WPtXqFjhr1aRfJVuMFpxd5i+AS5dal0X3mDCBS9CvCS99Tb8M7jwLS/SDUYD6HWBtz1W3OG9nlxnBvBv0/9a6H1x5uuIiIiIiIiIiIiIiIiIiIiIiIiIiIhkQUG2CxAR+T9xh2C0RIjBaIffd+4bdFN4+0p+KBsEh1aGu8eel+C502HS3dZBwIql6a/1/p+sQBInHYZan0/8PHQ/A1b+EjY7hFEds/LnMOB6eOW6xiDBWBGc/TjU7fX+/dn7Ihj6OTi8BpZ8x9ucpkp6w/lPW8ELz57q/O+y/Un79sIO/veUaBV1tm+vr7BC/1KFvYiI5KojG2G+xwO8zXUcEWwtUYiXOAe97XstmD0aFChjyy1E7JgjG8KvI0huf6dYkRWONuRTsP7vLfvdQrDleOkEMySPwoJp0HUCnDcbdr0Ar308mMP7RgyGfSnzdfJZ+4Fw6RLY+pgVSN3zHOg24fgxJ34e9i+2n//i5XB9wvpa5pNknX17rNjfOvFi6+uz6pfp17Lql5nNv/hd67lr3d6WfQpGE5FcFkRIpWFYwU1Pj0s9dv0/mk6E8T+B0d/1vpdIPjLTDEYbcEPL10hjhdbr9xvuSm/Nfa9Bz7PTm+tXJsFoA2+0nnOksvURWPVrGPkNf7XlonSeW53yWyjqar3hTZeToc8lel1dRERERERERERERERERERERERERETyVp6djhORVq3AIRitIcxgtLXOfeXTw9tX8kNUh/EPrbDC0TIJRQN4+xZ48wv2fQUdoKRP4+0uJ8G4H3lb95mTjg+WSB6FV2+AQ8u91zbx79BvJoy6Fdr18j7vmP7XWZ/j7eCS95zHVW2yby/s6H9PiVahQzBasl7BASKS3+ZNSS+MqmwQFLYPvp6wHT3o3m+ame/RcCTzNVojL4FxtTYBPbnMKSQJGoOSup5i37/3Zag7APWHYdWv4OUPwRufg13zYevjsPhmeOUGWPsXSLjs0xZkEmZ24E1477uw+BPBhKIBnPJ76HpyMGvls6IuMORmK9SheSgawKCPuM/f8nA4dYXJ6Xsx7jMYDWDsbZnVkq54KZz1EJT1g57n2o9J9VgpIpJNToGpsUJ/63QaA+2H+tzchPe+DwczfI1UJNelE0zc+yIY/2P7vpN/kX4tL5wDb38VDryT/hpeZRSM9lHvP69595tQ4eNnF7kqmcbzqxFfhcEfgzHfg76XKhRNRERERERERERERERERERERERERETymoLRRCR3FJTZtzdUhbfn3pft28tngqG7yDbvhClQNiDbVQSj44iWh2Ccvue8qD8EWx/zNrbTKCgtb7w9/qf+9yvp3fjnWAGM/La/+QUd/O8p0SpyCEYDeCuikEIRkaBtvNc5tDOVPpcEWkpkOpzo3h9EGEyi1r0/ncPDrUEyxdcFoHZP+HUEKXnUvt2IQeyDg/MdRzjPf7QbzBkF737LCola91eYPxUWXQUb7oLN98Obn4cXp0PCYa+2IJ1ghqbW/8P538qvS5fDcF37eWLE4Mz7nPvX3xVdLUFx+n8UK/K/VkEZnPY/mdXjV69pcOUO6H+tdTteYj9u478UyCgiucvxvthnMJphwOjvpFGAad1PirRmfq+/p6+H855xfvOP4m4w+nvp17Pm9/D8JNjxTPpreJFJMFosDqf9ES72GOD29Fgwk95ry0V+g6ebvjGOiIiIiIiIiIiIiIiIiIiIiIiIiIhIK6DUHxHJHfFS+/ZEdTj7NVTB7vn2fZ3HhbOn5Jd4EVzwknW4Od/1PKdlW7sToP2Q9Nc8ssHbuH7XHn+79zT/wYM9zjr+dmlff/MLFYyW89yC0TbcHUyQjohI1N79evpzB3w4uDqi1ONs9/66fZnvkahx72+rQQoNKb4uAHV7w68jSE5hZU1DkjqPAwz7cQDV21Lvs+t55+eGbUGmwWhBOWEKdB6d7SryS5+Lnfv2LICjh6KrJQhJh7CwWHF660UdMtp9IhR1arxd4BCMBrBrXvj1iIikw+m6IJ2QysGfhFN+AyU+X8db/Ru4z0BjXxoAACAASURBVGj8mD0SNj/kf3+RXOXn+nvoZ6H94JZvetLcwBsyr2nhpZB0CS/LlFuIeapgtGO6nARlA72N3b3A27hc5Tf0fcwPwqlDREREREREREREREREREREREREREQkSxSMJiK5o8AhGK0hpGC0ihXOB1D6Xh7OnpJ/yvrDlOfguobUQR+5bNgXW7YZBoz+f+HuW1oOI7/Rsm3Ip7yvccIU6D7p+Da/ByoLO/obL9ErdAlGA9j9YjR1iIgEpXob1O5Jf36+XncM+5L7gebqrZnvkSoY7fVPtc3ghGRt6jH5FjSadAhGMwob/1zcreW1Yjp2Pp/5GvnKzIFgNCMOJ/8q21Xkn6Iu0PcK+75kPex8Ntp6MuX0PR9PMxit/WAYcH369fgVb9fstksw2prfh1uLiEi6nO6LY4X27W4MA0Z8Da7cBtcehlFpvg5ZuRpe+TBs+Gd680VyjZ/r7+Ff9jau0ygovzK9epp6+RrnvoZqqN6e/tqmS+harMDbGoYBo7/nbeyuud7G5SrTJRittP/xt9sPhf4u/3YiIiIiIiIiIiIiIiIiIiIiIiIiIiJ5SMFoIpI74g7BaImQgtH2OLxbfEEZdD01nD0lf8XicOLns11FegZ/EtoPsu8bcjOcMwv6XR38vn0uh4vfhsIOLfsm/BlO/SP0vhgG3ADDv2Id3OpycuPHCefDuB/DeXOsA09NlfTxV0uBTQ2SWwpKoKirc3/VpshKERHJiGnCsh/BrH7przF9fcvHvnzR9WTr8d/J/Avgve9bX6d0pQpGA1j7p/TXz1cNHr4uTsHQucrpIHjzYI5BH818rzW/haW3g5nMfK18k3Q5cB+WE6ZCt0nQ5zLr+cDF71j3H+LfOU84921z6ctFiTr79lhR+mue8W/ockr68/2I+QhG29WGwxhFJLc5XS9mcl8MUNgexv8UzviP9Zphl5OtN0/wY5VCVKWV8Pq8bPBNVuCZV2c9CCf9HHpdaM2d9hrM3A7DbrGuvb3YNguObGxWbwO89WV4pDPMKofZI6Fiufe6jnELRnMLWG9u6Kfg7Meh31WAy2snK3/ufc1c5Pb/ZNprMPxr1s9QRn4TLlxkhYaLiIiIiIiIiIiIiIiIiIiIiIiIiIi0Ih7ffllEJAIFDsFoDSEFoy35jn17hxPBUG6k2Oh3FfS9ArY/lb0aSvpCzXZ/c4bf4t5fPsP6qN6WWYhLU6NuhZP+27nfiMHwL1kf6Sjr7298Uef09pFoDfmk8yHXRG20tYiIpGvzA7DstvTnn/wraD84uHqyoct4K+Sgept9/4qfQtlA6zBzOrwEox14N72181nSw2Nl9RY4vB46DAm/niA4BXbFmr2cNeRT8OYXMt9v+Q+tQOHBH898rXxiRhyYd119y39DSZ9hWCHea//csm/HHEgchXiGYTZujlbA7gVQvRWMAivoptvpVri4H2bSJQyxOP36YgVw5r0wZ2T6a3gVbx6M1s5+nIhILnMMRiu0b/fDMGDQjdbHMXPPgb2LvM0/tALW3Wm9jtmuZ+b1iGSLl2C0bqfDKb/1t26sEEZ92/po6rQ/WJ9X3AHvfTf1Ok8OhusaGq/nVv8a3v9jY3/lanh6LFx31N99Q1DBaAD9ZlofAI/1gtrd9uMOr4MOQ/2tnSucro2NAijtA6f+Jtp6REREREREREREREREREREREREREREIqbkHxHJHXGHYLRECMFoK3/h3NdhWPD7SesQL4azHoFzn4KR33YY4/D/OCiT7/c3vvsZ0Hm8t7Gl5TB9o/+amps63z0ULQglfaxAFa/0fZ0fhn7Wua9uX3R1iIhkYrWHg8sT74IPHYFzZ8MJU63HqbG3w7TFMPIboZcYieLu7v1bHkp/7QYPwWgNh60woLbEy9cFYPZwWP7TcGsJitPBeaNZqFasEKavD2bPxTdB3YFg1soXXoIZgqRQtOCVz7Rvr6+EA2+Ht+/BJTBnNCy6Ct7+Crz1RZh7Jrw003/IfdLlPjuWYbBbx+HRPCdsEYxW4jw2iIAhEZEwON0fGyHdb534eX/j3/gMzB4Bu+aHU49IFJyuv0v6wtgfwuQHrNfYg36zj0Efh4IO3sZu/Ffjnzf8037Mwsv97R9kMFpTbgFyT50Ippn+2tnkNShcRERERERERERERERERERERERERESklVIwmojkjgKnYLRaMJPB7ZOogyW3Ovd3OTm4vaT1iRdB38vh5J/D1AVQ2LGxr/xKuOYA9PF5IMir8XdAj7P8zZn4DzAM7+NL+/pbvykjBhe/Ayecn/4anvcynA//2+k4IrxaJDgdhjr3KRhNRPLBrhfgwJvuYwZ/EoZ8AgrKoO9lMPUFuGINjL0Nuk+Mps4opApG2zU3/bUTHgPAju5Pf498lKz1Ns5MwLIfwP63wq0nCKbDQfDmwWhgheYW9whm30VXBrNOvogyGK3XtOj2akt6nmc9rtipXBXOnqYJr38Gana07NsxGx7vA5Xve18vUefcFy/2X19ThgHnPG6FjYTJTzCaW5+ISDaZDtcFmYZUOhnwYRj2ZX9zjh6E+VPbXhCytB5O32fl02HsD6zvC6dru0yU9oFJd0Fxt9RjX78ZXpwBCy6FytX2Y3Y9DxUrvO8fVjBaqp/p3R+DRVfDax+HdX+HpEsducTx+bACdkVEREREREREREREREREREREREREpG1QMJqI5I64QzAaeA8/8GL3Avf+QR8Lbi9p3U44D67aAxe+DDM2wTmPWQe2h9xsP37KPJixBU78vLf1J90NF78N5z0DV++D0d/xF3I2czt0Gul9PECsEAo6+JsDUNofPlwLXSMMFvQTjOb36yDZ43QYVsFoIpLr9r0O8y9MPa7PxeHXkguCCqiy4/W5QV0bC0ZLeAxGAyt4ev3fw6slKI4HwW0OzRsxOPFzwey75yXY83Iwa+UDp69zGIZ+Krq92pJ4EXQcZd/3usPz00wdWuEeBlp/CJ473XsIY9Il3CaWYTAaQKdRMGMzTFsMA67LfD07zYPRXMcqGE1EcpRT2FgspCAeIwan/d56zfTc2f7ecOHFK8KpSSRsTsHEUQRe9b8GrlgH0163fu7gZvuTsDPFmKfHeH9jo7CC0Tp5eFOUrY/Bxn/DG5+Gl6+xQn5zndPztJhNULiIiIiIiIiIiIiIiIiIiIiIiIiIiEgrpGA0EckdBWXOfQ3Vwe1zaKV7f2mf4PaS1i9eDD0mQ9mAxrZ+M2HiXdB+CBgF0PNcuPx96DUFyvpZt70YfBN0PcUKUCnu5r2mrqdagWrp/l8u7up/zoUvh3dA0kmPydDuhNTjSvsd/+8jua24u317lMFo22fD/GkwewS8+QWor4xubxHJX8t+mHpMQXvo3UaC0coGhre2gtHsuYUK2Vn3V+8H2LMl6fMg+JjbYNStwez9zteDWScfOAUzZOqcWdDzPOt5QtkgOP2v0P/acPYS6OgSCFGxIti99r8FT49NPa7+EKz4qX3fkU2w6Gp4ehwsugYOvOO8TqworTJbrhOH7hPhzHth9Pes55MFZdDvauf7jo7Drf/HntZvFozmFlipYDQRyVWmw3VBUPfFTsr6Qd/L4JTfeZ+z63l4ajhseyK8ukTC4HT9HdXr60Wdofvp1s8dTr8z8/Xuj0Pl2tTjjh5w7sskGA3gCg/7H7NtFtwfg/kXeQ/xzQan58OGgtFERERERERERERERERERERERERERKRt0G/OikjuKCh17ksEGIx29KBz36j/F9w+0rYN+YT1kaxveaDJS0hXpzHOfQM/Cpvuse+b9hp0n+S9TjtFXaBqs/fx3SZahxejFiuA8T+D1292Hzfm+2AoCzZvtHMIRqveGs3+O56Fl2aCmbBuV66Bg0us8D/9PxIRN3tfTj1m3I+hsEP4teSCbqeFt7Zb0ExTR9taMJrDoWk3+9+yDsTnKtPnQfBYHE76bxh/BzQchlhx43PJwk7WY/nq38E7X0u994E3oaHKPcC7tQgjGK3PZdB3OpTPsH9OJMHr5BKMtuUh6OwhwNOLw+vguQnex2+b1bKt7gA8OajxdsUy2Pqo8xrxYu/7eWHEYPxPrMdlM2E9t6w7ABv+CbW7G8e1HwoXvwsFJdbfe+5Zx/c3V9jx+NvJOuexCkYTkVzlFLYb1WN5l3HWNcT2J72NP/y+9TrOuU9B38vDrU0kKNkORmtq6Kfg0HJY8/vM1pk9DGZsafw5Qd0B6+9T2AFME6q3wLwpzvOdwq+96jDUCqLf+az3Obuehz0L4JKl7tfS2eL0fDjTr5WIiIiIiIiIiIiIiIiIiIiIiIiIiEieULqDiOSOuEswWkNVcPtsf8K5r//Vwe0jAvaHmbqeBiW93ecNcQn7Gvpp+/aBH808FA2gqKu/8Z1dQtzCNuST7v2TH4Chn4mmFglG2SD79podsOO58Pdf95fGULRj9r0GB98Nf28RyW9uQb5lA+Dsx2D4V6KrJ9u6eghGW/yJ9AKZEjXextW1sWA0M42v5fMToXp78LUEpflj8jGpDoIbhhVQFC+2Qn+LujQGnLoFcjf3UHvY8C/v4/NVkMFoPc+BcT+x7vMMw2pTKFo0+riEwSz/UXD/zsvSCFjb8Uzjn2v3wqPd/M2PFfnf0wvDaLw/Ke4Kly6FoZ+zQjVGfAOmvWqFooEVtnHhK1Babr9WQRl0axYY5xQuBApGE5HclXAKRgs4pNLN2Y9aQbcdh3ufs+z20MoRCZzTc7dsXTeP/n7LgNd0bLgLanbDvKnW9d4jXeDRHvBod3hioPtcI575/ufN8T8nWQ8rfpb53mFwCj93CgoXERERERERERERERERERERERERERFpZRSMJiK5w+2AeoNL0IQf9YehYplzf9dTg9lHxE2sAE7+tfOBwm6T3AO/ekyGwTcd39b9DDjtD8HU5zcYreOIYPZN16S77ds7joQBH462Fsmc2/+nhRdD7b5w99/mEJ658hfh7isi+c00nQOcup8BMzZBvysbQ4LagtJ+qcds+Ce8e6v/tb0Go9VX+l87nzkdmk5l0VXB1hGkMA6CuwVy21l8Exx4O/39ckn1dtj6OOxeYN1vHWM6fJ27nAQF7b2tXX4lXJ+EC16EMd+DeEhBVuKsy7jGAEA7b34x8z2SDbD9Kf/zFl5qBaIBvHK9//nxiMJ42vWE0/8M5z8Dp/wK2vU4vr/DEJixBfpfe3y7EYPT/tSyzvIrnfdy+7cSEcmmZJ19e5SP7bECGP0duHw13GBa1xipHHgbqrfZ9x1aaV0DHXgn2DpF0uUUWGtkKRitXXcYlcZz8+b2vgqzymH3fOu2mYC6fXD0QOq5QQThGjGY8oIVWOvHpntg6W3w5hdg84OQqM28FgAzCQffg3V3wvbZ1s8nfc1XMJqIiIiIiIiIiIiIiIiIiIiIiIiIiLRt+s1ZEckd8RLnvoaqYPZ49jTnvvF3BLOHiBcDr4fOY61DQsmjUNwTDq+FjsOh/zUQb+c814jBxH9A/w/Bvteg4ygov8L/gR8nRV38je9xTjD7pqt8JsS/0DIkZeAN2alHMlPW3/r/73QAbddc6/snajU7o99TRPKHUygawEltNFjRMKxriqMH3cdteQhO/Y2/tb0GoyWP+ls33zkdrk9l/xtQsRw6jwm2niA4HgSPp79mOtfMK38OZz2U/p65YP3d8NYXG79/ekyG856FwvbO/3dK+8HU+fCITXByn0thwA1QvQU6jYK+09tW+GOumr4Jnuhv37fzuczXr1gK9YfSm7vlYeh7Geye53+uU6h4NhgGTH4QBlxvPR8v6mx9P3Q5qeXYLuOd13EKHhIRyTan+6ds3hcbBly2CuaMdB839xyYseH4tiXf+SDs/oNQ2ME3wcS7dN0i2eV0/R3LUjAawPCvwrLbnWsrv9K69ncLjd71fHp7d5sUXGhsr6lwyXuw9TGr3kQtrP976nnLf2R9Xvtn6/MVa6HD0PTrSDbAqx+BLQ82tpUNgHPnQOfR3tZwej4c0693iIiIiIiIiIiIiIiIiIiIiIiIiIhI26DfnBWR3BErsMLR7IIO6isyX79yDRx+37m/k8fDCCJB6Twm/QAKIwZ9LrE+glZsE3zgpKQvdHMJHIxCUWeY/AC8cj0kqq228pkw4mvZrUvSY8SgXW+o2mjfX7EUyEIwmg7MiliqtsKm/0D1Vuh5HvS/Vt8f4B5I1ZYPrI74Biz9vvuYmu2w7QnYOReKu8HAG6HjMPc5DR6D0dwObLdGToemvdj8YJ4Fo2XwfeUWyO1ky8PweDmc8msrnDif7veSCVj6X7CyWRD43lfgtY/COY+7BzMUdYHLV8P8C637foDO4+D0O6G0T7i1i39l/aBdL6jd1bKvegscPQRFnVr2JROw6V44+C6U9IITv2iF5jV3aGX6tVWuscL20pHO922YDAP6XWl9uI6LwdDPwLq/texLKBhNRHJUwiFcOJ7lkMpOI+D0v8FbX3IOQK7aCAeXQpdx1u3dC6yA26b+P3v3HSdXXe9//DWzfdN7L6SSBEJCIPTeI12QoldRwAJX9HcB9VqxYMGuV7nqtcBVUBSkd6T3ngBJCCSk9142m+zM/P445GY3O2f6zM7uvp6Pxzyy862f3cycPWfgvDP/T8Fjn68Hx+j6IcWsWkquHIPRKuvhgF/DC5e27qsdAEfcGpwDLX8QHj2psHsPO7uw63UbDROv3v181EXw5DnJz5HD3DU2uPYbdVFu/w3mqXOCzzqa27oQ7t0HJn0FJn4p+fl2c/EiXA9LkiRJkiRJkiRJkiRJkiRJ7UiB/vllSSqQmj7J2xvX5r/2on+k7h9U4Js5pPaqOotgtH2/Edzs3daGng5nr4BjH4HT5sERt0Fll7auSrkafm5437YlpaujhXYUgCIVy6a58MB0eP3LMO96ePo8ePHTbV1VeVh6V3hfZ75hdWyGr48nzoR5v4I3vgUPHAhrnks9Pr49s3UX3wrLHshsbEeQTzDa1oWFq6OQwm4EzytwMJHbtIal8PT58OxH89i7xOIx+NdxrUPRdllyexCQlggJZoi8H8zQfTycPh9OfBZOeR1OfsVQtHI24arwvs3zWrclEvDkWfDcx2Duz+C1L8E9k2BHkoD6TXNyr6thCWyem/28cVe0rzDCPfU5OHl73GA0SWUq7PgUrS5tHcmMuRTOXAK9poaPmf/H3V/P+034uDe+BffuC+teKVx9UqbCzr/bMhgNghCwZOcuYz69+3xs0InQZa/C7VndKwgpLKZ+h8Hp78Bxj2U3b9Et8NgMmPXt7ObNvKZ1KFpzb14Ltw9Nfr7dXGiAXif+nEmSJEmSJEmSJEmSJEmSJEmdShkkmUhSM9VFDEZLFVhx2F+hogxu7pLKQXWvzMbt9z0YfXFxa8lGVTcYeCx0G9O+b5xX6mC02v6lq6MFX1MSs38E21e0bHvnt7BxdtvUUy4S8dQBcW19Y3NbqukTnGdnY+cmmHVN6jHxHZmvN/Mr2e3fnoXdNJ2JxjWFq6OQErHk7fkEDoaFrWXqvT/DqifyW6NUlt4Jqx5PPeb5SzILoItWQt+DoddkiFYUrkYV3vjPh/dtej+YrGkbvHIl3BSBm6OtPy/Ztgj+0ev9/gq4uTL4+s1rw9c++eXUdS2+DV69OrPvobn9f5z9nHJSUZO8PWYwmqQyFRqMFnI8K7XafjD9t+H9c38WXKPFm2DR31KvtWM9vPGd4OsVj8Ajx8J9+8PL/wGN6wpXs7Sn0MCrNv78IFoJR98NQ88KwhBr+sDE/4R9vtZy3OFp3luZqu4Nxz4E1T0Ks14qlV1gwFFw6M3Zz5319eD4sH1V+rHb16Q+Z95l58bgfHvJneFjwsLPO3MAvyRJkiRJkiRJkiRJkiRJkjoVg9EklZeakGC0HXkGozWuhbXPh/ePOC+/9aWOpLp3+jEnvQiTvgQRTyVUBH0OCO9r2rb76+2rgkcsi4CcVBKJ8D7D9iRYGHLj63t/Lm0d5WbVk8EN9WE6+w2rA47Jfs7yB1KHfGUTALbu5cxuXu4Iwm6azkTj6sLVUUhh31M0j/dV15HhfWMvy2yNhVkG/rWVpSlust9l0xzY8m7yvrYOZlBuohXQY5/kfSsfga0L4d59Yc5PMlsvEQ8PKdxln69B7/3hlNezqzWdvf8jv/d7OQgLEoo3Bp9VFepaRpIKJey4FBb02BZSfW4E8MSZsHleZmst+WcQ+P2v42Hlo7D+VZj7U3jyrNSfE0n5CLumjZTB+XdNHzjyNjh3M5y9GqZ8t3Uwcvfxua9f1QM+tBUuTMA5a6H3tPzqzdbwc6HX/tnPW/koPHoKxNOcF69+Irtr8yfOgCUh/6iTwWiSJEmSJEmSJEmSJEmSJEnq5EwzkVRewoLRGvMMRpv7y/C+g36f39pSR1OTJhitblBw07tUTCPOT97etBXWz4Sbq+C2AcHjbzXw6tVBaEM+UgY+eNqsTi6RgKbNyfvm31DaWsrNsrtT93f2YKGKutzmbZkf3hfPMgBs09u51dDeZBMYt6fGNYWro5DC/q4jFcnbM9FjH+gyonV7z33hgP+CYR9Mv8a863Pfv1Te/T3M/1NmY1c9nry9HIIZlJs+05O3z/8j3DEy9TE2n/16TYbJ3y7cuiMvLNxabSUsSGjHeri1L9zWD2Z90/AdSeUj3pi8PSzosa2ctTy8b+ld8NwnMl/rhU+1blv1BCxNc60n5Srs2q2cPj+oqA7/hyKquucWgg5B8G1lfe515StaAcc/CntfCb0PzG7u+ldgUcg/GrDLtiXZ1/TE6clDKcOuh8vpdSJJkiRJkiRJkiRJkiRJkiQVkQkPkspLdRGC0RJxeOOb4f29puS+ttQR1Q1N3T/tlxDxFEJFVt0reXvjGnj4CEjscWPY7B/BnJ/mt2eqQJmwGwGlzmLH+vC+sMC0zmLjnNT90crS1FGuKmpzm7cpxc81kWUAWKq1OpJsA+OaK9dgtD1/3+8SyeN9FYkE57PR6t1tFfWw/0+CvoP/2LIvzM4yPfZtWwKvfQmevyT/tTr78as9G3JaafdrHowx9IzCrDn+/0HvaYVZqy2lCxLauQlmXROEGUpSOQgNRsvg/KiU6gZC/6PC+9c+l/8eS25r+TyRgA1vwsJbYOvC/NdX5xXbmry93AIIU8klDLf73jDh6sLXkq2q7rD/j+DkF+C87dBrauZzF9+Wur9hWW41vXBp67aw62Gv0yRJkiRJkiRJkiRJkiRJktRJmGoiqbzU9E7enuuN+k0NcM8+qcdkc9OD1Bl0GwPdJyTvO/DXMPyDpa1HnVNFffL25fcF4QHJLPjf/PaM78hvvtSRNSwP79u5KQii7ay2zEvdH6kqTR3lKprj97/2pfC+VEGWyXSWYLRsA+Oaa9oCse2Fq6VQwsLe8r0RfOhpcMqrsN/3YOoP4ZRXYODxQV9VNxj54fRrbH47vxqKYcH/wp1j4K0fFGa9zn78as/6HlS6vQYeD5Vddj/vkeYzmGQmfhEmfAH2+mgQsnHswzDtJ4WrsS1lGhC68K/FrUOSMhUL+WykogwDm8Z8qrjrL7hx99fxpiB49t594Onz4I6R8Ma1xd1fHVM8Bo3rkvfV9i1tLfnodxicsSi8P1IJXUYGj65j4MDrYcZMqKwrVYWZqaiBk54PArIzsfjW1NfO23IMRlt2XxC+2FzY9XA+QeGSJEmSJEmSJEmSJEmSJElSO+L/OSupvNQOTN6+5d3c1nvkaNg0O7z/yNshEsltbamjikTg8Fvg0ZOgodmNPPt9D8Z+pu3qUufSPFwhUxteD24gy/W4njIYzTxhdXINaW7sXPM89DukNLWUk/hO2JzmPDXfAKfOaumdsN+3k/cZjJZc2E3TmWpcA/VDC1NLoSRiydsLcSN4j4nBI5kp34dNc2HNM+HzN86B3tPyr6NQGtfCC5+CeGPh1sw12FBtr3YgVHYNQg+LbcgZLZ9HIjDhKpj9o8zmV/UMrjU76mcz0QyDhFY+Utw6JClTYecSmR7PSmnE+fDMhcVbPxEPAqxqegcBlvP/0LJ/5ldh4AnQd3rxalDHs2MdkEjeV9OOgtEAugyDczbAk2fDyn8FbbUD4OAbYPBJbVtbNqJVMOoiGHBc8L2sSxHUDnD3BOgyArqOglgjJJpg0S3BP/QR25ZbDY2rYfsKqBu0uy1hMJokSZIkSZIkSZIkSZIkSZI6NxMeJJWXbuOStzcsg52bs1vrxctg7Qvh/T0mwtAzwvulzqznPnD6Ajj+ySBA8OxVMOlLbV2VOpPK+tzm7Vif+56pgtE6alCDlKntK1P3L72zNHWUm60Lw29U3cUbVnOzYSZsmZ+8L93PfE+dIRgtHiP05vpMNa4pSCkFFXojeEVx963tD8c/DienuCF+9VPFrSFbi2+DWENh1zQYrf2KRKDb2OLvUz80CJHY0/DzMl9j0Akd+1y7ogyDhCQpldBgtOrS1pGJSAROnVvcPe4eHwQz7xmKtsvSO4q7vzqeVNdd7S0YDaC6Bxz7MJz8cnANddq89hWK1lyXYXDS88F/E0ll63uw6nGY/0dYeFMQiga5h6LtsmmP41nYZ9XFvh6WJEmSJEmSJEmSJEmSJEmSyoR3aEsqL93Hh/dtnge9psDmd2Ddy8Fj/StBCE6XkTD5O9BzUjB20zyYd33qvUZcWLCypQ6pohr6H97WVaizqsgxGK1hKdT0zm1uqmA0OnBYg5SJdGE7S+6AKd8rTS3lZPvq9GMMFoJBJ8Py+7Oft/RuGH9F6/b4zuzW2boAYtuhojb7GtqLTMPijnsMHjk6ed99U2HkR2C/7wY3hJeD0GC0EnycFa2E3tNgr4/Cghtb97/z38H7e/8fl8f7fPFt6cd0GwfHPAB37pXZmgY7tm/9DoP1r+Y+P1IZvAe7joa6wbDupZbnA30PgQN+BVVdW8/tMQmqesLODen3GfbB3GtsD2r7Zz72latg4hehtl/x6pGkipK2bwAAIABJREFUVOIxSMST95Vr0GP3cTD6Ynj398VZv3ENLH8AVj6avP/N78J+1xZnbxVXIg6xxiAMcNef8R2t25L1terfkXxOsrk7UpwfVfcp3fdfSJEI9N6/rasojEg0+G8ip86Bu/cu/PoH/xGe+3jyvkeOgRkzoee+wfOwfwCkukfh65IkSZIkSZIkSZIkSZIkSZLKkHc4Siov9cMgWhPcILKnZy6EhuWwc1PrvvWvwfIH4dTZ0GU4LLs39T7RKhj374WpWZJUeJU5BqNtW7b75rFspQraiURzW1PqKGJJzs2a2zQ7CKbtPrY09ZSLxjXpxxgsBOM/Dysezjy8a5cNbyRvzzYYLRGHrYs79usz05/JgKOgujfsWJe8/70/w8pH4ANvQnWvwtWXq3jIayZawvfV4A8kD0YDePuX0LQ5uLm9LcUaMwsfPPnlIMRqxiy4N4Pzpcq6/GtT2xl7efDaTfYZCsDoS+Dd/wmff+6m4LOZ6p7Z711ZBxOuhJlfSz2u11QYdk7267cntQMzHzvnx7D6aTjhKYhWFK8mSQqT7DP5XaJlGowGQbhvJsFoIy6EQ/8cXB/sWAuvfgEW3JB+3tv/lX+NuzSuDc6zO9vnTPGm9IFh+fZlG1KW7fVpsVV28fy7nHQfD4f/A54q8LlqtDoIMF79dPL+eyfDic8G55ANy5KPqelb2JokSZIkSZIkSZIkSZIkSZKkMuUd2pLKS7QCuo2FjUlCEDbNTT03tg3e+A4c9FtY82zqsacv8F9Vl6RyVtElt3kNS3PfM74jvG/9q7mvK3UEqW6Q32XpHdD9quLXUk4yCUaLVhW/jnI3+CQ45j741wnZzduxPnl7tsFoEAQf0IGD0bK5qb+mb3gwGgRh1Av+DOM/m39d+UrEkreXMnBw8ClQ2RWatiTvn/8nIAIH/U/bBVwsuT39mIEnBqFoAD0mQddRsGV+6jndJ+Zfm9pOj73hhKfhretg3Uu7jxN1Q2DE+TDmk6mD0SrrgDzCOSZ9JQh0WPhX2L4CmrZCVbcgiKSyC/Q/Cva9puMHgEUi2Y1f+xws+juMPL849UhSKimD0apLV0e2Mg0JGnlhcFyOVEBtfxj7mcyC0ZY/kF99AOtegWc+EoSKV/WESV+GCVdl/3sinUQiuF5KGhjWCLEdSdqKGVL2fn8iXtjvsyMy7Kr8DDqp8GtGq6D39PBgNIAHD0m9hq8VSZIkSZIkSZIkSZIkSZIkdRIGo0kqP93HJw9Gy8TSOyDx3xDfHj5m6o+hfkhu60uSSqOyPrd5Dcty3zNVMFrDctixAap75r5+udqyIAh+630AdBne1tWoXKV6f+zy3l+CG7s7ungTrHocYtth4c3px5cywKmcDTweqnunDuTa084NyduzCQHbZfvq7Oe0J5mExQ09M/izth9sfjv12AU3lEkwWsjfdbSE76uqbjDhapj1jfAx8/8I/Q6D0ReXrq7mVj+Tfszkb+3+OhIJXg9zfhI+PloTvG/VvvXcBw69Mbx//Odh7s9at4/6RP57RyIw5pLg0dmNuCCzc4Zd3v6FwWiS2kYsxXVfRU3p6shWJiFBwz4Ig2e0bOt7EOz1sczC0fKxfTXcP233850b4LUvwOJbYdjZ4WFiuYaUqX2qH9rWFWhPVV1h7ythzo8Lt2akCoaeDnN/mvsaBqNJkiRJkiRJkiRJkiRJkiSpk/AObUnlp/v43OduXwXLH4Ald4SPGfnh3NeXJJVGuQWjASy5E0Z9NPf1y00iEdyIO/tHu9smfQUmfzsIspCaizWmH7P+NVh2Hww+pfj1tJUt8+Hx02Hjm5nPiVYUr572Jlqd3fgdIcFomYSA7alxTfZz2pNMwuJ2BR1lchP1upfzq6dQ4iHfV6TE76uJXwxCjTbNCR/z/CUw5AyobYOb1FMF3Y35NOz7dagb1LI9XTDaXv8WBAGoYxt+TvJgtKFnlL6Wjmz0J7ILRlvzbPFqkaRU4imu+6LlHIzWJ3X/gdfDmE8m/6zj4D8G50VPnpXb3pFo6v5Nb8PdIf+9Y+3zwUOC4FpC5WfqD4MQs0S8MOtFq6Df4dB9AmyandsaBqNJkiRJkiRJkiRJkiRJkiSpkzAYTVL56bV/fvMfmxHe1+9wqBuQ3/qSpOKr6JLbvG1Lc98zXTDaq1d1rGC0Zfe2DEUDePNa6H8UDDqhbWpS+Up1g3xzj82AC+IdM1wvth3uHN3WVbRvFVmGKax7KXl7wmC0VsICxHaZ8AUYcmrwdXWa4IhdXroChp0FA47Jva5Nb8N7N8Ha54KwtX6HQd3QYM1hZ6c/VoQFvkVK/HFWRQ0cfR/cuVfqcY+dAie/WJqamgsLRht4Iky/Pnlf30Ohph80rk7SGYH9vluw8lTG+h4Kk78DM7+6u23CVTDktLarqSMacFz2c9a+BH0OKHwtKr1ty2DBDbBpLpBo62qk1HZuDu/L9ly+lKJVqfvHfCr8vDMSgWFnwr7XwKxrctg7TfjzC5dmv6Y6n2EfhPFXtHUVSiYSgVNeC0Lyt76X/3rRKohWwiE3wKMnwY712a9hMJokSZIkSZIkSZIkSZIkSZI6CYPRJJWfoadD/VDYtiR8TCSa27/Q7s0lktQ+VNbnNq9hWe57xtME7SQNDmnH5oUEpcz/k8Foai1dcGBz8/8Eoz9etFLaRKwR7hjR1lW0f9EcwhTe/jWMu6xlW7rjdTIdPRgtVVjcCU9Dv0N3P8/05/f2L4PH1B8GQUnZWvUEPHoKxLbtbltyR/DnvF/B6EvhoN+mXiMs8K3UwWgAXUfCmUvh9iHhY9a9BCv+BQOPLVlZxJvCb9Df873TXLQC9vk6vPzZ1n3n7wz61fFFIrDPV2DURbD+Veg5GboMb+uqOp5IBOoGQcPyzOc8cCAcejOMPL94dan4Ns6Bh4/o+Och6hzSBYC1tV5Tg99le+qyV3GDu1P9XLavDs6J1b5FKoJr2YqaJH9WJ++L1kBFdbOvQ+ZW1EGfA6HbuI4ZMN9R9NwXPvAmPHoirH66df+hf4G3fgAbZqZfa1eQY58D4YxF8PCRyY9dqdRkGHYuSZIkSZIkSZIkSZIkSZIktXMGo0kqP9EqOPZhePYiWPcCEIEeE6HX/tB7WvDotR/cfyBsmp3d2n2mF6NiSVKhVbRFMFoWwU8dwbJ7krcvvAkO+0tpa1H5izVmPvb5T2QXjBZvCm4gXfFQEHY04UoYfEr2NRbTO7+F7avauor2L5cwhde+AMPPgdr+u9vCwrJS6eiBJKl+Jl32CPXbsS67tV+9GrqNh6Gntd5zwY3w5rWwZX7QVjcEGpZmtu67vwseu+qr6gEDjoPJ34KqrkFbIpZ8brSNPs6qHxwEzT10WPiY5y6CMxeVrCR2rA8PDa9PE3A19jPQuArm/CwIsBtwDBz0B0PROqP6IcFDxZPL767XvxT8DmyrY56yl4jDnJ/A4tuCa9OtC9u6Iqlwcgk5LqV9vgpPfrB1e78U522FkOr47jEge/8XNJYiVCxaHRI0lkVfxgFn1Z4bK1BZD8c9Bq9eBe/+AZo2Q1VP2PfrMOICGHoWvHolzP8jxLaHrxOp2v11Vdfg+vLVK8P/AYtWdXSD7nvn9a1IkiRJkiRJkiRJkiRJkiRJ7YV3VUkqT93Hw0nPBjcUxpuCG2H2VNM3uzWHn9c6FECSVJ4qcwxG274SEgmIRLKf29mC0TqCxnXQtAWqe+2+cVbFEc8iGA1g6yLokiaQZ5dnPwoLb979fOUjcNRdMOTU7PYspoV/besKOoaKHMIUmrbCkjtgzKW72xI7s19n+8rs57Qn8RQ/k2hVy+fDPhgejhnmidPh+Meh/5HB79n4Tph9Hcz8WstxmYaiNdc8MGLDTFj3UrBXJAKJkKCJSBt+nNXvUDjyzuBnksy2xbBxNlR2CR6x7VDTBypqC1dDvCm4Vq6ohsa14eNq+qReJ1oRBNHt87XgZ5rL+ZOkzAw9MwiDzMbWhcFxsduYIAQRgjCNyvogTNL3bPl5+fPw9i/bugqp8CJRqKhr6ypSG3pWEPK68tHdbdEaGPfZzOb3PiC3fWPbIB5LHp6VT3h/0UVSB4MVIogsVeBY0j2r/d2m8hathGk/g6k/CsLz6wYGx0eAyjo48Ncw7efwwidh/p9C1tjj+rz5vPumwMa3Utcw7t8Le20pSZIkSZIkSZIkSZIkSZIklTGD0SSVt0g0POQk22C0Q/83/3okSaVR2SW3eYlYEHCWS/iOwWjtx7pX4LmLYMOslu3jPwdTf5z8hmTlJ9v3x5I7YHwGN6AvubNlKNouj58GR94BQ0OCh0pp+xpY82xbV9ExRHM4NgMsub1lMFqqELAwZR1KUABhAWLQOkRs0Am57THz67D/T+DFz8DaF3JbIxOrn4TlD8Dgk1MEo7XxcX7oaVA/LAhBS+aeia3b9vooHPBfUNUt931jjfD6l4PQnfhOGHwqjLwgfHy6YLRd9rw5X1LhDZ6RfTAawP3TgAiQaN037edB4I8hMuVhw5uGoqnj6nto+QeRRyJwxK0w5+ew/H6oGwz7fh16Tcls/sDjoKo77NyU/d5NW6C6R+v2Wdekn1vVE3pMTB04lk/YWFifobhS7qKVUD84pK8quFYMnRty7RWtghOfh1evhHd+m3zMtF/CuMuzq1WSJEmSJEmSJEmSJEmSJElqxwxGk9R+ZROMdvyT3uwtSe1JRX3uc5u25haMFjMY7f8suRP6HZZ5oEo+Eokg4KxhGVT3hqZN0HVU8NjT5ndh/Svw1IeSrzX358FNxZOvKWrJnVKsMbvxyYLRdmyA1U9B47rgtdVrCjxxRvgaT5wBp86B7uOzr3f9a7DyseA1NeBo6DI8s3k7N8Ga56BhRXCja+0AmPsLkoaRKHu5no8vuxe2LYH6ocHzXILR1r8KO9ZDda/caih3qX4me/7c64fCxP+Et76X3R6rHn8/oKcEFv09CEaLhwSjRcvg46wTn4Pbh2Q+fsGNUFEL03+T+55v/QDm/GT382V3B49kojX5nU9JKqzBM2DgibDiwRwmh5yHvPw5qBsCwz+YV2kqkHv3aesKpOKo7AZTvt/WVWSmulfweUAunwlU1MKU6+DFT2c/N1kw2tJ7g2uQVPa7FiZ9Ofv9JJW5FKGDqT4XqeoaXC/22AdevmJ3e2WX4L9x9p5auBIlSZIkSZIkSZIkSZIkSZKkdqAM7iSVpBxlGoxW2RX6HlLcWiRJhRWtgkgFJGLZz23aCjW9s5+XyCBoJ5GASIqb2zqKJ84AInD432D4ucXbp2krPHcxLPpby/ZIZXBz8ORvBs8TcXj9q5mF+Cy40WC0YohnGYy26nGIbQ9uLocgKO2JM7Pf9+694YIYRKKZjY83wdPnw+JbW7ZP/RFMuDL13DXPw5NnQcPyzOsbcQH0PgBeTbO23pciYK6iNnjNhLl9WHCD8JhPQiIkLCudW/vCEbfB0BSBfO1Vqp9JJMlHP/tdC/2PgqV3wrxfF6+uXM3/Q/A7YPWTyfuTfU+lVj8YJlwNs3+Y+Zx3fw/7fTe34NGmBph9Xebja/p0jnMWqb2oqIaj74X3/gLPfaxw68673mC0crBhVnbjR11UlDKkguu+Nww9C7qPa+tKSmPsp6DnvvDQYdnNa9rauu3d/0k958Rnoe/B2e0jqf2LZBAYP/6zwX/TXPJPiNbCmEuhbmDxa5MkSZIkSZIkSZIkSZIkSZLKTBncSSpJOartl9m44R+CaEVxa5EkFVYkApVdYOem7OcmuyF1l3gMlj8AK/8F9UNg9MVQ1T39vF0STZndwNYhJODZj8HA46G6V2GX3jIf3rsZZn41ZOsmeONbsHNzEIi16O+wbVFma29dAPGdQbieCie+I3n7gGNg5aOt2xNNQQDQuMuD9/HT5+e+980V0H1C8HXfg6HLSBh2VnDD+i5bF8GsbwZhSsm8ehW8dxP0mtKsMQ6rn4Eek2DQiUG4UTahaOOugAN+/v76BqNlpMe+sOqJ1u3R6iAY4L6pqee/8KngmBTPIMgymUQcnjoPzl4J1T1yW6PcrHkBltwOy+4OH5PseBiJwOCTgkfD8uCG63Jz+7DwvmiZfJw16uPZBaMlYvDSv8NhN2e/18pHMjtX2SWX8DVJxRWtgFEfDQIp1z5fmDVXPhL8fss0RFbFsf71zMd+aEtwrSupPPU7FMZ9Ft7+ZeZzYttat6U6vx7//wxFkzqrTD+v7HNA8JAkSZIkSZIkSZIkSZIkSZI6sTK5k1SSclA3JLNxE79Q3DokScVRUZ9bMFosJDQkkYCXLod3frO7bc5P4KQXoW5gEMKVTnxH5wrcijXAkjth1McKt+bqZ+DRk6BpS/qxc3+a2x4Lb4G9PpzbXCUXa0ze3nsarHoyCELb00v/HoT4dBkJse357b9pdss/3/wuHH4LDD0dVj4Ojxydfo31rwSPPW1+O4dQqAiMuSTLOWLEh4IwGBIt24efF4TWfWgr3JImKGTRreHBaEfeEbzmnrkwfH68EVY8CMPPzar0sjT/T/D8xUEgTiqRNCHRmQZO52P674LwtiV3FGa9dN9zqXTfG7qNhc3zMp+z8K/Qa2r216lLbs9ufLXBaFLZGnFB4YLRADa/C93HFm49ZW/b4szGHfeooWhSe1A7ILvxe4bXNiUJSmuu+/js1pfUzkTCuzrT58qSJEmSJEmSJEmSJEmSJElSnqJtXYAk5axucPoxR/zTG40kqb2qqMtt3v0HwFPnw4ZZLdtf+0LLUDSAbUtg1jeCrxfelH7tsDCejmzjW/mvEdsB8/4bHjoCHjoss1C0fLxgYFXBxXckb6/sCt1Gh8977Yvw9HlFqKcRXr0K1r+eWShaoY29DHruW/p927v+R8Ih/wv1Q4Pn0eogHGb69cHzyvogaCqVNc/SKlhtl+qeMOJ86DYu9RrblmRVdllqXAvPfTyDULRKiKS4KRugpn/h6kpm/OeCIMEDfhXUUwgNywuzTr4iERh2TvbzZl0D21elH7f6GXjsVPhHb3j399nt0efA7OuSVBrjr4B9vla49e6fCg8dGfxe2LqwcOsqMzs2wutfTj2mpl8QEjrg6JKUJClPVd2zG79nMNrmt1OP7zEhu/UldRwGo0mSJEmSJEmSJEmSJEmSJEkZMxhNUvtVPyS8b9RFcH4TDDuzZOVIkgqsojr3uYv+Bg8cBFsWBM/n/gJm/yj52Hd+C/NvaB2klkxnDEbL5Oeyp9j2lj+r1/8TXvwMrH6qcHWl279hZWn26izijcnbozXpg6yKZfM8uG9K6fftsQ/sd23p9+0o9vownLEIzlwC526Ew26Cyi67+7uMSD1/e4r39q4QsAlXpl6jYUXm9ZaT2PYgEC3eBLf2zWxONIMgstoiB6PVvX/dVj8E9vpoYdbsMakw6xTCxKuDwJtsxBpg4V+Dv0sIAu4ScUgkIB4LfoeteiIIE112D+xYn31doz6R/RxJpRGJwORvBZ9bjb44//WatsLqJ2H+n+D+A3M7Zig38SZ45NjUY87dDGctC0JCJbUPVd2yG79nMNrGOanHt9U1tKTSSBVOHjEYTZIkSZIkSZIkSZIkSZIkScpUBnfISlKZqhuUuj9aUZo6JEnFEcnzVDXWAHeOgklfhXd+k3rscxdltmZnDEZbfj9sXwO1GYTw7NwCz18MS+6ASBSGnwsjPwJzflL8Ovf0xjfhwF+Xft+OKhYWjFYNg04O/s47g0EnwaF/geoebV1J+xaJhIccpwtGq6gL74u+f4PxmE9CZVd45sPJx82+DhbeHBwjhpyavt62tmM9PPcJWHJ79nMzuem6JsOQtVwNOnH319N/C93Hw7J7g+fjPwfrXoY3swwb7Htw4erLV3UvOOk5mPkNeO/Pmc97+XPwyn9AIhac8ySaClfT6Iuhh4EbUtmLVkC3sYVds3E13DsFzlxY2HWV3Mp/wfpXwvvHfAqqupauHkmFUZltMNq2ls+X/DN8bO9p2YfqSuo4ogajSZIkSZIkSZIkSZIkSZIkSZmKtnUBkpSzilqoqE/eN/z80tYiSSq8Qt0o9uZ3goCAQojvKMw6bS2eTfhKAmZ+LbOhz30MFt0C8cYgmG7BjfDoiennFcO862HNC22zd0cU9tqvqAnC7/oclP8e9cPg4D9BpEzDbSd9BY65H2r6tHUlHVu6YLRUx/PmvzdGXghjPh0+dttiePw02PBGdvW1hacvzC0UDTJ7vVaGXFMVwqiPQ6/9dj+PVsDEL8DxjwWPYWfBuM9mt+aYT0HPyYWsMn9dR8Gh/wsXJlo+zgsJldwlEXv/zwKGovWeBgf8qnDrSSquwTNS99cPg3PWw/FPZr7mtkWw8rG8ylKGFt+aur/HPqWpQ1JhVWUZjBbb2uzr7cHnImGmfD8IipbUORmMJkmSJEmSJEmSJEmSJEmSJGXMYDRJ7duoj7duq+wKA44qfS2SpMKq7NrWFbQW39nWFRRGbHt24xfcAE3bUo9pXAdL7si9pmKY86O2rqDjiIeE+0RroKorHPcoTLgq9/WHngGnvAajPganvJ77Osn0PyoIb9v1qKjLfO7Ij8C4K+Coe2C/7xS2LiXXZWTq/g0zw/silS2f1/RNv9+8X6cf05a2LoTl9+c+f9BJ6cdUZhn8kE7X0TD2cjj873DQ79OPrxsQhP6kUzsQjrwjCP1qL2ESFdVw8svFW3/az2H/n8Koi2DUJ+DAX8MJTwehlZLahx77QI9Jyfv2/wl84C2o7gn9D4dpv8h83Xd+V5j6FG7rQnjnt6nH1A8uTS2SCivb8+OmZsFoS+8KHzfsbBh4fG41SWo/9vxsojmD0SRJkiRJkiRJkiRJkiRJkqSMpfg/cyWpHdj3Glj/Cqx5NnheURvcgF9R26ZlSZIKoNBBLYWQ6CjBaA3Zj3/7lzDxi+Fj1r8GiVh+dWWjsmsQ+LP41vAxi/4OjWuhpk/p6uqoYmHBaNXBn5V1MPWH0GUveOny7Nbe5xsw+Zrdz3tOgt4HwroXcyoVCMLQjvsXRJJkgSduhBcvg3f+O/UaZy6G+qGZ7Tf9d/DCpa3bR12U2Xzt1mVEVsMXNIzkjjWns6GpJ6ct68q0ns06MwpGuz4IkypXKx7Ob/6U76cf0+fA4L0c35HfXgDjPw/7/zj5ey+V6p5wwlPwxFnQuHqPvt7BNd7AY/Ovry303j8IWXzvz4Vfe8QFUNuv8OtKKp1IBA7+IzxxBjQsD9q6jAzOY7ru1XLs0NPh5SsyW3fhTTDiPBhyWvsJk2xvXrws/Zi6IcWvQ1LhVWX5eVTjut1fr3s1fNyIC3OrR1L7MvLDMPOrrdvrh6YOTZMkSZIkSZIkSZIkSZIkSZLUgv/3raT2rbYvHP94cMPR9uXQ/0io7tXWVUmSCqGqa3jfgdfDi58pXS27FCI0phxkG4wG8NqXoOtoGH5O8v7Z1+VXU7ZGnAdDz04djAZwa184aznUDSxNXR1V2Gt/VzDaLuMuC8I3MgmKABh9cctQtF2yDVVqrtdUOP6x8P5IBKZfH7yGHjkm+ZizV0Jt/8z3HDwDKrtA09aW7cPOzXwNBbIIRntu40HMmHU3G5qC8/9v/zzBHy+K89FD3n/9ZBKMBjDr27Dv17KttPi2vAfPX5L7/LNXBoFj6VR1g6FnwqJbct8L4NS50H1c7vP7HQanzYXVT0PDiqCttj/0OxxqeudXW1ub+kNYeifs3FS4NcdeZiia1FH0ORBOnQNrng/OgfodDhU1rcfVD4OKuszP5Z84A0ZfCgf9trD1Cja/C8vuTT+ubnDxa5FUeNkGo735HZj0peCacNOc8HFDTs2vLkntQ9eR0Gc6rH2hZfvw8wyslSRJkiRJkiRJkiRJkiRJkrKQx93mklQmolXQdzoMPcNQNEnqSCpTBKMN+yCMu6J0tewS31n6PYth41u5zXv1CxCPtWzbuQlevByWP5BfTZXdoH54+nHRahj5YZj2SxgyIwjJS+e1L+VXm8Jf+xXVrdvGfgb2/xlU9Ui95t5XwvSQoI5cg9H2+igc90hmYwccDcc/AV1H7doU+hwEZ7yXXSgaQP1gOOZB6PZ+KFTtAJj+m+A1quzUDsp46FcWfOf/QtEAEokIn705wc6mRNDQ54DMFpr1ddgyP5sqi6thBTz/Sbhzr/zWyeZ1fNDvg9+t0argMfRMGHF+5vMHnZJfKNou1b2CwIgxlwSPoae3/1A0CMI5J3+ngAtGYMr3CriepDZX1R0GnQADj0seigbB+VHfQ7Jb993fwd/qYf4NkEjkX6cCS+/KbJzhzFL7VJllMBrAg4fATRFY8s/k/cPPCz++S+p4jroLBhwbnL9V1AdhtVO+39ZVSZIkSZIkSZIkSZIkSZIkSe1KZVsXIEmSJCWV6kbUaDWMvhjm/wGatpSupo4SjDb3Z7nN27oA1r+6O2wokYAnzoKV/8ptvaoecNrbEKmEqm4Qb4Jb6sPHz5gZhFhVdtndNvbTMOaT8OgpsOLB5PMW3RIEqFXW5VanIBHy2o9UJW/f+3NBQFp8R3Dzd3wHNK4N/u4iFVBRl+am8EjmtfXaH054Aohm/3fc/wg47R1oWA4VtfkFMPU7FE6bC9vXQE0fiGTxPWi3aEVGwxrj1Ty64ZhW7Zu3w2NvwwkTge7jM9934S0wqQxCFHduhvsPgIal+a3T+8Dsxld1hSP+AU3bIBEPnq97FRb+Nf3cSAWMb4Ow0vZm7Kfh9a9A0+b81uk6Gk6dHQTYSep89r4SVj0WHKszFWuA5y6C7atg4tXFqqxz2fhG+jG1AzxWS+1VVQ7BaBtmpe4f/sHcapHUPtX2D4L7d2wMPm8yGFGSJEmSJEmSJEmSJEmSJEnKWrStC5AkSZKSquoa3hetgl6T4diHS1cPdIxgtMZ1sOKh3Oc/cCDM+WkQirb0rtxC0bqMhGEfhJNeDG4UrOkd/J2mC7WqG9IyFG2XSBTGXBI+L9YAKx/Jvk7tFm87yJnlAAAgAElEQVRK3h5NkbVdUR28j6NVwd9bl+FBYFh1z/Q3hKYKFZv+W+h/JPTYByZ+EU54Klg/1+C7SATqB+cXitZcbV9D0fI19jNph2xs6hHaN2dFYveTkf+W2Z5Lbs9sXDHt2Ah/755dKFq/w5O3Dz0jtxoq63f//u09FU58Drrvvbt/4Akw4w0Y//ngPTjoFDjqHhh8cm77dSbRKtjrI9nNqR8a/J6sHQC9pwVBoCc8bdCO1JkNmQFH3gWDToK6wVA3KPO5r30Bti4uXm2dybu/Tz9m8AeKX4ek4ohWQb8jCrtmtyxCmyV1HNU9DEWTJEmSJEmSJEmSJEmSJEmScpTiLnZJkiSpDQ06Cd78bvK+itrgz74HwYSrYfYPS1NTfEdp9imm9a9AIp7fGq/8B2xfCeteyW7ePl+Dyd9KPSZaHf5zruoePm/QyRCpgEQsef+S22HIqZnVqdYSIaGARQvnSREsNvIjMObSIu2rsrD3f8CSO1MGhG1qCj8edG1+z3HdwMz2XPs8vP3rIFCsfkiGhRbYMx/Ofs6oTwTBgMsf2N3WfQKM+VRhaup7EJw6u3X7tJ8WZv3OZvJ3YP6fgsDO5iKVcNjNMPycNilLUjszZEbw2GXVU/DYDGjanH7u3XvDeVuLV1sxNTXAhplAAvoc1HZBtOtfTz+mbhBMuLL4tUgqnv2uhYePLNx63cYWbi1JkiRJkiRJkiRJkiRJkiRJkjqBaFsXIEmSJCXV73CoH9q6feiZEGl2GlvKsKt4SDhUe1Ko7+GtH8CKhzIbO/YyOOru9KFoEITDhImm6KvqBnt9NLx/xSPp91ZyiXh4mF6qv6+8pAi62BWMqI6r2xg46YWUr6+NsR6hfV2aB6NV98x835cuh9uHwutfhUQi83mFsG0JLLsn+3lV3YLj60F/gDGfhv1/Bic+A7V9C1+j8lfTG85eAZO+GhzLolVBwOtJzxmKJil3/Q+Hk1+ECVelHxvbBhuTBF6Wu3WvwH37wYMHw4OHwAPTYVt4gGpRzfpm6v6uY+CU16DHxNLUI6k4+h8BtRmGLKdT1RMq6wqzliRJkiRJkiRJkiRJkiRJkiRJnYTBaJIkSSpPkSgcenNwA+ku3cbBAb9qOa7fETDpyy3bRl9SnJoSHSEYral0e03+NlyYgAN/BUM+kNmcVOFn6Uy5Lrxv63ulDzrqKBKx8L5iBaNFUlyqRlKEpqnjqB8M+3w1tHtjU3gwWn11s9dIVRbBaLu8eS2seDj7efnY8EaOEyPBcXP0x2H69bD357ILg1PpVXWH/b4N5zXA+Ttg6nXQe1pbVyWpves+Hqb+EI66JzjOpDLz66WpqVASCXj+Utg8b3fbupfgpc+WvpblD8KSf6Yec9rbUNu/NPVIKq6+hxRmnQHHFGYdSZIkSZIkSZIkSZIkSZIkSZI6EYPRJEmSVL76Hw5nzIej7oLjHoUZs4KwnOYiEdjvWjjtnSBI7ZTXYfpvi1NPfEdx1i2lVCFXhTT4AylDjUL1PiD3PWv7wonPhvcvfyD3tTuzeIpAwGhVcfbsOro466p9iVaHdm1IEYzWIgMxVcheKgtvym1erhqW5zbPEDRJUnNDZsBp82Cfr4WPWfwPmP3j0tWUr3Uvw/pXWrcv+SdsXVy6OmZ9Gx49KfWYg35viK/UkRTqXHvcZYVZR5IkSZIkSZIkSZIkSZIkSZKkTsRgNEmSJJW36l4w5FQYcDRUhIfk0G00jDwfek0Obkaf+KXC15IqIKq9SDSVZp9cf/4TrkrevtfHMptf2z+874VLs69HqV8z0cri7Dnu35O3D55RnP1UnqI1oV0bUwSjNcWbPUnEQ8eltOjW3OblatuS7OdUdoG+hxa+FklS+1bbHyZ/C3pNDR/z6lWw+Z3S1ZSPtc+H9y27uzQ1LPgLzPp6+nFV3Ypfi6TSqSpAMNr038CA4/JfR5IkSZIkSZIkSZIkSZIkSZKkTsZgNEmSJHVMoy4q/JodIRgtnkEw2oBj8tujz8HQ77Dc5g48HnpMatkWrYExn8xsfk3f8L5tS2Dn5tzq6sxSve4jVcXZs9cU6HfEHntFYexnirOfylNFbsFoseZZaN3H57Z30+bSBsZkErayp9GfhMq6wtciSeoYDvtr6v67xpamjnytezm8b/1rxd9/8e3w7EcyG1tpMJrUoVTnGYw2+NTgs4xIpDD1SJIkSZIkSZIkSZIkSZIkSZLUiRiMJkmSpI4p1zCcVDpCMFoilrq/y0g45iGY8gOo6p79+v2PgmMfzP3G32gVHP84jL4k+Dsc/AE45n7od2hm89OFEWyel1tdnVmqML1oZXH2jETg6Hth3Gehx0QYeCIceQcMObU4+6k8RatDuzbGwoPRmmKJ3U/6HQFVOQYa3DUWEon04/K14Y3U/X2mw4QvwJTrguDJ3gfAlO/D/j8qfm2SpPar+7j058ZrXypNLflY+2J4X+Oa4u0ba4QXPgVPnpX5nCqD0aQOJd9gtNEXF6YOSZIkSZIkSZIkSZIkSZIkSZI6oSLdxS5JkiR1QPEdbV1B/hIpQq4ilbDf9yBaARO/AGM+Cf/old36R9yWfyBATR846He5zU0XyLb4Vti5CbqOhi7Dctujs0mkCASMVBVv36qucMAvire+yl+0JrRra6xLaF/zXDQqqmHK9+DFz7Rct/f+sObZ9DXMux7GXZZBsXlY9I/wvn2/Cft+fffziVcXtxZJUscy7jJ46wfh/cvvhz4HlK6eTDWshK0LoKYfbHorfFwxg9Fe+iy8m+U1SWXX4tQiqW3UDsx97oBjYfCMwtUiSZIkSZIkSZIkSZIkSZIkSVInYzCaJEmSlKl4ioCo9iIRC+874Unoe/Du51U9sl+/OssgtVJ787vBA2D0JXDgfwdBcAoXTxGmF/WSUkVUER6MFk9EQ/ua9jzMjf00dN8bltwBlfUw/FzoNQWW3Q+vfQk2vB5ew0uXQ91gGHZmlsVnYcVD4X1Di7ivJKnjG/Xx1MFoM78W/I4cfk7pakolkYC3fwWv/L/Ugc67FCsYbecWeO9/s58X8dxY6lAGnRC8r/c8HtUNgpEfgZ0b4Z3ftp4XqYSj7w1CmiVJkiRJkiRJkiRJkiRJkiRJUk7C7ySWJEmS2rsJVxd2vQ0zC7teWwgLGOg6pmUoGkAkAt3HZ7d+JJJbXYWUaZDQu/8ThC689QOY+wvYurC4dbVXqUIpDH9QMUXDgwRiVT3D++JJGgccDdN+CvtdG4SiAQw+GWa8Bqe8lrqOJ8+ChpXp683VlvnJ22v6Qa/JxdtXktTxdR8P036ResxT58JLV8DG2aWpKZUFN8DLn80sFA2KF4y2aQ7Etmc3p6IOuo4qTj2S2kZ1LzjkxpbXvX0PhQ/MhqnXwfTfwGF/g2izQOfeB8CZS1KGPEuSJEmSJEmSJEmSJEmSJEmSpPQMRpMkSVLHNewcoIBBXfP/AItvL9x6bSERS94eDQm4GnFh8WoplhEXZD727V/Ca1+Clz8H906B1U8Xr672Kr4zvC9aVbo61PlEw8MEYtGuoX1NyYLRUum1Hww/L/WY5fdnuWiG4jthe0jo2iE3FmdPSVLnMv6zMO6K1GPe/iXcNxUW/7M0NSUz/0Z47uPZzWlcC4lsf/FnYNOc7OcMOR0q6wpfi6S2NfICOGMhHPZXOOFpOP4xqO6xu3/Eh+D0d+HQm+G4R+GEp6BuQJuVK0mSJEmSJEmSJEmSJEmSJElSR2EwmiRJkjquvtPh0L9ATd+W7ZVdcg90eumy4tx8XyrxpuTtkZBgtElfgbGX7Q4o6rlf0JbM2Mvzr68QRnwIBhyb/bydG+DVqwtfT3uXCHnNQPjrRiqEivBgtHi0S2hfLJdD9MF/SN3fsCyHRVPY8h48fjr8tRpIJB9TP6Swe0qSOq8RaQJAAeKN8OTZEGssfj172rkpCCrOViIGT5wJa1/Mv4Y1z8EzH4F/nQTP/lv28w/6n/xrkFSe6gcHx9F+hyb/LKl+CIw8HwYcnfIaRpIkSZIkSZIkSZIkSZIkSZIkZc5gNEmSJHVsIy+As1fCmYvhgljw5zkbYcabUFHXcmzdEDjldeh/ZPh6DcthwxvFrbmYwkKuIhXJ26MVcOCv4NwNcNZymPEaTPrP4GfVXEUdjLm0sLXm4/Bbcpu35tkgsKi59hyEVwjxneF9uQYMSpmIVod2xaJ14X25vGUr6+Ho+8L7m7bksGiIhuVw1xhYelfqcXseZyVJylXfQ4JHJh4+qri1JLP0niCkOKe5dwU1r3429/2X3QcPHwnv/QVWPJj9/HFXQFXX3PeXJEmSJEmSJEmSJEmSJEmSJEmS1ILBaJIkSer4IlGoH7r7z2gFdB8LJz4Dg06GLnvBiAvg+Meg1+TWgWl7um8/eORY2PxuScovqEQseXu0MvW8ilqoGxh8XdkFTnoeRpwf/OwGfwCOfQR67VfYWvNR0yf3uXfuBbd0gyfPhbsnwl+r4b5psOKRwtXXnsRDwvQg/etGyke0JrQrFqkN7WvKNctw8MlAJHlfId//s74ZfizepaIWqnsVbk9JUucWicAxD2Q2du3zsHNTcevZ07J785sfa4C5P819/pyfpA4DTqeqW+5zJUmSJEmSJEmSJEmSJEmSJEmSJLViMJokSZI6r15T4Jj74Iz5cNhN0G1M0J4ijOf/rHwUHj4KmrYVt8ZCCwu5ilRkt079EDjs5uBnd/Td0O+Q/GsrtOHn5T63aQss/gdsmh0EGK1/BR4/HTbOKVx97UUiRUhEpKp0dajzqUgVjJaiL9dgNAgCH5NZ+zw0rs1j4ffFm+C9P6cfVzswCLGRJKlQqrrB6EsyG7vulcLvn0jAlgWw+mmIbW/Zt/nt/Ndf9Pfc61r1RH571/bPb74kSZIkSZIkSZIkSZIkSZIkSZKkFgxGkyRJkvZU0yezcQ1LYcUjxa2l0BKx5O2RytLWUQqjPlbY9WLbgrC0ziYsTA8g2gFfNyof0erQrkSKYLSmfILRKruG9839eR4Lv2/WNdC0Nf24vmUYNilJav8qu2U2blOBw4CbtsKTZ8Odo+Chw+G2gbDi4d39jWsKs08uIaZNWyC+I/24ab+Eqh7J+wadkv2+kiRJkiRJkiRJkiRJkiRJkiRJkkIZjCZJkiTtKdNgNIA3v1u8OoohERJy1REDrgadDL2mFnbNjW8Wdr32IOw1QwQiXlKqiKJVoV0xwoPRYnkFo3UJ73vj27DuVXjz+/DKlTD3v2DrwszX3rkF3rw2s7Ejzs98XUmSMlWVaTDa3MLu+9Z1sOT23c93boR/nQDLHgieFyoY7ZUrs5+T6d6jPgqH3AgVtS3b9/8pdB+b/b6SJEmSJEmSJEmSJEmSJEmSJEmSQnXA9ANJkiQpTzV9Mx+7Y23x6iiGRCx5e6SitHWUQiQCh94E90wo3JqL/g6H3Vy49dqD+M7k7SlCq6Rii0XrQ/ua8gpG65q6//79Wz6f+VU46m7of3j6te/dJ7Maeu4Lg0/JbKwkSdnINBht87zC7vveX5K3P3Yy7PUx2LmpMPssuAEO+VN2czIJRqvsBlXdYejpcPp8WPkoxLZD/6Og2+icSpUkSZIkSZIkSZIkSZIkSZIkSZIUzmA0SZIkaU/ZBKO1t3CoeFPy9kgHvTSo7lHY9RIxSCSC0LXOItHJXjMqH11HBcfjPQNLKuqJ1w4MnRbLKxitS3bjd26Eh4+A0+ZBtzHh4zbNha0L069XOxAOvbn9/W6RJLUPVd0zG7f+FXjuYpj/h+B5RT0c/ncYMiP5+KYGeOsHsOpxaNoctFV2gwFHw9jLYcu74XstuCHj8jPSuBZq+gTn7Av/Cgvf/7069jIYeFyS8RkEozUPlKsbBCMvLFy9kiRJkiRJkiRJkiRJkiRJkiRJklqJtnUBkiRJUtmp7p352Eg7C68JDbmqKG0dpVLVs/Brzvxq4dcsZ/GdydsNblKxRaIw5tOt20d/glgiPJivKZbHnpX1uc27ayxsfie8f/FtqefPeAPOWg5nLYOek3KrQZKkdKI1mY1rWL47FA0gtg0e/wAs+EvrsYkEPHoSvPFNWPUYrHs5eKx6DGZdA3eOKkDhWXjr+0FNs66BZy6EpXcFv4f/dTy8d3Pr8Y1r06/ZPBhNkiRJkiRJkiRJkiRJkiRJkiRJUtEZjCZJkiTtKRHPfGy0unh1FEMiJDEoEh4y1K5V1kHvA5L3jb08tzXn/ASaGnKvqb0JC9OLdtDXjMrL5G/BlOug5+Tgse83YdrPicUToVNi4V3pxUNe75m4ayw8cixsmd+6b9m94fNGXBCEodUNhEgk9/0lSUpn5+b85r/5ndZtS++G1U+Gz2nKc8/m6galHzP7R/C3GnjjW637nrkQmra1bGtck37NSoPRJEmSJEmSJEmSJEmSJEmSJEmSpFIyGE2SJEnaU++pmY+taGfBaGGhPx055Gryt1sH2E35ARz4X7mtF9sOKx/Nv672Yvvq5O2RqtLWoc4pEoGJV8OM14PHvl+HSJQUuWg0heQ/ZiSWZ+jhykfhocMh1tiyfcf68DlDz8xvT0mSMtVnen7zN81pGSy2fRXM/Gp+a2ZjwPGZjYvvDO+7b0rL51sXpl+vymA0SZIkSZIkSZIkSZIkSZIkSZIkqZQMRpMkSZL21GUv6D4hs7HtLRwqEZIYFKkobR2lNPhkOOFpGHcFjP0MHHUPTPxCfms2rilMbeUskYC3roOXLk/e35HD9FT2YvHc+tKKFOBjkoblsPjW3c8TCdi2OHz84Bn57ylJUiZ67w81ffJbY1cw2qxvwe1DYcPM/OvKVEU1jL44vzU2z4N1L+9+vmlu+jlh11CSJEmSJEmSJEmSJEmSJEmSJEmSisJgNEmSJGlPkQgc/MfMxkbbWzBaU/L2SAcPuepzABzwczjw1zCkWQjRpC/ntl5Vt8LUVc5WPQ6vfTG8v72FAqpDSRV+1pRPMNrQM/KY3MwzH4YXL4d7JsF9+8HOTcnHjb0cqroWZk9JktKJVsKhN0G0Jvc1Yg2w/EGY9Q2I7yxcbZmIVsO+10DPffNb5/4DYO2Lwdeb5qQfv3NzfvtJkiRJkiRJkiRJkiRJkiRJkiRJyorBaJIkSVIyfQ+Cg29IP669BYolYsnbIxWlraNcDD8XiGQ/L58wifbivb+k7o+2s9e+OpR4IrwvVWhaWt0nQI+JeSzQzLxfw8a3YMOs8DGTv1mYvSRJytSgE+HMRXDIjTD+89nPjzXAnJ8Uvq5MRKuhfiic+BwcfV9+az0wHWZ9C7a+l35sWMCpJEmSJEmSJEmSJEmSJEmSJEmSpKIwGE2SJEkK031c+jGJncWvo7mdW2D2j+DxM+DFy2DbkuzmJ5qSt3fWkKteU+DQm6CqR3bz4juKU085efd/Uve3t1BAdSipws+a8glGi0Tg6HuDY0Ox1fSDmj7F30eSpD3V9oe9/g2Gn5P93LvHw/IHCl9TJqJVwZ+V9TD4ZOi+d37rzfoGkCJtdZemLfntI0mSJEn/n737jo/sru+F/zmSthfvet3WvdtUY7BxsE1wgiFwSR5aKAkhIaSQkEuAkHvTHi6hPJc0SCMJISEO3HATjAOEJJRQQzHFlBgwLtjGhV23NdtXqzbn+UO7rHZ2yhlpRpqR3u/XSy/p/OpXs6NBZ/DvIwAAAAAAAAAAAKAjTrIDAEAzK45pP2Zqf+/rOKisJf/5o8n9/3mo7c53J0+5Lll7ZrU1ak2C0ZZyyNXpz09OfU7yzdcn33xttTmLPRitrBAQcTCYAhbAVIunaKvQtErWnJY89WvJ3ruT5Ucly9YnYw8me++cDpIZWp6MrEtu+N/JDW+Y/T5zDXMBgLkaXr3QFXRmaPnh16tOTHbd1Pt9T3567/cAAAAAAAAAAAAAAAAAvm8Jpx8sbUVRnJ/kgiQnJ1mVZH+S+5PcmuT6siz3zmHtZUkuS3Jqks1J9iTZmuRrZVneMbfKAQDmUb8Fo9159eGhaEky/r3klr9IHv2mamuUU43bi+G51TbohoaTs168OIPRtnww+fqrk313Jkc9LHns3ybrz2k959a/br/uUg7TY8G1Cj+bczDaQWtOOfT1ik3THzNd8Ppk5fHJV142u/VPeOLsawOAbhgZ8GC0NafNz76n/9T87AMAAAAAAAAAAAAAAAAkEYy2pBRFsSHJy5O8ONOhZc1MFUXxX0muKcvy9zpY/9gkr03yvCRHNxlzbZI3l2X5z5ULBwBYKMuOmj583yoEaz6D0W76o8bt932i+hrlZOP2IbcGWXNqcvYvJbe+tf3YQQlG23FD8plnJLWJ6ev7P5185LHJ0+9Ilh/VeM5d1yTX/XL7tZdv7FqZ0Kla2byva8FoVZz335PxB5Nv/G7nc89+SdfLAYCODC9wMNrQiung0dGtFccvO/z6tJ9Ibr+q+3XNdOLTkmMu7e0eAAAAAAAAAAAAAAAAwGGkHywRRVE8J8lfJdlUYfhwksckOTlJpWC0oiiemuTvkxzXZuilSS4tiuJdSV5SluXeKusDACyIokiOvijZdm3zMfMVjFaWyfe+0rhv+391sM5U4/ZiuPOaFqOL/zI59tLk1rclD3y2+bhBCUb7xv86FIp20MSO5O5rkrN+7vD22kTyhRcnd/xDtbVPeGJ3aoRZaBV+NtnkZa5nHvGaZMMjky0fSEbvTfbekey6qfWci96SrDphXsoDgKZGFjAY7bxXJme8INl4YXL7O5L7Pp6sPnX6d/AHPtN4ztDyw6+PvyJZd26y+5bu13faTyTHPT458+eSIfdKAAAAAAAAAAAAAAAAMJ8Eoy0BRVG8JsnvNui6K8ktSR5IsjLJ5iSPSLKmw/WvSPL+JDNPppVJvprk9iQbklyY5JgZ/S9Isr4oimeUZdniSDsAwAI78amtg9Fq8xSMNrGrdf/4zmT5Ue3XqU02bi/cGiSZDsM744XJKc9OrtlwZKjYQYMQjDa5L7n7vY37vvjzyfE/lKw9M9lze7L1w8mXf6X62sc/MTnv5d2pE2ahVTDaVK2cv0IOOuWZ0x8H3fKXyVdf0fg15PQXJOe8dP5qA4BmhhcoGO2kH0se8+ZD12f97PRHknzpl5sHoxXLDr8eWpZc8vbkY4/vbn2P+r3kob/R3TUBAAAAAAAAAAAAAACAyqQfLHJFUbwqR4ai/WOSN5Zl+Y0G44eSPC7Js5P8SIX1T07y3hweiva5JL9QluWNM8atSPKSJH+U5OAJth9L8oYkv13x2wEAmH8rT2jdPzUPwWhTY8kn2/xqtvfOZPkj269VNglGG3JrcJiR1cnmpyZbPtC4fxCC0T799Nb9HzgrOfNFyZ1XJ1P7qq/7xE8lx146HUQBC6RV9tnUAuSiHeHclyabn5w8cG0ytTcZWj4dcHn0Rcmxl0+HMALAQhteuTD7nvEzzfuGV7ToW35k23GXJz++I7n9quSrr5x7bUmy6sTurAMAAAAAAAAAAAAAAADMivSDRawoiguS/N6MpokkP1mW5TXN5pRlWct0sNnniqKo8vx4bZKNM66vTXJlWZaHJYSUZTmW5M+KorgryftmdP1aURR/XZblnRX2AgCYfyOrW/ePbUsm9iTL1vauhruuTh78Yusxe+9INlYJRptq3F4Md1zWovcDVyX/vKlx33wE4s3F/geSez/Wftztf9/Zuhe/NTn+CbMqCbppqta8b7LJy9y8W3f29AcA9KuiSDY8ItlxxN/PSIqhpGzxP7j1hpYnx12R3Psf7cee8szW63Tat/yo5PxXJJsuST56afv921m1ee5rAAAAAAAAAAAAAAAAALM2tNAF0BsHQs3+LoeH372kVShavbIsJ9vscU6Sn5nRNJ7kRfWhaHVrvj/JO2Y0rUjymqo1AQDMu+E2wWhJ8h+XJJOjSVn2poab/qT9mL0Vc2ZrTX7Fq5SJu8SsODo5rkkI2NdfPb+1dKpKKFqnVhybnPHC7q8Ls9AqGK1VHwBQ56xfPLJt81Or3QfN9OM7kkf8r/bjHvI/p0PXmhle2byvWNZ67WMuSTY+qn0N7aw6ae5rAAAAAAAAAAAAAAAAALMmGG3xek6SR8+4/nhZlld1eY+fTDI84/q9ZVl+u8K836+7fm5RFC1OvAEALKCRCoEAO7+VXL06uWZD8pnnJPvv724N27/afsyDX2w/Zu9dyX0fb9xXDDduX+qGljfv6/a/czftv7e76534o8lTrqv28wDzoNYih3JSMBoAVHfef08uekuy4YJk9anJ2b+UPP6aZHJP9TVWn5qMrEo2Xth+7KrNbfpPbN7X6nfzZDpw7Yc/lpz+wmTlCcnRFyWX/mPyzK3Jyc9IVh7fvr7Vpybrzm0/DgAAAAAAAAAAAAAAAOiZkYUugJ55Sd31/+7BHs+su64UvFaW5Y1FUXwxySUHmtYkeXKSD3SxNgCA7hheVX3sxK7k7muSB7+UPP070wfz56o2UW3cHe9KfuAdyVCTgLOpseSjlzWfX7g1aKhV+MKd707Oe1nr+VNjyc4bkvXnz2+o2Ni2ua9x/quSR//R3NeBHphqEX7Wqg8AaODcX5n+mKuR1cmKY5OxB5qPaReMtv785n2Tu9vXsGJTcuk7j2z/wfcd2faddyWf/6kZDUXyiP/V/J4KAAAAAAAAAAAAAAAAmBddSGqg3xRFcXaSJ8xouiPJJ7u8xwlJLpjRNJnkcx0s8am666fOtSYAgJ6YTZjVvruS9x6XTI3Pff89d1Qf+8Bnmvdt+UCy77vN+x3+b6Js3rX71tZTb39ncs2G5MOPSa7ZmNz4pu6W1spcg9Eu/b/JhX/YnVqgB1qFn00KRgOAhfO4BqFkM7UNRjuved/UaOf1tHLGC5InfyE582eTc34leeInkrN+rrt7AAAAAAAAAAAAAAAAAB0bWegC6Ikfqrv+eFmWLRIdZuXhdddfL8tybwfzr627ftgc6wEA6I3hWQSjJcnYg8k3X59c8Pq57T92fz91sfoAACAASURBVPWxD3wuOf6Kxn0PXtd67u7bqu+zlLQKX2gVmrf9+uQLP3PoujaefO3Xkw2PSDY/uXv1zbTzW8k9H03Gv5fc+rbZr/OI1yWn/0T36oIemGpxh9sqNA0AqOiclybf/svO522of9u4ztqzWvevPCFZtiGZ2HFk37GXd15PO8dcMv0BAAAAAAAAAAAAAAAA9I2hhS6Annhs3fXnk6SYdmVRFFcVRfGtoih2FkWxtyiKO4ui+FhRFL9ZFMXpFfd4aN31rR3WWJ+8Ub8eAEB/aBV+1c7d75n7/hO7q4/9+v+b7Pr2ke1lmdz4h63nHuXXsYYm9zXvG17VvO+772/cfvf75lZPM7f+bfLBRyZffUXyzdfNYaEiOeOnulYW9EqtRfjZxNT81QEAi9bJz6g+dt3Zh75efXJy/A83Hnfs45PVJ7VeqyiSs3/+yPY1pyUbH1W9JgAAAAAAAAAAAAAAAGBgCUZbnC6qu77xQODZx5J8NMmLkjwkyfokq5OcmuSJSd6Y5JaiKP6iKIp2CSBn113f1WGNd9ZdbyqKYmOHawAA9N7wHILR9twxHUrWiS3/nnz+RckXXpxs/Ugysauz+f92bvLZ5yYfvzL52v9Mdt+WbPtC+3nrz+9sn6ViapbBaN/43cbtt751TuU0tG9r8qVfSMoupEFdfnWy9oy5rwM9NtXipXX/xPzVAQCL1uYnJY9+c7X7oYf8+uHXj3tncvTFh7cd/Zjksn+qtvfDX5Oc+pxD1+vOSa74cFL4vzMAAAAAAAAAAAAAAABgKRhZ6ALoic1116uTXJfkmApzlyV5aZLHFUXxtLIs72kybkPd9f2dFFiW5Z6iKPYnWTmj+agk2ztZp15RFMclObbDaWfNZU8AYJEbmUMwWm0smdybLFtbbfy335pc98uHrm+/Kjn2ss73ves905/v+3jynXckx/5g6/HrzkmOe0Ln+ywFky2C0YaWzV8drbz/pO6s89y9c3u+wzyaqjXv2zs+f3UAwKJ2/iuTs38p2XNbsuvm5LM/fuSYtWclxz/x8LbVJyVP+dJ0UPS+u5PVpyRrT6++77K104G9Yw8mY9uSdecmRTGX7wQAAAAAAAAAAAAAAAAYIILRFqf60LKrcigUbW+Styb5UJLvJlmT5IIkL05y+Yw5Fyb556IonlCW5USDPerTPUZnUedoDg9GWzeLNeq9NMlrurAOAMC04VVzmz/+YLVgtLKWfOO1R7Y/8Lm57b///uTua5r3H/v45HF/Xz28bamZahGMdvOfJee/osGc/b2rp96DX57dvGIkSS0ZWZcc/0PJRW8RisZAqZXN+27tKLYbAGhpZFWy4eHTH497Z/L5nz7Ud8KVyQ+8Ixle3nju2tM7C0Srt2LT9AcAAAAAAAAAAAAAAACwpAhGW2SKoliRZEVd88kHPn8ryVPKsry7rv+rSa4qiuJVSf5oRvvjkvxGkjc02Ko+OWM26Q+jSTa2WBMAYOEVQ3ObP7YtWXNa+3EPfjnZf+/c9pqNJ316/vccJJMtgtH2fie57e+Ss158ePu1L+xtTTPd94nOxj/rvmTlcb2pBebRVK11/7uvq+V5F8/x9RsAONwZL5z+AAAAAAAAAAAAAAAAAOghp4QXn+Em7TvTOBTt+8qyfFOSP65rfmVRFFUCy8qK9c11DgDAYNm/rdq4sft7W0cjF75p/vccNGWb9KXb/vbw6/3bku++t/WcqfG51TTTDW+sPnb5xmTFsd3bGxZQu2C0t3/W7SYAAAAAAAAAAAAAAAAAAAwiwWiLTFmW+5I0OiL+5lahaDO8OtMhagcdneSpDcbtqbteVa3ClnPq15yNv0zy8A4/nt6FfQGAxWz9ebOfu++uauPKBQjxWX3S/O85aC78g9b92z5/+PWuG9uHqX38h5LRe+ZWV5LsvTuZ2FF9/KrNSVHMfV/oA7U2L5kfu3F+6gAAAAAAAAAAAAAAAAAAALpLMNritLdB2zurTCzLcm+S99Y1X9FgaF8Go5VleX9Zljd08pHktrnuCwAscqc+/8i25Ucnz96WXPL25NJ3JcvWN577pV9Mtn+9/R7l1NxqnI1VgtHaOrFRRnALE7vbj9l2bfLhxyQPXDu7mg667e2djT/uirntB31kqk3+IAAAAAAAAAAAAAAAAAAAMJhGFroAemJHknUzru8ry/KODuZ/IcnPzrh+SIMxO+uuj+1g/RRFsTZHBqPt6GQNAIB58/DfSfbcntzxD0nKZNWJyRM+kKzYlJz14ukxt7wl2fb5xvO/+PPJeS9Ptv57suKY5IyfTjZddPiYhQhGW3vm/O85aNaclgyvTKb2Nx9TlklRTH89WSEYLUlG70k+fkVy7suSYjjZe2dy/BXJWb+YDA1XW+Obr6027qCzfq6z8dDHBKMBAAAAAAAAAAAAAAAAAMDiJBhtcbolySkzru/pcP7WuutNDcZ8u+76tA73qB//vbIst3e4BgDA/Bhallz6zuQxfzwdaHXUQ5Ni6PAxI+saz02S712XfP6nDl3f9jfJE/41OeHKQ21To92tuZ2jHp6sPnF+9xxUpzw7ueNdzfvLyaRYNv31RMVgtCSpTSQ3vfnQ9V1XJ/d9Mrns3YeC1pr5+muq75Mkpz43OfrRnc2BPlYr24/5yA1lfuRhbX6WAAAAAAAAAAAAAAAAAACAvjLUfggD6Ia667EO59ePX9lgzI1112d3uMeZddff6nA+AMD8W7Ep2fDwI0PRkmRZi2C0elP7k088KXnfycmXXzZ9Pbm3e3VWsfnJ87vfIBta0bq/Nn7o68kOgtEaues9yc5vNu67+/3JBx+V/N8i+ebrmq/x1P9KHvNnydqzkpXHJee9Irn4r+ZWF/SZqVr7Ma9+f4VBAAAAAAAAAAAAAAAAAABAXxlZ6ALoia/XXW/ocH79+AcbjKlPa3hkURSry7LcV3GPy9qsBwAwWDoJRjtodEtyy1uSXTdPh1h14gfekdz8p8n2r3a+b5Ic9bDZzVuKhpa37p8aS0bWTH89sWvu+9329uQxf3J42z0fTT777KRsE/S04YJk44GP814291qgT1UJRvvynUmtVmZoqOh9QQAAAAAAAAAAAAAAAAAAQFcMLXQB9MSHkpQzrs8simJlB/MfXnf93foBZVnek8MD2EaSXN7BHlfUXX+og7kAAP1nZBbBaAfd+9Hk1rd2NmfFMclZL579nuvPm/3cpaacaN1fGzv09cTuue9370ePbLv1be1D0ZLkjJ+e+/4wAKbK9mOSZNue3tYBAAAAAAAAAAAAAAAAAAB0l2C0Ragsy61JPj+jaVmSJ3awxFPqrj/TZNz76q5/tsriRVGcn+SSGU17k/xHtdIAAPrUsjkEo83GimOSM180y8lFsv4h3axmcZscbd0/NSMYbbILwWg7v5WUdalPd19Tbe65L537/tDnyrI84kekmXt29rYWAAAAAAAAAAAAAAAAAACguwSjLV5X1V3/WpVJRVE8PsljZzTVknywyfB3JZmacf2soijOqbDNb9RdX12W5f4q9QEA9K1l6+d3v5XHJCNrkif8W+dzT3xasuLo7te0WE21CUarzQhGm2gTjHb0Y5Infbb9nl/8+aQ21X7cTFd+Jhle2dkcGEC1iqFoSbJ1R+/qAAAAAAAAAAAAAAAAAAAAuk8w2uJ1VZIbZ1z/cFEULcPRiqI4LkcGql1dluVtjcaXZfntJO+Y0bQ8yd8XRdE0jaEoiqcnedGMpvEkr21VFwDAQBhZN7/7Ld904POGzude8rbu1rLYtQtGm6oYjLb+/OTyq5NjL0tWbW695u1/l9z+9uTrr0k+/az2NT76T5LjLm8/DhaBqVr1sffs7CBFDQAAAAAAAAAAAAAAAAAAWHCC0Rapsiynkrw8ycwj428qiuJPi6LYWD++KIork3wuyVkzmrcn+e02W73mwLiDLk3ysaIozq9bf0VRFC9L8p66+W8qy/LONnsAAPS/opjf/Zatn/48vKqzeatPbh/KxeHaBaPVxg99Pf5g4zGnPjd52reStWdOXxfL2u/7pZck33xd8t33tR535ouT81/efj1YJGodZJ1t3dm7OgAAAAAAAAAAAAAAAAAAgO4bWegC6J2yLD9aFMXLk/z5jOZfTfLLRVF8IcmWJKuSPCrJaXXTx5P8RFmW32mzx3eLonhWko8kWX6g+bIk3yqK4itJbk9yVJJHJzm2bvq/JXl1x98YAEA/GmsSiNUrB4PYhld3Nq9dyBdHahuMNpbc9KfJ7X+X7Ph64zHH//Dh4XlDyxuPm43jfrB7a8EAmKq1H3PQPYLRAAAAAAAAAAAAAAAAAABgoAhGW+TKsnxLURRTSf4oycHUjGVJHt9i2n1JnlWW5bUV9/hUURTPTPL3ORR+ViS56MBHI/+Y5BfKspyqsgcAQN9bqHCqkQ6D0c791d7UsZid8uPJg19q3n/DG5Ot/956jfXnH3599i8k//Ubc68tSTb/SHfWgQHRSTDavTvL3hUCAAAAAAAAAAAAAAAAAAB03dBCF0DvlWX5V0kemeQfkuxuMfTeJL+b5LyqoWgz9vhgkocneWuS7S2GfiHJj5dl+ZNlWe7tZA8AgL626ZJkZN387LVs/aGvVx7X2dxTntXdWpaC057Xur9dKFqSrD+vbs3nz76emTY/NVl1QnfWggFR6yDrbOuO3tUBAAAAAAAAAAAAAAAAAAB038hCF8D8KMvytiQvLIpiVZLLkpyc5IQk40keSHJ9WZZfn+Me9yf55aIoXn5gj9MO7LE3yZYkXyvL8jtz2QMAoG8Nr0gu+Zvk2hck5VRv97rwTTP2XVl93kP+R3LUw7pfz2K35tTkgjcm1//W7OYv25CsPL7Bmv9fcv3vzK22i98yt/kwgKZq1cfes7N3dQAAAAAAAAAAAAAAAAAAAN0nGG2JKctyNMnHerzHeJJP9nIPAIC+dNrzko2PSr70S8n9n+rNHsOrk1OfXX384/852f3t5NjLk2MuTYqiN3Utdg/7zdkHox3/hMaP+8N+OznhSdPPl+1f7XzdTY9N1p45u5pggHUajFaWZQqvfQAAAAAAAAAAAAAAAAAAMBCGFroAAABYVNafl1zwht6svWx9cvl7kuUbq8855VnJQ38jOfYyoWhztfrk2c3b/NTmfZsuTp706WRoeefrPnSWQW0w4Gpl9bETU8n4ZO9qAQAAAAAAAAAAAAAAAAAAumtkoQsAAIBFZ/mmuc0fXp1c8W/JxguT5RuS0XuTfXcnRz08GVl15PgVxyZjDxzZvvqUudXB4WoTs5u37qzW/SNrkrVnJbturL7mpkuSk35sdvXAgCs7CEZLktGJZMWy3tQCAAAAAAAAAAAAAAAAAAB019BCFwAAAIvOimPaj9lwQfO+/3Z9cvwPTYeiJcmqE5JNFzcORUuSR76+cftDfr19HVQ3tm1281ad2H7MU75ScbEiOe0nk8vfnQwNz64eGHC1ToPRxntTBwAAAAAAAAAAAAAAAAAA0H2C0QAAoNuWb2w/5ke+lGx+yuFtw6un29ed3dl+pz03WXfO4W1rz0xOe35n69DapsfObt6qk9qPGVmVnPHTrccMrUh+Yiq57F3JmtNmVwssAh3momV0oidlAAAAAAAAAAAAAAAAAAAAPSAYDQAAum1oODnxv7UeM7w8+cF/SS54Y3Li05IzX5Q86TPJpos732/5xuRJ1yYP+R/JCVdOf77yM8nK42ZVPk0c/8Ozm7dsfbVxJz+jdf+KTUlRzK4GWERqtc7GC0YDAAAAAAAAAAAAAAAAAIDBMbLQBQAAwKL0qN9Ltn6wcd9RD5/+PLw8edhvdme/lcckF/5Bd9aisfNfOf1vuv1r1edseGT1MLPNT05SJCkb9y/fWH1fWMRqTX5Emhkd700dAAAAAAAAAAAAAAAAAABA9w0tdAEAALAobXhE8v/c1rjvlGfNby10x4pNyZX/2dmc03+q+tiRNcnGC5v3Lzuqs71hkeowFy2jEz0pAwAAAAAAAAAAAAAAAAAA6AHBaAAA0Ctrz0ye+KnDA61OeXbysN9asJKYo2Xrqo8982eTc3+ls/Wf8IHmfa1C02AJqdU6G79fMBoAAAD0jU/cVOZX/6mWX39PLV+8vdP4cwAAAAAAAAAAAABgKRhZ6AIAAGBRO/4JybPuT773lWT1ycmaUxa6IuZqeHUyta9x3+YfSR7x2mTVCcma0zpfe/VJybkvS27588Pbi+HkjJ/ufD1YhDo9Mj063pMyAAAAgA79zWdqecn/OXRn/+efKPPuXxzKMy4sFrAqAAAAAAAAAAAAAKDfDC10AQAAsOgNL0+OfZxQtMXiob/ZuH3FpuTyq5NjLpldKNpBj35Tct4rptdLkg2PSH7w/ckxj539mrCI1DpMRhud6DRKDQAAAOi2qVqZ33nf4ffoE1PJq/+ltkAVAQAAAAAAAAAAAAD9amShCwAAABgoZ/5McutfJaP3HGpb/5DkKdclI2vmvv7QsuQxf5w8+s3J1Ggysnrua8IiUuvwvPToRG/q6Gej42W270uOW5eMDBcLXQ4AAADkc7cm2/Yc2X7D1mTrjjInbnD/CgAAAAAAAAAAAABME4wGAADQiTWnJk/6XHLTHyc7vpFsujh56G92JxRtpqIQigYNlB2OHx3vSRl9648/Wsvr/q3MztFk81HJX79wKD/6SIfLAQAAWFh3Ptj8jn7XaHLihnksBgAAAAAAAAAAAADoa4LRAAAAOrX2jOSiP1voKmBJqnWYjDY60Zs6+tG/Xl/mVe859ADdszN53l/XcuPrhnLqJuFoAAAA9KepTlPQAQAAAAAAAAAAAIBFbWihCwAAAACoquw0GG28N3X0o2u+cuSDMzqR/OV/OmEOAADAwmp1Z7pvCd27AwAAAAAAAAAAAADtCUYDAAAABkat02C0id7U0Y+uu6Pxg/MHHxaMBgAAwMJqFXS+d2z+6gAAAAAAAAAAAAAA+p9gNAAAAGBgdBqMtm+8N3X0o5vubd63e79wNAAAABbO/hbB5YLRAAAAAAAAAAAAAICZBKMBAAAAA6PsMN9r+97e1NGP1qxo3reUHgcAAAD6z54W4WdLKdQcAAAAAAAAAAAAAGhPMBoAAAAwMGodBqNt29PhhAG2alnzvt0tDqADAABAr+1tEX62d3zp3LsDAAAAAAAAAAAAAO0JRgMAAAAGRtlxMFpv6uhHy0ea9+0anb86AAAAoN7eFoHdrfoAAAAAAAAAAAAAgKVHMBoAAAAwMGqC0ZoaLpr37d4/f3UAAABAvVbhZ/vG568OAAAAAAAAAAAAAKD/CUYDAAAABoZgtObGJpv37RKMBgAAwAJqFYzWqg8AAAAAAAAAAAAAWHoEowEAAAADo+wwGG3naDI+2eGkAdUqGG33/qXxGAAAANCf9o41vy/dOz6PhQAAAAAAAAAAAAAAfU8wGgAAADAwarPI93pwT/fr6Eetg9Hmrw4AAACot69F+FmrPgAAAAAAAAAAAABg6RGMBgAAAAyMchbBaDtGu19HvynLsmUw2i7BaAAAACygyVrzvomp+asDAAAAAAAAAAAAAOh/gtEAAACAgVGbTTDavu7X0W8mp1qHxu0WjAYAAMACanXPOikYDQAAAAAAAAAAAACYQTAaAAAAMDBaBaONNHmXYykEo41Ntu7fJRgNAACAPjVVW+gKAAAAAAAAAAAAAIB+IhgNAAAAGBhli2C0jWsat+8YbTFpkWgXjLZXMBoAAAALqNWd+aRgNAAAAAAAAAAAAABgBsFoAAAAwMCoNTlJXRTJhlWN+3bs6109/aJdMFq7fgAAAOilVkHnk1PzVwcAAAAAAAAAAAAA0P8EowEAAAADo9lB6qEi2bC6cd+O0d7V0y/aBZ/tn2hxAh0AAAB6rNVd6WSzFHQAAAAAAAAAAAAAYEkSjAYAAAAMjGZnpYskG1Y17tuxr2fl9I3xtsFo81MHAAAANNIs6DxJJqfmrw4AAAAAAAAAAAAAoP8JRgMAAAAGRrNgtKGhZMPqomHfUghGG2sXjNamHwAAAHqpVTDaLffNXx0AAAAAAAAAAAAAQP8TjAYAAAAMjGYHqYeK5KjVjft2jvaunn7RNhhtYn7qAAAAgE7dfF+ydUeL5DQAAAAAAAAAAAAAYEkRjAYAAAAMjFqTc9JFknUrG/ft3r/4D1ePtQk+E4wGAADAQmp3Z37NVxb/vTsAAAAAAAAAAAAAUI1gNAAAAGBgNDsmPTSUrG8ajNazcvrG+FTrfsFoAAAALKSyTe7ZK94tGA0AAAAAAAAAAAAAmCYYDQAAABgYtVrj9iLJuibBaLuWQDBas8flIMFoAAAALCSxZwAAAAAAAAAAAABAVYLRAAAAgIFRa3KSeqhoHoy2ewkEo021OWE+KhgNAACABVRKRgMAAAAAAAAAAAAAKhKMBgAAAAyMZueoh4aS9Us4GK1Wa92/XzAaAAAAC0gwGgAAAAAAAAAAAABQ1chCFwAAAABQVbMAsCLJupVFGkWn7VoCwWhTbQ6YD3ow2te/W+aNHyzzlbvKDBfJRacXef3Ti5x+TLHQpQEAAFCBXDQAAAAAAAAAAAAAoCrBaAAAAMDAaHaQeqhI1q1s3Dc+mYxPllk+snhDtJoFxh00WUsmp8qMDA/eY3DjPWUu//1a9owdarv5vjIfuaHMja8byqa1g/c9AQAAAAAAAAAAAAAAAADQ2NBCFwAAAABQVa1sHI1WFMn6JsFoSbJ7f48K6hNTzRLjZhib7H0dvfAXnywPC0U7aNue5E8/XuEbBwAAYME1uZ0HAAAAAAAAAAAAADiCYDQAAABgYNRqjduHimRdi2C0XYs9GK3J4zLT/one19EL197W/PT8e7/qZD0AAMAgcPcGAAAAAAAAAAAAAFQlGA0AAAAYGM0OUrcNRhvtSTl9o1a2P2I+iMFotVqZm+9t3v+te5Jv3+d4PQAAQL+rcNsKAAAAAAAAAAAAAJBEMBoAAAAVPbC7zJs/WsvvvK+WD33DaVYWRq3JU68okg2rms+7b1dv6ukXU7X2YwYxGO3u7clom7r/5XqvRwAAAP1OMBoAAAAAAAAAAAAAUNXIQhcAAABA/7vzwTKX/34tW3YcbCnziiuLvPm58raZX80OUg8VybKRIsetS+7ffWT/1p1lkqKntS2kZoFxM7ULGOtHtz/Qfsxnbinz60/ufS0AAADMXpVctInJMstGFu+9OwAAAAAAAAAAAABQjRPsAAAAtPWGfy9nhKJN+9OPl7n+7irHWqF7mgWAFQfOTZ+4oXH/lu29qadfTNXajxmf7H0d3bZvvP2Ym+7tfR0AAAD03iAGegMAAAAAAAAAAAAA3ScYDQAAgLY+d+uRaVRlmbzxQ4LRmF/NgtGGDgSjndQsGG1H4/bFotnjMtP4VO/r6LbJCoFvt29Lxie9FgEAAPSzssJtW5VwbAAAAAAAAAAAAABg8ROMBgAAQFs33du4/eovCyNifjU7SH0wGO3EDUXD/q07FvdzdapCgNj4ZO/r6LaJCmFuU7Xktgd6XwsAAACzV+WufHSi52UAAAAAAAAAAAAAAANAMBoAAAAwMGpNTlIXB/LQNh/VuH/bnt7U0y8WbzBatUC7Ox/scSEAAADMSbOg85l27+99HQAAAAAAAAAAAABA/xOMBgAAwJzs3l8tuAi6odlB6qEDwWhHrWrcv2esN/X0i2aBcTONT/W+jm6bqFjzlh1ehwAAAPqZYDQAAAAAAAAAAAAAoCrBaAAAALRUtjm5es/OeSoE0jwArDgQjLZ2ZeP+xX64eqrWfsz4ZO/r6LbJisFoW3f0tg4AAADmpkqc9a7RnpcBAAAAAAAAAAAAAAwAwWgAAAC0NNYmTOkegUTMo2Y5fUMHgtHWrWjcv9iD0ZoFxs00NlnlGHp/magYjLbF6xAAAEBfa5O7nyTZOTp4960AAAAAAAAAAAAAQPcJRgMAAKCl0fHW/ffsdGiV+dMsAOz7wWgri4b9e8Z6VFCfmKq1HzPeJuSwH1UNRrtnh9chAACAQbdrkYeaAwAAAAAAAAAAAADVCEYDAACgpdGJ1v337Z6fOiBpHoxWHMhDW7uicf/+iWRyavGGZ1UKRqsYMtZPqgajbdnR2zoAAACYmyp35ILRAAAAAAAAAAAAAIBEMBoAAABtjI637t81Oj91QJKUTU5SDx0IRlu3svnc3Yv4gHWzwLiZxid7X0e3TVYIfEuSrYLRAAAA+lqz+/mZvMcEAAAAAAAAAAAAACSC0QAAAGhjf5swpV2LOGyK/tMsAOxALlrLYLQ9Y10vp29MVQgQG5/qfR3dNlGx5vt2JxOTFU7ZAwAAsCAqBaN5jwkAAAAAAAAAAAAAiGA0AAAA2hgdb92/a3R+6oAkaXaOeujAOxxrVzSfu31f18vpG80C42YabxNy2I+qBqOV5XQ4GgAAAP2pSpS195gAAAAAAAAAAAAAgEQwGgAAAG2MTrTu371/fuqAJKnVGrcPFdOf161sPvcPP1LlGPZgmmryuMw0iMFokxW+r4O2bO9dHQAAAMxNWeGWfNfo4r1vBwAAAAAAAAAAAACqE4wGAABAS6PjrfsdWmU+1Zo83Q7komXNiqQoGo/5/G2L97na7HGZaWwAg9EmpqqP3bqzd3UAAAAwN1XuyHcJ3wcAAAAAAAAAAAAAIhgNAACANkYnWvc7tMp8anaQeujAOxxFUaRsMmjZcE9K6gtTtfZjxjsIGesXnQSjbduzeIPvAAAAloJdowtdAQAAAAAAAAAAAADQDwSjAQAA0NLoeOuwIcFozKdakwCwYsbXTzy/8Zgdi/iAdaVgtMne19FtnQWj9a4OAAAA5qZZiPlM3mMCAAAAAAAAAAAAABLBaAAAALSxv02Y0q5FHDZF/2l2jnpoRjLaK65s/HbHjn3dr6df1CocMB/EYLRJwWgAAACLQpVgtJ3eYwIAAAAAAAAAAAAAkowsdAEAAAD05I0k1wAAIABJREFUt7GJ1v279s9PHZA0DwAbmpGFtmF14zFjk8n+iTIrlxWNBwywqVr7MeMdhIz1i4kOan5QMBoAAEDfqpCL5j0mAIAOFEXx6CTnJDnpQNOWJLeUZfm1hasKAAAAAAAAAAC6QzAaAAAALTULojpo12hSlmWKYvGFTdF/ak0CwGY++5oFoyXJ9r3J5g1dLakvtPs5TZKJyd7X0W2THQWjVTlmDwAAwEIoK9yy7R1Lpmplhoe8xwQALJyiKM5McnGSiw58fnSSdTOG3FmW5ekLUFqKoliW5FVJfj7JWU3G3Jrkb5O8uSzLNn/+CAAAAAAAAAAA+pNgNAAAAFpqF7g0WUv2TySrls9PPSxtzZ6OM89Mb1jVfP6O0cUZjDbVJDBuprEBDEab6CAYbdue3tUBAADA3FSNst69v3XgOQBALxRFcUWS38p0GNrRC1tNY0VRnJPknzId1NbK2Ul+L8lziqJ4flmWt/a8OAAAAAAAAAAA6DLBaAAAALTULhgtSXaOCkZjfjR7PhYzg9FaHKDesa+79fSLKj+n45NVj6H3j8kKgW8HCUYDAAAYfLtGBaMBAAviUUmevNBFNFMUxQlJPprktLquW5PckKRI8rAkZ83oe0yS/yiK4gfKsrx/XgoFAAAAAAAAAIAuEYwGAABAS1MVgol27U9OOKr3tSx27/piLVdfV2aoSJ7/2CLPu3hooUvqO2WTbK+hGcFoq5cnI0ONQ7UWazBalZ/T8ane19FtE1PVw9wEowEAAPSvZvfz9XaO9rYOAIAOjSX5bg4PHJtXRVEMJXl/Dg9FuyfJi8qy/I+6sU9JclWSEw40nZHkfUVRXF6WVX8jAwAAAAAAAACAhScYDQAAgJZqFY5J7HJodc5+/8O1/NZ7Dz3Y/3J9ma07annlk4SjzdTs+TgzGK0oimxY3Tgo695dZZLiyI4BVyU/bP9E7+votokOwtx2jiYTk2WWjSy+f18AAIBBVzWGY9f+3tYBANDCRJIbknw5yXUHPn8jyWVJPrmAdb0gySUzrr+X5NKyLO+oH1iW5YeLorg0yVeSbDzQfGmS5yX5px7XCQAAAAAAAAAAXeN0NQAAAC1VCkZzaHVO9k+U+YMPH/lAv/FDZcYnK54cXiKaPR+Luiys0zc1Hnfzfd2tp1/Uau3H7BzAAMNOgtGS5Hv7elMHAAAAc1P13Q3h+wDAAnlHkvVlWV5YluUvlGX5trIsv1qW5YL+yZGiKIaTvLau+dcahaIdVJbld5L8Wl3zG4qi8N+KAgAAAAAAAAAwMPzHLgAAALRUJXDJodW5+dpdyfYGgU7b9iTf3DL/9fSzsslJ6qG6YLTzTygajrv5nsUZNDdV4dvaMYChYZMdBqNt29ObOuhvd2wrc/3dZXbsW5w/3wAAsBg0u5+vt2u/3+sBgPlXluX2siz78c8AXZ7kjBnXW5L8Q4V5/+fA2IPOSnJpF+sCAAAAAAAAAICeEowGAABAS7UK51EdWp2bm+9r/vjd0qJvKWr2fCzqctDOPaHxuJvu7W49/aJKgOGOAQwwnOg0GG13b+qgP9VqZX7pH2o5+3dqufD1tZz527X881e8ZgIAQD+q+pv6rn6MIwEAWDjPrLt+Z1mWbd85PzCmPkDtWV2rCgAAAAAAAAAAekwwGgAAAC1VCkYbwMClfnLr/c37bmnRtxSVTZ6PQ/XBaMc3Hnf39qRstsgAq/JzumPf4H3vHQej7elNHfSnq64t87ZPl99//u/Ylzznr2vZtnuwnucAALAUVL0d3ek9JgCAmZ5Sd/2pDubWj33qnCoBAAAAAAAAAIB5JBgNAACAlqoELjm0Oje3tQg/u/ne+atjEDR7PtYHo52ysWg4bt/44ny+1mrtx0xMJaPjva+lmzoPRhOItZT8ycca/3sf96rawIUAAgAA04TvAwBMK4piRZKz65q/0MES19Zdn1MUxfK5VQUAAAAAAAAAAPNDMBoAAAAtVQlG2ztgYUv9Zu948wf5pnuE+8zU7PlY1OWgnbih+RpbdnSvnn4xVfFpsmPADphPVgh8m2n7vt7UQf+588EyN2xt3v+l78xfLQAAQHtVs4t37e9tHQAAA+S8JMMzru8vy3JX1ckHxm6b0TSc5Nwu1QYAAAAAAAAAAD0lGA0AAICWahWCifaM9b6OxWxyqnnfzfcltSrpdEtEs4PUQ3XBaJuPar7Glu3dq6dfTFUMENsxYMFhEy1+NhoRjLZ0fHNL6/73/ZfXTQAA6CdVf0PfNWCB3gAAPXR23fVds1ijfs45s6wFAAAAAAAAAADm1chCFwAAAEB/m6pwcnWvYLQ5aRX+tG88uXt7ctqm+aunnzXLiCvqgtGWjxQ5bl1y/+4jx27ZUSYpjuwYYFXD83YO2AFzwWg0s2+8df/HvlUmz5qfWgAAgPaaBZ3X271fyDEAwAEb6q7vn8Ua9XNa/FmZ6oqiOC7JsR1OO6sbewMAAAAAAAAAsDQIRgMAAKClWq39GMFoczPZ5jG+Y5tgtIOaHaQeapBzdtKGxsFotz3Q3Zr6QZUAwyTZtb+3dXRbs2C04aFkqsHPzY69DtAvFeNtnvSjE/NUCAAAUEnVu7VBC/QGAOihtXXXs/lNqX7OulnWUu+lSV7TpbUAAAAAAAAAAOAIQwtdAAAAAP2tVuHk6t4xYURzMdkk/OmgLTs8vgc1ez42CkY75/gGjUluumfxPZ5VAgyTZGzAwqKa/WwcW38c7IAdDtAvGeOTrfvbva4CAADzq1nQeT3BaAAA31f/Tvhs/vRJ/W9XTd5dBwAAAAAAAACA/jKy0AUAAADQ36oFo/W+jsVsom0w2vzUMQiaPR+LBhlo55/QeOxN93avnn4xVfGA+f7JMknjwLh+1Oxn47j1yb27jmzfvq+39dA/xtoEo23ZkZRlmaLRiwMAwCzcen+Zj9xQZvlI8rRHFDlxg98zoBce2L3QFQAA9K3Z/NWXxfeXYgAAAAAAAAAAWBIEowEAANBSlWC0PYLR5mSy1rp/q2C07yubPB+HGmQSPGRz47Hfvj+ZnCozMrx4ggxqbZ5DB41N9LaObmsajLaucfv2vb2rhf4y3iYYbd/4dFDe0Wvmpx4AYHH71+vLPO9ttew/8Pv0xtVlPvKKoVx0+uK5p/j/2bvzODnqOv/j7+qZyT2TmyQT7isBRBQvZFlF8b5W8WQFj3VX/Hlf6wEKKKIoiAouIMqxIIeCgghyiBwLBJCbJCSTkJPMlbmnp+fsru/vj84wPTP1ra7q6e6p7n49Hw8e6a5vVfWn6/h2VZHvO0Ch2e7nJ2ruIeQYAABgj74J72fnsI6Jy0xcZ64ulnRjyGUOkvSXPH0+AAAAAAAAAAAAAAAAyhzBaAAAAAAAX0GC0RLDha+jnBGMFpztePQaLn3YCkfS5AVGUtKWNmnV8ryWNq1SAQeYD2UJk4oa27mxtNZ733b1F7YeRMewJTQv06ZW6ZgDC18LCuOxrUYX3WtkJL3jCOnkYxzCMQAA08J1jb5w3VgompS+7nztj125l1VNX2FAiQl426qhJCHHAAAAe0Q2GM0Ys1vS7jDL8GwPAAAAAAAAAAAAAAAAYcSmuwAAAAAAQLS5WUK7JKlvsPB1lLORLAE/Td1Bhw+XP9uWiMUmD6g5dJnkMVmStKE5fzVFQSrAeSppXJhDKbCdG0vmeU/vHkgHV6D8DQU4lhtaOBZK1V3rjV5/rqvr/ml0/T+NPnml0Xf+zP4EAEyPR7dJu7q8235yR8ALcQAyIS7nCIgHAACQJPVMeL80h3XsNeE9V1oAAAAAAAAAAAAAAAAoCQSjAQAAAAB8BckYSgwXvo5ylswSjNaRKE4dpcAW1OcVgDarxtEBS7zn31BmgUlBs8CGkoWtI99swWh71XpPN0bqJaixIgxn6TclaWNL4etA/hlj9KXrJ3f2F91r1B4vr74bAFAaHttq//05/WajFMG8QCBhzhSC0QAAACRJmye83y+HdUxcZuI6AQAAAAAAAAAAAAAAgEgiGA0AAAAA4CtlCaLK1DdU+DrKWTLLNm7vK04dpcCWOeB4BKNJ0mErvKfv7MxPPVER5DyVpMGRwtaRT8YYezBanX25rv7C1INoGQ4Q8tfYVfg6kH9P7ZRe2D15+uCI9PCW4tcDAEB/liDwtY3FqQModSZEMlpTD4GDo7a2GTW0EMIIAECFapCU+ZR8L8dxLP9syGSO49RJyvznY1IiGA0AAAAAAAAAAAAAAAAlgmA0AAAAAICvIOMuh5NSMsUAzVzZwp9GdSbEANg9bFshZglGW1bn3dBZZmFzQQ+PoQBhUlHh952WzrPscEndBKNVhOEs/aYkxQfpN0vRX56x77e1jexTAEDxZQsCb48Xpw6g1IUKRusuXB2lIj5o9JYLUjr4dFeHneHq8DNcPd/E9TAAAJXEGDMkaeI/FfD6EKs4dsL7zXvWCQAAAAAAAAAAAAAAAEQewWgAAAAAAF9BA5cSDKXIWTJLwI9rpK7mTpm7rpO56dcyL24uTmER5Lre020xWYvneU/vSJTXYOKUZbtMVErBaH6Bgbb9KkldBKNVhKGR7PPE+V0qSbc+a++ft7YVsRAAAPZoyxKqXErX2ECpaO6Z7gqm3xevM7p349j7zbulj13myoRJmAMAAOXgzgnvjw+x7MR575hSJQAAAAAAAAAAAAAAAEAREYwGAAAAAPAVNBitjwCanCUDhFq1f/WjMj/6tMyvviFzylEy/7ix8IWVkJjlCcfiud7TO7KEG5SaoOfpYIAwqajwC0abXSPVzvJu60oUph5Ey3CWQElJ6h0ofB3Ir94Bo+d22dsf304IBACg+Fq6/X9/yi10GSiUMGdKc5bzrtwZY3T72snbYF2T9OjWaSgIAABMp5snvD/FcZyqbAvtmefkLOsCAAAAAAAAAAAAAAAAIotgNAAAAACAr6CBS4nhwtZRzvwCoEa192Rs4FRK5rzPywxXXhqd7Xh0LPPbgtEaWvNSTmSkAoTrSdJQsrB15JPfeVFTJS2c493W1V/ZA+grxUiAYzk+WPg6kF8vdvm3r2+SGlqicY4/vt3o89e6+vClKf32QVfGRKMuAED+9We51y230GWgUMJcLjX1FK6OUjCSkjotod9XP8p1JwAAFeZBSdsy3u+tyYFnXk6WtDLj/RZJD+exLgAAAAAAAAAAAAAAAKCgCEYDAAAAAPhyAwYu9RFAk7NkgG3cVrXX+AmJXmn9Y4UpKMJsx6NjSUZbPM+7YXBE6imjAK2gAYbDJRSMlvQJRqv2DUYrTD2IluEAgZLxysuOLHmNWYLRJOmwMwJemBTQAw1GbzzP1aUPGP3pKenUa4w+f135/KYAAMbLdt3RYQkvAjBemKulHR0FK6Mk+IXIbdnNdScAAKXMcRwz4b/j/eY3xqQknTlh8gWO4+zv8xn7S/rFhMnfM8ZM/4M1AAAAAAAAAAAAAAAAICCC0QAAAAAAvvwGY2ZKDBe2jnLmFwA1qqlmxeSJax/JfzERZzscY5YnHIvm2td17p3lM5g4aIDh4Ehh68inEZ/zoqbKvm8JpqgMQyPZz984gZ0lp6knWL/81I7p7b9/dpc7qT+97P+MmrvL53cFADAmW7gw159AMEGfL0lSc4/UO1C511Z+4eebdxevDgAAKo3jOHs7jrP/xP8kLZ8wa7XXfHv+W1KA0q6VlPkv5SyStMZxnLd5fIe3S3pE0sKMyWsk/aEAdQEAAAAAAAAAAAAAAAAFQzAaAAAAAMCX32DMTImhwtZRzvwCoEY1VtdPnjhrdv6LiTjb8RhzvKevmG9f11+eKZ9B1qmAX2UoWTrfOVsw2mJbMFpfYeqpBMYYbWw2aukxMmFSC6bBcIB+Mz4ouUF/xBAJjV3B5rt/0/Tu1zvWTZ5mjHTZgxxvAFCOsl13dBOMBgQS9hajobUwdZQCv9uYlp7i1QEAQAV6SNI2j/+unzDfSst82ySdn++ijDGupA9I2pkxeYWkuxzH2eQ4zs2O49ziOM5mSXdqfJDbdkknmqg/8AUAAAAAAAAAAAAAAAAmIBgNAAAAAOAraKZMH8FoOXFdE2gbN1WvmDwx0Zv/giIu5XpPtwWjHbTUvq6NLVJjV3mMBXIt22WioZHC1pFP2YLRFs3z3uldifLYp8W2qdXo2HNdHX6mq/r/dvW+X7uR3pbDyWDzJYYLWwfyq7E72HwbWwpbR66eb5ruCgAAhZDtuiM+GN1rJiBKwp4pDS2Ve275xZYMBbwXAgAA5cUY0yzprZKentB0iKT3S/o3SQdPaHtK0luNMRUcOQsAAAAAAAAAAAAAAIBSRTAaAAAAAMCXLYhqosRQ+AGrfYNGtzxtdNG9rtbuqswBr0G3b2N1/aRpprstz9VEn2tJkbMFozmOo+v+09IoaUdnPqqafkEDDAdLaAB10ufcqI5Ji+d6t3UkClNPOXNdo89c5eqxbWPTbl8rfePG6PbLQYPR4oOFrQP5tWV3sGNuU0RDMoaT0awLADA1foG9khQnJBwoiLb4dFcwfYLe4wMAgMpijNkk6XWSvitpq8+sW/bMc4wx5oVi1AYAAAAAAAAAAAAAAADkW/V0FwAAAAAAiLaggzH7Qg4Gb+01escvXT27a3SK0S8+6ugrJ1RWhne2QfajmmtWTJ7Y3ZHfYkqA7Xi0BaNJ0kdf4+jff+e9YHuZDLQOep4OjRS2jnzyOzdqqqTF87zbOvoKU085e2Sr9PCWydNvetLo0pONZlT7nGDTZChgMFrvgFS/oLC1IH8aWoPNtyngfIVgC+iUgh+XAIDSki2QtY8gViAQEzLsKzFcmDpKQdhtBQAA8sMYs38RPmNKD1uNMSOSzpV0ruM4r5J0qKTRf1mnSdImY8yTU6sSAAAAAAAAAAAAAAAAmH4EowEAAAAAfPkFgGRKhAxG++mdJiMULe0bfzT66KuNls+PXghPoSTdYPN1xzySfXra81tMCbAdjlU+eXqO42jvhdKurslt7X1GUukfb4GD0UootCdrMNpc77aORGHqKWcX/sP7AOobktr7ohksNhwwVLKlV1rtkSuJ6EkMGe3sDDZva1waSRrVTENon1/fFPS4BACUlmz9ezzkvTBQqcJmfYV9zlROgt7jAwCAyrYnAI0QNAAAAAAAAAAAAAAAAJQln2HDAAAAAAAEH4zZF3LA6m8emLxi10i3PFNZoz/9AlYyxWPzJk/sastvMSXAdjzGsmTjLPHYfFI69KkcBD1PB0cKW0c+ZQ1Gm+e909v7JGMqqx+Zqq3t9u3VEdFzZDhgyF9TN8dCqdi8O/i8xqRD76aDXzjOUAn1sQCA4LJdd8QHi1MHUOpst2nVlr+xEPY5UzkhGA0AAAAAAAAAAAAAAAAAAACVjmA0AAAAAICvoIMxE8Ph1jtgCQ+56uHKGv2ZdIPNF6+qk6sJQVAdzfkvKOKswWhZnnAstQSjbQoRxBNlbsDjyHbeRVHSJ3yoOibtVevdNpKSOhOFqalc1VTZ26IaHjgUMBitsbuwdSB/NjaH+/2frn3rF47jF5oGAChd2fp3gtGAYGzBaPNmeU9PVHAwWras72Sqsp6dAQAAAAAAAAAAAAAAAAAAoPIQjAYAAAAA8BU0GK1nIPg6E0P2lWYLuCo3fuFPEyVic8dP6OmQGa6skcK2ALCY4z191JJa7xmueMjIZBtxXAKCnqf9IQMMp9OIXzBalbRivr29uSf/9ZSzlE+wXkdEQ+b8wqkyNRGMVjIaWsPNP1371q9vCnpcAgBKi1/fL6WvsVNBL8iBCmY7S+bN9J5eSvev+ZatS6nk0DgAAAAAAAAAAAAAAAAAAABUhgobbg4AAAAACCvo+O7OvuADwVt77W1VWQKuyk22QfaZemN1kye2N+WvmBJgOx6zBaMtnmdve3Bz7vVERdDztJQGT9vOjeqY5DiOlnmcDqMIRgtnwCdwoD1E315MwwH7ToLRSsemkMFojd3Tc2z6hZ8NEYwGAGXHGBMo+LKUrrOBqKmd5T29bzCa9yLFkO2bV3JoHAAAAAAAAAAAAAAAAAAAACoDwWgAAAAAAF+uG2y+tnjwdfoGo1XYnWoy4PaVpHjMI92rvTl/xZSAXIPRDlhsbzvr1hA7IaKCBqOV0uBp27lRXZX+c0a1oyWWwLvmnsodQJ+LQZ+wj/a+4tURRpCAEklqi3MslIqOkCF8nYkCFZKFXygfwWgAUH6SAcNY44OFrQMoB8ZyuTdvpvf0RAndv+ZbtmdxlbxtAAAAAAAAAAAAAAAAAAAAUBkqbLg5AAAAACCsoIFLYcJzdvuEqFVaqEjQgfaSFI/VTp64e1f+iikBuQajfeCV9hnu3ySdWeLhaEHP06QrjSRLIyhqxHJu1FSNvV4x33ue5p7811POBnwG1XdENBgt6G9FxzSFZyG8sL//0xVAY+ubpOCBfQCA0uEXiJmJYDQgO9udqDUYbahgpURetnv8St42AAAAAAAAAAAAAAAAAAAAqAwEowEAAAAAfKUC5kW1hQjPae21j/CstBAbv4CViXq9gtEat+SvmBJgDUbL8oRj/yWO3neUvf3s24ye3lkagWFe3BC5bv0+IVhRYut7qjP29fI673nCBDVCGhyxt0U1GC1oAFWl/aaUMr/j0Mt0BdD4HXuN3dLQSOn+lgAAJgt6zVEq19jAdDKWyyRbMFpfBYd/ZbuiTNDnAAAAAAAAAAAAAAAAAAAAoMwRjAYAAAAA8GULopqoq19KpoLN3Nprb9veLnX3V06oSDJEoFWfRzCaeXFzHquJPlsAWMzJvuxZ7/N/DPK/j5TucRf0PJVKJ7TB9p2cjH29pNZ7x0c1zCuqBn0CPzoS0TsvjDEaDhgq2dGXnh/RNxQweGbUtAWjZTn2TrzE5ZgDgDISNMh6IGTAJ1CJrMFos7zv6xIVHIyWLfy8krcNAAAAAAAAAAAAAAAAAAAAKgPBaAAAAAAAX0EDl4xJh6MFsTtub0u60h3rSj9Q5KkdRm8+P6W6L6W077dT+uofXA0MT/5eYYLReqsmB6Op0oLRLIdGkGC0Q/fyb7/k/tI97lIhjqPSCUbz3h+Z+3rxPO9l2/tKd18WmzFGAz7HRHsEQ+ZSrj1UYaKhZOkc85XOFoxWU+U9PT44Ped5toCcO9ZJtzxTnFoAAIUXNIyV6w0gO9vV29yZ3tMTFXxeZbvS9buHAwAAAAAAAAAAAAAAAAAAAMoBwWgAAAAAAF9Bg9EkqTMRbL7dvf7tv7zHyARNvYmghhajV5/j6v5NUt+QtKtLuvAfRp+9ZvJ3yhawkqmjatHkic3bc66zFE0lGG3OTEf7Lba3j6SkxFBpHndhztNSCW2wdQGZ+3qJJRitI4JhXlGVTPkfP1EMRrMFaNlwPJSGoRHv6Us9MkElKT5YuFr8DAc4/s66NURaJQAg0oL0+xIhRUAQtnu82lne03sGpFSYm90yku1r93sE7wMAAAAAAAAAAAAAAAAAAADlhGA0AAAAAICvMGNQE0PB5rvxSf+VPr5detlZrja3ltZAT9c1+tZNrg47wzsQ5drHjLbsHv+dkiGC0Zqrl0+e2N0mkwyZElTCphKMJkn/9gr/GZ/cEbKgiCjHYLQg+9oWjBbFMK+oGrCEUY2KYqhY0ICSUS1ZwjgRDbbAO9t5HuVgtLWNKumAVwDAmKDXHYQUAblbMd97esqV2uLFrSUq3Cw5u6VyXw8AAAAAAAAAAAAAAAAAAADkimA0AAAAAICvbIMxMyWyDMw0xui6x4KtcEOztOr7rjY0l84A8yseNjr/bv96b3lmQjBaiO3bXL1i8kRjpK7W4CspcSnL9ooFfMLxrbc7OsxjM456z0UhdkiEVFQwWsa+XjzXex6C0YIbzBKM1jsoDSej1Q8PhwiUlKT7GqJVP8Zbu8vo8odcNXZ7t1uD0QKGsebbSMDjL4qhggCA8IJed2QLmwUg2a7K915gX6bJco1Y7rLdwZTKfT0AAAAAAAAAAAAAAAAAAACQK4LRAAAAAAC+wgQuJXxCSgaGjT7yG1cnXx4uoOaIM11dfH9phFVd/Uj273bfxvHzBA1YkaQmr2A0SWpvDr6SEmcNy3KCLV+/wNGj37U/DukbkoZGSi9EqSyD0WwheBn7esk87x3f1R+9MK+oyhaMJkmdicLXEcZwMtz8D23mWIiqs29zddQPXf3X1fZ9tNRynvcOFKoqf0EDcpp6ClsHAKA4gt6vlco1NjCdjOWSb2mto2rLbbotPLfcZbvHp88BAAAAAAAAAAAAAAAAAABAuSMYDQAAAADgK0zg0ieucPWPDd4L/PEJoz89lVsNX7zOTAoUixpjjNY2Zp9vQ8v498lQwWj13g0dBKMFDUaTpNpZjt59pL39hbZwNRWKMUa/f9TVKZe7+u+bXD3fZD8HbCFiXkplAHWQfb1ivn35LRHZj1E3ECAYrb2v8HWEMRQyGK0tXpg6MDVP7zT6wV+z/7Yvnuc9PT6Y54ICChq62NhV4EIAAEURNJA1yDUVAG9VMfu9XVN3tJ8FFYotRG4UfQ4AAAAAAAAAAAAAAAAAAADKHcFoAAAAAABfqRCBS+190tt+6eqKhyYvdNOTUxvMesIFrh7fHt0Bsa29Us9A9vm2d0iDI2PfIxli+zZVr/Bu6Gjxnl6GbAFgYYLRJOnrb7U/EtkQkZy5L11v9IkrjK59zOjndxsd8xNXj271PgfCBBgmhqN7HmUKEox20FL7vt9YOafFlAyWYDBa0ICSUfGhwtSBqblyjQnUdy2t9Z4+MCL1DhS/PxsJGGjaWKEhHgBQboJed5RK+DAwXUyWpK+VC72nN/cUoJgSkO06mT4HAAAAAAAAAAAAAAAAAAAA5Y5gNAAAAACArzCBS5JkjHTGrUbJ1PgFb1879Vq+9ocQKWJ50Dtg9L1bXB10WkqvPSflGfg2KmgIkzHSptax90EDViSpr6pW8di8yetsj0iSVxEECcsK4k2r7Qtc7rN+Ln3tAAAgAElEQVSfi+XFTqOL7x//ZfuGpGPPdT0HlIc5T+ODU62uOGzfycnYdTNrHB241Hu+jS2EEgUxECAYrSNqwWgh+k2pdI75SvO7B4Odo4cus7c9uytPxYQQNCCnqUJDPACg3AS9zh4gpAjw5ZeL5khaOvlRhySpO0AAfTkiGA0AAAAAAAAAAAAAAAAAAACVjmA0AAAAAICvsMFoktTULW0ImdV1w2ezJ1ut2ZIOjCqWL11v9OO/GW1rl57YIf3n1Ub/c593aNa29uB1vdg59npigFw2TdUrJk/sIBitKocnHO9/hff0u9ZLm1unN1Tr7uftn//zv1d2MNrEELxVltCkrW35radcDQUIRmvvi1bIXJCaM/VWaJhClCWGjAYD7sdDlzlaMMe77amdxT82gwbzbaMPAoCyEPQ6m5AiwJ/fqeQ40oI53s+EevoLU0/U+QXJSfQ5AAAAAAAAAAAAAAAAAAAAKH8EowEAAAAAfOUSjCZJG1rGFhwY9l/J8jrpA69w9LbDs693v++42t1b+CCUZ180uubRyZ9z8f3en93YHXzdPQNj60h656xZNVbXT57YTjDaxLCsIFavsC+06vuu3FwP/jy453l722l/NjITRkmHKbW3VILRLOfGxH2972Lv/djcHa0wr6gKcux0JApfRxhBg6lG9Q1p0jmD6dUU4jdzdo109L7ebU/vzE89YYwEPP4apjlgEwCQH0EvIQZCBrcCGOM4Ut1s77bu/sq8psp2nzZAMBoAAAAAAAAAAAAAAAAAAADKHMFoAAAAAABftnCibDZkZHWdfbv/iM6LToqpptrRrz4W01612dd9xJljoVWPbTW67jFX/9yW38Gyv7jHe30bmqX+ocltYUJeegbGXgcNWBnVXL1i8sSOlnArKWHWYLQcnnActty//bIHp28A9rxZ9rakK8Uzws2MMYEDG6Txy0aZ7StNDEZbucB7vjBhhZUsSDBae1/h6whjOBluftdI/QQHREqY38yZ1dIr9/UOQHxqR/H76aDHX0MLgXwAiqO7P30/dMvTRh199Dv5FnSLElIE+PO7LHIkLZjj3dY94D293GW7jMz2DxAAAAAAAAAAAAAAAAAAAAAApa56ugsAAAAAAERbkNAcL5tax17f9qx9JU+cHtPR+6UDT1Ytd7T5nJhe/SNXm3fb192RkI7+kasj6h1d/8/RdRt95jhHl53iyHG8A1TCuHu9veaOhDRn5vhpTd3BN1TmwN5kyOC5Jq9gtKatMsmknOryv823BfVNDMsK4rAVjvyiDq591Ohzbwy/3nzoyxJe1pmQ6manX4fN3YmXyMDyoCF4tmC0pp781lOughw/HSUejCalAwHnzsw+H4qjqSd4xzWzRjp6X++2DS3ScNJoRvXUf/eDGg4YaNrVL7XFpb3qClsPgMr2xHajEy5w9wTfGtUvkG79wtj9FaYu6P1wPyFFgC/fYDRHWjDbu627vzD1RF22vofgZwAAAAAAAAAAAAAAAAAAAJS7WPZZAAAAAACVLNdgtBc7xxYc9AmxmThov3aWo3VnxfThV/kP5n9ulzJC0dIuf8io6lRXH/+dq9884CqVa/GShnxqbvcICWrqDr7unoxgqpGAASujmms8gtH6eqS1a8KtaAqM68rc9ye5554q99LvyXS0FO2zrWFZOWQ/HL5CmuGTJffwFsmETR3Lk2yhQV0Zg8PDHubxwdIIbQgagle/wHvnt8WloZHS+K7TKcjx0zMQre3o1z/b9GYJG0RxNYb4zZxZLR250vs8T7lSS5FDEFMhAk0bWrPPAwBTccrlo6FoaU3d0lduCJm8DF9BbwfiXGsAvrKdSgvmeE/vLpFg73wjGA0AAAAAAAAAAAAAAAAAAACVjmA0AAAAAICvXLPFMkNPeiwDWV9W7z29ptrRH06N6Ten5JB2pXRg2v+71ujDl7o5B1v5BZ94BaPt7Ay+7sztkQwZjNY0Y2/P6WbN7eFWNAXmZ/9P5ox/l26/Srr2PJlPHi2zY2NRPjufwWhzZjr6/PH+C976bPj15kO242lKwWhD4euZDkH39coF9nW09OavnnIV5PjpjVgYwXDKu+hqnyedhJVES5gw0ZnV/ud5c5GD0cL0uRtbohUqCKC8NHUbzwDGh7dIW3bT/+RL0H6/uz/7PEAl83s04zjSgtne9+aVem5le5RFMBoAAAAAAAAAAAAAAAAAAADKHcFoAAAAAABftoHgPznR0YeOti/X1K2XQslswWg/PtH/tvS//jWm1+wfoEiLW56Rqk51dcjpKX3rJleDI8FGtSdTRr0+ITodfePX05Uw2h0PXldmyFDSJ4DNy721J3g3PPTXnEPgwjD3/CEdiJapp0Pm+l8U/LOl/AajSdK5Jzr6zHH2hT9wsavz73bl5poQmIP+IZM9GC0x9tovxM9L1EKubILu63qfwKTGEOFLlSpQMFrEQsVsx/yCOfZlSuW4rxTNIc7NWTXpfTurxru9qdjBaCH63IaWwtUBAH7XOY9uIxgtX4LeYnVzrQH48juVHNmv5XsHVdT78ajI9pUJRgMAAAAAAAAAAAAAAAAAAEC5IxgNAAAAAODLFkCzZJ70x89V6eFve99aDiWljj5pcMRoOOm9jgWzs3/+3V+d+q3rljbp/LuN/uVcV+ubjJ7bZfR8k1Ey5T3StDPhOfkl7X3j3ze0hqunp3/sc0dS4ZbtNLVqq1oyuWHXFmlnQ7iVBWTiXTKbnpF59iGZH3zCe6ZH7izIZ09kDcvK8TCZUe3ot5+IaWmtfZ5v3WR09u3FG4i9eXf2AIaujGMo7BjxeMRCrmyCBqPNny3NmeE9bxPBaFmVYjCareYZ1dK8md5t/9xeeWEKUdbYHXx/1FRJjuOofr53e1OIdeVDmE97MUvIJQBMxWxLYKQkbQ55fwK7oNfa3f2FrQMoZ45jD0YzJvszmnKU7ZnAwEhx6gAAAAAAAAAAAAAAAAAAAACmC8FoAAAAAABf2cKJ9l1kX7axW+oZsLfPDxCMNn+Oo+bz83P7+vSL0pFnuXrFD1297CxXS77m6ppHJie/7Y77r6dtQjDac7vChbJ0Z2yTZMhgNEm6cNEXvBseuzv8ynyYRK/cM0+Weddymc+8TuaLJ9hn7myRiRc+hcq1BPVNDMsK6/hD/Vfwg78avbC7OOE7G1uyf05XRvBC2GC0qIVc2di+l+NMfO+ofoH3vGHClyqV7ZzK1OvTj08HW81VjnTU3t5td6zlWIiSoKGFc2emz3FJWmEJRmvuyVNRAYXpc+ODHHcACsevP3phd/HqKHfZwolGdfVLJujMQAXyOz0cScvr7O1NRb7ei4Js15z9w8WpAwAAAAAAAAAAAAAAAAAAAJguBKMBAAAAAHxlC6JaVmcPpcoWjLZgTrAaltU5evr7+b+F7R2UPnml0X9c5eo7f3Z18u9c/eQOVy//gX9S0I6O8e//FjJwpy0jeC1p+aiFqU7r8n9ecpLndLN1fag6bIwxMs88KPOOpdK9NwZfcOemvHy+n2xBfbk694PZV/CqHwVIkMqDiceXl87E2OsgwVaZSiW0IUwI3kpLMFrQ8KVKFiTkKWphetZ+ICa99yjvc3ltY2kc94XSO2B04xNGtz5j1JmY3u1gjAkcbjF3xtjr+gXe+7bY53mYPjcesXMHQHnx+w1v6a3c37x8CxqImXKlxFBhawFKmW8wmuP/bKkS7+sIRgMAAAAAAAAAAAAAAAAAAEClIxgNAAAAAODLNhizas8dZXWVo+XzvefZ1WV8Q57mzw5ex1H7ONrww8Lcxl61xuhndxpd90+j02/OPvK9oWVsHmOM7m/wnm+/xd7TG7vHAnpGUt7zvGLwWfvna1+1VC2b3LDDUkgIZmRY5jsnynzpLeEX3rFxyp+fTaGC0Q5Y4ui0d/mvJD4obWwufMhEY4BB3139Y6+DhjWMGhwpjdCGMPs6KoFJpSjI4TM4Ig0noxOwkvIJzTvmQO9joatfau8rYFER9vROowO+6+qjl7l6/8Xp8M+ndkzf/uxMpI+pIObNHHu9whKA2NxT3O8Sps+NWqgggPJi+z2UxofoYmrC/Mp0+4SCA5Uu27lUXeVoWZ13W2N3dO5FiiVbpnP/cGUHPwMAAAAAAAAAAAAAAAAAAKD8EYwGAAAAAPAVJJxob0tYSWO3dPrN3iP2HWd84EkQq5Y7uuurMS2eG265fGtoHRuAmhiyB5985jjvgJ7+Yal3z6D5pCXQoMYk9bed77XW0FhTP3nijo2hB8Y+ttXoC9e5+tZlzXr2Z+fLvLlWWvO3UOsYZXZOPZgtG79ApKn6/rsdffx1/is6/ExXL+wOt40f2mz0lRtcffkGVw9uzr5sU4BB391TCEaTpLYSCIiyfa2Yx9OseksfdO1jhsHiWbg+oSqZeiMU9OH3u7R6uX25jS2FqSfqPnmFOy5Msalb+vINAXd8AWxqDT7v3IzrhHpLCGtzz9TqCStMnxsnGA1AAfn1R5n9PqYm6LWSNP4aHcB4frdlzp7bcNt9XSUGXge55gwaNgwAAAAAAAAAAAAAAAAAAACUIoLRAAAAAAC+ggSjrVzoPU9jt7SlzbutbpYUyyHN6q2HO9p+bkz3fzOmWz4f07qzYhq+JKa1Z6Xf//zDeUjIyqK7X2qLp1+3+wRMHXOAvZbGPQN7kynv9mqT1FsS91qXb6taMnlivEvavsFe0AS/fdDV6891dcn9Ruc/sZeO2fT/dNu8dwZefpIdG3NfNiDr8ZiHJxwzaxxd/R+Obv+S/8pe9SNXT+8Mloxz7WOujj/f1UX3Gv36XqM3ne/q6kf80xUaAwz67kqMfX4uwWi7e8MvU2y2EAqvbmOlZQC9JH3rTwSj+Ql6/NgCIKeDreaqmLS0Vlowx7t9S1vlHQvN3UbrmiZPX7NF2tY+PdujoTX452ae7ysswWjFDsogGA1AVPgFdnUlildHuQvza9nJdges/M6l0Us+231dU5GDcKMgSL73AMFoAAAAAAAAAAAAAAAAAAAAKGMEowEAAAAAfAUJoqpf4B0A1tRl5FiywXoGcq9p7kxHbzjU0fte4ejwekfVVY6OqE+//9pbY7r1izGtWpb7+oNoaE3/6ReMduTe9rbRIJcRWzCakorJaK9kq2d7e81S7wUfus3+oRkau4xOvWb8zh2KzdKZS88MNfh/nBChbLmyB/XlJxDPcRy980hHbz3MPk98MB2O1hb331LJlNFpfzbjanaNdPrNRsmU97LGGD26NXudXf3j1xlWm89xGxVBQhlH1fsEo/38bqMlX0vpw5emtL5p/Ep39xp94TpXR5yZ0nE/TenOdZUXnOUGGXGv0ghGiznpc3gfS1hnJYbE7Oy0tz26dXqO940twedNZoT+2K412vuk4WTxvkuoYLShwtUBAJbLSUnp320T8Dce/sJsxuYetjlg43cujd7Or/B5tlRpglxz9g8Xvg4AAAAAAAAAAAAAAAAAAABguhCMBgAAAADw5bre0zODqFZaQole7Bof4JTpW+/IT5CVl/e83NGGs6vkXlalR79bmFvfhpb0KFVbMFpVTFo6T1pa692+rSO9fNKyfWvMiCRpabLds71t79d4TjcNT1kqHm+fb3t/8LOzXq7m6hXeCzmOnGuekfOd32jAmaX1Mw7TgDNrrH3XFpmmbYE+P1dhwrKm4n8+nv24WfYNV/FB+2jlDc3pc2Cixm5pfZP3Mv95dbAB350ZAU+2c9RPtlC3KAizr1daBtCP6kxIf3pKetP5rjr60it2XaMPXOzqkvuNNjRLa7ZI77rQ1QMN0d82+RQ05Kl3CmGW+Zbt2Fg4x7vd9ntUzvz274s+oWmFtN37Z81Talwwmn2+HR251xNWmD53OCkNjVRWnwKgeLL1R1MJosaYoCGyUvo6H0B4o3dztmdLTT1FKyUyCEYDAAAAAAAAAAAAAAAAAABApSMYDQAAAADgK0g4kW3w6vomyTaO/KOvLlwwWqbXHuDoye/F9KGjx0+vnSUdtbf/sm89zN7W0Jr+0xYwtWSeFIs5Omip9/Kb9yyfTHm3V5tkej0p7wSZ9mUv815wZ4P39Az/c59/ikLDjEMmT3z3p+X8YaOSe6/W5xpP1OJDm3XUQU9q4apWfWuvc5RUVXq+h2/L+vlTYQ/qy+/nHLyXo6oAT03mf9nVbx/0Lmp9k30k8zqPtmTK6MYnggUvZAY8+Q2YnjvTe3pbPNDHTKswwWh+gUmZ2vukn92VXvHX/mj0yNbJ87zp564GKyjIKHAw2mBh6wgjlaUfWGAJRuuuwICYxJC9bXsRw8QyNfcEP78yw0P3Xyw5lr5+9De5GML2DvEInTsAyku23/Bv3GhkQoR6wVuYTUgwGmDndy6NXuPVz/dub/QIHC93QfoegtEAAAAAAAAAAAAAAAAAAABQzghGAwAAAAD4yhZAI0krF4ZPpVoyL8eCcvDKfR398XNVci8b+6/nwio9fUaVei+M6Yj68fN/9g2O3MuqdNfXqnTKMd7fbVdn+s/2Pu/PHP1+h+zlvfzm1vQo1xFbMJpGg9G8k2vaZ9Z7Tte252WSSe82SfFBoy9d7z/CdtOMQ8e9d367RrHvXCpnxf764e1Gv31iroZj6cStpFOjCxZ/TbMOi+v3dSep78G/+657qsKEZU1V0FWeeo3R2be5Gk6OL25Lm32ZrR5tW9qkPp8Qo0zdA5K7Z2P4hWIsq/We3mY5bqPE9r28gpFsA+i9nHeXUWuv0UX32jfct/5UOSEitrDBiXoHorNNrP3AniedC+Z4n73diQIVFGF+YQmbWqdnnzb3BJ83Mzx09gxH+y3ynm9jS/G+S9AwwVHxgP06AISVrT+68mGjm58uTi3lLEy/30wwGmDldyq9FIy2wPs6vjWeDhKvJEH6nqkEo7mu0VM7jK59zNXWtsratgAAAAAAAAAAAAAAAAAAACgNBKMBAAAAAHwFCaJauSD8ehfPza2efJs3y9FT34vpik85+smJju7+akyXnjx2u1xv+W5NPekNszvu3f5SMNoy7/bNu9N/2oLnakw63Gxpqt2zfVtqqfeCknTNudam6399t325PRpmHDL25u0fl7P6VS+9/f2j9gGzn1p5ueYP3qzH14dIvQnJdjxWFeAJxxsPzT7PqDNvNXrDz1x19I0VOLqPvTyxffIX2dAc/POMkXoH0699g9HqvKe3W47bKLEFdnmF4M2scTRnRvB1/+QO/4Hf1z9mKmbgfdBv2TNQ0DJCsR0bVXuOjQVzvNu7IxTuViyJYft33thSxEL2MMaoKURoTHLCvl613Hu+hiJ+l6BhgqOidO4AKC+2+4hM594RstPCJGGuHhq7K+9aAwjKBDg9bM+WjAkXrlsOgvQm/TkG8A4njU76rdGrz3F1yuVGB5/u8nsBAAAAAAAAAAAAAAAAAACAyCEYDQAAAADgyzbgPjOIKmww2pwZ0pyZHulG06Sm2tGnjo3p2++I6S2Hj69rxXzvZUYH5W7Z7T1cdXldej37L/ZeviOR/nNi6Muo6j3BaPuO7PRsf7BxrnpqFnm2mSvOlhmanMRitqzTrU8lvT8wwyWLTk2/eP075Xz9Vy9N7+k32tGRdXH911UjSvmldU1BkKC+fPnE68Ot9J/bpaVfd18KPWuL27fB3zdI/UPj2ze2hNtmXf3pP3MJRvOrLSrC7usz3hN8f134D//v35GQ1mwJvLqSFvRUHQ3iiwLrsbHnd2nBbO/2rkRh6omyhE9YQlO31FvksLj4oNQ/HHz+idcgB+/lfZ43dhXve4T9edvaVpg6ACBIf/TEDqmJsK4pCROIWYnXGkBQfj3R6BXePt6POCT5B4+XoyB9z8BIbuu+8mGjG58cv0dOu9nomRf5vQAAAAAAAAAAAAAAAAAAAEB0EIwGAAAAAPBlDe6qGns9b5aj+ZYgGi9L5k2tpmJasfUBz+nN3UbGGG1s8V5u1fL0n/O7t3u298TTyTAjSe+Bp9VKB5idkLjPs30k5eifh3/SUrWkJ+6dNMn96xVaM/t19mVG1+3M0IVf2i7npzfLmVP7Up37fzdYKsBzPQv16NZAs4aWLRApnz54tJPTsfraH7u6+Wmj7n77PIMj0lMTMu8aLMeSTeee4AVbeKEk7VXnHSLU1hfus6ZD2H196hvym453yzOVMSg8aNhH7+SsxWljO+ZHQ/MWzvVu747QdyiWRJYQsi1FDu1a1xRu/tfsP/69LYi1qSencnISNhgtbOglAAQVtD+6fS390FSE2XpdPtf/QKUzPieTs+c6fsEcR0trvec59ZoQKYVlIEgfnxjKrX//n/u8l/v9o/xeAAAAAAAAAAAAAAAAAAAAIDoIRgMAAAAA+LIF0FRPuKO0hZV4KZVgNDMyrOV3XejZlhh21BVPatNu72VX7wlGq7vvas/2QTNDg2v+bg2eqzEjkqSjB5/W0qT3hzx1wAfsxW/fMO6teeE5td5yk7qrFtqXyfDd+/dS31D6dWLIaM4XXfWECBX6+h/Hf7G71xu9+fyU6r+Z0ht+ltK1j+U2qNkW4hTLbyaWJGnOTEf/998xvf7A8Mt+8BJXj2QJh5sYlnPD4+EGIXftCUbzGzC9rM57+u54qI+aFraB87Z9PX+Oox+9P38Hwi/vMXLDJiCVoKBfsXewsHWEYQ3NGw1UsAR1VmJYSX+WYLS2IvcFd6wLd0599S3jLzbqLdcajV25VhRe2G5hU2th6gAAv3DcTH97rvyvZwopTL9fiSGsQD5k3sWNPkuZaEub1BavnP4syDcN8oxmzRajt/8i/Sxm2TdSOvrslDWs+IK/V872BQAAAAAAAAAAAAAAAAAAQPQRjAYAAAAAsHJdYx0IXgnBaNqyVvWd663ND/z0NxpOeretWu7IGKP56++1Lt992qc1kvTewFUmvWJH0uFDGzznOb3h1TJKD5iNx+Zp0Jn5UpvZ0TD2unm7zKdfo4/tfY21lomGktI1jxo932R05Flu4OCFUY9vTw/ANf1x3ft0n97xK1f3b5JaeqWHXpBOudzoqjXple7uNdrVFWwAbrZApHxbvcLRw9+p0uDFMX3lhPx+yMaWsdebWo2GLMeSzWjIky0sTpKWW4LRih2GlItc9vXHXpPfffSBi3ML8CslQcM+4iUQjFa153dp0Vzv42B3r6x9brlKDPm3t/cVd3us2+X9eXsvlOpmjZ927EHScQePn7Zygfe+7UhIQyPF+S5hg9F2dFTWMQegeIL2R0/uDL/uzoTRhmajrW1GxpZWWyHCfP3EUOVdawBB+Z1LTsYl3qHL7Pd0f322cs4vv/v8UdmCn5950eiN57n6+4b0s5i2uPTMi/mpDwAAAAAAAAAAAAAAAAAAACg0gtEAAAAAAFZ+YVhVE4PRFgYPJFo8r0ApVvm2o0F7jzSq2ox4Nt+62Z7wdugySR3Nmp9oss7TE6vTyBbv0LNqM5aStXp4k3UdFx57lQ4+aIMWrtqt/Q/epIsXnppu2LJWkmSM0baPv1Wv3/8BPTTnOOt6vHzxOqOXneVqe0eoxV5y3E9dDb1rb73lktme7Z/7vdGrzk5p+Tdd7fttVwefltKjW/0HOhc7GG3UjGpHF3zE0UUnOZpZnZ91NrSMfZmL7g0/wLurP72MXyjGsjrvDdM/LPUPRXtQeS77er/F+a3hr89JPf3R3k5TFTRUpXcgOtsh27Gxv+U4SLrSthz7s1K0vd3ox3/z32/tfUUqZo/Gbu/pnznO0f3/HdOn/8XRvx4infYuR3d+JabqqvEnfL1PCOuNTxYpGC1kXmJHkbcxgMoRtD/a1SX1DQbrIxu7jI4/L6UlX3N1xJmuDj7d1fJvuvpTkfrYKAobiNkzUJg6gFLndyplBqO95+X2G74711VOXxTkm3Zn6W/OuT18yD0AAAAAAAAAAAAAAAAAAAAQFXkaygsAAAAAKEdJnwGU1VXj3/uFlUy02J4nFilmZ4NqlNTBw1u0cebqSe1/qX2P53L7LpLmznRk1jVovttrXX9P1Xwl21ukuYdPaqvRWDDaEUPPW9fxja6PSDPSr9url+rLy3+h1UMb9eZND8jc/r9yXVdv3/d2bZlxkHUdhTT3kHZr23BSevrFsfdb26W3XOBq509jWjR38mBoY+xDgwsdjCZJjuPoC29y9IU3Sade4+q3D05tUPbGlozXzfZ17b9YnuF0Xf3pP/2D0extbX3SfjOzFDmNcglGq4o5elm9tM6eRxja3zdIH3pV/tYXNYGD0QYLW0cYtsH9o8fGIcvS4QpeXcbG5j3BlWXOGKN3X5Q9BaHYwWhNPd7TVy6QXrGPo8s/6d+Z77MwHczqdQycfZvRx19n5DiF/UHw+Sny1JEoTB0AECaw6+s3Gh29r/8CxkhfuG7yPG1x6cO/cfXsGTEduXeJBFznUdh+v3tAWlJbmFqAUhb0XHr3kfa2zbvzU0spCNLHd/fb2wZHjO5YF+4zi/FcBQAAAAAAAAAAAAAAAAAAAAgqNt0FAAAAAACiyxY+I0nVE+4oV4YIRltSIsFo2tEgSVo1vMmzubtqoef0VfPSYWjmzI+rzu2VY7w3ZE+sTiOq8WyrNmPBaCf23hK4ZEn68ZJvpz//3M/qtCt3T1somiQZJ9yjh/5h6eanvUcA+w0MjhX5CcdvTonpzq/E9I235T5yeFt7erCyZA8LkqSDlnpP79wTtpNzMFo8S4HTzBqMlmVff+y1+R3Nfe/GqQXgRZ2bPTtLktQ7UNg6wsgWmjerxtEBi73naWgt7/056vRbjDY0Z5+vmMFoKdeoxRqMFuy8nTfL0VsO827bvFt6YkeOxYVgO4Js1zadCf9gTwDIld+92kS/e9Do89f6/+cVipbpqkcqsy8LE0An+QcVAZXM71TKvBKsrrKH5frdN5ebIPdpfv3N49vTz1fCqOJvjgAAAAAAAAAAAAAAAAAAACBC+OutAAAAAACrpF8wWtX490FDTaPm5OkAACAASURBVKQSCkbbmQ5GO3xoQ6jF9t9xn8yWdVJPh2IyqnW9E6h6q+Yr6VR7ttWYkZdeL0+1hvr8++cer46qRdo441Cdt+SbWef/9b/nHiT12cX/1LWNn8h5eS8bW7yn+w0MjuU3CyuQtx3h6LwPxeReVpVTQJprpBd2p183WwZ4n/MBRwvneLd19Y+tx2bRXPvg5sgHo1n2d7Yt/dUTHJ34yvzV8djW8g4BCfrtekogGC3zWD/QEijY2pv/eqKmd8Do3DuC7dmOIgajtfba9119iHDVs95rf6T93K7Cn6+2vmlprff0oWT4UAoACCJsYNdUPbipvK+JbMJmWxKMBnjzO5ecCTd5+yz0vutri0tDI5XRFwX5lt399rnWN4XfTpnPVZ550ej7f3H17T+5WrOlMrY5AAAAAAAAAAAAAAAAAAAAooVgNAAAAACAVTJlb6uecEe5cmHw9ZZCMJpJpaRdL0iS3py4L9SydZ1bZK4656X3813vJJ6u2AKNODWebdVKjnv/kZeFSyVaM/sYfX75hVnn++dpMZ38uvChXld+ytH2n8R0yVf31msHHg+9vJ+mbu/pKZ+xuNMRjJbpvA/F9Kljwxfx0AtGA8PGGqDw+gMdLZjrvd6uRHqD+AXGVcfs51tbX7QHN9vCPrLt6zkzHd34uZgazo7pxlNj+peDgn3em1Z5T3/6xbFtXY6Chqr0Dha2jjBsx3zmsbFknveB0pkoQEER88qzfTqFCXIJTMiVrW+XwgWjve5AR4ev8G5rsARr5pPtnFnqc21TzAA6AJXDDZvYNUVP7JA6In79WAhhv3F3hMJkgSjxDUab8N7v+VJLBQQdS8H6eL8gRlvgvJ/RfwDhjrVGx/zE1Tm3G513l9Ebfubq948Gv8cAAAAAAAAAAAAAAAAAAAAA8oFgNAAAAACAVdJn3GPVhDvKvUMEo61cMM0pVkG0bJdGhiVJx/Wv0Uw3eCpQrdsn3f/nl94vTbZ7f0T1MiVicz3b5rrjR7gurg13C/+BfW7S/819g+88f/hsTK/e31HdbEcXfCT7PnEc6V8Okjb8MKZPHhvTvosdOcv2Uf3b3h6qtmwau7wHAPsFgE13MJokXXqyo2+8zVHtrODL3PqMUXOPvX3FfHuw2WjQjl+wVcyxh/XsjgercbpYg9EC7GzHcXTIMkcffJWjTwYMrPvSm+3n2PHnl+8gcL/zKlNvhEI+7MfG2OtF3l1r2Qa67Ogw+vffuop9NqVt3j85np5vlra2FWeb2ILRaqqkxZb9ZfPq/b3P64aWwn8X2/HnF/ra6RNaMd2MMfrD466O+2lKrzknpXPvcDU4Em47/v5RV286P738mbe6SvolmQLIm6Dhpvn0q39U3vkddjv3DVXeNgKmyplwaVc/3z6vX9huOQmSfdnlc42Zy3Vx1Z798J0/uxrOyOp3jfTfNxm50/HDAwAAAAAAAAAAAAAAAAAAgIpVPd0FAAAAAACiyy8YrXpChtDSeelwk5FU9vWuXj61uopiR8NLL2uU1MHDW7R+1hGBFq1L9Y57vzzZ4jlfS/Vy9cbqvNfhjl/H4vn5u4V3ZDR0SZWqq8ZGH3/lBEd/W2t0z4bJ81/wEUcnvdbRvJnS3JmTw2hmfeGHWvqVNrVVL81LfY2Wgc6+AWARiH6fUe3ovA85+umJRv+3WXrzz7MnTt3bIK1ttLf7BaO1Bw1Gq/VuayvVYLSQIXjvOtKR5D+A+/PHO3rVfvb2tY3SI1uMXn9QBBL48izo2PaBEWkkaVRTPf3bIGU5tTKPjcWW86Yzkf96pltPv9ExP3HV2pt9Xi9P7DA6cGnh92tjt/fBVr8gWOBhpkOXeU9vaA1bVXi2c2bRPEeOYzxDLBq7pFfsU9i6ghoYNoo56fNlJCX98Umj/7hqrOgndxhtaZN+/mGpdlY6aNLP7x509dlrxi+/rU26+jPT31cA5c72e1hID22uvFCcIOFEmRJDhakDKHV+p9LEy4262dLcmd7n0/aO8rwvmyjIfVq3T3j1hubwn1kVk1p6jOczitZeac0W6bhDwq8XAAAAAAAAAAAAAAAAAAAAyAXBaAAAAAAAK7/B9tVV49/HYo5WzJd2dvqvc2mttHheCQxi3dkw7u0hwy8EDkardfvGvV9hCUZrrl6u3ph3alVdanxq1eK6amULdwqq7SubVF11+LhpjuPoL1+I6Zy/Gd3zvFHPgHTQUunUN8b03qP895dTu1Bvn3GXfu++JS/1NXZ7BzBlCwCLiljM0fGrpGfOiOmc212tf3yLulJz1FyzYtK8w0npl/d4n2hLa6W62Y6WzPP+4oGC0WLS0lrvYLCoB6PZQijC7uv6BY5WLfMPTLropPRK62ZJvYPe83z/L67u+XqVd2MJCxqMJknxIWlRBJ4m2mquyghIXDzXe56OMgxG+5/7Tc6haJLU4P0TlXdNPd7T6+eHX9fq5d792pY2aThpNKOAAX6u5QCsqZL2Weh9HdTQavRuTe8PlTFG5/zN6Iy/ZD/pL3/I6PKHjF69n3TRSTG97kB77Rf+Y/L6rvun0U8/aLRiQYR+nIEyZPs93KtWOvWNjv7+vFFXDr97RtImy3XT5t3h11fqwlwrSVIfwWiAJ7+QwYlXDI7j6MAl3iHitv6p3AQJZezuT1/jTQyyTQyZrM/mvFTFpB6fsLUdnUbHTfM1LQAAAAAAAAAAAAAAAAAAACpHBIYyAgAAAACiKpmyt1XHJk9buSB7MNrq5VOrqVjM1ufHvT90eFPgZWvd8YlTyy3BaI019YpX1VnWkZFyM2uO9lnkHQITxkx3UE8ffokWHfFNz/bZMxz96P2OfvT+8Os+7bMH6/eXTqm8lwyOSA++IL159fjppRKMNurlezu64aQemd8fKVeO9j94s5pq6ifN94Dl0Bo9V5bM89737X3pQdDZtsuSed5t7X35CdorFNv3ymVff+JYR6ff7L3Cx06LvTSQ/LJPOPrYZd7z3btRuuVpo9kzpDev0qTgvlIVJuyjd0BaZAkcK6Ygx8Ziy3Ef1WC0jj6j53ZJ65uMDljiaN9FUmdC2rzbqG62dOxBjvZeOPmY60wYfe+WYDvxA6+Ubn568vRiBaM1dnlPr18Qfl2rLNcSKVfa2iatnpxDmTd+x9/q5d7XQRuLtI39/PzvwULRMj2xQ/rwb1ytOyumutmTj7+RpNG6psnLuUb645NGXzmhPPpJIKps/dHsGdIP3hfTD96X+7q//kdXv7xn8gc0dkt9g0bzZlXO+R0knChTgmA0wFPYu89Dl3kHo20ukWC0+KDRA5ukBbOl1+wvzawJ128GuU8bSUn9w9LcmeOn5xoe194n3fSk/YNdn388AQAAAAAAAAAAAAAAAAAAAMg3j2HsAAAAAACkJX0GPVZZgtGy+ddDoj+I3vR0SHdcPW7acf1rAi8/MRhthSUYbdOMQ6zrqMtcx8w5euvhgT/e6qup67T6696haFO1+uiDtGvV2frB7h/kZX1/f37yYNxSC0aTJLWlE2NiMnpv3+2hFl21PP2lbMFmSTcdVOU3ODnmSEtrLaXFvadHhS2EIpbD06xPHONo3szJ0z9znKPX7D928Hzk1THtZdleknTiJa7e+StXq89w9XxTtIPlggoVjDZYuDrCCBSMNte7U+hMSG6YL10EDzQYHXGmqxMucPXlG4ze+2tXR/3Q1Zt+7uqz1xh97DKjg093ddWa8Sf7/Q1GS74WLJ3gxZ/GdOgy723S0Fqc7dHc4/059QvCd+AHL7X3+w0FDsvwO/4OXe5d1KaW6T3mrnzY1bduyq2GXV3SlWu8l437hP/kGsgBILiU5ScgH9fFX3yTfSXPeQQVlbOwlw2J4cLUAZQ6v5BBx6PLOcRy7bqpSNeuU/HwC0b7fMvV+37t6g3nuXrtj101dYerO2jf090/eVrDFK49v+8TpBux2ygAAAAAAAAAAAAAAAAAAACUOYLRkFeO49Q4jnO84zifcBzn247jfMFxnA84jrP/dNcGAAAAlCvT0yFz9blyf/k1ud85Ue7F35W581qZVGrK6/YLRqv2uKOsX5h9FP67j4xqglWacV2ZEw+cNP3N/fdrjpsItI6JwWgrk97pAd1VC63rqHN7x97MmqPaWY5OfePUtt0pb5w9peWzWfHl03T6ERt1Us8NU17XhmaPYLQsAWCR1N700sv3xf8aatEDnXSgni3YTJIeekH6xBX2DVMVkzXoK+rBaEHCr4JaudDRZac4mp9xCrzvKOnXJ01e2VPfz/64bFu79F9XuzJ+o/tLRJiv0DNQuDrCCBIEYztvUq7U3pf/mnLlukafvsrV7izn43BS+o+rjGKfTekVP0zp33/r6s0/zx6KNmeGdO1/Olq50NHq5d7zNLSoKMdyh2W7L6sLv66ZNY72WeTd1tpb2O/i1zfZtvFG73zUvNnYbPTD21x9+kpX59/tqisxVuTd640+879T2yY//Kv38n0+YYnxiPQXQDnL57XSRPstlmbXeLfdsa70r3/CCPsT6dc3ApXMNxjNY9qhy7znbWgtzrVrrlzX6MOXuuNCpdc2St+8MVzNQb9it8c1V6HudwhGAwAAAAAAAAAAAAAAAAAAQDFVT3cByD/Hcc6SdOYUVvG/xphPhfzMpZJ+IOmjkjyHJTqOs0bSBcaYP02hNgAAAAAZTNM2mf98vRTvGpv48O0yknTPDdJ5t8pxch8ZbwufkaTqqsnTVi7Ivs5D9sq5nIIzxsiccZI0PHk0+ywzpLf13aNb6v4t63pq3fGjUFcPNYSupS6VkZIzK53mdNHHHP3mgdxGoh46tEmrD7OMLM4Tp2aGnHP+qO88sknXXzm1dXmFyPgNwo1FNfo9Ixjt+P7/U22qV/GqYClAC2/6icwB79CSV73LOs97f+0fjOQ4zp6AqMkbry1C4VBe/ILwcvGx18b0lsOM1jZKC+dKr9jHu2+sX+Do7UdId633X98jW6VnXpReuW9+6yy2MIPbu/sLV0cYQYJg6ufbl2/slvbKIYyrEB7bJm3vCLfMc7uk53Zl33G3fjGmYw6QltSmN8yq5Y68+oK+IampW1ppz+rMiy7L8bNwTm7rWzpP2uGx7QodfGcLqYjFpFXLvLfx7rjUlTBaODf/KZ73Nxi999euEkNj0359r9Gj342poUV6x6+m3pl29aevkSZeU8aHLAtI6h0kOQMoNNu1UlUerourYo6OXyXdsW5y25oXKuv8DhsE1D9cmDqAUud3Knk9tjrUcl0VH5Rae6XlPtf70+npF6WW3snTb3jc6PefMYoFTK8M2vd0eeT39xYooJFgNAAAUIqMMXLd8vhHTgCUFsdxFIvFpvR3NQAAAAAAAAAAAACg0hGMhilzHOedkq6SlC3e4FhJxzqOc62kU40xHn9VGwAAAEAY5uLvjg9Fy/TY3dK9N0knfDjn9SdT9rZqjwH32YLRZlRLi+flXE5BmVRK5vwvSg/cYp3nfTMe1y0KEowWH/f+gJHtqjHDGnFmBK6nzs0YSTsznRpTXeXols/H9P6Lw4ecfHDgr3Je9rnQy+XiyNcfqptmGn3o0tzDWDa1Sv1DRnNmjv1lcb9BuFVR/TvlbWPBaDPNsE5I3BcoXE+SFg63yVxymuZe/U4tq0sP/g5jdLz1Uss5Fx+UBkeMZtVEc+NZw6+mEPaxpNbRm1Znn+9lKx3dtT77QKmbnjR65b7R3H5BhRnc3txjJE3/97XVXJURMrBXXToYxivgs6k7OoF2Da2FGZB35nsdvefl4/fVKp9szI0tpReMtsTStxU6GM0vmG/1cvtyDa3SMQfmv57Tbx4fiiZJOzul4893tak1f5/T1S8tmjt+Wp9P6EbvQP4+G4C3IEGhU/GWwxzdsW7yh9zXIPUOGNXNLu41wTWPuLpqjdHgiPSeoxx9++1O4IChqQj7S91HMCQQmmcwms//dd7UGt1gNK9+c1RnQlpSG2w9QXM7uj2uuQhGAwAAlcwYo8HBQcXjccXjcQ0Pk14NYHrNmDFDtbW1qq2t1axZswhKAwAAAAAAAAAAAIAQ8vDvxqOSOY5zvKRbND4UzUh6UtKNkv4uqX3CYh+XdL3jOBx/AAAAwBSYvh7p4dv857n7uil9RtIn16rK44p+74X+f5G3fr6i+5d9b7xQuu0K31neffK/BgoaqHXHp7JUK6VDhl8IVc5s8//Zu+/wKKr9DeDvmU0DQgoJhA7Su14EVEQFARuKyvXaC9ixYa8/FRuK2JVrV7Bju4IdUVAQEZEi0ovUhISE9J6d7++PJZBk58zObDbJAu/nefIkO6fM2dnZKZucN1Vmt8bsT40ZfYTCBYOsBxHfCNj4mIE4T/WElJYVu3DbcSVQTeJcjaE2xvRX8L5qoPy0t7BrfTvkr22GMXn/c9VH34eq74B2k3BrE5ZVlyQztdrj3qWrHbeNN3OBrWuhdm3ByZ3dZ4vvC0azmXidVccBQrVR12EfduzCjapyEp4W7kwX+YWpOXU3Djd0Y656HPAYCq00YQk7c8LnddtTB/82oEVT4KYT/d8oiU0UWmiOB3UV0FbJNAU5umC0JsG9qZNjrdvVxTatyu7Y1DoBiI22Lt+8O7TbuMIryMgT/LbZujyUoWgAkJbrvyzfJnQjI983EXVPoUCcJnsQkStW4Z9A6K6V+rTRd9TiNhOFpfX33n7lZxOXvS2Yuw74bTNw3/8E49+vn/W7uVYCgELOuSeyZHc5YHW0SW6q/EJZK62v42vX2oi2+bd0u13cfzsNIcsp8q+YW0cBtU6Ph6Xlgp3ZvAYkIiKi+ldUVIRNmzZhy5YtyMrKYigaEYWFsrIyZGVlYcuWLdi0aROKijS/LCEiIiIiIiIiIiIiIiIiIj9hOm2YQuwCAIe5+LrdSadKqbYAPgcQVWXxrwB6i8gAETlXRE4C0BbABADlVeqdAeDRWjwnIiIiIiJa/ANQUW5fZ+E3kKL8oFdhF4wWYXFH2beN/UT8NglBD6VOybZ1kKl321dKaoXmJ52Gw9vaVzPEiwSvf3rQgOI/XY2p2maMblStbNpYhYfPVGhZJefs9H7AmocNdGqusOLRRhjbYTOGGH9jrPE9Fp74IxJvuN/V+kNBKQWjzWFI9mahkZRgdL59kF9N/2QC/2Tun0hrG4wWpnl7qBGM1qNsneOmCV5fCo2c1xNnfHml61VXhkTFN9LXsQu1aWgNGYx2cm9lGf5Y09JtwC/rD+zJ3k4n3APAzjAJRvM63Dd055xweR6AddhUbaTEAX/cZ2jDxnShf2t3hXYcNeWX6Pe1xMbWywNJirVenplfxyFvmu6V8p332jezLg/Va71ul+CYx72IGm+i5e0u03pqIc3ifVNQ6r+s0uo0oM0dJpJvMdHhbhNf/XVgHyuJwpHueOTkGsYJu6DYsgqg6Y0mLnjNREFJ3b+/n5vjv45pCwVZBXW/brdrsDs2Eh3Kgnm3dkuxXh7qANhQionUl2XkOe/H6X1atsV8+nxNMNqxnZ2v34ruPqxSSbngsrdMNLvZRLu7TLS/y8QHv9ff9SoREREd2oqKirBt2zaUlwf4vSkRUQMqLy/Htm3bGI5GREREREREREREREREROQQg9EODbtEZIuLr0yH/T4EILHK44UARojImqqVRKRURF4AcG6N9rcqpToE/7SIiIiIiA4NYpqQVYshi76rFnImCxyGTM35OOh1V3j1ZREe/2WJTRSO76pv0zYx/NKrRARyUb+A9dQrPwMAerayfw7NvHvggf/Ez9EFXzseU8/SNdUXxFRPjYmMUPi/UQZSn/LAfM33NesGD1rG+8bWIUnhrfu64pdXDsdbr5yGjhdfCqUaaNu3777vx3PzPsXgooWumn+xrEowms182nAMRhMR4I851Zb1KHUTjLY/hWZkwRxEm+5SzCq3SZxNMFpeGAejSQMGo7VNVLjnVGcrGvqUCa+bdLEgFJcJvlkpmLdOUFYR2nW5GXpqTngEG+mOBTX3jbaJ1vW2OP3kqx7sCnEwWuoUA+2a6ffdbi2ty9bvqtvX1iqwoVKwwWjJmmC0P7cF159Tgfa/lvHW5YGC0QpLBT+sFrz/u4nVqdavR0m5oOcDJn7/x+FgXYj0AEfafFKblus/pvwAYUi79oZ/7MgGzpqqf15EFJy6DpFtkwA0jbGvM2OJ4Nr36va9XVAiliFI5V7gf8vq/rji9jKvkMFoRJZ093eAL2DWSrcUzbVrevheU5RV6Mt2Fzjvx257VevT4n8h5Gmu0Y7sqHDT8OBPEqUBMkZu+FDw7iJB8d56O3OAS94SzN8Qvq8XERERHRwqQ9HE6UUUEVEDEhGGoxERERERERERERERERERORTR0AOgA5NSqiuAy6osKgMwVkS0U6pF5Aul1PQq7aIBPAjg8jobKBERERHRAU6yd0MmXgwsnedbEJ8E3PsG1ODTgGU/O+tjynVAcitfG5e8QQRRnfUvhXnrrScfHNPZ9RDqnLz5UMA66pbnoFr60kK6tbSvm+zNslw+smAOYjxelHgtEuVqOKXg++oLYoJMjQkHLdoCjZoAxYWIQjnmbj0J0+MvwaTku5DricO4nOloYhbhkeb3WTafs0Zwy0jfz3ahBOEWjCalJZDHrwLKqicj9CldhQRvNnI8msSmKhLM/Sk6sVKIC/I+xrSESx2PoXKbNInS18kP42A0UzOJqb5e64fPNDDoMMHol2wOhHtd977g1UvqZmB/bBGc8py5L1iqT2tg5g0GDksOzfrchH3szAlcpz7o5rd5avwLiE7NFQD/yuEUpLB5d+jG8s/jRsAQzB6ac9iy7YBpCow6eoPVRTBakiYYLT0PeOYHE7eOrJv/CRIoiKhVvPV+ZxeCt2K74MypJrbtqVwiuOo4hVcuVvte04w8QcvbAx+PnDi6E3DUYQptEn3nAQXgkqMVOrdQMK62TsXdbBEoWOAi/McU4O2FginnhNkJm+gAprtXC9Wh3DAUzh2g8OYC+3PVJ38KXrpQkNC4bt7fhWX6sg0ZdbLKatzOq3dzbCQ6lNgGo2mWd21hvXz5dt9E8gYLgLdhd4+dkS/QP9vqnN6npVpcY+YVW9eNbwRMPEPhpF4Kp7/o/rqy1Cb0rbxC8OkS/0GLADP+EBzXNfxeKyIiIjo4iAhSU1P9QtEiIyMRFxeH2NhYREZGhuW1IxEd3EQE5eXlKCgoQF5eHsrLy6uVpaamonPnzjw+ERERERERERERERERERHZYDAaBetCAFVn838uIhsctJuM6oFq5yqlrrMLVCMiIiIiOpTJczfvD0UDgNwsyF1nA7e/BGSmOu/nrrOBb9Khmia4Wn+FZp5khAHtH+meeYTCzTOsZ3CeeUR4/WGvbFgBTH88cMUBJ+77sXcr68CTSkmaYLQm/x6HER4PvvrLflXHFv2Kibsfrb4w+sANRlNKQdp3B9YtBQB4YOLy3Om4PHd6tXq6YLTVaft/PpCC0fDNdODHj/0WR6ICpxTMxkfx5wXsIt5bfYbzYxkPYFV0T/zRaKCjIVRuE8NQaBpjPUE7L4zvxrXhQ3WTdWTp9H4KP99h4JxXTOzO19d7fb7g0bMEzZuGdkcUEfznFbNaqNTfqcBNH5r48sbAIYvO1uG87p7CkKyy1nT7Rs3TUrcU63rr0sMjSCG7UPDbZvs6bROBj642MHO54OnZYvncYyKBVy5W6JAU+Pn00pzDducDi7f4ArPqgl0wWkKQp7iWcfrz8e2fCIZ2E/TvEPrXOFAwWst46/K03OoNswsFb/4q2J0PTPnev9PX5wteny+4daTCfacpPDArdCF6C+/WHz9O7wfLa5XZqwQPnlF9mdtwzadnC6ac464NEenVx7XSo2cFDkYr9wLHPG7i9MMVTu6lMKJXaI+9RTbBaHl5pQAahXR9NbkNRrMbL9GhzO6tpLss76m5dt22B1iVCvRpE5KhhVS+TTii3T1lTU4PPWk5/jVzNcFocTG+z2hO6wv89yKF6953d4ArKdeXZRboP1/4cU34BFMTERHRwaekpKRa2BAANG3aFG3atGnwz3+JiCIjI9G4cWM0b94cO3fuRH7+/hvD8vJylJaWIiYmpgFHSEREREREREREREREREQU3upxKikdZM6u8fhtJ41EZA2A36ssagLgpFANioiIiIjoYCJ//Qr89Kl12VM3uO9vzGGu21R4rZd7bO4mOyQpXHaM/2SDS49xFtpSX2Ttn5DLBwWuePgQqPbd9z0c2t3++SdHWcyCHTUWxoRncKSDgJZ5W0eiidRIkIk+wP8gukOPgFVmbh9juXxrFlBY6ptEaxuMFmafcIhFKFql/iXLArZvbBYiCtUn86R4M/DLluGYv2Uo3k69Em+fss22j6phcU01u1B+SfhOUDY1wYz1HYJ3XFeF9Y8YeONS+xWn3KYZcC2sTvNN+q/p65XA9j2hee3s3lc15diEW9WnQMFUlbqlWL9mOUXAxowQDyoIgybp95mXLlSYfbOBtQ8bGNxZYfK/Dax52MDsm33ff7vbwPRxCp+PN7B5koFLj3F2EBzSBYjW/KuMmcvr7niQrQnVaxoDRHiCe1N3b2lfPuAxE+UVoX9Ogfa/VppgtB3Z+3/emCE44mETd34qlqFoVT3zgyDpFhOv/RKa55ISZ19+Qjfr12PRP0BmfvUxFNgEfxBR3dMdj4I8rFpKiVMomhr4HLMu3Rd+eNJzJh75KrTXRIU2x5rcn2dDMtP0FULAzbUSABQzGI3INV1ehd3nL7NWhOe9bJ4mlAwAMlwEo+nuh2tKzbEYgyagLK5KjmRCEJmSpRX6MrtQyEIeF4mIiKgOVQ0ZAnwhRAxFI6Jwo5RCmzZtEBkZWW15Xl5eA42IiIiIiIiIiIiIiIiIiOjAEGbThulAoJRqCeDwKosqAPzqoot5NR6fWtsxEREREREdjGTK9aHtsKQIsmWNqyYVmomYER77ds+cqzB2sIJSvgmuYwcreNMYbgAAIABJREFUPHNueExCkIwdMB8ZB7lqcODKR50E9chH1RYlxSoc31XfJPmoQcCxo3wPIqOA8yZA3foCAKB7iv3qLsz9EJZbKTI68FjDmOrQPWCdHqXrtGXr033fbYPRwmP32m/FAm1Rd2NnwObNKzItl0eiAscUL8YluR/gkj3TcctI/ROvGhYXpw1GCziUBuM0/Ko+xDdWuHyIgfFD7Vd+3fsmREI3Qd9qknslJ0EAO7IF49420ftBLwY/4cXTs014a2xYN2EfBaVAhbfhAwi8DkPzerfW9/HGgvp9HhVeweTvTLS90wvjat/Xpt3WddslAuNPUBjRS6Fx9P4n1TXFt6zbznkYOPUMXPTucJy5cjJSom3SF2qIjVEYrsmqrNNgtCLrvhMbB99n5+aB68xaEXz/Otpj095jbvtm1seJfzL3v3+mfC/Ynm1Zrc5dfqz9cWxUX+tyEeD71dWffHG5ZVVb4RzISXSgCXQ8CpWYSIUNjxoY0sVZ/Ue+EqTnhe69bhuMVhYBefeJkK3LittnUmITHER0KLO7TdJdnTRronBsZ+uyb1aG5zVFgc099ortzsfs9D4tLdd/mS6cLb5KGFpiE/c31iU21352wWghvEUmIiIi8lMzGC0uLo6haEQUlpRSiIur/p9Lah7DiIiIiIiIiIiIiIiIiIioOgajUTD61Hj8l4gUumi/sMbj3rUcDxERERHRQUcKcgGXIWaOLPreVXVd+ExEgLvJxCYKb401UDLV9/XWWAPNgph0GWqSkwkZNxCY/UHAuurrNBhPfQmV6J+8cuYR+ufSvEVTGE98DjW3AGp2NowbnoSK8gWb9WgVIIyk4FvrAk+AJLpw1z5wMFrH8q2INq1nEK/d5ZtFq9sfgfAKRpO5n9mW9xxxdMA+WlekBl7R/FloHqsvNqtsr6aaYLS8AzAYrSHnNL1wvv3KX/lZcM//JGThaHaTy5dssW+bWyToO9HE9N8Ea9KARZuBOz4V3PJx8MFoQHjsM7oxe2qcm5o1URjU0bruc3MEa9Lqb4b++PcF93wutmF3lU7rp7ST92TxD5CbTwEW/wCsXAh5/UHIY1f41zNNSJFvQo2U+3YkKS2GpG/HGZ2sB7F2F7A+vW62SY4mnKE2wWhREQpdW9jX+ebv0D8f3du78jzUTROCWmECW7J8P3/pINiwLiQ2DhyM1r0l0CnZuuzPrdUf24Vj6Pyy3n0bIrLmNCg0FDq3UPjlTg/O6Be4boUJ/LgmdMc5u+uhHCMe+OkziGlzo1BLbrsuq4BfEC2RU1JRASl1Hnp7IAn2XXHG4dYHtZWB88YbhF0I7MJNQIHDkFin2ysjHyiv2F9bRJCr2YXiYvZvy4RG1nXslNoEP9oGo7lfFREREZEjIoKysuoXIrGxNr80ISJqYDWPUWVlZSH9h0tERERERERERERERERERAcbBqMdGq5RSs1RSu1USpUopfKVUluUUj8rpR5TSh3nsr9eNR5vdNl+U4D+iIiIiIhoW92kRsjX01zVrwgyGK1SZIRCZEQYJVbNegPI2xOwmnr6K6i4ZtryMf0VoiKsy0b09D1fFREJFVG9Up/WQNtE63bx0V6cUjDbutCjWdmBoueRAat4YKJb2QbLsrW7fN/t8gXCKhjt+dv0hWPvw2HX3oDkAHNz2jgJRtu8Cn2LlmuLqwZYxWmC0fLDIORKR/d6N+Rr7TEUfrnD/gD45HeChAkmXvm59gEddpPq1/6+BrLbPw1gd77g6EleJN5sWk6If+knwZIt+/t1G/aRU+Sufl0wNTuH1b4xpr/1DlPuBW74wKzzCSemKbj6XRNvLnC+nvMG+I9ZigthPnYF5LbT/RvM+xwy83VfPRHI+09BRreFnJwM87hoyIlNfd9HJEDO6YLTn+6vXffM5XWzPbI1/1KhNsFoADDaJqgUAN7+NfTPJ9CxqYt/nuo+G9KBvGLBrryQDwsAEBsNtNNcZ1w4SOGXOw10bmG/zZRSOL6bdZ1Xfq7+5IMJRvt+NSd5EYWK06DQUBrWw9mF2MVvSrWgntootAnbSY9IAXJ2Axv018S1pXsWjaP0bYI5PtKhTbxemC/cBjmjNeSU5jBvOx2Sk9nQwwopu8tuu/Dr/u2tC/NLgApv+F1X5Jfal78419mY3dynVb22LCnXf5YXVyUMLSGI63C7Y5tdMJpdyD0RERFRbZgWF02RkZENMBIiImciIvx/5291LCMiIiIiIiIiIiIiIiIiIh8Gox0azgcwHEBrANEAYgF0AHA8gHsB/KKU+kMpNcJhf11qPN7mcjxbazxOUkpppuwRERERER2itq0Lrl3zNsCJ/9GXb1kDyc5w3J1ukmldTravS7J8fuBKY66FGjTStkrbRIWJZ/hPzv13f+CEbvp2ER6FJ/+t/ILllAImn5iJeFOTlHKAB6OplPZAl34B63Uvsw4EnL3Ktx/a/V14uASjSWYqkJVmXdg0Eery++HxGDi9n/2AW5dXCUaLTdDWG/b8UEfjaqoJRsuzCM4KF+EYjAYAQ7oqJDWxr5NfAlz3vmDc2yZScwJPfDdNwapUwYeLTSzavD9IpMBmUv268hSYF/XzC/b6zysmFm+xX9+gSfsDwewCB62ERTCabt+wODddc7xCSpx1/bnrgA8X122YwtsLBW/Md7eOod2r7+RSXAi54ijgu/e0beSpGyDFhcA370BeuQ/IzdLWbVWxC4OKF1uWBbM9TFMwf4Ng4SZBYal1+2zNfpMY4L0UyM3DFTol29epGgQYCrr9rzLQo3G00oagrs8QbHB+GebKqL5A7gsGtk72wHzN/+u9Kw30bu3sANo1xXp5STmwLUuqPXZrQ3r4BZgQHah018Z1ea10Wl/nnR92r4lXfzaxOrV273vduQUAUiNa+YLLNv1dq3XY0R33m0Tr2xTbBAQRWZE3JgKfvAQU5AIV5cDiHyB3j2noYYWUbTCaTTu7AK+8MAz6tgqnrurzpc6OiW6OnKk5+3+22yZVA9ObN3Wxgr3KKvRldsFoPCYSERFRXbH6pxfKLnWXiKiBGRa/yKrrf+BDRERERERERERERERERHQgO0CnslMdGABgtlLqMRX4L4Rqzsh2NZ1PRAoA1Pyz7Hg3fRARERERHexk/fLgGsY1g5r4LtB/qL7OrDcdd1ehmWwf4XE3rLDxxxz78q6HQ938nKOu7j7VwA+3GLh5hML4oQofXKnw0dUGPAGSCM4fZGDh3QbuPU3h0mMUbj9JYf6dBq4aqE8bUgd4MBoA4LjRAat0L7UORvv9H+Dhr0zbACerQKSGIA+P1RcOHL5vUs5ZR9jvJ21HDgcuvA1qwjNQX2wFeg60rBcjNslZVcQ1sl5ffhhOJK/UEGEfTm2a5GyHm/6boO2dJl6ep0/1KywVjHnZRN+JJi56QzD4CRNDnjSRliO2r0+OJxH/VCRDzuoIKfSFKm5IF/yywdlzWLI3tt51MFoYhOl5Xewb8Y0Vppyj32lu/0SQW1Q3k05yigRXveOu751PVt+3ZNkvkLM7AtsdvLA/fAj56i1H6xmd/5Xl8uXbgW9XOh/z1ixB/0dNnDDFxJDJJo542MTSrf7tdYF6CY1r94Zuk6iw7AEDZ9hkb776S4iD0Rzsf900wWIb0oGNGaEdzzUnKEwfp/DF9UbIJn52a6Hv56W5VYPR3D+XqsEdRFQ7mgzrOr1W6pai0Eaf2VtNag4w/n1Bn4kmrnzHDHqSZ2HGbm1ZidEIuUY8JNhgcQd0w24cpW9THERwJB3ifpzhv2zV75AdG+t/LHXE7ghgdwljF4wWDqHNNe0ptC//c6vvPiEQN/dpqbn7f7YLZotvtP/nZk0UurRwvg4AKLa59rMLRiss40R/IiIiIiIiIiIiIiIiIiIiIiIiIiJyL0ymDVMd2QngdQBXARgCoBeAHgCOBXAjgO9r1FcA7gUwKUC/sTUeBzMltmabIP4vtT+lVAulVG83XwA6h2LdREREREShIiLAr9aBJQE1bw2lFNSVE/X9L/jScXfaYLQD8G5SSgMnQKl7XncVKjK8p8Iz5xqYeqGB8wcFDkWrNKCjwqNnGZg2zsCT5xgY3FkBkTYz6w+CYDTlIBjt8NK/tGUTZwlW7NBPpI0Jg00kqZuBZT9ry9XNz+77eWQv+zCFHoP7wBg/Ceqc66GiY6COP1Nb992dYy2XD+q4/2fdZPKM/PCdnKwbWTgEo8U1UvjqRucHwus/EPSd6EXENV6cMMWLXzfuf3Yv/iSYtaJ6/T+2AG3uNHHXZ/avz5exo4A9u4DPXgYArNjheEhYvt3Xt9v56eEQPqALCdDtGxcdpXBCN+uyXXnAA7Pq5n1w68fO+20UCbx72lakfPYIzGcnQN5/CuYbEyE3jQT2Bt8FIlOuB/5e5KiuLhgNAEa9aMLrMIlhxDMm/qqy323aDVzznn/4TbYm/CHRJujCqaYxCm9epn8/rkoNcTCag/2viyZYbEO6IN3Zy+lI0VQDL19k4JJjnF+DOHF4O33ZrBVVg9Hc952WG7gOETnTUCGy/xngfgVvLRBMnev8eCy/z4Y59S6U3n42XpyRals3NaIVsM06YDkUdMd9BqNRqIjXC6RttS777r16Hk3dsbvvsA1Ga6QvC4d7k5qyHYxpp4OgWN0x3kpqzv6Nm2fzW/u4mOqPzwwQ2F5Tgc3HakVl+hfYawKlFa5WRURERERERERERERERERERERERERExGC0g9RiACcDaCciV4vIGyLyq4isEZF1IrJQRF4SkVMADASwoUb7u5VS+hnX/sFogdMF/NX8s+yafQbrOgB/u/yaGaJ1ExERERGFxuZVQOo/QTVV/Yf6fuhztL7S2j8hu3c66s97MAWjPXKZfYUjhwFd+tXPYKxERuvLjANwg9fUpR/QsoNtlVMKZiPRu0dbPn2h9UTbRpFA4+iGT8uSr6frC4eOgUpsse9hoyiF64Zaj7llHHBSrxoLTx+n7XpM/hfo2sh/ZvV5A/f33zreuu3ObP2QG5o2fChM3g6n9VX4doLzwaxK9T2n+RuA45408fBXvgPsjD+CD22a33gIAEC+9e17O3Oc97V2l++7w/yrfXI0AVf1STdmj+blUEph6oWG9tw1da5g2bbQP68fVjvr85NrDGwc+QUueK4PMO0x4PNXIK/cB0x/PORjqtSzbC26lG3Uli/cFLiPV342sWm3//I/t/r296qyC637CEUwGgAkN9WfA9btgl9QW204CUbrlmJdZ+NuIEuzLSrFRgPbJwc+tvx+r4GYyLo59+mC3QBgfTqwNs23EYIJRsssAErLG/44QnQwcHs+DJWbhwd37LnpI0FGXuD3v/nyvZDbz0DpjP/imIz7sSLG/h5te2RbYNu6oMbkhO4UYhuMVlY3Y6GDVIXNCbXg0EgUtTuqxNkFowXzr7vqUFmFoLA0cL3M/MB13FwtpVb5OCDP5rf2sTWC0W4YphDtImTebnsXBTjuOdkuREREREREREREREREREREREREREREVYXJVFIKJRH5RkRmi4MZfyKyBMDRANbXKHpCKeVxukq3YwyyDRERERHRoWH+rODbHjcagC8ERr0wW1/v168ddVfhtV4e4fRuIUzInI+Bn7/QV+g/FOr/3oZSDRiu5bGZjWpXdoBQSgHHnWFbp7EU49GMidryv3ZYL09WuTDHD4X5wIWQZT/XYpS19NU0fVnzNn6LHhqtcOVxCpFV3k//agfMvd1AVET1fVElJAP/ucGy62gpwyfld2JQR9/j2GjgrlMUbh6xv482idbD2plWAPPifjDvPAvyS3jlhpuaYEaj4TPw9jm5t8L7VyokBxH3PnGWwLjaixWa/dqJddHdfD/s2IT8vBLcMsP5xy3r9gYbuQ1GKwiDCe1Ogqlq6tVa4daTrCuYArz4U2g+qsotEtz1mYn+j3ix0z+vsJpLjlbYPcXE2cseRsrTFwJezUm3DigAZ+Xp3/OzVthvDxHB9R/o6/y9s3pZdpF1vcQmtqtx5csbrD/qzi4CdjsIn3DKyf53WLL1vpaaA2QV6PvulAzMusFAm0SF2TfrP7p/41KFgR3r9mC4cqJ+/ZX7R3EQwWgAsCsvuHZEVF0w58NQaJ+k8PWNwf16seXtJvJL/AcuInhzgYkTb9+EfosuQKcua9GkRw6WxxwesM9NUZ2Bresge8OlKryC+2eaMK72wrjaixa3evHVX8Gf53Xb2TYYLcjjIx2ivDY7TEmYJX/Vgt270O6jGI+h0DTGuixHc43ZUHTXvDXttrkerOTmPi2tSn5enmaXaRrj25ZVdUhS+N91Btrt/bwg0PnDbnszGI2IiIiIiIiIiIiIiIiIiIiIiIiIiEKNwWgEEdkD4AJU/5v0HgCGaZrU/HNtm//VrVWzjYM/ASciIiIiOjRIsMFox42Gattl30P1rxOAw3pZr2PBl/ZjKPHNdqzQBBN5griblNJiOMhvDjlZ8iPkoUv0FfoPhfH891DJrepvUFaiNDN9AaB9t/obRx1Se4P77FyZ85a2LKvQenly3j/A378Bcz+D3HY65M+5wQ4xKFJcCEn9B9izS1tH9TjSb1mjKIXXLjGQ94KBDY8a2P2MgT/v96B7S+vZyOr6J7X991n1AX4bn4WCFw2kP23g8TFGtaC/1vHWfWZLLIq3bQV++xZy37mQ7z/QrqO+NVTYh1sXDPJt8yfG1P/ANkZ1RjkiYELhpIkZrtpu2u37fiAGo3mDDM27f5TaN+m/pp/W1v78ZJqCk58zMeV7wfLt+nrPnqdQNNXA9MsNJD53BTB9Uq3XHYxb9ryoLVuyxX57bMkC7E7p62vsjtpgtMa2q3FlYEd92ebM0K1He2yqcm3UJsG6TmkFsDHDuoNT+wAbJ3kwtLtvRx7RS+HGE/136hcvULh8SN1/rN+7tcLgztZllftHSZDBP6kBQgOJyJlgz4ehcGpfhfJXDBS8aCD7OQN/3Of8uDTiGRNZBdWPhY9/K7jqHcG8vI5YHd0L2yLbO+5vY9Teg9WnLwEA/vOKice+3t9/ZgEw+iUT0xeaKC5zf77Xne9sg9ECBAQRVVNus8OUhlnyVy3U5uOgBM1vonOKwuv/cO3RfGZR07hpmgN4FW62V1ru/sq5xdYN4zQfOZ3SR2HLEwZ2PGkg61n7Y3mOTU5foGC0cLiPJCIiIiIiIiIiIiIiIiIiIiIiIiKiAwuD0QgAICJLAcyusfgUTfVwDkb7L4A+Lr/ODNG6iYiIiIhqTdK3AeuXBdVWTXjaf+GQM6wrL50HKcr3X/8Xr8E8+zDISc1gXns8KnanWzaPcHE3KTs3wbxuGOTkJMiYTpAZzztvHALy+kTbcjX6yvoZSACqUROg91H+BU0TgYEj6n9AdaHvsUCLtrZVPDBxccHHrrpNqqiSeFNeBvl0ajCjc03StsC8YTjk1OaQ83rYV7Z5DaMjFTq3UEiKtU+xUB4P1FRN6JtpQp67BY2jFRpF+ffTRhMGBQCpEftDAeXdybZjqE+68CEVZsFoAKCUwp2nGJj87/odXLmKwj9RHfFjk2H4vaCNq7Y79wYTuQ1GKwyDCe3BhuY1iVZ46EzrSrvyUOvwzts/FSzeErjejcMUYiIVZNPfwJwZtVpnbaR4M3DjHuvj5bo0+7CGtWn2fa9O3f+ziNgEo4XuPdO8KRATaV2Wlhuy1cB0EETUWhOMBgArd1ov79Xaf1tMOUfh2fMUBnUEju0MvH+lwvgT6u84M6yH9bo+Xer7rgtGu2KIwn+O1I8zlK8H0aFMdz4MJsQ6GB5DoXG0QnxjhSM7KPx6l4GTewdu98cWoPmtJtre6cWXKwQv/mTi/74I/hy8PqorAECmTcK6XYKZK6zrjZsmSJhg4rTnvcjIc74+XU2PAqIjrMuKgwyOpENUhc0OU3JoBKMFurpJ0ITpfrkivILRdNe8NRWWwi8gsiY392lVQ2fzSqzrxNn8Nl8phdYJvuO5nZwi/T1ToGC0QgZGEhERERERERERERERERERERERERGRSwxGo6q+q/G4n6Zezalrzd2sRCkVC/9gtByrum6JSIaIrHLzBWBTKNZNRERERBQS6duBVh1dN1N3vwaV0t5/uS4YrbwM+L16NrLM/Rzy9I1AZqpvxuqq31Hxv9ctmzsNRpOyUsiNI4GVCwGvF8hMhbx0J+S795x1EAQpKYIsnw9ZswTy9yJg9WL7BsP+XWdjcUtd8wgQU2XGr1JQ4ydBRWiSXg4wKiICasIzgEeTILBXi1JNaoxGsjer+oIFX7odmiuSuhky9zPIud2BFQt8+7ady+6FSnR166zX9xigbRfrsp8+haRutixqHa/vMj2ixf4HW9dCcrP0letRsOFXDemOkw08NLp+B7guqjt+bTTYdbuCUiC/RLQhTzoNPaG9wiv4/R/rMidBMD1bWr8+ZRVAbnHw40rNETw3J3B6Qf/2gGEoiAjk9QeCX2HbzsG1O+ZUqE837ns4Kv8by2q78g3kFOmfz9pd9s/1h9WCCq+vTkEp4NXsZ4makItgKKXQSnOsS8sNXWiGrqeqx6aWcfoQR10oWLMm/suiIhQmDDew6F4P5t/lwQWDDBj1eBDsnqIve/VnUxuAcdRhwIxrDHTWnPpSc8IrxIToQBVu10rHdFb4doIH301wdrOYmgOcOdXEhI9qd0zYF/JbUoQF6yts65Z7ge9WAWe85PwCyC6st1GUdVkxA4DIDbtgtNJaXKCGGbt3eqDw6+RY6+UzVwAfLzFRVhEe1xZ7Cp3XXbLVvjzoYDTNLhMX47w/nXKv/vgWKBgt5+DJ+CMiIiIiIiIiIiIiIiIiIiIiIiIionrCYDSqakuNx7pZ2xtqPO7gcj016+8RkWyXfRARERERHZRUv2OhZqyFmvYn1BUPAt3+FbhRoyZQoy6zLutxJJDUyrJI/vyp+uNvpvnVeTZmnGXbCE/gYQEA/loA7PYPuZIfPnLYgTuyfD7kwj6QG0dArj4WMv4E2/rqvRVQRvjcGqt/nQD12q9Qlz8AXHgb1Es/Qp1xeUMPK6TU8WdCvboAuOh24PgzLeskeDWpMRp+wWh1yJx6N+S8npAHLnTcxrjywZCtXykFHDdaWy7n9YSI/wzqJtFAjCZfL8uTXH3BtvW1GWLIhFvYh1P3n27gp9sMDNj76UenZPv6tbU2qhvWRXcLqu3ObF8OphsFpUGtKiR2ZAsGPGYiv8S63Mm+kRKnL0vPC25cADDjD2cb8tguCpKbBblxBPDr1+5XNHA41B1ToaYthZrwtKum6ooHoZ74HCqlHdTVjwAAupfp3+/rdun7Wr7dfl3ZRcD8vZ8gZtsERCRahIHVhi4Ybdby0IVl2AXkVIrwKKQ0dddvUoi3RSh0baF/U41/X7BFc/qtPN/oXo9Ud6d5ItLQXis18O3NSb0V1j9af4PI8iT5fvBWYPVGZyfzP7YAf+90dm7QXSsZCmikub4uLg+PkCY6QFTYJEr9Maf+xlHH7O47AgWjHdlBX+H81wTd7zfx++aGf9/tKXQ+hnd+s6/r5j4tqxAoLvM10IU9x9f8l2VBSs+3Xh4oGC2roOFfHyIiIiIiIiIiIiIiIiIiIiIiIiIiOrCEz+xvCgc1/1Ra9yfSa2o87uJyPZ1qPF7tsj0RERER0UFNKQXVuQ/U2HthvLkI6pbn7Ou/tVhfZhjA0adYF37/AczXHoD50p2Qn78AFn1frXhJTH+kRra2bOpxeDcpbz5sXbD4B2cduCAlRZDHrrAMYrOibn0eqkOPkI+jttRhvaDG3Qdj/CSofsc29HDqhOr+LxjXPgbjsY+Bwaf5lSeaOa76a12R6rdMvN6gx6djvnwv8NGz7hqdeE7Ix6E0gXL7fPmmfxulkBxrXT2zMkxiL1n4TbBDCynTtF4e7sFoADC0u8Li+zwwX/Ng4yQPXruk7ga9Lro71kXpg9GePU+/7tRcwO309MKCUsjnL8Mc0wnmdcMgv31rGcZXFyZ8ZOKvHfpyJ0EwLWzCqmoTjLYqzVm90W13QU5vDaxY4Hod6p7XYTzzDdToK6GiY4Ax1zlve+vzUGPv3R8GesGtwPBz0aYiFU3MAss2a6dMhnn5UTCfuh7y9qOQDSsAAF5T8M3KwK/5zBW+OtlF+jqJjR0/BUd0QVyzVwOmLkHIJafHpraJ7vptkxB+B7ceLYFIp2G4VcRE+p5La81zSnN3miciDW8YXyt1aaHw5mX1M5BMT9K+65nSHOcn8zlrnJ0X7AIx9cFojodBBFTY7zBSHiBx6iAQ6Ghxej/7GluzgLFvmyiraNjwLbvr3po+XCy216duL103Z/q+52lCpONinPUzcbT9tn70a+uBFQfYTTOtbzmIiIiIiIiIiIiIiIiIiIiIiIiIiIi0GIxGVSXXeJypqfd3jcf9lFJupjHWnNlfsz8iIiIiIqpq9FVAp97WZWdeCdXWPqtYtdOUlxQB704GZjwP+b/z/Iq/iz1J22eE07vJEhezQmvrt2+BXVud1R15PtTZ19bteMiZlh38FsV7c111MazwZ/+FxaGddSsfPQd88LTrdmrU2JCOAwDQ+yjbYplyPSQ7w2+502A0vPck5Nevgx1dyOgmgodD2IdbVx5nYNtkAy9fpHDTcIW7T9U/iZcuVPhugoHnz1d4bUw+Xkm7HlPS70JKRbpl/b+je2FjVGfLssfPNDFhuIFmTazXtW2PaEOedAp+nw959mZfCOXKhZA7z4JMvLjOw9EKSwWzVtjXcbJvNI5WiI22LsvIdz+uSqnZgZ9/35KVOOGemv8vwBn16Qao0y6tvswwoKb9Gbjx6Cv8znkqIgLqwXfgmfA0upVttGy2Nh3AhuXAzDcgbz0CueoYyPcfYH06kFUYeLULNgQORkvQ/VuGIKXE6XeCJQ4vEQJxemzq3tL5wSrCAI51+68n6kF8Y4WOSYHr1VQZFKQLqkvLbdjQEqKDhe545AmTi6XzBii0jAt23je8AAAgAElEQVRdf31LVlouLzViULT3V1Rp6c7vP52e93WXOIYCYnTBaAd/jhWFUkWFffkyi/vdA5Dd2V8FOGwNcXCdtC4d+KGB/xXXHgfXyFXZXZ+6vb1at8v3PV8TjNa0kbNzwzn97et9skQs7/0KS+0HzGA0IiIiImpoHTt29P1zsr1f8+bNa+ghERERERERERERERERERERUQAMRqOqas6sTrWqJCJpAP6qsigCwBAX6xla4/G3LtoSERERER1yVEQE1CMfAq06Vi849VKoCc8G7qB5m6DWm+FpoS37V3uHk+1tZnLKb6G9FZCnb3JcV51zQ0jXTcFTCTUzuoFSpUkt0hhQYhEMVBQ46UBS/4H5yDiYx0X7vq44GuZlR8KccDLMe86BrPrdV++XmZCpd7kaE2IToG5/CWrQSHftHFBKQb29xLaOjG4HqbENdMFouyP8XwP5790Qt4lZIaY7ehgH6KdZbRMVrjnBwHPnGZh0toGvbjTQOmF/eaNI4NGzFK49XuGk3go3nmjgip67cGXO27hlz4t4JGOiZb9LGg1AkWGdfDY4bgcAoEMz6zGtT9eHqugUVnj8F/70KfDrV+46cmlDBuANsEt6HO4bKZqQlvS84MOaUgPkOTYyi/Bm2jUwbCMhLBxxvC8ULaW9ZbHq3AfqwXeAFu20XajzJlgvVwo4+1p0F+tEhvVRXasv8Hohj47D9uXrHA196TbgkjdNjHnZ+oWLjQYiI0Ib3jOwo77snd9CE8blNBitW4rzPgcdBiQ0Do8go5oW3eP+oFsZFKR7r4VDMMY/mYLL3jJx7BNe3DzDRGoOw9rowKO7VAuTXDQ0jlb4+qbaXbhFG17cVvAyStY0xYydF2vrVQb9pu0pd9x3WYAsqkq6475SQBPNbUsRg9HIjYoAO8zWtfUzjjpWmxxlw1CYd3vg40morveCZRcIbGX7Hn2Z2/u0dem+BrlF1g3jYpz106u1wpc36Ld1QanvPrKmQMe9cLj+IyIiIiIiIiIiIiIiIiIiIiIiIiKiA8sBOpWUQk0pFQNgTI3F82ya/K/G43EO19MD1QPYCgHMdtKWiIiIiOhQptp3h/HxOqjvdkN9uhHqxzwY974OFRkVuHFyq6DWWab0fY8d7DQYTZ9iI3ePgcz9zO2wrPta8CWQm+ms8jGnQvUaGJL1UgjEJ/kt6la23nHzm7JehOXeGCAYTVL/gYwbCMz+YP/C9cuAzX8DS+cBC76EXHs85N0nIfed62gs6s6Xod7/C2rGGqiv06DOvMrx83BLdekLHDvKto7cMBzi9e57nBxr/b7N8vgHo2HbemCbs/CjuuIm7EPKSrX92JU1pNP6KmyfbGDL4wbWPWIg53kD955mwKj6BPdk7PvxyJKlrteR+M9iAECPVtav/bpd4nrCfYFhnbAn377rriOXrn03cFCf0yCYFk2tl6fnuRhQDf/YnII8UoE3U69B/5LlgTs65WKoX0qgPlkP9XUajBd/0IaiVVIjzoP6aDXU3a/5Fx59ClT77vq2Hg+6tbYIuwOwLrqb5fK0qZNtx1PV+78LcjQBEYmNHXfj2Jj++p3gv/MEi/+pfViGNiCnRuhdj5bOk4k6JoVJipGFxCYKL5zvbnyVwWhJmkDOrMJaDipI+SWCknLB3zsFRzxs4t1Fgt82Ay/8KBj+tIkcTZBIICIC0+3BlCgEvA6DGhvSv9orrJzo7leRL+y6BasHvI21jxjIfSkST753HSJnrELyhwu1bbIiklCqorBSDnO8nrQAoaaVdGFOCkATzS1zQXheflK4qrAP9JPtG+ppIHXLLhjNyWHr+G4K/9JnAQMAfl7fsOfkbJfXOFmF+rG6fRrrd/m+55VYl8c3ct7XqH4KD43WvyrLtvkPrjBAMFoWg9GIiIiIiIiIiIiIiIiIiIiIiIiIiMglBqNRpbsAtKny2Avga5v67++tU2mMUqqrw/VU9bGIaP5Em4iIiIiIalJN4qBS2kFFRTtvlNw6qHWVqUjL5d1SfBPcHdElG+0tkxnPBzGy/aSoAObk8ZB7znHW4D83QD3yYa3WSSEW7x/KNcBFANSjuydaFxQGCEb7dGrA8DQAkNfudzaQgcOhzrgcqn13qNadoIy6/8hFTfrUvsKGFZDXH9j3UBdQs9sqGG1v+4akmwheNexDvp4G89xukJEJMMefANmyZn/Z3M98ZSPiYV41GLL2zzoesXtKKbRPUuiaohAZ4X9clZfv3fdz79LVaGRqEqY0EpZ+BQDonmJdvnaX+wn3RYYmzeqXmZAAoQ7B2pUrWLwlcD2nQTApcdbLgwlGy8gTnPKcF/maT7c8UoGftwzHufnOgkDVeROglIJq2QEqrpnjcajIKKhRl0E98hFw5DCgUx/g/FugHp0RsG2P/tYhMhsjO6MC/qFpaREtHY/LTpcWIemmmqYxCsfbfEL54KzAAXuBaI9NU8bDPL0NzFfvh3i9GNDReZ9tEms9rDp1/TCFNy51nrQUHeH7ntREE8hZz8EYizYL+k30Iv4mE42vN9HvIdPvPbsuHZi53H2Qyp9bBcOeMhE13kS7O72Y8Uft9zEip9yEyDak3q0VFl6fi5YVu/zKUirS930NLlqIdzKvw/XjeqP7VVegW4pCVISCMgyo1ochMbmp9rllepLwW6OjUKgJcLWSmuPsPW93TRobY11WyGA0ciPQNfTBEoxmU6YcHreG97SvmJEPR/cNdSXbJujMil1YrF2QnJV16b4GumC0OBfBaABw/+n6zzR25vgvC3TcyyxgiCwREREREREREREREREREREREREREbkT0dADoNBSSl0CYLaIpLtocxWAB2ssniYiW3VtRGSDUmo6gMv3LooCME0pNVwXdKaUOhPA2CqLygA85HScREREREQUpBZtg2pWpqIslx/X1cVMewkQDrHqdxcjqtKtCLB9PeS6YUBuVuAGHg/UA+9AnegwQI3qT3yS36JoKcNxhfMxv8lxtk07lm1BYym2Lty5Ceg9yG+x7EkH1i0FPnkxqOFaatfVUfhQqCnDAJ74DHL3v/WV3n8K8p8boZJaonlT6yrbI62PEfLwZVAjzw/BSIOjC6FQq3+HRGUA2RmQp27YX/D3IshNJwEfrvKFwj1w4f6ytX9CbjkVeO8vqKTQhDqFgmTt8u2Ppf4fpcjiH4A1f+x7HAEvjihZgd8aH+O4/8SlsyAFueiasRKAf7ud2YLerazbRkcApRX+ywvsAke2bwQO6+l4fE61v8tZ0JDjYLR4Batohm173E3WFxFc8LqJuev0dVZu7o9uZRuddXjW1VBd+rkaQ01q6NlQQ8921ab7MX2AH/2fe5kRjS2RHdClfHO15btCFIw2oGPdJPcM7a7wywbr1/L7VUBOkSChcfDr1gYRmeVAbibw3pMQpXDY1Q+jVytgdVrgPtskBD2ceqGUwuVDFI7rKjh2sonMAMFmSXmbIX/tQrPNAHC0X3lBKVBaLoiOrLv0psJSwYodwKpUwTXvOntv/7EFuGyw83XkFgnOnGoidW84yM4c4ILXBS2aCob1UNhTKFi6FejeEmjXLMySquigoAvN8YTZv0SSjX9h0Cs3YseGRfYVz70Jxo2vaos9hkJiY+sgoT2eZihW7lJ/duU6q6c7giil0CTKukYBg9HIjfIy+/LtDq8lw5xd0JfTYLQeDi5DZy4XHN2pYc67e9zlWGOPTTCa2wDr9Xv/MiBP8xFJnCbI0c6InsCcNf7LV6UCc1YL+rYFUuJ827oowG6c7XLbEBERERERERERERERERERERERERERMRjt4HMFgFeVUp8A+BjAPBGx/LNqpdQAAPcCqDlbcieA/3Owrgf3tk3c+3gwgDlKqStFZG2V9UQDuBrA0zXaP20XvkZERERERKGhYhpDOvcFNq101a5cRVouj/S46MRu5mtlFa8XyuO8UykrhUy6EvjxY2cNzr8Zatg5UL0GOl4H1aOE5paL78l6MmAw2jl5n2nL5JGxQGEe1NnX7F/2+cuQF+8AKsqDGakldd3jwJlXQTXWpI7VMXXs6ZA+RwN/2wRNLPoeGHUZulhvaqyP6govDHjgn/YjmWlQyZrkrDrm1YQPqTkfQT55xbowOwNYPAfyyxf+ZQW5wK9fAaOvDN0ga0E+fgHy33sAr0X6mMbAkj8dB6NFmyVoJCWQSVcieVssYNEuv0RQYVqHBsQ1Anbn+y8vVI31K926NuTBaDuzBRXOctEcB8F01rwX1u1y1r7Skq2wDUVLqshE57LN+gpVqIfeB4bZhBzWoe4p1kFxALAuuptfMFpaqILROtRNYMV/Big8/JX++uOSN018eaObi5nqdD0bVcNgv30XcuVE/Ku9wuq0wNdCbRIOjNCsrikKy+438OavgrVpwEd/+D+3LmUb0f76fhAAzaJ7AZ2WWPaVVQi0rqNAuDmrBZe+ZWJXnrt2ny0VvHRh4HqVXpsv+0LRqpo618SGDIXrP5B957LxQxWeP08hwnNgvNZ0YNCGyIbJbiZFBZA7zwJWzA9ceeBwqBueDFgtKdY6GC3T4x+2HIhVP1a0gZgKaKIJGgoUEERUjTfA/Wn6NkhpMVS0u/C/cGN3ReT0sNW9pf66tdKsFYLHxzgdVWhlOzyuVMqyCZvVfZzWJBootAhf3FMIZOYLcjXBaPGN3J8cWidYb+9pCwXTFvqW3zdK4eHRCoUBjnvFofsYhoiIiIiIiIiIiIiIiIiIiIiIiIiIDhEMRjs4NQJw6d4vUym1AcAWALkAvACSABwOIMWi7R4Ap4hIwKmgIrJDKTUGwPcAovYuPhbAaqXUnwA2A4gH0B9AzSmnXwG4393TIiIiIiKioA053XUwWpmKslwe5eZO0vQGrlNRBnicT/CVaY85DkVTX+6ESkh23Dc1gOatLRfHee3TTI4t+hV37HnWto48cxNw5FCo9t0hG/+CPHtz0MP0k9QK6vPNUIbDJKY6pCZ9AhndTlsuOzZCAeihmUReasRga2R7dCrf4t9400qgnoLRSssFny8TLNnqmwS+Os26XqxpP9tcPnoWWL3Yuuy796EaOBhNVv8BefcJYMFXrtseWbzUcd1Ec29az/xZSIj5F3CYxVhgICe7GL6PkqqLjbYORisyAgSjhdjUeYFDpSoZDuf6d2th/V7YugcoLhM0inLW0RfL7Md2esG3loGD1StdDnXnf6EaMMWmcbRC+2bAtj3+ZeuiumEUvqu2LMOjSZZzaWDHkHTjp3drhUlnK9z7P+vX5+uVwLYsQfuk4La5Noio6j6VmQoU5qJVfLyjPusqIKwutElUeOB037a7b5TgjEfSscXr2ycSvNl4f+dl+8JNkiuytP1kFQR+3hl5gpkrfOFjJ/VSOKZz4Ncsv0Qwdpr7UDQA6G71abmNh7603hk+XwZ8XuP48PI8Qf/2wBVDwiSxivYxTV+AnVd8AVhe8YWzVvsKsMx03Ub827rswxRgyVbrfTAMLk8BADL5GmehaADUk7McnQuTY4H16f7LszxJiJESV+PbU+h7LTwBLiB0Z3ulgCbWt8woLHV+/ULkKLh7xyagc5+6H0sDcXop3Ls1EGHANjh5TRqwPl3QLaX+z7m68K/YaKDAMsxMf6zQXXP2bOkLaLayLh3I0xwK44LI1Wvl4FL2sa8FRx+mAgZCMjCSiIiIiIiIiIiIiIiIiIiIiIiIiIjcYjDawc8A0H3vVyA/AhgrIjucdi4i85RSZwOYhv3hZwrAgL1fVj4EcJWIOEhIICIiIiKiUFBnXgWZ/rirNtpgNI+LTswAgTCAbxJwtLMZmrJzE/DuZEd11d2vMRTtAKDikyCdegObV1VbHiv68Kv7B6Xi3umnIhIVAfuX2R8BY++DjBtY67FWpS6+PSxC0QBAJbYA5uRCRmhmLYvvfdjNJvBlfVRX62C07RuAo06q/SADKCgRnPaCiQUbA9ftUhagUobNxxqb/3Y3sBCTz/4Lef5WX/JbEHqWOQ8eS/Rm7/s5wZujrZedkQurYDRd0Eex0RgCwCpmQP7+zXJ5sMa/b+LVn0MfjNa9pfVyEWDTbqBPG2f9zFyuH5uC4KY9L9m2V09+AXXMqc5WVsd6tNQEo8X28/0bhSoyPbU/tyY1ATok1bobrbtPNTB/gxffat7y7y4S3DcqyGA0zaWNUTMELycTbRKdBaM1bxrUUBpcr1bAii1HYR6OQJmKxkkFP6CJFO0rb+a12Kn2yrLPuMSGdMHIZ819++VDXwqmnKNw20n2597PlvqC1Opaep64Dvi46h3BOf0F8Y3d7XsiYhm8VZtALb8yyzZiH/7lcL124/QfiyDgWB0sq9YuQP2DkScM8vdk1e/AT586qqum/QkV4ezXlUlNrJdneZKqXfs4YQqQUwQkxQauZ8VQQJNo6zKrACQirYrA97XYsfGAD0azuwVyethKaKwwpr/Cx0vs7xFmLhfccXL9Hwx155UWTa2PCxkWQdSVdMeeVvFA0xgg3yIAbdk20Y6haYx+XTptHIb3TltoojDAcY/BaERERER0qBARLF26FGvXrkVGRgZKS0vRvHlztGnTBkOGDEFsbIAPIsLY9u3b8ccff2DHjh0oLi5GcnIy+vbtiwEDBsCo5e9MMzIyMH/+fKSmpqK4uBitW7dGp06dcPTRR9e6byurV6/GypUrsXv3buTl5aFZs2Zo1aoVhgwZgqSkOvzlBRERERERERERERERERERucJgtIPP8wB2AjgWQAcH9QsBzAYwVUR+DGaFIvKNUqoPgIcAnAcgUVN1EYCnROSzYNZDRERERETBU83bQEaNA75+23GbMhVpuTzKzZ2kOEgbKA88O1IyUyHvTgY+f8XRatXlDwCnXuKoLoWBY071C0brVroB8d4c5Hqqz8RtGgPc0XO9o1A0AMCKBcB374ZqpD5HnwKcdW1o+6wlFR0Dad8N2Lbev9DryyWPjVFoFQ+k5fpX2RnpnwQlAF7/qxm+Tfe1v/FEA8N7Wk8uX7RZ8NT3JgrLgFP6KIw/QSEqwlf3l/WC134R/J0qEAG6tgCuH2ZgWI/9fb27SByFogFAjzKL51hVZqq+LEmTiBVi4vUC370HeeLq/QsTWwDZGbXqt1vpBsd14737X+gE0+JF32tPESyTCHRBHwBQqqIRIxYz3xd9DynKh2pc+5Snjxa7C0UDAKdzYzolAx7DOrhg3S5nwWjr0wWr0/Tl73SeicPXrLQubN4G6p7XoAaOcDbgetCtpcLs1f7be32/84H8e6vtu7sjah+MNqw7oFTdhlXcfpKBb/+2vg75coXgvlHO+yqvEEz/TfDJEsGuPOs6Rs1rntwstIrv7Kh/XdBPuJLtGyCTxwMr5qMJgFH4zrJeFMrR1JuHfE+cX1lmgf06HvtG/ML67v5cMHawIClWv+98tDi44EkAyC12Xvfrv4JbT+LNJjoluwv+0gWjEOk0dHavpG6GXHu8o7rq/96GchH25Hv/+78psjzNEGV1bRJAZkHgYDRdmJNSQKzmeilQQBBRNQ4+E8HunXU/jjoWZDa0n1cvViguE3y9Un+OvOszwR0nh2Z9bujG064ZsDnTf/mGdH1fuu1lKKB7CrBkq3/ZcpuMcN3xys6AjtbH3Jo+Wxq4LwajEREREdHBLjMzE5MmTcJ7772H3bt3W9aJiorCiSeeiIkTJ+Koo45y1O/YsWMxffr0fY//+ecfdOzY0VHbefPmYdiwYfseP/jgg5g4caK2ftXP7E844QTMmzcPALBw4UI8+OCD+Omnn2Ba/OeQlJQU3Hfffbj++utdh5gtW7YMd9xxB+bOnWvZd9u2bXHNNdfg7rvvRkREBCZOnIiHHnpoX/ncuXMxdOhQR+vKysrClClT8N5772HnTuv7bMMwMHjwYDz44IMYMSJ8fodDRERERERERERERERERHSoauDpERRqIvI/EblIRDrCF1A2BMAFAG4GcC+A/wNwA4CLAPQHEC8iY4INRauy3gwRGQ+gJYATAYwDcA+AmwD8G0AnETmGoWhERERERA1H3TEV6DnAcf3yUASjOUlyqLCfHSm5WZBrjnMeivbpRqhx90E1dCIAOaY6+YchRKEcV2e/4bd8/FCFJmU5zjvfsgYy+8PaDK+6Y06FMWUmVEQYZs2362q93PTu+7FNgnWVnRGt4YWBArU/nee2FpMxfte5mLUCmLUCGPmsiWkLTZRVCPKKBbJ3pvbXfwkGP2Hi82XA96uAW2YIrnrHV/bDasHIZ018sFjw1w5g5U7g82XAiGdNfLty//HhK4cBM80qspDszXJU11JC8+DbuiCv3V89FA2odSgaAMRKIdo1KnRUN9Hc/z6pGpJW0x6xTgOxC0YrVo20ZXLjyMCDC2BPoeDCN9wnJxiarKTKfVUqygEAkREKnRpZb5N16eLXzsrM5fqybZMNXBDzq3Vhp95Qn20Kq1A0AOihyQxcm2FAzVi777EJhSxPkmXdRzMegAdey7KqlALuOa3uz9FDu+vLFm8BduU638du+1Rw9buCH9bo6xioGYyWiXaJgcPfPAYQr39LhR1J2wK5sA+wYr6j+knePZbLswrst/87v/mXe03gC5v3XnGZYF6A7Ew7boLRZq0IPt1lcyawNQvYkQ2k5gDpeb5wpuwiIK/EF6hUUg6UexmKRsGJacDLVMnPgZzX01FdddNTUCdf6Kp/XYhZlqcZio3GlmWDOur7y3JwWWUXTqS7XipgMBq5sfca1Y7YhT8fIOxOaW7ycuMbK8y8wYPMZw3ceYq+4Ys/OQjqDzGr4GUA6NHKepxZhUBmvvWW0V0DKAV0b2nd35pU/VaOsf6Iz9ZRh7lvo1NUZn9/RURERER0IPviiy/QqVMnPPvss9pQNAAoKyvDd999h6OPPhrXXHMNKioc/hOoBjRp0iQcf/zxmDNnjmVwGQCkp6fjpptuwjnnnIOyMuepyM888wwGDhyIH3/8Udv3jh07cP/99+OEE05AerpNunQA77zzDjp16oTJkydrQ9EAwDRNLFiwACNHjsQll1zi6vkQEREREREREREREREREVHocZb4QUxEckTkVxH5SESeF5HHReQxEZkqIh+IyDIRCTxb0d06y0RkrohME5EnRORFEflcRP4J5XqIiIiIiMg95fFATf4COOtqoFMf4IjjoZ79FjjJejJ6mYqyXB7lcbFSJ5MeywP8QfG37wAZOwL3c+woqPdWQKW0czY2Ch/tu1kunrT7ATwR+yGOaAcM7Ag8eY7C42croEAf8uTHMByHtwAA+g8FDj/Of3mH7sBFt0M98pHzvuqb0nzMI/snE+iC0R5u/n+I7lmAhB670aHLBrwTfxFeTbzKr97l0wQx15lImGDCc83/s3ff8U3V+x/HX9+ke9CWtoyydwGZiiKCIkNRZAiK4p4o4h7g1qu/K6I4roqgXlCc14kILtyKqCiKomyQPbso3W3y/f0ROtKeb3LSpgP8PB8PHuSc70yanJyc9vuOG8ckF6OeqbpY4ZUfNSu2ah5b4qbY4sqD1nDX++Xt1ttcy9C34Dd7FU3y7YWK1YTeux1ef6x6jUPDIC6x/F9YhFexuu9lurSNNjT2luDKLLsdgosY10HLerkO64SRKOu3AADyHT5SnNb/hrZzzPbhuIeqF2LgrPAS0Hu3475nIu5B4egTIzz/nxyDe1A47ufvpfMe6+Cy9Zuy+Gy1xjHJVfYcd0xy8eVa7/czUzDace2gZYKP41THXqhAkh/qSJem1nPafxDSSqLghJEAZDoTcCnrxJ1huV/yqftGhqRCjxaefa0SyoMuHAqGpMKyaQ76tK79x0ApxYq7zZe/7QYyrt2tmfWV/7pVgtGy0jm6DcT4CBkESIwGhynVrwHSL9wfUH1jMJqPw7HbRxrY56vN7T5fA0U1WEtoNxituETzmY95CFHfTuhY+8cU/cf3uK8ahHtoHO7zjkL/8gU6cx/69Ka22qvbn4Ozrg143CRTMFpIErnKOhgttbki0hAIlGZ9euTF9JFWKfMxPleC0UQgXP6D0UjbXfvzqGW+Lg9V5/Q4PkpxUX9zw0c+qfsQLlMwWrfm5jZr91jvN83eoaCNdU4xm8z5C9UKzVRKccmA4LynaA2FDT/zQQghhBBCiIDNmzeP8ePHc/Cg90WGDh06MGrUKM455xyOP/54nE7vX7A///zzjBo1qkGHo82cOZO77roLl8vzi74uXbowevRoJk6cyODBg4mI8P4d1oIFC7jnnnts9f3YY49xyy23lPVdqlu3bowZM4YJEybQv3//ssdt2bJlTJgwoUp9O+69914uvvhisrOzy/YppUhNTWXUqFGcd955nHbaaSQne3+50quvvsrpp5/eoH9GQgghhBBCCCGEEEIIIYQQQghxpKvH740XQgghhBBCCFHXVEIy6panvXcefTK6uBC+etdrd7EhGC00oGA0G+E2Jb4XAeuV/kOt1H9/QHXpa3dWoqExBKMp4Nb9M5n6+AVe+3VuAMFoGTYTt0JCUR/uRkXF2u+7oXEaXpwVFgmkJCjMS6w9doa24LKUF2o8nXsXulniIzhm5XbYvF/TMgG2pNvr8/ScT2o2qZysmrW347uF1Wqmbn0GNaZqGF1lqWluPl/jf5F/gsv7vsa7D5DjtP/8jg4zP1cKlJ+kp+8+gPHX2B6rom/WaZ8L+n0pzZbSbjf6XxfBqmXWFV+ZQecmD/Ehp1cp+uS3Al5eVfW9a9jjblb/y0Fqc8XebM0Pm627HtP70CRMwWgxcf7uRr1IbWYuu/JlNwsGjUZ//yFpTkMKA5Bcsp9jNs7n5BdmNZjwtz6tFanNrAMnFv+hucIiB7Oy+T9oWzmvjsqvlwNphIUoZoxXTHnd3IEp5Kch0kWF8NkbAbVp7LI+wPsKRsvyEVAWYQg3Aljwm/lxdjpg8XUOTu2u+PQvzWn/qfo6zy4ArbXf5++OLMi3kWEjRH04uQuM7FG7Y+iMvXqme70AACAASURBVOgpQ8p3bN+Avqnqe6qJ+t9qVIsO1Ro70ZAPm+5sTJ7DOhgtKgwSY2BHZtWytByN51OHma9womhDkGyOBKOJQPgLiwfYv7P251HLfJ1OVffMsWtzaN0YtlnksO7Mgqw8TXxU3Z2XmrJdU+IUjSI02QVVy7ZmaAZaPAKmkDWlzIHn+3yEPfo6h/Kli4/PCYGa9ZXmllMaxucEIYQQQghdUgL7a/YFH8Km5JaokCPzz5RXrlzJ5MmTcbvLT+B79+7NrFmzGDBggFfd/fv3c8899/Dcc8+V7fvkk0+49957eeihh+psznatWrWK777z/I5+7NixTJ8+ndTUVK86mZmZ3Hzzzbz00ktl+x577DEmT55M27ZtjX2vWLGC22+/3Wvf4MGDeeaZZ+jevbvX/v3793PvvfcyZ84cvv32W1avDuwbK+bPn8+DDz5Ytu1wOJgyZQq33norrVu39qqrtWbhwoXccMMNbNu2DYAvvviCe+65h+nTpwc0rhBCCCGEEEIIIYQQQgghhBBCiOA4Mv/iQAghhBBCCCGEbUopuP9VdKVgtCKsV02GBfJJ0l3zYDS2rfdd3newhKId5lRUrHmR9JY16LyDXoFlOt1m2FkgBo87vEPRAJTDen+FgELTAura8PGf/uss+kMzorsyLvquKNKdx9kH36vZpExhVUGiC/LQ/7klsEb9hqIumIrqO9hW9S5N7XUbXykYLc51gB2hLW1PK8pH9lm+ivTZVq/6AVXNYLRHPrXxZDDIK82U+OULcyjaIV2KNlju3xdifoBnfa15eqLiizXmoKyx/oLRYuvwRRiAlHiICbcOcvngdyg5fwzOmGnsdyUZ+0h2pYEugW8Xwklja3G2gRnVS7F2T9Uf2GerIb9IExnmO5zhrV9spKIBjkphsDorDQVMHuzgh01uXv3Jup/EwykYbd4DAbdJMgSjpf29C7A+Jq3Zbe4v3BDqsStL89Iy88/ql7sc9Grl+VnHGQ5hLrfnNRAbYR4fIC3Hd7kQpZyOQ/9UhduH/jmUuczXPoehLDpccWJnOP845fe4VlN6TGv/lawMHoe66UlUY5snMxYSY6yDW9OcieQ6rFPTosM9IZTWwWj+x/T1kTY63Ho+uRKMJgLh75oIwM7NtsI7GzJfQbPVvVtKKUb1Usz6yrrzL9bA+KOr13d1mD7XOh3QqjH8tatq2U6LY5PvvhQt4v0HnldW3WC0lCDmOs/5RnPLKcHrTwghhBCiRvbvQE/oUt+z+EdQb62D5m3rexq14vLLL6eoqDzseuDAgXz66adERVUNb09OTmbOnDl07NiR2267rWz/jBkzmDhxIj161HLSfYAyMjwJ1FOnTmXGjBmWdRISEnjxxRfJzMxk4ULPlwa5XC7mzp3rFUZW2ZQpUygpKSnbHjduHG+++SYhFgF6ycnJzJ49m/bt2zN16lTS0tJs34etW7cyefLksu3w8HDef/99RowYYVlfKcXYsWMZMGAAJ5xwAhs3bgTg0UcfZdKkSbRr18722EIIIYQQQgghhBBCCCGEEEIIIYJDgtGEEEIIIYQQQqAcDvSQs+HLt8v2Fakwy7phzgA61jYCboqLjEX6YBZstw6vKaXOuzmACYmGSj3wOvre8yzL9BM3oe76b/mO5UuCO3j77qir/x3cPuuDw/DidLvKbtZlMJodN72paTPZ/yr4MHchz+y5keYle2o2YO4BtNuNchhC5GpA79uBPu8o+w0cDtSUGagJ1wc0Tmoze4vgE9zeK+wbuzICGifaVzCaw3cwGvnVSw06WKD5Ym21mgKw6e8DuGc/Cq8/5rduJ0Mwmi9LN3ged6tAA4BOTSC1eWkwWpZlHRUTxGSBIFJK0bMlLNtkXf793nhOmjqbtCfetSyPcucSpfMB0HefA1/noZyBnDDUnlE9FY9+WvU1k18MS1bDmN7BGUdVfl3u+rvs5sPjlTEYrUPy4RFwovNy4LWZAbdLNBx70n9bic6JtXxNTHndfP4YaQj1GDvL3ObdyeWhaOAJSDLZkgY9/GRIph30XX44Ucp/MFeVIK4AgrwclmXKO+grgPAvf/u82inzmJbzrEZIma/Hx+E4PF7bgdK/fFmtdurfb6FOHFPj8U2v3zxHNOnOxpZlUWHmdum5/sc0nXU5HJ5QUSv5xeBya5xH6PNABJmdYLS922DLGmjXrfbnUw9q8kqZMc4cjHb2c27cz9fdOanbcMBwOjyfxa0+R+wy5Cn7CllrmRD43KobjNYiIfAQNpNN+4PSjRBCCCGEEA3CV199xa+//lq23ahRI958803LULSKbr31Vr755hsWL14MgNvt5oknnmDevHm1Ot/qGDhwINOnT/db79///ndZMBrAl19+aQxG+/nnn/npp5/Ktps3b868efMsQ9Equu222/j8889ZssT+74gfffRR8vPzy7afeOIJYyhaRU2aNOH111/n2GOPBTxhb0888QRPPfWU7bGFEEIIIYQQQgghhBBCCCGEEEIEhwSjCSGEEEIIIYTwqBRgUqysV02GBfJJUttYPPnr19C5aiqJPpCOPiPFd9sufeGYYQFMSDRYx59mLvv1q7KbOjcbNv9V8/Hik1GX3AktO0DvE1HhfoKeDgemsC93+YrqlLjgLGgOpnGzzWE2T+y5hXj3AQblLaVt8baaD+Z2ewKrGlkHZ1SXXv0z+paRUJjvu+KZV6Fad4bIWOhxvOd2gFKb2asX7/JeYZ9SsjugcaKsszEByFcRvhunVy/AbslfUFRSraYANFv0CKQ/bqtul8LAg9F+3wFaa9btsX4dHdO2QqRDjiHhIKaBpRNWcN5ximWbrO/bwpWaweeMY3/eSbCwanlySZrXtn7oCtQ9L9bGNAN2fAdIjLYOvznzWTdFsx2EOM1xHBk2QnMAFJWOZdvWld1MiVdMOEbx1i9VH9+Jxx4moTnfWvzgbTCFMqY7G8M3C2DkJV773W7NHzvM/Vk9QwuKNb8b2kSEwimVMmTaNIZQJxS7qtZfu8dGMFpOYO+lY3t7jg/xUf6Cv5StUC5z+FfgIWVKHSbPP9Eg6MIC9E0+ztlNjhkSlFA08BzPTXaEWr94o1Z+RlLz4VgdQdJsZLmago4UvoNk84og1s8pkxCAvWA0gJXfHtbBaHYuD1VHVLjiqBT40xBePOcbN1efFPxgbCu+wsxS4q0DxnZlWj8wxr4UtAgwGE0pz7lPdaQ0zFxnIYQQQggh6t38+fO9tqdMmUJKip/fax/y8MMPlwWjAbzxxhvMnj2b8HAfFxrqwV133YXDxhcNde/enbZt27JlyxYAVq5caaz7xhtveG1fe+21xMXZ++Bxzz332A5Gy83N9Qqba9++PVdddZWttgD9+vVj0KBBfPfddwB88MEHEowmhBBCCCGEEEIIIYQQQgghhBD1QILRhBBCCCGEEEJ4OLxXSRYp61ScysFoWmtY9iF60TwIj0INPbt84bvbHHhU1n7WNNS5N3puf78Y/fGrkHcQfv7cd8Ou/VB3z0U5q7m6UzQoKiIKHRYBRQVVC/ftQBcVosLCIXNfcMa7aBpq/DVB6avBcBheCxVehy0auYDD4zUzPOczrsucHfyOl38Gw86pcTfa5YJ3Z6F/+Bh++dJvffWv11BDzqrxuCnxEBMOOYW+6yW4sry2mwcYjBYe4lnAb7UgP9/hJ0hw23q01gEH7iz6w39aQqsE2J5pXXZqzme2x2rq2kuboq1sDWtjuw3AvoOwxpD71uVQaJ3WGg4aJhndcJMFrj5Rce3r1j+DRb9rnjgH0kjAKtAh2eUdjMaS19FDxqNOOKMWZmpNp+1CP30bfPmOZ8ewc1DXP4YzIZmRPRUv/2B938ImuxnZA07prmgUAQt+0+w7CEe3Udw+QnHAT95hKYeu9GLZsRHtcpWdpzwzUZFToPnoT09xowiYPk4xvFvDDqbSBzPRL/4fvP1MtdqbgtEOOOPQSxejKgWjWQXYVZRrcezbsNc65Azg6NYQHe79GIeGKDoke0LQKlu3V+OJOzLzN8eKXrtCMfHYugljEaLWLZhTrWbq3peDNoWkGHPZnhDr9NioXz6i8elHA1WThNJtBB2awpyU8pyTmeQWSjCasEfv2Wqv3vYNft6hGjZfr7aa5nQe117x5y7rEa55TXPZCZqwkNp/9ExBig7l+RxnZZchT9l07HE6IDkG4iKxfZ4aEVL9MNRAQ9iEEEIIIYT4p1i6dKnX9gUXXGC7bffu3enbty+//vorAAUFBaxYsYIBAwYEdY41ERkZyZAhQ2zX79q1a1kwWl5eHjk5OcTEVL2Qs2zZMq/tCRMm2B5j4MCBpKSksGuXIRm7gqVLl5KfX/6h6ayzzrIV8lbRySefXBaMtnXrVrZt20br1q0D6kMIIYQQQgghhBBCCCGEEEIIIUTNSDCaEEIIIYQQQggP5f3HwEUq1LJamLPSYsr3n0c/fn3Zpv7ybbh+Jurs68BtSKmoRGfugx8+QU+/0t5cux2LmvNttRd2igZqwvXw6iPWZe/NhnNv9ITeBMMp5wWnn4bE9Af9FYPRYko4XILROhdtrJV+9b8ugl4DUcktatbPvy+Dz/5nq6669pGghKKBZ0F7ajP4xU9+QrzbO5irRYn/hSJe42hNZKh1AFuB8hOMlp8D6bshKSWgMZdtsl79f8UgxayJit0HoFVjWLgSxs32DqEakLeMHoV/2h5LAddkzmFa0+kBzfH1nzRrDBlzqaV5LKt/htxs60qxhkSEBsDhULx4ieLSl6r+HDanQdpBzf4c67aJrvQq+/Tt4+GpJag+JwV7qt7jFBdB+m702Z29Cz5/E/3jp/DmGkb1TDAGowF8uAo+XOVd/uNmzXPf+A/MKeWgUjBacRHs2QItOgCQFKtYfL2T9BzN3mxPkJ7T0bDPY3ReDvrSY2HvtsAaxiV5zgEPZhLvsk77yHLGe14rlezMsqhcQV5R1X3r9prrP3q29XtjajPrYLTN+32PD5BmeB1U1iYRzuzTsH/GQgRCfzQ/sAYxcaj3t6HCg5cO1jg68DbR7lwS9/wBVH0/svN69hV0FO0jGM1fiK0QcOhayMIX7FXevqF2J1PLTEFfUPNgtCknK+YuNQ/wzXoY3q1mY9hhFSoNnjAzUzDaHkMwmqkvh8Nz3n5qd8Vbv9g7V42wvrxnS2xEcM9lqhOgLYQQQgghREOTmZnJpk2byrbj4+Pp2rVrQH0MGDCgLBgN4Oeff25QwWgdOnQgLMz6S9SsJCR4pyofOHDAMhjt999/L7sdHx9Px44dA5rXMcccwwcffOC3XuXgupSUlLLgNrsq3//NmzdLMJoQQgghhBBCCCGEEEIIIYQQQtSxwL4CSwghhBBCCCHEkcvpHZZUpKz/2Dm0QjWdm42ec1eVOvq1x9AlJaANKzkry0pHvzLD9lTVuMmykPIIpC6921imZ01D5+XAso9qPs6tz6DiEmvcT4PjMASeVQgobBRWQozrYNCGjIuEHi3gkbMU718T3MtMvQt+91+puj55rdpN9bZ1uM9oYTsUDUCdc0O1x7PSp7X/419SiXdQVUqJIc3LQL0xk8gS6+dKvsNGwMnfqwMa72CBZuM+67JTuylCQxStExVKKcb2USy4xsGgTtA+CSYn/8wH28fjwH6IFUPO5hb9BvGuTP91K7jlbfMYR7dWaK3RVw+yrqAUdDgqoPHq2vBu5udWk1vczDMETiSXWKdJ6etPQW/8Iyhzq9L3ljW4rx2KHp5QNRStVE4WLPwvp3Sv3hglNk9jwCIYDWDruiq7EmMU3VJUgw9FA+DjlwMPRQPU+MmoZ76AgaOIi7M+nzzgaAQZe9A53mkgu/wEo+UWVn0Ort1jfl32b2/9OKfEW+/PyPV/HPEVpNQuCVrEw8RjFcumOYgIPQx+zkL4obdvwH1u18De29t3R72yMqihaAAhTkV8VGBtotx5JG1bbllmJxjNFOakFET7WB+cK8Fowo4lb9ivu2197c2jDvgMRqth371bKUb2MJef+3wAJ3U26MUv4j67M+7TmuK+eST60PmSy0eQYmPDsetAvvV+U1/OQx+7B3exP9+aBKMFW7G9708QQgghhBCiQdu/3/t6eKdOnQL+vXVqaqrX9r59hl+Q1JPKQWf+hIZ6f/AoLi6uUic3N5eCgoKy7eqEjNlts337dq/tG2+8kXbt2gX07+67vX9vnZGREfB8hRBCCCGEEEIIIYQQQgghhBBC1ExIfU9ACCGEEEIIIUQD4fAONTIFo4VV/CT57ULIswjOSd8NOzb4Xvla0YE02LHRXt0OPWDYOfbqisOKCgtHt+oE2zdYlutz/Xzb+plXwYLnfNcZPA415spqzrCBU4ZgMneFReCuEtoU7+AvZ2ApQZdlvcTzu69BTXoQkltAi/bQqRcqwnt19xc3Oxj6eM0XnSvt5vScT2rcj4l+/h5o3w2at4O2XVEOc6ibLimGdb9B1n7ISkM/PMn+QDHxqDnfBGHG3kb1Urzwne/ja6LLe4FGSvGugMZwFOQSWZAJobFVyvJVpN/2+qclqH7DbI+3aqe5rI/FOpfRqfmMDvkDMveh7zzb9jg4Q1D3vYI6eRxaa1YNaUuHDmsocoTb78NC1+bQoYlCvzbTXKnfMFRCkxqNU9uax0GjCMgusC7PMYS8JLnSjH3qS/vBR3tRsfEBz0cX5sPqn2HvdgiPhLDyn5O+fZy9Pj59ldgLpzJ5sGL21wGE5wXIYRUGu209DDi91sasCV1cBDs2eUJs23WrsnBPFxag33oq8I5btIdRl6OSmqOmv0PjDRoerfrY5DuiKFRhuDZt5PfovnRuCsmxip1Zvn9GVs/B9Xus647pZe4nMcZ6f0auz+EBSM+xnuMVgxTPXyjfRSOOHLqkBNb9ag78NGnSCvXSiloLsm4SC1l59utH6TwS9/4JLaqWpdsIRnMbPtM6FMT4yH3LLbI5QfGPpt/8j/3Ku/5G52ajohvV3oRqQV6h5uct8P0m83t8MA4Xb1zpoNH11p9FM/PgnoVupp6qiI2o2WB62UfoGVeX7/j5c/R1w9GvrzZeAnM6IC5SgUWQc3YBaK2rHDNdho/VpcFoLROs+7NS02C0/u3hx80166NUQXGl64pCCCGEEPUluSXqrapfaiBqQXLL+p5B0GVmen/hSlxcXMB9VG7T0EK3HD5+b1ZdWVne34oRG1v190/+NGpk7zNxenq6/0oBOngweF88JYQQQgghhBBCCCGEEEIIIYQQwh75s1MhhBBCCCGEEB4Op9dmsbJeORlWoZr+frG5v7RdkJtta2j946e26gGoF5ahnE7/FcXh6fjTjMFoZPr+tnQ1cBTaRzCauu1ZGHlJDSbXwDlNwWiu8tuuEkblfMhfEdbBaO2T4IyCz/h7tyd5Js51gGG5X3J+9hvAoUCxip74CHXM0LLNQZ2gQzJs2l+1767N4bUrHPR90H9w2mk5n9LU5fvnXVP69vGeGx17wsPvoZq2qlpn9c/oO86CDEPqji9xiaj//oBq1qaGM61qaCpEh0OuIaQKINHlvegjpWR3QGM4cBPpzrcsK1A+UkBKLf8soPFW7bBe1B8bAW0Tvffpbxei/+9SyLeRYFTqpDOhSUvUkLNQR/UHQClF8zHjuGLpizzb+Go/Hfg2upcnyEB//LKxzuEQyqiUIrUZLN8SWLtkH8FoACyeBxNvDqhP/e1C9F0TApuIla3rcD9+PU9f/wSzv655dyYOqh7b9LZ11E4sUM3ov1ej778QNv/p2dFrEPzrVVRiM0/5+pXoy4+z1Zea+xP89SN6zQpUmy4w4oKyfgDifOQoPh9/ObfP7kHhoQDP64cq4v3kLlod99busT5+dGlufvQbR1vvT7cVjGa9P8kQtibE4Ujv3uI5Bm/4PfDGp11Qa6FoAP3aKtbvtR90Ge3OJUSXWJYdyLcOJKrIFHSkgPAQT0Ca26LO5v2aAR0a4ruAaFD2+0gHtrLhd+gdYFhhPXrrFzcXz9MUWr8EywTjmBEToZh9vmLya9Yv2n9/qHnqC828ix2MP7r64+kX7qu6c/cW3Ms+AqwDcR0KGhnOcYpdUFhSNbzMZXVgAZyHpt4igMzhyBoGo13QX/Hj5uAEDBcUmx8LIYQQQoi6pEJCoHnb+p6GOEzpShcLgvGZpjavpTQU4eHeX1BTVBR4qrzdNtXp25/KP3chhBBCCCGEEEIIIYQQQgghhBC1L/hf6yWEEEIIIYQQ4vBUIWzMhQOXss7SDju0WxcXwS9fGrvTH79qf+zXHrVVTb2zARUaZr9fcdhRF99R/cbHDIVxFuFGkdGo6e+gRl9+ZIfqKcNlHl0hrKekmFvSn+SEvO+rVOuYUMSnNzp44p6+LNgxgQU7JvDS7iu5IPsNY7CPvul03LPvRKd7gsNCnIoXhm8lIaTAq975od/wx5Zj6fXLc6y4aCPNwwypMoc8vvc2n+Xqtlk4viuEo473Wc+WjX+gH72mym5dUoK++5zqhaIB6v1ttRKKBhAZphhhnW0HQKMICD3tPK99KaeeGtAYDtxE6gLLsnyHjWC03VsCWiSyLcN6/1Ep4HCUPwN15n70/RcEForWYwCO//sfjutnloWilVIXTOXhfXdxXN5PZftCdDGXZJkDzqyMPrgYvXc7bF1nXSEkFAaMDKjP+tKjZeALsJIHneizXD97B9rl8lnHq376nuCEopVa8Byc15Wvx6wKXp+VWAWjsW19rY1XHbqwAP3Jq+iL+pSHogH8/h16bBvcs25HvzbTdigaSkGbVNSZV+O48wXU+bd6haIBPoPObmr2GIXu8vflp77QPLDY93GjcjCa1pp1e63rdmlq7ifRFIzm++0JgDQJRhP/AHrmtdULRet5AirAIMxAndEzsPpR7nzi3Acsy0rckO9nnazpqORweBYtR4dbl180TxbLilqw/rf6noFtW9M1E1/wH4oWTOf0U4T4+OuHgwVw9nNulv9dvdene+fffL0rjocSp/JW7HjyVPmJjmut+WfjdHg+o5kcsMijdhnyxEvz0FMCCEarHLoWqEsHBC+goaA4aF0JIYQQQghRbxo3buy1feCA9XUHXyq3SUhIqNGcrLgCuCZfFyrfx8zMzID7yMgw/DKpkqSkJK/tZcuWobWu0b9LLrkk4PkKIYQQQgghhBBCCCGEEEIIIYSoGetV7kIIIYQQQggh/nkc5cEUxcq8arI0GI3Nf0Jutrm/Ja8HaWIe6p2NqKatgtqnaHhUo8Zw83/Qj98QeFuHA258Es64DNb8jN6zDZV6NHQ9BpXcohZm28CYQt8qLnxwlZDgzuKzrafzQ9RxrAzvhVs56Fy0gZPueJJGTdoBTdAXToNXZtgb9/XH0K8/BrO+gl1/c+LDk/iLBL6MHky6M5G+Bb/SP385CtCP30Av4A9HPGe0WsBPUVXDd3avb02yK808XngknDweAHXezeg7z7Y3T1+Wf4bOSkPFV1go8ft3sH9ntbpTc39ChdTuZbfRvRTv/mq9oD+7ABx3voAeOwl2/Q0tOxCdejQJN7rIzLPXv0IT4bZYoQ/kVwgAICwcigqrVirIg7yDEN3I1ni7DeuGWiZUWoT/zQIo9pNgUom6wBy0p5KaE33N/Xw3awhfRJ9MujORPgUraVW8g/lxF6BNgYMVNCvZQ7//TkD/10fAwugrav05ESyXDFDMXRpYWESToadC+A3w5n+MdfSkE+C5pbYeBz22FkIFd29l4MPHcd6AZbye2Tvo3Sur6JwGFIym03ahbzkDNv9lrvS/J4wBQJaatUGF+w5KjI8KpEP/DlY63OzN9oScWEltZg7xSIxWWMUdZeR6wtaUMrc1BaOZwtaEONzoXZth+We26qr7XoHIKM/5Rtuu0Gdwrb/f9W1t/fo1ida5ON3mhcBZ+RBlCDcDcBvCiUqPEqZjEEBeoSYqPHiBQuLIok1PLl9t1v1mDK1uaBau1ASQkxwU8VGKAR3g2w2+6/Wf7mbpNAcDOgT2aN40L4un23xatn10/q98tH00ia4MXCu+Ae6ybOdQEOcjLDY7H5pW+tjkLxgtOQZCnVBsI+egpsFokWGKt69ycPZzgT9nKyuow6A8IYQQQgghaktycrLX9vr1gV8HXrfO+0tWmjRpYlkvpNJ1lpIS+yfV1Qkeq01Op5MWLVqwc6fnd2+bN28mLy+PqCj7F5FXrbL35SdNm3p/a8b69es5/vggfNmSEEIIIYQQQgghhBBCCCGEEEKIOuV/ZZ8QQgghhBBCiH+GCuEvRSrMWC3k67dx3zYafUUd/vFwn5MkFO2fZOxV1W6qlEJ16oUafQWOSQ+gThzzzwhFA6/XsBddYfGyy7NgIoxiTspbyg2Zs7gp42lG5nxCbFR5sJoadk7Aw+spJ6P/fRm4Smji2s+52W8zJXMOxx8KRasowZ3F11uHc23Gszi1Z069Cv7gx78H+g5FA9TMRajYQ98qP3BUwPO0nryG377B/eRNuO8Yj/u5e9DvzAq8n6hY1J3/RXUOfuhSZSN7+l/Er7r1Qw2b4AkIBFrE2+8/0ZVBlLZOUct1VEj/adLS3EnaLtvj7T5gnZrQvMKcdV4O+rHrbPdZSg043XeFCdfjQDM890vOzX6bLkUbiNL5dCraaKv/Mw5+hMNPQIu69hG70613J3RUPH+hCihAITkW1OTp4OuxXv8bfPwyOn0P7gcuwT0o3PNvxmT0gfSyavrHT2owe/+e+fFUzuqY7r9igNxWl9oz9+G+9zz0ht+DPl6g9FtP+w5Fq45ux/qtEhPuCQMJln3ZnuCyUjuzzHU7JJvLEmOs95e4fYccaa2NwWhJMYdLVI0QZlpr9N3n2m/QuTfqhDNQZ1+H6jesTkJA2yaWBwPZEeXOI95tSGDFE8765OduRj/j4sqX3fyd5v2ebnqHt3NsMx0vhAAgc1/gbdb/Fvx51JKtGfUz7oJr7B0gBs5w45jkYshMJflFWQAAIABJREFUF2t3+09w+22b5untPb32rYjsy7MJnusX7gLrUGnwHLMa+QhGO2DR1F8wmsOhaJXgc8plahqMBhBlvkwYkILi4PQjhBBCCCFEfUpISKBDhw5l21lZWaxZsyagPpYtW+a13a9fP8t6jRp5pyhnZfm4IFrJX38F+XpwEPTv37/sttvt5ptvvrHdNiMjg99/t3etfcCAAV7bS5YssT2OEEIIIYQQQgghhBBCCCGEEEKIhkOC0YQQQgghhBBCeDjLQ5GKlXnVZOjrD8OPn9bFjMqoSQ/U6XiifimloN+wwBod1d9/nSOdw2m93+0qv+3y8U3yzvIgC9W+O5w0NkgTsxZKCU/uvZW961uxbUMHlv89gGMKfjU3aNYG9U0+qveg8nkqhXr9z6DMR997Hrz7LCxdDK8+AksX2W6r3l6Pmv8r6sPdqNMuDMp8/GkcrWjayLpsZA/r/SkBBKN1KVxHjDvXsizPEVW+0cRHaGX6Htvj7TKs5UmJ8/yvi4vQkwZYV/JBvfiL/zoOB+rWZ6rsn5I5x9YYo3IW+67QujMqNEhJAnXkikEOsp9y0NtmJmlSDCinE/Xwe9C4qbGefuNx9Pj28Nkb5TsXz0Of3wNd4Ani0x+9XL1JN24KJ53pt1oj90H+t6gV+2fC8ts1v0wtpmcQ8jOj3IYwjK/eRU8Zgl7j/7lYG3RxEbq4CL54K7gdO0NQ46/xW83hUMT5CAIJVH4xZFd4qE3HjlCn53lp0jjaXLbbnJ/EwQJPeJoVX+MJcbjQ/70fAglzTGlXa3MxCQ1RtEuyXz/anUe8y7xoeOhjLm5+S7P4D5i7VNPrX25W7yoPSXIb8pKUjWC0Ah+n3kLw10+Bt9m2Dl1UGPy51IJ0m8GA4UHOU0yIVsy92H5Y6dfrodt9bn7Zoskv8v7nqnAAeHuF9cHgg1hPWLdr51bjGE4HxEaY55BtEcrqMhx7KgZDdm1u7rOiiCA8xmFB+jlJMJoQQgghhDhSDBw40Gv7tddes912zZo1rFixomw7IiKCo48+2rJukyZNvLZXr15te5yPPvrIdt26MmyY9+9/X3jhBdtt58+fT1FRka26Q4cOxVnhbx8++OAD9u2rRkC5EEIIIYQQQgghhBBCCCGEEEKIeiXBaEIIIYQQQgghPCqEKhUpc4BLmLb3B8fBomYuQkno1T9P5z4BVVejLq+liRxGHIbLPO4KCS4ul3Ud8ApGA1B3vwhnTQnCxHyLdx8gpWQ3TgxJMwAjLkQ9vxRlcR9Vq06o57+vxRn6cfZ1qGZtUO27o0LMoZK14f/GWi/4H97Nen9KvP2AgC5FG4g2BKPlOCqk/0REQaPG1p3s22l7PFMQUfNDwWh88TZsXWe7PwB1+X2ojoaUuMpOOKPKLjvBaIklaQzN/cp3pXbd7M2hgQlxKm4cZu85kxzr+V8pBb7CAbdvsD4OHUhHD09AvzMLvno38MmOuQL1vzWoB99AXfeorSYJI6Poe3E0vS+NY9nSFG6JWEjbhOol2IS5C+lZuMpcIT8H/fbT1eq7uvSKr3Bfcgx6SCx6SCzs2xG8zvuchJr5AarH8baqm0IcqyvhRjd3LnCTX6TZmWWdGtI8zhPKZtIi3hxqtNHH+rg0HyEvEowm6ov+43vcU4bgPq0J7sv7o1f/XL1+CvLgf0/ab3DMkDo/9ynVt7X9c5oonUeELiDU8Dk2u8C7r5xCmLmk/NiiDeFEPg4xZfLq9qOzOMzoHz4JvJHbDTs3B38ytSA9x/DiqeT49sEf+5IBnnC0+Cj/dUsd+5Cb6Gu9/8Vd7yZ6iovkm1w8/LH1/fktojcacBWbE78cCpwORUy4dXm2Rb6uy/Dx2Fnh2NOlmb1jYUQQDtWhhhz2QOXLcVEIIYQQQhwhLrroIq/tZ555hj177H1ZzB133OG1fe655xIebv2BoW/fvl7bixbZ+1KfTz/9lOXLl9uqW5fOP/98YmNjy7YXLFjAp5/6/0K2nTt38sAD9r9ILSEhgfPPP79sOycnh1tvvTWwyQohhBBCCCGEEEIIIYQQQgghhKh3EowmhBBCCCGEEMKjYjAa5lWTdRmMpp5bijrulDobTzQcamDVkCKfThpbOxM5nDgMK5XdFUKIXD5CfyoFW6iIKBw3PI56dKE5dK2OqDtfQCU0MZd3PQbOv60OZ3RIYnPUpXfV/biHXDJAcUIH732pzeC8Y03BaPb6beQ6QJIrjWh3nmV5rqqQMOAMgaQUy3r696W2xssp0MawoZR4hS7MR7883VZfXkbbD0xUSc1Rkx6ssv/XzccS68o2tnt4391E6ELffQ8aY3seDU3X5v7DFsJCIC6yfFtNvLna4+n/BNhWKdRd83DcOgsVGY1SCjXherhwWkDdRBRkMeO3iWzc1ofHzvJd96zeLpzKOxjjX/sfIFIX+G74e90FOOrNf6FvHAGbfIS1VUf341Bf5+F4agnqmKG2m9k99gTi4Y81932g2bzfuryFnzEjwxSt4q0TR9bvNQe5bMsw9ynBaKI+6P070VPHwh/fQ84BWP8b+qqB6F3VCE7atAqK/BzLSkVGoy69O/AxguSMnvbrRrnzUEC8K8t2my/Xlh8H3IZDQmm44oju5n7yimBftmbVDk1Grr2QKPEPsmGlsUjd8Lj5M9j29bU0oZorLNYs/1vz7XrN32n+60eEwr2jgv9ZUynFpSc4yHjSya2n2A9SrCyvCPKLId06L7rMzpAWuH382YXzUFGjSOvyA/lVjw/GYLQKw3Rt7ntepSJCq/8YlOpo/jgekILq5RALIYQQQgjR4AwZMoTevXuXbR84cICJEyeSn2+RfFzBE088wcKFC8u2lVLcdNNNxvrHH388UVHlv5NZsGABv/zyi88xNmzYwMUXX+zvLtSL2NhYbrjhBq99EyZM4KuvzF9As2XLFoYPH05Wlv1rOwD333+/V+DcK6+8wrRp03D5+hIpC6tXr+bbb78NqI0QQgghhBBCCCGEEEIIIYQQQojgkGA0IYQQQgghhBAezvJQpQhdyLkH3mRc9gLOcPzIqd3h5Mh1nJD3vTEoJ+g69oTUo+tmLNHwdDvWdlX15Ceo6Ea1OJnDhGnhvLvCimpfwWjOEMvdqv8I1LyfYcwVNZhczSjlfyG3uqAOg9E69IBL7kK98hsqNqHuxq3E6VB8drOD2ecrLhmgeGCM4qc7HSTFWj9e/oKCSrUt3ooCot3WaWW5jugKkwiBrsdYd/TLF7bGW7/XXNZ+57foce1h+wZbfZXpNRDVuGlATdSFU1GPLYbWncv29Sz8k5//HsDN6U9w+sGPOS3nE07L+YQrM+fy2dYRXHrgZd+dxsTDCSMDm3sD0sXGQ9i1mfdrVMUlohbvqp0Jjb4cddm9MGg0jLkC9Z8lqBHnV6mmRlxQJezRlh2buOG3a2kUYV0c5i7k2cXdWd7paa7JmMPFWa+wcPs4bs14wn/fGXvQuvZDcfS639AX9w1+x6MuQz31GcppCOH0oUV8zcM4rMxcopm5xPox9RXGprVGv/hvOm23XmznKxht7R7rssRoiIuqnfsphC/6tZmQWzXAU5/TNfBjjq9QtA49UPe9AiMuhIk3o+Z8h+p5QoCzDZ5Bney93iLc+TjxnAvHuw7Y7n9bBqQd9Dx+poexdAYje5rncvu7btre4abXA25aT3Mzd6kh6Uj842itYds668LhE1FnTYHmba3LtzXMYLSlGzTt73TTf7qbwTPdrN5trjs0FW49RfH9NAeDu9Tu++eM8YrTjqrVIVgb1hmXMp8jOQ7dxThDMFq2xeHXTjBa68b2HruocP91/EmJVxzbtub9FBTXvA8hhBBCCCGCYc+ePWzZsqVa/0rNnTuXsLCwsu2vv/6aQYMG8dNPP1UZLy0tjSlTpnDzzd5fDjJ16lR69jQnwMfGxnLOOeeUbbtcLkaOHMmSJUuq1C0qKuKFF16gf//+7N27l4SE+vv9lS/33HMPPXr0KNvOzs5m6NChTJgwgXfeeYc//viDtWvXsmTJEm688Ua6d+/OmjVriIiIYMwY+19E065dO55//nmvfY888ggDBw5k0aJFlJSYf2e6ZcsWZs2axZAhQ+jevTtffvll4HdUCCGEEEIIIYQQQgghhBBCCCFEjVmveBVCCCGEEEII8c/jKF/E2dS1j1d3XerZSBqE44bPcT81D359us6mo6bNQZmCnsQRTzkc6IvvhPkP+a/cd3Ctz+ew4DAsxHZX+OZzH3/kbwpGA1AdjkLdOgtunYUuKUafHFPNSdYeFROHbtYG9mytvTEmP4Q675Za6786IkIVV52kuOok/3VT4hXgPyRl/q7LAYjW1kGYOZWC0VT/EegPX6pace82dEkxyk9AlSmEKDxE0/LxiXAww++cvSQ2R13/WGBtDlHHDke9tgoAveA59OPX07F4M4/su6t6/U2bg4qJq1bbhqBRpKJJLOw7aK7Tp3XVQAYVl4iecD289VRQ56POnIzq2AN/ERCqdWeY/BD62Tt8B0JaWTyPn09N4qitd1KswryKXtp1BY0PbqPxwtsJ+J6VFMOBdIhPCrSlTzptN/zwsSfQ6LhT0Ff0D2r/ADRvg2Pq7Oo3txnKGEytE308S75fjJ73AB2aPYVVfOOe7elAE8um6/ZYd9klIR/95lxIbAaDxqDCDel6QgSR1hrefdZc4aOXYeTF9jssLjIWqdueRXU/FjVsQgAzrD2tEiAyFPL9BOxEVQj1TnBnBjTG5fPdLLzWidtw6lT6UfWKgYrr3rCutHRj+e28Ipj0imZQJ03nphKk+I+3fyfk51oWqfGTPTdadYadm6uU623r/Z4L1bX8Is3EF9zstpE/+MaVinP61d21HqUUH1zr4NQn3Xy5tnbGWBfehR6FfxnLS8PMTOG72flV95mC0RwVfvh2g69jghCMBjDnQs/juP/QZ4OEKFhyk4NeLWHsLDcf/em/j4JiDQ3uGSyEEEIIIf6JJk6cWO22pWH0ffv25ZlnnuHqq6/GfehLilasWEH//v3p2LEj3bt3JyIigu3bt7N8+fIqQVzDhw/nwQcf9Dvegw8+yIIFC8jKygJg3759nHrqqXTs2JGePXsSHh7O3r17+emnn8jN9XzWbNasGTNmzODiiwO4NlRHwsLC+PDDDxkyZAgbN3ounmitefvtt3n77bct2yilmDVrFtu2bWPhwoVe+3256KKL2LNnD3fccUfZz+jHH39k9OjRREVF0adPH5o2bUpkZCQHDx4kLS2N1atXlz3WQgghhBBCCCGEEEIIIYQQQggh6pcEowkhhBBCCCGEAEAph3Vcjj60GjM7wGCamjjqeFTq0XU3nmiQ1BmXoP0Fo/Ub6veP3v8xTEGC7gorqn0FBPkIRqtIhYTCiz+jL+3nu96jCyEvBz3zWjhoCKJo1sYTNJafg559p63xfRpxAbz075r3Y2Xc1Q0uFC1QdhbOR7tzyhb1R7utwxpyKwWj0aqTdWdaQ8ZeaNLS55gb91vv7xiRifNgut85lwmPRN39IvQ5ERWXaL+dybBzYNY0KLRIKrBBTX8HNXBUzedRz/wFo/Vtbb1fjZ2EfvfZwIPJTNp2hQ5H2a6uJlwP/UfAqh/QD08KaKgOnz5CpvoPC2LH8F7sWAbk/8CE7HdpUbIr0Fl7S98T1GA0vfI79N3neALXapGa93ON2tsN7QimEzuZzw30d4sASHKlWZan787EFIy2wRDk2OXPt9CfTfVsdOoFj7yPSkqxP2EhqmPvNp/F+uFJcOJoVGyCvf58BaN1PzaQmdU6h0PRpRms3O67XsWQ15Ti3RBpf4zSUDNtCEYrPcqEhyoSoyHd+rTJi9Yw73vNw+Pk88s/3vYN5rLWncv///ETi7bra2dONbDoD81Om2vGk2Lq/vnvdCg+u8lBj/vdrN4d/P7Xh3XCpQxB5ZSHmZmC0Q5YBaMZjj3OCh/77Z5jRQcpGK13K8Xqfzn4eh2UuDXDuioSD/08F13n4Kt1sGm/pn87xRlPu9lucRmgwE+gpRBCCCGEEIebK6+8koSEBC699FJycnLK9m/cuLEs9MvKZZddxpw5cwgN9f3FMgAtWrTg3XffZezYsRw8WH6x3jRGu3bt+PDDD9m7d2+A96butGrViu+++45rrrmGBQsW+KybmJjI/PnzGTlyJNOmTfMqi42N9TvW1KlT6dmzJ5deeil79pR/80VeXh7ff/+9rfkmJNi8viaEEEIIIYQQQgghhBBCCCGEECKo6u7rmIUQQgghhBBCNGxOwyJOt8vzf3otrB41iYyqu7FEw9Wklf86ccELmDnsOUyv4QrBaKaAMl/tLaiOPVF3/te6sEV71H9/QPUfgRpyFmrRTnM/F92OOvOqoAWOqQunwekXQ2lYnum4Vp2+r388aH3Vly7Nyhflm/Qu+L3sdozdYLRkH+E/+/0HSWUYgkRa7QksjEn951PU4DODE4oGqNh41MxF/isOGg09BpRvh0eibnv2iAhFA0iK8V3et431k0q16oS6dz7ExNV8Eu2PQs1YEHAQpmrdGTXyYjjlvICHjNCFTMx+i7d3nsdNGU/bD0Xz9fwL4rmU1hp93bCghaKp+16Bxk29dzZuhnr6c1QNf4atG9d9AMrwrj4K164AIKnEEIyWZ/61iSn0pX3R5vKNDb+j35nlb4pC1Ny+Hf7rvPOs/f5MQZYx9ZBuaEOXpv6PLVHO8vuUUhLYMTgzD3ILNW5DOFHFc6pYQ9iRlc9XGzoU/yyZhmTgmPiyMENVGpBW2bb1aFNiXz355E/7dRP9nFvWFqUUS6c5GNUz+H2vDeuM28efXZSGmcUZwhmzC6ruc7mr7qvYF0CjSIgK8z+/mCAFowEkxijGH604p5+jLBQNPI/vkFTFlYMc9GipiDBkO0gwmhBCCCGEOBKdddZZbNq0iRtuuIGkJPPvLUNDQznllFP4/vvvmTt3rq1QtFJDhgxh+fLljBkzxnidPDk5mdtuu42VK1fStauvC6QNQ7NmzXjvvffKAtK6detGfHw8ERERtG/fnmHDhvHcc8+xadMmRo4cCUBWlvcF2rg4e9euR4wYwd9//82sWbPo3bu33981hIaGMmDAAO6//37Wr1/PDTfcUL07KYQQQgghhBBCCCGEEEIIIYQQokZC6nsCQgghhBBCCCEaCFMokutQMJqdhffBkrGv7sYSDZZyONAde8LGP8yVghSAdCRQyoHl8njtWVGtiwrRt4+zbuxwoByB5eer0y6EIWd5gn4y9wMKGiVAy45eCwqU0wlzvkNfPci7gzapMOKCgMb0O6ewcNQdz6OvexR2bITWndGjW0Fhfs36ffEXz/04zMVGKLqnwCpzVh2phevLbkfbDUaLTYCwCCiyWNGf5j9MKivPen+Cy0eQX2Vd+kK3Y+3Xt0n1HgTPfIG+dqi5zhmXogacjk7bDZn7oE0qKiyI6QP1zFcwmlLQs4WP8iFnwYljYMvaqq/DkFD0Z2/Am//xOb6a+xOqc+8AZmzRxyV3ope8XqM+bI1z+X1w/q3oIbHWFYJwLqVdLtAa/WSQF2INHuf5eW1bB7kHIToWWncJ+L3BSpem/usE05heEBXuY2HboeN5kss6VC5NN0Jrbbk4zhSM1rKk0oH1m/fh6n/bmq8Q1Za+x28V/eXbqEvvstdfcZH1/lAbqTv1oEsz/3WiW7eGnXGQc4AUuwGXFazfi/X5NeU5vGAvmKjUr9sCnoY4Eh2wDuckvsICelMwWnYG/L0a2ncP/ryq6fft9oPa/IXu1qb4KMXCa53szdbsyoIQB+RVOvS5NAycYUglM1gf3hmXjWC02EiF1VEl2+Ljqp1gNKUULeJhg59LaMEMRrPLGIxmyOAUQgghhBCitm3ZsqVW+2/SpAlPPvkkjz/+OCtWrGDt2rXs37+fwsJCkpKSaNmyJQMHDiQ21nDt2IbU1FTef/990tLS+Oabb9ixYwd5eXk0bdqUdu3aMWjQIEJCyv8kfPDgwQEFa9ckhPull17ipZdeqlbbgQMHMnDgQFt1V69eXXZbKUWTJk1sjxMREcE111zDNddcQ0ZGBj/++CO7d+8mIyOD4uJiYmJiaNKkCZ07dyY1NZWoKPkiNyGEEEIIIYQQQgghhBBCCCGEqG8SjCaEEEIIIYQQwsMUfOF2oUtKYNff5rbtu0OPAbDwheDMpcA6jEf886hL70bfNcFcHmf+5vV/HFNwV2m44YovfbSt3iUiFR4JKe09/3zV634szFyEnvsAZO2H7sehrnoQVUtBGyomDlKPBkD7+dZ3n47qj5r0AKpjjyDNrP4tv9NB5BTzQv8uRevKbhuD0VSFxSBOB0opdHIK7NxctfJ+Hylsh2TlWS+2iXcd8NsWgBEXoK5/zDLEKBhUr4HwwBvoeydWLYxLhKOHeOolNYek5rUyh/rUOMY6wAGgSSzERPh+3FVIKJheQ517Q/uj0NOvtG577SM1DkUDUK06wayv0LeOgvycGvdn1G8oKjQM3fUYWPNLlWL98+eoMy4NqEtdmI9+ZQbMn16zuTVrA8cMhcXzqpb1OQlVumCubdeajWOhfbInxMMU8BFs5/TzcywoKQYg0RCMlu5IwJ2+D2eSd6JbYbEmzfD0aV6823vHjo3GcLV/Iq2153zEXeGfy3Dba9t96F+AbUpva3fAbXTZuAGMU7FMuw1z9XM/vOZq6sNi258ta+z/oA6zYLRUG8FoyXFO1PPfo5++jZTN2QGP8dcujdtw7HJUeHmbAoCsKAW5hZpoXwGO4siXnWG9v2IwWseenus0Vk/C7z9sUMFoWQHkUCdG+69T25o2UjRtZC7fPdPBTXMz+XJVAQcccQC0Ld5K85LdfB09uEr97aGtyHaaOyw9XsRFWpdn51c91zYGo1U6dLRL8h+MFt2QgtGK63YeQgghhBBC1DWHw0G/fv3o169frY2RlJTE+PHja63/hio3N5dff/21bLtz587VDppr3Lgxp59+erCmJoQQQgghhBBCCCGEEEIIIYQQopZIMJoQQgghhBBCCA+HIVTJ7YK9W8tCJCpTL/6C6tgD7Xajv/sAMvbWeCpq7FU17kMcIQaN9l2eaCMR4Z9CGcINtRutNfq1mea21QxGC4Q67hTUcafU+jhVxj3/NvTcfwXebtKDqAun1sKM6ld4qOKSAYqXllkHXXUpWl922xSMluOIKd8ofe4kWQej6S2r8Rf7kZVnvT/ObQ5GUzMWoAbU3aIVdfI4uP159MOTvPdf+wgqPKLO5lEfkmLMZfGGcAe7lFJw+kXQbyj6oj6QU+FnPuB0mHB9zQaoOFbPAaglVYOw3E/fBm89FZxB2qR6/m/Z0TIYjS/fQd85N6DnjH7hPnjzP9WfU7djUbO/QR0KwHXHNYaK7wdhEaiL76h+/zaEhSg6JMP6mp8i2jLhGD9HnTxPulmSIRjNrZxkbdxMYqVgtN0+shpblOyqunP1cnTnPrDhd8jJsgj8MgRgGQOxyutqY/hWxW1TuJeP/f7m4TWujbmXbovDQ4khGC0kgNSvOpTa3BzcWSolXqFadUI98j5t1mp4PLCExs9Wm0eomHvo6/hQmdaefsf2CWgq4gijs9KsC+ISy26q2AR0jxPg9++qtl//m99z7Lp0sMBevagwiAxrSDP3pnOzYeMfNCkq4NX3RlYp3xzals4dV1u2XRfW2div89BH9UaGU8Bsi8fPGIxW6WN/p6aKJat9Hwtj6iGIUYLRhBBCCCGEEME2f/588vLKf6F0/PHH1+NshBBCCCGEEEIIIYQQQgghhBBC1AUJRhNCCCGEEEII4eE0BKO5XLBjo7ldyw4AKIcDfdqF3mEb1VUP4UmiYVJKwXub0ePaW1fof2rdTqghcxiC0bZvQJ93lO/XsSlU7Ugw4HSwCkYbNxnem21u161f7c2pnl18vHUwWrzKZcilI1HR49APTyJaWwejFToiKMFJCK7yYLT4ZOvBFv4X3aQVXDjN83quRO/dTtbag+DoUnU+rizLLtW85ahOvQz3rvaokRdDq07oj+YDCjXyYlSPI3/hjc9gtKjgjKGSW8Brq9D/exKy0lDd+sEZl1k+Z4JNXfsIeuMf8OvXNesooQkqJs7TZ6tO5qieL97yhMHZoDP3wTvP1Gha6unPy0LRANRV/wedeqN/+BgaNUadej6qS+2n86Q2q5tgtDUPOHA4/Dxv9m4DINEQjAawf/N2Evt7v753Wh+SAEgp2V1ln776RN/zEKKhKTYEo4WG1e08bOrW3H+dlPjy2yd0DHyMD1dpUg05zI5qBqMBfPynZmyfhhsOJerAAcN7UFyS93bvQZbBaHz9HnrvdlTTVsGfWzXkFNqrlxhdu/OoCf3us+hnphq/FACgTfE2wt0FFDqqJpytDu9qbFd6vGhkCBU+kF91n8twMlk5GK1LU+t6FUXXw2E8wvBXKBKMJoQQQgghhKiOHTt2cM8993jtu+gie9fZhRBCCCGEEEIIIYQQQgghhBBCHL6O4FWvQgghhBBCCCECYgpG0m5I22NdltgcFVGeiqIumApdj6nZNC67F9WuW436EEcWldwCdeszUCkgR133KKpJy3qaVQNkCkbLzvAdigaQnxP8+QTqkrus94+/pmb9duoFF0z13tdvqCccqEtf6zYx8dBrYM3GbcBO6qK4Yaj36yksBGZfEUP0hEkQFg5AI9dBYx9ZzkNJI2XBaInGuvqF++Dnz6vu37IGfVZHskrCLdvFu6umjKhP0+slFK1s/J4DcNz+HI7b5/wjQtEAkmPNZcEKRgNQjZviuGY6jjtfQI2dhAqpm+/0UEqhHv8IBp5RtTA2AfX05zBotP+OOvYov92uu7Ga/u4D23PTbz/jCaitjvZHoRZuQ4V5v76UUqihZ+O4ex6O62fWSSgaQOem1Q8AWrexO2dmv++33kNnKro08z2OXrqo7HaTkv3Gepu3VD3+bN5vnVAS7c6hkTvn4DNdAAAgAElEQVTb7/yEqC963W9oO8eSEkMwmjM0uBMKkrAQxYRjfL/mkyuEe4aFKO44LbBjUUYuLNtkXVaT7M6/dhnjM8U/xYE06/1x3ufUqk3V8OBS+v4LgjmjaitxadthV74Cd+uT/vNH9JM3+QxFA3DipkPxZsuynSEtzO0OfVSPMwSjZRdU3edy++6rVNfm/g9GMVVz3GpdpCGMTYLRhBBCCCGEEADvvvsud955J/v3m6/Rlvrtt9848cQTycjIKNvXq1cvTj755NqcohBCCCGEEEIIIYQQQgghhBBCiAagblaXCSGEEEIIIYRo+JxO6/1uF2SnW5fFJ3ltqpg4mPUVLF8CW9ZC01awYxN67r8sm6tpc+CU82Dlt7BzM/Q8AdXhqJrcC3GEUmOuhD4nwa9fe8L6+pyEatu1vqfVsDgMr+HDhDpxDHr+Q6C9gyLUSWNr1q9SqKseRJ88Hv76EVp2hD6DPaFLs75ED4uv2mbCdaiQhhkCEixPnOPg3H6aHzZrosNhWFdFu6RDi+oPJX0kuQyBDcA+ZzJJrvTyYLS4JGNdAP3BXNSxw8u3P3oZPf1KALKccZZt4l1ZXtvqmumoqAaapnAES4lTgHWAS/gRcnVZOZ3w0Duw4ivYsBKKiyE5BY4djkpsBgW5fgPN1KkVwkmOH2GuuPJbtNYoP4k6+qOX4ZUZgdwNjxEXoAaNhuNOQYUb0jfqQWqz6rftUPw3/9t5AW8fHM8FLeZXKe/ZEl6+zEHPlv6DQfQrj5TdjtL5tCjeyc7QqkEm67YVcHqlfRv2WffZqWgTNchHEqLW6Sv6Q1Qs+qj+qF4DoecJ0LUfKrxSUk6xIRgt1JBu0wDcPFzx1i/mkLG2id6vzv8bq/jfz5q/K53ixLmyKFah5DmibY9dsedOTczHCCtrdmPrvUAcwTKsnzCqUjAarc3BaPz5I3rfjnoPC88ptF83sQGeyuviIvTkk2zXTy7ZDxa5zvtCko1tHIde6o0irM+rD+RXbWM3GK1/e885eWGJcXii6+EwHhFqfV8LfMxTCCGEEEII8c9x8OBBpk+fzsyZMxkxYgRDhw6lV69eNGnShJCQEDIyMli1ahWLFy9m0aJF6Aq/OwwLC2P+/KrXiYUQQgghhBBCCCGEEEIIIYQQQhx5jpCla0IIIYT4f/buOzyqKv/j+OfMTHoggSSU0HuVJoiAIIK42FgLKthWdC3outZ117ViXV3Xsquua8Gy9rVXXAvqCvpDsaBrwUWaSi+hhbQ5vz8Gkgxz78ydSSb1/XoeHnLP+Z5zv0kmk5lJ7icAANSYW6hSRYVs0UbnuT0v2pVkUlKlMYeF/kmy3y6UnILROvaQDj0ldDF4tbAcwI3p3Fvq3Lu+22i4fL7YNQ2Y6TVYuvxB2Vt+IxVvkzKyZGbeKDPU+0XqUffvPUTqPSR8LC1D+scHsjf8Wlr+bSgQbPJJ0gm/q5VzNnQjuxuN7O4QyGFCt6WCKMFo6wL5Uqkqg9FMy9Yu0Vm7vPe8Xp/1Nz2de5xKUlvo1y88ovGSgjIq8jkHo+UEi8IHeuwV7QxIksLI7MBKO1wydBojY4w0fELo355G/kJm5g2y910llZeFz/n90vEXS5OmVe2VliGddb3sPZdF7rWtSNqwWspv79qL3bC6Mjgwrvfh0vtkDjk57nV1oU8794C9aJ5beawkya+gpm35lzKDxZpReK+K/LkK2DJd0f0TXf6HMZ7Chezm9dLXC8L7Kv3OMRht8cZU2c3rZaqFAC/+qVRSZGhmz9L/xfleAfVgx1ZpwZuyC94MHaekyvYdLg0aLTNojLTX6Mj7t90acDDaPt2M7phmdN6TkfcvxkhDOu05ZvTmBT6d8mBQH+z60j1062u6b9VMndX+Tr3U4nDP506vdncwY4zRH5/3fh+3aYe0dqvUtqXnJWhCbDAo/bTEeTJvj8cHXfqEvgbdggt/XirVczDa1p3eawtzG04YoK2okF68V/a28+Nal1/h/IcD1vrdg9F2h5m1ynSeLyqWyiusAv6qj49rMNoeH8KsNKMJfaXXv3I9vbLT3eeSJd0lZ7zE5VsNAAAAgOaprKxML7/8sl5++WVP9RkZGXrkkUc0ePDgJHcGAAAAAAAAAAAAAGgICEYDAAAAAIS4BaMFK6Qtzhd+qmXrmNuavnvLDhojLZoXPn7WDZ5CLAB45PY13IiYg6ZLE6ZKK7+XOvYMBS0m+5z9R0gPLZTWrpTSMmTy2iX9nA3erpC9dFuiFhVbtNUfmdqx3r8rLGhXMJpy8iNqqvt7qzN07k9nSz+Fjp/s8oZm/3y6Jm/7t6xxDvXLrdgjGK1rP+/vA2pNtGC07SV110d9MsZIx18kHXGGtHmdlFcobd0orflR6tZfJjM7ctGhp0hOwWiStOK76MFoR3SJv8fTr2mwoWiS1DfBu9b9d7wfdjxl2ytas7iTvkvtrW5ly5RZeJiM2c/bZt9+EtlXyWK9kxUZhvdDoEsoRG30IZVjy5YXSYq8r+tZ6hJug7rh94ceA/n8oe9fvmrH1ef80eb8oVDQsPE9j/d4O2KdL3qdzy9Tfc6Y2HtHvO0Lfx+r1dh/XCF99aH3j1tZqfTlfOnL+bKP3RLqJ8slpSvQcIPRJOncCT6VlAd1yTPhwWRTBkmd8yKfb3YvMHrvdz4t3yD5X39QHe6dKUkaWPLfuILRstKq3j6m/zb98fmsuPp+9zur40bwfLhZWrtSKil2nuvSJ+zQpGfKHjVTeuoO5/oNq2u5ufhti+PxYO+2yesjHtbaUDj2vx/3vqh9V5l/fq78+7dKX0ROrw20cV3q2/Wlnt/CrZ9QYGJBtXnXYDSHp06HDzZ6/Sv3cMbsNNeppElz+S2UnQSjAQAAAJCUm5srv9+viooKz2vGjBmj22+/XcOHD09iZwAAAAAAAAAAAACAhoRgNAAAAABAiGswWlDastF5rmUrT1ubm56XvfP30hfvS4FUmRMulsb9MsFGATjyOYdLNTYmkCJ161/H5wxIhd3q9JwNWrWgsoKK9Y7BaOv8BaHSXcFoL2/po8u7LdCaQBtN2P6url13tbqXLZMklZhUXZ//h4g9Ti28L2obnctWVh106iUVdIj3PUEtaJHuHtqyo7QOG2kATGYLKXNXYkVaoZRf6F6bmy+bkycVOYTLLvtGGjbecZ39vzfib+zQU6STLol/XR3KyzbKy5I2bPe+Zu/iT5UT3BIxHlCFBpR+EzpY/7P3DZd/FzHUsfxHx9IN/nxpxQdhwWg/r90ppUTWdi1b7r0HKXQb2jPEq3rwVayArLAAL5cwLsc99gjVclljItZEOY/jHj6XXj2u8e1a5yE0zDSRxz614ubnZQ+pQbirtdK2Iue5FIcbfgNz4YFGmanSX9+2MpIOGmB009Hu37+MMeqaL9kTZ8gu/0B64zH1Lvk+rnNmVcuL6/7xP3V8UY4ez5nuef30+6xOebBCfl8o6Ciw5/9+yW/C3w74w2sc11XOmbB1Ps/rInvYfd7IHkz0PV3Xxeil2vvu8zXB8DiH70eVOveOGDIzb5R1C0ZbsbiWmkrc1p3ea/u0rd/Pp138uewdF0YE90fVopU0bH+Z826VSctQfsc06YvIELI1UYLRdoeZ5Ttk6e62flt4MFrQJefM94/LZEuGyxxwdOXYYYOMzn7MPRitnUvuZTKlu3zr2Fnm3icAAACA5uOII47QmjVrNGfOHM2bN09ffvmlli9fro0bN2rnzp3KyMhQ69at1aVLF40dO1aHHHKIxowZU99tAwAAAAAAAAAAAADqGMFoAAAAAIAQt2CBYIVU5BaMludpa5OdI/OHexJsDIAnbuGGXvQaUnt9oPEzVYEF+RXr9YO6R5SsC+SH3vD59ebXVke8NVRKDw09lXOsvk7rpwVLxyhF5foqbYBWB+ILa2lVsVFtKtbuOodP5tdXy5gmGIzRSKQFpJLyyPEzxvE5iapzH+nL+RHD9uO3ZI6aGTleXiZ78ZT4znHUWfJd4BKW0sD0bSfNWxI53raldMxwozvfqQrKSLGlumL99bE3jSMYza6MDI/JL3cIrpO0PpAnu+I7lZRZfb5Syv3qTa0K7O9Y2758lXTkmdLz/4jZgzn9GpmTf++5Z8CzjBaxaxIVSI1dU898PqOzxxudPT6+dcYYmctnKyip/3v/jWttdlrV90D7zjM6oSgzrmA0yfl7a+2pi/Ch5J/DmERC4eIJd5MCPlNZ66tRGF2085qqt/8r+bImKC1YoiEli9QyuDX0zrZuJ5MVmWBl/H7ZoftLn70XMWdnXyMz47Ja/7gX7bD6abPUvUBKT4n+eG9bifd9+7WvYWM1YDeslj1tpPcF086X75ybIobdws12+LJct/LZoCS/8txLtH5b+HFF0LnOv36l7JW3Sre+KjPiQElSx1ZGQztJn62MrD9uuKmXgEH3YLS67QMAAABAw5WXl6cTTjhBJ5xwQn23AgAAAAAAAAAAAABooAhGAwAAAACEuIUqBYPSFufQCJPTOokNAYiLcQk39GKYc9gLmqlqAWQF5esdS9b5C0Jv+P26463Iq/a/TN9LT+Qcp5OLHtN3qb3jbqFPyWIZSTrkVzKTT5QZOi7uPVB7Lphk9KfXI8NPDhtEMFpUA/d1DEbTJ+/IlpfLBPZ4ef6dZ2JuaS57QPabT6QtG2XG/VLa/8haajb5jhpmNG9J5O3o1mONpo0wGt1devmNpWq56E2dWPSYRhUviL3p+p9lrY0ZnGhLiqUX748Yz69wCUbz5+nB/3XSuecHdwV4TJRcTtFh5kUyh4+VBu0ne/2pUnmUxI/0jKh9AokygUDyIqoCLuk2TYj54/0a2vsu6S3va7LSqh18OV99UjrXel+QrJXKrVTuEhJVS2dJ5uYO55godZ4oSQrYMv124526ae1l0V9fyXdPFLNLvpLpMbBWugwGrW56w+qKF6yCVmqfI912nNGxw92fa27Y5joVZlDHeg5GO7pHXPVOoWiSooabue41/xVp4i+VkWqUlSZtdwiTiwhGc7lZ+m2FJMnOvq4yGE2STt3P6NwnIhedul/9PF53C0YrJhgNAAAAAAAAAAAAAAAAAAAAHtXgilkAAAAAQJPidwtGq5A2rnWey8lPXj8A4uP2NRxLarrMry6t3V7QuPmqXjJ0Cw3a5M8NveEP6O1vnbc5tfA+HdHxX7ox/5K4WxhY8rXMqVfKd+m9hKI1ABceaDSia/jYLccYdWpNMFo0ZsyhzhM7d0hrlkcM2/dfiL7h8RfJTD5Rvgtul++qR2QOOFrG13he4v/1WKMJfcPHLpkcCkUzxmjaPj49ut/numv1ed5C0SSptETauil23bN3Ow63drmP2+HL0un6/a5QtOgKR4+UMUbmwGPlm7tN5t0dUka2c/FQgkiRRB17us/1GiLtO1nKzol/39ZtE++pkTA+n/zHnqvZLf7ueU32rmA0uysMsXPZSrWsKEpGe2jCyk2Kbs27QA/lnCylR0nc6uAe6mUfubHW+nl5kXTZ86FQNElaVSRNu9dq6Xr38Li3vokdLJefLd1+nC9mkGlts+Vlsm89reCMEVJFubdFuQUy9zkE2+5S0CL+98H3zxsq33YLVlu/LfzjWOESBuhXKBhNX30ou3FN5fiZ44x+MSC8duZ4o0n9G1YwmpfHVgAAAAAAAAAAAAAAAAAAAIAkBeq7AQAAAABAA+FzCVUqKZa2b3Gey2+fvH4AxMckFo5jXl0lk55Zy82gUasWWJBb4Rw4tMnfSpL0xY62KomSMfBKC5dgqBhOLHpMyvhlQmtR+/JbGL17sU/vfCstXW81vo/RwA6EosXUe6j73IrFYSEntmSn9F6UYLQDj5Nv5g3u841Ai3Sj13/r01vfSN+vtRrT02hYZ4WHpKSkxr/xsm+kQWOiltgnb3ccdwt/9Mpvy9WmdXjPxu+XPWia9OL94cVd+kg9B9XofEBU+x8pPfbnyPGMbJm/vyeTli5bUSEt/a/0xQeyi+ZJX8yTNqyKuq0Ze3iSGm54fjWxpc57dou2+lvGrM3aFYymNSskST5Z7b/jP3q5xWFJ7BBN1YstDteMjBWu82bCVNmHrneefOcZ2X4jZKadX+M+/vmhcxpXjz8GVfGPyGCzYNDqlUXOwWi/HCxNGWKUGpAm9jVql1PHoWib18uec0DoMZdH5re3SAceJ9OqjWtNYQL5kr4liyrfzs+WVmyMrFm/LfzYNRjNVpuY96p0+KmSpIDf6LXf+vTvr6WVG60GFBqN6lF/j9fTXX4LhWA0AAAAAAAAAAAAAAAAAAAAeEUwGgAAAAAgxC0YzS0UTZLyOySnFwDxc/sajubwUwlFQ6RqIXu5wSLHks2+UCLAtEWTav30bcrXaL/iD6X042t9byQuI9Xo0EGSRCCaVyYjS7ZNJ2ntysjJld/L7jtZev2fsnMelT57L/peR56VpC7rVkrA6OC9pIPdbkcpac7jUdj5r8lECUaz81+TNq11nKtpMFq77Ar5fJHvi5l5o+zan6QPXw8NdOolc+OzEYEyQG0yp10p+/MP0txnw8dveUkmLT30tt8fCujrOUjm6LNlrZVWLZW+mCf7xTxp0QfSyu9DC9MyZGZcLjPyF3X9rtSfUQfrzAfu1y15F8Yszd59d7Wt6vnyIz+fqlZ9nO9vOpWt1MqUTrXRJZqgn1I6SBlZrvOmW3/ZXkOk7z93nLd3/V4aNVmmS9+w8Y3brW75t9VD86xWb5H26Sp1yzc6clgooOrVRdL6baFgs06tjZ77zL1H/5lBnTLaaHwf6aR9jYwxWrhCWuX8dEEn7OvT1L3r5/ueLS2RPTy+16vMba/LDJ8Qs65Dq/j78Skoa62MMcrPdq7xGozmU9WEnfeKzK5gNCkUNvuLAVJDeLyenuI8TjAaAAAAAAAAAAAAAAAAAAAAvCIYDQAAAAAQ4vPFrtlTfvva7wNAYuL9Gs7IlvnVpcnpBY1btdtSq4pNjiVF/hztMBlauqNFrZ46PVisL3/YO3QQcLmaHmhMOvdyDEazKxZLd1woPXt37D16DZb2GpWE5hqg1PiD0fTV/7lO2X8/IXvtKa7zrSo2yRjJ2vhPK0mFrZ1DSU1WS5mbX5DdsFratlnq3IdQNCSdSUmVueZx2XU/ST/9ILVuK7XrIhPl68oYIxV2lwq7yxx8kiTJblorbV4v5bWTadm6rtpvEEyrAk1ps1y3VMSuzdr9YS0prhxrEdymx388Scd3/GdY7eCdi7Rg6WitDbTR9yk9VDH5JAUnn6KKoFQeDAUglVdIFdZWe3vX/9VqwuqDUeb2WB8M28s61tbWectdwpwQXbFJl9Ldg9EkyVz9iOwJg1zn7YmDpfd3Vn6/KdphNXhWUD9trqpZsExasMzqqU8cd4jZ50PzrR6aL/3fUumu441e+sJ5TWpAuwK66p61Vva8+AIdzT3vywwY6am2VaaUFpBKyj3ubYOhmLIdW6WslsrPNnL6WG/wHIxW7Q7q47dli7fLRAnVqy+uwWgeP24AAAAAAAAAAAAAAAAAAAAAwWgAAAAAgJB4Q5XSM6XsnOT0AiB+PudwFkeDx8qcMUumbefk9YPGq1p4T25FkWPJJn8rvZs5TmU2jttdFOnBYo0sXqA71lykvIqNtbIn0CB06iV98k7k+Iv3ed7C3D6n+YRqpabHv2blYsdhW14ue3f0AFD/6MnqkyZ9uzr+00pSu9bRf8Ri8tpJee0S2xxIkCnoIBV0SHx9qzZSqza12FHjMmpCX3V6baVWpnSKWpeVuuuN0uKw8WO2PqvinzN0U97FWhfI10Hb3tJf1vxefgXVvny12pevlp6fJz1/VmLh5I1AUEYV8qvC+FWuwB7/h8Yr5Fe5CVT9b3wRtVU1vsraisr/q/aqXLd7Tn6VG+fzO+0VeY7IfsP3ruo3GNGvw/smf2V9iUlTqS8yrLDYZEgZ2dE/sJ16S936S0u/dq95/C/SCRdLkm543YaFotWme9+3uuQXVi997hyMNqGP1CK99h+72OLtsg/Mkt57QZJkDj1FOvkPMtW+luzsa6WvPvS2YadeMr+52XMomhQKlCzMlZau91bv3x1kVrRBymqpPJdP84Zt4R/LCpecOr+tFoxWulP6+C1p3C+9NVOHXIPRyuq2DwAAAAAAAAAAAAAAAAAAADReBKMBAAAAAELiCVWSpNZtm09IB9AYeAxWMKddJXPKH5PcDBo1U3Vbygk6B6Nt9uXo8/TBCZ/ijtUX6pxN90gTj5XefjrhfYCGznTuLZdcC2/rr3tKpmXrWuunwUuJDIuJaeMa2a2bZFq0Ch//cr60YVXUpebkS3Xw10bfrk7ss1SYy2NhoKnxTfm1bn5whqZ3fDRqXdbuu6uS8GA0I+lXRY/qV0XR10uSgsHEmmzgfJJ8qpBLLlKz9mTLY3Rih4cjxot96VJGZtS1xhhp5g2ylxzhWmPvuUw6bIY+29xaf36jJo9AoqsISne/a/XlT87zhw9OzvdHe+0p0n9eqjp+YJZUViJz+izZYFD6eoH00PWe9jJXPCRz0PSE+ugQTzCarRaMVthN+S7BaOu3hR9XuNw9VAat7WLnvSrTIIPRjOTwKJhgNAAAAAAAAAAAAAAAAAAAAHjVNP8UOQAAAAAgfv44g9GyWianDwCJ8RpuOHRccvtA41ctZC+3YrNjyU5fhhal75XQ9nsXf6qzNt0rc+XDMmdck9AeQKPRqXfN1o84sHb6aCwSCUaTpBWLI4bsBy9HX3PA0TID9tE+XRM7pSQV5iS+FkDDZNLSdezlJ+nN5ZOj1gX8u4KfSnbWQVdoKjKCzreXYpMhpWfFXG9GHSxzzROu8xXy6eJbF2v49ckP3YsWvFbbwWg2GFTw8mlhoWiVXnpAdslXsoe0lZ25v6f9zG9vSTgUTZJ6tvH+/vm063OxeoUk1TwYzYYHo2n+a7IVFc7F9Sjd5c/zEYwGAAAAAAAAAAAAAAAAAAAArwhGAwAAAACE+F2uWnSTlpmcPgAkxufxZZ4ufZPbB5qAqgv9c4NFrlULMkY4jh+zt3tQQPfSH/TUT8cr8M9PZSZNkwo6SOku30+aWyAUmqYufRJfO/oQmUyX9IymKjU1sXXLv5Mk2fIy2bnPyr75pPT0X93r+wyTueAOSVKH3MTDW3oUJLwUQANmRh+iA3a8r72LP3Wc7+lfU3VQUlxHXaEpSLfOt5diX4ZMhrfv+eaAo6R9I4P7PksbrPFd3tRtq/apUY81Nayz1LFV7QWj2fJy2cuPk9573rlg8zrZU/aWtm/xtuGMy2WOObdGPfVu6712d5CZveE0SVJ+tvPHpnowWjDoHjrn1x4haJvXSf/9yHtDdSQ9xXm8pFyy1v39AwAAAAAAAAAAAAAAAAAAAHaL86p3AAAAAECTFYgziCI9Izl9AEiMl2C0nDyZ3Pzk94LGrdptqVXFZteyFSmdHcd/MUB68BSfZt/1np7+1Khr6XJ1LVuugSX/1YHb31GrZz6TKeggSTIpqbKjD5HeeSZ8kz7DZNp2qvn7AtS3tp2ldl2k1cvjXmqO/W0SGmrgUtISWmZXLJY2rpGdub/089LoxWOnyFz5sMyuUMbC3IROKUk6bFDtBb8AaFjMSz/q6Bm3amHGsIi5X256RrbsLJmUVILREJeMoPPtpdykqFw+uWRJRTA3/Et2QovK42vzL9WsgitqocOaO3xwLYaiFW2Q/c1Eadk3tbKf+dtbMkPG1nifvu2MJG/hXj4FQ2/s3CEbDLoGoxUVSzvLrNJTjF7/yn2/3UFrYT57Xxo0xlM/dcUtGE0KhaNFmwcAAAAAAAAAAAAAAAAAAAAkycMVswAAAACAZiEl3mC0zOT0ASAxxsPLPN0GJL8PNH7Vbkt5FRviXt63vVFmmtE5543Vu0Of0UOrz9DV66/TVL2rVrc+VRmKVnm6i++SBlcLKOjaT+a6JxNuH2hIjDHS6IPjX3jQ8TJ7H1D7DTV0qemJrVv+rexfL44diibJXPjXylA0SWqfk9gp92mxWi0zCEYDmirTqkAXHlChUzY/EjZ+9JbndM3Pl0mfvRcacAtG67GXzNPfSQNHJblTNCbptsR1bsfa9Z73MSmpMjf8S5J0R6tzaiUU7aXf+DR5gGRq+K3tl0OqNrClJbLP3KngVScoeP8s2TUrQuOb1yt45yUKjk0L/bvnMtnvv1Dw7ksVvOoE2RfulS0vk73vytoLRbvn/VoJRZOkoc750I78qhZktmVj1McdS9ZJO0qsTn046G2/Xey/7vTeUB3JiPIS486yuusDAAAAAAAAAAAAAAAAAAAAjVegvhsAAAAAADQQgTiD0dIIRgMaFL8/ZokZeVAdNIJGr1oaQobdqdblG7QxkOd5eZ+2u7bx+2Uu+pvsGddIq5ZL3QfKBCJfjjQtcmXufCsUlFCyU+rUKxQmBTQRZvShss/dE9+a8/6SpG4auNS0xNZ9+JpUERkUEsHvl1q3DRvKSDVqnWm1cUd89ztn9FkhqUPMOgCNV8rZ1+n+l/J109o/6su0AepX8p3aVqwNTf5vkbTPJKnUJegqLUOmfVfp7rnSysWhupKdUvG2OusfDU/m+nTpOee5km6D49rLjJ2iO3pfr4v8F3iq/2Dp/rqr9Uw9kTMtYi7bFOvQvbJ02CC/Nm63WvRj6DH94wusfveM9dzTwQOlIZ1C309tebnsH46SPn6rct6+/oh0w79kLzlS2ri6auFjt8g+dktV3TvPSB++Ln36rudzu0rPlHl9rUwgpeZ77dIlz2hiX+ntb2PX+my1kLMNq9W9S578PqnCIfvs21XS92ukdVvd9/Nbh4VF62VfekBmymmxG6ojXfOkJ88wSg8Ypaco7F92gg/3AAAAAAAAAAAAAAAAAAAA0LwQjAYAAAAACEmJMxgtnWA0oEExvtg1e41Kfh9o/Hzht6UO5T97DkbLz5byssPDhUyLVlKLVjHXmqpv4mMAACAASURBVLadvfcINCZD94+vvms/T18zTVJK9KQMc9pVsg/MipzwEoomSS3zZHyR3y+HdTF66xtvW+w2rhcBjkBTZ1JSZfuNUN4XH2j8jv+Ezdm//1EadbBsSbHz4rSM0B7GSJ37JLtVNBKZa630nEOwlaTiAePi2mtLsdWVqedIHr4FFn/TUikqlzbKMRjtwKJ/S990kvqPUOsso/G7brLnTQz97yUc7djhRv84sdr3xi/+ExaKJkla+6Ps2QdIpTtjNz3/tdg1HphTr6jVULTdbp7q097XOX8uq/NX/wRtWKWU/Pbq7ivR98G2EbXH/CPO/aqx914pHTbD8XFOfcjNNDp2OI+VAAAAAAAAAAAAAAAAAAAAkLiG8ZuxAAAAAID6F++Forsu9AbQQPj9sWuycpLfBxq/PUL2CstXeV7at11tNwM0fiY1TTrp997rf/XHUJBOcxTt8Wh2rjTt/Jo9Bs1xDnm84rD4flRyyuZH1KNH68T7ANB4+N3/xpQ9+wDpx/85T6alJ6khNGYZUb7N7cwpjGuv17+y2lYRO+D++ZXHhELRJO2782OdtPnRsPnM4HZdsuEv0oI3I9YG/EYXHeTTwsujf5+cOd7oyTN8ysmsevxin7zdudhLKFpt6dBdOurspGw9tLNRew9Pr32qFiq3YbXstaeo96aFCZ/Xb12S8IrWSz//kPC+AAAAAAAAAAAAAAAAAAAAQENDMBoAAAAAICQl9gW1YdIzk9MHgMQYDy/zZLVIfh9o/Hzht6UO5T97Xtq7XTMNcwJi8J1xjac6c9trMgcem+RuGi5jjLTvZOe555fKpGdK/fdJ/AQ5+Y7DY3sZjUv52nFu9I75mrV2liZte1OHb31Fd646T/euminlxxdgA6CRihY+vG2z9PbTznMEicNBRpSXXYrLvO9TEbSafp+NWde/5Gsdvu3VsLF7V52t+34+S0dseVG/3jRbnywdpX12fiL7wCzXfYZ2NjpqqPt57jre4bnoR3Ni9pdUx5wrc/9HMkkMKezXPnZN9SAz+84z0v/9W13KViR8Tr9cgtEkaevmhPcFAAAAAAAAAAAAAAAAAAAAGhr3P3MOAAAAAGhe4gxGMwSjAQ2LL0pow26ZBKPBi/Bws8Iy78FofdvVdi9A02Hu/1D216Pc5295WWb4xDrsqGEy594su/hzaePq0EBKqswfH6h67Nm5l/TZe4ltnpvnOvWvAa9o4kdBfZU+sHKsXflq3b36txpY8rW0oVpxVkuZzOzEegDQuHh5jO0klWA0RMpIcZ8rLvW2x6fLrU6eHfRUO2fF4RFjKSrXjKJHNKPokYg5u/J7mU69HPeafYpPyzcGtXB51Vh+tvTqbxvW32EzVzwkc9D0OjlX77ZG73wbPaAuLMhsV1hc+/JVCZ+zetBahO1FCe8LAAAAAAAAAAAAAAAAAAAANDQEowEAAAAAQgLxBaMpjQu9gQbF5+GCdILR4MUet6WCivWel/Zpa2IXAc2U6TNMUaMz8gvrqpUGzXTuIz28MBQesmOrtPcBMl36Vs136h394xhNjnswWn73TvrwyXF6scXh+jqtn7qWLtfh2151vg/Mb59oBwAaG3+CP0rl+TIcpEcLRiuLvf4PzwV18xxv3wUf+PkMFcYZwGWPHyi9v1PGRD6mb5lhNO/3Pr3wudVXP0mdWkuHDzJql9PAHv+PnVJnp+rdNnaNz0aG2HUo9x48vaewoLU9bduS8L4AAAAAAAAAAAAAAAAAAABAQ0MwGgAAAAAgJCXOYLT0zOT0ASAxJkYwWmqaTLxf52ie9ghGy48jGG0AuU5AdDl5UtEG5znuoyuZ3Hxp8onOk90HJL5vt/7uk90GKMPu1LQt/4q9UbfEewDQyCQcjJZeu32gSTDGKD1F2ukQglZcGn3th0us51A0Y4OatP3tBDqU7Lh02YnHygzbXzp0hozfXzmXGjA6drjRscMT2jrpzNk3ymRk1dn5QqHQ0T8nTkFm7eMMrKvOKkoQ3fai8Nr1P8v+/TLp34+HBg4/VWbyiTKDxiR+/s/el333WSkYlBl/lMzeByS8FwAAAAAAAAAAAAAAAAAAABBNjCtmAQAAAADNRiDOMI40gtGABqXaBeuOMlrUTR9oAsIvts8v9xaM1rut1C0/Gf0ATYgvyn01wWje7DVaSstIbO34o9zneg6Scgs8bWMOPzWx8wNofKLdb0eTSjAanGWkOI8XO4SlVffwh95C0STpsG2vqbAG4Vt6+2nZP58je9UJie9RHyafVKen6902do3PBiPGOpT9nPA5U2yUG8q2qmA0+/NS2SO7VYWiSdLLs2XPPVD2nWcSOrd980nZ838hPXeP9MK9shccLPvqwwntBQAAAAAAAAAAAAAAAAAAAMRCMBoAAAAAICTgcnWum3SC0YAGxcR4mSczu276QOPnC78t5Vds8LTsoAFGxpjYhUBzRjBajZn0TGn0IfGv+9NzMvmF7vN+v7T/EbE3atNRZp9JcZ8fQCPlDyS2jmA0uMh0+Xa/vcQ9+CwYtLr3/djBaC3TpVO6LdOj5jr3ouxcmQc/ibmXJOm95xUcmyb74HWy5eUxy+1n7yn4mwMVnN7f2/61KZAi5eTV6Sm75oc+5tH4VREx1r1sqVKDJXGfr035GnUrW+Y6bzdXBVrbv//RuSgYlL3qBNnS+M5vrZW97yopGKw+KHv/1bLWe2gfAAAAAAAAAAAAAAAAAAAA4BXBaAAAAAAASbvCIPxRwjr2lMaF3kCDEuvrN7NF3fSBxs8kFow20D1vCMBu0QJ2AgSjeWVmXBH/olEHx9735D9I2bnuBbkFMrMXxH9uAI1XPM+RqzGEXcJFdprz+PZS9zWH3xl0n5QU8ElvXuDTxtt9mn1pD7V4/GOZd7bKnH1jRK054xqZnntJIw703LOdfa3sPS5BW7trfviv7AWHSF/8R/pxiee941LQwX0ur72Mr25/9cHvMzooRgZcuo0MIEu3JZq4Y27Udf3bR45dtv4m+RQlhOzRmyVJdsdW6T8vRd3fHtNLdueOqDVhVn4vrVoWOb7+Z2nxZ973AQAAAAAAAAAAAAAAAAAAADwiGA0AAAAAUCWeQI60jOT1ASB+JsbLPFkt66YPNH7GhB3mV6z3tKxfexO7CGju/FHuq1NdklIQwXTrJ/Pwp94XTJrmKSzFtOko8+AC6YgzpIGjpH0mST0HSWOnSEefLfPgxzI5eTXoHECjEy3QMppASu32gSYjy+Xb/badzuNl5VbvLXbf74gh0vuX+DSxn5HPV/V43KSkStMukLn5BWn/I6T9j5S55SWZI88Mzd/ycnyNP3u37JaNrtP2vqukivL49oxHZgupZWv3+XyHJLE6MHV49OdAA3d+5Tg+ZesrUde9fZFPz870aZpvro7c8oL+9eN0nbPpnpj92PU/Sx/Oif252LhGdlIrBe/6g2wwevCeJCnK516b1sZeDwAAAKBWrFixQpdffrnGjh2rtm3bKjU1VcaYyn8PPfRQfbcIAAAAAAAAAAAAAECtSfC3+QEAAAAATVJKqlRS7K02NT25vQCIT6zQhszsuukDjd8e4UFptlStyzdoYyB6GFD/+skiABoXn999Lp6AWsh0HyCdfo3sfVdGL2zXReaUy7zv266LzEV/q2F3AJqMRIPRUrhPh7Nsl2C07aXO4ys3STtc5kZ2k5472/2xhTFGGnWwzKiDI+d8PumON2QvnSrt2Bqrbam8TPbP54RC1vqPkCnsXjllt26WPogzaK26vQ+QFs6NXpPfPnqIbOu2iZ+/Bo4aajSoo9WiH53nD9v2muv4TJc9jx1u1Lal0ZFDpV/6rpd+mu+9oS8/lH3/Re/1T94mW7xVGrK/VNhNpv8I5zpr3fcwBGQDAACg4evatauWL19eeTx37lyNHz++/hpKwH333adzzz1XJSUl9d0KAAAAAAAAAAAAAAB1whe7BAAAAADQbMQTyEEwGtCwBGIFo7Womz7Q+Dlc2D66+KOoSwYWSnnZXBAPxBQ1GC2l7vpoKk66ROrQPXK8dTuZs66XuewBmfs/lOncu+57A9A0+BL8UWpKlAAnNGtZbsFoLte1rypy3+vs8TV7/G2GjZd5eKHMebdKLVrFXvDuc7KzTpY9YZDsc3+XJNlNa2UPqVkomRn3S6lNx+hF+YXRv66ycmrUQ6ICfqO7jvfJ5/Cp6NiiTIedNNZxXfvy1Tqu6OmIcaOgHj2t2mYV5XH1Y688Xnr32bjW6MX7ZWedJHvmfgpePk02GIxvPQAAAICke+2113TmmWd6DkV79913ZYyp/Hf11Vcnt0EAAAAAAAAAAAAAAJKAYDQAAAAAQJUUgtGARivW129my7rpA42fQzDakVtfjLrkiKGEogGeRAlGM4mG7zRjxhiZ2+dI/fepGuw3XObud2ROuFhm8okyOXn11yCAxs8fI3zYTTzPrdGsZLncNLYlEIx24r41fwxu2nWRmXqOzF/f9L6ovEz2tvMVHJsmO6VTjXtQQQeZPz0XvabHQCk1SjBaZnbN+0jQmJ5Gj59ulF4t47Z9jvTEzDRlTj9H5qUfpaH7R6z7y5rfa9z29yuPB+z8rxam/UYBf+LBaJKkmgSbvfe89MrsyPGoffBcEAAAAEi2Sy+9VNbayuPjjz9eb7/9thYvXqylS5dW/ps6dWo9dgkAAAAAAAAAAAAAQO1K8Lf5AQAAAABNUiAlds1u0S5IBVD3/DG+fuvxQnE0MiYynOmwba/Jb8tVYZxfTjySYDTAm0QDduDKtOsi3fO+tOQrKTVVKuwuE89jWgCIJkqgZVQBgtHgLDvdSLIR4ztcg9EiayWpR0EoILS2mJ57yQ4eK33xn1rb07P8Qpleg6W3imR/O0n6ekH4vD8gM/kk2fuvdt8js0VSW4zl2OE+HT7I6uNlUmpAGtJJSk8JfX5MqwLp9jnSj99Lq5ZL3fpLc59Vuzsv0dsrJuvr1H4qMykaWPJfBTr3CN/YLZDM56tZAFoU9um/yUz5dfhgmcsNVEosvA0AAACAZ999950WLVpUeXzIIYfoscceq8eOAAAAAAAAAAAAAACoG5FXOQIAAAAAmq+UOC7eTk1PXh8A4hcrBKaeLxRHI+KLfMkwr2KjJm6f61jes03own8AHvgTDNhBVMYYmZ57yXTuQygagNqVaKBlPM+t0axkutw0tpc6B6CtLnKub59TSw1VY254WjrwOCknv/Y3j6agMHT+tHSZO96QjjxTys6VjJF6DZa5+QWZ3kOiBvSbBvB8NyPVaFxvo327m8pQtN2Mzxd6nDLyIJk2HaWCDqFxSQNKv9GQkkUKqEJasTh8U7fQsb0nJOE92GX5t7KrloWPle50ry+NEpoGAAAAoMY++eSTsOOpU6fWUycAAAAAAAAAAAAAANQtgtEAAAAAAFUCBKMBjVaM8AWTmV1HjaDRM8Zx+Jp1s5QaLIkovelon4zLGgB78BGMBgCNCsFoqGXZLi+lbHPJnVrlEozWrmXt9FOdadlavqseke+Vn2Se+rb2T+DEH5Bata3qIT1Tvgv/KvPqKpk3N8s3e4HMPpNCk6kZ7vs0tue7+e1dp+xn71cduASjmf0Ocwy0rjXffRZ+HC38rMx5zlZUyG5aK7t9Sy02BgAAADQ/a9asCTvu2LFjPXUCAAAAAAAAAAAAAEDdIhgNAAAAAFAlnou30whGAxqUQEr0+awkXDmPpsk4v2Q4fOenmr9sf524+TEN3/mpjtnb6N/n+3TkUELRAM8IRgOAxsWf4P12rMfmaLayXF522V7qPL66yDqOt8tN7mNwU9hNatOpdjbrOUgaMNJ5buRBMg5fZ8bnk9nzdadWBe7naGzPd/MLXafs3y+tOnAJRlNKmszjX9VyU9Us3yMYr8QluU+SSiPn7DefyJ42UnZKJ9nDChW88xLZiopabhIAAABoHrZt2xZ2nJLCaw4AAAAAAAAAAAAAgOYhwT9zDgAAAABoklLSvNemEowGNCj+GBdCZLaomz7Q+Pnc/5bCkJJFemjV6VJOnnxn/lyHTQFNgznmN7LX/CpyolOvum8GABCbP8EfpcYTOo5mJdvlZZdtJc7jq4qcx9vn1E4/0ZirHpY9Z0LNNsnOkTnnT1KPQbLnTpSWf1c117qtzOnXeO+noFDOMXFqfM938wul1DSp1OET/8N/ZXfukEnPlNzCxPwBqV3XUHhjEgLH7PLvFBa95xB+VjVXIrt1s/TxW1JmtjRgpOwZY6rmy8ukp+6Q/eBlaeo5MlN/U+v9AgAAAA2FtVaffvqpvv32W61du1YlJSUqKChQhw4dtN9++yk7OzvuPYPBYBI6BQAAAAAAAAAAAACg4SMYDQAAAABQxevF2z5f4heIA0iOQIxgtIz4L7ZAM2Xcg9EqpWclvw+gKRpzqJSWIZUUhw2bSdPrqSEAQFQ+f2Lr4gkdR7OS5RaM5pA7VV5h9cWPzvV1Eow2aIzsxGOlt5+Ob93jX0nzXpXS0qXRh8i07RyauO9D6Z1nZJd9I9OpV2guv733jfOi1GY2rue7JjVNtnMf6X+LIidLiqVvPpGGjpMqyp038Adk/H7ZvPbSWpcbSU2sXBx+HCUYzf7nJeneK6Vtm6Pv+dMPsndcRDAaAAAAmqT169frhhtu0KOPPqp169Y51qSmpmrChAm6+uqrNXLkSNe9li1bpm7durnOH3DAAY7jDz74oGbMmOE4N2vWLM2aNct1z7lz52r8+PGu8wAAAAAAAAAAAAAA1AeuYgcAAAAAVIkVrLRbarqMMcntBUBcjN8vG60gs0VdtYLGzsv9ewbBaEAiTGYL6abnZf94jLRja2jwgKOlE39Xv40BABwZfyD6Y2w3XkPH0ezkZDiPb9oROfb8Z+77tGtZN6/JmEv+Llu8TZr/mrcF+0wKhZ5NOz9yr4ws6dBfKeHOs6OkwXkJd25gzJ9fkj2yq/PkhlWh/6MEo0mSug9ITjBa0fqwQzvvFffaj9+q/fMDAAAAjcgLL7ygk08+WVu3bo1aV1paqjlz5mjOnDk644wzdNdddykQ4Fe4AQAAAAAAAAAAAABww0/VAQAAAABVvF68nZqe3D4A1D6C0eCVz0OoAMFoQMLM3gdIL/8kffep1KajTNtO9d0SAMCNP8EfpQYIRoOz/GwjOcTtbdohlVdYBfxVsWFPfRx03ad9lIyw2mQys2Vuel526TfSzu2hIK6iDdJn78teN2OPYiMz4/LkNZNf6D6X1TJ5500Sk99etmNP6cf/RU4WbQj9HyMYzRx2quxHb0Q/0fQLpSduja+5rUWVb9oHr5M+eSe+9W68PNcEAACoC8FyaUcSAmYRKbOj5Gu6v6Y8e/ZsnX766QoGw5+/9ejRQ/3791dmZqZWrFihBQsWqKKionL+3nvv1YoVK/Tyyy8TjgYAAAAAAAAAAAAAgAt+og4AAAAAqEIwGtB0ZWTWdwdoLIyXYLTs5PcBNGEmNU3aa1R9twEAiCXREB+vz63R7ORHeRi9cbvUplq+13Ofudf2bVd7PXlhuvWrOmjTUfrF8VLXvrK3Xyh9/7nUuq3MWdfLDNw3eU10HyjltZc2rAofb9FK6jk4eedNppw8x2A0u/ZHGSlKMJpfkmT2P0L2qLOk5+5xPYXJzZftPlD64SvvfW3brOCvR4WCfAEAAJqiHT9KL3Wr7y6ahylLpeyu9d1FUnz++eeaOXNmWCjakCFDdNddd2n06NFhtevWrdMVV1yhf/zjH5Vjc+bM0ZVXXqkbbrghrLZjx45aunRp5fHtt9+uO+64o/L4iSee0L77Rj73ys/P1/jx4yVJH330kaZPn145d9555+n88893fV/atavjJ5kAAAAAAAAAAAAAAHhAMBoAAAAAoErAazBaWnL7AFD70jLquwM0FsbErkknaA8AADQD/gR/lBpIqd0+0GREC0Zbv60qGO2zFda1rn97KS3Fw2P2JDN9hsn8/d26O5/fL514sewdF4WPH3+RTKCR/tpDy9bO44//Rfbgk6RtRc7z1e6bzIwrZKMEoykjW+bE38lee4pk3W9XEQhFAwAAAKI67bTTVFpaWnm833776Y033lBmZuTPTwoKCnTPPfeoZ8+e+t3vflc5ftNNN2n69Onaa6+9KscCgYC6du1aeZybmxu2V7t27cLmq8vODj3pXLZsWdh4bm6u6xoAAAAAAAAAAAAAABqqRvobwgAAAACApEjxGoyWntw+ANS+VILR4JHxxa7JiJLoAAAA0FT4/Ymt8/rcGs1OXoxgtN0ufS7oWvfQDA+P15soM/U3Uqu2su/8SyorlZlwjMzkE+q7rcTl5LlO2ZOGuK+rHgSXkxe6zykrda7NyJKZNE3Kain72sPSey8k2GwNtG4rtWoj+ZrvbRcAAABNy9y5c/Xpp1Vhwi1bttRTTz3lGIpW3cUXX6z33ntPr7zyiiQpGAzqtttu0+zZs5PaLwAAAAAAAAAAAAAAjRG/eQoAAAAAqBIgGA1ostIIRoNHXi5WzyQYDQAANAP+BP/GFMFocJGeYpSd5jy3OxittNzqwx+ca3xG6tMuOb01FmbiMfJd/7R8N7/QuEPRJGlbUWLrqoVZG2Ok/PbutbtCrc3oQ+S77imZ659O7JyJOnSGfC+ukO+hT+SbvaBuzw0AAAAkycMPPxx2fM4556iwsNDT2j/96U9hx0888YRKSkpqrTcAAAAAAAAAAAAAAJoKgtEAAAAAAFVSUrzVEYwGND4Eo8ErY2LX5BYkvw8AAID6lnAwmkvyFSAp3yVjeN1WK0n6z/fS1p3ONT0KpBbpHh6vo1EwvYcmttDnDz/O7+Bem54Zfpzo/VqCzCV31+n5AAAAgLrwwQcfhB2feOKJntcOGDBAw4YNqzzeuXOnFi5cWGu9AQAAAAAAAAAAAADQVBCMBgAAAACoEkj1VpfisQ5Ag2H8/thFgCSZ2C8Zmtz8OmgEAACgnu0ZPuQVz5kRRZ5LMNrm4tD/ryyyrmvfOJ8f7zcpPfdKbJ1vj9tB6zbutRl73OD6DfcWhl1T7bvKPPixzJ69AgAAAI3cpk2btGTJksrj3Nxc9evXL649Ro8eHXb88ccf10pvAAAAAAAAAAAAAAA0JXX754ABAAAAAA2b14u3AzydBIAmy8uF67kFye8DAACgvvkTfO7rNXQczVJuhvP45h2h/z9c4hyMdvQwqWt+HQRaoe7sOzmxdXuGWecXutdmZIUvbd1WduRB0kdvJHbuaG3NekzauUPq1EvqPVQmLb3WzwEAAFArMjtKU5bWdxfNQ2bH+u6g1q1bty7suFevXjJxhg/37ds37Hjt2rU17gsAAAAAAAAAAAAAgKaGK9kBAAAAAFW8BqP5U5LbBwCg/ni5gCc3P/l9AAAA1DefP7F1AZ4zw12OWzBasWSt1WKX6+En9ScUrakxKanSdU/JXn5cfAv3CLM2bTrKOU5PUmpa5HmvflT25rOlea9IJcXxndtJ594yt74q07ZzzfcCAACoC76AlN21vrtAI7Vp06aw45ycnLj32HPNxo0ba9QTAAAAAAAAAAAAAABNEcFoAAAAAIBKJpDqfiFldQGeTgJAk2V8sWtatUl+HwAAAPUtwee+xufh8RSarZxMIzm8+lK0Q1q/Tdq8w3ld//YEozVFZv8jZPedLH00J45Fe9wWBo5yr82JDLU2WS1lZj0qW1YqPf1X2Xsui33O7gPle3ihbHmZVLpTKi2RMrJl0tK99w0AAAA0AdaGP58zXv7YTAy1sQcAAAAAAAAAAAAAAE0Nv5UPAAAAAKiSkuqtzp+S3D4AAPXHS5BHbuTF9QAAAE2OP4FgtBETa78PNCm5mc7jm3dYLV7jvq532+T0g/pnbnwmzgV7PGcbMFJq3yWyrvsAmSjP3UxKqjRhqhSI/TqfmXJa6P9AikxmC5ncfELRAAAA0Cy1bt067LioqCjuPfZc06pVqxr1BAAAAAAAAAAAAABAU0QwGgAAAACgiocLIeOqAwA0QiZ2SQ7BaAAAoBnw+eNeYs65OQmNoCnJzXAeLyqWFq+xjnM5GVJBiyQ2hXplAikyLyyXuvbztmCPMGvj98v85s9SalrVYGq6zG//Evvc7bvKnHpl9KLeQ6WDT/LWGwAAANDEFRQUhB0vXrw47j2+++67sOM2bdrUqCcAAAAAAAAAAAAAAJqiBP7MOQAAAACgyUpJ9VZHMBoANF2+GH9LISdfpvoF9wAAAE2VP85gtBETZXoMTE4vaDJyM53HNxdLi9c4z/VuKxnjIcAYjZbJayfd/6Hs5AKpvCxGceRzNjPul9L9H0kfvi4Fg9L+R8h06uXt3CddIg0aLfvRG9Ibj0nrfgpNtOkk8+urpInH8hwQAAAA2KVVq1bq0aOHlixZIknavHmzvvnmG/Xr5zHoWNL8+fPDjkeMGFGrPfL8EQAAAAAAAAAAAADQFBCMBgAAAACoEvAYjObn6SQANFkOF9mHyW9fN30AAADUN198wWjmpN8nqRE0JbkZzuObd0jfr7GOc73bclF7c2DSMmRP+r304HXRC13CrE23/lK3/omde/B+MoP3k868NqH1AAAAQHOy3377VQajSdJjjz2m666L8Th+l2+++UYLFy6sPE5PT9fee+9dq/2lpYUHG5eUlNTq/gAAAAAAAAAAAAAA1IUYVzkCAAAAAJqVFI/BaAGC0QCgyTIxQhcKCuumDwAAgPoWTyh4597S4LHJ6wVNRm6m8+PtdVuleUscp9SrbRIbQoNicvI8FPFrHgAAAEB9Ovnkk8OO77zzTq1evdrT2ksvvTTseNq0aRFBZjWVm5sbdrxq1apa3R8AAAAAAAAAAAAAgLrAb8wCAAAAAKp4DkZLSW4fAID644vxkmEewWgAAKCZiBWMlpMfqhk2Xua212ViPY4CJBXmOo+XB6U1W5zn9uoQI7wYTUdOfuwa7msAAACAejVhwgQNGTKk8rioqEjTp09XFVSUYwAAIABJREFUcXFx1HW33XabXnzxxcpjY4wuuOCCWu+ve/fuSk2t+rn/3LlzVVZWVuvnAQAAtcdaq29XWd3xdlB/fiNY3+0AAAAAAAAAANAgxPFnzgEAAAAATV7AYzBarIvDAdSPbv2lpV9HjnfoXve9oNEyxshGK8hvX1etAAAA1K/UNPe5fSbJ/PklqaxUJi297npCo9enbXz1qQFpYt/k9IIGKKd17BpDMBoAAABQE6tXr9ayZcsSWtu1a1dJ0gMPPKBRo0aptLRUkvTuu+9q7NixuuuuuzRy5MiwNevXr9dVV12lu+++O2z8kksu0aBBgxLqI5rU1FSNGTNGc+fOlSStWLFCU6ZM0VlnnaVevXopMzMzrL5du3ZKT+e1DQAA6tqWYqs3v5be+Nrq3/+1WrExNJ6XJV04ycrv4w9mAAAAAAAAAACaN65kBwAAAABUSUnxVuf3WAegTpkTL5G99pTI8V9fXcedoNHz+aSg818hNtkt67gZAACAetK5j/tcRpaMzycRioY4ZacbdWwl/bjJW/3EvlLLDC6AazZy8mPX+AhGAwAAAGpi+vTpCa+1NvSnZYYNG6Y777xTZ511loK7fp6ycOFC7bvvvurZs6cGDBig9PR0rVy5UgsWLFB5eXnYPpMmTdK1116b+DsRw4UXXlgZjCZJc+bM0Zw5cxxr586dq/HjxyetFwAA4Gz+EumYf0T+XsaG7dKnK6QRXeu+JwAAAAAAAAAAGhJ+YxYAAAAAUCWQ6rGOYDSgQdr/SGnEgeFjIw6Uxk6pn37QeJkowQtpmXXXBwAAQD0yuflSx57Oc/1G1HE3aEr6tvNeO2UwoWjNSkGH6M/HpNjzAAAAAOrE6aefrqeeekrZ2dlh4//73//04osv6qmnntL8+fMjQtFOPfVUvfrqq0rx+kfLEnDYYYfpuuuuk9/vT9o5AABAzYzrJaUFnOfOeMT5D9kBAAAAAAAAANCcEIwGAAAAAKiS4jEYze/yW1kA6pVJS5e58VmZWY9Jx18kc/WjMn96TiYto75bQ2NjorxsmE4wGgAAaD7Mib9znhh5UN02gialTzvvwVajehCC1ZyYVgXSsPExirhNAAAAAA3F1KlTtWTJEp133nnKz893rUtJSdFBBx2kefPm6YEHHkhqKNpul112mRYtWqQ//OEPGjdunNq1a6eMDH5mCABAQ5GZZjSul/PcFz9KvjMqNPKGCp37RFAfLrGy1tZtgwAAAAAAAAAA1DOuZAcAAAAAVEnzFnZjAsn/RW0AiTFp6dKEqTITptZ3K2jMfASjAQAASJImnyQtmi+99nDo2B+Q+c1NMj0H1W9faNT6tvNe27MgeX2gYTIX/U32+IHuBdGerwEAAACIsGzZsqTu36ZNG91+++269dZbtXDhQn377bdat26dSkpKlJ+fr44dO2q//fZTixYt4t776quv1tVXX51wb/3799eNN96Y8HoAAJBcBw0wevMb98Czj5dJHy+z/8/enUfLddV32n92zXcepCvJlmTLxgg8QGyMwRiS2C95ISFkaKATArwMTQIhhMQdIAkdXmKMkyYJazUm6SyGJoZOdwhTAoSX0A6TAYMbTAPG4NmWZE1X0p2nqlvDfv/YV7rz1ZV0Bw3PZ61aVWefffb5nVOnbg23zrf4r1+NvP0XAzf/ij+aIEmSJEmSJEk6dxiMJkmSJEma1tG9vH4Go0nSWW6JL9MWm9auDEmSpHUWslnC2z5I/I3/CAd2wZOvJnRtWu+ydIZ78pYALH6y21Hbu6C56Ilu55qw/YlLHx3BYDRJkiTpdJTJZLjmmmu45ppr1rsUSZJ0hvj5KwJv/dTxPysGuOX/i7zqWZEnbPIzY0mSJEmSJEnSucFvzEqSJEmSpnVsWF6/bHZ165Aknb5KzetdgSRJ0poLOy4lPOsXDEXTinjaBRCWce7azs2rX4vOQBm/5iFJkiRJkiSdDS4/P/DkLcvv/7UHlxeiJkmSJEmSJEnS2cBvzEqSJEmSprV0LO/kylx+9WuRJK2f2uTi84oGo0mSJEmnoqslcOPPHT8Z7Ymbl5GepnNP8GsekiRJkiRJ0tnia29Z/ud9R0ZXsRBJkiRJkiRJkk4zfmNWkiRJknRMyGSgrev4HQ1Gk6SzW6Ox+LySwWiSJEnSqXrPS44ferZz8xoUojPPcn7UQJIkSZIkSdIZYVN74P53ZXhCz/H7Dk2sfj2SJEmSJEmSJJ0u/MasJEmSJGm29u7j98kajCZJ56xS03pXIEmSJJ3xQgg8//Kl++zcfPzwNJ2Dgl/zkCRJkiRJks4mOzcHfvLODN/9kwyf+93FP/8zGE2SJEmSJEmSdC7xG7OSJEmSpNk6Nhy/Tza3+nVIkk5Pxeb1rkCSJEk6K5zXsXjwWSbAtRevYTE6c2T8mockSZIkSZJ0tsnnAldfGHjhUwOvvm7hz46HDUaTJEmSJEmSJJ1D/MasJEmSJGm25rbj98nlV78OSdLpqWQwmiRJkrQSLtq4+LxrdkB3y+LBaTqHBb/mIUmSJEmSJJ3N2psWbh+aiGtbiCRJkiRJkiRJ68hvzEqSJEmSZisUj9/HYDRJOncZjCZJkiStiOdeunjw2b+7ylA0LSJ4bEiSJEmSJElns45Fg9HWtg5JkiRJkiRJktaTwWiSJEmSpNnyywhGy+ZWvw5J0mkpGI4pSZIkrYhrL4KtnQvP++WfMvxKi8j4NQ9JkiRJkiTpbGYwmiRJkiRJkiRJBqNJkiRJkuZaTjBazmA0SZIkSZKkU5HJBP7yJfMD0P7DcwJPPs9gNC0i+DUPSZIkSZIk6Wy2WDDa4Pja1iFJkiRJkiRJ0nryTHZJkiRJ0mzLCkbLr34dkiRJkiRJZ7mXXhNoLgRu/VKDcg1e9LTAm24wFE1LyBiMJkmSJEmSJJ3NOpoCEOe1949BjJEQ/AxZkiRJkiRJknT2MxhNkiRJkjRboXD8PlnfTkqSJEmSJJ2qEAK/ciX8ypXZ9S5FZ4pgMJokSZIkSZJ0NtvSvnD7aAUOj8CmReZLkiRJkiRJknQ28RuzkiRJkqTZ8sXj98nlV78OSZIkSZIkSbNl/JqHJEmSJEmSdDbbuXnxeQ/0rl0dkiRJkiRJkiStJ78xK0mSJEmaLV84fp+swWiSJEmSJEnSmgt+zUOSJEmSJEk6m/W0QWfzwvMe7I1rW4wkSZIkSZIkSevEb8xKkiRJkmbLF4/fJ5tb/TokSaeflvb1rkCSJEmSzm0Zv+YhSZIkSZIknc1CCOzctPC8Pf1rW4skSZIkSZIkSevFb8xKkiRJkmYJywlGy+VXvxBJ0umnvWu9K5AkSZKkc1vwax6SJEmSJEnS2a6jaeH2an1t65AkSZIkSZIkab34jVlJkiRJ0myFwvH7GIwmSeema35uvSuQJEmSpHNbxq95SJIkSZIkSWe7XHbh9prBaJIkSZIkSZKkc4TfmJUkSZIkzZYvHr9PLrf6dUiS1s8v/YcFm8PL3rzGhUiSJEmSZglhvSuQJEmSJEmStMpyi5ztVWusbR2SJEmSJEmSJK0Xg9EkSZIkSbMtJxgtazCaJJ3NwiveCj1bZze++HcIW5+wPgVJkiRJkpLg1zwkSZIkSZKks10uu3C7wWiSJEmSJEmSpHOFZ7JLkiRJkmYrLCMYLZdf/TokSesmnH8xfOAb8OVPEHsfJ1z1s/DTv7zeZUmSJEmSMgajSZIkSZIkSWe7XCYAcV57rb72tUiSJEmSJEmStB4MRpMkSZIkzZY3GE2SBKFnK7z0PxLWuxBJkiRJ0jEh+C5NkiRJkiRJOtvlsgu31xprW4ckSZIkSZIkSevFYDRJkiRJ0mz5wvH7ZH07KUmSJEmSJEmSpLNXCOEi4ErgfKAVOADsBr4VY6yuY13dwNOBi4BOIABDwF7guzHGg+tVmyRJkqSVkV3k9xFq9bWtQ5IkSZIkSZKk9eKZ7JIkSZKk2ZYTjJbLr34dkiRJkiRJkiRJ0hoLIbwE+APgWYt06Q8hfBx4R4zxyBrVFIBfB94IPOc4fb8PvB/4uxhjbQ3KkyRJkrTCctmF2+uNta1DkiRJkiRJkqT1klnvAiRJkiRJp5l88fh9sgajSZIkSZIkSZIk6ewRQmgNIXwM+CSLh6IBdANvAO4NITx/DeraAnwZ+BjHCUWbchXwAeCuEMIlq1mbJEmSpNWRXeRsr5rBaJIkSZIkSZKkc0RuvQuQJEmSJJ1mCssJRvPtpCRJkiRJkiRJks4OIYQs8HHgBXNmHQa+DwwBTyCFjoWpeZuBz4YQfi7G+M1VqqsH+Crw5DmzqlN17QYawDbgaqA0o8/VwFdDCM+JMe5ejfokSZIkrY5cduH2usFokiRJkiRJkqRzxCK/ISJJkiRJOmc1tx+/Ty6/+nVIkiRJkiRJkiRJa+PdzA5FqwJvArbFGJ8fY/y1GOPVwBXAt2f0KwKfCSGct0p1vZf5oWjvn6rrmVN1vTTG+BzgvKntmBmVsA34wCrVJkmSJGmV5BY526tWj2tbiCRJkiRJkiRJ68RgNEmSJEnSbBfshKaWxeeHQMgu8pOUkiRJkiRJkiRJ0hkkhHAx8Ptzmv99jPFvYoyTMxtjjD8BnsvscLQNwJ+uQl07gJfNaf7PMcY3xBgPze0fYxyMMb6N+dvy/BDCM1e6PkmSJEmrZ9FgtMbC7ZIkSZIkSZIknW0MRpMkSZIkzRIKRbjyZxbvkMuvXTGSJEmSJEmSJEnS6vpTYOY/wD4SY/zsYp1jjBPAq4GZoWmvnQpYW0m/NGe6F3jnMpb7r8A9xxlLkiRJ0mkst8jvltbqa1uHJEmSJEmSJEnrxWA0SZIkSdJ87d2Lz8vm1q4OSZIkSZIkSZIkaZWEEJqAl8xp/ovjLRdjfBD4zIymHPCyFSwNYG7Q2u0xxsrxFooxRuBf5jQ/ccWqkiRJkrTqcouc7fWFe+H7eyKTtbi2BUmSJEmSJEmStMY8m12SJEmSNF++uPi8XH7t6pAkSZIkSZIkSZJWz/OB5hnT344x3r/MZW8Dfm3G9IuAW1aqMKBlzvTeE1j28TnTXadYi3TWGh8f5//8n//DQw89xJEjRyiXyzQ1NbF582Z27tzJVVddRaFQWJF17dmzhw9+8IPccccdPPjggwwMDFCtVo/Nv+2223j1q1+94LLf+c53uO222/jWt77F448/ztDQEI1G49j8xx57jB07dgBw/fXXc8cddxybl/ISJUnSmSSXXXze1bc0aC3C+34j8OrrFklQkyRJkiRJkiTpDGcwmiRJkiRpvqW+2J01GE2SJEmSJEmSJElnhZ+fM/21E1j2G0CN6e9hXhVC2Bxj7F2JwoCDc6ZLJ7Ds3L79p1iLdFap1+t84hOf4LbbbuOrX/0qtVpt0b6lUonnP//5/OZv/iYvfOELT3qdH/rQh3jTm95EpVI5oeVqtRq/8zu/w4c+9KGTXrckSTrzZMPS80cr8NqPRn5qW+SqC47TWZIkSZIkSZKkM5DBaJIkSZKk+XJLBaP5VlKSJEmSJEmSJElnhSvmTH97uQvGGMdCCD8CrprRfDmwUsFo35gz/bQTWPbqOdPfPcVapLPGV77yFd7whjfw4IMPLqt/uVzms5/9LJ/97Gd5+tOfzgc+8AGe9rQTeTjCF77wBV7/+tcTYzzhev/kT/7EUDRJks5Btcbx+8QIV9/S4JZfDRRz0NUMEcgEKOagszkQIxwcjtQbsL0r0D+ebk/WoJBLbddeDE0Fw9UkSZIkSZIkSacXz2aXJEmSJM2XLy4+L5dfuzokSZIkSZIkSZKk1XPpnOmHT3D5R5gdjHYZ8JVTqmjal4EHgCdNTf90COGpMcZ7lloohLAVePGMpirwsRWqSTqjvfOd7+Sd73znvICyEAKXXnop27ZtY8OGDRw+fJg9e/bMC0+7++67edaznsXf/M3f8Fu/9VvLXu/b3va2Wet82ctexmtf+1q2b99OPj/9//eNGzfOWq63t5f3vve9x6YLhQJ//Md/zAte8AJ6enrIZDLH5m3btm3Z9UiSpNPfPXuXH6j69s8s1ndu+0L9Ils74V/elOHK7YajSZIkSZIkSZJOHwajSZIkSZLmyxcWn5fzraQkSZIkSZIkSZLObCGEbqB7TvOeExxmbv8nnnxFs8UYGyGE/0AKWisCGeBTIYTnxRh3LbRMCGEz8BmgeUbzLTHG/StVl3SmuvHGG7n11ltntbW1tfG2t72Nl7/85VxwwQXzlnn44Yf5yEc+wnve8x4qlQoAk5OTvO51r2NsbIwbb7zxuOt94IEHuOee6TzDF7zgBfzP//k/l1XzZz7zGSYnJ49N33LLLbz1rW9d1rKSJOnMdtUFgc/fs/xwtFOxbxBe9XcNfvCODCEYjiZJktZHoxEJAV+PSJIkSZKO8Wx2SZIkSdI8IV9c8PchAcj6VlKSJEmSJEmSJElnvM450+MxxrETHOPQnOmOU6hnnhjjt0IILwT+AeghBa/dE0L4MPBFYDcQgW3Ac4HXARtmDPEB4F0rWVMIYdNULSfiCStZg3SiPvrRj84LRXvOc57Dxz72MbZt27bocpdccgm33HILr3zlK3nxi1/Mvffee2zem9/8Zq688kquv/76Jdd99913z5p+yUtesuy6T3bZr33ta8tehyRJOj096+IAi3+Db8X9aB9c+58b/PwVgQDs6Yf//u1II8LPXw5HRqGrGbpaAs0FyGQgTpXXXoLmAkxUodaAfBZKORguw8GhyCWbApkAlRq0N8HeARiZgJ1b0vJjFSjkoKUAoxUo5uDaiwPPv9xgFEnS4sYrkb+/K/IvP4zs6YfJOjQi1BvpuqMJrtoeeO6lUMwFclnIBMhmYKwSOTAEh0dgfBLqESpVGByHliIcHonUG9BahHwuPTcCNBVgSwf0tKZxchkIIT1PDo6n9Y5PQu9w5JkXBTIZ6G6G7d2BzmZoNKB/DA4MRXb3Ty/fPPUcmMvA/sE0VqmQnhsv3AAHh2BgPG1bSzE93w6OwWQ98r3dabt+7rJwrKamPAxOpOfY0XJk7wA8eiQ9V+/YkPpM1tPz9fmdacx6A3b1wcRk2sZGAx45DDs3wyWbAyMTUK2n/ZL2RWCkHDk0AvsGoJSHC7rTfm/E9DqhMXUZKad1V2pQrUMg1ZfLpNcAlWqaPzSRXlc8ZSu0lVLb3oG0f7e0w9hk2qYQ0n4EuOJ8uPz8wK9cCT+1PTA8AZ3N0+NO1tN6K1Prz4R0P5anphsNGC5H7juQXv/0jUbK1VTno0fSvu5qTnU9chgOjaTbF26A8zrgkk2B8ztTrfsGoFaHwYnIdx5L+2THhvSaqDH1uqlWnz6W6o10HI2W0zFwxda0T/vH0vHQ1Qyb2gOXbErb31pM6+tpg/sPpnEu6UmvvfYPpX0yPhmPratcTcdOrQH3H0jHy2Xnh2P3TT6baizmUl2tpbRtMcKOjYHLz0/HY0dT6lPKw4GhtP8na+n20ERa57auwAXdaTvy2VT/WCWtZ3N76jtSTvf9ldtTv/sPphqbCulYyGamH1czr7OZtD0HprYFOPaYDGH6diaTbmdCas+E2bfnXs9qm7P8QmMZ2idJkiStD89mlyRJkiTNVygsPi+XX7s6JEmSJEmSJEmSpNXROmd64iTGmLtM20nWsqgY45dCCJcCNwIvBy6aun3jEovdD7wjxvjJla4H+B3gT1dhXGlVPPjgg/zu7/7urLbrrruOf/3Xf6W1de6fgYXt3LmTL3/5y1x//fXcd999ADQaDV7xilfwgx/8gI0bNy66bG9v76zppYLYVnJZSZJ0ZvvZnSno4979a7fO7+6C7+6aH8b2xR/PnDqZsLaTW6a9BC97ZqBcTSEzh0ciE1XY1AYXbgiMT6bwksMjKTylEVMISimXgk4KuRTusq070FZKAR6TdXjscDwW9HI0rCUToG8sBeRctDEF0mQzKXwjE1IQSXMBeochl03LDE2koI8t7bChJYW1DIxPh+7EqXCeo0EihVwad6Kawkc6m6dDP0r5dD1amQ4O6WhKASl/9ZLA1i5DOCRppsla5Pr3NLh799L97tkb+ei34dTCRk9u2X/+/szlVj/s9L99Y3nreHD2Rw0LvtZ4aMZPQRwchq8/tNDY89t29S2rhCUNl+HOR+a3Dy3yye29++He/ZGP371wTSth/+Ds6eFyCpX90T64/SdLr3NP//LX8/3Hl7OfT20bZx+XSznR9axdoO96WzBsjRSmdiIha4sGty0x1moFvmVCWHLMcFJjrmR9J7uvlt6uZdUyZ8yhien3JfksdDUHWoopZLE+9fr/aEDn9O04r32yDud3BJ53OZTygUYjjZnLQDGfXvvHGBmtpHUXsun4OzQV6NmIqR5I8za2pvcUY5XU1tEcODwSuXffVOhkU3ovUmtEelrT+6NsZvq9S72R3qd0NsElm9J7o3v3pfU8/cIUkD1TvRHZP5jq7WiCfYPpr8CevvQ3MpuBkXIkn4XWYmC4HGkrBdpLs0NMq3X40b5ItZ7e041Pwq4jaTuO1relI91+5BBUaik88pkXp/DGGFPAYrmW3vsdvR1jGq+9lLa9rRjS9ay2FAiZzfheS5Kk053BaJIkSZKk+XIGo0mSJEmSJEmSJOmsNjcRqXwSY8w9JW95KUsn7uh3PSvL6Pst4CbgS6tUi3RGectb3sLo6Oix6c7OTj796U8vOxTtqE2bNvGpT32Kq666isnJSQD27dvHu971Lm699dZFl5u5boB8fvn/bz+VZSVJ0pmtqRD419/P8I7PRb5yf2R7F7z9FzP83Z2RT9x9bgRPDJfh/Xcstq0nsg8W7vvI4YV7HxlduH0hI2V4+NDx+52MxwdS0MsdD0buvSkzL4xAks5l/+VL8bihaJK0GhoRiFBf70JW1Nn6/mIttmvlgzfbSymgeXzyFIY+ifUuJZ9NIWalPDTlUyD0ia9v5e6PhQM7l1PDfC3FqbC00lRw2lRoWntTCpCb3QbtpbBAWxonBN+zSZK0GgxGkyRJkiTNVyguPi/rW0lJkiRJkiRJkiSddU7mrIxVP7MmhPBbwH8BWpa5yHXA7cC9IYTfjjHeuWrFSae5+++/n89//vOz2t797nezZcuWkxrvsssu4y1veQt//ud/fqztwx/+MDfddBNdXV0LLtNoNE5qXae67Er4yU9+wo9+9CP6+voYGBigVCrR09PDpZdeylOf+lSKxSW+V7CEWq3Gd77zHR599FEOHz5MpVKhp6eHHTt28OxnP5tSqbTCWyJJ0plpa1fgw6+afWL1cy+FG54En/lB5Mf7oTZ1cvrYJLQWU1DD4ZF0En0+CyHAZG2dNkAr4sAQ/N2dkd+9AfrG0kn3gxOwuQ3yucBkLXJgKB0LG1vTm9QHDqa+h0ciTQV48pbAkdEUZpDLQDGXjpn+schoJbXHqWPnyChcfSF0NAXqDWjESLmajqULuwOVWjq+6g0Ymojcsy8da8MT8Hh/ZGAculugqzlQKkDfSCQCm9oDuQxkM9DRlLZttAIXbYRrLwp8b0/k8X44PAqDY+mt9iOHoVKD518eaMQURHdeBzQVIJDmPXYkHeMb21INh4bTNm1shV+5MvArVwYOjUD/1L5rRHiwFwo5ODIaGZqAickUZJDPpkC+GNM21hpQyqWxmgppfZO12dfDZegfhSduTmMf3TdHL0f75rKwbyBtVyEH3S2B8UqkuzVtW62e+hVyUMxDcyHtpyOjabsyIe3vah02tAQ2tMJEFXqHIk2FQDaT7sdyNVLMBc7vTPs6E9L9PVqByTp0N8P/fVng2ZcY2nCmiDEeC9mo1SMTVdh1JB1z5WoK6wikY3F8Mh2HMU5fl6spsGNwPIWYhJDaW4vp+Mpm0jFeb6TH10g5PQ7z2dSn3kiPhVo9HWMHhqBSi/S0pcd0vZHGmKimxxikdUCq6+h0tQ5jlVRPT1tapphLj830tyb9/ao30vPa8AR0Nqf2C7pTzRHYsSHV9uFvnq0hPpKkc93wyfyEzyqrTiUBlqvpcjYZq6TLgaG5c04spDuEFJR2NDTtWNBaCdpKgbZ5bSlkrb1pbtvU+x1D1iRJOsaz2SVJkiRJ8+WX+AJzzl+hliRJkiRJkiRJ0hlvdM5000mMMXeZuWOekhDCnwC3zGm+G/hb4BvAfqABbAGuBV4H3DDV7wrgjhDCa2OMH13Bsv4W+OQJLvME4LMrWIO0LLfeeisxTp+otHHjRl7zmtec0pg33ngjf/VXf0W1ms4AGxsb40Mf+hB/+Id/CMCuXbu46KKLFl3+hhtuWLD9tttuA1iyvsVOhnrsscfYsWPHsenrr7+eO+6449j0zH1wPI8//jh/+Zd/ySc/+Ul6e3sX7dfU1MQNN9zAq171Kl784heTzWaPO/Z9993HLbfcwuc//3mGh4cXHfeXf/mXufnmm9m5c+ey65Yk6WTFx34CBMJFl653KcuSzQRe/7OB1//s0v2qtUg+N/u1w8RkCtT54r2RV3zYQJkzyVs/FXnrp+bfZz1tKezoaFDB4lYqB/xExpnbd6lllx73/oMnd7z+yz2R3/zvp+uxHudcn8yyy52e7ebPp/ndLSkEAqZD00pToWwT1RSy1VKA5zwxheS1FNO8o8v0j8VjYVn7BlOIVXdLCngbraS2egMKWajH6bC4Yg62dEyHdzUiNBrTt+uNFM5VjynYraNpOpwL0nQuk8InxiqpfbSctnqylsYYLqfbT9qcQr8mqtPLj0/CoeEUONFegs3tsKktzZuoptoHxuD8Tnji5sBl58GmtsBIJdI7PB0Qdng07a9aPQXfNeXTOsu1FBgyOXU9PpkC+OpT69/cDtmQgg3HKpHzOgMTkzBaTqF+I2XYPwR9U2GGldM23PJ0fWxJkiStvTj1GnS4nF4Hz5m72FILtmYz88PS2pumgteawry2FK4WFmhLr70NWZMknekMRpMkSZIkzZcvLD4vazCaJEmSJEmSJEnrOTk3AAAgAElEQVSSznindTBaCOH/At41p/km4OY4P+Vo19TlH0MIrwPeDwQgC3w4hPBwjPHOlagrxngIOHQiy3jShdbLF7/4xVnTr3zlKykUlvhf+DL09PTwS7/0S/zTP/3TrPUcDUY7U8UY+bM/+zPe9a53MTk5edz+ExMTfOELX+ALX/jCvGC2uer1Om95y1t43/veR6PROO64H//4x/n0pz/Ne97zHn7/93//RDdFkqTjiof2wpc+TvzwzTBZhpZ2+MxuQql5vUtbMXND0QCaCoGmAvza0+F9X458Z9fa16WVdXhkvSvQmax/bPZ039jCfT72nZUPwNrVt/y+ewdOfj0P9KbLQobL0DsMDy3yCce9++H2n5xKgN3xrObYkiRJOlPVGykAe3B8obknFrKWz84IWJsRmtZeCrTOazsaxBam+88IaCss8DmDJElrwWA0SZIkSdJ8+eLi83K+lZQkSZIkSZIkSdIZb2jOdHMIoSXGuMCpwIvaNGd63u/An4I/I4WbHfXRGOM7j7dQjPGDIYTtwNunmrLArcDTV7C2M1atHk/ppGot37YuyGXX70SZvXv3smvXrlltz3ve81Zk7Oc973mzgtHuuusuqtUq+fyZ+SNjtVqNl770pXz605+eN2/Lli085SlPYePGjVQqFXp7e/nhD3/I6OjyciAnJib41V/9VW6//fZZ7fl8niuvvJJt27ZRLBY5ePAg3/nOdxgfHz9W04033sjAwAA33XTTKW+jJEkA8ftfJ952C/zg6zAza3hsmPjaZ8LffIXQ1bN+Ba6yODoEfQfIdm3iK2/u5NZ/a3DXrsDYZDpZenwSJmtQqcEPHp+97JM2w4ZW2NQGzYX0Gi8EKFcjvcNQyEEpBxNVKFehlIf9g2nMXDZNdzfD/qEU5rW9G2p1aCmm60aEnxxYh50iSTqrvP8VgU99L/Kl+2a3ZzPQWkxP//WYAkfyWbigO1329EPfaHpeuuw8uGBDIJ+FoQkYLUPvcKRSg7FKGqvemB6n3kiBIT1taf6djyyv1p426GlNz5sT1fS8el4HDIzBo0dm1z00kaafug22tKfn2KGJFIFSzKXn51oDmvLQVIBGAzqaoL05bUcpB90tabyxCoxW4J69keYC7NwcqMdUx8GhSC4DI2XIBOgdgc1tsKE1BaQU85AN6Xl7oppCUoq59FyeyaTXEZCWzYS0TZmQXge0ldIHnYdG0jYV89NhLYUcFHOB/rHInv70WqGtlO6P5gK0FKBcg919cGg4tT9yOPKNh07teAkBcplU4xN6YOdmaC0GNrWnfdtSSLX2jaX901RI+68RU11DE/B4f6RvNL3e2daZQmN29UWyGdjSHjivM61rU1va/7lM6lupputHDsMPH49pPzbggu5AMZ/uw/sOpM8x+8fS/p5bO8x+SduUT6/jGnF6+gk9qdbeEajW0/HT2QwTkzA4AcMT0NWc7oOBcXjsyIntw6OPB0nS6alaT89j80OQlwrnXXheMbdIkFpToHVeuBq0lcICbemynv87kiSdeTybXZIkSZI0X26JL2xnfSspSZIkSZIkSZKkM1uMsS+EMAB0zWi+ALhvkUUWcuGc6VM8HS8JIWwFrp3TfNxQtBneDbwZaJqavjqE8NQY4z0rUd+ZbO8AXPyfPFtvLTz65xl2bFy/9d95553z2p7+9JXJB7z66qtnTU9MTPCDH/yAa665hm3btvHYY48dm/fe976XW2+99dj0xz72Ma69du7DGzZuTDvr+uuvP9b20pe+lP/9v//3semZ4860bdu2k9qOo9785jfPC0V7wQtewE033cQ111wzr3+j0eCuu+7iH//xH/nIRz6y5NhvfOMbZ4WidXR0cNNNN/Ha176Wtra2WX0nJib427/9W97+9rdTLpcBuPnmm3nmM5/JL/zCL5zk1kmSNEO1At+/Y+F5ex4k/vI24q++DiYrMNwH9To0tcLAoZQ+0bWJ8LP/jnDDi1aspBgj3P89uPfbxEN74fB+woVPJpbHoNhEyOag1AytnTAyAK0d0LUJJkZhZBAGj0BXT0rFaGpJP4gaGzA6BCODxN7dcHAPPHYfHJpOOysBfwTQvQWe91LCb91MKCzxY6prZHdf5K/+V+SbD6cgkPM7UkjJ4AR88+EU0Lap7WhQSqC5yLHAl3ItBXMEUkjH4/2RpnxqbzRS4Ee9AQeGUrjIBd3Q1ZxO1K41oG80hbFsboNrLgqEkMJpKlMhL22lFDLTWkwBL8PlFCoyPpmCRNpKKVgEUttENQWq5LJToTeTKXTnyGhk55bAhpa03rEKHJkK47ntzki5uujukSQt4ZOvz/DiqwOv+5n0/HpgKD1HbGyFENY2fCPGeGydk7X0t/1oWFg2MxWQdZxAkEYjEoFs5lwKDjnxbe0djjzUm56HxyZT2FyY2s/F3OxLLguD4ynQbEsHlPJnzr6NMfJg7/Rrjgu60/F0eGR6W3vaTv1YjzHyo31w775IPhtoKqQgm3w2vY7a3D79+uVJW1LoTaMR2TeYgvFqjbSPJ6pw0cbUb/8gnNcJl/TAwWF49HAK6qnU0njbuqZCCxtp+ZnXR2/X6inQrbtlOgwuMuN2TNONmG7PvF6oLZJeH868PXf5BZc7qTHjiY85p6aF6lup5ZfalrjAWMeWm/obtS77fIWXnzvWyZj5933m7WxIwZFH/+QfHD658c9UIaR9Wsilx/3R/Xs0OPPofVLMpfDsXCb1a8rDvftT32IuhZbuH4Le4enlN7SkfqWpy8zbMcJIJQV9Dk+k924j5engSJ2cSi097xwemTtnsR27+A5vLswOS2svTYWulcKx8LTpNmifap/dlt6fZ86p10qSdG7ybHZJkiRJ0nxLfclpqdA0SZIkSZIkSZIk6cxxH3DdjOlLOLFgtIsXGG8lXDln+tEY42PLXTjGOBZCuAu4YUbzM4FzPhhN5469e/fOmt68eTMbNmxYkbGvuOKKBdd3zTXXkMvl2LFjx7H2zs7OWf22bNkya/5cra2tx26XSqVZ85Za7mTdfvvtvO9975vV9u53v5s/+qM/WnSZTCbDddddx3XXXcfNN988r86jPvnJT3Lbbbcdm77wwgv52te+tuh2NDU18eY3v5lnPetZPPe5z6VcLhNj5Pd+7/d44IEHyGQyJ76BkiTN9LQbUhBY/8HF+3zmg0sOEb/8CXj9LYRXvPWUy4nVSeI7Xwl3/PPs9kVur4r+g/CP7yX2HyL8v7cdv/8MsV6HRj19n3DwcApqO/9iGOmfDm4b7odiE2zeDhvOB6bSBvoPpvnjIzAxli7DfVzQd5C/zmThsrZ0f1102ZqH2aynZ17U4NW3eba+JJ2oi7O9vOAbt9L43L4UbprJsqXUDLkCcXyYODYCLe0wNgy1agoTLRThwG5o64Tx0XR99Lktm4Mj+4EI2TxUJ6HUlAJTi1MpmF09afrwXii1pOe7fAE6U/B5HBsm9Gwlf9kzyG/YAn0HoFKGoT4Y7p/9fD86lFJe6jVCezexPA7jI4Rsjgakeob70nNnow5NbSnwdbg/BaI2tabrfY/CxvOgrzfVkc1CrQZbnwAP/xAKpbR8rZqCVtu709gToylcNV+E8WHY+0ja9tzU9ux/DHbfn7bvBa9Mz+UT43B4H9RrKbi1tSPt4wO7UnBrvZa2iZCuj14KpdQvNqBjYwqALTal+6AynvZv34F0X1UraazKRKq5Vk1hsY36VOppkZ62LnrqNSiWpu+/Rn327UYd6g1iSxsdnT10bN4OIUPj6GuMRj3V25j6MYWRgVRnvQb33gXdm+Dya9P+nrr/UqpPBtq6p7ZzSiaT9sXYcNpf+WLax7XJdN1oTK+vfvS6loJsx4Zgw5a0b4+Oc8GTCBddBlsuYGf35rS/hmqwvwa1KheWJ2B0EM7bARvPIx7ck+prNGbs90xa/8Ah4lB6fFCZSP36DsL2S9J2VCZg4BBXVCa4oqkVymPp2C41pWVCSPfHwKH0+q86SWPqvt5ar6Vw4WolbUeukI7LEHjyxGjaHx0b2N7cyvZIegxOltNjIpOZPk4yIa1r41YolgjXvwg6NqT7vjqZjpsYob+XeGgvYdO2tM+6NqVxZqZaHbsdZ0/PvV5O37m3T3acuMAr/VOp61jKFBDmtGVOcp3H7bNAfae6nccbbznrnNEnHq/PQvt4xvWxQDgCjRiIMdIgEDM5stlAMZ+l0dSajslalWwum/7eZnPpsZHNTV9mTWfJ/v0vzt/uKR961j10jB+g0dJJpWUDBWpsyo/TnJmkQoFGtQqZDDtaxskXcsRaDRp1+icL9B4uM1ZpkG9ro5Zvolxop1TI8JSWw5yfH2GYZpoH99EysIdKI0ulPEnjyEHquSKN5g4aA0fIDRzksZYn0t9opVQe4MLKboY6L+CBrmugtYPYtZl97U+iXM9Ao0FbY4Se7AitXe3Q1Eq2VqaVca7oGCJfK1MsD5KrjlOu5yiWB2mQIVz0ZEJlgpDJQHsX5PLEzs3EiTEyI33pPjq8P/1tqlVhdJD4wPfTc9BkBZ74U4TLnwlbL05/b6qTMDZC3DX1r7lMBqoVQltX+tswI3Azxsh4PcdILcdwLc9wNc/IsescI7UCw7X81PwCI9Xc1PRUv1nXhUXvRy3P+FTIeO+8sMATD1lrzU7Snp2kLTtJey5dt2UnyYbIUK3IcL1AyOXpLlXZ1p3h4s4qV5b2siE7znjrFvbX2jk8UOWi2m66myOPNzYyXoXNrQ1am3I82lvl4GQrFErkMpFaI1Cv16k1MtTzTdQi1Kt1apk89RhoCxM0F+BArZ09IwU68jV+6RnNvOTqsO6fb8RGIz1PZ7LQ3JZei4wPp+fgkQHo2EhoaSdWJ9PrgnoNHn8ovSaA9JlPeze0tK/ptsRGI4X9T4ylv6f5ArR2Eto6j7+wpLOCwWiSJEmSpPnySwSjFZsWnydJkiRJkiRJkiSdOe5ldjDas4B/Wc6CIYQW4KkLjLcS5n6Te4nkhkXNXWbjSdYinZH6+/tnTXd1da3Y2KVSiWKxSKVSWXR9Z4qbb7551vRv//ZvLxmKNtfc4LejYoyzxs7lcnzuc59bVrjb0cC1P/zDPwTg4Ycf5jOf+QwvetGLll2XJEkLCbkc8bn/Hj7516c0TvzA24n9vYTOHigUoLk9BXlUJ1Nww8bz0wmmPefDob2pPZNNoSOH9hJ7H08nbH/lU7D34RXaulN0+z/QuP0fYMuFKVhi68WEHZcSa1VCNkccOpJqHTicTlQfPDQdHrJcISwcgHAc8eIr4NF7ob2b8Kq3QaNOHB8lNE+F0wz1pZNis7l00m6tmgJAzrsQrvxpQs/WE17nvBqG++HIAThvB6GpZeE+MaZ15/KzThCOjUYK/qhOpoCTo4b60v4MwKZthOY2uppPudQl5bORan3+ycuZAI0Zd01TPlLKQ4ZIvQFj1UCtDpFAJkSa85FcJjJYzh5bZmtnpCnXYFtH5NKtWcargdHhcfpG4fAIPLF1hGypyGQo8OhQkR8fzM6rA2BDC/S0waGhOhtKNTaWakyUazRqNbL1KiOhmdFajiJVag0gZNhSnGBLW51iU4GvP97Mkcnlf8d1e3uVbIBGJksx06CzNUuDQFMe7j8II2XY2AqFHBRz6bqQTbfzWegfh4ExqNRgSwec3wG5LGQDZDOQywYKWegfi0xUodZID51sBs7rCNQbMfXJpUOhfzxSyKZ91jeW9kc+CxtbA81FGC3DaCUei3hobwrks9P3X60OtUbkwBBU69BWgskafPM0+VOjs0Muk47llZTPQr0x+2/Rcm2u9XLbrt+geO9dK1vUCjiZqMtTjsd87Cfz275/x6mOmlQn4bP/bWXGOlnjI7OnD+5e/XWODMDuB1Z/PQCjQ7OnH75n9YNyv/ullR9zsjL/vhrqS5fl2PcoAPE7/7ZkN+NktRqmIh1Z6icaZs47kePwxk3/mfdu+P157ZdW7uM1f3ftCYw07Xxg/s94zHb0n0MRKExdFtK9QNtTTqqq6fUdPTNt0X2WyRAajeXtx4d+QPzCR5e13oU0T102L2ddS2gQGMu0MJxpZyTTynCmneFMG6PZNoYzbYxk0vVwpo3RTBvD2em2kaPLZNP1WKb1+CvUkkbrBUbrywyrO3D0xkKfE+xYmYLm/Ys3z//4QQQiT2I3bYzTzjhtjFNikjIF2sIEO3mcPHXy5WGuOng7143fRZ5aCmtt7YShIxwLrs0Xpl8zZDLTn8+EkM75bOuCXC71naykz6NGB2d/jpPLp88w5ohHx1nq85t8gdi1eToouDIBHd0paO2H30yfgeQL6fOxo0Gw2akQyfYNad7R0Nujl0Y9fUYyMZrW0dqRPp+arMCRfWmchWp92vWE17ydcOVPL+vekXRmMhhNkiRJkjRffokPBZvb1q4OSZIkSZIkSZIkafV8EXjdjOnrT2DZn2b2dzC/H2PsXYmigME50wufeb+0uWdTjJ5kLdIZaW5Q2WIBXiers7OT3t7ph3xf3zJP7DyN3HPPPdx5553Hptva2viLv/iLFRn7q1/9KvfeO50V+fKXv5ynPnVuluTi3vjGN/KOd7yDcrkMwOc+9zmD0SRJKyI87zeIpxiMBsAn//rsDGI4uDtd7vvuse1bse08iVA0IIWiAQz3E//6rdPDLXe1MB2clsunE3O7p06Fr9emw9TqtXQy78RYCrIbH0lBKAuNB+lE4YsuTyf8jgxMB320dhCLzVAemw5Em2mxk487e+huPBm2/q9Ft+WLu38RgH35reRjGiMQGcp0sLl+iAaBQpzkssp9bK/uJRCphjyD2U5aGmN0NIYhm6XcyBGIFPKBsdhES32Y0GikE65rkwuG3kWgRo4cNWZGqw1l2mlvDDM/bu349uXOZ3d+O531IXZUd9McJ9JJ3JWJkxhtWo0s95SewlCmndZslc1Pv4ruOExvpUh9cpLOyX56hh8h7HtkwfuCfCHti+zUieRtnel+e84LCa0dUK8T9z8Kux6E3j1pmUwG9k+d6J3NpeM9l0/HQK6QThZvbk3XE6NpvYeK6Vgrj0N/L4wMwuDhdCxCGmvTNqiU0zEbYzrxPGQgTiWsNRrpNgE2bEnL1Krp+JysQF85Hcu9u3hspMi3mp7FUOtWWijTUumnVBvhcNsT2M8Gzht5hCx1vld6Gn/f8TI21PvJ0CBPnQsyhxjPt1PMNBgPTWRqFY40WtnQGODi7GGqjUA15OkplOmoHKZ54ggtjXFaKaddUhkjW6+SaW7mUKabMiUyIZIZGyTT1UP2p64jU2oiMzpIGB2gqTIAITARC9TLZTK1KvlGhTFK9MZOamQphiq5WCOWJzhSbaapMU42l6VYyHA3TybbqLGxvI/O8YN05yboLNQglyOTzdCaq1PMRfZmtnB/ZTMxBFor/TTFCfLUOBK6uCt3JY9mtlOJOVoKkVIOMtlAUy6SpUFXrkxrZpKxWpZ8pkExGylm6hRr45RyDYotzZSydUpU6Qhj5GsTlAcGuH34idxduXDWIdccKjw99yjPiPfSGifozFdoClWKpRwjjRIj9QKhMk5LuZ8L9n+b3p4riG3dDOa72XzhZrqf/TNsKZVpG+slOzZAKBQI+QIBGKtliUB26DDnVQ/Qn+0m09YB+Tzn9TRRHR5i93gro9lW6mTY1Ohj71CGA+NFtrdN8qS2YXLNLeRCg3y9QmFigGyIVIutxI4ectsuZiQ0U29AcyEdepAO16N/9iu1yOBYpFgdZWOhTN+BAeoxUGnupqm7ky1dOTKZQLUW6RtLYY2lPNRrDe49GBgvR0Ym6jy4r8Zgvcjw0AQtP/w3Cnsf4JLJR3jJyD/R1vBjL0nS6e8vD/2nBYPRXjt42zpUc5o40cDt00CGSFtjdEVef9TIMpppPRawNh2aNiNgbSpEbWTRILbUVs4sPyBa6+MBLlx4xswPOIrAhW8B4Nnjd3J55T5GMy1szB2hFMucVzvIwdwWHuq4hEoo0tYYoRryfLo9/f/kZ8a+zrbaPrKxTrE6SQyBkdZWNjb10dYYmfp8YJRqKNCX7SYfa+RijR3VXWyop/+r1UKOC6p7yMUak6HIWKaZ/mw3dTKUMyWOZDcwmO2iMZyhZXCMWshR6J+kQYbHNr2BQKS1MUopVviZyjfYk99Oo5Gh0cgwOtBCjhqbaoe5oPo4hVilszFAV32QOu1Mlgo8WriIkUwb2ZE6IUa6mgeZCCVGM60MZDupkSOGQFt9hI5Hhhl/5z9x5AUXMNC2nVw2hVv2DsMjhyPDEzA+CQeGoLMZJiahuwU2t8P+wbTrWwop6HxrZyCbSWHNh4YjD/RCSxGa8ikcvZibfs/TiLC7D34yFbaXz8KmNtjWBWMVqE+9H2oupLDyYh62d6WQ6UMjsG8QJqrQVoQjoyk8/TXPDrQWU9h6/xgcnAo839ye+sYIwxPQNHXK7/gkPPdS2NAS2DcYeegQHBqGf3zdUtGe0pnJYDRJkiRJ0nz54uLzmv1FCkmSJEmSJEmSJJ0V/hcwARw9W+BZIYQnxxjvX8ayr54z/c8rWNf+OdNPCiE0xxjHT2CMp82ZPniKNUmaIYSTiX44vXz5y1+eNf2yl72M9vb2FRn73/7t32ZN//qv//oJLd/c3MwznvEMvv71rwPwjW98Y0XqkiSJJz0Nrr4BvvfV9a5Ea6k6OR1QNjoEu+479TFjnA5tm2l0KF0Ws1AQF8DgYc7LL34i+7PH7+Tnxk/8uM3HGs21GUFj9Tol6un2JLRSmZ43WV50nADkqc1r72gMn3BNR22t7Wdrbc7b31MMRQPIUedp5R9MN3z128D89PBFzTxeAPqn3k4/8qO1DUSs1+HA7qkaTj2H/SLgoupumHuXzTlcXzX0P3hf7x+c8vqW7RDwwNqt7kTUSSeUZ1m5wI6bp8b9cfEy+rNdPHHykfmPg+MZ/dfp298D/mn5i86NDC8Cl89pu+Q4Y0Rmn5TcDtDZkyYmy9PBfTFCbFBq1Omo14/13zyvqB4am7aRrUywqVpJy1cqMNDLs082VFOSpNNQhsijD+3kVed/mDubr6O9Mcwb+9/P7/X/1/UuTeskR53OxhCdjSFg3ymNVSWXwtSyM0LVMu2MHgtbmxGqNjV/5Fi42uwgtmoorMwG6pTc2fxs7mx+9gkt8/WWn1mlak7ORzv/n7VZ0XfheBH6vVPvhYfLsGvObx090Hv85ZdSraews31zf/pshu/tXnqMv/jiia//E3fD3Lo/8IpIR/OZ/z9MaSaD0SRJkiRJ8y0VjNZkMJokSZIkSZIkSZLOfDHG8RDCp4CZ38r+I+A1Sy0XQtgJ/LsZTTXgH1awtHuAAaBraro0VeMHlrNwCOGFwNY5zd9cseqkM0B3d/es6aGhJcIpTsLg4OyzG+au70zwrW99a9b09ddfv2Jjf/Obs//kdHd3s2vXrhMaY2ZI265du2g0GmQy/tK9JOnUhBDg7bcRX//TcOjx9S5HmmVHdQ9PLd/DPaWnzpu3c/LhdahIOretZCDa3HGfWlkgWPFMNnj41JY9leUlSTqDXFDby1f3PJ+x0ExTnCCzttG7OovlqdHdGKC7MXDKY1VCgeHMdJjayLFwtekAtWPX2dn9RqbC1Y621YNxNtJaeugQPH3HelchrSyfSSRJkiRJ8+Xzi84KzW1rWIgkSZIkSZIkSZK0qm4CXgoc/QfZq0MI/xxj/NxCnUMIJeA2YObPpX84xvjIUisJIcw9u+WGGOPXFuobY6xPBbb91ozmd4cQ7owxLnnmbAjhAuD9c5rvjDEeWGq5c8W2Lnj0zw1WWgvbuo7fZzXNDSobGDj1k4GOKpfLlMvlWW0bNmxYsfHXyoEDs/8sXH755Ss29uOPzw6aufbaa09pvEajweDg4BkZQCdJOv2EjecRPv0w8ch+4if/Bnofh0Z9ukO1ArsfgO7N8MN1yBfeeRXECBOjMDYM5fFUU74AxWYYHYRadbp/vgDVyXS71AzN7ZDNQjYHLe2w8yrCRZfCjkthw3lwz53EW/9g7bdLy/LHR/6Kl237+3ntLxn+9DpUI0mSJGk1tMTx9S5BWlQxTtJTP0JP/cgpjROBcigxnGmfClGbDlVLwWrToWujU0Fqaf5CbW3E4P/3pON5+FDk6TvCepchrSiD0SRJkiRJ8+ULi89ralm7OiRJkiRJkiRJkqRVFGN8NIRwK/CWGc2fCiH8AfDBGOPk0cYQwqXAfwOum9G3D3jnKpR2M/AKoGlquhP4VgjhPwF/F+Pss2ZCCAXgN4D3ABvnjPW2VajvjJTLBnbM3Ts6K23dunXW9MGDB+nr61uRALMf//jHx13fmaCvr2/WdFfXyqXZzR17JYyMjBiMJklaUWHj+YQ3/PmSfWJ1kvjqq2HPg2tT0++9h/Dv33TcfrFWhWyOENKJjnFkAAiEts7jr2TnlVCZIH7oT6FeO8WKV0A2l76TWGqBI/vXu5p192sjn6b/QDc3bnkPtZAnE+vcdPhdPG/sS+tdmiSd/i6+HPJF2HpxChONEWIjPdeUmiBXILR2EIf6YGwEQkjhqI06dPZMPy+2dqTn1EYDcvkUNFqZgLERYnkstQ8cgslyGhugUITxUTi8H+77bpo3UwiQyabrrk0pgDWTTfMq49B3MLXHmPr0bE31TIxCUyu0dUJ7d1rf+Ggav3tzClAd7oORIRgbSsvmCjB0JN3e9+hUfaXpmi57Blx2DQwPpPVVxtO8GKGlIwWstnWlgNbxEfjG59K6N22DzdvTvh0fhpHB1DY09RlAsQk6NqRlW9oJLe1AnLof0iX296Z9P3QkjX20tuZWGDyStrm9Gy6+nJArQPcmqNeIvY+n/Z4vpNdApea0bL2e2mpVyGTSPs1m0/XM20cOEI/uJ6Z+vyJOXTcaMHh4uv6WdqhNwoHdcHhfuk+fcAWcf3H68fkDu9Jx0dYNXT1puaPK42m/1ibTsh0b0kyITZMAACAASURBVDE5MpD2VS6f7sPMVIjtVH0hk0mv55paCe3d0NRCPLgH7r8bHvg+DPfPPp6y2VR/ozH/cVBqhtbO6f3OVL9MFto60ryBQ6nWYgk2X5iOs0IpLVsopuX6DqZjqrkdOrrT/Z7NQlMbtLan4N6Bw/8/e3ceZ9ld1wn/86u1u6v39JI0WToJwZAQNuMy4AMqKEYeZH1kBpwRQVScBR/hUXFhURllEJ8HBQcHWRwEZHBhGR1FeAgOZJAJwQlZYJIQkgnZOp2kt3R39fKbP051ddWt6u6quvfWrbr1fr9e59V9zj3n9/vdc3/3c6tOnfpWsnFLytk7m1N6163Na79xS7JlR/OaDI8277GHdyXjh1MPH0yOjKeMrErWb2rm3IkxHjua+oG3NOd4Nus3N18zpiZloJm3hx6Z/n6b+Pp48t9p/y/d3Wfqvp3a54x9Tmlu0cY1y/gWsk+n25vTPpm5fqp2pu5z8EDzfjh4oHlfP/xA817ZsKWZ30ePNPl1Yjl6pMmnaestj8/FwMDs7/NTWb22eT/PZt2mic+WI01+H9jbfLat3ZisWdfk1Oq1yWVXNu/3kVXJHV9LbvrS3PvvhpHRZPzwzO3DI02+DI80Yx1dlaQkd38j2Xx2k9cznKJQUOv8ON32U+27VNqeT3+nanu+bZym7ZLmh5yrk2yf3Hf/xDLlD7fMoe2a5EBdnX1lLHuzJnszln1ZM7nszdiMbUeO1mw5dE8GjhzMAwObc8Po5bl+1eNPMd4ze+Kh/5GRejhD9WgG67EM5cS/x1JSs2twS/YMbMhQjubm0ccuuB9oxy3393oE0HkKowEAADA/m7b3egQAAAAAAADQSb+U5PIkV02sDyf5/SS/Vkq5Lsm+JBcleXKm/5bAeJLn11qn3L3fGbXWu0opL03y0SQTvyWZdRPj+nellC8nuTvJ8SRnJ7kyydpZmvqVWut/7fT4YKl7ylOeMmPbtddem2c961ltt33ttddOW1+9enWe+MQntt1ur5VT/gLT/I2Pj595p3mqJ35hGQAWURkeSd7196nv+83kxi81v8S+Zl3zy+lHx5tfJN+zO9m/p/ll7D0PLLyvn3xj8vyfmdu+Q9N/ybusm1+B0/LS1ybf94Lk5i+n3vSllHMfnaQmD+9OPfxIcvO1yT23N4VLtpzTFPLYuC1lx87meW7ZkWx7VFPQ48h4UzxjYKI4xcatTdGKo0eaogHHjzeFNR6892RhjPWbm1/KX7MuZWR02tjqF/4q9Qv/ObnvfzV93fSlpqjAngeac3/2BU3BkgN7ThbBGBxufiF+aLh5LR5+INn/8LzOyVLyMw+/Oy/d++HcMHpZHnv469l4fE+vh9R7o6ub13j/nmaObd3RvPcOHmiKOAAr22XfmfIHV6cMDp5535yyvEhHj60HDzRFyY4fa4p7bdjSfF2xwi303HfiikXnrnp0R+v4pq7Xwweb/wwOTSuOmyT1wN5k9z3JkSPJ5m0pm7Z1faynMpdzfKZ9ynNe3lwD2r+nKZ47ONR8bTe2fsbXjbBc1WPHknu/2RQrW702ueV/NN9PXfS45nPjvjuT9WelbNqa+si+5PCh5v0wurr53mpgIGXz9tSjR5vvi8bWT36PWMcPJ1/7clNQ7MLLJnosKaOrFjbWWpMbvph867bm+7nVY82YR0ab7wUHBpvvk4eGJ4tXZmAwWbsh2bil+V5u9Vhy/11NQcXR1c2+j+xrCrQ9eF9TnG3jlpPFFA8fbL7OP/v8lA3NHzqpD9yTfPWa5nvJx313ytSilKwY6yeWhfyZmhPvl/27bsuRkbUZ2rw1I8cPZfTYoTxy4HDuGl+XgbF1Gd+zN2vGH865Zw2l1GMZGD+Ysmlrc/1h7DHNfB9Zlex7sCnat2pNM6dPFEfdd19zvePwzfnmdV/Pn9y0IffWTdkxciAbBg9n37Hh7Ds2kvvH1+Ta/dvz1QNbU5f8VyksJ7ft6vUIoPMURgMAAGCmrec2f3XqoZYy8SOjyXc+szdjAgAAAAAAgC6otR4rpfxokj9K8uIpD21L8kOnOOz+JD/ezaJjtda/LKU8N8l7MvHH1CesTvI9Zzj8QJJfqrW+o1vjg6Xs/PPPz/nnn58777xzctunPvWpjhRG+7u/+7tp69/1Xd+VkZHl98vNW7Zsmbb+4IMP5lGPWsivFM3e9t13350kWbVqVR555JGOFl4DgMVU1m1K+Tdvm9O+9fjx5hfZ9+9piqHU48l5lzS/rP7IgWTHhSlr1qbee0fyxb9tfoH2in+S8qiLu/wsZio7Lkp2XJTyjP9r+vZudLZpa5Ir5rRreeqzU5767La7rPffldx9e1Og7djRZnloV+rtNzav0eq1TfGAiQIjGRpullVjzes2uropxnbsWHLsaOo3v5Zy7qNTDx2YLIhXLrys+YX/E0XgNpyVPHBPUkpTxG10dfML08MjzS/873uoKRQ3PJqctb0pOHf0aFMU4f5vNfufe3FyYG/WHxnPU8YPNX0NDjW/WL1hSzK2bqLgwEThgYHBpnDCoUeacSRN20fGmzGMH0oOHZwoXHe4KVB38ECz35q1zfEDA0lKcnB/MydH1zRtD48mIyPJ0Ehz7+iJIgV7H0q+dm2yZ3fqoUeaQj/nPSZZt7E5H+OHmuWBe5rCBY9+fPLQrua81tqcgxNFD46ON30myV23Jvv3Jhs2N8dt3JKUgaYQ2qo1KQMDp3699+9p2l491jyXq/889SufS47Xpo/hkeb8jq5uiiisWpNsO68psLZmfVNI78jhk3Pl2LHk4IHUv/9Y89o9sr8Z84nzVQaStetTrnhqsv28Zk4dO3ry34OPpD50f8rGrc25O3igKWpxcH9z/k+0c2BP8vDu5jW74NLknjua12jz9qbAxYYtyeBQ6pHDzfMbP3Ty2InxlDKQ+sje5nU5fqyZZ+s2J2vXN/NvZFXK6rHmvA8ONoUskmbfgcFm3h/cn+zfk/rVa5JHXZxy0eMmCg0+3BTaSW2KbBx+pNn3kf1NkZodO1PO3pkMjzSFefbvaR7b9qiU9Zua99PAYPMaHDvWjCc19b9/JvnMf5r+Ig4OJWdNFGLctLUplHFw/8TrurbZtv28iRd8omjy+KFmXp91dsrY+tQ9u5tjJopFlo0T3/McGU/GD6c+eG8zF1KasRzc37x3Vq1O2X5+6u57k6/+t+Tm/z6/wJl4XkmasR4Zb4p9JM28WzXWzM39Dzf9DQ6dfD3H1ic7H9sUobzthuY9tPOxzRw7fqzZ98H7ki/+zcT7dt3Jtudr89nNa3hg78KOX4oGB5MnPi3l1z8056Joi6WsHksePbfPPjiT0xUAKmPrmyzpI6WU5uuKEzZt7d1goAvK4GAy9XvAy75j+g4XXHpy3zXrms//E7acc/KxoaHme5CpbY+MJo+f+UdDFjzWUpIr/kmztOPE13EnzLOIY9lyTvJ9L2xvDKxoJ94v66a9Z4aTrMvYpuTbTmzavjHJxhnHzzC6Y/r6+s3N9zJTXHjx4/JrZ2jm0JGakcFkYKDkjt01f/blmr+7qebevcna0eSsseT+fcmBw8ldDzfrG9ckj9lesnFN8tW7aj5/68n2HrM9+fYLSr56V80Nd0/v6zt3JoMDyQP7k90HktXDyc6zktHh5KEDyb7DybHjyaEjTZ8DJVk13Cyb1jT/JsnYSNPGbbuSi7YmOzYkR48nDz/S7HPdyR/LpZTk3I3Nv0eONf2OH03GRpM1I8neg8nho9PHOTyYnL85+ebuZjwnnLMh2bH2SEZuuTY1JfsG1mXf4LoczVBG6+FsOfZABurxjNUD2XZ0Vw4MjOXhgQ3ZeeSOlNQMpObSw19LTcn9Q1tTUrPu+P7sHViXvQMbcqQMZSA1ZWI5UNbkWBnMjiN3Z8ux3TlcRrNvYG2OlaEcK4O5ZvV3Z9vR+3PloetysKzKhuN7M1SPZuz4gQznaPYOrMv9g1tTy0BGjx/K/omxHi8D2Xx0d/YNrs8fbnrl5PMbrEez5djubBg4mNF6OAP1eIaPH87WI/fn9qHzc7CsTi0l/2vo3Kyqh3K4jGZ1PZiakk3HHs6jx2/NJUduy9Mf/WNpbiWA/qEwGgAAADOUgYHU57w8+Y+/Pf2BH3hJ88MzAAAAAAAA6CO11v1J/mkp5c+SvCbJd59i1weTfCTJG2qtXf+by7XWvyqlXJbkp5O8IsmZKibcl+QDSd5Ra72j2+ODpeyHfuiH8h/+w3+YXP/ABz6Q3/7t387w8PCC29y1a1c+8YlPzOhnOTrnnHOmrd9000254orO/NL29u3bJwujHTp0KHfeeWcuuOCCjrQNAEtZOVGsaOOWZjmh9ZfVz74ged5PLfLoVpay7dwZv5ScLLzwW2n5t6Muflx7x194WWfGMVfbzp0s9jPn8zHLazHDzscueEhl7YbpG5754pRnvnj2nefT7rNesvBjz7DeTlvzfbwT/XRyDOXZL0ve+IHUR/YnI6NNkcIOaHeMUx+v44eTe25vCrolTbGzA3tOFiYZP5xs3ZFyzs4Z7dRam0KFQ8MzCkTXWlNKafYZP9w8/wUUka4P3JNc89fJ+MHmj2FvP695nw0MNsXChkdPFpBLmrEMNwW967FjTVG4h+5vCjgceqQpvjY41LQzNlHg8PDBZp99DyUXXZ6sWZ8yONgcf/3nU//mg815WbU6Zdt5E8eub/ovAyeLCKY2+20+uykcNzTUFIzb+2DT7923p+76VlP4adO25jmU0hSTGxqeKCK4rykId9bZTZHILec0Bfe27GgKxgAAwDK0avjk9wIXnFXymh8sec0Pdqbtg+NNcbR1o8m3nZ1F/eM1d+6uTVG0TTP7PXqsZnCg2X7seM2ufU2xtGM12bwmWbsqGRxojnnoQM0D+5tCaaPDJfXo8dTve8aiPY9ue+e9r87+MpZDA6ty1rHdc/6++sR3erPtX7ZdmeRJnRkgLBEKowEAADCr8pNvTEbXpH7qg81finvac1N+8k29HhYAAAAAAAB0Ta31z5L8WSnlwiRPTrIjyViSe5PckeQLtdbxBbS74LvNa60PJvmtJL9VSjk3ybcnOSfNnywvSfYk2ZXkK7XWW0/ZEKwwr371q/Pud7+7+YXzNEXN3ve+9+WnfmrhRUje/va358iRI5PrY2NjeeUrX3maI5aupz71qfnoRz86uX711VfnxS9uv3hEkjzlKU/JV77ylcn1T33qU8v2PAEAAN1R1qzt9RBOqYyMJhdcurBjS0kmipDN+tiJf0dXLXx8W85JfuQVCzt2cDBZu6FZkqZ45/bzpu80tDZZszbZtHX245/09JQnPX1B/U+aUjBx8Uo0AADAyrB6pOQ7dvam7/PPOvVX+EODJx8bHCg5e8Mpd82msZJNYyfXy9Bw6tqNyf6HOzHMJWFtPZC1xw7M65jTfv/0zZuTb1MYjf4y0OsBAAAAsDSVUlL+xS9m4E+uz8CHbsjAz7w5ZUh9bQAAAADoqme/bPbtq8dm3w4AdEWt9fZa65/XWn+/1vrbtdb311o/u5CiaB0e11211o/XWt81Ma7fqrX+Qa31o4qiwXSXXXZZrrrqqmnbfvEXfzH33Xffgtq76aab8ta3vnXatp/4iZ/I5s2bFzzGXnrmM585bf1DH/pQ9u3b15G2n/WsZ01b/6M/+qOOtAsAAAAAAMAKtXNhBaxXinr7Tb0eAnScwmgAAAAAAAAAAEtEecGrZt/+8tcv8kgAAGD5e9vb3pY1a9ZMrj/88MN5wQtekP3798+rnV27duVFL3pRxsdP1kY855xz8vrXL9+v0y+//PI8/elPn1zfu3dvXve613Wk7auuuioXX3zx5PqXvvSlvPe97+1I2wAAAAAAAKw85ap/3ushLG133NzrEUDHDfV6AAAAAAAAAAAANMpjnpj6E7+avO83T278zh9Inv/TvRsUAAAsU5deeml+//d/P694xSsmt11zzTW56qqr8uEPfzjnnnvuGdu45ZZb8sIXvjA333zylwkGBgbygQ98IFu3bu3KuBfL61//+jzjGc+YXH/nO9+ZCy+8MK95zWvmdPyePXsyOjqaVatWTds+NDSUX//1X89LX/rSyW2vetWrsnHjxrzgBS+Y1xg//elP56KLLspFF100r+MAAAAAAADoI895Rcq+h1P/0+8lD96XlJJsPz85+4Lk7m8kA4PJhrOSoeHkyHjz+DdvTradm5z/mGTtxmTN2uSBe5KH7k+OH09WjyXrNycH9iaP7E/2PJAcPtg8tn5zctb25K7bknu+2YzhrHOafY4emT62gYHmmNkMDjaP1dq5czE0nIytb577zsem7Hxs8tgrO9c+LBEKowEAAAAAAAAALCEDL/+11Kc9L/nqNcnOxyZX/JOUoeFeDwsAAJall7/85bnuuuvyzne+c3Lb5z//+Vx22WX55V/+5bz0pS/NeeedN+O4W2+9Ne9///vzO7/zOzl8+PC0x97ylrdMKyi2XH3/939/XvOa1+Rtb3vb5LbXvva1+dznPpc3vOEN+fZv//YZxxw/fjz/8A//kD/90z/N+973vlx//fXZuXPnjP1e8pKX5DOf+Uze+973JknGx8fzwhe+MC95yUvy8z//87O2nSTHjh3L9ddfn0984hP5yEc+kptvvjmf/exnFUYDAAAAAABYwUopyUtfm7zkNcme3cn6zSkDA13vt9aa1DprX/X48eT4saYo25HDTYG1gcGmGNrAYDI8mjIymnr4ULLvwWTjtpShptRT3b8n+fwnm0JtQ8PJ8EgyPJqMjCZDI8mq1U3xsxNF1dZvbgq/bdqWMjLa9ecNS4HCaAAAAAAAAAAAS0x59BXJo6/o9TAAAKAvvOMd78imTZvy5je/ufnlhST79u3L6173uvzyL/9yLrvsspx33nnZtGlTdu/enTvuuCNf//rXZ7QzPDyct7/97XnVq1612E+ha97ylrfkzjvvzEc/+tHJbZ/85CfzyU9+Mjt27MgVV1yRs846K4cPH869996b66+/Pvv27ZtT2+9617vy0EMP5S//8i8nt33oQx/Khz70oWzdujVPeMITctZZZ2VgYCB79+7N3XffnZtvvjmHDh3q+PMEAAAAAABg+SulJBu3LG5/pcz+2MBAcqJg2ujqZpltv9FVyeiO6dvWbkh+6Mc6OlboNwqjAQAAAAAAAAAAAAB97Td+4zfy9Kc/PT/7sz+bW265ZXJ7rTU33nhjbrzxxtMe/+QnPzl/+Id/mCuvvLLbQ11Ug4OD+chHPpLLL788b37zm3PkyJHJx+6+++7cfffdC257eHg4f/7nf563vvWtecMb3jCt4NmuXbvy6U9/ek5tjI2NLXgMAAAAAAAAACw/A70eAAAAAAAAAAAAAABAtz3zmc/MTTfdlA9+8IN5xjOekaGh0/+N6dHR0TznOc/Jxz/+8Vx77bV9VxTthFJK3vCGN+TrX/96XvnKV2bz5s2n3X/t2rV53vOel4997GM5//zzz9j2L/zCL+T222/PL/3SL+WCCy4443jWrVuXH/7hH8473/nO3HPPPfmO7/iOeT0fAAAAAAAAAJa3Umvt9Rigp0oplye54cT6DTfckMsvv7yHIwIAAAAAAAAAWJgbb7wxj3vc46Zuelyt9cZejQcAOn2P3tGjR3PLLbdM23bJJZecscAVzObAgQP58pe/nFtvvTW7du3K+Ph4RkdHs3379jzmMY/Jk5/85IyOjvZ6mIvu+PHjue666/K1r30tDzzwQPbv35+xsbFs27Ytl156aR7/+MdneHh4we3ffvvtue6667Jr16489NBDGRgYyLp167Jjx45ceumlueSSSzI4ONjBZ9RbcgsAAAAAAAD6g/vzFo+fptJRpZThJE9Ncn6Sc5LsT3J3kq/UWr/Zw6EBAAAAAAAAAAAAwKSxsbE87WlPy9Oe9rReD2VJGRgYyJVXXpkrr7yyK+1feOGFufDCC7vSNgAAAAAAAADLn8JoK1gp5U+TvLhl8x211p0LaGtrkjdNtLf5FPtck+R3a61/Pt/2AQAAAAAAAAAAAAAAAAAAAAAA6G8DvR4AvVFK+ZHMLIq20LauSnJDklflFEXRJjwlyZ+VUv6klDLWib4BAAAAAAAAAAAAAAAAAAAAAADoD0O9HgCLr5SyMcm/71Bb35vkY0lGpmyuSa5L8o0kG5M8KcmWKY+/NMn6Usrzaq3HOzEOAAAAAAAAAAAAAAAAAAAAAAAAlreBXg+Annhbkh0T/9+30EZKKecm+YtML4r2hSSX11qvrLX+aK31B5Ocm+TVSY5M2e85SX5zoX0DAAAAAAAAAAAAAAAAAAAAAADQXxRGW2FKKc9M8vKJ1aNJXt9Gc29KsmnK+jVJnllrvXnqTrXWw7XW30vyoy3H/3wp5YI2+gcAAAAAAAAAAAAAAAAAAAAAAKBPKIy2gpRSxpK8e8qm303yjwts65IkPz5l03iSl9VaD53qmFrrx5L88ZRNo0nesJD+AQAAAAAAAAAAAAAAAAAAAAAA6C8Ko60sv5Vk58T/v5HkjW209ZIkg1PW/6LWesscjntLy/qPllJWtTEOAAAAAAAAAAAAAAAAAAAAAAAA+oDCaCtEKeUpSf7llE0/XWs92EaTz29Zf99cDqq13pzkH6ZsGkvyg22MAwAAAAAAAAAAAAAAAAAAAAAAgD6gMNoKUEoZTfLenHy9/7jW+uk22js7yROmbDqa5AvzaOLqlvWrFjoWAAAAAAAAAAAAAAAAAAAAAAAA+oPCaCvDG5N828T/dyV5TZvtPa5l/fpa64F5HH9Ny/rlbY4HAAAAAAAAAAAAAAAAAAAAAACAZU5htD5XSnlyktdO2fRztdbdbTZ7Wcv6rfM8/rYztAcAAAAAAAAAAAAAAAAAAAAAAMAKozBaHyulDCV5b5KhiU1/U2v9UAeafnTL+p3zPP6OlvWzSimb2hgPAAAAAAAAAAAAAAAAAAAAAAAAy9zQmXdhGfulJE+Y+P+BJK/qULsbW9bvn8/Btdb9pZRDSVZN2bwhyUPtDqyUsi3J1nkednG7/QIAAAAAAAAAAAAAAAAAAAAAANAehdH6VCnlsiS/OmXTr9Vav9mh5te2rB9cQBsHM70w2rqFD2ean03yhg61BQAAAAAAAAAAAAAAAAAAAAAAwCIZ6PUA6LxSykCS9yQZndj05SS/18EuWgujHVpAG63F1FrbBAAAAAAAAAAAAJimlDJjW621ByMBmJvjx4/P2DZblgEAAAAAAADQUBitP706yXdP/P9okp+stR7rYn8LuaPIXUgAAAAAAAAAAADAvAwMzLz19ciRIz0YCcDcHD16dMa22bIMAAAAAAAAgMZQrwdAZ5VSLkrym1M2/W6t9R873M3+lvXVC2ij9ZjWNhfqD5J8dJ7HXJzk4x3qHwAAAAAAAAAAAOiSUkpGRkYyPj4+uW3//v1Zs2ZND0cFcGr790+/TXpkZCSllB6NBgAAAAAAAGDpUxitj5TmJ+TvTnLi7p5vJHljF7pasoXRaq33J7l/Pse4sQAAAAAAAAAAAACWj3Xr1mX37t2T63v37s3WrVvdDwgsObXW7N27d9q2devW9Wg0AAAAAAAAAMvDQK8HQEe9Msn3T1n/6VrrwS70s6dlfet8Di6lrM3MwmgPtzUiAAAAAAAAAAAAYEVoLSp05MiRfOtb30qttUcjApip1ppvfetbOXLkyLTt69ev79GIAAAAAAAAAJaHoV4PgI5605T//3WSW0spO89wzNkt60OzHHN3rXV8yvotLY9fMMfxnWr/B2utD82zDQAAAAAAAAAAAGAFWrVqVYaHh6cVG9q3b19uu+22rF+/PmvXrs3Q0FAGBvz9YGBxHT9+PEePHs3+/fuzd+/eGUXRhoeHMzo62qPRAQAAAAAAACwPCqP1l9VT/v/DSW5fQBuPmuW4JyX5xynrN7c8/uh59nFRy/pN8zweAAAAAAAAAAAAWKFKKdmxY0fuvPPO1Fontx85ciS7d+/O7t27ezg6gNmdyK5SSq+HAgAAAAAAALCk+VN4LMQNLeuPL6WsmcfxTz1DewAAAAAAAAAAAACntGbNmpx//vkKDAHLQikl559/ftasmc8t1wAAAAAAAAArk8JozFut9Z4k10/ZNJTke+bRxPe2rP+XdscEAAAAAAAAAAAArCwniqMNDw/3eigApzQ8PKwoGgAAAAAAAMA8DPV6AHROrXXjfI8ppXxvks9O2XRHrXXnHA79yySPn7L+E0k+NYf+Lk3yXVM2HZjLcQAAAAAAAAAAAACt1qxZk4svvjiHDx/O3r17s2/fvoyPj/d6WMAKNzIyknXr1mX9+vUZHR1NKaXXQwIAAAAAAABYNhRGY6E+mORXkwxOrL+glHJJrfWWMxz3iy3r/6nWeqjjowMAAAAAAAAAAABWhFJKVq1alVWrVmXbtm2pteb48eOptfZ6aMAKU0rJwMCAQmgAAAAAAAAAbVAYjQWptd5SSvnjJC+f2DSS5P2llGecqtBZKeW5SV42ZdN4kjd1daAAAAAAAAAAAADAilJKyeDg4Jl3BAAAAAAAAABgyRno9QBY1t6Q5KEp609J8ulSyqVTdyqljJZS/nWSj7Yc/7Za6x1dHiMAAAAAAAAAAAAAAAAAAAAAAADLwFCvB8DyVWu9q5TygiR/m2RkYvNTk9xUSvlykm8k2ZDkyUm2thz+n5P82mKNFQAAAAAAAAAAAAAAAAAAAAAAgKVNYTTaUmu9upTy/CTvz8niZyXJlRPLbD6c5JW11mPdHyEAAAAAAAAAAAAAAAAAAAAAAADLwUCvB8DyV2v96ySPS/KuJA+dZtcvJnlRrfUltdYDizI4AAAAAAAAAAAAAAAAAAAAAAAAloWhXg+A3qq1Xp2kdKCd+5O8qpTy6iRPTXJBkrOTHEjyrSRfqbXe3m4/AAAAAAAAAAAAAAAAAAAAAAAA9CeF0eioWut4ks/2ehwAAAAANQ/O7gAAIABJREFUAAAAAAAAAAAAAAAAAAAsLwO9HgAAAAAAAAAAAAAAAAAAAAAAAACAwmgAAAAAAAAAAAAAAAAAAAAAAABAzymMBgAAAAAAAAAAAAAAAAAAAAAAAPScwmgAAAAAAAAAAAAAAAAAAAAAAABAzymMBgAAAAAAAAAAAAAAAAAAAAAAAPScwmgAAAAAAAAAAAAAAAAAAAAAAABAzymMBgAAAAAAAAAAAAAAAAAAAAAAAPScwmgAAAAAAAAAAAAAAAAAAAAAAABAzymMBgAAAAAAAAAAAAAAAAAAAAAAAPTcUK8HAEvAyNSVW2+9tVfjAAAAAAAAAABoyyz3PYzMth8ALCL36AEAAAAAAAAAy5778xZPqbX2egzQU6WUH0ny8V6PAwAAAAAAAACgC55ba/1ErwcBwMrlHj0AAAAAAAAAoE+5P69LBno9AAAAAAAAAAAAAAAAAAAAAAAAAACF0QAAAAAAAAAAAAAAAAAAAAAAAICeK7XWXo8BeqqUsiHJ06ds+l9Jxtto8uIkH5+y/twkt7XRHsB8ySFgKZBFQK/JIaDX5BDQa3IIWApkEdBrKzWHRpKcN2X9c7XWPb0aDAC4Rw/oQ3II6DU5BPSaHAJ6TQ4BS4EsAnpNDgG9tlJzyP15i2So1wOAXpsIl090qr1SSuum22qtN3aqfYAzkUPAUiCLgF6TQ0CvySGg1+QQsBTIIqDXVngOfaXXAwCAE9yjB/QbOQT0mhwCek0OAb0mh4ClQBYBvSaHgF5b4Tnk/rxFMNDrAQAAAAAAAAAAAAAAAAAAAAAAAAAojAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8pjAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8pjAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8pjAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8pjAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8N9XoA0Id2JXlTyzrAYpJDwFIgi4Bek0NAr8khoNfkELAUyCKg1+QQAPQnn/FAr8khoNfkENBrcgjoNTkELAWyCOg1OQT0mhyiq0qttddjAAAAAAAAAAAAAAAAAAAAAAAAAFa4gV4PAAAAAAAAAAAAAAAAAAAAAAAAAEBhNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnhno9AGYqpQwmeXSSy5LsSLIhyeEkDyW5Lcm1tdYDHe5zOMlTk5yf5Jwk+5PcneQrtdZvdrKvxVJKuTzJE5NsTTKa5N4kdyX5Qq31UC/HtphKKZuSXJ7kkiSbk6xK8nCSXUm+XGu9rYfDm6GUcmGa121HkrVJ7klyR5Jraq1Hejm2lUQOdYYcasghFkoWdYYsasiiU/ZjfpyGHOoM86yx3HKIpUEOdYYcasih6Uop56U5F+cm2ZJkdZLxJHuS3JnmnOzq3QiXBjnUGXKoIYdYKFnUGbKoIYtYCDnUGXKoIYdmZ34AveAzvjNkeGO5fca7N2ZpkEOdIYcacoiFkEOdIYcacuiU/ZgfpyGHOsM8ayy3HGJpkEOdIYcacmg69+fNnSzqDFnUkEUshBzqDDnUkEMshBzqDDnUkEOzW9bzo9ZqWQJLmsD8uST/Oc039/U0y9Ek/yXJszvQ79Ykf5Bk92n6+0KSF7bZz0VJXpzkrUmuTrK3pY9vdug8rkvyK0m+dZrnszfJB5Jc3MPXu2vnI8lwkmcleUeSG84wl+rEufr1JGf3+D3woiTXnGacuyfm6pYFtH2mc3CmZWcvz80ivgZyqDPnUQ7Joalt7uxABk1dXtbLc7RIr4Ms6sx5lEWyaNnPjx6+BnKoM+dxWcwzOdSz+TGW5HuS/N9JPpjkfyY53tLXy3p1Hnq9yCE5JIe6dj4uSfJvk3w2zQ81znQ+apLrkvzLJKO9Oic9eh3kUGfOoxySQ7O1P5fsOd2ys1fnpgevhSzqzHmURbJoars7O5BDU5eX9eocLdLrIIc6cx7lkBxa9vPDYrH01+IzfmVluM/4WcftHr0eL3JIDskh9+j1epFDckgOuT+v14sckkMrOYcWcX64P+/050cOdeY8yiE51Nq2+/Pmd75kUWfOoyySRbO1P5f8Od2ys1fnZpFfBznUmfMoh+TQ1HZ3diCDpi4v69U5WqTXQQ515jzKITm07OfHGZ9HrwdgqUnyoTY+0D6ZZPsC+70qyX3z6OtPkozNo/3vTfK3Z/hQ6NgbM8l3panCOdfncyDJqxbxde76+Zg4Bw8ucC49lOTHejD/1yb58DzGeW+SZ82zj4W+v04sOxf7vPTgdZBDckgOdSGH0vlvZF+82OdnkV8LWSSLZFEXsmg5zY9eL3JIDq3EHFrM+ZHmwvFX01yQPlNfL1usc7CUFjkkh+RQ9+ZHkp9s4/319STftVjnpJeLHJJDcqi786ON99eJZedinZdeLrJIFsmirp2PnR3IoalL316vjhySQ3Joxc8Pi8XSn4vP+JWR4T7jTzlm9+gtgUUOySE55B69Xi+RQ3JIDrk/r8eLHJJDKzGHFnN+xP15czlHckgOyaEuzY+4P28+50oWySJZ1MX50cb768Syc7HOS68WOSSH5FDXzsfODmTQ1MW1ajk0l/egHJJDy3J+zGcZCkvBY06x/VtJbkkTrkNpqv49IcnAlH3+zyR/X0p5eq313rl2WEr53iQfSzIyZXNNU2X9G0k2JnlSki1THn9pkvWllOfVWo/PoZsnJvnBuY6pHaWUZ6apBjra8tAdSa5P8yY8N82bd3jisTVJ/qCUMlBrfeciDHMxzsfWJJtm2T6e5uL2vWkqpp6V5MqJf0/YmOQDpZRttdbf7fI4kySllMEkH0nywy0P7UrylYmxXpxmLpaJx7Yn+Xgp5Zm11s8vxjhXCDnUJjk0SQ51zyNpKlr3M1nUJlk0SRbN3s9ymB+9JofatEzmmRyabtHmR5KXJNmwSH0tV3KoTXJokhw6s5rmIv+taX6w8Eiav5h7YZLLc3J+JM178zOllGfXWj+32ANdZHKoTXJokhyiHbKoTbJokizqnn6/Xi2H2iSHJsmhWSyT+QH0J5/xbVomGe4zvsUyuzem38mhNsmhSXKoe1zzkEOnJYcmyaHZ+1kO86PX5FCblsk8k0PTuT9vaZFDbZJDk+TQmbk/79RkUZtk0SRZxELJoTbJoUlyqHtcq5ZDpyWHJsmhWSyT+TF3va7MZqlJcm1OVtG7Lsm/SnLxKfZ9VJI/zMzqe/81SZljf+dmZtXDzyd5bMt+o0n+TZo3/dR9/+0c+/m5WcZZkxxKc0GjIxUL01RPba2KeGuSH5hl301Jfr9l32Oz7duF17nr5yPNB/mJNvYleU+SZyRZPcu+Jcnz04RX65i6fj4mxvDWln7HJ+b/SMt+lyW5pmXfB5KcM8d+ph73xYk5M59laDHORy+XyCE5JIe6kkNpvvE6U8acavl8S3/vX4xz0sslskgWyaKufU20XOZHrxc5JIdWYg4t1vyY6OvhU/R11yyPvazbz30pLnJIDsmhrs6PVyT5WpqvvZ6dZNNp9t2Y5OfT/ABkav/fSrKh2+ekl4sckkNyqOtfD01ty7XqU58nWSSLZFF3zofr1XM/V3JIDsmhFT4/LBZLfy4+41dGhvuMn3W87tFbIkvkkBySQ13JobjmMZ/XQg7JITnUpa+Hlsv86PUih+TQSsyhxZofE325P+/M50gOySE51L354f68uZ8rWSSLZFF3vyaa2pZr1bOfIzkkh+RQd86Ha9VzP1dySA7JoRU+P+b1nHo9AEtNkv+eptrelfM45mdnmfD/dI7HvqfluC8kWXWa/Z83yxvrgjn083MTof+VJO9O8lNJnpymYuD3dvCN+eGWtm5Jsu0Mx/xCyzE3Jhns8uvc9fMxEdz3JXlNkrE5HnNWkpta+r85c/xCoI3zcVFmflHw3NPsvzozf9D4rjn2NfWYq7v5vJbrIofkkBzqbg4tYGyPSnK0pa//o5vnYyksskgWyaLuZdFymR+9XuSQHFqhObQo82Oir4fT/KWFv0ryponztH3isatb+npZN5/3Ul3kkBySQ12dH8MLOOaJSfa3jOEXu3k+er3IITkkh7r+9dDUtq7u5vNazosskkWyqLtZtICxrbjr1XJIDskh88NisfTn4jN+ZWS4z/gZ/bpHbwktckgOyaHu5tACxuaax9yOkUMn+5FDJ/uQQ8t0fvR6kUNyaIXmkPvzltAih+SQHHJ/3lJYZJEskkXu0ev1IofkkBxyf16vFzkkh+SQ+TGv59TrAVhqkuxc4HF/1jK5/moOx1zS8sF4OMklczju/S19vXcOx2w61QdCB4PqojQVB6e29T1zPPb/bznu5V1+nRfjfGyda2C3HPeEWc7jd3T5fPxxS3/vm8Mxj5mYsyeOOZLkojkcN7Wfq7v5vJbrIofkkBzqbg4tYGy/0jK2/9nNc7FUFlkki2RRd7JoOc2PXi9ySA6t0Bzq+vmY0t4p/4Ju3Hh14jzsXOBxckgOtbYjhzo3vl9vGcMXF3sMi/x8dy7wODkkh1rbkUOztze1rau7+byW8yKLZJEs6s75aGNsK+56tRySQ3LI/LBYLP25+IxfGRnuM35Gn+7RW0KLHJJDcqi7ObSAsbnmMffj5JAcam1HDi3T+dHrRQ7JoRWaQ+7PW0KLHJJDcqg756PN8a2o+/MmnvPOBR4ni2RRazuyaPb2prZ1dTef13Jd5JAckkPdOR9tjM216rkfJ4fkUGs7cmiZzo/5LAOh52qt31zgoe9sWf++ORzzkiSDU9b/otZ6yxyOe0vL+o+WUlad7oBa60O11kNzaLsdz06mzeMv1lo/P8djf6dl/Sc6M6TZLcb5qLXuqrUeWMBx/yNJ63mby3xakFLK6iQvatncOsdmqLX+zyQfm7JpKM2cpk1yqC1yaHofcqhNpZSSmXPhPZ3sY6mSRW2RRdP7kEXTLZv50WtyqC3LZp7JoRl9Lsb8ONHXPYvRz3Imh9oih6b3IYc6569b1h/dk1EsEjnUFjk0vQ85xILJorbIoul9yKI2rdTr1XKoLXJoeh9yaLplMz+A/uQzvi3LJsN9xp+0lO+NWankUFvk0PQ+5FCbXPOYNzkkh1r7kEPTLZv50WtyqC3LZp7JoRl9uj9vCZFDbZFD0/uQQ52zou7PS2RRm2TR9D5kEQsih9oih6b3IYfa5Fr1vMkhOdTahxyabtnMj/lQGG15+0rL+upSysYzHPP8lvX3zaWjWuvNSf5hyqaxJD84l2O77Gkt6387j2M/k2R8yvpTSinntD+kZat1Pu3oYl/PSrJmyvp/q7V+bY7Hts7ZF3RmSCyQHJJDnSSHGk9PcvGU9aNp/mIdpyaLZFEn9WMWmR/dJ4fMs05azByif8ghOdRJcmi6B1vW1/VkFEufHJJDnSSHWChZJIs6SRY1XK+eHzkkhzqpH3PI/ACWK5/xMryT+vHn0XSfHJJDnSSHGq55zI8ckkOd1I85ZH50nxwyzzqpH6+90n1ySA51khyazv15cyeLZFEnySIWQg7JoU6SQw3XqudHDsmhTurHHOrL+aEw2vJ2dJZtI6fauZRydpIntBz/hXn0d3XL+lXzOLZbzm1Zv2GuB9ZaDye5dcqmgSyN59QrrfPplHOpA36oZf3qeRz7XzN9rE8qpWxve0QslBySQ50khxqvaFn/q1rrvR1svx/JIlnUSf2YReZH98kh86yTFjOH6B9ySA51khya7oKW9bt7MoqlTw7JoU6SQyyULJJFnSSLGq5Xz48ckkOd1I85ZH4Ay5XPeBneSf3482i6Tw7JoU6SQw3XPOZHDsmhTurHHDI/uk8OmWed1I/XXuk+OSSHOkkOTef+vLmTRbKok2QRCyGH5FAnyaGGa9XzI4fkUCf1Yw715fxQGG15e3TL+tEkD5xm/8e1rF9faz0wj/6uaVm/fB7HdsvmlvWH53l86/5XtDGW5a51Pt3Txb5a5+J/m+uBE3P2qy2bl8JcXKnkkBzqpBWfQ6WUDUle2LL5PZ1ou8/JIlnUSf2YReZH98kh86yTFjOH6B9ySA51khya7l+0rH+2J6NY+uSQHOokOcRCySJZ1EkrPotcr14QOSSHOqkfc8j8AJYrn/EyvJP68efRdJ8ckkOdtOJzyDWPBZFDcqiT+jGHzI/uk0PmWSf147VXuk8OyaFOkkPTuT9v7mSRLOokWcRCyCE51EkrPodcq14QOSSHOqkfc6gv54fCaMvbi1rWr621Hj/N/pe1rN86616ndtsZ2uuF8Zb10Xke37r/UnhOi66Usj7JD7Rs/lIXu3xsy/pizsXzSynvK6XcWEp5qJQyXkq5b2L9T0opP1VKaQ18Tk0OyaGOWGE5dDr/LMnqKev3JPkvHWq7n8kiWdQRfZxF5kf3ySHzrCN6kEP0DzkkhzpCDk1XSvmXSX5syqajSf6/Hg1nqZNDcqgjVlgOuVbdebJIFnXECsui03G9ev7kkBzqiD7OIfMDWK58xsvwjujjn0fPxnWPzpJDcqgjVlgOnY5rHvMnh+RQR/RxDpkf3SeHzLOO6ONrr3SfHJJDHSGHpnN/3rzJIlnUESssi1yr7iw5JIc6YoXl0Om4Vj1/ckgOdUQf51Bfzg+F0ZapUsraJK9o2fyXZzistWLhnfPs9o6W9bNKKZvm2Uan7W5ZP2eex7fu/21tjGU5++kka6as70mXqutPfJPY+o3ifOdi6/6XzOPYC5O8LE0Ib0wynGTbxPpLk/xhkjtLKf/vxPuMU5BDk+RQZ6ykHDqd1vfUH9daj3ao7b4kiybJos7o1ywyP7pIDk0yzzpj0XKI/iGHJsmhzljROVRKGSulfFsp5cdLKZ9L8o6WXV5Xa72+F2NbyuTQJDnUGSsph1yr7iBZNEkWdcZKyqLTcb16HuTQJDnUGf2aQ+YHsOz4jJ8kwzujX38ePRvXPTpEDk2SQ52xknLodFzzmAc5NEkOdUa/5pD50UVyaJJ51hn9eu2VLpJDk+RQZ6zoHHJ/3sLJokmyqDNWUha5Vt0hcmiSHOqMlZRDp+Na9TzIoUlyqDP6NYf6cn4ojLZ8/VaSs6esP5zkj85wzMaW9fvn02GtdX+SQy2bN8ynjS64uWX9u+d6YCnl/CQ7Wjb3+vksulLKziS/1rL57bXW1mqQndI6Dx+ptR6YZxutc7fTr9tYkp9L8uVSyuUdbrufyKGGHGqTHGqUUq5IcmXL5ve02+4KIIsasqhNfZ5F5kd3yaGGedamHuQQ/UMONeRQm1ZaDpVSNpZS6tQlyf4kX0vy/iRPm7L7/iQ/VWv9nR4MdTmQQw051KaVlkNz5Fr13MmihixqkyxquF69IHKoIYfa1Oc5ZH4Ay5HP+IYMb1Of/zx6oVz3mBs51JBDbZJDDdc8FkQONeRQm/o8h8yP7pJDDfOsTX1+7ZXukkMNOdSmlZZD7s/rOFnUkEVtWmlZNEeuVc+NHGrIoTbJoYZr1QsihxpyqE19nkN9OT8URluGSinPT/KvWjb/Sq31wTMc2lqt+OACum89Zt0C2uikz7Wsv7CUsmbWPWf6F7Ns6/XzWVSllJEkH8n05/3NJP+ui932ah4eTXJ1kl9N8iNJnpzmrzY9Kclzk/xOZn4x85gkny6lXLCAMfY1OTSNHGrDCsuhM2mtVP25WuutHWi3b8miaWRRG1ZAFpkfXSKHpjHP2tCjHKIPyKFp5FAb5NAp3ZfkV5JcWGt9d68HsxTJoWnkUBtWWA65Vt1hsmgaWdSGFZZFZ+J69TzIoWnkUBtWQA6ZH8Cy4jN+GhnehhXw8+ipXPfoIDk0jRxqwwrLoTNxzWMe5NA0cqgNKyCHzI8ukUPTmGdtWAHXXukSOTSNHGqDHDol9+fNgSyaRha1YYVlkWvVHSSHppFDbVhhOXQmrlXPgxyaRg61YQXkUF/OD4XRlplSyhOS/MeWzZ9K8u/ncHhrcLdWp5yL1uBubXOx/VWaap4nbEzyxjMdVEo5L8lrZ3losJSyujNDWxb+KMl3Tlk/luTHF/DXkOajF/PwV5M8qtb6fbXWN9daP1lr/Uqt9dZa6z/WWj9Ra/1/klyQ5LeT1CnHnp3kL0opZQHj7EtyaAY51J6VkkOnNfGF9I+1bFbd+zRk0QyyqD39nkXmRxfIoRnMs/b0IodY5uTQDHKoPXJodtuT/EySV5VS1vd6MEuNHJpBDrVnpeSQa9UdJotmkEXtWSlZdFquV8+PHJpBDrWn33PI/ACWDZ/xM8jw9vT7z6NPcN2jg+TQDHKoPSslh07LNY/5kUMzyKH29HsOmR9dIIdmMM/a0+/XXukCOTSDHGqPHJqd+/POQBbNIIvas1KyyLXqDpJDM8ih9qyUHDot16rnRw7NIIfa0+851JfzQ2G0ZaSUcn6aiTg1LO9I8mO11jr7Uae1WMd0Ta11X5K3t2x+bSnl1ac6ppRybpK/SbLhVM12aHhLWinlN5L885bNr6u1/v0iD6Xr83Dim9fW6t2z7Xeo1vq6JP+65aEnJ/ln8+mzX8mhmeTQwq2kHJqD5yY5a8r6nv/d3v3HWpMX9B3/fJctIIJSi0AVdSn+wlBSFFMBTTcUDNSAsqAQmoYVtLbYJrVt0pSadGsbTNNo7R+NUotiKdBSBEREQMSVVuOvZlGoW0oqawVd5JdF9vey3/5x7tN77px75sycHzNzzrxeyflj5p4zZ57zfJ/33Od7J9+b5A17fo+ToUWrtGh7c2iR8bF/OrTKONvehDrEEdGhVTq0vRl36NNJHr30eEwWc0DXJfnXST529rwvSfIDSd5XSvn6Ec5zknRolQ5tb04dMle9X1q0Sou2N6cWdWC+uiMdWqVD25tDh4wP4Fi4xq/S8O1N6BrvHr0jokOrdGh7c+pQB+Y8OtKhVTq0vTl0yPjYPx1aZZxtb0Id4ojo0Cod2t6MO+T+vB1p0Sot2t6cWmSuen90aJUObW9OHerAXHVHOrRKh7Y3hw6d6vi4euwToJtSysOT/EKSL17afWuSp9daP3b5q1Z8prG9zcp8zdc0jzmGlyd5Zs5XZixJfqSU8rwsVkd9bxYrcX7R2fP+ds4vfh9O8qilY91Za11Z6bOUck3Xk6m13tLr7EdQSvl7Wax6veyHa63/quPrr+n6Xpd8HpMfh7XWf1tK+eYkz17a/dIkr93n+xwbHWqlQz3p0IqXNLZfW2ttriJNtGgDLeppZi06+PiYCx1qpUM9jdwhjpQOtdKhnubcoVrrfUluueRLNyV5Uynl+5P8yyR/52z/lyZ5VynlKbXW9w9zltOkQ610qKc5d6gLc9XraVErLepJi1aYr+5Ah1rpUE8z65C5amDSXONbucb3NLOfR/dm3uNyOtRKh3rSoRXmPDrQoVY61NPMOmTOY090qJUO9TSzuVf2RIda6VBPc+6Q+/N2o0WttKinObeoC3PVl9OhVjrUkw6tMFfdgQ610qGeZtahk5urtjDaESilfEGSdyX5yqXdH0/ytFrrB3sc6iTDXWu9u5RyXZK3JXn80pe+8eyxziey+MbhHUv7/mTNcz/U45RKj+cOrpTy3Ul+uLH7R2ut/6DHYXb5PI5lHP5gLv5H9htKKQ+tta4bIydNh9rpUD86dFEp5UuSPL2x+5XbHu+UaVE7Lepnbi0aaHycPB1qp0P9TKBDHCEdaqdD/ehQu1rr7Un+binlniTfd7b785L8h1LK1235G4aOng6106F+dKgzc9UNWtROi/rRoovMV3ejQ+10qJ+5dchcNTBlrvHtXOP7mcA1/ljGoXmPJTrUTof60aGLzHl0o0PtdKifuXXInMd+6FA7HepnAh3iCOlQOx3qR4fauT9vPS1qp0X9aFFn5qqX6FA7HepHhy4yV92NDrXToX7m1qFTnKu+auwToF0p5fOTvDPJX1za/aksVrL8Hz0P938b21/Y81wenNVwT2Ig11o/kuTJSV6R5J4OL/mlJE9Mcltj/617PrVJKaX8jSQ/losx/ckk3zvgaTTH4YNKKZ/b8xgPb2wfYhz+Rhb/1q64X5KvOcD7TJ4OdaND3ejQpa7Pxe/JfrvW+t93ON5J0qJutKibubbI+NiNDnVjnHUzkQ5xZHSoGx3qRod6+SdJ/nBp+wlJnjbSuYxKh7rRoW50qBdz1Uu0qBst6kaLLnV9zFe30qFudKibuXbI+ACmyDW+Gw3vZiLX+KndG7OOeY8zOtSNDnWjQ5e6PuY8WulQNzrUzVw7ZHzsRoe6Mc66mUiHODI61I0OdaNDvbg/b4kWdaNF3WhRL+aqz+hQNzrUjQ5d6vqYq26lQ93oUDdz7dCpjQ8Lo01YKeUhSd6e5OuWdn86yTNqre/d4pDN1S+/rOfrm8//ZK31U5c+cwS11ttqrX8ryVdlMSHyS0k+nOSOJH+a5OYkP5XFKqp/tdZ6S5LHNg7zW4Od8MBKKS/IItLL/+5fk+S7hlxBv9b6iVz8D2KSfGnPwzTHYp+VXTuptd6X5P80dvf6ZucU6FA/OtROh1aVUkqS72zstrp3gxb1o0Xt5t4i42M7OtSPcdY3m3gKAAARjElEQVRuKh3iuOhQPzrUTof6qbXekeTNjd3PGONcxqRD/ehQOx3qx1z1OS3qR4vaadEq89Wb6VA/OtRu7h0yPoApcY3vR8PbTeUaP6V7Y9qY91jQoX50qJ0OrTLnsZkO9aND7ebeIeNjOzrUj3HWbiod4rjoUD861E6H+nF/3jkt6keL2mlRP+aqF3SoHx1qp0OrzFVvpkP96FC7uXfolMbH1WOfAJc7+200b0vyDUu7P5PkmbXW39jysDc3tr+85+v/QmP7d7c8j4OqtX4oycvPHps8qbH962uOWS7bfyxKKc9N8uosVqm+4r8kedHZf9h62cPncXMWK0xe8eVZHZ9tmmOxz2v7uKOx3VzR9aTp0PZ0aJUOrfXUJI9e2r4ri2+qOaNF29OiVVp07hDj41Tp0PZ0aNUEO8QR0KHt6dAqHdraBxrbff/NHDUd2p4OrdKhrc16rjrRol1o0SotWst8dQsd2p4OrdKhc+aqgbG5xm/PNX7VBK/xU7k3ZpNZz3vo0PZ0aJUOrWXOo4UObU+HVunQOXMe3enQ9nRo1QQ7xBHQoe3p0Cod2tqs789LtGgXWrRKi7ZmrlqHtqJDq3RoLXPVLXRoezq0SofOncJc9VWbn8LQSimfk+StSb5xafftSb6l1vqrOxz6/Y3tx5dSHtTj9U/ZcLyjcraq6lMbu395jHM5pFLKs5O8LhcXQnxzkhfWWj87zlmtjJ1mINc6+6bm8RuOty8Pa2x//EDvMzk6NAwd0qEkL25sv7HW+sktj3VytGgYWqRFG95nFuNjHR0axlzG2UQ7xMTp0DB0SIc6uKex/YBRzmIEOjQMHdKhDmY7V51o0VC0SItivnotHRqGDulQm7mMD2BYrvHDmEvDJ3qNn/zPo8/Mdt5Dh4ahQzoUcx5r6dAwdEiHNrzPLMbHOjo0jLmMs4l2iInToWHokA51MNv78xItGooWaVEH5qp16KB0SIdirnotHRqGDulQmymPDwujTUwp5YFJ3pLk2qXddyZ5dq31Pbscu9b6R0l+Z2nX1bl4cdjk2sb2z+9yPhPw1CTXLG3/cq31gyOdy0GUUv5aFitX/pml3T+X5Pm11nvHOaskydsb29f2eO035eJF6KZa60d3PqOGUsrDsrqK6x/u+32mSIcGpUPjGb1DpZSHJrmusfuVfY9zqrRoUFo0ntFb1MHJj491dGhQJz/OJtwhJkyHBqVDbPKoxvYhvu+aHB0alA6x1pznqhMtGpgWzZj56vV0aFA6RJuTHx/AsFzjB3XyDZ/wNX7yP4+e87yHDg1Kh8YzeofMeaynQ4PSofGM3qEOTn58rKNDgzr5cTbhDjFhOjQoHWKTWd6fl2jRwLSItcxV69BAdGjGzFWvp0OD0iHaTHZ8WBhtQkop90/yxiRPW9p9V5Jvq7X+4p7e5k2N7e/seG5fneQvL+26Lck793ROY/lHje1XjHIWB1JKeXqSn05y/6Xd70zy3Frr3eOc1f/3jiR3LG0/6WyMdXF9Y7s5pvflBbnYyI8muflA7zUZOjQ4HRrPFDr015M8cGn7liTv3vJYJ0WLBqdF45lCizY56fGxjg4N7qTH2cQ7xETp0OB0iE2+ubE9icn9Q9KhwekQbWY5V51o0Qi0aN7MV19ChwanQ7Q56fEBDMs1fnAn3fCJX+OP4efRs5z30KHB6dB4ptAhcx6X0KHB6dB4ptChTU56fKyjQ4M76XE28Q4xUTo0OB1ik9ndn5do0Qi0iDbmqs/p0OHo0LyZq76EDg1Oh2gz2fFhYbSJKKVcneT1SZ65tPueJM+rtb5jj2/1miSfXdq+rpTyFR1e1xzEr6+13rm/0xpWKeVFSZ6+tOu9Waz8eBJKKX8lyc/k4jdI787im4C7xjmrc7XW25O8obG7OcZWlFK+Mslzlnbdm+S1ezy1K+/ziCTf39j9s7XWuu/3mhIdGpYOjWsiHXpxY/snTr0zXWjRsLRoXBNpUdv7nPT4WEeHhnXq42zqHWKadGhYOsQmpZRvSfLExu6fGeNchqJDw9Ih2sx1rjrRoqFpETFfvUKHhqVDtDn18QEMyzV+WKfe8Klf44/g59GznPfQoWHp0Lgm0iFzHg06NCwdGtdEOtT2Pic9PtbRoWGd+jibeoeYJh0alg6xyRzvz0u0aGhaRBtz1To0BB0i5qpX6NCwdIg2Ux8fFkabgFLK/bII6rcu7b43yfNrrW/d53vVWj+Y5KeWdt0/yatKKQ9c85KUUr41F3/jzd1J/tk+z2tXZxe+rs+9LsmPL+26N8mLa6337v3ERlBKeVKStyb5nKXd70nyrFrrHZe/ahQ3ZPHNyRXXl1Keve7JZ2P0J3Nxhc5X1lr/d8trvqqU8qw+J1VKeWQWn98jlnbfneQH+xzn2OjQ7nTonA5tVkr5S0m+dmnXfUle1fc4p0aLdqdF57To0tcaHxvo0O6Ms3NH1CEmRId2p0PndOhcKeWJpZTnbH7myuu+PsmrG7vfU2t9337ObHp0aHc6dE6Hzpmr7keLdqdF57RoM/PVq3Rodzp0TodWGR/AWFzjd6fh547oGn9D3KM3GTq0Ox06p0ObmfNYpUO706FzOnTpa42PDXRod8bZuSPqEBOiQ7vToXM6dM79ef1o0e606JwWnTNX3Z0O7U6HzunQZuaqV+nQ7nTonA6tOrXx0fkPw0H9RJLvaOx7WZKbSinX9DzWrR1WmvynWfwGmz97tv3kJO8qpXxXrfV/XnlSKeUBSf5mkh9qvP6Haq2/3+VkSimPyuXj7JGN7atb/qyfqbV+fMNbva+U8nNJfjrJr9da77vkXB6X5B8neWHjSy+rtd604fh7cejPo5TyhCQ/n+TBS7s/kOR7kzy8lNLndO+std7a5wV91Fp/r5Tyb5L8w6Xdbyil/P0k/67WeveVnaWUxyb591mM1Ss+kc3fQPz5JG8ppbwvyX9M8qazb15WlFIekuRFWazs/YjGl/9FrfX3OvyxjpkO6ZAOLey7Q+u8pLH9jlrrH2x5rFOiRVqkRQuHatFRjI+R6ZAOza5DyXDjo5Ty4CQPW/Pl5oTyw1re68NTmlzbMx3SIR26aF/j41FJ3lhKeX8WP0B7c5IP1Hr5b1kqpXxNku9J8tLGed15tu+U6ZAO6dBF+xof5qr70SIt0qKL9j0+msxXr9IhHdKhi2Y5PoCT5Bo/k4a7xp9zj97k6JAO6dCCe/TGo0M6pEML7s8bjw7p0Ow6lLg/b2J0SId06CL3541Di7RIiy5yj97wdEiHdOgi9+cNT4d0SIcumuX46KzW6jHyI0nd4+Paju95bZK7Gq+9L8lvJvnPSd6e5I8vOf7PJrlfjz/bLXv4M72qw/t8fOn5f5rkV7P4R/qaJO9sOY9/PvDf9UE/jyx+o9G+xtKNA3we90vytkve+6NZXIBen+S3zsbm8tfvSvJNHcd589h/kuS/ZTHB9uokbzp7j3vWfA6vGLsRA41NHdIhHTpAh9a85wOyuFFi+XjPHbMBU3nscexokRbdsMexdOMAn8cgLTqW8THmY4/jRocmPs4O/Xnk+Do01Pi4fk+fyTVj9+KAfxc6pEM6dJjP49suef6nz8bHW7K4AeL1Sd6V5NY1x789ydPG7sQAfxc6pEM6dJjP49pLnm+uev3npUVapEUHHB+N9zRfffnnokM6pEPGh4eHxwk+9thk1/iJN/zQn0eO7xrvHr2JPPY4bnRIh27Y41i6cYDPwz16E3nscdzokA7dsMexdOMAn4f78yby2OO40aGJj7NDfx45vg4NNT6u39Nncs3YvTjg34UO6ZAOHebzcH9ev78PLdIiLTrM53HtJc83V335Z6VDOqRDBxwfjfc0V33556JDOqRDxkfnx2UryTEDtdYbSynPSfKqJF94trskeeLZ4zKvS/LdtdbPHv4Md/LgJE/a8JxPJXlprfU/DXA+rFFr/Wwp5Tuy+M1Kz1/60sOTPGPNy/44yYtqrf91y7f9/CRP6fC825J8X631x7d8HzbQIR2agpE69JwkX7C0/bEsJvoZgRZp0RSM1CLjYyJ0yDiDsemQDs3YQ7J5fFzxa0m+p9b6Owc8n9nSIR2aMXPVE6JFWjRj5qsnQod0aMaMD+CkucZr+BS4R2/edEiHpsA9evOmQzo0Be7PmzcdMs5gbDqkQzPm/rwJ0SItmjFz1ROhQzo0Y+aqJ0KHdGjGjn58XDX2CTCeWuvbkjwuyY9lMVDX+bUkz6u1vrDWetsgJ9ffjyS5KYtVOdv8QZIfSPKYqf6jnJta62dqrS9I8u1ZjLV1PpnkR5M8rtb69o6HvznJy5P8SpI7Or7mfyV5WRa/4cR/Yg9Mh3RoCg7cocu8pLH96lrrPTscjx1pkRZNwUAtMj4mSoeMMxibDunQDLw7i9+K+7okH+74mtuTvCHJs5I82U1Xh6VDOjQD5qqPgBZp0UyZr54QHdKhGTE+gFlxjdfwKXCP3rzpkA5NgXv05k2HdGgK3J83bzpknMHYdEiHZsD9eUdAi7RoBsxVT5wO6dBMmaueEB3SoRk5qfFRaq1jnwMTUEq5fxarHn9ZkkdmsbrxR5LcVGv90Jjn1kcp5fOSPCHJo7NYqfOBWfwH5iNJfrvW+rsjnh4dlFIeneRrk3xRks9NcmuS30/yK7XWu3c47lVJviLJY5J8cZKH5nx8fCrJHyX5zVrrx3b6A7A1HWIqDtUhjoMWMRWHbJHxMW06BIxNh5iDUsojkjw2i3H+55I8KMk9ST6d5BNJ3p/kA0fwm31Okg5x6sxVHwctAsamQ8yB8QHMkWs8U+EevfnSIabCPXrzpUNMhfvz5kuHgLHpEHPg/rzp0yJOnbnq6dMhYGw6xBycyviwMBoAAAAAAAAAAAAAAAAAAAAAAAAwuqvGPgEAAAAAAAAAAAAAAAAAAAAAAAAAC6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADC6/wfh0VgquWOTFwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 5), dpi=300)\n", + " configs = get_known_configs()\n", + " to_display = configs[\"Relative humidity\"], configs[\"RAM available\"]\n", + " for i, config in enumerate(to_display, start=1):\n", + " plot = figure.add_subplot(1, 2, i)\n", + " coros.append(plot_sensor(config, plot, {}))\n", + " await asyncio.gather(*coros)\n", + "\n", + "display(figure)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAE0YAAAUsCAYAAAC9bUPVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdd5h1Z1kv/u8dAqEEEnoRSIBIVUA6AiYRPDSlKr0EIgiCla6IAVEPR1DPQQRF6aKIQEDqT8HQu1IUBUKJEECQloSSEHL//lj7lXnX7Cl7z57Z8877+VzXXGQ9az1l773WzsXMN/dT3R0AAAAAAAAAAAAAAAAAAAAAAACAZTpk2QsAAAAAAAAAAAAAAAAAAAAAAAAAUBgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAYKSqjq6qHv2csOx17aSqOmX0+k9Z9pr2Iu/zga2qThp/VxwI87vvAAAAAAAAAAAObgdq7gUAAAAAODgojAYAAAAAAAAAAAAAAAAAAAAAAAAs3aHLXgAAAACwO1XV0Uk+M0OXs5OckeSbST6V5F+SvCfJG7r7nEWvDwAAAAAAAAAAAFaqqsqQeztqdOr7SY7q7tN3flUAAAAAAMzikGUvAAAAANgzDkty6STHJLltkscnOTnJ6VX1tKo6fJmL2+uq6gVV1St+PrvsNQF7S1V9dvQ984JlrwkAAAAAAAAAYOQ2WV0ULUnOl+SEnV0KLEZVHTfK7XRVHbfE9cgrwgJ5pgAAAGA1hdEAAACA7XapJI9N8q9VdfNlLwYAAAAAAAAAAIA968R1zj24qmrHVgIAAAAAwFwOXfYCAAAAgAPKt5Kcusa5Cye5RJJLrnH+qCRvrKpju/tD27E4AAAAAAAAAAAADk5VdYkkd1nnkqsmOS7JP+3IggAAAAAAmIvCaAAAAMAsPtDdx613QVVdMcnPJHlUkquNTl8syd9V1bW6+3vbs0QWYaPPGUi6+6QkJy15GTPzfAMAAAAAAAAAe9T9khw2auskteL4xCiMtnQHau4GAAAAANgZhyx7AQAAAMDe0t2f7+5nJ7lekldOueRqSX5hZ1cFAAAAAAAAAADAHvfg0fEnszrDdreqOmKH1gMAAAAAwBwURgMAAAC2RXd/K8l9k/z7lNP33+HlAAAAAAAAAAAAsEdV1Y0ybOa50ouSvHDUdqEk99mRRQEAAAAAMBeF0QAAAIBt093fTfL7U07dqKousdPrAQAAAAAAAAAAYE86cXTcSV6c5A1JvrzBtQAAAAAA7CKHLnsBAAAAwJ73xilthyS5RpJ3zztoVR2S5MeSHJ3k0kkukeSMJF9JcmqSf+nu8+Ydf5Gq6oeSXDPDWo/IsOvoGUm+luQ/k7x/UkSObVBVF0pykySXT3KZJIcn+WqGe+XD3f2pJS5vU6rq0kluluSqGdb/zQyBzfd292nLXNt2q6ojMrz2H87w/Hw3yelJ3j3La6+qKyS5cYbn8PAMz9/nk7y1u89Y8LLnUlWHJblFkisnuVyS7yf5ryQfTfKh7u4lLg8AAAAAAAAAYFea5IPuPWp+275sSVW9NMmvrjh3w6q6Xnd/eJvXdf4MuaVrJ7nkpPm/kvzzLHNX1cUy5F6ukeTIJN9K8qUk7+zuzy900avnvmSSmya5WpKLZcgtfSG7NHdVVVdMcr0MmcJLZyiQ95UkX0zynp3ICVXVDye5YZIfSnJYhqzaF5K8o7u/vt3z70VV9SNJjsmQ/7tkkm9n+Fw/myF/+b1tnt+zPP+8u+WZvF6SK2bIDp6T5Ivd/eJN9pcB3gZVdYEkN8rwPFwqw/flGRlyse+dYZxjMjyb++6xs5P8d4Z86Hu6+zsLXjoAAAA7RGE0AAAAYFt191eq6owMQYqVLjXPeFV1qySPSPJTGYqhreVrVfX6JL/f3R+bZ655VdWlktw1yW2SHJvksht0Oaeq3pPkT5K8YrMF3arqs0mOWuP0UVW1mSJKx3f3KVPGPiXD2vd5a3cft8Y6PprkR1Y0fSXJD20lbFRV907y0lHzI7r7TzfZ/5Ak901yvyQ/keSC61z7mSR/m+Tp3f3f8614e1TVcUl+I8mtMxQUnHbNx5L8XpKXzlI4q6pOSPL8UfNVuvuzc6xzPO+Tu/ukDfqclOS3V7Z1d604f+MkT0xyh6zxe8yqemuSx3f3e9aZ52eSPC7JjyepKZecU1WvSvLY7v7P9dY862uYYZyjk5yU4Xtj/F25z5eq6jlJntHdZ806x2i+U7KJ53uyrs+sM9QDq+qBG8237z2ZBPtOzxAu2+eU7j5+w0Wvo6r+b5JfHjVff7vDywAAAAAAAADArvGzGYrVrPTC0T//6uj8g5P8yjyTTTI9/zRq/p8c1mQDv99Mcv8kF11jjE8keep6hXmq6roZ8jN3ylAwZto1707ymO5+52yvYn1VdWx+kFs63xrX/HOSZyf5y1k3/FtU7mYy1mWS/FqSn0lynXUuPbeq3pvkWUleNuvGq+tlpCZ5tQcm+fXsn6Vb6fuT3M4T18s7rZjvpIzeo5F/qtrwLXthd5+w0UWbsZ15xTXmu26G5/a2Sa6wzqVnVdU/JnnaZt7X0RzH5QB/ljeRw9vWZ3mN8XbDM3mRJL+U5CEZNqSdZupndqBngDe6r2cxZY0bfqdslE2tquskeWySuye5yJQhXphk3cJoVXWVDN+3d8jan2+SfLeq3p7kj7r7DeuNCQAAwO4z9T+mBAAAAFiwaUV81ir+M1VVXX1S6OxtSe6Z9YuiZXL+fkk+WlV/UVVrFsZapMnuol9M8udJ7pGNAxFJcoEMxbv+Nsm/Tv7ofyAZBxguneSOWxzzhNHx2Un+ejMdq+p2ST6a5EVJ/lfWKYo2cZUMhbM+XVVzhR0XraoOq6rnZgin/FTW/z3etZO8JMkbJ2GeA1oNfifJezIEwdbb3OHYJO+qqkdPGeeIqnpFktckuUWmF0VLhufvnkk+VlW32dLi5zC55/4tQzByve/Fy2UonvZvVXXDHVjawk1293zJqPm4qrrWvGNOdnx+wKj53YqiAQAAAAAAAMBB5cTR8beT/N2+g+7+UJKPjK65X1VNLVC0FVV1tyQfS/KLWaOQ0sTVk7yoqv52vI5JfuZJSf45yc9ljUJKEzdP8vaq+o2trfx/5j5fVf1JklMyZK+mFlKauEGS5yZ526RIzY6qqgtU1VOSfDrJ47N+AaZkyCHdIsOGnR+eFKtaxDqumOQdSZ6XtYuiJcN7eesk766q313E3HtRVV2+qv4qyYeSPCjrF0VLhk0a75LhfT25qjbKlm52HZ7l2efcLc/kTTN8dr+f9YtmTet7MGaAd0xVPTHDs/2ATC+KtlH/i03u648neWQ2/nwvmCGD+/qqentVXXnWOQEAAFgehdEAAACAnXDklLYzNtu5qm6dYfev288x9yEZgm9vrarNBBS26sezfiGnjVwryXuWUaBpC16S5HujtgfNO9gkKDZ+/Sd399c30ffRSV6XoVjYrC6a5I8nhfS28hluyaSI3xuS/PyMXf9XhvDGegGmA8FzMuyOudnfXVaSP6iqh/5PQ9WRSd6c5G4zzHuRJK+pqhvP0GdLJgHHP05y4Rm6XTnD99kBWRwtw66YYw/bwnj3zup/xzx7C+MBAAAAAAAAAAeQqjomQ0GalU7u7jNHbS8cHV8iQzGlRa7lfhkKsh0xQ7efy1BQa98YlaFA0ZOzfiGj/aZO8rtV9cgZ5l09yDD3S5I8Ysaut8yQZ5mpANFWTIpf/X9JfitzFNfJUMDsnVX1M1tcx1UzbAB58xm7/kZVPXUrc+9FVXW9JO9Lcp+svRHmeu6cIX959S2uw7M8+5y75Zn8iQzF4OYtgHUwZoB3xKSg2e9kzve3qo5K8s4M9/X55xjilkneV1U3m2d+AAAAdt7S/gNPAAAA4OBQVVfL9KI/n95k/59J8oqs/iP2OUnekqFg2ueSfDPDzn9HJ/nJJLcaXX+TJCdX1U9097iI13b5foad/v4tyX8k+WqGgnCV5GJJfjjJzTLseLeyCNThSf6mqn6suz+3zvgfS/KNyT9fOcnFV5z73uT8Rs7axDXr6u4vV9XrM4SK9rlDVV2mu788x5APyOqiWM+bduFKVfW/kzxuyqmvJfmHJB9M8uUMO8IemWE3wtslucbo+hMzvK+PnmnVi/O8JMevOP54hkJp/5HhtRyR5MeS3D2rdyP8iSS/luTp27/MxauqX0ny0BVNpyX5+yT/muG1H5nkphlCZBcbdf/jqnpThu+Dv0mysnDYB5O8MclnkpyZ4X37ySR3yv732oWSPLeqbtTd5y7oZU1VVb+eZNrunmdP1vq2JF/IEBK7Sobna9+OshdJcnJW7Gy8Tc5J8uEVx9fO/t/FX0/yn7MM2N3/VlWnJDluRfMDquoJ3f3tOdb48NHxV5O8fI5xAAAAAAAAAIAD04OzuoDSuAhakvxVkv+T/QsUnZjkZQtax42S/N6KtXwjyeszFM36coZcyrWS3CNDxm2l+1TVyd398gx5khNXnDstyWsz5Ge+miE/c5PJOOP8zNOq6rXd/dk5X8OjktxrxfGZSV6d5P1J/msy9zUz5JauNOp7pSRvqarrd/c3so0mmya+c7KWsX9N8tYMmb1967hMhsJld8iweeY+hyd5eVXdors/OMdSLpoh1/VDk+NO8q4k/5ghU3NWkktnyAfeNckFR/2fUFV/393vXWP8L+UH2Z3Dk1xtdP5T2Tj/N1O2ZwPbmlesqhsl+acMr3Wl85K8PcN7+5nJGi6U5IpJjk1y6+z/XP9whg1Gb9jd39zEmsY8yzM+y7vombxckldm/2ftfRkKtp2W4X24fIYc3M9tYryDIgO8Qx6S/Qv1nZUh1/vODPfkIRme6eMzvO/7mRRFe29WZ2aT4TN+Z4as7deTXCDD5/zjGTbkPmzFtZdN8rqqukF3n7a1lwQAAMB2q+5e9hoAAACAXaiqjs4QIlnprd193IzjPDbJ00bNX09yqe4+b4O+V8kQKjhyRfO5Sf4oyR9091fW6Xv9JH+R/YsjJckfdvejNpj36Kx+7Q/q7hes12/S9xNJPppht723bCZYM/mD/e8nuffo1Ou6+6c36j8Z4wVJHrii6bTuPnozfdcY75QMoaF91v3sq+pOGYIzKz2qu/9wjrk/kSEwss/nkxy13v1SVXfNEGhZ6etJHp/kRd393TX6VYadX5+TIWyz0p27+zUzLn8mU97n7+YHoZwvJfml7p5a/KqqDk/yrAyF5Fb6RpIrdPd3Npj7hCTPHzVfZZ4wVVWNf8n45O4+aYM+JyX57VHz2RlCKN/OEM56bndPC7lcNkPBxFuMTv15hnDLMybHn07y0O5+8xpruFGS12X1Z3+f7v7r9da/1mvo7g13Kq2qayT5UFaHHd8wWe/n1+h31yTPzg/CPd/JELSbdf5TMsPzvaLfZ5MctaLphd19wkb9poxz96wu6nZid29YAHE0zg2TfGDU/PTufsysawIAAAAAAAAADjxVdb4MhZ+usKL5C0muNC1rVFWvy1CIZ5/zklx11uIoVXVchgJOK+3LvSTJM5M8aVpRoao6LEO25RGjUx/PkAN6d4YCMRvlZy6XIT/z46NTf97dv7CJ13BSVmd3VmaXnp/k19d4DYdk2LzxqVmdf3lBdz9onvk3k3uZ9H1VhszXSu+arHetImP7ijf9Voa1r5zrs0mu291nbjDvOCO18v16b5Jf7O5/XqPv0Rk+rxuMTr2pu2+33ryT/sdl9T13fHefslHf7bANecWLZ8iKjsd4fpKTunvNAm+TzXufleS2o1Ov7O67bzDvcfEsb+lZnoyzW57J7+cHRfI+kuRh3f3uNfpecFqudC9kgBf5fTFPZnCNbOrKz+Y5SZ7Y3V9do/9+n01VXSDJO5LceHTpa5M8trv/fZ21XC7JHyS53+jU+5PcfNozCQAAwO5xyMaXAAAAAMynqi6f5NFTTv31RkXRJv4q+xdF+3aS23b3Y9cripYk3f2hDEGRfxid+qWqGu9wt0g37u67d/erNrvbYHef1t33SXLS6NQdqmraDnq70esz7Nq20gmzDlJVt8j+RdGSIUixXlG0y2R1iOKTGYIxf75WUbQk6cGrMuzyOC5G9fuTwmk7aV+46NNJbrZWUbQk6e6zMrzHbxqdOjLDTo4Hon1F0W7T3c9ZK3TS3f+V5Kcz7MC50v2SPGXyz/+WIbgytSjaZJwPZPp7talA1xY8O6uDZH+b5KfXKoqWJJN79dj84HVfaK1rd7mTs/p5e/gc44z7dJI/m2tFAAAAAAAAAMCB6PbZvyhakrxknazRC0fHh2SOjNMa9hVS+pXu/uVpRYiSpLvP7u5HZnXm5xpJ/n6yprOS/OQG+ZkvZcjPjHN096qqeTMl+/Is/7u7H7zOazivu5+R5OcybHS60glV9RNzzr+hqnpoVhdg+tMkt1yvAFOSdPc3Jpuqnjg6dXSSX5xjOfver9cmOW6tomiTuT+b5KeyOmP3U1V15Tnm3muelf2Lon0/yf0m9+GaRdGSpLs/leG7YJwhvFtV3XSOtXiWB5t6lnfZM7mv8NY7k9xqraJok7nXypUerBng7bbvs3lUdz98raJoydTP5qSsLor2+O7+mfWKok3G+lJ33z/Jk0enbpzkZzdeNgAAAMukMBoAAACwLSa78L0xyaVHp76dYWe0jfr/VJKbj5of3N1v2ewauvucDIGN/17RfP4kv77ZMWa12SDEGp6SYReyfSrJg7e2op3R3edm2CFvpR+tqhvOONS0glTjwNLYryQ5YsXxt5Pcbr0CU2Pd/bkk9xo1XzvJnTY7xgJ9L8k9NrMTbXd3pt/P490vDyS/ul4gaZ9JWOvpo+YLJ7lIhh0v79Hd48Jp08Z5R4bvqpWOr6px4bKFqKofTXL8qPnUJA/YTMHI7t63o+gBaxLyGxcwu1FV3WizY1TVEVm9w+Y/dPepW10fAAAAAAAAAHDAGBfTSZIXrXP9q5OMCwQ9qKoW9d/YvbS7/98mr/2tKW2Xmfzvr2xUUChJuvvrSZ4xar5Yhg1F53VKdz9hMxd292uTPHXKqV/ewvxrqqpDk/zGqPmN3f2ISY5qU7r7+Un+YtT8a1V12LTrN/DZDAW81ty8c8W8X8vq4jyHZCiYdtCqqmskueeo+Te7+682O8bk8/+FJOMiSY+fc1me5cG6z/IufSa/meSe3X3GHH0P2gzwDnlFd//hLB2q6uJJfmnU/Jzuftos43T3SVm90fa83w8AAADsEIXRAAAAgIWoqgtW1Q9V1R2r6s+TfCTJdadc+pBNFqx63Oj47d39slnXNQkp/N9R811nHWcnTIIgLx4133IZa5nT86a0nbDZzlV14ST3GDW/bbKj41p9Ds/qnQGf0d2f3uy8+3T3O5O8edS8jHvlpd39wc1e3N0fSzLebXTWgnS7xSeyOuC0nles0f7iyfuyWX83Oj40yY/O0H8WD5vS9qjuPnuzA3T3mzLsKnog+/Mk54zaHj5D/wdmKIS30nO2tCIAAAAAAAAA4IBRVZdJcsdR8z9397+t1WeSzxhn0I5KcusFLOn7WV0gaE3d/f4k/znl1Mez8UaSK41zL0lygxn6j81a1OxpScZ5wDtX1eW3sIa13CvD57VPZ3XBnM16yqT/PpfN6o1cN+PJMxZS+psM98pKB2rWa1Eek/3/O9fPZPWGmRvq7u8l+b1R8+3n2CDTs/wDGz3Lu/GZ/MPuPn3ONWzJHsgAb6fzkjx6jn6PSHL4iuOzsjpfvllPGR1fv6qOnnMsAAAAdoDCaAAAAMAsjq2qnvaT5DsZQhGvTfKQrC5Y8+0k9+3ul240SVVdIslPjppnKZY09rrR8VFVddTUK5fvk6PjG1TV+ZeykhlNClG9b9R8nxl27bt7kouO2jYKBt0myZGjtr/c5HzTjO+VY7cw1ryeO0ef8ft+9UUsZAmeP+NOkZ/OsMPj2Kz3wL9MabvGjGNs1u1Hx1/M6vtuM/5sAWtZmu7+cpKXj5rvVVXj53ktvzA6Pj0HfrE4AAAAAAAAAGDzHphknKt64Sb6vWhK24lbX07+sbtPm7HPh6a0zZqf+VSSM0bN8+Ze3tPdH52lQ3d/N6sLAR2aIde1aD87Oj6lu0+dZ6Du/lyS8WudNSv2rSQb5iFH8349qzOC25VT2vWqqpLcbdT8gu4eF4/brNePjg9LctMZx/As/8BGz/JueyY70zf43UkHbAZ4m72luz87R7/xPfby7h4/J5v1riTfGLUtIyMMAADAJimMBgAAAGy3MzMUNbvmZoqiTdwqSY3a3rWFNXxmStuPbWG8Tauqw6vqDlX1+Kp6UVW9rqreXlX/XFUfGv8k+ZPREIdl2PnuQDEuZHaJJHfaZN8HjY7PyurCSWPjUMLpc4SSVhrfK0fPUKhpEb6T1UXONuNTo+PzVdXhU6/c3d42R5/xbpvfTvLBGcf47JS2hX/uk52KrzJqfvWcQb43ZQhXHsjG33cXTvKAjTpV1bFJrj1qfm53n7uohQEAAAAAAAAAu96DR8fnJvnrjTp197uyunDNXSabeW7FPLmXaTmnty9gnHlzLyfP2e+VU9puNudYU00KaN1q1LyVTGGyOis2a6bwPd19zhzzjrNeR8wxxl5x3SQXH7XN/bl299eyeqPNWT9Xz/L+pj7Lu/SZPLW7P7/FNeznIMwAb5d/mrVDVV08yY+Omrfy/XBeVj9jO5IlBwAAYD6HLnsBAAAAwJ73gSTPnOzmtlm3mNL2iqra9O55m3CpBY61SlXdMMljMhQFu9AWhzsyyULDGtvor5P8YfZ/zSdkgwJnVXVUkuNGzX/b3RsVfhrfKxefhEvmNa2Y2KWyepe47XJad39vjn7jMFcyBObO2uJ6dto8u0WeOTo+bY4CWeMxku0JHN5wStusRdySJN19blV9JMnNt7ak5enu91TVB7P/+/KwJP9vg64PHx2fm6EAJwAAAAAAAABwEKiqWyS55qj5Dd39lU0O8aIkv7Pi+LAk903yzC0saxG5l0WNM2/uZa4cS5KPJvlekvOvaJuWk9mKa2XYpHOlB1bVT29hzCuPjmfNFI4L7G3WOOt1MBdGm5YVfWZVnb2FMS88Op71c/Usb+5Z3o3P5D9vYe79HMQZ4O0yz2dz8ySHjNqeUFWP3MI6jhkdb2uWHAAAgK1RGA0AAACYxbcyPaxx/gy79l1+yrnjk7y/qk7o7g135Jy44pS2626y72ZdcsHjJUmq6vxJ/ihD4Z7xH+TndcAEn7r7m1X1qiT3WdF826q6fHd/cZ2uJySpUdvzNzHl+F65cJLrbaLfLC6Z+UJK8/janP2mFVM7/5S23e7rc/QZv/aZx+ju7w0bWO5nO96/y0xp+/gWxvuPHMCF0Sb+JPs/69eqquO6+5RpF1fVZZLcddT8mu4+fZvWBwAAAAAAAADsPidOaXvhDP1fnOQp2T+vdGK2VhhtEbmXRY0zb+5lrhxLd59dVZ9N8sMrmqflZLZiWqbwimu0z2vWTOGisl4HYs5rUaZ9fuOih1s16+fqWd7cs7wbn8kvb3XCgz0DvI3m+Wym3UtX3epCRrYlSw4AAMBiLOr/mAMAAAAHhw909/Wn/Fynu6+Q4Q/EJ2Qo1rPSBZK8uKp+ZpPz7MQfmre6g9sqk0DEy5M8Iov9vcuBFnwaFzQ7X5L7r3VxDRWpHjBq/mR3v2MTc413HNwOC79X1jEtIHXQ6O5FvP7d/B4eOaVtvAPsLLbSd7f4myRfHbU9bJ3rT8zw75SVnr3QFQEAAAAAAAAAu1ZVHZ7kHqPmryd57WbH6O7Tkpwyar5eVd1wC0tbSGZlQfmZeS0yxzItJ7MVuzFTuJtzSgeKPfu5HgTP8m787M7YymQywNtqns9mN95jAAAA7CCF0QAAAICF6e6vdfcLk1w/Q7Gblc6X5CVVdfQmhrr4gpe2Ux6X5M5T2k9P8qdJ7pfk5kmulCEscsHurpU/SY7fsdVunzcnOW3U9qB1rj82q3dxGxdXW6WqLpzksNmWBkt10Slt39rCeFvpuyt093eT/OWo+W5VddnxtVV1SJKHjpo/meE7BwAAAAAAAAA4ONwryUVGbS/r7rNnHOeFU9pOnG9Je8YicyzTcjJbcaBmClmfz3V77MSzvBs/u3O32F8GePvM89nsxnsMAACAHXToshcAAAAA7D3dfXZV3T/JZbP/H/kvlqEAzq03GOI7o+NvdPeu/gN3VV0myRNGzecmeUySP+nuzf5R/4Dffay7u6pemORJK5qvWVU36+73TOkyLpr2/SQv2sRU301yXvYv/ioagZ8AACAASURBVH9yd991pgXDzjlzSts4qDuLrfTdTf40yaPzg2f5/BmCxr83uu72SY4etf1Zd/e2rg4AAAAAAAAA2E2mFS97WFU9bAFj37uqHtXd4/zaweIiSc7YQt+VpuVktmLaZ3KX7n71gudhZ037XC/e3d/Y8ZXsLTvxLO+pZ1IGeFeado9dv7s/vOMrAQAAYCkO2fgSAAAAgNlNQgAPyOpwxU9W1T036P7fo+Mjq+rIhS1ue9wpyYVHbY/r7j+eIRCRJJdY4JqW6QVJxsWKThhfVFWHJ7n7qPn/6+7TN5qgu89LMg5AXWXzS2QRqur8y17DAWRaYO+ILYy3lb67RnefluS1o+aHVtX499cPHx1/N8N3DQAAAAAAAABwEKiqaye52TZOcWSSu23j+LvdInMsiy5sNc4UJrJie8G0z/XonV7EHrQTz/JeeyZlgKdbZj50r91jAAAAzEhhNAAAAGDbdPfnkzxpyqnf26CY0n9NabvuYla1bX5qdPz1JH8yxzhXXcBalq67P5PklFHzvarqgqO2e2T1DoPPn2Gq8b1y9ao6bIb+B7PvTWmbJ8Ryya0u5CDy5Slt19jCeNfcQt/dZvx9eVSS2+87qKr9jif+tru/ut0LAwAAAAAAAAB2jRP3yBy71dXn6VRVF8jqYlbTcjJbcSBmCtmYz3V77MSzvNc+u72UAV5UNjRZbqG3vXaPAQAAMCOF0QAAAIDt9uwknx61XTXrB8jeN6VtXBBnt7nS6Pi93X3OHOPcfBGL2SXGBc6OSHLXUdsJo+OvJXnNDHOM75ULJTluhv4HszOmtF1sjnGO2epCDiIfnNJ2w3kGqqpDs7dCPv+Y5OOjtoev+OeHZvXvs5+9rSsCAAAAAAAAAHaNyUac9x81n5Pkw1v8+dpozOOqajcUtlmGuXIsGTIs46I703IyW/GRJN8dtd1uwXOw8w7ErOiBYCee5b32TO6lDPBCsqFVdcUk482Qd9J7p7T5fgAAADiIKIwGAAAAbKtJMOApU079ZlUdtka3f5jSds9JIaDd6lKj43FgbkNVdakkx885/7mj4/PNOc4ivSKrAxYP2vcPVXW1JLcanf+r7j57hjmm3Sv3m6H/wewbU9rmCXUeu9WFHCy6+8tJPjNqvlNVzfN72tsmucjWVzWTbfue6e5O8qej5ttX1VGTYPO4mOaHuvs9i5ofAAAAAAAAANj17pTk0qO2V3X39bfyk+SJozErKzJOB5m7zNnvblPaFprr6O7vJnnHqPnyVXXrRc6zi41zO8lyM4KLyhG9K8m3Rm13rKqLzzkeg21/lvfgM7mXMsB7Ihva3aclOXXUfJOquvoy1gMAAMDOUxgNAAAA2AkvSfKJUdsVkzxk2sXdfXpW7zJ3lSQnLHxlizMO54xDEpvxiMy/u9qZo+PD5xxnYbr720leNmq+dVXt21nvhCndnj/jNG/K6l0H711V15hxnIPRx6e03WSWAarqfEkevJjlHDTeMDq+QpI7zjHO1O/Pbbbd3zMvSHLWiuNDkjw0yV2TXHZ07bMXPDcAAAAAAAAAsLuNN1VLhlzaVr0syTmjthPm3OjuQHfzqrrOLB0mm6Pef9R8bpJ/XNiqfuDVU9pO2oZ5dqNxbidZbkZwITmiyca7bxw1XzTJo+YZj/+xU8/yXnom91IG+PTsn8NLZsyGTjx0C2tYlPE9dkiSJy1jIQAAAOy8g/EXtAAAAMAO6+7vJ/mdKaeeUFVrhQB+d0rb03fxTl9fHB3/eFVdZLOdJyGUJ2xh/q+Pjo/cJbsmjgudHZLkAZPg4ANG5z7c3f8yy+Dd/d9J/nzUfL4kL62qC8200oNMd385yedHzfeYFDvbrEdkvp0ED2bPmdL29Kq6wGYHqKrbJLnz4pa0aePvmYV+9t19RpIXj5pPTPJLo7Yzkrx0kXMDAAAAAAAAALtXVf1Qkv81av5KVhdUmll3fy2rN7q7YpLbbnXsA9T/nfH6x2Z4v1Z6dXeP83SL8JdJvjRqu2VVPW4b5tptxrmdZLm5rUXmFadlRR9bVbecczwGO/Es76Vncs9kgLv7vCQfGjXfsaqO2OwYVXWnJD8xz/wL9oys3jz5vlV1z2UsBgAAgJ2lMBoAAACwU16a5D9GbVdI8rBpF3f3q5J8YNR8RJI3zLqT3T5VddGqekxV3W+e/ht4++j48CS/vZmOVXV0ktckOWwL8390StsdtjDeQnT3u7P6cz8hya2TXHnU/rw5p/n9rN6t7wZJXjVvMKSqjqqqZ1bVj8y5pgPFONR55SS/upmOVXXrJP9n4Sva47r7o0n+adR89STP38xOw1X1w1ldPGynjL9nfqSqrrTgOf5kdHzZJOOQ40u6e7yjJQAAAAAAAACwdz0ow2aJK72su89d0PgvmdJ24oLGPtDcuqqeupkLq+r2SX5ryqn/t9glDbr7O5leROv3quqR845bVberqj+df2U74nNJvjlqW2Y+cGF5xclmqq8YNZ8/Q/5vrsJMVXVYVT20qn5tnv57xLY/y3vsmdxrGeBxNvRCSTZ7P1w3qzdFXopJYb5nTTn1vKq6+zxjVtX5quqeVTXt3gUAAGAXURgNAAAA2BGTHciePOXU46vqwmt0u3eSr43arprkvVX1m5vZvayqDqmq46vqOUn+M0Mhp8vNsPTNekWS80Ztj6mq36mqQ9dZ372TvDs/2L3xjDnnf8+U+Z9RVXeuqvPPOeaijAMSx2T1boTnJPmreQbv7i8leWCSHp26bZIPVtX91vsM9qmqi0zCDq9McmqSRya54DxrOoD8xZS2p1XVL1RVTetQVRec7Oj4hgxBnvFufGzsF7P6fbtPktdMdjieqqrukuRt+cF32He2Z3lretfo+JAkL6+qGy1qgu7+WFYXjht7zqLmAwAAAAAAAAB2t0mG5UFTTk0rZjavv8/qolN3qqpLL3COA8G+PMtvVtVz18rnTTJ5v5rklRkKWK30gu5+2zau8VlJXj1qOyTJM6vqVVV1vc0MUlVXqarHVdVHMuSg5irAtVO6uzPkDFe6TVX9flVdZglLWnRe8ReSfGbUdqkkb66qP6iqTWU+q+qmVfWMJJ9N8mdJrjbHWvaCnXyW98ozudcywC9I8v1R2yOr6slrvZ5JwbATk7wjySUyZHLPmWPuRXtikveN2i6c5O+q6i+qalPPeVX9SFU9JcknkvxNkk3dmwAAACzPhv9BKAAAAMAC/W2GP1BfZ0XbZTMUCXr6+OLuPrWq7pHk9UkusOLURTLsXPaEqnpHkncm+WKSb2T4Y/eRSa6U5AaTnyMX/kpWr/UTVfWSJA8YnXpikhOq6u+SfCTJWRkCA9dIcqfsH7z5dpLHJXn2HPN/saremP13iLtskpOTnFNVn0vyrawuHvbz3f2BWeeb0YuT/F7237X1WqNr/r67vzrvBN39iqp6UpLfGZ26ymT+p1fVKUk+kOQrGd6Li2W4N45JcqMk183Wduw74HT3+6rq1UnuvKL5fBkKTz2iql6VoUjcOUkuneSGGe6xlWG6X41CVTPp7v+oqt9M8ozRqTsmObWq3pBhB8ovZtip8aoZPqMfXXHt6UlenuH93ymvzlCs8hIr2m6a5P1VdWaSL2RKobzuvv6M8zwryfFrnHtHd0/bHRMAAAAAAAAA2JuOzw8Kzuzzye5+76Im6O6zq+rlSX5+RfP5k9wvyR8tap4DwJMybDyaDO/FParq5CTvT/LlDFmraya5e5IrT+l/WpJf284FdndX1f0yFO4ZF7W5S5K7VNWHk5yS5JNJ9mXSjsxQaOu6GTJQ43vqQPC8JLcbtT0+w+a0X8yQ6zl3dP413f2kRS9k0XnF7v5qVd0pw+e6sojXoUkeneSXq+rdGTaV/HySr2fI+h2Z5PJJfixDBvBgK2a4lh17lvfKM7nXMsDd/YWqemZW5wuflOS+VfWKJP8+WfMlM2QT75j974enZdjg+qhZX88idfd3q+quGYrHXWl0+sQMn88Hkrw1Q1HEr2XIwR6ZIet6/QzfD2tuWgsAAMDupDAaAAAAsGO6+7yqenKGAmkrPbaqnt3d35rS581Vdaskf5fVf9C+SJLbTn52g19OcpMMgZGVrpiNixd9L8nPZQgZzOsxSY7N8L6sdIGsvfPh4VuYb1NWBDbuuM5lz1vAPE+tqi9kKKp0wdHpyya55+SH/T0syY2TXGHU/qPZvxDXNH/Q3X9WVQqjzai7/7CqLpXkCaNTF0xy18nPWr6VITT209u0vKkmAaNfS/LCKacvmiHstQgnJ/lcVn/nJ3OExgAAAAAAAACAA9qJU9pesg3zvCT7F0bbN/fBVBjt6RmKx9xjcnyxDEWCxoWCpvl8kp/s7m9s09r+R3efNckUPj9DYaex62V1gaa94BVJ3pzk1lPOXX7yM/ahbVzPQvOK3f2vVXXjJK9M8iNTxjx28sPGdvRZ3kPP5F7LAP9mkttk9fN0tSSP3WAtL5v0v/cG1+2ISaG3m2RY10+MTp8vwwavN93xhQEAALCtDln2AgAAAICDzr5d01a6dJJfWqtDd78vyQ0yhCa+t4W5O8Ouc2/fwhhrD979zQwhgvfM2PULSW7T3a/f4vwfS/JTSU7dyjjbZL3CZ19M8qZFTNLdz0ty8yRv2eJQ303yN0n+c8uL2uW6+0tJbpnZ7ptzkjy6uzcKx7CO7v6NDDtrzhKG+nyS46ft8rgTuvtFGULAZ27jHN9P8mdTTn0lQ8ATAAAAAAAAADgIVNWRSe425dRfbcN0b8vqrNB1quqgKbTS3Z3kvklm3STxnUmO7e5PL35V03X3md39s0kenuT0LQ73nxmyibtad5+X5GeTvHTZa0m2J6/Y3Z/MUNzoDzNsHrkVH0iypUzmgWoZz/JeeCb3Wga4u7+d5Lgk75ulW4bCeveZfOfsGpOs662TPDHJ17Y43L9n9SbfAAAA7DIKowEAAAA7ahK4OGnKqUdX1UXX6fff3f3gJMdk+KP7v2X4A/xGzkzyugzFh67S3cd393tnXvgmdffpGXYje2SSjcIhpyX5rSTX7O63LWj+d2fYre4OSf40yTsyhC7OSrLMkMLfJ/nvNc69aFIIaSG6+0PdfeskN0vyogyFpDbjixl2fn1gkst19727+8uLWtdu1t2fSXLdJL+R4X1YyzkZdtz7se5+xk6sba/r7j9Ocp0kL0xyxjqXfjnJU5Ncp7vfvxNrW0t3/2WSH0ryoCQvTvIvGdb3nQVOM63w2/O6++wFzgEAAAAAAAAA7G73TXLBUdu7u/tTi55okmubVnDtxEXPtZt197nd/fAMxYHekvUzZ/+S5CFJbrWTRdFW6u7nJLnqZB3/mM1tUHhehrX/QZLjkxx9oGShuvsb3X3fDBnBk5K8Nsmnknw9W9t0dt71LDyv2N3f7u5HJTk6w2v8QJLN5Au/m+Ge/Y0MGasbb7VQ1YFsWc/ygf5M7rUMcHd/NcktMhSsW+/fnd9P8oYkt+jux+y2omj7TO7r301yVJJHZXh/ztlE13OTvCvJU5LcpLuvPdkkFgAAgF2sht/ZAgAAABx4qurSSW6Y5NJJLpnk8Ay7BJ6ZoRjWfyQ5rZf4C5CqunqSm0zWeJHJ+j6f5CPd/fFlretgU1XHJLl2hvvkkkkukCEo8s0kn0nyHwdLEbTNqKrrJrlekksluXCG9+njGYKlZy1zbXtZVR2W5JZJrpzkchmCTP+V5CNJPrRbw0bboapemuTeK5o6yTHLCtECAAAAAAAAAByMqupSGTaovFqGfN4ZGTZe/JftKFC3VVV1gQyZwitmyD5dPENBnDMzbOz5iSSf6O5FbgDINquqI5LcOMllMuT/jsiwieOZGYpGfTzJpxe5QeuBoqpOSvLbK9u6u6Zct5Rn+UB/JvdaBnjyem6Y4Vm6aIbP4VNJ3tXdX1vm2uZVVRdOcqMkV8jw/XBkkrMzvLYvZ/h+OLW7N1NADQAAgF1EYTQAAAAAAHaNSdHLzyU5bEXzG7v79ktaEgAAAAAAAAAAwK6z2cJoAAAAAAeaQ5a9AAAAAAAAWOEh2b8oWpI8axkLAQAAAAAAAAAAAAAAAGBnKYwGAAAAAMCuUFUXSfIro+ZTk7x+CcsBAAAAAAAAAAAAAAAAYIcpjAYAAAAAwG7xlCSXGbX9cXeft4zFAAAAAAAAAAAAAAAAALCzFEYDAAAAAGCpquoSVfX0JL8+OnVakucuYUkAAAAAAAAAAAAAAAAALMGhy14AAAAAAAAHl6r6iyQ3mhxeKskVktSUSx/T3efs2MIAAAAAAAAAAAAAAAAAWCqF0QAAAAAA2GnHJLneBte8qLtfvhOLAQAAAAAAAAAAAAAAAGB3OGTZCwAAAAAAgJGXJPn5ZS8CAAAAAAAAAAAAAAAAgJ116LIXAAAAAADAQe87SU5P8u4kz+vuU5a7HAAAAAAAAAAAAAAAAACWobp72WsAAAAAAAAAAAAAAAAAAAAAAAAADnKHLHsBAAAAAAAAAAAAAAAAAAAAAAAAAAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdIcuewGwbFV1RJJjVzR9Lsk5S1oOAAAAAAAAAMBWXCDJlVYcv7W7v7msxQCAjB4AAAAAAAAAsEfI5+0QhdFgCFy9etmLAAAAAAAAAADYBndO8pplLwKAg5qMHgAAAAAAAACwF8nnbZNDlr0AAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgKU7dNkLgF3gcysPTj755BxzzDHLWgsAAAAAAAAAwNxOPfXU3OUud1nZ9Lm1ruX/Z+/Owyyr6nvh//bpmrrpEehmVJtJQKIiyhtoGkRARcwbjfGS+JKHaHzVKDF4fRH1GgbjjUOccm/kxuGiYDSGoIISofFGmVFB0NgJIIJAM3dDz0ONZ71/dHdRw9nn7FN1qs6pU5/P8/RD77X3GvbuemBteq3vBmCaWKMHAAAAAAAAAMx41udNH8FoENE/8uDQQw+No446qlljAQAAAAAAAABopP7alwDAlLJGDwAAAAAAAABoR9bnTZFSswcAAAAAAAAAAAAAAAAAAAAAAAAAIBgNAAAAAAAAAAAAAAAAAAAAAAAAaDrBaAAAAAAAAAAAAAAAAAAAAAAAAEDTCUYDAAAAAAAAAAAAAAAAAAAAAAAAmk4wGgAAAAAAAAAAAAAAAAAAAAAAANB0gtEAAAAAAAAAAAAAAAAAAAAAAACAphOMBgAAAAAAAAAAAAAAAAAAAAAAADSdYDQAAAAAAAAAAAAAAAAAAAAAAACg6QSjAQAAAAAAAAAAAAAAAAAAAAAAAE0nGA0AAAAAAAAAAAAAAAAAAAAAAABoOsFoAAAAAAAAAAAAAAAAAAAAAAAAQNMJRgMAAAAAAAAAAAAAAAAAAAAAAACaTjAaAAAAAAAAAAAAAAAAAAAAAAAA0HSC0QAAAAAAAAAAAAAAAAAAAAAAAICm62j2AGA2SilFuVyOlFKzhwIwTpZlUSqVIsuyZg8FAAAAAAAAAADqZo0e0KqszwMAAAAAAACoTTAaTIOUUvT29saWLVtiy5Yt0d/f3+whAdTU1dUVCxYsiAULFkRPT4+FWAAAAAAAAAAAtCRr9ICZxvo8AAAAAAAAgHyC0WCKbd++PZ544okYGBho9lAA6tLf3x/PPvtsPPvss9HZ2Rn7779/zJs3r9nDAgAAAAAAAACAYdboATOR9XkAAAAAAAAA+UrNHgC0s+3bt8eaNWssuAJmvIGBgVizZk1s37692UMBAAAAAAAAAICIsEYPaA/W5wEAAAAAAACMJhgNpsjuBVcppWYPBaAhUkoWXwEAAAAAAAAA0BKs0QPaifV5AAAAAAAAAM/paPYAoB2llOKJJ54Yt+Cqs7MzFi5cGPPnz4/Ozs7IsqxJIwTIl1KKgYGB2Lp1a2zevHnUF3V3//vtkEMO8e8wAAAAAAAAAACawho9YKayPg8AAAAAAACgNsFoMAV6e3tHLVSIiFiwYEEccMABFioAM0JnZ2fMmzcvli5dGo8//nhs2bJl+NzAwED09fVFT09PE0cIAAAAAAAAAMBsZY0eMJNZnwcAAAAAAABQXanZA4B2NHKBQsTOBQwWXAEzUZZlccABB0RnZ+eo8s2bNzdpRAAAAAAAAAAAzHbW6AHtwPo8AAAAAAAAgMoEo8EUGLvoauHChRZcATNWlmWxcOHCUWVj/z0HAAAAAAAAAADTxRo9oF1YnwcAAAAAAAAwnmA0aLCUUvT3948qmz9/fpNGA9AYY/891t/fHymlJo0GAAAAAAAAAIDZyho9oN1YnwcAAAAAAAAwmmA0aLByuTyurLOzswkjAWicjo6OcWWV/n0HAAAAAAAAAABTyRo9oN1YnwcAAAAAAAAwmmA0aLBKX2jLsqwJIwFonFJp/JTBFykBAAAAAAAAAJhu1ugB7cb6PAAAAAAAAIDRBKMBAAAAAAAAAAAAAAAAAAAAAAAATScYDQAAAAAAAAAAAAAAAAAAAAAAAGg6wWgAAAAAAAAAAAAAAAAAAAAAAABA0wlGAwAAAAAAAAAAAAAAAAAAAAAAAJpOMBoAAAAAAAAAAAAAAAAAAAAAAADQdILRAAAAAAAAAAAAAAAAAAAAAAAAgKbraPYAmB5ZlnVGxAkR8fyI2C8itkbEExHxi5TSww3u66CIODoi9o+I+RHxZEQ8EhG3p5QGGtkXAAAAAAAAAAAAAAAAAAAAAAAA7UEwWpNkWXZwRBwbEa/Y9c9jImLBiEseSSktb0A/SyPioxHxRxGxZ841t0fE51JK35lkX2+OiPdHxPE5l6zPsuyKiLgwpfTMZPoCAAAAAAAAAAAAAAAAAAAAAACgvQhGm0ZZlp0cER+OnWFoFUPKGtzf6yLisohYVuPSFRGxIsuyb0bEu1JK2+rsZ35EfCUi/rjGpXtGxLsj4k1Zlv1pSun6evoBAAAAAAAAAAAAAAAAAAAAAACgfZWaPYBZ5uiIeE1MTyjayRFxdYwORUsRcVdEXBkR/ycinhlT7ayI+FaWZYV/LrIsmxMRV8T4ULR1EfHDXX3dvavv3faJiO9lWbayaD/QzpYvXx5Zlg3/uvHGG5s9JAAAAAAAAAAAAJjxrM8DAAAAAAAAgJlHMFpr6IuIBxvVWJZlB0bEdyOia0TxbRFxVErpFSmlM1NKr4mIAyPi3IgYGHHd/x0R/72O7j4ZEWeMOB6IiPdGxIEppdfu6uvlEfE7EfGTEdd1R8TVWZbtV0dfAAAAAAAAAAAAAAAAAAAAAAAAtCnBaNNvICJ+GRH/OyLeFREvj4gFEfH/NrCPj0bEkhHHt0fEaSmle0delFLqSyn9z4g4c0z992dZ9oJanWRZdnDsDFYb6b+klL6QUuof09c9EXFqjA5H2ysiLqrVDwAAAAAAAAAAAAAAAAAAAAAAAO1PMNr0ujwiFqaUXpZSekdK6csppbtTSgON6iDLssMi4k9HFPVHxFtTSr15dVJKV+8a227dUSyw7KKI6BxxfFlK6XtV+tkREW/dNabd3r4rYA0AAAAAAAAAAAAAAAAAAAAAAIBZTDDaNEopbagWUNYg/09EzBlx/N2U0m8K1PvUmOMzsyzrybs4y7K5EfHmGm2Mk1K6PyKuHlHUETvHDAAAAAAAAAAAAAAAAAAAAAAAwCwmGK39/MGY468VqZRSujcifjaiaI+IeE2VKq+NiHkjjn+SUrqv0AjHj+lNBesBAAAAAAAAAAAAAAAAAAAAAADQpgSjtZEsy/aNiJeOKBqMiNvqaOLGMcevq3Lt6TXqVnNL7Bzbbi/LsmyfOuoDAAAAAAAAAAAAAAAAAAAAAADQZjqaPQAa6nfGHP8qpbStjvq3jzk+qo6+flK0k5TStizLVkfEy8b09XTRNoD6pZTi7rvvjvvuuy/Wrl0bfX19sXTp0jjggANi5cqVMX/+/GYPccIeffTRuPPOO+Oxxx6LHTt2xN577x0vfvGL4xWveEWUSpPLAF27dm3ccsst8cQTT8SOHTti//33j4MPPjiOO+64SbddyT333BOrV6+OdevWxebNm2PPPfeM/fbbL1auXBl77bVXw/sDAAAAAAAAAABgcqzPmxjr8wAAAAAAAACoRDBae3nRmOMH6qz/YI32RjqyAX2NDEZ7UUT8uM42gAKeeeaZ+PjHPx7f+MY3Yt26dRWv6erqilNOOSUuvvji+N3f/d1C7b71rW+Nyy+/fPj4oYceiuXLlxeqe+ONN8arXvWq4eOLLrooLr744tzrsywb/v0rX/nKuPHGGyMi4vbbb4+LLroofvzjH0e5XB5Xb5999omPfOQjcc4559S9SOoXv/hFfOADH4gbbrihYtsHHnhgvOtd74oPfehD0dHRERdffHF89KMfHT5/ww03xMknn1yor2effTY+/elPxze+8Y14/PHHK15TKpVixYoVcdFFF8Vpp51W170AAAAAAAAAAADQeNbnWZ8HAAAAAAAAQOMJRmsvh445XlNn/UfGHO+VZdmSlNKGkYVZlu0ZEXtOsq+x1x9WZ32ggKuvvjrOPvvs2LJlS9Xr+vv7Y9WqVbFq1ap45zvfGZdcckl0dLT2fyI+/vGPx4UXXhhDQ0O51zz99NPxl3/5l3HDDTfEP//zP0dXV1ehtj/3uc/F+eefX7Xtxx57LC644IK47rrr4rvf/W7d49/t61//erz3ve+NzZs3V72uXv0wVQAAIABJREFUXC7HrbfeGq9+9avjT/7kT+LSSy8tfD8AAEB72zG0PR7q/XX0l/vqqrd3576xf/fzo5RV36gylIbi0d4HY+Pg+skMs210lbrjoJ4Xxtw5ezS87a1Dm+ORHb+JgTQw7lx3qScOmnt49JTmNrzfRhkoD8Qjvb+JJZ17xV6d+zR7OAAAM8LWoc3xVN+jsW/382L+nIXNHk5LWj+wLh7reyjKafxG+QVzFsUL5h4aHVlnw/vdNLghnu5/PJ7fc8ik5uG95R3x8I77o7e8o4Gjmzr7dB0Q+3YdOCoYoZKd8//7Y+tQ9b+HnDdnfrxw3u80cogAANAyrM+zPg8AAAAAAICJGxxKcfeaiMXzIg5bFjXXrQGzS2v/rTr1WjzmeG09lVNKW7Ms642InhHFiyJiw5hLx/azPaW0rZ6+KoxtUZ31gRq++tWvxjve8Y5xX1M85JBD4kUvelHMmzcv1qxZE3fccceoBUZf/vKXY82aNXHNNde07OKrz3zmM/GRj3xk+Pjwww+Pww8/PPbYY4948skn46c//Wn09vYOn7/qqqviggsuiE996lM12/7sZz8b55133rjyF73oRXHYYYdFd3d3rFmzJu68884YGhqK22+/Pc4888w46aST6r6PCy+8MD72sY+NKsuyLA4//PA47LDDYsGCBbFhw4b4+c9/Puprot/4xjfiySefjFWrVrXsnxEAADA9btpwbVy59n9HOcYHBBSxf9fz4y+ed3Es7hibgb/Tk32Pxt8/dnFsHHx2EqNsP6UoxZnL3hEnLXldQ9pLKcV1z/5L/ODZf44UqUq/c+Ksfd8Txy86tSH9NtL921fHFx//RPSWt0dExEvm/1/x9v3Oi86STUMAAHmufeaKWLX+yhhMg5FFFm9e9vZ41ZLfa/awWsZQGoyvPfn5uHvLbVWv26O0IN5z4F/FQXMPb0i/5VSOK9Z+OW7ZuCoiIuZER5y931/GsQvr/7ugn226Mb7x1BdiKAYbMrbp8oKew+KcAy/IDev79fbV8aXHP14o7G15z2Fx/gs+3eghAgBA01mfZ30eAAAAAAAAE/cfj6d47d+V48lNO49XHhpxzV+UYtE84WjATv62tr3MH3M8kU9O74jRwWgLprCfkSr1U7csy5ZFxNI6qx3SiL4bJQ0ORqx7rNnDaH9LD4ysjRes/PKXv4x3v/vdoxZdHX300XHJJZfEihUrRl27bt26uOCCC+JLX/rScNmqVaviwgsvjI9//OPTNuaiVq9eHbfccktERLzxjW+MT3ziE3HEEUeMumbDhg3x/ve/Py677LLhss9+9rPx7ne/O5YvX57b9l133RUf+tCHRpWdfPLJ8YUvfCGOOuqoUeXr1q2LCy+8ML74xS/GzTffHPfcc09d93H55ZePWnRVKpXinHPOifPOOy+e//znj7o2pRTf+9734txzz401a9ZERMSPfvSjuOCCC+ITn/hEXf0CAADtY03vA3HF2i9Pqo0n+tfEPz75P+O9z7t43LmUUnzp8U8IRaugHOX457VfioPmHh7P6zl40u3ds/0X8a/PfqtAv0Pxj0/9fSzveWHs1/28SffbKP3lvviHx/4m+tJzm6B+tfWOuO7ZK+P3l57VxJEBALSu1VvvHDUHTJHiyrX/O5b3HNawgK+Z7ofrv1szFC0iYlt5S/yvx/97fPKQr8WcbPJ///eTTT8aDkWLiBiKwbjsyc/HQT2Hx95d+xRuZ23/E3H5U3836fE0wyO9v4krnv5yvH3/8WEFfeXe+OKY+T8AwExifd40auM1etbnWZ8HAAAAAADAxKWU4vf+/rlQtIiIWx+IOPeKFJe9TTAasFN7rjiYvcYGlk1kJfKOiFhSpc1G9lOtzYl6T0Rc1KC2mmPdY5HOtNlhqmX/8uuI/ZY3exhT5u1vf3v09/cPH69cuTKuv/76mDdv3rhrly5dGl/84hfj0EMPjQ984APD5Z/61KfiLW95S7z4xS+eljEXtX79+oiIOP/883O/MLlkyZL42te+Fhs2bIjvfe97ERExNDQUl1566bgvQI50zjnnxODg4PDxm970prjiiisqfvVx6dKl8Q//8A9x8MEHx/nnnx/PPPNM4Xt45JFH4t3vfvfwcXd3d1x99dVx+umnV7w+y7J44xvfGCtWrIgTTjghHnjggYiI+PSnPx3vfOc746CDDircNwAA0D7+Y+tdDWnn19tXR295R/SU5o4qXzvwRKwdeKIhfbSrX229oyHBaL/ackdd16/eemdLBaP9evvqiqEIv9r6M8FoAAA5rnv2yorlv9z6U8Fou9TzzrNtaEs8uOO+eOG835l0v6u33TmuLEWK1dvujFd1/V7xdraOb2cm+Y+tP4+hNBRzsjmjyu/Pmf8DAMwY1udNm3Zeo2d9nvV5AAAAAAAATNydD0esWT++/Os/SXHZ26Z9OECLKjV7AEyp1GZ1gAJuuOGGuPvuu4ePFy5cGFdccUXFRVcjnXfeefF7v/fcZo5yuRyf//znp2yck7Fy5cpCX2L8m7/5m1HHP/7xj3OvvfPOO+NnP/vZ8PF+++0XX/3qVysuuhrpAx/4QLzmNa+pOZaRPv3pT8eOHc/lQ37+85/PXXQ10rJly+Kf/umfho+HhoZa9s8IAACYepsGNzSknXIMxdbBzePKNw4825D229mmwQp/CzMBGwfre9abhhrTb6Nsyhl/o35GAQDazZreB+Lh3vsrnts40FpzvWbaMrSxrusbNj/PeReqd35b7zy/1fSl3ugrj/3eWcTGBj1nAACYqazPe471eQAwC6QUUR5o9igAAAAAaDM/WC1yBqhNMFp72TrmeO4E2hhbZ2yb09kPMAGXX375qONzzjkn9t9//0J1P/nJT446/ta3vhV9fX0NG1ujfOQjH4lSqfZ/wo466qhYvnz58PEvf/nL3Gu/9a1vjTr+i7/4i1i0aFGh8VxwwQWFrouI2LZtW3z1q18dPj744IPjXe96V+H6xx57bJx44onDx9///vcL1wUAANrLYGrcwtO+NH6ze2+FDfCM1qhn1Jd6m9Jvo/SVK4+/0s8VAAARN228LvecOdRz6l32lDcvrVfe/LxSSFg1rTZvn4hK91DvcwAAgHZjfd5zrM8DgDZ33/+I+P5BEf+yIOLHr43Y/lizRwQAAAAAwCxS/TNbzDSC0SL+V0RcWWedQyLiew3qH5ru1ltvHXX8J3/yJ4XrHnXUUXHMMccMf9Gyt7c37rrrrlixYkVDxzgZc+fOjVNOOaXw9UceeWQ8/PDDERGxffv22Lp1a8yfP3/cdbfffvuo4zPPPLNwHytXroz9998/nnjiiZrX3nrrraO+RvnmN7+50CKykV71qlfFLbfcEhERjzzySKxZsyae//zn19UGAAAw8+UFo82JjugqdY0rTxHRW95esU5vhQCBamFdc0vzig2yTQyk/hhMg+PKGxa8UGc7jeq3UfLGM5gGYzANREfWOc0jAgBoXduGtsTPN9+Se77V5nrNVV80WqMCu/ICzRoVjJb3ztYsKVKVex7/85h3bSlK0V3qGVdeqQwAAGYy6/NGsz4PANrUg1+LuPt9zx0/9cOIf3tVxO/dG1GyFQ0AAAAAgKnn/0a3l01jjpfWUznLsvkxPrBsY4F+5mVZtkdKaVsd3S0r0E/dUkprI2JtPXWyLGtE19ASNmzYEA8++ODw8eLFi+PII4+sq40VK1YML7yKiLjzzjtbauHVIYccEl1dxTeLLFmyZNTxpk2bKi68+vd///fh3y9evDgOPfTQusb1ile8otDXIccujNt///2HF4YVNfb+f/vb31p4BQAAs1CloK6IiBWLT4u37PPn48pTSvHe+/8wylEed67SBv+8ze5LO/eLjx78D3WOdmb7/rpvxqr147P4855RvfICFjqyjikNZGuUas+hr9wbHXMEowEA7PaTTT+KgdSfe75R4V7tIKV6g9GmNri43vbzgqlPXnJG/OGyP6t7XFOlt7wj3v+bt1Q8V+nnMe85HLnH0XHOgRc2dGwAANBqrM8bz/o8AGhTD39zfNnWByKevTNi6fHTPx4AAAAAAGYdwWjt5Tdjjl9QZ/2x169PKW0Ye1FK6dksyzZExMjVDM+PiHsn0dfYsQMTsG7dulHHhx12WN3hf0ccccSo47Vr68oanHJjF1LV0tk5evP1wMDAuGu2bdsWvb3PbeKYyCKmonUeffTRUcfve9/74n3ve1/O1cWsX79+UvUBAICZaTCNf7+JiOjMKodQZVkW3aW5saM8Ptu+ns3uPaWxufrtL++e+1JjghfygsUWzlkS6wfXjStvtbCMagERfeXe2GPOgmkcDQBA6yqnctyycVXVa1otBHcmaURwcUqpgcFolcfT3WLvVF1Zd2SRRYrxQXSV7jnvfaTV7gsAAKaC9XnjWZ8HAG3q6R9VLl99ccQp10/rUAAAAAAAmJ0Eo7WXscFk9X1OLeLgMcf31Ohr5CfqDq3Qfz191VO3vS09MLJ/+XWzR9H+lh7Y7BFMiQ0bRmcZLlq0qO42xtZptUU9pVKp4W1u3Lhx1PGCBfVv2F64cGGh65599tm6265ly5YtDW8TAABofXnBaHOy/P/l113qyQlGq2eze0/BEbaPvHtuVEBZXsDCoo49c4LRWissoy/lP4dWGysAQDPdu+0XsW7gqarXmD89p1JQVzWNeHYDqT9SlCueqzd4Le/6uaV5dY9rKpWyUnRl3RWDnyvdQ95zno3vigDADGV93vRpwzV61udNjPV5ANBG0mCzRwAAAAAAwCwhGK29/MeY45dkWTYvpbS9YP0TarQ39tzIYLTjI+KaIp1kWbZHRLykjr5mlayjI2K/5c0eBjNUSqM3iNT7NcpKGtFGq+vu7h513N/fX3cbRetMpO1axv65AwAAs0NeMFpH1plbp7s0t2J5fcFoldtoZ/U8t3qllHLbWdixpGJ5vYEMU63ac2i1sQIANNNNG6+reY1gtOfkBaOVohTlCuFl1QJ7i6oWflwpOKyavLlwK75TdZfmRt9QhffCCvec9xy6s9a7LwCASqzPYzKsz5sY6/MAAAAAAAAAqJdgtDaSUnoyy7JfxXOhYx0RsTIifliwiZPHHFdbmb8qIt5ZpW41J8bon71fpJSerqM+kGPPPfccdbxp06a62xhbZ8mSypuwJ2NoaKjhbU7G2Hsc+2XPIop+uXPvvfcedXz77bfH8ccfX3d/AAAAgzlf4a0WjNaTswG/0ob9/E38PQVG117y7rkRoV+DaTDKUfk9eWHH4orlrRaWUW081YIlAABmk2f6n47/3HZXzesaEe7V7rpLc2NHedu48kbMkxs5t+0tV/5+WU9pXl3tTIee0tzYPDT+78fqeVfMe98EAIB2Yn3exFifBwAAAAAAQFEppVnxcSGgtlKzB0DDXTXm+G1FKmVZdkRE/O6Iom1RPVDt+ogYueL5+F1tFPHWMcdjxwxM0NKlS0cd33///XW38etf/3rU8bJlyype19ExOltzcLDyhvxKJrKwaSrNmTMnDjjggOHj3/72t7F9e+XNKnlWr15d6Lp99tln1PFE/owAAAAiIgbTQMXyasFoeQFflTb/5wUCzMbN7nn33FfujZTSpNquFnyxaE7lzVCtFjZWLSCu1ULcAACa5eaN10WK2nPHwTSYO9efbfKeVz2Bz/Wq1kZvnXPbvHl7TwuGTTfiXXE2hmgDADD7WJ83MdbnAQAAAAAAAFAvwWjt55sRMfJTb2/KsuywAvU+OOb4X1JKuSu7U0rbI+LbNdoYJ8uyF0bEH4woGoyIfyowPqCAJUuWxCGHHDJ8vHHjxrj33nvrauP2228fdXzsscdWvG7hwoWjjjdu3Fi4j//8z/+sa0zT4bjjjhv+fblcjptuuqlw3fXr18e///u/F7p2xYoVo45/+MNqGZQAAAD5BlPlDTAdWUfF8oj6AgTyAgFm42b3vHtOUY6B1D+ptquFnC3q2LNyndQb5VSeVL+NVC38rBHhFAAAM11/uS9+sulHha8XLrtLTghxteDiyarWRj0BxQPlgdx3tp7SvLrHNdXyg9HG33Pec5iN74oAAMw+1udNnPV5AAAAAAAAANRDMFqbSSn9JiIuH1HUFRGXZVmWuwo5y7I3RMRbRxT1R8RHC3R3cUSM/Fz5W7Ms+/0q/fRExNd2jWm3S1NKDxboCyho5cqVo46/+c1vFq577733xl133TV83NPTEy9/+csrXjv2S5X33HNP4X6uvfbawtdOl9NOO23U8Ve+8pXCdS+//PLo7y+2Ef7UU0+NOXPmDB9///vfj7Vr1xbuCwAAYLeh3GC0ztw63Tn/i6gvVdrsXjkQIC+EoJ1Vu+fJBn9VC15Y2LE491x/6ptUv41ULSCiL//bCwAAs8bdW26LbeUtha8XjLZT5Vi0/GCxhgSjVZm/DqT+KKeh3POjx5I/R27Fd6ru3LC54iHarXhfAAAwFazPmxjr8wAAAAAAAACoh2C0aZZl2YFZli0f+ysi9h1zaUel63b92rtGNxdFxIYRxysi4t+yLDtizFi6syx7b0RcOab+Z1NKj9S6l5TSbyPif4wp/naWZX+RZdnI8LPIsuzIiPjRrrHs9mwUC2AD6nD22WePOv7CF74QTz31VKG6H/7wh0cd//Ef/3F0d3dXvPaYY44ZdXzNNdcU6uP666+PO+64o9C10+mss86KBQsWDB9fddVVcf3119es9/jjj8df//VfF+5nyZIlcdZZZw0fb926Nc4777z6BgsAABARg2mgYnlH1pFbp7uUE4xWIUAgbyN/dzb7NrvnPbeI6oEHRVQLb1jUsWTK+m2kauERQj0AACJu2nhdXdebQ+2UolyxPP+9ZvJz5FrBx0X/bKq1kxfs1kz1vStWfgbV3psAAKCdWJ83MdbnAQAAAAAAAFAPwWjT79aIeKjCr2+Nue6AnOseiojPVOsgpfRYRLwpIkZ+Hu2EiLgny7I7syy7IsuyVRHxaET8z4joHHHdv0bEBXXcz4ciYuRK/s6I+PuIeDTLsuuyLPuXLMt+HhH/GaND0foj4g9SSk/W0RdQwCmnnBJHH3308PGmTZviLW95S+zYUX0jx+c///n43ve+N3ycZVn81//6X3OvP/7442PevOc2blx11VXx85//vGofv/nNb+JP//RPa91CUyxYsCDOPffcUWVnnnlm3HDDDbl1Hn744Xj1q18dGzdurKuviy++eNSCtn/8x3+MD37wgzE0NFRXO/fcc0/cfPPNddUBAADaR34wWmfF8oiI7lLlULNKAQJ5YVezcbN73nOLqB2cUEteqEAWWcyfs6jues1QbSytFOAGANAMD+/4TTzS+5u66kx2jtkuUk55T+57zeTnyLXmr8WD0bbnnssbfzMVDUZLKeWHaLfgfQEAwFSwPm9irM8DAAAAAAAAoB6C0dpUSunGiPiDiFg3ojiLiFdExJkR8dqIWDqm2rci4o9TSoX/5n/XtWdGxBVjTi2LiNMj4r9ExMt39b3b2oh4Q0rplqL9wGzy1FNPxcMPPzyhX7tdeuml0dXVNXx84403xoknnhg/+9nPxvX3zDPPxDnnnBPvf//7R5Wff/758ZKXvCR3nAsWLIg/+qM/Gj4eGhqK17/+9fHDH/5w3LX9/f3xla98JY477rh4+umnY8mSJfU8kmlzwQUXxItf/OLh482bN8epp54aZ555Znz729+OX/3qV3HffffFD3/4w3jf+94XRx11VNx7773R09MTb3jDGwr3c9BBB8WXv/zlUWV/+7d/GytXroxrrrkmBgcHc+s+/PDDcckll8Qpp5wSRx11VPz4xz+u/0YBAIC2MJAbjNaRW6foZveI/DCG2bjZvTvLv+fJhi/kP+eeqoEJrRKWMZQGc0P6IgSjAQDcvPHauuuYQ+1WORqtpzSvYnlfmvxzqzXPzguQrqedVnynynv3GHsfg2kgylGueG0r3hcAAFRifV7zWJ8HAAAAAAAAQFH5uySZ8VJK12ZZ9jsR8dGI+KOIyFvp8NOI+ExK6TsT7GdrRPxxlmXfjoj/LyKOy7l0fewMULsopbQu5xqY9d7ylrdMuG5KOzeIHHPMMfGFL3wh/vzP/zzK5Z2bE+6666447rjj4tBDD42jjjoqenp64tFHH4077rhj3EKfV7/61fGxj32sZn8f+9jH4qqrrhr+IuPatWvjta99bRx66KHxkpe8JLq7u+Ppp5+On/3sZ7Ft27aIiNh3333jU5/6VEt+mbKrqyt+8IMfxCmnnBIPPPBAROx8pldeeWVceeWVFetkWRaXXHJJrFmzZtwXPas5++yz46mnnooPf/jDw39GP/3pT+P3f//3Y968efGyl70s9tlnn5g7d25s2bIlnnnmmbjnnnvq/volAADQvoZS5U0bHVlnbp2im90j8gO/qoV1tavOUmfMiY4YivHPfLKhFXn1u0tzc4PsdtabXCBbo9QaR6uMEwCgGbYObo6fb7m14rkj5r00Htrx64pBW+ZQO6U6g9EGd4X2VnsnqqX2/LbY/L+3vL1ieUfWEZ2liY9vquSFQY/9+az2fLqz/PcXAABoJdbnNY/1eQAAAAAAAAAUJRhtmqWUlk9zf2sj4t1Zlp0bESdExAsiYt+I2BYRj0fEL1JKDzWor29HxLezLDsoIo6JiP0jYo+IeCoiHomI21JK/Y3oC6jtHe94RyxZsiTe9ra3xdatW4fLH3jggeFFRZX82Z/9WXzxi1+Mzs7amzIOOOCA+M53vhNvfOMbY8uWLTX7OOigg+IHP/hBPP3003XezfR53vOeF7fccku85z3viauuuqrqtXvttVdcfvnl8frXvz4++MEPjjq3YMGCmn3t/urn2972tnjqqaeGy7dv3x633XZbofG26tc9AQCAqTeYBiqWVwsB6M4JNRu7uT2llLvhvVpYVzvrKc2NbeUt48orBVnUI/c5Zz0xJ+uIjqyz4p91pTC7Zqg1DqEeAMBsdvumf8udt5+0+HXxRN+a6BuqEIw2yTlm26ici1Y1rLmv3Bsdc6YuGK3oPLw3932qNYOm857p2OdR7f5nY4g2AACzm/V5E2N9HgAAAAAAANWkFFHjGznALFFq9gCYHiml/pTSDSmly1JKn0wp/X1K6buNCkUb09dDKaXv7Orjk7v6vEEoGky/N7/5zfHggw/GueeeG3vvvXfudZ2dnfGa17wmbrvttrj00ksLLbra7ZRTTok77rgj3vCGN+R+hXHp0qXxgQ98IH75y1/GkUceWfd9TLd99903vvvd7w4vwHrRi14Uixcvjp6enjj44IPjtNNOiy996Uvx4IMPxutf//qIiHFfily0aFGhvk4//fR46KGH4pJLLomjjz665pcsOzs7Y8WKFXHxxRfH/fffH+eee+7EbhIAAJjRymkoylGueK56MFrlULOxm90HUn+knPZn62b3vGc32YCyvNCL3f0VDSholkYFRwAAtJtyGopbNq2qeG5Jx97x4vnHFp6fz1YpJxmtVjDaZPQ1KPi3t7y9YnlPaV7dY5oORd93+lL+85mtIdoAAMxu1udNjPV5AAAAAAAAANTS0ewBAMx2Dz/88JS2v2zZsvi7v/u7+NznPhd33XVX3HfffbFu3bro6+uLvffeOw488MBYuXJloS8o5jniiCPi6quvjmeeeSZuuummeOyxx2L79u2xzz77xEEHHRQnnnhidHQ895+ck08+OVKqvJmlknquHeuyyy6Lyy67bEJ1V65cGStXrix07T333DP8+yzLYtmyZYX76enpife85z3xnve8J9avXx8//elP48knn4z169fHwMBAzJ8/P5YtWxYvfOEL44gjjoh581pz0wwAADB9BtNg7rmOLP9/+eWHbI3e3F4tzGq2bnbvnqKAsrz6u/vrLvXE1qHNFeq1RuBYrfvPC34DAGh3/7nt7nh2YG3FcysXvzbmZHOmLHy3XTQnGK3G/LZg+3nz9VYNms4P6RsTjFbl/mfruyIAAK3P+rzarM+zPg8AAAAAAACg1QhGA5glSqVSHHvssXHsscdOWR977713/OEf/uGUtd+qtm3bFnfffffw8Qtf+MIJL2Tbc88944wzzmjU0AAAgDY1mAZyz3VknbnnurOcze6pN8qpHKWstPO4ajBaa27kn2pTFVqR96x399edFQuza5Za45hsMAUAwEx108brKpbPiY44YdGrI6J4cPHsVXljfrV3kknPz1P1+kXb31HeXrG8dYPRigVB591/KUrRmXU1fFwAADCTWJ83dazPAwAAAAAAAJh9Ss0eAADMdJdffnls3/7cBpfjjz++iaMBAABmg8E0mHuuajBalU34/alv+PfVNvvnBYS1u/zQiskFf+U969395T3vvtQagWO1xjHZYAoAgJloXf+Tcc+2uyueO2bBiljYsTgiqsz1hMtGRF4s2s7nlkVW8dxkQ+V6azz7on82eeNo3WC0vJ/FHZFSGnFc+f67Sz2RZZX/TAAAACbL+jwAAAAAAACA2UcwGgBMwmOPPRYXXHDBqLKzzz67SaMBAABmi8E0kHtuTtaRe65aqNnIjfvVNvu36kb+qVYtKGAyqgULVOu3VQLHat3/ZJ8PAMBMdPPGVbnnTlpyxvDvBaPVUjkaLYtsyp5do+a3+QHI8+oe03TIC9EuR3nU+2f++8vsfE8EAACmnvV5AAAAAAAAALOTYDQAGOE73/lO/Lf/9t9i3bp1Na/9xS9+ESeddFKsX79+uOylL31pvOpVr5rKIQIAAFQNRuuYcDBa74jfV97EPyc6oiPrLDDC9pO30X+qg9HyguhaJSyj1jhaZZwAANOlv9wXP9n0o4rnDuw+KA7uOXz4uDtr7bles6WUE4yWZdGdTU2AcK1nX7T9/GC01gwQ65nku6JgNAAAoCjr8wAAAAAAAAAoIn+XJADMQlu2bIlPfOIT8ZnPfCZOP/30OPXUU+OlL31pLFu2LDolexdaAAAgAElEQVQ6OmL9+vWxevXq+Nd//de45pprRm3K6erqissvv7yJowcAAGaLwTSYe66zSnBZtU34Izfu96XKYQCtuol/OuSFyk06eCHnWe8OycgLGJhsv41Saxx95d5IKUWWZdM0IgCA5vr5lltie3lrxXOvXHzGqHlRbvhuao25XivrLs2NGNowrjxvfl1UreDjou3PtGC0vJC+iJ33Mj8WRkTtYGcAAIBarM8DAAAAAACgmsqfVAVmI8FoAFDBwMBAXHPNNXHNNdcUun7u3Lnx9a9/PV760pdO8cgAAAAiBtNA7rmOKsFoecELEaM3uOdt4p/Nm93zAgzyggGKqvWsp6rfRqk1jnIMxWAaiM6sa5pGBADQPCmluGnDtRXPzS3Ni2MXnjSqLG9+XSuca7YoR7lieRZZlWc32WC06vWLtt9b3l6xvNo7WTNVe9cbGdSX+/6Szd53RQAAYGKszwMAAAAAAACgmlKzBwAArWTx4sUxZ86cuuqccMIJcfPNN8eb3/zmKRoVAADAaNWC0eZk+d9CmJPNyQ2oGrnBPW+zf6tu4p8OeRv984IBisp71rsD0Vo9LKNIMESrhLgBAEy1h3vvj0f7flvx3PGLTo2uUveosqkK92p/We67yWTnybWD0Yq1n3fd3NK8usc0HfICmSNGP5ORIWlF6wMAAIxkfR4AAAAAAAAAReTvkgSAWeiNb3xjPP3007Fq1aq47bbbYvXq1fHII4/E+vXro7e3N+bOnRt77rlnvOAFL4gTTzwxzjjjjDjhhBOaPWwAAGCWqRaM1pF1Vq3bXeqJgaH+ceUjN7vnhX3lBTfMBnkb/ScbWpEXmLD7WecHPrRGWEahYLS0I+bHwmkYDQBAc9208drccyctft24MsFo1aVIFctLkU1JgHA5laMv1QpGK/ZnsyN3nt+aAWIdWWeUohTlKI87VyxEe/a+KwIAAPWxPg8AAAAAAACAIgSjAcAYe+21V5x11llx1llnNXsoAAAAFQ2mwYrlpZgTpaxUtW53qSe2Dm0eV95XYLN7XjjYbJAbUJYmHrwQUTtYYCoCHxqpyP3nBe0BALSTLYMb4+4tt1U8d+S8o2NZ1/7jyvPm1+ZPu1UORousWjDaxEPl+lNfzWuKtp83X2/Vd6ps1zPdUd4+7pwQbQAAoNGszwMAAAAAAACgluq7JAEAAACAljOYBiqWd2adNet2ZzkBX6OC0Wx2Hys3GG0SwQsppSrBaDv7684qP/NWCcsoMo7JPCMAgJnitk3/lhtg/MolZ1Qsn4o5ZjtJeblokU1JqFyR8OGi7fdWCBiLaN1gtIhqP49CtAEAAAAAAAAAAACYXoLRAAAAAGCGyQtcmJN11KybF27Wl57b4J4fjDZ7N7vnPbfJBC8MpoEox1BOfzufdV7AwMg/r2YqEtoh2AMAaHflNBS3bry+4rk9O5bG7+zx8orncufm5k8REZEiJxktpubZFQv9rX3NQHkg952tlQPEigT11Qp2BgAAAAAAAAAAAIBGEIwGAAAAADPMYBqoWN6Rddasm7cRf2QIQF4gQF74wGyQ99wG00AM5YQe1FIttKE72/ms8wMfJh7I1khFgicmEx4HADAT/Me2u2L94LqK505cfHqUsjkVz+2e8401FIO5c/7ZpXIwWhZZdGeNDxAuFPpboP1qc/We0ry6xjSdioTN5Ydoz953RQAAAAAAAAAAAAAaTzAaAAAAAMwweUFcHVlHzbrFNrtX3uyfFw42G1Tb6F8kQKFivVQtMKFn1z/zAtlaIyyjUHjEBJ8PAMBMcdOGayuWd2QdsWLRabn1pmKO2U4qx6LtDEYrEvhcr2Jz29rtVxtDK79TFXmmec+ou4XvCwAAAAAAAAAAgJkj5S0eBGYdwWgAAAAAMMMM5ARidWSdNevmbVgfucE9byN/d5Yf3NDuqgUYTDR8oVrwwu6QjGoBA/3lvgn120hFgiGKXAMAMFM93f943Lv9lxXPHbNgZSzoWJRbdyrmmO0lf3VTkcDnehV55kUCinvL23PP9ZTm1T2u6ZL3vjcy0Nm7IgAAAAAAAAAAAADTQTAaAAAAAMwweRvxO7KOmnXzwhdGbnDPCxOoFtzQ7vKCFyImHr5QPRhtbs1+WyEso8i9TyacAgCg1d2ycVXuuVcuPqNq3WohuOZQESknGC2LrEow2sTnyEWfea2A4mrz9Gp/5s2W97438rnkPd/Z/K4IAAAAAAAAAAAAQOMJRgMAAACAGWYoDVYs78g6a9YtEiDQlypvdm/lTfxTrXpoxcTCF/ICE7IoRWfWVaDf5odl5P2s1HsNAMBM1FfujZ9s+lHFc8/rPjiW9xxWtf5UhO/OClmWO0+eXDBasbq1Aop7y9srlndkHdFZqv3O1ix5P4+777ecytGfKofCVftZBgAAAAAAAAAAAIB6CUYDAAAAgBlmMA1ULC8WjJYXINBb8fdF6s4GXVl37rlawQh58p9zT2RZNvz7RvfbKINpIAZzQvpGEuoBALSrOzffHDtyQrBeueSM4Tldns6sK7KofM1kAr7aQUop91wW1QKfe6vWraboM681v+2doe9T1Z5pRER/6osUlZ9tq98bAAAAAAAAAAAAADOLYDQAAAAAmGFyg9FKRYLR8ja7PxcCkBe4VS2kq92VslJ0Z5Xvf+LBaLWfc1fW3bJhGf3lvkLXCUYDANpRSilu3nhtxXPzSvPjFQtOrNlGKSvlBvA2OwS32fICuHbKcoO4ylHOfV+qpS8Vm7fWmofnne8pzat7TNOpVoh2tXl9j2A0AAAAAAAAAAAAABpIMBoAAAAAzDAD5ZxgtOioWTcv3Gt3CMBQGswNEpjtm91rBQXUK6/eyD+jVg7LKNp/s8cJADAVfrvjvnis7+GK545fdGp0lSrP4cbKm2PP9nDZasFopciip0po88SDi4s981rt95a3Vyxv9fep/PedHbv+mf98ZnOINgAAAAAAAAAAAACNJxgNAAAAAGaYoRisWN5R6qxZN28zfq/N7jXlh1ZMMHgh5QSjjXnOrRqWUbT/Zo8TAGAq3LzxuorlWWRx0uLTC7eTG0aVM1ecPfKD0SKy6M7yQ8YmOv8sGqhWq/28dlo/GC0nRHvX/VZ775nt74oAAAAAAAAAAAA0Rqq2fBCYVQSjAQAAAMAMM1jOCUbLOmrWrbXZvVoYQKtv5J9quc9ugqEVRQMTWjUso2gg3ESD4wAAWtXmwY1x95bbK5570R4vi6Vd+xVuq9b8fLZKVYLRssiqBnH1pQkGFxcN/q0xD+8tb69Y3urvU7WCoAWjAQAAAAAAAAAAADBdBKMBAAAAwAwzmAYqlndknTXr5m12H0wDMZQGq4YBzPbN7nkBZdXC5KrJe9Zj+8kPy2hu4Fjh4IhZHuoBALSf2zb9nxiKymHFJy0+o662WnWu12xVv/iYZVVDxnonOP8sOq+vdV3e+bz3iVbRnVX+WewdDkar/Fw7so5C76IAAAAAAAAAAAAAUJRgNAAAAACYYfKC0eZkHTXrVtuM31furRrA0Oob+adaXvjCRIO/8p712HCMvOfe7MCxvlSs/4kGxwEAtKKhNBS3bFxV8dxenfvEUXu8rK728ud6s30OlZ+MlsXOUOhSznKHiT67ovVqzcPz5r9zS/PqHtN0ygvp6099UU7l/MC3bHa/JwIAAAAAAAAAAADQeILRAAAAAGCGGUyDFcs7ss6adfM2u0fs3MBfLcSqK+uuPbg2lvfsJh68UDlQYXwwWuV+mx04VrT/ogFqAAAzweqtd8bGwWcrnjtp8elRyubU1V7+HHN2z6FS1WC0LLIsa/izK1qv1vw/N0CsxYOm84KgU6QYSP258/pq75gAAAAAAAAAAAAAMBGC0QAAAABghhlMAxXLOwsFo+Vvxu8r9+aHdWU9Ucpm9/9OzAsKaHTwwthggfx+mxuMVjw4YnaHegAA7eWmjddWLO/IOuP4RafW3Z5gtInIIiL/3Wbi8/OCwb812u8tb69YnjevbxXV3hWrhWi3euAbAAAAAAAAAAAAADPP7N7JCAAAAAAzUF4w2pyso2bdvOCFiJ1BADa758t7dnnPrJa8emMDE1o1LKOe4IiU0hSPBgBg6j3V91j8evuvKp57xYKVMX/Owrrb7M5ywr3S7A5GS5E/f8x2/TM/GG1i8/Oiz7xW+3nnWz8Yrdq7YpUQ7Sr1AAAAAAAAAAAAAGAiBKMBAAAAwAyTF4zWkXXWrNuVdUc2HCUwWl+5NzcMoNU38U+H6QpeGBuOkffsJxrI1ihFg9lSlGMg9U/xaAAApt7NG6/LPXfS4jMm1Gajw3fbRbVgtN3RaI0OEC5ar9Z1O3KD0ebVPabpVO2dr6+8I/e+vSsCAAAAAAAAAAAA0GiC0QAAAABghhlMgxXLiwSjlbJSdGXdFc/1lnfkhnzlhQ7MJt1ZY0Mr8oIFxj7rRgc+NEo9/U80PA4AoFX0lnfETzffUPHcC3oOi+VzD5tQu3mhUs2e67WyLNsVjJYzP+9LE5t7Fp3X5wUcD5/PDUZr7QCxau98fd4VAQAAAAAAAAAAmAbVPqsKzC6C0QAAAABghhlMAxXLiwSjRUR054UvpN4qYV2tvYl/OjQ6tKJosEB3ltdvc8PG6gmEm2h4HABAq7hj803RW95e8dwrF79uwu3mh+DO7vlTSvlLm7Jd/8ybn09k7jmUBnPfs+ptP+/npNWD0eZkHbnvlH3l3irvL619XwAAAAAAAAAAAADMPILRAAAAAGCGGUyDFcs7so5C9asFCORt8s8LbJhNGh1aUTSELrffNLFAtkapJxBuouFxAACtIKUUN2+4ruK5PeYsiJcvWDnhtvPnmLN9/lTtm487o9Ea+ewaNbcdTAO572utHowWkf9Me8s7qry/eFcEAAAAAAAAAAAAoLEEowHQEGvWrIm/+qu/ihNPPDH22Wef6OrqiizLhn9ddtllzR4iAABA2xhMAxXLO7LOQvWrBQjkhXzNhE38U21sYNluEwkoSynlPuuxfz55/eaF2E2XvlS8f8EeAMBM9uCOe+KJ/kcqnlux6LToLHVNuO3cOeYsnz+lKsFo2RQEo9Uzt64WjFytnZ7SvLrG1AzdWX4oc26Idk4dAACgsazPAwAAAAAAAGA26Wj2AABmu+XLl8cjjzy3meaGG26Ik08+uXkDmoCvfOUr8d73vjf6+vqaPRQAAIBZYSgNVizvyIr97778AIEduSECeXVmk7xwuL5yb6SUIsuywm0NpoEoR7niubHhGNX6baZ6+p9IeBwAQKu4aeN1FcuzyOLERadPqu28eXZveUfdc8x2UiQYLW+ePJEA4XrmttXa7x2qFozW+mHT1d498p7RTLgvAABmN+vzAAAAAAAAAGDmKTV7AADMbNdee228613vKrzo6sYbbxz1pcqLL754agcIAADQhgbTQMXyjqyzUP2xwVu79ZV35G7yt9k9/7mlSNGf6tuMVC14oTsbHY6RH2S3M5CtWRoVHgEA0Mo2Da6PX2z5ScVzR+3x8ti7a59Jtd+TVZ5jlmMoBnMCkWeDasFosSsYLf+9pv5Q3rpCf6tcW23e21OaV9eYmiHvmfZWeVfMqwMAADSG9XkAAP8/e3ceJldx2Hv/V71M94xG0khoAwQIIbFjFiMQIDYvAhTsxEsMxH68hmAnuRdCiK95c21JFwfj1yQ2tnFsEwK8jzEh18bGwSDHxpJAYMAIsACJ1QgQCC1IM0gz0z291PuHNKPpnlOnz+npvb+f5+FBp+qcqurTrVGdmarfAAAAAAAAAADaUazeAwAANLerr766YBP2X/zFX+hzn/ucDjroIMXj+zbkT5s2rR7DAwAAAICWlHEGowX7dp9f0Fbaudnd+5p24ncPUvnBUPcobf0CE4IFo1nllbFD6jCJwP1WkuuzMt5zAQAAGslDvb9WXjnPurOnLBl3+35zyLQdVFzBwo9bjk8umtmTi+bzXBN+7hlubrsnoNgMD2SUVH7AeV0zBIj5Pita70A4nhUBAACA6mJ9HgAAAAAAAAAAAACgHRGMBgAo2/PPP69169aNHC9ZskS33357HUcEAAAAAO0hZ7Oe5TETLDQh6diQn8oPKp13bHY3jb+Jv9pc902S876Vc35xYIJ/v4PqiNQrGC34aw57fwAAABpBzmb1YN+vPOumx2fpqK4Txt2HbzBaPqXu6KRx99GMrE8ymtGeQDJX0Fg5c09X6JeXvHLK2ozipsOjb++AtahiikcaP+TOfU/dz4p+zysAAAAAxof1eQAAAAAAAAAAAACAdhWp9wAAAM3r8ccfLzj+6Ec/WqeRAAAAAEB7ydqMZ3nQYDRX+EI6n1LKsZHfL7ChXfiHVnjfNxfXffbqx69fv3aqLUzgRD3HCQAAUK4/7H5MfdkdnnVn9pyviBn/j9tdQVRS+Dlma3EHo2k4GM24nmvC37ew17jmwoOOdpLR5ggPcz8rDjrvEc+KAAAAQPWwPg8AAAAAAAAAAADtxvotHwTQVghGAwCUbcuWLQXHs2fPrtNIAAAAAKB95G1OeeU96wIHoxnvTflpm1Laem/wT/oENrSLSgajuYIUjCKKm46ifv3CMoKHk1Va2gZ/zfUcJwAAQLlW77zXszxuOnTa5PdWpA+/eXY7z6H8Y9H2BqO5QrwczzR+UiHvtWsu7HouaJbnKdc9Hcj3K2OHQl0DAAAAYPxYnwcAAAAAAAAAAAAAaFcEowEAyrZ79+6C43g82AZ8AAAAAED5sjbrrIuZWKA2XJvyU/lB50Z+v3CudhEzcec9TlUoGC0RScoYU1jmCLIrp99KydqM72exWDuHegAAgOb0Zvo1vTj4jGfdyZPO1IToxIr0EzcdI0Ffxdp5DmV9o9H2cD3XpPMp2ZC/MjJs0LFrHp7KD3iWJyNdodqvF9c93ZXtC30NAAAAgPFjfR4AAAAAAAAAAAAAoF0F2ykJAGh61lo98cQTeu6557R161al02lNnz5dBx54oBYtWqTu7u7Qbebz+SqMFAAAAADgJ2szzrqYCbYhJhFJepan84PO8AU2u++RiHQqm9s1pjxsaIU7gG7sexOPxBVVTDmNDSJL2/qEZVTq9QIAADSqB3tXOOvO7llSsX6MMUpEkp5BW/UKwW0M7mCz4SA5V3izldWQTSthvJ97vISf33qf73rPmuV5ynXP+rI73Nc0yWsDAAAAqo31eQAAAAAAAAAAAAAAVA7BaADQ4rZv365rr71WP/rRj7Rt2zbPczo6OvSe97xHy5Yt06mnnupsa+PGjTr00EOd9eeee65n+S233KLPfOYznnXLly/X8uXLnW2uXLlS55xzjrMeAAAAANpN1o4NxxoWPBjNe+P6rmyfrCOAwBWm1m4SJql+jQ1GCxtaETaALhFJaiC/26Od+oRlhA6OsO0c6gEAAJpNKj+oR99Z6Vl3aPIIHZw8rKL9JUxSKY2dL4Wdc7USdyzanjA5yf8ZJZ1PhXqGqdR8PpUf8CxvmmA0xzjfye10XxMigA4AAABoRazPAwAAAAAAAAAAAACg8iL1HgAAoHp+/vOfa+7cufrmN7/pXHQlSUNDQ1qxYoUWLlyoyy67TNmse5M9AAAAAKC+sjbjrIuZYL8HwRUQ4BW8te+a5tjIX22uQIO0DRda4QpecIUKuN6zeoVlhA5Ga+NQDwAA0Hwe7VvpnK+d1XNBxftzzbXrFYLbEKxfNNoefsFnlQo6C9u+c57fJM9Trucdv4DuZnltAAAAQDWwPg8AAAAAAAAAAAAAgOoItlMSQO3ks9LApnqPovV1zZYirf0l8N///d916aWXKp/PF5QfdthhOvroo9XV1aXXXntNjz32mHK53Ej9D3/4Q7322mv6r//6L8VirX2PAAAAAKAZ+QWjRccZjFbpa1pRpUIrXEFqrvvsCigIG/hQKaFfL8FoAACgSVhr9UDvfZ513dHJOmniGRXv0xmCGzJ8t5VYuYPRjIwk9xxZqv581XW+a37eGekK1X69lPesmKjCSAAAAKqI9Xm10+Jr9FifBwAAAAAAAAAAAABA9fATdaDRDGySfnFovUfR+j74itQ9p96jqJqnnnpKX/jCFwoWXZ1wwgm68cYbdfrppxecu23bNn35y1/WD37wg5GyFStW6Ctf+YquvfbagnNnz56tV155ZeT4W9/6lm644YaR4zvuuEMLFy4cM55p06bpnHPOkSQ98sgjuuSSS0bqLr/8cl1xxRXO1zJr1qwSrxYAAAAA2kvWZp11cRMP1IZfgEAlr2lFrqCAsAFlriAFV/CaMyyjTsFoYV9vvQLcAAAAwnpx8BltHnrds+6Mye9TPBJszh2GO3yXYDQvw8FofiFeoYPObNj5vPf5rnmv6z1uNGGD0eKmQxETrdJoAAAAqoT1ebXTwmv0WJ8HAAAAAAAAAAAAVId79SCAdkMwGgC0oM997nMaGhoaOV60aJF+9atfqatr7G+jnz59ur7//e9r3rx5+od/+IeR8q9//eu65JJLdNxxx42UxWIxzZkzZ+S4p6enoK1Zs2YV1I/W3d0tSdq4cWNBeU9Pj/MaAAAAAMBYWZtx1sUCBqOF3exe7jWtqFKhFa4gBVcAXaOFZYR/ve0b6gEAAJrL6p33eZYbRbSo57yq9NloIbiNbjgYLWbiiiqmnMaGR4e9d+HP957fhp3nN5qwAW7N8roAAACASmN9HgAAAAAAAAAAAAAA1RWp9wAAAJW1cuVKPfHEEyPHkyZN0p133um56Gq0q666ShdeeOHIcT6f1ze/+c2qjRMAAAAAUJ5KBKOF3bweM7HAbbc6171LVShIwRWK4SoP22+lpC3BaAAAoPX0Zt7WH3Y/4ll3XPfJ2i8+oyr9NtpcrxFY5X1qzcifXPPzas9X09b7vUnlBzzLmyVALBkyEJsAbQAAALQj1ucBAAAAAAAAAAAAAFB9BKMBQIu57bbbCo7/5m/+RgcccECga6+77rqC4zvuuEPpdLpiYwMAAAAAjJ9fMFrUxAK1kTDhNuWHPb+VuTb+hw1ScIVcuNp3Bj7UKXAsdHBEG4d6AACA5rGm77+VdwRyndVzQdX6bbS5XiOw1l1n9uWiVX1+7uJq39VOMuIfkNAoEiED3Jol8A0AAACoJNbnAQAAAAAAAAAAAABQfQSjAUCLWbNmTcHxJz7xicDXHnPMMTrppJNGjlOplNauXVuxsQEAAAAAxi9rs57lEUUVMcG+3ecKD6jU+a3MHVpRmSAF1712hdPVK3As9Ou1KeWtd8gIAABAI8jajNb0/rdn3Yz4ATqy6/iq9V2pcK/W4pOMpn3JaK57V6mgMxdX++5gtOYIEAsbjBb2fAAAAKAVsD4PAAAAAAAAAAAAAIDqIxgNAFrIzp079fLLL48c9/T06KijjgrVxumnn15w/Pvf/74iYwMAAAAAVEbWZjzL4yYeuI2YiSuiaODz2ey+j+tehA1SSFtHMJojAK3RwjJcgQ8xn8/hkE1XazgAAADj9oddj+qd3E7PurN6zg8cQlwOZwiuY87YDqxPMJopCEarbnDxhMjEUOe75snN8kyVMCFDtEOeDwAAADQ71ucBAAAAAAAAAAAAAFAbsXoPAECRrtnSB1+p9yhaX9fseo+gKrZt21ZwPH/+fBljHGd7O/LIIwuOt27dOu5xAQAAAAAqJ2uznuVRE/xbfcYYJSJJDeb7A52fbJJN/LXgCihzBSC4uIIUXO273oN6hWW4xj85NkVvZ7y/l5DOp/gsAQCAhrW69z7P8g6T0MLJ76lq340WgtsI3LFohSpx76y1zvn8pFiP+od2BWo/azPOIOvOJpkHJyKJkOc3x+sCAAAowPq82mnBNXqszwMAAAAAAAAAAAAAoDYIRgMaTSQmdc+p9yjQpHbu3FlwPHny5NBtFF+zY8eOcY0JAAAAAFBZro32MRMP1U4y0hk4GM0VNtCOnAFloYPRvM93BQtUKpCtUlxBE5OifsFog5KmVHFUAAAA5XkjvVEvDT7rWbdg0lnqinZXtf9Gm+s1Bnc0mtG+0IFKBKNlbVZ55TzrJsWmaPPQ6x7tj31v/N6vZgkQi5ioOkxCQzYd6HyeFQEAQFNifR7GgfV5AAAAAAAAAAAAAADURqTeAwAAVI61hZtEwv42Si+VaAMAAAAAUDk5m/Usj5lwvwMhzAb2ZtnEXwsJM/7ghT3nu4LRvNt3vQdhA9kqxRmMFusJfQ0AAEC9PbBzhbPu7J4lVe+/UuG7rcQGDEZz3bswoXJ+93lyzDvY16v9VM7dTmekK/B46i3csyLBaAAAAGgvrM8DAAAAAAAAAAAAqsu6lw8CaDMEowFAC5k6dWrBcV9fX+g2iq+ZMsV7wwcAAAAAoD4yNuNZHjPxUO2ECTtjs/s+ztAKGzx4wVrrDAlzB6N5l6fqFDbmer2THMERUnsHewAAgMY1mOvXY++s8qw7rPMozU4eWvUxuOZ6BMs6jAoNSBhXqFzwe+c3l58U9Z7ferXvF8bWTGHTrmee8Z4LAAAAtALW5wEAAAAAAAAAAAAAUBsEowFAC5k+fXrB8QsvvBC6jeeff77geMaMGeMaEwAAAACgsrLOYLRYqHaSIcLOCEbbx3UvsjbrfG/GnptRXnlH+97BAu6wjPqEjbn67Yp0O0P6/IIiAAAA6uWRd1Yqbb1DtM7qOb8mY3DNAdP5lGyb/upDv9dtRv3ZOU92vKee5/qEqE12BP96tZ/KDzjbSUa6Ao+n3sI8//GsCAAAgHbD+jwAAAAAAAAAAAAAAGqDYDQAaCFTpkzRYYcdNnLc29urDRs2hGrj4YcfLjhesGBBRcY2zBhT+iQAAAAAgFM27wpG8w6jcnGFL3hJhji31fndN79AhaDnuQLrXO9Bxg4pZ3OB+q0k12tIRJI+IW7BwykAAABqwVqrB3pXeNZNjE7WCd2n12QcCeM9f8orFzh8t9VY+QWj7Vvm4JonhwkQ9gvwneQKRvO4xtVnVDHFI65Z5bAAACAASURBVOGe1+opzLNimHMBAACAVsD6PAAAAAAAAAAAAAAAaoNgNABoMYsWLSo4vv322wNfu2HDBq1du3bkOJlM6t3vfnfFxiZJiUSi4DidTle0fQAAAABodTllPctDB6OZEJvdHUEN7chv479foMJoaes+z/W++PU7VIfAMb9gNGc4hSUYDQAANJbnB9Zpy9Amz7ozJi+uWZhVJcJ328noLf7uUN7gwWiue2wUUXd0kvMaawvD2wYdfSajzRUeRog2AAAA4I/1eQAAAAAAAAAAAAAAVB/BaADQYj75yU8WHH/3u9/VW2+9Fejaq6++uuD44osvHrNQarx6enoKjjdv3lzR9gEAAACg1WVtxrM8FjK0wRUg4IXN7vv43YugoRV+AWqu96US/VaSq89kpNMZpBc0OA4AAKBWVvfe51luFNGinsU1G0fSZ27uF6rbyqysT+2+aDR3MFrwOXI5ob9WVhk7VNSOIxityZ6nwgRjh3muBAAAAFoF6/MAAAAAAAAAAAAAAKg+gtEAoMW85z3v0QknnDBy3NfXp0suuUSDg/4bZ775zW/q7rvvHjk2xujv/u7vKj6+uXPnqqOjY+R45cqVymS8N/UDAAAAAMbK5B3BaIqFaifMBvZEk23krya/++YKQhh7njukwdW+XzhBPQLHXH0mIknn56UeAW4AAAAuOzPbtW73Y5517+o+RVPj02s2Fv85ZrvOodzBaCZAMFqYObLr3GSk0/dZqPg6dztdgcfSCEI9K4YIUQMAAABaBevzAAAAAAAAAAAAAACovnC7JQEAVffWW29p48aNZV07Z84cSdLNN9+s0047TUNDe35T/apVq3TmmWfqxhtv1Kmnnlpwzfbt27V06VJ973vfKyj/4he/qHe9611ljcNPR0eHzjjjDK1cuVKS9Nprr+mDH/ygPv/5z2v+/Pnq6ircHDJr1iwlk2yqAAAAAIBhOWU9y2OReKh2kiHCzghG26fDJGRkZD2CGoKGVrjOM4oobjo86/zeg7StfViG6zUkIp3OIIX2DfUAAACNaE3fr2SV96w7u+eCmo7Fd67XpnOovHUHo43KRatIKK8r4HhP6G+pYOSekeNUfsDzvDDPXo2AZ0UAAAC0OtbnsT4PAAAAAAAAAAAAAND4CEYDgAZzySWXlH2t3btJ5KSTTtJ3v/tdff7zn1c+v2dTz9q1a7Vw4ULNmzdPxxxzjJLJpF5//XU99thjymYLN9W///3v1zXXXFP+iyjhyiuvHFl4JUkrVqzQihUrPM9duXKlzjnnnKqNBQAAAACaTTbvCEYz4b7V57fBfzzntjpjjBKRpFIe4QleZV5cIQ3JSFLGGM+6RCThbC9ov5WStRlnQF/CJH3CKWo7TgAAAJeszeih3l971s3smK0juiq/Md1P3HTIKOIZ1FbruV7jcAejmVHJaK6555BNK29ziphoyZ6cob+mVDBa4XWu96rZgtF4VgQAAECrY31eIdbnAQAAAAAAAAAAoJH4/V5VAO0lUu8BAACq49JLL9Wdd96p7u7ugvKXXnpJd999t+688049/PDDYxZdffazn9Uvf/lLxePxqo3twgsv1Fe/+lVFo6U3owAAAAAACmVtxrM8ZsI9x4XZnN9sG/mrbbzBX67zXO1KUsREFTcd4+q3UlzBEdKeYARXOALBaAAAoFE8uet3eifX61l3Vs/5zrDaahkO3/XiN/dqZTZoMJrxCy5LB+orbd3zc79noeIgtFR+wNlOMwkXjNZcrw0AAACoJNbnAQAAAAAAAAAAAABQPQSjAUAL++hHP6qXX35Zl19+uaZNm+Y8Lx6Pa/HixXrooYd08803V3XR1bB//Md/1Lp16/SlL31JZ511lmbNmqXOTjZPAAAAAEAprmC0qImFaifcZvfg57YDV/hCcTCCi+u8UvfZFcrQWMFonYR6AACAhvdA732e5QmT1MJJ59Z4NHv7Jly2LH7BZWkbbP7pmqcmIknFTFxReT9rFbfvaqcz0hVoHI0iTNgZIdoAAABod6zPAwAAAAAAAAAAAACgOsLtlgQAVNzGjRur2v6MGTP0rW99S//yL/+itWvX6rnnntO2bduUTqc1bdo0zZ49W4sWLdLEiRNDt71s2TItW7as7LEdffTR+trXvlb29QAAAADQjrI261keM+E20bDZvXzugLJxBi84AtdG6iNJ7cr1ld1vpfgFwCUiyXHfHwAAgGralHpFLw9u8Kw7ZdI56oxOqPGI9nDNBdt1DmVlnXVGZuTPfuHCQUPlXPd4eF6biCQ1kN9d8rrB/IBnO2GevRpBmOc/QrQBAADQDFifx/o8AAAAAAAAAAAAAEDzIRgNANpEJBLRggULtGDBgnoPBQAAAAAwDlmb8SyPVzEYjc3uhVz3I20DBi9YRzBaifekUQLH/PpLRjqdoR5+gWoAAAC1srr3XmfdWVPOr+FICrnnmO0ZjCafYDRVOBjNNU8dbjsZ6XQEow36Hg9rtqDpoM+KRkYdJlHl0QAA0FyMMYdKOkHSAZK6JW2W9Kqkh611fGO3vH7iks6QdLCk/SXtlvSmpCettRsr1Q+AcFifBwAAAAAAAAAAAABA5RCMBgAAAAAAADQRVzBaLGwwmiO8yvPcJtvIX22u+xE0oMx1XqkAOle/tQ4ccwU+GBnFTYf7/rRtqAcAAGgUA7nd+v07D3jWzes8Wgcm5tR2QKO4wrPaNVzWNxbNjA5Gcz+rpMY9P+/c+/9gwb+p/IDnec0XjBbsWTERSRa8FwAABGWMmStpgaST9/7/JEkTR53yqrV2Tplt+00jgji0nGAxY8xHJV0p6TTHKTuMMXdK+oq1dnu5gzPGTJe0XNJFkqY6znlY0r9Ya39abj8AAAAAAAAAAAAAAABAvRGMBgAAAAAAADQRVzBa1IT7Vl+YzfkdJhGq7VY33tAKV7BYqfdkvIFsleLqr8MkFDER5+twvW4AAIBaeaTvtxqyac+6s3qW1Hg0hRplrtcorA2WaRI1UcVNhzJ2aExd8OBi//m5KyisuH3X80DTBaMFDNEOE7YNAIAx5hxJV2tPGJpnoFczMsZ0S7pJ0sUlTp0q6QuSPmyM+ZS19ldl9HWBpFslzShx6umSTjfG3C7pMmttf9i+AAAAAAAAAAAAAAAAgHojGA0AAAAAAABoIlmb9SyPmXiodlyb+8ecZ5KKmEiotltd0GAEF9d5pd4TV/BA0EC2Sklb1/jDBUcAAADUUt7m9UDvCs+6SdEpOmHiqTUeUSH3HKpdw2XdwWgRFT6fJCJJZXJewWjB7p1rPj38nrhD6wqvcwejdQUaR6MIGuTmui8AADicIGlxvQdRScaYqKQ7JRUn7G6T9KSkPkmHSTpRktlbN1PS3caY91lr14To6xxJP5fUMarYSnpC0h8l9eztZ9qo+o9LmmSM+TNrbT5oXwAAAAAAAAAAAAAA1FOwX6sKoB0QjAYAAAAAAAA0kazNeJZXLRiNze5juO5J0ICyUsEL7n4bI3CsdHBEYwS4AQAAjPb8wDptzbzpWbeoZ3Ho+XSlNcpcr1GEWdiUiHRqd+6dMeXjDi42/vPb4uvc8+TmeqYK/qwY7DwAAEpIS9qkPQFilfaopItDXrMpxLnXqTAULSPpSkk/tNaOpLYaY46W9G+STttblJD0c2PMcdbazaU6McbMlnSXCkPRHpJ0qbV2w6jzEpIuk3S9pOHJ7QckfVXS/xPidQEAAAAAAAAAAAAAAAB1RzAaAAAAAAAA0ESyNutZHjPhvtUXdHN+ssk28deC656kAwZ/OYMXStxrZ7+2toFjrvEPj88VkJCxQ8rbnCImWrWxAQAAuKzuvdezPKKIFk1eXOPRjEW4bDF3NJqRKTgeDjArFnh+bv3n5wnjmv/vuy5rM84Q684me6YK+qzYbIFvAICGkJH0rKTHJf1+7/+flnSGpJVV6C9lrd1YhXZljJkr6fKi4j+31t5dfK61dr0x5r2S7te+cLT9JC2V9PkA3S2XNGXU8cOS3mdt4STGWpuW9G1jzGuSfjaq6kpjzA+sta8G6AsAAAAAAAAAAAAAAABoCJF6DwAAAAAAAABAcK7N9jETD9VO1EQVNx0lz3MFNLQz1z1xBYaNOc8VvOAIdCjdb62D0bz7Gx6fX5heOp+uypgAAAD87Mhs09O7H/esO757oXri+9V4RGO5w3eDzTFbjfUJRlNxMNo4Q+XKnd+Obt+vr2YLEAsajk2INgAgpNskTbLWnmitvdRa+0Nr7RPWOr7Z2fiWShr9DdlbvULRhllrByV9WtLQqOLP7Q1YczLGzJf0qVFFQ5I+XRyKVtTXz7Xnfg9L7B0vAAAAAAAAAAAAAAAA0DQIRgMAAAAAAACaSM5mPctjJha6rSAb9JttE38tuO5J8OAFRzBaiRA6V7+1DssoNX6/z0ytQ9wAAAAk6cHeFbLKe9adPeWCGo/GW8I45nruzIuWZq07GM0U5qK5Q+UC3DtrrXN+O9yuM6B4VPupnHue2xnpKjmORhI3HTJF4XNeCNEGAIRhrd3pF+bVTIwxnZI+WlT89VLXWWtfkPTzUUUxSX9R4rK/kBQddXyXtfbFAMMsHs/HjCnxWxkAAAAAAAAAAAAAAACABkIwGgAAAAAAANBEsjbjWR4z8dBtBdnIzmb3sRKOPYRBA8pc4WClQuhc70XQQLZKcY9/bzCazx7Ldg32AAAA9ZPJZ/RQ32886/bvOEjzO4+t8Yi8OcO3ahyC2yisfILRikK7xnPvMnbI2VeiVDDaqHmx35y82cKmjTE8KwIA4O88SaOTT39nrX0u4LW3FB1/uMT5HypxvSdr7QZJj44qmiBpcZBrAQAAAAAAAAAAAAAAgEZAMBoAAAAAAADQRDLOYLRY6Lb8AqyGJZtsE38tuO6JKzAs6HmlggXc/dY2LMPV377gCPdnJug9AgAAqJQndj2k3bk+z7qzei6QMcazrtaChG+1F3cwmsYEo3nPP4MECPsHmu15T4LM//3ep2Sky1nXqIKEufGsCABoY+cXHa8Kce2DkrKjjk80xsz0OtEYM0vS8aOKspIeCtFX8bguCHEtAAAAAAAAAAAAAAAAUFcEowEAAAAAAABNJOsMRouHbivIRvZSYV3tyBmMYFPK27zvtdZaZ7BYqfdjPIEPlZS2jmA0MxyMlnBeW+uxAgAAPNB7n2d5wiR1yqRzajsYHwSjFQoei+Z370oHCPvd3+F2g7Sfyg94nhNVTPFI+Ge1egsSos2zIgCgjR1bdPy7oBdaa/slPV1UfEzAftbtvT6ohwP2AwAAAAAhNMYvGwEAAAAAAAAAtD6C0QAAAAAAAIAmkrNZz/JygtGCbGQPEp7Wbvzu25BN+16btRnl5R2eVur98AtksNYvOqKyXOERw+OLmKjipsNxbelwCgAAgEp5LfWyXkk971l36uRz1RntqvGI3FwhuLWe6zUKGyIazRlcHCBUzm9+OtxusGA0776S0eZ8ngryrDgcjAwAQAM72BhzizHmWWPMTmPMkDFmy97jHxlj/soYM7WMdo8qOn4p5PUvFx0f7TivuLxa/QAAAABACO33/WoAAAAAAADUVhsumQTgQDAaAAAAAAAA0CTyNucM1SonGC1I6FmQDfHtxhVaIZUOX/ALXih1r5OO4IG8csrajO+1leR6DaPH7w6nIBgNAADUzuree511Z/VcUMORlOaaY+aVr+lcr3G4VzaZomC0IMFlLq5As9Ht+oXWlWqnWYOmeVYEALSIQyV9WnsCwXokxSXN2Hv8cUk/kPSaMeabxpjuIA3uDVIrDlN7LeS4is+f7zhv3jj7ebXoeD9jzJSQbQAAAAAAAAAAAAAAAAB1Eav3AAAAAAAAAAAEk7VZZ13MhP9WX5CN7AlHGFc787tvqfygJvtc6xu8UOJe+/WbzqcUj3T4Xl8prtcwenyJSFK7cn1jziEYDQAA1MpAbrcef+dBz7r5ncfqgMTBNR6Rv4RpjLleo/D7hY/GFAWjOe5dqdBiSUpb7/lpVLGR8GlnMJpNKW/zipiIe47cpM9TfmHQYc4BAKAJTJB0haQlxpgPW2ufLXF+T9HxgLW2P2SfW4uOXd9OLO6r+Dpf1trdxpiUpNGTpcmSdoZpx4sxZoak6SEvO2y8/QIAAAAAAAAAAAAAAKB9EIwGAAAAAAAANImszTjrhjfthxFss3vp8LR2k/S5b6WCv9LWJxitxL327dcOqluTfK+vFNdrHD0+12fLLxgOAACgkn7Xd78ydsiz7uwpS2o8mtKSJcJ3azXXaxjWOxrNyIwp8wsuK8UVnlYwt/UJrRuyaSVNp1L5Ac/6zmhXyTE0Ir9njzDnAABQJ1lJayT9RtI6SZsk7ZLULelgSWdK+qSkGaOuOVzSb4wxC621r/q03V10XM43u4qvmVjlvkZPZlx9hfXXkpZWqC0AAAAAAAAAAAAAAABgDILRAAAAAAAAgCaRtVlnXbWC0djsPpbffSsV/OUXnFbqXvsFp9UycMz1GhIBwiNcwRMAAACVlLd5PdB7n2fd5NhUHd99So1HVJrfHNMvXLdVWXkHoylMMFqJ0GK/c0bPvf2DkQeVjHQ65+NBnrkaUZCAbEK0AQAN6n9Luslau9VR/5SkXxhjvqw9wV7/S/smGLMk3WWMOdlaR0rr2LCy0hOOsYonDsVtVrqvKQH6AgAAAAAAAAAAAAAAABpKpN4DAAAAAAAAABBM1macdTET/ncgBNvs3pwb+aspaqKKmw7PulLhC676iCIlw+18wzIChD5UynjCI9K2duMEAADta8PAU9qWecuz7szJ5ylaxty52vzm5rWc6zW6sbFo7nsXJDzYHWiW9Pyz6/pUfsCzvlmDpglGAwA0K2vtP/mEoo0+L2WtvVrS/yiqOknSJWG6DDO+cVxT674AAAAAAAAAAAAAAACAumq8Fd8AAAAAAAAAPPkFo5UT7hBkI3uzbuSvtkQkqUxuaEx5ukT4gl+omDFeMQ/7xE2HjCKyyo+pCxL6UAlZm1FOWc+6hCkdHlGrcQIAgPa2eue9nuURRXVGz/trPJpg/OZ67RiMZp0ZHmPnzK5nlqzNKGezvs9Krvn76FDiIKF1rveoWZ+nggRkN+trAwBgNGvtjcaYxZI+OKr4ryX92HHJ7qLjcv5BLL6muM169BXW9yT935DXHCbp7gr1DwAAAKBu/Nc1AAAAAAAAAABQKQSjAQAAAAAAAE0ia70DqSQpbuKh2wuykT1IeFo7SkQ6tTv3zpjyUqEVrmCwIMEDxhglIkml8gOh+60Uv2Cz0Z8V1+emHUM9AABAbW0f2qJn+9d61p0wcaEmx6bWeETBNMJcr5G4gtGMx6a7UsFlXdFu33ovhXNb91x9+PpBj/dNkpKRLue1jWx06LHzHJ4VAQCt42sqDEZbaIzpsdb2epxLMJoka+1WSVvDXFPql0IAAAAAaBauX2oBAAAAAAAAAEBlReo9AAAAAAAAAADBZG3GWRcrIxgt2Gb3cvbbtT7XvfMLDpOk9DiC0SR3mJ2r3UrzC+UYPTbX62nHUA8AAFBbD/atcIZqnd2zpMajCccVNFVqjtlOvPI0/AK6Ss/PSwejRU1UcdPh275rPh4kjLoRBQk9S5jmfG0AAHh4TNLOUcdRSUc7zu0rOu4yxkwI2d+MomOvADavvqaH6cQY062xwWiuvgAAAAAAAAAAAAAAaAhE8wMYRjAaAAAAAAAA0CQqHYwWZJN+kA3x7ajcgLIgwQt+XOfVKnDMr59EoGA0Qj0AAED1ZPJDerjvN551B3QcrHmdrnyLxlDvENxGYm3eUTM2Gc3vuabUPNkVnFbcZql5eCo/EKidZhHsWbE5XxsAAMXsnonHa0XFniFk1tq3VRiiJkkHh+zykKLjFx3nFZcXXxe2nx3W2uKxAwAAAAAAAAAAAAAAAA2JYDQAAAAAAACgSfgFo0VNLHR7QcK4mnUjf7W57p0rWGFY2jqC0UzQYDRXWEYjBKMlPf8c9HoAAIDxWrtrjfpzuzzrzpqyRMaMDdVqJK45YTvOoazjdz4aj2A0v4CuUvfOGVxsioPR/EPrggasNYtSoWcRRRUr4xkUAIAGVvyPud8/hhuKjueF7Gtuifaq1c/6kNcDAAAAAAAAAAAAAAAAdUMwGgAAAAAAANAksjbrWR5RVBET/lt9pTa77zknWGBXu3EFHLiCz0bqHYEJQe+zKyyjVCBbpbjGb2TUYRIjx+5gtNqMEwAAtKcHeu/zLE9GunTKpLNrPJrwnHOoEnPMVuQdi+Zt9Dy0WKn5pzO4uOi9cIfWDQejebeTjHT59t+oSj2fJCLJhg8aBAAgpGlFx9t9zn2m6Pi0oJ0YYyZIeleJ9lzl7zLGhJlcnBGwHwAAAAAAAAAAAAAAAKDhEIwGAAAAAAAANImszXiWx028rPZKBaPFTEyxMttudeUGf6WdgQmlQ+p8+7W1CRxzBbAVByOUGxwHAABQrldTL2lj6kXPuoWTzg0836on1/y8PcNlvaPRjMaGcUVMxB1cVmZwcfHnpVRoXSo/4FkfJIy6EZX6+9IMf58AAAjKGDNN0tyi4jd9LllRdHxOiO7OlBQbdfyktXaL14nW2s2S1o0qiklaFKKv4nF5pwgDAAAAAAAAAAAAAAAADYhgNAAAAAAAAKBJZG3Ws7zc8DLX5v6ResNmdxd3aEWp4AXv+lLvxTBXAIErsKzSnOMvCqJwBVPUapwAAKD9rN55r7PurJ4LajiS8jnDZUvMMVuRDRGMJo0nuNgd/Dua33uTtRlniHVnkwaIlXxWDPj8AgBAk7hYhesot0ja4HP+rySNnkScZow5MmBfny46/lmJ84vrPxOkk73jOXVUUb+k/w5yLQAAAAAAAAAAAAAAANAICEYDAAAAAAAAmoRrs33UxMpqz7W5fxib3d1cwWilgr9c9a72xp7nCnyoTVhG2rqC3TqLjus7TgAA0F52597R2l1rPOuO6HqXZiVm13hE5WEOVT7XvUuVHVwcbH6byg/6PgMEnec3mtLBaM35ugAAKGaMmSnpfxcV/5e11julVZK1dkDST4qK/1eAvg6X9KFRRVlJPy5x2e2ScqOOP2yMmV+qL4/x/Ke1jm/sAQAAAAAAAAAAAAAAAA2IYDQAAAAAAACgSeRs1rM8VmYwWtx0yMg469ns7pYsM7TCHbwQLITOFWaXLhHIVilBx+8aZ9ZmnJ9jAACAcv2u735l7JBn3dk9S2o8mvL5hW+1G1cWiTHeSxzcoXLlBhcni45d8/CUbx+lwqgbValnQdfzEAAA9WKMOcIY84GQ18ySdI+kmaOKhyR9LcDlyySN/i0WnzbGfNCnr6SkWyR1jCq+2Vr7sl8n1toXJd02qqhD0q1723P19aeSPj2qaEjScr9+AAAAAAAAAAAAAABoFO5fZQag3RCMBgAAAAAAADSJjM14lsdMvKz2IiaiDpNw1jfrJv5acAcj+AcvuOoT7r2MAfv1D2SrFOf4AwZH7GmjNmMFAADtIW9zeqB3hWddT2w/Hde9oMYjKp873Kv95k9WjmA0x/nlzpPHG/ybzg9qMOcXjNbl23+jShj/Z0FCtAEA5TDGzDbGzCn+T9KsolNjXuft/W+ao/n9Jf3CGLPOGPNFY8x8n3FMNMb8raSnJJ1cVP1Va+0fS72WvefcUFT8E2PM3xpjRoefyRhzlKT7JZ0+qvhtBQ8rWypp56jj0yX9xhhzZFE/CWPM/5D0f4uu/2dr7asB+wIAAAAAAAAAAAAAAAAaQqzeAwAAAAAAAAAQTNYZjFb+t/mSkU6lc8HCALCPOxihRPCCHd+9rndYhjsYrbPo2P16UvlBdUW7KzouAADQvp7tf1JvZ7Z41p3Zc56iJlrjEZXPFUZVKny3vXhHo7mCulI+9y5vcxqyac+64vm+a36byg/6vj/NGjYdMzFFFFVeOc/6oMHOAAAUWSPpkADnHSjpFUfdbZI+7XPtcZK+Lunrxpg+Sc9I2i5pl6RuSQdJOl7e6yZ/aK29JsD4hn1J0jGSLth7HJf0HUlfNsY8sbfPuZJOUuEkZkjSh6y1m4N0Yq3dZIz5sKRfSRoOXTtD0npjzFpJf5Q0eW8/04suv0fSl0O8JgAAAAAAAAAAAAAAAKAhEIwGAA1uYGBATzzxhF588UVt375dqVRKnZ2dmjlzpg4//HCdeOKJ6ujoKN0QPJ1zzjlavXr1yLG1tir9rFq1Sueee+7I8dKlS7Vs2bKq9AUAAACgdWXzrmC0eNltJiKdUm6nuw6e/IIR/LgCzIIGJpQT+FBJrvEX3w+/z06tQtwAAEB7eKD3Xs/yqGI6Y/LiGo9mfJwhuI5w3VZm5f3zGuMKRnMEdfnNPdN571A0KXjwbzqfUio/4FkXVWxcz2r1ZIxRMtKpgfxuz3qeFQEATWKy9gSIldIv6e+stTeFadxamzPGfEzSv0m6aFTVDEnnOy7bKulT1toHQ/a1yhjzIUm3al/4mZF08t7/vNwh6VJrrXfSKYARrM+rLtbnAQAAAAAAAAAAAADKQTAaADSgXC6n//zP/9Qtt9yilStXKpvNOs9NJpM677zz9Jd/+Ze68MILazhKAAAAAECt5eT9fDi+YDTvDf6l6tqdX0CZtVbGeAc2pB0BZkGDBcoJfKik4MFo7s8OwWgAAKBStg1t1vr+Jz3rTpx4mibFemo8ovFxzQnbc/4ULhjNFTTsG4zmEzhXPO/2m4e7QoqTkU7nc0EzSESSPsFoPCsCABrOBknXSjpb0kmSgnyz7QXtCRq7yVq7vZxOrbW7JV1sjPmJpL+XtNBx6g5Jd0paaq3dVmZf9xpjjpW0XHuC2KY4Tn1E0vXW2p+W0w/QLlifBwAAAAAAAAAAAABAYyMYDQAazG9/+1t94Qtf0AsvvBDo/FQqpbvvvlt33323Tj75ZP3gBz/QSSedVOVRhjdnzhy9+uqrkqRDDjlEGzdurO+AAAAAAKAJZW3GWIaAlgAAIABJREFUszwWGU8wmnuPoCtcAO5ghLxyytqs4h5hddbawMFiLu7AB+8whkpzhUckTOG4OkzC3UaNxgoAAFrfg72/knUEaJ3ds6TGoxk/15ywHedP3u+q5MhFc9876753fve1eN7tDK2zg+5gtGhzP0/5PQ/yrAgAKIe1dk4V294i6R8lyRgTkTRf0mGSDpTUIykpaVDSTkmbJf2+3IAyR/8/kfQTY8yh2hPMdoCkCZLekvSqpIestUMV6GerpC8YYy6XdIakQyTNktQv6Q1JT1prXxlvP0CrY30eAAAAAAAAAAAAAACNj2A0AGggy5cv1/Lly2Vt4XYPY4yOOuoozZ49W/vtt5+2bdum1157bczirMcff1ynnXaavvvd7+rSSy+t5dABAAAAADWQyTuC0cbxbT6/QK6gYV3tyC8IIJ0fVNwjrC5jh5RX3vOaoPfaHfiQUt7mFTGRQO2UyxX6UDyuiIkoYZKeQWqucDUAAIAwhvJp/a7vfs+62Yk5mtt5ZI1HNH6uuV4qn5K1VsY4UsFaknc0mnEko5UTKudXV9yeMxgtn3LPkU1zh4fxrAgAaFbW2ryk5/f+V+u+X5FU9WCyvSFrK6vdD9CKWJ8HAAAAAAAAAAAAAEBzIBgNABrEFVdcoRtuuKGgbOLEibr66qv18Y9/XAcffPCYa1566SXdeuutuv7665VOpyVJQ0ND+qu/+iv19/friiuuqMnYAQAAAAC1kbVZz/KYRwhXUH4BX3517c4vCCBtB9WtSWPL8+5AsKDBAn7vyZBNK1nl8AXXa/AaVyLSqXTOIxjNJ4ACAAAgqLW71qg/v8uz7qyeJU0ZIuaa61nllbFD6jCJGo+ofvLWOxhNzmA0d3CZS8qnrmNMMJoreC2lVH7As64z2uVsvxn4B6PxrAgAAIDmw/o8AAAAAAAAAAAAAACaR6TeAwAASLfddtuYRVeLFi3S+vXrdfXVV3suupKkefPm6atf/arWrVunY489tqDu7//+77Vq1apqDbllrFq1Stbakf8AAAAAoJHlXMFopvzff+C72d0EC+tqR34BZSlH8JdfKEPQEDq/AIJaBI65+vD6HLk+W34BFAAAAEFYa7V6572edZ2RLi2YdFaNR1QZvuG7bTeH8v6ZjSvuzj33dM+RXfc0bjoUNdGCMtd8PWOHNJDf7RhTc4eH+Y0/GTDYGQAAAGgUrM+rH9bnAQAAAAAAAAAAIAx+pARgGMFoAFBnL7zwgv72b/+2oOz000/Xfffdp9mzZwdq4/DDD9f999+vo446aqQsn8/rE5/4hLZv317R8QIAAAAA6idrM57lMRMvu02/QK5m38hfTf4BZd4BC2nrDmVImKDBaPUNy3D1ESYYrRYBbgAAoLVtTL2o19Ive9adNvm9vnOmRuY3J2y3YDTrDEbzjkZzPdf43Td36O/Ytvw+U33ZnaHG1Cz8Po88KwIAAKCZsD4PAAAAAAAAAAAAAIDmQzAaANTZVVddpd279/0m+Z6eHv30pz9Vd3d3qHZmzJihn/zkJ+ro6Bgpe+ONN3TNNddUbKwAAAAAgPpyBaNFTazsNv02+LPZ3S1uOmQc315NOQIW/EIZgoZ3+IUruPqtJHcw2thxlRNOAQAAEMTq3nuddWf2nF/DkVSWbwiuT8hua3L9ykfvYDTXs4t/MNr4Q38lqS+7w7O86YPR/J4VTXOGDwIAAKA9sT4PAAAAAAAAAAAAAIDmU/6OSQDAuD333HO65557Csquu+46zZo1q6z2jj76aF111VW69tprR8puvvlmLVu2TFOmTBnXWBvNSy+9pHXr1umNN97Qrl27ZIxRV1eXZs6cqUMPPVTHHXecurq6qj6OdDqt1atX65VXXtGOHTs0Y8YMzZ49W2eeeWZV+t+8ebMeffRRbd26VW+//ba6u7s1Y8YMLViwQHPnzq14fwAAAAAaiysYLWbiZbeZMO7N+smAYV3tyBijZCSpwfzAmDpXwIIruCyiSOD30Dcso8qBY9Za52sIEx5RiwA3AADQunZl+/TErjWedUd2Ha+ZHQfWeESV4zfXS7VZuKwzFs24gtHcc09rred1ace81CvQzC/kzB2MVv2fU1WT32smRBsAAADNgvV55WN9HuvzAAAAAAAAAAAAAKCeCEYDgDq64YYbZO2+rR3Tpk3TZz7zmXG1ecUVV+gb3/iGMpk9m+X7+/t100036Ytf/OKYcz/96U/rtttuGzl+5ZVXNGfOnED9rFq1Sueee+7I8dKlS7Vs2TLf9oe9+uqrzo0rkvSpT31Kt95665jydDqtb3/727rpppv04osv+o4vGo3qhBNO0J/92Z/pyiuvdC6COuecc7R69eqR49Hvh5++vj595Stf0a233qp33nlnTP3EiRN10UUXafny5TrggAMCtemSyWR0880363vf+56efvpp53nz58/XVVddpc9+9rOKxfgnHgAAAGhFWZv1LI+PJxjNJ3yBze7+EpFORzCad8CCK7gsEen0fU4eLWpiipm4Z0hetQPHsjarvHKedUmPgD3XZ6vaAW4AAKC1Pdz3G+e8+OyeJTUeTWXFTYciiiiv/Jg61xyzVbl+XmPkCEYz3nPPvHLK2qznM5Mz9NejLb9no77sTs9yv2CxZuD/rEiINgAAAJoD6/O8sT6vEOvzAAAAAAAAAAAAAKDx8FNZAKijFStWFBx/8pOfVEdHx7janD59uj7wgQ/orrvuKujHa+FVM3n99dd13nnnacOGDYHOz+VyWrt2rdauXauLL75Y8+bNq9hY/vCHP2jJkiV68803nefs2rVL//Zv/6a77rpLv/jFL8rua+3atfrYxz6mP/7xjyXPffHFF3XZZZfpX//1X3XPPffowAMPLLtfAACaTV92p57tX6u30puq2k880qG5nUfqyK7jFTXRqvbVrnZn39Gz/Wv1Tq5PR084QQcm5tR7SGgRu7K9eqZ/rTanX6/3UApETUxzkvN19IQTFY+Ufh70CsOSpNi4gtHcm/WbfSN/tbnunSv4yx2MFi5UIBFJKpsb+1l4qO+/9eLAM5IkY4wO6DhYx3S/W93RSc62rLV6fmCdXh7cUDKwzPX5Gx7T2DLv+/Py4HrdtfXWkePJsak6esKJ2j9xkG//W4be0LO716o3u8OzPhnp1LyuYzS/8xjfDV+1mjeE1RFJjMwzIiZSVhubUhu1YeBJ7cr2Bb4mZuI6tPMIHT3hBEVNZX9ksDOzXev7n1TapnTshJM1o2P/irb/Rnqj1vc/pUw+rXldR2t+57GBQwYBlFbq34iYiWtu5xE6out4xSPlz0WAMPI2pwd7V3jWTY1N13HdJ9d4RJVljFEikvQM332wd4We6/+D7/URE9GBiUN07IST1RmdUK1hjsvWoc16tn+tdma2+563eSjcs5vfs8vPtt3q+cz00uB6z/O95rYdJuFsP2OHHO009/MUwWgAAABoBazPC471eazPAwAgGH4eCwAAAAAAAACoDYLRgAaTszn1Zv03AmD8emLT6h5ksWnTJm3cuLGgbPHixRVpe/HixQULrx555BFlMhnF4825OW1oaEjnn3/+mEVXU6dO1XHHHaeZM2cqHo9r165d2rx5s9avX6/+/v6qjGX9+vV673vfq7fffrugfObMmTrxxBPV09OjLVu26JFHHtHg4KB27NihCy+8UN/4xjdC93XPPffooosu0sBA4Qao/fffX8cff7ymTp2q/v5+rV+/vuA3dD711FM69dRT9cgjj2j27NnlvVAAAJrIm+lX9e3Xl+qdXG/N+jxp4un6zP5XVjw8pN1tHXpT3359qXZkt0mSfr7N6OOz/kanT35fnUeGZvdWepO+vWmperNvlz65To7oOk6fP/AfS24udwVTjefrkV+AAJvd/bnuTyo/6FmedpSHDUxIRjrVn9s1pnzd7sfGlE2NTdflB/0fTfcIpMrbvH685Xt6uO83ofr34hmMZrxf1+ah18cEXfxsW1SfPeBKnTTxDM9rntr1iG5+83rllPUfyNvSuVMu1Eenf84zIKse84awFkw8W5/c/3+G/t7VQ72/1o+3fE9Wtqx+j51wsi494IuBQhqD2Dj4gm7cdI3683s+qz83t+mvDviSjq1QYM3v+u7Xj966UVb5PQVvS2f3LNHHZlxKOBpQAdZa3bHl+1rT96uS5x494SRddsCXKvb1A/DzTP/akWfGYot6zlOkBULME5FOz2C0P+x+NHAbszpm63/OXq6e+H6VHNq4PbP7cd305v/rDBILwjg23fk9u6zq/WWoPryekSImooRJKm39w4RH62zyYDS/Z0VCtAEAQDNjfV7t1HuNHuvzgmN9HuvzAAAIrryfRwMAAAAAAAAAEBY7uIEG05vdri//8bJ6D6PlXTP3B9ovPrOuY3jooYfGlJ18cmU2hr773e8uOB4cHNRTTz2lBQsWVKT9oK6//notW7ZMkrRo0SK98cYbkqQDDzxQa9ascV7X3d1dcHzLLbdo/fr1I8dz5szRjTfeqPPPP1+RSGTM9dZarV27Vvfcc49uvvnmCrySPTKZjD7+8Y8XLLraf//9dcMNN+gjH/lIwVh2796tf/7nf9Y//dM/qbe3N/RvBF2/fr0uvvjigkVX559/vpYvX65TTjllzPlPPvmkLr/8cj344IOSpDfeeEOXXHKJVq1apWi0+TeCAQDg52fbbqt5uMkTux7WyRPP0gkTF9a031Z3z/Y7Cja4W1n9x5bv66SJZ7DhFuPyi+0/auhQNEl6fuBpPdq3UmdNucD3vKz1DoWKmfI32vgFCIQN7Go3rq9N6bx3WIKrPGwAXcIEP39Hdpvu2f4f+swBfzem7qXB9RUJRZO8PythXldeOd3x1vd1fPfCMRvl8janH2/519KhaHut3HmPFk56jw5Kzh1T97Nt/19Dh6JJ0u93rdYpk8/WMRNOCnxNKj+o/9x6U9mhaJL0TP/jWrvrIS2cfG7ZbYz20223jISiSXu+ft3+1o269rB/H3dw2VA+rf/Y8oN9oWh7re69V6dOOldzOuePq30A0iup5wOFoknS+v4n9Ng7q3VGz/urPCpAemDnfZ7lMRPTGZNb4zNYiXDit4Y26dc7f6Y/n/GXFRhRZVhr9eMt/zquUDTJLxitcs8urvcgEUkqnQsejNbsz1P+z4qEaAMAgObF+rzaqfcaPdbnsT7PD+vzAAAAAAAAAAAAGhPR/ACGjf1pNQCgJjZt2lRwPHPmTO23334VafvYY48t2V8tTJs2TXPmzNGcOXMUi+3L4ozFYiPlXv9NmzatoJ2777674Npf//rXWrJkieeiK0kyxujkk0/WsmXLtHHjRh1yyCEVeT3f+c539NRTT40c77///lqzZo3+/M//fMxYuru7tXTpUt1xxx2KRCLauXNn4H7y+bwuuuiigt+quWzZMt13332ei64k6cQTT9Rvf/tbffjDHx4pW7NmjW6//fbA/QIA0IzyNqfnB9bVpe8N/U+VPgmhbBgYe0+zNqs/Dj5Xh9GglTTL39f1A0+WPCdrM57l4wlG64x0OesIJfTnCihL5Qc9y9PWuzxM0JkkdUYnhDrf6+urJD3X/4dQ7fjx+qz4fba89Od36bXUy2PK30i/qt25vlBtre8f+/dpz7yhcq+5mjZ4jN/Py4Mbxh0yUk6/Lqn8oF4e3DCmvC+3U1uG3hh3+36vd0OAr6UASnt69+Ohzn9x8JkqjQTYZ+vQm84580kTz9DE2OQaj6g6ws6hXJ4J+fe42t4a2lSRwOqo8f7db5V8dkk63gNXuUul3st6SUa8nzvipsP5PgAAAACNhPV5rM9zYX0eAAAAAAAAAAAAADQ+gtEAoE527NhRcDxlypSKtZ1MJpVIJHz7ayavvvrqyJ+PP/54zZs3L/C10WhU8Xj5AQHD8vm8vvOd7xSU/fCHP9TcuXN9r/vIRz6iv/7rvw7V11133aVnntm3kfBjH/uYli5dWvK6WCym2267TTNmzBgpu/7660P1DQBAs0nn08rabF367s+/U5d+W1Xe5tSf2+VZl8oPeJYDQWTyQ0rbVL2HEYjr78Borq95sXFsSj8wcahniMDBicOUiIQL7Go3rmCEtCMYbTDnXd4ZDReYMK/z6FDn9+d2ydqxvzMnbNiYy8HJeeqIJMaUz+sKN05J6s+N/fd1t0dZ6XbG/n1K51N1mzeEtTvA14OC87OVeS/LuddevN7HYYMV+Hfd77NbqdcAtLsdmW2hzk/n01UaCbDPA70rnHVn9yyp4Uiq67CQcz2Xndntytt8RdqqBL/5QRhzO4/0LO+IJHRIcn5F+pjXdYyjPPh7E1HUOdZmMbfzCEU8lpTM7xobAAEAAAA0ItbnBcf6PNbnAQAAAAAAAAAAAECjIRgNAOqkeCFUT09PRdsvbu/tt9+uaPv1snXr1rr0+8ADD2jjxo0jxwsWLNCFF14Y6NqvfOUroRZ/ffvb3x75szFG1113XeBru7u7ddlll40cP/300wXjBgCg1biCZ2phMEdYVyWl8+7gqkw+U8ORoNU0U7BekK8rWev99yFmyt9wEo/E9Sf7XVzUXkx/Mu2SsttsF8no2EA5yf25S+X7vdtxBKy5LOo5T1Nj0wOfb5XXkB0bWJOqwL+jMRMb8/kZNid5uN7VfUqo9rxCs8oJ0hr0uNeVCOSqlbBfuyrxXkqVu0cDOe/PuuT+OhbGoM/rTTkCCAGEszMbLhhNGhvACVTSUD6t3/Xd71l3UGKu5iQPr/GIqufsngvUE9tv3O1kbbZiYWSV4Pfvd1ATohP1vql/6qz/k/0uGldotCQd1nmUjp3wbs+690z5oLqjkwK1s3jqh9UV7R7XWOptQnSi3j/1QwVlCZPU+VM/UqcRAQAAAOGwPq88rM/zx/o8AAAAAAAAAAAAAKiN8a0KBgA0LGNMvYdQMUceeaTWr18vSXr99dd1/fXX66qrrqrpGNasWVNwfMklwQMCpk+frsWLF+uXv/xlyXP7+/v1yCOPjBwvWLBAhx56aPCBSjr33HN1zTXXjBw/+OCDmjNnTqg2AABoFmnrDtM6ouu4cQUFDds29Ja2Zt4cU16pABLs4RfEUokAFbQvv8/W4V3HKV6BrxNh9WZ36I30xjHlQYKQcjbrWT7ezf/vnfqnmtFxoNbtflSJSFLvnnimDu1snXCJaul0BJq5PneuMAhXOy77xWfo7w/+mn7Xd79eTb2kvHKSpHQ+rZcGn/W8JpUfUCKSLBqPd3jVfvGZmtVxYMlxzOw40PezEjERXXrAF/Vw3/16YeDpgs/4SwPrPf8d9/r31fV3I2461B2dpJ3Z7eNqR5KO6HrXuP8elWPr0GZty2weUx42gNX1XnZGJmhu5xFjyndktmvz0GuB2wnL72tvxg6Nu/2Uz/2p1GsA2p3X11ZJMorIKj+m3BKMhir7/TsPOL/Gnz1lSUv9TGRaxyxddfB1eqTvt9qYetHz79xoOZvTcwN/8KzbmX1bE2OV3fhfLtdcLGZiOqLrXb7XGkV0UHKuTpl0tmb6zFOP7T5ZVx50rR7ftUZbhjaFGl+HSeiwzqN0Rs9idUQSnucckDhYVx38df3/7N17mCRlfff/z92H6e49zuzBhbAgkg1hQVAR5LiAwUeyRCNBExT9RdFEEg1KHjzEmCdBRH8STX6BeBkTkwtMHhONgogGImhgUQiQ1RAUEFg5CArr7uzMsrvTPdOH+/fH7MxO99zf6qqePs3M+3VdXBdd1VV197FqZqvec+/zt+vp0uPB12Z5elAvXnaCXrbslETb71e/vuYtOjR/hB7c+30tTS/XK1acpfX5w3s9LAAAAKAvLKSfRTk/j/PzAAAAAAAAAAAAAKDfEEYDgB5ZtWpV3e3du3e3df2jo6OR25tPLrzwQt1www3Tt9///vfrxhtv1EUXXaRzzz1XBx98cMfHsHXr1rrbJ510UqLlTzrppFgnXt1zzz0qlw+EP4444ojEf1GyVqu/EOfHP/5xouUBAJhPxiPiZO/8hT9SIb10ztu4feQb+vLP/37W9DgBI8QXFTEhjIa5iPqsvvMXPqgl6WVdHM2k7++5W3//sz+fNT0qJDTF+jy0IwR57LITdOyyE+a8nsUklyoEp1vxzJLxXZdPGEaTpKHsGp275oK6aaOVXfrjH7/dHNPKmOM8ZcWvzFp3q9Iuo02D52jT4Dl10//fJ/+3nh5/fNb9i9XZz5EVwVqbPVgbl75E3x65afYygc+TFaaTpN8/5MNmAKOTbtv1VX11x+dnTU96nGG9li/Mb9C71//prOn37r5dn3/u6lnTkwbZLKHXcUo79utR35fEa4G5q/mqRsu7gvOGMqu1q7KjyyPCYue915bRm4PzlqSW6YTlm7o8os5blV0b+3is5mt676O/papmR5RHyjt1WP4X2z28llj776HM2uDxSqsOLxypwzsYeX7BwMF67ZoLO7b+fuOc0/HLT9Pxy0/r9VAAAACAxDg/Lz7Oz3sy0bY4Pw8AsLgtnDgsAAAAAAAAAKC/EUYD+sxgZo0+esTf9noYC95gZk2vhzDrRKiRkZG2rbtUKqlUKtVNW716ddvW323nn3++zj///LqTr+666y7dddddkqQNGzbo1FNP1WmnnaZNmzZp48aNbR/D9u3b627/0i/9UqLljzwy3kU4Tz/9dN3tL37xi/riF7+YaFuNdu0KX8QIAMBCEBW+yKXybdlGwYjVxAkYIb5S1X4tCaNhLqIiP3kjatVp1nZLtaK893LOPom03MEwGpKzX8vw+84Kc1n7mnaNRwqHqqx4VTc+G1YMLrRvt/b3hfSShOsJvy4ppZV1A9ZQO8oef7LjDOu7znotrXhsVKg00Xgixl/xs6MtSUU9PxyjAXP3fHV3MLAkTcaaCKOh2x4vPaJnxp8Izjtl5a/0JG7aT1IupcHsKg2Xfz5r3mhluAcjCrNit736uQwAAACLF+fndU+vz9Hj/Lz4OD+P8/MAAIjP93oAAAAAAAAAAIBFgjAa0GfSLq3V2XW9Hga64JBDDqm7/dxzz2l4eLgtJ0g9+OCDTbc3nzjn9KUvfUl/9md/pr/8y7+cdVLZtm3btG3bNv3jP/6jpMkTsd7ylrfokksuadtf4mw8MW7FihWJll+5cmWs+w0Pt/8ipT179rR9nQAA9IvxWik4PesGlHLptmyjXcESRIsKsZT9RBdHgoXGCuTkXL5t3xNJFVLhIJFXTeO+pLyzwwBWKDDj+DVfL1hBMyvk1ekYRM7l5eTkAyciJwuOhd+j7VRIx9+/WvuIfKpg7qfDIbjw819ILYkMEnaS9dpbET2LdVxifd9Y08t+QhVfnnNsMWq/3o7gaVT8jGM0YO5GyjvNeauya6XAV5T3XASDzrlz5GZz3qbBzV0cSf8azKwOhtFG+imMZhzfWMdzAAAAQKdwft7iwfl58XF+3txwfh4AAAAAAAAAAAAAtF+q1wMAgMXq1FNPnTVt69atbVl343oKhYJe+tKXtmXdvZLJZPSxj31MTz75pD71qU9p06ZNyuVywftu27ZNl19+uY444gh96Utf6vJI52Ziov3RDy5KBAAsZPZFte0JzEjR0Zuar7ZtO4tdVOCk4itdHAkWGiuQkzeiTN0Q9R1lhbOmVI3Pw1wjRmiNHc80wmhWvKpN70fnXERoK1lwrNPMoFlgnGbALbU0IrAWCsH13/eBfZxhh8VCrP1oPh1+La0wmmQH5BKNJxCmm9KOMFpU/Kwd4wcWu5HKjuD0rBvQsnSyC1KBuXq+Mqrv77k7OO/opcfrBQMHd3lE/WkosyY4PSp02G2dPhYGAAAAgEacn5cM5+e1jvPzAAAAAAAAAAAA2od/egEwhTAaAPTIYYcdpsMOO6xu2q233tqWdd922211t0866SQNDAy0Zd1TqtXeREDWrVunyy67THfeead2796tu+++W5/61Kf0ute9TsuWLau77+7du/WmN71JN95445y3OzQ0VHf7+eefT7T87t27Y91vzZr6i5c+/vGPy3s/p/+uu+66RGMFAGA+Ga+VgtNzqXzbthEVS7G2j+Ss6I3UnoAKFi8rFmTFiLqhkI4IEkXEfmq+qppqwXmE0XrDCoiN14qq+dmvlRmvauP70Y611W/bex8ZHOs0OwgWCrhZz1shYWDN+j7ofAjOYo2/4isq1+Lv/+zHFn4towIkVjAviah1lGtzv+gsKn4WFU0DEI8VUpoML7ngPC/OQEBn3L37NlUVjgOfObi5y6PpX4OZ1cHpo5X+D6N1I8oLAAAAYHHi/LzWcH4e5+cBAAAAAAAAAAAAQD8gjAYAPfSrv/qrdbf/6Z/+SeXy3KIPO3bs0E033RS5nSmZTKbudqUSvrgoZGRkJPng2iyXy+mUU07RZZddphtvvFHDw8P64he/qCOPPHL6Pt57vec971GtFo4HxLVu3bq624899lii5R999NGWthN3OQAAFqtxI+iSa+NFtVHxpKiAEZIpViMCKr79f7Ubi4d98X0Pw2gR244K+lS8/TNbxmXMeegc633k5TXhx+umVXzZ/D5rZ6jPDqPV7zPHfcmM2HQjTpEoaGZEsPKpJeZYS7WifMOfCepGmC6pqEBZKUGgLCoeF7IkIn7XjuObsYixR32XxRX1XTnhx1VtwzaAxWzECCkNZVcbWTSgM6q+qu+MfjM4b3X2BTpm6fFdHlH/GsquCU63Ps+9UDR+h9PLYzEAAAAACx/n580N5+cBAAAAAAAAAAAAAHqFMBoA9NB73/teOXfgUrIdO3bo2muvndM6r7766rqTt5YuXarf/d3fDd53xYoVdbdHR0djb+fBBx9MNK6Zj7NTBgYGdMEFF+jee+/VIYccMj396aef1ve+9705rfuEE06ou33PPfckWv7ee++Ndb9TTjml7rm67bbbZl3IDQAADhivlYLT2xl0ibpANyrKgWQagz0zVWrETdC6ohFUameIKqkBl1PK+LXBplxvAAAgAElEQVRcVJCo4u0LdTIuO+dxIbmo/U1jzKtUtb/n2hmDsENhjeOx32uFtB3NahfrMxgaV1T0q2AEvrxqGvf1xwn9GEqM2rYVDwne1wiMWs9PLlWQM/JGUbHSuKLeX1HfZbHX3+QYLOq4AkBzu8o7gtOHMmsl0mjooh/s/S8z7LVp5a8q5dJdHlH/GsqEw2ijleG++TcGK/ray5/NAAAAACx8nJ/XXpyfBwAAAAAAAAAAAADoFsJoANBDRx99tDZv3lw37YMf/KC2b9/e0voeeughffKTn6ybdtFFF2nVqlXB+7/gBS+YtXxcN998c6Kx5XK56f8fHx9PtGxSg4ODOv/88+umPfHEE3Na5+mnn153+1/+5V9iL7tjxw7deuutse67du1avexlL5u+/dOf/lS33HJL7G0BALDYWNGLnMu3bRtR0ZskwRJEKxoXSEvtCahg8erHEJJzztx+VOyn4u1IIGG03sino6JWDSGyiNe2ELGepKyoWWMkMCrC187AqLkN4zGHxmXt7wvppdFxuoblrDhdL2McUdtOEmC1niPr+Um5lHLGvKh9clxjHd6vNzsGs6KYAOIZqQwHpw9lw+ElSfLi4lG0352j4d+NZ1xWp658VZdH098GM6uD0yu+or3V57s8mjBr/93Ln80AAAAALHycn9cZnJ8HAMBixh/RAQAAAAAAAAB0B2E0AOixv/iLv9CSJQcu+hgdHdX555+vvXv3JlrPjh079IY3vEETExPT0w4++GD96Z/+qbnM8ccfX3f761//eqxtffOb39R9992XaHyDg4PT/79z5866v5rZCZlMpu72zBO/WnHGGWfo8MMPn769detWfeMb34i17BVXXJHo8f7BH/xB3e33ve99id8PAAAsFuO1UnC6FfpoRdYNKK1McF6SYAmiRQV6yn7CnAc0YweVenvxvRUrior5RMWEMi78PYXOShLlig6Rte/9aI2pcZ8VGWpLheNq7VSIOU5rmjT5WCPDYrNicOFYVy9jHNEB1njHGd578zmyQnmStMR4nceqcw+jRY29HWG0UpN4G8dowNyMlHcGp6/KrJUzL3YhjIb22j7xU/1o7H+C805YfrqWZVZ0eUT9LSpcOFIJf6a7rfHYbEo3orwAAAAAFjfOz+sMzs8DAGCx4t+EAAAAAAAAAADdQRgNAHrsqKOO0l//9V/XTbv77ru1efNmPfPMM7HW8dhjj+nss8/Www8/PD0tlUrpn/7pn7R27VpzuVNOOaXupK+vfvWr2rp1a9NtvfWtb401rpk2btw4/f+VSkW33357rOXGxsb013/919qzZ0/sbe3du1c33HCDuf1WpFKpWSdEXXzxxU3/0uUNN9ygz3zmM4m29du//ds66qijpm8//PDD+o3f+A2NjIwkWs+OHTtmPQ8AACw0VvAol8q3bRvOOeXTyQNGSCYqYNKOgAoWr34MIUl2rMgarxT9WUgTRuuJnMubgZjxHoXRrFBY3FBbSill3UDbxmOxHnNo326NNZ9aonxE5LBxOeu4wdrPd0PKpZVz4eMWKx7SaMKPq6ZacF5UOM5+DeZ+fFOMiKuV57hfL9fKqvhK9PYJowEtK9fKer4a/j1kVHgJaLctI7eY884Y3NzFkcwPy9Mrzaj7aGW4y6MJM4/FevyzGQAAAICFj/PzonF+HufnAQAAAAAAAAAAAEA/IowGAH3g7W9/u9797nfXTfvud7+ro48+Wp/4xCf09NNPB5fbtm2b/uRP/kTHHnusfvCDH9TNu+qqq3T22WdHbnf58uW64IILpm9Xq1X92q/9mm699dZZ952YmNDnPvc5nXzyydq+fbuGhobiPjxJ0itf+cq62xdddJE+85nP6Hvf+54ef/xxPfnkk9P/7dy5s26773nPe7R+/Xq9/e1v19e//vXIk7Duu+8+nX322Xrqqaemp5188sk68sgjE4035D3veY9e8pKXTN/+2c9+ptNOO01f+cpXVKvVX4C8b98+XXHFFXrjG9+oWq2W6PlKp9P6yle+ohUrVkxP+9a3vqXjjjtOf/M3fxP5+Hft2qUvfelLetOb3qRDDz1U11xzTYJHCADA/DPurYtq2xs46WQ4BJOiInPN4idAFOvi+6hYUDdY31PWeKXoMFrWZec8JiTnnDNfy9lRrvD33IDLKe3SbRvTXMdTSC2Vc+HYWztZn8Gyn6h7r9d8bVZkbuY6ouJ0jY/Rfsw9/j4w4m5xjzNaje4tMQONbQijdTB4Gud54RgNaN3uiIDSUMYOo/lODAaLVqlW1D3P/0dw3mH5DTq8MPff9y80KZfSYHZVcN5IeWdwereZx2IRoVsAAAAAaBfOz+P8vJk4Pw8AAAAAAAAAAAAA+l/4z0YDALru05/+tIaGhvSxj31M3k9eRrZnzx596EMf0h//8R/r6KOP1qGHHqqhoSENDw/rqaee0iOPPDJrPdlsVldffbV+//d/P9Z2P/rRj+qrX/2qRkdHJUk///nPdc4552jDhg067rjjlMvltH37dt17773at2+fJOmggw7SVVddlegvU/7mb/6mPvzhD0//lc2f/exns042m/LWt75V1113Xd20559/Xtdee62uvfZaOee0YcMGHXHEERocHFQmk9Hw8LB++MMfzvornkuWLNHf/d3fxR5nlGw2qy984Qs688wzNTw8eYHgs88+q9/8zd/UunXr9PKXv1wrV67U9u3b9Z//+Z8qFicv3F65cqWuuuoqvfOd74y9rWOOOUbXX3+93vCGN2j37t2SpGeeeUbvete7dMkll+jYY4/VYYcdphUrVmhsbEyjo6N69NFHY/8VUwAAFgorlJJL5du6HSuY0o5wCCZFBUzmGlDB4las7gtOj4oFdUMhZQWJwuOVoiOBGcJoPZNPLQnuDxq/16wAZLujXHFjntZ48un2xkUtUZ/BUrWoZZnJ9/SEH5c3cjv51JLpOF2s18DY1/T6+yCfWqLd2jVretzjjFJEXDTq/WU97jHjezMu77353SvNfb8e53nhGA1o3a7KDnPeUHaNHc/0pNHQPv/1/J3mz4hnDm7u8mjmj8HMag2Xfz5r+khE8LBbqr6iCT8enNfrYzEAAAAAiwfn5x3A+XmcnwcAAAAAAAAAANCvOCsZwBTCaADQRz760Y/qzDPP1Lve9S499thj09O993rwwQf14IMPRi5//PHH62//9m91wgknxN7mIYccouuvv17nnXde3V863LZtm7Zt2zbr/i960Yv0b//2b9q+fXvsbUhSoVDQV7/6VZ133nn66U9/mmjZRt57PfbYY3XPUcghhxyiG264Qccee+yctjfTMccco29961s699xz9eyzz05P3759u26++eZZ9x8cHNRNN92karWaeFuvetWrtHXrVr3pTW/S1q1bp6dXq1Xdf//9uv/++5uuI+lfDgUAYL4Zr5WC03Op9kZd4kZm0Lqo57LsJ7o4Eiw0JSOgWEj3OoxmfK9Uw+OVomNChNF6J2/scxrfe9b3XL7N70V7nxVvPO0OtVmiPoPF2j4t04rJ/48IbE2tw4rTNU6zAmK9jnEUzPdQvOOMqAhY1PvLCjSWIgKNcZT9hKqyQ45zDaPFeV6iYnEAoo2UdwanF1JLlU8V5GSE0YA28d5ry8js37VL0tLUcr18+eldHtH8MZRZE5w+Wgl/rrvJ+rlM6t7xJwAAAABInJ8XF+fncX4eAAAAAAAAAAAAAPRaqtcDAADUe9WrXqWHHnpIX/jCF3T22Wcrk4luWOZyOb32ta/V1772NW3dujXRSVdTfuVXfkX33XefXve618m58IVta9eu1fvf/37df//92rhxY+JtSNIJJ5yghx56SJ/97Gd13nnnacOGDVqxYoXS6bS5zMqVK7VlyxZ94AMf0Mtf/vKmz4ck/fIv/7I+/vGP69FHH9UrXvGKlsYa5aUvfakefvhhXXLJJVq+fHnwPsuWLdPb3vY2PfDAA9q0aVPL29qwYYPuu+8+ff3rX9erXvUq5XK5psts3LhRl1xyib7zne/ohhtuaHnbAADMB9aFtblUvq3bsaM3RDfaJSrqUvF2XAVopmgEfnodQrK2b41Xio4JpR1//6BX4sYzre+5docg4u6zrPF067MRtZ2Z+/eoiMbUY7VDgw1hNCuU2LffB/GOM6zjESennLOPiZakw2G0sTmG0aK+xySpXJtbGC3O8xL3uQMw24gRUFqVXRu5nOdvs6FNflx8WD+beCo475SVZ2sg1fx35IvVYGZ1cLoVPOymqN+fWMevAAAAANApnJ9Xj/PzOD8PAAAAAAAAAAAAAPoRV0wCQB/KZDK68MILdeGFF2rfvn363ve+p23btmnHjh2amJhQLpfTunXrdOSRR+r444+PdTJOM0cddZRuvPFG7dy5U1u2bNEzzzyjsbExrVu3Ti960Yu0adOmupOezjrrLHmf/GK3FStW6OKLL9bFF18c6/7OOZ1xxhk644wzJEnFYlEPPvigfvzjH+u5557Tvn375JzTihUrdNhhh+m4447TC1/4wtjjueOOOxI/BmnyhLBrrrlGn/zkJ3XHHXfoiSee0MjIiNauXav169dr06ZNWrr0wAXGrT5f0uRz8JrXvEavec1rVCqVdO+99+qpp57S8PCw9u3bp6VLl2poaEgbNmzQxo0btXp1+OInAAAWovFaKTi93RfVFlLhcEixSnSjXaIuko6KQQFRvPd9G0IqpK2Ylh2BsiKBKaWVcvz9g16x9jmN+wjrtW13iKxgxK5mj6d/w2gzo1ZR+4ep/bMdpzvwnFd9VePeOG4wPo/dYofd7O+DmezIXcG8wG5yvhFkm+PxzVg1Oow21/16Y/AueB/CaEDLdhkBpaHMmv3/F/5eIYyGdrlz9JbgdCenMwY3d3k088tQdk1w+mhluMsjma0YcVzT62g1AAAAgMWJ8/MO4Pw8zs8DACAZ+9+gAQAAAAAAAABoJ8JoANDnli5dWnfiUaetWbNGr3/967uyrVYUCgWdcMIJLf3lzU7I5XI655xzura9fD6vM888s2vbAwCg31mRmVybw2j5dHh9RDfao1ybMINPU/OBVoz7khnp6PXF92ZMq4VIYNZl2zImtMZ6LzXGO4u1cCyq3TFPa32l2pi899OhLCt+1a1oYNqlNeBymvDjs+bN3L9an4mUUsq6AUl22GzmsuMR0cFCm1+DpKzxxz3OsO5nhV2nLDEienM9vmm2/FzDaFHfk0nuAyBspBIdRuNSF3TS7sqI/nvPfwbnHbP05VozsK7LI5pfBjPhi7JHKsN1x4G9EHV80OufzQAAAACA8/PqcX4e5+cBABCNP5YDAAAAAAAAAOiOVK8HAAAAAABAK7z3s6IzU9odmbHCIlaYDck0i5fMNaCCxatkhJ+k7sWf7O0nDxJZAcEMYbSeihvPLFXD+4xm8aqkrPd2TTWV/YHQpPVesyJdnWBFMGZG28xxppZMxz2sxxwnsDa5rva+BklZ448b97Iid82Oh6ztjhkRv7iaLT/X/XqccBvxWqB1I+UdwelD2TVdHgkWo7tGb1VV4WPeMwc3d3k0889UwLBRxZe1t/p8l0dTz9o3Z1xG2RQ/zwAAAAAAAAAAAAAAAAAAAACoRxgNAAAAADAvVXxFNVWD83Iu39ZtWWGRuMESRGsWL7FiUEAzkSGkLsafgtuPEYRqZMWE0i7TljGhNXGjVkUjFmWF1Vplvbcax2R9ProZDSwYn8O6oJnxmZi5bJz9dNS+ptDmoGpS1msWN+5l3a+Qjg6+mYHGiO+hOIrVZmG0ue3X4xx/RX2XAog2UtkZnH4guOSC8718h0aExaLqq/ru7luD89Zk12nj0pd1eUTzz1B2tTlvtDLcxZHMZu2/ex2oBQAAAAAAAAAAAAAAAAAAANCfCKMBAAAAAOal8VrRnJdrc+DEisTEDZYgWrPASdlPdGkkWGiiQ0i9DaNZQSgrniVJVSMmlCGM1lPWPqfUsJ9qvD3FilO1yoqETY6heSgsKqzWbmYgsG6c4edt5rJ2WOzAslGhrG4+5pC4cT2LHRqJPh6ywmnF2j5533rgqNP79TjHX8RrgdYUq2Pm52coOxlGc0YYDZirB/bea8a7Ng1uVsrxz9rNLE8PKqV0cJ4VPewW+1i4t4FaAAAAAAAAAAAAAAAAAADQX+ZwOQOABYYzyAEAAAAA89K4t8No+VS+rdsygysRkRXEV6zaIShJqvhyl0aChcYKe6SU0oDLdXk09azvlbKfMANoZeOzkHHZto0LydlRrrGG2+HvumbxqnaNZ3IMM0Jhxuejm9HAOOFRKxY483kzw2Iz9i9WTCvjMsqmBpqOtZPivocs1v2aRfes562mmsZ9Kda2Qzq9X4+K3E0hXgu0JiqctCqztsnSnIGAudkyektwetYN6NSVZ3d5NPNTyqU0mFkVnDdS7nUYrfdRXgAAAAAAAAAAAAAAAAAAAADzB2E0AAAAAMC8NDPu0ijX5shMIW0EV4hutEXUaylJFV+R5089oAVRF98757o8mnpR8Snru8WKCRFG662Csc9pfP8Vje+6ZvGqpHIRcdCZQU8r7tnNOIUVhZv5GbD2ETOft7yxn565rLWefohxWM9DqRq9f5xihcKaRfei3nvN4maR4zFidlPmGkaLEz3jGA1ojRVGc3IazE7GlqxDKI7WMRfPjj+tR8d+EJx3wvJNWppe3uURzV9D2TXB6SOV4S6PpJ79s1l7f38DAAAAAAAAAAAAAAAAAAAAYGEgjAYAAAAAmJfGayVzXlQUphXWhboTflxVX23rthajZgEVr5pq4nlGcq3GgrohKoxmxZAqNSuMlmnLmNAaK6xVathPdSsGkXKpWMExKxxlxUA7wXzuqjODZs2fN+vzVIrxePvi+yAdDpQVa/tihUGt/Wiz6FvUaz2XsNhY0zBapeV1S82DqpP3IYwGtGKkvCM4fUV6cEaItbdxWSxMd47eYs47c2hzF0cy/w1lwmG0USN82C1F42ecfojUAgAAAAAAAACS4N+KAAAAAAAAAADdQRgNAAAAADAvWVEMp5SybqCt2yqkwsGSyXEQ3pirOIGTsg8HoYAo1ufTihB1U1QAwIocVRWOCR0IlaAXrLDWzPef994M9XXi/WjH2ibHUPVVTfjxRMt2ghXmmvkZsAOHS4L/P9PM18D8PojYx3eL9R6qqaayn2i6vLUfbfbeinrscwmjlYzXbEpljvv0ZkFVafJ9EycqB6DeiBFOGsqGQ0sz8ZlDq0q1ou59/vbgvMPzR+qw/IYuj2h+G8ysDk4fKQ93eST17NgtYTQAAAAAAAAAAAAAAAAAAAAAsxFGAwAAAADMS+O1UnB6PpWXc+39y5RWsEQijNYOxWrzwMlcIypYnKywT9RnulusIJRkR46sz0EmRRitl6yYQ8WXVa5NvmZlP6Gaqsby7X8/FowxTX0movZd1rKdYAfNijP+v/nn2BpzqVZUzddir6dXogNlMSJgLT62rBtQWpnwOqt7m27XMtZkzOVa89hblDhB1ZqqsaJyAOqNlI0wWuZAGM3J+lmLMBpac9/uO8zv9jMHN3d5NPOfFTIcNcKH3WIdr0T9XAQAAAAAAAAA6Ef8mxAAAAAAAAAAoDsIowEAAAAA5qVx48LpXEcCMxHBkmrzOAeiWRdIz1SpEUZDclYIKeoz3S1pl1HWDQTnWSGksvE5yDjCaL0UFZ+a2ldFfc914v3YLDjWL2E0O2i2b8b/h/ezhfSB5816Dby8Jvy4JKlYteJhvY9xRAdYmx9ntPpd55yrex5nirNvtjQLnlZ8peV1x1n/9P2I1wKJ7TLCSUPZtV0eCRYL7722jN4SnLcsvULHLz+tyyOa/wYzq4PTRyrD8r53F6vZkdreH4sBAAAAAAAAAAAAAAAAAAAA6D+E0QAAAAAA89J4rRSc3okwWtQ6S0bACPFFBXqmVDxhNCRnh5Da/z3RCisKZY3bigllXKZtY0JyUTGHqe+3qO+5TrwfrXVOjcN6j00u2704hbWt4owYmB3RKMz4/4jXoBr9GvRDjCNqDFGv1ZTSHL7r7O+h1o9vmgXJqqqo5mstrz9OLG7yfoTRgKRGykYYLbOm6bK9yy1hPnus+KCenfhJcN6pK/+XsqlwSBi2ISOMVvFl7a0+3+XRHGDtv/vlZzMAAAAAAAAAAAAAAAAAAAAA/YUwGgAAAABgXrIuqs2l8m3fVjaVVcZlg/OKMeMcsDULqEhSmTAaWmBFcQqppV0eSZgVQ7LGXSWM1pfy6ah45uQ+IipuVUi3//1ovreq+8cTFWqLeDztZkW5Zn4GrLHOXLaQjgiLTcXgjP111LLdkkvl5eSC85rFvWq+qnEfjsXGeW+ZYbQ5RMWKMaKx1vdZM9772MGzOFE5AAd47zVSCYfRVmUPhNGs7yvSaGjFnaM3B6c7pbRp8Jwuj2ZhGMraIcPRynAXR1LP/tms98diAAAAAAAAAAAAAAAAAACgf3hOSwawH2E0AAAAAMC8NF4LR0Dyqc4EXeLEW9CaUoxwSYUwGlpghX26GX6KkjeCTNa4rc+BFW5Ed0Ttd6b2Eda+wslpwOXaPybjPT4VrLLGk3UDXX0/mZ+B6pj8/n/JssY6M/5mheBmLl8yYl1Ry3ZLyqWUM95HzQJlVihWkgoxjomseFqcuJmlWG2+bNlPtLTuCT+ummqx7ssxGpDM3upu81hjKBMnjAYkM1rZpfv33Bucd+yyE7Q6+4Iuj2hhWJ5eqZTSwXlW/LAbrJ/7O/U7HAAAAAAAAAAAAAAAAAAAAADzG2E0AAAAAMC8ZIVAci7fke1Z4ZRmwRI0F+c5JIyGVlhRHCt02G12cDH8/WZ9DtIu07YxIbmMyyrrBoLzivtfS+t7LpcqKOXa/yvaZu8tazzd/mxY+9aaqir7CdV8zfw8zBzrgMspZfyqe+qxFo319EuMo9UAa9Q+NJ8KR8/ibLcYI1oaUvVVjftwvHamiq+0tP4kx10cowHJRAWThrJrzHlTvPjTbEjmu6PfVE3V4LwzBjd3eTQLR8qlNZhZFZw3Uu5hGM06pjMirQAAAAAAAAAAAAAAAAAAAAAWN8JoAAAAAIB5adx3N3BirbfUYjgEBzSLvkhSmTAaWmBFcawYU7fZwcV9welWGC3jsm0bE1pj7iP2vwe7Hemz3lvT4zH2Xd3+bEQ9/mJtTONGQEOS8ukDyzrnIh7z5Dqsx9wvocRWA6xRAbNCjGMiK0ZifQ81E3e5VoOnSY674hxfADhglxFMSiuj5enBLo8GC13VV3TX6K3BeWuzB+uoJS/p8ogWFitmOFoZ7vJIJkWFU/slUgsAAAAAAAAAiMv1egAAAAAAAAAAgEWCMBoAAAAAYF6yYim5VL4j27PDIUQ35irOc9hqQAWLW7+HkKxxlKrh77eKrwSnZwmj9ZwdRpt8Lbsd6TPfW/vHYY4n3d3PRlQIo1Qbi9w/NC5rratY3bd/fVZQtT++D1oNsEbFv/Kp8LHLTAXjPq2G0eKGy1rdryc57uIYDUhmpBIOow1mVyvlDvxzonNc7IK5u3/PPdpdHQnOO2Nwc917DskNZlYHp4/0KIwWGbvtk2MxAAAAAAAAAEBcvtcDAAAAAAAAAAAsEpleDwAAAAAAgFaM10rB6bmIyMpc2NEbohtzFec5JIyGVnQ7RpVUwYhQWUEi63OQIYzWc9Z7aur7rduRPms8xf1RCut7t9ChfajFinJJkyGzqqvGXtZ+DabidOHPlfU57LZWA6zW/IzLKJtq/t2wxAqjxQycNRqLGVRrdb+e5LgrbqQNwKSRcjiMtiqzJtby3nMRDOLbMnpLcHrWDeiUlb/S5dEsPEPG59b6nHdadOy2P47FAAAAAAAAAAAAAAAAAAAAAPQXwmgAAAAAgHlpKnTSKJfKd2R7VrzFGgfiqflqrOeQMBqSqvqqJvx4cF6/hJCaxbQaWZ+DtONXfL1mxzOnolxGpK9D78VmMU87GmiHyjohl8rLyckH/qJ0sbpP1VTFXLbxMVqf61JtTFVfUdlPGOvpl++D1gKs1vy4r6X1HrRCcs00C7lNKbe4X4+7/qT3BSDtquwITh/KNgaWXPB+oe9yIORn409pW/HB4LxXrDhTS9LLujyihWcwuzo4fbQy3OWRTIo6nul2mBcAAAAAAAAAAAAAAAAAAADA/JDq9QAAAAAAAGjFeK0UnG6FRebKWm+r4RBMsl7HRuUaYTQkE3Xxfb+EkAqJw2jhSFTGZds2JrSmWeTOek2t98Ccx2NFwqpFee8jxtPdMEXKpZSLiMpZYauU0sq6gbpp1mtQrI1FBjg79RokZX8fRMdDreco7mtpbbfVqFixGu+4qNLifr1ZKK7V+wKQRso7g9OHMo1hNGButozeYs47Y3BzF0eycA1l7DCa992PGJaq9vFMv/xsBgAAAAAAAAAAAAAAAAAAAKC/ZHo9AHSPc265pNMlrZe0RtIeST+T9EPv/aNt3E5W0mmSDpN0sKS9+7fz3977J9u1HQAAAACLmxXUsgIrc2VHb6KDJYgWN7xS8YTRkExUEKdfQkhRIacQ63NAGK33zH3E/giE9Zp2LuYZHk9VFZX9hIpVazxLOzKeKPlUIfh5Ldb2qWrEAAvpJXLO1U+LiNNZj3dq+/0g6ffBlJL5Wsb7nisYr3ncwNms5WIGY1vdr1uPNzwWwmhAEiMVI4yWXVt32wXvBcRTrI7pvt13BOcdkT9Kh+aP6O6AFigraFj2E9pX3aNlmRVdHY91fJBxGWVTA8F5AAAAAAAAAAAAAAAAAABgcer+n4AF0K8Ioy0CzrnTJP0fSWfLeM2dc/8j6bOS/ta3+KfCnXNrJX1E0gWSVhn3uVvSX3rvr29lGwAAAAAwZdwIkuVT+Y5szwyuJAh0YLZOB1SweEWHkPojjGZ/r4S/3ypGJCrj+BVfr+XT4bjWVPDLimhaUaq5KkTEvkq1ohkOLBiPo5MKqUEmqwYAACAASURBVCUa1fCs6aVaUTVXCy4T+gzbAdOxJqHE7sfgQlo9zrDiX4V0vMdl3W/cl1T1VaVdOtZ6pscTM6jW6n49SeyMeC0QX9VXtbsyEpw3O7AUTqN5TkFADPc+f7vGfThyfubQ5i6PZuEazIbDaNJkBLHbYTRrn9wvP5cBAAAAAAAAAAAAAAAAAAAA6D+pXg8AneOcyzrnPivpu5LOUXQI7yWS/kbSHc65Q1vY1mZJP5T0+zKiaPudKukrzrn/65zrj6sOAQAAAMxL47XwxdS5iBjMXOTT4Qt2kwQ6MJsVgGpEGA1JRYWQ+uUCfPt7ZZ9C3Xrrc5Bx2baOC8nljX3P1D7CiltZy819PPZ7vFQbM/dd+R5EwqyxFqv7zHhmKPxmvgbV6DBap44bkmr1OMN6bHHfW0siXvOo580yFjN4Wm5xv55kTHEjbQCk3ZVd8grHKFdFBJaAJLz3unP0luC85emVeumyU7s8ooVrRXqlUgrHTUcqO7s8mrkfrwAAAAAAAAAA+kn4j+gAAAAAAAAAANBuUaEszGPOuYykr2syiDZTWdK9kp6RtFSTQbTDZsw/Q9JtzrnTvPfDMbd1lqQbJQ3MmOwlfV/S45IGJb1M0syrZ94saYVz7jzvffhqGwAAAAAw1HxN4767YbRQhEVqLRqCA6zoTaOyn+jwSLDQWDGhjMsqm+qPkFjBCELVVFPZT2jA5eqmV30leP+M41d8vWbFvUq1yfij9X4spDsTIrPeW5NjskNhUct1irXNUq2omhHpCQXcCkZYrFQrzuvvg2bHGeZ7K2bkLuo1L1b3aWl6eaz1TIl7XNRq8DRJkHbq8weguV3lHea8oUx9GM2ZF7vMjroCMz069gM9N/FMcN6pK/9X3+yTF4KUS2sws0q7KrM/26PlWP/821ZFY5/cL8FqAAAAAAAAAEAS/JsQAAAAAAAAAKA7Ur0eADrmKs2Ool0jaZ33fpP3/k3e+1/33r9w//0en3G/X5Z0g3Ou6Z9ycc6tl3SD6qNod0k6xnt/gvf+t7z3r5a0XtJ7NRlmm/JaSVcmfWAAAAAAMOHHzXk5l+/INkMRFonoxlzFff4qRhAKsPRT+MkSFS4KRQOtkFDGEZHotbwRzxzf/x1nvR+t5eYql7L3hcWIUFgv4hR5M2hmB9xCz5sdp+uvEJwlavxR5vreiorzJYmQTRmrxguethpGSxKkjRtfBSCNVHYGp+dcftbxihVG4xIYNLNl9ObgdKeUNg02/pMm5mowszo43fq8d5J9vNI/x2IAAAAAAAAAAAAAAAAAAAAA+gthtAXIObdR0qUNky/z3r/Xez/SeH/v/a2STlN9HO0MSRfE2NxHJA3NuH23pFd57x9u2Ma49/4aSb/VsPz/ds69MMZ2AAAAAGBaVEwrKgYzFwUjMFL2Ey3HPRA/usJzjKSK1f6/+D4qXBQaf5kwWt+yAltT33HWd11UHG8uUi5thkKL1X0qVcP70YIRKeukqOfO+hyHlolcj3Hc0E/fB9b4S7Wiar5mLmc/R/HeW1HPwVgLYbFO79etxxtCvBaIb6QcDiWtyq5VjL+hAzQ1Ut6pB/beF5x33LITtSq7tssjWviGsmuC00cqw10eSfcjwQAAAAAAAAAAAAAAAAAAAADmP8JoC9MHVf/afst7/5dRC3jvn5P09obJH3fOpa1lnHO/JOmtMyZNSHqb974UsZ0bJX1+xqScpD+LGhsAAAAANBqPCF106sLafERgxArMoLliNV50hTAakrKCOFZ8qBcK6YjvlUA8wPocZFymbWNCa6y41FTUytpvdTIGkTciZ3uru1VVxRhP9z8f1nNQqo1FRDRmj9N+DcZUMkOJ/RPjsMbi5TXhx83l5hoaSTeJ6CVVjBlTs0KPzSSJnY03icoBOGCkEg6jDWXCYaUQL9+u4WAB+u7ub6qm8HfymYPndnk0i8NgZnVw+mgPwmhzDbkCAAAAAAAAAAAAAAAAAAAAWHwIoy0wzjkn6dcaJn8qzrLe+y2S/mvGpBdJOitikQslzQyn3eC9fyzGpq5quP1bzhlX3wEAAABAQFQYLZfqzI8XhbQdGIkbAcFscQMn5RphNCRjfS6tWFQvDLicnFxwXjEQO6r6cMwq47JtHReSsyJU47WixmtFMxbTyRCZtW4rfiP1JhxoBTGK1bHg50CSCoHPsR1YK2rM+j6YJ6HEqECZFUaLWl/c+7ZyfNPp4GmSMXl5jdfMv+EBYAYzjJadHUab/GeoAE8YDWEVX9Zdo7cF560bOES/vOS4Lo9ocRgywmgjZftYsFPMkGvE71kAAAAAAAAAAAAAAAAAAMDixGnJAKYQRlt4jpY080qVCUl3JFj+3xtuvyHivr/RcPvaOBvw3j8s6d4Zk5ZKenWcZQEAAABAkkoRkYucEUaZq6h4Sty4F2aLGzhpNaCCxcv6XPYi/GRJuVREzKk+HlDzVdVUC96XMFrvWa+jl9doZZe5XCjw1S4FY0xRMQzrcXRS1GfA+hyHlokKge02XoNOPv9JRT33UccZVjwuyWtpfS9a647S6f160mMu4rVAPLvKO4LThzKzw2hAUvfvuUfPV0eD884Y3GzH9jAnobChJI1WhuW7fMbQfPjZDAAAAAAAAAAAAAAAAAAAAEB/yfR6AGi79Q23H/PejydY/gcNt38tdCfn3EGSXjJjUkXSXQm2c4ekk2bc3izppgTLA4vG2NiYvv/97+uxxx7Tzp07VSqVVCgUtG7dOh155JF62ctepoGBgbZs6yc/+Yn+7u/+Tlu2bNGjjz6qkZERlcsHLlS99tpr9ba3vS247H333adrr71Wd999t55++mnt3r1btdqBi/afeOIJHX744ZKks846S1u2bJme1+2LcAAAwPw3blxUm3UDSrt0R7YZFUZrJRyCSXGfO8JoSMqK4UR9lnuhkFoa/Bw0Tqv4irkOwmi9F/W+Gq0Mt7TcXFnrHokYTyFlx8U6xQqalWpFVY0YYOixRYXARirhGFw/fR9EB1jtfaU1L0loxHrdS9UWwmgxl2l1v16sJgudEa8F4rG+J8NhpXDEyovf8SJsy+jNwek5l9fJK17Z5dEsHoNG2LDsJ7SvukfLMiu6NhbreKUXUV4AAAAACOH8PAAAgCT4gycAAAAAAAAAgO4gjLbwrGq4Hf4T7LbG+x/qnFvpvd/dMP3FDbcf8N4nuSrt7obbxyRYFljwqtWq/vVf/1XXXnutbr/9dlUq9gXw+Xxe55xzjn7nd35Hr3nNa1re5uc+9zldcsklGh9P0lKUKpWK3vWud+lzn/tcy9sGAABIarxWCk7PdfCi2rRLa8DlNBFoT0cFSxAt7nNX9hMdHgkWGiuGkyQW1A1WDKAxSBQVEco4fsXXa/l0a2G0Tr4frXWPlMPxGyenXCrfsfFYrM9AsbZPVVWD80KPLSosZj3mfvo+GHA5pZRSLRCDsyKi5dqEGU1MEn0rGO/fMSMwafHem1HKRuVa8jBazVc17sPHgBbitUBzE7Vx7avuCc5blVk7axqXuiCJZ0pP6sfFh4PzTlxxphlIxdyFw4aTRio7uxpGKxo/m/VTpBYAAADA4sP5eQAAAK0iuAoAAAAAAAAA6I5UrweAtmu8UjyXcPnQ/Y+OMW1bwu38OMY2gEXpP/7jP3T00Ufrwgsv1G233RZ50pUklUolfe1rX9NrX/tanXjiifr+97+feJs333yzLr744sQnXUnShz/8YU66AgAAXWcFjzoddLEu2i1WiW60Ku5zZ4VfAEuxGo7z9NvF91YMojHmE/UZyLhsW8eE5Ky4l2RHuVJKK+sGOjUk870+UgmPJ5cqKOW6/+viQir8GSjVirMCgVNCjy0qcmbF6frp+8A5Z47HiohGxUWt2FnwvsZrEDdyNmXcl4Jht5BW9utWGDcK8VqgOWu/IEWHlYA47hy92Zx3xuDmLo5k8VmRXqmUcSpAVLi3E6z9cT9FagEAAAAsLpyfBwAAAAAAAAAAAABA/8v0egBou8Yz2Q9OuHzo/r8s6T8bpm1ouP2ThNt5quH2aufckPd+JOF6gAXlIx/5iD7ykY/I+/q/pOSc08aNG7V+/XqtXr1aO3bs0E9+8hM9+uijdffbunWrTjnlFH3605/W7/7u78be7oc+9KG6bV544YV6xzveoUMPPVTZ7IEL7Nesqb8Qbvv27fqrv/qr6dsDAwP6oz/6I5177rlau3atUqkDF92sX78+9ngAAACascIYUWGadiikl+j56uwfW4hutC7uc1fx5Q6PBAuNFVBMEgvqBut7q/GzEfUZyDh+xddrOZeXk5MP/GVkKzhTSC+Rc65jY8qnw++tsm/8uwr779/hfajF2q6X17g39veBz3HWDSiltGqqzppnPeZ+i3EU0ks0Vts7a7oVEW0MKM6UJPpmhtGMwKTFCtmFVIzXJErU4zWXIV4LNGUFPCVpMLN61jSn8L4rtA/E4jZW3av7nt8SnPeLhY1anz+8uwNaZFIurZWZVcFj0ajPfSckid0CAAAAQKdxfh4AAAAAAAAAAAAAAPMDV00uPD9quH2Ic2699/6ZmMufEpi2MjBtsOH2z2OuX5Lkvd/rnCtJyjdsZ05hNOfcCyStTbjYL85lm0C7XHrppbr66qvrpi1fvlwf+tCH9OY3v1mHHXbYrGW2bdum6667Tp/61Kem/5rkxMSE3vnOd2rfvn269NJLm273kUce0QMPPDB9+9xzz9UXvvCFWGO+8cYbNTFx4ELWK6+8Uu9///tjLQsAADAX40bwKOfywentYl2020qoA5PihtGsqA1gKdbCQZ9+u/jeDBIlCqNlzXnoDuec8qlCcH8wUmn8OwaTOv1eTLp+673Yaa08D4VATM05p0JqifbV9iTYdm9icBbrubD2lVHHH0mib1YwMunxzZjxvRvSSvA06phhwOU04ccDyySLuwGL0a7KjuD0ZemVGkjlAnM6F/XEwnLP87cHv5sl6czBc7s8msVpKLMmHEYzjk87oeariWK3AAAAANBJnJ8HAAAAAAAAAAAAAMD8kWp+F8wn3vvnJD3SMPn/ibOsc26ppPMDs5YHpi1ruB2uEkRrXCa0naTeJemHCf/7Whu2C8zJ5z//+VknXZ1++ul66KGH9KEPfSh40pUkbdiwQVdeeaUeeOABvfjFL66bd9lll+mOO+5ouu2tW7fW3X7DG94Qe9ytLnvHHXfIez/9HwAAQFIlI4zW6cCJtX5rPGgubnSl4isdHgkWGutzmSQW1A3W90qxmiSMxt8+6Ac547UcLc+OUUidfy8mDY71KhJmRbmi5I2IW9K4Rivb7iTz+8DYV5aq9j40yetpBhqryaJiSe7fyn698XtxpqFs+G9lFDlGA5oaMfZTQ5nVCdfE73lxQM3XdOfILcF5K9KDeunyk7s8osVpMBv+HIdiaZ0S9fuSUOwWAAAAADqF8/MAAAAAAAAAAAAAAJhfCKMtTP+34fYHnHOHxFjuo5JWBqbHCaOF/9R3tMYz4RvXCSwKjz76qP7gD/6gbtqpp56qW265RevXr4+1jiOPPFLf/va3tXHjxulptVpNb3nLW7RzZ/QFLtu3b6+7HXebc10WAABgLsZr4R9Bcql8R7drRWyKtWThEBxQih1Gs6NQQCPvvRnQ6VX8yWLFqxo/G1ERoYzLtnVMaI21jxipDAenJw2XJZU0NFFIh+NYndbK82A9tqSPudOvQVJWoMzaV1rBtJzLK+XSCbZrHd/E20cfuH/846FyC/t163lIK6Pl6dCvtaUSx2hAU1YgaZURHHTGeri8FjM9MvaAfl7+WXDeaYOv5vi1S4Yya4LTR43j006ICqP127EYAAAAgIWL8/MAAAAAAAAAAACA+YPzkgFMIYy2MH1a0u4Ztwcl3RIVR3PO/W9JlxqzazG22cq+hf0RIOl973uf9u7dO317cHBQ119/vZYtS9YKfMELXqCvfOUrGhgYmJ7205/+VB/96Ecjl5u5bUnKZuNfkDSXZQEAAOZi3IcvrM11OHhkBoyq9oW+sJVrE5Gxp8b7AnFVfFlVhd9bVnioV6wYVWOQKCoOSFiiP1j7CCsWZcWo2iVpaKJX0cABl1Mq4a+prceW/DH3V4zDeg2sQJkVCksauYv7PdRMkjBaK8FTazz5dMGOu3GMBjS1q7wjON0KKslZaTTggDtHbwlOTymlTSvP6fJoFq+hzOrg9NFyN8No9vFEvx2LAQAAAFi4OD8PAACgnfi3IgAAAAAAAABAd2R6PQC0n/d+1Dn3dknXz5h8rKSHnXOflXSLpJ9JKkh6qaR3SDp9xn2fkTTzz8qNBjazt+F2K1dONi7TuM5WfEbSlxMu84uSvtaGbQOJ/ehHP9I3vvGNummf+MQndNBBB7W0vqOPPlrve9/79PGPf3x62j/8wz/o8ssv19DQUHCZWi1O+zBsLsu2w0MPPaQf/OAHGh4e1sjIiPL5vNauXauNGzfquOOOUy6Xa2m9lUpF9913nx5//HHt2LFD4+PjWrt2rQ4//HCddtppyufzbX4kAAAgqfFaKTg9l+rsfrqQNsJoCcMhmJQkuNJKQAWLV9R7K5/uTfzJYoWQGr9Xoj4Dacev+PpB0rBYp0MQScNrnQ61WZxzyqeWaKwW71eDGZdRNjUQnJf0Oe3VY7ZY4cZSNfydZobCEr4X7ajYPnnv5WJGkIrGOEMqPnnw1AzBpZZEHKPFj7UBi9VIJRxIGsoaYTSD9/wtHEzaVd6hB/b+V3DeS5adpMFsONaF9hs0PscjlZ2J9vFzEXV80G/HYgAAAAAWJs7PmxvOzwMAAAAAAAAAAAAA9ApXTS5Q3vsbnHPvlfT/SUrtn7xc0vv3/2e5RtJKSW+dMW3ehNG89z+X9PMky3TjpH/AcvXVV9ddMLZmzRpddNFFc1rnpZdeqk9+8pMqlycvmt+3b58+97nP6QMf+IAk6cknn9SLXvQic/lXvvKVwenXXnutJEWOz/o8PfHEEzr88MOnb5911lnasmXL9O0kF809/fTT+vM//3N9+ctf1vbt2837FQoFvfKVr9Rb3/pWvf71r1c6nW667ocfflhXXnmlvvGNb+j555831/vrv/7ruuKKK3TkkUfGHjcAAGivUq0YnJ40BJKUFVxJEvjCAUmCchVf6eBIsNBEvbes8FCvWONp/F6xPgMppZVyqeA8dFfiKJcRcmqXpOPpdKgtSiEdP4wWNc6kcY1ePuYQK9xoHWfYobBk33OF9LLg9KoqKvsJDbh4F7aNJYiQtbJft0NwSyKO0cLHjAAmee81Ut4RnDeUWRuc7mT9mwphNEz6zug35RW+aPuMoXO7PJrFbSgTDqOV/YT21fZoWXpFx8dgHa+klVHGZTu+fQAAAADg/LxJnJ8HAADah38TAgAAAAAAAAB0B1dNLmDe+2skbZb0SIy775X0bkmXSjqkYd5zgfvvbrgdvkLG4JxbptlhtFCADVjQ/v3f/73u9m//9m9rYGBgTutcu3atXvva10ZuZz7y3uvKK6/Uhg0b9OlPfzrypCtJKhaLuvnmm3XBBRfo6aefjrxvtVrVH/7hH+rFL36x/vmf/9k86WpqvV/60pd0zDHH6Oqrr27psQAAgLkbr5WC03Opzv7laCu6kSTwhQOSBOUqvtzBkWChiXpvdTqgmJQ1nlK1MYwW/gxkiQn0DStqZd6/w1GupONJGhVrpyTPRdRnOHEMLuFz1Gn2cUY47lWsWqGw9r32xQSxsyTHQ+UW9ut2CG6J+RhKCcYPLEZjtb2a8OPBeUPZcFAJiFKulXXX7tuC8w4eOFRHFl7c5REtbkOZ1ea80fJwV8ZgRUrz6QJ/vAoAAABAV3B+XnycnwcAAAAAAAAAAAAA6CeZXg8AneW9v9U5d4yk10k6V9KpktZJWi7p55KekHSjpC9475+TJOfcUQ2r2RpY9WMNt1+YcGiN99/lvR9JuA5gXnvmmWf05JNP1k179atf3ZZ1v/rVr9YNN9wwffuee+5RuVxWNjs/L5ivVCp64xvfqOuvv37WvIMOOkjHHnus1qxZo/HxcW3fvl3/8z//o71798Zad7FY1Hnnnadbb721bno2m9VLX/pSrV+/XrlcTs8995zuu+8+jY2NTY/p0ksv1cjIiC6//PI5P0YAAJDMuHFhba7DwSM7ukEYrRWN4acoZT/RwZFgoYl6b/VbGK2QXhqcPu5LqvmqUi4tSar4SvB+GcJofSPpe6vT78XkkbBehtHiPxeFVPgzI0mFhI+hlzG4EGs8VuzRDIW18XkoVse0MrMq1nrGqvEjZJVa8jCaHYJbYr7frRgLgEkj5Z3mvFWZZGE0P9fBYEH47713a2+18W8rTTpjcDMhrC5bkRlUSinVVJs1b6SyU+v1oo6PwTpe6XQkGAAAAAAkzs9LgvPzAAAAAAAAAAAAAAD9hjDaIuC9r0q6Yf9/kZxzh0paP2PST733Pw3c9eGG2xsSDuuIhtsPJVx+wapUvZ4hEddx64ekTLq3F+Dcdddds6adcMIJbVn3y1/+8rrbxWJR999/v0488UStX79eTzzxxPS8v/qrv6r7y4r/8i//opNPPnnWOtesmbwQ7qyzzpqe9sY3vlH33nvv9O2Z651p/fr1welxXXbZZbNOujr33HN1+eWX68QTT5x1/1qtpnvuuUdf/OIXdd1110Wu+93vfnfdSVcrV67U5Zdfrne84x1avnx53X2LxaI+85nP6E/+5E9UKpUkSVdccYVOOukkbd68ucVHBwAAWjFeKwWn9yoyYwVLEC3J82ZFoYAQ672Vc/np0Fi/KER8b5VqRS1JL5MkVXw4IpR2/HqvXySNO3Q6ypV0/b2MhEXFzhpF7euTHAdk3UDffX6s95AVFLG+6xK/F41AY9Q2wvdNEEYzvtOiRIXgzHhtgggrsBjtquwITk8ppZWZoeA8J+v36qTRIG0ZuTk4PefyesWKs7o7GCjl0lqZWaWRyuwI4khluCtjMPfffRasBgAAwOLC+Xnd0+tz9Dg/Lz7OzwMAAAAAAAAAAAAA9Jv+uvIL/eDshtt3GPf7YcPt45xzS7z3ca80O63J+hatZ0akI/549l9uR3s9/vGUDl/T2zE888wzdbfXrVun1atXt2XdL37xi4PbO/HEE5XJZHT44YdPTx8cHKy730EHHVQ3v9GyZcum/z+fz9fNi1quVbfeequuueaaummf+MQn9MEPftBcJpVK6dRTT9Wpp56qK664YtY4p3z5y1/WtddeO337hS98oe644w7zcRQKBV122WU65ZRTdPbZZ6tUKsl7r/e85z165JFHlEqlkj9AAADQklKtGJyeS4X3++1iXbhbqhblvZdzvY3vzjdJAipeNVV9Vek+i1qhP9nxnPjxpW7JRwShirWxpmG0TJ+FnRazpDGqpPdPKpcwNtHp8URvO/5Yo8aZ5DH0MgRnSRr3skMjyR5bzuWVUko1zf6dZJJ9dbLgafIwWtE4/sunliifThaVAzBppDw7liRJKzOrzJisHUbDYvd06XE9UXokOO8VK89SwfiuRmcNZlaHw2jG57/drN/f9PLYEwAAAOD8vO7p9Tl6nJ8XD+fnAQAAAAAAAAAAAAD6Ef9CjEbvaLj996E7ee+flfTAjEkZSacn2M5ZDbdvSbAssCDs2rWr7vbQ0FDb1p3P55XL5SK3N19cccUVdbd/7/d+L/Kkq0aDg4PBE6+893XrzmQyuummm2KdPDZ1QteUbdu26cYbb4w9JgAAMHfjtVJwetIITFJ5I6pUVaWlwMdiZ10gbSn7iQ6NBAuNFedJEl/qlqiAUXFGDKniK8H7ZFy27WNCa6x4pnn/DsdB0i6tAZdrfsf9ehkKK0QEAhtFRTSSPIZ+jHFYca9xX1LNV2dNLxrBtKSPzTlnvgbFaoIwWoL7tnLcVDIibYXUEvO1TxJrAxajUCxJklZl1yZel5ef63Awz20Zvdmcd+bguV0cCWYayoYLBKOV4a5s34qs9uOxGAAAAICFh/Pz4uH8PAAAkAx/RAcAAAAAAACd5TktGcB+hNEwzTl3uurjZo947++IWOSrDbcvirmdoySdNGPSPkm3xlkWWEgaT4Rq/MuQc9W4vuHh7lzk0k4PPPCA7rrrrunby5cv11VXXdWWdd9+++364Q9/OH37zW9+s4477rjYy7/73e+uO6Hrpptuasu4AABAc+VaWVWFA0E5F/5L1O0SFb0hvJFckoCK1FpEBYtTyfg8JokvdUtUEGDm47De/4TR+kfSuEM3YhDzJRSWT8ePykUF5ZI8BitC1ktRxxmhmKj9XZf8sVnPhxUzmet9yy3s04tGUDWfWmK+9mU/wfEDEGGkHA6jDWXCIaUonH+wuI1V9+q/nr8zOO+XCsfoF3KHdXlEmDKUWR2cPmqEEdutVA3vv3sZ5QUAAACweHB+XnOcnwcAAAAAAAAAAAAA6FeE0SBJcs4tkfTZhskfbrLYFyRVZ9w+3zn3SzE21/in5P7Ve1+KsRyABJyb/3+N6dvf/nbd7QsvvFArVqxoy7pvu+22utsXXHBBouWXLFmiV7ziFdO3v/Od77RlXAAAoLlxH76oVpLyEUGRdogbMEI8SWNyFR8O4gGNitXwe6vT3xGtyKayZtxs5mekUrPCaJmOjAvJJX1/dSMGkST+FRUc67REQbOI+yZ6vH34fZCPiDeG9pnWfrSV6NsSY9tJ9tVJgqetxMpKEd/tUZ8nK8gCQBoxwkhDWTuM5jT/f++M9vvP3d9W2U8E5505dG6XR4OZBo3Q4Ui5OxfrW78r6WWUFwAAAADahfPzonF+HgAACxV/LgcAAAAAAAAA0B1cOblAOecy3se7Ytw5t0zS1yUdM2Py9d7766OW894/5pz7vKS37580IOk659zZVujMOfc6SW+bMWlC0kfijBNYaFatWlV3e/fu3W1d/+joaOT25oO777677vZZZ53VtnV/97vfrbu9atUqPfnkCQR+aQAAIABJREFUk4nWMfMksCeffFK1Wk2pFM1RAAA6bbxmxy1yqbw5rx2iohtJI19IHpOr1MIX2gONrPdWL8NPUfKpJdpbnf0z4czHUVX41zxWVA3d15dhtDYFxzotyXMR9TwniZ31Y4wjavyh7zXr2KOV95b1fIwliJ2N1ZKF0bz3iS4ctL/blzaN1y5Tey7kAxaaXeUdwelDRkgpGhfBLFY1X9Odo/8enLcys0ovWXZSl0eEmazQ4UhlZ+J9cSvskGv/RWoBAAAALDycn9cc5+cBAAAAAAAAAAAAAPoVYbSF62Ln3Osl/aOkf/Pez7q6ZX8Q7fWSPibpkBmznpT0rpjb+TNJvyFpaP/tUyV9yzn3O977H83YVk7SOyX9RcPyf+G9fyrmtoAFpfFEqJGRkbatu1QqqVSq7xOuXr26bevvlmeffbbu9jHHHGPcM7mnn3667vbJJ588p/XVajWNjo7OyxPcAACYb8ZrwQ6zpORRmqSiwmulKmG0pJLG5Mq+3KGRYKEpGQHFfgwhSZMRo1AYbeZnpGK8/zMpwmj9Iun7K9+FUF+S/WI3Qm2WJM9d1DjzqaVtWU+vRI2/VK3/Xqv5mhmLLSR4HqaXMd6PcSOmFV9W2ccPmHp51VRVOsE/UZhhlVQhMnxJvBYIq/mqRiu7gvMiw2hGRMl7wmiL1Y/G/kc7ys8G552+8tVKO/45upeGMuF/Gyr7Ce2r7dGydGfjofPtZzMAAAAACwvn5zXH+XkAAAAAAAAAAAAAgH7FmegLl5P0yv3/eefcE5IekTQiaYmkgyQdL2mgYbknJL3ae//zOBvx3j/jnDtf0jdnrOs0SQ85574n6XFJK/dva23D4t+Q9H8SPq4Fb/2Q9PjH+Yt2nbZ+qPl9Ou2QQw6pu/3cc89peHi4LSdIPfjgg023Nx8MDw/X3R4aat8L17judtizZw8nXgEA0AXWRbWSlOtwGC3l0sqnCsExEN1ILuq1DLHCUECjYm1fcHo/hpAkO141M7hYrhlhNEcYrV8kjTt04/0Yd0wppZV1jb8m7J4kz0XUYyokOA7oxxhHNpVVxmVU8ZVZ8xq/18ZrJXmFI0T/P3t3HibJXd95/vOLzKzKrOrqrupDRyO1JCRAlhCHEAaE1LKRhGg9BnN5PBaPx4Y16wfjGWaN1zasxwJ7AWMW7zDGDHgZG5tBuwwPYJtdZAO2dSFA6DBgJIMEultHH1Xd1VWZWZkZv/2jVa2srN83MvKKzKx6v55HjzojMiN+eUZkVcS7ugnFThkxNevzdN31ugjE1nwtdSwnKbxWiqYT7zP7aEDY0cYRxWoE520vtP4652lO4TAaNq8b578cnB4pp0tmX5nxaNBq1gijSdJC7VAGYbTwdnhUv5sBAABgc+D4vOwM+xg9js9rj+PzAAAAAAAAAAAAAACjijDa5uAkPfOp/5L8raRf8d4f6GTh3vsbnHOvk/QpPR0/c5Iueuq/kP9b0lu99+GzbjaxfM7pzJ3DHgWycPHFF6+bdvvtt+uqq67qedm33377msulUkkveMELel7usDnXv5PuVlbCJ9P2wvvwCckAAKC/qnElON0pyiTqUoymgkEv62Rf2MqNdLGVVYTRkJYV3RvFEJIklXJWkOjpz5VQKEmS8imjQhi8Yi59jKrgJlIHoXqRNhRWyk319Tt3p4q59O/NUsJ1O3mPj+rnQTGa0rHG0XXTWz/XkvY7rM+U5PWGb7OcclvdTXzs+HY93Wu00rBjqsWopJzLa8JNasVX19+WfTQgaL5m/ypoLs8vKZDOodoT+pel24PzXjDzUm3Lc6LysG3LzylSpFjxunnz9UM6TWcNdP3WPsKo7osBAABgc+D4vM2D4/M6x/F5AAAAAAAAAAAAAIBRwZ+927hukfQ5SfNtrleXdL2kK733P9tpFG2V9/7Lkp4r6eNt1vlNSW/03l/jve/sDHhgg9mzZ4/27NmzZtpXvvKVviz7q1/96prLL3nJSzQxMfhISL/t3Ln2KMTDhw8PZNnFYlFxHMt739N/Z555Zt/GBwAAbFbwaDIqZhJ1KRqRmW6CIJtdp6GSGmE0pGRF90ojevK9Na7m90iDMNrIs7YPIVm9FtMGJ4Ydpujk8Uh6nAvRROr3RFJgbZisx6J1PyNpv6OT1+KqKSOmlnZbXY47/1GvFXzsdBylp6Ju1uu43GAfDQiZrx8MTi+4CU3nZszbWd+4vDgpdTO6eeHvzef+stmrMx4NQiKX09b8XHCe9TnQTxVjO9zN/goAAAAAdIrj89rj+DwAANC54f3RNQAAAAAAAGwO/K0cAKsIo21Q3vt/9t7/G0k7JJ0r6fWS/oOk35X0v0l6u6QrJW333l/tvf9aH9b5pPf+bZJOkfQKSW+W9K6n1vsGSc/03r/Me//5XtcFbBSvetWr1lz+9Kc/rVqtt9jDgQMH9Ld/+7eJ6xkXp5566prLd999d9+WffLJJ5/4d6VS0UMPPdS3ZQMAgMGqxpXg9KxOql2Nb7Sygm2wdRqTqxNGQ0rW+7E4oiEkM+bT9B6xXv95VxjImNC5vCuo4NKd9JRViCxt/GvY0cBOHg9rO9zpsoYdg7NY42oNg6UJhXXCeg0sG6HJVlaQMkk9Xkl93cQQXO74PqD1eu80xApsFodr4b+TM5ff2SY4zckuOK4Wr+jrR74anHfqxB6dUzov4xHBMpffGZy+UDs00PXGvqGqD/8MZ9j7nwAAAAA2D47PS8bxeQAAAAAAAAAAAACAUUUYbYPzx/3Ae/9F7/2feO/f571/v/f+Y977r3nvFwewzhXv/T957z/lvf/Dp9b7Be/9/f1eFzDu3vGOd6w5yezAgQP6i7/4i56W+ZGPfGTNwVvT09N661vf2tMyh+XlL3/5mss33HBD35Z98cUXr7ncr78GCgAABq9qBI8mo2Im67cCbN0EQTa7TkMlhNGQVjkOvx9H9eR7a1wVwmhjZzJlpDOrSN+4RMJKHcRN24VQ04ZSswqqdsoaV+s20wqFRYpSB/rWrre3qJj1uZuk1sF2PSmMtvoZmiYyCeBp8/WDwelzhXBAqT3+NNtmc8fi17XUCP+a8bLZfW0Ce8jSXGFHcLr1OdAvVtheGt1oNQAAAICNh+PzknF8HgAA6By/EwIAAAAAAAAAZIMwGgAM0Xnnnad9+/atmfbbv/3beuKJJ7pa3t13360PfehDa6a9+c1v1vbt27se4zBdccUVay5fd911WlzsT8/xqquuWnP5k5/8ZF+WCwAABs86sTZtjKZXJePk3YoRbENY7BsdP2aE0ZCG9958bQ07/mQxYz6N9mG0nMsPZEzoTtrAVychsF6kfc0POxpYjKY7uG7yWEsplzXs+2wp5cLjb/48kKRKIxz7KkXTXYVopoz1LqcMni0bgdik56uT7boVaCu4iROfg2kikwCeNl8LB5G253cl3s4p/BnjOQlm07lp4cvB6cWopJ/c9lPZDgaJZvPh4OHCgMNoSXHSUY3UAgAAANh4OD4vGcfnAQAAAAAAAAAAAABGFWE0ABiyD3/4w5qaevrEzYWFBb3+9a/XsWPHOlrOgQMH9MY3vlErKysnpp166qn6vd/7vb6NNWvnn3++LrvsshOXjx49qne96119Wfa+fft09tlnn7h822236c///M/7smwAADBYVR8OHk26YibrtwIfRDc6YwXuktRiwmhor+orZphjdENI7T9X6r4evE7BFQYyJnQnbYiskxBYL9IGJ4YdDSxEBeVTRv7ajXVc7rPFGn/rfoYVGinmuouMWEG5alxW7OO2t7f2g2Zy28zbWJ9rIa1huFXN47Yeu6QoC7CZHTaCSHOFcEAJaPZg5T49ULk3OO8lW3+a6NWImTPCaPO1QwNdb9LPSdLGbAEAAACgHzg+z8bxeQAAAAAAAAAAAACAUUUYDQCG7Nxzz9Wf/MmfrJl26623at++fXrkkUdSLePee+/V5ZdfrnvuuefEtCiK9OlPf1q7du3q63iz1nrg2J/+6Z/qwx/+cOrbHzlyRJXK+uhGPp/X7//+76+Z9ra3vU1f+MIXOh7j1772Nf34xz/u+HYAAKA7lTgcRsvqxGsrpEJ0ozPdPF51TxgN7VWMeI40uiEkK9hWjpdO/Nt6/ecJo42UtNui0pC3Wa2sOF+W0sTi8q6gQpT8mk8fpxv+fQ6xIiGt200rNNJtALKUC6/Xy6tq7Hs1W276vGq2NT9r3qbmV8x5raz72/yesx67pO0CsJkt1IwwmhFQaiecpcVGddP89ea8vbP7MhwJ0pgr7AhOn68flPeDe/eWE/YhiOcBAAAAyBLH5yXj+DwAAAAAAAAAAAAAwCgijAYAI+Atb3mL3v72t6+Zdsstt+i8887TH/7hH+rhhx8O3u6+++7T7/7u7+qCCy7Q9773vTXzPvjBD+ryyy8f2Jiz8opXvELvfOc710z7zd/8Tb3mNa/RHXfcEbxNHMf6xje+oXe84x06/fTT9fjjjwevd8011+gtb3nLicsrKyt6wxveoDe96U3msiWp0Wjorrvu0nvf+16dd955uvLKK/XQQw91ce8AAEA3qvH6g6olaTIqZrJ+KzhiBTsQlvR4TUczwemE0ZBGUnRvFOJPIVagqTkESRhtPKSPcrWPgPVD2gDbKETC0ow1zTjTvs9H9/Mg/Di0bjetz7pun8ukoJoVPVszHiM+NhVtUWT8GqKT7bp1f5uDbsVc+LEjXgusV4trOtpYCM6bKySH0ZxzxhzSaJvFscZR3b54c3Dec6Yu0KmTp2c8IrRjBQ9rfkXL8bGBrdf63h8pp4KbGNh6AQAAACCE4/NsHJ8HAAAAAAAAAAAAABhF+WEPAABw3Ec/+lHNzc3pfe97n7w/fhLZ4uKi3vWud+nd7363zjvvPJ1++umam5vToUOH9OCDD+oHP/jBuuUUCgV95CMf0dve9ras78LAfPCDH9RDDz2kz33ucyemfelLX9KXvvQl7d69WxdccIF27NiharWqxx9/XN/97ne1uLiYatkf//jHNT8/ry9+8Ysnpl133XW67rrrtGvXLj3/+c/Xjh07FEWRjh49qv379+uee+4J/pVLAACQjeZQUDMrJNJvVnDECoIgLOnx2pLfpqWV9ftzhNGQRlJ0bxTiTyFWkKjcWJb3Xs451X09eJ2c48d7oyTta6xkBJz6LfV4RuC9kSp6luI643SfQ8z9jJb9H+uzrvswmh3rKzeWpTYNxrIRTyvlplVwE6r69T9H6WS7nmb/z7oPxGuB9RbqB815VkBplZMVRsNm8Y0j/6iaXwnO2zt7dcajQRqz+R3mvPnaQU3nwnHyXlWM7/2laCohsggAAAAAg8PxeTaOzwMAAAAAAAAAAAAAjBrOnASAEfIHf/AHuuyyy/Rrv/Zruvfee09M997r+9//vr7//e8n3v7CCy/UJz7xCV100UWDHmqmcrmcPvvZz+r888/X+973PtVqT584u3//fu3fv7/rZRcKBX3+85/Xhz70IV177bVrDqg6cOCAvva1r6VaxvS0fQIxAADor2ocPgB6Mipmsn4rwEZ0ozNWQCWnvBmrqRFGQwpl470YKdKEm8x4NOlYIaOG6qr7mgpuwgwI5V2bWhEylTbSWUyIUPVT2khWVnHR5DGkiZ61H2fa+zw5Avc5xNoGtoZFrMBot8G3Us6+nbXNTnOdUjSlvCsYYbRw8LGT5Tc/3+yjAenNJ4XRCslhNMvqycTY2GIf6+aF64PzZvM79LwtP5nxiJDG1vycnCJ5xevmzdcP6TSdNZD1mmHTjCLBAAAAABDC8XlhHJ8HAADS4w9fAAAAAAAAYLA4KhnAqmjYAwAArHXFFVfo7rvv1mc+8xldfvnlyueTG5aTk5N69atfrb/5m7/R7bffvuEOulrlnNO1116rH/zgB3rrW9+q7du3J15/y5Yteu1rX6u//uu/1p49e9ou+7d+67d0//3363d+53d0xhlntB3PzMyMrr76av3pn/6pHnvsMb34xS/u6P4AAIDuVY0Ta7MKnJRy4QOurRN+EWY9XqXclApG6MkKQwHNrABOMZqSc6N5cGZykOj4/bECQnnH3z0YJWkjD6XMtlnpIlnWti1LacaaJnqWJgw26YrKuVyqcWWtaDwOrZ9t5mddyue8Vd4VVHATwXmpwmiN8HWmctPm51Qn2/VKw9hvaHq+S0Zw0ApmApvZ4Vo4jDYVbRmJWCZG191Ld+pg7YngvEtnrxrZ7etml3M5bcvPBect1A8NbL1J380AAAAAYJg4Pi+M4/MAAEA6nJYKAAAAAAAAAMgGZ04CwAjK5/O65pprdM0112hpaUl33HGH7rvvPh04cEArKyuanJzUySefrGc/+9m68MILNTk52fW63vOe9+g973lPV7e94YYbMr2dJJ111ln6sz/7M3384x/XnXfeqX/913/VwYMHdezYMU1PT+ukk07Sueeeq+c973kqFMJBDcspp5yiD3zgA/rABz6g+++/X3feeacOHDig+fl5RVGkmZkZ7d69W+eee66e9axnKZfjJC8AAIahGleC07MKo1mhgEq8LO/9yIaXRo0VKSlFU8oTRkMPyg3jtdVlLCgLSWGASrysrZo1X//W+wXDkTbyUDQCTv2WNm4zChGcVNGzVPG09vdlFO6vxQq7tW43k7aj3a97WrXGyvp1G9GzteMJX6cUTSsfFaTG+nm1eP26Ol1+8+vG3EczomrAZjZfD4fRthd2tr2tE993NrMbF64PTs8pr4u3XZnxaNCJufzOYARt3ggl9sMg9lcAAAAAoF84Ps/G8XkAAAAAAAAAAAAAgFFAGA0ARtz09LT27t2rvXv3DnsoIyWKIl100UUD+wucZ511ls4666yBLBsAAPSmEofjFpNRMZP1l4yYTaxYK76qSZfNOMadFVkpEkZDjyrGyfdpg1XDkBQGWI0J2GE0frw3StIGt0oZhblyLq+Cm1DNJweorG1bltIEMtK8j1NdZwxDiTW/ooavK/fUe94KjfTyWVfKTeloY37ddGtdaa5TiqaVdxPBeZ1s1639v+ZYXikXfh2X4yXitUCL+dqB4PTZfPswmsXLd31bjIeDK4/r7qU7g/NeOPMybcvPZTwidGI2vyM4fcEIJfbDOH43AwAAALA5cXxeGMfnAQAAAAAAAAAAAACGKRr2AAAAAAAA6EQ1rgSnp43R9CppPdZJv1jPCpwkhdFqMWE0tGfHeUb35PvJpM+VxvH70/D14Hzr/YLhSPs6KxoBp0FIFxzLZhuaPIb240xzX0opomejHONIei6aP99WPxta9fJZZwXy0oTRlo3gaSk3rYIRcKwbn2shldgOqj797/BjtxqvBfC0eSOENFdIE0YLRwYJo218Ny38nfk8753dl/Fo0Cnr/W19HvSDHXId/r4nAAAAAAAAAAAAAAAAAAAAgNFGGA0AAAAAMFaqRlBr0hUzWX9ScKRsREqwXtkInJRyUypE4dBT3RNGQ3tWoHCUQ0iRi8w4wGpMoGa8/gmjjZa0r7NShjGIdMGx7EJt9hj6E3DrV2BtWJKei+YY2iA+66zHpWxEz1bFPjaDp6WE4Gkn2/VywvKf/nfCY0e8FlhjvhYOIW3P72p723AWDRvdSlzVN478Q3DeMybP1Nmln8h4ROjUXH5HcPp87dDA1llp2EF0AAAAAAAAAAAAAAAAAAAAAEhCGA0AAAAAMDZiH6vqK8F5aWIp/VDM2SfwEt1IzwqoFPsUUMHmZQUKRzmEJNlxgNWIoPX6z7v8wMaEzqXdFmUZg0gVE8tlF2ozx5BinGkCbv0KrA1L0nNRbtrPKBv7HKWE/ZR2Srnw42vFTFdV44q84vAyo+m+bNcrxmd783sp6XklXgusdbgeDqPNFXZmPBKMizsWb9FSvBicd9nsPjlHMm/UWe/vhfohee8Hsk475Dq6+2IAAAAAAAAAAAAAAAAAAAAARgNhNAAAAADA2FjxVXPeZFTMZAyTriin8EnfVqQE61mRlRJhNPTIPvl+tMNoVsxpNSJY9/XgfOv9guFIG3nIMtSXFPRcNQrhwDRBr1SRt1TXGf79tSQ9F6ufBw1fV82vBK/Ty32z1t0ujJY0v5Szt+u1lNt1732qEJwVdpOI1wLNyo1l8z0xl08TRgt/F/IaTFgJo+HGheuD00vRlF689bKMR4NuzOZ3BKev+KqW42MDWacVRE/aZgMAAAAAAAAARh1/LAUAAAAAAACDNaC/9wpgDBFGAwAAAACMjapxUq0kTaaM0fTKOWdGV4hupFduGIGTaFqFHgMq2NzSxHNGkRUzKjeWFPuGvOLgfMJooyVtlCqrmKfUPnpWcBPKuXxGo7GleezSRd7ahzZG+fMg5/IquIngvNUAWVKItZfInfXYWdvs1nGFTEXTPQdPa35FsRrBec2vmwk3SbwWSGG+ftCct73QPozmHCe7bDYPlH+ohyr3Bee9dNsrMt2vQfesMJokzdcODWSd1j5C2pgwAAAAAAAAAAAAAAAAAAAAgM1r+Ge8AQAAAACQUiUxjJZlZGY6GNhIGt9G8e2jN+kbR/7BDCpsyW3V87b8pF4x9xrlXM5cjhWRK0Yl+TgcgEobUMHmlvTaGmVWzKgSl1X3dfN2hNFGS5pwVzEqKUr4fOy3dsGxNCGxLKQJeqV5H6cJpaYN2A1LKZpSrbGybvrqfkYlIVTWUxgtZ4TREsJn0vGAo6WYEDxNu11PG4KLXKRiVDL20QijAavmaweC051cYjipLf4024Z148L15ry9s/syHAl6sS2/XU5RMLi8UD+o03Rm39dp/Yykl/0VAAAAAAAAAMCw8TshAAAAAAAAAEA2CKMBAAAAAMZGNa6Y87KMHlnrSgqDbAQ3zV+v/+fJTyRe5wk9qh+V79GTK/v1plPebl7PCpSUctOq+fUxGIkwGtKxAjqjEn+yWEGtcryU+NrPO368N0rSbIuyjnK1G9OoRAPTPC5p3seFqKC8KyS+b0Y9jFaMpnS0sbBu+up+RlIoLE2cz2JFSpLWlzS/4CZOPB8habfrSVGz1tdvMZoKjqfdfQA2EytwvDU/p1yK/QpnTOcUmI3pWP2o7li8JTjv3Knn6+SJZ2Q8InQr53Lalp/TQv3QunnzgWn9YEerR3tfDAAAAAAAAAAAAAAAAAAAAMDwRcMeAAAAAAAAaVXisjlvMtMwWvgk3qTxjbtaXNOXDl6X+vpfP/JVPbHyqDnfCpQUo5IKbiI8BsJoSKHSsF9bo8wKElXisuq+bt7OCg5hOCZdUc5MxhxnPdeD0i48UcqNRjSwlCLolfZ93O4xzvo56JQVN1vdz0iKfPVy36zwXNn4XF21bIRhV5dnfU7V4nTb9aT1t95f87O0zX0ANpPDtXAYbS6/M+USkrdz2FhuPfI1M2S5d3ZfxqNBr6z3+YIRTOxF7GPzZySj/t0MAAAAAAAAAAAAAAAAAAAAwPARRgMAAAAAjI1qXAlOL7gJ5Vwus3FY8ZakUMm4u3vpTi3Fix3d5o6jt5jzKsZjVYqmlHf54DzrhHygmfU+HJX4k8WKV5Xj5cTXvvV+wXA459qGOtuFyvqtXShrVMIUaR6XtNGvdsvK+jnolB1KXF7z/1bH94e6/0yw92/C4bN281eXl4/CYbS023Xr/krrw7hJn6UAjps3Akjpw2gW3+PtMWpi39BNC9cH583ld+qCLS/OeETo1Wx+R3D6vBFM7IX18xtp9PfFAAAAAAAAAAAAAAAAAAAAAAwfYTQAAAAAwNiwTqydjIqZjsM6iTcp3DHuvr14U8e3uWMxHEarxSuq+3pwXimaVt71FlDB5tXwDa34anDeqMSfLFYIqdxYahNGC79fMDztXmtp4179MmrjsaR5jxaNcFenyyqN+OdBu7hXuWHHRXsxFYUDkjW/olpsfw6ZQcqnllfocbtuLb8YlRS5tb/isOJuG3kfDeiUFUbbXkgXRnNywemeMNqG8y9Ld+hw/UBw3qWzV2UaJ0d/zBWMMFr9UN/XlRRWtbbXAAAAAAAAAAAAAAAAAAAAALCKMBoAAAAAYGxU43Jw+mTGgRMzYLRBoxuVuKzvHft2x7d7bOVh7a8+GFie/TgVcyUVoongvFq80vEYsLkkvbZKRvBnVFjBp0pcbhNGyw9qSOhSuzhVMZftNqtdTMyKcGUt5/KacJOJ10kbOCzlkt/vxTbzh80Kt61+xlmfdb0+l8WEz8lKQtyk3AjPWw2t9Ro87eT+tovKAZDma+HQ1Vw+XRhNRhgNG89N89cHp+ddXi/fdmXGo0E/WO/zhQGE0SrGz2+k0dn/BAAAAAAAAAB0g98VAQAAAAAAAACyQRgNAAAAADA2zDCaK2Y6Dusk3kpjY0Y3vrP4LdV8OEp21fY36OdO+hU546C324/esm5aUpykFE2boae6r6cYLTazxOhexgHFTtnBxaXE174VHMLwtAs9ZB3paxdqK7UJp2Up6bEruInUr/d273crPDYqrEBZ+an9DGs72i6C107SayFp2102ommr4+k1jGatO/Tatl7vSdsHYDOJfax5I4A0V9jV07J9T7fGqHlyZb/uXr4rOO+FW16umfxsxiNCP8zmdwSnz9cOyvv+vouTo9Wjs/8JAAAAAAAAAAAAAAAAAABGC8clA1hFGA0AAAAAMDYqRhgt6+CRtb6kaMg4u33x5uD0rblZvXrnNfrpuZ/R2aXzgte5Y/GWdSdYJ4fRpnoOqGDzKifECbOOUXXKDC7G5cTXPmG00dNum5T9Nis5PNFufpaSwlydPG7jdJ9DSrnwfV0NjFihkV4jI1MJn5PLjXD8TLLDaKvLs4KntZTbdSs8G3oerec2afsAbCbHGkfN/Yq5/M5UywjnkCUOQdhYbl74O3PeZXP7MhwJ+mm2EH6fr/iquT3vlvXzm0iRCm6ir+sCAAAAAAAAAGSJ3wkBAAAAAAAAALJBGA0AAAAAMDaqvhKcPhkVMx1HKRcOh1g5YW0NAAAgAElEQVQn/o6zxfoR3bN0V3DehTOXKHI5SdJFM5cEr3Og9pgerv54zTQrcCIdfy6t0FPNr6QZMjYxKxYkSUUjNDQqrKBRNS6rFtuv/ZwRHMLwtItuZR3paxcU6zWm1U9Jj10nj1u7+zRK9zkkKZQo2YHRXu/XZFSSM5JHSZ+vVnRs9X5Y8ZO0wdNO7q8V19uI+2hAN+brB815c0YwCZvPSlzVrUf+ITjv9Mln6qziczIeEfplLr/DnHe4Zn8+dMPadyhGU3LOTiwCAAAAAAAAAAAAAAAAAAAAgEQYDQAAAAAwRqyoRdZhNCsyU46XMh1HFu5avFWx4uC8F2/de+LfL5x5mZzxY4Y7Fm9Zc9kKnBSjkiKXSwio1NMMGZuY9doquAkzuDcqrOCil9dSvBicFymnyPHjvVHTLkTWbn6/tYtltQu5ZSlprJ08bu3uU9b7DZ2yHofV/QwrMNrrcxm5qKt9HGve1FOfa9bnb9owmhlWCUTQrMdgI+6jAd2YN8JHeZfXTG5bqmVYQSMv3/W4MFq+ffQm83Nz7+w+olZjbFt+u/m9fSEhnNgNO5w62sFqAAAAAAAAAAAAAAAAAAAAAKOBMyeBPgudEOI9JwQBGG9xvD6GwglwAIBhqMaV4PSsT6y1ohtWuG2c3b54c3D6zsLJOrP4rBOXZ/Kzes7UBcHr3nH0ljXfi6yT7Fcf17zLB+d7xWr4RqpxY3My4zljcPJ90hgX60eC0wsjHnvbrIq5NmG0QMxpkNrFstqF07KU9D7o5HFLuk+TrqjI5ToaV9ba7WdYEchSH15bpSgcaVxu2GExa97qsnoPo4X3r0LPs/Xcb8R9NKAbh+sHgtNn8zs6iK0aPxPk1yAbgvdeNy1cH5xXiqbXxLExfnIup235ueC8hfqhvq7L+m5mBaEBAACATnGMHoCNhuPzAAAAAAAAAAAAAGAtwmhAn0XR+rdVrZbuJD8AGFX1en3dtNDnHQAAg1Y1ohaTGUePrOhGNS4r9usPWB5Xh2sHdF/57uC8i2b2rjsQ+0Uzl4SXUz+gByo/PHG5XeDECqhI6SMq2JzKDePkeyP0M0qSxniscTQ4Pem9guEZtRBZu21k1qG2JEmPXSePW78Ca8Ni3ddyY1ne+4QIZB/CaEasxFpn0rzVZVnB07pf/7OGECsEF7q/1mNQTgi7AZvJfO1gcPpcflfGI8Gour/yAz1c/XFw3su2Xa6JaDLjEaHfZvM7gtPn6+HPh27Z2+/Rj1YDAABgPHCMHoCNhuPzAAAAAAAAAAAAAGAtfmMK9JlzThMTE2umHTt2bEijAYD+aP0cm5iY4C9SAgCGohpXgtOzDqNZ0Q0vb45xHN2xeIs576Ktl66b9oKZlypSru2yrDhJ8UQYbSI4X5JqfsWcB1jRvXE4+T5pjIuNI8HpVmwIw9UuTtWPeFUnClEhMaKXdagtSSkhWtbJ45a0nFG6vxbrvjZUV93X7BBZP8JoxjKWYzssZs1bDT5ar7+02/SKGb1cP1YzXusrin0j1fqAjcwKH80VdqZehvUTQS/fxYgwam6cv96ct3f2VRmOBIMyZ4XRaof6uh77u9no74sBAABgPHCMHoCNhuPzAADjg+0TAAAAAAAAACAbhNGAAZiZmVlz+ejRo/Kek4IAjCfvvY4ePbpmWuvnHAAAWbFOrJ2MipmOIym4YsVKxtG3j94UnP6MyTO1e3LPuunTuRn9xPQLgre5c/FWxT6WZD+PqzGTQmQHfOp+/V/KBlaVrThPwnt2VBTchHIKh86OGWG0HGG0kVRqE+IbRpgraZ2jFKdIGksngcPk5YzO/bUUc/Z9rcTLKhv7Gv24b9YyykacrBavqO5rwXlPb9fDwdN6HL7dunVb9zfw2R6atsra/wA2k/maEUbLpw+jWSe7EEYbf4v1Bd117OvBeedNvVAnTezOeEQYBCuEaIUTuzXIkCsAAACwimP0AGwUHJ8HAAAAAAAAAAAAAOsRRgMGoPWAhFqtpkcffZQDrwCMHe+9Hn30UdVqa09W3rp165BGBADY7KpxJTi9k1hKPySFRzZKdOOx6sN6pHp/cN6LZ/aat3vRzCXB6Qv1Q/px+R5JdrxqNWaST4g9pY2oYHOy3n/jEEJyzpkBt8X60eD0vLMjghiedq+3Ybwek9Y5SnGKpLGUounUy+lXYG1Yku5rOV5WpZEcGO3FVC687oqx7baiZc3Lsj6r0sZOOwmrJD0GG2UfDeiFFT7aXtiV8Ugwir5+5KvmZ/PeuX0ZjwaDMpvfEZy+UD/U1/VY2+9x2BcDAADA+OAYPQAbAcfnAQDGD/vbAAAAAAAAGCx+5QtglX2mMYCuFYtFFQqFNQcqLC4u6kc/+pG2bt2qLVu2KJ/PK4poEwIYPXEcq16v69ixYzp69Oi6g64KhYImJyeHNDoAwGZXNYIWk1Ex03EkRTes6Ne4uX3xZnPei7aG42eS9PwtP6m8ywdPqL9j8es6Z+p8M6Ky+rjm3YS5/JpfMecB1vtvlMJPSYpRScca6yNooWkSYbRRNdkm9mAF8AYpKUBRMkJYw9CvoFm/AmvDknRfy/Fy28BoL6zHZ9kMo9n7PcUoOXjaUF2xjxW55J+RWvsNoccp6TV0fKzEn7B5NXxdR+qHg/PmjFBSiJMz5nAEwjhr+IZuXvj74Lzt+V167vSLMh4RBmUuvzM4faF2SN57OWe9xztjhVzHIVoNAACA8cExegDGFcfnAQAAAAAAAAAAAEB7hNGAAXDOaffu3XrooYfW/AXKWq2mQ4cO6dCh/v7VdQDIyurnW79OjgIAoFPVuBKc3kkspR8KbkKRcorVWDevYsTbxon3XrcfvSk47+zST2hH4STztqXctM6bvlDfPXbbunl3Ln5dbzzpfzIfo9UTpAsJsae6r5nzgHavrVFnBYkWG0eC063YEIar1GabNIzXo7VOJ6cJNzon1iSG0TqIfiUvJ9t9hm4k7dccrS8oVhyc148IpPU5VG6E42Tlhh1Gm8ptkZQccaz7WuJrMPaxGcYNjTXpMbACLcBmsVA/LG/Ey7YXeo8GkkUbb/9y7HbN1w8G5+2d3afI5TIeEQZlthAOo1V9ReV46cT2u1dmEH0IkWAAAABsXByjB2Aj4vg8AAAAAAAAAAAAADiOsyeBAZmamtKePXvWHXgFAOPKOac9e/ZoaooTlwAAw2NFjyZdMdNxOOdUiqa0FC+um5cUCJGkI/XDeqjyY/lA1KQYlXRm8dmaiNpHahbqh/Vw5cc6eeIZ2lU4pesDo2Pf0CPV+7VQP3xi2nztoA7UHg9e/6KZS9su86KZS4NhtMXGEf3j/Jd0uPZk8HarMZPkgEq97fql43G3A7XH9PjKI6muv2prblanF89WLsWJ/ytxVQ9UfthRDC9SpD3Fc7Q1P9v2urV4RQ9U7lU5Tn5NtXrG5JmJ8bpuVeKyHij/UCu+2vdl98vBlSeC08fl5HsrhrTUWP9ZIyW/VzA87cJnwwiRWe+BYlRS5KKMR2NLeq+2C841S4qf9SMeNmiRy2nSFVX164Owdy/dad6uH9E96zmYrx8IbtsfqdwfvL5TdGL/rOAmzPXVfU0Tst8T1bhihpxCn5mFaEJ5lw/uL9yz/M/Bfbc0ci6vM4rnaEtua1e3B0bBfC0cvZKkuXw4lNRPDd/Qw5Uf6WhjoaPb7Z44QzsnTu77eLz3emzlIR2shfcfTyrs1skTz9g0J6DeuPDl4PS8K+jibVdkPBoM0lx+hznv20dv0pwRTuvUkaafMTQbl2g1AAAAxgfH6AHYSDg+DwAAAAAAAAAAAACeRhgNGKDVA6/279+vWq027OEAQNcKhYJ2797NQVcAgKGq+5oaCkexJjuIpfRLMVcKxjWsSFbDN3TdEx/TN478Q+JyC25Cbz71N/SCmZfay3n8Y/rG0aeX85ypC/Srz3i3GVWyPLHyqD76yHt1yAiVtYoU6cKZi9te77lbLlLBTajmV9bN++KBT5m3K+WmJUl5Z/+4IrTMVuXGkj7+6Pt1b/n7ba8bsi03p7efdq1OK55pXueuxVv1qcf+c6rxhFw6+yr9/En/sxkk+v6xO/TJ/R8KRnHSeP6Wl+gtp75ThciO0XTim0f+UZ95/GPme3DUjcvJ96vvgVahkKIk5SPCaKOo3ettGIEVa/swau+NpPEUo/D7IyQpfjZq99lSzE2pWl+/DbDCNVJ/om8l43E+WHtCH3/0/R0sZ+rEa72X4GklXrbXYXxmFqMpHWscXTf9y4c+m7iuNF61/ef06p3XbJpQEjaW+fqB4PRiVDLfTyFO1uvfPvn8kcr9+ugjv6+jjfnU62l2/vSF+pXdv6XJqD9B7CP1w/qTh9+r/SsPJl5vz+TZ+vXTrtWW/MaOIj6x8qj+dfk7wXkvmrlkw9//zWZbfk5OUfA7xmef/LOBr7/Tn1sAAAAAaXCMHoCNgOPzAAAjhegwAAAAAAAAAGAEhM++BdA3U1NTOvvss3XWWWdpx44dmpjoz0npADBoExMT2rFjh8466yydffbZHHQFABg6KzgmqW8nyHfCio9YAY+bFq5vG0WTjoe/Prn/j3SkftheztG1y/nB8vf0hSc/1XbZrf6vR/8odRRNks6dfoFm8rNtr1eMSrpgy0Udj2f1BOnI5RQpF7xO3bc/oeULBz7VdRRNko405vXxR98nbxzkd7h2QP9t/4e7jqJJ0s0Lf6dbj3wtOG+5cUyf2P+BrqNokvSdY9/S9Yc+1/Xtmz1efUR/9fh/GdsomtSfWFAWOo0EJMWGMDzF3OjFHqwY2Ki9N5LGU+rg/ZFzeRVc+Gdwo3afLd2Msx/Rt349Ps2RpaTgabvtejkhjGZ9Zg7yOf67w5/Td459a2DLBwZpvnYoOH0uv6uj5XQaBox9rP/66Pu6jqJJ0veX7tSXDl7X9e1b/eVjH2kbRZOkh6o/0n9/4qN9W++oumnhenPeZbP7MhwJspBzeW1N8b1+UMYlUgsAAIDxwzF6AMYRx+cBAMYTf0QKAAAAAAAAAJAN+4wkAH3jnFOxWFSxWNRJJ50k773iODZPsgeAYXLOKYqijk9yBABg0KqxHYnqNCbUD9bJvFbA47sdRDRixfqXY3fo5bNXrptnxTi+e+xbukZvS72OAyuPpYoBNLto5tLU133RzCW6c/HWjpZfip6OqBRcQVXfWHedNGG0fgRLDtcP6JHq/Tq9+Mx18+5Z+mfFWj+2Tn332G26ZPaV66Z/f+lO1X3vEbLvHPuWXrPrTT0v57vHbut5GcM2LiffN78H0kiKDWF4krZJw4pyWe+BUXtvJD12nY61FE2p1lgfsBy1+2zpdJxOri+h2OagWU/LaRp/UsSx3XbdCs5Kw3tdf/fYbXrBzEsHug5gEA7XDwSnzxV29mX51u87Hqn+WPP1gz0v/zvHvqk3nvSWnpdTicv64fK/pL7+vy59Rw1fV26D7ndV44q+eeQfg/P2FM/RmaVnZzwiZGEuv8OMsQ/auERqAQAAMJ44Rg/AuOD4PAAAAAAAAAAAAABob2MexQ+MOOeccrncsIcBAAAAjJWkMNrkCIXRrIDHfO1QR8u34gE/XP5ecPrRxoLqvpYYH0mzfEvBTej5W16S+vrnT79IxaikSlxOfZvTJs868e+8K6jq1z/n7QIqtbimY42jqdeZZKF+SKdrfRjtaGOhT8sPPwcL9c5eK50uv/Pl9Gc8w9T82hplnY5zXO7XZpN3BZ06cboeW3l43bzndfA52k/Wa+W04mi9hmbz27Ult03HGkfWTC+4CZ00sbujZZ02eZbuXr5r/fQRu8+W0ybP0gOVH3Z0/chFPa/3GZNnysnJq7eTRVu36ZaaXx+vWzM/tudPuElz3Q9Xf9xmhN3bCNtFbE7ztfC+4fZ8f8Jo9nr7856Zrx2S977nk0WXGosdRY5XfFXVuKKp3Jae1juqvn30RjPufdnsvoxHg6zsKZ6jByr3Zr5eJ6fdk2dkvl4AAABsXhyjBwAAAAwC4WEAAAAAAAAMFn/7CsCq3s+UAgAAAAAgA9WEwFZxCGG0khFGKzfCJ5V3Egg7fv3wcpJY6w5ZahzraNlXbn+dSrnwfQ6ZiCZ11fY3pr7+edMXaufEyScu56NwRKUWJ4fRKvFS6nW2YwUC+nWAn7X8Tp7HJJW4rNjHfVhOf8YzLM+ZukCnTJ427GGk8vwtL9G2/PZU1y1GU7po5tIBjwjd2hsIieSU18u3XTGE0UjP3fIi7SictGZawU3oZdsuH8p4LJHL6dLZq9ZNv3jbFZqIwhEsy6Wzr5LT2njOmcVna8/k2T2NMSsXb7s8dexUCr/murEtP6cXbHlZT8vIu7xevu3KE5cL0YR53bqvJy7LCqLmXd6MI108e6XybnB/E2bct4vYvKww8lyhszBa62drO/16z8RqaMVXe15Ou9BySK+xyFHlvdeNC9cH501HM3rRzCUZjwhZuWTbK1Vw9vZ5UF44c7G25mczXy8AAAAAAAAAAAAAAAAAAACA8TO4s4MAAAAAAOijalwJTneKhnJCb9GIhJWNMJc13dJNHKscL2lG21Jdd9kIozk5TUbFE5fn8rv00m0/rcvnXtPxeK7c/joVXEG3HvkHHa4/GbzOTG6bzp++SK/d9YtrplsxmHYhg3JCgG7SFYMRlWpcCcYOKsZz4I0/O+EUaTIQ7mn4hmp+Zf1YjeVbr5VIUTAMFPs4GInw8qrGlY6CduHxhMeZU14FI2A3Crbktur86Rfptbv+3bCHktqW/Fa98/T364sH/ko/Kt8dfF5zLq9nFs/V1Tt/fmyCb5vRZXNXK+dyuvXIP+jJlf3aUzxbV25/nc6ZOn8o4ylGJf3G6e/XFw/8pX5c/ledMnm6XrX9DTqjeM5QxpPkZ3b8gopRSbcfvVl1X9eFMxdr346f63g5z595iX5l9/+qG+b/P83XD+o5U8/T63e92YxpjZozS8/Wr592rb5y6PN6oHKvYjWC1zt1Yo8umX1lXyN3b979v2jHgZP03WO36WhjPvXtnCKdUTxHr9z+ep099RMnpidFyuptgqc1M4xm7/udXTpXb3/G7+nvD39eD1buk1d3kdC6rwf3O+xwKjDa5mtGGC3fWRjNYsXDrPdM6/eOE8vxXlUf/u5XjpeDt+lEu9ByyEYNo/2ofI8erT4QnPeybZd3HCXF+DiteJb+w2nv1fWH/ocerNynhpJDpb3alt+uC6ZfrNfsetNA1wMAAAAAAAAAAAAAAAAAAABg4yCMBgAAAAAYCxUjeDUZhWNXg1aKwrGp0Dgbvh4MY0nSKROn6fGVRwLLWR8QaBcFW26kj68tx+Ew2jMmz9S7z/w/Uy8nSeQivWL7a/SK7Z1H1boNo4Uet1XvO/uTmsptWTf9Dx/8TT1UuW/ddCviYIURzi6dq9/Y8/510+9euksffeS9wbF679e9fq3X+kVb9+qXT/2P66Y/sfKo3nv/24O3qcTLPYfRrMf0iu0/q59tCdqhdzsnTtFbn/Fbwx4G+uCS2at0yexVwx7GCXOFnXrL7ncOexhtOed05fbX6crtr+t5WS+cuVgvnLm4D6MajmdPPVfPnnpu5uvNu4Jef9Iv6/Un/XJflpdL+DVEu+163YdDLdZ+wqrnTD9Pz5l+XvvBJfjWkX/SXz7+kXXTrXAqMMqqcUVL8WJw3lxhV4dLC3/3svaRrX3JM4rn6LfO+NC66Qv1w3r3j94SvE25saTZ/PaU4wxr97kTYoWRx91NC9cHpzs57Z19VcajQdbOnvoJ/frUtcMeBgAAAAAAAAAAAAAAAAAAAAAERcMeAAAAAAAAaVQTwmjDUDTCaKGYlhXYkqS5/M7Uy6k0wo/B07dJH0ZbaoTDaNOBcNgwFLoMoyU91sWoFJxuRe46DaNZkQhr+bFirfhqYL3h59FajvVaPL6s3uMtZSMAU4qme142AGDjc851HTytG2HZvBv833wp5cLbuX5sW4GszdcOmvOs7yOWTpPUVvTX2oe19nmlzr7vWLoJo8nc/x9fR+rzumvxG8F5501fqJ0Tp2Q8IgAAAAAAAAAAMDo23u9GAAAAAAAAAADjZ/BnDwEAAAAA0AfWCfWTbjhhNDOm1Vh/sn5S0GyukD6M1i4EsGzEzsLXXQxOn4pGI4xmBVRqbUIGFSPiNemKilwuOM+KMlQ6DJ84IxPRLlzWGvfrNESWHI/oPd5ixyzCoTkAAFoVXCEYI2q3XbcCRlZAtZ+s7dyKr6rhG8oZ+xXAKJqvJ4XRdgx03fa+bXgfdsJNKlJOsRqBZQ0njLYRT/259chX1VA9OO+y2X0ZjwYAAAAYDOfcnKTzJT1L0nZJRUkLkg5IusN7/6MhDq8nzrmCpJdL2iPpVEnHJO2XdJf3/oEhDg0AAADAhtfpn9EBAAAAAAAAAKA7hNEAAAAAAGOhGleC04cVZ7JjWusjUkmBrbl8OIwWuo0VqFrVLpzWbDkOR9SmcqMdRmsXMrBCYMWcHQ+zI3fhZXnFwenOhQ/8SwyXNZY0m9++Zpr1erFe6wU3YcYjOo27BcdovK5KCY8pAADNut2uW+E0a3n9lBQ2rcblkdlnAtKwwmgzuW0qRBMdLcuKAXsjH2bv24bfY845lXJTWgqEnPsR/W0XZAyx7tu4aviGbl74++C8nYWTdd70hRmPCAAAAJuNc+6Zkl4s6aKn/n+hpJmmqzzovT+zi+UWJL1C0qsl/ZSOR9GSrr9f0n+T9DHv/eMdrus9kq7tdIxN/tJ7/8ud3sg5t0vSeyX9vI7H3kLXuVXSH3vvP9/D+AAAAAAAAAAAAAAAAIChIowGAAAAABgLVR+Ogk1GxYxHcpwVhQpFpJJO4J8rhMNooShXu/DZciN9GG2pEQ6jTedmgtOzVugyoNJpeCFpnrUsb3QRrL+HmhRl6ySkV8pNh9ebFI8w4m6dsIJ8SY8pAADNug2j1X29o+X1U2LYNF4ijIaxcrh2IDjdijQnMmLAFuu7UFJkdyqaDu7bLncQgra0+9wJ2WhhtO8eu00L9UPBeZfO7lPkooxHBAAAgM3AOfdTkt6l4zG0YNCrx+W/RNL1kuY6uNluSf9J0r93zv177/1/7/e4+sk5t0/SpySd1OaqF0u62Dn3GUm/6r3v/csUAAAAAAAAAAAAAAAAkDHCaAAAAACAsVCNK8Hpk1Ep45EcV4rCkaqaX1HD15VzT3/ltkJXBTehLbmtwXmh21iBqlXtwmnNlo0w2lQ0GpGPbgMqZnghIW5iR+6MMJoRRnAKBwQmXVFOkbziwDrSh/QS70MUDqNVeoxH1H1NNb8SnEcYDQCQVvdhtPA2KIswWtJ2rtwoS4MfAtA38/WDwelzhV19XEt4H7mv4eI+RH+tz5VEVhl5TN208OXg9IKb0Mu2vSLj0QAAAGATeYGkVw5w+bsUjqKtSPqepMclHZG0Q8fjbDuarjMr6dPOuZO89388wDF27amw3F9Lmmia7CXdKenHOn4fXiipuYD9JklbnXOv9d6v/wUFAAAAAHRlY/3eBAAAAAAAAKOHn0ABWEUYDQAAAAAwFqwoWHFIYbSk9Zbj5TXBMysGUIqmzOWs+Oq6wFq5kRy5Wu4kjBYbYbTcaIfRam0CKnZ4wX6+rOCYtSwrjGZxzqkYlYIRtNZ1eO9VNoIPSffBikeU28T02qk07NsnhdoAAGjW7XbdCqcNO4zWa3gUyNp8zQij5XcGpydxcsHpVjusm/3zqVw4Qt3J9x1L3dc7vk2n+/+j7LHqw/rB8veC8140c4kZ7gYAAAAGqCrpEUln93GZxyT9D0nXSbrVe7/mB93OOSfptZL+s6Q9TbM+7Jz7nvf+q12s8xckfbPDMabinDtN0he0Nor2dUlv9d7f03S9SUm/Kun/0NNJ91dL+t8lvbuDsQEAAAAAAAAAAAAAAABDRxgNAAAAADAWqnElOH0yKmY8kuNKUfhkfUmqNNaG0ezQ1VTicloDa2UjKvD0etKHApYaox1GK0Th4Ek9Tg6oWI910uNsR8WsxzscRrAiEcfXPxUMo7WOt+5raigca0i6D3bcrbd4hBWykJKDMQAANCsYITMrfLaqZmz3reX1UyEqKO8KwTH2Gh4FsjZfN8Johc7DaJ2y3i/J++fheaH96U5ZQcZIkWLFwXkbKYx208L15rzL5q7OcCQAAADYpGqSvi/pdknffur/35P0ckn/1IflPynpjyR93HtvfoHw3ntJX3TO3STpZkk/0TT7vzjnznvqOp143Hv/QKcDTum9kuaaLt8q6Qrv/ZpfnHnvqzo+/ockfbFp1m845z7hvX9wQOMDAAAAAAAAAAAAAAAA+i4a9gAAAAAAAEijYpxQPxmVMh7JcaWcHYVqDWpZYy9GJRUTxl9prL1dUqRKkpZThgIavmEuazoajTBavsuAinW/ijn7cbajYuFlxT4cTHDO/jFLKReOO7SuIyl+l/Sas5ZvheLS6nY8AAA063a7XvfhWGjeCKj2mxUBbbdPBowS773ma+Ew2vZ8/8JoVjysYkai7f3zKSuM1kEI2mJ97hTchHmbjRJGq8RlfetouDVxZvFZOqN4TsYjAgAAwCbzl5K2eu9f6L1/q/f+z7z3d3rf5ocD6X1L0jO99x9OiqI1894fkvQL0ppK8rmSLurTmHrmnHuWpF9qmrQi6Zdbo2jNvPd/reOP96pJSdcOZoQAAAAANqSOW9EAAAAAAAAAAPQfYTQAAAAAwFioxuFzPJJOqB+kpPW2xqTKRrCslJtSyTjpP3S7pEiVlD4UkHS9qdx4h9GsxyjpcS4aga9yY1m+gwP9XMI86/WS9rVyfBl2iMxafq/hlqTX3LDeewCA8WOFzNqH0cLzrf2EfrPiqe32yYBRshQvasVXg/PmCp2H0Zy517t+v9l7b75frH1wyQ7w9uO9V4+NMFpkh9FC920c3XbkBjPavXf26oxHAwAAgM3Gez+fFPPqw/IPpA2itdzuO5JuadWc6psAACAASURBVJn80/0ZVV9cIynXdPkL3vt7U9zugy2X/41zrti/YQEAAADYvJKOkAIAAAAAAAAAoH8IowEAAAAAxkLVOIF7MhrOeRw5l9eEmwzOa41RWSefF6MpFXPpA2uVRng5q5YTolrNluJFc96oh9FqbQIqVggsKeJlRU9iNVTzK+umezOMYB/4Z4XZ0r5Wji8jIR5hLL/XeIT1eBbchHIu39OyAQCbh7ldNwJFq+qB7XDS8vrNDI82CKNhfMzXDprztud3dbw8O4y2Xs2vKFYjOK+rfduUIegk3QQXO2gljyzvvW5auD44b0tuq1408/KMRwQAAACMlLtaLu8eyijCXtdy+S/S3Mh7f4+kbzVNmpb0yn4NCgAAAAAAAAAAAAAAABg0zmAFAAAAAHTsrx77iA7UHs90nY+vPBKcPpkQvBq0UjSllUZ13fRySyzDilMVoynlXUEFNxEMcLVGqcptwmdpQwHLCdebzs2kWsagFYwwgRUyWNX62K9KCi8UE+aV42VNRGsDeFYYLSkSYa1/3WvFeG6cXOJr3boPvYbR7MczHKsAACAkb8Q0223X674enG7tJ/RbKWeFTZNjtcAoma+Hw2iRctqan+3bekJ7yEn7okn74Oa+c4/7tpIdWrai18eNfxntvvLd2r/yUHDexduuUCGayHhEAAAAwEhp/QHESOwgO+dOkfT8pkl1SV/vYBE3SHpJ0+V9kv6295EBAAAAAAAAAAAAAAAAg0cYDQAAAADQsUeq9+uR6gPDHoYkadIVh7buYm5KRxrz66a3Bs1aL69aPeG/FE2p1lgfRmuNUrWLcLQLp61abiwGp0fKDfXxbJbvMoxmPdbdhBdWl7dNcy1TOw+j2eGypZbL4fFPRiVFLjKXb92HihE2S8t+PIcXJAQAjJ+CC59P3G67bgWMrP2EfrO2d2n3uYBRMF8Lh9Fm89sVuVwf17R+H9nal5SS9yetKGE/3nvW505SGCzeAGG0Gxe+HJzu5HTp7FUZjwYAAAAYOee0XH5sKKNY77ktl7/rve/ki9GtLZfP73E8AAAAAKCN8AdlAAAAAAAAAADjwT6jFgAAAACAMTDMQJMVo1oXuzLiVKuxLCua1RoSaBcCqPkV1eL1gbVWy/Gx4PSp3BY5Z8e9stR9GC0cjyvl7PhZUjQt9Nx5K4yW8NhZ628db7chsqKxfCu0lpZ1eytWAQBASLfbdWt+dmG0dNtvYJTN18NhtLnCzq6WlxQDbpX0XilF9v6kNa/cGGAYLfFzZbxP8DlSP6x/XvxmcN5zpy/SjsLJGY8IAAAAGB3Oua2SrmyZfFsXi/pV59zXnHOPOucqzrlF59wDzrkbnXPvc85d2sUyz2u5fF+Ht/9Rm+UBAAAAAAAAAAAAADBy/HgfugugjwijAQAAAADG2nRuZmjrThvLsGJXq7GstFGrNBGO5TbxNElaaoTDaNO5LW1vmxUrTFBLCKh47xPCYnb8bDIqmoGH0PK88dPVpEiEtf7W59gMkSWEI47PH0wYzXrNDTNICAAYP3mXD06v+3ri7YYdRksbwQVG2eHageD0uXx3YTRLKB6cFDKbjIrmPCvCW/UVNXyj88E1sT9XJszbWGHkcXHLwlcUK/y4XTZ3dcajAQAAAEbOr0pq/gHAEUn/1MVy/q2kyyXtljQpaYukMyTtlfRuSTc5577tnLuig2We03L5oQ7H9GDL5R3OubkOlwEAAAAAAAAAAAAAAAAMBWE0AAAAAMDYKkVTOqv07KGuP6TcaA2aJce6rOW03i4pLNDJdZaNMNpUNDphNCt4YoUMJGnFVxUrDs6zHmNJilxkhr5CYTE7jGCH0ezXytrnq9Kwwmj2+KWkSF9vYTQr/NJuPAAANLO260nBU8ne7lsB1X5LG8EFRtl8/WBw+vbCru4W6Ox93lZJkd3I2b+iTNrX7HX/1vrcmUgIo42zhq/rloW/D87bVThV5049P+MRAQAAAKPDOXempP/UMvkj3vuVAa3yIklfcc69z7lUX65mWy4/2cnKvPfHJFVaJm/rZBkAAAAAAAAAAAAAAADAsOSHPQAAAAAAALqRd3n9u1PeoZwb3lfbYs6IXbXEpMoJQQApIZoVtwbW2kc4rJBVs+XYCKPlRiiMFnUeRgtFzFZZYZPm+aHbdxJeSDqLKW1YxboP1mttlfUaqvuaanFNBePxbKfSsF67hNEAAOkVjOBQvc15xlbAyAqt9ZsZrzVCpsAomq+Fw2hz+Z1dLS99Fq19INoyFU2b88qNZU3nZjoYxVpmcDGyw2ixD8eXx8F3jn1LRxrzwXl7Z1+VGKgDAAAANjLn3ISkz0pq/oLxgKQ/6nBRj0r6sqTbJN0j6bCkWNIOSRdK+hlJVzWvWtK7dfwP2r6rzbJbf2nTTam9LKnYdLn7L1RNnHMnSeq0uH12P9YNAAAAIAvWH40EAAAAAAAAACA7hNEAAAAAAB3bO3u1FhsLQ1v/1tyczp1+vnYUThraGKSEWEZL7KpixMpWb29Gs5qiG977VJGu5RRhtKVGOIw2PUJhtIIRPKnFdhgtKVJiPVfN80O5gFCoLFY4jOBkRwVKKSN61nPcdvwJ4bRKvKRCNJt4e/u23cUsAABoZoXMkoKnklQ3tvv5jMK4dgSXMBrGQ+wbWqgfCs6bK3QXRkvivZdzT6fTrPdKu33bpChwmhB0EjOMZgQcx92N818OTi+4Cb1s2+UZjwYAAAAYKZ+U9JNNlxuSfsl7n/ZLx206Hjz7qvfeKgbcKumjzrmLJF0n6VlN837HOfdN7/3fJKyj9Zc2lZRja1aWNJewzG79mqRr+7QsAAAAAGOlkz+jAwAAAAAAAABA9wijAQAAAAA6dsnsK4c9hJFgxaGaT9avxTXVfT3x9nY06+mQwIqvmkGuNbdptD9nZ9kIo01FoxNG6yagkhQpSYorSOnidCcYpzi5hOP+rOXX/Ioavq7cU4EXK/TQNh6RML8clzWj7sJoZsyizeMJAEAzK2Rm7SM9Pd8Io0XZBIxKUSk4PU2sFhgFR+sL5neIuXy3YTR7p9fLyzXN7zayW4qmzXk9h9HM4GL4+4d0/H6No/3VB3Vv+fvBeS/euldTIxTGBgAAALLknPsDSb/YMvld3vub0i7Dex+uEIeve7tz7qWSviHp2U2z/tA59/967xtpF5V2nT3eBgAAAAAAAAAAAAAAABi6aNgDAAAAAABgXFkn7FfictO/7XDGalzKXs7Tt02KfjVbThEKWI6NMNoInRjfTRjNeqydIk26YuL67Djd+sfTDiPYkYiksFnzc1tplIPXaR+PsOdXeohHdBuzAACgmbVdryVs1yV7u19ICBj1U9HYR0u7XwYM2+H6AXPeXKG7MJpL2OdtVQ5FhtU++ptzOXP/fTlFCDqJ9blTSAwujmdH4MaF6815l81eneFIAAAAgNHhnPuPkn63ZfIfe+8/NMj1eu8PS/oFrf2Cca6kn064Wesvc8IF92Sttwn/gggAAAAAUhvP35sAAAAAAAAAAMZPftgDAAAAAABgXBWj8Dko5aaT9ZPCGatxKXM5a4JZ6QIc5RShgKXGYnD6dG4m1TqyUHDhMEFSQMV6rItRSc4lBxys0Fdz5G6VVxy8bpTQn7fid9Lx53ZLbqsk+z5Y4bZV1mtIsoMUaZjjIYwGAOhAPjKCp/FK4u2sMFreZfOrjZKxfa37mmpxTQXjfgGjYr52MDh9wk1qOhrEvv/aE2HMyG6u/bn8pdy0qvXKuulJ4ek0rM+VCeP7hyTFfvxO8Ck3lnXbkRuC884qPkenF5+Z7YAAAACAEeCce6ukP26Z/F+99+/MYv3e+zudc1+RdFXT5FdJ+ppxk1EOo31M0uc6vM3Zkv6mT+sHAAAAAAAAAAAAAGxQ43fkLoBBIYwGAAAAAECXSrlw7GpN0CzhxP3VuJQVzWq+bVJgrdly3P6clmUjnjaVEO/KmhU88YrV8A3lXG7dPOuxThPxsq5TjtuH5tJIij+U1zzP4fVZ4bZVkctp0hVV9evjEWlfOyFmzIIwGgCgA1bwtO7ribezgqh5l02QrJiwb1SNy4TRMPLm6+Ew2lxhZ9twsCXpVq0HIYQiw1K6fclSNKUFHVo3fbnH/XM7uGiH0cbx8Irbjt4Q/G4gSZfNXZ3xaAAAAIDhc879oqSPa+3Xmr+Q9PaMh/J3WhtGe17CdY+0XN7VyYqcc1u0Poy20MkyLN77JyU92eF4+rFqAAAAAAAAAAAAAAAAbBLRsAcAAAAAAMC4smJalbgs74+fPJ8UpSpGpTX/b1VupAusrb1NcijAe6/leDE4byo3k2odWUgKnlgxg+bHq1ma8IJ1nUpjfczBG2EEl5CJSIqzrQ3pheMRqeJuRqgv7WunlffefExLOcJoAID0rOCptU1vNz85YNQ/pcSwaX/iqcAgHa4ZYbT8zh6Wmv5Eduu7UJp9W3v/vPvor2R/rkxE9ueKtf8/qrz3unHhy8F5W3Lb9MItF2c8IgAAAGC4nHP/VscjaM3HSn5G0q/41V/mZOeBlstJsbN7Wy6f0eG6Wq9/2Hs/3+EyAAAAAAAAAAAAAAAAgKEgjAYAAAAAQJesk/W9YlV9RZJ94v6kKypyOUnJQas0gbVmy20iHSu+qrqvB+dN5bakWkcWksJoNb8SnG4FwNJEvKzrhB536zwp5+xIRM7lNeEmg/Oax22F7dLE3azARNrXTquaX1GsRtfjAQBglbVdTwqjee/NfZZCwn5CPyVt76yYKTBK5utGGK3QSxgtydr9ZGv/PM2+5JTxHand9512hh1czMIPy/+ix1ceCc57+bYrVYiy+QwFAAAARoFz7g2SPi0p1zT5c5J+yXsfD2FIrT9QsKvs0j0tl8/pcF3PbLl8d4e3B/D/s3enQZLmeWHff08eVZnV09NdPd27y+4Ci/CCYLmWXViWXWbAwMKsjThEIAksDEISWEjIlsIhh7EtobAjbEfIIfmVFLZD4AhZEZKFpAhpZ8ESYvYAZC4BkjiNkGDFMbNTPdPdldWdx+MX1dmdnf38nnzyrOruzydiYjqfO68n/1lV+U0AgCfWo/WlMQAAAAAAPJ6E0QAAAGBFWYgq4n4QLY8B3P+sS7adSUziTnk7IvJg1rxFyx2Pb6bzLrTOTxit28rDBFkkJQuANQkvZMtU3X9l+sd/eRitbh/T+2xSju8F9eZl8bwm288eg4vUBV/6rbrPagHAg7Iw2rAmjDaJcZRR/fnkTtHZyHEtUjeGGKwZZ4JdSMNondXDaEXNmHd+nDxIItF176PuL1M9/l33uZedd/ZqwmjZuei8+tDRByqnF9GKL7n8VTs+GgAAODtFUfyBiPjbETH7g4R/EBHfXJZl9beCbN/8G7LqN26n/uXc5c8pimKZby15z4LtAQAArKD+76MAAAAAAGBThNEAAABgRf12XSzj+IH/z+vNhK7qoxvTwFoeqXpw+fpQwK26MFr7/ITR6oIno0l1zCALgDULLyTRssptVofR6iIREfnjpcl93CREll6HJEixSN1jqUlsDgCmukkYbVQTRquLpmWhtU1rF+3YK/Yr5zUdm8FZOhq+VDn9Svfa6hstmn/YJY1E17yPmkrDaA2D0ZnsvFN3XsmyyOfR0fDl+Lmb/7xy3mc/9c717nsAAHiEFEXx/oj4uxExO9j/xxHxh8oy+faV3XjX3OV/ny1YluVvR8TPz0zqRMR7l9jXl85dfmGJdQEAAAAAAAAA4EwJowEAAMCK6uJQJ/diV1msqz/z75ow2t0P/i8Knk0dLwgFHE/yMNrBuQqj5WGCYXmncnoaXmgQFcvuy6ptTlYNoy3YRxbROz2+6jDEA8uk4bXV4hH1oTZhNACay17XR+UwyrL6dbUumrarMFpEPkZYNTwKuzKc3Ikb41cr5x12rm5ln/NP5zQS3SRcvCAqvKrs3LLX2kvXyc5T59FHXv3hmMSkct5zl9+/46MBAICzURTFV0bE34uI2YH+D0fEHyzL5BcMO1AURS8ivmFu8o8uWO3vz13+9ob7+v3xYITtVpzeBgAAAGt6dH5vAgAAAADAo00YDQAAAFa0V+xHK3lrPbgXRquOS83GALKg1ez6dZGqWccLIljH4+ow2n7Ri3bRabSPXegWeZggixlkgZJG4YU0WjaISTmem7paGC0Nq0zDaDWBlSYhsrrrsIpBTWRvv0FsDgCmspBZGWVMYv519tSoHKXb69YEjDYtizNlQVY4L45GH0/nrRNGqx/x3h8nl2WZjkObjW2rw8B1Y9QmsvcSnZr3H4/KB3xG5TA+er26c/C67hvj0w8+Z8dHBAAAu1cUxXMR8Q8jojcz+Uci4uvKsrx9Nkd1z1+IiDfNXB5HxD9esM7furvc1DcURfHWhvua9XfKsjxpsB4AAAAAAAAAAJwLwmgAAACwoqIo0g/snyyIXc3GAPaLXhRpYO3WA/9fZDC+FWWZf3D/1vhG5fSD9lONtr8rWUAlIg+lpOGFmvBck2Xmt5vevPWViDQAMX2MnNTcx03ibovCa8vKo379aBV+pARAc3Wv68MkUjSa3KnZ3u5irpt+fYVdORq9nM477K4TRlsw6L3rdnkSZUwq560TLl7nuTcpJ+l7ib2aMFr5iITR/sWNn4jXxtcr5z17+LwxPAAAj72iKN4dEf8oIma/2eNDEfE1ZVmu9g0i1fv5o0VRvH7Jdf5ERPzFucnfX5blv61bryzLX42IH5iZtBcR318URS9ZJYqi+NqI+LaZSXci4vuWOV4AAAAAAAAAOCs1H40EnjC7+/QQAAAAPIZ67X7cmjwcG7sfu6r+4P5sDKAoiui1+pXxs+n6J+Nmn9kZxyiG5Z3YK/Yr5x8n8a0L5y6Mlv/IYpQEVLJ43DpRsYjTQNhsOC4LPLQW9Od7SXztXkQvCZF1im50W3lQZioPrzWL6j203hq3JwDMqg+eDuPBzyufyoJpi7a3adnrazbGg/PiaFgdRrvQuhj7rfTz82uZDYhlkd2I09DuIv12dYC6aTC6yjiJokVEdFqPfhjtQ9dfqJy+V+zHFz39ZTs+GgAAeFhRFG+O6r9XfMPc5U5RFG9JNnOzLMuH3vAURfH2iHghImZ/2fHLEfHdEfG6omgWeb7rpCzL36mZ/x0R8TeKovi7EfF3IuJHy7KsfLNSFMU7I+K/joivn5v1sYj4bxoez1+8u/7h3ctfHBH/pCiKP16W5S/N7Gs/Iv5kRPyVufX/yqIAGwAAAAAAAAAAnDfCaAAAALCGNEZ19wP7gySa0Z+LZPVbB5Uf8p8G1pYJABxPbsVeKwmjjR+OuEVEHLQvNt7+LrSKdrSiHZMYPzRvWN6pXCeLL2T3UdNlTm/7awu3sXgfWdxhGtGrvo+bHH9EXXitWVSv6XpNjwcApuoCn6PJMKJdMf2chNGygFM2xoPz4mj0UuX0w+7VNbfcLCZwMs6fI1n07IFl0ujvcZRlGUtGDSKi/ryyV9SF0c6/j93+jfi1wb+unPeFTz/3QOgZAADO0Eci4pMbLPemiPg3ybwfiIhvq5j+tRFxaW7ap0fELzQ9uBkvRsSXLlimHxHfeve/SVEUvxoRvxERr0bEOCKeiYjPjYjXV6z7SkR89YL42j1lWf5WURTfEBE/FBHTNy/viYh/XRTFT0fEr8fpdf/8ePiXGf8oIv7bJvsBAAC4p3wUfjsCAAAAAMDjThgNAAAA1tBLPrA/jUqdJNGM+fXy7UyjWc3jVoPxrbjcuVI579b4ZuX0gyTadZa6RTdulw+H0bKgwWBcHRbLbtumy5yMH7ztyySNUERrwT6qwyrT+3iQxCOyoNrDy9VH+pbV9LELAIvUhcyy1/VROUrX6dYEjDYtHaONVwuPwq4cDV+unH7YWS+M1jRHVhcPzMbFs/pJyGscoxiWd2KvqA5B11k5uPgIfPjnxaMX0nnPXn7/Do8EAACeSK04jbB9eoNl/2lEfFtZlr+1zA7KsvzRoii+PiK+P+7Hz4qIeOfd/6r87Yj4E2VZ8YsWAACAlS3/5TUAAAAAALCK+k/sAgAAALWyWMY0RpXHpR6MAfTb2XaOH/h/E8c1IazjSXUY7UL7YuPt70oWJ6gKpUzKcdwuTyqXz4Jhs7qtvegU1f34+bBYGZPK5YoFf/iXBc6mQbQsftckHFG3/ewxuEgeahNGA2A5dcGhYRpGqwsY7e47X/Ix2mrhUdiVV0ZJGK27XhitzmxAOBuDFtGK/aK3cFt1Y85Vn3/Z+SYiYq+Vh9ay8f95MRjfip987cXKeZ/a/4x4c+8tuz0gAAB4/P21iPi/IuLfNlz+VkT8/Yj4irIsv2LZKNpUWZYfiIjPioi/HhFHNYv+RER8Y1mW31yWpR9gAAAAAAAAAADwSNrdp4cAAADgMZTGqMankassaDa/3qKo1TJxq+Nxdfysbt5B+6nG29+VTqsbVQ2C4eTOQ9OyqFhEHjSZ12sdxM3xawu3XZYPLXJqwReiZsdxci9+V/35pObHXx1QO5kMYlJOolUs18dPo37tZqE2AJjq1oTRsgDasHz49T4iohWtaBXtjRxXE1kEt27sAefB0bA6jHalc23NLeeD3iZhtF6rH0WxYOAcEQfJ+6OIiOPxrbjUubJwG/Pqg4v5eSob/p8XP/HaP0sj0c9dfv+OjwYAAHJlWb5li9v+SxHxl7a1/bl9/f04DZ1FURSXI+JtEfGJEfH6iDiI0y+rvR6n8bJfjIifL8tyvKF9/15E/GdFUfzZiHhPRHxyRLwhTuNrH4uIny3L8t9sYl8AAAAAAAAAAHCWhNEAAABgDVkkahq5mgbSHlpvLmKVRa0G47thtHHzMFoW2IqoCaO1zmEYLYkTVAUN6uIkWdBkXj8Joz0ct6tOI7SiPjyWHcf0/soier2aKMSsfjtf7vZkUDu/+riaRf0AYJG64FAWKsqm121rG/ppGK352AzOwtGoOox22H1mre02iZpF1I0lG0Z/a+LAqz7/6sJoe8VeOq88x2m0sizjQ9dfqJz3dPtyfN7FL9rxEQEAwJOlLMvrEfHRM9jvnYj4Z7veLwAAwPn/ShkAAAAAAB4X9Z/YBQAAAGplkajB5DjKskwjZfORqmw7J5PjmJTjuF2eND6mwTgPo92aVIfRLrQf7TBaXQyucXyhYfhksuIf+OVhlUGUZZkGHvpJNK/p9iPyMEWd7HiyiB8AZOpiZsM0jDZaelvbkIdNhdE4vwbjW+lY7rBzdSfHkIWdm44l94teGh4+rhn716kLo3Vqwmjn+QM+v3z88/G7dz5WOe89l79y5+dMAAAAAAAAAAAAAFikPL9/ngucI8JoAAAAsIa62NWwvBOTmFTOnw8C9Nt5dONkMljqmOpCAcfjG5XTD85hGK1bdCqnVwUNTsb5bZQFTZouN3go6lD9k9ciitrtZ4+VMsq4XZ5U7Gd6XNXRvIeXy69nFsaokz3umt6eADDVKlrRinblvCxUlE3vnpMw2iqvrbArR6OX03mH3WtrbbtuxFvO/IVCNpacD0Sn+ymKPEKdjJsXGU7qwmj5uaU8x3958eL1D1ROb0Ur3nvpq3Z8NAAAAAAAAAAAAACwnnP8p7vAjgmjAQAAwBrmA2dTg/GtGNQEM+YjG+l2Jse128n2XWVSjtNtHbTOXxitU+xVTh9WhdGS69UpOtFtVW9nXh6ne/D2LLMwWlEfRqsLitU9XrLjemi52u0vH4/IHkd1+wGATBY0ywJow8mdyumd1m7DaOn4YHx8rmNJPNleGb5UOb2IIi53rqy59fox79T8GHoqe99Tpen4vKnsfBNx+r4hCx1n4/+z9srwpfj5mz9ZOe9znvrCOOxe3fERAQAAAAAAj4fz+bsRAAAAAB4fCz6GBxARwmgAAACwln77QuX0k8lxGuuKeDgu1W/l21k2apWFAo5rAgIX2heX2scudJYIqGRRsboYWdNlTyaDBy5nEZQspDBVFzg7mQzSx0vT69Bt7UWn6FTOWyUeMX+97x1Pw1AbAMzKX9dHyfTqgFG2nW3JXocnMY5hWR1vg7N2NPp45fRLnSvRTsaLm3F/nJyOJZcYn2fvkbKA7yJ155XTyPGj9RcWH7n+w1HGpHLec5ffv+OjAQAAAAAAngyP1u9TAAAAAAB4dAmjAQAAwBrmA2dTgwVBs/kgQK/Vr97OuD6wVuV4fHOp6RERB0ng7Sxlka+qoEF2G2X3zzLLzkfFyvRbUReE0ZKww3QfWdxtmevQNO7WRBZTW+Z4AGCq06oOmg0n1XGxLJi26zBa3eveKq+vsAtHw5crpx92rq697boY8Ow4eRNj2yxCvUr0NyJiuCC4mF23fPx/doaTYXz01R+unPeGvTfHpx189o6PCAAAAAAAAAAAAAAANkcYDQAAANaQhaiG5Z24NblROa+IIvZbvQemZR/6P5kcp1GBzHESCqgNo7UuLrWPXegWe5XTq8Jo2W2U3T/LLNs0elIXiYg4vT6t5Ecxg8lxnCQhvc3E3ZZ7DJVlmV7vZW5TAJjKgmZVr+t103cdRsvitRGrx5lg214ZvVQ5/bD7zM6OIRvbLjOW3NTYdmrReeVRCqP9i5s/FjfGr1bOe/by81EU9e9NAAAAAAAAAAAAAADgPBNGAwAAgDXURauOhi9XTt9v9aNVPPiWPAsE3Clvx61xdWAtMxhXRzpuTarDaK1o1UY/zkoWPhlWBA1ONhBGS8MLc7dnGZPK5RaF0YqiiH6rOoA3GOcBvF57/bhb9pjI3C5P0gDEMqE2AJjaVBitu+MwWt3rXtN4Kuxa9j7ksHNtZ8eQh4ubv+/Ix86rRQkXnVeylth5DKO9ePRC5fT9ohfvevrLdnw0AAAAAADAk+P8/d4EAAAAAIDHkzAaAAAArKFfE606GlUHCapiALWBtWQ7mcGkOhRwPK4Oox20n4oiqwCcoWUCKoNxdXih7v6ZlwXI5qMn6/x5X7aPG+PrMYlx5bxlQmRZGG3Z+5MAfQAAIABJREFUcMtJcnvW7QMA6nSLTuX0UTmqnF4VQo3Ixwfbsl8TcVo1zgTbdj15/3DYvbr2tutiwLMBsWz82W9Xx86ql02iv0l0bZEsjHb/vJKV0c7XB3x+8+TX49dPfqly3hde+tKl3gMBAAAAAAAAAAAAAMB5JIwGAAAAa6iLRB0Nq4ME/dbDMYDaMFqynczxsmG01lNLbX9Xuq0kjDZ5OGhwksQRqiJ0mew+eCi8kIQRWsXiH7P0k+N5ZfhSzTqbiEcsF26pi01kcTcAqLNM8LRu+q7DaK2ilY4nlg2Pwi5MykkaVr7Subaz48jGn8uNz6vHwcuObacWBRez6Fu5Vhp58z50/YV03nOXn9/hkQAAAAAAAAAAAADAZp2vv9wFzpIwGgAAAKyhNow2qo5dVcUA6mJTWdggMxjfirIi3nVrfKNy+YP2+QyjLRNQyUJey0TFsvtyPro2iUmyheqQwoP7qD6euvt4M/GIPHRWJQvNne5DGA2A5XWKvcrpw/JO5fQ8jNbZ2DE11XSMAOfBzfFrMSpHlfMOu1c3sId8zDsbEMvCgXXvn+alY9vxamG0ReeVRyGMdjy+Gf/vay9WzvsP+m+LN+5/8o6PCAAAAAAAePycn9+NAAAAAADw5BJGAwAAgDW0i3bsFfuV846GH6+cXhWWqotNHQ2ro1mX2oeV0ycxidvlyUPTjyfVAYELj1gYbVgRNMjCJMtFxarvg1E5jOGkOqIwa3EWLd9Hdh9HRPTby8Tdqq/vsuGWLKTWilb6eAeAOlnQLAs4ZQGjbhJY26bs9XvZ8CjswivD6jhzRMRhZ/0wWlE36L37GZlJOYnbSRhtmcjuQTIOXvW5t+i88iiE0X781R9Jg5LPXX5+x0cDAAAAAAA8eZr8hRQAAAAAAKxPGA0AAADWlMauRtWxq1774eXbRScNfWTbOexeS4/peHyzYtqNymUPWhfT7ZylbhJGqwoaDMbVcYR+a5moWB5pOJmJymVhhKLBj1myfWT3cRFF7Be9hdudyq5vdvtk8tDcQRS1NQwAqJYFT7NQUTY92842Za/fy4ZHYReycWWn6MZT7ad3cgy3JyfpmLluzN102UESfF4kPa+0dn9eWcWknMSHrr9QOe9S+zA+7+IX7fiIAAAAAAAAAAAAAABgO4TRAAAAYE29dnWMaljeqZyehdTSqFXywf8rNWG0qnVuVcTSIiIOkuM/a8sEVE4mg8ple61+4/31K4J1U4OZ7adhtAa9sGwfr45eqZzea/WXCpFl21823JKF1Ja5PQFg1jLB04iI4eT8hNGysduy4VHYhTSq3HkmWsX6vxYsIh+bTsfJdWPPujH3vIPk/dHJZBCTctx4O1OLzitFcvuUZfX4f9d+6fjn4qXhb1fOe8/l90W76Oz4iAAAAAAAAAAAAAAAYDuE0QAAAGBN/SVjUb0krrFsdOpKpyaMNn44jHY8qQ6jXWhfXGq/u7JMGC2Lxy0TXsiiJxERJzPbz8MIiwNm2T6y2FoWy8tkj61lw2h5aK757QkAszrFXuX0LCSbBdM6rd2Hf3rt6jHasq+vsAtHw5cqpx/WRJWXUzfmnYbRqseSEcuNJ+vG8nX7yKTnlbtBseyaZWP1XfvQ9Rcqp7eiHe+9/FU7PhoAAAAAAODJdD5+bwIAAAAAwONPGA0AAADWtGwsKotj9dvLRbAudi5FN4mMHFeEwo7H1WG0g/ZTS+13V7Iw2rAiaLCJkFddmG4ws/0sjFA0CKMt+1jZ1GNrsGS4ZROhOQCYlQXNRpNR9fQ0YFQ9PtimPDy6fJgJtu1o9HLl9MPO1Z0dQzaWjKiPET+8bP7+qG4fmey8cv89VfV4/jyE0T4+/L34hZs/VTnv8y6+Ky53ruz4iAAAAAAAAAAAAAAAYHuE0QAAAGBNdR/Yr5IFuJaJBJxu5yAOkn0PxkuE0VrnM4zWTcIn80GDUTmMYXmnctllbtNW0Y79olc578Hbc/Uw2rL38bIhsjSMNj6OsmwedNhEaA4AZmVBsyxUtDhgtDt5eHT5MBNs2yvD7YbR6sa809FmNpZsRWup53Dd+6zjivc7iywKLubX7ezDaB++/kNRxqRy3rOX37/jowEAAAAAAAAAAAAAgO0SRgMAAIA19drVobNMv139Af8smJZup3WQbut4LtRRlmXcmlSH0S60z2cYrdNqFlA5GVeHFyKWD3n1khDZbNyhXCeMtmTobOnjT5YfxygNQVTJQi/Lht0AYKpp8HRqmAaMOhs7pqay19cs/gRn6WhUHUa70t1MGK2Jk8lx5fR+60IUxeIx873la8bOg2QfdRadV7JjO+ss2nByJ37s1f+nct4n7H1SvLX/th0fEQAAAAAA8Fhb4ssXAQAAAGDT/HgKmBJGAwAAgDX1W9VxskwWQFtlO9k6g/GDYatheScNjxy0zmkYLQmoDCdzYbSaKMKyIbIs/DUbCiuTn642iTwsGzpbNkS2qXhEFptb9vgBYCp7Xc/GJ9n0bDvblI4PxtUhUTgr43IUr42OKucddrYfRpsGhAfj6nHnskHpdtGJvWK/ct4qz79F55UsdFyWk6X3tUk/c+OjcXP8WuW8Zy9/9VKxOQAAAAAAgPX4vQQAAAAAALshjAYAAABrWjZelcWllo94XYiDdnUY7XjyYCjgeHwz3c5B+3yG0boNAyp1wa9lQ17Z8ieT+6GwafDhYYv/8G/p0NnSsby6MFrzeES27LKPUQCYSoOnj0AYrZe8/s2OD+A8uD76eDpWPexe28g+snjYqdN9Z+HiVSK7/eT9zjLR36nsvNIt9u7+KwmjLb2nzXrx+guV03utfrzr0pft+GgAAAAAAAAAAAAAAGD7hNEAAABgTct+wD+LYy0d8Wr303DWYPxg2OrW5Ea6nQvti0vtd1ey8Mk2w2jZfTN/e1Zp8n2ovWVDZ+3+UsvXhdeWibdky64SswCAiOav64um3w8Y7U72+rdKmAm26Wj4cjrvsHN1I/soisWj3uy5sWwkuG6dZaK/U4uCi610RH92abR/d/Jr8Rsnv1I5711Pf1n0Wsu9XwAAAAAAAAAAAAAAgEeBMBoAAACsqd9eMmiWfLh/2VBAv3Uh+u3q0NbxXCjguCbsdZBs46w1DaicJOGFvWI/2kV7qX1m983sPsqYVC5TNPgxS3+DobMq+61+FEnQoUncbSq7TYUXAFhVd+kw2qhyeqfobOyYmspej08mgyjLswsmwbyjUXUYrdc6WPo9yyqmz4Z8LLlKGK1ZCLqJ4SQLo03PK9Xj6PIMw2gvHr2Qznv28vM7PBIAAAAAAICIs/xCGQAAAAAAnizCaAAAALCmpYNmSZRg2VBAr9WPg9ZTlfMGc2G0W+MblcvtF700QHbWsoDKJCYxLsf3Lg/G1eGFZe+XiPy+OZkM7v07+/O+LEj24DEtF6FbdvlW0Yr9JF42SAIVyyy77PEAwFTT4OnUsLyz1Ha2KRujlTGJ2+XJjo8Gcq8Mq8NoVzpXd3MAd0OB2VhylchuFoKef7/TRHa+mZ5XstH8WYXRbo5fi5+68eHKeZ928NnxCfufuOMjAgAAAAAAAAAAAACA3RBGAwAAgDUtHzSrXj6LcuXb6cdBFgoYPxgKOJ7cTPZ5fkNXdeGT2ajBSRZeWPL2jMhjarPhhXXCCMvGIFaJR2TrZLdT5bJJbG6V4wGAiOXDaKNJfcBol+piq7PxVDhrR6PqMNphd3NhtCYx4JNx9fNilchuPj5vPradys433dbe6T+K6utWlmcTRvuJV38kjUQ+d/n5HR8NAAAAAAAAAAAAAADsjjAaAAAArKkuljGvFa3YK/Yr5y0TWNsvetEq2mlcYD6EdjyuDqNdaF9svM9daxpGy6IIy9wvU9l9MBs9KctJ5TJFsfjHLK2iHftFr/HxrBKuyx4TTeMRk3Ict8uTjR0PAETkr+vDLIxWjqq309p9GK0utjofo4Wz9Mrwpcrph51rO9n/NCA8GxWe1WsvH9lNx7YrPPfS88rd81Mefdt9GG1STuLD1z9YOe9y55n4nKfeteMjAgAAAAAAnhxn86UxAAAAABDhp1PAfcJoAAAAsKZlgma91kEURfUH7pcJeU0DVQdJqOp4LhRwKwmjHbSearzPXeu29tJ5sxGVkyT4tcz9MpXdB03CC1lGYV5dXOWhZTd4HU7GzcJosxG4h7e9fMwCACIiuknQbFQRRpuUkxhHdcCoWxNO3ZZezetf3esm7Nr10cuV0w+7Vze4l3zUOw2jZc+LVcLF/WTs3DT6O2tY3qmc3ik6EZGH0c7ijyt+8dbPxkvD36mc995L74t20d7xEQEAAAAAAEQ0/wspAAAAAABYjzAaAAAArCn7sH6VurDGcoG10+30W9VhtJPJcUzKyb3Lx1kYrX1+w2jTQEGV0eR+RCWLItTd1pksWjYbdyiTNEIWUpi3VABvhXhEdh2axiPqlusljzcAWKSTBM1mX9PvTauIpS3azjbtF70okl+nDCaL46mwK0fDj1dOP+xsLozWZMSbj89Xif4mIegVnnvZuWV6XsnDaJPK6dv04vUXKqe3oh3vufy+HR8NAAAAAAAAAAAAAADsljAaAAAArCn7sH7lsu182bp52T6zfZdRxu2ZmNfxpDqMduFch9Hy8Mls1OBkXB1eWOZ+ub9OFhW7H15YN4y2TBBilTBats5JwzBa3XL9FWJzABBRE0YrRxXTzlcYrSiKNLg6G0+Fs3R7chK3Jjcq513pbi6M1kQ2nlwtjJaMbZP3AHWyc0u32Ft6W9v08p3fjX9166cr57394rvjUudwx0cEAAAAAAAAAAAAAAC7JYwGAAAAa+oWe9Fq+BY7i2osmpcte1ATNjueiXndGldHEg5aj2YYbVjeuffvQRZeaC8f8cpiDSeTQZTlaRBt+v+HFM3CaMvEznrtzcUjZuNudU7GeeBllZgFAETkr+vjGMWknDwwrSqWtmg727ZueBS27Wj4cjrvsLO5MFpdDHgaEM7DxcuPJQ+SePRxw7HtrOzc0ik6ERFRFNXv6bIw8rZ86PoL6T6fu/z8To8FAAAAAAAAAAAAAADOgjAaAAAArKkoiui3qj+wP68uLLVf9BoH1vp3g1kHNfsdjO/HArJwQF1Y7ax1i7103mzU4GRSHfJqep88uE71/VNGGbfLk3uXqtRFIh7YxxKxs1XiEWncrSZ4NisLqHWKTnRb+X0CAHW6NUGzUTmsvdx0O9uUvb4OkgAU7Noro5fSeZc3GEaLBWPeSTmeGTc/aJXoby8Z059MbuXB4gplWT4QV541DS5m12yZ/azrzuR2/Pir/7Ry3hv3Pjk+tf+ZOzsWAAAAAACAh+32C2UAAAAAAHhyCaMBAADABjT9kH9d6Kooitpw2gP7u7tcXWTreHLz/r/HNyqXudC+2Gh/Z6FTdNJ5s8GUkyTk1Wv1l95n3e0/Dc2Va4bRmt7H3WIv2jW3QSZ7TAwmzcItWWiu6XEDQJXOhsJoddvZpuz19aTh6yts29Hw5crpT7cvR7e1q+dNmY4lIyL6K4zPsxD0qBylobMq4xil86ZB5mw8n43/t+Gnb3wkbk2q37s9d/j+KIpm7zkAAAAAAAAAAAAAAOBRJowGAAAAG9D0Q/6L4lJNY17TwFq76MR+0atc5nh8Pxh2a3yzcpksNHAetIp2tJIfXcxGEAZJfKG/wnWrC81NIw/rhtHq4ngPLrfafZM9xgZJQO7h5aoDL02PGwCq1IfRHgwW1cWOziqMlr++CqNxPhyNqsNol7tXN7qfui5XWeaR3YiI3obH58s8/+bPM7M698Jx2ZXbXRjtxesvVE7vtQ7iC55+dmfHAQAAAAAAAAAAAAAAZ0kYDQAAADag6Yf8F4XP+u2m27kfCMjWmYawJuU4TpJowIX2xUb7OyvdYq9y+qgc3vv3ybj6ujWNzD24Tl144fT2XDeL0DR4tsrxn26/+jrURSoeXC67PYXRAFhdtzaMNpy7XBMwOqMwWv76KozG+XA0rA6jXelsNoyWx8NO1cV4m8akH1wnHzsPxs3CvxERo8kwndcpOhGRh453lUX7jcGvxr87+bXKeV/09H+48vsDAAAAAACA5ezuS2MAAAAAYF7px1PAXcJoAAAAsAFZLOOh5RaEzxpvZzaMlsQCpqGAweQ4yuQP1g7aTzXa31nJ4ifTYEpZljFIgiRNI3Oz9or9aCU/LpmGxcpyUjm/KJr9mKXX3sxjJd1+8hhqGo7Iw2hCDACsri5oNizvPHC5PmB0NmG07HVQGI3z4mhUHUY77G46jFanjJNxHuNdJbRbNybO3gdUmT/PzJqeV4oiC6Pt5q8rPnT9A+m85w6f38kxAAAAAAAA1Kv/Eh0AAAAAANgUYTQAAADYgKYf8l8Ul2q8nZm41kESCzienIawbo1vpts5aJ33MFqncvqoPA2mDMs7MYlx5TKrhLyKolgYmkvXbfiHf6vE75aRxSNulycxKatvq1mD8eZCcwAwVRc0m76uZ5cf3E712GDb8vCoMBrnwyvDlyqnH3Y2G0arG/OWUaaxwE7RiW5rb+n97Re9KJJfZw4mzcK/EfXnlW4xPa4kjJaEkTfp5ui1+KkbH6mc9/sPPjdev/emrR8DAAAAAAAAAAAAAACcF8JoAAAAsAH9dtPYVX1capVoVhryuhsKOK4Jo11on/MwWhJPGE7uRETEIAkvRCy+rTO9dnVQ7WQyiIjT4EOVpt+HuqmIXqZfs970OtTJYharHg8ARER0WnVhtNEDl4flneptFN0oirP5BvJsrNfktRW2rSzLOBq9XDnvSvfaTo8lG583HQPPOw0XZ2HCZcJoo3TeNNx4NmeXUz/26j9J423PXn5+x0cDAAAAAAAAAAAAAABnSxgNAAAANqBp0GxRXKppMGA2+nXQrg6AHd8NBRxPqsNorWitHCjYlWmkYN40GpBFvCLWCYsl4YW7obkyJpXzi4Y/Zmkev1sx7FazXl1IbtEyqx4PAEREdIpOOm80eTAGlAWMsnHBLmRjpun4AM7SrcmNNCh42Lm6s+MoYzuR3X7yfmeZ518WHYu4f37KxvNZGHlTJuU4PvzqByvnHXauxmc/9QVb3T8AAAAAAEBz2/29CQAAAAAATAmjAQAAwAY0D5rVL9dvLx9Yy4JV01DA8bg6jNZvX4iiKBrt76x0k4jKNJgyGOehryygsEh2X55MBhGx/p/3NX6sNHwsPLRezfbrbq+pbcQsAKAdnSiietwxHyzKAkZnGUbLXl+n4wM4S0fDl9N5h91rG91X9jw+VcYgeU6sE9nNw8WLx7ZTWTgu4v65Jbtm2w6j/atbPxMfH/5e5bz3Xv6qaBftre4fAAAAAAAAAAAAAADOG2E0AAAA2IBFwbN7yy2IXTWPZt0PCxwkAbDj8WkY7db4RuX8C62LjfZ1ljrFXuX0adggi3gVUcResb/SPrP7YBqay9JoraLZj1max+9WC6PVrZfdXrOyeNo6MQsAKIoiDZvNB4vyMFp1MHUX8nBq8zATbMvRqDqM1op2PN2+tNF91YfRIk7ujZkftE5kNxuHTt/vNJGdVyJmo4vV123bYbQXr79QOb0dnXjPpa/c6r4BAAAAAAAAAAAAAOA8EkYDAACADehtKHbVNLA2GxbIQgHTkNfx5Gbl/Cyodp5kAZVp2GCQxEh6rX7jUNm87D6YBsPKcr0wQtPAWNPHwrxuq5vebtntNetkMqicvk7MAgAi8rDZqBzNXa4OGHWTYOouZK/LJ5NBTMrxjo8GHnQ0rA6jXe5ciVbR3tlxlFHGYJyNJVcb20bkYeFlwoTz55mpdnTuvW8oiiT6tub4v87v3fnt+Ne3fqZy3udf/OJ4unN5a/sGAAAAAACotMXfjQAAAAAAQFPCaAAAALABTSNWi5ZrGgyYjWulYbTx3TDaOAujXWy0r7O0KKCSxRDWCS9kkbvpvsqo/uO/IpKQwvz2GwbG1opHpPGWWwvXTW/ThvE/AMgsCp5ODZMwWrb+LtS9Dt6enOzwSOBhr4xeqpx+pXtt8zvL4mF3ZWPJLG7WxMGCEHQTw8mdyumz7zey8fw2P/rz4esvpPOePXz/FvcMAAAAAACwimZ/HwUAAAAAq9LtB6aE0QAAAGADmobRFsWumgQDWtGKbrF37/JB+6nK5Y7vhgJuJWG0C63q9c6TPKByGjYYbCGMlt2Xgw2F0brFXrSjOvj2wHG0qwMQTWTXfzAZLFw3u02bPsYBINM0jDZ/+f76i18/t6XudTB77YRdORq+XDn9sHN14/taNOLdxvi8l4TRjsfNw2jpeaV1/7yUh9EmjfezjDuT2/Hjr/5I5bw3739K/L7ep29lvwAAAAAAAAAAAAAAcN4JowEAAMAGNPmgfzs6aRBkme30WxeiKO5/aP8gCQWcTI5jUo7jeFIdRsuCaufJbABu1vBu2OBkvPmIV3YfnNyNimVhtKbfiFoURaMAXq/Vb7S9Ktn1z26vqVE5jOHd6NzDxyOMBsB6Fr2uT+VhtPpx1DbVvQ6eCKNxxo5GSRite22nx1GWZfp8WGcseZAEg5d57mXnley8NGtbXzr3Uzc+nL5Xe+7y+x94zwcAAAAAAAAAAAAAAE8SYTQAAADYgCahq377YOGH25sEvXrtB4NZ/SQUEBExmBzH8fjRDaNlAZRp2GCQhRca3B+Z7D4YjG+d/qOsTiMsEy5oEj3rJ8G7RttPrv9gcqt2vZPxoOZ4hNEAWE+n6FROnw8WpQGj1uKA0bbUvXYPJvnrJ+zC0TAJo3We2cLe8jFvGeW9mPC8dcaS2brH4/qx7axROaqcPnteKtLrtvk0WlmW8eLRByrn9VsX4guefnbj+wQAAAAAAFjftr5SBgAAAAAAHiSMBgAAABvQJGK1qRjWfBjgoGadwfhW3ErCaBdaj0AYrZUEVCanwZSTJIy2Tnihl6w7jTxkf96XhxQetsr9vIxs3SxUcX9+9e0Zkd8uANDUouDp1HBSHUbL1t+FbrEX7agel5wsEWeCTZuU47g++njlvMPu1Y3vb9GYd5A8H5q8F8pkIei6seu8YXmncvrseaUoqn9tWiZh5HX8xsmvxG/e/vXKee++9OWx19rf+D4BAAAAAAAAAAAAAOBRIYwGAAAAG7Df4IP+TcJSvfby28lCARERx5NbcTypDqMdtM9/GK1b7FVOnwZUBkkMYb3wQvX9NJicRh7KmFTOXyaM1uyxsPkw2vQ6ZLLbMyK/XQCgqaZhtPnL99evDpPtQlEU6ThtsCA8Ctv06ugoJsn49Ern2o6PJg/xrhPZzca2xwvGtrPy88pMGC1Zt0zTyKt78foH0nnPXv7qje8PAAAAAAAAAAAAAAAeJcJoAAAAsAHtoh37Ra92mewD/csu81AYrWadwfhWHI8f3TBaFlAZ3g0bZOGFfiuPxS2SRRuG5Z0Yl6OaLELzMFqTyFiTx0Imuw6DcR4+i6gPo60TmwOAiIhua90wWvX6u5K9Np/UvH7Cth2NXk7nHXavbnx/dSPeMsr0+bBOZDcb29+eDGJSVkfh5mXnlQdDzNXXbtNhtBuj6/EzNz5aOe8zDj4vXrf3xo3uDwAAAAAAYDmb/9IYAAAAAABYljAaAAAAbEhvwYf9s1jVrHbRib1iv3aZ+ShHq2in2/7gK/93DMs7lfMOWo9uGG0aNhiMb1XOXyfiVRuamxxH9sd/raJ5GG3RY6EVrYWPgzpZeGJRuCWb3y32ol10Vj4eAIioCZ5OHo0wWhoeFUbjDL0yrA6j7Re9LY338zHvuBzFnfJ25bwm74Uy/XZ1GK0uxDZvVI4qp3dmxrhFet02++Gfj776T9Ljee7w/RvdFwAAAAAAwGY1//soAAAAAFiFbD8wJYwGAAAAG7Low/5ZrGrZ7VQF2A5a1bGAXz7++XQ7F9oXGx3PWeouCKOdTAaV87N4QhN1YbST8XGUZfbj1eZ/+Fe3j4jTx0CxRGjt4fWrr/+icMtgXD2/n2wPAJaxKHh6/3J1MCgbF+xKNkZrGmaCbTgaVYfRLnevrjWeXEU2No9YPP6tUzcWbRomzGLRs+elLIy2yT+umJTj+Mj1H6qcd6VzLT7rwjs2uDcAAAAAAAAAAAAAAHg0CaMBAADAhjSJXTXazoKAWtV+VgmBHbSfWnqdXVsUUBlMblXO77X6K++zKjw3NZgcR5mkEZbJTmwqopeun1z/ReGILOyyzu0JAFNNw2hNAkZnIRvrZWFR2IWjYXUY7bDzzFb2l8XDIvKxecS6YbSa8fk43+es+fPM1ANhtCQkV5aTRvto4hdu/lS8Mnqpct6XXP7qaBXtje0LAAAAAAAAAAAAAAAeVcJoAAAAsCEbC6OtsJ0L7YuNtj1VRBEHrUc/jHYyGVTO77eWD8XdX3fVMFrzH7Msuo/XCUdERPSS65+Fz6aycNoq4T0AmNc0jNYkYHQWsrHcotdX2KajJLJ1pXttOzusqQHXRQKbvheqUhcNXhT+nRpNRpXTu63dnldevP6ByumdohNffOkrdnosAAAAAAAAy6v+uykAAAAAANg0YTQAAADYkEUf9m8au1plO59+8DmNtj31qf3P3HkEYBXdJIAyLIcxKSdxOwmj9Vr9lffZLjrRLfYq553UhNGWsSg0tk444nT71esPxsdRlvnxZ6G5dW5PAJjKXtdH5Wju8vkMo2Wvr8JonKWj4cuV0w87V3d8JPXPhV579fFkp+im4/PB5FajbTQ5rxRJ9W0T4/+IiN+987H4peOfq5z3+RffGxc7lzayHwAAAAAAAAAAAAAAeNQJowEAAMCGZLGMqaZxqUUBtapo1nsvfWV8wt4nNdr+ftGLr7n6zY2WPWudJN42Kodxe3KSRgoWhccWye6Dwfg4sm8+zUIKVRY9FtYNo2XrT2Icw/JOul4Ws1j3eAAgIg+bzb82zYfSprKw2q5kr4cDYTTO0Cuj6jDale61reyvbsybRcq6xd7aYcN+q3p8Pxj094j4AAAgAElEQVQ3C6NlY+BdhtE+fP2D6bznLr9/I/sAAAAAAAAAAAAAAIDHQeesDwAAAAAeF4viUU3jUouWqwqwXexcjj/3Sf9D/PRrH4nfOPmVGJeTynXfsP+mePtTXxxv2H9zo2M5a1lAYTQZphGviOYRunz9g3htfP2h6SeT4yjLJIxWNA+jLYrfZeGHTWx/MDmOvdZ+9bxx9W266HgBoIn0db0cPnB5OHd50fq7ko0vTiaDHR8JnBpO7sTN8auV8w47V7eyz/owWhbZXW9sHnEaPn5tfPTQ9OMkxjZv/jwz9eB5ZXthtNuTk/jxV/9p5bxP2v/UeEvvrWvvAwAAAAAAYDM286UxAAAAAACwDmE0AAAA2JCFsauKoNkqy2XhtAvti/Hs4fPxbDzfaD+PgiyAMiyHaXghYv2wWK99EFHRThhMjtMwQl0kYt6i4+u114tH1D0WTybHcSkO03mVxyOMBsAGNA2jjSZ3qtdvnW0YLXt9HYybhZlg045GH0/nHXa3E0ark0V2NzGWzJ5/dbHkWaNyVDm9O3NeykPH63/45ydf+1D6/uW5w/cvFVkGAAAAAAA4O36nAQAAAADAbrTO+gAAAADgcbEojNY0CLBouUX7eZx0awIqdRGEXms7YbGTmjDaMn/4tyh8tnbYreYxUhdvyWINTaN+AFCnm4TN5oNFWcAoC6vtSvb6ejIZ7PhI4NTR8KV03mFn92G0bHy+ifcvB8n4+LhhmHA+wDg1e15Js2hrdtHKsowPXf9A5byD1lPxjovvXW8HAAAAAAAAAAAAAPCYWPdvd4HHhzAaAAAAbEhvQTyqaRBg0XJPUhgtC6CMymEa8WpHJ7rF3lr7zW7jQU0YrbVEGG1R+Gzd+3i/1YsiOZ66eEsWs2ga9QOAOtnr+nAuWJQFjLJg6q5kodC6WCts09Ho5crpF9oXY6+1v5V9ZmPMiIjBpDpStuh9UhPZNpo+/4blncrpD4bRqn9tmoeRm/n1wS/Fb93+jcp577705Vu7rwAAAAAAAAAAAAAA4FEljAYAAAAbsqmg2aII1ZMUqcoCKpOYxPH4RuW8XrsfRdE8Ula5jeQ2PhkfR2RhhCX2ue34XatoRa/Vr5yXBStO51WHJZ6kGB8A25MGTycPBouyMFq2/q5k44M75e0Yl6MdHw3kYbQrnWs7PpJTg3EW2a0ely7jIAkLH4/zse2sUfIcbXJeWTeM9uL1D1ROL6KIZy9/9VrbBgAAAAAAAAAAAACAx5EwGgAAAGxIP/mw/lTToFm/vWA77fXDAo+Kbk2o4Mb4tcrpmwjH9dvV2xhMjqPMumjRPIy23+rVzu8l+19Gdjtk8bOIiJNk3pMU4wNge9Iw2lywaFjeqVzurMNodaHQk8lgh0cCp14ZvlQ5/bB7dYt7zce8eWS3/v1NE/nYtmkYrTq4OPt+Ix/Prx5Ge210PX72xo9XzvvMC2+Pa3ufsPK2AQAAAAAAdm+9L5QBAAAAAICmhNEAAABgQ3qt+mBZ06BZ3Xa6xd6ZR0F2qe663hi9Wjm9LlrSVBZeOJkcRxmTynnLhNFaRbv2ft7Edci2cTKuDlaUZRkn4+qoS3/BYxsAmugUncrp88Gi+VDa/fXPbxhtkLy+wjYdjT5eOf2ws70wWlHUhdGqI2WL3ic1cZDEo+uiv7OyMFqnQRitXOMDPh999YdjHNXntGcvv3/l7QIAAAAAAAAAAAAAwONMGA0AAAA2pJ98WD9iuaBZv5VvZxPBrEdJ3W12c1wdRsuiZstIo2KT4zSLsEwYLaL+ODcSRlsyHjEs76TRhl7NYxsAmuoWe5XTZ4NFZVmmAaPuGYfR6l67TxrGmWCTjoYvVU7fZhitTvY8qHt/01S2jcG4OsY2bzi5Uzm905oJoyXRt7JcLYw2Lsfx4es/VDnvme7r420X3r7SdgEAAAAAALZqxd+NAAAAAADAJgmjAQAAwIZsKnRVt+wmol+Pkm4rD6DcSMJom4iKZbfzaVRsM3/8t+37udfqV07Pwmgnk0G6rX6yLQBYRhY8HZb3g0WTGEeZvNY2jcxuS6+dvx4Ko3EWjkYvV04/7J5VGK16PJmNS5eRR3+bhdFGZXUA+MHzShJGW3H8/ws3fzKujz5eOe/Zy18draK90nYBAAAAAADOznJfHAkAAAAAAKsSRgMAAIAN2VToqteu2U7NvMdRXQDlxqg6jLaJqFh2X56MB2kYoSiW+zFLbUhvA/dzv1Udj8jCLXVRiSctyAfAdnSKTuX02WDRsBzWrH+2YbRO0Y1usVc5LwuPwrYMxrfSENlh52zCaJlNvIfJxudNn3uj5NzSnTmvFOkHeVYLo714/QPJPvfi3Ze+fKVtAgAAAAAAAAAAAADAk0AYDQAAADakW+xFK9qV83qtfuPt1AXW6uY9juoCKDfH1WG0TUTFsnhDXTxs2e9D7berw2URedRsGVnMbDCujkdkYY3T43myHncAbEf2uj4qh1GWp+Gh0eT8htEi8jFdFh6FbXll9FI670r32tb2m8fDcpsYS2bj41E5jOHkzsL1h2X1Mk3OK6tk0X7n9m/FLx//fOW8d1x8bzzVfnqFrQIAAAAAAAAAAADA4221rzQGHkedsz4AAAAAeFwURRH99kHcGt94aN4ysa69Yj9a0YpJTB6al8WuHlfdYi+d99roeuX0TdxGWbyh6j65b7lIRF0sb3+JkN6y2781uVH5GL0+/HjN8fTWPh4AyAJEZZQxiXG0oxOjMg+jdVtnH0brty7EjYo466ujo8rXV9iW37n9W5XTi2jFpc6Vre13lTDaRsbnNe+nXhm9dC801mv1o108/OvPUTmqXHf2vNQqqr9Paji5s/Tz+59d/0fpvGcvP7/UtgAAAAAAAAAAAAAA4EkjjAYAAAAb1GtVh9GWiQEURRG91kEcT24+NC8Ldj2uOhVRg6nb5Unl9E3cRv3WhaXXaS0ZiciOc7/oRbtoL73/h7bfrr4Ov3L8C/Ff/tofbbydXqsfrQ0cDwB0W3nwdFgOo13Uh9HqxgW7koVHf/Cl748ffOn7d3swUOFS53AjY8lN6m8g+ls3Pv++f/Pd9/69X/TiMy+8Pb7lDd8dB+2nIiJiXI6jTALHWbBx1odf/WB8+NUPLnnE1T6599Z4S/+tG9kWAAAAAADA7pVnfQAAAAAAADwhqr/6HAAAAFhJFrtaJowWEdFvb2Y7j7pW0Y7Wkj++yIIl29/GsmG06rhDL7nvl7WpiN6T9pgDYHvqwmajyWkQbVgbRsvDaruyqddp2JbDztWzPoSH9FaIDs9rGi6+XZ7Ez9788fgbH/sf702rCy52Z8JoxZLj+VU8d/n5re8DAAAAAAAAAAAAAAAedcJoAAAAsEFZRGrZSFW6nScwxtGZiRU00W9vILywwjaWDSlk8bVNhcg2tZ1NBdYAoO41fRouahowOiteFznvDrvbDaOtEg/rt9cPF++3elEs8WvNXx38y/j48PciImJY3kmXe/C8tN0w2oX2xXjHxfdudR8AAAAAAADrK8/6AAAAAAAAQBgNAAAANula9w2V05/pvn6p7VxNtnN1ye08Dpa97ZZdvsp+0Yun2peWWudK99pSy1/b2+59nD0Wl7WJ2xMAIiL2iv103u3yJCLqw2jLxlK34Ukci/FoecPem7e6/U7RjYtLjJO7xV5cbF9ee7+torX08+9373wsIiJG5ShdZva88syS4/llffGlr4hua2+r+wAAAAAAANiu7X7RDAAAAAAATAmjAQAAwAa94+n3PjStU3Ti8y6+a7ntXHx4O3vFfnzWhXeufGyPqrdffHfjZa90rsWn9D5t7X0WRRHvuPiexsu/pffWOOxeXWofb7vwjtgveg9Nr7rvV/Ep/U+LK5314w7vfPpLNnA0ABDRax2k8wbj44iIGNaG0TobP6Zlff7F90Thj/05p4poxRc8/ex291EU8XlPNR+ff+5T74q9Vh5FXMay4+STyel5ZTRpFlz83Ke+aGvP717rIL7s8n+8lW0DAAAAAAAAAAAAAMDjRhjtCVIURb8oincXRfHHiqL480VRfG9RFH+mKIo/VBTFW4ui2MinPYqi6BZF8aVFUXxrURR/oSiK7y6K4uuLonjLJrYPAABwnn3mhbfHH37dd0a/dSEiIi61D+O73vS98Uz39Utt551Pvze+7uq3Rq/Vj4jT4NefefNfioudSxs/5vPu/c98U3zJ5a9+IFpQ5U37b4nv+cS/HK1iMz/u+IZr3x5fcPG5aEW7drlP7X9GfNebvnfp7R+0n4rv+cS/fO+xsV/04muufnO86+kvXeVwH9Iq2vE9n/h98ab9t6y0/n7Riz9w9VviCy5uN64BwJNjv9VLo0P3AkZJGK0VrWgV9a/Ju/Ap/U+Pb33Dn40L7YtnfSjwgKfal+I73/Rfxev33rT1fX3j674j3nnxS6IdeaywiFZ8zlNfGN/8hj+1sf3+R1f/cLz30vsaRxKnwcXsvBIR0W3df4/x1oO3xX/yhj8dT7WfXu9A51zuPBN/8o1/IS53n9nodgEAAAAAAAAAAADgcVOWZ30EwHnR7JMDPNKKonh3RPznEfF1EbFXs+jHiqL4PyLir5Vl+coK+7kWEd8XEX8oIq4ky/xYRPwvZVn+vWW3DwAA8Kh49vD5eO/l98X10Stx2Lkaq3ao3/fMN8SXX/naeG10FJc7z6y8nUddq2jHH3n9d8UfvPbt8dLwtyt/uPlU5+m43Kl8K7qybqsb3/7G/yL+yOS74uU7v1u5zKXO4Vqxuk/pf1r85U/563F99PF4unM52g0jD029bu+N8b1v+atxffRK3By91ni9VtGK1++9cePHA8CTrVW0Yr/VvxdBmzVYEEbrFnU/2t6td1360viCp5+Nl4a/HcNJHlyCXdlr7cW17ifs7P1Ct9WNP/bGPx8nk0E6Tn6mey367Qsb3W+7aMc3v+FPxTe+7jseeF/wv//7/zl+b/jvH1p+eq4ZlnfSbc7Hl9996cvjXU9/2cae3/ut/Xim+/qNxZsBAAAAAAAAAAAAAOBJ4NOtj7GiKDoR8Vcj4k9FRJNPw7wpIv67iPjOoii+rSzLDy6xr+cj4vsj4nULFv3iiPjioij+VkR8Z1mWt5ruAwAA4FHSKtpxpXtt7e20i3Ycdq9u4IgefXut/XjT/lt2vt9eqx9v7m1vv0VRbP0+vty5svFwHACsot86qAyjnSwIo83Hi87aaUT0TWd9GHCmtj1Ozsy/L7jYuVQZRrsfXByl26o6t3h+AwAAAAAAZCq+0RIAAAAAALZAGO0xVRRFERF/OyK+sWL2L0XEL0bEICKuRcQ7I+JwZv7rI+IfFkXxtU3iaEVRfGlE/IOI2JuZXEbEz0TEr0fE5Yh4e0TMfsr7WyLi6aIovq4sy0nDqwUAAAAAwCOs1zqonD4NGA0nWRjNrzOAav3Whcrpi4KLEecvuggAAAAAAAAAAAAAAES0zvoA2Jo/Hg9H0T4UEZ9dluVnlGX5DWVZfktZlu+LiNdFxB+LiFdnlt2LiB8oiuJS3U6KonhzRPxgPBhF+2hEvK0sy3eWZflNd/fx5oj4sxEx++mTr4mI/36F6wYAAAAAwCOon4TRTsb1AaNOS7wIqNZr9SunDxaE0VrRinbR3tpxAQAAAAAAPJrKsz4AAAAAAAAQRnuM/ddzlz8UEV9RluW/nF+wLMtRWZZ/MyK+IiJuz8x6XUR814L9fF9EHM5c/rG7+/nFuX3cLsvyf42Ib5pb/88VRfHJC/YBAAAAAMBjoNeuDqMtChh1ir3K6QD91oXK6dPg4rC8Uzm/UwguAgAAAAAALKc46wMAAAAAAOAJIYz2GCqK4rMj4i1zk7+nLJNPlN1VluVPRcT/Njf5a2r289aI+E9nJt2JiG8ry/KkZh//ICJ+YGbSfkT8xbrjAgAAAADg8dBvVYfRTu6F0UaV87tFZ2vHBDzaeu1+5fTBgvOKMBoAAAAAAAAAAAAAAJxPwmiPp983d/k3y7L8uYbr/sO5y2+tWfabI6I9c/kHy7L81Qb7+J/mLn9TURS9JgcHAAAAAMCjq9eqDxgNyzuV8wWMgEweXBxERMQo+d6grvMKAAAAAAAAAAAAAACcS8Joj6cLc5d/a4l1f3Pu8mHNsl8/d/lvNtlBWZa/GBH/fGbShYh4X5N1AQAAAAB4dPVb8z++PrUoYCSMBmR6SRhtGlxMzyst5xUAAAAAAAAAAAAAOE/K8qyPADgvhNEeT78zd7m3xLrzy75StVBRFG+IiM+dmTSKiI8usZ8fnbv8/BLrAgAAAADwCOq1+pXTB+NbERExKkeV84XRgEwWRju5G0YbTu5UzndeAQAAAAAAWJZPpQIAAAAAsBvCaI+nn4yI2zOXP6MoiupPmz3sHRXbqvJZc5d/vizLWw33ERHxY3OX37bEugAAAAAAPIL67QuV008mg4iIGJXDyvkCRkCmn4XRxqdhNMFFAAAAAAAAAAAAAAB4tAijPYbKsrwREf/nzKReRHzHovWKomhHxJ+em/wDyeKfOXf51xof4Kn/b8H2AAAAAAB4zPRa1d/hMZicfu/GsLxTOf//Z+/uo2W/6/rQvz+z9z6ZyQnkgSQECoaQgFBBwdDLIqlXEBaoqxcFEbiUXmJv1dorpVeWFttqROtawq3epe2yVsviwStoxSAtRdMFQos8yC1QkCb0hgBBeTAKCSYn5yTn4Xv/2HM8k8mevWf2mZnf7L1fr7Vmze/h+/t+Pr/FWt9wZs+8fxsCjIAJ+mtbB6Pd247lVDs5MXDRugIAAAAAAAAAAAAAAKtJMNr+9aoknxvZf21VPWvS4KraSPKrSZ48cvgPkvzOhEuuGtv//Iz93Ta2/5CqunDGOQAAAAAA2EMGvcNbHj926miSTAwwWhdgBEww6G0djJZsri3WFQAAAAAAgBm01nUHAAAAAACQ9a4bYDFaa1+tqmckuSGbYWeDJDdW1VuTvDXJp5IcTXJxkqcl+cEkXz8yxYeTvKC1iX/RuGBs//YZ+7u7qo4l6Y8cPj/JHbPMAwAAAADA3tHvDbY8fu+poznVTuXEqRNbnhdgBEzS3yYY7eipe3JcMBoAAAAAAMCcVNcNAAAAAABwQAhG28daa5+rqqcmuS7JDyS5OskLh69JvpLkF5L8X61N+KXIpvPG9o/uosWjuX8w2oN2Mcf9VNWlSS6Z8bIrz7YuAAAAAAA7G6wd3vJ4S8u9p47lxKQAo54AI2Brg22C0Y6dumfyuiIYDQAAAAAAAAAAAAAAVpJgtP1vbfi6N0nL9o9n+ZMkP5nkN3cIRUseGIx2bBe9HU1y4TZz7sY/SHL9HOYBAAAAAGDO+r3BxHNHTx2ZGGC0IcAImKC/TTDa0ZOTg9GsKwAAAAAAAAAAAACwWlrXDQAro9d1AyxOVV2b5OYk/zrJtdn5f+9HJnl9ks9X1d+bsdxu/tviv0cAAAAAAAfIoHd44rljp47meLtvy3PrAoyACTZ6GxPXiGOn7rGuAAAAAAAAAAAAAADAHiMYbZ+qqmcmeVeSR40c/kKSVyV5cpILkhxKclmSb0/yxiQnhuMuSfJrVfWrVVUTStw9tj/YRZvj14zPCQAAAADAPtLvTf4o+eipe3KindjynAAjYDv93rlbHj966p6cOGVdAQAAAAAAmI/WdQMAAAAAABwQ6103wPxV1SVJ3pKkP3L4PyR5aWvtL8eG/1mSG5PcWFW/kuQdSR4yPPf9SW5N8potyqxqMNovJ/ntGa+5Msnb51AbAAAAAIBtbNShrGU9J/PAoKJjp+7JiXZ8y+vWy58zgMkGvUHuPvm1Bxw/duroNuuKYDQAAAAAAAAAAAAAAFhFfkm0P/1IkktG9j+V5IWttWPbXdRa+1BVvSjJu0YOX19Vr2+t3T42fPzXJZdkBlV1Xh4YjHbnLHNsZdjneK879XK2ZQEAAAAAmEJVpb82yJGTdz3g3NGTk4PRNurQolsD9rB+79wtjx89eWTyutITjAYAAAAAAPBAresGAAAAAAAgva4bYCG+d2z/NTuFop3WWnt3kveNHBokefEWQ28Z2798+va2HP/V1todM84BAAAAAMAeM5gQYHTs1D05PiHAaL0EGAGTTQpGO3bqaI63+7Y8Z10BAAAAAACYVXXdAAAAAAAAB4RgtH2mqg4nuXLs8LtnnOZdY/tP3WLMzWP7V81Y49Fj+zfNeD0AAAAAAHvQpACjo6fuyQnBaMAuDNYmBy6eaCe2PGddAQAAAAAAAAAAAACA1SQYbf+5YItjX55xjvHxF28x5pNj+99YVVv/6mRr1+4wHwAAAAAA+9BgQjDasW2D0dYX2RKwx+0ucNG6AgAAAAAAAAAAAAAAq0gw2v5z5xbHDs84x3lj+3ePD2itfSnJJ0YOrSf5mzPUePrY/u/NcC0AAAAAAHvUxACjk5MDjDZ6hxbZErDH7SZwcaOsKwAAAAAAAAAAAACwSlrrugNgVQhG22daa0eS/OXY4SfPOM3VY/tfnjDubWP73zfN5FX1uCRPHTl0JMl/mq41AAAAAAD2ssHaNgFGp7YOMFqvjUW2BOxxEwMXT92T4xOC0awrAAAAAAAAs/KrVAAAAAAAlkMw2v703rH9H5j2wqq6LMlzxw6/b8Lw30hycmT/+VX1mCnK/OOx/X/XWjs2ZYsAAAAAAOxhAoyAeRtMWFeOnbwnJ6wrAAAAAAAAAAAAAACwpwhG259+a2z/RVX10p0uqqpzkvx6kvNGDt+d5MatxrfWbknyxpFDh5K8oar629T4riTXjRy6L8mrd+oNAAAAAID9YVKA0dFTR3Lqfs/iOGO91hfZErDH9dcmBy5ODkazrgAAAAAAADxAa113AAAAAAAAgtH2qd9M8vGR/Urypqr6xap62FYXVNUzknwoybPGTr2mtXbHNrWuTzJ6/pok76qqx43Nf05VvTzJb49d//Ottdu2mR8AAAAAgH2kPyEY7e4TX5t4zXptLKodYB8Y9AZbHj+2TTDaRu/QIlsCAAAAAADYh6rrBgAAAAAAOCA8Cn0faq2dqqoXJHl/kkuHhyvJP0zyw1X1iSSfSXI0yUVJnpzksi2memeS1+xQ60+r6vlJbkxy+hck1ya5qao+MqxzfpJvTnLJ2OXvSPITs90dAAAAAAB72WBCMNpdJycHo22UACNgsn7v8JbHj506mt6E50QJXAQAAAAAAAAAAAAAgNUkGG2faq19uqq+NcmvJ3nKyKlekicNXxMvT/JrSf5Ra+34FLXeW1XPS/KGnAk/q2Hdp0y47C1Jvr+1dnKn+QEAAAAA2D/6a1sHo9198q6J1wgwArYz6A22PH683ZdKbXnOugIAAAAAAAAAAAAAAKtp60eksy+01j6V5GlJXpbkg9kMPNvO0SS/keSa1toPttaOzlDrnUmekORXktyxzdAPJXlBa+0lrbUj084PAAAAAMD+MOhtHYzWcmriNevlOS/AZP3e4Ynn2oQ/j1lXAAAAAAAAAAAAAABgNfnG/z7XWjuR5E1J3lRV5yd5SpIrklyQ5Jwkd2UzyOyTSf54OH63tW5P8kNV9Yok1ya5PMllSY4k+UKSj7XWPnsWtwMAAAAAwB7XnxCMtp312lhAJ8B+MVgbzHzNRh1aQCcAAAAAAAD72dYPpAEAAACAefEJFHCaYLQDpLX2tSTvXkKd+5K8Z9F1AAAAAADYewaC0YA5G/QOz3yNdQUAAAAAAAAAAAAAAFZTr+sGAAAAAACAg6O/i2C0jd6hBXQC7Bfn9AYzXyMYDQAAAAAAYCut6wYAAAAAAEAwGgAAAAAAsDyDtdmD0dZrfQGdAPvFWq3lUJ0z0zXWFQAAAAAAgFlV1w0AAAAAAHBACEYDAAAAAACWpt8bzHzNWgQYAdsb9GYLXdyoQwvqBAAAAAAAAAAAAAAAOBuC0QAAAAAAgKVZq/UcqnOmHr9eG6ny5HFge/212YLR1mtjQZ0AAAAAAAAAAAAAAABnQzAaAAAAAACwVP3e9AFGG8KLgCkMZlhXkmS9Z20BAAAAAAAAAAAAAIBVJBgNAAAAAABYqsHa9AFG64LRgCnMEriYJOu1vqBOAAAAAAAA9qvWdQMAAAAA7HPNR1DAkGA0AAAAAABgqWYJMBKMBkxjMMO6UqmsRTAaAAAAAAAAAAAAAACsIsFoAAAAAADAUs0SYCQYDZjGrIGLVbXAbgAAAAAAAPaq1nUDAAAAAAAgGA0AAAAAAFiufm8w9VjBaMA0BmuzBKOtL7ATAAAAAACA/cqDZwAAAAAAWA7BaAAAAAAAwFINeoenHrshGA2YQr83SzCadQUAAAAAAAAAAAAAAFaVYDQAAAAAAGCp+muDqccKMAKm0e9Nv65s1KEFdgIAAAAAAAAAAAAAAJwNwWgAAAAAAMBSDXqHpx673hOMBuxspnVF4CIAAAAAAAAAAAAAAKwswWgAAAAAAMBS9XuDqccKMAKmMdu6sr7ATgAAAAAAAAAAAAAAgLMhGA0AAAAAAFiqQe/w1GM3BKMBUxisTb+uCFwEAAAAAADYjdZ1AwAAAADsc81HUMCQYDQAAAAAAGCp+r3B1GMFGAHTmGVd2egdWmAnAAAAAAAAe5hfngIAAAAAsAIEowEAAAAAAEs1WDs89VjBaMA0Br1Z1pX1BXYCAAAAAACwX1XXDQAAAAAAcEAIRgMAAAAAAJaq3xtMPVaAETCN2dYVgYsAAAAAAAAAAAAAALCqBKMBAAAAAABLNegdnnqsACNgGv3euVOPta4AAAAAAAAAAAAAAMDqEowGAAAAAAAsVb83mHrsRh1aYCfAfnFOr59KTTXWugIAAAAAAAAAAAAAAKtrvesGAAAAAACAg2Wwdnjqseu1scBOgP2iV72c0xvk2Kl7dhy7Xv5ECgAAB0VVbSS5NsnXJXlYkruTfDHJx1prn5tzrSuSPCnJw5Ocl+RLSW5L8oHW2vE51lnaPQEAAAAAAAAAQBd86yO3vQAAACAASURBVB8AAAAAAFiqQ3VOKpWWtuNYAUbAtAa9c6cMRhO4CAAAXamqRyf5G0meMnz/5iQPGhlyW2vtUXOoc0mSVyd5UZKLJoz5QJJfaK39zlnWekGSH0nytAlDvlpVv5XkJ1trf3EWdZZ2TwAAAFvb+e+7AAAAAAAwD35NBAAAAAAALFWveun3BjkqwAiYo37v3KnGrdehBXcCAACMqqqnJ/nxbIahbRnoNed635HkDUku3WHoNUmuqarfSPKDrbUjM9Y5L8mvJXnxDkMvSvJDSZ5fVS9rrd04S51hraXcEwAAgPAzAAAAALrk0yngNMFoAAAAAADA0vV7504VjLbRE2AETGcwdTCaP5ECAMCSPSnJs5dRaBjC9rtJRj9QaEk+muQzSS5I8uQkF4+c/9tJHlxV391aOzVlnbUkv5XkO8dO/XmSjyX5WpIrh7VqeO6hSd5eVc9qrf3hqt0TAADAzmrnIQAAAAAAMAe9rhsAAAAAAAAOnv7UAUYbC+4E2C/6a9OtKxs96woAAKyIe5PcOq/JquoRSW7I/QPE3p/kG1prT2mtvbC19uwkj0jyiiTHR8b9L0n++Qzlfi73D0U7nuTlSR7RWnvOsNbVSZ6Q5IMj485J8rtV9bAVvCcAAAAAAAAAAFgJgtEAAAAAAIClG0wdjLa+4E6A/WL6dUUwGgAAdOB4kv+W5N8m+cEkVyd5UJK/N8car05y4cj+B5I8q7V28+ig1tq9rbVfSvLCset/pKou36lIVT06myFko763tfavWmv3jdW6Kckzc/9wtIckuX6nOkNLuScAAAAAAAAAAFglgtEAAAAAAICl668JMALmq98bTDVuvQ4tuBMAAGDMG5M8uLX25Nba97fWfrW19tHW2vF5FaiqxyR52cih+5Jc11o7Numa1trvDns77ZxMF1h2fZLRDyze0Fp7+zZ1jia5btjTaf/7MGBtoiXfEwAAAAAAAAAArAzBaAAAAAAAwNINeoLRgPnqT72urC+4EwAAYFRr7Y7twrzm5CVJ1kb2b2it3TLFda8Z239hVfUnDa6qQZIX7DDHA7TW/r8kvztyaD2bPW9nKfcEAAAAAAAAAACrRjAaAAAAAACwdP3eYKpxG4LRgClNG7hoXQEAgH3peWP7r5/motbazUn+aOTQ4STP3uaS5yQZ/cfHB1trn5qqwwf29Pwdxi/rngAAAKbUum4AAAAAAIADQjAaAAAAAACwdIPe4anGrQswAqbUX5suGM26AgAA+0tVXZbkm0YOnUjy/hmmeO/Y/ndsM/bbd7h2O+/LZm+nPbmqHrrVwCXfEwAAAAAAAACshCabHxgSjAYAAAAAACxdvzeYapwAI2Bag960wWiHFtwJAACwZE8Y2/9Ea+3IDNd/YGz/G2ao9cFpiwx7+uMpay3zngAAAEb45SkAAAAAAN0TjAYAAAAAACzdYO3wVOMEowHT6k8djLa+4E4AAIAl++tj+5+e8fpbd5hv1OOXVGuZ9wQAADCl6roBAAAAAAAOCMFoAAAAAADA0vV7g6nGCUYDpjWYMhhtw7oCAAD7zVVj+5+f8frbxvYfUlUXjg+qqouSXHSWtcbHP2bCuKXcEwAAAAAAAAAArCKPQwcAAAAAAJZu0Ds81biNngAjYDr9KYPRBC4CAMC+c8HY/u2zXNxau7uqjiXpjxw+P8kdO9S5p7V2ZJZaW/R2/oRxy7qnmVXVpUkumfGyK8+2LgAAAAAAAAAAB4dgNAAAAAAAYOn6vcFU4wQYAdMarE0ZjNY7tOBOAACAJTtvbP/oLuY4mvuHiD1ogXVGbVVnnrV2uqfd+AdJrp/TXAAAAAAAAAAA8AC9rhsAAAAAAAAOnsHa4anGCUYDptXvTReMtlGeHQUAAPvMeIjYsV3MMR48Nj7nMussuxYAAMCUWtcNAAAAAABwQAhGAwAAAAAAlq7fG0w1bkMwGjClwZTBaAIXAQBg39vNL/VX+Zpl1wIAAAAAAAAAgE55HDoAAAAAALB0g97hqcYJMAKmtVGH0staTuXktuOsKwAAsO/cPbY/XRr79teMz7nMOsuuNatfTvLbM15zZZK3z6k+AACwSE3GMgAAAADd8ekUcJpgNAAAAAAAYOn6vel+zyvACJhWVWXQOzdHTt217TjrCgAA7DuC0c6u1kxaa7cnuX2Wa6pqHqUBAIDO+f/2AAAAAAAsR6/rBgAAAAAAgINnow5lbYfnt/Syll75UwYwvf7auTuO2RCMBgAA+83XxvYvmeXiqjovDwwRu3OKOudW1eFZaiW5dIo6W9Va1D0BAAAAAAAAAMDK8WsiAAAAAABg6aoq/bXx3+fen/AiYFaD3vbrSpKsW1sAAGC/uWVs//IZrx8f/9XW2h3jg1prX0kyfvzrzrLWeO+Tji/kngAAAAAAAAAAYBUJRgMAAAAAADox6J277XnhRcCs+r3DO46xtgAAwL5z89j+VTNe/+ix/ZuWWGt8vkXV2e6eAAAAAAAAAABgpQhGAwAAAAAAOtHfKRitJ7wImE2/N9hxjGA0AADYdz45tv+NVbX9hw73d+0O82137mnTFqmqw0m+ccpay7wnAAAAAAAAAABYKetdNwAAAAAAABxMg52C0YQXATPaeV1ZT1UtqRsAANhabf6f0h9N0h85/KbW2ufOct4rkvydkUP3tNb+xdnMuRe01r5UVZ/ImdCx9SR/M8l/mnKKp4/t/942Y38/yQ9sc+12viX3/87mx1prf7bVwCXfEwAAwJRa1w0AAAAAAHBACEYDAAAAAAA60ReMBsxZf826AgDAnvCSJD+XM78ov+FsQ9GSpLX22ap6YpLnnz5WVZ9prd1wtnPvAW/LmRCxJPm+TBEiVlWPS/LUkUNHdrjuxiRHkwyG+0+rqse11j41RY/Xje2/bYfxy7onAACAEcLPAAAAAADoXq/rBgAAAAAAgINpsEOA0UZ5vgswm4HARQAAVlxV9ZL89OndJLckedkcS1yX5Nbh3JXkZ+c49yr7jSQnR/afX1WPmeK6fzy2/+9aa8cmDW6t3ZPkrTvM8QBV9dgkzxs5dCLJm3e4bCn3BAAAML3qugEAAAAA9rkmtx8YEowGAAAAAAB0or9jgNGhJXUC7Bc7ryuC0QAA6NyzklyRpA1fPz4M25qL1tqRJK8aOfTYqvq2ec2/qlprtyR548ihQ0neUFX9SddU1XdlM0jutPuSvHqKcj+V5PjI/nVV9dxt6vSTvH7Y02mva63dul2RJd8TAAAAAAAAAACsDMFoAAAAAABAJwYCjIA522ld2bCuAADQvZeObH+ktfa2eRdord2Q5CMjh/72vGvMqqoeUVWPGn8luWxs6PpW44avi3coc32SO0b2r0nyrqp63Fgv51TVy5P89tj1P99au22ne2mtfSbJL44dfmtV/XDV/VPeq+rxSd497OW0r2T6sLKl3BMAAAAAAAAAAKyS9a4bAAAAAAAADqb+jsFo/owBzGbndUUwGgAAnfv2ke3XLbDO65JcnaSSfOcC60zrD5NcPsW4v5bksxPOvTHJdZMubK39aVU9P8mNSU4HlF2b5Kaq+kiSzyQ5P8k3J7lk7PJ3JPmJKfo77VVJviHJdwz3N5L8yyQ/UVUfTXJXkkcPa9XIdfcleV5r7UvTFFnyPQEAAAAAAAAAwErodd0AAAAAAABwMA0EGAFzNlizrgAAsLqq6vIkF48cescCy43OfWlVPXKBtVZGa+29SZ6X5M9HDleSpyR5YZLn5IEBYm9J8uLW2skZ6pwczvdbY6cuzWb43ffmTDDdabcn+a7W2vumrTOs9d4s4Z4AAAAAAAAAAGBVCEYDAAAAAAA60d8hwGhDgBEwo77ARQAAVts3Dd9bkltba19YVKHW2p8m+fTIoSctqtaqaa29M8kTkvxKkju2GfqhJC9orb2ktXZkF3Xubq29OJshaB/aZuhXk/zrJE9orf3+rHWGtZZyTwAAANtrXTcAAAAAAMABsd51AwAAAAAAwME02DHA6NCSOgH2i53XFcFoAAB06pKR7S8uod4Xk1w13L50CfUmaq09asn1bk/yQ1X1iiTXJrk8yWVJjiT5QpKPtdY+O6dab03y1qq6Isk3J3l4ksNJvpzktiTvb63dN4c6S7snAADgIBN+BgAAAABA9wSjAQAAAAAAnejvFGDU82cMYDb93mDb8xuC0QAA6NaFI9tfXkK90RoXLKHeyhkGkr1nSbU+m2ThwWTLvCcAAID7q64bAAAAAGCfa3L7gaFe1w0AAAAAAAAH02CnYDQBRsCMBr3D255f71lXAADo1KGR7WV8d2+0xjlLqAcAAAAAAAAAAHDWBKMBAAAAAACd6O8QjLYhGA2YUX9tsO15gYsAAHTsnpHtS5ZQb7TGPRNHAQAAAAAAAAAArBDBaAAAAAAAQCcGa9sHo63XoSV1AuwX67WRjW3WDsFoAAB07Msj25cvod5ojT9bQj0AAAAAAAAAAICzJhgNAAAAAADoRL832Pb8eq0vqRNgP9lubdkQjAYAQLduHb5Xksur6qpFFaqqK5M8aovaAAAAAAAAAAAAK00wGgAAAAAA0Im1Ws+hOmfi+XUBRsAuDHqHJ56zrgAA0LGPJ7kvSRvuP3eBtb57ZPt4kv+2wFoAAAAcCG3nIQAAAAAAMAeC0QAAAAAAgM70e+dOPLchwAjYhX5vMPGcYDQAALrUWrsvyX9OUsPXj1XV5GTfXRrO+aPZ/MV6S/JfhrUBAABge034GQAAAAAA3ROMBgAAAAAAdGawNjkYTYARsBvWFQAAVtxbhu8tySVJXruAGj+X5NJshq8lyZsXUAMAAIADp3YeAgAAAAAAcyAYDQAAAAAA6Ey/J8AImK/t1pUN6woAAN17c5IvDbcryd+vqn8yr8mr6lVJ/o9sBq8lyZ9FMBoAAAAAAAAAsAe0nYcAB4RgNAAAAAAAoDMDwWjAnAlcBABglbXW7kvy49kMRWvD95+pqt+sqgt3O29VXVBVb07ysyPztiT/ZFgTAAAAAAAAAABgTxCMBgAAAAAAdKbfG0w8t9ETYATMbtvAResKAAAroLX2piRvz/3D0b43yS1V9dqqesy0c1XVVVX12iS3JHnRcK4M5/0PrbU3zLN3AAAAAAAAAACARVvvugEAAAAAAODgGvQOTzy3XgKMgNn1twtGs64AALA6/k6SP0jylJwJR7soySuTvLKqvpTkw0luTnLn8JUk5ye5IMnjk/xPSR4+PD4aiFZJPpLkpQu/CwAAAAAAAAAAgDkTjAYAAAAAAHSmvzaYeE6AEbAbg7XJwWgb1hUAAFZEa+3uqnpmkjckeV42A82SMwFnD0/yXcPXJDWyPXr925O8rLV299waBgAAgL/6pycAAAAAACxWr+sGAAAAAACAg2vQOzzxnGA0YDf6vcnBaNYVAABWSWvtrtba9yR5ZZKj2Qw1ayOvDI9t9crY2EpyLMmPtdae11r7y2XdBwAAAPuJ8DMAAAAAALonGA0AAAAAAOhMvzeYeG5DgBGwCwPBaAAA7DGttf87yeVJfjbJnbl/AFqb8Bodc+fw2stba/9i2f0DAABwUNTOQwAAAAAAYA7Wu24AAAAAAAA4uAa9wxPPCTACdmO7wEXrCgAAq6q19pUkP1FVP53kqUm+Ncm1Sf5akouSPGQ49KtJvpLki0nen+Q/J/mj1tp9S28aAAAAAAAAAGCOWuu6A2BVCEYDAAAAAAA6I8AImLd+79yJ5zasKwAArLjW2vEkfzh8AQAAAAAAAAAAHDi9rhsAAAAAAAAOrsHa4YnnBBgBuzFYmxyMJnARAAAAAAAAAAAAAABWm2A0AAAAAACgM/3eYOI5AUbAbvR7gtEAAAAAAAAAAAAAAGCvEowGAAAAAAB05vz1C7c83ksv/bXJ4UYAk5y39uD0JvwZ9Ly1By+5GwAAAAAAAAAAAAAAYBaC0QAAAAAAgM48ZOOhedihRz7g+JWDx6ffG3TQEbDXndPr57HnPvEBxy/deHguPvTQDjoCAAAAAADYK1rXDQAAAAAAgGA0AAAAAACgWy972D/KeWvn/9X+hesX56WX/XCHHQF73Ysf+vfzkI1L/2r/3N55+bsPf2WHHQEAAAAAAAAAAAAAANNY77oBAAAAAADgYPu6/pV59RW/nFuP3pxereWqwV/Pod45XbcF7GGXHnpY/tmjfimfPfo/cl+7N48994np9wZdtwUAAAAAAAAAAAAAAOxAMBoAAAAAANC5wdrhPOG8p3TdBrCPnNPr53GHv6nrNgAAAAAAAAAAAACAKbSuGwBWRq/rBgAAAAAAAAAAAAAAAAAAAAAAAADWu25gFlX1B8PNluR/ba3dvst5HprkLafnaq09cx79AQAAAAAAAAAAAAAAAAAAAAAAALuzp4LRkjw9m6FoSdI/i3n6w7kyMh8AAAAAAAAAAAAAAAAAAAAAAADQkV7XDexCdd0AAAAAAAAAAAAAAAAAwMHRum4AAAAAAIADYi8GowEAAAAAAAAAAAAAAAAwT034GQAAAAAA3TuowWjrI9snOusCAAAAAAAAAAAAAAAAYOVV1w0AAAAAAHBAHNRgtItHto901gUAAAAAAAAAAAAAAAAAAAAAAACQ5OAGo/3Pw/eW5ItdNgIAAAAAAAAAAAAAAAAAAAAAAAdZa113AKyK9a4bOAszLWVVtZHkYUmeneSfjpz643k2BQAAAAAAAAAAAAAAAAAAAAAAAMxu5YLRqurkNMOSfK6qdl1mZPvf73YSAAAAAAAAAAAA6FpVXZ3kiiT3Jrm5tfbpjlsCAAAAAAAAAADYlZULRsv9Q8vmMW4rbXj9p5K89SzmAQAAAAAAAAAAgLmoqn6Sh48cuq21NvFho1X13CS/lOSRY8c/mOQHWms3LaRRAAAADqDWdQMAAAAAABwQva4bmGDRn5RXkv+a5G+11o4vuBYAAAAAAAAAAABM45VJbhm+3pPk1KSBVfXCJDdkMxStxl7XJPmjqrp60Q0DAACwnwg/AwAAAACge+tdN7CF/5LJn6J/6/C9JflwkmNTztmS3JvkziQ3J3lPa+19Z9MkAAAAAAAAAAAAzNl3ZzPYrCV5XWtty+/SVdWFSf5NNh+O2oavGp4+fc3hJDdU1de31qb9rh0AAABMUDsPAQAAAACAOVi5YLTW2tMnnauqUznzpa0XtdY+v5SmAAAAAAAAAAAAYIGqapDkSTnzHbl3bDP85UnOz5lAtC8kuSHJiSTPT3L5cNwjkvzDJK9dQMsAAAAAAAAAAABz1+u6gV3weBEAAAAAAAAAAAD2mycmWcvmd+SOtNY+us3Yl+ZMKNr/SPKE1torWmuvHM7z/w7HVZLrFtYxAAAAAAAAAMCctLbzGOBgWO+6gRm9emT7zs66AAAAAAAAAAAAgPm6Yvjektw0aVBVPS7JVcNxLclPtta+dvp8a+3uqnp5kg8ND319VT2ytfYni2kbAAAAAAAAAABgfvZUMFpr7dU7jwIAAAAAAAAAAIA956Ej21/aZty3DN8ryV1J3jY+oLX24ar60ySPGB76xiSC0QAAAAAAAAAAgJXX67oBAAAAAAAAAAAAIOeObN+1zbhrh+8tybtbaycmjPvkyPbXnU1jAAAAsPnPUAAAAAAAWDzBaAAAAAAAAAAAANC9Gtne2GbcNSPb79tm3FdGth+8q44AAAA4YISfAQAAAADQPcFoAAAAAAAAAAAA0L27RrYfutWAqrosyVUjhz6wzXzro5eeRV8AAAAQ/7QEAAAAAGBZ1ncesrqq6hlJvi3Jk5NcmuT8bP+kzK201tqV8+4NAAAAAAAAAAAAZvCF4XsleeKEMd85sn1vko9uM98FI9tHzqIvAAAAAAAAAACApdmTwWhV9Zwkv5T7P/lyt48daWffEQAAAAAAAAAAAJyVT4xsX1RVz2mt3Tg25vuG7y3Jh1trx7eZ79Ej21+eR4MAAAAAAAAAAACL1uu6gVlV1Y8meWc2Q9FGw9DaLl4AAAAAAAAAAADQudbarUluyeZ32yrJL1fVFafPV9Urk1w7csnbJ81VVefl/g8evXW+3QIAAAAAAAAAzJcwIOC09a4bmEVVPSfJa4a7p8PNToej3ZPkziTbPQETAAAAAAAAAAAAVtW/zeZ35FqSK5J8qqo+nuTSJI/Mme/MHUvy/2wzz9Nz5rt1J5L89wX1CwAAAAAAAAAAMFd7Khgtyc8N309/uetPsvklsHe01j7fWVcAAAAAAAAAAABw9n4xyfcl+fpsfk9uI8nVORNydvqBor/QWvvzbeZ53sj4j7fW7l1MuwAAAAAAAAAAAPO1Z4LRqurKJN+UzS9qJckfJXl2a+2u7roCAAAAAAAAAACA+Wit3VdVz0ny+0kePzxcOfMw0UryO0munzRHVZ2X5Hty5rt2715YwwAAAOwvre08BgAAAAAAFmzPBKMledrwvZKcSvK/CUUDAAAAAAAAAABgP2mt/UlVPSnJ303y3CSXD099KsmbW2s37DDFdUkePLL/H+feJAAAAAAAAAAAwILspWC0S4fvLcnHWmu3dNkMAAAAAAAAAAAALEJr7XiSfzN8zep1SX59ZK6vzasvAAAAAAAAAACARdtLwWg1sv3pzroAAAAAAAAAAACAFdVaO5rkaNd9AAAAAAAAAAAA7Eav6wZm8IWR7bXOugAAAAAAAAAAAAAAAAAAAAAAAADmbi8Fo/33ke1HdtYFAAAAAAAAAAAAAAAAAAAAAAAwN6113QGwKta7bmBarbU/rqpPJnlCkqur6sLW2h1d9wUAAAAAAAAAAACLVlWPSPLoJBcleVCSaq29qduuAAAAAAAAAAAA5mvPBKMN/XyS1ydZS/LKJP+s23YAAAAAAAAAAABgMarq8iT/Z5LnJrl8iyEPCEarqm9J8ozh7h2ttX+5uA4BAADYX1rXDQAAAAAAwN4KRmutvbGq/laS70nyY1X1/tba73XdFwAAAAAAAAAAAMxLVfWS/EySH83mg0Rri2GTfq3+F0l+6vT5qnpna+3WBbQJAAAAAAAAAAAwd72uG9iFlyX599kMdXt7Vf10VV3QcU8AAAAAAAAAAABw1qpqI8nvJ3lVtn746aRAtM2Trd2c5D05E6b2krk2CAAAAAAAAAAAsEBbfWlqZVXVTw43P57kmiQXJ/mnSX6kqj6Y5KYkdyQ5Ncu8rbWfnmefAAAAAAAAAAAAsEuvS/KsbAagtWwGnL0vm2Fn9yX551PM8TtJnjHcfnaSn5l/mwAAAAAAAAAAAPO3p4LRkvxU7v+0y9Nf+jo3ybcNX7shGA0AAAAAAAAAAIBOVdUzk7w0Z74b9+kkL2mt/dfh+cszXTDaf0zyr4Zz/I2q6rfWji2mawAAAAAAAAAAgPnpdd3AHJx+KuZu1DwbAQAAAAAAAAAAgLNw/fC9ktyW5JrToWizaK3dluTO4e5GksfNpz0AAAAAAAAAgMVou00QAvadvRiMVnN8AQAAAAAAAAAAQOeq6qIk1+TMw0Jf0Vr7i7OY8qaR7ceeTW8AAAAAAADA/8/enYfZWdd3H39/ZyYLBAgh7Ci7yC7ghkUKCIorWhdcerkA1qV1aa1a21oRa/WxdXnaurUa3K2KIiAF2UFEWWSRgAghEEgCSci+LzPzff44Z545OZlz5pw525zJ+3Vd93Xu33p/x+BJZuY+n1uSJEnt0tfpAup0WqcLkCRJkiRJkiRJkiRJkiSpBV7I8MNOl2TmZQ3uVxqqtmeDe0mSJEmStgeZna5AkiRJkiRJkqTuCkbLzJs6XYMkSZIkSZIkSZIkSZIkSS2wT/E1gd81Yb81Jec7NWE/SZIkSZIkSZIkSZIkSWq5rgpGkyRNYCtnw0NfhoGNsP8bYN9XQESnq5IkSZIkSZIkSZIkSWqX3UrOVzRhvx1Kzrc0YT9JkiRJkiRJkiRJkiRJajmD0SRJnbfoWrjhTMjBQvvR78IxF8Axn+hsXZIkSZIkSZIkSZIkSe2zuuR85ybst1fJ+fIm7CdJkiRJkiRJkiRJkiRJLdfT6QIkSdu5TPjd+4dD0Ybc/y+wfkFnapIkSZIkSZIkSZIkSWq/p0rOn9HIRhHRCxxf0vVkI/tJkiRJkiRJkiRJkiRJUrsYjCZJ6qyVv4fVf9y2f3AzzL+4/fVIkiRJkiRJkiRJkiR1xuziawDPjIinNbDXy4Adi+cJ3NpIYZIkSZIkSZIkSZIkSZLULl0fjBYRkyLiTyPiHyPiwoi4JCKui4jrOl2bJKkGT/yy8tjjF7WvDkmSJEmSJEmSJEmSpA7KzAeAhcVmAH87ln0iogf4h6Ftgd9n5srGK5QkSZIkSZIkSZIkSWqd7HQBksaNvk4XMFYRMQ34G+B9wB7lw1R4r4uINwP/UmwuB56bmb4vSlKnrJxdeWzpb2HTMpgys331SJIkSZIkSZIkSZIkdc4PgI9SuAfufRFxRWZeU+cenwFOLGl/o1nFSZIkSZK2Z378SpIkSZIkSZLUHj2dLmAsIuJY4E7gAmBPCjeB1eoXwEzgQOB44MXNrk+SVIfVf6w8lgOw8PL21SJJkiRJkiRJkiRJktRZ/wqspvBp817g0oh4Vy0LI2L3iPg28BGGP62+CLiwBXVKkiRJkiYkw88kSZIkSZIkSZ3XdcFoEXEkcBPwDAqBaEM/cQ9qCEjLzLXARSVdr2t2jZKkGuVg9WA0gAWXtKcWSZIkSZIkSZIkSZKkDsvM5cAHGL43birwtYiYExGfBc4qnR8Rz4uIt0bE94C5wFsZvpduADgnMze382uQJEmSJE1Uo35sS5IkSZIkSZKkpujrdAH1iIipwOXAdIYD0WYD/w7cAEwBHqhhq0uBc4vnpze5TElSrTYsgoH11ecs/U17apEkSZIkSZIkSZIkSRoHMvO7EXEo8HEK98kFcAjw0bKpAfy2rJ0la/4+M69ufcWSJEmSJEmSJEmSJEmS1Dw9nS6gTh8ADmQ4FO0/gBMy81uZOQ/Yipk/qAAAIABJREFUWOM+NzB889dBEbFnk+uUpLFbNx9+fTb8fD+49hRYdH2nK2qdDQtHn7NxCWxe2fpaJEmSJEmSJEmSJEmSxonM/ARwDsP3xA3dM1cafjZ0D1yUzAlgM/D2zPx82wqWJEmSJEmSJEmSJEmSpCbptmC09zN8g9clmfnXmTlY7yaZuRaYV9J1RBNqk6TG9a+Ha14Ij18EG56AJb+C60+HR78HmaOv7zbrawhGA1gzp7V1SJIkSZIkSZIkSZIkjTOZ+R0K97Z9lUJA2lAAWrB1INpQ3yDwXeCIzPxeG0uVJEmSJEmSJEmSJEmSpKbp63QBtYqII4H9is0EPtLglnOBg4rnBwM3NbifJDVuwWWw/vFt+3/7NrjnY3DSj2DPk9tfV6tsqDEYbeVsmPnc1tYiSZIkSZIkSZIkSZI0zmTm48D7IuKjwAuLx9OBmcBkYCmwGPgNcF1mruxUrZIkSZIkSZIkSZIkSaPJ7HQFkrpB1wSjAccVXxO4LzMfaXC/0hvApje4lyQ1x2P/U3lswxNw7Z/CMRcUwtH2PAWip321tcL6GoPRFl4Oh5zb2lokSZIkSZIkSZIkSZLGqcxcD1xdPCRJkiRJkiRJkiRJkiYcQ9MkDemmYLQ9Ss7nNGG/TSXnOzZhP0lq3KJrRp8z+/zC674vh5N/Dr2TW1tTK214orZ5i68v/As2orX1SJIkSZIkSZIkSZIkSZIkSZK03fKTp5IkSZIkSZKkzuvpdAF1mFpyvqnirNpNLzlf04T9JKlxk3apfe4TV8DD/9W6Wtqhv8a33y2rYMOTra1FkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJktRR3RSMtrTkfPcm7HdwyfmyJuwnSY3rnTr6nFKPfKs1dbRL/4ba567+Y+vqkCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiR1XF+nC6jDouJrAMc3slFEzASOKOl6uJH9JKkpMmHT0tHnlVpxN6z4Pcx4VmtqarWBOoPR9n5R62qRJEmSJEmSJEmSJEkahyJiEvAC4GTgEGA3YGeAzDy9g6VJkiRJkiRJkiRJkiRJUtN1UzDab4BBoAeYGREvyszrx7jXuRQC1gDWAb9rQn2S1JhNy6B/Xf3rrjwO3jwIEaPPHW8GNtY+d/UfW1eHJEmSJEmSJEmSJEnSOBMR04C/Ad4H7FE+DGSFdW8G/qXYXA48NzNHnCtJkiRJkiRJkiRJkiRJ401PpwuoVWauAO4o6frniPpTgCJiP+BjFG4KS+CazBxsTpWS1IA1D4197ewLmldHOw1sqH3uQ//ZujokSZIkSZIkSZIkSZLGkYg4FrgTuADYk+EHgdbiF8BM4EDgeODFza5PkiRJkiRJkiRJkiRJklqla4LRiv695PxE4Ov1LI6IvYDLgBkM3yj2xeaUJkkNWjNn7GvvuwC2rG5eLe1STzAawLLftaYOSZIkSZIkSZIkSZKkcSIijgRuAp5B4T63HBqihoC0zFwLXFTS9bpm1yhJkiRJksaBNQ/DrefBlcfDbX8Bax/tdEWSJEmSJEmjyjGOSdq+dFUwWmb+CLin2AzgnRFxc0ScXG1dREyLiPcU1x5H4X0wgasz85ZW1ixJNVvzUGPrH/9Zc+pop3qD0R78v62pQ5IkSZIkSZIkSZIkaRyIiKnA5cD0ku7ZwHnAwcAR1BCOBlxacn560wqUJEmSJI0sE+7/LFzxLPjfo2H2pyAHO11V/dKPnnaN9Qvh2lPhkQthxT0w95tw7Smw4clOVyZJ0taW3Aw3v67w76TffQA2ryz0b1wCt78X/vcY+PUbYdkdna1TkiRJkjSu9HW6gDF4PXArMLPYPgm4MSIWAQ+XToyIrwGHAS8ApjD89MwAFgJvbVPNkrSt1Q/Bo98t/ABvn5cU2iOZcTxsWQVrH6m+323nwYFvgd4pza+1VeoNRlv4vzC4BXomtaYeSZIkSZIkSZIkSZKkzvoAcCDDD0H+D+BDmYVP00fEATXucwPD98odFBF7ZuaSJtcqSZIkSRry+3+EP3x2uD37fNi8Ap79pc7VpInt8Ytgw8Kt+9bPh/k/h8P+sjM1SZJUbumtcMOZw58jXHkvLP0tnHYVXHcarPpDoX/VffDElfDiX8OMYztXryRJkjSerX0E7v4IPPUb2PVoOOofYa9TO12V1DI9nS6gXpn5CPBKYBFbB53tA7ywZGoA7wJOBaaWzV0AvCIzl7atcEkqtex3cNXz4P5/gbnfgF+/Aeb/dOS5+70KXvkgvPiWUTbNwtN+BvubXW3r1BuMtmUlLPlVa2qRJEmSJEmSJEmSJEnqvPczHIp2SWb+9VAoWj0ycy0wr6TriCbUJkmSJEkaSQ7C3P/etn/urMKDwaVWuOtvRu7/3V+1tw5Jkqp5+BvbfoZw+e/gvk8Ph6IN6V8Dj36nfbVJkiRJ3WTT8kKeyPyLYeMiWHQt3PhyWH5npyuTWqbrgtEAMvN24ATgSgpBZzB8M1iWHJSNBXAN8LzMvLcNpUrSyO77Z9iyqra5Ox8GPX2wx5/Aq+ZUn7vsVnj0e43X1y4DG0fuP+lHldcs/EVrapEkSZIkSZIkSZIkSeqgiDgS2I/he+I+0uCWc0vOD25wL0mSJElSJSt+D5uWbdvfv8YHg0uSpO3bIxeO3P/gl0bu/+MXW1eLJEmS1M2evArWz9+6b2ADPPqDztQjtUFXBqMBZObizHwF8Fzg+8AiCjeEjXSsBi4GTsvMMzNzUWeqliQKT4NaeFnt83d+Rsn5oXDKKMFgj1UJFRtPBrdADow8tsN+sP/ZI4+tur91NUmSJEmSJEmSJEmSJHXOccXXBO7LzEca3G9lyfn0BveSJEmSJFUyuHlsY5IkSZIkSZJUi9veOXJ/pdBhaQLo63QBjcrMO4G3AUTEwcDTgZnAZGApsBi4PzMHO1akJJVa93jtc6fsDrsdv3XfnqdA307Qv3bkNYuvh80rYfKuY6+xHQY2VB7r2wFmHA+P/2Tbsc0rWleTJEmSJEmSJEmSJElS5+xRcj6nCfttKjnfsQn7SZIkSZIkSZIkSZIkqd0G1ne6Aqntuj4YrVTxCZmNPiVTklpr8fW1zz38b6Fn0tZ9k3aGE74At7975DXZD09cCQe+eew1tkN/lWC0nqmVg902rxy5X5IkSZIkSZIkSZIkqbtNLTnfVHFW7aaXnK9pwn6SJEmSJEmSJEmSJEmS1HITKhhN40NETAJOAvYH9gHWAk8Ad2fmvA6WJnXe6ofgtvNqmzv9SDj8QyOPHfou2O3Z8MvnjDy+6NrxH4w2UCUYrW8HmFQhGG2LwWiSJEmSJEmSJEmSJGlCWlpyvnsT9ju45HxZE/aTJEmSJE142ekCJEmSJEmSNMFllR9BVRuTtH0xGG0CiohvA29v0naPZeaBNV53D+AC4I3AbhXm/Ab4Ymb+rEn1Sd3l9nfVPvc5X4XeyZXHd3s2POO9MOdr2449ciFsWQ37vQoO/HPo6a2/1mbZsAge/m+YOwvWPw77nQUnfBEGN1de07sDTK4QjLZ5ZeFfsxGtqVeSJEmSJEmSJEmSJKkzFhVfAzi+kY0iYiZwREnXw43sJ0mSJEmSJEmSJEmSJEnt0tPpAjTubahlUkS8DLgPeC8VQtGK/gT4aUR8PyKmNaE+qXtsWQNP3Vzb3JnPg71OGX3ejCr3wM7/Kdz6drjljZ2LxV07D658Fsw+vxCKBrDwMvjFofDkVZXX9e4Ak2eMPJYD0L+u6aVKkiRJkiRJkiRJkiR12G+AweL5zIh4UQN7nUshYA1gHfC7RgqTJEmSJEmSJEmSJEmSpHbpqmC0iDg6Iq4vHtdFxJ5j2GOv4tqhfQ5rRa0TyM9GmxARpwKXAKV/HgncCVwEXAMsLVv258D/RERX/TcoNWTTMsjB0ecBzHx+bfN2OXz0OfN/Bkt/W9t+zTb7k7Bxychjd/1N5XV9O8HkXSuPr1/QUFmSJEmSJEmSJEmSJEnjTWauAO4o6frniIhK8yuJiP2Aj1G4hyuBazJrvWlFkiRJkiRJkiRJkiRJkjqr20Kp3g2cCpwCbM7MCmk7lWXmYmBLyT5/0cT6xosPAweN4XhD2T4JXFjtQhHxNOBiYHJJ9y3AUZn5nMw8OzNfAjwN+CCF/+2HvAr49Bi+Pqk79a+pfe7M59Y2b+casx0f/V7t126WgU2FULZ69e0MPX0wqUow2tUnQubYa5MkSZIkSZIkSZIkSRqf/r3k/ETg6/Usjoi9gMuAGcBQqNoXm1OaJEmSJEmSJEmSJEmSJLVetwWjvbrk/DsN7DO0NoA/a2CfcSkzl2bmvHoP4IyyrW7IzEdGudwFFG6iG/Ib4IzMfKCspk2Z+R/A2WXrPxQRB4zhy5S6z5Y6gtF2qzEYbfKM0ecAPFI147A1Fl8P/WvrXze5GIg2eXrlOVtWwYq7x1aXJEmSJEmSJEmSJEnSOJWZPwLuKTYDeGdE3BwRJ1dbFxHTIuI9xbXHUXgoZgJXZ+YtraxZkiRJkiRJkiRJkiRJkpqpa4LRIuJg4GnF5iBweQPb/QIYKJ4fFBH7N1LbRBAROwBvKuueNcqaZwBvL+naDLwjMzdWWpOZl7B1qN0U4Pz6qpW6VK3BaJN2gV0Oq21uzySGH+5bTS1zmmzBJWNbNxSM1jsVpuxeed7yu8a2vyRJkiRJkiRJkiRJ0vj2emAZhWAzgJOAGyNiIfDd0okR8bWIuA54CvgKsNfQEPAE8Na2VCxJkiRJ27UcfYokSZIkSZIkSapZ1wSjAUcXXxN4MDPXjnWj4toHS7qOaaSwCeL1wPSS9grg4lHWvAXoLWlfnJlzarjW58raZ0fE1BrWSd2tv8ZgtIPeAVHj23NEIUBsNIObatuvWXIQFlw2trWTZwyf73dW5Xn968a2vyRJkiRJkiRJkiRJ0jiWmY8ArwQWUQg4y+LrPsALS6YG8C7gVGBq2dwFwCsyc2nbCpckSZIkTQCGvEmSJEmSJKm1ssqPoKqNSdq+dFMw2gEl53ObsF/pHvs3Yb9ud15Z+weZuXGUNX9W1v5WLRfKzAeA20q6pgEvqWWt1NW21BCMtteL4JhP1LdvLcFoACvvr2/fRiy7HTYuGtvaSbsOn5/w+crz+secjylJkiRJkiRJkiRJkjSuZebtwAnAlRSCzmD40+lZclA2FsA1wPMy8942lCpJkiRJ+v/ftkmSJEmSJEmSpGbopmC0nUvOVzVhv9Ul57s0Yb+uFRGHAH9a1j1rlDV7A88q6eoHbqnjsjeWtV9Wx1qpO/VXCEabdhC86Fp4+b1w2tUwZWZ9+9YajLbgkvr2bcRT9bwdlIne4fPJMwphcSPpXzf2a0iSJEmSJEmSJEmSJI1zmbk4M18BPBf4PrCIwqftRzpWAxcDp2XmmZk5xifaSZIkSZIkSZIkSZIkSVJn9XW6gDpsKDlvRpBZadDaQBP262bnsvXjae7KzHtGWXN0WfvezKwnpeg3Ze2j6lgrdactFYLRpu4Je58+9n17agxGWzdv7Neo15qHRu7f63R4wXfhkv0qrx3YuHV70s4jz+tfO7baJEmSJEmSJEmSJEmSukhm3gm8DSAiDgaeDswEJgNLgcXA/Zk52LEiJUmSJEmSJEmSJEmSJKlJuikYbWnJ+QFN2G//kvNlTdivK0VEL/D2su5ZNSw9sqz9cJ2XnjvKftLE018hGK1S8FetemsMRlu/sLHr1GP1gyP3Tz+yEARXze4v2LrdO23kef31ZDFKkiRJkiRJkiRJkiSNbxGxM3BQSdfc8odVZuYjwCNtLUySJEmSJEmSJEmSJEmS2qin0wXU4fHiawDHRMTMsW5UXHtsSVcb04LGnZcC+5W0NwA/rGHdoWXtx0ecVdljZe2ZETGjzj2k7rKlQjBaX5uC0Z68srHr1GrBL2DJTSOP7XwY9IySybnfy7duT9pp5Hn9a+uvTZIkSZIkSZIkSZIkafx6M3B38bgdmNLZciRJkiRJkiRJkiRJkiSp/UZJpxlXbgU2AZMphKP9FfCpMe71lwyHwvUDtzRcXfc6t6z9s8xcWcO6XcvaS+q5aGaujYiNQGmi03RgRT37lIuIPYE96lx2SCPXlGpWKRhtUoPBaD113AO7+iHY5bDGrlfNyvvhV2dVHt/lmYXXXY+FlfeOMCFgxglbd/VOG3mv/nUj90uSJEmSJEmSJEmSJHWn3SncGwdwR2Yu72QxkiRJkiRJkiRJkiRJktQJXROMlpmbIuJm4Ixi14cj4ueZObuefSLiaOAjQBa7bsnM7TJdJyL2AF5V1j2rxuU7lbU3jKGEDWwdjNZgOhRQCL07vwn7SM3XXyEYra/B//RzoPa5lz8T3jwIEaPPHYvHflh5rGcSzHxe4Xy/s0YORnv9sm1rm1T+dlPUv3ZsNUqSJEmSJEmSJEmSJI1Pq4qvCSzoZCGSJEmSpO1U5uhzJEmSJEmSJElqsZ5OF1Cnzxdfk0Iw15URcWKtiyPiecAVwDSGn6z5+corJry3AZNK2nOBm2pcW55UtHEM1y8PU6uQfiRNEFsqBKNNajAYbbDO//tdewpsXNLYNStZcU/lsT1PhcnTC+dH/T3s89Lhsd4d4eSfweQZ267rmzbyfgajSZIkSZIkSZIkSZKkieXJkvPJHatCkiRJkiRJkiRJkiSpRapF8xvbL2lIVwWjZebVwI0UQs0S2Bf4VUTMiojnRUSUr4mC50bEN4GbgacNbQfcnJlXtKf6cemcsvaFmWN+tMtY1vn3kbYv/S0KRhuoMxjtqZvhqufDuscau265LWvgiSpvqUd+dPi8b0c49Qp4+X1w2lXwmvnw9NeOvK6vQmbi8jt9GpUkSZIkSZIkSZIkSZpI7is5P6hjVUiSJEmSJEmSJEmSJElSB/V1uoAxeBNwF7APhWCtPuAdxWNdRDwIrCiO7QYcBgyl6gwFqgUwHzi7jXWPKxFxInBUSdcA8O06tlhb1t5hDGWUrynfcyy+ClxU55pDgEubcG2pui0VgtH62hyMBrBuHvzqz+BldzV27dIaLt6r8vhuz4W9z9i6LwJ2PapwVNM3rfLYqvtg12Nqr1OSJEmSJEmSJEmSJGmcysyHIuJe4Fjg2IjYLzMXdrouSZIkSdJofOC3JEmSJEmSJEnN1HXBaJm5JCJeClwGHMjwbw+CQgDas8v6/v9ShkPRHgZenZlL2lHzOHVeWfvKzHyijvXjMhit+Gda159rRIw+SWqG/grBaJM6EIwGsOJuWHQ97P2ikccHByD7YfNyGOyHKbsDCTkAm5YV5vRMgh32hZvOgoENla91zCfGViPApF0rjy2+0WA0SZKkTtqyGnqnQU9vpyuRJEmSJEmSJGmi+E/gGxTuc/sU297nJUmSJEmSJEmSJEmSJEkTWtcFowFk5n0R8WzgK8DZQA8jP16ltC+AAeAHwAczc1XLCx2nImIa8May7ll1blP+v98eddawE9sGo62sswapu2ypEIzW16FgNIDrT4dD3gnP+TL0Thnun38J3PxnjdVVaod9x752z5Mrj/U3nKcoSZKksVgzF37zFlh2B0yeAc/8IBz9T2DwtCRJkiRJkiRJDcnMWRHxGuAVwDsi4sHM/NdO1yVJkiRJqsb7piRJkiRJkiRJaqaeThcwVpm5IjPfAhwJfAmYXRyKsgPg98DngWdm5ju251C0ojcApUlMi4HL69xjTln7gDrXl89fnpkr6txD6h6Z0F8hGG1Sg8Fogw0EowHM/Sbc9TfD7VV/bG4oGsC0et8iSkyZWXmskVA4SZIkjc3gFrjuVFh2O5CweTnMPh/mfK3TlUmSJEmSJEmSNFG8Gfg5hfvfPhsRV0XEaR2uSZIkSZIkSZIkSZIkSZLaoq/TBTQqMx8C/hYgInYC9gKGUnSWAoszc12Hyhuvzitrfzcz++vc44Gy9qF1rj+4rP2HOtdL3WVgA+TgyGN9DQajTZ4BG5eMPPbKB+Hej8PjF1XfY87X4NB3w4xnwQP/1lg95XY5onq4WS32fgksunrb/sFNje0rSZKk+i35FaxfsG3/Yz+Ew/6y/fVIkiRJkiRJkjSBRMSFxdPVwBoKD8A8AzgjItZQeEjokuJYrTIzy+8ZkyRJkiRpBNnpAiRJkiRJkiRJ6p5gtIjYG3heSdevM3N56ZzMXAusBea2s7ZuEhGHAS8s6541hq3uK2sfGxE7Zub6GtefNMp+0sSypcq9qJMaDEZ71mfgtndu23/gW2GXw+CFP4ErjoOVv6++z5XHNVZHJSdf3PgevVNH7h/Y2PjekiRJqs8Dnx+5/6lb2luHJEmSJEmSJEkT0zvY+lPoCUTxfBe2vfdrNFHcw2A0SZIkSZIkSZIkSZIkSV2hp9MF1OG1wM+Lxw+ATZ0tp2udW9b+dWY+WO8mmfkkcG9JVx/13XR3aln7ynprkLpKfwuD0fZ9OfSNsMeBfz58fthfNXaNsTr8QzD98Mb3qRiM5l8FkiRJbbd5+ehzJEmSJEmSJElSM2XJIUmSJEmSJEmSJEmS1LWyyt0P1cYkbV+6KRhtVwpPrwzgjsxc1+F6uk5E9AJvK+ue1cCWPy9rn1NjHYcDzy/pWgdc3UAd0vjXv77yWO+0xvbeYR940dUw/ajh9vNnwb5nDs85+Fx41mcau0699jy1edfsmTJy/+DG5uwvSZKk6gb74b5Pw1UvgGW3V57nTx0lSZIkSZIkSWqGaOIhSZIkSWo575uSJEmSJEmSJKmZ+jpdQB2WF18TeLKThXSxlwP7lLTXABc1sN8PgI8DvcX2ayPiGZk5Z5R1f1fW/klmmm6kiW1gQ+Wxvh0a33/3E+EV98HmlTBpOkTZfa09vXDU3xeOa0+FJTc1fs1q9n5xIaytWXqnjtw/4FuHJElSW9x6Dsz7/ujzBjZA346tr0eSJEmSJEmSpInroE4XIEmSJEmSJEmSJEmSJEmd1E3BaKVhaNM6VkV3O6+s/aPMXDfWzTJzTkR8Bzi32DUZ+HZEnF4p6CwiXg28o6RrM3DBWGuQuka1YLTeJgSjDZm86+hzDnhT64PRTrmsufv1Thm5f2BTc68jSZKkba17DOb9oLa5/esMRpMkSZIkSZIkqQGZ+Vina5AkSZIk1StGnyJJkiRJkiRJkmrW0+kC6nA3kMXzwzpZSDeKiL2AV5R1f7MJW58PrChp/wlwbUQcXnb9KRHxfuCisvVf8GY+bRcqBaP1TIZo81vxQW+DXY+tfX5fHVmUOx0Mr5kPvVPrr6uaSvsNjJjBKEmSpGZZOw/u/juGvx0fRf+Ys7clSZIkSZIkSZIkSZIkSZIkSZIkSZIkib5OF1CrzHw8Im4FXgA8MyIOy8yHOl1XF3k7W/9535eZtze6aWYuiIjXAlcBk4vdJwF/iIg7gUeA6cAJwB5lyy8H/qnRGqSuUCkYrXeH9tYB0LcjnHkHzPka3PXXleftfzbs+zLY5Qi4+sSR50w/Eo7/Aiy+HqbuDYe+Eybt0vyae6aM3D+4qfnXkiRJEmTCfZ+G+z4JOVj7OoPRJEmSJEmSJEmSJEmSJG13anzwpCRJkiRJkiRJqknXBKMV/Rtwccn5qztYS7c5p6w9q1kbZ+aNEfFnwLcZDj8L4DnFYyT/A/xFZg40qw5pXOsfR8FoAL2T4fAPwv5vgGtOgnXzth7/00vhaWcVzlfeX3mfTNj3pYWjlXqnjtw/sLG115XUHFtWw2M/gTUPwR4nw36vgOjpdFWSpGqW/hZmf6L+df1rm1+LJEmSJEmSJEmSJEmSJKlNDHmTJEmSJEmSJHVeVwWjZeYlEXEhcC7wyoj4CvDBzOzvcGnjWkScBBxe0rUZ+H4zr5GZV0TE0cAFwBuBGRWm3gp8PjN/1szrS+PewDgLRhuy477wqodhyU2w6FqYcRzsfQZM2W14Tl+1Gtv0S0+D0aTutXEJXH8GrJxdaD/wb3DwOfD8bxqOJknj2bwfjm1d/7rm1iFJkiRJkiRJkqStRMRBwHHAvsBOwJPAY8BvMnNLJ2uTJEmStl/R6QIkSZIkSZKkrlEtpcLYfklDuioYrejdwBrgg8B7gFMi4gvAZZm5rKOVjVOZeQtt+C1LZi4B3hsRHwROAg4A9gbWAQuBuzPz0VbXIY1LlYLRqoaOtUlPL+z9osIxkqrhbW36Z2XPlJH7Bze15/qSxm7Ofw2Hog155Ftw6Ltg9xM7U5MkaXRPXDG2dQajSZIkSZIkacW9cP9nYNNS2O14OOaT0Det01VJkia4iPg28PYmbfdYZh5Y5VqN3jBzUGbOq3dRRLwe+BDwggpTlkfEj4FPZObSBuqTJEmSJEmSJEmSJEmSOqqrgtEi4vqS5hpgZ+BI4JvF8QXAkuJYrTIzT29akSIzNwM3dLoOaVypFIxWNXRsnBgPNfZOHbl/YGN765BUv9mfGLn/8Z8ajCZJ49m6MWZaG4wmaTwYHIDsh94KIduSJEmSpNZZPQeufv7w7/EWXweLb4Azb4fo6WxtktQlIuJtTdwuKdxLtwpYBPwxM3248ugq3OjTGRGxE/AN4E2jTN0NeC/w2oh4e2Ze1fLiJEmSJEmSJEmSJEmSpBboqmA04FQKN2sNSSCKB8DTi0etN29FHXMlaewmajBau+6V7anwYfbBTe25vqTmmzsLTvh8p6uQJJXLhEe/N/b1AwajSeqgwS1w14fh0W8XPoC/z5lw4rdgysxOVyZJkiRJ2497/m7bhxstvxOevAr2fVlnapKk7vNtWndP27qIuAP4DvDjzPTGi5H9rNMFDImIXuDHwMvLhp4C7qYQencIcDzD91HuBVwaEWdk5q/bVaskSZIkSZIkSZIkSZLULN0WjDYSg80kjX/dHIzWM7nKYJvegnunjty/fkF7ri9pbHKw8tjkXdtXhySpdk9eDbe+fezrt6xtXi2SVItMWDsXVj8E93wUVt0/PLbwF3Dz6+CMGztWniRJkiRtVzavggU/H3ls8Y0Go0lS/WL5V3KCAAAgAElEQVT0KXXbicLDSU8FPhsR52Tm1S24Tid8GPjkGNY9B7iopJ3AhXWsvw14U53XrOeGl//D1qFoW4APAf+dmZuHOiPiSOCbwAuKXVOASyLimMx8ss76JEmSJEmSJEmSJEmSpI7qxmC0VtzwJUmt1d/FwWhR5W23WuhRM1UKRgOY/c9w9Mer1ympMx7+78pjBqNJ0vj00H82tn5gXXPqkKRaDGyC294J875fec6Smwqhabsc1r66JEmSJGl7de8nKo/NvxiO/1z7apGk7ld6E0RW6C9X/nS7keZmydg+wJUR8YHM/Er9JY4vmbkUWFrvuoj4WFnXDZn5SB1bbMzMefVetxYRcTDwwbLuN2TmpeVzM/MPEXE6cB3D4WgzgfOB97SiPkmSJEml2vTAcUmSJEmSJEmSthNdFYyWmT2drkGSxmSgi4PRqmrTL3Cn7FF5bPYnYJ8Xw+4ntqcWSbXZtBzueG/l8UnT21eLJKm6lffDgktg4xJ44n9rW7Pbs2H5ndv29xuMJqmN5n6zeijakCevNhhNkiRJklptzcMw58tVJrTpgUuSNDGcU3zdGfgEhXCroPBmeitwB/A4sBqYDOwGHAOcDOxdXJvAj4FfAjsAuwJHFuccwNYBaV+KiAcy8/qWflXjUETsALyprHtWJ2qp4HxgUkn72yOFog3JzA0R8Q5gNoX/NgDOi4h/rTPsTZIkSdL2LA15kyRJkiRJkiR1XlcFo0lS15r7jZH7+3Zsbx3N1q5feu52PPRNqxy08ej3DUaTxpsFFe/FLuib1p46JEnVzb8EbjkbBrfUvubUX8KcrwAGo0nqsHk/rG3eunktLUOSJEmSROF7tKwSfrZuHgxsgt4pbStJkrpVZn4nIp4BXEYhFA3gG8CnM3N+pXUR0QO8Gvg8cBDwBuCBzPxU2byXA/8OHEIhIK0P+AJwfJO/lG7weqD0qV4rgIs7VMtWiqFtry/r/txo6zLzoYi4BDi72NUHvAX4dHMrlCRJkrS16HQBkiRJkiRJkiRNKD2dLkCSJrwtayuP9e7Qvjpaok3BaL1TYY+TK4/P+Up76pBUuzlfrT4+sLE9dUiSKstBuPP9dYSiBTz3a7DvmZUDLg1Gk9ROS39T27wNC1tbhyRJkiRp9Aem5CCsmdOeWiSpy0XEjsAlwDOBfuDNmfnuaqFoAJk5mJk/B44Ffk3h3sDzI+IdZfOuAE4A7i7pPjYiXty8r6JrnFfW/kFmjpdfZp8JlD5x8beZ+cca136rrP3a5pQkSZIkSZIkSZIkSVLjskpMRbUxSdsXg9EkqdWeurny2KSd21dHK+x9RvuutcPe7buWpMY89hNY/rvqcwzOkaTOW/0grF9Q29xjPw1v7odnvKfQ7ttp5Hn9VUKBJamZNi2rfe6qByqPDQ7AxqWFw/BeSZIkSRqbdfNhxV2jz1td5fszSVKpTwFHUHha3ecy8yf1LM7MdRSCsJYDAXw5IvYom7MGeD2F4LWhW4pf0mDdXSUiDgH+tKx7VidqqeClZe0b61h7M4U/2yHHR8ReDVckSZIkSZIkSZIkSZIktYnBaJLUaouvrzy2R/n9lePUMz9Yof8D7ath8szq4+seb08dkkZ3/2dGn2MwmiR13rLbap971D9AlPwIoW/ayPN8f5fULqsfqn3uyt/DRbvCPR+Dgc2FvoHNcPt74We7wcV7FI6LdoHrTi98oF+SJEmSVLsFl1Ye65kE+50FR3wUdn5G+2qSpC4VEX3A24rNTcDnxrJPZi4F/qvY3AF4ywhzHgUuohCeBnDSWK7Vxc5l+GsHuCsz7+lUMSM4uqz921oXFsPxZpd1H9VwRZIkSZIkSZIkSZIkSVKbGIwmSa2Ug/DA5yuP731G+2ppxDM/CDvuv3Xfwe+A6eX3YLbQlN2rj1/1/PbUIam6zSsKwROjGVjf+lokSdsaHIDld8HS2+DWc0afP3k3eOldELF1v8Fokjptw8L65m9ZBX/4XCEcDeCuv4aHvw5bVg/PGdxSCDe/6jmF98vNK2HRdbBhUfPqliRJkqSJaGGFYLRdnglv2gynXArHfw5mHNfeuiSpO70Q2B1I4PZiwNVYXV1y/poKc64qvgbwtAau1VUiohd4e1n3rDFut39EfCsi7o+IFRGxOSIWF9vfj4h3RcRuY9j3iLL2w3Wun1vWPnIMNUiSJEmSJEmSJEmSJEkd0dfpAhoVEccBZwEnA4cAuwE7A5mZ23x9EbErsEuxuSkzF7erVknboaW3Vh475C+gd3L7amnETgfBS34Lj/0PrHkY9jwFDjh724CMVqoUvjFk4yJYvwB23G7u05XGp9UP1jbP4BxJar91j8GNr4BV99c2//APwWF/BTsdvO1Y304jr/H9XVK7bFo2tnUPfgkOOQ8e+U7lORuXwI8mFb7nzcFC3+F/C8f/W3u/D5YkSZKkbrB5JSy+ceSx/c9uaymSNEGUPrXuiQb3erLk/IAKcx4oOZ/R4PW6yUuB/UraG4AfjnGvg4pHqT2Lx5HAnwNfjIhvAP+UmWtH27AYpFYepvZ4nXWVz39GneslSZIk1SU7XYAkSZIkSZIkSRNK1wajRcQxwJeA00q7a1h6GvDT4vm6iNg7M9c3uz5JIhP++KXK4zOf275ammHHfeGIv+1gATW8xT9xJRz6F60vRVJlT/yytnkG50hS+932rtpD0Q4+B074QuXxSqG1/aN+lkeSmmPzGIPRAK44uoZJWfi+fsgfvwC7Px/2f8PYrytJkiRJE82qB+DXZ0P2jzz+tNe0tx5Jmhj2KTkf5Qlyo9qx+BrA3hXmrCg5n9Lg9brJuWXtn2XmyhZebxrw18DLI+K1mTnaL2x2LWuvz8x6f8m+pKw9vc71FUXEnsAedS47pFnXlyRJktRqhrxJkiRJkiRJkjqvK4PRIuIdwFeAqRRu3Cr9qXtSPT3nUgpPQzyAwg1HrwO+15JCJW2/MuG282D+TyvP8Qnp9dlhr9HnDG5ufR2SKltwGdx3QW1z+9cV3iujllxbSVLDNi2HRdfUPv+Ij1QfrxiMZvClpDbZ1EAw2lgtuNRgNEmSJEkaMue/4I73UvFDkjs+HWYc39aSJGmCWF1yfmSDex1Vcl7pySZTS843NHi9rhARewCvKuueNYat+oFfA9cC9wILgDXATsD+wMnA24A9S9YcBlwbESdm5mNV9t6prD2WP5vyNTuPYY9K/hI4v4n7SZIkSROA98NKkiRJkiRJktRMPZ0uoF4R8ToKNyLtUNoNzAfuYZTfJmTmIPDjkq6zml2jJLH0t/DItyqP90yCyU17EOv2Ye8zCv+7VdO7Y/Vxabwa2Aj3ng/XvQhuPQeW39npiurXvx5+9eo6FiRsWdWyciRJZVb9gbqe5Dn9iOrjvQajSeqwzcvbf815P2j/NSVJkiRpPNqwCO7+MFV/3rTfWT4cRZLGZkHxNYCDI+L5Dez11uJrluxbbu+SOU81cK1u8jag9AaUucBNde7xcWC/zDwtM/8lM3+RmXdn5sOZeU9mXpaZH6Hw8Nb/w9Z/ae4NXBxR9S/K8mC0jXXWB9sGo5XvKUmSJEmSJEmSJEmSJI1bXRWMFhH7AN8pNoduFvoqcEhmHgi8tsatLh3aEjilaQVK0pAnrqw+vs/L2lPHRDJ5Bhz0tupzRgtOk8ajTLjhTLjvU7D4Bnjk23DtKbDsd52urD6XH17/mk3Lml+HJGlkG5+sfe6h7x59zqQKn53pX1P7dSSpEf5bUpIkSZI6Z/7F0L+2+pyn1fMwFUlSiZuALRTujQvgqxFR91PiIuKNwEsYvsfumgpTTyg5n1fvdbrUOWXtCzOzjqfLQDEMbUkN8zZm5t8D7y8bOgF4cz2XrKe+BtZIkiRJGjP/CS5JkiRJkiTVqtpv6ev7Db6kiayrgtGATwA7UrjpaxA4OzPfl5mPFsdrfXu7g8INZAAzI+Kg5pYpabt3/6erj0/etT11TDTP/Xr18XXz2lKG1FRLboIlv9q6r38dPPTlztQzFmvmwvr59a8zzEKS2mfto6PPGbLvK0afM2n6yP0DG2FgU+3XkqSx8t+SkiRJktQ593+m+vikXWBPn1EnSWORmauByyncH5fAccBVEfH0WveIiHdSePjoULhaAt+vMP3MkvPfj6XmbhIRJwJHlXQNAN9u9XUz8yvAZWXdf1llSXkC6Q5juGz5mlFSTevyVeDoOg9TUyVJkiRJkiRJkiRJklSzrglGi4heCk9JzOLxucz82Vj2ysx+4I8lXYc3XqEkleidWn18ksFoY9LTV3383n8yAljd56H/HLn/0e+0t44hAxth6e2wcvYocduDsPxuWH4XzP7k2K61aenY1kmS6ldPgOw+Lxl9TrWg3y2rar+WJI3VlpWdue7CyztzXUmSJEkaL7ashQ0Lq8/Z9+XQO7k99UjSxPRhYGNJ+yTgDxHxtYh4UUTsUr4gIg6LiHdHxB3AfwGTGQ5Fm5WZs0dY83TgVIYfRnpzc7+Mcem8svaVmflEm6792bL2iRFR6Rcu4zoYLTOXZOb99RzA3GZdX5IkSRqfotMFSJIkSZIkSZI0oXRNMBpwIrALhd8WbAH+tcH9FpSc1/xETUmqSd/O1cerBUmoMcvu6HQFUn3mX9zpCoY9dQtcfgRc/Xy44li44SWwecW289YvLIz/8gT45bNhXqWHi49i87LG6pUk1W7tvNrmnTUXeqeMPm/yjMpjI/3dIUnN1r9u9DnHfKr5133oq83fU5IkSZK6yd0fGX3O017T+jokaQLLzEeBc4HBoS5gGvAu4BpgRUSsiIjHI2JRRGwAHgC+Cjyb4UA0gNuAD1W41Mco3D8YwKbi3hNWREwD3ljWPauNJdwOlP4SpRc4ssLc8qfQ7Fisvx57lrU79LQJSZIkSZIkSZIkSZIkqX7dFIx2aPE1gTsyc3WD+5Wu3+YpmpLUkMEt1cezvz11TETPKn+Abpm532xPHVIzrH6o+ngOVh9vhvVPwJyvw+3vhWteCOvmDY8tuhbu+Ydt1/z27bDq/tr2nzKz8tgmg9EkqS2eugWevHL0ec/5Mux0cG17TqoS9LvZz9VIaoP+9aPPOeafYJ+XNve6tbyfSpIkSdJEMjgAj/0EHvhC4fXhr1ef3zOp+d+LSdJ2KDN/BPw5sIatg86ieEwHnkYh/GpKSX8WjwCuAl6WmZWeMvA94LTicXKVeRPFG4DSJx0uBi5v18UzcxB4vKx7jwpzl7F1iBrA/nVe8oCy9pw610uSJEnabuXoUyRJkiRJkiRJarFuCkYrvQlofhP2K00a6WvCfpJUsGUtbBklDGKnQ6uPq7Knv7b6+IYn2lOH1AwLR7nH+q4Pt/b6y++GK4+DO95b+YNMj1wIW9YMtzevhCU31Lb/MZ+CVz4Ie/7pyOObltZXrySpfrMvKARfjib64LC/qn3fvmkQvSOPGYwmqR36a/yM5pTdm39t3+ckSZIkbS8GNhd+tnTLG+HuDxdeR3PwuTB5eutrk6TtQGb+BDga+AkwQCHsDIbDz0qPIQHMA96ZmS/LzFVV9r81M28qHne24EsYb84ra383s+1PNtxQ1t6hytwHytr13mxU/jSc8v0kSZIkSZIkSZIkSZKkcaubgtFKb+Cq8OnruuxWcu6nGSU1z5qHRp8z8zmtr2Oi2uWw6uNtv2dVXWfLavj9P8J1p8Md74M1D3eulg0Lq48/+CVYP8qccjkID/4nXH44/DAKxz0fg80j3O/++3+ATU9V329wM1y0S2Gf294JCy4rXGM0Ox8GR38cpsyEyTNHnrNp2ej7SJLGbu4smP3J2uYe8Ob69o6AybuOPLZ5RX17SVK9chAG1tc2d+bzmn/9lfc2f09JkiRJGo8e/L+w7Nba5z/99XDc51pXjyRthzJzQWa+CTgA+CDwY+BBYBmFsLT1wELgFuALwMuAQzPzws5UPD5FxGFA+ZNkZnWglPInOVR7mth9Ze0X1HqRiJgGHDvKfpIkSZIkSZIkSZIkSdK41U3BaKWpHfs2Yb+jS85N5ZDUPKsfrD6+x8mw6zHtqWWi2q1KsNzglvbVoe4zsAmuPRXu/wwsvh7mfAWu/hNYM7cz9fSvHX3Owsshc+u+wYHK829/D9z5ga3fi/7wOfjlCTCwsbi+vxAQ9+RV9dU7dxb8P/buOzyO8l77+PdRtST33jEYXDBgmunV9N4J7QQSckIaSU4K5KSQHt4USM9JQghJCL33YmxjbIPpxtjYYNx7r2qWtM/7x1jRSp6Znd2dmS26P9elS7tP/UkYbZu5Z9a1wcYe+AMnNAegsuOx3bvt0lMwERFPHf/2p2vJv51AyyBMGex3Q/p7lPdyb29S9riIRKylPvjYva6Eit6px3UZCBNfCrbmSydm/3daREREREQkXyV/BrH4ruDzLtkExz8EFT3Cr0lERLDWrrHW/t5ae6W1dn9rbX9rbYW1tpu1dri19nhr7TettS9YqzevXHy6w/0Z1toUB/iEyxjTF9inQ/NqnynPd7h/UhrbHQ+UJd1/11q7Lo35IiIiIiKSNr0UExERERERERERCcrv3TS90yYirQopGG357u8GOMQYU57pQruvADkkqWlONoWJiLSzfYF3335fgJM7HrcoaUs0evdtmxdfHVJ4Vj8LW95t39a4AT7+S27qaa5NPebNz8F9JXCvgRmXwxP7wEPdYdr50LC+bVztcnjmAFh0h/s6OxfDA1XOOveXw0M9iOyl4dH/hhFXtt2v7OM+rtHv4tciIp2UTcB734FH+8GD3WHm1dCwIfW8dmtYJxQziP4nwakvQ79j060UKnq6t+9SMJqIRCzI8+hWXfrCmW9D/xP8xw04GQaeAme+BYPOSL3uxleD1yAiIiIiIlII1k+H5yfAg1Xw/BGw+F/+n3smG3oRVAYIpRYREckBY0wp8MkOzXfmoJQraH+85jpgvs/4F4Dkq0QcbYwZE3Cv6zrcfyzgPBERERERERERERERERERERGRvFBIwWiv4RzoY4Eq4Er/4b6+nHR7XdxXfxSRIle71L192CUw4Y9QVh1rOUWpxScYrWEdbHjNCRUR6cgrAG3+L+Oto1U6gQ4Ayx+C2iXQUgernoJJxzvhN4lmeO7g/AgGPO5h2Pvq9m2ewWiboq9HRKTQvP9DmPcz529k8w5Ydi+89knn731Qu7bAtrnBxp46NbNQNIDy7u7tTdszW09EJKjmuvTGdx0Bp06DM9+BkZ+B0qr2/RW9YP9vObd7H+YEmk98yX/Nxf9IrwYREREREZF81FwHa6fA/NvhpRNg81uQaILNb8Ksa4Ov02NcdDWKiIhk72xgUNL9HcBDcRZgjBkAfLdD81PWen8AZK2tAx7u0HxzgL1GARclNTUD9wYsVUREREREMmZyXYCIiIiIiIiIiIiISFEpmGA0a20jMBnn0wID/NQY0zPddYwxxwI34ASsWeDRMOsUEaFulXt7zV7x1lHMEj7BaACTjoFn9ocdi+KpRwrHmhdyXUF7zTuzm7/jIyc8Z+YnnBCcXOsyAAafuWd7ZV/38QpGExFpz1pY/Pc929c875yUGlTjxvBq8lNS6d5um+LZX0Q6r3QDhlv1PgSOvAMuWg0T/gT7fBr2/184/XXodVD7sQNPgarB3mst+ltmNYiIiIiIiOSLJffAgzUw5RR49+vZrVU1KPUYERGR3Lm+w/37rbUZvclojBltjDkvzTkDgaeBAUnNu4BbA0z/AZD8wct1xpjzffbqAtwFVCQ132mt1QE0IiIiIiIiIiIiIiIiIiIiIlJQCiYYbbef7v5ugSHAi8aY/kEnG2NOBp7E+bkN0AL8KuwiRaSTW/+ye7vfCdWSnpYUwWgA2z9M70r2IjYR/56ZBjokm/NdWJEnOa9H/g3KavZsr+jjPr5xoxMCJCIijpYGqFvp3jfvp+7tbuIKRiutcG9v2RXP/iLSeWX7PLqiJ+z3eTjqTjj4Z9B9P/dxPcf7r7Ptg+zqEBERERERyZUdH8Nr14S3XjeP11UiIhIqY0y5MeZYY8wnjTFfNcZ8zxhzS67rymfGmAHAOR2as7nqwSDgSWPMHGPMTcYYzwdBY0w3Y8yXgNnA4R26f2KtXZxqs91jftuh+WFjzJeMMe0+qDHGjMW58OwxSc2bgB+m2kdERERERMJQRMfD6theEREREREREREREckDZbkuIB3W2teNMfcDV+B8anA4sMAY82vgQZwrKbZjjCkFTgL+G7gMJxCN3fN/a61dGn3lItJprHwKbIt7X9WQeGspZt32g4a1qcdtmAk7l0LXEVFXJMWgcRN06RfvnmEEo4Vt0Bmw5oX05/U/CYac695X6RGMlmh0AoBqhqW/n4hIMWre6d238ong6wQNRus9Ifiabko8gtESCkYTkYi1xPQ8OpEilPuZcXDFLigpj6ceERERERGRsKx4LLy1ugyEASeHt56IiOzBGHMc8A3gdKDSZciPXOacCVy+++5ma+03oqswr11L+2Mk51pr3whh3QOBnwM/N8ZsA+YCG4EdQFdgGDAe9+Mz/2qt/XEae30LGAectft+OfB74HvGmHd277kPcChtx0aCcyzlRdbaNWnsJSIiIiIiIiIiIiIiIiIiIiKSF0pyXUAGrgfexTmIxwI9gR8AH+z++g9jzHygFniRtlC01kuXvIpz0JCISDgSLfD6p737qwfHV0ux2/+m4GM3hXE8qxSF2mX+/fWr4qkjmV8ATi4c8H046Tk49Nfpzx3S8SLbSbru7d23+un09xIRKVapAjN3LAq2TtBgtNFfDjbOi1cwmm3Kbl0RkVSa6+LZp6Uh9Zj5t0Vfh4iIiIiISDZWPgEzroAZl8OyB533mGan8Vmbny4DYOJLUFJQ1+QTESkYxpgaY8w9wDTgPKALzvFvyV9e5gH/hRMM9j/GmPERl5uvPtXh/p0R7NEDOBa4ALgGuBA4jD1D0WqBz1prb0hncWttC07I3QMduvoDZ+IcF3kY7f89rAcusNZOT2cvERERERHJht9LNBERERERERERERERSVfBBaNZa+uBM4AptA86MzhXxEy+PxqooO0TBrv79ovAObsPGhIRCceGGf4hFFUKRgvNgInQbb9gY2d+ItpapDDUr4FnUxznXbcynlqSpQrAidOoG+GgH4AxsPd/QWWf4HMresNeV3j3Vw2Cnge6922ZnVaZIiJFLdXjwsongq3TuCH1mKohMPTCYOt5KSl3b2/Zld26IiKptMQUjDbo9NRj5v4IapdHX4uIiIiIiEgmFv4FXrkQlj8Ayx9yPjd7at9w1h56IVy0BnqOC2c9ERFpxxjTHefCn1fgfna9dWlr67R2BfBs0lyfD3SLkzHmWGBMUtMu4N9ZLjsf+BkwE6gPOOcj4NvACGvtHZlsaq3daa29AicEbZbP0M3A/wEHWGufz2QvERERERHJlO/LNBERERERERERERERSVPBBaMBWGs3AqcBNwMbaR981vo9+YvdY7YB38EJRdseW8EiUvzq18Lkk/zHVPSKpZROoawaTnkZ9roy2Pj6dZGWIwVg8T+gaZv/mGnnwaTjYfM7sZQEQPPO+Pby0n00HPhDOPT2trbKPnDaazDk/NTzB50Fp02H6qH+4/oc6d6+a2vwWkVEil2qx4WVjwdYow5mf8u7v2oIDLsETn8NyrumV19HJRXu7QkFo4lIxFoa4tlneICg7ZZ6+PB30dciIiIiIlJMtrwHLxwFD/WCF4+BdVNzXVFxshbm/TSatcffCsc97FxsRUREovIwkHz1qV3A3cCngetwD0vr6LGk26eFVlmBsNbOtNaapK/K3ccdZrPmOmvtd6y1xwFdcYLXzgE+C9wE3AJ8E/jM7vb+1trR1tpbs9179/4PW2uPBvYBLgW+DPwv8ClgIjDIWvsFa22Aq+iIiIiIiIiIiIiIiIiIiIjkhvW5zoBfn4h0LmW5LiBT1loL/NIY83vgSpyDt44DBtM+8G0LztUzXwDuttamSEUREUmTTcCUU1KPK62OvpbOpHowHHsvjLjKCbTys+xeGP1VnZzRmW16M9i4DTNg8kQ4+32oGRZtTdY64TVR2f9bcPCtmc/vvh+c+AQ8vhfULd+z/8i/wcjrg69X3t29vWlHZvWJiBSj5lr//g3ToWE9dOnv3r9zMbx8jvf8EVfDMf/OvL6OFIwmIrnS0hjPPj3GwD7XOUHLflY8Aof8Uq85RURERESCqFsFLx7thAwDbHzN+Zzn7LnQdUROSys6OxZC3Yrw1z301zDmq+GvKyIi/2GMuRQ4lbYLgr4GfMJau3J3/14Bl3q+dUlgvDGmq7U2D67eVRystQngw91fce+9BFgS974iIiIiIuJHxwyIiIiIiIiIiIiIiISpJPWQ/GatbbDW3mWtvcpaOxwoB/riBKRVWmv7WGvPs9b+QaFoIhKJ9dNg2wepx5V2ib6WzmjgqVA1xH/MO1+Dl06AXVvjqUnyz8rHUo9p1bQtvfGZaqmn7Tj2DvqfCD3HZ772qC9nF4qWbNhFe7aVlMPQC9Nbp6ybe3vz9vRrEhEpVs0BzkV6dIBzAnGylgaYfhk8ORK2L/Ce2/vw7OrrSMFoIpIriZiC0QCOvBOOugtGXOM9pnYpbJ0TW0kiIiIiIgVt6T1toWitmmth3k9yU08xC/JeUyb6TIhmXRERSfbtpNtzgdNaQ9HSYa1dC6zffbcEGBtCbSIiIiIiIiIiIiIiIiIiIiIiIpHL+2A0Y8x4Y8w3jTF3GWOe2v11lzHmJmPMIR3HW8dma+1aa21TLmoWkQCshfUzYNkDMP82ePtrMOMTMOk42PxurqtLz6a3go0zugpUJEq7wJF3QFlX/3EbZsDsbwVbc9sHMP92mPtTWDfN+fcqha28e3rjg4QdZqu5zrvvsN/BGW9AWU1ma48L+G890FrfgV6Htt03pTDh/6CyT3rreP03aNqReW0iIsWmuTbYuLe+1P7+3KxeMQcAACAASURBVB/DiodTzxt6fvo1+Skpd29P6KW4iESsJcZgNFMC+1wHx9wNl2xyng+7WRFDuLKIiIiISDHYMtu9fdGdkGiJt5ZiZyP4fVb2hT5Hhb+uiIj8hzFmEHBwUtON1lqfD5dTSr6iyn5ZrCMiIiIiIiK+iul482L6WURERERERERERESkUJXlugAvxphDgV8Dx/kMu9UYMxP4mrU2YDKRiOSNqafveUV4gJ2LoPceuYf5a/ZNua5ABp8F586H5w6Gxk3e45beAxP+5JzY7mXxv+D168E2t7Xt+1knCMpvnuS3qiHQtD34+KDBNNlI+IQ5lFZCaQUMvRiW3p3+2l0GZl7XHmv1g9NnOiGB9Suh/4nQbd/01ynv5t6uYDQRkTZrng82buXjULcKqoc44UAf/j7YvJq9M6/NTUmFe3tiV7j7iIh05PdcOkqVvZ3nw+um7Nm3/uXYyxERERERKUjL7vPu27EQeoyJr5ZiF8VnHWO+DiUegdEiIhKWo3d/t8AKa+0rWa63Oel2mle/EhERERERERERERERERERERERyY28THgxxlwATMcJRTNJX/8ZkvR1HPCKMebCuOsUkSwY4wQVualbFW8t2Zj701xXIK2qhzrhZX6ad0Ltcu/+ho0w69r2oWgAH/8V1k/PvsZcsNYJe5t+Kcz6NKybmuuKcqPjf9NUmndGU0cy32C0Ls73CX+EwWenv7Yxqceko7QLDD4DRl6fWSgaQJlHMFqzgtFERP5jyb+Cj318KNxfCQ90Cf63NOzHBwWjiUiutOQoGA1gyLnu7dvnx1uHiIiIiEgh8vuMBqBhbTx1dBZhf9bR/yQY87Vw1xQRETfJV8F6L4T1kh8QuoawnoiIiIiIiLgK+dgsEREREREREREREZFOLu+C0YwxY4D7gCqcTwbs7i9oH5Bmk766APcaY8bGW62IZKXaIxitvkCC0Rb/E+Z8N9dVSLIh56ces32Bd9+j/bz71ryQfj354L3vOGFvKx6BxXfBlNNg+SO5rip+zbVpjo84GM1a/zCHkkrne3k3OOkZuHg9XLgCjns49dp7XRVOjWEr9whGa1IwmogIAHWr05+TTgDZ0AiyxBWMJiK54hcy3KrbqGj27nmQe3vDemjcHM2eIiIiIiLFoH4NTDref0zjxnhq6SzS/WzET+8JcOpUKPV4P0hERMLUI+n29hDWSw5DawhhPRERERERERERERERERERERERkcjlXTAa8GecoLPW0DMDNAOvAQ8CD+2+3UT7kLQuwF/iLlZEslA91L29rgCC0da9DLOuy3UV0lFpJVywzH/Mtnnu7Rvf8J/XuCGzmnJp11ZYcHv7NtsC836Sm3pyqbkuvfFrX4JXPwlNYRxnnuTjO+CZcfBwb5h2rve40sr297v0c/5m1gxPvcegM7KrMSpewWiJRmhRgI6ICHXLo11/+OXhr1lS7t6eaAp/LxGRZH4hw63G/yyavbuP8e7b9kE0e4qIiIiIFINFf0/9/ofXZziSmbAuAlPRG059OZy1REQkiC1Jt3t4jgpucNJtJfuLiIiIiIhExua6ABERERERERERkYKhd9NEJIi8CkYzxhwAnEBbIBrAbcBAa+2x1torrLWfsNYeCwwEftlhiWONMQfFV7GIZKVqiHt7fZ4Ho22bD5NPznUV4qVmOPQ4wLt/7WT39uUP+q+7a2vmNeXKmhed0KmOtsyGph3x15NLLbXpz1l6N7x8Tng1LPk3vPFZJyyhaSvsXOw9tqTSvd0vhAGg+1jY64rMa4xSeXfvvg3T46tDRCRf1a+Odv1hF4e/ZkmFe3tCgZciEjG31znJ+h0Lg8+KZu+qwVDmEfq75oVo9hQRERERKQab30495v0fgNXhTqFpCikY7bSZUFYdzloiIhJE8lXbxmWzkDGmEjg4qWllNuuJiIiIiIiIiIiIiIiIiIiIRE1HEYpIq7wKRgMu2f3d4Pyt+rK19pvW2i0dB1prt1prbwa+mDQeIIKzvUUkEtUewWi1y+KtIx02Ac/sn+sqJBW/4I91U6C5Q0iWtbDycf81mwowGG3bXO++qMNX8kmiyfnKxIYZsPAv4dSx6M7gY72C0co9AhhanfUOlHqE1OSaV3gEwKK/xVeHiEi+qoswHHjI+VDq8diSDQWjiUiu+AWjHfIrOOm56E7aNwb6Hu3el+p1pYiIiIhIZ7bysWDj1k+Lto7Owlp456vZr9PzQOiR4qItIiIStnd2fzfACGNMNn+ILwFa38xvBmZlU5iIiIiIiIj4MbkuQERERERERERERESkqORbMNqE3d8tMMta+8dUE6y1fwZm0vYpwhER1SYiYase7t5euxTq18ZaSmCvXJTrCiSI0V8B4/EQl2iEtS+1b9s2D3Yu8l9z1x4ZnfnP+uQhb37Hu6/YdAzCS9ebn4OmHdnXsf7lYONMGZSUevcPPse9/eD/B6Vd0i4rNlUDvfs26vh7ERHqIwxGG3hKNOt6BaO11Eezn4hIqxaPAMZ9roOxX08dKJytoRe4t2+bCzs+jnZvEREREZFC1aV/sHErn4i2js5i+YPZr1FaBRP+nP06IiKSFmvtEiD5Tab/zWQdY0wl8J3WZYE3rbVZfnguIiIiIiIi3nyO2y44xfSziIiIiIiIiIiIiEihyrdgtLFJt/+Zxrx/Jd3W5YpFCkWfCd59G6bHV0dQb34RVj2Z6yokiMrecJlPkNXG19rfX/9K6jU3vw2Jluzqituuzd59r14Fq1+Ir5Zcaq7Lfo2ns3x64RdS11FppX//Ptfu2WZKYa+r0qspbmU13n21S2HRXbGVIiKSl+pWu7cHPWnYiymF4Zdnt4aXknL39vrVkGiOZk8REXACr92UpHguHZah53v3KcRBRERERMRdz4OCjVt2f3rvqYu7FY+lHrPPdc7Fhrycvxj6HRNaSSIikpbWD08NcI0xxuVDYm/GmBLgDtofi5fyAqUiIiIiIiIiIiIiIiIiIiIiIiL5It+C0Xom3X4njXmtY02HNUQkn1UPga4j3ftWPxtvLal8+AdY+KfU40bd6N5+6G/CrUdSK6uGYZe69zVuan+/dlmwNVcV2Anua57373/js9DSEE8tudQcwkWv61fDlvcyn5/O7zlVmMOwS+HAH4Apc+6X94DjH4GaYRmXF5sDvufd9+bnockn0FBEpNg1bnBv73Fg5mtW9IITn4aqgZmv4aekwrtv5ePR7CkinVPtMnjn6zDtAvjgF9C0zX1cXMFo1UOht0fY+7vfiKcGEREREZFCYwNefKZhLWybF20tncH6qanHHPB92O8L7n09x0f3npKIiATxW2A9YHGOh7vTGPMzY0x1qonGmP2BF4Grd8+3wMfA/dGVKyIiIiIiIs7LNxERERERERERERERCUu+BaP1SLq9yXPUnrYk3e4WUi0iEof+J7q3L7kbts2PtxYvyx+Ctz0Cz5Lt9wXnq6ymfXtFbxh2cTS1ib+KHu7tHYOy6lcHW29ZAR0nvHEW7FzsP6ZuOaydHE89udRSF846S/+d+Vyv4AY3pSnCHIyBA78Pl22Fs9+HSzbC0Asyry1O1cO9+xKNsPLJ+GoREck3jRvd23vsn/5aB/4QLlgGF6+DwWdmV5cf32A0/U0XkZDsWATPT4AFt8OqJ2H2zbDmBfexqZ5Lh2nYhd59H/4uvjpERERERApF0GA0cJ77S3Ya1vv3Dz4Huo6A7qNgwMQ9+/e7IZKyREQkGGttHXAtkMAJNisBbgbWGGPuA9olWxpjPmGM+Z4xZjowBzgZ54x8AzQCV1prbYw/goiIiIiIiIiIiIiIiIiIiIiISFbyLRgtuZ40joxuNzbffiYR8TPodPd22wJL7423FjctjTDj8mBjD70deoyBiS/BgFOgsg8MOgNOmQo1w6KtU9yV1ri3L7sPWhra7q95Pth6yx/Kvqa4zPl+sHGrno62jnzQUh/OOvN/BS+dCJvfTn9uOsFoJV2CjSurgZ4HQElZ+vXkSnl3//7Vz8RTh4hIPvIKRut5AHTdN721qodCzXAoKc++Lj9+wWhL7452bxHpPD78LTRuCDa2JMZgtKE+wWhzvg86z1REREREpL20gtE6wWcXUSvzuZ5ceQ84LukzrxOegJHXQ9Vg6HkgHP5H2O/z0dcoIiK+rLUv4ASgtYajgXPB0MuBbyQNNcC9wA+AY2h/7FwzcL219p2o6xUREREREREdJyAiIiIiIiIiIiIiEqYCStIQkaI09EKo7Od+kvOmN+Kvp6O3bkw9xpTBCY9D6e4TsPseBae8FG1dEkyZRzAawGvXwnEPQMNG7yASN4nm/A+ishY2vR5s7I6Poq0lHySH4HV04Qp4PI3gwvWvwPOHOycMdRsFPcZBSWnqeQ0Bgxyg7W9JMSr3ORFLRKSz83o+UtkPDvohvHoNgQ+e83sOFCa/YDQRkbB89PvgY+N8Lt19LNSMgNqle/Y1bYX61VA9JL56RERERETyXaI5+NhNb4BNgNE10TLmF5h/4Qooq2q7X94Vjvxb9DWJiEjarLV3GGMWAfcAA2j/QUHybZN03+6+vxH4hLV2ahy1ioiIiIiIiIiIiIiIiIiIiARlfU6V9OsTkc5FRxKLSG6VVsKQc9z7ErviraWjXVtg0R3+Y4ZdAme+6f0zSG75hYKseBjq18DCP6a35s7F2dUUh4Z10LQt2Nh1UyDREm09udZS795eUgnVQ6H76PTXnHEZPDceHh8KG17zH7vkbnjp+OBrlxRxMFqZgtFERFy1NEDzTve+yj4w4iqYOAn2/qTTluqk4NiC0XxOsBURCUM6wQkQ73NpY5z3BLx0hhBqEREREZF02DQ+i7AtMP9X0dVS7KyFpu3ufcfcp4uYiIgUGGvtFGBf4CZgBU7oWccvkm5vAn4EjFQomoiIiIiISJxM6iEiIiIiIiIiIiIiIhJYWa4LEBGhZoRHRyLOKva06hn//qP+Cft8Mp5aJDN+oSA2AZvfhQ9/m96aDeuh+6js6ora9vnpjV/4fzD6S9HUkg9aGtzbS7s434+8C6acCi11zv2ybtC8I9jaDWth2rlw4Uooq9qzf+v78FqafydKizgYLeXJVjooREQ6qcZN3n2VfZ3vA09xvo7+p3N/1dMw7Tz3OWVdw63Pi1f4qIhIWLbOSW983M+lD/oRLLjNvW/yRDj+URh8DpRWxFtXoatfB6ufBowT+l3ZH/oeCd32zXVlIiIiIpKNdILRAGbfDMMu1vPApu2w5gXYOs+53f94GHiq//vtiUawHkHTNcOiqVNERCJlra0FfgX8yhgzCjgOGAb0ASqAjcA64FXgHWt17WQREREREZH46aWYiIiIiIiIiIiIiEiY8jEYrfXTgKOMMSMCzhmYfMcYczxpJGtYa18JOlZEolDi3rw+x/9rrn/Zu6+sm0LRCoFfMBrAO1+FXVvSW7N5Z+b1xGXHx+mNX/FQkQejeYS2tAaj9TsaLlgKKx+HkgoYdAa8cCTULQ+2/q7NsOY55wStjpY/lH69JZ04GG3ZvXDsPfHUIiKSTxo3eve1BqPtweM5NMT4WOLzstv41CciEsS2BfD8YenNifu5dFk19DkCNr3h3j/9Yuh9OEycBBU9462tUG14Faaesedr79IqJxx0+GW5qUtEREREspduMBrA0nvgwO+HX0uhqF0Gk0+BnYva2j78NfTYH058Grru7THP5/ON8u7h1igiIrGz1n4EfJTrOkRERERERCQdBXbhYOVti4iIiIiIiIiIiEgeyMdgNHDe9b8vi7kvpzHekr+/B5HOoaTUu2/Le9BrfHy1tLIWFt3p3b/3f8VXi2QuVTDajoXpr9m8I7Na4tS0Pb3xuQ4hjFpLg3t7aVXb7S79YN//brvf/wRY+u/ge0y/BHodDFtmZ1Zju7q6ZL9GvipLEYwGULsCaoZFX4uISD5prvXuy+RkVRPTgXR9j/LuswnY/hF0HxVPLVLcdi52Xp9tetM5kb5mBOx1BQw6LdeVSZTmfC/9OT3GhV9HKr0P8w5GA9j8FjzcC0bdCGO/ATXD46utEL1+vXsgeUs9vPl5GHIBlFa0te9cAvNvg6atMOBk2Ps6//eZwmQT8PEdsG4KVA2CkddDzwPj2VtERESkEGUSjLZ+evh1FJLZ324fitZq2wcw9ydwlMdnmR/83HvNIO/Ti4iIiIiIiIiISMgUNCYiIiIiIiIiIiIikq6SXBfgweIEnKXzZZO+0p0rIrmUaPbuW/FofHUkm32zf/+oL8ZTh2QnVTCal16HQLXHyepNBRCMlmjMdQX5xTMYzSeAbPSX098njFA0oKgPfggS7vPEcP/HBRGRYuT1WAVQUune3qWf95zyntnVE1R5ihNpJx0DW+fGU4sUr+0L4cVjYd7PYO0kJ4Bo8d9h6hmw+B+5rk6i0tIAKx9Lb06P/f0DG6My8jNgAgRxffR7eHos7Pg4+poKVd0q2L7Au79xE2yY0XZ/23znd7rwj7D0Hnj9MzDrusjL/I9Zn4I3PwfLH4QPf+v8rdroE5InIiIi0tl5BaMNvdB7zrrJ0OQSnNtZrHnOu2/Vk959i//u3ZdJCL+IiIiIiIiIiIgEoFOTRERERERERERERETClK/BaNA+6CzIVyZzRSQf2IR337Z58dXRauv7MP+X3v3jb3VOuJb8l2kw2vDLvYM+CiEYzS9cxUtzXfh15IuWevf20irvOX0mwMTJ0dSTSnmP3Owbh1KPcJ+ONsyMtg4RkXzjF+JpPA6Y63UodOm/Z3v1cOg+OrzaUjnmXu++xk3w4e/iq0WK08I/QcNalw4Lc26BhMeJ9ZKZDa/C5FPh8eEw5TTY/lFu6tj+oXdoQkemDIZfBqdMhZKyaOty0/tQmPDnYGNb6uCp/eC+MnhiBLx7EySaIi2voNStTD1m58fw3nfhXgPP7L9nMPjSfzt9kyeGGF7tYtt8WPKv9m3NO/zfTxIRERHp7Lye4w86E4Zd6j1v+sXR1JPvWhpg1xbv/saN7q+JU71OThV0LyIiIiIiIiIiIhnSKUoiIiIiIiIiIiIiImHKwdmCvpajTwNEOp/qwd599WviqwPAWnj2IP8x+3wqnlokBBnmf476Eqx83L2veWfm5cSlpTH1mI4aN0LZ8PBryQd+YTN+Bk6Eqyw0bIRH+4Vfl5eKnvHtlQvDL4flD/qPWXo3DDgxnnpERPJBwuOxqsTnsaqkFA64Bd76Uvv2A2/xDlOLQkUv//5Fd8CRf42nFilOfoGpdStg5yLoPiq+eopZ7XKYekbba566FfD84XD+IugS4/NhgI2zUo857mEYfonzOj7Ov3tu9v0MNG2Fd78ZbLxtgdplTohW3Qo49r5o6ysUfsH5rd64Idha66bCpOPgnPlQMyy7utwsvce9fcXD0LILSivC31NEJG47F0P9OqgaCDUjcv94KyKFL9Hs3m5KYdy3nedSbtZOckJvex0cXW35qHFT6jHN2/d8b6Z2qf+ckvKMSxIRkXgZY0qAA4DxwHCgH1CFc2xdPbAe51i794B51lodcyciIiIiIiIiIiIiIiIiIiIiIkUjr4LRrLUjcl2DiOTAwFO9++IOoVo7yb+/79FQNSCeWiR7iab05ww4Bcq7Qnk39/7mHdnVFIdEhsFoNcUajFbv3l5aFWx+l77Q71j/UI4wDTglnn1yZew3UwejLboTxt8afwCHiEiuZBriOeqLUD0Mlj/sBKUNuwyGnB1+fX7KquPdTzofr+dyrbYvUDBaWOb+ZM/X4M07YOm/Ycz/xFODTTjhYgtu9x93/GMw7ELndr6EtIz9BvQcD1NPT2/esvuhrBsc8WcwGYZ7F4uw3wNqroXFf4cDvx/uugArHvHue7AajrgDRipYX0QKVP1amHQ87Py4ra1mBEycBN32zVlZIlIEbIt7e0kZ9BrvP3fhn53nzJ1JkGC0Xdv2DEbbvsB7/MDTsqtJRERiYYw5AbgBOAvoEXDaFmPMM8Ad1toZkRUnIiIiIiIiPvLk+AUREREREREREZEC4Hf5N10aTkRadfKz7UQkL3TdB7qPde+rXx1vLUv+7d9/6G/iqUPC0fsw0v6Qud+xzvcyj2C0pgIIRmvJIBht1TPF+yoh07CZZIf+Gir7hlMPQGUfuHQzjPiv9u3DL4Phl4a3Tz7qcziM+3bqcW9/NfpaRETyRTaPVUPPh2P+BUfdFX8oGkBpgGC0RHP0dUjxSuzy7/c74VuCS7TAojvc+za/HV8dH9+ROhTtsN+1haLlm0GnwXkfpx7X0aI7YPbN4ddTaJprw1/TL8AsG37vDdgWeP3TMOMTsPLJzF6ji4jk0swr2oeiAdQuhaf2g6lnwcyrYd7PYPE/oH5NLioUkULlFYxmSp2Q4CP+4j1305vR1JTPGjemHtO0bc+22mXe4ztbuJyISIExxuxvjJkKTAWuAHriHPAQ5Ks3cA0wzRjzkjFGV5MQEREREREREREREREREREREZGCpmA0EckPh//Ovb1xY3wnkNathKV3e/ePuAb6HhFPLRKOLn2h33HpzRlxtfO9vICD0RIe4Sp+3r8F3voi2ET49eSaZ9hMVfA1+kyAs993Qmcm/F/2NV24Cip6wdH/gFNehkNug1OmwDH3Qkl59uvnu/E/hT5H+Y9Zfj80bIinHhGRXAvjsSpXygIEo+3aEn0dUrwSKV4PKhgtHDs+8u5bek98dSy7179/+GUw+sZ4aslUt5FwcQbPY+f/yvnqzKIIRtv6Pqx6Ovx1g9S6/EF45QKYdCw0bg6/BhGRKDRuhvXTvPvXPO88Xr/3HZj1KXh6f1jnM15EJJlfMBrAvp/1nrvjw+K9uIuXIMFou7bu2Va/yn1szwOdi1WJiEheMsZcDrwBnEBb2Jl1+Wrl1tc6byLwtjHmkrjqFxEREREREWj/sq3QFdPPIiIiIiIiIiIiIiKFSsFoIpIfqgZ79zWsjaeGN7/g3z/0wnjqkHAdez/U7BVs7NF3Q/fdF04u6+o+Zund8PK58PpnYOZV8PwEuNfASyfDR3+ERHM4dWcj0zDBhf8H614OtZS80FLv3l7aJb11qgbCPtfBfp+DYZdmXs/I/4bSSue2KYEBJ8LYr8GAk6GkLPN1C033FBcpt4loAgxERPKRZzBamo9VuVAaIBgtyIm8Il4Su/z7F98F9TG9Zixm9au9+6qHxVfH+lf8+/e6Mp46stWlL1y6FYZekN68d78JzxwAH/wCmj1exxSz5p3RrDvruvB/n+kEkm9+G+b9LNz9RUSiUr8mvfFNW+GN/4aER9iRiEiyVMFoAMc97D6muda5wFFnEuT9lOTPUFc8DrM+7f3cs/v+4dQlIiKhM8ZcBtwLVNM+EK016AxgA/ARMAsnQG0hsDFpTPI8gBrgPmPMRfH8FCIiIiIiIiIiIiIiIiIiIiIiIuFSMJqI5Ae/YLT6dfHUsPkt776KXumf0Cz5oXownL8k9bhzF8De17TdL+/mPXb1M7DoTlh2X9u/m/Uvw1tfgukXg83xVbISGQajAax6Krw68kUUYTP7fZ62Y9DTYMpg7Dcy37eY9D4s9ZiNr0Zfh4hIPvAKVymEYLSyAMFoq5+Lvg4pXqmC0QCePQC2L4y+lmK2a7N3X9O2eGpY82LqMT3GRV9HWCp6wPGPwYUr4eQX4OQXoXpo6nnb5sHsm2HyydAS4N9/MWmujWbdxk2wbnJ46zXXeb/O9LL0bif8WUQk39mm9OfsWAibXg+/FhEpPkGC0Qae4j1/w/Rw68l32+amHjPzCudiOfNuhekXOeHhXqqHhFebiIiExhgzGrgL5xi+5EC07cBvgHOAvtbagdbasdbaY6y1R1lrx1hrBwD9gPOA3wE7aB+QVgb80xizX9w/l4iIiIiISOeUwXHFIiIiIiIiIiIiIiLiScFoIpIfyrt797VEdGJsskQLNPgEsJ09B0rKoq9DomEM9D/Ru7/PkdB9dPu2yv6Z7bXqKVg7KbO5YfE6QXvM11LP/fA34daSD5Y/6N5eWpX5mgMnwvGPQNd93fv3vhaOfxR6HQymxDmxq9ehMPEl6D4q832LybCLU4/Z/mH0dYiI5IMoQjzjUtEn9Zg5342+DileQYKhGjfBgtujr6WYNW7y7mvaDk07o69heornh1WDoOvI6OsIkzFO+MCg02HQaXDwz4PP3fQ6vH9L2/1EMyz4DTw1Gp4cCXNuiS5ILFei/HnCDOls3Jj+nIb1sGV2eDWIiEQlkUEwGsCkY+GBKnjuEFh6f7g1iRSjXVth1vXw2FB44UhYck9685c/4sx7oBru7wIP9YQpp8HWAEFauRQkGK2iJ9Ts7T7u1auhYUP4deWr1c8HG/fGDfDet1OPq1IwmohInvoDUE1bIJoFfggMs9Z+zVr7nLV2i9dka+0ma+0z1tqvAsOAH+9eo1VX4PeRVS8iIiIiIiJJcnxhbRERERERERERERGRIqOUHxHJD6bECSlqqd+zr7ku+v2btoJNuPcd+TeoHhp9DRKt/b8FG1/d8+Q+UwKHuxwHXJ3FCSLv/A+cMy/z+dlqaXRvL6mEIefDqif95+9YBN1CDhxoroXtC5wTnHqMg5Ly1HOshdplUFIBjeudn8uUQvcxUN412L7rpoJtdu8rC7iGl2EXOV9294EMrX9DTIkTgNA6JtEMGCgpdV2m0wryd3X7gujrEBHJB17BaCUFEIwW5PGtvFt0+ydaYOfHUDMCSiuj26fQ1C53fu8VvXJdSfYSHs9tO1oT8IRxcecXjAZOEFTQ5+CZ2P5R6lCsUTcW/nPq4ZfBvFthW8DAig9+DqO/AmXdYNZ1sOKRtr65P3bCto74cySl5kRzhAF8YYaSZRKMBrBtPvQ+NLw6RESikAgQSuulpcH5e/vqlU7I87ALw6tLpJhYCy+fDRtfc+7Xr4LXrnHe+x5xRer5K5+EGZe2b0s0wtqXnJDC8xZClwwv/BI1r/fqTYfn+UPOgY/+iyAqkQAAIABJREFU4D528klw1pzCf22QSqIZapcEG7vkn8HG6bNOEZG8Y4w5FjiFtlC0HcDF1trJmaxnrd0BfN8YMx14FKjZve5pxphjrLWvhlO5iIiIiIiIpM/kugARERERERERERERkYJTkusCRET+o6zavT3VydFh8DupdeDp0e8v0Rt8JpwyFUZe39a297Vw1mzoM2HP8VVZBKNt+wAW3ZX5/Gx5hUeUdgkWTLL03vBqsRbe/xE81AOePxyeOwQe7gWLU5yos2MRPHsQPLk3PD7EmffiUfDCBHi4B7z3He8ww1YtDTB5ond/z4PS/3ncGON8lZQ6X6bDwQslZcV/klamDv2Nf3/jBmjcHE8tIiK55BWMVloAwWjgBBz7iSroeNXT8Gg/eHoMPNwb5t8WzT6FpHYZPHswPLEXPNwHpl8KzS7h04XC2uDhHLVLC/tnzbVUwWgtEQeWr3nRv7/7WBjz9WhriENJOZzxOhzwveBzHhsMD3VrH4rW6uO/wM7F4dWXa1G+/7Pjw/DWSvX/i5fXroGWLAKHRETi0PGiEpmafhE0RRh4KVLIts1tC0VLtvBPqeeufAJeucC7v2k7fOhyIZh8YVvc202Ha7kN9QlW3PYBrH4mvJrylVeIXDb6HB7+miIikq0v7P5ucMLRbsg0FC2ZtfYl4IakdQE+n+26IiIiIiIikg2beoiIiIiIiIiIiEgn4veOmd5NE5FWCkYTkfxR6hGMFvUJ2OAfjFbZJ/r9JR79joUj/wZXWefr6H9AzwPdx1YPzW6v1z8NM6+EObfArE/BWzfCpjedcIeotXgFo1VCWYBgtLUpQgmCaNoOyx+GF4+G97/f/oSn5lqYdZ1zEpcba+GVC50TxFz7EzDvZ/DKRZDwOJFq1xZ4Zpx3faYMBp8V6EeRCHUMkXOzPcQAAxGRfFXowWj73+zf31wb/nOgnUuc5wu7tjj3W+rg3W/AyqfC3aeQWAsvnwtb32ttcIKU3i3gMKl0TwTfMjuaOjqDXSmCnqIKrLIW1k6G2Tf5jzv+USitiKaGuJVVw0E/gstD+p1OPRO2vh/OWrnW4vE7GXENDL3IvW/Ul+Hof+8ZptFR4ybY4BJAkgm/95BS+eDn4dQgIhIVv1DakvL01nqoGyz+B9StzKokkaKz5G739g3Tne/NdbDqGVj4F/j4DicE/INfwJtfcl4HpzLvJ86FSVY+6f1+Q654BqN1uLBI/xOgvKf3Om/d6Px+Nr6R+gIqhSoRcjBajwOg6z7hrikiIlkxxlQC5+Ecy2uBR6y194e1vrX2PuARnHA0A5xvjCmSN9hERERERETyVYBjYkVEREREREREREREJDAFo4lI/ijzCEZrjiEYbcNM9/bSKu+6pLhVDc5+jWX3w9wfOycAfvQHeOEIeOMG7zCvsCQ8TnYqqYTy7qnnb5jhnHiVqR0fw7MHw4zLYNPr3uNeuRBWPLpn+5Z3vEPRkq16Eh4f6pzgnmzr+/DUaNi52Htu/+OhwufEKomH14lwyXYoGE1EOoFCD0YbcXWKATb8k7FXPOL+OLLS5blFZ7FjoftzqOUPxxPOGwWvwF8vk46B2mXR1FLsUgU9RfG6vLkOpp0HU06FlnrvceN/Bj3GhL9/rpVVhxPEvmMhPDse5t2a/Vq55hXAV1YDIz+9Z3tJJYz6Iux9NZw9Bw79DRz8/7zXn3SME6CRrWyC0Zb8M/v9RUSilGhyby+tgnM+gMN+l956sz4FT4+FVc9mX5tIsfB7LrFzKbx4FEw7F978HLzxWScEfPbNsPCPwfeYdR28coHzmcTOpVkWHCKv94NLOgSjlZTDvp/1XqduufP7efFI5+9M2CFi+SDdoPBUxvxPuOuJiEgYjgK60nbW/O0R7HFb0u2uwNER7CEiIiIiIiL/UaDH57gp1GONRERERERERERERKSoKBhNRPJHqUcAWUsMwWizb3Zvr+wb/d6Sn0orwjlJvaNFd8Ca58JfN5lXgERpJZiAD/0zLofaFentu+JxmHU9PLUf1C4JNmf6JdC0vX3b6ueD79mwFl4+t33bG5+Dxg3+8459IPgeEp0gJ6xtXxB9HSIiueYValoowWjd9oWj7/Yf4xV2k6l3v+nevvgf4e5TSJY/5N7euCH8YLq4JHalP2fqWeHX0RnsXOTfP/kkmHombPsgu32a6+CDX8K9Bh6sgdUBApnHfD27PfNZvxNCWsjCnO/C1gAB0/nMMyi0CgafDQf+AMzu0IyK3nDEn6H7KOd+j7Ew5isw9iYo6+q9x5ufgzk/SP/vYu0KeP+H8Oo1sOC21OO97FwU/mOiiEiYvILRSsqd5/2jb4QLlkPvCcHXbN4J086BZp8gVJHOxO/iJW9/xbnwR1i2vg/zfhLeetmwFmzCvc+U7tl2wHeDrbvkX7Dyiczryldef48ztc914a4nIiJhaA0ps8B8a+2ssDfYvWbyG3oKRhMRERERERERERERERERERERkYKhYDQRyR9lNe7tzREHo/mtr2C0zq0igmA0gI//Gs26rRIewWglXaBpR7A1Wuq8A0fcvP9jmH4RLP578DmtHhvS/v6cgCc8tdo0qy1MbddW2Pia//hDfw1d+qW3h0SjZnjqMTsXR1+HiEiueYWzlBRIMBrA3tfA2XO8+1sUApNThRrCk0kw2vb5xXlSfJQSzbAjRTAawJoX4JlxsG5aZvu0NMCU02D2TcHnnPScE1pdrEbfGN5aNgFLUoRU5rtUId8Hfh8uWg1nvQcXLHEPdzAGuo/232fuD2HaecHDJnYugUnHwPs/gKX3QO2yYPO8bP8ou/kiIlHyev5VUt52u2YYnDELzvnAeaze+9pga794ZPb1iRSD8h7efaueDH+/pfd5B5LFya8Gt2C08m5wWcDPM1Y/m1lN+cwGuKhIUGfNDn7RHBERidO4pNszI9xnhseeIiIiIiIiEjqT6wJERERERERERERERIqKjoAVkfxRWu3e3hJxMNr2D737uo6Mdm/JbyVl0ay76il444bgIWWtWhrg3ZvggSq41zhf086Hze/sOc5NaSU0p7Hn8gegfl3qcU3bYd5Pg6/bUfNOeKQ/bF8YbD83L5/lnFjVuAnnoto+Rn8lsz0kfIPPgZIUQRe7tsRTi4hIHFY8Ci8eC4/vBa9dC42bnfaWevfxpQUUjAZQ6RM8unVefHV0Vm4nkrd660vBA4DySSbBaABvfC7cOopd7dL0Trp/538y22fV07Dx1eDjS8qhz4TM9ioUA06GE55wgrxSPS8OYv4v8iP0IlOeId+Vbbe79IdeB0F5d+91uo1Kvdfal+D+CnjpZJj9LZh0HDw9FmZeDQ0b2o/96I9QtzL1mkFtXxDeWiIiYfN6ztjxccqUQI+xMPhMOOquYGtvfT/7cEmRYuD3PCYKLXVwX6nzecJTo2HK6bDx9XhrALAt3n1er2fLu0LPg1Kvvfjv0LQzs7ryVSLEYLRe48NbS0REwpR8MEqUD87Ja+sAGBERERERkUilOH5ZRERERERERERERETSomA0EckfZR7BaM0RB6O9cqF334G3RLu3dF4f/xWmnQvW50Pw5lqoXwstjU6YyDPjYP4v2wefrXoKppzaPlCsxedk8sHnpFdnkOCCjbO8T2APqnEDPD0KVj2Z+RpvfyV18NvZc8Hoimx5o7wrjEkRrLFrazy1iIhEbeVTMP1S57G1bjks+RdMPtkJsOkYwNKqtCreGrNVVuPdN+2c9ENhJT1+wWjLH4BZ18dXS1i8ntcC9DnCu69hLWz/KPx6ilX96vTGb3k3/d+vtbDwz+nNGXE1VPZJb04hGno+nLsArmiETzRkH5D26tXh1JULXmGI6f5Ouo8OPnb9y/DBz2HDTCewbNm9MOlYSCQFdyy4Lb39U6lfFe56IiJh8vpbbMq95xgD5y+Csm6p13/vO877nGEG/ohIcDs+grWTYMop8QcV+oUxG5+L1EwI+Dpi5hXp1ZPv0gmv9jP43HDWERGRKAxIuh3lA3Py2gMj3EdERERERER86dhlEREREREREREREZF0KRhNRPJHqUcwWkuEwWjN9U4whRtTCj0PjG5vkfWvwNb33fs+/D08PhweGwQPdIFnD4Cdi93H7toC837Wdt8rpKy0Cww63f8ko45ShSRsmAlTzwi+XipvfDbzuR//BRo3evefNRt6jst8fYnG+FvhyL979ysYTUSKxcI/ssdVQbfOgbUvwY4P3ed0HRF1VeHyej7fatl98dTRWfkFo4Hz+/cK4ctXXsEcAMc/5j939XPh1lLMEk3pz1nzYvCx2z6AR/vDusnp7XHwL9IbXwxKK+Hitf5j+h4NvQ/z7l/+UPQB81HxCkMsrUxvnT5HZlfHjoXZhXan0lwf3doiItmyHs8LUoVUdt0HznoXRv63/7il9zjvcz7SB5bem1mNIoUuk+ffrWpGtP/cqu/Rma3TXAvv/yDzOjJhW7z7/F7P9gv4M65+Bja/k15N+SysAMn9PhfOOiIiEoXkKwJE+YFo69oG6B3hPiIiIiIiIuLL50LaIiIiIiIiIiIiIiLiSsFoIpI/yjyCFKI8oXf7Au++IbqKusTg7Rvb/o031zsBA9Mvgbe/DLs2B1/no9+BtdC4GVo8TrIu6woVPeHw3wVft26F871ppxMuseRuqN99ov6urTDl9OBrZWvQWc7P4CXRBCufcu8rqYRe46OpS7JjDIz8FBzjcTJs07Z46xERiUJzLax5wb1v6hnQ0uDe131sdDVFoaTUCWL1svgfsZXSKZkUV5a1zbDi4XhqCYtfMFpZNVziE4q7bW749RSrTIIZ3v06rJnU/u9X7XJY/E+Yfzu89z2YcwtMvwyeGecfYOxmn09Dl37p11UMKnrB+UugenhSo4FDboOrLJz+Kpz5FvQ5yn2+bYF1U2MpNXRe/8+nCuPpaMDJ/q8dg9j4GmydC+/elNn8yj7efV6v2UVE8oHX84KS8tRzu42EI/8KVyZSj23aDq9eDa9/xnnusPAvsHVeerWKFKpMg9Eq+8L5i+HsOc7zwqssnDoNSqsyW2/xP8IL3woi02A0gIGnBttj3q3B68l3NoT/NsMvg0FnZr+OiIhEJTkJPspgtOQPW33ewBcRERERERERERERERERERGJj/W5loBfn4h0LmW5LkBE5D9KPYLRWiIMRtvxkXff3tdFt68Uhpq9YdsH0e6x/hV44Qg46i7nRMCtczJf66M/OoEkXrrt63zf7/PQ92j44JewzCOMqtUHP4e9roSZV7QFCZZUwPGPQeOG4P9/DjoD9v0c7PgQZn8r2JxkVYPg5Ged4IXnD/P+77LqSff28m7p7ynxqujp3t601XkFmyrsRUQkX+1cAlMCnsDbUfcx4dYSh9Iq76C3ja+Fs0ezAmVc+YWItdq5OPo6wuT3M5VUOOFoIz8Di/62Z79fCLa0l0kwQ2IXTD0dek+Ak56GtS/Ba9eGc/K+KYFRX8p+nULWdQScPRtWPOoEUvc/AfpMaD9mv8/Dplnu86edC1e2OL/LQpJodG8vqXRv91Ja6fx+5v8y81rm/zK7+We+67x2bdywZ5+C0UQkn4URUmmME9z07EGpxy66M3kijP8JjPt28L1ECpHNMBhtr6v2fI+0pNx5/37x3zNbc+Nr0P/4zOamK5tgtBFXO685UlnxMMy/DcZ+Pb3a8lEmr60O/TVU9HYueNPrEBh8lt5XFxHJb8lveGT4BCGQ5AeVAInHIiIiIiIikrGiOluzmH4WERERERERERERESlUBXZ2nIgUtTKPYLTmKIPRFnr3DT0/un2lMMR1Mv62eU44WjahaABv3whvfsG9r6wbVA1uu9/rYDjoR8HWfe7g9sESiV3w6lWwbW7w2o78Gwy7EPa/GboMDD6v1fArnO+lXeCs97zH1S51by/vnv6eEq9yj2C0RJOCA0SksE2emFkYVc3eUN41/HqitmuLf38YBwA278x+jWIUJDCuwSWgJ595hSRBW1BS70Pd+zfMgMbN0LQD5v8KZlwOb3wO1k6BFY/BrOth5lWw8M/Q4rNPZ5BNmNnmN+G9b8OsT4UTigZw6G+h9yHhrFXIKnrByOudUIeOoWgAe1/jP3/5Q9HUFSWv/xdL0wxGAzjw+9nVkqnSajjuQagZBv1PdB+T6rFSRCSXvAJTS9LMT+hxAHTdN83NLbz3XdiS5XukIvkuk2DiQWfA+B+79x3yi8xreekEePursPmdzNcIKqtgtP8K/nnNu9+ArWl8dpGvEhm8vhrzVdjnk3DAd2DI2QpFExERERERERERySt6v05EREREREREREREJF0KRhOR/FFW497eXBvdnhtmuLcPvRCM/kR2egMmQs1eua4iHN3H7HkSjNf/c0E0bYMVjwYb22N/qB7adn/8T9Pfr2pQ2+2SMhh7U3rzy7qlv6fEq8IjGA3grZhCCkVEwrbkHu/QzlQGnxVqKbHptp9/fxhhMC0N/v2ZnDxcDBIpfi8ADeujryNMiV3u7aYESnafON99jPf8R/rAM/vDu990QqI+/gtMOQWmXwyL/w7L7oM3Pw/TzocWj706g0yCGZItutP7v1W6zp4Lo/XcLxBTAsfc692/6O/x1RIWr39HJRXpr1VWA4f/Ibt60jXwdLhoNQy/zLlfWuU+bsk/FcgoIvnL829xmsFoxsC4b2VQgHX+TooUs3Sff5+/CE56zvviH5V9YNx3Mq/nw9/Ci0fB6ucyXyOIbILRSkrh8N/DmQED3J49EGwieG35KN3g6eQL44iIiIiIiIiIiEgeCuFikiIiIiIiIiIiIiIinYxSf0Qkf5RWu7e31EWzX3MtrJvi3tfzoGj2lMJSWgGnvuKc3Fzo+p+wZ1uXAdB1ZOZr7lwcbNywy9rfH3R6+sGD/Y5rf796SHrzyxWMlvf8gtEW3xVOkI6ISNze/Vrmc/f6RHh1xKnf8f79jRuz36Ol3r+/swYpNKf4vQA0boi+jjB5hZUlhyT1PAjfq+rWrUy9z9oXvV8bdgbZBqOFZcBE6Dku11UUlsFnevetnwq7tsVXSxgSHmFhJZWZrRd3yGjfI6GiR9v9Mo9gNIC1k6OvR0QkE17PCzIJqdzn03Do7VCV5vt4C26He03b19NjYdmD6e8vkq/Sef697w3QdZ89L3rS0Yirsq/p5bMh4RNeli2/EPNUwWiteh0MNSOCjV03Ndi4fJVu6PsBt0RTh4iIiIiIiIiIiIiIiIiIiIiIiIiISI4oGE1E8keZRzBac0TBaFvneZ+AMuTcaPaUwlMzHCa+AFc0pw76yGejvrhnmzEw7n+j3bd6KIz9+p5tIz8TfI0BE6HvUe3b0j2hsrx7euMlfuU+wWgA66bFU4eISFjqVkLD+sznF+rzjlFf8j+huW5F9nukCkZ7/TOdMzgh0ZB6TKEFjSY8gtFMedvtyj57PlfMxJoXs1+jUNk8CEYzpXDIr3JdReGp6AVDznPvSzTBmufjrSdbXv/Pl2YYjNZ1H9jryszrSVdplw73fYLRPvxttLWIiGTK629xSfn/Z+++49uq7/2PvyR5z9jZibP3TsgCwl6BkJCEUUZ7KWW1hZb2Fkq5LaW0QCfQ9Wtp6aXQCaVlBMIegbASRgIJIZNMZyfO9oot/f744uulc3SOdDT9fj4eesQ63/WxI8lHsr5vhT9ux+eD4f8NcyvhokMwMsrXIQ+ugrcuhvUPRTdeJNW4Of8edoOzfqUjoWJudPW09OaF1m0N1VC9Nfq5Qzaha/4sZ3P4fDDqe8767njJWb9UFbIJRivo2/p60WDoa/N/JyIiqSz02b/H+ny+k+JxAaYm8xsUERERERHpWEKRu4iIiIiIiIiIiIiIiGMO32UsIpIAAYtgtMY4BaPtsvi0+KxCKJ8YnzUlffkDMOSrsPuNZFfi3sAroWhA+LZBV0FuF9jwN9jymLfr9poJxz4A2cXt2ybfB6VjYNszkFMOeV3hyGY4srG5T04nE4o24iaz4aml/F7uaskKU4Oklqx8c1uorwrf3vK2ISKSykIh+PgOWP6D6Oc479P2v/vSRfkEOPsDeG58+PZXzzCbmMfeEf33GCkYDWDt76Df56KbP101OPi5WAVDpyqrjeBtgzkG/BfseSe2tVb/0oTpjrkNfB3scwSCNhvu46X76dBwxATbZZfCyO9A2djE15EJTpoHD1vcZivnQb+LE1tPLBrrwh/350Q/53F/hYOrYd+S6Odwyu8iGG1HBw5jFJHUZnW+GMtjMUB2EYy7C0pHwaZHoGYr1O02gdJOrbwbBl4RWx0iqcDp87KBV5jAM6dO+Bes+iXseBkKesPgL5sArU9+Cnvfg72LIs9R+SQc3tD67wnBBljyLVj3B1N7yXA44d/QabTz2sA+GM0uYL2twVebv2ls/BtseQLLjYaf/AzG/9RViSnF7nZy1jvmMXH/h+bvmcNvNM+tREQkXfmAh+O8RuizdURERERERERERERERERERERERNKGgtFEJHVkWQSjNcQpGO3DW8IfLx7S8TbCizN9zofes2Dr08mrIb+32TjoxrCv27dXzDaX6kp4sk/0tbU08jv2m458fhj2NXOJRmFfd/1zOkW3jiTWoCvNhq5wGmsTW4uISLQ2PRJbKNqEu6FooHf1JEPZOCiosA45WHEXFPY3m5mj4SQYrWppdHOns6CD35XVm+HQp1A8KP71eMEqsMvf5uWsQVfDe9fFvt7HPzQBAAO/GPtc6SSU4MC8S462/z+U6Pl8JsR77X3t27Y9A431EIgxzMZO/X7YuQCqt4AvC8omQOcpJlzcjVDQJgwxN/r6/Flw/D/gmRHRz+FUoG0wWl74fiIiqcwyGC07/HE3fD4Y8HlzafLSSc4/iOLAClj3J/M6Zl632OsRSRYnwWidp8Axv3Q3rz8bRt5sLi1N+o35d8VP4KPvRp7nqYFwSUPz+dyqe2DNb5vbD66CZ8fAJfXuHhu8CkYD6DPHXAAe7wG1O8P3O7QOige7mztVWJ0b+7KgoBdMvDex9YiISDwlIrTMIklUREREREREREREREREREREREQkdSn5R0RSR8AiGK0xDsFon/zcuq14qPfrSWYI5MIJ/4GTn4YRN1v0sbgde2Wayw+L7nIcdBrnrG9BBZy3wX1NbZ3+qn0omhfye5lAFad0v04Pg79s3Va3J3F1iIjEYpWDjctT/wyfOwwnz4fup5vfU2Nuh7MWwYgb415iQuR2sW/f/Gj0czc4CEZrOGTCgDoSJz8XgPnD4OO74luLV6w2zvvahGr5s+G8T71Zc9EVUFflzVzpwkkwg5cUiua9ijnhjx89CFUfxG/dfR/CM6PgjfPhg2/A+9fDS8fDwjnuQ+6DNo/Z/hiD3UqGJeY5YbtgtHzrvl4EDImIxIPV47EvTo9bQ77qrv+718L84bDj1fjUI5IIVuff+b1hzA9h2iPmNXavP+xjwBchq9hZ3w1/af56/UPh+7w20936XgajtWQXIPf0EAilaQ6M06BwERHJFKE4X0RERERERCQhMukpWCZ9LyIiIiIiIiIikorsXoHSq1Mi0kTvnBWR1JFlFYxWC6Eg+DzKcmysgw+/Y91eNsGbdSQzBXKg90xz6XUOLJxtNpsDVMw1wWVvXAjb5nu/9rifQNcT3I2Z+gD4XHzAdEFvd/O35PPD9PehPAH3IZ/PbP5f/Stn/UuGx7ce8UbxYOs2BaOJSDrY8TJUvWffZ+CVMOhL5uve55pLJooUjLbjpejnbnQYAFa/F/J7Rr9OugnWOusXaoTlt0HP6dB5UnxrilXIYiN422A0MKG5uV2hbnfs674xF854PfZ50kUig9F6nJW4tTqSbqdAViE0HGnfdnAldD3O+zVDIVh8LdRsa9+2bT480QumvwslDgPJGuus2wK50dXYxOeDk56AV8+Cmq2xzWXHTTCaXZuISDKFLM4LYg2ptNLvYtizCNb8xvmY+n3w6ulwcZ15rVYk3VjdzyrOgzG3xW/dgl5w7J/hva9A3V77vouvgsp55rnCwVXh++x4EfavgE6jnK0fr2C0SH/Te9gPfc6HrCLoeiIM/BL4Y1gvUSyfDytgV0Qkg2xG7+MVERERERHpQFy8lzvVuXlfuoiIiIiIiIiIiIhIDBSMJiKpI2ARjAYm/CCr0Jt1di6wbx9wuTfrSObrfgqcvwuq3oeCCijsZ44Puip8MNppr0DxEPjkJ7D2vsjzH/sgdBoLtbug82TI7eyuvjlbzWYnN/zZkFUMDYfcjSvoC+etM+MTxU0wWumI+NYi3hl6Q/jNsApGE5FUt2cxvHpm5H69zo5/Lakgt2v85nYajFbXwYLRGh0Go4EJnv70f9M4GC3MJnafH4Z8BT6+I/Z1dy2EXW9CN5ehxOnK6uccD4OvTtxaHUkgB0pGhg/nXHwVDLrS+zUPrLAPAz16AF6YAqe97OyxJlhv3eaPMRgNoHQkzN5knr+v/hVseiT2OdtqG4xm21fBaCKSohotHo/j9Zqfzw+Tfg0jboL9y2DVPZFfv2/y+iw47YX41CUST1bBxIkIvOp7IfQ4Aw6ugfoqeO0c675bn4o837Oj4dJGZx9sFK9gtFIHH4qy5XHz74a/wrZn4MTHU3/jntXzNL/e3iEikilCoVD/ZNcgIiIiIiIiiZRB2dihDPpeRERERERERERERCSlOXiXsohIgtgFnzVUe7fOgU/s290GSUnHFsiFrtOaQ9EA+syBqX+GokHgy4JuJ8PMNdDjNCjsY647MfAKKD/GBKi4CUUrnwhnfxD9bTm33P2YM99MbCgamJ97XvfI/Qr6tP7/kdSW2yX88UQGo22dD6+eBfOHw3vXwdGDiVtbRNLX8h9G7pNVBD07SDBaYf/4ze0mGK0jsQsVCmfdH01AWioLutwIPvoHMPI73qy95FvezJMOrIIZYnXSk9DtFPM8oXAATPkj9L0oPmsJlNgEQuxf4e1ae9+HZ8dE7ndnMFE6AAAgAElEQVT0AKy4K3zb4Y3wxgXw7Fh440KoWmI9jz8nqjLbzxOALlPh+H/AqO+Z55NZhdDnAuvHjpJh5nbsaP42wWh2gZUKRhORVBWyOC/w6rHYSmEf6H0uHOPwQxAAdrwITw+Dynnxq0skHqzOvxP1+npOJ+gyxfzdYcqfYp/v4QAcXBu5X32VdVsswWgAsxys36TySXjYD69ON+e1qcrq+bBPwWgiIiIiIiIiIiIiIiIiIiIiIiIiItIx6J2zIpI6sgqs2xo9DEar32fdNvJ/vFtHOrZBXzKX4NH2G5qchHSVjrZu6/9fsPFv4dvOege6HOu8znByyuDIJuf9O081mxcTzZ8F434Mi6+y7zf6VvApCzZt5FkEo1VvScz6256HhXMg1GiuH1wN+z404X+6HYmInd1vRu4z9g7ILo5/Lamg86T4zW0XNNNSfUcLRrPYNG1n7/tmQ3yqCrncCO4PwPifwrifQMMh8Oc2P5fMLjW/y1f9Cpb8d+S1q96DhiP2Ad6ZIh7BaL3Ohd7nQcXs8M+JxHulNsFomx+FTg4CPJ04tA5emOy8f+WT7Y/VVcFTA5qv718OWx6zniOQ63w9J3x+GHen+b0cajTPLeuqYP1DULuzuV/RYDh7KWTlm+/7pRNat7eVXdL6erDOuq+C0UQkVVmF7Sbqd3nZWHMOsfUpZ/0PrTGv45z8NPSeGd/aRLyS7GC0lgZfDQc+htW/jm2e+UNh9ubmvxPUVZnvJ7sYQiGo3gyvnGY93ir82qniwSaIfvvzzsfseBF2LYBzltmfSyeL1fPhWH9WIiIiIiIiIiIiEj+hULIrEBERERERERERERHJKEp3EJHUEbAJRms44t06W+dZt/W9wLt1RCD8ZqbySZDf037cIJuwr8HXhD/e/79iD0UDyCl317+TTYhbvA260r592iMw+NrE1CLeKBwQ/njNNtj2QvzXX/eH5lC0JnvegX1L47+2iKQ3uyDfwn5w4uMw7BuJqyfZyh0Eoy36UnSBTI01zvrVdbBgtFAUP8sXp0L1Vu9r8Urb38lNIm0E9/lMQFEg14T+5pQ1B5zaBXK39WgRrP+L8/7pystgtG4nwdg7zWOez2eOKRQtMXrZhMF8/CPv/p+XRxGwtu255q9rd8Njnd2N9+e4X9MJn6/58SS3HGYsg8FfMaEaw2+Es942oWhgwjbOfAsKKsLPlVUIndsExlmFC4GC0UQkdTVaBaN5HFJp58THTNBtyTDnY5bfHrdyRDxn9dwtWefNo25tH/AajfV/hpqd8Mrp5nzvP2XwWFd4rAvM628/1heIff1TnnE/JngUVvw49rXjwSr83CooXERERERERERERFKcL9kFiIiIiIiIiIiIiIikHQWjiUjqsNug3mATNOHG0UOwf7l1e/lEb9YRsePPggn3WG8o7HysfeBX12kw8IrWx7ocB5N+4019boPRSoZ7s260jn0w/PGSEdDv4sTWIrGzuz29djbU7onv+pUW4Zmf/Dy+64pIeguFrAOcuhwHszdCn7nNIUEdQUGfyH3WPwRLv+N+bqfBaEcPup87nVltmo7kjfO9rcNL8dgIbhfIHc6iK6Dqg+jXSyXVW2HLE7BzQetPKQ5Z/JzLxkNWkbO5K+bCpUE443UY/T0IxCnISqyVjW0OAAznvetjXyPYAFufdj/utRkmEA3grUvdjw8kKIwnrxtMuQ9OfQ6OuRvyurZuLx4EszdD34taH/f5YdLv2tdZMdd6Lbv/KxGRZArWhT+eyN/t/iwYdQvMXAWXhcw5RiRVH0B1Zfi2A5+Yc6CqJd7WKRItq8BaX5KC0fK6wMgonpu3tftteLICdr5qrocaoW4P1FdFHutFEK7PD6e9bAJr3dj4N1j2A3jvOtj0L2isjb0WgFAQ9n0E6/4EW+ebv0+6Gq9gNBERERERERERkcwSitxFRERERERERERERERa0TtnRSR1BPKt2xqOeLPG85Os28b9xJs1RJzofyl0GmM2CQXrIbcbHFoLJcOg74UQyLMe6/PD1Aeg7+dgzztQMhIqZrnf8GMlp8xd/64nebNutCrmQOC69iEp/S9LTj0Sm8K+5vZvtQFtx0vm/pNoNdsTv6aIpA+rUDSA8R00WNHnM+cU9fvs+21+FCbe625up8FowXp386Y7q831kex9F/Z/DJ1Ge1uPFyw3ggeinzOac+ZPfgYnPBr9mqng0wfh/eub7z9dp8Epz0N2kfVtp6APnP4q/CdMcHKvGdDvMqjeDKUjofd5HSv8MVWdtxHm9Q3ftv2F2OffvwyOHohu7OZ/Q+9zYecr7sdahYong88H0/4F/S41z8dzOpn7Q9n49n3LxlnPYxU8JCKSbFaPT8l8LPb54NyV8MwI+34vnQSz17c+9uEtn4Xdf7bZaOAVMPXPOm+R5LI6//YnKRgNYNg3Yfnt1rVVzDXn/nah0TtejG7tzsd6Fxrb43Q45yPY8ript7EWPv3fyOM+/pH5d+195t9Za6F4cPR1BBvg7S/A5n81HyvsByc/A51GOZvD6vmwX2/vEBERERERERERSV0ZFH4WyqDvRUREREREREREUpLdS1B6eUpEmuidsyKSOvxZJhwtXNDB0f2xz39wNRxaY91e6nAzgohXOo2OPoDC54de55iL13LDBB9Yye8NnW0CBxMhpxNMewTeuhQaq82xijkw/L+TW5dEx+eHvJ5wZEP49v3LgCQEo2nDrIhxZAts/DtUb4Fup0Dfi3T/APtAqo68YXX4jbDsVvs+NVuhch5sfwlyO0P/z0PJUPsxDQ6D0ew2bGciq03TTmz6V5oFo8Vwv7IL5Lay+d/wRAUcc48JJ06nx71gIyz7PnzSJgh891vwzn/BSU/YBzPklMHMVfDqmeaxH6DTWJjyJyjoFd/axb3CPpDXA2p3tG+r3gz1ByCntH1bsBE2/gP2LYX8HjDkehOa19aBT6Kv7eBqE7YXjWjut/Hk80GfueZi288Pg6+Fdfe3b2tUMJqIpKhGi3DhQJJDKkuHw5T74f2vWQcgH9kA+5ZB2VhzfecCE3Db0vqHzGX0beYxuqB3PKsWCS8Vg9GyCmDS7+Hda9q35XWHEx8z50DbX4QF071du8/53s5XPAhGfrv5+sAr4I0Lw58jW3l6iHnuN/CK6P4G8+aF5rWOlo5sgmdHw6jvwchbwp9vtxSMw/NhERERERERERERSaI0eq9JJOn0vhkRERERERERERERSWseffyyiIhHcjuHP163N/a5N//Hvr2nx5s5RNJVjotgtDE/MJu9k63iPDh/B5z2CsxaCyc+DlmFya5KotX3Iuu26srE1dGK3sghwsHV8MIU+Oi7sPY+eOtieO8rya4qNWx92rqtI29YHeLw9rFwDqz9HXz8I3hhMuxZZN8/WOts3i2PwbYXnPXNBLEEox3Z5F0dXrLaCB5T4GCUHxlSsxXeugTeuTyGtRMs2Aivnt4+FK1J5ZMmIC1kEczg+yyYoWQYnLceznoHzvkIzl6iULRUNuIm67ZDa9sfC4Xgjbmw6Iuw+lfw4S3wzCioDxNQf3BV9HXVVMKh1e7HDb0hvd9U3fnY8MeDCkYTkRRl9fjkz0lsHeEMvgbmVELZBOs+6x9s/nrtH637ffwjeHYMVC3xrj4Rp6zOv5MZjAYmBCzcucvgrzSfj/U8CwoHeLdmTpkJKYynrtPgvHVw+mvuxm1+FF6bAcvvcDdu2e3tQ9FaWnEXPFkR/ny7JcsAvQ78OpOIiIiIiIiIiEhai/L9KqkolEHfi4iIiIiIiIiIiIiktBRIMhERaSEnjsFodoEV0x6BQAps7hJJBTllzvqN+wkMuiq+tbiRXQw9ToPiwem9cV7sg9HyuiWujlZ0mxJh5d1Qu6P1sXX3w4GVyaknVYSC9gFxyd7YnEy5nc15thtHD8Ly2+37BOudz7fse+7WT2dWm6adqNvjXR1eCjWGPx5L4KBV2JpTG/8OuxbGNkeibH0Kdr1u32fx1c4C6PxZ0OVYKBsL/oB3NYr3hn3Tuu3gZ8FkDdWw5Eb4pw8e9rd/vaR6M/yn7LP2ADycZb5ecZf13Gd/YF/Xlsdh6bedfQ8tHXOP+zGpJJAb/nijgtFEJEVZBqNZPJ4lWl5XmHK/dfvqX5nnaMEG2Pwv+7nq98HHd5qvd7wCr5wGzx0DH3wL6qq8q1mkLcvAqyS/fuDPglPmQ8VcE4aY2xlG/g+M/n7rfidEuG85lVMOp70EOaXezGcnqxC6nwzHP+x+7PLbzOND7a7IfWv32J8zNzl6wJxvVz5l3ccq/LwjB/CLiIiIiIiIiIiIiIiIiIiIiIiIiEiHomA0EUktuRbBaPUxBqPV7YW9i63b+10c2/wimSSnPHKf6e/BqFvAp1MJiYPOk6zbGqqbv67dZS6NLgJy7Nh9ip3C9kRgk8XG141/T2wdqWbXG2ZDvZWOvmG1+6nux2x/wT7ky00AWNUHzjYvZwKrTdNO1O32rg4vWX1P/hjuV0X9rduGXOdsjk0uA/+SZavNJvsmB1fB4U/DtyU7mEGi4w9A6ejwbTtfgSOb4NkxsOpeZ/OFgtYhhU1Gfx/Kj4FzPnJXayTDvxXb/T0VWAUJBevMa1VePZcREfGK1eOSVdBjMti9bgSwcA4cWutsrsonTOD3q2fAzgWwbyms/iW8Mdf+dSKRWFg9p/WlwPl3bmc46XG46BCcvxvG/7h9MHLJsOjnzy6Fzx2By0Jw4V4onxhbvW71vQjKjnE/bucCWHAOBCOcF+9e6O65+cLZUGnxoU4KRhMREREREREREUlD+tuCiIiIiIiIiIiIiIiXlGYiIqnFKhitLsZgtNW/tW6b+kBsc4tkmtwIwWj5Pc2md5F46ndJ+OMNR2DfMng4Gx7vbi7/yoWl3zahDbGwDXzQabN0cKEQNBwK37b+L4mtJdVsm2/f3tGDhQL50Y07vN66LegyAOzgmuhqSDduAuPaqtvjXR1esvq/9gXCH3eidDQU9mt/vNMYmPT/oM8FkedYe1/06yfKpw/A+oec9d31evjjqRDMINHpPCX88fUPwrz+9o+xsaxXNhbG3uHdvP0v826uZLEKEqrfB491gce7wvIfKnxHRFJHsC78caugx2SZu926bevTsOhK53O9++X2x3YthK0RnuuJRMvquVsqvX4QyLH+oIjskuhC0MEE32YVRF9XrPwBOGMBDL8Ryie7G7tvCWy2+NCAJtWV7mtaeF74UEqr58OpdDsRERERERERERERF/ThvCIiIiIiIiIiIiIibinhQURSS04cgtFCQfj4h9btZeOjn1skE+VX2LdP/C34dAohcZZTFv543R54+UQItdkYtvJuWPXL2Na0C5Sx2ggo0lHU77NuswpM6ygOrLJv92clpo5UFciLbtxBm59ryGUAmN1cmcRtYFxLqRqM1vb3fRNfDPcrn8+cz/pzmo8FCuCYe03bsQ+2brNyNEUf+6or4cNbYPHVsc/V0R+/0lnvWYldr2UwRsVsb+Yc9t9QPtGbuZIpUpDQ0YOw/HYTZigikgosg9EcnB8lUn4P6HaydfveRbGvUfl46+uhEOxfAZsehSObYp9fOq7GI+GPp1oAoZ1ownBLhsOIb3tfi1vZJXDM3XD2u3BxLZRNcD52y+P27TXboqvp3WvaH7N6PqznaSIiIiIiIiIiImlKH5YlIiIiIiIiIiIiIuKWUk1EJLXkloc/Hu1G/YYaeGa0fR83mx5EOoLiwVAyInzb5N9D3wsSW490TIGC8Me3P2fCA8LZ8LfY1gzWxzZeJJPVbLduO3rQBNF2VIfX2rf7shNTR6ryR/n9733fus0uyDKcjhKM5jYwrqWGw9BY610tXrEKe4t1I3jFLDhnKYz7CUz4BZyzBHqcYdqyi6H/5yPPcWhNbDXEw4a/wVOD4ZOfeTNfR3/8SmddpiZurR5nQFZh8/XSCK/BhDPyOzDiZhhwuQnZOO1lmHivdzUmk9OA0E2PxLcOERGnGi1eGwmkYGDT4C/Hd/4Nf23+OthggmefHQ1vXQzz+sPHd8V3fclMwUaoqwrfltclsbXEous0mL3Zut2XBYX9zaVoMEy+D2Ysg6z8RFXoTCAXpi82AdlObHnM/rlzdZTBaNueM+GLLVk9H44lKFxERERERERERETEMQW5iYiIiIiIiIiIiEjy6Z2zIpJa8nqEP3740+jme+UUOLjSuv2kJ8Hni25ukUzl88EJj8KC6VDTYiPPuJ/AkK8mry7pWFqGKzi1/yOzgSzax3XbYDTlCUsHVxNhY+eexdD1uMTUkkqCR+FQhPPUWAOcOqqtT8G4O8K3KRgtPKtN007V7YGCCm9q8UqoMfxxLzaCl440l3DG/xQOroY9b1uPP7AKyifGXodX6vbCu1+GYJ13c0YbbCjJl9cDsopM6GG89Z7d+rrPByNugpV3Oxuf3ck818zU12b8DoOEdr4S3zpERJyyOpdw+niWSP0ugbcvi9/8oaAJsMotNwGW6//cun3ZrdDjTOgyJX41SOapr8JyM1luGgWjART2gQv3wxvnw85XzbG87nDsX6DX9OTW5oY/GwZeAd1PN99LlU1QO8D8EVDYD4oGQmMdhBpg86Pmgz4aq6OroW431O6A/J7Nx0IKRhMREREREREREUk7bT8AIVNl6t/3RUREREREREQkoexeTusoL7WJSGRKeBCR1FI8NPzxmm1w9JC7ud67Dva+a91eOhIqZlu3i3RknUbDeRvgjDdMgOD5u2DULcmuSjqSrILoxtXvi35Nu2A0vZFDOrranfbtW59KTB2p5sgm642qTbRhNTr7l8Hh9eHbIv3M2+oIwWjBRmL+pNa6PZ6U4inLjeCB+K6b1w3OeB3OttkQv/vN+Nbg1pbHobHG2zkVjJa+fD4oHhL/dQoqTIhEW30vdj5HzzMz+1w7kIJBQiIidiyD0XISW4cTPh/MXB3fNeYPM8HMbUPRmmydF9/1JfPYPe9Kt2A0gJxSOO1lOPsD8xxq1tr0CkVrqbAPTF9s/iZi58hG2PU6rH8QNv3ThKJB9KFoTQ62eTyzeq063s+HRUREREREREREJE4y6O/i2pUqIiIiIiIiIiIiIgmiHdoiklpKhlm3HVoLZePh0Dqo+sBc9i0xITiF/WHsndBplOl7cC2svc9+rX6XeVa2SEYK5EC3E5JdhXRUgSiD0Wq2Qm55dGPtgtEy6U0pItGIFLZTOQ/G/yQxtaSS2t2R+yhYCHqeDdufdz9u63wYdkP748Gj7uY5sgEaayGQ576GdOE0LO701+CVU8K3PTcB+n8Bxv3YbAhPBZbBaAl4OcufBeUTYcDlsOGv7dvX/cHcv4+5JzXu51sej9yneCic+gI8NcDZnAp2TG9dp8G+pdGP92WZ+2DRIMjvBVXvtz4f6HIcTPodZBe1H1s6CrI7wdH9kdfpc0H0NaaDvG7O+y65CUZ+B/K6xq8eERE7wUYIBcO3pWrQY8lQGHQVfPpAfOav2wPbX4CdC8K3r/gxjLsrPmtLfIWC0FhnwgCb/g3Wtz8Wrq1de334MeHG1tucH+V0Ttz37yWfD8qPSXYV3vD5zd9EZq6C+cO9n//YB2HRl8K3vXIqzFgGncaY61YfAJJT6n1dIiIiIiIiIiIikgAKExMRERERERERERERcUs7HEUktRT0AX+u2SDS1tuXQc12OHqwfdu+D2H7izBzJRT2hW3P2q/jz4ahX/OmZhER8V5WlMFo1duaN4+5ZRe04/NHN6dIpmgMc27W0sGVJpi2ZEhi6kkVdXsi91GwEAz7Jux42Xl4V5P9H4c/7jYYLRSEI1sy+/bp9GfS/WTIKYf6qvDtG/8OO1+Bc1dATpl39UUraHGb8SfwftXr3PDBaABrfgsNh8zm9mRqrHMWPnj2BybEasZyeNbB+VJWfuy1SfIMud7cdsO9hgIw6Gr49H+tx1900Lw2k9PJ/dpZ+TDiRlj2fft+ZROgz4Xu508neT2c9111D+x+C858E/yB+NUkImIl3GvyTfwpGowGJtzXSTBav8vg+L+b5wf1e2HpzbDhL5HHrfl/sdfYpG6vOc/uaK8zBRsiB4bF2uY2pMzt89N4yyrU+XcqKRkGJ/wH3vT4XNWfYwKMd78Vvv3ZsXDWO+YcsmZb+D65XbytSURERERERERERDyk8DMRERERERERERERES9ph7aIpBZ/AIqHwIEwIQgHV9uPbayGj++EqffDnnfs+563QZ+qLiKSygKF0Y2r2Rr9msF667Z9S6OfVyQT2G2Qb7J1HpTcFP9aUomTYDR/dvzrSHW9psOpz8GrZ7obV78v/HG3wWhggg/I4GA0N5v6c7tYB6OBCaPe8HcY9vXY64pVqDH88UQGDvY6B7KKoOFw+Pb1DwE+mPq/yQu4qHwycp8eZ5lQNIDSUVA0EA6vtx9TMjL22iR5SofDmW/BJz+HqvebHyfye0O/S2DwtfbBaFn5QAzhHKO+ZwIdNj0CtTug4QhkF5sgkqxC6HYyjLk98wPAfD53/fcugs3/hv6XxKceERE7tsFoOYmrwy2nIUH9LzOPy74A5HWDIV91Foy2/YXY6gOoWgJvf8GEimd3glHfhRE3uf89EUkoZJ4vhQ0Mq4PG+jDH4hlS9ll7KOjt95mJFHaVenpO935OfzaUT7EORgN48Tj7OXRbERERERERERERSVMe/01ARERERERERERERKQDUDCaiKSekmHhg9Gc2DoPQn+AYK11nwn3QEHv6OYXEZHEyCqIblzNtujXtAtGq9kO9fshp1P086eqwxtM8Fv5JCjsm+xqJFXZ3T+abPyH2did6YINsOt1aKyFTQ9H7p/IAKdU1uMMyCm3D+Rq6+j+8MfdhIA1qd3tfkw6cRIWVzHH/JvXFQ6tse+74S8pEoxm8X/tT+D9KrsYRnwblv/Aus/6B6HrNBh0VeLqamn325H7jP1R89c+n7k9rLrXur8/19xvJb11Gg3H/9W6fdg3YfWv2h8feGXsa/t8MPhqc+no+l3q7JyhyZrfKBhNRJKj0eZ5XyA3cXW45SQkqM8F0GtG62NdpsKALzoLR4tF7W54fmLz9aP74cObYctj0Od86zCxaEPKJD0VVCS7AmkruwiG3wir7vFuTl82VJwHq38Z/RwKRhMREREREREREUlToWQXICIiIiIiIiIiIiKSdrRDW0RST8mw6MfW7oLtL0DlPOs+/T8f/fwiIpIYqRaMBlD5FAy8PPr5U00oZDbirry7+dio78HYO0yQhUhLjXWR++z7ELY9B73OiX89yXJ4Pbx+HhxY4XyMPxC/etKNP8dd/3qLYDQnIWBt1e1xPyadOAmLawo6crKJuuqD2OrxStDi+/Il+H418jsm1OjgKus+i6+G3rMhLwmb1O2C7gZ/BcbcBvk9Wx+PFIw24L9MEIBktr4Xhg9Gq5id+Foy2aAr3QWj7XknfrWIiNgJ2jzv86dyMFpn+/bJ98Hga8O/1nHsg+a86I250a3t89u3H1wD8y3+3rF3sbmIgHkuIalnwi9MiFko6M18/mzoegKUjICDK6ObQ8FoIiIiIiIiIiIiIiIiIiIiIiIiIiLSQSgYTURST9kxsY1/bYZ1W9cTIL97bPOLiEj8BQqjG1e9Nfo1IwWjLb0ps4LRtj3bOhQNYMVd0O1k6HlmcmqS1GW3Qb6l12bApcHMDNdrrIWnBiW7ivQWcBmmUPV++OMhBaO1YxUg1mTEzdB7pvk6J0JwRJP3b4A+c6H7qdHXdXANbPwn7F1kwta6ToP8CjNnn/MjP1ZYBb75EvxyViAXTnkOnhpg3++1c+Ds9xJTU0tWwWg9zoIp94Vv63I85HaFut1hGn0w7seelScprMvxMPZOWHZr87ERN0HvWcmrKRN1P939mL3vQ+dJ3tciiVe9DTb8BQ6uRp8CLynv6CHrNrfn8onkz7ZvH/xl6/NOnw/6zIExt8Py26NYO0L487vXuJ9TOp4+F8CwG5JdhYTj88E5H5qQ/CMbY5/Pnw3+LDjuL7BgOtTvcz+HgtFERERERERERERSWCb9PTCTvhcRERERERERERERSVcKRhOR1FNxHhRUQHWldR+fP7pPaNfmEhGR9JBVEN24mm3RrxmMELQTNjgkja21CEpZ/5CC0aS9SMGBLa1/CAZ9KW6lJEVjHczrl+wq0p8/ijCFNb+Hode1Phbp8TqcTA9GswuLO/Mt6Hp883WnP781vzWXCb8wQUlu7VoIC86BxurmY5XzzL9rfweDroGp99vPYRX4luhgNICi/jBnKzzZ27pP1fuw41XocVrCyiLYYL1Bv+19pyV/AEbfBh98vX3bJUdNu2Q+nw9Gfw8GXgH7lkKnsVDYN9lVZR6fD/J7Qs1252NemAzHPwz9L4lfXRJ/B1bByydm/nmIdAyRAsCSrWyC+V3WVuGA+AZ32/1canebc2JJb76AeS4byA3zb074Nn8uBHJafG0xNpAPnSdD8dDMDJjPFJ3GwLkrYMFZsPut9u3H/wM++RnsXxZ5rqYgx86TYfZmePmk8I9ddnIdhp2LiIiIiIiIiIiIiIiIiIiIiIiIpDC7aH7F9otIEwWjiUjq8WfDaS/DO1dA1buAD0pHQtkxUD7RXMrGwfOT4eBKd3N3nhKPikVExGuBZASjuQh+ygTbngl/fNM/Ydo/EluLpL7GOud9F1/pLhgt2GA2kO54yYQdjbgRep3jvsZ4Wnc/1O5KdhXpL5owhQ9vhr4XQl635mNWYVl2Mj2QxO5nUtgm1K++yt3cS78NxcOgYlb7NTf8FVbcBYfXm2P5vaFmq7N5P/2TuTTVl10K3U+HsT+C7CJzLNQYfqw/SS9nFfQyQXMvTbPus+gKmLM5YSVRv886NLwgQsDVkK9C3S5Y9SsTYNf9VJj6Z4WidUQFvc1F4iea310f3WJ+BybrMU/cCwVh1b2w5XHz3PTIpmRXJOKdaEKOE2n0rfDGBYn/YfoAACAASURBVO2Pd7U5b/OC3eO7HgPc+7+gMZtQMX+ORdCYizbHAWc5OjcWI6sATn8Nlt4En/4ZGg5BdicYcxv0uxQq5sLSG2H9g9BYaz2PL7v56+wi8/xy6Y3WH2DRro5iKBke07ciIiIiIiIiIiIiSRLSVk4REREREREREREREbe0q0pEUlPJMJj+jtlQGGwwG2Hayu3ibs6+F7cPBRARkdSUFWUwWu1O8wYSn8/92I4WjJYJ6qqg4TDklDVvnJX4CLoIRgM4shkKIwTyNHnnctj0cPP1na/AyU9D75nu1oynTY8ku4LMEIgiTKHhCFTOg8HXNB8LHXU/T+1O92PSSdDmZ+LPbn29zwXW4ZhWFp4HZ7wO3U4yv2eDR2Hlz2HZ91v3cxqK1lLLwIj9y6DqfbOWzwchi6AJXxJfzup6PJz0lPmZhFO9BQ6shKxCc2mshdzOEMjzroZgg3muHMiBur3W/XI728/jD5ggutHfNz/TaM6fRMSZijkmDNKNI5vM42LxYBOCCCZMI6vAhEnqPpt6PvgmrPltsqsQ8Z7PD4H8ZFdhr2KuCXnduaD5mD8Xhn7d2fjySdGt21gNwcbw4VmxhPfHnc8+GMyLIDK7wLGwa+bod5ukNn8WTPwVTLjbhOfn9zCPjwBZ+TD59zDx1/DutbD+IYs52jw/bznuufFw4BP7GoZ+zdvnliIiIiIiIiIiIuIthZ+JiIiIiIiIiIiIiHhKwWgiktp8fuuQE7fBaMf/LfZ6REQkMbIKoxsXajQBZ9GE7ygYLX1ULYFFV8D+5a2PD/sGTLgn/IZkiY3b+0flPBjmYAN65VOtQ9GavD4LTpoHFRbBQ4lUuwf2vJPsKjKDP4rHZoDKJ1sHo9mFgFlJ6VACD1gFiEH7ELGeZ0a3xrLb4Jh74b2vwt53o5vDid1vwPYXoNfZNsFoSX6cr5gFBX1MCFo4z4xsf2zA5TDp/0F2cfTrNtbBR981oTvBo9BrJvS/1Lp/pGC0Jm0354uI93rNcB+MBvD8RMAHhHkD/cRfm8Afhcikhv0rFIommavL8akfRO7zwYmPwapfw/bnIb8XjLkNysY7G9/jdMgugaMH3a/dcBhyStsfX3575LHZnaB0pH3gWCxhY1ZtCsUViZ4/Cwp6WbRlm+eKlmMtnnv5s+GsxbD0Rlh3f/g+E38LQ693V6uIiIiIiIiIiIiIiIiIiIiIiIiIiEgaUzCaiKQvN8FoZ7yhzd4iIukkUBD92IYj0QWjNSoY7f9UPgVdpzkPVIlFKGQCzmq2QU45NByEooHm0tahT2HfEnjzc+HnWv1rs6l47O1xLblDaqxz1z9cMFr9ftj9JtRVmdtW2XhYONt6joWzYeYqKBnmvt59H8LO18xtqvspUNjX2bijB2HPIqjZYTa65nWH1b8hbBiJuBft+fi2Z6G6EgoqzPVogtH2LYX6fZBTFl0Nqc7uZ9L2515QASP/Bz75ibs1dr3+WUBPAmz+twlGC1oEo/lT4OWssxbBk72d99/wVwjkwZQ/Rr/mJz+DVfc2X98231zC8efGdj4lIt7qNQN6nAU7XoxisMV5yAffgPze0PeCmEoTjzw7OtkViMRHVjGM/2myq3Amp8y8HhDNawKBPBj/c3jvK+7HhgtG2/qseQ5iZ9xdMOq77tcTkRRnEzpo97pIdpF5vlg6Gj64ofl4VqH5G2f5BO9KFBERERERERERERERERERERERERERSQMpsJNURCRKToPRsoqgy3HxrUVERLzlzwZfAEKN7sc2HIHccvfjQg6CdkIh8NlsbssUC2cDPjjhX9D3ovit03AEFl0Fm//V+rgvy2wOHvtDcz0UhI9udRbis+GvCkaLh6DLYLRdr0NjrdlcDiYobeEc9+vOHw6XNoLP76x/sAHeugS2PNb6+IS7YcSN9mP3LIY35kLNduf19bsUyifB0ghzy2dsAuYCeeY2Y+XJPmaD8OBrIWQRlhXJY13gxMehwiaQL13Z/Ux8YV76GXcXdDsZtj4Fa38fv7qitf7P5nfA7jfCt4f7nhKtoBeM+Das/IXzMZ8+AON+HF3waEMNrPy58/65nTvGOYtIugjkwCnPwsZ/wKIvejfv2vsUjJYK9i9313/gFXEpQ8RzJcOhYi6UDE12JYkx5MvQaQy8NM3duIYj7Y99+r/2Y856B7oc624dEUl/PgeB8cO+bv6mWfkE+PNg8DWQ3yP+tYmIiIiIiIiIiEic6YM5RURERERERERERETcSoGdpCIiUcrr6qxf38+BPxDfWkRExFs+H2QVwtGD7seG25DaJNgI21+Ana9CQW8YdBVkl0Qe1yTU4GwDW0YIwTtfhB5nQE6Zt1MfXg8bH4Zlt1os3QAf/wiOHjKBWJv/DdWbnc19ZAMEj5pwPfFOsD788e6nws4F7Y+HGkwA0NDrzf34rUuiX/vhAJSMMF93ORYK+0OfuWbDepMjm2H5D02YUjhLb4KN/4Sy8S0OBmH321A6CnqeZcKN3ISiDb0BJv36s/kVjOZI6RjYtbD9cX+OCQZ4boL9+He/bB6Tgg6CLMMJBeHNi+H8nZBTGt0cqWbPu1D5JGybb90n3OOhzwe9pptLzXaz4TrVPNnHus2fIi9nDfySu2C0UCO8/zWY9rD7tXa+4uxcpUk04WsiEl/+AAy83ARS7l3szZw7XzG/35yGyEp87PvIed/PHTbPdUUkNXU9HoZ+Hdb81vmYxur2x+zOr4f9t0LRRDoqp69Xdp5kLiIiIiIiIiIiIpJmMij8LJRB34uIiIiIiIiIiIiIpK0U2UkqIhKF/N7O+o28Ob51iIhIfAQKogtGa7QIDQmF4P3rYd0fm4+tuhemvwf5PUwIVyTB+o4VuNVYA5VPwcAvejfn7rdhwXRoOBy57+pfRrfGpkdhwOejGyvhNdaFP14+EXa9YYLQ2nr/aybEp7A/NNbGtv7Bla3/XfFjOOFRqDgPdr4Or5wSeY59S8ylrUNrogiF8sHgq12OEfp9zoTBtH0TYN+LTWjd547AoxGCQjY/Zh2MdtI8c5t7+zLr8cE62PEi9L3IVekpaf1DsPgqE4hjxxchJNpp4HQspvzJhLdVzvNmvkjfc6KUDIfiIXBorfMxmx6Bsgnun6dWPumuf46C0URSVr9LvQtGAzj0KZQM8W4+ca96i7N+py9QKJpIOsjr7q5/2/DahjBBaS2VDHM3v4ikGZ91U0d6XVlEREREREREREQyl8/mdVARERERERERERGH7LL5ldsvIk38yS5ARCRq+b0i9znxCW00EhFJV4H86MY9PwnevAT2L299/MObW4eiAVRXwvIfmK83/TPy3FZhPJnswCexz9FYD2v/AC+dCC9NcxaKFot3FVjluWB9+ONZRVA8yHrch9+Bty6OQz11sPQm2PeRs1A0rw25DjqNSfy66a7bSXDc36Cgwlz355hwmCn3metZBSZoys6ed7D8dNWcTtDvEigeaj9HdaWrslNS3V5Y9CUHoWhZkd+MmNvNu7rCGfYNEyQ46XemHi/UbPdmnlj5fNDnQvfjlt8Otbsi99v9Nrw2E/5TDp8+4G6NzpPd1yUiiTHsBhj9fe/me34CvHSS+b1wZJN384oz9Qfgo+/a98ntakJCu5+SkJJEJEbZJe76tw1GO7TGvn/pCHfzi0jmUDCaiIiIiIiIiIhIB5ZBOzm1K1VEREREREREREREEkTBaCKSvgp6W7cNvAIuaYA+cxJWjoiIeCyQE/3Yzf+CF6bC4Q3m+urfwMq7w/dddz+s/0v7ILVwOmIwmpOfS1uNta1/Vh/9D7z3Vdj9pnd1RVq/Zmdi1uoognXhj/tzIwdZxcuhtfDc+MSvWzoaxt2V+HUzxYDPw+zNMKcSLjoA0/4JWYXN7YX97MfX2ty3m0LARtxoP0fNDuf1ppLGWhOIFmyAx7o4G+N3EESWF+dgtPzPnrcV9IYBl3szZ+kob+bxwshvm8AbNxprYNMj5v8STMBdKGjeOBpsNL/Ddi00YaLbnoH6fe7rGnil+zEikhg+H4z9kXndatBVsc/XcAR2vwHrH4LnJ0f3mCHRCTbAK6fZ97noEMzdZkJCRSQ9ZBe76982GO3AKvv+yXoOLSKJYRdO7lMwmoiIiIiIiIiIiIiIiIiIiIiIiIiIiFMOdsiKiKSo/J727f5AYuoQEZH48MV4qtpYA08NhFG3wro/2vdddIWzOTtiMNr256F2D+Q5COE5ehgWXwWV88Dnh74XQf8vwKp7419nWx//ECb/PvHrZqpGq2C0HOh5tvk/7wh6Tofj/wE5pcmuJL35fNYhx5GC0QL51m3+zzYYD74Wsorg7c+H77fy57DpYfMY0Xtm5HqTrX4fLLoSKp90P9bJputchyFr0ep5VvPXU+6HkmGw7Vlzfdg3oOoDWOEybLDLsd7VF6ucMpi+CJb9ADb+3fm4D74BS74FoUZzzhNq8K6mQVdBqQI3RFKePwDFQ7yds243PDse5mzydl4Jb+ersG+JdfvgL0N2UeLqERFvZLkNRqtufb3yCeu+5RPdh+qKSObwKxhNREREREREREQks4WSXYCIiIiIiIiIiIiISEbxJ7sAEZGoBfIgUBC+re8lia1FRES859VGsRV3moAALwTrvZkn2YJuwldCsOz7zrou+iJsfhSCdSaYbsNfYcFZkcfFw9r7YM+7yVk7E1nd9gO5Jvyu89TY1yjoA8c+BL4UDbcd9T049XnI7ZzsSjJbpGA0u8fzlr83+l8Gg79i3bd6C7w+C/Z/7K6+ZHjrsuhC0cDZ7TXL4jmVFwZ+CcrGNV/3B2DkzXDGa+bSZy4M/bq7OQd/GTqN9bLK2BUNhOP/BpeFWl8utgiVbBJq/OxfD0PRyifCpN95N5+IxFevGfbtBX3gwn1wxhvO56zeDDtfi6kscWjLY/btpaMTU4eIeCvbZTBa45EWX9ea10WsjP+pCYoWkY5JwWgiIiIiIiIiIiIiIiIiIiIiIiIiIiKOKRhNRNLbwC+1P5ZVBN1PTnwtIiLirayiZFfQXvBosivwRmOtu/4b/gIN1fZ96qqgcl70NcXDqruTXUHmCFqE+/hzIbsITl8AI26Kfv6K2XDOhzDwi3DOR9HPE063k014W9MlkO98bP8vwNAb4ORnYNyd3tYl4RX2t2/fv8y6zZfV+npul8jrrf195D7JdGQTbH8++vE9p0fuk+Uy+CGSokEw5Ho44d8w9YHI/fO7m9CfSPJ6wEnzTOhXuoRJBHLg7A/iN//EX8Mxv4SBV8DAK2Hy7+HMt0xopYikh9LRUDoqfNsx98K5n0BOJ+h2Akz8jfN51/3Jm/rE2pFNsO5++z4FvRJTi4h4y+35cUOLYLStT1v363M+9DgjuppEJH20fW2iJQWjiYiIiIiIiIiIdFyhULIrEBERERERERERERFJOzbvzBURSQNjbod9S2DPO+Z6IM9swA/kJbUsERHxgNdBLV4IZUowWo37/mt+CyO/Y91n34cQaoytLjeyikzgz5bHrPts/jfU7YXczomrK1M1WgWj5Zh/s/Jhwi+gcAC8f727uUf/AMbe3ny90ygonwxV70VVKmDC0E5/FXxhssBDf4X3roN1f7CfY84WKKhwtt6UP8G717Q/PvAKZ+OlWWE/V9031PRn3p7z2N/QiVnbipjYqUWjo2C0+0yYVKra8XJs48f/NHKfzpPNfTlYH9taAMO+CcfcE/6+ZyenE5z5JiycC3W727SVm+d4PU6Lvb5kKD/GhCxu/Lv3c/e7FPK6ej+viCSOzwfHPggLZ0PNdnOssL85jyka0LpvxXnwwQ3O5t30T+h3MfSelT5hkunmvesi98nvHf86RMR72S5fj6qrav66aql1v36XRVePiKSX/p+HZbe2P15QYR+aJiIiIiIiIiIiIukvo8LPMul7EREREREREREREZF0pXffikh6y+sCZ7xuNhzVboduJ0FOWbKrEhERL2QXWbdNvg/e+2riamniRWhMKnAbjAbw4S1QNAj6Xhi+feXPY6vJrX4XQ8X59sFoAI91gbnbIb9HYurKVFa3/aZgtCZDrzPhG06CIgAGXdU6FK2J21CllsomwBmvWbf7fDDlPnMbeuXU8H3O3wl53Zyv2WsGZBVCw5HWx/tc5HwOMVwEoy06MJUZy+ezv8Gc/9/x6xAPXhHk8uM+u/04CUYDWH4HjPm+20rj7/BGWHx19OPP32kCxyLJLoaKObD50ejXApi5GkqGRj++6zSYtRp2vwU1O8yxvG7Q9QTILY+ttmSb8AvY+hQcPejdnEOuUyiaSKboPBlmroI9i805UNcTIJDbvl9BHwjkOz+XXzgbBl0DU+/3tl6BQ5/Ctmcj98vvFf9aRMR7boPRVtwJo24xzwkPrrLu13tmbHWJSHoo6g+dp8Ded1sf73uxAmtFREREREREREQkM+i1ThERERERERERERFJkBh2m4uIpAh/NnSZAhWzFYomIpJJsmyC0fpcAENvSFwtTYJHE79mPBz4JLpxS2+GYGPrY0cPwnvXw/YXYqspqxgK+kbu58+B/p+Hib+F3jNMSF4kH94SW21ifdsP5LQ/NuSrcMyvILvUfs7hN8IUi6COaIPRBlwOp7/irG/3U+CMhVA0sGlR6DwVZm90F4oGUNALTn0Rij8LhcrrDlP+aG6j4k5eT8ddv7fhzv8LRQMIhXx8/eEQRxs++8TSzpOcTbT8Nji83k2V8VWzAxZfC08NiG0eN7fjqQ+Y363+bHOpmAP9LnE+vuc5sYWiNckpM4ERg682l4rz0j8UDUw459g7PZzQB+N/4uF8IpJ02SXQ80zocXr4UDQw50ddjnM376d/gn8VwPq/ZNinkyfZ1qed9VM4s0h6ynIZjAbw4nHwTx9UPhG+ve/F1o/vIpJ5Tn4aup9mzt8CBSasdvxPk12ViIiIiIiIiIiIiDf0t2cREREREREREfGA3atMIdtWEelIspJdgIiIiIhIWHYbUf05MOgqWP9naDicuJoyJRht9a+iG3dkA+xb2hw2FArBwrmw89Xo5ssuhVlrwJcF2cUQbIBHC6z7z1hmQqyyCpuPDfkKDL4WFpwDO14MP27zoyZALSs/ujoFQha3fV92+OPDv2EC0oL1ZvN3sB7q9pr/O18AAvkRNoW7+FTJsmPgzIWA3/3/cbcTYdY6qNkOgbzYApi6Hg+zVkPtHsjtrE/GjJY/4KhbXTCHBftPbXf8UC28tgbOHAmUDHO+7qZHYVQKhCgePQTPT4KarbHNUz7ZXf/sIjjxP9BQDaGguV61FDY9EnmsLwDDkhBWmm6GfAU++h40HIptnqJBMHOlCbATkY5n+I2w6zXzWO1UYw0sugJqd8HIb8erso7lwMeR++R112O1SLrKjiIYbf9y+/a+F0RXi4ikp7xuJri//oB5vUnBiCIiIiIiIiIiIqKNnCIiIiIiIiIiIiIirvmTXYCIiIiISFjZRdZt/mwoGwunvZy4eiAzgtHqqmDHS9GPf2EyrPqlCUXb+nR0oWiF/aHPBTD9PbNRMLfc/J9GCrXK7906FK2Jzw+Dr7Ye11gDO19xX6c0CzaEP+63ydoO5Jj7sT/b/L8V9jWBYTmdIm8ItQsVm3I/dDsJSkfDyO/AmW+a+aMNvvP5oKBXbKFoLeV1USharIZ8NWKXAw2llm2rdrR4I2H//3K2ZuWTzvrFU/0B+HeJu1C0rieEP14xO7oasgqaf/+WT4CzFkHJ8Ob2HmfCjI9h2DfNfbDnOXDyM9Dr7OjW60j82TDgC+7GFFSY35N53aF8ogkCPfMtBe2IdGS9Z8BJT0PP6ZDfC/J7Oh/74c1wZEv8autIPn0gcp9e58a/DhGJD382dD3R2zmLXYQ2i0jmyClVKJqIiIiIiIiIiEiHovAzEREREREREREREREv2exiFxERERFJop7TYcWPw7cF8sy/XabCiG/Dyl8kpqZgfWLWiad9SyAUjG2OJd+C2p1QtcTduNHfh7E/su/jz7H+OWeXWI/reTb4AhBqDN9e+ST0numsTmkvZBEKGLdwHptgsf5fgMHXxGldSQnDvwWVT9kGhB1ssH48KGq55zi/h7M19y6GNb83gWIFvR0W6rG3P+9+zMArTTDg9heaj5WMgMFf9qamLlNh5sr2xyf+0pv5O5qxd8L6h0xgZ0u+LJj2MPS9MClliUia6T3DXJrsehNemwENhyKPnT8cLj4Sv9riqaEG9i8DQtB5avKCaPd9FLlPfk8YcWP8axGR+Bl3F7x8knfzFQ/xbi4RERERERERERERERERERERERERERERkQ7An+wCRERERETC6noCFFS0P14xB3wtTmMTGXYVtAiHSidefQ+f/Ax2vOSs75Dr4OT5kUPRwITDWPHbtGUXw4DLrdt3vBJ5bQkvFLQO07P7/4qJTdBFUzCiZK7iwTD9Xdvb14HGUsu2wpbBaDmdnK/7/vXwZAV8dCuEEvwJrtWVsO0Z9+Oyi83j69Q/w+CvwDG/grPehrwu3tcoscsth/N3wKhbzWOZP9sEvE5fpFA0EYletxPg7PdgxE2R+zZWw4EwgZeprmoJPDcOXjwWXjwOXpgC1dYBqnG1/If27UWD4ZwPoXRkYuoRkfjodiLkOQxZjiS7E2TlezOXiIiIiIiIiIiIiIikqQS/F0lEREREREREREREJAMoGE1EREREUpPPD8c/bDaQNikeCpN+17pf1xNh1HdbHxt0dXxqCmVCMFpD4tYaewdcFoLJv4Pe5zobYxd+Fsn4n1u3HdmY+KCjTBFqtG6LVzCaz+apqs8mNE0yR0EvGH2rZfOBButgtIKcFreRbBfBaE1W3AU7XnY/Lhb7P45yoM88bg76Eky5D4Z/w10YnCRedgmMuwMuroFL6mHCz6F8YrKrEpF0VzIMJvwCTn7GPM7YWXZbYmrySigEi6+BQ2ubj1W9D+9/PfG1bH8RKp+w7zNrDeR1S0w9IhJfXY7zZp7up3ozj4iIiIiIiIiIiIiIpLaMen9iJn0vIiIiIiIiIiIiIpKuFIwmIiIiIqmr2wkwez2c/DScvgBmLDdhOS35fDDuLpi1zgSpnfMRTLk/PvUE6+MzbyLZhVx5qde5tqFGlsonRb9mXhc46x3r9u0vRD93Rxa0CQT0Z8dnzaJB8ZlX0os/x7Jpv00wWqv3GNqF7NnZ9M/oxkWrZnt04xSCJiIiLfWeAbPWwujvW/fZ8h9YeU/iaopV1Qewb0n745VPwJEtiatj+R2wYLp9n6kPKMRXJJN4da499Dpv5hEREREREREREREREUkF+puoiIiIiIiIiIiIiCSIgtFEREREJLXllEHvmdD9FAhYh+RQPAj6XwJlY80bL0be4n0tdgFR6SLUkJh1ov35j7gp/PEBX3Q2Pq+bddu717ivR+xvM/6s+Kw59Gvhj/eaEZ/1JDX5cy2bDtgEozUEW1wJBS372dr8WHTjolVd6X5MViF0Od77WkREJL3ldYOxP4KyCdZ9lt4Eh9YlrqZY7F1s3bZtfmJq2PAPWH5b5H7ZxfGvRUQSJ9uDYLQpf4Tup8c+j4iIiIiIiIiIiIiISKpo9amVIiIiIiIiIiIi0bF7mUkvQYlIEwWjiYiIiEhmGniF93NmQjBa0EEwWvdTY1uj87HQdVp0Y3ucAaWjWh/z58Lga52Nz+1i3VZdCUcPRVdXR2Z3u/dlx2fNsvHQ9cQ2a/lhyFfjs56kpkB0wWiNLbPQSoZFt3bDocQGxjgJW2lr0LWQle99LSIikhmmPWLf/vSQxNQRq6oPrNv2fRj/9bc8Ce98wVnfLAWjiWSUnBiD0XrNNK9l+Hze1CMiIiIiIiIiIv+fvfuOl7Os8///uk5NTnovhAQSQu9VAghSpLgrRVDBhthx7bvquiqiu2v5Ka5lbasifBcLIGADpCiKFKlK7ySUBEJCek6Sc2au3x+TbOZMZu65p50y5/V8POaRXP2TcHKYOXPP+5Ykaejyk5ySJEmSJEmSJFXMYDRJkiQ1p2rDcJI0QzBazCSPj9oBXnU97PtlaB9b+f5Tj4Sjr6v+g78t7XDsn2DeO3P/DWe+Bl51LUxZkG59uTCCNY9XV9dwlhSm19LWmDNDgKOuhp0/AON2h+mvhlf+Crb7h8acp8GppaPk0KpM6WC03kzehYRTjoD2KgMNfjO/fy5KXPlA8vikg2G3j8O+X8kFT048EPb9Euz/1cbXJkkausbuXP658fK7+qeWWiy/s/TYxmWNOzezEe54D9x8avo17QajSU2l1mC0ee+oTx2SJEmSJEmSJGmIMPxMkiRJkiRJkqR6atCn2CVJkqQmlN000BXULiaEXIU22OeL0NIKu38cdno3XD6hsv2PuKL2QIDOSXDI/1S3tlwg27O/hJ7VMHoejNq+ujOGm5gQCBjaG3du+2g48JuN21+DX0tnyaF1mVElx/Jz0WjtgH2/CHe+r+++E/eHZbeVr+Hx78LO56YotgbPXF56bK/zYa/Pbm3v/i+NrUWS1Fx2Phce+nLp8SXXwqQD+6+etLpfhHVPQ+cUWP1Q6XmNDEa76wPwZIWvSdpGN6YWSQNjxPTq1047GmaeVL9aJEmSJEmSJEmSJEmSJEmSJEkaZgxGkyRJktLKJgREDRUxU3rsuJth8iu2ttvHVb5/R4VBav3twf/MPQDmvRMO+l4uCE6lZRPC9Fp8SakGai0djJaNLSXHegu/zc1/L4zdFZ77FbR1wewzYMK+sPha+NsnYeXfS9dw1/th5EzY/pQKi6/AC9eXHpvVwHMlSc1v7tuTg9Hu+0zu/5GzT++/mpLECI/9N9zzkeRA5y0aFYzWsxYW/r/K1wWfG0tNZcZxuX/Xhd+PRs6AHd4MPavgiR9suy60wVFX50KaJUmSJEmSJEmSAIjlp0iSJEmSJEmSpD5Kf5JYkiRJGup2+5f67rfyvvruNxBKBQyM3qlvKBpACDB2l8r2D6G6uuophHMn4gAAIABJREFUbZDQkz/MhS489GV49JuwblFj6xqqkkIpDH9QI7WUDhLItI8vPZYt0jntKDjg67DPf+RC0QBmngAn/Q1O/FtyHTefCt0vlq+3WmufKt7fOQUm7N24cyVJzW/sLnDAN5Pn/OUMuOuDsOrh/qkpydMXwd0fSBeKBo0LRlv9CGQ2VLamdSSMntuYeiQNjI4JcOjFfV/3Tl4Ar3kY9vsKHPx9OOwX0JIX6DzxQDjlucSQZ0mSJEmSJEmSpEEvGuQmSZIkSZIkSRp4BqNJkiSpeW1/OlDHoK6nfgzPXlW//QZCzBTvbykRcDXnrMbV0ihzzkw/97Fvwd8+CXd/CK7eF166pXF1DVXZntJjLe39V4eGn5bSYQKZltElx3qLBaMlmbAPzH5D8pwl11a4aUrZHthQInTt0Isbc6YkaXjZ5QOw8weT5zz2LbhmP3j2yv6pqZinLobb317Zmo3LIVb6P/4UVj9S+ZrtXgttI+tfi6SBtcOZcPIiOOzncNwtcOxN0DFu6/ic18Nrn4QFP4Nj/gjH/QVGThuwciVJkiRJkiRJ0kAaJmFig+HmuZIkSZIkSZKkYcFgNEmSJDWvyQfDgkugc3Lf/rZR1Qc63XVuYz5831+yvcX7Q4lgtD3+DeafuzWgaPw+ub5i5r+/9vrqYc7rYdrRla/rWQn3/kv96xnqYomvGSj9dSPVQ2vpYLRsy6iSY5lqvkW/4sfJ492Lq9g0wdqF8KfXws87KHlRZNd29T1TkjR8zSkTAAqQ3Qg3nwaZjY2vp1DP6lxQcaViBv58Ciy/s/Yalt0Ot74Z/nA83PaWytcf8sPaa5A0OHXNzH0fnbKg+M+SuraDHd4I045KfA0jSZIkSZIkSZLUFOIwCYCTJEmSJEmSJA04g9EkSZLU3HY4E057EU55Fs7M5H49fRWc9CC0juw7d+R2cOLfYeorS+/XvQRWPtDYmhupVMhVaC3e39IKB/03nLESTl0CJ/0N9vjX3N9VvtaRsNO76ltrLQ6/tLp1y27LBRblG8pBePWQ7Sk9Vm3AoJRGS0fJoUzLyNJj1fyTbeuCo64pPd67topNS+heAr/ZCZ7/TfK8wu+zkiRVa/KhuUcaNxzZ2FqKef53uZDiqtb+JlfzS7dVf/7ia+CGV8LCS+CF6ypfv/MHoX109edLkiRJkiRJkiRJanKGiUmSJEmSJEn5kvL3zeaXtIXBaJIkSWp+oQW6Zm39taUVxs6HV98KM06AUTvCnDPh2Jtgwt7bBqYVumYfuPFoWPNkv5RfVzFTvL+lLXld6wgYOT33+7ZRcPxfYc4bc393M18DR98IE/apb6216JxU/dpf7wiXjoGbz4Df7g4/74BrDoAXbqxffUNJtkSYHpT/upFq0dJZcigTRpQc6602y3DmCUAoPlbPf//3n1/6e/EWrSOgY0L9zpQkDW8hwKt+n27u8r9Cz+rG1lNo8dW1rc90w6Nfr379IxckhwGX0z6m+rWSJEmSJEmSJEmSmoOf1pQkSZIkSZIkqa4MRpMkSdLwNWFfeNU1cPJTcNhPYcxOuf6EMJ7/8+If4YYjoXd9Y2ust1IhV6G1sn26toPDfpb7uzvqtzDl0Nprq7fZb6h+be9aePZyWP1wLsBoxT3wp9fCqkfqV99QERNCIkJ7/9Wh4ac1KRgtYazaYDTIBT4Ws/yvsHF5DRtvlu2Fhf9bft6I6bkQG0mS6qV9DMx7Z7q5L99T//NjhLVPw0u3QGZD37E1j9W+/zOXVV/X0j/XdvaIqbWtlyRJkiRJkiRJkiRJkiRJkiRJktSHwWiSJElSoc5J6eZ1Pw8v3NjYWuotZor3h7b+raM/zH1bfffLrM+FpQ03pcL0AFqa8OtGg0dLR8mhmBCM1ltLMFrb6NJjj36jho03u/9z0Luu/LzJgzBsUpI09LWNSTdvdZ3DgHvXwc2nwa/nwvWHwxXT4YUbto5vXFafc6oJMe1dC9lN5ecd8C1oH1d8bMaJlZ8rSZIkSZIkSZIkSZIkSZIkSZIkqSSD0SRJkqRCaYPRAB78z8bV0QixRMhVMwZczTgBJuxX3z1XPVjf/YaCUl8zBAi+pFQDtbSXHMpQOhgtU1Mw2qjSYw98AV6+Fx78EtzzMXj027BuUfq9e9bCg/+Rbu6cN6bfV5KktNrTBqM9Wt9zH/oKPHfV1nbPKvjDcbD497l2vYLR7vlY5WvSnj33rXDoxdA6om///l+HsfMrP1eSJEmSJEmSJEnS8BHjQFdQoaFWryRJkiRJkiSpGTVh+oEkSZJUo87J6eduWt64OhohZor3h9b+raM/hAALfgq/261+ez5zGRz2s/rtNxRke4r3J4RWSY2WaekqOdZbUzDa6OTxa/fv277v03Dkb2Hq4eX3vnrPdDWM3wtmnphuriRJlUgbjLbm8fqeu/CS4v03nQA7vg16VtfnnKcvgkN/UtmaNMFobWOgfSzMei289il48Y+Q2QBTj4Qx86oqVZIkSZIkSZIkSVKzGSZhYiEMdAWSJEmSJEmSpGHCYDRJkiSpUCXBaEMtHCrbW7w/NOlLg45x9d0vZnJ3bxxOF/fEYfY1o8Fj9Nzc9+PCwJLWLrIjppdclqkpGG1UZfN7VsENR8A/Pg5jdio9b/WjsG5R+f1GTIcFPxt6/2+RJA0N7WPTzVtxD9z+Dnjqx7l2axccfhlsd1Lx+b3d8NCXYemfoHdNrq9tDEw7Cua/H9Y+Wfqspy9KXX4qG5dD56Tcc/ZFP4dFm/+/Ov9cmH5MkfkpgtHyA+VGzoAdzqpfvZIkSZIkSZIkSZIkSZIkSZIkSZK20TLQBUiSJEmDTsfE9HPDEAuvKRly1dq/dfSX9vH13/O+T9d/z8Es21O83+AmNVpogZ3eu23/vHPIxNLBfL2ZGs5s66pu3W/mw5onSo8/e0Xy+pMegFOXwKmLYfwe1dUgSVI5LZ3p5nUv2RqKBpBZD396DTx9ybZzY4Q/Hg8PnA9Lb4KX7849lt4E938Ofj23DoVX4KEv5Wq6/3Nw61nw/G9y/x/+w7Gw8Gfbzt+4vPye+cFokiRJkiRJkiRJklSxONAF1E9soj+LJEmSJEmSJGlQMxhNkiRJKhSz6ee2dDSujkaIJRKDQumQoSGtbSRMPLD42Pz3V7fnIxdAb3f1NQ01pcL0Wpr0a0aDy96fh32/AuP3zj32Oh8O+AaZbOkL7DK1XHuXLfH1nsZv5sONR8Pap7YdW3x16XVzzsyFoY2cDiFUf74kSeX0rKlt/YP/vm3f87+Fl24uvaa3xjPzjZxRfs7DX4VfdMIDn9927NazoHd9376Ny8rv2WYwmiRJkiRJkiRJkqRyDAyTJEmSJEmS0kr6aZo/aZO0hcFokiRJUqGJ+6Wf2zrEgtFKhf40c8jV3l/YNsBu3y/DQd+ubr/MBnjxj7XXNVRseKl4f2jv3zo0PIUAu/8LnPT33GOvz0JoISEXjd4S+Y+pZGoMPXzxj3D94ZDZ2Ld/04rSa2adUtuZkiSlNeng2tavfqRvsNiGpXDfp2vbsxLTjk03L9tTeuyaffu21y0qv1+7wWiSJEmSJEmSJEmSJEmSJEmSJElSfzIYTZIkSSo0akcYu1u6uUMtHCqWSAwKrf1bR3+aeQIcdwvs/EGY/z448new+8dr23PjsvrUNpjFCA99Be56f/HxZg7T06CXyVY3Vlaow49JupfAs7/c2o4R1j9bev7Mk2o/U5KkNCbuD52TattjSzDa/Z+Hq2bByvtqryut1g6Y947a9ljzOLx899b26kfLryn1GkqSJEmSJEmSJEmSJEmSJEmSJElSQxiMJkmSJBUKAV5xYbq5LUMtGK23eH9o8pCrSQfCgd+Ag74D2+WFEO3xqer2ax9Tn7oGs6V/gr99ovT4UAsFVFNJCj/rrSUYbdbJNSzOc+ub4M73w+/2gGv2gZ7VxefNfz+0j67PmZIkldPSBgt+Ci2d1e+R6YYl18H950G2p361pdHSAXt9DsbvVds+1x4Iy+/M/X71I+Xn96yp7TxJkiRJkiRJkiRJw1wc6AIqNNTqlSRJkiRJkiQ1I4PRJEmSpGImHwKvuKj8vKEWKBYzxftDa//WMVjMPgMIla+rJUxiqFh4SfJ4yxD72ldTySZce5cUmlbW2N1g3O41bJDn8e/Aqodg5f2l5+x9fn3OkiQprRmvhlOegUMvhl0+XPn6TDc8ckH960qjpQO6ZsGrb4ejrqltr98fDPd/HtYtLD+3VMCpJEmSJEmSJEmSJG0RDROTJEmSJEmSJKmeDEaTJEmSShm7c/k5safxdeTrWQsPfxX+dDLceS6sf66y9bG3eP9wDbmasC8s+Cm0j6tsXXZTY+oZTJ78YfL4UAsFVFNJCj/rrSUYLQQ46urc94ZG65wCnZMaf44kSYVGTIUd3wKzT6987W93gSW/r39NabS0535t64KZJ8DYXWvb7/7zSHWn8961tZ0jSZIkSZIkSZIkSZIkSZIkSZIkqSJ+kl2SJEkqpXNy+TmZDY2vY4uYhT/9Ayz909a+Rb+AE+6E0XPT7ZEtEYw2nEOudngjzD4DHvgCPHB+ujXNHoyW5u6VW4IppAGQSfgSTQpNS2XUHDjxXlj3LHSMg/axsHE5rFuUC5Jp6YC2MfDgf8KD/179ObWGuUiSVKvWroGuoDItHX3bI2fC6kcaf+6skxt/hiRJkiRJkiRJkiQNCSmuLZQkSZIkSZIkqQ6GcfrB8BZC2BXYB5gFjAQ2AEuBJ4C/xxjX1bB3O3AYMBuYAawFFgP3xhgX1la5JElSPxpswWiLLu0bigaw6WV47L9h/6+l2yNmiveH1tpqG+paWmHeOc0ZjPb81XDfZ2D9Ihi3Bxz8Qxg7P3nNE98vv+9wDtPTgEsKP6s5GG2LUdtv/X3npNwj3z5fgBHT4O4PVLf/9GOqr02SpHpoG+LBaKPm9M+5O7y5f86RJEmSJEmSJEmS1JzS3KhUkiSpGfk8SJIkSSUkPVX0aaSkLfwk+zASQhgPfAg4h1xoWSmZEMLfgMtjjF+qYP8pwPnAG4CJJebcClwQY/xl6sIlSZIGSvu43Ifvk0Kw+jMY7ZGvFu9/8Q/p94i9xftbfGnAqNmw03vhie+VnztUgtFWPgg3nwLZnlx76Z/h9wfDyQuhY1zxNc9cDne+r/zeHRPqVqZUqWzCDzfrFoyWxi7/BJuWw/2fq3ztTu+pezmSJFWkdYCD0Vo6c8Gj3YtTzm/v255zJjx1Yf3ryjfzNTB5QWPPkCRJkiRJkiRJktQE/LSmJEmSJEmSJEn1ZPrBMBFCOAP4LjApxfRW4ABgFpAqGC2EcCLwE2BqmakLgAUhhEuA98QY16XZX5IkaUCEABMPhGW3lp7TX8FoMcLLdxcfW/G3CvbJFO8PrZXX1IwO+g5MWQBP/ABe+kvpeUMlGO3+z24NRduiZyU8eznMe0ff/mwP3H4OLPzfdHtPP6Y+NUpVSAo/6y3xba5h9joPxu8Nz/8aul+AdQth9SPJaw78Noyc3i/lSZJUUtsABqPt8hHY8U0wYT946iJ48Ubomp17Dv7SzcXXtHT0bU87CsbsDGseq399c86EqUfA3HdAi6+VJEmSJEmSJEmSJEmSJEmSJEmSpP5kMNowEEI4D/hckaFngMeAl4ARwAxgL2BUhfsfBVwF5H8yLQL3AE8B44H9gMl5428CxoYQTokxJnykXZIkaYDNPDE5GC3bT8FoPauTxzetgo5x5ffJ9hbvD740AHJheDu+BbZ/HVw+fttQsS2GQjBa73p49oriY399J0x7FYyeC2ufgsXXwl3vT7/3tGNglw/Vp06pCknBaJnsANx9dftTc48tHvsO3PPh4t9DdngTzD+3/2qTJKmU1gEKRtvuH+GAC7a257099wC4432lg9FCe992Szsc8iO44Yj61rfvl2D3T9R3T0mSJEmSJEmSJEnD2ABczyRJkjQo+DxIkiRJklQ90w+aXAjhY2wbivYz4IsxxvuLzG8BDgVeBxyfYv9ZwBX0DUW7BXhXjPHhvHmdwHuArwJbPsH2j8C/A59K+ceRJEnqfyOmJ49n+iEYLbMR/ljmqdm6RdCxd/m9YolgtBZfGvTR1gUzToTnf118fCgEo/355OTxX8+DuWfDokshsz79vsfcBFMW5IIopAGSlH2WGQzvn+98Lsx4Nbx0K2TWQUtHLuBy4oEw5fBcCKMkSQOtdcTAnLvj20qPtXYmjHVs2zf1cDh9JTx1IdzzkdprAxg5sz77SJIkSZIkSZIkSRpGBsNFS3USm+jPIkmSJEmSJEkaskw/aGIhhH2AL+V19QBnxRgvL7UmxpglF2x2SwghzdfH+cCEvPatwLExxj4JITHGjcA3QwjPAFfmDX00hPD9GOOiFGdJkiT1v7au5PGNy6BnLbSPblwNz1wKy/+aPGfdQpiQJhgtU7w/tFZcVtN7xYXwy0nFx/ojEK8WG16CF24oP++pn1S270Hfg2lHVlWSVE+ZbOmx3hLf5vrdmJ1yD0mSBqsQYPxesHKb+2dAaIGY8D/cQi0dMPUoeOG68nO3PzV5n0rHOsbBrh+GSYfA9QvKn1/OyBm17yFJkiRJkiRJkiRJkiRJkiRJkiSpai0DXYAaY3Oo2Y/pG373nqRQtEIxxt4yZ8wH3pbXtQk4uzAUrWDPq4CL8ro6gfPS1iRJktTvWssEowFcdwj0djfuLnmP/Ff5OetS5sxmSzzFS5WJO8x0ToSpJULA7vtM/9ZSqTShaJXqnAI7vqX++0pVSApGSxqTJEkF5r17274ZJ6Z7HZTv9JWw12fLz9vt47nQtVJaR5QeC+3Je08+BCbsW76GckZuV/sekiRJkiRJkiRJktSUGnSdrCRJkiRJkiRJBQxGa15nAPvntW+MMV5Y5zPOAlrz2lfEGB9Pse7LBe3XhxASPvEmSZI0gNpSBAKseggu7YLLx8PNZ8CGpfWtYcU95ecs/2v5OeuegRdvLD4WWov3D3ctHaXH6v3fuZ42vFDf/Wb+A5xwZ7p/D1I/yCZcX9drMJokSent8k9w4Ldh/D7QNRt2ei8ccTn0rk2/R9dsaBsJE/YrP3fkjDLjM0uPJT03h1zg2tE3wA5vgRHTYeKBsOBncOpimHUKjJhWvr6u2TBm5/LzJEmSJEmSJEmSJCmtRt10V5IkabDzeZAkSZIkqQZtA12AGuY9Be3/bMAZpxa0UwWvxRgfDiH8FThkc9co4NXAr+tYmyRJUn20jkw/t2c1PHs5LL8DTn4698H8WmV70s1beAm84iJoKRFwltkI1x9Wen3wpUFRSeELi34Bu3wgeX1mI6x6EMbu2r+hYhuX1b7Hrh+D/b9a+z5SA2QSws+SxiRJUhE7vz/3qFVbF3ROgY0vlZ5TLhht7K6lx3rXlK+hcxIsuHjb/ldeuW3f05fAbW/O6wiw12dLv6aSJEmSJEmSJEmSpFIM/ZAkSZIkSZJSS/ppmj9pk7SF6QdNKISwE3BkXtdC4I91PmM6sE9eVy9wSwVb3MTWYDSAEzEYTZIkDUbVhFmtfwaumAqnLIbWhGCtNNYuTD/3pZth2lHFx57/Nax/rvRaP/xfQsKPUNY8kbz0qYvhzvdAZkMuYG2f/4TdPlbf8kqpNRhtwU9hzhvrU4vUAEnhZ70Go0mSNHAOvRhuOrH0eNlgtF1Kj2W6q6uplB3fBGN2gie+D61dMPv00q+nJEmSJEmSygghtAOHAbOBGcBaYDFwb4xxYZ3P2hHYF5gJjAaWAIuAW2OMKe+8JUmSJEmSJEmSJEmSJA1eBqM1p1cVtG+Mse63n9mzoH1fjHFdBetvLWjvUWM9kiRJjdFaRTAawMbl8MAXYJ8v1Hb+xqXp5750S+kP8i+/M3ntmifTnzOcJIUvJIXmrfg73P62re3sJrj3n2H8XjDj1fWrL9+qh2DJ9bDpZXjiB9Xvs9fnYYcz61eX1ACZhFe4SaFpkiQppfnnwuPfqXzd+MIfGxcYPS95fMR0aB8PPSu3HZtyeOX1lDP5kNxDkiRJkiQ1hRDC54Dzatjiohjj2RWeOQU4H3gDMLHEnFuBC2KMv6yhNkIIpwMfBQ4tMeXlEMIvgM/GGGu8k5IkSZIkSZIkSZIkSZI0cFoGugA1xMEF7dsAQs6xIYQLQwgPhRBWhRDWhRAWhRBuCCF8MoSwQ8ozdi9oP1FhjYXJG4X7SZIkDQ5J4VflPHtZ7ef3rEk/975Pw+rHt+2PER7+/5LXjvPpWFG960uPtY4sPfbcVcX7n72ytnpKeeKHcPXecM+H4YHP17BRgB3fXLeypEbJJoSf9WT6rw5JkprWrFPSzx2z09bfd82CaUcXnzflCOjaLnmvEGCnd27bP2oOTNg3fU2SJEmSJEn9IIRwIvAA8D5KhKJttgC4PITwvyGEUVWcMzqE8DPgMkqHorG5hvcBD4QQjq/0HEmSJEm1SLjTY+LYYDTU6pUkSYOXzyskSZIkSdUzGK05HVjQfnhz4NkNwPXA2cBuwFigC5gNHAN8EXgshPDfIYRyCSA7FbSfqbDGRQXtSSGECRXuIUmS1HitNQSjrV2YCyWrxPO/g9vOhtvPgcW/h57Vla3/7c7wl9fDjcfCvR+HNU/CstvLrxu7a2XnDBeZKoPR7v9c8f4nvldTOUWtXwx3vAtiHdKgDr8URu9Y+z5Sg2USvrVu6Om/OiRJalozjoP9L0j3emi3f+7bPvRimHhQ376JB8BhP0939p7nwewztrbHzIejroXg2xmSJEmSJGnwCCEcBVwFTM3rjsDd5ALMrgeWFSx7E/CzENL/oCOE0Ar8AnhjwdBLwHWbz7qHvp8wnAb8KoRweNpzJEmSJEmSJEmSJEmSpMGkbaALUEPMKGh3AXcCk1OsbQfOBQ4NIbwmxrikxLzxBe2llRQYY1wbQtgAjMjrHgesqGSfQiGEqcCUCpfNq+VMSZLU5NpqCEbLboTeddA+Ot38x78Hd75va/upC2HKYZWf+8xluV9fvBGevgimvDJ5/pj5MPXIys8ZDnoTgtFa2vuvjiRXbVeffV6/rravd6kfZbKlx9Zt6r86JElqart+BHZ6L6x9ElY/Cn85fds5o+fBtGP69nVtByfckQuKXv8sdG0Po3dIf2776Fxg78blsHEZjNkZQqjlTyJJkiRJkoavM4EUd5H6P2vTTAohzAKuADryum8B3hVjfDhvXifwHuCr5K7LA/hH4N+BT6Ws6UvASXntHuCjwA9ijP/3rkgIYXfgh8Chm7s6gatCCHslXAMoSZIkSZWp9GbBkiRJkiRJkiRVyWC05lQYWnYhW0PR1gHfA64BngNGAfsA5wD5d4jcD/hlCOHIGGNPkTMK0z26q6izm77BaGOq2KPQucB5ddhHkiQpp3Vkbes3LU8XjBazcP/52/a/dEtt529YCs9eXnp8yhFw6E/Sh7cNN5mEYLRHvwm7frjImg2Nq6fQ8ruqWxfagCy0jYFpr4IDv20omoaUbML1dU9UFNstSZIStY2E8XvmHodeDLe9devY9GPhFRdBa0fxtaN3qCwQrVDnpNxDkiRJkiSpei/EGBc2YN/zgQl57VuBY2OMfd4ojDFuBL4ZQngGuDJv6KMhhO/HGBclHRJCmAt8qKD7jBjjrwrnxhgfCiEcA9zI1nC0SeSupXtvij+TJEmSpIYxTEySJA1XPg+SJEmSJFXPYLQms/kuk50F3bM2//oQcEKM8dmC8XuAC0MIHyN3d8otDgU+Qe4OlYUKkzOqSX/opu8FYqZxSJKkwSe01LZ+4zIYNaf8vOV3wYYXajurGsf9uf/PHEp6E4LR1j0NT/4Y5p3Tt//WtzS2pnwv/qGy+ae9CCOmNqYWqR9lssnjv7gzyxsOqvH7tyRJ6mvHt+QekiRJkiRJw1gIYT7wtryuTcDZhaFo+WKMV4UQLspb10kusOycUms2Ow9oz2v/pFgoWt453SGEs4H7gS1p9u8IIXwlxvhUmbMkSZIk1cTQD0mSJEmSJEmS6slPCTef1hL9qygeivZ/YoxfA75e0P2REEKawLJq3sXxnR9JktT8NixLN2/j0sbWUcx+X+v/M4eaWCZ96ckf9m1vWAbPXZG8JrOptpryPfjF9HM7JkDnlPqdLQ2gcsFoP/qLLzclSZIkSZIkSVJDnEXfa/SuiDE+nmLdlwvarw8hjCg1OYQwEji9zB7biDE+BlyV19VGrmZJkiRJkiRJkiRJkgaFmPDxv6QxScOLwWhNJsa4Hij2EfELkkLR8nyGXIjaFhOBE4vMW1vQHpmuwsQ1hXtW4zvAnhU+Tq7DuZIkqZmN3aX6teufSTdvIF6pd23X/2cONft9JXl82W1926sfLh+mduOroHtJbXUBrHsWelamnz9yBoRQ+7nSIJAt8y3zhof7pw5JkiRJkiRJkjTsnFrQvjDNohjjw8Bf87pGAa9OWHI80JXXvi3G+EiqCret6bSU6yRJkiRJkiRJkiRJkqRBwWC05rSuSN/FaRbGGNcBVxR0H1Vk6qAMRosxLo0xPljJA3iy1nMlSVKTm/3Gbfs6JsLrlsEhP4IFl0D72OJr73g3rLiv/BkxU1uN1RhpMFpZM4tlBCfoWVN+zrJb4doD4KVbq6tpiyd/VNn8qUfVdp40iGTK5A9KkiRJkiRJkiTVWwhhOrBPXlcvcEsFW9xU0E56M/KEMmuT3Eyuti32CyFMq2C9JEmSpHoaiBvn1mSo1StJkgatIfc8SJIkSZI0mBiM1pxWFrRfjDEurGD97QXt3YrMWVXQnlLB/oQQRrNtMFph3ZIkSYPDnv8GO7wFCLn2yJlw9HXQOQnmnQM7nAXj9ii9/q/vhKcvgVvOgrs+CMvv2nbOQASjjZ7b/2cONaPmQOuI5Dn5b9b1pghGA+heAjceBfd8DO79OPzlDfD4dyFbwdfBA+ennwsw7x2VzZcGMYPRJEmSJEmSJEnSANizoH3f5huRplV456Sk2cPnAAAgAElEQVSEN5m3Oeu2tIdsrun+Cs6SJEmSVCtDPyRJkiRJkiRJqqu2gS5ADfEYsH1ee0mF6xcXtCcVmfN4QXtOhWcUzn85xriiwj0kSZL6R0s7LLgYDvh6LtBq3O4QCjKG28aUXv/ynXDbm7e2n/wfOPI3MP3YrX2Z7vrWXM64PaFrZv+eOVRt/zpYeEnp8dgLoT33+56UwWgA2R545IKt7WcuhRf/CIf9AkJIXnvfeenPAZj9epi4f2VrpEEsm+I6wt8/GDl+jzL/liRJkiRJkiRJUjN7Twjh0+RuDDoJ6AGWA4uAvwDXxhhvrmC/3QvaT1RYz5Nl9stXeDPTas7ar+CsP1S4hyRJkiRJkiRJkiRJkjQgWspP0RD0YEF7Y4XrC+ePKDLn4YL2ThWeMbeg/VCF6yVJkvpf5yQYv+e2oWgA7QnBaIUyG+APx8GVs+CuD+TavZXcSLwOZry6f88bylo6k8ezm7b+vreCYLRinrkMVj1QfOzZq+DqfeGnAR74fOk9TvwbHPBNGD0PRkyFXT4MB323trqkQSaTLT/nM1elmCRJkiRJkiRJkprZG4FjgJlAJzCa3A09Xwl8CvhzCOHOEMKxpbfoo/AauWcqrGdRQXtSCGFC4aQQwkRgYo1nFc6fX+F6SZIkSSoixR0tJUmSJEmSJEmqg7aBLkANcV9Be3yF6wvnLy8ypzCtYe8QQleMcX3KMw4rs58kSdLQUkkw2hbdz8Nj34bVj+ZCrCrxiovg0W/AinsqPxdg3B7VrRuOWjqSxzMboW1U7vc9q2s/78kfwQH/1bdvyfXwl9dBLBP0NH4fmLD5scsHaq9FGqTSBKPdtQiy2UhLS2h8QZIkSZIkSZIkaag6ELguhPBF4NMxxqRP+RdeV7e0koNijGtDCBvoe6PSccCKMuesjzFWeqetwtrGVbi+pBDCVGBKhcsqfENckiRJGmqSXkoYJiZJkoYrnwdJkiRJkqpnMFpzuobcTwy2fPp7bghhRIxxQ8r1exa0nyucEGNcEkK4D9h7c1cbcDhwXcozjipoX5NynSRJ0uDUVkUw2hYvXA9cX9mazskw7xy4q8pgtLG7VLduOIo9yePZjVt/37Om9vNeKPK18MQPyoeiAez41trPl4aATMr3yJethaljG1uLJEmSJEmSJEkadJ4HrgbuAB4GXgaywCRgf+AfgOPz5gfgU0AL8K8J+44uaHdXUVs3fYPRir3RXK9z8tXwhvY2zgXOq+N+kiRJkiRJkiRJkqRhJOmWZYm3M5M0rLQMdAGqvxjjYuC2vK524JgKtjihoH1ziXlXFrTfnmbzEMKuwCF5XetIH6gmSZI0OLXX8zryFDonw9yzq1wcYOxu9aymufWW+ZxBJi8YrbcOwWirHtr2JzfPXp5u7c7n1n6+NMjFGFP/cHPJqsbWIkmSJEmSJEmSBpU7yAWebR9jfHeM8YcxxltijA/HGB+NMd4aY/x2jPEE4CDg8YL1nwwhnJywf2FgWdobleYrfPOxcM/+PEeSJEmSJEmSJEmSJEkalAxGa14XFrQ/mmZRCOEI4OC8riy5u2cWcwmQyWufFkKYn+KYTxS0L40xVnPxliRJ0uDRPrZ/zxsxGdpGwZG/rXztzNdA58T619SsMmWC0bJ5wWg9ZYLRJh4Ax/2l/Jl/fSdkM+Xn5Tv2ZmgdUX6eNMRlK7jjw+KVjatDkiRJkiRJkiQNLjHGq2OM18VY/hYrMca7gFcAjxUMfSmE0Jr2yEprHORrJEmSJDXEEHt6nvaulZIkSWX5vEKSJEmSVL22gS5ADXMhuTC03Ta3jw4hfDTGeEGpBSGEqWwbqHZpjPHJYvNjjI+HEC4Cztnc1QH8JIRwTKmgs8131Dw7r2sTcH65P4wkSdKg1zamf8/rmLT51/GVrz3kB/WtpdmVC0bLpAxGG7srHH4pjJ4LI2dA95LSc5/6MUw+BNY/DyvvL1/j/v8FUw8vP09qApls+rlLVkUgNKwWSZIkSZIkSZI0dMUYXw4hnAncxdY3FHYFXgXcUGTJ2oL2yCqOLVxTuGd/nlOt7wCXVbhmHvCrOtYgSZIkDTKGfkiSJEmSJEmSVE8GozWpGGMmhPAh4FqgZXP310IIc4DPxRhX5M8PIRwLfJfcBUhbrAA+Veao84BTgQmb2wuAG0II74wxPpK3fyfwbuBrBeu/FmNclP5PJkmSNEiFfg7eaR+b+7W1wmvgu2blQrmUXrlgtOymrb/ftLz4nNmvh8N+vvXrJLSXP/eO96Srb+45sOuH0s2VmkC2gmsIF69qXB2SJEmSJEmSJGnoizHeE0K4Djg+r/sEDEYrKca4FFhayZrQ3++nS5IkSZIkSZIkSZIkaUgzGK2JxRiv3xyO9q287g8C7wsh3A48T+4CqH2BOQXLNwFnxhifLnPGcyGE04DfAx2buw8DHgoh3A08BYwD9gemFCz/LfCZiv9gkiRJg9HGEoFYjbLlwvHWrsrWlQv50rbKBqNthEe+AU/9GFbeV3zOtKP7hue1dBSfV42pr6zfXtIQkMmmn7vEYDRJkiRJkiRJklTetfQNRtu7xLzCdx4Kr4dLFEIYzbaBZStTnNMVQhgVY1xXwXFTU5wjSZIkSRWq4K6WkiRJkiRJkiTVwGC0Jhdj/HYIIQN8FdiSmtEOHJGw7EXgtBjjrSnPuCmEcCrwE7Ze7BWAAzc/ivkZ8K4YYybNGZIkSYPeQIVTtVUYjLbzBxtTRzPb/nRYfkfp8Qe/CIt/l7zH2F37tnd6F/ztE7XXBjDj+PJzpCZSSTDaC6u8EE+SJEmSJEmSJJW1sKBdKvDs8YJ24c1Iyymc/3KMcUXhpBjj8hDCCmBCXvds4OEaziqsXZIkSVI9xYTrlJLGJEmSmpnPgyRJkiRJNWgZ6ALUeDHG75K7i+X/AmsSpr4AfA7YJW0oWt4ZVwN7At8DtrlYK8/twOkxxrMqvIOlJEnS4DbpEGgb0z9ntY/d+vsRhTf6LmP70+pby3Aw5w3J4+VC0QDG7lKw5xurryffjBNh5PT67CUNEdkK3h9fvLJxdUiSJEmSJEmSpKbRXdAeWWJeYTDZThWeM7eg/VDC3HqfVUmomiRJkiRJkiRJkiRJkjSg2ga6APWPGOOTwFtCCCOBw4BZwHRgE/AS8PcY4301nrEUeF8I4UObz5iz+Yx1wPPAvTHGp2s5Q5IkadBq7YRD/gdufRPETGPP2u9reeeOSL9ut3+BcXvUv55mN2o27PNF+Pu/Vre+fTyMmFZkz/+Av/9bbbUd9O3a1ktDUCabfu6SVY2rQ5IkSZIkSZIkNY3JBe1lJeY9UNDeO4TQFWNcn/Kcw8rsVzi2IK99KPCbNIeEEEaRu5Fq2rMkSZIkSZIkSZIkSRoU4kAXIGnQMBhtmIkxdgM3NPiMTcAfG3mGJEnSoDTnDTBhX7jjvbD0psac0doFs1+Xfv4Rv4Q1j8OUw2HyAgihMXU1uz0+WX0w2rQji/+97/EpmH5c7utlxT2V7zvpYBhdeKN3qflVGowWYyT4vU+SJEmSJEmSJJV2SEF7cbFJMcYlIYT72Bo61gYcDlyX8pyjCtrXJMy9Fnh3wtokR9D32tB7Y4wvVrBekiRJ0rDmR08lSVK9+LxCkiRJklS9loEuQJIkSWoqY3eBff69MXu3j4XDL4OOCenXbH8a7P4JmHKYoWi16ppV3boZJ5Yem3QQHPdnaOmofN/dqwxqk4a4bAXvj/dkYFNv42qRJEmSJEmSJElDWwhhBHBaQfdNCUuuLGi/PeU5u9I3gG0dyYFqvwe689qHbt4jjbML2oU1S5IkSaq7pIuaDASRJEmSJEmSJKlSBqNJkiRJ9dYxqbb1rV1wzB/g9BVwVoRTl8Dxd8CpL8B2J207v3NK8X26tq+tDvWV7alu3Zh5yeNto2B0mTmFJh0C2/1jdfVIQ1ys8DrB7ir/6UqSJEmSJEmSpGHhE8B2ee0M8LuE+ZdsnrPFaSGE+SnPyXdpjHFDqckxxvXA5WX22EYIYWfg1LyuXuCnKeqTJEmSJEmSJEmSJEmSBg2D0SRJkqR665xcfs74fUqPnfR3mPYq6Bifa4+cDpMOgraRxefv/YXi/bv9c/k6lN7GZdWtGzmz/JwT7k65WYA5Z8Hhv4CW1urqkYa4bKXBaJsaU4ckSZIkSZIkSRo8QghvCSFMq3DNu4DzCrp/EmNcVGpNjPFx4KK8rg7gJyGEEQnnnAycnde1CTg/RYmfA/JvAXN2COG1CeeMAC7cXNMWP4oxPpniLEmSJEkqr9K7WkqSJEmSJEmSVCWD0SRJkqR665hQfs7xd8CME/r2tXbl+sfsVNl5c14PYwpuQj56Lsx5Y2X7KNmkg6tbN3K78nPaRsKOb02e09IJZ2bgsEtg1JzqapGaQKWX1nX3lJ8jSZIkSZIkSZKGvHcAT4cQLgohvCaEMKrUxBDCgSGEK4AfACFv6Hng0ynOOg9YkddeANwQQti14JzOEMIHgMsK1n8tKXxtixjjU8A3CrovDyH8UwghP/yMEMJuwI2ba9liOekC2CRJkiQ1lGFikiRpuPJ5kCRJkiSpem0DXYAkSZLUdFpaYeZJsPjq0nNaO+CVv4JHLoCX/gIjpsDOH4CJ+1d+XscEOO5WePgrsOJemLAf7PJhGDG1+j+DtjXtaFh2W+Xr2semmzfrFHj64tLjnZMghNLj0jCRzVY232A0SZIkSZIkSZKGjZHAWzc/siGEx4GFwCogA0wC9gGmFVn7MnBCjPGFcofEGJ8LIZwG/B7YElB2GPBQCOFu4ClgHLA/MKVg+W+Bz1TwZ/oksAdw4uZ2O/At4DMhhHuANcDczWflv5m4CTg1xrikgrMkSZIkVSsa+iFJkiRJkiRJUj0ZjCZJkiQ1wr5fKh2MNm7P3K+tHbDHJ+tz3ojJsN9X6rOXitv1I7n/pivuTb9m/N7pw8xmvJrcZxVKXCDVMSH9uVITy1Z4DWH3psbUIUmSJEmSJEmSBrUWYJfNj3JuBM6OMT6XdvMY400hhFOBn7A1/CwAB25+FPMz4F0xxkwF52RCCK8Hfgi8IW9oKnBCiWVLgbfFGG9Oe44kSZIkSZIkSZIkSZI0mLQMdAGSJElSUxq/F7z2yeJj25/Wv7WoPjonwbF/qmzNDm9OP7dtFEzYr/R4+7jKzpaaVKX3Vu3uaUgZkiRJkiRJkiRpcPkG8FNgUcr564ArgWNjjMdWEoq2RYzxamBP4HvAioSptwOnxxjPijGuq+KctTHGNwJnbN6rlJeB7wJ7xhivrfQcSZIkSQIgVnqFliRJkiRJklSZpB9B+eMpSVu0DXQBkiRJUtMaPReOuQn+fDL0rMr1bf862ONfB7Qs1aB9TPq5c98OO7+/sv2P/DVcNav4WFJomjSMZLOVzd9gMJokSZIkSYPGHx6JXPW3SEcrnHFA4JC5YaBLkiRJTSLGeCW5oDNCCOOBPYDtgWlAF7mbyK4kF2D2MHBfjDFTh3OXAu8LIXwIOAyYA0wnF7z2PHBvjPHpWs/ZfNblwOUhhB2B/YGZwCjgBXKBcLfEGDfV4yxJkiRJlfKTnJIkSdvweZAkSZIkqQYGo0mSJEmNNO1IOG0pvHw3dM2CUdsPdEWqVWsXZNYXH5txPOx1PoycDqPmVL5313aw8wfgsW/17Q+tsONbK99PakKVvj3e7cd/JEmSJEkaFP7n5izv+X9bX9l/6w+RX7y7hVP2MxxNkiTVV4xxJXBLP5+5CfhjP531NFCXsDVJkiRJkiRJkiRJkiRpMGoZ6AIkSZKkptfaAVMONRStWez+yeL9nZPg8Eth8iHVhaJtsf/XYJcP5/YDGL8XvPIqmHxw9XtKTSRbYTJad493GpMkSZIkaaBlspF/u7Lva/SeDHzmV9kBqkiSJEmSJEmSVDmvxZIkSZIkSZIk9Y+2gS5AkiRJkoaUuW+DJ74L3Uu29o3dDU64E9pG1b5/Szsc8HXY/wLIdENbV+17Sk0kW+Hnpbt7GlPHYNa9KbJiPUwdA22tYaDLkSRJkiSJW56AZWu37X9wMSxeGZk53tevkiRJkiRJkiRJktRcDFWVJEmSJFXPYDRJkiRJqsSo2XDcLfDI12Hl/TDpINj9k/UJRcsXgqFoUhGVvj3evakhZQxaX78+y+d/G1nVDTPGwfff0sI/7O2HyyVJkiRJA2vR8tKv6Fd3w8zx/ViMJEmSJEmSJNVd0lVNBoJIkiRJkiRJklQpg9EkSZIkqVKjd4QDvznQVUjDUrbC6wS7expTx2D0m79HPnbZ1r+gJavgDd/P8vDnW5g9yXA0SZIkSdLglPEzgZIkSZIkSZIkSZIkSZIkSZLytAx0AZIkSZIkSWnFSoPRNjWmjsHo8ru3/cvp7oHv/MlPmEuSJEmSBlbSK9P1w+i1uyRJkiRJkiQNfl5rJEmSJEmSpMZK+gmUP52StIXBaJIkSZIkacjIVhqM1tOYOgajOxcW/8v5yrX+OFiSJEmSNLCSgs7Xbey/OiRJkiRJkiSpIRLv9ui1O5IkabjyeZAkSZIkqXoGo0mSJEmSpCGj0mC09ZsaU8dg9MgLpcfWbPDCAkmSJEnSwNmQEFxuMJokSZIkSZIkSZIkSZIkSZKkfAajSZIkSZKkISPx5qpFrFjXmDoGo1GdpceG09+DJEmSJGnwWZsQfjacQs0lSZIkSZIkSZIkSZIkSZIklWcwmiRJkiRJGjKyFQajLVtb4YIhbGR76bE1CR9AlyRJkiSp0dYlhJ+t2zR8XrtLkiRJkiRJ0tDmz3MlSZIkSZIkSf3DYDRJkiRJkjRkxIqD0RpTx2DU0VZ6bHV3/9UhSZIkSVKhdQmB3UljkiRJkiRJkjQ0JFzUVOkFT5IkSc3C50GSJEmSpBoYjCZJkiRJkoaMrMFoJbWG0mNrNvRfHZIkSZIkFUoKP1u/qf/qkCRJkiRJkiRJkiRJkiRJkjT4GYwmSZIkSZKGDIPRStvYW3pstcFokiRJkqQBlBSMljQmSZIkSZIkSZIkSZIkSZIkafgxGE2SJEmSJA0ZscJgtFXdsKm3wkVDVFIw2poNw+PvQJIkSZI0OK3bWPp16bpN/ViIJEmSJEmSJKkMrzOSJEn14vMKSZIkFZf0GcFKPz8oqXkZjCZJkiRJkoaMbBU/2Fy+tv51DEbJwWj9V4ckSZIkSYXWJ4SfJY1JkiRJkiRJ0tCQdFGTn+SUJEmSJEmSJKlSBqNJkiRJkqQho5o7Pqzsrn8dg02MMTEYbbXBaJIkSZKkAdSbLT3Wk+m/OiRJkiRJkiRJkiRJkiRJkiQNfgajSZIkSZKkISNbTTDa+vrXMdj0ZpJD49YYjCZJkiRJGkBJr1l7DUaTJEmSJEmSpKGhmrtaSpIkSZIkSZJUBYPRJEmSJEnSkJEUjNZW4qccwyEYbWNv8vhqg9EkSZIkSYNUJjvQFUiSJEmSJElSjRIDwwwTkyRJw5XPgyRJkiRJ1TMYTZIkSZIkDRlJ1xBOGFW8f2V387+pXi4YbZ3BaJIkSZKkAZT0yrzXYDRJkiRJkiRJkiRJkiRJkiRJeQxGkyRJkiRJQ0a2xCepQ4DxI4uPrVzfuHoGi3LBaOXGJUmSJElqpKSg895M/9UhSZIkSZIkSZIkSRrkkt5gliRJkqT/n707j5MkrevE/42q6pmenu6Zhjm7BxFW5VLExWN11/VC3V113RWXdf0puL91d3FFXFAXDxRQVA7RVTxAEGRBhlNADmFGLndgmIFhDmaG6Z6h566qvrvuMytj/6iu6equiMiIqsysyMz3+/Wa11THE5n5zbgy4sl4PsnAEIwGAAAA9Iy877mHkoi9u7LbJuY7V09dtAo+W1h2gwAAAADbp+iqtJGXgg4AAAAAQPcJIgEAAACgw4q6oHRPAWsEowEAAAA9I2+sdBIRey/IbpuY61g5tbHUMhitO3UAAABAlqIblRor3asDAAAAAKAzjOQEANjAeRAAAABbIBgNAAAA6Bl5wWhDQxF7dyWZbYMQjLbYKhitRTsAAAB0UtH97ncf6V4dAAAAAAAAAAAAAED9CUYDAAAAekbeQOqhJOLiXdltk/Odq6cuWgajLXenDgAAAKjq4JGIsQm/FA4AAAAAUH/6cgGAbnDOAQAAgGA0AAAAoIc0c77nTiJiz87stumF/v9yfLFF8JlgNAAAALZTqyvz936x/6/dAQAAAIB+po8TAGAj50gAAGxNs5nGTfen8abPNOOO0TTS1DkmDJKR7S4AAAAAoKy8rsuhoYiLcoPROlZObSytFLcLRgMAAGA7tboX6QXvSuMXn9GdWgAAAAAAustgTQAAAAB6S/rRt0X6sb+JmJuO5F/8SMSzfzWS4eGu1rDSTONn3pzG1Z9f619L41d+MIlX/XhEkiRdrQXYHoLRAAAAgJ7RbGZPTyJiT04w2tQABKPlLZc1gtEAAADYTob9AQAAAAAAAFBKmq7eHA4AwLZIP/CGSP/w+Wf+feCLEUcfiuRFr+tqHVffuD4UbdVrrk3jh56axPc8saulANtkaLsLAAAAACirmTOSeijJD0abHoBgtJUWI8znBaMBAACwjVLJaAAAAAAAPUKHLgAAAMAgS9/75xsn/v1bI52b7modr/hodj/V//6HZlfrALaPYDQAAACgZ+Tddjc0FHHRAAejNVv05y4IRgMAAGAbCUYDAAAAAPpaYSeoDlIAYED5ohgAoOekczMRDxzY2LDSiPjke9v3OiXaDhzObv/Ql9pWBlBzI9tdAAAAAEBZeQFgSUTs2ZlEVrfo1AAEo620uG+g14PRvvRwGq/4+zS++GAaw0nEtzwuiZf/uyQed2my3aUBAABQgtvdAQAAAAAAAABggKTNiEgiEuM+oKc0V/LbZqe6VwdACEYDAAAAekjeQOqhJGLPzuy2pUbEUiON80b698uUvMC4NY1mRGMljZHh3lsGd42n8Z2vasbM4plpB4+kcc2dadz1O0Nxye7ee08AAAAAAAAAANBzUj+DAQB0g3MOgJ7WmIu46XkRD38wYmRXxOOfE/GNL49Ihra7MgCgxzh7AAAAAHpGM+fmuiSJuCgnGC0iYnqhQwXVxEqJ7/8XG52voxP+/FPpWaFoa47PRPzJJ9z4AAAA0AuMlQMAAAAAAAAAgAHw2Z+MuPctEUsnI+Yejrjz9yO+9NLtrgoA6EGC0QAAAICe0WxmTx9KIvYUBKNN9XswWs5yWW9hufN1dML1h/JHz7/vZiPrAQAAeoGrNwAAAACgvxX0gvrlCABgYDkPAhg4iyciRj+0cfp9b3V9DABUJhgNAAAA6Bl5X4O0DEab70g5tdEs8QVRLwajNZtpHDyc3/7l8Yh7jvhyDAAAoO7c1wgAAAAAAAAAAH3ugXdF5sifuQcjlie6Xg7AwHCTJn1KMBoAAAClHJtO44/+oRkvfn8zPnq7jhK2RzNn00uSiL0X5D/uyFRn6qmLlWbreXoxGO2hUxHzLer+u9scjwAAAOrOPTcAAAAAAL1Chy4AsN2cjwD0rGbBABA3EAEAFY1sdwEAAADU3wMn0vjOVzVj9JEf50jjBd+fxB/9R3nbdFfe9yBDScSOkSQu3xNxdHpj+9hkGhFJR2vbTnmBceu1Chiro3uPtZ7nurvT+JUf7HwtAAAAbF6Z2xqXG2nsGOnfa3cAAAAAoJ8Z3A0AsJFzJAAAADbPCHYAAABa+t2PpOtC0Vb9ySfSuO0hX1bSXXkBYMnpcdP792a3j57qTD11sdJsPc9So/N1tNvcUut5DhzufB0AAAB0Xi8GegMAAAAAtOYeOwAAAHhk4A9ARKQFXWZFbeSx0OhPgtEAAABo6bNf2dgxkqYRr/ioDhO6Ky8Ybej09yNX5QWjTWRP7xd5y2W9pZXO19FujRKBb/cej1hqOBYBAADUWZkblcqEYwMAAAAAAADQ5yRhAAAAEILRAAAAKOHA4ezp777Jl450V9733GvBaPv3Zv+CzNhEf2+rKyUCxJYana+j3ZZLhLmtNCMOHet8LQAAAGxemavy+eWOlwEAAAAAwJb09z1YAAAAAADUh2A0AAAAoGc0c+6tS07noe27OLv9+Exn6qmL/g1GK3cz5QMnOlwIAAAAW1LmB72nFzpfBwAAAABARxR1gpbpIAUA6EfOgwAAANgCwWgAAABsyfSCLyzpnrzvx4dOB6NdfEF2+8xiZ+qpi7zAuPWWVjpfR7stl6x5dMJxCAAAoM4EowEAAAAAAAAAAAB0gFBi+pRgNAAAAAqlLTpFxie7VAhEfgBYcjoYbffO7PZ+H1y90mw9z1Kj83W0W6NkMNrYRGfrAAAAYGvK3HIzNd/xMgAAAAAAaMUgSgBg2zkfAQAAQDAaAAAALSy2CFMaF0hEF+Xddzd0Ohhtz/nZ7f0ejJYXGLfeYqP3bhJYLhmMNuo4BAAAUGtlxtFNzvfedSsAAAAAwCr9mwAAAAD0AaH5QI0IRgMAAKDQ/FJx+/ikzi66Jy8A7JFgtJ1JZvvMYocKqomVZut5llqEHNZR2WC08QnHIQAAgF431eeh5gAAAADAoHJfCwAwqJwHAbCOsCVgnaIjgqPFZlhq9CfBaAAAABSaXy5uPzLdnTogIj8YLTmdh7b7/Oz2heWIxkr/dvCVCkYrGTJWJ2WD0UYnOlsHAAAAW1PmilwwGgAAAAAAAABCHQAAtpNzMaA+BKMBAABQaH6puH1qvjt1QET+D8QMnQ5G27Mz/7HTfTzAOi8wbr2lRufraLdGicC3iIgxwWgAAAC1VuYHX/UxAQAAAADUnYGxAAAAAAB0h2A0AAAACi20CFOa6uOwKeonLwDsdC5aYTDazGLby6mNlRIBYksrna+j3ZZL1nxkOmK54cZLAACAuioVjKaPCQAAAADoWUWdoO5pAQAGlfMgAICeU+ZmP4AuEYwGAABAofml4vap+e7UARH5X48Pne7h2H1+/mNPzbW9nNrIC4xbb6lFyGEdlQ1GS9PVcL8/ECEAACAASURBVDQAAADqqcytUvqYAAAAAAAAAAAAAKoSaEd/EowGAABAofnl4vbphe7UARERzWb29KFk9f97duY/9g+u6d8OvpWc5bJeLwajNUq8rzWjpzpXBwAAAFtT5kckp+b797odAAAAAKB36KsFALZZmS+YAQDoDOdiQI0IRgMAAKDQ/FJxu0GrdFMzZ3M7nYsWF54fkSTZ83zuUP9uq3nLZb3FHgxGW14pP+/YZOfqAAAAYGvKXJFPCd8HAAAAAAAAAACA7SMYDagRwWgAAAAUml8ubjdolW7K61odOt3DkSRJbv/rjuGOlFQLK83W8yxVCBmriyrBaMdndLwDAAD0sqn57a4AAAAAAGCTigaMGkwKAAwq50EAAABsgWA0AAAACs0vFX8hKRiNbmrmBIAl6/5+xpOy55no4wHWpYLRGp2vo92qBaN1rg4AAAC2psz97vqYAAAAAAAAAACgXwnMhJ7QpXBbvzPQZhYafUowGgAAAIUWWoQpTfVx2BT1k9dFN7QuGe0F35/d3TEx1/566qJZou+yF4PRGoLRAAAA+kKZe24m9TEBAAAAANSbAZYAQFc45wDoWUmS3+aaEgCoSDAaAAAAhRaXi9unFrpTB0TkB4ANrevh2Lsre57FRsTCcn9+kbLSbD3PUoWQsbpYrlDzCcFoAAAAtVXmalwfEwAAAADQu/rzniQAAAAABo1+LqA+BKMBAABQKC+Ias3UfETqVzvokmZOANj635TJC0aLiDg129ZyaqPVfhoRsdzofB3t1qgUjOY4BAAAUFdluo5mFyNWylzgAgAAAAD0FP2eAMCgch4EwHo+FwA6xzGW/iQYDQAAgEKtxqM2mhELy92pBfI2x6F1yWh7L8h//MR8W8upjZWcwLj1FnswGG25QjDa8ZnO1QEAAMDWlL3lZnqho2UAAAAAAAAAUHtCHQAAtk2ZX0EF6BLBaAAAABRqFYwWETHZp2FT1E/e9pisD0bblf/4ibn21lMXZfbTpUbvdUw3SgS+rRGMBgAA0Pum9DEBAAAAAGyz3rvHCAAAgF7gehMAqGZkuwsAAACg3lZKBBNNLURceXHna+l3b7+xGe/+QhpDScR/+rYkfuJb5ZmfK+9HJ4bWBaPtOi9iZCg7VKtfg9HK7KdLK52vo92WV8p/8SUYDQAAoL7K/oik8H0AAAAAoDcVdYIa+A0ADCrnQQAAPafszX4AXSAYDQAAgELNEn1ZUwatbtmrPtaMX3/fmYX9d7elMTbRjBf+gHC09fK2x/XBaEmSxN5d2UFZh6fSiEg2NvS4MvlhC8udr6PdliuEuU3ORyw30tgx0n/rFwAAoNeVvVdqaqGzdQAAAAAAAAAAANtA2BJABznG0p+MrgYAAKBQqWA0g1a3ZGE5jVd/bOOCfsVH01hq6JRaL297TM7JwnrcJdnzHTzS3nrqotlsPc9kDwYYVglGi4g4OdeZOgAAANiasr0bwvcBAAAAAOrMvWwAQBcIzgEA2D5dOhcrehmng8AawWgAAAAUKhO4ZNDq1tzyYMSpjECn4zMRd4x2v546y+vYHDonGO1JVyaZ8x0c78+e0ZUSb2uiB0PDGhWD0Y7PdKYO6u3+42nc9lAaE3P9uX8DAEA/KHuj0tSC83oAAAAAoAcZrQkAAAAtuHaG3mBfBepjZLsLAAAAoN6aJfqyVgetZgdR0drBI/kL+e4jaTz9qy3bNXnbY3LOInrCldnzHTjc3nrqokyA4UQPBhguVw1Gm+5MHdRTs5nGz1+dxl9dl0Yzjdi7K+KNzx6KH/9mx0wAAKibsrdKTS10tAwAAAAAgO4TmgYADCrnQQCcxecCQMc496ZPDW13AQAAANRbqWC0HgxcqpOvHM1vu7ugbRDl9dENnRuMdkX2fA+dikj7sKOvzH46Mdd7771yMNpMZ+qgnv76+jTe8H/TR7b/ibmIZ/1lM45P99Z2DgAAg6Ds5eikPiYAAAAAAAAAAADYHj029gzob4LRAAAAKFQmcMmg1a05VBB+dvBw9+roBXnb47nBaF/1qCRzvrml/txem83W8yyvRMwvdb6WdqoejKbzfZD88cez1/flv9zsuRBAAABglfB9AAAAAIBt5p4LAGDbOR8B6EuuNwGAigSjAQAAUKhMMNpsj4Ut1c3sUv5CPjCu43+9vO0xOScHbf/e/OcYnWhfPXWxUnIzmeixAeaNEoFv652a60wd1M8DJ9K4cyy//fP3da8WAACgtbL3NU4tdLYOAAAAAIDOcI8XAAAAAH1AiCFQI4LRAAAAKNQsEUw0s9j5OvpZYyW/7eCRiGaZdLoBkde3OnROMNq+i/OfY/RU++qpi5WSAWITPRYctlywb2QRjDY47hgtbn//rY6bAABQJ2XP0Kd6LNAbAAAAAKA19zAAAIPKeRAA6/lcAOgcx1j6k2A0AAAACq2U6BOZFYy2JUXhT3NLEQ/1YZDXZuVlxCXnBKOdN5LE5Xuy5x2d6L+OvrLheZM9NsBcMBp55paK2z/+5f7bzwEAoJeV/RHJ6QXn8gAAAAAAAACDzffGAADbpuzNflt9mU22AYNFMBoAAACFms3W8whG25pGi2V8//Hu1NEL8vpWh5KN067amz3voWPtq6cuygQYRkRMLXS2jnbLC0YbzunRmpjV9T0ollps9PPLXSoEAAAopezVWq8FegMAAAAADBb35gAAALBZrikBgGoEowEAAFCoWaLfeXZR5/RWNHLCn9aMTli+a/K2x6xgtK+7ImNiRBwY77/lWSbAMCJiscfCovL2jct2Z0+fMIB+YCw1ittbHVcBAIDuKvsjkoLRAAAAAICeVNgJ2n/3KgEAlOM8CACg9ziHA+pjZLsLAAAAoN7KBaN1vo5+ttwyGK07dfSCvO0xychAe9KV2fMeONy+eupipWSf80IjjYjswLg6yts3Lr8o4vDUxumn5jpbD/Wx2CIYbXQiIk3TSLIODgAAm/CVo2lcc2ca541E/PBTk9i/13kGdMKx6e2uAAAAAAAAAAAAaLuyv6wIbC/7ao+y3uhPgtEAAAAoVCYYbUYw2pY0msXtY4LRHpHXtzqUkUnw5H3Z895zNKKxksbIcP8EGTRbbENrFpc7W0e75Qaj7cmefmq2c7VQL0stgtHmllaD8h59YXfqAQD624duS+Mn3tCMhdPn04/alcY1LxiKb3lc/1xTQKeVvVdqfFLIMQAAAADA9jKIEgDYZsI4APqU4zsAUM3QdhcAAABAvZUJRptd6nwd/UwwWnl522PWcOkn78seRL28EnHoWPtqqoOVkt8PLbYIk6qbvH3jsj3Z6/bUXAeLoVaWckLz1rv7SOfroHNuvDeNn/6rZvzUXzXjbZ9rRupGJwC2SbOZxvOuPhOKFrF63vltv18ynRiIiPK3NS42XNsBAAAAAL3Id9oAAAAA9AFjN4AaEYwGAABAoWaJsd4zC52vo58ttwj4GZvQobgmb0kMDW0MynrCFREZkyMi4q7x9tVUByslMxnWhzn0grx949Ld2dMn5leDK+h/iyW25YOHbQu96po70/iOVzbj6s+n8Y7Pp/Ezf53Gr73P+gRge9xwX8TDp7LbXvFR4WhQVpV7pQTEAwAAAAB9xWBSAGBQOQ8C4Cw+FwA6xrk3fUowGgAAAIXKZAzNLnW+jn7WaBGMdmK2O3X0grygvqwAtJ07knj8pdnz39VngUlls8AWG52to93ygtEu35M9PU0jpgQ1DoSlFsfNiIgDhztfB+2Xpmk8/x0bD/Z/+sk0jk/317EbgN5w4735nz8vfn8aK4J5oZQqe4pgNAAAAAAAAIBB5l4MAIBtI2ALqBHBaAAAABRayQmiWm9msfN19LNGi2V8fKY7dfSCvMyBJCMYLSLiyfuypz94sj311EWZ/TQiYmG5s3W0U5qm+cFoF+U/7tRcZ+qhXpZKhPyNnup8HbTfzQ9GfOXoxukLyxGfPdT9egBgrkUQ+O2j3akDel2Ve6XGJt1YtebeY2kcPCyEEQAAAACoCQNjAQAA2CzXlMA6RYcEhwtgjWA0AAAACpUZd7nUiGis6HHarLzwpzUnZ8MA2NPylsJQTjDaFRdlN5zss7C5spvHYokwqbooek+X7c5Z4RExIRhtICy1OG5GREwvOG72or+7NX+93T5qnQLQfa2CwI9Pd6cO6HWVgtEmOldHr5heSOP7/2glvvbFzXjyS5rxlJc048tjzocBAAAAoL703wEAbOQcCQCg9ziHA+pDMBoAAACFygYuzbYYLE6+RouAn2YacWr8ZKTXXB3pe/8s0ofu6U5hNdRsZk/Pi8m6ZHf29BOz/dVJu5KzXM7VS8FoRYGBees1IuKUYLSBsLjcep5pn0s96YO35R+f7z3WxUIA4LRjLUKVe+kcG3rF+OR2V7D9fuHqND554My/7zka8Z/e0IzUT2ECAAAAQA/SrwcAAACujwE6yTGW/jSy3QUAAABQb2WD0WYWIy7e1dla+lWjRKjV8Rf8RDz68HWr/xh+UcRv/Z9InvGszhbWQ4Zyot8vuTB7+okW4Qa9pux+ulAiTKouioLRLtgRsWdnxPTCxrZTs52rifpYahEoGRExNd/5Omivqfk0vvRwfvsX7vdFDQDdd3ii+PNnNXQ5L6oZWFPlTG68xX7X79I0jY/cvnEZ3DEWccO9Ed/xNdtQFAAAAAAwQAa7jxYAqAPnIwAA28aPdwI1kjNsGAAAAFaVDVyaXepsHf2sKABqzfHJdQt4ZSXSP/j5SJcWO1dUTeVtj3kxBHnBaAePtKWc2lgpEa4XEbHY6Gwd7VS0X+wYjnhUThDjqTkd8INgucS2nBWcR709dKq4/c6xiIOH67GPf+H+NH7+7c141utX4o3XNSP15R9A35prca3bb6HL0ClVTpfGJjtXRy9YXok4mRP6/dYbnHcCAAAAQC35zhgAAABacO0MPUE/F1AjgtEAAAAo1CwZuDQjgGbTGiWW8bHhy8+eMDsVceeNnSmoxvK2xyQnGe2S3dkNC8sRk30UoFU2wHCph4LRGgXBaCOFwWidqYd6WSoRKDk9eNmRPW+0RTBaRMSTX1LyxKSD/vFgGt/9B814/T+m8bc3Rzz3bWn8/NX985kCwNlanXecyAkvAs5W5WzpgRMdK6MnFN1Xduio804AAAAA6D369QCAQeU8CGDw5AzuiRC2BNBRjrH0J8FoAAAAFCrb7zy71Nk6+llRANSasR37Nk68/XPtL6bm8jbHoZwejkdfmP9cr/xY/3T4lQ0wXFjubB3ttFywX+wYzl+3gikGw+Jy6/13WmBnzxmbLHdcvvmB7T1+v/qa5obj6Rv+bxrjE/3zuQLAGa3ChZ1/QjlV7mscn4yYmh/cc6ui8PN7jnavDgAAAAAAAAAAAAaMEEOgRgSjAQAAUKhoMOZ6s4udraOfFQVArRkd2b9x4s4L2l9MzeVtj0M5Pyqz7+L85/q7W/uno3al5FtZbPTOe24VjHZJXjDaTGfqGQRpmsaB8TQOT6aR1vyLjKUSx83phYhm2Q8xamH0VLn5Pn339q7Xj96xcVqaRrzhOtsbQD9qdd4xIRgNSql6iXHwSGfq6AVFlzGHJ7tXBwAAAADARr4XBwC6oOb3sAKwWY7vwBl1H7cE1INgNAAAAAqVzZSZEYy2Kc1mWmoZj43s2zhxdqr9BdXcSjN7el4w2tdclv9cBw5HjJ7qj07UZs5yOdficmfraKdWwWiP3p290k/N9sc67ba7j6Txz1/ZjKe8tBn7/1czfvTPmrVelkuNcvPNLnW2DtprdKLcfAcOd7aOzfry2HZXAEAntDrvmF6o7zkT1EnVPeXg4cHdt4ru91oseS0EAAAAAHTb4PZpAgAAANBHahBYtv0VAHUhGA0AAIBCeUFU55pdrN7lNLOQxgduSeNPP9mM2x8ezC6rsst3dGT/hmnpxLE2V1N/zZwUubxgtCRJ4ur/mtMYEQ+cbEdV269sgOFCDw2gbhTsGyNDEZdcmN12YrYz9fSzZjONn31LM26878y0j9we8cvvqe9xuWww2vRCZ+ugvQ4dLbfN3V3TkIylRj3rAmBrigJ7IyKmhYRDRxyb3u4Ktk/Za3wAAAAAoEfUYDApAMC2cB4EwHo+FwA6xzGWPiUYDQAAgEJlB2POVBwMfmQqjX/56mY883XN+J/vTONpv9OMP/lEyZSwPtJqkP2a8R37Nk6cONHeYnpA3vaYF4wWEfET35rfeLxPBlqX3U8XlztbRzsV7Rs7hiMu2Z3ddmKmM/X0s8/dG/HZQxunv/eLaW2DnhZLBqNNzXe2Dtrr4JFy891dcr5OyAvojCi/XQLQW1oFss4IYoVSqt5zM7vUmTp6gfuTAAAAAIBtpZMSANh2zkcAALaPczGgPgSjAQAAUKgoAGS92YrBaK/6WBq3PXz2tF9+dxqHJwer86xRMgtuYmjvxomTx9tbTA/I2xyHC3o4kiSJxzwqu+34TH9sb6WD0XootKdlMNqF2W0nZjtTTz977SeyN6CZxYjjNQ2aWyoZKnl4qrN10D6zi2k8eLLcvEemI5a3KbSv6NhUdrsEoLe0Or5PV7wWhkFV9eytaj9TPyl7jQ8AAAAAAAAAAL3DTTEAQDWC0QAAAChUdjDmTMUBq3/5jxufuJlGfODWweroLgpYWW96aPfGiaeOtbeYHpC3PQ4lxY+7NGPxRdQ39KmqsvvpwnJn62inlsFou7NX+vGZiNQv11Zy7/H85XWipvvIUsmQv7EJ20KvuOdo+XnTdPtC74rCcRZ76BgLQHmtzjumF7pTB/S6vMu0kZw7Fqr2M/UTwWgAAAAA0It07AEAbOQcCWDwOPZDzzMmC6gRwWgAAAAUKjsYc3ap2vPO54SHvOWzg9V51miWm296+KJoxjlBUCfG219QzeUGo7Xo4bgsJxjt7gpBPHXWLLkd5e13ddQoCB8aGYq4fE922/JKxMnZztTUr3YM57fVNTxwsWQw2uhEZ+ugfQ6MV/v83651WxSOUxSaBkDvanV8F4wG5eTdK7V7Z/b02QEORmt1X1ljZbD6zgAAAACg9+nTAwAAANfHAJ3kGEt/EowGAABAobLBaJPz5Z9zdjH/SVsFXPWbovCnc80OXXj2hMkTkS4N1kjhvACwoSR7+ppL92TP8ObPpJH2wS9ZlN1P5yoGGG6n5aJgtOGIfRfnt49Ptr+efrZSEKx3oqYhc0XhVOuNCUbrGQePVJt/u9Zt0bGp7HYJQG8pOvZHrJ5jr5Q9IYcBlreX7D4/e3ovXb+2W6tDyiCHxgEAAAAA2813IgBAF/TBvd0Ag6tgcI/jO/QG+ypQIwM23BwAAICqyo7vPjlTvtPryFR+23CLgKt+02qQ/XpTQxdtnHh8rH3F9IC87bFVMNolu/Pbrrtn8/XURdn9tJcGT+ftGyNDEUmSxBUZu8MawWjVzBcEDhyvcGzvpqWSx07BaL3j7orBaKMT27NtFoWfLQpGA+g7aZqWCr7spfNsqJs9O7OnzyzU81qkG1q980EOjQMAAACA2jJgFAAAAIB+0KVurqKX0dUGrBGMBgAAQKFms9x8x6bLP2dhMNqAXak2Si7fiIjpoYx0r+Pj7SumB2w2GO3xl+S3veyDFVZCTZUNRuulwdN5+8bI8Or/zxtJ4tKcwLvxST3gVSwUhH0cn+leHVWUCSiJiDg2bVvoFScqhvCdnO1QIS0UhfIJRgPoP42SYazTC52tA/pB3o1Ku8/Pnj7bQ9ev7daqL26Qlw0AAAAA9Cb3LgAAA0qiBQBn8bkA0DmOsfSnARtuDgAAQFVlA5eqhOccLQhRG7RQkbID7SMipof2bJx49OH2FdMDNhuM9mP/NH+GT98d8dIeD0cru582mhHLjd7o6FzO2Td2DJ/5e9/F2fOMT7a/nn42XzCo/kRNg9HKflac2KbwLKqr+vm/XQE0ecemiPKBfQD0jqJAzPUEo0FreVeiucFoix0rpfZaXeMP8rIBAAAAALqhN+4tAgAAAKAT9A0B9SEYDQAAgEIrJfOijlUIzzkyld9BNmghNkUBK+eaygpGGz3UvmJ6QG4wWosejsddmsSPPi2//eUfTuOWB3u347ZZIddtriAEq07yjj0j69b1lRdlz1MlqJGIheX8troGo5UNoBq0z5ReVrQdZtmuAJqibW90ImJxuXc/SwDYqOw5R6+cY8N2yvsh8LxgtJkBDv9qdUY565gDAAAAAAAA9DX34QH0J8d3AKAawWgAAAAUyguiOtepuYjGSrmZj0zlt91/PGJibnA6uxsVAq1mMoLR0ofuaWM19ZcXADaUtH7sy360uBvk/3yud7e7svtpRO+ENuS9p2Tdur50T/aKr2uYV10tFAR+nJit336RpmkslQyVPDGzOj/1t1gyeGbNtgWjtdj2nvm6pm0OoI+UDbKerxjwCYMoNxhtZ/Z13ewAB6O1Cj8f5GUDAAAAAPXle2IAAAAA+oDxEECNCEYDAACgUNnApTRdDUcr4+h0flujGfHRO3q/A+3mB9L4vtesxEXPX4nH/upKvOBdzZhf2vi+qgSjTQ1vDEaLQQtGy9k0ygSjPeHy4vbXfbp3t7uVCttR7wSjZa+P9ev6kt3Zjz0+07vrstvSNI35gm3ieA1D5laa5b9nWWz0zjY/6PKC0XYMZ0+fXtie/bxVQM5H74j4wK3dqQWAzisbxup8A1rLO3u78Pzs6bMDvF+1OtMtuoYDAAAAAGrIYFIAYGA5DwJgHdfHAJ3jGEufEowGAABAobLBaBERJ2fLzXd0qrj9jz+eRtrDnTEHD6fxLb/XjE/fHTGzGPHwqYjXfiKN//62je+pVcDKeieGH71x4vj9m66zF20lGG3X+Ul89SX57csrEbOLvbndVdlPeyW0Ie8QsH5dX5oTjHaihmFeddVYKd5+6hiMlheglcf20BsWl7OnX5aRCRoRMb3QuVqKLJXY/l72wQpplQDUWpnjfoSQIigj7xpvz87s6ZPzEStVLnb7SKu3PZcRvA8AAAAAAADQP3wnCgCwbXp4TCfQfwSjAQAAUKjKGNTZxXLzveeLxU/6hfsjvuFlzbjnSG91pDWbabzovc148kuyA1HefmMah46e/Z4aFYLRxkeu3Dhx4likjYopQT1sK8FoERH/7puKZ/ziAxULqol+DEYrs67zgtHqGOZVV/M5YVRr6hgqVjagZM3hFmGc1ENe4F3efl7nYLTbR6OnA14BOKPseYeQIti8fRdnT19pRhyb7m4tddFskbPbK9f1AAAAADBYBuS7At+FAwAAsGmuKQGAagSjAQAAUKjVYMz1ZlsMzEzTNK6+sdwT3jUe8cTfasZd473T8f3mz6bxmmuL6/3ArecEo1VYvuMj+zZOTNOIU0fKP0mPW8lZXkMlezhe9K+SeHLGYlzzI39aYYXUyEAFo61b15dcmD2PYLTyFloEo00tRCw16nUcXqoQKBkR8amD9aqfs93+cBpv+kwzRiey23OD0UqGsbbbcsntr46hggBUV/a8o1XYLJB/W+Nj9uY/ZiznHLHftbqC6ZXregAAAAAAAGDQuX8TgPV8LkBP6FIwftHLyObfDAuN/iQYDQAAgEJVApdmC0JK5pfS+I9/2YyfflO1Tpavf2kz/uLTvRFW9dbPtX5vnzpw9jxlA1YiIsaygtEiIo6Pl3+SHpcblpWUe/z+vUnc8Ov53SEzixGLy73XEdiXwWh5IXjr1vWlu7NX/Km5+oV51VWrYLSIiJOzna+jiqVGtfk/c49toa5e/uFmPO13mvHf3pq/ji7L2c+n5jtVVbGyATljk52tA4DuKHu91ivn2LCd8m5UumxPEiM5l+l54bn9rtU1vmMOAAAAAPSaXrtvodfqBQAAAKB99A0B9SEYDQAAgEJVApee8+ZmfOKu7Ae8+6Y0/vbmzdXwC1enGwLF6iZN07h9tPV8dx0++9+NSsFo+7MbTghGKxuMFhGxZ2cSP/zU/PavHKtWU6ekaRp/c0Mznv2mZvyv9zbjy2P5+0BeiFiWXhlAXWZd77s4//GHarIe626+RDDa8ZnO11HFYsVgtGPTnamDrbnlwTR++0OtP9sv2Z09fXqhzQWVVDZ0cfRUhwsBoCvKBrKWOacCsg0P5V/bjU3Uuy+oU1r92qVjDgAAAAAAANDXWn1pCkBvcnwHACoSjAYAAEChlQqBS8dnIn7wj5vx5s9sfNB7v7i1Duxn/FEzvnB/fTvBj0xFTM63nu/+ExELy2feR6PC8h0b2ZfdcOJw9vQ+lBcAViUYLSLil34gv0vkrprkzD3/HWk8581pvP3GNP7w2jS+/RXNuOHe7H2gSoDh7FJ996P1ygSjfc1l+ev+wODsFluy0IPBaGUDStZML3amDrbmr69PSx27LtuTPX1+OWJqvvvHs+WSgaajAxriAdBvyp539Er4MGyXtMVNjVc9Knv6+GQHiukBrc6THXMAAAAAoIYM7gYAAACgH+jnAmpEMBoAAACFqgQuRaz2fb3kg2k0Vs5+4Edu33otL3xXhRSxNpiaT+M3P9CMr/mNlfi231vJDHxbUzaEKU0j7j5y5t9lA1YiImaG98T00O6Nz3m8JkleXVAmLKuM731S/gPeVLCeu+Whk2n8xafPfrMzixH//JXNzAHlVfbT6YWtVtcdee8pWbfqzt+RxD+5LHu+A4d1xJcxXyIY7UTdgtEqHDcjemebHzR/dV25ffQJV+S33fZwm4qpoGxAztiAhngA9Juy59nzQoqgUNF9UklEXLaxqyMiIiZKBND3I8FoAAAAANBnDCYFAAaV8yAAzuJzAaBjnHvTpwSjAQAAUKhqMFpExNhExF0Vs7re+d9bJ1tdf2g1MKpbnv+ONH7/79O473jETQ9E/Ne3pvHnn8oOzbrvePm6Hjp55u9zA+RaGRvZt3HiCcFow5vo4fj335Q9/Zo7I+45sr2dgdd+Of/1//AfBjsY7dwQvCfmhCbde6y99fSrxRLBlfGueQAAIABJREFUaMdn6tU5Xqbm9aYGNEyhzmYX01gouR6fcEUSe3dlt938YPe3zbLBfPc5BgH0hbLn2UKKoFjRrpQkEXt3ZfcJTc51pp66a3V/kmMOAAAAAAAA0N/qdd8qAMBAEbAF1IhgNAAAAAptJhgtIuKuw2ceOL9U/CRXXhTxY9+UxA8+pfXzfvWvNePoVOc72G57KI233bDxdf7i09mvPTpR/rkn5888RyM7Zy3X6Mj+jROPC0Y7NyyrjCfty3/QE3+rGc3Nbvxt8PEv57f9xvvSSM/pZK5S6lSvBKPl7BvnruvHXpK9HscndMSXUWbbOTHb+TqqKBtMtWZmMTbsM2yvsQqfmRfsiHj6Y7PbbnmwPfVUsVxy+zu4zQGbALRH2VOI+YrBrcAZSRJx0QXZbRNzg3lO1eo6bV4wGgAAAACwbQaz3xYAAIB2cE0JAFQjGA0AAIBCeeFErdy1Lqvr5R8p7rz+058cih0jSfzJfxqKy/e0fu6vf+mZ0Kob703j6hub8fn72ttB/r8/nv18d41HzC1ubKsS8jI5f+bvsgEra8ZH9m2ceOJwtSfpYbnBaJvo4XjylcXtb7hu+7502b0zv63RjJheF26WpmmlH+OY7pFgtLy3dG4w2lV7s+erElY4yMoEox2f6XwdVSw1qs3fTCPmBAfUSpXPzPNHIv7pY7MDEG9+oPvH6bLb38HDAvmA7piYW70e+sAtaZyYcdxpt7JLVEgRFCs6LUoiYu+u7LaJ+ezp/a7VaWSrHyAAAAAAALaDfjsAAAAA+kCXxkEUvYqeNmDNyHYXAAAAQL2VCc3JcveRM39/+Lb8J7npxUPx9K9eDTx54pVJ3PN7Q/Etv9uMe47mP/eJ2Yin/24zvn5/Eu/4/Npzp/Gz35nEG56dRJJkB6hUce2d+TWfmI3Ydf7Z08Ymyi+o9QN7GxWD58aygtHG7o200YhkpP8v8/OC+s4NyyrjyfuSKOoqffsNafzcd1d/3naYaRFednI24qILVv+u2t883SMDy8uG4OUFo41NtreeflVm+znR48FoEauBgBee33o+umNssvyB6/wdEU9/bHbbXYcjlhppnDey9c/9spZKBpqemos4Nh1x+UWdrQcYbDfdn8Yz/qh5Ovg2jf17Iz74vDPXV2xd2evhOSFFUKgwGC2J2HtBdtvEXGfqqbtWxx7BzwAAAADQa3yPAAAMKudBAKzjR6cBOsgxlv401HoWAAAABtlmg9EeOnnmgQsFITbnDtrfszOJO142FM/65uLB/F96ONaFoq1602fSGH5uM37qr5rxl//YjJXNFh8RiwU1H88ICRqbKP/ck+uCqZZLBqysGd+REYw2Mxlx+/XVnmgL0mYz0k/9bTRf+dxovv43Iz1xuGuvnRuWtYnsh6fsizivIEvus4ci0m364qVVaNCpdYPDq27m0wu90dFZNgRv/97slX9sOmJxuTfe63Yqs/1MztdrORYdn/NMtQgbpLtGK3xmnj8S8dSrsvfzlWbE4S6HIK5UCDQ9eKT1PABb8ew3rYWirRqbiPif76yYvEyhspcD0841oFCrXWnvruzpEz0S7N1ugtEAAAAAgG1loDoAsO2cjwD0rqLBPY7v0Bvsq0B9CEYDAACg0GazxdaHnkzmDGT9hv3Z03eMJPGu5w7FXz57E2lXsRqY9j/ensazXt/cdLBVUfBJVjDagyfLP/f65dGoGIw2dt5jMqen13+k2hNtQfrq/xHpS/6/iI+8JeLtfxDpzzw90gcOdOW12xmMtuv8JH7+e4of+MHbqj9vO7TanrYUjLZYvZ7tUHZdX7U3/zkOT7Wvnn5VZvuZqlkYwdJKdtEjBT2dwkrqpUqY6Pkjxfv5eJeD0aoccw8c9oUg0DljE2lmAONnD0UcOur40y5lj/sTc63ngUFW1DWTJBF7L8i+Nh/UfatVV5ZgNAAAAACoI9/PAAAAANAHhOYDNSIYDQAAgEJ5A8Ff8cwk/sPT8x83NhGPhJLlBaP9/jOLL0v/278cim99XIkic3zg1ojh5zbj6168Ei96bzMWlst1zDVW0pgqCNE5MXP285yaTePodPm61ocMNQoC2LJ8cs8zshs+86FNh8BVkX78XauBaOtNnoj0Hf+7468d0d5gtIiIVz4ziZ/9zvwH/9hfNOM11zajudmEwE2YW0xbB6PNnvm7KMQvS91CrvKUXdf7CwKTRiuELw2qUsFoNQsVy9vm9+7Kf0yvbPeDYrzCvrlzx+q63bkju32s28FoFY65Bw93rg6AovOcG+5zQ0K7lL3EmnCuAYWKdqUk8s/lpxaiq9fjddHqLQtGAwAAAAAAAHrD4H3fC0ARnwsAneMYS38SjAYAAEChvACaS3dHvPvnhuOzv5p9abnYiDgxE7GwnMZSI/s59l7Q+vWvfcHWL10PHYt4zbVp/ItXNuPOsTS+9HAaXx5Lo7GS3eFzcjZz8iOOz5z974NHqtUzOXfmdZdXqj32ZLonjg1furHh4UMRDx6s9mQlpdOnIr371khv+0ykv/2c7Jk+97GOvPa5csOyNrmZnDeSxBufMxSX7cmf50XvTePlH+le5+A9R1sHMJxatw1VHSM+XbOQqzxlg9EuviBi13nZ844JRmupF4PR8mo+byRi9/nZbZ+/Xwd/nYxOlF8fO4YjkiSJ/Rdnt49VeK52qPJqD7UIuQTYigtyAiMjIu6peH1CvrLn2hNzna0D+lmS5AejpWnrPpp+1KpPYH65O3UAAAAAAO3ingUAAAAAekTZXxUG6ALBaAAAABRqFU702EfnP3Z0ImJyPr/94hLBaBfvSmL8Ne25fL3loYinvqwZ3/Q7zfiGlzXj0hc2422f25j8dnS6+HmOnROM9qWHq3X4TaxbJo2KwWgREa999POyG268tvqTFUhnp6L50p+O9IeujPRn/1mkv/CM/JlPHo50uvMpVM2coL5zw7Kq+p4nFD/Bb38oja8c7U7H7oHDrV/n1LrgharBaHULucqT976S5Nx/J7F/b/a8VcKXBlXePrXeVMFxfDvk1TycRDztMdltH73dtlAnZUMLLzx/dR+PiNiXE4w2PtmmokqqcsydXrDdAZ1TdDz6ytHu1dHvyt7bcWouInUjCOQq2j2SiLjyovz2sS6f79VBq3POuaXu1AEAAAAAsJHvQwCALnAPBkB/cnwHACoSjAYAAEChVkFUV1yUH0rVKhht765yNVxxURK3/Fb7L2GnFiJ+5q/T+C9vacavva8ZP/1XzXjFR5vxjb9dnBT0wImz//33FQN3jq0LXmvkvNSjVk7mPv59l/5k5vT03jsr1ZEnTdNIb70u0n99WcQn31P+gQ/e3ZbXL9IqqG+zXvnjrZ/gm3+3RIJUG5y7fWU5OXvm7zLBVuv1SmhDlRC8q3KC0cqGLw2yMiFPdQvTyz0ODEX826dl78u3j/bGdt8pU/NpvOemND54axonZ7d3OaRpWjrc4sLzzvy9f2/2uu32fl7lmDtds30H6C9Fn+GHpwb3M6/dygZirjQjZhc7Wwv0ssJgtKS4b2kQr+sEowEAAABADxrgexIAAADgDNfH0PP0cwE1IhgNAACAQnmDMYdPX1GODCdx5cXZ8zx8Ki0Mebr4gvJ1PO2rkrjrdzpzGfuW69N49cfSuPrzabz4/a077w4ePjNPmqbx6YPZ8331JdnTRyfOBPQsr2TP800Lt+W/fjw2Dg9fsbHhgZxCKkiXlyL9tWdG+vzvr/7gBw5s+fVb6VQw2uMvTeI3fqj4SaYXIg6Md75zd7TEoO9Tc2f+LhvWsGZhuTdCG6qs67oEJvWiMpvPwnLEUqM+X2ysFITmffs/yd4WTs1FHJ/pYFE1dsuDaTz+15vxE29oxr//i9Xwz5sf2L71eXJ2dZsqY/f5Z/7elxOAOD7Z3fdS5Zhbt1BBoL/kfR5GnB2iy9ZU+ZSZKAgFh0HXal8aGU7iiouy20Yn6nMt0i2t7iubWxrs4GcAAAAA6Dn68+gE2xUAvcDnFQBn8bkAnFF0qug0chMsNPqUYDQAAAAKlQknekxOWMnoRMSL3589Yj9Jzg48KeOJVyZxzQuG4pILqz2u3Q4eOTMAdXYxP/jkZ78zO6Bnbili6vSg+UZOoMGOtBF//+C/za1hdMf+jRMfOFB5YOyN96bxvKub8aI3jMdtr35NpN+3J+L6v6/0HGvSB7cezNZKUSDSVv3WDyfxU/+s+Ime8tJmfOVotWX8mXvS+J/vbMYvvrMZ193T+rFjJQZ9T2whGC0i4lgPBETlva2hjN6s/TnHoLffmBos3kKzIFRlvakaBX0UfS496cr8xx043Jl66u5n3tw8K0xxbCLiF99ZcsV3wN1Hys974brzhP05Iazjk1urp6oqx9xpwWhABxUdj9Yf99masudKEWefowNnK7osS05fhudd1w1i4HWZc86yYcMAAAAAANW51wYA2G7ORwAAto1xWECNCEYDAACgUJlgtKselT3P6ETEoWPZbRftjBjaRJrVDzwliftfORSf/pWh+MDPD8UdLxuKpdcNxe0vW/33Hz6rDQlZLUzMRRybXv37eEHA1Lc/Pr+W0dMDexsr2e0jaSO+f/aTuY8/NnzpxonTpyLuvyu/oHO88bpmfMcrm/G6T6fxmpsuj2+/+3/Eh3f/m9KP3+CBA5t/bEm522MbejjO35HEW/9LEh95fvGTffPvNuOWB8t18r79xmZ8z2ua8aefTOPPPpnG976mGW/9XHG6wmiJQd+nZs+8/maC0Y5OVX9Mt+WFUGQdNq7KGUAfEfGiv9UhX6Ts9pMXALkd8moeHoq4bE/E3l3Z7YeODd62MD6Rxh1jG6dffyjivuPbszwOHin/uuv39305wWjdDsoQjAbURVFg16nZ7tXR76p8Wp603CFX0b60dsqXd1031uUg3Dooc1/ZvGA0AAAAAKiZwbsnAQAAACoRtgQAVCQYDQAAgEJlgqj2780OABs7lUaSkw02Ob/5mi48P4nvekISP/pNSTxlfxIjw0l8/f7Vf7/wB4big78wFE+8YvPPX8bBI6v/LwpGe+pj8tvWglyW84LRohFDkcbljSOZ7cd3XJb9wM98OP9F1xk9lcZz33b2yl0c2hkvveylm79Nr0Io22blB/W1JxAvSZL4N09N4geenD/P9MJqONqx6eIl1VhJ4zfel55VczONePH702isZD82TdO44d7WdZ6aO/s5qzpWsN3WRZlQxjX7C4LR/vDaNC594Uo86/UrcefY2U96dCqN513djK9/6Up856tW4mN3DN4Xbc2SXy72QjDaULK6D39VTljnIIbEPHgyv+2Ge7dnez9wuPy8jXWhP3nnGsdnIpYa3XsvlYLRFjtXB0DO6WRErH5up24gaosqi3F80jKHPEX70trl/L6CvqVBU+acc26p83UAAAAAAAAAAEA1RWN7Bu8+IOhN9tXeZL3RnwSjAQAAUKjZzJ6+PojqqpxQoodOnR3gtN6L/nV7gqyy/Mg3JnHXy4ej+YbhuOHXO3Ppe/DwamdRXjDa8FDEZbsjLtuT3X7fidXHN3KW7450OSIiLmscz2w/9phvzZyeHrw5p+KzfdWvZr/wbTu/McZH9mU/KEkiedutkfzaX8Z8sjPuPO/JMZ/sPNP+8KFIx+4r9fqbVSUsayv+/KdabzdX/HIzphfyOw3vGl/dB841OhFx51j2Y/7rW8t1Qp5cF/CUt48WaRXqVgdV1vVVOQPo15ycjfjbmyO+9zXNODGz+sTNZho/9hfNeN2n07hrPOL6QxE/9Npm/OPB+i+bdiob8jS1hTDLdmu1bTxqV3Z73udRPytavw8VhKZ10v3ZH2uZVs4KRsuf74ETm6+nqirH3KVGxOLyYB1TgO5pdTzaShA1Z5QNkY1YPc8Hqlu7msvrWxqb7FoptSEYDQAAAAD6je+N6QTbFQC9wOcVAAAAmycYDQAAgEJlwonyBq/eORaRN478J76lc8Fo633b45P44m8OxX94+tnT9+yMeNpjih/7A0/Obzt4ZPX/eQFTl+6OGBpK4msuy378Pacf31jJbh9JG6vPs5KdIHP8im/IfuCDB7Onr/PnnypOUTh43tdtnPjD/38k7zoQjcc8KX5u9JlxyRPG42lf88V41BOPxIsu/71oxPDqfJ/9cMvX34r8oL72vs7XXp7EcIlek4t/sRlvvC67qDvH8r/MvyOjrbGSxntuKncDwPqAp6IB0xeenz392HSpl9lWVYLRigKT1js+E/Hqa1af+IXvTuNz926c53v/sBkLAxRkVDoYbaGzdVSx0uI4sDcnGG1iAANiZhfz2+7vYpjYeuOT5fev9eGhj7skIsk51q99JndD1aPDdI32HaC/tPoM/+X3pJFWCPUiW5VFKBgN8hXtS2vnePsvzm4fzQgc73dljj2C0QAAAACAbeH7JwCgK5xzAPQnx3foCfp/gBoRjAYAAEChVgE0ERFXPap6KtWluzdZ0Cb808cm8e6fG47mG878N/na4bjlJcMx9dqh+Pr9Z8//378rieYbhuOaFw7Hs789+709fHL1/8dnsl9z7f193eXZj7/nyGon4XJeMFqsBaNlJ9ccP39/5vS478uRNhrZbRExvZDG899R3EF593lPOOvfyRuvj6Ffe30k+x4Xv/ORNN5404WxNLSauNVIdsQfXfLC2Pnk6fibi34yZq77h8Ln3qoqYVlbVfYpn/u2NF7+4WYsNc4u7tCx/Mfcm9F26FjETEGI0XoT8xHN0wujKBTjij3Z04/lbLd1kve+soKR8gbQZ/mDa9I4MpXGn34yf8G96G8HpxM/L2zwXFPz9VkmuceB0z2de3dl770Tsx0qqMaKwhLuPrI963R8svy868NDLzgvia9+dPZ8Bw53772UDRNcM13yuA5QVavj0V9/No3339KdWvpZleP+uGA0yFW0Kz0SjLY3+zz+yPRqkPggKXPs2UowWrOZxs0PpPH2G5tx77HBWrYAAAAA0Dn62gAAAADoA4LRgBoRjAYAAEChMkFUV+2t/ryXXLi5etpt984kbv7NoXjzf07iFc9M4toXDMXrf/rM5fL+nPc2Nrm6YI5OZ7c/Eox2RXb7PUdX/58XPLcjXQ03u2zleGb7fSuXZT8wIuJtr8xtesefXZv/uNMOnvd1Z/7xr34qkid98yP//Jsb8js3//NVb4qLF94fX7izQupNRXnb43AHeji++wmt51nz0g+m8V2vbsaJmTMFrq3jLDfdv/GN3DVe/vXSNGJqYfXvwmC0i7KnH8/ZbuskL7ArKwTv/B1J7Dqv/HO/4qPFnfTvuDEdmIH3Zd/l5HxHy6gkb9sYPr1t7N2V3T5Ro3C3bpldyn/PBw53sZDT0jSNsQqhMY1z1vUTr8ye72AX30vZMME1ddp3gP6Sdx2x3is/WvGgxQZVzh5GJwbvXAPKKnOfVF7fUppWC9ftB2WOJnObDOBdaqTxk29M41t+rxnPflMaX/vips8LAAAAAIBeZJAyAD3B5xUA67iOAeggx1j6k2A0AAAACuUNuF8fRFU1GG3XeRG7zs9IN9omO0aS+M//fCh+9V8Pxfc/5ey69l2c/Zi1QbmHjmZ3Gl150erzPO6S7MefmF39/7mhL2tGTgejPXb5wcz260YvjMkdj85sS9/88kgXNyaxpIfuiA/e3Mh+wXVe9+jnrv7xHf8mkl/6k0emT86l8cCJlg+P//aW5VgpSuvagjJBfe3ynO+o9qSfvz/isl9qPhJ6dmw6fxn8w10Rc4tntx84XG2ZnZpb/f9mgtGKaquLquv6JT9Sfn299hPF7//EbMT1h0o/XU8ru6uuBfHVQe62cfpzae8F2e2nZjtTT53NFoQljE1ETHU5LG56IWJuqfz8556DfO3l2fv56KnuvY+qH2/3HutMHQBljkc3PRAxJqxrS6oEYg7iuQaUVXQkWjvD+6rsLo6IKA4e70dljj3zy5t77r/+bBrv+eLZa+Q33p/GrQ/5vAAAAACAzumx/jcD1fuD9QgAAABsRpf6FIpeRq8GsEYwGgAAAIVyg7uGz/y9e2cSF+cE0WS5dPfWauqmfff+Y+b08Yk00jSNA4ezH/fEK1f/f/HE/Zntk9OryTDLjeyuupFYDTB7xuynMtuXV5L4/FN+JqfqiLjpkxsmNT/05rj+gn+W/5i1507Oi9c+//5IXvX+SHbteaTOx/16uVSAL00+Km64t9SslbUKRGqnH396sqlt9dt+vxnvvyWNibn8eRaWI24+J/PuYM62lOfk6eCFvPDCiIjLL8oOETo2U+21tkPVdf3c72pvOt4Hbh2MbvSyYR9TG7MWt03eNr8WmveoC7PbJ2r0HrpltkUI2aEuh3bdMVZt/m993Nn/zgtiHZvcVDmbUjUYrWroJUBZZY9HH7ndcWgrqiy9UwXn/zDoim5gSk6fx+/dlcRle7Lnee7bKqQU9oEyx/jZxc0d3//8U9mP+5sbfF4A0H+SJBlOkuSJSZL8WJIkz0uS5DeSJPnlJEn+S5Ik350kSU5PYm9IkuTx697bryZJ8pzT72vHdtcGAAAAALAlAj4B+pTjOwBQjWA0AAAACuUF0Iycc0WZF1aSpVeC0dLlpbjymtdmts0uJXFquhF3H81+7JNOB6Nd9Km3ZrYvpOfFwvX/kBs8tyNdjoiIpy/cEpc1sl/k5sf/WH7x99911j/Tr3wpjnzgvTEx/Kj8x6zz65++PGYWV/+eXUxj1y80Y7JCqNAvvfvsN3btnWl832tWYv+vrMR3vXol3n7j5gY154U4DbU3EysiInadn8T//V9D8R3/pPpjf/x1zfhci3C4c8Ny3vmFal/ynDodjFY0YPqKi7KnH52u9FLbIu+ehrx1ffGuJH7337dvQ/jjj6fRrJqA9P/Yu+/wKKr9DeDvmU2DkEAgkFAEpEvRaxdFRcEuqFy71+5Pr+1i16tXxYINe+/itVwLKmJBEQuCqKACSgu9hkAI6SFt5/v7YwnZ7M6ZndnsbjbJ+3keHjIzZ86cnZ2+e95thpy+xJLK6LbDDW1oXl2ggiaoszWGlVSECEbLj/GxYPpid/vUdaMbXmx001xrbC4Mt0XuuT0srNganXYQEdmF4/r78s+Wfz0TTW6O+60xhJUoEvzv4uqepQRanQ/kl7ae45mTV+rkGc3c1YLjnvA9i8m60Yv97vNqw4of/6b1rF8iImrZlFI9lVLXKaU+B7ADwHIAHwN4FsBEAI8CeA3ADwCKlVLTlVInhbksaeS/3mEu93Sl1FwAa/xe20MA3tz1uvKUUs8rpTLDqZ+IiIiIiMLE8A4iIiIiIiIiImoR+JyLiOIHg9GIiIiIiIhIyzRF2xG8NQSjYfVf6LZjiXbyrIdfQnWt9bSB2QoigvZLvtPOX3T7xaiptV7BHvFVrAAMrlpmWeaOnAMg8D1uLDXaoVIl754m63Pq/96yDnLxgTi7x1vatgSqqgXe+kWwNFcwbILpOHihzvx1vg64UlGK7xaU4finTPywAsgrAeasAs5/TTB5rq/SbSWCTYXOHpqGCkSKtEFdFX66zYPK5w2MHxXZhSzPq/97xVZBlWZb0qkLedKFxQFAtiYYLdZhSOEI570++8DIvkenPR9egF9z4jTso7QZBKN5dp2XOqZabwfbSqA95rZU5VX207eXxXZ9LN5kvbweGUB6SsNxh/YFRvRrOK57B+v3tqAcqKqJzWtxG4y2vqB1bXNEFDtOj0e/b3Bf945ywbItgjX5AmnlnXjcvPzyqtZ3rUHklN2+pPwu8QZk6e/pPlvUevYvu/v8OqGCnxduFBw5ycQ3y3zPYvJLgYUbI9M+IiKieKWUehfAegBPADgJgOYJ+W4eAMcD+Fwp9ZlSKivKTWwUpVQ7pdT/AHwIYLhN0Y4ArgSwWCl1XEwaR0RERERE9lr55y0ULdyuiIioGeB1EBERNcDzAhFR1PDam1ooBqMRERERERGRll0YlicwGC3DeSBRp3ZRSrGKtPU56FGzGQlSYzl52kp9wtuALAAFW9C+PFdbpthIR81q69CzBKlPyRpUvUJbx9OHTka/vsuQMXAbevdbgeczrvBNWP0XAEBEsPa8YzC89yzMaTtCW4+Va94VDJ1gYl2Bq9l2G/GwiaoTe2D0C20sp//zbcH+93mRfZOJnrea6He7F7+ssX8IF+tgtDpJCQqPn6nwzDkKyQmRqTMnr/7FPPOd+4ePhRW+eexCMbLSrVdMRTVQURXfDzzDea97dYpsGz77EyiuiO/11FhOQ1VKdsbPegi1bfTWbAe1JrA2zONZc7Ruu+CBL+3ft+1lMWrMLpuLrMdfOkLhh5sNXHyYwuH9gdtPVPhqvIEET8MdvptNCOuHv8coGM1lXmJBjNcxEbUeTo9HmwqBskpnx8jNhYKRk7zIvN7EkLtN9LvDRPZNJj6K0TE2HrkNxCzeGZ12EDV3druSfzDayXvrb/i+Wtx6jkVOXmlRiOPNxC/ch9wTERG1AAM04zcD+AHA+wA+ArAAQOCZ8mQAPyqlsqPWukZQSnnga//ZAZPyAcyALyztDzS8lMgC8KlSyt2HQ0RERERERNRCtJ7n6kRE1BLxPEZE1CIxtIeoeeC+SkRxJEJdeYmIiIiIiKglqrXpQJngaThsF1YSqJM+TyyuyIYcJKIW/apXY3nyoKDpn6adbDlfz45AarKCLM5Be7NEW3+xpz1qt+cBqYODpiWiPhhtSNVSbR03Fp4JJPn+3p7QGf/KfgKDqpbj6BWzIF+8CdM0cVzPL7A6qa+2jmhK7b9dO626FliwsX54zXZg9OMmNjxsoGNqcGdosXmwGu1gNABQSuHqoxSuPgq44i0Tr8xu3IPe5Xl+f2/R19W7EyzD6QorfP/bB6Ppp+WXAb2SQzSyCYUTjOYxFIZ2Axbr8whd+2YZcPr+kasv3jgORquMbjvc0HXur9s2+mf5whWsDhnLt+wKrmzhRAQnPRM6BSHh++xxAAAgAElEQVTWwWi5xdbju3cA/raHwmsX2h/M98jwBbNabQP3fS4472CBUtE9Ibj9jK+gPDrtICJyE9h1w4eC/XrazyACXP1ucJn8UuCMl0wsusvAsB7NJOA6gtwe94t2Aplp0WkLUXPmdF86aZh+2sptkWlLc+DkGF9UoZ9WWSOYvtjdMmPxXIWIiCjGFgB4HcB0EVkdOFEp1R3AXQAu9xs9AMCHSqkjxO4DCWu/Iji0LJRNLso+BOBEv+EaADcAeFlEqutGKqUGA3gVwPBdo5IBTFVKDRORLS7bR0RERERErrSWDqOt5XUSERERERERERERUVNjMBoRERERERFp6cJnACDBaDjc3UUwWmYzCUbD+hwAwMDqFZbBaEWeDMvZBrYrAZABufs8pJslUGJClBFUrthIRw0SLetIkPpgtHElU/Gv7CccN/uBzFtx9IZZkIcux+2d78XqzKYJRQNg+brtVFQDnywQXDoiuEeuXcdgw91iGu2l8w38fT/BN8sEj80I7wt/a7f7OiunJCptWBAA9O1sHYy2Y1fYTtjBaKVAr07O2toUtMFoId7rsw9S+M/UyH0J87vlgtP3b7k9xM3Q2VkAgJKd0W2HG6FC81ISFfbs5AtbDJSzVQC03Pezzh1TBcscdHOMZTCa1xTkaYPRnL0n7VIURu8FfL0keNrKbcBv64EDe4ffRid0R5fMdtbrc0e5L6gu2oFtRNT62N2rBXq1kYG+ADD5Z8FjZ7S+Y5mbADrAPqiIqDWz25X8jywJHl9Y7qVvBs9hd9/c0ji5T7M73sxf53u+4oYnxs9ViIiIokQAfAFggoj8ZltQZDOAK5RSiwA85zdpBICzALznctmVIrLO5TyOKKX6ABgfMPoMEfk0sKyILFVKjQLwLerD0ToBuBvAP6PRPiIiIiIiImoqDKkjIiIiIqLmhvcxRM2C698Ro/jA941aJn69lYiIiIiIiLRq7YLRPA2HnYaaAM0oGG2DLxhtcNUyV7P1Xv89ZPVioLgABgRpZqlluRJPe9Qq68zyRKnZ/Xe2d6ur5f+QOhIFno5YnjQAkzJvCln+2XPDDzi4vNM8vLP5grDnt7I8z3q8XcdgowkyGo4dojDpdAPmyx7ceKz7BpgCrNrm+3uLpoP3xNMUMtpaTyusqK9Hp2OqvnNzvvVmGTd073eoNX3dKIVx+0auHb+uadkPhp2+uuJmEIzmv6336WxdZmtJ5NsTb0p2Ch6a7uydLYhhMNrWEv17181FuOqEMfpH2n9uiv7+qjs2dU6zHl9V6z6UgojICbeBXY01e0XLvibScfvdDgajEVmz25cC82P3yLC+68svBapqWsexyMmrLKrQl1qS6349+T9XWbhRcOenJm79yMTc1a1jnRMRUYtxhoicHCoUzZ+IPA/go4DR50e2WY12N9DgV3YmW4Wi1RGRnQAuAuD/VOrSXQFrRERERETUJJrbc7bm1l6yxE7MREQUF3g+IiIiImp2YvRMwW4pfKxBRHUYjEZERERERERatV79tISAO8ruGc7rbQ7BaOL1AptWAQCOLv/e1bzpO1ZDJk/cPdzetE7iKTQ6oEYlWk5LQG2D4TOHukslmtvmEFyV/XTIcvNuN/CPg92Her1xkcK6Bw28cF0PHLRzvuv57eQWWY/32jzUbIpgNH+TTjdw0aHuGzFnlWBntWgDFIb3UeiQal1vYblvhdgFxiUY+v0tvyy+nxLrwj5CvddtkxU+/KeBnPsMfHiFgcP6OlveUQOtxy/YWL+uWyKnoSolldFthxu6bd5/28hsZ72h7CiPQoPizL732RwUAoQTmBAu3bEdcBeMdnAfhcFdraflaII1I0m3z3S2ubaJZQAdEbUeZow/8f9tPVAQ59eP0eD2FRfFUZgsUTyxDUYLGLZ7vpTXCoKOAWfHeLsgRl3gvJ26H0CY/pfgkAdNTPxCMOlrwRGPmHj7F+f3GERERE1JRNaFOetzAcNHNbIpEaOUagPg9IDRD4eaT0RWAJjqNyoBwLkRbBoRERERERERERFRFLW+76gQEbUOPL4TERGROwxGIyIiIiIiIq1am36PnoA7yh4ugtG6d2jiFCsn8tYBNdUAgBEVc5FsOk8FSjPLgB8+3j3cuXa79SISslBupFpOSzUb9nDtlObuFv60Pabgx9QjbMu8f7mBA3orpLdRePzM0O+JUsBhfYFl9xq48FADPTspqKw90O3Y41y1LZTNhdYfdtgFgDV1MBoAvPgPhRuPVUhLcT7PtIWCLcX66V3b64PN6oJ27IKtDKUP69lW6qyNTUUbjObgzVZKoX+Wwt/3V7jQYWDdtUfr97GRj7bcTuB2+5W/kjgK+dBvG/V/d7Q+tLbYQJf1BYJzXzFhXO7FWutTjqWlW4A1+bFZJ7pgtEQP0Enzfukc0Nt6v87Ji/5r0W1/dqGvO2xCK5qaiOD9+SZGPOzFgRO9eGi6icoad+vx7V9MHPWob/67p5motUsyJaKIcRpuGklPfdv69m+367msqvWtI6LGUgGXdt3a68vahe22JE6yLwttrjHDuS727HofbvvYRLVfVr8pwM1TBGZTnHiIiIhiZ0HAcBullIso/6g6DkBbv+GfRWS5w3nfCBgeF5kmERERERGRpRj/qA0REREREREREVF08DkXEcWPhKZuABEREREREcUvu2C0hIAMoc7tfOEmNd7Q9Q7Kbly7YmJ9zu4/E1GLftWrsSRliKNZ070lDYaza/Msy+UlZKPESLeuw2xYR6f2kbuFVxBUveBBgqe+9/H4UQpf/iWYuSy4/ONnKpxzkEK7ZCA1OTiMJuXqe9F5fD7yEzpHpH2bNR2dbQPA4iD6PSlBYdLpCg+PE/y4Ejj6sdCJU9/lAH9t1k+3C0bb7jQYLc16Wn5zDUZzGYJ34jCFUA/lrxqpsH8v/fS/NgM/rxYM7xsHCXwR5rRv+84aoKZWkJjQ9OvAq9m1/LeNTpr9Zkd55NvT1IorBIc8aGJrSeiyVn5bL+jTOfrv6+Yi642tWwdngYf+BmRZj8/Z6rZV7un2mY7tFJQSy++6by4E/rZHdNvl1M5qgaF8+0uNF/jgd8Elk+sb/ft6wep84LEzgLQUX9CknVdnm7j8rYbzr80H/ntp0x8riFo63fkwmuasbH1fdHDbh6m8KjrtIGru7HalwMuN9DZAarL1/rSuoGXelwVycp9WZBNevWyL+2V6DCCvWCyfUWwtAeauBkb0d18vERFRM1FrMS4p5q2wdnzA8A8u5p0N32ur+4BpX6VUlojE4CkaERERERERRR3D+IiIqFng+YqIiPzwPoaIKIp4jKWWicFoREREREREpGXX2T7B03DYMBS6tgc27LCvs3Ma0KldM+jEuiGnwWD/6lWOg9HSzLIGw101wWhbErJRYlinVqV7G6ZWdUpPQKQeUOWPX4EEz+AG45RS+PRqAxO/FMxcKijeCfTtDFxxpIEx+9i/XyotA8clfY23zdERad/mIusAplABYPHCMBRGDgQW3mVg4hcmlsxfjUJvW2xJ7BpUtroWeHKm9Y7WOQ1Ib6OQ2c76hTsKRjOAzmnWwWDxHoym+8zL7XvdrYPCwCz7wKRnzvFVmp4ClFRal7nzUxMzb/BYT2zGnAajAUBpFdAxDp4m6trs8QtI7JRqXaagBQajPfeDhB2KBgA51qeoiMstth7frb37ugZlWx/XVucD1bWCpCgG+JmaDTDRA+yRYX0dlLNVcBKa9kQlIpj4peCuT0Pv9K/NEbw2R3BAL+CZcwwc3Eff9qe/Da7v3XmCh/8u6Nohjk7ORC2Q7nzYJQ244kiFb5YKCsM47wmAFZrrppXb3NfX3Lm5VgKAMgajEVmy+05j4BWDUgp9Mq1DxHXHp5bGyXdAiyp813iBQbblVRLy2ZwVjwEU24Strd8hGNHE17RERERR1C9guBbA9qZoiIWhAcM/O51RRMqVUn8B2Ndv9BAAreSqioiIiIgonrBTIjUFbndERNSMMTiHiIiIqOnYXYvxOo2IYiwOujISERERERFRvKr16qclGMHjuncIHYw2KLtxbYoVWbO0wfCA6hWO500zGyZOZWuC0TYndkOpJ11Th1/KTUpb7NHROgTGjWSzEgsGv4COQ26ynN4mSeH+UxXuP9V93bdf3g9vv9io5u1WWQPMXgUcPajh+OYSjFZn7x4K751TDHl7GEwo9O63ErmJ3YLKzdJsWnX7SmY76/d+e5mvE3So9ZLZznra9rL4fhite13hvNcXHKpwxyfWFf56u7G7I/nLFyic/bJ1ue+WA1MXCNokAUcPRFBwX3PlJuyjZCfQURM4FktOto1Omu0+XoPRCsoEf24CluQK9sxU6NkR2FEOrNwmSG8DHNpXoUdG8Da3o1zwn6nO3sTT9gU+WRA8PlbBaJsLrcd36+C+roGaawmvCazJBwYF51BGjN32Nyjb+jpoeYzWsZ3HvnEWiubvt/XAGS+ZWDzBQHqb4O2vplawODd4PlOAD34XjB/VMo6TRPFKdzxqkwTcM9bAPWPDr/uGD0w8OTN4AZuLgLJKQbuU1rN/u/3+RjmD0Ygsub37HJBlHYy2splEeJRWCmatADq0AQ7sDSQnujtuOrlPq/ECFdVAanLD8eGGx20vA6b8rl+wafPjCURERC3A6QHDv4mI27NfT6XUGwAOAtANQCqAQvgC1hYA+BHAFBFxG2G6V8DwKpfzr0bDYLTBAL5zWQcRERERETkS39/DiZzW8jqJiIiIiIgo8nhPSURERO5YdGMnIiIiIiIi8qm16fbh0QSjhXJ4//jvRC/FBcD0/zYYN6JiruP5A4PRumqC0VYk9dfWke5fR3JbHDPY8eK1rvO+i0E3WIeiNdag/fpi08D7cM+2eyJS3zdLgz/waG7BaACAfF9ijAHBmLIvXM06MNv3onTBZrWmL6jKrnOyoYDOaZqmlVqPjxe6EAojjKdZFxyi0C45ePylIxQO7F2/8Zx5gIEumvUFAONeMHHCUyYG3WViaW7L+FDOVTBaZfTa4YajYLRU64PCjnLAdPOiY2BWjmDI3SZGPW7iX+8JxjxrYp97TRz1mInL3xKc/bKg3x0mJs9tuLP/kCPIvN5Z/8yNDxsYkGW9TnK2xmZ9bCm2Xk63Du4P4P0664/7OVEOy7Db/gZkWzdqRV7TbnNv/GTilinhtWFTIfDGXOt5S23Cf8IN5CAi57yaU0AkrouvOUpfyZ8WQUUtmdvLhvLq6LSDqLmzCxlUFoec/ppr1xUxunZtjJ9WCfa4xcTYZ00cMcnEQQ+YyC1y126nx56iiuBxOY249rzTJkg3zm6jiIiIIkYp1Q7ApQGjPwmjqj0BXARf8FgHAIkAuuwaPg/ASwA2KKWe2LVMJ23rCKBjwOgNLtsVWF7/wRQRERERERERERERERFRVPELKETNgu2vCnM/jltufw2aqJlgMBpFlFIqUSk1Uil1gVLqVqXU1Uqp05RSvZu6bURERERELZUUF0D++xDMJ6+Heds4mM//G/LVOxCvt9F12wWjJVjcUXbLCN0L/6Rh8Zpg5SOmCRnXJ2j80RU/oK1Z7qiOwGC07rXW6QFFngxtHelmSf1ASlukpShccWTj1t35R7Zp1PyhdP3X7bhjyHKcU/xeo+tatsUiGC1EAFhc2p67+8+xpZ+5mrWP8gXq6YLNAGDOKuCC1/UrxmNAG/QV78FoTsKvnOqeofDy+Qrt/XaBsfsAz54TXNkfd4Z+XLZ2O/B//zUhLeChsZuXULwzeu1ww0kQjG6/8ZrA9rLItylcpim4eLKJbSH2x+pa4JLJAuNyL/52rxfnvmLi6MdCh6K1TQLeuUyhe4bCoGzrMjl5iMm2XKBZ71np7utKTlTYI7BL6C5bS6L7WuyOTbp1vNw6HzVilm8R3Pu5iYvfMPHoDBOF5fWNnLFEcOmbjVsn935mPX+ZTVhiaZwcL4haskheKwXq1Qlok2g9bfri5n/944bbU6TdsZGoNbMNRrMYNyDLumzO1thcu4bLNAVnvGg2CJX+azNw04fu2uz0JRZZXHNF636HwWhERNSCPQjA/6lOEYBXo7SsVADXAfhdKTXEQfnAnyOqEBFnH1TV2xYw3N7l/EREREREFAlx/FzTWnNrb2sV6n3i+0hERHGg2V0HERERERERUTxJaOoGUOQppSYAuLsRVbwpIhe5XGZnAPcAOAvBv1RZV2YugMdF5KNGtI2IiIiIiPxI7lrIZcOB0sL6kT994ftKy8z3gEnToFT4PeN14TMAkOAJHtc9sIuGhf5dwm5O1IkI5K5zgOrg3uwpUoVjy2ZiavopIetJMxv2Qh1UleO6Lelev5ScFF+a0zNnK7w0K7wPiAdUrcCgvTQ9iyNEJSZBTfwAt/28Av97o3F1WYXI2HXCNeI1+t0vGG1kxY9I85ag1OMsBShjyoOQPY9H5v4nasuMedY+GEkptSsgKnjl5cdROJQVuyC8cJx9kIHRewn+2gxkpAJ/28P62Nitg8JxQ4Cvl9jX9/MaYOFGYN+ekW1nrLnp3F5UEb12uOEkCKabTfe+zUVAlzDCuKLh17XAugJ38/y5CfhzU+g3bto1Bg7ZE8hM862YgdkKVseCsiogtwjors/qjIhCzfaT0Ta8+jq3A9ZbrLtoB9/pvqdlGMDALOt1vK0UKCwXZKRGPsXzhxzBmGdNlFfVj3v2O8Ev/zaQkwcc/1TjD6aFFb5rpMBrytIqzQwASir5hTaiaNNdK3kicF3sMRRGDgSmLw6eNndV69q/3QYBVVRHpx1EzZ3drmT12GqA5rqqtBLYWgJkx2mcx4KNQF5J8Pj35gvevlRgOEyvdHrsKbSIRSmJUkAjg9GIiKglUkqdBuCagNF3iMgOF9XUApgDYCaAPwFsAlAKoB2AngAOB3ABAP9PxwYAmKmUOkRE1tvU3S5gOJwo+sB5bH6KxTmlVBcAnV3O1jcSyyYiIiIiIiIiIqLWgB9QEhE1XzbHcAZmEjUPdvtqBPfjGC2GiJq5eO02TM2IUuoEAIsBXAlNKNouhwKYopR6WymVGpPGERERERG1cPL8vxuGovn7dQbw3ZRG1V/r1U9LsLijDBWMlpQAdArsxhEnxOuFPHIVMGuqtszYpPmO6kozSxsM71mzDonirod8uunXkzbZlxqT4FGYelV4t/J/3/kZ1NCDw5rXrWHDB2DKPxv3yGHFVqCiquFTTLtOuJ7IZ81ERn59MFqyVGNU+feOZ82ozoe8cDtSkwRZYYQ41fW37qzZ50orgcqa+H1SrA2/asSmlZmmcNQgpQ1FqzO0u7MNasrv8bv+nHLTuX1LcXy8Xl2bPX4hA13S9cEwuUVRaFSYcrZGZ53ePUbh5L3V7lA0ABhok41pFUYZaZEORsvUHNuiHYxmF8w3KFs/X87W6LTnjk8ahqIBwIYdwMhHTRz1WOQSJq3evzKb0I2ScLrpEpErToJCG2P0XtYVfZ8DlOyM/TXBWz+bGPWYF4c95MWD002YMUrocbuUMgZDErlmGYxmE6q/IkrXVZEwfbH+GLDDIsRMx+mXuoosrrkYjEZEROSMUmofAP8NGD0DwAsuqvkPgO4icpSITBSRz0RkgYisEpGFIjJNRG4G0AvAQ2h4i5EN4GNl/+tGgU/AwjnTB14xROpTuqvg+76gm3+fRmjZRERERERxig/RiIiIiIiIiHh/TNQSMLGMiOIHg9GoUZRSIwFMRcNftRQAvwP4EMA3ALYHzHYegP8ppbj9ERERERE1gpQVAz99bl9mxruNWkatTZ6GVeBMjwz7Xvjd2gP2fTya0IdPA5+/blvkpH8c7ihoIM1smMqSAC/6V69y1Zw24tdXJaU+NWbs3xTOOci6Ee3bAKsmGkj3NExIya7Nw42HV0KlhpGuFaZx+yl4XzJQc+LryFuxB0qXd8S4kk9c1THsnoYboF0n3MaEZUWTbM9tMDykaqnjedubxcD65VB563BcXxc9qHfZHYyWpi9TEOUAocaIdtiHHbtwI39fL2n+D/RNF7lJ8RIopmuz/3HAYyh0bW9dbnNR/LxvbsIRnOqSBvzr6OAdJSNVoYvmeBCtgLY6piko0gWjpYa3U2e2s54vGuvUn92xqVsHoF2y9fQ1+ZFdx7VewbYSwc9rrKdHOjBkS3HwuFKbrrjbSgERwY5ygfDDT6Ko8OrOhxG6VrILiu1yo4nyqtjt2y/OMnHhG4Lvc4Cf1wB3fCK48p3YLN/NtRIAlLvLwyZqNewuB6yONplpCh01P7O1IsrXro2RnKCflu/i/ttpCFlRRXDB4igF1Do9HlbVCDYX8hqQiIjim1KqJ4Av0DAkbD2Af4iLk9iuMLRtDspVisi/AVwbMGk/AOc4XR7C60XCkzIREREREVGLxVs+IiIiIiJqbngfQ0QUPTzGUssUp92GKcLOAbCni383OalUKdUDwMcAkvxG/wRgiIgcICJnisixAHoAGA+gxq/cGAD3N+I1ERERERHRvG+A2hr7MnO/hFSUhr0Iu2C0BIs7ymHd7Tvid+8QdlOiSjbkQJ67zb5Qp67ofOyJ2KeHfTFDvOjgDU4POmDn767a1GA1JrdpMG3yRQr3nqKQ7ZdzdvLewLJ7DfTprLDo/ja4qNcajDAW4yLja8w9+ltkXHOnq+VHglIKRvc9kektQBupxNhS+yC/QGu3A2u31z+Usw1Gi9O8PQQEow2qznE8awevL4VGztoLYz67zPWi60Ki2rfRl7ELtWlqTRmMdtwQZRn+GOiPDcCPK5r3g2OnHe4BYHOcBKN5HW4bunNOvLwOwDpsqjGy0oH5dxjasDFd6N/yvMi2I1BppX5by2hrPT6UTu2sx28vjXLIm6Z6pXznvZ4dradH6r3OyRMMf9CLpCtNZN/kMq2nEbZY7DdlVcHj6izdAnS/2UTm9SZ63Wbi8z+b97GSKB7pjkdOrmGcsAuKra4F0q41cc7LJsoqo79/PzkzeBmT5woKyqK/bLdLsDs2ErVm4eytA7Ksx0c6ADaSUhL107aVOK/H6X1aoUX4cKkmGO2wvs6Xb0V3H1anskZw4esmOl5nYo9bTfS81cS7v8buepWIiMgppVQX+H7os7vf6DwAx4hIfjSXLSLPAZgWMPoqm1kCo1VtnvZrBc4Txz+XQkRERETUkvHzUmoC/AELIiKKCzwfERG1OrwXIWr+7PZj7uNEFGMMRmsd8kRknYt/2x3Wew+ADL/huQBGi8gy/0IiUiUiTwM4M2D+G5RSvcJ/WURERERErYOYJmTJPMgvXzUIOZM5DkOmZn4Q9rJrvfppCZ7gcRmpCkf018/TIyP+0qtEBHLe3iHLqRdnAQD26mr/Gjp6d8CD4I6fY8u+cNymvaqWNRyR0jA1JjFB4T8nGch91APzZd+/add4kN3e17ZenRRev6M/fnxxH7z+4ono/Y8LoFQTrfueA3f/eWbJFBxaMdfV7FMX+AWj2fSnjcdgNBEB5s9sMG5QlZtgtPoUmmPKZiLZdJdiVrdO0m26SpXEcTCa7ll5LN7rHhkK/z7B2YJGPmrC6yZdLAw7qwVf/iX4IUdQXRvZZblpem5RfHyAoTsWBG4bPTKsy61z+uQrBvIiHIyWO8nAHh312+6AbOtpK/Ki+95aBTbUCTcYLVMTjPb7hvDqcyrU9pfd3np6qGC08irBN0sF7/xqYmmu9ftRWSPY6y4Tv6512FgXEj3A/jZParcUB7epNEQYUt6u8I9NhcCpz+lfFxGFJ9ohst07AGkp9mXe/03wz7eju2+XVYplCFKNF/hkQfSPK24v88oZjEZkye67ULrHFQOyNNeuW+P3mqK6Vj8t30UEidPvjuVb/BZCieYabf/eCv8aFf5JoirEbzNc8z/BW78Idu4qt7kIOP91weyV8ft+ERFR66OU6ghgJoABfqO3w/d9t5UxasaDAcOHKKV0PysUz8FozwMY6vLfKRFaNhERERERNSV2fiUiIqKY4DUHEVHLxOM7ERERucNgNAqLUqo/gAv9RlUDuEhEtF2qRWQqgDf9RiUDuDs6LSQiIiIiahmkMB9y/QmQfx4OufkUyJkDIXO/9E1cMMtZHZOuqp/HJW8YQVSn7qvvZDm8b1jNiCp57Z6QZdT1T0Jl+9JCBmTbl830FliOP6ZsJlI8Nklzfo4v+7rhiJQwU2PiQZceQJtUAEASavD9+mPxcu6V6F29DhneHbih4AncmT9RO/vMZX7BaDafgcRbMJpUVULuuQCobpiMMLRqCTp4Cx3V0cGsT9FpJ+U4p8RdyGHdOklN0pcpjeNgNFPzRcpYvdf3nmJg2jXOHp1d9U70PqCbv07Q4xYTJz9j4ujHTBxwv4m12yO3PDdhH5uLQpeJBd13bD0Bb1efzvEfpLAmP3JtWfugETIEc5DmHLZgI2BGMeAvGsFonTTBaFtLgMe/sbmAaaRQQURd21u/B3YheIs2CobcbeK4J02c/5pg6AQTV7xl+gI2d9lWImh7dWRe1yF9gPGjFB45XeHOkxXuOllh6T0G5t9hkXq7yxqLQMEyF+E/pgBvzI2ffY+oJdDdq0XqWskwFM48IHRlH/4uKKqI3v5dXq2ftnJb1Ba7m9u+PW6OjUStiW0wmmZ8/y7W4xduRIPrpHhid4+9rdR5m51emudaXGOW7LQu274N8MSZCp9fG95XRKpsQt9qagVTfgtutAjw/vz4fK+IiKj1UUq1BzADwDC/0YUAjhGRJTFsyrxdy63jATBYUzbwbN9WKZXqcnmBV1URecorIttEZImbfwBWR2LZRERERERxK06fWxIRERERERHFFu+PiZo9PuciojjCYDQK17nwfTGrzscOfznz4YDhM5VSKZFrFhERERFRyyJPXgf88UP9iOICyK2nQT59Bdie67yeW0+DlLrv61Cr6WyfYEAbvnLK3/Sd5+2mNQVZuQh488HQBQ84evefQ7rav4ZOmmC01L9fjNFD9IEjdfrzLNQAACAASURBVA6r+AkT8u9vODK5+QajKaWAngN3D3tg4pLiN7Fq9WDkr+iBR7bdgbu364PRlm6p/7s5BaPhyzeBb4ODzBJRi+PLZjiqor23YZ+nidvuwoE75ztuQt06MQyFNM2dd0lcB6NZjzdi+DTr5L0VZt1soHOafblXZgvyXXRyd0pEcMaLZoNQqcW5wL/+F7nQJzefV+woj9hiG0W3bQSelgZkWZfL2RofQQqF5YKf19iX6ZEBzLnVwM3HKe1xLiURmHyxQq9OoQ+EgzXnsPxSYN66kLOHzS4YrUOYp7jsdP3rvelDwR/ro/MehwpGy25vPX1LccMZC8sFj84wcetHJva9z8SGHQ3LvzJb4LnCxE0fmigsF9w1LXKvZ+5tHjxxloGbjjVwz1gDE8Ya6NvF9wJO3tt6nhlLgpfvNlzzsRlNv98RtSSxuFa6/9TQ55YaLzD8QRM3TzExc2nk9/MKm2C0kpLop5C5vWSway9Ra2a3K+myfffSXLtu2AEscf5ILKZKbQ5L+aXO63F66NlSFFyyWBOMlp7ie0Zz4jCF589z/xClskY/bXuZ/vnCt8t4DUhERE1PKZUG4CsA+/uNLgFwvIgsjGVbRMQEsCFgdGdN2QI0DFEDgJ4uF9krYNjJ9/uIiIiIiKi1i4PvVJADId8nvo9ERBQPeD4iIiI/vN8kIooiHmOpZWIwGoXrtIDhN5zMJCLLAPzqNyoVwLGRahQRERERUUsif/4EfDfFetqj17ivb9yeruep9VqP99jcTfbqpHDh8OAOlhcMdxbaEiuy/HfIJQeFLrjPCCi/YK+RA+1ff2aSRS/Yky6CMf5x7N8r9Ov/Yf0xSJWABJnkZp4n3WtQyCKfbhxnOX59AVBe5XswZxuMFmdPOMQiFK3OfpULQs7f1ixHEhr2Os7ybsOP60Zh9rqReCP3MrxxfGDfqYb8Q5R0wWillfH70NPUZH/FOgTv8P4KK+4z8OoF9gvOujFyYWV1lm5BUFgSAHzxF7BxR2TeO7v9KlCRTbhVLIUKpqozIMv6PSuqAFZti3CjwnDQA/pt5tlzFWZcZ2D5vQYO7avw8N8NLLvXwIzrfP//fJuBNy9W+PhKA2seMHDBcGcHwRH9gOQE62mfLoze8aBQE6qXlgIkeMLbqQdm208/YKKJmtrIv6ZQ219XTTDaJr8urKu2Cf52r4lbpggmfW3fxse/EXS63sTLP0bmtWSl208/coD1+/HLWmB7QABkWfTziIjIhu54FOZh1VJWukLFc6HPMTlbfeGHxz5p4r7PI3tNVG5zrCmeNQOyfYu+QAS4uVYCgJ0MRiNyTReMZvf8Zdqi+LyXLdGEkgHANhfBaLr74UC5Fr+BoAsoS29T/3eHNtZl7FTV6qfZhUKW87hIRERNTCmVCuBLAIf4jS4DcIKIzGuaViHwqsHu7LwsYLify2X1CVEfERERERHFRHw+0yQiIiKKWwzOISJqxuyO4Ty+EzULdtdivE4johiLs27D1BwopbIB7OM3qhbATy6q+CFg+ITGtomIiIiIqCWSSVdHtsLKCsg6d/0dajUdMRM89vM9fqbCRYcqKOXr4HrRoQqPnxkfoWiybRPM+y6G/N+hoQsffCzUfe81GNWpncIR/fWzZB58EHDYSb6BxCTgrPFQNzwNABiYZb+4c4v/B8u1lJgcuq1xTPUaGLLMoKoc7bQVW33/2wajxcfmVW/RHO2kgcbmkLN3rt1uOT4RtRi+cx7OL34X5+94E9cfo3/h/mFx6dpgtJBNaTJOw69ioX1bhUtGGLhypP3Cr3rHhETwIb9VJ/c6ToIANhUKLn7DxJC7vTj0IS8em2HCG7Bi3YR9lFUBtd6m/xDD6zA0b0g3fR2vzont66j1Ch7+ykSPW7wwLvf9W51vXXaPDODKIxVGD1Zom1z/ovpn+cYN2PwDDnxuDM57axRO+ethZCXbpC8EaJeiMEqTVRnVYLQK67oz2oZfZ9/OoctMWxR+/TraY9OuY27PjtbHibXb6/efSV8LNhZaFou6Sw6zP46dNMx6ugjw9dKGL35njWVRW/EcyEnU3IQ6HkVKSqLCyvsNjHDY9f6+zwVbSyK3r9sGo1UnQN56KGLLsuL2lVTaBAcRtWZ2t0m6q5OOqQqH9bWe9uVf8XlNUWZzj71oo/M2O71P21IcPE4XztbeL24lI9X9jXWlzbWfXTAavwdHRERNSSnVBsDnAEb4ja4AcJKIzG2aVgEAMgOGrT8Q8FkcMDzc6UJ2hcLtHaI+IiIiIiKKGD4MIyIiIiIiIiIicooxikTkBIPRKBxDA4b/FJFyF/MHfrFsSCPbQ0RERETU4khZMeAyxMyRX752VVwXPpMQ4m4yI1Xh9YsMVD7n+/f6RQY6htHpMtKkaDvk4gOBGe+GLKu+2ALj0c+gMoKTV075m/61dO6SBuOhj6G+L4OaUQjjmkegknzBZoO6hggjKZtuPcETIoku3vUMHYzWu2Y9kk3rHsTL83yPM3XbIxBfwWjy/Ue20/cafUjIOrrV5oZe0Oxp6NxOP9n0W19pmmC0kmYYjKaa8L1++mz7hb84S/DvTyRi4Wh2nct/W2c/b3GFYNgEE2/+LFi2BfhlDXDzFMH1H4QfjAbExzaja7Mn4NzUMVXhoN7WZZ+cKVi2JXYflVz5juDfH4tt2F2dE/dWUJoNXeZ9A7nueGDeN8BfcyGv3A2ZeGlwOdOEVJT6/q7xbUhStROydSPG9LFuxPI8YMXW6KyTIk04Q2OC0ZISFPp3sS/z5eLIvx7d7l13HhqgCUGtNYF1Bb6/P3MQbBgNGW1DB6MNzAb6BHbN3eX39Q2H7cIxdH5c4X4eIrLmNCg0Evp2UfjxFg/GBHant1BrAt8ui9xxzu56qMhoD3z3EcS0uVFoJLdVV9ciKIiWyCmprYVUOQ+9bU7C3SvG7GN9UPsrdN54k7ALgZ27GihzGBLrdH1tKwVqautLiwiKNZtQekr9uuzQxrqMnSqb4EfbYDT3iyIiIooIpVQKgGkARvqNrgQwVkR+bJJGAVBKZQLoEzDa7gOBrwKGR7pY3OEAEvyGF4jIVhfzExERERERUVzjE1giIiIiIopDdn0p+At7RM0E9+Nmie8NtVAMRmsdrlBKzVRKbVZKVSqlSpVS65RSs5RSE5VSh7usb3DA8CqX868OUR8REREREW2ITmqEfDHZVfnaMIPR6iQmKCQmxFFi1bRXgZIdIYupxz6HSu+onT5uP4WkBOtpo/fyvV6VkAiV0LDQ0G5Ajwzr+done3F82QzriR7NwpqLvfYPWcQDEwOqV1pOW57n+98uXyCugtGeulE/8aI7sOc/r0GmTaAZAHR3Eoy2ZgmGVSzUTvYPsErXBKOVxkHIlY7u/W7K99pjKPx4s/0B8JGvBB3Gm3hxVuMDOuw61S//dRkkPzgNIL9UcMgDXmRcZ1p2iH/2O8Fv6+rrdRv2UVThrnw0mJqNw2rbGLef9QZT4wWuedeMWIidjmkKLn/LxGtznC/nrAOC2yw7y2FOvBRy48nBM/zwMeTTV3zlRCDvPAoZ2wNyXCbMw5MhR6f5/h/dAXJ6P5z82H7aZX+6MDrro1DzkwqNCUYDgLE2QaUA8MZPkX89oY5N/YLzVHdbuRUo2SnIK4l4swAA7ZKBPTTXGecepPDjLQb6drFfZ0opHDHAusyLsxq++HCC0b5eyg/biCLFaVBoJB01yNmF2D9ekwZBPY1RbhO2szUhCyjKB1bqr4kbS/cq2ibp5wnn+Eitm3i9MJ++ETKmG+T4zjBvPBlStL2pmxVRdpfdduHX+/W0nlhaCdR64++6orTKfvoz3ztrs5v7NP9ry8oa/bO8dL8wtA5hXIfbHdvsgtHsQu6JiIiiRSmVBOBjAKP9RlcBOFVEvm2aVu12Nhp+Z3MrALtfSvoagP+T3uFKqUEOl3VRwPAnDucjIiIiIqJIY6dEahLc7oiIKA7wOoiIiIiIiIgagcForcPZAEYB6AYgGUA7AL0AHAHgdgA/KqXmK6VG66tooF/A8AaX7VkfMNxJKaXpskdERERE1EptyAlvvs7dgaPP0E9ftwxSuM1xdbpOptHsbB9NsnB26ELj/gl10DG2RXpkKEwYE9w59+/7AUcO0M+X4FF45O8qKFhOKeDho7ejvalJSmnmwWgqqyfQb++Q5QZWWwcCzlji2w7tOgbHSzCabM8FCrZYT0zLgLrkTng8Bk7e277B3Wr8gtHaddCWO+qpkY7alaYJRiuxCM6KF/EYjAYAI/ordEq1L1NaCVz1juDiN0zkFoX+UodpCpbkCv43z8Qva+qDRMpsOtXn1GTBPG/voGCvM140MW+d/fIOeqA+EMwucNBKXASj6bYNi3PTFUcoZKVbl/8+B/jfvOh+6eaNuYJXZ7tbxsiBDTdy2VkOufRg4Ku3tfPIo9dAdpYDX/4X8uIdQHGBtmzX2jwctHOe5bRw1odpCmavFMxdLSivsp6/ULPdZITYl0K5bpRCn0z7Mv5BgJGg2/7qAj3aJittCOqKbYKVzi/DXDlpGFD8tIH1D3tgvhz87+3LDAzp5uwA2j/LenxlDbChQBoMu7VyK7/oRhQpumvjaF4rnTjMeeV73m7ipVkmluY2br/XnVsAIDehq687x+rFjVqGHd1xPzVZP89Om4AgIivy6gTgw2eBsmKgtgaY9w3ktnFN3ayIsg1Gs5nPLsCrJA6Dvq3Cqf19/IezY6KbI2duUf3fduvEPzC9c5qLBexSXaufZheMxmMiERHFmlIqAcAHAE7wG10D4HQR+bppWuWjlMoC8J+A0Z+Jza83iEgFgCkBo291sKwBAE7zG1UL4F2HTSUiIiIiIrLBz3yJiIgoFnjNQUTUfNkdw3l8J2oW7L7wx+BbIoqxZtqVnaLgAAAzlFITlbL7XW4AQGCPbFfd+USkDEDg17Lbu6mDiIiIiKilkxULw5sxvSPUhLeA/Ubqy0x7zXF1tZrO9gked82KG/Nn2k/vvw/UdU86quq2Ewx8c72B60YrXDlS4d3LFN673IAnRBLB2QcZmHubgdtPVLhguMJNxyrMvsXA/x2oTxtSzTwYDQBw+NiQRQZWWQej/boWuPdz0zbAySoQqSnIvRfpJx44CnW33Kf+zX476XHMKODcG6HGPw41dT2w14GW5VLEJjnLT3ob6+WVxmFH8jpNEfbh1OoHnG1wb/4s6HGLiRd+0Kf6lVcJxr1gYtgEE+e9Kjj0IRMjHjGxpUhs358iTwbW1mZCTu0NKfeFKq7cKvhxpbPX8Nuu2HrXwWhxEKbndbFttG+rMOl0/UZz04eC4orofDBTVCH4v/+6q3vzIw23LVnwI+S03sBGB2/sN/+DfP66o+WMLf3ccvzCjcD0v5y3eX2BYL/7TRw5ycSIh0387V4Tf6wPnl8XqNehbeN26O4ZCgvuMjDGJnvzpR8jHIzmYPsboAkWW7kVWLUtsu254kiFNy9WmHq1gdCPdZ0Z0EVfz7Pf+wejuX8t/sEdRNQ4mgzrqF4rDchS6K7P7G0gtwi48h3B0AkmLvuvGRTm6lT5tnzttEqjDYqN9pBwg8Ud0DW7bZJ+np1hBEdSK/ft+8HjlvwK2bQq9m2JErsjgN0ljF0wWjyENgfaUW4//ff1vvuEUNzcp+UW1/9tF8zWvk393x1TFfp1cb4MANhpc+1nF4xWXo2wzwFERERuKaU8AN4BcIrf6FoAZ4mI9QOx8JYzUCk1xuU82QA+B+D/5KgawIMOZp8AX7hbnYuUUtoPXZRSKQDeAOB/5/KaiKx23GAiIiIiIgoDn4MREREREREREVELYPt9Lz4DI6LYipNuwxQlmwG8AuD/AIwAMBjAIACHAbgWQOCvYCoAtwN4IES97QKGw+kSGzhPGL9LHUwp1UUpNcTNPwB9I7FsIiIiIqJIERHgpzD7Z3TuBqUU1GUT9PXP+cxxddpgtGZ4NylVoROg1L9fcRUqMmovhcfPNPDcuQbOPih0KFqdA3or3H+qgckXG3jkdAOH9lVAok3P+hYQjKYcBKPtU/WndtqEaYJFm/QPT1PiYBVJ7hpgwSztdHXdE7v/PmawfZjCoEOHwrjyAajTr4ZKToE64hRt2bc2X2Q5/qDe9X/rOpNvK43fB9K6lsVDMFp6G4XPr3V+ILz6XcGwCV4kXOHFkZO8+GlV/at75jvBtEUNy89fB3S/xcStH9m/P5+1OwnYkQd89AIAYNEmx03Cwo2+ut32T4+H8AFdSIBu2zjvYIUjB1hPyysB7poWnf3ghg+c19smEXjrxPXI+ug+mE+Mh7zzKMxXJ0D+dQywK/guFJl0NbD4F0dldcFoAHDSMya8DpMYRj9u4k+/7W51PnDF28HhN4Wa8IcMm6ALp9JSFF67UL8/LsmNcDCag+2vnyZYbOVWwVZnb6cjFc8ZeOE8A+cPd34N4sQ+e+inTVvkH4zmvu4txaHLEJEzTRUie8YB7hfw+hzBc987Px7LrzNgPncrqm46Dc+8n2tbNjehK7DBOmA5EnTHfQajUaSI1wtsWW897au3Y9ya6LG777ANRmujnxYP9yaBCh20abODoFjdMd5KblH9yi2x+dQ+PaXh8CkhAtsDldk8Vquo1r/BXhOoqnW1KCIiosZ4HcCZAeNuB7BAKdXb5b8Ui/rrdAUwTSn1p1LqFqVUf11BpVSaUuoaAAvh++FSf/eLyJpQL2pXmacCRk9RSl2jlGpwd6KU2gvAtwAO9RtdAOCeUMshIiIiIiKqF7/fJyJ/Id4n/mgFERHFBZ6PiIhaHwYqERE1DR5jqWVqhl3ZyYF5AI4DsIeIXC4ir4rITyKyTERyRGSuiDwrIscDOBDAyoD5b1NK6XtcBwejhU4XCBb4tezAOsN1FYDFLv99GqFlExERERFFxpolQO7asGZV+430/TH0EH2h5b9D8jc7qs/bkoLR7rvQvsD+RwH99o5NY6wkJuunGc1whQfqtzeQ3cu2yPFlM5Dh3aGd/uZc6wd0bRKBtslNn5YlX7ypnzhyHFRGl92DbZIUrhpp3ebsdODYwQEjT75YW/W40qno3ya4Z/VZB9bX36299bybC/VNbmra8KE42R1OHKYwfbzzxizJ9b2m2SuBwx8xce/nvgPs+/PDf/A8u+0IAIBM9217m4uc17U8z/e/w/yr3Yo0AVexpGuzR/N2KKXw3LmG9tz13PeCBRsi/7q+Weqszg+vMLDqmKk458mhwOSJwMcvQl68A3jzwYi3qc5e1cvRr3qVdvrc1aHreHGWidX5weN/X+/b3v0VllvXEYlgNADITNOfA3LyEBTU1hhOgtEGZFmXWZUPFGjWRZ12ycDGh0MfW3693UBKYnTOfbpgNwBYsRVYvsW3EsIJRtteBlTVNP1xhKglcHs+jJTrRoV37PnXe4JtJaH3f/OF2yE3jUHV+89j+LY7sSjF/h5tY2IPYENOWG1yQncKsQ1Gq45OW6iFqrU5oZa1jkRRu6NKul0wWjg/3RVF1bWC8qrQ5baXhi7j5mop1+9xQInNp/btAqJdrjlKIdlFyLzd+q4Icdxzsl6IiIgi5AKLcY8AWBvGP5sP2nYbBuBhACuUUkVKqTlKqalKqbeUUp8opX4DsAPAMwACnxi9LCL3uXhttwGY7jecuKvejUqp6UqpD3YtbwkahqJVAzhNRLa4WBYREREREUUcPyMlIiIiIiIiIqJmwq7/BYPYiSjG4qQrKUWSiHwpIjPEQY8/EfkNvi9yrQiY9JBSyuN0kW7bGOY8REREREStw+xp4c97+FgAvhAY9fQMfbmfvnBUXa3XenyC07uFOCEzPwBmTdUX2G8k1H/egFJNGK7lsemNajetmVBKAYePsS3TVnbi/m0TtNP/3GQ9PlMVw7xyJMy7zoUsmNWIVjbS55P10zp3Dxp1z1iFyw5XSPTbn/bdA/j+JgNJCQ23RdUhEzjjGsuqk6UaH9bcgoN6+4bbJQO3Hq9w3ej6OrpnWDdr85YymP/YG+Ytp0J+jK/ccFMTzGg0fQbebscNUXjnMoXMMOLeJ0wTGJd7sUizXTuRkzzA98em1SgtqcT17zt/3JKzK9jIbTBaWRx0aHcSTBVocDeFG461LmAK8Mx3kXlUVVwhuPUjE/vd58Xm4LzCBs4/RCF/konTFtyLrMfOBbyak24UKACnluj3+WmL7NeHiODqd/VlFm9uOK2wwrpcRqrtYlz57BrrR92FFUC+g/AJp5xsf3tmWm9ruUVAQZm+7j6ZwLRrDHTPUJhxnf7R/asXKBzYO7oHw78m6Jdft33sDCMYDQDySsKbj4gaCud8GAk9Oyl8cW14Hy9m32SitDK44SKC1+aYOPqm1dj7l3PQp99ypA4qwsKUfULWuTqpL7A+B7IrXKrWK7jzUxPG5V4Yl3vR5QYvPv8z/PO8bj3bBqOFeXykVsprs8FUxlnyVyPY7YV2j2I8hkJaivW0Is01ZlPRXfMGyre5Hqzj5j5ti19+Xolmk0lL8a1Lf706KXxylYE9dj0vCHX+sFvfDEYjIiICALQHcBiAUwD8A8CpAPYHEPgBTzmAy0XkCjeVi4gXwJkA3g+Y1AXA8QDO2LU8/7P6NgCniMhsN8siIiIiIqIwsVMoERERUeTw2oqIqPlioBIROcTDBRE5wWA0gojsAHAOGn4nfRCAozSzBH5d2+a3urUC53HwFXAiIiIiotZBwg1GO3wsVI9+uwfVvkcCew62Xsacz+zbUOnr7VirCSbyhHE3KVU74SC/OeLkt28h95yvL7DfSBhPfQ2V2TV2jbKSpOnpCwA9B8SuHVGkdgX32bms6HXttIJy6/GZJWuBxT8D338EufFkyO/fh9vEsMjOckjuWmBHnraMGrR/0Lg2SQovn2+g5GkDK+83kP+4gd/v9GBgtnVvZHX1I9r6hy55Fz9fWYCyZwxsfczAg+OMBkF/3dpb11ko7bBzw3rg5+mQO86EfP2udhmx1lRhH26dc5BvnT80LvYNW5XUFzVIgAmFYydsczXv6nzf/80xGM0bZmjenSep3Z3+A323vPHnJ9MUHPekiUlfCxZu1Jd74iyFiucMvHmJgYwnLwXefKDRyw7H9Tue0U77bZ39+lhXYP9B04qAzVEbjNbWdjGuHNhbP23N9sgtR3ts8rs26t7BukxVLbBqm3UFJwwFVj3gwciBvg159GCFa48O3qifOUfhkhHRf6w/pJvCoX2tp9VtH5VhBv/khggNJCJnwj0fRsIJwxRqXjRQ9oyBwicNzL/D+XFp9OMmCsoaHgsfnC74v/8KfijpjaXJg7Ehsafj+lYl7TpYTXkWAHDGiyYmflFf//YyYOyzJt6ca2Jntfvzve58ZxuMFiIgiKiBGpsNpirOkr8aoTGPgzpoPokuqoivbz7t0DyzCHTxZM0B3I+b9bWluL5w8U7rGdM1j5yOH6qw7iEDmx4xUPCE/bG8yCanL1QwWjzcRxIREUXYMgAPAPgJgNM02xUAbgfQW0ReCWehIlImImfDF4L2i03RHQBeADBURL4KZ1lERERERETUDIR8mBxfz9GJiIiIiIh4n0LUTDCxrJnie0MtE4PRCAAgIn8AmBEw+nhN8XgORnsewFCX/06J0LKJiIiIiBpNtm4AViwIa141/rHgkSPGWBf+4wdIRWnw8qe+DPO0PSHHdoT5zyNQm7/VcvYEF3eTsnk1zKuOghzXCTKuD+T9p5zPHAHyygTb6WrsZbFpSAiqTSow5ODgCWkZwIGjY9+gaBh2GNClh20RD0z8o+wDV9V2qvVLvKmphkx5LpzWuSZb1sG8ZhTkhM6QswbZF7Z5D5MTFfp2UejUzj7FQnk8UM9pQt9ME/Lk9WibrNAmKbie7powKADITagPBZS3HrZtQyzpwodUnAWjAYBSCrccb+Dhv8e2cTUqCWuTeuPb1KPwa1l3V/Nu3hVM5DYYrTwOOrSHG5qXmqxwzynWhfJK0OjwzpumCOatC13u2qMUUhIVZPViYOb7jVpmY2R5t+HaHdbHy5wt9mENy7fY1700t/5vEbEJRovcPtM5DUhJtJ62pThii4HpIIiomyYYDQD+2mw9fnC34HUx6XSFJ85SOKg3cFhf4J3LFK48MnbHmaMGWS9ryh++/3XBaJeOUDhjf307I/l+ELVmuvNhOCHW4fAYCm2TFdq3Vdi/l8JPtxo4bkjo+eavAzrfYKLHLV58tkjwzHcm/jM1/HPwiqT+AACZ/ABy8gSfLrIud/FkQYfxJk58yottJc6XpyvpUUBygvW0nWEGR1IrVWuzwVS2jmC0UFc3HTRhup8tiq8v8eiueQOVVyEoIDKQm/s0/9DZkkrrMuk2n+YrpdCtg+94bqeoQn/PFCoYrZyBkUREFCMioiL47web5WwVkTtEZASAdvD9AOlJAC4HcAuAuwDcDOCyXeO7iMhAEXlQRBod4S8iU0RkOIA+AE4H8C8A/wZwMYCjAXQVkatEJL+xyyIiIiIiokiJr+eZRERERDHD4AwiolaIx34iIiKKHAajkb/AX4jcW1MusOtaZzcLUUq1Q3AwWpFVWbdEZJuILHHzD8DqSCybiIiIiCgitm4EuvZ2PZu67WWorJ7B43XBaDXVwK8Ns5Hl+48hj10LbM/1fQi55FfUfmL9o/VOg9Gkugpy7THAX3MBrxfYngt59hbIV287qyAMUlkBWTgbsuw3yOJfgKXz7Gc46u9Ra4tb6or7gBS/Hr9KQV35AFSCJumlmVEJCVDjHwc8mgSBXbpUaVJjNDK9BQ1HzPnMbdNckdw1kO8/gpw5EFg0x7dt27nwdqgMV7fOesOGAz36WU/7bgokd43lpG7t9VVuTehSP7B+OaS4QF84hsINv2pKNx9n4J6xsW1gTtJA/NTmUNfzlVUBpZWiDXnSaeoO7bVewa9rrac5CYLZK9v6/amuBYp3ht+u3CLBkzNDf4i7X0/AMBREBPLKXeEvsEffri6bOgAAIABJREFU8OYbfgLUlFW7B08q/dKyWF6pgaIK/etZnmf/Wr9ZKqj1+sqUVQFezXaWoQm5CIdSCl01x7otxZH7gF1Xk/+xKTtdH+KoCwXrmBo8LilBYfwoA7/c7sHsWz045yADRgwPggOz9NNemmVqAzAO3hN4/woDfTWnvtwifuGBKBLi7VppeF+F6eM9+Gq8s5vF3CLglOdMjH+vcceE3SG/lRWYs6LWtmyNF/hqCTDmWecXQHZhvW2SrKftZAAQuWEXjFbViAvUOGO3p4cKv85sZz3+00XAB7+ZqK6Nj2uLHeXOy/623n562MFomk0mPcV5fTo1Xv3xLVQwWlHLyfgjIiIKIiKmiOSIyJci8oqITBKR+0TkURF5bdf4qASUichaEflIRJ4RkYdEZLKIfC8ivCshIiIiIiIiIiKiZi4+PgcmIqJI4/GdqHmw2VcZfEtEMcZgNPK3LmBY12t7ZcBwL5fLCSy/Q0QKXdZBRERERNQiqb0Pg3p/OdTk36EuvRsYsG/omdqkQp10ofW0QfsDnbpaTpLfv2s4/OXkoDJPpFxsOW+CJ3SzAAB/zgHyg0Ou5Jv3HFbgjiycDTl3KOTa0ZDLD4NceaRtefX2Iigjfm6N1b5HQr38E9QldwHn3gj17LdQYy5p6mZFlDriFKiX5gDn3QQccYplmQ5eTWqMRlAwWhSZz90GOWsvyF3nOp7HuOzuiC1fKQUcPlY7Xc7aC2LxkDk1GUjR5OsVeDIbjtiwojFNjJh4C/tw6s6TDXx3o4EDdj396JNpX76xlicNQE7ygLDm3Vzo/jOJsqqwFhURmwoFB0w0UVppPd3JtpGVrp+2tSS8dgHA+/OdrcjD+ilIcQHk2tHAT1+4X9CBo6Bufg5q8h9Q4x9zNau69G6ohz6GytoD6vL7AAADq/X7e06evq6FG+2XVVgBzN71BLHQJiAiwyIMrDF0wWjTFkbuwze7gJw6CR6FrDR39XaK8LqIhP5d9DvVle8I1mlOv3XnG937kevuNE9EGtprpSa+vTl2iMKK+2PXiAJPJ98f3losXeXsZD5/HbB4s7Nzg+5ayVBAG8319c4afumDXKi1yayYPzN27Ygyu/uOUMFo+/fSFzj7ZcHAO038uqbp97sd5c7b8N+f7cu6uU8rKAd2Vvtm0IU9tw/8ybIwbS21Hh8qGK2grOnfHyIiIiIiIiIiouhrLc/BWsvrJIoR0wvUlDV1K4iIiIiIIoj3jURERBQ58dP7m+JB4FeldV+RXhYw3M/lcvoEDC91OT8RERERUYumlILqOxTqotthvPYL1PVP2pd/fZ5+mmEAhxxvPfHrd2G+fBfMZ2+BzJoK/PJ1g8m/peyH3MRulrN6HN5Nymv3Wk+Y942zClyQygrIxEstg9isqBueguo1KOLtaCy152Coi++AceUDUHsf1tTNiQo1cF8Y/5wIY+IHwKEnBk3PMItc1detNjdonHi9YbdPx3zhduC9J9zNdPTpEW+H0gTK7fbZa8HzKIXMdtbFt9eFSewic78Mt2kRZZrW4+M9GA0ARg5UmHeHB+bLHqx6wIOXz49eo3OSByInSR+M9sRZ+mXnFrv/2LG8rAry8Qswx/WBedVRkJ+nW4bxRcP4/2fvvqOjqP42gD93Nj2BJIQapAjSBQTBgqIodqzYey9YsPdeXhV7w94rVn4o2LuIiCi9hd7SSEIS0pOd7/vHElJ27uzMZjdswvM5h0N25rYtc3dmd+bZKSYWbtKvdxIE09EmrKopwWhLspyVO363bMix6cCCma77ULe/BuOpr6GOvwQqNg4Yf6Xzujc8C3XBHXVhoGfeAIw9DV1rMpFoWp9cufzxSTAv2hfmE1dB3noIsnIBAMBrCr5eFPg5n7bAV2Zrmb5MaoLju+CILojr+6WAqUsQcsnp3LRbqrt2u6ZE3uTWvzMQ7TQMt564aN99Sdfcpyx3b/NEpOGN4H2lPToqvHF+8wwkz5O2Y3+mstD5m/mPy5y9L9gFYuqD0RwPgwiosX/BSHWAxKlWINBscewQ+xLr84EL3jJRVbNzT6q02+9t7KM5Yrt/6nbXdU2e7/9iTYh02zhn7dx3vP1j/dAM64GVB3iZ5vF6LiIiIiIiIiIiIqIwCPRhMsMImkVlATB3IvDNMODPM4E8/fm8DYgA824FPm8PfJYC/DgGKPM/D5KItsv+EfjlKN82893+wKpXd/aIiIiIKBjNdN0BETWR7bbK7ThicY6lVorBaFRf+0a38zTlFje6PUQp5eYyxsZX9jduj4iIiIiI6jv+UqDXIOt1J1wCtZt9VrHqpllfUQa8Nwn4+FnIXaf7rf426Qhtm1FOjyYrXFwV2lR/fQNkr3dW9vAzoE66IrzjIWc69/BblOwtctXEIaW/+S8sD+1VtzLlGeDDJ13XU+MuCOk4AACD9rVdLY9fBdma67fcaTAa3n8M8ueMYEcXMroLwSMh7MOtS0Yb2DDJwEtnK0wcq3Db0fo78cJZCt9ea+DZMxReHb8NL2ddhcdzbkWnmhzL8otjB2JVTG/LdY+cYOLasQbaJVr3taFAtCFPOiV//wF5+jpfCOWiWZBbToTcd07Yw9FKKwVfLrAv4+S1kRCrkBRrvS53m/tx1crcGvj+D65YhINvb/x7Ac6oz1ZCHXNew2WGAfX2v4ErH3+x33ueioqCuvddeK59En2rVllWW54DYOV8YNrrkDcfhFy6P+S7D5GRA+SXBu525srAwWgpup9lCFKntvoXwVyHuwiBOJ2b+nV2PllFGcABbn96ohkkJyj0TAtcrrHaoCBdUF1WEb9wIwoF3XzkiZCdpdNHKHRuG7r2BlcsslxeacShbPtXVFk5zo8/nb7v63ZxDAXE6YLRWn+OFYVSTY39+nkWx7stkN27vwowbR3oYD9pRQ7ww07+Ka4CB/vI9dntn7o9vFqR7ft/myYYrU28s/eGU4bbl/t0rlge+5VW2g+YwWhERERERERERLTLa3EXJba08RLtJDXlwM9jgYznga3zgfVTfLe3zg9cd+kkYNljQHUhIF4g9zfg58Na4HxB1AxyZwK/jgOyvgMq84H82cCcy4GMyTt7ZOQI5zUiol0O92mJWj6b7Tjc1w4RETXGYDSqr/GV1ZY/NSEiWQAW1lsUBeBAF/2MaXT7Gxd1iYiIiIh2OSoqCurBj4AuPRuuOPo8qGufDtxAh65B9Zvr6ahdN6y7w4vt7T4I+yu0hwLy5ETHZdUpV4e0bwqeSmmc0Q1UKk1qkcaICotgoLLASQeSuRbmgxfCHB3r+3fxfjDP3xvmtUfCvP0UyJK/feV+nwaZfKurMSEpBeqmF6D2OdxdPQeUUlBvzbUtI8d3gzR6DHTBaFui/J8DefE2iNvErBDTzR5GC/00a7dUhcsPNvDM6QYePsnA9GsMpKfUrY+PBh46UeGKgxSOGKRwzaEGLh6QjUsK38L1Bc/jwdz7LNudGz8CZYZ18tmotpsAAD3aWY8pI0cfqqJTWuPxX/jzZ8Cf09015NLKXMAb4CXpcfja6KQJackpDv4LmswAeY7xZhneyLochtuTfPY6yBeK1qm75WrVe0+oe98FOnbTNqFOv9Z6uVLASVegn1gnMmTE9Gm4wOuFPHQhNs5f4Wjo/20Azn3DxPiXrJ+4pFggOiq04T0je+rXvftXaL6AcxqM1reT8zb32R1ISYiMIKPGZt/uftKtDQrSbWuREIyxNk9w/psmDnjUi+s+NpFZyC9oqeXR7apFSC4aEmIVZkxs2o5brOHFjSUvoWJZG3y8+Rxtudqg36yCasdtVwXIoqqlm/eVAhI1hy1lDEYjN2oCvGDWL2+ecYRZU86FMgyFX28KPJ+Ean8vWHaBwFY2FujXuT1OW5Hjq1BUZl2xbZyzdgamK3x1tf6xLqn0HUc2Fmjei4T9PyIiIiIiIiIiIiKikMv9zT8EraYEWP1m4LobPvZfVrwMKFocmrERtSZr3gJMiy+kVr7c/GOhZsTzuYiIWifO70REROROC72UlEJNKRUHYHyjxb/aVJna6PaFDvvpj4YBbKUAvndSl4iIiIhoV6a694PxyQqob7dAfbYK6qdiGHe8BhUdE7hy+y5B9Vml9G1fMMppMJo+xUZuGw/55XO3w7Jua+ZXQFGes8L7Hw01cGRI+qUQSE7zW9S3KsNx9Yn5z8Py1RggGE0y10IuHAl8/2Hdwox5wJrFwH+/AjO/glxxEOS9xyB3nuZoLOqWl6A+WAj18TKoGVlQJ1zq+H64pfYYDBwwzraMXD0W4vXuuN0+yXq7zff4B6NhQwawwVn4Ubi4CfuQqkptO3brdqZjBitsnGRg3SMGVjxooPBZA3ccY8CofwcLcnf8uXfFf677SF07BwDQv4v1c78iW1xfcF9iWCfsyTfvuWvIpSveCxzU5zQIpmMb6+U5xS4G1Mham7cgj9TgjczLMbzCwa/BHnUO1O8VUJ9mQM3IgvH8D9pQtFrqsNOhpiyFuu1V/5X7HQXVvZ++rseDvukWYXcAVsT2tVyeNXmS7Xjq++BvQaEmICI1wXEzjo0frn8RvPirYM7apn+Zrg3IafRFff/OzpOJeqZFSIqRhdREhefOcDe+2mC0NE0gZ35pEwcVpG0VgopqweLNgr0eMPHebMFfa4DnfhKMfdJEoSZIJBARgel2MiUKAa/DoMadaVh3hUX3ufsq8rns67F0xFtY/qCBohei8dj7VyL64yVo/9EsbZ38qDRUqhgskt0d95MVINS0li7MSQFI1Bwyl0Tm7idFqhr7QD/ZuLKZBhJedsFoTqatg/oqDNNnAQMAfsvYue/JW13u4+SX6sfq9m5kZPv+L66wXp8c77ytcUMU7j9e/6zM2+A/uNIAwWj5DEYjIiIiIiIiIqJdAr8zpOYW4DXXlF8tIWfm3Wy9POP5wHUbB6rVWv5M8OMhaq3WT7FeXrTY9jx1IiIi2ll4LELU4tl9phDCzxtsuwlZL0TU0jEYjWrdCqBrvdteADNsyn+wvUyt8UqpPg77qe8TEdGcok1ERERERI2pxLZQnbpBxcQ6r9Q+Pai+qlS05fK+nXwXuDuiSzbavk4+fjaIkdWRshKYkyZAbj/FWYVTr4Z68KMm9UkhluwfyjXCRQDUQ1vus15RGiAY7bPJAcPTAEBevdvZQEaOhTruIqju/aDSe0EZ4f/IRT38mX2BlQsgr92z46YuoGaLVTDa9vo7k+5C8PphHzLjbZin9YUcngJzwsGQdcvq1v3yuW/dYckwLx0FWf5vmEfsnlIK3dMU+nRSiI7yn1flpTt2/D2ociniTU3ClEbKf9MBAP06Wa9fnu3+gvsyQ5Nm9fs0SIBQh2BlFwnmrAtczmkQTKe21suDCUbLLRYc9YwX2zSfbnmkBr+tG4vTtjkLAlWnXwulFFTnHlBt2zkeh4qOgRp3PtSDU4C9DwF67QmccT3UQxa/LttI/+HWITKronujBv6haVlRnR2Py84eHUPSTANt4hQOsvmE8t4vm34inHZuenwCzGO7wnzlbojXixE9nbfZNbXJwwqrqw5ReP0850lLsVG+/9MSNYGczRyMMXuNYMh9XiRPNJFwlYkh95t+2+yKHGDafPdfn/67XnDIEyZiJpjodosXH//Dky2p+bgJkd2ZBqUrzLqqCJ1rsv3WdarJ2fFvVNksvJt3Ja66cBD6XXox+nZSiIlSUIYBlb47Utu30d63PE8a/orfF6WaAFcrmYXOtnm7fdKkOOt1pQxGIzcC7UO3lmA0m3XK4bw1doB9wdxtcHTcEC5bbYLOrNiFxbo9d2xFjq+CLhitrYtgNAC4+1j9ZxqbC/2XBZr38kp4mhoRERERERERERERtUIla3b2CIh2DV6b8yYZAtkC8DkiIqL6+L5ARBQ+nGOpdYra2QOg0FJKnQvgexHJcVHnUgD3Nlr8tois19URkZVKqXcAXLR9UQyAt5VSY3VBZ0qpEwBcUG9RFYD7nY6TiIiIiIiC1HG3oKpVqRjL5aP7uLjSPtAvcS3528WI6jUrAmzMgFx5CFCUH7iCxwN1z7tQhzoMUKPmk5zmtyhWqjC69A/8kTjatmrPqnVIkHLrlZtXA4P28VssBTnAiv+ATx38KqNT3fo4Ch8KNWUYwKOfQ247WV/ogycgp14DldYZHdpYF9kYbT1HyAPnQx1+RghGGhxdCIVa+jckJhfYmgt54uq6FYtnQyYeAXy0xBcKd89ZdeuW/wu5/mjg/YVQaaEJdQoFyc/2vR4r/T9KkTk/AMv+2XE7Cl7sVbEAfyXs77j91P++hJQUoU/uIgD+9TZvFQzqYl03NgqorPFfXmIXOLJxFbD7AMfjc6r7rc6ChhwHoyUrWH3gv6HA3ZcAIoIzXzPxywp9mUVrhqNv1SpnDZ54GdQeQ1yNoTE15iSoMSe5qtNv/z2Bn/zve5URi3XRPbBHdcOTOLNDFIw2omd4knvG9FP4faX1c/ndEqCwTJCSEHzf2iAisxooygPefwyiFHa/7AEM7AIszQrcZteUoIfTLJRSuOhAhdF9BAdMMpEXINgsrXgNZGE22q0BgP381pdUApXVgtjo8KU3lVYKFmwClmQKLn/P2bb9zzrg/FHO+ygqE5ww2UTm9nCQzYXAma8JOrYRHNJfoaBU8N96oF9noFu7CEuqolZBd26vJ8J+EklWLcQ+L1+DTStn2xc8bSKMa17RrvYYCqkJ1kFCBZ52KFfuUn+yi5yV080gSikkxliXKGEwGrlRXWW/fqPDfckIZ3c9gtNgtP4OdkOnzRfs12vnvO8WuMuxRoFNMJrbAOuM7WcGFGs+ImmrCXK0c9gA4Mdl/suXZAI/LhUM3g3o1Nb3WJcFeBlvdfnYEBERERERERERtT68KJGIiCg8TMDixz+pFWDoHRFRC2Yzh3N+J2r5uB0TUTNjMFrrczGAV5RSnwL4BMCvImJ5WrVSagSAOwA0vlpyM4C7HPR17/a6qdtvjwLwo1LqEhFZXq+fWACXAXiyUf0n7cLXiIiIiIgoNFRcAqT3YGD1Ilf1qlW05fJoN98fO/iwS7xeKI/zRqWqEvLwJcBPnzircMZ1UIecAjVwpOM+qBmldLBcfHv+YwGD0U4p/ly7Th68ACgthjrp8rplX7wEef5moKY6mJFaUlc+ApxwKVSCJnUszNQBx0L23A9YbBM0Mfs7YNz52MP6oUZGTB94YcAD/7QfycuCaq9JzgozryZ8SP04BfLpy9Yrt+YCc36E/P4//3UlRcCf04HjLwndIJtAPnkO8uLtgNcifUxjZMW/joPRYs0KxEsF5OFL0H5DEmBRb1uFoMa0Dg1oGw9s2ea/vFQl6DtdvzzkwWibtwpqnOWiOQ6C6a3ZFlZkO6tfa+562IaipdXkoXeVs1+GVfd/ABxiE3IYRv06WQfFAcCK2L5+wWhZoQpG6xGewIpTRyg8MF2//3HuGya+uib4k+F0LRv1w2C/eQ9yyX0Y1l1haVbgfaGuKS0jNKtPJ4V5dxt440/B8ixgyj/+922PqlXoftUQCIB2sQOBXnMt28ovBdLDFAj341LBeW+ayC52V+/z/wQvnBW4XK1X/5AdoWj1Tf7FxMpchas+lB3vZRPGKDx7ukKUp2U819QyaENkI+RlJmUlkFtOBBb8EbjwyLFQVz8WsFhaknUwWp7HP2w5EKt2rGgDMRWQqAkaChQQRNSAN8Dxac4GSGU5VKy78L9IY7dH5HTa6tdZv99a68sFgkfGOx1VaG11OK/UyrcJm9V9nJYYC5RahC8WlAJ52wRFmmC05Hj3bw7pKdaP99uzBG/P8i2/c5zCA8crlAaY98pD9zEMERERERERERFR5NpVLgrdVe4nERG1DHxfIiIiijx8fyYiIqIQYjBa6xQP4Lzt/0yl1EoA6wAUAfACSAMwFEAni7oFAI4SkYCXgorIJqXUeADfAYjZvvgAAEuVUv8CWAMgGcBwAI0vOZ0O4G53d4uIiIiIiIJ24LGug9GqVIzl8hg3R5KmN3CZmirA4/wCX3n7/xyHoqmvNkOltHfcNu0EHdItF7f12qeZHFD2J24ueNq2jDw1Edh7DFT3fpBVCyFPXxf0MP2kdYH6Yg2U4TCJKYzUw59Cju+mXS+bVkEB6K+5iLzSiMP66O7oVb3Ov/LqRUAzBaNVVgu+mCeYu973XdjSLOtySab91eYy5Wlg6Rzrdd9+ALWTg9Fk6T+Q9x4FZk53XXfv8v8cl001t6f1/PElUuKGAbtbjAUGCreWw/dRUkNJsdbBaGVGgGC0EJv8q/MvRg2H1/r37Wi9LawvAMqrBPExzhr63zz7sR1b8o1l4GDDQhdB3fIi1E5MsUmIVejeDthQ4L9uRUxfjMO3DZblejTJci6N7BmSZvwMSld4+CSFO6ZaPz8zFgEb8gXd04J7zLVBRPVfU3mZQGkRuiQnO2ozXAFh4dA1VeGeY32P3Z3jBMc9mIN1Xt9rIsW7FR9sPn9HuEn7mnxtO/klge93brFg2gJf+NgRAxX27x34OdtWIbjgbfehaADQz+rTchv3f2X9YvhiHvBFo/nhpV8Fw7sDFx8YIYlVtINp+gLsvOILwPKKL5y1wb8Ay0zXdcS/rss2TAHmrrd+DUbA7ikAQCZd7iwUDYB67EtH74Xtk4CMHP/l+Z40xEmFq/EVlPqeC0+AHQjdu71SQKL1ITNKK3liF7ngJLh702qg957hH8tO4nRXeFA6EGXANjh5WRaQkSPo26n533N14V9JsUCJZZiZfq7Q7XMO6OwLaLayIgco1kyFbYPI1eviYFf2/2YI9ttdBQyEZGAkERERERERERERURgEDBvgd1ZEtCvgXEdERNSy8L2bqEWw/cyB23HEYjAltVIMRmv9DAD9tv8L5CcAF4jIJqeNi8ivSqmTALyNuvAzBWDE9n9WPgJwqYg4SEggIiIiIqJQUCdcCnnnEVd1tMFoHheNmAECYQDfRcCxzq7QlM2rgfcmOSqrbnuVoWgtgEpOg/QaBKxZ0mB5kujDr+7eJxN3vHM0olETsH35fgpwwZ2QC0c2eaz1qXNuiohQNABQqR2BH4sgh2muWhbfdtjXJvAlI6aPdTDaxpXAvkc0fZABlFQIjnnOxMxVgcvuURWgUK7NxxprFrsbWIjJ5y9Cnr0h6A+bB1Q5Dx5L9W7d8XeKt1BbbmtuEayC0XRBH+VGAgSAVcyALP7LcnmwJnxg4pXfQh+M1q+z9XIRYPUWYM+uztqZNl8/NgXBxIIXbOurx/4Htf/RzjoLs/6dNcFoSUN8P6NQT56n6e+taYlAj7QmN6N129EG/ljpxTeaTf692YI7xwUZjKbZtTEah+AV5qFrqrNgtA5tghrKTjewC7Bg3b74FXuhSsXiiJIfkChlO9a381q8qLbLt8+4xMocweFPmztel/d/JXj8FIUbj7B/7/38P1+QWrjlFIvrgI9L3xWcMlyQnODutScilsFbTQnU8ltnWUfsw78c9ms3Tv+xCAKO1cGyBvUClG+NPBGQvydL/gZ+/sxRWfX2v1BRzr6uTEu0Xp7vSWuw7+OEKUBhGZCWFLicFUMBibHW66wCkIi0agIf12LTqhYfjGZ3COR02kpJUBg/XOGTufbHCNPmC24+svknQ937Ssc21vNCrkUQdS3d3NMlGWgTB2yzCECbt0G0Y2gTp+9Lp6vD8N63Z5koDTDvMRiNiIiIiIiIiIh2eS3tosSWNl4iItqF8T0r4nG/gohoF8S5n4iIiEKHwWitz7MANgM4AEAPB+VLAXwPYLKI/BRMhyLytVJqTwD3AzgdQKqm6GwAT4jI58H0Q0REREREwVMdukLGXQjMeMtxnSoVbbk8xs2RpDhIG6gOfHWk5GVC3psEfPGyo27VRfcAR5/rqCxFgP2P9gtG61u5EsneQhR5Gl6J2yYOuHlAhqNQNADAgpnAt++FaqQ++x0FnHhFaNtsIhUbB+neF9iQ4b/S68slT4pT6JIMZBX5F9kc7Z8EJQBeW9gO3+T46l9zqIGxA6wvLp+9RvDEdyZKq4Cj9lSYcLBCTJSv7O8Zgld/FyzOFIgAfToCVx1i4JD+dW29N1schaIBQP8qi/tYX16mfl2aJhErxMTrBb59H/LoZXULUzsCW3Ob1G7fypWOyyZ7657oFNPiSd+uoAyWSQS6oA8AqFSxiBOLK99nfwcp2waV0PSUpylz3IWiAYDTrMJe7QGPYR1csCLbWTBaRo5gaZZ+/bu9p2HoskXWKzt0hbr9VaiRhzkbcDPo21nh+6X+j3fGkDOAbXc0eO1uiWp6MNoh/QClwhtWcdMRBr5ZbL0f8tUCwZ3jnLdVXSN45y/Bp3MF2cXWZYzG+zxF+eiS3NtR+7qgn0glG1dCJk0AFvyBRADj8K1luRhUo423GNs8bf3W5ZXY9/F/X4tfWN9tXwguGCVIS9K/dqbMCf5kiqJy52VnLAyun9TrTPRq7y74SxeMQqSzs7N7JXMN5IqDHJVVd70F5SLsybf9+28U+Z52iLHaNwkgryRwMJru/FylgCTN/lKggCCiBhx8JoItm8M/jjAL1bnur5yjUF4lmLFI/x556+eCm48MTX9u6MbTrR2wJs9/+cocfVu6x8tQQL9OwNz1/uvm22SE6+YrOyN6Ws+5jX3+X+C2GIxGREREREREREREREREYcHQrVaMzy0RUevE+Z2oRbDbz+Y+OBE1MwajtTIiMhXAVABQSqUAGASgG4BOABIAGAAKAWwFsAzAQhHxhqDfXAATlFLXoi6UrTN8wWubAcwTkbVN7YeIiIiIiIKnbp4MWbMIWDbXUfnqUASjOUlyqLG/OlKK8iGXjwZyba7wrEd9tgqqUzdHZSkyqF57+n29EYNqXLb1dTze/qYGyyeMUUisKnT+dci6ZZDvPwrFMH32PxrGY/8LXXuh1K2PdTCaWXfY3zVFE4wWlQ4vDJSreCRJKQDgxo6T8Fz2aUDBxMzBAAAgAElEQVS2r8yXC0y8eYHCWfsoVFT7QuqUUpixUHDcC3WBQN8tEfy3HnjnIoUflgqOfd5Edb1PHhZtBqbONzH9agNHD/aF20x3GDDTriYf7b35jspaSukQfF0X5NW7gQ+fbLiwiaFoAJAkpegWX4qN5YFTlFLNwh1/1w9Ja6xAklwHo5WreOtgNAByzeFQb8wOOD47BaWCs153/2WJoclKEhEopSA11VBR0YiOUugVX4SVpcl+ZVfkCGofkNp6VqbN149vwyQD6e/+ab2y1yCot/8NeyiYW/01mYHLcw2oj5dDjmgHADChkO9Jsyz7UO49uLfjvfDCY9uXUsDtx4Q/tWdMP/26OeuA7CJB52Rnz8ONnwle+Nn+NWmgcTBaHrp1Dhwm4TGA5HhHw4gIkrUOcpaLECNvgWUwWn5J3bZm5d2//B83rwn8b77g4gOt65VXCX4NkJ1px00w2pcLgv9C1yoYhSiU4nbiN3+yrRBy+gBHZdXEJ6COPMtV+7oQs3xPO20Q7D49ffO+Zb3SwH3ahRPp9pdKGIxGbtRUBywieZk275otg907p5td4+QEhWlXe1BYJnj0W8Fj31q3/PzPJq45tHmTIq2ClwGgfxeF3zIsQh1LgbxtgvZt/B8A3cdpSgH9OivMXe9fYFmm/lGOs/6Iz9a+u7uvo1NWZX98RURERERERERE1DrwolCKNHxNEtGugHMdERFRxGFoElHL10zBaJwtiMiJnfy78RROIlIoIn+KyBQReVZEHhGR/xORySLyoYjMC0UoWqM+q0TkFxF5W0QeFZHnReQLhqIREREREe18yuOBmvQ/4MTLgF57AnsdBPX0N8AR1hejV6kYy+Ux9nknDTn5sKvaPhgN37zrLBTtgHFQ7y9gKFpL1L2v5eKHt9yDR5M+wl7dgJE9gcdOUXjkJAWU6EOe/BgGsOAP5+WHjwGGjvZf3qMfcPZNUA9Ocd5Wc1Oaj3mk7ursrinWRR7ocBdiB5Qgpf8W9NhjJd5NPhuvpF7qV+6itwVxV5pIudaE53ITxmXeBqFotd6bLfh3veDJ7xuGou0YkgB3/q+uXkaO/V2rNbxinrOCOuUO0i+aSHI2+oeiORUdAySn1f2LiWuwWt37Lvr1DByKBgCp3q07/o6CF0nebZblSg3rhJEE67cAAEC5YZPilDEP4jDIUmffhzWJAgF46m0CkrMR5t1nwhwdCzkozvf/IUkwR8fCfPUe9M22Di7LWF2IH5YKjMu8O17jxmVe/Ly84fuZLhht392B3VJt5qk9hkZkGEC/TtZj2rINyKtJAA4YBwDY6kmFV1kn7hxW+jO+M6/Dof2BwV19y7ql1gVdGAo4tD8w61YDw7qH/zFQSuHfu/QffzsNZFyeJZj8S+CyfsFohfnYuweQZBMyCABpiYChS/WLQPLafa7Kp3kLLJfbhRGZNsG6Py7V1/txGVBV43Rk/pwGo1XXCH6wGQfRznbAHuGfU2ThnzAvHw1zbDLMs/aEzP0JsjUXckwnR/XVba8Ap1ztut/2umC0qPYoVQmW6/p3UYjXBALlWe8eNaA7pFVKP8eXMhiN3PAGDkZDXlb4xxFmdh8PBbN7nJKgcN5++oq6wLRw0gWjDeyir7M823q5bvSGAnpY5xRj9RZ9P8GEZiqlcMGo0LyniACVTdhPIyIiIiIiIiIiIiIrvHy4deLzSuQOtxkiIqIWhaFpROQQp4tg8EGj1mkn/m48ERERERERNTeV2gHqxucbLtz7EEh1JfDL5w0WV2uC0aJdBaM5CLepsb8IWOYHDrVSr/8F1W+401FRpNEEoykAN215Arc8dU6D5VLqIhitwGHiVlQ01IwsqIQ2ztuONB7NxumtSyZLT1UI9EHn5uiuuCj9tSYP555pJr63CY6ZvxFYs0WwWyqwLt9Zm8eUfNu0QZUUNq2+E39MC6qauukFqBP8w+ga659n4sdlgT+sTvU2vK8pZhFKPM5f34kx+tdKhQqQ9PTHl8DJVzruq77fVojtBf12arOlxDQh958HLJplXfC9Sejb8WHMwDF+q76dV4F3F/m/dx32lIml9xvo30Uhp1jw1xrrpk/Ya/sgdMFoScmB7sZO0b+zft2l75qYOvp4yJ8zkOfRpDAA6FCzBSNWvYNDXpscMeFvw7or9O9sHTgxfaHgEosczMbe+UscfalmNN5eivIQE6Uw6WSFqz7UN6AL+YlEUlUJ/PCRqzrtvNYTvF0wWqFNQFmcJtwIAKbO0z/OHgOYfo2BIwcpfLdEcPSz/tt5cQUgIgFfv5sKgXIHGTZEO8Mh/YBxg8PbhxTkQK46tG7BxpWQ6/3fU3XUlKVQXXsH1XeaJh8239MOZYZ1MFpCDJCWBGza6r8ur0TgO+rQswsnStQEyZYwGI3cCBQWDwBbNod/HGFmtzsV7J7jgC5A93bABosc1s2FQGGZICWh+fZLddmu6ckKbeMExRX+69YXCA60eAR0IWtK6QPPc23CHu32oez0szlOcGvyL4Ibj4iM4wQiIiIiIiIiIqLmx4sSiVonbttEOx3TEloAPkdERLsezv1ELZ/Ndsx9cCJqZgxGIyIiIiIi2sUppYD73oc0CkargvVVkzFujiTNpgejYUOG/frhYxiK1sKphDb6j0zXLYOUbWsQWCb5DsPO3BgzvmWHogGAMqyX1wso1F1AHQ7fLA5c5quFgqMGKe1F3/XFm2U4ddsXTRuULqwqRKSiDPLsje4qjRwLdc4tUMPHOCrer5OzZlMaBaMle4uwKXo3x8NKsMk+K1fxtnVl0V9QQQajPfadgxeDRlltpsTcn/ShaNv1q1ppuTw3Sv8AT/5V8PyZCj8t0wdlnRgoGK1NM26ELqSnAEmx1kEuXy4Aas4+AZ6kW7HF217bRgdvHiA1wO/TgINPDONo3TluqMLybP8n7IelQHmVID7GPpzhk7nOvrgzGoXBSmEeFIAJYwz8tdrE+39bt5PWkoLR3nzAdZ32mmC0vLWZAKznpGVZ+vZiNaEemYWCt2fpn6u5dxoY2s33XCdrpjCv6dsG2sTp+weAvBL79US1PMb2f6re39v/GUq/zm6ZoVmXGKtwUF/g7H1VwHmtqeSE7sFVHDMe6vpnoNo53JmxkJZkHdya50lDqWGdmpYY6wuhtA5GC9yn3SFtYqz1eEoZjEZuBPpMBAA2r3EU3hnJ7M6FCvZuKaVw3FCFyb9YN/7TMuDkvYNrOxi641qPAXRrByzJ9F+32WJusm9LoWtK4MDzxoINRksPYa7zy78JbjwidO0RERERERERERFFnl3lotBd5X4S7Swt9/sgop2D70utF59bIqLWifM7ERERucNgNCIiIiIiIoIyDMihpwI/f7pjWZWKsSwb43HRsDgIuKmu0q6SbYXARuvwmlrqrBtcDIgilXrgQ8g9Z1muk6evh7rz9boFc74Pbee9BkFd8X+hbXNnMDQbp+nd8WdzBqM5cf3Hgh4TAp/MFWNW4oXs69ClJrtpHZYWQUwTytCEyDWB5G6CnLWn8wqGAXXVJKjTJrrqp39nZxfBp5oNr7Bv5y1w1U+iXTCaYR+MhvLgUoO2VQh+Wh5UVQDA6rVFMF96HPjwyYBl+2iC0ezMXOl73K0CDQCgT0egf5faYLRCyzIqKYTJAiGklMKQ3YBZq63X/5mTgoNveQl5T39uuT7BLEWClAMA5K7TgV/LoDxudhjC57ghCo9/57/NlFcD3y8FTtgrNP2oxttl5todfz56stIGo/Xu0DJOaJWyEuCDJ1zXS9PMPfnz5kNK2lhuE1d9qN9/jNeEepw4WV/n8wl1oWiALyBJZ10eMDhAhmTeNvv1LYlSgYO5/IK4XAR5GZbrVMOgLxfhX4GWNain9H1ajjOIkDK7x8cwWsa27ZbM/Tmoeur/PoE66IQm96/bfsuMROR72lmuS4jR18svDdynbq/LMHyholbKqwGvKfC00tcBhZiTYLScDcC6ZcDuA8M/np2gKVvKpPH6YLRTXzFhvtp8+6SmZsLwGL5jcavjiExNnrJdyNpuqe7HFmwwWtdU9yFsOqu3hKQZIiIiIiIiIiIiItohwOe3dr9aQiHC7wOJdjon56kTERFRM7M7FuFxClGLYPeZAj9viGB8bqh1YjAaERERERER+TQKMKlW1ldNxrg5knTyYdd/vwJ9/VNJpCgfcmy6fd1+w4ERh7kYEEWs/Y/Wr/vvlx1/SmkxsGZJ0/tL6QB1wR3Abr2BvQ6Cig0Q9NQS6MK+zLoTP9KTI+9DzvEv6U9MeTr7RqSYRRhdNhM9qzc0vTPT9AVWtbUOzgiWLP0HcuM4oLLcvuBJl0N17wvEtwEG7+/726X+nZ2VS/E2vMI+vSbLVT8J1tmYAIByFWdfOT+4ALvvlwBVNUFVBQB0/uoxIP8pR2X7VboPRluwCRARrMi23o5G9Kx3smOJJuEgKcLSCes5a1+FWaut79u0+YIxp4/HlrKDgWn+6zvU5DW4LQ9fAnX3W+EYpmv79wbSEq3Db0560UTVSwaiPPoTVQschOYAgEKjuWzDih1/pqconDZC4ZO5/o/vmfu0kJNkf7d44h3QhTLme9oBv00Fxl3QYLlpChZu0rdn9QqtqBYs0NSJiwaOaJQh06MdEO0Bqr3+5ZdnOwhGK3H3XnriXr75ISUhUPCXchTKpQ//ch9SplQLef1RRJDKCsj1NvvsOiMODUkoGuCbz3U2RVtvvAnzf0D7LofDagbJc5Dlqgs6UrAPki2rAtoE2GUiAuAsGA0A5v/eooPRwnUuVEKswp7pwGJNePHLv5m44uDQB2NbsQszS0+xDhjL3Gr9wGjbUkBXl8FoSvn2fYKRHpm5zkRERERERERERBR2kXd+ERERkTW+Z0U+PkdEREREREQUPAajERERERERkY/R8CrJKmWditM4GE1EgFkzIF+9CcQmQI09te7CdzPwL3HJ5FuhzrjO9/ef0yHfvA+UbQP++dG+4oCRUHe9AeUJ8upOiigqLgESEwdUVfivzN0EqaqEiokFtuaGpr/zboU6+cqQtBUxDM22UG877NrWC6BlbDOHl/yAa7a+FPqG5/wAHHZ6k5sRrxf4fDLkr2+AuT8HLK/u/wDq0FOa3G96CpAUC5RU2pdL9RY2uN3FZTBabJTvAn6rC/LLjQBBghsyICKuA3e+Whj4BJhuqcDGrdbrjiz5wXFfnbw56FG1HutjejiuAwC524Blmty3fttD60QE2KYZZGLkJgtccZDC1R9aPwdfLRA8fTqQh1RYnajUwdswGA3ffwg59GSoA44Nw0itSV4m5PmbgZ8/8y047HSoiU/Ck9oB44YovPuX9X2LmWBi3GDgiEEKbeOAqfMEuduAvXso3HaUQlGAvMNaRuNfH920CuL17thPeeFMhZIKwdeLfavbxgGPjFc4fGBkB1PJtq2Qtx4CPn0hqPq6YLQiTzJk5nSoRsFoVgF29ZVazH0rc6xDzgBg7+5AYmzDxzg6SqF3B18IWmMrcgSBftE50Bjr++AShTP3aZ4wFqKwm/pyUNXUPe+GbAjtk/TrsqOs02MT5n6NdsfsDcA/SSjfQdChLsxJKd8+mU5pJYPRyBnJXu+s3MaVAd6hIpvd1tbUnM59eykszrTu4coPBBcdIIiJCv+jpwtSNJTvOM5KpiZPWTf3eAygQxKQHA/H+6lxUcGHoboNYSMiIiIiIiIiIiIdBoIQUT3h+kUZol0St6dWi3MlEVHLZTeHc34nahlst1Vux0TUvHhFDhEREREREfmohoeIVSrasliMp9HFlP97FXLbycCfM4CfP4XceRrk0+d960xNSkUjsjUX8vW7vnZ+mxo4FG3gPlCv/AHVvZ+j9qmFOG2ift0XvoAsef7m0PR1xFmhaSeSGJqPeeoHoyXVNNNgmq5v1aqwtCv3nwfZsrnp7fzfRb7Xo5NQtKsfC0koGuC7oL2/de5HAylmw2CurjWZ7voRQbz12wAqVIBgtPISIN9dEBsAzFpt/QXJJaMVKl80sO4RA+seNfDFBP/X+qiyWRhcudhxXwrAlVvdB7x8+Ldgmeau7Xhelv4DlBZbF2qjSUSIAIah8NYF1oEJa/KAvG2CLSXWddO8+X7L5LaTIfN+C+UQLUl1FSR7PeSk3etC0QDgx48hZ+0JKS7AcUPsgyBmLAKunSK48G3BlwuA2WuAyb8Idr89cMBrLQONylZXAdnrdtxs30Zh+kQPtjxlYPF9BvKfMTBhTGR/PC9lJZAL93EfipbcHmjjS9FI8VqnfRR6UnzbSiObCy0K11NW5b9sRY6+/OOnWj/Gunl0zRb7/gEgT7MdNNYjDThpWEuOsCFqSL5+x12FpGSoH4ugUjuEbAztEt3XSTRLkZa90HKdk+3ZLugo0SYYLVCILRHg+ywE015zVnjjyvAOJszszpNqajDaVYfYN/BbRtPad8oqVBrwhZnpgtGyNcFourYMw7fffuQg5w9anOa4zok2caHdlxGe3EpERERERERERK0ZP/+iiMPXZOTic0MUMnz/JSIiIiIiImrVIvvKKyIiIiIiImo+Hk+Dm1UqxrJYdL1iUloMeflOvzLywZOQmhpAHAaKFOZD3pvkeKhq/ASopl45SxFHXXiXdp1MvhVSVgLM+rrp/dz0AlRyWpPbiTiGx3p5vYDCtjE1SPJuC1mXyfHA4K7AY6co/O/K0H7MtFfFgpC218C3HwRdVTasgHlsV+CHKY7rqNOvDbo/K8O6B57/2tc0DKpKr3EXVKY+egLxNdavlXIjLnADa5e66m9bhWBVrvW6IwcqREcpdE9TUErhxGEKU680MLoP0Ks9MKHDP/hy48kw3Jw0eOipuFE+Qop3a+Cy9dz4qb6PvbsriAjkitHWBZQCeu/pqr/mdvhA/Wur440m3pxpff871FinScnEIyCrrMNomkrWLYN59VjI4amQU/taFyopBKa9jiMGBddHjfNcNP9gNABYv8JvUVqSwsB0BY/RAvZjvnkXyNngupo6eQLUCz8BBx6H5GTr/ckioy1QkA0paZgGkhkgGK200v81uDxbv13u18v6cU5PsV5eUBp4HrELUtq9PdA1BThzH4VZtxqIi24BzzNRALJxJcwzBrh7b+81COq9+VCxDvYZXIjyKKQkuKuTYJah/YY5luucBKPpzqFWCki0nuIAAKUMRiMnvv/IedkNzZTuFSa2wWhNbHuvbgrjBuvXn/Gqi506B2T6WzBP7Qvz6E4wbxgH2b6/5LUJUmynmbuKyq2X69rybD/sHuPidwKaEowWatXOfj+BiIiIiIiIiIiIiJxgGFDLxeeOKIS4PREREUUeu/dnvncTtQh2x60hPKZtpm52HXzQqJWK2tkDICIiIiIioghhNAw10gWjxdQ/kvx9GlBmEZyTnwVsWun8A5WiPGDTKmdlew8GDjvdWVlqUVRMLKRbH2DjSsv1csYA+wZOuhyY+op9mTHjoU64NMgRRjilCSYz610E7q1Bj+pNWOJxlxJ0UeHbeDXrSqjLHgQ6dAW69gL6DIWKa3h19083GBj7VNMvOldi4piSb5vcjo68ejfQayDQZXeg5wAoQx/qJjXVwIp5QOEWoDAP8uhlzjtKSoF6+bcQjLih44YqvPaH/fya5i1ocDu9OtNVH0ZFKeIrtgLRbfzWlav4gPXl7++hRh7muL9Fm/XrhnX3X3Z8/3IcH7UQ2JoLueNUx/3AEwV173tQh4yHiGDRoT3Ru/cyVBmxztuwMKAL0LujgnzwhL7QyMOgUjs2qZ9w65IMtI0Diius15doQl7ae/O0bcqFI4Gvc6DapLgej1SWA0v/AXI2ArHxQEzd8yS3jXfWxnfvo825t2DCGIWXfg3fFz2GVRjshgxg1DFh67MppLoK2LTaF2K7+0C/wFmprIB88pz7hrv2Ao67GKp9F6hHPkO7lQI87v/YlBsJqFQx8K5ehQWJw9G3E9ChjcLmQvvnyOo1mJFtXfaEofp20pKslxeU2nYPAMgvsR7jJaMVXj2Xv0VDrYfU1AAr/tMHfup07Ab19r9hC7Lu2AYoLHNePkHKkJazGOjqvy7fQTCaqTmmNRSQZJP7VlrlcIC0S5OPn3VeOHMtpLQYKrFt+AYUBmWVgn/WAX+u1r/Hh2K6+OhSA20nWh+Lbi0D7p5m4pYjFdrENa0zmfU1ZNIVdQv++RFyzeGQD5dqPwLzGEByvILViZ3FFYCI+M2ZXs1hdW0w2m6p1u1ZaWow2n69gNlrmtZGrYrqRp8rEhERERERERER7Sp4USIRNcA5gShk+B4b+fgcERERERERURPwtFMiIiIiIiLyMTwNblYr6ysnY+oVkz+n69vLywRKix11LbO/c1QOANRrs6A8nsAFqWXa/2htMBq25tpWVQceB7EJRlM3vwiMu6AJg4twHl0wmrfub28NjiuZgSVx1sFovdoDx1b8gLVZvuSZZG8RDiv9GWcXfwRge6BYfU9/DTVi7I6bo/sAvTsAq7f4tz2gC/DBJQaGPxg4OO3oku/QyWv/fDeV3Hay7489hgCPfgHVqZt/maX/QG4/BSjQpO7YSU6Dev0vqM49mjhSf2P7A4mxQKkmpAoA0rz5DW6n12S56sOAiXiz3HJdhbJJAak15wdX/S3aZH3yS5s4oGdaw2Xy+zTIQxcC5Q4SjGodfBLQcTeoQ0+B2nM/AIBSCl1OGI9LZr6FF9tdEaABe8cP9QUZyDfvasu0hFBGpRT6dwbmrHNXr4NNMBoAYPqbwJk3uGpTfp8GufM0dwOxsn4FzKcm4vmJT+OlX5venI4B/7lNNqxAeGKBmkbWLoXcdy6wZrFvwdDRwP3vQ6V19q3PmA+5eF9Hbak3/gaWzIYs+xeqRz/gqHN2tAMAyTY5iq+mXIzbXhqMyu0BnhPHKqQEyF20mveWZ1vPH/266B/9donWy/MdBaNZL2+vCVsjaokka51vDl65wH3lo88JWygaAIzsqZCR4/yk2USzFFFSY7muqNw6kKg+3fm5CkBslC8gzbQos2aLYFTvSHwXoIiyxSYd2MrKBcBeLsMKd6JP5po4/01BpfUmuEMo5oykOIWXzlaY8IH1Rvt/MwTP/SR483wDJ+8dfH/y2r3+C7PWwZz1NQDrQFxDAW01+zjVXqCyxj+8zGs1sQDwbB96VxeZw/FNDEY7Zz+F2WtCc7FCRbX+sSAiIiIiIiIiIqIWguEmRPUEuz3Y1eM2RuQOt5nWi88tEVHLZTOH85iSqIXgdkxEkUNzxSwRERERERHtcuqFjXlhwKuss7Rjti+W6ipg7s/a5uSb9533/cHjjoqpz1ZCRcc4b5daHHX+7cFXHjEWGG8RbhSfCPXIZ1DHX9y6Q/WU5mMeqRfWU1ONG/OfwQFlf/oV2yO1Ct9dZ+Dpu4dj6qbTMHXTaXg761KcU/yRNthHrj8G5kt3QPJ9wWFRHoXXDl+P1KiKBuXOjv4NC9ftg6FzX8G/561ClxhNqsx2T+XcbLte3TwZxh+VwJ7725ZzZNVCyONX+i2WmhrIXacHF4oGQP1vQ1hC0QAgPkbhKOtsOwBA2zgg+uizGixLP/JIV30YMBEvFZbryg0HwWhZ6yAuvvDYUGC9fM90wDDqXoGydQvkvnPchaINHgXjoSkwJj6xIxStljrnFjyaeyf2Lft7x7IoqcYFhfqAMyvHb5sOydkIrF9hXSAqGhg1zlWbO8vg3dwHRXQYfZDtennxdojXa1umQfn87NCEotWa+gpw1gD8esKi0LXZiFUwGjZkhK2/YEhlBeTb9yHnDasLRQOABX9ATuwBc/JtkA+ecByKBqWAHv2hTroCxh2vQZ19U4NQNAC2QWfXd34SlWbd+/JzPwkemG4/bzQORhMRrMixLtuvk76dNF0wmv3bEwAgj8FotAuQJ64OLhRtyAFQLoMw3Tp2iLvyCWY5ks0iy3U1JlBeZV9fNysZhi/MKTHWev15b/LEDwqDjHk7ewSOrc8XnPla4FC0UDp9pEKUzdkP2yqAU18xMWdtcNunuXktfs1MxsNpt+CTNiejTNXt6HiX658bj+E7RtMpssij9mryxGvz0NNdBKM1Dl1z68JRoQt5rKgOWVNEREREREREREQRiN8NUHML9JrjazJi8SJyohDi9kREREREFHJ2x608piWiZmZ9lTsRERERERHteoy6YIpqpb9qsjYYDWsWA6XF+va+/zBEA/NRn62C6tQtpG1S5FFt2wE3PAt56lr3dQ0DuO4Z4NiLgGX/QLI3QPXfGxgwAqpD1zCMNsLoQt/qhxF5a5BqFuKH9cfgr4R9MT92KExloG/VShx8+zNo23F3AB0h594KvDfJWb8fPgn58Elg8i9A5loc9OhlWIJU/Jw4BvmeNAyv+A/7lc+BAiBPXYuhABYaKTi221T8neAfvpOV0R0dvHn6/mLjgUNOBgCos26A3HGqs3HamfMDpDAPKqV93bIFfwBbNgfVnHrjb6io8H7sdvxQhc//s/5CobgCMO54DXLiZUDmWmC33kjsvzdSr/Nia5mz9hUEcabFFfoAyusFACAmFqiq9C9UUQaUbQMS2zrqL8s6rwS7pTa6CP+3qUB1gASTRtQ5+qA91b4LEq+8D39MPhQ/JR6CfE8ahlXMR7fqTXgn+RyILnCwns412Rj5+mmQ122+4Dn+krC/JkLlglEKb8x092VVx7FHArHXAh8/qy0jlx0AvDLT0eMgJ4YhVDBrPQ58dF+cNWoWPty6V8ibV1Yn2UVQMJrkZUJuPBZYs0RfaMrT7k4V7NwDKtY+KDElwU2DgW1rNN3kFPtCTqz076wP8UhLVLA6MbKg1Be2ppS+ri4YTRe2RtTSSOYaYM4Pjsqqe98D4hN8+xs9BwDDxoT9/W54d+vtVydRSuEx9eGcheVAgibcDABMTThR7Syhm4MAoKxSkBAbukAhal1E9+Kyq7Ninja0OtJMmy/Nfv5TSoLCqN7A7yvtyze4V0AAACAASURBVO33iImZtxoY1dvdo3n9m4V4vsd3O27vXf4fvt54PNK8BfD++xuAOy3rGQpItgmLLS4HOjU6bAoUjNYhCYj2ANUOsoebGowWH6Pw6eUGTn3F/Wu2sYpmDMojIiIiIiIiIiKipuAFrkThZfeZe0v5NogoQjCUgYiIKPLYvj/zvZuIKHw4x1Lr1DKuxiMiIiIiIqLwqxf+UqVitMWifv0U5kvvA7O/05YJuWEHMxRtV3Li5UAQwWgAfEEmfYYCfYbueqcI6QKcpN6JVF7fVcgxqMbBZTNxcNnMuuoJdcFq6rDTIU6D0Wq7ueqQHX93xBacUfyptmyqWYhf1x+Omzs9ipdSL4NXRWFoxUK8knWlfSgaAPXEV1BtUn03DjzO1Ri1RIB5v8FcMBPI2QD0HAisW+a+nYQ2UNc9DdU39KFLjY0bEjgURA0cCQwcueN21xQ4DkZL8xYgQawLlxr10n867gZsWm3dSF6mi2A06/vSJaXubykrgTx5jaP26lOjjrEvcNpEGJNvxeGlPzdY3KdqFTJi+wZs/9htX8MI9Fxc/VjAdiLFAXsovHquwsQpgopqZ3U6tAHUhEcgG1cCs762LpQxD/jmXcioYyCTbwN++Mi3/NiLoK54CCo5DQAgs78Nwb3Qe2H2kagatxSfrUoLabsmLObgrbkw7zkL6txbofoMDWl/bsknz9uHogVj4D4BiyTF+sJAzBB9x5Zb3DC4bHOhvmzvDvp1aUnWy2tMX8hRW014iYhog9HaJ+1yex7UCokI5K4znFfouxdU98DvlaHUM80XDKQLDWoswSxDvOjTy7KKgE/mmvh5uaBTW4U7jlHYvX3d9qybvgwHm3xeCdDdJnSNdnFbc93XyZgX+nGEyfqCndPv1CsNpF0feII4cJKvzJi+wItnG+jfxX6jnrdB8PzGIQ2W/Rs/HC+mXo678x6BWVEOaLZ3j6HftwCAIos86kDBaIah0C0VWGN/+Ayg6cFoAJCg/5jQFafHF0RERERERERERK0PL0okap2CPE+AQU5EIdT0H/ehcOOcR0RE9fF9gahFYMAhEUUQzRWzREREREREtMvx1IUiVSv9VZPRHz7avKFoANRlDzRrf7RzKaWAkYe5q7TnfuEZTEtieKyXm966v7cHo1ny1OXnq16DgINPDNHArEWjBs/k3IScjG7YsLI35qwdhREV/+krdO4B9Vs51F6j68apFNSHi0MyHrnnLODzF4GZ04H3HwNmfuW4rvo0A+qd/6BmZEEdfW5IxhNIu0SFTprMsXGDrZenp1gvt9KvcgWSzFLLdWVGQt2NjjahlfnZjvvL1IQbpSf7/pfqKshloxy3V0u9NTdwGcOAuukFv+VXbX3ZUR/HlUy3L9C9L1R0iJIEmsklow0UP2dgL4eZpO2TAOXxQD36BdCuk7acfPQU5ORedaFoADD9TcjZgyEVviA++frd4AbdrhNw8EkBi7U1t2HKV92w5Qlgzm2CubdUY0jX4LqsL8G0SLQAgF8+h1x1KGRZ4NdiOEh1FaS6Cvjpk9A27ImCOvnKgMUMQyHZJgjErfJqoLjeQ62bO6I9vtelTrtE/bqsIv26bRW+8DQrdv0RtRTy+n3AygXOK6TvHrax6ERHKeze3nn5RLMMKV59iuLYJ7244RPB9IXAGzMFQ+83sTSz7qQNXbCjcnCNQ4XNrjcRlvztvs6GFZCqytCPJQzyNUGijcWG+GfcUhMV3jjf+UVIv2YAA+81MXedoLyq4T9vvQng03+tJ4Mv2/jCur2b12v78BhAmzj9GIotshu9mrnHU+/sjgFd9G3WFxeCxzgmRM8Tg9GIiIiIiIiIiKh140WhFGEYvhXB+NwQhQznulaMzy0RUcvFOZyIiIhCh8FoRERERERE5FMvVKlK6QNcYqSqOUazg3riKyiGXu16+g5zVVwdd3GYBtKCGJqPecx6CS5er3UZoEEwGgCou94CTrkqBAOzl2IWIb0mCx67X+476lyoV2dCWdxH1a0P1Kt/hnGEAZx6DVTnHlC9BkFF6UMlw+GhE60v+D98oPXy9BTnAQH9qlYiUROMVmLUS/+JSwDatrNuJHez4/50QURdtgej4adPgfUrHLcHAOrie6H20KTENXbAsX6LnASjpdXkYWzpL/aFdh/obAwRJsqjcN1hzl4zHdr4/ldKAXbhgBtXWs9DRfmQw1Mhn00Gfvnc/WBPuARqyjKoBz+CuuZxR1VSxyVg+PmJ2OvCZMyamY4b46ahZ2pwCTYxZiWGVC7SFygvgXz6fFBtB0v+/QXmBSMgh7aBHNoGyN0UusaHHQz1xJdQg/d3VFwX4his1OtM3DHVRHmVYHOh9ckTXZJ9oWw6XVP0oUarcvV959mEvDAYjXYWWfgnzKsOhXl0R5gX7wdZ+k9w7VSUAVOecV5hxKHNvu9Ta3h35/s0CVKGOKlAtOY4triiYVsllcAT39fNLbpzqG2mmB3KmvfQmVoY+etb95VME9i8JvSDCYP8EmcnOO7fK/R9XzDKF46WkhC4bK19HjaReHXDf8kTTSRe5UWH67149Bvr+zMvbi8IAG+1PvHLUIDHUEiKtV5fbJGv69UcHnvqzT39OjubC+NCMFVHa3LY3SrnvEhEREREREREREQUOgwDasH43BGFDrcnIiKiFoXHMUQtg922yu04gvG5odaJwWhERERERETkUz8YDfqrJpszGE29MhNq3yOarT+KHOpA/5AiWwefGJ6BtCSG5kpls14Ikdcm9KdRsIWKS4Bx7VNQj0/Th641E3XHa1CpHfXrB4wAzr65GUe0XVoXqAvvbP5+t7tglMIBvRsu698ZOGsfXTCas3bbeovQ3puHRLPMcn2pqpcw4IkC2qdblpMFMx31V1Ih2rCh9BQFqSyHvPuIo7YaON55YKJq3wXqsgf9lv+3Zh+08RZr6z2aexfipNK+7dEnOB5HpBnQJXDYQkwUkBxfd1udeUPQ/cmzLusqBXXnmzBumgwVnwilFNRpE4Fzb3XVTFxFISbNOxOrNgzDk6fYlz1lLy88quEXRvdveQDxUmFfcUHzBTjKmiWQ644CVtuEtQVj0L5Qv5bBeO57qBFjHVdzOve48eg3gnu/FKzZYr2+a4A+42MUuqVYJ45k5Oi/ENxQoG+TwWi0M8iWzZBbTgQW/gmUFAEZ8yCXHwjJDCI4afUioCrAXFYrPhHqwrvc9xEixw5xXjbBLIMCkOItdFzn5+V184CpmRJqwxWPGqRvp6wKyC0WLNokKCjlyQbUyMr52lXq2qf0x2AbM8I0oKarrBbMWSv4PUOwNi9w+bho4J7jQn+sqZTChQcYKHjGg5uOcB6k2FhZFVBeDeRb50XvsDmqK0yb0y4821e1jbdeX1TuPz9og9HqdTOgi/24asVFB/8Y1NpDfzjuSkVwOcRERERERERERERERK0LLyInCiFuT5GPzxER0a6Hcz8ROWM3W3AmIaJaUTt7AERERERERBQhPHWhSnFSiTOKPkaVikFVShdUD9gPVWtWoCpfH5QTcnsMAfrv3Tx9UeQZuI/jouqZb6ES24ZxMC2E7sJ5s94V1XbBaB7rj4nUfkcBb/4DmfoSMO31JgwweEoFvpBbnXMz5IPHm2E0AHoPBkYfD3XaNVBtUpunTwseQ+GHGwy8M0vw91qgVwfg2rEKbeKsH69AQUG1elavhwKQaFqnlZUaifUGEQUMGAGsWexfcO5PjvrLyNGv67X5d8hNZwDFNmlEVoYeCNWuk6sq6txbgH7DfOFcG3yBE0MqF+OftaPwaurFWB7TH7L9tbhb9WacVvwpDin73b7RpBTggHHuxh5B+jl4CAd0briNquQ0YHom5FjrwLwmOf5iqPZdISvnA+06Qo09HWrYQX7F1FHnQD56Cqipdtf+ptW4dt7VuD/uBRRbZAPFmJV4cfpQ3H7olXhjdgxKjUSM3zYVx5R8G7jtgmyIiKP5rClkxTzIJfuFvuHjLoK67hkojyaE00bXFIVwfDX5xPf6Nu3C2EQEePth9Nk4EhuS/APe7ILRlmdbr0tLBJITwvvcElmRD54ASv0DPOX0AcDvFe7mHLtQtN6Doc65BfL390BqB6ijzoHqZZMIFmaj+zibV+LMcnjg2xdO8RZhS5SzZJ8NBUDeNkH7Nkp7TULtIztuiMK3S6wL3fa5ibnrgYpqICEGePYMhYsP5G9W0fb3og0rrFcefibUKVdBPnsB2GwRcrghMoPRZq4UnP6qiayiwGXH9geGdVc4cx+FYd3D+/456WSFJZmCbywOV0JleUxfDK3UB9Ia2+9icjyQaZHRaLXf6SQYrXs7Z3NhQmzAIgGlpyjs0xOYs65p7VS43D0nIiIiIiIiIiJqPXgpJxHVxzmBKGQYNNh68bklImqlOL8TtQh2+2LcTyOiZsZgNCIiIiIiIvIx6oIuOnlz8X7mhb4b7UfDuPZHmM+9Cfz3fLMNR936MpQu6IlaPWUYkPPvAN55OHDh4WPCPp4WwdCE1Zjeur9r3AejAYDqvSfUTZOBmyZDaqohhyQFOcjwUUnJkM49gOz14etjwsNQZ90YtvaDERetcPnBCpcfHLhsusNwoncyLwYAJIp1EGZJo2A0td9RkBlv+xfM2QCpqYaKirbtTxdCFBsl2O2pM4FtLkPR0rpATXzSXZ3t1D6HQ33gCzWQqa9AnpqIParX4LHcO4Nr79aXoZKSg6obCdrGq/9n777Do6jzP4C/P7ObnpCEJAQCoZPQixQFBRQsqKBiwQYKnqJYz3L208N6ep5n1xPFdnbsXRF7+WEFESlKlR4ggZC6u9/fH5u22ZnZmc3uZnfzfj0PD9n5lvkkszM7u5l5Bx0ygO17jfvohVlIZg7UtIuBl+4LaT0ydQ6k9yAEis+QrkXAnNugHrrGPBBSz9vz8d0RuRi4/lrUSqJP05Obz0b7vRvQ/o2rYfs7c9UCZTuBrFy7I02pki3AN+95A432Pzw8oWidukG78uHgh1sMZQylrjkmz5Kv3oaafxN6dbwPevGNWzfuBKAfnrRyq/6UxdmVUC8+DuR0BMYeC0lKtl0zkV1KKeCVh4w7vPs0cPSZ1iesrTFskr89BBkwCnLoNBsVhk9hNpCSAFQGCNhJbRLqne3ZbWsdf3nKgzcudMBjcOpU/1b17IMEFz2v3+nL3xu/rqgBZj+jMLaPQlE+gxTbvB2bgMp9uk1ywhzvF4VFusFoasOqgOdCkVZZo3DqPGuhaM+fIzh5ZOQ+6xERvHmhhiPu8WDRivCsY2VSMQZV/2rYXh9m1s7g9GBPpf8yo2A0rcnGtxp8nR6CYDQAeGSG9+e4o+69QXYq8OGlGoZ0AY570IN3LYTPVdUqIOqewURERERERERERCHSZm4KbSvfZywItC24rcIv2J+x2ThuNyJ7uM8QERFFnTbz/piIiIgigXeYExEREREREQBAxOAtoqq7G3OPzWCalhg4GtJ3eOTWR1FJJs8M3GnkRIjwploAjekMzXma3FFtFhBkEozWlDgTIE98F7jfv96AzH0WyMg27tSxG+Sy+yBzLATgWTFpemjm0XP8eVEXimaXlRvn0zzlDTf1p3n0wxr2NQtGQ2Ef/cmUAnZtC7jO33foL++dvBuOvTsDjm+QlAK5+QXIUz9AioZaH2fk0JOBpJSgh8vtCyAHT215Ha2sQ4Z5+35d9ZfLcbMtH1cs6d4P6DXQcneZdjHk6Z8gVz9qe1W9PrgTu1fm45lNMzF1z+v417arsH51b0zb+4rtuXzsNEjVCpL6+QuomcOh7pwDdc+lUKcOCOn89WR+4GO+GauhHaE0ro/xuYH64i0AQK67RLd95xbj8KTVBkGOxctegnrgSqi5Z0DNGQdVstlGtURB2rbBtFn9czbUXhthYGbBaANGWZ8nAjRNUNwxcL+mIa8FtVtsraM+1MzoGq36o0xSgiAnTb9Pc0oB87/iRV8EYONq47auRb7/+41dFfp6WuitpQqbSq31zU2P/Pt3hyb46FIN/TuFZ/5ViX3gFoOgcjSGmRkFo5XpBaMZHCocTd72Wz3HSgtRMNrQQsHyuRpePlfD8+cIVt2iYXg3gdMheOsiDQsv0/DfGYIlN2goNPgYoCpAoCURERERERERERFFCd7EThRe3MeIQoj7ExERUWzhazdRbDDZVyP4nlbx/bM9/HlRnGIwGhEREREREXk5DG7i9Li9/++0dyN5i6SkRm5dFL06FAbuk5kb/jpihWa0DzcJRjMLxzAar0N6D4Zc+5h+Y+eekMe+gRwwCTLhRMhbm4znOeNqyNRzQxY4JjOuAo46E6gPyzM6rgUz98V3h2yu1lLcsfGmfCNDq5Y0fJ1uNRgtr8B4wh2Bw4F26a8GhVvthTHJvR9ADp4KycyxNc5wvowsyF1vBe449hhg0JjGx0kpkL89BDloSkjqaG256ebt+3XTf1JJYR/IDU8B6ZktL6LnQMgdr9kOwpSuRZCjzwQOP832KpNVNU7d8xJe3nQaLt11Pzq7LAZdmT3/QngupZSCuuhQoMxGeKAJufEZoH2+78L2HSH3L4S0cBt2bR/5AJTD+pk0rvgBAJDrMghGqzD+tYlR6EvPmjWND1YvgVrwYKASiVpu+5+B+yx4yPp8RgG66a2QbmhBcX7gY0uqo/F7KnDZOwbvrgD2VSt4DK4RaHpOlWEQdqRn4XJedEAAdhskA6dnQeqCpcUoGG3Dqqi72Of9Zdb75gQ4twwXEcGXV2mYMjj0c69ILILH5LKL+jCzTIPM5T1V/svcHv9lTecCgHYpQGpi4PrSQxSMBgA56YIThgtOHqkhp0nInYhgQl/BOWM1DOoiSE7QH89gNCIiIiIiIiIiarOi7HNdImptPCYQhQxfY6MftxERURvEYz9RzDM9h+M+TkSR5WztAoiIiIiIiChKGIUiueuC0azceB8qu7ZHbl0UtUTToHoPBn5fatwpRAFI8UBE0/94WXnvqFY11VBXH68/WNMgmr38fDlyBjDhRG/Qz+4dAARolw106e0TXiQOB/DIF1DnjfWdoFtfYNJ0W+sMWFNiEuSaR6Eu+hfw5+9A1yKoYwqB6sqWzfvE997vI8ZlJAsGFAC/GGfVoW/1qoav06wGo2VkA4nJQI3OHf0lgcOkSiv0l2e7TYL8miveD+g/ynp/i2ToWOCBj6EunGjcZ/IsyJijoEq2ALu3A936QhJDmD7QysyC0USAwZ1N2iecCIw7Fli3wn8/dCZAffQ88OK9puuXx/8PUjTURsU6c8y8FurD51o0h6X1/OVG4PQroCZk6HcIwbmUcrsBpaDuuaTFc/k4+Hjv9tqwEti3F0jLALoW235t0FOcH7hPKB07BEhNMglMqjue57r1Q+VKVDsopXSD+IyC0bq4mh1YP3sdOO9WS/USBW3n1oBd1KKXIbOuszZfbY3+8gQLqTutoLhj4D5pXbsCmzKB8jIUWA24bGLVNuPLN5oeIqwEE9X7cYPtMigelemHcyKrSfC3UTDanl3A2uVAzwGhrytISzZav9ApUOhuOGWlCt640IFtexQ2lwJODahoduhzK+CgOwxSyQysSiqC20IwWkaKQO+oskfn7aqVYDQRQecsYHWAj9BCGYxmlWEwmkEGJxERERERERERUXzgTaEUZRhEEwFB/qE4Zfa7iMj/8Tmi2Gbvd3sUS/g6RkQUu0yO4XyfQkQ28JBBRACD0YiIiIiIiKieUfCFxw3lcgGb1xqP7TkAGDQGeGNeaGqp0g/jobZHZl0Pdd004/bMXMO2NscouKs+3PCHRSZjg/uISJJSgIKe3n9m/QaMAu56C+rxm4DSHcCA/SHn3gwJU9CGpGcCfYcDAJROsI1lAw+AzL4J0ntQiCprfYuv1ZBygfHFQMU1Kxu+NgxGk9TGBw4NIgKVVwBsWuPfeYdJClud0gr931ZkucsCjgUATJoOufjfuiFGoSBDDgJueh7qhlP9GzNzgOETvP1yOwG5ncJSQ2tqn64f4AAAHTKA9GTzn7s4EwCjfahoKNBzINTt5+iPvfDOFoeiAYAU9gEe/ATqiilAZXmL5zM0ciIkIRGq3wjgt+/9mtV3CyGTZ9maUlVXQj1zB/DU7S2rrWM3YMRE4O35/m3DxkOcda8D3fu1bD06euZ5QzyMAj5C7eSRAY4FrloAQI5BMNpOLRuendvhyPVNdKuuVSgxePp0qt3iu+DP3w3D1doipZT3fMTT5J/b4Gufx566fzbH1H+tPLbHqIb12lhP0zblMag1wPfhU6vRHDqPA1n3m/UNFWPBaH0tBKPlZTogj34Fdf/fULBmj+11/LpZwWNw7NKa7N5GAUB6RIB91QppZgGOFP/27NJf3jQYrfdg7+c0ek/Cr96JqmC0Uhs51DlpgfuEW347QX474/Ytd2m49PHdWPRLFcq0TABA99r16OTagk/TDvbrvzGhEHscxhPWHy8yU/Tb91T6n2sbBqM1O3T0yA0cjJYWTcFotZGtg4iIiIiIiIiIiCi+8e7g2MVtRxQyTEogIiKKMXztJooJZufZETwH5xHDLv7EKD4xGI2IiIiIiIi8NINQJY8b2La+IUSiOXnie0jvQVAeD9QXbwK7trW4FDnu3BbPQXFi7DHm7TkWEhHaCjEIN1QeKKWgnr3LeGyQwWh2yP6HQ/Y/POzr8Vvv6X+Denyu/XGzb4bMuDIMFbWupATBzDGCJ7/W/8C7uGZVw9dGwWjlWnrjg/rnTq5+MJpatzzg3zEtrdBfnukxDkaTO16DjDkqwMyhI4ccD1z9KNQ/Z/suv/BOSFJyxOpoDbnpxm1ZBuEOVokIcNQZwMiJUGcMA8qbbPMxRwHTLm7ZCpqua/AYyIf+QVie+/8GvHRfaFbSra/3/y69dYPRsGgB1LWP23rOqHk3Ai/eG3xN/UdBHv4MUheA68lsDzR9PUhMhpx5TfDzW5DoFPTKA1a1/BTRkmkjAhx1KrzpZrkGwWgecaD09zXIaRaMtsUkq7Gza7P/wuWLoYqGAauXAOWlOoFfBgFYhoFYjX2VYfhW08dG4V4mywPV4bNeC7XXP6bY4DIIRnPaSP2KoL6djIM76xVkCaSwD+TO19FthQLutpfQ+NFy4zU0zT00Oz40p5R33uOG2SqF4owqLdFvyMxp+FIysqEGHQgs+cJ//KqfAp5jR9LeKmv9UhOBlMRoqtyX2rcH+H0pOtRU4X+vHu3XviahO4p6L9cduzKxyHBeR91b9XYGp4B7dH5+hsFozd7298kXfLjc/FiY3gpBjAxGIyIiIiIiIiIiIiIywSAnohDi/kRERBR1eL5LRBZFSf4aEUU5BqMRERERERGRl8MgGM3tBv783Xhcl14AANE0qCNn+IZtBKsVwpMoOokI8OoaqON76nc44IjIFhTNNINgtI2roU4baL4fG4WqxYMxRwF6wWjHzwFefdh4XP+R4auplZ05Wj8YLUv2YcKsoyFpx0P9czbSlH4wWrWWDBcccMLdGIyWlae/sjceg+pQCMy4yrs/N6O2bUTpir2AVuxfj7tUd0qZvxjSZ4jBdxc+cvSZQGEfqHefAiCQo8+EDBod8ToizTQYLTU065C8zsCzv0C9cA9QWgLpPxKYfJbucybU5MI7oX5fCvz4acsmyu4ASc/0zlnYx/iSu49f8obBWaB2bwcWPNCisuT+hQ2haAAg594C9BkK9c17QLv2kCNOhxSHP52nb8fIBKP9dpMGTQvwvNm2AQCQYxCMBgA71mxEzgG++/cm/UMSAKDAtcVvmTpvnHkdRNGm1iAYLSExsnVY1L9T4D4FWY1fH9jb/jre+UWhr0EOsxZkMBoAvLdM4bhh0RsORRFQZvAalJnr+3joWN1gNHz6KtS2jZD8wtDXFoTyamv9ctLCW0dLqFcegnrgSsM/CgAA3Wo3IMlThWrNP+FseVI/w3H1x4t2BqHCZZX+y9wGJ5PNg9GK8/X7NZXWCofxZIOrUBiMRkREREREREREbRfv5KTWwOdd9OK2IQoZpiXEgGC3EbctEVF84vGdKCZESWIZT/eJCADi+K5XIiIiIiIissUoGEl5gJKt+m05nSDJjakoMv1KoN+IlpVx1g2QHv1bNAfFF8nrDLniAaBZQI5c9C9Ihy6tVFUUMgpG27PLPBQNACrLQ1+PXTOv019+wvktm7fPEGD6lb7LRk70hgMV76c/Jj0LGHJQy9YbxcYXCy6Z6Ls/JTqBh89OR9q02UBiEgCgnXuv4RyljrqkkYZgtBzDvmrejcB3C/2Xr/sN6sTeKHUl6Y7L8vinjMgHO1slFK1h/YPHQLv6v9CufqRNhKIBQF6GcVuogtEAQNrnQzv/dmjXzoMcNxvijMzf9BARyN3vAgdN9m/MyIbcvxAYe0zgiXoPavy6xwDDbuqLNy3Xpl5+wBtQG4yeAyFvbIAk+u5fIgKZeBK06+dDu/iuiISiAUBRfvABQCt/H4Cpe14P2O+2qYLijubrUV++1fB1B9cOw35r1vkff9bs0P/NapqnHO08ewLWR9Ra1MqfoKwcS1wGwWiOhNAWFCKJTsG0Eeb7fF6TcM9Ep+CaI+0di3btA77+Q7+tJdmdv27mlRptXlmJ/vJM33Nq6eYfHlxP/WN6KCsKmsutLIddmQXutia17Fuoey41DUUDAAc86FW7Rrdtk7Oz8bi6t+qZBsFoe6r8l7k95nPV69cp8MEo3T/HLexSDMLYGIxGRERERERERERxrc3cqdlWvs8Y0Gaec/GI244odLg/ERERRR++PhMREVHoRObuMiIiIiIiIop+Dof+co8b2LNTvy0r1+ehpGcCD34CLP4QWLcCyC8E/vwD6vG5usPlqkeAw08Dfv4c2LQGGHwgpNfAlnwXFKfk2HOAYeOBHz/1hvUNGw/p3q+1y4oumsE+HCNk3LFQT93md9GejD+uZfOKQM69GeqQE4BfvwW69AaGHewNXXpwEdShHzoXrAAAIABJREFUWf5jpl0EcUZnCEio/OdkDaeMVPhmjUJaEnBoP0GP3Lqb6uuSPnLdBoENALY78pDr3tkYjJaZa9gXANSbj0NGHdb4+N2noW4/BwBQ6sjUHZPlLvV5LOffDkmN0jSFOFaQKTD6BXVSnHy6LA4HcNsC4IdPgNU/A7W1QF4BMOowSE5HoGpfwEAzOaJJOMnoScYdf/4cSilIgEQd9e7TwDN32Pk2vCZNh4w9Btj/cEiSQfpGK+jbMfixvWrX4oVN0/Hy3hMwvfNTfu2DuwBPn6VhcJfAwSDqmTsbvk5VlehcuwmbEvyDTFZuqMJRzZat3q4/Z5+aP9CCfCSisFNnHwCkZkANPAAy5CBg8IFAv5GQpGZJObUGwWgJBuk2UeCywwQvfW98EVX3HN+985bjBC98p7C22SlOprsUtZKACi3N8rqbztyng/ExQs9vW2DptYDi2C79J4w0C0ZDV+NgNCz7Fmr7n60eFl5ebb1vThSeyqvaGqg54y33z3PtAHRynbc78wzHaHW7ertk/fPqskr/MVaD0Q7o6T0nr3YZrh5prXAYT07Q/16rTOokIiIiIiIiIiKiaMKb2ImsCXJfYagdUQhxfyIiIoopPBcmihEm+2oE92MeMuziD4ziU5zcukZEREREREQtZhSq5HZDle3Sb2t+0y4ASUgEDpzs/QdArfgB0AtG69ILOHqm92bwJmE5REakaxHQtai1y4hemha4TxSTPkOA65+AuutCoLIcSEmDzLkdMsz6Teqm8xcNBYqG+i5LSgH++yXUbWcD61d4A8EmzQBO/1tI1hnt9u8p2L+nTiCHeJ9LeSbBaDucuUANGoLRpF1784/QP3sN7829Hy9lnYzqxAyc/frTOBiAB4IyTT8YLdNT5rug1yCzNVCYFPhnBzaoMMjQiUUiAoyY4P3X3P5HQObcBjXvRsBV69vmcACnXQEcdkrjXEkpwHm3Qj1ynf9c5WXAzq1AbifDWtTOrQ3Bgba+h2vmQY46w/a4SCjuaBywZ+bVjdMAAA54cMqel5HqqcSsgkdR5siCU9Xi7z2/x/VXH2gpXEiVlgDLF/vWVbNSNxht1a5EqNISSJMQ4FWbagD4h2b2rvnd5ndF1Aoq9gKLP4Ja/JH3cUIiVN8RwOAxkMEHAoPG+B/f6kVxMNqoHoJ7TxFc8oL/8UUEGFrYfJngo0s1zHzCgy/rdt2j976LeVvm4LxOD+DNjCmW153c5HAw60DBta9ZP8btrgC27wXy21keQnFEeTzApj/0G3OanR90K/bug0bBhZvXAq0cjLa3ynrfgqzoCQNUbjfwxqNQ//mrrXG5bv0/HLDdYRyMVh9mlp2q315WCbjcCk5H48/HMBit2Y8wLUkwoS/w3jLD1SM92bgtXJINcsarDV5qiIiIiIiIiIiIiIjaFrPfLfImZiJbmJQQA7iNiIjaHh77iYiIKHQYjEZEREREREReRsFoHjewR//GT7RrH3Ba6TscavCBwNKvfJefd5ulEAsisshoH44hcvipwIQTgY2rgS69vUGL4V5n/5HAkz8A2zcCSSmQnI5hX2fUqwvZS1bVyHDvwV6Hf2pHiaMuLKguGA2ZuX59mno4ezYu2nQ+sMn7+IVuH2D+5nMwqfxDKNEP9ctyNwtG697P+vdAIWMWjLavOnJ1tCYRAU67HDhuNlC6A8gpAPbuArb9CfToD0lN9x909ExALxgNADasNA9GO66b/RrPuSlqQ9EAoG+Qh9bxFZ/7PD6m/G1sW1WIlYlF6FG7DqkFkyFykLXJVnzvX1f1KixK8w/DW+Ps5g1RG3NUw7J168sA+B/retcYhNtQZDgc3nMgzeF9/dKaPG7a5jBrc3hDQX2WN3/c7Gu/cZp5P80BadomEnhuv6813++xSR/1378Dy76x/nOrrQF++Rr45WuoZ+/y1pNmkNLljN5gNAC4aIKGapcHVy7wvZjqmMFA1xz/95s98wSf/U3D+p2A470n0PnROQCAgdW/2gpGS0tq/Pqk/uW49rU0W3V/ulLh5JF8P9wmbd8IVFfqt3Ur9nkoyalQx88BXrxXv//OrSEuzr5yG+eDRfnhq8MOpZQ3HPvD56wP6tQd8szPyH1sL7DEv3m7s4PhUK1uV8/NMKrHG5iY16TdMBhN563TlCGC95YZX1CanmTYFDZJBlehVDEYjYiIiIiIiIiI4hqDjija8HkXvbhtiEKH+1PcYugdEVGc4vGdKCaYnotFbj/mEYOIAAajERERERERUT3DYDQPsGeXflu7bEtTyx2vQT1wFbDkc8CZCDn9CmDcsUEWSkS6NP1wqVgjzgSgR/8Ir9MJFPSI6DqjWpOgsjx3iW4w2g5HnrdrXTDaW3uKcX2Pxdjm7IAJ+z7FzTv+gZ616wAA1ZKIW3Ov9pvjrIJ5pmV0rd3Y+KCwD5DX2e53QiGQkWwc2lJRE8FCooCkZgCpdYkVSQVAboFx36xcqMwcoEwnXHbdb8B+B+uOU//3gf3Cjp4JzLjS/rgIykkX5KQBO/dZHzO88kdkevb4LXfCjQE1v3kflGy2PuH6lX6Lurj+1O2605ELbPjSJxht8/YqIMG/b/fa9dZrALzPoeYhXk2DrwIFZPkEeBmEcenO0SxUy2CM+I0xWY/uHJpBrRbHaHXjLISGSZyc+4TEna9BHdWCcFelgPIy/bYEnSd+lLnsUEFqInDfxwoC4PABgjtOMH79EhF0zwXU9FlQ678EPngWRdWrba0zrUleXM/vnsFpZZl4LvNUy+NPnacw8wk3HJo36MjZ/H8H4BDfr50O3z664xraxGecZnmcfw316/WvQcznNBwXoJYm37umxWF4nM7rUYOuRX6LZM7tUEbBaBtWhaio4O2tst63OL91t6da9TPUvZf5BfebysgG9hsPueRuSFIKcrskAUv8L7faZhKMVh9mlquTpVuvpNw3GM1jcEWX9t/roKpHQA45oWHZ5MGC8581vgSso0HuZTglG7x0VNXyUjUiIiIiIiIiIiKi0OFnrq0vyN99MOyHKIS4PxEREUUdnu8SxT7ux0QURRiMRkRERERERF5GwQIeN1BmFIyWY2lqSc+EXP1IkIURkSVG4YZW9Bkaujoo9knjRXu57hKsQU+/Ljucud4vNAc+Wq5w3MJhQLJ30YuZ07A8qR8Wrz0QCXBhWdIAbHXaC2vJdu9CB/f2unVokLP/AZE4DMaIEUlOoNrlv3z2OG4TU12LgV++9lusvlsIOX6O/3JXLdQVx9hbx/HnQbvUICwlyvTtCHz1h//y/HbASSMEDyxq/AVqgqrB30tuDTypjWA0tdE/PCbXpRNcB6DEmQO1YSWqaxV+3ghkLfsIW5zjdft2cm0Bpp4LvPbfgDXIOTdBzrjKcs1ElqVkBO4TLGdi4D6tTNME5x8sOP9ge+NEBHL9fHgA9P/sV1tj05MaXwPVogU4vSzVVjAaoP/aGjqRuCgl/OsQCSYUzk64G+DUpKGv1qIwOrP1SuPXvwJa2gQkeaoxtHop2nn2er/Z9h0haf4JVuJwQA0bD/z0mV+bmn8TZNZ1If+5l1UobCoFeuYByQnm53vl1dbn7dephYW1gNq5Feov+1sfcMpfoV1wh99io3CzCi3NcCpNeQA4kGPcBSXlvo/dHv1+jpKNUDfcDdz9DmTkoQCALtmCYYXATxv9+588QlolYNA4GC2ydRARERERERERERERRSez37PxWhwiW5TBL9aIiIgoSjFsiSjmRTA0jflsNvEHRnGKwWhERERERETkZRSq5PEAe/RDIySzfRgLIiJbxCDc0Ir99MNeqI1qEkCW5yrR7bLDkef9wuHAvQv9Ly76JXkQns88GWeUPYuViUW2SyiuXuW9zO+oMyGTpkOGjbM9B4XOpYcJ/vme/y9JJg/mxZimBh6gG4yG7xdBuVwQZ7OP5xctCDilXPc41G/fA3t2QcYdC4yfGqJiw+/4/QRf/eH/PLp7muCUkYIxPYG3PliLdks/wvSyZzG6cnHgSUs2QykVMDhRVVcCbzzmtzzXbRCM5sjBE78X4qK/euoCPCYaXnvcec7lkCljgcEHQd16FuAySfxITjGtkyhY4nSG73Ihp0G6TRyRax/DsKIHgYXWx6QlNXnwy9coTuga8rrIe42GSwGusF7LHukQuYlA14kAAKeqxcW7HsAd268z/3wl1zhRTP2xDNJrYEiq9HgU7vhA4e+vK3gU0CkT+M/JgmkjjN9r7iw3bPIxuEsrB6Od0MtWf71QNACm4WaGc339NjDxWKQkCtKSgH06YXJ+wWgGT0uHcgMA1PxbGoLRAOCsgwQXPe8/6KyDWud83SgYrZLBaERERERERERE1FbxpkRqDXzeRS8GORGFEI91UY+vR0REbZDJsZ+vC0SxwWxfDeF+bLqakK2FiGJdC+6YJSIiIiIiorjiMApGcwO7tuu3ZeaGrx4issdoHw4kMRly5jWhrYVim9b4kaFRaNBuR5b3C4cTH6/Qn+asgnk4rsvLuD33StslDKxeDjnrBmjXPMpQtChw2aGCkd19l911kqCwPYPRzMiBR+s3VFUA29b7LVafv24+4WmXQyZNh3bpPdBufBpyyAkQLXY+4j97rGBCX99lV07yhqKJCE4ZpeF/B/2MB7deYi0UDQBqqoG9uwP3e+Uh3cXtDY5xFVoazsFVdaFo5grG7A8RgRw6Ddon5ZBPK4CUdP3OwxhESmHUpbdxW5+hwAGTgPRM+/O2zw++phghmgbHtIswP+Nhy2PS64LRVF0YYtfajWjnLgtHeRTHXJKAu3MuxZOZZwDJJolbnY1DvdTTt4esnreWAte95g1FA4AtZcApjyqsLTG+xGjhb4EvP8pNB+45WQsYZBpqylULtfAleGaNBNwua4Oy8iDzdIJt6+Rl2P8etGdua/jaKFitpNz35+g2uB/KAW8wGpZ9A7VrW8Pyc8cJjhjg23fOwYLD+kdXMJqVcysiIiIiIiIiIqLY1UZu1+RN7FGE2yJ2cdsRhQxfl+IYty0RERFRW8czQiICAGdrF0BERERERERRQjMIVaquBPbt0W/L7RS+eojIHgkuHEfe2QJJTg1xMRTTmgQWZLn1A4d2O7IBAEsq8lFtkjHwdoZBMFQA08ueBVKODWoshV5uhuDTKzQsWgGsLVE4uFgwsDND0QIqGmbctmGVT8iJqq4CPjMJRjv0ZGhzbjNujwEZyYL3Ltaw8Ddg9XaFA3sL9usK35CUhET7E6/7DRh8oGkX9cI9usuNwh+tcigXOrT3rVkcDqjDTwHeeMy3c7dioPfgFq2PyNT4qcCz//JfnpIOefgzSFIylNsNrP0VWPIl1NKvgCVfATu3mE4rY6eEqeDoc+bEdrjklT3Y62gXsG9aXTAatm0AAGhQGF/xBd7KmBzGCilevZExBbNSNhi2y4QToZ68Vb9x0QKofiMhp/y1xXU8841+Glevaz1w/9c/2MzjUXh7qf6lR8cOAY4ZKkh0AhP7CjpmRjgUrbQE6oJDvOdcFsnFdwGHngzJ7mDYpyCIfEntj6UNX+emAxt2+fcpKfd9bBiMppo0fPUOMOUsAIDTIXj3Yg0fLgc27lIYUCAY3av1zteTDa5CYTAaERERERERERFRrOBtp0ThxX2MKHS4PxEREUUd0+BSvnYTxQaTfZXhxFGM24biE4PRiIiIiIiIyMsoGM0oFA0AcjuHpxYiss9oHzYz5SyGopG/JiF7WZ4y3S6lmjcR4JSlh4V89R1c23BQ5TdA8mkhn5uCl5IoOHowADAQzSpJSYPqUAhs3+jfuHE11AGTgPeegXr/f8BPn5nPNfW8MFUZWQlOwZGDgCONnkcJSfrLTaiv34WYBKOpr98Fdm/XbWtpMFrHdDc0zf97kTm3Q23fBHzznndBYR/I7a/4BcoQhZL85QaozWuAT17xXX7Xm5CkZO/XDoc3oK/3YMgJ50MpBWxZCyz5CmrJV8DSL4GNq70Dk1Igs66H7H9EpL+V1jP6SJz7+GO4K+eygF3T6w9X5Y3vl5/efBayi/WPN4W1G7ExoTAUVVIc2pTQGUhJM2yXHv2h+gwFVv+s264evAoYPQnSra/P8l37FO76UOHJrxS27gFGdQd65Aqm7ucNqHpnKVBS7r0QprC94NWfjGt0nOvBzDGCg4uBGQcIRAQ/bAC26L9dwOkHaDhxeOu87qmaaqgp9j6vkv+8BxkxIWC/ztn269HggVIKIoLcdP0+VoPRNDQ2qK/ehtQFowHesNkjBgDRcL6enKC/nMFoRERERERERERERBRfgrzhmDeRE4UQ9yciIiIionjFt89EBDAYjYiIiIiIiOppWuA+zeV2Cn0dRBQcu/twSjrkzGvCUwvFtibPpWz3bt0uZY5MVEgK1lZkhHTVyZ5K/LJmuPeB0+BueqJY0rWPbjCa2rAKuPcy4JWHAs/RZwgwaHQYiotCifaD0bDs/wyb1IfPQ90807A9270bIsH/0rSgvX4oqaS1g9z5OtTOrUB5KdC1mKFoFHaSkAi56TmoHZuATWuA9vlAx24Qk/1KRICCnkBBT8iRMwAAavd2oLQEyOkIadc+UuVHBcnOwzEd1uMud+C+afU/1urKhmUZnnI89+cMnNblGZ++Q6qWYvHaMdju7IDVCb3gnjQDnkkz4fYALo83AMnlBtxKNfm67v8mfXz6e0zamo33+MyldPuGar0ugzAnMlcpyUCycTAaAMg/noY6fbBhu5o+BPi8quH1pqxCYchcDzaVNvZZvA5YvE7hxe91ZwhY55NfKzz5NfB/a4EHTxO8uUR/TKITdQFdkaeUgrrEXqCjPPI5ZMD+lvpmpwJJTqDaZXFu5fHGlFXsBdLaITddoPez3mk5GK3JAeq7j6Eq90FMQvVai2EwmsWfGxERERERERERUfzhXZzUGvi8i17cNkQhw6SEGBDsNuK2JSKKXWbHcB7fiWKC6Xk292MiiiwGoxEREREREZGX3VCl5FQgPTM8tRCRfZp+OIuuIWMhs+dC8ruGrx6KXU3Ce7LcZbpddjuy8WnqONQqG887E8meSuxfuRj3brscOe5dIZmTKCoU9gG+X+S//I15lqeQe95vO6Faicn2x2xcpbtYuVxQD5kHgDrGTEJxErBiq/3VAkDH9ua/YpGcjkBOx+AmJwqS5HUG8joHPz67A5DdIYQVxZbRE/qi8N2N2JhQaNovLbHui5pKn+Un7X0FlZtTcEfOFdjhzMXh5Qvx721XwQEPOrm2opNrK/DaV8Br5wUXTh4DPBC44YBbHHDB2ex/73I3HHCJs/F/0fz6NvbRGvq6G/5vnKthXH0bHHCJ/vr15vJfh3+9vnM31uvxq1fne4OjoX+1JKFG8w8rrJQUICXd/AdbWAT06A+sXW7c57l/A6dfAQC47T3lE4oWSo9+rnDlEQpv/qx/gdOEYiAjOfTnLqpyH9Tjc4HPXgcAyNEzgTOuhjTZl9T8m4Fl31ibsLAP5MI7LYeiAd5AyYIsYG2Jtf6O+iCzsp1AWjvkGGzmneW+P0u3wbVjDtUkGK2mCvhuITDuWGvFRJBhMFptZOsgIiIiIiIiIiKKKAazUKTxORfDeIM5UehwnyEiIiIiilf86IOIAAajERERERERUT07oUoA0D6/7YR0EMUCi8EK8pcbITOvDXMxFNOk8bmU6dEPRivVMvFz8pCgV3Hv1stwwe5HgInTgI9fCnoeomgnXYtadPmd3PIipF37kNUT9RL8w2IC2rUNau9uSEa27/JfvgZ2bjEdKmdcgyOXC1ZsDW4rFWTxXJgo3mjHnI07n5iFU7v8z7RfWv3hqto3GE0AnFn2P5xZZj4eAODxBFdklNMAaHDDIBepTXuh3UmY3vkpv+WVWjKQkmo6VkSAObdBXXmcYR/1yHXA5Fn4qbQ9/vVB+K4IcnuAhz5V+GWTfvuUIeF5fVQ3zwS+eLPx8eNzgdpqyDlzoTweYPli4MlbLc0lf38ScvipQdXR2U4wmmoSjFbQA7kGwWgl5b6P3QaHh4agtTrqq3cgURmMJtC7CYXBaERERERERERERERE4J3dRCHF/YmIiCj6mLw+81yYKDaY7avcj6MYtw3Fp/j8U+RERERERERkn8NmMFpau/DUQUTBsRpuOGxceOug2NckZC/LXarbpUpLwdLkQUFNP7zyR5y3+1HIDU9BZt8U1BxEMaOwqGXjRx4amjpiRTDBaACwYZXfIvXlW+ZjDjkBMmAURnUPbpUAUJAZ/Fgiik6SlIxp18/AR+snmfZzOuqCn6qrIlAVxYsUj/7zpVJSgOS0gONl9JGQm543bHdDwxV3r8KIW8MfumcWvBbqYDTl8cBz/Sk+oWgN3nwc6o9lUEflQ80Zb2k+ufiuoEPRAKB3B+vfn4a6bbF1AwC0PBhN+Qaj4et3odxu/c6tKNngz/MxGI2IiIiIiIiIiIgokngzbPgF+zsRbhuikGEoQwzgNiIiIiKi4PBMkogABqMRERERERFRPYfBXYtGklLDUwcRBUez+DFPt77hrYPiQONFe1meMsNei1NG6i4/abjxRX89a9bgxU2nwfnMj5DDTgHyOgPJBq8nbS0QiuJTt+Lgx445CpJqkJ4RrxITgxu3fiUAQLlqoT55BeqjF4CX7jPuX7wf5NJ7AQCds4IPb+mVF/RQIopiMuYoHFLxOYZX/qjb3tuxrfFBdWWEqqJ4kKz0ny+VWgokxdprvhxyPHCAf3DfT0lDcHC3j/CfLaNaVGNL7dcV6JIdumA05XJBXX8y8Nlr+h1Kd0DNHA7s22NtwlnXQ066qEU1FeVb71sfZKZu+wsAIDdd/2fTNBjN4zG+nMuBZiFopTuAX7+1XlCEJCfoL692AYo3pxARERERERERUdwy++wrnj4Xi6fvhaiVmH5WHto/QEMU91T4/2gUtRL+XpGIKHaZHsN5fCeKCWb7cQjP00yPFjxcEFEdm3e9ExERERERUdxy2gyiSE4JTx1EFBwrwWiZOZCs3PDXQrGtyXMp211q2G1DQlfd5UcMAJ6YqWH+g5/hpR8F3WvWo3vtegys/hWH7luE7AU/QfI6AwAkIRFqzFHAogW+kxTvB8kvbPn3QtTa8rsCHbsBW9fbHirTLg5DQVEuISmoYWrDKmDXNqg544HNa807jz0GcsNTkLpQxoKsoFYJAJg8mBckE8UrefNPnDDrbvyQsp9f27G7F0DVngdJSGQwGtmS4tF/vrgkAS5oMMiS8iO3vQw1IaPh8c2512Bu3t9DUGHLTRkSwlC0sp1QF04E1v0Wkvnk/oWQoWNbPE/fjgKrF2lqqLsRo6oCyuMxDEYrqwSqahWSEwTvLTOerz5ozcdPnwODD7RUT6QYBaMB3nA0s3YiIiIiIiIiIiIisop3CMcuBjkRhQ6PhURERLGFr91EscEsGC2CVfCQYQ9/YBSnLNwxS0RERERERG1Cgt1gtNTw1EFEwRELH/P0GBD+Oij2NXku5bh32h7et5MgNUlwwSVj8emwBXhy62z8o+QWnIhPkX33iw2haA2ru+JBYEiTgILu/SC3vBB0+UTRRESAMUfaH3j4aZDhh4S+oGiXmBzcuPUroO67InAoGgC57L6GUDQA6JQZ3CpHZWxFuxQGoxHFK8nOw2WHuDGz9Gmf5SfseRU3bb4O+Okz7wKjYLRegyAvrQQGjg5zpRRLklW1YVvF9hLL80hCIuS2lwEA92ZfEJJQtDcv1DBpACAtfGk7dmjjBKqmGmrBA/DceDo8j82F2rbBu7y0BJ4HroRnbJL33yPXQa1eAs9D18Bz4+lQrz8K5aqFmndD6ELRHvk8JKFoADBMPx9alwNNgsz27DI97/hjB1BRrXDWU8Y3Q/nMV0e9/ID1giIkxeQjxqrayNVBREREREREREREQeJNlEThxX2MKIS4PxEREUUfvj4TERFR6DhbuwAiIiIiIiKKEk6bwWhJDEYjiioOR8Ausv/hESiEYl6TNIQUVYX2rp3Y5cyxPLw4v24ahwNy+f1Qs28CtqwHeg6EOP0/jpSMLMgDC71BCdVVQGEfb5gUUZyQMUdDvfqIvTGX/DtM1US5xKTgxn3zLuD2Dwrx43AA7fN9FqUkCtqnKuyqsHfcmV28AUDngP2IKHYlnH8LHnszF3dsvxa/JA1Av+qVyHdv9zb+vhQYdRhQYxB0lZQC6dQdeOgTYOMqb7/qKqCyPGL1U/RJLUkGXtVvq+4xxNZcMvYY3Ft0Ky53XGqp/5drx+PB9nPwfOYpfm3pUomjB6Vh8mAHdu1TWPqn95z+ucUKf1tg/ULFIwcCQwu9r6fK5YK6+njgu4UN7eq9p4HbXoa6ciqwa2vjwGfvgnr2rsZ+ixYA37wH/Pip5XUbSk6FvLcd4kxo+Vx1uuUIJvYFPl4RuK+mmoSc7dyKnt1y4NAAt0722YotwOptwI69xvM5lM7AshKoNx+HHPOXwAVFSPcc4IXZgmSnIDkBPv/SgzzdIyIiIiIiIiIiimkMQaLWwOddBAT7M+a2IQoZHuuiH7cRERE1xdcFothgtq9GcD/mEYOIAAajERERERERUb0Em8FoyQxGI4oqogXuM2h0+Oug2Kf5Ppc6uzZbDkbLTQdy0n3DhSQjG8jIDjhW8rtar5Eolgwbb69/936W9pm4lGCelCF/uRHq8bn+DVZC0QCgXQ5E83+93K+bYOFv1qaoN64PAxyJ4p0kJEL1G4mcJV/i4IovfNrUw9cCo4+Eqq7UH5yU4p1DBOhaHO5SKUakblfAqzrBVgAqB4yzNdeeSoUbEi8ALLwEVv7WDglwAbugG4x2aNmHwG+FQP+RaJ8mOLjuKXvJRO//VsLRpo0Q/Hd6k9fGJV/4hKIBALb/CXX+IUBNVeCiv343cB8L5Ky/hzQUrd6dJ2oYfov+tmzK0XQD7dyChNxO6KlVY7Un36/vSf+1OV8T6tEbgMmzdM9zWkNWqmDaCJ4rERERERGML+8QAAAgAElEQVQRERFRW8NbNSnS+JyLXdx2RJYFDF3g/hS/uG2JiGIXj+FEFBrMUiQiAIiOK2OJiIiIiIio9dm9UbTuRm8iihIOR+A+aZnhr4NiX7OQvQLXFstD+3YMdTFEsU8Sk4AZV1nvf+a13iCdtsjsfDQ9Czjlry07B83UD3n8+2R7vyqZWfo0evVqH3wdRBQ7HMZ/Y0qdfwjw5+/6jUnJYSqIYlmKyctcVWaBrbneW6ZQ7g4ccP/axpO8oWgADqj6DjNK/+fTnurZhyt3/htY/JHfWKdDcPnhGn643vx1cs7Bghdma8hMbTx/US/co9/ZSihaqHTuCRx/flimHtZV0MnC22ut6YWeO7dC3TwTRbt/CHq9DmWQhFdWAmxeE/S8REREREREREREREQUQaZ3dvOubyJfDEYjIiKKL3ztJooJfN8ao7htKD4xGI2IiIiIiIi8EgLfUOsjOTU8dRBRcMTCxzxpGeGvg2Kf5vtc6uzabHloUcc2GuZEFIA2+yZL/eQ/70IOnRbmaqKXiAAHTNJve20tJDkV6D8q+BVk5uouHttHMC5huW7bmIqvMXf7XBxW/hGm7H0bD2y5BI9umQPk2guwIaIYZRY+XF4KfPySfhuDxElHisnHLpW11udxexROnRf4Apb+1csxpfwdn2WPbjkf8zafh+P2vIGzd8/H92tHY1TV91CPzzWcZ1hXwfHDjNfz4Gk670W/fT9gfWF10kWQx76FhDGksF+nwH2aBpmpRQuA//sQ3Wo3BL1OBwyC0QBgb2nQ8xIRERERERERERFRPOLNsK2KN5EThYbpvmShnYiIiCKPr89EFCI8nBARABj/mXMiIiIiIiJqW2wGowmD0Yiii2YS2lAvlcFoZIVvuFlBrfVgtL4dQ10LUfyQx76BOnu0cftdb0FGTIxgRdFJLroTatXPwK6t3gUJiZBrH2889+zaB/jps+Amz8oxbHp5wNuY+K0Hy5IHNizr6NqKh7ZejIHVy4GdTTqntYOkpgdXAxHFFivn2HoSGYxG/lISjNsqa6zN8eN6hTPmeyz1fX/DFL9lCXBhVtnTmFX2tF+b2rgaUthHd675MzWs3+XBD+sbl+WmA+9cHF1/h03+/iTk8FMjsq6ifMGiFeZXXvkEmdWFxXVybQl6nU2D1vzsKwt6XiIiIiIiIiIiIgoBhiARtUFmf0BSmbTzmEBkXaD9hftT9AtyGzEFg4gohpkcw3l8J4oNZvtqCPfjCK2GiGIcg9GIiIiIiIjIy2kvGA1JvNGbKKpoFm5IZzAaWdHsuZTnLrE8tDjf7II/orZNivczv8wrtyBSpUQ16VoMPPWDNzykYi8w/BBIt76N7YVFwV/SmGkcjJbbsxDfvDAOb2RMwfKkfuhesx5Tyt/RPwbmdgq2AiKKNY4gf5XK98ukI9ksGK028PirX/XgzvetvQo+vnk2CmwGcKnTBgKfV0HE/5y+XYrgq6s0vP6zwrJNQGF7YMpgQcfMKDv/H3tMxFZVlB+4j6b8Q+w6u6wHTzfnE7TWXPmeoOclIiIiIiIiIiIiso53pUYN3iEc3ZQyyUXjtiOyLsD+ovP7OCIiIiIiig9890xEAIPRiIiIiIiIqF6CzWC05NTw1EFEwZEAwWiJSRC7+zm1Tc2C0XJtBKMNYK4TkbnMHKBsp34bj9ENJCsXmDRdv7HngODn7dHfuLHHAKSoKpyy5+XAE/UIvgYiijFBB6Mlh7YOigsiguQEoEonBK2yxnzsN38oy6Foojw4bN/HQVQIqHHJUBOnQfYbDxw9C+JwNLQlOgXTRgimjQhq6rCT82+HpKRFbH3eUGjzbaIXZNbJZmBdU8rwDioA+8p8+5Zshnr4OuDD57wLppwFmTQdMvjA4Nf/0+dQn74CeDyQg4+HDD8k6LmIiIiIiIiIiIhiidqyDvjqHaC2Ghh9JKR7v1auKNx42ylRy5ntR2ZtUfZHaYhaW8DgM75mERERRZ9gz4WJKHqY7KsM+45i3DYUnxiMRkRERERERF5Om2EcSQxGI4oqTW5Y15WSEZk6KA74XmCX67IWjFaUD/TIDUc9RHFEMzlWMxjNmkFjgKQUoLrS/tiDjzdu6z0YyMoDSncEnEamnGV/3UQUm8yO22YSGYxG+lKMgtF0ljX11DfWL1iZXP4uCloQvoWPX4L6+CVg8ULILS8EP0+kTZoR0dUV5Qfuo+ncqNG5dnPQ60xQJk+U8sZgNLV5LdTJfX3b35oP9c6TwI3PQCacaHvd6qMXoG6ZBXi835N6Yx5w1X8hR59pey4iIiIiIiIiIqJYopZ9C3X5ZKBir3fBozcAt7wAOXBy6xZGFBBvhm1dZjeRBwp6IqJGgY5lPNZFPQZnxL23lii8uUQhMwU4dZRgeDeGfBKRGb4uEMUEs3O4CJ7f8VSSiABAa+0CiIiIiIiIKEo4E+z1T2YwGlFUkQAf86SmR6YOin2a73Mp173T0rDDBwhEeEEDkSkGo7WYJKcCY46yP+6fr0JyC4zbHQ5g/HGBJ+rQBTLqMNvrJ6IY5Qjyb0wxGI0MpBq83O+rNr6Cx+NRePTzwFf4tEsGZvZYh//JLcad0rMgT3wfcC4AwGevwTM2CeqJW6BcroDd1U+fwXPhofCc2t/a/KHkTAAycyK6yu653p+5GQfcfst61q5Foqfa9vo6uLahR+06w3ZV2hhorR6+Vr+TxwN14+lQNfbWr5SCmndjQyha3UKox/4BxavPiIiIiIiIiIgozqn7rmgMRQMAVy3UXRfpfDZm9lkZP0ejcODzqvUFe6M4tx2RZYF+F8XfVcUxbttYcMf7Hhz7oAePf6lw90cKB93hwcLl3HZEbR5fn4mIiCiEGIxGREREREREAOrCIBwmYR3NJfFGb6KoEmj/Tc2ITB0U+yS4YLSBxnlDRFTPLGDHyWA0q2TW3+0PGn1k4HnPuBpIzzLukJUHmb/Y/rqJKHbZeY/chDDskgykJ+kv31djPGbKAx7jRgBODfjoUg277tEw/5peyHjuO8iivZDzb/frK7NvgvQeBIw81HLNav7NUI8YBG3V91nzK9SlRwFLvgD+/MPy3LbkdTZuy+kE0SJ76YNDExweIAMuWfkHkCWrakys+MR0XP9O/suuK7kDmtnF//+7EwCgKvYCX7xpOr86qQ9UVYVpHx8bVwNb1vkvL9kMrPrJ+jxEREREREREREQxRu3ZBfz2nX9DyWbg1/+LfEFEFEMYjEYUGoH2F+5PRK2lskZh7lu++2C1C5j7lvk1DkTUxjE0jSg2REnYN48YNvEYS3GKwWhERERERETUyE4gR1JK+OogIvskwMc8ae0iUwfFPhGfh7nuEkvD+nWSwJ2I2jqHybE60SAphfxIj36Qp360PuCwUyyFpUiHLpAnFgPHzQYGjgZGHQb0HgyMPQY44XzIE99BMnNaUDkRxRyzQEszzoTQ1kFxI83g5b68Sn95rUvhs1XG8x03FPj8Sg0T+wk0rfF8XBISgVMuhdz5OjD+OGD8VMhdb0Kmnuttv+ste4W/8pD3BkADat6NgNtlb047UjOAdu2N23N1ksQi4MQR5u+BBlYt011+zN63Tcd9fLmGV+ZoOEX7BFP3vI6X/zwVF+x+JGA9qmQz8M37gbfFrm1Qh2XD8+DVUB4LF6WbbHvs3h54PBERERERERERUazau9u47c/fG7/2uICa0vDXQ2QHb4ZtZSY/f24bIhsYjEYUrV77SaGq1n/5V38ALjf3TaK2jccAIiIiCp0gr+YnIiIiIiKiuJSQCFRXWuubmBzeWojInkChDanpkamDYl+z8KAkVYP2rp3Y5TQPA+rfOlkERLFFcxi32QmoJUjPAcA5N0HNu8G8Y8dukJnXWZ+3YzfI5fe3sDoiihvBBqMl8JhO+tINgtH21egv37gbqDBo278H8Or5xucWIgKMPhIy+kj/Nk0D7v0A6poTgYq9gcoGXLVQ/7rAG7LWfySkoGdDk9pbCnxpM2itqeGHAD98Yt4nt5N5iGz7/ODX3wLHDxMM7qKw9E/99snl7xoun2Mw57QRgvx2gqnDgGO1W4FNX1sv6JdvoD5/w3r/F/4DVbkXGDoeKOgB6T9Sv5/ZDVrCgGwiIiIiIiIiImqrxPvZ2ZLrgNUPAbVlxl0ZgkTU9pju98G2EbVBgV5DW/s1tnYvsOVDYN86IH8C0H5Y69YTlYLdRjweRru1Jn9z2cPNR0SGeIAgiglm59kRPAdv7dN9IooOWuAuRERERERE1GbYCeRgMBpRdHEGCkbLiEwdFPt0bmwfU/mt6ZCBBUBOOm+IJwrINBgtIXJ1xIsZVwKde/ovb98Rct6tkOsehzz2DaRrUeRrI6L4oAX5q9QEkwAnatPSjILRqvWXbzG5j+78g1t2/i37HQx56gfIJXcDGdmBB3z6KtTcM6BOHwz16sMAALV7O9RRLQslk3HHAh26mHfKLTDfr9IyW1RDsJwOwYOnadB0NkWXjFpMnjFWd1wn11acXPaS33KBB//7S5PJ3C5b9agbTgM+fcXWGLzxGNTcGVDnHgTP9adAeTz2xhMREREREREREbVlK+8Blt9uHooWb3hHahThtohuJp+3cz8isiHQ/tKK+1PVduDD0cCXJwI/XQG8vx+w4j+tVw9RFOFLHVFbx4MAEVnD2HAisoLBaERERERERNQogcFoRDEr0P6b2i4ydVDs0wlGm7r3DdMhxw1jKBqRJSbBaBJs+E4bJiKQe94H+o9qXNhvBOShRZDTr4BMmg7JzGm9Aoko9jkChA8bsfPemtqUNIOnRnkQwWjTD2j5Obh07AY58QLIfR9ZH+SqhfrPX+EZmwR1TGGLa0BeZ8g/XzXv02sgkGgSjJaa3vI6gnRgb8Fz5wiSm2TcdsoEnp+ThNRTL4C8+ScwbLzfuH9vuwrj9n3e8HhA1a/4IelCOB3BB6MBAFoSbPbZa8Db8/2Xm9bB94JERERERERERNSGrff/Awjxgbeexgdux/Az+YzcNBGG24bIugD7S2umLy27FSj71XfZj5cBFZtbpx6iKOLhSx0RGeIBgigmmJ1nR/AcnGGrdvEHRvEpyKv5iYiIiIiIKC45EwL3qWd2QyoRRZ4jwP7bijeKU4wR/3CmyeXvwqFccIv+x4lTGYxGZE2wATtkSDp2Ax75HPhjGZCYCBT0hNg5pyUiMmMSaGnKyWA00peeLNC7+KTCMBhN/0KVXnnegNBQkd6DoIaMBZZ8EbI5LcstgPQZAiwsg7r4MGD5Yt92hxMyaQbUY/8wniM1I6wlBjJthIYpgxW+WwckOoGhhUBygnf7SHYecM/7wJ+rgS3rgR79gU9eQccHrsTHGyZheWI/1EoCBlb/CmfXXr4TGwWSaVrLAtBMqJfuhxxztu/CWoMnKBBceBsREREREREREVFcUMDOb1u7CCKKWsEGo/EaLCIfAZMQwvM7M0tW3ae//I/HgEE3RLYWoijjbsVdk4iiAJOMiIiIKIT873IkIiIiIiKitivBxs3bicnhq4OI7AsUAtPKN4pTDNH8PzLMce/CxH2f6Hbv3cF74z8RWeAIMmCHTIkIpPcgSNdihqIRUWgFG2hp5701tSmpBk+NfTX6FwRuLdPv3ykzRAU1Ibe9BBx6MpCZG/rJzeQVeNeflAy59wNg6rlAehYgAvQZArnzdUjRUNOAfomC97spiYJxRYIDekpDKFo90TTvecr+h0M6dAHyOnuXAxhQ8xuGVi+FE25gwyrfSY1Cx4ZPCMN3UGf9Cqgt63yX1VQZ968xCU0jIiIiIiIiIiKKdSH7AxW8KZzCgGEDUSDI8DNuOyIbAuwv0bg/bX6vtSuIMkFuo2jctmSZh5uPiIzw+E4UI6LjPS2PGEQEMBiNiIiIiIiImnIyGI0oZgUIX5DU9AgVQjHP4MLem3bMRaKn2q/rHSdokJBdDEwU5zQGoxERxRQGo1GIpRt8lFJukDu1xSAYrWO70NTTlLRrD+3Gp6G9vQny4orQr0CPwwlk5zfWkJwK7bL7IO9sgXxUCm3+Ysiow7yNiSnG88Ta+93cToZN6qfPGx8YBKPJQZN1A61DZuVPvo/Nws9q9duU2w21ezvUvj0hLIyIiIiIiIiIiIiIKEaY3ijOW7uJrAu0v0Tj/hSNNRFFFoPRiNo6ngsTxTyGGEanQNuF243iFIPRiIiIiIiIqJGdm7eTGIxGFFWcCebtaWG4c57ik+h/ZDii6kd8vW48ppc+ixFVP+Kk4YIP/6ph6jCGohFZxmA0IqLY4gjyuB3o3JzarDSDj1321egv31qmf6FKx6zwnoNLQQ+gQ2FoJus9GBiwv37b/odDdPYz0TRI88+dsvOM1xFr73dzCwyb1MPXND4wCEZDQhLkuWUhLqqJ9c2C8aoNkvsAoMa/Tf32PdRf9oc6phBqcgE8D1wJ5XaHuEgiIiIiIiIiIqII4M2EFNP4/G1dJj9/5YlcGUSxLuBrMY91RNGIwWhERETxLHIv9PxojogABqMRERERERFRUwlJ1vsmMhiNKKo4AoQvpGZEpg6KfZrxR4ZDq5fiyS3n4Ntdx+LFczVM7MdQNCI75KQL9RsK+0S2ECIissbhDG6cndBxalPSDT52Ka/WX76lTH95p8zQ1GNGbnyq5ZOkZ0Iu+Cfk9leAbsW+be3zIefcZL2ePOMwsZh7v5tbACQaPBnW/ApVVeH92ihMzOEEOnYPPrwxALV+pe8CnfCzxrZqqL2lUIsWQH37PtTe3VCzDwT++MXb7qoFXrwX6vSBUAseCEu9REREREREREREYeNheBERBcvs7m3e2U1kXYD9JSqTEnhNpY+o3EYUCmZb1s3TaKI2jufCRDHP7ByO53dEFGFBXs1PREREREREccnqzduaFvwN4kQUHs4AwWgp6ZGpg2KfWPhbCslp4a+DKB4deDSQlAJUV/oslsNObaWCiIjIlBZk6JCd0HFqU9KMgtF0cqdcboUlf+r3j0gw2uADoSZOAz5+yd6455YBX70DJCUDY46C5Hf1Nsz7Bli0AGrdb5DCPt623E7WJ84x6ZsaW+93JTEJqmsx8PtS/8bqSuC374Fh4wC3S38ChxPicEDldAK2GzxJWmLjKt/HJsFo6os3gUdvAMpLzefctAbq3sshJxoEBRMREREREREREUUjFapEh3i6YTSevpdYx20R1UxvFOe2I7IsYOgC96f4xW0byzzcfERERBQCPKUgIoDBaERERERERNRUoGCleonJEOFftCKKJuJwmH/om5oRqVIo1lk5vqcwGI3o/9m78zhZ9oK++99fbb3NPnPOnDnn7vdyd9Z4lYsQhAsRCUFF8EV4IAoxL01iXPCRPElMhMgrbnGL0fgQn4fogxrQKK5IAsqDyEXhEZDlwt3XM2ebfaanl6r6PX9Uz9Jzuqt7eqaX6f68X68+3V31q6rfdFX9qqpP/b7dCZMfl37y92T/9Ruk4kYy8GXfJr35h/tbMQBAQ8b1Oruxot3QcYycyVzj4SvFq4f93mebz+fMRG++kzHv+C+y25vSJ/+kvQm+9pVJ6Nkbf+DqeeUK0t//js5/H30sJQ2unXDnAWN++g9kv/WGxiOXFpPnlGA0SdJNd3UnGG3tSt1b+5d/1Lzspz9y/MsHAAAAAAAABkV8XMFoJ0zLEBqcCKzHPkv5/AlNAw6BYDRgUKX93/+onkYDqEk73+U6BTgZerQf01wcFtdHGE0EowEAAAAA9rTbeTvIdrceAI4fwWhol9NGqADBaEDHzN95mfSHz0hf/Rvp9DUy89f2u0oAgGbcDv8r1SMYDY3NjRk1uvlkpSiFkZXn7t06/P5PN79TeCElI+w4mfyYzE/+nuxjD0ilrSSIa21J+uzHZd/91gOFjcxbf6R7lZk723xcYaJ7y+0SM7cge80t0tMPXz1ybSl5bhGMZl7zNtlPfTh9Qf/w7dJv/ezhKrextvvSvvfd0mf+7HDTN9POtSYAAAAAAAAwSOiBCSBVSiSMTUuEoW0B2tdif+FYDQykmF0TAAAcg1an+9ZaGdObH5kF0D/ceQoAAAAA2EMwGjC8cvl+1wAnhWknGG2s+/UAhpgJMjLPvpdQNAAYdJ2G+LR7bY2RM5dyGr28Vf/+dz/bvOztZ46nPu0yN94hc8fXyGRyMqevkfnGN8n86v3S3fdKmZy0cIPMO98nc/cLu1eJm+6WZheuHj4+Ld3y3O4tt5smZxsOtpeeTl40DUZzJUnmpd8ive57UhdhpuaSz+4wNlcVf9e9il+Skf2/f+xw0wIAAAAAAADDJE4LNjoEQlvQFWxXgy1t/XQ6DhhBLY+h7DODr9N1xLo9yQhGA0Yd57vAUOvh91x8pQZAIhgNAAAAALCf124wWqa79QBw/DK5ftcAJ0U7v5iSJWgPAACMANfrbDrPP956YGikBaNd2dx7/dknm9/Rc+eClPH7/yuH5rYXyPkvH5PzkVU5H/iqzMtf393lua7Mm//3q4e/6YdkvA731X6bmGk8/Dd/RvbxB6TNtcbj97VN5q3/Nn0ZuTGZN/9we9d5+331bw5XHgAAAAAAABhGNiUYjZ6ZANJCHdLaiE7HASOpRUhp2rEaQFelHbEidk0AANADXEIDo+GE3iEMAAAAAOgKv91gtGx36wHg+AUEo6FNpo3fUsilJDoAAAAMC9ftbLp2r60xcmbbDEb7V7/b/C7h//bW0f3tM/P675Wm52X/7LelakXm5W+QedX/1u9qdW5ytuko+5bnNZ9ufxDc5GzS5lQrjcvmCjKvfKNUmJD9k1+T/t8PdljZI5iZl6ZPS87obrsAAAAAAAA4oWISHXCS0Tu4v9I+/07HASOoZdIB+wwwiGJ2TWDEcb4LnHip5+G9249pMQ7g+ggjimA0AAAAAMAej2A0YGhlCEZDm9rprJ4nGA0AAIwAt8P/SiUYDU1kfaOxjLRZvnrcTjBaJbS6/9HG0ztGuu1M9+p3Epj73iBz3xv6XY3jsbnW2XT7wqyNMbJzC9LiE43L1kKtzYteLfOiV8t+/Pdl/823d7bcTvz9t8r5P36ld8sDAAAAAAAAjlMcNR/XsiMigNHWYSdy2hbgADr+n3yso2FlUsYRjAagKc53ARwjWhRgNPCTvAAAAACAPb7fXjmC0YCTh2A0tMuk3a5QM3Wq+/UAAADot46D0TLHWw8MlbkmGcOXN5LbdP7iIWmj1LjMzaek8Wwb5+s4Ecytz+9sQsetfz93rnnZbL7+faftWofMO365p8sDAAAAAAAAjlUcp4w8TNfLYeqmOUx/ywlHoMBgS1s/9rjaFmAUtNgnaAuHF+v2RCMYDRhxtOHAyZd6Tdu7fZzmBIBEMBoAAAAAYD8vaK+c32Y5AAPDuG7rQoAkmdZfGZqpuR5UBAAAoM8Ohg+1i2tmpJhtEoy2up08/9HfNr+b58M/wH/vD5Vbnt3ZdM6B7WDmdPOyuQMb3B1f014Y9lEt3CDz3k/LHKwrAAAAAAAAcJKkhheljTvp6HU6HFiP/dVpJ3LWG1CnZRIC+wwwiFLzhQGMOI7dwInQo2C01MUccfrhRHA0RlNvfw4YAAAAADDY2u287XE5CQBDq52O61Onul8PAACAfnM7vPZtN3QcI2kq13j4ajF5vv+RxjenfNsLpBvmehBohd554as6m+5gmPXc2eZlc4X6SWfmZb/u70mf+nBny06r1rt+QyoVpWufJd36fJlM9tiXAQAAAAAAAPRUaqIDaQ8A0nQYfkYnZuAAOv4Dgypt74vYNYERRyMA4HjQmgCQJH6eFwAAAACwp91gNNfvbj0AAP1j2ghbmJrrfj0AAAD6zXE7m87jmhnNTTYLRtuWrLV68FLj8a+8k1C0YWP8QObd7z/8hAfCrM3pa5qXDTJXL/ed75Ne/gYp02RjPKzrbpX5nYdkXv56mVf/I5ln30soGgAAAAAAAIaDTQs/o2sm+o1tsP9S/u+m4/aD9QrUa7VPsM8MPMLrRlJqvjCA4Zfa9nNcAE6GkxHoPUBVAdBFHf7MOQAAAABgGBkvaO9rZo/LSQAYWqaN31KYPt39egAAAPRbh9e+xuG3qdDcZN6o0Y1Da0Xpyqa0Wmw83Z0LBKMNI/PSb5F94aukT/3pISY6sC3cfW/zspNXh1qbwoTMu94nW61IH/hPsr/yb1ov86a75fza/ycbVqVKSaqUpdwYAWgAAAAAAAAYbqmJDofoeUkvTWAEddiJPDVQDRhBLY+hHGOHF+t20KXdwRCz+gAAwDFodTnAKQcwGrgrHwAAAACwxw/aK+f63a0HAKB/2gnymLq6cz0AAMDQcTsIRrvnvuOvB4bKVL7x8NWi1YMXm09363x36oP+Mz/+O4ec4MA1211fJy1cf3W5m+6SSbl2M34gvfz1ktf6ez7z2n+cPHu+TH5cZmqOUDQAAAAAAAAMv7SAIsKLMOgI5OuBDsPPUrtus96Aeq2SEPp0PKaNBVIRjAaMuk7PkwEMjI6vadFdBEdjNBGMBgAAAADY00ZHyEOVAwCcQGm/41YzSTAaAAAYAY576EnMP/+pLlQEw2Qq13j42rb04MXGN6ZM5qRT412sFPrKeL7MB5+QbrijvQkOhFkb15X53p+WgszewCAr830/03rZCzfIvO3fpRe69fnSN72lvboBAAAAAAAAwyROC0aLelcPACcQwWjA8RjUjv/sq0AagtEAAMBxaJWlSNYiMBo6+JlzAAAAAMDQ8oP2yhGMBgDDy2nxWwqTczL7O9wDAAAMK/eQwWj33Cdz893dqQuGxlS+8fDVbenBi43H3TovGdNGgDFOLDN7RvrV+2VfdUoKqy0KX33NZv7uN0u/+inp/g8lnTVf+i0y1z6rvWW/5R3Sc14k+6kPSx/+DenyM8mI09fKfNePSvd9O9eAAAAAAAAAGE1xSvhZHB5iRvTSRBfQ+3fApayftHXHegXqDWoSgk0JT8UBna4j2sNBl7aGInYRYMQRBHO2JPEAACAASURBVAyceFy3AhggBKMBAAAAAPZ4bQajuVxOAsDQatDJvs7cQm/qAQAA0G/O4YLRzFv+ZZcqgmEylWs8fLUoPXSx8U1Dt84TijYKTCYn+5Z/Kb333ekFm4RZmxvvlG68s7NlP/fFMs99sfTdP9bR9AAAAAAAAMBQilMSHWxKaNqJR+fX4cC66qvUfYWgCKB9rfYJgtGAQRRzOAPQDNeUAA5hQK8G+qdlGzpynwhGRItejgAAAACAkeK3GYzmEYwGAEPLtAhdOHW2N/UAAADot8OEgl93q/Tcl3SvLhgaU/nG59uXN6S/fKTxNM+a72KFMFDM5GwbhbjNAwAAAAAAAOiJtNCTeJiD0QAcXVrAYFqgEp2YgToD2/GfYDQg7U5jgtGAEUf4GXDype3Hx7iPp8aG05QAqOGOWQAAAADAnraD0fzu1gMA0D9Oi68MZwlGAwAAI6JVMNrkXFLmBd8g83Mfkml1HgVIOjvVeHgYSxfXG4979rkW4cUYHpNzrcvQ1gAAAAAAAAC9EacFo4W9qweAkye1B3dvOpgDw6HFPtGvfcYSkNo+2rVRlHYaDWDUcVwATobBuG5ttSguoYHRcIifOQcAAAAADD2vzWC0Vp3DAfTHjXdKj3356uHnbup9XXBiGWPS/8txbqFXVQEAAOivINN83Ne+Uuan/0CqVmQy2d7VCSfebfOHKx940n23d6cuGECTM63LGILRAAAAAAAAgJ6wacFohwlEoZcmuoHtarClJcJ0GJoGjKRW+0S/gtFIfeo6Ui5OtJjVB4w4GgEAAHB8uGMWAAAAALDH99sr57ZZDkBPmTe/o/Hw73pnT+uBIeA0/9rQjE30sCIAAAB9dN1tzcflCjKOQygaDm0sa3TNdPvl77tdmsiZ7lUIg2VyrnWZlOs1AAAAAAAAAMcoTgk9sWHv6gF0gkCZHkj5/5u0zz91HGFLQJ2WbdkABqMZ/m8XoyFt74s4nAFoiusU4CSwqefhvduPW14NjFyT0uIPHr0PBCOCO2YBAAAAAHu8oM1yBKMBA+ml3yrd84r6Yfe8QnrJa/tTH5xcaTfnZPK9qwcAAEAfmak56ZpbGo+7454e1wbD5PYz7Zd97XO5cX6knDrXurMEnSkAAAAAAACA3kjrTBhHvasHgAHVaUfxwehgDpwMg9rxn9QnIE47VeZwBow4GgEAvUFrA4wGgtEAAAAAAHv8NoPRXK+79QDQEZPJyvz4/5B5129Ib/ohmXe+T+Ynflcmk+t31XDSmJSvDbMEowEAgNFh3vzDjUd83d/rbUUwVG47036w1b03E4I1Ssz0KekF39CiENsEAAAAAAAA0BNRSviZJRAF/Ub338HWYfhZ30KegEHVap/o0/GY84D2ddyu0R4OujhlNyAYDUBTnO8CJ0PavtrD/ZgmA4BEMBoAAAAAYL9Me2E3xvO7XBEAnTKZrMzLXy/nn/4HmfveIBNk+l0lnEQOwWgAAACSpFe9RXr1d+y9dz2Z7/8ZmVue07864cS7/Uz7ZW851b16YDCZH/rF9AJp12sAAAAAAAAAjk9a6EkcHmI+J6wXZ2p9T9jf0ivbF6Snflda+/IAre9BqceI6rgTOesNqNMqgKxfbW5avQbmOAB0V1r4GcFowIjjWAigR2hugNHg9bsCAAAAAIABMjnTXjmC0QBgyJnmozK53lUDAACgz4zryvyr98j+wx+UFh+Xbv87MtOn+10tnHC3nzFqp2PLtdNSPpNybo6hZK59VvrWYQhGAwAAAAAAAHoiTgs9iVJvrcAIefg90l9/9977a18vff1vSg73WI62TsPP6NUN1Gu1TwxgMBowIqK0DGF2EQBNcb6LPrIx9121q+Ow7+NdDMFnBw3o9RHQZbTcAAAAAIA9k7PtlXPd7tYDADC4svl+1wAAAKDnzA13yNz7TYSi4Vi84DrJtNFh7tb57tcFJ5DDbR4AAAAAAABAT6SFnpD2AEnaeLg+FE2Snvod6cFf7k99MEA67EROr2+gXst9ol/7DOcBQJyy+0UczoARRxAwBsz5D0t/eo/0gYL0kZdKK5/vd43QpkG9GgDQW9wxCwAAAADYU5hsr3Olx68ZAsBQCyvNx2UIRgMAAACOYrpg9AOvaJ2M9qz5NtLTMHr45VIAAAAAAACgN9LCz2x0iBnRTXNoPfprjYd/9ee7v2wCtAZb6vohKAJoX4t9ol9tYVp4Kg7odB3RHg66tGA0MoQBAANj6TPSx18rLX9GikrSpY9LH32ZVDzf75oNOAK9AQwO7pgFAAAAAOwyjiONT7cuSDAaAAy3tLsSsgSjAQAAAEf1H1/fOvTs1vkeVAQnTzs/agAAAAAAAADg6NJCTw4VjIah9dWfazx86/GeVqMxOir3V1on8rS0GNYbUK/VPkEwGtAvqcFoHM6AEUegEgbIE/9diiv1wyor0vk/6k99TooB2VdbVWNAqtk7Lf/gUftAMCq4YxYAAAAAUG9ipnUZl2A0ABhZ2Vy/awAAAACceMYYfeNd6WVunW8dnoYRZLjNAwAAAAAAAOiJlB+VszHBaABS/h+n0/CzkevVDbQwqEkIBKQCBKMBAE6Gr/xM4+F//d29rccw4boVQI9xxywAAAAAoN7kbOsyrtf9egAABlMm3+8aAAAAAENhYbJ5hxnHSC+8qYeVwcnhcJsHAAAAAAAA0BNpwUYEoqDv6Ijcf2nroNNxaYFqwChq1db1qy1kX20fx6thFaXsBmnjAIyA1NAkjgvAiTAg+3HLqwGaFGAkcMcsAAAAAKBefrx1Gc/vfj0AAIMpSzAaAAAAcBxunGs+7p4bpJlC8+A0jDDDbR4AAAAAAABAT0Qp4WeHCkYbpl6aw/S3DDl6B/dZyueftm5Yb8ABAxqMlhaeavg/3mNBezjw4pRVFLP+AAAAABwT7pgFAAAAANQLMq3LEIwGAKOLYDQAAADgWNx3R/Ob4r/1+dwwjyboTAEAAAAAAAD0RlroSXyYYLSThiAL4MhSA2E6HQeMoFbhSmnH6m7q13KBARKnnSpzOANGHOe7wIk3IIHeLS8HelONAdLqAxm9TwSjgWA0AAAAAEA9v41gNNfrfj0AAAPJEI4JAAAAHIsX3iidm2o87rXPJfwKTTjc5gEAAAAAAAD0RFragx3mYDQAR0cwGnA8Wu0TfdpnCEYDUsPPCEYDAADtOOrVMTlgwGjgjlkAAAAAQL12gtE8gtEAAAAAAACOwnGMfur1Vwegve3FRrcvEIyGJgy3eQAAAAAAAAA9kRZ6cphAFHppoisGNCwIibT9vtNxwChqtU/0bZ8hGK1tHa8j2sNBlxqMxi4CjDjOd4ETb0CuW2kyAEgSPdkBAAAAAPXaCkbzu18PAAAAAACAIffGe4zygdEvfCRWKZRe9wKjf/EyQtGQwiEYDQAAAAAAAOiJtEQHG/WuHgBOoLTe252OA0bRgIZAHiYgFRhSUcpuEHE4A9AUDQSA4zN6LcqAXh8BXUYwGgAAAACgXhC0LuNyOQkAAAAAAHBUxhh98/Okb36e2++q4KQwBKMBAAAAAAAAPZEWekIwGoBUBKMBx2NAO/6nniOwH2M0xCmbelq+MIARwLEQGAIp+3EP93FaEwCSxB2zAAAAAIB6fqZ1Gc/vfj0AAAAAAAAA1HO4zQMAAAAAAADoibREh7RAFKAXCBsYAKb5qNTQJAKVgLa12if6ts9wHgCk7X5poWkARgFBwAB6g0toYDRwxywAAAAAoJ4ftC7jEowGAAAAAAAA9JzhNg8AAAAAAACgJ1LDi6LDzOjIVRkY9Dg9QVhX3ddp4ANBEUD7Wu0TfdpnCEg9hE7XEe3hoEsLPyMYDQCAEy71+5/eHej5GgqARDAaAAAAAOAgP9O6jOt1vx4AgMFTmOh3DQAAAABgtDnc5gEAAAAAAAD0RJQSfjbMgSj0Om0fnxWaSds2UscNcdsCdGRQg9EOE5AKDKc45ZBFMBow6jo8FwYwODq9pu2xAapKb7T8g0ftA8Go4I5ZAAAAAEAd004wmud3vyIAgMEzMd3vGgAAAADAaDPc5gEAAAAAAAD0RGonUAJR0MLI9c5FvbT13+k4YAS1akv7FSZIiCGgKGX3jNhFAADAMeAKGYBEMBoAAAAA4KAgaF2GYDQAGE33vKLfNQAAAACA0eZwmwcAAAAAAADQE3FKogOBKJAkY5qP6/o20iosiO7D/dVh+BnrDTigVVvap32G84BDoF0bVmmnyjGrHRhtqee0NBDAiZD6YwHHtx8fdTG0KMBo4I5ZAAAAAEA9P9O6jOd1vx4AgP75B29rONi86Yd6XBEAAAAAQJ20jnYAAAAAAAAAjk9a6ImNDjOjI1cFJ5Ct9rsG6KeOe3fTXgB1WqUh9C1MMOUcgf/LOx4ERQ68tPAzgtEAAMBxGNjLAQA9RTAaAAAAAKBeO8FoLsFoADDMzJt/WDp1rn7gt/0zmXM396dCAAAAAICE4TYPAAAAAAAAoCfitGC0lHGAJMVhv2uAvuo0/Ixe3UC9VvtEn/YZzgMAxSlJJGmn0QBGAee7wMnXadg3uoukOIwmerIDAAAAAOoFbQSjeX736wEA6Btz9ibp//wL6aMfkL34lMzzXyq95LX9rhYAAAAAwCEYDQAAAAAAAOgFmxZ6QiAKpPQOp7bbwWh0du2/DgMfUrcb1itQb0A7/nMeAChK2Q1iDmcAmuF8F8AhtGoyaFGA0UAwGgAAAACgnk8wGgBAMqfOSW/8QZl+VwQAAAAAsMsYrtIAAAAAAACAnoiPKRiNjt+jKa72uQJsd13XccBZp+OAEdTyGNqvfSbtHIH9uE7Hnwef46BLCz9LC00DMAI4FgInH/sxgAHCTwkDAAAAAOr5QesyLjnbAAAAAAAAAAAAAAAAAIAhFUdpI3tWjd4jtOlY2LDfNUDXpe0PaW0E+xjQvgENRksNSB3mcwRgT1owWto4AKOOBgI9RLjXidfyamDkVvGAXh8BXUYwGgAAAACgXjvBaJ7f/XoAAAAAAAAAAAAAAAAAANAPcUqwiU0LTQMkxdV+1wDdlhaMlNY7O3U6ApWAei069vcrCYH9GEg9VSYYDRh1NAIYEASWdy71mrZ3+/joBZ8BaIRgNAAAAABAPT/TuoxLMBoAAAAAAAAAAAAAAAAAYEgReoKj6HYH7Ja9g+k93H1pn3E3xgEjaFDbOs4RgNTwM4LRADRFyhF6icDyzvUoGC11MUecHsDw8PpdAQAAAADAgAnaCUbjchIAAAAAAAAAAAAAAAAAMKTi4wo9ad5L05aK0sUnpZXL0ulz0vz1Mq57iHljYNEBewR02FG8Rx3MgeHQYp/oWwhZ2jlC1LtqnAgdtmu0hwMvStkNCEYDRh2NAAZEtwPL0XW0Ju2pxL6WqzNaupTXLbNWGd/0u0rAsaInOwAAAACgXn6idRnP7349AAAAAAAAAAAAAAAAAADoh9SwlaMFsdj7PyT7mz+rX3v8euWiol6z+SfK223pOV8vvfv9MtOnjjR/HI21VltlKfCkwOuwM2m81wHb1sJdjKFj6lBJDe3pxjjgZKqEVhfWpLGsVKpK41lpLFPfJpaqVuXqTrsruU5tXMtwrD7tM6nhZ/0KaxtO1loVK1LW37ddYCCkhZ+lhaYBGHWc76J3SuWq3NiT7xCQdngnI9B7cGrSuTCyurwhXdmUKpEURlIYJ+dTxYpU3rf5bhddPf3k2/VM5Zy+tHWXHtm+SVeqc9qIan2B75e++E7pzrN9+VOAriEYDQAAAABQ77pbpVxB2t5qPN4YfpUSAAAAAAAAAAAA6CNjzI2SnifprKQxSYuSnpD0SWtttZ91AwAAAIZCnJLokBqIkjJZHMv+zPdKf/B/KZKjH7nlvVr0FzQWbej5pc9pZnlF629/UCunjIwx8kwsV1aeiZVxIq1WfW2Fniqxo63IUyUymvCqunlsU+cKZc1kQ02PuZo/ldWZ+YLmZ7MaGws0kXN0ekLK+sMbKBLFVo9clr50XrqyaRXHUmST1RhbqRpJz6xKTy9bXd6U1rYl3036807nJWOSzqYX16Unl5POpzuMkRwjGVk5+1/b8zKyyjolZZ2SYusosq5iOYo+NaVYFYWx0VbFyGrvszeyMkYykhyz93qnlDF7rzNurNlMVVk32p1Wkow9LYWfrpWz9eOMlf4qK8WPSrXxxiYfhjFWMo528ohM7R+z7++c87Z17VhJ1+S3lR0f15lzE7r92oxuvWFM3vikHG847x+11uriurRZrh++XUm2ncsbSThPKZQ2S9Lywz8lx8SKraOVcEqr4bSsNXJNJPfSs2Xyse5/xKoUSi+7zShwpfWSldl8jdy165JyJpJnQmWdbW1HeYX+nKpPRAojq82SVdaXpnLJOt3te24lu6/7985wa+1ur3Bb+7d+GklxLBvV2i/XlY1jqVqRjW0SBmltMj6sJK9lJOPImuRZjpss29pkGlkpilSNjbZjX55j5TpJoODpSUc3zvu64ZqCnnU20JnJJNhoLCPlg+EOCiyWrRbXpNVtyXWStmbn8ZVF6W+fScY7RvIcyXOlTC0QbG1burwhrWwl6891kjAo10nKViOpWLGKk9UgqwPPbQxb207auiubSfu4U7esJ03lkzZxZ9NxjbS0lXTK99ykDq4j5fykztVap/1qlOw7lTApu9P+RnGs1W3nqs8o64SaDqqqxkbFyFMxqu/mPOaHOjse6WzhOTpb/nUtZBZ1Njivs5nzOhss1p7PK9e3YLS0c4TOEqGstXrokvTAorRatJodM6pG0nbFqlRN1teF9WTdrW8n20AYS3EYKYqlami1WZYiaxRb7W4jyevkCLEzfLtqtFxMxvuuFLhJYJ0knV8z8t3kc61GyX5ayEinx7V7DHSM5Dg7x7Fk2/3sU3vt0b03WnkmSgaUv17a+vPDfyBfuUXr4boeXs1oK/RkZDXnb2vGL6tiHW2EgULryDOxPMfKN7Gm/IrmM9tayG7rTLakhWlXZ07ndfrMhKbnp3V60tGp8SOEng65OLZaLyXrNR9IfovPKS0YLW1cM6Wq1fp20obEtv65EknLW8n52cFxca29ObjIRpkt9kCphmUaTtdZuZM0/7brMILzv7AufWXRqrhZlmtDZZ2qZr2STmUr8p1kq0qOs6b+GCxz4Bi8N16SrjuT1Rvum9P1c8N1bm2t1Xo5p+3yfHJdZF1F1lXFBnq6fI0WH3q+VtZizRSk2TEj1ySf0TOrybn40mYyn4mcNJFNjjPFSnIcvLKZfH7ezrmLn5TNeNJ2VVotJsfQAcpsQp9cWJc+84Rk7ZSkkiTJVSjHxHJNJEexPBNq8vORpgvJuW0+kM5MGmX95Jw38JLzI99Nzn8dU/9cCKRckGx/Gc+okEkCrXaCrWztemynHdg9f985T4utbFRVXKnIGkdPr3mKjaNrZoyscevP5WOruLwtWyrKRnHyPo5l41iVSqzl9arCyKrgx5rKxnpiK6/xnKOiNyZXkbxCQUE20KlxozOT0sKk0ZkJaWFSGssO9nlRq/35uPb3jZLVlc3kmsiY2jVN7bomiqX1benSRnJNX6pKG6XauflqrMvrsaphrCiKFYeR4p3zcRmVYk/lSqTxwGo6b3fPnSuR0VLR1cNLrhY3rr5eai4r6adSS1xZqUhnM0f6PIBBQzAaAAAAAKCOCTKyz/u70v0falzA83tbIQAAAAAAAAAAAACSJGPM6yW9XdK9TYosG2PeL+nfWWuv9K5mAAAAwMlgP/J+2Z9/e5Lo4bi1ZA+n9mz23j/9cPOZPPx56do2l/eF+2X/4LVSpSz9zcd2h/95/qVa9BckSZvuuP6i8JK9iVbb/3tWwqyeKI1LqWf/SUjLtNnUvL+lqUykuVxVp8akXD6QF/jyAk9e4CtXep7yV35IgVNRYCqa8NY1460o65QUZAvKPmFVCJLOwTshObkgCTvy3aOFHVlrtVpMQqieWZWeWbG7r8+vWi1v7XV6fexK0glVkm6blx5fSoLNusHapDOstP9vM0oyqqXNaPzqiVLiqndCEqQkwCbNZigtlYMmY0+lTnsk6/tef7Z+1HR8RePaVsZEKrhVzQYljfuR8hlH4zlH2SAJ4ZsaczU5ESiTDRTkA40VAs1MeMoVssoErrK+NDuWbDueIznO8XXILletLqzvbDvJ9nNxXdoqRVqrhSWslR0VK0bVMNbWdqSHrxitlA7T1fIHm4+6Iu2P2fjAZ/b31r6l9mjiGWknKq838t2Z7dOSvrTzpj4oylWkCaekca+qvG81HVQ1nalqMhNrvOArN5ZVNp/R9JiryQlP2cBVLpBmC0YTub0gp7FMEojh7wvH8Nzj+dyKZavza9IzK9L5Nbu7LW2UpHJV2qokQXnhvmCwpU1pcU1aLx1LFfbpbrpHJUweW+UkBO14Ne7kX4o9Labsb5tVTw8ue3pw+bSkNzUtV/jLonyzuRuONeaFyrp2d5vIebFybrR3nHONfE8az+yE0RnlMo7GxgJlMt7uuJmCUeDtBV+4+wLhJnPSVNFVWDkl31RVcLcUOHuNvo1jXVhN2qArm9KFteT10pZUqiZhi8tbVmtFq+1yrPVS8tlf3jLaKO//vNpd70cL1CmHyWNjXyjkTiDajq2y9NiB0Mg09z9mtNd1faH2OKS1+rdWRpereV2uNm+znipJX9hIm2nSFnkKNe6UNReUNeZHKvixxrJSNnCUDRzNTbo6NZ1RYTwj33eVqQWjFIIk9GQnJCXwktCemcLgBD5GcXK8u7QhLa4mYULFShLS+dhiRV96sqIrG1aKQimKJMfRetnR4nZGq9VA8b599oy7plsyS7p9cktnphzNz2Z05kxBC2cnNTOTT23rDuYLP7Fk9cdfsPrbp6wuX95UtL2tqFxRqRSqUol0sVrQQ9VTsk3aDGAwZGqPY/Il6R0flZ43u6pX3mmUy3rKZhwVcp6yWXc3jNRzpHxgNDuWBDFlakGzOX/vemznPOg426HNktXfPiM9uWT11EpyHuQ60qnx5PpocU26sCZd2tgLj96uSg9dki5vvL/F3O2BZ6D7InmKrFTdt9mtr0hPrewv1ek22el0fu3RzvxytcdRXL3vFZyKFrLbmshKhZyjsaxRoXhZk1++Q9Onfkw5W1LWljQeb6oQbykfF1WIr1fuAaup2mnZwe+IxrPJ46ht0lPL0m/9dfpn++MfsnrBdVanJ8zuddrimnR+Odb5K2UtrsRa3HAURlYZJ1beDZUzFYXVWNU4CShbrI5rLe70szVKzsfTzsl7G+m09JlPS3e9uKfLBLqNYDQAAAAAwNUmZpqPc7mUBAAAAAAAAAAAAHrJGDMm6b9KemOLojOS/qmk1xljvsNa++GuVw4AAAA4Scrb0toRM4QP07dzeVH61NWn5b812erU/vit2DGtVMakiqQNSZcalXpR7dHEX8XNx0nyTaSCFynrxfKcvY764zmjwDPyHFsbbjUWJK+LVaP1kvSli65Wyof/4davXjz0JDiCFWdaK5pO3sSSSrVHahjNQVdvR44iZVTVuCkpMJECJ1beqSrvhrvbjO9IWd8q7yfbl2uSzteB76gUSl9cyuvJ7YKuhIUmy20UuOI0GY5uieRqJS5opaKkPWoZxtV+eEbWCZVxIuWcUGNeKN/dCbUycl2jjCflfemjTyWBhm9+7paymSQksxK7euDJsh5a8rRabRZIiEGyFR8IyaocZW62yetGXiVpcfddxpSUd4sadzdUjMd05Q/Tj5WJnRAF9FooTyuxp5VSITl+pWp/uyg4FY25FQWuVeBYTWYiTWcjZfzkHCif8zSWkTImVN63Gg9iZTKOctNTGit4ygdGWV+azu8Fz07lkuOcWzvmuU7yvhDsBYo+sWT1p18I9Rsf39Zfnc+pGjc7pjULX2nsQjSpC8VJfaKo/Zt7W378Q1alxx+Uokh/fvGUPrc2vW/smHbCZQFIn1sa1+f+4uDQg+1N63Mg18TKuLECV8q4tTbGk3zPKBcYGSNN5aWxrCPPd+W7Ru6BoFlrpYcuShfXrT71aKxKxDkyMOy24kAPFwOpuH/omDR9Y/OJQkk/l36+65pYGScJL/aMVeBZjde+A/JcyfMcea7Rp59ufm7y6/e3bvt++WPNrhWNpGzL6YfRUgffqwGDjt7sAAAAAICr+Sm/ZOLxBQkAAAAAAAAAAADQK8YYV9L7Jb36wKjLkj4raU3SzZKer72IhnlJv2+MeYW19hO9qiuAAWZrHUPMYZJcAAAYQlHU7xpo22T1u+Pf3O9qdEXVulqtulL1wIjVvlQHJ0gsV9tytW2zSZ/mdnKFgANKsadS7GlNmbZCst73+YMhevmG5YA0ZZtVOcxqJUz5YXIMva040FYc7J0DFVOLH2DVTvDRDkeRxkxZZeurLF9JwGezUND++LkHbu53FYCREllHxdBRMUzeX2zZBrVqcwhFA9C5yDoqRo608xVcRbpwqHMjdGq5Qsg3hg/BaAAAAACAqwUpX4K4BKMBAAAAAAAAAAAAPfQTqg9Fq0p6u6T3WGt3u/kaY+6U9KuS7q0Nykj6oDHm2dbaxV5VFgNi6dPSY7++995aKSpKlVXJ8SR/UsrOS8G05GQkx5ecIHm4gWT8vdc7w/eXaTTMeNrtyGlt+6/3D4tKycPGko0k1Z5tLMWhFG4kzzaqHx+HUrgpxVVp7UvJ3xluSPlrJK+wN4+d6cJiEhAWVa6el42TR7SdPJIPsP6zbDps//AW0+y8bjhtq/H75x1J4VZ93RXvvd75u6Ni7e+sMY6SLEVTC0tzas9mb5xxJS+fvN75nGwkVVb25pO/LtkOjJs8HE/yxpLtYXc+Kc/GlTKzUvZ0Ml1cldys5I1LXi4Zr1q5nfJuNlmvO9ueV5DiSm3YvroYtzZ+rMHfWwuIIyju6OIwWW/7t5GdbS4q7dvX4/rng8PCrdr6tlJUrs38KPtRl/fRqLzXTpSXOjCgMwAAIABJREFUpNx80nZ2zErVjaRd9sdVv62afdvqwe34wDa98964yT7hZmvteXZv33S82j7q1fYZ9gOMGHsMaUtH7CP+R2Ov1oY7cfR6AAAAYOTEcrVuCXIEAABAvaUywWgYPgSjAQAAAACu5qUFo3EpCQAAAAAAAAAAAPSCMeYmSd9/YPAbrLW/f7CstfbLxpj7JH1Ue+Fos5J+VNL3dLWiGDzrD0oP/ud+1wKDbH8ojG1eTNW19PkUnzyW6vRfs6CpfQFqTpCEZNkwvbxxrh5XulS/uMINtWBBPwmBqwt085JlSUk4nBxdFeaVFvR1VchXs+HtlI2TILzS5b1wvf1Bg3FVisvCCeb4kltIQtT8CcnNJAFvXiEJLXQytSC1fdunP5YM391ePcnNJduD4+9tG9lTSYDcbmDjvgBHW5VKV6TylSSEM5jZW5YTSMGUlDmVhF5KybD9wZhxJQml8ydrgW8H9sVGYYh1w9zk7zDeXpm68QeCHB0/Caxzs5KbT/aHuFoLmHP36i1Hctxer8XREEfH99nGjYLRrORqr+lv9HBrD0kmn3bwPMCRlLG7mZCy0h3VB/Q9K+/Rb4+/TkveXMd/CgAAAAAAAIDh49mqcvG2zL7/0zkzdkELwQXdlHtEdxW+rOsyT2rOX9Ksv6Tpj61p7s6flnRX/yoNdAG92QEAAAAAV/Mzzcd5R/l1WwAAAAAAAAAAAACH8KOS9v8H3X9rFIq2w1q7bYz5TklfkLTza0j/2BjzU9baR7tXTQA46Wx92FijvJuodHyL23r8+OYFHEVcleJVqboqbT/T79oMB8fX1aGJOvB+X+hiXdkD5dys5GT3jWvBWinaSgLb3FwtqHF/yNtOcGPt2c0mgXOytWEHyu9M43i1ADp338NJnt1sEqQnSdsXpa1HpYk7pLEbDyzvwLydIAmZk62F59l9IXq196XL0pd/ItlObZgs48wrk2C8uJqE45UuSXFp7+/fbc93Hqp/b60UVWX+SXXvc9ufh9cF5gYr87Zq3bDn6PP6peif6ef0dv2v9VfpE6sv0lJlWjlTVN4pata9Is9ECq2r0PoqxVmV4qymnFVNOJvKmJKypqzACXW+sqDHSjfoSjij1XBSy+GMLoTzWgwXVFHKfYBDylGka92nlFFFjonlmlCOsXJMLM+t6obs43pW/mFNByuq2EBGVivhtBzFyjhlTXprujbzlBYy57XpZLTh5rTuZrXlZrTpBdp0s9p0M9p0M9pyM9pyMqpGGUWRJ+PEMrLJs4lljJUxsTyvLMdJAvmsTTa45LSj/nUyTpI1srX3YTWjcmlcsXX2NmkZyRpNV4q6c+2y5subu9Na7T3vvm4wbrfMgXHlOKPzlQU9Xb5W58sL2o5zerJ0nSK6IGrGLGnWWVbWKSnnbmsmvyxrjYyxmnTXNO0vyzdVRdZVJFer1WktVha0Fk4o55b0rNxDmvRWJUmRdRXLUWRdVeKMtuOcCu6WfFORZ0J5JlTWKasUZ7QRje92gt7fGdqYBsMavN4pVzfsYDkrGbsX4JgchkzyemeafcHKe/NJyjk2VsHZUhR5qlpPxSirJ6vX6vHKjXq0eqO27NgRP/3hci5+WneWH1BGZYXyFBpPRZNXxQQajzc0Fy9pzl6RZyNFxlUoV5FxVZWvkslqLl5SoFJtL689HCtjrYxN1vnucLPv2bEysVXObmtel3TKXlJgqqoaT1Xjq+jltWqmtGKmku3GSOvOhObskqbMqiK5Co2n0PG05RQUGXd3e/XcUDmnqJy7LVdRrf2N5CqSZ0L9TeUFqiijyPX0TZMf1mo8qY14TBm3oqzZ1nSwrLxXVNV4KjtZXaqe0vnyWZ0vn9ViZUHnK2d1vrygxcqC1qPJfq/Cvrjb/aLOOItacC5oxluW71blulHyMJFcJ9KYtynfrcpYK8fdOxY5iuXsvDaxfKeq2WBFgVNRJQ5UijPajMa0Gk7p+x/+haZ1ePP8+/TiyU/Iyii2jmI5+hcP/WLT8v/2+h+Ta6KO/2bHxrou84RuzD6urbigi9XT2ogmlHVKKrhbCkxFUewpjD2Vo4yuVE7rQnlei9UFXajM60J1XovhGa3FUx3XAYPFtaFcm7QtjmI5NparSEZWjr06/Hj/8a7ZsMZlrtawnO10/kcYZrs3/07/xiPN/xiXeaR12aIeRlZnwgvJcTpa0mV3TkverGI59cfj/Y/aedT+x1PeNfpc9rkNajU6Jpw1FapbqhpfK2Z6d3heRZ3TeU1rWTmVtKgFhcaTr6oyKmtaKzqly/JVVdX4qhpfm2ZMrkJVTKCcU9K4u6EZd1m+qo0X3uZXK313Eup5EuooyQ0i3Tr9oG7JPbJ7nRZZV7F1VLG+lp+a0Xo8qbLJaNWd1OXsKVUqvqoVX2Wb0ZYd25tOyXSRXIXytBkXVLYZlW1yPVeM8wpMRb6pyjXJcWr//u+Y+Ko2oRjntRQ3Dsufcy5r1l3am17xzjcIe++NlatIU86qPlJ6Repn8WL/E7oYz+tCPK8NO9GFT3v4OTbSdLSinC0pF29rLrqiM+FFzUeXlIuLchTLtZEc2dpzLN9WFdiK1t0JLbszsjIK5Sljy8rHW5qM13R3+cu6PnxCp8PLKtgteUrOdzwTykkuyvdkJOcfNWnjJMUFV8Zsdf/DAHqMbyUBAAAAAFfzg+bjPC4lAQAAAAAAAAAAgG4zxuQkvf7A4J9sNZ219kFjzAclfXttkCfpTZLefbw1BAAAwFXi5p3TRsblv+zevC/8ryPPwkgD0ZvKuFJGJb1m+oN6zfQHj33+1kqb0ZiKcV4r1WldqJzRYuWMLldPaSWc1uXKnJaqc6paX5F1FVpPVetrKyqoFGdUsYFKcVYr4bTWwklVbco9hV1gFOu0f0nnMs/oXOa8zmae0Zngot71+I82neZnb367vvvse5RzW4eZWkkrflZPFqZ1PjeuVT+nNT+jNT+nz/oZfdyfVbyblhdJKtYeiVzt0bgLc+9sSprfXNJrn3lAt24udWUZ5TjQA1t36JnKOVViXxUbaDvKqRRntRZNark6o2Kc01Y0ps1oTOU4o2KU13I4rY1oXNU4CfdbDadUttmu1DFNzinqXOYZnQ0WNeWtKu8mHZYnvVVNeBu7ndfng4u6Nf+Qbsw+Jkf14SpZp6RZf6ntnErsiayji5V5bcfJNrMeTmg9mtBaOKFilNdmNKalcFYr1SmtR5N129BSOKONcFxluxPaNN16gV0w5a3obHBe5zLnNesvKeuUlHW2NeZuyTdVeSaUb6oquFtaCBZ1NrOohWBRc/6VpOO79VSuBeDN+kua9Zf78nf00zfrD49tXpthQYuVBT1TPqfNaExV6ym0nio20EY4rooNVLW+qrGvrbig7SiXBFjUjnXlOKutqKBKHKhsk21tK8qran2V44zWokmtVKd3gzOsjpacOudf1kKwqNP+ZeXdojJOWVPeiqa9VRXcLY27Gyq4W/qeB3+l6Tz+53O+Ua+Y+eiR6tEuI6vve/g/NRz36pk/0RvnP1A3LOds67u++qtXlb0z/yW968Z3daWOhxXGrlbCaV2qntZydUZbUUFr0UTt+JXXRjietD020FZU0OXKaV2pzqlifVXiQNtxTuvRhLajnLbikxv0+Lyxz+o2/6u6LfOgAqeinZQNR5HOTTyj08FlzXpLUuxpKZzVI9s364ubd+h8ZUFL1RktVs5osbqgbZvvvA7B5/Q1wWfkmVCBEynvVRSMbSjrlHRz9nHd5l+W70ZyHCvXsbXnWK4Ta9pbVd4tSYolVZScn+0LnG52kG4QstXcYcoe1iDUo0t1ONRnfBiD8Jntm7cxkuPuvm68xbWux+VNV//PxTfrgeLtKsdZFaO8NqJxleOMSnFWG9GYqtZXaD1F1lXV+loPJ1SMC8f1Bx1KwdnUddkndW3maVkZXaqckiSdCS5qIbOo+eDibrBccoxb1d2FL+lscD4JSlUtwNNEmvTWNOmt9+XvABo61e8KSD/xxDv0rx/7D3XDfuT6d+vf3/jOQ83n3Cef1GLlbMNxB88lt6J88h1ROQmTvVQ9ra2ooM1oTBvRuLaivFbD6eQavnYdsx6Oqxgn12/FKN+Xa/v9vmHsY6paX8U4p0fLNymUp8BUFJiKTnuXteCd11lvUWe98zrrnlfO3VY5Ts7lKllPvlcLJS8GmgrPJwH52QuqWl/OTBLy7IRGrvHkulY5r6wZf1WOo9p5R60ipvaPkSQrlUtSaas+zGzntetK2bwUb8vs/ADEMXNeFsleV2xdEDhhBuCrfAAAAADAoDF+pvlX8i6XkgAAAAAAAAAAAEAPfKOk/T3N7rfWfqXNad+rvWA0SXqdCEYDAAAARoYx0ri3qXFtaj64pNsLXz3S/KxV0uk0yms7zimsBdFUra/NaEylOKtKnISpbUaF3c781VqoyEY0vjtsJyRoMyoosq62ojFl3W09u/BFPafwBd2Ue1QLwaJ85+qOon+9fo8+tPzqhnW86Zq/0eMT45LGG44vO66ezk/qyfyUnihMacPvb0fe4/LI2Kx+/rYXa7KyLefAnZ/GSjOVoq4vrur6rVVdV1zVqfJWXR9dK2nLDbQaZLXpBbINYh6yk+f1nPAxTVVLKoSVjmOCynGgShzsBhgthbMqxVlV42TbSALWCrsBRUlQX7Zue9uK8irbzG5YRGS9ZB7W143Zx3R34Yu6LvuUzgbndTZzXhPuOoFmfeSaWGczi8cyr8g6u21NOc5oI6qFYMX+brBjMc6rHCfhRltxobaNJIFYv/D09+nJ8vUN5z3urus1s3+sWf+KnlP4gp6Vf3h3Gyq4dCzvp5LjadXPat3PKNoNrFzTvNY0X3vnx5GmqiVNVkvybdxsVh2xVrvb0FZc0Fo4qZVwWhlTVmg9bUTj2ojGtRpO6lLltPJuUbfkHtFdhS9pxltueCxr5Oef/n59pXhHw3G+c3zBu7GkTS+jNT+rbdfTWFjRVLWkXFSVkTTlrTaddtrfG2clbbu+vvbcn8t/qKxqnKkr++2nf/vY6nxUnhPpVHBFp4IrR57XTju0P/RzJZyuBayNaTvO7YXLVqe1Fk3W2qxAxbiwex61Ewy5E8a2Ewq5FRU6Dhp5TuHzGnO39Mn1F9UNv2f807r/BS+SY44eHGWttB5N6Ep1To9s36xLlVM6Xzmr+9fulTFW096yilFh9zMoxVmdDc7r6yb+Sv9g7o90ffbJo1XgeHdv4PCio8/iVCC9/dqfP/R05Xhvv9oJAj14vZWcZ/vajnPajMbqzrslaaUWcpScR9dCRWvTVa2vxcoZXanO6ebso3rFzEf0mtk/1j3jnz6W9gNAY++47qd1Jrig/7r4T2Rl9NYz79XbFt576Pm4pnkDlQSi7im4Rd2ce1Q35x499HJ2FKOcyrXzv51r9qpNrstWwymthlO16/jkPDoJmC3sXsfvfC+0HM5oK8pruTqrDy2/Sp4J9ZLJT+gPll7bdNmPvfCmo59TdMoqPQPTUf3/7NeJpGjj2Kt0kMl0HmILDCp6swMAAAAArhak/Lqj5/euHgAAAAAAAAAAAMDoetWB9x87xLR/ISnU3n2izzfGzFtrLx5HxQAAAACMFmOkwFQVOGua0lpPlrnqZ/X5qTN6rDCjlSCnNT+rBx4/LS03Lv8/br9FhbHZntRtEK0FuYbDlzN5PTw+t/s+F1Z0zfaaQuNqrRY2FDpu28tx41iTtQCiiWMJISrXHpK0F7rjSpqJYy2UNvT1V56QF3e2nKqSv821sdzUHsytxZJC0/iz2nY9rflZrQVZrflZrfrJc7nJjxF7cayJsKyJ2uc4US1rslrSeFiWFx89fMLIHntAVL+5JlbBLe4GlZ3R4b7iyDol/fOHfqnhuD9/3n16wfhnj1zHYWclVY0jNQhQbKbqOFr3M1r3kvZm3c9qrfYcN0gtjGW06QVarbX7zfahZgphRZPVkqYq28lztaTJSklT1e3d17movbAySbt/qqNQ41rTeLCma9ReEIOVVFF77WujUMrdKjihKrW2xxqp7Hi7n+H+z3PL9WUbfKZV42jdz2q11j7F5up4Sz8ONVUp6TH3JqnJzzJ8/Loz+tLZr0/auCCrqpOsm5fm/rP+7E+/T3GU9DG4+fq/lvPyv9J7dI+8LrdD+bCqid1jUnn3+JSNQx1Hjo+jWJ7dm9FOO5Ss1jWdyRz/V63FKKfIurWwtXFFcndDHiPrqmp9LYcz2o6yCpyqCu6W7sg/oNPBZUnS/1x+pf794/9Wq+GkXjT1l/rRG9+l0Gkv0rTVsdIYadJb16S3fqQwFWBQ7M+32WmHrdn3WtLOgcDIyrPxIY6Ax6NqHFkZGTdSzt1STluaziwdej4H27M0SXCyr3U/q6/4c3XHkC2vcV8zY+1u2ObkvmPvRLUst83ldi5ZY461MrXX5CLjpHCM1Xcu/Lq+c+HXjzQfk3L8Dkyl6bhO5d1t5d3tY5/vju/56i/pPYvf3XDcmeBC15Y7iNK+h9jPs1HHIfbAoCMYDQAAAABwtSZfVifjCEYDAAAAAAAAAAAAeuDuA+/vb3dCa+2WMeYLkp6/b/Bd0iF7DePkKlwrXfu6+mFORgqmJRtK5SWpdFEKN6W4IkUVyVaT1/vfR2Wl//x5Hzi+ZFxJTvJsXKm62nIyLbxKcoKkvJuRbCy52b1hxtk3XycZ7uWT91LS+3PXvte7wxuMbzhNo2lbjW+xbK+QrF/j7NV/5yEnKefmkr9JVrK1bn823vc+3hu+M86GUriVLNO40iffpKae++OSPy7F1WS7slGT+cf1y4/LUulSsj1GpWTdhMVkHlG5Vj7am5+NkjpF3et0gwFgXPVkP2q2X6eNNyZpQ9OM3Zw+fr/NR5qP88Zqn8W+/VY68L7JOBvtGwYAJ4OVdCE7rs9PndHnpxb0RGH6qjKNQnR2ZDJbXazd8Nj2Aj00fqrj6SPH0XImr+VM/hhrle73rrnryPNIwhrKu8FIO+E5hbByVXCClVRy/STcrBYCsRMi1yhQaFDlwqqmqrVwqNrfPB6W5RxDOIXRXgDVzvwDGx290l1078Snmo67Ift47yrSIyXH2wvpC7Iquoe7/zsyjtb8jFaD3G7Q3/4wrEG15QXa8gKdz030uyqHcvHzY1Kx8bhfvPPr9N/nO2+321F1PF3OjulSvtC0zEPTU1rZF7S545bbP6lz131BlxZv1djEZc3MPaXzJq/z6t1xopsahe2NVSupASTHJ649qpIkz8b6/9m783jJ8ro++J9f3bpLr/d2T3fP9Cw9PdMzMMzgDMIExhlAlE0kiqABxW0QlxA1atBgngSRPGqSx0fNo9FHY1BMFMWgAhoVFyQoIxhZwi7MwGzAMFsv0/tdTv6o27fr1l36LlV17vJ+v16nb51T5/zOt06d+lTd6qrv3Tl+OteN3znTVPNcI7MjgyO5Z+tYTl96X1721Nfk3m1jOdEcyk/mlmXtcc+ZE7ni5NFcPj1dcepoRsdPpySZTMnRweEcHdySo0MjOdYcXvS1Wa+ca1ZVlY75ZHpZafsNuX29tmZX082vZjXFKud+y25fr8xtnlU69tm23sw+Z/bRUU/Hesl8jbgy0+Sw6lhv1j47jsF86y12DOZb78LHYP7btvgxmHvbltKM7EK3rX29C92uObd/Fedtc2oyA1WVZjWZ5lTr50BVpTk1mWZ1bn4qg1NTGaim0qym0pya/llNZaDtcvvyUs1ukfmJnXvzkbH9KVW1qnrbbZs4m9Gzp2aal42Nn87g1OT069zWa4Zjg8M5OjiyrMbJa1GZbpLWqDqaplVpWz7dRK2q0phzXfvyKq22sK11zi2bO98xdtt1jY7xZq/bXu+5/XTUNM/2i92mxWqYtd/FrutcPt/tXaimWTV01j+930Vuby+b202mzJznR4a21PZc1k0lydlFHrNDje43Ruu1b7r4zfM2Rrti+N4Mr8Pbs5gqyUPD23Lv1rE8PLx1+ne41mutI8t4H+J1H/2LXHzG+2JsTGv7XQgAAADqMTS88HXL/MtbAAAAAAAAwIo8oWP+zmVuf1dmN0a7Psk7V1UR68e+Z7ambpiaPN80bXK6cVo1fv7y1NlWM6xqPDn3lZVS5l6eb9msy2k192pua2tU1sispmUDW6abfXW4+3eSO75p8dvx5X+YrPEvcK95izVGu+a7k+Hd/avlXOOnyVOtRmoDQ62f1URr+dRk6/LUmVYjtfYmUue2n9NUquO6zuUTJ843zVto+87LD70n+dTPz38bDrw02XNrWyO5tulcQ7qpM20bdDbrKt1dvtB6ze3JyN5kcDQzzQjbp8HtSZluWNhoW94YaTUXbG/Qd+5naX2dcOZnSqtRYTXV2ufAIn/Qby04fnfy9qsWvv5rl/GU/dYrkpP3z3/d8+5Ixr5kWaXNqKpk8uT57J48Of1YOPfYmGxdN/HYdDPCx5Lx4+fzfvxYqwFcNZFMTZw/N6fOTjfVnGgba7w1dqPZug8nT08/Xkpbprc3tJz+OTSWDO9pbX/2yPS+p5tynnm4NTW3thpiVpPT2zbPjzcw3Npu6szcx965xoztj8v2ZVPj083jYG061mx9SbcuE9PNcI52NMM50RyaaTDQC6cGBvPI8MINWZIkZeEKmoP1fjm2JNmW4TTan9/aX/eeW6ltvlEGsiPDGX34AzMNpkbHT2fH+JkMVFXrefa230mSTFYTee+xd+bDx/+u3zdtQ6hKyWODI3lscCT3bYxePRd0qjmYU83BfKFPDaK2TJzN6PiZNHv8HDs4NTXT0GP07OmZ5m9bJ8bnbXJ3ojmUo4MjefTiU9nzyc/n4ROXzlrnyv0fzi/feOPM/NaJ8Vx+6miuPHEkV548kr1nTnSlMcN4aeTo4EhOLbNB2Xij0dbg7Hwun1jgD12PNwZydHAkp5e5H9auRqN/r1svueyT89cwMJ7RXQ8suN2WrY/lykPv71VZtVrLzfZKVWXbxNk0UuVYl147Pjy8LQ8Pb8sHd53Pyu3jZ9JIlceaw11r0ATr1URjIBNJzvSpRUc3H3MzeZbRro25VrUa8JVMiax1aznN7ea/bnbjtiQ50RzOscGN+Vx2ornw++lvPHRT/vSiC7+OGZmcyL4zJ/LMhz672FsvfXFg+KO5ePgL+eKZ/bOWf9Wlb8/9W3Zmz5mTGZmaqKm6CztbBnJkaCRn5vk/ySrJ4aEtuXvbrtyzbSz3bh3LyUXuP0BjNAAAAOYzuEhjtAX+Ix0AAAAAAADojlLK7iSdHYbuXeYwnetfu/KK2NQaA0kGWk2L1up/F1/ynAuvoylabzUv0MSk20ppNUhq7EgGd7SWDe3qbw1LcelXJ3f951ajqHaNoeSpv9JqDMX6M9CnZkWreVyda0qWPj8214uqajV5a2+YNt/PqkoylRz+UPJXz59/rC//o2T4ounH+bmma0tovjjrusxdt7253XKMH281k2sMtWpvvx0zP6enieOtBnNl4Pyymds+dX7dmSaTU9MN8dp+ThxL7n/bwvXsvrljzOp8A72p05ndOLExu3FiabTWO/6Z1lgH/kkyvLeVnWWw9Vgc2ddq4HjBBqznLmeB6xqtx0xjsK2hY1uj1jRa1zW3JZ3tccpAq4nf+GOt+YGRVnPBieOzj2P75clTycSpuefC9DH6u/GP5PfP/q/l3febxA03/lnu/czNc5bvHF24WctqNdLIzuaujDZ3Z7S5KzsHdmWsuXvWstHm7uwY2JlGGVj+Do7fnbxvgYabQ2eT7edv75N23JK7T30qf/jwm/KJkx9a2Q2CHjnVHMqpNf6F7qc+/w35s7f/SCYmWq/nRrYczc3P/m+5f+vs1+Wf2rl35vKWibOtBmmnT6SxjPaQZ6cblJ1raLZYswJItXCDjkajf00ftm47kv2XfyxfuP+GWcsPXPWBDA6eWWAr6lKVkuOLfe+jS/qxDwBop7ld9zy8bUsmti7t/yHu3LEnd+y5sscVLc0z9v10/vSt/yrHH2v9bnbVte9N9YL35KcGvyKNaipXH3801x97MDcc/WIuP3WsK82sO1VJHh3akvu2juX+LTsX/J3u9EAzR8/9YYHBLTnlu7fQVf6HHwAAgLkGF/nPd39BDAAAAAAAAHqt8xPqJ6uqOrHMMR7smB9dRT2wto3sSR7/Q8k//FzdlWxeDV/yn9fg9uTgtyZ3/ers5Vd+k6Zo69nAli4OtshXtgY0NeuZUloNwZbqkucmY1+SHPnI7OX7nplc9sLu1rYevWmR8/irNlFzr+bW85eHVvnS+9Gp5KFNdOyW4bIDH8ng4KmMj8/O4quued+Kx9w7uD/7h69oNTkbmN3sbLS5O9sHdqys4dlSNbcva/WDWx6X77/ix3PnyY/l7Q+/KXee+liPCoON58BVH8rLXvGDue/umzIwMJ4rDn4oW7cdXXSbU82hfHLnvnxyZ5+KhA6Ngf41RkuS57zwZ/Onb/1XeeiL1yRJ9l/28Tzreb/U1xoAAOiOfr+W7JY9++7JN3/Xq3L4kcszsuWxbN12ZOa6qdLInTv25M4de/L2y67PaIZzfS7KNRlLM6XtDxBUrT/4UBrJPW9eeGe7n5zsvC6ZOpvx8SP5fDmV+4YGc3/jTE5lvPc3thu+8i+S5t5kZO+F14V1RmM0AAAA5lrsr/o0/SoJAAAAAAAAPdb5zfhTKxijc5sdK6xlRillX5LlfqL60Gr3C0vy5J/RGK1OZZGmOJvdzf+p1YDpnt9JUiUHXpo82bm6rvWrMdrg8hrl0EOlJE/9L8m7vyY5Pd17dusVyc2/WG9dsAk1B8/meV/7/+Qdb/+XmZhujnb5gQ/nqbe+JY0s3ryspGS0uSsHRg7lypFrc+XINTkwcihbB2rO2xXm/TVbb8gPXfETeXj8gdxz+s5MVHO/7Hxy6njuO/2Z3HP60/ni2ftTLWHcRjWVlIEkjZllVaZSLWlrWPt27HygV20BAAAgAElEQVQo19/4F3WXwQrMn/NVpjLV91q6riycsQON/jaz2Lb9SL7+W16TY0f3ptGYzPYdj/Z1/wAAdE+jz68lu6mUKrv33HfB9Y7mTP42n8/f5vPTG+b8z3NvbVx98wVG+VRr3ZmvzZ5Zbrn12nZFMnRZ3VVAT/g2OwAAAHM1Bxe+bsCvkgAAAAAAANBjnd+MP72CMTobo3Xj2/7/LMnrujAOdJ/GXKxVA0PJzb+QPOXnk1RJaVxwE9a4xiKfq+mmrjZgY9X2PDX5x/+QPPjXSaOZ7H16MrjqvrPAElw6dGWesO2m7B7cl9Hm7owe2J3mrSfy8XuGcmD3YK7f/6SU8qa6y1y5xiJ/yHaxBppJSinZO7Q/e4f2X3A3pz//R7nv72/PPVvHcnhoS4anJjI6fjpjZ0+3fo6fzo7xMxlIldz628nBb5zZdqqazGOTx3J04tEcmXgkRycO58jEIzk+cSxVDxoSHZl4NB898fddH7cfGmlkZ3NXxpoXZbS5O9sHdqR03I9VqpyeOpVjE4dzdOJwjk0eyempkzVVDP2ztbE9O5tj2dncldGBXRlujMxeoaqS05/PyNkTGdv2uIzuvDGjzd3Tj6ddGWwMzTvu6alT0/n0aI6MPzJz+ejEI9M/W/NTmezDrey+xsD8zSxKGtkxMDpzTHcOjKZZ5v6uUtLIjubo9LHcPXNMtzS25bHJI+eP3UTr2J08+0hy+gvJnmay5ZKknP/uwNaB7TPjnMu5HQNjOfnR1+XoXb+UI0MjOTK4JUcHR3J8cChVSrL/q5JtB1Z3EO78z3MWTZaSx5rDOXbxbTk6eTiPTRzZGE3yANaYHQOt55DR5q7sGBhLs8z9Ttl4NZ5jE4dnnndPTh2voVJgPgMLvJYEWC98mx0AAIC5hhb5oM1iTdMAAAAAAACAXqj6tA0AvVJKLtTchHWim40YFxtLE721Z2gsufxr6q4CNrySkqu3XJebtj8tN25/WvYt0PTryif2ubBe6VOD35HmWK49/kiuPf7IhVdubp012ygDGW3uymhzVw7kUI8qnOvI+CM5MrGEei+gSnJq6kSOTjdqONfY7ejEozkzdWbebQbL4HQDiPONhEabu7JtnkZnSTJQmtON0HamsYLn8LNTZ3Js4nCOTz6Wbvw6f7Y6k6MTh9saRLWaHp2cPLHqsZNksprQ0G0d2dbYke3N0TSy9HOzJNneHJ3VAGuseVF2DoxloAwsfZzSyPaBndk5MLZgY7PVGmlsycjQZbl46LIF15mqpnJ8usHjZLWE5hBVlZy4Jzn7SDJ6QzIwcuFtVuHPB/flyALX/eCB12Zs2/mGXwOlmZ3NXdk+sHNZ98V8djf2Zvfg3lWNkSSjAzsyeupoDpw6OvfKa38uufgrVreDd37vwtc97b1JWvfxicljOTpxJBPV2cXHmziV/OWz5r9uZF/y5X+YJDkzdXomQ49OPpoj460sPT3V+fco+qHKqamTOTZxZNEmfxcN7suVI9fkyk/8aq44eSQjk/Oc789/3zyjJ0cnHs39Zz6b+898Nved/kwOTzy84H6a08+TQ2WxBq+LqKaSk/cmE23Nk4Z2J1v2ZynvnZTpf0sp5y+3XUopHUvaLpW29dqvWWCs8+MtbayZf0v7CB3rzbqubdwyd+kFryvz3JZzl0qZ97r2/c+ppMyz/jzXzRq3LDDWYvdFxzYL3xeN1rXz1HXB++GCdS10P8weKUmmMpWJajwT1Xgmq4npy7N/zl2+0HUTmWy7PFGNZ6qav7HjlsbWHNr6hHzp9i+b9/qlas+z9teGE9V4djbHZl7rjg6cf9072tydnc2xDMzTCO1Czk6dydGJR3Ni8rFV1b0UVVr3T1VNpUo163KVKlPVZNvlqVSZXq+aXntm3am2dapU1VRrrOnL58euZi0/f/nc8qk5l+fse7rGqentWkumZi7PqqOjxql51pl7m8/vq1XL5OwaZ7abezvbb8+5ujaqVT+XrQVHP5qJC/z+uVCTXdaWkpKLhy7LRYMXz2pmvFDD9U67mnv6VCn0n8ZoAAAAzDW4yJt6w/4aLQAAAAAAAPTY8Y75lfwnXec2nWMCAADMqzk1mdHx0xk7ezqjO56QsV1Py86BXSv6UvxyjDZ35/Fbn5gdzbGe7mdT6mh2tvi623pXxzKMDV6UscGL6i6jL4Yaw9kzdEn25JK6S1mW01Oncqyt0dxjk8dSVb3s017lZFuTuyMP/VWODo7k+GKfe06yY2B0TqO7LY2t6Wy+M5XJfOHMvbnn9J154Oz9qdZIz/nBMtTWnGz3TKOSRuY2xWqURnYMjE03NNudnc1dGWqs42YPXdIojexsjmXncp5ftj6+dwV1aC7S6Oqa7YeyfWSNN9lerCHHQH+eUxqlkR3NsaW9hqimkpMLtaLbnmx5XFdr66apaionJ4/n2OThHJ04nGMTh3OmOpOLmntzYOSa7GiOtlZ812sWHmSR2/ekHbfMXD4+eSz3n/5sHhp/IANlIGPNi2YyaGtj+0wzqpXfmPHkgXcmxz6e7P5Hyd7b+tYwFuitocZw9g7tz97M3+Sa9WVu87bOBmtzG8bNadDWNn++udu5y53N3dqbwc1u2DZfk7jFmtu1jz3c2DL9PHZRxgZ3Z1tjx+qfy+r2plb9bzx7asH/BH7J5/93Rpqnky/96WSe93Q+d+buvPfYO1PSSLWBG+GtNRcNXtxqZjtyba4cuSYHRg5lpOE7uzAfjdEAAACYa3CRv8i1dUf/6gAAAAAAAIDNaa02RvulJP99mdscSvK2LuwbADagdf7lO0iS0ScmRz86d/nup/S/lg3iy8demNtGn9vfnR75WPLntyVpJdPw1MT5hHrKS5N9r+xvPXTfwDIaoy1nXTa1kcaWjAxtyb6hS+sp4O6PJ/e+OROlZLy0NQm76KnJV/5ZkmSwMZRmGVz20KenTuW+05/JvafvzOfO3J0zU6eXtX0pjewc2DXTROjczx3N0TSySBOpecYZLiPrv2kDKza03r8FvpzGnMs1OLqy7RZr5LbGNUoj25s7s725M5cOX9nTfW0f2Jnrtt2U63JTb3bQGEwufX5rAmDNKqWkZKDVlNdL0rVl3zOTB9+96CrPf/gf0mxMJhe9ZMF1vm3/P8/41NlMVOPdrrDrHhl/KB8/8YF87MQHctepT2RqkQbD3bR3cH8uGbo8zXmayw2UZnY2d2X0+GRGf/EnM3rkTEaPnM7242dTzvXafvZL0/jh/zSzvubVsHTr/VdiAAAAemGxv5y2dXv/6gAAAAAAAIDN6WjH/NZSyraqqk4sY4x9HfNHVllTqqp6MMmDy9nGF3dhAynNpJqouwrYWK78xuTj/77uKmB1nvAjyXu/fe7y6364/7VsEIONwQxm+U18VmV4TzLleX7NOfAN3RtrOY1petnEBrrp0CuTe9+cZlWl2f67yqHvSQa2rWrokcaWXLv1hly79YZVFgmrMzhw4XVqV1ULX9dc3WMxSXLTv0v+97+au/xJ/2H1YwMArFfX/fAFG6MNlMlUD2+5YE+7wcZQBjPUvdp65PKBbbl85GCed9FLcmryZP7h5IfzsRPvz12nPpGTk4v8N/rpLyaZmv+6kf0zF0uSnc1duXz4qlw+clWuGL46lw0fzJYlNJCvpu5J9XffN/+VE400Vvk7KmxWGqMBAAAw12KN0bZojAYAAAAAAAC9VFXVI6WUw0l2tS0+kOQTyxjmyo75T6+6MGBzu/kXkv/1qrnLH/8D/a8FNopDr5y/Mdr1P9r/WmClDnx98plfTx581/llFz87ufxFtZXECgxsqbuCze2G/yv52E/NXX7tPK+9VmoJX+Jd0bpQp4u/Mjn0Xcldv3p+2eUvTq58WX01QZet+z860I3GaAdfnvzDf5xuaDFt25XJFS9Z/dhzrPPjfc7Wy5OT99ddBQDQS/uf13oPbjFTSfXpXRvlFc4sWwa25kk7bsmTdtxy4ZXf/XXJ/W+b/7qXL9Lkdzmaa7+xHKxHjboLAAAAYA0aXPivTZatO/pYCAAAAAAAAGxanU3Qrlnm9ldfYDyA5bn8RcnQrtnLGoPJwW+upx7YCHZckzzxtbOXjd2YXPdD9dQDK9Hcljzrj5NbfqPVLPPL/mvyrD9KmhptrSuDowtft/vJ/atjs3rc9yc7nzB72TXfnYzd1L19NJfR7Kwx0L39Qi81BpKn/kry3L9JnvxzybPfmTz9d5OBRf5ANNB9izU/60azzW0Hkuf8dXL1K5JdX9pqiPicv05G9q5+7E6X/ePuj1mHm/7d/Ms14QaAjWNguPUe3NDuBVep/qiZfHF7H4tao677F/MvP/TK7u1jyO+h0AvNugsAAABgDRpcpEP9li781SYAAAAAAADgQj6a5Na2+S9L8odL2bCUsi3JjfOMB7ByW/Ynz/6r5O+/P3nk75KxJyY3/kRy0T+quzJY3278t8n+r0oe/J/J9kPJpS9IBv3hQtaZ5pbk6m9L8m11V8JKNbcmF39l8sV3zl4+ckmy58vqqWkz2XJJq7HTfb+fPPapZO8zWo1ZSunePgZGlr7u0EXd2y/0WinJ3ttaE1CPK74+ef8/n7t86+WLN01bjp3XJrf8WnfGSpLrXp188mfmLr/2Vd3bR50u+5pk21XJic+eXzY4mlzl9ToAbCgDI0lzcOHrP99I9lf9q2et2nNbsufW5OE7zi9rbu/ua7/mIt/HBVZMYzQAAACWZ9fFdVcAAAAAAAAAm8GfJvnutvlnLWPbZ2T2Z0Q/WFXVF7tRFKxpo09Mjs7TA3DfM/tfy0a166bkue9OqqmkNOquBuqz43GtxjWdDn7Lysbbe2trAqjTU/5j8s7nJKcfbM03hpOnvcFzfr8M706u+c7ejV8aySXPTR7488XX2/uMZGi0d3UAsPFsvTS55DnJA38xe/lV39bdJp/d9PgfSO5/a3L8rvPLDn1n672ljWBoNHnuXycffm3yyPtat+v6H01Gn1B3ZQAA/dcYSL7iHcnHfip56N3J9muSx39/svsp3dvHoMZo0AsaowEAADDX3suTXfuSww/OXj40nDz1OfXUBAAAAAAAAJvLO5KcSrJlev7LSinXVVX1ySVse3vH/B90szBYs65/TfK33zp3+XWv7n8tG50GKWx2T3h18nffM3f5tf+0/7UAdMvYlyRf/ZHkC+9IJk4k+5+XbL+67qropht/Innk75Lxo/NfP7w3ufkX+lsTABvDM34ved93JZ//46S5Nbnq9uTG/7vuqha27YrkeXck9/xucvzOVlP9y1+8dhu5rcTWy5Jbfq3uKgAA1obB7cmTfqp34zcHezc2bGIaowEAADBHaTRSfc13JP/138++4rkvT9m2s56iAAAAAAAAYBOpqupkKeUtSdq7PL0mySsW266U8rgkL25bNJHkTd2vENagA/8kufd3k8/9YduylyWXvqC+moCN6apvTz73P5LPvf38suteney5tb6aALphZF9y1TyNZtkY9jw1+ar3J/f9fnL2cHLZC5OtB5IH/ixpjLSa4Y3srbtKANajwZ3J09+cTE0kZWB9NBgb2Zc8/vvqrgIAoLequgvYHEopixzqdfDaGNYojdEAAACYV/nOH0+Gt6b6s99KpqaSZ74o5TtfX3dZAAAAAAAAsJn8eJJvTHLuT0zfXkr5g6qq3j7fyqWUkSS/nmSobfEbqqq6q6dVwloxMJw84/eSL/x5cviDye6bk0uenTR8ZBrosnN58/AdyZGPJHtuSXY9eX18+R+AzW3HoeT6H5m97NAr66kFgI3HezAAAAB0SaPuAgAAAFibSikp3/aaNH7zw2m86aNp/NOfTGn6j0oAAAAA6KkX3j7/8i3b+loGALA2VFX1mST/X8fit5RSvq+U0t78LKWUJyT5yyS3ti1+JIm/fsTm0hhMLvvq5In/Orn0+b6QC/ROo5nse2byuO9Ndj9FUzQAAGBFXnHb/L9LjAzOuxgAAGZ8yy2Lvy9dvvVf9qkScsmV8y4uX/MdfS4ENg6N0QAAAAAAAAAA1ojyklfNv/w7fqzPlQAAa8iPJvmTtvnBJL+Q5L5Syp+UUn63lPL3ST6W2U3RziZ5cVVVX+hfqQAAAADAcnzrLWXePss/8nzNlwEAWNwrnz7/a8bXPvSTyeBQ8oyv7XNFm9izXzp32Z5Lkxue1v9aYIPQGA0AAAAAAAAAYI0oj3tS8op/M3vhU5+bvPh76ikIAKhdVVWTSV6a5M0dV+1L8lVJ/kmSpyRp/9T7g0leVFXVX/elSAAAAABgRfaPlfzat89ujvbs65LXaIwGAMAFXL235Ke/YfbrxltP3pEfOvlfUn7yd1N27aupss2nvPLHkud+U9KYbuV06VUpP/vHKQMD9RYG61iz7gIAAAAAAAAAADiv8R2vTfXMr0s+ckdy8AnJl3xZSnOw7rIAgBpVVXU8yTeWUt6S5NVJbllg1UfTaqD2uqqqHupXfQAAAADAyn37rY089/oq7/5UlUP7Sp58IBloaIwGAMCFvfp5jbzgiVXe/ekqh7YczTOGhjJ8/adThobrLm1TKYNDKT/2xlQ/9HPJkYeTy69JKV7Tw2pojAYAAAAAAAAAsMaUa74kueZL6i4DAFhjqqp6S5K3lFKuSvLkJJcm2ZbkgST3JHlPVVVnaywRAAAAAFiBS8dKvvGpGicAALB8119acv2lJcmuJE+ru5xNrezYlezYVXcZsCFojAYAAAAAAAAAAACwjlRV9dkkn627DgAAAAAAAAAA6LZG3QUAAAAAAAAAAAAAAAAAAAAAAAAAaIwGAAAAAAAAAAAAAAAAAAAAAAAA1K5ZdwFsLKWUwSS3JTmQZH+S40k+n+SDVVXdXWNpAAAAAAAAAAAAAAAAAAAAAAAArGEao21ipZTfSfKyjsX3VFV1cAVj7U3y+unxdi+wzh1Jfraqqt9b7vgAAAAAAAAAAAAAAAAAAAAAAABsbI26C6AepZSvzdymaCsd6wVJPprkVVmgKdq0W5O8pZTym6WUbd3YNwAAAAAAAAAAAAAAAAAAAAAAABtDs+4C6L9SyliS/79LYz0ryVuTDLUtrpJ8IMlnkowl+dIke9qu/+YkO0spX1dV1VQ36gAAAAAAAAAAAAAAAAAAAAAAAGB9a9RdALX4mSSXTl9+bKWDlFIuT/L7md0U7T1Jbqiq6uaqql5aVdXzklye5AeSjLet9zVJfmKl+wYAAAAAAAAAAAAAAAAAAAAAAGBj0RhtkymlPCfJd0zPTiT5sVUM9/oku9rm70jynKqqPtG+UlVVZ6qq+vkkL+3Y/l+UUq5cxf4BAAAAAAAAAAAAAAAAAAAAAADYIDRG20RKKduS/Grbop9N8qEVjnVtkm9vW3Q2ye1VVZ1eaJuqqt6a5DfaFg0ned1K9g8AAAAAAAAAAAAAAAAAAAAAAMDGojHa5vLvkhycvvyZJD++irFenmSgbf73q6r69BK2+w8d8y8tpYysog4AAAAAAAAAAAAAAAAAAAAAAAA2AI3RNolSyq1Jvrdt0fdUVXVqFUO+uGP+15eyUVVVn0jyvrZF25I8bxV1AAAAAAAAAAAAAAAAAAAAAAAAsAFojLYJlFKGk/xazt/fv1FV1V+sYrxLktzUtmgiyXuWMcS7OuZfsNJaAAAAAAAAAAAAAAAAAAAAAAAA2Bg0RtscfjzJ46cvP5Tk1asc74kd8x+uqurEMra/o2P+hlXWAwAAAAAAAAAAAAAAAAAAAAAAwDqnMdoGV0p5cpIfblv0g1VVPbLKYa/vmL9zmdvfdYHxAAAAAAAAAAAAAAAAAAAAAAAA2GQ0RtvASinNJL+WpDm96E+rqnpTF4a+pmP+3mVuf0/H/EWllF2rqAcAAAAAAAAAAAAAAAAAAAAAAIB1rnnhVVjHfjTJTdOXTyR5VZfGHeuYf3A5G1dVdbyUcjrJSNvi0SSHV1tYKWVfkr3L3OzQavcLAAAAAAAAAAAAAAAAAAAAAADA6miMtkGVUq5P8m/aFr22qqq7uzT89o75UysY41RmN0bbsfJyZvlnSV7XpbEAAAAAAAAAAAAAAAAAAAAAAADok0bdBdB9pZRGkjckGZ5e9P4kP9/FXXQ2Rju9gjE6m6l1jgkAAAAAAAAAAAAAAAAAAAAAAMAmojHaxvQDSW6ZvjyR5Durqprs4f6qPm0DAAAAAAAAAAAAAAAAAAAAAADABtWsuwC6q5RydZKfaFv0s1VVfajLuzneMb9lBWN0btM55kr9UpL/vsxtDiV5W5f2DwAAAAAAAAAAAAAAAAAAAAAAwApojLaBlFJKkl9NsnV60WeS/HgPdrVmG6NVVfVgkgeXs03rsAEAAAAAAAAAAAAAAAAAAAAAAFCnRt0F0FXfleQr2+a/p6qqUz3Yz9GO+b3L2biUsj1zG6MdWVVFAAAAAAAAAAAAAAAAAAAAAAAArGvNugugq17fdvmPk9xZSjl4gW0u6ZhvzrPN56uqOts2/+mO669cYn0Lrf9oVVWHlzkGAAAAAAAAAAAAAAAAAAAAAAAAG4jGaBvLlrbLX53ksysY47J5tvvSJB9qm/9Ex/XXLHMfV3fMf3yZ2wMAAAAAAAAAAAAAAAAAAAAAALDBNOougHXpox3zN5ZSti5j+9suMB4AAAAAAAAAAAAAAAAAAAAAAACbjMZoLFtVVV9I8uG2Rc0kT1/GEM/qmP+T1dYEAAAAAAAAAAAAAAAAAAAAAADA+qYx2gZSVdVYVVVlOVOSr+gY5p551vvQPLv7g475VyylxlLKdUme1rboRJI/W/KNBAAAAAAAAAAAAAAAAAAAAAAAYEPSGI2V+q0kk23zLymlXLuE7V7TMf+7VVWd7l5ZAAAAAAAAAAAAAAAAAAAAAAAArEcao7EiVVV9OslvtC0aSvLGUsrIQtuUUl6U5Pa2RWeTvL4nBQIAAAAAAAAAAAAAAAAAAAAAALCuaIzGarwuyeG2+VuT/EUp5br2lUopw6WU70/y3zu2/5mqqu7pcY0AAAAAAAAAAAAAAAAAAAAAAACsA826C2D9qqrq/lLKS5K8I8nQ9OLbkny8lPL+JJ9JMprkyUn2dmz+R0le269aAQAAAAAAAAAAAAAAAAAAAAAAWNs0RmNVqqp6VynlxUnemPPNz0qSm6en+fx2ku+qqmqy9xUCAAAAAAAAAAAAAAAAAAAAAACwHjTqLoD1r6qqP07yxCS/nOTwIqu+N8k3VFX18qqqTvSlOAAAAAAAAAAAAAAAAAAAAAAAANaFZt0FUK+qqt6VpHRhnAeTvKqU8gNJbktyZZJLkpxI8rkkH6yq6rOr3Q8AAAAAAAAAAAAAAAAAAAAAAAAbk8ZodFVVVWeT/FXddQAAAAAAAAAAAAAAAAAAAAAAALC+NOouAAAAAAAAAAAAAAAAAAAAAAAAAEBjNAAAAAAAAAAAAAAAAAAAAAAAAKB2GqMBAAAAAAAAAAAAAAAAAAAAAAAAtdMYDQAAAAAAAAAAAAAAAAAAAAAAAKidxmgAAAAAAAAAAAAAAAAAAAAAAABA7TRGAwAAAAAAAAAAAAAAAAAAAAAAAGqnMRoAAAAAAAAAAAAAAAAAAAAAAABQO43RAAAAAAAAAAAAAAAAAAAAAAAAgNppjAYAAAAAAAAAAAAAAAAAAAAAAADUrll3AbAGDLXP3HnnnXXVAQAAAAAAAACwKvN87mFovvUAoI98Rg8AAAAAAAAAWPd8Pq9/SlVVddcAtSqlfG2St9VdBwAAAAAAAABAD7yoqqq3110EAJuXz+gBAAAAAAAAABuUz+f1SKPuAgAAAAAAAAAAAAAAAAAAAAAAAAA0RgMAAAAAAAAAAAAAAAAAAAAAAABqV6qqqrsGqFUpZTTJl7ctui/J2VUMeSjJ29rmX5TkrlWMB7BccghYC2QRUDc5BNRNDgF1k0PAWiCLgLpt1hwaSnJF2/z/rKrqaF3FAIDP6AEbkBwC6iaHgLrJIaBucghYC2QRUDc5BNRts+aQz+f1SbPuAqBu0+Hy9m6NV0rpXHRXVVUf69b4ABcih4C1QBYBdZNDQN3kEFA3OQSsBbIIqNsmz6EP1l0AAJzjM3rARiOHgLrJIaBucgiomxwC1gJZBNRNDgF12+Q55PN5fdCouwAAAAAAAAAAAAAAAAAAAAAAAAAAjdEAAAAAAAAAAAAAAAAAAAAAAACA2mmMBgAAAAAAAAAAAAAAAAAAAAAAANROYzQAAAAAAAAAAAAAAAAAAAAAAACgdhqjAQAAAAAAAAAAAAAAAAAAAAAAALXTGA0AAAAAAAAAAAAAAAAAAAAAAAConcZoAAAAAAAAAAAAAAAAAAAAAAAAQO00RgMAAAAAAAAAAAAAAAAAAAAAAABqpzEaAAAAAAAAAAAAAAAAAAAAAAAAUDuN0QAAAAAAAAAAAAAAAAAAAAAAAIDaaYwGAAAAAAAAAAAAAAAAAAAAAAAA1K5ZdwGwAT2U5PUd8wD9JIeAtUAWAXWTQ0Dd5BBQNzkErAWyCKibHAKAjclzPFA3OQTUTQ4BdZNDQN3kELAWyCKgbnIIqJscoqdKVVV11wAAAAAAAAAAAAAAAAAAAAAAAABsco26CwAAAAAAAAAAAAAAAAAAAAAAAADQGA0AAAAAAAAAAAAAAAAAAAAAAAConcZoAAAAAAAAAAAAAAAAAAAAAAAAQO00RgMAAAAAAAAAAAAAAAAAAAAAAABqpzEaAAAAAAAAAAAAAAAAAAAAAAAAUDuN0QAAAAAAAAAAAAAAAAAAAAAAAIDaaYwGAAAAAAAAAAAAAAAAAAAAAAAA1E5jNAAAAAAAAAAAAAAAAAAAAAAAAKB2GqMBAAAAAAAAAAAAAAAAAAAAAAAAtdMYDQAAAAAAAAAAAAAAAAAAAAAAAKidxmgAAAAAAAAAAAAAAAAAAAAAAABA7TRGAwAAAAAAAAAAAAAAAAAAAAAAAGrXrLsA5iqlDCS5Jsn1SS5NMprkTHZQCE0AACAASURBVJLDSe5K8vdVVZ3o8j4Hk9yW5ECS/UmOJ/l8kg9WVXV3N/fVL6WUG5I8KcneJMNJHkhyf5L3VFV1us7a+qmUsivJDUmuTbI7yUiSI0keSvL+qqruqrG8OUopV6V1v12aZHuSLyS5J8kdVVWN11nbZiKHukMOtcghVkoWdYcsapFFC+7H+bEIOdQdzrOW9ZZDrA1yqDvkUIscmq2UckVax+LyJHuSbElyNsnRJPemdUweqq/CtUEOdYccapFDrJQs6g5Z1CKLWAk51B1yqEUOzc/5AdTBc3x3yPCW9fYc77Mxa4Mc6g451CKHWAk51B1yqEUOLbgf58ci5FB3OM9a1lsOsTbIoe6QQy1yaDafz1s6WdQdsqhFFrEScqg75FCLHGIl5FB3yKEWOTS/dX1+VFVlWgNTWoH5g0n+KK1f7qtFpokkf5LkhV3Y794kv5TkkUX2954kX7/K/Vyd5GVJfjrJu5Ic69jH3V06jjuS/Oskn1vk9hxL8t+SHKrx/u7Z8UgymOT5Sf5Tko9e4Fyqpo/Vv01ySc2PgW9IcscidT4yfa7uWcHYFzoGF5oO1nls+ngfyKHuHEc5JIfaxzzYhQxqn26v8xj16X6QRd05jrJIFq3786PG+0AOdec4rovzTA7Vdn5sS/L0JD+U5LeSfCrJVMe+bq/rONQ9ySE5JId6djyuTfJTSf4qrf/UuNDxqJJ8IMn3Jhmu65jUdD/Ioe4cRzkkh+YbfynZs9h0sK5jU8N9IYu6cxxlkSxqH/dgF3Kofbq9rmPUp/tBDnXnOMohObTuzw+TybSxJs/xmyvDPcfPW7fP6NU8ySE5JId8Rq/uSQ7JITnk83l1T3JIDm3mHOrj+eHzeYsfHznUneMoh+RQ59g+n7e84yWLunMcZZEsmm/8peTPYtPBuo5Nn+8HOdSd4yiH5FD7uAe7kEHt0+11HaM+3Q9yqDvHUQ7JoXV/flzwdtRdgKlKkjet4gntD5NcvML9viDJF5exr99Msm0Z4z8ryTsu8KTQtQdmkqel1YVzqbfnRJJX9fF+7vnxmD4Gj67wXDqc5FtqOP+3J/ntZdT5QJLnL3MfK318nZsO9vu41HA/yCE5JId6kEPp/i+yL+v38enzfSGLZJEs6kEWrafzo+5JDsmhzZhD/Tw/0nrj+CNpvSF9oX3d3q9jsJYmOSSH5FDvzo8k37mKx9c/JHlav45JnZMckkNyqLfnxyoeX+emg/06LnVOskgWyaKeHY+DXcih9mnDvl8dOSSH5NCmPz9MJtPGnDzHb44M9xy/YM0+o7cGJjkkh+SQz+jVPUUOySE55PN5NU9ySA5txhzq5/kRn89byjGSQ3JIDvXo/IjP5y3nWMkiWSSLenh+rOLxdW462K/jUtckh+SQHOrZ8TjYhQxqn7xXLYeW8hiUQ3JoXZ4fy5maYS143ALLP5fk02mFazOtrn83JWm0rfOPk7y7lPLlVVU9sNQdllKeleStSYbaFldpdVn/TJKxJF+aZE/b9d+cZGcp5euqqppawm6elOR5S61pNUopz0mrG+hwx1X3JPlwWg/Cy9N68A5OX7c1yS+VUhpVVf1iH8rsx/HYm2TXPMvPpvXm9gNpdUy9KMnN0z/PGUvy30op+6qq+tke15kkKaUMJHlzkq/uuOqhJB+crvVQWudimb7u4iRvK6U8p6qqv+lHnZuEHFolOTRDDvXOybQ6Wm9ksmiVZNEMWTT/ftbD+VE3ObRK6+Q8k0Oz9e38SPLyJKN92td6JYdWSQ7NkEMXVqX1Jv+daf3Hwsm0/mLuVUluyPnzI2k9Nv+ylPLCqqr+Z78L7TM5tEpyaIYcYjVk0SrJohmyqHc2+vvVcmiV5NAMOTSPdXJ+ABuT5/hVWicZ7jm+wzr7bMxGJ4dWSQ7NkEO94z0PObQoOTRDDs2/n/VwftRNDq3SOjnP5NBsPp+3tsihVZJDM+TQhfl83sJk0SrJohmyiJWSQ6skh2bIod7xXrUcWpQcmiGH5rFOzo+lq7szm6lKkr/P+S56H0jyfUkOLbDuZUl+JXO77/11krLE/V2euV0P/ybJEzrWG07yz9N60Lev+1NL3M8PzlNnleR0Wm9odKVjYVrdUzu7It6Z5LnzrLsryS90rDs537o9uJ97fjzSeiI/N8ZjSd6Q5NlJtsyzbkny4rTCq7Omnh+P6Rp+umO/Z6fP/6GO9a5PckfHug8n2b/E/bRv997pc2Y5U7Mfx6POKXJIDsmhnuRQWr94XShjFpr+pmN/b+zHMalziiySRbKoZ6+J1sv5Ufckh+TQZsyhfp0f0/s6ssC+7p/nutt7fdvX4iSH5JAc6un58cokn0zrtdcLk+xaZN2xJP8irf8Aad//55KM9vqY1DnJITkkh3r+eqh9LO9VL3ycZJEskkW9OR7er176sZJDckgObfLzw2QybczJc/zmyHDP8fPW6zN6a2SKHJJDcqgnORTveSznvpBDckgO9ej10Ho5P+qe5JAc2ow51K/zY3pfPp934WMkh+SQHOrd+eHzeUs/VrJIFsmi3r4mah/Le9XzHyM5JIfkUG+Oh/eql36s5JAckkOb/PxY1m2quwBTlST/K61uezcvY5t/Ns8J/41L3PYNHdu9J8nIIut/3TwPrCuXsJ8fnA79Dyb51STfneTJaXUMfFYXH5i/3THWp5Psu8A2/7Jjm48lGejx/dzz4zEd3F9M8uok25a4zUVJPt6x/09kiS8EVnE8rs7cFwUvWmT9LZn7H42/vMR9tW/zrl7ervU6ySE5JId6m0MrqO2yJBMd+3pGL4/HWphkkSySRb3LovVyftQ9ySE5tElzqC/nx/S+jqT1lxb+R5LXTx+ni6eve1fHvm7v5e1eq5MckkNyqKfnx+AKtnlSkuMdNbyml8ej7kkOySE51PPXQ+1jvauXt2s9T7JIFsmi3mbRCmrbdO9XyyE5JIecHyaTaWNOnuM3R4Z7jp+zX5/RW0OTHJJDcqi3ObSC2rznsbRt5ND5/cih8/uQQ+v0/Kh7kkNyaJPmkM/nraFJDskhOeTzeWthkkWySBb5jF7dkxySQ3LI5/PqnuSQHJJDzo9l3aa6CzBVSXJwhdu9pePk+h9L2ObajifGM0muXcJ2b+zY168tYZtdCz0hdDGork6r42D7WE9f4rbv7NjuO3p8P/fjeOxdamB3bHfTPMfxH/X4ePxGx/5+fQnbPG76nD23zXiSq5ewXft+3tXL27VeJzkkh+RQb3NoBbX9647aPtXLY7FWJlkki2RRb7JoPZ0fdU9ySA5t0hzq+fFoG2/Bv6AbH7w6dxwOrnA7OSSHOseRQ92r79921PDeftfQ59t7cIXbySE51DmOHJp/vPax3tXL27WeJ1kki2RRb47HKmrbdO9XyyE5JIecHyaTaWNOnuM3R4Z7jp+zT5/RW0OTHJJDcqi3ObSC2rznsfTt5JAc6hxHDq3T86PuSQ7JoU2aQz6ft4YmOSSH5FBvjscq69tUn8+bvs0HV7idLJJFnePIovnHax/rXb28Xet1kkNySA715nisojbvVS99OzkkhzrHkUPr9PxYztQItauq6u4VbvqLHfNfsYRtXp5koG3+96uq+vQStvsPHfMvLaWMLLZBVVWHq6o6vYSxV+OFyazz+L1VVf3NErf9fzvmX9GdkubXj+NRVdVDVVWdWMF2/ztJ53Fbyvm0IqWULUm+oWNx5zk2R1VVn0ry1rZFzbTOaVZJDq2KHJq9Dzm0SqWUkrnnwhu6uY+1ShatiiyavQ9ZNNu6OT/qJodWZd2cZ3Jozj77cX6c29cX+rGf9UwOrYocmr0POdQ9f9wxf00tVfSJHFoVOTR7H3KIFZNFqyKLZu9DFq3SZn2/Wg6tihyavQ85NNu6OT+Ajclz/Kqsmwz3HH/eWv5szGYlh1ZFDs3ehxxaJe95LJsckkOd+5BDs62b86NucmhV1s15Jofm7NPn89YQObQqcmj2PuRQ92yqz+clsmiVZNHsfcgiVkQOrYocmr0PObRK3qteNjkkhzr3IYdmWzfnx3JojLa+fbBjfkspZewC27y4Y/7Xl7Kjqqo+keR9bYu2JXneUrbtsWd2zL9jGdv+ZZKzbfO3llL2r76kdavzfLq0h/t6fpKtbfN/+3/au/dgafK6vuOfHyD3y6oIiAhLUAmKGhAT8RI3BiyIJcgl3pVVvF8qmphKoaRCNGIuXquSUqIoipdIEBQFgRBdMBqvtQgoElFBUZY74i677C788secfc6cnjNzpmd6unu6X6+q80f3M9PT5zzf5z3n+Z2uPrXWP9nyuc2ZfXw3p8SOdEiHuqRDC5+Z5AFL2zdn8RvrWE+LtKhLU2yR+Tg8HTJnXeqzQ0yHDulQl3TorHc2tu8yyFmMnw7pUJd0iF1pkRZ1SYsWrFe3o0M61KUpdsh8AMfKe7yGd2mKP4/m8HRIh7qkQwvWPNrRIR3q0hQ7ZD4OT4fMWZemuPbK4emQDnVJh85yfd72tEiLuqRF7EKHdKhLOrRgrbodHdKhLk2xQ5OcDzdGO243n7PvtuseXEq5V5JPbDz/N1u83lWN7Ue3eO6h3Kex/Zptn1hrfV+S1y/tulXG8TkNpTlPa2epA49qbF/V4rm/kbPn+pBSyj33PiN2pUM61CUdWnhyY/uFtdZrOjz+FGmRFnVpii0yH4enQ+asS312iOnQIR3qkg6ddb/G9t8Mchbjp0M61CUdYldapEVd0qIF69Xt6JAOdWmKHTIfwLHyHq/hXZriz6M5PB3SoS7p0II1j3Z0SIe6NMUOmY/D0yFz1qUprr1yeDqkQ13SobNcn7c9LdKiLmkRu9AhHeqSDi1Yq25Hh3SoS1Ps0CTnw43RjttHNbZvTvL2DY9/cGP7VbXW61q83m81tj+uxXMP5UMa2+9u+fzm4z9+j3M5ds15evMBX6s5i/932yeezOyrG7vHMItzpUM61KXZd6iUcrckT2jsfmYXx544LdKiLk2xRebj8HTInHWpzw4xHTqkQ13SobO+vLH964OcxfjpkA51SYfYlRZpUZdm3yLr1TvRIR3q0hQ7ZD6AY+U9XsO7NMWfR3N4OqRDXZp9h6x57ESHdKhLU+yQ+Tg8HTJnXZri2iuHp0M61CUdOsv1edvTIi3qkhaxCx3SoS7NvkPWqneiQzrUpSl2aJLz4cZox+2Jje3fr7V+YMPjP7ax/fpzH7Xen11wvCHc2Ni+XcvnNx8/hs+pd6WUuyZ5ZGP37x7wJR/U2O5zFu9bSvmJUsoflVLeVUq5sZTylpPtny6lfE0ppRl81tMhHerEzDq0yRclucPS9puT/GpHx54yLdKiTky4Rebj8HTInHVigA4xHTqkQ53QobNKKd+Y5EuXdt2c5AcHOp2x0yEd6sTMOmStuntapEWdmFmLNrFe3Z4O6VAnJtwh8wEcK+/xGt6JCf88+jzWPbqlQzrUiZl1aBNrHu3pkA51YsIdMh+Hp0PmrBMTXnvl8HRIhzqhQ2e5Pq81LdKiTsysRdaqu6VDOtSJmXVoE2vV7emQDnViwh2a5Hy4MdqRKqXcOcmTG7uff8HTmncs/MuWL/vGxvaHllI+uOUxuvaOxvaHt3x+8/EP3ONcjtnXJrnj0vbf5kB31z/5T2LzP4ptZ7H5+I9u8dz7J7kyiwhfluSDktzjZPtLkjwjyV+WUn7g5N8Za+jQJTrUjTl1aJPmv6mfrLXe3NGxJ0mLLtGibky1RebjgHToEnPWjd46xHTo0CU61I1Zd6iUcqdSygNLKU8qpbw8yX9tPOQptdZXDXFuY6ZDl+hQN+bUIWvVHdKiS7SoG3Nq0SbWq1vQoUt0qBtT7ZD5AI6O9/hLNLwbU/159Hmse3REhy7RoW7MqUObWPNoQYcu0aFuTLVD5uOAdOgSc9aNqa69ckA6dIkOdWPWHXJ93u606BIt6sacWmStuiM6dIkOdWNOHdrEWnULOnSJDnVjqh2a5Hy4Mdrx+p4k91rafneSH7vgOZc1tt/a5gVrrdcmuaGx+25tjnEAr21sf8q2Tyyl3DfJvRu7h/58eldKuTzJv23s/qFaa/NukF1pzuF7a63XtTxGc3a7/nu7U5JvSfIHpZSP6/jYU6JDCzq0Jx1aKKV8fJKHNXY/c9/jzoAWLWjRnibeIvNxWDq0YM72NECHmA4dWtChPc2tQ6WUy0opdfkjybVJ/iTJs5L846WHX5vka2qt3zvAqR4DHVrQoT3NrUNbsla9PS1a0KI9adGC9eqd6NCCDu1p4h0yH8Ax8h6/oOF7mvjPo3dl3WM7OrSgQ3vSoQVrHjvRoQUd2tPEO2Q+DkuHFszZnia+9sph6dCCDu1pbh1yfV7ntGhBi/Y0txZtyVr1dnRoQYf2pEML1qp3okMLOrSniXdokvPhxmhHqJTyuCTf1Nj9HbXWd17w1Obdiq/f4eWbz7nLDsfo0ssb208opdzx3Eeu+vJz9g39+fSqlHLbJD+fs5/3G5L85wO+7FBzeHOSq5I8Ncljkjw0i9/a9JAkj03yvVn9ZuZjkryslHK/Hc5x0nToDB3aw8w6dJHmnapfXmt9fQfHnSwtOkOL9jCDFpmPA9GhM8zZHgbqEBOgQ2fo0B50aK23JPmOJPevtf7o0CczRjp0hg7tYWYdslbdMS06Q4v2MLMWXcR6dQs6dIYO7WEGHTIfwFHxHn+Ghu9hBj+PXmbdo0M6dIYO7WFmHbqINY8WdOgMHdrDDDpkPg5Eh84wZ3uYwdorB6JDZ+jQHnRoLdfnbUGLztCiPcysRdaqO6RDZ+jQHmbWoYtYq25Bh87QoT3MoEOTnA83RjsypZRPTPJTjd0vTfLDWzy9Ge7m3Sm30Qx385h9e2EWd/O8xWVJnnbRk0opH5nk2875o1uXUu7QzakdhR9L8g+Xtt+f5Ek7/DakNoaYw6cm+Yha6z+ptX53rfWXa61X11pfX2t9Za31BbXWf53kfkn+Y5K69Nx7JXleKaXscJ6TpEMrdGg/c+nQRiffSH9pY7e7e2+gRSu0aD9Tb5H5OAAdWmHO9jNEhzhyOrRCh/ajQ+e7Z5KvS/L1pZS7Dn0yY6NDK3RoP3PpkLXqjmnRCi3az1xatJH16nZ0aIUO7WfqHTIfwNHwHr9Cw/cz9Z9H38K6R4d0aIUO7WcuHdrImkc7OrRCh/Yz9Q6ZjwPQoRXmbD9TX3vlAHRohQ7tR4fO5/q8C2jRCi3az1xaZK26Qzq0Qof2M5cObWStuh0dWqFD+5l6hyY5H26MdkRKKffNYhCXY/nGJF9aa63nP2ujvp5zMLXWv0vyQ43d31ZK+RfrnlNKuU+SFye527rDdnR6o1ZK+a4kX9bY/ZRa6yt6PpWDz+HJf16bd+8+73E31FqfkuSbG3/00CRf1OY1p0qHVunQ7ubUoS08NsmHLm3/bZLndvwak6FFq7Rod3Nokfnong6tMme7G1GHOCI6tEqHdjfjDr0nyf2XPh6QxRrQ45P8QJK3nTzuI5N8Z5JXl1I+eYDzHCUdWqVDu5tTh6xVd0uLVmnR7ubUoi1Yr96SDq3Sod3NoUPmAzgW3uNXafjuRvQe7xq9I6JDq3Rod3Pq0BaseWxJh1bp0O7m0CHz0T0dWmXOdjeiDnFEdGiVDu1uxh1yfd6etGiVFu1uTi2yVt0dHVqlQ7ubU4e2YK16Szq0Sod2N4cOTXU+bjP0CbCdUso9kvyvJB+xtPuaJI+stb7t/GetuLaxvcud+ZrPaR5zCE9P8uic3pmxJPnBUsoTs7g76iuzuBPnvU8e9/U5ffN7U5L7LB3rhlrryp0+SymXb3sytdY3tDr7AZRSviWLu14v+/5a63/Z8vmXb/ta53w9Rj+Htdb/Vkr57CSPWdr9DUl+tsvXOTY6tJEOtaRDK57c2P7ZWmvzLtJEiy6gRS3NrEUHn4+50KGNdKilgTvEkdKhjXSopTl3qNb6gSRvOOePrk7y/FLKU5P8pyTfdLL/vkleVkr5tFrra/o5y3HSoY10qKU5d2gb1qrX06KNtKglLVphvXoLOrSRDrU0sw5ZqwZGzXv8Rt7jW5rZz6Nbs+5xPh3aSIda0qEV1jy2oEMb6VBLM+uQNY+O6NBGOtTSzNZe6YgObaRDLc25Q67P248WbaRFLc25RduwVn0+HdpIh1rSoRXWqregQxvpUEsz69Dk1qrdGO0IlFI+JMnLknzM0u63J3lErfVPWxxqkuGutd5YSnl8khcl+YSlP/r0k4913pHFNw4vWdr37jWP/YsWp1RaPLZ3pZSvTvL9jd0/XGv9Vy0Os8/X41jm8Hty9j+yn1JKuazWum5GJk2HNtOhdnTorFLKRyZ5ZGP3M3c93pRp0WZa1M7cWtTTfEyeDm2mQ+2MoEMcIR3aTIfa0aHNaq3vTfLNpZSbknzrye67JvmpUson7fgbho6eDm2mQ+3o0NasVTdo0WZa1I4WnWW9ejs6tJkOtTO3DlmrBsbMe/xm3uPbGcF7/LHMoXWPJTq0mQ61o0NnWfPYjg5tpkPtzK1D1jy6oUOb6VA7I+gQR0iHNtOhdnRoM9fnradFm2lRO1q0NWvVS3RoMx1qR4fOsla9HR3aTIfamVuHprhWfauhT4DNSil3S/LSJB+/tPtdWdzJ8o9aHu5vG9sf1vJc7pzVcI9ikGutf53kU5M8I8lNWzzl15M8LMl1jf3XdHxqo1JK+bIkP5KzMf2JJN/Y42k05/COpZQ7tTzGPRrbh5jD383i39otbp3kYw/wOqOnQ9vRoe3o0LmuzNnvyf6w1voHexxvkrRoO1q0nbm2yHzsR4e2Y862M5IOcWR0aDs6tB0dauU7kvzN0vZDkjxioHMZlA5tR4e2o0OtWKteokXb0aLtaNG5roz16o10aDs6tJ25dsh8AGPkPX47Gr6dkbzHj+3amHWse5zQoe3o0HZ06FxXxprHRjq0HR3azlw7ZD72o0PbMWfbGUmHODI6tB0d2o4OteL6vCVatB0t2o4WtWKt+oQObUeHtqND57oy1qo30qHt6NB25tqhqc2HG6ONWCnlLklenOSTlna/J8mjaq2v3OGQzbtf3q/l85uPf2et9V3nPnIAtdbraq1fl+SBWSyI/HqSNyW5PsnfJXltkp/M4i6q/7TW+oYkD2oc5vd7O+GelVK+MItIL/+7/5kkX9XnHfRrre/I2f8gJsl9Wx6mOYtt7uy6lVrrB5L8ZWN3q292pkCH2tGhzXRoVSmlJPmKxm53927Qona0aLO5t8h87EaH2jFnm42lQxwXHWpHhzbToXZqrdcn+cXG7kcNcS5D0qF2dGgzHWrHWvUpLWpHizbTolXWqy+mQ+3o0GZz75D5AMbEe3w7Gr7ZWN7jx3RtzCbWPRZ0qB0d2kyHVlnzuJgOtaNDm829Q+ZjNzrUjjnbbCwd4rjoUDs6tJkOteP6vFNa1I4WbaZF7VirXtChdnRoMx1aZa36YjrUjg5tNvcOTWk+bjP0CXC+k99G86Ikn7K0+9okj661/u6Oh31tY/ujWj7/7zW2/3jH8zioWutfJHn6ycdFHt7Y/p01xyzn7T8WpZQnJHl2FnepvsX/TPKkk/+wtdLB1+O1Wdxh8hYfldX53KQ5i22e28b1je3mHV0nTYd2p0OrdGitz0py/6Xt92XxTTUntGh3WrRKi04dYj6mSod2p0OrRtghjoAO7U6HVunQzl7X2G77b+ao6dDudGiVDu1s1mvViRbtQ4tWadFa1qs30KHd6dAqHTplrRoYmvf43XmPXzXC9/ixXBtzkVmve+jQ7nRolQ6tZc1jAx3anQ6t0qFT1jy2p0O706FVI+wQR0CHdqdDq3RoZ7O+Pi/Ron1o0Sot2pm1ah3aiQ6t0qG1rFVvoEO706FVOnRqCmvVt7r4IfStlHKHJL+S5NOXdr83yefUWn9rj0O/prH9CaWUO7Z4/qddcLyjcnJX1c9q7H75EOdySKWUxyT5uZy9EeIvJvniWuv7hzmrldlpBnKtk29qPuGC43Xl7o3ttx/odUZHh/qhQzqU5Csb28+rtb5zx2NNjhb1Q4u06ILXmcV8rKND/ZjLnI20Q4ycDvVDh3RoCzc1tm83yFkMQIf6oUM6tIXZrlUnWtQXLdKiWK9eS4f6oUM6tMlc5gPol/f4fsyl4SN9jx/9z6NPzHbdQ4f6oUM6FGsea+lQP3RIhy54nVnMxzo61I+5zNlIO8TI6VA/dEiHtjDb6/MSLeqLFmnRFqxV69BB6ZAOxVr1WjrUDx3SoU3GPB9ujDYypZTbJ3lBkiuWdt+Q5DG11lfsc+xa65uTvGpp121y9s3hIlc0tn91n/MZgc9KcvnS9strrX860LkcRCnln2Vx58oPWtr9wiRfUGu9eZizSpK8uLF9RYvnfkbOvgldXWt9y95n1FBKuXtW7+L6N12/zhjpUK90aDiDd6iUclmSxzd2P7PtcaZKi3qlRcMZvEVbmPx8rKNDvZr8nI24Q4yYDvVKh7jIfRrbh/i+a3R0qFc6xFpzXqtOtKhnWjRj1qvX06Fe6RCbTH4+gH55j+/V5Bs+4vf40f88es7rHjrUKx0azuAdsuaxng71SoeGM3iHtjD5+VhHh3o1+TkbcYcYMR3qlQ5xkVlen5doUc+0iLWsVetQT3RoxqxVr6dDvdIhNhntfLgx2oiUUm6b5HlJHrG0+31JPq/W+r87epnnN7a/Ystz+/tJ/tHSruuSvLSjcxrKv2lsP2OQsziQUsojk/xCktsu7X5pkifUWm8c5qwueUmS65e2H34yY9u4srHdnOmufGHONvItSV57oNcaDR3qnQ4NZwwd+pIkt1/afkOSX9vxWJOiRb3TouGMoUUXmfR8rKNDvZv0nI28Q4yUDvVOh7jIZze2R7G4f0g61DsdYpNZrlUnWjQALZo369Xn0KHe6RCbTHo+gH55j+/dpBs+8vf4Y/h59CzXPXSodzo0nDF0yJrHOXSoxYhGTgAADKBJREFUdzo0nDF06CKTno91dKh3k56zkXeIkdKh3ukQF5nd9XmJFg1Ai9jEWvUpHTocHZo3a9Xn0KHe6RCbjHY+3BhtJEopt0nynCSPXtp9U5In1lpf0uFL/UyS9y9tP76U8tFbPK85xM+ptd7Q3Wn1q5TypCSPXNr1yizu/DgJpZTPTPJLOfsN0q9l8U3A+4Y5q1O11vcmeW5jd3PGVpRSPibJ45Z23ZzkZzs8tVte555JntrY/cu11tr1a42JDvVLh4Y1kg59ZWP7x6femW1oUb+0aFgjadGm15n0fKyjQ/2a+pyNvUOMkw71S4e4SCnlc5I8rLH7l4Y4l77oUL90iE3muladaFHftIhYr16hQ/3SITaZ+nwA/fIe36+pN3zs7/FH8PPoWa576FC/dGhYI+mQNY8GHeqXDg1rJB3a9DqTno91dKhfU5+zsXeIcdKhfukQF5nj9XmJFvVNi9jEWrUO9UGHiLXqFTrULx1ik7HPhxujjUAp5dZZBPWxS7tvTvIFtdZf6fK1aq1/muQnl3bdNsmzSim3X/OUlFIem7O/8ebGJP++y/Pa18kb37aPfXySH13adXOSr6y13tz5iQ2glPLwJL+S5A5Lu1+R5HNrrdef/6xBPC2Lb05ucWUp5THrHnwyoz+Rs3fofGat9c82POeBpZTPbXNSpZR7ZfH1u+fS7huTfE+b4xwbHdqfDp3SoYuVUv5Bkocu7fpAkme1Pc7UaNH+tOiUFp37XPNxAR3anzk7dUQdYkR0aH86dEqHTpVSHlZKedzFj1x53icneXZj9ytqra/u5szGR4f2p0OndOiUtep2tGh/WnRKiy5mvXqVDu1Ph07p0CrzAQzFe/z+NPzUEb3HPy2u0RsNHdqfDp3SoYtZ81ilQ/vToVM6dO5zzccFdGh/5uzUEXWIEdGh/enQKR065fq8drRof1p0SotOWaveng7tT4dO6dDFrFWv0qH96dApHVo1tfnY+pPhoH48yec39n17kqtLKZe3PNY1W9xp8t9l8RtsPvhk+1OTvKyU8lW11j+55UGllNsl+Zok39d4/vfVWt+4zcmUUu6T8+fsXo3t22z4XK+ttb79gpd6dSnlhUl+Icnv1Fo/cM65PDjJU5J8ceOPvr3WevUFx+/Eob8epZSHJPnVJHde2v26JN+Y5B6llDane0Ot9Zo2T2ij1vrnpZQfSvJtS7ufW0r5l0n+e631xlt2llIelOTHspjVW7wjF38D8eFJXlBKeXWSn07y/JNvXlaUUu6S5ElZ3Nn7no0//g+11j/f4tM6ZjqkQzq00HWH1nlyY/sltda/2vFYU6JFWqRFC4dq0VHMx8B0SIdm16Gkv/kopdw5yd3X/HFzQfnuG17rTWNaXOuYDumQDp3V1XzcJ8nzSimvyeIHaL+Y5HW1nv9blkopH5vka5N8Q+O8bjjZN2U6pEM6dFZX82Gtuh0t0iItOqvr+WiyXr1Kh3RIh86a5XwAk+Q9fiYN9x5/yjV6o6NDOqRDC67RG44O6ZAOLbg+bzg6pEOz61Di+ryR0SEd0qGzXJ83DC3SIi06yzV6/dMhHdKhs1yf1z8d0iEdOmuW87G1WquPgT+S1A4/rtjyNa9I8r7Gcz+Q5PeS/HySFyd56znH/+Ukt27xub2hg8/pWVu8ztuXHv93SX4ri3+kP5PkpRvO47t6/rs+6Ncji99o1NUsXdXD1+PWSV50zmu/JYs3oOck+f2T2Vz+8/cl+Ywt57x57Hcn+T9ZLLA9O8nzT17jpjVfh2cM3YieZlOHdEiHDtChNa95uywulFg+3hOGbMBYPjqcHS3Soqd1OEtX9fD16KVFxzIfQ350ODc6NPI5O/TXI8fXob7m48qOviaXD92LA/5d6JAO6dBhvh6fd87j33MyHy/I4gKI5yR5WZJr1hz/vUkeMXQnevi70CEd0qHDfD2uOOfx1qrXf720SIu06IDz0XhN69Xnf110SId0yHz48OFjgh8dNtl7/MgbfuivR47vPd41eiP56HBudEiHntbhLF3Vw9fDNXoj+ehwbnRIh57W4Sxd1cPXw/V5I/nocG50aORzduivR46vQ33Nx5UdfU0uH7oXB/y70CEd0qHDfD1cn9fu70OLtEiLDvP1uOKcx1urPv9rpUM6pEMHnI/Ga1qrPv/rokM6pEPmY+uP8+4kxwzUWq8qpTwuybOSfNjJ7pLkYScf5/m5JF9da33/4c9wL3dO8vALHvOuJN9Qa/0fPZwPa9Ra319K+fwsfrPSFyz90T2SPGrN096a5Em11t/Y8WXvluTTtnjcdUm+tdb6ozu+DhfQIR0ag4E69LgkH7K0/bYsFvoZgBZp0RgM1CLzMRI6ZM5gaDqkQzN2l1w8H7f47SRfW2t91QHPZ7Z0SIdmzFr1iGiRFs2Y9eqR0CEdmjHzAUya93gNHwPX6M2bDunQGLhGb950SIfGwPV586ZD5gyGpkM6NGOuzxsRLdKiGbNWPRI6pEMzZq16JHRIh2bs6OfjVkOfAMOptb4oyYOT/EgWg7rObyd5Yq31i2ut1/Vycu39YJKrs7gr5yZ/leQ7kzxgrP8o56bWem2t9QuT/PMsZm2ddyb54SQPrrW+eMvDvzbJ05P8ZpLrt3zO/0vy7Vn8hhP/iT0wHdKhMThwh87z5Mb2s2utN+1xPPakRVo0Bj21yHyMlA6ZMxiaDunQDPxaFr8V9+eSvGnL57w3yXOTfG6ST3XR1WHpkA7NgLXqI6BFWjRT1qtHRId0aEbMBzAr3uM1fAxcozdvOqRDY+AavXnTIR0aA9fnzZsOmTMYmg7p0Ay4Pu8IaJEWzYC16pHTIR2aKWvVI6JDOjQjk5qPUmsd+hwYgVLKbbO46/H9ktwri7sb/3WSq2utfzHkubVRSrlrkockuX8Wd+q8fRb/gfnrJH9Ya/3jAU+PLZRS7p/koUnuneROSa5J8sYkv1lrvXGP494qyUcneUCSj0hyWU7n411J3pzk92qtb9vrE2BnOsRYHKpDHActYiwO2SLzMW46BAxNh5iDUso9kzwoizn/0CR3THJTkvckeUeS1yR53RH8Zp9J0iGmzlr1cdAiYGg6xByYD2COvMczFq7Rmy8dYixcozdfOsRYuD5vvnQIGJoOMQeuzxs/LWLqrFWPnw4BQ9Mh5mAq8+HGaAAAAAAAAAAAAAAAAAAAAAAAAMDgbjX0CQAAAAAAAAAAAAAAAAAAAAAAAAC4MRoAAAAAAAAAAAAAAAAAAAAAAAAwODdGAwAAAAAAAAAAAAAAAAAAAAAAAAbnxmgAAAAAAAAAAAAAAAAAAAAAAADA4NwYDQAAAAAAAAAAAAAAAAAAAAAAABicG6MBAAAAAAAAAAAAAAAAAAAAAAAAg3NjNAAAAAAAAAAAAAAAAAAAAAAAAGBwbowGAAAAAAAAAAAAAAAAAAAAAAAADM6N0QAAAAAAAAAAAAAAAAAAAAAAAIDBuTEaAAAAAAAAAAAAAAAAAAAAAAAAMDg3RgMAAAAAAAAAAAAAAAAAAAAAAAAG58ZoAAAAAAAAAAAAAAAAAAAAAAAAwODcGA0AAAAAAAAAAAAAAAAAAAAAAAAYnBujAQAAAAAAAAAAAAAAAAAAAAAAAINzYzQAAAAAAAAAAAAAAAAAAAAAAABgcG6MBgAAAAAAAAAAAAAAAAAAAAAAAAzOjdEAAAAAAAAAAAAAAAAAAAAAAACAwbkxGgAAAAAAAAAAAAAAAAAAAAAAADA4N0YDAAAAAAAAAAAAAAAAAAAAAAAABufGaAAAAAAAAAAAAAAAAAAAAAAAAMDg3BgNAAAAAAAAAAAAAAAAAAAAAAAAGJwbowEAAAAAAAAAAAAAAAAAAAAAAACDc2M0AAAAAAAAAAAAAAAAAAAAAAAAYHBujAYAAAAAAAAAAAAAAAAAAAAAAAAMzo3RAAAAAAAAAAAAAAAAAAAAAAAAgMG5MRoAAAAAAAAAAAAAAAAAAAAAAAAwODdGAwAAAAAAAAAAAAAAAAAAAAAAAAbnxmgAAAAAAAAAAAAAAAAAAAAAAADA4NwYDQAAAAAAAAAAAAAAAAAAAAAAABicG6MBAAAAAAAAAAAAAAAAAAAAAAAAg3NjNAAAAAAAAAAAAAAAAAAAAAAAAGBwbowGAAAAAAAAAAAAAAAAAAAAAAAADM6N0QAAAAAAAAAAAAAAAAAAAAAAAIDBuTEaAAAAAAAAAAAAAAAAAAAAAAAAMDg3RgMAAAAAAAAAAAAAAAAAAAAAAAAG58ZoAAAAAAAAAAAAAAAAAAAAAAAAwODcGA0AAAAAAAAAAAAAAAAAAAAAAAAY3P8H9Ry3/pQ2KlkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor, Config\n", + "\n", + "async def clean_magnitude(datapoints):\n", + " async for datapoint in datapoints:\n", + " if datapoint.data is None:\n", + " continue\n", + " yield datapoint.collected_at, datapoint.data[\"magnitude\"]\n", + "\n", + "TemperatureConfig = Config(\n", + " sensor_name=\"Temperature\",\n", + " clean=clean_magnitude,\n", + " title=\"Ambient temperature\",\n", + " ylabel=\"Degrees C\",\n", + ")\n", + " \n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 5), dpi=300)\n", + " configs = get_known_configs()\n", + " to_display = configs[\"Relative humidity\"], TemperatureConfig\n", + " for i, config in enumerate(to_display, start=1):\n", + " plot = figure.add_subplot(1, 2, i)\n", + " coros.append(plot_sensor(config, plot, {}))\n", + " await asyncio.gather(*coros)\n", + "\n", + "display(figure)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAE0YAAAUsCAYAAAC9bUPVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdd5h1Z1kv/u8dAqEEEnoRSIBIVUA6AiYRPDSlKr0EIgiCla6IAVEPR1DPQQRF6aKIQEDqT8HQu1IUBUKJEECQloSSEHL//lj7lXnX7Cl7z57Z8877+VzXXGQ9az1l773WzsXMN/dT3R0AAAAAAAAAAAAAAAAAAAAAAACAZTpk2QsAAAAAAAAAAAAAAAAAAAAAAAAAUBgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAYKSqjq6qHv2csOx17aSqOmX0+k9Z9pr2Iu/zga2qThp/VxwI87vvAAAAAAAAAAAObgdq7gUAAAAAODgojAYAAAAAAAAAAAAAAAAAAAAAAAAs3aHLXgAAAACwO1XV0Uk+M0OXs5OckeSbST6V5F+SvCfJG7r7nEWvDwAAAAAAAAAAAFaqqsqQeztqdOr7SY7q7tN3flUAAAAAAMzikGUvAAAAANgzDkty6STHJLltkscnOTnJ6VX1tKo6fJmL2+uq6gVV1St+PrvsNQF7S1V9dvQ984JlrwkAAAAAAAAAYOQ2WV0ULUnOl+SEnV0KLEZVHTfK7XRVHbfE9cgrwgJ5pgAAAGA1hdEAAACA7XapJI9N8q9VdfNlLwYAAAAAAAAAAIA968R1zj24qmrHVgIAAAAAwFwOXfYCAAAAgAPKt5Kcusa5Cye5RJJLrnH+qCRvrKpju/tD27E4AAAAAAAAAAAADk5VdYkkd1nnkqsmOS7JP+3IggAAAAAAmIvCaAAAAMAsPtDdx613QVVdMcnPJHlUkquNTl8syd9V1bW6+3vbs0QWYaPPGUi6+6QkJy15GTPzfAMAAAAAAAAAe9T9khw2auskteL4xCiMtnQHau4GAAAAANgZhyx7AQAAAMDe0t2f7+5nJ7lekldOueRqSX5hZ1cFAAAAAAAAAADAHvfg0fEnszrDdreqOmKH1gMAAAAAwBwURgMAAAC2RXd/K8l9k/z7lNP33+HlAAAAAAAAAAAAsEdV1Y0ybOa50ouSvHDUdqEk99mRRQEAAAAAMBeF0QAAAIBt093fTfL7U07dqKousdPrAQAAAAAAAAAAYE86cXTcSV6c5A1JvrzBtQAAAAAA7CKHLnsBAAAAwJ73xilthyS5RpJ3zztoVR2S5MeSHJ3k0kkukeSMJF9JcmqSf+nu8+Ydf5Gq6oeSXDPDWo/IsOvoGUm+luQ/k7x/UkSObVBVF0pykySXT3KZJIcn+WqGe+XD3f2pJS5vU6rq0kluluSqGdb/zQyBzfd292nLXNt2q6ojMrz2H87w/Hw3yelJ3j3La6+qKyS5cYbn8PAMz9/nk7y1u89Y8LLnUlWHJblFkisnuVyS7yf5ryQfTfKh7u4lLg8AAAAAAAAAYFea5IPuPWp+275sSVW9NMmvrjh3w6q6Xnd/eJvXdf4MuaVrJ7nkpPm/kvzzLHNX1cUy5F6ukeTIJN9K8qUk7+zuzy900avnvmSSmya5WpKLZcgtfSG7NHdVVVdMcr0MmcJLZyiQ95UkX0zynp3ICVXVDye5YZIfSnJYhqzaF5K8o7u/vt3z70VV9SNJjsmQ/7tkkm9n+Fw/myF/+b1tnt+zPP+8u+WZvF6SK2bIDp6T5Ivd/eJN9pcB3gZVdYEkN8rwPFwqw/flGRlyse+dYZxjMjyb++6xs5P8d4Z86Hu6+zsLXjoAAAA7RGE0AAAAYFt191eq6owMQYqVLjXPeFV1qySPSPJTGYqhreVrVfX6JL/f3R+bZ655VdWlktw1yW2SHJvksht0Oaeq3pPkT5K8YrMF3arqs0mOWuP0UVW1mSJKx3f3KVPGPiXD2vd5a3cft8Y6PprkR1Y0fSXJD20lbFRV907y0lHzI7r7TzfZ/5Ak901yvyQ/keSC61z7mSR/m+Tp3f3f8614e1TVcUl+I8mtMxQUnHbNx5L8XpKXzlI4q6pOSPL8UfNVuvuzc6xzPO+Tu/ukDfqclOS3V7Z1d604f+MkT0xyh6zxe8yqemuSx3f3e9aZ52eSPC7JjyepKZecU1WvSvLY7v7P9dY862uYYZyjk5yU4Xtj/F25z5eq6jlJntHdZ806x2i+U7KJ53uyrs+sM9QDq+qBG8237z2ZBPtOzxAu2+eU7j5+w0Wvo6r+b5JfHjVff7vDywAAAAAAAADArvGzGYrVrPTC0T//6uj8g5P8yjyTTTI9/zRq/p8c1mQDv99Mcv8kF11jjE8keep6hXmq6roZ8jN3ylAwZto1707ymO5+52yvYn1VdWx+kFs63xrX/HOSZyf5y1k3/FtU7mYy1mWS/FqSn0lynXUuPbeq3pvkWUleNuvGq+tlpCZ5tQcm+fXsn6Vb6fuT3M4T18s7rZjvpIzeo5F/qtrwLXthd5+w0UWbsZ15xTXmu26G5/a2Sa6wzqVnVdU/JnnaZt7X0RzH5QB/ljeRw9vWZ3mN8XbDM3mRJL+U5CEZNqSdZupndqBngDe6r2cxZY0bfqdslE2tquskeWySuye5yJQhXphk3cJoVXWVDN+3d8jan2+SfLeq3p7kj7r7DeuNCQAAwO4z9T+mBAAAAFiwaUV81ir+M1VVXX1S6OxtSe6Z9YuiZXL+fkk+WlV/UVVrFsZapMnuol9M8udJ7pGNAxFJcoEMxbv+Nsm/Tv7ofyAZBxguneSOWxzzhNHx2Un+ejMdq+p2ST6a5EVJ/lfWKYo2cZUMhbM+XVVzhR0XraoOq6rnZgin/FTW/z3etZO8JMkbJ2GeA1oNfifJezIEwdbb3OHYJO+qqkdPGeeIqnpFktckuUWmF0VLhufvnkk+VlW32dLi5zC55/4tQzByve/Fy2UonvZvVXXDHVjawk1293zJqPm4qrrWvGNOdnx+wKj53YqiAQAAAAAAAMBB5cTR8beT/N2+g+7+UJKPjK65X1VNLVC0FVV1tyQfS/KLWaOQ0sTVk7yoqv52vI5JfuZJSf45yc9ljUJKEzdP8vaq+o2trfx/5j5fVf1JklMyZK+mFlKauEGS5yZ526RIzY6qqgtU1VOSfDrJ47N+AaZkyCHdIsOGnR+eFKtaxDqumOQdSZ6XtYuiJcN7eesk766q313E3HtRVV2+qv4qyYeSPCjrF0VLhk0a75LhfT25qjbKlm52HZ7l2efcLc/kTTN8dr+f9YtmTet7MGaAd0xVPTHDs/2ATC+KtlH/i03u648neWQ2/nwvmCGD+/qqentVXXnWOQEAAFgehdEAAACAnXDklLYzNtu5qm6dYfev288x9yEZgm9vrarNBBS26sezfiGnjVwryXuWUaBpC16S5HujtgfNO9gkKDZ+/Sd399c30ffRSV6XoVjYrC6a5I8nhfS28hluyaSI3xuS/PyMXf9XhvDGegGmA8FzMuyOudnfXVaSP6iqh/5PQ9WRSd6c5G4zzHuRJK+pqhvP0GdLJgHHP05y4Rm6XTnD99kBWRwtw66YYw/bwnj3zup/xzx7C+MBAAAAAAAAAAeQqjomQ0GalU7u7jNHbS8cHV8iQzGlRa7lfhkKsh0xQ7efy1BQa98YlaFA0ZOzfiGj/aZO8rtV9cgZ5l09yDD3S5I8Ysaut8yQZ5mpANFWTIpf/X9JfitzFNfJUMDsnVX1M1tcx1UzbAB58xm7/kZVPXUrc+9FVXW9JO9Lcp+svRHmeu6cIX959S2uw7M8+5y75Zn8iQzF4OYtgHUwZoB3xKSg2e9kzve3qo5K8s4M9/X55xjilkneV1U3m2d+AAAAdt7S/gNPAAAA4OBQVVfL9KI/n95k/59J8oqs/iP2OUnekqFg2ueSfDPDzn9HJ/nJJLcaXX+TJCdX1U9097iI13b5foad/v4tyX8k+WqGgnCV5GJJfjjJzTLseLeyCNThSf6mqn6suz+3zvgfS/KNyT9fOcnFV5z73uT8Rs7axDXr6u4vV9XrM4SK9rlDVV2mu788x5APyOqiWM+bduFKVfW/kzxuyqmvJfmHJB9M8uUMO8IemWE3wtslucbo+hMzvK+PnmnVi/O8JMevOP54hkJp/5HhtRyR5MeS3D2rdyP8iSS/luTp27/MxauqX0ny0BVNpyX5+yT/muG1H5nkphlCZBcbdf/jqnpThu+Dv0mysnDYB5O8MclnkpyZ4X37ySR3yv732oWSPLeqbtTd5y7oZU1VVb+eZNrunmdP1vq2JF/IEBK7Sobna9+OshdJcnJW7Gy8Tc5J8uEVx9fO/t/FX0/yn7MM2N3/VlWnJDluRfMDquoJ3f3tOdb48NHxV5O8fI5xAAAAAAAAAIAD04OzuoDSuAhakvxVkv+T/QsUnZjkZQtax42S/N6KtXwjyeszFM36coZcyrWS3CNDxm2l+1TVyd398gx5khNXnDstyWsz5Ge+miE/c5PJOOP8zNOq6rXd/dk5X8OjktxrxfGZSV6d5P1J/msy9zUz5JauNOp7pSRvqarrd/c3so0mmya+c7KWsX9N8tYMmb1967hMhsJld8iweeY+hyd5eVXdors/OMdSLpoh1/VDk+NO8q4k/5ghU3NWkktnyAfeNckFR/2fUFV/393vXWP8L+UH2Z3Dk1xtdP5T2Tj/N1O2ZwPbmlesqhsl+acMr3Wl85K8PcN7+5nJGi6U5IpJjk1y6+z/XP9whg1Gb9jd39zEmsY8yzM+y7vombxckldm/2ftfRkKtp2W4X24fIYc3M9tYryDIgO8Qx6S/Qv1nZUh1/vODPfkIRme6eMzvO/7mRRFe29WZ2aT4TN+Z4as7deTXCDD5/zjGTbkPmzFtZdN8rqqukF3n7a1lwQAAMB2q+5e9hoAAACAXaiqjs4QIlnprd193IzjPDbJ00bNX09yqe4+b4O+V8kQKjhyRfO5Sf4oyR9091fW6Xv9JH+R/YsjJckfdvejNpj36Kx+7Q/q7hes12/S9xNJPppht723bCZYM/mD/e8nuffo1Ou6+6c36j8Z4wVJHrii6bTuPnozfdcY75QMoaF91v3sq+pOGYIzKz2qu/9wjrk/kSEwss/nkxy13v1SVXfNEGhZ6etJHp/kRd393TX6VYadX5+TIWyz0p27+zUzLn8mU97n7+YHoZwvJfml7p5a/KqqDk/yrAyF5Fb6RpIrdPd3Npj7hCTPHzVfZZ4wVVWNf8n45O4+aYM+JyX57VHz2RlCKN/OEM56bndPC7lcNkPBxFuMTv15hnDLMybHn07y0O5+8xpruFGS12X1Z3+f7v7r9da/1mvo7g13Kq2qayT5UFaHHd8wWe/n1+h31yTPzg/CPd/JELSbdf5TMsPzvaLfZ5MctaLphd19wkb9poxz96wu6nZid29YAHE0zg2TfGDU/PTufsysawIAAAAAAAAADjxVdb4MhZ+usKL5C0muNC1rVFWvy1CIZ5/zklx11uIoVXVchgJOK+3LvSTJM5M8aVpRoao6LEO25RGjUx/PkAN6d4YCMRvlZy6XIT/z46NTf97dv7CJ13BSVmd3VmaXnp/k19d4DYdk2LzxqVmdf3lBdz9onvk3k3uZ9H1VhszXSu+arHetImP7ijf9Voa1r5zrs0mu291nbjDvOCO18v16b5Jf7O5/XqPv0Rk+rxuMTr2pu2+33ryT/sdl9T13fHefslHf7bANecWLZ8iKjsd4fpKTunvNAm+TzXufleS2o1Ov7O67bzDvcfEsb+lZnoyzW57J7+cHRfI+kuRh3f3uNfpecFqudC9kgBf5fTFPZnCNbOrKz+Y5SZ7Y3V9do/9+n01VXSDJO5LceHTpa5M8trv/fZ21XC7JHyS53+jU+5PcfNozCQAAwO5xyMaXAAAAAMynqi6f5NFTTv31RkXRJv4q+xdF+3aS23b3Y9cripYk3f2hDEGRfxid+qWqGu9wt0g37u67d/erNrvbYHef1t33SXLS6NQdqmraDnq70esz7Nq20gmzDlJVt8j+RdGSIUixXlG0y2R1iOKTGYIxf75WUbQk6cGrMuzyOC5G9fuTwmk7aV+46NNJbrZWUbQk6e6zMrzHbxqdOjLDTo4Hon1F0W7T3c9ZK3TS3f+V5Kcz7MC50v2SPGXyz/+WIbgytSjaZJwPZPp7talA1xY8O6uDZH+b5KfXKoqWJJN79dj84HVfaK1rd7mTs/p5e/gc44z7dJI/m2tFAAAAAAAAAMCB6PbZvyhakrxknazRC0fHh2SOjNMa9hVS+pXu/uVpRYiSpLvP7u5HZnXm5xpJ/n6yprOS/OQG+ZkvZcjPjHN096qqeTMl+/Is/7u7H7zOazivu5+R5OcybHS60glV9RNzzr+hqnpoVhdg+tMkt1yvAFOSdPc3Jpuqnjg6dXSSX5xjOfver9cmOW6tomiTuT+b5KeyOmP3U1V15Tnm3muelf2Lon0/yf0m9+GaRdGSpLs/leG7YJwhvFtV3XSOtXiWB5t6lnfZM7mv8NY7k9xqraJok7nXypUerBng7bbvs3lUdz98raJoydTP5qSsLor2+O7+mfWKok3G+lJ33z/Jk0enbpzkZzdeNgAAAMukMBoAAACwLSa78L0xyaVHp76dYWe0jfr/VJKbj5of3N1v2ewauvucDIGN/17RfP4kv77ZMWa12SDEGp6SYReyfSrJg7e2op3R3edm2CFvpR+tqhvOONS0glTjwNLYryQ5YsXxt5Pcbr0CU2Pd/bkk9xo1XzvJnTY7xgJ9L8k9NrMTbXd3pt/P490vDyS/ul4gaZ9JWOvpo+YLJ7lIhh0v79Hd48Jp08Z5R4bvqpWOr6px4bKFqKofTXL8qPnUJA/YTMHI7t63o+gBaxLyGxcwu1FV3WizY1TVEVm9w+Y/dPepW10fAAAAAAAAAHDAGBfTSZIXrXP9q5OMCwQ9qKoW9d/YvbS7/98mr/2tKW2Xmfzvr2xUUChJuvvrSZ4xar5Yhg1F53VKdz9hMxd292uTPHXKqV/ewvxrqqpDk/zGqPmN3f2ISY5qU7r7+Un+YtT8a1V12LTrN/DZDAW81ty8c8W8X8vq4jyHZCiYdtCqqmskueeo+Te7+682O8bk8/+FJOMiSY+fc1me5cG6z/IufSa/meSe3X3GHH0P2gzwDnlFd//hLB2q6uJJfmnU/Jzuftos43T3SVm90fa83w8AAADsEIXRAAAAgIWoqgtW1Q9V1R2r6s+TfCTJdadc+pBNFqx63Oj47d39slnXNQkp/N9R811nHWcnTIIgLx4133IZa5nT86a0nbDZzlV14ST3GDW/bbKj41p9Ds/qnQGf0d2f3uy8+3T3O5O8edS8jHvlpd39wc1e3N0fSzLebXTWgnS7xSeyOuC0nles0f7iyfuyWX83Oj40yY/O0H8WD5vS9qjuPnuzA3T3mzLsKnog+/Mk54zaHj5D/wdmKIS30nO2tCIAAAAAAAAA4IBRVZdJcsdR8z9397+t1WeSzxhn0I5KcusFLOn7WV0gaE3d/f4k/znl1Mez8UaSK41zL0lygxn6j81a1OxpScZ5wDtX1eW3sIa13CvD57VPZ3XBnM16yqT/PpfN6o1cN+PJMxZS+psM98pKB2rWa1Eek/3/O9fPZPWGmRvq7u8l+b1R8+3n2CDTs/wDGz3Lu/GZ/MPuPn3ONWzJHsgAb6fzkjx6jn6PSHL4iuOzsjpfvllPGR1fv6qOnnMsAAAAdoDCaAAAAMAsjq2qnvaT5DsZQhGvTfKQrC5Y8+0k9+3ul240SVVdIslPjppnKZY09rrR8VFVddTUK5fvk6PjG1TV+ZeykhlNClG9b9R8nxl27bt7kouO2jYKBt0myZGjtr/c5HzTjO+VY7cw1ryeO0ef8ft+9UUsZAmeP+NOkZ/OsMPj2Kz3wL9MabvGjGNs1u1Hx1/M6vtuM/5sAWtZmu7+cpKXj5rvVVXj53ktvzA6Pj0HfrE4AAAAAAAAAGDzHphknKt64Sb6vWhK24lbX07+sbtPm7HPh6a0zZqf+VSSM0bN8+Ze3tPdH52lQ3d/N6sLAR2aIde1aD87Oj6lu0+dZ6Du/lyS8WudNSv2rSQb5iFH8349qzOC25VT2vWqqpLcbdT8gu4eF4/brNePjg9LctMZx/As/8BGz/JueyY70zf43UkHbAZ4m72luz87R7/xPfby7h4/J5v1riTfGLUtIyMMAADAJimMBgAAAGy3MzMUNbvmZoqiTdwqSY3a3rWFNXxmStuPbWG8Tauqw6vqDlX1+Kp6UVW9rqreXlX/XFUfGv8k+ZPREIdl2PnuQDEuZHaJJHfaZN8HjY7PyurCSWPjUMLpc4SSVhrfK0fPUKhpEb6T1UXONuNTo+PzVdXhU6/c3d42R5/xbpvfTvLBGcf47JS2hX/uk52KrzJqfvWcQb43ZQhXHsjG33cXTvKAjTpV1bFJrj1qfm53n7uohQEAAAAAAAAAu96DR8fnJvnrjTp197uyunDNXSabeW7FPLmXaTmnty9gnHlzLyfP2e+VU9puNudYU00KaN1q1LyVTGGyOis2a6bwPd19zhzzjrNeR8wxxl5x3SQXH7XN/bl299eyeqPNWT9Xz/L+pj7Lu/SZPLW7P7/FNeznIMwAb5d/mrVDVV08yY+Omrfy/XBeVj9jO5IlBwAAYD6HLnsBAAAAwJ73gSTPnOzmtlm3mNL2iqra9O55m3CpBY61SlXdMMljMhQFu9AWhzsyyULDGtvor5P8YfZ/zSdkgwJnVXVUkuNGzX/b3RsVfhrfKxefhEvmNa2Y2KWyepe47XJad39vjn7jMFcyBObO2uJ6dto8u0WeOTo+bY4CWeMxku0JHN5wStusRdySJN19blV9JMnNt7ak5enu91TVB7P/+/KwJP9vg64PHx2fm6EAJwAAAAAAAABwEKiqWyS55qj5Dd39lU0O8aIkv7Pi+LAk903yzC0saxG5l0WNM2/uZa4cS5KPJvlekvOvaJuWk9mKa2XYpHOlB1bVT29hzCuPjmfNFI4L7G3WOOt1MBdGm5YVfWZVnb2FMS88Op71c/Usb+5Z3o3P5D9vYe79HMQZ4O0yz2dz8ySHjNqeUFWP3MI6jhkdb2uWHAAAgK1RGA0AAACYxbcyPaxx/gy79l1+yrnjk7y/qk7o7g135Jy44pS2626y72ZdcsHjJUmq6vxJ/ihD4Z7xH+TndcAEn7r7m1X1qiT3WdF826q6fHd/cZ2uJySpUdvzNzHl+F65cJLrbaLfLC6Z+UJK8/janP2mFVM7/5S23e7rc/QZv/aZx+ju7w0bWO5nO96/y0xp+/gWxvuPHMCF0Sb+JPs/69eqquO6+5RpF1fVZZLcddT8mu4+fZvWBwAAAAAAAADsPidOaXvhDP1fnOQp2T+vdGK2VhhtEbmXRY0zb+5lrhxLd59dVZ9N8sMrmqflZLZiWqbwimu0z2vWTOGisl4HYs5rUaZ9fuOih1s16+fqWd7cs7wbn8kvb3XCgz0DvI3m+Wym3UtX3epCRrYlSw4AAMBiLOr/mAMAAAAHhw909/Wn/Fynu6+Q4Q/EJ2Qo1rPSBZK8uKp+ZpPz7MQfmre6g9sqk0DEy5M8Iov9vcuBFnwaFzQ7X5L7r3VxDRWpHjBq/mR3v2MTc413HNwOC79X1jEtIHXQ6O5FvP7d/B4eOaVtvAPsLLbSd7f4myRfHbU9bJ3rT8zw75SVnr3QFQEAAAAAAAAAu1ZVHZ7kHqPmryd57WbH6O7Tkpwyar5eVd1wC0tbSGZlQfmZeS0yxzItJ7MVuzFTuJtzSgeKPfu5HgTP8m787M7YymQywNtqns9mN95jAAAA7CCF0QAAAICF6e6vdfcLk1w/Q7Gblc6X5CVVdfQmhrr4gpe2Ux6X5M5T2k9P8qdJ7pfk5kmulCEscsHurpU/SY7fsdVunzcnOW3U9qB1rj82q3dxGxdXW6WqLpzksNmWBkt10Slt39rCeFvpuyt093eT/OWo+W5VddnxtVV1SJKHjpo/meE7BwAAAAAAAAA4ONwryUVGbS/r7rNnHOeFU9pOnG9Je8YicyzTcjJbcaBmClmfz3V77MSzvBs/u3O32F8GePvM89nsxnsMAACAHXToshcAAAAA7D3dfXZV3T/JZbP/H/kvlqEAzq03GOI7o+NvdPeu/gN3VV0myRNGzecmeUySP+nuzf5R/4Dffay7u6pemORJK5qvWVU36+73TOkyLpr2/SQv2sRU301yXvYv/ioagZ8AACAASURBVH9yd991pgXDzjlzSts4qDuLrfTdTf40yaPzg2f5/BmCxr83uu72SY4etf1Zd/e2rg4AAAAAAAAA2E2mFS97WFU9bAFj37uqHtXd4/zaweIiSc7YQt+VpuVktmLaZ3KX7n71gudhZ037XC/e3d/Y8ZXsLTvxLO+pZ1IGeFeado9dv7s/vOMrAQAAYCkO2fgSAAAAgNlNQgAPyOpwxU9W1T036P7fo+Mjq+rIhS1ue9wpyYVHbY/r7j+eIRCRJJdY4JqW6QVJxsWKThhfVFWHJ7n7qPn/6+7TN5qgu89LMg5AXWXzS2QRqur8y17DAWRaYO+ILYy3lb67RnefluS1o+aHVtX499cPHx1/N8N3DQAAAAAAAABwEKiqaye52TZOcWSSu23j+LvdInMsiy5sNc4UJrJie8G0z/XonV7EHrQTz/JeeyZlgKdbZj50r91jAAAAzEhhNAAAAGDbdPfnkzxpyqnf26CY0n9NabvuYla1bX5qdPz1JH8yxzhXXcBalq67P5PklFHzvarqgqO2e2T1DoPPn2Gq8b1y9ao6bIb+B7PvTWmbJ8Ryya0u5CDy5Slt19jCeNfcQt/dZvx9eVSS2+87qKr9jif+tru/ut0LAwAAAAAAAAB2jRP3yBy71dXn6VRVF8jqYlbTcjJbcSBmCtmYz3V77MSzvNc+u72UAV5UNjRZbqG3vXaPAQAAMCOF0QAAAIDt9uwknx61XTXrB8jeN6VtXBBnt7nS6Pi93X3OHOPcfBGL2SXGBc6OSHLXUdsJo+OvJXnNDHOM75ULJTluhv4HszOmtF1sjnGO2epCDiIfnNJ2w3kGqqpDs7dCPv+Y5OOjtoev+OeHZvXvs5+9rSsCAAAAAAAAAHaNyUac9x81n5Pkw1v8+dpozOOqajcUtlmGuXIsGTIs46I703IyW/GRJN8dtd1uwXOw8w7ErOiBYCee5b32TO6lDPBCsqFVdcUk482Qd9J7p7T5fgAAADiIKIwGAAAAbKtJMOApU079ZlUdtka3f5jSds9JIaDd6lKj43FgbkNVdakkx885/7mj4/PNOc4ivSKrAxYP2vcPVXW1JLcanf+r7j57hjmm3Sv3m6H/wewbU9rmCXUeu9WFHCy6+8tJPjNqvlNVzfN72tsmucjWVzWTbfue6e5O8qej5ttX1VGTYPO4mOaHuvs9i5ofAAAAAAAAANj17pTk0qO2V3X39bfyk+SJozErKzJOB5m7zNnvblPaFprr6O7vJnnHqPnyVXXrRc6zi41zO8lyM4KLyhG9K8m3Rm13rKqLzzkeg21/lvfgM7mXMsB7Ihva3aclOXXUfJOquvoy1gMAAMDOUxgNAAAA2AkvSfKJUdsVkzxk2sXdfXpW7zJ3lSQnLHxlizMO54xDEpvxiMy/u9qZo+PD5xxnYbr720leNmq+dVXt21nvhCndnj/jNG/K6l0H711V15hxnIPRx6e03WSWAarqfEkevJjlHDTeMDq+QpI7zjHO1O/Pbbbd3zMvSHLWiuNDkjw0yV2TXHZ07bMXPDcAAAAAAAAAsLuNN1VLhlzaVr0syTmjthPm3OjuQHfzqrrOLB0mm6Pef9R8bpJ/XNiqfuDVU9pO2oZ5dqNxbidZbkZwITmiyca7bxw1XzTJo+YZj/+xU8/yXnom91IG+PTsn8NLZsyGTjx0C2tYlPE9dkiSJy1jIQAAAOy8g/EXtAAAAMAO6+7vJ/mdKaeeUFVrhQB+d0rb03fxTl9fHB3/eFVdZLOdJyGUJ2xh/q+Pjo/cJbsmjgudHZLkAZPg4ANG5z7c3f8yy+Dd/d9J/nzUfL4kL62qC8200oNMd385yedHzfeYFDvbrEdkvp0ED2bPmdL29Kq6wGYHqKrbJLnz4pa0aePvmYV+9t19RpIXj5pPTPJLo7Yzkrx0kXMDAAAAAAAAALtXVf1Qkv81av5KVhdUmll3fy2rN7q7YpLbbnXsA9T/nfH6x2Z4v1Z6dXeP83SL8JdJvjRqu2VVPW4b5tptxrmdZLm5rUXmFadlRR9bVbecczwGO/Es76Vncs9kgLv7vCQfGjXfsaqO2OwYVXWnJD8xz/wL9oys3jz5vlV1z2UsBgAAgJ2lMBoAAACwU16a5D9GbVdI8rBpF3f3q5J8YNR8RJI3zLqT3T5VddGqekxV3W+e/ht4++j48CS/vZmOVXV0ktckOWwL8390StsdtjDeQnT3u7P6cz8hya2TXHnU/rw5p/n9rN6t7wZJXjVvMKSqjqqqZ1bVj8y5pgPFONR55SS/upmOVXXrJP9n4Sva47r7o0n+adR89STP38xOw1X1w1ldPGynjL9nfqSqrrTgOf5kdHzZJOOQ40u6e7yjJQAAAAAAAACwdz0ow2aJK72su89d0PgvmdJ24oLGPtDcuqqeupkLq+r2SX5ryqn/t9glDbr7O5leROv3quqR845bVberqj+df2U74nNJvjlqW2Y+cGF5xclmqq8YNZ8/Q/5vrsJMVXVYVT20qn5tnv57xLY/y3vsmdxrGeBxNvRCSTZ7P1w3qzdFXopJYb5nTTn1vKq6+zxjVtX5quqeVTXt3gUAAGAXURgNAAAA2BGTHciePOXU46vqwmt0u3eSr43arprkvVX1m5vZvayqDqmq46vqOUn+M0Mhp8vNsPTNekWS80Ztj6mq36mqQ9dZ372TvDs/2L3xjDnnf8+U+Z9RVXeuqvPPOeaijAMSx2T1boTnJPmreQbv7i8leWCSHp26bZIPVtX91vsM9qmqi0zCDq9McmqSRya54DxrOoD8xZS2p1XVL1RVTetQVRec7Oj4hgxBnvFufGzsF7P6fbtPktdMdjieqqrukuRt+cF32He2Z3lretfo+JAkL6+qGy1qgu7+WFYXjht7zqLmAwAAAAAAAAB2t0mG5UFTTk0rZjavv8/qolN3qqpLL3COA8G+PMtvVtVz18rnTTJ5v5rklRkKWK30gu5+2zau8VlJXj1qOyTJM6vqVVV1vc0MUlVXqarHVdVHMuSg5irAtVO6uzPkDFe6TVX9flVdZglLWnRe8ReSfGbUdqkkb66qP6iqTWU+q+qmVfWMJJ9N8mdJrjbHWvaCnXyW98ozudcywC9I8v1R2yOr6slrvZ5JwbATk7wjySUyZHLPmWPuRXtikveN2i6c5O+q6i+qalPPeVX9SFU9JcknkvxNkk3dmwAAACzPhv9BKAAAAMAC/W2GP1BfZ0XbZTMUCXr6+OLuPrWq7pHk9UkusOLURTLsXPaEqnpHkncm+WKSb2T4Y/eRSa6U5AaTnyMX/kpWr/UTVfWSJA8YnXpikhOq6u+SfCTJWRkCA9dIcqfsH7z5dpLHJXn2HPN/saremP13iLtskpOTnFNVn0vyrawuHvbz3f2BWeeb0YuT/F7237X1WqNr/r67vzrvBN39iqp6UpLfGZ26ymT+p1fVKUk+kOQrGd6Li2W4N45JcqMk183Wduw74HT3+6rq1UnuvKL5fBkKTz2iql6VoUjcOUkuneSGGe6xlWG6X41CVTPp7v+oqt9M8ozRqTsmObWq3pBhB8ovZtip8aoZPqMfXXHt6UlenuH93ymvzlCs8hIr2m6a5P1VdWaSL2RKobzuvv6M8zwryfFrnHtHd0/bHRMAAAAAAAAA2JuOzw8Kzuzzye5+76Im6O6zq+rlSX5+RfP5k9wvyR8tap4DwJMybDyaDO/FParq5CTvT/LlDFmraya5e5IrT+l/WpJf284FdndX1f0yFO4ZF7W5S5K7VNWHk5yS5JNJ9mXSjsxQaOu6GTJQ43vqQPC8JLcbtT0+w+a0X8yQ6zl3dP413f2kRS9k0XnF7v5qVd0pw+e6sojXoUkeneSXq+rdGTaV/HySr2fI+h2Z5PJJfixDBvBgK2a4lh17lvfKM7nXMsDd/YWqemZW5wuflOS+VfWKJP8+WfMlM2QT75j974enZdjg+qhZX88idfd3q+quGYrHXWl0+sQMn88Hkrw1Q1HEr2XIwR6ZIet6/QzfD2tuWgsAAMDupDAaAAAAsGO6+7yqenKGAmkrPbaqnt3d35rS581Vdaskf5fVf9C+SJLbTn52g19OcpMMgZGVrpiNixd9L8nPZQgZzOsxSY7N8L6sdIGsvfPh4VuYb1NWBDbuuM5lz1vAPE+tqi9kKKp0wdHpyya55+SH/T0syY2TXGHU/qPZvxDXNH/Q3X9WVQqjzai7/7CqLpXkCaNTF0xy18nPWr6VITT209u0vKkmAaNfS/LCKacvmiHstQgnJ/lcVn/nJ3OExgAAAAAAAACAA9qJU9pesg3zvCT7F0bbN/fBVBjt6RmKx9xjcnyxDEWCxoWCpvl8kp/s7m9s09r+R3efNckUPj9DYaex62V1gaa94BVJ3pzk1lPOXX7yM/ahbVzPQvOK3f2vVXXjJK9M8iNTxjx28sPGdvRZ3kPP5F7LAP9mkttk9fN0tSSP3WAtL5v0v/cG1+2ISaG3m2RY10+MTp8vwwavN93xhQEAALCtDln2AgAAAICDzr5d01a6dJJfWqtDd78vyQ0yhCa+t4W5O8Ouc2/fwhhrD979zQwhgvfM2PULSW7T3a/f4vwfS/JTSU7dyjjbZL3CZ19M8qZFTNLdz0ty8yRv2eJQ303yN0n+c8uL2uW6+0tJbpnZ7ptzkjy6uzcKx7CO7v6NDDtrzhKG+nyS46ft8rgTuvtFGULAZ27jHN9P8mdTTn0lQ8ATAAAAAAAAADgIVNWRSe425dRfbcN0b8vqrNB1quqgKbTS3Z3kvklm3STxnUmO7e5PL35V03X3md39s0kenuT0LQ73nxmyibtad5+X5GeTvHTZa0m2J6/Y3Z/MUNzoDzNsHrkVH0iypUzmgWoZz/JeeCb3Wga4u7+d5Lgk75ulW4bCeveZfOfsGpOs662TPDHJ17Y43L9n9SbfAAAA7DIKowEAAAA7ahK4OGnKqUdX1UXX6fff3f3gJMdk+KP7v2X4A/xGzkzyugzFh67S3cd393tnXvgmdffpGXYje2SSjcIhpyX5rSTX7O63LWj+d2fYre4OSf40yTsyhC7OSrLMkMLfJ/nvNc69aFIIaSG6+0PdfeskN0vyogyFpDbjixl2fn1gkst19727+8uLWtdu1t2fSXLdJL+R4X1YyzkZdtz7se5+xk6sba/r7j9Ocp0kL0xyxjqXfjnJU5Ncp7vfvxNrW0t3/2WSH0ryoCQvTvIvGdb3nQVOM63w2/O6++wFzgEAAAAAAAAA7G73TXLBUdu7u/tTi55okmubVnDtxEXPtZt197nd/fAMxYHekvUzZ/+S5CFJbrWTRdFW6u7nJLnqZB3/mM1tUHhehrX/QZLjkxx9oGShuvsb3X3fDBnBk5K8Nsmnknw9W9t0dt71LDyv2N3f7u5HJTk6w2v8QJLN5Au/m+Ge/Y0MGasbb7VQ1YFsWc/ygf5M7rUMcHd/NcktMhSsW+/fnd9P8oYkt+jux+y2omj7TO7r301yVJJHZXh/ztlE13OTvCvJU5LcpLuvPdkkFgAAgF2sht/ZAgAAABx4qurSSW6Y5NJJLpnk8Ay7BJ6ZoRjWfyQ5rZf4C5CqunqSm0zWeJHJ+j6f5CPd/fFlretgU1XHJLl2hvvkkkkukCEo8s0kn0nyHwdLEbTNqKrrJrlekksluXCG9+njGYKlZy1zbXtZVR2W5JZJrpzkchmCTP+V5CNJPrRbw0bboapemuTeK5o6yTHLCtECAAAAAAAAAByMqupSGTaovFqGfN4ZGTZe/JftKFC3VVV1gQyZwitmyD5dPENBnDMzbOz5iSSf6O5FbgDINquqI5LcOMllMuT/jsiwieOZGYpGfTzJpxe5QeuBoqpOSvLbK9u6u6Zct5Rn+UB/JvdaBnjyem6Y4Vm6aIbP4VNJ3tXdX1vm2uZVVRdOcqMkV8jw/XBkkrMzvLYvZ/h+OLW7N1NADQAAgF1EYTQAAAAAAHaNSdHLzyU5bEXzG7v79ktaEgAAAAAAAAAAwK6z2cJoAAAAAAeaQ5a9AAAAAAAAWOEh2b8oWpI8axkLAQAAAAAAAAAAAAAAAGBnKYwGAAAAAMCuUFUXSfIro+ZTk7x+CcsBAAAAAAAAAAAAAAAAYIcpjAYAAAAAwG7xlCSXGbX9cXeft4zFAAAAAAAAAAAAAAAAALCzFEYDAAAAAGCpquoSVfX0JL8+OnVakucuYUkAAAAAAAAAAAAAAAAALMGhy14AAAAAAAAHl6r6iyQ3mhxeKskVktSUSx/T3efs2MIAAAAAAAAAAAAAAAAAWCqF0QAAAAAA2GnHJLneBte8qLtfvhOLAQAAAAAAAAAAAAAAAGB3OGTZCwAAAAAAgJGXJPn5ZS8CAAAAAAAAAAAAAAAAgJ116LIXAAAAAADAQe87SU5P8u4kz+vuU5a7HAAAAAAAAAAAAAAAAACWobp72WsAAAAAAAAAAAAAAAAAAAAAAAAADnKHLHsBAAAAAAAAAAAAAAAAAAAAAAAAAAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdIcuewGwbFV1RJJjVzR9Lsk5S1oOAAAAAAAAAMBWXCDJlVYcv7W7v7msxQCAjB4AAAAAAAAAsEfI5+0QhdFgCFy9etmLAAAAAAAAAADYBndO8pplLwKAg5qMHgAAAAAAAACwF8nnbZNDlr0AAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgKU7dNkLgF3gcysPTj755BxzzDHLWgsAAAAAAAAAwNxOPfXU3OUud1nZ9Lm1ruX/Z+/Owyyr6nvh//bpmrrpEehmVBkFJCqivIGmQQRUgnkjMV4SL3mIxleNEoPxRdQYBuONQ5zyJnLjcFFITAxBBSUKeq8yo4IMsZNGGQSaubvpeajxrPeP7i5qOPucfapO1Tl16vN5nn7ovfZae62zq55m7aq1vhuAaWKNHgAAAAAAAAAw41mfN30Eo0FE/8iDww47LI4++uhmjQUAAAAAAAAAoJH6a1cBgClljR4AAAAAAAAA0I6sz5sipWYPAAAAAAAAAAAAAAAAAAAAAAAAAEAwGgAAAAAAAAAAAAAAAAAAAAAAANB0gtEAAAAAAAAAAAAAAAAAAAAAAACAphOMBgAAAAAAAAAAAAAAAAAAAAAAADSdYDQAAAAAAAAAAAAAAAAAAAAAAACg6QSjAQAAAAAAAAAAAAAAAAAAAAAAAE0nGA0AAAAAAAAAAAAAAAAAAAAAAABoOsFoAAAAAAAAAAAAAAAAAAAAAAAAQNMJRgMAAAAAAAAAAAAAAAAAAAAAAACaTjAaAAAAAAAAAAAAAAAAAAAAAAAA0HSC0QAAAAAAAAAAAAAAAAAAAAAAAICmE4wGAAAAAAAAAAAAAAAAAAAAAAAANJ1gNAAAAAAAAAAAAAAAAAAAAAAAAKDpBKMBAAAAAAAAAAAAAAAAAAAAAAAATdfR7AHAbJRSinK5HCmlZg8FYJwsy6JUKkWWZc0eCgAAAAAAAAAA1M0aPaBVWZ8HAAAAAAAAUJtgNJgGKaXo7e2NLVu2xJYtW6K/v7/ZQwKoqaurKxYsWBALFiyInp4eC7EAAAAAAAAAAGhJ1ugBM431eQAAAAAAAAD5BKPBFNu+fXs89dRTMTAw0OyhANSlv78/nnvuuXjuueeis7Mz9t9//5g3b16zhwUAAAAAAAAAAMOs0QNmIuvzAAAAAAAAAPKVmj0AaGfbt2+P1atXW3AFzHgDAwOxevXq2L59e7OHAgAAAAAAAAAAEWGNHtAerM8DAAAAAAAAGE0wGkyR3QuuUkrNHgpAQ6SULL4CAAAAAAAAAKAlWKMHtBPr8wAAAAAAAACe19HsAUA7SinFU089NW7BVWdnZyxcuDDmz58fnZ2dkWVZk0YIkC+lFAMDA7F169bYvHnzqDfq7v737dBDD/VvGAAAAAAAAAAATWGNHjBTWZ8HAAAAAAAAUJtgNJgCvb29oxYqREQsWLAgDjjgAAsVgBmhs7Mz5s2bF0uXLo0nn3wytmzZMnxuYGAg+vr6oqenp4kjBAAAAAAAAABgtrJGD5jJrM8DAAAAAAAAqK7U7AFAOxq5QCFi5wIGC66AmSjLsjjggAOis7NzVPnmzZubNCIAAAAAAAAAAGY7a/SAdmB9HgAAAAAAAEBlgtFgCoxddLVw4UILroAZK8uyWLhw4aiysf/OAQAAAAAAAADAdLFGD2gX1ucBAAAAAAAAjCcYDRospRT9/f2jyubPn9+k0QA0xth/x/r7+yOl1KTRAAAAAAAAAAAwW1mjB7Qb6/MAAAAAAAAARhOMBg1WLpfHlXV2djZhJACN09HRMa6s0r93AAAAAAAAAAAwlazRA9qN9XkAAAAAAAAAowlGgwar9Ia2LMuaMBKAximVxk8ZvJESAAAAAAAAAIDpZo0e0G6szwMAAAAAAAAYTTAaAAAAAAAAAAAAAAAAAAAAAAAA0HSC0QAAAAAAAAAAAAAAAAAAAAAAAICmE4wGAAAAAAAAAAAAAAAAAAAAAAAANJ1gNAAAAAAAAAAAAAAAAAAAAAAAAKDpBKMBAAAAAAAAAAAAAAAAAAAAAAAATScYDQAAAAAAAAAAAAAAAAAAAAAAAGi6jmYPgOmRZVlnRJwYES+MiP0iYmtEPBUR96aUHm1wXwdHxDERsX9EzI+IpyPisYi4I6U00Mi+AAAAAAAAAAAAAAAAAAAAAAAAaA+C0Zoky7JDIuK4iHjVrv8eGxELRlR5LKV0UAP6WRoRH42I34+IPXPq3BERn0spfWuSfb05It4fESfkVFmfZdlVEXFxSmndZPoCAAAAAAAAAAAAAAAAAAAAAACgvQhGm0ZZlp0SER+OnWFoFUPKGtzfb0XEFRGxrEbV5RGxPMuyf46Id6WUttXZz/yI+EpE/EGNqntGxLsj4k1Zlv1RSukH9fQDAAAAAAAAAAAAAAAAAAAAAABA+yo1ewCzzDER8bqYnlC0UyLi2hgdipYi4u6IuDoi/ndErBvT7JyI+EaWZYW/L7IsmxMRV8X4ULS1EfHDXX3ds6vv3faJiO9kWbaiaD/Qzg466KDIsmz4z0033dTsIQEAAAAAAAAAAMCMZ30eAAAAAAAAAMw8gtFaQ19EPNyoi2VZdmBEfDsiukYU3x4RR6eUXpVSOjul9LqIODAizo+IgRH1/u+I+B91dPfJiDhzxPFARLw3Ig5MKb1+V1+vjIjfiIifjKjXHRHXZlm2Xx19AQAAAAAAAAAAAAAAAAAAAAAA0KYEo02/gYi4LyL+V0S8KyJeGRELIuL/aWAfH42IJSOO74iI01NK94+slFLqSyn9XUScPab9+7Mse1GtTrIsOyR2BquN9N9SSl9IKfWP6WtVRJwWo8PR9oqIS2r1AwAAAAAAAAAAAAAAAAAAAAAAQPsTjDa9royIhSmlV6SU3pFS+nJK6Z6U0kCjOsiy7PCI+KMRRf0R8daUUm9em5TStbvGtlt3FAssuyQiOkccX5FS+k6VfnZExFt3jWm3t+8KWAMAAAAAAAAAAAAAAAAAAAAAAGAWE4w2jVJKG6oFlDXIf4+IOSOOv51SerBAu0+NOT47y7KevMpZls2NiDfXuMY4KaUHIuLaEUUdsXPMAAAAAAAAAAAAAAAAAAAAAAAAzGKC0drP7445/lqRRiml+yPiZyOK9oiI11Vp8vqImDfi+CcppV8WGuH4Mb2pYDsAAAAAAAAAAAAAAAAAAAAAAADalGC0NpJl2b4R8fIRRYMRcXsdl7hpzPFvVal7Ro221dwaO8e22yuyLNunjvYAAAAAAAAAAAAAAAAAAAAAAAC0mY5mD4CG+o0xx79IKW2ro/0dY46PrqOvnxTtJKW0LcuylRHxijF9PVv0GkD9Ukpxzz33xC9/+ctYs2ZN9PX1xdKlS+OAAw6IFStWxPz585s9xAl7/PHH46677oonnngiduzYEXvvvXe89KUvjVe96lVRKk0uA3TNmjVx6623xlNPPRU7duyI/fffPw455JA4/vjjJ33tSlatWhUrV66MtWvXxubNm2PPPfeM/fbbL1asWBF77bVXw/sDAAAAAAAAAABgcqzPmxjr8wAAAAAAAACoRDBae3nJmOOH6mz/cI3rjXRUA/oaGYz2koj4cZ3XAApYt25dfPzjH4+vf/3rsXbt2op1urq64tRTT41LL700fvM3f7PQdd/61rfGlVdeOXz8yCOPxEEHHVSo7U033RSvec1rho8vueSSuPTSS3PrZ1k2/PdXv/rVcdNNN0VExB133BGXXHJJ/PjHP45yuTyu3T777BMf+chH4rzzzqt7kdS9994bH/jAB+LGG2+seO0DDzww3vWud8WHPvSh6OjoiEsvvTQ++tGPDp+/8cYb45RTTinU13PPPRef/vSn4+tf/3o8+eSTFeuUSqVYvnx5XHLJJXH66afX9VkAAAAAAAAAAABoPOvzrM8DAAAAAAAAoPEEo7WXw8Ycr66z/WNjjvfKsmxJSmnDyMIsy/aMiD0n2dfY+ofX2R4o4Nprr41zzz03tmzZUrVef39/3HDDDXHDDTfEO9/5zrjsssuio6O1/xfx8Y9/PC6++OIYGhrKrfPss8/Gn/3Zn8WNN94Y//qv/xpdXV2Frv25z30uLrzwwqrXfuKJJ+Kiiy6K66+/Pr797W/XPf7d/vEf/zHe+973xubNm6vWfx0p0gAAIABJREFUK5fLcdttt8VrX/va+MM//MO4/PLLC38eAACgve0Y2h6P9P4q+st9dbXbu3Pf2L/7hVHKqm9UGUpD8Xjvw7FxcP1khtk2ukrdcXDPi2PunD0afu2tQ5vjsR0PxkAaGHeuu9QTB889InpKcxveb6MMlAfisd4HY0nnXrFX5z7NHg4AwIywdWhzPNP3eOzb/YKYP2dhs4fTktYPrI0n+h6Jchq/UX7BnEXxormHRUfW2fB+Nw1uiGf7n4wX9hw6qXl4b3lHPLrjgegt72jg6KbOPl0HxL5dB44KRqhk5/z/gdg6VP33kPPmzI8Xz/uNRg4RAABahvV51ucBQCOkgf6IR1ZFlEoRh7605s/mAAAAAABgNmjt36pTr8VjjtfU0ziltDXLst6I6BlRvCgiNoypOraf7SmlbfX0VWFsi+psD9Tw1a9+Nd7xjneMe5vioYceGi95yUti3rx5sXr16rjzzjtHLTD68pe/HKtXr47rrruuZRdffeYzn4mPfOQjw8dHHHFEHHHEEbHHHnvE008/HT/96U+jt7d3+Pw111wTF110UXzqU5+qee3PfvazccEFF4wrf8lLXhKHH354dHd3x+rVq+Ouu+6KoaGhuOOOO+Lss8+Ok08+ue7PcfHFF8fHPvaxUWVZlsURRxwRhx9+eCxYsCA2bNgQP//5z0e9TfTrX/96PP3003HDDTe07NcIAACYHjdv+H5cveZ/RTnGBwQUsX/XC+NPX3BpLO4Ym4G/09N9j8ffP3FpbBx8bhKjbD+lKMXZy94RJy/5rYZcL6UU1z/3b/G95/41UqQq/c6Jc/Z9T5yw6LSG9NtID2xfGV988hPRW94eEREvm/9/xdv3uyA6SzYNAQDk+f66q+KG9VfHYBqMLLJ487K3x2uW/Hazh9UyhtJgfO3pz8c9W26vWm+P0oJ4z4F/GQfPPaIh/ZZTOa5a8+W4deMNERExJzri3P3+LI5bWP/vgn626ab4+jNfiKEYbMjYpsuLeg6P8w68KDes71fbV8aXnvx4obC3g3oOjwtf9OlGDxEAAJrO+jzr8wCgEdIj90f64FkRTz+6s+DwYyI++++RLVnazGEBAAAAAEDT+W1te5k/5ngir5zeEaOD0RZMYT8jVeqnblmWLYuIen8DdGgj+m6UNDgYsfaJZg+j/S09MLI2XrBy3333xbvf/e5Ri66OOeaYuOyyy2L58uWj6q5duzYuuuii+NKXvjRcdsMNN8TFF18cH//4x6dtzEWtXLkybr311oiIOOuss+ITn/hEHHnkkaPqbNiwId7//vfHFVdcMVz22c9+Nt797nfHQQcdlHvtu+++Oz70oQ+NKjvllFPiC1/4Qhx99NGjyteuXRsXX3xxfPGLX4xbbrklVq1aVdfnuPLKK0ctuiqVSnHeeefFBRdcEC984QtH1U0pxXe+8504//zzY/Xq1RER8aMf/Sguuuii+MQnPlFXvwAAQPtY3ftQXLXmy5O6xlP9q+Ofnv67eO8LLh13LqUUX3ryE0LRKihHOf51zZfi4LlHxAt6Dpn09VZtvzf+/blvFOh3KP7pmb+Pg3peHPt1v2DS/TZKf7kv/uGJv46+9PwmqF9svTOuf+7q+J2l5zRxZAAArWvl1rtGzQFTpLh6zf+Kg3oOb1jA10z3w/XfrhmKFhGxrbwl/ueT/yM+eejXYk42+d///WTTj4ZD0SIihmIwrnj683FwzxGxd9c+ha+zpv+puPKZv530eJrhsd4H46pnvxxv3398WEFfuTe+OGb+DwAwk1ifN43aeI2e9XnW5wFAI6SUIv3Vuc+HokVEPHhfpL95d2Sf+GazhgUAAAAAAC2hPVcczF5jA8smshJ5R0QsqXLNRvZT7ZoT9Z6IuKRB12qOtU9EOttmh6mW/duvIvY7qNnDmDJvf/vbo7+/f/h4xYoV8YMf/CDmzZs3ru7SpUvji1/8Yhx22GHxgQ98YLj8U5/6VLzlLW+Jl770pdMy5qLWr18fEREXXnhh7hsmlyxZEl/72tdiw4YN8Z3vfCciIoaGhuLyyy8f9wbIkc4777wYHBwcPn7Tm94UV111VcW3Pi5dujT+4R/+IQ455JC48MILY926dYU/w2OPPRbvfve7h4+7u7vj2muvjTPOOKNi/SzL4qyzzorly5fHiSeeGA899FBERHz605+Od77znXHwwQcX7hsAAGgf/7n17oZc51fbV0ZveUf0lOaOKl8z8FSsGXiqIX20q19svbMhwWi/2HJnXfVXbr2rpYLRfrV9ZcVQhF9s/ZlgNACAHNc/d3XF8vu2/lQw2i71PPNsG9oSD+/4Zbx43m9Mut+V2+4aV5Yixcptd8Vrun67+HW2jr/OTPKfW38eQ2ko5mRzRpU/kDP/BwCYMazPmzbtvEbP+jzr8wCgIR76xc4/Y/38R5EGByLr6Jz+MQEAAAAAQIsoNXsATKnUZm2AAm688ca45557ho8XLlwYV111VcVFVyNdcMEF8du//fxmjnK5HJ///OenbJyTsWLFikJvYvzrv/7rUcc//vGPc+vedddd8bOf/Wz4eL/99ouvfvWrFRddjfSBD3wgXve619Ucy0if/vSnY8eO5/MhP//5z+cuuhpp2bJl8S//8i/Dx0NDQy37NQIAAKbepsENDblOOYZi6+DmceUbB55ryPXb2abB9Q25zsbB+u71pqHG9Nsom3LG36jvUQCAdrO696F4tPeBiuc2DrTWXK+ZtgxtrKt+w+bnOc9C9c5v653nt5q+1Bt95bHvO4vY2KD7DAAAM5X1ec+zPg8AJum26yqX926P2LF1escCAAAAAAAtRjBaexn7m4+5E7jG2DaVfpsyXf0AE3DllVeOOj7vvPNi//33L9T2k5/85Kjjb3zjG9HX19ewsTXKRz7ykSiVav8v7Oijj46DDjpo+Pi+++7LrfuNb3xj1PGf/umfxqJFiwqN56KLLipULyJi27Zt8dWvfnX4+JBDDol3vetdhdsfd9xxcdJJJw0ff/e73y3cFgAAaC+DaaBh1+pL4ze791bYAM9ojbpHfam3Kf02Sl+58vgrfV8BABBx88brc8+ZQz2v3jdt5c1L65U3P68UElZNq83bJ6LSZ6j3PgAAQLuxPu951ucBwOSkZ5+ocrLen5ACAAAAAEB7qf6aLWYawWgR/zMirq6zzaER8Z0G9Q9Nd9ttt406/sM//MPCbY8++ug49thjh99o2dvbG3fffXcsX768oWOcjLlz58app55auP5RRx0Vjz76aEREbN++PbZu3Rrz588fV++OO+4YdXz22WcX7mPFihWx//77x1NPPVWz7m233TbqbZRvfvObCy0iG+k1r3lN3HrrrRER8dhjj8Xq1avjhS98YV3XAAAAZr68YLQ50RFdpa5x5SkiesvbK7bprRAgUC2sa25pXrFBtomB1B+DaXBcecOCF+q8TqP6bZS88QymwRhMA9GRdU7ziAAAWte2oS3x88235p5vtblec9W38a9RgV15gWaNCkbLe2ZrlhSpymce//2YV7cUpegu9Ywrr1QGAAAzmfV5o1mfBwCTsLZKMNrQ0PSNAwAAAAAAWpBgtPayaczx0noaZ1k2P8YHlm0s0M+8LMv2SCltq6O7ZQX6qVtKaU1ErKmnTZZljegaWsKGDRvi4YcfHj5evHhxHHXUUXVdY/ny5cMLryIi7rrrrpZaeHXooYdGV1fxzSJLliwZdbxp06aKC6/+4z/+Y/jvixcvjsMOO6yucb3qVa8q9HbIsQvj9t9//+GFYUWN/fy//vWvLbwCAIBZqFJQV0TE8sWnx1v2+ZNx5SmleO8DvxflKI87V2mDf95m96Wd+8VHD/mHOkc7s3137T/HDevHZ/Hn3aN65QUsdGQdUxrI1ijV7kNfuTc65ghGAwDY7SebfhQDqT/3fKPCvdpBSvUGo01tcHG9188Lpj5lyZnxe8v+uO5xTZXe8o54/4NvqXiu0vdj3n04ao9j4rwDL27o2AAAoNVYnzee9XkAMAlrn8w/l8av7QAAAAAAgNlEMFp7eXDM8YvqbD+2/vqU0oaxlVJKz2VZtiEiRq5meGFE3D+JvsaOHZiAtWvXjjo+/PDD6w7/O/LII0cdr1lTV9bglBu7kKqWzs7Rm68HBgbG1dm2bVv09j6/iWMii5iKtnn88cdHHb/vfe+L973vfXX3N9L69esn1R4AAJiZBtP455uIiM6scghVlmXRXZobO8rjs+3r2ezeUxqbq9/+8j5zX2pM8EJesNjCOUti/eDaceWtFpZRLSCir9wbe8xZMI2jAQBoXeVUjls33lC1TquF4M4kjQguTik1MBit8ni6W+yZqivrjiyySDE+iK7SZ857Hmm1zwUAAFPB+rzxrM8DgEnY9Fz+ufLQ9I0DAAAAAABakGC09jI2mKy+16lFHDLmeFWNvka+ou6wCv3X01c9bdvb0gMj+7dfNXsU7W/pgc0ewZTYsGF0luGiRYvqvsbYNq22qKdUKjX8mhs3bhx1vGBB/Ru2Fy5cWKjec89V+QX2BG3ZsqXh1wQAAFpfXjDanCz/R37dpZ6cYLR6Nrv3FBxh+8j7zI0KKMsLWFjUsWdOMFprhWX0pfz70GpjBQBopvu33RtrB56pWsf86XmVgrqqacS9G0j9kaJc8Vy9wWt59eeW5tU9rqlUykrRlXVXDH6u9Bny7vNsfFYEAGYo6/OmTxuu0bM+b2KszwOAHNs2558bEowGAAAAAMDsJhitvfznmOOXZVk2L6W0vWD7E2tcb+y5kcFoJ0TEdUU6ybJsj4h4WR19zSpZR0fEfgc1exjMUCmN3iBS79soK2nENVpdd3f3qOP+/v66r1G0zUSuXcvYrzsAADA75AWjdWSduW26S3MrltcXjFb5Gu2snvtWr5RS7nUWdiypWF5vIMNUq3YfWm2sAADNdPPG62vWEYz2vLxgtFKUolwhvKxaYG9R1cKPKwWHVZM3F27FZ6ru0tzoG6rwXFjhM+fdh+6s9T4XAEAl1ucxGdbnTYz1eQCQo6/KzzRT5Rc4AAAAAADAbCEYrY2klJ7OsuwX8XzoWEdErIiIHxa8xCljjqutzL8hIt5ZpW01J8Xo7717U0rP1tEeyLHnnnuOOt60aVPd1xjbZsmSypuwJ2Ooxd5gNfYzjn2zZxFF39y59957jzq+44474oQTTqi7PwAAgME0WLG8WjBaT84G/Eob9vM38fcUGF17yfvMjQj9GkyDUY7Kz8kLOxZXLG+1sIxq46kWLAEAMJus6382/mvb3TXrNSLcq911l+bGjvK2ceWNmCc3cm7bW678/rKe0ry6rjMdekpzY/PQ+N+P1fOsmPe8CQAA7cT6vImxPg8AJqDcWv8/BwAAAACA6VZq9gBouGvGHL+tSKMsy46MiN8cUbQtqgeq/SAiRq54PmHXNYp465jjsWMGJmjp0qWjjh944IG6r/GrX/1q1PGyZcsq1uvoGJ2tOThYeUN+JRNZ2DSV5syZEwcccMDw8a9//evYvr3yZpU8K1euLFRvn332GXU8ka8RAABARMRgGqhYXi0YLS/gq9Lm/7xAgNm42T3vM/eVeyOlNKlrVwu+WDSn8maoVgsbqxYQ12ohbgAAzXLLxusjRe2542AazJ3rzzZ596uewOd6VbtGb51z27x5e08Lhk034llxNoZoAwAw+1ifNzHW5wHAeKmvxs8zy+XpGQgAAAAAALQowWjt558jYuSrYd6UZdnhBdp9cMzxv6WUcld2p5S2R8Q3a1xjnCzLXhwRvzuiaDAi/qXA+IAClixZEoceeujw8caNG+P++++v6xp33HHHqOPjjjuuYr2FCxeOOt64cWPhPv7rv/6rrjFNh+OPP3747+VyOW6++ebCbdevXx//8R//Uaju8uXLRx3/8IfVMigBAADyDabKG2A6so6K5RH1BQjkBQLMxs3ueZ85RTkGUv+krl0t5GxRx56V26TeKKfWWQRdLfysEeEUAAAzXX+5L36y6UeF6wuX3SUnhLhacPFkVbtGPQHFA+WB3Ge2ntK8usc11fKD0cZ/5rz7MBufFQEAmH2sz5s46/MAYIwtNYJMy0PVzwMAAAAAQJsTjNZmUkoPRsSVI4q6IuKKLMtyVyFnWfbGiHjriKL+iPhoge4ujYiRryt/a5Zlv1Oln56I+NquMe12eUrp4QJ9AQWtWLFi1PE///M/F257//33x9133z183NPTE6985Ssr1h37pspVq1YV7uf73/9+4brT5fTTTx91/JWvfKVw2yuvvDL6+4tthD/ttNNizpw5w8ff/e53Y82aNYX7AgAA2G0oNxitM7dNd86PiPpSpc3ulQMB8kII2lm1zzzZ4K9qwQsLOxbnnutPfZPqt5GqBUT05b97AQBg1rhny+2xrbylcH3BaDtVjkXLDxZrSDBalfnrQOqPciq2GbHaHLkVn6m6c8Pmiodot+LnAgCAqWB93sRYnwcAY/zq3urnh1rnZWkAAAAAANAMgtGmWZZlB2ZZdtDYPxGx75iqHZXq7fqzd41uLomIka+PWR4R/yfLsiPHjKU7y7L3RsTVY9p/NqX0WK3PklL6dUT8f2OKv5ll2Z9mWTYy/CyyLDsqIn60ayy7PRfFAtiAOpx77rmjjr/whS/EM888U6jthz/84VHHf/AHfxDd3d0V6x577LGjjq+77rpCffzgBz+IO++8s1Dd6XTOOefEggULho+vueaa+MEPflCz3ZNPPhl/9Vd/VbifJUuWxDnnnDN8vHXr1rjgggvqGywAAEBEDKaBiuUdWUdum+5STjBahQCBvI383dns2+yed98iqgceFFEtvGFRx5Ip67eRqoVHCPUAAIi4eeP1ddU3h9opReWNf/nPNZOfI9cKPi76tal2nbxgt2aq71mx8j2o9twEAADtxPq8ibE+DwBGS1+5pEYFwWgAAAAAAMxugtGm320R8UiFP98YU++AnHqPRMRnqnWQUnoiIt4UESNfj3ZiRKzKsuyuLMuuyrLshoh4PCL+LiI6R9T794i4qI7P86GIGLmSvzMi/j4iHs+y7Posy/4ty7KfR8R/xehQtP6I+N2U0tN19AUUcOqpp8YxxxwzfLxp06Z4y1veEjt2VN/I8fnPfz6+853vDB9nWRZ//ud/nlv/hBNOiHnznt+4cc0118TPf/7zqn08+OCD8Ud/9Ee1PkJTLFiwIM4///xRZWeffXbceOONuW0effTReO1rXxsbN26sq69LL7101IK2f/qnf4oPfvCDMTQ0VNd1Vq1aFbfccktdbQAAgPaRH4zWWbE8IqK7VDnUrFKAQF7Y1Wzc7J533yJqByfUkhcqkEUW8+csqrtdM1QbSysFuAEANMOjOx6Mx3ofrKvNZOeY7SLllPfkPtdMfo5ca/5aPBhte+65vPE3U9FgtJRSfoh2C34uAACYCtbnTYz1eQAwxvpnq58v1/f/LQAAAAAAaDeC0dpUSummiPjdiFg7ojiLiFdFxNkR8fqIWDqm2Tci4g9SSoV/g7Kr7tkRcdWYU8si4oyI+G8R8cpdfe+2JiLemFK6tWg/MJs888wz8eijj07oz26XX355dHV1DR/fdNNNcdJJJ8XPfvazcf2tW7cuzjvvvHj/+98/qvzCCy+Ml73sZbnjXLBgQfz+7//+8PHQ0FC84Q1viB/+8Ifj6vb398dXvvKVOP744+PZZ5+NJUuW1HNLps1FF10UL33pS4ePN2/eHKeddlqcffbZ8c1vfjN+8YtfxC9/+cv44Q9/GO973/vi6KOPjvvvvz96enrijW98Y+F+Dj744Pjyl788quxv/uZvYsWKFXHdddfF4OBgbttHH300Lrvssjj11FPj6KOPjh//+Mf1f1AAAKAtDOQGo3Xktim62T0iP4xhNm52787yP/Nkwxfy73NP1cCEVgnLGEqDuSF9EYLRAABu2fj9utuYQ+1WORqtpzSvYnlfmvx9qzXPzguQruc6rfhMlffsMfZzDKaBKEe5Yt1W/FwAAFCJ9XnNY30eAOyUhoYiNq+vXqlc+edwAAAAAAAwW+TvkmTGSyl9P8uy34iIj0bE70dE3kqHn0bEZ1JK35pgP1sj4g+yLPtmRPy/EXF8TtX1sTNA7ZKU0tqcOjDrveUtb5lw25R2bhA59thj4wtf+EL8yZ/8SZR3/VL07rvvjuOPPz4OO+ywOProo6Onpycef/zxuPPOO8ct9Hnta18bH/vYx2r297GPfSyuueaa4TcyrlmzJl7/+tfHYYcdFi972cuiu7s7nn322fjZz34W27Zti4iIfffdNz71qU+15Jspu7q64nvf+16ceuqp8dBDD0XEznt69dVXx9VXX12xTZZlcdlll8Xq1avHvdGzmnPPPTeeeeaZ+PCHPzz8NfrpT38av/M7vxPz5s2LV7ziFbHPPvvE3LlzY8uWLbFu3bpYtWpV3W+/BAAA2tdQqrxpoyPrzG1TdLN7RH7gV7WwrnbVWeqMOdERQzH+nk82tCKvfXdpbm6Q3c52kwtka5Ra42iVcQIANMPWwc3x8y23VTx35LyXxyM7flUxaMscaqdUZzDa4K7Q3mrPRLXUnt8Wm//3lrdXLO/IOqKzNPHxTZW8MOix35/V7k93lv/8AgAArcT6vOaxPg8Adnnu6Yih/KDOiIgoD03PWAAAAAAAoEUJRptmKaWDprm/NRHx7izLzo+IEyPiRRGxb0Rsi4gnI+LelNIjDerrmxHxzSzLDo6IYyNi/4jYIyKeiYjHIuL2lFJ/I/oCanvHO94RS5Ysibe97W2xdevW4fKHHnpoeFFRJX/8x38cX/ziF6Ozs/amjAMOOCC+9a1vxVlnnRVbtmyp2cfBBx8c3/ve9+LZZ5+t89NMnxe84AVx6623xnve85645pprqtbda6+94sorr4w3vOEN8cEPfnDUuQULFtTsa/dbP9/2trfFM888M1y+ffv2uP322wuNt1Xf7gkAAEy9wTRQsbxaCEB3TqjZ2M3tKaXcDe/VwrraWU9pbmwrbxlXXinIoh659znriTlZR3RknRW/1pXC7Jqh1jiEegAAs9kdm/5P7rz95MW/FU/1rY6+oQrBaJOcY7aNyrloVcOa+8q90TFn6oLRis7De3Ofp1ozaDrvno69H9U+/2wM0QYAYHazPm9irM8DgIh45rHadYYEowEAAAAAMLuVmj0ApkdKqT+ldGNK6YqU0idTSn+fUvp2o0LRxvT1SErpW7v6+OSuPm8UigbT781vfnM8/PDDcf7558fee++dW6+zszNe97rXxe233x6XX355oUVXu5166qlx5513xhvf+MbctzAuXbo0PvCBD8R9990XRx11VN2fY7rtu+++8e1vf3t4AdZLXvKSWLx4cfT09MQhhxwSp59+enzpS1+Khx9+ON7whjdERIx7U+SiRYsK9XXGGWfEI488Epdddlkcc8wxNd9k2dnZGcuXL49LL700HnjggTj//PMn9iEBAIAZrZyGohzliueqB6NVDjUbu9l9IPVHyrn+bN3snnfvJhtQlhd6sbu/ogEFzdKo4AgAgHZTTkNx66YbKp5b0rF3vHT+cYXn57NVyklGqxWMNhl9DQr+7S1vr1jeU5pX95imQ9Hnnb6Uf39ma4g2AACzm/V5E2N9HgCz3pona9dJlddsAAAAAADAbNHR7AEAzHaPPvrolF5/2bJl8bd/+7fxuc99Lu6+++745S9/GWvXro2+vr7Ye++948ADD4wVK1YUeoNiniOPPDKuvfbaWLduXdx8883xxBNPxPbt22OfffaJgw8+OE466aTo6Hj+fzmnnHJKpFR5M0sl9dQd64orrogrrrhiQm1XrFgRK1asKFR31apVw3/PsiyWLVtWuJ+enp54z3veE+95z3ti/fr18dOf/jSefvrpWL9+fQwMDMT8+fNj2bJl8eIXvziOPPLImDevNTfNAAAA02cwDeae68jyf+SXH7I1enN7tTCr2brZvXuKAsry2u/ur7vUE1uHNldo1xqBY7U+f17wGwBAu/uvbffEcwNrKp5bsfj1MSebM2Xhu+2iOcFoNea3Ba+fN19v1aDp/JC+McFoVT7/bH1WBACg9VmfV5v1edbnATDNerfVrlMemvpxAAAAAAAz1rotKbb0PX+8dH7E/J7qLwmCmUYwGsAsUSqV4rjjjovjjjtuyvrYe++94/d+7/em7Pqtatu2bXHPPfcMH7/4xS+e8EK2PffcM84888xGDQ0AAGhTg2kg91xH1pl7rjvL2eyeeqOcylHKSjuPqwajteZG/qk2VaEVefd6d3/dWbEwu2apNY7JBlMAAMxUN2+8vmL5nOiIExe9NiKKBxfPXpU35ld7Jpn0/DxVb1/0+jvK2yuWt24wWrEg6LzPX4pSdGZdDR8XAADMJNbnTR3r8wBoO/0Ffo9eLk/9OAAAAACAGeeex1Kc+9VyrHp6dPnX357Ff/9NwWi0F8FoADBJV155ZWzf/vwGlxNOOKGJowEAAGaDwTSYe65qMFqVTfj9qS96doVwVdvsnxcQ1u7yQysmF/yVd69395d3v/tSawSO1RrHZIMpAABmorX9T8eqbfdUPHfsguWxsGNxRFSZ6wmXjYi8WLSd9y2LLFKFGpMNleutce+Lfm3yxtG6wWh534s7IqUUWZbtOq78+btLPcN1AAAAGs36PADaTqFgtKGpHwcAAAAAMKNs3pHi1M+WY7NlpswSpWYPAABmsieeeCIuuuiiUWXnnntuk0YDAADMFoNpIPfcnCz/XQjVQs1Gbtyvttm/VTfyT7VqQQGTUS1YoFq/rRI4VuvzT/b+AADMRLdsvCH33MlLzhz+u2C0WipHo2WRTdm9a9T8Nj8AeV7dY5oOeSHa5SiPev7Mf36Znc+JAADA1LM+D4C21N9fu45gNAAAAABgjG/fm4SiMasIRgOAEb71rW/FX/zFX8TatWtr1r333nvj5JNPjvXr1w+XvfyA4QheAAAgAElEQVTlL4/XvOY1UzlEAACAqsFoHRMORusd8ffKm/jnREd0ZJ0FRth+8jb6T3UwWl4QXauEZdQaR6uMEwBguvSX++Inm35U8dyB3QfHIT1HDB93Z60912u2lHKC0bIsurOpCRCude+LXj8/GK01A8R6JvmsKBgNAAAoyvo8AIhI/QV+BlwuT/1AAAAAAIAZZeWTzR4BTK/8XZIAMAtt2bIlPvGJT8RnPvOZOOOMM+K0006Ll7/85bFs2bLo6OiI9evXx8qVK+Pf//3f47rrrhu1KaerqyuuvPLKJo4eAACYLQbTYO65zirBZdU24Y/cuN+XKi/CbdVN/NMhL1Ru0sELOfd6d0hGXsDAZPttlFrj6Cv3RkopsiybphEBADTXz7fcGtvLWyuee/XiM0fNi3LDd1NrzPVaWXdpbsTQhnHlefPromoFHxe9/kwLRssL6YvY+Vnmx8KIqB3sDAAAUIv1eQAQEYWC0YamfhwAAAAAwIzy6LrKL5yFdiUYDQAqGBgYiOuuuy6uu+66QvXnzp0b//iP/xgvf/nLp3hkAAAAEYNpIPdcR5VgtLzghYjRG9zzNvHP5s3ueQEGecEARdW611PVb6PUGkc5hmIwDURn1jVNIwIAaJ6UUty84fsVz80tzYvjFp48qixvfl0rnGu2KEe5YnkWWZV7N9lgtOrti16/t7y9Ynm1Z7JmqvasNzKoL/f5JZu9z4oAAMDEWJ8HwKxWKBit8s9HAQAAAIDZ65F1zR4BTK9SswcAAK1k8eLFMWfOnLranHjiiXHLLbfEm9/85ikaFQAAwGjVgtHmZPnvQpiTzckNqBq5wT1vs3+rbuKfDnkb/fOCAYrKu9e7A9FaPSyjSDBEq4S4AQBMtUd7H4jH+35d8dwJi06LrlL3qLKpCvdqf1nus8lk58m1g9GKXT+v3tzSvLrHNB3yApkjRt+TkSFpRdsDAACMZH0eAETBYLShqR8HAAAAADCj5AWjffR3snjjMdn0DgamQf4uSQCYhc4666x49tln44Ybbojbb789Vq5cGY899lisX78+ent7Y+7cubHnnnvGi170ojjppJPizDPPjBNPPLHZwwYAAGaZasFoHVln1bbdpZ4YGOofVz5ys3te2FdecMNskLfRf7KhFXmBCbvvdX7gQ2uEZRQKRks7Yn4snIbRAAA0180bv5977uTFvzWuTDBadSlSxfJSZFMSIFxO5ehLtYLRin1tduTO81szQKwj64xSlKIc5XHnioVoz95nRQAAoD7W5wFARAyMX7MxTnn8z+oAAAAAgNlrw7YUm3KWSJ5yRBZ7dAtGo/0IRgOAMfbaa68455xz4pxzzmn2UAAAACoaTIMVy0sxJ0pZqWrb7lJPbB3aPK68r8Bm97xwsNkgN6AsTTx4IaJ2sMBUBD40UpHPnxe0BwDQTrYMbox7ttxe8dxR846JZV37jyvPm1+bP+1WORgtsmrBaBMPletPfTXrFL1+3ny9VZ+psl33dEd5+7hzQrQBAIBGsz4PgFmvv8DPGQWjAQAAAAAjPLIu/9zBe0/fOGA6Vd8lCQAAAAC0nME0ULG8M+us2bY7ywn4GhWMZrP7WLnBaJMIXkgpVQlG29lfd1b5nrdKWEaRcUzmHgEAzBS3b/o/uQHGr15yZsXyqZhjtpOUl4sW2ZSEyhUJHy56/d4KAWMRrRuMFlHt+1GINgAAAAA0VKFgtKGpHwcAAAAAMGP8OicYrasjYv9F0zsWmC6C0QAAAABghskLXJiTddRsmxdu1peeX3ibH4w2eze75923yQQvDKaBKEflxcy773VewMDIr1czFQntEOwBALS7chqK2zb+oOK5PTuWxm/s8cqK53Ln5uZPERGRIicZLabm3hUL/a1dZ6A8kPvM1soBYkWC+moFOwMAAAAABfQVCUYrT/04AAAAAIAZ45F1lddUvmjPiFIpm+bRwPQQjAYAAAAAM8xgGqhY3pF11mybtxF/ZAhAXiBAXvjAbJB33wbTQAzlhB7UUi20oTvbea/zAx8mHsjWSEWCJyYTHgcAMBP857a7Y/3g2ornTlp8RpSyORXP7Z7zjTUUg7lz/tml8iKeLLLozhofIFwo9LfA9avN1XtK8+oa03QqEjaXH6I9e58VAQAAAKBu/X2165Qrv2QNAAAAAJidHllXufzgvad3HDCdBKMBAAAAwAyTF8TVkXXUbFtss3vlzf554WCzQbWN/kUCFCq2S9UCE3p2/TcvkK01wjIKhUdM8P4AAMwUN2/4fsXyjqwjli86PbfdVMwx20nlWLSdwWhFAp/rVWxuW/v61cbQys9URe5p3j3qbuHPBQAAAAAtZ0AwGgAAAABQn0fXVV5VedDe2TSPBKaPYDQAAAAAmGEGcgKxOrLOmm3zNqyP3OCet5G/O8sPbmh31QIMJhq+UC14YXdIRrWAgf5ygcXSU6xIMESROgAAM9Wz/U/G/dvvq3ju2AUrYkHHoty2UzHHbC950WjFAp/rVeSeFwko7i1vzz3XU5pX97imS97z3shAZ8+KAAAAANAA/QV+jlkuT/04AAAAAIAZ45F1lcsP3nt6xwHTSTAaAAAAAMwweRvxO7KOmm3zwhdGbnDPCxOoFtzQ7vKCFyImHr5QPRhtbs1+WyEso8hnn0w4BQBAq7t14w255169+MyqbauF4JpDRaScYLQssirBaBOfIxe957UCiqvN06t9zZst73lv5H3Ju7+z+VkRAAAAAOpWKBhtaOrHAQAAAADMCOVyikefq3xOMBrtTDAaAAAAAMwwQ2mwYnlH1lmzbZEAgb5UebN7K2/in2rVQysmFr6QF5iQRSk6s64C/TY/LCPve6XeOgAAM1FfuTd+sulHFc+9oPuQOKjn8KrtpyJ8d1bIstx58uSC0Yq1rRVQ3FveXrG8I+uIzlLtZ7Zmyft+3P15y6kc/alyKFy172UAAAAAYIz+6i9fiIiIcnnqxwEAAAAAzAhrt0b0Vd5KFgfvnU3vYGAaCUYDAAAAgBlmMA1ULC8WjJYXINBb8e9F2s4GXVl37rlawQh58u9zT2RZNvz3RvfbKINpIAZzQvpGEuoBALSruzbfEjtyQrBeveTM4Tldns6sK7KoXGcyAV/tIKWUey6LaoHPvVXbVlP0ntea3/bO0Oepavc0IqI/9UWKyve21T8bAAAAALSUQsFoQ1M/DgAAAABgRli/Lf/cfoumbxww3QSjAQAAAMAMkxuMVioSjJa32f35EIC8wK1qIV3trpSVojur/PknHoxW+z53Zd0tG5bRXy6wWDsEowEA7SmlFLds/H7Fc/NK8+NVC06qeY1SVsoN4G12CG6z5QVw7ZTlBnGVo5z7vFRLXyo2b601D88731OaV/eYplOtEO1q8/oewWgAAAAAUFx/gZ9FCkYDAAAAAHbZWPkdvhERsaS1lybCpAhGAwAAAIAZZqCcE4wWHTXb5oV77Q4BGEqDuUECs32ze62ggHrltRv5NWrlsIyi/Td7nAAAU+HXO34ZT/Q9WvHcCYtOi65S5TncWHlz7NkeLlstGK0UWfRUCW2eeHBxsXte6/q95corkFr9eSr/eWfHrv/m35/ZHKINAAAAAHUrFIxWnvpxAAAAAAAzwoacYLSOUsS8rukdC0wnwWgAAAAAMMMMxWDF8o5SZ822eZvxe212ryk/tGKCwQspJxhtzH1u1bCMov03e5wAAFPhlo3XVyzPIouTF59R+Dq5YVQ5c8XZIz8YLSKL7iw/ZGyi88+igWq1rp93ndYPRssJ0d71eas998z2Z0UAAAAAKCqlVDAYbWjqBwMAAAAAzAgbt1deU7lkj4gsy6Z5NDB9BKMBAAAAwAwzWM4JRss6arattdm9WhhAq2/kn2q5926CoRVFAxNaNSyjaCDcRIPjAABa1ebBjXHPljsqnnvJHq+IpV37Fb5Wrfn5bJWqBKNlkVUN4upLEwwuLhr8W2Me3luu/GrGVn+eqhUELRgNAAAAABpgoL9YvXJ5ascBAAAAAMwYGyovS4zFrb0sESZNMBoAAAAAzDCDaaBieUfWWbNt3mb3wTQQQ2mwahjAbN/snhdQVi1Mrpq8ez22n/ywjOYGjhUOjpjloR4AQPu5fdP/jqGoHFZ88uIz67pWq871mi3l56JFZFnVkLHeCc4/i87ra9XLO5/3PNEqurPK34u9w8Fole9rR9ZR6FkUAAAAAIiIgb5i9cpDUzsOAAAAAGDG2JgTjLZk3vSOA6abYDQAAAAAmGHygtHmZB0121bbjN9X7q0awNDqG/mnWl74wkSDv/Lu9dhwjLz73uzAsb5UrP+JBscBALSioTQUt268oeK5vTr3iaP3eEVd18uf6832OVR+MloWO0OhSznLHSZ674q2qzUPz5v/zi219gqkvJC+/tQX5VTOD3zLZvdzIgAAAADUpb/g7/nL5akdBwAAAAAwY2zIC0bbY3rHAdNNMBoAAAAAzDCDabBieUfWWbNt3mb3iJ0b+KuFWHVl3bUH18by7t3EgxcqL3geH4xWud9mB44V7b9ogBoAwEywcutdsXHwuYrnTl58RpSyOXVdL3+OObvnUKlqMFoWWZY1/N4VbVdr/p8bINbiQdN5QdApUgyk/tx5fbVnTAAAAABgDMFoAAAAAECdNuYsW1w8N5vegcA0E4wGAAAAADPMYBqoWN5ZKBgtfzN+X7k3P6wr64lSNrt/nJgXFNDo4IWxwQL5/TY3GK14cMTsDvUAANrLzRu/X7G8I+uMExadVvf1BKNNxM6FPHnPNhOfnxcM/q1x/d5y5Vcz5s3rW0W1Z8VqIdqtHvgGAAAAAC2lr2gw2tDUjgMAAAAAmDE2bqv8stnFe0zzQGCaze6djAAAAAAwA+UFo83JOmq2zQteiNgZBGCze768e5d3z2rJazc2MKFVwzLqCY5IqfIvYQAAZpJn+p6IX23/RcVzr1qwIubPWVj3NbuznHCvNLuD0VLkzx93v98wPxhtYvPzove81vXzzrd+MFq1Z8UqIdpV2gEAAAAAYwz0F6uXylM7DgAAAABgxthQ+X2tsbi1lyXCpAlGAwAAAIAZJi8YrSPrrNm2K+uObDhKYLS+cm9uGECrb+KfDtMVvDA2HCPv3k80kK1RigazpSjHQCq4uBsAoIXdsvH63HMnLz5zQtdsdPhuu6gWjLY7Gq3RAcJF29WqtyM3GG1e3WOaTtWe+frKO3I/t2dFAAAAAKhDf8Hfsw8NTfFAAAAAAICZYmNOMNqS1l6WCJMmGA0AAAAAZpjBNFixvEgwWikrRVfWXfFcb3lHbshXXujAbNKdNTa0Ii9YYOy9bnTgQ6PU0/9Ew+MAAFpFb3lH/HTzjRXPvajn8Dho7uETum5eqFSz53qtLMt2BaPlzM/70sTmnkXn9XkBx8Pnc4PRWjtArNozX59nRQAAAABojILBaFEWjAYAAAAA7LQhJxhtsWA02pxgNAAAAACYYQbTQMXyIsFoERHdeeELqbdKWFdrb+KfDo0OrSgaLNCd5fXb3LCxegLhJhoeBwDQKu7cfHP0liuvLHn14t+a8HXzQ3Bn9/wppZR7Ltv137z5+UTmnkNpMPc5q97r532ftHow2pysI/eZsq/cW+X5pbU/FwAAAAC0lMLBaOWpHQcAAAAAMGNszFm2uGReVvkEtAnBaAAAAAAwwwymwYrlHVlHofbVAgTyNvnnBTbMJo0OrSgaQpfbb5pYIFuj1BMIN9HwOACAVpBSils2XF/x3B5zFsQrF6yY8LXz55izff6UH4y2OxqtkfeuUXPbwTSQ+7zW6sFoEfn3tLe8o8rzi2dFAAAAACiscDDa0NSOAwAAAACYEcrlFJtyti0tnje9Y4HpJhgNgIZYvXp1/OVf/mWcdNJJsc8++0RXV1dkWTb854orrmj2EAEAANrGYBqoWN6RdRZqXy1AIC/kayZs4p9qYwPLdptIQFlKKfdej/365PWbF2I3XfpS8f4FewAAM9nDO1bFU/2PVTy3fNHp0VnqmvC1c+eYs3z+lKoEo2VTEIxWz9y6WjBytev0/P/s3XmcHGWB//Hv09Mz3TO5JmQSAkRICDcIGOW+AiIgouuBB14rIovXeqDrrusB7LreirqKJyJe/EBAUYFwbQj3lQDhNiSThDNkkkyume7p7np+f0wmme6pp7qqr+nj8369eJG6nnq6qqf7qern+Vas/nsgJYw7lNkZou3YBgAAAEBl0T8PAIAmMTQUbj3rVbceAAAAAAAAABrCppRkHV0qp9Z/t0SgLPHxrgAAtLrZs2dr1aodg2kWLlyo+fPnj1+FSvDLX/5S//qv/6p0Oj3eVQEAAACAlpCzWd/5cRPudp87QGDQGSLg2qaVuMLh0l5K1loZY0KXlbUZefLvyFwYjhG03/EUZf+lhMcBAADUi0X9N/rONzI6bsppZZXtamenvMHIbcxmEiYYzdVOLiVAOErbNqj8VC4oGK3+w6aDrj1cx6gRXhcAAABaG/3zAABAXRkKeS8yl6tuPQAAAAAAAAA0hA0D7mXdBKOhycXGuwIAgMZ2ww036Lzzzgvd6er222/Pe1LlhRdeWN0KAgAAAEATytqM7/y4aQ+1fWHw1oi0N+gc5M9gd/dxs7IastEGIwUFLyRMfjiGO8huOJBtvFQqPAIAAKCebcyu18Ob7/VdduCE16qnY+eyyk8a/zamp5yyjkDkVhAUjKZtwWju65roobyRQn8D1g1q9yZj9d8DyXVMUwHXiq5tAAAAAFQG/fMAAGgyYYPRPILRAAAAAAAAAEjrtriXddN9D00uPt4VAAA0ti9+8Yt5g7Df+9736pxzztGrXvUqtbfvGJDf09MzHtUDAAAAgKaUcQajhbvdFxS0lXYOdvffppUEHYOUNxjpGKVtUGBCuGA0K08ZO6QOkwi930pyvVfKXRcAAKCe3N1/izz5D0A7YerpZZcf1IZM20G1K1z4cdMJyEUzw7loAdc10due0dq2wwHFZqQio6Q896MZGyFALPBa0foP2ORaEQAAAKgu+ucBANBkciEfiEEwGgAAAAAAAABJq9b5z++ISztNqG1dgFojGA0AULJnnnlGS5cu3T59+umn6w9/+MM41ggAAAAAWkPO+neUjZtwoQlJx4D8lDeotOcY7G7qfxB/tbmOmyTncStl/cLAhOD9DqojNl7BaOFfc9TjAwAAUA9yNqs7N97ku2x6+0zt33Vo2fsIDEbzUprYNrnsfTQiG5CMZjQcSOYKGiul7ekK/fLjKaeszajddPjs2z9grU1xtcfqP+TOfUzd14pB1ysAAAAAykP/PAAAmlDYYLSw6wEAAAAAAABoaivX+fen3GMnKRYb+4BXoJnExrsCAIDG9dBDD+VNn3nmmeNUEwAAAABoLVmb8Z0fNhjNFb6Q9lJKOQbyBwU2tIrg0Ar/4+biOs5++wnab1A51RYlcGI86wkAAFCqR7c8oI3Z9b7Ljus+TTFT/s/triAqKXobs7m4g9E0EoxmXNc10Y9b1G1cbeFBRznJtsYID3NfKw46jxHXigAAAED10D8PAIAmFDoYzatuPQAAAAAAAAA0hJXr/OfP6altPYDxQDAaAKBka9asyZueNWvWONUEAAAAAFqHZ3Py5N8BNnQwmvEflJ+2KaWt/wD/ZEBgQ6uoZDCaK0jBKKZ201Gw36CwjPDhZJWWtuFf83jWEwAAoFSLNtzgO7/ddOioKa+vyD6C2tmt3IYKjkXbFozmCvFyXNMESUU81q62sOu6oFGup1zHdMDbqowdirQNAAAAgPLRPw8AgCYUOhgt5HoAAAAAAAAAmtrKPv8elXtMMzWuCVB7BKMBAEq2ZcuWvOn29nAD8AEAAAAApctad+fXuImHKsM1KD/lDToH8geFc7WKuGl3HuNUhYLRErGkjMn/ccIVZFfKfislazOB78VCrRzqAQAAGtOL6dVaNvi477LXTT5OE9omVWQ/7aZje9BXoVZuQ9nAaLRhruuatJeStcW3z98mWrva1Q5PeQO+85OxrkjljxfXMd2c3Rh5GwAAAADlo38eAABNKJcLuR7BaAAAAAAAAACklev858/uqW09gPEQbqQkAKDhWWu1ZMkSPf3003rllVeUTqc1ffp07bbbbjr22GM1ceLEyGV6nleFmgIAAAAAgmRtxrksbsINiEnEkr7z096gM3yBwe7DErFOZXObx8yPGlrhDqAbe27aY+1qU1w5je34nLbjE5ZRqdcLAABQr+7sX+BcdkL36RXbjzFGiVjSN2hrvEJw64M72GwkSM4V3mxlNWTTShj/6x4/0du3/uu7zlmjXE+5jtnG7Hr3Ng3y2gAAAIBqo38eAAAIJWzgmRcyQA0AAAAAAABA07LW6okX/ZfNnlbbugDjgWA0AGhyfX19+vrXv67f//73Wrt2re86HR0dOumkk3ThhRfqiCOOcJa1cuVKzZkzx7n8xBNP9J1/2WWX6eyzz/ZddtFFF+miiy5ylrlw4ULNnz/fuRwAAAAAWk3WujvJhg9G8x+4vjm7UdYRQOAKU2s1CZPUVo0NRosaWhE1gC4RS2rA2+JTzviEZUQOjrCtHOoBAAAaTcob1P2bFvoum5PcV7sn51Z0fwmTVEpj20tR21zNxB2LNhwmJwVfo6S9VKRrmEq151PegO/8hglGc9RzU26De5sIAXQAAABAM6J/HgAAiCRs4FnYADUAAAAAAAAATev/PejuTTl7mqlhTYDxERvvCgAAqucvf/mL9txzT1188cXOTleSNDQ0pAULFujII4/Ueeedp2yWH1IBAAAAoF5lbca5LG7CPQfBFRDgF7y1Y5vGGMhfba5Ag7SNFlrhCl5whQq4ztl4hWVEDkZr4VAPAADQeO7fuNDZXju++40V35+rrT1eIbh1wQZFow0LCj6rVNBZ1PKd7fwGuZ5yXe8EBXQ3ymsDAAAAqoH+eQAAICobNvCMYDQAAAAAAACg5f1kobsv5ZyeGlYEGCfhRkoCqB0vKw08P961aH5ds6RYc38E/vrXv9a5554rz/Py5s+dO1cHHHCAurq6tHr1aj3wwAPK5XY8eeoXv/iFVq9erb/97W+Kx5v7GAEAAABAIwoKRmsrMxit0ts0o0qFVriC1FzH2RVQEDXwoVIiv16C0QAAQIOw1uqO/ht9l01sm6J5k46p+D6dIbgRw3ebiZW7M4/R8FMOXW1kqfrtVdf6rvZ5Z6wrUvnjpbRrxUQVagIAAFBF9M+rnSbvo0f/PAAAUJKwAakEowEAAAAAAAAtr3/AvWzGpNrVAxgv/KIO1JuB56W/zhnvWjS/t/RKE2ePdy2q5pFHHtHHPvaxvE5Xhx56qH7yk5/o6KOPzlt37dq1+spXvqKf//zn2+ctWLBAX/3qV/X1r389b91Zs2apt7d3+/QPfvAD/fCHP9w+fcUVV+jII48cU5+enh7Nnz9fknTffffprLPO2r7s05/+tD7zmc84X8vMmTOLvFoAAAAAaC1Z6+782m7aQ5URFCBQyW2akSsoIGpAmStIwRW85gzLGKdgtKivd7wC3AAAAKJaNvi4Xhp6znfZMVNOVnssXJs7Cnf4LsFofkaC0YJCvCIHndmo7Xn/9V3tXtc5rjdRg9HaTYdipq1KtQEAAKgS+ufVThP30aN/HgAAKFnYwDMvV3wdAAAAAAAAAE3tyZf8509ISLGYqW1lgHFAMBoANKFzzjlHQ0ND26ePPfZY3XTTTerqGvs0+unTp+tnP/uZ9tprL/3bv/3b9vnf+ta3dNZZZ+nVr3719nnxeFyzZ8/ePt3d3Z1X1syZM/OWjzZx4kRJ0sqVK/Pmd3d3O7cBAAAAAIyVtRnnsnjIYLSog91L3aYZVSq0whWk4Aqgq7ewjOivt3VDPQAAQGNZtOFG3/lGMR3bfWpV9llvIbj1biQYLW7a1aa4cho7kDDqsYu+vn/7Nmo7v95EDXBrlNcFAAAAVBr98wAAQMnCBqOFXQ8AAAAAAABAU7pnufsBsz9/P6FoaA2x8a4AAKCyFi5cqCVLlmyfnjx5sq688krfTlejff7zn9cZZ5yxfdrzPF188cVVqycAAAAAoDSVCEaLOng9buKhy252rmOXqlCQgisUwzU/6n4rJW0JRgMAAM2nP7NOj265z3fZqye+TtPaZ1Rlv/XW1qsHVl7A0h0delzt82q3V9PW/9ykvAHf+Y0SIJaMGIhNgDYAAABaEf3zAABAWUIHo+WqWw8AAAAAAAAAde1rf3f3o3zVTgSjoTUQjAYATebyyy/Pm/7EJz6hXXfdNdS23/zmN/Omr7jiCqXT6YrVDQAAAABQvqBgtDYTD1VGwkQblB91/WbmGvgfNUjBFXLhKt8Z+DBOgWORgyNaONQDAAA0jrs23izPEch1fPcbq7bfemvr1QPrftChzKj+PNVun7u4yneVk4wFByTUi0TEALdGCXwDAAAAKon+eQAAoCwEowEAAAAAAAAIYcET7mVTG6NLIlA2gtEAoMncddddedPvf//7Q2974IEHat68edunU6mUFi9eXLG6AQAAAADKl7X+nWRjalPMhLvd5woPqNT6zcwdWlGZIAXXsXaF041X4Fjk12tT8qz7aTUAAADjLWszuqv/Zt9lM9p31X5dh1Rt35UK92ouAclo2pGM5jp2lQo6c3GV7w5Ga4wAsajBaFHXBwAAAJoB/fMAAEBZwgaehQ1QAwAAAAAAANA0rLW65Umrz/0pePxNN8FoaBEEowFAE9mwYYOWL1++fbq7u1v7779/pDKOPvrovOkHH3ywInUDAAAAAFRG1mZ857eb9tBlxE27YmoLvT6D3XdwHYuoQQpp6whGcwSg1VtYhivwIR7wPhyy6WpVBwAAoGyPbr5fm3IbfJcd331a6BDiUjhDcB1txlZgA4LRTF4wWnWDiyfEJkVa39VObpRrqoSJGKIdcX0AAACg0dE/DwAAlC1s4BnBaAAAAAAAAEBLyXlWH/y11WxCGWAAACAASURBVKk/8HTxLUEPl5WmEoyGFhEf7woAKNA1S3pL73jXovl1zRrvGlTF2rVr86b33ntvGWMca/vbb7/98qZfeeWVsusFAAAAAKicrPXv/Npmwt/qM8YoEUtq0Nsaav1kgwzirwVXQJkrAMHFFaTgKt91DsYrLMNV/ynxqVqX8b+XkPZSvJcAAEDdWtR/o+/8DpPQkVNOquq+6y0Etx4Ed+nZoRLHzlrrbM9Pjndr69DmUOVnbcYZZN3ZIO3gRCwRcf3GeF0AAAB56J9XO03YR4/+eQAAoGxerrLrAQAAAAAAAGgKNz8h/eH+cL0nuzqqXBmgThCMBtSbWFyaOHu8a4EGtWHDhrzpKVOmRC6jcJv169eXVScAAAAAQGW5BtrHTXukcpKxztDBaK6wgVbkDCiLHIzmv74rWKBSgWyV4gqamNwWFIw2KGlqFWsFAABQmhfSK/Xs4BO+yw6bfLy62iZWdf/11tarD+7OPUY7QgcqEYyWtVl58h9kODk+VS8NPedT/thzE3S+GiVALGba1GESGrLpUOtzrQgAABoS/fNQBvrnAQCAsuX8H4ZX8noAAAAAAAAAmsJfl4Z9pKwiP7wJaFSx8a4AAKByrM1v7FSiQUOjCAAAAADqS876d36Nm2jPQIgygL1RBvHXQsKUH7wwvL4rGM2/fNc5iBrIVinOYLR4d+RtAAAAxtsdGxY4l53QfXrV91+p8N1mYkMGo7mOXZRQuaDjPCXuH+zrV34q5y6nM9YVuj7jLdq1IsFoAAAAaC30zwMAAGUjGA0AAAAAAABAgWzO6soHwwWjvWNelSsD1BGC0QCgiey000550xs3boxcRuE2U6f6D/gAAAAAAIyPjM34zo+b9kjlRAk7Y7D7Ds7QChs+eMFa6wwJcwej+c9PjVPYmOv1TnYER0itHewBAADq12Buqx7YdLvvsrmd+2tWck7V6+Bq6xEs6zAqNCBhXKFy4Y9dUFt+cpt/+9av/KAwtkYKm3Zd85S7LgAAANAM6J8HAADKRjAaAAAAAAAAgFEeWmnV8TFP/QPh1v+3U4mKQuvg3Q4ATWT69Ol50//4xz8il/HMM8/kTc+YMaOsOgEAAAAAKivrDEaLRyonGSHsjGC0HVzHImuzznMzdt2MPHmO8v2DBdxhGeMTNubab1dsojOkLygoAgAAYLzct2mh0tY/ROv47tNqUgdXGzDtpWRtuCcANpug121G/dvZTnacU991A0LUpjiCf/3KT3nuXknJWFfo+oy3KNd/XCsCAACg1dA/DwAAlC1s4JmXq249AAAAAAAAAIy7nGf1tkv8xxcVeuuh0mMXxnT4HFN8ZaBJEIwGAE1k6tSpmjt37vbp/v5+PfXUU5HKuOeee/KmDzvssIrUbYQxNLQAAAAAoBxZzxWM5h9G5eIKX/CTjLBusws6bkGBCmHXcwXWuc5Bxg4pZ2vfIdr1GhKxZECIW/hwCgAAgFqw1uqO/gW+yya1TdGhE4+uST0Sxr/95CkXOny32VgFBaPt6ObgaidHCRAOCvCd7ApG89nGtc82xdUei3a9Np6iXCtGWRcAAABoBvTPAwAAZQsbjBZ2PQAAAAAAAAAN665l0gv9wess/nJM3i/adO3H23TgrvwWiNZCMBoANJljjz02b/oPf/hD6G2feuopLV68ePt0MpnUa1/72orVTZISiUTedDqdrmj5AAAAANDscvLv/Bo5GM1EGOzuCGpoRUED/4MCFUZLW/d6rvMStN+hcQgcCwpGc4ZTWILRAABAfXlmYKnWDD3vu+yYKafULMyqEuG7rWR0tx53KG/4YDTXMTaKaWLbZOc21uaHtw069plsa6zwMEK0AQAAgGD0zwMAAGUJHYxW+wekAQAAAAAAAKitKx50P0RWkiYmpH13rlFlgDpEMBoANJkPfvCDedM//vGP9fLLL4fa9otf/GLe9Hve854xHaXK1d3dnTf90ksvVbR8AAAAAGh2WZvxnR+PGNrgChDww2D3HYKORdjQiqAANdd5qcR+K8m1z2Ss0xmkFzY4DgAAoFYW9d/oO98opmO7T6lZPZIBbfOgUN1mZhXU2WdHNJo7GC18G7mU0F8rq4wdKijHEYzWYNdTUYKxo1xXAgAAAM2C/nkAAKAsYQPPCEYDAAAAAAAAmtbiVVZHfD2nX9wRHIx2zrFGXQkTuA7QzAhGA4Amc9JJJ+nQQw/dPr1x40adddZZGhwMHjhz8cUX67rrrts+bYzRZz/72YrXb88991RHR8f26YULFyqT8R/UDwAAAAAYK+M5gtEUj1ROlAHsiQYbyF9NQcfNFYQwdj13SIOr/KBwgvEIHHPtMxFLOt8v4xHgBgAA4LIh06elWx7wXXbwxMO1U/v0mtUluI3Zqm0od2cfEyIYLUob2bVuMtYZeC1UuJ27nK7QdakHka4VI4SoAQAAAM2C/nkAAKAsuWxl1wMAAAAAAADQUF7eaDX/u54eXFl83e++k1A0tLZooyUBAFX38ssva+XKlSVtO3v2bEnSpZdeqqOOOkpDQ8NPqr/99tt13HHH6Sc/+YmOOOKIvG36+vp0wQUX6JJLLsmb/4UvfEEHH3xwSfUI0tHRoWOOOUYLFy6UJK1evVpvectb9NGPflR77723urryB4fMnDlTySSDKgAAAABgRE7+nV/jsfZI5SQjhJ0RjLZDh0nIyMj6BDWEDa1wrWcUU7vp8F0WdA7StvZhGa7XkIh1OoMUWjfUAwAA1KO7Nt4kK8932Qndb6xpXQLbei3ahvJswFMQR/XzqUQoryvgeDj0t1gwcvf26ZQ34LtelGuvesC1IgAAAJod/fPonwcAwLgiGA0AAAAAAABoaX+432pruvh6u3ZLbTGC0dDaCEYDgDpz1llnlbyt3TZIZN68efrxj3+sj370o/K84UE9ixcv1pFHHqm99tpLBx54oJLJpJ577jk98MADymbzfzh9wxveoP/+7/8u/UUUcf7552/veCVJCxYs0IIFC3zXXbhwoebPn1+1ugAAAABAo8l6jmA0E+1WX9AA/3LWbXbGGCViSaV8whP85vlxhTQkY0kZ4/+jRSKWcJYXdr+VkrUZZ0BfwiQDwilqW08AAACXrM3o7v5bfJft3DFL+3ZVfmB6kHbTIaOYb1Bbrdt69cMdjGZGJaO52p5DNi3P5hQzbUX35Az9NcWC0fK3c52rRgtG41oRAAAAzY7+efnonwcAQI3lcuHW80KuBwAAAAAAAKChPPpcuPU+9wZC0YDYeFcAAFAd5557rq688kpNnDgxb/6zzz6r6667TldeeaXuueeeMZ2uPvzhD+v6669Xe3t71ep2xhln6Gtf+5ra2ooPRgEAAAAA5MvajO/8uIl2HRdlcH6jDeSvtnKDv1zrucqVpJhpU7vpKGu/leIKjpCGgxFc4QgEowEAgHrx8OZ7tSnX77vs+O7TnGG11TISvusnqO3VzGzYYDQTFFwW4pGKktLW3T4PuhYqDEJLeQPOchpJtGC0xnptAAAAQCXRPw8AAJQk5/8QspLXAwCgjj2/weqTf/QU+5fc9v/OudzT4y+4fwsEAAAAgGbX2xfumujdhxGMBhCMBgBN7Mwzz9Ty5cv16U9/Wj09Pc712tvbdcopp+juu+/WpZdeWtVOVyO+9KUvaenSpfqP//gPHX/88Zo5c6Y6Oxk8AQAAAADFuILR2kw8UjnRBruHX7cVuMIXCoMRXFzrFTvOrlCG+gpG6yTUAwAA1L07+m/0nZ8wSR05+cQa12bbvgmXLUlQcFnahmt/utqpiVhScdOuNvlfaxWW7yqnM9YVqh71IkrYGSHaAAAAaHX0zwMAAJERjAYAaBFrNlkd9Q1Pl9yeP+D/srutjv2Wp8eeJxwNAAAAQGvqXVd8nQWfjmnXboLRgGijJQEAFbdy5cqqlj9jxgz94Ac/0Pe//30tXrxYTz/9tNauXat0Oq2enh7NmjVLxx57rCZNmhS57AsvvFAXXnhhyXU74IAD9I1vfKPk7QEAAACgFWWtf+fXuIk2iIbB7qVzB5SVGbzgCFzbvjyW1ObcxpL3WylBAXCJWLLs4wMAAFBNz6d6tXzwKd9lh0+er862CTWu0TBXW7BV21BW7oEQRjs6+wSFC4cNlXMd45F2bSKW1IC3peh2g96AbzlRrr3qQZTrP0K0AQAA0Ajon0f/PAAA6grBaACAFvGbe6xe6Pdftikl/ej/rH75QQb5AwAAAGgtqYzVi45rpe+90+gthxjN6ZFiMa6XAIlgNABoGbFYTIcddpgOO+yw8a4KAAAAAKAMWZvxnd9exWA0Brvncx2PtA0ZvGAdwWhFzkm9BI4F7S8Z63SGegQFqgEAANTKov4bnMuOn3paDWuSz93GbM1gNAUEo6nCwWiudupI2clYpyMYbTBwekSjBU2HvVY0MuowiSrXBgAAAGgc9M8DAAChhA088zxZa2UMAyABAI3pxseCfu+T/ni/1S8/WKPKAAAAAECdWLPJvey0g4zmzuB+IDAawWgAAAAAAABAA3EFo8WjBqM5wqt8122wgfzV5joeYQPKXOsVC6Bz7bfWgWOuwAcjo3bT4T4+LRvqAQAA6sVAbose3HSH77K9Og/QbonZta3QKK7wrFYNlw2MRTOjg9Hc1yqpstvnndv+Hy74N+UN+K7XeMFo4a4VE7EkgzIBAAAAAACAqMIGo0lSLifFGfZVa9Za3fi4dM9yq71nSG+fZzQpyb1QAIjq6ZeDlw9mhj9zV6+X/vKI1bI1w/OnTpBev5/R/H357G11fCcDAIBSZHNWNz0h3bvCav9dpDPnGSXaaUOgfvT7dzOUJPVMrF09gEbBHXIAAAAAAACggbiC0dpMtFt9UQbnd5hEpLKbXbmhFa5gsWLnpNxAtkpx7a/DJBQzMefrcL1uAACAWrlv4/9pyKZ9lx3ffXqNa5OvXtp69cLa4CfIj2gzbWo3HcrYoTHLwgcXB7fPXUFhheW7rgcaLhgtZIh2lLBtAACanTGmTdJekg6QtKukKZLSkjZIWi7pIWvt1grvs13SMZJ2l7SLpC2SXpT0sLV2ZSX3BQAAAKCCcrkI62YJRqsxa63O+73Vr+7ccY/6B7da3fzZmKZPYhA1AIRlrdUrm4uv97dHpbN/42lDQTDA/1xv9eU3Gf3XP8WqU0HUPWutzv2d1a/v2vGd/MPbrG7+TEw9fCcDAACHbM7q/ZdaXfXQjjbEzxdZXf+pGAGrqBuF1z+jdTdWV0OgJrhDDgAAAAAAADSQrPV/enDctEcqxzW4f8x6JqmYoYPRaGGDEVxc6xU7J67ggbCBbJWStq76RwuOAAAAqCXPerqjf4HvssltU3XopCNqXKN87jZUq4bLuoPRYsq/PknEksrk/ILRwh07V3t65Jy4Q+vyt3MHo3WFqke9CBvk5jouAAC0CmPM7pLeLulkScdJmhywes4Yc4ukH1trry9zv9MlXSTp3ZJ2cqxzj6TvW2uvKWdfAAAAAKog59/nw5cXIUQNFbF4lfJC0STp0eelS263uuDNDKAGgLDWhghFk6Szfulp0P85sfqfG6zOOdZqj2l8/raiB3qVF4omSY88J/10kdVXzuA9AQAA/N38pPJC0STprmel399n9bH5tCFQH/odwWgTElJ7nPcpUIgRjQAAAAAAAEADyVr/nkBVC0ZjsPsYrmMSNqCsWPCCe7/1EThWPDiiPgLcAAAARntmYKleybzou+zY7lMit6crrV7aevXCHYs2lju4rMzgYhPcvi3czt1ObqxrqvDXiuHWAwCgGRlj/ihplaSLJb1JwaFoktQm6TRJfzfG/M0Ys3OJ+32jpMclfUyOULRtjpZ0tTHm98aYCaXsCwAAAECVRAlGi7IuKuKaJf53p698MMpdawDA8xvCrecKRZMka6UFj/P526r+/Ij/ub96Me8JAADgdvOT/m2Fz/2JNgTqx4YB//fj1MZ6/ipQM/HxrgAAAAAAAACA8LLWv+Nr3ES71Rd2cH6ywQbx14LrmKRDBn85gxeKHGvnfm1tA8dc9R+pnysgIWOH5NmcYqatanUDAABwWdR/g+/8mGI6dsopNa7NWITLFnJ3RjPKfyriSIBZodDtcxvcPk+Y4sFrWZtxhlh3Ntg1VdhrxUYLfAMAoML2ccx/QdIySWs03DdzT0mHKP8BtmdIusMYc4K19uWwOzTGzJf0F0kdo2ZbSUskrZDULek1knpGLX+fpMnGmLdaa72w+wIAAABQRV6EpjnBaDX3rQX+96afLrh625Kyum+FlMlJR82VuruM73aeZ/XkS9KTL1lZK+030+jVu0mxmNHmlNX9K6RpE6Utaekfa6w8KyXi0sCQFDNSsl06aT+jWVP9yweAUm1OWd27XPKsdNSe0hTH51ip+iv0E+eKvsqUgx2stXr2FenR56WcZ7XndKPXvEqKt9XXd823Hd/Jj72w4985z2rp89KKtdK8PaQ5PfX1GgAAQO396Db/NkQqI12z2CrrDS/frdvosNlSop32A2pvw4D/fILRAH8EowEAAAAAAAANxDXYPm7aI5XTZtrUbjqUsUOB67kCGlqZ65i4AsPGrOcKXnAEOhTfb62D0fz3N1K/oDC9tJdWZxu/2AAAgNpan1mrx7Y85LvskIlHqrt9Wo1rNJY7fDdcG7PZ2IBgNBUGo5UZKldq+3Z0+UH7arQAsbDh2IRoAwCw3cOSfi3pRmvt8sKFxpjdJH1V0r+Mmr2PpD8ZY4631hZ9PLkxZpaka5Ufina3pHOttU+NWi8h6TxJ35U0csP4zZK+Juk/o7woAAAAAFUSJbPYy1WvHojsukes/ulQo1uftHrHzzxt3nb7viMu/eZDRu85PJa3fv+A1Tt+6mnhM6PnWh09V/rYfKOP/t5qazrMnq0+f4rRN99uFIsxYBtA+a5favXuX3ga2NZtMBGXfndOTGe+tnKfMf2Ogf5RrSQYraLSGasPXWZ15UOjb0laHbCLdP2nYtpjWmN8z2xNW21JS2f8r6fFq3bM/8CRRpf+s6m7kDcAAFA73V3utug7fz76nozVrKnSDZ+K6aDdaDugtlzv0W6G2QC+YsVXAQAAAAAAAFAvctb/icBxE/0ZCGEG6DfaIP5acB2T8MELjmC0IiF0rv3WOiyjWP2D3jO1DnEDAACQpDv7F8jKf7DZCVPfWOPa+EsYR1vPEarb7ILyQUxBXzRnqFyIY2etdbZvR8p1BhSPKj+Vc7dzO2ON1WOp3XTIqHiHP0K0AQAtzkq6XtJh1tp51tof+4WiSZK19gVr7XmSPlGw6FhJ7w65v4skTR01fY+kk0eHom3bV9pa+yNJ7yrY/nxjzB4h9wUAAACgmqKEneX8+4egOp54MTi3+m2XeNqw1epdv9gRiiZJQ1npg7+2WrMpf/uL/mYLQtGG3bNc+sClYUPRhn33ZqsbHw+/PgC4bBrMD0WTpHRWev+lnvo2F83vD61/oDJl9fZVrk6QfrqoMBRt2JMvSZ/8Y4Tw1nG2cp30uatsXiiaJP3uPqufLeI9AwBAK5vVHX7d5zcMt4NDPMcKqKgNjmC0qY3VzRCoGYLRAAAAAAAAgAaStRnf+XHTHrmsMAPZGew+VsI4ghFCBpS5wsGKhdC5zkXYQLZKcdd/WzCa4/hIrRvsAQAAxk/Gy+jujbf6Ltul41Xau/OgGtfInzN8q8YhuPXCKiAYrSC0q5xjl7FDzn0ligWjjWoXB7XJGy1s2hjDtSIAAMW901p7hrX2obAbWGsvkXRNwewPFNvOGLO3pH8eNWtI0oesdd9os9b+RdLlo2YlJF0Qtq4AAAAAqsiLEDqS9e8fgur466PFB0J/4Rqrfp/Bq1lPunZJ/vZ/WlzZgdVXPshAbQDlu+ExmxeKNmIoK10X4nMwrP4KdWfr7atMORh2lU8o2ogbHx8OzqsHqUxwPZatka592H+dv1XwfQwAABrPblOLrzPa0uelf6ypTl0Alw1b/ed3dxV/mCnQighGAwAAAAAAABpIxhmMFo9cVlCA1Yhkgw3irwXXMXEFhoVdr1iwgHu/tQ3LcO1vR3CE+z0T9hgBAABUypLNd2tLbqPvsuO73yhj6qMzSZjwrdYS1GG9MBjNv/0ZJkA4ONBs+JyEaf8HnadkrPEe5RgmzI1rRQBAK7PWrixx058UTJ8YYpv3SmobNX2ttXZZiO2+VTD9LmNC3BAGAAAAUF22csFoGwesXuy38jwCQCrh+Q3F17nhMfexHj2QekvK6sX+ClRqlN/fz3kGUL5lr7iXPfJc5fbjFyJZinVbpc0pPv8qZVlA6IdnpRV1EkS3en3w8ruXW6UczaS7l1e+PgAAoHFMSkTfJqiNDFTDynX+1zg7T65xRYAGQTAaAAAAAAAA0ECyzmC09shlhRnIXiysqxU5gxFsSl6RTszWWmewWLHzUU7gQyWlrSMYzYwEo7l/Uax1XQEAAO7ov9F3fsIkdfjk+bWtTACC0fKFj0ULOnbFA4SDju9IuWHKT3n+ozvaFFd7LPq12ngLE6LNtSIAACV5uGC60xjTXWSbtxVMXxZmR9bapyTdP2rWBEmnhNkWAAAAQBXlcuHXzfj3D3niRavD/iennT7radYXPPWc7+lLf/YISCtTmBCfl/yfwyJJ+uFtVqnM8DlgUDWAenX9Uvd3xU8WWp3xo5z6Npf/fbKxgj9x9tZJWFej25yyWrc1eJ3v3FQfbYli5/x7N9dHPQEAQP3JRLjtMmJlH20L1JarvTunp7b1ABoFwWgAAAAAAABAA8nZrO/8UoLRwgxkDxOe1mqCjtuQTQdum7UZefIPTyt2PoICGayt3Q9yrvCIkfrFTJvaTYdj2+LhFAAAAJWyOrVcvalnfJcdMeVEdbZ11bhGbq4Q3Fq39eqFjRCN5gwuDhEqF9Q+HSk3XDCa/76SbY15PRXmWnEkGBkAAETid3PX/0aaJGPMTEmHFGx/d4T93V4w/cYI2wIAAACohiIPW8uTGdv/YGvaav53PC1eJY3cOu4fkL5xo9V3CAkpS/9A+cfvk1cMl3HWLyOc5wg2pzjHAEq3JWX1wMrgdW54XHr7T8v/DKtkMNqKtZUrq5WFCZi74gGre5aP/3dNbxnhJOTEAgDQ2oZKCEbrXVf5egAug0PWGbw/p6fwkbEAJILRAAAAAAAAgIbh2ZwzVKuUYLQwoWdhBsS3GldohVQ8fCEoeKHYsU46ggc85ZS1/k+KrgbXaxhdf3c4BcFoAACgdhb13+Bcdnx3fWVCuNqYnryatvXqh7vHuikIRgsTXObiCjQbXW5QaF2xcho1aJprRQAAqmavgumspKAhiQcVTC+11m6NsL97CqYPjLAtAAAAgGrwygtGu+4Rq3WOq4JL7yIJpBwbBsov44r7rbakrP6xpvyy/IQJtQEAlz8/HO574q5npadfKu87ZcPWyn0nlROShR3Cfodcdvf4H+9yvu9SGSmVGf/XAAAAxkemhGC0VbQ3UUOr17uXzempXT2ARkIwGgAAAAAAANAgsjbrXBY38cjlhRnInnCEcbWyoOMWFKxQbHmxYx2031oGjrlew+j6lRNOAQAAUAkDuS16aNOdvsv27jxIuyZ2r3GNgiVMfbT16kVQdzNjCoLRHMeuWGixJKWt/7FtU3x7+LQzGM2m5NnhQYzONnKDXk8FhUFHWQcAAIxxZsH0Q9baoFSEAwqmn424v+VFygMAAABQa16EEbqZoTGzlr7gXv3ZV6TBIQbzlqq/AsFogxnpzmXll+OyYm31ygbQ/IK+Q8auW973yQv9ZW2ep3dd5cpqZWED5h57fvzbEivLDALdWPxnYgAA0KSG3MNtnAghRy2tD3gM2m7dtasH0Eiij5YEAAAAAAAAMC6yNuNcNjJoP4pwg92Lh6e1mmTAcSsWWpG2AcFoRY514H7toCZqcuD2leJ6jaPr53pvFQuOAwAAqJR7N96mjB07aEySTph6eo1rU1yySPhurdp6dcP6d7g3MmPmBQWXFeMKT8tr2waE1g3ZtJKmUynPf8RcZ1tX0TrUo6BrjyjrAACAHYwxEyWdUzD7z0U226tgenXE3a4qmJ5mjJlqrd0QsRwAAAAAFWCtdd779JVJj5n17QXB269cJ+2/S9SaQZI2VCAYTZLe9L9B+dfleWaNlXzukxey1uqHt1n94g6rp18enjenR+rulF6/v9GFbzbqShgtesbqh7d5euwFybPSXtOlDx1jdNbhsaq9BgDjp3dt+O+g5Wul/gGrr/7V6o5/WG0e9bPbvjtLHzkuprfPG/48um+F1fdv9vTI81Ju20fg6vWVq/d9y8c/qKsR+J2vA3aRzjshpi0pq/OvCnccH1gpxf4lp50nS10dw/NGh4XsvpPUtu1rYk6P9L4jjM4+prLfGyvXlXfON2yVdm6xn9cBAMCwTIQ8+hErCeJFDQ34d2mVtKP9DSAfwWgAAAAAAABAg8ha9yNsqhWMxmD3sYKOW7Hgr6DgtGLHOig4rZaBY67XkAgRHuEKngAAAKgkz3q6o/9G32VT4jvpkImH17hGxQW1MYPCdZuVlauze4RgtCKhxUHrjG57BwcjDyoZ63S2x8Ncc9WjMAHZhGgDABDZNyTNHDXdL+lXRbYpfCb0K1F2aK3dYoxJSRr9xT1FUlnBaMaYGZKmR9xsbjn7BAAAAJpClFA0Scrkj5T87s3FA7dWrCUYrRTW2ooFo1XTF6+1+vfTiq/3+autLr4l//02Emrz8HNWD/RaXfiWmE79gZc3aLy3T7rlKauNg54+egLhaECzWdFXfJ0Ry9ZIJ37X06PPj13W2ycteMLT5Wcb7TvT6KTveUq5n/datodWSRsHrKZ0FQ+GbFWZrNUJ3xkOuhytt0+6/rHSAjvXbPKfPzr0rrdP+r+nrdZt9fT5Uyr3vdEb4b3q55olVl96E+8XAABa0VAJwWgbBmhvonZcwWhdHZIxvAcBPwSjAQAAAAAAAA0iLliMLgAAIABJREFUa909iOIm+q2+cIPdG3MgfzW1mTa1mw5l7NhfJYqFL7iWxxQrGm4XGJYRIvShUsoJj0jb2tUTAAC0rqcGHtHazMu+y46bcqraSmg7V1tQ27yWbb1659f1x3XswoQHuwPNkr7/9tt+iqSU5z9irlGDpglGAwCgsowxb5P0yYLZX7LWrvdbf5SJBdOlJOYOKj8YbVIJZRT6uKQLKlAOAAAA0Fq8iKNzRwWjZXNW37u5eLBab5+V/51UBEllpCHHswr//PGYDvAJmzvzZ2MDaIIcMku69uMxZUe9DaZ0SlvSUrJdmtolZb3hgbDv/rmnax/2L+epl6z238V9jjcNWv3s9uD3yh3LpLN+mR+KNtp3brI673jLgFygiVhrtWJt+PV/c0/x75zv3mx1yCxVLBStI+7+LL7uUasPHsVnksuNjyvSd1Klff9mq8+83ireVv452pKy6ttSXhnfuNHqS28quyoAAKABua5zPz7f6NOvN9r3K/6hsSvXSYd0VbFiwDZb0/7XWhMSNa4I0EB4fAMAAAAAAADQIIKC0UoJdwgzkL1RB/JXm+vYpYuELwSFihXrUNpuOmQct3TDhD5UQtZmlJN/D7SEKR4eUat6AgCA1rZoww2+82Nq0zHdb6hxbcIJauu1YjCalWuwxdg2s+uaJWszylnH6IltXO330aHEYULrXOeoUa+nwgRkN+prAwCg1owxh0j6bcHsmyX9NMTmhcFopTQMCxs8hWUCAAAAqBXPf/CtUya9/Z+9fdKaTcU3eTnEOhjrxX73sr1nSHvvbMb8d/Re0cJf5k6X5vTklzFjstGe04127Tbq7DCalDRqixkdOddd9v29wWFF966QBkOEFAW9n8K+3wA0jg0D0qYK/+T42AvSrU8VD1AL67QD3cseXFmx3TSle1dU7jyU4uVN0qp1lSurXMng59MCAIAm5graPWBXaU6PFHek6/T2Va9OwGgDQ/7zuzpqWw+gkdTfo7ABAAAAAAAA+MoGDOpvN9F7c4QZyB4mPK0VJWKd2pIb2wunWGiFKxgsTPCAMUaJWFIpbyDyfislKNhs9HvFHRzXeqEeAACgtvqG1uiJrYt9lx066UhNie9U4xqFUw9tvXriCkYzPsFoxYLLutrc2R9BwcU7/u1uq49sP+hz3iQpGWvMR4mODj12rsO1IgAARRljdpd0vfLDyFZJer+1tpTRirXaBgAAAEA12PxgtP+d+jH1ts/WYKxLA7FObTUTtCU2QT25ddopt0Gb7n2tzGpPbTFpzaZwTft+/1uVGOWuZVZ/W2p1/wqrF/qlNx9iNCWgy8bujp8Vzpxn9PNF4S+5ZveED1J7xzyjL1ztX/btz0gn7GN15YNWT78sjVxdela67hGrLWnfzSLr7ZNmTqlMWQDG34q11Sm3koGc//O2mP76qH+IKN9vwf766PjfAtz7y55uPT+mk/aLFhxaqBLnev1WadOg1eTO8uoCAAAaTybnP7+jTYq3Gb1qJ/8QtHf/wtOKr8e021TaDyiftVY3PCbd/KRV/4C03y7Su183HI6/1RGMNoFgNMCJYDQAAAAAAACgQWSt+5Gu8RKC0cINdi8e2NWKXMcuKDhMktJlBKNJw2F2/mEZwfutlKBQjtFBe67X04qhHgAAoLbu3LjAGap1QvfpNa5NNK5gtGJtzFZifPqeBQV0pbzBsoPR2kyb2k2HMnZsr6SRc+Nqj4cJo65HYULPEqYxXxsAALVijJkh6RZJu42a/bKkN1hrww5F3VIwXcoXcOE2hWWW4hJJf4q4zVxJ11Vg3wAAAEDjyuWPzv39lPdpcec89/rPSXouWtDJRm4nB/rZIk+f+KPV6KjqH9zqPsbTJ0kTk/6Dok/aT/r304y+tSDcOZrTE76ecwJC1H57r9Vv761+AM53b/Z0zcfaqr4fALWxom/8g7NcjJG+906jA3c1OmKOdH/v2HX6B+q3/uPt70utnnqp9O2nTZDWba1MXU7+vqdvvcPo306NlVzGhgqF4K1cJx08qzJlAQCAxjGU9Z/fvu3ydk6PfzBaJie96t89PfVfMe07k3A0lOcL11h97+b8a5jv3mS14DMxDTiC0boIRgOcSr/CBAAAAAAAAFBTlQ5GCzNIP8yA+FbkOnbFAsrCBC8Eca1Xq8CxoP0kQgWj0QsbAABUT8Yb0j0bb/VdtmvH7tqr84Aa1yiaUtuYzcha/6fBS2M7ngVd1xRrJ7tC5wrLLNYO9wu0K1a3ehbuWrExXxsAALVgjNlJ0q2S9hk1u0/SydbaZRGKqstgNGvtK9baJ6L8J2l5ufsFAAAAGl7Bfc9OW6Hkj1E2bCU4xmVwyOqL1+aHohUzZ5p7mTFG33h7TG96dciyAsLO/Hzm5PEdiP3nhyXP4/0ENIsVjpj+2QGfc+X48XuNfvXB4M+xyz5kdMW5Rqu+GdNnTh4e5nzaQf7bVCosq9lYa/WFq12/q4bz/Ldj6ohXqEKSvnitLSvIrr9C59ov8AQAADS/oZz//JH2zh7TgtuoYcPPAZfevrGhaNLwNc1//c3T1rT/dhMSVa4Y0MAIRgMAAAAAAAAaRFAwWpuJ3jslTBhXow7krzbXsXMFK4xIW0cwmgkbjOYKy6iHYLSk77/Dbg8AAFCuxZvv0tbcZt9lx089XcbU99McXW3CVmxDWfl3MjM+wWhBAV3Fjp0zuNgUBqMFh9aFDVhrFMVCz2JqU7yEa1AAAFqBMWaKpJsljR4av0HSG7YFhEWxsWB6esS6TNTYYLT+iHUAAAAAUClefnDJBMcDF8rR33rP2QjtvhXSxojHZ8/pxX9XeP3+4X57mNMTbd/VCiuK4pk1410DAJWywhESdeCu0q7dld3XxIT0sROMPnxs8NDlfz46pncfFtOsqTs+R6d2+a9LMJq/59ZLT79c+vbdXVKi3Wj+PsXXDcuz0i1Plr59/2BlwkhWriPUBACAVpRxBKO1tw23OYtdm//mHtoQKM8tT7rfQzc/KW12dGfs6qhShYAmQE9VAAAAAAAAoEFkbdZ3fkxtipnoz0AoNth9eJ1wgV2txhVw4Ao+277cEZgQ9ji7wjKKBbJViqv+RkYdZsdjatzBaPTCBgAA1XNH/42+85OxLh0++YQa1yY6ZxuqSBuzGUXpYja6HVqoWPvTGVxccC7coXUjwWj+5SRjjtEbda7Y9Ukilqz7oEEAAMaDMWaSpAWSXjtq9iZJp1lrHymhyGUF03tE3L5w/fXW2g0l1AMAAABAJXj5o3O7qhCMRnCMW29f9MHNs0OEmZ12oNH5Re5qz+mR9t052r5PO8hIV47vgOzePmn/Xca1Cg2nf8DqzmXSpKR05J5Ssr20e+nPrbe6b4W0987SwbtJsVj93pPfsHX4Na/ZPPx+7WiTjphjtO9M8VtClVhr9dgL0uJVVtltmZs7TzI6bm9p6oQdx3z1Oqu7l1sl240e7PX/PJkz3WhTyurFCkbpn3Zg6ee+2/HTWj/fb2N4ntWfHynve+Kfj6rO3+jXb/DUPzhcdiIuHT7baOoEadE/rB5eLa3dIu2xkzRzirRnj9Gu3dKS1VYDQ9Kld1bmu6/XEQYIAFFZa/X4C9LCZ6xe2igds5fRSftKXQnaOUA9GvIfbqOOtuH/v/Ego69eF9zeGByy6uzgbxzheZ7V0hekJaus/vPP7vdXJictW+O/fALBaIATwWgAAAAAAABAg8jajO/8dtNeUnnFgtHiJq54iWU3u1KDv9LOwITiIXWB+7W1CRxzBbAVBiOUGhwHAABQqlWpZ7UyVZgbMezIySeGbm+NJ1f7vDXDZf07ABmN7XQWMzElTNK3rVlqcHHh+6VYaF3KMYAxTBh1PSr299IIf08AANSaMWaCpBskHTlq9hZJb7TWPlBisU8VTO8Vcfs9C6afLLEeAAAAACrB8/Imu2zlU14IjnFbUUJAypwQwWj77WL0iRONfrLQ/752e5v07XfEIgdb7bOz0QePMvrtveMXjjYcJsdg8LDu+IfVWy/xtv8d7r+LdMOnYtpjWrRj+KPbPH32Kiu77dS/Y5702w/H6nJg/m1PWb3jp542jfk5xurj841++B6prY5D3RpROmP14cutrnig8LPBanJSuvbjMZ20n9HFt3j6/NUj7yP358iePdLmQaM7l1Xus+bLZ0R/wOuIqV1GfvUl+DPfQNrqrF96+tvS0svYs0f6zMnF/z6PmSvdvXzH9MzJUkdcWr3evc2jz0vn/W70eQx6f5X+3jv9IKlnkv935Y9us/rBu0suGgAkDX/vnvVLT3/Je/SNVVtMeuyCmPbbhXYOUG8yOf/57duC0ebtLh08S1r6vLuMVeuk/QgJR0ipjNX7f+Xp2ofDrf/4i/7zCdwE3AhGAwAAAAAAABpE1vo/wqbU8DLX4P7tyw2D3V3coRXFghf8lxc7FyNcAQSuwLJKc9bfJAOnR9SqngAAoPUs2nCDc9nx3W+sYU1K5wyXLdLGbEY2QjCaNNyeTud8gtGKBhe7g39HCzo3WZtxhlh3NmiAWNFrxZDXLwAAtApjTKekv0s6dtTsAUlvstbeU0bRjxdMH2yM6bI2dHrCMUXKAwAAAFBLXv7o3AmOBy6Ug2A0t5WlBKOFDLT60XuMTjnAaOEzNu8c7L6T9NbXGB36qtIGt172ocoFo33trUb9A1Lflvz5sZj067v899FbwjFrVTnP6gOXennn/6mXpM//ydOfPtoWupxla6w+c2X++bhmiXTCPlafPKm+Bklnslbvv9QvFG3YJbdbnXKA0VsOrW29mt3v7vMLRRu2KSW9/1eebjk/ps/9Kdxnx549RptTlQtFO/sYo4Nnlf5endrlPz+VGQ4cSLbX19/BePnpIltWKJok3ffFmHomFT+ef/hITItXS3c9azV3uvSu1xpNSEgTPukV3baSpnRK5x5n1LdF6uqQjp4rvet1Rt9c4H7/9vZZzenhPQOgdD9eaAtC0YblPOkTf/R02+fCt/MA1MaQIxitY1uqjjFGt342phmfc7dlVvQRjIbwfnmnDR2KJrkDhrs6KlMfoBkRjAYAAAAAAAA0CNdg+zZT2m0+1+D+EQx2d3MFoxUL/nItd5U3dj3/c1KrsIy0dQW7dRZMj289AQBAa9mS26TFm+/yXbZv18GamZhV4xqVhjZU6RKxpOTTsS1VcnBxuPZtyhsMvAYI286vN8WD0RrzdQEAUA3GmKSkv0qaP2p2StJbrLV3lFO2tfYlY8xSSQdvmxXXcPjazSGLmF8wfWM59QEAAABQJps/6LazCsFogxlpIG3VlSAEpFBvX/Tgnzk94dYzxujNh0hvPqSyx90Yo3m7S0tWl1fO2ccY/efpMefyXM7T5T4BbCtLOGat6sGV0nMbxs7/66NSOmOVCBnmdO3D/sf8miVWnzypjApWwd3LpTWbgte5erHVWw7l86iSrl4c/Hf58ibpc1eFD6zac7q0JV1urXY4fu/ytu92BKNJ0rot0m5Tyyu/WVyzpLzP55P3V14omg0obkJCettrjN72mvy/5ZP3l259qqxqRPL2eUbfPnPsd9mcHnflr1li9flT+AwCULqbn3B/xix8RurbbEOFTAKojZxnne2a9lE5htMmBpczfP+Av22Ec02Ra7SwCEYD3AhGAwAAAAAAABpEzmZ958dLDEZrNx0yMrLyvxnPYHe3ZImhFe7ghXAhdK4wu3SRQLZKCVt/Vz2zNqOczZYc5gcAAODn3o23KWOHfJed0H16jWtTuqDwrVZjHb3UjPEfuOUOlSs1uDhZMO1qh6cC91EsjLpeFbsWdF0PAQDQaowxHZKulXTyqNlpSW+11t5Wod38WTuC0STpbIUIRjPG7CfpiFGztobZDgAAAEAVeflBNRNs5YPRJGnVemn/XapSdEPr7Yu+zR7TKl+PqI6aa7RkdXmDbN97+PCAbtvfJ3VNkulI5C2fPWGrpLFpRKUcs1Z1kyM0I5OTVq+X9t55eJB+b5+UHfWgl50nS1Mn7Bhw/7Xr/ctZ9I8d/35hg9XmUd139pgmdXa4B+1vTVu9vHE46C8WKz64f90Wq7Wbd0xP6ZQ2+vwUcvezxd+Xz64lXK9Uo89zZ4e0+07DYYlPvFh825ufDL+fOT3ShISRHP0HozpqbnkBErtMcS9btZ5gtK1pq+fWS/etKK+cw+eEP0+ugIYPH2N061O1+xs/Yo7//CPnuN+/y9dWrz4AWsODq4KXP7NG6plUm7qgOGutVq+XBv27kKEFpP2H2kiSOkYNXTDG6A37S7c4Ql65FkYUdyyrTDnT+T4BnBh9BgAAAAAAADSIjM34zo+b9pLKi5mYOkxCaesfdtWog/hrwR2MEBy84FqeMOGCBYICGWrBWf+QwRHDZaTU1VbkUUsAAAAheTanO/oX+C7rjk/TqyceVuMalc4d7lWbtl49cYU3u7rol9pOLjf4N+0NajAXFIwW8Fj7OpYwwdeChGgDACAZY+KSrpL0xlGzM5LOtNbeVMFd/UHSlyWNPMf87caYva21xbpY/3vB9FXWOm4EAwAAAKgNL5c32eVVJxitt49gtEKDQ1Yvb4q2zev3k+Jt5QX8VMLH5xv97l6rTY4rugkJ6UNHG/1kof999cNnS/MnrZB3zvukfzwsdSRl3/xhmU9+R3pltexX36fZL+8n7fqrMduuYDB4KI8+Z3XR39zhQL190o2Pe7rgr3ZMwJgx0vx9pCvOjamrQ9qadu/n/562Ove33phB+h1x6X1HGP30fUYd8R3v2YG01Ud+a3X1YqusJ03tkr75DqNzj/N/CM3qdVbv/oWn+3uLvuTQ7lsxHFBhzPj/LTWKe5dbfeBSb8zf38zJw3/vL/RXbl87Tx4ORZuTkN5zmNH/e7B4yNWMSdIrm/2XvWOetM/O5Z3rnSZIk5LKC/8bsWKt1dFlBq81qq1pqw//xurPDw//PRdz2/kxvf2nnm+o4bQJ0j8flX8cg/5Ek46uqW99jdFeM6yefaV4fSrhHfP8Kzl3hrvyK/sIZwRQnslJqT/gsu2Ffit3TxbU0k1PWH3kcq+ibSU0l/a2/OnzT4nplqf8G1a0IRDGvcut3vXzEI3zkGbXQTg/UK8IRgMAAAAAAAAaRNYZjFb6bb5krFPpXLgwAOzgDkYoErzgGHsY9liPd1iGOxits2Da/XpS3iDBaAAAoGKe2Pqw1mXW+C47rvtUtZk232X1yBVGVSx8t7X4dyh1BXWlAo6dZ3Masv4jjArb+672bcobDDw/jRo2HTdxxdQmTznf5WGDnQEAaFbGmDYNB5b906jZWUnvttb+vZL7stYuM8ZcLunD22Z1SPqNMeb1rqAzY8w/SfrQqFlDki6qZL0AAAAAlMDLHyw5wdtaclG7dQ+HmDy/Yeyy3j4G5xdauS76Nj98j394VK3tv4vRnV+I6ds3WS1etSMQp81I8/YwOv8NRq/dw+j4va3e9ysvLzDnX08y+tpbrMzZb5Je3JZ2NZSSrrlE6p4ue9PvpeeXa3an/z3fjYPShq1WUyfwfnIZHLJ6/feDB0L/6DZPNzzuv8xaaeEz0pk/87THtODjfLJjP0NZ6bK7raZ2Sd99544yPnWlzQu62jAgnfc7qz17rF6/f/6+rLV60/96euLFwCqU5Pf3WX3gKN5DYazfavWGiz0NDI1dFjXcMYw9e3b8+7cfNjpwV+nGx63uWe7e5u5/j+l/brB6cKVVOjs8b/pE6dSDjL54Wvnn2RijOT3S0ufHLisMBWwln/ij1Z8Whwvo2GOadOJ+2747Flg9tO27o71NOmKO0edPMdp758LPAHd5rmDDZLvRvf8R0+f/ZHX5vTsK2GuGNDhU2RC/Gz4V07SJ7vfX195q9OW/jH0RK1v4PQOgMgqDlAq18ndTPents3rz/3qhwkPRujoK/p5PPdDomLnS3T5tX/62UUzQtVupit0TAFoZwWgAUOcGBga0ZMkSLVu2TH19fUqlUurs7NTOO++sffbZR695zWvU0dEx3tVsWPPnz9eiRYu2T9ugu7lluP3223XiiSdun77gggt04YUXVmVfAAAAAJpX1nMFozkeyxdCItYp5Xx6ysodLoDgYIQgrgCzsIEJpQQ+VJKr/oXHI+i9U6sQNwAA0Bru6L/Bd36b4jpmyik1rk15nCG4jnDdZmbl/3uNcQWjOYK6gtqeac8/FE0KH/yb9lJKef6PB25TvKxrtfFkjFEy1qkBb4vvcq4VAQDQryW9q2Def0p62BgzO2JZL7sCzka5QNLbJE3dNn20pFuNMR+x1j49spIxJiHpXyR9r2D771lrV0WsF9Ay6J9XXfTPAwBgFJs/SrvLlv47/zF7Gb200TqC0UoutmmVckxmT6t8PUr16llGvzsneIDsO19n9M7XjU1usI/cKTsSijZ6/qU78rPnZNyXjL190tQJESrbYv6+VFpfJOPQFYo22l3PSnc9W15b+fJ7rL5zppUxRqmM1f97wL+8y+8ZG4y2eJWqEoomSb+4w+oDR1Wn7Gbzp4dsRQfWF7Pn9B3vg3ib0ZfeZPSlN0ntH80p5wgWmTvD6Ncfqu6A/TnTCEYbbSBtddVD4T8f5u8zfH4O2s3ot0W+O0ZMKfGnv2kTjS472+iys/PnP/6C1cEXVS6d5pi9gpfvPcNIPr8vr1o/fB/CFe4GAMUMZYOXlxLAjMr7w/2WUDQU5Rd0eM5xRncvH9uG6OVvG0Vcvbjy1271dB8KqDcEowFAHcrlcrrqqqt02WWXaeHChcpm3VfQyWRSp556qj7ykY/ojDPOqGEtAQAAAAC1lpP/9WF5wWj+A/yLLWt1QQFlQZ1p0o4As7DBAqUEPlRS+GA093uHYDQAAFApa4de0pNbH/Zd9ppJR2lyvLvGNSqPq03Ymu2naMForqDhwGC0gPyRwnZ3UDvcFVKcjHU2dCf7RCwZEIzGtSIAoOV90Gfet7f9F9WJkm4PWsFa+7wx5u2SbpI0ks50jKQnjTGLJa2QNEXSPEnTCzb/u6SvlFAvoKnRPw8AAIyLXC5vssvx0IXRJielTT63Mt9/pNHVi6U7l429l7qyrzpBpI2sN+Ix2WuG1JVo3Pu7o9nbry26zq7ZF9XhpTUUS4xZ1tsnzdujGjVrDo+/WD9/b+u2Si9vlHbpllb2yTlI2y+ArZqv48WNVSu66TxepXA6l4N285//vXcafebKse+Js4+pzefi7B7/kKtW/X5b0Sel/J+n6+vVs6Lv41Ovj+nqJWMTZY6ZG70sSdqzR+rqcH8ORTF7mjQpGfzem93jPz+V2fG5CAClGMoFL1/Vot9N9ebJGreh0HgScelVO42dP2eaf7uzf0DqH7Dq7mqO+wKovEpfu02fJM2YVNkygWYSG+8KAADy/d//Z+++46Oq8v6Bf86dmcxMGqmEThIpgnRBpCiwKM2yigVRf7ZddW3oKutaHttaVldcF3tZH2Ctu4+AulgRBQUFDE1pQiAJEEJIL5NMvef3x0CSydxzc6e37/v14kXm1jN37tx77txzPvebbzB06FBceeWVWL16tWqjKwCwWq34+OOPccEFF2DcuHHYunVrmErqm/z8fDDGwBhDfn5+pItDCCGEEEIIITHJyZVbuOilQILRxIFconABIg5GkOGCkytfy3PONQeLiYgDH/x/krQvROERRuZZriTm3Vi2bRlhKishhBBC4t/39V+CCwK0pmTMCXNpAieqEyZi/UnYdFTQ3ky47bh426lt1871bmFoHW8VB6PpYvt6Su16kK4VCSGEkPDjnK8FcDGAqg6DGYCxAC4HMBPeoWjvA7iCc95F1x1CEgu1zyOEEEJIxHDPwJEUDcFoT1zk/aNon0xg5lB3UIiSj3f4Vbq4VlLt2/S/nxwfnZ959VFg+StdTieBI99RpjjuIIU9qPpBIWQskt7bzHHbezKGPuIdcHRSaY27DdNr62RM+KsLuX904fb3Qvc+DtUCTld0badotXp3+LaTyQBcPV75WDf/DIbkJM9hjImnD7YCQchVSU1YVh91fDmHmQ3A/HG+f04TTgFO6fzLItxBrP5INjLMPyM4+8sNGs7JBYI6EeA+5hFCiL/s6j8d0zEmTFZu4/jNIhe63+2uu+b+0YU+97pwyasu7K3g+PQXqmsSdReNYkhRCD8X1TsBYH1xCAtEYt6aPcE97lw/iUGS4uO3KEJCgYLRCCEkijz22GM455xzsG/fPo/hjDEMHToUM2bMwPz583HOOedg0KBBXvMXFRVhwoQJePPNN8NVZEIIIYQQQgghYeSQBcFo0Pu9TLVALq1hXYlILQhAFLDg4HbIUG54qHVbiwMfrJC5uFFjsIhCHzqXS2KSMDxOFK5GCCGEEOILu2zDjw1rFMf1Meaj0HxqmEsUOFFdzypbwXmiNeJTfr9MkIzmT6ic2rjOyxMGo8lWcR2ZxXZ4GF0rEkIIIdGHc/4ZgGEAXgNQpzLpRgCXcs6v5JxbwlI4QmIEtc8jhBBCSETJnr97mrl6MFou6nDbNIZnL2XISwd0EjB5ALB2oQSDngk78Lpk4MDxRPtNWV2pSrhXVorn3w+ex7BwRux3RuWtFvA/TNE8vSgYzddQuURisXGs2RvpUnj604ccr67t+vv/m+dk3Poux6YSoMYCtNgDW6/EgCRB8zWXDBxW+xWDAAAqGzn2Vfo+38Duvs8zrBfw9d0SemcqH+ty0xjWLpQwoo87EK0wB3j7BoZpp4YrGE15PYdrAYcz8c5vpTXa3vOwXsCaeyT0zPD9c9JJDN/cI2HaYEAvAT3Sgb/OZbjpbP8/85fmM/xuMkOq+PmqqrJSgD/PYnhgdtdlyE4FUgTr0br9CCFEiU1DMFritecJrxVbOS55VcbafUB1s7vuWmMBjtYDK7cBQx+R0UTN0olAqhH4f2cy/O91yvWJ3pmAQac874UvyWiy0vebeKtq4thToT5NqtEdRq3FvLEMT/w29n+HIiSU/O9LzY9AAAAgAElEQVQxSQghJKjuuusuLF682GNYWloa7r//flx11VXo16+f1zzFxcVYunQpFi1aBJvNBgCw2+246aabYLFYcNddd4Wl7IQQQgghhBBCwsPJle+w6iWNv5orUAv4UhuX6NSCAGy8FalI9x4ui++8ag0WUPtM7NwGU4jDF0TvQalcRskMm8t7erUACkIIIYQQrbY0rYdFblIcd3bGHDAWe41FRHU9DhkObkcS87PVeAyShQ1HRcFo4uAyEavKuCSvYDRR8JoVVlm586JZlyxcfixQD0aja0VCCCGJjXMescom5/w4gFsYY3cCmASgP4AeACwAygFs45yXRKp8hEQzap9HCCGEkIiTXR4vU2T1HON8uRyM5eCeGQx3n8thdQDmpPbLEXdwjPJvqS9+y/GPebH3O3moHBSEez1yAcND5zEcb3KH/+SmApIUJ9tt3Uqg8pDmyQscpYrD1ULlEt3yrbG7bdbt63oakaPPSl7DTgYfpS9QfqjjwSoIwxyJ29sb/duf1i6U8O8ijrv/I55/60MSepxoymY2AN2Suz7Ojc1n2P6wDq127nHuCQfRviJzd8heYW5YixNxooDKU3sA3y6UkG4C7E5tn6uavlkMa+7RwergMOoR8P12o4HhzWsYXr2Ko7rZPSzdBEgSwDlg1LvPubUWDrvTHYSWpGew2DiarED3NO3nZMYY8rOBXUe9x1HAJyEkEPYugtGsDqCyEejRLTzlSUSL1/j/0PD3b2SYMihOru+IX7JTAINevA/oJIZ+WcCBKuXx/1fEccNk2oeIJ7Vrt3d+x3DleAkumcPpAs5/Ue4yUP29G1lMtnUlJJwoGI0QQqLAsmXLvBpdTZ48Ge+//z769OkjnG/AgAF44okncM011+CSSy7Bzp0728bdc889GDVqFKZOnRqqYseFtWvXRroIhBBCCCGEEKKZSxSMxvz/mU+1szvTFtaViNQCyqyC4C+1UAatIXRqAQQ2uTXkYXaiUDOl/cgomQCX97RqARSEEEIIIVpwzrGu7jPFcWYpGePSzw5ziYJDNXxXtiJJSpxgNFFnPlETING2E9XNAXH93MCSoGOejwMV1bMd3I4WuVlQptgOD1Mrv0ljsDMhhBBCQodzbgfwbaTLQUisoPZ5kUPt8wghhJAOuGeH7p7OY6qTD3IeBDASgDvww5zkOX5gd/G8O8tjN7ApFKqVf8ZFvyx36Eo8BhnwPT/5NH2+vVRxOAXKiG1OwFjyKYOAHt3EHba7pwHHFZ5rVFLNIb7LQwDgJz/3p25mYGB3cVBmkh4Y0sMdUuWPQEPR7pzOsHiNd9nOHSKeRy1Er6Q68YLRRAGVZxYy5KW7P5/OdYRAmPzcV0T0OvXzbFaK5/pSjAwpftwWL8hRDkYrrfF9WYQQAgCyzOHUkMlVWkPBaKEiyzygOve4fKZadyUEAAbniYPRfioDbpgc3vKQ6Kd27Ta4h/uYo5MYdBIwqAfDmr3i3+iG9w48kJiQROAd0U8IISSs9u3bh9tvv91j2MSJE/H555+rNrrqaNCgQVizZg2GDGn/ZViWZVx99dWorqY7UYQQQgghhBASL5zcoThczwx+L1MtSCvWO/KHknpAmXLAgo2LQxmMTGswmnpYRqiJ1iEMRlNchng7EEIIIYRoUWrdj0O2A4rjJnSbrlpnimZqdcJw1PWiCRcGoyk3BBJd16htN3Hor/ey1PapBmedT2WKFWr7I10rEkIIIYSQWELt8wghhBASNWTPXvUFjjIMte0WTn655SPVxfXMEHec3HjQt6LFO4tNeXiaKX46n3KnE/yTtyBP7wb5LCOw4jWf5i9wlCoOL61xBxKQdodrOR5fJeOVtYm3XS4bq/6dEQVaHaTLpjbHGjie+kzGZa+5MPcVF+76t4wNxRwHBeFXagw6dyDW9CFAZrLyNBePYn6HogXDNROU1/37s8TdmlOMDN3TlMeV+LGdYp0o2CtfJUAuEfXPVt7XyhJwnyGEBIdd4cHQSkQBlqJpX10r45Z3ZSz4QMaOw3SMOolzjvc3y7hhqYzrl8hY9oOMow2ATfmZ8poU5sbP9R4JncvHifeT19dxNFmj+3u6fj/HXf+WccUbMp77SkZ9C8eROvc168lrjvtWyPjlSHS/j1iidk0ypp/n6ytU9i8AuLyLa2xCiJs+0gUghJBEt3DhQjQ3tz+CKCMjA8uXL0dqaqpPy+nevTs+/PBDjB49Gna7HQBQXl6Oxx9/3Otpl4QQQgghhBBCYpMoGE3H/P+ZT62DP3V2FzOwJDBI4PB+HJhVELCgFsqgNbxDLVxBtN5gEgejeZfLn3AKQgghhBAt1tV/Jhx3VsasMJYkuFRDcFVCduOTqAGRcmMg0bWLejBa4KG/ANDgrFUcHvPBaGrXiiw2wwcJIYQQQkhiovZ5hBBCCIkasnfP+v8cuRIz+32KckNvj+H3Vf8Nc5pXdbnIZy9l+NOH3r+nttjdne7zc6iDJQA0C4LRUo3hLUeocM7BH7oCWP9fv5chCkazOYGKBqB3pt+Ljiv7KzmmLpJR0RDYckb1BbYfDk6ZQsGoB84bDvz3Z8Bx4tB17QSGGyerH1MKcxk2lXgfk0qqQlHK2HOohmPKIhllHkFXHC99w+FP/mCSHmCMwWQAPvyDhLmvymjocEvx9P7A8/Miex4Y3Y/hlasYbn+v/T0unMFw6enq8xXkAMebvIcnYsheieA9F2SHtxzRThTMWCIIliOEkK7YNQZy3f0fjivOEC2D4/v9wOc7OT7fybGnwnP8q2s5Pl8g4ZyhdN1223scr61rrxAt+xHon+1/kNNTF9M2JdpcNZ7huiXifW3qszK+XSgh3Rx9+9Q7G2Vct6S9nv2fIuDhj90vWj26HbmvOT69Q8KUwdH3PmKNqH55y1QGxjy37+QBwJMXMzy40nsfmzsauPtc+jwI0YKC0QghJIL27t2LVas8b1g+/fTT6NGjh1/LGzp0KBYuXIinnnqqbdhbb72FRx99FJmZ8XUnqri4GD///DPKy8vR1NQExhiSk5ORl5eHgoICDB8+HMnJgkeeBJHNZsO6detQUlKC2tpadO/eHX369MFZZ50VkvVXVFRg06ZNOH78OGpqapCamoru3btj3LhxKCwsDPr6CCGEEEIIIdFFFIymZwa/l2lk4s76Jo1hXYmIMQaTZEKr3OI1ThSwIAoukyBp/gxVwzJCHDjGORe+B1/CI8IR4EYIIYSQ+NXkbMDWpvWK405NHom8pN6K42KBWl3PmmDhssJYNCYKRhPXPTnnivPZBPVSpUAztZAzcTBa6O9ThZLae6YQbUIIIYQQEiuofZ7/qH0etc8jhBASArL3g9dOte/DgeJTUWQag3JDbyRxB8Zat6Cn8xjAmPD3zZPOGcIg+kX1oY853v4ddbB0OHlbsFNnKXESjIafN2gPRTtzJtic6zyH1RxFwYtPCGcpqaZgtJOe/5p3GYp2zhDg6z3q03x+p4SeC72PCSe98zuGKYMYPtnBcdt7yt/xu89l+Ptq/8MiOhvQHXjqYgndzMD4AiDdzNDQwlFU5h7XP7vr40m+IKippDp45YxlL6/lnULR3NRC0V65iuHWd5UnsHQIfZx2KsPRZyVsKgGqm4FBecCwXoAkRf488IcpEuaPc+9Lw3oDeeldl6kgRzlkrzTBgtHqLNwj7K6jAgo/9ZCfrVwnKqsBZJlHxXeBEBJbtAajHWsEWu0c5iT3ceZwrTsE7fNfONbsFYc0A4BLBu5dLmPrUF0QShy7Dhz3DEU7SanepNXsYXTcJ9roJIb3fs9w5T+V69zbDgPvb+a4eUp07VMumePBld4By63K3Y3QYgce+6+MbwYn9vEmUM1WjiqFAGcAmDvaex9hjOH+2Qy/m8SxqQQ43sSRZgJO78dQmCtuC0kI8UTBaIQQEkGLFy8G5+21zpycHFx//fUBLfOuu+7Cs88+C4fDXXu1WCx48803ce+993pNe91112HZsmVtr0tKSpCfn69pPWvXrsW0adPaXj/yyCN49NFHVZd/UllZmWpl7dprr8XSpUu9httsNrzwwgt48803sX//ftXy6XQ6jBo1ChdddBHuvvtuYSOoqVOnYt26dW2vO34eahoaGvDwww9j6dKlaGxs9BqflpaGefPm4bHHHkOvXr00LVPE4XDgrbfewiuvvIJffvlFON3AgQOxcOFC3HDDDdDr6RRPCCGEEEJIPHJy5bushkCC0VTCF6izuzqjZBYEoym3RhIFlxkls+abGjqmh54ZFEPyQh045uROyFBuLWxSCNgT7VuhDnAjhBBCSHz7oeFrYb14SsacMJcmuAwsCRIkyPDuCCOqY8Yr0f0aBkEwGlOue8pwwcmditdMwtBfhWWpXRs1OOsUh6sFi8UC9WtFCtEmhBBCCCGxgdrnKaP2eZ6ofR4hhJCw4cohSHq4cKb1J8D6U6fpOWBrBUziMNCCHPHq9lRQEBEAWOzicSlJ4StHKPFv/k/ztOz/3Qc2YqLn/K0WZC6+B+muBjTqunnNU1LNMXkgddYFgC93df29Gtab4es94ukyk93BUFkpQK3Fe/zLVzJcOV4CAMwaBojCD88fEdxgtJF9gEtP9/ycuyUzTB+ifRmFucrDDyZYmJXIGpX9QuRclQDMMztlN5uTGKYO9qNgYeDrvpQvOL+V1yfWua28XjyuvyCIMFGJghkdLqCigQI+CSG+swvClZU8+xVHs5Xji50cO4/6tp4dRwC7kyNJn7j17TV7g39+V7tWJqSz/BxxnRsAvt7DcfOU8JVHi/2VwGHlJmtC6/YDNgeH0ZC4x5tAlahc24quhwGgezrDBSMBCNo+EkLU0V1ZQgiJoC+++MLj9TXXXIOkpMDuruXm5uKCCy7AihUrPNaj1PAqlhw+fBgzZ87Enj1dPDrnBJfLhS1btmDLli244oorMGDAgKCVZceOHZgzZw6OHhX/StHU1IR//vOfWLFiBT755BO/17VlyxZcfvnlOHjwYJfT7t+/HzfffDNeffVVrFq1Cr179/Z7vYQQQkisaXDWYZdlC47ZjoR0PQYpCYXmU3Fq8kjoGD0lIRSanY3YZdmCRlcDhqaMQm9jfqSLROJEk7MeOy1bUGE7HOmieNAxPfJNAzE0ZTQMUtfXg0phWACgDygYTdxZP9Y78oeaaNuJgr/EwWi+hQoYJROcLu99YUPDV9jfshOA++kxvZL64bTU05GqSxcui3OOX1t+xoHWPV0Glon2v5Nl8h6mvH0OtO7GiuNL215302dhaMpo9DT2VV1/pb0cu5q3oN5ZqzjeJJkxIPk0DDSfptrhK1z1Bl8lSca2eobEJL+WccRaij0t29Dk7OLxxB3omQEF5sEYmjIKOhbcWwZ1jmrstmyDjVsxLGUsuif1DOryy22l2G3ZDodsw4DkoRhoHkZPTiIkiLo6R+iZAYXmwRicPBIGyf+6CCG+kLkL39d/oTguS5+L4aljw1yi4GKMwSiZFMN3v6//AnstO1Tnl5iE3sb+GJYyFmZdSqiKGZDj9grssmxBnUO9B0yF3bdrN7Vrl5VVSxWvmYpbdytOr1S3TWJG4fIdXLlXXawHTVMwGiGEEEIIiQfUPk87ap9H7fMIIYSEgcuHnvUntVpUg9HSzeL7o2U1vq8uHlls4nEp4p9+Y8uK17RN1y0HGOJ9L4WZU8Ayu6PAUYYduhFe40toXwIAyDJX7QR90tAumkZcMNL9vb30dIY3vvPsfC+x9vGAO+hnaE9gd4XnMgZ0B6YMAsb2B4rKxOsy6IBZpwH//bnrcp83IvD2FgWCQIHqZqDJypFmSuw2Hb4GxBl07oCwOcOAz3Z6jz93aPxuz9xU5eH13rdR45ra+81NC185YoFaAE5JNQWjEUJ8Z1N+ZqOiRz/xP9iLc8ClnKGdMEqDfL2RnaJ+rUxIZ6f3A7qnAceblMcXlQF/X+3+oibpgLH5DGfkA5IUuf3Mn+8N58ChWmBgXvDLkyhEvwnoJKAv1TcJCRkKRiMkyri4C/VOehRGqGXocyIeZHHkyBGUlpZ6DJsxY0ZQlj1jxgyPhlcbN26Ew+GAwRCbndPsdjtmzZrl1egqKysLw4cPR15eHgwGA5qamlBRUYHdu3fDYlF4dE4Q7N69G9OnT0dNjedVQ15eHkaPHo2MjAxUVlZi48aNaG1tRW1tLc4//3w8++yzPq9r1apVmDdvHlpaPH/J7tmzJ0aOHImsrCxYLBbs3r3b4wmd27dvx/jx47Fx40b06dPHvzdKCCGExJCjtjK8cPgRNLpUHosVZGPSJuL6nncHPTwk0R23H8ULhx9BrbMKAPBRFcNVPW7DxG7nRLhkJNYdsx3BC0ceQb0zelvpDU4ejj/0frDLzuWiYKpAjkdqAQLU2V2daPtY5VbF4TbBcF8DE0ySGRaX9523n5s3ew3L0ufizr5/Qa5CIJXMZbxX+Qp+aPjap/UrUQxGY8rvq8J+2CvoYmWVDjf0uhtj0iYpzrO9aSPeOroILnTR0qAGmJZ5Pi7N/Z1iQFYk6g2+Gpc2Bdf0XODzb1cb6lfjvcpXwFWeWKVmWMpY3NjrXk0hjVqUtu7Dy0ceh0V276sfsWW4qdd9GBakwJofG9bgnWMvg+NEi5AaYErGHFze/UYKRyMkCDjneL/yNaxv+LLLaYemjMHNve4L2vGDEDU7LVvarhk7m5wxE1IchJgbJbNiMNqO5k2al9EjqQ8W9HkMGYboekz4zuYivHn0b8IgMS2Y4KmJatcua+s/9WkdStdIEpNgZCbYuHqYcEfmGA9GU7tWpBBtQgghhMQyap8XPpFuo0ft87Sj9nnUPo8QQkiYcD96u1stAHJVJ3nyYoYHV3rfJ66xUBARADTHeTAa5xrbCOj0YHf9HcwguKfXMx/5jaXYYfIORiulSygAwFENz6hLMwG9MpTDwU56cI77O3nfLIY1ezgOdLj19cgFDH0y27+zjDE8P0/C3FfltpA/swH4xzwJjDEsukzChS/JaBTcvnjiIoZLxjD8Ui6rdpw/Zwhw+emBHysKuwgmGpHA1ec6C/c51Cs/G9BJDE9cLKGoTPYIahjVF7h9Wvwe3zMEmaB1iRaMptzcECYDYDLE7+fvj4xkIN0ExeNhaQ3H5IG0vQghvrH7EIwWKNn/XLW4cCjIXTwK1S+hCfFi0DMsvoJh/pvKX8ayGmDh/3UcxzH/DIYl1wFJ+sjUMd7e6N+BY9ZiGfuekKCLYKhbLCupUd7ufTMBvY62KSGhQj24CYky9c5qPHTw5kgXI+49Xvg6sg2RjbTdsGGD17CxY4PTMfT000/3eN3a2ort27dj3LhxQVm+VosWLcKjjz4KAJg8eTLKy8sBAL1798b69euF86Wmej7aY8mSJdi9e3fb6/z8fLz88suYNWsWJEnymp9zji1btmDVqlV46623gvBO3BwOB6666iqPRlc9e/bE4sWLcckll3iUpbm5Gc899xyefPJJ1NfX+/xE0N27d+OKK67waHQ1a9YsPPbYYzjjjDO8pt+2bRvuvPNOfP/99wCA8vJyzJ8/H2vXroVOF/sdwQghhBA1K6uWhT3cZGvTDxibdjZGpZ0Z1vXGu1XV73t0cOfg+KDyNYxJm0QdbklAPql+J6pD0QDg15ZfsKnhW5ydOVt1OidXvsuqZ/53tFELEPA1sCvRiI5NNlm5taFouK8BdEamffpaZxVWVX+A63v90WtccevuoISiAcr7ii/vS4YL7x97DSNTz/TqKCdzF96rfLXrULQTvq1bhTPTf4O+pkKvcSur/hXVoWgA8FPTOpzRbQpOSxmjeR6r3Ir/HH/T71A0ANhpKcKWpg04s9s0v5fR0fKqJW2haID7+PXusZfx1Cn/G3BwmV224YPK19tD0U5YV/8ZxqdPQ755YEDLJ4QAJdZfNYWiAcBuy1ZsblyHSRnnhrhUhADf1X2uOFzP9JjULT72wWCEEx+zH8HqupW4rPvvg1Ci4OCc473KVwMKRQPUgtGCd+0i+gyMkgk2l/ZgtFi/nlK/VqQQbUIIIYTELmqfFz6RbqNH7fOofZ4aap9HCCEkImR/gtG6ToC5YpxyMBrg7rw7rLfvq40nFrVgtHh47s+urh+swv7wJHDmLLBThokn6lWAguoSxVEHK50A4mFjBUZLQFxBjjuwSGTuaGBgnvteR34Ow8b7JXy8neNIPTD9VIZJA7zvg5w7lGHbQxL+u4ND5sD5IxgG93BPd/Yghm0Pu8d1DFjLTgVmDGU4s9A93eYHJHy8g+OXcqBjlp5RD5xRwHDhyOB06O+TCegkwKVwuEv0YLSDfgQMngz1GNWXYetD7n2luAo4vZ97P0g3x2/H+8xk5YBBX8PlYl2dRfn8nhHbtyFDgjGG/Bzg5yPe49SCIQkhRCScwWhas47jVZkgaMhfBTnxW0cioTNvnIQai4zb39O2P76/meO84cCV48O/v8kyx/ub/fvelFQDX+0CZg8PcqESRInguq5AJSScEBI4CkYjhJAIOXLE85e2vLw8ZGdnB2XZw4Z537A6cuRI2Bte5eTkICfHXZvT69tPOXq9Hvn5+ZqX8/HHH3vMu3r1agwYMEA4PWMMY8eOxdixY/HQQw9B9ucmsoIXX3wR27dvb3vds2dPrF+/HoWF3h2tU1NT8cgjj2DYsGG4/PLLUVdXp3k9sixj3rx5Hk/VfPTRR/HII48I5xk9ejS++eYbzJs3r+1ppOvXr8e7776La665RvO6CSGEkFgjcxd+bfk5IuveY9lOwWhBtqdlu9cwJ3fiYOteDE0ZHYESkXixx+K9b0Wj3S3bNASjORSHBxKMZpYEj1eEOPiLuIkCyqyy8qMabVx5uC9BZwBg1qX4NL3S8RUA9lp2+LQcNUr7itq+pcQiN+GQ9QAKzIM8hpfbytDs0vDY3Q52W7Z5BaO56w3Be8+htMeyzadgtAOtewIOGTm53mAEo1nlVhxo3eM1vMFVh0p7OXoYA2vpqvZ+97Rso2A0QoLgl+Yin6bf37qTgtFIyB23H8Xulm2K48akTUKavluYSxQavtahRHY2F0VVMNox+5GgBFbrmHITh2Beu5gEn4FJSvYpZDdYn2WkmCTl6w4DSxJ+DoQQQgghhEQTap+Xr3k51D6P2ucRQggJE9nl+zwtzV1O0icDkBggK/SJLaVgNFhUbqWnGMNXjlDh6z5SHc9ueQrsynu6XlDPfBRsKVMcVVJhBwWjASXVXXc8L+wiGK17umen+exUhhsmd92RfkB3hj+eqzxdQQ7Dgunqy8hJY/idhvUESq9j6J+lHAJ2sIoDggfgJIJDtb7P0zHUo1cGwy1TE2f7ZQhuszXbAIeTwxCEIL9YUK/c3BCZvjUfTBgF2crBaP58/wghxBbEYLR0EzCyL/D9fuXxStdyieRIkJ93TQFFxF8XjGCag9EAYOU2jivHh7BAAj+XBzb/im0cs4cnRn062EqqlPePfApkJCSkvB/jRQghJCxqaz1/VcvMzAzask0mE4xGz7t0ndcXS8rK2m+wjRw5UrXRVWc6nQ4Gg/8BASfJsowXX3zRY9gbb7yh2Oiqo0suuQS33nqrT+tasWIFdu7c2fb68ssvV210dZJer8eyZcvQvXv3tmGLFi3yad2EEEJIrLHJNjh5GB/F0oFFbozIeuOVzF2wuJoUx1nlBHvEGwkqh2yHjVsjXQxNRN+BjkTHPH0AndJ7GwsUQwT6GU+BUfItsCvRiAITbIJgtFaX8nCzzrfAhAHmoT5Nb3E1gSs8TszXsDGRfqYBSJK8WwsPSPatnABgcXmfX5sVhnW9HO/vk022Rqze4KtmDccDj+mdwfks/dnWSpQ+x5Nag3BeV9t3g/UeCEl0tY6qrifqwCbbQlQSQtp9V/+FcNyUjDlhLEloneJjXU+kzlkNmQenY3owqNUPfFFoPlVxeJJkRH9TcMJRBySfJhiu/bORoBOWNVYUmgdDUmhSMjDZOwCCEEIIIYSQaETt87Sj9nnUPo8QQkiYiH6zZQyQBN27LOJ7o7ylGfzXrdBbG9FHUNUpq0nMHvaccxys4mhs5bAIbmMZdEBSPATrHClWHz/5Ak2LYSMnId9RqjjucIsZdmdi7ksdlWp4/sukAQymBHy2CLdZwX/dBr77JxRkKKcRlgT+/JyYVmfx/TuUyKEemSrN6RoEYWHxqF7QzCojwZ53yzkHP7QPfE8ReMlu8NpK8OKfwXf/5PEvT1Zu6+LP948Qktg4F19HaDWiD3DvLIa1CyVU/V3CP+aJIz0UmnjHrcZWjtJq7tGuvc6iMoMfJg+Ig+s8EhG9M4B8H56vc8C3ZraaNLRwbCnjsNjEB4aDAa73oCDci3StRCEEHHCHpBNCQicBf2ojhJDo0LkhVEZGRlCXn5GRgcrKyrbXNTXxcRfh+PHjEVnvd999h9LS0rbX48aNw/nnn69p3ocffhivv/46HA6HpulfeOGFtr8ZY3j66ac1lzM1NRU333wzHn/8cQDAL7/8gtLSUp+eAEoIIYTEElHwTDi0uiisK5hssji4yiFrq0cRoiSWgvW0HFecXPn7oGf+dzgxSAacl30Fllct6bA8Pc7Lme/3MhOFSafcwki031ll5Tu3ooA1kckZM/FT43eodWq7q8Uhw85tMDLPoDtrEM6jeqbHedlXKI7LNw3CiNQz8HPzZs3LUwrN8idIq1VhWwcjkCtcfD12BeOzBIK3jVpc4lYKouOYL1pV3q9VEEBICPFNncZzTDtqKEFCyy7b8GPDGsVxfY2FyDcNCnOJQmdKxmxsaVqPemdg93Wc3AmLqxFp+uDef/KX2vlbqxRdGs7J+q1w/HnZ8/DG0acDCsM9xTwEw1JOVxz3m8wL8XPzZk1BrDOy5iJZl+p3OaJBii4N52ZdjC9rl7cNMzITZmVdEsFSEUIIIYQQoh21z/MPtc9TR+3zCCGEBEQWBKPp9IA5FWiq8x7X7B2MxqzU87MAACAASURBVF0u8BcXAh+9DrhcgCSh/4itOATv38q1BDnFm1+OcFzymozi44DEAFlwGyvF+/lvMYdXHgLW/1c8wfTLwfppvIcy9hwU2O8Vjn5ljQN3zUzysYTxRdQB+qR+WcA1ExiqVJ6FF293VTnnwDvPgi99ArC700MKerwEZN7gNW1Jgne+r/fjVllhTuKGemSoNKerawFy0sJXlkiqEwWj+dbcMKbxXZvBH54PHD/S5bQZuY8BOX/yGi7ajoSQ+MM5R6sdaLS6/zW0Ao2tJ1638hP/t49rEgxvbAWcPj6LMM0EnDMEmD2MYdYwhj6ZnudxxsR1IdE1SzxxujhufY9j6QYOp+wOEVp+i4SB3d3b3Ren5IoDqc7IB2bR8/6InySJ4cHzGG78l7Yv5fbD7uMOY4HX2+1Ojpvf5nh7I4fMAb0E3DqN4bnLGHSS5/JLAwzB7+ralijjnAsDvxM51JqQcKBgNEIIiVPBqEhHi1NPPRW7d+8GABw+fBiLFi3CwoULw1qG9evXe7yeP197QEBubi5mzJiBTz/9tMtpLRYLNm7c2PZ63LhxKCgo0F5QANOmTWtreAUA33//PTW8IoQQErdsXPwL+ODk4QEFBZ1UZT+G446jXsODFUBC3NSCWIIRoEISl9q+NSh5OAxBOE74qt5Zi3JbqddwLUFILkEHfz0L7Ge+6Vm/Rfek3vi5eROMkgmnp52FAnP8hEuEilkQaCba70RhEKLliGQbuuOefn/Fjw1rUGYthgwXAMAm21DcuktxHqvcAqPkGYymFB7mXn4eeiT17rIceUm9VfcViUm4sde9+KFhDfa1/OKxjxe37FY8jyudX0XfDQNLQqouHXVO77tzviwHAAYnjwj4e+SP4/YKVDkqvIb7GsAq+izNUgoKzYO9htc6qlFhP6R5Ob5SO/Y6uPKTgX1hVdk+wXoPhCQ6pWMrADBI4PBu9cXjrgk/iTY/NX4nPMZPyZwTV/dEcpJ6YGG/p7Gx4RuUWvcrfuc6cnEX9rbsUBxX56yJmmA0UV1Mz/QYnDxCdV4GCX1NhTgjfQryVOqpw1LH4u6+T6GoaT0q7V03jO8oiRlxinkIJmXMQJKk3Buul7EfFvZ7Bpsav8Vh60HFzyZNl4FhqWMxOnWCT+uPVhfmXI2+pkLsat6KFF0azkifij6m/EgXixBCCCGEkKgQT9ei1D6P2ucRQggJE9mlPFySgLQM5WA0pWEfvgQsf6XDcmXkV27G9xne9+7LqhPrHo7TxTH7BRlH692v1QIGUuIg44s/cLl45KDRYA8t1bwsptMhf9okwLspAQDg7uU6XDyWo392/NSDfVWq8n1aMJ3hzzMZctMYmqwJ9L377mPwNx7yGJTvKFWc9GCCd76v9yOYqTA3+OWIFZkqzen8CZmLVaL9JjM5MY7FvNUCfs95gKXrB1cBQKarXnF4HTUnIyTqcc7RYncHkjW0BZmdDDjjXsM9As06BaC5fAw088f9sxnWF3MwAOMKGOYMY5g0AEjSi4/PksqhOxFqj09/wfHP79vf6cFqYPZiGbOH+3ZO654GFD0o4bFVHP/42r28dBMwqi9w1iCG+2Z5h0gR4ovfTZaQm8rx7iaO4uPufazFDvxaqTz9q+s4bp0a+D73l1Ucy35s/444ZeCFNRwFOcCd0zsHowW2rsN17t9P9Dr6rviiuhmw2JTHFSRwqDUh4UDBaIQQEiFZWVkerxsavJ/mFIj6es8f8zqvL5ZceeWVWLFiRdvrP/3pT/joo49w/fXXY86cOejZs2fIy1BUVOTxevz48T7NP378eE0NrzZu3Ojx5MrCwkKPJ2FqIXd6mtiBAwd8mp8QQgiJJTaVcLKbet0Hsy4l4HV8W7cK/3f8n17DtQQYEe3UQkwoGI0EQu27elOvPyNZlxrG0rhtbfoB/zz6N6/hakFCJ4m+D8EIghyeOhbDU8cGvJxEYpTMisNF4ZlWwbHO5GMwGgBkGnIwJ2eex7B6Zy0eOOD9xNWTZeqmsZwT0n/jtWx/6ZgeZ2XMxFkZMz2G/7X0bhy2HfSavtXlvY1EIVi5hp4YkjISa+o+8Z5H4fskCqYDgFt6PygMwAil1bUrsbJqmddwX+sZos+yv2kAbuvzsNfwTQ3fYtmxxV7DfQ1kE1H6HE8Kxnld7XhJ4bWEBE7mLtQ7ahXHZeqzUesUPG6RkBDhnGNd/WeK45KlVIxNOyvMJQq9LEOu5vqYzGXcue9yuOAdolznqEY/0ynBLp5fROfvTH2uYn3FX/nmQcgPYchz96SeuCDnypAtP9owxjAmbRLGpE2KdFEIIYQQQgjxGbXP047a55X6tC5qn0cIIcRvsqCHvqQDUgUPuWj2rsPwL9/zGtbfoZxmFWhn2Vjz7a9oC0XrSkr4mwgEFS/dA+zbJhzP7n4BTKfzaZkpAwYi72AlKvV5iuPf38xx3+zE7ewr+j79Yx7DgulS22tT+J/TGTH8K+/jUaG9RHHa0mr3fb94Cpn2RYMfzVkKc4JfjliRanQHyCgFXNYmUMhVnUU5Kqeb780NY9OGTzWHogFApiwIRqMm/4SEDOcczbYOIWYe/3OvkLOmjsPbgs/cf6uFGkeT5CTgyYulrifsRK0GJLpUjCcfbvH+gI81Aks2+PbBF+QA3ZIZ/n45w99VcqIJCcSFoxguHNX+rT1Sx9Hvz8pf1Hc2ctw6NfB1vrtJ+bvwzkaOO6d7Dgs0BN8lA0fqgPwEvt7wR4lK2HcBbUtCQoqC0QiJMhn6HDxe+HqkixH3MvSRr2F0bghVV6fwNCc/Wa1WWK1Wj2HZ2dlBW364zZ07F3PnzvVofLVhwwZs2LABADBgwABMnDgRkyZNwllnnYUhQ4YEvQyVlZ5xzgMHDvRp/kGDtHXCOXz4sMfrDz74AB988IFP6+qstla5EyMhhBASD9SCL4ySKSjrMAvCarQEGBHtrC7xZ0nBaCQQaiE/JkGoVaiJ1muVW7ts/OUIYTAa8Z34s1Te70TBXKJzTbDKAygHVYnCq8Lx3RCFwSmd20Xne7Mu2cflKH8uEnQwsMg8Clpcft/qGaJjneizFIXHqgWV+lQelfI7uXdoi6/Utg/V0QgJXKOrQTFgCXCHNVEwGgm3g9ZfccSm3IFiQrffRCTcNJpITEKGIQs1juNe4+qd0dPjTRR2G6nrMkIIIYQQkriofV74RLqNHrXP047a51H7PEIIIWHCBb3dmQSkKQej8aY6jw70XJaB/du9pqNgNLcPftLeOXho6LNfQ+vQPvE4QxLQf7Dvyxw4CgWrSoTBaH/9nOO+2b4vNh44XRyHBZcU+dmebb3UgtHiLhKsbK/XoD7OI4qTtjqAVjuQnKC39nwNRsvPdod+JCpJYshNAyoVMrEO1XLE4bdJ0RFB2GdO+J8HHBG8dI9P02e6lA/UFIxGiDdZPhFo1inMrOFEcFnn0LImK9DQyr0D0KwAj5FAs2A5tYd/86llwybCJvxZuYrosz6ZwVkOIb7o1fnp9B1UBOGZPBYbR5ng95stZd4B01p/6zklFzggaO5bUk3BaL4qEQTSmQ1AXnqYC0NIgqFgNEKijI7pkG1QvolA4kvv3r09Xh87dgw1NTVBaSC1a9euLtcXSxhj+Pe//41HHnkEf//7370alRUXF6O4uBj/+te/ALgbYl199dW44447gvYkzs4N49LTfaulduumcuXTQU1N8O8+NzU1BX2ZhBBCSLSwyVbF4QaWBIn59rRDkWAFlhB1akEsDm4PY0lIvBEF5BiZKWjHCV+ZJeVAIg4ZNm6FiYmDAURBgXpGP/NFgijQTBTkFeowCCMzgYGBK9wi9y1wTHkfDSazTvv5VXSOMElm4XlaOQhOefubpeSIPY1W9NmLQvRERPUS0fFGNNzB7XByR8Bhi2rn9WAEnqqFn1EdjZDA1TnEjzXLMuQCCoconmgt3EhYfVf3mXDcWRkJ2vumkwx9tmIwWl00BaMJ6jei+hwhhBBCCCGhQu3zEge1z9OO2ucFhtrnEUII0czlUh4uSUCqcjAamuvBW5rAX/gTsOlLoPqo4mT9HWWKw6ubgWYrR6op/gNkOOdYskH7PatrJ0ohLE0YlOwWjzvnCrBUbfUjD6OnoMDxPjbiTMXRTcrNNeNeUSnHFW/IcAmyDQs6dSY3xXAzLr51Lfj/Pg78uhVwnXiYVlYPYNJ5YLc+DWZsf2AxX7UEKPvVaxmZLkGSE4DalsQNRqtv8e2e+k1nx99xm3/+NviSJ4CKUuUJxkwFu+kvYKeNB+AOh1MKRisRN2mIO1uUT+/oH5xL8ei3Y71Pk2cIjj8NrYBL5tBJ8fe9IonHJXM0Wz1Dy7zCzE7839AKNLVyj2nbgs5siRdoFizXTvTvWKJ2CJLj/LNwuoL3BjMSODiWRI4kMYzooxzwV1YDHKrh6HciMHt/Jccf/y3jh4NAix3ITgFmDGV4fh5T3H+LSjkueElwsXnC1kPA6f3df3PO8Ut512VO0nO8da0Ol7wqo0ahWX9JNce0BAkbDpaDguuQghxErC8KIYkihn9qI4SQ2DZx4kSvYUVFRZg5c2bAyy4qKvJ4bTabMWrUqICXG0l6vR5PPvkkFixYgHfeeQcff/wxNm/eDJvN5jVtcXExHn30UTz//PN4/fXXMW/evAiU2D92e/BDP6hTIiGEkHgm7lQbnIAZQD30RuauiAUrxRu1gBMnd4axJCTeiAJyTIJQpnBQO0ZZXS2q412C70OgIUbEP+LwTEEwmii8Kkj7I2MMJsmseExVHiYOHAs1YaCZQjmFAW5SikrAmlIQXPQdD8T1DHGwmBLRedSkU/4sRcFogDtALk3vRwNpj2WENhhNLfxMFIBHCNGuzqn8iDgDS0Kqjh5rRsKr0VmPrU0/KI4bmjIG3ZN6hrlE0SlTr/z4RrWgw3ALdV2YEEIIIYQQQjqj9nm+ofZ5/qP2eYQQQjQTnTMknTgYrakB/N6LugwGyRcEowHA019wPHFR/HfQfPlb7efksf2B346K7W3C//mocBxb+JJfy2SShJTxZwN7/SxUHCo+zjF1kYwWlWpkfqfbNMYYbcbF924Bv+d8wNmpXUflIWDFq+BV5WBP/Z972s/fBn/mD4rLUQtGq7MAfTKDVuSY0iB4RuJ1ExmONXCs2we0OoC+mcCNZzP8eVZsH6M641++B/7U79Un2roWfMEM4K2NYPlDUJDDsKnE+9heGj23QEPq+/3i81r/7PjaP5Rwawuw/Tuf5smUxcefhlYgK/TPiyVEyCVzNHkEmZ0MKuNeYWaNrUBTx6CzDsObvX+qI2HSPxu4dSrD7dP8OwarZebE+8+LonqQPzKpmRGJkGXXSxj9uHKA2ci/yKh8TkKzDZj0jIzq5vZxFQ3Ash85dldwbLxf8gjQKj7OMe05GZYuju3jnpTR/KKEZCPDqp/Vp2VcxljrFjzQaz3OHrQQBTlQDkaLnuetxgxRQHPnsHRCSPBRMBohhERIv3790K9fPxw6dKht2FdffRWUhlerV6/2eD1+/HgkJSUFvNyOXKInVoVYXl4e7rnnHtxzzz2w2WzYunUrfvjhB3z//fdYs2YNmpvbrxgaGhowf/58GI1GXHTRRQGtNzPT8+5LY2MjcnNzNc/f0NCgabqcHM8a8FNPPYX7779f83oIIYSQRGOTlR9BaJRMisP9oRaWYpOtMOvoLmkwiEJvgOAEqJDEJQoLEoURhYPacaNVbkEGshXHydwFGco3UygYLTJEAWI2uRUylyExz6cLC8Orgrg/mqRkQbiY5zDOuWrgWKiJA8G0hboB7u3vW8Ca6HgQ+iA4EVH5ndwJh+yAQdL23Ra/N+XPUi2ApFW2IA0BBqOpBLs55MA7namFn6mFphFCtBEFKbmDl5RbaHHEeessEjE/NKyGC8rhwFMyZoe5NNErQ698DVHvjJ5eAcKQ2gjWxQghhBBCCCHxjdrn+Yfa5xFCCCEhJCu3+YAkAWmCYLRt64C6410uuo+jHBJ3QVZ4yOfL33I8EdipOia85EMw2sMXSF1PFMV4yR7xyPOuA0sy+r3szOxU1fE2B4fREP+BPCct2cBVQ9GyU4A0k+f20EmxuX34x//0DkXr6PtPwCsPgeX1A1/+inCyTLlOOK4ugZt01Ave+2m9gP+9Tgeni8PuBJKNsbn/dEVtn/Fgt4J/uhTstme8QgdPOliVGO0TFn0pqDfAHc4T99Z9pHlS9vI3QH01Mh/9k3CaOgsFoxH/OF3uQDPPMDOgsZW3B5ZZT4aZtQ/3CECzosvQGxJaaSYg3QSkm93/dzvxf5qZeQ83A+km1jbs5PhuZngEGvlKrYoY78FowawDZtKxnETIKSq3KxpagX/9yGFzwiMUraOfSoHNJcD4wvZhS3/gms8PK7dzXDWe4bmvxHXE0v0DkeuqgpHbgUMSePVVKMjJQ1FZ4oYNB1NptfLBOj8nPq/hCIkmFIxGCCERNGvWLLzxxhttr99++208/fTTMBj879BeVVWFTz75xGs9SvR6z9OA06ncuUhJXZ34ZkW4GI1GTJgwARMmTMA999wDu92OlStX4uGHH8a+ffsAuDt6L1iwABdeeCEkyf8bmHl5eR6v9+/f71PDq5Pl8XU9WucjhBBCEpVNEOhiDGKnWrXwpFa5hYLRgqTVpRKgwoP/1G6SOMSd7yMYjKaybrVAHycXX7PpGf3MFwmi/YiDw85tMLH285GTO4THs2AG9YnK1DkEzcatwhCbcIRT+BRoJgjBMknJwrJa5VZwzj0aIYQjmM5XagFlVtkCgyRo/N6JWnickmSV8DvRsnzRohKMpnYs00rtWGnnNri4Ezo6LhLitzpBkFKmIVsQi0ZIaLi4C9/Xf6k4LtvQHaeljAlziaJXpkG5V4Do+xwJrYLfcCJZFyOEEEIIIYTEP2qfFxhqn0cIIYQEmSwIPmUSWHqW8h18DaFoAJAEB1LlZjTqvB+CZXMCsswhxWhYkxZNVo59ldqnz4/1QJlftwhHsb4DA1r0BSOAZzeIx1c3A70zxePjzRaFDuQdDe6hPDwrBahVaDpx9ZlR/D1U2a/a7NsOnt0LKN4hnMTI7TDLLWhVuAeUyMFoRwVZzpknNpNex6D3zraMC9zlAvb8pH2GD/4B3PYMCgTBaCU1wSlXtDui8rNA3wQ4DvNft2qbUJKA/CFAYy2yXbXCyY42AKd0D1LhSExwOHlbKFmjR6gZdweWdQgta1IafuJ/tYBUElqMAWnG9lCy9gAzhrROAWdeYWYd5kk1IiquhdQy1eQ4D0YTBcT6I4Oev0giJNXE0DsDKK9XHv/05xyTBqgfa4rKOMYXtk/T1fWmx7ylwFXjgeNN4ml6OY9COvnrkiwDB35G/+xzFacVhXwRsRJBU8xCwXULISR4qGcQIYRE0J133ok333wT/ESkd1VVFZYsWYKbbrrJ72UuXrwYDkf7U1pSUlJw4403Kk6bnp7u8bq+XlAjV7Br1y6fyhVIGrpWSUlJmDdvHmbOnIlhw4ahvLwcAHD48GFs2bIF48aN83vZY8eOxccff9z2euPGjZg4caLm+Tdt2qRpugkTJoAx1rZPrF692qsjNyGEEELa2WSr4vBgBrqoddBVC+Ugvukc2NORUw48QIUkrlZBoFIwg6h8lcSMkCBBhvfTWtQCiZxc/EROPfO/Aw/xn9r5xupq8RhvdYmPc8EMgxAHhXnuW6KwMQBhCf0UfQeVyqUW+mUWBHxxyLBxq0c4XTQGJaqtu1VuRRo0BqMJAkZF28comcHAFMPx1MJKtVLbv9SOZZqX30UdzCq3IkWXFvB6CElUtY4qxeGZ+lyAotFIGP3S/JMw2OusbrMgsTjtGeCHTL1y65p6Z03U3GOwCoJTI3ltRgghhBBCCIl/1D4vuKh9HiGEEBIg7t1OBAAg6YC8vgEvfkLrJnyZOsNruNUBHGsEemm7/RyTynwMyYn2YDT+4+fg364AjpYAO753D5xyMdhNj4H1Gwx+5IB45mmXBLTuCYONMMmtsAranzS0JlYwmqjj80lXjFOuR141nuHFbzzbZPTsBowvCFbJQqCirMtJ+D8fBTtlGOASBD2ekOmqFwSjcSTiPecWG0eVIMCgX1YCbI/qcp9nkf/xR+SfdiuAQq9xVU1As5Uj1RRf287h5Hh5Lcemg+6AnG2HxdMaDfH13hVVlGqb7oxzwdKzgPQspMtNyHDVoV7nfaIqreY4a2ACbLc4trWMY8kPHNVNwKxhwDUTGL7ZC7z/E8eB4xzNNs9Qs9bAmykSP0kM7QFlpg5/mxnSToaZeYxn7SFnHYLNUpKiI9AsWNTeSrzHEwUzGC2TmhmRCLriDIbnvlL+xh6sBg52ETb23FccK7e5oGPAqH4MX/pwG+iDnzh+KXehWJCfn+5qaA9FO6miLOHDhoNlSxnHAeWm1SjIiZ9zFSHRioLRCCEkgoYOHYrZs2fjs88+axv25z//Gb/97W+9nkyoxe7du/Hss896DLv++uuRlZWlOH337p6POti9ezfGjh2raV0dy6yF0Whs+9tms/k0r68yMjIwd+5cvPjii23DSkpKAmp4NXnyZI/X77//Pu6++25N81ZVVeGrr77SNG1ubi5Gjx6NrVvdT7YoLy/H559/jjlz5vhWYEIIISRBiMK0jMwUtHWohd60qoR5Ed+0CjpIA8EJUCGJKxqDkBhjMEnJaJGbvcaphf04uTgkkILRIsOkUwu1akEG2lvSqn22ZpXl+EoUatY5JFAthC+YAaPCdQjes1K5ROd7sy5FPZxObtUUThfJMA61dfsSwCraRqLtIzEJRsmsuA61c7JWLSE+r3dVB2t1tVAwGiEBqHMqt3jINOTALiv/tqsUtEhIoL6r/1xxuJ4ZMLHbOWEuTXTL0Cv34HJyJ5pdjUjTdwtzibyJzt+RvDYjhBBCCCGExD9qnxca1D6PEEII8ZMsCkaTgB79A178GxW3ov/AYsVxB6soGO2knFREdZgOX/Eq+PN3eY9YtxJ83UpgSRGw7Cnh/KxXYMlbktmMNYfOwqT8dYrj6xOoyaRL5ihV2bduOpvhD1OU96Wn5zKUVHOs+tn9uncG8OkCCbooDffgTfVAs4Yg54O7wOcN6XKyTFcdjhp6eQ2vDbxJSkw6VCse1z/KgxqDgX/4iu8zLX8F+V98C/Tbojj67Y0ct0yNzu+TP2SZ48KXZU3hGMtvkUJfoGhQUdr1NIPHgP359fbX1/8P8tcewnalYDQK/4hp3+7lOO9FGdYTTQ//XQTc9W+ORivAqclS0EhMKbQM6HYi0KxjaJl7PPMKM0s3ASnG8DzEIdaobRHRpWK8qAtiMFpGMu1bJHIevYBhzR6O7SoBtmpKa9rrJKv3+HYCq2x0/xP5z5ErvYbxY2UoGMCgFL94tB6wOjhMiRC4G6Dv93NMeVZ8oBaFzxFCgoeC0QghJMKee+45rF27Fi0t7qu7+vp6zJ07F19++SVSU1M1L6eqqgqXXnop7HZ727CePXvi4YcfFs4zZswYj9f//e9/cc0113S5ri+//BKbN2/WXDbA3RjqpOrqajgcDhgMoeu4r9d7nuI6Nvzyx9lnn438/HyUlpYCAIqKirBq1Sqcf/75Xc77l7/8xeMpoV25/fbbccMNN7S9XrhwIc4++2yf9gdCCCEkUdhkq+JwYxADXQwsCTro4YJ3IJEvgSVEnVpAj4PbheMI6Yo4UCmyne9NklkxGK1zeFVHamFCekY/80VCV6FcHakHkQVvfxSVqfM5SzWoTVIOVwsms8ZyioYB7veqGizmagH07Z3RRIFfkQzjUA9g1VbP4JwLt5EoKA8AkqUUxflaXIG3QlUrezCC0axdhLdRHY2QwNQ5lB97nqXPRaVd9CRnamVIgqvSXo69LTsUx41Nm4xUfXqYSxTdMg3i1jV1zuqoCEazCq51whHKSwghhBBCCEls1D4vNKh9HiGEEOIH2aU8XJKAHv18W9bAkWC3/hVoagB/eD4AoJfzKLq56tGg805AK6nmmDwwfju7ltVqv1cVzQFx3OkAX/Kk+jRP/U48ct6dAZeBMYYzsAc67oRLoT1SfQLdjj9aDzgEX9sv7pQw4zTxd8qcxPDJ7TqU13FUNwPDewNSlIaiAdAWQOSDTLlOcXgwQzFiSZlKMFpf5Zzt+PLB837N1s+yHxJckKHzGnfvco5bpgZYrijywwFoCkUDgNN9rDLEIs65+Lg062qw6ZcBvQqBvgM9wpfYmKnov7oM200jvWYrPWYDQPemY9VTn7WHop3UkEBhrV3RSScCzdqCzE7+fSLQrENomTvIjHUKOHP/nZxEgWahJKnkWsZ7y7v6Vt/e4Wm9gF1HlcdFc5WaxL8UI8PWh3SY8bwLX++JdGk8jbL97D2wokw1tKusBhjcI3Rlihd//Uw9vZKC0QgJvQSJByeEkOh16qmnejw5EQB++OEHzJ49G0eOHNG0jP3792P69OnYs6e9Ji1JEt5++23k5uYK55swYQKSk9s7/65cuRJFRUVdruvaa6/VVK6OhgxpfyqM0+nEt99+q2m+lpYWvPjii2hqatK8rubmZqxYsUK4fn9IkoTbb7/dY9jNN9+MkpIS1flWrFiBV17x7ekm11xzDU499dS213v27MHFF1+Mujrlm0MiVVVVXtuBEEIIiTeiwCOjZAraOhhjMOmUb4SqBRgR36gFmAQjQIUkrmgMQgLEYUWi8gLq3wUdBaNFhJGZwATP8LJFKBhNFBSmNahNggQDSwpaeURE71np3C4qq0lKhkkl5LDzfKJ6g+g8Hw4S08HIlOstovCQzuzcBhnKN9zUguPEn0Hg9ZtWlXA1R4DndYfsgJN7B9Z6rJ+C0Qjxm0N2oNGl/DukWvASIcG2ru5z4bizM2aHsSSxIU3XDTrBM9HqndHx6GthXSzC12aEEEIIIYSQ+Eft89RR+zxqn0cIISSMZEFHSkkHZPcEkrQHjbKL/IdRgwAAIABJREFUbgIbOx0YP6N9GIACR5ni9AeVn4sTNyoatE87OC+Ke9KX7gHqq9Sn2a/8YBkAYL0KglIMZk5Blks5yam+Jd5jG9qp7Vfj8rUto3cmw8i+LLpD0YCgB6NlCe45H/PhuxpPKhqUvzd56YDJEOX7RoB4i/Zrzc4McCLPeVxxnNMFyHL8HI/W7tP2XpL0QO/MEBcmGjTWAoJ9h13wO7AzZ4H1G+Qd4NQzH/3tynWhsmP0kO5Y5ZI51uyNdClCQy8B2SnuQJVRfYGzBwLnjwCuPIPh5ikMf5rJ8MRFDC9cwbD0eoYVt0j4+m4Jmx+QsPdxCRWLJFhekmB/VUL18zoc/KsO2x/WYd2fdPjvHTq8+3sJr10t4W+XSvif8yQsmC7h2okSLh7NMH0Iw7h8hsE9GHpmMKQYGYWihZja1o2jU5qiykbfpp94inhrDcwLsDCEBMFLV0qIpkNmmqsR2S6FNoKVh9A/WzxfSZz/VhQMnHOs3Scen53iDhwlhIQW9ZgkhJAocMMNN2Dr1q14+eWX24atX78eQ4cOxQMPPICrrroKffv29ZqvuLgYS5cuxaJFi2Cz2TzGPfPMM5g+fbrqetPS0jBv3jwsWbIEAOByuXDeeefh7bffxowZMzymtdvtWLZsGe677z7U1tYiMzPTp4ZA06ZNw9KlS9teX3/99XjwwQcxfvx4ZGZmQuoQeZ6amoqcnJy29S5YsAD/8z//g0suuQQXX3wxpk6dirS0NMX1bN68GXfccQfKytp/yDzzzDMxaNAgzWUVWbBgAd5++23s2OG+mXj06FFMmjQJL7zwAubOnevxHiwWC5577jk88cQTkGXZp+2l0+nw4YcfYuLEiWhsdF/1f/311xgxYgQeeOABXH311cL3X1tbi9WrV+Ojjz7CypUrceaZZ2Lu3LkBvnNCCCEketm4qFNtcANOTFIyLC7vG6zBCA4hbmohc12FnxCiRtT5Xi0sKBxExylReQH1YDQDMwRcJuI7xhhMklkxhMk7lEv5OJfEjNAx76da+ku0b2ktj1lKCUvjBtF30MHtcHIH9Cf2aZnLXiFzHZdxMpyOKzwvrfN7FL/nCB8PdMmwOa1ew7XWM/wN3UsWBjQGIRgthIGnWrYL1dEI8V+DSoBSpl4cjBbnbbNImFnlVmxs/EZxXD/TAOSbA/+9P95ITEKGIQs1Du+OAXWO6GjBJKyLqQTdEkIIIYQQQkiwUPs8ap/XEbXPI4QQEjGyS3k4Y2A6HfiEOcC6lV0vR5KAiXPcsyanetynKbCXYLtppNcs8d7Ztd6HW8QXjgpdOfzBZRnYuhbYUwT+7YeBLWzSeUEpE0zJyHA1oErf3WtUg7hpU9yx2MTjukXuGXyhUaEeSOyrvg7lEOrS6sS8syw6RuWmhrccEVF+MKDZ8+2lqND39BpucwLHm4Ae3QJafNTQGhhzwQhAF+1Bi8FwTDncDADQK188LqcX+svliqO+OZQKm4PDGOdhhPGo3Lcc+7BI0rvrAummE/9O/m1mSDOdGOcxniG983AzYNSDwshiDK+uADavBlc7TonY0gHcrjiKx3kVydfr0ZF9gbH9gaJOm3lgdyBfJeSJkHAZlMcwZSBUA7P8NbovcLTBt0DBC5tXKYcvlu2FycDQs5ty8HdpDYd6bCOpbASsKl0fLhxF24+QcKBgNEIIiRIvvfQSMjMz8eSTT4KfuJJtamrC/fffjwceeABDhw5F3759kZmZiZqaGpSVleHXX3/1Wo7BYMDixYtxyy23aFrv448/jpUrV6K+vh4AcPz4ccycORMDBgzAiBEjYDQaUVlZiU2bNsFisQAAevTogWeeecanJ1NedtllePDBB9uesnn06FHcdtttitNee+21Ho20AKCxsRFLlizBkiVLwBjDgAEDUFhYiIyMDOj1etTU1GDnzp1eT/FMTk7GG2+8obmcagwGA959911MmTIFNTXuDoIVFRW47LLLkJeXh9NPPx3dunVDZWUlfvzxR7S2uu/6devWDc888wxuuukmzes67bTTsHz5clx66aVoaHBfcRw5cgS33nor7rjjDgwfPhz9+vVDeno6WlpaUF9fj3379ml+iikhhBASL0RBKUbJFNT1iAJTghEcQtzUAkwCDVAhia3VZVEcrhYWFA5mSRRIpFxeQD0kUE/BaBFjkpIVzwedj2uiAMhgh3KJ9m2t5THpwtNyU+07aHW1IlXv3qft3KYYenZyGWrhdF7vWXCuifTxwCQlowHeT1rWWs+wqoSLqu1fovfdIjhuasU5Fx57gcDP61q2C9XRCPFfrVP8BPpMQ464MV68t84iYfVT43fCa8QpGbPDXJrYkaHPVg5GUwk8DBcXd8LOlXsPRbouRgghhBBCCEkc1D6vHbXPo/Z5hBBCIkSWlYefCP9kNz0GvqcIOH5YdTHslqfAcnq1v779b+Av3QsAKHAohxsdrIrvezkNGm8R/3YkcOmY6Om0yp0O8L9cC3y7PCjLY3n9grIcmFLQTVboNQ2gPpGC0ezKw80GQIqzYCL+8n2BL6R3YVsIluhYFO8hjSKiYLSMOL9Nxh128BsnBrSMl47dhdMLNymOK6uJn2A0tSDGjp64SOp6ojjAv3xPeUSSEcjqIZyP6XTITxFXCn7znIxPF0jISI6vY3i8+2RH8OqxJkOnILMTf3c7EWjWMbTMPZ55hZmlm0ABewmK79wI/ueLgUbv9r5aMH1vYKByMJocx5drnHMs2eDbG8xMBp6fJ+HCl2TUnTispxiB1/+fRGGCJGoUdmdYuy/4X96XrpRwrBG48k0ZNnH3ofZy2A/i4aonlUc2N4BXlaMgp4diMFqiXp/54tNfxJ9xRjLw0Hl0TCIkHCgYjRBCosjjjz+OKVOm4NZbb8X+/fvbhnPOsWvXLuzatUt1/jFjxuD111/H2LFjNa+zd+/eWL58OS666CI0NTW1DS8uLkZxcbHX9AUFBfj0009RWVmpeR0AYDabsXLlSlx00UUoL1d++oJWnHPs37/fYxsp6d27N1asWIHhw4cHtL6OTjvtNHz99deYM2cOKioq2oZXVlbis88+85o+IyMDn3zyCVwuwRO+VJxzzjkoKirC/PnzUVRU1Dbc5XJh+/bt2L59e5fLyMzM9Hm9hBBCSCyxyVbF4UYpuKEuWkNmiP/UtqWDC1oYEaKBVRCgaNZFOhhNcFxxiVsPqoUJUTBa5JgE55zO+57oOGcK8r4oPmdpK0+wg9pE1L6DrbIFqUh3/60SsHVyGaJwus7DRAFikQ7jMAv3IW31DLUQMLX9SxTQaFUJaNTCwe1wQXwnNtBgNC3bRS0sjhCirs6h3NLBLKXA9P/Zu+8wN6qzbeD3kbRFu+tt7gXvrgGDDRgwpmNDDJjQQkgIJEA+SDAlkISQhIQ3gQQICeQl8AIJPdQQWgqE3rHpNiVgG2NsbK+Ne9tdb9FqJc35/pC36jyjGXVp7991+fJq5syZI2maZs7c4/FD8elwlGZaa8xtij3XDgDlniHYb8hhGW5R/qjxDTMObw5nvweT9LsMyNzxJxEREREREcD+eU6xfx775xERUZpoKRjNCwBQ43cD7p0HzH8ZetWSmGKqogqY+hWoifv0HzH9a8COYLQJXY3GWRT6za4tAfONql/fBzh2L4WN24ED6hWOnAR4cynQ6s2nUxeKdu5VKakHAOAvR9V2IRhtEF2Ob+s0L1flJRluSJrpptgH77g2bAwwaf/eYLSuVcZiq7YB4YiGz5tD62EGSIGChR6MhrlPAhGbNIed9wLKhgC1I4HmLcAnb8YUmRJcKE7euFXjwAmFsSxJ+7G+Vl7rQd3Qwni/drTWwD/+bB45cjyUxz4crq5WA+bbC/DuCuCOuRqXHVv4n2Mh+fGj7kJnHjpHodKvjAFoxT5+95Q4fdMlCYeiAYBHeEg0UNjPJH13hftpqv0Kh+6isOC3Hrz8mUYwBBw/RWFcDddhyh31Q+3H33GmwphqhWUbNbZ1AJ0h4IaX7Ff2IyYCB+8cXc4XXenBi4u1MdAMlgYevBaTuz7DrLZXUGM1i3Xqv/wSDeMfxDvLY+fdWODnilLh3Afl72zFHxi4S5QpDEYjIsoxRx11FBYvXozHH38c9957L+bOnYtwWD4RXFJSglmzZmH27Nk48cQTE0q8njlzJubPn4/LLrsMTz31VM8TMfsaPnw4zj77bFx++eWorKx03fEKAKZNm4bFixfjkUcewQsvvIBFixZh06ZNaG9vFzsmVVVVYe7cuXj22Wfx6quv4pNPPrH9PABgt912w1lnnYWLL74YZWWpv1Kwzz774LPPPsMVV1yB+++/v1+HtW4VFRU45ZRTcPXVV2OnnXbCnDlzEprXLrvsgvnz5+PZZ5/FzTffjDfffBPBoP2jQCZNmoSjjjoKp556Kg499NCE5ktERJQvpBtrSzylKZ2PHHoziHr5pJldqEtYO3jMBZEgIAT8ZDsISZq/1F7APkzIq3iaL1uchmdK27lUB0E43WdJ7cnUumE3n777d7sQje736veUoclUz4BwLDEoMWe3B86OM6TjEQWFEiUfE5V5zcFoHUkGo9ltxwAgZCUXjObkc3H62RFRrCYhQKm2aLjtdNqm4xaRG8sDn2GdcKPEwVVHothTYHeapFC1z9zbSgo8zCS78yfS8SsREREREVG6sH9ef+yfx/55RESUQZYQ5Nkn4ENVDQWO/ra7R9WMGBetw7JQH2o0FlnbDHSGNEqLCvOGTSl0aK9xCudOtw9QySb95lOpq2xMQ+rqKqtAdbM5GG3L1k4AhZ7mFNUuPM+10ILR8O4L8rjakcA2B79N6nbrtww2hFYai0UsYMN2YNwgyxduES6VVfsLc5vcTb/1tDxy6hHw3Pxiv0HWWfsBKxb1G6YATPJvwWeB2IdErdqailbmhnihk7XlGBShaACAjavlcaPr405eP6oUaJTH/+djjcuOdd0qypL2oLv+SN/aT+H0A3P32I/yl968Fvj8o6TqUDb96yLhCAo18uOFRe77FXaHx46tUTj7kEGy/6O8U1crj/v+YQrnzejeH0WXYa01bntdI2DTjb47FA0Adh6hcOEI8/KvP/8IesvvnDX0i09QP9U8auUW9vu10xmSP5/Jo8FQNKIMKsyjJCKiPOfz+XD66afj9NNPR3t7Oz788EN88cUX2Lx5M7q6ulBSUoKRI0di4sSJmDp1KkpKkr+ysvvuu+PJJ5/Eli1bMHfuXKxZswYdHR0YOXIkGhoaMH36dPh8vbuNI444wthBK57Kykqcf/75OP/88x2VV0phxowZmDFjBgAgEAjg008/xfLly7Fhwwa0t7dDKYXKykqMHz8eU6ZMQV1dneP2JNohqqqqCrfccguuv/56zJkzBytXrkRTUxOGDx+OcePGYfr06Sgv773BONHPC4h+BieccAJOOOEEdHZ2Yt68eVi1ahW2bt2K9vZ2lJeXo6amBrvssgsmTZqEoUPjRE0TEREVkKBlfqRTqm+q9XvMwSGBCEM3UsXuJmm7MCgiO1rrnA1C8nulMC05BEoKCfTAC4/ihfxskfY5A/cR0neb6iAyvxB2Fdue3A1G6xtqZbd/6N4/y+F0vZ95REcQ1MJxg7A+Zoq0PeqMyNuDvuSQO7/tDXpiIFuSxzcdEftgtGT36wMD74xlGIxGlLBtQoBSja+7k7HQ0YLBaJQibzQ/bxyuoDCjmr2T7dQUxd4MAADN4ezfERCwOa7Jdmg1ERERERENTuyf14v989g/j4iIMsiyzMOT7POhfEXQO+qeIIQRAUDjFmD30UnNKmdJgTLVaXw2h27ZGg3wiUSAMfXA6AZXIbp66wbg5UdS0xiPB5iSwsDW8bth9OoNxlGrNgZRyMFoWmus2AxENNAu5OVWFFAwmt6wCvrpe8Tx6nuXQ9/wo/gVTT4AanR9z1XjUWE5TG1be+EHo23arrFoHaA1UFYMbNhu/q1SVbirUtS6FeIote/hsQNH18UEowHAeGzEZ4i9FtqY/cugKdMUp6vTzN0y046csFZebjBp/7iT14wbib2XLMAnpVOM41dk/7li5MJKl99XHU/ZULrYbZscsgtG0+EQCjXyY1PsMy/iGlOd+nYQpdqMiQpKaZguS5ywV+y5AaUUDp8IvPCpXOcRuzk8p+Bmm7R5HeqF/aPb/exgYxfE7PaYQ3d2AEs/BiJhYJcpUEO4oSNyozCPkoiICkh5eXm/jkfpNmzYMHzzm9/MyLwS4ff7MW3aNEybNi3bTQEQfSLoMccck7H5lZaW4vDDDRcAiIiIBikpZKYkxcFopV5zfQzdSI2Q1SUGPnWPJ0pEUHeKIR3ZvvleDNNKICSwSBWlpE2UGGlZGhjeGbDMYVGpDvOU6uu0OqC17umEK4VfZSo00Ku8KFYl6NKxvUj77l+ldcIDD4pUMQA52KzvtEGb0EF/ir8Dt6T2Oz3OkMpJwa7dyoQQvWSPb+JNn2wwmt120k0ZIjJrCtsHo/H5ZpROLeEm/Lf1XeO4Pcr3w7DikRluUX6p9pl72zSFt/Y7DswGu+ODbP82IyIiIiIiYv+8/tg/j/3ziIgojbQQjObxJl/39y4H7rsGdaHVUNqCNoStXfh3C6/+zJPV88XpIgajpeEUtA6HoW/5KfDEnf1HNEwGbnoBqtb+eoYOdkJfey7w6uOpa9RJ50KNGJey6tR3LkH96zcbx63cloLlNUdtaNE46VYL7zfalysvzkhz0kpv3wb969OAj9+wL3jSucAHrwJzn7Qtpr55IbBqSc/r6kizWFZaXwtBV1jj3Ac1/vaes9DmdGyjcoXWGvjsA7nACd+LHTa63li0PtQIYI+Y4XfM1bjtjISal3Ps1ouKEuBnswbHg3O1ZUFffZY4Xn3jgviVjKnHFVv+gFPGPWocvbkVaA9qlJcU3vFQIXpnubsQ/Hrz8+SIkvfJW0lX4ZF+D0LO0C4Ebo/9fJ7CD9GlwlA3VGH2YQp3v9l/X3XYLsDX9jZPc9mxHsxdaiFg6Ep/+ETgyN2dzVu/+4Lzhgba0FC6HcCQmFFb24HWTo0hpTwuMrELjvvDyc6Pz/UTd0Df8nMgvOOLVwr69J9DnXc1lGdwHOcTJYvBaERERERERJSXtNYxoTPdUh0yIwWLSMFs5E688JJkA1Ro8OoUgp+AzIU/yfN3H0gkBQj6GIyWVU7DMzsj5n1GvPAqt6Rl24KFkO5CsSoxtq+bFNKVDqWeMnRFYoPR+oa2ie30lPV01pbes5OAtWhdqf0O3JLa7zTcSwq5i3c8JM23Qwjxcyre9Mnu150EtzG8lihxTaHNxuE1Rew5SOn3dvNLiMB8zHt49bEZbk3+6Q4wHCisQ2iLbMcQX1WGW9RL2jf7lA9FHv6eISIiIiIiIiIiokEiEjEPT8FNkOpr50Dfdw1KdBfGhdfiy6KdYsrMWQq88hlw9OSkZ5dzmoVufFX+NNzc+9TdsaFoALByMfT1F0Jd+y/byfXf/ugsFO3AWUBRCbBlHbDkw+iwvacDfYPtqoZCHXQMcPzZztvvgBo5Hg1qo3Hc6nY/whENn7fwbpye/UD8UDQAKC9Je1PSTt90SfxQtFN/HO2bc+XfgSfvhL75p2JRNXQUdFdvf95ihFBmtaPD0CenqYC7dPzpJeehaABQU8DBaHjxYXGUuuJ+qGGjY4ePrjc+Bnd821Kg9HhjXcs2auw6Mv+3R9J6MbYaePEnHkwek//v0ZHX/glsM+9/MHJ83PBRAMCoOny99Sncs+48nDPmLmORxq3AHmOSaCdlzAUPuQxGGzpI1hXKOP3XK80jyiuBXfdxVIfqkAOGdQEnozV3uFuPx9cCXg/XZcoPd5ypsH898OKnGp0h4NBdFH5ylIJHWIZnTFR48xce3Pu2xuJ1GhrAkFJg+q4KP54pT9eX1hp44W+u2lkfXg1T0DAANG4B9kpdznpBWbFF3n7tvZOz7ZT+dD70jRcPGKiBv18P7LIXcNRpyTSRaNBgMBoRERERERHlpbAOw4K5s1iJKk3pvKRgEaeBJWQvXniJFAZFFI9tEFIGw5+M85eCkGzC3KQwIa/iKb5schpqFRDCoqRgtURJy1Z3m4o9JT1/m2QyNNDvLcP2SFPM8H6BZsI64e+zDjvZT9vta/wpDlR1S/rOnIZ7SeX8XvvANzGg0WY75EQgEi8YLbn9upPjL7ttKRHZawqbH3HWG7hkvpivjd2TiZyL6AjeannJOG5Y0UhMKt83wy3KPzVFQ8VxzeGtWQ1Gk/bf2Q6oJSIiIiIiIiIiIsooLdzsrpIPRkPtKKC4BOgKor6r0RiMBgCPzNc4enJh3WQejmi0mp+viuo0dIHQr9iEmr3zHHRbC1SFzTn5Vx6NOw/12GdQYyYk0LrUqZ9QC7TFDo/Ag7XNQJ18WSIvbW3TeOFTZ2XzPRhNBzuBuU/ELafG7RL93+cDTrlIDkYbPnbH/+MArw+IRPuFVEdahGA0Dem6c757ZL676+bV2e2ylFb65UfkkXseZB4+qs44uL5pARCbowYA+M8nGj+fld/Lk2VpbBf2Y/edPYhC0QBou33k5P2dVTK6HgBwesujOHf07bBUbBDRyi0MRssHW1rd90WqL7DjE8oNeuOX8shpM+G55jFH9Xj/+zFwuzCPAu571+yyO28Dn99KeUQphdnTFWZPdz7N1DqFqXVJHN8t/a/rScZ9+Bi8nqsRMZyWWslgNNFKc3dqHLaL8zrsjm/1y49CMRiNyJEUnD0nIiIiIiIiyrygJTzmEUBJigNOpJAYp4ElZC9ewElId2WoJVRo7IOQshuM5heC2aTwLACICGFCPgajZZW0z+kcsJ8a+LqbFE6VKCkkLNqG+EFhdsFqqSYGBPZrp/lz6zutHCzWO61dUFYm37OJ03A9iRw0Yn88JAWnBaz26NOkEpTu/bqT4y+G1xIlJhDpENefmqJojyNVoB3UKfsWtM1Dc3ircdz06mPhScVNYQVuiLcaHpifLiuFHmaKfCxcwHd7EBEREREREREREQ0UMT8EFL7k+30oj6cnUGZqp3yT7OcbCu+G+zWxz2PrMbwiDTNc+I48zrKAVZ8bR+lQF3RHK7BupX39VcOAEeOTaGBqjB0p96XYZv+8tLy0aC1gOVw9yovz95qptizgy2VAVzB+4YkDHlx02sXGYupbP4z+7/MBo3qX3RrDwxIB9+EY+SJiaSzd6G6a6rL8XZbi2rJeHjfCHN6JMQ3Gwft2fChWtcp8iTmvbO8EpK5aNQXynKl4fdG01tDhELBysVhG7TbV2cxqRwLFpShCGOPCa41FVm4pvOOhQqG17lleFq1zN21lKTBheBoaRbTafHwPAGrnvRxXo2z6PlmRwtsuRSyNYEijyeWxX1KBUUQFTofDwBcLXE/ne/I27FRlPie1cmvhbX8SobVGeMC2eOVm82fTMEx4wLRlQXcF+/2zO761278QUX/sQU5ERERERER5KajlYLRST2lK5yUGrtiErJBzgYh9T6mwDmWoJVRopGAPDzwoVtl9dKe0XQnpLjEALSSsCz5VlLJ2kXtyKFfHgNfmbV288KpUtSfahj5BYcL6kcnQQCfBo1JYYN/PTQwW67N/kcK0fMqHIk9x3Lamk9NlSCKVixe6J31uFiwEtfAYUgfSvV+3C7nrxvBaosTYBSfV+uL1HGTnCErO3ObnjcOLVDEOqToyw63JTx7lQbWv1jiuKZTtYLTsh/ISERERERERERERZZ0UjOZN0QPxRtcDAM5pvl8ssjK7p4vTwi4Up25o6uaj13wB6weHxy930VegW5t7X7/wd1hn7g09cwj0McPk9JtuXz8vGjCVZTVjR4jj3IYb5IPlwg3PJmXZ7XaWEN20CdavvgX91eHQ35sWf4JJ04DJ+/cbpE74HlA8oG9uRRUw6/Te1zu2QwBQbTXDZK15cN5b1wyEhM28pLpAL5VprYGNq80jxzTI27gdAZ8DTez6QpxXSwFsj+y2qdV5/pwp/cVCWBfNhD6qGtb3D4Se/3L/8ZEIrNt/BT2jFPorFfbhocecLo/rQykFjIyG79V3NRrLFOLxUL6zLI0rn7JQf5kF7/kWPOdFMPMGy1Uds6crlBYxUInSYPkiedxxZzmuxmOT6JHMw4xzzcbtGt+4LYKaiy34L7KwbJPzaf1FwDmHcT0mGkivWgLrx7OgZ9VAX3e+WE59/wrziM4O1IdWGUcN9uOirrDGxY9aGHNpdJt10B8iePuL6DZZ+mwahvV/rVubYP32TOjjR0EfWdnvHz58XZ75muXQG79M0TshKmwMRiMiIiIiIqK81DfcZaCSFIfM+L1C4ApDN1LC7rsEgLAOF9TFHsocu5vvlcruRTO78Clp2yKFCTEYLbv8wj5n4PIXELZ18cKr3CqxCQftG+gphXtmMpxCCoXruw5I+4i+n1upsJ/uO61UTy6EcUifQ2fEfv/YTQoKixe6Z7fsxQs3s22PEGbXLdlgNCehZzxGI0qMFIymoFBdFA1bkg6heLROyVgf/BJLOxYax00bMh3l3iEZblH+qikaZhzeFM7uo9Ll32Z53pOfiIiIiIiIiIiIyI2IcK00xcFok7uW4PLNfzAW2bAdCHQV1pWdVdvM76e6DKj0p6Z/kO5og77wK8Ci9+IXjoShf3lydLo3n4L+/feBVUviTzdiJ6hzr5JvZM4w39g6DIlsN45r+mJFhluTfrMfdL5elOdZMJq2LOiffBV48ykg0GZfuHo4MOt0qBuejelfp+onQd30ArD3dKCyFtj/SKjb5kANHdVbaExDb1WRFuMsbnipsLZB3RIJFMj30CtRWzPQbt5+qF/9VZxMVVQBQ2qM486pM4ejNXXk//LUbBeMlv2ubQnTTZugfzgTWPA20NUJLPsY+hdfh/78o94yt10GPHxD3LrUr/4KNWyM85mPGg8AaBACQBq35P9yU2iufkbj6mc0vmxyP+3Ow4GbadqDAAAgAElEQVTLj1f44zcZpkTpoW/9pXlEiR9qRxCjE3b3LlhWYWyXLEvjqBstPPkx0Ba0L/vr4xVm7AqUFkX/HT4ReO1nHkwcyXWZqC/d2hw9H/HfuUCoSy5Ytzvw7UuAGnPIecP6d4zDB/tx0YUPa/z5NY2N24GIBcxvBI660cLSjRorhS6XfYPRtNbQl54EvPYPoM38G9iO/s5k6HA4scYTDSLZf4QEERERERERUQKCVqc4zi4UJhHSjbpdOoiIjsCrvCmd32ATL0BFw4KFCLw8jUEuJRoWlAl2wWidkQAqvJUxw8OWFIzGdSObpGCtzgH7qUyFQXiUB6UevzEIrG9YlBQcJYWBpoP42UX6BprF/9yk9anTwfvNie2B1xxQFrDaobWOG+Qo7Ufjhb7ZfdcBqwPmbobxdcQNRkvu4l28QNVoGQajESWiKbTZOLzSW90niJUdjyj13mh+Xhx3eM2xGWxJ/qvxmYPRmoXgw0wJCIGvuRBSS0RERERERERERJQpOiJcK01RMJoaXd/zMJvTtz+Ka4b/yliucSswaXRKZpkTVgk3qtbVpnAmbzwJNG1yXn7hO9DLF0H/525n5YeOhudf5tCfrBlVh2qrBa2GPkxNb70BnLBzFhqVHpu2u7sRvLw4TQ1JlwVvAys+jV9uyqHw3PqabRG118FQf3lFHj+6oWc7VBOR022+3KaxU21hXXtemUCgQD6HXtnasFoeN6rOftrR9UBr7LIzJrwewC4xw+1CxfKF3Xuoyn7XtsS9/GhsQF4kDP3MfVC7TYUOdQHPPeCsrkOPdzfvkdHlrE4KRsvuc8VoAMvSuPMN59vQE6cA//kh792gzNBrl8sjDzvRVV0ej0eeT4EEo731BfDpOmdlj9tT4XcnyZ8JEe3w+j+B7dvil9vvCCh/OXD6T6FvvSxmdH1gOWB4Pm0iAc+FYntA4+/vxW5/g2Hgple0eJw+YXif37LLFwKfzku8EaEu4P2XgYPZT5bIDo8YiIiIiIiIKC9JoRgKHhSp1PY88XvMgSXRdhTAVfUscxJwEtLCE1OJbEjrpxRClEl2AQBSyFEE5g6yvUEllA1SsFbf5U9rLQb1pWN5lMPaom2I6Ai6tPlRXJkMp5CCufquA3LAYZnx7776fgfi9sBmH58p0jJkwUJI2zzZaQdpPxpv2bJ771KQnBOdwnfWLZzkPj1eoCoQXW60LoyOIkSZ1CQEJ9UUmYOW+uI6R4nqtAKYt/1147j60okYXxrbuZ1k1b6hxuFNoez27JbDbgv1bg8iIiIiIiIiIiIig7AUjJaiYIfRDT1/1oVWQ2nLWKyxwG563dxmHj4u0aeBGeil/3U/0bKPgWWfOCtbt5v7+tNt3M5isFVzU2H1mfxsvbvydebLMblr2cfOyo2uT35eY3q3Q/VCIBEALFiT/KxyTSKBAgUbjGYX3DBsjP20I3cyDq4JmT/gQtgcSe9hSCng8+ZvgKD+x1/MI568K/r/+kagrSV+RTUjgCHuduqqbiIAoCHUaBw/mANActGG7cDG7fHLddt9dP6uF5SHli0QR6m63V1VZfeQZKtAgtH++6Xz91Gb/e7bRHlBL3X2e06N33Fe4aTzosdPA9gdFw3W/r+fb4yGoJk89Yn8mYzvG8Tv9LyPHYffMdFglprHihARERERERFlWNDqNA4v9ZTaXjRIhBRYAkRv7i33Gh6bQI4FIvEDTqIhKvn86DPKBinYx26dzhQpEAqQQ46kMCGfh8Fo2SSFOYR1CCErhCJPEUK6CxYiwvSpXx79njI0Izb8onudsAv19GcwnEIONAv0+Tv+eiy1udMKwNIWPMrjqJ5ssQ8oa0exp8R2+kS3dUWqGF74jKGLgYjQc9yBjjjBZSErftibHSeBqhYiCOkuFCv7z46I+msSOhLX+HqD0RSk31qDs2MEJW9+yxxx2354NZ+C55YUZNgsBB9minS8Yve7iIiIiIiIiIiIiKjgRKRgtBT1+xhT3/Nnie7CmPB6rC0aG1Ns5VYNiNd88k+L0AWitjyF73HJR64n0Xf/Fti20VFZNet01/WnmxpSg6qI+Qbfps0OgmzySHP8bgg9in3ACVPSu/7o91+Bfv4hYM0y5xP5ioFJ06C+81OoYaN762prgb7l587qSHEw2jdan8Q1w39lLPb0Ao3j0/w5ZlpjAs8pqsp+t6X0CAj9jvzlUPHCQCtrjYOru8wfsJv1N1c1d5j7W9TEuZSqtQaevgf6+ot6B06aFv2/shbYsBoYXQe0uF04FTBhT6iTZkN11+eCXt8I/djNwAY5HNE671Cgw2H/tFnfcX9fwMxvAbdehvquRuPolgDQ1K5Rk8pjhTz339Uat83RWLRWo7wEmL6rwqWzFMpK0v8ZuQ2qO+NAfm+UQetXyuOOPs1VVR6PPK5QQomWbHBeNu/CholSSFsW8J+7oN95HmjpsyP0FgGT9oP69iVQI8ZFh33u4HyErwg44hsAAOUvhz7gaODFv/crUi8Eo7UFga1twLBBeFuk3YMD1jXL44buuPVDd3ZAX3de0u3Qf70SOOUiqPJKd9N98Br0cw/GnDtQ5/wG6sBjkm4XUS5hMBoRERERERHlpaBw43RJWgJmbAJLIgGAmURJkW6Q7itshYAUPRyVBg8pCMlunc4Ur/KhSBUjpGMDggJCqFDIEoLRFDdC2WQXPhW0AijyFNlu59KxPMYLHMuVYDQ50Ky9z9/m/b3f2/u5Sd+BhkaXDqJU+RGISOFh2Q/jsA9gDaAqzvSJbuuUUvB7y9EWie2w7GTfLIkXeBrWQmf/FNXfU87qiBsqR0T9bROCk2qKhme4JTRYaK0xt/l547gKbyWmDjk0wy3Kf9U+c6/BpvBWaK1THiTvlBxSm/1jMSIiIiIiIiIiIqKMkYLRfCm6tWtAqFF9qNEcjJbdZ2mknBQoU5WiU9C6fTuw8B33E25aE7+M1wd8+xLg2O+6rz8DanadAKyLHd7iqYJe/D7U5P0z36g0aBKWoYEqSoB/XODBuJr0XW/Rr/0T+qrvApblfuKF70C/8R/grregakZABzuhf3ik48lVKoLRxk7o+XNKcJFY7K43NM6drrFfXeGE26zc4j7QxOspnPffT0Do2+OviD9thbmnVE3QHDTZ5KwbUU5rErppVccLRrvlZ8A/b+0/8LMP+r9etSSxRn32PvTLjwA3Pgu192GOJ9MbVkFfMCN+MOjAdkpmfgvq3Kscz7+bGjEOGkBDSA5nu+MNjf85tkDXQZfmrdA48kYLHX26M7+2ROOlTzXe+IUn7duqS//pbJ9XXgLcfobClHH83ihz9PpGcZwat4urupRNMppl5X8wmmVp3DnX2fsYXQWUFnFdpsFL3/BD4Kl7zCMXvQs95wngzjejx89LPrSvrLIW6rcPQg0d1TtsVF1MsfrQarGKW+do/PbEwbdOrtqWyG+46DGJjkSgLzk2sd/uBvqHRwJ3vAlVUuqs/Ov/hr7yDPP8tzelpE1EucQmX5aIiIiIiIgodwWtTuPwdASj2dXZKQQYkXN2AT3dwtocCEVkRw5Cyo1HLUqhUFK7pTAhn+KzD7LJLsyhe/tmt51Lx/Io1dndDmkZi06buXAKaV6BPmFocoiGv8/fNt9BxP47yIUwDrs22H1X3TqT2NbJ26HEj2/ihapFEIalE78IKIXlxZZLPNyNaLBqCgnBaL5hcafN/65ZlA3LAp9ifZe5w80hVUejyFOc4RblvxohGC2sQ2iLbM9wa3pJ++9c+W1GRERERERERERElBFSMJo3Rf0+htQA5ZU9Lxu6Go3FGhMI78llzcIl5JpUdQd45TFxlLroj8C0me7qUwrq1teg7nwL6vlN8FxwjW1IQjZVD680Dm/yVkPfdUWGW5M+ToOVmm/24Jg90nuzuH7g2uRurN6wCnjuwejfbz4FLF/ofNoUBKOpITXRbdEOZzb/XSx70yuFtS0qtNDJpATazMNL42+YVZ/lp6+qzk3mWYWAYCi/l6VE9mO6aVNsKFqqdXVCP3Kjq0n0f/4aPxTNqWP/HzxXPQRVkuA15Un7Y0x4HYoMDy8GgCuezO/lJpVueKl/KFq3d1cALy9O77zDEY33VsQv9+HlHmz7Pw/OPCg3j5mogK1vNA8/abbrquwO+bXO/23SG8ucl22I3x2RqGDpTWuAZ+6zL7R5LfDM/bbnI3DaxVAPfAT11BqoA47uN0qNjg1GGxXegBJtvg/zqqfzfxuUiMYEfsPVlEUfTo8PXgEWvScXPPrbULfP7fcPZ/9aLv/FAuCtpx23Qz+Y5LkDojzDXwFERERERESUl6Sbaks8ztLx3SjyFMGniozjAg7DOUgWL0AFAEIMRqMESKE4fk95hltiJoUhSe2OMBgtJ5V67cIzo/sIu3Arvzf1y6O4bEV2tMcuqM3m/aSaFMrVdx2Q2tp3Wr/XJlisOwxO2F/bTZspJZ5SKJg7zsYL97J0BEHhIqWTZUsMRksiVCzgIDRW2p7Fo7V2HHjmJFSOiHpprdEUNl/lry3q7Ykkba8YjUaJeKP5OeNwBQ+mVx+T4dYUhpoiuedgc3hrBlvSn/zbLPvHYkREREREREREREQZk+ZgNKUUMHbnntf1oVXGcoUW3tMsXBquTlH3B/3JW/LIvQ6BmvF1dxWOHA815VCoyftD+XOjD5Okdqi5fet9o6I3ahcIKZSor5m7Ax5PmkPRWpuBFYuSr2fB29H/P3nT3YRj6pOeNwBg+NiePxtCjWKxN5YWzjVmrTXWt7ibZv/6tDQlNwSEvkP+ivjTVlQZB9e2rxEncfvZ55qE9mPzXk5LW2LY7QNTUd6G+uoZyVVQUQUPNEaHNxhHe1Q0lIvsw4zeXJbez+gLc+ZhP3uOAfYdr1DkS+9+mMhoq3kbokbGhg7Fo2yOJS0r/7dHb7jYXkwYxvWZBrGF7zoKtNIL3ur5bWeijv4O1IQ9oLze2JEjx8cM8kBjTGi9sS6PAkLh/N8OubW51f003eHF+mP74161x4FQex7U/9+UQ2yn0QucHUvr9u3RIDWiQYTBaERERERERJSXgpY5BKTUk55AFyfhLZSYTgfBJWEGo1ECpGCfTAY/2SkVApmkdkvrgRTcSJlht9/p3kdI+woFhWJVkvo2Cct4d2CV1J4iVZzR5UlcByIdPU8/k9raN/xNCoLrO32nENZlN22meJQHJcJyFC+gTAqKBQC/g2MiKTzNSbiZJBCJP21IeBJnPF06CAvOnm7EYzQid9oiLeKxRo3PSTAakTvN4W34uHWecdxeFdMwtGhEhltUGIZ4q+CBobMTIIYfZoL0uz9d53CIiIiIiIiIiIiIclIkYh6eomA0AFAzTur5WwokGjTBaKnqDrBupTxu9/2AQ48HPC5uz+vzHeW68cPM1xzmlB8BbFjd07cj3zU56F5w8r6910n1p/OgH/wj9PN/g96+LXUNWbciNfW88xysM6cAT97lbrphY+OXcWLPA3v+PKn1abHYl01AV4HcfN8WBCJCd5YG4blGx+6Z+WvvOhyGfutpWHdeAeu2/4F++VHojgTSAOJJJhhtSI1x8PjWz8VJPt/opFG5S96PycuI/vzDNLVmgLYW6Aevg96xL9Sf/xfWNd+HdeYU6Pt+D71pDbTW0B/NgfXzE4GF76RmvtXDgb3sgyPiGlINANgjuNg4OmwBa5uTm0UhaA9qbLLZDKT7uNFJ/V/fl32VKIvahPTNqqGuq1LKZrteAMfVjS62FydP5XpNg5de8oGzgh+8Brz8qDx+173lcaPN4Y1TgguNwy0d/X022LQF3W97u4PR8MGrciGlgMNOiB2+93T7/cf8V2D95RfR4+wBgcN6wdvR4Q9eB33v71y3myjfMRiNiIiIiIiI8pIUBFKiStMyPyk4JV5gCcXn5DNkMBolQgrFkYIOM00OXDRv36T1wKtS10GW3POpIhSpYuO4wI7vUtrOlXj88KjUn6KNt2xJ7cn0uiHtWy1EENJdsLQlrg9921qsSuARTnV3v9eAUE+uhHEkGsBqtw8t9cR/srQ034CD0FKTiI4gqM3htX2FtfAk9DjcHHfxGI3IHbvApJoioad2Hxr53zmLMuut5hdhwXwD2IzqYzPcmsLhUV5U+2qN45pCWQxGk47phJBWIiIiIiIiIiIiooIUEa6TpjAYDd/4Qc+fdaFVxiJNHUBLR+Fc22kWnidmFyjjyvpG8/DDT4byeqFGjIP60fXRG1/j2W0q1JmXpqZdGTBhmPye/q/iXKBpUwZbkz7NcZ7/dtyewNmHRD8L/dD10BfMgL77N9B/mA193qHQ6xuTboMOdkLPPjjpenqskkOkJMprDsJzXc/51/T8vU9wAU7e/qRY9uTbnD0cL9dJwVYAcOvpHuw64JlQ03cFLjkqs4EguisIffmp0P9zCvDQ/wKP3Ah99VnQF82ETvG6rANt5hF+B9cGd4RZDVTZugbDhFy1Y2+20J5AqEGuaBb2ybYBn5YQtpoG+u7fQn9vf1i/OR169kHAi38HVn0Ofe/V0N/cGfqHR0JffAww76XUzNDrg/rl7VBF5j6ZjlVUAQBu2XCJWOTxD/J3uUmVxq324x99XyNipe9zWrnVvu5Dd8789pKoHykYTdhf2fF45GXZSuN6limNW5y9h7MOVjhxSpobQ5Sj9JfLgEdvSr6imadA2QW0j9jJeI7ipg0/EycptBB9J9qD7qepKQf0vBeBJXJQsbroj1Ajx8cOLy6B+sXtcuVrvgAeuzl6nP3DI2Hd/VsAgPXXK6O/2+69Gvru3wKP3+K+4UR5jndNEhERERERUV4K6swGnEj1diYYHEK94oW+AECIwWiUACkURwpjyjQ5cNHc204KRvOpopS1iRJT6vEjFOmKGd69fct0SJ+0bPW0R9h3ZXrdsHv/AasDxULgHACUenunVUqh1FOGDiu2U113CIf0nnMlKDHRAFa7ADO/g2MiKYxE2g7F43S6RANP3Rx3OTm+IKJe24TAJC98GOJ135GLyE5Eh/F2s7lT9PCi0di9zOZphhRXTdEwbAtvjhneHI7TozlN7IJTcyWkloiIiIiIiIiIiCgjMhCMpoZUA9c8Bn35aWjoahTLNW4F9s6Ny+VJCUc0WoVnd1Wn4BS0DrQD2zYax6mvn9v79yk/BA44GvjvG+bwBI8HmLAnsM90qJL8OTc+Ybg87tKRf8T3Vn6M2tqRmWtQmjQH5BCHOT/34JCdAZ9XQW9ZB333b/oXWLsC+qH/hbr0tuQa8YYcHobq4VDf/knMYL15LfCvJOebBqqyFnrETsCmLwEAD6w7B09Uft1Y9vlFwMdfauyzU36H3jTZdFGZOh744HIP5nwOLN2oMXW8wqG7AMW+DL/nN58C3n42dvgXC6D/dRvU7CtTN69Oof+Qk2C0CqF/QqgLE4Za2NJmDoB4eL7GudPzczmSlh/bYLRNa93PaPIBUDNOEkfru38DRITAtY5W4PV/mccteDv+vHfdB9jvCKhqYccS6oLu7ICq2w3Y7ytQI8bFrzOeHctSQ2gVyq02tHtik/V++S+NS49Jflb5zEkIyqufAbP2SM/8G23m/9JPPJi+K1BSlJ/rNuU/rTXQLgSjlVe6rs8uxEjr/A9GWyl0S6ofClxwuEJJEXBgg8KBDdF+30SDkb7/DympRx1/tv34omLo4WOBTWv6Dd8pvBaVkRZs91bFTLNyiwYwuNbNtgSC0arLAH3TT+UCp10MddrF4mg14yTggt9D3/Hr+DN78DrofWcAD1zruH3qgt8Du7D/LRUeBqMRERERERFRXgpa5mC0Ek9pWuYnB4cwdCNZTj7DRANUaHDL9SAkqR2dEfP2LazNHWSLGIyWdaUeP1ojsRe/u0O5Mh3SJy5bO9ohtseb2XXDLgij0+pARAmdwg3Tlnr8xmC0QKR9R31SoGpubA8SDWC1C/8q9cTvTOgXyiQajOY0uCzR/bqb4y4eoxG50xQ29zSsLhoKj+rtlMVOSZQKH7e+h5ZIk3HcjOpj+y1z5F61b6hxeFOWgtGk8zdA7hyLEREREREREREREWVEWLhO6vWmdj477QoAGBdeC58OIWzoV7JyC7D3TqmdbTa0yKeg7QNlnFrfKI8b09DvpRq/GzB+txTMNHc0DLMf/9gHGj/YLzNtSacmoYvEFScozJjY5/rouy8AlhVb8PV/A0kGo+l3n5dHNkyGOuPnscM3r4VOVTDarvukpp5udRN7gtHKdAAjwxux0WcO0XtmQQEEo9l0s6kui4agnbg3kM2gAf3Oc/LIt58FZl+Zupl1SMFoscFUMYbID26bUBnAfJj7Oj27QOPc6U4al3uahS5ONXb7sfWNruejDjrGvC3ZQT9xJ7Bxtet6Hc379rlQJfb9+1O9dqiKanTHDO0eXIoP/VON5Vo7NYaU5vc2KBnREBR7Ty/QmLVHej6jNeauIzjzQIWjJg/e74VyRKDNfOwHyEGeNjweeZnWVn4Ho2mtsVZYn286zYOv7cP1mUhrDbxjCCpOxOj6+GVG1cUEowHAxK5l+MA/LWa4k7DUQtOeQDBardUMrPlCHK8OcpC6u9chjuenb/ix47LY7yu2x/tE+YzBaERERERERJSXgpb5UY8lNiEryRADSxi6kTQnnyGD0SgRmQ6jcssvhFBJgUTSeuBjMFrWSctU9/Yt0yF9UnsCO0IppO2uP037UIkUygVEg8wiSngCpWFa+TvoDqczr1fSephpiQawSuN9yociT/xtQ5kUjOYw4GygDoeBaonu190cdzkNaSOiqKaQuVdDrS/O3Q47FMJTKylz5jabb+woUsU4uGpmhltTeGqE9VZaz9PN7ngmV36bEREREREREREREWVERHg4mC/F/T5G1QEAvLAwPvQlVhRPiCkSDcHI/5vTpTAZIEXBaOtWmId7PMCIAkiWi6O8RKGsGOjoMo//9/Ja/CCzTUqLZiFgb2AokX7mPnPB1iboYACqxH2/G93RBix8B3j5UbGMmnakecSwMcD4icDqpa7nGzOPMy9Nuo5+9jgIeP/VnpdHtr+Gh6u+YyxaCDfgS8tQWXE0FC0nrG+Ux61bCa116h6UFoh9uCUAwB//IY8YPlYcNXPoOjyKXY3jPljlpGG5SVp+pP2Y1hpYvtD9jPaLcy1+2kzg2fvd1xvP3ofFDUVLi4qqnj937VomBqM1bgH2GpepRuWeRgfPV2t0EJ6WqOYOc90jKp3XoVubgMXvA0GbxFyiRGzfJo/rs41xym4/m+e5aGgLAmEhQ26U+4+KqKDoriCw5EPgy6VAW0vyFY6qA8buHL/cznsCC96OGdwQajQGo63KzjNXs6pdONdh5/Cy5fJIXxEw+YD4ley2bzRgs605flmbELaBxHMHRAWAwWhERERERESUl7qDTgYq8aTn4qkU3iK1g5yxdMTRZ8hgNHIroiPo0uZHeORKEFK8MK2BpPXAq3iKL9vk8MzuUC4hpC9Ny2K8ME85NNBB57MUKvGUQkFBI/aKfiDSjohH6BSO2PcordedVgciOoyQNl+5ypUwjkQDWKXxTr9LaRmUguTiiRfk1i2U4H7daf1uyxIRsC282Ti8pmhgwJK5g5ZpW05ksi64Cl8EPjWOO6DycJR5HTwlnGxVFw01Dm8OZ6f3kt3xTKaDeYmIiIiIiIiIiIiySgpG86a234cqq4CuHg40b0Z9qNEcjFYgN7xKYTIAUJ2CU9D69X+bR4zcCSrVgXY5yueRx73aXJe5hqRRk3ApIyaUyC40an0jUD/J1Xz1G/+B/vWp8QuecLZxsFIKOPdq6CvPlLcvA1UNBWpGAI2f9Q7b8yDgsBOdTe+Q+uaF0Pf/vuf1pVtvFIPRVm3N/2vNTUKwT0oCGlNlfaM8rqMV2LQGGJmiwEcxGC3+tWBVXgldWWsMozmt/EOcJwSjrWsGrn3ewmVfVakLeMuQJqGbVrU/9n3ojjbonx7nfiaHnQDsdbBtEXXaT6DffhZoNvcfSUiJH+rsX6euPjeGVPf8efXmq/Bo1WnGYnOWauw1Lr+WmVRyEnqWzgBLt8GAA+kn7oC+6RLAEhKZiNIlgWA0eDxQ2oJWsQfYOs+T0dIeWE2Up/Ti96Ev+wbQtCk1FXo8UOdeBeWx+aG+g/p/l0E/cWfM8PquRmP5h+drPDQ72Qbml3bz7Waiw0a14Li7Z4nj1ewrocqGxK1HlfiBc66Avvln7hpgZ6ddgePPTl19RDkm/laPiIiIiIiIKAcFrU7jcClYJFlSvYkGh1CU9D0OFLIYjEbu2N18nytBSH7XwWjmDmw+NTg6WuayeCF30ncqLQNJt0cKCYsEoLW2aU9mgyk8yoMSm1A5KdjKAy+KVHG/YdJ3ELA6bAM40/UduCVvD+zDQ6XPyOl3Kc030VCxQMTZcVE4wf16vKC4RMsSEdAUMvdirPENDEYjSs7c5ufFcTOqj81gSwpXjU8ORtM68x0pOyPy8Uyu/DYjIiIiIiIiIiIiyogMBaMBAEbXAwAaulYZRzsJwcgHdjfgVybZBUJbFvDSw+aRoxuSqzyPxMsXam0SApDyiBRKVFM24M1bEbmS9Y2u5qmbtzgKRVNX3A9VO1Ief8TJUH951fF81a/+CvXnV6AuvBY45gyoH10PddOLUMUljutwNJ/qYcC4nXte7xX8FBdtu91YtjGNgTuZIm2LanLkUpjuCgJb1tmXueFHqZthp/kDUX6HD+3csQ8bqHzzF3j2R/Lt0L9+QuPNZc5mkSuCIY2A0I2qxvBx6QevBT6dJ9anHl0M9et7gGPOAA45Djj621CX3gr1u8fiBsaphklQd74JpDDITN0+F2razJTV50qf0KIJoUaUCP3VL360MI6JEuUk9KxxK9LW10DafjoJuNXLF0HfeDFD0Sg7yhMIRlPRR0mbWFnoz5NKUtAwkJrAaqJ8pCMR6MtPcxSKpv6+MH6F3/gB1M0vQc0yB07H1DlsDFAV28EBIjoAACAASURBVP+3PrRanOb9xvzeFrnVJgSjDS0HTpjS++/UaQo3fTOC5z6cijIt94VUZ/zc8bzVKT+E+tPTwEmzo8ftLoPWY+q7fS5UzfCk6iDKZWk4e065Sik1BMBhAMYBGAagFcA6AIu01ktTOJ8iAIcCGA9gNIC2HfP5r9a6MVXzISIiIiKiwU0K1JICVpIlh97YB5aQPafBK2HNYDRyxy4QJ1eCkOyCnEyk9YDBaNkn7iN2hEBI32n6wjzN7YkgjJDuQiAitcdh57MUKvX4jetrwGpHRAgD9HvLYjpq2QUNSu+3e/65wO32oFun+F062875he/cacBZzHQOA2MT3a9L79fcFgajEbnRFBaC0Yr6XygfvM/IpVQIRDowv2WOcdyE0t2xU+mEzDaoQEmBhiHdhfZIKyp8lRltj3R84FM+FHmKjeOIiIiIiIiIiIiIClKmg9E+ex/1oUbjaCchGPlACtOoLAW8niSvbC2eL49jMFqP5/6zEKedfXBmGpMGtqFEA7tebN0gV7RBvrnc6M2nnJXbbd+4RdSeB0HPPAV47Z/x6xvdEA0t+85P03/td+JUYM3ynpcz2+fg1tofxBRbvQ2IWDr5dTaLtgrdZXImCGSjg+Vz8fupm19ACEx0E4z2+Uexw9c3Yo8x9pM++r7GjIn5syxts+lqZVx+Xv2HPEFxSXQdH7sz1FfPTKg9akwD1Dm/gfXFAuCtpxOqo6eu2VdC7bp3UnUkpaK638uDAvMwt/xwY9GN2zVGVubPcpNKTo4JO7qATa3AyDR0NZCO5aqcBKO9ZrM+EKVTcQlUSan76ZQHHliw4I0Zpa38DiOyC6yuzo3bNogyb+E7wOa18cuN2wUY0wB4PGLYp7rg965Ct3pMmga890K/QdJ5IiB6LL1//eA4JgqFNUJC9vm/fuCJ+U2h334Jevt6ucIEjr/VgbOgDpwVrf/Fh6Gv+Z7rOgAAXzsHqsr8MF2iQsFgtEFAKXUogCsAHAnhO1dKfQLgDgB36gTju5VSwwFcBeA0ALVCmXcA3Ki1/lci8yAiIiIiIuoWFALJSj0JXGRwQAxccRHQQbHSHaBCg5d9EFJuXGGTtyvm7VtYCInyKZ7iy7ZSr7kXRnfglxSiKYVSJctvE/bVaQXE4EC/8D7Sye8pQzO2xgzvtAKwlPninmkdlgNMO+IEJWY+DM4k0eMMKfzL73X2vqRyQd2JiI7Aq2I7YNi2x2GgWqL7dTdhZwyvJXIuoiNoCTcZx8UGLJk7PWjhaZZEfc3b/jqC2hxyfnjNsRluTeGqLjIHowHREMRMB6NJ++Rc+V1GREREREREREREg48OdsaGthSXAFBAVyfgrwA624HSMqiSFF5Hz3QwGoD60Crj6MatgNY65qFk+aY5YL5GVRPnkrlubQbKK6E8HrnQ6qXiKDVpPyfNKwjxlpBla4IZaUe6NNt0Legb4qC7gsCmNXLhoLs+Cvpft8UvVFkLjHH2YCH11TOh4wWjDakBxmbuQUVq0rR+oTXSDfhhC1jXDOxkvBMxP6yO7foEID0hQibasoDt26Iv/OU9+66e4Us+jF9JWzN0JALldddXqF87WpuASARo324u4K9wVtGOfViM9Y0YWwOMrgLWt5iLLNuYX30XVm+Txw1cfnSwE9hg3q8DACZOtd+vuaAm7Q+dZDAaZpyUkrYkrKKq38s9g4vFYLRlGzO3vuaSpnaNFoe7r5Vb0hSMJsy/uqz3CESHQ0CbYaVf8WnqG0TkxK77JDadUlBCHzurQIPRyoqBYl9+/+YkSpjNOYV+Jk2D8hVBT9xXPm7fPcFzEKPrYgbt2/mJWDzfjqWd6gprBMPAkNLe7VF7l1y+osQwMM73qRL9jrolcZ5J7TZ4zlHR4JWaX7qUk5RSRUqpOwC8BeAY2Afh7Q3gdgBzlFI7JTCvYwEsAvADCKFoOxwC4J9KqYeUUrlx1yEREREREeWloGW+mbrEJgwmGaVe8w27bgI6KJYUADUQg9HILbsgpFy5AV/errTDlFsvrQc+VZTSdpF7pcK+p3sfIYVbSdMl3x55Ge+0OsR9V2kWQsKktgYi7WJ4pin4TfwOIvbBaOk6bnAr0eMM6b05XbbKbL5zu89N0uEw8DSU4H7dTZuchrQREdAS3gYNcxhlrU3AEpEbWmu80fy8cdwQbxX2qTgkwy0qXJXeKngMT5cFosFomZbs8QoRERERERERERFRyr34d+gTx/b/d8ww6GOGRv8+qgr6hDHQR1XDumgm9NrlqZlvJGIenoZgNLXj5lcpiKg9CGxuTflsM066Ab9aOAWtX3gI1rcmQh83Evpr42D95RfQwvei7cJnjjzVZUvzV7zsvGdWD81MQ9KkyaZrQc2Orhy6Kwh96dfsK5KCDw30oveA5QvjFzz5fKiiYmeV7n80ULd7/PqKTXd4p8kxp/d7WRdaLRa95638vgG/cau5/fXD0hsEoi0L1p1XQH9tXL/9mfWDw2H98mTo40dHh119VvzKImHg1ccTa8fT98I6ZVfo40ZBnzgWWLfSXNBhMJqSgtEWvgPPk3fgRzPlz/XVJcDf3jX3f8hFC9eal52yYmD4kAED1wuf6w7q1B+lqFUAjj0zGqaYqP2PgmqYnLr2JKKiut/LH26TAymldbjQrXDRfWDlltR/Rp0hjU6hG2F1GaA7WmH99kzoY0fEHrufOBZINryPKEHq5AsSnFDBo837qHzfCjV1CIHVuXHLBlHG6VVLoK+/MH5BX1HPNkV9SziW22UKsK853DUe03H1iMhmsfzKzHctTKvmDo1v3RFBzcUWqn5sYe+rInhneXR71WaT8V4+4Gez1hr6tv+RJ6gZARz97aTaqsbvBhz0VfcTDh0NzDwlqXkT5YM0PFaEcoFSygfgaUQD0foKAZgHYA2AckQD0cb3GT8DwMtKqUO11sLzCmLmdQSAJwH0PduqAXwEYAWAagD7Auh798wZACqVUl/XWjiSJyIiIiIiEljaQlBnNhjNFMICJBYaQr2k0JuBQtrmcQxEBlKYkE8VociTG0FifiEQyoKFkO5Csep/Rj2izR3ofIqn+LJNCvfqtKLhj9Ly6PemJ4hMWraibZKDwuymSxdpnp1WAJYQ0mMKcPMLwWKdViCvtwfxjjPEZcthyJ3ddx6ItKPcO7CHnT2nx0WJBp66CaTtXv+IKL5tIbmjQ42vfzCaEp8Jn+/dsyjdlnYsxIauNcZxh1QdnTP75ELgUV5U+2qxLRy7bjeHHF3+TamAsE/OlcBqIiIiIiIiIiIiIlsL3ob+0dHAY0ucBxRJhOAklYZgNOy4+bWhSw73+unjGg/NTm9oT7o1C5eFqw2noPW8F6F/f07vgJatwGM3Q/uKoC74fewE64XPbvf9oCqq3Dc2T8VbQuZjMrZva0Vlrbv+BblCWoaA3uVI/99PgI/m2FfkMBhNb1oD/ZP4Nzuri64DTvuJozoBQPl8wF9ehf7TRcDcJ/uPHDEO6psXAt/5qeP6UkHVjIAe09ATklVttaA60oRmb2zY0tXPaJy2v8ak0fm5TZICBBrS/RyyB64FHvrf/sMiYWDRewlVp393NrDnQVBjGpxP88Z/oP/3B84Klzq8Pmgzf/1/P8EvflOLV3Y/Ba8tMZc56z6N4UM0vrpn7i9P5/1NCNUbCqgByZT6uvPFetSv74X6yjdT1i41fCxw2+vQd14BLH4f6NrRZ7+tObZwRXX/4V87B+pHf0pZWxI2pH8w2q4hOei20EJAnDr7Pue3dafjM2qx2wf7AX3ld4F3zQ/gs1VaBviSPG4nGkgpYMIeUCedC5Vo+I3yQAl97KxIfve9c/O7jKjQ6UA79EVH2heqGgpM3AfqjEuh9joYAKBmfQdQCvqJO4HGz4CKSmDqTKiLroXyeBJrzGjzcfX9G8/H2SPvjBm+cks0BGzgcWi+OvVOC6981vt64VrgyBssfP47D55eIG93Bwaj4R9/tp2PumMuVGVtEi3dUc81j0aPv997AWga0Pcz0NZ73sFXBFQPB/Y6GOrCawfVOSoavHjXZOH6I2JD0W4BcKXWuqnvQKXULAC3A5iwY9BuAP6tlDpCa217NK2UGgfg3+gfivY2gHO11p/1KVcC4HwAfwLQfWfDiQCuAfArF++LiIiIiIgIXVqO5i9RpWmZpymEBWDoRrKcfn5hIRCKSJJLwU8Su+CigNWOYk//M+pSkJBPMUQi20qF8Mzgjm2ctDxK0yWrxCPvCwM2QWHZCKcoFQPNOmDB/FRm0+cmh9PlVhCcxK79dpJdtuzC+dyEkHXriDgLPE00GM1NIK3T8FUiAprC5t6LJao05nhFCkbL765ZlAlzm58zDlfwYHr1wEualKxq31BjMJq0vqeTfLySO8diRERERERERERERLY2r43elDj9a8nVIwUnpTEYbWRkI/xWBwKGc7KPf6Dx0OzUzzqTmoTLwtWGS+b66XvNhV98GPr8a2Jv/F3faC6/z3SnzSsIteXA1jiX3//9+Cc4+4LDMtOgFJOWIa8HqCiJ3tSOlx+JX5HDYDS8/CgQjNNn8vCTob59ibP6+lDVw6Cuecz1dGk1bSbw1D09L+tDq/GxIRgNAB54V+O6b+TfDfhdYY21hqwoAGgYlr73o7WGfvqe+AXdevFh4Hu/dt4OadtqUlbhrNyOfZjo6Xvwp0tPxdTfyaFO97xl4at7ep23LQs2tMg9LQaG6mmtgU/nmQsPHQ311TNS2LIoVT8J6tp/przejCkuBYqKgVDvg7m/1vo0nhpyYkzRwRiMprXGp+ucl0/HZ9Rs0xWwqmN9YqFoANQfn4CaekRijSJKJ6XgER4YbZ/kkPvc/C4jKnhvPgW02Ow4v/tLeM672jhKHf3txMMXTYTj6p0DnxuHd3QBm1uBEZWpa0K2rNyi+4WidQuGgYfmafzjA5tgtAH5qvqZ+8Sy6oLfQ42ZII53Q5X4oX78J+DHORAyTJRjEoyHpFymlJoEYOBjIX6mtb54YCgaAGitXwJwKIAVfQbPAHCag9ldBaDvGcl3ABzVNxRtxzyCWutbAJw6YPqfKqXqHMyHiIiIiIioh12Yll0YTDL8QsBISHclHO5BzkNX+BmTW4FI7t98bxdcZGp/iMFoOUsK2OrexknbOrtwvGR4lFcMCg1E2tEZMe9H/UJIWTrZfXbSemyaxrYe4bghl7YHUvs7rQAsLXfikz8jZ8uW3WfQkUCwWLr369L7NWF4LZFzTSFzJ4zaouEF8+Q3yq6m0BYsaJtvHDelYn/UFg3PcIsKX02R+fHzTeGtGW5J5kOCiYiIiIiIiIiIiNJi+aLk65CCk3xpCEYbOR5Q0UfeVFnbzc3R0UCffLamydz+2grDNa65T5or2bIOCBiuj29YZSyuRg2uW6B+c2L864ULVufvQ0+/FJahYRWIXitduzx+kBkAHXbWD0IvXxi3TDoCjrJF1U/q93pycLFYduGa/Nwerdoqh5kMDLdKqe3bosGdKeZkGe1nhYv9Y7zAs26j6oBSm35dyxdil+FAsc3uc8Ea583KlkU2X9/uowdse1tsrvNWp3NBy19KKWBASEV9V6OxbOOW/Nz+JCPQFb9MX6u2pv4zsgtGq974aWKVKgXU7Z7YtETpphSU8PhRK8+T0ZqFw+Wa9HSTJ8pp+osFtuNVw+QMtQTAaPP5i4Yu8/kOAGjMfPfCtLD7PbBwDdBp8xO+sk+3Rh3qAhoNCWvdMvl9Eg1iDEYrTL9E/+/2Fa31jXYTaK03APj+gMF/UEqJ0fhKqV0BnNVnUBeAs7XWnTbzeRLAA30GlQD4rV3biIiIiIiIBgraBF2k68baUpuAESlghuILRJyFrjAYjdySAnGk8KFs8HtttiuG8ABpPfCpNHSQJVekcKnuUCtpv5XOMIhSIeSsLdKCCMwdUrMRFCZ9Bp1Wh02IRmw75e+gA51iUGLuhHFIbdHQ6NJBcbpkg0a8cUL03Ao4DFOTgh7jcRN2FowTKkdEvZrC5mC0Gp/zzrNa6LRFBABvtbwIS3ji6eHVx2W4NYNDtW+ocXhzFoLRkg1yJSIiIiIiIiIiIsoFroNiTKTgJG/q+32o4hJg+FgAwMnb/2Mso3U00CefPDzPwnE3RzDlygi+d5+FF4TMjPoBp8l1JGJfcaCtf/lwCNgs3EXrNNinQBy/l0JFiX2Zm7ZMz0xj0mCl+VJpb6DV2hXOKpKCDwf65C378dXDgQNmOasrH8z8Vr+XZ7Y8LBaV1udcZxccMHBblCpaa+jbf5Weyt9/xXk7Ql3Ow9l23w9q7M6OiqriEuDI0+QC27ehPNKKU6bKwY3LNgHtwdzux/DsQrl9Zx084L2tbxTLqlnfSU2DCpA6qv9y1BBqNJabsxSIWLm9vKTaApe5itL+MhlSkJJHAeVvPJ5YpQccDTV0VOKNIkon5YFH6NOq83wb1CIEHVb744cs69ZmWLf8HNbsg2GduTesq8+CXvReiltIlBy9djms686HddZ+sM7YK/rvzL1hXfld6E/nRctoDf3UX4FHbCJdKqqAQ0/IUKsBDKkByitjBo+MbITfa/4Nu2Jzfm+Pui3bJL+Pxz7Q+HyjedzQcsDr6bPt2vSlnIQNAPsflWALicgNBqMVGKWUAnD8gMF/cjKt1nougPf7DGoAcITNJKcD6Buc9m+t9TIHs/rjgNenKiXcfUdERERERGRgF4xW4knPzwu/Vw4YcRoCQrGcBpyELAajkTvSeimFRWVDsSpB9Nm8sQKGsKOINl988KmilLaL3JNCqIJWAEErIIbFpDOITKpbCr8BshMcKAViBCIdxvUAAPyG9VgOWAugQ9oe5ElQol1AmRSMZlef07KJHN+kO/DUTZs0NIKW+AwPIupDDEYrig1Gi16GMsjzp1ZS+oR1CG83v2wcN7J4LHYrm5LhFg0ONUIwWlMoDb2V4xCDXG3OsxARERERERERERHlnDn/hg4mef1RCk5KQzAagJ4Ar+s2/VoscuXT+XON55ZXLZx5j8YLnwKL1gEPvKvRJXykDQMvc738qH3lnQOuRW/6ErCEB3ENsmC06jKFV37qwYQ4z1S67vn8fHCZHIwWvS6qL7cJZ+pLCj7sQ2/dAGwSAvcAoLQM6uYXo6FQBUINHQVU1va8ntX+Kg5vn2ssqzWwbGP+bJO6rdxibvPISsBfHD8MJBH6ziuAZ+9PS93oaIVe3+is7MbVzvoK7HUI1LX/ctUMdfENwOQD5ALrG3H7mQp1NuFzU39nQedoX4bF6zRuflVu255j+y87+i+/kCv79iWpalbh+e4v+72sD60Si85+IDeXlXTYuF3jkOvc7bdXb0t9eFxzh7m+6pIw1AsPuqtMKWD/I6GuuD/5hhGli1JQQn/yPM9FQ5O0PsfpyqxDXdAXfQX4x5+Bzz8CVi0BXn4U+idfhV74bhpaSuSe3vgl9AWHR4+/VywCVi+N/lu1BHj1cegfz4Je9B70PVdDX3+RbV3qphegyioy03Ds6O9rOIehANR3mCNhTv9rnm+QdvjFPxN7H09c2D9+Sd9/rVhW3fU2VFFxQvMhIncYjFZ4JgPoe7q5C8AcF9O/MOD1KTZlTx7w+j4nM9BafwZgXp9B5QAK6HEWRERERESUbp02IRclQjBKsuzCU5yGe1EspwEniQao0OAlrZfZCH6SeJTHJsypf3iApSOwYO6IwGC07JO+Rw2N5vA2cTpTwFeq+IU22YVhSO8jnezWAWk9Nk1jFwTWInwH6fz83bL77O2OM6TwODffpbRdlOq2k+79uttjLobXEjmzLbTZOLzGF+fuBiIHPm59D9sjzcZxM6qPlcP2KCmmYEMAaA5vzXjn/3z4bUZERERERERERESDzBEnQz3wEdSPrnc33YK3kptvloLRynUHRoU3GIs8Ml/nbGhMXxFL439fdN7O7lCrbvreq+0nCAy4Pr5eDk7ByPGO21EoDmhQ+OIPXly7x8dimRtf1ugK5/6yNJAUatUwDNCtTc4rktbvvp59QBylLrsLnpeboCbs4Xye+eK4/9fv5bWbrhCL/tHFep4rGreah8cENKaI7mgF/nVr0vWoG56R5/GPvzirZIO8rVR/fTe6r316LTy3vQ41bLS79vnLoW6bIxdYtxJDShU+uly+PXrZJuC9Fa5mmzG3zZGX9W9O7f9aRyLAgrfNhcdPhPLwFnGJ8nqBY87oeW0XjPbAuxrrm/NvG5SIB991/z5DEWCti92iE81C98TqkNznFoedEN22DPz37Hp4bnwOqsomLZEo2zweMRgtH36T2RHX53hdmd9+Fli5OHZ4MAD9xB1Jt4soFfQz9wHN5j62AICuTui//TEa8GdDXXYX1G5TbcukhRDubndctK09v7dJX2xKvP27jxow4IW/mQtWD4eaNC3h+RCRO2k6e05ZNG7A62Va66CL6RcOeH28qZBSahSAvfsMCgMQzrAYzQFwYJ/XxwJ4ysX0RINGR0cHPvroIyxbtgxbtmxBZ2cn/H4/Ro4ciYkTJ2LfffdFcXFqEmVXr16Nu+66C3PnzsXSpUvR1NSEUKj3RtX77rsPZ599tnHa+fPn47777sM777yDL7/8Ei0tLbD6PCVp5cqVqK+vBwAcccQRmDu39ykv+f7DnYiIiDIvKNxUW6SK4VXetMzTLhgtkeAQinL62TEYjdySwnDs1uVs8HvKjevBwGFhLXeeYzBa9tktV81hofdbnOmSJdXdZNMevyfOo7nSQAo067QCiAhhgKb3ZhcE1hQ2h8Hl0vbAPoBV3ldK49wEjUjfe2ckgWA0h9Mkul8PRNwFnTG8lsgZaTtpDlYyh1hpodMW0dzm54zDS1QpDqr8SoZbM3hUC8GGId2F9kgrKnyVGWuLdLySjVBeIiIiIiIiE/bPIyIiGnxUZS1QWQtdWQv8+VLnEy75CNj/qMRnnKVgNAAYE1qPDb6Bd3dGbWsHhlakpwmpsmorsM78HBajCQNPk7e12E/QOeBatBT2Uz0cqizHP6w0mv7/2Tvv8DiK849/5+5kFVvWqdiW5CbZFOMCprjSTDPYtFBCaIGYEpKQEAjwA0IzpgdIgACBQOi9mF4N2BhjwJhusI2LzlWSbVmy6p3ubuf3hyzpyrxzu6eruvfzPDz4ZmZn506zu7O773xmlAP4SZ23rblDQjSmPLFt6ilrifntlSUAVn5rviJf5DgIuXwJnTluivl9pRmirCLobfJIL22qWlGdfvcuLmKNyoriOC0Qtep7wN3DmOWBQ4ARY+n81T+Yq4eSSBYOjIn0QdjtkOWVwOYqxb5dHbvqK1DcF6gjQooWr5GYMjL1FutavIbu6yMGhLS3ViPrHDA4Ri3qxfQr6PpnZbsLNumHQcw1WOICjh+foHYlEZ2YT0dNIzAsht6xBiK0z+nRyGd2Hd87JaJMhiBgI+KiDSP9xkCB1FNitAihzPLHxXTmz5qxM8MkEl0/7WSxOkYyiCEje96WaBis3u+u7avxLrHJN+uAw0fHr0nxRjfW1mETwc/HtLL0YvUzNoZh4gOL0XofRSGfLTz6V5YfKoQokFKGvgUIffr1g5TSyqy00FEA340yTAB+vx8vvvgiHnvsMcyfPx8+Hz0BPicnB0ceeSTOO+88HHPMMVHv8+GHH8Zf/vIXeDxWXIqAz+fDn/70Jzz88MNR75thGIZhGMYqHsOtTM+O46Rau7Cjj8hGu8I9rROWMHrM/nZe2R7nljC9DUqGY0UWlAgoGUCokEgnEXIIfsSXbHLs0YnR4tkfqbrrvepoPAGBbFtO3NpDQR0DbUYL/PAr81TfTScWo75zKp0P+ohs2GCDoQh6oCSiXqOdlCZakb7lEv23lRBMUkgpSSllKF7DuhjNkH54pHoMSMHyWoaJTLvhQYu/SZlX5BgQlpZ64cJMKrPR7cKatuXKvAn9DyYFqUzPUYsNO6j3bUuoGK2NuDdLJUktwzAMwzAMwzCZB8fnMQzDMAwDAKKkDHLsFGDZ56bKS68nqncl0t0KfPSiWuwCxE2MFigjOrTlY3yTu7eynKsu9cVoP24yXzYnCyjtdqBANjUAusmsQJgYTVa71OXKhptvSC9k4vgSDHqhFrWOQcr8dXXpJUZrcktSpjSiRACrXOYro8SHgVASKQAYuqv5faUbAZJGACj2byeLfq35iVIVV5160n0F/boOACB9XmDBXMhlXwD9iyCmzoQYtW/E/cnXY3BvePAJHddAKv/bT2Dccn7Hv5d+BLQ1A0eeATHtRIjxB3a3pdql3r40hufKsgrl9VN+txDiN38FAJy4j8DDn6q/zeUvSxw1VmJMeWpFO3y3gc47aZ+QtmrOHeKg42PUol5MfmHXP/vJFhzV/AHeyZ+hLNpxPKdWX4klNTskXvpaYh0d0oqB+R2yU5WjqSHGoXjv/qg+bgs8W8htxLQTY9sIhkkkQkAQC1ik47oWtY0SLy2VWLaZvl8rjBQatHE1ndfG8b9MivD1/J7XUVIOjJnc83qiQEw7AfL5f4Wln9D4Gu4t+rNym3Xb03tMVEXIqyMxpBAQIuB7b3bRhfeZFt1OGIaJCluyG8DEnNCZ4tkWt1eVVzk9Q9M0o08la0zsg2Eyko8//hijR4/G6aefjnnz5mmDrgDA7Xbj9ddfx7HHHosJEybgm2++sbzPd955BxdccIHloCsAuPrqqznoimEYhmGYhEMJj+ItdKEm7bb5+aF7tJj97SjxC8NQtPnVUWupNvmekkGEynx0x4BDZMW0TYx1KLkXQEu5bLAjS/SJV5PIvl7vU7cn25YLm0j84+Jcm/oYcBttYYLATlTfTSc5o+R0qXQ+EEKQ7aEkojq5KCU7U5Yl/gZmJWedeKRbKXZTEc11nRLj6mB5LcNEhrouAHqxEsOYYWEDvRLiQU51oDETG/rbC2AjQgF04t54QF2PU0lSyzAMwzAMwzBMZsHxeQzDMAzDBCIuvx8YOMRc4cdu6hDZWEA2j2HnewAAIABJREFU74C86AjI2y6gC8VJjBYoI7p2261kMVeUE0YTxfYWiRMeMPcuGgAqikMmsn70YuSN2kLej1MSmljKftIQ+4AyPFN7Lpn/z3nm/06pgG6ydGWJRvqkIsJ9BQCgdr06/dd/Ce6zvY0QMRoA/LPmMmVRjw9YvSW9zCBUP6rUvG6X3nbIK0+EvOEs4JUHOq4vFxwA+f6z2n0Z918JzHu+B60FMHYyxFlXAgDE+XPocu8+2fHf1k1A8w7glQcg/3I45LN3dZd56nb1toq/edSUVarTF70FubLj/nzO8frjZ8LNBt7+IXX61Xcb6LYcNgqYUBGcFvSbh3IsfU5mOhD9CoI+/6tWff4BgEteSJ1+Emt+qZWYcLOBvz6v/45FfQEn8Sq/vjV2v889HxlYuEqd5/TvUGcceQbEiDExawPDJBxbx/LJKqRMr3H06i0Sk24xcNHzEv9dSJ8bnHn0NVp624HFdGwZPBz/yyQf45HZPa+kb3+Iax6FcMTp2U8kRk9UJh/Qtpjc5OpX03tMdMOb0bX/yXOC4y3ly/eRZcV510e1D4ZhooPFaL2P0Ej2Movbq8rvrkjbJeQz8XSWJPQtQbEQolBZkmEyiBtuuAGHH344fvnll6B0IQRGjx6N6dOn47TTTsPhhx+O3XbbLWz7pUuXYsqUKZYDoa666irIAK346aefjo8++gi//PILqqqquv47+eSTg7arra3F3Xff3fW5T58+uO666/DFF19gzZo1QdsOGWLyhTHDMAzDMIwJKDGGTkwTCyjJCEs3osfsb+eT1oIKGYYSKFqRBSUC6rwVemzojgGHSNJLEqaLbJEDQayKQwlncu15cQ1qzLGr+5ZXhq6rsLN8nK+hFNR+JSQ8krjeK47jLNEHNtiV5anvnGoyDur8RElEQwWKgViRvpFiNEIwSUGJ7FT4iL+JDt33JbdheS3DRIQSeAKA01EclkZd7yS9ljSTobT6m7Gk8RNl3sjcPTAkpyKxDcowbMKOAkeRMk933McDK7JbhmEYhmEYhmGYeMPxeQzDMAzDhCJGjIF46juIO9+A+MdrEM/8oN9AN3FbxbtPAsuX6ss44rQgXoCYpq9sxcj2NcpirrrUfs/z8KfW2hcqI5J3/SXyRu6QZ9k1LEZTIWw2TCvYgD08y5X5H68A/EZq96dA1m5VpztswJBCANUu85X59WI02dTQIZdSIKadYH4/6YhCknVUywdk8UtfTB8xSFu7RG2jOq+iWBMXtvgd4MuQ38AwIO+9FNLvV24iN60Bnv9XlC0FMOMsiPvnQ9w7D8K580R5wDGWq5GPzIZs3A65eS1dqCx250qhkazJR24AAAzqL3D9sfTv7fYCl79sBN2XJ5OLnqP7+GOzbEExhdLvB5bMUxcetS9EVvwWZu015AdPWR7prcLJja+Qxbc2pUY/iTW3vSuxqSFyOZsAnEQoaUOMQvEa2yT+PlcjUjKI6+Xf7o1NAxgmaQgIIsbOSJ/hDwDg9vck1m+PXK5QFxq06C39xu6WlLl2M5mJ3FYNPEFL5s0iXlgBse8hMWhRlPsXAjjqt+HpAE5qnKvcZksT0OpJz+OvJ6LtSQFOZikl8N7T6oJDRkLk5Ue9H4ZhrMOzJnsfK0I+DxZCDJFSbjS5/RRFWoEizRnyeYvJ+gEAUspmIYQbQE7Ifuqt1BOKEGIggAEWNxvZk30yTKy4+OKLcc899wSl5efn46qrrsIZZ5yBYcOGhW2zevVqPP7447jzzju7VpNsb2/H73//e7S0tODiiy+OuN+VK1fihx+6X+DOnDkTzzzzjKk2v/baa2hv757IetNNN+Hyyy83tS3DMAzDMExP8BDCo2yRo0yPFdSk3WhEHUwHZsVolNSGYSjaDLXQJ9Um35NCIktitDgFyDKmEUIgx5arvB7U+0LXMegg3n3Rav1UX4w30fwOuQqZmhACubY8tBhNFvadHBkcBfVbUNdK3fjDivSNFLJZHN+0EuddFdEIT3Vjhj4iG+3So9jGmtyNYTKR7T51tH8/ewH62LIVOb14pXImpnzROF95bgaAg50zE9yazKTQUaKU9FLj03hgSL8l2S3DMAzDMAzDMEw84fg8hmEYhmEoRF4+MOnIrs9yn2nANwuUZeX9V0AcdLzpuuXn70UuZI/T1K6S8g7pmq/j/WxlexXW9AmfPuNK3GPjqHhvmbVJrRUlAUIZj/oZdRhtIe+Wq13KYjpBT8ZQVoHxG7/H8uw9lNnLNgF7DU1wm6Kkapu6bw0rAhx2AWNzlfnKfBHiICjZHtDrhXsiOxeyqBTYXtOVNty7niy/mhDWpSK682eopDEQ+dnb6ozG7cDaZcCue4XnUXKsTnbfB1j5DZktTr0YYsSY4MRozmneduDrBUADPZVUxLJPl1fQeV/Ng/T5IBwO7D5IX82Kmo6/l+7vkigoOZXDBpSFzuKt+pmuiK9J5ugXPjV6D0/oFOxuPloucerE3hcb867J8dTwYpDCx/oYTZdYuApo01w2C/0K25JzAERev9g0gGGShc0GGyFGSzf/1zs/mmuwUxMaJL98X7+x398xxmYJKJMsln7U8zqOOxeiIHyB4kQjyiuUZ59hmvuyxWuAw0fHr03x4v2fojuhDnYC2VkBY8BN6sUFAADlI6LaB8Mw0cNitF6GlLJGCLESwO4Byb8FEFFJKoToC+BERZZKWRl6F6m2EuhpQ7AYLRZqzD8BuD4G9TBMQnniiSfCgq4OOOAAPPfcc9qVHHfZZRfcdNNNOOuss3DSSSdh2bJlXXmXXnopxo8fj2nTpmn3vXRp8ApUoatOxmPbBQsWmN4HwzAMwzCMCjchRou34ISqn2oPExmz0hWf1K+oyDChUMelFVlQIqDOK21+K2I0fsSXCmQTYrQGb7iMAoh/X7QqHEuWJIyScunIISRuOXZrYrRo9h1PyPMBca10++lrqJW/Jylo9FuTilkpH811PfS8GEhh1gDUtoevDdLGYzSGiUg9cZ0qdFgNxkiz6CwmrhjSwML6d5V5/e1OjM+fnOAWZSbOrGJAMd9LJUuLF7rnJSrZLcMwDMMwDMMwTLzg+DyGYRiGYSxhs9F5JkVJ0ucDVn0HfPVh5MJ2u8mGWUPY7ZCDhgKb1gIAKogJry5CDpUqrLUoSQqS3tTSk3yDcHe/75btHmDbZnW5st4tsDJFeSUOWzkfzxWcqsyu2pb6YjQpJVZvAW59V933RwzY+Y+dx44p/BHiIKpd6nRHFlBcZn4/6Up5RZAYLVuzUO66uo6/kRCpKyba2iSxeA3w/BJ1HxICGFqoqWCzpm+1NSuTZYTrj5h1NeSNs4AWhdFo4BBg+KjwbXL7Qu65P/DDZ9q6w9ry6RtAyw66wMTDLdWnZZ9pdJ7fD2zZAJRX4pBRAg6bhM+gi983X+LaowFnXvL6lt+QqNK8rrXbQtqm6Stiv8Ni1KpezoDBYUlHtHyIGwdcrSyeTnJGs7R4JCk7C+XwPQQpPGqIQSje5gaJf7ynOVABHNqyIDxx4hE93znDJBshIIgYO8NI7XuyQNraJao1w4BABjs1mdWuyBW4W0yJ0WRrM/DTF0BdTcSyTIZROhwYMwkiCsGe3LCqx7sXE6f3uI6YMPEI4NEbw5Knt3yIfxWrFwCqqpNIx4WU10YZGlkRGjKtuf8Sex8c3U4YhokanjXZO3kaQODV6f+EEE9KKTdF2O5GAOEKdHNiNJPLqATRBiDwMR8ru5mM5JdffsGf//znoLSpU6fi3XffRb9+5g6L3XbbDR999BGmTZuG5cuXAwAMw8CZZ56J7777DiUl9JIWtbW1QZ91gV6x3JZhGIZhGKYneAz1LUi2LUeZHisoiU2bYU0cwnTjNi1Gi7CiIsMEIKUkBTrJkj9RUPKq0GNDJxFyiKyYtomJjlxbHhoQvgxovU+9NKhVcZn19ljr67l2tRwr3kTzO1Dfzep3jvffwCqUoIy6VlLCtGyRA5swHzhPj2+sLfFoZTzkjeK6Tv0OdjiQby9ALcLFaG4eozFMRChBUlHWAGU6FeaQPqFZTCJY2foDtnjVE4b2d07n8WuCKHSo3w01EOPTeKATo6XaWIxhGIZhGIZhmN4Lx+cxDMMwDGMZoRGjmUDWb4G84gRg+dLIhYEOg068KKsIEKO5lEXe/rFjIr4tVMaSArT7JDY2WNumsjjge3y/yNxG7oD30Vs2AJJ4+1XKYjRRVoFTGm/EeeUPKfOf+sLAr/aOj+wvFvj8En9+TuK/C+k3nBUlAnJ7LbDDwozqSGI0StI3cAhEnOSIKUVZBbDsi6Ck22uvwhWDbg0r2toObNgODLO6lleCePoLA+c+IeH102UGO4HsLM05dcsGOs9HxNQ8fze9zf5HA1NmQlxwI+Q//xqcZ7dD/OFmsp+J82Z3XLMIIZuSec9ps0X5CPN1RUAUDYI89WLy+8vrTgf++xkG9bfh7zMF5rxFH9v/mtdx7L/wextmjkvONU/XvgfOCG+TXDCXruwItaCSCaGsIixpStuXZPHrXpf4/YESA/un3rgoWlwmQwTGDwXOniqweA0hRrMWThjGv+YZuPQlfYTR0U3v4LCW+WHp4szLe7ZzhkkJBGxSLQaU1P1HCmL2nNI3GyghHr9Lvx/4ZkHkStytQL7ONgvIn5Z0jGWsjN2ZzGLAYOCe9yGG7mp6E1m/BXjytp7td99DgKkze1ZHrBg9Edh1fIfAPwCljHQnFzwlcdoEiX456TUmilb+7wwNZdSJqY8/L6p9MAwTPT17Ws+kKvcBCPTtOgG8K4QI15vvRAjxNwBqpSegV3B3EM1VIn1G6gwTRy677DI0N3c/QHY6nXjllVdMB111MnDgQLz88svo06fbXLxp0ybceGO4xTeQwH0DQFaW+QlJPdmWYRiGYRimJ3ikemJtdpyFR6TAyB+DJZAyEK/RrpU9hZZlGLP4pBd+qPsWJR5KFpSMKlRIpJMDslgiNaCuEZQsipJRxQqroolkSQP7iGzYLD6mpr6b9e+cWjIO6m9ACcooUZhVyZ3Z81AkrIjRohGeUu3JsefScjceozFMRLZ71UvdUkKluE7MYXoNCxveVabbYMOBBUcmuDWZS6FDPVukwZtIMRo9nki1sRjDMAzDMAzDML0Xjs9jGIZhGMYyESRF0q+x4QCQD11rXooGAHW1kctES4AMpMK7jiw2b3n8mtAT1m+nHWUUlQGvueQ//mhqG9kW8L672kUXVMhVMo6ySuTJNkxtXazMfvVbwG+k7nSxl77WS9EAYEQJIP9FTbEjoGRWO5HVxPGXKbI9xbFzauNLZPFLXjQzlTHx1OyQmPW4XooGABUaqZv0+YAt4Yv/deENj5WVNfT5G+WVEDe9CGGzQZzwB4h/fwicenGHNOuMyyEe+ARCI9ASex8E8fBnEOdcR+/DCr+7Ojb1BGC78HY6c+U3wFfzAACzj7PhnYv0cWgtHuD0hw20ehJ/nlpfJ3GjRoz2632D4zGklMC859WFx06GyE2tWNiUpaAYyA1+BiQA/KH+v+Qm17yeutexaKiK4Arae2iHmG/+pTYU9RVw5qljg3oiRvtxo4woRbNLH17eeCqyQuO/jzkHonJ09DtnmFTBZoMgtAopPHwOI9I5pZPKYkBQsYafvGquErf+xCMNA3LOWSxFY/Rs3QR5w1mWNpH/vZ7OnDoT4uVVEH+4GTjitI5xd+B/R8+CuPIhiDvegMjqQ9eTQIQQEP9ZEJZuh4FfNb5ObvfPD9Po5LQT6hx19dECN/2Kjn8OXStAUmK0keMgIggbGYaJPY5kN4CJPVLKBiHEOQBeCUgeB2C5EOJBAO8C2AwgF8B4AOcCOCCg7EYAgcvKqdZXCV0GIJqZk6HbWFhagOQBAPSTUTUjAdBXbYaJIytWrMBbb70VlHbbbbehtLQ0qvpGjx6Nyy67DLfccktX2v/+9z/Mnj0bhYXqgZZhRP/CoCfbxoKff/4ZP/74I+rq6lBfX4+cnBwMGDAAe+yxB/bcc09kZ2dHVa/P58OSJUuwdu1abN26FR6PBwMGDEBFRQX2339/5OTkxPibMAzDMAxjFY/hVqZn2+J7nc61E2I0i+IQpgMrwpVoBCpM5qLrWzn25MifKCgRUuh5RXcM2AU/4ksFrIrF4i2CsCpei7eojUIIgRxbHloNc48GHcKBLJv6JaHV3zRZ35mCEje6/epzGikKs9gXaalYC6SUdGBCWHkr13XrwlNSBGfL04zRzMvaGCZTqfepBUmFWYQYjSCdVq1k4st271b80PyVMm+vfpPgzErRpd17IU7iOK73bbN0je8JuvFBqo3FGIZhGIZhGIbpnXB8Xs/g+DyGYRgmYxERFvfaupGUGUkpgfmvKPNI8p3WyltAlFV2Tb0frhGjvfCVxJFjUm+BHLOT7gPpFKMFyc4i4Q4UoxG/U9EgiOzUijtKCuUVAIDRnhVYnDdVWWTxGuDAXRPYJgu8/HXk95qVJQB++tJaxf4IC8RSYqsMke2JsoowDUiZrxpZsh1eER4H9JUrIc2yzGvfSfhN3KZVlmjOp1s2ADrBpkqy98lrZHHxu6shHN3xg2L8gRDjD4zcyMA6ho8CZl0N+f2nwNfzLW0bVle8+vQeE4Dl6vfQcv5ciEkdC3QdNVbglP0EXlxKH+uN7g4h6PHj49JSkrnf0m0qzAMKQmVUq76nKxu+R4xa1fsRQkCWVQBrlwWlj2hfS27z0lKJh85MzDv1RLB+u7rvDS0E1t0eLgR2Eq/yG1qjjw16ycT195ptt4ZL0QCIPdXjDYZJO4SADeqBRDrF3lVtM9fWSk34ofzoRXM7iyBGw6rvAUpexDCBrPwGsmEbhDNyXKyUElhAP9cRk6ZDDBoGnHEZ0mmkILJzIUvKgW2bg9IrvfQx9PJSieuOiXfLYouLWDN214HAGZMErnlNfQ6bWBny16x2qSsaOS7qtjEMEz08a7KXIqWcK4T4K4B/Aeh8K5MP4PKd/1HcC6AAwNkBaWkjRpNSbgGwxco2veUBBZOe3HPPPUE3rSUlJZg1a1aP6rz44otxxx13wOvteBje0tKChx9+GP/3f/8HAHC5XKisrCS3P+SQQ5Tpjz32GABo20cdT1VVVaioqOj6PG3aNHzyySddn63cuG/YsAH/+Mc/8NJLL6G2ll4dKzc3F4cccgjOPvtsnHTSSbBHWLkLAJYvX46bbroJb731FhobG8l6jzvuOMyZMwe77bab6XYzDMMwDBNb3EabMt2qCMQqlHDFiuCL6caKUM4nIwQOMUwAur5FiYeSBdWe0PMKdQzYYIctUkAukxAsS7kIkVOssNqeeIvadOTazYvRdO20KtdI5ndWQYkbqXEGLQqzdp7LtfdTpvvhg1e2o48wN7Gt1YKELJrrOi2Cy9OM0dRjRoZhOpBSot67VZlX6BigTBdkKEf6BGcx8eXThvchiSC+gwpnJrg1mU2hQx3I5ZXtaDGa0M/eP+5toMYrdjjgEFlx3z/DMAzDMAzDMAzH53XA8XkMwzAMYxFbhDiM6nWkGA31W4DWJmv722eatfJWCBDUjPX8TBZbuzU13/WYnXTfyahSoLDvzjFTtcv8hl5P1z8lJbCi/uaZRkWHjGdS2xI8UniOssiqWokDd03NuVq/0EPcLiYMl0CD+j0qSZRiNJEp/WrM5LAkGyQk8f65rhkJW+jHCmb6DwBU6HwL1S79xgoxmty4mi4/ZqKZJpljzKQei9Fi2p7QegkxGjauCfo4qRJ4cam+utVbJJBglcUqzYzXySMUiZvWKBI7EPH6nXsrZcPDxGiT22gB5o62jvNQSX68G5YYthNhfWUF4WnSMOD0N6BjinkwDT2YLrHaxIzvSW1L1BmjJ0S/Y4ZJKQQEEWOX5PUxLLHWpLx68kjNdbZ2g7lKIonRNqwyVw/DAEDjdsCEGA0NW4HmHXT+mEmxa1Oi6V8YJkabTF1/AazZKlPyvoyioVWS45XKEgG7TWDqyA6Zeygn7hPyHSnpYjn9/o9hmPjBsyZ7MVLKewHMALDSRPFmABcCuBjA4JC8GkX50Cu6eoYMgRCiH8LFaCoBG8P0at57772gz2eddRb69Alf7cQKAwYMwLHHHqvdTzoipcRNN92EXXbZBffdd5826AoA2tra8M477+A3v/kNNmzQ3yj7/X5ccsklGDt2LJ599lky6Kqz3hdeeAFjxozBPffcE9V3YRiGYRim53gMtzI92xbflaMp6YYVwRfTjRWhnE8qVsFjGAJd34q3QNEqVHvc/lAxmvoYyGKZQMpASa3I8nGWclltj1WpWCyx8lvojmHLMjiLv1G8occZarlXm58ShcXub99mQXZmZTzkjeK6Tovg8sjv4LbQfobJRFqNZrRLjzKvMMtEAAjDhOA1vPhsxzxlXlmfodgtd2yCW5TZFDqKybwGL7E0YoyhJKU59ty0CZhiGIZhGIZhGCa94fg883B8HsMwDMMEEGmBumqXMlm2NEKeGy7/0TLjLIgC+nlujwkQo+Ubzcgm4u6qTE5uTzRUuyaPAH43Nfw582XTA9KqiUmsKtrbA7ZzqcsE/JaZjMjOBfoV4NeNr5Bl5tEOvqTi2ibx02Z9mVP2E6g0NgLedn3BUCKJ0aop4d4wa/tJU0TlHsr0S+rUY/42L1BL3zYkjWe+NCdrrNCc1uUDV+k3VojRKLEeAIhhu5tqkxnE0b8D8gujr+CAYyCGj4pZewIRx59PZ37/adDHMycLpfApkMtflli2KbFSUJdG9nnx4eFjD7nsC7qyQ0+ORZMyB8U1fErblxgp6IvCQwtTUxobDZQgpDBk/VX5ygOQxw2B85nrleXrezBdIpLsNs9owWEtCjHjfofG7bzCMAnHZoNNqg1oFy2shM+fHucd3fWskwH5wNlTNHFBK78xtzM3HQMspYS85Vxz9TAMALOL/8pXHqAzR4wBdts7Ru1JPOLsv4elHdP8Dlm+zStQ86/ZkH5/PJsVM3TPtjrv0f52hA2hYYvH7AnsURaS+Mu3ynoEi9EYJik4kt0AJr5IKT8QQowBcDyAmQCmAhgEIB/AFgBVAF4D8IyUsgYAhBChd4oqR36oRtfqEhWh5bdLKest1sEwac3GjRvhcrmC0qZPnx6TuqdPn465c+d2ff7iiy/g9XqRlZWeE+Z9Ph9OPfVUvPJK+Muz0tJSjBs3DiUlJfB4PKitrcX333+P5uZmU3W3tbXhV7/6FT744IOg9KysLIwfPx5DhgxBdnY2ampqsGTJErS2tna16eKLL0Z9fT1mz57d4+/IMAzDMIw1PMTE2uw4C49o6QaL0aIhVPykwystBhoxGY2ub6WaGC3X3leZ7pFuGNIPm7ADAHxSHTznYDFaymC1b8W7L1qXhCVTjGb+t8i1qY8ZAMi1+B2SKYNTQbWHkj2SorAY/g5t/lYUOIpM1dPqNy8h8xnWxWi0CC6P7O+UjIVhmA7qvXQUQJHDmhgtPcKymHjzbfNiNPvVqyUe5JzBIqwE09/hhA02GAgPqqz3bcMQxD9IhxqvxFsSzDAMwzAMwzAMA3B8nhU4Po9hGIZhQrDpxWiyZh1UT7zlLecB2yJYlwIQ580GzrjcUtMsU14R9PGFTWfgV0PDr/kbG4B2n0QfR2o9y3cRr7MqSwQeOlNg10HAq99IlPQDzjnAhpP3DRSjuczvyBuwmBAlICq1Om2q9yKu/h/6XXUyDmhdhEV5B4Tlv7BU4qlzJRz21OlPhiGx1xy1iKKTa48RuGamgLzsArrQaX8DnvtneLpKZrUT2bwDaG5QZ2ZQvxLnzYZ8ZHZQ2iXb/407Si5Tlq/aBpRGkFslkpodElubzJWtLFH3ffnpG+QE+y5UUr5ql7KoOFctL4oWUV4JPDAf8olbgeVfAZvWBhcoKgUcivteZwkwaTrErGti2p6gtlXsAZx/A+TD6u8sv18EsVfH+WhAvsDiK224/g2JJz+noxkOudPAuttsyMtOzLmKEjUcvgdwxOjgNkgpgRfvVW8wYgxE3/4xbl3vRpRVhMW1CABfNxwPZ8FXym2ufV3iNxMkdhmYOteyaGkgQuicud3fTS58HfLuSzrS+6uvWVQ9Zogk4V29ejTsitgGcftr0e+UYVINISCIKLsWnx2z35S46Vepf85Zu5XO22UgMKlSYPaxAuVOYjw073nzO3Nr5hu99hAtM87OBQp4YdiMxPDTz2Vk5ChXWfUz8MStZL7472fpHQN5yEnA9WcEJWXLdvywZh/sOVItLLzqi0o8WnAzxLnXJaKFPYIab2TZgXJnx79P3Efg9Qtt+M8CA7WNwPQxAtcfEzIW/+A5eicszWeYpMBitAxASukHMHfnf1qEEEMBDAlI2iSl3KQoujzk8y4WmzUi5HOKrgeSeHx+iY2siIs7QwqR9Jcsn332WVjafvvtF5O6991336DPbW1t+O677zBhwgQMGTIEVVXdqx/dfffdQSsrPvfcc5g8OXylqpKSjhvBadOmdaWdeuqp+PLLL7s+B9YbyJAhQ5TpZrn00kvDgq5mzpyJ2bNnY8KECWHlDcPAF198geeffx6PP/64tu4LL7wwKOiqoKAAs2fPxrnnnov8/Pygsm1tbXjggQdwzTXXwO3uWC1rzpw5mDRpEmbMmBHlt2MYhmEYJho8xMqVyZLMUMISRo+V342SQjGMCqpvZYucLtFYqpCrOW+5jTbk2fsBAHxSHTxnF/x4L1WwKneIt5TLav3JlITpZGeh6K71VsYBWaJPyh0/VB+ihCLUuc5yXyQEjbp9qMtaEKMR5zQdOhEcKa+1IGFlmExku08dpWSDDQUO9SrQQjnNB2A1GgMAn9SrVw/MFjmY2H9aYhvDwCbsKHAUod4XHvFT76tLSBvI63eKCasZhmEYhmGYzILj8xJHsmP0OD7PPByfxzAMwzAhCL0YTSWokTvqgM/eorepHA3bkxFkOPHAOQDIyeuaUD6iXT2ekBIAWK/HAAAgAElEQVRYv71jInsqUbVN/Q6qohjIcghcNUPgKmKYIDe7zO8ocEJ9tVqMJsoyR2AVkbKOxVcmt36pFKMBwIfLgaPGJrJRehatBprUYacAgOo7bRjUv+P+xfh6vrpQvwIIZ4n6zahfE99Ys57Oy6R+NWy3sKQB/q3oazSjxdYvLK9qm8SUkakjHXhuifl34hXF6nT5zpORN/YHx9RIKcnzEobuarpNZhEVe0Bcb6KdyWD/YwBKjPbaf7vEaAAwvFjg8VkCIwcYuP4N9d+urgV460eJU/aLfz+TUsJFvKI970DF/n/5jq5s9KTYNCqTICSU/WpXYtTuwIoa9WZPfSFxw3Gpcx6KloYW9THgDAgblO880Z3uV4vR6ls6+rJVIUyLR2JLBLHkQL8ihmnsZIg+2Zb2xTCpjNCI0QDgsc8kbjze+jGWaKjr2ROzBH47JcK9NAD5+sPmd6YRo2nHVcfMgu3if5nfD9NrkNtrIY8fRmSaEKO9/wydWTkaIju9Y96EEJDDdwfWrQxK36N9BXJsPriN8LkVr+cfC3x4EJAGYjRXnfpvPLwYsNu6z63H7ClwzJ70vDL55qP0TsrjvxgtwzDhpNbMLyYVOCzk8wKi3LKQz3sKIfKklGZnmu0fob6MZWM9MOLv+lVImJ6z9hYbKpIsfN64cWPQ50GDBqG4mHj6bZGxY8PfIG3cuBETJkyAw+FARUVFV7rT6QwqV1paGpQfSr9+3S8ccnJygvJ020XLBx98gHvvDV7l4rbbbsMVV1xBbmOz2TB16lRMnToVc+bMCWtnJy+99BIee+yxrs/Dhw/HggULyO+Rm5uLSy+9FFOmTMFhhx0Gt9sNKSUuuugirFy5ErYIq4MxDMMwDBM73IZ6yaFsm/q6Hyuoibtuf1tUL/oyHSsCFQkDfumHPcWkVkxqQstzzMuXEkWORgjVZrRGFKM5UkzslMlYlVFZLW+VbIuyiXi3R79v823VtdPKd0imCI7CqtyLFo1Y+27ZIgc22GAoVly0cq22Jjy1LkZrI8Z/ObY85NitSeUYhumg3qteHq3AUUTKZGkxGpPpbHCvRZV7pTJvYsE05BLnaia+OB3FajEacfzHGur5TTLHngzDMAzDMAzD8XmJI9kxehyfZw6Oz2MYhmEYBZGuOdWu8LR1KwC/n95mRHIMUUIIyL4FXRPKK7yEXAdA1bYUFKMRk+4rzYwzq9USOCVeDwBAetqAump1GUKqkpHsnAi8p4eeCvbjJomjxqbOu8UXl9KT4LPswMCdzl7Z0khXkl8I2IlYLZ8mDqLGpU63O4Dicnq73obiGBIAKttdWJYTfo6sSszrLNP8uMlcuYLcDlG4krUmpk8GihoBYHst0E5Y/coqzDWqt6CTENRuUCaPHSygW+jtx03AKbFxqGup2QG4idNEZYniXFn1E1mXGDE6Rq3KIKi+4/dhbHErVtSo31//tKl3LBLYoH5tD2dg2GbA+clpqMVoPgNobQf6WnSVrYuwbtv05nnqjBFjrO2IYdKAEd4qrO0zQplXvQPY3gIUh/tiUwavT2IHcU4ZUmhy7E/db6lo9yiTpZTAWt21MoUMzUxi0c3pM3NZ1/SrZD3XiTmlw8PEaAJALjxwK9RDbSIXxsY1EGkwZ3Jbszp9iFOdTrKdsOYCQEkG3cMzTArBb4iZUM4N+fyIqpCUshrADwFJDgDqZT7UTAv5/K6FbRmmV7B9+/agz4WF1JNv6+Tk5CA7O/gpU+j+0oU5c+YEff7DH/6gDboKxel0KgOvpJRBdTscDrzxxhumgsc6A7o6Wb16NV577TXTbWIYhmEYpud4DPVLfqsSGKvkEFIlP3xRCT4yHWqCNIVXtkcuxDCg5TxW5EuJQicwaguQIfmkelVRh8iKeZuY6KDkmWT5OMtB7MKOPsJ8BEoyRWG5GkFgKDqJhpXvkIoyDkru5ZFuGDI8gL6NEKZZ/W5CCPJv0Oa3IEazUDaacZObkLTl2vLIv70VWRvDZCIqWRIAFGUNsFyXNBU1wvRmPml4h8w72DkzgS1hAinMUs8Ma/BFiDyOEZRkNRXHYgzDMAzDMAzD9D44Ps8cHJ/HMAzDMApEJDFauFxMfviCvsqZZ/WkRT3j8FO6/pkn2zDIV6ss9oJGHJUMmt0SW5vUeUqJTCifvW1+ZzvFaKhdT5fJNAGRBpHbFxACxze9SZa56e3U6k/LNHKbLDu6J3hXu8hyYsZvaTGaXx3bBQCoIYSEAwdDODJoUUziGKKEjXPeSp0+JKXE44vNteesKQIOe/g5Svp8wGYTwsZQyR7VfwCgLLOEjSJXE2NGnL9njgUG9ac3uzlB5ypK9AkAFQqHu3StoDc47BQ6j1GjuYbPqlhL5qWaoDFaGogQusKdr+2lzwds6V5gwOnfYbkuHZF+x1kNTyjTxYwkjp8ZJk6c0vSKNj8Vzzten8S1rxvY90Y/Jt5CLzpTaCIUXLY2AxvXWNi5WoyGuhpaHAsAh5xkfh9ML0P3rEA/7pOGAXxO607E0WdH2aYUgxgX/cq+WJnebstGjaNUf8ylCNQ4pUhxfpLtHhgPXgNj1gQYJ1TCOHUPGDefC7l5LVBDPBsaNAyCF/BhmKTARx7ThRDiAATLzVZKKRdoNnk15PMsk/sZBWBSQFILgA/MbMswvYnQQKjQlSF7Smh9dXWJmeQSS3744Qd89tlnXZ/z8/Nx++23x6Tu+fPnY9my7tUMzjjjDOy5556mt7/wwguDArreeOONmLSLYRiGYZjIeA0v/FAHkWQL9UrUsUInvWHxhnWsCFSA6CQqTGbiJo5HK/KlRKETAgR+D6r/sxgtdbAqd0iEDCJdRGE5dvNSOZ1Qzsp3oCRkyUQ3zlDJROlznfXvRv0elMykp2W9UVzT2wihao4tj/zbe2U7jx8YRkO9Vx1JVehQi5R0pE5IOpMMWv3N+KpxoTJv19wxKM8eluAWMZ0UOhRR9AAaCDFirHH71dfvZEp5GYZhGIZhGIbJHDg+LzIcn8cwDMMwBJEmOW7dCOntXuBRrvgaePUhsri48iGIiUfEqnWWEeffEPS5ot2lLPfoIolv16fOWx+dFKAywussuWEVIC18F+/O98oK6V0Xg/h9RyDijjfQV7biwJZPlflNbuDhT2lxQiKRUmLhKjpfBM6d14mrfnsl4CBitUJlVoH7p/pVaQW9r95IQTGgEFtVel3K4l4/cP/81OhD17wW+XyS1wc4/0CBO04mZAzvP21uZ76QBYSrXepyOXmA0/qiZ+mOuPF5dca2zUHX5k6yswTmX6q/rt/9Yfz72QVPqffRNxso6afIeOYOdUVFpRBFg2LXsAxB9O0P9C9S5h351Mk4cFf1djqhXTpRT0xxcHa+tt+6EfB3L9xa6G8g63rrB+tjxapt9Db/rLkMv26aG5YubngGYuxky/timFTnnMancdOW68j8VBSjnfWoxM1vS3y7Afh+I13OGSEUXEoJee5EazsPHRd11vX4TeQm4s43IfJj+y6ASSOERowW4RmB/OdFdOZ+h0JMODzKRqUWghCj3VpPH1c3l1wJtFmb/5cMKDFaQZ5CXH396R1j7tU/ANs2A5vWAu89DXn6OFICJ2Y/FcvmMgxjARajMQAAIUQegAdDkq+OsNkzAPwBn08UQhCPAYIIXUruRSll6mtCGSbNELoBfJrw0UcfBX0+/fTT0b+/ZqkOC8ybNy/o829+8xtL2+fl5WHixO4b8U8/Vb/QYxiGYRgm9nikelItAORohCKxwKzAiDGHVZmcT2pWVWSYANr86r4V73NENGTZski5WeAx4jMoMVoGrRqa4ljtX4mQQViRf+mEY/HGktBMU9bS903B80GORt6oumZS19FopG95xL6tXKutCE+jkZW5Ned23fFECVkYhgHqCTFSYRY9k0RoV9RjMpXPd3wEr1QHoh1cODPBrWECcRKiw3pvYiK4qWclyZTyMgzDMAzDMAzDxAqOz9PD8XkMwzBMWiMiTLWSEtiyofvj3NCpOAEccCzE0b+LTbuiRGTnAsVlXZ8pCREAPLAg9cVoNgEMLdRvK1+819rOvJ6O/9cQAqviMojs+C7amnZU7AEAOK75LbLIXR+kRn9a+Is+vyjwtUW1S12ovBLC4QDsRKyWXxPbWLtenV46XN+wXoYQAlBMwqdkjUBHH5JWJIdxoK1d4r75dBuePlfAdasN9Xfb8NBvbejjUN8ryqcJ0VUovpC+RIn1yip6xX2pZYbvrk43DGDzWmXWqDKB+0+nf6t/zpMwjPj1M69P4qfN6rzK4vDnC3LNMnVhADjC2r01EwB1zq1djzkz1efwhlagoTU1rmU9gZKEdInRql3B6QYtRvvH+1GI0YjwhANaF+Gi+gfCMw79NcShJ1veD8OkBULgyro7satHbe3ViQSTwbo6iRe/Ntemgkhh2Su+BjausdYAhfQUAPD6I+r03H5AEqXkTAoQpRhNtjQCrz9MVzvr2p60KrUoq1QmF9d8j3y7R5n3UOH5gDsdxGjqv3FhSKiiXP8LsIh4lqG7tx+yS5QtYximp/DMyV6KEMIhpbkZ40KIfgDeBDAmIPkVKeUruu2klKuEEE8AOGdnUh8AjwshDqNEZ0KI4wH8LiCpHcANqrIM09spKgpeaWDHjh0xrb+hIfghVOj+0oHFixcHfZ42bVrM6l60aFHQ56KiIrhcLkt1BAaBuVwuGIYBW6QVwhiGYRiG6TEeg5ZbZNviG3ykk25YlXwx1mVyPoN4scEwIVB9K5niJx05tjw0+8PvCQO/hx/qxzyUVI1JPCkpRouRcCzeWPktdL+zFdlZKso4dO1XndeosUc0fYv6PVotyM5aDWtiNCmlpQBN+tzeN6K8th9iM5GPYXob271blemFhEhJT2oFZTGJw5AGFja8p8wrcBRhr36TEtwiJhBKdFjv22b5WhwNtMg19SS1DMMwDMMwDMP0Pjg+LzIcn8cwDMMwBGauN9UuYPDIjn///CVdLlUmTZZVAHXVAIBd21eTxb5cmzrvfKrq1G0ZWgRkEeKh7o2XW9vZzgn3stqlzlfInDKeknLAkaXtT7/UdkxMduYlV970RZW+X19+ZHf75OYqdaHOPuAgYrX8fnoHhNhKlGWWGA1Ah5ho7U9BSbo+5KoDtjYBA5MY9rGiBmhSzpLsYO9hAsOKTfTx1mZzOwwRgMhqok9mmFivC933/uxtYPgoZdZugwSouIaN9UD1DmBwBOlmtFBSKAAYotrnz0vI8iJVxhXpSOkw4JdvlVmVnrUAdlPmueqA8akXamgaw5DYQUy9KOy8Ple7gtJzpFqKAgB+w3obtjSq0yvaCfHjkJHWd8Iw6cLOOJ1KrwursncNy9ZdM5LB2z9KnUsqiP6RQoF+0tw3U3jDF2GWujFV0cDMFMcy3UQpRgu9Rwlj8Ijo2pOKDBqqTBbedgzKakGTP1uZ39bYhrzSeDas5zQQYx5n6Fju56+sV57bFygotr4dwzAxgcVovZcLhBAnAXgSwNtSyrDZLTuFaCcBuBnA4IAsF4A/mdzP9QBOAND5GGYqgA+FEOdJKVcE7CsbwO8B3BWy/V1SSuIOlmF6N6GBUPX19TGr2+12w+0OfvJeXJx+A67q6uqgz2PGjCFKWmfDhg1BnydPntyj+gzDQENDQ1oGuDEMwzBMuuEx6AgDq1Iaq+jEa24/i9GsYlUm55XhLzYYRoWbECimoggJ6JAYqcRogceIj+j/DhuL0VIFq/0rJwGiPivXxUSI2iis/Ha6dubY+saknmSha7/bH3xeM6RBymJzLfwOXdsQ/dGsxNQnvfBK8wJTCQkDftgtvKIgxSq2XK34kuW1DKPGkH40+LYr87RiNCJwJNmrdDPJY0Xr99jqrVbmHVAwHXbBr6OTSaFD/W7IK9vRYjShnz2+s0jS7d6MYRiGYRiGYZjeBcfnRYbj8xiGYRiGwGaPXGazCwAgDQNYt5IsJg49OUaN6iFlFcCyzwEAJzfOxY0DrlYWW7YZuO51A6dNFNijLLkTyqu2qdMrzQy7ql3WdubdKQAhBFbIRIFVBITdDlk6DIdv+lhb7sdNwIHhzoeEsnqLPv/EfQL6+roV6kLllR3/txPvvnya2MYaol8NGqZvWG9EIbU6tHWBdpOfq5MrRnNpBCWjy4BRJuQA0uMGtteY2p/0exF09qX6T4YKG0VuX8hR+wIrvg7Lk//5e4fc9MgzIQoHBOUdtCuQZQe8hMPw0c8krj0mPte9b9fT8RSnTAjfp6xdT1d20PGxaFJGIg47BXLh68q88qZVyLLvpuwfVduA8Wp/SFrQ5AYMogt2SkJUUtAS31ZscwwIS9/UAPj8Eg67+eOloVXdgCK/Om5JHHKS6boZJu0QHRLuSq9Lmf3yUon/nJHA9kTgh43myvXPAew2/XmBFBDrtvG1I6xWamwEAPseYnkfTC9DK8bTxLg2N9B5ex0IUZziRjArFNDvWA7qW4XVbnW+a4sXo9Ue2bhT3yLxxOcS36wLH887+wJH7CFwwt5APbHGuzN0Sk21y3ojSoezeJFhkghHovdeBIBDdv4nhRBVAFYCqAeQB6AUwD4A+oRsVwVgupQywmPfDqSUG4UQJwJ4P6Cu/QH8LIT4GsBaAAU79xV6J/wWgGstfq9ez5BCYO0tvKJdvFGuqJBgBg8eHPS5pqYGdXV1MQmQ+umncDtx6P7Sgbq64DcIhYWx+8OF1h0LmpqaOPCKYRiGYRIANakWALLjLEazCTtybLnKNrB0wzq6v6UKSgzFMKG0Geon2qkoQgJoeVWgcNFrEGI0wWK0VMGq3CER/dFsm2ywI0uEPiZMHFZ+C913yrUwDkhFGUeWLQsO4YBP+sLyQs9rHsMNSbygjUYUm0fI1KjzaVi5KASxXuk1LcvRiddybX2135nHaAyjptG/AwbUEb9FWeGBjZ2I8FAjJsP5pP4dZboNdhzgnJ7g1jChOAkxGgA0eOsSIEZTX4dT9d6MYRiGYRiGyQw4Pi9xJDtGj+PzIsPxeQzDMAxDYIs8XpQ16yAAyKtPoQtNOxEYtW/s2tUTyiu6/jmmfTlO2/E8nis4VVn0prcl7v5Q4q2/2HDQbsl7N+Tapn4nXlESYcK9tx3YSszgrxwNVP0cnt4pRqMm2StkTgyAsgrkbFyDd9Yfi5nD3lQWOfgOAw332NA/Nzl9yTAk/reIngD/xCyBcmdH22S7B/h6vrKcKNspRnMQsVr+8FgPAJAtjUCjWvySicI9UVYRFu2SIz14b93ROGr428ptDr3LQOO9NvTLSU4fos5FAPDMeTZzk+N1oqtQvCHxMdUuZTGRgf2nEzHtREiFGA0A5P1XAq8+BNz3EcSA7vv0LIfAvEtsmHanodzu+jcknHkG/nJobJ8ZbW2SOO1hug/9drKi/zxxK1leFA2KRbMyk4NPILPsW9ZhWBGwZmt43rWvGThhbxPS3BSlQROqX9j52v7J28LyXth0Bg4b/kFYut8ANtQDlZo1F0OpJ8L3Cg21hEbssqf5yhkm3dg5bqhodymz61qAl7+WOHnf1IjR++9Cc4ulFkQIW5ZSAi/9my6w+z7Aym/C09s94WnVtGBN/Cn8fMZkGppjR7f4b0sjXeMV/+lBe1KQfPo90D9KXsWjdernWP/5xol/HxCvRtFsa5KYdqeBn9Vr9wIAHvpE4i+HCnLc4wwJVZSPzrHekAwVUzNMqsBitMxAABix8z8dbwA4T0qpuIWnkVIuEEKcAOBxdMvPBID9dv6n4jkA50spCc9+5uKwC1RYeDDApC9Tp04NS1u6dCmOPPLIHte9dOnSoM+5ubkYP358j+tNNrG06ba3qyfT9gSpuzFiGIZhGCZmeAy3Ml3AlhCpS44tTyn0oib7MjRtfnOylU5YjMaYhZLupaIICQBy7ZSQqPu8ohIlAYDDpFSIiT85dvMyqizRx7QQqieYFYXl2vOSuoJNjt38sZmrKWvlGE/V80GOLQ/N/vCXq6HnNd24gzqn6Per3qbV5LU6GvlYx3XdXB91++kIrRxbLuzCgT4iG+0yPAiCx2gMo6beS78KKnTwSwrGHHXeWixrWarMG58/GQUOnqicbAochbDBBgPhAf71vjoMQWVc90+NEVJ1LMYwDMMwDMNkBhyflzlwfJ51OD6PYRiGYXYiTEhRql2Q61cCi9QyKAAQl92X1HfxgYTKiO6ovYoUowFAsweY/YaBjy9Lngikaps6fQS9xk8HtevpCc9TZhBitJ1xadUu5WaCJ8CqKe94zzC95SOU+mpQ4yhVFnv6S4k/TUvOsbDgFzrvyhkCv50ScLwvfJ0u3NkH7ES8j4+IbazRCLEyUbhHHEuHt85HeU4rNrvV75Ce+0ri/AOT04eqCOfzAbsAew012SYrYrSAviQNg+5DZfF9z5fSHHIS8ODVdP7mKsi5D0JccGNQ8kG7CYwcoJZfAcC1r0mcu79EXnbs+tojGjHjlBGA3Ra8L1ntois79ZLYNCpDEXY75D7TgG8WhOXJahcqS9R94+dqoN0n0ceRGmM6qzRoQuecuYCsWq7M28f9Hbmda5s1MRrVBqdfIUabfrr5ihkmHdkp4a70usgiV75i4MS9bbDZknve2VRv/llsqHQoDJX0rJOz/w788q06z6d4xryZEKMNGgbRN74LRDJpgO4ZjO79QpNa1onS4RBDd+1Zm1KNPPo4cbZUo9y7GZuzysPy7l9WjnulTPhzrkcWSa0UrZN/f0z/fQvzutss12seEujIxPt3hkkheNm73ssiAC8BqI9QzgfgXQBHSCmPtypF60RK+Q6AsQAejLDPLwCcLKU8XUppbQY8w/Qyhg0bhmHDhgWlffBBuEk/GubNmxf0edKkSejTJ/6SkFhTUhL8lGz7dmKlnB7WnZOTA8MwIKXs0X8VFRUxax/DMAzDMDSU8CjblpOQB2w5hGQmGiFIpmNVVOJlMRpjEkq6l5uik++pdgUeI34Wo6U81PVBRaL6olnhRLLFFFZ+D93vnGXrY/qY0AnWkgn1W4SOM3TjDit9sZM8QqZm9lrdZlh/1EsJH622I3en1I3qx21+HqMxjIp6n3omSZbog772fHI76o5Lhq3rzWQCnza8T/7tD3bOTHBrGBU2YUd/h3qVR+o8EEvcxHU4mvEKwzAMwzAMwzCMVTg+LzIcn8cwDMMwBGYmoFe7gK8+ovPz8oH+KbSASIiMaJC/FnkR3vN+sgpwe5PzDkhKSYrRIoo4qInyAMSw3dQZXg+k3w/Ub1Hnlw5Tp2c4IkDMtKf7R7LcBz8l713i+5p97zc8REi0VHNM75TAwUHEpfiJGIiadep0ux0YMITeX29FIxkcY6wh85LZh9ZtU+9791IL8co6QV4ogQKQbZtp6V4GT8wX5ZXAqH31hb76UJk8bjC9SaMbWOKKvl0qdH23skTRh5Z+TJYXZZn7N48Z1Dmo2oXhxfQx/d2GuLQmIdRrQucKcgF8NU+Zl280o5iIKXDVWTsnU21wGjvCE7mfM72ejnONToy2dhstiU4kn/xi/lgviBQGtER9XQYAMXgE0CdbnekNF6OREtHBIyI0gskIohWjNSuuSQDg7H0rLQmHo+OZlYrGOgzz0vcuW5vi1CgNHy7v+b1gkLxRd9+vgcfiDJNcWIzWS5FSfielPAVAMYBRAE4EcBGAawBcDeBCAEcAKJJSzpRS0qNK8/vcIqX8I4BSAIcCmAXgqp37PQnACCnlFCnlKz3dF8P0Fo466qigz0899RS83p7JHrZu3Yo33nhDu590oaysLOjzzz8rVmeKkkGDBnX92+12Y/16Cy8aGIZhGIZJKh7DrUxP1KTaTvlGKJSwjaGxKpPzsRiNMQl1POakqAiJlPkEHCNU/3eIrLi0ibGOQ2QhS5ib9JQoEZlZ+VeypYFWfg/qOmy1rmTL4CiodoWKwcyIwqxA9YFWQjQZCiWk1OEzFCu5UfXrRHD2jjEg1d+tilgZJlPY7lWvk1PoKIkgnE7PFXCZ2OM12vHZDnWAbFmfYdgld3SCW8RQFDrUAVoNXmJ5+xhhSD88Uv0MJ9njT4ZhGIZhGIZhMgeOz9PD8XkMwzAMQyBMTLX66Ut6QjYATJmRkEU+TRMiAhEAjmrWS2OlBNbF91EySV0z0OxR5ylFMoFUu9TpRaVAP6c6z9sOuDXvvantMp3J3ePgGc3vkcWSKXao2kpPoj50VEhCtYuuaLfxHf+3U2I04j6DEqOVDO6YkJ5pjBxHZs1on0/mrVW/3k4Ia6OVNAagle6FEihCo/oPAJRXmK+zFyKOOlNfYOU3yuQZ4/TXkM9Wx1bCt5rwbQLATMXhIHV/80nTe96gDEdQYrSfl2Kmpm98vjZ9FwtsIELn+mUDWQ6hHc9WEGIUq9d1qg1Of0NYmpgyw1rlDJNu7LxH3Mv9AwoUx0Ana5I49umkzkJY8GCn/vqqvXeeeATgIOLvfYo4Y6oujYCXySC0z2Ho67lsJo7HfgU9a0+qkq9eaBU76jCx7Stys2Tc27tisM8hAV9Xez7SUVrR84YwDBM1LEbr5cgOVkopX5VS/ltKebOU8hYp5QNSyg+llDF3c0op26WU86WUj0spb9u537lSSnrZFYbJUP76178GvfDcunUrHnvssR7Vec899wQFb/Xt2xfnn39+j+pMFvvvv3/Q5wULFsSs7qlTpwZ9jtVqoAzDMAzDxB8PITzKtuUkZP+UgC0aIUimY1VUwmI0xixtxIq2qTr5nmqXm8VoaUe2SUlnoiR96SIJy7UgN40kQjUrSk2UUNUqVLtCr5mUKMwGm2lBX/B+eyYVo867OrwWrus6MVrnOdSMZJJhmG7qiVVdC7OiXeEufYNAmej4uukztPjVrxkPdqbYZK8MpzCrWJlOnQdiBSW2B1JXWs0wDMMwDMMwTO+D4/P0cHwewzAMwxDYTE61euEeMkuc/fcYNSZGDBgC2O1BSdduuwWDfHK0aE4AACAASURBVLXazWbea8BvJP490Mcr6X1Wqh97d0FOci2vABxEnI3XA7Rp3nvnWF+gLBMQI8d2/fusHc+Q5aq2AVIm530iJbXKzwGceSHvszYT097GTobo7DtUH/L7lMmk5Kh0uDq9lyPs9g75hYKza/5LbvftBsDjTXwfamuX+GmzOq8iwrmoE/nErcDHL5vfaaDMe7NLXaZfAQQlM8gUjj8fGDdVW0S+9O+wtNMmCBy4K73Nta9LPLfE6GnrAAD1LRKbaOcNTtxH8U69mhajicEjY9CqDIeS5myvwdEeWmB4yQsSLy6NTb9INPWt6nOns/OVfbWL3LbCq86zIs71eCXaiDBBlRgNoyear5xh0pGd95oO+PFg9Z/JYkfdY6DVk9x4vHoLobfDIo2Lqmm9hCguBbKIuGfVIifE+IiUXzIZhiZmUXdP2rJDnd5bJemU8G1HHa6uu53cbNqdBry+xJ2bDENiQ33P6rDbgMGBf8bn746uIj7HMExSYTEawzBMEhk9ejRmzAg22V9xxRWordW/YKT4+eefcccddwSlzZo1C0VFRVG3MZkcfvjhQZ+fffZZNDXFxud45JFHBn1+5JFHYlIvwzAMwzDxh5pYa1ZG01Nyicm7bkLYxqgxpN/yb8ZiNMYMUkqybyVb/kRBynz8kcVodpGBK4emMGYFX1ZEYD3BbJ9PtjQwx2Y+gDjSd8o1WVeyvzNFrl3d/sDzAQC4/eqIg1xb36hENHnEfltNCs9aCUGs7u9l5bpOCdqyRJ+u86AZySTDMN3Ue9UzAIocA7TbCSJwRLIYLeNY2PCOMj3HlouJBdMS2xhGi9OhFh42xFmMppOTpqqklmEYhmEYhmGY3gfH5+nh+DyGYRiGIRA9nGp13LkQlXvEpi0xQjgcwMChQWnjPD9hSdX+uLvmb+R2VduAd5fFu3XhnPpf9bunnCyglJi/20W1S51eVgH0yVbneT2AR/NuOTc1YwxSgjMuBwAUGI14f91MZZFmD1DXnMhGdUOJ0e49Nfi9p/R5gS0blGXFmZd3f7ATsVp+v1r+RkmOyjJTjAYA4jT1Oaegfi3e+r2H3O4/nyT+nfQ/59H7rCiJHJ8jV30P+chsazv1BcTTsFiPRDiyIO79AOLc68ky8t7LIOu3BqX1yxF4/2L9df7cJyR2EDIpK1w5l67jm2ttyMlS9CHqb376pT1uDwOt0MJx5XE4dHf6b3b2oxJN7vSLjWkghjeFJsRow73q/uiqM/87NGimCjiNEAnNzLN5ET4mA+ju479umotcTWzNI4uSe86hzh8qhkcSoxHXN/Hnf3T8w0GJ0YLHhlJK/f0ew+iuIzoxWhMhRusb6QFEmkJJlnfUodi/HUO96ntjjw945ZvEnZuqdwBef8/qGFoIOOwd/YIUl5shg+/hGSYVYDEawzBMkrnrrruQl9f9oqyhoQEnnngimputvfnZunUrTj75ZLS3t3ellZWV4brrrotZWxPNmDFjcPDBB3d9bmxsxFVXXRWTumfMmIGRI7tXy1iyZAkeffTRmNTNMAzDMEx88Uj1G7JskZOQ/VOCD5ZuWIMS3OnwGixGYyLjkW5SzJG6IqTI5xWfVK8qmiWIVUiZpGBWRGZFBNYTzAonki0NzLJlwWFS8heprenynSmo9oeOMyjRSI49OskIJZTzGG0wZOTVLqlxUL6dfiFMnddUhIrhOglsN/Xb6aQsDJPJbCeESIVZaoESwwSyzr0aLvcqZd6k/oew9CrFKCTEaPVeC8s4R4HuOYlZmS3DMAzDMAzDMEws4Pg8Go7PYxiGYRgCW8+mWomxU2LUkBijmCg+2LcZf65/EPtX0O9v5yZw0isAtPs0IqJiRBZmVLvU6WUVQBYhRvP7gVbN+DCHn2tTiPKKrn+Pbl9BlquK72sJJfUtkhQ6jBgQ0o+2bAAMIj6irLL733ZNrJZfcRxt2aguO2gYXU9vJ6DPhDLGrp6ADwDv/Jh4Oci7y/Tno0jIT16zvlNf9z2nrCV+DxZ/AOiQo+G3V9DCQgBY/HZYUk6WwKXT6WuJ26v/25tl8Rq6jl2oNesocQzL8GKDTmjh96PSRov0PT7g/Z/i0KY4U0esi+rMiyAYAlBJiNGqLKzBphMrFfobgj6L8kqiJMP0IkLuZY5reossmuj7sFAsidGK6Ouq9PuBSGOaPpQYrT34c3MD0Ebct/H4iAGiF6NR9235vVSM1o/4Xq0dC+eM9dCDnkSem5Zt7nkdQfdti96MrpK8fFomxzBMQmAxGsMwTJIZNWoU/v3vfwelLV68GDNmzMDGjcRgOoRVq1bhsMMOw/Lly7vSbDYbnnrqKQwYQD0tTQ9CA8fuv/9+3HXXXaa337FjB9zucOmGw+HAnDlzgtL++Mc/Yu7cuZbb+OGHH2Lt2rWWt2MYhmEYJjrchlqMlqiJ15RIhaUb1ojm9/JJFqMxkXET8hwgdUVIlLCtzeiOSKD6v4PFaCmF2WtRbpKvWaFQcr5EYkYW5xBZyLLp+7x5OV3yv7MKShISet2kRCPRCiBz7er9Skh4iLFXIK2GOoKqv8NJbuOV7WReKNT3DTzmqN9Od11gmEymwUuI0QiBUiTSb01cpicsrH+XzDvIOSOBLWHMUJilnpVR79vWEegcJ9o0YwiW5zEMwzAMwzAMk0g4Pk8Px+cxDMMwjALRw6lWYyfHph2xpnI0mbV/MW24+GlzYt8EbdhO5w01Mw91s0uZLMoqgCxiwj0ANNXTebksRiMJEBCU+mqQQ7wfWLs18W8U12rELSNCX4sS/QYAECgk0gmYfIr4riZ1hxbFpXQ9vZ2BQ0kB5ZAW9eJMALCpgcyKG7p9lvY3U8Ea6zsN7EdE/0HRIOv19lKE3a697sqN6r/B/iP1ks3VW3vULADAZk3/6ZcTvn/Z7gG2EfYHjVCQsUBxGaCRb03N0T97eGJx5AVGU411hJi0tL8AGrYCbYQ5DcDwdrUYbVODXmQbSL0mdM8ZIkZL2TE0w8SSkDHQ/m2fk0VjcS3qCQ2t5sfvEyo0mds2qcfJQPe9hIO4T/OFxBk3am4WM3l8zXQThRhNetzAyq/V1fVW4V6x/n5iamtqnJvmr+z5c4SKku4+ITdF+Z6pdHhkST/DMHGFxWgMwzApwDnnnIMLL7wwKG3RokUYPXo0brvtNmzYoDZir169Gtdccw3GjRuHH3/8MSjv9ttvx2GHHRa3NieKQw89FJdeemlQ2mWXXYbjjjsOX3+tvtkwDAOff/45/vrXv2Lo0KGoqalRljv99NNxzjnndH1ub2/HSSedhDPOOIOsGwD8fj++/fZb3HDDDRg9ejSOOOIIrF+/PopvxzAMwzBMNHiM8KBqAMi25SRk/5RwhBJ2MGp0v1dfW74yncVojBl00r1UkD+poARNgSJIFqOlB+alXIkJmDUrYEsFSZiZtpppp9njPHXPB+rfIfS6SZ3rov1b6oRqlPQsqD2EfCzP1g824jWEles69X0DhW45dvVvx/JahgnHa3jRGBpcuJPCLL0YjX65z2q0TKHZ34ilTZ8q83bPG4ey7KEJbhETCUp46JXtaDWIVVRjAHXfb4MdWUIz8YxhGIZhGIZhGCYOcHweDcfnMQzDMIwCQthjFjF01xg1JLaI0y4h884f9B2Z95ULuO51I66LbQTiIgQeAHDD8fq/jWxtBnYQNqyyCiArm964kRCjCQH0SUxsYloSMFFcAKj0upTFTntYJlyy9/ka9f6yHUBZQUhitUtdSeFAiLx+3Z8dmlgtvy88rWmHumw+vdBcb0c4sjrkaKq87xbikN3V2y2vRsLOQ0CH9IcSCh23F2CzmZgY/+EL1nfsDRCANBFmrXwzlsjMQZz2Nzrz6X9AusPfWx49DthrCL3Zda9LeLzR97cdrZIUQv1xGtF3ateTwo4gQSMTNUIIiDP/j8w/qfoJ7fYLaXdjyuLapu5TFc0rII/TxHeUVaDCqxajSakX2QbSQBwHdulDXxkSl7j3weYqZZi0JvgacNoOeqywuQH4Ym3yYvLe/8l82YH96XGRfPoOesPOewlKYO0NEaM1E2NrgMdHzE50Y3TieProxfC+1sm4qT1uUSoiymhRLAD8bsdTZN53G4BVtYk5Ny1Yod6P08J0ieGBa8q+82R0DWFJMcMkHc0yBQzDMEwiue+++1BYWIibb76562F9U1MTrrrqKvz973/H6NGjMXToUBQWFqKurg7r1q3DypUrw+rJysrCPffcgz/+8Y+J/gpx4/bbb8f69evx0ksvdaW9+eabePPNN1FeXo5x48ahuLgYHo8HNTU1+OGHH9DU1GSq7gcffBD19fV49dVXu9KeffZZPPvssxgwYAD22msvFBcXw2azobGxEZs3b8by5cuVq1wyDMMwDJMY3MSKgpRIJNZQwhFKCMKo0f1e/RwFaGkPH8+xGI0xg066lwryJxWUkKjN3wopJYQQ8ElF4BwAu+DHe6mE2T6WSwicYo3p9qTAsWFKemaiTDp9ZxXkOCNk/EOd66IXo9GyvjZ/KxDBwdhGyNNy7X2RJfrAI8Ofo1i5rpsZ/1HfgeW1DBNOg49eGp0SKHUitIEjTCbw+Y6P4ZXqQKCDnDMT3BrGDE5HMZlX7932/+ydeZwcRd3/P9UzszuzV3ZzX2R3E44gZzgEAyRyyX0piKIi8Mij4K2PeAuiiA94iwieqMAjigry45I73EICAQkhQHZyTpJNsvc5M12/Pza7mZ2pb3XP7szs7M7n/XrllZ2qPqpnqquru7/1LlQGzHLy0dIr3PdHnArOoEgIIYQQQggZExifJ8P4PEIIISQNJzDiVdUn/zeHBcktasY86LIw0J95nZ3f8Rp++oFT8Nk/mwedfvdejYYpwCVH5//5bnSHPMD2yPke+49F5bxZDUCfpY/RIYjRwnyubWXGvAF53K4+dmN/FK+X72tc9D0/dhG91kEoWJjv8zNCfW6cmim10rGoeSMp4jcAQMASq5UmRtNaA51CvSphMRqAAcnTFoNw546f4po/fB+Lv2/+7X7+qMZnji9M/fnWP+W26Ltnews09dv/kTOnzQGOPw/4808y85Ip8TRCu6RKvf6koY46DXrfw4HXXzDm6198GeqLPx+WFgoqPPElB7WfdcXtfv0ujR+cN7L6ZpN8fvkkYZumc2IQitFyhjrjEujrLzdK6Koe+xOw783iuh29QEevRnV4/PQLmoS62PD4L+SVysLAfkeg4ZF/ytvdDiyY7r3/1m5zW1qXbBkegXTQMVCjlBMTMi5Iq+d1bisejZ6I4xoeMi6++Psuum5wECkrbLvT2q3R4zPE99cXWqRob70C3PUrc2Z1HVTVLltxUBCjJdIKId2zKQVU1niUlJQEtnt3w7Vfaw197aXm5asmAfP3z1HBioz0+9z07MQW/HHTxbhwzu+N+Ude66L5R44/WfQIaevWeFHoHp99sMItz/iTszXsCp3UO7YA3f7ea2XAvjghYw5HThJCSBHxne98B0uXLsXll1+ON9/cPY2A1hqvvfYaXnvNrtk+5JBDcPPNN+Owww7Ld1ELSiAQwB133IH99tsP11xzDeLx3Te0mzdvxubNm0e87VAohL/97W+4/vrrceWVVw4LqGpubsbDDz/saxuVlfIAYkIIIYTklj7XHJxU7hRmVkZJwEbpRnZIApUAgqKsJk4xGvFBj3AuOnBQpiyzvo4hksgoiQQSOo6QKhMFQkHlYSsiBcWvpDNskVDlEr+SrELJRe1l8CM98y6n32MuL4JjNiFdA9PFIpJgdKTCt0hAXk+6ZvtZJuJUIKhCghjNLHzMZvupvzf7aIT4p8UmRgvZxWgShZyZm4wdrnbxZOv9xrza4BQcWPXOApeI+KEmWAcFBxqZQf0tiR2YC/sMkCNFFJsWSBJMCCGEEEIIISYYn2eG8XmEEEJIGqORMsxdkLty5INDjwWezXzWr2NNOPEEBUB+5/On5zQuOTqPZduFJJN5Z4OPlWNN5vRAAJi+B7AlKq/bvtOcHmY/xIYKlUFPmwts2wAAaIxHxWVjbcAjq4GTCzC2fL1FsDff9Eo0FjUvnI0YLV3c0NMFJJPmZatKXGw1qwF4eZkxq771NQDvMObd+pzGZ47PX7FSufNFuQ41yPMSDaEfuFXMU1/9FfSrz5ozU+7H0NlqXqa6zrsAJYY6/SJoQYyGh/4M/dkfQwWHn781EYUfvV/hC38x/9Z/ek7j+nP1iOSYTUJYRtAB5kg/X0wwP0yeAVXOd6w55bxPA3/5mTFr6ew2PLF5krjq3S9rfPjI8SFG641rbBaakfq4RcQ3qx6Y3YgK3YPpia3YFpyRsciAyNb7e2gRQvdq3bbhCVNneW6LkAmB4Zryzt4Xravc9yrwvkPzVSBpn/5jAWfWWMRoD94mr5jSz1ahMvOdaDxt8s6ONtNSQOUkyhXJAFmK0bBK6D8CwP7vggqMXJxf1HiI0QDgmO6nxLyWbuDpt4Fj9sphmdJ48i3AFZqicxZlI0bbVSceu3PEZVEUoxEy5vAqTwghRcYJJ5yAVatW4bbbbsPxxx+PYNDusCwvL8cZZ5yBu+++Gy+++OKEC7oaRCmFK6+8Em+88QYuvfRSTJ482bp8VVUVzj77bNx1112YN2+e57avuOIKNDU14Stf+Qrq6707qdXV1Tj11FPxi1/8ArFYDIcffnhWx0MIIYSQkdMnDKwtlOAkEjAHOkkDfokZ6fuKBCoQEkRPkhiKkFQkAU7YKd7ZW+1CooHjkQRCQcV5D4oJv5KHSMGuWf4kWdK1rZD4Kasf6ZkfMVi5CiOgivNFZVj4HtLbNrGt8/mbpxNUIYSUecY1X2K0pHmZikCl2E5lc13vTQr9hpTfOyIIByVhJiGlzM64OQK3wqkqClkmKV5Wda3A9vhWY94xtScV7fW11AmoACYFzdH1rQnLVOWjxHZvRgghhBBCCCFjCePzzDA+jxBCCElBjWKo1YIDcleOfCANfo1F0TgVqLbMTfp6LB8FymSdIJNpmOoj7icWNadP32NAiGORnOmd5ncgCPO5tieTpw/9eWDfq9ZFX48VZsKlVZb6esBcQ12KRc0Lp58ztvuHZFp8V0eLvGx1aYvR1F4Hinkztsl1aFtHPkpjZoclXKYq7KM9ir4u5zXuByVJ9lLrUQfFaL5ZINcpdLUD2zcZsw4ytQe7aO4AdnSOrDhN281t3bzJQMAx71NvEURVFDHkHGXpr1061S4osl1fio11lnAAm8gUU2ZB7TlwTtXH1xsXkUS26bQKwytqk2lyoypZRkfIxCLzGhDWfVhY3S6usapA/edU1srzrg4j6ABH2OZjtPWHUtvikDl+GfG+4Z+l/nU12xCyi2zFaJY6qhYtyUGBihQfYrTZiRimJprF/FWb89s2PbravP1ZkzzanTTqd0mtta098sLH90UIyS8cOUkIIUVIMBjEBRdcgAsuuABdXV1Yvnw53nrrLTQ3N6O/vx/l5eWYMWMG9t57bxxyyCEoLy8f8b6uuuoqXHXVVSNa9/HHHy/oegDQ2NiIX/3qV7jpppuwYsUKrF69Gtu3b0dnZycqKysxffp0LFy4EAceeCBCIbNQQ2LmzJm49tprce2116KpqQkrVqxAc3MzWlpa4DgOqqurMXv2bCxcuBB77bUXAhPV9kwIIYQUOX1urzG9UGI0SRTQ63ZD65HNDFaKSJKSiFOBIMVoZBT0JIW6NUJZUCGwiQF63W7UoFas/9L5QsYGv5KHsCBwyjV+5TbFIMHxJT3zJU/zPpZiOF4JSeyWft20XUdHvu9KxJP9GemS9Gx4eczLRJxKBJ0QYJgAOe5m7ivb7afWG7GPJkjVCCllWhLmyKXJIdPU6MNRPmZ7JROXJ1rvN6YHEMTiSScWuDQkG+qCU40StBZBlJgL8tFfIYQQQgghhJBcwfg8GcbnEUIIIQCcEYrRDj8BqsgHS6pZDTAOLX3xUZSHFD66WOGGR82DT7d1AN19GhXl+X1fFN1h3v/gYFYbetUL5ozB38UmE9q+2ZweGfvJ5ood9d7LoL/3MQDAue1/x5enX4PWgPm7/s69Gp8vwGslSUoEABcfZajDm5uMy2ac05LMCgASafFdnW3m5QCgqrTFaDjhfOBn/2POu+ZiLDrhXLy0KfN+YP1OINaqMas2v+1QS5dGmxBucrrFvzWM5x4Qs9TUWdAeYjSdTMp1iAKhTN5xODCrHoiZ5WL6qo8ANzwCFRx+H7t07wEpaIc5NB1NO4Cp1dkXp0mQRjXawjIoRisc7z4HuPZSY9aZrXdhSuXxohzx+/drXHN28Y8XeGy1xvE/csV8SXgGYKDvs/g0AEBjfxQvRDJl9VGfoQYtwvdYm0yTG1H4SEoF4V7z0sa1+OIrBxvzrvynxh0vJPH+wxW+caqCIwg2c0mrz/mI33eIwtRqQfgZ7weee1BcV51+8e4PohgtLc5YEqOVet+apGA7PzLvEXUsKi9+2kWjLEsRM2kKEKkCemQLcAAuLmm9BddN/ZIxf+XGfBVugMffMN/TH7dQYZLPoSABB5hbB2itgbt/M/LCFPmzPkJKAYrRCCGkyKmsrMSSJUuwZMkEtguPAMdxcNhhh+VtBs7GxkY0NmahDSaEEEJIweh1zdEG5Y5lusocEhFkNi5c9Os+lKvClGO8I0lWwhSjkVHSKwy+9yusGgtsYoBBmYAsRuPjvWLCr3ArUiAxV0AFEVJliGu7gEq6thUSP4IMP+exr2XGoSgxrvuR1AkEdp3zkmhkNG1dJFCB9vSAI8u+/CwTcSoRVOaAhWyu61L/L1WWFwmY63GP20V5LSFptMTNs7jVBr3FaBLaPISGTCC292/Bqq4VxrxF1e/CpCCDVIuZ2qB5tFirIErMBePx3owQQgghhBBSmjA+zwzj8wghhJQ0amRiNPWd/8txQfLAbPn6q994CT8892A0NWvc+6p5megO4B2z81S2lH2YaPAQo+lEAnj4DnPmrIHjVuVh6LJyoL8vc5lmQYxWzufanpz8YWCXGG2S247H152Ig+e/aFy0tRu45RkXFy0eoYDQJ02WVyB7zxgeP6B7uoCWbeaFZzcM/xy0yIF3Ca2GkMQNQMnLG1TddOgZ84CtZjHP79Z9FIuCtxrz5n/NRecNDgJ5lIJI7RAA3PBB77qrm1aJeeorNw/8IYmg3V2zD3ZZxHoUCGWglAJuehL6rHnmBV57Hvq6y6G+9uthyY6j8Nq3Hcz7slkg9bE/uFh5ZfbS7nWCnLFhqqXeClI3zKIYLdeoimrohYcCq5dn5FU8+Fs8/ZefY+GV8vrfu0/j66cVbyza82s1Tv6pLEWbFY8hrA19oUHKKwb6TJNnoD5urpeSyDadVkEyWesOb+MUhY+kVBDiWD+7YLUoRgOAVTHgqn9qtHQBPz4//+2PJIgFgLoKIOkC7z1E4YYPymUZFCcbOf79UAcu3v05KIjREsPj37UkjWXfiAxiixXXhmuXJKad3Qg1yYedfZyilIKe1QCs/Y91ue80f1sUo930hMYvLshPfP6OTo2XN5jz3r0PUB5SiISAHo+hCHPrgGBAwf3dd0ZXIIqKCRlz8vsUkRBCCCGEEEIIyTF9rnlaLr8ymtFi24806JdkIglObGK0uEsxGvFGlvMUb5Biua1dSQ4cT1InjPnS+ULGBr/1LCwInPKBP+FYYa6h9jJ4l9PPsUR8SM+KWcZh+y1S27fBtiGd0bR1kiDPjxitWxCeRgKVCAkCx4TQrpnodWWh6u6/zd/doLyWELKbFkGEVBfyI0YTZnikGG3Cs6z1AfF3XlJ7SoFLQ7JFOr+l9iAXyCLXse97EkIIIYQQQgghhBBCiBVnhGK0ypocFyQPzGoQs/TtP0QoqPC3y+Tjt8mCckF/QmNTqzmvYYrHYNvnHxSzVKrcShJSbd9kTo+M/WRzxY5SClhwwNDn/ftW4dvbvi0u/9OH8/9usUmQEn34CEM9kgbDA5nnTMAyiWUiLb5REqOVR6DKyuXtlApLzhKz5r/1gJjXlwAekr1jOUES64UCwBwf3g3955/ImY37DfzvCLKtQcGeTaxXXdpiPQk1eQaw9yJ5gfv/CN2a+ePOrVPYZ4Z5lVc3AYlk9m2WVIcabWEZQlukKGLID0eeLGbtteFR3PwRud9xw2MaSbd442RuekIjnpTzG+JR+wbCu2Ly9jkEjYIYzSYgTaVNCD2sS6Z1+NiukVJBEAgppX0Jz37zlEZXX/7bn7Zu8z7+e4lC848c7PiJg99d5KCiXIgl3LFFllYDUOd/dnhCSBCjxdMmBpf6R5QrkkFyJUZbcnZuylPM+JDvBuDiq9v/V8x/bm0uC7Sbp9+S845bOPAbT/IRgtgwBdCJOPD3m0ZemKpJUOynEDLmUIxGCCGEEEIIIWRc0ScItcpVuCD7twlHegRJCcmkRxCcRAIVCDlm0VNCU4xGvJEEhcUsQnKUI8oBBmUCcaH+U4xWXPitZ5ECyiD8CcfGPog3VwK3XAnWxgrbb5EqQ8tHWyd9Lz2C9GwQV7ui8DRiEZ5mc13vsWx/99+W747yWkKG0RI3RydODk7zXLd457sl+aTf7cOzbY8Y8+aUN2BBZN8Cl4hkS13QPINlSzx/I9h6k7IQnRBCCCGEEEIIIYQQQooZpSxDrcqF99Yf/EJ+CpNr5syX82JNAICyoMIegvgnuiO/g/DX7zSPVQaABo85fvQbK+TMPfbe/bc0oLV5szk9zOfavpi397CPe/e/KS76yiagL57fuiQJW4z1aHOTeWHHAWbMG54WtMRqJdMsNNuFOlUzWd5GCaHS6kwqlbobc8s7xPwXovmuP+bt108BAo6Pt+br18h5cxcM/C9J9gbFaDu2yNtgHZKZOc+ev/IpY7JNeLfB4qgzobVGk/AatsH82ha6v09uM3xIK0j22NogrF6BfWbI5/rWdmBjlvWikHi1kXv3W2wjABDe1d+trkO9fTKEzAAAIABJREFUIEaLtQG9Pq7l7b3mZard9uEJNcLJQchEQ7rX1Nra7gzS1QestnQRckWrOeQHkyKA4yjv/tCbL8t5SmXel0r32T1p8cvStbKafSOyi2zFaDFBTJsqV5+oWMT5qezTJ9/bvLguP/dl63eatzu3DmicOvAbT/Yx/KVhihqQ37WNYvLYaXNGvi4hJGdQjEYIIYQQQgghZNzgahd9uteY50eWkgvCATnQidIN/0gClXCOBCqkdJEEhcUsQgJkOcCgRFCq/0FlmYWUFBy/16JCyiB8ycQChRO1iWXwUU4/ArdcCdbGCttv0ZPSz+gR+hwRSz/Fi0jA/P1KMtNB+txeaLjmbTqVObmu9wpte+q5ZPtdKa8lZDg7E+aX/HUhj9EkpGRZ3vEUulzzwIOltadA2QKKSFEgnd+tiR3Q0gizUSKLXIu3L0YIIYQQQgghhBBCCCEABmRIEid8wJisjn9/ngqTW1RFtZy5Zf3Qn5KE7FO3azz9Vv6ERFHLWNV6r7HuwoBmAMCRJ+3+u0oQoyWEd9jhsZ9sbjygTjh/2OdTOh8Ul9UaiOZv7hYAshhtvmmuqFjUvPC0uVDpIjRJZgVk1CG9WdjuTEqOAABLz7aK5s6reEHMW7M1HwXajVR/Gv16e2JRMUsNSs1EMdouwV5KmzyMyhqoqkk+C1J6qPdcYF9gq/l7ff9h8jvvnz6S3XVve+eAuMbEoMjBb7kAsM3IF4tPFbP0hjU4ak+g2jJnu63PMpZorT2vse9v/6t9gcG+T9UkNMaj4mLrfFzLpXOhMj2ewEtqSMhEQYqxcl0ctxCYZrldG8TPuTda2gQxWq3fEOWtG+S8d564uz80iNS36WwdHtcUixoXU5SIkl3Y4xiH9+l0vB9o3mhetAT6X8qnGO30zvvEvCvu1HmRnrcIYf9zU2TG9T7uzeqnAPrvvxxdYSprRrc+ISQnUIxGCCGEEEIIIWTc0K+Ft2MAyh3L28ccUq7CUDA/LJUkJSQTSbISoRiNjBJ58H1xi9EkmdOgRDChE8Z86XwhY4NfyUMhRX02oecgxSAO9CP08iV587XM2B+vhO23GGwPkjqBuO43LjOaY5P27SVGs+VHAvJ1Pe7zuq619iWCk8RuAOW1hKTSk+wWz4m6oB8xmvleSCO/M3KTseWJ1vuN6RGnAofXLC1wachIqA2aI4H6dR+63c687FMSotuu2YQQQgghhBBCCCGEEFIUKHmolVp8CnDR13cnOA7U538Ctc+iAhQsN6iv/86c0bINum/g2W7DFHkw8THXufjri/l5NxTdYd7ujBqgotxjopZY1Jy+18FQkZRn09kKhSJ8ru2LY84E6vcZ+lilu3D3hveKi69tzl9RWru1OJC60VC3dSxqXtg0UNwi8kIyLb4rm+2WIKpuOtS3bxPzr0z8Ssy77XmNpJtPSaN52w2S1CoF3dcD7IgZ89RXbt79IRAwb2CwHm0RZI8zKA+ysuQsa7ZuM9tkPna0/Nv+7BGN791nnjTShCTWA4BGKSwjFpVXKgExx1igKmuA+oXmzAduhaNdPPIFuU/4zbv914lC0twBdJtDCwEAVzVfjfd0PWzdhgrvismrrsO8uCw3stX1QaSyVKbHHLKek1JBkDbpVc+jLKjwj8sdTPG4/Vgn3DPlklahLz3J51yI+gefEvPUFQZJkSSvjvcD/b0D29Sa/WsyOtInD922ITNtkJkNeS/OmOPzvKl12zA9YTZT9yWAM29wEU/ktl1qleSMKW2Qn3uz+jX3A3+9QcxXn77euzDh4h13QkgpQTEaIYQQQgghhJBxQ58wqBYAyn3KaEaLUkqUrlC64Z+epCA4cSoRGqVAhZQ2fuQ5xYgkM+pJdsHVSWiYgygoRisu/EqpCiXzBLylZyFVhoCyzGZbIPx8d/4kb94BycXcHgRUECFVZswbFJDZRKyjkdxJ3510zU4vl4kKp3LUwtO47oeLpDEvtd6UqXLKawnxQUtCjkqcHPIWo9ln1CMTkWjPGqzvfcuYd+Sk4wraryEjRxKjAUBLPD9TyUp9BL8yYUIIIYQQQgghhBBCCBkzHMtQq0AQzn99C+r/bYa64RGoe7dAvfeywpUtF+z3Tjlvl4inXn6sDAD41t3uwMD0HBMVHlk3eJQHgCgRUqd9dHhCdV12hSrnc20/KKWgrvzTsLTTOh/A1ITZgLZWEE/lgqylRLGoeeHZjZlpAUuMTSItDkLaLsUNQ6glZ0Fd8k1jXtWW1fjx+fL76YdW5atUQJPQFolSq1QkoRkAHLB4999SXdolRtPSdmZSjGbDM6YhZv5eHUfh8AZ5te/dp9He46/dkiSf4dCA6NOI9HtPngnF61DeUGf+l5z54iM4rEHhgDnm7KfeAhLJ4ptE0HYNfLXq0/jG9u8LEXYp7KpzqmoSwroPs+ObhX15H39Xnzm9UqfE80WqgEl+OnuETACk69Q/fwsAWLxAYdP1Dp7+snxPKt0z5ZI2H1IiCd1qaYiOOw9q+tzMdEmMBgAdrQP/t24HeoR4ZVO/nZQu0nmW/gxD6BcCKI0+9yz/582lLYJgH8BDrwNPrMlFgXYjyRnrKnf/tn7uzeqXGUSMg+x1ELC3j0kOwpTlE1IMjP2IN0IIIYQQQgghxCe9VjFaISUzlUbBhq18E4UX2pfh2bZHRKFCVaAGB1a9E8fVnYmAEma0gyyRCzsRaNcsgPIrUCGlja1uFTOSzKjX7UFCJ4x5AMVoxYYfcVfYicCxtI+5xks45kckVgj8CL38nMd+RKl+BXZjRcSpQDyZOVXiYD+j1yIqG5UYLSCI0SziM2BA4CgRtghP/V7X/YrgHOUg7ESEPhrFaIQM0hI3DzxQUFZxkid5GPhCioMnWu8X85bUnlLAkpDRMCk4GQqOUbjcmtiOuWjI+T6lZySj6a8QQgghhBBCCCGEEEJIQbBJVXZJ09SkKcBBRxeoQDlm+h5y3pb1QP1CzJ9m38QbW4ENO4F5OXZYrBPFaHaFh07EgeaN5syZ9cM/V03KrlCR4oirGBcYhAT79q3Gk8HMCrXW4ksYLZIUJhQA5pi8eJubjMsrk8DMJkZLpsV4xaL+t1vKNOxrTt+yDo1T5PfQD7+ucfL+uZ/YS2uNqFCHfInRYlFzulLD2yOpLg3Gz26PmfNnWNpwMsDJHwEe+JM5LxYVV5s/VeGFqLnOdfcDzzcBJ77De/dSG9QwRRa3aUnMMavenE5yw5z5YpZe/hjUEe/BntOBVzeZl3k9Bhxg8PuMJc83metwJAQs3PaUv42Ed73Trx24fjfEo9gcmp2xmE3CNkhXZhgkAKAiNZ5vVgMnaiSlQ5k85klrDaUUyoIK71oAXLRY4ZZnMs/p9YKAM1ckkho7hLDgSREf5+orT8t5Uj+42kOMNnUWsEPoGwGZ93yktFHKHM+aniaJaeumQ5XCc4DZDb4XbYxHrflPvKlxwjtydy1v7Ta3c5NShonMn6oA2NvDhs435Mw5C4Cgj7FYpVAXCBkHWKYxIYQQQgghhBBCios+t1fMK6T0SNqXTQwyEVjWcj9+H/sRVnevxNb+TcZ/b/e8jn80/wF/3nqTdVuSoCQSqBRFTxSjET9IAp1ikT9JSEKtHrfLWveDivMeFBN+rkWFlnJ5lalYpIF+vhc/53HICXkKA4tdjCaVb7CfYROF+ZHzSUiSEtv+bPkhVWb9Pfxe121Ss/T6K353FKMRMoQkOK4J1iHgo18hhS5QizYx6Uy0Y3mHOTB2YcVBmFEmTI1Mio6ACmBS0DTSB2hJ5GcqWVlaXdx9MUIIIYQQQgghhBBCCEHAMtmZM/6HYanyMDBlljlz63oAwMn7eQ9oXbczl6UaILrd/Nap3ktGtG3jbplQOumD76vNz8slVLi4Y46KCVVZk5E2XxhA/eOHtPh7j5YmqR5NAQLO8LqttZZFSQZxg3IcuR1IEaPpzjago8W8nEEgV9JIgoz+Prx72jZxtX8L8p/RsrUd6BFCWhqn+hjsH4ua06fOhior3/3ZEa41g/Woo9WcX+thriRQx5whZ66X5QinH2Tf7idudXHXSxrtPfa6J8mirGK9WNScTtFLflm0VM6LRQEApx0gn/ePrC6+aJnH3zCXadE8QEkCvnQG+z6HHw9AlqH4uY53C2K0ytTJWrMQsxAy7olUyXmtwy8gDcJ14+6VQDyRv/ZnYwuQFG6t9pjsYwOxqJiljjrNnGETo3Xu6hNJfSMAqPVjryUlgyjbHH7e6FjUvFiJ9L9URbXvZU/qegiOTor5b8Ry2ya1CmH/dSlhh8cv9N5OfXy9mKeOOs2fGC3MWEdCioHx/0SeEEIIIYQQQkjJ0Ov2iHnlBRWjmR9s2co33om7cdyz/Xbfyz/d9hC29gtTZEEWlISdCEKqzFwGitGID3qTct0qZiQhUa/bg4ROGPMAeAqgSGEpV2EoURkzgPRb5wsv8UQkUBwBvBEfQi+/57HXd1zo3yBbJLnZYD/DJvkazbFJ4rkeoV0dpFsQww5uT2qn4q6/67pt/+nHK7alHsdASCmxM26OwK0L+g0O4gytpcQzbQ+LIssltacUuDRktEjneasgTBwNrnbFZyTFfm9GCCGEEEIIIYQQQgghUJahVra88cTMecZkfet1A9mTFK460/5e6A/P5n4wflSYy6NhiseKWyyij7RBzapqUnaF4iDYrFCf/P6wz43xJnHZfb/l4s7lua9HX7rTvM1GUz1q3wl0d5g3JAm7pMHTyZT3arGoUDpQAJOO9D0DqF5+H+YKLsOn3gKeW5v7+iNJrQAPsdUu9J+uM2ekCxYCwsRlQ2I0s1hP2cQhZIDFpwIGUSMAoH0n9PbNxqxzD1E4/UB5s03bgff+0sVh17hY2yzXPUkW1SCI9bTWwCN/MW+sRMQcY4WqqJZlsY//Hdp1ccERcn/oC3/RuPU5wR40BiRdjcfXmPPePa8L6JcnqB/Grr6PmjITANDQb+5n3bkCcF17O9zVZ06vSI2BZD0nJYS64kY5c/mjwz7WWyRkZ9zgorM3P3I06Z4M8HFfBkDb7s32P9KcXhYGQuYxREN9Ikk6HKmC8iM3IiWEcO3WaeeMJAydVTrXJXXJN30tNyuxBdds+5aYf+cK4Jm3c9cmSWK02pTHM5Mq1LDP6Vw2/QU52vnIk4Bj3wcEhXYnFcryCSkKJsgTeUIIIYQQQgghpUCfa34hF1JlCCjLTJ05RpK32EQl451VXSvQ5QoBQALL258S83qF7yriVCCozAEf0oB8QlKRzsNikT9JSPKqHrfbWvel84WMDUopT1Gnl6gs13iJsopFTOHne/Er/fLaVqF/g2yRRYndw/5PZ6A/NPI2Qe7fmMVnXvmD2ws65oADv9d16XiBTDGurS0lhAzQIgiQ/IvRJIpvFlwyOlydxLLW+415dcGpOKDq8AKXiIyW2qA5OrFFECaOBun5DVD8fTFCCCGEEEIIIYQQQgiBYxlqZcsbT8wwi9EQWwfdM/AO+Fun24/1d0/pAZlLjuiLa2xuM+c1TPGYvEca0DxpKlRF1fC0qiylQpHijjkqOo5937CP8/tlMVpfAvj4n1z0xnNXj7a2y9sySoliUXljksBMElolUia/3CwcdzAETJ0j77MUqZkMVFQbs/T1l+Pqs+Tz/1O3515I1CRIrSrLgalVxqwhdHcn0CxMKJwugJPqkZsc+L9TaBCrBVMcGUIFQ1A3Pynm659fYUwvDyn8/TIHVeX27b+1Dfjm3RYxmiCUEcV6K+VYa1VCYo6xQl16lZy5/FGEQwpH7ykvctltGh15khNly8oNskjk3bUb/G+ofHdMnvr4d9EQlyVHj66WN5N0NfqEeaEr9O6CKosgk5AJx4IDxCx99UeHfa633AP9axXw+2fy0/ZIfaHJlUBNxMekqrGoOf20i6GUeX2llNzHGewTiX0jSmNJGkI9yxCjSRK/UhJ2Lj3H96Jf2vljHD1TOA8BXH6bm7NnRC1Cf6YuLezws8fLbdJHYY59RXkE6tq/QZVHgKCPcRd8JkRIUTBBnsgTQgghhBBCCCkFpIG15U64oOWQBvHaxB3jnRc6lmW9zvIO88v6uNuPhDa/6Yw4lQiq0QlUSOmS1En0a/P0YsUif5KQREg9yS4PMRpnOCo2vOqaX7lXrii28kj4OUfDgrgr221Firw98JJ79SRluehoqHDML+7iuh9xV26HRCHlru2FRnldl7YfdiJw0mZjl+RuE7mPRki2SGK0ySF/YjQlzKGmKUabcPynazl2JpqNecfUnlRQOTnJDXUhQYyWsEz1OkJsYlXpek0IIYQQQgghhBBCCCFFg7KJ0SbI83GbaGX5o0N/VnuE5a3ekqPyAFi/M3Oc8iAN5kfcQ2hpQLPpOLOVCpXzuXZWTJ0zIP/aRWNcFqMBAwOel63J3e7vfUV+bzl/miExFjUvXFYOTJ5pzpOEVsmUmMjmjeZlZuwBFZgg7UiOUEplSsNSaKg2xwMCwIr1wIaduX1X3STMKdQ4BaLMY4iU9jOD9GOURJuD9aijxZxP+Yc/ZjbIeW++LGYFAwqfOs5b+nLXSxqum1n3XFeLYjRJ8qmX3S3vqJTEHGOFpf0Z/G32nC7Xia4+4OHXc12okbFivbk9LAsCi9Vr/jeUKpWd1YCGeFRc9B8vy21wd7+8i8rUeD6K0UgJoZQC6heaM7WGTiaHPnrdA931Un7i9TYIXRCv8gwRixqTlSQdHqRqkjm9s3Xgf6lvJK1HSpdRitFKStg5U5DmC5wwPSbmvbJRFgRnS1uPOX1SmpzxwLlyH61x+wpzxrmfhBp8ZhH0HoulwhSjEVIMUIxGCCGEEEIIIWTc0Oean26VF1hwIgqMJqh0o9ftwaudL2S9Xqx/Azb3ZT4stslJwoEIQk6ZMS/uWt6QEgJ73YoIwp9iQRI+9bo9HmI0H7OUkILiJacKBwp7zfKSiUkSrkITUEGUKft0m34Fh5GA/XwPe+SPNZK4bbCNk9q60f6WYUs72WuRm/QkzXmDorXRCk+zOV4vqRwhBGiJm0VXdUF/YjQIYjQy8VjWYp4xL6iCOGrSiQUuDckF0nnemgcxWq/w/AYonv4nIYQQQgghhBBCCCGEiNjENzZp2jhCHXS0nLl5t8jq8nfb3w29tS1XJbIPoK33GoQfi5rTZxgG+VZnOXA+UtwxBsWGCgSAxO54gIN6X0VNss26ztrtuZM6vGV+HQoAWLKXoT5vFsRtM+uhJHFVQBg8nSpG6xbiLCb5fS9bYsxuFLMOKVtnbZbftvzmI6FJaIsa/fx0m94Ws9TBae2uRbCn+3qBfvNE0qiiGM0Pqtxi9tweg1751MA/gxBj6d7ecRE9cWBLe2Z6rA3oN88bLdehzWvlHb3jcM+ykFGy8FA5b9PAb7N0b/sm1jYXx2SCawWx48Fzgcg2Sz1LJVQG7HPI7s+zGnBYryAWgf3Yu2SvJSpT4xFLSUBDCABMEeS7ALB909Cf8ybb74Ny3QcapEXoxs6s8V5Xay3fm3md61Ifp2NAjKY7hXuKbMXXZOIj3jzsvmbp/j5g+2bzYjaR/ARDVVRntXyta+gAp/B2jp4RdQp9iJq0IRbH7gOEDbfn+80GJsdeMW5jmPjOhxgNEcY6ElIMTIwn8oQQQgghhBBCSgJRjKY8pqbMMdIg3t7kxJRurOx4HnFtlpKdNPl9OG/6x6AEQcKL7U9lpNnkJBGnUhQ9JbQQLUDILqzSvQILFLNFFi52Weu+JBwiY4eX6KHQkj4vUVvEQ5xWSGzfXUiV+a7vXue7JB4rFiRBWc+ufoZ0HfWS4Hlhqwu2a3ePIE0bLM9oxWjSvk11W6rvtusDIaWEq120CAKkupBpenT/FEeIJ8kV2/o3Y1X3S8a8RVVHoTrIYPvxSG3QHC3ZEt8+EJiYQ+zS6uLpfxJCCCGEEEIIIYQQQkjWSKKk8cbh8iQo+om7hv7++BKFMsucfWf9wsXydbl5xhzdYd7OjBogUuYhqTGIbQCYB99nO3A+zOfa2aI+dtXQ3xW6B1fs+KF1+X++nLv3FFFBCgMAR87PTNOxqHlhm7hBElqlCOF0r2CUYH0yklpn0qluieJbp8ttwEd+6+b0XVdUEPU1TPWWZen7b5UzDzl2+OegJEZLAh0t8nYo//DPh75kTu/phP7U8QP/ztsb7ieWQO/YMpR9wr7AUQu8N3/VPZl1ZeVGeXlRjBaLiuso/t55R1VUy23zrv7FuYcq7Ddb3saX7tSIJ8Y+cubXy8xlmD9NQd/3B38bef9nhktSZtWj2u1ERIgBePA1eVPdlvnQK3TK9ihGIyWG+u+r5cw3dsdrOY7CN0+T+x/rdwK98dy3Pa1CyE9dpY8JVVu3Az1CP9jrXK82x6PpzgExmtg/qspSfE1KAKGupt4zbF0//HMqM0tHjAYAOPO/fC9am2y15r/nJy7e3Dq6dime0IgnzXkVZWnlqVD4/AnDf29HAd84sQ9q5xYYSW2LnIB3gcKU5RNSDEyQJ/KEEEIIIYQQQkqBXkGMVmjhkbQ/mzRkPPNix5PG9JpALc6YegGOrTsdCyLvMC6zvOOpjKATuxitYtQCFVK69FjkhIWWUWWLKFx0e6x1n2K04sPrmlT4a5Y9oNIrv5DYxFzZfG/j6ZhNRALmYx0UjEiikdFKRios7WR3UghUgCxGG9yeJDyN+7yuS+JZ0+8o/ba26wMhpURnsl3sV9QF/c1MLoc3jX2AJ8kdT7Y+IOYtrTulgCUhuaQ2ZD7P+3WfeD0fKdLzGwcOQqrMmEcIIYQQQgghhBBCCCFFg02woybGMCwVDALHv9+c+crT0PEBk0XDVIXVV9uP+bSfuejPgQxEElo1mOf9GE4sakxWsxsyE7MdOB8p7pijouT0i4d9/MqOH+C2TReKiz/wGnImlFnbbN7OF9+joJThbWcsat6QTdwQFOK1kimTX/YKcQoUoxlR8/eTM2NRXHmG3A5tagX+79+5e1/dJLRFotRqF7qzDVj7H3PmKRdCpYs1pUH4yQTQYREOCNIQkok65+P+FnzteehrdgshAo7Cvz7v4OqzFE7cV17tN09qrNwwvO6d/nPXuGxNGKgznP5aayBmlnuqb97iWXSSG9TXfmvO2LIO2nVRWa7w5BX2/tD1/xrbuJmt7Ro7hNf+9dW9wKa18sqHvBtYchbUV38N9fHvDs+rnQaEK/D7zZeKqz+8ynzsXX3yLisHYyBrJkNV1sgLEjIBUfsdIebprw+/R7vkaAf/+z45Yu/rd+VDjGbe5iQ/YdySsBrwlk1VCX2cwX5RZ1t265HSxXTfBwx/1jOaujrBUOd/1veyTp93jOHZN45OXN1lEatWGsIOv3u2wi0XK7x3EXDhuxQe/JyD8575H3kjqff6kvQ8FYrRCCkKJsYTeUIIIYQQQgghJUGf7jWmlzvhgpYjEjA/2JIG/o5nOhJteL3rJWPeIdVHw1EDwRmHVR9tXKY5HsOGvuEvUyXBCTDwW0qip7i2POEkBLIsCADCgmioWJCERn1uD+KuXPcDgnCIjB1e0q1CS/q8hGKjlWnlEtt3l8335nVMxXTMJmyiREAWjI72uMqdCJSgPLK1r5J0bPA4JPmJX+FpNscryfUmYh+NkJHQkpCnR68ThEmk9Oh3+/BM2yPGvD3K56MxvE+BS0RyRV1QHjm2My63DyNB6juEnQrzoCNCCCGEEEIIIYQQQggZL6SLbcYxqn6hnPnvh4b+bJiqcNFi+dnutg7g4ddHX551O8zpjVPtz5V1vB9o3mTONA1oznbgPAfBZk/ddKCsfFjS+e134ivbrxNXeeyN3Ox63U5z+j4zhBU2NxmTlU2MFhCEVomUOIheYcA465PMgUcZk/UuadS5h8ir3v58bqQgrquxQahDXm0RnntQzFKNBruWNAg/mQA6bWK0Ons5yG6mzvYnOwCAFx+Bbtk29DFSpvCN0xw8+PkADpgjr3ZbSt2zSUIbpsL8nrRtB9DTaV7J1g6R3GISqQJAvB/YEQMA1FYofO8cuR24LUft0Ei5Z6Wl/u18WcxTn7oOzk8fhHPNX6BOvTCjniqlgFkNaIjLApnbBTmlVWwyOHkb6zkpVfY6WMzSPcP7kZctldse27k/UlqEcOE6P93YWNScXhYGpsy0rysJrAf7RVL/iNJYko4vMdp68zKTZ0CVF/e4o5wzw78IrqpfuFlK4fUY8JLw9frBKlYtz0xTSuHCdzm487IAbrnYwfH7KvneTClgxrzdn/3cK0SKe9wJIaXCxHkiTwghhBBCCCFkwiNJLQotRpMkMz2u9+wH442XOp6BC/MMZofXLBn6e1H1u6CExwzLO54a9lkSnISdCBwVsAhUEsZ0QgaR6lZIlYnCvWJBEi5qaHS5HcY8BwE4E2Qm4omEl4jMKz/XeMmyvERuhcRW1my+N69jKnS/IVuk72GwnyEJRkf7WzrKGVEfR8qr2NWuSe2vXzGaKFYxSNCk72Ai9tEIGQktgvgoqIKoDgiBRWlIQiONsQ3wJLnjhfZlYru5pPYUSq3GMZOCk8X79laLOHEkyOLUEgscI4QQQgghhBBCCCGETDwcQYg0Htn7IDlv/XBL1aJ5wnK7WL1l9O+KojvM26iX5/0YYNuG4QOcU5nZkJlW6e+92BDlxR1jUIwoxwECmbECi3plMcvrOahDWmtsF/xCc+sy33Fp1wW2CiO2Z8+XdxQU4tCSKfGNvcIEbuHiidMpOkwiQwDYMiDjWVQvv6dcvSU3RWjrARLmcFnM9fKRbZGlQUb5iW0QfrtgigyGgFITNYwCFQgACw7wt7DWwIY3jVmHzJPr3hspbdcOof0BgFrpZ4tF5ZUojCoctu86tvvcXmSpC29uBZLu2MXORIVmAwAW9ayQM/de5L3xWQ1Y2CcbTLe0mY+72yJGC+vegT+mzfbePyETkVkWEVEsOuxjVVhue6S+72hoFbqx4rUslVjUnD5SP1xEAAAgAElEQVSr3jvmTJK/drQO/z+dbMXXZOLjR4zWLgi+pszKfXmKHJXFM4/FyVfg+AgfHc0zIqtY1SBGS0drLf++WkOlStz9iNEqqr2XIYTkHY6cJCTHmDrnWnrJQggh4wTXzXy7wwFwhBBCxoI+t9eYXuiBtZJ0QxK3jWde7HjSmD41NAMN4b2GPlcHa7FPhTmAYHn7U8Pui6RB9oPfa1CZHy5quEjqpK9yk9JElOeMg8H3tjJ2JNqM6aEil72VKuGAhxjNIHPKJ16yLC9xWiGxnQfZfG+2YypXYTiquAPVvfoZkgQykoO6FXHMksbupCwWk/IGtzV6MZq5f2X6naXffiL20QgZCTsTzcb02uCULGSrUtDIyMpEigutNZa13m/MiziVw+TYZPwRUAFMCpqDCFsTlijpESDdm0lCaEIIIYQQQrKFMXqEkIkG4/MIIWQc4UygYVhHnCRm6Ru/OqyP/cHDFWotr6T/568a37/fHVW/XBJ6NHiJ0WJROc8gHFDBYHYDWykhGhmnXpiRdFqn+T0UADzz1uh32dkHJAWpVZ2p/m7fDMSFUdc2SY40eDqREgfRZ35XQjGaBUkQ8tjfAAAfOVLuH6/dDhx8dRJrm0f3bEASgQBCHUpBd7TImYe8OzPNJtpsFSY1qq7jfUKWqHM+7n/h6Gpj8qVL5O/8nleAj/7ORVu3ttafTx+X2X/Qz94P/d9HmVcoCwNTZlqLS3JIdZ3YN9D3/XHo7xP2lTeRcIGNlmYg37QKlx0AOLTtWTnzoKO9Nz6zHlVajh+U6n5Xnzm9wu2CMxhoVOVlnSRkYqLO/5yYpx/5S0baewWHYWs38OrG3L4bkdoT2/3gIHrlU+YMH7JPVSUIrNe8NPB/p1mMpqopRiPpSH233eeKlkR7pVqf3nOBr8Wm9mzEOT6cqh/+rcbPHhnZMyKp/wAAlWU+NtDaDPQKDdnJHxn+2Y8YrXqyj50SQvLNBHoiT0hx4BhedMXj/gb5EUJIsZJIJDLSTO0dIYQQkm/6BKlFeYGlR5J0o8/tgauFyJpxyM54M97qWWXMO6x6SUaAxaHV5pejOxPNiPauGfrsJTiRBCqAf4kKKU16ksLge0H0U0zYytiZbDem284VMnYUm4jM6xpZaFGbDdt3l833livB2lghHWtPshtaa4sEMgdiNEFWIu3Tlje4LUl4mtCZzxpMSCI40/FK30GPRexGSCnREjcHT9cFpxW4JKRYaep9Axv61hrz3jXpeJQ5PqbcI0VNbdA8eqwlIQyuGCHy9ZuDxwghhBBCSG5gjB4hZKLB+DxCCBlH+J5spvhRwRCw+FR5gT//eOjPqdUKT11hP/av/UPje/eNbFB+b1xjszAuuWGqhwQots6cXjcdSpJQVWUx2Lks7H9ZMoT66Ncy0sK6D8d3PmJc/q/LNeKJUUqtLFKYOlM4RCwqrzC7Qc4LCjFbyZQ+XY8Qp0AxmoiaKYjRAOiNb2FuncLvL5Lbg1c2Akde66Kzd+T1yFaHPGUggqwDBx0NZerb2wbhi2K0EhU1jAJ1+sVQX/gZUL+P57L6+suN6YsXKHzoCLnu/ek5jTNucNFiqT+nps07rV95Bvqr75NXmFVPCV4BUUrJ0p57fw/91isAgICj8PrVcn/oi38ZuzEEUvt19sGA2hI1Z575X+b2KQ2167v5wdYrjPktwiWvq8/cHlekxhNUCyIkQiY46sDFcuYfvw+9/o1hST96v3yuHnS1i57+3MnRpOtZXYX9uqT7+4BnBRGyDzEaqgVRYmcbdHcnIImssrm3I6WB1IdKlXR1tZmXKdH+tvrEd/0t2NGKP17i4ONLvfupn7tD48bHcyxG8xO+ujkqZqnLrhme4EuMVpp1gpBiY+I8kSekSFBKoaxsuHK0s7NzjEpDCCG5Ib0dKysr40N2QgghY0Kf22tML7QYTZJuaGixjOOR5R3CjC0ADqs5JiPt4Ooj4cA8i13qtiQ5SXhIjCZP4xDXwgyNhECW7o2Hwfe2MnYkzS9eJNkQGVu85FS5kFdlQ8gJWSV6hRa12YhYpGXZfG+27RTT8UpIx5pEAgkdl0VkuRCjCdvodmWxmJQ3KHyU6p/fa3qvKL3MLKsor9W9cHXS1/4ImchI4qO60FTf25Dn0svtzJNkbHiiRQhOA7Ck9uQCloTkizpJjBbfkdP9yPdmxd8XI4QQQggh4wPG6BFCJhqMzyOEkHHEBBNXqgOPEvP0P24a9vkdsxWuOcd+fbrxcQ2ts39vtH6nnNdgfrQ9hN4iiNEskqWsBrZSjDYyaqcaJWBLuuWYxPv+M7pd2qREtabQrFjUvHDVJChJzADIg6dTxWh95ncloqyPWM9Zfc/vAADnLLK3Qds7gb+tGPm7a1sdmuQVgijJOvbY25xuGYSv24R3d7Z6SUTUOR+Hc+srUI93Qz3eDRxzpris3rbRmH75u+1176m3gGVrzHWvLAiE08Kn9D9/AyQtsUx+BDIkt1i+c33Pb4f+3memQp3QlP/9pRyXKQtau831r2GqEgUhat/D/W18diMAYJoQd9RqvuShWwgPrEyJf7RebwmZ6Njuxe79w7DPc+qAoOVW9J8rcxO7l3Q1OoThUJ6S2GfuE7OULzGa5R5t2V2yhLaKgkWShh8xWqcgRqss0fo0ZZYsAE+lsxWRMoVffshB8mYHnzrO+xlRtnQJ/YegA5QFfbwziUXN6eEKoG768DRfYjT2VQgpBibWE3lCioTq6uphn9vb20f0cocQQooBrTXa29uHpaW3c4QQQkihkAbWljuFDT6yCVckWcl45IX2Zcb0OeUNmF0+LyO9MlCNfSsPNq6zouMZuHpgJizpdxyUmYQc+YFqQmfOlE3IID2SnMdyzhYLIVWGAMwP1jsFMVqAYrSiJOIh4hsLMZdtn8Ukp7CVJRvBoX07xXO8EuGAfKy9bjd6hL5GLo5N2kaPICeLu/1I6Lgxb/d13Sw8Tbjm9TL2LR2voW03pQ0i9T8IKSVa4oIYLehfjCap0ShGG/90JFrxUufTxrx3VCzC9LLZBS4RyQeSCFESJ46UfIpcCSGEEEIIGYQxeoSQiQLj8wghZJzhmCeNHLfU7yPnxdZBd7QMS9p3pn0QaqwN2CKML7YRtTymnjfZY+VY1JxuG3xflYUYrbz4J2QsRpRSRiHUvv2rxXVWrB/dPV2LPOebWWITi5oX9hI3SAPGEymxjT1CYShGk5knCMQA4O1XAQA1EYXZHqfvzctGXo9ahfDfmjAQcDwG4UuyDknyEbBcT1qFRjEbqSPJQAUCUIEAMM9y7XvrFWOyl6QTAB5/w1z3aiPIFF+v8TBo2cpI8oOtT7Tm5WEfp1bJi3b2js3zSUlOVhvsB9qENsWvgG/XcrWuuZ2T2k5JbFKpU66RFBqRUkaSpwIZ14mAo7D3DHnxFetzU6ROQYoGeEtite3aZuvnDTIjc3zS0LZff0HuX1NaRNLxJUajaC8V5TjA9LneC6YI5ZRSWDjTvvjrMaCnP7u+UVefOb2y3OcGYlFz+sz6zD657Z4MGLj3j1T63DEhJJ9QjEZIHkgPSIjH49i0aRMDrwgh4w6tNTZt2oR4fPhg5ZqamjEqESGEkFKnzzU/ac9GlpILbOKRiSLdiPVtwMa+JmPe4dVLxPUOrT7amN6a2IG1Pa8DkOVVgzKToEX25FeiQkoT6fwbDyIkpZQocOtItBvTg8rHrCyk4HjVt7Goj7Z9FpOcwlaWiOP/pVKuBGtjhe1Ye9xu9CbtgtHRUBEw77tXuHZL0rLUbUltlV/ZaTZiFdt3MFH6aISMBkl8NDk0rcAlIcXI020PiW3zkrpTClwaki9qg+aI/daEMOv8CJGu3+OhL0YIIYQQQsYPjNEjhEwEGJ9HCCHjEGeCDcM6/ER7/ubosI8n7y8IplL43v3Z98mjO8zrzKwBImUeMqLYOnP6rHp5Hb9yIaVkCRbxRJ14fkbaKZ0Pist/5/9p7OwahdRKCAuoLAeCSELf8VO4Xz4H7iePg/vJ46B/9x3zCl6imIAQ35hMedfWJ8RTUIwmomwD8Z//19D9/gffaW8Tnls78jK0dAtiKz8/W4dZrqAkEaNUjwBZYpSN1JGIqBM/IObpG78CnUxmpM/04ciQpDTp102dSABNq6zbspWR5Ad1guU7T+sPnXGQ3A5Fc/vq3TctwmWnLrFTXsmvGG3mQJ+qNmlu5/oSZumJJDapSI3jo9CIlDCmvvIQLz4K7brDki44Qm57rn9Q44o7XWxqGd37EUloCACV5jmSdxOLynle950AsPBQOe9Ns7gUAMWxxIDHMwQA6DSPzxH77qXATMszlEHS5PnnHqIQ8nCLZds36uozt2N+xWh6nSBjN/R7lFJ2OVp1XaZMjRAyJlieoBBCRko4HEYoFBoWqNDR0YG3334bNTU1qKqqQjAYhDPRXooRQiYErusikUigs7MT7e3tGUFXoVAI5eV+9cqEEEJIbukThBblTrig5bBJNyTp13jjxY4nxbxDa8zyMwA4qOqdCKqgcUD98o6nsWfFfqJEZfB7DSr5rUlcW962kJJHOv+KSfxkI+xE0JnMfMliSgMoRitWyj1kD5IAL5/YBBQRQYQ1FuRKaJYrwdpYYTvWHrfbUzA6GqTvp1sUo8n9nrBjF54mkYCrXTjK/oxU6jeYvidbHRooK+VPpHRJ6gTahGDHOkGUZEKJQSMcdD6eSeoknmw1D0KZHJyG/SstgWdkXFEXnGpMb43vgNY6Z4E8ksh1PEirCSGEEELI+IExeoSQ8Qrj8wghZJwzwQZEqvIw8MsnoC9baszXv7kK6vq7hz6HQwr3fsbBe290scUczoJfPKYxtcrFlWf474tLA2UbzI+1h7PFLEZTtkG9fgc7l4U5CHY0nPdpYMObwD2/G0qK6F4s7n4Gz1QsNq5y9P+6eO6rDmoi2X/votQqAuhvfgB46h5/G/ISxQiyPJ2I736b2itY2sLFH7cylqhPXQd9wxXGPH3zN6A+cQ2+fYbCD/9lfz/9i8dcfPLY7J8HtEpiIT+vuDrNwiBR1mEbgN8qiNEo/sgJasH+coTDujegr7kE6lt/GL6Oj2vB9k5zerpYT3/ePjGZ+tKNUDY5DMkLas8DoE/8APDQnzMzd26B7u2G2iW3/O7ZCj96yFyLvnefxu2XFr7vILVfk16615zhOIBNSJmCqq6FrqpFXb/Qzu3afyQt/L9bCPmvSI05rPJhHSRkgqIOPRb6oGOAleZxO/q6y6G+ctPQ5/95j8I37pL7QD/4l8YdL2g8+1UHs2tH1g5JQkPAh5QoFjWnH3osVJn3s07lONDHvx945C+ZmW+tlFdkO0LSkfptqRMriX33Eq5PM+Z5L9PXA93fN3ROT69RuPuTDs69yRWv+//7gMYtF/tvkyRBo6ecERgQHD94mzlTus8PBAGDGBkA778IKSIoRiMkDyilMHv2bKxfv37YDJTxeBw7duzAjh1jpH4nhJBRMti+8QUvIYSQsaLP7TWmZyNLyQUhVQYHAbjIfPjVK8jbxhNaa7zYvsyYtyCyL6aEpovrRgKVeEflIXil898ZeSs6nsa50/9L/I4GB0iHLLKnhI6LeYR41a1iRxISdSTbjOmSbIiMLRGPa9JY1EdpnwoKZap4BtZYxWhZSL/s2ylsn2Ek2Po17YlWuHCNebmQQErtUE/SHDnVk5TFaBWBKgB2iWNCx6110NWuKMY1ldX2HUiCFkJKhdbETmghtHdyaPTSQGrRxjf/6XwRLQlzcP2S2lPgKI9p/ci4oTZkHkHWp3vR43YNXb9HiyhEHwNJMCGEEEIImbgwRo8QMhFhfB4hhBQLljcfE1C8q/Y/EnrOfGDT2szM5x6Adl2olOM+cr7CxuscBD9hfncNDAzK/8KJGtVhf9e0dZIYbYp9fd3XC2zfbM60ya38DnYuK+yErRMNFQxBXfFLuK88Dax7Yyj9g+1/EcVoq7cAt/9b4xNLs+8PiVKrYA/wpE8pGgDlJUaThFbJlMlke4V4ijDflVg5SJ60F7f9APqCL6KiZjI+cLjCn1+Q2+rv3qvx38dohILZ1aNWIbQkXWxlpMMc4ycOpncs72DbJDFanY+CEF+c/GHggVvNeQ/9GfqjX4WqX5iTXaXWH/32f4CXzfHZAKD+usYu9iR5RV3yTWiTGA0AYuuAxn0BDIhi66eY+y9/fkHjto/lblIyv4hitJfvM2dM3wNKEH0amdWA2qat8v57gFlpzZ0oNtEphWW7Rkoc9bkfQV98uDnz3t9DX/w1qF2yorKgwq8vVLj0j3IfaEML8JunNL51+sjaIElsBAAVXlKiWNSYrI471/f+1ZEnQZvEaD1yrDLbEZKBLzGa0HevLGEx2kwfYjQA6GoDynaPKTx5f4XWnzoou8z8jOiPz2r8/iL/fSNJ0OgpZwSAFx8Ws8T7/EAQgLBTti+EFA0cPUlInqioqMC8efMyAq8IIWS8opTCvHnzUFHBl3GEEELGDkl6VK4KG4CklELEqUCX25GRZxOEAEBbYifW966FNkhNwk4EDeG9UeZ4P7FrTezEht61mFE2B9NCM0f8AtXVSWzsa0JrYudQWkt8O5rjW4zLH1Z9jOc2D6s+xihG60i24dGWe7Azvs243qDMxC5QSYh5qWit0RyPYUv/Rl/LD1ITqMUe4QUI+Bj43+/2Idq7JisZngMH88J7oiboPXNE3O1HtPdN9Lj2OpXOnPIGq7xupPS6PYj2rEG/tkwFNMZs7ze/dB8vg+8lGVJXMrOtAeznChk7vMRnYyEik86BsBOBo4onaNt2rnoJ51Kxyc9yIQ/LN44KoFyF0aczhbCrulaI6+VCuif9Bi2JZuO1fWNvk3F5BWeofxZScjREQsdRBvmc6HN7RZGTqc0MOWUIqqCxv/B698vGvpsfAiqI+vCeqArUjGh9QoqBlrgQOA2gLmgWJeWSpE5iQ+/baE/Ks8eamF1Wj6llM3JeHq01Yv3rsT1u7j9OD83GjLI5JTMA9YlWcyBsUIWweNIJBS4NySd1wSli3gvty1AniNOypS3lGUMq40VaTQghhBBCxg+M0SOETCQYn0cIIeOEInrHnlNm1pvFaACwJQrMnj8syXEUzjoIuHuleZWuPmDFOmDpPv52H91u7s/Xy4+1B9i6Xs6bJYtlVHWdv4l/yot/8rVxwT6HDhOjze8X6toulq0BPrE0+91saTen18XN7y1E5sy35weEmK14SlxdnxBTyDplZ3ajPf/1F4AjTsL5HmK0re3AG1uB/edkt/stgh+hzqOLruP9QLtgeJTEaAHLsN4287aUtC2SNWr2fPt1YOVTQJoY7ZPHKvziseyfP9VVpMQdWKRoiFQCM3wKKUh+mDFvQKZies4YaxoSowHA3FpZ7Lq1HZhZQK9Ke49GjzDveF2yxZwxLcsGcspM1L21Wsze0gbsO2t4miRYqkidaK2K7RopcbyEvK88A5y4+9qwYJqC1xSmy9aM/F2JJDQE7FIi3dcD7BTkiV7HmEq2clClgEhuJoEkEwgPMZp2XVlEXFW6YjQ1u9Hfc5IdW4G64ePVggGFI+cDzwm3+s0dwHSfIfiiWNVLzghAv/SknCnda9ruy0q4PhBSbFCMRkgeGQy82rx5M+Jx4ekCIYSMA0KhEGbPns2gK0IIIWNKQseRhFmKVZ6FLCVXhAMRo1xDkmQldRK3b70Rz7Y9Yt1uSJXh4llfwMHVR8rb2XIjnm3fvZ19Kg7Ax+d8TZQqSWzt34QbNn4bOwRRWToOHBxSbZ6pMZX9qw5DSJUhrjOfSP6j+RZxvUigEgAQVPLjCtM20+lJduGmTd/Dmz2veS5rYlKgDp+ceyXmhhvEZV7qeAa3xH7iqzwmjqk9GedP/29RSPRa53L8ZvP1RimOHw6qOgKXzPoiQo6Pp78+eK7tUdy25UbxHCx2xsvg+8FzIB2TSBEAgg7FaMWIV30bC8GKdH0otnPDVp6wYz4/TNjkZ8V2zBLhQAX6EpnXAElcA+RG+hYRvuft8a24adP3sthOxVBdH43wtNcVprKE3GaGnQp0JjOjne/bcYd1X344efJ5OGPqBSUjSiITi5ZEszE97ETE88mEglT/5ZCIjb1NuGHj1WiXgi092K/yEHxs9hUod3IjxG5L7MTPN3wbm/vXWZebV74An5p7JaqCE1uKuLV/E1Z3m0ctHVp99IQ//lJjUrAOCo7xHuOObb/K+/6zfW5BCCGEEEKIHxijRwiZCDA+jxBCxhEB78kWxyPqyJOglz9mzly/JkOMBgBnLVK4e6X8jmhVTGPpPv7erUYFsUij13wesaicN8MyqN7v4Naywk9+NxFRS86C/tftQ5+XdD+F2mQLWgN1xuXvfXVkMoeoMLZ9D22eJFZkkYeVLSK8X+1NmQA1Lkw+yjplRdVMhj7oGGClMKB9cxQAcPxCIBwCei2PAdaMQIzWJEga95js0ZZtXW8WKQHAdEF0ZRuA3ykY2igQyh3HnAH87moxW2+OZkRHnHXQyMRoe0xO2W4sKi949BmMSRpjVKgMevoeRvGq/vmXgHe8E6p2oHNy7EKFp98214em7YUVozXJcyViXnyDOePAo7Lah3rXyYg89wCmJpqxPTjNUAaNY9POmm7hUliZOmE4hY+kxFGVNdCHHgtI92Kx6LCPixcAU6uA7Z3yNh9dDby0XmPRvOyvKdJ5qxRQbjOSxKJyXjayM4vc2kioHMqZoPJyMgo8Ylx3xIC4MA5s+h55KdG44IiTBu5Rkh5jxmJNwJ4HZCQv3VvhubXmvtG/Vml8+Eh/bVKX1H/wcysdi8p5hx1nTrfdl1G8SEjRwKs9IXmmoqICCxYsQGNjI6ZMmYKystwMSieEkHxTVlaGKVOmoLGxEQsWLGDQFSGEkDFHEo4ByNkA+WyQ5COSwGNZ6/2eUjRgQPz1m83XoS1hnqVwWev9w6RoAPBG96v4+7ZbPLedzq83XedbigYACysPRnXQ+wVk2InggKrDsi7P4ABpRwXgwBxEmNDeA1r+3nzLiKVoANCWbMFNm66BFgJVdsab8dvNPxyxFA0Anmx9AM+0PWzM60524ubN145YigYAKzufx/07/jri9VPZ0rcRf9zys3ErRQNyIwsqBNlKAmyyITJ2hAPFJ3uQZGDFdm7YyhPJ4vwIqCBCyvwMrtiOWWIk5cyF9C1X30+qZMkmPPW6rvdYxGhSm5nP3/iBnX/Fys7n87Z9QvJJS9w8mqTOEKxoI9sgXFe7+OWma0YsRQOA17pW4J7tt3sv6JM/xH7qKUUDgPV9b+PWrTfkbL/FyrLW+8W8pbWnFLAkpBAEVBA1Pu7r88V4kdQSQgghhJDxB2P0CCHjEcbnEULIOEWYBHHcc/bHxSz9pbOguzMnEP3A4QpnHSRv8pO3a2zv8BbI9PRrxAQHUMMUj3dTW4R3PlNmQZVbYgqrzUKuDMoKH5c4ITnq9GEfI7oXv4x9Wly8oxe47XnzRJI2JKlV/VpznJ4JddWtUOUeMSphQYzWMxDjoJNJwBXKH6IYzQv1mR+IefqXXwMAVIUVfvURe/tw7k0uOnuzk1hJcqFRSRolwYczAtGm37aLeKL2PBD40JfkBW67PiPpuIXAx47JXjLTMCXlwx0/lcv0sSuz3jbJA7MazOkb34I+Yw509HUAwBUnyXXhN0+NTPA5UqS2K6hczElsNuapC7+c3U5OuxgA0BDPlMYBQJMhLKmrz/w9VKbGBFL4SAjUpzKvOYPoXw+/NpQFFW7+iGOXlAE49LsufvJw9v3pLmF4TGWZR9xgLGpOVwqYIUhiTUyZbZcUpRPiuyBiQKqrg+PDtpivZQCAmVnU1wmGqpsG9dkfyd/fILGoMflrp8rrXfg7jX+85K9/lBcx2vQ9oCqqzXm2Nke69yeEFJwsegeEkJGilEI4HEY4HMb06dOhtYbruuIge0IIGUuUUnAchzONEEIIKTr6XFkSla1MKBdIg3klgccrWUg0XLj4T+dyHFV7YkaeJON4pfN5XIDLfO+juT/mSwaQymHVx/he9tDqo7Gi45msth9xdj80DKkQ+nQyYxk/YrRcCEt2Jpqxsa8Je4QzZzt9vetluMgsW7a80vlvHF37noz017pWIKFHLyFb2fk8zpz2oVFv55XOf496G2PNeBl8n3oO+MEmGyJjh+2aNFZSLukcKLZzw/bdZVvWiFOBeDLzDX2xHbNEtuVUUDkRxaYKzUa1nZTy2ySOXtd1STgLjF29fqXz3zi4+si87oOQfLAz0WxMrwt5RXD7Q3rfsbFvLVoSlqlpfbKy8zmcO/2SUW+n1+3Bmu7/+F5+dddKJHUCgQna7+pze/Fc26PGvHnhPdEQ2bvAJSKFoC44RZSx55vxIqklhBBCCCHjE8boEULGC4zPI4SQcY4zMcVoKlwBvdfBwJsvmxe47w/AuZ8alhQOKdx5mYMpn3PRLoT2/fwxjW+fab/mrbc8sm7weJWlY0L8myQiGqRqkj1/EIrRcoIKBqEXnwo8c99Q2nkdf0d77HJ8fNaNxnUu+r3GexdpRMr895lEqVV/1N8GwhVQx5/nvVxEeN/R2zXwf1wYyQ0AQcobvFB7Hwx9xHuA5/+VmdnTCd3RAlVdhw8f6eCIRo19vilLP/70nMZl7/ZXhxJJLbZHjVNHJgfA5BlQYaG+ZCP9GKSaAqFc4nziu3DffBn490PGfL1+DdS83e/MHUfh5g8DFy1WOO6HLvp9hvkO1h/dtEpe6PzPQs3OjFcmY8DsRuDlZWK2/s23ob77Z1SFFRbOBFZvyVzm909r/OZCXbD7fkkMOq+8HQEY2sg582U5iIAqD0NX1qAhHsWLkUMz8qOGa3C3IFiK6F0xgYEAEKFwhBC15wHQJ34QeOj/jPl620ao6XOHPp+zSOH1qx386GGNGx6V3398+W8aHzpCY1q1/7aou9+8vQqvLmwsak6fNgeqzL8YWLQrXUIAACAASURBVAWD0NPn2qWzqVA6TEx4idG2CmK0SBVQMzk/ZRonqHM+DixaAqx4HPrHnzMuo2NRmL7h6rDCntOBt7aZt/3J21yccaCDYMDeJkn9h0o/zwZiUWOyuuhr8jo2YbV0708IKTgTM4qfkCJHKYVAYAQzOxBCCCGEEFLC2MRo5UUkRpMEHi1xw1RIFiR5wJruV43p7clWJHTcKh/xs32JkCrDQVVH+F5+v8pDEXYi6HV7fK8zt7xx6O+gCqFPZ/7mXgKVuBtHZ7Ld9z5ttCZ2YA9kBhq0J1tztH3zb9CayK6uZLv97LeTm/KMJal1q5jJtpzj5bhKjaAKYVbZHoj1b8jIOzCLdjSXSHVlbri46lBtcDKqApPQmRw+FXRIlWF62eystjW3vBGrul/KTC+yY5aYW96IaO+arJZ3cjAz+ZzyBigoaIxusGj6NV0iroW3l4P5rpxfpswBDXPLG7Ghb61HCUfORLguktKkJW7uG04O5kaMJu83N+dMS3wHtB590GhXsiMryXG/7kOf24uKQNWo9lusvND+hCj3Xlp7SoFLQwrFvPCeiPa+WfD9KijMLvcYiEYIIYQQQkgOYYweIYQQQgjJCzl4L1u07LGXKEbTT94DlSZGA4CAo3DRUQo/e8T8jvmelRrfPtO+26jlddI8rzHJsag5fVaDfb0qn3Kh8sLHJU5Y5mTG4R3X9Zi4eNIFnnwTeM9+/jbf2auxvdOc1xCP+tvIYcf5Wy4sSFx6BsVolliILMQQJc3Cw8xiNAB44RHguHMBAHvNULhoscItz5jboH+u1Ljs3f52ubFloN6ZaPSSNG6OmjNsbVFwJGK0uuzXIVbU0nOgBTEanrkXmDd8MjGlFBYvAH54nvr/7N13eBzF/T/w9+zd6Yok6+RuuUm2sXGhGJteDMGGQKhOIAmEGkIKCakkkMYvvZPeviGEkEYgQEJCTQi9JxTTYmywbGNkY2zJRbqTrszvD+ns0918ZndPp9NJfr+ehwdpZ3d2fNrbnbudeS8+8idv46t2HT8P3ya3Y9a+nuqiwacmNdtHzj1yG3QmAxUIYPYEczAaAKx6A5g9YTBaWOw1YVh7s7PJXDB1r9J2NGo0moWwUVM4W6cUbJIbp1IXZ2g8UR81ZyG0EIyGR+8ATn1fv0XNYxW+dhqswWipDHDn8xrnHOr9fdYp5PvWunRhdVurucDtc5nJxOneg9HYtyYTt2C0N14zl0+cxusSANU8F2ieC/3ys8BtvyleYdWz4razLcFoG7cDT7YCh8607186D0VdAhp1106gw/wAaeu5yBZYHWYwGlG1GMHfyBMREREREdFI0m0J2IoMQTBaVAhGS2TMk8r9BIT1rm+ux0bat0lnRhgFJFg2+nREA96/1Ktxwjh+9Ds8rz+v9gCMrdl9BzjomENUUll7MFoy2+l5n26kgAAMMCzGrX4/f0ebZDaBrJafhui9nvK0Z6jMie2DieEp7itWgf3qDkZD0NtTZiJODIvrjxzkFlGpjjIEiQQQxOENS4egNcCCukUYExrfb1lI1eDQhmOHpD0SRwVwZPz4ouWHNSxFjePv5vWR8bdCFTyPqDkyG9PCLnfTqsRhDcd6DjsFzMdcKRqCjdi/7tAB1RFUQRzesGzX7yFHvhOZ1vZHp0qBqEEVFG8+HxZfhqAavGfCDPfrIu25pGDkxpC/YLTCc6ubcr1nssigR1uerO6RW9CyyUDDIquV1hr3d9xhLKt16rGo/ogKt4gq5YiG4xBSbo9yLb+F9YdhVJBPsSciIiIiIiIiIqJhzhm54btq0dFyYdsasegtc+T7R8+sB1a/oaG1fL+l1RCkAQCTGoBIqH/deuc26P/8G/rRO6BXPgVseMVc6USXB3V4DRfiRPuyUQccXbRsemodZvTIDz7790r7sZPPFrDX4jUYzWNwg5KC0ZJ990ZTlvuawcrfoxmOrOej1/ufj96yt7zqSiGwyGSN5Tm0bsFoJYU0lnI9qWvwvw3ZHbBELBJDXgAcY7n2FZowqq++DZYHPe7PsaBVw3C96ifVA2xpAwAcNlM+DmznlHLbKTx7fkyPkExSSlARANTF0ZxaZywyXYfFgKXcWP96jh8g2mXRMWKRdD2qjygsdvnY86rPc1GXEGgYE7qwevMG6MfvBp550LxCqcFoXgW9j7OmPYl0fe79bKl3CImijePNy/dQasY8c8GKh6GT5nHBx+xt7yOv3OT++b6z27yOFNCo33y97zz0gFxpU7NcZnvIVlT47E9EFTd4s4OIiIiIiIiIyqg7a75rp+AMyYTeiBASlhCCuaTlklLCsRLZTtTD28CHLiEYTUEh7ER2/d4YHIdDGo7BsY0uj+40WDb6dIRUCI9suwdb0+abq/WBBsyvXYzTxp3Tb7kUBuMWZJCwBNCFVcQYotKdTRrDDpLC30AabKXgIGwI7snoDFK6+C6R9DeWjhUHjjEYKKuzxpAIDY3ubNJXoJ25PeZ2BhBESAiwqwZ1gVGYX7sIp407d6ib4lldcBQ+OfXruGXzdXgl8aLx7xpQQcyI7I0Tx75z2AS+7YmWNJ6IgArgkW334I2e1zEtMhPLRp+OWTGPj7Ets4gTxSemfh23bP4tXk38DxPDU/HW0W/H9MisIWmPzUlj3o2IE8V/tj+ItE7jgPrDcMKYM3zXs1/9wbio6TLc134b2tNvYk5sXywfd8GweZJTc3Q2PjzlSty95Sa0Jlchi4xxvUk103BE/Liyhtxd0PRxjNk8Hit2PoHtmXbP2yk4mB6ZheNGL8fM2Nxdy20hZWmXwNOUGIwm9/1mRvfGJZO/iLu23oS1ydXQKC0kNK3Txn6HHJxKVN3aU0IwWtBfMJpECg+T3jOFnzt21aM1urX5s18i22Xcxg+3oGWTkRqM9kriJWzobjWWHdpwrO9QUho+pkRacOmUL+GOLTdgbXI1MrAHlQ5UQ3A09qk9EKeMO3tQ90NERERERERERERUEY4z1C0YPMeeCXznEnNZ21ro7gRUuPgBpicsABwFZIVbKrM/n8WS2cBNH3Qwurb4nr0UaNU8ZvfPWmvg+u9D/+JzQNb9HrBym0zvNVyoZmD3pijPIcUPfHOg8aXNX8Y5k681bvLtOzWee03j+osd1Efs4z2kAJqATmNq6jVPTVRNLZ7WQ1QYj5fsG/dnC0arYTCaJ/sfJRbpW34J9Z7Ldv2+fKHCucI93dYtwAMvaxw123280BohpHFMLVyPv5KC0QIlTOv1GupInqkps+QRATf/Avj4D41F85oUzjlE4XeP2ccTKAWMivQGNuAf18jr+QmBocG1z6HAlFnAa6vlddpagfFTcNGRCpffbD4Gzr46i81XORUZrygFGdUmzBdHz9e7QvVxNL/eaix6vQNIpnS/UFsxYEn3jfWvYzAaUY6ata98Pbr++8AHvmYsuvJkB8t/nkXKPMQYP7pH48qTvbejUzqfFHRhdXcS+hvvA+65wV5hCdc3NWm699F6IY5vIwPp2pubB7ZTCEZjYGd/C4UAYa2BG34MnPuZoqLzD1O4+kGNlZvMm154rcZe4zUOnyX3j8TzUMHbXfd0Q3/zYuCf14t1Aej9Hm/8VLnc8rlMRQY2F4+IyofBaERERERERDQsJIXAq7BjDrsabFHH/AWXqZ0ZnTYGYwHAxJop2NhTPPAmaQgQcAsF68p4D1/rypqD0SaHm/HZ5u97rsfGUQ7eMvoUvGW0/1C1UoPRTK9bztdmXo1YoK5o+TfXfgrrksU3sKUQBykYYWZ0b3xi2teLlr/Y+TR+8tqXjG3VWhcdv9KxvnjUUTh/0seKlm/q2YAvrTEPSkxmuwYcjCa9pktHn4pTCwLtaODG1kzE+yZ/eqibQWVwRPx4HBE/fqibsUtjaCwubPrkUDfDlVIKy0afjmWjTx9wXQvrD8PC+sPK0KqhMTu2ALNjCyq+36AKYfn487F8/PllqS9guQ3hdl1Pa3NQi9RPyJlTuy/m1O7r3jiLx7fdi99uLB7cKAWnElWz7mwSndkdxrLG0DiftZk/e0l9ZKkvOT0yC5+e/p2i5R3prfjsKxcat0lkOhEPjvbYTjO3846J16fQDzcPdNxhXK6gcFT8rRVuDVXazNhcfDh25VA3g4iIiIiIiIiIiGj4USM3GE3VjgJ+ei/0JccYy/X/fRHqI8X3d0JBhZe/6mDW5+TAsvtfBj51o8Y15xffa1orBaONzVv32Yegf3aF/R+Qr6nZXu51wjOD0cpGBYPQRy8H7ru53/J3b78Bl4//GjaEJhu3u+N54It/0/j+O92C0cz39KakNiAoPIyuyDiPD6mM1JqXJ3LBaMJMbgAIMhjNC6UU9CnvBW79dXHhG+uhd7RD9YWExcIK91/mYMl3zOego7+bRddPnX5hPSavCuF6LV6eNdbWalysyhmM5jhArN7fNuSJuvgr0P/3BWOZfm011BTzw0d/c77C/S9rrNsq190QBRxHIfvtD8n7v+SbvtpLg0spBfz6cejjx8grtbUC+x2B0bUKcycBL7UVr7K1E7jlaWD5AYPV0t06u83XwNpO80PNMan0YLSW1Ati8dotwJyJ+e0yr1ebe4C416Baoj3F2ZcBfyj+vIVMBnrzBqhxxf3lt+2r8MBlDg79prkf1N4FbN6hMa7e23wrMdCwsAv75x+4h6LBpS8k8ROmVsNgNDJwDUbbZi5nYGd/M/cBRo0Gthd3dvWvvgic9UmoYP/PNGPqFB76jINxn5C/Hzr1p1ls+LaDsPD5TOw/FJ6HbviReygaAIybAhW0zDuwfS5jMBpR1Ri538gTERERERHRiNJtCUYbChEhGM0UpiUFbAFAY9A8asK0TTJjfg12b+M9GK0zYw5GqzUEhw2FUInBaLbXOuIUP7EUkEPu/AajSSERUv1ZZNGji7+1lf6OUj3Ssdhb18DDWxJCAEzUEQZ4ERER5VFKlRx4mhaCZYNq8J/5Eg2Yr3PluLYSVVp7ShjBDfnziMRvJLUU+iv1YaU+L+Dv846klGA0eH8G5bCxLd2Op3c8aiybV3sAxtZMNJYREREREREREREREe0RbA9NcUb4NKxZlgdQPXanWNQ8Bgi73Ma94T8amWzxa7t2i/n1np6XR6I9TLrvx20yfbQOCATc62EwWnlNm21cfN6231k3u/5J9/t1a4Rbos2pVtdtdxnb5G09KRgt2TeewBaMxvAGz9TUveTCB27t9+sClz/dP1903986IaSxZaz9LrnuTgAdm82FtjAQx8M5KF9dHGqkX4OGSpMlJOrffxGLHEfhK6faj4/GGKB3dACP32XZ/wy3FlKFqZjLWPq2tbt+PGCafAxc/4QcClJOUoBILG1+iKL13GRTF8f01DqxuPBa3CkFLOXG3zGAhqgfNdlyPSgIF8538AyFH79bPhfd/JT3sW9iIFFBF1b/68/eKhzsYDSGDpOJWzDajnZzOQM7+1GOAyw8Sl7hmfuNi8fUKVx6rHxO2toJ/PMluVqp/1B0HvL6PZHbecgajMY5c0TVgt+GEBERERER0bAgTagPq6EZfCSGaWWKJ+vbAs0aQ96D0dyCALqEsDPzuuabnTGnOoLRpACVlEuQQVII8QqrCBxlHkgihTIkfQafKCEmwm9wmd8gMnt4xMDDW+QwC3PQHBERUSEp8NTtui4FGEn1lZN0nevR3choj0+TJqoS7WlbMJrlCbdlIPdtzX3YGhWGA3O/3fRZy69SgtFGXiwa8Mi2fyKDtLFsSfyECreGiIiIiIiIiIiIiGgYkSbYjhDWIJBtQmoQesNhFrnMX+/qATYY5h9vEW4BNeXPSV73sr3yfEoB46e6rKKA+Hj3uhpGe98vuVJzDjAuX5x4yrrdpu3Ati77XbvWN83lLam1xuVF6uL2YMB8USkYre9gtgWjMbzBuzmLxCK9vv85obFWYYblmWArN7nf9d3SaV6nqSC3R2sNncy7D245N2KcJbHNb8hZrN7f+uTd3uZzEwBol+vP5EZ7vyAeBfD6q0DWEpA1e39rHTREjjhJLNJtrbt+tvV/Vm4qX3NsxAARLYwhLzUYLT4OEd2NSak2Y/GagmtxlxSMlmtXPYPRiPqZu1gs0utXWTddPF2+Hr1ofssaycFou+vXmQywxkPqLAA0NXvfec4kH8FoDB0mE7dgtJ3bzJsxsLOIOmiZXGjpJy92eRuv3Ch/PhPPQ3kfpbXWwOoV9p3kWPr6AFyC0eS5ekRUWQxGIyIiIiIiomGhO5s0Lh+qcCY5TKs4RMoWsNUYNI/GMG0jBVTluAWn5evKmkPUYoHqDkZzCzKQgsAiAfkLSTnkzlyXhnmAghK+QLcGl5mC9KR/g3Csh1SNGB7hN9zNRDquopbXlIiIKF+p13UpOE2qr5xswabdLn0yomojBaPVBxoQcvwNvJfCgLUQHyb3bc3vMaWU2M8sR+ivWyCjifRvG64yOoMHO8xPox4bmoB5tS4DQYiIiIiIiIiIiIiI9mQjPBgNAHDM283Lt22BXv2cuNlH3uL+2vzqoeL7Lh3CLaDG/Oypp+5zrXuXcZOhvEyQ9xAKokoNDiGzQ08AmlqKFp+w807M6llt3XT1ZnvVrUI2VXOq1VvbTn0fVNjjQ3qlydGJXDCaMJMbYHiDH/sdIZc9fFvRokuPlc9Bn/6LxrPr7fd93c5FOp1G9seXQZ88BXpZI7Lv2Q/6gb+JwQoAgPpGsUgpZZ+EX0gK5KMBU5NnyoV3/QH60TvE4rjLEPbGWkDf+BN5hSNOhproIwCGKkYt/6Bc+K/rd/149sHyuee5DcA1D1lC8cpEDBAxjf+ui0OVGEim+gKOpGvrw3mX8kxWIykM0dnVLgbQEPWjbCG9t/wSOm1+CCYAHFTcxd7lx//WuPDaLBI97mPgElKgYf4Qwyf/6VoPgN5+ztjJ3tbNN3YyEDDPjSkSHPyxxDQcSdfmXDBah7mYgZ3FjjtLLNLPPSqWLV+oMEX+KITL/qLxUpv5nCQHNOb90iE/LLqQOukC+woMRiMaFhiMRkRERERERMNCtzYHUIQdj4NRykyerF98E9E2gb8xZA5GM4VyuQWfdRlCtiSdGXMwWm2gOp4qFyoxQMVv8IKtTKpLC/eEpK/PbaFsfoL0ogHzwBZreIQQ7uaHFMhne02JiIjylRqMltbmgRyVCEazBpv6CKMlqgZbU+ZZAlJIs5XPyT7SZyFbyG7MMfd7u8rw3nM775iMtGC0FTufQEfaPDPkyPgJcBRvHxMRERERERERERER7cnUB74qlukLFkN3mx9w+s4DHfzhIoWDLZPyv3abxvMbdt970VqjXRjeFI/23pfSTz/g3uh8XgNmvISeMRitrFSoBupn9xUtDyGN+1uX4h3bbxK3PetXcrCM1hprhHnRLT2txe348p+A8z4LTN0LmLEA6n1fhrr4y27N300KqMqkoVM9QEpIlACAoL8HV+3JlOMAp11sLmx9CXpHe79Flx5rv8951HeyeHOHfO+3Q3hGXi74Sv/scuCGHwHb+g62tf+D/vw7gUdul3fqFvrjNfQDACIMRhtM6pJvimX6irdDr3zKWNbgEozWkNoK3PUHeb//7/ee2keVpw5cChy41FyY6oFuawUAjKtXuOZ8eSzNRddp3PL04I476ZSCjEzjvw0BpZ719YtahGC0Pz6hkcn2/lulcKX8dikGoxEVO+8KsUj/8vNimVIKn1gmn4uufUTjgmvdz0WdQnhaLhhN79wGfdmprvUAACZMhfLT1+mjgkFg/BRvK4cYOkwG0hjX3ESwHUKwMa9LRVQkBux/lLnwX3+Gzpo/p8fCCo9cbv98duS3s9iRLD7nSP2a2vDuv6u+Vv7eqp93fwJq+t72dRxLOxlOTVQ1OLKdiIiIiIiIhoXurHlAVdhxuas8SKLCZP2U7kGmIMRDCroKqRrUBUYZy0zbSAFVOX5COrqEYLSYU+e5jsFUaoCKGLxgCTeRQ+6EYDQhGEEJX7OEVUQs8xOkZ/03iOFuAwuPSOsUUtr8zTKD0YiIyKvSg9HM16BKBKPZrnOJjL1PRlRt2tPmWQCNoXFl3Iu5j1zW4OIyhP5K5xUrKRl5mHqgwzwwP6RqcGjDWyrcGiIiIiIiIiIiIiIiqjrjptgflmMJAXr3QQ4evSKARZZsst88svveS6IHSGXM6zX2Dc/TN/7Y1tpiXoPRmprd15k0gPAQMlJjJkJd8aui5RMyb+D6DedgZmy7cbtVbwDpjPm+XXsXsN08vBTTU2sNC+fAuehKOH98Hs5v/wt17md6Q7i8sgVUJTuBVLe5LBAoKRxiT6ZmL5QL77mxaNE3lsvnrh1J4E9Pyvd+24Whlo0x9Abe3f7b4kKtof90lXnDcBSqxiWsIxC0l+fjpPzBZQtMyGSgb7vWWBR3GUbb+MZLcuFBy6DCQ/NwcPJGvf2DcuGduwPvjptnf8jgrx6Qwz3LoVO47NSaxpAPJPS1b9vpqXXiKvf0HfJSqEm/dtU3lN4WohFKzVggF952LXTa/LBhANh/qr3um57S2GwJiQWALiloMZfte9/N9p3kG8j5ZqLHbd36WrRncgtG29luLq/jdclo/yPlsmfkIPspjQpfO13uI23t7D0v5ctmNZLC1ILa/Izxu6+X25RHveUd7ivZgs3DnDNHVC0YjEZERERERETDghQKFhmiYDTbfguDraQwgKgTE+vp0d1FAWuJjD3kqstPMFpWCEYLVHcwWsolQEUOXpD/XnKomL9gNIlSStx/4T601kgIgQ+2f4MUHpFwCdNzk7QEv9iC2oiIiPKVel2XgtOGOhhtoMGjRJXWnhKC0YJjfdelYB6oIGWHldI/jwXMA7r9fN6RpLU8OEzit/9fzdq612Nl13PGskX1R4jB3UREREREREREREREe5SjTjUvr4kAtSN/oqwK1QBTZonl+pUVrnXMmyRPfl2xfve9l3bLc3HiudtJGw3BVjYeJ+Cr5rn2FUI1QBOD0QaF5bWfpDeLZa8J89fXmG+HAgBaCoPRasID/7tGLOPmEp3yxOoQgxt8a5knFunVxeci27kHAJ59TS7rEIZKxmMKaGsFOs2hfdi+1by8Lm5tCwAg4GP8i+24o4FzuyasMl/7Rrnkmo3etkYutIWxUXWwHBf5/aGJo3pDFCW2c085SEFGtdrQ0XI71m0mTAMAzO9+UVzlmb5+nhTW1tuuXDBaY+ltIRqpbO/RHe3AG+vFYrd+UCYLvPC6ffdi0GJfN9bU/xIN5HwzfY639YI17uvQnkd6K2gN3Z0EeoQDvd5D/30PpCyfyeByTpjvcl56puCUtkMIPAeAur5+t9ZaDiPPFwgAk2e6r9dt+WIqWh3zK4mIwWhEREREREQ0THRnzd9whZ2heVpW1JGfvpYsCLaSg65i1noKA9YKfy9a3yU4LV9nprqD0UKOecBHOmsPUJFea9vrLIeKSa+3ORhBCono3b+wj4L2pnUKGZjDGmz/BjncbWDhEVKQBWAPjCEiIsoXEoLMpOCznJRw3ZfqK6eQExID2AYaPEpUae1pIRgt5D8YzS/p/WLvn5vLEmUIRpMCGR3LLdORFIz2QMcdYtmSxhMr2BIiIiIiIiIiIiIiouqlJkwD5i4uLjjuLChnz5iGpY4/Wy5c9azr9uccIo+juud/wFm/yuLe/2kxiAjoDRjRqR5P+8unJk33tuLhJwF1lqC7o06DilXHWLoRx/T+6nPBK98Sy5ZelcVzrxXfu5OC0cLZJCal2/ovXLIcaqABU1H5XieSlmA0Bjf4N+8guezFJ4sWHT8fGF8vb3LNQxrHfi+Db92ZRTqz+1hKpjSSwhCWxhh6g9H88hKsUOMjLC9iOe5owNSkZmC/I+QVnn8UOpMpWhwKql1hMSYt256X93n8WT5aSENB2cI07v8r9JregDDHUTjb0vdp2wZ0pwZv7IkUZBQzjLNRy95Z8n5UqAaI1uGkHbeL6zy/off/Ulhbb7v6OoC2fhjRnqplHjDFcu5paxWLFk4D5jfZq//g7/v3gQpJ791Yrhvr47OZOq7065z182g+P30p2oOIyWjAzg55MwZ2mh0mjyvV6162bnr8fGCs5WuVH92j8cE/ZNH6Zu95yRaevyuEdusmoNvDOP7D3gbl5TNZwjIumWF5RFVjz/hGnoiIiIiIiIa9pDChPuxEjcsHWzQgD44pDNSS2h5xoohY2p/M9N/OFlIFAF0egwIyOiPWVetUx2AuKYjELUBF+ndFAvLrLIeKmevK6qxxuVLy1yzRgHlQSuE+bOF3tmNOql8KivOq1PYQERHlK/W6ntbmsNCgEKBablIIqFufjKiaaK3RnjLPBBgdLF8wmhQeVhganWP7HBSTgtF8BEFLpPNOSMmTEEZKMFoym8Dj2+81ljVH9sL0yKwKt4iIiIiIiIiIiIiIqHqpr/8FmH9w7y+BALDkdKiPXTW0jaqksy+Tyx65Hbrb/JDTnKXzFJbOlcuvf1LjuB9k8fvH5Psw8RigP36CW0uLTfQWjKaitVBX3W5e/9AToD71E//7Jk+UUsCpFxnLzt32e3G7V98Ejvx2cTha6xbzcTQ9tQ5Owb0+9ckf+WytgS2gKtElB6MxuME35TjAKe81F656BnpH/2CDmqDCXR+zT5e9dyVwxc0a7/n17mOjwzIMJB4D9Pc+4rnNu9R5mEQf8nFM2AL5qCzU/5PPPwCgrzSHtISD8jbNO140F5x0IdScA7w2jYaQev9XxTL9oaN3haN9a7nCflPkev74xOCMPelJa6TNw9pRawpGm773gPanvvEX1OlOLEo8ZSz//eMamawWw9r6tcvLeZJoD6OUgvrBnWK5/u6Hrdve+mEH+0+V61+5CTj7avl8JL13a8OATnYBKx6WK8+J1UN99mqoeQe6rytQCw4Blr3bfcUQg4fJQAnBaNolGI2BnUYqEgNmLDAX/u1X0Fo+p4RDCnd/3P757Jf3axz6zSzWaYENLgAAIABJREFUb7WH58f7hhzrG3/s1mTgwKVQV/yf+3oA0LVDLmMwGlHVYDAaERERERERDQvdWfNgKtuE+sFk229hmFRCCCyLBmKICpP+TdvZQqoA70EBtvVigeEdjCa9RrbXOSIEfCUyXdYvaQvJz/qSjxevx0pvHXIQmVT/QINbbMfcUL33iIho+JGCzNyD0czlUj+h3KTwVLc+GVE16czuQI82j1hqDPkPRlO2p+kVLtFafL9IfXBADuAtx3svnRWC0RzbIKmREYz2xLb7xNDuo+LyU/2IiIiIiIiIiIiIiPZEauwkOL94AOpv66Bu2wjnq9dDhfecsTIqGIT6pGWy6YO3utbx3TPsU9YyWeBbd5rvw4SDQGTdc8CzD7nup8ikZs+rqrmLoW5YCfXnl6Cufqz3v9va4Hz7r1CcFD2o1KJjzcsBLO5+WtxuexL40b/7HzdrzM+JQnNqbf8F7/woVO0oP800swVUJTuBlJAoEWRwQynU4qVy4b+uL1q031SFWz7kPmX2hv9ovLyp91iyBqOFeoC2Vtf6iniZRO8nLI/BaINOjZ0E9Yfn5BXuvwV6wytFi3vMz30EAMzoWWPe13mX+20eDZUFh8hlO7dB3/RTAEC0RuGhz8jnnitvHZyxJ/YAsoKT2wnnDnyHM+YDAM7Y/hdxlVueBjqFjFAAiOq+sSvsaxEZqQnTgLmLzYWvrYbukd/4LWMVnvpCAAe3yPXf+F+NlRvN56Qu4b0bqwFw3y1ype/6WO9nqeuehrp9E9QJ58jreqTe+wX3lRiMRia2YLQdtmA0hmBJ1NGny4UugYn7T1W47kLbbDtg03bg6oc02i1TIuO5YcV/+K64jrr6Uai/b4Bz1W1Q9Y3Wfe5iCUbbk74HJKp2DEYjIiIiIiKiYaFbmMAddiIVbkmvgAqiRpkHJRSGUUmTzyNODJGA94C1ZMby+AMAXZZQrXydWfmLu2oPRku5BKhIQWC2EC8p9CSLDFK6+O6OFoMR5C9rpWA2r8dKbx2W8Aih/oGGR0ivZ0jVIKAsj7kjIiLKI17XhYCinLThOmyrr9zE4NEMg9Fo+GhPCbMAAIwOjvNdnxyMViyle5BFxlhWUt/WYxC0TSmBiz6ykquW1hoPdNxhLKsLjMKi+sMr3CIiIiIiIiIiIiIiouFBjZ5QniCl4WjKTLFIP/eI6+YtY+X5yG7iMZQWihYMAeOn+NpEKQXVNANqzsLe/0aN9r9f8s9yfM1Kvmzd9OHV/W/gbdxmvqE3PbWu3++qyZIQ4YMKhnqPNZNkJ5ASEiVqGNxQkskzxCL93KPG5bPGe6s6dyy1bZPXadxiPx5FXibih3wEo0UYjFYRE6YBgYBc/txjRYsOEk4tjtKYll5fXBAIAuP8XatoCE2abi//29W7fqwNK9QJb2spbGigbPXGdP8xbspHeKwoPg6IxDAzZQ79A4Dbn9Niu6LZLji5cfgMoCGSTZgml61b6br5UbPtH8Ruedrcf5ZCDWtrFPQK+fOZOvKU3s9SLfOgbNdRPyZMAxyXGBQ/fSnac9iC0XYKwWiBIBCRx7Tu8Zrkz2RY4f790Kzx7l8OPbJao0OYTlcXBoIB1RsMKf19J8+AmnMAVNznA6OzWX/rE9GQ4AxWIiIiIiIi8u26th9ic2pjRfe5sec14/KwJfBqsEWdGHoyxU9cSRSEZUjhVBEnhqAKIaRqjAFchaFUCZfgM69BAV2W9WoD9Z7qGGwhIZhACjLIKXztc2zBCxFLWSLbhRqn/w0TKRjNFhIh7b/oWBH+NgrKeqxL/4aBBqPJrycH2RARkXdBIUzT7bqe1uZHqkr9hHKLBqRgU3tYLVE1aU+bg9EcBDAqWL4BhqYesq0vauuDi33nAfZtATloWQq97jX8k9FWJ17E6z3rjGWHNSxFyOEkDCIiIiIiIiIiIiIiKrDvEXLZzT+H/tA3oMLyeKb6iMJx84C7XvC/68YYoNta/W94+Em9oVVU/WbuAzS1AK8XB6ucvuNvuL7hneKm/9sIrNuiMW1M73i9dmE45JjMlv4LyhEIkxOpNU+qT3QBqeIxpQCAIO/JlWTWvnLZ+lXGxfMmAXMmACs32at+9c3c/833hMfUArEtraXdMZ4w1X2dGu9hHirKMZuVoMIR6ENPAB76h7Fc33o1cPxZUHmBDCcsUPj3/4qPkpPHrkHY9FDICVPLFxpDg2/s5N4wzLQ8zk1rveuYmDYaeLGteJ2tncCK1zT2nVJiaqwgaRl+Fy0c41aG66BSCnpSM5auvUdc596VGsfPN5fV5s+F8BIgSbSHUktOh77vZnPhxrX2/hGA5QsVvnOX3IN54GWNy08oXi6FGsZqAKxfLe9w3sHW9pRCBUPQ46f2/nsl7F+TkXSt1cBOIRG5vrFf/44KHPpWsUj/+QfAWZ+09m8PbAYmx4ENQi4dAKzYALR3ms9bjbkhxRvXyk86nneQXDkRDXsuUalERERERERExV7rXoNXEi9V9D9TcBgAhFWkwv/63SIB84T9wkCzwt9zchP+vYZmuYVwuAWn5XRldhiXOwgM6euZL1hiMJr0WpcSvCDX5z8YTQ4u6yz43dz+sBOFo+SvcaR/Q1IINvNKfj2HLpCQiIiGn5AyDz5wu65LAUZSP6HcpOud1z4XUTVoT5mD0eLB0XBUOQfaFveRpb4kYO9PSqGE5XjvSecdWzBYdgQEo93fcbtxuYLCkfHjK9waIiIiIiIiIiIiIiIaDlRNGNj3cLFcf/R4aGlScZ8fvNNB8xj/+47HALS1yiuMnlC8bMosqA993f/OaEgox4G64lfGslN3/B3nd1xn3b75iiyeWtt7H69DGFbZmGnvv6CcwWhSSFVipxyMFvIegkW7KccBjj3TXPi//0Iniu8jK6Xw6/MdjHbJEvvabb3H0BrzbXW0jAX0H77rp7m72+DleKvxMV43Io9zpfJSH/62XPjcI9A/+Hi/RR86WuHEBf1XmzUe+PajJ5vrmDh9gC2kSlKBgHvQ4cqndv34mwvksd77fzmLR18p7xiUbvNzRwGgOJivqbk8O53UjPrsTpy57UZj8dotwPOvmzetzY0lqglDhatjzgJRVTp6uVik//wj180ParGX32kIr85ktRi2GHO6gWceMBcefBxU0Pzw5AFz60/5CJmlPYgUcKY1sENI5qprGLz2jABq1GigdpS5cNsW6M+dAW0JkQ04Ctde4KDecunfvAN4aaO5LN73UUjf9Qe5jbY+PBENewxGIyIiIiIiomFtKAOaxECzwrArIZwqF5YlhWYVBgm4BQGkdA9SWeExLXm6sjuNy2OBuqp5ykXpwWjmUU5RIcQOsIemmf52WgpGs7x20v4L21tqEJkU0icFrXklbS+FVRAREZmUel2XyisXjObt+k1UzdrT5hHcjaGxJdVnCwMuZHuvRB25PymVJTKDGIxmPa8M72C0bemteGbHY8ayBbWLMSZkmDhEREREREREREREREQEQJ3+AbnwhceBO+zhVXMmKjx7pYO/f9jf9LVGWzDaWZ+EunEV1A/vgvro96Au/S7Ud2+FuuYJqKYZvvZDQ0vtfyQw/+Ci5UFk8Ku2D+D2Wb+1bv/5v2YBAO3CELl4tiC4r5zBaFJIVbITSAljIULyw5rITh1/llwoTI4/bKbCyq84uPH9DmosWR0rN2q0CsFozWM08Lz5XqsrL8ebn2MiwjGblaImzwROvlBe4eafQ7/y/K5fozUKf73EwaOXO/jxuxVu+4iD/17yJmam1pi3n+SSVkPVx+X9rK/66K6fD5hmr+qKm7NlaNBuUogRAER0sv+CcoXy9dXz400fF1e5bYV5rE1M91206+LlaQvRCKWCQWC/I82FzzwAncnYt1fK2v8BgJc39X+fJizTkGLP3iPv65SL7DsaCJfzr2LwMJmUEoxWz+uSG3X+Z+XCh28DHjE/vDfn2LkKq77q4LMnymOQv3e3uf+QC0bDdd80bxgfB2UK0CeiEYPBaERERERERDSs1Qbqh2zfXsMypLCrXFiW11ArLyEcXS7haQDQmTEHo9UG6ly3rRQpmCBlCVDRWluCxeTws7ATEQMeTPVpLQSjWUIipP0X/o3FIDJLcERv+eAEo0nH3FAGEhIR0fATVOYRFmlteWQlhj4YzWsILlE125rabFzeGCwtGE1iCg+2BZmFHfnRb1IIb7dOIqPtg7rcyOcVecC5FIw8XDzUcTeyML9uSxpPrHBriIiIiIiIiIiIiIhoWGmyh7foR+9wraI+ovC2fRUOn+l9t/GYEoPRVMs8qJow1AFHQ73jw1BnfATq4OOhogwNGpb2XmRcrAAse+EnqJdvK+LuF4GetEaHMESuMdO++5fRE6HCZRzzJoVUJTqhU93mMgY3lG5is1ikH79LLBtTp/D2RQo/eKc8tvP25zReazffE25RGz03sUhTs/s6fo4JnuMqSs2Yb1/hsTv7/RoMKBw8Q+GSYxycsI9C3QpLgIyXY4Oqi1vQ4Zbd54qAozDDMiTngVXAjmT5xqEkLcPv+gWjhWqAsU1l2afqez3GZLZi/+SzxnWeWW/etjY3rr2uoSxtIRrRJlnCDNe84Lr5h462PwD19uf6n4s6bcFoz98nF5YzfLiAcqubwcNkYglG0zuFYDRel9y5hPvqR++0lgPA+FEKnz7e+8OZcxpjgN62RV5hio8vnArttb95ebR65lcSEYPRiIiIiIiIaBiLOjG0RGcP6f5NEpnCQDN7WJdUT+F2tmABP+t0CcFoMad6vriTAk+kIAMA6NHdyML8JC3pNQYARzli0JcpWEwORpC/oJWPlf5/r2RGCkaT2w/YQvoGFowmBb+4tYeIiCifdF23BZ4C8nVfClAtN68huETVrD1tfrT16NC40iqUBo0Y2EJ2HSXforT1NQfav5XOOzWWYLThLKPTeKjDPBFgXGgS9o7tV+EWERERERERERERERHRsLLXfkCDJd3jFfcJ+TnL5nu/zxQPdgM7t5kLB3HiPVWeOnCpXPbqC1g6V942q4EHVwHbhFv4DZm8Yyg+psQWCoSQKp3sAlJCqkSoMmMdRqRplnHCG9e5br50rnz+WbMF2CoMu52Q3uRat1EgAIyf6r5e2JL8V6jGx7o0cIuPtRbrtlb79q+vKbluqj62axUA4I310OndCWVL59n7POu2lqNVvZKW4Xc1Ou96NGEalFOmOIG84NzFif/62jSaG/dT31iethCNYGrRMXJhW6vr9mcssp+L/vSERk9697yYTiHbFwBqt7wqF7a4hIkOhNv5d+ykwds3DWPSsa8BKRiN1yV3+x0BBC2fadss/d88o6L+g9Fs4fkAgJkLfNeZo878iHn5R79Xcp1EVH4MRiMiIiIiIqJhKaiCOHfiRxFQwSFrQyQghF0VhEklLIEAgCU0K1sYsOYewiEFWeXrygrBaIEqCkZz/AejmULMcqRgE7dyP8ELtq9nvQarSP8G6VjLkY6htE4hlbWHztgkM9Kxy2A0IiLyLiQEDqW15RFzkAOMpKC1chPDa4UgU6Jq1J4yB6M1Bi0TWCz8DElwC4iWxBz5SdeFIdR+iYGLjhyMltXm8OXh4Nmdj2Nbpt1YdlT8rdaAOiIiIiIiIiIiIiIiIhWqgbr4y/IKWzdCP3anp7ref5SPYLSdr8mFDEYbWQ4+HgibH2oKAJ+t/wfCliGiy74v38trzO6e9K4+elVJzRNFhHueiU4gJaRKhMLlbcMeRAUCcjDG6hXQafsYyVnj5fNP65saHcLQ3PgdP/faxP7GT4GyhQbk+DkmQiPzYV/VSjXPBU66UF7hb7+ybm8NTpu7uJQm0VA6/CRgvyPt69zww10/fnKZwljLkPyHVkkP6PavWzj9hbPJ/mN8ytl/mjh914/NqVZfm9bqvnE/dQ3law/RSHXM28Ui/fBtrpsfMgN4xwFy+ZOtwNwvZrFyY+85qcsynDf28uPmgn0OgwoO4nyueQfay/nZkEykh/9qLQew87rkSsXHQp17ubxCW6vnuq44wV84WjwG4Il/iuXq/M/5qq+fJacD+xzWf9m8g4Cjl5deJxGV3dDNHiciIiIiIqJh66j4idiREZ6UUAGjAo3Yu3Y/jAmNH7I2AJawjIKwq6QQVpbbXgzNypv0r7X2FNLV5SEYrTNjDkarraJgtJAQeGIL+bKFlEh/q/xyU1yAKagsC/NgKmXJn496DNGT/sau7bcEpyWznQg5cev28ralhVkQERHlk4LMbIGnAJAWrvvBCgXjyiG4DEaj4SGrM+hIbzGWNYZKC0az0VpD5Q0qkd4rbn1bWyiwlyBoGzEYTQhwHO7ub7/duDykanBoA59CTURERERERERERERE7tQp7wWSndA/vsxYri87FfhnO5QUFNVnwiiFq89VuOg69zCQ+L+vMReEaoCxTa7b0/ChgkHgd89AnznHWL7wl2dixXWbMOcb9b7rjuePcV24pNQmmkWFhz0lOwEnYC5jsNWAqPOugH7yX+bCP/8QOPtT1u2/eprC5/9afP55ZTPQLgwDiWeF4IRFx0DtdwT0NV8xl09qsbZlFz/BaDUM1qs09emfQf/vP8DqFcZyvX4V1NS9zBu3tZqXn/HhfuMqaHhQNWHgqtuAG38M/Qtz8Ib++WeBE86FahyHvSYoPPUFB9M+Yx5v/sE/aLy/TJelZNq8PKKT/RdMmm5esRR5QUQtfoPRcuN+6kob1060J1HhKPTcA4GXniwuvO1a6M/8wnpNUUrhTxc7ePaLWax6w7zOmjeBC6/N4uHLA+gUsn2BvPdu4T4u/ILtnzBgSinoeQcBLz5hXqHJY5+L9iy2YLQd5ofM8rrkjbrg89BvbAD+YfjOZtN66EymN9TaxfuOVPjGHd6DYuNRQP/kSnNhwxioAXxPpKK1wHdvBf71Z+iX/gs1a5/ePl2seuZXEhGD0YiIiIiIiKgER8SPG+omVAUpHCp/sn4qm0Jam+865raXQ7N2j7bo0d1iIFe/bTLuQQFdQjBazKmeL+5KCVCxhZTYwhUAb+F0uwjfv9rGKkj1p3QPMjqNQF/AixT04BoeYSlPZBOoR2lf1IthFi6vJxERUT4pyEzqI+0uF4LRnMoMFo465qdSewmrJaoG29Md4meIxmCpwWhyp1dDQ+WVlxqyG3WESQQoQzCaGLgoP61bSx8Aqtzr3WuxKvGCsezAUUchVkXB2EREREREREREREREVOVOOBcQgtEAAE/8EzjqVNdqDmxWEAdf5YmntpoLJkyDcuSHV9IwNWFab2hYqsdYPGvlP3Bwy7vx+Bp/1TbmgtGa55Y/iCgi3NPs3AFEzGMNfIVgUbG8IJ5C+sFboVyC0VqEW+QvtcnbxDNCcELzXGDBIfKGlrb24yfsjMdPxSmlgLMvg/7SOeYV7r0JOPdyc9nGteY6m2aUqXVUaaomDJz9KejffxvYKYQmPvg34JSLAABTGhUOnwk8/Ip51R1JjfrIwK9NyZS5XxXR/ROOlNfARg9UfRy6Lg7s7MD0HvOxLonlxhLVNZStPUQj2vS9zcFoAND6EtAyz7p5wFG48mSF9/xa/gz26KvA+q0aXeauOAAgqhPmgkoEk+17uByMFh83+Pun4ccWjCZcwxWD0TxTb/8gtCkYLZMGNr8GTHQPY53SCAQcIOM+RRJAQeh5ob0XeavEQsXqgVMugurrxxFR9eG3wUREREREREQlkibsJ7OJvJ/l4IxcuJRcz+5tbaFf+bo8BAV0ZYVgtCqaGF9KMJr0Wis4CKuIdX9yOF3x6ykHI8g3qG3BZvl/22TGfNPIPTxCLk8OIDyi1DALIiKifNJ1PWW5rgPydT9kCTAqp4jQR/PaLyMaalvTm8WyxlBpwWjK0uctlDCFDMM99DegAmL/vctDELSNdN4JWQMXh2cw2v0dd4hlS+InVrAlREREREREREREREQ03Kn6ODB1L3mF9as81TN7AhD3MOyoUQojGjfZ035oeFGOA+y9WCzX61fh4Bn+w2NGZbf3/uBhYrZvceF+6xvrgZQwFoLBVgMztkkue9OSbtZn4VT/x1CjMAFfzTsI2Gt/IGB+UKCaKx/P/fgJRgtW5iGCVGCuHLSg1682L0+nes8FJpMG4XxElWV5fxceEy1j5fNO65vlaU5SuOSEC4LRPAc2ehXrnXPQkvIXjFar+8YS1TeWtz1EI5SyXIe8fgY7qMW9D7TqDaBTCEaL6gQcafzc+Kme2jAQ6i3vMBcccHT5w49phJCOCw3sFAK26hmM5pnt83Wbt35BMKCw2Ee3OJ7YKBfO2s97RUQ0bDEYjYiIiIiIiKhEEcf8ZL9E3mR9W3BGLlxKrKdfYJa3AI6Eh6CAzswO4/LaQL2nfVRCSJkHcdgCVKTXOuJEXW96SEFf+SF3ORrmx1I4lq9ZpPA7oP/fVvo3SMFtOdIxBMiBFF6I7WEwGhER+RB0hMDTrOURc5CD0YLKPLC03KLC9TWtU0hl7aFuRNWgPWUeRVmjwqh1BqPv338AlBiyG5D7rjnRgHt4dCmk80qN8PkDALJ6+AWjJTJdeGLbfcaylsgcTI3wKdREREREREREREREROSPetfHxTL9xD891REOKVxyjPvk9YbMNnMbzrvC035o+FFnXioXXvdNXDz6CdT6yJBqyHQgkBvn19Q8oLaZKClgpq0VSHWby0KVeQjcSKUcB1h0jLlw0zroNS9Zt997ksLBLf72GReC0bDkNKj4WOCt7ykuG9sEHHumtx34CcvzE6JGZaMmz5QL21rNy99YD2TN44wxyedBSFVHnfERufDem/r9+um3yn2eA7+exfbEwMejdKfNyyPZZP8FZQ5GU2d/CgAwPvMGoj7G8sT6Hvat6hrK2h6iEWvpO8Ui/aNPeapi1niFU11yg678WxZdPeZzUkyanzTnAKhgBcby7r0I2O+I/suUgjrTcj6mPZs0d0xrYIf5uwbUMRjNK1XXIAac6t9+3XM9H1vqPdgwvkUOglSnX+y5HiIavhiMRkRERERERFQiabJ+v0Azy82+XLiUFJqVv60tYC1fV3an+zrCzYmYJbyr0qTAE40sMjpjLJNeay8hXtI6iax70JwXtvCHRL+/s3l/UnBbjqMCCKuIa/1+iWEWDEYjIiIfpMDTtBZGZvWRAlGDqjKDhSOWvlG3ITyVqNq0p83BaI2hsSU/LdG2VeHQKFPIMOCtLyn1z7sG2D+XAxdtT9cefsFoT2y/D906aSxb0nhihVtDREREREREREREREQjgTrlvUC0zlz41H3QPUIYVIEvn6Jw1Zn2e1WNWXMYkZJCkWjYU0efDkyfI5bv/fWluO/cDag3D5Er0pgXaCWGmA1EkxButHkD0GV+cK2vECwyUh+9SizT5+4PnbI/oO/Lp/qbSms6F6nf/Acq3DseVH3qp1AXfhHYa//e0KFl74b6xQPeA39qPB7QABCy3dOmwaQu+Za5oK1VWL5Wrmzi9IE2h4aYOvSE3pAek03roNs37/p1wWS5v9OTBs75tRCg50NSeLZnpHDMyKQyH3unXASgdxxRc8pyzBeI5cYS1TOAhsgLNWo0MHUvc+GmddD/vN5TPddf7FjDGh9+Bbj5KXNZrTbPJ1Gf+omnfQ+UUgrqO7cCZ3wYaJkHHHgs1Ddugjr8pIrsn4YhWzDaznZzWT0DO32RPmP/917o//zbUxXvPNDBje93EPcwNa3hHz8yF0TroCZM87Q/IhreGIxGREREREREVCJpsn4ym4DWvZPnbaFUESfa7/+FEhlvAWv9t7EHBWit0ZU1D7yJBeo97aMSbIEnUphB/uuVz0vwgrROMlMc5qCFYARliYmwhbP1D9Izh0d4CncTgvq8HjuFtNbiaxoNMBiNiIi8kwJPpWu6W7k9wKh8otZg0/KEpxINpq0pIRgtOHYAtXoPVJM+C3np28r989JDfwH5vFLjyOcVqf9frbTWuL/jdmNZXaABC+sOq3CLiIiIiIiIiIiIiIhopFDnf1YufOxOb3UohY8tdTC1UV4nnjEEo8090FP9NHypMy+VC9MpLFxxLf77eW9TIePZbbt/mSSEmA2ENBFca+C11eYyBlsNnFuolMt5aOlcYMlsb7tydAb1hWNtIzFg5oJdv6pgEOqCz8G55nE4N6yE88VroSZM9bYDAMpPWF4Ng/WGzDThoHlzgzmMr63VvH58HFRMCBilYUWd/gG58N839vv1GDnzE/94Dti4bWBjUqRgtLDOC6yNxID4uAHtp5AKhoC+IBI/wWi1uTF3dQxGI/Js/yPFIv2P33iqIhxS+OZyB2csksf+3fAf8/koJs1FGYzwYYGK1sK59HtwrnsazlW3Qx3+tortm4YhKRitayeQyZjLeF3yx/L+17df57maty9S2HyV4xqA3mj6jggADn2r530R0fDGYDQiIiIiIiKiEkmT9TWy6O570pI0cT+sInBUAIA90MpLwFq+LpeQjh7djbROG8tigeq54W4LRktp81P9pAAwLyFe0jqm1z33NymkpC/QAQRUEDXKPDAlv91SsJ2XcDcpYMLrsVMopXuQhfmLfy/tISIiypGu67ZgNK212GcJWfoJ5WS73klhpkTVpD0tBKOFBhKMZtO/nyz1z730JWPCZyS3zztuhjpwsRJeTjyPjT2vGcsOb1iGkFOZcygREREREREREREREY1AM+bLZa++ULbdGCe9VnDiPQ2RFsvxBQCvPo9po4E6D/lQ8Uz77l/cwrRKYTse168yL/cTgkVGKlprf+1dzkNKKXzlVG/Tacdm3ix+bNjE6dZxor7V+LhPzeNn6EjHXDYLvLG+aLFuaxXqGYRzEQ0NS39Iv/p8v9/nT5bPGVoDL7w+sKZ4Ckab1Fzec1devQAwP+m9D7gruLSeATREXqkyfgabP9n//muluSijRvuvjKgizNc83bXDuBwAEBs1SG0ZoWznpTX+zksBR+HQGfZ1xma2GJer5nm+9kUb22FZAAAgAElEQVREwxeD0YiIiIiIiIhKJAVRAbsD0eQwgKhrPVlk0dN3Y1IKzCrktl5XZqdYVutUTzBayJEHfEghKVIAmJfgBWkd099PQ3o6l/2msbSP3N8sqzO7AvUKSeF5XuqXjkE3tsCXaN7xS0RE5EYKRktZgtGyyEAjK9QXLEu73Nj6EIkBhjMRVYIYjBYsPRhNWfq8hf3khBASbfsctXsdc/93oO896bxTYwlGk85F1eqB9tuNyxUcHBk/vsKtISIiIiIiIiIiIiKiEWXxsWKR/uN3y7abUdntRcvUae8rW/1UpRYcAkzdSy5/4G8IvfwfnHWwe7hLPLNt9y9NzQNvWwEVjgJjJvnbKDRyHtY0lNQJ54pl+rpvuG5/xF4K7zrQ/RianlpXvLDcAY01Ee/rMhht6FjCFfW75iH76y9Dp/PGIrz0H/PKDPgcOeYcIJfd+mvodSt3/XreoQq2TLJXNktj0r3pNg+pRySbNx59sI69vnrP2fZHONr8IO5CU1N9YYJ1DEYj8uzYM+Wyjs3QXfL8oELv8dCPLhTVhjGAsxcOTuAiUTlIx2bC8l6Juo9ppd3Uce+WC1evgO7plssN9pogn0/CThoT0xvNhcdb2kFEIwqD0YiIiIiIiIhKFA3YwjK6+v2/UCQv6MoeupELWJNDqvqvbw8K6LQFowWqJxjNFniSzprDDKQAMG/BC0JombFO801oW0gEIB8vXv7GXoLIxH+DEEjhxnYseQmbIyIiygkJwWhpSzCaLTRNClort4AKoEaZB5Z67ZsRDaX21Gbj8tGhcaVX6mNAkxgSbfkclSMGo3kMjJZI5x3beWVgQ1Arqz31Jp7d+bixbJ+6xQP72xMRERERERERERER0R5PBUPAwceZCxOd0Lf+uiz7CRgeXKMWLilL3VS9lFJQ3/uHdR196TJ8f+GzOOcQ+33LxmxH7w91DVD1jeVqYn8+g2YUg63K45zPyGU93dC3/NK1it+cr3DWQfZjqKWntXhhucOF/BwTNTx+hoqK1gKN4+UVrv0a9P87BwCguxPAk/8yr8dgtBFDKQWc8RGxXH/waOjX1wAAFk1XuP598jT+D/x+YKNSksIQu4jOCySxhPsNhOo7puf3vISbXnsXmlKvu26zK3SyrmFQ2kQ0EqnG8VCfu0Ze4eafe65rxjiFr53uL9Cs1jAGUH3+N77qIKooaYxr0jKvKmIer0pmasos6+cy/Ym3+aqvxfKs5+mhDjjSHL6mGb72Q0TDF4PRiIiIiIiIiEpkC4dK7gq7ksK6onk/W4LR+ib+uwWe5XS5BAV0ZeVgtFhVBaPJwQQp3WNcLgYveAgVk/6WpjqzpQajuexDCtHrbZ/7F+1SwITXY6e4XbagNgajERGRd9J1Pa1T0Np8XbWFplUqGA2Q+wilBo8SVUoq24Md+U9Bz9MYtIwiGIDCt7MYEu0luNglVLhU0rmlxpGfzi6dp6rRQ9vuRtYwUQgAlsRPrHBriIiIiIiIiIiIiIhoJFIHLhXL9J++Nzj3VhYdU/46qSqpSc1QP/23vEJ3AuG//hS/vdDBN5bL4/UaMn3BaIMUBgPAf8hRqHJjHUYyFQxCffR7YrmX81A4pPD7ixxccYJ8DLWkWov3PZTBaAzWG1pu55L7b4F+bTXw4K3iKmowz0dUcWq/I+TC7Vuhb//trl/PWKxw5mL5fLOhvfS+UzJtXh7OC0Yr+7krJ6/ek3fehrWrZ+G97fawpGmp9b0/1MUHp01EI9XSMwHHHAmir/umr6ouPtJvMFrBXBSlgMkMI6IqJgWjJSzzqiKcH+WXOuW9cuGzD0KvedFzXc1j5PPSdGw0F7zlDM/1E9Hwx2A0IiIiIiIiohLVqDAc4aN1YlcwmjlcKj8MQAq0yt/eFlKVr8slBKsrYw5GC6sIAiroaR+VEFJyMIEUZiAFlHgKXhBDyxLI6kzB0tKC0cRglVwwmiVgxUsQme3fUIqEJWQv7CFsjoiIKEcKMtPQyKLwOtsrrYVRWwBClgCjcpPCmaRAVqJq0Z7eIpYNJBjN3uPd3U/WWov9UG99W3MwsK2P6oX0WSJo+fwh9f+rTVqn8HDH3cay8aEmzIntW+EWERERERERERERERHRiGSbBP/aK8A2+T5VvsuFQKJ9kyuKF05s9lQnjRCTZ9rLX3gMALDvZPnuZVO6rfeHxvHlalURNXUvfxsw2Kp8psySy9rWAluEyfMF5jfJZbN6XjHs1+XY9Csc8b5ukMF6Q8p2zOW8+CT0848NrA4aPlyvVY/3+3WW5XL0ZGvpzejqNi+P5o/ZaWopfQc2k/qH/SkARyQeFlcfm96MWt035q6ewWhEfqhgCKgfbS5M90BnzQ/SNBldCzT6yIAqCkYb2wRVw34tVTExGM08lw4AEOb8KN/GTgZs54KCvpDNXpZ+0uye1eaCidM8109Ewx+D0YiIiIiIiIhKpJQSJ+wnXcKu8sMAwioCJQasdfb7v5tEptP6tLvOzA7j8ligzlP9lSIFqAByUIoYvGAJnvOyTmG94svr8vAcKQAid4wkLX9jL+FubsFrfsmhflE4il8pERGRd7brekoIKUpneyz1VS7MtdzXV6JKaU+/KZY1hgYSjObtiZHdOgkN84CrgQQXD+S9l9VZ8bNEjSUYTQ+TYLRndjyG7bkn3xc4qvEE9uGJiIiIiIiIiIiIiKg8Fh9rL29r9VTNafsr43zlM7f/pWiZKgjeoJFNjZkI7HeEvML6VdCZDI7ZWw51OGnn7b11LTltEFrY5+jl/tYPVe4hcCPewqOtxfqLZ0E//YBrNW/bRyFiGNJSk+3GyTtvKy44cKnHBnrk9ZioCUNJAQ9UEeoY9/e7/v7HgBVyKBT2P7KMLaIhN3MBYAvIfPWFfr+esUh+D//03qx17L9NR5d5u3h22+5fJjWXVLcrQ73Te9aKqzfmxrREa3tDnojIn9n7mZeneoAtbZ6rUUrhHZZzUqF+5xNg8M4pRGUjHN9JYexpJMa+dglUMAgccYpYrv97r+e6FkwG5kwwl7399V+b989gNKI9CkfAExEREREREQ1AJGB+MsTusCvzl6f5YQBKKUQccz257ZMZc0hVoQzSSGk5SKRLCN+qrbpgNDnwJC0EqEjhcQMJFQMMwWhCwIPj8jVLRAhf2xWiJwSRBVUIIcf9BrAcvOYtVK9ouwG8nkRERPnsgafm67oUmOZWX7lJ11epj0dULdpT5mC0WqceYcfHU6d9yA8Qk0J2AYifffJFA+YAaq+B0SYZIRQNAILO8A9Ge6DjDuPyGhXGIaOOqXBriIiIiIiIiIiIiIhopFKRGNS3bhHL9Q0/8lTPpLjCby9QCOQNuTopcRc+tvXHxStPZDDankZd9lNruf7MaYiEFP74Pgd1od33AZXO4qdtl2J2z+reBSeeN3htbJnrb4NQeHAasgdS4QjUd/8ur/DcI9CXLoO+0XA+ydMQU/jdhQ7CecNVa7LduKbtYozNbOm/8uyFUGH3e92+eD0meOwMvcPeBrzjEvs6OzuAVc+ayw44mkFQI4xSCuoL18orbN0E3bF77M5+U+XAlXv+B3z6ptLGprQLQ9ji+Q/WG6x+1NimooDH5pQcjKZzoTN18cFpD9EIpz5l6R/f/SdfdX3lVIWDmr2t25BhMBoNM1LIWWKneXnEPFaV3KkPf0su/Nefof/3X2/1KIXfvdfB+Pr+yz+3ZAeO7LjHvNEEBqMR7UkYjEZEREREREQ0AGIYVd+E/YQQmhEtCMmSQ61yoVneAwCk8DMA6MrsMC6PBeqNy4eKowJwEDCWScFvUviC9Np6XWcg4Qv99yGFO+RC9Mz78dJ+wBa85i1Uz+t2XttDRESUYwv4TGfNAWhSYBpQ2WA0KcBJ6uMRVYv29Gbj8sbQ2AHW7O3JeMmM/B6RQs/6rWP5fFTqU3Jt55UaZQtGq34buluxOvGiseygUUsQq7IgbCIiIiIiIiIiIiIiGt7UYScCoyeYC//1Z8/3c95ziIPXv+Pglg85eOZTnbi5dTkiurt4xUkMRtvTqOl7Q938qrzC43dDr3oWx89XaD3lbtyy/h24/rWzsX7VTLy/4+redeoaoELyfcCycAtKysdwq7JSBx8HjJtsXUf/6kroLvOY2Zy3L1JY/y0HN3/QwY1L/ovW1bPxru03Fu/v9PcPqL1GNR4fahYc5OOYXKlAAOrS70H98fmSQp3USRcMQqtoqKm5i6F+dLdYrv/wnX6/X3iEPObmqn9qrN3if4RKhxSMlu0LRquLQ9UPThCZcpyiUJKmdJu4vs6NOaprGJT2EI14k5qBiHlMnf7F53xVNX6UwoOfdvBey3kpZ9f5JIeh1VTtxGA0YV6Y8L4id2rcZOCMj4jl+pqveK5rcbPC6q85uOOjDn7/XoVXvu7gS69+XB6xzHMR0R6FwWhEREREREREAxARJuznQqWSQmhG4XZyPbnQLO/hVomMHOTVmTE/5SImhHYNpZAQeiIFGkj/bum19bpOMtP/tddCNIJy+ZpFClbJ/Y0TQniEFKhWvJ49pM8vr8cuERGRG1uQmXRdT+u0cTkAhCwBRuUm9tEypQWPElVKe+pN4/LG4MCC0bzFotnDA6V+cb6oEOSVQVoMSnZTcuBiiUFslXR/+x1i2VHxEyvYEiIiIiIiIiIiIiIi2mPstZ9ctuEVz9WMq1c4dX+FfdQaONIjazjhdc80tskenvJ4bxhNY/cbOHnn7XjHjlswMbNpd/kgBcHkU5Oava882CFte6I5C+3liU7guUdcqxlbr3DaQoXT267D+Iz5IWTw87f2qsZjWJ7X9WhQKaWgpu4Fde5n/G88GMcPVYeW+XLZy8/0+3WGZciO1sDdL5YQjCYMYYtntvX+MNjHXkH9QWQQFcYMXdDx294fony4H1EplFJA0wyxXHf7G9MaCiq860APwWi580muHbymUbVjMFpFqelz5MIn/wWdyXiuqy6icPx8hbMOdtAyVgFr/yevPHGaXEZEIw6D0YiIiIiIiIgGQArLyIVRyeFS/cMAogGpnq5+//eiyxKE1ZU1B6PVBuo9118pUjiBKSglqzPo1knj+lJgWL6QU4OgChrLCoPFNLLG9ZRLTIQUcJYLRJPC77wER9jql45BN3JQG7/4JyIif2yBQykxGM0WYGS+Zg8GuY9WWvAoUaVsTQvBaKGBBaPZ5AcIS31QBQdh5f7Ua1ufs9T3n3S+AYAaRx5ILvX/q0Ui04knt99vLJsZnYspkebKNoiIiIiIiIiIiIiIiPYIauESufD1Nf4rbGs1Lw+GgDGT/NdHw55SCjjoOLFc//X/oLt2ADs7zCvUNQ5Sy/I0tXhfl8FoZacsx0eOfu4x7xXazl0LDvFej1chj4FnPHaqi4fjrghDZEYsFbeMw3nqvn5hIG+dbx9nvnaL//23C0PEGzN918amZv+V+mGo//yO3xlXXb7jr70/JEsb105EAKbuJZdtXOu7ukPlnLVd4tn+wWg4aKnv/RBVlnC9TTIYbVAcaDknpFPAm6+XXrflvKZi1TcHkogGD4PRiIiIiIiIiAZADKPK9IZcSYFmhdu5hVr5CbfqypjDz2xlsUD1PX0p6JhDVFLZnqJlUqgYIAeaFJJC7grr1tIDuVwemCO1I7kr/M78Rbv39psD1JLZBLLaf5iDGOoX8BbURkRElBOyBKNJAWgpXXy9BwAHDhwVKEu7vPDaPyCqNu0pczDa6OC4AdYsd3q9BKNFnGjvBAYXMeHzEQB0ZUoLRrMHLsrnKf/P462sx7bfK4ZEL4mfWOHWEBERERERERERERHRHuPU94lF+pMnQafM93zFbe65wVwwYSpUoHL3iKm6qPOukAs3rYN+9wLop+4zl9fHB6VN/UxiMNqQOv4sYP7B9nV++3Xov1/jrb62VvPyyTOgwoMwbrLGazCax/WoItTMBcCpF3nfoCYCjJ4weA2iobf8g2KRvuwU6K7esfsHTFe44HB5zMzXb/c3QiWV1ujsNpc1ZPuC0SZO91WnX8pwHfz41h9iek//IJOPbP0pZves7v2lc/ugtoloJFMf+oZYpr94NnTW35yRWFjh82+zj+VryPQPIVbjJvvaB1HFSeNTE8I8u4g8VpXcqaYW4JT3iuX6y+dBi5PwZLprB7DNnBqrLvyi7/qIaHhjMBoRERERERHRAEghUbmQq1xAWtF2BSFWUqhVItMXjJbxHowmBWwBlmA0pwqD0YRwAlOggS2cRAo0KRQV1isOtzN/Keu4fM0itSP395JC9CKWUIh80YC8XncJ4S1eQ/2IiIjc2AKHpKAiabmtrsEg9Q/8hNYSDYX2tDkYrTE0ZkD1egk1A2x9SY+hv5Zw4FLff7ZgtBolT0LQVRyNprXGAx13GMtGBeLYv34QnlpOREREREREREREREQEQNU1ADP3kVe4+0+e69LZLPDvv5gLBznQg6qbmjEfOPNSeYWtG4HH7zaXVSQYrdn7ugy3KjsVq4f64V1Ql/+fdT393UugN2+wr5PNApvWmffz/q+V3EYrr8FoXtejilGf/AnUlz1e5yZN9zzWgoYndfKFcuGT/wJu+tmuX68+V2HWeHn1N3d4H6OyzTI0PJ7Z1ts2P9epUoyZWLRoRqoVj7YehR9u/AQ+seX7+Ov6t+OqTZftXqFz2+C2iWgEU00tgBTW+urzwNP3+67zE8vs16jc+QSwB7MRVQ2p3yUFB0YGIQB5D+Nc9jO5cMXDvf/51bZWLnvr2f7rI6JhjcFoRERERERERAMghUQlsl3QWoshZYUhVlI9yWwXsjqDbp303KZERg5G68yag9FqA8M7GM0WBuc5fMFj8Em2xGAEOVglAa21GPAQFULzvNYPyMEUNlJ7pBA/IiIiiS3MLCUGo6V91zUY5GBTBqNR9UpkOsW+XGNwbEXaIAU7e+1LhlVEDB7usvT9bWzBaEFLMJoUjFwNVnatwKYe8wD+w+PLKn7OJCIiIiIiIiIiIiKiPUzLPLFI33ez93pWr5DLJjZ7r4dGJLXv4aVtWDf4wWgqVgc0eLwHy2C0QaHCUai3nQecd4W8UjYLPHirvaI3XwdSPeaypuaS22fl9ZjgsVN1lFJQxywHxk12X3mwg6lo6LmEuOb3iZRSuPQtcgjR31d4H6PSYQtGy3b0/jDYx9+EacbF4zObcUn7L/DtNz6Hk3begX7/4kVvGdw2EY10sxeKRfrem3xXF7MNmwPQkM0LM+RnMxoO/AbShr3NNyMXe+0vFvn6fiinbY15eSAAjJvivz4iGtYYjEZEREREREQ0ALawq5TuQRbmp0oUBgJEA3LoRjJruXNpYAsK6MrsMC6PVWEwWkgFjcv/P3v3HSbJVd9t/3uqu2e6J+zMbNDuKq4kJFACBYQkkHclgoRkko2JIhkcCA8YY4IJNvYLGAfA5sEIv4Bfg7EJxg/2izESIIIQGGwRTJBF1kqAVkLSzmyY6d7t7jrPH7O92zNzftVVHad37s916dJOneqqM6m7uqf6rlDQoFK3v0ZW0CTteuUVUYfwH52dkl9At35WvLwO+EpgP415haN5K9ezP08rjJHE+rlL+/UEAKAhcpEi5YJjVqjIWl5YJWG0dh5bgX6Zrd1rjs0UNnW07aQjXu+PHCdbx5LLA9HmfpyzI9TGcXMr1TgpjGbftzR/XqvNjXOfDC6PFOnSqSv7PBsAAAAAAAAAALDWuHMusQfv/En6Df3cXted9ZAMM8JR6cwLpaiNt0Cu39z9uYScc3G69U45q7fzWOPc2cnfB/+zHydvYNdOe6xXYaGRYrr18lwQa9Vq8XMnSe6slPcRGFpuYioxFrv8mOihp9pn3/z4nvT73X/AHlvXeL/Ahi3pN9iOMx4sjWa74La76hk9mgywRiQ9B/vpDzNvbiSf/B6Y6XpTGG1rcggSWB2yhtGyPY7BkPS8+Jb/yr69XTvDy485Xi4ffq8hgKMXYTQAAAAAADqwPHDWUK7Pq5wQzFge2TC3Ey8kbsfad0js6+a2xqLVF0bLu/DlZ6qhMJrxeeVdXoWoxWVsDrHjdEu/nt4Ko7W4skhSUCzp58Wa14r1ErefPR5h/Rwl7QcAAIsVNLMCaNU4fBXefNTfkz3N44P6wqqOJWFt210NnyXp5DSdX9/h1tOdNLL8GLrBet4Tkvb4PC3r/kZafN5ghY6t4/9B2129R9/ef3Nw7IETD9FMIeWV6QEAAAAAAAAAANr1qKfaY3f8QP7276Xbzl077bGH/1qmKeHo4zYdJ12ZPaLijj25B7MJ7OcpL2290pNeLFdKdxEptOnCR0mnnWuPf/Qd8uWEvzXv2hlePr5OmpzpZGa2wmi69QijrVruSS+WRhK+jzPHSL/87P5NCAPjnv5ye3D/Hvl9c4c/PO9Ee9U/+aTXwVq681TmE8Jo4/7Q/d3kdKpttcsVx6SnpngcbPbgR/ZmMsAa4R73PHvwG1+Q/9Dbunpu67p475EPthBGwxBo8b6uFQrp3m+GZO4Jz7cHb71Z8fO3y9/909Tb87t2hge29ud5PoDVhTAaAAAAAAAdKOXCJ6tU4gUz1iWtjEuVIns7WaNWVihgISEgMJ6bzLSPfshnCKhYUbGkGFnadStxecnH1h+KrJBCQ1LgrBKXzZ+XtJ9DIRpR3oWvfNFOPGL55314PilDbQAANLMf12vG8nDAyNpOr1iPw7HqqvpwvA0YtNnafcHlU/n1yhnHi91x5DjZPJbMcHxuPUeyAr6tJN2vLEaOM54QM2Bfmvu0vOLg2I7pq/s8GwAAAAAAAAAAsBa5yRm5P/moOe6f82D5WvhvwkvWu+v28MBpD5IbX9fu9HAUca/6G7nnvynbjbZu68lclnPn/pLcOz+XvM6L/6Ivc1nLXC4n947PJK7j3/YSe3DXzvDyY09uedHctiUFtZrlevl3fnTCnXOJ3Ns/vRjxPOE06fhTF//bdoZ09bPl/ubGxbgjjnru0dfI/c7b7BWajnWcc3rxw+37lVf/S2dhtJyvaaRxXluvwo5N3PNen37lU86SGy32bjLAGuCOO1Xut95gjvtrXy194WNd219e9cV/lMalqQ1d2y7QM1mP3YkQd4U7+Qzpma+yV7jlP+Vf+fj04cZdO8PL+/Q8H8DqQhgNAAAAAIAOLA+cNZRbBM2WBwGKUSm8nXpyYC1kob4/03JJGjMCb4NkRb5CQQPra2R9f7Ksuzwq5mW9ENsijGaEHRr7sOJuWT6HtHG3NKyYWpb5AADQkI/CfziuxuG4mBVM63cYLelxr53HV6AfZqv3BpfP5Dd2vO2kGHDzcXI3jm2tCHU70V9JqrYILlqfm338PzjVuKov7/l0cGzLyPE6feycPs8IAAAAAAAAAACsWWdfbI/VqtLXk4NRkqRdRhjtzAvbmxOOOi6Xk7vm5dIjnpz+Rn18w7R74MPswYmp3oW1sIQbXyf3ur+zV/jcP8tXwn/L9tb9UC9/jnJ5KUrx9l5iDauaO/tiRX/8j4o++F1FH/qfxf8+8N+KXv1uuWNPGfT00E+/8nz793XXziUfnr7Z3swHvuJTRUPmjWt6jsULR86AGet9YNY5J/3yc9KtvGFrT+cCrBkXXZE47K/7QPf3uXUbx7QYDll/TgsjvZnHGuQufWzyCj+5RfrBN9NtzHh+5gijAWsSYTQAAAAAADpghaiq/qDm433BMSen0Wjp1Y6sN/1X4gUzKmBZMEIBiWG0aDLTPvqh4MIvMIfCaNbXyPr+ZFk3bfQkKRIhLX4+kfFSTDleUMUI6XUn7pbtZ8h7b37eWb6mAAA0WEGz0ON60vJ+h9GseK3UfpwJ6LXdtXuCy2cK/btio3Vsm+VYslvHtg2t7leGKYz23/v/Q/vqe4Jj26ev4iQ0AAAAAAAAAADQP9ObpPUJdY/b/qf1Nu4y3vC6+aQ2J4WjlTvl7HQr5nLSMSf0djLLPf43govd01/e33msdacmXETqYEW687bw2Fz47+zadFznczI456TCaOsVCaMBQ8HlctJm47Fn2bHOOcfZ53Xcu1+6J/wWhCXmD4TPZxn3h86rmZhanFMfuFNTPj6PFluvA6C14+8njST8Pu1M8Rwsqy08N8NRKs3xONI58fTWobnbbm25Ge/9iqjsYYTRgDWJMBoAAAAAAB1IilbNVu8NLh+NSorc0qfkViDgoD+g+XqKv242KdfDkY75OBxGixQlRj8GxQqfVANBg0oXwmhmeGHZ19MrDq7XKozmnFMpCgfwynU7gFfMdR53s34mLAd8xQxAZAm1AQDQ0K0wWqHPYbSkx7208VSg36znITP5TX2bgx0uTv+8wz52bi9K2Op+xWqJrcYw2o2z1wWXj7qiLlp3eZ9nAwAAAAAAAAAA1jLnnPSYXzfH/TtfJb/7bnvcezOMpq28+R7LXPFUaSTFG9ePOV4un+/9fJq4q5+z8o+OI6PSFU/r6zzWOne/c6TTzjXH/ef+OTywP3xhKq1b34VZJSCMBhxdjHCQf8crlhwPXXo/aTrhdOzPfq/1uSrzB8LLxxsX+5yYbrmNrnnkU9KtN7L63q8ADCM3NiE94sn2Crtul6/VurtTwmgYFlkvKtsq5IXU3MSUdPmvJa9kvf7TbO9uacF4HyX3RcCaRBgNAAAAAIAOlBKiVbO1cJAgFANIDKwZ27GU43AoYKEeDqON5SYWT1BbZbIEVMr1cHgh6fuznBUgWx496SSLYO1jX31OserBsSwhMiuMljXcUjG+nkn7AAAgScGFTziu+fDJF6EQqmQfH/TKaELEqd04E9Brc8bzh5nCxo63nRQDbg6IWcefpVw4dhZe14j+GtG1Vqww2pH7FauMtrrCaD+t/EQ/qXwvOPaQqcsyPQcCAAAAAAAAAADoBvfcP0wc9y/YIX+gEh7cc59UNv72yhtesYzbcpLc2z4pTc4kr7j15P5MqIk780K5N35EOu6UxQUnnyn3l9fLbT6h73NZ6/eQ2FsAACAASURBVNxbP2EPvv9P5H/83ZXL982GtzUx1aVZGUaKrdchjAYMjy3bzKHm46EocvrWH9pv77/mvV53700+X2X+YHj5kTBaj++/mriZY+T+4H2tV0xznwcgFfd775DOeLC9wnV/3939Ea3GsMj43jiXJ4zWTe6V10qPfqY57tOE0XbttMeO3ZZ1SgCOAoTRAAAAAADoQFIkarYaDhKUopUxgMQwmrEdy0LWMFo0kWn7/VKIjDBavDJoUDHiCKEIncX6HqwILxhhhMi1fpmlZMxnd/WehNt0Ix6RLdySFJuw4m4AACTJEjxNWt7vMFrkIvN4Imt4FOiH2MdmWHl9flPf5mEdf2Y7Pg8fB2c9tm1oFVy0om++ozRy931x7jpzbMf0VX2cCQAAAAAAAAAAwCKXy8n91hvsFe68TfqyESpKelMsYTQEuAddKveJO5NX2rqtL3NZzm1/vKIP3yp3w5yiv/+m3AMfOpB5rHVuZpN03g5z3H/8PSsX7t8TXrlVhK9TI6Ot18mFL0YIYPVJDActOx46Yb3T6Zvt1T/w1RZhtAPh5WONc8B7ff+13GW/2jpGM5riPg9AKm60KPdXnzLH/Qff2t0dJoQfgVUlYxgt1fE4UnOjJUWvfa/0q88Pr7BrZ+uN7DJeJxoZldZvaXdqAIYYYTQAAAAAADqQGEarhWNXoRhAUmzKChtYyvV5+UC8a76+L7j+WG51htGyBFSskFeWqJj1vVweXYsVG1to/QJ60ZhP0ve4O/EIO3QWYoXmFvdBGA0AkF3eha+oVfXhS1faYbT+n+yZ9hgBWA321/eq5mvBsZnCxi7swT7mbQ6IWeHApOdPy5nHtvX2wmit7leGIYy2UN+v/9p7Y3DsfqWzdOwobw4CAAAAAAAAAAADcuLpicP+1q+FBxLf8JpQC8Ga5qJIOuUse/yE0/o4m8D+R9Of84ceOeF+9titX1+5bN9seN2Jqe7Mx5IqjNbfiwgC6MDxCfc9kvytNy/5+LRj7HVvvi15V/Ph0+403rjg4Lr+htHcyKhUbHHe/kixP5MB1gg3NiHlcuHBhf2pt/PcS8Pnzb149zuPfLD5hCxTAwYoYxgtz7F2LzjrmGjXztY3nr07vPyYExZfCwCw5vCbDwAAAABAB3IupxEXPjFhtnpfcHkoLJUUm5qthqNZU7nwHyxjxTrgKyuWL8ThgMD4kIXRqoGggRUmyRYVC38Par6qahyOKDRL8/K5tQ/reyxJpVyWuFv4880abrFCapEi8+cdAIAkVtDMCjhZAaOCEVjrJevxO2t4FOiH3dVwnFmSZvKdh9ESL6Z3qB8W+1gHjDBalsjumHEc3O7vXqv7lWEIo31lz+fMoOSO6av6PBsAAAAAAAAAAIAmD3mUNL7OHr/hI+Hld+0ML998Im94RSL38CfZg5c/sX8TwaqU+PNx681LLj7sDx6QDoT/xq3JHoeFSinO3833/yKCANp0yaOlUsJ537d/f8mHT3qwfSLOR7/uddce+5yV+QPh5eP+0Hk1m0+059Erp5+XPE4YDei+E4xA9e675CvpzrN73APD90VP3fNPRz7oc2wRaFviSa4Bhf6fl74mbDEu8rtrp/xt/5N8231z4eVTGzqaEoDhxSvEAAAAAAB0yIxd1cKxq2Ju5fo5lzdDH9Z2ZgqbzDkt1Fde4WWhvi+47lg0aW5nkApGGC0UNCjXw3+0KUVZomJ2pKHSFJWzwgguxcss1j6s77GT06hL/0dg6/O1vj4WOzQ3Jpf1DwUAAMgOnlqhImu5tZ1esh6/s4ZHgX6wjivzrqCJXMIbUbroQFwxj5mTjrnTrls2gs+tmPcr0XBc8S/2sb44d11wbCo3o3MnL+7zjAAAAAAAAAAAAI5wpXG5N3zIXuHeO+Vv+KcVi/1dt4fXt95ECzQ85Xek7Y9fuiyXl3vNe+WOPXkwc8Lqcf5l0oMuNYf9215y5IP9xhvvJWliuntzCkkVRhuOv2kDkNzYpNz/80F7ha9cJ187cv7KNRc5jSa0D+//B7HuuC98Do4ZRjt0Xo3b2v9jKffKdyaPj6a/4DmAdNyr32OO+RdetiQGa3nsg6TXXH3kPSLOx3rrXa/QRZWbj6zU62MioFuyvt8pTxitJ7ZuM4f8s86Tv+U/7XHr+dnEVIeTAjCsCKMBAAAAANChYi4co6r6g8HlVkjNjFoZb/xfnxBGC91mPhBLk6QxY/6DliWgUonDV+srRun/gFoKBOsayk3bN8NoKV4/t/axp7Y7uLwYlTKFyKztZw23WCG1LF9PAACaZQmeSlI1Xj1hNOvYLWt4FOgHM6qc36DIdf5nQSf72LRxnJx07Jl0zL3cmPH8qBKXFft66u00tLpfccbXJ83JYf3wvYVv6Z7qruDYw6avUM5xlXAAAAAAAAAAADBY7sJHyr30L81x/+4/kI/jpQt3GWG0AcQ8MFxccUzujR+R+9Ati/9/y8fl/u3nclc9c9BTwyrgnJN75bvsFf713fK/+Nniv5PCaJM9joAUU/wNnTAaMFTcxY+We9nb7RW+ev3hf+Yip39/iX0+z76KdO2N4fNWyuG3KWi8cd5OQpCkZ44/Lfk+ayT9xcIBpHTKWfbYD78l3fq1lptwzumNT4i069lf1aduv1p3/+AE/c7sstDhOEEiDImsYbSR0d7MY61rEbv373+zPbjPCqMRaATWKsJoAAAAAAB0qJQxFlU04hpZo1Pr8wlhtPrKMNpCHA6jjecmM+23X7KE0ax4XJbwghU9kaRK0/btMELrF9CtfVixNSuWZ7F+trKG0ezQXPqvJwAAzfIufEUtKyRrBdPyUf/DP8Vc+Bgt6+Mr0A+z1XuCy2cSosrZJB3zNsJo4WNJKdvxZNKxfNI+LOb9yqGgmPWZWcfq/fbFueuCyyPldOn0lX2eDQAAAAAAAAAAgGHbGfbYrp3SnT9ZuuzeO4Orus2E0dCac07u+PvJ7XiC3EVXyvU6YoXhsvnE5DDCN25c/L/1xnup92G0sYnW6xBGA4bPKWebQ/7mzy5ddWPypv72pvB5K/sPhJePNc5537ItecM94KJI2nyCvcLY6nzPAjDMXHFMmjnGXuFrn0u9rWPq9+oRC1/Q+nh26UBpQi7PRTsxLDKG0fLh89vRGTcxJa1bb6/w9c+tDOc3WOFqnu8DaxZhNAAAAAAAOpQ1FmXFsUq5bBGsyfyUCkZkZCEQCluoh8NoY7kUJ1YMgBVGqwaCBt0IeSWF6cpN27fCCC7FC+hZf1a69bNVzhhu6UZoDgCAZlbQrBbXwsvNgFH/T/a0w6PZw0xAr83W7g0un8m3OIuyi6xjSSk5RrxyXfv5UdI+LNb9ypHnVOHj+dUQRruv+gt9Z3/46p3nTl6k6XzCCSQAAAAAAAAAAAD9dPYl0sioPb5r59KPrTe8Tvfv71sAjk5utChdcLk57q/9ffnvfV3aNxteIZeTSj0+vzbN9gmjAcPnjAvtsY+9S/FfvlTxG58r//G/1YnVOxI3dZ9xisyccWr4dLxn8R9TG1JMtAceerU9lnCfDKADl1xlDvnP/7O8T3n+mxWLJUaEYZIURg4pEEbrmYT7Jh08IO2+Kzxm3RdNcF8ErFWE0QAAAAAA6FDSG/ZDrABXlkjA4nbGNGbsu1zPEEaLVmcYrWCET5YHDWq+qqo/GFw3y9c0cjmNumJwbOnXs/0wWtbvcdYQmRlGqy+k/4OWuhOaAwCgmRU0s0JFrQNG/WOHR7OHmYBe213tbRgt6Zi3cbRpHUtGijL9Dic9z1oIPN9ppVVw0f7cBh9Gu2nuU/IKXx1v+3TCCaUAAAAAAAAAAAB95kaLci9/pznu//39Sxfw5nsAPeSe/yZ7cPYX8r/5UPk/vCY8PjEjlzWskFWx9TmZLhe+GCGA1cuNjErbzrBX+Ni7pE/9o/xfvFB68un6zW0/StzebfeuPHdlzrim53T90LHVgI6l3FN/Vzrx9JUD17xCLrQcQMfcs15lD/7o2/J//kL5er31hqxo9cRUexMDBoEw2qrhnv1qqWSfB+xf8+Tw+9yM14kcrxMBaxZhNAAAAAAAOlTMhUNnllIu/MKeFUwztxONmdtaWBbq8N5rPg6H0cZzqzOMlo/SBVQqdeMvu8oe8ioaIbLmuIPvJIyWMXSWef7G+nXVzBBEiBV6yRp2AwCgIW3wtKFqBoz6f7Kn9fhqxZ+AQZqthcNo6wvdCaOlUYnDl6QtReOZThpPOnYuG/tI0up+xZrboLNo1fig/mPPZ4JjW0dO1Gmls/o8IwAAAAAAAAAAgGTuqmdKo8a5cJ/9J/l48YIwPo6l+b3h9XjDK4AucPc/X3r4ryWvVA6fW6vJPkRASinO382Fz7kBsLq5Z7wy9brPvfE3Esdf/MGVF9ObM06dmY73SPmCNBK+WHivuWOOl/ubm+Re817pSS+WnvNauf/9GbnffsNA5gOsBe64U6Vn/b69wif+P+mr17fcjt+/JzwwwXMzDBHCaKuGO+E0uY98317h1pulb3955XIz0sh9EbBWEUYDAAAAAKBDpci+gkGIFUBrZzvWbcr1pWGrqj9ohkfGolUaRjMCKtV4WRgtIYqQNURmhb+aQ2HBK1LIDik0yxo6yxoi61Y8worNZZ0/AAAN1uO6dXxiLbe200vm8UE9HBIFBqXua9pbmw2OzeR7H0ZrBITL9fBxZ9agdM7lNeJGg2Pt/P61ul+xQsferzy5tJ++se/L2l8PvyFo+/Sje3+FcgAAAAAAAAAAgHb80uPssR9+a/H/83sk41ws3vAKoFvcOQ9t74aTM92dSIBLE0bL9/8iggC6YOtJqVc9+cCPE8e/e+fKZXPGNT2n6nuliemBnk/iJqflrnqmope8RdHz/lDuvO2c3wL0mHvABYnj/sZ/bb2ReSuM1odYLNAtWR9v8oTResnNbJJOOdscX37f5L2X9twXXpmAPrBmEUYDAAAAAKBDWeNVVlwqe8RrXGO5cBhtIV4aClioG1e0kzSWW51htELKgEpS8CtryMtavxIf+etxI/iwUusX0DOHzjLH8pLCaOnjEda6WX9GAQBoMIOnQxBGKxqPf83HB8BqMFe7zzxWnSls6so+rHjYosV9W+HidiK7JeP5Tpbob4N1v1JwjRNbjDBa5j11141z1wWXF6OSLpq6vM+zAQAAAAAAAAAASMc98GHmmL/hw/K33Srd/n17A7zhFUC3POjS9m7XjwhIKcXf0fP9P1cGQBfc70GpV91Qv09njIcvhihJd+yWvn671665xbNYqjWv+QPhdafiOSJGwFp01kVSLiGmetstrbexzwqj8dwMwyRjGK1AGK3nzk14PnbHsteF9s1KC/vC627Y0r05ARgqhNEAAAAAAOhQ1jf4W3GszBGvXMkMZ5XrS8NW87HxwqCk8dxkpv32ixU+6WUYzfreLP96hqR5+byYNXSWK2VaPym8liXeYq3bTswCAAAp/eN6q+VHAkb9Yz3+tRNmAnpptnqvOTaT39iVfaS5eqv1u5E1Epx0myzR34ZWwcXIPKIfXBrtjsqPtLPyg+DYResuVzHK9nwBAAAAAAAAAACgbx71VHvsw38l/6xz5V+ww16HN98D6BJ32oOkSx+T/YaTM92fzHKlFBc2JowGDCU3NiGNpTtH30l6zXFfSlznwjfFOu6Vsbb/eV0//IW93nR9D2E0YA1y6zdLj/8Ne4XvfV3xe/9I3iecC7d/Lryc+xQMkxTnuC5RGO3NPHCY+5Xn24P/+Wn5/3PtkY937bTX3bqtSzMCMGwIowEAAAAA0KFSLmPQzHhzf9ZQQCkaVykXDm0tLAsFLCSEvcaMbQxa2oBKxQgvjLhR5Vwu0z6t703zPrzi4DouxcsspS6GzkJGo5KcEXRIE3drsL6mhBcAAO0qZA6j1YLL8y7hinY9Yj0eV+Jy8kkiQJ/N1sJhtGI0lvk5Szsavw32sWQ7YbR0Ieg0qrEVRmvcr4SPo/0Aw2g3zl5njm2fvqqPMwEAAAAAAAAAAMjGTUxJZzy4/Q2M8+Z7AN3j3vBhud9+Y7Yb9SMCQhgNOKq51/5t6nWfVvqK3v/rrWMuX/qR9Jh3hM9ll6TpeI6IEbBGuZf+lXRJwjll73+zdP0/2OP794SXTxKtxhDJHEbr/wW71xq37Qzpma8yx/1f/a781z67+MGu28MrjYxKG7Z2f3IAhgJhNAAAAAAAOpQ5aGZECbKGAopRSWNR+KSI8rIw2nx9X3C9UVc0A2SDZgVUYsWq+/rhj8v1cHgh6/dFsr83lbh8+N9WFsEKki2dU7YIXdb1Ixdp1IiXlY1ARZZ1s84HAICGtMHThqo/mGk7vWQdo3nFOuArfZ4NYNtdDYfR1uc39mcCh0KB1rFkO5FdKwS9/PlOGtb9TeN+xTqaH1QYbX99r76276bg2Olj52jr6Al9nhEAAAAAAAAAAEBG7YbRxibl8v2/aBaAo5fLF+Se8Qq5v//v9DeanOndhBqKKc5zzXF/CAytjcemX3f/Xj3jYqdSitPjdt5nj03X9xCYBdYo55zcC96cuI7/9Aftwf1z4e0SW8QwyRpGI0LcF+4hj0oc95/60OI/7toZXmHziXIRaSRgreK3HwAAAACADmUPmoXXt6Jc9nZKGrNCAfWloYCFeL+xz9UbukoKnzRHDSpWeCHj11OyY2rN4YVOwghZYxDtxCOs21hfp+C6RmyunfkAACBlD6PV4uSAUT8lxVab46nAoM3WwmG0mUL3wmhpYsCVevj3op3Irn18nv7YtsG6vylEh674Z5wQ4/1gwmhf3fM5MxK5Yzrhyp4AAAAAAAAAAACrhDvt3PZuON2nC/8AWHuOPVkam0y1qpuY7vFkJI2va71OjlgDMLROOStdAFGS9s/JOadzO7hOnvOx1sV7pekN7W8EwHBrdaxz+/ftsf17wsv7cUwEdE3GMFphpDfTwFInn5kcfL79e5Ikv2d3eHzTcT2YFIBhQRgNAAAAAIAOJcUylosUacSNBseyBNZGXVGRy5lxgeUhtIV6OIw2nkt3gscgpA2jWVGELN+XBut70Bw98T4OruNc65dZIpfTqCumnk874TrrZyJtPCL2dR3wla7NBwAAyX5cr1phNF8Lbyfq/8meSbHV5TFaYJB2V+8JLp/Jb+rL/hsB4eaocLNiLntk1zy2beN3z7xfOXT/ZEff+h9Gi32sm+auD45N5zfogRMX9XlGAAAAAAAAAAAAbbj8idK69dlvt3Vb16cCAJLkRovS1c9Kt/JkHyIgkzOt18kTRgOGlSuOSVdek27ln/9YkvTbOzIGXZqsi/cqkpfbenLb2wAw3Foe69zzc8W/9xj5O29bObZ/LnwbwmgYJsYFck1RrjfzwBJuasPia0SWW29W/EfPlH76w/B4P56bAVi1CKMBAAAAANChLEGzYjQmZ7zQmiXk1QhUjRmhqoVloYB5I4w2Fk2k3me/FSL7yhvNEZWKEfzK8n1psL4HacILaV8+T4qrrFi3i59DpZ4ujNYcgVu57ewxCwAAJKlgBM1qgTBa7GPVFQ4YFRLCqb1STHj8S3rcBPptrnZvcPlMYWMX92If9TbCaNbvRTvh4pJx7Jw2+tus6g8Gl+fd4lXorDBa/7No0q3z39Q91buCY5dOXaGc42QcAAAAAAAAAACw+rnxdXLXfl46d7tUsM8FW4GYB4Aeci/6c2n741uv2I8ISJo3+BNGA4aae+lfSk/6X9LMMdJUwjk8P/yWfL2uZ10S6a+f3l4cbbq+Z/EfRGaBNc296M+lS66yV/ivz8i/4DL5hSPvMfJxLM3vDa8/MdXlGQI9lDWMlsv3Zh5Ywf3+u6XjT7VX+Ow/STf+S3hsIkVQGsBRizAaAAAAAAAdst6sH5IU1sgWWFvcTikKh9Eq8YJiHx/+eMEKo+VWbxitESgIqcVHIipWFCHpa22xomXNcQdvpBGskMJymQJ4bcQjrM8hbTwiab2i8fMGAEAreSNo1vyYfnhZIJbWaju9NOqKcsafU8px63gq0C+z1fuCy2fy3QujpTnitY/P24n+GiHoNn73rPuWxv2KHUaLg8t76ca564LLI+X0sOkr+jwbAAAAAAAAAACA9rmTHqDoHZ+R+/Tu9Lch5gGgh1w+L/fH/yhFLd5amyZa1qnJFG/wzxNrAIaZyxcUveStcv//HXIf/6ncy95ur/yNz0uSXnhZpA//VvY42nR8KIy25aR2pgrgKOHyebk3fDh5pd13SV/42JGP5/dK3riEaD+OiYBuIYy2arnRotxbP9HejScJNAJrGWE0AAAAAAA6ZL1ZP7huzl43aczap7VvL68DTTGvhTgcRhtf1WE0O3zSHDWo1MPhhSzflyO3saJiR8ILnYbRsgQh2gmjWbeppAyjJa1XaiM2BwCAlBBG87XAstUVRnPOmcHV5ngqMEgH4orm433BsfWF7oXR0rCOJ9sLoxnHtsZzgCTWfUvBjWTeVi/de/Bu3TL/9eDYeZOXaCrPle8AAAAAAAAAAMDwcfmCdPWz06180v17OxkAa57LF6Rii3NM00TLOlUck/ItzoVpNQ5gKDjn5KJIOuYEe6Uf/Pfhf15ySvYw2lR9bvEfmxP2AWBNcKNFaWtyJNF//xtHPtg/Z684QZAIwyTj4ycR4v465gRpNPv70lw/npsBWLUIowEAAAAA0KGCG1GU8im2FdVoNWatO5YQNltoinnN18ORhLFoOMNoVX/w8L/LVnghl/3FUivWUInL8oeugOOtK+GkvLJIlthZMde9eERz3C1JpW4HXtqJWQAAINmP63XVFPt4ybJQLK3Vdnqt0/Ao0Guz1XvNsZl898JoSTHgRkDYDhdnP5YcM+LRCymPbZtZ9y15t3hii3Ph53RWGLlXvjh3nbnPHdNX9XUuAAAAAAAAAAAA3eQe9ZTWK01MSRdf2fvJAMCZFyaP9yEC4pxrHWAjjAYcXR78cHPI/81r5d//Zvn9e3TCeqdL75dt09PxnsV/EA8BIEkPf3Ly+Mfepfj3HqP49c+Qf9Pz7PUmprs7L6CXUr6v67AcYbR+cvmCdPkTs9+QQCOwphFGAwAAAACgQ845laIWV447JCksNeqKqQNrpUPBrLGE/ZbrR2IBVjggKaw2aAU3Yo41Rw0qcTjklfZ7svQ24e+Pl9cBXzn8UUhSJGLJPjLEztqJR5hxt4TgWTMroJZ3eRUi+3sCAECSQkLQrOariR+n3U4vWY+vZSMABfTb7to95th0F8Nora6mF/t603HzUu1Ef4vGMX0lnreDxQHe+yVx5WaN4KL1mWXZT6cOxgf0lT2fDY4dO3KSTi2d2be5AAAAAAAAAAAAdN0FD5d7/pvs8akNcn/2L3Kj2S+ICQBZuZf/dfIK/QoLTbaIjRBrAI4qbrQknXqOOe7f+0fy/+sR8gv79YHnRTr72PTbnqrvkUZLciOjXZgpgGHnnvMaaccTklf6r89In/uo9K0v2euMEyTCECGMtuq5l7xFOm9HthsRaATWNMJoAAAAAAB0Qdo3+SeFrpxzieG0Jfs7tF5SZGsh3n/k3/V9wXXGc5Op9jcIeWe/wNwcTKkYIa9ilP0EuaSvfyM05zsMo6X9HhfciHIJXwOL9TNRjtOFW6zQXNp5AwAQku9SGC1pO71kPb5WUj6+Ar02W703uHxdblqFqF+/N948lpSkUhvH51YIuuZrZugspK6aOdYIMlvH89bxfy98fd+XNB+Hn7vtmLl68WrhAAAAAAAAAAAAQ8o5J3fNy+Wuv0fu7Z+Se8vH5d7yb4v/vfvLcv96h9wDHzboaQJYK7ZsSx6f6FMEpNWb/HODOVcGQO+4Rz4leYUff0f63Ed10ganb70+0nW/ky4FMB3vIRwC4DBXHFP0xo/IvehP299IaUIuTzgKQ4Qw2qrnJmfk3v4p6VdfkP5GrWLSAI5q3FMDAAAAANAFad/k3youVYxKS4Jm9v4Wt5NzeY26og74yop1FupHgmHz9fA2rdDAahC5nCJFihWvGGuOIJSN+EKpjc8tKTTXiDx0GkZLiuMtXa+97431M1Y2AnIr1wsHXtLOGwCAkOQw2tJgUVLsaFBhNPvxlTAaVofZWjiMNl3Y2NX9JJ0z4r0d2ZWkYpePz8vxgkaidFe4XX4/0yx/OBxnfXL9C6PdOHddcHkxGtOF67b3bR4AAAAAsnHOnSLpQkkPPvT/8yU1X5nmdu/9tja33emTkpO99zs73AYAAAAAdJUbXyedf9mgpwFgjXO5nPyWk6S7bl85ODkjl+/TOSqt3uRfGOnPPAD0z9ZtLVfx131A7jG/LuecHvGAdC8TT9X39C/qCGB4PPDS9m/LfQqGTsYwWpTrzTSQyDknXXC5/Mfele4GhF+BNS1dJhoAAAAAACRK+yb/YouAWimXdjtHAgHWbRohrNjXVTGiHeO5yeDy1aLgwid01Hz18L8r9fDn1uprHb5NUnhh8evZ6TuQ0gbP2pn/4vbDn0NSpGLpetbXkzAaAKB9hcQwWnXZxwkBowGF0ezHV8JoWB1mq+Ew2vp8d8NorU4aSYrxpo1JL72NfexcrqcL/0pSLa6aY3m3eB0pK3TcryzazvIPdUflR8Gxi9c9vO3nBwAAAAB6wzl3mXPuU865+yT9WNKHJb1c0g4tjaIBAAAAAABgtdrxhPDyi6/s3xwmZ5LHi5y7CRx1LnxE63W+/eXD/8zn0kVepuO51rFFAGvP6edJG49t77aE0TBskq7+u1wUyUXkdgbmgsvTP9fZfEJv5wJgVeOeGgAAAACALrBiGSvWaxE+S72d5jCaEQtohALK8YK88Xb+sdxEqv0NihU/aQRTvPcqG0GStJG5ZiNuVJHxckkjLOZ9HBx3Lt3LLMVcd35WzO0bP0NpwxF2GI0QAwCgfUlBs6o/uOTj5IDRYMJo1uMgYTSsFrO1cBhtptDtMFoSr0rdjvG2E9pNOia2ngeELL+fada4iXEGQwAAIABJREFUX3HGCTHWc6lu++LcJ82xHTNX9WUOAAAAADI5V9IVktYPeiIAAAAAAABoj3vay6RTz1m6cOs2ud94ff8m0SpiVGrvXFIAq5dbt14azXZe9t8/t3XoZbq+Rxpf1+60ABylXD4v9/J3SCPF7DeeILaIIZMljJbL924eaMmNr5N76V9JuVzyivlC+3FHAEcF7q0BAAAAAOiCtG/ybxWXSr2dprjWmBELWIgXQ1jz9f3mdsai1R5GC790UfOLwZSqP6hY9eA67YS8nHMqReOaj/etGGsVFnNK9wJ6O/G7LKx4xAFfUezrilzyi8blevdCcwAANCQFzRqP69bHS7czmD9r2OFRwmhYHXZX7wkun8l3N4yWdMzr5c1YYN7lVYhGMu9v1BXlFMlrZZy4HKcL/0rJ9ysF15iXEUYzwsjdtL+2V1/b96Xg2APGHqTNI8f1fA4AAAAAuuaApJ9JOrUH2/5PSU/NeJuf9WAeAAAAAAAARwW3YYt07Rekm2+Q//F35LadIV34CLnJmf5NotW+ipy7CRyN3PPfJP/2lyWu4w9U5EYXQ0ZXn+OkFhf3m473EDECEOQe9hjpA9+Uf8oZ2W44MdWbCQG9QhhtqLhffrZ05kPkr32V9NVPhVdav0Uuivo7MQCrCvfWAAAAAAB0QSmXNnaVfIJCO9Esa5uNUMBCQhhtPLfKw2jRiELds2p8UJJUNsILUuuvtaWYKwXDaJW4LGkx+BCS9uXzbkX0LKWE21XissZafM+tmEW78wEAQJLyUVIYrbbk46o/GN6GK8hl+YN1F1nHeo3jA2CQvPeard0bHFtf2NTXuVjH52mPgZdbDBePaSFe+ZymVbi42fL7mWaNcONg7l0W/ceeG8x42/bpq/o8GwAAAAAZVCXdIulrkm4+9P/vSHqYpM/3YH8V7/3OHmwXAAAAAABgzXJjE9KOJ8jteMJg9j85nZw6KhFGA45KW7e1XufuO6QTT5ckzYxJk0VpX8Vefao+J03cvzvzA3DUcceeIn/NK6R//Iv0NyK2iKFDGG3YuJPPkF78F/JWGO34XlyPDMAwIY0IAAAAAEAXpA2atYpLpQ0GNEe/xnLhkx4WDoUCQhEBSYoUtR0o6JdGpGC5RjTAinhJnYTFwl+TRmjOKw6Ou5Qvs6SP37UZdku4XVJIrtU67c4HAABJyjv7j8e1eGkMyAoYWccF/WAdMzWOD4BBmo/3mUHBmfzGvs3DqzeR3ZLxfCfL758VHZOO3D9Zx/NWGLlbYl/XTXuuD47N5DfqnIkLe7p/AAAAAG17v6R13vvzvPe/6b1/t/f+G94nPAEBAAAAAAAAlpucsceck0aK/ZsLgP45+2KpMJK4iv/E38nfd5ekxYsLjiWvrun6HiJGABK587Znu8HkVG8mAvRKlgtwR7nezQPZHHc/adNxwSF3wcP7PBkAqw1hNAAAAAAAuiB90Cx5vVIue2DNClY1QgEL9XAYrZQbl8vyou8AFIyISiOYUq7boS8roNCK9b2sxGVJ6jiLkPpnJeXPworbJWw/6evV0IuYBQAAOeXljKtwLQ8WWQGjQYbRrMfXxvEBMEiz1XvNsZnCpq7uy/o9XuRVNn4nOons2uHi1se2DVY4Tjpy32J9Zr0Oo90y/w3dV/1FcOzS6SuVc5x8AwAAAKxG3vtZ731l0PMAAAAAAADAkEsKo5UmVv15vgDa46Y2SE/+neSVPvQ2+SecpPj118gfqOjPnph8fzAdz8lNEkYDkODBj5Ae9Evp1ye2iGGT5dg5Z1/0G/3lcjm5X3/dyoGtJ0m//Oz+TwjAqsK9NQAAAAAAXdAqeHZ4vRaxq/TRrCNhgTEjALZQXwyjzdf3BcfHo8lU+xqkvAtf2qoRNrAiXk5OI260rX1a34NGaM5Ko0UuXX8+ffyuvTBa0u2sr1czK57WScwCAADnnPKuEIwTLV9mh9EG9ycNO5yaPswE9MpsLRxGi5TTulx3r9iYHEaTKoePmZfqJLJrHYc2nu+kYd2vSM3RxfDn1usw2o1z1wWX55TXw6Ye1dN9AwAAAAAAAAAAAAAGLCliVGjvPFgAw8H99hukU86Sf8Nzklf83D/Ln3CanvLs1+s5f2efxzJd3yNNdPdcIQBHF5fLSW/9hPR/3in/rS9JP/qO9Iuf2utzn4JhQxhtaLnHPlc65jj5Gz4q3Xen9IAHyz3xhXIbtgx6agAGjHtrAAAAAAC6oNil2FXawFpzWMAKBTRCXgvx/uC4FVRbTY5ECpZqhA3KRoykGJVSh8qWs74HjWCY952FEdIGxtL+LCxXiArKu0Iw/mB9vZpV4nJweScxCwAApMWwWSiMVvO1ZR+HA0YFI5jaD9bjciUuK/Z1RS7X5xkBR8xWw2G06fz6vv5senmV69axZHvHtpIdFs4SJlx+P9OQU/7w8wbzKtsdHv8n+cXBXfqf+W8Ex86ffKjW5bniJgAAAAAAAAAAAAAc1SZn7LHqgf7NA0DfOeekK54m/9Xrpc98OHnlGz6i0d/4o8RV1sV7pQnONQGQzI0Wpaf/ntzTf0+SFL/00dLXPx9emfsUDB3CaMPMXXSl3EVXDnoaAFaZ9t4hDAAAAAAAlkgbsWq1XtpgQHNcywyj1Q+F0epWGG0y1b4GKe/CLzQ3wgZWDKGT8IIVuWvsyyscRnApX0BPGxjrKB5hxlvmW97W/JqmjP8BAGBpFTxtqBphNOv2/ZD0OHggrvRxJsBKu2v3BJevL2zq/s5aXE3POpa04mZpjLUIQadRjVdGGaWlzzes4/neZdGkm+auM8e2z1zdwz0DAAAAAAAAAAAAAFaF6YS/7S/s6988AAyMO/281ivdeZv8wQN63IPCw2dVblFOsTSxrruTA3D023KSPUYYDcOmxTmuS+S4KDYADAPCaAAAAAAAdEHaMFqr2FWaYECkSAU3cvjjsdxEcL2FQ6GAeSOMNh6Fb7ea2AGVxbBBuQdhNOt7We5SGK3gRpRT6yuLlHLhAEQa1udfjsstb2t9TdP+jAMAYEkbRlv+8ZHbD+7KXEmPg9ZjJ9Avs9V7g8tn8hu7vq9WR7y9OD4vGmG0hXr6MJp5vxIduV+yw2hx6v1kcTA+oK/s+Vxw7PjRk3VK8f492S8AAACAoXaic+7vnHO3OOdmnXMHnXN3H/r4H5xzv+WcWz/oSQIAAAAAACCDDVsGPQMAg3bF01rHh7yXvnq9XnBZJOdWnsv+m3N/u/gPIkYAsjrmeHtscqp/8wC6IUMXTbnBnZcOAEiPe2sAAAAAALogzRv9c8qbQZAs2ylF43JNV7EYM0IBlXhBsa9rIQ6H0ayg2mrSHIBrVj0UNqjUux/xsr4HlUNRMSuMlvYVdOecSrkx7a/vbTGPUqrthVifv/X1aqj5qqqHonMr50MYDQDQmVaP6w12GC35OKqXkh4HK4TRMGCzNSOMVki4qnQPeO/N34dOjiXHjGBwlt89637Ful9qZh39d+pr+24yn6vtmL56yXM+AAAAADjk5EP/NTvm0H9nSrpG0tucc++R9Afe+/CTjg45546RlPVJ56m9mAsAAAAAAMCwc8717O/SAIaDW79ZuvYL8u94ufSNz0v1enA9/9on64pP3KmPPi3Wn/3tj/Wt0QfqAQe/r+fNvU8vmv2bxZUmiBgByMatm7GPRYgtYthkOe+SMBoADAXurQEAAAAA6IJSLkXQLDfW8s3taYJexdzSYFbJCAVIUjle0EJ9eMNoVgClETYoW+GFFN8Pi/U9KNfnF//hw3/2yRIuKEallmG0khG8S7V94/Mvx/OJt6vUywnzIYwGAOhM3oX/JLE8WGQGjKLWAaNeSQqWlmP78RPoh9mqEUbLb+jB3uxjXi9/OCa8XCfHktZtF+rJx7bNar4WXN58v+TMz637p6B773Xj7CeDY6VoXBeu2971fQIAAABYM8YlvVTS1c65X/Xe39KDfbxQ0ut7sF0AAAAAAAAAWJPcyWfIve3fJUnx40+Udt8dXvGGj+hXzr9MT9i5IzxOxAhAVusSzjMctc+dBVYlwmgAcNSJBj0BAAAAAACOBmkiVklBjSzbWR4GGEu4Tbk+r3kjjDYeDUEYLTICKvFiMKVihNE6CS8Ujds2Ig9WFsEOKazUzvc5C+u2VqjiyHj46ynZXxcAANJqFTxtqMbhMJp1+34ouBHljGvNVDLEmYBui31dc7X7gmMzhY1d31+rY96y8fuQ5rmQxQpBJx27Llf1B4PLm+9XnAv/2dQbYeRO7Kz8QD898JPg2CVTj9BINNr1fQIAAAAYajVJX5D0OkmPk3S+pNMknSfp8ZLeIukXy25zuqQbnHMn9W+aAAAAAAAAaMvTXhZe/msv6u88AKwO284wh/wPvyXtm7NvSxgNQFbnXxZeXhiRNp/Y16kAnSOMBgBHG8JoAAAAAAB0wWiKN/qnCUsVc9m3Y4UCJGkhntdCHA6jjeVWfxit4EaCyxsBlbIRQ+gsvBD+PpXjxciDVxwczxJGS/ez0P0wWuNzsFhfT8n+ugAAkFbaMNryj4/cfnB/gHbOmcdp5RbhUaCX9tRmFRvHp+vzm/o8GzvE20lk1zq2XWhxbNvMvl9pCqMZt/VmGrl9N8590hzbPv3oru8PAAAAwFB7naTjvPeXe+/f5L3/N+/9N733P/Le/7f3/uPe+1dIOknSn2rp9V22SPqYc1kujQ4AAAAAAIB+c1deE16+41f6PBMAq4G74mn24L+/T/5Fl4fHRkblRou9mRSAo5bbuFW6IHC/ctGVcmOr/z1HwBJZ/iyaJ4wGAMOAMBoAAAAAAF2QczmNuuQ/JFpv6M+6zoowWsJtyvV5LdSHN4xmBVSqh8IGVnihFNmxuFasaEPVH1Td1xKyCOlfQE8TGUvzs2CxPody3Q6fSclhtE5icwAASFIh6jSMFr59v1iPzZWEx0+g12Zr95pjM4WNXd9f0hGvlzd/HzqJ7FrH9gfismIfjsItZ92vLA0xhz+7bofR9tXm9I19Xw6OnTF2ro4ZObar+wMAAAAw3A7F0H6RYr2K9/7Vkl68bOh8SQnvomvLtZLOzvjf47s8BwAAAAAAgKOGO/VsuT98v1Q89Lf1sUm5l/1vuXN/abATAzAYVz1LKrVxLvz4VPfnAmBNcH/wPunsi48sOP8yude8Z2DzAdqWJYyWI4wGAMOAe2sAAAAAALqkmBvTgVrFHk8Rusq5vEbcqA76A+Y6y6MckcupGI0FIwTX7/5nVf3B4HbGouENozXCBuX6fHC8k4hXYmguXpCMMEKU4QX0Vj8LkSKNuNHU21vOCk+0CrdY4wU3opzjZSQAQGfM4Gk8HGE0MzxKGA0DtLsaDqONumKPjvftY966r5nPY9I8F7KUcuETPRshtjTB55qvBZfnm45xnfm5dTeM9uU9N5jz2TFzdVf3BQAAAGDt8d6/0zl3haTHNS1+oaQPdnEfv5DUMtbWzGV5EwIAAAAAAMAa5B71VOnyJ0o/+5F03KlyhZHWNwJwVHJRJP3RP8i/6ley3XCCMBqA9rgNW+TedaP8vXcufryRi3tiSBFGA4CjTjToCQAAAAAAcLRo9WZ/K1aVdTvFwHbGonAs4PsL3za3M56bTDWfQSq0CKNV4nJw3IonpJEURqvUF+S9FUZI/wJ60j6kxZ+BTt4kVDR+HlqFW8r18HjJ2B4AAFm0Cp4e+TgcDLKOC/rFOkZrFR4Femm2Fg6jTRc29v1N59axudT6+DdJ0rFo2jChFYtuvl+ywmjdzKLFvq4vzX0qOLY+v0lnj1/Qxb0BAAAAWMPevOzji51z0wOZCQAAAAAAAFJz+YLctjOIogGQjj81+20meBkYQGfcxmOJomHIZThvNsr1bhoAgK4hjAYAAAAAQJekiV2l2k6LgFpoP+2EwMZyE5lv02+tAirleD44XoxKbe8zFJ5rKMcL8kYaIUt2olsRPfP2xuffKhxhhV06+XoCANCQNoyWJmA0CNaxnhUWBfphthoOo83kN/Rkf1Y8TLKPzaVOw2gJx+d1e5/Nlt/PNCwJoxkhOe/jVPtI4zv7v6bdtXuCY780/WhFjhNtAAAAAHTFf0mabfo4J+nMAc0FAAAAAAAAAJDVCadL287IdpuJqd7MBQCAYZHlgsI5ztcEgGFAGA0AAAAAgC7pWhitje2M5yZTbbvByWksGv4wWiUuB8dLUfZQ3JHbthtGS/8yS6vvcSfhCEkqGp+/FT5rsMJp7YT3AABYLm0YLU3AaBCsY7lWj69AL80aka31hU292WHCOSNJkcC0z4VCkqLBrcK/DbW4FlxeiPp7v3Lj3CeDy/Mur4dOPbKvcwEAAABw9PKLhec7li3u0RNFAAAAAAAAAEC3OefkXnGtNDmT/kaT072bEAAAwyBTGC3fu3kAALqGMBoAAAAAAF3S6s3+aWNX7Wzn/mMPTLXthlNLZ/Y9AtCOghFAqfqqYh/rgBFGK0altveZc3kV3EhwrJIQRsuiVWisk3DE4vbDty/XF+S9PX8rNNfJ1xMAgAbrcb3ma8s+Xp1hNOvxlTAaBmm2em9w+Ux+Y59nkvy7UMy1fzyZdwXz+Lwcz6faRpr7FWdU37px/C9Jdx/8ub638K3g2PmTl2oyz1V7AQAAAHTV8hf8eaEfAAAAAAAAAIaIe+BD5f7x23Kv/4D0jFe2vsEE554AANY4wmgAcNQhjAYAAAAAQJdYsYyGtHGpVgG1UDTr0qlHaevIiam2P+qKeuzGp6dad9DyRryt5qs6EFfMSEGr8Fgr1vegXF+QjH1aIYWQVj8LnYbRrNvHqqvqD5q3s2IWnc4HAADJDpstf2xaHkprsMJq/WI9HpYJo2GAdtfCYbT1hU092V/SMa8VKSu4kY7DhqUofHxfrqcLo1nHwP0Mo900d705tmP66q7sAwAAAACaLC9mh59AAgAAAAAAAABWLTdzjNwjn6zot9/QOnw2ThgNALDGuQz5HMJoADAUuLcGAAAAAKBLWsWj0salWq0XCrBN5qf1shPfpK/v/ZJ2Vn6guo+Dt90yepzOm3iotowen2oug2YFFGpx1Yx4SekjdPbtx7S3PrdieSVekPdGGC3DlUVaxe+s8EM3tl+OFzQSjYbH6uGvaav5AgCQhvm47qtLPq4u+7jV7fvFOr6oxOU+zwRYVI0Pan99T3BsJr/8/e/dkRxGsyK7nR2bS4vh47312RXLF4wY23LL72calt6v9C6MdiCu6Ct7PhscO3H0VG0rntbxPgAAAACgwTm3UdIpyxbfOYi5AAAAAAAAAAC6ZOs26YffMofdpmP7NxcAAFajscn06xJGA4ChwL01AAAAAABd0jJ2FQiatbOeFU4bz01q+8xV2q6rUu1nGFgBlKqvmuEFqfOwWDE3JgXaCeV4wQwjJEUilms1v2Kus3hE0s9iJV7QlGbMseB8CKMBALogbRitFh8M3z4abBjNenwt19OFmYBum63dZ47NFHoTRktiRXa7cSxp/f4lxZKb1XwtuLzQdL9kh447D6PdvPeL5vOXHTNXZ4osAwAAAEAKT5XUfDn0uyXdOqC5AAAAAAAAAAC6oUUYTVu39WsmAACsSm5iKv0Zn4TRAGAoRK1XAQAAAAAAabQKo6UNArRar9V+jiaFhIBKUgShGPUmLFZJCKMpQxitVfis47Bbws9IUrzFijWkjfoBAJCkYITNlgeLrICRFVbrF+vxtRKX+zwTYNFs9R5zbCbf/zCadXzejecvY8bx8ULKMOHyAGND8/2KmUXrsIvmvdcX5z4ZHBuLJnTB5KWd7QAAAAAAmjjnNkt63bLF/+Z9p89uAAAAAAAAAAADteWk5PGtJ/dnHgAArFaTM+nXJYwGAEOBMBoAAAAAAF1SbBGPShsEaLXeWgqjWQGUmq+aEa+c8iq4kY72a32NywlhtChDGK1V+KzT7/FoVJQz5pMUb7FiFmmjfgAAJLEe16vLgkVWwMgKpvaLFQpNirUCvTRbuze4fDw3qZFotCf7tI4xJakchyNlrZ4npWFtI+3vX9UfDC5fGkYL/9nUDiOn85Py9/SzAzuDY5dMPaJn3ysAAAAAw805d3/n3GMz3maLpE9I2ty0+KCkN3dzbgAAAAAAAACA/nNbtyWv0GocAICj3cRU+nWjXO/mAQDoGjKWAAAAAAB0SbeCZq0iVGspUmUFVGLFWqjvC44VcyU5lz5SFtyG8TWu1BckK4yQYZ+9jt9FLlIxKgXjcVawYnEsHJZYSzE+AEDvmMHTeGmwyAqjWbfvF+v44KA/oLqvKef4kwv6ywqjrc9v6vNMFpXrVmS31PG2x4yw8ELdPrZtVvO14PI09yudhtFunPtkcLmT0/bpR3e0bQAAAACD5Zw7XuFzMLcs+zjvnNtmbGa/9z70BG+rpI87574j6R8k/Yv3/ofGPCYlPVvS67Q0iiZJb/Te/8TYNwAAAAAAAABgWJxxoT120gPkxib6NxcAAFajyZn0646Fz0sFAKwuvEsHAAAAAIAuKRlv1m9IGzQr5VpsJ9d5WGBYFBJCBfvqe4PLuxGOK+XC2yjHC/JWF03pw2ijUTFxvGjsP4tiNGaE0cLBCkmqGGNrKcYHAOgdM4y2LFhU9QeD6w06jJYUCq3EZY3nJvs4G0DaXb0nuHymsLGHe7WPee3Ibucnj1jHo0nR32ZWcLH5+YZ9PN9+GG1vbU7f3PeV4NiZ4+dp08jWtrcNAAAAYFX4kqSTUqx3nKTbjLH3S3pOwm3PkfRnkv7MObdH0ncl3Stpn6QJSSdIepDC54K+23v/hhTzAwAAAAAAAACsdmdeKJ19sfTdr64Yck9+8QAmBADAKjM5nX7diQzrAgAGhjAaAAAAAABdUoySg2Vpg2ZJ2ym4kYFHQfop6XPdV9sTXJ4ULUnLCi9U4gV5xcGxLGG0yOVUjEqqxOXgeDc+h1I0ptnA8ko9HKzw3qtSt+azdmJ8AIDeybvwnySWB4uWh9KO3H71htHK9QXCaOi72dp9weUz+d6F0ZxLCqOFI2WtnielMWbEo5Oiv82sMFo+RRjNdxBG+/KeT6uu8H3a9umr294uAAAAgDVrStLDUqw3L+l3vffv6fF8AAAAAAAAAAB94pyT3voJ+WtfLd18g7R3Vtr2ALnHPk/u6mcNenoAAAxehjCayxJRAwAMDGE0AAAAAAC6pGS8WV/KFjQrRfZ2uhHMGiZJX7P99XAYzYqaZWF9nRfDaGFZwmjS4jx7GkbLGI+o+oNmtKGY8LMNAEBaBTcSXN4cLPLemwGjwoDDaEnHGJWUcSagm2ar9wSX9zKMlsT6PUh6fpOWtY1yPRxjW64aHwwuz0dNYTQj+uZ9e2G0uq/rprlPBcc2FDbrrPHz2touAAAAgDXjVkl/ImmHpPMlpalO/0DS+yS9x3t/b++mBgAAAAAAAAAYBDc2Kffyvx70NAAAWJ0mMsTOsqwLABgYwmgAAAAAAHRJUiwjS+gqad1uRL+GSSGyAyj7jDBaN6Ji1td5MSrWXhhhuVI0pjndl2n/WRSj8HukrDCaFWmTpJKxLQAAsrCCp1V/JFgUqy5vPNamjcz2SjFnPx4SRsMgzNbC73GfKQwqjBY+nrSOS7Owo7/pwmg1Hw4AL71fMcJobR7/f2f/zZqrhY/3t08/WpHLtbVdAAAAAKuH935bD7d9t6TXSpJzLpJ0mqRTJR0naVpSUVJZ0qykXZJu9t6HC9oAAAAAAAAAAAAAcLQbm5QKI1I1fDHdJSZnej8fAEDHCKMBAAAAANAl3QqaFXMJ20kYOxolBVD21cJhtG5ExazvZaVeNsMIi+9LSi8xpNeF73MpCscjrHBLUlRirQX5AAC9kXfhP0k0B4uqvppw+8GG0fKuoIIbWRJya7DCo0CvlOvzZohsJj+YMJqlG89hrOPztL97NeO+pdB0v+KMMFq7YeQb5z5p7HNEl0w9oq1tAgAAAFibvPexpO8f+g8AAAAAAAAAAAAAsIxzTn7zidLPftR65cnp3k8IANCxbO/YBQAAAAAApoIbUaRccKwYlVJvJymwljR2NEoKoOyvh8No3YiKWfGGpHiYlVGwlHLhcJlkR82ysGJm5Xo4HmGFNRbns7Z+7gAAvWE9rtd8Vd4vhodq8eoNo0n2MZ0VHgV6ZXftHnNsfWFTz/Zrx8Ns3TiWtI6Pa76qatz6yn6hoKGU7n6lnSzaXQd+pu8vfDs4dsHkpZrIrWtjqwAAAAAAAAAAAAAAAAAAADAde3K69SYIowHAMMgPegIAAAAAABwtnHMq5cY0X9+3YixLrGvEjSpSpFjxijErdnW0KrgRc2xvbS64vBtfIyveEPqeHJEtEpEUyxvNENLLuv35eF/wZ3Suel/CfIodzwcAACtA5OUVq66c8qp5O4xWiAYfRitF49oXiLPuqc0GH1+BXrnrwM+Cy50iTeXX92y/7YTRunJ8nvB8anftnsOhsWJUUs6t/PNnzdeCt22+X4pc+HpS1fhg5t/vz899whzbPn1Vpm0BAAAAAAAAAAAAAAAAAAAgha3b0q03wQVuAWAYEEYDAAAAAKCLilE4jJYlBuCcUzEa00K8f8WYFew6WuUDUYOGA74SXN6Nr1EpGs98myhjJMKa56grKudymfe/Yvu58Ofwg4Xv6BU/embq7RSjkqIuzAcAgEJkB0+rvqqcSw6jJR0X9IsVHv3YPe/Tx+55X38nAwRM5We6cizZTaUuRH+Tjs//+LYXHf73qCvqzPHzdM2WF2ksNyFJqvu6vBE4toKNzW7ac71u2nN9xhmHnVQ8TdtKp3VlWwAAAAAAAAAAAAAAAAAAADjCHX8/+VYrRZE0fUw/pgMA6FD40ucAAAAAAKAtVuwqSxhNkkq57mxn2EUupyjjyxdWsKT328gaRgvHHYrG9z6rbkX01trPHACgd5LCZrV4MYhWTQyj2WG1funW4zTQKzP5jYOewgrFNqLDy6UNFx/wFX1z/1f0//78Tw/Oha74AAAgAElEQVQvSwouFprCaC7j8Xw7dkxf1fN9AAAAAAAAAAAAAAAAAAAArEnbH996nfN2yI1N9H4uAICOEUYDAAAAAKCLrIhU1kiVuZ01GOPIN8UK0ijluhBeaGMbWUMKVnytWyGybm2nW4E1AACSHtMb4aK0AaNB4XERq91MobdhtHbiYaVc5+Hi0agol+HPmj8sf1f3VX8hSar6g+Z6S++XehtGG89N6oLJS3u6DwAAAAAAAAAAAAAAAAAAgLXKHXuy3Ev/UnLGOaG5vNwr3tnfSQEA2pYf9AQAAAAAADiabCps0Y/Kt6xYvqGwOdN2Nha26OcHdgaWZ9vO0WBDYbN2Hbwj0/qdGnVFTeSmtL++J/Vt1hc2ZdrHppEtweXd+h5vKoS3n1U3vp4AAEjSiBs1xw74iqTkMFrWWGovrMVjMQyXLSPH93T7eVfQZG5K+1IeJxfciCZz0x3vN3KRNhY2657qrtS3ufvgz7WhcIxqvmau03y/siHj8XxWD516pArRSE/3AQAAAAAAAAAAAAAAAAAAsJa5J75QetgvS9/+D+muO+Tvvl0qTcid+0vShY+SGy0OeooAgJTSX1odAAAAAAC0dMH/Ze/O4+yu63vxvz5nlpyTCSQBEsImhB0RAUVQca1KXapWtO5XRa9LW5dbrVWrrVWrVm9rl9vFq7+6XrVqRVGLdUMEpSIugCAqsoY1SICQZLJM5vv7Y0IZJuecOTOZcyYz83w+HueR+X4+78/n8w7JfDmTmfM6ez5ip7H+0p8T9jhlavvssfM+g2VRHjB00rR7m6tO3ONhHdfu1b8iq+tH7vKZpZQ8eI9TO64/pH5Elg/sM6Uzjh16cBaVnf8xvdmf/XSsbhyZvfp3PdzhpD0fOQPdAEBSry1uOTe8fVOSZFvbYLTZf6+XB+1xakpavIMYzLKSWh6y56O6e0YpOWFJ58/Pj19ySgZrrUMRp2Kqz5M3j47dV0ZGOwtcPH7JQ7v2+V2vLc5jl/1OV/YGAAAAAAAAAAAA4F5l1cEppz0v5UVvSu2N/5zaq9+f8oinCkUDmGMEoy0gpZRGKeVhpZSXllLeUEp5aynlNaWU55RSjiilzMirPUopA6WUx5RSXlRKeVMp5Q9LKc8opRwyE/sDAADszu4/dGKeu/KVadSGkiRL+5bnVQe8NXsP7DulfU7a8xH53X1elHqtkWQs8Os1B/5F9uhfOuM97+6evPez88hlT7xPaEEzByw6JK896J2plZn5547TV5yRh+zx6NTS17busMYxedUBb53y/ov7luS1B73zv/9uLCr1PHWf5+eUPR8znXZ3Uit9ee1B78gBiw6Z1vpFpZ6n7fOCPGSP7oZrALBwLKrVW4YO/XeAUYtgtFpqqZX2/0/uhdWNo/KiVa/LUN8es90K3MeSvqV55QFvzr6DB3T9rGetfFlO2uOR6UvrsMKSWh645OQ8f9UfzNi5T9nnuXnE0tM6Dkm8J3Cx1X0lSQZq936NccTiY/PCVa/Okr49d63RCZb1751X7P+mLBvYe0b3BQAAAAAAAAAAAACA+aqzVw4wp5VSHpbkfyX53SSDbUpvLKX8a5K/r6pq3TTOWZHkHUmek2SvFjUXJPlAVVVfmOr+AAAAc8Wjlj8pj1h2Wu4cWZfl/ftkujnUp+19eh6319OzfuSOLOvfe9r7zHW10pfn7fuqPHPFGblt282pqp1rlvTvmWX9Tb8UnbaB2kDO2P+P8rzRV+U3W29tWrO0f/kuhdWtbhyZd67+YO4cuT179i9LX4chD51aObh/3nrI3+XOkXXZMLK+43W1Usu+g/vPeD8ALGy1UsuiWuO/Q9DGG54kGG2gtPun7d46Zelj8pA9H5Xbtt2cbaOtA5egVwZrg1kxsF/Pvl4YqA3kpfu/IZtHh1s+T957YEUafUMzem5f6cvzV/1BnrXyZff5uuD/u+n9Wbvtpp3q77nXbKu2ttxzYvjyw5Y+Lqfs+dgZ+/xeVFuUvQf2nbHwZgAAAAAAAAAAAAAAWAi8unUeK6X0J/m7JH+QpJNXwxyQ5M+TvLKU8pKqqv5zCmc9KcnHkqycpPThSR5eSvlUkldWVbWx0zMAAADmklrpy14DK3Z5n77Sl+UD+8xAR3PfYG1RDlh0SM/PrdcaObDevXNLKV3/M17Wv9eMB8cBwHQ0aoubBqNtniQYbWJ40WwbCxE9YLbbgFnV7efJrUz8umCP/qVNg9HuDVwcablXs3uLz28AAAAAAAAAAAAAAJhdgtHmqVJKSfKZJM9qMv2LJFckGU6yIslJSZaPm983yVmllKd3Eo5WSnlMki8lGRw3XCX5SZKrkyxLcmKS8a/yfkGSPUspv1tV1WiHvy0AAAAAAOawem1x0/F7Aoy2jbYKRvPtDKC5Rm2o6fhkgYvJ7he6CAAAAAAAAAAAAAAAJLXZboCu+Z/ZORTtvCTHVVV1TFVVp1dV9YKqqk5LsjLJS5PcNa52MMnHSylL2x1SSjkwyZm5byja95McW1XVSVVVPXvHGQcmeV2S8a8+eWqSv5zG7w0AAAAAgDmo0SIYbfP29gFG/TXhRUBz9Vqj6fjwJMFotdTSV/q61hcAAAAAAAAAAAAAADA9gtHmrz+dcH1eksdXVXXZxMKqqkaqqvpokscn2TJuamWSV01yzjuSLB93fcGOc66YcMaWqqr+IcmzJ6x/fSnl4EnOAAAAAABgHqj3NQ9GmyzAqL8MNh0HaNSGmo7fE7i4rdradL6/CFwEAAAAAAAAAAAAAIDdkWC0eaiUclySQyYMv7aqWryibIeqqn6U5MMThp/a5pwjkrx43NDWJC+pqmpzmzO+lOTj44YWJXl7u74AAAAAAJgfGrXmwWib/zsYbaTp/EDp71pPwNxW72s0HR+e5L4iGA0AAAAAAAAAAAAAAHZPgtHmp0MnXK+pquqSDteeNeH6iDa1z0/SN+76zKqqruzgjPdNuH52KaXeSXMAAAAAAMxd9Vr7AKNt1dam8wKMgFZaBy4OJ0lGWrxv0ID7CgAAAAAAAAAAAAAA7JYEo81PQxOub5jC2jUTrpe3qX3GhOuPdnJAVVVXJLlw3NBQktM6WQsAAAAAwNzVqE385+sxkwUYCUYDWqm3CEa7J3Cx5X2l5r4CAAAAAAAAAAAAAAC7I8Fo89MtE67rU1g7sXZds6JSyqokx48bGkny/Smcc+6E6ydNYS0AAAAAAHNQvdZoOj68fWOSZKQaaTovGA1opVUw2uYdwWjbRrc2nXdfAQAAAAAAAAAAAACA3ZNgtPnpoiRbxl0fU0pp/mqznT24yV7NPGDC9aVVVW3s8IwkuWDC9bFTWAsAAAAAwBzU6BtqOr55dDhJMlJtazovwAhopdEqGG37WDCawEUAAAAAAAAAAAAAAJhbBKPNQ1VV3Z3kE+OG6kleNtm6UkpfkldPGP54i/L7T7j+dccNjrlqkv0AAAAAAJhn6rXm7+ExPDr2vhvbqq1N5wcEGAEt1PuaB6NtqTZntNreMnDRfQUAAAAAAAAAAAAAAHZPgtHmrzcnuXbc9ftLKY9vVVxKGUjyoSQnjhs+J8kXWiw5fML19VPs77oJ13uXUpZPcQ8AAAAAAOaQRm2o6fjm0eEkaRlg1C/ACGihUWsejJaM3VvcVwAAAAAAAAAAAAAAYG7pn+0G6I6qqtaVUh6b5MyMhZ01kny9lPLvSf49yS+SDCfZJ8nDkrwyyVHjtvhhkmdVVVW1OGLZhOu1U+xvQyllc5L6uOGlSe6Yyj4AAAAAAMwd9Vqj6fiW0eGMVqMZGR1pOi/ACGil3iYYbXh0U7YJRgMAAAAAAAAAAAAAgDlFMNo8VlXVtaWUU5K8JMkrkjw4ybN3PFq5PckHkvzvqmrxSpExSyZcD0+jxeHcNxhtj2nscR+llJVJVkxx2WG7ei4AAAAAAJNr9A01Ha9SZcvo5oy0CjCqCTACmmu0CUbbPLqp9X1FMBoAAAAAAAAAAAAAAOyWBKPNf307HluSVElKm9o1Sf48yb9NEoqW7ByMtnkavQ0nWd5mz+n4gyRvn4F9AAAAAACYYfVao+Xc8OjGlgFGAwKMgBbqbYLRhre3DkZzXwEAAAAAAAAAAAAAgN1TbbYboHtKKacmuSLJvyQ5NZP/eR+U5KNJri+l/M8pHldNvcNprQEAAAAAYI5q1IZazm0eHc62amvTuX4BRkALA7WBlveIzaOb3FcAAAAAAAAAAAAAAGCOEYw2T5VSHpfkW0kOGTd8Y5I3JzkxybIkg0lWJXliko8nGdlRtyLJh0spHyqllBZHbJhw3ZhGmxPXTNwTAAAAAIB5pF5r/U/Jw6ObMlKNNJ0TYAS0U68tbjo+PLopI6PuKwAAAAAAAAAAAAAAMJf0z3YDzLxSyookn0lSHzf8lSQvrKpq/YTyW5N8PcnXSykfTPLVJHvvmHt5kquSvK/JMbtrMNo/J/n8FNccluSsGTgbAAAAAIA2Bspg+tKf7dk5qGjz6KaMVNuarusvvp0BtNaoNbJh+107jW8eHW5zXxGMBgAAAAAAAAAAAAAAuyOvJJqfXp9kxbjrXyR5dlVVm9stqqrqB6WU5yT51rjht5dSPlpV1doJ5RNfXbIiU1BKWZKdg9HunMoezezoc2Kvk/Wyq8cCAAAAANCBUkrqfY1s3H73TnPD21sHow2UwW63Bsxh9dripuPD2ze2vq/UBKMBAAAAAAAAAAAAAMDuqDbbDdAVvzfh+n2ThaLdo6qqbyc5f9xQI8lzm5ReOeH64M7ba1q/rqqqO6a4BwAAAAAAc0yjRYDR5tFN2dYiwKi/CDACWmsVjLZ5dDjbqq1N59xXAAAAAAAAAAAAAABg99Q/2w0ws0opQ0kOmzD87Slu860kjxx3fUqTmismXB8+xTMOnXD98ymuBwAAAABgDmoVYDQ8uikjgtGAaWj0tQ5cHKlGms65rwAAAAAL0tY7ko3X7zw+dL+kNphsW5809ut9XwAAAAAAAAAwjmC0+WdZk7FbprjHxPp9mtRcNuH6gaWUxVVVberwjFMn2Q8AAAAAgHmo0SIYbXPbYDTfzgBam17govsKAAAAsIBsvSu54PnJTV9LUrWvXXZ88sgvJHtMfJ9mAAAAAAAAAOiN2mw3wIy7s8nY0BT3WDLhesPEgqqqbk5y6bih/iSPmMIZj5lw/bUprAUAAAAAYI5qGWC0vXWA0UBtsJstAXPcdAIXB4r7CgAAALCA/PDlyU1nZ9JQtCS585Lk3CclVQe1AAAAAAAAANAFgtHmmaqqNiZZP2H4xClu8+AJ17e0qPvihOszOtm8lHJ0klPGDW1M8o3OWgMAAAAAYC5r9LUJMBptHmDUXwa62RIwx7UMXBzdlG0tgtHcVwAAAIAFY9v65IYvTW3N3Vcmt1/YnX4AAAAAAAAAYBKC0eancydcv6LThaWUVUmeNmH4/Bbln0qyfdz16aWUIzo45k0Trj9XVdXmDlsEAAAAAGAOE2AEzLRGi/vK5u2bMuK+AgAAACx0d1+ZtHhTirZu+PLM9wIAAAAAAAAAHRCMNj99dsL1c0opL5xsUSllUZJPJlkybnhDkq83q6+q6sokHx83NJjkY6WUepsznp7kJeOGtiZ5x2S9AQAAAAAwP7QKMBoe3ZjR+7wXx736S383WwLmuHpf68DF1sFo7isAAADAAnHNJ6e3bsNVM9sHAAAAAAAAAHRIMNr89G9JLhl3XZJ8opTy96WU/ZotKKU8NskPkjx+wtT7qqq6o81Zb08yfv7hSb5VSjl6wv6LSimvSfL5Cev/pqqq69rsDwAAAADAPFJvEYy2YeSulmv6y0C32gHmgUat0XR8c5tgtIHaYDdbAgAAANg9rPtJ8su/n97a6z83s70AAAAAAAAAQIe8Ffo8VFXVaCnlWUm+n2TljuGS5LVJXl1KuTTJ1UmGk+yV5MQkq5psdXaS901y1g2llNOTfD3JPa8gOTXJz0spP95xztIkD0qyYsLyryb5s6n97gAAAAAAmMsaLYLR7t7eOhhtoAgwAlqr14aajm8eHU6txftECVwEAAAAFoQrP7hr6++4OFl+wsz0AgAAAAAAAAAdEow2T1VV9etSyqOTfDLJSeOmaklO2PFouTzJh5P8r6qqtnVw1rmllGck+VjuDT8rO849qcWyzyR5eVVV2yfbHwAAAACA+aPe1zwYbcP2u1uuEWAEtNOoNZqOb6u2pqQ0nXNfAQAAABaEdRft2vrbLxKMBgAAAAAAAEDPCUabx6qq+kUp5WFJnp/kVUkemrR49ceY4SRnJvnHqqp+MMWzzi6lPCDJO5I8J8nyFqU/SPLXVVV9YSr7AwAAAAAwPzRqzYPRqoy2XNNffDsDaK1eG2o5V6VqOu6+AgAAAMxLN5yV3PDlZPjmseu7rmhde8L7k4v/pP1+P3xFcvl7kqX3T6oqGdmQ3Hb+2Nzx702OeGUy2OpHhgEAAAAAAABgevzE/zxXVdVIkk8k+UQpZWmSk5KsTrIsyaIkdye5I8llSX62o366Z61N8vullNclOTXJwUlWJdmY5MYkP62q6ppd+O0AAAAAADDH1VsEo7XTXwa60AkwXzT6GlNeM1AGu9AJAAAAwCy6/L3JJX/aWe2Bz0iO+eOk1JKfvjFpES6fJNl47dhjokveklz/ueTx5yUDS6bRMAAAAAAAAAA0JxhtAamq6q4k3+7BOVuTfKfb5wAAAAAAMPc0BKMBM6xRG5ryGvcVAAAAYF7Zdndy+bs7rz/pH5JSkmPekBz20uScJyTrfjz1c+/4aXL5XyYn/NXU1wIAAAAAAABAC7XZbgAAAAAAAFg46tMIRhuoDXahE2C+WFRrTHmNYDQAAABgXrn9wmRkY2e1tUVJY/97rweXJ4e/cvpn//x9yfAt018PAAAAAAAAABMIRgMAAAAAAHqm0Tf1YLT+0t+FToD5oq/0ZbAsmtIa9xUAAABgXth6V3L9F5ILX9H5mgN+JykTfoR8/yfvPDYVX9wvWfOlZNvd098DAAAAAAAAAHYQjAYAAAAAAPRMvdaY8pq+CDAC2mvUpha6OFAGu9QJAAAAQI+s/1XytROS7z0r2XhNZ2saByQPfOfO44sPSI5/z671c/4zkq8/JNl43a7tAwAAAAAAAMCC55VEAAAAAABAz/SV/gyWRdlabemovr8MpJTS5a6Aua7etzh3bb+j4/r+MtDFbgAAAAB64OI3JxuvbV+z9AHJ/k/a8fH9k/2fktRXNK+9/5uSlY9NLv6TZO13p9fT+l8ml749edjHprceAAAAAAAAACIYDQAAAAAA6LF6bXG2bu8sGG1AeBHQgUZt8ZTq+2vuLQAAAMAcNrotufErk9cd8NTkhPd0vu8+Jycnfyj56lHT7+2GLyVVlXjDCwAAAAAAAACmSTAaAAAAAADQU42+xVm//Y6OavsFowEdqE81GK34NikAAAAwTaPbk/VXJNvuSqrRGd68JKUv6R9K+hYlm9c2L9t8a1KNTL7dykdPvYUlhyWNA5LhG6e+Nhn77zJ8c7J4/+mtBwAAAAAAAGDB8xP/AAAAAABAT00lwEgwGtCJxhTuKyUlfb5NCgAAAEzH2vOSb00jbGw2rDg1WfX4qa+r9SUPeFty0e9P/+wvHZA8+P8kR716+nsAAAAAAAAAsGD5iX8AAAAAAKCnphJgJBgN6MRUAxdLKV3sBgAAAJiXtq1Pvv3Y2e5icqtOS1Y+Kjn69WMhZ9NxxKuSxv7JdZ9NNl6T1FclBzw16asna85MUiVb70xu/XbrPX78mmT5A8d6AQAAAAAAAIApEIwGAAAAAAD0VL3W6LhWMBrQiUbfVILRfIsUAAAAmIYbzkqq0dnuor29T05+6+szs9eBTxt7THTI8+79+MuHJxuuar3HtZ8SjAYAAAAAAADAlNVmuwEAAAAAAGBhadSGOq4dEIwGdKBem0owmvsKAAAAMA1X/stsdzC55SfuXuet/0Vv+gAAAAAAAABgXvF26AAAAAAAQE/V+xod1wowAjpRr3V+Xxkog13sBAAAAHZDo9uTn709ueYTSaklB56enPBXSZ+vkZvaeH1y0R8ma7+bjNw92910rvQnh7+it2ce8apkzReSVM3n156XfLq0Xr/02OSo1yWHv7wr7QEAAAAAAAAwN9VmuwEAAAAAAGBhadSGOq7trwlGAyY3pfuKwEUAAAAWmkvenFz+7mTTmmTjdckv/za56JWz3dXuafuW5JuPSG766twJRSt9yd4nJ4/9WrLXg3p79qrHJY/89+mvv+vy5IevSK7++Mz1BAAAAAAAAMCc1z/bDQAAAAAAAAtLvdbouFaAEdCJqd1XfIsUAACABaQaTa76yM7j1/y/5IT3J/UVve9pd3bjl8cC5KbqoNOTUz83vTNHtyafW9y+5og/TB78983nSknKLL5X9kGnJ0+5PPmPY6e/x6/+KTn0xTPXEwAAAAAAAABz2ix+FxwAAAAAAFiIGrWhjmsHBKMBHWj0dX5fEbgIAADAgrJ5bbJ13c7j1Uiy5gu972d3t+4n01u3+iVJrW96j/5GsuTw9vsvPab1+tkMRbvH0Oqktmj66++8OBndPnP9AAAAAAAAADCn7QbfCQcAAAAAABaSeq3Rca0AI6ATU7mvDNQGu9gJAAAA7GaqkdZza8/vXR+7s6pKrvpocv4zk5//1dTXDyxL9jtt13o45AWt52oDyf1+b9f277b+RnLQ6dNfP7otWX/FzPUDAAAAAAAAwJwmGA0AAAAAAOipRt9Qx7WC0YBONGpTua/0d7ETAAAA2M2MtglGu+7TybYNvetld/WTNyQXvjRZc+b01j/260nfol3r4di3JIe8cOfxgaXJo85K6it3bf9eOOkfk30fO/31Zx+XjGycuX4AAAAAAAAAmLP81D8AAAAAANBT9Vqj41oBRkAnpnZfEbgIAADAAlK1CUZLkjX/nhz6kp60slvavDb51f+ZvO6YP0n2f9K916WWDC5Plh479vGu6luUPPyTyYM+kGy+JamqpNqWLDs+qc2RfyNdtFfyuHOSTTckd/96bOw3FySXvLXzPa7//ML++wgAAAAAAABAEsFoAAAAAABAjzVqQx3XCjACOlGvLe641n0FAACABWXb3e3n1353YQdR3XbB5OFxSbLfbyf7Pqbr7aS+Yuwxly0+cOyRjIXHTSUYbaH/fQQAAAAAAAAgiWA0AAAAAACgx+q1Rse1A2Wwi50A88WiWj0lJVWqSWvdVwAAAFhQNq1pP7/h2p60sdsYHUlu/npyw1nJHT9J1v148jWL9k5WnNr93uajZcclQ6uTjdd0Vr+hwzoAAAAAAAAA5jXBaAAAAAAAQE81+oY6ru0vA13sBJgvaqWWRbVGNo9umrS2v/gWKQAAAAvIxusnmb+uN33sDkaGk+89K7np7M7X1BYlJ38o6VvUvb7ms1JLTvlQct4zkpENk9dvvLbrLQEAAAAAAACw+/NT/wAAAAAAQE8NlkUpKalSTVorwAjoVKO2uMNgNIGLAAAALCCb1kw+P7o9qfX1pp/ZdP1npxaKdvKHklWPT5as7l5PC8Gqxye/c0Vy8zeT4RuTxQcm29YnP37dzrWb1iSj25Kaf78BAAAAAAAAWMi8mggAAAAAAOipWqmlXmtkWIARMIPqtcUd1fWXwS53AgAAALuRTde3n69GkuGbkqGDetPPbLrxK53XHv/u5PCXd6+XhWbxgclhZ9x7fedlzeuq0bFwtCWH9qYvAAAAAAAAAHZLtdluAAAAAAAAWHg6DTAaqAkwAjrT6DgYzXtHAQAAsABsujG58ezkun+bvHbjtV1vZ9YN35ysObPz+n1/q3u9kAwd0npuwzU9awMAAAAAAACA3ZNgNAAAAAAAoOc6DUbrLwNd7gSYL+p9nQYuuq8AAACwANx6bvLdp3RWu/a7XW1lVo1uSy54YfLF/Ttfc8DTkr1P6V5PJANLkkUrms8JRgMAAAAAAABY8ASjAQAAAAAAPdfoOBitv8udAPNF5/cVwWgAAABwH5f+2Wx30D1X/E1y7ac6q73f7yUn/VPyyC8kpXS3L5Ilq5uPbxSMBgAAAAAAALDQeTURAAAAAADQc/U+AUbAzKrXGh3V9ZfBLncCAAAAc9Cmm5LF+892FzNvzZmd1z7ic93rg50NrU5u/+HO4xsEowEAAAAAAAAsdLXZbgAAAAAAAFh4GjXBaMDMqnd8X/HeUQAAALCTu3812x10x92/7KzumDd2tw92tmR18/E7f9bbPgAAdldVlYxsnO0uAAAAAABmhWA0AAAAAACg5+q1Rkd1A4LRgA51GrjovgIAAABNbLx2tjuYWWvPT84+Idm2fvLavsXJYS/rfk/c19Ahzcfvuiw565Dkl//Qy24AAHYf1WhyyduSL+6ffG5J8pUjk2s/PdtdAQAAAAD0lGA0AAAAAACg5xq1oY7q+gUYAR2q93UWjOa+AgAAwIJQ+pK+xn0fex7Tun7DtT1rres2XJuc++Tkzksmr131hOTx5yZ7HtXtrphoyerWcxuvS378uuSqj/auHwCA3cXP3plc/u5k8y1j13dfmVzwguSmr89uXwAAAAAAPdQ/2w0AAAAAAAALT73W6KhOgBHQqUat02C0wS53AgAAALuBQ5479pjo/Gcla76w8/jGa7veUs/8/L3JyIb2NU++LFl2bG/6obmhNsFo9/j1/00OO6P7vQAA7C6qKrnqQ83nrvpwsv9v97YfAAAAAIBZUpvtBgAAAAAAgIWn0TfUUZ1gNKBT9Y6D0bx3FAAAAAvY0CHNx+dLMNrm25JrPjF53eDy7vdCe0MHT15z56Vj4SAAAAvF5rXJ8M3N5275dm97AQAAAACYRX7qHwAAAAAA6Ll6rdFRnWA0oFONDoPRBtxXAAAAWMhaBaNtuKanbXTNlf+SbN88ed3gsu73Qnt9g0n/kmRkQ+ua7cPJ5luTxqre9QW74pZvJ7/+cLL+ipDAke0AACAASURBVPuOb7sr2XjdfceWHZ+c/MFkn4f2rj8Adn+3ntN6btudybYNycCS3vUDAAAAADBLarPdAAAAAAAAsPA0akMd1Q3UBBgBnal3GIwmcBEAAIAFbcnq5uPDNySj23rby0zbvjm58p86q+3r7I0b6LJHf2Xymiv+uvt9wEy44cvJd347uf6zyZ2X3vcxMRQtSe68JPnGw5K15/W+VwB2T5tuTC54fvuasx+QVKO96QcAAAAAYBYJRgMAAAAAAHquXuvshYcCjIBONfo6DEarDXa5EwAAANiNDR3SfLwaTdb9pKetzLhrP5VsXttZbSnd7YXOLH3A5DW/+Jvu9wEz4fL3JtX2qa8T/gfAPX76x5PXbLxOqCYAAAAAsCAIRgMAAAAAAHqu0TfUUZ1gNKBT9VpnwWgDpb/LnQAAAMBubMkhSVqEgl32zl52MrOqKvnFBzqrXfbA7vZC5xbtnQwsnbxuZFP3e4FdsX1rcvuF01t741dmthcA5qY7Lk6u+7fOam/7Xnd7AQAAAADYDfipfwAAAAAAoOfqtUZHdQOC0YAONToMRhO4CAAAwILWP5SseHhy2/d3nrvp7GTt95KVj+h9X7ti45rkh69M7vp5Z/X7P6m7/dC5UpKDnplc/ZH2dec+JVn5yGTVaXPv7yfz0y3fTm49J9l659j1yIYk1fT3++Grkr56sufRyfbhZMu6ZNVvJfs+dufakU1jwTmXvyfZeE0yuFey5zHJsuPGPt7vCcnKR02/FwB6b8M1yddOnFo9AAAAAMA8JxgNAAAAAADouUZtqKM6AUZApwbKYGrpy2i2t61zXwEAAGDBO+ZNyW1Paz536VuTx507Flg1F6z7SfKd3062/Kaz+hWnJsf+aXd7Ymoe+M5k3Y+SOy9tXbP23LHHZe9Kjn9PcuxbetUd7OziNyc/f9/M7vnr/7vz2OV/mdz/LckJ77l3bOudybcefd/Ply2/SW47f+xxz7rj3pEc9+cz2yMA3XHb95NvTjH4dcPV3ekFAAAAAGA3UpvtBgAAAAAAgIWnXmt0VCfACOhUKSWN2uJJ69xXAAAAWPAO+J1k74c2n1t7XnLLN3vbz6645G3tQ9EOembytGuSh38qefx5Y6FvA3v2rD06sPiA5LQfJL/1rc7qL/3zZPiW7vYErdx91cyHorXz8/cmG6659/qqj7QPEbzHZe9INt3Yvb4AmDkXv2nqazZeM3kNAAAAAMAcJxgNAAAAAADouYEymL70t62ppS+14lsZQOfqfZMHow0IRgMAAGChKyU54T2t5y/506SqetfPdI1uS275Rvuao1+fLDkkOeT5ycpHJrX2/ybJLOlvJKsel6x89OS11Uhy8yR/7tAtN/9n78+84cv3fnz95ztbU436PAGYC7bemdz2/amv27Rm7LkwAAAAAMA85rv7AAAAAABAz5VSUu9rZOP2u1vWCC8CpqpRa0xa0+/eAgAAAMm+j032fVxy67d3nlv34+SGLyYHnd77vjo1Mpxc95mk2t66Zu+HJise3rue2HWrnpCs/e7kddf9W3LI85Kaf+chyfYtye0XJrXBJCUZ3ZLsfXLSV98xvzVZd1Gycc2un3XLN6dWv+z45M5Ldu3Mn/5xUt937OPbf9D5unU/Sg47Y9fOBqC77rys/fxJ/5T86A93Hq9Gk43XJ3sc1p2+AAAAAAB2A4LRAAAAAACAWdGoLW4bjCa8CJiqem1o0hr3FgAAANjh+Hcn32gSjJYkl7wtOeDpSa2vtz114vYfJd99SrJ5bfu6kz/Ym36YOYe/PLn2k8n6X7avu/lrydnHJY/5WrJkdW96Y/d0x8XJuU9Ohm++73h9VfKYs8fC0c59UrLxut73tuTw5NFfTn5wRnLrOdPfpxpJLnje1Ndd+c/JsuOSI141/bMB6J7f/CD51iNbz9//LcmhL24ejJYkt35HMBoAAAAAMK/VZrsBAAAAAABgYarXFred768JLwKmpl5rTFojGA0AAAB22OeU5MCnN59bf0Vy3ad7208nqtHk+8+ZPBTtaVcly4/vTU/MnPrK5AkXJCf+TXLwJEFQ63+Z/FDg04JWVcn3n7tzKFqSbL5lbO6/XtybULSlxyYHPWvscfBzkxP/d3LaBcnQ/cYC/E7+v8nyB913TW0wOeiZycpHd6+vi35/8qBBAHpvdHvyvWe3rzn+3Un/UFLft/n8D18+830BAAAAAOxG+me7AQAAAAAAYGFqTBaMJrwImKLJ7yv9KaX0qBsAAFg4ytgT7TcmqY8b/kRVVdfu4r6rk/yPcUObqqr6613ZE5jgge9KbvhykmrnuUvfntzvOUnfYM/bamndT5INV7ev2fuUZMmhvemHmbdor+SY1499vM/Dkx+/pnXtLd9MtqwbW8PCc9dl7UO/7v5V73o5+o+Sw17WfK5vMDn8FWOPZrZvST5bbz43E677XHLcn3VvfwCm7vYLk01rWs/v96Tknu9nDa1ONt/avM7zIAAAAABgHhOMBgAAAAAAzIq6YDRghtX73FcAAGCWPD/JX+XeZKUzdzUULUmqqrqmlHJcktPvGSulXF1V1Zm7ujeww7LjkoOfl1z36Z3nNl6TXP2vyRG/3/u+mhndnqw9d/K6vU/peiv0yD4PnaSgSu7+dbLo5J60QxdVVbJ5bbJo72TbXcn2zZOvWfPF7vfVqb134e9g36LkIf+SXNSle+3dV3ZnXwCmb/0v2s/vM+757NKjk9t/0Lxuw1WTB6ONjiTVSNLXxRBOAAAAAIAuEIwGAAAAAADMisYkAUYDxbcxgKlpCFwEAICeK6XUkrzznsskv0ry4hk84iVJjk9y+I7rdycRjAYz6YHvSK7/bFJt33nusnclq1+c9Lf/mrurRkeSn74xufojybb17Wv7h5IjXtmbvui+vR6crHx0sva7rWu+cUpy+q1JfWXv+mJmXfWR5NI/S4Zvmu1OpmfVE8ZCJnfFoS9Nrv1Uctv3Zqan8a79ZPLwT8z8vgBM3ej25OI3Jb/4m9Y1g8uTQ8+49/qYNyZXf6x57c/+InnMf7Q4ayT58euSa/9fsn1Lsv8Tk4d+LBlcNs3mAQAAAAB6qzbbDQAAAAAAAAtTfdIAo8EedQLMF5PfVwSjAQBAFzw+yeok1Y7HW6qq2jRTm1dVtTHJm8cNHVlK+a2Z2h9IssfhyWEvaz43fHNy5T/3tp+JfvYXyS//bvJQtAN/N3n8ecnS+/ekLXqglLGwj6P+V/u67z6tN/0w8276WnLhy3obilYbSOr77vpj6bHJ0a9PHnXWrvfUNzi2z+Gvuu94s3MXrdh5/arT2u+//spd7xGAXXfZu9qHoiXJEy5Ihu5373W757Y3nZ3c/M3mcz/9k7Hn8dvWJ6NbkhvOSs5/5tR7BgAAAACYJf2z3QAAAAAAALAwNQQYATNssvvKgPsKAAB0wwvHffzjqqq+ONMHVFV1Zinlx0kevGPoBUnOmelzYEF7wJ8lV398LDRhosvfmxz+imRgz973VVXJVf86ed2Rr01O+vvu90Pv9Q8lD/7b5O4rk5v+o3nN7Rcmd16WLHtAb3tj13Xy+T3TDvq95NRP9f7cySzaKzn5X8Ye03Hj2cl3n9J87ppPJMe/a/q9ATAzrv5I+/mj/ihZevTO4/s/eSwErdWe+z3hvmNVlVz/bzvX3npOMnxL0ljVWb8AAAAAALOoNtsNAAAAAAAAC1N90mA07+8CTM3k9xXBaAAA0AVPHPdxN9NN7tm7JHlyF8+BhWnxgckRf9B8buu65IoP9Lafe2z5TbL5lsnrBGLNf8uOaz9/58960wcz69bv9P7M+Xq/WHZs67m7fH4AzLqtdySb1rSvaXUvb/c8qNlzoK13JMM3N6+//vPtewAAAAAA2E0IRgMAAAAAAGZFQ4ARMMMafe4rAADQS6WUg5PsM27oq108bvzeK0spB3XxLFiYjn1L0r+k+dxl70juuLh3vYxuTy5/b/LFVZPX9g8l93tW93tidq1+UVLa/Oj7Bc9PfvjKZPPa3vXE1Gy4NvmvlyRfPTo5a/XYY+u63vZQ+pNDnt/bM3tl6ODWczeclVSjvesFgJ3dck77+f4lyUHPbD53yP9ove6uy5Oq6ryPanvntQAAAAAAs0gwGgAAAAAAMCvqkwQYDQgwAqaoLnARAAB67fgdv1ZJrqqq6sZuHVRV1Q1Jfj1u6IRunQULVn1FcvQftZ7/2onJltt708sPX5Fc8qeTB/nscWTyW+ckg8t70xezZ+kxyaPOal/z6w8l33hYMrKxNz3RueFbx/5srvl4sv6XycZrxx69tPh+yWP/s32A2Fz3oL9tPfej1/auDwDua/jm5Httgnz3OCJ53DnJ4LLm88uOTe7/5tbrb/nmhIEpBKUBAAAAAOym+me7AQAAAAAAYGFqTBpgNNijToD5YvL7imA0AACYYSvGfXxTD867KcnhOz5e2YPzYOE5+g3Jr/4x2XpH8/lrP50c9Zru9jB8y1h4UjulP/ndNUljVXd7YfdywO8kR7567O9oKxuuTq7/QnLoi3rXF5O75hPJ5lumvu4Rn0+WHT95Xf/ipBoZ+7j0JyObdp5ffMDUz59r9jqp9dyV/5Q88B3Jor171w8AY65u89x2YM/kqb+afI8jX5P8/K+az132rmS/0+69rrZPrT8AAAAAgN2QYDQAAAAAAGBW1CcLMKr5NgYwNfVao+38gGA0AACYacvHfTyNtJMpG3/Gsh6cBwvP4NLk/m9KLn5z8/nf/Ff3g9Fuv2jyMIf9nyQUbaHa44jJa37zX4LRdje/+a/prVv5qKQuC7Vjexzefn7dT5L9ntCbXgC4V7v/D654RGd7tHvuu+W2+16PjnS2JwAAAADAbqw22w0AAAAAAAALU2OyYDQBRsAUNWpDbef7a+4rAAAwwwbHfdyLn0ccf8aiHpwHC9ORbYLPrvtMctPXZ/7M7VuSqz6SXPiK5LynTV5/v9+b+R6YGw46ffKaX38w+Ux/ctm7k613dL8n7mv85/MFLxp73Pa9qe+z8jFC0aaqsSpZ8cjW87/8h6SqetcPwEK36Ybk5/87ufHLrWs6fV5baklfizcIWv/LZP2v7r2uBKMBAAAAAHOfYDQAAAAAAGBW1CcJRhsQjAZMUb3VC0J2ELgIAAAzbtO4j1f04LzxZ2xqWQXsmv7FyVGvaz1/7hOTS/9i5s7bvjn5zhOTC1+WXPXhyesPPSM5+Lkzdz5zy+IDkwe+a/K6anty6duSrxyZDN/S/b4YM/Hz+dpPjj223Da1fYZWJyd/sDs9zncnf6j13E1fTX7yht71ArCQ3fXz5D8fklz8J61ragPJIS/ofM9HfL713FePSm6/aOxjwWgAAAAAwDwgGA0AAAAAAJgVjb72wWj9ZbBHnQDzRX8ZyECbe4dgNAAAmHHjk2YO7sF548+4tQfnwcJ1wO+0n7/83cnwDH0arjkzWXvu5HW1geQpVySn/OvYxyxcx76189otv0muFLDVM51+Pt/j2Lclp3xk7PGwTyYP/WjyuO8kT7k82fOorrU5ry09OjnwGa3nf/m3yYare9cPwEJ1+XuSzZOEsz7u3Kk9r93nYe3nL3nb2K+j7YLRqs7PAwAAAACYRYLRAAAAAACAWVGvNdrO95f+HnUCzCft7i0DgtEAAGCmXbXj15Lk4FLK4d06qJRyWJJDmpwNdMOSQ9vPVyPJrefMzFk3/Wdndcf+2VjgTykzcy5zVylJfWXn9Vd/tHu9cF83f31q9Ue8MjnsjLHH6hcmh74k2fcxSX/77x8wiaX3bz9/8zd60wfAQnZzB89xJ3vOPdHg8mRgaev5284f+7VqF4wGAAAAADA3CEYDAAAAAABmRV/pz2BZ1HK+X4ARMA2N2lDLOfcVAACYcZck2Zqk2nH9tC6e9bvjPt6W5OIungUMrU72OLJ9zZX/lIxs2rVztqxLrv1kZ7X7P2nXzmJ+OfgFndduur57fXCvajRZ84XO65c+IGkc0L1+FrL9nth+/uqPJSPDPWkFYEHZekdyw5eTm76WbLm9fe3yE5LGqqntX0r758TbN4/9OioYDQAAAACY+wSjAQAAAAAAs6ZeW9xybkCAETAN9Vqj5ZxgNAAAmFlVVW1N8t0kZcfjT0oprdOKp2nHnm/MWABbleS8HWcD3VJKcuJfJ7XWb2yQ276f/PteyfpfTe+Mm7+ZnHVIZ7WrX5zs9eDpncP8dPQfJUsO67z+yg92rxfGQhLPe0YysrGz+r56cuL7x+41zLwVpyYHP7f1/O0XJl87Idlwde96Apjvbvl28qWDkvOenpz75Pa1fYuTE943vXOOfVubySqpqqQSjAYAAAAAzH2C0QAAAAAAgFnT6GsdjCbACJgO9xUAAOi5z+z4tUqyIsn7u3DGXyVZmbHwtST5dBfOACY68KnJEy9qXzO6JfnRq6e+9+i25L9emIzc3bqmvio58rXJI89MHvpRAUrc19BByWk/SE76x2Tfx+be/0W0cNHvJ5tv60lrC9KVH0xu/HLr+f2elBx6xtjjge9KfvtHyf5P6l1/C00pycM/1T488O5fJT/+o971BDCfjW5LvvfszgJCj3tH8sQfJfudNr2zlh2bPLzdl8RVMioYDQAAAACY+/pnuwEAAAAAAGDhqtcEGAEzq919ZcB9BQAAuuHTSd6dZFXGUmleVUq5saqq98zE5qWUNyf5w4wFr5Ukt0YwGvTOsuOSB30g+cnrW9fc8s1k6x3J4PLO9117frJ5bfuax30nWXp053uy8NT3SY78w7HH1juTf5/k7+CNX0kOe2lvelto1nyh/fyDPuDzuddKLTnmDclFf9C65qb/SEY2Jf2t/00VgA6sPT/Zum7yuqHVyXF/vuvnDd2v9Vw1mlSC0QAAAACAuU8wGgAAAAAAMGsagtGAGSZwEQAAequqqq2llLck+VjuDS97VynlgUl+v6qqO6azbyllWZJ/TvKccftWSf60qqqtM9E70KF9Tp285pZvJUsfkCxZnfTV7x0f3ZZsWZc09h0LaRi+JRndOhZQ1U59ZbLHYbvWNwvL4LJkz2OS9Ve0rrn5G8mhZySjW5IN17TeZ+tdGftfTpLFByYDe8x4u/PGtg3JpjXJby5oXePzefbs8/D289X2sc+FZcf2ph+A+WrNmZ3VrZjkvtyxWuspwWgAAAAAwDwhGA0AAAAAAJg19Vqj5dxATYARMHVtAxfdVwAAoCuqqvpEKeUZSZ6ee0PMfi/J40spH0ny4aqqruxkr1LK4UlekeSMJHvl3kC0KslXqqr62Mz/DoC29n5IsvzE5I6ftq753rPHfq0tSg57WfLgv0su+8vkF3+TjGyc+plH/3Hi63im6v5vSn7wktbz13927DEVpS858OnJQz8mIG28bRuSH5yR3PDFsXCtdnw+z57lxyf7PTG5+T9b15z9gOTBf58c9dre9QWwUB31upnZp5TWc+c8LjnyNa3nq9GZ6QEAAAAAoMsEowEAAAAAALOmURtqOddfvFAKmLp6u2A09xUAAOim/5HknCQn5d5wtL2SvCHJG0opNyf5YZIrkty545EkS5MsS3JMkpOT7L9j/J5Xet+z14+TvLDrvwtgZ6UkT/h+8rnWX3P/t9EtyZX/PBaWNHzz9M576EeTQ18yvbUsbIe+eCy87Pxnztye1fZkzZlJrf7/s3ff4XFddf7H32ekkVXcbcklbrHTnR7SExISUigJoZelZhd2YYEsS1nI0kLgt7CFXcrCshD6AqEEUoFU0kmB9B7HvUlx72rn98fISI7vHc2MZkYa+/16nvvo6nzPPeer2BnZ8tzPhZP/r3zr1rr73gdLfzn4vPkXwyEfrXw/Svfi38BjX4BHL02f86eLoGUOzDi/am1J0l5nv7/LBQ6XRSa91HFH7kjT21WmHiRJkiRJkiSpsgxGkyRJkiRJkiRJw6axrim1ZoCRpFI01aXfpJ31dUWSJEmqmBjj5hDCmcD3gVeTCzSD/oCz6cCr+o40YcD5wOuvBN4RY9xctoYlFac+/ed4iUoNRZt/saFoGpqZr4Hj/hfufU951136S+j6FmRHl3fdWtS9BZb8vLC5h36qsr1ocHWj4PDPweo/QMft6fMW/sBgNEmqpNlvKN9aIU8w2mBid/n6kCRJkiRJkqQKGsJPQiVJkiRJkiRJkoamKdOSWjMYTVIpGjPpwWi+rkiSJEmVFWPcFGN8LfBhYBu5ULM44KBvLOngBXMDsB34WIzx1THGjdX6OiSl2Pcdld9j/OGV30N7vvFHlH/N3k7Y/Gz5161FmxZA747B5405AOoaK9+PCjPY6+uGx6rThyTtiXo7B58zbn759htKMFqvwWiSJEmSJEmSakP9cDcgSZIkSZIkSZL2Xo2ZptRa1gAjSSVoMhhNkiRJGnYxxv8MIfwQ+AfgfcCEgeWUy8KA83XAN4CvxBifr0yXkoo270JY+IPKrT+qFfY5v3Lra+8x6VgYfxisf6S86/72qN3HRk3afSzTAJOOg8O/AOPLGIIynLatggc+Bh23wZbFhV0z768r25OKM+9CePabEHuT6xufgmVXw4zzqtuXJO0Jutbnr8+4ABrbClpq2faFXP38T1iy/Vm62T3ELBsamFs3lfNGtTBlx5bie40Go0mSJEmSJEmqDQajSZIkSZIkSZKkYdOUaUmtGWAkqRT5Ahd9XZEkSZKqJ8a4BvhUCOFzwPHAacDJwD7ARGBnksxaYA2wArgTuBW4J8bYWfWmJeXX9mI4+Wdw55vKu27IwMTj4MTvQ3363+ulgoUAL/k93P1OWHV9ZffasSZ5fNmVsPoP8PKHoWVWZXuotJ7tcMPJsPm5wuaPmgz7vxcO/khl+1JxJh4Np/4GbssTQHnb+XD6dTD9ZdXrS5L2BJ3r8tdP/FFBy7R3ruQ/lnyCHXF73nl/7l7DsweewsefuJXxXfnn7sZgNEmSJEmSJEk1wmA0SZIkSZIkSZI0bAwwklRujZnm1FrW1xVJkiSp6mKMXcAdfYekWjf7jbmjexv07oCeHfC7Y2Db8tLWO/abMOetkB1d3j6lpmlwxu+h465cqFea5lnQ2wnbV5W/h64N8Nz34LDPlH/talp2ZWGhaOPmw5k354LRQqbyfal4M86D1z4Pv5qcPueprxiMJknF6lyfv17gn3XvWP/7QUPRdtqYbeTB8dM4vWNhQfP/otdgNEmSJEmSJEm1wX9xlCRJkiRJkiRJw6apriW1ZoCRpFI01aUHoxm4KEmSJElSmdQ3QcN4aJoCYw8sfZ3pLzcUTZU1bn7+kK6xB8L8iyu3/5p7K7d2tTx/T2HzWk+FxjZD0Ua6hom5I82a+6rXiyTtKfKFBB92ScHLLNr+dFHbLm0eV9R8AKLBaJIkSZIkSZJqQ/1wNyBJkiRJkiRJkvZejZmm1JoBRpJK0ZgxGE2SJEmSpKqa/UZYfXPx1006AVpmlb8faaCGcTDtZbDi2uT67Dfm6n/+EMSe8u/fcSfcdsHu443TYMb5MP1l5d+z3Bb9qLB5s99Y2T5UHiHkfq2e+WZyvXMtdG02tFKSCtW9DbatTK/PflPBS7V35lknaetSwkh7DUaTJEmSJEmSVBt8HJMkSZIkSZIkSRo24+onJI5nyNBYlx5uJElpRteNJZPyz6Cj68ZWuRtJkiRJkvYCc98Fcy8s7pq6Zjjxh5XpR3qh4/4Hxh+2+/i8d8O+74Dm6XDijyHTUP69uzbAsit3P579H/jDy+Hxfyv/nuW08Eew4/nB5x3+eWg7rfL9qDyO+AI05wmm3LK4er1IUq3bsii9dvBHYewBBS2zvXcbG3vWFbV1d6auqPkAxK7ir5EkSZIkSZKkYVA/3A1IkiRJkiRJkqS916TsFKY1zGRl59Jdxuc1HUxjpmmYupJUy0ZlGjmg+TCe3PrQLuNt2elMbpgyTF1JkiRJkrQHy2ThhMvgsE/D2gcgdvfXenZA73bIjoXYC91bYNwhMPFFkPFtzKqS5hlw7gOw/mHYvABCPUw8Blpm9s+Z8ybY5+Ww5j4Ysx+0zIbt7XBFAT9POuar0LMdHvxY8b09+jnY/72QHV38tZXW2wMPXZxe3+c82O89MOk4aGyrXl8auoYJcN4zcPmo5PqWxTB+fnV7kqRatf7h9Nrhlxa8TEfnytTa3MaDeG77k7uNd4XkBwXl1ds9+BxJkiRJkiRJGgF8R4EkSZIkSZIkSRpW75j2D3x92efY3LMBgAn1k3nr1PcPc1eSatmbpvwdX1v2GdZ0tQPQnBnNhdM/PMxdSZIkSZK0h2uZnTukkShTBxOPyh1psmNh6pn9nze2wfGXwT1/nX/tue8qPRitezOsuWfXfUeKTU/D1mXp9YM/Bm2nVK8flVddQy40MOnXeOvi6vcjSbUo9sLjX0yuNc+AupQAygTtnSsSx+tDPXObkoPRujMlBKNFg9EkSZIkSZIk1QaD0SRJkiRJkiRJ0rCa1TiPS/b9Bgu2PUEm1LFf0yE0ZAp/k7gkvVBbwzQ+OeerLNz2FJ1xBwc0H0Zjpmm425IkSZIkSVKtmf5yCHUQe5LrU14C2dG5Y9LxuZCzYq28fmQGo21emF7LjoNJx1WvF1VGy+zkYLTl18L+761+P5JUa5b+CtY9mFxrO72opdq7ViaOT85OTf238+5QQjBar8FokiRJkiRJkmpDCT8BlSRJkiRJkiRJKq+muhYOHf0iDmk5ylA0SWUxKtPIQS1HcPjo4wxFkyRJkiRJUmmapsLhn0+uNUyEI77Y//lR/54LDCvWE/8KT329tP4qafNz6bVjvwF1DdXrRZXRPDt5fMW18NCnqtuLJNWa3h54+NPp9YP+oajlOjpXJI63NUynPmQTa92ZuqL2ACAajCZJkiRJkiSpNtQPdwOSJEmSJEmSJEmSJEmSJEmSJI1I8z8ObafB6ptgxxrIZKFlDuxzHrTM7J/Xdgq87EFYfg1sfnb37ZH24AAAIABJREFUdVbdABseT97jzxfBzFdD8z4V+RJKsmVh8njDBJjzlur2ospoSQlGA3js87nfkxOPrl4/klRLll8NG59Mrs18DUw8pqjl2jtXJo63ZqeRTQtGC5mi9gAMRpMkSZIkSZJUM2oqGC2EcHPfaQTeHGNsL3GdKcBPd64VYzyzHP1JkiRJkiRJkiRJkiRJkiRJkvYwrSfmjsGMngMHvj+59uDF6cFosReWXQkHvK/kFstuc0ow2j7nV7cPVU6+YDSApVcYjCZJaVbdkFIIcNjnil6uvWtF4nhbw3R6Y09irauUYLReg9EkSZIkSZIk1YYSfgI6rE4HTuv72DiEdRr71th5SJIkSZIkSZIkSZIkSZIkSZJUGW2n5q8v/ims/TP0bK9OP4PZ/Fzy+Oi51e1DlTPY78nNC6rThyTVorTXyJmvhfHzi1pqa89mNvdsTKy1ZadRH7KJte5MCbcFRoPRJEmSJEmSJNWGWgtGAwjD3YAkSZIkSZIkSZIkSZIkSZIkSQWbejZMOj693nEH/O4Y+MV4eOyLEGP1enuhGGH9Q8m10ftWtxdVzrhDcgE+aRb/DLa3V68fSaolK3+fPD7puKKXau9cmVprbcgTjBbqit6L3q7ir5EkSZIkSZKkYVCLwWiSJEmSJEmSJEmSJEmSJEmSJNWOTB2cedPg83p3wEOfgGVXVr6nNM98M73WYjDaHuXkn8GYA9Lrd721er1IUq1YeUN6rYQA0Y6uFYnj2dDA+PpJZDMpwWiZEm4LjN3FXyNJkiRJkiRJw2BvDUarH3DuT3QlSZIkSZIkSZIkSZIkSZIkSZVV3wInfL+wuYt+XNFWSt67hMAXjWCZejj2v9Prq26Abauq148k1YIFl6XXRs8tern2zpWJ463ZqWRChvqQEowWSrgtsLez+GskSZIkSZIkaRjsrcFokwecbxm2LiRJkiRJkiRJkiRJkiRJkiRJe48JRxU2b8Pjle0jn23JAS0ANE2rXh+qjnGH5a9vfKo6fUhSrdj8XHptzAFFL5cajNYwHSA1GK0rU8JtgVtXFH+NJEmSJEmSJA2DvTUY7cV9HyPgT3QlSZIkSZIkSZIkSZIkSZIkSZU34XCYfOLg8zY+ATeeBluXVb6ngXq7Ycui5Nr4IyDsrbcg7MGapsDM16bXtyyuXi+SNNJ1boC19yXXQgayo4tesqMr+da2toZcGGlaMFpvyNCb2Edd+mZbFua+10uSJEmSJEnSCFfL/yoZi5kcQsiGEGaFEP4G+OcBpUfK25YkSZIkSZIkSZIkSZIkSZIkSSlOvxZmvR7qx+Sf134bXH8S9GyvTl8AT301vXbiD6vXh6or369tWlCeJO1tYoQbT02vn3ZdScu2d65MHG/LTgcgmxKMBtCdFIJ22rX5w9Ge/lpR/UmSJEmSJEnScBhxwWghhJ60Y+A0YFG+uQnXbgcWAt8Cxg5Y66oqfnmSJEmSJEmSJEmSJEmSJGkQIYRjQgivCyGcF0LYb7j7kSSprBomwCk/h9etg1ctyj9361JYVsW3vD/1X+m10XOr14eqq74ZZlyQXDMYTZJy1j0A6x9Jr489oOglN/dsZGvv5sRaW0MuGK0+XzBaJuHWwOnnwOvWp2/66KVF9ShJkiRJkiRJw2HEBaORCz1LOwqdN9gR+9Z4Evhl5b4USZIkSZIkSZIkSZIkSZL2XiGExhDC3AFH3SDzzw8hLALuBS4HfgM8FUK4I4RwSBValiSpejJ10DwLGibmn7fgsur0A9C1MXk81EN2dPX6UPW1zEke37K4qm1I0oi19v70Wl0zNM8sesn2zhWptbaGaUD+YLSukHJrYHY0NO2TXOtcDzvWFtyjJEmSJEmSJA2H+uFuIEVk9yC0cgrA/cAbY4xdFdxHkiRJkiRJkiRJkiRJkqS92YeBz/WdLwPmpE0MIbwB+AnJD1M9CbgnhHB6jPFPFehTkqThEQLMfjM889/pc1ZdDz8J0DABOtf1j9c1Q8/W3PmUM5IWh/GHwry/yX1Ms+L3sORyWPcgdG1InjPxRYN+KapxacFoa+6Bm86E+tHQdioc8H6oaxzaXjHCc9+FlddD41SYdyFMOGJoa0pSpW1emF6b9XrIFH+bXnvnysTxUaGRsXUTAMjmCUbrzqQEowG0ngRLfpFQiLDydzDnLcW0KkmSJEmSJElVNRKD0W4jF4yW5LS+j5Hc0yC3F7hmBHYA64EngFtijLcPpUlJkiRJkiRJkiRJkiRJkjSoC8iFnEXgshhj4vsDQwgTgG8Bmb65Ax+wuvOaFuCKEMKBMcZC3z8oSdLId+S/5A9G22lgKBr0h6IBrL45+ZrVN8GC78IZN8Lk43avP/ttuPc9g+994g8Gn6PaNnpO8nj3lv7fX8uvguVXwxk3Q6au9L3u/VtY8O3+zxd8B864HlpPLn1NSaq0x7+YXjvmP0tasqNrReJ4a8M0Qsj9lbg+XzBayPNafML3UoLRgLv+Cma9oaQwN0mSJEmSJEmqhhH308sY4+lptRBCL/1vcHpjjHFJVZqSJEmSJEmSJEmSJEmSJElFCSE0AUfS/76/a/JM/wAwjv5AtOXAFUA38Bpgdt+8GcAHgX+tQMuSJA2P7BiYdi6s/F1l1u/eBE98CU791a7jvd3wyGcHvz7TAGP2q0hrGkFa5hQ2r/02WHU9TH9ZaftsXrhrKBrkQv4e+xc4Pd8fFyVpGG14Ir128MegYUJJy7Z3rkwcb2uY9pfzfMFoXZlM+uL1LTD3nfDc95PrK34LM84roEtJkiRJkiRJqr48P/0cscLgUyRJkiRJkiRJkiRJkiRJ0jA7DKgj976/LTHGP+eZ+1b6Q9GeAg6NMV4UY/xw3zr39c0LwDsr1rEkScNl7jsru/7qW3Yf2/QMbFsx+LUtcyDU4q0HKkqhwWiQ/PupUMt+kzy+4lqIMbkmScOt/Q/ptdFzSl+2M/n7cGt2+l/O6zPpwWjdg31/nnJmem0or+WSJEmSJEmSVGH1w91AkS4ZcL5+2LqQJEmSJEmSJEmSJEmSJEmD2bfvYwQeT5sUQjgI2K9vXgQ+HWPcsLMeY9wcQvgA8Me+oQNDCDNjjEsr07YkScNg2tnk8j8rFAzVuQ4e+iSEAbcQbFlY2LUzXlWZnjSyNIyDttOg/dbB524u8PdOkhW/Ta/t6IDGttLXlqRKWfun9Nr0V5a0ZIyRjq6VibW2hml/Oc+GIQSjTX95em3Lc/mvlSRJkiRJkqRhVFPBaDHGSwafJUmSJEmSJEmSJEmSJEmSRoApA86T7/bOObXvYwA2Ab9+4YQY470hhGXAjL6hwwGD0SRJe46GCXDsN+G+v6vcHo99ofhrJhwJB324/L1oZDr6y3DLubmAsnyW/hJ6eyBTV979Ny8yGE3SyLP+MVhwWXq9ZWZJy27q2cD23m2Jtbbs9L+cZ6gjEIgJ4andg70Oj5oILfsmh6EuuxJ6uyFTU7cXSpIkSZIkSdpLDPJYCEmSJEmSJEmSJEmSJEmSpJI0DzjflGfeyX0fI3BTjLE7Zd6jA85nDaUxSZJGpP3/Fl7+CBzwwdLDoeZ/EkIZAk4O/TSc+is46w5omjL4fO0ZJh6d+z14wvdzv5dmXJA+d/VNpe3RszW9lhTcI0nD7cF/Sq/N/+eSl23vXJFaa2uY9pfzEAL1IZs4rysUcGvg4Zek11ZcN/j1kiRJkiRJkjQMDEaTJEmSJEmSJEmSJEmSJEmVEAacJ9/FnXPSgPPb88xbM+B8bEkdSZI00o0/FF70FTh/UWnXH3EptMweWg/7vj0XojLzNVDfMrS1VHuapsDcd+R+Lx34wfR5y35T2vqbF+WpGYwmaYTp2Q4rf5teb5lT8tIdXSsTxxszzYyuG7fLWH1K6Gl3poBbA1v2Ta+V+louSZIkSZIkSRVmMJokSZIkSZIkSZIkSZIkSaqETQPOpyRNCCFMBfYbMHRXnvUG3gkeUmdJkrQnqG+CSScUd83+78t9nHL60PZuG+L12nNMfFF6bcFlsP353cc3L4KNT0GMu9d6dsC2Felrrvxd8nWSNFy2LIbYm15vO63kpVd3Jr8etmWnEcKuf+WtD8lZ492hgFsDJx6dXlv6a+jtGXwNSZIkSZIkSaqymg5GCyG8JIRwaQjhmhDCvSGEp0IIzxV5LBjur0OSJEmSJEmSJEmSJEmSpD3Q8r6PATgsZc7LB5zvAP6cZ73xA863DKEvSZJqw2GfhkxyEMpuRrXCgR/MnR/4IWiYWNqe4w+DWa8v7VrtebJjIDs2udbbCVe0wj3vht4u2LEGbjgFrtoXrjkIrjsMtizd9ZoNjwF5gs/ab81dt3lRub4CSSpdjHDve9Lrs94IY/cvefmOtGC0hum7jWVDQ+Lc7kzd4BvVN0PTPsm1rvVw5UxYc//g60iSJEmSJElSFdUPPmXkCSGcA3yVXZ8SWerTH32ckCRJkiRJkiRJkiRJkiRJ5ffwgPOJIYRzYoy/f8Gcd/V9jMC9McauPOvNHXC+qhwNSpI0ok1/GZx5Kyz8AWx6JhcqtX11rjZ6Low5AOoaYfQ82P+9MGZerjZ+Ppx9Nzz7LVj3IMSewfeqa4LJJ8KBF0F2dOW+JtWe4y+DO/KE5S34Dow7BNpvh447+8c3PJa77pw/9o/d9VeD77fhMbjzzXDO3aX3LEnlsPJ30H5bev3knwxp+faulYnjScFo9SE5KLUrZArb7Nhvwm3nJ9e2rYRbXwEXLCs8kFWSJEmSJEmSKqzmgtFCCB8FvrjzU/qDzUoJOCs1TE2SJEmSJEmSJEmSJEmSJOURY1wQQniG3ENQA/CNEMJLY4wLAUIIHwZOHnDJlWlrhRBGs+vDVBdUoGVJkkae1hNzR7HGHgBH/0f5+9HeZ/S+g89Z8N1ceN8LrbkHti6D5hkQI2x8srA91/wRNi8sbG9JqpRFP02vtZ4KhYaSJYgx0tGZHIzWmp2221h9SL4FsDtTYA+j5+avb2+HVTfB9HMLW0+SJEmSJEmSKqymgtFCCOcAX+r7NPYdO8PNtgLrgXxPi5QkSZIkSZIkSZIkSZIkSdXzHXLv+4vAvsCTIYSHgDZgJv3vA9wO/DjPOqfT/37BbuCxCvUrSZKkgcYeBHXN0LM1fc6GR9Nrq2+F2W+Aro3F7bvxqfzBaDFCCOl1SRqqjU+k1yYeM6SlN3SvpTPuSKy1NUzfbaw+ZBPndhcazjZmHmTH5n8t3vikwWiSJEmSJEmSRozSH00xPL7Y93HnG6GWAe8H5sQYR8cYZ8QY9y32GLavRpIkSZIkSZIkSZIkSZKkPdtXgCf7ziOQBY4BZtEfdBaBL8cYO/Ks8+oBcx+KMeUOckmSJJVXfQvMu7D06+9+K/ysAX41ubjrHv9i8viin8K18+Hno+Hmc2DzotJ7k6Q0z3wL1t6fXp/3N0Navr1rRWqtrWHabmPZTEPi3IKD0eoaYb/3DNLUbYWtJUmSJEmSJElVUDPBaCGEecAR5N7UBHAPcGiM8RsxxiXD15kkSZIkSZIkSZIkSZIkSUoSY+wEziEXjrYzCC3Q/17AAFwBfCZtjRDCaOC1A665qSLNSpIkKdnR/wXzL84F61RL+62w4re7ji2/Fu56C2x4HHq2wqrr4YZToGd79fqStOdb+CO47+/S64dfCuPnD2mL9s6VieMtmTG01I3Zbbw+1CfO78rUFb7pkV+CQ1P/6g3Lfg09nYWvJ0mSJEmSJEkVVDPBaMCJfR93viHq7THGTcPYjyRJkiRJkiRJkiRJkiRJGkSMcSlwJPBe4LfA48AT5ALRXhdjfH2MsTfPEu8ExpJ7/2AArq1ow5IkSdpVpg6O+AK8YQtkGqq37zP/s+vnz35r9znblsPya6rTj6S9wzPfzF+f89Yhb9HeuSJxvLVhWuJ4fcgmjneHIm4NDBk4/LNw+OfT56y4rvD1JEmSJEmSJKmCaikYra3vYwQeiDE+M5zNSJIkSZIkSZIkSZIkSZKkwsQYu2KM34oxviLGeGjf8boY4xUFXH4ZMGHnEWO8o7LdSpIkKVHIwNiDqrffugd3/Xz51cnzFlxW+V4k7R1i3P21Z6D60dA8Y8jbdHStTBxvKzYYLVPCrYHjDkmv5fvaJUmSJEmSJKmKaikYLQw4f3bYupAkSZIkSZIkSZIkSZIkSVUTY9wWY9yw8xjufiRJkvZq+76tvOvNe3d6besSuONNsOxquP+i9Hmrri9vT5L2XlsWQs+29PrsN0GmfsjbtHeuSBxvy05PHE8NRgsl3Bo47dz02ubnil9PkiRJkiRJkiqgloLRlg84rxu2LiRJkiRJkiRJkiRJkiRJkiRJkvZGB/4DzH5z+dY7/FI44gvp9SWXw23nw9NfTZ8Te6FnR/l6krR36u2Bq+al1yefBEf/59C3ib10dK1KrLU2TEscz6YEo3VlSrjFrr4J2k5Prm1ZWPx6kiRJkiRJklQBtRSM9tiA85nD1oUkSZIkSZIkSZIkSZIkSZIkSdLeKFMPJ/1f+dZrGA8HXjT0dZZdOfQ1JO3dVt2Qv37WHZAdPeRt1nU/T3fsSqy1NUxPHK9PCUbrDiXeGjjr9cnjGx6D7q2lrSlJkiRJkiRJZVQzwWgxxkeAR4EAHBNCmDDMLUmSJEmSJEmSJEmSJEmSpBKFEGaEEF4cQrgghPC2EMLbh7snSZIkFSAEGH/E0Nepa4S6UVDfAtmxQ1ur/bah9yNp75bvdWT8EbnXvjLo6FyZWmvLTkscTw1Gy5R4a+DoucnjnevgmW+UtqYkSZIkSZIklVH9cDdQpP8AvgfUAR8GPjm87UiSJEmSJEmSJEmSJEmSpEKFEGYDHwLOB2YnTPlhwjWnAi/p+3RdjPFrletQkiRJBZlxAax/aGhrZMf1nzfPhA2Plb7WM/8Nm56GcYf2j9U1wKTjYPorc+eSlE/H7em1ma/Je+nWns08vPlelu9YTCTmnbtqx9LE8TF142iqa0mspQajhRKD0VpPyYVT9mzfvfbAR2HSCdB2SmlrS5IkSZIkSVIZ1FQwWozxByGEVwKvBT4WQrgzxvjb4e5LkiRJkiRJkiRJkiRJkiSlCyFkgEuBj5J7OGpImJZ29/jzwGd31kMI18UYF1SgTUmSJBXqoItg9c35g4QG0zC+//y4b8MNJw2tp1U35I4XmnImnHYV1DcPbX1Je67n/wgdd6TXD/xgamlNVztfXfoZOrpWDqmFtobpqbVspszBaNnRsN974an/TK7feCocfxnMu7C09SVJkiRJkiRpiEr86eewegdwFblQtytDCJ8LIYwf5BpJkiRJkiRJkiRJkiRJkjQMQghZ4HfAx0l+oGtaIFquGOMTwC30h6m9pawNSpIkqXgNE+CMG+GMm+Cof4d9zhvaepNeVJ6+kqy+CRb/tHLrS6p9D3w0vXbMV3YNcnyB69dcMeRQNIDW7LTUWn1IDkbrytSVvuH8j0N9S3r9zx+C7q2lry9JkiRJkiRJQ5D0BqMRK4Tw6b7Th4CTgMnAPwP/GEK4G3gcWAf0FrNujPFz5exTkiRJkiRJkiRJkiRJkiT9xWXAS8kFoEVyAWe3kws76wQ+X8AavwJe0nd+NnBp+duUJElSUeoaYOoZueOAv4fLm4q7vnlm/3kmm/t869Ly9rjT8mtg3l9XZm1Jta1zPXTckV4fs3/eyx/Zcl9Z2mhrKD4YrTtkSt+wsQ0OvAge+3/J9a6N0H47TD+n9D0kSZIkSZIkqUQ1FYwGfJZdnwy58w1SzcAZfUcpDEaTJEmSJEmSJEmSJEmSJKnMQghnAm+l//1+zwJviTHe31efTWHBaNcCX+9b49gQQmOMcXtlupYkSVLR6hqh9VTouH3X8cwoaBgH29t3v2bKmbt+3jK7csFo6x+Bpb/OndePhsnHQ3ZsZfaSVFs2L8xfn3xSaqmzdwfru9eUpY2Dmo9MraUGo2WGEIwGcPBH4On/hq4NyfUn/wNiD0w6Fhpbh7aXJEmSJEmSJBVhiD/9HBF2PkGyFKGcjUiSJEmSJEmSJEmSJEmSpF18pu9jABYDJ+0MRStGjHExsL7v0yxwUHnakyRJUtkc9lmoa9p1bP7F8KL/hlC/6/jYA2Huu3Ydq2RQ2eYFcPtrcsctZ8OvWmHRTyq3n6TaseqG9Nphn8uFO6Z4vmtVWVo4esxJzG7cL7WeGowWhnhrYMMEOOnH6fVVN8Ctr4Ar2uDRL0As9RY+SZIkSZIkSSpO/eBTRhzDzCRJkiRJkiRJkiRJkiRJGuFCCBOBk+h/+OlFMcbnh7Dk433rARwAPDiEtSRJklRuU8+As+/OBY51roN9XgEzXpWrNe0DSy6HrUth0vG5ULTG1sLXDvUQu3PnDRNz6z73vdJ77e2Eu94KradCy8zS15FU+x78p/TaYZ/Ke2l758rE8UCGQ1uOGXTrprpm9m86lBPHnUEI6bfMZdOC0TJDDEYD2OeVMGZ/2PRM/nkPfxJaT4IpLxn6npIkSZIkSZI0iFoLRvMnp5IkSZIkSZIkSZIkSZIk1YZTgJ13abfHGK8a4noDQ9XahriWJEmSKmHCEbnjhVpPzB15rz0aVlyXXHvTDggvCADasQaWD+WPmBGW/hIO+tAQ1pBU07YsSa9NPXvQyzu6ViWOT85O4b0z/rnUrnZTnxKM1hXqyrPB7DfBo5cOPm/x5QajSZIkSZIkSaqKmgpGizHeOtw9SJIkSZIkSZIkSZIkSZKkgkzr+xiB+8uw3qYB56PLsJ4kSZJGklmvhcc+v/v45BN3D0UDmPvOIQajAWvu7T/v2Q5dA/7ImamHhglDW1/SyLbxqfTahCMHvbyjc0XieGvDtMTxUqUFo3VnEl4bSzHpuMLmbXq6PPupcD3bc0f9GMjU5c4zoyAE6OnMfa9K+h4pSZIkSZIk1biaCkaTJO3B1j8CT3899480s14P01+R+4caSZIkSZIkSZIkSZIk1aqJA87XlWG9pgHnXWVYT5IkSSPJhCOh7XRo/8Ou4wdelDx/+itg9H6w+dn+sUwWpp4NK64tbM/FP4PlV0P3Fsg0QG/nrvWWOXD4pbDvWwv8IiTVlDX3pNf2/7tBL+/oWpk43pqdWmpHiepD8i2A3eUKxJp2Low9GDY+kX/e6lvg2e/Afn9Tnn2VbsH34J4Lk2vZsdC1EeqaciFpc98JR/1bLiRNkiRJkiRJ2kP4OABJ0vBbdSP89kh49n9h4Q/h1vPg0UuHuytJkiRJkiRJkiRJkiQNzcYB52PKsN6UAedry7CeJEmSRprTr4H9/x7G7A+tp8LJl8PsNybPrWuAs++EOW+Dln1h6lnwkt/DaVfDMV+BiS+C7PjcUdeUvAbkQtFg91A0gC2L4O63wcobhvylSRphYoSHP5Vcqx8No/cddImOzlWJ460N04bS2W6yoSFxvDtTRyzHBpl6eOltsO87oGV2/rn3vhuW/rocuyrN8mvSQ9EgF4oG0LMNutbDU/8FD11cnd4kSZIkSZKkKvExAJKk4RUj3P8BiL27jj/2BZh3ITTPGJ6+JEmSJEmSJEmSJEmSNFQdA873H8pCIYQ64KgBQyuHsp4kSZJGqPoWOPbrhc9vbIOTfrj7+IEfzB07LfkF3PGG0vta8B2Ydlbp10saedY/kl6bccGgl3f1drKu+/nEWmu2vMFo9SGbWusOGbIvvB+jFI2T4cTv587XPwLXHZ4+d8F3YOarh76nkj377eKvWXAZHPEvkKkrfz+SJEmSJEnSMMgMdwOSpL3c+odg45O7j/d2wtIrqt+PJEmSJEmSJEmSJEmSymXnXeYBODCEMJQn5L0MaO47j8Afh9KYJEmS9jLjDh3a9esfLk8fkkaO9Q+l18bNH/Ty57tWE4mJtbaGMgejZfIHo5Xd6HmQGZVezxcqp6FbflXx13SuhW3Lyt+LJEmSJEmSNEzqh7uBoQohZIETgVOBecBEYAxAjPHMYWxNklSIFb9Lry35xa5PapMkSZIkSZIkSZIkSVLNiDE+EUJYDuxDLhztw8CHil0nhJABLt65LPBQjHF92RqVJEnSnm/cwTDxWFh7X2nXb3wSenZAXZ6gIO2ZOjfAI5dAx23QvRm2LIae7blaYxs0TNh1fmYUTDoODrsEmqdXv18VZtmVcPfb0+tz3jLoEh1dKxPHAxkmZdtK7SxRfUi/BbA7k4Hesm4H9c0w6/Ww6MfJ9a1LYfm1sM8ryrzxHqbjTnjqq31BcuX+RUpw/UmwbUXuvHkmnPBdmPrSyu8rac+w5n548su5QOBxh0J2NCz4LrwwBHTGq2Deuwf/HrD4clj4Y+jZBjNfA/u/F0KoWPuSJEmSpD1PzQajhRBayL1B6v1A6wvL7Pa37b9c92bgC32frgWOjTEmP55DklR5+Z4U9PzdsGMNjJpUvX4kSZIkSZIkSZIkSZJUTv8HfIzc+/reH0K4LsZ4Q5Fr/D/ghAGff7tczUmSJGkv8uLfwJ1vhI47Srv+hpPh3PvL25NGtt4uuPHU9Pe8b2/PHS+0/mFYcS284gloGFfZHlW8hT+Gu9+WXq9vgZZZgy7T0ZkcjDYx20p9yJbaXXJLedbrDpmy7vUXx34zFya58ank+q2vzL2uznhVZfavde23wc1nQW9n9fbcGYoGufC6m8+C064xwE7S4NbcBzeelgsxA9jwWPrcZVfCsqvglMtzIZpJnvkfuO+9/Z+vvikXLnvUl8rXsyRJkiRpj1ehn3xWVgjhcOBPwCVAG7k3TBXqamASMAc4Cjir3P1Jkoqw8cn0WuyB5ddUrxdJkiRJkiRJkiRJkiSV278CG8k97LQOuDKE8J5CLgwhTA4hfB/4KP0PS10FfLcCfUqSJGlP1zwdzrodXvZAadev/ROse7i8PWlkW35N/geB57NtJTzzzfL2o/J4/Iv56/v9bUHLtHclB6O1ZqcW29GgsqEhtVaxYLTsaDhnkDDIxw24SfXkl6sbipbmiX8b7g4k1YKnvtLBKQYhAAAgAElEQVQfilaQCI+lfD+NMfm15+mvQ/fWktqTJEmSJO2dai4YLYRwCHArsD+5QLSdb3YKFBCQFmPcDPxiwNBry92jJKlAsTd/MBrAst9UpxdJkiRJkiRJkiRJkiSVXYxxLfBB+t/v1wh8M4TwTAjhX4DzB84PIRwXQnhbCOFHwALgbfS/P7AHeFeMcQTcWSxJkqSaNe4wqGsq7drn7ypvLxrZhvrrvfK35elD5dO5ATY8ln/OmP0KWqqjMyUYrWFasV0Nqj5kU2tdmbqy7/cX2dHQOCW9vuYe6O2q3P61rGOEfL9ovzV3744k5dNxZ/HXrPszdCeEqW1fBZuf2328Zyusvrn4fSRJkiRJe6364W6gGCGERuAaYBz9gWiPAF8BbgFGAU8UsNSVwIV952eWuU1JUqG2rcr9UDMf3zwgSZIkSZIkSZIkSZJU02KMPwwh7Ad8ktx7/wIwD/jYC6YG4O4XfB4HXPOJGOP1le9YkiRJe7RMHcx4NSz+SfHXPvu/sPZP0DwTZrwKJhxR/v7Ub+2fYNnVuXCmGRcUHFg1JKtuhJU3QOdaWP2Hoa3VfhusvB6mnV2W1lQGWxYOPmfGBQUt1dG1KnG8LVuJYLT0WwC7Q6bs++1i5mvhmW8k12JvLvxm7IGV7aHWdG2CHR3D3UW/2y6Afc6H2W+A7Njh7kbSSLJpASz5OWxZVNr191wI9aMh1MGEI2HWG3KvgWm2JX/vlCRJkiQpSU0Fo5F7auQc+kPRvgr8Y4y5xxaEEGYXuM4t9L9Rat8QQluMsb3MvUpSabYshQc+nHvSwpj94NDPwNQzhruryti2fPA529uhcz00jK98P5IkSZIkSZIkSZIkSaqIGOOnQwgLgG8ATfS/DzAMON/5OewaiLYDeE+M8UdValeSJEl7uqO+BBsegfWP7Doe6uHwS+GhTyRft+6B3AHw2OfhpJ/ArNdVtte91cIfwx/fkQteAnj0Ujj9d9B6YuX2fPjTuX3K6ZZz4Ogvw0EfKu+6Ks3mAoLRmgYPNuuOXaztSg6+am2oRDBaNr2XTIWD0Q77LLT/ATY8nly/9lB4w2aoG1XZPmpFjHDj6cPdxa6WX507nv4anHETNE4e7o4kjQQdd8EfXg5dG0pfY/HPdv38yf+EI780tL4kSZIkSepTa8FoH6D/DVC/iTH+QymLxBg3hxAWAfv2DR0MGIwmafh1b4UbToGtS3Kfb1sBN58JJ/4Q5rwVQsh/fa3ZWkAwGsCmZ2DSsZXtRZIkSZIkSZIkSZIkSRUVY/xBCOEW4GPAu8gFpEF/GNpAAegB/g/4bIxxUVWalCRJ0t6heQaccx88/0fY+ERuLDse2k6F5n2gcx088a/51+jtggc+AjNfA6HCwUR7m95uuP8D/aFoAF0b4cF/grNuq8yeW5fDY18o7dpDPgHPfgs61ybXH7oY5l4IDeNK70/lMVgw2uGfL2iZNV3tRHoTa63ZKgejVfr1p7EVzn0ALk8JPovdudAtQyJz1twL6/6cXAt18KKvkfxjkASd63Pfj5r3gUxD7vvO1qXQMAEaxsPWZRCyuV+j+98/+HrrH4YF/wvzLy74y5G0B3vo4qGFoiXZ9DQ8+rn0euwu736SJEmSpD1azQSjhRAOAfbp+zQCHx3ikgvoD0abC9w6xPUkaeiWXdUfijbQ3W+HBz8OJ/8s94/te4ptBQajrX/EYDRJkiRJkiRJkiRJkqQ9QIxxCfD+EMLHgFP6jpnAJKABeB5YDdwF3BRjXD9cvUqSJGkPVzcKppyWO15o7IGFrbFlMWx4AsbPL29ve7tVN0JXwl8FOm7PPYy8vrkCe96waxBbMQ68CDY9BUuvSK73bIf2W2HG+aX3p/LYMkgw2uh989f7tHeuTBwPBCZnpxTb1aAyIUMd9fSwe6BMV6au/5MpZ5R9bwDqGmDScbnQryQrrjMYbacVv02vNc+E/d9bmX0LCUaD3K+VwWiSurfm/mxSCeseSK+VO4hNkiRJkrRHq5lgNODIvo8ReDTG+NwQ1xv4LyQ+ckXSyLD4p+m1bSvgxhfDYZfkwtHaTqv9J4ttLTAYbfk1MO/CyvYiSZIkSZIkSZIkSZKkqokxbgWu7zskSZKkkWXqS4FA7haWQTz4T9B6ErS+GCYfD5lsf61rM6y+Ofeg6MY2CHWwfRW0zIFp58CoSRX6AmrcxqfSaz3byhuM1rMD1twDj1xS2vUTjoSmKTDjNenBaABLfwWd63Lno1qh9WRo8HamqtucJxgt1MGUMwtapqMrORhtQv1kspmGUjobVH2opyfuHozWPfC+kkM/XZG9AZh2bnow2srfQ4wQQuX2rxWrb06vTTu3cvvOeRss+tHg8zruhCW/hMknQfP0yvUjaWSKETY+AYvy3MNYSSt/Dwd9GHo74fk/wtalufFQBwQYfxiMP7T275mUJEmSJJVFLQWjtQ44f6YM6+0YcF6BR8VIUglW3TD4nEc+k/s4/eVw6q9zT96pVdtWFDZv9c3+I5kkSZIkSZIkSZIkSZIkSZKk6miZBQd/BJ74t8Hnrrg2dwA0z4Kz786FzTx/D1x/Qv5rT70CZr566P3uafK9bzwWEFZXqE0L4A8vg00l3qZU1whH/EvufPabYMG3of3W5LkLf5g7dsqOzd0PMPWM0vZW8WJv//+rSeb/cy7krgAdncnBaK0NU0vprCD1mSw7erbvNt6d6QuPmfX6XOBepez/Xnj0c8m1bSvg7nfA8d+p7XtchiL2wp//ETpuT59z8Icrt//8jxcWjAZwx+uBAMd8BQ78QOV6kjSy9GyHu98JSy4fvh5W3wJXtOV66dmWPGf6K+GUn0F9S3V7kyRJkiSNOLUUm9044HxH6qzCDXysyqYyrCdJQ5cdW/jcFdfBs9+qXC/V0F3gy2/XBtiW/A+HkiRJkiRJkiRJkiRJkiRJklR2R/0rvPgqOOD9MPst0FhA4NHWJfDgx3IBOXe9ZfD5d7weOjcMvdc9Tr7bnXrLt8197xs8FG3c/Nyv/8EfgZfeBmfdAQd/FA79NJxzL0w/NzcvUwdnFPCg9J26NsKdb4LertL7V3FWXJde2/ftcPglBS/V0bUqcbw1O63YrgpWH7KJ493TzoGTfpI7MvUV25+mqXD8Zen1RT8qPJhrT7T8WnjqK+n1Qz4BY/ar3P7jDoFXLYGDP1bgBRH+9EHY8GTlepI0sjz7ncJC0Y78Irz4ylxgaKbve092HLSeAs0zYMoZuT8bzXxdaX10rksPRQNYcQ089dXS1pYkSZIk7VEq+NPOsnt+wPnkMqw3d8D5mjKsJ0lDV9c4+JyBnvtebT+dpTvPDzFfaOOTuSenSZIkSZIkSZIkSZIkSZIkSVI1zDgvdwDc+Vew+CeDX7P0V3DgRbD5ucHnxh5Yfg3s+1dD63NPE0J6LfaUZ4/OdbCqgCCzee+Ggy7adaz15OS5mSwc+il49NLCetjRAe23wtSXFjZfQ7Pop+m1/d9X1FIdnckPfm9tqFwwWjYtGG3Om2H8WRXbdxcTjspfX/ILmPfX1ellpFnyi/z1ySdUvoeWmXDUl3JHz3a4vGnwa5b8Ag77VOV7kzT8lg7yOgUw6Xg45J9y5zPOhyM+nz439sLlzdC7ozz9DbTk5zD/E+VfV5IkSZJUU2opGG3nozQCMMhPUfMLIUwCDh4w9OxQ1pOksogRdjw/+LyB1j0A6x6CCUdUpqdKy/d0hxfa+CRMPaNyvUiSJEmSJEmSJEmSJKkqQghZ4ETgVGAeMBEYAxBjPHMYW5MkSZLSTT6hsGC0nu3w1FcLX/fJf4fWEyHUQfNMCJnSe+zalHtYdyY5QGmP0Ntd+rVdmyAzCuoaYNMCIA5+TbFhRpNPLG7+yt/DuEOhaWru8+3t0L0ZGibkDpXPloXptfGHFrxMT+xmTVd7Yq01W7lgtPqUYLSu2FmxPXcz9iDIjoOuDcn1jruq18tIs+np9FrIwMQXVa8XyH0vmHA0rPtz/nmrroe5b899/+nakAuNbJoB9OaCKOtbqtKutIsYYduKCgRuhb7XsPXQND33/8merGvjrvcqbszzOrVTMX/uCRmYfDy031Z8b4NZ92Du9YgAnWsHmZyBlllD+zO0JEmSJGlEqqVgtLuAXiADTAohnBFjvLnEtS4kF7AGsAW4vwz9SdLQ7FgD3VuKv+63R8Kbe/M/FWuk6tle+NyNT1auD0mSJEmSJEmSJEmSJFVcCKEF+BDwfqD1hWVSUglCCG8GvtD36Vrg2BhjAQkGkiRJUhnNeQs8/iXYtnzwuYt+XPi66x6Eq+blzkdNgsMugQP+vrjetq2Cu94C7bdCXRPMfRcc/V+QqStunREjz3vjYwnBaNtWw11/Be235ILRJh4NHXcOfl3rqTDpuOL2mnoWjD8C1j9U2Pwn/j13JJl4LJzyMxg9t7gelOz5u5PHs+OKCn9a09VBLz2JtbaG6gejdceuiu25exNNcOAH4dFLk+vdm+Cq/eCkn8DkIv/fqWVblsCae9Lrc94GzdOr189OB38U7npz/jkdd8CVc9Lr018JJ/3QoEZVz+Kfw4Mfzx9mWQ6ZLMx6Axz37dxr255k4J97Ym/h19WPgf3+tri9DvpI7nWkmH0K9cuJhc9tmADzL4aDPlyb91hKkiRJkhLVTAR2jHEdcN+AoUtDKP5vqCGEfYCPk3sDVQRuiLESf+uWpCLlezrMYB65pHx9VFPPtsLnPv21yvUhSZIkSZIkSZIkSZKkigohHA78CbgEaCNv0sFurgYmAXOAo4Czyt2fJEmSNKhRk+Dsu2HuOysXVLVjDdz/flj6m+Ku+8MrYHVf+EX3Fnj66/DIpyvTYzXku12ot4RgtNsugNU35f779GwbPBRt/BG5YI2X/K74cI1MPbz0D3DA+2HcodA8K3fUjy6+77X3wU1nQm9yCJeKsPTX6bWTLy9qqY6ulam1ydmpRa1VjBERjAa58MZ5706vb14AN58BO9ZWr6fhFCPccEp6ve00OP471etnoDlvglOvgGnnlr7GimvgzkHC1aRyWX1rLtCr0qFoAL1dsOj/cn/u2tPcdn7/n3sKNeuNcNbtMO7g4vaacR68+GqY/gpomd3/557mWVDXWNxaQ9G5Dh74KCz+afX2lCRJkiRVXM0Eo/X5yoDzE4D/KebiEMIU4CpgAv1vqvpyeVqTpCHa9Ezp1z56CXRtLF8v1VJMMBrAmvsr04ckSZIkSZIkSZIkSZIqJoRwCHArsD+59+7FnSUKCEiLMW4GfjFg6LXl7lGSJEkqSMtMOOF7cP6Cyu7z3HcLn7vhCVj3593HF/64fP1UXZ6/JsQig9E2PAlr/lj4/GnnwssfhKP/Heqbi9trp4bx8KKvwSsegQsW546DPlTaWlsWQfsfSrtW/Z75ZnqtyKDDjs7kYLTx9ZNoyIwqaq1iZFOD0UoICxyK/8/efYfHUd1tH/8eraolW5Z777gXsKm2AYNN7wkQAk+AUEMq6SEJLaQ8SQhvypMQkkACCaEaTHXoBowxNsXghnvvkqtsWdqVzvvHSPFqvbN1drQr3Z/r2ks7c86c81Pbnd2duccY5/8jltB+WP+4P/W0tMp34cAG9/bj7ncCE1tK34vglJlw8gupj7HlJTiw0buaRKKxFj78VvLP8+la9wiEkjy/LZvtWQJV85Lb5nM1MPlRqBiX2py9z4Ypz8MFaw/t91y4zhn3cgujfpTauKlYlcQ+tIiIiIiIiGS9nApGs9Y+CixoXDTAdcaYt40xJ8bazhhTaoz5UuO2R+IcVGWBl621cS7zIiLik33L09t+/XRv6vBTssFoy36bmTpEREREREREREREREREREREJCOMMcXA80B52OqFwLXAIGAECYSjAc+E3Z/qWYEiIiIiIqnqdXbmxt69KPG+buFDB9ZDfa039fguxkuEhmByQ215Kbn+Hcck19+PcZP5e5DoYoU6lfZPaqgdwejBaF0LeiQ1TrLyXYPRkvyf8EJBh/g/t7byd7t7oXtbQQco7edfLbF0HJ3e9ttne1OHiJuNM6IHvWZafQ1Ur/Z/3kxJ9rG3/VAIFGemlibdT83s+OH2tJHnHhERERERkTaiBS83kLKLgblA58blScAsY8xWYGV4R2PMvcBQ4ASgiENXmjTAJuALPtUsInK4vcthzUNwcDv0PN1ZjqbiKAjuif8m63vXwoDLIZC5Kwx5LtlgtE0vOB9k50X/QE9EREREREREREREREREREREss7XgQE4x+4B/B74lrW2AcAYk+gZ6G9w6Pi/gcaYbtba7R7XKiIiIiKSuMHXwuYXMzP2/jXw8iTAgglA9SqoCQtjKunpfK2JHtD0X3W7oaR7ZmrMJBMjGM2GoKEelvzCCVGp2Rx7rHg/o2bzBmDglYn3T0avc6GoK9TuSH7bD2+Gpb+EDiNgyI3Q/1Lv62vNrIW9S6O3FXWGQGFSw+2o2xp1fdfCnslWlhS3YLSgrcvovK4GXQsLb3NvX/FHJ6Bx5Peh6yT/6vLL/nXw8Y9g7cPufQZ8IXvOfyntBz1Og62vpLb9nM/Dojuh+ykw7hdQWB5/G5F4DmyGj2+B7W87+z4t5dWTmp+PVzoABlwBR3w59j5JNln7KCz7LVS9l9x2g6/JTD3huk9xAmJjBUl65eA2CNVAfknm5xIREREREZGMy7lgNGvtamPMucDTQE8OHejUEwi/tIYBbgi7T1jfjcC51tpKX4oWEYlU9T68Ps0JPANY9Vf3vr3Pg9G3QtU8eCXWh0EWXp0Cp70NeTny8J5sMFpwN2x/C3roor8iIiIiIiIiIiIiIiIiIiIiOeJrHApFm2GtvTmVQay11caYtcDAxlUjgDYXjGaMKcC5oGw/nOMmq4HNwEfW2rUtWJqIiIhI29P3MzDhD/DB1zIzfuUc97ZEw76CORqMRowQkoYQzP8SrPqb99Oe9Ax0HO39uOAEdEybBXO+ALs+TH77mi3Obdvr0FAHA//H8xJbrXWPured+HTSw+0IRv//61rQMsFooYZQRud1NeqHENoLS+9277PpOdjyMkx7E7oc519tmVZbBS8dDwejh+T91/jf+FNPoiY/Bu9eBVv+Aw3B5Lff+6lzq3wXzngf8gLe1yhtR3AfvHw8HNjQ0pVA3c7myzVbnL/zul0w+sctU1MyVv8D5n4xuW0KyuGIm2DEdzNSUjMmD05+znn82f4Wh94qBkoHQmnfxvUeWf4HGPk978YTERERERGRFpMjyTnNWWvnGWPGAw8AZzWtjvjabBOcT0UM8ApwlbU2zjuPIiIZtOiuQ6Fo8bQf6gSddZ0I562A545w71s1F9b8EwYn+WZmS6k/GH39pEfhncuit216TsFoIiIiIiIiIiIiIiIiIiIiIjnAGDMS6N24aIF0z7RbxaFgtEHAm2mOlzZjzCDgGODoxq/jgfZhXdZZawd4ME9X4E7gc0Anlz5zgHustdPTnU9EREREEjTsqzD0KxDaB6H90YNm8kvB5ENhubMc3AvWOseTh/bDCyMzV1/drsyNnVExgtEObnECQLx26mvQ41Tvxw1XPhLO+gDqdjvH/X/w9dTGWXq3gtGSsfhn7m0dRiQ1VIOtp7JuW9S2boUtFIxmUwi48kJeAI76NVQcBXOucO/XUAvL/691BaOtfTh+KNqoH0OgyJ96ElVYASc/C6EDsG8lzByX2ji7FsC216Dn6d7WJ23L+scTC0Wb+gaUDUpvrmf6p7bdst/CiO9BoDC9+TNtaQIhjAOvhLF3NS4YKOnlb7hhaX8nIDa479D+aaAdFHdx7jeEnAC1R+LUdME656sNwbNDiHo6+ZJfKhhNRERERESklcjJYDQAa+024BxjzATgG8BUnKsfRrMHeA34g7W2xQ+EEpE2zjbApmcT798+LAit/RDnCglvnufef92juRGM1hAEWx+9raQ39LvUeZM70p7Fma1LRERERERERERERERERERERLxyZONXCyyy1q5Oc7zdYffL0xwrZcaYKcAtOGFoUUPKPJ7vLOAfQLc4XScCE40xDwM3Wmv3Z7o2EREREQGMgYIOzi0RTf2agtKKu8PB6EFLaavbHb9PNjIxgtGq5jlhGF6rSDEgKBWFHdO7WPjujyFUA/kl3tXUmtVWubcVdU5qqJ3BSuqJ/vfXtSCzwWgFeVkWjNYkkXC5qnmZr8NPle/F7xN+LlC2yW8HFWOhqAvUVqY2RtU8BaNJeirnxu/T71LoPiX9ubqcAJXvJr9dbRVUr4by4enXkCnBatizKH6/iiOhtF/m64mnoL1zi5TXeKr74Oth1V+jb9vnwubfQ0E5BKPs69YfdEKIY+1PioiIiIiISE7I2WC0JtbaD4Ar4b9XXuwLdAYKgUpgG7DYWtvQYkWKiITbvz7xvkVdoNNRzdd1OxnyyyBUHX2bba87H2AXdky9Rj/U17i35Zc4Vw2KFoyWs1ctExEREREREREREREREREREWlzuobdX+HBeLVh99t5MF6qjgR8Ofu3MYRtBs4xkU0s8CGwGugIHAV0CWu/AuhgjLlQx06KiIiI5IB+l8Dy/8vM2It+Aqv/7gTfbHvdCWUb/1sY+IVDARTZyFr3tn1evLSI0OvspAOy0tZhBJSPhD1LUtt+9qVOuBFA2SAnPCby3AOB0AE4uDV6W+nApENTdgS3uLZ1KeyR1FjJyjfRg9GCti6j88ZVcSSUDYHqle599i2Hd6+CrpNh4FUQKHTvmwt2L4jdnlcEfc7zp5Z09LsEVtyb2rarH4TdC2HrK855Pv0ugZLeENoPHUfDoKsTDwyVtmfLy7Dqb7H75BXBmDu8ma/fJakFowGsfgCO+pU3dWTC/rUJdDLQ97OZrsQb/S5xD0brd2nz5YpxsP3Nw/vVH4Btb0CPU72vT0RERNq2fatg7cON7+XEeO/K5EOnCc7roqKMX2NLRKRVy+JPMZLXeDXJdK8oKSKSWdteT7zv8G9D5FV9CtrD+N/AvBujb2NDsHkmDPh86jX6IRQjGC2v2D3YLVevWiYiIiIiIiIiIiIiIiIiIiLS9hSH3a917ZW48rD7+zwYz2u1wEZgsBeDGWP6AE/RPBTtHeB6a+3SsH5FwI3A3UDTwUbnAT8FfuhFLSIiIiKSQWN/Ars/ge1veT925btAWBBIcC+8dw1sfBpOmgEmz/s5vWDr3du8DkYrHwlH/8HbMRNhDEz8N8w6C2rcw7ZcbX6++fKn98CJ06H3ud7U11qse8y9bdK/kx5uR13031WHQAXFeSVJj5cMt2C0kA1ldN64jIHJj8Ksc+DgNvd+ax5ybuseg1NmHn6uTK6o2xU70DBQDBMfhsIK/2pK1difOuFmO2Ynv231yuZheOufaN6+6n6YNis3fg7iryW/ggXfj90nrwgmPw7lI7yZ84iboHIurH88+W2X/hra9YNhX/WmFq8lEq57/ANQ2i/ztXihxzQY9WNY/NPm64d8yQlNC3fsX+H5odHHeX0qnPqawtFERETEOzs/gNdPc14TJmLdv2HVX2Dqm1DSPbO1iYi0Yq0qGE2ygzGmAJgE9AN6AtXAZuAja+3aFixNpOXtXQ7vXZtY3/KRMPxb0duG3OAkBf/n6OjtW1/N/mC0+hjBaPklUOASjBZUMJqIiIiIiIiIiIiIiIiIiIhIjqgMu9/Fg/EGhd2v8mC8dASBxcD7wPzGrwtxjp17w6M57gTCzyCeA0yz1h4M72StrQV+b4xZDzwd1vQtY8x91tp1HtUjIiIiIplQWAFT33DCaWYe6c+cm56DbbOyNywilWC0bifBEJeLjzeprXLCmAo6OMtlg6BiPAQKY2+XKRXj4PzVUPke1Gxy1hX3cM4l2LUA6nbCnCsSG6uhDhbcAr3OcYKqxDH/Jve2ivFJD7cjGD0YrWthj6THSpZ7MFow43PH1WkCnL/GCeybfWnsvtteg00vQN8L/anNayvudW8b9k0YcxsUupwPk22KOsHUWbBnkRP2VlgBJT1h33KorQTb4ITZVc1Lfuzdn8Dqh2D4NzwvW3JY3R5YeEfsPkO+BOPvhvxS7+YNFMOkR2HsXVC9Ckp6O/sTDWHXcVj8M/fQww++Dt1PgY6jvKvJC9bCyvti9ykfBYOu9qUcTxgD4+6CI26ELa+ADUKP06B0wOH7N+2HOL/b+oNRh+KTW7N3X1dERERyz6K7Eg9Fa7J3mbO/Nua2zNQkItIGKBitFTLG/AO4yqPh1llrByQ4b1ecA7E+B3Ry6TMHuMdaO92j+kRyy7wbEu979J9if8DaaYJzxYpoH6qsfsC5mlfv82DAFZAXSL5Wr9RshZV/ca72cmA99D4fxt/jfPDqJlDi/kFQ3W7njVt9WCsiIiIiIiIiIiIiIiIiIiKS7bY2fjXAUekMZIzpDIwIW7UynfHS9CDw58iAMgDj0TEtxpgjaH4cYB1wdbQ5m1hrZxhjHgzbrgi4HbjGk6JEREREJHNMnhOS1ft82PSsP3Oufyx7wyJiBaOF9kdf3/UkGHB5ZurJpEAxdD/58PUlZzpfV94H299KbKw9i+DgVifYSKCh3v1vqV2flALxdgS3Rl3ftSDzP/OCbA5GA8gvgb4XO2FGbv+nTba8lLvBaNvfdm8b+pXcCUVrkhdwnn8qxh1aF36/XT946/zUxl77sILRpLnKOVBfE7vPETd5G4rWxBjoMNS5AVSMbd6+eaZ7MBoWFt0Jkx/3vq50HIz+nNTMsBz9H2zXBwZ/MXYfY5yQW7ffW+UcCFZDQZn39YmIiEjbYq0T2pqKrS8rGE1EJA15LV2AZL047zQ5jDFnAYuAm3AJRWs0EXjSGPMvY0wG3qESyWLBfbAjxgcg4TofG/3DzUgVMY4X3fAkzL0K3vmcs8PdEqrXwsxxsPB2JxQNnA/qnxvifJDlJlDiXGkmGlsf/0MyEREREREREREREREREREREckGc4CGxvudjTHppC5cgxOwBrAfeD+dwoi/y6YAACAASURBVNJhrd0VK6DMI5cD4VdDfMpauyKB7X4ZsXypMabYu7JEREREJKN6ne3fXCv/Agvvci7UveNdaAj5N3c8sYLR3JQN9L6ObJDs38S6x5xAMIGajWBd/q5L+6c05I66LVHXdyvMfDBafrYHo4ETUtPzrPj91ufw3+m+GDntZYP8q8Mv3U+GQLvUtt05H6pXe1uP5K7qtbDwJ7H7tOsH5aN8Kecwvc6J3b7+CfjgZtjzqT/1xFOzBRb/b+w+JgC9z/WnnpYS7/e2f60vZYiIiEgr1BB0grGX/wmW3g31B1IbZ8c7sOp+2L3Y2/pERNqInApGM8aMNsa83nh7zRjTLYUxujdu2zTO0EzU2opMj9fBGDMFmAGE/z4s8AHwBPAKUBmx2RXAI8aYnPobFElLbRXYhvj9ADofl1i/DsPj99kwHSrfTWw8ry28Aw5uj9724Tfdt8svi32VnAMb0ypLRERERERERERERERERERERDLPWrsLmB+26i5jjHHr78YY0xv4Ac5xaRZ4xdpED8TJWRdFLP89kY2stUuB98JWlQKne1WUiIiIiGTYgCug64nx+5X0hE7HpD/fwttg/pfhlYnw5rkQrE5/TC8oGO2QwddDpwmJ9//wm/D2RRBK8YTd1mTzf9zbjv5T0sM12AZ2BLdGbeta0HLBaMFsCkYDGHMHFPeI3aduF7z9mdz7Ow3ug2qXYLSBVznBcK1NQQc4MjKDPQnPDoZPf+tdPZKbVtwLzw2GqrnuffIKYfw9kBdw75NJfS+CnmfE7rPsd/DCCPj4VrDWn7qi2TADnh0Ey38fu9/o2519xtZs2M1QNti9/bVTsyv8V0RERHJD3S5nP+LVk+D9r8CC76U33nvXwYuj4aPvt+x+pIhIDspv6QKSdCMwBefAppettS5pO+6stduMMUGcA30scD3wXS+LzALfAe5IYbujcYLMmljggVgbGGP6AE8BhWGr3wGubzzAqqlfEc7v726g6Z3484CfAj9MoVaR3BPal3jfzgl+SN0+wWzHNf+ErhMTn98L9bVOKFuy8ttDXj4UxAhGe/l4uHhX6/zQSERERERERERERERERERERKR1+R3w78b7xwN/xjmWLCHGmO7As0BF4yoL3ONlgdnGGNMDGBe2KoRzXF6iZgHhV2Y8C+dnKCIiIiLZrqAMTn0Z1k+HqnnQUAeBIigb5LTvXQ7lI6DvZ5zgoU3PQeVcqN0O5MGWmZBfCt2mAAbWPQrB3YnNveUlJ7hkZBacYpNKMFrpAM/LyApFnWDqLOfY/J3vHwr32DAdandE32bTc7DyrzD8G76VmZXmf8m9rWJs0sPtDlURcgkh61roRzBa9NMA3WpqMR1HwZkfwIanYNFPYvydPgur7odhX/O3vnR8crt729Cv+leH34Z9FTofDZtnwsHG0zlX/jnx7T/8JvQ5/9BzmbQtBzbC+1+FeNc4OPN96DjGn5qiCRTByc/B+idhzuWx+y7+KfS5wPm/8FvoAMy9CuoPxu43dRZ0P9mXklpUu15w5nx4slP09todsPEZ6PdZf+sSERGR3Lbk17Bjdvx+eQUw6Frnfqga1v4rdv+lv4Li7jDiW+nXKCLSRuRaMNoFYfcfTGOcB3GC0QzOVRWz4FMb71hrK4HKZLczxvwgYtUb1trVcTa7k0MHnAHMAaZZa5u9s2KtrQV+b4xZDzwd1vQtY8x91tp1ydYrknOCSQSjJXr1rsKK+H0AVj8Ax96b+Pxe2Pa6sxOfrMLGQLTCcvc+wT2w6yPoND612kRERERERERERERERERERETEF9baR40x38MJ+jLAdcaYkcAPrbVvu21njCkFvgDcDnTDCUQD56KqyYSE5aLREcufWGv3J7H9nIjlUWnWIyIiIiJ+ChTDwCucWzx9zndubspHwQdJhA5teDI3g9FMANr1zUwt2aCgDAZd5dya1GxyAtDcbJjetoPRgjHOZeh8bEpD7qjb4trWtaBHSmMmI98URF2fdcFo4ATVDPsqdD0B/hMjOGjD9NwKRtv2mntb2UD/6mgJXY53bk2SCUYDJyhvxHe8rUlyw4YZ8UPRRv2wZUPRmuQVwIDPQ6AE3r4odt8N01smGG3b6xDcG7tP7/PaRihak8IK6HYybH8zevuG6QpGExERkeRseDKxfqUDD+U31B+MH4wGsOB70PkY6HZi6vWJiLQheS1dQKKMMYOAPo2LDcDzaQz3HND0KclAY0y/dGprDYwxJcBlEavvj7PNEUDYpyrUAVdHhqKFs9bOoHmoXRHOgWsirV+iwWgFHaDD0MT65hXgHC8aTyJ9PLZxRmrbNQWjBYqhqIt7v50fpja+iIiIiIiIiIiIiIiIiIiIiPjtYqCKQ+Fmk4BZxphNwEPhHY0x9xpjXgN2AH8Eujc1AZtxwtJau5ERyyuT3H5VnPFEREREpK3oc15y/fetgF0Lmt/2b8hMbbE0hJLrb+shLz8ztWSrrpNjt+94G6yN3ac127/Ova1sUEpD7ghGD0YrC5RTEihNacxkFOQVRl0fasjCYLQm5aOgoKN7+/Y3c+vvtGaTe1thJ//qyAaDr0uu//on4cDGzNQi2W3f8vh9ukzKfB3J6HMBVIyP3Wfvp/7UEmlfAm8Tds2yn6cfYu0XJfIzExERkdzVUA+h/VBbBQc2Oc/9uxdB3e7kxqmvdbbbu9x5fywR4ftdgWLodEz8bWw9vPM52PHu4e/Bhd/qdkP1mkMhw9Y673XU1yb3fYmI5Lhcete/6QqIFlhmrY1x6Y7YrLXVxphlHDrYZwywPs36ct3FQHnY8i7gqTjbXA4EwpafstYm8iz/S5oHql1qjPlyrEA1kVYhlGAw2sCrwSSYW2mMs6NcXxO7X4PPO7m2ATY+m9q2hRWH7vc+H1Y/EL1fKJmL4IqIiIiIiIiIiIiIiIiIiIhIS7HWrjbGnAs8DfTEOQ7QNN7vEdbVADeE3Ses70bgXGttpS9Ft6whEcvJHt8YmQDQ2RhTYa3dlUZNIiIiIpKLSvvDwCthzUPx+wLU7YKZRx2+vsMIOHE6lI/wtj43tj65/qNvz0wd2WzgVbDs97GDmp7qDpOfgO4n+1dXtlgY429i9K0pDfnhvjlR13ct6BF1vdfyTUHU9SGbZJCgnwLFMOLb8EmMn/nTveDEJ7M/yKdut3OifTSDrnbO72lLhn4NVv0t8f5V78GMvlA+2nk+6TA0c7VJ9lj7KCz/Q+w+nSZAz9P9qSdRxsBxf4NXT3Y/H3DjDFj+Rxj6FX9rq14Tu72kl7OP0NYMuR4W/yx62875TjBjuz7+1iQiItKW2AaoP9h4qzl0v+EghGqcr5Fthy3XHNrGrS1aX9ewcAPdpzjvixR1jl3/kl/Bgu8n9z3nlzmvi8KNugVmX3wozMxNzRZ4ZWKC87SHI26CdY/AgQ3O6+yRP4DRt7W916Ei0iblUjBa/7D7kVczTMUqDgWj9fNgvFx3bcTywwkElV0Usfz3RCay1i41xrwHHNe4qhQ4HUgxRUkkRwQTCEbrfiqMuS25cRMJRgPYvRg6jkpu7FRVzYODW1PbNvxqQOPvjhGMlnI+poiIiIiIiIiIiIiIiIiIiIj4zFo7zxgzHngAOKtpdcTXZpvgBKIZ4BXgKmttigek5JyOEcvbk9m48eKxB4HisNXlOBdMTYsxphvQNcnNBqc7r4iIiIik4bgHoOMY+Oi7qY+xdym8cTqcvwbyfDgVKdlgtGFfz0wd2aykO5wxF+ZcAdvfit6ndgfMOhMu2ADFXfytryXteAc2THdvLx/p3uYi2FDHpwc+jtrWrbBX0uOlIt9E/98L2jpf5k/Z6B87oWKf/iZ6+8Gt8PppcNEmKKzwt7ZkfHCze9voJM8Dag0qxsJZH8O8G6FqbuLb7VkEb5wB562EvEDm6pOWt2sBzPl87D4jvw+jfuTPvkWyOh0F096Al44HtwDK978K7Y/wN9htf4xgtCNugpG3QIk/gZ1ZpbQ/HPsXmHdD9PbXp8G5n/pbk4iIiN9sA9TXphYwlkww2WFhZwehIRtfl1rY9gbMvhSmvubebeOziYeilY8Ekw8VR8Hwm6HiyObtfS+CKTOdEOk9S2DP4tTLbxLaB0t/dWi5/iAsvANKB8KgK9MfX0Qky2XhOwau2ofd3+PBeHvD7nfwYLycZYwZDJwUsfr+ONv0AMaFrQoB7yQx7SwOBaOBc6CbgtGkdXO7QkTpQDjur1DcDTqMTP6N/UBx/D7gXInCr2C0Hck8HEQwYd9/YYUTFrft9cP7hfanPoeIiIiIiIiIiIiIiIiIiIiI+M5auw04xxgzAfgGMBXo6dJ9D/Aa8Adr7Zs+lZgtyiKWE7hq4mFqaB6M1t6tY5K+DNzu0VgiIiIi4oe8AIz4jnN7ug/UbEptnAMbYfss6DHN0/KiSjYYLZvDlDKpXR84+QV4Isbufv1BWP84DP2yf3W1tDX/dG/rOjmlIRfv/9B9yAJ/AmjyTUHU9SEb9GX+tIy53T0YDZyT7Dc8BYOv9a+mZG1+Ifp6E4B2ff2tJVtUjIUz3m2+bsMMePui2NvtXws7ZkP3kzNWmmSBWI/FACf8Ewb+jz+1pKrTBDj1ZXjtVPc+ax7yNxit2iUYbexPYfSP/KsjG8XaR927DPYshfIR/tUjIiJtk7XQUOt9GNlhfaO0ZWU4WRbY9gYcrHQPjA8PHYulsBOck0DQWc/Tm+8fzvsSrLwvsTmSseYhBaOJSJuQS8Fo4Qf2eBFkFv6uf5KfmLQ61+BcVbPJh9baBXG2GR2x/Im1NpmUojkRyz6lNYm0oKBLMFpxN+gxNfVx8xIMRtu/NvU5krVvefT13afCCQ/BjN7u29YfbL5c4PIhbag6tdpEREREREREREREREREREREpEVZaz8ArgQwxgwC+gKdgUKgEtgGLLbWNrRYkS0rMhjtYNResdUA4ekQkWOKiIiISFs04tvw4bdS337PkuwLRut6IhgTv19rVVAGZYOgerV7nz0JnLjbmsT6fjuOS2nILXUbXNv6FA9MacxkFZjCqOsbaKDB1pMXfpH6bFPQHkoHwn6XQB9wHl+ylW2A4N7obSYf8nLpFM0Mq0jwf2zvEgWjtXbxnnsqjvSnjnSVj3ICEN32Tfx87LLW/fzAMn+ei7Jau75OWG7drujtexWMJiLSZvw3nCyBgLFQTVgoWYxgskT7NtS29Hcvh7FQszF6MFr1atjxTmLDJPpaJ9KE38LO92HnB6lt72bba96OJyKSpXLpXbfKsPv9PRivX9j9Kg/Gy0nGmABwVcTq+xPYdGTE8sokp14VZzyR1ifkEozmFvyVqECCwWgHUryyVyr2Lou+vnykEwQXS5cTmi8HSqP3CyWTxSgiIiIiIiIiIiIiIiIiIiIifjPGtAfCz8pbFXkBTmvtaiDGGfwCWJ+2EREREZHWrv/l8MmtqR+L/cE3YOV90O8yGP0jMHne1tckmWC0ITdkpoZcMuQGWPAD9/aV98Gah6CgHLqfCuPviX5CcGsQOgA7Zru3D/5iSsNWBre6to0qHZ/SmMnKNwWubSEbojCbg9HA+Tv9+Bb39k/vgYFXQcVY/2pKxO7F8O4XoKEuevuAK/ytJ9uVDYQep8HWV2L3m/9l2PISHHU3tB/iT23ivWA1fPB1WP33Q+vyG7P5Y+1rdDkBOo7ObG1eKe4GfS6CDU9Gb9/1EWx6EXqfnfla9i6DUHX0ttIBmZ8/2+Xlw+BrYend0dvf/ixMfhz6XeJvXSIikll7lsJH34OquU4wmQ05X0XC1UcJrFv3GLxzWeJjDLkxtbkDxTD5SXjpaKj1ONbm8YiMivB9RZMHgXYQKIGukxpfew32dn4RER9k6BOIjFjf+NUAY4wxnVMdqHHb8HdJfUwLyjpnAr3DlmuAfyewXeQ7juuj9nK3LmK5szGmImpPkdYi6BKMlu9TMNqWmenNk6iNz8H2N6O3tR8a/0o4kW8EF7hcrNbtjVwRERERERERERERERERERERyRafBz5qvM0Dilq2nJwReWBMSQpjRG7j1cE2fwJGJ3m7wKO5RURERCRdJd1h2pvQ6WhINURpzxJYeBt8+B1vawuXaDDa0f8HA/8nc3XkihHfgzF3uLfbeuf4+5pNsPaf8NrJ0JBE+FwumXWWe9vQr0KnCSkNWxXcHnX9uLLjCJg450h4JD/GPEHrEtqVTUZ+H0bfHrvPK5Oheq0v5STkwEZ4ZZITfOTmyF/6V0+umPwE9PvcoYAsNxufgZdPgIOV/tQl3nvzvOahaOA834SqiZnZf/JzGS3Lcyc8CGWD3NvfPAe2vpbZGhpC8MII9/ayge5tbcm4X8Run30prJ/uTy0iIpJ5BzbDyxNh8/NQW+nsgygUTaKJDLpe/2TioWilA+CYe6H/51Kfv2wAnDYHup4IXr6H0LTv/d998DC2wVlXuwM2znBee9Xu9G5uERGf+PPOqzfmArVAIU442leAn6Q41pc5FAoXAt5Ju7rcdU3E8nRr7e4EtusYsRz9HX4X1tpqY8xBIDzRqRzYlcw4kYwx3YCuSW6maFPxh1swWkGawWh5SRwvunc5dBia3nyx7F4Mb53v3t5hmPO141jY/UmUDgYqIq6WFCiNPlaqVykTEREREREREREREREREREREb90wTneD2C+tVZHWycma4PRrLXbSfJ4QWNM/E4iIiIi4p9OE+DM+dAQhLwCsBaCe2kWYLL017D457HHWfVXGHcX5Lsc752ORILRKsbD0K94P3cuMgbG3A7lo2H2xfH771kCW1+FXmdkvjY/7VkC299ybz8i9b+XquC2qOuHthuT8pjJyjcFrm0hG/StjpQZA2PvgNJ+8N610fuE9jkhS2Pv9LU0V6sfhOAe9/b8Uijq7F89uaKwHCY/6gQ5ffQdWPY79761lbDu3zDs6/7VJ97Y9TFsn5X8dme+n3v/N/ntYOoseKafe5/l/wc9pmauhq2vuLcFiqG4R+bmziV5+TDoGlj9gHuf5b+Hfp/1ryYREcmcNQ9CMJFYDGl5BgIlkF8CecXO/kug2FkXeT8vRlu0vuFjzjySqAG9DbXNl2O9Rol0wZq0vvP/6jAUTnvLCe9zC/Cb0ffwgDOv1O6AdY/ovTQRyTk5E4xmra01xrwNTGtc9R1jzNPW2oXJjGOMGQ18l0PPaO9Ya9tkuo4xpitwXsTq+xPcPPKSDTUplFBD82C0NNOhACf0Ls7lQ0RaSMglGC0/zT/9RK+GBfD8MPh8g/OBUias+7d7W14BdD7Wud/7/OjBaBdXHV5bgcsVYjK1Yy8iIiIiIiIiIiIiIiIiIiIiXmk6e9gCG1uykBwTedZ1UhcLNcaUcXgwms4MEREREZHm8hpDloxxQmzCdRwbf/tQNexdBp3Gx++brESOkS+NEU7SVnUYnnjfnfNbXzBa1Xz3trxCKBuQ0rD1NsTOYGXUts4F3VIaMxUFuR6M1qTDsNjtO9/3p45E7IzxNwXQ/ojMnZ/TGuTlQ+fj4veL9b8r2WvD9OS3MXlQNtj7WvxQ0ssJQwy5nIqc6ceuqhjjtx+qx6JwHYbGbq963wkG1s9MRCT3Vc1r6QpyjHEPGGu6Hy+0LGrfOGMGisHk+/PcGyiKHjpWHxaMZi3smJ3YeMO+6U1d4Zp+NtF0PwU2Pef9nE302ktEclDOBKM1uhsnGM3iBHPNNMZcbK2dm8jGxphjgSeBUpyrUNrGMduqK4Hwd8VXAW8muG1kUpFLLGlMNUBFjDFFWpegSzBaQZrBaA1J/vu9ejKc+CQUZ+ADuF0L3Nu6TTn0gfmoW5w3fLf8x1kOtIOJ/4TCisO3c7uCmILRRERERERERERERERERERERLLdlrD7hS1WRe5ZEbHcP8ntI/vvtNbuSqMeEREREWlrep0D+WXxj9l+eSIc8ycYdLUTduIVG4rfZ+AXvJuvtSgf6YTaRbuIeaRPboXh33Q/Xj+X1B+EFffCh99y79PnQvcTj+PYFazE0hC1rUtBj5TGTEV+nvvL6lAi/zPZovPx0K4fHFgfvX3zizD7MueE8MHXQV7A3/oAdi+CNQ/Cxmdi9+t/mT/15LLe58YOkwJY+y8o7e/8vlMMMBQfhQ44j7mL7kp+255nQmFH72vyQ14A+l0Kq/8evf3ARidwI1Dk/dxbX4OFt7m367GouX6XwoIfuLfXH4CNM6DvRf7VJCIimZFouFW2iRYcFjVkzCVwLK8Y8hMMMQvvm1fQ+oNB81yC0RrqnK/bZ8PyPyQ+Xv/PeVNXwvNdltlgtDUPOq/R+l2cuTlERDyWU8Fo1tqXjTGzgCk4oWa9gLeMMf8E7gPmW2tt+DbGGAMcDdwIfAEnCMw23t621r7o2zeQfb4YsfxA5M8vCalsl+pcIrkplKFgtGg76LHseBteOg6mzXI+OPBKcJ/zAZSbkd87dD+/HUx5EfYsgZpN0OloKOoUfbt8l8zEnR/o6gwiIiIiIiIiIiIiIiIiIiIi2W1R2P2BLVZF7lkasTwkye0HRSwvSaMWEREREWmLCsrgpBnw9mchuMe9X0MtvHctbH8TTnjQu/ltffw+fRRmcRhjYNJjMOts2L8mfv/XToVpb6YcGJYVGoLw+mnxT4g/OokTnyNUBre5tnUuyMAF613kG/fTAIMNQd/qSFteAE56Gv4zwb3P+sec29ZXYPIT/p43smMOvHFG/GDI/pfDsJv9qSmXFbSHE5+G2RdDcK97v8U/g1V/g2lvQYeh/tUnyak/6Dx3VL2X/LYVR8Kxf/G+Jj8ddTdseh5qd0Rv3/Qs9LvE2zlXPQDvXRe7z/AYwaBtUdlAOOGf8G6MEN23PwOTn4R+n/WvLhER8db+DVBbmfr2foWRHdZWqPPiM8ktULy+FtY/Ae98PrH3nEweHHUPdDnO2/ri6X8ZVL0Py/5f5uaYfQmM+hGM+2nm5hAR8VBOBaM1ugz4EOiJE6yVD1zdeNtvjFkG7Gps6wQMBZpSdUzjegNsAC71se6sYow5HhgVtqoe+EcSQ0S+u1uSQhmR28R5xzghfwKeSHKbwUCcS3iIeCDoEoyW73MwGsD+tfDWRXDWh+nNHV7DU93d2zsdAz2mNV9nDHQc5dxiiXUFqj2LoOOYxOsUEREREREREREREREREREREd9Ya5cbYz4BxgJjjTG9rbWbWrquHLAoYnmsMaadtfZAgttPijOeiIiIiEh8PabCZ7bBzvfhlcmx+655CEb+AMpHeDN3vJNUu5+iE4ndlA+H81bA7gVwYLNz8fOVf47et2oebJgBAy7zt0YvbXohfija8G9DceoBZm7BaB0CHSnK8y9ULt8UuLaFbJ1vdXii03g4/V14+YTY/TZMh50fQOej/akLnICueKFokx6D/m32tMTk9TzNeT5Z9FPn5+vm4DZY9js45o/+1SbJ2fhM4qFoJz176H7ZIGcfweRlpi6/FHWCC9bC4y7nus3/irfBaA0h+ORWnFOiXUz4HQSKvJuztRj4P9DnQngixnmbn9wKfT+jfUoRkVy16C73tnE/h25TogecBYohr0iP/62V235RQy0s+kVioWhTXoQuE6Gw3NvaEmHyYMI9MOoHTkBacC/kt8OJxwHqaxrD9QLNt1vzD9jwVOLzLP01DP8mFHX2qnIRkYzJuWA0a+12Y8yZwLPAAA69qjc4AWgTItb9d1MOhaKtBC6w1m73o+YsdW3E8kxr7eYkts/KYLTG32lSv1ejHVfxS8glGK2gBYLRAHZ9BFtfhx6nRm9vqAcbgrqdzhupRV0A6+z011Y5ffIKoKQXvHm+szPtZsxtqdUIUNDRvW3bLAWjiYiIiLSk4F4IlDpXcBQREREREREREREREYnuD8BfcY7d+wmHH7smEay1W8IC5cA51nMy8HKCQ0yJWJ7pUWkiIiIi0tYEiqDrJBhyI6y8L3bfra95F4zWEOdE1dKB3szTWuUFoNME5wbuwWgA217L7WC0ba/H79N+cFpTuAWjdS6IcXH5DCiIGYwW9LESj7Qfmli/ra/6F4xmLWx7I36/bidlvpbWJlAMA6+MHYwGzmOSZK+tCf5+xv0M+pyX2VpaSn47KO4BB7ce3hbaB/W13gWV7V0GNXFO+dU+kbuCMigfBXsWR2/fu9T5PZb09LcuERHxxu6F7m2Dr4Pirv7VItkjz2U/rHqNs28VT1Fn6HWWtzWlorgb9D478f771yUXjNZQ54TM97kg+dpERHyWkxHr1tpFOAFoj3Io7MyG3f7bleaBaA3AQ8Ax1tqlftacTYwxpcDnIlbfn+QweyKWk9o7NMaUcXgw2u4kaxDJLUGXYLT8FgpGA3h9Krx3vfOma7gNM+DRfHisGJ7uBc/0g8fbOVe0eKIDPDvQuc3oA4/kwdZXYs9T0iv1Grud6N4W7yo8IiIiIpIZ+1bBS8fBEx3hqW6w8CfOAUEiIiIiIiIiIiIiIiIRrLX3Ay/gHMN3tTHmey1cUq54OmL5i4lsZIwZDhwXtmo/iQeqiYiIiIhE1zuBcJMPvg7b3vTmOCIbJxgtkXrE0X0K5Je6t6/6m3MCbS6yDbDmoTidDPQ6J61pqlyD0bqlNW6y8ghgXE4FDNmQr7V4oqgTdJkYv9+in8CBOMFAXrAWNkyH+prY/TodAyU9Ml9Pa9T+COgwLHafvctg6T1QOVfHpWajyjmJ9etzUWbraGkdx0RfX38wscDORG1/M3Z7fqnzPC/u4u0zfvxjqF7rSykiIuKh4D6omuverlC0tiuvMPr6RXcmtn2fC72rxU+9U3jfY/XfYfHPYfVDULPF+5pERDySk8FoANbaXdbay4GRwP8DmmJdTcQN4GPgbmCYtfZqa21kqFdbcwkQnsS0DXg+yTFWRCz3T3L7yP47rbW7khxDJHdY61z1IZqCNIPRGtIIRgPng8wPv3loec+n8LbHb0CXJvsQEaaos3tbOqFwIiIiIpKahiC8NgWq5gEW6nbCupZEtwAAIABJREFUwtthxb0tXZmIiIiIiIiIiIiIiGSvz+MEfRngF8aYl4wxp7RwTdnuYSA8DeIzxpgjEtju+xHLj1trdZCNiIiIiKSn5xnQ/7I4naxzXNG7V6YfZhMrGK3vxamd8NlWFbSHCb+L3ef54bDxGX/q8Up9Lcz+HATjnCI29idQ2i+tqSpdgtG6FPgbjmWMId/kR20L2qCvtXhm/D1Q2Cl2n/oaeGEEbHsjc3U0hJzHrtmXxO5X0BEm/L/M1dHaGQMT/hA7rBHgo2/DyyfA/JucAETJDtvegD2L4/cb+X0oH5H5elrSMTGOmZ51NlSvTn+Ojc/C+19xbzd5zvN7uucltnbDboaO49zbVz/g7AdteMq/mkREJD3Va+H5GPsaY+/yrRTJQoGi1LfNL4VRP/KuFj+VDYQxdyS3zcZn4OMfwdyrnP+pbXFCeUVEWkj0d0NziLV2OfBtAGNMGdAdaErRqQS2WWv3t1B52eraiOWHrE360iBLI5aHJLn9oIjlJUluL5Jb6mvc34zPT/MNyMIKOLg9etu5y+CTH8P6J2KPseJeGHIjVIyDpb9Or55IHUbEDjdLRI/TYWuUC9c21KY3roiIiIgkb/tbcGDj4evX/RuGftn/ekREREREREREREREJKsZYx5ovLsX2IdzUc9pwDRjzD6cC59ub2xLlLXWRh4H16pYa1cYYx4ErmlcVQj8wxgz1S3ozBhzAXB12Ko6IMFLoIuIiIiIxJCXDxMfhoFXw6wzY/dd+y/oMQ0GXZX6fG7BaKUDYPJjThiIJG7wtXBgMyy8LXp7/UF473roeRYECv2tLVXrn4QNT7q3l4+E4x6ALselPVWVSzBa54JuaY+drHxTQNDWHbY+FGVdTuhyHJz9CWx+IXYIVnAvvHcDnLfcCdfy2qbnnceuWI65F3qdA6V9vZ+/Lel5Gpy9EFb/HRbFCa1YeR/0uwR6TPWnNnFnLcyN81Zcnwtg+Heg22R/ampJ7QdD52MbLzIdxce3wqSHUx+/IQjvXRe7z5kfQcXY1OdoK0q6w2mz4YkY52821MK8G5zH+HTCVERExB+f3Ao1m9zb+3/ev1ok++Sl8FxeMd5536T/ZVAUJ7g7m4253bmwwbbXAQPdp0JxF3h2cPxtg3tg/o1wztLMvOYWEUlDzgSjGWN6AMeGrZptrd0Z3sdaWw1UA6v8rC2XGGOGApHvLt2fwlCLIpbHGmPaWWsPJLj9pDjjibQuwRjHbaZ7ZYZxP4/+ZueAL0CHoTD5cXjxSNj9cexxZh6ZXh1uTvTgigmB4ujr63UxWxERERHfLb07+vod7/hbh4iIiIiIiIiIiIiI5IqrARu2bIGmI6o7cPjxbPGYxjFaNBjNGNOH6Mdg9ohYzjfGDHAZptpaWxljmtuBi4CKxuWJwKvGmOustZ+G1VIE3AD8JmL731hr18UYX0REREQkcSYPep0Bx/4V5l0fu++iu2DAFU6gWircgtF6n6tQtFT1Od89GA2gdgdUvgvdT/avpnRsnBG7/Zj7PAlFO9hQQ3X93qhtXQojX/5lXoEpoCbK+pAN+l6LZ9r1hiE3QFEXePuz7v2qV8KexdBxtPc1bHw6dnvHsXDEl7yft60qGwhj7oSlv45/XtCGpxWMlg32LIH9a9zbz/oIKjJ0Xlq26nOBezDaxhlOmFyqoRI75jjPy24GXqVQtGQUlEHv82HTs+59aqtgx2w93oiIZDtrY78WNHlQ2s+/eiT75CUZ9t7rXJjyXGZqaQldjndu4cbe5QQKxrN3Gez9FMpHZKY2EZEU5dKnAZ8Bnm68PQzUtmw5OeuaiOXZ1tplyQ5ird0CfBK2Kp/kDlCbErE8M9kaRHJKKIPBaL3OhvwoYwy44tD9oV9Jb45UDf8WlA9PfxzXYDQ9FYiIiIj4rm5n/D4iIiIiIiIiIiIiIiKx2bBbrpoNrIlyeySiX2+XfmsAlyvSOKy1G3GOnawLWz0JWGKMmW+MecwY8x9gA/B7oCCs3/NAAke5i4iIiIgkqdtJ8ftUr3ICb7a/7dx2LYCGUOJzWJe+JpD4GNJchxFQ1DV2nw3Tk/s9tZSG+tgnw+eXeRbQU1m3zbWtS0E3T+ZIRr4piLo+5PY/k0u6TIz/P775BecxZf9652911ydQ+R7U7Up93oOVsOah2H0SedyT5BgDXRP4ua75B+xeBLYh4yVJhIYQ7F4IwWrY+YF7v8IK6DDSv7qyRa+z3dvqD8Cm552LTtftTn7sne/Hbu+WIyGm2SSRn9nWVw49x4iISHaq3QGhavf2LhMhL/prJmkjAkXJ9W8Lr/WS2XesXpW5OkREUpRLwWgdca70aID51tr9LVxPzjHGBIArI1bfn8aQkZfD+GKCdQwHwi+7sh94OY06RLJf6IB7W6A0vbFLesKpL0P5qEPLx93vXI2ryaBrYNzP05snWd2meDdnnssLkYY4V4YREREREW80hGDRT+GlE9yvbgbO1VdEREREREREREREREQOZzy8tSnW2lnARcCOsNUGOBq4FDgDiEw3eAS4zFpb70eNIiIiItLGdBgK/S+P3+/jH8KrJzm3mUfBU91g80uJzbF3WfT1Jj/xOqW5QCGM/nHsPsv/ANO7wuaZ/tSUiu1vwdM93cPzAEZ8DwrKPJmuMrg16vo8AnTM7+LJHMlwC0YL2qDPlWRASQ844iux+yz4gfOY8kx/eLQAZo6Dl4+HJzvB3GugIYmfQ6gGZl8GT8UJDCzqAkO/lvi4krhRP3A/X6hJaD+8OAZm9IWq+f7UJbDxOZjeBV4cC0+0h7lXufcdfZvzHNPWVBwJ3ae6t791Prwy2Xl8mndTYsGjDUF473r46DvufcpHQb9Lkq+3rRt4JZQNit1nyS8PPcf851ioib4PICIiLWjhHbHbR/3IlzIki8V7fRGudAAMirGf21p0nQw9piXW983zYO/yzNYjIpKkXApG29n41QJbWrKQHHY20DNseR/wRBrjPQyEHzj1GWPMEQls9/2I5cettUo3ktatvsa9Lb8k/fG7HA/nLIKLd8GFm2DwNc3b8wIw6ha43PpzVYgep8G0N5JPVnYTKI6+vl4PHSIiIiK+mPtF+ORWqJobu1+s/V4REREREREREREREWmrBmbgFucsttbFWvsiMBr4M7ArRte5wMXW2st18VkRERERyagTHoIJv4de5ya+Td0ueOs8OLg9dj9rYZ/LSZgmkPh8crhhX4cTn4rdJ7gb3roAarb5U1Mygnth1tlQu8O9z5AvwZhbPZuyKhj977VTQRcCLfD36BaMFmoNwWgAE34Lx/41tW1X/x2W3p14/0V3wvrHYvfpMBxOf9cJhBTvdT8Fpr0Fg6+P37dmM8w6S+cR+eHAJnj7IgjuSaz/8JszW082OyWRwFcLK/8My34fv+un98Cqv8Xuc9psz8I/25TiLs7j+cjIU5td7JwP71yW2ZpERCQ5uxbAinvd26e9Db3O9K8eyU55CQT2lg2CEd919g2Ku2W+ppZmDJz8PBz5v9DzTOhyAhR0dO//1gXOe3MiIlkil4LRwsPQSlusitx2bcTyo+kc/GStXQE8GLaqEPiHMcYlwQiMMRcAV4etqgPuTLUGkZwRKyAi4EEwWpPCjs4Oaiz9fXhT7uRnvR3PLWCtvtbbeURERETkcPvXwdqHE+sb0vk1IiIiIiIiIiIiIiLSnLV2XSZuWfB9DbDWmjRvVycx33Zr7U1AD+BU4IvALcDXgc8Cg6y1J1hrp2fi+xURERERaSYvAMO+BlOeg/NWgEnw9KSGIKx/InafXQvc2xSMlr6+FzknAMeSyO+pJWx8Nv4xaqN+6OmUlcGtUdd3Kejh6TyJys9zCUZraCXBaMbAkOtg8HWpbZ/osY6J9j3pWWg/JLVaJDFdjoXj/gJnzIvft7YKtryc+ZraunWPga1PrO+AL2S2lmyXF4Dy0Yn1TeQxJ16fEd91zh2U1BR3cwJBRt6SWP/tb8HBGGGsIiLir1jPk+WjoNtk/2qR7OWWR9AkrwDOXQ5H/QpKWuZ1fYsIFDkBsafMhNPnQJ8L3Pvu/RR2fehfbSIiceRSMNpHQFO0pC6zkCRjTHfgnIjVceLjE3I7za9AORF41RgzPGL+ImPM14DIT0Z+kw0HqYlknFswWl5h4h8Ce2XgldBxbOL985PIoiwbBBdugIBrPmJq3MbTlV5EREREMqt6LXz0fQ69HI9DwWgiIiIiIiIiIiIiIiIZZa2ts9a+Ya39h7X2f621f7DWPmWtXdPStYmIiIhIG9V+CPS/PPH+e5aCbTweyUY5LmnvUvdty0cmV5tEVzE+fp+9jb+naL+jlrJnSez24m5Q0svTKauC26Ou71zQzdN5ElVgXILRbCsJRmvSKYG/0Wj2LIaG0KG/XbdbcB8c2Bh7rMIKKO2fWh2SvA7DIVASv1+s5wjxxpJfJN6301GZqyNXVCT4M9j7KdgG98elhnrYuyzOXCk+NkpzCT/HWKjZnNFSREQkTLTnx3B7YuwH6jlSmuTFCUbrOM4Jt23r4u0Pxfp/ExHxWX5LF5Aoa+16Y8xc4ARgmDFmqLV2eUvXlUOuovnve5G1NoFLKcRmrd1ojPkM8BJQ2Lh6ErDEGPMBsBooB8YDXSM2fx64Nd0aRHKCWzBaIm/aey2/HZwxH1bcCx/e7N6v36XQ6yzoMAJePj56n/KRcNRvYNvrUNzDuTJPQQfva3Z7IdJQ6/1cIiIiIuJ8gLDop7DoDudD+EQpGE1EREREREREREREREREREREpO0ZeydsfAZC++L3XfFHWH2/c5HsQAm06wtHfAmG3QzGQHWMzN+eZ3pXc1vW90Io6Q01m9z7rPiTcwPnvIFh34AhN/hTX6Rts2DBLVA1N3a/ITd5foJzZXBr1PWdC7p7Ok+i8l2C0YKtLRit/2Xw8Y+gblfy2z4a/WeUtMHXQ6Awfj/xRkF7GHgVrPxz7H4LfuAE2425U4EGXqs/CB/cDLWVifUvKE8uGLW1OuJGWPdw/OOt6w/AI2n8zZb0gj4XpL69HNL7PGf/88CG+H1nHgkTH4EBl2W+LhGRtmrFfTD/S4evD5RA10kw5iew9Few+QX3MVrqtapkn7w4r+GO+LI/dWS7/pfDJ7dBcE/09ne/AAvvhCHXw4jvOu/XiYi0kLyWLiBJv3a5L/F9MWL5fq8GttbOAi4CdoStNsDRwKXAGRweivYIcJm1tt6rOkSyWiiLgtHA+XBm+Dfgwk1QOuDw9pOegcmPwaCrIb/MfRxrodeZcNSvYMS3MhOKBhAojr6+/mBm5hMRbwX3wsq/wUffg43PJRewIyIiLaPyXVh4W/KP2aHqzNQjIiIiIiIiIiIiIiIiIiIiIiLZq2wQnPISdD4eTH78/k3HgdfXwL7l8OG3YNnvnXX710bfpv1QKO7iSbltXqAYTn8Hep6VWP89S2DejbDq75mtK5pdH8Mbp8cPRRvzExhzm6dTW2upCm6P2taloIencyXKLRgt1NqC0Qor4LQ50H2q+/kkmVLSG0b9GMb93N95BY7+PQz/tvM7iGXxz+DjH/hTU1vy7lWw8r7E+lYcBafNhpKWCYnMKl0nwUnPQqcJYDJ0unbn4+C0dyC/hc5DbG0CRc7fb6+zIb80fv85n4dNz2e+LhGRtmjV/dFD0cB5v2Drq/DKRNg4w32MAVdAt8mZqU9yT6DIva24GwyOjFxpo4q7OPuXsVSvhAXfh6WK9RGRlpVTwWjW2hnAAzihW+caY/5oTCKfmLRtxphJwPCwVXXAv7ycw1r7IjAa+DMQ63Icc4GLrbWXW2v3e1mDSFarz7JgtCbtesF5K+HU12DkLTDpMfhsFfQ5/1CfmG+a2oyXCCgYTSSXHdwOr0yGedc7L4DfOh/eu07haCIi2W7tv1PbLqSXeSIiIiIiIiIiIiIiIiIiIiIibVLXE+CMd+GyWrgsBBMfTm77FX90vlavid7e84z06pPmSvvDKS/CxEcS36bpd+SnVX+DhjihX8feB2Nu9TyQZm/9boK2Lmpbl4Juns6VqDYTjAZQPhymvgqX7nceU3qemfk52/WDizbCuLsgL5D5+aS5vAIYfzdcuAHG/SJ235V/hfpaf+pqC2q2wvrHE+tbUA5nfQgdR2e2plzS+xw48324LOjcAu28Gzu/PZz+LpQN8G5MgdJ+MOUFuGSv8xwT7xzPFff6U5eISFuz/E/pjzH0q+mPIa1HXqF727j/9a+OXNBxFAz7Rvx+y/8I1qc8CRGRKHIxVOxGYB/wDeBLwMnGmN8Az1prq1q0sixlrX0HJ0wu0/NsB24yxnwDmAT0B3oA+4FNwEfWWpdPqERaObdgtGy4UkNeAHqc6tyiifnGnk87snkuCc0N+hBDJOutuA92L2y+bvXfYcgN0OX4lqlJRETi2/xiatspGE1ERERERERERHZ9Aot/DrWV0OkoGHNHYldbFxERERERERGR1sHkOWewlI9Mbrt9KyBYDftdTjspG5h2aRJFMr+nXR9DQ72/gVE7P4jfp8PwjExdGdzm2taloEdG5oynoC0FozVpekzpMBy2/Cezc5WPyuz4khhj4oduBffA/rXQYZgvJbV6299MvG+HEZmrI9eZPOfWYRjs+sibMctHOP8TkhlNzzFu53422fmhL+WIiLQpDSHYlebjq8mD9kd4U4+0Du36urdl6L2DnPb/2bvv8Diqe//j76Nmyb33XrCNbYwNphubTiB0QighIZWUm/IjJIGEm5BcEkKSG0hCSGghhBog9GqqaTaYYoptjLstNxV3SZa02vP7Y6SrlTWzO7s7O7srfV7Ps49Wc86c+dqWV7M7cz7Hz99J7Xpo2AZd+mW+HhERF3kVjGaMeSnm291AD2B/4Lbm9nKgornNL2utPS6wIgVrbQPwcrbrEMkpXh+OJVpNIBfkQo2Fpe7bm/aGW4eIJO+jn7tvX/+QgtFERHKZ182FiSgYTURyQbQJbAQKPUK2RUREREREJHN2rYB5h7Zex9v6Imx9GU5627khVUREOiVjzBcDHM7i3B+4E9gCfGKtlqgWEREREclJvac7oVs7l/rf58Ee3m3dFIyWEb2nQa+psPPjxH1tBJ4/AgpiwrmKusOA2TDp/0FR1+DqqnzDWYy5akH8fl1HQv8jgztujGqPYLQuppRuhXF+VjOoyLhPBWzsyMFoLUZfCMtvyPAxLsrs+OLf4BOgS39nERYvT06CCd9yFm3vc2B4tXU0lQvgjfP999f/k8RGXxRcMJr+vnPD3i3w2rkw7qsw9DPZrkZE8pmNwqp/wKanYceHsGdVa9u4rzsLz3UdmrXyQpXMZwVehnxGYU3S1tBT4f3LwTa13d59HPQ/NDs15bIR58C734doQ/x+1e/A0JPCqUlEZB95FYwGzMW5samFxcnjbok8H9H88Hujk0mir4hI6jpqMFpY95UWeExmj9aHc3wRCd6q22HmH7JdhYiI7MtaWHNX6vs3KRhNRLIo2gjvXQ5r/ulMwB9yEhx2hy52ioiIiIiIhGnxT9ovbrTtXdj8nCYJiIh0bv8kc/fp1RhjFgF3Av+21upmEhERERGRXGEMzH4E5p8Guz9Nf7zuo9MfQ9ozBo5+BOZ/FnYtT9y/+u322zY/B5ueguNfhYIApqptfBJePcsJYoun22iY8zgUFKZ/TBdVDVtct/cvGYwxxrUt04pMiev2SGcIRus3Cw65Bd75bvBzSUwhTP6xE74muaGwC8x9Gl49E+o2efdb8TdY8y849gUt3J6KzfOc39O+GJjwbSeMTuKb+D3nd+qq20j9Y1EDE77p/J1LbtjwH+dx6O0w7ivZrkZE8tU734UVN7m3rboVNjwEpy6BsiHh1hW2SB08Mz39cQ77R/pjSMfScwIc9QAsuAQiu51t3cfBnCe0oKOb0gFw9ONOUHLjDu9+r5wM526Dkj7h1SYi0izfgtHcKNhMRHJfPgejFbhfOHOE9BJcWOq+vbY8nOOLSGps1LutpHd4dYiIiH+b58HCL6W+f+Oe4GoREfHDWmelrF2fwuIfw84lrW0bn4DXzoHjX8laeSIiIiIiIp1Kw04of8S9besrCkYTERFoXQA1SN1xFlydC1xrjPmytXZeBo4jIiIiIiKp6LkffPYTJxjttXPaXtdPVrcxwdUlbfUYD6cug90roG6zs+3VM+NPit1X1QLY9AwM9xuwE8fH1yQORTv6MRh2mhPsliHVjRWu2/sVD8zYMRMpMsWu2ztFMBrA+K/DmIth+wfOIh0FRYBxfl5sivNbCoqg9wFQ3CPQUiUA/WbBmRvgwZ4QibNwb6QGlv4Ojn44vNo6io+vgWhD4n7Hvwq9p2keiF8FxXDoLXDgb51zn5a5NW99DfasdN/n2Oeh5TXeFEDvqQqeyFUf/wrGXqJwFRFJXt1W71C0Fg3bYdXtMPWqcGrKlg0BnLeZIijN3nszyWEjzoZhp8P2xVDUHXpOzOhnB3lv6ElwTiXs+Aienendb809MPG/wqtLRKRZPgaj6beOiOSfSB4Ho8U72Y8XehQkr2A0gI/+x3mTrzclIrln5S3ebbogJiKSmz79S3r7N8W58UREJGhN9c6NQmvv9u5TMd8JTeu5X3h1iYiIiIiIdFYf/ty7bcPDMOO68GoREZFcFHtjh/XYvq99ZzS79bUxbUOAZ4wx37PW/jX5EkVEREREJCOMcSahjv0KvP/D1MYo7AolvYKtS9oyxrm/ouUeix7jYds7yY1RMT/9YLRIHVS/Fb+PKYQhJ2V8DkFV4xbX7f2LB2f0uPEUGfepgJFoJwlGA2d+Sf9Ds12FhMUUOKEG6+6L36/ilVDK6VCaGqDqjcT9xn0NBs7OfD0dUZe+bf/uDvglvHlR+36lg2Hw8eHVJempWec8uiu0V0SSVP22v34rb+74wWhBnLsd8Mv0x5COq6AI+h2c7SryR0ER9J0BQz4Dm59x71MxX8FoIpIVeRWMZq1VhLaI5KemPA5GiyvFFXWS1WWAd9tHP4chJ0D/w8KpRUT8qd8Gi77l3V6sm1NERHLGjiVQ/ijsrYBNT/nbp+9BsO3d9tvjrcgnIhK0VbfFD0VrsXmegtFEREREREQybfdKWHFjnA4hLbgkIiK56svNX3sAPwf64QSZRYGFwCJgPbALKAH6AtOA2UDLbHML/Bt4FigDegP7N/cZRduAtOuNMcustS9l9E8lIiIiIiLJGX566sFopQODrUUSG3FW8sFom5+BxcWwaxlsfRlK+sGwU2HYaU7gi0kwLSzaCCt85FwPPQUKuyRXWwqqGytct/crzt7PY3FBsev2RtuJgtGk8xl+RuJgtIbtUP4EDP2MM6lfWkXqnNfn3Sug22ho3AUbHoHqhWB9XL8ZfmbGS+w0hpwMBV0gWt92u/6O88+u5QpGE5HkRff661dbDouvhB4TnPc+ZdkLZs6Y3SvTH0O/P0WCN+JM72C0DQ/B4p9Crykw7BQo6RNubSLSaelTHhGRMKy61X17Uddw6wiaDSkYre8MKOrmHbSx5m4Fo4nkmvLH4rcXdQunDhERiW/Do/DGec4NZX7Nfbb55jMFo4lIlq2911+/mrUZLUNERERERERw3qPFmzxTsxaa6kOZrCgiIrnHWnunMWYC8DhOKBrArcA11toNXvsZYwqAM4A/AGOAzwHLrLW/2qffKcCfgHE4AWlFwP8CMwL+o4iIiIiISDp6jIfpv4YPfpb8vof9I/h6JL4J34ZNz0Lla/732bnUebRo3AWf3ug8Rl0Ah98FBYXu+0Zq4dUzYcvz8Y/RdSQceJ3/mlIUsY1sj1S5tvUvHpTx43spMiWu2yMKRpOObPhZMPI8WP9A/H6vng6jLoQj7kocxNhZNGyHl09xQtBSMfYSJ8xLgtGlLxx8Iyy6tPW6Wq+pMPWq7NYlyXvlM/C53VDcPduViEg+iUb89136W+dr6SA45jnoMz0zNWVDUz1UvJLeGFP/G3rtH0g5IhJj9Bfg7Uu925de63ztPg6OfV5BsSISCgWjiYhkWuMe77bCsvDqyIiQgtEKS2HAbNj8rHv7ir/CrHgr0ItI6FbcFL+9yecKByIikjk2Cu9+N4lQNAOzboKhJ8Gaf7p3UTCaiISp6k1//eo2ZrYOERERERERSbxgio3C7hXQe2o49YiISE4xxnQFHgUmAo3AxdbaBDNZwVobBR4xxswDngGOAn5hjFlvrf1nTL+njTGvAa8ABzZvPsAYc4K1NsGMehERERERCdWUn8LQU+HlE2Fvhf/9+h+RuZrEXUlvZ5Lr1ldg+3tgm1rbdnyUOKBoX+vucybYDjvFvX3tPYlD0Y56AAYfDyV9kjt2CrY1VmE95kv0Lx6c8eN7KTLFrtsVjCYdWmEJHHkf7PcdqHwTPrjSu++6e6H/oTDxe+HVl8tW/C21ULTRF8P4b8CAI8GY4OvqzMZ/DQbOhq0vQ9lQGHSswrXy1Zo7ndclERG/fM/dibF3Kyz+CRzjMbc6H8V7Lzn6YjjkZifcdcvzUNu8vlK0AXZ8CF1HwNivQF+tjSSSEUVd4dgX4KXj4/fbswo+vgYOuz2cukSkU1MwmohIpsVbIam4R3h1ZMLgBCe2QSrL3sVDEUnSugdg2zvx+yg4R0Qk+3Yth9pyf30PuAamXNm6gl6RxwX4SJxQYBGRINVX+++7c5l3W7TJuXAKzs1FhaXp1SUiIiIiItIZ1WxwJkYmsmuZgtFERDqvXwGTcVbgu85PKFosa22NMeZs4BOgL3CjMeYpa21lTJ/dxphzm/u03Bd5IqBgNBERERGRXNNnOhx6B8w/1V//siFQ2CWzNYm7wi7OQppDT2q7veK15IPRADY+5h2MtvGJ+PsOOApGfi75Y6aoqnGLZ1u/4oGh1bGvIuM+FTBiIyFXIhIyUwADj3Yeq26FPau9+y65FsZ9HYrKwqsvV5U/nvw+A46CI/4VfC3SqudE5yG5o88M2P64iqP7AAAgAElEQVR+cvuUP65gNBFJTqphxpvnQaSu45zbxHvvN/ky589ZVAZjvxReTSLSqsd4f/02PgYoGE1EMq8g2wWIiHR4W1/ybhtwdHh1pGPi9z22h7iCSkm/+O0168OpQ0QSW/KbxH0UjCYikn3Vb/nvO+WnraFoAEXd3Pvp9V1EwrLrU/99d3wAD/aGxVdAU4OzrakB3v4W/KcvPDzAeTzYE148zpnQLyIiIiIiIv6VP+bdVlAMw06HyT+GHhPCq0lERHKGMaYI+GLzt/XAdamMY62tAm5u/rYMuNClzxrgQcA0bzoylWOJiIiIiEgIBh7tfQ/SvgYdm9laJHl9D4KiFBaJX3mL83nirhWwcylseBQ2PAIbn4KdS+LvO+i41GpNUXVjhev2noV9KCnIXlBfsSl23R6xDSFXIpJFiX4v7N0Cr57uvMZsfh4ad4dTV7ZE6qDyTajbAnsrYdNzzmvrhkeSu1e4hX7vSmc0+cfu23tO8t5nyzznHGb3SrA2M3WJSMcSTTEYDQtr74FNz0Ld1kBLyoqqBd5tvaaEV4eIuOs6ErqPS9yvvho2POycD218CioXtM7XEREJkPsyESIiEgwbhWV/8G4ffHx4taRj4vedD8RrY8LHxl4CvUJc0b1L//jtzx0KZ28OpxYR8daw3QmeSKSpNvO1iIhIe9Em53U62ggLv5y4f0lfOPYFMKbtdgWjiUi21W1Mrn/jTlh6nXOh5aA/wns/gJV/b9sn2uiEmz93MJy5CSK7Ydu7zgXWssHB1S4iIiIiItLRbPQIRus5ET77Sbi1iIhILjoK6A9Y4G1rbToXE+YBVzY/PxP4k0uf53BC0wwwPI1jiYiIiIhIJhV3hylXwQdXxu9X0gcm/yicmsS/oq4w7efwfgr/Nq+emfw+3UbB+K8nv18aqhq3uG7vVzww1Dr2VeQRjNZoUw1ZEMlDky6D8kehvsq7z5YXnEeLQ26G8d/IfG1h2/AwvPkFaKoLZrxuo2H8pcGMJZJPhp8G/Q6D6oWt23pOhjlPwBPjvfeb/1nn68A5MPth6NI3s3WKSH6LRlLf9+2Y90MTvg0H/RkKCtOvKUzRRnj7Uqgtd2/ve7Cz+J6IZJcxcMD/wIIvODkZ8bx2TtvvS/rA7Edg0JzM1ScinU7eB6MZYw4ETgdmA+OAvkAPwFpr2/35jDG9gZ7N39ZbaztANK6I5Kyqhd5t474OhSXh1ZKO7mPgxAWw7j5nFYOBc2DUee0DMjIp0Ypge7c4b4i76p5WkazatdxfPwXniIiEr2YdvHJq4pU1W0y6DPb7DnQf276tqLv7Pnp9F5Gw1Fentt/y62HcV2H1nd599lbA/cXOe96WCzmTfggzfh/u+2AREREREZF80LADtr7i3jbyvFBLERGRnDUy5vmmNMeKXTFvlEefZTHP+6R5PBERERERyaQpV0CvybDmbtjwkLOIY8M2p633NBh6Coz9CvTcL7t1irvJl0OPiVD+CNQ2L3C3ZV7wxxl8Ahz+r9AXtatudJ9u1r84u4vrFRn3OSgRm0bIgki+6TUZTnoLVt4KS3/rb5+3L4X+hzu/XzqKus3w+nlgm4IZb+ovYMI3tYiodE5F3eDYebDyFqh+G/pMh3HfgNL+cNzL8OIx8fevmO8Exh52ezj1ikh+ShhmbHDWGUpgxU3Qd6ZzT3w+WfE3WH2Hd/uBPs/rRCTzRl8AZUNh3f2w+1PY+pK//Rq2w6tnwFmbnFB9EZEA5G0wmjFmGnA9EPuO0s/MxGOAh5qf1xhjBltra4OuT0QEa+GT673b+80Kr5YgdB0Kk3+YxQJ8vMRveib0laBEZB+bnvXXT8E5IiLhe+sb/kPRxn4ZZv6vd7tXaG1kT/J1iYikoiHFYDSAp6f66GSd9/UtPvlf6H8ojPxc6scVERERERHpaHYua55w4zHhbviZ4dYjIiK5akjM8wSr4iXUcve0AbxmaG6Ped4lzeOJiIiIiEimDT/DeUh+Gn6a82hxbwYWnDvsjqyE9FQ1eASjlQwMuZK2ioz7VMBIwpAFkQ6m+1g48FqY+H14fCw01SXeZ939HSsYbf1/ggtFm/wjOODqYMYSyVfFPdznTvaZ4W//9f+GQ26BgsJg6xKRjiPqcc7e92A4eZHz/LnDoXph4rHW3pd/wWjr7o/f3n1MOHWIiD+D5jgPgMfGQM1af/s17oTNz8KIszNWmoh0LgXZLiAVxphLgIU4IWf7fmqeKAr3MWB9837dgHOCrk9EBGvhra86K1d50QrpySkblLhPtCHzdYiIt/LH4eNf+usbqWkbNCEiIplVvw22PO+//+QfxW/3DEZT8KWIhKQ+jWC0VJU/Fv4xRUREREREctWKm+GpKbDzY/f2riP8TxIQEZGOblfM8/3THGtKzHOv1VpKY577mBErIiIiIiIigRlxbrDjlQ1xHllQ3Vjhur1/cfghbbGKTbHr9ojVXArppMoGw4Rv+eu75DfQuAua6jNbU9AitU7d0Sbna8tj2e+CO0bQr98iHUlJL+g+PnG/SA3s3Zz5ekQkf3ktOhcbftzvYH9j7fqk9ZwgGlBQaiZFI7DjI+/2LgOg68jw6hGR5PSblVz/6kXO+xgRkQDkXTCaMeYc4HagLHYzsAFYTPugtDastVHg3zGbTg+6RhERqhbA6ju82wuKnQ/FxL/Bxzt/b/EUdo3fLpKrmvbCh7+AF4+FhV+Gbe9mu6LkRWrh1WRW7LNO8reIiIRj51IS54jH6DU5fnuhgtFEJMsatoV/zLX3hH9MERERERGRXFS3Bd6/nLifNw07HUzc2zdERKTzKG/+aoCxxphD0xjr4uavNmbcfQ2O6VOZxrFEREREREQkWft9O+Dxvgsm/KlvdU011ER3u7b1Kx4YcjVtFXkGo0WwWrRaOqspP/UXWgTwYC94sAe8MAd2rchsXena9Aw8NRUe6ObUfX9Rc/3Nj9oNwRyn32HJBx2IdDYTv++v3+o7M1uHiOS3aKP79th50+O+DoWl7v1i1W1sPSf4Tz9nTmouhhBVLYR/l8H9xRDxWvMI2O87UFDk3S4i2TXhO2AK/fdf+lvnfcwTE6H88czVJSKdQl4FoxljhgAt7wxbPq29CRhnrR0NnO1zqMdahgTmBFagiEiLTc/Ebx/ymXDq6EhK+sCYL8bvkyg4TSQXWQsvnwQf/wq2vgyr/+lcZKt+J9uVJefJScnvU18dfB0iIuIumdWnxl+auE9xd/ftEfebwUREAqdzSRERERERkezZ8HD8G1YBhiezmIqIiHRw84FGnPv9DHCTMSbple+MMZ8HTqT1vsHnPbrOjHm+NtnjiIiIiIiISBoGHQNznkpvjMKu0Hs6zPwj7H9FMHUlqapxq2dbv+JBIVbSXlFBiWdbxEZCrEQkh3TpB8fOg9EX+esfbYSKV+GFo3IzQARg23sw/zTYuSSzxxn3VTj2OS12I5LIxP+CWTdBn5nOuYqXD6+CXZ+GV5eI5Bc/wWh9DoBjX4BBx0FxL38haY07nTmpCxLMvw5bzXqYdzg07Y3fb8K3YOrPw6lJRFIzaA7MeRIGHg1FPZzzocKuYBIEGu7+FF49I//my4tITsm36NSfAy3vGpuA8621/4lp97u0xSKcm62KgX7GmDHW2jXBlSkind6Sa+K3l/QOp46OZtbfYdXt3u01a0MrRSQwFfOdi2qxIjXw6Y1w+D+zUlLSdq9KbbWh+mroMS74ekREpL09SbzlHXpq4j7Fvdy3N+2Fpnoo7OL/eCIiqVAwmoiIiIiISPYs+U389uKeMFBr1ImIiMNau8sY8yRwFs79fQcCzxljLrTW+rrQbIz5GnAjreFqUeBuj+4nxTz/IOXCRUREREREJDXDToEL95neda/PwJ1Dbobx3wi+piRVN1a4bi+gkD5F/UKupq3iOJOOI7aRYrTYvHRS3cfAEXdDnwPh/R/522dvBZQ/BqMvyGxtqVj1D7BNwY139OMw/LTgxhPpjCZ8y3kAPDMDti9277f6n3BgguupItI5+QlGAxhwJBz3gvM8UgsPdPM3fvkjULcVyrIb5vx/1tzlo5OBmTcopFUkHww92XnEWvZHeP+Hiff95Ho48p7M1CUiHV5BtgvwyxhTCFyAc3OTBa7bJxTNN2ttBPgkZtOk9CsUEYmRKIW7WMFoKSlIkOf54X+D9ZuRKZIjPv2L+/Y1d4ZbR4umvVD1Nuz4KP7/JxuFbe87KxF9dHVqx6qvSm0/ERFJXjIBskNOTNwnXtBv407/xxIRSVXjjuwcd+OT2TmuiIiIiIhIrmjcA3Ub4/cZegoUloRTj4iI5IvLgdjl4I8Elhpj/maMOdYY03PfHYwx+xljLjXGLAJuBkpwQtEscLu19iOXfUYAc2ldYPW1YP8YIiIiIiIikpIBs/31G3RsZuvwqapxi+v2fsUDKDCFIVfTVpHxDj6LWI+gBZHOZMjJifvE8go2yrYdQeb9G+g3K8DxRISe+3u3Bfr/V0Q6FBtx3x4n/JiirtBtjM/xo7BzSfJ1ZcrS3ybu02O87i8RyWe94pwTxdr6kvIfRCRlCRJmcsphQMsNUA3A79IcrxyY1vx8RJpjiYi0VdTDCRfyEi9IQtJTvQj6H5LtKkT82/BwtitoVfkGvPmF1vCcwcfDUQ9ASZ+2/Wo3wssnpf9BWUN1evuLiIh/e9b663f6Kijskrjfvr8bYjVsh9KB/o4nIpKqSE3iPtN+BR/9PNjjfnoTDPtssGOKiIiIiIjkk/d/lLjP8DMzX4eIiOQVa+0aY8xXgLtwFnO1QDfgG80PjDG7gN04AWi9mr+CE4ZG8z4GeAu4zONQV9C6WOxe4PlA/yAiIiIiIiKSmjFfhMoE2dX9D3cmxeeAzfUbXLf3Kx4UciXtxQtGa7QNIVYikqN6TYE+B/oPPFv2O2jYBpN+CL0mZba2aBMsvwE2PQP1lW3buvSDvgdBUz1Uvw3VbwV33CEnQtng4MYTERhzMay7171t09Owazn0nBhuTSKS+6IeQcYF3uf4gPOa8/Gv/B3jpeNg1Pkw/lIYNDep8gJRtdC5337nRxDZk7j/6IszX5OIZM7g46BsCNRtjt9v7xZ4ehqYQigscz4DmvIzKO0fTp0dSd1mWPIbqHoLovXt26ddDSPOCr0skUzKp2C0lk+3LbDIWrsrzfFi92+34qSISFq83qC28Er2lsSmXwsfXOndvuo2BaNJ/tj1afx2GwVTEL9Pumo3wcbHYfsHsPLvbdu2vACLfwqH/K3t9gVf8h+K1qUf1HsEoHltFxGRYFW+AZufSdzv4Buh+1h/YxbHCfpt2OFvDBGRdERqE/eZ9t9Q9SZsfja44/p5PRUREREREelIok2w4T9QuwG6jmh/LWFfBcUw5ORwahMRkbxirb3fGBMFbsG5X69lSeiW4LNezY92u8b0ew4431rrtXLCXcADzc/3xOknIiIiIiIiYRr3FdizGpZe697e/3A46qFwa/IQtVEW7HrRta1/jgejRTRPRQSMgaMfgxfmtC4Yn8iq25xrIScuyGyQ0VtfgTX/8m7f+nLwxxw4Fw6/K/hxRTq7oSfDgCOd+/TdzDscTlwIPfcLty4RyW2pBqNNvQrqNsHqO8A2JT7Ouvth/UPOOdGwU5KvM1UVr8NLx7sH9bgZfylMiTNXXERyX0ExHDMPXjsHdieYLx87J736Ldj0FJz8LhT3yGyNHUl9tXOeWbPOu0/D9vDqEQlJPgWjDYh57r70RnKiMc/z6e9BRHJd4x5oTBAG0T03VjLKSyPOjh+MVrcpvFpE0rXxyfjt710OB/0xc8ff9j68fFL71YZirf4HzPhd65vLhh1Q4fOC27RfwX7fhtfOhopX27fXVyVfs4iIJOejX8JHVyfuZ4pgv+/4H7eom7NKg9tFFQWjiUgYIj7nM3bJwAoyDTugJE5ApIiIiIiISEfR1OBMHKpe6H+fsV+BErdMGxEREbDWPmCMeRP4A3A2rfftWZfuJubrGuDX1tp/JBg/iV9aIiIiIiIiEhpTAAf+Bqb9HGo2QFMdFBRB6SAnHKBscLYr/D+f1n7k2da/OPt1FscNRvMIWhDpbLqNhDPWOIvIN9VC4y5n7sZHv/Dep2E7fHoTHPynzNRUsw7WBBxQdvK7rc+LujffU2ehxwSINoCNQukAz91FJE0z/gjzDnVva9gOK/6e2TlhIpJ/vM7X45zjA07w0KG3wszrYfcKwMIHP4u/eLiNwLLrwg1G++QP/kPRpv3SeX8oIvmv91Q4bbnznqe+Gp47xF+I4+4VsP5BJ0xf/Flzd/xQNJEOKp8CwWJvfioMYLy+Mc81a1tEgpMo0Rag38GZr6OjSrRSglY5kkQad8HS66BqIfScDJN+AD2yFFZYtzF++/LrYfIPoesw/2PaKHz6V1jxV9i13Nm2/09g/yvbT0T64KfxQ9HAuSD2YE/n+bivwoCjnWMk0mM/ZzUCY6Ckn3uf+urE44iISOpW3e4vFA1g1AXJjW2MEwrk9lqulQVEJNNs1LlhzY9+h8Dau4M9/o4PYeDRwY4pIiIiIiKSi5bfkFwo2ohz4cDrMlePiIh0CNbacuB8Y8wQ4FzgCGA60B/oDdQD24F1wELgBWCetdYtPE1ERERERETySWEp9JyQ7SriWlm31LNtQEn2g9GKFIwm4l/Xoa3PI3vAO/fQUfl65mqpfBP3tQFSNPh46DszuPFEJHndx8Zvr3ojnDpEJH9EPeY+F/iM+yjuDn1nOM/7HhQ/GA2gagFEm6AgiFgOH5I5lxp2aubqEJHs6DbKeUy6DJb93t8+la8rGC0ZmXzPKpLD8ikYLTa1Y6hnL/+mxjxXKoeIBKcliMjLgNnQe1o4tXRUfQ+Gbe+4t0V1MU/iaKqHF+bC9ved77e+BOsfgBMXQI9x4dcT2ZO4z8YnYfw3nACaFvE+kHr7m7Dq1rbbll7nJGefusS5oSAacYIkNj+XXL2rbncefky7urXmLv3d+zToFExExJO1bV/7k7Xmbnjra/76miKYcGnyxyju4x6M1qjscRHJsKY6/31HXeCERDZsi9+vdDAccTe8dHziMV+YAxdE03udFhERERERyVWx1yBW3+F/v3OqoUvfxP1ERESaWWs3A39pfoiIiIiIiIjkhMqGzZ5tk7vNCLESdwpGE0lR/8OhdBDs3erdZ9cnsOg7bbdtexdq10P/I6F0YOt2UwC9D4ARZ0MXl4Xkd6+CdfdDUTcY9XnYszqYP0eLEWcHO56IJK+0PwycAxXz3dur34at82HQnHDrEpHc5TX3ucD7HN/TiLNhya8TH++N82DYGTDyHOe8JEhVC2HTs1D5GlS/BZEaf/t1Gw19sv/eSkQyZPRF/oPRVt8BZcNgyIkwcHZm68pVteWw4RFo2A5DTob+h4CNQvnjznvKipeh+3jocyBseCjb1YpkRT4Fo61v/mqAGcaYYmtT+8TWGLMfMCxm04fpFici8n92feLdNuHbMMPnyZx4i9Z7t+1cEl4dkn82Pd0aitaivhJW3gwzfhd+PX4+7Fn0TecBMPJzUP2OczFu8HFw6G2tF9dq1sMrp3j/H9izGv5dFkzdiRx+N4y+oPV7twt9APVV4dQjIpJPbBQ+/G/nd1NTAww7DQ66AUoHJDGGdUIx/Rg4F6ZfAwOOTL7Wkt7u2xsUjCYiGeb3oik4N56c/C4s/BJUvOrdb9Axzjn2ye/ABz9LHCJc9WZqr50iIiIiIiK5quI1eO8y2PEB9D4Q9vuv+Nc9Yw0/S6FoIiIiIiIiIiIi0iFUNroHo/UvHkRpQUj3YsdRaLynAjYqGE3EW0ExHHYnvH6u9wL3TbWw4ib3Nq8J6Euvg+NehG6jWretvR8WXAw24ny/5Br3hYhTNfwsGHNJcOOJSOoOvhGenubd/uJcmPZLmPbz0EoSkRzmdb4eJ/zYU9+Z/vpteNh5fPpnOGZecPd2LP8zvPv91PY97J9OyKyIdEx9psMB/+PMj/RjyTXOY/pvYMqVma0t12x7H14+sXWu/UdXO+eXFa/A+gdb++2tcOYwiXRS+XTWsACoAyxQBlwQv3tc34t5vtVauzydwkRE2qhZ6759xDkw669Q1DXUcjqkpjjBaHu3QuUCJ1REZF8rb3bf7jd9OmjJBDqA80amZo1zwW3jE/D8bCf8JhqBZw7MjWDAox6CMRe13eYZjBbgxT0RkY7io1/Ckt84r5GR3bDuXljwRef13q+G7bDzY399j3859WCf4p7u2xt3pTaeiIhfkdrk+ncfDcfPh5Pfg3Ffg8J9blIt6QP7X+E873sQHPMsHPtC/DFX/zO5GkRERERERHJRpBa2vATL/ggvHA3b3nFWDN62yAmY9qvXlMzVKCIiIiIiIiIiIhKiyoYtrttP6ntuyJW4KzAFFHmEo0UUjCYS39CT4LSVMCPA+SN7VsHSmPEa98B7P2gNRYP05k0MPgHmPAUnLXJCRE58C456EIqyH9QoIkDvqc7/z3g+/iXUbgynHhHJbVGP8/WCFILRAIp7+++77V1YdVtqx9lXww5Y/BP//addDeO/AYfcAmdXwKA5wdQhIrlr6lVw6lI45FaYeYPzGpDIhz+Huq2Zry2XfHhVaygaABbe+U7bUDQ/hp/p/D3PvAH6HRpoiSK5wHuZiBxjra03xrwIfLZ506+NMY9ba3ckM44x5kjgUpyANYCHAyxTRMT7g6rY1T8kPdE4wWgAzx8BPSc6H/73GBdOTZIfNj+X7Qra8lppyK/dnzrhOdvfc0Jwsq10EAw9uf32Lv3d+ysYTUSkLWth9T/ab9/8rDMptd8sf+O0+UAsgwq6uG/XzVUikmnJBgy36DsDDr3VubFt3X1Q/Y5zDjv2y9BzQtu+g4+DsqFQt8l9rFW3OWOJiIiIiIjkqzX3wIIvBDNW2ZBgxhERERERERERERHJopqm3dREd7u2DSjJnc9Bi0wxkdjQpWYRr6AFEWlVNggm/j/44Kfe4STJ2vR06/Mtz8PeACfzH3QD9Nrfed7v4ODGFZHg9J4av91Gnfls474STj0ikrui7c/hAfAIPk6oIMn9Nj0F+/84tWPF2voyNO3117eoB0z7RfrHFJH802uy8wDY9j6svCV+fxuBLfNgzMWZry0XRBvbvpdMx0E3KMdEOrS8CUZr9mucYDQLDAPmGWM+a62t8LOzMeYY4CGgADBABPhDhmoVkc6q4hX37WVDQy2jQ2tKEIwGsGu5s5L9Ca9nvh7pGGwUTEG4x0w10CHWh1elP0ZQDr0Nirq1317Sz71/fZUTAmRMZusSEckXTXuhtty9bcmv4ehH/Y0TVjBaYYn79qaGcI4vIp1XuufRJb1hwrdgQoJ+vad7B6MB7FzaetOZiIiIiIhIPtm9MrhQNIAeid5giYiIuDPGFAOHAOOAvkAPwFhrf5XVwkRERERERKRTqmzY7Nk2sDi3gtGgrt32iBY1FfGnoBAGHecsXByE2g2w9j7AwLLfBTMmQNeR0GNicOOJSGYUlsKA2VD5mnef9Q/BmC8mH2KUDbXlUP2287zvLOg2Irv1iHQkXufrBcWpjZfsXNidy2Dt/e5tvSZD72lgm2Dbu7Bnrfc4yZxDlfRJqkQR6aB6T4PSQYlDpJdcCz32g74zU39tzFU2CjuXOPOQrIWG6uDG7joyuLFEclAevItqZa19yxhzP3A+TjjawcAnxpjrgQeAdrOvjTGFwFzg68DncALRaN7/T9batZmvXEQ6jfInnDd+bsqGhVtLR9ZjAuzdkrhf5RvOG/DuozNdkXQE9dVQOiDcYwYRjBa0ISc5K5Eka+BcGPZZ97YuHsFo0XrnA3N9SC4i4ojs8W4rf8z/OH6D0frO8j+mmwKPYLSogtFEJMOaQjqPjiYI5X5qCpzf0PEuuIiIiIiISMe34ZHgxiodDIOOCW48ERHpFIwxRwGXAycCXVy6tAtGM8acDJzX/O02a+3lmatQREREREREOqPKRvdgtGJTQs+i3JnQ7wSjtdeoYDQR/6b9AqrehMZd6Y9lI/Dmhantu9934dO/tN9uCuHAa50QNxHJfQf8Cl45FZpq3ds3PwPPHgxzn4auQ8OtzS8bhcVXtg94nHQZzPh98gFMItJeNOBgtGTVV8KbF3i3lw115gP5nZPkx/4/CW4sEclfBUUw/Vp466s4MT8edi2DeYdBz0kw95mOkw/RsANePQsqXgl+7J6TwZjE/UTyWF4FozX7KjARmIHzqtcbuLr50Wb2tTFmGTAGaDkjNM37GOBN4IowChaRTiLaBG99xbs9Vz+0ykf7/xjmx1lFIVb12x3nxFfSU7MufnvdxiwEo8UJwMmGqb9wLvAt/xO89/+S23fYqd5t3cd4t216EiZ8K7ljiYh0VIkCM3evgh7jEo/j9yLExO/56+fFKxhNN1eJSKZFPG4cCVrT3sR9lv0vTNFHjCIiIiIiksPKH4O19wFRGHEu9D0IFv84mLFLB8GxL+THyuYiIpITjDHdgFtwFkaF1kVOY3ndCb0EuBgoaB7rLmvtB4EXKSIiIiIiIp1WZYP74u0DigdTkENhIEXG/TPZiO7dE/Gv/2Fw0tuw9l7YubR9+4aHMl/DxB/AzD/CwKNhy/NQv83Z3m0UjDgHBhye+RpEJBiD5jqvKU9P9e6z4wN49/sw+8HQykrKxqfah6IBfPJHGDAbRpwZfk0iHU3gwWgBB+HUbQp2PIBe+wc/pojkp3Ffhh7jnQU9l18fv++uT2DRN+GYZ8OpLdM++mVmQtEARn0+M+OK5JC8uzvVWltnjDkJuB84ltYboQzO6pEtwWcGJ0Dt/3aNaZsHnGetbQqrbhHpBCpfjx9CUaZgtMAMOhZ6TIDdKxL3fePzMOq8xP2kY6vbDE9Pj9+nthz6HBhOPS0SBeCEab/vwgFXO8/HXAxLroH6an/7lvSFUed7t5cNgd7TYMdH7du2L066VBGRDivR74Xyx2DyZaxdtZsAACAASURBVInHqa9M3KdsGAxP8+Kk18WXpgb37SIiQfFaUS9oQ050VgWN5+NfwegLodvIcGoSERERERFJxoqbnZvEWqwP8Cb74WfC7Ie14qSIiPhmjOkJvAZMpXWB01gt9/a5stZuMMY8DZzW3Pd8QMFoIiIiIiIiEpiKxs2u2weUDAm5kviKjfuipgpGE0lSz4lwwC/d2+4N4fpHt9HOdZaR5zoPEclvvafArL/Bom9599n4ODTVQ2GX8Orya/0D8dsUjCaSPhtx3+4RfNwhdOQ/m4gkb+Bs59F9DLz7vfh9N8+Dhu1Q0iec2jJp/b8zN7ZeZ6UTyMufcmttlTHmBODy5seAlqZ9vrZoCUrbAfwe+J1C0UQkUHVb4MW58ft0hBOvXFHUFY57Bd6/HNbdl7h/3VYoG5TxsiSHrf4nNO6M32f+aTDgKDjoT9B3ZihlEdkTznHi6TkRRl0IU37auq1LPzhhgfN/bOPj8fcf8hmY+QfoOjx+v36HugejNexIvmYRkY4q0e+F8kcTB6NFamHxFd7tZcOcVe5mXg/F3ZOvMVaB+81VRBWMJiIZ1rQ3nOOM/Dx8dHX8Pk11sPzPzjmxiIiIiIj4s/0DePtS2LUcek2G6b+GQcdku6qOx1pY8uvMjD39Wpj8I4WiiYhIsh4CptF6b18D8ADwMhAF/uljjEdwgtEATgCuDLZEERERERER6cwqGzyC0YpzKxityLgvaqpgNJEAjTof1t2f2WP0PzSz44tI+Pol+H8dbYDaDdBjfDj1xNNUD427oLR5ev7uT737bn8/nJpSsbcKoiHdVyySrojH4uAF7uf3HUJH/rOJSOoSnTMBYKFqIfSe1rqpdFBuva407oai7u730DXscOaKRuqgzv3zpkAU5GVklEhS8van3Fprgd8bY/4CXIBzo9NRwFCgIKbrduBN4DngLmttglQUEZEk2Si8dFzifoVdM19LZ9J1KBx5L4y+0Am0imfdvTDxB5qc0ZlVL/LXr/J1ePFYOOUj6DYiszVZ6/1hVhD2vwIOvDb1/XtOgDmPwaOjoHZ9+/ZDb4NxX/U/XnFP9+2Nu1OrT0SkI4rUxG+vfA32VkDpQPf2PavhlVO99x99ERxxd+r17UvBaCKSLU314Ryn1yQYe4kTtBzPhv/AjN/rPaeIiIiIiB+1G2He4U7IMEDVAuc6zykfQ/fRWS2tw9m9wrmpPmgzr4dJPwh+XBER6dCMMecCx9MairYA+Ly1try5fZTPoZ5tGRKYbozpbq3NgRXJREREREREpCOobNziun1giYLRRDqd/b7r3BcWjfl/1WsqTP8NvHamM5csHf2P8BkGICJ5pe8MGHQsbH3Ju8+8w+D0tekvcp6qxj3w1tecRduj9dBtNHQfC9Vve++z6xOYd6QzF6H7mNBKjWvzPFj0bdizKtuViKQv5ZCfOPeuT/4xLPtdiuMGSIE9IuKm3ywYMNuZKxnPK6e0/b6oG4y6AA6+EQq7ZK6+RCpeg7e/7iwM23UEzPgDjDrPadvxESz4UnjBskavs9LxFSTuktustXuttXdYay+01o4EioH+OAFpXay1/ay1p1lrb1QomohkRMV82Lk0cb/C0szX0hkNPh7KhsXv895l8MLRTrqudE7lj/jv27gzuf6paqqj9Z7vfQycA72npz72ft9LLxQt1oiz2m8rKIbhZyY3TlEP9+2RXcnXJCLSUUV8zNt5eJAzgThW01547XPw+DjnoqOXvgenV9++FIwmItkSDSkYDeDQ2+GwO2D0F7z71KyFHR+GVpKIiIiISF5be09rKFqLSA0suSY79XRkfj5rSkW/WZkZV0REOrqfxjz/GDihJRQtGdbaLUBF87cFwOQAahMRERERERGhrqmGPU3u084GFOdaMJr7pNdGBaOJBGfAEXDM8zD0VOg5CcZ9HY6fD8NPg6OfgMEnQulgKB3k/ogVu73nZCd07ZjntBCnSEc15wmY+P+82+urYeEloZXTzsIvw/p/t96LW7M2fpBbi6o34cVjINqU0fJ82bXcWVBeoWjSUXgEH6dl3FfgiPtg4Nw45ys+zkVMoff++57zuO6vwB4RcWEMHPOMMxe+ZxKX/CM1sOo2JzciW2o2wEvHO+cj4Cxc+sbnofJNaNwNzx/tPxStdFD7+Zl+X19b6HVWOoGc/yk3xkwHTgT2xwk8A6gClgHPW2vbvCpYay2wLdQiRSR51kLlG1C3EWrLnXCHuubHQX9x0vHzRfU7/vrpA+vMKCyFQ2+F18+LP8Gj8nVYfAUc8vfEY+5cCpuedSbmDDgKBh6tf798V9wTGpMI4PITdpiuSK1320F/di6e/aev80YtWVOuSL2udmP9zEmv3v6e870phFl/gy79khunuKf79sbd6dUnItKR+H3Nf+e/4OiYEM+P/wc2PJR4v+Gnp1aXF69VaaK6uUpEMqwpxGA0UwBjL3EeB/0JHh4I1uWmjg2PQJ80wo1FRERERDqL7Yvdt6+6HWbdDAWF4dbTkbm9d0lXl/7Q77DgxxURkQ7NGDMEODBm03ettXEumCf0CTCw+fkEYFEaY4mIiIiIiIgAUNm4xbNtQEluBaMVG/dFTSMKRhMJ1qA5zmNfw05xHiIiboq6wkF/hMrXYJvHvNPyR52AtGTnZqWrvhrKH0ncz0vNOtj6Igw5MbiaUrHmLrCR7NYgEqSCDMR9mCIYfb7z8PLkZNj1SfxxBh0Dxz4fv8+9BYD1rkNExE1RNzj4T87zl0+Gzc/533fNXTDzeih0/3wko9beA9GG9ttX3wEDZkPjDn/jdBsDZ6z21/eNi2Ddve5tmfgdIpJjcvan3BgzE7geOCpOt2uNMW8Al1lrfSYTiUjOePnE9ivCg5PUnk/BaIt/nO0KZOhn4LPL4JkDnQ/ovKy9B2bd5Exs97L6X/DWV9t+ODb+G04QVLz9JLeVDUsuGC2VMLJkReOEORR2cd6QDT8b1t6V/Nilg1Ovq91YA+DEN2DrfKgrh4FzoMf45Mcp7uG+XcFoIiKtNj/rr1/5o06wcNdhTjjQ8r/426/bmNRrc7PvigQt3D7cExEJUrxz6Uzq0tc5H3ZbGa/ildDLERERERHJS+vu827bvQJ6TQqvlo4uE9c6Jv1Q4XUiIpKKw5u/WmCDtfbVNMeLXTQ15FljIiIiIiIi0lFVNmx23V5kiuldlFtvP4s8FjVVMJqIiEgO6TXFOxjNNjlhRAOODLemncvSX2Br7b3ZD0bb8WF2jy8StO5jgx/TT1BOrymJg9F6Tcl8HSIivaYmF4wW2e0EtvackLmavCz7nfv2VbdBcS//4/Se6r9vvNdSo3v5pOPLybMJY8wZwL1AKWBimlriYmO3HQW8aoy50Fr7aEgliki6jHGCivasbN9WuzH8elL18a+zXYG06DrcCS97/TzvPpE9ULMeuo92b99bBQu/1H77yltg1IXuK73kOmud5OONj0NxTxhzsZPS3tkkuwpEZE9m6ogVNxit1Pk666/QUA2bnk5ubGMS90lGYSkMPSm9MYo8gtEiCkYTEfk/a/7lv++jw51gsmRCyIL+/aBgNBHJlqYsBaMBDPusezDarmXh1yIiIiIikm9q1sdv37tFwWhBCvpax8C5MOmyYMcUEZHOInZlrw8CGC/2l1z3AMYTERERERERobLRPRitf/EgCnJsgfUi4z4dMBJN8p55ERERyZyxl8CaO73bnz+q7fcTvg0H/I+ziG+Q6rfBh/8NFa/Czo/TH2/Nnc5j1AUw9SrotX/6Y/pV8Tp88kfY+ER4xxTJtNJBMPDo4Mf1eM/Qxtgvw4b/xBsExnzRx8Gsd5OfOkRExnzR+R0f7/VkXy8c7dxv2GL0RTDzeigdkF4tVW/Bst/D9sXugbIN2733Xfl3/8cZ+2X/feO9lup1VjqB3PpkFjDGTALuA8pwAtAsbQPRWmZy25hHKXCvMWZyuNWKSFq6DnPfXpcnwWir74QPr8p2FRJr2OmJ+8RLMH84zsluMknDueSDnzlhbxv+A6vvgJdOgPXxPqzooCI1SfbPcDCatfHDHAq6OF+Le8Dcp+DsCjhzAxz1UOKxR10YTI1BK/YIRmtUMJqICAC1m5LfJ5kAsuFnJj9+IgpGE5FsiRcy3KLHfpk5du8D3LfvrXBuHhEREREREXd1m+H52fH71FeFU0tnkey1kXj6zoLjX4ZCj8+DRERE4otdFnlXAOPFhqHtDWA8ERERERERESobtrhuH1A8JORKEisyxa7bG63u3RMREckZg+bCYXf477/iJicsLcjFg6ONzpgrbgomFC3Wuvtg3pGwe2Ww43qpfANeOg7KHwnneCJh6DMDjnsFCkuDH9sUJu4z7FQ4+K9Q4hLIWDYEjnoQ+s5Mr44CBfaIiA99DoDZDzuvPX7t3edznLX3wLzDIVKXeh3V78CLc51Mhj2roGZt+0c8fu7XK+kDB/0JRpzlv654r6V6nZVOIBd/yv+OE3QWG4bWCLwDbGj+fjhwEFBC23C0m4EMxOKKSEZ0He6+vTYPgtG2vgILL8l2FbKvwi5wxjp4bJR3n51LYOjJ7bdXvR1/7PrK9GrLhoYdzQnJMWwTLLkGRp6TnZqyJVKbXP8tL8CbX4RZN0Jxz+DqWHkrLL/BCb+Jt4JHYZe237ckVHdzX4msjSEnpV5fJnkFo0XroalBk6lERGrXZ3b8kecFP2aB+81VRBuDP5aISCw/N31M/01mjt1zknfbzqUw8CjvdhERERGRzmzVPxJ//rFzCXBuKOV0CkEtAlPSF45/JZixRESks4pdMrmXZy//hsY812oFIiIiIiIiEojKRvf7tAeU5E8wWsTq3j0REZGcMvYSWPcAbH7GX/9dy2DTUzDi7GCOX/6YM2amNO5w5srNuC5zx2jxyQ2JF3A/6iHoMz3ztYgEobg3lPbP3PjGZ4TIft+GCd+EmvVgI862gi7O/H9jwqtDRGTEmTD8DKjbCE0x66O9/nnY/p6/MfasckJUR1+YWg2f/qXtsYMy848w7DQntLLbKDAFye3v8TmQ06bXWen4cuqn3BgzFSfYzOIEoFngf4HfWGu379O3N3AlcHnM5iONMQdYaz8MqWQRSUfZMPftdTkejLZzGbx4TLarEC/dRkKvqd6rGGx5ESb/sP329Q/EH7dhR/q1hW3zPCd0al/bF0Pjbu+gqo6oyUfK8r7W3gU1a+CE14KpYc3d8PY3Wr9vjPMzVdDFfXu8EAaAnpNh1PnJ1xaGeAFzla/B4OPCq0VEJBfVbcrs+EFdHI1V4BFqmeiCo4hIutze58QacCQM/Uxmjl02FIp6QGR3+7bNzykYTURERETEy7Z3E/f56GqY+vNgbqwUaAwoGO2EN6CoazBjiYhIZxW7Et2UdAYyxnQBDozZVJ7OeCIiIiIiIiItKhs8gtGKB4dcSWLFxv3ePQWjiYiI5KAeE/wHowGsvjO4e/8rApoTF8/mZ8IJRqtakLjPwNlQOjDztYjkg4IkIkRMAXQfnZk6FNgjIskwxglmjNVriv9gNIBVt6cejObnfCMV/Y+EHuNT3z/ea7peZ6UTSDJKMOPOaf7aEor2PWvtj/YNRQOw1u6w1v4E+E5Mf4AMzPYWkYzo6hGMVrMu3DqSYaPw1P7ZrkISiffh39aXILJPSJa1UP5o/DHjhVjlKq9wOMh8+EouiTY6j1RUvg4rbg6mjlW3++/rFYyWKMzuM+9BoUdITbYVxal91W3h1SEikqtqMxgOPOx0KPT43ZIOBaOJSLbEC0ab8QeY+0zmJu0bA/0Pd29L9L5SRERERKQzK3/EX7+K+Zmto7OwFt77Qfrj9J4GvRIs2iIiIpJYy13KBhhtjEnnl8s5QMsFigiwMJ3CRERERERERADqo3vZ2dRu6hoAA0qGhFxNYkUek14jNhJyJSIiIpLQyHOT67/xcfj0Jmjclf6x480tDMqOj9pv2/gUvHsZLP091GxIb/ztH8DiK6AuwXyLgXMViiYSK1eCcpIJaBMRcTPyc8n13/oSvPlF5/Ha5+Cx0fDyKc4c/yaXuUjb3oMProI3LoLdKwIpuY1uo6HfwemNEe81Xa+z0gnkWjDarOavFlhorf1roh2stX8H3sC5cQrgkAzVJiJB6zrSfXvNWqjbEmopvr16VrYrED8mft9JKXcTrYctL7TdtnMJ7FkVf8wG9wudOc1a77ZtSaQj57t9g/CSteib0Lg7/ToqXvHXzxRBQaF3+9BT3bcf+FsoLE26rNCUxVktrUr3qouIJLxQl47Bx2VmXK9gtKa6zBxPRKRFk0cA49hLYPIPEwcKp2v4Ge7bd34Mu1dm9tgiIiIiIvnK7w3I5Y9lto7OYv0D6Y9RWAaz/p7+OCIi0ulZa9cAsR+cXZnKOMaYLsDPWoYFFllr07whQERERERERAQqG7znrwwszsVgtGLX7RGb4mLiIiIikjkDjoKpv0hun3e+A8/Phvrq9I4dRjAawJ7Vrc8XXwHzPwvLr4fFP4bnZsGOJamNu/FJeO5QWHpd/H7dxsAhurYtnZAx3m25EpRT4P7eRUTEt2GnwsQkFwhde5fz2PAQ1KyDzc/AW1+Dl0+Cpr2t/dY/6JxrLPk1rLs32LoBuvSDI+7xzrzwK95req4EYYpkUK4Fo02OeX5nEvv9K+a5lisWyRf9Znm3Vb4WXh1+LfqOk7gvua9LX/hcnCCrqgVtv694NfGY296FaFN6dYWtYZt325sXwqbnwqslmyK16Y/xZJqnF/FC6vZV2CV++9gvtd9mCmHUhcnVFLaibt5tNWth1R2hlSIikpNqN7lvT3fVIlMII89LbwwvXhco6jZBVCtPikgGRV1WaQEoSHAuHZThp3u3KcRBRERERMRd7wP89Vt3f3KfqYu7DY8k7jP2EmexIS+nr4YBRwRWkoiIdHotF4QN8AVjjMuFb2/GmALgVtreX5hw0VURERERERERPyob3e/fK6CQPsUDQq4mMa9gtEbrsdigiIiIZI8xcMDVcMqHye2340NY9Y/Uj7u3EvZWpL7/8fPhxLdg5g2J+77/E+drzQZY+rt96tgKS69N/vjWwuKfeN8z3GLuM3DqEug5MfljiHRkuRKUkyt1iEj+MgVw0PVw2gonZOzQf0Dv6amNVTG/9b46G4X3fwTWxxzIWX93jtvyiKelz9xngrv/Lt5raa4EYYpkUK4Fo/WOef5eEvu19DX7jCEiuazrMOg+zr1t09Ph1pLI8hthxU2J++33Xfftfj4AkmAVdYUR57q37btaQs06f2NuzLMJ7pufjd/+9jfaJht3VJEAFoiu2wTbP0h9/2T+nhOFOYw4F6Zd3fpGprgXzP4PdBuRcnmhmfrf3m2LvgWNcQINRUQ6uvpK9+29pqU+ZkkfmPMklA1OfYx4Ckq828ofzcwxRaRzqlkH7/0Q5p/h3DDRuNO9X1jBaF2HQ1+PsPf3Lw+nBhERERGRfGN9Lj6zdwvsTHG1aGlV8XLiPlN/ARO+7d7We3rmPlMSEZHO6k9ABWBx7vG73RjzG2NM10Q7GmP2B+YBFzXvb4GVwP2ZK1dEREREREQ6k8qGLa7b+xcPotAUhlxNYsXG/d69iJ/JvCIiIpIdvac59/cnI9HcwHjSve5e2BX6HwKT4iy21WL3p87X8sdwPsLfx9p7kj9+bTnsXBq/T+lgGHoyFJUlP75Ih2DiNOXI+xgFo4lIUHqMh9EXwrgvw9SrUh9nXfNtBrs+9ZcvUdwLJlzqHLfl4TVXvmxIa5+hJ0Nxz9TrjBXvtVSvs9IJ5NpPea+Y59WevdrbHvO8R0C1iEgYBs6BPavab19zF0z+MfSa3L4tbOsfhHc9As9iTfi281j9j7ZBTCV9YcTZmatPvJX0ct++b1BWnfsKT+2suz9//i2rFsKe1fH71K6HLS/CsFPDqSlbmmqDGWft3dAnxRRpr+AGN4UJwhyMgWm/gMmXw5410HNS/iQ6dx3p3Rath/LHYcxF4dUjIpJL6qvct/faH7a+mNxY034JYy9xPkwrcF8ZMhBxg9Eeh5EeIbUiIsnYvQrmHd4aILnxce++ic6lgzTiTNi2yL1t+Z9h4vfCq0VEREREJB/4DUYD57y/99TM1dIZJFr5e+ip0H2083zQsbD1pbbtEy7NSFkiItJ5WWtrjTFfAp7EWcy1APgJ8B1jzNPA+tj+xpjPA/sBJwKH48zsaJndsRe4wFrrMrtKREREREREJHmVjZtdtw8oGRJyJf4UeUx6jdjGkCsRERGRpAz5DKy713//rS/Bir85c8f6HZZcANiOj5OvL1Yy9+TuWQ0rb4EPf+bdZ9F/QY8JUNwD+s50FpDf+TFsexdsBGo3OfcVdB8NZcNg01OJjzv0FP81inQ2Jk5oWpjyZd6riOSXwcc7gWCpBMRvfBx2/n/27js8jure//h7dleSVVzl3ns3pts0B2x6MaYGCEloCSUhjSTkF3IhnRsCCUlubgoJkBB6B5tmbAOmmG7ce+/dkiVb0u7O749BV21mdnZ3Zov0eT2PHmvnnDnnK1lazc7O+cxSqFrnrX9hp5bb+l0Mi37RcvuAK5Kvxwu351I9z0obkGs/5aFGnydxZXSTviHHXiKSe3qdbgWJNWfGYN0jMN7moCCTYjXw9qXe+h75O+uEz+TX4bOfwL750OVoOPwuKO0XbJ1iL1xqv339ozDxfgi3sx57vXvChif9qSsTFtzhrd/m6W0gGO2gP+MsvRt2f2D9rnc5Krl9kwlGC7Xz1i9Smn8LwxKlW2+ZoWA0EWm7nILROo2FsqFwYJX3sUr6QqlLGKVf3ILR1j0Ex/87+BpEpPVb/oeGULREQhkMRus7DT5zuIBjwR0w/ObceUNZRERERCQXJBWMNh3G/Di4WtqCSHuIVtq3FXSEExu95zXpefjkO7DlZSgqh6E3wLAbM1OniIi0KaZpvmoYxk3A/9JwjV97oPmFOQbwSLPH9SFoUeBa0zQ/CbJWERERERERaVt21DoEoxXkajCa/Q1TFYwmIiKS48beZoWdHdrmfZ8Pb7L+7TASTn654QZYiexfnHR5TbitFWguegA+SHDzrZV/Tq+e5or7wOhb/R1TRPxnKPZDRAJQ2AmOuAs++V5q+88Y7b1v2GbNf+fDYOjXrWDYemVDYcS3U6snEYeA/IRtIq2EfspFJLv6ToOibvaLnHd/kPl6mvvo5sR9jAhMeq4hBb/rRJjyerB1iTcRh2A0gPe+Cic+Dod2OQeR2IlHcz891zRh9/ve+lauCLaWXBA75Nw2bSM8l0Rw4Y634JWjrQVD7YdDxzEQCife75DHIAdI7o4a+aagfbYrEBHJXU7HI0Xd4LCfwbtX0rDmJwG3YyA/JfNmp4hIqlb8yXvfTB5LdxgFpQPt7xJTtw8OboGSPpmrR0REREQk18WTuDvj7g/AjOviyHSE7BfFAdZ7I43vJF5QBhP+EXxNIiIigGma9xmGsRp4GOhB0zc/Gn/eOAzN/PzxLuCLpmnOyUStIiIiIiIi0nbsrHMIRivsmeFKvIk4nANWMJqIiEiO6zgazvwINjwJ22bBttcgXutt34pl8OktcNLT3vrvX+TcNvhqa13cop9D7KB9n0zerDhZR94LAy6F4twMsRUREZEMGPld6HIULPoF7HwbyidC2SCrbc0D/s0TsglGAzjmr9D7bNgxF8oGQ/9LoV1X/+ZtzO06SgWjSRugn3IRya5wEfQ5B9Y82LLN60mdoNTuhdX3uffpdxGM/Ql0PjwzNUly3EJBNj4FB7c2TeP14sAa6DA8vbqCdmg71O331nf7bIjHvIV75Su3E7QlfaHDCKhYntyYb19i/duuJ5z0DHQ7zrnv2ofgva94HzuXTxynK6JgNBERW7FD1l2S7BSVQ/dJ0K4HrP239WGErMXBTjIWjOaywFZExA/JBCdAZo+lDcM6J7DsHvv2yhUKRhMRERERacyMJdd36d0w+ofB1dOamSbUVdi3Hf+obmIiIiJZZ5rmbMMwhgI3At8E+jt0NT7/dxfwv8A9pmlWZqBEERERERERaUNq4zXsi+62betekJthGxHD/tq9uriC0URERHJeSR8Y+R3ro15dBTzZMfG+m16w1h6EHQI66pkm7HMIRjvmLzDsBuvz9Y/Bvs/s+zW+WbERATPJa3qD0u9CGPntbFchIiIiuaD7JJg8s+X23e/D/iX+zBEutt9uGND3fOsjm0KKjJLWTz/lIpJ9pQMdGlzCHjJh8wz39on/gsFJhB1J5rmFgphx2PMpLP9DcmMe2pH7wWgVS5Prv/IvMOKbwdSSC2KH7LfXnwSe8ADMPhVi1dbjSHuIeryW+tA2ePNcmLYJIjYvbvYtTC4UDZqeOG5tEi62MhK0i4i0UjX2F1UBUPT5nQJ6TrE+jvuX9XjzdHjzPPt9ImX+1ufEKXxURMQv+xYk1z/Tx9KH/dw5GG3WZCtEufc5EC7MbF357uB22DIdMKzQ76Lu0HUCtB+a7cpEREREJB3JBKMBzL/VuqC5rR8H1lXA1ldh32Lr8+4nQc9T3c+3x2ucL0ov7RdMnSIiIkkyTbMKuBu42zCM4cCJQD+gHCjECkPbDrwLfGKappmtWkVERERERKR121W33bGtW2FuBqMVOASjRU0Fo4mIiOSlgg7QcSzsdwgzq2dGYdd70GEk1FVa7xsXdIRISdN+B7dC3T77MTqOafjcCDnPFWp07evhv4FPb3GvLVO6HpftCkRERCTX9TjVx2C0HF/zb4SzXYFI4HIxGK3+IqaJhmEM9LhPz8YPDMM4iSSSNUzTfMtrXxEJgsMJlB1Z/tXc8YZzW6S9QtHygVswGsAn34HavcmNGT2Qej2ZUrkquf4bn2zlwWgOoS31wWjdjoPz18Gm56yTtr3OgFcnQPUGb+PX7oGtL1sLtJrb8GTy9YZy/EVSOhIFo61/BE54ODO1iIjkkppdzm31wWgtuL0Jmam/JS4vu93er5MFkAAAIABJREFUJBUR8WL/MnjlqOT2yfSxdKQEyo+F3R/Yt8+9ELocbd2BprBTZmvLVzvfhTlntHztHS62wkH7X5KdukREREQkfckGowGsexjG3eF/Lfmiaj3MmgIHVjdsW/576DgavjAdygY57Ofy/kZBB39rFBER8YFpmiuAFdmuQ0RERERERNqmnbVbbbeHCNGloFuGq/EmomA0ERGR1mf0rfDelxP3mzW55baBV8KEfzQEd2yf47y/52C0RtfkDrwclv0ODm5OXF+QinvDIK3pFRERkQSG3Qhr/wV1+9Mfy8jFSKZGcr0+ER/k6k+5ATyaxr5vJNHfJHe/DyJtQ8gliXTvZ9B5fOZqqWeasPqfzu2DPJxkkuxLFIxWuTL5MaOVqdWSSXUVyfXPdghh0GKH7LeHixs+b9cNhn6t4XH3SbDuP97nmHsRdD4c9s5PrcYmdbVLf4xcFUkQjAZQtRFK+wVfi4hILolWObelsljV8JwTnp6uE53bzDhUrIAOwzNTi7RuB9ZYr892f2gtpC8dCAMug16nZbsyCdKC/0p+n8YXa2RKl6Ocg9EA9nwET3WG4TfDqO9Daf/M1ZaP3r/WPpA8dhA+vBH6nA/hRnchPLAWlt5j3dmwxykw6Cr380x+MuOw6j7YPhuKe8GQa6HTuMzMLSIiIpKPUglG2zHX/zryyfwfNw1Fq7d/CSz6JUx0eC9zyW+cx/Rynl5ERERERERERESkDdlZZx+M1qWgm2MAWbYpGE1ERKQVGnQlxOvg/WuS33fdf6CoHI6613r83pX2/Yp7Q1GXRhvcgtEaXatZ3AtOexuW3Al7PoXaPVDY+fM1jGbLfVNZs5nIkOtg7O3Qrrv/Y4uIiEjr0nHk58cud8G6h9IbK1PrNFMVUlSStH65+lNuYgWcJbtPvRx/dhGRJuJR57aNz2QnGG3+re7tw7+RmTokPYmC0Zx0PgJqdkP1hpZtdXkQjBavyXYFucUxGM0lgGzEt5ILRgN/QtEA2xPCrYWXcJ/n+8NldXoxJiJti9PfKmh6p6XG2rncibKgU3r1eFWQYCHtzONhyhvQaWxGypFWqmIlvD4JDm1run3NAzDxfhh8VVbKkoDFDsGmZ5Pbp+No98DGoAy5Dlb9PXHIw4o/WQF/Z38G7YdmprZ8U70ZKpY5t9fshp1vQ8/P73a4fym8fETDa+B1D8P2N+D4NN+48mre1bD23w2PV98Pk1+HrsdmZn4RERGRfON0zNx3Gmx6zr5t+yyoOwAFZcHVlcu2vuzctvkF57Y19zu3pRLCLyIiIiIiIiIiItKK7azdZru9W0GvDFfinVMwWpw4MTNG2MjQTeVERETEX4OvSi0YDazrGY/8HVRvdO7T/AbEbkEfoWbHG2UD4di/JVfTIz4t9T/8NzD6h/6MJdKqKE5DRMRRp7Fw/L+tD4BoFTw/EGp2ZbUs3xlaiy+tn0ucc9aZSX6ksq+I5AIz7ty2f3Hm6qi3byEs/a1z+/g7rQXXkvtSDUbrf6lz0Ec+BKO5has4iVb7X0euiB203x4udt6n/BiYPCuYehIp6JideTMh7BDu09zOd4KtQ0Qk17iFeDq92dj5SPu7HZX0hw4j/KstkeMfcW6r2Q3L/5i5WqR1Wvm/LUPRADBhwe0QTxBGJcnZ+S7MOhWe6w+zT4OKFdmpo2J54qCxekYE+l8CU+ZkJ1y3y5FwzF+99Y1Vw4vD4NGI9YbKpz+07u4nlupNifscWAWf/cS6WGbG6JbB4Ov+Y7XNmuxjeLWN/UubhqIBRCvdzyeJiIiItHVOx/i9zoR+FzvvN/fCYOrJdbFDULvXub1ml/1r4kSvkxMF3YuIiIiIiIiIiIi0MTvrttpu71aYu8FoBQ7BaABRU9eiiIiI5C3DgG4npbZv7V44uA32L3Hu0+WoZhtcIgbcQtO8Gv7N9McA6HSYP+OIiIhI2xUphVGpBK3meAilgtGkDci1n/INKLBMpO0p6e3cdtD+TabAmCa8lOBEyeCrM1OL+CDF/M/h34RNz9m3RQ+kXk6mxGoS92muZhdE+vtfSy5wC5tx03MyXGHCoV3wTDf/63JS2Clzc2VD/0thwxPufdY9BD2+kJl6RERyQdzhb1XI5W9VKAxjb4ePmr1ZOO52f96E9Kqws3v76vtgwt8zU4u0Tm6BqdUb4cBq6DA8c/W0ZlUbYM4ZDa95qjfCK0fD1NXQLoPHwwC75iXuc+JT0P8i63V8Jp/37Ay9Dur2wac/8NbfjEHVeitEq3ojnPBosPXlC7fg/HofXO9trO1zYOaJcM5SKO2XXl121j1sv33jUxCrhXCh/3OKiGTagTVwcDsU94TSgdn/eysi+S8etd9uhGHMj61jKTvbZlqht50PD662XFSzO3GfaEXLczNV69z3aX5XbxERkQwyDCMEjAXGA/2BbkAx1vWCB4EdWNcPfgYsNk1T1xGKiIiIiIhI4ByD0QpyNxgtkiAYrYgE18mLiIhI7hpyHeycm9q+VeuhYpn72I0ZKa699GrwVdZNsr1cH+qkdAD0PNW3kkRERKQNG34TrH3QPUi2hVy4ftqlhlCuRUaJ+C+nfspN0xyY7RpEJAvcTkxkOoRq20z39q7HQXGPzNQi6YuncLejHlOgoAwK2tu3RyvTqykT4ikGo5W21mC0g/bbw8Xe9m/XFbqd4B7K4aceUzIzT7aM+kHiYLTV/4Txd2Y+gENEJFtSDfEc/g0o6QcbnrKC0vpdAn3O9r8+N5GSzM4nbY/TsVy9imUKRvPLol+2fA0erYR1/4GR381MDWbcChdb9jv3fic9C/2mWZ/nSkjLqO9Dp/Ew5/Tk9lv/GETaw7F/Df4Ck1zn9zmgaBWsuR/G3eHvuAAbn3Zue6IEjr0PhihYX0Ty1MFtMPMkOLCqYVvpQJg8E9oPzVpZItIKmDH77aEIdB7vvu/Kv1rHzG2Jl2C02v0tg9HcLnLveVp6NYmIiKTIMIxJwPXAWUBHj7vtNQxjBnCfaZpvB1aciIiIiIiItGl18Tr21O2ybetW2DPD1XiXKBhNRERE8tigL0PtblhyFxzalty+H98Mez52bm8/pOnjoK9b7XKUdc3vJ7c0vRapsUiZdf1ouARi1Y1qC1vr+Sb+S4EfIiIi4o9IKZzyKsy7Fna8AfHabFeUPkPHSdL66adcRLKvbDB0GAUVS1u2HdyS2VrW/se9/ch7M1OH+KPLUVgpuEncRLjbCda/EYdgtLo8CEaLpRCMtnkGdD4id0IF/JRq2ExjR/4e3jjbCpDzQ1E5nLcSPvo2rHuoYXv/S6D/xf7MkavKj4YxP4bFv3bv9/F34ISHM1OTiEi2pfO3qu9U6yNbwh6C0eJRvRkpqUt0krliGZDF34HWIh6D1ffZt7ldIOG3VfclDkU76o8NoWi5ptdpcN4qeDHJ0JjV90FhRzjit8HUlS+iVf6PufHpYILR3M4NmDF4/xrY+goM/BL0OgPCRf7XICISlHcua3khYtU6eHEY9DoTCrtApzFQ3Nt6jivulZUyRSQPOQWjGWHrYutj/wYfXG/fZ/eHwdWVq7y8H1G3v+W2qvXO/dtauJyIiGSdYRijgT8Dk+o3JbF7F+BK4ErDMOYAN5mmucLnEkVERERERKSN2xPdgUnctq17Qe8MV+OdgtFERERaMcOwbmg84jvWOoNIMTzi8fS62zW/A6+0myylEpNSv94hetD6Wsw4HNrZ0N6um3XNQDxqtYUKoGanFZimm7iLiIiI30r6wuRXrWOTugprW7gdPNUpu3WlSms2pQ0IOM5ZRMSjo/9ov71mV2ohT6mo3tQ0oKi5gVdC12MzU4v4o11X6HZicvsM/JL1b0EeB6PFHcJV3Cy8HT76hnUCsbVxDJsp9j5G+TFw9kKY+AAc85f0a5q2GQo7w3EPwpQ34Ih7YMpsOP4R6wRuazf+V1A+0b3PhseanugWEWnN/PhblS1e3mys3Rt8HdJ6xRO8HqxYlpk6WrtKl/WE6zIYVrv+Eff2/pfAiJszU0uq2g+BC1M4jl16t/XRlgURjLZvIWye7v+4Xmrd8AS8dT7MPAFq9vhfg4hIEGr2wI43ndu3vmL9vf7sNph3NUwfDdtd+ouINOYWjAYw9OvO+1YuBzOJm+C0Bl6C0Wr3tdx2cLN9307jrJtViYiIZIhhGJcCH2CFohk03NWu+Uc9u7b6/SYDHxuGcVGm6hcREREREZG2YUftVtvtBgblBT0yXI13EZfrzeviCkYTERFpFQzDChIDOPy/0x+v/fCW24bdaN+3uE/68zVX/7UYISju0fBhfB5zEIpAuND6utt1VyiaiBejfmC/vf2wzNYhIpKPIsUNxyORUud+RgaCZBNxq8FQMJq0fgpGE5HcUOxyN51D2zJTw4c3ubf3nZaZOsRfJzwGpQO89T3uIejw+Um+SJl9n3UPwRvnwvvXwTtXwCvHWHddeP0UWPFn6+4E2ZZqmODKv8D2N3wtJSfEDtpvD7dLbpzinjD4Khh2A/S7OPV6hnwNwkXW50YIenwBRn0PepzStpKZO9icUG/MjAcTYCAikoscg9GS/FuVDWEPbzh6Wcgr4iRe696+5gE4mKHXjK3ZwS3ObSX9MlfHjrfc2wdcnpk60tWuK1y8D/qen9x+n/4AZoyFJXdZd59pa6IHghl33lX+fz+TCSTf8zEs/rW/84uIBOWg/cIPR3X74IOvQdwh7EhEpLFEwWgAJz5l3ydaZd3gqC3xcj6l8XuoG5+Dedc4H3t2GO1PXSIiIh4YhnEJ8AhQQtNAtPqgM4CdwApgHlaA2kpgV6M+jfcDKAUeNQzjgsx8FSIiIiIiItIW7Ky1v2amc6QrBTl8s+sCw7m2qKlgNBERkVan/yXpjzHg0pbb+pxnfzP3IdekP5+IBG/AF+0DcZxCD0VExF4+r+3P59pFPFIwmojkBrdgtIPbM1PDno+c2wo7J7+gWXJDSW+YujZxv3OXwaArGx4XtHfuu2UGrP4nrH+04edmxxvw0Tdh7oVgms77ZkI8xWA0gM0v+ldHrggibGbYjTRcr50EIwKjvp/6vK1Jl6MS99n1bvB1iIjkAqdwlXwIRvNyJ6YtLwdfh7ReiYLRAF4aCxUrg6+lNavd49xWtz8zNWx9LXGfjmOCr8MvhR3hpGdh2iY45VU45TUo6Zt4v/2LYf6tMOsUiHn4+W9NolXBjFuzG7bP8m+8aLXz60wn6x6ywp9FRHJdKoskKlfC7vf9r0VEWh8vwWg9pzjvv3Ouv/Xkuv2LEvd55zLrZjmL74S5F1jh4U5KArijt4iIiA3DMEYAD2Bdl9g4EK0CuBc4B+hqmmZP0zRHmaZ5vGmaE03THGmaZg+gG3Ae8EegkqYBaRHgX4Zh6Db3IiIiIiIi4ouddfY3ZOxW2CvDlSQnomA0ERGRtqVsMEx0eT/Yiw4jWm4rKIMvvACRsoZtfc+HMbelN5eIZEZxTzjxSQgVNWwb+GUYfnP2ahIRkcyyC8gUaWUUjCYiuaGgg3NbLKCFsY3FY3DIJYDt7AVKTM1nhgHdv+DcXj6h5cm9ou6pzbX5Rdg2M7V9/eK0QHvk9xLvu/xef2vJBRuesN9ud0cLr3pOhpOehrKh9u2DvgonPQOdDwcjZC3s6nwkTH4dOgxPfd7WpN+FiftULA++DhGRXBBEiGemFJYn7rPgJ8HXIa2Xl2Comt2w7HfB19Ka1ex2bqurgLoDwdcwN8HxYXEvKBsSfB1+MgwrfKDX6dDrNDj8N9733f0+LLy94XE8CsvuhRdHwAtDYMHtwQWJZUuQX4+fIZ01u5Lf59AO2DvfvxpERIIST3GRxMwT4PFiePkIWPeYvzWJtEa1+2DetfBsX3h1Aqx9OLn9Nzxt7fd4CTzWDp7sBLNPg30egrSyyUswWmEnKB1k3+/dL8Ghnf7Xlau2vOKt3wfXw2c/TtyvWMFoIiKSMf8DlNAQiGYCPwP6mab5PdM0XzZNc6/TzqZp7jZNc4Zpmt8B+gG/+HyMemXAnwKrXkRERERERNqUnbVbbbd3K1AwmoiIiOSYwVfBxftg0nMw8V/J7TvsJue2nqfCRTvh1Ddh6hpr/HCRc38RyS39psHFu2HKbDh/Axz/b62FFxHxlZHtAtwZioyS1k9HNiKSG4yQFVIUO9iyLVod/Px1+8CM27dN+AeU9A2+BgnW6B/BrndbLu4zQnC0zTWzJWksEPnku3DO4tT3T1esxn57qAj6TIXNL7jvX7ka2vscOBCtgopl1gKnjmMg5Pxm7P8xTahaD6FCqNlhfV1GGDqMtO5I4cX2OWBG7dsiHsdw0u8C68P8/Brs+ucQI2QFINT3iUcBA0Jh22HaLC/PqxXLgq9DRCQXOAWjhfIgGM3L37eC9sHNH4/BgVVQOlBvwDZWtcH6vhd2znYl6Ys7HNs2t9XjgnGx5xaMBlYQlNdj8FRUrEgcijX85vw/pu5/CSy+E/Z7DKxY8hsY8W2ItId5V8HGpxvaFv3CCts69q+BlJoV0QAD+PwMJUslGA1g/1LocqR/dYiIBCHuIZTWSeyQ9Xz77uVWyHO/af7VJdKamCa8cTbses96fHAzvHelde574GWJ99/0Arx9cdNt8RrY9roVUnjeSmiX4o1fguZ0rt5odpzf5xxY8T/2fWedDGctyP/XBonEo1C11lvftR4veNd7nSIikgGGYZwATKEhFK0SuNA0zVmpjGeaZiVwh2EYc4FngNLPxz3NMIzjTdN815/KRUREREREpK3aWecQjFaY28FoYSOMQQiTlmtg6hSMJiIi0noVdoS+51ufb3oONj3rbb+ywe7t4XbQfVJ6tYlI9kRKoccp2Zt/wGWwXjdUFZFWquep2a4AOo5zbnMJzxdpLRT/JyK5I1Jivz3R4mg/uC1q7Xl68PNL8HqfCVPmwJBrG7YN+iqcNR/Kj2nZvziNYLT9S2D1A6nvny6n8IhwO2/BJOse8a8W04SFP4cnO8IrR8PLR8BTnWFNgoU6lavhpcPghUHwXB9rv9cmwqvHwFMd4bPbnMMM68UOwazJzu2dDkv+67FjGNZHKGx9GM3Sn0OR1r9IK1VH3uveXrMTavZkphYRkWxyCkYL50EwGlgBx26CCjrePB2e6QbTR8JTXWDpPcHMk0+q1sNLh8PzA+Cpcph7MURtwqfzhWl6D+eoWpffX2u2JQpGiwUcWL71Nff2DqNg5C3B1pAJoQI4430Y+1/e93m2NzzZvmkoWr1Vf4MDa/yrL9uCPP9Tudy/sRL9vjh570qIpRE4JCKSCc1vKpGquRdAXYCBlyL5bP+ihlC0xlb+b+J9Nz0Pb53v3F5XActtbgSTK8yY/Xaj2b3c+roEK+5fAltm+FdTrnIKkUtH+dH+jykiItLSTZ//a2CFo12faihaY6Zpvg5c32hcgBvTHVdERERERETatpgZZXfdDtu2bgU9M1xN8gocFr5GFYwmIiLSNvQ513vf3ucEV4eIyIjv2m8ff2dm6xARSUfj/In/Y8Cgr2S8lBZ6ToHCzi2395gC4cLM1yOSYQpGE5HcEXYIRgt6ATa4B6MVlQc/v2RGtxNgwj/gCtP6OO5B6OSQklvSN7253r8G3rkcFtwO866Gj26G3R9a4Q5BizkFoxVBxEMw2rYEoQRe1FXAhqfgteNg4R1NFzxFq2DeVdYiLjumCW9NsxaI2bbHYfGv4a0LIO6wkKp2L8wY41yfEYHeZ3n6UiRAzUPk7FT4GGAgIpKr8j0YbfSt7u3RKv+PgQ6stY4Xavdaj2PV8On3YdOL/s6TT0wT3jgX9n1Wv8EKUvo0j8Okkl0Ivnd+MHW0BbUJgp6CCqwyTdg2C+b/0L3fSc+0npP1kRI47OdwqU/f0zlnwr6F/oyVbTGH78nAK6HvBfZtw78Fx/2nZZhGczW7YadNAEkq3M4hJbLkN/7UICISFLdQ2lCSdxR7sj2seRCqN6VVkkirs/Yh++0751r/Rqth8wxY+TdYdZ8VAr7kLvjwm9br4EQW/9K6McmmF5zPN2SLYzBasxuLdJ8EBZ2cx/noZuv7s+uDxDdQyVdxn4PROo5NfAdwERGRNBmGUQSchxVcZgJPm6bp263hTdN8FHgaKxzNAKYahtFKThqKiIiIiIhINuyu20kc+/PM3Qt7Zbia5EUUjCYiItK2DbjMCsNIZNT3oePI4OsRkbar/BgY9o1m2ybAsBuyU4+ISCrG/heUDmq67YjfQrtu2amnsVAEjv1b02sti8rhyLuzV5NIBiVYMSYikkERh2C0aAaC0Xa+Y789XOxcl7Ruxb3TH2N9s2t8V/wPDPkaHPMXCIXt9/FD3GGxU6gICjok3n/n29bCqz4p3g2ichXMPh2q1rr3e2sanPQ09Luw6fa9nziHojW2+QV4ri+cs6hpgOG+hTBrCtTsdN63+0lQ6LKwSjLDaSFcY5XLodtxwdciIpJN+R6MNvBLsPCnLh1M62uMFPs358an7f+ObHoG+p7n3zz5pHKl/THUhqfg6D97CyTNNU6Bv05mHg/nr4PSAYGU06olCnoK4nV5tBrevhS2zHDvN/7XrfOCjEiJ9TqmJkEoXSKVK+Gl8TD+VzDm//lTW7Y4BfBFSmHAF2HTs023h4pg+Degw3DociRsfc16PTz/R/bjzDwejvkrDLs+vTrTCUZb+y8Y91/pzS8iEqS4wyKJcDGcvQC2vAwff8v7ePOuhkgZnPA49DnbnxpF8p3bscSBdfDW1PSDb+ddZf3baRxMegHKBqY3nl+czgc3f78kVABDvw5L77LvX70BPvz8wslBX4EJ/7Qu/GlNkg0KT2Skw515RURE/DURKPv8cxP4XQBz3ANc9PnnZcBxwJsBzCMiIiIiIiJtwM66rY5tXQt6ZrCS1CgYTUREpI2LlMDJL8HmF2H3+y1viFjQEXqcDD1OyUp5ItKGGAYc/Sfod4G1Vr/jKOh1FhSUJd5XRCRXlA6AMz+EzdOtm0L3PBW6Tsh2VQ36XwIdRsPWlyHS3sqAKOmb7apEMiKU7QJERP5P2CGALJaBYLT5t9pvL+oa/NySm8KFTcO2/LL6PuugM0hOARLhIjA8/ul/+1Ko2pjcvBufg3nXwovDEoei1Zt7EdRVNN225RXvcx7aBm+c23TbBze4h6KBtRhTsi/uYXFXxbLg6xARyTanUNN8CUZrPxSOe8i9j1PYTao+/YH99jUP+jtPPtnwpP32mp3O4Xu5rvkb9F7MOcv/OtqCA6vd22edDHPOhP1L0psnWg1LfguPGPBEaeJQNICRt6Q3Zy7rNsmngUxY8BPY5yFgOpc5BoUWQ++zYdxPG+5wU9gFjv2rFYoG1hvoI78No35oBfA4+fAGWPDT5J8XqzbCwp/Bu1fCsnuS27exA6v9/5soIuInp2C0UIF13D/iZjh/A3Q5xvuY0QPw5jkQPehPjSL5zu3mJR9/O/1QtMb2LYTFv/RvvHSYJphx+zbD5kYyY3/ibdy1/4ZNz6deV65yej5O1eCr/B1PRETEXv3drkxgqWma8/ye4PMxG5+k1B22REREREREJGW763bYbu8UKacwVJThapIXMexvGhL1++YbIiIikrvChdD/IjjiLjjq3qYfh/1MoWgikjmGAT2nwLjbrfAehaKJSD4qKofBX4Wxt+VWKFq9TmNg1Pdh2PUKRZM2RcFoIpI7IqX226MBB6O5ja9gtLatMIBgNIBVfw9m3Hpxh2C0UDuoq/Q2RqzaOXDEzsJfwNwLYM393vep92yfpo8XeFzwVG/3vIYwtdp9sOs99/5H/h7adUtuDglGaf/EfQ6sCb4OEZFscwpnCeVJMBrAoCvh7AXO7TGFwGRVvobwpBKMVrG0dS6KD1I8CpUJgtEAtr4KM8bA9jdTmyd2CGafBvN/6H2fk1+2LtporUbc7N9YZhzWJgipzHWJQr7H3QEXbIGzPoPz19qHOxgGdBjhPs+in8Gb53kPmziwFmYeDwt/Cusehqr13vZzUrEivf1FRILkdPwVanS3+dJ+cMY8OGeJ9bd60Fe9jf1aDl4gIJINBR2d2za/4P986x51DiTLJLca7ILRCtrDJR7fz9jyUmo15TI/F62dNd/7TXNERETSM6bR5+8EOM/bDnOKiIiIiIiIJKUqVmG7vVOkS4YrSU3EKLDdXpfKNVciIiIiIiIiIiIiOUhXwIpI7giX2G+PBRyMVrHcua1sSLBzS24L2d9FKW2bX4QPrvceUlYvdgg+/SE8XgyPGNbHm1Nhzyct+9kJF0E0iTk3PA4HtyfuV1cBi3/lfdzmogfg6e5QsdLbfHbeOMtaWFWzG+sG1C5GfDu1OcR/vc+BUIKgi9q9malFRCQTNj4Dr50Azw2A974KNXus7bGD9v3DeRSMBlDkEjy6b3Hm6mir7BaS1/vom94DgHJJqhfpfXCDv3W0dlXrklt0/8l3U5tn83TY9a73/qECKD8mtbnyRY9TYNLzVpBXouNiL5belRuhF6lyDPludBfmdt2h82FQ0MF5nPbDE8+17XV4rBBePwXm/whmngjTR8E7X4JDO5v2XfFnqN6UeEyvKpb5N5aIiN+cjhmb/50yQtBxFPQ+EyY+4G3sfQvTD5cUaQ3cjmOCEKuGR8PW+wkvjoDZp8Ou9zNbA4AZc25zej1bUAadDks89pr7oe5AanXlqriPwWidx/s3loiIiLvGF9gEecDReGxd1CMiIiIiIiIpq4rZn1suDbfPcCWpKXC41iRq5uF1YiIiIiIiIiIiIiI2FIwmIrkj4hCMFg04GO2tac5t424Pdm5pu1b9Hd48F0yXEK9oFRzcBrEaK0xkxhhY+tumwWebX4TZpzYNFIu5LCbvfU5ydXoJLtg1z3kBu1c1O2H6cNj8QupjfPztxMFvZy8Cw0h9DvFXQRmMTBCsUbsvM7WIiARt04sw92Lrb2v1Blj7b5h1ihVg0zyApV64OLM1pitS6tz25jnJh8JKctzuag3sAAAgAElEQVSC0TY8DvOuzVwtfnE6rgUoP9a57dA2qFjhfz2t1cEtyfXf+2ny31/ThJV/TW6fgV+CovLk9slHfafCucvgshr44qH0A9Le/ZI/dWWDUxhist+TDiO8993xBiz5Dex8xwosW/8IzDwB4o2CO5bdk9z8iRzc7O94IiJ+cnoudrjbvNVmwNTVEPGwQOSz26zznH4G/oiId5UrYNtMmD0l80GFbmHMhstNao7x+DrincuSqyfXJRNe7ab3uf6MIyIi4k2PRp8HebDReOyeAc4jIiIiIiIirVx1zP56tpJQfgSjRRzew4v6dY5ZREREREREREREJMsUjCYiuSPsEIwWCzAYLXrQCqawY4Sh07jg5hbZ8RbsW2jftvxP8Fx/eLYXPN4OXhoLB9bY963dC4t/3fDYKaQs3A56ne6+yKi5RCEJO9+BOWd4Hy+RD76e+r6r/gY1u5zbz5oPncakPr4EY/ydMOF+53YFo4lIa7Hyz0CzQNR9C2Db61C53H6fsoFBV+Uvp+P5eusfzUwdbZVbMBpY33+nEL5c5RTMAXDSs+77bnnZ31pas3gKd4nd+pr3vvuXwDPdYfus5OY4/K7k+rcG4SK4cJt7n67HQZejnNs3PBl8wHxQnMIQw0XJjVM+Ib06KlemF9qdSPRgcGOLiKTL6e7xiUIqywbDWZ/CkK+591v3sHWe8+lyWPdIajWK5LtUjr/rlQ5s+r5V1+NSGydaBQt/mnodqTBjzm1ur2e7efwat8yAPZ8kV1Mu8ytActgN/owjIiLiTeO7HAT5Jm/92AbQJcB5REREREREpJWrih2w3V4aLstwJamJOKwJiDq95yciIiIiIiIiIiKSZxSMJiK5I+IQpBDkgt6KZc5tfXQXdcmAj29u+BmPHrQCBuZeBB9/C2r3eB9nxR/BNKFmD8QcFllHyqCwExz9R+/jVm+0/q07YIVLrH0IDn6+UL92H8w+3ftY6ep1lvU1OInXwaYX7dtCRdB5fDB1SXoMA4ZcDcc7LIat25/ZekREghCtgq2v2rfNOQNih+zbOowKrqYghMJWEKuTNQ9mrJQ2yTDc280obHwqM7X4xS0YLVICF7mE4u5f5H89rVUqwQyf3gJbZzZ9/qraAGv+BUt/B5/9Fyy4HeZeAjPGuAcY2xl8DbTrlnxdrUFhZ5i6Fkr6N9powBH3wBUmnP4unPkRlE+039+MwfY5GSnVd06/84nCeJrrcYr7a0cvdr0H+xbBpz9Mbf+icuc2p9fsIiK5wOm4IGR/t/km2g+BCX+Hy+OJ+9ZVwLtfgvevs44dVv4N9i1OrlaRfJVqMFpRV5i6Bs5eYB0XXmHCqW9CuDi18dY86F/4lhepBqMB9DzV2xyL7/ReT64zffi/6X8J9Doz/XFERES8a5xuH2QwWuM3kF3elBARERERERFxVx23D0YryZtgNPv38OoUjCYiIiIiIiIiIiKthP3tIUREsiHsEIwWCzAYrXKFc9ugq4KbV/JD6SDYvyTYOXa8Ba8eCxMfsBYC7luQ+lgr/mwFkjhpP9T6d9iN0PU4WPJbWO8QRlVvyW9gwOXwzmUNQYKhQjjpWajZ6f33s9cZMPQGqFwO83/kbZ/GinvBKS9ZwQuvHOX8/7L5BfvtBe2Tn1Myq7CT/fa6fVboX6KwFxGRXHVgLcz2uIC3uQ4j/a0lE8LFzkFvu97zZ46oAmVsuYWI1TuwJvg6/OT2NYUKrXC0IdfB6n+0bHcLwZamUglmiNfCnNOhyzFw8nTY9jq891V/Fu8bIRj+zfTHyWdlA+Hs+bDxGSuQuvskKD+maZ9hN8Luefb7v3kuXB6zvpf5JF5jvz1UZL/dSbjI+v4s/W3qtSz9bXr7n/mp9dq1ZmfLNgWjiUgu8yOk0jCs4KaXDkvcd/U/G+8I438JY37sfS6RfJTqYqQBV7Q8RxoqsM7fr7k/tTF3vQfdT0pt32SlE4w28EvWa45ENj4FS++BUbckV1suSuW11ZG/h8Iu1g1vOh8Bvc/SeXUREcm0xidxglyB3fgPpYcUZxERERERERF7VbFK2+2l4fy47rzAsH8PL2p6uI5MREREREREREREJA/k2eo4EWnVIg7BaNEgg9FWOrf1nRrcvJIfMrUYf/9iKxwtnVA0gI9vhg9vsm+LtIfi3g2POx8Oh/3c27gvH940WCJeC+9eAfsXea9twj+g3zQYfSu06+l9v3r9L7P+DbeDsz5z7le1zn57QYfk55TMKnAIRovXKThARPLbrMmphVGVDoKC/LjzZBO1e93bTTP9OaL2d+ps87wExh2yCejJZU4hSdAQlNTlSPv2nW9DzR6oq4Sld8Pbl8IHN8C22bDxWZh3LbxzBaz8K8Rc5mkL0gkz2/MhfPZjmHe1P6FoAEf+Aboc4c9Y+aywMwy51gp1aB6KBjDoSvf9NzwZTF1BcvpdDCcZjAYw7o70aklVuAROfAJK+0H3L9j3SfS3UkQkm5wCU0NJZg10HAtlQ5Oc3ITPfgJ70zxHKpLrUgkm7nUGjP+FfdsRd6Vey+uT4OPvwJ5PUh/Dq7SC0b7s/f2aT78P+5J47yJXxVN4fTXyOzD4KzD2NuhztkLRRERERERERERERBJwCkYrCeXHdXsRI2K7PerXNTwiIiIiIiIiIiIiWaZgNBHJHZFS++3RquDm3Pm2/fa+08DQU2Sb12MylA7IdhX+6DCy5SIYp985L+r2w8ZnvPXtOBpK+jY8Hv+r5Ocr7tXweSgCo36Y3P6R/LhzV5tW6BCMBvBRhkIKRUT8tvZh59DORHqf5WspGdN+mHu7H2EwsUPu7aksHm4N4gm+LwCHdgRfh5/iDncvNUIQ+nzhfIeRzvs/XQ4zRsOnP7BColb9DWZPgbkXwpr7Yf2j8OGN8OZUiLXhO6WmEszQ2Op/Ov9fJevsRTBCx36eGCE4/hHn9tX3Z64Wvzj9HIXs73DsKlIKR/9PevUkq+fpcMEW6H+J9ThcbN9v7b8UyCgiucvxuTjJYDTDgDE/SqEA03qeFGnNkj3+nroaTn7Z+eYfReUw5rbU61n+B3htImx5OfUxvEgnGC0UhqP/BGd6DHB7aRyYce+15aJkF601vjGOiIiIiIiIiIiIiCRkmiZVMfsbdJaF8+O684hh/x5e1EzzWiARERERERERERGRHKHUHxHJHeES++2x6mDmi1bB9tn2bZ0OC2ZOyS/hQjj1LWtxc77rPqnltnY9oGxI6mMeWOOtX79Lmj7udXrywYPdTmz6uKRPcvsX5Mcb1G2aWzDamgf8CdIREcm0T7+X+r4DvuhfHZnU7ST39ppd6c8RO+je3laDFKIJvi8ANTuDr8NPTmFljUOSOh0GGPb9AKo3JZ5n22vOrw3bgnSD0fzSYzJ0GpPtKvJL7zOd23bMgdr9mavFD3GHsLBQUWrjZTpktOsEKOzY8DjiEIwGsG1W8PWIiKTC6bgglZDKwdfAkb+D4iTP4y37HTxiNHxMHwXrn0h+fpFclczx99DroWxwy5ueNDfwivRreuNsiLuEl6XLLcQ8UTBavc6HQ+lAb323z/HWL1clG/o+9vZg6hARERERERERERFppWrMQ8SxPy9ekufBaHUKRhMREREREREREZFWQsFoIpI7Ig7BaNGAgtH2LXZegNLn3GDmlPxT2h8mvwqXRRMHfeSy4d9ouc0wYMz/C3bekr4w6paW24Zc532MHpOh68Sm25JdUFnQIbn+knkFLsFoANvfzEwdIiJ+qd4Eh3akvn++HncM/6b7gubqjenPkSgY7f3r2mZwQvxQ4j75FjQadwhGa3xRX1F5y2PFVGx9Lf0x8lUuXAxphOGIu7NdRf4p7Ax9zrNvi9fB1lcyW0+6nH7nwykGo5UNhgGXp15PssLtmj12CUZb/odgaxERSZXTc3HIflGFK8OAkd+FCzbBJZUwOsXzkBXL4J0vwpoHU9tfJNckc/w94lve+nUcDX0vSK2ext6+2LktWg3Vm1Mf23QJXQtFvI1hGDDmNm99t8301i9XmS7BaCX9mz4uGwr9Xf7vREREMsv8/N+JhmFMCuIDmJDNL1BERERERERah6pYpWNbabgsg5WkzikYLWo6vOcnIiIiIiIiIiIikmc8XmUsIpIBYYdgtFhAwWg7HO4WHymFLkcFM6fkr1AYht0IO+dmu5LkDb4GygbZtw25Foq6wtqHYOPT/s7b+1yY+E8osLlr1jF/gY7jYMsMKOwC7bpB1QaoWtfQp7CTFYo26vvWgqfGinsnV0skP+7c1aZFiq2fhdo99u2NfzZERHKZacKiX8DCO1IfY+rqln/78kWXI+DMj+Hlw+3bZ59qLWI+7Bepf42JgtEAVv4ZBlya2vj5Kurh++IUDJ2rnBaCNw/mGPRl2PVeenMt/70VpjvudjDa2H0E4i4L7oPSYwpEq6xgu4KOMPpW6HxY5utoDSY9D486/Mxueh4GfDGz9aQjVmO/PVSY+pjH/RsqlsPeT1Ifw6tQEsFo29pwGKOI5Dan48V0nosBCspg/K+g4xhY/xgc3Aw1O61Aaa+W3g2Dr0qvDpFc4PV12eCrrMAzr058HJb9Hra9DiV9YOj1VoDWkv+G3R/C7nmJx9j0HBxY2/T9hHgUPvkerPqrVXuHkXDik9BprPfawD0YzS1gvbmh11nvaax7CDY+S0P2SjNLfgOH/3dSJeYUt5+T09+znhP3zbfezxx5i/XaSkREJHcYwKMBz2F+Po+IiIiIiIhISqpjBxzbSvIkGK3A4eZGUbebb4iIiIiIiIiIiIjkEQWjiUjuiDgEo0UDCkab/yP77e2Htb2F8OJNvwuhz3mw+cXs1VDcx1o4mIwRN7u39z3f+qjeBM/1S722xkbf6r7oyAjBiG9aH6ko7Z9c/8JOqc0jmTXkGmtBl53YoczWIiKSqvWPpReKdsTdUDbYv3qyofN4KOnrHHKw+FdQOtBazJwKL8Foez5Nbex8Fvfwt7J6A1SuhvZDgq/HD06BXaFmp7OGXAcf3pT+fIt+ZgUADP5q+mPlEzPDgXmX1bX8P5TUGYYV4r3yLy3btsyAWC2E0wyzcVO7D7bPgeqNYESg8xFQfqwVLp4MM+4ShliUen2hCBz/MMwYlfoYXoWbB6O1s+8nIpLLHIPR7BdVJMUwYNCXrI96Myd5vxHF/sWw6j7rPGa77unXI5ItXoLRyo+FI3+f3LihAhj9Q+ujsaP/aP27+E747MeJx3lhMFwWbTieW3YPrPhTQ3vFMnhpHFxWm9xzg1/BaAD9plkfAM/0hEPb7ftVroL2Q5MbO1c4HRsbESjpDUf9LrP1iIiIJCcToWUO6agiIiIiIiIi3lTFKm23GxiUhEozXE1qIoZDMFq+3TxTRERERERERERExIGSf0Qkd4QdgtFiAQSjLbnLua39cP/nk9YhXAQnPgVfeBFG/dChj8PPsV9OSPLGyl2Pg07jvfUt6QtT1yZfU3NTZruHovmhuLcVqOKVfq/zw9DrndtqdmWuDhGRdCzzsHB5wv1w6QH4wnToMcX6OzXup3D6PBh1S+AlZkRRV/f2DU+kPnbUQzBatNIKA2pLvHxfAKaPgEW/CrYWvzgtnDeahWqFCmDqan/mnHcV1OzxZ6x8kemLIRWK5r++0+y311XAno+Dm3fvfJgxBuZeCB9/Gz76Bsw8Ht6alnzIfdzlOTuUZrBbhxGZeU3YIhit2LmvHwFDIiJBcHo+dlhUkbZhNybX/4Ovw/SRsG12MPWIZILT8XdxHxj3MzjhMescu983+xj0VYi099Z37b8aPl/zoH2fN85Nbn4/g9EacwuQe3EYmHmameI1KFxERCR3mQF/iIiIiIiIiKTFKRitOFRKKJ3z1hnkFIxWl+mbJIqIiIiIiIiIiIgERFfOikjuiDgFox0CMw6GT1mOsRqYf6tze+cj/JlHWqdwIfQ51/rofRa8db612Byg7wVWcNnci2HLdP/nHn8ndDsxuX0m/BOMJG7GXNInufEbM0JwxkfQJQO/Q4ZhLf5ffq+3/h1GBluP+KP9UOc2BaOJSD7Y9jrs+dC9z+BrYMjV1ud9zrE+WqNEwWjbZqY+dsxjAFjtbijulfo8+SZ+yFs/MwYLb4deZ0D50cHWlC7TYSF482A0sEJzi7pBzc705517AZz6Zvrj5ItMBqP1PD1zc7Ul3U+GSClEq1q2VSyFbsf5P6dpwvtfh4NbWrZtmQ7P9oYzPoAOHgPJYjXObeGi1GqsZxgw6VmYfToc3JzeWG6SCUZzaxMRySanRRLphlQ6GfBF2DUPVvzR+z61e2H2FPhijXWuViTfOP2e9Z0K424Pbt6S3jDxfvjwBqjZ7d73/Wth0/PWa4WKZfZ9tr0G+xZDpzHe5g8qGC3Re3qPhqDfhRApg24nweCrIZQHC9ocXw8rYFdERHLaBhRaJiIiIiIiInmiKn7AdntpuCzDlaTOKRgtqmA0ERERERERERERaSUUjCYiuSPsEIwGVvhBpNSfebbPcW8f9BV/5pHWr8fJcOEO2PMRlPSF0gHW9iHX2gejTZ4F7YfBkjth5V8Sjz/xAeh0GBzaAeXHQFF5cvVN22wtdkpGqAAi7SFqfxcsRyX9Yeoqa/9MSSYYreOoYGsR/wz/lv1iWAWjiUiu2/U+zD4tcb/eZwZfSy4o6hbc2F6D0WraWDBazGMwGljB06v/kcfBaDaL2I0QDLsBFv0i/Xl3vAU73obuSYYS5yun73MQhl6XubnaknAhdBhtH875/rUw5Br/59y/2D0MtG4/vHosTH7d23NNvNa5LZRmMBpAx9Fw/nrr9fvye2H9Y+mP2VzzYDTXvgpGE5EcFXN4Pg7qnJ8RgqP/AKO+D/sWwLJ7Ep+/r/fmeTD51WDqEgmSUzBxJgKv+l8MPU+FihVQuwfeOMu57+YXEo/30li4PObtxkZBBaN19HBTlI3PWP+u/TdsmQEnPZPcDWWywel1WkiXd4iISO4yTXNgtmsQERERERER8ao6Zn+tfEm4fYYrSV2BgtFERERERERERESklfNwlbKISIa4BZ9Fq/2bZ/8S9/Zkg6SkbQsXQbcTGkLRAPpNgwn3Q9kQMCLQ/Qtw7groORlK+1mPvRh8FXQ50gpQSSYUrctRcObHqf8sF3VJfp/T3s5sKBpY3/d2PRL3K+nX9P9HcltRV/vtmQxG2zwdZp8O00fChzdBXUXm5haR/LXwZ4n7RMqgVxsJRisdGNzYyQSjtSVuoUJ2Vv3NCkjLZfEkF4KPvQNG3+rP3J98z59x8oFTMEO6Jj0H3U+2XieUDoJj/wb9LwlmLoEOLoEQ+xb7O9fuj+ClcYn71e2Hxb+ybzuwDuZeBC8dBnMvhj2fOI8TKkypzJbjhKHrBDj+YRhzm/V6MlIK/S5yfu7oMML6OfY0frNgNLfASgWjiUiuclok4ddzsZPSftDnHDjS400QALa9Bi+OgE3PB1eXSBCcjr8zdX69sBN0PdZ63+HY+9If79EwVKxM3K92j3NbOsFoAOd5mL/epufg0RDMPsM6rs1VTq+HDQWjiYiIiIiIiIiIiPihKnbAdntpqCzDlaQuomA0ERERERERERERaeV05ayI5I5IiXNbzMdgtNq9zm2j/59/80jbNuRq6yNe13JBk5eQro5jndsGfhnWPWTfdvp70HWi9zrtFHaGqvXe+5dPsBYvZlooAuN/De9f695v7E/AUBZs3mjnEIxWvTEz8295Bd6aBmbMelyxHPbOt8L/9HMkIm52vp24z2G/gIL8uaNkWsqPDm5st6CZxmrbWjCaw6JpN7s/shbE5yozyYXgoTAc/t8w/k6IVkKoqOG1ZEFH62/5snvhk+8mnnvPhxCtcg/wbi2CCEbrfQ70mQp9z7d/TST+6+gSjLbhCejkIcDTi8pV8Oox3vtveq7ltpo98MKghsf7FsLGp53HCBd5n88LIwTjf2n9XTZj1mvLmj2w5kE4tL2hX9lQOPNTiBRbX/fME5u2N1fQoenjeI1zXwWjiUiucgrbzdTf8s6HWccQm1/w1r9yhXUe5wsvQp9zg61NxC/ZDkZrbOh1sH8RLP9DeuNMHw7nb2h4n6Bmj/X1FLQH04TqDTBrsvP+TuHXXrUfagXRb33F+z7bXoMdc+CsBe7H0tni9Ho43e+ViIiIiIiIiIiIiABQ7RCMVhJWMJqIiIiIiIiIiIhIrlC6g4jkjrBLMFq0yr95Nj/v3Nb/Iv/mEQH7xUxdjobiXu77DXEJ+xr6NfvtA7+cfigaQGGX5Pp3cglxC9qQa9zbT3gMhn49M7WIP0oH2W8/uAW2vBr8/Kv+2hCKVm/Xe7D30+DnFpH85hbkWzoATnoGRnw7c/VkWxcPwWjzrk4tkCl20Fu/mjYWjJbKBW2vTYDqzf7X4pfmf5PrJVoIbhhWQFG4yAr9LezcEHDqFsjd3BNlsOZf3vvnKz+D0bpPgsN+aT3nGYa1TaFomdHbJQxm0c/9+39emELA2paXGz4/tBOeLk9u/1Bh8nN6YRgNzydFXeDsBTD0BitUY+QtcPq7VigaWGEbp70DJX3tx4qUQnmzwDincCFQMJqI5K6YUzCazyGVbk562gq67TDC+z4LfxpYOSK+c3rtlq3j5jE/aRnwmoo198PB7TBrinW891RneLobPN0Vnh/ovq8RTn/+k2ckv0+8Dhb/Ov25g+AUfu4UFC4iIiIiIiIiIiIiSamKV9puLw3nz41PnYLR6hSMJiIiIiIiIiIiIq2EgtFEJHe4LVCPugRNJKOuEvYtdG7vcpQ/84i4CUXgiHucFxSWT3QP/Op2Agy+qum2rsfB0X/0p75kg9E6jPRn3lRNfMB+e4dRMOCLma1F0uf28/TGmXBoV7Dzb3IIz1xyV7Dzikh+M03nAKeux8H566DfBQ0hQW1BSb/EfdY8CJ/emvzYXoPR6iqSHzufOS2aTmTuhf7W4acgFoK7BXLbmXcV7Pk49flySfVm2PgsbJ9jPW/VMx2+z50Ph4jHu+D2vQAuj8Opb8LY2yAcUJCVOOt8WEMAoJ0Pv5H+HPEobH4x+f3eONsKRAN45/Lk9w9nKIynXXc49i9wystw5N3QrlvT9vZD4PwN0P+SptuNEBz955Z19r3AeS63/ysRkWyK19hvz+Tf9lAExvwIzl0GV5jWMUYiez6G6k32bfuXWMdAez7xt06RVDkF1josXgpcu64wOoXX5s3tfBee6wvbZ1uPzRjU7ILaPYn39SMI1wjB5NetwNpkrHsIFtwBH94E6x+H2KH0awEw47D3M1h1H2yebr0/mdT+CkYTERERERERERERCVJVrPUGo0UVjCYiIiIiIiIiIiKthK6cFZHcES52botW+TPHK0c7t42/0585RLwYeDl0GmctEorXQlF3qFwJHUZA/4sh3M55XyMEE/4J/S+FXe9Bh9HQ97zkF/w4KeycXP9uk/yZN1V9p0H4ppYhKQOvyE49kp7S/tbPv9MCtG0zrd+fTDu4NfNzikj+cApFAzi8jQYrGoZ1TFG7173fhifgqN8lN7bXYLR4bXLj5junxfWJ7P4A9i2CTmP9rccPjgvBw6mPmcox85LfwIlPpD5nLlj9AHz0jYbfn24nwMmvQEGZ889OST+YMhuesglO7n02DLgCqjdAx9HQZ2rbCn/MVVPXwfP97du2vpr++PsWQN3+1Pbd8CT0OQe2z0p+X6dQ8WwwDDjhcRhwufV6vLCT9fvQ+fCWfTuPdx7HKXhIRCTbnJ6fsvlcbBhwzlKYMcq938xJcP6aptvm/+jzsPvPQ2EHXwUT7tdxi2SX0/F3KEvBaAAjvgMLf+pcW98LrGN/t9Doba+lNnf5RP9CY3tOgbM+g43PWPXGDsHqfyTeb9HPrX9X/sX697yV0H5o6nXEo/DulbDh8YZtpQPgCzOg0xhvYzi9Hg7p8g4RERERERERERERP1THDthuLwl7vIlgDihQMJqIiIiIiIiIiIi0crpyVkRyRyhihaPZBR3U7Ut//IrlULnCub2jx8UIIn7pNDb1AAojBL3Psj78VmQTfOCkuA+UuwQOZkJhJzjhMXjncohVW9v6ToOR381uXZIaIwTtekHVWvv2fQuALASjacGsiKVqI6z7D1RvhO4nQ/9L9PsB7oFUbXnB6shbYMFP3Psc3AybnoetM6GoHAZ+CToMd98n6jEYzW3BdmvktGjai/WP51kwWhq/V26B3E42PAnP9oUj77HCifPpeS8egwX/BUuaBYHvfAfe+zJMetY9mKGwM5y7DGafZj33A3Q6DI69D0p6B1u7JK+0H7TrCYe2tWyr3gC1+6GwY8u2eAzWPQx7P4XinjDsG1ZoXnP7l6ReW8VyK2wvFan83gbJMKDfBdaHa78QDP06rPp7y7aYgtFEJEfFHMKFw1kOqew4Eo79O3z0TecA5Kq1sHcBdD7Merx9jhVw29iaB62Psbdbz9ElfYKsWsReLgajRUrg6P+FD77Wsq1dDzjpaesYaOtrMOcMf+fud6G/47UfAqN/0PB48FUw92L7Y2QnLw6zXvsNviq192Devtg619FY1Xp4aSyMuQ1G/8j+eLuxeACvh0VERERERERERETk/1Q5BKOVhvInGC3i8N6CgtFERERERERERESktfDp9ssiIj4pKrffXrM7/bE3POXe3svnxRwi+aowiWC0cXdYi72zre9UuHAbTJ4F562Ek56BSGm2q5JU9b/Eua16U+bqaCKPAlBEglKxHF49Fj77Maz8C7zzRfjwhmxXlRs2v+jc1pYXrA7z+PPx1jRY+WdY9HN49RjYNc+9f/yQt3E3Pg1bXvXWtzVIJxitar1/dfjJaSF4WoGDZmq7HdwM71wG730ljbkzLB6D2VNahqLV2/ScFZDmdDFk/V1lO4yAqWvg9PfgrM/gzE8UipbLRn3fua1yZcttpglzL4B5X4Xl98L8H8GMMVBrE1BfsSz1ug5ugsrlye83/BfDx+AAACAASURBVFv5FUbYXPlE++1xBaOJSI5yen4KFWa2DjtDvwbTNkHnI5z7rHmg4fOVf3Put+jn8NI42POJf/WJeOV0/J3NYDSwQsDsjl2G3tBwPNbrdCgd5N+chZ2tkMIgdTsBpq6CKW8kt9+GJ+CNs2HhL5Lbb8FPW4aiNbb4V/BcX/vj7cYcA/Ta8HkmEREREREREREREZ+Ypkl1vNK2rSTcPsPVpC5iOAWjRTHNFK+REhEREREREREREckhOZBkIiLSSGGAwWhugRUnPAbhHFjcJZILCjt76zf+ThhybbC1JKOgPfScDO2H5vfCeXEPRmvXPXN1NKGfKRGW3g2HtjXdturvsH9pdurJFWbcPSAu2wubs6mo3DrOTkZdBSz8qXufeK338Rbcltz8+cxp0bQXNbv8q8NPZsx+ezqBg05ha16t+w/seCu9MTJl8wuw4033Pu9f5y2ALhSBrhP/P3v3GeZWfedt/JY0fdx7t3HFBoyNwfTeHXpCKMmmV9iQPEvabsqm955N2M1uCmwCaSS0UBIILfSOKabZuPfumfF4RtLz4uB101GXRtLcn+vS5dG//kbWaCTNOV/BwJkQjRWvRhXftI+F9215I5isux2evBKujcB10X3fL2lfAn8c+EZ/DK6rC75+/qvha5/xRPq6lv4JnvpEdt/D7g75bu5zKkmsMXV73GA0SRUqNBgt5PGs3JqGwtyfhfe/9IPgNVqiG5b8Lv1aOzbCc18Jvl51F9x1Etx2CDzxL9C5oXg1S3sLDbzq4fcPonVwwi0w5vwgDLFxMMz4Vzjwc3uOOybDz1a2GgbBSX+Dhv7FWS+dulYYfjwcdV3uc+d/Pnh82L4m89jt69I/Z96pa3PwfHvZTeFjwsLPe3MAvyRJkiRJkiQVyY5kJ90h78O2xvqUuZr8hQWjAaHfnyRJkiRJkiRVE4PRJFWWxpBgtB0FBqN1rof1j4T3j7+osPWlWtIwKPOY0x+DAz4NEZ9KqAQGHxre192+6+vta4JLPIeAnHTSfTqaYXsSLA458fX1X5e3jkqz5v7ghPowvf2E1eEn5j5n5R3pQ75yCQDb8ER2Jy/XgkIOZutcW7w6iinse4oW8HPVZ0J435TLsltjcY6Bfz1leZqT7HfasgC2vZa6r6eDGZSfaAz6H5i6b/Vd0LYYbj0IFnwvu/WSifCQwp0O/BwMOgTOfCa3WjPZ/18K+3mvBGFBQonO4L2qYr2WkaRiCXtcCgt67Anp3jcCuO882PpKdmst+3MQ+P33U2D13bDxKXjp+3D/+enfJ5IKEfaaNs3JS2XTOBiO+xNcuBUuWAuzvrZvMHK/afmvX98f3toGlybhLeth0JzC6s3VuAth4CG5z1t9N9x9JiQyPC9ee19ur83vOxeWhXyok8FokiRJkiRJklQybfGtoX2tsb5lrKQw9WmD0TweQZIkSZIkSVL1M81EUmUJC0brLDAY7aUfh/cd/vPC1pZqTWOGYLTmkcFJ71Ipjb84dXt3G2x8Fq6rhz8NDy6/a4SnPhGENhQibeCDT5vVyyWT0B1yMNDCq8tbS6VZcUv6/t4eLBRrzm/etoXhfYkcA8C2vJxfDdUml8C4vXWuK14dxRT2fx2JpW7PRv8DoXX8vu0DDoJD/wPGvjnzGq9clf/+5fLaz2Hhr7Ibu+be1O2VEMyg/Ayem7p94S/hxgnpH2ML2W/gTJj55eKtO+HS4q3VU8KChHZshOuHwJ+GwvwvGr4jqXIkOlO3hwU99pTzV4b3Lb8ZHn5P9ms9+sF929bcB8szvNaT8hX22q2S3j+INYR/UER9v/xC0CEIvq1ryb+uQkVjcMrdsP+VMOiw3OZufBKWhHxowE7ty3Kv6b5zUodShr0erqT7iSRJkiRJkiRVqbTBaNHqCUarSxuMVsCxZJIkSZIkSZJUIUx4kFRZGkoQjJZMwHNfDO8fOCv/taVa1Dwmff+cH0PEpxAqsYaBqds718Gdx0JyrxPDXvwOLPh+YXumC5QJOxFQ6i12bAzvCwtM6y02L0jfH60rTx2VKtaU37wtaW7XXA/aSrdWLck1MG53lRqMtvfv+50iBfxcRSLB89low662WAsc8r2g74hf7tkXpqtCH/val8HTn4ZH3lf4Wr398auajT67vPvtHowx5tzirDnt/8GgOcVZqydlChLq2gLzvxCEGUpSJQgNRsvi+VE5NY+AYceH969/uPA9lv1pz+vJJGx6Hhb/HtoWF76+eq94W+r2SgsgTCefMNx++8P0TxS/llzV94NDvgNnPAoXbYeBs7Ofu/RP6fs7VuRX06Pv37ct7PWwr9MkSZIkSZIkqWDt8W2hfc2x1jJWUph0wWhdBqNJkiRJkiRJqgGmmkiqLI2DUrfne6J+dwf85cD0Y3I56UHqDfpOhn7TU/cd9lMY9+by1qPeKdaSun3lbUF4QCqL/rewPRM7Cpsv1bKOleF9XVuCINreatsr6fvTHHzUK0Tz/P7XPx7ely7IMpXeEoxWyMFs3dsgvr14tRRLWNhboSeCjzkbznwKDv46zP42nPkkjDgl6KvvCxPelnmNrS8XVkMpLPpfuGkyvPDN4qzX2x+/qtmQw8u314hToG63g4L7Z3gPJpUZn4Lpn4T93hGEbJx0J8z5XvFq7EnZBoQu/m1p65CkbMVD3huJVWBg0+QPlnb9Rdfs+jrRHQTP3nogPHAR3DgBnvtqafdXbUrEoXND6r6mIeWtpRBDj4Zzl4T3R+qgdUJw6TMZDrsK5j0Ldc3lqjA7sUY4/ZEgIDsbS69P/9q5Pc9gtBW3BeGLuwt7PVxIULgkSZIkSZIkCYC2ROpgtOZoC7FIrMzV5K8uzXvG3WEfwCFJkiRJkiRJVcQjZyVVlqYRqdu3vZbfenedAFteDO8/7gaIRPJbW6pVkQgc83u4+3To2O1EnoO/DlM+3HN1qXepy+MT1zY9E5xAlu/jetpgNPOE1ct1ZDixc90jMPTI8tRSSRJdsDXD89RCA5x6q+U3wcFfTt1nMFpqYSdNZ6tzHbSMKU4txZKMp24vxong/WcEl1RmfQO2vATrHgyfv3kBDJpTeB3F0rkeHv0gJDqLt2a+wYbqeU0joK5PEHpYaqPP3fN6JALTPw4vfie7+fUDgteatfreTDTLIKHVd5W2DknKVthziWwfz8pp/MXw4KWlWz+ZCAKsGgcFAZYLf7Fn/7OfhRGnwpC5patBtWfHBiCZuq+xioLRAFrHwls2wf0XwOq/B21Nw+GIq2HU6T1bWy6i9TDxXTD85OB72ZAmqB3glunQOh76TIR4JyS7Ycnvgw/6iLfnV0PnWti+CppH7moLO2HNYDRJkiRJkiRJKlh7fGvK9pZY3zJXUpj6NB962F3Ih2xKkiRJkiRJUoUw4UFSZek7NXV7xwroSv0HqFCPXQbrHw3v7z8Dxpwb3i/1ZgMOhHMWwSn3BwGCF6yBAz7d01WpN6lryW/ejo3575kuGK1WgxqkbG1fnb5/+U3lqaPStC0OP1F1J09Yzc+mZ2HbwtR9uX6aZW8IRkvECT25Plud64pSSlGFnghe4k9mbRoGp9wLZ6Q5IX7tP0pbQ66W/gniHcVd02C06hWJQN8ppd+nZUwQIrG3cRdlv8bIU2v7uXasAoOEJCmd0GC0hvLWkY1IBM56qbR73DItCGbeOxRtp+U3lnZ/1Z50r7uqLRgNoKE/nHQnnPFE8Brq7FeqKxRtd61j4fRHgr+JpNP2Oqy5Fxb+EhZfG4SiQf6haDtt2evxLOy96lK/HpYkSZIkSZKkXqAtnvqD5lqjfcpcSWHqIuF/w+tOpvuwaEmSJEmSJEmqDp6hLamy9JsW3rf1FRg4C7a+ChueCC4bnwxCcFonwMyvwIADgrFbXoFXrkq/1/hLi1a2VJNiDTDsmJ6uQr1VLM9gtI7l0Dgov7npgtGo4bAGKRuZwnaW3Qizvl6eWirJ9rWZxxgsBCPPgJW35z5v+S0w7Yp92xM5fppl2yKIb4dYU+41VItsw+JOvgfuOiF1322zYcLb4eCvBSeEV4LQYLQyvJ0VrYNBc2C/d8Cia/btf/U/g5/vQ75bGT/nS/+UeUzfqXDiHXDTftmtabBjdRt6NGx8Kv/5kbrgZ7DPJGgeBRse3/P5wJAj4dCfQH2Kg4L7HwD1A6BrU+Z9xr45/xqrQdOw7Mc++XGY8SloGlq6eiQpnUQckonUfZUa9NhvKkx6L7z289Ks37kOVt4Bq+9O3f/81+Dgr5Zmb5VWMgHxziAMcOe/iR37tqXq26d/R+o5qebuSPP8qGFw+b7/YopEYNAhPV1FcUSiwd9EzloAt+xf/PWP+CU8/O7UfXedCPOehQEHBdfDPgCkoX/x65IkSZIkSZKkXqYtvjVle0us2oLRwo9Z6sr1w0clSZIkSZIkqQJ5hqOkytIyFqKNwQkie3vwUuhYCV1b9u3b+DSs/Cuc9SK0joMVt6bfJ1oPU/+5ODVLkoqvLs9gtPYVu04ey1W6oJ1INL81pVoRT/HcbHdbXgyCaftNKU89laJzXeYxBgvBtI/BqjuzD+/aadNzqdtzDUZLJqBtaW3fP7O9TYYfDw2DYMeG1P2v/xpW3wVveh4aBhavvnwlQu4z0TL+XI16U+pgNICXfwzdW4OT23tSvDO78MEznghCrObNh1uzeL5U11x4beo5Uy4P7rup3kMBmPQ+eO1/wudfuCV4b6ZhQO571zXD9Cvh2c+lHzdwNox9S+7rV5OmEdmPXfBdWPsAnPoPiMZKV5MkhUn1nvxO0QoNRoMg3DebYLTxl8JRvw5eH+xYD099EhZdnXney/9ReI07da4Pnmf3tveZEt2ZA8MK7cs1pKzSTgaqa/X5dyXpNw2O+SP8o8jPVaMNQYDx2gdS9986E057KHgO2bEi9ZjGIcWtSZIkSZIkSZJ6obZE6mC0PrF+Za6kMHVpjk3sTuZ4jJ0kSZIkSZIkVSDP0JZUWaIx6DsFNqcIQdjyUvq58XZ47itw+M9g3UPpx56zyE9Vl6RKFmvNb17H8vz3TOwI79v4VP7rSrUg3QnyOy2/Efp9vPS1VJJsgtGi4Z/K2GuMOh1OvA3+fmpu83ZsTN2eazAaBMEH1HAwWi4n9TcOCQ9GgyCMetGvYdpHCq+rUMl46vZyBg6OOhPq+kD3ttT9C38FRODw/+m5gItlN2QeM+K0IBQNoP8B0GcibFuYfk6/GYXXpp7Tf3849QF44Vuw4fFdjxPNo2H8xTD5A+mD0eqagQLCOQ74TBDosPi3sH0VdLdBfd8giKSuFYYdDwd9ofYDwCKR3MavfxiW/AEmXFyaeiQpnbTBaA3lqyNX2YYETbg0eFyOxKBpGEz5cHbBaCvvKKw+gA1PwoNvD0LF6wfAAf8G0z+e+++JTJLJ4PVSysCwTojvSNFWypCyN/qTieJ+n7XIsKvKM/L04q8ZrYdBc8OD0QD+emT6NbyvSJIkSZIkSVLB2uOpjwNqifUpcyWFiUQi1EXq6E5x7JjBaJIkSZIkSZJqgcFokipPv2mpg9GysfxGSP4nJLaHj5n9XWgZnd/6kqTyqGvJb17Hivz3TBeM1rESdmyChgH5r1+pti0Kgt8GHQqt43q6GlWqdD8fO73+m+DE7lqX6IY190J8Oyy+LvP4cgY4VbIRp0DDoPSBXHvr2pS6PZcQsJ22r819TjXJJixuzHnBv01DYevL6ccuurpCgtFC/q+jZfy5qu8L0z8B8/89fMzCX8LQo2HSe8tX1+7WPph5zMwv7fo6EgnuDwu+Fz4+2hj83Kq6DTgQjromvH/ax+ClH+zbPvE9he8dicDk9wWX3m78Jdk9Z9jp5R8ZjCapZ8TTvO6LNZavjlxlExI09s0wat6ebUMOh/3emV04WiG2r4Xb5+y63rUJnv4kLL0exl4QHiaWb0iZqlPLmJ6uQHur7wP7XwkLvlu8NSP1MOYceOn7+a9hMJokSZIkSZIkFawtJBittcqC0QDqIg0pg9G6/LuRJEmSJEmSpBrgGdqSKk+/afnP3b4GVt4By24MHzPhbfmvL0kqj0oLRgNYdhNMfEf+61eaZDI4EffF7+xqO+AzMPPLQZCFtLt4Z+YxG5+GFbfBqDNLX09P2bYQ7j0HNj+f/ZxorHT1VJtoQ27jd4QEo2UTAra3znW5z6km2YTF7Qw6yuYk6g1PFFZPsSRCvq9ImX+uZnwqCDXasiB8zCPvg9HnQlMPnKSeLuhu8ofgoM9D88g92zMFo+33T0EQgGrbuLekDkYbc275a6llk96TWzDauodKV4skpZNI87ovWsnBaIPT9x92FUz+QOr3Oo74ZfC86P7z89s7Ek3fv+VluCXk7x3rHwkuEgSvJVR5Zn87CDFLJoqzXrQehh4D/abDlhfzW8NgNEmSJEmSJEkqWHt8a8r2lmjfMldSuLpIfcr2VGFpkiRJkiRJklRtDEaTVHkGHlLY/HvmhfcNPQaahxe2viSp9GKt+c1rX57/npmC0Z76eG0Fo624dc9QNIDnvwrDjoeRp/ZMTapc6U6Q39098+CSRG2G68W3w02TerqK6hbLMUxhw+Op25MGo+0jLEBsp+mfhNFnBV83ZAiO2OnxK2Ds+TD8xPzr2vIyvH4trH84CFsbejQ0jwnWHHtB5seKsAP0ImV+OyvWCCfcBjftl37cPWfCGY+Vp6bdhQWjjTgN5l6Vum/IUdA4FDrXpuiMwMFfK1p5qmBDjoKZX4FnP7urbfrHYfTZPVdTLRp+cu5z1j8Ogw8tfi0qv/YVsOhq2PISkOzpaqT0ulKfAALk/ly+nKKpT/b4P5M/GP68MxKBsefBQV+A+V/IY+8M4c+Pvj/3NdX7jH0zTLuip6tQKpEInPl0EJLf9nrh60XrIVoHR14Nd58OOzbmvobBaJIkSZIkSZJUsLbEtpTtrbHq+xDBupDjqLrzOcZOkiRJkiRJkiqMwWiSKs+Yc6BlDLQvCx8Tieb3Ce2eXCJJ1aGuJb95HSvy3zOR4SCAlMEhVeyVkKCUhb8yGE37yhQcuLuFv4JJ7y5ZKT0i3gk3ju/pKqpfNI8whZd/ClMv27Mt0+N1KrUejJbuQLZTH4ChR+26nu3t9/KPg8vsbwdBSblacx/cfSbE23e1Lbsx+PeVn8Ck98PhP0u/RljgW7mD0QD6TIDzlsMNo8PHbHgcVv0dRpxUtrJIdIefoL/3z87uojE48PPwxEf27bu4K+hX7YtE4MDPwMR3wcanYMBMaB3X01XVnkgEmkdCx8rs59xxGBx1HUy4uHR1qfQ2L4A7j6395yHqHTIFgPW0gbOD32V7a92vtMHd6W6X7WuD58SqbpFY8Fo21pji34bUfdFGiDXs9nXI3FgzDD4M+k6tzYD5WjHgIHjT83D3abD2gX37j/oNvPBN2PRs5rV2BjkOPgzOXQJ3Hpf6sSudxizDziVJkiRJkiRJKSWTSdriqT8wqDXWt8zVFK4+kvpDhAxGkyRJkiRJklQLDEaTVHmi9XDSnfDQu2DDo0AE+s+AgYfAoDnBZeDBcPthsOXF3NYePLcUFUuSii3WE8FoOQQ/1YIVf0ndvvhaOPo35a1FlS/emf3YR96TWzBaojs4gXTV34Kwo+lXwqgzc6+xlF79GWxf09NVVL98whSe/iSMews0DdvVFhaWlU6tB5Kku01a9wr127Eht7Wf+gT0nQZjzt53z0XXwPNfhW0Lg7bm0dCxPLt1X/vv4LKzvvr+MPxkmPklqH/j01eT8dRzoz30dlbLqCBo7m9Hh495+F1w3pKylcSOjeGh4S0ZAq6mfBg618CCHwQBdsNPhMN/YShab9QyOriodPL53fXMp4PfgT31mKfcJROw4Huw9E/Ba9O2xT1dkVQ8+YQcl9OBn4X737xv+9A0z9uKId3ju48Bufu/oLE0oWLRhpCgsRz6sg44a/C5sQJ1LXDyPfDUx+G1X0D3VqgfAAd9HsZfAmPOh6euhIW/hPj28HV2Pzmtvk/w+vKpK8M/wGKfOvpCv/0L+lYkSZIkSZIkqbfrSu4IDQ1rqcJgtDqD0SRJkiRJkiTVMM+qklSZ+k2D0x8KTihMdAcnwuytcUhua467aN9QAElSZarLMxht+2pIJiESyX1ubwtGqwWdG6B7GzQM3HXirEojkUMwGkDbEmjNEMiz00PvgMXX7bq++i44/mYYfVZue5bS4t/2dAW1IZZHmEJ3Gyy7ESa/f1dbPgdtbV+d+5xqkkhzm0T3Ovht7JvDwzHD3HcOnHIvDDsu+D2b6IIXvwXPfm7PcdmGou1u98CITc/ChseDvSIRSIYETUR68O2soUfBcTcFt0kq7Uth84tQ1xpc4tuhcTDEmopXQ6I7eK0ca4DO9eHjGgenXycaC4LoDvxccJvm8/xJUnbGnBeEQeaibXHwuNh3chCCCEGYRl1LECbpz2zleeJj8PKPe7oKqfgiUYg193QV6Y05Pwh5XX33rrZoI0z9SHbzBx2a377xdkjEU4dnFRLeX3KR9MFgxQgiSxc4lnLPBn+3qbJF62DOD2D2d4Lw/OYRweMjQF0zHPZTmPNDePQDsPBXIWvs9fp893m3zYLNL6SvYeo/F/e1pSRJkiRJkiT1Qm3xraF9rdE+ZaykOMKC0boMRpMkSZIkSZJUAwxGk1TZItHwkJNcg9GO+t/C65EklUdda37zkvEg4Cyf8B2D0arHhifh4XfBpvl7tk/7KMz+buoTklWYXH8+lt0I07I4AX3ZTXuGou1079lw3I0wJiR4qJy2r4N1D/V0FbUhmsdjM8CyG/YMRksXAhamokMJiiAsQAz2DREbeWp+ezz7eTjke/DYh2H9o/mtkY2198PKO2DUGWmC0Xr4cX7M2dAyNghBS+UvM/Zt2+8dcOh/QH0Bnywb74Rn/i0I3Ul0waizYMIl4eMzBaPttPfJ+ZKKb9S83IPRAG6fA0SA5L59c34YBP4YIlMZNj1vKJpq15CjKj+IPBKBY6+HBT+ElbdD8yg46PMwcFZ280ecDPX9oGtL7nt3b4OG/vu2z/9C5rn1A6D/jPSBY4WEjYX1GYor5S9aBy2jQvrqg9eKoXNDXntF6+G0R+CpK+HVn6UeM+fHMPXy3GqVJEmSJEmSJO2jLb4ttK81VjvBaO3xrWzt3vzGmDqaY3kely1JkiRJkiRJPchgNEnVK5dgtFPu92RvSaomsZb853a35ReMFjcY7f8suwmGHp19oEohkskg4KxjBTQMgu4t0GdicNnb1tdg45Pwj7emXuulHwYnFc/8QklL7pXinbmNTxWMtmMTrP0HdG4I7lsDZ8F954avcd+5cNYC6Dct93o3Pg2r7wnuU8NPgNZx2c3r2gLrHoaOVcGJrk3D4aUfkTKMRLnL9/n4iluhfRm0jAmu5xOMtvEp2LERGgbmV0OlS3eb7H27t4yBGf8KL3w9tz3W3PtGQE8ZLPlDEIyWCAlGi1bA21mnPQw3jM5+/KJrINYEc/8r/z1f+CYs+N6u6ytuCS6pRBsLez4lqbhGzYMRp8Gqv+YxOeR5yBMfhebRMO7NBZWmIrn1wJ6uQCqNur4w6xs9XUV2GgYG7wfk855ArAlmfQse+1Duc1MFoy2/NXgNks7BX4UD/i33/SRVuDShg+neF6nvE7xe7H8gPHHFrva61uBvnINmF69ESZIkSZIkSerF2hNbQ/taaigY7Y4N13PHhuv/7/rwhjG8Zei7OaBPmY7/kiRJkiRJkqQiqIAzSSUpT9kGo9X1gSFHlrYWSVJxReshEoNkPPe53W3QOCj3ecksgnaSSYikObmtVtx3LhCBY34H4y4s3T7dbfDwe2HJ7/Zsj9QFJwfP/GJwPZmAZz6bXYjPomsMRiuFRI7BaGvuhfj24ORyCILS7jsv931v2R8uiUMkmt34RDc8cDEsvX7P9tnfgelXpp+77hG4/3zoWJl9feMvgUGHwlMZ1tYb0gTMxZqC+0yYG8YGJwhP/gAkQ8KyMrl+CBz7JxiTJpCvWqW7TSIp3vo5+Ksw7HhYfhO88tPS1ZWvhb8IfgesvT91f6rvqdxaRsH0T8CL385+zms/h4O/ll/waHcHvPit7Mc3Du4dz1mkahFrgBNuhdd/Aw+/s3jrvnKVwWiVYNP83MZPfFdJypCKrt/+MOZ86De1pyspjykfhAEHwd+Ozm1ed9u+ba/9T/o5pz0EQ47IbR9J1S/k5LQ9TPtI8DfNZX+GaBNMfj80jyh9bZIkSZIkSZLUS7TFt6Vsb4o2E6uEY5JyVJ/Ne8/A6h3LuGr51/jU+G8ztinFBxdLkiRJkiRJUgWqvndtJWmnpqHZjRv3VojGSluLJKm4IhGoa4WuLbnPTXVC6k6JOKy8A1b/HVpGw6T3Qn2/zPN2SnZndwJbTUjCQ++EEadAw8DiLr1tIbx+HTz72ZCtu+G5L0HX1iAQa8kfoH1Jdmu3LYJEVxCup+JJ7EjdPvxEWH33vu3J7iAAaOrlwc/xAxfnv/d1Meg3Pfh6yBHQOgHGnh+csL5T2xKY/8UgTCmVpz4Or18LA2ft1piAtQ9C/wNg5GlBuFEuoWhTr4BDf/jG+gajZaX/QbDmvn3bow1BMMBts9PPf/SDwWNSIosgy1SSCfjHRXDBamjon98alWbdo7DsBlhxS/iYVI+HkQiMOj24dKwMTriuNDeMDe+LVsjbWRPfnVswWjIOj/8zHH1d7nutviu75yo75RO+Jqm0ojGY+I4gkHL9I8VZc/Vdwe+3bENkVRobn8l+7Fu3Ba91JVWmoUfB1I/Ayz/Ofk68fd+2dM+vp/0/Q9Gk3irb9ysHHxpcJEmSJEmSJElF1xbfmrK9Nda3zJUUR10Ox8omiPPYlvsMRpMkSZIkSZJUNSrkTFJJykPz6OzGzfhkaeuQJJVGrCW/YLR4SGhIMgmPXw6v/teutgXfg9Mfg+YRQQhXJokdvStwK94By26Cie8s3pprH4S7T4fubqWuyAAAIABJREFU1J+6t4eXvp/fHot/D/u9Lb+5Si3embp90BxYc38QhLa3x/85CPFpnQDx7YXtv+XFPf99/mtwzO9hzDmw+l6464TMa2x8MrjsbevLeYRCRWDy+3KcI8a/NQiDIbln+7iLgtC6t7bB7zMEhSy5PjwY7bgbg/vcg5eGz090wqq/wrgLcyq9Ii38FTzy3iAQJ51IhpDobAOnCzH3v4PwtmU3Fme9TN9zufTbH/pOga2vZD9n8W9h4OzcX6cuuyG38Q0Go0kVa/wlxQtGA9j6GvSbUrz1lLv2pdmNO/luQ9GkatA0PLfxe4fXdqcISttdv2m5rS+pykTCu3rT+8qSJEmSJEmSVKHa46mPXW2J9ilzJcUxuH5YTuNX7VhWokokSZIkSZIkqfiiPV2AJOWteVTmMcf+2RONJKlaxZrzm3f7ofCPi2HT/D3bn/7knqFoAO3LYP6/B18vvjbz2mFhPLVs8wuFrxHfAa/8J/ztWPjb0dmFohXiUQOrii6xI3V7XR/oOyl83tOfggcuKkE9nfDUx2HjM9mFohXblMtgwEHl37faDTsOjvxfaBkTXI82BOEwc68Krte1BEFT6ax7iH2C1XZqGADjL4a+U9Ov0V4DB3d1roeH351FKFodRNKclA3QmNvBcTmb9tEgSPDQnwT1FEPHyuKsU6hIBMa+Jfd5878A29dkHrf2QbjnLPjjIHjt57ntMfiw3OuSVB7TroADP1e89W6fDX87Lvi90La4eOsqOzs2wzP/ln5M49AgJHT4CWUpSVKB6vvlNn7vYLStL6cf3396butLqh0Go0mSJEmSJElSj2tLpP4Q5dZY3zJXUhyz+xxFJN2HduwlLBhOkiRJkiRJkiqRwWiSqlfL6PC+ie+Ci7th7HllK0eSVGSxhvznLvkd3HE4bFsUXH/pR/Did1KPffVnsPDqfYPUUumNwWjZ3C57i2/f87Z65l/hsQ/D2n8Ur65M+3esLs9evUWiM3V7tDFzkFWpbH0FbptV/n37HwgHf7X8+9aK/d4G5y6B85bBhZvh6GuhrnVXf+v49PO3p/nZ3hkCNv3K9Gt0rMq+3koS3x4EoiW64foh2c2JZhFE1lTiYLTmN163tYyG/d5RnDX7H1CcdYphxieCwJtcxDtg8W+D/0sIAu6SCUgmIREPfoetuS8IE13xF9ixMfe6Jr4n9zmSyiMSgZlfCt63mvTewtfrboO198PCX8Hth+X3mKH8JLrhrpPSj7lwK5y/IggJlVQd6nM86WXvYLTNC9KP76nX0JLKI104ecRgNEmSJEmSJEnqaWHBYC2xPmWupDgmt8zgn0ZcQZ9Y/6zGtyUMRpMkSZIkSZJUPbI4Q1aSKlTzyPT90Vh56pAklUakwKeq8Q64aSIc8Fl49b/Sj334Xdmt2RuD0VbeDtvXQVMWITxd2+CR98KyGyEShXEXwoS3w4Lvlb7OvT33RTjsp+Xft1bFw4LRGmDkGcH/eW8w8nQ46jfQkN1BRAoRiYSHHGcKRos1h/dF3zjBePIHoK4PPPi21ONe/BYsvi54jBh9VuZ6e9qOjfDwe2DZDbnPzeak68YsQ9byNfK0XV/P/Rn0mwYrbg2uT/sobHgCns8xbHDIEcWrr1ANA+H0h+HZf4fXf539vCc+Ck/+CyTjwXOeZHfxapr0Xuhv4IZU8aIx6DuluGt2roVbZ8F5i4u7rlJb/XfY+GR4/+QPQn11Hjwv9Wp1uQajte95fdmfw8cOmpN7qK6k2hE1GE2SJEmSJEmSelpbfGvK9tZojn8jqiBH9D+Ruf2OZ13XarqTwXHOz217nBvWXbPP2PaQ71+SJEmSJEmSKlG0pwuQpLzFmiDWkrpv3MXlrUWSVHzFOlHs+a8EAQHFkNhRnHV6WiKX8JUkPPu57IY+/E5Y8ntIdAbBdIuugbtPyzyvFF65CtY92jN716Kw+36sMQi/G3x44Xu0jIUjfgWRCg23PeAzcOLt0Di4pyupbZmC0dI9nu/+e2PCpTD5Q+Fj25fCvWfDpudyq68nPHBpfqFokN39tS7kNVUxTHw3DDx41/VoDGZ8Ek65J7iMPR+mfiS3NSd/EAbMLGaVheszEY76X7g0ueflopBQyZ2S8Tf+LWIo2qA5cOhPireepNIaNS99f8tYeMtGOOX+7NdsXwKr7ymoLGVp6fXp+/sfWJ46JBVXfY4nvcTbdvt6e/C+SJhZ3wiCoiX1TgajSZIkSZIkSVKPa4tvS9neEqvuD72KRqIMaxjJqMZxjGocx+jG1MfhtcW3kUwmy1ydJEmSJEmSJOXHYDRJ1W3iu/dtq+sDw48vfy2SpOKqq8CDDBJdPV1BccS35zZ+0dXQ3Z5+TOcGWHZj/jWVwoLv9HQFtSMREu4TbYT6PnDy3TD94/mvP+ZcOPNpmPhOOPOZ/NdJZdjxQXjbzkusOfu5E94OU6+A4/8CB3+luHUptdYJ6fs3PRveF6nb83rjkMz7vfLTzGN6UttiWHl7/vNHnp55TF2RP+20zySYcjkc8wc4/OeZxzcPD0J/MmkaAcfdGIR+VUuYRKwBzniidOvP+SEc8n2Y+C6Y+B447Kdw6gNBaKWk6tD/QOh/QOq+Q74Hb3oBGgbAsGNgzo+yX/fV/y5OfQrXthhe/Vn6MS2jylOLpOLK9flx927BaMtvDh839gIYcUp+NUmqHnu/N7E7g9EkSZIkSZIkqce1xbembO8TK/IxVD2sJeT7SRBne6KjzNVIkiRJkiRJUn7SHJkrSVXgoC/Axidh3UPB9VhTcAJ+rKlHy5IkFUGxg1qKIVkrwWg5HtQQ74CXfwwzPhU+ZuPTkIwXVlcu6voEgT9Lrw8fs+QP0LkeGgeXr65aFQ8LRmsI/q1rhtnfhtb94PHLc1v7wH+HmV/YdX3AATDoMNjwWF6lAkEY2sl/h0iKLPDkNfDYZfDqf6Zf47yl0DImu/3m/jc8+v592ye+K7v52qU19SdVhlnUMYEb153Dpu4BnL2iD3MG7NaZVTDaVUGYVKVadWdh82d9I/OYwYcFP8uJHYXtBTDtY3DId1P/7KXTMABO/Qfcdz50rt2rb1DwGm/ESYXX1xMGHRKELL7+6+KvPf4SaBpa/HUllU8kAkf8Eu47FzpWBm2tE4LnMX3223PsmHPgiSuyW3fxtTD+Ihh9dvWESVabxy7LPKZ5dOnrkFR89Tm+H9W5YdfXG54KHzf+0vzqkVRdJrwNnv3svu0tY9KHpkmSJEmSJEmSyqI9sS1le0usAj/MuQCtab6f9sRWmmMtZaxGkiRJkiRJkvLj0beSqlvTEDjl3uCEo+0rYdhx0DCwp6uSJBVDfZqDDA67Ch77cPlq2akYoTGVINdgNICnPw19JsG4t6Tuf/FbhdWUq/EXwZgL0gejAVw/BM5fCc0jylNXrQq77+8MRttp6mVB+EY2QREAk967ZyjaTrmGKu1u4Gw45Z7w/kgE5l4V3IfuOjH1mAtWQ9Ow7PccNQ/qWqG7bc/2sRdmv4YCOQSjPbz5cObNv4VN3cHz/y//MMkv35XgHUe+cf/JJhgNYP6X4aDP5Vpp6W17HR55X/7zL1gdBI5lUt8XxpwHS36f/14AZ70E/abmP3/o0XD2S7D2AehYFbQ1DYOhx0DjoMJq62mzvw3Lb4KuLcVbc8plhqJJtWLwYXDWAlj3SPAcaOgxEGvcd1zLWIg1Z/9c/r5zYdL74fCfFbdewdbXYMWtmcc1jyp9LZKKL9dgtOe/Agd8OnhNuGVB+LjRZxVWl6Tq0GcCDJ4L6x/ds33cRQbWSpIkSZIkSVIFaItvTdneGqvAD3MuQLqgt7b4NgbXDy9jNZIkSZIkSZKUnwLONpekChGthyFzYcy5hqJJUi2pSxOMNvbNMPWK8tWyU6Kr/HuWwuYX8pv31CchEd+zrWsLPHY5rLyjsJrq+kLLuMzjog0w4W0w58cwel4QkpfJ058urDaF3/djDfu2TfkwHPIDqO+ffs39r4S5IUEd+Qaj7fcOOPmu7MYOPwFOuQ/6TNy5KQw+HM59PbdQNICWUXDiX6HvG6FQTcNh7n8F91Hlpmlk1kM/s+gr/xeKBpBMRvjIdUm6upNBw+BDs1to/udh28JcqiytjlXwyAfgpv0KWyeX+/HhPw9+t0brg8uY82D8xdnPH3lmYaFoOzUMDAIjJr8vuIw5p/pD0SAI55z5lSIuGIFZXy/iepJ6XH0/GHkqjDg5dSgaBM+PhhyZ27qv/Tf8rgUWXg3JZOF1KrD85uzGGc4sVae6PE56+euRcG0Elv05df+4i8If3yXVnuNvhuEnBc/fYi1BWO2sb/R0VZIkSZIkSZLU6+1IdNKVTP0hsS3RNMcsV6GWaGtoX3t8WxkrkSRJkiRJkqT81fV0AZIkSVJK6U5EjTbApPfCwl9Adxn/QF8rwWgv/SC/eW2LYONTu8KGkkm473xY/ff81qvvD2e/DJE6qO8LiW74fUv4+HnPBiFWdbsdsDHlQzD5A3D3mbDqr6nnLfl9EKBW15xfnYJkyH0/Up+6ff+PBgFpiR3Byd+JHdC5Pvi/i8Qg1pzhpPBI9rUNPAROvQ+I5v5/POxYOPtV6FgJsabCApiGHgVnvwTb10HjYIjk8D1ol2gsq2GdiQbu3nTiPu1bt8M9L8OpM4B+07Lfd/Hv4YAKCFHs2gq3HwodywtbZ9BhuY2v7wPH/hG62yGZCK5veAoW/zbz3EgMpvVAWGm1mfIheOYz0J36U2ez1mcSnPViEGAnqffZ/0pYc0/wWJ2teAc8/C7YvgZmfKJUlfUum5/LPKZpuI/VUrWqzyMYbdP89P3j3pxfLZKqU9OwILh/x+bg/SaDESVJkiRJkiSpIrQn2kL7WmN5/I2ogkUjMZqjrXSk+J7b4gUevyRJkiRJkiRJZRLt6QIkSZKklOrTfPpatB4GzoST7ixfPVAbwWidG2DV3/Kff8dhsOD7QSja8pvzC0VrnQBj3wynPxacKNg4KPg/zRRq1Tx6z1C0nSJRmPy+8HnxDlh9V+51apdEd+r2aJqs7VhD8HMcrQ/+31rHBYFhDQMynxCaLlRs7s9g2HHQ/0CY8Sk49R/B+vkG30Ui0DKqsFC03TUNMRStUFM+nHHI5u7+oX0LViV3XZnwT9ntueyG7MaV0o7N8Id+uYWiDT0mdfuYc/Oroa5l1+/fQbPhtIeh3/67+kecCvOeg2kfC34GR54Jx/8FRp2R3369SbQe9nt7bnNaxgS/J5uGw6A5QRDoqQ8YtCP1ZqPnwXE3w8jToXkUNI/Mfu7Tn4S2paWrrTd57eeZx4x6U+nrkFQa0XoYemxx1+ybQ2izpNrR0N9QNEmSJEmSJEmqIO1pAsFaYmmOWa5SfULC3gxGkyRJkiRJklQt0pzFLkmSJPWgkafD819L3RdrCv4dcjhM/wS8+O3y1JTYUZ59Smnjk5BMFLbGk/8C21fDhidzm3fg52Dml9KPiTaE3871/cLnjTwDIjFIxlP3L7sBRp+VXZ3aVzIkFLBk4TxpgsUmvB0mv79E+6oi7P8vsOymtAFhW7rDHw/67H7OcfOI7PZc/wi8/NMgUKxldJaFFtmDb8t9zsT3BMGAK+/Y1dZvOkz+YHFqGnI4nPXivu1zvl+c9XubmV+Bhb8KAjt3F6mDo6+DcW/pkbIkVZnR84LLTmv+AffMg+4sDly+ZX+4KPwTsCtadwdsehZIwuDDey6IduMzmcc0j4TpV5a+Fkmlc/BX4c7jirde3ynFW0uSJEmSJEmSJEl52ZYmEKy1BoPRWmJ9oWvVPu1tiW09UI0kSZIkSZIk5S7a0wVIkiRJKQ09BlrG7Ns+5jyI7PY0tpxhV4mQcKhqUqzv4YVvwqq/ZTd2ymVw/C2ZQ9EgCIcJE03TV98X9ntHeP+quzLvrdSSifAwvXT/XwVJE3SxMxhRtavvZDj90bT3r83x/qF9rbsHozUMyH7fxy+HG8bAM5+FZDL7ecXQvgxW/CX3efV9g8fXw38Bkz8Eh/wATnsQmoYUv0YVrnEQXLAKDvhs8FgWrQ8CXk9/2FA0Sfkbdgyc8RhM/3jmsfF22Jwi8LLSbXgSbjsY/noE/PVIuGMutIcHqJbU/C+m7+8zGc58GvrPKE89kkpj2LHQlGXIcib1A6CuuThrSZIkSZIkSZIkKW/t8dSBYI2RJuoipfqQ2J7TGk0d9taeJiBOkiRJkiRJkiqJwWiSJEmqTJEoHHVdcALpTn2nwqE/2XPc0GPhgH/bs23S+0pTU7IWgtG6y7fXzC/DpUk47Ccw+k3ZzUkXfpbJrG+F97W9Xv6go1qRjIf3lSoYLZLmpWokTWiaakfLKDjws6Hdm7vDg9FaGna7j9TnEIy20/NfhVV35j6vEJuey3NiJHjcnPRumHsV7P/R3MLgVH71/eDgL8NFHXDxDpj9LRg0p6erklTt+k2D2d+G4/8SPM6k8+zny1NTsSST8Mj7Yesru9o2PA6Pf6T8taz8Kyz7c/oxZ78MTcPKU4+k0hpyZHHWGX5icdaRJEmSJEmSJElSQdpCAsFaY33LXEl5tMRSB6O1hQTESZIkSZIkSVKlMRhNkiRJlWvYMXDuQjj+Zjj5bpg3PwjL2V0kAgd/Fc5+NQhSO/MZmPuz0tST2FGadcspXchVMY16U9pQo1CDDs1/z6YhcNpD4f0r78h/7d4skSYQMFqiT0nsM6k066q6RBtCuzalCUbbIwMxXcheOouvzW9evjpW5jfPEDRJ0u5Gz4OzX4EDPxc+Zukf4cXvlq+mQm14AjY+uW/7sj9D29Ly1TH/y3D36enHHP5zQ3ylWlKs59pTLyvOOpIkSZIkSZIkSSpIeyJ1IFhYgFi1Cwt8C7sdJEmSJEmSJKnSGIwmSZKkytYwEEafBcNPgFh4SA59J8GEi2HgzOBk9BmfLn4t6QKiqkWyuzz75Hv7T/946vb93pnd/KZh4X2Pvj/3epT+PhOtK82eU/85dfuoeaXZT5Up2hjatTlNMFp3YrcryUTouLSWXJ/fvHy1L8t9Tl0rDDmq+LVIkqpb0zCY+SUYODt8zFMfh62vlq+mQqx/JLxvxS3lqWHRb2D+5zOPq6/NTxGXeq36IgSjzf0vGH5y4etIkiRJkiRJkiSpYG3x1IFgrb0sGK0tvrXMlUiSJEmSJElSfgxGkyRJUm2a+K7ir1kLwWiJLILRhp9Y2B6Dj4ChR+c3d8Qp0P+APduijTD5A9nNbxwS3te+DLo8oCNn6e73kfrS7DlwFgw9dq+9ojDlw6XZT5Upll8wWnz3LLR+0/Lbu3treQNjsglb2dukD0Bdc/FrkSTVhqN/m77/5inlqaNQG54I79v4dOn3X3oDPPT27MbWGYwm1ZSGAoPRRp0VvJcRiRSnHkmSJEmSJEmSJBWkLb4lZXtLtDb/1tsSEvjWHhIQJ0mSJEmSJEmVxmA0SZIk1aZ8w3DSqYVgtGQ8fX/rBDjxbzDrm1DfL/f1hx0PJ/01/xN/o/Vwyr0w6X3B/+GoN8GJt8PQo7KbnymMYOsr+dXVm6UL04vWlWbPSAROuBWmfgT6z4ARp8FxN8Los0qznypTtCG0a3M8PBitO57cdWXosVCfZ6DBzVMgmcw8rlCbnkvfP3guTP8kzPpWEDw56FCY9Q045Dulr02SVL36Tc383Hj94+WppRDrHwvv61xXun3jnfDoB+H+87OfU1+bB8tLvVahwWiT3lucOiRJkiRJkiRJklQUYYFgrbHa/FtvazR1MFpb3A8YliRJkiRJklQdSnQWuyRJklSDEjt6uoLCJdOEXEXq4OCvQzQGMz4Jkz8AfxyY2/rH/qnwQIDGwXD4f+c3N1Mg29LroWsL9JkErWPz26O3SaYJBIzUl27f+j5w6I9Kt74qX7QxtKst3hrat3suGrEGmPV1eOzDe6476BBY91DmGl65CqZelkWxBVjyx/C+g74IB31+1/UZnyhtLZKk2jL1Mnjhm+H9K2+HwYeWr55sdayGtkXQOBS2vBA+rpTBaI9/BF7L8TVJXeqDyiVVqaYR+c8dfhKMmle8WiRJkiRJkiRJklSwtkRYMFpt/q23JSTwrS2+jWQySSTfD0CWJEmSJEmSpDIxGE2SJEnKViJNQFS1SMbD+069H4Ycset6ff/c12/IMUit3J7/WnABmPQ+OOw/gyA4hUukCdOL+pJSJRQLD0ZLJKOhfd17P8xN+RD02x+W3Qh1LTDuQhg4C1bcDk9/GjY9E17D45dD8ygYe16Oxedg1d/C+8aUcF9JUu2b+O70wWjPfi74HTnuLeWrKZ1kEl7+CTz5/9IHOu9UqmC0rm3w+v/mPi/ic2Oppow8Nfi53vvxqHkkTHg7dG2GV3+277xIHZxwaxDSLEmSJEmSJEmSpIrRHt+asj0sQKzahQW+xemmM7mdpkhzmSuSJEmSJEmSpNyEn0ksSZIkVbvpnyjuepueLe56PSEsYKDP5D1D0QAiEeg3Lbf1K+ET5LINEnrtf4LQhRe+CS/9CNoWl7auapUulMLwB5VSNDxIIF4/ILwvkaJx+Akw5/tw8FeDUDSAUWfAvKfhzKfT13H/+dCxOnO9+dq2MHV741AYOLN0+0qSal+/aTDnR+nH/ONCePwK2PxieWpKZ9HV8MRHsgtFg9IFo21ZAPHtuc2JNUOfiaWpR1LPaBgIR16z5+veIUfBm16E2d+Cuf8FR/8OorsFOg86FM5bljbkWZIkSZIkSZIkST2jLb4tZXtYgFi1a00T+NYecltIkiRJkiRJUiUxGE2SJEm1a+xbgCIGdS38BSy9oXjr9YRkPHV7NCTgavylpaulVMZfkv3Yl38MT38anvgo3DoL1j5QurqqVaIrvC9aX7461PtEw8ME4tHwg9G6UwWjpTPwYBh3UfoxK2/PcdEsJbpge0jo2pHXlGZPSVLvMu0jMPWK9GNe/jHcNhuW/rk8NaWy8Bp4+N25zelcD8lcf/FnYcuC3OeMPgfq/DRtqeZMuATOXQxH/xZOfQBOuQca+u/qH/9WOOc1OOo6OPluOPUf0Dy8x8qVJEmSJEmSJElSuLAwsJY0x6JVs9ZoeDBaW3xrGSuRJEmSJEmSpPwYjCZJkqTaNWQuHPUbaByyZ3tda/6BTo9fVpqT78sl0Z26PRISjHbAZ2DKZbsCigYcHLSlMuXywusrhvFvheEn5T6vaxM89Yni11PtkiH3GQi/30jFEAsPRktEW0P74vk8RB/xi/T9HSvyWDSNba/DvefAbxuAZOoxLaOLu6ckqfcanyEAFCDRCfdfAPHO0tezt64tQVBxrpJxuO88WP9Y4TWsexgefDv8/XR46J9yn3/4/xReg6TK1DIqeBwdelTq95JaRsOEi2H4CWlfw0iSJEmSJEmSJKnndCW66ExuT9nXJxYeIFbNmmPhx9iFhcRJkiRJkiRJUiUxGE2SJEm1bcIlcMFqOG8pXBIP/n3LZpj3PMSa9xzbPBrOfAaGHRe+XsdK2PRcaWsupbCQq0gsdXs0Bof9BC7cBOevhHlPwwH/GtxWu4s1w+T3F7fWQhzz+/zmrXsoCCzaXTUH4RVDoiu8L9+AQSkb0YbQrni0Obwvnx/ZuhY44bbw/u4iHgjWsRJungzLb04/bu/HWUmS8jXkyOCSjTuPL20tqSz/SxBSnNfcm4Oa1z6U//4rboM7j4PXfwOr/pr7/KlXQH1tfoK4JEmSJEmSJEmSJNWC9sTW0L6WGg1Gi0ViNEdbUva1pbk9JEmSJEmSJKlSGIwmSZKk2heJQsuYXf9GY9BvCpz2IIw8A1r3g/GXwCn3wMCZ+wam7e22g+Guk2Dra2Upv6iS8dTt0br082JN0Dwi+LquFU5/BMZfHNx2o94EJ90FAw8ubq2FaByc/9yb9oPf94X7L4RbZsBvG+C2ObDqruLVV00SIWF6kPl+IxUi2hjaFY80hfZ155tlOOoMIJK6r5g///O/GP5YvFOsCRoGFm9PSVLvFonAiXdkN3b9I9C1pbT17G3FrYXNj3fAS9/Pf/6C76UPA86kvjYPkpckSZIkSZIkSZKkWtEWD/9gzNZY7X4QVljoW7rbQ5IkSZIkSZIqhcFokiRJ6r0GzoITb4NzF8LR10LfyUF7mjCe/7P6brjzeOhuL22NxRYWchWJ5bZOy2g4+rrgtjvhFhh6ZOG1Fdu4i/Kf270Nlv4RtrwYBBhtfBLuPQc2LyhefdUimSYkIlJfvjrU+8TSBaOl6cs3GA2CwMdU1j8CnesLWPgNiW54/deZxzWNCEJsJEkqlvq+MOl92Y3d8GTx908mYdsiWPsAxLfv2bf15cLXX/KH/Otac19hezcNK2y+JEmSJEmSJEmSJKmk2uNbQ/taorUbjNYa8r21pbk9JEmSJEmSJKlSGIwmSZIk7a1xcHbjOpbDqrtKW0uxJeOp2yN15a2jHCa+s7jrxduDsLTeJixMDyBag/cbVY5oQ2hXMk0wWnchwWh1aQ5ye+mHBSz8hvlfgO62zOOGVGDYpCSp+tWl/iTofWwpchhwdxvcfwHcNBH+dgz8aQSsunNXf+e64uyTT4hp9zZI7Mg8bs6Pob5/6r6RZ+a+ryRJkiRJkiRJkiSpbNri21K2N0QaqU9znFq1a4mlPh6uPeT2kCRJkiRJkqRKYjCaJEmStLdsg9EAnv9a6eoohWRIyFUtBlyNPAMGzi7umpufL+561SDsPkMEIr6kVAlF60O74oQHo8ULCkZrDe977suw4Sl4/hvw5JXw0n9A2+Ls1+7aBs9/Nbux4y/Ofl1JkrJVn20w2kvF3feFb8GyG3Zd79oMfz8VVtwRXC9WMNqTV+Y+J9u9J74DjrwGYk17th/yfeg3Jfd9JUmSJEmSJEmSJEll055IHQQWFhxWK/rE+qVsb0tsLXMlkiRJkiRJkpS7Gkw/kCRJkgrUOCT7sTvWl66OUkjGU7dHYuWtoxwiETjqWvjL9OKtueQPcPR1xVsPNJzYAAAgAElEQVSvGiS6UrenCa2SSi0ebQnt6y4oGC3DgW63H7Ln9Wc/C8ffAsOOybz2rQdmV8OAg2DUmdmNlSQpF9kGo219pbj7vv6b1O33nAH7vRO6thRnn0VXw5G/ym1ONsFodX2hvh+MOQfOWQir74b4dhh2PPSdlFepkiRJkiRJkiRJkqTy2RZPHQTWJ5bl39GrVFjwW3s8dVCcJEmSJEmSJFUSg9EkSZKkveUSjFZt4VCJ7tTtkRp9adDQv7jrJeOQTAaha71FspfdZ1Q5+kwMHo/3DiyJtZBoGhE6LV5QMFprbuO7NsOdx8LZr0DfyeHjtrwEbYszr9c0Ao66rvp+t0iSqkN96k+C3sfGJ+Hh98LCXwTXYy1wzB9g9LzU47s74IVvwpp7ofuNg8nr+sLwE2DK5bDttfC9Fl2ddflZ6VwPjYOD5+yLfwuL3/i9OuUyGHFyivFZBKPtHijXPBImXFq8eiVJkiRJkiRJkiRJJdceEozWUuPBaK0hwWhtIbeHJEmSJEmSJFWSaE8XIEmSJFWchkHZj41UWXhNaMhVrLx1lEv9gOKv+exni79mJUt0pW43uEmlFonC5A/t2z7pPcST4cF83fEC9qxryW/ezVNg66vh/Uv/lH7+vOfg/JVw/goYcEB+NUiSlEm0MbtxHSt3haIBxNvh3jfBot/sOzaZhLtPh+e+CGvugQ1PBJc198D8L8BNE4tQeA5e+EZQ0/wvwIOXwvKbg9/Dfz8FXr9u3/Gd6zOvWV/bB8JLkiRJkiRJkiRJUq1ri29L2d4aTR0cVitaoqn/3h12e0iSJEmSJElSJTEYTZIkSdpbMpH92GhD6eoohWRIYlAkPGSoqtU1w6BDU/dNuTy/NRd8D7o78q+p2oSF6UVr9D6jyjLzSzDrWzBgZnA56Isw54fEE8nQKfHwrswSIff3bNw8Be46CbYt3Ldvxa3h88ZfEoShNY+ASCT//SVJyqSrwE98fv4r+7YtvwXW3h8+p7uInzLdPDLzmBe/A79rhOe+tG/fg5dCd/uebZ3rMq9ZZzCaJEmSJEmSJEmSJFWz9kTqv123xGo7GK015Ptrjxfxb/mSJEmSJEmSVCIGo0mSJEl7GzQ7+7GxKgtGCwv9qeWQq5lf3jfAbtY34bD/yG+9+HZYfXfhdVWL7WtTt0fqy1uHeqdIBGZ8AuY9E1wO+jxEoqTJRaM7JP8xK/ECQw9X3w1/OwbinXu279gYPmfMeYXtKUlStgbPLWz+lgV7BottXwPPfrawNXMx/JTsxiW6wvtum7Xn9bbFmderNxhNkiRJkiRJkiRJkqpZW3xbyvbWWG3/PTgs+K0tsY1kspBPIJUkSZIkSZKk0jMYTZIkSdpb637Qb3p2Y6stHCoZkhgUiZW3jnIadQac+gBMvQKmfBiO/wvM+GRha3auK05tlSyZhBe+BY9fnrq/lsP0VPHiifz6MooU4W2SjpWw9Ppd15NJaF8aPn7UvML3lCQpG4MOgcbBha2xMxht/pfghjGw6dnC68pWrAEmvbewNba+Ahue2HV9y0uZ54S9hpIkSZIkSZIkSZIkVYX2kGC0lmjq4LBa0Rrrl7K9O9lFV3JHmauRJEmSJEmSpNwYjCZJkiTtLRKBI36Z3dhotQWjdaduj9R4yNXgQ+HQH8JhP4XRu4UQHfBv+a1XX9ufEgjAmnvh6U+F91dbKKBqSrrws+5CgtHGnFvA5N08+DZ47HL4ywFw28HQtSX1uCmXQ31tH1wnSaog0To46lqINua/RrwDVv4V5v87JLqKV1s2og1w0BdgwEGFrXP7obD+seDrLQsyj+/aWth+kiRJkiRJkiRJkqQe1RZP/Xff1lhtHwvamib4Lew2kSRJkiRJkqRKYTCaJEmSlMqQw+GIqzOPq7ZAsWQ8dXskVt46KsW4C4FI7vMKCZOoFq//Jn1/tMru+6opiWR4X7rQtIz6TYf+MwpYYDev/BQ2vwCb5oePmfnF4uwlSVK2Rp4G5y2BI6+BaR/LfX68AxZ8r/h1ZSPaAC1j4LSH4YTbClvrjrkw/0vQ9nrmsWEBp5IkSZIkSZIkSZKkqtBrg9Fi6YLRtpWxEkmSJEmSJEnKncFokiRJUph+UzOPSXaVvo7ddW2DF78D954L/5+9O4+P667v/f/+zqbdliyNFie24zh7AtkJWYCQBZJSoATKvhVoadNLgUJb2lsaKC3w47LcUlpogQa4BUpICaUUAmHPBiQBErKROImdxYtGtixb6yzn+/tDsS3NnO+Zc2bVjF7Px0MP63y389FYOkejmfM+t10pzT4ebb7N+7ev1pCrgdOk874kJddGm+dl61PPSvLQZ4L7Wy0UEG0lKPwsX00wmjHShd9aPDbUW0da6his/34AACjWOSxtfo208SXR537zeGnnd2pfUxix5OK/iW5p/WXSmhOqW+/XV0kKSFs9KM+bwQEAAAAAAAAAAACgVeVtTgt23revOyA4rB0EfX0znn9YHAAAAAAAAACsFFzJDgAAALh0DJUfU/B/s0RdWE/68W9L4z8+3Lb9K9Jlt0m9R4dbw3MEo63mkKujXi5t/F3p7vdJd7833Jx2D0azIQIiDgZTAE1QCPgWDQpNC6Vnk3T5L6WZx6TUWim5RlrYI81sXwySiaWkRJ90z/ule/6u8v1UG+YCAEC14t3NriCaWGr5dtd6af/99d/vkS+s/z4AAAAAAAAAAAAAAHUxW5hx9vW0eTBa3CTUGevSvDdX0jdbIBgNAAAAAAAAwMq2itMPVjdjzAmSTpV0pKQuSfOSxiVtlXSntdb9l//yayclnS9po6QxSdOSdkj6pbV2W3WVAwAANNBKC0bbfs3yUDRJyu6VHvgn6YyPhFvDFvzbTby62lpdLC5teUN7BqM98S3prndLs9ultSdLT/uMtObY4Dlb/6X8uqs5TA9NFxR+VnUw2kE9Gw5/3jG4+LHUqe+TOkekO95S2fqjF1deGwAAtZBo8WC0nk2N2e9Rr27MfgAAAAAAAAAAAAAANTcTEADWE+trYCXN0R3r9Q1GmylMN6EaAAAAAAAAAAiPK9lXEWNMv6S3SnqDFkPLXArGmF9JutZa+8EI66clvVfSyyStc4y5RdJHrbX/GbpwAACAZkmuXbz4PigEq5HBaPd/2L999w/Cr2Hz/u0xnhqoZ6N0zB9KWz9VfmyrBKPtu0e68XckL7e4Pf4T6TtPk164TUqt9Z/z6LXSbX9Ufu3UQM3KBKLyrLuvZsFoYRz/v6TsHunX74k+95g317wcAAAiiTc5GC3WsRg8Orcj5Pjk8u1Nr5Aevrr2dS21/nnS0Hn13QcAAAAAAAAAAAAAIBJrrX62/4e6b+ZXmvGCA77mCjPOvu54b61LW3F64n3am8+UtM8WBaMtePP6yb5v6+G53yhnS98jG1dcmzqP0TP7L1dvYk3d6gWAYtZa/Xz/j3XvzC814/mHXQ4kBnV633k6qef0BlfXmqbyk7px3/XanX1CR3Uep2f2X6Zk8U0rQ8h5Od2479vaNv+ghlPr9Yz+y7Q2wTUGAAAAAIDaIf1glTDG/K6kT0oaDDE8LulMSUdKChWMZoy5XNLnJA2XGXqepPOMMV+U9GZrrfsVBgAAgGYzRlp3ljRxi3tMo4LRrJX23uHfN/mrCOsU/NtNPHpN7ejsf5bS50lb/1XK3OQe1yrBaL/+m8OhaAfl9kmPXStteePydi8n/fQN0rZ/D7f26MW1qRGoQFD4Wd5xmKubp1wl9T9VeuIb0twuaWabtP/+4DlnfULqGm1IeQAAOCWaGIx2/Nulza+SBk6XHv68tPv7UvfGxd/BMzf6zyl+893IhVLfcdKBB2pf36ZXSMPPkI5+oxTjuRIAAAAAAAAAAAAArCRf3v1J3TT13arWSJqUUrGOGlW0cvXE+3zbl4YL5bysPvbYX+vR+a2Ba/165jb9fP+P9Y6NH1BfwnFzXgCosa+Of0Y/2vc/ZcfdPHWDXj78Zj1z4PIGVNW69uX36sPb/+JQaOYdB27SndM/1Vs3vE/xCNeUFGxB//j4e7R17p5DbT+d+oHeufGD6k+GuYQZAAAAAIDyYs0uAPVnjLlK0jUqDUV7VNL3JH1Z0nWSfiopclCZMeZCSV/X8lA0K+kOSV+VdIOkiaJpr5L0ZWMM34MAAGBlW1/mhTGvQcFouf3B/dmpcOt4ef92Q2aypMUwvM2vkZ79HSmWdI9rhWC0/Kz02Nf8+372Jmn64cXPpx+WHvhn6T9S4UPRRi6Wjn9rbeoEKhAUjFbwbOMKOWjDi6SnXy09+9vSb98nnfVP7mPIUa+Sjr2ysfUBAOAn3qRgtCOeL535UWndmZKJSVt+Tzrv36XT3i+tPdk9zxSdW2NJ6ZzP1r6+0z4onf8l6dg/kuLR74QKAAAAAAAAAAAAAKif8ezOqkPRJHdgWLvpjvf6ts8Wpg99/svpW8uGoh00ntuhW6a+V5PaAKCcvbmMfrzv26HHf3PPl5W3ufIDV7Eb911/KBTtoK1z9+qemTsirXPPzB3LQtEkaW8+oxunrq+6RgAAAAAADiL9oM0ZY94h6T1FzV+W9AFr7a99xscknSvpxZKeG2L9IyV9TdLSK8RulvT71tr7lozrkPRmSR+WdPAKtudL+jtJfxXyywEAAGi8ztHg/kIDgtEKC9IPy/xqNrNdSj21/FrWEYwW46nBMoluaexy6Ylv+Pe3QjDaT14Y3P+NLdLRr5e2XyMVZsOve/GPpPR5wcFxQJ0FZZ8VmpCLVuK4K6Wx50iZW6TCjBRLLQZcrjtLSl+wGMIIAECzxTubs9/Nr3P3xQPuxu0XUjZ8gfSSfdLDV0u/eHv1tUlS1/rarAMAAAAAAAAAAAAAqLkHZu+qyTp98bU1WWel64n5B8BNFw4c+vz+mTsjrfmb2bv03MEXV1UXAITxwOzdsgq4m3KR6cJ+7VjYro2dx9Sxqtb2mxn/8+j9M3fpqb1PC7+O43x8/8xdev7QqyqqDQAAAACAYqQftDFjzKmSPrikKSfpldbaa11zrLWeFoPNbjbGhPn+eK+kgSXbt0i6xFq7LCHEWrsg6ePGmEclXbek60+NMf9ird0eYl8AAACNl+gO7l+YkHLTUtL/jmo18eg10p6fBY+Z2SYNhAlGK/i3m3jkstre06+W/nPQv68RgXjVmM9Iu0Lcke/hz0Vb9+xPSSPPqqgkoJYKAe9xyDsOcw3Xd8ziBwAAK5UxUv9TpH0l98+QTEyy4d9UqFhKGr5Q2hXirtwbXhS8TtS+1FrphLdJg+dIN5xXfv/ldI1VvwYAAAAAAAAAAAAAoC7Gsztrss5JPafXZJ2Vrjvu//7m2SXBaJlctMc0k9tVVU0AEFbU45MkjWd3EYwWwPWYRj4XZP3PBZwjAAAAAAC1FGt2AaiPJ0PN/k3Lw+/eHBSKVsxamy+zj2MlvW5JU1bS64tD0YrW/Lqkzy9p6pB0VdiaAAAAGi5eJhhNkr57jpSfk6ytTw33/9/yY2ZC5sx6jl/xQmXirjId66RhRwjYXe9ubC1RhQlFi6ojLW1+Te3XBSoQFIwW1AcAAIps+YPStrHLwz0PWuol+6Sn/E35cSf++WLomku8091nksFrD50jDZxWvoZyuo6ofg0AAAAAAAAAAAAAQF1UEpJT7MiOzbpo4Pk1qGbl63EEo80Upg997gq3cdmbyyhvc1XVBQBhZCoIw6zFeaJdzRVmdaAw5ds3ETHQzBWANl2Y0lxhNnJtAAAAAAD4If2gff2upDOWbH/fWnt1jffxSknxJdtfs9Y+GGLe/6flgWovNcZcGRSoBgAA0DSJEIEAU/dK13RLyTXS6HOks/9J6hyuXQ2Tvyg/Zs/PJL0leMzMo9Lu7/v3mbh/+2oXS7n75sdr+/9cS/M1vtPS+t+Wzv5EuJ8HoAG8gBzKPMFoAACEd/z/koyRtn5ayk5K639LOuMj0jU94dfo3igluqSBEHfT7hor07/e3Rf0u7m0GLh20fekO94u7bpB6j5SOuEd0sizpNuulCZuleZ3B6/RvVHqOy54DAAAAAAAAAAAAACgaVwhOcd2nayjuoJf740ppg2dW3RSz+nqjHXVo7wVpyfe59s+6y0Go817c9pfmPQdc0rPWbp75vaSditPe3LjGklx4zEA9TXuCDnb0nWipgv7tTv7REnfRMSwx9UkKPxsIrtbni0oFuK6Es8WtCdordwubYgfXVGNAAAAAAAsRTBa+3pz0fb767CPFxVthwpes9beZ4z5maRznmzqkfQcSd+oYW0AAAC1EY/wxofcfumxa6U9P5de+MjihfnV8kLeUW3bF6Wnf16KOV6IKixIN5zvnm94auArKHxh+1ek48uE0RUWpKl7pDUnNDZUbGGi+jVOeId0xoerXweog0JA+FlQHwAA8HHcHy9+VCvRLXWkpYWMe0y5YLQ1J7j78gfK19AxKJ33hdL2Z15X2vbIF6VbX72kwUhP+Rv3cyoAAAAAAAAAAAAAQFN51lPGEcRyQf9zdPaaZzW4opXPFYw2U1h8Dd4VNCdJL0q/TvfM3CGr0juZZrI7CUYDUFfWWmWyO3z7zl17sXYsPOobjJZxhKkh+LEpKK/J/B4NJsvfOH5ffq/yNh+wn13a0EkwGgAAAACgejVIasBKY4w5RtLSv+Zvk/TDGu9jVNKpS5rykm6OsMSPirYvr7YmAACAuqgkzGr2Uelrw1IhW/3+p7eFH5u50d33xDek2cfd/Vz871D6Zo5DDmwNnvrwF6Rr+6Xrz5SuHZDu+0htSwtSbTDaeV+STv8/takFqIOg8LM8wWgAADTPuT6hZEuVDUY73t1XmIteT5DNr5Ke81Pp6N+Tjv1j6eIfSFveWNt9AAAAAAAAAAAAAABqZiq/Vznr/97cdHJ9g6tpDd2xXt/2nM0q6y04g+biSmgktV79iUHfftc8AKiVGe+A5rxZ377h5JjSyVHfPo5Pbpls8GMTFJYZZVzYdQAAAAAAKIdgtPb07KLt71trAxIdKnJK0fZd1tqZCPNvKdo+ucp6AAAA6iNeQTCaJC3ske5+X/X7XxgPPzYTkFO757bguQceCr+f1SQofCEoNG/yTumnr5MK84vbXlb65Tulnd+tbX1LTd0r3f8P0l1XSVv/tfJ1nvK30lGvkIypXW1AjRUCnuEGhaYBAICQjr2ysnn9xX82LtK7Jbi/c1RK9vv3pS+orKYgQ+dIT/836exPSCMX1n59AAAAAAAAAAAAAEDNZHLuoJXhVJkbda1SPfE+Z99sYdoZXjOUGlHMxJV2PK6E3gCot6AQr3RqzHl8msrv1YI3X6+yWlrQeVSSJkKGypULnwu7DgAAAAAA5RCM1p6eVrR9qySZRZcYY642xtxrjJkyxswYY7YbY75njHmXMeaokPs4qWh7a8Qai5M3itcDAABYGYLCr8p57KvV7z93IPzYu/5a2v9gabu10n3/J3juWn4d85X3v8uUJCne5e57/Ov+7Y9dV109Lls/I33rqdIv3ibd/bdVLGSkza+uWVlAvXgB4We5QuPqAACgbR35O+HH9h1z+PPuI6WRi/zHpZ8hdR8RvJYx0jFvKm3v2SQNnBa+JgAAAAAAAAAAAABA23GF5PTE+9Qd721wNa0h6HGZ8Q44Q3LSybEn/x317S8XrgMA1RrP7vBt7zCdWhMfcB6fJIK5XMqFWo6HDL0sdw4Iuw4AAAAAAOUQjNaeziravu/JwLPvSbpB0uslnShpjaRuSRslXSzpA5IeMMb8kzGmXALIMUXbj0ascXvR9qAxZiDiGgAAAPUXryIYbXrbYihZFE/8j3Tr66WfvkHa8R0ptz/a/G8eJ930Uun7l0i//HPpwEPSxE/Lz1tzQrT9rBaFCoPRfv0e//atn6qqHF+zO6Sf/75ka5AGdcE1Uu/m6tcB6qwQcGidzzWuDgAA2tbYpdIZHw33fOjEdy7fPvcL0rqzl7etO1M6/z/C7fuUq6SNv3t4u+9Y6cLrJcPLGQAAAAAAAAAAAACwmo3n/ENyDoZ4oVRPUDBaYdoZXjOcOhiM5v/YukLqAKBWnMGNqVEZY7QumVbMcXk0xyh/mTKBcWED5coFrBGeCQAAAAColUSzC0BdFP/VuVvSbZKGQsxNSrpS0rnGmOdZa11/hegv2h6PUqC1dtoYMy+pc0nzWkmTUdYpZowZlpSOOG1LNfsEAABtLlFFMJq3IOVnpGTIu9A9+Cnptj86vP3w1VL6/Oj7ffSri//u/r70yOel9DODx/cdKw0/K/p+VoN8QDBaLNm4OoJ8/YjarPPSmeq+34EGKnjuvpls4+oAAKCtnfB26Zg/lKYfkvb/RrrpJaVjerdIIxcvb+s+Qrrs54tB0bOPSd0bpN6jwu832bsY2LuwR1qYkPqOk4yp5isBAAAAAAAAAAAAALQBVxALwWhuCZNUh+nUgp0v6ZstTLuDh558TNMp/8d2IrdbBVtQ3MRrVywALOEKNzt4fIqbhAaTw75hX+UCwFajrLegffk9gWPCPm7lAtT25fco6y0oFesIXR8AAAAAAH4IRmtPxaFlV+twKNqMpE9J+rakxyX1SDpV0hskXbBkzumS/tMY8yxrbc5nH8XpHnMV1Dmn5cFofRWsUexKSVfVYB0AAIBF8a7q5mf3hAtGs5706/eWtmdurm7/8+PSY9e6+9PPkM79XPjwttWmEBCM9puPSye8zWdO6ZtH6mbP7ZXNMwlJnpTok0aeLZ31CULR0FI86+7bGim2GwAABEp0Sf2nLH6c+wXp1tce7hu9RHr656V4yn9u71HRAtGKdQwufgAAAAAAAAAAAAAAIGncEYw27AjvwqKeeJ8W8qXvbZ3MT2gqv9d3zsFANFfonKeCJnMZDaVGa1coACzhDG5ccsxPJ8f8g9Ec54vVbCK3u/yY7C5Za2UCbmJprXWG1i21JzeusY4NkWoEAAAAAKAYwWhtxhjTIak4Sv3IJ/+9V9Jl1trHivp/IelqY8w7JH14Sfu5kv5C0t/57Ko4OaOS9Ic5SQMBawIAADSfiVU3f2FC6tlUftye26X5JtyZ6NKfNH6frSQfEIw284j00L9JW96wvP2W19S3pqV2/yDa+Ct2S53D9akFaKCCF9z/lds8vezsKo/fAABguc2vWfwAAAAAAAAAAAAAAKDBrLWhQnJQqjveq735TEn79vmtzjnp5GLg2VBqxDkmk9tFMBqAunGFmy0NbBxKjUo+b/ef8AlLW+3ChMUt2HntL+zT2sSAc8yBwpQWbPlLiTO5nQSjAQAAAACqxlXC7SfuaJ+SfyjaIdbaj0j6WFHz240xYQLLbMj6qp0DAADQWuYnwo1bGK9vHX5O/0jj99lqbJn0pYc+s3x7fkJ6/GvBcwrZ6mpa6p4PhB+bGpA60rXbN9BE5YLRPnsTTzcBAAAAAAAAAAAAAAAAoF1MFSaVs/7vv1wakoNSPXH/y8K2zT3g2x5TXOuSizfh7Yx1aU3cPyAnTMgOAFRipnBAM94B376lYZiu478rSHM1C/uYTGSDQ+XCHvszZdYBAAAAACAMgtHajLV2VpLfJeIfDQpFW+LdWgxRO2idpMt9xk0XbXeFqzBwTvGalfhnSadE/HhhDfYLAADa2ZrjK587+2i4cbYJIT7dRzR+n63m9A8F90/cunx7/33lw9S+/2xprgYvts48JuX2hR/fNSYZU/1+gRXAK3PI/N59jakDAAAAAAAAAAAAAAAAAFB/49kdzr7hFMFoQbpjfb7t4zn/x3QoOaK4iR/aTqdGfccRPASgXoJCtYaXhKG5jk97cxPK21zN62plYYPKyh3bM7lw60yEHAcAAAAAQBCC0drTjE/bF8JMtNbOSPpaUfOFPkNXZDCatXbcWntPlA9JD1W7XwAA0OY2vry0LbVOevGEdM5npfO+KCXX+M/9+R9Ik3eV34ctVFdjJboIRitrvV9GcICc/52plpm4Rbr+TClzS2U1HfTQZ6ONH76wuv0BK0ihTP4gAAAAAAAAAAAAAAAAAKB9ZLL+QS3dsV71xP2Dv7Ao6uNTHDSUTvoHz4UNxwGAqFzhXEmT0prEwKFt1/HJytOe3HhdamtVYcMsyx3bQ6/jOG8DAAAAABAFwWjtaV/R9m5r7bYI839atH2iz5ipou10hPVljOlVaTBacd0AAAArwyn/WzrqNZLM4nbXeumi70odg9KWN0hHvVJae7J7/s/eJD3yRenmV0q3/4m05/bSMc0IRus9uvH7bDU9m6R4Z/AYaw9/ng8RjCZJczul718o/eId0i//XLrpZdKDn5S8CN8Hd783/FhJ2vLGaOOBFYxgNAAAAAAAAAAAAAAAAABYPVxBLcMp/1AcHNYT7400Pp1cv3zb8RgTegOgXlzHl3RyTDFz+JLooeSIzMFrPEKusVrVKtBsIhsuFJPwTAAAAABALSSaXQDq4gFJG5ZsR/0rzo6i7UGfMQ8WbW+KuI/i8XuttZMR1wAAAGiMWFI67wvSmR9bDLRae5JkijKGEwF3U9t7m3Trqw9vP/Rp6Vn/LY1ecritMFfbmstZe4rUvb78OEgbXixt+6K73+Ylk1z8PBcyGE2SvJx0/0cPbz96jbT7h9L5X5GM/wu0h9x1Vfj9SNLGl0rrzog2B1jBPFt+zHfusXruyWV+lgAAAAAAAAAAAAAAAAAAK14mW3yp06J0kmC0crrjAe9x9pFOjS7fdjzGmdwuedZbFlIEALUw7gjxKg5qTMZS6k8MajI/UTKWYK7D8janvbnSx8jPRJnHLWzA2p7cuAq2oLiJhxoPAAAAAIAf/vLYnu4p2l6IOL94fKfPmPuKto+JuI+ji7bvjTgfAACg8ToGpf5TSkPRJCkZ4U0DhXnpB5dK1x0p3f6Wxe38TO3qDGPsOY3dXyuLdQT3e9nDn+cjBKP5efSr0tTd/n2PfV361mnSl4x099+617j8V9KZH5d6t0idw9Lxb5PO/ixCrxkAACAASURBVGR1dQErTMErP+bdXw8xCAAAAAAAAAAAAAAAAACw4rmCWIpDclCqJ94bafxwURDacFFQ2kF5m9O+/J6K6wIAl0zWccxPlh6PhnzaFtcgGO2gPblxWYV7X3W5xy1s4JyngiZzmVBjAQAAAABwIRitPd1VtN0fcX7xeL+/UhenNTzVGNMdYR/nl1kPAACgtUQJRjto7gnpgU9IP36BNPmraHOf/nlp4Izo+zxo7cmVz11tYqng/sKSXOHc/ur399BnS9t23iDd9GJp353Bc/tPlQZOlY5/i/SCrdIVu6UzPyZ1rKu+LmAFCROMdvt2yfNs/YsBAAAAAAAAAAAAAAAAANSNtdYZ1JJOEoxWTncsWjBacdicK3RICh+QAwBRuMIwh33CMP3agtZYjVxBc35mvAOaLUz79s0WpjVTCH8j+XH+DwAAAAAAVSIYrT19W9LSq7+PNsZ0Rph/StH248UDrLU7tTyALSHpggj7uLBo+9sR5gIAAKw8iQqC0Q7adYO09VPR5nQMSVveUPk+1xxf+dzVxuaC+72lwWjhX+hz2nVDadvWf5VsiCSoza+tfv9ACyiEzDub8H9dHgAAAAAAAAAAAAAAAADQIvYXJrVg5337XIE4OKwnHv49zjHFNJgcXtbWHe9Vb3yN7/goYTsAEMZsYVrTBf+bladT60vbHAGZHJ8Oixpi6Ro/EXGdCUeoKQAAAAAAYRGM1oastTsk3bqkKSnp4ghLXFa0faNj3HVF278XZnFjzAmSzlnSNCPpu+FKAwAAWKGSVQSjVaJjSDr69RVONtKaE2tZTXvLzwX3F5YEo+VrEIw2da9ki1KfHrs23Nzjrqx+/8AKZ60t+RFx2TlV31oAAAAAAAAAAAAAAAAAAPUVFG7jCsTBYVGC0QaTw4qbREm7M3goR/AQgNoKCt9KJ0dL2oZSpW2StCc3Ls8WalZXK4saEucaPx4x6IxzBAAAAACgWgSjta+ri7b/NMwkY8wzJD1tSZMn6VuO4V+UtPSvQ1cYY44NsZu/KNq+xlrHrVsAAABaRdL/Tmh10zkkJXqkZ30z+tz1z5M61tW+pnZVKBOM5i0JRsuVCUZbd6Z06U3l9/mzN0lexBdiL7lRindGmwO0IC9kKJok7dhXvzoAAAAAAAAAAAAAAAAAAPU37ghW6Yr1RAr9Wq164r2hx7oC0NKO4KGoYTsAUI4rfCtpUupPDJa0+4WlSVJBeU3mJ2paW6vKBITNRRkfNegs6n4BAAAAAChGMFr7ulrSfUu2LzLGBIajGWOGVRqodo219iG/8dbaByV9fklTStLnjDHONAZjzAslvX5JU1bSe4PqAgAAaAmJBr+xIvXki3qp/uhzz/nX2tbS7soFoxVCBqOtOUG64Bopfb7UVeYOhQ//m/TwZ6W7rpJ+ckX5Gs/4v9LwBeXHAW2g4IUfu3MqQooaAAAAAAAAAAAAAAAAAGDFcYVvpVNjMsY0uJrW0x2LEIyWcgSjOQLTJgi9AVBjmdwO3/ah5KhipvRyaNdxS5IyjpC11SZqiKVr/ETEx5PHHwAAAABQLYLR2pS1tiDprZKWXjL+EWPMPxhjBorHG2MukXSzpC1Lmicl/VWZXV315LiDzpP0PWPMCUXrdxhj3iLpq0XzP2Kt3V5mHwAAACtfo99YkVyz+G+8K9q87iPLh3JhuXLBaF728OfZPf5jNr5Uet69Uu/Ri9smWX6/P3+zdPffSo9fFzzu6DdIJ7y1/HpAm/AiZJ3tmKpfHQAAAAAAAAAAAAAAAACA+svk/ANahh1hXVguGUspZTpCjXUFDA0lR33bM9ldspYbmAKoHXcYpv9xqDPWpb74Wv+1CG9UwRa0Jzfu27cukfZtd4Veus7Ha+MllysfWsezEe6IDQAAAABAEYLR2pi19gYthqMt9SeSdhtjfmKM+bIx5uvGmG2SbpB0zJJxWUmvsNY+UmYfj0u64snxB50v6V5jzG3GmK8YY66X9Jikj0tamgDxTUnvruBLAwAAWHkWHIFY9XIwiC3eHW1euZAvlCobjLYg3f8P0rdOlSZu9R8zctHy8LxYqnb1DT+zdmsBLaAQ4fXxnQSjAQAAAAAAAAAAAAAAAEBLG3eG5BCMFlZ3vDfUuLQjbG7Y8Vgv2HntL+yruC4AKOYKM3Mdn4L6XCFrq8lkbkIF5X37Tuw5zbfd9bi5/m9O7Dndtz1ns9qfnwxRJQAAAAAA/ghGa3PW2k9IulLS7JLmpKRnSHq5pBdK2lQ0bbekZ1trvxNyHz+S9CJJmSXNRtJZkl4q6bmSiuPjvyzp5dbaQqgvBAAAYKVrVjhVImIw2nF/Up862tmGlwT33/MB6Rdvk/bd5R6z5oTl28f8fvV1HTT23NqtBbSAKMFou6a4EyUAAAAAAAAAAAAAAAAAtCprrTOgJSgkB8v1xPtCjXMFoAU91gQPAagl5zE/IAxzKDXqv5YjyGs1yeTcx+iTHIFmU4VJLXjzy9qy3oKm8nsjrSNJ4wH7BwAAAACgHILRVgFr7SclPVXSv0s6EDB0l6T3SDreWntLxH18S9Ipkj4lKSjG/aeSXmKtfaW1dibKPgAAAFa0wXOkRLg3DVQtuebw553D0eZuuKK2tawGm14W3L/jf8qvseb4ojVfXnk9S41dLnX5v5ALtCsvQtbZDm5ECQAAAAAAAAAAAAAAAAAta39hnxbsvG+fK8QLpcIEoxnFNJj0f19yT7xPXTH/mzkHhe4AQBRzhVntL/i/+Xc4IKDR1Udwo/sxWBMf0BEdm53zJopC5Yq3l9rYeYx6Yv7nmaB5AAAAAACUk2h2AWgMa+1Dkl5jjOmSdL6kIyWNSspKyki601p7V5X7GJf0R8aYtz65j01P7mNG0hOSfmmtfaSafQAAAKxY8Q7pnE9Lt7xKsoX67uv0jyzZb2f4eSf+mbT25NrX0+56NkqnfkC68y8rm5/slzpHfNb8e+nO/11dbWd/orr5QAsqeOHH7pyqXx0AAAAAAAAAAAAAAAAAgPoKCrVJB4TkYLmeWG/ZMeuSaSVM0rfPGKN0ckyPLjxU0pfJEnoDoDaCQrTSAWGY6ZT/jcYncrtkrZUxpuraWlXG8ZimU6MaTKYVU0yeSt+cncnu0hEdRx3aHnecj2OKaTCZ1lBqVDPzB3zWIZwOAAAAAFA5gtFWGWvtnKTv1XkfWUk/rOc+AAAAVqRNL5MGTpN+/ofS+I/qs494t7TxxeHHP+M/pQMPSukLpKHzpFX8ol5VTn5X5cFoI8/yf9xP/itp9NLF75fJX0Rfd/BpUu/RldUEtLCowWir/Q0NAAAAAAAAAAAAAAAAANCqMjn/QJXOWLd642saXE3r6o6XD0ZLJ/2DhQ71pxzBaI7/IwCIynU8SZiEBhKDznlDjqDMrF3Q/sKk1ibW1aS+VuR6TNPJUcVNQuuSaU3kdvvMWx6o5gqtW5dMK24SSidHtX3+wbLrAAAAAAAQRazZBQAAAABtZc3x0ql/V5+1k2ukC74qpQbCz9lwhXTSX0jp8wlFq1b3kZXNG7vc3Td4tnTpT6RYKvq6J1UY1Aa0OM+GH5srSNl8/WoBAAAAAAAAAACoJ2PMe4wxtoqPzzX7awAAAACAaoxn/QNdhpNj3DAzgp54X9kxw6n1gf1pR/BQxvF/BABRuY75Q8lRxUzcOS+dcgc7rvZjVCbrH0yWTi0e013H9omiec51npzv+j9Y7Y8/AAAAAKA6iWYXAAAAALSdlPtuRKHEu6ULvykNnC6l+qW5XdLsY9LaU6REV+n4jrS0kClt795QXR1YzstVNq9vS3B/okfq3SLtvy/8moPnSEc8v7J6gBZnIwSjSdJcTupI1qcWAAAAAAAAAAAAAAAAAED9ZHL+gSoHA10QTnest+wYVzjOoX5X6E1up6y1BNUBqJorRKvc8akn1qeuWI/mvJnSNXO7dIxOrkl9rcazniZywYFmQ6lRaba0v/j86zofDz15bnAGrOV2cY4AAAAAAFQs1uwCAAAAgLbTMVR+TP+p7r7fulMaefZiKJokdY1Kg2f7h6JJ0lPf599+4jvL14HwFiYqm9cVfAc9SdJld4RczEibXild8BUp5r7rFdDOvKjBaNn61AEAAAAAAAAAAAAAAAAAqK9KQ3KwXE+8r+wYV/DZoX7HYz7nzWqmcKCiugBgqUrDMI0xSicd4Y1Z/2Cw1WAqv1c56/9G6oOP6bDj2J4pClQr3j7o4Pwhx+PPOQIAAAAAUA2C0QAAAIBaSw2UH/Pcn0tjly1vi3cvtvcdE21/m14q9R27vK33aGnTy6Otg2CDT6tsXtcR5cckuqTNrw0eE+uQXlGQzv+i1LOpslqANhAxF01zubqUAQAAAAAAAAAA0AyvkLQ5wgd30wIAAADQsqy1zpCc4TIhOVguVDBambC5oGAi1/8TAEThDsMMDm6U3Meo1Xx8coWZSYcfU1eg2d5cRnm7+CbsvM1pby7jO+7gfM4RAAAAAIB6SDS7AAAAAKDtxOLS+t+SdnzLPSaekp75X9L9H5UyN0mdaem4t0jrzoi+v9SAdOkt0n0fkiZ/KQ2cLh3/NqlzuPKvAaVGLpImbo0+L7km3Lgjf0d65Avu/o5ByZjo+wfajOdFG08wGgAAAAAAAAAAaCO7rLXbml0EAAAAADTCdGFK896cb1+5EC8s1x3vDew3Ms5wnIPWxPvVYTq1YOdL+sazO7W56/iqagSwus17c5oqTPr2DafWl53vOi+4wtZWA9fX3hPrO3RecAWaWXnam8toOLVee3MZWfm/gfvg/KBzRCa3i3MEAAAAAKAiBKMBAAAA9XDaB93BaGtPWfw3npJOfldt9tc5JJ3+odqsBX8nvH3x/3Tyl+Hn9D81fJjZ2HMkGUnWvz81EH6/QBvzHD8iLnPZ+tQBAAAAAAAAAAAAAAAAAKif8YAwm2FHkAv89ZQJRhtIDCkZSwaOMcZoKDWqJxa2lfRN5HZVUx4AaCLrPo6ECcNMp/zDHTO5nbLWyqzCG5RnHMfmpY/VUHLEPT+7U8Op9YHhcgfnB50jVnM4HQAAAACgOrFmFwAAAAC0pf6nSC94yL9vwxWNrQW10TEoXfLjaHOOenX4sYkeaeB0d39ybbR9A20qYi6a5nJ1KQMAAAAAAAAAAAAAAAAAUEeZnH+QSmesS71x3lMZRU+sL7A/HTJoLp10Bw8BQDVcx5G4EhpIDpWd7zo+zXmzmvEOVFVbq3IFki0NmkvFOtSfGPSf/2SwmitgrT8xqFSs49D2kPMcQXgmAAAAAKAyBKMBAAAA9dJ7tHTxj5YHWm14sXTyXzatJFQpGfzGkGWO/j3puD+Otv6zvuHuCwpNA1YRz4s2fp5gNAAAAAAAVowf3G/1J//h6Z1f9fSzh6PGnwMAAAAAAAAAVhNXSE46OSZjTIOraW3d8d7A/uHk+lDruALUMllCbwBUx3UcGUqNKG7iZecHBTyu1mOU8zxa9Fi5A812Bq9TNM8ZnukIaAMAAAAAoJxEswsAAAAA2trIs6QrxqW9d0jdR0o9G5pdEaoV75YKs/59Y8+VnvJeqWtU6tkUfe3uI6Tj3iI98I/L201c2vza6OsBbSjqJdNz2bqUAQAAAAAAIvr0jZ7e/P8OP7P/xx9YfeUPYvqd07l4DQAAAAAAAABQatwRpBIUfgN/qViHkialnPV/Q1065R9mUzIu6QhGc4TmAEBY47kdvu2u406xNfEBpUyHsnahpG8it1Obu46rqr5WY611BpKVBJqlRrV17p6ScQcD5dyhdcXr+P9fTeRWZzAdAAAAAKB6sWYXAAAAALS9eEpKn0soWrs46V3+7R2D0gXXSEPnVBaKdtAZH5GOf9viepLU/xTpmV+Xhp5W+ZpAG/EiJqPN5aJGqQEAAAAAgForeFb/+7rlz9FzBend/+U1qSIAAAAAAAAAwErnDnQhGK0SPfE+Z1/Yx9QVejNd2K/ZwnRFdQGAFHDMDxncaIzRUNJ/rCvYq51NF6a0YOd9+4qP5cVBaQdlngw0yziCzYrPHa51DhSmNO/NBdYLAAAAAICfRLMLAAAAAICWcvTrpK2flOaWvPi65kTpstukRE/168eS0pkfk874qFSYkxLd1a8JtBEv4vXSc7n61LGSzWWtJmel4T4pETfNLgcAAAAAAN28VZrwuR7qnh3Sjn1W6/t5/goAABDSm40xfy3pREmDknKS9kjaLukmSddba29sYn0AAAAAUBPWWmVy/iE5w45wLgTrjvVqn/b49rkCz0rGOUJvJOmmfd/VQHKootpckialLV0nqi+xtqbrNoJnC3piYbt2ZR/37R9IDGpT53FKxpINrgxovgVvXo/M/UYHClOH2nY6flaihGGmU2Pakd1e0j7uOJ+0i4LNa/v8Vu3JjR9qm8jtdo4vPpa7HuM9uV26bf9PtMexVsk6AeeSG/ddr/7EoLO/EnGT0KbOLRpMjtR0XQCAv8nchLbNP6i8Lb1IJ2U6tLnreK1J9DehMgAA0M4IRgMAAACAKHo2SpfeLN3/MWnfr6XBs6WT3lWbULSljCEUDfBhI46fy9aljBXrYzd4+ttvWk3NSWNrpX95TUy//VQuLgcAAAAANNf2Pe5n9PvnpPW8LxIAACCslxdtd0jqlbRJ0jMl/ZUx5nZJf2mt/V6jiwMAAACAWpku7NecN+vbFyUkB4f1xHt9241MYODZUv2JQSVM0jcM4esTX6iqviAvSr9Ol657Ud3Wr7Xp/H596on36+H5+wPHrUukdeWR79b6jo0Nqgxovodm79OndrxfM4UDocYPp9aHXtt1LJvI7gq9RqvJZHfqnx5/n8ZzO0KN74x1qTe+PGwynfJ/3PI2r6t3ftS5VnEQ2kBiUHElVFC+ZOx1mc+Hqq8SF/Y/Ty8ZfoNiJl63fQDAauZZT/898SV9Z++1geOMjK5I/54uXveCBlUGAABWg1izCwAAAACAltO7WTrr49IlP5RO/5DUsa7ZFQGrhhcxGW2u9P1Xbeu/77R6x1cXQ9EkaeeU9LJ/8fRowMXnAAAAAAA0W4GnrQAAALV2lqTvGmP+3hhT87unGGOGjTEnR/mQtKXWdQAAAABob5ncTmdfcRALwumO9/m29ycGlYylQq0RM7HQIWq1dF3m83po9r6G77dS35j497KhaJK0N5/RF3Z9vAEVAStDwRb02Z0fDh2KJrnDznzHOs4PQeeUVvel3Z8MHYomLYaLFv/JcKjC43rx/03MxDWUGqlorWr8aN//6FfTP2v4fgFgtbh/9s6yoWiSZGX1n5l/0+PzjzSgKgAAsFoQjAYAAAAAAFqGjRqMlq1PHSvRtXeUPjhzOemff8wV5gAAAACA5gp6Zjq7ip67AwAAVOEJSZ+W9PuSLpB0kqQTJJ0v6S2SvlM03kj6K0nvr0MtV0q6O+LHf9WhDgAAAABtbE9ut297h+nUmnh/g6tpDz3xXt/2qEFzzQqmu2fmF03Zb1TWWt1x4KbQ4x+d36pMtn1Dm4ClHpq7V/vye0KPjymudcnh0ONdIWoHClOa9+ZCr9MqDuSn9JvZuyLNSadKH6PueK96HOGZLr3xNeqK95S0VxqyVq3b9/+kKfsFgNXg9v03Rhof5XdhAACAcghGAwAAAAAALcOLGoyWq08dK9Ft2/wfnA9dTzAaAAAAAKC5goLOZxYaVwcAAEAL+rmk50raYK39A2vtZ6y1N1tr77PW/sZae4u19hPW2ssknS3pwaL57zLGvLDhVQMAAABAleYKs77taxPrZIxpcDXtYWPHFt/2zZ3HR1rnqM7jalFOZNOFqabsN6r9hUnNef7fvy67s0/UqRpgZdm58Fik8Zs6j1HcxEOP9wv9OqgdAwjHszsiz3Edw2t1LtjcpHPEruzjTdkvAKwGUX9X5XdbAABQSwSjAQAAAACAlhE1GG02W586VqL7d7n7DswTjgYAAAAAaJ75gOBygtEAAADcrLXfstZ+19qgqNlDY2+X9HRJDxR1fdCYCFeQAgAAAMAKsGDnfds7Yp0NrqR9nN53rvoTg8vaumLduqD/0kjrnLv2IvXE+2pZWigFFRq+z0pUEr6UyQW8+Q9oI7sjBnldvO4FkcYPJIYUV8K3rx1/zqJ+TX3xtTpnzbN9+y4aeL5iIS83jymmiwae79t33tpL1BNr/Dkik92lgm2N8wQAtJqo55t2POcCAIDm8X+WDwAAAAAAsAKVv+xnucmZ+tSxEvV0uC8mn5yR+nhPIAAAAACgSaYDws9WU6g5AABAvVlr9xpjXiHpdknmyeYTJD1b0vdqtJt/lvTViHO2SPqvGu0fAAAAwCqw4BGMVmt9iX796Ya/1zf3/Ie2zz+osdQGPX/oVRpMjkRaZ21inf5s44f03xNf1Lb5B5TzAu6OUoE5b0Y5W/rigbVeTfdTL64gCKOY4iauvC19vDJZwiOwOoxnn/BtT5kOdca6JS3+QWusY6Oe2X+5Tut7eqT1YyauweSwxnOlAWyVhBaudJmc/9cUV2JZgGUyltTmzuP1gqFXqy+x1nfOCT2n6o+P/Bv9YPIbenxhm/zu02CM0REdR+migefrhJ5TfdfpTw7qnZs+uHiOmHtQeZuv4Ctz8+RpujBV0l5QXntz40qnxmq6PwBY7eYKM77HXUnqMJ2+gdaZ7E5Za2WM8ZkFAAAQDcFoAAAAAACgZXgRg9EmpiNOaGFdSXcw2oGAC9ABAAAAAKi3mYDws5ms1eHMDgAAAFTLWvsLY8x3JT13SfNlqlEwmrV2XNJ4lDlc/AIAAAAgqgVvzredYLTqDKVG9fqxt1W9znBqTG9c/84aVFTq/+38R926//sl7Z5aIxht3BG+tKHzaG3o2Kybp24o6XOFGwHtZnfOPxjteUMv16XrXlSTfaRTY77BaBOO0MJW5gp7O7XvHL1p/Z9FXu/EntN0Ys9p1ZalkdQRetP6P696HT8L3rze/uDLfft2Z58gGA0AaswV+itJrx37E316x4dK2rN2QfsLk1qbWFfP0gAAwCoRa3YBAAAAAAAAYfncgCzQxHR96liJUgHx9/v93ycIAAAAAEBDuIK8y/UBAACgYtcXbT+1KVUAAAAAQIUWPP8/HhOM1v5ixv9yR8+2RjBaxieQSZKGk2NKJ/0De1zhRkA7yXoL2pvL+PaNpI6o2X5cP2eu0MJW5gp7SydHG1xJ43TEOjWQGPLtG8/6H38BAJVz/Z6aMEkd23VK5HkAAABREYwGAAAAAABahkcwmlPcuPsOzDeuDgAAAAAAigWFn81mG1cHAADAKrKtaDvdjCIAAAAAoFILnv8bnjpMV4MrQaPFFPdt91RocCWVyWQdQUWpMaVT/mFFe3LjKtjW+PqASmVyO2Xl/ybgmgajOX7OXCFirSzoeNPOhlPrfdt3E4wGADWXyfkHnKWTo+pNrFF3rNe3f9wxDwAAICqC0QAAAAAAQMsgGM1tIe/u208wGgAAAACgiYKC0YL6AAAAULG5om2SAwAAAAC0lAVb/LRmUUess8GVoNFixv9yR896Da4kOmttQHjEmNJJ/7CigvKazE3UszSg6VyhVTHFNZQcqdl+0kn/YLTJ/ISyXvu8MDlbmNaMd8C3z3WsaReuIL3x3BMNrgQA2l+5EE5XGGcmSzAaAACoDYLRAAAAAABAy7ARg9Gm5qRsPuKkFhUUjHZgfnU8BgAAAACAlWlmwf28dCbbwEIAAABWj6Giba6uBgAAANBSFjz/O0ESjNb+jONyR08rPxjtQGFK855/qF86NaahlH9gkyRnoBrQLnZn/UOrhpIjiptEzfbjCmiRpD258Zrtp9kyOf+gGskdDtcuhlPrfdtd4XsAgMq5Q39Hl/0bdh4AAEBUBKMBAAAAAICW4VWQ77VnuvZ1rETBwWiNqwMAAAAAgGKzAeFnQX0AAACo2DlF21wVCAAAAKClEIy2esWNIxjNrvxgtEzWHQAxnBxVZ6xLa+ID/nMDQo6AduAKRhtJHVHT/Qwmh50Bi+0U0uI63iRNSmsS/seZduH6ntmX3+MMpwQAVMZ1vkknF4NIXYGkmSy/2wIAgNogGA0AAAAAALQMW0Ew2r5V8Bq3tTYwGG0/wWgAAAAAgCbKB1yrlCs0rg4AAIDVwBjTKemKouYfNaEUAAAAAKiYOxitq8GVoNFcgUaeWiAYzRG61BnrVm98rSQpnRr1nxsQqga0g/EGBaMlTFLrkkO+fe0U0uIKUxxKjirmCJhsFyPJ9c4+jqUAUDsL3rymCpO+fUNP/k57MCCtWCa3U7aSi38AAACKtPczXAAAAAAA0Fa8SoLRZmtfx0qTLwSHxh0gGA0AAAAA0ERBz1nzBKMBAADU2l9IWnpFaUHS/zSpFgAAAACoyILnfzfMjlhngytBo8VN3Lfdsyv/BQVXMFo6OSpjzKHPo8wF2oG1VrsbFIwmBYe0tAtXAJgrfLGdrEumlTAJ377d2R0NrgYA2teEI4RTkoafPNemU/7n3HlvTtOFqbrUBQAAVheC0QAAAAAAQMsICkZLOP7KsRqC0Rbywf37CUYDAAAAAKxQBa/ZFQAAAKxMxpjXGGNGIs75fUlXFTV/zlq7vXaVAQAAAED9LVj/NzylDMFo7S5m/N8I6Gnlv6Aw7gwqGvP9fKlM1h08AbS6A4UpzXn+b+YdSa2v+f6GHAGEE230c+YOYvQ/xrSTmIk7v85xRwAfACA61++nMcU1kExLkoYd51xJGg8IVgMAAAiLYDQAAAAAANAybEAw2kCPf/u+uYBJbaJcMNoMwWgAAAAAgCYKemaeX/nXMQEAADTLGyU9Yoz5vDHmecYYxyshkjHmLGPM1yT9qySzpOsJSX9d5zoBAAAAoOYWPP83PHXECEZrd8ZxuaNnV/4LChlXMNqSAB9XmM9EbldLfI1AJXYHhFWNpI6o+f6cAYSOMLFW5Ap5SwcE1LSTYcf3ze7sjgZXAgDty3XeHEqOKG7ikqTe+Fp1LmRZYgAAIABJREFUxrr85zt+NwYAAIgi0ewCAAAAAAAAwvIcV1IbI/V3SZkDpX37/G8y11bKBaOV6wcAAAAAoJ6Cgs7zhcbVAQAA0IK6JL32yQ/PGPOgpG2SpiQVJA1KOlXSiM/cvZIus9b6XyUJAAAAACtUwRaUtznfPoLR2t/BkIVinl3ZLyhYa53hEcNLQppcgU05m9X+/KT6k4N1qQ9oJlcwWlesR73xtTXfnyscbE9uXAWbV9y09mXVC968pgqTvn2uY0y7GUmt923fnXOH8AEAonGG/qYOn2eNMUonx/TYwsOl89sokBQAADRPaz+DBwAAAAAAq4rrQuqYkfq7/fv2zdWvnpWiXPDZfC7gCnQAAAAAAOos6Flp3pWCDgAAgGIxScc/+VHO9yW93lr7eH1LAgAAAIDay3rzzr5OgtHanlHMt92T1+BKopkpHNCc538X13RySTCaI7BJksZzOwlGQ1tyBaONpI6QMabm+1sa2LKUJ097c5mWDw/LZN33QVh6vGlnI6kjfNvHsztkra3L9xUArDauYLPic006NeofjOYIVgMAAIjC/y+FAAAAAAAAK5DrWmkjqb/Lv2+f/3uN2kq2bDBaY+oAAAAAAMCPK+hckvKFxtUBAADQYv5B0pckbQ85fkbSdZIusdZeQigaAAAAgFa1EBCM1hFzvEkMbSPWosFo47kdzr6lIUzd8V71xPt8xxEegXYVFIxWD0MBAYSZnDtUrFVMOL6GmOIaSA41uJrmGE6u922f92a1v7CvwdUAQHtyBXEWB4y6Qjnb4ZwLAACaL9HsAgAAAAAAAMJyBaPFYlJ/t5FUOmA1BKMtlAtGK9MPAAAAAEA9BQWjPbC7cXUAAAC0EmvtdVoMOpMxpl/SyZI2SBqR1K3FG+PukzQp6T5Jd1lriZ0FAAAA0PIWbEAwmulsYCVohriJ+7Z7K/wpryvUrMN0ak28f1lbOjmqmcKB0jUIj0CbGs/6BweOpPzDrarVEevU2sQ6TeX3lvRlsjulntPrst9GyeT8jzdDyRHnMbTdDAd874xnd2htYqCB1QBA+8l5WU3mJ3z70kUBpK5jMqG/AACgFghGAwAAAAAALcN1IXXMSGu7/fum5upXz0pRNhgt15g6AAAAAACI6je7pR37rNb3m2aXAgAAsGJZa/dJurnZdQAAAABAIyx47jd8dcQIRmt3xsR82z3rNbiSaFyhZunUmIxZ/hpIOjmmbfMPlq5BeATaUN7mNOH4+RhJHVG3/aaTo/7BaG0QQOg6VqRTo77t7ag3vkbdsV7NetMlfePZHTq2++QmVAUA7WMit1tW/hfvpFNjy7eT/uefWW9aM4UD6on31bw+AACwevj/pRAAAAAAAGAF8hzBaEZSn+M9bwfmHZPayEKZ4DOC0QAAAAAAzVTumfm1d7T/c3cAAAAAAAAAQDjz3ryzL0UwWtuLOS53tFrhwWiuoKLkWGlbqrRNkjI5gtHQfiayu+U5fn7rG4zm+DlrgwBCV7jbkCOYph0ZYzScWu/btzv7RIOrAYD24/q91CimweTwsjbX77ZSe5x3AQBAcxGMBgAAAAAAWobrMulYTFrjDEarWzkrRrYQ3E8wGgAAAACgmWyZ3LO3fYVgNAAAAAAAAADAogVHMFrSpBQ38QZXg0aLOf6PC7bMm+SabNwRHuEXFJF2hBdN5HbJlntRBWgxrpAqI+MML6uFdMr/56wdAgidQYwBwTTtyBWsN57b0eBKAKD9ZLL+IZzrkmklTHJZ25r4gFKmw3+dNjjvAgCA5iIYDQAAAAAAtAzPcdNHI6nPEYy2fxUEo7kel4MIRgMAAAAANBOX8AAAAAAAAAAAwnIFo3XEHG8QQ1uJOS53tCrzJrkmcwYV+YSgucKL5r05TRemaloX0GyuYLR1yWElY6m67XfIEbo2kdstz67s40mQnJfTZH7Ct88VutiuhlPrfdtd33MAgPBcgWZ+5xpjjPP323HH78gAAABhEYwGAAAAAABahue4kjpm3MFoB1ZBMFqhzBXmcwSjAQAAAACayJKMBgAAAAAAAAAIacGb821PmY4GV4JmiBn/yx29FRyMNlM4oFlv2rfPL7gnKLxoPLerZnUBK8HunH9I1UjqiLrudzjl/3OWtznty++p677raW9+XNZxW6q0IwyuXbm+hzLZXSrYQoOrAYD24gz9dQSguX6/dQWsAQCA/5+9O4+O5Czsvf+r6kVSt7bRqFujGW941djgGTtgsyRsISwhQGLWhPAmARJ4sydkuQnJzfoGSHJzk8ube8EkkJATDA4xEAw2YFZjY8DYI49taWzP2GN7tHRLo7VbvVbdP8Zjy9P1VFdL3a1evp9zOBxXtaofaaqrt3q+haAIowEAAAAAgLZhmkdt29JgF4fRnCrnfOUIowEAAAAAdhBhNAAAAAAAAABAUHnX+4SvHruvySPBTrAV8lzeypEbUzhC8o5H9IeG1GvYn/22BbSjVGHGc/mYRzSwnkZ9AoTpNg4QpgzHCEuWdkfGmjyanZWMeO9DjspaLM43eTQA0FlMQTNTAM0UTEsX2vc5FwAAtAbCaAAAAAAAoG2YAmCWpIFey3PdaheE0cpVJpi3exjtnsdd/fS1ji7+o7L2/3FZb/tnR48sMKseAAAAANoF7+AAAAAAAAAAAEHlHVMYzXDlTHQU2/Ke7ui6Va4euoNShnBE1OrRUGhXxXLLspSIGOIRhm0B7Wq+cMJz+VhkX0PvNxbqVzw04LluoY0jLQuGqNuu8KgidqTJo9lZSUOER5LmDUE+AEB1Zbekk8W05zrTa1he2wIAgEYhjAYAAAAAANqGaSK1bUkDhvPeCiWpUOrsKdimYNxpJUcqVauntaipWVc//AFHn7rT1UMp6ci89O/fdXXVXzlaXG/P3wkAAAAAAAAAAAAAAACAtwJhtK5mG6Y7OmrdMFq64B18SETHZVneF3xNRPd4Lm/nYBNwpkx5TevlVc91Y9HGhtGkzoy0mI833seUTha1ezQSTniuSxmCfACA6haLaeNr74QhSmlavl5eVba8XrexAQCA7kMYDQAAAAAAtA3H9Q5hWZY06HPe25r3uXIdI0jzLF9q/Dga4R+/7mo9X7l8YV36h68SRgMAAACAdmB4Ow8AAAAAAAAAQIU8YbSuZlshz+WO28JhNENkKRExh4o6MdgEnGneJ07VnDCa92PQFBdrB+bjjfcxpdMlo3s9l88XZpo8EgDoHH6vR0cjY57L/V73LhQJ/wIAgK0jjAYAAAAAANqGYzi3ybakAZ/z3lY7PYwW4JyvXLHx42iE24+aZ8/fcBcz6wEAAACgHfDuDQAAAAAAAAAQlDGMZvU1eSTYCbZhuqOjcpNHElzKEFlKRM2holFjsIlwBDqHKYzWY/VqKDzS8Ps3PQbTbRxoMR0jTMeUTmcK7PlF+QAA/kwB0eHwbkXtHuO6sBXxXJfi9S0AANgGwmgAAAAAAKBtmCZSVw2jbTRkOC3DcatPMW/HMJrjuDri8z3Y/bPSg/NMrwcAAACAVhfgbSsAAAAAAAAAAJKkvOt9sleP7XOCGDqGbRnCaG6Aq4fukHTREEaLmMNopmBTxllTprxWl3EBO22+MOO5PBndK8uyGn7/CWOAcFZuG36BWXbLWiymPNf5hRg7WTK613N5qui97wEAqtvKa1vbss3Pu4btAQAABEEYDQAAAAAQSHrN1d99xdF7P+PopsPt92UwOoNj2PUsSxr2uSDo/GpjxtMqygHO+WrHMNpjS9JGlXF/bpLjEQAAAAC0ujacVwAAAAAAAAAA2CF5J+e5nDBad7AN0x0dtWYYLVteN4bMkj6hoqRPWCJd8LmaKNBG5gsnPJePRfc15f5HDY/BvJvTenmlKWOop6Xigsoqea7zi9V0MtO+tFI6qZzT4VfVBoAGMb0W9XttK5kjnekCYTQAALB1hNEAAAAAAFUdX3R15V84+p3/cPW+m1y9+oOOfvv61jzJBJ3NNJHatqRI2FJywHv9zEpnz8A2BeM2qxYYa0XH0tVvc+sDnf1vCwAAAACdIMg7t2KJ93cAAAAAAAAAAMJo3c62Qp7LHbc1z1lNF80RM79Q0WB4lyJW1LBN4hHoDKkdDqMlI3uM61I+j91WteAz5tHoWBNH0jrGonuN61KFmSaOBAA6h+m1aLUIZ8LwvMtrWwAAsB2E0QAAAAAAVf3lF1ydWH76sn/4qqvJx5iwiuYyBcAs69T/7x32Xn9iqTHjaRXlAOd8FbwvEtfSsoXqt5luv3NTAAAAAAAe2jHoDQAAAAAAAACoP3MYra/JI8FOsA3THR21ZhjNFN6JWFENhUeMP2dbtjEe4Rc/AtqF45aNIZRmhdH6Q0PqNTx3pAvtF2lJGf6eg6Fdxt+z0+0KjypsRTzXzRvCfAAAM8cta6Ew77kuETUHRyVzOC1d4LUtAADYOsJoAAAAAICqbnuoskblutL7biKMhuYyhdHsJ8Jo+0xhtGXv5Z3C9HfZrFBu/DjqrRTgXLZjC1KhxLEIAAAAAFqZG+BtW5A4NgAAAAAAAACg85nDaL1NHgl2gm15T3d05cgN8oVDk5niSqORPcbf5bRE1BSPaL9gE3CmxWJKJdf7ir7NCqNZlqXRDgoQmo4N1UI1ncy2QkoaQjymcCUAwGyptKCyvJ+/TeGzJ9cbXtuulpeUcza2PTYAANCdCKMBAAAAAKqaNnz3e/2drXeSCTqb6bym02G0vcOW5/qZ5c7eV8sBAmIF7++nWloxQMyt7EhH040fCwAAAABg64K8K98oNnwYAAAAAAAAAIA2kDdMmu+xepo8EuwE22e6o6MAJ8o1WdoQV0oawhCbmYJNpm0C7WS+cMK4Lhnd27RxmCIu7RggNMXcEoZjSbcw7U9++yAAwFu6YH4dOlolxOkXTlvw2S4AAIAfwmgAAAAAAKBtOIaZ1NYTPbTxIe/1C+uNGU+r6NwwWrCg3fHFBg8EAAAAALAtptD5Zmu5xo8DAAAAAAAAAND68q73B8Y9dl+TR4KdYFkh4zrHbcEwmiGu5BeGePI2hnhaOwabgDPNF2Y8lw+Hd6vH7m3aOIyPs2L7Pc6Mx5sAIcZONhbd57k8ZdgHAQBmKcPz42Bol3qrvB/bFRlVSGHPde34vAsAAFoDYTQAAAAAwLas5YKFi4B6ME2ktp8Iow0ZvmtZzzdmPK3CFIzbrFBu/DjqrRhwzCeWOQ4BAAAAQCsjjAYAAAAAAAAACMJ1XeUd75O9mhnSwc4J+Ux3dNR6J8GZ4hFBQkVJQzxttbysnLOxrXEBO22+cMJzuSli1SiJyB7P5eniXFPHsV2u6xrHPGr4HbtFMrrXc/l84YTcIF9UAwCeZI5wVn+uCVkh7Y4kDdttr+ddAADQOgijAQAAAAB8VftCcHalSQMBZA6AWU+E0foN5751+uTqcoALYRZKjR9HvZUCnsc2s9zYcQAAAAAAtifI6earzO8BAAAAAAAAgK5XdAty5X0yFGG07mBbPmE0N8CJck20Uc5ovex9Eq0pxvS02/gEJhaIR6DNtUwYzfA4y5TXlC2vN3Us27FSXlLRLXiuSxgii93CtE/l3ZxWy0tNHg0AtLe0KfobMMJpigObtgsAAFANYTQAAAAAgK98lZjSLEEiNJGp02c/EUYb6PFe3+lhNFMwbrN8qf2uelYMGEY7wXEIAAAAAFpakAtxr2y03/tWAAAAAAAAAEB95R3ziV6E0bqD5TPd0RTN2ynpojlelozurfrzu8KjCils2DbxCLS3VKuE0XyiYX6P4VaTLpiPCUlDhKZb+B1vTYE+AIC3tCHOawqeVdzO8LybKsxseUwAAKC7EUYDAAAAAPja8L641JNmV5i0iuYxBcCeDKP1Wp7r1/MNGlCLKAc436tQJXLYioKG0WaXOQ4BAAAAQLtb7fCoOQAAAAAAAACgOt8wmtXXxJFgp4SskHFd2Q14QlmTmEJFYSui4fDuqj9vWyHtjiQN226fYBNwpo1yVivlJc91zQ6jDYVHFLYinuva6XG2YIi4xex+xUL9TR5Na+kPDSoeGvBcR4gHAIJzXMf4fOMXGn3a7aJ7PJe3U4wUAAC0FsJoAAAAAABfG0X/9fNrzRkHIJnDaNYTPbT+Hu/1uaJUKnduPCtQGK21zgkLJGgY7cRyY8cBAAAAANieIO/ICaMBAAAAAAAAAPLuhnFdj93bxJFgp1g+0x0dBThRrolSRe8w2mhkTLYVbNpmIuodmUgbtg20g1TRHKMai+5t4kgk27KViJgiLe3zOEsZQoymY0i3SUa896v5wokmjwQA2tdK6aSKbsFzXdDnm6QhoLZcWlTByW95bADQbR7NHdVD2fu0Ujop1+3c+ZBAEOGdHgAAAAAAoLVteH+u/aRV83lIQN2ZPsuznwijDfic+7aWk3bF6z+mVmAKxm1WKDV+HPVWCnge2wxhNAAAAABoaUHOzeEzJgAAAAAAAABA3jFfRYMwWnfwC4q99+g7Zcna0naHI7t1Rf/z9LrEzypk1Tal0nVdfX35Rt2+/BXNF54KPjnyvvJnwhCEqOW2t618RXesfL2mcW7WG+rTxX3P1JvGflFD4ZEtbwc47YHsYX1+4RN6NHdUjut/cqdriBhGrKh2hRONGJ6vRHRcs4XHKpbfuPAJfXHhU00fz1aYjzfe0bduMxbdq4dzRyqWf23p8/rG0he3vN14qF/741fojcl3KBbq384Qm+r+zN26afH6QI/XzWKhuCZiB/XGsXeoPzTYwBECrc1xHT2eP6apzKSms4c0VzihXrtPL9n1Gr1w+JVNGcPDGw/o8wv/roc3jqjkbn8iSDw0oEvjB/XG5DvVF/KeVOMXDA36fOMXUPvtB39my6/lTWzL1rm9F+o5gy/SC4ZeJtsK1XX7ALBTvnzyBt21dpskKWr1aDSyR4nouK4ceJ6eM/iiHR4d0FyE0QAAAAAAvnJVPkNfNZ+HBNSdKQB2+usRvzDaer5zw2jlAN9ZF7zPiWhpxYBjnl+TiiVXkXB9vygDAAAAANRHoDAanzEBAAAAAAAAQNczhdEs2YpY0SaPBjshJHPMwBQGCmKxOK9blj6rjLOmt+35tZp+9utLn9en0x8NfPukTxDiTImoOTJR1tYjGJnymu5e/44eyx/TnzzjH2uOwQGbPZo7qg8+9mfb2ielUyFAv/hho4waYi6u3G3/TjvN7xjSTZLRfZ7Lt/tvvFpe1ndXv675wgn97jkfkGW1/nnKR7NT+t+P/+WWnjPXyiv6/to3NVM4rj849+925PEK7JTFYkrTmUlNZQ/pSPYeZcprT1u/IumT8x+S6zp60a4fb+hY5vKP64OP/4lyTv2uMLhaXtIdq1/XfGFGv3PO+z2PZ+nCnOfPxkMDgeOQI5GEbNlyPCKp23ktb1J2pYc27tdDG/fr28tf0k+PvVvn9V1c9/sBgGZLF56KVRbcvGYKxzVTOK69Pefs4KiAncG7EgAAAACAr42C//rV+n3WDlRlmkdtP/EJR3+P+WeXsnUfTsswBeM2K7ThuRtBw2iueyqOBgAAAABoTQHetvIZEwAAAAAAAADAGEbrsXvbIkaC7bMaHGH53so3K0IXflzX1deXb6zpPhKR4GG0ZA233YqF4rwOr9/Z0PtA57t1+ea6BMTGDPGqRksYwmidoJbjTScbi+5t6PYfyT2g47kHG3of9XL7yi3bjg+dyD+ihzeO1GlEQGvaKGd0aO0OfXL+w/rTY7+sPz72S/r3+X/UXWu3+b5W/Gz641opnWzo2H6w9u26RtE2ezh3RMdzD3muSxdnPZfX8lwTtiIaiSS2NLbteix/TH/z6O/rurkPKVte35ExAEA9uK6rdNE7Vsnrf3QjwmgAAAAAAF8bRf/1a97nIQEN4VReOEaSZD9xzttAr/ln/+ZLQaZht6ey4e+yWTuG0UoBfq/TTiw1bhwAAAAAgO1xA7wlX93o3PftAAAAAAAAAIBg8oYAQI/lc8VMdJT+0KBCCjds+2WVdCL/SODbZ8prWiymarqPPT1nNeS2W/Vo7mjD7wOdrV770N6ec+qynVrt6Tl7R+63GfZEG38MaQd7e85t+H2YQkKt5vH8wy21HaBVlN2SHsrerxsXrtPfHP99/e5Db9O1M+/Xt5ZvUqo4E3g7eTen/1r49waOVJrJP9rQ7T9qOJ7NF7z/DrUGRvdEd+5515WrW1du1p8+/Cv6zspX5QY5YQkAWsx6eVU5J+u5rpOjz4BJ4z4lBAAAAAB0hI2C/3omraKZHMPudvpaoPEeybK8J1x/52jn7qumv8tm+TYMoxVruGDZzErjxgEAAAAA2J4g78hXie8DAAAAAAAAQNfLO94fFvfYfU0eCXZKj92rS2LP0v3Zuxt2H+nCnC6OPSvQbWsJZUjSrvCoLuy7NPDtd0fGdH7vhI7lpmu6n1qki7MN2zY6n+u6dduHnjP4orpsp1YX9l2q4fBuLZcWd+T+GyURGde5vRft9DBawlh0n87pvdAY+6mHdHGuYduup6yz3lLbAXaK67pKFWc0lTmk6eykHsgeVs4QYa7VHStf04uGf1zn9F5Ql+2dyVENkyi2wPS8njKE0cai+2ra/lWDL9K9mTtrHlc9rZdX9G9zH9TtK7foLWPv0r6e83Z0PABQiwWf152J6HgTRwK0BnunBwAAAAAAaG0bRf/1TFpFM5kmUttPfMJhWZZnFE2SIqGGDKkllJ3qtyk09vuxhqgljLaw3rnhOwAAAADoBqv1Of8UAAAAAAAAANDG8m7ec3mP3dvkkWAn/dz4b+ic3gsbtv1aYmfpQvAg1HB4t9697w9lW7WdrPgLe39L49FzavqZWtTyOwBnWi+vbjskE7Yi+vnx31Jyhybxh6yQ/t9979VwePeO3H8jjIQTete+/ybLsqrfuEu8ffw9Ncd7atEux9JMuT5Bs3ptB2imtdKK7ly9Vf8290H90bFf1J89/Cu6PvUR3bP+vbpF0STJlatPpz4q1zRxZZvKbqPDaJXBHcctG4NpyejemrZ/5cAL9PKRa2Rp55+jjm5M6X2P/LZuSP1LXfcBAGiklOF1Z4/Vq4HQUJNHA+y88E4PAAAAAADQ2jYK/h/WE0ZDMzmGANjmr0x+dEL6qsfFE5c7+HuMQGG0UuPHUW+1hdEaNw4AAAAAwPYEOReUz5gAAAAAAAAAAHnDZHXCaN1lIDys/3bu32qhMKeUIdAQxC0nP6vp7GTF8lriNqb7T0b26k1jv/jkfw+EhrSv59yao2iStDsypj867x80V3hcS6WFmn/+tAeyh/XlkzdULE8XZ+W6LgElbIkpkiJJ79z7e+q1+3x/Pmr16JzeCxS1e+o9tJqc3Xu+/vL8a3Uif1xr5ZUdHct2DYaGtbfnXNmWvdNDaSnJ6Lj++LwPaq7wuJZLi1vezt1rt+u2la9ULPd7LLSKsltWzsl6rvupxM9rX8+5Fcu/cvIzOpK9p2J5trxW9/EB9VZ0Cjq6MaWp7CFNZyb1WP5YXbcftsIKW1HPx9VDG/fp0Pp3dMXA8+t6n5LkyntyyBX9z9cLhn8s8HbuWrtNt6/cUrHc67XwyeKCSm7Rczu1Ridty9ZPJv4fvXzkGj2WO6ayGhN6c11H3175sibXv+t7O0eObln6rO5cu1VvSL5DV/Q/j9fFAFqa6XVnIjrO8QtdiTAaAAAAAMBXrkpMabWDY1NoPaZ51Pamz/V+82W2vjpd+WXQsvf3vB3BCTDBvB3DaCXCaAAAAADQEYKE0Vb4jAkAAAAAAAAAul7e8b6KBmG07jQa3aPR6J4t//yxjWnvMFpxLvA2TBG1fT3n6dL4FVse25ksy9J4z9ka7zl7y9vosXo9w2gbTlaZ8pr6w4PbGSK6VLrg/XjpsXrbLixiWyGd3Xv+Tg8DDWRbtvb2nKO9PedseRs5J+sZRlsozslxy1sKYDbLRjljXDcRu9xz/z+8/n3PMFqmzInZaD2O62gmf1xT2UlNZw7poY37VXQLdb2PfT3naSJ2QPvjB3Vh36Wazk7qQyf+yvO2N6T/Vc+MP1sRO1rXMTiudxgtEd1T0+vPbDnjHUYrzslxnacFNlPFGeN2EtHxwPe5WSzUr0vil2/pZ4O6rP+HdHj9+7o+9REtFlO+t10uLeqfZv5al8au0JvGfknJLf5eANBopvdgiQjHLXQnwmgAAAAAAF9574t+PGnV+zwkoCFMATB700XPhmPet8mXpFzRVW+kfU7CCKrs/d3X0xQac6GdhirWMOZFvn8HAAAAgJYVoIvGZ0wAAAAAAAAAAMJoqCvTpOF0YVau6wYKOqUK3pGIVgwp+EUr0sVZwmjYknTROw44Gt3TVlE0ICjTc0fJLWmptKjdkWSTRxRcxlkzrouHBmpannU4MRutYbm4qKnsIU1nJjWdndRaeaWu2x8Kj2h/7IAm4gc1ETugwfDw09Y/K/4cTcQOeMZ2F4vz+vrSjXr57mvqOiZH3pNDLNmey02ShsBwyS1qubSokUjiyWXzhROetx0O71av3VfT/Tbbs/qfo0til+tLJz+tr5z8jEpuyff292fv1l8+8ut6+cg1esXI6+setgOA7TK9B0tsIxwPtDPCaAAAAAAAX6YQ1WmrGwp8ggiwXY4hALZ57zOF0SRpKSOND5vXt6tqj1NJKvp/v9OSSjWF0YJMswcAAAAA7AQ3wFu2TF4qO65CNp8xAQAAAAAAAEC3MobRrNaejI/WlIzu9VxecPNaKS9pODzi+/Ou6xonJJu2vZMGQkPqsXqVdysfR6nCjJ7Rd8kOjArtbqE457k8EWFSPjrTqM++nS7MtnQYLVs2x8xiof6alvttC2iknLOhB7P3aiozqensIc0VHq/r9nusXl0Yu+zJGNp49GzfuVCWZen1yV/QXz3y23I9gmU3n/wPXT30Eg2Fd9VtjI7rPYkiZIVq2o7v8aw497QwmjkG3Hqveb1E7R69ZvStumrwxfpAI2cQAAAgAElEQVTU/LWeIbvNSm5RX1z8lL6/+k29KfmLuqz/h5o0UgCozhhGMwR8gU5HGA0AAAAA4KtacKnkSLmi1MdFMtAEpt1x85zpYZ9z4JY3OjOMVjYE4zbLt2EYrVhDGG2B798BAAAAoGUFTVmv5fyD5wAAAAAAAACAzpZ3NzyX99i9TR4JOkEiao5BpAozVcNo6+VVbThZ7223YBTKsiwlouN6PP9wxbq0IW4FVJMueO87frEVoJ31hWIaCA1prbxSsS5dnNOEDuzAqILJlNc8l4cUVo/l/VoqbnuH0TKE0dAkjlvW8dxRTWXu1nR2Usc2jshRDZMIqrBk69zeCzQRO6iJ+AGd33eJwlakpm3s6zlPPzz0ct26cnPFupyzoRsXPqG37vmVeg1ZjkeATZJs2TVtJxbqV39oUOvl1Yp16cKsLok968n/ni+c8NzGWGRfTfe508ai+/RrZ/2pfrB2m/4z9c9aKS/53j5dnNM/nvgLXdH/PL0++fanxeIAYCdky+vG13R+n3EAnYwwGgAAAADAV7UwmiStbBBGQ3OY9sfNF+nxm0C97H2OUtsL8jgtlIJOQ28dpQDBt9MIowEAAABA+1vdIIwGAAAAAAAAAN0s7+Q8lxNGw1b0hwYVs/uVdSpPLksXZnVx7Jm+P58qzhrXJaJ7tz2+RkhEDGG0gvl3AfyYonrJ6HiTRwI0TyIy7h1Ga/FjqSlmFg/1y9p8sv0msdCA5/KssybXdY0/B2xHujCrqeykpjOHdCR7WBtOpq7bH42MaSJ2UPvjB3RJ7HLFQt4BwFr8xOhP6/tr31LOI5p7+8oteuHwq3R27/nbvh9JclzvSRSWVVsYTTp1PPMMo53xOjdVmPH8+WSLvub1Y1mWnj34w7osfqW+sHidvrH0BWNs7rS717+j+zN368dH36yX7nqNQhYJFgA7Y8Enap6I8B4M3YlnZQAAAACAr3KAMNFqTtoz1PixdLp//66j67/vyrakt1xl6c3Pqf2Li07nGtpe9qbvXGNRKWx7R7U6NYwW5HFaqN+Fk5qmWA4ecyOMBgAAAACty/R+/kwrG40dBwAAAAAAAACgtRFGQ70louM6nnuwYvmZMQgvpgBOj9WrwdDwtsfWCAlDrCrI7wucaaOc1bpHHEqSRiN7mjwaoHkS0XEdy01XLG/1Y6lXCFSSbxQqblhXcksquHn1WLwGw/Zlyms6kj2s6cwhTWUntVicr+v2++y4JmKXayJ+UPtjBzQarf9z1EB4SD+++026If0vFetcufp06p/1m2f/ZV1igq4h4hVSqOZtJaJ79HDuSMXyza9zC05eJ0tpz58fa8Mw2ml9oZjekHyHnjv4Ul03/yHPv8NmeTenz6T/VXesfF1vGXuXLopd1qSRAsBTUgXvMFrEimooPNLk0QCtgTAaAAAAAMCXE2Di6iqTVrftAzc7+oMbnvpjf27S1cyyo9/6MeJom5n2x81hNMuyNBzzDmXNrbqSOu/KVUH6Ybli48dRb8UaYm4rG1Kx5CoS7rx/XwAAAABod0HDaKve890AAAAAAAAAAF3CFEaLEkbDFiUjhjCaIXr2tNsUZzyXJ6LjdYleNELCEKtKGyZXA34Wiub9xhThAzqB+Vja2mG0THnNc3k8NGD8Gb91mfIacVpsSckt6tjGtKYyk5rOTurR3FFj7GsrQgrrGX2XaH/8gCZiB3Vu7wWyrdqjYbV68a5X69blL3lGEh/cuE+T69/VwYHnbvt+yq73JArLqn1uUSJiiuY+9Ryf8jm2JaP7ar7PVnNW7zP0nnPepztWv6bPpP/VeKw8bbbwqP7nY+/V1YMv0TWJn9NAuDWDyAA6kynEOxoZk72F5wGgExBGAwAAAAD4ChRGY9LqtuSKrv765so/9PtucvUrL3EVJfT0JNP+eOY5Ruft9g6jHanvxYVahhPge8KVNgwY1hJGk6STWWlssDFjAQAAAABsXcAuGvF9AAAAAAAAAOhyecf7g+IeiygHtsYUb0oZJhs/7TaGSESyhYNQpt8346wpU17zDeAAZzJNyg8prF3h3U0eDdA8yehez+Xp4pwc12nZKEW27HHyvKSY3W/8Gb912fK6RiKJbY8Lnc91Xc0WHtN05pCmspN6KHuf8m59JxmNR8/WxBMhtItil6nX7qvr9oMIWxFdk/h5fXjmfZ7rb0h/TJfFf0gRO7Kt+zFF5GxtIYxmeG2YLszKdV1ZlqWUIQYcUli7I8ma77MV2Zat5w+9TJf3X6XPpf9Nt618perPfHf167pn/Xt63ejP6oeHX96U+B4AmEK8hKnRzQijAQAAAAB8BQkuMWl1e+5+VFrKVi5fWJfuPSFdeW7zx9SqXMNMavuMMNrEHkt3Hq+88ZHZoFOx20s5wK+17LGPtbpSjWG0hXXCaN3okQVXKxvSubul4RghSQAAAKAVmd7Pn2k150ridT0AAAAAAAAAdKuCm/dc3rMD4QN0hkSkegzCxDghOeIdzGkFScPvK0npwpzifYTREFy6MOe5fDQ6RhwEHc0Unii6Ba2WljQcac0wYMYQRouHfMJoPusyjvf2AElaKS1pOjOp6eyp/62UTtZ1+4OhYV0SO6D98QOaiB1omcfd5f1X6ZLYs3Qke7hi3UJxXt9YvlE/NvJT27oPxzWE0bYQZTS9Fi64ea2UlzQcHtF84YTnbUajexTqsOf7/tCg3rrnV/T8oZfpuvkP6fH8w76333Ay+mTqw7p99av66bF369zeC5s0UgDdyhSnTkT2NHkkQOsgjAYAAAAA8OUEmLjKpNXtOTJv/iM/MO/qynP5255m2h/PPDfpYsPnfdPe52i0vSABw+U2DBgWaw2jrTVmHGhNjuPqlz/h6p9udeW40nBM+sjbbL3+hzhmAgAAAK0maKZ8tb4XDAYAAAAAAAAAtJm84/1BcY/d2+SRoFMkDXGbzTEIL67rKmWYkGzaZisYCo8oYkVVdAsV69LFWZ3Xd9EOjArtyjQpf5RJ+ehwfuGJVHGmZQJNZ8o63idSx0LmKGbICqnXjinnVF6BO1vmxGw8peDk9eDGfZrOHNJUZlIzheN13X7EiurCvks1ET+o/bGD2tdzrm/AdqdYlqXXJ96h9x3/bbmqnMRx0+L1unrwJRoMD2/5Psoe25UkW1sIo0XNx7N0YVbD4RGlCjOe68eirRsD3q5n9F2i3z/3b/Wt5Zv0+YVPeB4DN3s095D++vjv6keGX6nXjr7VNyoJANuxYIhTm0KXQDcgjAYAAAAA8BUojNaGwaVW8lDKvO4Bn3XdyDXsj/aZYbQx79s9tqSqV3lsR0Eep8vZ9vvdaw6jcWGyrvKx211d+62ndv7lrPTGDztK/Q9bowPts58DAAAA3cD0fv5MK3zGBAAAAAAAAABdq+yWPWNOEmE0bF3CJ2J2OgbhZb28YgwktPKEZMuylIiMe8ZK0gXvyBVgkmZSPrpULNSveGhAGY8wWLowp4tjz9qBUVWXKXufSB2vEvCJh/o9n/NM20N3cFxHj+ePaSozqansIR3bmFLJLdVt+5YsndXzDO2PH9RE7IAu6NuviB2t2/Yb6aze8/SCoZfp2ytfrliXczZ048In9DN7fnnL23ddQxjNCtW8rbg9oD47rg0nU7EuXZzVRbpM84UTnj+bjHRuGE06FYZ8ya6f0JUDz9cNqX/R99e+5Xt7V66+tXyT7l67XT+V+HldPfjitpqbA6D15Z2cVspLnuv8PtsAOh1hNAAAAACAryDBJSatbs9Rn/jZEe9zCrqWaX88M4x29i5LUuWNs4VT++twrP5j20mO93dfT1MsSxsFKdbT+PHUS+1hNFcSXy51i7+/xfuAkHyPo/KHbb5oBAAAANoQ8X0AAAAAAAAA6F4FJ2dc10sYDVvkF4NIFWZ0Uewyz59LFc0nbyajrR2JSEQNYTSf3wnwki56x/QS0T1NHgnQfInIuHcYzfC4aAVZQ8gsZvuH0WJ2vxZVOaHBtD10rsViStNPhNCOZO/xfAxsx0g4oYn4AU3EDmoidrn6w4N13X4zvWb0Z3Tn2q3KOZUnuty2coteOPwqndX7jC1t25H3JApbds3bsixLiei4Hs09VLEuXZiV67rGMNpYdF/N99eOhsIj+oW9v63nZ16mT6Y+bPx7nLZWXtHH5/5Bt6/coreMvUt7e85p0kgBdDpTmFqSEhHeg6F7EUYDAAAAAPgKEkbLeF+kEQFlCuY/8vRsgH+ALmLaH8/sH+0dNm/jxHLnhdHKAXeT5Y32CqOVAgTfNlvyvkAnOtDxRVf3zZjXf+9h6erzmzceAAAAAP7cgO9bV81z3gAAAAAAAAAAHS7vE0brsfuaOBJ0EsuylIzu1fHcgxXr/EJh6YL3yUm9dp8GQkN1G18jmCZMpwutG/NB6yk4eS2XFj3XMSkf3SARGdcjuQcqlrfysTTrGMJoIf8wWjw04Lk849Q3ioXWs1HO6Ej2sKazk5rOTCpV9Dk5ewt67Zgujj1T+2MHNRE/oGRkb8dc+HogPKxX7X6TPpP+14p1rhx9Ov1R/cZZf76l39dxvSdR2FbtYTRJSkYMYbTirNbLq54BYUkaa/EYcL1dEr9c7z3v73XLyc/ppsXrVXT9J8o9tHGf/uqR39JLd71GPz76ZvXynhXANpkCvLZC2hVJNHk0QOsgjAYAAAAA8OUECBOt5xs/jk5W8r6giyTpyLzkOK5suzO+ANou00TqM/884z7nHZ1Yki7rsO9oygEDYstZ/2hcqyn6PDa8EEbrHvf6X4hJnznk6urzOW4CAAAArSJo9n218kK6AAAAAAAAAIAukXd9wmhWbxNHgk6TiOzxDqMZ4meSlDKEbxKR8ZYPeiSj457LU4ZJ1oCXxWLKuC5h2MeATpKIGiKTLXosdVxHmbJ3GM0UPjvNFE7LGraH9lV2S3p44wFNZyc1lTmk47kH5ajGK5n7sGXrvN6LNRE/oP2xgzqv7yKFrM5NWbx4+Cd06/LNWijOV6x7IHtY96x/TwcGrq55u6Z/E1tbC6OZnrfThTmlfF4PJ6P7tnR/7SxsRfTK3W/QcwZ/RP+R+mfds/4939s7KuuWpc/qzrVb9cbkO3Ww/7kt/14BQOsyBXhHI2MKWaEmjwZoHZ37ahIAAAAAUBflADNXM4TRtsUv/pQtSI8tSefubt54Wplj2B/P/O4gGraUHJBSHheqOrHsSuqsLxsc0x/mDCttNsGcMBpMsv4XYNIt97vSNc0ZCwAAAIDqTKHzM63lgibUAAAAAAAAAACdJu+YT27qsQmjYeuSUe8rqfrFbUzr2iEIlYh4j3G9vKKNckZ9oXiTR4R2ZHoMWLK1O5Js8miA5jMdS9OFObmu23Lhm7yzIdcQU4rZ3uGz0+K2dzgtU/Y4ER9txXVdpYozmsoc0nR2Ug9kDyvn85p7K5KRvdofP6iJ2AFdHHtmV73OiNgRXZP4BV07837P9TekP6ZL41cqYkdq2q7jGsJo1hbDaKbjWXFW80Xvq5X32TENhIa2dH+dYHdkTO/e94e6Z/17un7+IzpZSvvefrm0qI/MfECXxa/Um5K/2BbvGQC0HvPnEN7BXqBbEEYDAAAAAPhyAlwAhjDa9pSq/I0fWSCMdpppIrXt8d3yvmHvMNpR/+8k2lKQgKEkrZovqtqSTGG0kC2VPR43yxkm0HeLQpWdfqPYpIEAAAAACCTou7V2C3oDAAAAAAAAAOon55hPbooSRsM2JCLek4j94japwoznzyQj3pG1VuIXYkgX53RO6IImjgbtKl2Y81w+EhlV2Kot8AK0o6ThWJp3c1otL2sovKvJI/KXKa8b18VD/mG0mGG93zbRutZKKzqSvUdT2UOazkxqqbRQ1+3HQwOaiB3QROyA9scPaiSSqOv2282B/qt1Ud8z9eDGvRXr0sU5fXP5C3rZyE/WtE3HEDm0FNrSGE2vDXPOho5mpzzXJaP7Wi4AuRMu779KE7EDunnx0/rKyc+orJLv7e/L3KW/eOTX9YqR1+vlI9coYkebNFIAnWCh6P0ezBS4BLoFYTQAAAAAgC8nwMzVTJ4Y0XaUDPGn004su5L4UkEy749eYbSLxizd/VjlD0zPdt7+GiRgKEn5NotFmR4biX5pbrVy+TIT6LtGwf87xarHVQAAAADNZQqdn4kwGgAAAAAAAAB0r7whjBa2IgpZW4sAAJKUjHrHzE7FbZY0FB552nLXdZUuzhq21foTkofDuxW2Iiq5lScMpguzOqeXMBqqM03KHzWEBoFO4xuZLMy2XBgt63hcTfwJ8dCA78+awmlZhzBaOyg6BR3dmHoyhPZY/lhdtx+2wrqgb7/2x67QRPyAzup5hmzLrut9tDPLsvSG5Nv1/uPvketx2cAvLl6vqwdfooHwUOBtuq735JDQFv/uSZ/n7vsyd3kuHzO8fu5GUbtHr028VVcNvkifSn1YR7KHfW9fcov6wuIn9b3Vb+jNY+/SpfErmjRSAO3OFKf2e10KdAPCaAAAAAAAX8HCaI0fRycrVg2jNWcc7cC0P3pdjGbC8P3NtPfnhG2tHHCCea7UXpE902MjOegdRlvKNnY8aB35KmG0E8syXs0VAABgKx5KufrSfa6iYenVz7K0d5jXGUAjpM3nagMAAAAAAAAAOpwpjNZj9zZ5JOg0iUi1uM3Tw2jr5RXlHO+rufhtq1XYlq3RyJjmCo9XrDMF34AzpQve+0o7PAaAeojbA+qz49pwMhXr0sVZXahLd2BUZpmyd8TMkqVeO+b7s6ZwWqbMF/ityHEdzeSPayo7qenMIT20cb+KbqGu97Gv5zxNxA5of/ygLuy7VFG7p67b7zRn956v5w+9TLetfKViXc7J6saF6/TTe94deHtleU+isLS1MFp/aEi9dp/n69vV8pLnzyQjhNHOtKfnLP36WX+uH6x9W59OfdT4tzstXZzT///4n+mK/ufrDcm3a1dktEkjBdCOik5BS6UFz3XEqdHtCKMBAAAAAHwFCaOtE0bblpL3BV2eNEMY7UmuYX+0PZoE+w3nXjyYkkplV+FQ54QMnCr70Gn5ygtAtjRjGM1w4bKlynMP0KEKVcJo2cKpUN5IvDnjAQAAne3zk67efK2j3BOvp3fFXH3pN209+7zOeU8BNJrp/fyZZleIHAMAAAAAAABAtyq4hjCaRRgN2xMPmeM2qeKsLtRlT19mCEJJUjLaHlGoRGTcO4xW6MAry6Ih0kXvfSURZVI+uoNlWUpEx/Vo7qGKdX7PEzvFFEaL2f2yLf+YUszu91yeNWwTzbdcXNRU9pCmM5Oazk5qrbxS1+0PhUe0P3ZAE/GDmogd0GB4uK7b7wavGX2rfrD2bc/42LdXvqwX7nql9vWcF2hbrus9OaTaY9nEsiwlIuN6LH8s8M+MRfdt6b46nWVZevbgj+iy+JW6cfE6fWPpi3LlP5nn7vXbdX/mLr169C16ya6fUMgi7wKg0kJxXq68T7Jsl88hgEbhmRMAAAAA4CtIGC1T3wvMdB3CaMGZ9kev6dL7xy3J40PBYlk6mpYu6aBzM8oBJ5jnq8SkWo3psZEY8P63Xco2djxoHQVDNG+zB+al557f+LGgMb57zNUHv3bqq51XXib97HMt4hgAgB3hOK5+5RNPRdGkU687r/orR861oZ0bGNBmAr5tVb5E5BgAAAAAAAAAulXeMYTR7L4mjwSdxi9uk/aI26SKM57b6bVj6g8N1X18jZCIjkseFxpNF1sv5oPWU3bLWiymPNclIkzKR/dIRgzPHS14LM2W1zyXx0Le0bPN4obbFNy8ik5BETu6rbGhdjlnQw9m79VUZlLT2UOesdPt6LF6dVHsmZqIH9D+2EHtiZ7FObrbNBge1itH3qjPLny8Yp0rR59OfVS/ftafBfo7O4bQVkhbP1ctEd1TUxgtGd275fvqBn2huN6YfKeeO/hSfXL+w3o4d8T39nk3pxvS/6I7Vr6mt4y9WxfGLm3SSAG0C9PrS0u2RsLJJo8GaC2E0QAAAAAAvpwq0S5JWvc+HwkBFasEfmaWg04f7nymv4RtV35BdPGYZFveMbWp2Q4LowV4nEp6WsyhHZgeG6OG7+iXN06FK7z2B3SWfIB9+cicq+eez77Qjr50n6tX/cNTB7brvifdOyN94PX8ewIAmu+Oh6XHl7zXve8mR3/wqq1diRPoNm4NH23MLBNGAwAAAAAAAIBulHc2PJf32L1NHgk6kSluk/IKo3ksk6REZE/bREOShniVVwgOONNSMS1H3idwjkY66ORboIpE1Ht/b8VjacZZ91xuip5tFgsNGNdlnXUN2SNbHheCcdyyjueOajp7SFOZSR3bmDYeh7fCkq1zey/QROygJuIHdH7fJQpbkbptH6e8ZNdP6NaVL2mxOF+x7kj2Hh3OfF+X919VdTuO6z05xLK2fp5arWFTwmjBnN17vt5zzvv0nZWv6rPpjyvjeEcqT5spPKq/e+wP9dzBl+qnEj+ngXB7RJcBNF66MOe5fCQyqojNcza6G2E0AAAAAIAvr6jUmTKFxo+jk5WqfGe16HHVvm5lCvV5dbB6I5aeMSodTVeum5pz9ZNqjxOUggjyOJWkfKmx46g3Uxgtafj+3XWl1Zw0HGvcmNAaCgG+65/2/l4ALc51Xf3adZUH+w9+zdXvvtzV6EDnHLsBAO3hu8fML7bf+xlXv/cKVyHCvEBVtSTfZ5alZ+5r2FAAAAAAAAAAAC0q73hfoZUwGuohETWEwoqVcRuvZVJ7BSJMv+9KeUl5J8fjCr5ShseAZA5FAZ3IFBJKF+fkum5LxTKzZe8Yj1/07KnbmONpmfK6hsKE0RohXZjVVHZS05lDOpI9rA2nvpNGRiNjmogd1P74AV0Su9z33xn1EbGjuibxc/rIzF97rr8h9S+6NH5F1SidKYpnaxthNMNrQy/D4d28VqyBbdl6wfCP6UD/1frswsd1+8otVX/mjtWv6Z717+l1ibfpBUMvk22FmjBSAK1soeg9AarWsCXQiQijAQAAAAB8lQ0hqs3W840fRycrVfkbL3hfwKkrmQJgpu+V9497h9EePVm/MbWCII9TScoVGzuOenJd1xxGGzT/3FKWMFo3KASI/J1Yavw4UH93PSo9lKpcnitKtx2VXnew+WMCAHS3bJUQ+OET0sGzmzMWoJ25NZTRZlZcqYNi5ttxLH3qvfGFSRFhBAAAAAAAANDxCKOhkZKmuE1htiJuky6YwmjtMyHZb/J0ujCns3rPa95g0HYWCt6T8gdDuzgmo6uYjqU5J6v18qoGwkNNHpFZtuwd1Yrb1WNYMTvus10mMtRLprymI9nDms4c0lR2UovF+bpuv8+OayJ2uSbiB7U/dkCjhCx3xMH+5+nCvsv00MZ9FetSxRl9c+km/ejIa40/77quXMPlB21rG2G0GsI6Y20UA24l/eFB/eyeX9Xzhl6mT81/SI/nH/G9fdZZ13Xz/0ffWblFbxl7l87pvbA5AwXQkkyfQ4xGeD4HCKMBAAAAAHyZQlSbFUpSqewqHGKC5laY4k+nncxIZcdlAqxk+IpHMv1pxgYtz5862WHf0QZ5nEpSPkBMqlX4/U6Jfu9/V0lazjZmPGgthSrHTUlay9VQXkDL+Nwh87/b4ROuXneQ50IAQHNVC4EveF9wF8AZagqjLTduHO1iLefqp/63o69Nn/rvi5LSZ37Z1qV7eT0MAAAAAAAAoHMZw2hWX5NHgk6UMETN8m5Oq+VlDYV3SToVo0gVZry3EWmfSMSuyKhCCqusypMG08VZwmjwlS56T8pPENlBlzE9d0inHietFEbLON4nsMRC1cNoUbtHESuqolt59cCs02En3TdRyS3q2MYRTWcmNZU9pEdzR+Uq4NXQAwgprGf0XaL98QPaHzuoc3ovkG2F6rZ9bI1lWXpD8u36wPHf8QycfXHxk7p68MXqD3tfKd7x2Udsbf3f1+94dqZkdN+W7wfSBX0T+v1z/4e+ufxF3bjwCeWcDd/bP5J7UB84/nt64fAr9ZrRnwl03AbQeczvwdon0A40CmE0AAAAAICvoMGlTF4aijV2LJ2qVCXw47jS0uxJ7b73S9LaSenqV8g6+6LmDK7FOIbveUzTgncbvhNYzHRWMKkc8DvSdgqj+QUDTf+ukrREGK0r5IvVb7NWJWKC1vRfk+bj87F0EwcCAMAT0lXO72yn19hAu5hd2ekR7Lxf/YT7ZBRNkh5MSW+51tHkn9iyLOJoAAAAAAAAADpT3vWeMN5j9zZ5JOhESZ+oWbow82QYba28orzrHelrpwnJISuk3ZGkUsXKyFu64D3hGjgtXZzzXJ6IEEZDdxkIDanH6vV8XkgXZnV+38QOjMpbtux9gkvQwE48NKDl0mLF8kyZKwYG5bquZguPaTpzSFPZST2Uvc/4mmKrxqNnayJ+QBOxg7oodpl6bQLCreic3gv03KGX6jsrX61Yt+FkdePidXrL2Ls8f9ZxfcJolr3lMQ2FdhkDiGcaa6MYcKsKWSG9dNdrdOXAC3RD6mO6c+1W39u7cvTN5S/qrrXbdE3iF3TV4Is4PwjoImW3pMViynMd78EAwmgAAAAAgCqChtHWCaNtWSlA1GrhN9+skbknPgwP/Z70x/8q60ff2NiBtRHb8B3P7rj38sUOu3hV0MdpLkBMqlX4hdH6ItJAr7Tm8V3xUqZxY0LrKFQJSkrSqv/FldCCVjdc3fO4ef33H+msqCUAoD3MLfs//5yKLnMSElBNLa/kZqs87jqd67r6wuHKv8G9M9Idx6TnXbADgwIAAAAAAACAJsg73uEIwmioh3hoQH12TBtO5ZU308U5XajLJEmpQmVI7LRkpH3CaNKpkJtnGK1IGA3+0gVDGK2N4oBAPViWpWR0rx7LH6tYZwoI7pSMIYwWt4OF0WJ2v5ZVGUYzBddwykppSdOZSU1nT/1vpXSyrtsfDA3rktgB7Y8f0ETsgIYju+u6fXL/LZIAACAASURBVDTOa0ffqrtWb/OM4926/CW9cPiV2ttzbsU6R+aT5G1tPYxmWZYSkXHNFI5Xve1YdN+W7wdPNxwe0dv3vkfPz7xMn5z/sOdr883Wyiv617m/1+0rX9Fbxt6t8Z6zmzRSADtpsZiWI+/JpUnegwGE0QAAAAAA/oIGlzLVLxwCA78A1GkLKwVdfPo/ymW5f/PL0o+8Vla0p5FDazmm/dGUITCF0Y7M12U4LaMcIK4nSflSY8dRT36Pi0hI2hUzhNGyhCm6QTHAvuy1f6C1Pbbkv/6+GenInKtL9uz8Y/z7j7j62G2u0muuXn6ZpXf+sMWVuQCgQ2WrvNfttOgy0ChuDa2zmZXGjaMdFMvSSUP0++N3uHreBbzuBAAAAAAAANCZCKOhkSzLUiK6V4/mHqpYtzmGZoqG9dkx9YcGGza+RkgYQm6pAmE0mDmuowVD8Gk0sqfJowF2XiK6xzuM1mLH0mx5zXN5LDQQ6OfjIe+Amim41q0KTl4PbdyvqczdmspMBopM1SJiRXVR32WaiB/QROyg9vWcy7mpbWooPKJX7H69/mvh3yvWuXL06dRH9Wtn/WnFv6/jmieG2FZoW2NKRIOF0ZLRvdu6H1SaiB/Qe8/7B92y9FndvPgfKrr+JyU+uHGf/r9HflMvG3mdXrX7TbwnBjqcX7yc92AAYTQAAAAAQBVOwODSOgGaLSsF+BunQ8mnL8isSvd9V7rihY0ZVIsy7Y+m7/t291uSKmdf54rSStbVUKwzvigMGjAstFEYreQTRgs/EUZ71OOiWkuVF/REByoECEqu5Rs/DtTXiSphNEna/98dOddu74v97frmEVev+l+OcsVT//2fd7m661Hp/7y1M55TAABPV+11x6IhXgTg6Wrooul45UWou4pfRO5oqpa/JAAAAAAAAAC0F8JoaLRkZNwzjLZ5ErIpGpaIjLddmCQR9Z5A7TfpGlgtLRljHabYHtDJjJHJFjqWuq6rjOMdMDMFz85kCqhlHO/gWrdwXEeP549pKjOp6ewhHd2YUsmt3wn5liyd1fMM7Y8f1ETsgC7o26+IHa3b9rGzXrrrtfr28pd1spSuWDedndS9mR/oWf3PftpyVz5hNNnbGk8iQFwnpLB2R5JVb4faReyIXrX7jXrOwAt1feojujdzp+/tHZX15ZM36Pur39Ibk+/Ugf6r2+79CIBgFgreYeqh8Iiidk+TRwO0HsJoAAAAAABffpMxN8v4X7ACPvwCUKfNeH2pevg7XRdGM+2OtuE7npG4eVvvv9nV+67pjC8GggYMT0d82kHR53ERCZn/bQlTdId8sfqT0xrBzrYzsxLsRcddx11dee7OHb//+ktOxfH02m+5+u+vdjU+3BnPKwCAp1SLC/P6Ewgm6OdLkjS7Iq1uuBrs687XVn7x8wdTzRsHAAAAAAAAADSbMYxmEUZDfSSi3nGb9KZJyOnijOdtktG9DRlTIyUNMZ/l0qIKTp4J1vCULnpPypfMsT2gk5mfO1onjFZ0Cyq53ieJm4JnZzIF1LJl7+BaJ1sspjSdmdRU9pCOZO9RplzfONxIOKGJ+AFNxA5qIna5+sODdd0+WkfU7tFPJX5O/zz7t57r/zP1UV0aP6iQ9VTuw3F9wmjW9sJoScPxbLNEdI9sa2cvYN3pRqNj+uWz/kj3rH9P189/xDOct9lSaUHXzrxfz4w/W29KvlOjvB4DOo4pXk6YGjiFMBoAAAAAwJffZMzNMvnGjqOT+QWgTjsR9jipprev/oNpcab90TbMlR4fMm/rc4dcve+a7Y+pFZQDPk7zpRpmou+wamG03aYwWvd9/143ruvqyJw0HJPGBtXSVxQqBDhuruUkx3Flmw4QaDknloLd7hsP7GwY7aZ7K5e5rnTtra7+5DXsbwDQaaq97lgmjAYEUksYTZKOzEvPOa8hQ2l5fp/Fza00bxwAAAAAAAAA0Gx51xBGswmjoT5Mk4pThRm5rivLspQyhG5MYZxW5jfmheK89vac08TRoF2YJuXH7H7FAwaWgE5ieu7IOuvKlNda4nHhF+6K297BszPFDLerdxSsFW2UMzqSPazp7KSmM5NKGSKpW9Vrx3Rx7JnaHzuoifgBJSN7W/ocbdTXlQMv0DeWv6CjG1MV61LFGX1z+Sa9dNdrnlxWlvlkNUvbC6MlAoR+x6L7tnUfCO7y/qt0Sexy3bz4H7rl5OdUlv8VXO/N3Kkjj9yjV4y8Xj82co0idqRJIwXQaObPIQghAhJhNAAAAABAFUHDaOuE0bbEcdxAf+OZsMeXqpnV+g+oxZUNF8AxdY8uSJi3NT0nnVhytW9X+3+x6JgvDPQ0ee+LgbWkamG0kX5LUuWDZynTPvG3VvLAvKuf+6ij7z586r9f/Szp42+3tSvemo+Pgv/3fk/KFKQBzo1tGyeWg91u2nxR0h11f33PhQEAtIhqrzvWcrz+BIKo9ZFyZM7Vc85rzfcjjeYXkcsHfC8EAAAAAAAAAO0o75jCaN13AVE0RtIQCsu7Oa2VVzQQGlLaMCE5aQjjtLKRSEK2bDmqPMEwXZgljAZP6YL3yVmjTMpHl/KLTKYLs4r3tUIYzXxV6XgoWBjNFHjL+my7XZXdkh7ZeFBT2UOayhzS8dyDns+VW2XL1nm9F2sifkD7Ywd1Xt9FClnkHLqVZVl6Q/Id+sDx3/Fc/4WFT+qqwRepPzQoSXJd874YskLbGksiUv25PBkgnob66bF79brE23TV4Iv1qdS1eiB72Pf2RbegGxev0/dWv6k3j/2S9scPNmmkABopXfR+D2YK9ALdhlfSAAAAAABfphDVmTJ5V1JtE1bXc65umZIeW3L14ostPeus7pvwGvTveyJc+QWDu5yu8S/e/hxDRc4URrMsS594p6Wf+Sfvnzt+Utq3q16j2zlBA4a5NppAXfJ5bIRtaXfce91ipjHj6WSO4+od//JUFE2SvnBYes9/uProz7fmUSZoGG0tRxitnRxNBTuYPTDXmgGaQqk1xwUA2B6/YK8krREJBxoi3fkXnTYK+h4fAAAAAAAAADqJ67o+YTRO/kB9+E0qThVm5EZd5V3v/dAvjNOqwlZEI5GEForzFevSRe8AHGDaN9oxDgjUw1BolyJWVEW3ULEuXZzVeX0X78Coni7rmL9gjwUOo3nfLuO0fxjNdV2lijOayhzSdHZSD2QPK+ds1PU+kpG92h8/qInYAV0ce6b6QoYT3dGVzu29UM8dfInuWP16xboNJ6MvLHxSbx77JUnyjfTZsrc1juHwboWtiEpu0Xibsei+bd0Htma852z9xll/rjvXvqX/TH1Mq2X/q42nijP64ON/qisHXqA3JN6u4cju5gwUQN05blmLhjCaKe4OdBvCaAAAAAAAX0EnY67XOBl8ftXVK//e0eTjp5e4+p9vtvQbP7q9D+vbTbVJ9qfNep1QsLxY38G0AdP+aAqjSdKbn2MOoy10yETroI/TvPk7rJbj99iIhKTdhu/pF9v/+/em+84x6bajlcs//QNXH/pZV9Fw68XR8gHDaKsb0t7hxo4F9XOk8hxMTw8EvF0jmAKdUvD9EgDQXqoFWde950UAOINbY+wrU3lOedeo9W8FAAAAAAAAAJ2g6BbkGiIAhNFQL/2hQfXZMW042Yp1p2JQ5g/pk5HKi9u2g2Rkr3cYreA98RpYMOwbo5E9TR4J0Bosy1IiMq6ZwvGKda1yLM2UvU+e7rX7FLKCZQRioQHP5dlye55sv1Za0ZHsPZrKHtJ0ZlJLpYW6bj8eGtBE7IAmYge0P35QI5FEXbePzvPaxNt019rtKriVE69uXb5ZLxx+lcZ7zpbjmsNolrW9uVa2ZSsR2aPZwmPG27Tra95OYFmWnjP4Ij0z/mx9fuET+ubyTcb3yKfdtXab7lv/gX5i9Gf04l2vVsgKNWm0AOplqbSokut9ojLvwYBTCKMBAAAAAHz5BUA2y9QYRvvAze6mKNop77ne1Zuf7WrPUOtFeBql5P859ZOWbY+yz0p9v6BrB6bdMeTzHY9lWTprl/T4UuW6hXVXUvvvb4HDaG0U7akaRjNcSGsx05jxdLL/9VXvHWg9Ly2st2ZYrBAwKjm3Kk1wkZS2kMm7evRksNvOr0nFkqvIDkT7/I5NQfdLAEB7qXZ8X6vxvTDQrWptfdX6OVMnCfoeHwAAAAAAAAA6Sd4xX42GMBrq5XTc5tF85VUkU4VZ48/12XHFDcGYVpeIjkvZuyuWnwrBAU/nuq5x30hEmZSP7pWMeofRUi1yLM0awmgx23AVag9xw203nKzKbrnlYztFp6CjG1Oazk5qKnNIj+WP1XX7YSusC/ou1f7YQU3ED+isnmfI3makCt1lODyiV+x+vT6/8ImKdY4c/Wf6Y/rVs/67HJlPVgtp+4/DRHTcN4w2FiWMttP6QnG9aewX9byhH9V18x/SI7kHfG+fd3P6z/RHdcfq1/SW5Lt0QWx/k0YKoB5MYWpJShBGAyQRRgMAAAAAVBF0MuZ6jRNWP/zNyg07rvTZQ67e/aL2D1UF5RdY2WzN68vGpXR9B9MGTPujXWWXGe03hdG2P6ZWEPRxmis2dhz1VDWM1m/Ja2r9wvqpk3Msq3uOI9t1bMG8Ay22ahgtYORvZrkz4ofd4MFU8Nu67qno3dkjjRuPiV8cJ99Gx1gAQHDVXnesmefoANjENbztCNve0fhaP2fqJITRAAAAAAAAAHQj3zCa1dfEkaDTJaN7PcNop2JQ3h/SJ6N72/Z8NNNEasJo8JJx1rThZD3XMSkf3SwR9b5Cb9onqtlMWcf7hPhaop6xkDmitlHOqD88WPO4GslxHc3kj2sqO6npzCE9tHG/im6hrvexr+c8TcQOaH/8/7J33+FxVIfawN+ZLZJW3dJKstzBxqaFltAuaUAaKRdISOAmkOTmBpIQQgmhhl5DS0IJLRA+SgoQIISSEEIJYDCYYoyxZWNbLpIsrbq0K22b8/0hy15J58zOrLbM7r6/5+HBmjMze3anz5zzzr5YWLYHvHpJWudPxeeI2v/Gq/3PoS/WPaXsw+A7WDX8Nuo8jcrptTSE8Zkdz8v0clS4qqf9GZQec0p3wdlzr8XSgefxROB+5b5+XFu4FTduOR+HVB2Bo/0nodLNZUmUD1TX5hWuapS5yrNcGyJnYjAaERERERERmbLaGTNo8znSiCI85L7XBH70aXvzymeyzr8yQ64qGNCgJza86XHGw9RsUgajJXnG41c8q11rI4jHyQyL65Fqu3OimEn4kFsHGhTP6qNxoDcI1Fl/yVnR85i8PMqp4YFhi8Fobf2ZrQelz5oOe+kPbf05CkYzWffMQtOIiCh/Jdu/MxiNyBpVMFpFKdAv6VsRLOJgNNVvNS4WF3C78rPzFREREREREREREZFKWIwoy0r00izWhAqd3ysPg/gotApb9A3yafI4EEoV5tMbDeDBbbemPF8X3JhXthAfr/wkg2Icbjg+iLcHX0VbuBUGzBubhuLqBoOqdYmoGPg98vW/PbxpWvtSu2rd9fhYxYGYU7rLhOFBxbbrsxGmYRaiFjSGUIGdwWhCCHwQXI61oZXKMMVMGjVCWBdahaH4QFrnW+2egd19+2BJ+b5Y4tsHVW4Hvlma8ppXL8Ex/u/i3o4bpeV/6rwDc0t3VU6vIx3BaOrjeWMehwEXKl3TcVjN57FPxUF4ovt+vD7w76TTvD74b6wYXoaj/Sfi0OrPQU9DoF4hyvWxLJ08mhfzS3fDAVX/BbfmyXV1yKYuRdBuPt+HIEo3BqMRERERERGRKavBaAPqdklTBMPqmSYLuCo0ZuFPkwX1clQmvuVjoAciEobmLZ5GJaoAMD3J85f6Sg2ytzne+6rA3SeKvH+AY3U7DaX3RVgZFTULRnMBM01eYNMxwGA0O+ImbZ16gtmrhx1m4VSJ2hmMljdaOu2Nn6tla7ZvsrpeEhFRfjHb9wNj59hxQ8CV7KKEqMipLlsrSuTBaPl0/Zpuya7xg2Gg2peduhARERERERERERFlS9hQv42GwWiUTn5Ps3T4YLwfiMsbpDR45dPkA1X4hYDA0oHnpzXvVwaAV/v/idNmX4YyFx9eOFFftBu/3XIxuqLt05qPVytBlas2TbUiyj+qYMCwGJ32vtSuf/Q8iu83n4X9Kw/dMSwUH5KO69PVYWdTxnWpG15PDk18pOv3eKn/acvzdqoSrRSLfHthSfk+2N23L5q8s/O+TwE53wGVh+HFvqewcbRlSllvLIDe4YBy2nQEXJkFnTZ4Z017/pQZle5qnNh0Gg6tOhJ/6rwD7ZFNpuOHjGH8sfN2LB34N05o/NGUQE0CHu66Gy/3P5PraqTNy3gGywZfxI9n/RIeneFo+SQQ3SYdzmBqop2KrLs5ERERERER2WU1cKl32OKIADoH1WWuInuWlKyTfaJBvWrqwO7pNVbIN6r1MVkGgVlI1ivrUq+PU1jdToPhzNYjnVTbhlsHNE1Do2RzGNeR3heAFbwRk8CBbhv79myKWNx3Mhgtf6y1GYzW1p+bddMs/CzMYDQiooIjhLAUfJlP59lETlOp6Ms2POrMa5FsSPbNizk0joiIiIiIiIiIiAqXKhhNgwaP5s1ybaiQpdK5WBUulg/qPI3QkLmGua2j6/DG4AsZmz9Nz4t9T007FA0A6j1NDAuioub3NOW6CjvEEcNjXX+AIXY2pA1OCi4bV24SdjZZiVYKF9zSsmBC8FpHeEvehqJp0DG/dBG+OOM4nDHnSly/6AH8ZPYvcXjtVzGzZA73c5QVmqbhuIYfpDStDte0P9/svLYxj8OAi8Wuvt1x/vyb8HX//6JESx4g3jq6FtduOhsPd96NkXgwCzXMD+3hzQUVijZuTWgFVgy/ketqkE2BSId0uJPOP4lyjcFoREREREREZMowrI0XkL9oSMo0GK3IrlRjFn9fABjSJQ8nu+U3wApVqsFoC+rUZZc+aWMhOJTVYLR86jyt2jbc25/ned0a6hXP6zsGircDfSpGTcI+uuVtJXLOSkAJAASGuC7kix6bIXy9OXo2axbKx2A0IqLCE7MYxjok76dDRAmE4nSvokQ+PJhH16/pluxeXDH/NkRERERERERERFS4VMFoJXopQyoorRpSCDlrSCFMzSk8uge17vqMfsaq4DsZnT+lblXw7bTMx+9lp3wqbjXuOkcFtfbGAmgPb97xd8iQd+TwuSotz1PTNGWQWmLw2od5ts+v9zTisOov4IfN5+D6hffjnHnX42v+b2M3315wa55cV4+K1Pyy3XBg1WdsTaNBh1uThxfaUeupV4YgNngYjJYPXJoLR8z4Gi5ZcBsOqDws6fgCBl7qfxqXbTwVbw2+DKFqxFVECvn65YPg8lxXgWzqiwWkw+sZjEa0Q5F1NyciIiIiIiK7rAYu2QnP6TIJUSu2UBGrHe0BYEiXPJzs2pq+yuSBVIPRjtlPPcJLa4FL8jwczep2GjOAaCw/HmREFduGJ+FFRzOr5eN0DKS/PoVsxKRTfY9Dg9GsHit6+GKjvGH3+J+rABrVvgmwHthHRET5wywQMxGD0YiSU12JKoPRwhmriuMlu8Yv5t+GiIiIiIiIiIiICpcyGE0rzXJNqNBVuqsxp2QXy+NXuKoxp9T6+E60R/n+GZ1/IFJcL/jNF4YwEIhuS8u8Mr0OETmdrunYvXzfXFdjgq5o+45/JwaXJVIFnan4FOOHjJ3z74o6e59fppdjv4pDcELjj3H5gjtw+S534n+afoz9Kg9Vfj+iXPjv+u/AqykazUjMK10Ijz79gEaX5sKS8n2mDHdrbiz2fWza86fsqfHU4QfNZ+O02ZdaCrUbjPfjDx2/xm+3XoyO8JYs1NC5Cvn6JRBJz/k/ZUdcxDFihKRl1e7aLNeGyLkYjEZERERERESm4hbzogI2wnM6B9U9PIstxMYsYGWyQVkwWtv69FUmDyiD0ZLc4Zhfr+FrU5/f7HDFUwLvbs6PwDAZw0auW8gkBMtJVPsed8KybqqSj2MnqJGA0ai6zKnBaFYDqIrtmJLPzNZDmVwF0Jite239QDiav8cSIiKayuo5R76cYxPlkuplo6pgtOEiDv9KdkYZ5D6HiIiIiIiIiIiIClBYKILR9LIs14SKwdH+k+DRkgdLaNBxjP8kuDVPFmqVOZ+bcTRq3HUZm39PtAtxwTcKOk1/rAcxYbNRlsT80kX4RNWn0lAjovx2VN23UC5ry58jnZG2Hf8OKYLRfLq9ILByl/z7BeNDO/7ttDAZF9xYVLYnvlr/bZwz9zpcv/B+/HDWufhkzRdQ723KdfWIlGo99fjuzNOhW4j68GolONp/Yto++8t1x6NML58w7Et130KFW9E5gxxt9/J9ceH83+Kr9f9j6RpnbWglrm49E38LPKAMKC903WkKD3aiQv5uhWgkru7wpDovIypG7lxXgIiIiIiIiJxNFUQ1WV8IiMUF3C4t6bidg+qy1m6gPyRQ40s+n0IQsxFoNSx5mCq2rENx/FJjVAFguoUf4dKv6XhyhfoH/3+vC+w3Nz9/TavbKTAW2lDty1xd0kX1nbSERVRfqUHWZdypYV5ONWrSJq0n6LyQJyEEIhZDJXuGx8bXtPzctotJ2GbbyJwFoyVZ94693cBTp+lc54iICoTVIOuR6bclJyp4ymC0Uvl1XbCIg9GShZ8X829DREREREREREREhUvVIbtEL81yTagY7F6+L86ddz3eGVqKQETecbzGMwP7VByEXcqWZLl26ef3zsS5867HW4P/wdZwK4TqwU0SYTGC94ffnDLcQBy90QD83pnTrSqlUcAkFOHjlZ+EliSIxa27Mb90NxxU9Rl4dcXbjoiKyNzSXXHuvOuxfOhVbItsUT4DT7cNo6vRE+2aMjwxGC0xuCyR3UANVZBaYvCaat8yv3QR/J5mW583HdXuWizy7YVFvj1RyiBdylP7VR6KX8y7Du8PL0N3ZOp2DgBNJbOwb8UhmFkyJ22fO79sEc6bdwOWD72KYHwIe5Tvhz3K90vb/Cn7PLoHX6r7Jj5R+Sn8peturAq+bTp+HDH8s/eveGvwPziu4f+wT+VBWaqpMwSi8pDPbB/LpmM4PoDVofemDB+KD2DUGOGxMU8EDfk5HAD4XPYCbokKGYPRiIiIiIiIyJTVwCUhxsLR/Baen3Wp79sgZgDPfiBwwoH5HSjyziaBsx8xsHwTUOMDjt1fwzXHaCjzTvxedoLRBmUPJ7esm2ZN84tqfbQSjLZbg3n57S8J/OZb9uvkBHEb61Eokrl6pJOhaDGQuKzrFPd5u4edF+blVEIIjJisE90ODJmLG+pQhcnCsbF1vpztshxPFYzmcclDaYZGc7OdJwvIefYD4In3gGPYPoCIqCBYDWPNl3NsolxSnb2pztWDRbxdJTvTNbuGIyIiIiIiIiIiIspXYWNEOpzBaJQpzSXz0FwyL9fVyJpq9wwcOePoac0jbIzizHXHS8sC0W0MRnOYQEQe+FDhqsL/Nv88y7UhKgz13iZ8se4bWf3Mx7ruw/N9T0wZ3hVpBwDERBRhIQ+YtRuooRo/ZAzv+KzeaEA6zhfrjsPHKg609XlEBMwrXYh5pQuz/rl+70x8qe64rH8uZVa9twk/mfVLrBhehke6fo++WLfp+L2xAO5svwZ7l38CxzX8H+q9jVmqae6MHcvkv0s+Hcu6I524eOMpirJtmF26IMs1olQkhs9OZjfglqiQmce6ExERERERUdGzGowGAL1Ba+N1DZqX/+Z5kfIb6ZygZZvAx68y8NJaYDgMbO0Dbv63wMkPTP1OyQJWEvW4Zkwd2NGacj3z0XSC0XwlGubVqcujcSAYzs/1zs52mi+hDapdQOKyrlc8r+9xYJiXU8Xi5uuPE4PRVAFaKlwf8kM4Kh+uClwdkrfjybiIhfXv0idtpFUSEZGjWdnvAwwpIrJCdY1XqejPNjACxO1c7BaQZF87FCnO34WIiIiIiIiIiIgKW9iQNwRgMBqRc5Topah21UrLVCFclDuBqHyZ+D0MsCPKJ43eWdLhnZE2CCEQiqs7cJTbDEZTjR/cHtrRE+2CgLx9JPctRETOoGka9q08GBcvuBWfn/F16HAlnWZl8C1c0Xoanu15BFFD0ai/QPRGA8pjWb2nKcu1SV2tpx4uuKVlgei2LNeGUhWMD0mH63ChROP9MKJxDEYjIiIiIiIiU3b6oAbD1sZ75G3zmb7VCux1qYF1nfnV0dMwBM551MDuF8tvkj60TGB918TvFLMRjNbhltxk7Q9AxGymBOWx6QSjAcB/72s+4tubbFbIIQoxGM3KslYFozkxzMupRpI8t3JiqJjVgJJx25KEcZIzqALvVNu5k4PRVrYhrwNeiYhoJ6vnHQwpIkrdzGr58LgBBOTtfgqekSRnN1+u64mIiIiIiIiIiIjsYDAaUX7we+XBN6oQLsodVVidahkSkTOpgtFGjBCG4gPKQA0AKNcVb6ZV8OnyBpuh7cFoqv2KBg31nkZbn0VERJlVopfiaP+JuHD+b7CobK+k40dFBH/vfghXtZ6ONcEVWahhbpgFOufTscyluVDnaZCWMbQ6f4yHz05W7qqAplnsKElUBBiMRkRERERERKaSdcZMFEzSMVMIgT8uszbD1R3A4osMrO7Inw7m974mcMNz5vV94r1JwWg2ft8Ot6QxghBAX6f1meS5uOL30i3e4TjnCxp2N2nT8ZVbbCwQBymqYLSEZV1XLh+HwWjWjSYJRhscBSIxZ+2HIzYCJQHgxRZn1Z8mWrlV4J5XDbT1y8uVwWgWw1jTLWpx/XNiqCAREdln9bwjWdgsEQGqs/LZNepp2hXniIUu2RVMvlzXExEREREREREREdmhDEbTyrJcEyIy4/fIG2B2sfO946iWSYNiGRKRMzV6m5VlXZE2hIygstznUjTAVCh3yYPUxsPXAtFt0vJadz08utfWZxERUXbMLJmDR3HcowAAIABJREFUM+Zcge/NPBNVLpOGWtt1Rdtx89ZLcG/7jeiP9WahhtmlOpbVuOvg1UuyXJvpqfc2SYd3K74jOU/IkHc68SnOyYiKFYPRiIiIiIiIyJSdwKWgSUjJSETgm3ca+M499gJq9rzEwO9eyo+wqvtfT/7dXlwzcRyrASsA0C4LRgOA7uJpUKIMy7L4IoTmGg1vnK++HTIcBsLR/AtRKshgNFUIXsKyrq+QL/i+kPPCvJwqWTAaAPSq20zkRCRmb/xX13FdcKornjKwz+UGfni/ehn5Fdv54EimamXOakBO+0Bm60FERNlh9XotX86xiXJJKE75/JUa3IrLdFV4bqFLdo3PfQ4REREREREREREVorCQNwQo0UuzXBMiMuNXdL5XBQxQbgghEIjK2xarliEROVOFqxpluvxN0p2RdoS2h5ZN5tG8tgNeVEFq46EdAUXgIvcrRETOpmkaDqz6NC5ecCs+XXMUNAsRM8uHXsHlG0/FC31/R1zYfLO9g6lCw+o9+Xcs8yvqzGuz/BGKy4PRynV74bZEhY7BaERERERERGTKTuDSSfca+Pdq+QQPLxf46zup1eGnfxRTAsWcRgiBlW3Jx1s96f5izFYwmuKNTz0MRrMajAYAlaUavry3uvyjgL06ZYoQAg++YeDEewz84lEDH7artwFViJhMvnSgtrKsZ1arp1/vkOXodCMWgtG65ffacyZsMxgtIG/zQTn27maBy/6e/Nhep3imMyR/UXTGWQ1dbOvLcEWIiCgrrAayWjmnIiI5l66+tmvvd/a9oExRhciN4z6HiIiIiIiIiIiIClHYkDcE8DIYjchRGrzydqw90W0wCigwId8NxPsQFfLGon6P4iXNRORImqah0TtLWtYZaUNQEajhU4SpmSl3VUqHB+PDMIShDlzkfoWIKC/4XBX4VuPJOHfedZhXuijp+KPGCB7tuge/2vRzbBhZk4UaZl5XAYV8qsLcVOFv5DzK8zhFWC1RsWIwGhEREREREZmK2whc6h4GPv8bA/e+OnWiR9+eXmfWI24y8FarczvEdg4CA/KXVk7Q2gOMRnd+j5iN37fdrXho2FM8Ny1VAWB2gtEA4KzPqW+JrHZIztxpfxI46V6Bh5YJ3PicwMHXGHhjg3wbsBNgGIw4dztKZCUYbVe/etmvKZ7NYlpG8zAYzWpAybihcGbqQdPzh6XC0r7LL29ng5EoMDiS/f1Z1GL7zbYiDfEgIio0Vs878iV8mChXRJKkr1m18uEdAxmoTB5Idp7MfQ4REREREREREREVooghb+BRwmA0IkdRhd/ERAx9sZ4s14ZUAorABwDwexlgRJRvVKGUnZE2hOLytwf7FCFnZny6PIRDwEDYGEEgIm+czf0KEVF+mVu6EL+Yey1OaPyxct+faGu4FTdsPg8PbrsVw7HBLNQwc1ShYX5FyJiTqcLceqPdiAm+eTMfhAz5eZwqrJaoWDEYjYiIiIiIiEzZCVwCACGAi58UiMUnTvj0yunX5cy/2EgRS4PBEYFfPmFg1wviOPCquDTwbZzVECYhgLWdO/+2GrACAMOuSgxJbjqLbockeWWBlbAsKz67RD3BPSbLOVu29Ar87qWJX3Y4DBx6rSHtUG5nOx2Sv1zVcVTfSUtYdCUeDbv45eOt2cZQIitGLDzv6HFaMJrNF4vmyzpfbH7/irVtdLdGddmKrWmqjA1WA3LaizTEg4io0Fg9zx5hSBGRKbNcNA2AX9G+rt9CAH0hYjAaERERERERERERFaOwIb8pzGA0ImepNwkMMAvjouwKROXLwqdXsJM9UR5q9M6SDu+KtiNoyBv5lruSB93YmWYoPoDuaKe0TBWaSUREzqVrLnyy5gu4ZMGtOLjqcEvTLB14HpdtPBWv9f8Lhsh9vyu7DGEoj2X1eXgsUx1/BQz0RLuyXBtKRTAuP4/zucqzXBMiZ2MwGhEREREREZmyG4wGAO39wGqb7Rv+fHLyZKul68cCo7LltD8JXP2MwMZuYPkm4P/uF7jtRfnN243d1uu1pXfnvycHyCXT7pbcuOwpnsYkqvXRlcIdjqP3lQ//5ypgXWduQ7We+1D9+Tf+q7iD0SaH4C1WhCZtCKS3PoUqbCEYrXvYWSFzVuqcaLBIwxScLBgWGLW4HHdr1FDjk5e9szn766bVYL6N3AcRERUEq+fZDCkiMme2KWkaUOOT3xMaCGWmPk5nFiQHcJ9DREREREREREREhSks5I2aSjQGoxE5SZnLh0pXtbQsELX4hmHKOFVInd+bf4EPRKQORgtEtmEo1i8t86UUjKYOTtwa3ggD8gaUfq86NJOIiJyt0l2Dk2b+DGfNuRrN3rlJxw8aQ3io8zbcuPl8bBndkIUapk9/rAcxIe/E0JCHx7I6T4OyrDvCa7N8EFIEo5XrDLMmSsRgNCIiIiIiIjKVSjAaAKzetnPCkYj5TJqqgGP21fD5PZLPd955BroGMx+EsmKLwANvTP2c370k/+w2+TNFqYGRnfOI2XxJRpu7eerAbgajTQ7LsmLJTPVEiy8yYKS68qfB8x+qyy54TEBM6iVtp6qD+RKMptg2Ji/ruXXy5djR76wwL6eysu70BDNfDzusBlONGw5jyjZDudVu45hZ5gH2VzxjfXdzeupjR9Ti+teS44BNIiJKD6unECM2g1uJaCdNA6rK5GX9oeI8p0p2nTbCYDQiIiIiIiIiIiIqQGFDEYymK24iE1HO+D3ycC1VGBdlXyAqXxYNimVHRM7W6JX0HwBgII7No+ulZakEapTqPmiQt8veOLJWOV29J//CZIiIaKKFvj1w/vyb8HX/9y0FlG8cbcG1m87GI12/x0g8P95+2W0S5JyPxzKvXoIad520jKHV+SEYH5IOTyXglqiQMRiNiIiIiIiITKnCiZJZnfBM/YqnzXt03nKCDo9bw2+P19Fg4RncnpfsDK1atkHgj8sMvLkxvZ1lf/28fH6rO4BQeGqZnZCXgZGd/7YasDKuwy1plNBTPDcslcFoKdzh2D3Jfeu7XsldB+wKk+cIMQMYSmgHKISwHNgATJzWyVRfaXIw2qwa+Xh2wgqLmZVgtG75S0hyJhKzN74hgBCDAxzFzjGzxA3sN1fe0OadTdnfT1td/1q2MZCPiLKjPzR2PfTEuwI9w9zvpJvVX5QhRUTmzE6LNAA1PnlZ/4h8eKFLdhqZ7AUERERERERERERERPlIHYyWvEM2EWWX36sIRlOEcVH2BSLydsWqZUdEzub3zFQGlm0Nt0qHpxKooWs6fLp8uk2j66TDq90zeL5GRFQgXJobR8z4b1y84FbsX3lo0vEFDLzY9xQu33gqlg++4vi286pz5HJXZd4GUfkVgW5mIXDkHCFD3lmrPE/XR6JMYTAaERERERERmbISmiOztnPnv59aoZ7J8gt1fP2AsQd1i5s0rLtKx6IG83n3BIH9rzTw7d8bOORaA9+5R+Dgawz88H4jbTdSn1ulnk9PcOqw9n7rn5vYsTdmM3iuXRaM1r4BImYzKShPqYL6JodlWbH7TPOJHnojdzflh5OEl/UmrIN2V/mhPOlYbjUETxWM1j6Q3voUKivrT0+eB6MB+RMIWCzaB6zvuEo8wP5z5WWrtwGRWHb31RGLgaZ9ISAgf4EPEVHaLG8VmHfe2PXQsbcb2OdyIyehkYXM6vVwiCFFRKZMg9E0oKZMXtafHy8TTbtk+x4GPxMREREREREREVGhiYs4okJ+85NBG0TOo+p8H4gwGM0JhBDoirRLy1TLjoiczauXoNZdLy0zIG/UmGqghioYplURjOb3MHCRiKjQ1Hrq8X/N5+Cnsy+xtJ8fiPfh3o4bcfPWS9AZactCDVMTUISF5fM5cr1XXvcuXps5niEMBOPyzlo+V2WWa0PkbAxGIyIiIiIiIlOpBqNt6d054ahJiM3+8yaGU1WWavjgUh3HHWAeWvX+VuBPb06s3D2vCrhOGQtMu/NlA/FUKw8gbFLnbsl9p/Z+6/MeSAimiloMWBnXIbupPDwArFxqb0bTIAwD4sW/wrj2FBh3/BKiJ3tvklCGZaUQjLbHTMDrVpe/th45e2NJstCgvoTO4XZX86HR/AhtsBqC11wjX/iBISAczY/vmktW1p+BEWf9jmb7Z5VBBqM5SpuNY2aJG9h7lnw7jxvAtiyHIMZtBJq2dCYfh4hoOk68x5gQ/tneD5z+Z5vJy2TK6uUAQ1iJzCXblGp88uH9eRLsnW4MRiMiIiIiIiIiIqJiEzHUD1tKGYxG5Dh+rzwcIRDdBkPwmXWuDcUHEBby/apq2RGR8zV6Z9kaP9VADVWgWkxEpcP9ikAWIiLKf3uU74dfzv8tvlJ3AtyaJ+n4LaH3ceXG0/G3wIOIGOEs1NCe7qg8LKw+j4PRVKFu3YoQOHKOsDECAfn1c7meWsAtUaFiMBoRERERERGZSjVbLDH0ZEDRkXWvZvlwj1vDX07RceeJKaRdYSww7ccPCRx3h5FysJVZ8IksGG1zr/V5J/4eMZvBaO3e2dLhYunT9mY0DeK6H0Nc/D/A0/cBD10P8d39ITatycpnpzMYzVei4SefMZ/wyRX255sOydanaQWjOe/5gpTVZT2rRj2PbYPpq0+hsrL+DDosjCASl1fabXKnk2ElzmInTLTEbb6dd2Q5GM3OPnfNNmeFChJRYWnvF9IAxtfWA+u7uP9JF6v7/f5Q8nGIipnZrRlNA2rK5NfmxbptJbuVxWA0IiIiIiIiIiIiKjRhk2C0Er0sizUhIiv8shf8AoiKCAZjfVmuDU0WiMgDHwD1siMi52vwKjpeKKQaqGE3UI37FSKiwubRvTiq/lu4aP7N2LN8/6TjxxHDP3sfxeUbf4r3h9/MQg2tC0TkYWH5HB5crzgOd0c7GVrtcCFD0jl1u1QDbokKFYPRiIiIiIiIyJSqI/g1x2r4hsk9zfZ+7AglUwWjXX2s+WXpDz+p4xPzLVRS4Yn3ANcpBhZdGMc5jxoYjVrr1R6LCwyahOj0DE+cT19QoGvIer0SQ4ZiNu8zvlB5hLzg1b+nHAJnh3j+L2OBaIkGeiD+9OuMfzaQ3mA0ALj2WA0/OEw98TG/M3DDcwaMVBMCUxAKi+TBaMGd/zYL8ZNxWsiVitVl3WwSmNRmI3ypWFkKRnNYqJhqna/xqafJl/W+WHTY2DZLPWPLtlTxkqn2bAej2djntvBFS0SUQWbnOW9sZDBauli9xOrnuQaRKbNNSYP6XH5wFFm9HneKZF+ZwWhERERERERERERUaMLCJBhNK81iTYjIigaT4ICuqDqUi7IjoFgGpboPFa6qLNeGiNKl0TvL1vjlKQZq2A1UMzsmEBFR4fB7Z+Insy7Cyc3nocZdl3T83lgAd7RdjTvarkZPVPIW4CwTQiAQVQSjeZqyXJv08XvldY+JKAZiSTqmUU4F4+pgtHJXagG3RIWKwWhERERERERkShVAU18BPPwjF147V35pGY4BPcPAaFQgEpPPo8bCyxyfO2P6l67rA8ANzwn817UGVrULvL9V4MN2gVhc3tO0NygdvEP3pHtPLTbv0Q6Edn5uNG5v2l5RiYCrfmrB1vXA5hZ7M7NIDPVBrH0PYsWrEJedJB/p9X9k5LMnU4ZlpbiaeN0a7j5Jh9/k2e85jwpc8XT2OmKv60oewNCXsA7Z7SM+5LCQKxWrwWjVZYDPKx+3ncFoSeVjMJqqzl43UFEiL3uztfjCFJysrd/68vC4AE3T0FwtL2+3Ma90sPNpW/gskYgyqEwRGAkA63LfhqRgWD3X7g9lth5EhUzT1MFoQiS/R1OIkt0TGIlmpx5ERERERERERERE2RI21I1TvLqiMQgR5YzPVYFyXd7oMhBhMFquqYLR/J4maFqKbyEmopyzG4zmSzFQw+50fg+D0YiIioWmadi38mBcvOBWfG7GMdDhSjrN+8Nv4vKNp+EfPY8iJnLX6Gk4PohRQ97Qsz6fg9FM6q4KgiNnCCmC0TRoKNMVDSqJihSD0YiIiIiIiMhUsnCiuTPU07b1AwMj6vJqC8Fo1T4NHTek5/L13S3A3pca2PdyA3tdaqD+TAMPvD41+a1ryHw+gUn3nt7fai+UpT/hN4nZDEYDgJtnnCovWPac/ZmZEMFBGJd8B+KoJogfHATx0yPUI/dugxjKfAqVoQjqmxyWZddndjOfwWV/F/ioKzvhO2u2Jf+cvoT78XaD0ZwWcqWi+l6T2+VomobmGvm4dsKXipVqm0o0aLIfzwVVnV0asM9sedmzK7kuOInV0MLyEuxojDdTEYzWMZCmSllkZ587NMr1jogyx2x/9FFX9upR6JKFE43rC429UZCI5Mw2Dw1Ak8mL6duzfL7nBMnOOUOR7NSDiIiIiIiIiIiIKFvMgtFK9NIs1oSIrPJ75R3w2fk+9wIR+TLwexleRJTPGrzNtsYvTzEYrdxl8rZxiXwOkyEiotSU6mU4xv9dXDD/11hYtmfS8aMigie7H8RVrWeiJfh+Fmo4VbfJdUo+nycztDp/BePyzqtlejl0LXnoIFExYTAaERERERERmUoWRNVYpQ6lShaMVmMxwL6xSsO7F6X/EnZwFPjuHwT+9z4D5z1m4Du/N3DNswY+dpl5UtCmnol/P2MzcCeQcO8qpvio2nivcvrH6k+QDhcbVtmqh4oQAuK9VyC+6AdeeMT6hJvXpuXzzSQL6kvVtV9PPoMDrrSQIJUGk9cvmd7gzn9bCbZKlC+hDXZC8GYpgtGshi8VMyshT04L01PuB3Tgq/vIt+WVbfmx3mfK4IjAI8sFnnxPoDeY299BCGE53KLcu/PfzTXyZZvt7dzOPnfIYdsOERUWs2P4tsHiPealm9VAzLgBBMOZrQtRPjMNRtPM7y0V43Udg9GIiIiIiIiIiIio2IQNeSNDt+aBS3NnuTZEZIXfIw8PYOf73OuKypeBapkRUX6oddfDo3mTj7idT08tGM1nI1Ct0lWNMpfFDiFERFRwmkvm4sw5V+K7Taej0qV4C3qCzshW/HbrxfhD+00YiKn7zGWCKsC5RCtFlUvRISlP1CtCq83C4Cj3gsawdHiq4bZEhYzBaERERERERGRK1RnTtf2K0u3S0KS4f7m1T5iGPFWXWa/HPnM0rL48M5ex9y0VuO4fAn98U+DCx5P3fG/ZtnMcIQReapGPN69OPrytf2dATzQuH2ff0RXqz8dcbHM1Ti3YpKiIDSIagTjvWIjTjrQ/8aY10/78ZDIVjLagXsMFR5nPZGgUWNOR+ZCJNgudvvtCO/9tNaxh3Gg0P0Ib7CxrpwQm5SMrq89oFIjEnBOwEjcJzTt4F/m60BcCuuXPDQreu5sFFpxv4Ft3GTj6d2Phn+9syt3y7A2OrVNWVJTs/PdMxfPGjoHsfhc7+1ynhQoSUWFRHQ+BiSG6ND12jjL9JqHgRMUu2bbkdmlorJKXtfU751okW5JlOocixR38TERERERERERERIUnbMgfsJfopVmuCRFZ5fcqgtEUoVyUHUIIBCLt0rIGxTIjovygazoavM3WxoWOUj21wLJyG4FqDFwkIiJN03BQ9WdxyYLb8KmaL0FD8s5dbw39B5dt/Cle7HsKcaHoVJdmqgDnem8TNG2aHdJyzO+RB6OpwuDIGULxIenwMgajEU3BYDQiIiIiIiIyZSWcaLYirKStH7jwcXmPfU2bGHhixeImDf88Q0ddub3p0q2lc2cH1GBYHXzyg8PkN0dDEWBwe6f5mCLQwCNieGbzV5V1aPNIHmxuWmO7Y+yyDQKn/tHAOXd1YMV1N0AcXgksfcbWPMaJzdMPZkvGLBBpui76soZvH2Q+oz0uMfBRl73f+NV1Aqf/2cDP/mzglXXJp2230Om7fxrBaAAQyIOAKNXX0iV3s5oV+6CHlgl2Fk/CMAlVSTTooKAPs+PSEvkzHQDAmiJ9rvPde40JYYrt/cDP/mxxwWfA2k7r45YnnCc0K0JYOwamVx+77OxzhxiMRkQZZLY/Stzv0/RYPVcCJp6jE9FEZpdl4+3KVNd1xRh4beWc02rYMBEREREREREREVE+CAtFMJrGYDQip1J2vo90sM1eDgWNIYwY8ofXDDAiyn8Nsv4DEj5XRcohLz5XpeVxVSGZRERUfHyuChzfeArOmXc95pYuTDr+qBHCI12/x682nY2NI5nvi6YKCatXXNfkE79X/h26I0XagSZPBOPyjn12QmqJigWD0YiIiIiIiMiUlWC0WbXycdr6gfUBeVlVKaCnkGb1uT00tF6r46WzdTzxEx0fXKojcruOlZeO/X3jcZl/U0N/CAhsD+bvNgmYOniBui5t2zv2xhQvt3CLGI4MvqCcPuCqnzpwqA9oXa2u0CR3v2LgkGsN3P6SwA3LG3Dw2h/jqYovWZ5+ik1rUp/WIuX6mIY7HCUeDff/r4anTzOf2QFXGnh3s7WGOw8tM/CZGwzc8oLArS8IfPYGA/e/bp6u0Gah03dfcOfnpxKM1jVof5psU4VQyHYbsxQd6AHgnL+ykZUZq+uPKgAyF1R1dumAvxKoUbzkbn2g+NaFjn6BDyQvAF26HtjYnZvfo6XT+ucmbu8zFcFo2Q7KYDAaETmFWWBXXzB79Sh0do6WvfzdiZTMtqXxUz7VdV17loNwncBKX6ERBqMRERERERERERFRAQkbimA0vSzLNSEiq1RhOGExiqF4ET7gcYhApENZxgAjovzX6J1laTzfNAI1yl3Wp1WFZBIRUfGaV7oQ58z9FY5v/BHK9PKk428Nb8T1m8/FQ9tuw3A8cx2dVCFhhXAsU4W7BaIMrXaykCoYzUZILVGxYDAaERERERERmbISRNVcIw8Aa+8TUL1saGAk9TqVl2j41G4avravhj2aNbhdGvZsHvv7zM/pePKnOhY3pj5/K1o6x/5vFoy292x12XiQS1QVjIYYdAg0xDql5d0ev3zCV59Sf2iCtj6BUx6YuHDDeiku8V9iq/P/BDZC2VKlDupLTyCepmn40t4aPre7epyh0bFwtMCQ+S8Viwtc8JiYUGdDABc+LhCLy6cVQuCNDcnr2ZfwQr9UgtECJuutU1gJZRzXbBKMduNzAvVnxnHcHXGsap84065BgVP/aGDPS+I47Fdx/OOD4rvpb1h80JEPwWi6NrYNz1GEdRZjSMzmXnXZGxtys76vsfHioVhC6I/qXKN7GIjEsvddbAWjhTNXDyIixekkgLHjNhszpIedn7FjgL85kYrZtjR+OT/T5N5SsbFyzhmKZL4eRERERERERERERNkSNuSNCUv00izXhIis8nvUIVtm4VyUWV2K375EK0WVy6ShJRHlhUZvs6XxphOoYSdUjYGLREQko2sufKrmi7h0wW04uOqzlqZ5beBfuGzjqVg68DwMYfLm4BQFovLz5EI4lqnC3UaMEILGUJZrQ1aplo3PRkgtUbFgMBoRERERERGZMhT3ExODqGYpnpVv6ZsY4JTonC+mJ8hK5isf07D6CheMu1x44/zMXPq2bBvrpaoKRnPpgL8C8CueK27sGZs+pvh9PSIKAPDHuqXlgdmfkA4XLe8oajzRnHPlH7yi9GPocCtu7GoatAfeg3benRjRSrHKuztGtITGZ1vXQ7RvtPT5qbITljUdt307+XrT+HMDQ6Pq3sqrO8a2gcna+oFV7fJp/u9+ax2+exMCnlTbqJlkoW5OYGdZz1J0oB/XGwT++g7w2RsM9AyPzdgwBI75nYHbXxJY3QEsXQ8cdbOBl1uc/9ukk9WQp8FphFmmW7J1o9YnL1cdjwqZ2fLdYhKalkmt8sOaVHxCMJp6vE09qdfHLjv73EgMCEeLa59CRNmTbH80nSBq2slqiCwwdp5PRPaNX82p7i21D2StKo7BYDQiIiIiIiIiIiIqNmFD/sY+BqMROVeFqwqluryhlip0gDJPHfjQBC1NLyAmotxp8M6yNN50AjXKbUxrFpJJRERU6a7BSTNPx5lzrsJM79yk4wfjQ3hw2624afMF2DramrZ6jBojGIrLG6GpQsXySb1JuFt3xMZb7SmrQnF5h1Q752JExYLBaERERERERGTKSjiRqvPqqnZA1Y/8Wx/PzgP2AxdoePuXOr6x/8ThlaXAPrPNp/3c7uqyls6x/6sCpuorAF3XsKtfPv267dPH4vJyt4iNzScuT5DpbtxLPuHmFvnwBLe9aJ6i0OJdNHXgl78P7S9rEJu9BD9qOxZ1u3Vgn13fRu3iTpzTcBVicI2N99pTST9/OtRBfen9nIUNGlwW7ppU/8zA3a/IK7WqXd2T+QNJWSwu8Mhya8ELiQFPZh2my0vkwwN58NIPO8FoZoFJibqHgev+OTbjMx8WeH3D1HE+e6OB0SIKMrIcjCZvf5oT8ST7gRpFMFp/EQbEBMPqstYshokl6hiwvn0lhofOrwNUbfPGj8nZYHfvMOSgbYeICkuyY/jPHxEQNkK9SM7OT8hgNCI1s21p/ByvuVpe3iYJHC90VvY9DEYjIiIiIiIiIiKiQsJgNKL8o2maMkSAwWi5E1AEHzC8iKgwNHqbLY03nUANO6FqDSZBLEREROMW+fbEBfNvwjH+76FES36dv2F0Da7ddBYe7boXI/FQ0vGTCUTU1yd+b/4Ho1W7auHRvNKyQJTBaE4VVASj+fTKLNeEyPkYjEZERERERESmkgXQAMCsWvupVPVZDLDfb66Gh3/kgnHXzv8Gbnbh3YtdGLxZx56TnhGe/CkNxl0u/PNMF048WP7dtvaO/b9bfh9qx/db1CCffl3nWC/XqCoYDePBaPLkmu4SxYPNjR9CxGLyMgBDowKn/cm8h+1a724T/tbuXgr9vDugzZyPy58WuHt5OSL6WOJWTPPgprozUbr7EB6sOgHDr/zLdN7TZScsa7qszvKUBwSueMpAJDaxcusD6mk2SMrWB4BhkxCjRP0jgLH9xzALxWhU3A8NKNZbJ1F9L1kwkqoDvcz1/xTNJWnxAAAgAElEQVToHBS45QX1D3fOX4snREQVNjjZ4IhzfhPlfmD7nc4an3zr7Q9mqEIOZhaWsLYzN8u0Q/6yJanE8NAyr4Z5M+TjrdmWve9iNUxw3JDF/ToRkV3J9kd/eE3g8XezU5dCZme/38FgNCIls01pRzBajfw8vnNoLEi8mFjZ90wnGM0wBN7ZJPDQMgMbAsX12xIREREREREREZEzKYPRtLIs14SI7PArAnFU4VyUeapQOtWyIqL84nNVoNKVvNH0dAI1XJobpXryc7ByvdJWiBoRERU3l+bG52YcjYsW3IL9Kg5JOr4BAy/0PYnLW3+KtwdfndaLgrsV4WAuuFHrrk95vk5hFlqt+u6UeyFD3rFvOgG3RIWKwWhERERERERkykoQ1awa+/OtK0+tPulWUarhnV/quPd7Gq45VsNzZ+i44zs7L5ebFd+tfWDsh+kakpfvCEZrlJev6xr7vyp4ziPGws388W5p+ca4Xz4hADxwrbLoT7c+p55uuxbvop1/fOHb0JYcsOPPB99Q30z+3qx7UD36ON5aZSP1xibV+ujKwB2OT++WfJxxlzwp8KnrDPQM76zg+DKWWd469YustvGSRCGAwe3tAU2D0arkw7sV662TqAK7ZCF4JR4NPvkLTqSuedb8ociflomi6Xhv9VsOjGS0Grao1g3X9nWjxicv73dQuFu2BCPq77wmB8+4hBBotxEaE5u0rBcrXsjUksXvYjVMcJyTth0iKiyq64hE1z5rc6dFU9g5e2jrL75zDSKrrLRLU91bEsJeuG4hsLI3CaUYwBuJCZxwt8DHrzJw4j0CCy80eLwgIiIiIiIiIiKinAsLRTDa9pd3EpEz+T3ysK0uRTgXZZ4yGE2xrIgo/zR4FS9XTzDdQA2fnnx6v1fRoJOIiMjEDI8fP5x1Lk6dfbEyzCvRQKwX93TcgFu2XorOSFtKn6kKbq7zNEDXXCnN02nqFcflQITXZk4VisuD0Rg8SzQVg9GIiIiIiIjIlKrDfWIQld1gNJ8X8JVI0o1yxOPW8L1DdZz7RR1H7jGxXjMVL1Ua75S7vkveXbWpamw+8+vk0/cEx/4/OfRlnHt7MNrc6GZp+Stt5RjwzJCWiXuvgAhPTWIR6z/Ak+/E5B+Y4PYZp4z945AvQTvrtzuGD4QENvUknRw/vC+KuFla1zRYCepLl5MOsTfTN1sB/1nGjtCzwJD6N/jXaiAUnli+Zpu936wvNPb/VILRzOrmFHaX9cVfsb68bv63+ffvCQJL11ueXV6zuqkOytuf5oRy3dh+XKpRvKiuL5iZ+jhZ0CQsob0fGMxyWNzQKBCKWB9/8jnIwgb5dt7Wl73vYffwtiGQmXoQEVnZHy3fBLQzrGta7ARiFuO5BpFVZnui8TO8OfJbHADMg8cLkZV9z0g0tXn/4TWBR96euEQueFzgvS08XhAREREREREREVHuhA1VMFpplmtCRHY0eOVhW4FIO4SVN+dQWoXiwwjG5W/NZYARUeFo9M5KOs50AzXKXZVJx2HgIhERTcee5fvjl/Nvxpfrjodb8yQdf01oBa5qPR1/734IEcPeGyWV4cEFdI6sCpkLRLP4BnqyLGKEERXyjjXlevLzMKJiw2A0IiIiIiIiMqUM7kp4KUJFqYZqRRCNTH0ehdfP3PCydHhHv4AQAmsU9wgXb7+nWN3fKi0fGBq7gRWNyRt/uDEWYHZE8EVpeTSu4c09vquoNYDlL0wZZPz9XiwtO0g9zfi8NS9uPq0V2q8eh+ar3FHP+edbSwV4f6AWb2ywNKptyQKR0unr+2sprasHXm3g8XcF+kPqcUajwDuTMu9abN5v7t0evKAKLwSAhip5iFBA/mIJR7G7rE/5VHrT8Z54rzgaZlkN+xicmrWYM6p1fjw0r7ZcXt7voO+QLcEkIWTrsxza9UG7vfE/MX/i36og1vaBlKqTErvBaHZDL4mIrLK6P3p6JfdD02Hn1+szOf8nKnZm/V607efxNT4NfkWbnlMesJFSWACs7OOD4dT277e9KJ/uwTd4vCAiIiIiIiIiIqLcUQej2WiUSERZp+p8P2KEEDTkAV2UOWahBw2e5izWhIgyyUowmpVgMzNWgtX8inBMIiIiqzy6F1+uPx6/nH8z9vDtl3T8mIjh2Z5HcEXrz7ByeLnlz+lWnCfXK65n8pHqu3RHGIzmRKG4ulPfdANuiQoRg9GIiIiIiIjIlCqAxj3pilIVViKTL8FoIhpB0z9vlpYFIxr6hmJY2yWfdsn2e4pVL94vLR8VXowu/ZcyeM4jogCA/UffhT8m/5B3Fhyjrnzr6gl/io/eR+cTj6LfVaueJsH5LzVgePtLNIJhAd9PDQzYCBU66+GJX+y5VQKH3xBH89lxfOq6OB5allqnZlWIk57eTCwAgK9Ew39+oeOQXexP+/XbDbyeJBxucljOn9+y1wm5b3swmlmH6cYq+fCuPGhzpOo4r1rW1T4NVx6dvhXhN88LGHYTkPKQ1a84KG9/mhPK0LzxQAVFm9hiDCsJJQlGC2R5X/DsB/a2qTOOnHiy0aw412jrS7VG9tndLaztzEw9iIjMwnETPfN+4Z/PZJKd/X4xhrASpUPiVdwSRVuz9QEgMFQ8+zMr39TKPZql6wW+8OuxezGNP49j/yviyrDim/5VPL8vEREREREREREROU/YkN/0LNFLs1wTIrLDLBQnwA74WReIdEiHezQvqtzW2g4TkfNZCTos16fXWaPcSjCah8FoRESUHg3emTh19sX4YfM5qHHXJR2/J9qJ29uuxJ1t16AnqujUl0B1bVJIIZ+q7zIQ71OG0VPumAWJTzfglqgQMRiNiIiIiIiIlAxDKDuCF0MwGtavRHPvKmXxy7+6E5GYvGxxkwYhBKpXvaCcvv+C7yMak//ALjE2Yw3AHuHV0nEubPk4BMY6zA7pFRjVSnaUiU0tO//d0Qrx/U/g+NkPKOsyWTgGPPCGwIftAntfalgOXhj3VutYB1wRGsIL7w7ji7818NJaYNsg8OpHwIn3CNy3dGymXYMCW/usdcBNFoiUbktmanjtPBdGf6fj9CPS+yFrEu6tr+0UCCvWJZXxkCdVWBwANCmC0bIdhpSKVJb18Z9I7zI65nepBfjlE6thH0MOehaiqrNr+3FpRrl8PegahHKfW6iCYfPy7uHs/h4fbJV/3uxaoGpSW+ZDdwUOWzhx2Kwa+bLtCQLhaHa+i91gtE09xbXOEVH2WN0fvb3Z/rx7gwKrOwQ2BASEKq22SNj5+sFw8Z1rEFllti1pCad4uzWqr+n+vqJ4ti+z6/xxyYKf39si8OnrDfxr9di9mMAQ8N6W9NSPiIiIiIiIiIiIKN1UnXRLNAajETlZlasW3oR2q4kCUXlIF2VOV0T+hhy/pwm6xm7ERIWi0Tsr6Tg+C8FmptPryQM5GgooTIaIiHJP0zTsV3koLl5wK46sPRq6hRicFcPLcMXG0/Bcz2OIiah0nKgRRV+sW1rm9yje4pmHzL5Ld5Sh1U4TjA8ry3yu8izWhCg/8I4GERERERERKZmFYbkmB6PVWg8kqqvIUIpVum1qwexoG9yKG6RPrlM/NNytEUBPB6qD8oYGADCgVyG6Xh565hY7U7KWRNYq53Hzofdh4a6rUbu4C/MXrsXvak8ZK1i/EgAghMDGb38Oh8x/Ga/6DlPOR+anfxTY61IDrT22JtvhsF8ZCB81G0feXiYt/9GDAgdcEUfT2Qbmnmtg4QVxvLHBvKNztoPRxnndGm76poZbTtBQ4k7PPFu27fwyt7xgv4N3X2hsGrNQjMYq+Q8TigChsLM7laeyrOclfzmMLX9/HxgIOft3mi6roSqDI875HZKtG/MV60HMADamuD/LR63dAlc/Y77cutXPUzKirV8+/AeHaXjpFzq+/18aPrkIuOAoDf84XYfbNXGDbzYJYX3k7SwFo9nMS+zJ8m9MRMXD6v5oax8wPGptH9nWJ/CZ6+OoP9PAnpcYWHihgaazDfw1S/tYJ7IbiDkwkpl6EOU7s00pMRjtKx9TX/D944Pi2RdZ+ab9SfY3Vz1tP+SeiIiIiIiIiIiIKFfCQhGMpjMYjcjJNE2DXxGME4gwGC3bAorAA9UyIqL8VO9tTBoWM91gtHIL0/s93LcQEVH6leplOLbhe7hg/q+xa9nuScePiDCe6L4fV7eeibWhlVPKe2NdEIrWWPUFFIw2w+NXnh8EIgxGc5qQIhitRCuFW/NkuTZEzpemrrxERERERERUiGImHSjdrol/m4WVTFY3vWdtWSM2t8CDGBZG1mNNyZIp5X+r/Ip0urkzgPISDeKDFlQbg8r5D7iqEeveBpTvMaXMg53BaHuGP1TO4+d93wS8Y//udvvxs6ZfY0l4DQ5f+zLE0/8PhmHgC3Ofxnrvrsp5ZFL5IvmbNQAgEgPe3bLz7w3dwJE3Gdj8Kx0zyqd2hhZC3TU408FowFgjnlM/q+HUzwKnPGDg7lem1yl7TcK95TUd6nnNr4M0nK4vNPZ/82A0dVlgGJgnf1mjI6QSjObSNezVDHygziO07V+rgW8ckL75OY3lYDR5+9OcUHXuH183FjWOhSvIdhlrOrYHVxY4IQS+fEvyFIRsB6O1D8iHz6oB9p2j4Z7vmu/M59SOBbPK1oErnhL49kECmpbZA4LJoUiqJ5iZehAR2QnsOusRgf3nmk8gBHDqH6eOExgCjrvTwIqLdew9O08CrtPI7n6/fwSoT/7SXKKiY3Vb+vLe6rJ1XempSz6wso/vD6nLRqMCz35g7zOzcV+FiIiIiIiIiIiISCVsqILR5C/kJCLn8Hua0BZunTI8EGUwWrapwugYXkRUWNyaB3WeRtP9bLk+vcYrPpf59GW6D+VJxiEiIpqO5pJ5OGvO1Vg2+CIeC/w/DMcVHRG22xbZit9suQifqPw0jm34HqrdtQCALsU5sgYN9Z7C6Vji0tyY4fGjO9o5paxbEaBMuROMD0mHTzfclqhQmcdCExERERERUVFThc8AgHvSFeUsG8Fo9flyn2ZTCwBgcWSttLjfVSsdvrhiLAxNXPJtVBmD0IT8hxzQqxCFPMnfLXYGox07+ITlKgPA1fXnjn3+tSfjgj905SwUDQCEZu/WQygCPP6uvAewWcdgPct3OO48Ucc/Ttfx88+n3nN4Y/dYZ2VAHRYEALv65cN7t4ftpByMJr+P6hjKYLQky/r4A9Pbm/uFNdMLwHM6I3l2FgBgcCSz9bAjWWheqUfDgjr5OC2dhb08x134hMBqC20LsxmMFjcEtimD0axttxWlGo5UvPhpXRewfFOKlbNBtQapzm16g+bBnkREqTK7Vpvs968I/OQh8/9koWiJ7nu9OPdldgLoAPOgIqJiZrYpJZ4Jul3qsFyz6+ZCY+U6zWx/81br2P0VO1xsOUJEREREREREREQ5IoQwCUYrzXJtiMguv1ceuhWIsPN9tqlCklTLiIjyV6N3lml5mat8WvMvTxLK4ffMzPhLbImIiDRNw8HVh+PSBbfhkzVfhIbkx563hl7GZRtPxUt9T8MQcWUoWI27Dh7dm+4q51S9p0k6PMBgNMcJGfKOPMnOwYiKFZu3EhERERERkVLMLBjNNfFvq6EmQB4Fo20eC0bbI7za1mTzN70Isf4DYKAHOgQqDXkC1aCrGjHNLS3ziOiOfzfFp76xwcxL5Z9Bj2sG1nh3w/X1Zycd/9b/Sf3B5Ml1b+KhtpNSnl5mjeKeq1nHYD0Hz1Y/v6eG67+hw7jLlVJAmiGAj7rG/t2h6OB91TEaan3ysr7QzvmozChXd252fDCaYnkn+6XPOELDsfulrx7LNhR2CIjVbzeQB8Foiev6LopAwc7B9NfHaQZHBK591tqS7cliMFrnoHrZNdsIV730q+pb2u9vzfz2qto3+RUvPwzH7IdSEBFZYTewa7peWVvY50QqdrMtGYxGJGe2LU1uKz2nVn7VFxgCwtHi2BdZ+Zb9IfVYq9rt/06J91Xe2yJw0d8MnPtXA0vXF8dvTkRERERERERERLkTFREIyB/GMxiNyPn8HkUwmiKkizJjJB7CUFzeENWvCEggovzV6G1WlpXpPrg0l7LcCp+eJBiNgYtERJRFPlcFTmj8EX4x9zrMLdk16fijRggPd92NX236BVYNvy0dRxUils9Ux+duhlY7TjAu78jjcyk6pRAVOQajERERERERkVIsri5zT7qinFVrfb75EIwm4nFg60cAgMODL9qatqp3PcR9V+34u9qQJ/H06TWIah5pmRuxCX9/cy97qURLyw7GT5puTjremxfo+M5B9kO9/vA9Da3X6Lj9jNk4cOQt29Obae+XD4+b9MXNRTBaouu/oeN7h9qvxKsfCYxEhDJA4ZBdNNSUy+fbFxz7QcwC49y6ensLDDu7c7Mq7CPZsvaVaHjkRzpartDxyCk6/iv5cw8AwGcXy4e/u2Xnb12IrIaqDMpfzJsTqnU+cd2or5CvKL3BDFTIYfa7wmSnMEkqgQmpUu3bAXvBaAftomEPRZualiw8s1NtM36Tc5tsBtARUfEw7CZ2TdPyTUCPw88fM8HuN+53UJgskZOYBqNN+tvs/tK2Igg6Bqzt482CGFWB82bGX4Dw7EqBg68xcNXTAtf/U+BT1xl48A3r1xhEREREREREREREdoUNdaMUBqMROZ+q8/1wfBAhRWdvSr/uqPoBEQOMiApPo3eWsiwdgRrlSeahCsUkIiLKpPlli3DOvOvwrYaTUab7ko6/JbwBH4belZY1FOA5sioQmaHVzqO6Vi5PEk5LVKzcua4AEREREREROVfMpN+ja1Iw2mwbwWizanKcYmXFtlYgGgEAHBZaihJjFGGLDa0qjWHgpcd2/O2PdWOLZ87Uj3A3IqiXS+dRbkzs4VpXaS/b/Jg5jyYd5y8n6/j4/LFlcdM3NZz1sHnHW00DDt0F+P13dSxuGl+Gc9D8+S8AG2xVz1Rbn7weZgFguQ5GA4A7vqOhrgK46z8CQxZDpJ58T+Dze6grP7NaHWw2HrRjFmyla2NhPZ2SzuNdQ9bqmCvKYDQLC1vTNCxqBBY1An0hDa+tT96p/LTDdbzYIl/JPnODgRWXTO/taU5ltl0lGnRQyId63dj57xnyXWvBBrps6hE4/zGBP79l7/t92AFsCAjs4s/8TlQVjOZxAXWK5aXy8fkaPuyY+l1btmV++arWP7PQ194QMLcuM/WZLiEEHl4ucMsLAuEY8PX9NZxxpIZSj/V14sE3DNzzqsBwGDhqbw0XfVmD2+WAAzNRgbMabppOv/23wOX/XVzbt93feTgsMDXmiYjMaJM2meZq9bjt/cA8h55XpZOV7Ms+k2C0VM6Lx0/fznvMQCQhq98QwC8eFfifA4Wl63EiIiIiIiIiIiIqXBEjjLbwJsRENK3zHYz1KctKNAajETmdqvM9ALw3/EZGwnNmePyo8zSkPL0QAoHoNgzEeqXlDd6ZqHbPSHn+2TBqjKAtvAmGGHsD9kcjq6TjuTU3at1F8ICNqMg0eJuVZekI1Ch3mc/D71Xv+4mIiDJJ11z4dO1R2K/yUDwWuA9vDr6U0nzqTa5j8pXqO/VGA1gbWgkN5v0Sq90z4Pc0QZvcoI/SLmTIO/T5kpyDERUrBqMRERERERGRklkwmnvS/TB/xVi4STSefL5L8uH+4aaWHf/0IIaFkfVYVbqnpUmr4hNTqJpi8jexbXM3YVCvks/DmDiPuur0XcJrEAjf7poQWnL6ERqeWSnw/Oqp49/0TQ0nHKihogQoL5l6g7P01MvhPz2AgNuflvq1KcJzTAPA7OXGZYTXreH6b2j41bEC/1kHHH5j8sSpF1qAlW3qcrNgtG6rwWiKl3YF8jUYzeY99qP21gCYdwr/yWc0HDBPXb6yDXh9vcAhuxbeDX6rYR8jUSAaE/C4c/8bxBWbVuK6UafYbnqD6a9Prg2EBA6+xpAGIFqxfFN2gtHa+uUrW3ONtcDDRLs1yoe3dNqtlX2qbWZGhQZNE9IQi7Y+YN+p+ag5MRIR0LWx7SUaBx5+W+B/79tZ6bc3CawPADceB1SWIumDzd+/YuDkByZOvzEA3P+D3O8riAqd6niYSa+uK8yAUTNWwokSBcOZqQdRvjPblCafblSVAeUl8u2ptacwr8sms3Kd1m8SXr06hZd8unRg24CQ3qPoHASWrgcOW2R/vkRERERERERERFQYXu57Bn8N3IuYiCUfOY1KLL7IlIhyp8ZdB7fmkYYmPrjt1ox97oLSxThl1vmoctfYmq4n2ok72q5BW7jVdLwlvn3ww+ZzUebyTaOW6SeEwNM9f8Y/eh6BgeQNB+o9TdC1wnwpLFExa/TOUpalI1DD51I0Pt8uE6GXREREdlS5a/C9mWfg0Ooj8ZfOO9ER2WJrer+38I5lquBSAwZ+s+UiS/No8s7GT2ZdhHqvosMGpUUwPiwdXp7kHIyoWDmg2zARERERERE5lVlne/ek5+S6rmFmdfJ5+iuBuoo86MS6uWXCn4siH1metNKYeINqpiIYrcPdhEFdftOqKj4xtaquKn3BaIHT104IRQPGgk/+dqqOC47ScOB8YHEjcNRewN9O1XHGkToaqzRpKBoAaJW1+IJ3Rdrq19Y/FsA0WbIAMKfQdQ2fWazhvYt1HHcAsIexHjOj8l7JkRjwm+flG5q/Eqgq06YXjKYD/kr5j+P0YDRVCIXdZd1co2Fxknvyt5ygYXYtUGXSlvKiv+UgfSQLrAajAcCQQ4I+VHV2JdzprCuXj9NTgMFot70kUg5FA4AW+SEq7doH5MObLZw7TLakSb4jWB8AIpLjRzoZihXQ4wLm1MqnaenMfZCQEAJXPm2g/KcGyk41UPITAxWnGRNC0cbd86pAzekGDrrawLIN5nW/+d9Ty//4pkCHIgiPiNJHdTxsqAQu+oqGg3cZO6e3+58qfBIA1nVl5rs4mZ1zJQAYdsj5EpHTmIUMTj6z0zQNu9TLx12bhSBcJ7ASytgfGjvHmywYFtjca/8zXTowYBK2tqmX53dERERERERERETF6qPQh/hL111ZD0UDgBK9LOufSUT26JoOvyf7b0veONqSUvDaPe03JA1FA4A1oRX4S9edKdQss94dXopnev5iKRQNYHgRUaGqctWiVHGelI5ADZ+uaIS7XSGGyRARUX7azbcXzp9/E46uPwlercTydLm4hsm0+jR8p22Rrbi97co01IbMhBTBaD59+gG3RIUofb2qiYiIiIiIqODE4uoytyRqe1YNkna+XJIn9w7Fhg8n/L1bZK3laSuNiYlTTYpgtDZPM4ZcVYp5JKTclPowZ4YGYHqdUEuMUby7x+2YsefZ0vIyr4Yrj9Zw5dH2533ByQvx4B3Tqt4Oo1HglY+Aw5dMHJ4vwWjjPjZbw59PGIB4cG8Y0DB/4Tq0e5qnjPeyYtUa31bqK+TLvnt4rBN0st9FHazm7E7Nqu+VyrI+6VANFz4un+GyC3Ro2thM7zpJw/F3ycd7YQ3wxLsCZV7g8MWAx+3AlS4FdsI+BkeAGeZtHbLCyrpRp1jvnRqM1jMs8P5WYFW7wIJ6DXNnAL1BYF2XQFUZcOiuGmbXTl3neoMCv3zC2kI8Zj/g8XenDs9WMFpbn3x4s72XtgIAFivOJeIGsCEALMlgmxuz9W9Jk/w8aE2WfmMzN/5L4OK/2dvvL98EHHengQ8u1VFVNnX9i8YEPmifOp0hgIffFjj9iMLYTxI5lWp/VOYFLvuajsu+lvq8z3rYwG+en/oBbf3A8KhARWnxbN9WwokSBRmMRiRl9+pzt0ZgZdvU4evyJBhtaFTg5bVATRnwiflAicfeftPKdVo0DoQiQPmk9nyphsd1DwOPvq3+YKMws8KJiIiIiIiIiIjIgjcHX87J52rQ4NG8OflsIrLH752JjsiWrH/uquDbGI4NosItb4c7WVekHa2j6yzPf8XQMsSbYnBpzumCu2zgJVvjM7yIqDBpmoYGTzM2h9dPKfO5ph+o4dXNg2WqXCk0/CQiIsoQt+bB5+uOxcerPolHu+7Be8NvJJ0mHSFiTlOil6LaVYuBuKLjhkUdkS3oinSggdcSGROMD0mHpyPglqgQSbqxExEREREREY2JmXR6dCmC0ZL55CLnd6IXAz3As/+fvfsOc6Ja2AD+nsn2hS1soxepSlERuSoWELuIyrXfa0Gxo9jrp2LvXa5eK/aGXkVsiAURVLChUhaQKtv7bpYtyZzvj7DsbnLOZCab7Gbh/T0PD5uZM2dOksnJzGTOO6+0mnZg7RLby/sHo/XQBKOtiRusrSOlZR3xSTh8D9ur17rC+waGXaUORWurYaMH4u+hd+L2otvDUt8XKwMH43a2YDQAQLEvMcaAxHE1HztadGh335PSBZt5TF9QldXgZEMAWZrzosXq86hRQxdCYYRwNuus/QS6KH6jP+9AgX37N288p4wxkG1xHnnK0yaOftzEsFtNrMyL7mA5uxwFo9VFrh1O2ApGS1Z3CmVuwHTypNvBwlyJ4beZmPiIicvfkjjuKRN73mFiwsMmLnhV4rRnJQbdbGL2ktYf9m9yJTKvtJdOsOV+A0Ny1K9JbmH7vB75ler19Exz3oEPytL3+7kRDsuw2v6GdFc3ak1Bx25zLy02cd2c0Nrwdznw0hL1stUW4T+hBnIQkX1ezVdAOPaLp0/QV/K7IqhoZ+Z0t8HdEJl2EHV2ViGDQtHlDNbsu65pp33Xtli8TqLPdSYmP2Xi4AdNjL3HRF6Fs3bb7XsqagOn5bZh3/MWiyDdKDuMIiIiIiIiIiIionaU37C5Q9bbI67PjpsdElF06xs/sEPWKyFR2GD/R+y8emf9Wb2sQ41mwHpHKXAYQNc3oWPeGyKKvH4J6nEIPeP6hqX+/pr6ByUO5z4aERFFpW6xWbig1w24pNf/ITM2R1suO7YnEl1J7diy9tMnTPv/FZ7SsNRDarVmjeHAQ9YAACAASURBVHJ6OAJuiXZGDEajsBJCxAohxgshzhJCXC+EuFQIcaIQon9Ht42IiIiIaGclK0shX7kP5mNXwrxhCsz/3Aj52euQXm+b67YKRotRHFH2TA/+I9exI6P7hzBpmpBTdguYfmjtN0gy3bbq8A9G6+VRX3hR4UrX1pFiVjU/SEhC1wSBCw9p22t35iGJbVo+mB6X34Sbh6/G6ZVvtbmuVfmKYLQgAWBRqSRvx5+Tqz9ytOhuwheopws2A4Dv1gFnvah/YVwGtEFf0R6MZif8yq5e6QLPnimQ2uIjMHlP4KnTAyv75Zbgp8s2lADnv2JCWo3u7yScPIXKbZFrhxN2gmB0nxuvCZSof0PoEKYpMXW2iaIgn8cGD3DubAnjAi/2usOLM54zcejDwUPRkuKA16cJ9EoXGKa5qVFuAdplWy7VvO459m7Y2kp8rECfbup5hVWRfS5WfZPuNV6tzkcNm9X5EnfMMzH1JRMPzTdR7m5u5PwVEue93LbX5I6P1MvXWIQlVkdJf0G0MwvnvpK/fhlAYqx63qd/dv79HyecfkVa9Y1EuzLLYDTFtCGa69JyC9tn3zVUpilx8jNmq1DpP7YC17zrrM12n2KFYp8rUsc7DEYjIiIiIiIiIiLadRU3RPhHb41xaUd0yHqJyLn9Ug9FnFDcubQdFDfmOyjrvD+r9UbPxWZe6UFpY5Ht8qmudOzVZb8ItoiIOtJBaUfCgKvVtGSjK/bqun9Y6h+Xqt4XOyTt6LDUT0REFCkjuozB//V/AsdknIoYERMw/5D0YzqgVe3j4LSjwlKPlMHHqlBovNKDOlM92CKZwWhESoE9OXV6QoiZAG5rQxUvSynPcbjOLAC3AzgVgHJYohBiCYBHpJTvtaFtRERERETUgszbADltf6C6vHni4o8hAWDBW8CDc9t0Rx5d+AwAxLgCp/VKC17n4OyQmxNxUkrIW08HGgJHsyfIehxRswAfpBwftJ6ufsn9w+pzHbclpeVd5hJ8aU5Pnibw34WhjUQdUr8Gw3bX3/EiHERsHMTd7+CG79fgzZfaVpcqRMZqEK4RrdHvLYLRxtd+i67eKlS77KUApc+5F3LAUcjcR3/S/binrE82CyG2B0QFvnjF0XO9jpJVEF4oThtr4LDdJf7YCqQnA3v1UfeNPdMEjhwOfL7Cur7v1wO/bQH2Ds+N1TqMk8HtFbWRa4cTdoJgeqbql99aAWSHEMYVCT9uADY6vJnO738Dv/8d/I2bO93AfgOAzK6+F2ZodwFVX1BTD+RVAL30WZ1hUa7ZftJDvNlSVhdgk+K1i3TwnS6kwjCAoTnq17ioGih3S6Qnhz/F85tcieOeMuGub5721FcSP9xoILcAOOrxtnem5bW+fST/fcrqes0CAKrqmJxBFGm6fSVXGPaLXYbA+KHAp38Gzluybtf6fDsNAqptiEw7iDo7q4+S6rTVEM1+VXUdUFgFdLfY3+9Iv24BCqoCp7+1TOK18yQMm+mVdvueckV+f1WEAhoZjEZERERERERERLRrqjO3ocpbHrxgGHWP641xqUdgfNqx7bpeIgpdt9gsXNX3bswpehEb69bAIz3ttu6iBgfBaA7KNnF7o+cOtKWNxTAR/FqgeJGAgUl74LTsCxFndExgHRFFXu+EAbi8z0z8r/gVFNRvwYDEoZiSNRWpMeG5GHRc2uHwSg8WVnyKgoYt6BHXBxO7HY99Ug4MS/1ERESRFGfEY1Lm6Ribcgg+LX0Xf7p/QhdXKg5KO3KnPt8wossYnNvjGswvm4Ot9ZsgLa/c07Nz3EGhsQrfTjIYjEakwmA0ajMhxNEAZgMIFm9wAIADhBCvA7hQSqm4VJuIiIiIiJyQ/7mxdShaSz/OB76aA0w8OeT6PV79vBjFgPtgwWhxMUBGlJ6jkV4v5EPTgYUfaMtMjluGD2AnGK31hRADGjciVjagUcTZbk+K2WIkbbwvNSbGJfDBJQZO+I/zE4z/3PYRxIiLHC8XipH7D8GceImTngn9ROiaQqC2XiIpvnnQsNUgXFf4s2bCo7g5GC1eNmCi+2tb4XoAkN5QDPn0TUh+5WjkpPgGfzvRNN46S/OZq64D6holEmKj88XThl+1Iewjs6vAhGHBy43oJfD5iuA/AMz5WWLvvtH5+tnlZHB7fqUE0PHPV9dmV4uQgewUXzCMKuAzryJ6Au1yCyOTLnDbcQKTRrV+r4ZaZGOuLuh8wWiZmr4t0sFoVsF8w7rrl8stBPbbLfztufl/rUPRAGBzGTD+IRNrCsO3nvJaoFty62k1FqEbVeqbGBFRGNkJCm2Lw3YX+PTPwJV8nQtUbZNISWzffYJXvzcxe4lEXSMwaU+B648UtgOG2sLpN3UNgyGJHFMGo1n86rymMHqD0VT9ZpMyN5DZ1V49ujBefxWKfS4GoxEREREREREREVE4lTQo7m653e0DnkZGbPhv1GmIaL1DJhFZ6ZswCFf1vcd3g+IQB99beTH/YfxSvThgenGjg2A0TdmD047G95VfolEG3gmr1oyeO9BaPddHBr+JOOELQRMQbbqpNhF1HkOSRuL6fg8qb3waDgenH42D04+GKU3uoxERUaeUHdcTZ/eYEbHvymg0JuVAjEk5EKYMPqbvirWnwiMbA6YzGC1y3FbBaK4oHXRL1MF4JEJtIoQYD+ADtA5FkwB+BvAugC8AlPgt9i8AbwrBI2EiIiIioraQNZXA4nnWZea/0aZ1eCzOY7kUe/S9061PEvZMRfSeSHz3CWDei5ZFjv33QbaCBrr6XQgRAy8GN6xz1JxE2WJ0a0JzaszkvQROH6tuRGoisO5uAymu1gkp3T0FuPqgOojkFEdtaIspowW8/zXQeMyLKFjTB9Wru2FK1f8c1THy9tYboNUg3LaEZUWSLMlr9Xh4/Urby6aalcCm1RAFG3HkQOfZ4juC0SwGXpdGzzU7ASId9mHFKtyoJTvhadHOdPB7RV5F5NrhhK7NLfsBlyHQQxOWsLUiet63sgjcNiC7K3D5oYEflPRkgWxNfxCpgLYmpilRoQtGSw7tQ53ZRb1cJF7Tlqz6pp5pQBfNTVbXF4f3NfZ4JYqqJL5fr54fzlA0AMivDJxWbRG6UVQNSClR5paQdpM9iMgRVfgnEL59pRG99BVlX23CXd9+n+1nFpo4+yWJr3OB79cDN/9P4uLX22f9TvaVAMAdeJ08EcE66EvV22R2FQGhrE3WRHjftS3iLW5LV+zg+NtuCFlFbWDByggF1NrtD+sbJbaWcx+QiIiIiIiIiIhoZ6EL4XEhBt1is2EII+z/iKhzE0JEpG/Iju2pXF9xg4NgNE3Z7NgeSHapL6xye6uV0zuCrv1pMRlIMBJ3vFZRe502EUVMpD/33EcjIqLOblfcR7Z1rKWJGzKlt51bu+twW4Rv645LiXZ1PBrZNZwOYICDf9fYqVQI0RvA+wDiWkxeDGC4lHKMlPIUKeURAHoDmAGgZVzocQDuasNzIiIiIiKipV8AnsBU/laWfAJZG/qP8lbBaDGKI8qRvawH4vdKC7kpESU350LOusG6UEYPZB1xDPbsbV3MkF6keQPTg8Zs+9lRm1q9jPGJrebNPkfgjuMFurfIOZs0Clh1h4HdsgSW35WIc/qtx4HGnzjH+BxLDv0S6dNvcbT+cBBCwOg1AJneUiTKOkyutg7y87ehBNhQ0jyQ1jIYLVrPUfsFow1ryLW9aJrXl0IjT90dx300zfGqm0KiUhP1ZaxCbTpaRwajHTlcKMMf/f2yGfh2Tece7G13wD0AbI2SYDSvzW1D950TLc8DUIdNtUVOCrDsZkMbNqYL/Vutv8FzWFTX6be19CT19GAyNDfDKamOcMibpnohfN97fbup54frvc4tkNj/Xi/iLjbR/Zr2uxNTvuJzU1MfOK3Jynyg17UmMq800e8GE/N+79x9JVE00vVHdvZh7LAKim3wAF0vM3H6syZq6iL/+X5sQeA6Zi+RKK2J/LqdrsGqbyTalYXyaR2So54e7gDYcEqI1c8rqrJfj93jtHJF+HC1Jhht3ED761fRHYc1qWuUOPtFE92uMNHnehN9rzfxxo+8cygREREREREREVFnV9ygvqAgIzYbLuFq59YQ0a4sK079I3ZRY76tG7Y0mg0o95Ro6u6pHYBe642eu8/qwiqzYm3eCZaIiIiIiKgFXfipKXndV6TUasK3Y0QM4kR8O7eGqHNgMNquoUBKudHBP/VZvkC3A0hv8XgJgMOklKtaFpJS1kspnwBwit/yVwkh+oX+tIiIiIiIdg3SNCFXLIX84bNWIWfyO5shUwveCXndHouA/xjFdU3pyQIHD9Yv0zs9+tKrpJSQ/xoVtJx4ZiEAYPce1s+hm7cMLgSeAJxc87HtNu1ev6r1hITWqTGxMQL/d6yBvIdcMJ/1/Zs73YXuqb629csQePHmwfj2mT3x4jPHoP+/z+q4u1v0Hbrjz1Oq5uCA2iWOFv/g1xbBaBbnVaMxGE1KCSxb0GrasHonwWjNKTSH1yxAvOksxazpNUmxCEariuJgNN21Su3xXvdOF7jxaHsrGv+QCa+TdLEQbGuQ+OQPiW9yJRo84V2Xk6bnVURHsJGuL/DfNnqnq8tttHvmqx0UhDkYLe9BA3266bfdId3V89YURPa9VQU2NAk1GC1TE4z28+bQ6rMr2PbXPVU9P1gwmrte4ouVEq//aGJlnvr9qGuU2P1WEz9usNlYB2JdwD4WZ2rzKwPbVB0kDKlge/jH3+XACbP0z4uIQhPpENleaUDXBOsyb/8kcdFrkf1s19RJZQhSoxf436+R71ec7ua5GYxGpGQ1FkV3umJIjmbftTB69ykaPPp5xQ7GzNgYu+OrU3GNVJVmH22f/gKXTwz9S6I+yL0Zpr8p8eoPEtu2l9taAZz5osSitdH7fhEREREREREREVFwRY15yunZcT3buSVEtKvLiu2hnF5n1qLGG/wONSWNhZCa2/lkx/VAkqG+GKlGM2i9I+jCKrPi1K8NERERERGRFaGJGzIV4yIpPHTh20lG144b+0kU5RiMRiERQgwGcHaLSQ0AzpFSaodUSyk/APByi0nxAG6LTAuJiIiIiHYOsrwY8sqjIS86CPLa4yFPGQq55BPfzF8X2qvjwUual3HIG0IQ1Ql760/C7D8wpGZElHzh9qBlxJWPQXT3pYUMCXJjtUxvqXL64TULkOCySJpr4aiaz1tPSAgxNSYaZPcGEpMBAHFoxNebjsCzeRejf8NGpHvLcFXpo7il+G7t4gtWtQhGsxhLG23BaLK+DvL2s4CG1skII+pXIM1bbquONLM5RaeLdOP0Kmchh02vSXKcvkx1FAejmZqR4O31Xt9xvIG50+2dOrvk9cgN9F62UaL3dSYmPWni0IdNjLnLxIaS8K3PSdjH1orgZdqDLiTA5fd27ZYV/UEK64vD15YN9xpBfwgZpvkO+3ULYEYw4C8SwWgZmmC0wirgkS8i90NcsCCiHqnq98AqBG/5Fonht5k48jETZ74gMWKmiQtfNVvdzbaoSiLp0vA8r/12A2ZMFHjgJIFbJgncOklg5e0Glt2sv5v3ekWgYI2D8B9TAi8tiZ7PHtHOQHesFq59JcMQOGVM8Mre/VmiojZyn293g37e2qKIrXYHu+FETZz0jUS7EstgNM30wdnq6b9tQav9pGhidYxdVG2/zXZ3zfMU+5hV29RlUxOBR08RmHdZaJeI1FuEvjV6JOb8FNhoKYG3l0Xne0VERERERERERET2FDfkK6dnxQW5iI6IKMysAhmLG9V9lZ0yAga6xWQj2aW+GEk3aL0j6J6DLjSOiIiIiIjIiiHU15JJBqNFjNtUH2PqjkmJiMFoFLozALQcKfe+lHKtjeXu93t8ihAiIXzNIiIiIiLaucjHrgB++aZ5QmUp5PUnQn74HFCivhujsp7rT4Ssdp5o49Gcx4oxoA1fOX4v/eB5q3kdQa5dDrx8b/CCYw7d8efwHtbPIUMTjJb8z6k4bLg+cKTJuNrFmFl8V+uJ8Z03GE0IAfQduuOxCybOrXwZ6/7aA8VreuOBoptxW4k+GG1li+s4OlMwGj55GfgyMMgsFh4cVTPfVhWp3tYjnO8uuhX7bltmuwlNr4lhCHTVHHlXRXUwmnq60Y5nsyaNElh4rYGsrtblnlskUexgkLtdUkqc/IzZKlTqzzzg8jfD9yODkzyBMnfYVtsmum3D/2tpSI66XG5hdAQplLslvl9vXaZ3OvDd9QauPVJo+7mEWGD2VIF+GcE7wj0032HF1cDSjUEXD5lVMFpaiF9x3VP0z/eadyV+2RSZ9zhYMFr3VPX8/MrWC5a7JR6ab+L690zsfaeJzWWtyz+3SMJ1oYlr3jVR7pa4dW74ns+SG1x49FQD1xxh4PbJBmZONjAw2/cEJo1SLzN/ReD6nYZrPjy/4z93RDuT9thXuuuE4N8tjV5g/3tNXDvHxIKV4f+c11oEo1VVRT6FzOkug1V7iXZlVh8lXbbv7pp9181lwAr7p8TaVbVFt1Rcbb8eu11PfkVgyUpNMFpKgu8czTEjBf7zL+cnUeoa9fNKavTnF75cxX1AIiIiIiIiIiKizqy4sUA5nSE8RNTeurpSEa8ZgqgLcWxdRt2fdYvNRKwRi2SX+iJBt+ngR54IMqUXJQ2FynlZceyTiYiIiIjIOUMTN2RKBqNFii58O4nBaERaDEajUJ3o9/glOwtJKVcB+LHFpGQAR4SrUUREREREOxP5+2LgqznqeQ9Nd17flAGOl/F41dNdFkeT/TIEzt4/cIDlWfvbC21pL3L1z5Dnjg1ecM8DIVoEe40fav38M+MUo2CPPQfGjEewT7/gz/+bTYcjWfolyMR38jzpfsOCFvlwyxTl9E2lgLveN4jWMhgtys5wSEUoWpPRdb8GXT7JdCMOrUcd53iL8O3GiVi0cTxeypuGl47abFlHyxAlXTBadV30DlA2NefR2zsE76DBAmvuNPD8WdYrzrk6/Cf+V+YjICwJAD7+A9hSFp73zupz5a/CItyqPQULpmoyJEf9nlXUAuuKwtyoEIy9R7/NPHWGwPwrDKy+w8ABAwXu/6eBVXcYmH+F7//vbzDw8lSB9y82sP4eA2ftb68TPHAQEB+jnvfhb5HrD8o1oXpdE4AYV2gf6qFBbj495m4TjZ7wP6dg218PTTDa3+XNf68rktjrDhPXzZF48HPrNj7yhUTGlSae/TY8zyUnxXr+IUPU78cPG4ASvwDImsjnERGRBV1/FGK3qpSTIlA7K/h3TG6hL/zwiMdM3DkvvPtEbou+pnLhfMiS4Be4t4WTfSUA2MZgNCLHdMFoVudf5i6PzmPZKk0oGQAUORgzozse9penuAeCLqAsJbH577REdRkr9R79PKtQSDf7RSIiIiIiIiIiok6rwaxHhUd9k1CG8BBRexNCaPueokYbwWiaMk1Bj7pB6LpB6+2t3FMCL9Q/2GTFBrmQioiIiIiISEEbjAYGo0WK26u+kFAX1k1EDEajEAghugPYs8UkD4DFDqr4xu/x0W1tExERERHRzkg+eGl4K6yrhdy4ytEiHs15rBiX9XKPnCJwzgECQvgGuJ5zgMAjp0RHKJos+hvmnVMhzz8geOF/HAFx51utJmV0ETh4sH6RzH+MBcYd63sQGwecOgPiqicAAENzrFd3RuWbUL5KsfHB2xrFRL+hQcsMq8/Vzluz/SZ3lsFo0bF5NVv+nXbWUGNr0MWzPCXK6bHwYP9tS3Fm5Rs4s+xlXHm4/om3DItL0QajBW1Kh7EbftUeUpMEzj3QwMXjrVd+yesmpAzfAH3VIPcmdoIA/i6XmPqSieG3eXHAfV48PN+E1++FdRL2UVMPeLwdH0DgtRmaN7ynvo7nv2vf5+HxStz/mYne13lhXOD791exumyfdODiQwQO20MgKb75SQ3O8U0bsvUb7DvrOPzr1Yk4/o/7kRNvkb7gp0uCwERNVmVEg9Fq1XWnJ4Ve58Cs4GXmLg+9fh1t37S9z+3bTd1PbChp/vw8+LnElnJlsYg7d5x1P3bsSPV8KYHPV7Z+8tsalUUtRXMgJ1FnE6w/CpeEWIG1dxk4cJC98nfOkyisCt9n3TIYrSEG8tX7wrYuFafPpM4iOIhoV2Z1mKTbO+mWLDBuoHreJ39E5z5FjcUx9vIt9tts9zgtvzJwmi6cLbVFGFp6svMD6zqLfT+rYLQwHiITERERERERERFROytpLNDOawoSIiJqT9maYLTihuDBaEUNecrpTWFryYZ6ELpu0Hp7K26w6JMZVklERERERCEwhHqAqCkZjBYpuvDtJEMd1k1EDEaj0Izwe/y7lNLtYPklfo+Ht7E9REREREQ7HVlTCTgMMbPlh88dFdeFz8QEOZpMTxZ48RwDdbN8/148x0C3EAZdhpusKIGcui8w/42gZcXH+TAe+ggiPTB55fi99M8lK7srjPveh/i6BmJ+OYzpD0DE+YLNhvUIEkZS86l6hitIEl206xs8GK1/4ybEm+oRxKsLfKNoddsjEF3BaPLr9yzn737YfkHr6OlRX4TTyqK5yLI472m2eL26aoLRqjphMJrowPf6idOsV/7MQokb/yfDFo5mNbj8p43Wy1bWSoycaeLl7yVW5QM/rAeunSNx5TuhB6MB0bHN6Nrs8vtu6pYsMLa/uuxjCyRW5bffCP2LX5e48X1pGXbX5JhRAkKzoculX0BecRSw9AvgjyWQz90Gefd5geVME7LWd1GebPRtSLJ+G2ThFhy3m7oRqwuANYWReU0qNOEMbQlGi4sRGJxtXeaTP8P/fHQf76bvoSGaEFSPCWzcfiPtj2wEG0ZCelLwYLSh3YHdMtXzft7U+rFVOIbOt2ucL0NEanaDQsNhYLbAt9e5cNyo4GU9JvDlqvD1c1b7QxVGKvDVe5Bm5C7AcFp1gwcBQbREdkmPB7LefuhtZxLqp+K4PdWd2h/B88Y7hFUI7JK/gBqbIbF2X6+iaqDR01xaSolKzSaUktD8WqYlqstYqbcIfrQMRnO+KiIiIiIiIiIiIooSRZqgIQMGMmJt3M2MiCjMdKGMxRZBjsHKZG+vM8mlvhiz1lQPWm9vRY3qPjnFlYYEI4Qff4iIiIiIaJdnCPUAUQkGo0WKW3OMmaw5JiUiBqPtKi4UQiwQQmwVQtQJIaqFEBuFEAuFEHcLIQ5yWN8efo/XOVz+ryD1ERERERHR5sikRsiPZzsq7wkxGK1JbIxAbEwUJVbNfR6oKgtaTDw8DyKlm3b+lNECcTHqeYft7nu+IiYWIqZ1oRE9gd7p6uVS4704qma+eqZLs7LOYvd9ghZxwcSQhrXKeau3X49ilS8QVcFoj1+tn3nOzRhw0XRkBjlf2ctOMNr6FRhZ+5t2dssAqxRNMFp1FIRc6eje7458r12GwLfXWneAD3wmkTbDxDML2/5DgNWg+tU/roIsDkwDKK6W2O8eL9KvMJUD4p/6SuKnjc31Og37qKh1Vj4STM3Godo2poxWbzCNXmD6G2bYQux0TFPigldNvPCd/fWcOiawzXKbG+bd50FePSlwgW/eh/zwOV85KSFffwhycm/IIzNhHhQPeWhX3/+HpUGeNAiTHh6tXfeHv0Xm9SjX3FKhLcFoADDZIqgUAF5aHP7nE6xvGmRx7ffaQqBqm0RBVdibBQDoEg/00exnnDFW4NvrDAzMtn7NhBA4eIi6zDMLWz/5UILRPl/JaAyicLEbFBpOE4bZ2xH79wuyVVBPW7gtwnYKY3KAimJgrX6fuK10zyIpTr9MKP0j7dqk1wvziashj+sJeVQWzKsnQVaUdHSzwspqt9sq/Hp0X/XM6jrA442+/Yrqeuv5T35tr81OjtNa7lvWNerP5aW0GA+TFsJ+uFXfZhWMZhVyT0RERERERERERNFNFyKUEZsNl+jk17MRUaeUFacORitqyLO8DswjG1HWWGxZZ7Krq3K+2xsdwWjFmrBK3WtCREREREQUjKGJG/JKbzu3ZNdR661WTk/SHJMSEYPRdhWnAZgIoCeAeABdAPQDcDCAmwB8K4RYJoQ4zGZ9g/web3bYnk1+jzOEEJohe0REREREu6jNuaEtl9ULOPRk/fyNqyDLi2xXpxtkGsnB9pEkf1sUvNCUiyDGHm5ZpHe6wMzjAgfn/nM0cMgQ/XIxLoEH/ikCguWEAO4/tASppiYppZMHo4mcvsCgUUHLDW1QBwLOX+HbDq0GBkdLMJosyQNK1RegoGs6xLm3wOUyMGmUdYN7NrYIRuuSpi034fHxttrVVROMVqUIzooW0RiMBgAHDhbISLYuU10HXPK6xNSXTORVBB/4bpoSK/Ik3lxq4of1zUEiNRaD6nMbc2D+a1TABV0nP2Ni6Ubr9Y29pzkQzCpwUCUqgtF024biu+nCgwVyUtTlv84F3lwa2TCFl5ZIPL/I2TrGD229kcttbsjz/gF89pp2GfnQdMhtbuCTVyCfuRmoLNWW7eEpwNhtS5XzQnk9TFNi0VqJJX9JuOvVy5drtpv0IJ+lYK6YKLBbpnWZlkGA4aDb/poCPZLihTYEdU2RxFr7u2GOHDsSqHzCwKb7XTCfDfz32jQDw3va60AH56in1zUCm0tlq8dOrS2MvgATos5Kt28cyX2lY0bar3zATSb+u9DEyry2fe513y0AkBfTwxdc9tefbVqHFV2/nxyvX2abRUAQkYp8fibw7lNATSXgaQSWfgF5w5SOblZYWQajWSxnFeBVFYVB36pw6pbe/8Ven+ik58yraP7b6jVpGZieFcI1VA0e/TyrYDT2iURERERERERERJ2XPoSnZzu3hIjIJztWHQK2zXTDbaoHlwNAaWMRJNQ/smfFNgWjqe92W2fWwistfihpJ8WNmj45tns7t4SIiIiIiHYWQhM3ZGqOn6jtdOHbyYb6mJSIGIxGzcYAmC+EuFsIq/tyAwD8R2Q7Gs4nt3QxeQAAIABJREFUpawB4H9ZdqqTOoiIiIiIdnZyzW+hLZjSDWLmq8Do8foyc1+wXZ1Hcx4rxuWsWVFj2QLr+YP3hLjiMVtV3XC0gS+uNHDFYQIXjxd4Y5rAWxcYcAVJIjhtrIElNxi46RiBs/YXuOYIgUXXGTh/X33akOjkwWgAgIMmBy0ytF4djPbjBuCOeaZlgJMqEKkjyDvO0c/cdyKaDrlP2Mt6O+l9+ETgjKshZjwC8cEmYPd9leUSpEVyVgspier1VUfhQPImHRH2Yddf99jb4F7+XqL3dSae/kb/o4C7XmLK0yZGzjTxr+clDrjPxIEPmMivkJbvT4UrHRs8mZAn9Id0+0IV1xZKfLvW3nP4aXtsveNgtCgI0/M62DZSkwQePEm/0VzzrkRlbWSCmipqJc5/xVndWx9ovW3JX7+FPLE/sMXGG/vFm5DzXrS1nsnV85TTf9sCfPqH/TZvKpUYfZeJQx40ceD9Jva6w8QvmwKX1wXqpSW17QPdK13g11sNHGeRvfnfb8McjGZj+xuiCRZbWwisKwpvey48RODlqQIfXGog+Glde4Zk6+t56uuWwWjOn0vL4A4iahtNhnVE95WG5Aj00mf2tpJXAVz8usSImSamvWJa3p3birtIfdduAKgzElFppEKGGixug67ZSXH6ZbaFEBxJu7gv3w6ctuJHyL/XtX9bIsSqB7DahbEKRouG0GZ/ZW7r+T9v8h0nBOPkOC2vsvlvq2C21MTmv7slCwzKtr8OANhmse9nFYzmbkDI3wFERERERERERETUsYpb3tixBYbwEFFHyYpTB6MBQHFDgcU8daiYgEBmrO9CnyRDf2eZWs3A9fake35WrwkREREREZEVQ6jHRknJYLRI0R1fJmnCuomIwWg7u60AngNwPoADAewBYBiAcQAuA/C5X3kB4CYA9wSp179XDWVIrP8yIdyXOpAQIlsIMdzJPwADw7FuIiIiIqJwkVICi9WBJUFl9YQQAmLaTH39331kuzptMFonPJqU9cEToMSNzzkKFZm4u8AjpxiYdYaB08YGD0VrMqa/wF0nGJg91cADJxk4YKAAYi1G1u8EwWjCRjDanvW/a+fNnCux/G/9QNqEKHiJZN564NeF2vniikd3/H34HtZhCsMOGAHj4nsgTroUIj4B4uDjtWVf3XqOcvrY/s1/6waTF1VH7+BkXcuiIRgtJVFg3mX2O8JL35AYOdOLmAu9OORBLxava352T34lMXd56/LLNgK9rjNx/XvW789HXY4FygqA954GACz/23aT8NsWX91Ox6dHQ/iALiRAt2386x8ChwxRzyuoAm6dG5nPwVXv2K83MRZ49ZhNyHnvTpiPzoB8/SGYz8+EvPxwYHvwXTDywUuBP3+wVVYXjAYAxz5pwmszieGwR0z83mK7+6sYuPC1wPCbck34Q7pF0IVdXRMEXjhb/3lckRfmYDQb298gTbDY2kKJQntvpy21sww8/S8DZ+5vfx/Ejj376OfNXd4yGM153fmVwcsQkT0dFSJ78hjnK3jxO4lZX9vvj+WP82HOuh7115yIJ99WD7hpkhfTA9isDlgOB12/z2A0Chfp9QL5m9TzPnutnVsTOVbHHZbBaIn6edFwbOKv3EabttoIitX18Sp5Fc0vbpXFr/YpCa0fHx8ksN1fjcVptdoG/RvsNYF6j6NVERERERERERERUZRgCA8RRZsUVzriRYJyXlGD/rflokZ1MFpaTAZiDd+Pv8kWg9DdHRyMZkoTJY2aPjmWfTIREREREYXG0MQNmWAwWiSY0kStyWA0Iqc64VB2smEpgCMB9JFSXiClfF5KuVhKuUpKmSulXCKlfEpKeRSAfQGs9Vv+BiGEfsR1YDBa8HSBQP6XZYerp74EwJ8O/30YpnUTEREREYXH+hVA3oaQFhWjx/v+GLGfvtDqnyGLt9qqz7szBaPdebZ1gX0mAINGtU9jVGLj9fOMTviC+xs0Cujez7LIUTXzke4t085/eYl6oG1iLJAU3/FpWfLjl/Uzx0+BSM/e8TAxTuCS8eo2d08BjtjDb+Kkqdqqp1R/gMGJgSOrT923uf6eqeplt5brm9zRtOFDUfJxOGakwKcz7DdmRZ7vOS1aCxz0gIk75vk62LeXhR7atCjpQACA/NS37W2tsF/X6u3XSdnMv9qhQhNw1Z50bXZp3g4hBGadYWi/u2Z9LfHr5vA/ry9W2qvz3QsNrDv8A5z+2Ahg9t3A+89APnMz8PK9YW9Tk90bVmNQwzrt/CV/Ba/jmYUm/ioOnP7zJt/23lK5W11HOILRACCzq/47ILcAAUFtbWEnGG1IjrrMumKgVPNaNOkSD2y5P3jf8uNNBhJiI/Pdpwt2A4A1hcDqfN+LEEowWkkNUN/Y8f0I0c7A6fdhuFwxMbS+5/K3JIqqgn/+zadvgrzmONS//R/sX3QLlidYH6Ntie0NbM4NqU126L5CLIPRGiLTFtpJeSy+UGt2jURRq14lxSoYLZRbd0VQg0fCXR+8XEl18DJO9pbyWpwOqLL41b6L3xih6RME4h2EzFu93rVB+j07rwsRERERERERERFFl0azAeWeEuU8hvAQUUcRQiArrrtyXrEm/AwAihvU87JbBD0mu7pql3drBq63l0pPGRql+gcZhlUSEREREVGoDKEJRpMMRouEOrMWUnN1oNUxKdGuLkqGklI4SSk/kVLOlzZG/EkpfwKwH4A1frPuE0K47K7SaRtDXIaIiIiIaNewaG7oyx40GYDvx3/xxHx9ucUf26rO41VPj7F7tBAl5IJ3gIUf6AuMHg/xfy9BiA4M13JZjEa1mtdJCCGAg46zLJMkt+Guopna+b//rZ6eKSphXjwe5q1nQP66sA2tbKN5s/XzsnoFTLp9ssC0gwRiW3ye9u4DfH2NgbiY1tuiSMsETp6urDpeNuDdxuswtr/vcZd44PqjBK44rLmOXunqZm3Nr4H571EwrzsB8tvoyg03NefRjY7PwNvhyOECr08TyAwh7n3mXAnjAi+Wa7ZrO3Ljh/j++PsvVFfV4cq37Z9uyd0ebOQ0GK0mCga02wmm8rdHT4GrjlAXMCXw5FfhOVVVWStx/XsmRt/pxdbAvMJWztxPoPhBEyf+egdyHj4D8Gq+dCNAADihSv+Zn7vc+vWQUuLSN/Rl/tzael55rbpcerLlahz5aLr6VHd5LVBsI3zCLjvb34BM9baWVwGUWlwnuVsmMHe6gV7pAvOv0J+6f/4sgX37R7Yz/GOmfv1N28e2EILRAKCgKrTliKi1UL4Pw6FvhsDHl4X282L3a0xU1wU2XEqJF74zceg1f2HUD6djt0GrkTysAr8l7Bm0zr/iBgKbciG3h0t5vBK3fGjCuMAL4wIvsq/yYt7voX/P615ny2C0EPtH2kV5LTaYuihL/moDq0+h1akYlyHQNUE9r0Kzj9lRdPu8/optjJtxcpyW3yI/r0qzyXRN8L2WLfXLEPjfJQb6bD9fEOz7w+r1ZjAaERERERERERHRzqeksVA7UDObITxE1IF04YzFDQXaZYob1fNa1hUr4hAjYpXlar1hvPgoBFahb1mx6qA4IiIiIiKiYIQmbsgEg9Eiodarv3gw2QhhYBrRLoLBaAQpZRmA09H6mvRhACZoFvHvcS3u1a3lv0zH3jqBiIiIiCiKyFCD0Q6aDNF70I6HYu9DgAF7qNfx3UfWbajzjXb0aM5juUI4mpT122Ajvzns5E9fQt5+pr7A6PEwHv8cIrODL9iK04z0BYC+Q9qvHREktgf3WZlW8aJ2XqlbPT2zagPw5/fA1+9BXj0J8uevQ21iSOQ2N2TeBqBMf2GNGLZPwLTEOIFnzzRQ9YSBtXcZKH7EwM+3uDC0u3o0srj0AW39I1a8ge8vLkXNkwYKHzZw7xSjVdBfz1R1neWyC7Zt3gR8/ynkzadAfv6Gdh3traPCPpw6fazvNb9vSvs3bF3cQDQiBiYEjphZ5GjZv4p9/3fGYDRviKF5txwrdgz69/fV6rZ/P5mmxJGPmXjwc4nftujLPXqqQO0sAy+fayD9sfOAl+9p87pDcWXZk9p5P220fj02lgJWX+lr/DZHbTBakuVqHNm3v37eevVNrEOi7Zta7Bv1SlOXqfcA64rUFRw9Alh3jwvjh/o25MP2ELjs0MCN+snTBc49MPKn9Yf3FDhgoHpe0/ZRF2LwT16Q0EAisifU78NwOHqkQOMzBmqeNFD+mIFlN9vvlw57xERpTeu+8N5PJc5/ReKbqv5YGb8HNsf2tV3furjtndWcpwAAJz9j4u6Pm+svqQEmP2Xi5SUmtjU4/77Xfd9ZBqMFCQgiaqXRYoOpj7LkrzZoy+mgNM0v0RW10XUfrjLNOQt/U2cHv2jMyeuVX9lcuHKbesEUzSmno0YIbLzPwN8PGCh91Lovr7DI6QsWjBYNx5FERERERERERETkjC6ER8BAt5jsdm4NEVGzLE04Y3FjnnaZ4gZ1n9ayLiGEdiC622LwenvQhb4lu7oiycXB80REREREFBqXcCmnS8lgtEhwm/pjSx7bEekxGI0AAFLKXwDM95t8lKZ4NAej/QfACIf/jg/TuomIiIiI2kwWbgbW/BrSsmLGw4ETDzxOXfiXbyBrA+9gJj94FuaJAyCP6AbzooPhKS5ULh7j4GhSbv0L5iUTII/MgJyyG+Tbj9tfOAzkczMt54vJ09qnIUGIxGRg+D8CZ3RNB/Y9rP0bFAkjxwHZvS2LuGDi3zXvOKo2w9Mi8aaxAXLOrFBa55jM3whz+kTIo7MgTx1mXdjiPYyPFRiYLZDRxTrFQrhcELM0oW+mCfnYlUiKF0iMC6ynlyYMCgDyYpov7pGv3m/ZhvakCx8SURaMBvguirruKAP3/7N9G9co4rAhrj++TJ6AH2t6OVp26/ZgIqfBaO4oGNAeamhecrzA7cerCxVUoc3hndfMkVi6MXi5yyYIJMQKyL/+BBa83aZ1tkWOtwiXlan7y9x86x+yVutvQgoAWNniOkMppUUwWvg+M1ldgQT1TVuRXxm21cC0EUTUUxOMBgB/bFVP36Nn4Gvx4EkCj54qMLY/MG4g8Po0gYsPab9+ZsIw9brm/OL7XxeMdt6BAifvo29nON8Pol2Z7vswlBDrULgMgaR4gdQkgX36CSy+3sCRw4Mvt2wjkHWVid7XefHRcoknvzLxfx+E/h28Jm4wAEDOvge5BRIfLleXmzpbIm2GiWMe96Koyv76dCVdAoiPUc/bFmJwJO2iPBYbTN2uEYwWbO8mTROm+9Hy6ApG0+3z+nPXIyAg0p+T47SWobNVdeoyKRa/5gsh0DPN159bqajVHzMFC0ZzMzCSiIiIiIiIiIio09GF8HSLzUSsoflxnoioHWTFaoLRNP2WV3pQ2qi+6ah/Xcmurspytd7A663bky6sUvdaEBERERER2SE0cUMmvO3ckl2DW3NsKWAgwdBcKElEDEajVj7zezxKU85/6FqWk5UIIbogMBitQlXWKSllkZRyhZN/AP4Kx7qJiIiIiMKicAvQo7/jxcQNz0Lk9A2crgtGa2wAfmydjSy/fh/y4cuAkjzfiNUVP8Lzv+eUi9sNRpMN9ZCXHQ78sQTweoGSPMinroP87DV7FYRA1tVC/rYIctVPkH/+AKxcar3AhH9GrC1OiQvvBBJanMgSAuLieyBido6LyURMDMSMRwCXJkFgu+x6TWqMRqa3tPWE7z5y2jRHZN56yK/fgzxlKLD8O9+2beXsmyDSHR06643cH+g9SD3vqzmQeeuVs3qm6qssbHkX102rIStL9YXbUajhVx3p2iMN3D65fRuYGzcUixMPcLxcTT1QXSe1IU86HT2g3eOV+HGDep6dIJjdu6vfnwYPULkt9HblVUg8tiB4esHovoBhCEgpIZ+7NfQV9h4Y2nL7Hw0xZ92Oh8dWf6IsVlBtoKJW/3xWF1g/1y9WSni8vjI19YBXs52lh/G3GyEEemj6uvzK8IVm6Gpq2Td1T9GHOOpCwbolB06LixGYMdHADze5sOh6F04fa8Box05waI5+3n8XmtoAjH8MAN6+0MBAzVdfXkV0hZgQdVbRtq+0/0CBT2e48NkMeweLeRXA8bNMzHirbX3CjpDfulp8t8ZjWbbRC3y2AjjuKfs7QFZhvYlx6nnbGABETlgFo9W3YQc1ylh90oOFX2dqboT44XLgnZ9MNHiiY9+izG2/7E+brOeHHIym2WRSEuzXp9Po1fdvwYLRKnaejD8iIiIiIiIiIqJdBkN4iChaZcWp+yG3Wa0cZF7aWKwd1J8V173V4yRNMJrbrHHYyvAqbmCfTERERERE4WcITTCadDjQiGyp9aqPLZNcydr3gogYjEatbfR7rBu1vdbvcT+H6/EvXyalLHdYBxERERHRTkmMGgfx9mqI2T9DnHcbMGTv4AslJkMce7Z63rB9gAz1D9/y569aP/5kdkCZRxOmKpeNcQVvFgDg9++A4sCQK/nFWzYrcEb+tgjyjBGQlx0GecE4yIsPsSwvXlsOYUTPobHY+xCIZxdDnHsrcMbVEE99CXHcuR3drLASBx8P8d/vgH9dAxx8vLJMmleTGqMREIwWQeasGyBP3R3y1jNsL2NMuy1s6xdCAAdN1s6Xp+4OKQNHUCfHAwmafL1SV2brCZvXtKWJYRNtYR923TLJwFdXGxiz/ezHbpnW5dtqddwQ5MYPCWnZreW+HEwnaupDWlVY/F0uMeZuE9V16vl2to2cFP28wqrQ2gUAby+z90KOGyQgK0shLzsMWPyx8xXtOxHi2lkQs3+BmPGwo0XFebdB3Pc+RE4fiAvuBAAMbdB/3nPVN1EFAPy2xXpd5bXAou1nEMstAiLSFWFgbaELRpv7W/jCMqwCcprEuARy1NdJamWE+bUIh8HZ+g/Vxa9LbNR8/TZ93+jejzxnX/NEpKHdV+rgw5sjhgusuav9GlHqyvD94fVg5Tp7X+bLNgJ/brX33aDbVzIEkKjZv97WGB0hTdRJeCwSpZYtaL92RJjVcUewYLR9+ukLnPasxNBbTPy4vuM/d2Vu+2145Xvrsk6O00rdwLYG3wK6sOdU/1uWhahQfcPKoMFopTUd//4QERERERERERGRM0UNecrpukAiIqL2km0RBqYKENMFPQKBwWLJLvUde1SBa+1JG1bpF+xGRERERETkhKGJGzLBYLRI0B1bJhsOB58Q7WKiZ/Q3RQP/S6V1l0iv8ns8yOF6dvN7vNLh8kREREREOzUhBMTAERDn3ATjhR8grnzMuvyLS/XzDAPY7yj1zM/fgPnsrTCfug5y4QfAD5+3mv1TwmjkxfZULuqyeTQpX7hDPWPpF/YqcEDW1ULefZ4yiE1FXPU4RL9hYW9HW4kBe0BMvRnGxfdAjBrX0c2JCDF0bxgX3Q3j7neAA44JmJ9uVjiqr6cn8EI86VXf4a8tzKdvAt561NlCh54U9nYITaDcDh+9ELiMEMhUX7ODkqYwie3kkk9CbVpYmZrz6NEejAYA44cKLL3ZBfNZF9bd48KzZ0au0bnxQ5Ebpw9Ge/RU/brzKgGnw9PdNfWQ7z8Nc8puMC+ZAPn9p8owvkiY8ZaJ3//Wz7cTBJNt8XtBW4LRVuivn2tlcu8CyEk9geXfOV6HuPE5GI98AjF5GkR8AjDlEvvLXvU4xDk3NYeBnn4VMPEU9PLkIVlzR9PVD94P89x/wHzoUsiX7oJcuxwA4DUlPvkj+Hv+4XJfmfJafZn0JNtPwRZdENf8lYCpSxByyG7f1DvdWb290qKvcxvWHYi1G4bbQkKs77n01DynfGdf80Sk4Y3ifaVB2QIvnN0+DSlxZezYn6mvsP9lvmCVve8Fq0BMfTCa7WYQAR7rDUY2Bkmc2gkE6y0mjbIusakUOOclEw2ejg3fstrv9ffmUmm5f+p013V9ie//Kk2IdEqCvXpmTrZ+re/6WN2wbUE20xL1IQcRERERERERERFFseJG9d3UrAKJiIjaQ2pMN8SKOOU8VYCYKiwNANJiMhBnxLealqQJRqv1dtyPHVJKFDeo++SsWAajERERERFR6AyhCUaTDEaLhFrN2B3dsSgR+TAYjVrK9Htcoin3p9/jUUIIJ8MY/Uf2+9dHREREREQtTT4f2G24et7x0yB6W2cViz6a+XW1wKv3A28/Dvl/pwbM/qzLEdo6Y+weTdY5GBXaVt9/ChRsslf28NMgTrwosu0he7r3C5iU6q10VMUE98LAidvCeyGKfOsx4I2HHS8njj0nrO0AAAz/h+Vs+eClkOVFAdPtBqPhtQcgF38cauvCRjcQPBrCPpyadpCBzfcbePpfApdPFLjhaP2TeOoMgc9mGHj8NIFnp1TjmfxL8WDh9cjxFCrL/xm/B9bFDVTOu/d4EzMmGuiWrF7X5jKpDXnSqflxEeSjV/hCKP9YAnndCZAz/x3xcDR3vcTc5dZl7GwbSfECXeLV84racGPPvPLgz39k3R845Eb/+wXYI+ashTjmrNbTDANi9s/BF558XsB3noiJgbjtFbhmPIwhDeuUi60uBLD2N+DD5yFfvBPy/P0hP38DawqBUnfw1X63NngwWprutgwhyknRbwQ/2dxFCMZu3zS0u/3OKsYAxjm99UQ7SE0S6J8RvJy/pqAgXVBdfmXHhpYQ7Sx0/ZErSnaWTh0j0D0lfPWNrPtDOb3eSEDt9p+o8gvtH3/a/d7X7eIYAkjQBaPt/DlWFE4ej/X8XxXHu52Q1be/CNJtHWhjPym3EPiig2/FVWZjH7klq/1Tp4dXudvHwlRrgtG6Jtr7bjhptHW5d3+SymM/d711gxmMRkRERERERERE1Ll4ZCPKGouV87LiGIxGRB1LCIEsTUijKkBMFZYGqEPFkg31XTfd3jZcWNZGVd4K1Ev1j0Dsk4mIiIiIqC2EJm7IBIPRIsGtCd1OZjAakSUGo1FL/iOr81SFpJT5AH5vMSkGwIEO1jPe7/GnDpYlIiIiItrliJgYiDvfBHr0bz3j6LMgZjwavIKsXiGtt8iVrZ23d1+bg+0tRnLK78N7KCAfvtx2WXHS9LCum0In0vwzuoF6oUkt0hhTpwgGqg1+IYrM2wDzzqkwD4r3/TtvP5hn7wNzxpEwbzwJcsWPvnLffgg563pHbUKXNIhrnoIYe7iz5WwQQkC89JNlGTm5D6Tfa6ALRiuOCXwP5H9ugHSamBVmut7D6KRns3qnC1x4iIHHTjVwz4kG5l1moGda8/zEWOCuEwQuOljgiOEClx1q4LzdCzCt4iVcWfYk7iyaqaz3p8QxqDXUyWcHpPwNAOjXTd2mNYX6UBUdt8cVOPGrOcDiec4qcmhtEeANskm6bG4bOZqQlsKq0MOa8oLkOSaatXgh/0IYlpEQCnsd7AtFy+mrnC0GjoC47RUgu4+2CnHqDPV0IYATL8JQqU5kWBM3uPUErxfyrqnY8luurab/shk48wUTU55Wv3Fd4oHYmPCG9+zbXz/vle/DE8ZlNxhtSI79OscOANKSoiPIyN8PNzrvdJuCgnSftWgIxthQInH2iybG3efFFW+byKtgWBt1PrpdtSjJRUNSvMDHl7dtxy3e8OLqmqdRt6or3t76b225pqDf/LJG23U3BMmiaqLr94UAkjWHLbUMRiMnPEE2mE2r26cdEdaWHGXDEPjmmuD9Sbj290JlFQissqVMP8/pcVpuoW+Bylr1gikJ9urZo6fAR9P1r3VNve840l+wfi8a9v+IiIiIiIiIiIjIvtLGIkjNAFhdGBERUXvSBYIVNQYOhVSFpenqSNIMRnebHfdjR3GDOtgNYJ9MRERERERtYwjF+CAApvS2c0t2DbWa0O0kTUg3Efl00qGkFG5CiAQAU/wmf2OxyP/8Hk+1uZ5haB3A5gYw386yRERERES7MtF3KIx3ciE+K4aYsw7iyyoYNz0HERsXfOHM0H74bhD6us85wG4wmj7FRt4wBfLr95w2S13Xdx8BlSX2Cu9/NMQe+4ZlvRQGqRkBk4Y0rLG9+OWlT0K5NQYJRpN5GyCn7gvMf6N54ppfgfV/Ar98A3z3EeRFB0O++gDkzafYaou47mmI13+HeHsVxMf5EMefb/t5OCUGjQTGHWtZRk6fCOltPhmd2UX9uS11BQajYfMaYLO98KNIcRL2IRvqtfVYzetIx4wU2HK/gY33Gsi900DF4wZuOsaA0fIJlhXt+HOful8cryN9w1IAwLAe6vc+t0A6HnBfY6gv/pKfvuqsIocuejV4UJ/dIJhszW8GhVUOGuRng8VXkEt68ELehRhd91vwio76N8S3dRDvroH4OB/Gk19oQ9GaiMNOhXhrJcQNzwbO3O8oiL5D9cu6XBjSU/1jVm78EOX0/Fn3W7anpdd/lKjQBESkJ9muxrYpo/UbwX++kVi6oe1hGdqAHL/Qu2Hd7ScT9c+IkhQjhfRkgSdOc9a+pmC0DE0gZ6m7jY0KUXWdRF2jxJ9bJfa6w8SrP0h8vx544kuJiQ+bqNAEiQQjpYTptDMlCgOvzaDGjrR3X4E/Zjr7KfKJgiuxcsxLWH2ngcqnYvHAa5cg9u0VyHxziXaZ0pgM1Is4/CEH2F5PfpBQ0ya6MCcBIFlzyFwTnbufFK081oF+csvadmpIZFkFo9nptg4eIrC3PgsYALBwTcd+J5c73Mcpdevb6vRprNk+nqeqTj0/NdF+XceOErh9sv5d+XVzYOPcQYLRShmMRkRERERERERE1KnoQngEBDJjHdwljIgoQrI1wWiqELSihsCwNEAdKpbsUl9Yphu83h5KGtXBbglGErq4NHctJCIiIiIissHQxA3pAvOpbdxe9YV0Sa7kdm4JUefCYDRqcj2AXi0eewF8bFH+9e1lmkwRQgy2uZ6W3pFSai7RJiIiIiIifyI5BSKnD0RcvP2FMnuGtK4GEaucPiTHN8DdFl2y0fZ58u3HQ2hZM1lbA/P+iyHaf04KAAAgAElEQVRvPMneAidPh7jzzTatk8IsNTCUa4yDAKi7imeqZ7iDBKPNmRU0PA0A5LO32GvIvhMhjjsXou9QiJ67QRiRP+Ui7pljXWDtcsjnbt3xUBdQU6wKRtu+fEfSDQRvGfYhP54N85QhkIenwbz4EMiNq5rnff2eb95hqTDPPwBy9c8RbrFzQgj0zRAYnCMQGxPYr8qnb9rx9/D6lUg0NQlTGmm/zAMADNVck7q6wPmA+1pDk2b17YeQQUIdQlVQKbF0Y/BydoNgcjTXg4USjFZUJXHUY15Ua85uuaQHCzdOxCnV9oJAxakzIISA6N4PIqWb7XaI2DiIY8+GuPMtYJ8JwG4jgNOuhLjr7aDLDhutDpFZFzsQHgSGpuXHdLfdLiuDssNSTStdEwQOtjhDedvctv9Ap+2bHrwY5qReMP97C6TXizH97dfZK73NzYqoSycIPH+W/aSl+Bjf/xnJmkDOdg7G+GG9xKiZXqRebiLpUhOjbjcDPrO5hcCHvzkPUvl5k8SEh0zEXWyiz3VevL2MPwJT+3ESItuRhvcUWHJpJbp7Ai/WzvEU7vh3QO0SvFJyCS6dOhxDzz8PQ3IE4mIEhGFA9ByA9Myu2udW4srA94n/gFsT4KqSV2HvM2+1T9olQT3PzWA0ciLYPvTOEoxmMU/Y7Lcm7m5dsKgato4bIqXcIuhMxSos1ipITiW30LeALhgtxUEwGgDcMkl/TmNrReC0YP1eSQ1DZImIiIiIiIiIiDqTYk0IT1pMBmINGzdyJSKKMFWoGQAUN7YOdvRKL0obi5RlVeFqyS71b866wevtwf85NcmK7Q5h94c2IiIiIiIiBUOorxMzGYwWEbWm+thSF9JNRD4xHd0ACi8hxJkA5kspCx0scz6A2/wmz5ZSbtItI6VcK4R4GcC52yfFAZgthJioCzoTQhwP4JwWkxoA3G63nUREREREFKLs3iEt1iDUFzEdNNjBD+kyyImwFT86aFGLaqUEtqyBvGQCUFkafAGXC+LWVyAOtRmgRu0nNSNgUrxswEHuRViUfJDlov0bNiJJblPP3PoXMHxswGRZVgjk/gK8+2RIzVXqM9hW+FC4CcMA7nsP8oZ/6gu9/hDkyZdBZHRHluY86ZZYdR8h7zgb4vDTwtDS0OhCKMTKHyHjioDyIsiHpjfP+PMHyMuPAN5c4QuFu/WM5nmrf4a88mjgtd8hMsIT6hQOsrTAtz3WB55KkUu/AFYt2/E4Bl7sVbcc3yftb7v+9F/mQtZUYnDRHwACl9taLjFcfY0Y4mOAek/g9BqrwJEt64ABu9tun119r7f3o4rtYLRUAVU0w+YyZ4P1pZQ4/TkTX+fqy/yxfjSGNKyzV+EJF0AMGuWoDf7E+BMhxp/oaJmh+48Avgx87g1GPDbG9sOgxvWtpheEKRhtTP/IXJg3fqjAt2vV7+XnK4CKWom0pNDXrQ0iMhuByhLgtQcghcCAC+7AHj2AleprE1vplRZyc9qFEALnHihw0GCJcfebKAlyrWdG1XrI3wvQbT0A7Bcwv6YeqG+UiI+N3MWZ7nqJ5X8DK/IkLnzV3md72Ubg7APsr6OyVuL4WSbytoeDbK0ATn9OIrurxIRhAmVuiV82AUO7A3268UJUCj9daI4rym6JJNf9jrHPXIa/1/5gXfCUy2Fc9l/tbJchkJ6kDhIqc3XDNuEs9aeg0l45XQ8ihEBynLpEDYPRyInGBuv5W2zuS0Y5q6Avu+M1htnYDf3wN4n9duuY790yZznWKLMIRnMaYL1m+5UBVZpTJCmaIEcrh+0OLFgVOH1FHrBgpcTI3kBOiu+1rg2yGZc7fG2IiIiIiIiIiIioYxU3qH/oVoUIERF1hCxNf1TjrUKttwZJ2wPOyhtL4IXiIjiow9WSDfVFlttMN0zphSECbzIZacUN6rBK3WtARERERERklwFNMFqw8aAUklpN6HaSJqSbiHwYjLbzOQ/Af4UQ7wJ4B8A3UkrlZdVCiDEAbgLgP1pyK4D/s7Gu27Yvm7798QEAFgghpkkpV7dYTzyACwA87Lf8w1bha0REREREFB4iIQly4Ejgrz8cLdcoYpXTY538rm818rWpiNcL4bJfqWyoh7xnGvDlO/YWOO0KiAknQeyxr+11UDtKy1JOvrH0gaDBaCdVvaedJ+88B3BXQZx4YfO095+GfPJawNMYSkuVxCX3AsefD5HUMXdnEOMmQY7YD/jTImjih8+BY8/GIPVLjTVxg+GFAZfijh6yJB8is2MuoPFqzqOLBW9BvvuMemZ5EbB0AeS3HwTOq6kEFs8DJk8LXyPbQL7zBOR/bgS86guvVPat+9l2MFq8WYdEWQd5zzRkbu4CKJarrpPwmOrQgJREoLg6cLpbJOlXuml12IPRtpZLeGz+pmI3CGag5rOQq76GTOunTbAMRcvwlGBgw3p9gRbE7a8DEyxCDiNoaI46KA4AcuOHBASj5YcrGK1fZAIrTh4jcMc8/f7HmS+Y+Oiy0C9S1NVstPzx79NXIafNxN59BVbmB98X6pXWOUKzBucI/HqLgRcWS6zOB95aFvjcBjWsQ99LR0EC6Ba/B7DbT8q6St1AzwgFwi1YKXHWiyYKqpwt994vEk+dEbxck2cXyR2haC3N+trE2iKBS9+QO77LLh4v8PipAjGuzvFeU+egDZGNks1M1tZAXncCsHxR8ML7ToSY/kDQYhld1MFoJa7AsOVgVPWoaAMxBZCsCRoKFhBE1Io3yPFp4WbI+m0Q8c7C/6KN1R6R3W5raHf9fmuTucsl7p1it1XhVW6zX2lSahE2qzudlhwPuBXhi2VuoKRaolITjJaa6PzLoWea+vWevURi9hLf9JuPFbhjsoA7SL+3LXynYYiIiIiIiIiIiKgdFDWqg9FUIUJERB0h26I/Km4sQD/XoO1/6+9omBkXeA2U1WD0WtONLq4UB60MD/bJREREREQUKYZgMFp7cmuC0ZINBqMRWWEw2s4pEcBZ2/+ZQoi1ADYCqATgBZABYE8AOYplywAcJaUMOhRUSvm3EGIKgM8BxG2fPA7ASiHEzwDWA0gFMBqA/5DTeQBucfa0iIiIiIgoZAdOchyM1iDilNPjnBxJmt7gZTwNgMv+AF85+27boWjio60QaZm266YOkNVTOTnFa51mMq52Ma4te9SyjHzkcmCf8RB9h0Ku+x3y0StCbmaAjB4Q76+HMGwmMUWQuOddyMl9tPPl3+sgAAzTDCKvNxKwKbYvdmvcGLjwX38A7RSMVt8o8f6vEj9t8g0CX6m5JqmLaT3aXL71KLByqXreZ69DdHAwmly5DPLV+4Dv5jledp9tv9gum25uT+tZNBdpCXsDAxRtgYGK8m3wnUpqrUu8Ohit1ggSjBZms74JHirVxLA51n9ItvqzsKkM2NYgkRhnr6IPfrVu26SaT5WBg60LnQtx3X8gOjDFJileoG83YHNZ4LzcuCE4Fv/P3n2HR1Htfxx/n9n0QhKSUIKA0ouI2EWxYBd7vfZesKBe61WvXq+/a0WvDXvvHbH3ih0vYgEJiNIJSSC975zfH5uQsufszm42Db+v5+Fhd+a0bJmd2Z3zmXdbLVvrsyTLRWjbTWPSTJCxeYobDlVcOdP8/Lz1Mywr1gzKju4xtwYRtXxNFa2CylL6Z2R4arOjAsI6woAsxTUHBB67q6ZoDry+gD/9gddEpn89z6w8aUO4SU5DsbWd4orwf/faMs2seYHwsb3HKHYcGv45K6/RnPx45KFoACNN35aHcN0b5hfDq3Ph1Tbbh/s+1Ww1CE7buZskVokNXDcQYOfXgQAsvw6Es7b6F2aZG3EdHVw3wjZcDXOWml+D3WD3FAB981neQtEAdcvrnj4Lc9IgvyB4ebEvmyRdE9H41lUGngtfmB0I26e9UpBqPmSmstb7/osQnoK7V/wOQzfv+LF0Ea+7wmPzIM4hZHDygtWQX6AZ0bfzP3Nt4V9piVBhDDOzbyts+5yj+wUCmk0WFkCZZVPYK4pcvf4edmX/85Zmh81U2EBICYwUQgghhBBCCCGEEKJnKayzhPAkSAiPEKJ7yIjrTbxKoF4H/whRWLeawUnDNtw26eXLIskJ/gEl1We/QG6lv7zTg9G01hTWrTKu6yPbZCGEEEIIIUQ7OZgvOO/iYT6oiIjWmirXMEkLSAlxLCqEkGC0vwIHGNn4L5yPgJO11iu8Nq61/lQpdSjwOM3hZwrYpvGfyXPAGVpr+UQUQgghhBCik6iDz0A/cWNEdazBaObvvMxcD1cIaKiHRG8zNPXK3+Gpmz2VVVc8KKFoPYDKyEYPGQtLfm21PE3bw6/+ud0qrnxiP+JpCNu+fv95OPkq9CnbtnusLanjL+kWoWgAKqsPfFiK3tMya7nxSh0jQgS+5CcMNwejLV8E2+/d/kGGUVGj2f8ul9mLw5cdVhem0NoQX2ss+SWygcWYfuVe9J1/DyS/RWF0nffgsSz/+g23M/0l1nLr15ZiCkazBX1UOylowBQzoH/52rg8WlOfcXngs9gHo40MvtgnEHhafi+EzQd4a2fWj/axKTTT1t0Tsr665TXUjvt566yDjepnCUZL2yJwGYUWinzt/2zNToXB2e1uxuqK/Ry+WOTnHctb/qlvNFdNiTIYzbJr47QNwSspYkCWt2C03B76O9aY/jDvz+35lC2pU4nsXfEBqbpqw/refsOLqlFx6IxLFhVo9vqvu+F1ed0bmluPUFy8d+jP3lf+FwhS62gFZTrigI8zntQcsZUmIyWy157W2hi81Z5AraB1xjo6dPiXx35DjTN4LJqwY/WwrFW9MOU3Rr5ukL+nf/0WPn7ZU1n1+A+oOG8/V2anmpcX+7Jb7ft44WooqYLsMBdZs4UTOQpSE83rTAFIQlg1hD+uZcXiHh+MFuoQyOtmKzNFcdhWihfnhD5GmPWj5tJ9On9jaPtc6ZNu3i6sNZ/jBNi3Pf0zID0Jyg0BaHOXaesY0pPsfdkM8Bje+/hXLpVhtnsSjCaEEEIIIYQQQgghRM/h1w0U1681rsuNlxAeIUT34CiHnPh+rK5bFrSusH618XZLuQnmE8hSfPYfkKv8FRGOsv0q3XKq3Srjutx4y0lwQgghhBBCCOGRwnxuvtt2boRotzpdS4M2ny+aGuJYVAghwWgbozuBlcBOwGAP5SuB94EZWuuPoulQa/22Umpz4DrgaCDLUvQbYLrW+pVo+hFCCCGEEEJET+UOQE85Bd56zHOdOhVvXJ4QyZGk9vBFWH342ZG6aBX6qZvh1fs9datOvQb2O8FTWdEN7LhfUDDaiNpFZPhLKPW1nombngSXjs73FIoGwLzZ8O5TsRppwA77wiFnx7bNdlKJSehBI2BZfvBKfyCXPC1J0T8DVpcGF1kZH5wEpYGHfurNOwWB+udPdthjtHly+TdLNNPfc6msg303V0zdVZEQFyj7eb7mwc81v6zSaA3D+8C5uzvsPqq5rae+0Z5C0QBG1Rn+xpaKzFdIBCC7c04G0n4/vPs0+qYzmxdm9YH15hNHvRpRu8hz2Qx/8xOd6Rqe9EbrqjAmEdiCPgBqVSJJ2jDz/Zv30FXlqJT2pzw9/11koWgAXrMKh+SAzzEHFyxc4y0YLb9AM9983hwATw6dxfgFP5tX5g5A/eNB1LZ7ehtwJxjRT/H+/ODHO3+Lv0H5la1eu4Vx7Q9G230kKNWxYRWX7O3wzi/m/ZA35mmumuK9rfoGzRNfa16ao1lTZi7jtN3nKS2mf8ZQT+3bgn66K718EfrmqTDvC1KBKbxrLJdAPen+MsoNV8stCnOu6H/e1kFhfVe8qjl5oiY7zf7aef676IInAUqrvZd966fo+sm60GVITmTBX7ZgFCFsujq7V69agj57F09l1dWPoSIIewq8/4PfFMW+3iSY9k3CKKoIH4xmC3NSCtIs+0vhAoKEaMXDdyIUruz4cXSwKLOhgzxwvKK6TvPWz/bPyMtf0Vy6T2z6i4RtPAN7w5Ki4OWLCuxt2R4vR8HIvjBnafC6H0NkhNu2V6Fss6l5m9vWK/8L35YEowkhhBBCCCGEEEII0XOsqy/ExW9cZwsSEkKIrtAnob8xGG1t3Wrj7VZ14/OMyxNVEj7i8BvOT630h7jqTQcprFtjXZebIGGVQgghhBBCiPZxlPmkY+1lPqiISKhjylRf++dgCbExk2C0jYzWeiYwE0AplQmMBQYCfYEUwAFKgPXAAuAnrbX5V4vI+l0LTFVKXUBzKFs/AsFrK4G5Wus/2tuPEEIIIYQQInrq0hnoJT/DgjmeytfHIhjNS5JDQ+jZkbq0GH3WJFgbYoZnC+rlxai+Az2VFd2DGrJ50FTbBOo5c/3D3JpzSavlU3dTpNaVeJia2+jPBej3n4vFMAN23A/nltdi114sDRxuDkZzmw/7B2RagtHi8vDjUK2SSdOVAFzc52buWnMUNJ5b8/o8l0dPVhy7naKmPhBSp5TirZ80B97T/KX3e79q/rcUnjhV8cF8zQF3u9S3+Obh55Uw80eXN89z2G9cINzmTY8BM70bisnxF3sqa5SZG33dCOgH/wnP3tZ6YTtD0QDSdCUDkytZXh0+RSnLLdlwu2VIWlvrdFrEwWjVKtkcjAbo8/dCPfJN2PGFsq5Sc+zDkScnOJasJK01Sil0Qz0qLp74OMWQ5FIWVWYElV1YoGl6QJrqmcz60T6+ZTc75D35pXnlkLGox3/o8FCwSI2ynLv821oH9cJv6L17A+CiKPZlG8v+39pruLbPtfjxhexLKfjH/h2f2rPbSPu67/6ENaWafhnenoeLX9bc83Ho16TT9qpIpUUM7Bc+TMLnQEayp2F0C3r1n+hjIwgx8q8zBqMVVzS/10ye/Dr4cfO78NqPmtN2NterrtN8GiY7M5RIgtFenxd9uospGEWIWErqwl/+dHkJ+ujRnsqqadNR+xwbUfu2ELNiX29rEOx2mwa2+8Z6leH7DBVOZNtfqpBgNBGJhvqwRXTRqhCfmj1DqE/OSHaNM1IUs87zUVKlueldzS3vmlu++2OX8yd3blKkKXgZYFR/xWf5hlDHSigq1+SkBz8Atq/TlIKR/RRzlgYXWLDK/ignmb/iC2n7zSKvY1NVF/r4SgghhBBCCCGEEEII0X0U1ttDeHLiJRhNCNF95Mabg8EKW4ShFdabg9FsQY9KKVJ9aZT5S4LWVfrDXAWwA9jGn6AS6eXL6uTRCCGEEEIIITY2DuZz7Ny2cyNEu1WFOKZMccJc5VmIv7guvm686Eha6xKt9Zda6+e11ndqrW/UWv9Haz1Da/2s1npuLELR2vRZp7X+RGv9uNb6Jq313VrrVyUUTQghhBBCiK6nfD7Uza/BIWfCkM1hy11Q/30H9jZPRq9TCcblCaHzTlqzzSJvqT50MBrvPOktFG2nKain50koWk80aIRx8Q2F13BT2nNsORC23RRuOUJx46EKKuwhT0EcB+Z94b38VrvB+EnBywePhOMuQV3/vPe2OpvlSh20uFLHgExzkX/nXk3i6AoyRxUyeNginsw4jgeyzggqd+rjmqRzXDIvcPGd5eKc6W8VitbkqW80PyzV3PZ+61C0DUPScNVrzfXyC0L/aU22qpnrraBNtYf0i3bSBcuDQ9G8ik+AjOzmfwlJrVara59k5KbhQ9EAsvzrN9yOw0+a5eoilZYv0FPMHwEAVDshUpzy56I9BlnabH9DdD+i+Fq8BXTBctx/HoM7KRG9S1Lg/93TcCcl4j54DSPWmIPL8n8v4YP5GudM/4bXuHOmn49/a/15ZgtG234z2CQrxHZq2PhuGQYwsq95TIXlUNSQAjtNAWC9Lwu/Mifu7Fn5Me+5FzJ5FIwbEFg2MKs56MJRMHkUfHW5w4RBHf8YKKX44Wr7199eAxl/W62Z8Un4skHBaCXFbD0Y0kKEDAJkp4JjS/XrhvRD/4qofLZ/nXF5qDAiN0Sw7ofz7fU+XAB1wRfs9cxrMFp9g+aDEOMQoqvtNKzjtyn6py9xz5qEu0cG7rGbo+d8hF6/Fr1/X0/11RUPwBHnRdxvji0YLS6HSpViXDeqvyLZEghU5OGC3rZDWqXs2/hKCUYTkfCHD0ajyDzhoScJ9fVQNLvHmSmKE3ewV7QFpnUkWzDaGPOcHAB+s8wvtI3eUTDYnFPM74X2fqIJzVRKcfLE2HymaA217dhPE0IIIYQQQgghhBBCdJ6WgUItZcT1JtFJMq4TQoiukJtgCUZrDBNztZ8iS9ijLVQNIMVn/mG6yu2CYDTLNjk3oX+3PAdNCCGEEEII0bM4lnlorpZgtFirDHFMaTsOFUIEdOF144UQQgghhBBCdDaVlYu6+O7WC7feHV1fC5+80mpxvSUYLT6iYDQPX4Q1hJ4ErH8MH2qlHv4aNXIrr6MS3Y0lGE0BlxRO57Lbj2+1XFdGEIy2zmPiVlw86q3VqJR07213Nz7Lm9PfnEyWl6WwT7EOWBk/gFPzHmr3cK6Z5fJ+iOCYH5fDkkLNJlnwZ7G3NveveLd9g6oIvpJjzH0xK6pq6pJ7UAcHh9G1NarI5cMF4Sf5Z7W5amWmW0qFz/vrOzXB/lqpUWGSnr54HQ4/x3NfLX22UIec0B9KU7aUdl30dSfCz1+ZCz51MyP63MBb7B+06t25NTz5c/Bn1563u8y/zmFUf0VBmebrJeamD96ycRC2YLS0jHB/RpcYFeKizmc86TJz0kHoL9+iyGdJYQByGwrZZvET7P7QjG5z4t2EQYpR/cyBE2/+pDndkIPZ1hNfa085r07b90tpEQlxipsPV5z7rL0BW8hPd6TrauGD5yKq09tv3sCHCkYrCRFQlmQJNwKYOdf+OPscePN8h33GKt77VbPfncHv87Ia0FqHff2uKIFqDxk2QnSF3UfClHEd24deV4A+d3LzguWL0BcFf6baqOfnowYMjarvbEs+bLGvN1WOORgtJQGy02DF+uB1RRWawFGHXahwolRLkGyFBKOJSIQLiwcoXNnx4+hgoXanot1zHN0fBvWGZYYc1pUlUFKlyUzpvP1SW7ZrXoaiV5KmrCZ43dJ1mp0Nj4AtZE0pe+D52hBhj6H2oUIZGeI4IVIzPtFcvHf3OE4QQgghhBBCCCGEEELYNQUKtdUnRIiQEEJ0Bdt2qdxfSrW/imq3kgZtvnKLLVQNINVyjl2l5cKkHcm2Tc6Nj+GPOEIIIYQQQoi/LAfzPDS37UXjRbtVWY4pk5wUfCqSybpC/PVIMJoQQgghhBBC/MUppeBfT6PbBKPVYZ41mRDJkaTb/mA0luWHXr/VbhKK1sOplHT7JOk/F6CrylsFlulij2FnkdjtsJ4digZguVJHy4BC2wTqjvDOL+HLvPGTZt+xyjrpu6Vkt4ojy19t36BsYVUxomuq0HdeHFmlbfdAHX8ZaqvdPBUf2ddbs5ltgtEy/KWsiN/E87BSQmSfVavkkHX1z1+jogxGu+W96H9AqWrKlJjzkT0UrdHIukXG5Wvj7A/wjE81dx+j+GiBPSjrkHDBaOmd+CaMQF4mpCWag1xenwcNxx2ML+1yCv051jZy/UWgG+DzWbDrIR042sgcOF7x25rgJ+yD+VBdp0lOCB3O8OIcD6logNMmDFaXFKGAqbs5fP27y9PfmtvJ7knBaI/+O+I6OZZgtKI/VgHmbdIC8zmdACRaQj1WlWge/8r+XM25ymH8wMBznWHZhPndwHsgPcxFzos6/wLAoofyOY3/VIvbjf8cZV8XapljWZeaqNhlBBy3vQq7XWsvffCg6CrudhjqojtQvT3uzBhkp5mDW4t82VQ65tS01MRACKU5GC18n6EOaVMTzeOplGA0EYlw34kArFziKbyzOwsVNBvtn6WU4sDxihmfmBv/aAEcvnV0bUfDdlzrc2Bgb/h1VfC6lYZtU+i2FAMywweetxVtMFpeDHOd7/9Mc/HesWtPCCGEEEIIIYQQQgjRMdbWWUJ4QoQICSFEVwi1XSqsX021337VvlDBYrZgtCp/558wUlhnuBoksk0WQgghhBBCxIZjmYfman8nj2TjV2k5pkz19aAJJUJ0EQlGE0IIIYQQQgiBchz05CPh45c2LKtTCcayCZGE0GsPATf1ddZVurwElpvDa5qoY/8ewYBEd6X+/Sz6mmON6/R/L0Jd9XDzgu/ej23nQ8aizv5PbNvsCo7lzek2fyHdmcFoXlz0gmbw1PCz4BPcWu5ZcyH9G8wn+nhWWYp2XZRjCZFrB712BfrYzb1XcBzUuTejjpoWUT+j+nmbBJ/ltp5h39u/LqJ+UkMFozmhg9Goju4ksPIazUe/RVUVgN//KMW971Z49rawZYdbgtFCmb0o8LibAg0AhveBUf2bgtFKjGVUWgyTBWJIKcUWm8BXv5vXf1mQya6X3UfRf18xrk9xK0nR1QDoq4+GT6tQvu5x1ZoDt1Dc+l7we6a6Ht6fDwdvGZt+VNv35ao/Nty86XBlDUYbmtszAk50VQU8Mz3ietmWbU/x3B/RFenG98S5z9r3H5MtoR6HzLDXeWVqcygaBAKSbP4sgnFhMiSLOv8CwB1GqfDBXEFBXBEEeTnGdap10FcE4V/hlrWqp+x9GscZRUhZqMfHcXrGeztSes7HUdVT/3kRtcvB7e7f9v6tclIp9vU2rktJsNcrtp8Hv4Ftr8txAqGiJtX14Hc1vo30dSBizEswWsEy+HMBbDam48fTBdrzTrn5MHsw2pEPuLgPdt4+qWvZYPicwLG46ThilSVPOVTI2iZZkY8t2mC0AVmRh7DZ/F4Yk2aEEEIIIYQQQgghhBAdrLDeEowWLyE8QojuJTMumzgVT4MO/r2tsG41Va75B+E0XwbJPvOFtwBSHPMPzJX+zj9hRLbJQgghhBBCiI6ksASj4WE+qIiILWzbdgwqhGgmwWhCCCGEEEIIIQLaBJjUK/OsyYRIjiS1h8mT//sURgSnkujSYvQBeaHrjtwHVC0AACAASURBVNwKttkzggGJbmvH/ezr/vfJhpu6sgyW/Nr+/jJzUSdfCZsMhS13QSWGCXrqCWxhX27zF9J5GbGZ0BxLh91n/8L8v2suJtMtZVLVbDatX9b+zlw3EFjVyxycES09/3v0xVOgtjp0wUPPQg0aAcnpMG7HwO0IjbJfrLKVTH/rGfZ5DeaTpGxSzNmYAFSrpNCVi6MLsHv/V6hriKoqAP3euAWKb/dUdmRt5MFo81aA1pqFa8zvo202bRHpUGFJOEjrZumELRy7veKr381/26wfNbsdfRiFVbvCrOD1uQ1Fre7rG05H/fOxjhhmxHYcCtmp5vCbQ+91qbvPIc5nj+NY5yE0B0C1/fFv2cINN/MyFUdto3hxTvDje8x2PSQ053PDE++BLZSx2NcbPpsJU05utdx1NT+tsLdneoXW1GvmWeokxcPebTJkBveGeB/UGy5k9dsaD8FoFZF9lh6yZWD7kJkSLvhLeQrlsod/RR5SplQPef2JbkHX1qAvCrHPbrPN5JiEokFge26zIt785k358QNy+u+FaQtS5CHL1RZ0pAgdJFtVB+lhdpmEALwFowH8+HmPDkbz8vVQNFISFZvnwS+W8OL7P3M5e9fYB2ObhAozy8s0B4ytWm9+YKxtKRgQYTCaUoF9n2jkdc9cZyGEEEIIIYQQQgghRAdxtZ+iugLjutwECeERQnQvjnLIje/H6rrlQevW1q+m2m8+6adPmFCxVJ8lGM2N7mKh0aryV1DhLzOuk22yEEIIIYQQIhYcZQlG0xKMFmtVlmPKFMsxqBCimQSjCSGEEEIIIYQIcFrPkqxT5lSctsFoWmv46i30G49CYgpqjyObJ7674b8I0zMuR/3twsDtL99Ev/M0VJXD9x+Grjh6W9TVj6B8Uc7uFN2KSkpBJyRBXU3wyrUr0HW1qIREWL82Nv2deDnq8HNi0la34VjeCy3ehwN6+YGe8Z7Zq+IDzl9/X+wb/u4D2PPodjej/X54ZQb663dgzsdhy6vrnkFNPqLd/eZlQloiVNSGLpflL2l1v3+EwWiJcYEJ/KYJ+dVOmCDBZflorSMO3Hnjp/BpCQOzYPl687p9Kj7w3FdffwGD65ayNGGw5zoAa8thgSX3bWRjaJ3WGsotg0ztvskCZ++iOO9Z83PwxjzNf4+GIrIwBTrk+lsHo/H+s+jJh6N2OqADRmqmi1ah774UPn45sGDPo1HTbsOXlcuULRRPfm3+2xKmukwZB3uPVfRKgplzNWvLYevBiiv2VZSGyTts4rT98W/FYrTfv2E/5Z5jFBU1mrd/CazulQQ3HqbYa0z3DqbS5evRj/0fvHRPVPVtwWilvgz07DdRbYLRTAF2LVUatn2LCswhZwBbD4LUxNaPcXycYmhuIAStrYUFmkDckV24Mbb0zOmKY7brnDAWITrczPujqqaueTJmQ8gJ8dv/mjhzemzKnLfpvf/WQHCSULGHoENbmJNSgX0ym8paCUYT3ug1S72VW74ozCdU9xbq3dbenM7thyh+WWXu4ZxnNKfupEmI6/hHzxak6KjAcZzJKkuesm3b43MgNw0ykvG8n5oUF30YaqQhbEIIIYQQQgghhBBCiJ5tfUMRfsxXtMuN93glPyGE6ES5Cf2NwWiFdaupds0neIQLFUvxpRuXV/nLIx9gOxTV2y9OKttkIYQQQgghRCw4mM9z120vGi/ardJyTGkL5xZCNJNgNCGEEEIIIYQQAW1S/utUvLFYgq/NZMrXHkTfPm3DXf3xSzBtOurI88G1pFS0odevha/fRd94hrexjtkOdf/nUU/sFN3UUdPg6VvM6169D/52YSD0Jhb2PjY27XQnjiV4pWUwWloDPSUYbUTd4g5pV193IozfGZU7oH3t/OdU+OB5T2XVebfEJBQNAhPaR/WDOWHyEzLd1sFcAxpWRdaP1iTHmwPYalSYYLTqCiheDTl5EfX51e/m2f+nT1LMOEaxuhQG9oZZP8Jh97X+oWVi1VeMq/3Fc18KOGf9/Vze98aIxvjst5oFloy5UU3nm83/HirNV+sk3ZKI0A04juKxkxWnPB78PCwpgqJyTaHlwqfZ/uKgZfqKw+Gu91ETdo31UFv3U18HxavRR45oveLDF9DfvAcvLODALbKswWgAb/0Mb/3cev03SzQPfBY+MKeJ0/bHv/o6WPMnDBgKQE664s1pPoorNAVlgSA9n9O992N0VQX6lO2gYFlkFTNyAvuA5evJ9JvTPkp8mYH3ShsrSwyFW6iqC1620HzBcgBuPdL82TiqnzkYbUlh6P4BijxeAHhwNhw6oXs/x0JEQr/9RGQV0jJQry1DJcYuHax3auR1Ut1Kstf8BAR/Hnl5P4cKOkoNEYwWLsRWCGj8LmTWQ94KL1/UsYPpYLagL2h/MNq5uysemW3v4LN82GtM+/rwwhQqDYEwM1sw2hpLMJqtLccJ7LfvM1bx4hxv+6pJ5q/3PElPiu2+TDQB2kIIIYQQQgghhBBC/FXNLnmfd4tf6tQ+G7Q5FA3CBwkJIURXsAWE/VA+2zqRP1yoWKpjnpRe6fd4wkgI+VW/8PH611lZuxTd9iKMbdRrw0kyQJyKJzMuu91jEUIIIYQQQghHmc+1z6/6hat/9zjHs5PFqXiGJI9k3+yj6NNNv6/6ueJ7Pi95hzV1K9CNJ09W+M1zjFIcczi3EKKZBKMJIYQQQgghhAjwtQ5LqlMJxmLxLYrpyjL0/VcFldHP3AaHToUwP9xvUFKMfupmz0NVh02ViZQbIXXK1WhLMJqecTkcdDp89Xb7+7nkHlTGRnhiiGMJPGsRUNgroYE0fx0VlqsaRiojGQb1hhN2VIzoozjk3thdFWTLmnkxayvIu8/ACZdFVVUvW4g+ZzKUFnmuo46+IKq+bCYMUsxZGnoSfE5D66CqvAZLmpeFem46yVlnUUHwa6Xa8RBw8sf8iILRyms0i9ea1+0zRhEfpxjU+LY9ZALMPMfh9g9cVq6HfdT3XD/7cBy8h1gx+UgunvscN/ovo8SX5bnaxS/Z+9h6kEJrjT57krmAUjB0c+9j7AJ7jVFgeRz7XOySZgmAyW0wp0npaXvDY9+jhm0RoxG2aPvPBejp58Ev34DfcnJ2RQnMepi9j4wuVLMhgk1aUDAawNKFG4LRmmSnKbJ7ykV93nky8lA0QB0+FXY9FP3QtWQsNe9Pljq9YN0adEUpKi1jw/JVYYLRKmuDX5+/rbG/L3cYYt5fzMs0v9bXVYbfjoQKUtosB+oaYJcRiulHKJLiZX9V9Hx6+SL0pQfByiXeKw0Zi7rtzZiGogHE+RSZKVBS5b1OiltFzrLvIC66YDRbmJNSkGrexAFQKcFowov3n/Nedll+x42jE4QMRmtn21sOVEwZFwi7Nfnbgy7Fd8QuIFy/+Rj6iRuhohRGb4O6/D5U30H4QwQp9k4xryutNi+3teVrPA9tt5Hw4hxv421PMFqs1fshQc5QEUIIIYQQQgghhBDCkxq3inWW3+I7Wy9fJklOmIvoCSFEF8hNMJ+fZgsVC9QJPXE+xXJuZVU7g9Hyq37h7uX/wo89hNKL3Ph+1vACIYQQQgghhIiEwnxsUa/rus33UiZr61cxv/JHLht8C73jc7t6OK3MLf+Kh1fdivY4vynV11MmlwjRdeS0UyGEEEIIIYQQAU7rL7NswWitJjB+PguqyoMLFa+GFYtCz3xtqbQIViz2VnboONjzaG9lRY+iEhLRA4fD8kXG9fpvo0M3cOhZMPOB0GV2Owx1cPe8akW72U52cVuE9fgbGFy/gl99YyNq+tSSx3lw9TmoM6+H3AEwYAgMH49Kaj27+6O/O+xxe/vD0ZR22b/i3Xa3Y6Mf/CcMGQP9N4NNR6Mc+4lCuqEeFs6FkkIoKULfdKb3jtIyUfd/FoMRt3bgeMVDX4Tevmb717W6n1e/KqI+nJpKkmvWQ7whGE2FP9lVf/s+ats9Pff380r7ugmDgpcdNKqag+J+gvVr0Vce6bkffHGoa59C7X4YWmt+nrwpQ4cuoM6xJH55NLo/DO2j0M9Mtxfadk9UVp929dPR+mdAryQoqzGvr7CEvOT47UGB+pRt4e0CVHpmxOPRtdUw/3soWA6JyZDQ/DzpKw7z1sZ7T5N+wmVM3U1x36cRhOdFyDGFwS7Lh4n7d1if7aHr62DF74EQ283GBAXO6toa9It3Rd7wgCFw4GmonP6oG1+m9yINtwY/NtVOCrUqAf/vi5mXuhUj+kJuumJlSejnyPQazF9jLnvweHs7tnC6dZUhuweguMI8xtMnKR48QU48FRsP3dAAC/9nD/y06TMQ9fgPHRZk3Sc9wmA0XUV2wS8wIHhdsYfz1l3LMa2jIC1E7lul/Tx7ITbQL9zpvfCqP9CVZajUXh03oA5QVav5/k/48nf7Z3wsNhfPneHQa5r5WHR9Ffxzlstl+yjSk9rXmf7qbfTNZzcv+P5D9Pl7oZ+db/0KzOdARrI5lLWsBrTWQdtMv+WwuikYbZMse6BxW+0NRtthCHwTQTZmKDX1EowmhBBCCCGEEEIIIURPFC5ESAghukqf+Mi3T7lh6tgmpVe5FbjajTqU7OP1r7c7FA1kmyyEEEIIIYSIHZ+K3QVHO1uZfz0/lM9mr96HdvVQWvlg3WueQ9HAHs4thGgmp50KIYQQQgghhAhwWn+ZVa/MMycTWhTTX75pb69oFVSWeepaf/Oep3IA6qGvUL6e+8WbCGPH/azBaKxfG7Kq2vlAdIhgNHXpvTDl5HYMrpvz2YLR/M23/Q0cWPEWvyaZg9GG5MABNR/wx+pA8kyGv5Q9Kz/muLLngMZAsZb++zZqmz023J00HIbmwu+GC4OM7g/PnO6w1fXhg9P2q3iPvv7Qz3d76SsOD9wYtgXc9Cqq78DgMvO/R//jCFhnSd0JJSMb9fDXqH6D2znSYHuMgtREqLSEVAFk+4tb3c9rWB1RHw4uyW61cV2NCpEC0uS7DyLq7+cV5i/+05Ng0+zWy/Tns9D/dwpUe0gwarLrodBnE9TkI1Cb7wCAUor+Bx/G6bMf497eZ4dpILSDxgeCDPQ7T1rL9IRQRqUUo/rBd39GVi83RDAaAG8+Csf8PaI29eez0FcdFdlATJYuxL19GndP+y/3fdr+5mwcgrdtetlCOiYWqH30H/PR/zoBlvwSWDB+Elz3NCq7X2B9/o/o07b31JZ65Fv49Rv0gh9Qg0fCvsdvaAcgI0SO4oOZp3HFfeOobQzwnLaHIjNM7qJpu/fbGvP2Y2R/+6PfO9W8vNhTMJp5eY5crElsRPTqPwPb4EXzIq+83/EdFooGsO2mivwC7ycMpLqVxGnzyeWl1eZAopZsQUcKSIwLBKS5hjJLCjUTh3bHTwHRrRSGSAc2WTQPtowwrLALvTjH5aRHNbVh5nfEYpuRlqS47zjF1GfMb9r/vKW56yPNoyc5HL519P3ph64NXrj6T9yv3gbMgbiOgl6WfZx6P9Q2BIeX+U0bFsDXOPQBEWQOJ7czGO34HRTfLIlNwHBNvf2xEEIIIYQQQgghhBBCdF99EvK6eghCCGEU6fZJoegTJlgs1TIpXaOpcatIsQSnhbOkemFU9drqEy/bZCGEEEIIIURs2I5/eoqlNZb5h12kQdeztGZxRHUy43p30GiE2HhEF1EvhBBCCCGEEGLj0yJszI+DX5mztBMaF+v6OpjzsbU5/c7T3vt+5lZPxdTLi1DxCd7bFT2OOukf0VfeZg84zBBulJyKuvFl1EGnbdyherYrEeoWYT0N9VxcfAc7VX0ZVGxYVh3vXejw339uxcwVRzFzxVE8vvoMji97zhrsoy/aH/e+K9HFgeCwOJ/iob2WkhVX06rccfGf8dOf2zF+zgP8cOJi+idYUmUa3V5wacj16tIZOF/UwuY7hiznyeKf0LeeE7RYNzSgrz46ulA0QL22rENC0QCSExT7mrPtAOiVBPH7HdtqWd4++0TUh4NLsq4xrqt2PASjrf4TbUsSMVi2zrx88zxwnOZXoF5fiP7X8ZGFoo2biPN/z+NMm74hFK2JOv4yblp7FdtXfbthWZyu5+QSe8CZyUHlb6ILlsNSywlscfEwcUpEbXaVcZtEHhSRO2mXkOv1vf9A+/0hy7QqX7wmNqFoTWY+AMeO5tODf45dm22YgtFYlt9h/UVD19ag330afeKE5lA0gHlfoA8ZjDvjCvQz0z2HoqEUDB6FOvRsnCsfQh13SatQNCBk0NlF/W6j1m3+XL7rI82/3wy93WgbjKa1ZmGBuezIvvZ2sm3BaKE/ngAokmA08Regp58XXSjaFjuhIgzCjNQBW0RWPsWtJsMtNa5rcKG6LnR921bJcQJhTqmJ5vUnPhqbECEhWsmf29Uj8GxpseaYh8KHosXS0dsq4kKc/VBeA0c+4PLdH9G9P92Vf/DpqgxuyL6MF9MPp0o17+j4f7M/Nz4ncIxmU2rIo/Zb8sSb8tDzIghGaxu6FqlTJsYu5LGmPmZNCSGEEEIIIYQQQgghOtHW6Tt39RCEEMKod3wumyWN9Fx+dOqEsMFmqSHWV/jLPffVUrW/kgq/+XfrSG3dS7bJQgghhBBCiNgYkzqhq4fQLjWuec5TVymuX4s2zSux8BHH2NStOnBEQmwczLPchRBCCCGEEEL89TjNwRT1yj5rsikYjSW/QGWZvb33n43RwALUy4tRfQfGtE3R/aheveHvd6JvvyDyuo4DF94BB5wKC75Hr1mGGrU1jN4GlTugA0bbzdhC31qGEfkbyHJL+GDp/nydsj0/Jo7HVQ4j6hax6z/uoFefzYA+6BMuh6du9tbvs7ehn70NZnwCq/5gl5vO5Fey+Dh1N4p92WxV8z92qP4OBejbL2A88JOTyQEDZ/JtSnD4zur8QeT6i+z9JSbD7ocDoI79O/rKI72NM5TvPkCXFKEyc5qXzfsCCldG1Zx65FtUXMd+7XbQeMUr/zNP6C+rAefKh9CHnAmr/oBNhpI6amuyLvSzvspb+wpNkmuYoQ9UtwgAICER6mqDC9VUQVU5pPby1N9qy3lfm2S1mYT/2UyoD5Ng0oY63h60p3L6k3rOv/hixmQ+St2dYl82E2p+ZGD9Cp7IOB5tCxxsoV/DGrZ9+Cj0wyECFg46vcNfE7Fy8kTFI7MjC4vos8c+kHgBvHCntYw+cyd4YLanx0Ef0gGhgquXsvNN23PsxK94dv2WMW9emaJzulEwmi5ahb74AFjyq73Q8/+1BgAZ9RuMSgwdlJiZEkmD4ZW32dwUlAVCTkxG9bOHeGSnKkxxR+sqA2FrStnr2oLRbGFrQvQ0etUS+O4DT2XVtU9Bckpgf2PT0TBhtw7/vNtqkPn9a5OqK/G59nDOkmpIsYSbAbiW8xOathK2bRBAVa0mJTF2gUJi46JtL65QdRbOtYZWdzezftREkJMcE5kpiolD4fMwF4Hc4UaX2Zc7TBwa2aN50aMl3D34vQ33t67+H28vP4hs/zr8P3wGXGWs5yjICBEWW1YNfdscNoULRstNg3gf1HvIHm5vMFpyguKlsxyOfCDy12xbNZ0YlCeEEEIIIYQQQgghhIiNPbMOYVTK+K4ehhBCWB3X71zuXXE96xoKQ5brE5/H0X3OCNteipNuXVflLwf6RzpECuujuzhrWwfmHMegxKExaUsIIYQQQggh+iYM4Ni+U3mu4H50ZDMJuoVay5ynrrK2brXnsj7iODXv4rDh3UIICUYTQgghhBBCCNGkRfhLnUqwFov79CXc+56Gb96zlom5CbtKKNpfySFnQRTBaEAgyGT4eBg+vsdMGI8ZW4CTbjF52R+YhZxAPbtWzWbXqtnN1VOag9XUnkejvQajNXVz7u4bbvehkL+VvWQtm+WW8OnSvbi0703cl3UmfhXH+JqfeGD1OaFD0QA1/Q1Uelbgzs4HRjRGK61h7me482ZDwTLYdAz8uSDydlLSURf+FzUi9qFLbU3ZInwoiBqzLYzZdsP9AZl4DkbL9q8jRZsLVzot0n/6bAIrfjc3UrQqgmA089/SP7P5tq6qQN92vqf2WlIT9w9d4KhpODMuZ6/Kj1stHl63mPzEEWHbP6D8bZxwz8V5t4Rtp7vYaZjiwRMU057X1NR7q5ObDmrqjejli+Crt82F8ufCO0+iJ+6PnnEFfPBcYPkBp6LO/j9URjYA+pt3Y/BX2N3zzT7UTZnPy4uzY9qui2EbvH4t7jXHok64HDW8a08U1y/eHToULRpjtgtbJC0xEAbixuh30rVlrYPLVpbYyw7Nta/Ltvx+2OAGQo56WcJLtNbWYLSctL/cnofYCGmt0Vf/zXuFEVuiBoX/rIylTbMDwUC20KC2UtwqkrU9vWx1Kbw4x+Xj3zR9eymu3F+xWU7z+9m2+XI8vOWLKmBQiNA18Re3fm3kdfLnxn4cHWTpuq7pd+Y5DtkXhd9A7HxzoMxuI+De4xxG9Q/9pp67THP38i1aLfsheSvuzTqLfxbdiFtTDZb3u8+x71sAlBrOzQoXjOY4ioFZsCT04TPQ/mA0gBT714QR8Xp8IYQQQgghhBBCCCGEgDGpE0j12cN5OlqcimezpBHkJPTrsjEIIYQXeYmDuGaze/ijJp919ebf4HLj+zE4aTjxTvgfPZKcZBwcXIJ/sKl0LSeNhFFomRwfp+I4pu/UsPUTVCKbJY+kd3yIk2GEEEIIIYQQIgo7Z+7D+LQdWFz9KzXdLGisyYLKH5lT/kXQ8u423sJ687Ffui+DQ3JP3HA/xUljWMqYLv3uT4ieRILRhBBCCCGEEEIE+JpDkeqVfdZk/LM3QW2MgzXCUGf+u1P7E11LKYXedk/4/kPvlTbfoeMG1FM4PvNy1998uzEYzcjX/DWRGjIWvesh8NlrMRpcsHgauKPgEv5VeD1VTgp9GwrwGU4m2qDfYNQLv6Gc5vAhpRQ8+wv62M3bPR59zbHNd2a/GVFd9VI+VFXAoBGouBjMOvegd6qiby8oKAteN2WcuU5eJvyyylv7I2sXkuZWGtdVOSnNd/oMtAejFa+BwaM89bfKEm6UlxH4X9fXoc+c6KmtltRjc8KXcRy45B709PNaLT93/f1c0O/2sPUPrAjzehk0AhUfoySBTnL6JIeTJ2q2u8Hlx+Xhy+ekgfL54KZX0YcMhnUFxnL6udvhtvPA32K79Oaj6C9mwcuLUUkp6LefjG7QvfvCuInw2cyQxXq55Tz/xkDWv1XFH0Uax23g1Gfi+WlldN02SbH9qPbJK+hv3oM730ON3qZ9nURB19cFbnz0Ymwb9sWhDj8nbDHHUWQkew9lDKe6HsqqIaNxM2TbdsT7Aq9Lm96p9nWrS+3hJeU1gfA0k1D9CdFT6If/BYvmea+Qt1mHjcUmPk6xWQ4s9pgplepW0cs17DA12uM2P2U1TYFImhe+13zzD4cxeYFltmBH5SEYrSbErrcQ/Ppt5HWWLUTX1aISun/iXrHHOSGJMT5bIStV8chJitOe8JbK+mk+jLnW5bsrHcbmtV6XEAe+xhTEl34wt/d6+oH8s+hG/CuXwhBzHz4H0pPsYygzZDf6LcP3tcjiHd3fYzBaDB7jhBg9TxKMJoQQQgghhBBCCCGEd3mJg8lLHNzVwxBCiB4hwUlkZIrlpLkIKaVI8aVT4S8NWlflL4+qTdvk+Jz4fuyYsUdUbQohhBBCCCFErKTHZTAhPfL5Op3Fr/09IxjNEoqdlzhIjv2EaAcnfBEhhBBCCCGEEH8JLUKV6pQ9wCVB13XGaDZQ099ASejVX8+ICREVVwee1kED6UEcy9c8bosEl5ZhRG35Ws90Vlc/BkecG4OBhZbplpLXsDp0KNq+J6AenN0qFK2JGjgc9eCXHTjCMI48H9VvMGrI2E4LRWvyf4eYEzn2GmNenpfpIcGj0ci6RaRagtEqnBbpP0kp0Ku3uZG13pOmVgefRwZA/8ZgND56CZYu9NwegDrtWtQwjye87XRA0KJz198ftlp2QxF7VH4SutBmY7yNoZuJ8yku3NPbaya38UI1SinY7wR7weWLzNuh0mL0Xlnol2fAJ69EPtiDT0c9vwB1/XOo82/1VCVrSgpbnZTKlqdk8NXsPC5OmsWmWdEl2CS4tWxR+7O9QHUF+qW7o2o7WvqHT3BP3gY9OR09OR3Wrohd4xN2RU1/HTVuR0/F+/aKXdcAWRe6XDnTpbpOs7LEnBrSPyMQymYzINMeahQqbKkoRMiLBKOJrqJ/+hL33Mm4+/XBPW0H9Pzvo2unpgqev8N7hW0md/q+T5OtBnnfp0nRVSTpGuItx7HNoWgBFbUw/f3mbYu2hBOF2MRsUNW5h86ih9Ffvxt5JdeFlUtiP5gOUFzhLZhsR0uYWHucPDEQjpaZEr5sk+1ucEk9r/W/jGkuqef6yb3Iz03vmP+euUlbogF/vT3xy1GBgLU0S55dmeHcLL/l8NjXYtszsp+3bWFSDDbV8ZYc9khVy3ZRCCGEEEIIIYQQQgghhBA9QKrPfBJIpd/j1YHaKKxbY1yeG98/qvaEEEIIIYQQ4q8kyTFf9by2uwWj1cuxnxAdQYLRhBBCCCGEEEIEtAxGwz5rsjOD0dQDs1Hb791p/YnuQ+0cHFIU0q6HdMxAehLHMlPZbRFC5A8R+tMm2EIlpeBccDvq1ln20LVOoq58CJXVx75+9DZw3KWdOKJG2f1Rp1zV+f02OnmiYqehrZeN6gfHbmcLRvPWbi9/KTn+IlLdKuP6StUiYcAXBzl5xnJ63mxP/VXUaGvYUF6mQtdWo5+80VNbrRzkPTBR5fRHnXl90PL/LdmOdH+Ztd5Na68mSdeGbnvSwZ7H0d2M7h8+bCEhDjJa/M6kjvl71P3pOyOsqxTqqkdxLpmBSk5FKYU6ahqccHlEzSTVlHDz3GNYvGwCtx0RuuwRW/rxqdbBGNcV/ptkXRO64rzOC3DUS35FX7gv/B4irC0aY7dHfVqFc9f7C1GGMgAAIABJREFUqG28X7HI67YnEje9o7n2dc2SQvP6AWH6TE5QDMw0J47kF9iDXJats7cpwWiiK+jClejLDoGfvoSKUsifiz5rZ/SqKIKTfv8Z6sJsy5okp6JOuTryPmLkgC28l01xq1BApr/Ec52Pf2veDriWTUJTuOK+Y+3tVNXB2jLNzys06yq9hUSJv5BFP1pXqQtutx+DLc/voAG1X2295rs/NJ/na/4oCl8+KR6uOTD2x5pKKU7ZyWHdHT4u2dt7kGJbVXVQXQ/F5rzoDVbGDcANcdqFr3FVL/O5WZRWB28frMFoLboZ7fFcqaT46B+DJsPsh+MRqYkuh1gIIYQQQgghhBBCCCGEEKJTpTjmk0Cqog1Gq19tXJ6bIJPjhRBCCCGEECKcREswWk13C0ark2M/ITpCXFcPQAghhBBCCCFEN+FrDlVK0rX8rfQF6lQCdZn9qR+9A3VLFlJXbA/KiblhW8CorTunL9H9jNnOc1F1x7uo1F4dOJgewjZx3m0xozpUMJrP/DWR2mFfePR79Mz7YNbD7Rhg9JQKP5FbHX8p+plbO2E0wNBxMOkg1FHno9KzOqdPA5+j+ODvDk98pfn2DxiSCxfsoUhPMj9e4YKCmmxavxQFpLrmE7kqndQWg4iD0dvAkl+CC875yFN/+QX2dUNWfo6+5G9QFiKNyGT8zqjefSOqok64DEZOCIRzLQsETmxR+wvf/zGRB7NO47eEUejG1+Im9Ss5quwldq/6PHSjaZmw05TIxt6NjPTwEI7u1/o9qjKy4c1V6APMgXntctBpqJwB6EU/Qu8+qD2ORk3YJaiY2vd49HO3Q0N9ZO2v+J0L5p7HdUn3UGbIBkpwa7n3zfH8Y/I5PPJNApVOKoeVz2T/infDt71uDVprT9uz9tAL56JP3yH2DR94KurCO1A+SwhnCAMyFRD7QKDp79vbDBXGprWGx29g+PJtWZYWHPAWKhjttzXmddmpkJHSsc+tECb6melQGRzgqY8eDZ/XRLbNCRWKNnQc6vjL0N++D1m5qH2PRw0JkQjWwSYN97ZdSXKr8RHYF870l1IY5y3ZZ9k6KCrX5KQrtC0YrfH/KVso3v3VXOiKV1zmLIWaekhJgDv/pjhtZ7lmlWj8LFq20Lxyr2NQR5yLfvkeWGkIOVzWPYPRZi/SHP2gy+rS8GX3GAUTBimO2U4xYVDHfn7efLji11WadwyHK7HyW8IIxtfaA2mdxj8xIxlWGTIaTfudXoLRBvX2ti1MSQxbJKy8TMV2m8J3f7avnZoId8+FEEIIIYQQQgghhBBCCCG6Qqov3bi80i2Pqr3C+jXG5bnx/aJqTwghhBBCCCH+SpIswWgNuh6/bsCnuj42ya8bKK5fa1yXGy/BaEK0R9e/w4UQQgghhBBCdA9Oc9BFX/9anl51SuBOziScCz7EvetR+N/dnTYcdfn9KFvQk9joKcdBn3QlPHFD+MJb7dbh4+kRHEtYjetvvt0QeTAagBq6OeqSGXDJDHRDPXp38xURu5JKy0D3GwxrlnZcH1NvQB17cYe1H42keMVZuyrO2jV82TyP4URPrDoNgFRtDsKsaBOMpnbYF/3W48EFC5ahG+pRcfEh+7OFECXGaTa5/RgojzAULbs/atptkdVppLbbC/VMINRAz3wAffs0htUv4Za1V0XX3uX3o9IyoqrbHfRKVvRJh7UhzukzhVmojGz0UdPgxbtiOh516FTUsHGEi89Qg0bA1BvQ9/4jdCCkyZuP8v0+OWy+9ErqVUKrVY+vOp3e5cvoPesKIv7LGuqhtBgycyKtGZIuWg1fvxMINNp+744JRes/GOey+6Kv7jGUMZYGZYd4lXz5JvrRfzO0312Y4hvXLC8GzOFJC83nqTIyqxr9wiOQ3Q8mHYxKTIp4zEJESmsNr9xrL/D2kzDlJO8N1tdZV6lL70WN3Q6151ERjLDjDMyC5HioDhOwk9Ii1DvLXR9RH6c94TLrPB+uZdep6VD19J0V5z9nLjR7cfPtqjo48ynNpOGaEX0lSPEvr3AlVFcaV6nDpwZuDBxhDEbTy/LD7gt1tuo6zTEPeQtFe+4MxdHbdt53PUopXj/PYZ87XD7+rWP6WJg4knG1v1rXN4WZ9bLsHpQZLlppC0ZzWjz5XoOv02IQjAZw/wmBx7Gw8dggKwXev8hh/CZwyAyXtz2Ez9XUa+h2r2AhhBBCCCGEEEIIIYQQQojWrMFofvOFRkOpdWsobTCf/5abIJPjhRBCCCGEECIcWzAaQI1bbT2G60zr6gtx8RvX9ZFjPyHaRWaYCyGEEEIIIYQAQCnLIaJunI1ZFmEwTXtsviNq1Nad15/oltQBJ4cvtO0eKCWTaoHmdIa23BYzqkMFBIUIRmtJxcWjHvs+fLlbZ6GuewbSs+yF+g1G/f0u1FQPAXhe7Ht8bNoxOezsbheKFikvE+dT3YoNk/pTXXNYQ2WbYDQGDjc3pjWsKwjb5+JC8/JhSevxlReHrb9BYjLq+udRT/yAGrGl93o2ex4NifYfUMJRN76M2u3Q9o+ji/UJ8xvRVoPMy9UhZ3rerniy6WgYurnn4uqoaagn56KueDDiroa+dwvrF/blqZUnc2jZa9xacDlLFw3jqPJXIm6rlWJLqlaU9I9foE/eGn3LVPQdF6GPGRvT9puoR8Nv80PxGtoRS7sMt+8b6C/eACDHX2RcX7zaHp60yBLkOPKXF9H3XIa+7kT01F3QRasiGK0QUSpYFnK1vulMdHkEYWChgtHGbue9nU7gOIqRHi6c3TLkNa9+dUR9NIWaaUswWtNWJjFekZ1qLtOW1vDol+FDasVfwPJF9nWDRrT+P6hufuzH005v/KRZWeKtbE5a5x+/+xzFBxc5jOmgc4vyE4bjV5agcprDzGzBaKWmYDTLpsLX4rDf6z5WaoyC0bYcqJh/ncNLZzk8d4Yi//8cth6siPMp3jjf4cO/OzxwgmLeNQ4DLV8D1IQJtBRCCCGEEEIIIYQQQgghhOgOUn3mC8dW+kNcXdKiqN5+vlCfeJkcL4QQQgghhBDhJIYJRusO1oY4Tzkn3sNJz0IIKwlGE0IIIYQQQggR4LNM4nQb0+qLI5tI3i7JKZ3Xl+i++gwMXyYjp+PH0VM4tvdwi2C0UOEYtvoGatgWqCsfNq8cMAT18NeoHfZFTT4C9cZKezsnXoE69KyYBY6pEy6H/U+CprA823Ytmran3R6ztrrKyH7Nk/JttqyZt+F2mtdgtNw8e4OF4cOB1pm7YeCayMKY1J3voXY7FJWRHVE9a3vpmajpb4QvOOkgGDex+X5iMurSe1E7HxiTcXS1HPN5fhtsNdj8olIDh6OueQLSMto/iCGbo26eGXEQpho0AjXlJNj72Ii7TNK1HFP2Ii+tPJaL1t3NgAaPQVehXn8x3JfSWqPP3xNKIwgPDEFd+xT07tt6Ye9+qLs/RLXzORzUu/MDUPYaHWLlbz8AkNNgCUarsv9sYgt9GVK3pPnOonnol2eEG6IQ7bd2RfgyL9/rvT1bgG5aF6QbejCyb/htS4qv+W/Ka4hsG7y+CiprNa4lnKjlPlW6JezI5MP5EowmgPWWZOC0TFRjsLSyBaMty0fbEvu6yLu/eC+bHWbfsqMopZh9ucOBW8S+7d8SRuCGOO2iKcwsw3JuVllN8DK/G7ysZVsAvZIhJSH8+NJiFIwGkJ2mOHxrxdHbOmS3CLlTSjF5lOKMSQ7jNlEkxZvrSzCaEEIIIYQQQgghhBBCCCF6ghTH/KNWlb8i4rYK68zBaA4+suJzI25PCCGEEEIIIf5qkkIEo9V2k2C0wjrzecqZcdkkODE8iU+Iv6C4rh6AEEIIIYQQQohuwhaK5G8MRvMy8T5W1q3tvL5Et6UcBz1sC1j8k71QjAKQNgZKORinx+vAjGpdV4u+4jBzZcdBOZHl56v9ToDJRwSCftYXAgp6ZcEmw1qFFymfD+7/An32pNYNDB4F+x4fUZ9hx5SQiPrHg+jzb4UVi2HQCPRBA6G2fV90q8fmBP6OHi49STE2D362Z9UxqjZ/w+1Ur8Fo6VmQkAR1hhn9ReHDpEqqzMuz/CGC/NoauRWM2c57eY/UlpPgno/Q5+1hL3PAKaiJ+6OLVsP6tTB4FCph4/nhIlQwmlKwxYAQ6ycfAbscDH/+Fvw+jItHf/AcvHBnyP7VI9+iRmwZwYgNbZx8Jfr9Z9vVhqd+TrsWjrsEPTndXCAG+1La7wet0Xdc0O62WtntsMDztWwhVJZDajoMGhnxZ4PJyL7hy8TSweMhJTFEYFLj9jzHbw6VK9K90Fobg/hswWibNLTZsH72Gpz9H0/jFSJqxfarSjfRH7+EOuUqb+3V15mXx3tI3ekCIz1cPC110CBYmQEVpeR5DbhsIb8A8/41zTm84C2YqMn/lkU8DLExKjWHc5LZIvjbFoxWtg7+mA9DxsZ+XFGat9x7UFu40N2OlJmimHWej4IyzaoSiHOgqs2mz69h55stqWQW+Ykj8HsIRktPVpi2KmWGw1UvwWhKKQZkwqIwX6HFMhjNK2swmiWDUwghhBBCCCGEEEIIIYQQojtJ9ZnP/an0l0fcVmG9eXJ8dnwffKrnn5MohBBCCCGEEB0tVDBaTXcJRrMc++XGezjhWQgRkgSjCSGEEEIIIYQIsAVfuH50QwOs+sNed8hYGDcRZj0Um7HUmMN4xF+POuVq9FVH2ddn5FjX/eXYgruawg1/+DhE3ei+IlKJyZA3JPAvVLmx28H0N9CP/BtKCmHs9qizrkd1UNCGSsuAUVsDoA3BNp5tvgPqzH+jho2L0ci63ndXOiSfa5/oP7Ju4Ybb1mA0ldJ8x+eglELn5sHKJcGFC0OksDUqqTIHKWT6S8PWBWDf41HTbjOGGMWCGr8z/Ps59DXHBK/MyIatJwfK5fSHnP4dMoau1DvNHOAA0Ccd0pJCP+4qLh5s76ERW8KQzdE3nmGue94t7Q5FA1ADh8OMT9CXHAjVkV+51bNt90DFJ6BHbwML5gSt1t9/iDrglIia1LXV6KduhidubN/Y+g2GbfaANx8NXjdhV1Rc4+fApqPb14/BkNxAiIct4CPWjt42zLagoR6AbEswWrGThVu8Fl9O60S32npNkeXl07/tD5krFlvD1f6KtNaB/RG3xT+/5Xar+27jvwjrNN3WbsR19IZ+I+in5TrtWsYa5u9oNVZbG4b74fy5wPsT1cOC0UZ5OE8gN8OHevBL9N2XkrekLOI+fl2lcS3bLqfF29sWAGSiFFTWalJDBTiKjV/ZOvPylsFow7YIfE9jehF++Va3CkYrieC8ouzU8GU6Wt9eir697OtXT3e46JH1fPxzDaVOBgCb1i+lf8NqPk3dLaj88viBlPnsDTZtLzIs52aVVQfva1uD0dpsOjbLCR+MltqdgtHqO3ccQgghhBBCCCGEEEIIIYQQ0Ujxma/2U+VGft5RYZ1lcnzCxneemRBCCCGEEEJ0hHiVgMJBE3xiXbcJRqszX/Bajv2EaD8JRhNCCCGEEEIIEeBYQpVcPxQs3RAi0ZZ6bA5q2Di066K/eB3WFbR7KOqQs9rdhthITDoo9PpsuXLCBsoSbqhdtNboZ6bb60YZjBYJtf3eqO337vB+gvo97lL0I9dFXu/M61EnXNYBI+paifGKkycqHv/KHHQ1si5/w21bMFqF0+LEr6bXTo45GE3/OZ9wsR8lVeblGa49GE3dPBM1cf8wLceO2v0wuOJB9E1ntl5+3i2oxKROG0dXyDGf5wdApv3CO54opWD/E2HbPdAnToCKFs/5xP3hqGnt66BlX1tMRL0fHITl3n0pvHhXbDoZPCrw/ybDjMFofPwy+spHInrN6IeuhRfujH5MY7ZD3fcZqjEA183oDS0/DxKSUCf9I/r2PUiIUwzNhfz27yJ6ctQ2YbY6VYGTVHMswWiu8lGyeAnZbYLRVofIahzQsCp44fzv0CMmwKJ5UFFiCPyyBGBZA7Gay2pr+FbL+7ZwrxDLw42jVb8ext50X/QMDZZgtLgIUr860aj+9uDOJnmZCjVwOOqW1xj8m4bbI0to/GC+vYeWuYehtg9taR1o95AJEQ1FbGR0SZF5RUb2hpsqPQs9bieY90Vw/fy5YfexO1N5jbdyKQmQnNCdRt6ariyDxT/Rp66Gp1+dErR+SfymjBg231h3YcIIa7u+xkP1XpZdwDLD42cNRmtz2D+8r+L9+aG3hWldEMQowWhCCCGEEEIIIYQQQgghhOjJUn3pxuWV/gpc7eLYztU0KGx7sb1GufFy7qsQQgghhBBCeKGUIslJotoNnnxU212C0azHfhKMJkR7STCaEEIIIYQQQogAnyUYze+HFYvt9TYZCoByHPR+J7QO24hWF4Qnie5JKQWvLkEfNsRcYId9OndA3ZljOdlm+SL0sZuHfh9HcKJOjzNxfzAFox02FV69z15vzLYdN6YudtKO5mC0TFXJ5FOmoFIPQ990JqnaHIxW6yTRgI84/M3BaJm55s5mPfz/7N13eFvl3cbx+zmSLHkkTmI7w9khgwwCgbDCCJuwd6CMQmhLgQ7a0pc9CqVQKB28BUrZ0EIZYa9SRtn0BcreOwkhyxmOR7yk5/1DSWxZ50hHsuT5/VxXrljPOj8nWkc65z6yg0dKx50Zfzy3Y5ct0pqPayRnUnI90TWuS5qbX5OZsLnHb5c/Zr/jpZETZB+/TZKR2e94mc227/Q6OlvKYLSi3GzDVAyX7nhP9q4/SWuqZKZsLe1/out9JtfMj6+Q/fxd6c3nOrbQwMEyJaXxNUdO8I7qeeaeeBicD3b1cmn+1R0qy/z56Y2haJJkfniJNGEL2VefkPoPktn7GJlJ+U/n2XRo5wSjfXSxI8dJc79ZtlCSVOYRjCZJK75cpLLtEh/fi92fkiRJlS3JX2Tak3dOXQfQ3TR7BKOFCjq3Dp+m+DhOoHJA6887jM98G4+9Z7Wpx7HoTpbBaJL0xPtWB8/ovuFQ6ATVHq9BpeWJt7fYyTUYTc/dL7tskcyQkbmvLQu1jf7GlRXnt46OsPddK3v1GZ4XBZCk0c0LFY41qNFJTjj7MDzZc96G54v+HqHC1S7HZUU93ky2D0abNMR9XFvFXfA0HvE4CoVgNAAAAAAAAAAA0BMUOe4HTFnF1Bhbp8KA/y++VjQtdW2vKODkeAAAAADwK+wUugajNXSDYLSYjaqqyf1kCfb9gI7rxWe9AgAAAAAy4hWMZGNSlfsX8yobJhNpTUUxx54hTZ7ZsTJOvEBm7JQOrYHexVQMl/nl1VK7gBzzk9/JDB7RRVV1Q17BaGtXpQ5Fk6R1tbmvJ1MnnOveftipHVt3wubSsWcktm29ezwcaNKW7nNKBkib79ix7XZjsycZnbZ74uOpICj95fslKp57klQQliT1j9Z4rrEmsD5pZGMwWpnnWHvDhdLrTye3f/2R7OHjtaYl7DpvQCw5ZcQ8ubJLQtE2bn/6LDln/VXOWdf1iVA0SapwvwCqpNwFo0mSGTREzqmXyTnnBpmDT5IJds41PYwxMn94XNpx/+TOfgNl/vy0tNOB6Rcav1nrz2Oneg6zLz7suzZ779XxgNpsjJsm89BCmYLEx5cxRmb3I+Scd7Ocn17ZKaFokjRxSPYBQJ98PlWHrH0w7bhLDzGaNDT1duxLj2z8eXDLCs9xX36d/Pzz5Qr3hJLiWK36x9amrQ/oKvaTt2T9PJe0eASjBUK5LShHCoJGc2emfsxXtDlWvSBodPY+mT0XraqTXvnCva8j2Z0ffOsZn4m+orrKvb008T21GZ0cHryB/dWxuawoay1R6zvsKlXgbley7/9H9k8/TxmKJkkBxbRJ85eufYuDw73nrd9VL/UIRlvbkNwWjaVea4PJw9I/GZUk57jlXaFHGBvBaAAAAAAAAAAAoCcoCXgfMFUX9X+sZXOsSatb3L8brAhxcjwAAAAA+BVx3A/A6w7BaKtbqhRVi2vfYPb9gA7rnLPLAAAAAADdXyDg3h6LSmtXuvcNKE+4aUpKpWv+Lb32L+nrj6UhI6VvvpC96SLX6ebM66S9jpbefkFa/KU0fQeZTaZ15LdAL2UO+oE0Y7b05nPxsL4Zs2XGTO7qsroXx+Mx3EOYnQ+Sve1SySYGRZjZB3dsXWNkfvhr2V0Pkz74jzRivDRjl3jo0jXPyu4xIHnO3J/IBLtnCEiu/PFIR0dtbfXql1bFYWmPyUZjy9efVL8+6aM86hHYIGl5oELl0ZWtwWil5Z5jJck+fJPMNnu23n78dtnLfiBJWhModZ0zILom4bY59TKZom6aptCLVZYaSe4BLuFe8umyCQSkS+dL//239NnbUnOzVFEpbbOnTNlQqaEubaCZ2btNOMn2c7wHvv2CrLUyaRJ17OO3S3+7PJNfI27OsTI7HShtu5dM2CN9owtsOjT7uZs0f6W7Fh+re2sO07HDb0vqnz5Cuv1ER9NHpA8GsX+7YuPPRXadhjcv1uJQcpDJJwsbtG+7ts+Wu685oekLdSAfCcg7+/3tpKJ+stO2k9l8R2n6DtLkrWXC7ZJymj2C0UIe6TbdwC/2NLrnDe+QsTFliY/OSw42uut1q6/avcUpja5Rswmp3vF/Ve+2K08Y7P0c4eajJfL1WoBebJX7Hca0C0bTKO9gNL3/H9nl33R5WHhto/+xZd3wrbxtbpI9Zbbv8RUtKySXXOflwQrPOc76h3r/iPv76mqX47L8BqNtNy7+nrzR/ZgqSVJxFzyNR0Luv2tDijoBAAAAAAAAAAC6i6KA9xdbdbEalWuIr3WqmpfJehx3NbiAk+MBAAAAwC+vYLTGbhCMtrxpiWdfeUEHTqQAIIlgNAAAAADABl6hStGobPUq9772J+1KMqECaYf9438k2Y//K7kFo43YRNrvhPjJ4G3CcgAvZtREadTEri6j+3Kc9GO6MTNhc+m8W2Sv/LG0rlYqLJY55TKZGf5PUk+5/sQtpIlbJLaFC6W/viR76felBR/HA8HmHCcd8z852WZ3t+04o23HuQRymPh9qSJFMNqKYLnUpI3BaKb/II9DuNZ7/gE9cdGfdc+AI9VY0E/ff/B27SIpJqNqxz0YrTRWndiwyWaptoA8qUzODtyo3iNDpycyxkgzd4v/aW/bvWVOuVT2hgullubEvkBAOvqX0p5Hta4VLpRO/o3sdecmr1VbLa1cKpV7H9xoVy7dGByY0e9w9g0y+34343mdYdJQ74C9VO5fNFeSFFBMR629V0WxdZpXeb2qAwMUtM06f9wbOu+sHXyFC9k1VdKHryXW1fSJazDap6sKZNdUybQJAf50cZOk5NDM8U2fZ/hbAV2gvkZ67SnZ156K3w4VyG46U5o+S2b6DtJms5Kf3zboxsFo24w1uuooo9PuSn5+MUbaYmT7NqOnfu7ohFtiemn9Q3e/msd1w5JTdPKwq/VwvwN8bzvS5ulg3g5G5zzg/zludb20vEYa0t/3FPQiNhaTFn/h3lnW7v3B6Enxx6BXcOG3X0ldHIxW0+B/bOWA7hMGaKNR6aHrZf/4s4zmlUfdLxywPOAdjLYhzGxgkXt/9TqpJWoVDLT++3gGo7X7JywOG+22qfTE+56bV0nEuy9fIh45440eLzUAAAAAAAAAAADdScQpkpEjq+QvbeqiNb7XWdHsfnK8kaNBwcFZ1wcAAAAAfU3YIxitIZbBQYx5ssIjGK1/YKBnoBsA/whGAwAAAADEeQWjxaLSWvcTP9V/UNplzaZbyU7fQXr35cT2ky/1FWIBwCevx3APYvb6jrTb4dKiz6QR4+NBi/ne5pStpVv/Ky1fJIULZcq4GseGkL2IbVS/6FrVBJJTO6oC68OC1gejqbQ8aUxbfxl4kn6y+FRpcfz2XaOf1M3f/kBzav8la9xD/QZE2wWjjZns/3dAzqQKRqtr7Lw6upIxRjr6dOngk6Q1K6SySqlmlbTsG2nsFJkil6vE7neC5BaMJkkLP0kdjHbw6Mxr/MHF3TYUTZI2zfKpdXb9Cwm3D6x9VMs+HalPCiZqbPPXKqrcX8bs6G+xj99IrqvxUz1bnByG92VwdDxEbda+G9u+XlAtKfm5bnyTR7gNOkcgEH8P5ATir19Om9tt+wKp+gLxUNCE9va32/2cNM9JPc4JyLTtMyb92kk/O4m/Y5sx9q/nS++/6v/frblJeu8V6b1XZO+4Ml5PsUdKV7D7BqNJ0k92c9TYEtMZ8xODyQ6cLo0qS97fHFdh9Pz/OFqwUgo8cYuGX3+KJGla4wcZBaMVh1t/PmJKrc55oDijup/7xOrIrdkf7pOWL5IaPa5QOHpSwk0TKZI99BTp7qvcx69cmuPiMlebwfvBiUPyV0cmrLXxcOx/3el/0rAxMn97W+U31kjvJHcvT3HiirP+oV7ez6ueeGBiRZt+z2A0l12nAzY3euJ973DGkrBnV96EPY5CaSAYDQAAAAAAAAAA9ACOcVQUKHYNQauP1vpeZ0WT+/d5g0LlCjkeV5oBAAAAACTxChhrjHkcj9mJvEKxKwo4Pw3IBYLRAAAAAABxnsFoMWntKve+/gN9LW0uf0D26jOld16QggUyx/xS2vmgLAsF4MpxD5fqaUwwJI2d0snbDEqVYzt1m91am6CyimiVazDaikBFfOj6YLRH1k7SeWNf07LgYO1W95x+veJXGtf8tSSp0RToN+VnJa1xYuUNKcsY1byo9cbICVLF8Ex/E+RAv4h3aEt9UycW0g2Yon5S0frEinClVF7pPXZAuWxpmVTtEi779UfSlru4zrP/92Tmhe13gnTcGZnP60RlJUZlxdLKOv9ztlr3pkpja5Pag4pqatNH8RtV3/pfcMEnSU0jWr5xHboyUC4tfCkhGO3b5Q2SyzGpY5oX+K9Bit+H2od4tQ2+SheQlRDg5RHG5bpGu1AtjzkmaU6K7biu4XjU6nOOs36ej9Aw00ve++TEFQ/I7tuBL8+hRdvnAAAgAElEQVStlWqr3ftC3f9g7F/sYVRUIP3vM1ZG0l5TjS4/zPv1yxijMeWSPXae7IKXpCfv0MTGzzLaZnGbvLhxr/9NR1eX6s7S7/ie/50brE64JaqAEw86Crb/OyAFTOLPwUDiGNd5G/tMwjzH97zkGjZsN7kGk3pNz3lpamnzuztOLwyPc3k92mjUxKQmc8plsl7BaAs/zVFR2avJ4GKLk4Z07f+n/fRt2at+kRTcn1K/gdKWs2VO+4NMuFDlI8LSO8khZMtSBKNtCDMrd8nS3aCqNjEYLeaRc+b89VzZxpkyux62sW3/6Uan3uEdjDbUI/cynyIeLx0Nzd51AgAAAAAAAAAAdCfFTj/XYDS3Ni9Vze7BaBUh7wsqAgAAAACShT2C0Rq6RTAa+35APhGMBgAAAACI8woWiEWlaq9gtDJfS5uSUpmzrsuyMAC+eIUb+jFhi9zVgZ7PtAYWlEer9KXGJQ1ZESyP/+AE9NSHVgc/PUOKxJvuLp2rD8OT9dpXOyikFr0fnqqlwczCWgZGV2lwdPn6bTgy3/+VjOmFwRg9RDgoNbYkt5+0M/8nKY2aJL33SlKzff1pmUNPSW5vaZb95YGZbePQk+X83CMspZvZdKj08hfJ7UP6S0fMNLr62dagjJBt0vlVv0m/aAbBaHZRcnhMeYtLcJ2kqmCZ7MJP1Nhs9fYiacD7T2lJcLbr2GEtS6RDfig98Ne0NZgfXCzz3TN91wz4Vtgv/ZhsBQvSj+lijmN06i5Gp+6S2TxjjMx5NysmacrzH2Q0tyTc+hpon52vY6qLMgpGk9xfW3OnM8KH8r8NY7IJhcsk3E0KOmbjWKdDYXSptmtaf/5Acop3UzjWqC0a31X/2PoTJwYNlSlOTrAygYDsjNnSW88n9dmbL5aZd27O/92r660Wr5HGVUiRUOr3e7WN/ted3IXH+NiVS2W/t63/CUf9TM6PLk9q9go3q3eKPZdybExSQGXeQ1RVm3g7GnMfF6haJHvBH6Q/PCaz9R6SpBEDjWaMlN5alDz+yJmmSwIGvYPROrcOAAAAAAAAAACAbBUFSiSX7zbqY7XJjR5WNC1xbefkeAAAAADITKQ7B6N57fsVsO8H5ALBaAAAAACAOK9QpVhMWuseGmFKB+WxIAAZMR7hhn5s6R72gj6qTQBZRUuV65AVgYr4D4GArno6+az99yKb6R+lR+q71Xfok4KJGZcwqfFTGUna93iZOcfKzNg54zWQOz/f0+i3TySHn+w/nWC0lKZt5xqMpjeelW1pkQm2+3j+2flplzTn3iT70RvS2lUyOx8kzT4kR8Xm36FbGr38RfL96A9zjY7a2mjWOOmRJ79S/3ef0rHVd2j7da+lX7TqW1lr0wYn2sZ10kM3JrWXRz2C0QJluuXzkfrJz2LrAzx2lzw2MfyU02UO2EmavqPsb06UWlIkfkTcv5AFOsoEg/mLqAp6pNv0IuacGzVj4jXS0/7nFIfb3HjvFU0Kjcp5XZCslVqs1OIREpWjreRzcZdt7C6N2l2SFLTN+umqq3X58nNTf75S7n1wjP3ifZlNpuWkyljM6vInrc5/0CpmpWGl0h+PNJo703tfc6XP8z6mj+jiYLTDNslovFsomqSU4Waea73yqLT7QSosMCoOS3UuYXJJwWged8uAjUqS7M2XbAxGk6QTdzT6yT+SJ524Y9e8X/cKRltHMBoAAAAAAAAAAOghigPuV8ypi2YQjNbsdXJ8ZhcZBQAAAIC+zisYrbGLg9FiNqYVzUtd+wjFBnKjA2fMAgAAAAB6lYBXMFpUWrXcva+0PH/1AMiM12M4nYKIzPFn57YW9GxO60eGXqFBqwMD4j8EgnrmY/dlTqy8QQePuFeXlZ+RcQnTGj+UOfECOWdfTyhaN/CLPYy2HpPYduURRiMHEYyWitlhP/eOhnpp2YKkZvvCg6kXPPp0mTnHyvn5n+RceLvMrofJOD3nI/7v72S026aJbWfMiYeiGWN01DaO/r7j27pm6Wn+QtEkqalRqlmdftx917o2D/J4jqt3ivUDnbk+FC21ylnbyhgjs8dcOf+ulXmuXip0PzhWMwgiRR6NGO/dN2ELabs5Uklp5usOGpJ9TT2EcRwF5v5EN/f7i+85JeuD0ez6MMRRzYvUP1qdj/LQi7WYkP5Q9nPdWvpdKZIicWu4d6iXvf2ynNXzyLvSuQ/EQ9EkaUm1dNT1Vl9VeYfHPf1R+mC58hLpT0c6aYNMc822NMs+fY9i87aWoi3+Jg2okLnBJdh2vYp+mf8Ozt8u3fizV7BaVW3iv2PUIwwwoHgwmt5/VXbVso3tP9zZaO+piWNP2cVozyndKxjNz3srAAAAAAAAAACA7qA40M+1vT5a42t+1LZoZbP7sdecHA8AAAAAmQl7BKM1dHEw2pqWlWqx7gfGDS5g3w/IhWBXFwAAAAAA6CYcj1ClxnVS3Vr3vnI+oAG6DZNdOI55bIlMpCjHxaBHaxNYMCDqHji0OjBQkvRO/RA1psgYeLSfRzBUGsdW3yEVHpTVXOReeT+j537p6NmPpa+qrHaZZDRtOKFoaU2c4d238NOEkBPb2CA9nyIYbY8j5ZxyqXd/D9AvYvTETx09/ZH02XKrHcYbbTlKiSEpoYLMF/76I2n6DimH2Lv+5NruFf7oV8C2aPCgxJpNICC711HSQzcmDh49SRo/vUPbA1KafYh0x++S2wtLZP7yvEw4IhuNSl99IL3zkuy7L0vvvCytdL9C9QZmpwPyVHD3c/zu/XXafWtVE+ifdmzx+mA0LVsoSXJkNbv+RT3Sb/88Voje6qF+B2he4ULPfrPb4bK3/sa989n5spO3ljnqZx2u42+vuqdxbXJOTNG/JgebxWJWj77rHox20ObSgVsYFQSl3Tc1GlrayaFoa6pkf7Rr/D2XT+anV0p7HCkzcLDnmMos8iWdL97d+HN5ibRwVfKYqtrE257BaLZNx8uPSQecKEkKBowe/6mjf30oLVplNbXSaPtNuu79esTjKBSC0QAAAAAAAAAAQE9R5LgHo9VFa13b21vZvEIxuX/pU8HJ8QAAAACQkYhnMFp9J1eSaEXzUs++itDQTqwE6L0IRgMAAAAAxHkFo3mFoklS+fD81AIgc16P4VQOOJFQNCRrE7I3IFbtOmSNE08EOOrdPXO++cEty7TjulelyNE5XxvZKyww2m+6JBGI5pcpLJYdPFJavii5c9FnstvNkZ74m+w//y699XzqtQ45OU9Vdq5Q0GifzaR9vO5HobB7ewr2lcdlUgSj2Vcel1a7X4G3o8FoQ0uicpzk38Wccpns8sXSq0/EG0ZOkLnsvqRAGSCXzPcukP32S+nf9yW2X/mwTDgS/zkQiAf0jZ8uc9ipstZKS76S3nlZ9p2XpXdfkhZ9Fp8YLpSZd57Mtnt39q/SdbbfRz+86UZdWfaLtENLNjxd1bbuL9/+7YkaOMn9+WZk8yItCo3MRZXohRaHhkuFxZ79ZuwU2QlbSJ+97dpvrzlT2n6OzOhNE9pX1Vld+S+rW1+2WrpW2maMNLbc6JAt4wFVj70rVdXGg81GDjK6/y3vGgM/jOmEWUa7TJKO287IGKP/LpSWuO8u6JjtHB2+Vde87tmmRtkDMvu8yvzxCZmZu6UdN3xg5vU4islaK2OMykvcx/gNRnPanDxjX35UZn0wmhQPm917qtQd3q9HQu7tBKMBAAAAAAAAAICeojjg/sVOXbTG1/wVzd4XKSsPDcmqJgAAAADoq7yD0dZ1ciWJVjR969peEihVYcD7uFAA/hGMBgAAAACIc5z0Y9or56plQLeR6WO4sETm+LPzUwt6tjb3pYHR1a5DqgOlqjeF+qre/cqY2YrE1um9L7eK3wh6nE0P9CSjJrgGo9mFn0pX/UK679r0a0zYXNps+zwU1w0VZB6Mpvf/z7PL/usfsr8+wbN/YHS1jJGszXyzklQ5yD2U1BT3l7niQdmVS6XaNdKoSYSiIe9MqEDm4jtlVyyWFn8pDRoiDR0tk+JxZYyRKsdJleNk9jlOkmRXL5fWVEllQ2X6D+qs8rsFM7BCBw5eoCuj6ccWb/hnbWw9oKJfrFZ3fnOcjh7xt4Sxmze8q9e+mqXlwcH6LLSJonOOU2zOCYrGpJZYPACpJSpFrW3z8/q/24xJGB9L0ddufixhLes6NlfbbfEIc0Jq60xEiqQ+AMb86nbZY6Z79ttjN5deaNj4elNdb7X5RTEtXtM65rWvpde+trr7DdcV0tZ56ytWt74i/d9X0jVHGz38jvucgqDWB3R1Pmut7GmZBTqa616Qmbqtr7EDi6RwUGps8bm2jcVjyuprpOL+Ki8xcvu3Xuk7GK3NE9Trz8iuq5NJEarXVTyD0Xz+uwEAAAAAAAAAAHS1Iq9gtFita3t7K5rcg9EGBMtU4GRxfAwAAAAA9GFhj2C0xi4ORlvuse9XERrayZUAvRfBaAAAAACAuExDlSJFUklpfmoBkDnHPZzF1eY7yZx0kcyQUfmrBz1Xm/CeAdFq1yGrAwP1XNHOarYZ3O9SiMTWadt1r+mqZaerLLoqJ2sC3cLICdIbzya3P3SD7yXMn/7Zd0K1CiKZz1n0qWuzbWmRvTZ1AGhg1hxNCksfL818s5I0dFDqr1hM2VCpjC810blMxXCpYnj28wcOlgYOzmFFPcv2u22qkY8v0qLQyJTjigvW/9CUeEDFETX3ad23hbq87JdaESzXXrVP6/fLzlRAMQ1rWaphLUulB16WHjg5u3DyHiAmo6gCipqAWhRs93e8PaqAWkyw9W/jJI1tHeNsHBvd+HfrWhvnbehTQC3GfftuayVvI7nexLVb640l1evyuymwcXyjCavJ5SSHdaZQKnQ/sWKjkROlsVOkrz70HnPn76VjfilJuvQJmxCKlkvXv2B1xt5WD7/tHoy22ySpXyT3713sujrZmy6Snn9QkmT2O0H67lkybR5L9uZfS++/6m/BkRNkfnyF71A0KR4oWTlA+qrK3/jAhiCz6pVScX+Vefw3r6xN/LeMeuTUBWybYLSmBun1p6WdD/JXTCfyDEZr7tw6AAAAAAAAAAAAslUccL9gaH20xtf8Fc1eJ8dzQWoAAAAAyFTEIxitIdYga22XnW+xotn9RISKAvb9gFwhGA0AAAAAEJdJqJIkDRrSd0I6gJ7AZ7CC+d6FMieck+di0KOZ1vtSacw9GG2NU6q3I5tnvYmrlv5CP1p9nbT7XOmZe7JeB+juzKiJ8si18Df/krtl+g/KWT3dXiiLK+KuWiZbs1qm38DE9vdekVa6H2S6gfnu2drnQ6OPl2b3v1Q5gPfCQG/jHPh9XXHLPH1nxN9Tjive8HTVmBiMZiQdX/13HV+der4kKRbLrshuzpHkKCqPXKQ+7a7+R+jY4bclta9zIlJhUcq5xhjplEtlzzjYc4y97lxp/3l6a80g/e7JjrwDSS0ak659zuq9xe79B2yen9dH++sTpBcfbr1900VSc6PMDy6SjcWkD1+Tbv2Nr7XM+bfK7PWdrOoYnkkwmm0TjFY5VuUewWhVtYm3ox5PDxuD1tazLz8m0y2D0Yzk8i6YYDQAAHLPGDNW0haSKiWVSFoiaYGkV6y1vPoCAAAAAABkqdhx/2KnLlrr66T7FU1eJ8dzgT0AAAAAyFTYIxjNKqZm26QCk8V5CDmwosn9fIXBhGIDOdM7L0UOAAAAAMhcIMNgtOL++akDQHb8hhvO2Dm/daDnaxOyNyC6xnVIg1OodyObZbX8Vuve1Mmrr5e54DaZky7Oag2gxxg5sWPzt94jN3X0FNkEo0nSwk+TmuxLj6Ses+thMlO30TZjstukJFWWZj8XQPdkwhHNPe84PbVgTspxwcD6g9wbGzqhKvQWhTH3+8s6UyhFitPON9vvI3PxPzz7o3L0yz98qpm/yX/oXqrgtVwHo9lYTLHzjkoIRdvo4Ztkv3hfdt8hsqfM9rWe+emVWYeiSdL4wf5/P0fr/y+WLpSkjgej2cRgNL3yuGw06j64C0U8Ls9HMBoAALljjDncGPOKpC8l3S/pakm/lXSbpOckLTXGXGuMKe+6KgEAAAAAAHquokA/1/aYomq06b8nXtHsfnJ8BSfHAwAAAEDGIk7Es68hts6zL5+std77foRiAzlDMBoAAAAAIC7gcdail3BRfuoAkB3H58c8ozfNbx3oBVpP9B8Qq/Yc9Vrh1q7tR2zlHRQwrulL3b34aAX/9qbMnkdJFcOliMfrSV8LhELvNHpS9nNn7StT5JGe0VsVFGQ3b8EnkiTb0iz77/tkn7pLuud/vcdP2lLm51dJkoYPyD68ZZOKrKcC6MbMrH21a/0L2mrdm6794wPLWm80ds3BFOiZItb9/rLOKZQp9Peab3Y9VNouObjvrfDm2mX0U/rjkm06VGNHbTlKGjEwd8FotqVF9rwjpecfcB+wZoXsCVtJdWv9LTjvPJkjftKhmiYO8T92Q5CZvfR7kqTyEvd/m7bBaLGYd+hcQO1C0NaskD74j/+COkkk5N7e2BI/GAwAAGTPGFNijPmHpHslbZ9i6CBJp0h63xizd6cUBwAAAAAA0IsUewSjSVJdtCbl3JiNqqppmWtfRQHBaAAAAACQqYhT6NnXVcFo1dHVarZNrn0VocpOrgbovTI86x0AAAAA0GsFMwyiiHh/oASgC/gJRistkxlQnv9a0LO1uS8NjK7xHLYwNMq1fe+p0i0nOLr5mud1z5tGY5oWaEzzAk1r/EB71D2rgfPfkqkYLkkyoQLZWftKz85PXGTSljJDRnb8dwG62pBR0tDR0tIFGU81c3+ah4K6uVA4q2l24afSqmWyp8yWvv0q9eCdDpS54DaZ9aGMlQOy2qQkaf/puQt+AdC9mIe/0WHz/qD/Fm6Z1HfQ6vmyzSfLhAoIRkNGCj0OvmkxIbXIkUeWVBJz6b2yu7WeiPHr8rN1UcX5Oaiw4w7YPIehaNUrZX+8u/T1RzlZz/z5aZktdurwOpsONZL8hXs5isV/aKiXjcU8g9Gq10kNzVaRkNET73uvtyFoLcFbL0jTd/BVT2fxCkaT4uFoqfoBAIA3Y0xA0t2S9m3XtULSW5KqJW0iaYZar34xRNJDxpg9rLUvdVatAAAAAAAAPV1xwPvCRvXRWpWFBnv2r25ZqahaXPsqQkM7XBsAAAAA9DXhFMFojV0UjLaiaYln32BCsYGc8XHGLAAAAACgTwhlGoxWlJ86AGTH+PiYZ+zU/NeBnq/NfaksujLj6ZsOMyoKG/3otJ303Iz5unXpSfpV1SU6XM9p4B/u3hiKtnFzv7xG2rxNQMGYyTKX3JV1+UB3YoyRZu2T+cS9jpbZatfcF9TdFUSym7fgY9n//WX6UDRJ5hf/uzEUTZKGlWa3yW36LVX/QoLRgN7KDKzQL3aN6oQ1tye0H7b2fl387bnSW8/HG7yC0TbZTOaeT6Rp2+e5UvQkEdvo2Ve/vMr3OiZUIHPpvZKkqwb+KCehaA//2NGcqZLp4EvbQVu0LmCbGmXnX63YhccoduNFsssWxtvXVCl29RmK7RSO/7nuXNnP3lHs2rMVu/AY2Qevl21plr3hgtyFol33Qk5C0SRphns+tKuA2gSZrV2V8n3HFyuk+karE2+L+VtvPXvv1f4L6iSFKT5ibGjuvDoAAOiFfqvEULRmST+RNMJau7e1dq61ditJ0yS92mZcWNKDxhiOvAYAAAAAAPCp0CmSkfuXZ3XRmpRzU50cX8HJ8QAAAACQsUiKYLSGLgpGW970rWt7sdNPRSnCtgFkJtjVBQAAAAAAuolghsFoYYLRgG4lEEg7xGy7VycUgh6vTRpCoW3QoJaVWhUs8z190pD1ywQCMqf/Wfaki6UlC6Rx02SCyR9Hmn4DZK5+Oh6U0NggjZwQD5MCegkzaz/Z+6/LbM5pv89TNd1cQTi7ea8+LkWTg0KSBALSoCEJTYUFRoOKrFbVZ/a8c9KkhZKGpx0HoOcKnXqJbny4XJcvP0fvhadqcuMnGhJdHu/8/F1pmz2lJo+gq3ChzLAx0rX/lhZ9Gh/X2CCtq+20+tH9FFVFpPvd+xrHbp7RWmanA3XVxN/o9MDPfY1/6avZumbQKfpH6VFJfSVmnfbbrFj7Tw9oVZ3Vu9/E39Pf+ZrV/8y3vmvaZ5q0xcj466ltaZE961Dp9ac39tsnbpcuvVf2jEOkVUtbJ95xpewdV7aOe3a+9OoT0pvP+d62p0iRzBPLZYKhjq+13ugyo903lZ75OP1Yx7YJOVu5VONGlyngSFGX7LOPl0ifLZNWpDiPJmBdJlZXyT58k8yB30tfUCcZUybddZJRJGgUCSnhT0mWb/cAAOjrjDHjJJ3WrvkIa+1D7cdaaz80xuwu6RlJG9KayyRdKOnkvBYKAAAAAADQSzgmoEKnWPWx5O940wajNS91be8fGJDyZH4AAAAAgLugCSlogmqxLUl9XRWM5rXvV1EwtJMrAXo3gtEAAAAAAHGhDIPRIgSjAd2KcdKP2Wz79GMAJ/G+NLzlW9/BaOUlUllJYriQ6TdQ6jcw7VwzZJT/GoGeZMbszMaPmezrMdMrhVInZZjvXSh700XJHX5C0SSpf5mMk/x6ueVoo6c/8rfEBjtPIMAR6O1MqEB28tYqe+cl7VL/YkKf/cs50vb7yDZ6HEwRjh/MboyRRk3Kd6noIYqWW+l+l2ArSeum7pzRWmvXWV1Q8CPJx0vguo/6K6QWaZVcg9H2qP6X9NFIacrWGlRstMv6u+xpu8f/9hOONnem0V+PbfPa+M6LCaFokqTl38ieuqvU1JC+6FceTz/GB3Pi+TkNRdvgisMdbXWJ+/9lW4G2/0ErlyhUPkzjnEZ9FhuSNPaIv2a4Xhv2+guk/ee5vs/pCgOKjObO5L0SAAA5dqGktm9sbnULRdvAWrvOGHOCpPckbfgC8HvGmCustV/mr0wAAAAAAIDeozhQ4h6M5tLW1oqmJa7tFQXDclIXAAAAAPRFYadQLS5B1Y1dFYzmte8XYt8PyKXucWQsAAAAAKDrZXqiaJirlgHdSiCQfkxxaf7rQM/XLmSvssX9w3o3m3JhEyCJKQhLx53pf/zx58SDdPqiVO9HSwZIR/2sY+9BS91DHs/fP7OvSk5Yc7s22WRQ9nUA6DkC3teYsqfuKn3zuXtnOJKngtCTFaZ4mWsorcxorSfet6qNpg+4f2DREfFQNEnbNbyu49b8PaG/KFanM1b+XnrtqaS5wYDR6Xs5+u95qV8nT9nF6K6THJUWtb5/sXf9yX2wn1C0XBk+Tjr01LwsPWOU0TAfu9eO2oTKrVwq++sTNHH1f7PebsB6JOFVV0nfkm8CAEBvZYwplHR4u+bL082z1n4q6cE2TUFJR+ewNAAAAAAAgF6tKNDPtb3e5UT8tlY0e50cz8F1AAAAAJCtiON+HkFDVwWjee37EYoN5BTBaAAAAACAuFD6E2oTRIryUweA7BgfH/MUux+oAyRwEu9Lw1u+9T114tA+GuYEpOGcdLGvceaPj8vsMTfP1XRfxhhpuznufQ98JRMpkqZsk/0GSstdm3eaYLRz6EPXvln1r+ii5Rdpz9qndEDNo7p6yWm6fskpUnlmATYAeqhU4cO1a6Rn7nHvI0gcLgpTfOyyrtn/OtGY1XdusGnHTWn8UAfUPpbQdv2SU3XDtyfr4LUP6furb9YbX22vbRrekL3pIs91ZowyOnSG93auOdplX/Q//0xbX14d8ROZG/8jk8eQwsk+jl1qG2Rmn50v/d+/NLp5YdbbDMgjGE2SatZkvS4AAOj29pbU9ku5V621H/uce0u724fmpiQAAAAAAIDer9gpcW2vi9amnLeiiZPjAQAAACDXwsb92NzGLghGs9Z67/sRig3klPdlzgEAAAAAfUuGwWiGYDSge3FShDZsUEQwGvxIDDerbPYfjLYpn98DnsyNr8p+f3vv/isfkZm5eydW1D2Zn1wh++nb0qql8YZQgcw5N7W+9xw1QXrr+ewWH1Dm2XXv1Ee1+39iej8ybWPb0JalunbpTzWt8UNpZZvBxf1litwPfgXQy/h5j+2mgGA0JCsMefeta/K3xpsLrL57c8zX2H8uPCCpLaQWzau+XfOqb0/qs4s+kxk5wXWtm09wtGBVTP9d0NpWXiI99tPudR02c/6tMnt9p1O2NXGI0bMfpw6oSwgyWx8WN6zF/WAoP9oGrSWpq856XQAA0O21T5F/LoO5L0pqUetxojOMMUOstctyURgAAAAAAEBvVhRwPzakPkUwWszGtKJ5qWtfRYhgNAAAAADIVsRxPza3oQuC0Wqi1Wq0Da59gwu4ADuQSwSjAQAAAADigpkFoynMid5At+L4OCGdYDT40e6+VBGt8j110hCTfhDQR5lJWypldEY5X4BJkhk1Sbrtv/HwkPoaaatdZUZv2to/cmLqf8dUSr2D0crHjdSrd+2sh/odoA/DkzWmaYEOqH3M/TmwnANVgT4jkOVXqewvw0UkVTBac/r5Z90f0xX/9PcqeNO3J6kywwAue/Q06YUGGZP8nr5/odHLZzp68G2r9xdLIwdJB0w3Glrazd7/73Rgp21q4pD0YxybHGI3vMV/8HR7CUFr7dWuzXpdAADQ7U1rd/tVvxOttXXGmPckzWjTPFUSwWgAAAAAAABpFAfcj7esi9V4zlnbslrN1v2qSBUFHG8CAAAAANnqTsFoK5q8j88kFBvILYLRAAAAAABxoQyD0SJF+akDQHZMmmC0grBMpo9z9E3tgtHKMwhGm0quE5BaaZlUvdK9j+fojcyAcmnOse6d46Zmv+7YKd6dY6eq0DboqLX3pl9obPY1AOhhsg5Gi+S2DvQKxhhFQlKDSwjaOvdzIzZ69QvrOxTN2Jj2rHsmiwolu3NEdve5MlvOlvabJxMIbOwrCBrNnWk0d2ZWS+edOfUymcLiTttePBQ69f+JW5DZsNcqDQ0AACAASURBVAwD69qyShFEV1edOLbqW9m/nCv96854wwEnysw5Vmb6Dtlv/60XZJ+7T4rFZHY5VGarXbNeCwAAZGRyu9ufZzj/CyUGo02R9GyHKgIAAAAAAOgDPIPRot7BaMubU50cP7TDNQEAAABAXxX2CEZr7IJgtOXN7hdILXSKPPclAWSHYDQAAAAAQFwwwzCOMMFoQLfS5oR1V4V8sAq/Ek+2L2/xF4w2cYg0tjwf9QC9iJPiuZpgNH82myWFC6XGLL7A3OVQ777x06UBFdKaFWmXMQecmPm2AfRMqZ63UykgGA3uCr2C0Vza2rrtVX+haJK0f+3jquxA+JaeuUf2mXuk156WueSu7NfpbHOO69TNTRySfoxjY0ltwz0OiPIjZFPcUWpbg9Hst1/JHrlpYv8jN8s+dqt04d9kdjs8423bp+6SvWSeFIv/TvahG6Qz/yqz3/EZrwUAAPwzxgySNKhd88IMl2k/fkL2FQEAAAAAAPQdRYES1/blTd/q0ap/uPYtblzg2l4c6Oe5HgAAAAAgvYhHMFpDnoPRFjZ8rk/r30/YzufrPnQdWxEaJmNSXAAVQMYIRgMAAAAAxAVDmY2PEIwGdCvGSd1fxEE18MlJvC+VR1f6mrbXVMMH+EA6BKN1mIkUyc7aV/r3fZnN++39MuWV3v2BgOzsg6WHbki90OARMtvsmdG2AfRggSy/SiUYDR6KCqTV9cntdY1W7QOKN4jFrK5/IX0wWv+IdOiwr3XVe5d4DyoZIPPnp2XnzUxf7PMPKLZTWObE86XjzpIJpn482Leel73p19LK7IO/shYMSaVlnbrJMeXxf/O1Dd5jAoomtY1r/koFsUY1OeGMtje4ZZnGNn/t2W/XVG28B9m/nOM+KBaTvfAYaccDZAr8b99aK3vDhRtD0dY3yt74K2nf77IfCABAfg1od7veWluX4RrL290u7UA9AAAAAAAAfUax437MZU20Wo+vvDujtSpCw3JREgAAAAD0WeEuCEZ7tOofGe3/VRSw7wfkWpozZgEAAAAAfYUJBKRAirCO9sKc6A10K+kev0X9OqcO9Hwmu2C0ad55QwA2SBWwEyQYzS8z7/zMJ22/T/p1v3uWVNL+fOM2BlTI3Pxa5tsG0HNlso/chiHsEh5KPLKo6pq85xxwdcy7U1LQkZ76uaNVf3J089mbqN+dr8s8WyNz6mVJY81JF8uM30zaeg/fNdubfy17nUfQ1oYxX34g+/N9pXdelL75wvfaGakY7t1XNkzG6dxDHwKO0V5TUo+J2EbXtt3r/51y3hSXY6POrbpcjlIE5P39CkmSra+RXnw45fr2iAmyDS4JfV4WfSYt+Tq5vepb6dO3/K8DAACy0f7s22yO6G4/p8NfFhhjBhtjpmbyR9ImHd0uAAAAAABAZyoK5O6YS4LRAAAAAKBjIh7BaI15CkZb2vgNodhAN5DlZc4BAAAAAL1SsECK+vwwKOz+YRKALmLSnARe3L9z6kDPZ0zCzfJola9pk4eZ9IOAvi6Q4rm6wCMpBUnM2MnSbW/KHr+lvwl7HuUrLMUMHiHd8prsHVdKn78nFZVIq5ZJw8ZIg0fIHHuGTGlZx4oH0LOkCrRMJRjKbR3oNYo9Xu5rG9zbm1usnv/Ue72Dt5DOmONou3GJ78VNqED2qJ/LjJks+9itkozMAfNktt073n/lI7KzM/hc575rZb97lkz/Qa7d9oYLpWiL//UyVdRP6j9IWrHYvb+8aw4mOnym0fw3vcPKpjW879p+YM2jeqJkjue8Z0539MoX0r1/fUaNa6p19Nq7dUjNQ2nrsVXfSu+8nP7/YtUy2T0Hxu8jp1ya/n3S2lXefauXp60LAAB0SPtgNI93jim1/+Kv/ZrZOFXShTlYBwAAAAAAoNsqyWUwWsHQnK0FAAAAAH2RVzBaQ56C0T6oezPjOez7AblHMBoAAAAAoFWoQGr0+WFQQSS/tQDITLrQhqJcnOuEPqHdSfFh26RBLSu1Kpg6DGgKFzYB0nMC3n3Bgs6roxcw46ZKP7hY9oYLUg8cOlrmhHP9rzt0tMzpf+5gdQB6jWyD0UI8p8NdiUcwWl2Te/ui1VK9R9+2Y6X7T/V+b2GMkbbfR2b7fZL7HEe66knZsw+X6mvSlS21NMv+7kfS7IOlKVvLVI7b2GVr1kgvPZJ+DS9b7Sr999+px5QPSx0iO2hI9tvvgENnGE0fYfXuN+79+9c+7tl+iseac2caDelvdMgM6SDnN9LiV/wX9N6rsi+kD1Db6K4/yq6rkbaYLVWOlZmytfs46x3+1j5YGwAA5F2KF+aczgEAAAAAAOjzhofHKGwiarTZZNUnmlg0LQcVAQAAAEDfFXbcz2VtjHV8n81NTXRNxnMmFLLvB+Ramkv/AgAAAAD6lEwCOQhGA7qXYLpgtNxdvRC9nMuJ7bPW/SfllGmVUlkJJ8QDaaUMRgt1Xh29xXFnSMPHJbcPGipz8m9kzr1J5sZXZUZN7PzaAPQOTpZfpYZSBDihTyv2CkZrdG9fUu291qm7dOz9t9lyF5nb/itz2h+kfgPTT3juftmLvit7zHTZ+/8iSbKrl8vu27FQMrPzQdLgEakHlVemflwVl3aohmwFA0bXHO3IcfmvGNGvWfsft5PrvGEtS3Vk9T1J7UYx/f17bRaLtmRUj73gaOm5+zKao4dulL3oONkf7qjYeUfJxmKZzQcAAPlW2+62+yWwU2s/p/2aAAAAAAAAcFHghDWn7IgOr7Np0eacHA8AAAAAHRRx3L8ub4ity8v26qI+Ljrbxg6le6q8oGsu8gr0Zlle5hwAAAAA0CuFCEYDeqx0j9+i/p1TB3o+l2C0Q2oe0qP99vOccvAMQtEAX1IEo5lsw3f6MGOM9Kd/yl54rPTha/HGyTNlLrxdZvgmXVscgN4hkOVXqZnsW6NPKfa4a9RmEYx27HYdfw9uho6WDv+RtMXOsvNm+pvU0iz7x5/J/vFnHd6+JKliuMxv75c9cRvvMZtMk7760Lu/qCQ3tWRhh/FGd/7A6IRbrBqa423DSqV//DCsovE/kp0zV/bCY6S3nk+Y9/tlZ2pJcKheKN5ZkjS14QP9rfQaBQN/bR2UYTCaJKkjwWbPPyA9erN04PcT21PWwb4gAAB51l2D0a6VdG+GczaR9FAOtg0AAAAAANBp9i47TIMLhumd2v/T6uaVGc0tDBRpQuFUzR64b/wYFwAAAABA1sIewWiNeQpGq4+6f7U+IFimitCwjbdLAv01pXiGZpXukZc6gL6OYDQAAAAAQKtgyP/YgnD+6gCQuUCax28XniiOHsYkhzPtX/u4ArZFUeP+ceIhBKMB/mQbsANPZuho6boXpC/elwoKpMpxMpm8pwWAVFIEWqYUJBgN7koiRpJNaq/3DEZLHitJm1QopydPmPGbyW6+k/TOizlb07fySpkJm0tPV8v+dM/WsNMNAkGZOcfJ3vgr7zWK+uW1xHTmznR0wHSr17+WCoLSFiOlSCj+/2MGVkh/+qf0zWfSkgXS2CnSv+/T0KvP0DML5+jDgslqNiFNa/xAwVHtgl29Askcp2MBaCnYe/4s0z4YrdnjDiplF94GAAAy0T4qt8gYU2ytrctgjcHtbq/pYE2y1i6XtDyTOZz8CwAAAAAAeqoZ/WZpRr9ZXV0GAAAAAPRpEa9gNNugmI3JcTkXqiPqYu7BaNv230UHVRyX020B8JbbRzYAAAAAoGcLZXDydkEkf3UAyFy6EJguPlEcPYiT/JFhWXSVdq/7t+vw8YPjJ/4D8CGQZcAOUjLGyIzfTGbUJELRAORWtoGWmexbo08p8rhr1DW5B6AtbR+Dsd6w0hwV1Ia59B5pjyOl0vLcL55KRWV8++GIzFVPSof8UCoZIBkjTdhc5ooHZSZukTKg33SD/d3CAqOdJxptN85sDEXbwDhO/H3KtnvJDB4hVQyPt0ua2vSRtmh8V0FFpYWfJi7qFTq21W55+A3WW/Cx7JKvE9uaGrzHN6UITQMAAB1mrV0paXW75lEZLjO63e3Psq8IAAAAAAAAAAAAAIDO5xWMJkmNsRTHuGWpPlrj2l4U6PrjFYG+hGA0AAAAAECrIMFoQI+VJnzBFJV0UiHo8Yxxbb54xUUqiDUmDb38MEfGYw6AdhyC0QCgRyEYDTlW4vFRSq3HMTlLPILRhvbPTT1tmf6D5Fx4u5xHF8vc/XHuN+AmEJQGDmmtIVIk5xf/K/PYEpmn1si5+TWZbfaMdxZ4H9Sknra/Wz7Ms8u+9ULrDY9gNLPj/q6B1jnzyVuJt1OFnzW799loVHb1ctm6tTksDACAPuujdrfHZzh/XJr1AAAAAAAAAAAAAADo1sIpg9HW5Xx7ddFa1/biQA87XhHo4QhGAwAAAAC0yuTk7TDBaEC3Egyl7i/Ow5nz6J2M+0eGMxve1Ctfz9axa+7QzIY3dcRWRv/6maNDZhCKBvhGMBoA9CyBLJ+30703R59V7PGxS12Te/vSauvaPnRAft+Dm8qx0uCRuVls/HRp6rbufdvuJePyODOOI9P+c6eBFd7b6Gn7u+WVnl32L2e33vAIRlMoLHPn+zkuqo0F7YLxGlNcTbMpuc9+9Ibs97aVPXCk7P6Vil19hmw0muMiAQDoU9q/8G/vd6IxpljS9DTrAQAAAAAAAAAAAADQrUVSBKM15CEYrd4jGK3IIRgN6EwEowEAAAAAWoXC/scWEIwGdCuBNOELRf06pw70fI73R4ZbNL6rW5f8QP9ZdZDu/qGj3ScTigZkwhzxY/eOkRM6txAAgD+BYHbzMgkdR59S4vGxS22je/uSavf2YaW5qScVc+FtHV+kpFTmR7+Vuew+afSkxL5BQ2R+cLH/eiq8w8R63P5ueaVU4HFn+PID2Yb6+M9eYWKBoDR0TPbhjWnYBZ8kNriEn7X2NcrWrJF9dr7sf/4pW7Na9qQdpC/ei/e3NEt3XyV7zDTZ+VfnpV4AAPqAf7a7vUsGc3eS1HbH5i1r7bIOVwQAAAAAAAAAAAAAQCfqzGC05lizGq37cXPFgR52vCLQw2V5ND8AAAAAoFfye/K242R/gjiA/AimCUYr5IoU8Mn4uJZCpDj/dQC90Q77SeFCqTHxizez53e6qCAAQEpOlqFDmYSOo08p9gpGczl+piVq9c437uM7JRht+g6yu8+Vnrkns3l3vi+9/JgUjkiz9pUZMireccOr0rPzZb/+SGbkhHhf+TD/C5elGFvUs/Z3TUFYdtQk6fN3kzsb10kfvSHN2FmKtrgvEAjKBAKyZcOk5R53ko5Y9Gni7RTBaPbFh6XrL5Bq16Rec/GXsledLnO4R1AwAABI5UlJ6yRtOMp7e2PMptbaj33MPaHd7QdyWRgAAAAAAAAAAAAAAJ0h7EQ8+xpzHIxWH6v17CsO9KzjFYGejrPYAQAAAACt0gUrbVAQkTEmv7UAyIgJBGRTDSjiihTwyc/zeyHBaEA2TFE/6fIHZM85QqqviTfueph07P90bWEAAFcmEEz9HtuL39Bx9DmlHhcsXF2f3PbAW97rDO3fOZ/JmDP+IruuVnrlcX8TttkzHnp21M+S1yoslvY7XllXXpIiDc5PuHM3Y373sOwhY9w7Vy6J/50iGE2SNG5qfoLRqqsSbtqXH/Ue+/rTud8+AABIYK2tN8bMl3Rcm+YzJc1LNc8YM1HSIW2aWiTdmfsKAQAAAAAAAAAAAADIL8cEVGDCarKNSX0NuQ5Gi3oHoxUFOD8P6Ew97whhAAAAAED++D15u8A7YR9AN0UwGvxyfHxkSDAakDWz1a4yjyyWufY5mfmfy7n4ThkCdACgewpkeY2pIM/rcFde4h4LtrpeaokmxvDd/XrMc51hKTLCcskUlci5/AGZ29+Wuf5lmafXyNz3hcx5t7gMNjLzzstfMeWV3n3F/fO33Twx5cOkEePdO6tXxv9OE4xm9j8x/Ya+84vMi6up3vijveUS6Y1nM1/DjZ99TQAA4OVXkprb3D7BGHOg12BjTETSLZLa7pzcZK39Ij/lAQAAAAAAAAAAAACQXxHH/eq0uQ5Gq4vWePYVOZxPBXQmjjwFAAAAALQiGA3ovQqLuroC9BTGTzBaSf7rAHoxUxCW2Wx7mSEju7oUAEAq2Yb4EHgJD+Up3kavqku8ff9b3mM3HZqbevwyYyfLTJ4pEy6UGTxCZu+jZW58VZq2vRQulIaNkfnV32WmbZe/IsZNk8qGJbf3GyiN3zx/282n0jLXZrv8m/gPnsFoAUmSmX2wdOjJKTdhBpTH/+0yUbtGse9vr9hOYdmbf53ZXAAAkBfW2i8lXdWueb4x5sfGmIQdEGPMZEnPSJrVpnmlpIvyWyUAAAAAAAAAAAAAAPkT9ghGa8xxMFp9rNa1PWQKVOCEc7otAKkRjAYAAAAAaBX0G4zGBzhAjxN2//AXSGJM+jERgvYAAEAfEAhmNy8Yym0d6DVSBaNVtTmO5q2F1nPclGFSOOTjPXuemUlbyvnLc3KeXiPnnk9kdjs8v9sLBGSO/WVy+9GnywSzfKx2tf6D3Nvv/L3s1x9JtdXu/W2em8y881Nvo7BE5tj/8bef19Ynb2Y2HgAAdIazJD3R5nZI0p8lLTLGPGGMuccY84akD5QYitYk6RBr7ZLOKxUAAAAAAAAAAAAAgNyKeASjNeQ4GK0uWuPaXhzol9PtAEivhx4hDAAAAADIi5DfYLRIfusAkHsFBKPBJ+PjWgqFKRIdAAAAeotAILt5fvet0eeU+QxGO/v+mOe4W+f13WufmcN/LA0cIvvsvVJzk8xuR8jMOaary8peaZlnlz1uC+95bYPgSsvizznNTe5jC4tl9jxKKu4v+/ht0vMPZllsBwwaIg0cLDl9974LAEAuWGujxpi5km6UdGSbrsGS5nhMWy7peGvti/muDwAAAAAAAAAAAACAfAp7BKM12twGo9VHa13bixzOpQI6G8FoAAAAAIBWQYLRgF4rTDAafPJzsnoRH+YDAIA+IJDlV6kEo8FDJGRUEpZqG5P7NgSjNbVYvfql+3zHSJOG5q++nsDsfoTM7kd0dRm5UVud3bw2YdbGGNnyYdKSBe5j14dam1n7yszaV/aFh2TPnZvddrOx3zw5Z13XedsDAKCXs9bWSjrKGDNf0umStvMYukrS3ZIutNau6Kz6AAAAAAAAAAAAAADIl4hHMFpDLLfBaHUewWjFAc6lAjobwWgAAAAAgFahkL9xBKMBPQ/BaPDLmPRjBlTkvw4AAICulnUwWji3daBXKS9xD0ZbUWMlGb34mVTT4D53kwqpX8TH+3X0CGbiDNmXHsl8ohNIvF0+3DsYLVKUeDvb57UsmTOu7dTtAQDQV1hr50uab4wZK2lLSZWSiiUtlbRA0svW2qYuLBEAAAAAAAAAAAAAgJzqtGC0WI1re1GgX063AyA9gtEAAAAAAK2CBf7GhXyOA9BtmEAg/SBAkoyTfsiA8k4oBAAAoIu1Dx/yi31mpFBWIn29Mrl9zfrjch5913rOffJn6d+rowcZv1l285x294NBg73HFra7QuXkmfEwbOt9P8uJYWNkLr1Xpn2tAAAgp6y1X0n6qqvrAAAAAAAAAAAAAAAg38JOxLW9McfBaPXRWtf24kCJazuA/CEYDQAAAADQyu/J20F2JwGg1/Jz4vqAivzXAQAA0NUCWe77+g0dR580wP2ChVpTH//71S/cA6sO21IaU27yVBW6xHZzspvXPsy6vNJ7bGFx4tRBQ2S33Uv6z5PZbTtVWRfdITXUSyMnSBNnyITdD0IDAAAAAAAAAAAAAAAAACBTEcf9AMyGWENOt1MXrXFtL3IIRgM6G5fnBQAAAAC08huMFgjltw4AQNcxPsIWBpTnvw4AAICu5gSymxdknxneSr2C0dZJ1lp9uty9f88phKL1NiZUIHPJ3ZlP/H/27j3KsrOsE/DvO+dUneqq7nR3SOdCEuhcCQkYQJCrEklAgZEAIjoIGhGHhTdQRnGWo5AZlzoizBqdYXS8wQg6423AcURcusRRkFkjwvKGw02iokBUwO6qVHdSteePatJ1Oafq3HfVOc+z1l7p8+1vf/vtXbve6jrZ9attYdbl4iu6z51v7zzva96cPOUrknaXm7FfD7o+5Zc+lPKU56U842tSHv54oWgAAAAAAAAAAACMVLtLMNqZ9XtGep5uwWhLzSMjPQ+wtwF/zTkAAADTqLTmU/UyseXbSYCpVXr4XQrHLx5/HQAAdRvwe9/S8Lup6O7oYkk6vPvy2ZXk708nn1npfNyNlwlGm0blyc9O9bgvTd7zG30ctO1eeNjju889ujPUuixdkHLnm1Pdezb5hR9J9WPfvfc5r35YGm96b6r77k3OriZnzySHDgtAAwAAAAAAAAAAYCIWugSjrY44GG1l/XTH8aXm4ZGeB9ibp/IBAAA4b26+t3nNufHWAUB9egnyOLbzh+sBAKZOc4BgtMfcOvo6mCrHFjuPf2alygc/2f246y8ZTz3Ur/zAL/V5wLbv2W56bHLZg3fOu/qmlF2+dytz88lTnpe09n6frzzr6zf+25pLWTyScuwioWgAAAAAAAAAAABMzKSC0ZbXugWjHRnpeYC9CUYDAADgvB5+ELKveQAcQGXvKUcFowEAM6DR7PuQ8k0/NIZCmCbHOj+Xk8/ek3zwk1XHfUcPJSc8TzO1Smsu5a13JScf2tsB28KsS7OZ8s2vTebb5wfnF1K+9XV7n/uykykv/t7dJ13/yOTpL+qtNgAAAAAAAAAAABiDdpdgtDMjDEZbq+7L6vpKx32LgtFg4gb4NecAAABMrbn53uYJRgOYXo09fpfC0YtSNv/APQDAtGr2GYz2mFtTrnnYeGphahxb7Dz+mXuSD36y877rL0lK6SHAmAOrPODS5Cf/INWXnkjuu3ePyTu/ZytfdHvyk+9J/uDtyfp68uRnp1x5XW/nftF3Jp/3hFTveUfyjrckd398Y8fFV6a85NXJrc/3PSAAAAAAAAAAAAC1WugSjLY6wmC0lbXlrvuWGodHdh6gN4LRAAAAOK/VYzBa07eTAFOrww/Zb3HRZZOpAwCgbo3+gtHKi141pkKYJsc6P5eTz6wkH/pk1XHf9ZcIRZsFpX0o1YtelfzM9+0+sUuYdbnqxuSqGwc7981PSrn5SclL/+1AxwMAAAAAAAAAAMA4tbsEo91X3Zu16r40y/A/87qyfrrrvsWmYDSYtD1+yhEAAICZMtdjMFpLMBrA1Cp7hC6ceOBk6gAAqFs/oeAPuj65+QvHVwtT49hi539v330qeddHOh9z3SVjLIh9pRx9QA+TPOYBAAAAAAAAAADAbFnoEoyWJKvr94zkHMtrp7ruW2oeGck5gN55YhYAAIDzeg5GmxtvHQDUp7HHW4YPEIwGAMyIvYLRjl60MedRt6T8+7en7PXvKEjywGOdx+9bTz75T533PfzyPcKLmR5HL9p7jl4DAAAAAAAAAADAjJlMMNrpjuOt0sp8aY/kHEDv+vg15wAAAEy9Vo/BaHv9cDhQj6tuTP7yz3eOX3715GvhwCqlpNptwkWXTaoUAIB6ze/yAMMXPDXltb+a3Hs2pb0wuZo48B5ySX/z51vJrTeMpxb2oaMX7j2nCEYDAAAAAAAAAABgtrR3CUY7M6JgtJW1Ux3HFxtHUopfcguT5olZAAAAzpub621es8d5wESVF35n5/GXvGaidTAFGt3fNiyHL5hgIQAANXrQQ7rvO7SU0mgIRaNvhxdKrjje+/xbb0guOORhmplx9KK95+zy/RoAAAAAAAAAAABMo4VdgtFWRxSMtrx+uuP4UvPwSNYH+uOJWQAAAM5rzfc4TzAa7EtPfk7ymNu2jj3mtuQLn1VPPRxcu/0Wk/bi5OoAAKhROXZRcsW1nfc99DETroZpcsOlvc991s1C0WbKict3/34s2Xs/AAAAAAAAAAAATJn50k7pEpM0qmC0lbXOwWiLgtGgFoLRAAAAOG+ux2C0Zmu8dQADKe2FlB/45ZQ735K84JUpr3lzyg/+Skq7+2/EgI7KLm8bLghGAwBmR3nhd3Te8dinTbYQpspDLu092Orx1wjBmiXl+InkUbfsMck9AQAAAAAAAAAAwGwppaTdWOi478yIgtGW1051HF9qHhnJ+kB/BKMBAABwXru3sJvSmhtzIcCgSnsh5SnPS+Nl359y61ekzLfrLomDqCEYDQAgSfKlL0qe8bXnXzdbKS9/Xcq1n1dfTRx4N1za+9xrT4yvDvan8sof3X3Cbt+vAQAAAAAAAAAAwJRaaBzqOL46omC0lbXTHccXG4dHsj7Qn1bdBQAAALCPHL2wt3mC0QCmXOm+q935fyIAAEyj0mym/Kv/kuqff1vydx9Lbvj8lOMX110WB9wNl5Yk1Z7zrjyeLLZ3+bc5U6lced3ud0cRjAYAAAAAAAAAAMDsaY85GG15vXMw2lJTMBrUQTAaAAAA5x19QG/zms3x1gHA/rWwWHcFAAATV04+NDn50LrLYEo86kFJKUm1Rzba9ZdMph4OmIZgNAAAAAAAAAAAAGbPQpdgtDMjCkZbWTvVcXyxeWQk6wP98cQsAAAA5y0d7e2HK1tz468FgPrcd7b7vrZgNAAAGMbxpZJX3Fb2nHfdJXvPYQYVj3kAAAAAAAAAAAAwexYaCx3HV9dXR7L+8trpjuNLjcMjWR/ojydmAQAAuF9pNJIjx/eeKBgNYLqtr3fftyAYDQAAhvXDz9s79Oz6SyZQCAdPL7/UAAAAAAAAAAAAAKZMu3Go4/iZ9XtGsv5Kl2C0xeaRkawP9McTswAAAGx1wYV7z2kKRgOYWQud/ycCAADQu1JKvuSm3edcf8ne4WnMoOIxDwAAAAAAAAAAAGbPQpdgtNURBKOtV+tZWe8cjLbUPDz0+kD/PDELAADAVkcfsPecZmv8dQCwP7UX664AAACmwmVHuwefNUryuKsn6svn2QAAIABJREFUWAwHR8NjHgAAAAAAAAAAAMye9hiD0VbXV1Kl6rhPMBrUwxOzAAAAbLV4ZO85rbnx1wHA/rQgGA0AAEbhqou673vMyeTCpe7Bacyw4jEPAAAAAAAAAAAAZs9Cl2C0MyMIRlteO9V132Kjh5+5BUbOE7MAAABsNd/ee45gNIDZJRgNAABG4taHdg8+e84jhaLRRXFvAAAAAAAAAAAAMHu6BaOtjiQY7XTXfUvNw0OvD/RPMBoAAABbzfUQjNZsjb8OAPalIhwTAABG4nFXJZcf67zvWTcLv6KLhsc8AAAAAAAAAAAAmD3tLsFoZ0YQjLay3jkYrZFGFhqLQ68P9M8TswAAAGzVSzBaSzAaAAAAwDAajZIfet7OALQXP6nkhssEo9FF8ZgHAAAAAAAAAAAAs2ehSzDa6giC0ZbXTnUcX2weTime6YQ6+El2AAAAtuopGG1u/HUAAAAATLmvekzJ4nzJf/it9azelzz3USXf8sUeoGEXDcFoAAAAAAAAAAAAzJ5xBqOtrJ3uOL7YODz02sBgBKMBAACw1fz83nOavp0EAAAAGFYpJbc/Irn9Ec26S+GgKILRAAAAAAAAAAAAmD3tLsFoZ9bvSVVVKWXwX0y7vHaq4/hS88jAawLD8cQsAAAAW821957Tmht/HQAAAADAVg2PeQAAAAAAAAAAADB7FkrnYLT1rOfe6uxQa6+sn+44vtg8PNS6wOA8MQsAAMBWc/N7z2kKRgMAAACAiSse8wAAAAAAAAAAAGD2tBudg9GS5Mz6PUOtvbzWORhtSTAa1MYTswAAAGw11957TrM1/joA2H+WLqi7AgAAgNnW8JgHAAAAAAAAAAAAs2dhl2C01aGD0U51HF9sHBlqXWBwnpgFAABgi9JLMFprbvyFALD/XHC87goAAABmW/GYBwAAAAAAAAAAALNnnMFoK2unO44vNQ8PtS4wOE/MAgAAsNX8/N5zBKMBzKbH3FZ3BQAAALOt4TEPAAAAAAAAAAAAZk97l2C0M0MGoy2vdw5GWxSMBrXxxCwAAABbzbX3ntNqjb8OAOrzZS/uOFxe8MoJFwIAAMAWpdRdAQAAAAAAAAAAAEzcXGMuzXT+2dbVIYPRVtZOdRxfah4Zal1gcILRAAAA2KqXYLSmYDSAaVZe+B3Jicu3Dn75N6Zcfk09BQEAALCheMwDAAAAAAAAAACA2bTQONRxfHV9deA1q6rK8trpjvuWGocHXhcYjp9kBwAAYKv5HoLRWnPjrwOA2pQHXp38+O8lv/0LqT751ymPfHLyhc+quywAAAAagtEAAAAAAAAAAACYTe3GQpbXT+0YP7N+z8BrnqlWs561jvsWm0cGXhcYjmA0AAAAtpoTjAZAUk5cnnzVt6XUXQgAAAD3K8V3aQAAAAAAAAAAAMymhcahjuOrQwSjLa/tDFr7nKXm4YHXBYbjVwkDAACw1dz83nOacrYBAAAAAAAAAAAAAAAAAJiMdpdgtDNDBKOtrJ3uum9RMBrURjAaAAAAW/USjNaaG38dAAAAAAAAAAAAAAAAAACQ5FBjseP46hDBaMtrp7ruW2wsDbwuMBzBaAAAAGw11957TlMwGgAAAAAAAAAAAAAAAAAAk9FuHOo4Pkww2sr66Y7jhxpLaZTmwOsCwxGMBgAAwFbzvQSjtcZfBwAAAAAAAAAAAAAAAAAAJFnoEox2ZohgtOW1zsFoS83DA68JDE8wGgAAAFstXrD3nNbc+OsAAAAAAAAAAAAAAAAAAIAk7S7BaKtDBaOd6ji+2Dwy8JrA8ASjAQAAsNWDrk8OLXXfX0pKszm5egAAAAAAAAAAAAAAAAAAmGkLYwhGW1k73XF8qXF44DWB4QlGAwAAYIsy304e8UXdJ7TmJlcMAAAAAAAAAAAAAAAAAAAzr1sw2pkhgtGW1091HF9qHhl4TWB4gtEAAADY6YILu+9rtiZXBwAAAAAAAAAAAAAAAAAAM6/dWOg4vjpEMNrK2umO44LRoF6C0QAAANhprt19X2tucnUAAAAAAAAAAAAAAAAAADDzFhqHOo6fGSIYbblLMNpi8/DAawLDE4wGAADATvPz3fc1BaMBAAAAAAAAAAAAAAAAADA57S7BaKtDBKOtrJ3qOL7UEIwGdRKMBgAAwE6t3YLRWpOrAwAAAAAAAAAAAAAAAACAmbfQJRjtTLWa9Wp9oDWX1093HF9sHhloPWA0BKMBAACw01y7+77W3OTqAAAAAAAAAAAAAAAAAABg5nULRkuSs9WZgdZcWescjLbUPDzQesBoCEYDAABgp7n57vtarcnVAQAAAAAAAAAAAAAAAADAzGvvEoy2un5P3+udXT+Te6uzHfctNo/0vR4wOoLRAAAA2KHMtbvvbApGAwAAAAAAAAAAAAAAAABgchZ2CUY7M0Aw2sra6a77lhqH+14PGB3BaAAAAOw0P999X2tucnUAAAAAAAAAAAAAAAAAADDzdgtGWx0gGG15/VTXfUtNwWhQJ8FoAAAA7NQSjAYAAAAAAAAAAAAAAAAAwP7Qbix03TdQMNra6a77FgWjQa0EowEAALDTfLv7vmZrcnUAAAAAAAAAAAAAAAAAADDzGqWZ+dL551/PDBCMttIlGG2hcSjN4mdpoU6C0QAAANhpbpdgtNbc5OoAAAAAAAAAAAAAAAAAAIBshJZ1sjpAMNry2qmO44uNw32vBYyWYDQAAAB2mpvvvq8pGA0AAAAAAAAAAAAAAAAAgMlqjzAYbWX9dMfxpeaRvtcCRkswGgAAADvNtbvva7UmVwcAAAAAAAAAAAAAAAAAACRZ6BKMdmaAYLTltc7BaIvNw32vBYyWYDQAAAB2as1139cUjAYAAAAAAAAAAAAAAAAAwGS1uwSjrQ4QjLaydqrj+JJgNKidYDQAAAB2mm9337dbaBoAAAAAAAAAAAAAAAAAAIzBQpdgtDMDBKMtr53uOL7YONL3WsBoCUYDAABgp7ldgtHand80AgAAAAAAAAAAAAAAAACAcekWjLY6QDDayvqpjuNLzcN9rwWMlmA0AAAAdpqb775vUdI9AAAAAAAAAAAAAAAAAACT1W4sdBwfJBhtee10x/HFpp+jhboJRgMAAGCnuXb3fYuS7gEAAAAAAAAAAAAAAAAAmKyFxqGO42cGCEZb6RKMttT0c7RQN8FoAAAA7LRbMNohb+gAAAAAAAAAAAAAAAAAADBZ7S7BaKsDBKMtr53qOL7Y8HO0UDfBaAAAAOw0N9d1V1k8MsFCAAAAAAAAAAAAAAAAAAAgWegSjHamz2C0+6p7c6Za7bhvqennaKFugtEAAADYaW6++75DS5OrAwAAAAAAAAAAAAAAAAAA0j0YbbXPYLSVteWu+5aah/taCxg9wWgAAAD05/gldVcAAAAAAAAAAAAAAAAAAMCMaXcNRlvta53ltVNd9y02j/S1FjB6rboLAAAAYB86cUVy/OLk05/aOj7fTr7gtnpqAgAAAAAAAAAAAAAAAABgZi10CUZbXjuVH77ru3pe50zVPUhtsbHUd13AaAlGAwAAYIfSaKT6shcn//UHt+546gtSli6opygAAAAAAAAAAAAAAAAAAGZWu0swWpX1fHT1L4Zef67MZ77RHnodYDiC0QAAAOiovOQ1SXsx1W++JVlfT77o9pSX3Fl3WQAAAAAAAAAAAAAAAAAAzKCFLsFoo7LUPDLW9YHeCEYDAACgo1JK8jWvSvmaV9VdCgAAAADMjmfekfyvN+4cP7Q06UoAAAAAAAAAAABgXzncvGCs6x9pHh3r+kBvGnUXAAAAAAAAAADAhvLcl3Uef/H3TrgSAAAAAAAAAAAA2F8unDuRy+avHNv6Dzv8+WNbG+idYDQAAAAAAAAAgH2iXP+I5Ov+9dbBL3hq8pyX1lMQAAAAAAAAAAAA7CMvvPSbc6ixOPJ1r1p4SG49fvvI1wX616q7AAAAAAAAAAAAzmu8+HtSfdGzkz95d3LyocnDH5/Smqu7LAAAAAAAAAAAAKjdVYcekldf9YZ8YPn9+cf77h56vUYauXLh6lx36KbMNeZHUCEwLMFoAAAAAAAAAAD7TLn24cm1D6+7DAAAAAAAAAAAANh3Lmgdy2OP3lJ3GcCYNOouAAAAAAAAAAAAAAAAAAAAAAAAAEAwGgAAAAAAAAAAAAAAAAAAAAAAAFA7wWgAAAAAAAAAAAAAAAAAAAAAAABA7Vp1F8B0KaXMJXlikgcluSzJ6SR/m+R9VVV9rMbSAAAAAAAAAAAAAAAAAAAAAAAA2McEo82wUsp/S/KV24bvqqrq5ABrnUhy57n1Luwy591JXl9V1S/3uz4AAAAAAAAAAAAAAAAAAAAAAADTrVF3AdSjlPKs7AxFG3Stpyf50yQvS5dQtHOekOSXSilvLqUsjeLcAAAAAAAAAAAAAAAAAAAAAAAATIdW3QUweaWUY0n+84jWuiXJW5PMbxqukvxRko8mOZbkkUku2rT/q5NcUEp5dlVV66OoAwAAAAAAAAAAAAAAAAAAAAAAgIOtUXcB1OJ1SR547s+nBl2klHJFkl/J1lC0dyW5qaqqR1dV9fyqqp6W5IokL09y76Z5X5bk+wY9NwAAAAAAAAAAAAAAAAAAAAAAANNFMNqMKaXcluTF517el+R7h1juziTHN71+d5Lbqqr6wOZJVVWdqarqR5I8f9vx315KefAQ5wcAAAAAAAAAAAAAAAAAAAAAAGBKCEabIaWUpSQ/sWno9UneP+Ba1yX52k1DZ5PcUVXVardjqqp6a5I3bRpqJ3n1IOcHAAAAAAAAAAAAAAAAAAAAAABgughGmy0/kOTkuT9/NMlrhljrBUmam17/SlVVH+rhuH+37fXzSykLQ9QBAAAAAAAAAAAAAAAAAAAAAADAFBCMNiNKKU9I8k2bhl5aVdU9Qyz5nG2vf6aXg6qq+kCS/7NpaCnJ04aoAwAAAAAAAAAAAAAAAAAAAAAAgCkgGG0GlFLaSX465z/eb6qq6reGWO/SJDdvGrovybv6WOKd214/fdBaAAAAAAAAAAAAAAAAAAAAAAAAmA6C0WbDa5I85Nyf707yyiHXe9i2139cVdVyH8e/e9vrm4asBwAAAAAAAAAAAAAAAAAAAAAAgANOMNqUK6U8Ksm/3DT0iqqq/mHIZW/c9vrDfR7/kT3WAwAAAAAAAAAAAAAAAAAAAAAAYMYIRptipZRWkp9O0jo39BtVVf3cCJa+dtvrv+rz+Lu2vX5AKeX4EPUAAAAAAAAAAAAAAAAAAAAAAABwwLX2nsIB9l1Jbj735+UkLxvRuse2vf5UPwdXVXW6lLKaZGHT8NEknx62sFLKxUlO9HnYNcOeFwAAAAAAAAAAAAAAAAAAAAAAgOEIRptSpZQbk/zrTUPfU1XVx0a0/OFtr+8ZYI17sjUY7cjg5WzxjUlePaK1AAAAAAAAAAAAAAAAAAAAAAAAmJBG3QUweqWURpKfStI+N/TeJD8ywlNsD0ZbHWCN7WFq29cEAAAAAAAAAAAAAAAAAAAAAABghghGm04vT/K4c3++L8lLqqpaG+P5qgkdAwAAAAAAAAAAAAAAAAAAAAAAwJRq1V0Ao1VKuTrJ920aen1VVe8f8WlOb3t9aIA1th+zfc1BvSHJL/Z5zDVJ3jai8wMAAAAAAAAAAAAAAAAAAAAAADAAwWhTpJRSkvxEksVzQx9N8poxnGrfBqNVVfWpJJ/q55iNywYAAAAAAAAAAAAAAAAAAAAAAECdGnUXwEh9Q5KnbHr90qqq7hnDeT677fWJfg4upRzOzmC0zwxVEQAAAAAAAAAAAAAAAAAAAAAAAAdaq+4CGKk7N/3515N8uJRyco9jLt32utXhmL+tqursptcf2rb/wT3W123+P1ZV9ek+1wAAAAAAAAAAAAAAAAAAAAAAAGCKCEabLoc2/fkZSf5ygDUu73DcI5O8f9PrD2zbf22f57h62+s/7/N4AAAAAAAAAAAAAAAAAAAAAAAApkyj7gI4kP502+vPK6Us9nH8E/dYDwAAAAAAAAAAAAAAAAAAAAAAgBkjGI2+VVX1d0n+eNNQK8mT+ljilm2v3z5sTQAAAAAAAAAAAAAAAAAAAAAAABxsgtGmSFVVx6qqKv1sSb542zJ3dZj3/g6n+x/bXn9dLzWWUm5I8thNQ8tJfrPnvyQAAAAAAAAAAAAAAAAAAAAAAABTSTAag3pLkrVNr59bSrmuh+Nete31L1RVtTq6sgAAAAAAAAAAAAAAAAAAAAAAADiIBKMxkKqqPpTkTZuG5pO8sZSy0O2YUsrtSe7YNHQ2yZ1jKRAAAAAAAAAAAAAAAAAAAAAAAIADRTAaw3h1kk9vev2EJL9VSrlh86RSSruU8i1JfnHb8a+rququMdcIAAAAAAAAAAAAAAAAAAAAAADAAdCquwAOrqqq/qaU8twk70gyf274iUn+vJTy3iQfTXI0yaOSnNh2+K8l+Z5J1QoAAAAAAAAAAAAAAAAAAAAAAMD+JhiNoVRV9c5SynOSvDHnw89Kkkef2zr5+STfUFXV2vgrBAAAAAAAAAAAAAAAAAAAAAAA4CBo1F0AB19VVb+e5GFJfizJp3eZ+p4kz6uq6gVVVS1PpDgAAAAAAAAAAAAAAAAAAAAAAAAOhFbdBVCvqqremaSMYJ1PJXlZKeXlSZ6Y5MFJLk2ynOTjSd5XVdVfDnseAAAAAAAAAAAAAAAAAAAAAAAAppNgNEaqqqqzSX6n7joAAAAAAAAAAAAAAAAAAAAAAAA4WBp1FwAAAAAAAAAAAAAAAAAAAAAAAAAgGA0AAAAAAAAAAAAAAAAAAAAAAAConWA0AAAAAAAAAAAAAAAAAAAAAAAAoHaC0QAAAAAAAAAAAAAAAAAAAAAAAIDaCUYDAAAAAAAAAAAAAAAAAAAAAAAAaicYDQAAAAAAAAAAAAAAAAAAAAAAAKidYDQAAAAAAAAAAAAAAAAAAAAAAACgdoLRAAAAAAAAAAAAAAAAAAAAAAAAgNoJRgMAAAAAAAAAAAAAAAAAAAAAAABq16q7ANgH5je/+PCHP1xXHQAAAAAAAAAAQ+nw3MN8p3kAMEGe0QMAAAAAAAAADjzP501Oqaqq7hqgVqWUZyV5W911AAAAAAAAAACMwe1VVf1q3UUAMLs8owcAAAAAAAAATCnP541Jo+4CAAAAAAAAAAAAAAAAAAAAAAAAAASjAQAAAAAAAAAAAAAAAAAAAAAAALUrVVXVXQPUqpRyNMmTNw39dZKzQyx5TZK3bXp9e5KPDLEeQL/0IWA/0IuAuulDQN30IaBu+hCwH+hFQN1mtQ/NJ7ly0+vfrarqs3UVAwCe0QOmkD4E1E0fAuqmDwF104eA/UAvAuqmDwF1m9U+5Pm8CWnVXQDU7Vxz+dVRrVdK2T70kaqq/mxU6wPsRR8C9gO9CKibPgTUTR8C6qYPAfuBXgTUbcb70PvqLgAAPsczesC00YeAuulDQN30IaBu+hCwH+hFQN30IaBuM96HPJ83AY26CwAAAAAAAAAAAAAAAAAAAAAAAAAQjAYAAAAAAAAAAAAAAAAAAAAAAADUTjAaAAAAAAAAAAAAAAAAAAAAAAAAUDvBaAAAAAAAAAAAAAAAAAAAAAAAAEDtBKMBAAAAAAAAAAAAAAAAAAAAAAAAtROMBgAAAAAAAAAAAAAAAAAAAAAAANROMBoAAAAAAAAAAAAAAAAAAAAAAABQO8FoAAAAAAAAAAAAAAAAAAAAAAAAQO0EowEAAAAAAAAAAAAAAAAAAAAAAAC1E4wGAAAAAAAAAAAAAAAAAAAAAAAA1E4wGgAAAAAAAAAAAAAAAAAAAAAAAFC7Vt0FwBS6O8md214DTJI+BOwHehFQN30IqJs+BNRNHwL2A70IqJs+BADTydd4oG76EFA3fQiomz4E1E0fAvYDvQiomz4E1E0fYqxKVVV11wAAAAAAAAAAAAAAAAAAAAAAAADMuEbdBQAAAAAAAAAAAAAAAAAAAAAAAAAIRgMAAAAAAAAAAAAAAAAAAAAAAABqJxgNAAAAAAAAAAAAAAAAAAAAAAAAqJ1gNAAAAAAAAAAAAAAAAAAAAAAAAKB2gtEAAAAAAAAAAAAAAAAAAAAAAACA2glGAwAAAAAAAAAAAAAAAAAAAAAAAGonGA0AAAAAAAAAAAAAAAAAAAAAAAConWA0AAAAAAAAAAAAAAAAAAAAAAAAoHaC0QAAAAAAAAAAAAAAAAAAAAAAAIDaCUYDAAAAAAAAAAAAAAAAAAAAAAAAaicYDQAAAAAAAAAAAAAAAAAAAAAAAKidYDQAAAAAAAAAAAAAAAAAAAAAAACgdq26C2CnUkozybVJbkzywCRHk5xJ8ukkH0nyh1VVLY/4nHNJnpjkQUkuS3I6yd8meV9VVR8b5bkmpZRyU5JHJDmRpJ3kE0n+Jsm7qqparbO2SSqlHE9yU5LrklyYZCHJZ5LcneS9VVV9pMbydiilXJWNj9sDkxxO8ndJ7kry7qqq7q2ztlmiD42GPrRBH2JQetFo6EUb9KKu53F/7EIfGg332YaD1ofYH/Sh0dCHNuhDW5VSrszGtbgiyUVJDiU5m+SzSf4qG9fk7voq3B/0odHQhzboQwxKLxoNvWiDXsQg9KHR0Ic26EOduT+AOvgaPxp6+IaD9jXeszH7gz40GvrQBn2IQehDo6EPbdCHup7H/bELfWg03GcbDlofYn/Qh0ZDH9qgD23l+bze6UWjoRdt0IsYhD40GvrQBn2IQehDo6EPbdCHOjvQ90dVVbZ9sGWjYb4iya9l45v7apftviRvT/LMEZz3RJI3JPmHXc73riRfPuR5rk7ylUlem+SdSf5p2zk+NqLreCTJdyf5+C5/n39K8rNJrqnx4z2265FkLsmXJPmPSf50j3upOnet/k2SS2v+HHheknfvUuc/nLtXLxpg7b2uwV7byTqvzQQ/BvrQaK6jPqQPbV7z5Ah60Obtjjqv0YQ+DnrRaK6jXqQXHfj7o8aPgT40mut4IO4zfai2+2MpyZOSfFuStyT5YJL1bee6o67rUPemD+lD+tDYrsd1Sb4/ye9k439q7HU9qiR/lOSbkrTruiY1fRz0odFcR31IH+q0fi+9Z7ftZF3XpoaPhV40muuoF+lFm9c9OYI+tHm7o65rNKGPgz40muuoD+lDB/7+sNls07X5Gj9bPdzX+I51e0av5k0f0of0Ic/o1b3pQ/qQPuT5vLo3fUgfmuU+NMH7w/N5u18ffWg011Ef0oe2r+35vP6ul140muuoF+lFndbvpf/stp2s69pM+OOgD43mOupD+tDmdU+OoAdt3u6o6xpN6OOgD43mOupD+tCBvz/2/HvUXYCtSpKfG+IL2v9McsmA5316kk/2ca43J1nqY/1bkrxjjy8KI/vETPLYbKRw9vr3WU7ysgl+nMd+Pc5dg38c8F76dJIX1nD/H07y833U+YkkX9LnOQb9/PrcdnLS16WGj4M+pA/pQ2PoQxn9N7JfOenrM+GPhV6kF+lFY+hFB+n+qHvTh/ShWexDk7w/svHG8Z9k4w3pvc51x6SuwX7a9CF9SB8a3/2R5CVDfH79vySPndQ1qXPTh/QhfWi898cQn1+f205O6rrUuelFepFeNLbrcXIEfWjzNrXvV0cf0of0oZm/P2w223RuvsbPRg/3Nb5rzZ7R2webPqQP6UOe0at7iz6kD+lDns+redOH9KFZ7EOTvD/i+bxerpE+pA/pQ2O6P+L5vH6ulV6kF+lFY7w/hvj8+tx2clLXpa5NH9KH9KGxXY+TI+hBmzfvVetDvXwO6kP60IG8P/rZWmE/uL7L+MeTfCgbzbWVjdS/m5M0Ns35Z0n+dynlyVVVfaLXE5ZSbkny1iTzm4arbKSsfzTJsSSPTHLRpv1fneSCUsqzq6pa7+E0j0jytF5rGkYp5bZspIG2t+26K8kfZ+OT8IpsfPLOndu3mOQNpZRGVVX/aQJlTuJ6nEhyvMP42Wy8uf2JbCSmPiDJo8/993OOJfnZUsrFVVW9fsx1JklKKc0k/z3JM7btujvJ+87Vek027sVybt8lSd5WSrmtqqrfn0SdM0IfGpI+dD99aHxWspFoPc30oiHpRffTizqf5yDcH3XTh4Z0QO4zfWirid0fSV6Q5OiEznVQ6UND0ofupw/trcrGm/wfzsb/WFjJxm/MvSrJTTl/fyQbn5u/XUp5ZlVVvzvpQidMHxqSPnQ/fYhh6EVD0ovupxeNz7S/X60PDUkfup8+1MEBuT+A6eRr/JAOSA/3NX6bA/ZszLTTh4akD91PHxof73noQ7vSh+6nD3U+z0G4P+qmDw3pgNxn+tBWns/bX/ShIelD99OH9ub5vO70oiHpRffTixiUPjQkfeh++tD4eK9aH9qVPnQ/faiDA3J/9K7uZDZblSR/mPMpen+U5JuTXNNl7uVJfjw70/d+L0np8XxXZGfq4e8neei2ee0k35qNT/rNc7+/x/O8okOdVZLVbLyhMZLEwmykp25PRfxwkqd2mHs8yY9um7vWae4YPs5jvx7Z+EL+uTVOJfmpJLcmOdRhbknynGw0r+01jf16nKvhtdvOe/bc/T+/bd6NSd69be7fJ7msx/NsPu495+6ZfrbWJK5HnVv0IX1IHxpLH8rGN1579Zhu2+9vO98bJ3FN6tyiF+lFetHY/k10UO6Pujd9SB+axT40qfvj3Lk+0+Vcf9Nh3x3j/rvvx00f0of0obHeH1+f5C+y8W+vZyY5vsvcY0m+PRv/A2Tz+T+e5Oi4r0mdmz6kD+lDY//30Oa1vFfd/TrpRXqRXjSe6+H96t6vlT6kD+lDM35/2Gy26dx8jZ+NHu5rfMd6PaO3T7boQ/qQPjSWPhTvefTzsdCH9CF9aEz/Hjoo90fdmz6kD81iH5rU/XHuXJ7P2/sa6UP6kD40vvvD83m9Xyu9SC/Si8b7b6LNa3mvuvM10of0IX1oPNdaSfFZAAAgAElEQVTDe9W9Xyt9SB/Sh2b8/ujr71R3AbYqSf5vNtL2Ht3HMd/Y4Yb/qh6P/altx70rycIu85/d4RPrwT2c5xXnmv77kvxEkn+R5FHZSAy8ZYSfmD+/ba0PJbl4j2O+c9sxf5akOeaP89ivx7nG/cn8//buPFqatKDv+O8ZEBjWUZBBQBj2oLiAmAhqHA0YiEeQJS64MIL7cqLRHA9CTlATjYnrOfEoUQTEJRIEREEgiANuuJ1BQEcEdVCUQVZxhlnhyR99573d1ff27equ7qqu+nzO6T+q3q7l9vu837rvc+vUTb4jyW3W3OaOSf68cfzLs+Y3Alt8HvfO8jcFj13x/vOz/IPGn1rzWPPbXLrLr+tQXzqkQzq02w5tcG53S3Jj41ifvcvPYwgvLdIiLdpdiw5lfPT90iEdmmiH9jI+jo71gcx+08LLknzP0ed04dGfXdo41iW7/LqH+tIhHdKhnY6Pj9pgm09NclXjHL5rl59H3y8d0iEd2vn3Q/P7unSXX9chv7RIi7Roty3a4NwmN1+tQzqkQ8aHl5fXOF+u8dNouGv80nHdozeglw7pkA7ttkMbnJs5j/W20aHj4+jQ8TF06EDHR98vHdKhiXbI/XkDeumQDumQ+/OG8NIiLdIi9+j1/dIhHdIh9+f1/dIhHdIh46PV19T3CXjVJLlow+1e2BhcL1tjm/s1LozXJbnfGts9t3Gsn11jm48+7YLQYajundkTB+f39VlrbvuaxnZP2fHf8z4+j49dN9iN7T7lhM/x03f8eTyvcbznrLHN/Y/G7E3b3JDk3mtsN3+cS3f5dR3qS4d0SId226ENzu3pjXP7y11+FkN5aZEWadFuWnRI46Pvlw7p0EQ7tPPPY25/p/4G3bjx6qbP4aINt9MhHWruR4e6O7/vbZzD6/d9Dnv+ei/acDsd0qHmfnTo5P3N7+vSXX5dh/zSIi3Sot18Hluc2+Tmq3VIh3TI+PDy8hrnyzV+Gg13jV86pnv0BvTSIR3Sod12aINzM+ex/nY6pEPN/ejQgY6Pvl86pEMT7ZD78wb00iEd0qHdfB5bnt+k7s87+pov2nA7LdKi5n606OT9ze/r0l1+XYf60iEd0qHdfB5bnJu56vW30yEdau5Hhw50fLR5nRd6V2u9YsNNf6Kx/LlrbPOkJDebW35RrfWta2z3g43lLy6l3GrVBrXW99dar11j39v4gmRhHL++1vo7a277Q43lr+7mlE62j8+j1vruWuvVG2z3p0man9s642kjpZTzkzyxsbo5xpbUWv8yyUvmVt08szHNlnRoKzq0eAwd2lIppWR5LDy7y2MMlRZtRYsWj6FFiw5mfPRNh7ZyMONMh5aOuY/xcdOx3rmP4xwyHdqKDi0eQ4e68/LG8n17OYs90aGt6NDiMXSIjWnRVrRo8RhatKWpzlfr0FZ0aPEYOrToYMYHME6u8Vs5mIa7xh8b8r0xU6VDW9GhxWPo0JbMebSmQzrUPIYOLTqY8dE3HdrKwYwzHVo6pvvzBkSHtqJDi8fQoe5M6v68RIu2pEWLx9AiNqJDW9GhxWPo0JbMVbemQzrUPIYOLTqY8dGGB6Mdtssay+eXUi44Y5vHNZafs86Baq2XJ/mDuVW3SfL562y7Y/+6sfzKFtv+ZpLr55YfXkr5uO1P6WA1x9Ndd3isf5vk1nPLv19r/Ys1t22O2cd3c0psSId0qEs6NPM5Se4zt3xjZr+xjtNpkRZ1aYwtMj52T4eMsy7ts0OMhw7pUJd0aNH7Gsu36+Ushk+HdKhLOsSmtEiLuqRFM+ar29EhHerSGDtkfACHyjVew7s0xp9Hs3s6pENd0qEZcx7t6JAOdWmMHTI+dk+HjLMujXHuld3TIR3qkg4tcn/e+rRIi7qkRWxCh3SoSzo0Y666HR3SoS6NsUOjHB8ejHbYbjxh3S1Oe3Mp5S5JPqWx/e+2ON6ljeVHt9h2V+7eWH7zuhvWWq9L8ra5VedlGF9TX5rj6dSx1IFHNZYvbbHtb2fxXB9cSrlw6zNiUzqkQ13SoZmnNpZfVmu9ssP9j5EWaVGXxtgi42P3dMg469I+O8R46JAOdUmHFt2zsfwPvZzF8OmQDnVJh9iUFmlRl7Roxnx1OzqkQ10aY4eMD+BQucZreJfG+PNodk+HdKhLOjRjzqMdHdKhLo2xQ8bH7umQcdalMc69sns6pENd0qFF7s9bnxZpUZe0iE3okA51SYdmzFW3o0M61KUxdmiU48OD0Q7bfRvLNyZ5z4r3P6ix/MZa69Utjvd7jeVPbLHtrnxMY/kDLbdvvv+TtjiXQ9ccT+/c4bGaY/H3193waMy+qbF6CGNxqnRIh7o0+Q6VUu6Q5AmN1c/uYt8jp0Va1KUxtsj42D0dMs66tM8OMR46pENd0qFFX9VY/q1ezmL4dEiHuqRDbEqLtKhLk2+R+eqN6JAOdWmMHTI+gEPlGq/hXRrjz6PZPR3SoS5NvkPmPDaiQzrUpTF2yPjYPR0yzro0xrlXdk+HdKhLOrTI/Xnr0yIt6pIWsQkd0qEuTb5D5qo3okM61KUxdmiU48OD0Q7bExvLf1xr/ciK939CY/ltJ77rdH91xv76cH1j+ZYtt2++fwhf096VUm6f5JGN1X+4w0M+sLG8z7F4j1LKc0opf1ZKeX8p5fpSyruOln++lPJ1pZRm8DmdDulQJybWoVW+LMn5c8vvTPIbHe17zLRIizox4hYZH7unQ8ZZJ3roEOOhQzrUCR1aVEr55iRfMbfqxiQ/1tPpDJ0O6VAnJtYhc9Xd0yIt6sTEWrSK+er2dEiHOjHiDhkfwKFyjdfwToz459EnMe/RLR3SoU5MrEOrmPNoT4d0qBMj7pDxsXs6ZJx1YsRzr+yeDulQJ3RokfvzWtMiLerExFpkrrpbOqRDnZhYh1YxV92eDulQJ0bcoVGODw9GO1CllNsmeWpj9YvP2Kz5xMK/bXnYtzeW71hK+eiW++jaexvLH9dy++b7H7DFuRyyr09y67nlf8qOnq5/9J/E5n8U247F5vvv12LbeyW5JLMIX5Dko5Lc+Wj5y5M8K8nfllJ+9OjfGafQoXN0qBtT6tAqzX9Tz6u13tjRvkdJi87Rom6MtUXGxw7p0DnGWTf21iHGQ4fO0aFuTLpDpZTblFIeUEp5cinltUn+V+MtT6u1vrGPcxsyHTpHh7oxpQ6Zq+6QFp2jRd2YUotWMV/dgg6do0PdGGuHjA/g4LjGn6Ph3Rjrz6NPYt6jIzp0jg51Y0odWsWcRws6dI4OdWOsHTI+dkiHzjHOujHWuVd2SIfO0aFuTLpD7s/bnBado0XdmFKLzFV3RIfO0aFuTKlDq5irbkGHztGhboy1Q6McHx6Mdrh+IMld5pY/kORnztjmgsbyP7Y5YK31qiTXNlbfoc0+duDyxvJnrLthKeUeSe7aWN3317N3pZSLkvznxuofr7U2nwbZleY4/FCt9eqW+2iO3a7/3m6T5NuS/Ekp5RM73veY6NCMDm1Jh2ZKKZ+U5KGN1c/edr8ToEUzWrSlkbfI+NgtHZoxzrbUQ4cYDx2a0aEtTa1DpZQLSil1/pXkqiR/keS5Sf713NuvSvJ1tdYf6uFUD4EOzejQlqbWoTWZq16fFs1o0Za0aMZ89UZ0aEaHtjTyDhkfwCFyjZ/R8C2N/OfRmzLvsR4dmtGhLenQjDmPjejQjA5taeQdMj52S4dmjLMtjXzuld3SoRkd2tLUOuT+vM5p0YwWbWlqLVqTuer16NCMDm1Jh2bMVW9Eh2Z0aEsj79Aox4cHox2gUsrjknxLY/XTa63vO2PT5tOKr9ng8M1tbrfBPrr02sbyE0optz7xncu+6oR1fX89e1VKuUWSX87i131Fkv+xw8P2NQ5vTHJpkmckeUySh2T2W5senOSxSX4oy9/M3D/Jq0sp99zgHEdNhxbo0BYm1qGzNJ9U/dpa69s62O9oadECLdrCBFpkfOyIDi0wzrbQU4cYAR1aoENb0KFTvSvJ05Pcq9b6032fzBDp0AId2sLEOmSuumNatECLtjCxFp3FfHULOrRAh7YwgQ4ZH8BBcY1foOFbmMDPo+eZ9+iQDi3QoS1MrENnMefRgg4t0KEtTKBDxseO6NAC42wLE5h7ZUd0aIEObUGHTuX+vDVo0QIt2sLEWmSuukM6tECHtjCxDp3FXHULOrRAh7YwgQ6Ncnx4MNqBKaV8SpKfa6x+VZKfXGPzZribT6dcRzPczX3u28sye5rnTS5I8syzNiqlfHyS7zzhj25WSjm/m1M7CD+T5F/OLX84yZM3+G1IbfQxDp+R5G611s+ttf63Wuuv1Vovq7W+rdb6hlrrS2ut/ynJPZP89yR1btu7JHlRKaVscJ6jpENLdGg7U+nQSkffSH9FY7Wne6+gRUu0aDtjb5HxsQM6tMQ4204fHeLA6dASHdqODp3swiTfkOQbSym37/tkhkaHlujQdqbSIXPVHdOiJVq0nam0aCXz1e3o0BId2s7YO2R8AAfDNX6Jhm9n7D+Pvol5jw7p0BId2s5UOrSSOY92dGiJDm1n7B0yPnZAh5YYZ9sZ+9wrO6BDS3RoOzp0MvfnnUGLlmjRdqbSInPVHdKhJTq0nal0aCVz1e3o0BId2s7YOzTK8eHBaAeklHKPzAbifCzfnuQraq315K1W2tc2O1Nr/eckP95Y/Z2llP9w2jallLsneUWSO5y2245Ob9BKKd+X5Csbq59Wa33dnk9l5+Pw6D+vzad3n/S+a2utT0vyrY0/ekiSL2tzzLHSoWU6tLkpdWgNj01yx7nlf0rywo6PMRpatEyLNjeFFhkf3dOhZcbZ5gbUIQ6IDi3Toc1NuEMfTHKvudd9MpsDenySH03y7qP3fXyS703yplLKp/dwnoOkQ8t0aHNT6pC56m5p0TIt2tyUWrQG89Vr0qFlOrS5KXTI+AAOhWv8Mg3f3ICu8e7ROyA6tEyHNjelDq3BnMeadGiZDm1uCh0yPrqnQ8uMs80NqEMcEB1apkObm3CH3J+3JS1apkWbm1KLzFV3R4eW6dDmptShNZirXpMOLdOhzU2hQ2MdHzfv+wRYTynlzkn+X5K7za2+Mskja63vPnmrJVc1ljd5Ml9zm+Y++/D9SR6d4yczliQ/Vkp5YmZPR31DZk/ivOvR+74xxxe/dyS5+9y+rq21Lj3ps5Ry0bonU2u9otXZ96CU8m2ZPfV63o/UWv/nmttftO6xTvg8Bj8Oa60/UUr5/CSPmVv9TUl+scvjHBodWkmHWtKhJU9tLP9irbX5FGmiRWfQopYm1qKdj4+p0KGVdKilnjvEgdKhlXSopSl3qNb6kSRXnPBHlyV5cSnlGUl+MMm3HK2/R5JXl1I+s9b65v2c5TDp0Eo61NKUO7QOc9Wn06KVtKglLVpivnoNOrSSDrU0sQ6ZqwYGzTV+Jdf4lib28+jWzHucTIdW0qGWdGiJOY816NBKOtTSxDpkzqMjOrSSDrU0sblXOqJDK+lQS1PukPvztqNFK2lRS1Nu0TrMVZ9Mh1bSoZZ0aIm56jXo0Eo61NLEOjS6uWoPRjsApZSPSfLqJPefW/2eJI+otb61xa5GGe5a6/WllMcneXmST577o886ep3mvZl94/DKuXUfOOW9f9PilEqL9+5dKeVrk/xIY/VP1lq/o8Vutvk8DmUc/kAW/yP7GaWUC2qtp42RUdOh1XSoHR1aVEr5+CSPbKx+9qb7GzMtWk2L2plai/Y0PkZPh1bToXYG0CEOkA6tpkPt6NBqtdYPJfnWUsoNSb79aPXtk/xcKeXTNvwNQwdPh1bToXZ0aG3mqhu0aDUtakeLFpmvXo8OraZD7UytQ+aqgSFzjV/NNb6dAVzjD2UcmveYo0Or6VA7OrTInMd6dGg1HWpnah0y59ENHVpNh9oZQIc4QDq0mg61o0OruT/vdFq0mha1o0VrM1c9R4dW06F2dGiRuer16NBqOtTO1Do0xrnq8/o+AVYrpdwhyauSfNLc6vdn9iTLP2u5u39qLH9sy3O5bZbDPYiBXGv9+yQPT/KsJDessclvJXlokqsb66/s+NQGpZTylUl+KosxfU6Sb97jaTTH4a1LKbdpuY87N5Z3MQ7/MLN/aze5WZJP2MFxBk+H1qND69GhE12Sxe/J/rTW+idb7G+UtGg9WrSeqbbI+NiODq3HOFvPQDrEgdGh9ejQenSolacn+Ye55QcneURP59IrHVqPDq1Hh1oxVz1Hi9ajRevRohNdEvPVK+nQenRoPVPtkPEBDJFr/Ho0fD0DucYP7d6Y05j3OKJD69Gh9ejQiS6JOY+VdGg9OrSeqXbI+NiODq3HOFvPQDrEgdGh9ejQenSoFffnzdGi9WjRerSoFXPVR3RoPTq0Hh060SUxV72SDq1Hh9Yz1Q6NbXx4MNqAlVJul+QVST5tbvUHkzyq1vqGDXbZfPrlPVtu33z/+2qt7z/xnT2otV5da/2GJA/IbELkt5K8I8k1Sf45yeVJnpfZU1T/Ta31iiQPbOzmj/d2wntWSvnSzCI9/+/+F5J8zT6foF9rfW8W/4OYJPdouZvmWGzzZNe11Fo/kuRvG6tbfbMzBjrUjg6tpkPLSiklyVc3Vnu6d4MWtaNFq029RcbHZnSoHeNstaF0iMOiQ+3o0Go61E6t9ZokL2msflQf59InHWpHh1bToXbMVR/Tona0aDUtWma++mw61I4OrTb1DhkfwJC4xrej4asN5Ro/pHtjVjHvMaND7ejQajq0zJzH2XSoHR1abeodMj42o0PtGGerDaVDHBYdakeHVtOhdtyfd0yL2tGi1bSoHXPVMzrUjg6tpkPLzFWfTYfa0aHVpt6hMY2Pm/d9Apzs6LfRvDzJZ8ytvirJo2utf7jhbi9vLN+35fb3biz/+YbnsVO11r9J8v1Hr7M8rLH8B6fss5y0/lCUUp6Q5PmZPaX6Jv83yZOP/sPWSgefx+WZPWHyJvfN8vhcpTkW22zbxjWN5eYTXUdNhzanQ8t06FSfl+Rec8vXZfZNNUe0aHNatEyLju1ifIyVDm1Oh5YNsEMcAB3anA4t06GNvaWx3PbfzEHToc3p0DId2tik56oTLdqGFi3TolOZr15BhzanQ8t06Ji5aqBvrvGbc41fNsBr/FDujTnLpOc9dGhzOrRMh05lzmMFHdqcDi3ToWPmPNanQ5vToWUD7BAHQIc2p0PLdGhjk74/L9GibWjRMi3amLlqHdqIDi3ToVOZq15BhzanQ8t06NgY5qrPO/st7Fsp5fwkv57ks+ZWfyjJF9Raf2+LXb+5sfzJpZRbt9j+M8/Y30E5eqrq5zVWv7aPc9mlUspjkvxSFh+E+JIkT6q1frifs1oaO81Anurom5pPPmN/XblTY/k9OzrO4OjQfuiQDiV5SmP5RbXW9224r9HRov3QIi064ziTGB+n0aH9mMo4G2iHGDgd2g8d0qE13NBYvmUvZ9EDHdoPHdKhNUx2rjrRon3RIi2K+epT6dB+6JAOrTKV8QHsl2v8fkyl4QO9xg/+59FHJjvvoUP7oUM6FHMep9Kh/dAhHTrjOJMYH6fRof2YyjgbaIcYOB3aDx3SoTVM9v68RIv2RYu0aA3mqnVop3RIh2Ku+lQ6tB86pEOrDHl8eDDawJRSbpXkpUkunlt9bZLH1Fpft82+a63vTPLGuVU3z+LF4SwXN5Z/Y5vzGYDPS3LR3PJra61v7elcdqKU8u8ye3LlR82tflmSL6m13tjPWSVJXtFYvrjFtp+dxYvQZbXWd219Rg2llDtl+Smu/9D1cYZIh/ZKh/rTe4dKKRckeXxj9bPb7mestGivtKg/vbdoDaMfH6fRob0a/TgbcIcYMB3aKx3iLHdvLO/i+67B0aG90iFONeW56kSL9kyLJsx89el0aK90iFVGPz6A/XKN36vRN3zA1/jB/zx6yvMeOrRXOtSf3jtkzuN0OrRXOtSf3ju0htGPj9Po0F6NfpwNuEMMmA7tlQ5xlknen5do0Z5pEacyV61De6JDE2au+nQ6tFc6xCqDHR8ejDYgpZRbJHlRkkfMrb4uyRfVWn+zo8O8uLH81Wue279I8q/mVl2d5FUdnVNfvqux/KxezmJHSimPTPIrSW4xt/pVSZ5Qa72+n7M655VJrplbftjRGFvHJY3l5pjuypdmsZHvSnL5jo41GDq0dzrUnyF06MuT3Gpu+Yokr9lwX6OiRXunRf0ZQovOMurxcRod2rtRj7OBd4iB0qG90yHO8vmN5UFM7u+SDu2dDrHKJOeqEy3qgRZNm/nqE+jQ3ukQq4x6fAD75Rq/d6Nu+MCv8Yfw8+hJznvo0N7pUH+G0CFzHifQob3Tof4MoUNnGfX4OI0O7d2ox9nAO8RA6dDe6RBnmdz9eYkW9UCLWMVc9TEd2h0dmjZz1SfQob3TIVYZ7PjwYLSBKKXcPMkLkjx6bvUNSZ5Ya31lh4f6hSQfnlt+fCnlfmts1xzEL6i1Xtvdae1XKeXJSR45t+oNmT35cRRKKZ+T5Fez+A3SazL7JuC6fs7qWK31Q0le2FjdHGNLSin3T/K4uVU3JvnFDk/tpuNcmOQZjdW/VmutXR9rSHRov3SoXwPp0FMayz879s6sQ4v2S4v6NZAWrTrOqMfHaXRov8Y+zobeIYZJh/ZLhzhLKeULkjy0sfpX+ziXfdGh/dIhVpnqXHWiRfumRcR89RId2i8dYpWxjw9gv1zj92vsDR/6Nf4Afh49yXkPHdovHerXQDpkzqNBh/ZLh/o1kA6tOs6ox8dpdGi/xj7Oht4hhkmH9kuHOMsU789LtGjftIhVzFXr0D7oEDFXvUSH9kuHWGXo48OD0QaglHKzzIL62LnVNyb5klrrr3d5rFrrW5M8b27VLZI8t5Ryq1M2SSnlsVn8jTfXJ/meLs9rW0cXvnXf+/gkPz236sYkT6m13tj5ifWglPKwJL+e5Py51a9L8oW11mtO3qoXz8zsm5ObXFJKecxpbz4ao8/J4hM6n11r/asV2zyglPKFbU6qlHKXzD6/C+dWX5/kB9rs59Do0PZ06JgOna2U8qlJHjK36iNJntt2P2OjRdvTomNadOK2xscZdGh7xtmxA+oQA6JD29OhYzp0rJTy0FLK485+59J2n57k+Y3Vr6u1vqmbMxseHdqeDh3ToWPmqtvRou1p0TEtOpv56mU6tD0dOqZDy4wPoC+u8dvT8GMHdI1/ZtyjNxg6tD0dOqZDZzPnsUyHtqdDx3ToxG2NjzPo0PaMs2MH1CEGRIe2p0PHdOiY+/Pa0aLtadExLTpmrnp9OrQ9HTqmQ2czV71Mh7anQ8d0aNnYxsfaXww79bNJvrix7ruTXFZKuajlvq5c40mT/yWz32Dz0UfLD0/y6lLK19Ra/+KmN5VSbpnk65L8cGP7H661vn2dkyml3D0nj7O7NJZvvuJrvarW+p4zDvWmUsrLkvxKkj+otX7khHN5UJKnJXlS44++u9Z62Rn778SuP49SyoOT/EaS286tfkuSb05y51JKm9O9ttZ6ZZsN2qi1/nUp5ceTfOfc6heWUv5jkv9da73+ppWllAcm+ZnMxupN3puzv4H4uCQvLaW8KcnPJ3nx0TcvS0opt0vy5Mye7H1h44//a631r9f4sg6ZDumQDs103aHTPLWx/Mpa699tuK8x0SIt0qKZXbXoIMZHz3RIhybXoWR/46OUctskdzrlj5sTyndacax3DGlyrWM6pEM6tKir8XH3JC8qpbw5sx+gvSTJW2o9+bcslVI+IcnXJ/mmxnlde7RuzHRIh3RoUVfjw1x1O1qkRVq0qOvx0WS+epkO6ZAOLZrk+ABGyTV+Ig13jT/mHr3B0SEd0qEZ9+j1R4d0SIdm3J/XHx3Socl1KHF/3sDokA7p0CL35/VDi7RIixa5R2//dEiHdGiR+/P2T4d0SIcWTXJ8rK3W6tXzK0nt8HXxmse8OMl1jW0/kuSPkvxyklck+ccT9v9rSW7W4mu7ooOv6blrHOc9c+//5yS/l9k/0l9I8qoV5/F9e/673unnkdlvNOpqLF26h8/jZklefsKx35XZBegFSf74aGzO//l1ST57zXHe3PcHkvxOZhNsz0/y4qNj3HDK5/Csvhuxp7GpQzqkQzvo0CnHvGVmN0rM7+8JfTZgKK8Ox44WadEzOxxLl+7h89hLiw5lfPT56nDc6NDAx9muP48cXof2NT4u6egzuajvXuzw70KHdEiHdvN5fNEJ7//g0fh4aWY3QLwgyauTXHnK/j+U5BF9d2IPfxc6pEM6tJvP4+IT3m+u+vTPS4u0SIt2OD4axzRfffLnokM6pEPGh5eX1whfHTbZNX7gDd/155HDu8a7R28grw7HjQ7p0DM7HEuX7uHzcI/eQF4djhsd0qFndjiWLt3D5+H+vIG8Ohw3OjTwcbbrzyOH16F9jY9LOvpMLuq7Fzv8u9AhHdKh3Xwe7s9r9/ehRVqkRbv5PC4+4f3mqk/+rHRIh3Roh+OjcUxz1Sd/LjqkQzpkfKz9OulJckxArfXSUsrjkjw3yccerS5JHnr0OskvJfnaWuuHd3+GW7ltkoed8Z73J/mmWuv/2cP5cIpa64dLKV+c2W9W+pK5P7pzkkedstk/JnlyrfW3NzzsHZJ85hrvuzrJt9daf3rD43AGHdKhIeipQ49L8jFzy+/ObKKfHmiRFg1BTy0yPgZCh4wz6JsO6dCE3S5nj4+bvD7J19da37jD85ksHdKhCTNXPSBapEUTZr56IHRIhybM+ABGzTVew4fAPXrTpkM6NATu0Zs2HdKhIXB/3rTpkHEGfdMhHZow9+cNiBZp0YSZqx4IHdKhCTNXPRA6pEMTdvDj47y+T4D+1FpfnuRBSX4qs4F6mtcneWKt9Um11qv3cnLt/ViSyzJ7Kucqf5fke5PcZ6j/KKem1npVrfVLk/z7zMbaad6X5CeTPKjW+jbdgAcAAAUCSURBVIo1d395ku9P8rtJrllzm79M8t2Z/YYT/4ndMR3SoSHYcYdO8tTG8vNrrTdssT+2pEVaNAR7apHxMVA6ZJxB33RIhybgNZn9VtxfSvKONbf5UJIXJvnCJA9309Vu6ZAOTYC56gOgRVo0UearB0SHdGhCjA9gUlzjNXwI3KM3bTqkQ0PgHr1p0yEdGgL3502bDhln0Dcd0qEJcH/eAdAiLZoAc9UDp0M6NFHmqgdEh3RoQkY1Pkqtte9zYABKKbfI7KnH90xyl8yebvz3SS6rtf5Nn+fWRinl9kkenORemT2p81aZ/Qfm75P8aa31z3s8PdZQSrlXkockuWuS2yS5Msnbk/xurfX6LfZ7XpL7JblPkrsluSDH4+P9Sd6Z5I9qre/e6gtgYzrEUOyqQxwGLWIodtki42PYdAjomw4xBaWUC5M8MLNxfsckt05yQ5IPJnlvkjcnecsB/GafUdIhxs5c9WHQIqBvOsQUGB/AFLnGMxTu0ZsuHWIo3KM3XTrEULg/b7p0COibDjEF7s8bPi1i7MxVD58OAX3TIaZgLOPDg9EAAAAAAAAAAAAAAAAAAAAAAACA3p3X9wkAAAAAAAAAAAAAAAAAAAAAAAAAeDAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgdx6MBgAAAAAAAAAAAAAAAAAAAAAAAPTOg9EAAAAAAAAAAAAAAAAAAAAAAACA3nkwGgAAAAAAAAAAAAAAAAAAAAAAANA7D0YDAAAAAAAAAAAAAAAAAAAAAAAAeufBaAAAAAAAAAAAAAAAAAAAAAAAAEDvPBgNAAAAAAAAAAAAAAAAAAAAAAAA6J0HowEAAAAAAAAAAAAAAAAAAAAAAAC982A0AAAAAAAAAAAAAAAAAAAAAAAAoHcejAYAAAAAAAAAAAAAAAAAAAAAAAD0zoPRAAAAAAAAAAAAAAAAAAAAAAAAgN55MBoAAAAAAAAAAAAAAAAAAAAAAADQOw9GAwAAAAAAAAAAAAAAAAAAAAAAAHrnwWgAAAAAAAAAAAAAAAAAAAAAAABA7zwYDQAAAAAAAAAAAAAAAAAAAAAAAOidB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9M6D0QAAAAAAAAAAAAAAAAAAAAAAAIDeeTAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgdx6MBgAAAAAAAAAAAAAAAAAAAAAAAPTOg9EAAAAAAAAAAAAAAAAAAAAAAACA3nkwGgAAAAAAAAAAAAAAAAAAAAAAANA7D0YDAAAAAAAAAAAAAAAAAAAAAAAAeufBaAAAAAAAAAAAAAAAAAAAAAAAAEDvPBgNAAAAAAAAAAAAAAAAAAAAAAAA6N3/B89nvm568KCIAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor, Config\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 5), dpi=300)\n", + " configs = get_known_configs()\n", + " to_display = configs[\"Relative humidity\"], configs[\"Ambient temperature\"]\n", + " for i, config in enumerate(to_display, start=1):\n", + " plot = figure.add_subplot(1, 2, i)\n", + " coros.append(plot_sensor(config, plot, {}))\n", + " await asyncio.gather(*coros)\n", + "\n", + "display(figure)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAE0YAAAmZCAYAAAAwyqtnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdd5RkVbX48e8eZkiSGXIaJAoIKElRkiBREZAgQRyCOYvx93yK+MxZjKBkQRHBwEMMKPoQUBBEJKkIKEgecmZm//44NVJ9+1Z3pe7qnvl+1uoFd997ztlVdavWmu5d+0RmIkmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmDNGXQCUiSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJknoQEVn5OXrQOUmavPxMkSRJkiRJkiRJkiRJkqT5S0QcXa0dG8txgxIRM2pq5GbOL+tLkiRJkqT2TR10ApIkSZIkad4WEVOBDYDnAEs1fhYAHgEeBm4FbgZuzswnBpSmJEmSJEmSJEmSJEmSJEmSJEmSJEmSpAGzMZokSZIkSeq7iFgI2Bs4HHgxsEgbw56KiL8AlwG/AX6emfeMXZaSJEmSJEmSJEmSJEmSJGk0ETEDuKmDIU8ADwIPADcCVwKXAj/NzCf7nd9cEfES4IKaUz/LzF37tMb2wK9HuGSHzLywD+scCpw8wiVrZubNva4jSZIkSZIkTURTBp2AJEmSJEmat0TEnsDfgTOAl9JeUzSAacDzgNcB3wHujIgvj0mSktQnEXFzRGTTz0mDzkmSJEmSJEmSJEmSJEkasIWA5YC1gV2A9wM/BG6LiE9FxGJjtO4RLeIvjYjVx2jNqsMn2DySJEmSJEnSpGNjNEmSJEmS1BdRfA34EbBqH6acAoxXIZIkSZIkSZIkSZIkSZIkSRpb04H3An+JiBf2c+KIWArYp8XpKcDMfq43gldGxBK9TBARzwa27VM+kiRJkiRJ0qQzddAJSJIkSZKkecY3gNe1OPdP4FfANcDdwCPAYsDSwDrAZsAmlF0iJUmSJEmSJEmSJEmSJEnSxPYI8PcW5xYFlgGWbXF+DeD8iNguM//Up3wOBhYe4fxhEfHRzMw+rdfKosABwPE9zHE4EP1JR5IkSZIkSZp8bIwmSZIkSZJ6FhF7Ud8U7QrK7o6/Gq2YKCIWBXYF9m78PKvfeUrSRJeZFjRKkiRJkiRJkiRJkiRpMrg8M7cf6YKIWBV4OXAUsFbl9BLAWRHxnMx8qg/5HFE5ToY2F5sB7Aj8sg9rVd1H2Sh2rsPpsjFaREwBXlMJz6I0mtM8KjOPBo4ecBqSJEmSJEkTxpRBJyBJkiRJkia3iAjgCzWnzga2zswL2tlhMTMfzcyzM/PVwCrAO4G/9TdbSZIkSZIkSZIkSZIkSZI0HjLz1sz8OrAJpaawai3g9b2uExGbAs+rhL8APFmJHd7rWi18F5jddPyCiHhOl3PtAqzadHw/8NNuE5MkSZIkSZImIxujSZIkSZKkXm1N2Umx2W3AzMx8opsJM/OBzPxiZr6n1+QkSZIkSZIkSZIkSZIkSdLgZOYjwMHAdTWnX92HJY6sLgl8CTi3Et8nIpbuw3pV/wZ+Xol124StOu504PEu55IkSZIkSZImJRujSZIkSZKkXu1WEzspMx8a90wkSZIkSZIkSZIkSZIkSdKEk5mPA5+oObV5RCzT7bwRsTBwUCV8YWb+Ezi5El+I0qBtLJxQOX51REztZIKIWBbYc5R5JUmSJEmSpHleR79YkyRJkiRJqrFGTeyP455FCxGxPLA5sHzjZzZwF3AncGlmPjjA9IZo5Lo+sBawFPAs4CFgFnAb8IfMfHicclkK2KIplymNPH6ambeMUw6rA88HVgaWBh4GbgIuy8zbxymHRYAtgZUo989iwL3A3cBVmXnjOOSwJPACYB1gScrzcDdwRWZeP4brbgSsTXncywKPNta9mfIaPDVWazfWXwDYFNgAWAFYGHgE+HNmXtDm+GdT3lOrAEsACwD3NX6uB67OzDlj8gAmiIgI4LmU+2c5YBngAcrn4E2U+2jMn4NB3ceSJEmSJEmSJEmSJEmaUM6viU0B1gMu6XLOfSj1Zc1Oafz3PEqNynJN544AvtLlWiP5MXAPML1xvAKweyPerkOABZuO/5yZfywlQBPD/FiXFRGrUB7vDErt0yLAg5Sayn9S6ukeH1iCfRIRC1JqBtcHVqS8tlAe5yzK63rDOOUylVL7uyHlPTUHuJ1S83ZpZs4ejzzaNRFqTSVJkiRJmtfYGE2SJEmSJPVq+ZrYI+OeRZNGgcFbgAMojbVaVQU9HRGXACcBJ493oURELE7Z3XFnYHtg9VGGzI6IK4FvAqdk5pNdrHkS8Jqm0C2ZOaPp/G7Au4AdKMVKVYdRnq8x0Wji9BrgTZTGbHUyIn4HfCozz20aezNDG/WdnJkzu8hhCmVX0EOAbSkNuVpdexNwJvDZzLynw3VOYuTXYlPgg5R7ZFqLOW4BPgd8ox+NyiJiY+AdwC6UhnStPBwRv6S8Bpd2uMb2wK8r4R0y88LG+dWB91J2ca0WLAL8BqhtjBYR61AKHV8CvIjSXHAkD0TELyiv3+/bzH8GpbiqlddExGtGOA9AZtZ+LkVEVkIfycyj28mtMs+6lOdxd0qxVSv3RsTPKM/BlV2scxIT7D6WJEmSJEmSJEmSJEnSxJSZd0fEgzzTcGmu6XXXt+mIyvGjwFmN9Z6OiNOBtzed3zQintdNrcxIMvPJiPhOZa3D6awx2uGV4xN6TqwPxqMuq7HO1cBGTaG7gVV6qSmKiAOB0yvhN2fm10YYMx3YG9gJ2I7S5G4kT0bEpZSGez/opilcRBwNfLg51qrGrJ8a9V17UWpGtwIWGuX6u4FzKa/ttWOQzwrA+4GZlE1969wVEWcCx2Tm3f3OoV3jVWsqSZIkSdL8asqgE5AkSZIkSZNe3S53a9TExkVEHAD8Dfg0sBmtm6JBaRq/DfBt4KqI2HbsMywi4tPAXcBpwKGM3hQNSqOyzYHjgRsjYps+5rNYRJxF2SFzJ+qboo2pRsOp3wIn0ropGpTX9MXATyLiexGxaB9z2BW4mrJj6M6MUKjSsCbwPuAfEfH2Ua5tN4cpEfFR4HLglbRoJtWwBvBl4PcRUdeksN01V2oU5f2J0vxupKZoUHYz3Au4JCJ+GBHLdLt2JY8jgOuAN1PfFK3VuGUj4grgr8AnKa/daMV3UHbv3Be4NCJ+FBGtCqkmjYhYNCK+BlxDKfocqSkawLKUJnR/jIhTI6Lt532UPMb9PpYkSZIkSZIkSZIkSdKk8HBNrNoorS0RsSaloVOzszOzeY2Ta4ZWm6n1y7crx3u0Ww8TEZsDGzeFnqTUFw7MAOqyTqwcLwfs0W6+LcysHD8BnNHq4kYjvduB44D9Gb0pGsCClMZYZwJ/iYgNu8p0HEXE+hFxA3AlpSHbtozSFK1hOUqN4V8i4viIaGdMuzntDlxL2dx1pHtmecrmyddFxKv6tX4nJkKtqSRJkiRJ8zobo0mSJEmSpF7dURPbf9yzACLiv4HvAqt0MXxD4BcRcVB/s2ppS0YvhBjJqsAFEfHqXhOJiGcBF1CaFw1ERKxFaYr24g6H7g/8NCIW7EMO7wb+F9igi+GLA1+MiG9FxNQecphCKZT5IJ01p3se8NuIWKyLNTcB/kBpjtXNDpOvoBSwrdvF2OY83gN8C+im0d3ilOegF3sCf4iIVXucZ2AaO5X+CngjpfFjR8MpO1deFBHtNGocKY9xv48lSZIkSZIkSZIkSZI0adQ1PHqwy7kOZ3jN0ynNB5l5JaWBUbODI6KX+r1amXk18Mem0FSg3Rq/wyvHP87Me/uSWPfGuy7rNOCpSuywbhdurLlTJfzDzLxvhGFb03ntVbPnUOrpqutONCsCvdT8BXAkpd6rq8aGQyaLeDnwI6CTTVqXBU6PiNf1un4nJkKtqSRJkiRJ8wP/4SxJkiRJknp1MVAtKtgpIt6amceOVxKNpmjH1Jx6Gvg18EvgNsrvQ1YDdgdewNCiqAWB0yLi6cw8c2wzHiIphVdXA9cBd1MKvWZTiiCeDWxB2dlyWtO4acDxEXFNZl7Rw/rHURq1zfVv4Dzgz8BdlN0416AUKPVdRCxJaea0Ws3pfwA/pOw4eR9lt8HnUppxrdi4Zlvg8z3m8EnKbnxVs4BfUIrV7gIepRTmbQjsCqxXuf4I4H7g3V2m8jHg4Kbjf1EKaK4G7gEWoxROvZKyg2Cz9Si7cr6l3cUau4z+ujFvsznA/1He3zdRHtMilIZ82wE7MrTh1TrAeRGxWWY+0O76TXYG3t90/EQjrwspzRefbqy9VU2udR4GLqO8n/4GPAA8RHmPL00pSNqB8lw2Wwf4XkRsl5lPt5j7SeCqpuMNGPq+vA/4Zxs59lVELEJ5zjaqOX0PcA7PvKeX5Zn7aOXKtRtQmqNtmpmzukxnXO9jSZIkSZIkSZIkSZIkTQ6NDTTrNk78RxdzTQFmVsK3UTYJrToF+EzT8VLAPsDpna7bhhOAzZqODwc+N9KARpO2A2vmmWjGsi6LzLwrIs6j1AfOtXtELJ+Zd3WR76HAlEqsk+d1NnAFcA1wPXAvpbYzKHWV61DqUF9UWWcx4LsR8bzM/FcXeQ/CfTzz2t5IeZwPU+oGp1NqJncGqptubknZELWXDZXXBI7lme87J6V28Tzg1sbxasBulOe6ue43gG9ExL2Z+YMecmjLBKo1lSRJkiRpnmdjNEmSJEmS1KvzgMcoxQ/NvhwRLwU+nZkXjWUCEfEi4MM1py4CjsjMv9ac+5+IeCGlyGX95umA4yLi95l5S/+z/Y85wM8pBVc/z8y7RxsQEdOBD1EaBs0t7FgIOJnSLKwbqwIHNf7/MeADwNcys7rrIsAHx2KXTOALDC+WeYhS8HF8ZmZ1QES8DXgPcDTld1xvojSs6lhE7M3wQpX7KI26TsnMx1uMC2Av4BvA8k2njoqI32bmjztMZaWmPB4CjgJOyMzZNWv/P0ojwPdXTr0hIj6RmbeNtlhELA18n+GNxk4Ejs7MVs29Pt4oUPwqsEtTfC3K++mVo61d4708c0//AHhnq4KwEe7B+yk7hp4FXNziHq7OtTXwJWDzpvDWwDuAz9aNycx/A5s2zXEzpXHgXD/OzJmjrT0GvsDwpmizgU8BH627jyPincC7gI9SPkvmWo1SrLZPF3mM630sSZIkSZIkSZIkSZKkSaWutug+SjOmTu1CqX9rdlpmzqm59jTKZn3Nm0Eewdg0Rjud0ghtbp3TBhGxVWb+foQx+1CaKM11G6W+cCIYl7qsJicwtDHaVOAQuts8dWbl+FbKJrsjeRI4m/KYf9XORqERsQbwCYY2t1sW+DrwsnaTHYA7gJMom25e3uK98x+NmsndgC9SmsLNtV9E7JuZZ3WZx3t55v1yPTCzxfvl4xGxZSPn5uZ7AXw9In6Tmfd0mcOoJlCtqSRJkiRJ84Vqt3tJkiRJkqSONBp6faXF6ZcD/xcRt0bECRHx2ojYJCL61qy9UTDwbYYWLEFp2LZji6ZoAGTmJZTd466unFqS1o+pX/bOzF0y8zvtNEUDyMx7MvNtwGGVUxtFxM5d5jH3eXsE2DUzvzRS4VKrwo1uRcQLGP54Hm7kclxdU7RGHk9m5scoTd1mUwpbFqq7dpT1l6c0Amv2N2DjxvotH28W51CKt26tnP5E497sxIKUxzEL2CYzj69rJtVY+6nM/ABwfOXUAgx/Plv5KjCj6Xg2cEhmHj5CU7S5699IKXCqPnf7RMRWba7fbO59eCyw30i7ZLZ4Tf4NrJyZb83M37RTfNeY62JgG+D8yqm39fNzaqw1mkO+vhKeAxyWmf/V6j7OzNmZ+RlKYWX1Ods7Irppcjfe97EkSZIkSZIkSZIkSZImgYhYibJZZtUZozVkauGImtgpdRdm5h0MbzS2Q0Ss2cW6I8rM+ymNppqNVgtTfSwnt6q5GWeDqMs6D7izEpvZzrrNGjVV61TCJ7dxr22Rma/MzHPaaYoGkJm3ZOZBlI1em+0eEevXDJkI/gCslpkfyMw/tPMebNRMngdsBVxZOf2uHnKZ2xTtGuDFIzURzMw/UO6tayqnlqNsIjomJlitqSRJkiRJ8wUbo0mSJEmSpH74EHDJCOdXoRT2HAf8CXgoIn4fEV+OiH0jYoUe1t4DWK8S+yewf2Y+OdrgzJxF2V3wseq8EVGdt2/aLZhpMfZkyu6LzY7sLSPen5m/7XGObry5JvaeRmHUqDLz+5SdJbv1dkojvLkepTRlqxafjJTDv4BXVcIbAHt2mdNhmXlVm9e+H6gW1Owy2qDGvX1AJfxfmfmdNtel0bTu9QzfrfX97c5R8Qfgna2a4Y2Sy5OZWX0Ptzv2ceA1lNd+rtWAbpsNDsI7a2JfzMxT2xncKFb775pTR/WQ05jfx5IkSZIkSZIkSZIkSZocImItSpOs5SqnHgU+0cV80ykbtza7PDOvHWHYydVpGLvN+06oHL8qIhapuzAiZgA7VMLVBkwDMYi6rMx8GjitEn5uRGzWYQp1r+2oz2svtZ3AMcBlTccBHN7DfGMmMx9tPNfdjL0POLQSfmFEbNBDSk8C+2TmvW2sfy9lM9BqjfDBjc+GsTARa00lSZIkSZqn2RhNkiRJkiT1rFHAsjvwkzaHLAxsCbwV+D5we0RcGBGHR8TCIw8d5i01sXdn5iPtTpCZNzF8p7igvmnXRFHd2fLFPcx1I/DVHsZ3JSKWAvarhK+jNNDrxIeB+7tYfzHgTZXw5zLzH53OlZm/Ay6ohPfudB7gN5n54w7WnUXZIbPZphEx2u/93sPQ3w3eBHy23XWb1n8K+HglvFsX72MoDfEGsstpZt7F8N1Je3lPjZuIWAXYqxK+i9KwshOfp+xg2eyFEfH8LtIar/tYkiRJkiRJkiRJkiRJE1BELBwRq0TEHhFxHPBnYOOaS1/bSWOhJocCC1Zi1Zq6qh8B1aZXM8eoRuUC4Jam4yWBV7a49jBKveJcv83Mv49BTuOuh7qsamM5gJntrhsRiwL7V8K/zcwb252jG41NQaubWU6KOrROZeZfgCsq4V4e67GZ+dcO1v8rcGwlvBAd3CftmqC1ppIkSZIkzfP8YpkkSZIkSeqLzLwfeAWl4KjTopwAtgO+DdwQEQe3NShiwca4ZncA53S4PsA3gerudy/tYp7xUm1gtFJErN7lXCc2CnLG24sohSjVXOZ0MklmPgx8r4v1dwKWqsS+3cU8c/1v5bh6b7bj+C7G/KFyvBiwSquLIyIouyU2O6mHpmTVhlYLAVt1OMffMvO3Xa7fL9X31AsGkkXnXgIsUImd0klzSPhPk7u6+6+bz8Exv48lSZIkSZIkaaJrNAHYMSKOiIj3RcTbI2K/iNhk0LlJkiRJUp9sFxFZ9wM8BtwKnAu8Fli0MvZR4ODMPL3LtQ+vHD8FnDHSgMYGsGdWwqsBO3eZw0hrJXBSJVzNmUZTttdUwnVNwSazjuuyMvNahtcTHRQR1XrDVl4JLF6Jndjm2F5VH+/zI2LaOK093vpZc9dNzVndJry79ZBDKxOx1lSSJEmSpHne1EEnIEmSJEmS5h1zd7uLiDOAXYGDgD2AJTqYZnXgtIjYCXhDZj4xwrXPBxauxH6YmdUGZ6PKzDsi4iJg+6bwehGxbGbe2+l8nWoU7LwY2ATYCFiO8rwtxvCmRzB8t0soz90/u1j+112M6Ye6Iphqk612nQu8vsMx1WKS2zLzltor23NT5XhGRCzVaBrYrt90sW7dLpZLAv9qcf3GwNKV2MVdrAtAZs6KiAcaa871PDp7LBd2u34rEbEKsDXl8a5LyW8JYBGG7rA614qV424bDY63F9XEzupyrjOBT7cx/2jG4z6WJEmSJEmSNA+JiGcDWwCbN/77fIZ+gfmWzJwxgNQ6FhEbAR8CXs7wv2PNveZvlC9kfy4znxzH9CRJkiRp0B6ibIJ5TGZ2VRcSES8ANqyEz8vMe9oYfjKlUVuzw4Hzu8llFCdS/n04t1Zp+4hYMzOb68x2AtZoOn6I7mt/xsU41mWdCGzZdLwMsCfw/TbGHlY5frjNccNExGLAtpTHuwGwLOXxPguYUjNkscrxQsAKlEaBE1pErEWp69wYWIvyOJegPIa617b6WnZbc3d9Zt7Q6aDM/GtEXMPQz4MtImJKpxv0jmIi1ppKkiRJkjTPszGaJEmSJEnqu0ZjsnOBcyNiAWBTStOvzSlfZFmP+mZfzWZSCkf2H+Ga59fELu803yaXMbQxWlAaPP2yhzlHFBFrA+8H9mVoY6luVHeka0cCf+px3W49t3L8GHB9l3Nd2cWYasOnpSOil+eiWtAEMB1ot1jl8czspvjpgZrYSPdSXaOrYyNipCaEo6nu6Dq9w/FX9LD2EBGxL/AmSjFSXeFZu7p5Pw1C9XPwaeCqbibKzFsi4i5g+RHmH8143ceSJEmSJEmSJrmI2B74AOXvR8sMNpveRUQA/w0cTf2XhZutA3wcODAiDsrMv4xxepIkSZI0UVwOHNttU7SGI2pip7QzMDN/FxF/B9ZuCr8iIqa32VitbY1anF8BOzZCQamL/HDTZYdXhn0vMx/pZx79MoC6rDOAz1Mars01k1EanEXEGgytAwU4s9PnNSI2A95Daca2yCiXj2YpJmhjtIiYQnlPvZbSrL4X3dbc/bGHNa9gaGO0xSkN+7qtRa0z0WpNJUmSJEmaL9gYTZIkSZIkjanMnE0pWvhP4UJELApsBewA7Aes32L4fhHx1sw8tsX5uuZL1/WQ7rVtrtEXEfEh4P9RdtPrh26aCD2cmY/2af1OLVs5/lfjfulYZt4WEU8B0zoYtmrleFFgk27WH8GywN/bvHZWl2s8VRMb6XmoPm5o/R7sVvW1Hc1dvS4YESsDpwIv6XWuhsnSlKv6GXVTZj7ew3zXMbQxWqefgeN1H0uSJEmSJEma/DYFdh50En10PMO/nD+H8qX/m4EFgQ0oX86d67nABRHxwsz8x3gkKUmSJEl99Aj1tVHTgKWBlWrO7QBcFhEzM/OMTheMiGcBB1TCsygbubbrFOCYpuMFgUOAL3aaTxtO4JnGaAAzI+IjmTknIpYG9qq5fkIZVF1WZj4QEecABzWFd4mIlTLz9hGGzmR4w/IT200uIqYBXwDeSG8N4JpNyFq0iHgO8B3KBsL90O3jvKGHNesaoC3fIt6tiVZrKkmSJEnSfKFfv5iRJEmSJElqW2Y+mpm/zswPZeZzgF2Ba1pc/sFGI7U6S9fEetkx7b6a2DI9zNdSRHwV+Aj9a4oG3TURerCP63eq+vo90ON8nY4fk9e2opOdIusaQ42FTpuWdaPTHTJ7ug8jYhXgQvpXfAeTZ1OJ6vuo110jq5+DC43wGVxnvO5jSZIkSZIkSfOuJ4AbB51EJyLirQxvivZdYPXM3CozD8jMvTNzPWBL4Mqm65YHfhoRC49TupIkSZLUL5dn5qY1Pxtm5sqUOqWZDG9QtCBwakS8vIs19wcWr8S+m5lPdjDHKUBWYtV/0/XL2Qyt51mdZxqlHczQ+sHrM/OSMcqjKxOgLqva0GwB4NWtLo6IAA6thP+WmRe1s1ijKdr3gTfT3+/eTrgNIiNiI+A39K8pGnT/OHupHa0bu1QP89WZaLWmkiRJkiTNF2yMJkmSJEmSBi4zfwZsAfy05vTywJ4thlYLnKDsQtmturF1a/QkIg4B3lRzahbwbeBwYBtgBqXp0SKZGc0/wJp9SufpPs3TjWpTuE6K0+o80e6FjUZP/WxKN5nUNRQctF7vw5OAdWrifwI+AewNPB9YEVgCWLDmPfWRHnMYlOpnVC+fga3G9/1zUJIkSZIkSZIanqL8LvdbwOuBzSi/kzxykEl1IuCbghUAACAASURBVCKWBT5eCR+bmQdm5m3V6zPzMmBb4A9N4XWBd4xdlpIkSZI0/jJzVmaeDGxKaR7dbAHgtIiY0eG0dQ3MTukwr1soDaGabRQRW3aYSztrPQ6cUQkf1vjv4ZX4Cf1evw9OYrB1WRcAt1Rih9Vd2LAd8OxKrNpcbSTvA15RE78N+BpwCPBCYDVK862Fax7vDh2sNxCNBnBnAsvVnP4dcDTwMmATSg3v4sDUmsd6cp9SmrB1v/N5rakkSZIkSQPVSXd9SZIkSZKkMZOZj0XEq4AbgemV0zsyvDAK4KGa2LN6SKNubN0aXWsUlHy65tQngWMy87E2p5oXdoer7tTXazHKEh1c+zgwh6EbB/wwM/fuMYfJoO4eWzoz76+JT3gRsQewUyV8F3Boo+liuybre+ohhu5w2ctnYKvxff0clCRJkiRJkqSGk4FvNL4kPkREDCCdrr0VWKzp+DrgqJEGZObDEXEwcC0wrRH+QER8MzPvG5s0JUmSJGkwMvOJiHg1sAJDm0YtQdlIdMd25omI9YAX1Zy6tE//jjycoU2s++VE4I1Nx3tHxA7A85piTwOnjsHaXZsIdVmZmRFxMvChpvD6EfGCzLy0Zki1adps2mycFxHLAx+ohJ8G3gN8JTPb3fxzMtShvQ54TiV2I/CqzLy8g3n69Vgnct3v/FxrKkmSJEnSQE0Z/RJJkiRJkqTxkZkPUnYYrFqvxZC6L4YsVRNrV93YWT3MV2c7YKVK7NjM/EAHTdEAluljToNSff2W7XaiiFiQoV86GlFmzgGqjcDW7Hb9SeaemtiM8U6ijw6sHM8GXt5h8R1M3vdU9X3Uy2dg3fgnMvPRHueUJEmSJEmSpGEy8766pmiT0Msrx1/KzKdGG5SZfwd+2BRaAtinn4lJkiRJ0kTRaCp1KPBg5dRLIuKANqc5or9ZDXNgRCza70kz8zLg6qbQwsBplcvOy8w7+r12jyZKXdZJQFZiM6sXRcRiwCsr4Z9n5m1trrMnUH3935eZX+ygKRpMjjq06mv7ELBTh03RoH+Pdck+j+3bJrHzea2pJEmSJEkDZWM0SZIkSZI00dTtuDi9xbV318Squ9h1YoOaWF0TqV68tHI8B/hYF/M8uw+5DNq/KserRMTSXc71XKDTbT/vrByvGxELdbn+ZFJ93AAbj3sW/VN9T52fmd3s3DpZ31PVz8E1e7yPq5+D/f4MlCRJkiRJkqSBi4jFImKXiDgsIt4bEUdFxKsjYvOIaLu2NiIWBzathDv5gvj5leN9OxgrSZIkSZNKZt4KfKjm1McjYtpIYyNiKqWx2lhagrH7d9mJleOVK8cnjNG6vZgQdVmZeRNwYSX8qohYuBLbH3hWJVZ93kdSfbz3AV/pYPxcE7oOrdFA7oWV8CmZeXMX0/Xrsa7bw9i6jZfv6mG+OvNrrakkSZIkSQNlYzRJkiRJkjTRPFATa7Xb3hU1sc17WHuLynG2WKMXq1WO/5qZdY2qRlMtTJmM6oqkXtDlXN2Mq66/CLB9l+tPJnXP+27jnkUfRMSCwPKV8P91Mc8CwJZ9SWr8VT+jpjL8S3htiYjVGf58/rGbuSRJkiRJkiRpImo0Q/sVMIvSlOwE4FPAZ4FTgMuAOyPik21u5rIyQ2txH+nwi8RXV4539Iu1kiRJkuZxXwf+UYk9GzhilHEvA1aoxO4Arurxp2q0PLp1KvBki3N3Af87Rut2ZQLWZVUbnC0J7F2JzawczwJ+3MEa1drO32dmq9dsJBO9trP6uwzo7rVdnv41Rtusj2MfAv7aw3x15tdaU0mSJEmSBsrGaJIkSZIkaaKpFi/B8N3W5roCeLwS26tRTNORiFgB2KYSviEzZ3U61yimV447nr+xO+Ze/UlnoC6piR3U5VwHdzHmFzWxQ7pcfzK5GHikEtujzS94TTTV9xN08Z4CdgcW6zKHauPGjj9/enRxTazbnWv3a3N+SZIkSZIkSZpUImJ6RPyC0gxtB2DaCJdPB94H/C0ith1l6mUqx/d3mFr1+mnA+h3OIUmSJEmTRqPR1DE1p/5rlEbRdQ3LDsvMTXv5YXjDo20jYu1uH18rmXkPcG6L06dmZqvNYwdlItRlNfsB8GAldtjc/4mItRhe//mdzHyigzX6Uds5nfJ7h4msX6/tAb0m0uQ5EbFep4MiYl1gw0r4ssyc05+0/mN+rTWVJEmSJGmgbIwmSZIkSZImmpfUxG6suzAznwJ+XQmvSHdNw14HTK3Eft7FPKOpNqSqKzIZzUHASn3IZaAy8yrg+kp434hYs5N5IuLFdLfL4s8Y3ljvwG4KbCaTRnHh+ZXw4sBRA0inV9X3E3T3nnpXDzk8VDnuRyFfJy4AZldir46IZ3UySURMBV5bc2osPgclSZIkSZIkadw0vtD+e2CnyqmHgAuB7wFnAZcDzV+cXRb4RUTsMsL0T1aOR/oSf5266zfocA5JkiRJmmxOA/5aia1Kfe0KEbESsFslfCf1zYq6yaXq8D7MW+eEDuODNBHqsv4jMx+l/Pu92Y4RsVrj/2fWDDuxw2X6Udv5ZmDhLsaNp55f28bmvm/tTzr/cWQXY+o+M37aayI15staU0mSJEmSBs3GaJIkSZIkqScR8fJOG1mNMNdawP41p1rtlAjw1ZrYZyNi0Q7WXQN4fyWcLebu1e2V43UjYka7gyNiBeCz/UxowL5ROV4Y+EZELNDO4IhYrGaOtjR24TyuEl4AOD0iFulmzknkYzWx9zaazE0amfkA8GglvHMnc0TEkcD2PaRxX+X42T3M1bHM/DdwTiW8AvDhDqd6B1At1PpdZl7ZbW6SJEmSJEmSNGiNvxedw9Df3d4A7AssnZk7ZOarMnO/zNyC8kX845uuXRA4LSJWabHEvZXjpSOiky9A122E45dqJUmSJM3TMnM28NGaUx9o8W+qmZS6rmZnNObp1XeBpyux17Rbv9ah8yj/Dmz+WSEzrx2DtXoyQeqyqqqNzqYAh0bEFODQyrmruqh7qtZ2bt3J5pQRsSHwgQ7XHITq44QOX1tKbdo6fcil2Vsbze3b0ri22pztCeCkfiYF832tqSRJkiRJA2NjNEmSJEmS1Ks9gL9GxIkRsX63k0TEypQvplQbmt0N/HKEoecB11diMygFB1PbWHdp4Ec16/4kM6u7UvbD/9XEPtXOwIhYhtIkrpudCCeqE4BbK7GdgZMjYqGRBkbEUpTnY8Me1v8Ew3dAfD5wTuPe6FhErBERx0bERj3kNaYaRV8/qISnUR73tt3MGRELRcTrIuKdPSfYmYsqx9tHxO7tDIyIXYEv97j+1ZXjjZp2Ih0vX6iJHRURr2pncETsQn2zvM/1lJUkSZIkSZIkDd5ngObf1/8UeF5m/qDuC/SZeXtmvg44qik8nfov7EP5G8fDTccLAJt3kN8La2JLdjBekiRJkiar0xle97cy8Iaaaw+riZ3WjyQy827gZzV57NaP+StrZWbeUfm5q9/r9NGg67KGyMxLGH7PzAR2BFavxE/oYolqbeditLk5ZWNz3B8DI9Y8TgSNe65aG3twRGzSzviIOIyxaQC3EHB2O3WbjWvOZvjzfXqjidlYmC9rTSVJkiRJGiQbo0mSJEmSpH6YSikwuS4iLo2It0RE3Q73w0TEohHxBuBK4Lk1l7wnMx9vNT4zEzgCqH555RXAz0faQS4itqIU71QLOu5n+E5y/XI+8FAltn9EfGuk3QUjYmfgUp75Ms2DY5TfuMrMh4DX1Zw6GPhLRLw6IoZ8ASgiVoyIt1CKnLZrhG8C7uxi/TuA1wBZObUL8MeIOKTNBnvPiogDIuJs4O/AW4C63UsnktdTnrdm04ELIuIzEbFiO5NExFYR8TngZuCbwFp9zXJ0Z9bEvhcR+7YaEBELR8SHKE0R5+7Y2O176uLK8RTg+xHRyRffepKZFwNfr8nj1Ig4OiIWrBsXEQtExLuAHwLVa87JzHP6n60kSZIkSZIkjY/GpjxHNoVuBvbNzMdGG5uZn6dszjPXwXW/N8/Mp4HfVcKvbjO/AA6pObV4O+MlSZIkaTLLzDnAR2pOvT8i/rPJaURsB6xTueb6zPxjH9Opa7J2RB/nn6wGXZdV58TK8drAlyqxJ4HvdDH3D4A5ldh7IuKjI9UQRsSBwCXAsxuhyVDbWX1tpwHnR8T2rQZExFIR8SXg2zzzveR+Pda5NcLPBS6KiC1HyGMLShO7ar3x3cD7+pTPMPN5rakkSZIkSQMx6j+0JUmSJEmSOrRV4+fYiLgZ+D1wLXAPcC+lKGAJYA1gY8pufa0agp2ZmSePtmBmXhwRHwGOqZzaAbg2Ii4AfgXcBiwArAbsDmwNRHU64PWZ+c/R1u1GZt4XEV8APlQ5dQSwV0R8H7gCuA9YilIs8zKGFnHMBt7O8CKfSSkzfxoRHwP+q3JqbeAUYHZE3ElpWDcdWI6hr9uTwKEML1CrNstrtf4PGsVYH62cWhM4FfhsRFwIXE4pnnmEcg8v1chxc8q9POF3e2yWmfdGxJ6U5oDNzeemAu8G3hYRlwC/BW6l3JMLUR73SsDzKI99ufHMu8YplB0omxuyLUZpTnYF8BNKAdFTwPLAZpT31LJN11/buK6bwqgfAbOAZZpiWwGXRcRDwL95pnDrPzJz0y7WGslRwDZA8+6RUym7lr4xIs4B/kz5LF4a2ADYB1i1Zq5/MfTLgpIkSZIkSZI0Gb2BoZtCfCQzH+1g/Ocof0+iMc+uwEk1151G+RLsXIdFxNcz80+jzP9Whn+5H2yMJkmSJGn+cSbwQWDDptgKwJuAzzaO6xqUndrnPH5EafC0RFNsj4hYPjPv6vNak8mg67LqnAp8nFIHOtdzKtf8JDPv7XTizPxrRJxGqUVs9kFgZkScRam/ephSK7YesCdDn59HKY+1usnlRPMFSkOupZpiKwK/jojfAj+jNJif04hvDexGef3nuoBSk1t9vrrxaeBdjfk3AC6NiIuAn1Jq2aDU/e5KqZGrq/t9Y2be3YdcWppfa00lSZIkSRoUG6NJkiRJkqSxNKPx042T6WDXxcz8aEQEw3eRnEYphti1jWmeAg7LzLqdDvvpf4DtGj/NlqV8SWckSSn8urD/aQ1OZn4wIpJSRFS1ALBy46fqCeDgzLyoZre9tncjzMz/iYh/A19l+O57KwAHNH7mKZn5l8YOimcztKEWlC951d2nE0pmPhUR+1EavC1aOf38xs9IbgP2AGZ2uf7jEfFOymdW1eKUArgxl5mPRcRLgHOB6o6ZywOvb3Oq64BdM3NWP/OTJEmSJEmSpAF4adP/zwbO6nD8RcDTPFNruw31jdG+CxzNM1+Engb8JCJ2zcxr6iaOiAN45kv+VXM6zFOSJEmSJqXMnNPYELVar/feiPg6pW7sldVhwHf6nMdjEXE2Q+uHplEaPrX6t9s8b9B1WS1yuj0izm/M28oJPSzxNkrt1fqV+KrAO0YZ+xSwH6U52oSWmbMi4mDgxwxtMgewbeNnJH+hPNYv9Cmlm4CDKXWMC1Aan23T+BlNAm/IzB/0KZeRF5tPa00lSZIkSRqEKYNOQJIkSZIkTXqnUgqN7u/TfP8AXpGZMzNzdicDM/MY4EDg312sey3w0szsa9FUncx8CngFpYFRJ+4H9s/M4/qf1eBl5n8DOwN/a3PIn4AXNxW0LF05/0CH658AvBD4VSfjajxO+RLUP3ucZ1xk5t+ArYDPU3Yo7MXlwHk9J9WhzLwS2AW4vcOhlwIvyMybe1z/FOBI4KFe5ulVY8fLHYBvUL6s19Fw4HTgRZk5Ke5dSZIkSZIkSWolIhYGNmsK/QuYHhEz2v2hbNjS/PevtaiRmU9Tvrz7ZFN4VeCKiPhaROwSEetHxHMj4oCIOJfyd4RpjWtvrUzZr7+5SZIkSdJkcBbw50psOeCtwEEMb8h1UWbeMgZ5nFYTa3tj13nVoOuyWhip8dntwM+6nTgzHwB2ouTfiX8DO2XmuNfOdauR6350sAFtw7nANpl5X5/z+TGwF539XmQWZWPdca2pnV9rTSVJkiRJGm82RpMkSZIkST3JzN9l5iHA8sCOwDGUP/Y/3ME0d1Kaq+0BrNcocOg2n+8CawPvBa6gNPtp5WnKboZHAhtn5m+6XbdTjQKaPSlflKkWdlXdBXyG8tycNda5DVJm/gLYEHgZcCJwNXAPMJvS6Owq4DhKsdXzM/NygIhYnOFFcLO6WP9Pmbkj8ALgFIZ/GamV2ynFca8BVszMAzPzrk7XH5TMfDQzjwJmAEdTGpy105jwccr7/f8BG2bmFoMq7srMi4BNgE8zenHU5ZTX6kWZ2e5rPNr63wZWAQ6jNIy8kvLefawf83eQx6OZ+UZgI0oR4B2jDJkFnAFslpkH97tgTZIkSZIkSZIGZEWeaTwG5fffN3XxM71pjmVaLZaZvwcOofzefK4FgTcC5wPXUf4e9F3K38Pm+iFwUmU6G6NJkiRJmm9kZlLqlareDby+Jl7XwKwffg3cVomtHxFbj9F6k8ag67Jq/IRSU1jnlE435K3KzNuAbYG3UDb6HcktwH8D62fmb3tZdxAy8xxgY+CbjFznNge4kLLp8cszc0x+d5GZ5wIbAF9l5IZtdwNfoTzvZ4xFLqOZX2tNJUmSJEkaT1F+dyhJkiRJktRfERGUJkHrAKsDSwCLUxqVPQg8RPkD/9WZOVrjnl7yWAHYgtK4bTlKs6e7Kc2CLm00KBu4iFidsoPcCpTn6nHKLoLXAH9Of4kzooh4KfDzSnjHzOx1Rz4iYm1Ksc2yjZ8FKY3/HqB8Ker6ebEwJSKW5Jn3zrLAkpTip4co9+YNwD96LSQbCxGxALA5pcnedGAqJe+bgMvH8jNnoml8Fm9M+SxeHliK8hl8N888H3MGl6EkSZIkSZIkDRcR21O+lD7XLZk5o4Pxm1G+jN1PN2fmmqOsuznwNcrv10fyFPBx4GON649sOveOzPxSL4lKkiRJkjQW5se6rIhYF9iSUn/6LOARShOsP2fmDYPMrZ8iYiFgK2A9Sr3gFEojvBuByzKz441qe8xnGuX3Kxs28plDqTm+CbhkgtYtzpe1ppIkSZIkjRUbo0mSJEmSJGnSi4gvAm9vCs0Bls7MkXYNlCRJkiRJkiRJE1AfGqO9ELi4z2m1nUNjQ5c9gW2AlSmbVswCbgH+Fzg1M29qXHsR8KKm4S/OzN/1MW9JkiRJkiRJkiRJkqRJZeqgE5AkSZIkSZJ6ERHLAEdUwlfZFE2SJEmSJEmSpPnWPZXjn2fmLuO1eGb+AvjFaNdFxDRgs6bQ08AVY5WXJEmSJEmSJEmSJEnSZDBl0AlIkiRJkiRJ3YqIAE4GFqucOm4A6UiSJEmSJEmSpInhzsrxugPJYnQvAhZuOv59Zj42qGQkSZIkSZIkSZIkSZImAhujSZIkSZIkaeAi4tCI2KnDMUsAZwMvq5y6HzitX7lJkiRJkiRJkqTJJTMfBK5pCs2IiHUGlc8Ijqgcf2sgWUiSJEmSJEmSJEmSJE0gNkaTJEmSJEnSRLA18IuIuCEiPhkRO0TEMtWLImJaRGwREf8D3ATsVTPXWzLz4bFOWJIkSZIkSZIkTWg/qxy/diBZtBARawH7NoXuB743oHQkSZIkSZIkSZIkSZImjMjMQecgSZIkSZKk+VxEfAN4fc2peyhfBHoCWAqYDiw0wlTfzswj+5+hJEmSJEmSJEkaLxGxPfDrptAtmTmjwznWBq4DpjZCjwObZ+Y1/cixFxGxAHA+sFNT+N2Z+bkBpSRJkiRJkiRJkiRJkv4/e/cdZldd5w/8faaldxJCSEJIUSBIR5CiCLrYVkXFFdYCKIKr+0OxLbsqqCyru7rqrgW7riKyomJdsAUbKkgRUFqAkGAoIb3PJHN+f5wh0yczaTfl9Xqe88z99s+dmXufBE7el51GXa0LAAAAAIA+7JVkZpLZSfZN36FolyY5d0cUBQAAAAAA7NzKspyb5MsdugYn+XFRFAcNZJ+iKAYVRXHWZuY09DXeZW5jkq+lcyjajUk+PpC6AAAAAAAAAAB2V4LRAAAAANgZ/DbJvC1c+7MkzyrL8r1lWZbbriQAAAAAAGB7KopiclEU07peSSZ2mdrQ07y2a68+jrgwye0d2lOT/LEoin8timJKH3UNKYriOUVR/FeSBekcsNaT5xVF8ceiKP6ht33bAtZOa6vnjA5DS5O8tizLjZs5AwAAAAAAAABgj1D4t6IAAAAA7CyKojgkyYlJnp5kRqp/oDQ6yZAkG1L946DFSe5J8qskPyvL8i+1qRYAAAAAANgaRVHMS7LfVm7z1bIsz+rjjClJfpLkgB6GH0hyd5JlSRqSjEoyLcnMJPUdJ5ZlWfRxxouS/KBD18NJ/pJkSZLGJHsnOTzJsC5LFyd5YVmWf+htbwAAAAAAAACAPU1DrQsAAAAAgCeVZXl7ktuTfKrWtQAAAAAAALu+siwXFEVxdJLLk/x9l+HpbdfmLBvgsZPbrr78Nslry7J8YIB7AwAAAAAAAADs1upqXQAAAAAAAAAAAAAAbC9lWa4qy/LVSQ5N8vUkS/uxbGGSK5KcnmTiZub+OclXkzy6uVKS/KptzxOFogEAAAAAAAAAdFeUZVnrGgAAAAAAAAAAAABghyiKoi7JIUkOSjI2yegk65KsSDIvyV1lWS7Ywr2nJXlakilJRqX6EOMVSe5P8oeyLBdvXfUAAAAAAAAAALs3wWgAAAAAAAAAAAAAAAAAAAAAAABAzdXVugAAAAAAAAAAAAAAAAAAAAAAAAAAwWgAAAAAAAAAAAAAAAAAAAAAAABAzQlGAwAAAAAAAAAAAAAAAAAAAAAAAGpOMBoAAAAAAAAAAAAAAAAAAAAAAABQc4LRAAAAAAAAAAAAAAAAAAAAAAAAgJoTjAYAAAAAAAAAAAAAAAAAAAAAAADUnGA0AAAAAAAAAAAAAAAAAAAAAAAAoOYEowEAAAAAAAAAAAAAAAAAAAAAAAA1JxgNAAAAAAAAAAAAAAAAAAAAAAAAqLmGWhcAtVYUxagkz+rQtSBJc43KAQAAAAAAAADYGk1JpnRo/7Isy+W1KgYA3KMHAAAAAAAAAOwm3J+3gwhGg+qGq+/VuggAAAAAAAAAgO3gJUm+X+siANijuUcPAAAAAAAAANgduT9vO6mrdQEAAAAAAAAAAAAAAAAAAAAAAAAAgtEAAAAAAAAAAAAAAAAAAAAAAACAmmuodQGwE1jQsXHNNddk5syZtaoFAAAAAAAAAGCLzZ07Ny996Us7di3obS4A7CDu0QMAAAAAAAAAdnnuz9txBKNB0tyxMXPmzMyePbtWtQAAAAAAAAAAbEvNm58CANuVe/QAAAAAAAAAgN2R+/O2k7paFwAAAAAAAAAAAAAAAAAAAAAAAAAgGA0AAAAAAAAAAAAAAAAAAAAAAACoOcFoAAAAAAAAAAAAAAAAAAAAAAAAQM0JRgMAAAAAAAAAAAAAAAAAAAAAAABqTjAaAAAAAAAAAAAAAAAAAAAAAAAAUHOC0QAAAAAAAAAAAAAAAAAAAAAAAICaE4wGAAAAAAAAAAAAAAAAAAAAAAAA1JxgNAAAAAAAAAAAAAAAAAAAAAAAAKDmBKMBAAAAAAAAAAAAAAAAAAAAAAAANScYDQAAAAAAAAAAAAAAAAAAAAAAAKg5wWgAAAAAAAAAAAAAAAAAAAAAAABAzQlGAwAAAAAAAAAAAAAAAAAAAAAAAGpOMBoAAAAAAAAAAAAAAAAAAAAAAABQc4LRAAAAAAAAAAAAAAAAAAAAAAAAgJprqHUBAAAAAAAAAMDOoyzLtLa2pizLWpcCu42iKFJXV5eiKGpdCgAAAAAAAAAAAMBOTTAaAAAAAAAAAOzByrLMunXrsnLlyqxcuTLNzc21Lgl2W01NTRkxYkRGjBiRwYMHC0oDAAAAAAAAAAAA6EIwGgAAAAAAAADsodasWZOFCxempaWl1qXAHqG5uTmLFy/O4sWL09jYmEmTJmXo0KG1LgsAAAAAAAAAAABgp1FX6wIAAAAAAAAAgB1vzZo1mT9/vlA0qJGWlpbMnz8/a9asqXUpAAAAAAAAAAAAADsNwWgAAAAAAAAAsId5MhStLMtalwJ7tLIshaMBAAAAAAAAAAAAdNBQ6wIAAAAAAAAAgB2nLMssXLiwWyhaY2NjRo4cmeHDh6exsTFFUdSoQtj9lGWZlpaWrFq1KitWrEhLS0unsYULF2bGjBledwAAAAAAAAAAAMAeTzAaAAAAAAAAAOxB1q1b1ymUKUlGjBiRfffdVygTbEeNjY0ZOnRoxo8fn7/+9a9ZuXLlprGWlpasX78+gwcPrmGFAAAAAAAAAAAAALVXV+sCAAAAAAAAAIAdp2MYU1KFNQlFgx2nKIrsu+++aWxs7NS/YsWKGlUEAAAAAAAAAAAAsPMQjAYAAAAAAAAAe5CuwWgjR44UigY7WFEUGTlyZKe+rq9NAAAAAAAAAAAAgD2RYDQAAAAAAAAA2EOUZZnm5uZOfcOHD69RNbBn6/raa25uTlmWNaoGAAAAAAAAAAAAYOcgGA0AAAAAAAAA9hCtra3d+hobG2tQCdDQ0NCtr6fXKAAAAAAAAAAAAMCeRDAaAAAAAAAAAOwhyrLs1lcURQ0qAerqut+209NrFAAAAAAAAAAAAGBPIhgNAAAAAAAAAAAAAAAAAAAAAAAAqDnBaAAAAAAAAAAAAAAAAAAAAAAAAEDNCUYDAAAAAAAAAAAAAAAAAAAAAAAAak4wGgAAAAAAAAAAAAAAAAAAAAAAAFBzgtEAAAAAAAAAAAAAAAAAAAAAAACAmmuodQF0VhTFAUkOTTI5yZAk65I8nmRukj+VZbl6K/ZuTHJ8kqlJ9kmyKsnCJLeWZTlv6yrvdtb+SQ5LMinJ8CSPJHkoyQ1lWbZsy7MAAAAAAAAAAAAAAAAAAAAAAADY9QlG2wkURTE6yQVJzkkVWtabjUVRjXXTagAAIABJREFU3Jbk6rIsPzSA/ccneX+Sv0sytpc5NyT5z7Isv93vwnve5xVJLkzyjF6mLCmK4qok7yvL8omtOQsAAAAAAAAAAAAAAAAAAAAAAIDdR12tC9jTFUVxepK5SS5J36FoSVKf5Mgkbx3A/s9PcmeSN6WXULQ2xyW5uiiKrxdFMay/+3c4Z3hRFFcm+VZ6D0VLWw1vSnJnURSnDvQcAAAAAAAAAAAAAAAAAAAAAAAAdk+C0WqoKIqLk/xvknFdhuYn+VmSK5N8N8nvk6zegv1PSnJNkgkdusskN6cKMPtpkie6LPv7JFcWRdHv342iKOqTXJXkVV2GFiX5SdtZt7Sd/aS9k3yvKIoT+nsOAAAAAAAAAMBAzZ8/P+95z3ty4oknZu+9905TU1OKoth0feUrX6l1iQAAAAAAAAAAAAC0aah1AXuqoijenuSSLt1XJvm3sizv6GF+XZJnJHl5klP7sf/kJN9J0tSh+7dJzi3L8q4O8wYlOS/JR5I0tnX/bZJLk/xzP5/Oh5K8oEO7JcmFST5XlmVzh7MOSvKFtueRJIOSXFMUxdPKsnykn2cBAAAAAAAAADvAtGnT8tBDD21qz5kzJyeddFLtCtoCn//85/OP//iPWb9+fa1LAQAAAAAAAAAAAKAf6mpdwJ6oKIpDU4WJPaklyellWZ7ZUyhakpRl2VqW5W/LsrwwyaH9OOb9ScZ0aN+Q5DkdQ9Ha9l1fluV/JXlll/UXFkWxXz+ey/QkF3TpPr0sy092DEVrO+svSU5J8rsO3eOSXLy5cwAAAAAAAAAABuLHP/5xzjvvvH6Hol1//fUpimLTdckll2zfAgEAAAAAAAAAAADopqHWBexpiqJoSPKldP7en1eW5dX93aMsyw2bOWNWktd16GpOclZZluv62POaoii+2mHdoFSBZedsppyLkzR2aH+lLMvv9XHO2qIozkpyR5Kmtu7XF0Xx72VZPrCZswAAAAAAAAAA+uWiiy5KWZab2meeeWZe//rXZ8qUKWlsbL/VYa+99qpFeQAAAAAAAAAAAAD0QDDajnd6kiM6tH9eluWXt/EZZyap79D+TlmW9/Vj3YfTOVDtlUVR/ENvgWpFUQxJ8ooe9uhTWZb3FkVxTZJXtnU1tNV8aT9qBAAAAAAAAADo0z333JPbb799U/sFL3hBrrjiihpWBAAAAAAAAAAAAEB/1NW6gD3QeV3al22HM07r0u5X8FpZlncl+UOHrmFJ/qaPJacmGdqh/buyLO/uV4Xda3pZP9cBAOycWlYkC76T3PfZZNUDta4GAAAAAAD2aH/84x87tV/xiq6f+wYAsIdZdmdyxweSez+drF+SbFiblK21rgoAAAAAAAAAoJuGWhewJymKYmaSZ3XompdkzjY+Y2KSQzt0bUjy2wFscX2SYzq0n5/k+73MfV4Pa/vr16lqe/J38PCiKPYuy/KxAewBALBzWL0g+flJ7YFoRX1y/FXJ1JfXtCwAAAAAANhTPfZY59sPJk+eXKNKAABqbMV9ybWHJxtWt/f98c3tjye9MDnua0nTmB1fGwAAAAAAAABAD+pqXcAe5tld2j8vy7Lcxmcc3KV9e1mWq3uc2bMburRnD+Cs3/X3kLaa7hjAWQAAO69b39keipYk5cbkd69JNq6rXU0AAAAAALAHW7VqVad2Y2NjjSoBAKihJbck1x3dORStq4U/Sm56y46rCQAAAAAAAABgMxpqXcAe5uld2r9LkqIoiiSnJPn7JMck2TfVz+aJJPcl+VmSb5ZlOa8fZxzUpT13gDXev5n9OjpwG5x1eJezfjHAPQAAam/+Vd37Nq5NFnw3mXbGjq8HAAAAAAB2IWVZ5pZbbsndd9+dxx9/POvXr8/48eOz77775oQTTsjw4cMHvGdra+t2qBQAYBfSvDz59cuTluWbnzv/quTIjyeDx2//ugAAAAAAAAAANkMw2o51VJf2XUVRTEvyxSQn9zB/att1SpIPFEXx+STvLMtyTR9nzOzSnj/AGh/q0h5XFMWYsiyXduwsimJskrFbeVbX+bMGuB4AYOe26DeC0QAAAAAAoBdPPPFELrvssnz961/PokWLepzT1NSUk08+OZdcckmOOeaYXveaN29e9t9//17Hn/3sZ/fY/+Uvfzlnn312j2Pvf//78/73v7/XPefMmZOTTjqp13EAgJopy+SmNyWr5/Vz/sZk8R+SfV+0XcsCAAAAAAAAAOiPuloXsIfZp0t7aJKb0nMoWleNSf4hyW+Koui6T0eju7Qf7395SVmWq5Ks69I9qh/nrCnLcvVAzkr32no6BwBgF1bWugAAAAAAANgpXXPNNZk+fXo+9rGP9RqKliTNzc259tprc+yxx+a8887Lhg0bdmCVAAC7qAXfTh66cmBrfvm3ycb17e2NzckdH0x+eFDyf0cm9302KVu3bZ0AAAAAAAAAAD1oqHUBe5iuYWJfTrJX2+PVSS5P8n9JHk4yLMmhSc5JckKHNYcn+XZRFM8qy7KlhzOGd2mv3YI61yYZ3KE9Yjue01FP5wxIURQTkowf4LIZW3suAAAAAAAAANA/X/rSl3LuueemtbVzsMaMGTNy0EEHZejQoZk/f35uvPHGbNy4cdP45z73ucyfPz8/+MEP0tDglhcAgF5Nen4y49zk/s8PbN1Vg5PxJyQT/ya5432dx246P1l6azL5tGTQuGTMYUld25/JHvtl8vj1SdOYZOzRyYgZSfOyZOi+yaO/SFY/lOzzN8mIWUlRbJOnCAAAAAAAAADsvtwluoMURTEoyaAu3ZPbvv4lyfPKslzQZfyWJF8uiuLtST7Sof8ZSd6d5NIejuoaWLZuC8pdm2RMH3tuy3P62nNL/EOSi7fBPgAAAAAAAAB01bohWfNwravY/Q2d3B4ysZu57bbb8qY3valTKNphhx2WT33qUznuuOM6zV20aFHe+9735rOf/eymvmuvvTbve9/7ctlll3WaO3ny5Dz44IOb2h//+MfziU98YlP7yiuvzLHHHtutnr322isnnXRSkuT3v/99zjjjjE1jF1xwQd761rf2+lwmTpy4mWcLAFAjDcOSYz6X7HNqcuO5SfPS9rG6pqS1ufe1i35TXT2Z+9nq2lrjjk2W/SnZ2HYb6eSXVH2DxyeLb0we/VkydGoy6XnJ6EPbAteOSOoaq/mr5iWL/5AUdcm+L66e04bVSVFf9dUPStY+ksz/VjV/ysuqP2MPRMuqqr7B/fis3nWPV9+zsjXZ53lJ47a4HRYAAAAAAAAA9ly75120O6f6XvqXp+dQtE3KsvxoURT7Jnlbh+63FUXx8bIsV23m3HKAde7sawAAdh2lP+4AAAAAALuZNQ8n39+/1lXs/l78YDJ8Wq2r2C5e//rXp7m5PYjjhBNOyHXXXZehQ4d2mzt+/PhcfvnlmTlzZt75zndu6v/whz+cM844I0972tM29TU0NGTatGmb2qNHj+6018SJEzuNdzR8eBVcMW/evE79o0eP7nUNAMAuYerLk3FPT3736uSJ3yXPvSFZeV9yw5m1rWvx7zu3H/5edXW06oHk8eu3zXk3X5A0jkqmnJZsXFddQ6cm089Kxh5ezVl4bXLXR5Lld1RBZx01DKsC2B66snN/XWPS2tL9vNFPq0Lp6odWAW1No5Ipp1cBdWsXJkv+mBQNyYhZyV7HJOsXJy3LkwnPTJbcWs2bcEIybL9t8/wBAAAAAAAAYBcjGG0HKctyTVEUrUnqugz9Z1+haB28N8k5SUa1tccmeX6Sb3WZ1zUobchAa+1hTU/hazvqHAAAAAAAAABgNzBnzpzccsstm9ojR47MVVdd1WMoWkfveMc78stf/jI//OEPkyStra352Mc+li996UvbtV4AgN3CsCnJyb9IFt+YjDuqCu1qGJZsWF3rynasluXJA1/p3Hffp5Pjr6zC4v70z72v3bC6eyha0nMoWpIsu6O6OrrrIwMqN0kV5jb7X5Kppyet65MV9yarH0we+Umy4u5kw6pk3WPt8+sHJyOe0vYzHpEMm5pMeFYy9oikblBSFAOvAQAAAAAAAABqQDDajrU6yYguff/Tn4VlWa4uiuI7Sc7u0H1SBKN19el0/55szowk39vsLAAAAAAAAABgi331q1/t1H7zm9+cSZMm9Wvthz70oU3BaEly5ZVX5jOf+UwGDRq0TWsEANgt1dUn459RPa4flJwyJ7nu6bWtaWdQbkh+c3qtq+hdy/LktndVV39sXJcsu726enLEx5KnXiAgDQAAAAAAAICdXl2tC9jDLOvSfqwsy3kDWP/7Lu0De5izvEt7/AD2T1EUw9M9sKxr3T2dM7QoimEDOSvJhH6cMyBlWT5eluWfB3IluX9rzwUA6FlZ6wIAAAAAAGCn8Zvf/KZT+9WvfnW/186ePTtHHHHEpva6dety8803b7PaAAD2KOOOTl78QDK4622c7NZueVvyYL8+zxkAAAAAAAAAakow2o51b5f2IwNcv7BLe1wPc+7r0t5vgGd0nb+kLMulXSeVZbk4Sdf+qVt5VtfaAQAAAAAAAIDdwNKlS3P//e2fWzZ69OgceGBPnwfXu+OOO65T+6abbtomtQEA7JGG75+87LHk9OXJ0ZfXuhp2lJvfmmxYUz0uy+oCAAAAAAAAgJ1MQ60L2MP8OckpHdrrB7i+6/zBPcy5q0t75gDPmN6l/Zc+5t6VpONdxzN7OH8gZw1kLQAAAAAAAACwi1i0aFGn9qxZs1IUxYD2OOCAAzq1H3/88a2uCwBgj9c4Mpl1XnUlycZ1SYpk1f3V4+H7J0tuTn7x3L73GTolqRuUlC1Ja0sy7phk/PHJre/Y7k+BAWhZlvzvsJ7HBo1PGoYnG1YkE5+b1A9OBu+TNC9O1j6aHPL+ZNTsZPFNSV1TMubwpNyQ1A/asc8BAAAAAAAAgN2eYLQd6/Yu7dEDXN91/uIe5tzZpX1IURRDy7Jc088zjt/Mfl3HOgajPSPJD/pzSFEUw5IcMoCzAAB2QT5VFwAAAADYzQydnLz4wVpXsfsbOrnWFWxzS5cu7dQeNWrUgPfoumbJkiVbVRMAAD2ob/vM3lEHtfdNfE7v8yf+TXLydb2P9xaMVjcoedW65BsDC8vdZPShybI/9TzWMCyZ8Oxk4Q+3bO891fpF1ZUkD32z+/hfv9/72iGTkoPenaxZkCz9U/LoT5MJz6p+n8YckUw8uQrLWz2/ClprWZE8/L2kaKjGJr80qWts32/NwuSxOUlRJJOenzSN2bbPFQAAAAAAAICdmmC0Hev/UqVjPHkXx/SiKAaXZbmun+sP7tJ+uOuEsiwfKYri9rSHjjUkOSHJT/p5xkld2v/Xx9xrk7yxj7V9OTGdf/9uLcvysQGsBwAAAAAAAGBHq2tIhk+rdRXsgsqy84eJFMUWBmBs4z0AAOinyS+pgqy6mnVe3+umvDxZ8O3u/Yd9aPNn1g9ONvZwi21Rnzz318m3xyWtLd3HX/iXZNjUZOP6ZN43kiduSAaNS4btn9x0/ubP7csZrcnczyY3vann8ef8KhkxMxk8MVlwdfU9a16ejDks2e/vqnrvuKTvkLFd0dqFyc0XdO57/JfV10euS/7yb72vnXt5++P6ocnGXj4LeviMZNTsZMPKpGlsFa7W2pIsvbV6PPE51c95+jnJ+OOqgLzm5cn6J5KUybD9Ooev9aVsrepfeV8yYlYV8lbU9W8tAAAAAAAAAFtNMNoOVJblwqIofpfkuLauxiSnJPlRP7d4Xpf2r3uZ9920B6MlydnpRzBaURQHJDmmQ9fqzay7LsnaJEPa2s8oiuKAsizv3txZSc7q0v5uP9YAAAAAAAAAALugsWPHdmovX758wHt0XTNmzJitqgkAgAGYeX73YLShU5NJL+p73bRXdw9Gq2usQsKSZNILk4U93Ea735nJyKdUIWJdHXxx0jgimXxaMv9/O49NeFYVipYk9YOSGWdXV1KFZ93y1p7D1vpjn1OTokgmPb/n8bFHJxNObG9PPb26upr9L70Ho71kXjJ0SnJlfe91HPah5LZ/6nnsqE8l085IGkYk3+xnCNjOpLdQtCRZdX919ebRn1ZfH/pm73PqBiWt67estiSZ8Ya2B0Wy4q6keWkV1DdkUvKUtySD965C4oqG6uufLqqC2SY8Kxl5QDJ8ehW6NuVl1e/30tuSNQuTvY5NBnX4O9PG5iqIrc6t/gAAAAAAAMCeyf8t3fG+nPZgtCS5MP0IRiuK4sQkT+/Q1Zrkx71MvyLJe5I8eVfEy4qimFWW5X2bOebdXdr/W5Zlr3d/lGW5piiKq5O8psseZ/d1SFEUT0lyWoeuDUm+sZnaAAB2PWVZ6woAAAAAAGCnMH78+E7te++9d8B73HPPPZ3aEyZM2KqaAAAYgEnPS46/KvnLh5JVDyTjT0ye/pmkvqnvdVNemhz+H1XA2YbVVXDUcV9PhuxTjU89vedgtP1fk4x8anLXR5MNK9v7G0Yk019bPX765UnzsuTRts8AHndMcvyVvdfSODKZ9prk/s/3+2lvUtQlT31b9XjYfsm0v0/mXdF5fPZF/dtr7BHJ4InJukc79488oAqbK4pk5huTuZ/rvnbGG5ID35nc++lkzfzOY42jk+lnJw1tn3d85H8lN/+//tW0p9iaULQkuf8LPfcvuz155Nre1z3+y+p60p/6+buSJPVDqtC1Q/81WXxTsurBKmCtcXhSNCYjZiV1bbeMr16QrH4oGXNI9fsOAAAAAAAAsIsSjLbjfTlVGNqBbe2Ti6K4sCzL/+xtQVEUE9rWdfS/ZVn2+LFnZVneVxTFV5Oc09bVlOQrRVGc0lvQWVEUL0lyVoeu5iTv39yTSXJJklclefJj5c4qiuK7ZVn2+FF2RVEMbnsuHe+E+WJvzwUAAAAAAAAA2PWNGTMmM2bMyP33V7cHLFu2LHfddVcOPPDAzaxsd8MNN3RqH3300du0xqIotul+AAC7nf1eWV1lWYV39deB70ieekGy5q9VqFjHtfv9XTL/W53D0aa9Jpn43Crs6Tm/TG57V7L0T8mYQ6uQtWH7VfOaxiQnX5esezxpbUmG7rv5Wo7676R+cHLvf/c97/TlyW0XJY/9Ihk6JTngbcmkU9vHj/1KMvppycIfJ4P2SmacW4XH9UddQ3LYh5I/nJOUrW19TVXfk9+bqaf3HIy236uqELaD35vceG7nsdn/1B6KliSzzk9W3JXc95n+1cXOaePa5K7/qK6BGLJvsu+LqoC0Jbckj/2883jTmOq1NPm06jU0bGoVXDhsWjLmsKRpVPvc1o1JuaG61ixMhk5KGoZVY2WZpKx+LwEAAAAAAAC2EcFoO1hZlhuLorggybVJnvw/wB8timK/JJeUZbm04/yiKJ6T5DNJZnToXprknzdz1MVJTksypq19XJKfFUXxhrIs7+6w/6Akb0zy0S7rP1qW5UP9eD4PFEXxiSTv6NB9dVEUFyb5XFmWzR3OOjDJF9pqedLi9C+ADQAAAAAAAADYhZ1wwgmbgtGS5Iorrsill17ar7V33XVXbr755k3twYMH58gjj9ym9Q0aNKhTe/369dt0fwCA3caWBMrWNSbDp3Xvrx+cPPO7yaM/T5bdnow9Mtn75PYzxh6enPzTvvcePKH/ddQPSo76r2Taq5OfHNPznHFPr8Kkjv5U7/vUNSQHvbu6tsT01yUjZiYLvluFok19efXcn7T3KVX42Z0fbO+b/Z7qe5MkM9+QDJmYzPtGFVY15eVVyFynGhuToz+dHPiuZN7Xk9vfu2W1smta+9dk7md7H29eWl1Lb+t7n0F7Jeuf6HmscXTSsqzt8cgq0G/GG6vX5BM3tO1dJJNekIw/rgpgaxxVvX7qB3feqyyTjevaw/02Nle/wy3Lk3WPJSNmCV8DAAAAAACAPYhgtBooy/KnbeFoHT9u7v8leVNRFL9P8tckQ5IclmS/Lsubk5xRluWDmznj4aIoXpbkuiRNbd3HJ/lLURQ3J3kgyagkRyQZ32X5D5MM5O6Hf0oyO8nz29qNqZ7be4uiuCXJyiTT287qeDdMc5LTyrJ8ZABnAQDsQspaFwAAAAAAADuN1772tfnqV7+6qf3JT34yb3nLWzJx4sTNrr3ooos6tV/1qld1CzLbWqNHj+7UfuQRtzMAAOwQdY3JpOdV144y7qjex0Y8ZcfUMP746upJUSSHfCCZ+cZk6Z+S0Yckw6Z0nrPvi6prc4ZPSw5+TxVudc8ntrrsfusrUItdR18/wydD0ZKkZUVy/xerq6u7/r173/AZVahfw/Aq8GzVvGTDyr5raRyZjH9msvqBKmCttTlZcnPSNDYZPj1Z8sdq3pgjklnnJavnJ+sXJQ9fk6xfnJQbq/HpZ1evrVUPVO8/409MBu+dbFhVBRXWb9u/awIAAAAAAAADJxitRsqy/GRRFBuTfCTJ0LbuxiQn9rHssSQvK8vyhn6ecX1RFKcl+Uraw8+KJEe1XT25Msm5Zfnk//nt1zkbi6J4ZZIvJOn4cXMTkvR2l8rjSV5XluWv+3sOAAAAAAAAALDrOvnkk3PYYYfltttuS5IsX748Z5xxRn784x9nyJAhva772Mc+lu9973ub2kVR5G1ve9s2r2/69OlpampKc3NzkmTOnDlpaWlJY2PjNj8LAIAaK+qqsLFlt3cf2/+1O76e3gydXF3bwuTTeg5GK+qSsnXbnJEkIw9IXnRXe/vx3yR3XJI89vMq2OqkHycjD0zu+Xhy5wfb5zWMSA56V3L7QD7bmV3WqvsHvqZlRbLwh937m5ckS5a0t5fektx4Xu/7PPDl6toS445JhkxKRh1UfR00Llk5N3nom8mah5OppycjZlWvq5Vzk33/Nhl9cLL20WTYfknL8mTtI1XQYcPIpGlMUle/ZbUAAAAAAADAbkwwWg2VZfmZoih+kuSSJC9JMqKXqY8muTzJx8uyXD7AM35cFMXBSd6fKrRsTC9Tf5/kI2VZfnsg+3c4Z1WSVxVFcXWStyc5tpepS5JcleTisiwXbclZAAAAAAAAAMCO9+ijj2bevHlbtHbatGlJki9+8Yt5xjOesSl87Prrr8+JJ56YT33qUznmmGM6rXniiSdy8cUX59Of/nSn/ne961055JBDtqiOvjQ1NeX444/PnDlzkiTz58/Pi1/84px//vmZNWtWhg4d2mn+xIkTM3jw4G1eBwAAO8j0s5JbLuzcN2y/ZO+Ta1LOdjfhxGSfU5NHrmvvG7x3cvyVyc97ec4HvD25+6Pd+8cdmxRF8sTvuo8ddFGXc09ITvlZ93mHfKC6yrJqF0X1ddFvk0eu7T5//AnJc36VPPg/ybyvJxvXJlNflTzlzcmvXpr89fs9P4ckOfK/kmV3JPd/vvc50B+L/1B9ffi7PY93/R2be/nA9h8yKZnysmTFvVWQ4NqFSeOIZPW8ZPiMZOmtSf3QKoBw7JFVMNvkl1QBa/VDk41rkpZV1dqV9yStLcnYo5K6huq1tnFNFTBXNCSNo5LWddVcAAAAAAAA2MkIRquxsizvT/KaoiiGJDk+yeQkE5M0J1mU5E9lWfbwcXQDOuPxJG8qiuKCtjP2aztjdZK/Jrm1LMsHt+aMDmddneTqoij2T3JEkklJhqUKd3soyW/LsmzeFmcBAOz8yloXAAAAAAAA28wZZ5yxxWvLtrCDI444Ip/85Cdz/vnnp7W1NUly880359hjj83MmTMze/bsDB48OAsWLMiNN96YDRs2dNrnuc99bj74wQ9u+ZPYjAsvvHBTMFqSXHvttbn22h5CGZLMmTMnJ5100narBQCA7eypFyTrFiX3fjLZsDIZe3QVElZXX+vKto+iLnnm96ugpkW/SYbPTGadnwybmsw8v3uA09DJyaGXJvOvStY83Hls5huSDWu6B6PVD0kmv3iAdRWd25Nf0nMw2ow3VHOnv666utbam5N/lkw8JWndkDzwpaTc2H3O8d9Mbn1XsmZ+97HjrkimnVk9XvzHZN1j1XljDq36vlF0X7M5B7072dic3POxga9l97Z2YfWe1JMV97Q/XnV/svBH1eObL+jn5kV6vJ+tYUQy9fRk1dzk8V91Hpv5xmT/s5KxhydFfTL/6ur1OWTf6nU18ZTej2tZVe05aEIydFI/awQAAAAAAICKYLSdRFmWa5P08HFo2/SM5iRzNjtx25z1YJJtErYGAAAAAAAAAOw+zj333IwZMyZnn312Vq1atal/7ty5mTt3bq/rzjnnnFx++eVpbGzcbrW96EUvyqWXXpqLL744Gzf2EJgAAMDuo6hLDrssOeQDyYZVSdPoWle0/dU3JU/9f9XV0VH/XQWGPfDlpNyQjHxqcuJ3kvrBySnXJ79/XRWC1jQuOfAdyfRzqvkr7k7u+0ySMmkam5x49dZ/H6edmdz/hWTJze19445Jpr6y9zX7nJrc9+nu/XWNyZjD2h43JBOf2z10rX5otX7JLcld/959bNILO9RxVPcz9joueeKG7v1Hfzq56z+rYKiOZp6XHPah6nFvwWj1g5PTVyaP/iy57Z+qwLbmpclBFyV/+bee18Bm9fIhnxtWVqGBPZn7uerqScffxfHHJ0OnJGsWJCvuTdYv6jx3+PTqfWPNgqRxVJLWZMjkKghu5T3JsOnJhGcme5+UlK3JoLHJ+iVJ44ikaOgcoFiWXdqtVfBhfVPnM1tbqq912++/IQAAAAAAALD9CEYDAAAAAAAAAGCHesUrXpFnPvOZueyyy3LFFVfkiSee6HFeY2Njnv3sZ+fiiy/Occcdt0Nq+5d/+Zecdtpp+drXvpYbbrgh9957b5YvX561a9fukPMBANjB6hr2jFC0vtQ1JMd8Ljnio0nzsmTYlPaxETOS5/4m2bAmqR/SHkhUNCRHfyo59NJk9fxk1Oxqn63VODI55RfJA/+TLLstGX1YMvMNVVhYbyY9P9nned1Dz/Y/Kxk0rr19yAeTxTcSLAWJAAAgAElEQVQmzUva+w69tPr5z74oWXJT8ljbZ1DXD06O+1rSNKrvevd7VfdgtLrGZMorkvHPTH75t8nqts+a3ufU5NDLOtT3uuTBr3bf82mXVN/LSc+rro72eW7y85N7ruXwjyS3vqPnsVlvSo78RLL2keShq6pAqvWLkykvq4Lwhu2XLP1T8tM+/t41+SXJot9Wj1ubqzXL7uh9PnuOJ38verPqgeT29/Q9p7egwJ4Mn5Gsur9zX+PIZNyxyfI/J2v/2nnsmC9Vr6U1D1fz1j2WrH4omf+tZOV9SV1TMvm05ClvrkIzN6yuroe/mzz4P9X725RXVK/3jqFsSbJhbdKyPBkysf/1AwAAAAAAsFlFWfbyyT+whyiKYnaSO59s33nnnZk9e3YNKwIAdjnfKHrun35OcuwXd2wtAAAAAAB92LBhQ+67775OfbNmzUpDg89Vo3ZaW1tz88035+67786iRYuyfv367LXXXpk8eXJOOOGEjBgxotYlbhfb6/X45z//OQcffHDHroPLsvzzVm0KAFvBPXrADtHaktz98eSvP6gCjaaclhx0UVJX33neqnnJgquT5qVVmNqEEzvssbEKY1uzMNnrGcngvfp37o3nJw98qWrXD02O/0YVIpYkZWsV1NQ4Ohk6uXOo0qO/SH5xSuf9iobkxfcnw6b2fN7iPybXHd3z2HHfSG59exV+1tUL/5yMOmgzz2VD8s3G3sfP7OXfHfR279TmDNor2bg+2bCy7znrew7S3mTMEcnSW7asBtgSYw5PNq5LVtzVuf/Z1yUtK5ObL6jC0kYdnLQsTcY+vQppXPijZN2iKnxt9j8nk16YDNmncwDjivuqtaMPqeaVG9qDIdc+Ur1vNAxJxh7V+/sE7cqyCsQbMilJWYVRzv9W9XOYeW4y6/xaVwgAAAAAwC7G/Xk7jjubAQAAAAAAAACombq6uhx99NE5+uhe/nE/AADA5tQ1Jge9s7r6MnxacuA7etmjPhl7ZHUN5Nxjv5gcemmy6oEqpKthSPt4UZeMflrPayeenBzzheS2dyfrF1fBacd+pe+woxEz2sKSWruPjT8+mfGG5M4Pduk/YfOhaElS11CFMS27vfvYfmf0vm7cscni33fvP+YLVSDRHZf0vO4FdyZD9u49WG3YfslL5iXL/5L8qJdAzVNvTMa1/V2ybE1W3l+F3o07Klm/pAqiaxyVpKxC55b/ufo5NS9LBo1Nivrk/i8kC77T+/ODrpbe2nP/nFM7t598Xay4p/vcW99RXVvr4Pclrc3JyrnJ4huTEbOSfU6tgthGHZQ0jEiaRifNS6owsFUPJCmr94sNq5PV86v3xbFHJhvWJMvuqN7XRsxKHroqeeS6JK1V0OS4o5J1jydLbk4aRyZjj07qm7b+OWwP65ckd/9nMvezvYcr3vSm6nrZ48ng8Tu2PgAAAAAAYLMEowEAAAAAAAAAAAAAwJYask91DdSM1yfTz67ChgbvXQV59aVpTDLhpOSxX3TuH3t0Fah28MXJxvXJA1+sQo/2OTU55ov9r2fmG5M/vqVzX8OI3sPkkmS/v+sejFY3KJl8WhXC1FMwWsOI9iCip16Q3POJ7nMOaDtzxFOr0Lg1D3ceH7JPMuaw9nZRl4yc1d4evFf3PUcfXF0dTXp+++O7PpLc2ku43pll9fXnz0ke+3nPc05fmTQMTVbel9x4frLy3upnVjQkM85Jhs+sQqju/2Lbcy6SckP3fRpHJS3Lez4DOrrzA53ba+b3/vu5NXoLDzzxO8mkF1TvYSvursIVh+zdeU5Z9v3etn5xsmZBMvLApH7Q1tW5fkly98eq19eGlf1b85vTk+dcv3XnAgAAAAAA25xgNAAA2G7KWhcAAAAAAAAAAADszIq6ZMjE/s8/5ovJnL+pwreSZOjU5Bn/Uz2uq08O/3By2L8l5cakrnFgtcz6h2Tj2uSe/06aFyfjT0wO+3Ay5pDe1zzlzcnyO6uwr6QKPTvhqmTQ2KRpdDJsWrJ6Xuc1U19RPe+kCoeb+9lk47r28aaxybQz2p/TIf+a/P6stN+PVSSHXDrw57c5k17UczDafq9qfzz9rJ6Dp+qHJI3Dq8cjn5o8Z07v5xzx0eraXGBUa0vyxO+SuqYqBK5+cNK6MWldn5StyYKrk7/+KFn0m2SvY5OppyfL/5z8+bKe95vwzOr7tuDbPYfRwUD9+mUDXzP++Op9Yc2C5PFfdR5rGlO9py27PRl7ZBVutnFdMupp1XvC3icnrc3Joz+rvrZuSJ74bbL0tiqYbUs8/sukeVn1fgUAAAAAAOw0BKMBAAAAAAAAAAAAAMCuYPi05IV/SZb8sQrHGntkUj+o85yirj14bCCKIjnwHckBb6/2rqvf/Jq6xuSYL1ThZasfSsYc2l5PUZc885rk+hckaxdWfeNPTA7/SPv60U9Lnv3T5I73VaFeY45Mjvx4Mmhc+5zpr02G7ZfMvypJXTL15cnezx7489ucUQck089JHvhSe1/T2OSgf2pv73NqUjQk5YbOa6edOfDz+gpFS6rv7YRndumrT+qGVo+nn1VdHa1b1Hsw2gEXJhNOrK7D/yNZckuy9pFk4ilJ44hqTtmaLL6xOvuRnyR/+ufOexzx8apv45r+PEPobtFvq6snzUurK6ne4560+qFk4Q+3X02r5yVNh22//QEAAAAAgAETjAYAAAAA/H/27js8zurO2/g9Rb1LtmxLstwbtjHYmF4NobcACYGQTkJ62c2mbMiml01v+242bbPJBkgjpIcNSSiB0AnVNmCMe2+SrK6Z949jZTSaGVnFtlzuz3Wda+Y5v3POc55pBlvzlSRJkiRJkiRJkqRDRTQOY07cf+tHIhAZRChaX0XjQuuvagFctiqEcOVXQtmMzECw2lPh7D8PvP64M0Lb3074DtSeAZv+DMUNIXisbHqqXjg2BLs9+u5UX+l0mHvj/t/bYBSMgfLZ0LQsvT9WBLVnpo6jeTDmhMz5kWjqtVW9CCZeAZvvgqI6GH8OxAoh0QF/f3/28x/zOTjqX8L97jbYei889QnYfDdMegXM+ReoXhhqT9wIy76UfZ3iRigcB8ke2PFoZr32zHBN2+5PBWlJw7VrKVQZjCZJkiRJkiRJ0sHEYDRJkiRpv0mO9gYkSZIkSZIkSZIkSZIkaXRF4zDm+NHexeBEIjD11aHlMvtdUHsabPxTCAyrvxDyqw7cHgcSicC8f4P7Xknaz6/NeS/kVwx9vfJZofVVMjn3+OpjU/fjRSFMbfw5mePiRTDtDbmD0c5/CAprw/2eDtj4xxDWN/YUyCtPH5tMwu5V4X5+JbSth542+MNx2dcunQbHfQPuvCD3dZxyC9z7itz18jnQtDR3XYeW+66FydeM9i4kSZIkSZIkSVIfBqNJkiRJkiRJkiRJkiRJkiRJkiQNVvXC0A5Gk6+BgjGw8ofQ0woNl8PkV+679SecC9F8SHSm99ecALVnDn6d8jlQNgOan0vvH3tKKhQNIFYA9RfnXicSgdLJqeP8Smjfknv8/I9B3fnhPFvuzT5m0tW5g9GO/SLM+adw/6ZIjj3F4Zou2PEELP8q7HwyXNPs90DrWrj/tbn3p9HRthGKxo/2LiRJkiRJkiRJ0h7R0d6AJEmSJEmSJEmSJEmSJEmSJEmS9pEJL4GTfwCn/QymXBfCw/aV/Eo4+X9D+FevsafA6b+AaDz3vP4iETj+W5BXnuorHAeLvjbyPRaMgZJJWc4ZD48NwLQ3ZZ9bf2m4bbw6SzECjVemDuOl2deYfkO4rToaTvwunP8gnPkbGH82TH1N+mPX15iTYMkfs9cAzn0Aznswd724Ea5N5q4DnHPPwHWAhpfufczhpmXFaO9AkiRJkiRJkiT1YTCaJEmStL8k9/IDRpIkSZIkSZIkSZIkSZIkHWoaXwYv3QCn/hTOuRvOvguKJgx9nXFnwsXL4aQfwCm3wIVPQfXCke8vEoFZ78nsn/IqKKwN9ydeDnmVmWOmXR9u534QCmrSa7PelR641ju2v8mvHHh/M9+RvX/GW6B6EUTzMmvxEqicB6VTc69bc1y4PfoT2euTroHaU8N15FLcCKfclLs+5mSomJe7PljRgpGv0V9eJRz9SXjZLqhcMLS5Xc37fj+SJEmSJEmSJGnYhvDreCRJkiRlMPxMkiRJkiRJkiRJkiRJknSkKRwDjVeNfJ2i8SGwbF+b/a4QJrby+9C9G+ovg3k3pup55fCSu+H+18H2R0Ow2/yPQsMloV61AM57EFb+CNrWw/hzYOIV6eeY9U5Y8zNoXZvqa3gpjDlx4L3NuAFe+B507Ur1lU6HiVdBvAgaXwEv/jB9ztQ3QLw4tAnnwYbbM9edcH64nXQNPPkRSCbS69NeH27LZ+XeW+U8iBXmrk+8MgS3PfLO7PVrEiGYLtEDt+T4ylJxI8z/CDzwhuz1M38PpVNgy725x0w4D8aeCj0dkOyCuotCqFy8ONSP/gT89UpIdKXmNF4Nq3+cfb3uluz9kiRJkiRJkiRpVBiMJkmSJEmSJEmSJEmSJEmSJEmSpMPL9OtDy6VyPpz/MHS3QqwoBHr1VToV5n849/zSKXDu/fDC96HleRhzCkx9XeY6/ZXPgpfcA898DnY9A2NOgPkfD6FoACd8OwS3rfkpRPJg8rWw4NOp+Yu+Dve8FHY9neqrPSOMAyibBqfdBg+8Hjq2QqwYjv1cCHeDEMD2yHsg0ZG5t6l7wtMmXglrfp5ei8Rg0tWQ7IZH3gX0+8WyE69KXXs0FoLaNvwh8xxzPwBjT8v+2MSKYdwSiOXD7lXZxwAc8zmoOjp3veESeMm98OLN0NMGDZeG/eQKRlv5g1DPK8295sGkuw1aXoDdK8Prt3J+eL0mE+F5a98EdRdAfjU0LQ21kknQ0w6dO6FgDERzfKUs0QORaOq57OkIz0WiI5y3pxW6mqBtQzhvXnl4L8RLDtz1S5IkSZIkSZIOewajSZIkSftNcu9DJEmSJEmSJEmSJEmSJEnS6IkXD39ucT3M+9DQ51XOh5N/mL0WK4DF34Djvh6O+wetlc+A8x6Etb8MwWqV80PwV6wwNabhEqjfBLtfhOLG9BCswrGw5I9w37XQujbVv+hr0HhluD/vw7D5TujYlqrPeV+4XoBZ74TlX03V8qtg7r+m73PytZnBaNECmPgyKBwD1Ytg+yP95lwTQtEAao6HaD4kOtPH5FWEcLm9qVkcWl8VR4XHrL91v4afloX7jS+HCeeFELHVP4GmZTD+JSFobPw5sOF2WPrF8Dy1roGyWVA+M+yzqwnW3Jq+9rTroXgiNFwOFXMgmrf3vSeTsO5XsOonsOlP0NUM098UXqtPf3rv8wEee+/gxgFMegWsuiWzv+FyWP/77CF62VQvCo/dzLdD0QTo6QyvgaZl0Lk9hLmVzQghdOWzYcffQ2Dbzidg55N7HqdLobA2PP6RvBCyJ0mSJEmSJEk64hiMJkmSJI2I4WeSJEmSJEmSJEmSJEmSJGkf6x+I1le8OISIDTg/CqVTs9dqT4PLVodgtLxyyCsL43tVLQjhay/eDO2bQyBYwyWp+sIvw9hTYMMfQwDWlFdB2fT0c0y+Dpqfg2f+PYSGFdbCyTeHUDSA034B91wB2x8Oxw2Xw8KvpObnV8Kka2Dl/6SvO+0NIZRsOOKlex+z+ieh9fXi/4aWTduGECKXy4rvhNsnPxJuy+dA6TSY9jqoXgwlEzPnPPFhePpT6X3Lv5I5bl/JFooGsPa2oa2z/ZHQ9hbeNlD9wTemH0ficNrPQ6Bc9aLwOuqvuzWE7kVj4floehYiMSidAokuKBwH8aKhXYskSZIkSZIkaVQZjCZJkiRJkiRJkiRJkiRJkiRJkiQdSSKR7KFcvUqnwrwP5Z7b+LLQBlr/6I/DUR8MAWxl09LD10omwvkPhVq8BPKrMtc4/luhf/VPIZoPk6+F+R8b3PVlM5hgtP2taWlo638z2js5NCS74e7LDuw5y2ZC41XhtdfdBsu+AF1Nqfr8j8GU63IHD0qSJEmSJEmSRsxgNEmSJGl/SSZHeweSJEmSJEmSJEmSJEmSJEmjJ14E5TNy14sbctdi+bDoy7DwSyFobaQKx498DR3+mp+Fpz+du/7kR0IDGH8OFNVDrACqF0NPK6z/PWz4Q6hXL4LaM2HGm6FsOnTuhFgxJLugYxsUT9w3r21JkiRJkiRJOswYjCZJkiSNhOFnkiRJkiRJkiRJkiRJkiRJ+8++Co6a+FJYddO+WUsC2HhHn4NvZda3PxLasi/ufa3iBpj/Uag5HqKF0LQ0hPmVToa2DZBXDiWTQrha925Y+QPYfBdsvQ/KZkDJZJhwPhRNgPaN0NUM064P9zffBXmV4T0QzQs//2wgmyRJkiRJkqSDmMFokiRJkiRJkiRJkiQdISJZvuiU9BdASKMikUhk9GV7j0qSJEmSJGkfmXglTH09vPC90d6JlKl1LTxw/fDm7vh7aGtvS+9/7L2ZY/MqoacVEp3huOGyELRWcyJULYCieiABRXUhbA2gYytE4xArgqVfgA3/B+WzYdLLYexp4Xj3Kqg7H8qmQzIBkejwrqVXTyfE8ke2hiRJkiRJkqRDlsFokiRJ0n7jlwklSZIkSZIkHVyi0cwvInV1dZGXlzcKu5GObN3d3Rl92d6jkiRJkiRJ2kciETjhO1B7Oqz5eQii2vHYaO9q8IomQLwUYoUhlGr1T4c2v+ZEiBdDcQOs/MH+2aMOfl0704/X/jLcbrxjaOtsuQdWfDu975Es4wrHQfumcL98NjQ/D8l+fzcaK4Se9tznGnsKJHrCa3f82dBwORSNH9w+ezohmhfe/5IkSZIkSZIOGQajSZIkSSNi+JkkSZIkSZKkQ0ckEiE/P5/Ozs5/9LW0tFBcXDyKu5KOTC0tLWnH+fn5RPxyniRJkiRJ0v4VicDU14QG0NUEP63IPrZkCsy7ESKxEKLWtBy23Q+l00JQ0xMfzjFvElz2Yghy2ngHPPx2aHl++HuuPQPO/ktmsNOvZuRe96KlUD4LundDNB6Cp/o66X8gmYSWF0JIWncLTDgftvwVnvp49jVP/Rn89arM/uJGuHQF3DLAL+C4dAXsegb+/gHo3A6Vx0DZNCACz3499zwd+npD0QCalmUfM1AoGsCWe8PtNmDNz+Cht2SOqVwQAtC2P5xZK50aggW7W8NrvXt3eB32tENRHdRdBJEotG2AWAFMflUIdCuohq5dkOgK7+uC2rBeNBbe34lOiBelnyuZNIRNkiRJkiRJ2gcMRpMkSZIkSZIkSZIk6QhSVlbGtm3b/nHc1NTE2LFjDWSSDqBkMklTU1NaX1lZ2SjtRpIkSZIk6QiWV567NvcDMO31ueu5gtEaXx5uozGoOw8ufW7P+H+Dpz4xtP3N/xgc9f7sQUuz3x1C1/qb+XaomB3u55XmXjsSCeFkR38s1ZdfmT0YbdobYcJ5EC8JoVJ9TXlVCF/Lpf7SEExVOhXqL86sT3k13L44+9ySSbB7Ve61pV47H89da3khtGza1sOKb6f3rf7p4M8biUOye+/jiifCxKtgxyOw+e7sY07+EVTOh9Z1IYyxa1cIeysYA2NOgvbNUDY9BLVtvAOi+VB3YXif93TA2l/CM5+B5ufDZ9vY02Duv0LV0ennaV0H638LRGH8kvDe7JXoguYVUDYjfIb1Z/CbJEmSJEmSDhCD0SRJkqT9JjnaG5AkSZIkSZKkDP2D0bq6uli3bh319fWGo0kHQDKZZN26dXR1daX1l5cP8CVcSZIkSZIk7T+TroFVN6f3RaJQf8nA86a9MTNQCWDyddnHz/sIrP4JNC0feN1rB/nzp41Xh7C1zu2pvmg+TLt+cPOzqT4uhDet+Vmqr7AW5rw3hC+ddivccyV0t4Ra3UVw1PtS+1n948w1p71hL+dcCMWN0Lo6vX/CeXDWH+CmIf699bizYfF/wG9mD20eQOE4aN80tDmRGCR7hn4uHR4GE4oG0LoGln954DH3vXLk++nV3RLej73vyWyhhn01XAY7/p49iLDmRNh2f7hfMhmIwO6V4XjMSTDjLeFzLxKBRA+0PA9F9dC8HLbcC9GC8HlaMAZ2PQn5VelhbJIkSZIkSVIWBqNJkiRJI2L4mSRJkiRJkqRDS2FhIXl5eWmhTM3NzaxYsYLy8nJKS0uJx+NEo9FR3KV0eEkkEnR3d9PS0kJTU1NGKFpeXh4FBQWjtDtJkiRJkqQj3NwPwaa/QPvG9L6iCQPPm/1PsO5X6UFak6+DqqOzj4/G4Ow74aG3wtpfZB8z4y2D33fhGHjJvfDIu2D7Q1AxFxZ8CqoWDH6N/iIROOUWeOG/YfPdUDolBJuVNIb6hHPhik2w9X4oqoPymSFEDmDm22DNz9ODospnQd2FezlnFE78b7j7cuhuDn3FjbBwT4jUjLfCc/8vc16sEHraM/snvzLsbajGngLlR2UPu8uldBpcvAx6WqG7FTb8AWJFUHsmPPbP8OKPhr4PaX8YKBQNYO0vc9d6Q9EAdr+YXtv6t9D+9uqB13/ozQPX8yohryy02jOhcDy0rYeCaogWQtdOSHSFcLWJV0Ll3OzrJJPQsSWst/Nx6GqCinlQNG7g80uSJEmSJOmgYzCaJEmSJEmSJEmSJElHkEgkQl1dHatXryaZTP3yh66uLrZt28a2bdtGcXfSkaf3PRmJREZ7K5IkSZIkSUemyrlw/kOw+qchiGf8S0IA2N5UzIZz74eVPwhhQbVnwJRXDTynaDycfiss/wY88o7MeuPVQ9t7xWxYcvvQ5uxNNAbTrw8tm3gxjF+S2V97Gpz1e3jmc9DyAow9FY79AkQH8fW18Uvgkudg058hXhIey/yKUGu8Knsw2kk/DAFu63/XZw9nwqSrwx7HngJb7u03KQInfBceeH3mehOvguqF2YPRGi6D9X+AREd6f+NV4fqi5ZBXDlNfm6pVLgCGGIxWNAEmviy8nvIqYOzJUDIJnvn38Npsfi41duY7oGAsdO2CbQ9C8cTw+kp0wbNfz32OxpfD6p8MbV/S/ta1MzSAXc8MPPbJj8DY08JnzIbbYceje1+/oCa8Z8aeFoIwW56HLfdB57ZUaNyEC6B8NtSeGgIOi+pD4GQkCp3bQ9haNDay65QkSZIkSdKgRfr+kLN0JIpEInOBp3qPn3rqKebOzfFbIyRJkvpLdMEt+dlrk66FU/xNb5IkSZIkSZIOTq2trRnhaJIOrEgkQmNjI8XFxftszaeffpp58+b17ZqXTCaf3mcnkCRpiPwZPUmSJCmLrha4+9IQ0NNr6uvhhO+AAfrpkkl4/EPwzGdSfTPfDgu/AiRg7W2w/VGonB/CzWJ7fq5328Pw53NCcBhAtACO+xpMfxMs/SI89t7UenUXw6m3hDCkPy2BzXelavEyOOeuEKR033WQ6Az9tWfA6bdBfmX2fe9aCr89KrO/dFoI3nvuPzNrJ3wXpmUJbevV1RLOX1Cde0zHdvh5Tfba6b+EhkvT+5LJ8Bi1roP7roGdTwIRGHdWCFF76M25zyUdiWKFUDIFWtdC+UxIJqBlJZCEwnEhLDFWEgIaJ18HHZth8z2w4Q9hfsVcqLsQJl0DpZOBSFizY1uY37EFtv4NYsUhHDGvfBQvVpIkSZIk9efP5x04BqPpiOcPXUmSpBHp6YQfF2SvGYwmSZIkSZIk6SDX2trK+vXr6erqGu2tSEecvLw86urq9mkoGviDV5Kkg48/oydJkiTl0NMBG26HXU9DzfEwbomhaANpfh52PAaVR0PZzME9Vm0bYfXPgARMOD+EGP1jvRUhfKhsOlQvhmgs9He3wdLPw+a7oXQKzHwHVB0dau2bYctfoagBqheGAKSB3HFGWKevY78A48+G/zsJetpT/UX1cPEyyCvd+3Xtze+OgZ2Pp/fFS+ClGyCvbOC5XU0hkKn32v76Clj94+xjr+3zvcSu5nCOSDQcv3hLCFrL5pRboGpheMy3PgjJHmi4BNbcCve/LvucCx6HrffBQ2/JrJVOg5YVua+pqD48X1ULobsZln0p91jpYFQwFqJ5kFcBkT2fVXUXwJTXhPfP8q/A7lVhTP2lMOak8Bm5/OvQtBTat8C8G6H2tDA/vzoEsCWT0LQcttwD2x4IIW9l06HhpSG8zT+TJEmSJEnK4M/nHTgGo+mI5w9dSZKkETEYTZIkSZIkSdIhLplM0tHRQVNTE83NzXR2do72lqTDVn5+PmVlZZSXl1NQUEBkP3ypyB+8kiQdbPwZPUmSJElHrM5d8NBbYf3voKAapr8J5rwvhA1tuQ+e+mQILao5ARZ+AYob9s151/4S7rkKkt2pvgWfhrkfHPpa634Hd12U2T/+HFjyx9zzOrbBL+og0e/fHKoWwgWPZJ/T8iL8akpmfzQPrtoRgtcAEl3Q/ByUToVYYWrczidh+6NQOA5qz4B4Ufbz/KQ8BKRJGrqCMdCxNXstvxoKx4YxBWMgXgata2HznaFefwmUzwnhbD2tUD4rhIRGolAyCfJrINkFRXVQNiMVtNhXMhHmRPNDPde/syS6obslfEb0/ZyQJEmSJGmE/Pm8A2cvv5ZCkiRJ0vAZQixJkiRJkiTp4BeJRCgsLKSwsJDa2lqSySSJRAJ/0Zq070QiEaLR6H4JQpMkSZIkSZJ0kMqvCL9kOZnMDO8ZezKc9bv9c96Gy+Ccu+HFH0HPbqi/DCZePry1JpwbAshaXkjvn37DwPMKamD2e+CZf0/1ReIw/99yzymdHELitj2Q3l9/aSoUDUJQWsVRmfMr54e2N3M/AI9/KLN/zMmw9b69zx+MyvkhqC2Xy9dCcX24n0zAjsdg9yooHA9Vx8CLN8GDb8w+N5qfGTjXa/y5MOlqeOANuc+9t+ucfB3sXglb7s09RkeuXKFoAJ3bQ2N59vq6X4c2FEUTINkTgs5IQvfu9Nf/mJOgejGs/D50NYXwxYGUl8UAACAASURBVB2PZl9r/LlQvQialsGYE8J7r3I+7FoagtrKZkHlXOhqCe+B4onhMynZBbGiEMTWvhnW3gadO6H+4uyfRYkuIAJRv74tSZIkSdJI+H/WkiRJ0oj4xUBJkiRJkiRJh5dIJEIsFhvtbUiSJEmSJEmSdHgYjV+YMPak0EYqGg8haw/eAJvvhJJJMOdfoPGqvc9d8BkoPwrW/wbyymHKq6H29IHnnPpjuPMi2PV0OB57Ciz+5ogvI039ZdmD0SZdHQKNtj+UWcsadBaBeHEIaupv9j/Dyh/Cpj9l1qIFIQDtH8tEQ1hT9aJU35gTcu//kmfht/Ohuzm9P14Kp98KrWtzzz3uG1B3AfxqWvb69DfB8f8VAqNuzvFvRQs+BdOuhyc/Cmt/Be2bwuti7Cmw7SFoWpr7/NJQtW0YuL71b6H1yhWKBrDx/0IDWPuLke/t7+9P3a89M4TC7Xwi1Tf2NJh8DTRcEcLVIrEQ9DZciZ7weTHQnynJJJAM4yRJkiRJOsQZjCZJkiRJkiRJkiRJkiRJkiRJkiRJkjIV18OZvwmBO0MJeYtEYOqrQxuskklw4ZPQ/GwIECudPOTt7lXl3BDu1Tccre4imPYGyKuE+1+TPn7sKXD8t+FPS6B9Y6p/9nsgVgxPfzJ9fDQf6i8GktmD0eovguhefkFNxVwomQK7V6b315wYHqOZb4NnPptem/FmiJdAcWPYQ6Izc91xZ0PhAMFMZTPCbSQaxmbbf8PlUFgLi/9faNm0bwmBVuWzIZYPNw3wupnxNnjuP7LXJl0Lq27KPVc6WGy+M7Nvyz2hPfTW4a0ZKwaSkF8Nbesy66VToageelph+yOZ9VN/Ej4POrZCwVioOhq6miC/Jnw+xApHJ7hTkiRJkqRBMhhNkiRJ2m+So70BSZIkSZIkSZIkSZIkSZIkSRq5AxWgE4lA+az9e465/woTr4Qt90H5zBA4Fo2FELdkTwjqat8EE86DhV+CvHI470FYdUsIKBq3BOovge4W2Pq3VIBYNB9O/D4U1MDk62DXM7D086nzFjfCgs9m3VKaSBSO/ybccwV07w59BTWw6Kvh/oJPh7CkVbcACWi8Go56X6jFi0Iw25pb09esOgYqZof75bOhaVnmeRtemrp/1Pthy92Q6Er1TbwSKo7a+/4Lx4bWq/FlsPqnmeN6H6tcwWjHfn54wWjnPQg1i2H3anj8Rtj59/DY1yyG0mnQshKqFoSxOx4PYXPVC8NzXtwAd14ILS+krxnNS38spP2tpzXcZgtFg/Aa7f867euvLx/ceSrmhvdETyvES0MYZtsmaLwqhCBu+CNsfyjUzrkrfM6tuTV8VpbPgp522PU0FE+E6uMg0RHGjDk5fK42LYdtD0PJnnq8eGiPgyRJkiTpiBVJJg1r0JEtEonMBZ7qPX7qqaeYO3fuKO5IkiQdUnra4cdF2WuTXgGn3Hxg9yNJkiRJkiRJko5oTz/9NPPmzevbNS+ZTD49WvuRJMmf0ZMkSZIkHdYSPSF4a/fqEARUNC69vvPpEJ4WL4G6CyC/cvBr714FG24PIUMTzoei8YOb174Z7roEtj0YjkunwZm/TQXOPfef8NBb0+fUXQxn/jq9b/M98Nw3oX0jjH8JzHkvROOD33+v9bfDneen9xXUwKUvQrIbbh0fwpT6Kp0GlzwHf/8ALP1c5przPgIv/i+0rEjvLxwHl68JQWbD1dMRgp+6dsK4s0N4HsCtE8Jj0d+ir8Gsd4T7bRthwx+gcALUHBfWIgG3TRz+fqTDXXEDtK5NHY85GWKF0N0Ku18MQYYtL4SQxTEnQVEddGyFkikhhDGvPMzrboFoIZAI8yVJkiRpP/Dn8w6cYfwtlCRJkiRJkiRJkiRJkiRJkiRJkiRJ0hEuGoPqRaFlUzk3tOEomQTT3zT0eYW1cO790Pxs+EXgFfPCPnvNeAsQhee/BZ07oP4iOCZL+FjtaaGNVN15cPKP4KmPh3CjmhPghO9AXmmoz3wbLPtS+px5N0IkAlNeBcu/AonOVC1aAFNfEx7Xe68N4WoARGDBp0YWigYQK4DJ12S5jgvhhe+l90Wi0HBZ6rhoPEx9bebchpfC2l+MbF8A1yRgx2Ow8ofhsSyZDBMvh6pj4GfVueeddTtsfzQ8NvlV4Xnv3g0Vc6G4Hrqaw7XsegY23w1rfja8/dWeDrVnhtCqjq2w8wloWja8tXTk6BuKBrD1vvTjDXsCCZ/+9NDXnvVumP+RoYVSSpIkSZIOCgajSZIkSftLMjnaO5AkSZIkSZIkSZIkSZIkSZIkHWkiESiflbs+44bQDpTJ14aW6IZov6+1HvsFKJsOa24LYWlTXgMNl4Za5Tw487fw2L/Azqegcj4c9w0onRJaUUMI8Up0wcQrYNyZ++8a5n4QNt4Brav79N0IJY17nzvt9ZnBaPFSaHwZvPDfgzv/Ue8Pz2v1wtD6m/XuECLX38QrYMK5oe3N+LNh1jvgF/XQtj77mKpjQzhbNmf/JQSsZfPUp+CJG7PXZr4Tnv1a9tr0N0HtGSE8q2MbbH8INv0l+9h4CYxbEgLeWlZkH6Mjy/KvhPft2X8KoZGSJEmSpEOGwWiSJEnSSBh+JkmSJEmSJEmSJEmSJEmSJEnS3vUPRYMQ9jXjLaFlM/4cuOCx7KFqY08K7UAomw7nPwRrboXWdTB+CYw7a3Bz6y+Gxd+EJz8C7ZugYi6c9D8QLYBVN0NP+97XaLx64PrEl+YIRrtqcHvsa+6H4OG3ZfZXHQsz3wYPXJ9ZK5qQOxQNoO787MFoeZVQs3jgvfQPn+vpDIFyO58Ij+WkV0BBdebcnnaIxEOg2rYHoaAmhMr1tMGTn4C2tSFcb8K5UDoNWp6HOy/MvZdJr4BVt+Su6+C06ylY8d0QbihJkiRJOmQYjCZJkiRJkiRJkiRJkiRJkiRJkiRJkqSDV7ZQtQOtsBZmvHl4c2fcANPfBN3NkFee6l9yBzx+Ywhvqj4OFn4JXvgeLP3CngERWPhlqD524PXHngZz3ttnHjD5Oph45dD32nAZPPIOSCb69V8OdReFALT+tUnXDLxm1UIonwVNy9P7p1y3J2AuAvT7xfUFY6GoPnOtWH54PPcmVhhui8ZBwyXp/Yu+lDm+fEZ4jts3Z9ZO/hFMvjYE9K35WfbzXd0RHpvVPw3Pw45HIV4WnvOieujYAonOve9b+97GPxqMJkmSJEmHmIPgb4IkSZKkw1Vy70MkSZIkSZIkSZIkSZIkSZIkSdLhLxJJD0UDGHsKnPOX9L5jPw+z3gO7noaqY6FwzODWPvbzMOU1sP0RqDgqBK1FIkPfZ3E9HPf/4OG3pgLQxi2B2e8O+1/4FXjknanxVcfAnPftfX9n/AbuuhSaloa+iVfAMZ+FeAnUXwLrfpU+Z8abIRob+v5Hov5SWPGd9L5oAUw4P9yf+prswWhVC0NgG8Dka0IbSMe2EJ7WshJqjoNpb4T8ilT9pgGet4uXw29m5a6fcze0b4I1P4fVP4Nk98B7ORJ0bB3tHUiSJEmShshgNEmSJGlEDD+TJEmSJEmSJEmSJEmSJEmSJEn7UHFdaENVOS+0kZpxA0w4D7beByWToeZ4iO75SvKsd4SgtM13QnEjjF8Sws32pmw6XPQ0tLwAeRXpgW+n3BzC1tbeBvEymPpamPfhkV/HUM37N9jyV2haFo4jUTjua1BQHY7HvwQKa6F9c/q8qa8Z2nkKauCYz+SuT3sjrPh2Zv/cD0H5TJj5dnj2G5n1ya+C2tPC/car4NgvwK5noHAsVB4drmf3GvhlY/bzzv4naLgc7jg9997m3gid26CrGV7839zjDiadO0Z7B5IkSZKkITIYTZIkSZIkSZIkSZIkSZIkSZIkSZIkSVJK6eTQsqmcG9pQRSJQNi2zP14MJ3wHjv92GDNaSibCeQ/Cxj9C24YQAFcxJ1WPFcCSP8G9V4fAsVgRzHpnCCrbl6ZclyUYLQKTXxnuNrw0ezDapKvTj4vrQ+uraALEiqGnNXP+5FdC9UI46X/hb9dl1iecDws+kTrOFYxWvQhO/Rk8+RFY+YPsY16+G6L5IXAvmYTdL4bAvObngQSUTodYfhiz8c+w/KvQ/GwYByFcbsprQlBdsge2PwJrbs1+LoPRJEmSJOmQYzCaJEmStN8kR3sDkiRJkiRJkiRJkiRJkiRJkiRJh4bRDEXrlVcGE6/IXa+cBxc9DW0bIb86hHfta7Wnw/Hfgkf/GbqbIb8qBMf1hrSNOwuO+iA885nUnFnvDsFlexONQ+NVmYFlZTOg6thwv+GycM7+gWLT3pB+XLkAdj6eeY5Z7w6herP/OXswWtnMEIbXKxKB0inhfsHxmePrLwxtbzbdBX86M7O/ezfseBwqjoJo3t7XkSRJkiSNOoPRJEmSpBEx/EySJEmSJEmSJEmSJEmSJEmSJOmIUjR+/64//Y0w9XXQugZKJkEkmqpFInDMp8OY7Y9C5Xwonzn4tRd+GXa/CJvvDsfFE+G0W1PBdHmlcM5d8LdXw46/Q+E4mPfhEKjW18QrMoPRogVQf3G4Xzkfak6Ebfenj5nx1sHvdSjyq3LXfn9MuK27KDye2x6E4voQBldzIuRXQF55CLsrGAvRWGruqp/A8/8FXU3h2ub+KyQT0LYOihtD2NxgJLqBSPrayWTqcU90Q7IHYgVDumxJkiRJOhwZjCZJkiRJkiRJkiRJkiRJkiRJkiRJkiRJB5NoHEqn5K6XThm4nktBNZx9J7SsCGFflQvSw7oghJpd8Bh0NUO8NBXe1dec98L2h2Hdr8NxrBBOvhnyK8NxJAJn/Q4efDNs+AMUjIEZb4FZ7xz6ngdjoGC0Xut/m7q//WFY+8uhnWP7w/DkR9P78sqhYh5E88Nj0L0bonnhudn6AOx6au/rxsuguzm9b+Y7wmNVOi398U8m0oPyevsSXWEPXbugZSVUHJU7ZC1bSNvedLeF57qnFSZcAEXjBj9XkiRJkobIYDRJkiRpf0kmR3sHkiRJkiRJkiRJkiRJkiRJkiRJUrpIBMqm731cXlnuWrwYTv8lND8Lu1dBzQmQX5E+Jr8KTv1x9jCvfW0wwWj7Q1cTbL0vs3/TENboH4oG8OzXQxuJSDQ89gBFE6BqEbRvgqal0N0SQu9mvh3aN0PReGjbCKtugspjoP4iqL8ENt4BT308XGevaD7M/1hYs2kpxEpgzIlQOS/09T7fiZ5wG4nsCW/rhp62EBwXLx7ZtUmSJEk6rBmMJkmSJI2E4WeSJEmSJEmSJEmSJEmSJEmSJEk6EkUiUD4rtAHH7edQNIB4CeSVpwd4Hel6Q9EA2jZA22/S690t8MxnM+dtuz+0Jz6cfd1EJzz+wZHtrXwWVB8PhbXh9VF1LDRcDvGizLEHIlhPkiRJ0kHFYDRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0qErEoG6i2HVTaO9Ew1G0/LQ+iuZAoXjoLghhNz1tMHW+yDZA7FCqF4cbiecD+POgEQP5FeGllcBsYIDfy2SJEmS9jmD0SRJkqT9JjnaG5AkSZIkSZIkSZIkSZIkSZIkSZKODIu+DDseg6alo70TDdfulaFty1LraYct94T7G/+YfX6sEPIqIb9iz+2ewLT8ysH1x0tCyJ4kSZKkUWUwmiRJkjQihp9JkiRJkiRJkiRJkiRJkiRJkiRJo66wFi58ErbcDY/fCB1bofnZ0d6VDqSedujZCO0bhzc/EusTmDaEQLXe/rwKiMb27TVJkiRJRyCD0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJh75oDMadBefeG45bXoBfTcs+9pjPwriz4fbFudcrmQy7X9zXu9TBKtkDndtDG6542eCD1DL6KyBWuO+uR5IkSTpEGYwmSZIk7TfJ0d6AJEmSJEmSJEmSJEmSJEmSJEmSdOQqboT8KujckVmbdC2UTITF/wkPvSWzXjEXLnoKkkl44sOw7MvQ0wrVx8EJ34aqY8K4nk74cUH281ceDRc+njpe8T144A3Zx16xBbpbYPWP4e8fyKzXnAhta0NYW7wENtwOkSgkE6kxeeUhmKttXeb8vHLoasp+bu073c2hsXZ486MFITCtNzxtUIFqffrjpRCJ7NNLkiRJkg40g9EkSZKkETH8TJIkSZIkSZIkSZIkSZIkSZIkSTooReMw7XpY+vn0/rqLQygaQMNl8PDbIdmTPqbx6nAbicCCT8LcD0GyKwSP9Q2eiuWH0LJt92eef/Z70o/Hn5N9nyWToaAGCsfAUe8PbTB6Q9Ei0cxa5w7Ych+UToPyWdDyAvx6evZ1cu0foGohnP8wPPt1eORdg9uXhi/RAe2bQhuOSLRPoFqfwLS0oLUs/b1ha3nl4X0jSZIkjSL/i1SSJEmSJEmSJEmSJEmSJEmSJEmSJEmSdHha8GkgCS/8Twidqr8EFn8zVS+aEI4fuiEVNDb+HJj1zvR14kVAUfZzTHpFZrBYrBAaLk/vK2kMfWtvS++f9a70sLXByhaI1iu/CuovSh0X1eUeO+Mt0Lw8hKn1d/THwt5mvRPGvwS23hfC4RouD6FwK74LD1yfe+2r22DjHXDXJdnrp/4Edq+GFd+BpmW519HgJBPheezcAbuHuUa8NEtgWsXgg9Zihfv0kiRJknTkMRhNkiRJ2l+SydHegSRJkiRJkiRJkiRJkiRJkiRJknRki8bh2M/DMZ8LoVHRWOaY6ddD3fmw+a9QOhmqjwvzBmvm26DpGXj+W+E4rxJO+2kIiervlJvhsffDul+H+rTrQzDZ/hYvgqqFsOPR9P5oHtRdCJvvghe+l17Lq4RxZ6eOK+aE1lfdxbnPWTIphGTVngHxEujul9RVdyE0vizcL50C91yZfZ0574Oln8teW/hlGLcEunZC5649tzuha9ee2779fes7IdGVe+9Hsu6W0Fg7vPnR/MxAtVxBa/378ytC8N5wggIlSZJ02DAYTZIkSRoJw88kSZIkSZIkSZIkSZIkSZIkSZKkg18kApEsoWi9ihtg8iuGt3Y0Dsf/Fxz9KWhdDZXzQ+BYNrFCOO6roR1o8z4Ef305JHtSfTPfAYVjYMEnYfvDsPOJPfssghP/OwSqDaRoHCz4DDz+wcxa48vDbV4ZHPsFeOitwJ7vYxWMhQWfSo2tOTH7+tF8qJyX+/xVx0LV0QPvMZtkEnraBxmolqO/f9CbgkQntG8ObTgi0RCW1j8wLS9HkFq2+lCCDSVJknTQ8b/mJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEkaqcIxoR2sJl4BZ/0frPwf6GqC+oth6utDrWgCnPcAbP0btG+B2tNC32DM/UAIP3v47am++kth/kdTxzPeDNXHwYY/QH41NFwGxfWpenEdjD8HNt6Rvnbjy6DmhNznLps+uD32F4mE0Ld40eCvs79EV3gchxqo1tvftQuSieGd+3CWTEDnjtCGmz0XLxlkoFqO/lhheI1IkiRpVBiMJkmSJO03ydHegCRJkiRJkiRJkiRJkiRJkiRJkiSljF8SWjaxQhh31vDWnfk2mH4D7HgMCsdBSWPmmJrjQsvl5Jvh3lfApj+HUKr6y2Dxf0K8FMpmQPNz6eOrj0sPVzvQonlQUBPacCQT0N2SPUjtH+FpAwWt7YRE5769psNF9+7Q2tYNb340PwSmVR8HM24IQX4j1fIirL0NCmuh7qIQwiZJkqSsDEaTJEmSRsTwM0mSJEmSJEmSJEmSJEmSJEmSJEkiGoeaxcOfXzgGzr4DOraH0LG8slRt8Tfh7ktD2BVAfhUs+urI9jvaIlHIKw+NicNbo6d9gEC1QQStdbfs00s6bCQ6oWMLbPh9aH3N/yjEyyBeDPESiO25TTsuhtievlgRPP4hWPrvIQyv15iTofZ0mP5GaN8S+pI9UHVMmNereQV0N4f3xbpfQaI7vDd2PAYbbg9jSibBUe+HKa8Oe5AkSTrEGYwmSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIODgXVmX3jl8BFz8D634fQtAnnQXH9gd/bwSZWCEXjQxuORDd0NWUGpg0laK1v2NeR4MmP7pt1tt4X2jOfHflau1fBQ28NrXBcCN2LFYfnpuFyaLwKEh3Quh5e+C5s+gsU1UHZdFj8X1AxO6yz7WHY/jAUjof6SyAaG/neJEmShsFgNEmSJGm/SY72BiRJkiRJkiRJkiRJkiRJkiRJkiTp8FDSCDNuGO1dHF6i8RBEly2MbjCSSejePbxAtd77Pe379pqOdO2b0o+Xfzm0/trWh/bbOeE4mgeJrvQx5bMhVgSdO/Y8XztTtcJxMO4siJfBzieguxkmnA/z/g3yK1LjeoPzItFw27Q8tNKpUHFUqn+wOneE11zh+PD6lSRJhyX/lJckSZJGxPAzSZIkSZIkSZIkSZIkSZIkSZIkSdIRKBKBvNLQihuGt0ZPO3TuSoWnDRSo1hvO1be/u3nfXtORqn8oGkDTstzj2zfBqlvS+3Y9A8u+lH38hPOhYytsfzh7PZoPZTMh2QPF9SGQbfuj4Txl06GnbU8oWksqbA2g5gSoOhZiBSGkLb8ytLzKzPt5FYapSZJ0iPBPbEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJB14sUIoKoSiccObn+iB7qaBg9Q6d2UGqvUNYEv27NtrUqYNfxi4nuiEXU+F+01L02sDBbRteyC0wYqX9gtLyxKg1huiljGuAqJ5gz+XJEkaNoPRJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSdOiJxiC/KrThSCahpzUVmNayAu6+bN/uUQeP7pbQWDu8+fGS7GFqOQPWDFaTJGk4DEaTJEmSej33X7DyB+EvMRsuh7k3hr8UHUgyeWD2JkmSJEmSJEmSJEmSJEmSJEmSJEmS9q1IJIRdxUuguB4q58JVO2HZF2H1T6BpeeacvAoorIXu1vB9xO7dkOg88HvXgde9O7S2dcObnzNYrWIvoWp7xsTy9+31HG6SSWh+DlpXQ/FEKJ0G0Tj0dIZQukgk99zOXZBXPvAYSdIBYzCaJEmSBLDsy/DoP6WOd/wdWtfBCd8a/pqGpkmSJEmSJEmSJEmSJEmSJEmSJEmSdGjJr4CjPx5a7/cEe9og2QOxYojGMuckuveEpPUJS+vec/vns7Ofp+FyaH4edj01/L1G86DhClj94+GvoQNnpMFqseLcwWlHerBa63q4/7Ww8Y/Z63kVUD4b2jfB7hdzr1N7Znhv5leE7xlvuRealsHuldnHVx4NY06Cogmw/REoqAnvyfqLIBINYxLdsPRzsPluyK+GadfD+CV7al2h7X4RWteGevWiENCWTEDLCyHsrXs3tKwMz2XDZSGcUZIOYwajSZIkSQDP/kdm38rvw8IvQV7pAd+OJEmSJEmSJEmSJEmSJEmSJEmSJEkaZZFIuI0XDzwuGodoOeSVZ9YWfRUeeVe/daOw6GshdOm+a7KvedX2EGrV0wo/HwM97ZljprwaTvgOcAusuS18L7JtQwhrmvpaKJ0WQpfW/w5W3QLdLVA2E2pPD8eb74RoPpTPgaZnwlgdvHpaoa0V2tYPb36saHihar33D9Zgte5W+Mt5A4cMdu2CbQ/sfa3Nd4Y2WDufCK2vF74fbiNRiJdD1870+qqb975urDg839k8+CZYcgd0bINEB1TMC59RpdMh0QnNy6HpWahaAOWzBn8tq34Cj7wzhMcV1MDib0LjVSEgcstfQ3hbtAAq5kDZjPDZEYlCV3P4fMqvDJ8hLSuguDGEy/XqagGS4TWY7A6ffa1rofY0KJ06+D1KOmIYjCZJkiR1bAv/k91fogvW/gKmvGqAycn9ti1JkiRJkiRJkiRJkiRJkiRJkiRJknSIm/5m2Pq3EEQGEInD8d+CkokQOyccJ7vT55TPCkFUkQjES2DWu+GZz2auPfX1qfsTLw8tmxk3hNa/D0LoUW8AXDIBzSugoBq6mmDdr0P4Ud1FkFca9ppXFr6Xue7X0L0b8qth7S/D9zETnUN7bArGQMfWoc0ZSOXRIQCrc2e4VbqeNmhrC+F5wzGUYLW8isxarGDfXk+vNT8fOBRttCQTmaFog5UrFK3Xn88Z3Dolk2D+R8PzESuGwloonw3bH4I1t8LW+8Pz2j8MrmMb/PVlw9l5pnhJ+KwYyLglIbSxYysU1YXPkoIaGHsabL4rhNrFiqFwDBROgO2PhKC26uNgwaegdPK+2aukg4bBaJIkSVKiO3etu2UECxuaJkmSJEmSJEmSJEmSJEmSJEmSJEnSES2WDyffBPM/Ds3PQc1iKBwbaoVjYPob4bn/TJ9z1AdSYWUAR38SiMCyL0GiIwSUzf8ojDlp5Pvre55IFMpnhPsFNTDrndnnFNTA1Nemjidfk33cTZHs/TUnwHn3p47bNsKqm2H978K1LfoK/PGUEM6UMfd4OPdvsPPJEIiVVwGNLw9Bc30leqC7eU9I2s5wm+t+1j6D1TKMOFitcHCharn6cgWrbXtw+Nd0uNu9Cu5/3ejuYW+haACb/hzaUDU/C+t/A6f8GOrOH/p8SQctg9EkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZKk/SUSCYFjvaFjfR33DSidDut+BXnlIXBs4hXpY6IxOObTMPPt0LoaihtCO9iNW5I97Gjm29KPi8bD7PeE1mvam+CZz2TOnfGWEOBWtSC0XKKxVLDWcGQEq+0afKjaP4LVksM79+Gqpx16NkL7xuHNzwhWqwi32x7Yt/vUoaWrCe68INyPl0G8GNo3heNZ7w6fqQN9Vkg6KBmMJkmSJI1E0r+UkiRJkiRJkiRJkiRJkiRJkiRJkiRJwxSJwpx/Cm1viutCO1RMfX1mMFp+VWbwWzbT3wgrvgUd21J9pdOh8eX7do+5jDRYLZmAruYBgtP6BKjlqhmslm6kwWo6/HU3h9Zr+VdC+//s3XmUpGV9L/Dv09PD7AMM+zrs83+RdwAAIABJREFUIqIggqi4YBTFaFSMihqNGI9LjN6cmOS6JIbojcvNek2iSdRcJDcmUYlKFuOGmiCIYPS4gSKyqOwwIMwwCzM894/qoatrumvp7qrqmfp8zqnz9rP/CoZz6h3q/fb4quQZ30xWHTm82oCeCEYDAIB+/cWQ0DQAAAAAAAAAAAAAAAAAYFQd9pJk403Jle9OttyV7H588ri/T8ZXdF678vDkjEuTq/4w+dmVyZqTk4efm4wv73/d86GMJbvt3nitWNv7+vpAsnV9+1C1KQFrLX33/6yxB9AIS/vsKcnTL09WHTXsaoAuCEYDAIC2yrALAAAAAAAAAAAAAAAAAADY+ZSSHPfbyUN/sxHUtdueva1ffUxy6of6U9tCV8aSxasbrxWH9r6+1slgtV5D1bZfd/Zgtcd/LPnKC6cf2/dJyVO+1PgzmjTe69XvS37w5433fsDTk+PPTf7jhGTbxmn2/nhy6POT9dcl916TXPpLyebbpz9ryd7J5jumH1u8R3LUq5MDz0xu/lxy0380/r3VrcmipcmqY5LlhzTm/vD9vb1/ptpyV3LteckJ7xx2JUAXBKMBAEBbdY7jAAAAAAAAAAAAAAAAAAAjrIz1HorG3JSSLF7VeOWQ3td3Cla7/2edg9bqtnl/W10bX5Uc8Ixk5ZHJ+h/tOH7YSydD0ZLGn9GHvKHxanboC5Przp/at2h5csDTGj+vPLzxOvg5yY9mCPF7/MeSi35ux/7FuyfPXzdZx35PTk5898zv6VH/J7nu75Mfvq/x72fPE5NVRydb7002r2vUtHVDstseybd+J7n72zPvNZ2Hvz35zrkzj5/6t8mm25JvvaW3fZsd/7bku/9r9uvn6vZLhnc20BPBaAAA0DdC0wAAAAAAAAAAAAAAAAAA2MnMS7DahumD06YLUZvvYLVjfyNZvDI54V3JpS9O6gOTY/s9OTn8Zd3t84i3J3d8Nbn36ka7LEpOeV+yePXUeWvPnj4YbY8Tkn2emCw7KNl449Sxw395ajhbJ2OLkyNf0Xh1ctCzkjuvSO74WrJoSbJibbLx5uSyc6aff+J7kuPe1Pjn9N237zi+/JDkyF9pjM8UjLbi8OQJFySfedT04/s+MXnEO9oHox307OTGf5l+7HEfSfZ4RHL7xckVr5t5j3bWXze7dcDACUYDAID08JcGAAAAAAAAAAAAAAAAAADAzEppBJMtXpksP7j39bUm2+7rPVRt2YHJwc9JjpgID1v7wkbfdX+XpCb7PCE5/KVJGeuujhVrkzOvSG65KNl0WyNUbfUxO87b9/RGeNh9P5naf8QrkrFFyZP+JfnyM5NNtzT6939aIySsn/Y6pfHabut9ydd+ZWpI3Hb7/Vzjeshzpw9G2x4kV8aSVcdMBsU1O+mPkzUnNfa69Ys7jh/dKcysJA8/d/pgtDKeHPK8ZNHS5J7vd9injbmE7QEDJRgNAABSh7QWAAAAAAAAAAAAAAAAAACYopRkfEXjtfygue217+Mbr9lavDo55Kz2c8bGk6d8Kbnkxcm6KxprjvkfyUPe0Bhfc1Ly3J8kd30zWbJ3suKwxnscpPHlyQFnJjd9emr/8kOSNY9q/LzniclRr06u+cDk+O7HJce8frJ96AuS771z6h6LVzf2TpIjztkxGG3JXslBz54446Tkrm/sWN/Dz22cv+KwZMP1U8cOfk4jFC1JFu8+83t84qeSy16RbLlr+vGZ+oEFRzAaAAC0NZe/VBCaBgAAAAAAAAAAAAAAAAAAu7xVRyZnXp5suTsZX5WMLZo6Pjae7HXKcGrb7qQ/S3525WTw2PjK5DHnJWVscs4pf90IMbv9K8mqo5JDfjHZbY/J8Ye9Nbn7O8mN/9JoL949ecInGsFrSXLYS5ONtyRXvifZsq4RdvbY/5eML5sYf8n0wWiHvqBRx2n/lPznM5PNdzb6dz8+OelPJ+eNr5j5/S3ZJznmDcl33zH9+Lb7kus+kqz77+TWLyTbNifH/kYjGG7rfY33sPrYZPGqyTW1Jvd8v7H30r1nPhuYV4LRAAAAAAAAAAAAAAAAAAAAAABgrppDxBaa1cckP/+t5Nb/TLauT/b7uWTZflPnlJIc9MzGazrjy5MnXZisvy6578Zkr5OTRUunrj/ut5OH/mZy/73JbrtPXX/Ua5KbP5vc8vnJvoe/Pdn9uMbPe5+aPPv65PZLGgFlax6VLFoyOXfPE5JFy5JtG1vqWpns+chkyV4zB6MlyVdfOrV9xa9OP2/1Q5NlByS3fnFq/6l/myw7qBEut+nWRh1b1ycbfpysPCJZvDrZ/4zG+xhbPHMdc7HptmTpvv3ZGxYIwWgAADAXtQ67AgAAAAAAAAAAAAAAAAAAgM4Wr04O/oW577Py8MZrJmVsx1C0JFm8Mjn93xvBZ/f8INnncckeD99xzoFPn37f8RXJ4S9LrvnA1P4jXpGML0tWPyR59AeTy1/V2/tpdc9VjVerr72y89p2wWxJI1ht+cGN97L/U5IDn9UInLv3R42QtaX7JOOrki13Juuvb8xbdkAjEG3x7slXX5Yc9Kzk5L9ojMEuSDAaAAD0i9A0AAAAAAAAAAAAAAAAAACASWOLk/1Ob7xm4+T3NQLebvhoUsaTtWcnj/iDyfHDfmnuwWj9tPHGxitJbv1i8q3f6X2Pa89Lbrs4ecIFyZ4nzG99sACMDbsAAAAYPgFmAAAAAAAAAAAAAAAAAAAAC97YePLIP0qe++PkOdcmJ747GVs0OT6+LFlz8vDqG5T11ySfPTW5+v1J9bw8uxbBaAAAMCduEgEAAAAAAAAAAAAAAAAAABaMo14z7AoG44HNydd/Lbn2/w67EphXgtEAAKBvCdhC0wAAAAAAAAAAAAAAAAAAAAbqyF9JjnzlsKsYjD0fmRz20mFXAfNqfNgFAADA8AkwAwAAAAAAAAAAAAAAAAAA2CWUseTRH0wOeX5y+yXJirXJwc9O7r8nKYuSMp5svi3JWHLXN5P7703WX5Pc84PkjkuTrRuG/Q66M74yOe2jyaIlw64E5pVgNAAAmFMwmlA1AAAAAAAAAAAAAAAAAACABaWU5MAzG6/tlu47+fOKQxrXNY+cfv0dX0tu/WKy7IBkvycnFx42ixoWJXVb7+u69ei/SVYf3b/9YUgEowEAQO1XuJnQNAAAAAAAAAAAAAAAAAAAgJ3O3qc2XklSH5h53tL9kk237ti//JDkuT9Ott6XXPvh5L6fJnscn6x9UVLGkq0bkw3XJ5vvSNZfl6y/Ntnr5EYQ26IVyb8/dOYz15ycHPfm5NBfnMs7hAVLMBoAALQNMCsDqwIAAAAAAAAAAAAAAAAAAIAFpowle56U3PWNHccec37yX89JHtg8tX/t2Y3r+PLkmNftuG58WbL7RPjZvk+Y7tBM+xz8PqclZ3yll+phpzM27AIAAGD42gWjdVo6h7UAAAAAAAAAAAAAAAAAAAAsfEe9ese+PU9MDnha8tjzk7HFk/37nJYc9+a5nXfcm2ao47Vz2xd2AuPDLgAAAIauX+FmQtMAAAAAAAAAAAAAAAAAAAB2fke9Otm2Kbn6L5JNtyb7PzV59AeSUpK1Zyf7Pim5/eJk2YHJXo+eGpQ2q/Nelfzog8nmOyf7Vj8kOeSsue0LOwHBaAAA0JZwMwAAAAAAAAAAAAAAAAAAgJFWSnLsrzde9YGkjE0dX7Z/cugL5u+8lUckZ1yaXPVHyc++1whbO/5tyfiK+TsDFijBaAAAMKfwM8FpAAAAAAAAAAAAAAAAAAAAI6M1FK1fVh+TnPrBwZwFC8iA/gsDAICFrF24WenTvgAAAAAAAAAAAAAAAAAAAAA0E4wGAABVgBkAAAAAAAAAAAAAAAAAAADAsAlGAwCAzCUYTagaAAAAAAAAAAAAAAAAAAAAwHwQjAYAALVf4WZC0wAAAAAAAAAAAAAAAAAAAAC6JRgNAAAEmAEAAAAAAAAAAAAAAAAAAAAM3fiwCwAAgOFrE4xWSoelQtUAAAAAAAAAGKxSyniSk5I8LMk+SXZLsj7JjUmuTvK9WuvW4VUIAAAAAAAAAACzIxgNAAD6FW4mNA0AAAAAAABgp1FKOSLJKUlOnrielGRV05Qbaq2HDaG0B5VSjk7y20nOTrK6zdSNpZSvJPmrWusnB1IcAAAAAAAAAADMA8FoAADQjnAzAAAAAAAAgF1WKeX0JG9JIwxtzXCrmVkpZTzJ76VRazff/VyW5Iwk65IIRgMAAAAAAAAAYKchGA0AADKX8DPBaQAAAAAAAAA7sROTPG3YRbRTSlmW5IIkP98yVJN8L8mPk9ydZGWSI5IcG98PBQAAAAAAAABgJ+WLLwAA0LdwM6FpAAAAAAAAADupzUl+muTIYRZRSilJ/ilTQ9E2JfnDJB+otd44zZrlSc5I8qIkWwZRJwAAAAAAAAAAzBfBaAAAUNsEmJUyuDoAAAAAAAAAGIb7k3wvydeTXDFx/U6S05J8aYh1Jcnrkjy7qX1zkqfUWq+aaUGt9b4kFya5sJTie6IAAAAAAAAAAOxUfOEFAADSJhitr2sBAAAAAAAAGLLzk/x1rXVT60AZ8i/SKqUcmuQ9TV2bkjy1XShaq1rr1nkvDAAAAAAAAAAA+kgwGgAA9C3cTGgaAAAAAAAAwEJWa71r2DW08TtJVja131lrvXJYxQAAAAAAAAAAwCCMDbsAAAAYuirADAAAAAAAAICFo5SyKslLmro2JHnvkMoBAAAAAAAAAICBEYwGAACZQzCaUDUAAAAAAAAA5t/ZSVY2tf+51nrvsIoBAAAAAAAAAIBBEYwGAAAAAAAAAAAAsLA8uaX9+aFUAQAAAAAAAAAAAzY+7AIAAGD4ap+27dO+AAAAAAAAAOzqHt3S/mqSlFKWJTkryYuSPCzJgUk2J7kjyTfTCFD7x1rrvYMrFQAAAAAAAAAA5o9gNAAA6CXAbOPNyU8+mdz3k2T/M5KVh/evLgAAAAAAAABGTilljyRHNXVtSXJtKeVJSc5L0vo/qpcm2T3JkUmen+RdpZR31Fr/fBD1AgAAAAAAAADAfBKMBgAA6TIY7d4fJRedntz300b7yvckR5zTr6IAAAAAAAAAGE37t7RvSvK8JB9LMtbF+r2SvLeUckqSV9Rat85zfQAAAAAAAAAA0DeC0QAAoNtgtO+9czIUbbtrPzz3fQEAAAAAAABg0h4t7ZVJ/j6ToWg3JHlfkq8kuTPJmiSPT/JrSQ5rWvfSJLcm+a35KqyUsm+SfXpcduR8nQ8AAAAAAAAAwK5PMBoAANR2AWZl8sdrz+t7KQAAAAAAAACMvNZgtL2bfv54kpfXWje2zLmslPKXSf4uyQua+n+zlHJhrfXieartdUnOnae9AAAAAAAAAABgB2OdpwAAwK6uXTAaAAAAAAAAAAzUTN/tvCLJS6YJRUuS1Fo3JXnJxLxmvzuPtQEAAAAAAAAAQF8JRgMAgNqvYDSBawAAAAAAAAD0bP0M/b9Va93abuHE+Btbup9WStl3XioDAAAAAAAAAIA+Gx92AQAAMHztAsyEmwEAAAAAAAAwUNMFo91Qa/2vbhbXWr9SSrk2yRFN3U9K8vF5qO39s9jnyCQXzsPZAAAAAAAAAACMAMFoAAAAAAAAAAAAAAvH3dP0XdbjHl/L1GC0h86+nEm11tuS3NbLmlLKfBwNAAAAAAAAAMCIGBt2AQAAMHy1zdgcvqBd2+0LAAAAAAAAANO6Icnmlr6be9zjppb2XrMvBwAAAAAAAAAABkcwGgAACDADAAAAAAAAYIGotW5L8oOW7tagtE5a5y+dfUUAAAAAAAAAADA4gtEAACCC0QAAAAAAAABYUL7d0t6jx/Wt8++cQy0AAAAAAAAAADAwgtEAAKBvwWgC1wAAAAAAAACYlU+3tB/W4/rjW9o/nUMtAAAAAAAAAAAwMILRAACgCjADAAAAAAAAYEH5tySbm9qnlFLWdLOwlLJnkke3dF88X4UBAAAAAAAAAEA/CUYDAIC0C0YrA6sCAAAAAAAAAJKk1npvkguaupYkeX2Xy1+fZGlT+4Yk352n0gAAAAAAAAAAoK8EowEAQNtgtIW4LwAAAAAAAAA7k1JKbXmd3sWytyXZ0tR+aynlsR3OeWyS323pfnet1f/ABgAAAAAAAABgpzA+7AIYjFLK4iSnJTk0yQFJ1ie5Kck3a63Xz/NZhyc5McmBSVYmuTmN3zh5aa31/vk8CwCg/3w3HAAAAAAAAGBXVko5ONN/n3L/lvZ4KeWwGbZZX2u9Yz7rqrVeV0r5w0wGnS1J8rlSyv9M8qHm7+OVUsaTvDLJHyfZrWmby5OcN591AQAAAAAAAABAPwlGG6BSyu8nOXcOW5xfaz2nxzP3SfL2JGcnWTPDnEuT/Gmt9Z/nUFtKKc9P8sYkM/1GynWllI8m+b35/gIYAMCc+MXYAAAAAAAAAKPsK0nWdjHvoCTXzTB2fpJz5qugJr+X5CFJXjDRXpnk/UneVUq5LMm6NL4b+Jgke7SsvTHJL9Zat/ShLgAAAAAAAAAA6AvBaLuwUsozknw4yb4dpj4uyeNKKR9J8ppa64Yez1mZ5INJXtRh6pokv5rkeaWUl9daP9vLOQAA/dOnYDSBawAAAAAAAADMQa21llJelkYA2muahvZIcmabpZcnOavWelM/6wMAAAAAAAAAgPk2NuwC6I9SyulJPpWpoWg1yX8n+XiSzye5o2XZLyX5x1JK138uSimLknw0O4ai3Z7kcxNnfSNT00b2S3JhKeXx3Z4DANBfAswAAAAAAAAAWJhqrZtrra9N8tQ0vvu3rc307yY5J8njhKIBAAAAAAAAALAzGh92ASPuxUku62H++m4mlVIOTvKJJLs1dV+S5FW11qua5i1J4zdI/nGSxRPdv5DkD5K8tcua3pPk55va9yd5Y5IP1Fq3NJ11XJIPJXnsRNeSJJ8qpTy81npzl2cBAPRHbReMJjQNAAAAAAAAYFdWaz1sAGeUedjjoiQXlVL2SfKYJAck2TvJvUluTXJprfWncz0HAAAAAAAAAACGSTDacN1Sa72+D/u+PcmeTe1Lkzy11rqpeVKtdXOSPy+l/DjJJ5uG3lhK+Zta6w3tDimlHJHk11u6X1BrvbB1bq31ylLKU5JclMlwtL2SnJvktV28JwCAPmoTftY2NG0O+wIAAAAAAADALNRab0/yr8OuAwAAAAAAAAAA+mFs2AUwv0opRyd5eVPXliTntIaiNau1firJ+U1dS9IILOvk3CSLm9ofni4UremcjUnOmahpu1dOBKwBAAxRuwAz4WYAAAAAAAAAAAAAAAAAAAAAgyAYbdfzkiSLmtqfqLX+sIt1/7ul/cJSytKZJpdSliV5foc9dlBrvTrJp5q6xtOoGQBgeKrwMwAAAAAAAAAAAAAAAAAAAIBhE4y26zmrpX1eN4tqrVcl+VpT14okT2uz5OlJlje1v1pr/X5XFe5Y0/O6XAcAMARzCE0TuAYAAAAAAAAAAAAAAAAAAADQNcFou5BSyv5JTmjq2prkkh62+HJL+xlt5p7ZYW07F6dR23aPLKXs18N6AID5VR9oMybcDAAAAAAAAAAAAAAAAAAAAGAQBKPtWo5vaX+71rqhh/WXtrQf1sNZX+32kImavtPDWQAA/VMfSK54bbsJAysFAAAAAAAAAAAAAAAAAAAAYJQJRhuu15RSvlBKubGUsqmUcm8p5fpSyn+WUt5ZSnlCj/sd19K+psf1P+qwX7OHDvAsAID+ufFfkw3Xzzxe5xKMJlQNAAAAAAAAAAAAAAAAAAAAoFvjwy5gxL2opb0kycoka5M8MclbSylfT/KWWusXutjvqJb2j3us54aW9l6llD1rrXc1d5ZS1iRZM8ezWucf3eN6AID5cdWfDLsCAAAAAAAAAAAAAAAAAAAAAJKMDbsAOjo5yedKKe8spZQOc/doad/Wy0G11vVJNrV0797FOffVWjf0clZ2rG26cwAA+u/2iztMqAMpAwAAAAAAAAAAAAAAAAAAAGDUjQ+7gBF1Y5JPJ7k8yVVJ1iV5IMleSU5K8qwkT2+aX5K8NY0gu7e02XdlS3vjLGrbmGRpU3tVH89pNt05PSul7Jtknx6XHTkfZwMAu6q5BKMJVQMAAAAAAAAAAAAAAAAAAADolmC0wbo8jcCzz9daZ0rJuDTJX5ZSTk7yD0mObhp7cynlslrrhTOsbQ0s2zSLGjcm2bPNnvN5Trs9Z+t1Sc6dp70AAJIZP7YBAAAAAAAAAAAAAAAAAAAAMJ/Ghl3AKKm1frrW+rk2oWjNc7+e5DFJrm4Zek8pZVG3R/Za4wJfAwAwBD62AAAAAAAAAAAAAAAAAAAAAAyCYLQFrNa6LsmLMzWN49gkT55hyfqW9rJZHNu6pnXPQZ4DALBz65yHCwAAAAAAAAAAAAAAAAAAAMCE8WEXQHu11m+UUj6X5OlN3Wcm+cI00wWjJe9P8vEe1xyZ5MJ5Oh8A2OUINwMAAAAAAAAAAAAAAAAAAAAYBMFoO4fPZGow2iNmmPezlvY+vRxSSlmZHQPL7u7inOWllBW11g09HLdvF+f0rNZ6W5LbellTSpmPowGAXVUVjAYAAAAAAAAAAAAAAAAAAAAwCGPDLoCuXN/Sninw7Ict7bU9ntM6f12t9a7WSbXWO5O09h86x7NaawcAWCAmgtFmFZAmVA0AAAAAAAAAAAAAAAAAAACgW4LRdg4bW9rLZph3VUv7qB7POaKlfWWbufN9Vut+AAALRG25AgAAAAAAAAAAAAAAAAAAANAPgtF2Dnu3tO+YYd53W9qPKKUs7+Gc0zrs127ssd0eUkpZkeQRPZwFADB8VTAaAAAAAAAAAAAAAAAAAAAAQD8JRts5nNrSvmm6SbXWm5N8u6lrPMnjezjn9Jb2f7SZ+5kOa9t5Qhq1bffNWuutPawHABicBwPRZhOMJkwNAAAAAAAAAAAAAAAAAAAAoFuC0Ra4UsrSJM9r6f5ymyWfbGm/ostzjs3UALYNST7XZslnk2xsaj92Yo9unNPSbq0ZAGABEW4GAAAAAAAAAAAAAAAAAAAAMAiC0Ra+NyU5qKm9Lcm/t5n/kYk52z2vlHJ0l+c0+1itddNMk2ut9yW5oMMeOyilHJPkrKaurUn+oYv6AACGpLZcAQAAAAAAAAAAAAAAAAAAAOgHwWgDUkp5WSllvx7XvCrJuS3dH6613jDTmlrrD5Oc39S1W5IPl1KWtjnnOUnOaerakuTtXZT4+0nub2qfU0p5dptzliY5b6Km7f621vqjLs4CABiOWqdeZ7MWAACA2as1uefq5P57hl0JAAAAAAAAAAAAAAAA0GeC0QbnlUmuK6WcX0p5ZillxUwTSyknl1I+keQDSUrT0I1JfreLs85NcldT+3FJvlBKObblnCWllDck+XjL+j9pF762Xa312iTvbem+oJTy+lJKc/hZSikPTXLRRC3b3ZnuAtgAABYAIWcAAAADt+4byYVrk397SHLBmuTy1yYPbBt2VQAAAAAAAAAAAAAAAECfjA+7gBGzLMkvT7weKKX8MMn1SX6WZFuSvZKckGS/adauS3JmrfWWTofUWn9aSnleks8m2R5QdlqSK0sp/53k2iS7JzkpyT4ty/8tydt6eE9vTvKwJM+YaC9O8hdJ3lZK+UaSe5McMXFWc8jbliRn1Vpv7uEsAIAhqC1XAAAABmLrxuSLZyRb1jXadVtyzd8kKw9PjnvTcGsDAAAAAAAAAAAAAAAA+kIw2vCMJXnIxKuTi5KcU2v9abeb11q/XEo5K8mHMxl+VpKcPPGazj8meVWtdVsP52wrpbwwyYeSnN00tG+SM2dYdluSl9daL+72HACA4ZkIRKuzCUYTpgYAADBrt3x+MhSt2TUfEIwGAAAAAAAAAAAAAAAAu6ixYRcwQt6b5B+S3NDl/A1JPpnkqbXWp/YSirZdrfXTSY5P8tdJ7moz9bIkz6+1vqTWumEW56yvtb4oyQsm9prJuiR/leT4Wutnej0HAGAoHgxEE3IGAAAwUN//s+n711872DoAAAAAAAAAAAAAAACAgRkfdgGjotb6yTSCzlJK2SPJw5IckmS/JMvTCKm7O40As6uSfLvWum0ezr0tya+WUn49yWlJ1ibZP43gtRuTfLPWet1cz5k464IkF5RSDk9yUpIDk6xIcksagXCX1Fq3zMdZAACDIxgNAAAAAAAAAAAAAAAAAAAAYBAEow1BrfXuJJcM+MwtSb40oLOuSzIvYWsAAAtGnU0wmjA1AACA2XNPBQAAAAAAAAAAAAAAAKNmbNgFAADAgvZgIJoH8gEAAAAAAAAAAAAAAAAAAAD6STAaAAC0JRANAAAAAAAAAAAAAAAAAAAAYBAEowEAQFu15drLUqFqAAAAAAAAAAAAAAAAAAAAAN0SjAYAAO1sDzcTcgYAADBg7sMAAAAAAAAAAAAAAABg1AhGAwCArnggHwAAAAAAAAAAAAAAAAAAAKCfBKMBAEBbteU6m7UAAAAAAAAAAAAAAAAAAAAAdCIYDQAA2poIN6tCzgAAAAAAAAAAAAAAAAAAAAD6STAaAAC082AgmmA0AAAAAAAAAAAAAAAAAAAAgH4SjAYAAG1NBKLV2QSjCVMDAACYtVndhwEAAAAAAAAAAAAAAAA7M8FoAACMttLtR2IP5AMAAAAAAAAAAAAAAAAAAAD0k2A0AABGXKePxLXlCgAAwECUMuwKAAAAAAAAAAAAAAAAgAETjAYAwGgrHT4S1zr12ovZrAEAAKDBPRUAAAAAAAAAAAAAAACMHMFoAACMtk7BaPEgPgAAwIJz65eGXQEAAAAAAAAAAAAAAADQB4LRAAAYbWVRhwm15QoAAMDQfe9dw64AAAAAAAAAAAAAAAAA6APBaAAAjLhuPxLPJhhNmBoAAEBf3PKFYVcAAAAAAAAAAAAAAAAA9IFgNAAARlvp8JG41qlXAAAABsTZzKyOAAAgAElEQVR9GAAAAAAAAAAAAAAAAIwawWgAAIy2TsFoDz6I74F8AAAAAAAAAAAAAAAAAAAAgH4SjAYAwGgrizpMmEswmjA1AAAAAAAAAAAAAAAAAAAAgG4JRgMAYLSVDh+Ja516BQAAAAAAAAAAAAAAAAAAAKAvBKMBADDiuv1ILBgNAAAAAAAAAAAAAAAAAAAAoJ8EowEAMNpKp4/EteXagypMDQAAYPbcUwEAAAAAAAAAAAAAAMCoEYwGAMBo6xSMtj3cTMgZAAAAAAAAAAAAAAAAAAAAQF8JRgMAYMR1+kgsEA0AAAAAAAAAAAAAAAAAAABgEASjAQAw2kq3wWizCUgTqgYAAAAAAAAAAAAAAAAAAADQLcFoAACMtrKoy4lCzgAAAAAAAAAAAAAAAAAAAAD6STAaAACjrXT4SFzr1CsAAAAAAAAAAAAAAAAAAAAAfSEYDQCA0dYpGC215doLYWoAAAAAAAAAAAAAAAAAAAAA3RKMBgDAaCuLOkyYCDerQs4AAAAGyn0YAAAAAAAAAAAAAAAAjBzBaAAAjLgOH4kffBDfA/kAAAAAAAAAAAAAAAAAAAAA/SQYDQCA0VY6fSSeQzBaFaYGAAAAAAAAAAAAAAAAAAAA0C3BaAAAjLaOwWgThJwBAAAAAAAAAAAAAAAAAAAA9JVgNAAARltZ1GFCbbkCAAAAAAAAAAAAAAAAAAAA0A+C0QAAGHEdPhLXuQSiCVMDAACYPfdUAAAAAAAAAAAAAAAAMGoEowEAMNrGxjtMqC1XAAAAAAAAAAAAAAAAAAAAAPpBMBoAAKOtLOowYSIQrQpGAwAAAAAAAAAAAAAAAAAAAOgnwWgAAIy2jsFo2wlGAwAAAAAAAAAAAAAAAAAAAOgnwWgAAIy2Mt5+vG4PRBOMBgAAAAAAAAAAAAAAAAAAANBPgtEAABhtZVGHCROBaFUwGgAAwILiPg0AAAAAAAAAAAAAAAB2OYLRAAAYbd0Go8UD9wAAAAAAAAAAAAAAAAAAAAD9JBgNAIDRVjp8JK6C0QAAAIaiug8DAAAAAAAAAAAAAACAUSMYDQCAEdflg/YeyAcAAFhg3KcBAAAAAAAAAAAAAADArkYwGgAAtFVbrgAAAAAAAAAAAAAAAAAAAAD0g2A0AABoSzAaAAAAAAAAAAAAAAAAAAAAwCAIRgMAYLTVDoFnncYBAAAYDvdrAAAAAAAAAAAAAAAAsMsRjAYAAG1NPGjvgXsAAIABcx8GAAAAAAAAAAAAAAAAo0YwGgAAdMUD+QAAAAuL+zQAAAAAAAAAAAAAAADY1QhGAwBgxHV4kL7WqVcAAAAAAAAAAAAAAAAAAAAA+kIwGgAAtFVbrgAAAAAAAAAAAAAAAAAAAAD0g2A0AABGXKfAszkEo1VhagAAAP3jngsAAAAAAAAAAAAAAAB2NYLRAACgne3hZkLOAAAABsx9GAAAAAAAAAAAAAAAAIwawWgAANAVD+QDAAAAAAAAAAAAAAAAAAAA9JNgNAAARlvtFHhWW649bT6LNQAAAHSl4/0cAAAAAAAAAAAAAAAAsLMRjAYAAG1NPGjvgXsAAAAAAAAAAAAAAAAAAACAvhKMBgAA7QhEAwAAGI6O92Pu1wAAAAAAAAAAAAAAAGBXIxgNAIAR1+2D9rN54N5D+gAAAAAAAAAAAAAAAAAAAADdEowGAABdEXIGAAAwUKUMuwIAAAAAAAAAAAAAAABgwASjAQBAWxOBaFUwGgAAwEB1vA9znwYAAAAAAAAAAAAAAAC7GsFoAACMuA4P0j/4IP4sHrgXpgYAAAAAAAAAAAAAAAAAAADQNcFoAADQ1hyC0QAA+P/s3XuwpHld3/HPr89hZ4bdhAUEEQmsi4giQSVUqZALJpS38hIMojFFSWIMhff7pSICqdxMImXQqBWDQmlEAhJQg2i4WepiNLArGkCBheG27LrsCuzsmZk93b/8sWfc3p5+ntPdp5/znH769aqa2tPP9WvZ1XWeZn7vAeiOGDUAAAAAAAAAAAAAAAAMjjAaAAC0Olhob8E9AAAAAAAAAAAAAAAAAAAAQKeE0QAA2G4LB89WCaOJqQEAAKzOMxUAAAAAAAAAAAAAAABsG2E0AABo81fhNAvyAQAAThbPaQAAAAAAAAAAAAAAADA0wmgAANDqYKF9XWXBvUX6AAAAAAAAAAAAAAAAAAAAAIsSRgMAYMsdFi8TNwMAAAAAAAAAAAAAAAAAAAA4DsJoAADQpl4KowmkAQAAnCye0wAAAAAAAAAAAAAAAGBohNEAAKDNhb+4+791hQX3q5wDAADAAc9UAAAAAAAAAAAAAAAAsG2E0QAA2HKHLLS/9c3Jb3xWctsfHc84AAAALEaMGgAAAAAAAAAAAAAAAAZHGA0AAA7z8Xcmb3tO31MAAAAAAAAAAAAAAAAAAAAADJowGgAAdKb2PQAAAAAAAAAAAAAAAAAAAADAxhBGAwBgu1XxMgAAgM3keQ4AAAAAAAAAAAAAAACGRhgNAAAAAAAAAAAAAAAAAAAAAAAA6J0wGgAAdKb2PQAAAMCAeeYCAAAAAAAAAAAAAACAoRFGAwBgy1lIDwAAcCJVz2sAAAAAAAAAAAAAAACwbYTRAAAAAAAAAAAAAAAAAAAAAAAAgN4JowEAsOVqh5fu8NoAAADbzjMXAAAAAAAAAAAAAAAADI4wGgAAAAAA3ZmM+54AAAAAAAAAAAAAAAAAgA0hjAYAAAAAwPq9+78mv/4ZycuvSt74pcm5D/Q9EQAAAAAAAAAAAAAAAAAnnDAaAADbrdYuL97htQEA4AQ7+7LkD5+VfOJdyfh8ctNvJa9/cjK+2PdkbJTDnqk8cwEAAAAAAAAAAAAAAMDQCKMBAAAAALBe7/3Fy7fdcWNy65uPfxYAAAAAAAAAAAAAAAAANoYwGgAAdKb2PQAAAPTjw/9r/va3/cvjnYOB88wFAAAAAAAAAAAAAAAAQ7Pb9wAAANAvC+lZo3PvT25+Q/LxdyanH5J88hclVz8uKaXvyQAATobxhb4nAAAAAAAAAAAAAAAAAOAEE0YDAABYhw+8Mvndp+Wy2N6jvjV5wk+KowEAAAAAAAAAAAAAAAAAAMAhRn0PAAAAg1Xr4ccwDPt7yXXPyGVRtCR5139JPvK/j30kAAAYPM9cAAAAAAAAAAAAAAAAMDjCaAAAbDkL6VmDD/16Mr6zef/Nbzy+WQAAAAAAAAAAAAAAAAAAAGBDCaMBAAAc1U2/2b7/xhcfyxgAACdf6XsANoqQNQAAAAAAAAAAAAAAAGwbYTQAAOiMRfzb45DAx86Z4xkDAAC2imcuAAAAAAAAAAAAAAAAGBphNAAAtlu1kJ41uP369v1X/83jmQMAAIbE8xoAAAAAAAAAAAAAAABsHWE0AACAo9jfS26/of2YndPHMwsAAGwT4TQAAAAAAAAAAAAAAAAYHGE0AADojEX6W+HmNxx+zOSu7ucAAIChKaXvCQAAAAAAAAAAAAAAAIBjJowGAMCWEy/jiN7+Y4cfM7nQ/RwAADA01fMaAAAAAAAAAAAAAAAAbBthNAAAgKOY3HX4MR9+TVIn3c8CAABbRTgNAAAAAAAAAAAAAAAAhkYYDQAAulIt0t8Ko53FjvvAK7udAwBgE5TS9wQAAAAAAAAAAAAAAAAAnGDCaAAAbDfxMo5swbjHu36m2zEAAGDreJ4DAAAAAAAAAAAAAACAoRFGAwAAOIqy4GPVzW/odg4AAAAAAAAAAAAAAAAAAADYcMJoAADQmdr3AByHstP3BAAAMFCeqQAAAAAAAAAAAAAAAGDbCKMBALDlLLTnqDxWAQBAL6rnOQAAAAAAAAAAAAAAABgaK/gBAACOonisAgAAAAAAAAAAAAAAAAAAgHWwgh8AADpT+x6AY1H6HgAAAAAAAAAAAAAAAAAAAAAGYbfvAQAAoF/iZRzR5ELfEwAAnBx3fjC57a0tB4jKsozDntc8zwEAAAAAAAAAAAAAAMDQCKMBAEBXqkX6W2H/zr4nAADoX63JH/9w8vYf63sSAAAAAAAAAAAAAAAAADbYqO8BAACgV+JlHNX4XN8TAAD078OvEUWjA+WQ/Z7nAAAAAAAAAAAAAAAAYGiE0QAAAFZVa/Kxt/c9BQBA//78p/qegEESPgMAAAAAAAAAAAAAAIBtI4wGAACdsYh/8G5/a98TAACcDDe9dsEDS6djAAAAAAAAAAAAAAAAALDZhNEAANhy4mUcwUde3/cEAAAbxu/frFH1fgIAAAAAAAAAAAAAAIChEUYDAABY1cW/7HsCAAAAAAAAAAAAAAAAAAAAGAxhNAAA6EqtfU9A18Z7fU8AALBhSt8DsEkOfabyzAUAAAAAAAAAAAAAAABDI4wGAMCWs5CeIxjf2fcEAAAAAAAAAAAAAAAAAAAAMBjCaAAAAKva3+t7AgAAAAAAAAAAAAAAAAAAABgMYTQAAOhM7XsAujYWRgMAgP545gIAAAAAAAAAAAAAAIChEUYDAGC7VQvpOYLxnYsfe8UDupsDAGBTlNL3BAAAAAAAAAAAAAAAAACcYMJoAAAAqxrvLX5snXQ3BwDAphAmZineLwAAAAAAAAAAAAAAALBthNEAAKAzFvEP3v4yYbT97uYAAIBtJLQHAAAAAAAAAAAAAAAAgyOMBgDAlrOQniMY37n4sZO7upsDAGBTlNL3BGwU7xcAAAAAAAAAAAAAAADYNsJoAAAAqxrvLX5s3e9uDgAAGKTDQtZC1wAAAAAAAAAAAAAAADA0wmgAANCVapH+4C0VRht7TwAAAAAAAAAAAAAAAAAAAEALYTQAALacUBVHsH/ncsfXcTdzAAAAAAAAAAAAAAAAAAAAwAAIowEAAKxqvLfc8XW/mzkAADZG6XsABkXoGgAAAAAAAAAAAAAAAIZGGA0AADpjkf6g1bp8GG1yVzezAABsDL8jswzvFwAAAAAAAAAAAAAAANg2wmgAAGy3aqE9K5pcWP6cur/+OQAAAAAAAAAAAAAAAAAAAGAghNEAAKAzomuDNj6//DkTYTQAYNuVvgdgSISuAQAAAAAAAAAAAAAAYHCE0QAAAFYxvrD8OVUYDQAAAAAAAAAAAAAAAAAAAJoIowEAsOVq3wOwqSYrhNEmwmgAALA+nucAAAAAAAAAAAAAAABgaITRAACgK9Ui/UEbn1/+nCqMBgAAC/NMBQAAAAAAAAAAAAAAAFtnt+8BOB6llPskeVKShyf5lCR3JPlwkutrre9b870+LcnnJnlokquS3JTkbJLraq13rfNeAADQm8mFFc7x6zAAsOVK6XsCAAAAAAAAAAAAAAAAAE4wYbQTqJTyK0m+bmbz2VrrNStc60FJnn9wvQc0HHNdkhfUWn912evPXOdpSb4nyRc2HHJbKeVlSX601nrrUe4FALA+te8B2FRjYTQAAOiX5zkAAAAAAAAAAAAAAAAYmlHfA3BvpZSvyuVRtFWv9WVJ/jTJs9MQRTvwxCSvKKX8UinlyhXuc1Up5aVJXp7mKFoOZnh2kj8tpXzJsvcBANg8FukP2vj88udMVoipAQAAAAAAAAAAAAAAAAAAwJbY7XsA7lFKuTrJz6zpWk9O8qokV0xtrknemuTGJFcn+bwknzS1/58k+eullH9Ya50seJ+dJC9L8uUzu/4iyfVJPpbkkQf3Kgf7PjnJq0spT6m1/t4S/2cBAKxfFS9jRatEzlaJqQEAAPN5ngMAAAAAAAAAAAAAAIDBGfU9APfy40keevDzJ1a9SCnlYUlemXtH0X4/yWfXWp9Qa316rfWLkzwsyXcmuWvquK9M8q+XuN2/z72jaHcl+fYkD6u1fsnBvf5WkscmefPUcaeSvKqU8ilL3AsAAE6OcUMYbXSq5RxhNAAAAAAAAAAAAAAAAAAAAGgijHZClFKekuSfHbzcT/KjR7jc85Pcf+r1dUmeUmt9x/RBtdYLtdYXJnn6zPnfU0p5xGE3KaVcm7vDatO+ttb6U7XWizP3enuSf5B7x9EemOS5h90HAGBz1b4HoEuThjDazum7/8wz3utuHgAAAAAAAAAAAAAAAAAAANhwwmgnQCnlyiQ/N7XpBUluWPFaj0ryjVObLiZ5Zq31fNM5tdZXJXnJ1KZTWSxY9twk95l6/eJa66tb7rOX5JkHM13yTQeBNQCAnoiXsaJxw6/YO6eTUVMYrfHXcgAA4DKHPa95ngMAAAAAAAAAAAAAAIChEUY7Gf5dkmsOfr4xyfOOcK1vSLIz9fqVtdZ3LXDej828fnoppaHmkJRSziR52iHXuEyt9c+TvGpq027unhkAADbL5ML87aNTd8fR5hFGAwC2Xul7AAAAAAAAAAAAAAAAAABOMGG0npVSnpjkW6c2PavWuneESz515vUvLHJSrfUdSf7P1KYrk3xxyylfkuS+U6/fXGt950ITXj7T1yx4HgDAZqm17wno0rghjLZzKtk5M3/fRBgNAAAW55kKAAAAAAAAAAAAAAAAto0wWo9KKaeS/Hzu+f/DS2qtrzvC9R6S5HOmNu0n+f0lLvGmmddf1nLslx5ybpvfzd2zXfJ5pZRPXuJ8AIA1stCeFY0bImc7p+/+s8w5AADA8sSoAQAAAAAAAAAAAAAAYHCE0fr1vCSPPvj5L5J87xGv99iZ12+rtZ5b4vzrZl5/9hL3evOiNzmY6U+WuBcAAJw8kwvzt49OCaMBAMBalL4HAAAAAAAAAAAAAAAAAI6ZMFpPSimPT/J9U5u+q9b60SNe9jEzr9+95PnvOeR60z7rGO8FALChat8D0KUbf2H+9h1hNAAAWI/Dnqk8cwEAAAAAAAAAAAAAAMDQCKP1oJSym+Tnk+webHptrfWX13DpT595/f4lzz878/qBpZT7zx5USnlAkgcc8V6zxz9qyfMBANajWkjPij7+zvnb924WRgMAAAAAAAAAAAAAAAAAAIAV7B5+CB34oSSfc/DzuSTPXtN1r555fcsyJ9da7yilnE8yXXG4X5LbD7nPnbXWc8vca85s91vy/LlKKQ9O8qAlT3vkOu4NAHA50bXBOn9r8777XJWMGsJoE2E0AAAAAAAAAAAAAAAAAAAAaCKMdsxKKY9J8iNTm55Ta33fmi5/1czrvRWusZd7h9H+Wof3mTbvPqv4liTPXdO1AABgvvGdzftGVyQ7DWG0/VV+dQYAGJLS9wAMihg1AAAAAAAAAAAAAAAADM2o7wG2SSlllORFSU4dbHpLkheu8RazwbLzK1xjttQwe83jvA8AwDGwkJ4VjFt+BX7oVzSH0Sar/OoMAAAAAAAAAAAAAAAAAAAA20EY7Xh9Z5IvOPh5P8k/r7WOO7zfKpWPk3wOAFzurjuSOul7Cpiv+pVnsCYXmvdd+43Jzpn5+9qCagAAwL15pgIAAACOWSnl2lLK15VS/mMp5U2llI+XUurUn/f1PeOsUsp9SynvmZmzllJe3PdsAAAAAAAAAACwit2+B9gWpZRrk/zrqU0vqLXesObb3DHzuqHG0Gr2nNlrHud9VvHTSV6+5DmPTPLqNd0fgONyx43Jdc9IPvoHyalPSh793cljfjAppe/JgG0wbgmjXXF1snO64TxhNAAAWBvhNAAAAGANSilPTvLDSZ6Q5AH9TrOSf5Pk2r6HAAAAAAAAAACAdRFGOwallJLk55Lc92DTjUme18Gttj6MVmu9Jckty5xTBHQANs/4YvK6L0rufP/dr8/fkvzxDyenHph8+jf3OxsbyEJ6VjBpCaONTgmjAQAAAAAAwOb43CRf3PcQqyilfEGS7+h7DgAAAAAAAAAAWKdR3wNsiW9O8venXj+r1rrXwX0+NvP6QcucXEq5KpcHy/5ygfvct5Ry5TL3SvLgBe4DAPPd+uZ7omjTzr7s+GeBVqJrgzVuC6NdIYwGAADHwjMXAAAA0KkLSd7T9xBNSilXJHlR7vl7oJ/ocRwAAAAAAAAAAFib3b4H2BLPn/r5NUneXUq55pBzHjLzenfOOR+utV6cev2umf2PWHC+puNvq7XePntQrfWjpZTbk9x/avPDk7zjCPeanR0Amr3tR+Zvv/n1xzsHsL0mDWG00RVJKcmoIYw2EUYDAIDFCZ8BAAAAx+auJP8vyf9N8kcH//2TJE9K8sYe52rzo0kec/Dz2SQvT/J9/Y0DAAAAAAAAAADrIYx2PM5M/fzlSd67wjU+dc55n5fkhqnXs2GyT1/yHtfOvH57y7HvSPLEmXstE0abvdcy5wKw7eq47wkYkmqhPSsYN4XRTt39352GMNpYGA0A2HKl9D0BAAAAAMx6SZKfrbVe9j/mlRP6fVYp5XOS/ODUpmcn+fyexgEAAAAAAAAAgLUa9T0Aa/WnM68fV0q57xLnP+mQ67Xt+8JFb1JKuTLJ45a4FwDcm5AVG8N7dbAmDWG0ncPCaHvdzAMAAIN02MJjz1wAAADA0dVab58XRTupSim7SX4+9/zDuC+ttf5mjyMBAAAAAAAAAMBaCaMNSK31piRvm9q0m+RvL3GJJ8+8bvvLUq895Nw2fyf3/KWsJLm+1nrzEucDsPUsfAZ6Nm4Io40OC6NtzHoKAAA4ATz/AwAAAMzx/Ukef/DzbUm+q8dZAAAAAAAAAABg7YTRjkGt9epaa1nmT5IvmrnM2TnH3TDndv9z5vU/XWTGUspnJvn8qU3nkvx2yym/lWRv6vUXHlxjEc+ceT07MwC0q5O+J2BQLLRnBZOGMNrOpTDamfn7hdEAAGB9quc5AAAAYLuUUh6d5LlTm7631npLX/MAAAAAAAAAAEAXhNGG578nGU+9/ppSyqMWOO8HZ17/j1prY7Wh1npnklccco3LlFI+I8lTpzbtJ/nlBeYDgCkWPrMhLNIfrnFDGG10KYx2uuE8YTQAYNuVvgcAAAAAgI1UShkleVGSg/9RMm+otb64v4kAAAAAAAAAAKAbwmgDU2t9V5KXTG26IsmLSykNZYaklPLVSZ45telikucvcLvnJblr6vUzSylf1XKf00l+4WCmS15Ua33PAvcCgHvUSd8TANtu0hBG2xFGAwBoJx7Mgcl+cu6soDQAAADA4r4tyZMOft5L8qweZwEAAAAAAAAAgM4Iow3Tc5PcPvX6iUleV0r5zOmDSimnSinfnuTlM+f/eK317GE3qbXemOQ/z2x+RSnl20op0/GzlFI+K8nrD2a55KNZLMAGADMsmmaNLMJnFU1htNEhYbTJee85AAB4508kv/rA5NXXJK/6G8lHXj//uEN/d/a7NQAAALAdSinXJPm3U5ueX2t9dz/TAAAAAAAAAABAt3b7HoD1q7V+sJTyNUl+K8mlQNmTkry9lPKWJDcmuV+Sxyd50Mzpv5HkOUvc7oeSfHaSLzt4fZ8kP5nkOaWUtyb5RJJrD+5Vps67mOSptdablrgXANytTvqeABZkkf5gjRvCaJeCaKOGMFqdJHU/KffpZi4AgBOvHH4Iw/bBX0ve+t33vN77UPI7X5F8xZ8lVz68v7kAAAAATrafS3Llwc9/nOTH+xqklPLgXP73Dg/zyC5mAQAAAAAAAABgmITRBqrW+qZSylOTvDj3/CWkkuQJB3/meWmSb661jpe4z7iU8vQk/y3J103tenCSL2047ZYk31hr/d1F7wMA9yY2xTp5P7GC8fn520en7v7vTkMY7dK5I2E0AAC21Pt+6fJt4/PJB1+dPPrbj38egDbnziZ/9sLk9huSBzwhecwPJKce2PdUAADAlimlfFOSpxy8nOTuv+O33+NI35LkuT3eHwAAAAAAAACAgRv1PQDdqbW+Jsljk/xskttbDv2DJE+rtX5DrfXcCve5o9b69Um+9uBaTW5L8jNJHltrfe2y9wGAv1InfU8AbLvJhfnbdxYMowEAwLZ6/8vnb3/Ld6xwMaFroEN3fjh53d9L3vmC5OY3JO/4D8nr/m5y8WN9TwYAAGyRUspDk/ynqU0vrLX+UV/zAAAAAAAAAADAcdjtewDmq7W+KUlZw3VuSfLsUsp3JnlSkkckeUiSc0k+lOT6Wut7j3qfg3u9IskrSimfluTxSR6a5MokH0lyNsnv11ovruNeAGw7C5+Bno0bwmijRcJoe+ufBwAAAFivs7+cnDt7720fe3vyoV9LPu0Z/cwEAABso59OcvXBz2eT/EiPswAAAAAAAAAAwLEQRtsSB0GyNx7Tvd6bZC2xNQCYq076noBBEdpjBZOGMNrOpTDameZzx+fXPw8AwMY48r8FwVY55Hmtep4DOnT998/f/of/QhgNAAA4FqWUr0/y1VObnl1rPdfXPFN+OsnLlzznkUle3cEsAAAAAAAAAAAMkDAaALCBLHxmg9SaFPGHwRk3hNFGl8Jop1vOFUYDALaZ5zkANpznegAA4BiUUj4pyQunNr201vqbfc0zrdZ6S5Jbljmn+N/MAQAAAAAAAABYwqjvAQAAllYnfU8AbLtJQxhtRxgNAADWx4JZAAAAYGu9MMmDDn6+Lcl39TgLAAAAAAAAAAAcq92+BwAAWF7tewCGpHo/sYJxQxhtdOre/51nIowGAGwzoSuWcdjzmuc5AAAAYHhKKY9O8o+nNv1EkvuWUq455NSrZ15fNXPOpNb6/qPOBwAAAAAAAAAAXRNGAwA2T530PQEsoUb8YYAmDWG0nUthtN2k7CZ1//JjxsJoAAAAAAAAQKMzM6//1cGfZf2jgz+XfCyXx9MAAAAAAAAAAODEGfU9AADA8mrfAwDbrimMNjp1z887p+cfI4wGAABr4vsBAAAAAAAAAAAAAAAAGBphNABg89RJ3xMwKBbSs4JxQxhtRxgNAAAAAAAAAAAAAAAAAAAAViWMBgBsICErNkj1fh2kSUMYbbRIGG1v/fMAAPSuLHjYgsdBEs//wIl1y+/1PQEAADBgtdYbaq1l2T9Jnj9zqZfMHHN1H//3AAAAAAAAAADAsoTRAIDNUyd9TwBsu3FDGG06hrZzpuHc8+ufBwCgb4sGzy/lKC4AACAASURBVISDWSfvJ6AvH/6NvicAAAAAAAAAAAAAAIDBEkYDADaQhc+sk/cTK5g0hNFGp+75eTqSNk0YDQAYpAXDaACwKUZXNO97z4uObw4AAGAwSil15s+T+54JAAAAAAAAAABOot2+BwAAWFqd9D0BLEF4bZDGDWG0nakw2qghjDYRRgMAhmjBMFoRUANgQ4yuSCYX5++7cOvxzgIAAHSulPKwzP/7lA+Zeb1bSrmm4TJ31Fo9MAAAAAAAAAAAwBEJowEAG0hoCuhZU9xsNBVG22kIo42F0QCAASrFoxo98KYDOnTqQcn+HfP3Xf24450FAAA4Dr+X5BELHPepSd7bsO8lSZ65roEAAAAAAAAAAGBbjfoeAABgaXXS9wQMSbWQnhWML8zfviOMBgBsK1810wHPa0Cfrnx48777Peb45gAAAAAAAAAAAAAAgC1jtRoAsIEsjGaTeL8O0qQhjDYSRgMAtlQpfU/AVvK8BXTJZwwAAAAAAAAAAAAAAPRht+8BAACWVid9TwBsszpJJnfN37cjjAYAbKtFw2gCagBsiNoSRmvbBwAAbKRa6zXHcI9OvxyrtT4vyfO6vAcAAAAAAAAAAByHUd8DAAAsz8JD1sn7iSVNLjbvG02F0UZNYbS99c4DAHASFF81AzA0bf84g3+4AQAAAAAAAAAAAAAAumK1GgCweaqFh2yQKrw2OOMLzft2psJou2cazj+/3nkAAE6E0vcAbCPPW0CX2j5jfP4AAAAAAAAAAAAAAEBnhNEAgM1j4SHQp0lLGG00FUYbnW44XxgNABgiYTS64Pkf6FHrP87gH24AAAAAAAAAAAAAAICuCKMBABvIwkPWqeuF9hbyD854wTDaTkMYbSyMBgAMUBFGA2BoWr6D9A83AAAAAAAAAAAAAABAZ4TRAIDNU4XRgB5NWsJoO8JoAMC2EkajD8JEQIda42e+nwQAAAAAAAAAAAAAgK4IowEAG8jCZ6BH47Yw2un5P9/rfGE0AGCAiq+aARialvhZazQNAAAAAAAAAAAAAAA4CqvVAIDNU1sWJcKyOl/IaqHs4ExawmijU/f8LIwGAGyVsubjIDn0eUqYCOhS22eM7ycBAAAAAAAAAAAAAKAzwmgAwAay8Bno0bgljLazQBhtIowGAAxQETwDYGja4me+nwQAAAAAAAAAAAAAgK4IowEAm6e2LUqEZVnIypImLWG00RVTPzeE0cbCaADAEAmj0QXvK6BHteU7I99PAgAAAAAAAAAAAABAZ4TRAIANJGTFBmlbRMtmGjeE0Ub3ScrUI9bOmYbz99Y/EwBA7wSs6MJhz1Oet4AutcXPfP4AAAAAAAAAAAAAAEBXhNEAgM1T2xYlAnRscn7+9tGpe7/eOT3/uHHD+QAAm6z4qhmAgWn7DtL3kwAAAAAAAAAAAAAA0Bmr1QCADVT7HoBB8X5iSeML87fvCKMBANus9D0AW8nzHNClts8Ynz8AAAAAAAAAAAAAANAVYTQAYPPUSd8TwBIslB2cSUMYbbRgGG1y0ecYADA8RRgNgIFpe3b3XA8AAAAAAAAAAAAAAJ0RRgMAAFjG+IhhtLZrAABsrAW/ahZQA2BjtMXuhfABAAAAAAAAAAAAAKArwmgAAGy3aiErS5o0RM12lgijTc6vbx4AgJNA8IwuHPa85nkO6FKdrLYPAAAAAAAAAAAAAAA4EmE0AADolIX6gzNuCKONZsJoo5Yw2lgYDQAYGmE0AAamNX7m+x4AAAAAAAAAAAAAAOiKMBoAAMAyJg1htJ2ZMNqOMBoAsE2E0dgA++eS87f2PQWwMVriZ63RNAAAAAAAAAAAAAAA4CiE0QAA2HIti1xhnnFTGG0mhLZzpuUae+ubBwDgJCi+aqYPCz7PjS8m1z0jecX9k1c+KPntJyV7N3U7GrD5WuNnvk8CAAAAAAAAAAAAAICuWK0GAABdqhbKDs6kIYw2OnXv17OhtGnj8+ubBwAABmtNz1PXf2/yvl9KJnfd/frW65Lf+cr1XBsYsJbPoNZoGgAAAAAAAAAAAAAAcBTCaAAAAMsYC6MBAMDJsEA4rdbkvb94+fbb3pLc8d71jwQMR2v8TAgfAAAAAAAAAAAAAAC6IowGAMCWs5CVJU0awmg7M2G00RXN1xBGAwC2Vul7ADbKGt4vkwvJXR+bv+/srxz9+sCAtXxn1BpNAwAAAAAAAAAAAAAAjkIYDQAAOiW8NjhNYbTRTBitlGTn9PxjhdEAAGABXT9PCfUBLVrjZ77vAQAAAAAAAAAAAACArgijAQAALGPcEEbbOXX5tlFDGG0ijAYADI3AFD2oC4SJ2o4p3rdAi7YwWms0DQAAAAAAAAAAAAAAOAphNAAAttsiC+mPdoOOr8+xG+/N374zJ4I2b1uSjIXRAADgeLQ9kwmjAW3aPj983wMAAAAAAAAAAAAAAF0RRgMAAFjG/h3zt+9eefk2YTQAAOjQImEi8SJgRXWy2j4AAAAAAAAAAAAAAOBIhNEAAACWsX9u/vbdqy7ftnNm/rHCaAAAsIA1RM1q2zXK0a8PDFjb54foIgAAAAAAAAAAAAAAdEUYDQCALdfxQtbWRfhspMYw2pWXb9s5Pf/Y8d765gEAAFq0PJMVYTSgRZ2stg8AAAAAAAAAAAAAADgSYTQAAIBlrCWMdn598wAAbBQhKtZpkRB12zHej0CL1viZED4AAAAAAAAAAAAAAHRFGA0AAGAZTWG0HWE0AGCLFYEpTqjWsJH3LdCmJX5WhdEAAAAAAAAAAAAAAKArwmgAAGy5rheyWig7OPt3zN++OyeMNmoIo02E0QAA4Hi0PJMJ+gFtWsOKbfsAAAAAAAAAAAAAAICjEEYDAABYxv65+dt3r7p8205DGG0sjAYAAIeqh4SmD9t/6DHCaECbls+PRT5/AAAAAAAAAAAAAACAlQijAQAALGp8Man78/ftXnn5NmE0AABYXJ0kt9+Q7N203ms2EkYDWrR+frTtAwAAAAAAAAAAAAAAjmK37wEAAKBXtXZ9g46vz7Ean2veJ4wGAABH86qH3RNFe9hXJ5MLh5ywyPOWZzJgVS2fH51/nwQAAAAAAAAAAAAAANtLGA0AAGBR+8uG0c7MP1YYDQAALncpipYkH3z1eq5ZJ837SlnPPYBhavv8aNsHAAAAAAAAAAAAAAAcyajvAQAAoF+17wHYJEuH0U7PP3a8t555AAA2jRAVx67tmc/7EWjTFj/zfRIAAAAAAAAAAAAAAHRFGA0AALpULZQdlMnF5n2jU5dvawyjnV/PPAAAsNUWed4SRgNW1PadTm2LpgEAAAAAAAAAAAAAAEchjAYAALCoyX7zvtF95mxrCKNNhNEAgKERmOKEaosXFe9boE1b/EwIHwAAAAAAAAAAAAAAuiKMBgDAdqsWsrKE2hZG2718205DGG0sjAYAAMej7ZlPGA1o0fadUVt0EQAAAAAAAAAAAAAAOBJhNAAA6JTw2qBMWsJoRRgNAACO1SKh67ZjijAa0KDWtH+n4/seAAAAAAAAAAAAAADoijAaAADAoqowGgAAbJZJyz5hNKDJIeGz2vbZAgAAAAAAAAAAAAAAHIUwGgAAW+6Qha5HvnzH1+d4tYbR5jxeCaMBAECHFnje8kwGrOLQzw6fLQAAAAAAAAAAAAAA0BVhNABgWO64se8JgCGbNITRym5SyuXbd840XEcYDQDYVnN+Z4JOTVr2eT8CTdo+O5LUQ/YDAAAAAAAAAAAAAAArE0YDAIbl+h/oewJgyGpDGG20O3/7zun528fCaADA0AhMcULV2rxvXtwYIGn/7Lj7gGMZAwAAAAAAAAAAAAAAtpEwGgAwLB/41b4nYON0vZDVQtlBmTSE0cqyYbS9BRZZAwAA7Rb5nbrtGGE0oMmkfXc9ZD8AAAAAAAAAAAAAALAyYTQAYLMICQF9qkuG0UYNYbQ6ab4WAACwPq3xImE0oMGh30H6jhIAAAAAAAAAAAAAALoijAYAbJb9O/qeANhmTTGzUUMYbachjJYk4/NHnwcAALbZQvH0lmOKMBrQpC2qmEOiiwAAAAAAAAAAAAAAwFEIowEAm+XiX/Y9AUOz0EL6I92g4+tzrCYNYbQijAYAACdS6zOfMBrQ4NDwme97AAAAAAAAAAAAAACgK8JoAMBmuUsYDehRbQijjYTRAADgZGqLGwmjAU0OCZ8dGk4DAAAAAAAAAAAAAABWJYwGAGyWi8JoQI8mDWG0IowGALAYISrW6f+zd+9hsp11nei/v+4dsjck3OWqBoQoIIrgOMhFBVHQUUEYhfF2BJTjMKMw4hzHyyCCjOMI4x1UznhBOSpyFRkRPdwEQYEBQUJQIEBUIhEIhiR772R3vfNHV8+uVLqqV92ruj+f5+mnV631rvf97dR6Vq9VWe+3DgguSpI2pk05HoERDgw+63D+AQAAAAAAAAAAAAAApiIYDQDYLILRmLsFT2QdNwmfzdMmDUY7MbqvnmA0AABYvHHhRoLRgFEO+DznwOA0AAAAAAAAAAAAAABgWoLRAIDNcp1gNGCFRgWjbY0KRjs+uq8dwWgAwCFSAqZYU8KqgWkcGHzm3AIAAAAAAAAAAAAAAIsiGA0A2CzXCkYDVqg3IhitRgSjbZ07uq+dk7PXAwAAR1mn0LNxbQT6ASMcFIx2YHAaAAAAAAAAAAAAAAAwLcFoAMBmOfPpVVfAodNlIv06989StRHBaFujgtGOjQ5N2zk1n5oAADaK62OWbFx4UQlGA0Y56O+Vv2cAAAAAAAAAAAAAALAogtEAgM0ybkIzwKL1RgSjjQo/S5Lt4/uvF4wGAAAz6hJMNK6NYDRghIM+g/QZJQAAAAAAAAAAAAAALIxgNAAAgK6aYDQAgNl0CbKCeRKMBkzh1OUHNPD3DAAAAAAAAAAAAAAAFkUwGgCwWZpJh8zZwo8px+yh0hsRjLYlGA0AoBP3dCxb643eVoLRgBHe/5zx28edWwAAAAAAAAAAAAAAgJkIRgMANoxJ9MAKtRHBaDUmGG1rRDBaTzAaAHCYCJhiFTp8RjA2jM9xC4zwgecd0MBnlAAAAAAAAAAAAAAAsCiC0QAAOOJMZGUCo4LRtsYEox07sf/6HcFoAMBR5PqbZeuN2SYYDZhSG3duAQAAAAAAAAAAAAAAZiEYDQDYMCbRs2GaY/ZQ6Y0IRqsxwWhbx/dfLxgNAAAWzz0ZsCjOLwAAAAAAAAAAAAAAsBCC0QCAzdJlwqFJicCitCmC0bZHBaOdnL0eAICN436NOep0/z+mTdXcSgGOIn/TAAAAAAAAAAAAAABgEQSjAQBwxC16EqtJsodKb0Qw2tY0wWinZq8HAAAYr/XGbBSMBszAlzMAAAAAAAAAAAAAAMBCCEYDADZMlwmHJiUCC9JGBKOVYDQAgE6EyDBXM35GUILRgFmMC14EAAAAAAAAAAAAAACmJRgNAACgq1HBaFuC0QAAuhGMxrKNO+YEowEzEPYJAAAAAAAAAAAAAAALIRgNANgwHSYcmpTIJBZ+vDgeD5XeiGC0GhOMtjUiGK0nGA0AABau9cZsFIwGzGLc+QUAAAAAAAAAAAAAAJiWYDQAYLMIPQNWqY0IRtsaE4y2PSIYbUcwGgBwiFTXgCn3dMxTl+PJMQcsiM8pAQAAAAAAAAAAAABgIQSjAQCHkEmJwIL0RgSj1bhgtBP7rxeMBgAAi9d64zYurQzgMBp3fgEAAAAAAAAAAAAAAKYlGA0A2DAmLTNvCz6mmmP2UGnTBKMd33+9YDQA4Chyfcw8dTqeHHPAgvibBgAAAAAAAAAAAAAACzFm9v7mqqoLkzw8yZ2TnE5ycZKXtNauWGlhAMAcmPQMrNCoYLQtwWgAALCWxgYX+fwAmEVv1QUAAAAAAAAAAAAAAMChtPbBaFV1pyRfObDqBa21a0e0rSTPSvLkJFtDm3+mqp7UWvvNBZQJAKyTsZOeAWbQGxGMVtMEo52cvR4AgI3jfo0la4KLgAXxGSQAAAAAAAAAAAAAACzE2gejJfkPSb6vv/y/Wmu/PqbtTyZ5ysDrvRkJleS8JL9WVdVa+435lwkALIUJh8zdoo8px+yh0rtu//W1PXqfkcFop2avBwBg47g+Zp66HE9j2viMAZiJ4EUAAAAAAAAAAAAAAFiErVUX0MHXZTfYLElGBppV1ecm+X+yO8tpMBBtb9/WX/7FqrrjYkoFABZvxknPALPond5//fa5o/cZFYzWE4wGABwmdXATWAmfEQALIlwRAABmVlW3rqrzV10HAAAAAAAAAACwXtY6GK2qbp3kLgOr/mhM86fk+v+eVyb510kekeSl2Z2Z15KcSPKD860UAAA4EkYFo22NCUbbGhGMtiMYDQA4TDqGwwiRYdlab9zGpZUBHEJjzy8AAMAoVXVBVf1WVX0qyceSfKqq/r6qnllVJ1ZdHwAAAAAAAAAAsHprHYyW5PMHlv+ptfaR/RpV1XZ2Q9D2ZjH9SWvt4a21l7XW/rC19k1JXpDdcLRK8uiqqkUWDgAsSpdJyyY2M4GFBzM4Hg+VnRHBaNtjgtG2BaMBAMBi+IwAWCXnFwAASJKq+s6qurT/c1FVjfwfZ1X1hUneluTbktw0Z5/nu0OSH07ytv6XqQIAAAAAAAAAAEfYugejXdD/3ZJcPKbdv0hyq+w+JJUkz9ynzY/m7AyF2yS5+zwKBACWbOEhVgBj9EYEo22NCD9Lku0RX2wvGA0AOEw636u5p2PJWm/MNscjMINx5xcAADhaviXJZya5Y5LXt9b2/R9qVXUsyQuT3Dq7z/m1oZ9Kco8kL1lCzQAAAAAAAAAAwBpb92C0Ww0sf2JMuy8bWL6stfbnww1aa3+X64er3XPG2gCAdWViM7Aoo8LMtkd+8X2yPSI0TTAaAABHzbzv1zv15zMCYArHb9ehkfMLAABU1VaSBw6setmY5v9Xks/L2SC0JHlPkr8aWvfAqnrMnEsFAAAAAAAAAAA2yLoHo50YWL56TLv793+3JH8ypt3fDizfdtqiAIBVMuGQeVvwMSWo73DZ2fcL7pOtKYLReqcdHwDAEeT6hyUbe83teARG2D5xcJvWW3wdAACw/u6R5Mb95euSvGFM2+/q/64k/5zkfq21e7XWvjjJfZJ8LGdv1p+4gFoBAAAAAAAAAIANse7BaGcGlsfNQLj/wPKbxrS7amD5vKkqAgBWrMukZRObgQXpjQhG254iGC1Jdk7NVg8AwNpwH0YXqzhOBBcB0/AZJAAAdHSX/u+W5P2ttev2a1RVt0vypf12LckzW2tv3dveWnt3kidlNzStkjywqm6xyMIBAAAAAAAAAID1te7BaFcOLH/mfg2q6u5JbjOw6i1j+hsMV9uZoS4AYK2ZlAgsyM6oYLQx4WfjtvUEowEAR0xzv3akzf3979Df2DEdj8AIrUOoYpc2AABw+N1xYPlDY9p9ec6Gnp1J8uv7tHlZkn/uL1eSL5pHgQAAAAAAAAAAwOZZ92C0S/q/K8m9qmq/RIFHDCxf0Vq7eEx/txxY/vSsxQEAK2ASPXO36GPKMXuo9EYEo22dO3qfrTHBaDuC0QCAo8b18dG2ivdfcBEwjS7nK3/TAAAgyXkDy1eObJU8sP+7JXlLa+1Tww1aaztJ3jmw6q6zlwcAAAAAAAAAAGyidQ9G+6vsPgzVkhxP8vjBjVV1LMl391+2JG88oL+7DSz//ZxqBACWqsOEQ+FpwCK0NjrIbHtMMNq2YDQA4AhwH8ZKzPgZgeMWGKV1CFXs0gYAAA6/czq2u9/A8uvHtPvHgeWbTlwNAAAAAAAAAABwKKx1MFpr7fIkb+6/rCT/raq+o6puXFV3SvJ7ST5nYJcXj+qrqm6X5PYDq94/32oBAGA/JtofGu1MRr6fW4LRAAA6EUR1xK3i/XfMAdPocu5wfgEAgCRXDSzfYr8GVXWTJF80sOrPx/S3M7A85n/AAQAAAAAAAAAAh9laB6P1/Vx2Q9Fakpsk+c0kn07ywSSPzNlZB5dlTDBakq8ZWL4qyd/Mu1AAYAk6TaI3KZEJCGagq53To7eNDUY7MaZPwWgAABwhq7j/ar1xG5dWBrBpOpwfxp5fAADgyPj4wPLdR7T5qiTb/eWW5C/H9HfzgeVrZqgLAAAAAAAAAADYYGsfjNZae0mSl+ZsOFoN/GRg/Q+01sYkFeRRe10meWtrEjAAYDP5Ew6sSG/M7cb28em2CUYDAA6Nrvdq7umYI+HpwKJ0Cj1zfgEAgCTv6f+uJBdU1T33afNv+r9bkve01q4c098dB5Y/MYf6AAAAAAAAAACADbT2wWh935rk13I2DG1PJTmd5Ptbay8ctXNVfVaSr83ZGQqvXkSRAMC6MCmRSSz4eJHHe3jsjAtGO3f0tq0bjd7WE4wGAMBRsoL7o7H3ZO7XgFE6nB86hacBAMCh957sBpjtXUT/TFWds7exqh6Y5JsGtr9qVEdVdSzJPQZWfWi+pQIAAAAAAAAAAJvi2KoL6KK1dm2SJ1TVs5M8PMkF/U3vS/LS1tpHD+jia3P22ymT5A/nXyUAsBwmLQMrMi7EbGtMMFpVsn082dln//3WAQAcau7pjrZVvP+Ci4AJtV5y6vIuDRdeCgAArLvW2k5V/W6S783uRfJDkry7qv4wyW2yG4q2ld0vQG1JfntMd1+SZPAbhy5aSNEAAAAAAAAAAMDa24hgtD2ttb9J8qwp9ntekufNvyIAYC01kxKBBdg5PXrb9phgtCTZGhWMdnK2mgAA1kbH+zD3a0fb3N//Dv2NG9PxCOznb36hW7smeBEAAPqemeQ7kty0//rzknxuf3kvEK0leUlr7b1j+vnG/u+W5AOttSsWUCsAAAAAAAAAALABtlZdAADARDpNWjaxmXXieDw0emOC0bYOCEbbPr7/+v3C0gAAgDkSXARM6JLf6NZOMBoAACRJWmuXJ/nXSU7lbBDa/9ncX/fBJE8c1UdVbSV59MC+r19ErQAAAAAAAAAAwGYQjAYAbBghU8CK7IwJRhsVfHbQdsFoAMBh0SnEOnFPd9TN+/3v0N/YY9PxCOzjU+/u2FAwGgAA7GmtvTbJvZK8MMk12Q1DqySfSPJLSb60tfaJMV08PMkF/X2S5I8WVy0AAAAAAAAAALDujq26gINU1SX9xZbky1prH52ynzsmeeNeX621u8yjPgBgHZnYDCxAb0ww2ta54/cVjAYAAFnN/brPCIAF6Z1ZdQUAALBWWmsfSPItSVJVt+6v+3jH3T+U5JEDr1893+oAAAAAAAAAAIBNsvbBaEnu1P/dMlu9x4b6AgA2kj/jzFFbwvG0jDFYjt51IzZUsrU9ft/tE/uvF4wGABw5ro+PtFXcH7XeuI1LKwM4hJpgNAAAGGWCQLS99u9K8q4FlQMAAAAAAAAAAGyYrVUXAAAwkS6TqAVRAYvQdvZfXweEoiXJ9vH91/cEowEAh4X7MFag0/2/YxNYkJ5gNAAAAAAAAAAAAAAAWATBaAAAAF2MDEbrcFs1KhhtRzAaAHDECLI+4lbx/o8Z0/EIDJvkvNAEowEAAAAAAAAAAAAAwCIcW3UBS3TOwPJ1K6sCAJhRl8mJJjbT1TKOFcfjoTEyGG374H23BKMBAOxyfXy0reD9b73ljwlsrt7p7m0FowEAQGdVdfMk5yep1tqlq64HAAAAAAAAAABYb0cpGO22A8ufXlkVAMCMTKIHVmSWYLTtUcFoJ6evBwBgrbhXYxVmDU933AJDJgkw7wlGAwCAUarqG5M8PMmXJblTkq3+ppZ9nlmsqjsl+ez+y6tba/9r4UUCAAAAAAAAAABr6ygFoz2s/7sl+ftVFgIALFgzsRlYgNbbf/1MwWgTTLgGADgU3K8daau4Xx91HQ+wn0nu05tgNAAAGFZVD0vyC0nuureq4653SfKn2f3w6NqqukNr7YoFlAgAAAAAAAAAAGyAtQhGq6rPPrhVkuSOVV2flUqSnJvk9kkemuQHBtb/1SSdAABrpNMkahPt6Wgpk/Idj4dG29l/vWA0AADoaM73R13u6ca2cb8GDJnkPr0nGA0AAAZV1Y8l+bHshqFVrn/j3TImJK219pqqujjJ3ZPcKMljkvzK4qoFAAAAAAAAAADW2VoEoyX5cA6egVRJ3jTDGIMPVr10hn4AgJUyaRlYEcFoAACjdQ0dXko4MetrFe+/Yw6YwCT36U0wGgAA7KmqJyX58f7LvZvx00nemuTKJF/foZsXDvTxdRGMBgAAAAAAAAAAR9bWqgsYUvv8HLS9y09y9oGrtyR55cL+BQDAGjDpmTUi+OHwmCkY7cT+6wWjAQDAYrXemG3u14AhPcFoAAAwqaq6MMmzs/s/6lt2A9F+MMmtWmsPSvJ9Hbt6xV6XSb6sqoafHQQAAAAAAAAAAI6IdQtGW5S9h6RekuQbWjPbCQA2lz/jzJPjiQnMFIx2fP/1k0y4BgA4FFyDH2lz/2i+S3+OOWACkwSY9wSjAQBA3zOSHMvuM3qnkjyktfbs1trJCft5d3//JDk/yYXzKxEAAAAAAAAAANgkx1ZdQN/zx2z7zv7vluSlSa7q2Ofet09+KsnFSd7QWvvI1BUCAOuhyyRqGajAIswSjLY1IhhtkgnXAABrzX0YXaziOBk3puMWGDLJfXoTjAYAAFV1bpKH5+xN9n9urb1lmr5aa72qujjJvfur7pbkb2evEgAAAAAAAAAA2DRrEYzWWnvcqG1V9Z05++DUD7TWLl1OVQAAMA8m2h8aswSjbQtGAwDY5fr4SJt7kHmX8PTenMcEDrVJ7tN7gtEAACDJA5Kc6C9fneS5M/b30ZwNRrvDjH0BAAAAAAAAAAAbamvVBXRUqy4AAFgXXSZRm2hPV44VJrCQYLST09cDALBWOl5bzz0YCw4y7phzPAJDJglGu+i/JL0RnxUAAMDRcaf+75bkra210zP2d+XA8vkz9gUAAAAAAAAAAGyoY6suoIPHDSx/5askPgAAIABJREFUfGVVAABrwqRlYEVGBaNtzRKMNsGEawAA2HgruKdvveWPCWyuSe7Tr/pg8tYnJF/664urBwAA1t9nDCz/4xz62xqxDAAAAAAAAAAAHCFrH4zWWnv+qmsAADaN8DTWiePx0OiNCEYrwWgAAN25Pj7a5vz+ty79jWnTaX/gSOmdnqz9Jb+Z3PtZybm3Wkg5AACwAQYvos+dQ3+DF9dXzKE/AAAAAAAAAABgA619MFpV/djAy59rrV05ZT83S/LkvdettWfMWhsAsAJdJi2b2ExXjhUm0RYQjNYTjAYsWWtJ1aqrAA4j19asK8cmMIlJg9HSkkuen9z9KQspBwAANsA/DSx/5hz6u9eIvgEAAAAAAAAAgCNk7YPRkvx4kr2ZS7+ZZKpgtCQ3H+pLMBoAbCQTmoEVmSkY7cT+63cEowFLcuZk8o7vT/7hFck5N03u/NjkHv9JSBqwAu7pjrSVhJT1xmxzPAJDpjlPnf74/OsAAIDNcUn/dyX5oqq6SWvt6mk6qqr7JPmMgVXvmLU4AAAAAAAAAABgM22tuoCO5jlL14xfADj0TGxmjaxk4j8LMVMw2vH91wtGA5blzd+afOBXk5OXJVf+TfKuH07e+1OrrgqAI2fe90cd+nNPBkxkXJjiCF0+FwAAgMPrrdn9otOW5Jwkj5+hr6cMLH+ktfaRWQoDAAAAAAAAAAA216YEowEA9JnQzDw5npjEiMnRXSZAb40IRms7Se/M9CUBdHHq48nf/8EN17/rR5IzVy+/HuCQ6nhtLaTqiFvF+z9uTMcjMGSav1OC0QAAOMJaaztJ/md2v6y0kjy9qj5r0n6q6pFJvjW7N+stye/Os04AAAAAAAAAAGCzHFt1AUtUA8tTfN37fFXViSR3S3JBkjskOT+735p5ZZJPJHlPkotaa3NJSaiqc5I8IMlnJ7l9kquSfDTJO1trH57HGANj3TnJF2X333VeksuSfCTJm1tr181zLADYn4nNwAK0nf3Xd5kAvT0iGC1Jdk4lW+dNVxNAFx/53Yy8PnrTY5IHvXKp5QBHnfs15qnD8dRW/r8DgI0iGA0AAKbwE0kek93n826e5PVV9fDW2kVddq6qxyb55exekFeSk0l+fjGlAgAAAAAAAAAAm+AoBaPdbGD5mlUUUFWPS/KVSe6b5C5Jtg7Y5aqq+v0kv9ha+6spx/yMJE/P7sNntxzR5s1Jfqa19pJpxhjo55uSPCXJ/UY0+WRVvTDJj7XWPj7LWAAcYc0keuZpGceTY/bQ6I0KRjvosj4HB6OdIxgNWKCdU6O3ffR/JmeuSY7deHn1AHB0reSefsyYPmMAhk0TprglGA0AgKOttfa+qvrFJE/O7o34nZO8o6pekOT3k3xyeJ+q+qwkD03y3Un+Zc5+6WlL8rTW2uXLqB0AAAAAAAAAAFhPHWbwHxpf1P/dkqwqlOsnknx7kgvT7b/9eUken+TtVfWzVTVRkF1VfW2S9yR5YkaEovXdP8mLq+oFVXWTScboj3NeVf1ukhdldCha+jU8Mcl7quphk44DALs6TFo2sRlYhDYqGK3DBOixwWgnp6sHoKuDAhw/+fbl1AEccl3vw9yvHW0reP+nCTkCjrApzlNdPhcAAIDD7weS/Gl2A85aknOSPDbJHyX5iwxcbFfV1Uk+nOR5ORuKtrf9Za21Zy+raAAAAAAAAAAAYD1NFLS1qarqwiQ/NLDqvauqZcg1ST6Y5NIkV2Y3LO2WSb4gye0G2m0n+Q9J7lRV39TaqESGs6rqQUlenuRGA6tbknckuSTJzZPcO8mtB7Z/W5KbVtU3ttZttlhVbSd5YZJ/NbTpn5K8M8k/J7lLf6y9b/a8bZI/qKqvaq29qcs4AACwcgsLRjs1XT0AndX4zQd/zAAAczLnYLROwejj2gjqA4ZM84ULgtEAACCttV5VPSLJc7MbiLZ3cb33AXUbWHdicNeBdr+e5N8utlIAAAAAAAAAAGATrEUwWlW9tmPT36uqSVIDzk1y+yQXDK1/zQR9zNPVSV6R5FVJ3pzkPaMCyKrqS5M8M8lDBlZ/Y5KnJHnWuEGq6jOTvDTXD0X78yRPaK1dPNDu3CTfk+TZ2f2WziT5hv64P9Lx3/RTuX4o2nX9Gp/XWrt2YKx7JPkfSe7XX3VukpdX1Re01i7rOBYAzGHSMwyYZrLr5IMsYQyWYpZgtK0xwWg9wWjAgtXW+O2C0YBlWso1OAxwzAET6fS9QdcnGA0AAJIkrbVTSR5fVa9K8tQk9xzVtP+7+j8fTPJjrbXfXXyVAAAAAAAAAADAJliLYLQkD8rBiRGV5L5T9D34rZNJ8qkkL5iin3m4Z2vtui4NW2t/UVUPTfL8JN8+sOlHq+oXWmunx+z+9CS3GHj95iRf1X/4bHCM00l+oaouTfKygU1Pqapfba19ZFyNVfU5SZ48tPqbW2t/sM+/571V9ZDshtLthaPdKsnT4ps+AZiIYDRgRWYJRjt2YvS2HcFowIIdFIzWO7OcOoDDTfgUXcz9OOnS35iQI8ctMGya84JgNAAAuJ7W2ouSvKiqHpzkq5M8MMlnZfdZsRsl+XiSj2X3mbZXJ3lVa77BAwAAAAAAAAAAOOuAmbGHwuA3TH46ybe21j6+kkI6hqINtO8l+fdJrh5YfbMkDx61T1VdmOQ7B1Zdm+Sxw6FoQ+O8PLsBbHvOzW5g2UGeluScgde/uV8o2sA4J5M8tl/Tnu/qB6wBAMB6myUYbevc0dsEowELV+M3tzGBMQBzJ4jqaFvB+y/8DJiIYDQAAJiX1trrWms/0lr78tbanVtrN22tHW+tfWZr7Ytba9/XWnulUDQAAAAAAAAAAGDYOgWj1YifLm1G/Vyb5PIkr89uiNfdWmuvXvC/Y65aa1cmedPQ6ruO2eVbkwzOwHhpa+39HYb6b0OvH11Vx0c1rqoTSb7pgD5uoLX2t0lePrDqWHZrBoCOOkxONOmZzpZwrDgeD4+ZgtGOJXVs/22C0YBFqwM+/jHnDJiLjte9ro9ZunHHnOMRGCYYDQAAAAAAAAAAAAAAVm0tgtFaa1ujfvaa9H/uNK7tPj8nWmu3b619ZWvtJ1prl63wnzmLTw69Pn9M20cOvf6NLgO01i5O8pcDq26S5KFjdnlYkhsPvH5La+19Xcbap6ZHddwPAEyiB1ZnlmC0JNkekTssGA1YtAOD0c4spw4AmHsQWZfw9N6cxwQOtWnOGYLRAAAAAAAAAAAAAABgrtYiGK2DWnUBK3bB0OuP7teoqm6X5F4Dq84k+fMJxnn90OuvHdP2aw7Yd5w3Zre2PfeuqttOsD8AHEB4GuvE8XhoLCoYrScYDVi0g4LRRpzfABbC9fGRtpKw83FjOh6BYVOcFwSjAQBwxFXVa/s/r6mq28zQz20H+5pnjQAAAAAAAAAAwGY5tuoCOviznJ2FcOQSA6rqc5Pcd2BVS/KGEc3vOfT63a21qycY7s1Drz9/TNvhsd7SdZDW2tVV9ddJ7j001se69gHAUWbSMvPkeGICiwpGO3NyunoAuqoD8uYFowFz4dqaLlZwnLTe8scENtc0AY6C0QAA4EE5e9M/4n+IdXK831fiwyYAAAAAAAAAADjS1j4YrbX2oFXXsCpVdfskL0oyOKPixa21D4/Y5R5Drz8w4ZAfPKC/QXefw1iDwWj3SPLaCfsA4Ejq8vyzZ6SBBZg1GG1rxDyQ3pHLfwaWbmv85t6Z5ZQBkMT9GnPVKcBoTJtpApCAQ26KMEXBaAAAkCQVH/wAAAAAAAAAAABzsvbBaEdJVR1Lcovsho59fZLvSXLTgSaXJPneMV3cdej1pROW8JGh17eqqlu01q4YqvOWSW4541jD7S+ccH8AgA3h+f9Do42YHN11AvT2iGC0HcFowILVAcFoo4IfAWDuVnB/JPwMmMQ05wzBaAAAAAAAAAAAAAAAMFeC0Vaoqn4uyZM7Nn9dku9orV0+ps3Nh16Pa3sDrbWrqupUksHEhpsluWKo6fA417TWrp5krH1qu9mE+wNwVHWZnGjSM105VpjEqOCgzsFoJ/ZfLxgNWLgav7mdWU4ZwOHW9draNfjRNvf3v0t/IwKOO+8PHC2C0QAAYIUGn2X0wTUAAAAAAAAAABxhgtHW3yuSPKe19icd2p439PrkFOOdzPWD0c5f4DiD9htnYlV1mySfMeFud5nH2AAsS5fJiSY2AwswczDa8f3XC0YDFq22xm/vXbucOgBgFffrwviASbRxYYojHHS9DQAAdHXrgeVJv6QTAAAAAAAAAAA4RDY2GK2qbpXk7klukeRmSSaaddBa+61F1LUAX5tku6pOtdb+7IC2w4Fl0yQsnMzuf9NRfc5znHF9TuvfJXnanPoCAJidSfiHh2A0YGPV+M2965ZTBkASQdYs37hjzvEIDJvmvHDA9TYAANDVl/d/tyQfXWUhAAAAAAAAAADAam1UMFpV3Tq7wVffluSuM3a3DsFoz0jycwOvTyS5VZIvSvLIJF+Z5JwkX5fk66rqOUme3NqoRIYbmGb2xjrvAwDp9CdEEBWdOVaYgGA0YFPVAVnyvWuXUwdwyHW9tnYNfqTN/X69S3+OOWACU52nnGcAAGDARBfIVXVOktsneWiSHx3Y9NfzLAoAAAAAAAAAANgsGxOMVlWPSvLrSc7P9F+93vr7rsUMhdbaJ5N8cp9Nb0ryS1X1wCQvSHJBf/2/z2542neN6PKqodcnpihreJ/hPpc5DgDckNAzYFUWFYzWE4wGLJhgNADWxprd0/uMAbgBwWgAALCfquryRZ6V5MNV0z7ad71nAl8xbScAAAAAAAAAAMDm24hgtKr6tiS/lf0D0QZnGwxvH9429VNXq9Bae1NVPTjJ25Lcqr/68VX1itbaH+yzi2C05LlJXjThPndJst9/TwA2lsmIrBPH46ExMhjtgMChPVsjgtF2BKMBiyYYDViGjte9gqiOuBW8/445YBKtt+oKAABgXXV97m6W5/P2vvT0fUlePEM/AAAAAAAAAADAhlv7YLSqunOS52X3oae9h5/eneRlSU4m+al+05bkcUlumuQOSe6f5AHZnf3bklye5JlJPr3E8mfWWvtQVT0jyc8PrP7B7B/k9c9Drz9jkrGq6rzcMLDsUx3GuXFV3aS1dvUEw92mwzgTa61dnt33urMZvqUUgJUwoZl5cjwxgZHBaNvd9t8eFYx2crp6ALo6KMBRMBoAm6pT6Nm4Nu4JgWFTnBcEMAIAcHTsPbu3KJXk7Uke01q7boHjAAAAAAAAAAAAa27tg9GS/MfshnXtzSp4epJntNZaVV2Qs8Foaa09f3DHqrprkp9O8o3ZDQn7niQPba1dtozC5+j3cv1gtC+tqpu31obDxN4/9PqCCccZbv/J1toVw41aa5+oqiuS3GJg9WcnuXiGsYZrB4ARZp30DDClhQWjnZquHoCuDgoEF4wGLJX7tSNtJeFBjjlgEtOcM5xnAAA4Ev4soy9+v6L/uyV5a5Ku//OrJTmd3S/UvDjJ61prb5ylSAAAAAAAAAAA4HBY62C0qtpK8u05+1DVi1prT++6f2vtA0keVVVPT/LUJPdI8odVdb9N+lbJ1trlQ0FkW0nunOSdQ02Hg8nuOuFQnzP0+r1j2l6c5P5DY00SjDY81iT7AgBsEJNjD42Zg9FO7L9eMBqwcFvjN+8IRgPmYCWBV2yeeR8nHfobe2w6boEhrTfFPs4lAAAcfq21B43aVlW9nL3Jfkxr7dKlFAUAAAAAAAAAABxaB8yMXbkvTHJ+kuq/fsY0nbTWnpbk5f1+7p3kSXOpbrmGg9zO3afNe4Zef2FV3XiCMR5wQH/jtt2v6yBVdZPsvrddxwKAs7pMNDQZka4cK0xi5mC04/uvF4wGLFrV+O09wWjAMrkGZ9kcc8AknDMAAGBKB3wQDQAAAAAAAAAA0N26B6Pds/+7Jbm0tfbecY2rxs70/eGB5e+atbBlqqrjSW49tPpjw+1aa5cleffAqmNJHjjBUA8aev2qMW3/+IB9x/my7Na2552ttRv8ewBgeiYwAgsgGA3YWILRgDUinPiIW8X7P2ZMxyMwbKrzgnMJAABH3tP7P89I8qkV1wIAAAAAAAAAABwCxw5uslK3HFi+aJ/twzMNjic5uV9HrbW/qaqLk9w9yedV1ee31vbrcx09JNcPsbsmyT+MaPuyJF848PpxSf7koAGq6m5J7juw6uoD9nt1dv9bn+i/vl9V3a219r6Dxkry2KHXL+uwDwD0mWjIhjHR/vBovf3XzxqM1hOMBqxY77pVVwAcCq576WDu90cd+nNPBkxkxL3/WM4zAAAcba21p6+6BgAAAAAAAAAA4HDZOrjJSp0/sHzFPtuvHtN+P387sHz3qSpasqraSvLUodV/3Fq7dsQu/1+SnYHXj6qqCzsM9Z+GXv9+a21kQkNr7ZokLz6gjxuoqs9N8siBVWeS/E6H+gCgr8tEQ5MR6cqxwgTazv7rZw1G2xGMBizaAX/veqM+YgBYBNfgR9sq3v9xYzoegSHThCkKYAQA4IjrP98GAAAAAAAAAAAwN+v+UNJg8Nk5+2z/9NDrOx7Q31UDy7ebqqIpVdX3VdXtJ9znnCS/luS+Q5ueM2qf1tr7kzx/YNWNkvxmVY1IYUiq6hFJHjuw6tokXb7J88eTXDfw+rFV9fAx4xxP8hv9mvb8Wmvtgx3GAgDYUCbHHhqjgtG2OgajbQlGA1bkoKAGwWgAbCphRMDcOa8AAMAULq2qp1XVQc/uAQAAAAAAAAAAdLLuwWgfH1i+6fDG1tq1Q23ueUB/g8Fk581Q1zS+K8kHq+oFVfUNVXX+qIZVdaKqviXJO3P9wLIk+e3W2msPGOtpSa4YeH3/JP9/Vd1taJxzq+r7krxoaP//3lr7yAFjpLV2SZKfH1r94qr63qoaDD9LVd09yWv6tez5RLoFsAHAWV0mPZsYTWeOFSYwKhitOgajbY8KRjs5XT0AnR30987fQ2AOOt+HOeccbat4/8eN6XgEhkz1uaJzCQAAR94dkvxYkg9V1Uur6qGrLggAAAAAAAAAANhsx1ZdwAH+dmD5whFtLkryFf3lhyT57f0aVdVNkvzLgVVX7NduwU4k+bb+T6uqDyT5cJJPJbk2yflJLkhyjyTn7LP/K5M84aBBWmt/X1WPSvLqJHsBZQ9I8t6q+l9JLklysyT3SfIZ+4zx1An+TT+U5POTfG3/9TlJfjHJU6vqHUk+neRz+mPVwH7XJnlka+2yCcYCgJhoyMZpvVVXwLwsLBjt1HT1AHR2wPWTv1UALMsqgsyFpwMTmeba2HkGAAD6jiV5RJJHVNWHkvxqkt9orX18/G4AAAAAAAAAAADXt7XqAg7w3iQ72Q3UunNV3XifNm/s/64k31xVF4zo64eSnDfw+qK5VTmdym7Y21cn+ebshqU9PMm9csNQtJNJfjTJo1prp7t03lp7fZJHJvmnoTH/RZJHJ3lYbhiK9rtJ/k1roxIf9h1np9/fC4c23SbJ12T33/bFuX4o2uVJHtFae2MAYCFmnIx45prk/b+a/MXjk/f9XHL6k/Mpi6Ppop9cdQXMy86IS/Gtc7vtLxgNWJUDA2EEOQBLJKTqiJv3+9+lvzFtHI/AsGnOC84lAABwbXafDdu7OK7sfpHmTyX5u6p6QVU9cFXFAQAAAAAAAAAAm2etg9Faa1cleUf/ZSV5yD7N9gK5WpITSf6kqr58b2NV3ayqnpndYLG9h68+meQvF1L0aE9I8swkb0nSKdwsyfuSPDXJ57bWfrK1dt0kA7bW/ijJPZP8SpIrxjT9iyTf1Fr71tba1ZOM0R/nqtbav8luCNpfjGn6ySS/nOSerbU/nnQcAEiy+ImGO6eSNzw8edu/TS75jeQd35+85sHJ6U8sdlxWYxkTV//hFYsfg+XojQpGu1G3/bdPjO7XJGpgoQ44x7TecsoADrmu1zOue1g2xxwwCecMAACYwh2S/GCSD+Tsl2e2/vK5Sb4lyRuq6q+r6t9V1fmrKRMAAAAAAAAAANgUx1ZdQAevTvIl/eWHJ/nDwY2ttYuq6g+SPCK7D1RdmOR1VXV1kiuT3CbJdr/53jdT/tKkIWOzaq29Lcnbkjy1qs5JcvfsfjPmHZOcl+ScJFf1a/5wkne21saFmXUd9/IkT6yqJyd5QJILktwuydVJ/qE/zodmHac/1ouTvLiq7pzkPtl96O0mSf4xyUeS/Hlr7dp5jAXAUdZlcuIMExg/+sfJx15z/XWfenfyoRckd3vy9P0Cm6834lJ2+9xu+28fH9P36fHbAWZxUPiiYDQAlmYFgUNj/w4KQAKGTHVt7FwCAMDR1lr7ZJJnJ3l2VT0kyROz+5zfsZy9YK4kn5/kF5P8t6r6nSS/2lp7xz5dAgAAAAAAAAAAR9wmBKO9MMl/zu7DUd9SVf+xtfbPQ22enOS+SW6bs982eV7/Z8/e+rcn+clFFz1OP5Tt3f2fZY15bZLXLWmsDyWZS9gaACzdu354//Xv+A+C0eCo2zm9//qtOQSj7ZwSjAYs0EFBDYIcgHnoei5xzjnSDgrrnLzDObUB2DPNOcN5BgAA9rTWXpPkNVV12yRPSPLdST57b3N2n9+7SX/9d1fV25P8cpLfa62dWkHJAAAAAAAAAADAGtpadQEHaa1dlOSLk3xJkq9IsrNPm0uTPCTJe7L78NT/2ZTrf+vkq5I8tB9MBsAm2zmd/NUPJ6+6d/LahyWXvmTVFbE0HSYazjLR+sr3Tb8vG8jEVSbQGxWMdqNu+28dEIwGsCqtt+oKAGBxxn5G4J4QGDbFeWHuoY8AALD5Wmsfa609M8mdkzw8yR/l7AX34PN8X5Lk15J8tKp+tqrutvRiAQAAAAAAAACAtXNs1QV00Vp7Z4c2F1fVfZI8KskjklyY5OZJrkjyriQvbK29dqGFArA8f/6Y5O//4Ozrf/zT5AG/l1zw6NXVxHJ0mmhoMiKwADsjgtG2z+22/7ZgNGBVDro2EowGLJHwmCNuzu+/zwiAeVtEaPA1H01O/WNy83slW9vz7x8AANZYa60leWWSV1bVZyX5niSPS3L7vSbZDUi7eZInJXlSVf1ZkucmeVlr7czyqwYAAAAAAAAAAFZta9UFVNUrq+oHquo+VVWz9NVa22mtvai19u2ttfu21j6vtfalrbXvEYoGcIhcfen1Q9GSJC15/3NXUg4AR0Tv2v3Xb92o2/6C0YBVOSg0ZhHhD8DRI/CMTlZxnIwZ03EL3MAU54W/fHzSu+6G63dOJ2/818nL75j88RcnL79D8om3z14iAABsqNba37XW/nOSz07y6CSvGWpS/Z8vT/J7Sf6uqp5ZVRcst1IAAAAAAAAAAGDVVh6MluRfJfnpJG9L8omqenlVPamqvmDFdQGwrv72l/Zff/kbllsHK9JlcqKJzXRkEjxdtV4y6gvpt87t1sfYYLSTk9cE0NlBf+/8PQSWyTnnSHMPBqy7ac9TF/3XG67766clf/fSs69PXZ68/mv2D1EDAIAjpP/lpy9urX11ks9N8t+TfCK7Hxy1nA1Iu22SH07ygap6aVU9cFU1AwAAAAAAAAAAy7UOwWh7KsnNk3xDkp9N8ldV9U9V9aKq+ndVdbfVlgfA2jj98VVXwEqZRA2swM7p0du25xGMdmqyegAmcsD1U+stpwyAJO7pmK8Ox9PYkCPHIzBsyvPC+597w3Uf+u0brjv9ieSyP51uDAAAOJxumuRmSQb/R1ob+EmS7SSPSPKGqnpVVd1luSUCAAAAAAAAAADLtk7BaIMPM+196+OtkjwqyS8muaiqLquq36mqJ1TVXVdUJwArZ9IqBxg76RlgCr1rR2/bulG3PrbGBKj1BKMBC3TQtZFgNGAu3IfRxSqOE8cmMIFpr41PfeyG605+dP+2l/z6dGMAAMAhUVUnqurxVfWXSd6e5LuS3HiwSZIzSU72lwefKXxYkndV1dctsWQAAAAAAAAAAGDJ1iEY7T8leVWST+dsIFqyf1DabZM8JsmvJPmbqrq0qp5fVY+tqguWWzYAKyP06mjz/jNXjic66p0evW1c4NmgqmT7+P7bdgSjAYt00N87fw+BJXJPd7TN+/3v1N+YNo5H4AaWcF7oXbf4MQAAYA1V1T2q6heSfDTJ/5vkX+Tss4J7zwdeluTHk1yQ5A5JvjfJRTkbkNayG6L2+1V1l2XWDwAAAAAAAAAALM/Kg9Faa89qrX19klsmuW/OBqVdlYOD0j4zybcn+bUkl1TVJVX1P6rq26rqDkv8ZwAASzPjpGeAaeyMCUbb7hiMliRbgtGAVTjg2qj1llMGAKzifl34GTCRGc4ZXc83vWunHwMAADZMVd2o/yzfG5P8dZJ/n+RmOftMYPrLr0/y6CQXtNae0Vr7x9bala2157bWvjDJ1yW5eGC/40m+f1n/DgAAAAAAAAAAYLmOrbqAPa21XpK39X+eVVVb2f1WyAcleXCSByQ5b3CXgeW9B57ulORx/Z9U1QeSvC7Ja5O8vrV2+eL+BQAsjwmtACxZb0ww2taNuvezfTy5bp/1gtGARToooEEwGjAXXe/V3dOzbOOOOccjMGSWa+OdU8mxEx3GODP9GAAAsCGq6sIk35PkO7P7hanJ7jN+e1+OWtn94tTfTvKc1trF4/prrb2qql6X5E1J7tPf/6sXUz0AAAAAAAAAALBqaxOMNqwflPbW/s9PV9V2doPSHpzdsLQHJLnJ4C4Dy3tBaRcmuWuSJyRJVV2c3aC017XWXrrI+gFYoIOCHTjkurz/jhG6cqzQUe/a0du2zu3ez/bx/dcLRgNWSjAaAMsy73swnxEAczbLZ88713QLRuvtl5gOAACbr/983yOT/NvsPuOXnH2Orw28vijJLyf5rdbaVV37b62dqqr/muRF/VWfNXPRAAAAAAAAAADAWlrbYLRhrbWdJH/Z//mpqjqW5EuyG5L24CRX2fZoAAAgAElEQVT3T3LjwV0GlvcesLpH/+eJ2aB/OwDDTGg90rpMThSeB8zbzunR27bnEIzWE4wGLNIB10aunYBlcs452lbx/o8d0/EIDJvhvHDmmuTcWx3cTjAaAACHTFVdkOT/TvL4JLfZW53dC+zWX95J8vIkz2mtvWGG4d47sDzB/6QDAAAAAAAAAAA2ycaGg7XWziR5S//nv/aD0v5ldkPSHpTkftk/KK1yNigNgI1k0ioAS9YbE4y2daPu/YwKRjtzcrJ6ACZy0PVzbylVAIecwDPWlmMTmECb4dr4zNXd2vWunX4MAABYTx/M9Z/JG3xO77Ikz0vyvNbaZXMY65qhMQAAAAAAAAAAgENoY4PRhvWD0t7c//kvVXVOkvsm+eYkT4hviASAQ6LL882egaYj4Q10NW7S8tYEtxpbI4LReqcmqwdgEgf9vZsl/AFgYq7Bj7Z5v/8z9ueeELiBGc4LO9ecXR53fmlnph8DAADW01Z2L6Zbzgak/VmS5yR5Wf+5vnmr+KAJAAAAAAAAAAAOrUMTjLanqm6R5CuSPDjJg5J8fs5+GyUAh4FJqwAs287p/dfXdrK13b2fYydG9C8YDVgkwWjAMnS9V5/wnv66TydXvi+5+Rcm2777YvMt6DOdqz+SnHvr5NhNljcmcEjNcM44MxiMtjO6Xe+66ccAAID1VUmuSvLbSZ7b2v9m787DLMnq80B/J6sa6G5WsQq1gG6QtSC0IckbaECDtdmSNVibLVndNjOjsWfRWLN4bGvzjD22Rx7b8iNrNF4k2mgxFthIxrIshA1oYRGLhNqgBbpo9oaGpmmglsy8x39UZtetrBtxI27cLW6+7/PU05kRceOcIg4nTkTl78v6n1bRSK31rlwOYgMAAAAAAAAAAHbY6IPRSimPTPIVuRKE9ozMDkKb3qYSCgBGq8NtXHgesGyThmC0vQf1O8/eQ2ZvF4wGrNS8tZG1E7Cl7vgbyW//9aQeJGeuT778Hyc3f8eme8UQy35ev+/tycs/J/n47yZ71yW3/LnkS3/06vDi1jbdA4EThsxTh9PBaC3hw4LRAADYPW9P8qNJ/nmt9f5NdwYAAAAAAAAAABi/0QWjlVIenquD0L4wV4eelVyuZjoZhPbWJK8++vOadfQVgFVRtHqqCT1jqYwnOmoqWu4bjHamRzDaJ84l73v55cLqz/j65BGf168tgGPz1k9toQ0Ay9b1me69P5+89fuufH94PnntdyaP+sLkkc9YTd8Yn3f82JWvJ/vJO/5xcv1nJM/4/qmDPPcBfQxYGx9MB6MdtjRxafE2AABgC9Van77pPgAAAAAAAAAAALtl64PRSikPS/LsXAlC+6Ike9OHZHYQ2ltyJQjtV2qt966jvwCsgeAG5lL0DCxZU0FzOdPvPF2D0T782uRVX5Psf/zy97/1vcmzX5Lc9Cf7tQeQZP7ayPoaWIYlP4e945/MbuPci5Iv/n+W2xZrtIbn9Tt/vEcwmvcHwAlDfinDYcdgtHqweBsAAAAAAAAAAAAAAHAKbF0wWinlxlwdhPbFSabTBsqMj02SvDlXB6F9fLU9BQA2Q9EysAHrDkZ78/dcCUVLLhdNv+G7ks/4hqTMeiQCGGBI+ANAbx3nnPe/fPb2t/+QYLRRW8M955N3nWjSfQ7oY8CccfCJqdO0BKNN9hdvAwAAAAAAAAAAAAAAToGNB6OVUm5I8qxcCUJ7ZuYHoe0neWOuBKH9Wq31EzOOA2AnKWg93bpcf2OErowVOlp1MNpkKhjt4keTj7zu2mMu3J185PXJY/5QvzYB5t7vJmvpBQBsJqSspU2hacBJdcDa+GN3TH3Tch7BaAAAnFKllEcn+eYkfzDJ45OcT/LeJL+c5N/XWi9tsHsAAAAAAAAAAMAW2XgwWpKPZX4Q2qUkb8jVQWjn19A3AGCMFDbTxfm7k3e/dNO9YCyWFYy21xCMdjD1eHPxnubP3/9OwWhAf/PWRkPCHwCOdX4O87zGmnlHAPQyYM5478uSZ/5wUkoyaXiPkCQTWQ8AAIxfKeUxSb4gyWOTXExyZ5I7ar32hXMppST5K0n+apLrZ5zuf0hyVynlL9Zaf3F1vQYAAAAAAAAAAMZiG4LRzuZylcF0INqFJK/LlSC019VaL2ygbwBspZbitFovF56xuxQ0swznfjJ53a2CYOhuWcFoZxqC0SZTjzttBdJnHtyvPYAkc8Md3A+BdfJMd8pt4vq3tWk8AicNmBc+9Z7kvjuSRz6j+T1CktSDxdsAAIANK6V8UZIfSvKcJHsndn+olPIPkvzdWi8vio9C0W5P8u25+ucDjxffx9uekuTflFJuq7X+1Gp6DwAAAAAAAAAAjMU2BKNNq0l+OcnfSfKaWlUGADCDIupTrsv1N0Zocf7u5LXfGeOEXppCg8rJeo85zlw/e/vhdDDaxebP7z2oX3sASYf1s3siAOvingNsuaGhwR985fxgtMn+sDYAAGBDSinfluSfJzmTq0POjj0+yf+d5CtKKV9fa50k+e4k35HLLwWmw9COPz/9suBMkh8vpbyl1vq2FfwVAAAAAAAAAACAkehZxb9Sxz/k9Lwkr0hyXynll0sp31tKeXYp5boN9g2ArdJWRKvAFpjjzp+IuYLemgqay5l+59lryKaeTGVCH15q+bxgNGARc+57Q8MfAJJ0X2Nbi7Nu3iMBPQz9pRzn33f0Rcsauy00DQAAtlQp5cuSvCiXfxFrydVBZ5n6viT5miT/SynlYUl+MFcHon0gycuT/HSSX0xyb64OWbsuyQ+v6u8BAAAAAAAAAACMQ0NV/lq9Pcnn5NrfInl9kuce/UmSC6WU1yV5dZJXJXldrbUlMQCA3dVSnFbr7N9LzA7pUpyosJkWd/74pnvAGC0rGK00ZVNPFUy3jdEzD+7XHkASwWgAbI2hgUNjaRMYsYFzxnHwufAzAAB2z/+X5EyuDjm7N8k7jr5+apJH5Uo42l9Kcl+Shx9t+0iSF9Ra/830SUspe0lekOQfJHnI0We/spTy1FrrO1f8dwIAAAAAAAAAALbUxoPRaq1PL6U8JslzcjkE7TlJPvdo93S0zfVH+56T5AeSXCylvD5XgtJeW2u9uI4+A7BhrQWtil133soLmo9/uTU7a7K/6R4wRksLRms4/jiUqNbknf+0+fN7gtGABcxdP1n7AOtkzjndNnH95wTsA1xlaDDa0XsnwWgAAOyQUsofTPIluRJ69uEk35Xk52q9/HBdSilJviHJjyV5XJLHJ/meo1PsJ3lerfWtJ89da50k+SellLuTvCxXFuXfnORvr+rvNFallOtz+WcrPyfJY5M8NMknknw0yR1JfrvWerC5HgIAAAAAAAAAwHJsPBgtSWqt9yR5ydGflFIelyshaM/J5R/kSa4OSntIkq84+vN9SS6VUt6QyyFpr07y67XWCyvvPABbRkErGVbYXPYULu46PwfOIpYVjJa99vPf+5vtH+/dHkAyd418HM4IMIjncbrYsmA0gJOGro2P3ztNvF8EAGCn/Kmj/5ZcDjn7qlrrb00fcBSQ9nOllHNJfiOXfy7xD+Tyg/lPzgpFO/H5ny+l/Mdc/sWqNcmXLvev0F0p5ZYkX3bUhy/L5VC4h00dclet9Slr7M+XJPnGJF+Z5MuTXNdy+CdLKS9O8sPz/jcHAAAAAAAAAIBtthXBaCfVWj+U5F8e/Ukp5fG5EpL23Fz+oank6qC0Byd51tGf702yX0r5jVwOSntVLgelnV955wFYg5aC1iGBWIzEqq9xmX8I4zbZ33QPGKPGYLSGoLMmTccfF15fuHteR/q1B9CJYDRgjTy3s26tY854BE4aOC88EMhvjQ0AwE75kqP/1iT/8mQo2rRa61tLKf8iyZ+d2vzSju28NJd/NjBJnt67lwOUUp6T5K/kchjap62z7SallIck+U9JbunxsRuT/Pkkt5ZS/m6S76u1+gdyAAAAAAAAAABGZyuD0U6qtd6d5MVHf1JKeUKuhKQ9J8lnHR06nWTyoCR/5OjPX83loLQ3Jnl1klfVWl+xjr4DsG4KWndepyL6AeOg7BlGu04wGouoDQXN5Uy/8zQdfxy8dvbGOf0wQQGLmDN3NM1xAH10XqdYz5xqG1nPGnNAD0PnqeP3Tk0B6w8cd5DsjeKfaQEAILnyS0yT5OUdjv+FXB2M9taO7RwHrpUkj+74mWX5oiRfteY25zmb2aFoNcnvJnl3knuSPDTJ55849kySv5zks0op31rrAynOAAAAAAAAAAAwCqP8ifta6weT/IujPymlfHquhKQ9N8lTjw49GZT2h4/+/OWM9O8OQKKglfmGjJEy/xDGzc98s4imgubewWh7DTuOQonOXD+vI/3aA0g6hDuYWwBYl20LRnMPBE4aGBo8OXrvNC8Y7fBCsvfQYW0BAMD6PGLq69/tcPzJYz7SsZ17pr5+eMfPrNrFJO/NlZ9H3JTDJL+U5PYkr6y13nPygFLKM5P8vSRfMbX5+Ul+MMn3rqGPAAAAAAAAAACwNE1V+aNSa/1ArfWna63/ba31s5LclMu/dfLHk9x5fNjRf0skngCMW2uwg4LW3bfia9wYWsTOmOyvv825gTRsvaUFozUcX48Kr/fm5TcbS8Ai5swddWD4A0Av1jOn2iaejTyPAX0MnTNqx2C0ycVh7QAAwHpNp/re1+H4j09/U2u90LGd6eOu6/iZZdpP8ptJ/mmS70ryzCQPS/Jfb6Avxy4m+UdJnlJr/bpa64tnhaIlSa31TUm+MsnPnNj1v5VSnrzifgIAAAAAAAAAwFLNq7ofpVrr+0spb0vyuCSPT/LEJA/ebK8AWJ6W4jTFrqdAh2s8aBy05KfWmhT5qqO3iWC01MjmHbmlBaM1hC8en39eOJH7HLAQwWjAOlinMELW18A1Bs4Lx++d5q2xD7vmQgAAwFaY/ofOOSnAnY/ZNrcn+bFZIW5lcz8jcCHJ02qt7+36gVrrYSnlBUmeleQzjzY/KMm3JPmh5XcRAAAAAAAAAABWY2eC0UopX5jkOUmem+TZSR650Q4BsDqtRasKWhmo9YeahVvthHqw6R4wRo3BaA1BZ42agtEmV/+3uSM92wPI/NAXwWjAOgmiOuU2cf2NOaCHoWvj4/dOTe8RjglGAwCArVJrvXfTfTip1nqQpHMo2tTnzpdSfiLJ909tfm4EowEAAAAAAAAAMCKjDUYrpTwjV4LQviLJo6Z3T31dG7YDsJMUu+68TkX0Q8ZBS8hRPVwgBAmSvPOfJU/7bzbdC4ZoKowuZ/qdp+n444JpwWjASsybO8wtAKzLtgWjuQcCJw2cFyaC0QAAgK3wlhPfP3EjvQAAAAAAAAAAgAWNJhitlPL0XB2E9ujp3VNf11ypWihT+96b5D9O/QFgtFqK0zqFZjFuK77GpSVHdW5gETT43X8gGG3smgqaewejNYQrPjC/uI8BqzBnbrHGAZai6zrGeoc1864I6GXgnFH3j/47JxhtcnFYOwAAAO0OTnz/oI30AgAAAAAAAAAAFrS1wWillM/NlSC0/yLJY6Z3T33dFIT2gSSvylEQWq31nSvsLgBr1VacptiVZNg4aAgtSuYXNEKT+96WHF5Izjxk0z1hUUsLRms6/iiUaF44kVAHYCUEowGwJhtZz3qPBPQwdJ6aHGUPzHu+P/jUsHYAAADaPe3E9x/YSC8AAAAAAAAAAGBBWxOMVkr57FwdhPa46d1TXzcFoX04Vweh/e4KuwsAbMyKi5ZLad4nGI0hDi8KRhuzpQWjNYQvPnD+eeFEghuABcwLdxC6CKyVOYd1M+aAPgaGBtfjYLQ57xHf+r3J8141rC0AAFiv4wfsP1RKecqcY58w/U0p5dm5+uf/On2OQb7pxPdv2EgvAAAAAAAAAABgQRsPRiul/FQuB6JN/2BTlyC0jyZ5da4Eof2n1fYUgK3RGtyg2HXndQnuGBLu0RRalCR1YGEkp9vk4qZ7wBDLCkZLUzDa5Or/NnekZ3sAyfy5wxoHWIKuz2HCGE+5DVz/tjFnPAInDZ0XJh2D0T706mHtAADAZpQkP7PAZ17V4/iabiFqNCilfFmSP3pi87/eRF8AAAAAAAAAAGBRGw9GS/Knc/UPNDUFoX0syWtyJQjtrevsJADbREEr8wwZBy0/Yz2voBHaHApGG7WmwLK2MMVZ9hqC1I7nl3nBaO5zwELmzB3CXwFYm02sZ62hgT4Gzhl1/+i/1tgAAOykPqFl04vrPkFnHuQHKKVcl+T/P7H5V2qtb1hyO49L8tieH3vqMvsAAAAAAAAAAMBu24ZgtGPHPzh1/INQ9yf5lRwFoSV5S61SAABI2n8O1q1i9636GrcFoyloZIDD85vuAUM0BSOWhqCzRg1Bag/ML/PmGfc5YAHzXqdY4wBL0XWdYj3DunmPBPQwdG08OTg6T4dfsFBrUvrkQwAAwFZY5GHaA/j6/FCSL576fj/J/7SCdv5ikh9YwXkBAAAAAAAAACDJ9gSjlSSfTPJruRKE9sZaVeYCMENrsIOfpyUZNA5KQ2hR0q2gEZocXth0DxhiWcFoTccfP/rMzYJ2nwMWYW4BYEv43SfA1hs4T9U+wWiHSdmWf6oFAIBW744XyVuvlPLnk3z3ic0/WGv9zU30BwAAAAAAAAAAhtiGn7b/vlwOQntDrcfVAgCwIAW2p8Cqr3Fp2SezlQEEo43b0oLRGsIXHzj/nHnGfQ5YxLy5Qy49ALus7T5ofQ2cNHRemOwfnadDMNpkP9nbhn+qBQCAdrXWp2y6D7QrpXxNkh87sfnlSf7WBroDAAAAAAAAAACDbfyn7Wutf3PTfQBgbBStnmpdihOHFDA2hRYl3QoaoclEMNqorToY7TgQbW44kXsgsIh5c4e5BYB12cQ9x30O6GNgaPDx74DqEj5c95NcP6w9AADg1Cul/NEkL01y3dTmX03yrbWuLBX+R5P8bM/PPDXJz62gLwAAAAAAAAAA7KCNB6MBwHIpdmWo0rxLMBpDHApGG7Wmgua2MMWZxzcEqR3PL/MKp1dWuwDsto7BsqVlHQSwTOYc1ql1DW19DZww9Ll7chyM1uE94uGlq2MLAAAAeiqlPDPJv01yw9TmNyT547XWT62q3Vrrh5J8qM9niveBAAAAAAAAAAD00LOKHwC2QUtxmsCYU6DLNR4wDtpCjuYFFkEbwWjj1lTQ3BR01qhhjjmeX+bOM+5zwIpY5wBrZU1zem3i2htvQB8D54y6f/TfDsFox8cCAAAsoJTyBUl+Kckjpja/JclX11o/vpleAQAAAAAAAADAcghGA2B8WkMbFLvuvlVf45bfUtyloBGaCEYbt2UFozWFLx6f/+D+fucD6KJTeLBgNGAAIeV0tZGx0tamsQucNHBemBwcnabDe8SJYDQAAGAxpZTPS/LLST5tavMdSb6q1vqxzfQKAAAAAAAAAACWRzAaADtGQSsZVmhd2oLRBIYwgGC0cVtaMFrD8cfzy/kPzutIv/YAknSaO6xzgHUSpMY6GW9AH0PXxfU4GK3DeQSjAQAACyilfHaSVyZ57NTm30nyvFrrPZvpFQAAAAAAAAAALJdgNABGqKWgVbHr7ut0jYeMg5blUVMwEnQxEYw2aksLRmuaY+rl+e3C3XP64T4HLGLV6ycA6GoT9xvvkYA+Bs4Lx2FnXd4jCkYDAAB6KqU8Lcl/SPKEqc2/n+Qra61z/qERAAAAAAAAAADGQzAaAOPTWrSqoHX3rfgal9LS9GS1bbPbDgWjjVpjMFrPR6q2ILU6SS58cF5H+rUHkHQLfbHOAQbpu0axpmGdjDegh6GBifXg6L8dgtGqYDQAAKC7UsrNuRyK9sSpzXfmcijaBzbTKwAAAAAAAAAAWA3BaADADhpSwNiyPOpS0AhNBKONW1NgUFvQ2czj2x7BJsmFeb/IXagDsAjBaABsi21bz25bf4DNG7gunvQIRptcGtYWAABwapRSnpTLoWifObX5rlwORXvvZnoFAAAAAAAAAACrIxgNgBFqK1pV0Lr7VnyNS2lpWjAaAwhGG7em///3DUabF754/oNz+uE+Byyiy9whGA1YJ2saVmx63WwNDfQxdM6oB0fn6LC+nuwPawsAADgVSilPTPLKJE+Z2vy+XA5Fu2sjnQIAAAAAAAAAgBUTjAbACLUUpyl23X1drvGQcVDalkcCQ0Zvk3OEYLRxW1YwWtvxdZJcuHteR/q1B5Csfv0E0HcOMeecXhu59gL2gT6WMC/Uw26/YEEwGgAAnDqllHriz3PmHP+4XA5Fe9rU5g8keW6t9c4VdhUAAAAAAAAAADbq7KY7AAC9tRbRKmhlqNK8a9KhoJHtVg8217ZgtHFbWjBaS/jiR9+cnH/fvI70aw+gMwGwAKzDutazNVee762hgR7qEtbF9aDbe0TBaAAAsFVKKTdl9s9TPuHE92dLKU9pOM0naq33LKk/j0zyiiSfM7X5k0lekGS/pQ8z1VrftYx+AQAAAAAAAADAOghGA2CEBKOdbl2u8arGgfE1ehstODV+Rm1pwWgtx//yszv0wzgCFtFh7lhGAARwivVdo1jTsGK1TuWitYw362vgGkuYFyYHze8RrjpOMBoAAGyZX03y5A7HfUaScw37bk9y25L680VJvuDEthuT/MKC52v5LXEAAAAAAAAAALBd9jbdAQBYKgWtp8Amr7HxNXqC0VhUU2BQ6flI1ff4azsy8PPA6dQlGM38AsA6bOJ+4x4H9LCMdXHdT9IheLgKRgMAAAAAAAAAAAAAgFkEowEwQm3FaYpdSVY2DgSGjN/k0ubaNn7GrR7O3l7O9DvP4GA0gAV0ugd1CG4AWBprY1atNnzddhxAspR5YXLQ/B7hquM2+J4KAAAAAAAAAAAAAAC22NlNdwAAoJcuwR4rC6BSMD16k/1N94CxWlowWs/jr+3IwM8Dp1OX9ZNgNGAIaxQ6Wltg9FQ7QqqBPpaxLq5dg9G8pwIAgG1Sa33KGtooPY59VZLOxwMAAAAAAAAAwC7Z23QHAKC31oJWxa67b5PX2PgavbrJglPjZ9SWFYw29BFMqAOwEMFowJaxpmHVrhpj3iMBfSxhXpjsJ598d7fjAAAAAAAAAAAAAACAawhGA2CEWorTFFeTZGWFzcbX+B1e2nQPGKtlBaP1DlK7piMDPw+cSp3WMOYXANZhE/cb9zigjyXMGfUg+dhvzT9OMBoAAAAAAAAAAAAAAMwkGA2A8WkNdlDsuvNWHk5mfO20usmCU+Nn1Opk9vbS85Gq7/HXdmTg54HTqcPc0TTPAXTR+znNmubUWlvgeMd2BKADJy1jXTzZTz722x3aEowGAAAAAAAAAAAAAACzCEYDYIQEV51uXa7xqsaB8TV6kw0WnCq4H7d6OHt7OdPvPEOD0YwjYBGd5g7BaMA6WdOwalNjzBoa6GUJc8bh+WT/4/OP2+R7KgAAAAAAAAAAAAAA2GKC0QDYLYpdWaUqMGT0Jpc23QPGamnBaD2Pv7YjAz8P0MA6GoC12MT9RsA+0MMy1sWHF7od5z0VAAAAAAAAAAAAAADMJBgNgBFStHq6dbj+Kwv2MPZGb7K/wcaNn1FbWjDawEcwwUXAQrrMHQJggSF6rlGsaVi1q8aY8Qb0sYR1cedgtE2+pwIAAAAAAAAAAAAAgO0lGA2A8WktoFbsykBt40vx/vgJRmNRSwtG63n8tR0Z+HngdOoSLCsYDYB1WNd6dqod75GAPpbx/u/wYrfjBKMBAAAAAAAAAAAAAMBMgtEA2C2Cq3Zfp2s8ZBwomN5pk0ub7gFj1RiM1veRaugjmHkIWECX9ZNgNGCtrGlYJ+MN6GMJc8bkQsfjBKMBAAAAAAAAAAAAAMAsgtEAGCHBVafbioPRWoNDjK/R22TBqeDGcWsKDCpn+p2nd5AawDKsOlgWwBxCR2t7Lppqp61Nz2nANZYwLxx2DEa7eM/wtgAAAAAAAAAAAAAAYAepygdghARXsUoKpnda3WAwGuNWD2ZvL2f7nadvkNo1/TAPAYvoMHc0BUACrIQ1zem1pmt/1brZeAN6WMa6+PBit+Pe85Jk0vC+AQAAAAAAAAAAAAAATjHBaACMT1sojMCYU6BLsMeAcdBa/Gh8jd7k0gYbN35GrR7O3t436KwMfQQzjoAFdFkbCUYDhuj7DObZnbUSsA/00TAvPPHrup9i0jEY7cLdyQd+qft5AQAAAAAAAAAAAADglBCMBsAIKWg91VZeQC94b6dN9jfYuPEzavVg9vZytt95+gapXduRgZ8HTqcuc4dgNADWYV3rWetmYEFN7/9u+fPdz3F4ofux527vfiwAAAAAAAAAAAAAAJwSgtEAgB00pABa8N5O22gwGqNWD2dv3+sbjDbwEUxAI7Aq5hdgrcw5rNrUGGu9xxmLwAm1ITC4lOQzn9/tHJOL3dt778uSS/d2Px4AAAAAAAAAAAAAAE4BwWgAjJCC1tNtxddYwfRum1zaXNsCZ8ZtcjB7eznT80RDH8GMI2ARXeaOhgAIgE6sUehoI89FxifQR9OcUbqf4rBHMNrkUnLXi7sfDwAAAAAAAAAAAAAAp4BgNAB2i+ChU6DLNR4yDlo+a3yN32R/g40bP6NWm4LRzvY7T+8gtWs6MvDzwKnUZQ1TBaMB62RNw4pdde/znA/00RaM1jEc7fBCvybvfGG/4wEAAAAAAAAAAAAAYMcJRgNgfFqLVhW0MpTxtdM2GozGqNXD2dv3+gajDXwEE9wALEQwGgDbYl3r2al2rKGBPprWxeVMOgejTXoGo33k9cl9v9PvMwAAAAAAAAAAAAAAsMMEowEwQm2hDYpdd16XguYhRc+C93bb5NIGGzd+Rm1yMHt7OdPvPEOD0YwjYCFd5g7zCzBEzzlEUNUptolr7zkf6KExGG0vKR2D0Q4v9m/33O39PwMAAAAAAAAAAAAAADtKMBoAu0Vx9Smw6mCPluA944AeVzUAACAASURBVGv86v6me8BY1cPZ28vZfucRjAZswqqDZQF6M+ewarXha4B5WoLROp+iJRjtEU+fvf3ci5JJw7sHAAAAAAAAAAAAAAA4ZQSjATA+QhtYpdbxZeyN3mSDwWjmrvGqNakHs/eVM+vvC0Bvqw6WBYCO1rWenW7Hcz7QR236pQl7SUq3cxxeaN731BfM3n7+fcndr+x2fgAAAAAAAAAAAAAA2HGC0QAYIQWtp1uHazyo0Lrls42FkYzG5NIGGzc/jVbb//f3zq6vHwALE4wGrFjfZzBhr6yV8Qb0UA9nby99gtEuNu978p9O9h48e9+dt3c7PwAAAAAAAAAAAAAA7DjBaADsGMWuO2/lBfSC93baZH/TPWCMmoqik6SsOxjNPAQsoMv6SQAsAGuxrvVsx3aE9AEnNa2Ly15SOgajTVqC0R786OSmb5y9773/Krl0X7c2AAAAAAAAAAAAAABghwlGA2CEWopWFbSSZFChdesYMr5Gb6PBaMbPaNWD5n3lzPr6kcQ4AlbH/AKskzmHFbvq2d54AzqqNY1zRp/n/8MLzfvKmeSWW5s/9+6f7d4OAAAAAAAAAAAAAADsKMFoAIyP4KpTbtXXWPDeTptc2lzbxs941cPmfXtn19ePxDgCFtRh7jC/AIOYQ+hqA2PFeySgs5Y5oewlKd1OM7nYdJLL53nCH0uu//TZh5x7Ybc2AAAAAAAAAAAAAABghwlGA2CEFLSebl2u8ZBxYHzttMn+pnvAGNWD5n3lTP/zPfrLF++LeQhYyKrXTwB9mXNOrbUFcdaGrwFa1EnLzh7BaIcXZm8/foewdzZ5ynfMPubDv5bc/45u7QAAAAAAAAAAAAAAwI4SjAbACLUUtK6twJad1VoAaXyNXt1kMJrxM1qTtmC0s/3P9/S/tnhfjCNgEV3WyK1rIIB5rFHYNh2D0bxHAqa1rYnLXlKWFIyWJDff2vz5c/+8WzsAAAAAAAAAAAAAALCjBKMBAOPSKdhjQGFz22cVTI/f4aVN94AxqofN+xYJRnvi1w7oi3kIWESXucP8AqyRNc0ptoFrb7wBnc0JRut8mosN55gKRnvk05NP+9LZx915u+BiAAAAAAAAAAAAAABONcFoAIxPa0GrYtfdt+pgD+Nrp9X9DbZt/IxWPWjeN13U3NUiYWoPMI6ABXS6B5lfgHUy57BiV937POcDHbWGke0lKd3Oc9ghGC1Jbrlt9nGfenfyoVd3awsAAAAAAAAAAAAAAHaQYDQAdovgIQZrGUPG1/hNNhiMpuB+vOph8769BULOSsdC6pl9MY6ARXSYO8wvwBDmEDpb11jpGowGMKUtGK30CUa70HCOE8FoT/62ZO+62cfe+cJubQEAAAAAAAAAAAAAwA4SjAbACLUVtCp23X1drvGAcdBa0G98jd7k0qZ7wBhNDpr3nSxqXjnzELCILnNHSwgEwNJZ05xamwjR85wPdDYvGK3raS7O3r534h3Cgx+dfMY3zD72PS9N9j/RvU0AAAAAAAAAAAAAANghgtEAGJ/aFtqgoJWhFEzvtMn+Bhs3fkartgWjnV1fP05qC2wDmNYlhObgk6vvBwCsjecvYAFt753LXlJKt/McNgSjzXqHcPOts489+GTynpd0a49xuvCh5EO/mnzsjuUEhx58MrnnDcnBp4afCwAAAAAAAAAAAABgwwSjATAuh5eST7yzef8yCojYbl2u8aBx0PJZ42v8NhqMxmjVw+Z9e+sORqvJB1+Z/LtnJi9+SPILX5h86FfW3AdgJ73mG5MPvGLTvQBGq+ezkmerU2xN1/6qMeY5H+io9Rdy7CXpGIx2cP/s7eXMtdue+DXJQx43+/g7b+/WHuPzOz+c/NyTk19+dvILz0j+/Zcn97f8u0eX873kUckv/cHkJZ+W/P6PLa+vAAAAAAAAAAAAAAAbIBgNgHF56/fOOUBB6+5b8TVuLYA0vkZvcmlzbSu4H6/JQfO+WUXNq3Tf25JXf31y75svB7Z97K3Jf3he8vHfX28/gJHpeA96zZ9M9htCHABgrDyLAV21vRcse0npGIzWeI4Z7xD2rkue/O2zj//Qq5JPnBvWJtvnI7+RvPkvJYcXrmz76Bsvh1Uvcs+6+z8mb/6fr/xCiMnF5Df+QvLh1y6nvwAAAAAAAAAAAAAAGyAYDYBxufOFm+4BozCk6Lnts4qpR++4QHAjjJ/RqofN+8rZ9fUjSd7zkuTw/NXbJpeSd71ovf0ARqbjPejwfPLen19tVwCSWBufZuu69rXh67bjAOYEow3VFK5+y23NnznneX/nvP/fZeb95747kvsXCL5/5z+bvf3dP9v/XAAAAAAAAAAAAAAAW0IwGgDjcvHDcw5Q0Lrz6oqvcdv5V902q1c3GYzGaNWD5n1NRc2rcvEjs7ff8X+ttx/AuPRZw5x74cq6Aeyyvs9Knq1Yta7BaABT2oLRs5ekDDt/0zuER31B8qgvmr3v3O3eSe6aC3c37zv//v7ne9dPzd7+u3+//7kAAAAAAAAAAAAAALaEYDQAdosisVOgyzUeMg7aPjsZcF62wuTSBhs3P43WpCUYbe/sYue87pGLfQ5gIT3uQesOfATgdNnEe5vWNj2nAVNqy7u/ssJgtCS5+dbZ2z9xZ/LhXx3WLttlcrF5X1s4PwAAAAAAAAAAAADAKSIYDYAdo6CVDCy0bvms4L3xm+xvrm3jZ7zqYfO+smAw2md/92KfA1hIn3uQV0XAAvquda2NT7E1XfurxpjxBnQ0LxitrDAY7Sl/pvkdw7nbh7XLdjm80LyvLZwfAAAAAAAAAAAAAOAUUe0KwI5R7Lr7VnyNWwv0ja/R22QwGuNVW4pS24qa23ze/5484XlT59lLnv7Xksd/ZfLgxyx2TuMbaNIngGjReQ0AtkrHYDQhfcBV2oLRlrBO3msJV3/I45Inft3sfXf9y+TgU8PbZzscXmze590OAAAAAAAAAAAAAECSpOUn8AFghBS07r5O13jIOBCMttMmlzbYuPEzWvVw9vayl5Sy2DnP3pA85xeTe9+cfOJc8thnJTc88cr+X/zS5KNv6nfO8x9MbvzMxfoD7Lge96A9wWjAOlgbn1qbeG/jXRHQVW0LRttLsuA7gAfOMWetfcttyft+/trtB/cn7/nXyc3fPqx9tsPhheZ9beH8AAAAAAAAAAAAAACnyN6mOwAAsFXaCiAVU4/fZH/TPWCMJg1FqfMKmufZO5M8+suSJ3/L1aFol0/e/3yX7h3WH4Bk+NwGnFKeldg2XceksQtMaXsvmDUEoz3xjycPfvTsfedeOKxttsdEMBoAAAAAAAAAAAAAwDyC0QDYMQpad1+XazxkHLR91vgavY0Goxk/o9VUlFrOrrDRRYqt2wq4gdOtzz3IqyJgHayNT681Xfurgs2NN6CjtmC0speUFQejnXlQ8uQ/M3vfB1+ZfPI9w9pnOxxebN7XFM4PAAAAAAAAAAAAAHDKqHYFYMcodt19m7zGxtfoTS5tru1q/IxWPZy9faXBaAtoK+AGTrc+96B5YQ0Ay2BtzFoJQAe6mhOMNlSXtfYttzbsqMm7XjS8D2ze4YXmfU3h/AAAAAAAAAAAAAAAp4xgNADGo0vhtOJqksXHwbzPGV/jV/c33QPGqKkodZXhQaX0/0xTgBtAn9CXZQQ+AKePZyU6W9dYmWrH+AS6ag0c30uywLP6tC7vER71JckjPn/2vjtvN6ftgsnFln2C0QAAAAAAAAAAAAAAEsFoAIxKl6IvhWE7b6XFf/PObXyNWq3JZJPBaMbPaDUVpe6dXWGjiwSjtRVwA6dbn2C0FYY+AjzA2vjUWlugT234+uRhxiIwpe25uuxl8P2ry1q7lOSWW2fvu//3knteN6wPbN7hheZ9TeH8AAAAAAAAAAAAAACnjGA0AMajU7Gqgtbdt8JxMHeMGV+jtvHCQuNntOrh7O0rDQ8SjAYsUZ/Ql+JVEQA74OD8la8nlzbXD2Bk5gSjDX3uLh0D1p/y7c3vHM7dPqwPbN7agtEWeLcEAAAAAAAAAAAAALAlVLsCMCIdCs/6hD7ANeaMH+Nr3Cb7m+4BY9VUlNq1oHkRZZHiVcFoQJM+wWirDH0EdlffZyXPVqfXmq79m//S5f/e8/o5BxqLwJS24LOlBKN1XGtf/+nJp3/17H13/Yurwx8Zn8nFln1LfH+596DlnQsAAAAAAAAAAAAAYM0EowEwHkKpSNKtaLnhmFqT+9+ZHHyyYf+84kZjcNSawq3W1r7xM1r1cPb2lYYHLRCMNrRAG9hdfe5BxasiAHbAB19x+f73npdsuifAmLQ+V+9lcCB5n/cIN986e/v+fcn7fn5YP9iswwvN+yY931+2PevtXdfvXAAAAAAAAAAAAAAAW+TspjsAAN0NCMRid3QJ9ph1zEfflLzm+cmn3p3sPSh52n+XPOJzkzt/Irn0seQzvj55xg8Mb5vt5fqxqE0Eo5VFgtEa+gnQZ4280tBHgCPW5qfYOq99Td7+d+cfA/CAluCzsjf8/tVnrX3TNyTXPTLZ/9i1++68PXnytw7rC5szudi8r+73PFfL8YLRAAAAAAAAAAAAAIARE4wGwHjUlsK0B45R0MoMB59KXvm8K4WEk0vJ7/3Dq4/5nf83uf/355zI+Bq3TV+/TbfPwpruPysND1okGK3DfRJgrr1NdwAYpb5rXWtj1sA7IqCvtufqsjc8kHyvx3uEMw9JnvxtyTt+7Np9H/z3yafen9zwxGH9Yf1qTQ4vNO//zf/j8v7P//5uofltIWt7D+rfPwAAAAAAAAAAAACALaHaFYAR6VLQquh19y0wDj7wi1dC0dq87+eX0Dbba9PXb9Pts7CmwueyysepBYLRIhgNaNLjHrTS0EcATr21hpUJ2Ad6ag0+2xseSN53rX3LbbO310nyrp8a1hc2Y3Jp/jG//YPJ2/5Ot/MdtgWjXdftHAAAAAAAAAAAAAAAW0gwGgAjIhiNZKFrfMffXFLTQodGrW/B+5nrV9MPxqfp//urDA8qCwSjmaOAJn3ugSsNfQR2Vt+1tjCqU2yN1976GOirbd4oexk8h1338H7HP/rLk4d/9ux9517ofjpGk5Ygs2nvetHw8xXBaAAAAAAAAAAAAADAeKl2BWA8uhS0KgYjyTVFil0Lzvqel5Hpef2ef3fyrJckX/X65BGft4TmjZ/Rqoezt680PEgwGrBMfYLRVhj6CABrJWAf6Kk1GO3M8Ofu6x7V7/hSkptvm73vvrclH33TsP6wfocXuh1339u6Hdf23vvMg7qdAwAAAAAAAAAAAABgCwlGA2BEFLSSxcKlDpcUjCbYatz6Xr/rHpY86U8lj/nyZO/Bq+kT49BU+Lxt4UFNAW4AgtGArePZ6vRa47UXHAz01haMtte+v4sHPbL/Z27+jjSGp9/5wiG9YRMml7of2+U+1vbeu1zXvS0AAAAAAAAAAAAAgC0jGA2A8RBKRVcnx8pkScFoivdHbsj1ayhAXVv7bFRT4FhZ5ePUAmNO8APQpM86WjAasBBrXbaRgH2gp9bn6jL8ufu6h/X/zA03JU/4Y7P33fUzy/uFEGyfLgH4be+99wSjAQAAAAAAAAAAAADjJRgNgBHpUnimoHX3LXCNDy9srm22yIDrV5YQjCbcccQa7j+rDA9aaMwJRgOa9AlG86oIWAdr41Nrnc9FgoOBvhrnjXL5OX3ovHL2xsU+d8uts7df+mjyvpcv3h/Wr899cHLQ4Zj95n2C0QAAAAAAAAAAAACAEVPtCsB4dCkaEjx0CnS5xieOmVxaUtPG16j1Kl49GUq1hGA0xqseNuxY5ePUAmNO8APQqE8w2gpDHwFgnbqsjz3nA1dpCkY/fv4fOGecfehin7vpG5PrHj5737nbF+8P260ODEbzYwAAAAAAAAAAAAAAwIj5iWgAxqNT4IuCVnJtYfPk4rJOvKTzsBkDrl9ZxrLZ+BmtpvvPSsODBKMBG7KUex5w+vRc6wqjOsXWee2NM6Cnxuf/vfb9XZ29ccHP3ZA86Vtm73v/LyTn7168T6xZj3tTl2C0tmP2znZvCwAAAAAAAAAAAABgy6h2BWBEuhQNKXrdeYsU0B9eWFbjSzoPG9Fn7JSToVQLhFRd24ElnIONqIezt68yPOiaMdhBUz8BBBABW8e8dHqt8doL2Af6apw3lhSMdsNNi3/2lttmb6+HyV0/vfh52V6TDsFok/2Wnct4nwkAAAAAAAAAAAAAsBmC0QAYkQ7FqkIfToENBuQZXyPX5/qtIhiN0WoqfC5nVtjoIsFoAwu0gR3W4x5oLgFgV9QOgTIA0xqf/4//OXXgWvlRX7z4Zx/zR5KHPm32vjtvX/y8rFmfZ7OhwWie7QAAAAAAAAAAAACA8RKMBsB4CGlg4wSjjduA61eWEIwmWG+86uHs7WWVj1OLjDn3SaBJn3uQ+xWwgN5rXXPNqbXO56LD8/OP8ZwGXGVOMNqQOeNz/9dh7xFKSW7+ztn7PvZbyb2/ufi52U6TgcFo/j0FAAAAAAAAAAAAABgxwWgAjEiXwjMFrSSrGwfG16j1Kl49GUq1hGA0xqupkLScWV2bi4TxKXgFmvS5B5pLgG0grIplOPjUpnsAjE3jWvg4GK0hOL2LW16w+GcfOEdDMFqS3Hn78POzXWqHYLS2Y6ynAAAAAAAAAAAAAIARE4wGwHh0KuRR7LPTNl3Mten2GWjA9VskpOqke9+UvO7PJa94VvKbfzXZv3/4OVmPpsLnssrHKcFowDL1uQda7wBrMPfZyly0u9Z4bQ/PdzjIWAOmNAajHz//D3ju3ju7+GeP3fjk5PHPnb3vXT+VTPaHt8Fq9Xm/POkQjNZ6zb0nAgAAAAAAAAAAAADGSzAaACPSoZBHcBXJCseB8TVuPa7fNUFoS1g2X/hQcucLkw//WvK2v5W86usUrI5GU2H0mfV2Y56mADeAPvdAIYvAQjwrsYUOPrXpHgCjMycYbcg7x7KEYLQkufm22dsvfjh5/79bThtsh9rhvWHbu0XPdgAAAAAAAAAAAADAiAlGA2A8OhWeKcbebRu+voL3xm1Q8erJoLQl+PCvJve8bvnnZfkaA8dW+Ti1yJhT8Ao06HUPtN4B1mHOXOPZa4et8doenu9wkLEGTGl6/j8ORhvy3L23pGC0z3x+cvbG2fvufOFy2mCFetx3JgcdTtd2jHscAAAAAAAAAAAAADBegtEAGBHBaKde5+L4VY0D42vc+ly/k6FUKwhGS5Lf/sHVnJflqg2Fz+XM6tpcJIyvqZ8Afe6B5hJgIX2fleYd79lrZ60z9O7wwvraAnZD41p4b87+DsqSgtGue2jypG+eve/9L08u3LOcdti81tCzI5P9ls97tgMAAAAAAAAAAAAAxkswGgDj0aWQZ50FtmyxFY0DxWQjt4XBaPf/3mrOy3LVw9nbyyofpwSjARtiPQ1sBXMRy+A9EtDTvGD0QcFoSwxXv/nW2dsn+8ldP7O8dliBHvedSYdgtNoSjGY9BQAAAAAAAAAAAACMmGA0AEZEIQ+bHgObbp9BhhS8lxUFoy2zKJbVmVcYvRKLjDnBaECTPvdAcwmwBvPW5sKqdtgar21TwDFAk8bn/+N/Th2wVt47u/hnT3rcVyQ3PmX2vnO3L68dNqt2CEabtASjCdAHAAAAAAAAAAAAAEZsiT+FTx+llDNJnpbk85I8MckjklxMcm+SdyZ5Y631k0tu87okfzTJk5J8epJPJHl/krfUWt+15LZuTvJFufx3e2iSDyS5K8mv19r668sBmnUq5FE8vds6Xt+VFdEbX+PW4/pdE4S2omA0OcXj0BSoUFZ4/RYJ45sIfgAa9FkbCSMCFmHuYBt5jwT0NicYbVDo/hL/SbbsJTd/Z3LH/3ntvo++KfnYHckjP3957bE8vZ7NugSjtRwjGA0AAAAAAAAAAAAAGDHBaGtUSnlSkucneV6SZyd5eMvhh6WUVyT5kVrrvx3Y7mOT/PUk35rk0xqO+fUkf6/W+tKBbX1Tku9J8ocbDvloKeXFSb6/1nrPkLaA06hD0ZBibFbJ+Bq3QcWrKwrAKmdWc16Wq6mQdKXXb5EwPgWvQJM+90BzCbAO8+Ylz147a53P1QJhgL4a5429Ofs7WGYwWtIcjJYk525PvviHltse69cWenas9XdRWU8BAAAAAAAAAAAAAOO1ooQHTiql/HSSu5L8/SR/PO2haElyJsnXJHl5KeXflFIev2C7X5vkjiR/IQ2haEf+SJKXlFJ+spRy4wLtPLSU8jNJfjbNoWg56sNfSHJHKeWr+7YDnHKdimcV++y0zgXUqxoHxte49bl+J0OpFgmp6tKM5fgo1MPZ21d5/coCY07wA9CkTwiNIFhgK5iLWIKmdfzVB628G8CINAajHz//D3ju3ltyMNrDnpo89tmz9537yW6hWmxAn2ezDtdw0hKM5j0RAAAAAAAAAAAAADBikhjW5w80bH9fklcleXGSlyZ5S66trPgTSV5TSnlCnwZLKc9J8rIkj5vaXJO8KZcDzF6R5J4TH/v2JD9TSveUh1LKmaP+f9uJXR9O8ktHbb05V/+0/+OT/Fwp5Vld2wHoVnimoHW3bbqYy/gatyHXTzDa6dZUGH1mhW0KRgOWqc890FwCLKLvWnvO8UIad9gar631MdDbnGC0ReeVcjbZu26xz7a55bbZ2y98MPnALy2/PdarS7hd6zHugwAAAAAAAAAAAADAeEli2Iy3JPkfkzyt1npTrfW5tdZvq7V+U631S5I8Kck/PvGZP5DkZ0spnRISSik3JflXSR40tfnXkjy91vqltdZvqbV+VZKbknx3kulfKf71Sf5Gj7/P307ydVPf7x/9/W6qtX71UVvPTPL5SV47ddyDk7yslPLpPdoCTrMuhdGKp3db5+LDFY0D42vcel2/E0uubkuw/lYarMXS1MOGHat8nFpkzCl4BRocXuh+rPUOsA5z5xpz0e5a57XtsD523wOmNb57HBiMdvaGxT43z5O+KTlz/ex9525fTZusT+0QjFb3W/a5xwEAAAAAAAAAAAAA4yUYbX1qkn+b5MtqrV9Sa/2RWus7Zx5Y6/tqrd+V5L8/setZSb61Y3t/Pcmjpr7/9STPq7W+/URbF2ut/zDJt5z4/PeUUp48r5FSyi25HKw27ZuP/n6XTrT1tiT/Za4OR3t0kh+Y1w7AZV0KeRT77LRFiw+X14ENt88wPa7fNUFoqwpGsxwfhaa5Z2/Lgu0aA9yAU2/SIxhNyCIAu2Lj7xCA0WmaNx54f7NoMNqNi31unusennzm82fve+/Lkkv3rqZdFtcnrKxLMNqkLRjNfRAAAAAAAAAAAAAAGC9JDOvzzbXWP1FrfWPXD9RafzTJS09s/rPzPldK+awkt05tupTktlprYyV0rfVlSaZ/ffyD0y2w7AeSXDf1/QtrrT/X0s75JLcd9enYC44C1gDaKeSha/FhnwKzXgSjjduQ67eiYDTL8XFoDBxb4fW7JpyvA/dJoMnB+e7HrmwdBey2vnPHvOPNRTtrnfeZTsHBxhowbU4w2qLP3WdWFIyWJLfcNnv75FJy14tX1y6r1xZ61ukY74kAAAAAAAAAAAAAgPGSxLAmtdZ3LfjRf3Ti++d2+MyfSXJm6vt/VWv9/Q6f+zsnvv+WUspDmg4upVyf5JvmnOMatdbfS/KyqU1nc7nPAHN0KVZV0LrTOhcfTo2DZRZdCwoZt17X70Qo1SIhVZ2aOTP/GDavae5Z6fUTjAYs0WGPYDTF88A28OzFMnRaHxtrwJTG5//jf05dcM44e8Nin+vicc9Nbrhp9r47X7i6dllQjzE0OehwupZjrKcAAAAAAAAAAAAAgBETjLb93nLi++tLKY+c85n/6sT3P9GloVrr25O8fmrTjUm+quUjX51kuprjtbXW3+nS1ow+Pb/j54BTrUMhj2Kf3bZQ6M8yx4TxNW5Drt+Kls3FcnwU6uHs7Su9foLRgCU6vND9WOtpYC3mzTXmot21zmtrfQz01PhcvTdn/xxnb1zsc13snUlu/s7Z+z7y+uS+rv9sx9ZpCz07Ntlv27m0rgAAAAAAAAAAAAAArJskhu0366feH9R0cCnlCUm+8MTnf61He6868f3Xthz7NXM+2+ZXcvXf7YtLKY/v8XngNOpUeKZ4eqc1hRNde+DUl8ssADO+xq3P9TsRSlUWCKnq1MyZ1ZyX5WqaR1Z5/RYacwpegQaH53scbC4BFrD0UEXPXixBl3cIAkGBaY3P/wOD0c7cMP+YIZqC0ZLk3O2rbZueetx3hgajuccBAAAAAAAAAAAAACMmGG37Pe3E9wdJ7mk5/vNPfP/WWusne7T36ye+f3qPtl7btZGjPv12j7YA0q1oSLHPTluk+HCZwWiKycZt0PVbVTCa5fgoNAUqrPT6LTDmOodHAqfK5KBbQf0x6x1gHcw1p9gar/1Sg9KBU2Hu8/+C88rZGxf7XFcP/+zkMX949r5zL0om3heM0qTDc1zrs577IAAAAAAAAAAAAAAwXpIYtt83nfj+jbW2VnR93onv39GzvXfOOd+0z11jW8Bpd/87kt/7kfnHKa7ecR2Lua4aB8ssADO+xq3H9Sul/ftlEYw2Eg3zSDmzwjYXCUZT8ArMcHih3/HmEmAhS35W8my/u9Z5bTvd04w1YFrTvHH0/mbRtfLZGxb7XB833zp7+/n3JXe/cvXt002f+2CXgOvJfsvnPdsBAAAAAPxn9u49WpezrhP8r/Y+J3cSAiSQgEnOISAqOgrYNiiIDghoNzdpURBPutsZp132co3jmqvdtmt6pp1erbO6HXW6l445It6gBWy8gEIj0ly0EW0VlcA5uXAJCSSE5Jycy95vzR9nn/Ced7/PW5e3qt6n3vfzWSuL7Kq3qh5StZ9L7f37bgAAAAAAYLwkMWSsKIorIuIfzmx+c8VhN898fWfDy94xpDgpEQAAIABJREFU8/Vji6K4ek7bHhMRj1nyWrOff0rD44FNcdebI37ryyM+/vOrbgmr1qaYq8sCMMX5I9fk/s2GUvUVjNZnsBadSfYjPS6n2oTxKXgF5tl9uOEB5jvAEKr6Gn0RHSh3V90CYGxS6+rz72/avhs8cHm745q48dURWxfP33fsaP/Xp3uTJYPRzKcAAAAAAAAAAAAAgBETjJa3fxERT5j6+vMR8XMVxzx65ut7mlywLMuHIuLUzOaralznZFmWJ5pcK/a3bd51gE032Yn4wD+oKPCZpthnrdUO/Zl6DjoNChI6NGpLBdv1FIxmOj4OqUCFrT6D7do8c/ooYI7d2SV+FfNpYACVc3N90foa8N7Weh/gWQOmJIPRzr+/abnu3h4gGO2iR0c86eXz933iNyLOPNB/G6ihwbhT1ghGKxf83ESAPgAAAAAAAAAAAAAwYgdW3QDmK4riFRHxAzOb/7eyLO+rOPSKma8fbnH5hyPikqmvH9XjdabNu04jRVFcGxHXNDzsycteF+jR3b8XcfbzDQ5Q0LreWhRzpQKN2lgqWIvVa3L/ZkKpip4CzIo+g7XoTLKQtM9guxbBaApegXl2Gy7X9SVAK9ZK5MiYBjRVEYzWdq584LJ2xzV1+JaIO39t//bdUxF3vjHi5u8dph10o04w2mTBZ6ztAAAAAAAAAAAAAIARE4yWoaIo/quI+MWZze+IiJ+tcfhsYNmpFk14OCKuXnDOLq+z6JxtfH9E/GgH5wFy8bk/avZ5wVXrrXYx1/Rz0GUBmOdr3Ja5fy1Cqmqdts9gLTqTCljsM9iuaBOM1mEQJLA+jv1CwwPMd4AhVPQ11vZrbMB7W+cdgmcNmJbsN4qK/RUOXN7uuKae8MKIS6+LePjT+/cdPyoYbWwWhZ498pmzC3Ya4wAAAAAAAAAAAACA8ZLEkJmiKG6IiN+KC0PC7oiI7y7LVlVa63YMQAVdy1qrW3w4PWS2LVicf+IOz8XgmkylZkOp2oRU1bqO6fgopPqR3O5fp/0dsBaOvyHiIz/e7Bh9CZAFay86IDgYaKpy/d9yrnzJ49sd19TWdsRNr5u/7973Rjz4sWHawQIN5jhljWC0ckEwmrUdAAAAAAAAAAAAADBimVXyb7aiKK6NiN+LiCdObb47Il5YluW9NU/z0MzXl7Zoyuwxs+cc8jrApmucCal4eq21KebqsgCsVUYp+Vjm/vUVjLbdz3npVipQodf71+KZU/AKzLrtZ1ocZL4DtND12t3aa30NeW9rBaN51oBpqT5hb43edt39uGe3O66Nw0fS+47/4nDtYHl/+X9Uf2ayIDzNeyIAAAAAAAAAAAAAYMQOrLoBnFMUxWMi4vcj4qlTmz8bES8oy/K2Bqfa9GC0n4mINzY85skR8dYOrg3kQPH0mqtbzDX1HHRaAOb5GrVG/cNsKFVPwWhyikci0Y/kFoxWu48ENsZn39f8GMXzQBasvdbXkMFoxjSgodS7o2Lv/U2bfuXAFRFXfXn7NjV11ZdHPOZZEff95/37jh2N+Mp/9sX/PwyvyfvJydmIe98fcc2CYL3JmUUXq38tAAAAAAAAAAAAAIDMCEbLQFEUV0XEOyLiK6c23x8RLyzL8i8bnu6Bma+vadiWK2J/YNnna1znsqIoLi/L8kSDy11b4zqNlGV5T0Tc0+SYougr6ATohuIdppS7LQ4SjMZ5De7f7Pygr/nCVp/BWnQm1ff0WUjc5pkT/AB0wnwHGIBQc4ZQa37sWQSmpfqN82v0Fn3GwauGDyI7fMv8YLSTd0bc8wcRj/+mYdtDe7e/fnEw2u7D6X3eEwEAAAAAAAAAAAAAI+ZPgq9YURSPiojfjYhnTm3+QkS8uCzLP21xyttmvr6x4fGzn7+vLMv7Zz9UluXn4lx427QblrzWbNsBWlDQutbqFnNNF9l3WQCmeH/klrl/fU2bTcdHIdWPFH0G2wlGA1ZEXwK00nSuXfV5a6/1NeS9NaYBDaXe/S0TmL91sP2xbd34nenrHrt10KYwq+E4eNvPLt6/KBjNfAoAAAAAAAAAAAAAGDFJDCtUFMXlEfHbEfG3pzY/FBEvKcvyj1qe9q9mvr654fGHZ77+yIDXmj0fQAuKfdZam6COTsM9PF+j1ijYbqbgdZkC2IWXMR0fhXJ3/vY+71+bZy7VToBGzHeADAilpgt15seeNeACqfeIe+v/Z/1U81NuXdS6Na1d/NiIJ750/r67/n3E2YeGbQ/9WRSMJvQaAAAAAAAAAAAAABgxSQwrUhTFpRHxtoj4hqnNJyPi28qyfN8Sp/6Lma+/qiiKyxoc//UV51u079l1L7IXCvdVDa4FUI+C1jVXt5hr+jkQjMZ5y9y/voLRtvs5L91KFZL2ev/aPHMKXoEOKJ4H2mi8Fq/6vLXX2hryvY0xDWgq1UedDy9//H8dcdHVzc65imC0iIhDR+Zv3zkRcdebhm0LUzoeBxcFo3lPBAAAAAAAAAAAAACMmGC0FSiK4pKI+M2IeP7U5lMR8dKyLN+zzLnLsvx0RPyXqU0H4sLwtSrPn/n6dxZ89ncrjl3kuXGubed9uCzLzzQ4HtgUjYtYFU+vtTZFzV0WQgveG7km9282lEow2kYrdxM7+lxOtXjmBD8AXTDfAbKgL6IDtebHnjVgWqpP2Fv/X/yYiG9+Z8RVT69/ylUFo13/4ohLrp2/79jRYdtCf3YWBKNZ2wEAAAAAAAAAAAAAIyYYbWBFUVwUEb8RES+Y2nw6Il5eluU7O7rMm2e+/vs12/a0iPi6qU0nIuIdCw55e0RM/8b9s/fOUcctM1/PthngnMnpZp9X7LPeaof+TD0HnQYFeb5GbZn+oRCMttFS/Uif96/NMycYDeiEvgQYgLX7Bhvw3icDjgESkuv/qTX6Y74m4tv+POJV90U87y3V59w62E3bmto6GHHja+fvu+fdEQ8dH7Q57OlyDlSWEbsLgtGs7QAAAAAAAAAAAACAEROMNqCiKA5ExK9HxEumNp+NiFeVZfn2Di/1hoiYrvp6ZVEUT6lx3P808/Wvl2V5KvXhsixPRsSbKs6xT1EUT42IV0xt2omIX67RPmAT7TYMRhNctd7qhv6UgtGYp8H92xdK1VMwWm/npVOpQIWiz+WUYDRgRYQVAa103Hfoi9bYkMFodebHnjVgWqpPmLNGv+jqeoHpWxct1aKlHL4lve/46wdrBj2ZnImF45j3RAAAAAAAAAAAAADAiAlGG0hRFNtxLrDsZVObdyLi1WVZvq3La5VleVtEHJ3adFFE3FoUxSUL2veyiLhlatOZiPixGpf7Z3Eu3O28W4qieOmC61wSEb+w16bzfr4sy4/XuBawiSbJfEY2Uptirg4LwBTnj1yT+zdT8NprABb5S/QjdQqgh5QKcANoRPE8MISqubm1F10wpgFNJcaf5HuhGqHmqwxGu/qrIq7+6vn7jh/1rnMlOvxvvvvwcNcCAAAAAAAAAAAAABiYhIfh/H8R8R0z2/7XiPhwURQ3NfwnGXA25Ucj4v6pr58TEb9fFMXTpj9UFMXFRVH844h448zxP1GW5R1VFynL8lhE/OuZzW8qiuIHiqK4oNqjKIovi4h37rXlvM9FvQA2YFPtnm54gGKftVbWLWqeeg5qH9PwvIzPUsWeNQpdW/FMjUIqcKzXwLw2z5zgB6ADwhGAQQhG21hDjjN1goONe8C05HvE1Bq9TjDawbat6cahW+Zvf+hYxL3vHbQpdKwqGK3T9+IAAAAAAAAAAAAAAMM6sOoGbJDvmbPtX+7909Q3RcS7F32gLMtPFEXxyoh4e0ScDyj7+oj4SFEUH4qIYxFxVUQ8IyKumTn8bRHxTxq053+OiK+IiJfsfX0wIn4qIv5JURR/EhEPRsThvWtNV4mciYhXlGX56QbXAjbN7qlmn1fQut7aFHMJRuMRTe7fTGFr0VMwmgLFcUjdp2K7v2u2eeY8T0An9CVAGx2vlazt6YL5MdBUcvxJrNHrBKZvXVT9mT7d9JqID/9wRLmzf9/xoxHXPnf4NtGNqmC0iHPPdF/vNQEAAAAAAAAAAAAAelTjN/YZq7Is3x0Rr4iIe6c2FxHxrIj4joh4UewPRfuViPjOsix3G1xnd+98vzaz69qIeHFE/L2IeGZcWDlyT0S8rCzLP6x7HWBDTU43PEDx9HqrW9Q8/Rx0WAitqHrcdk4ucXBfBYT6rFFITY3rFEC3JhgNWFLbUCFhRMAQ9DUbbMB7X2t+7FkEpiX6hOT6v8bafdXBaJdcE3H9t87fd8evL/m+jOY6HHd2agSjGecAAAAAAAAAAAAAgJESjLbmyrL87Yh4ekT8vxFx/4KPfiAiXlWW5WvKsjzR4joPlWX5nXEuBO0DCz56X0T8bEQ8vSzL3216HWAD7Z5qeIBCn7VWP7dz6pgug9E8X6P2x99X/7PFbGFrT8FogqzGIXWfiu0eL9rmmfM8AdPazlv0JUAOrL3ogjENaCi5/k+s0VPbp606GC0i4vAt87fvPBhx15sHbQoNFQfS+3ZrBKN59wgAAAAAAAAAAAAAjNSC36amS2VZ9pSmUeva90TEPyqK4gcj4usj4saIeEJEnIiIT0bEh8uyPN7Rtd4UEW8qiuJQRDwjIq6PiMsj4u6IuCMi/lNZlme6uBawIZoGowmuWm91C7mmn4NOi788X6M1ORtx8hPtj69T6NqK4sRRSIYy9pgz3eaZaxMeCayXT/9exG0/HfHwpyOue1G7c5hPA2007juqPq8vWltDjjMf+3fVnzHuARdI9QmpYLQa7wW2DrZuTWeu/7aIix8bcfpz+/cdvzXi0GsHb9LGajrubC0ZjGZOBQAAAAAAAAAAAACMlGC0DbIXSPYfB7rW8YjoJGwN2HCT06tuATlpFXImGI2IePBjDQ+YLXjtKRhNEf44pALHFhWnLq1NMJqgPdhon3xbxHte9sW+4HN/1PJE+hIgA+bJayy3e5tbe4DVSvQJyQC0Gmv3rYtat6Yz2xdF3PiaiI/+1P59d78z4sRdEZd/yfDtolqxZDCad0UAAAAAAAAAAAAAwEjV+FPmALBCkzMND1DQutZqF3JNfa7L4i/F+SPWNGRq5vPJAthlKU4chXJn/vZFxalLE4wGNPRXP9FNP2C+AwxCX0MuPIvAlOR8OrVGH0kwWkTE4SOJHWXE7a8ftCmbreG4U2yn9wlGAwAAAAAAAAAAAADWmGA0APJW7jY9oJdmkIuahVzTgR6dFn95vkaraBEydeEJOmnGPsJnxmGSCEbb6jEYrc0zq9gVNldZRtzz7o5Opi8B2uh6XmuevL4yu7fm0MAFUn1UYo1eJ0g/l2C0q58RcdXT5+87dtQ7qlwtevdU64/KuK8AAAAAAAAAAAAAwDgJRgMgb6kwmhQFXOutdsGyYDRmNQyZ2hdK1VMwmvCZcSgTY1HRYzBaq2fO8wQb6/S93Z3LfBpoo+m6q7Kv0RcxFM8aMCU1PiUD0Gqs3bcOtm5Op4oi4vCR+fse/GjEZz8wbHs2VsNxZ9G7pzo/OxEACgAAAAAAAAAAAACMlGA0APJW7jY9oJdmkIk2wWhdBgUJChmxJYPN9gWldURx4jikCk1zC0ZrPGYCa+PEnd2dy9gEtNK076hYW1l7ra/c7q1xD7hAqk9IrNGTgWlTti5q3ZrO3fTaiGJ7/r7jR4dtC8tLBflfwDgHAAAAAAAAAAAAAIyTYDQA8laruOeCA3ppBrmoWcg1XdjcaZGz52u0GgebzX6+r2A0z9QopMairT6D0VrwPMHmOtlhMJr5DtBG5+FS+iIGIhgNmJZaVyffK9V4X5RTMNql10Vc96L5++741YjdU8O2ZxM1fXeTCrKLSAf5L3M9AAAAAAAAAAAAAIBMCEYDIG/lbsPPK2hda7Xv71TBl2A0ImL5YLOegtHqhv2xWqlgtKLHYLTGYX4R+ijYYCfu6u5c5tNAG437DvOWzZXbvc+tPcBqpcazxI9T66zdtzMKRouIOHzL/O1nH4j4xFsHbQo1HLwyva/WH5WxvgMAAAAAAAAAAAAAxkkwGgB5m9Qp7pnSNEiNcalbbF9OFzZ3WPxVKpgercYhUzOfL3qaNnum8ldO0n3PVo/BaK3C+DxPsLF2T3Z4Mn0J0EbHoRvmyWsss3srEBSYlhp/ku+VarwvKrZbN6cXT/y7EQcfPX/fsaPDtoVqi37eUScYzTgHAAAAAAAAAAAAAIyUYDQA8lanuOeCzwtGW2t17+90wVenxV+ZFXDTQMOQqX0Fr21CqupQnJi9Rf1OkVkwmgAR2GAdfv8rnAfaaNp3VM5bzGsYimcNmJbqExI/Tq0TxH/q3tat6cX2JRE3fdf8fXe/PeLkp4Ztz8ZpOO4s+sMxdf6ojHdFAAAAAAAAAAAAAMBICUYDIG9Ng84Eo6232sX2UwVfgtHoRE/3XvhM/hYVmfYZjFanuHoffRRsrE6L3fUlQAudz2v1RWsrt4AWazJgWqpPSK7Ra6zdT97Zujm9OXRk/vZyEnH7G4ZtC4st+sMxtf6ojHEOAAAAAAAAAAAAABgnwWgA5K1Wcc/05wWjrbcVB6PlVsBNfUXTae9MYWtvfYtnKnuLxqGtHoPR6hRXA5zX6XxH4TzQQuO+o2IebO3FYIx7wLTU+JNYo9d533TtN7ZuTW8e+7cirvzS+fuO32oc7lPT/7aL3kkuCvNvez0AAAAAAAAAAAAAgEwIRgMgb5OGYUSC0dZb3WL7Cz7XZZGzQrLxWjJkqq++RfhM/hYFoxU9BqMVbZ5ZfRRsri6///UlQBsN57VCOjZYZvfeswhMS/UJyQC0Gmv3676ldXN6UxQRh26Zv++Bj0Tc96FBm8MCi95L1fqjMt49AgAAAAAAAAAAAADjJBgNgLzVKu6Z/rxgtLVWO0Rqqoixy+ApIVYj1rTYfaawtbe+RRF+9iYLxqGtHoPR2oT5CXWADdbh97/5DtBG532HeQ0DMe4BF0j1CYk1elWo+VP+UcQVh5dqUW8OfXck/38du3XIlmyYhnOcRe+lFu175HLGOQAAAAAAAAAAAABgnASjAZC3psFoE8Fo661mIVfZUzCa4vzxWjYwqq9gNMWJ+Vs0DhWZBaPpo2Bzme8Aq9a4H6rqa/RF6yu3e5tbe4CVSr0/SgagVfyY9Vn/z1LN6dVlT4p4wgvn77vjVyJ2Tw/bHuZb9E6y1s9OjHMAAAAAAAAAAAAAwDgJRgMgb43DiIQMrbXaxfaTxL8ve32FZOPV8N7NFrwKRttckwVFpls9BqMli64X0UfB5urw+9/YBLTScd9h7bW+cru3xj3gAqk+KvHj1EVr9xteHVFk/mPYw0fmbz9zX8Qn3zZsWzZGw3FwUfhZnWA04xwAAAAAAAAAAAAAMFKZ/0Y+ABtvUSDNPB/9qYj3vCLiP/9gxAN/3U+bWJ26hVzThdadFn9lVsBNjwYKRvNM5a88m95X9BiM1kZuIRPAcDr9/teXAC00XndV9TX6IoYiMAaYkhrPkgFoC4LRiu2lm9O7J7084uCV8/cdPzpsW5hv0c9H6vzsRDAaAAAAAAAAAAAAADBSgtEAyFc5icbF0OUk4hNvifjov4l4x9dF3PfhXprGqtQt5BKMxqwl713TkMa6FCfmb9G97zUYbUFxdZI+CjZXh+OJsQloQ99BbZnNWYULAxdI9QmJNXqx4MesYwhGO3BZxA3fMX/fp3474uHPDNueTdB03Fn0xxrKOu8rjXMAAAAAAAAAAAAAwDgJRgMgX4uKfuo4+4WIv/6JbtpCHuoW21/wuS6DQhSSjVbjezdT8Lpsf5QiQCJ/i4pMtzILRtNHwebq9PtfXwK00HReW9lv6YsYijUZMC0x/iQD0Bas3Xt9Z9Chw7fM317uRtzxy4M2hTnKnfS8qc4fcvDuEQAAAAAAAAAAAAAYKcFoAOSriyCi29+w/DnIR+1CrqlisU6LvxTnj9eS925RONZyJ+7pvHRmUZFp0WORc7LoehHPE2yuDr//Fc4DrTTtOyr6LYGvayyze2vcA6Yl+4REANqitXuxvXRzBvG450RccfP8fceODtsW5ks9l3XeVxrnAAAAAAAAAAAAAICREowGQL4WhdE0sXu6m/OwerXD8gSjMaNpsEIxU/DaVxGh4sT8LSoy3RKMBmSiy/Hk7Be6OxewOTqf1wpOYyieJWBaqk9IBKMlt8d4gtGKIuLwkfn7Pv9nEff/6bDtWXstxp3UO/Faf8jBOAcAAAAAAAAAAAAAjJNgNADyVauwp4YTd3ZzHlavbrH99Oe6LNAXYrW56oTyPf2ftjlxi2MY1KKQzqLHYLQ2SzUBIbDBOvz+P31vxKRuGC3AnsZrpWX7LfOe0cptzmqdD0xL9VHJ8PJFwWh9vjPo2KHXpfcdOzpcO5gv9XOSOn9YxjgHAAAAAAAAAAAAAIyUYDQA8lUniKiOE7d3cx4yULeQa7qIUTAaEc2DE2YKWxcFNT7z30R8659HfNWPNW6VZ2oEFt37Pouck0XXi2QWMgEMp+vx5L4PdXs+YAN0Pa81r1lfud3b3NoDrFZqPEsEoC1auxfbS7dmMJffGPH4b56/7/Y3REzODtuetdZi3Hnwo4lT1fnDMsY5AAAAAAAAAAAAAGCcBKMBkK9JncKeGk7c0c15WL26oR/lVMFXl0EhXYX1sQINiwCL2WC0Bff+5u+LePTTmzcpIroPkKBzi4pMt3ILRgM2V8fF7vcLRgMaarruKiv6rWX3Q13CqoFpqfFl9j3RF3ekz9XnO4M+HDoyf/vpeyM+9TvDtoULve+187fX+fmJcQ4AAAAAAAAAAAAAGCnV9gDkq6sQqp0T3ZyH1asdjDaZ/+9LX18w2mgtG5ywqNBwmUJXgQ75S977ot/wslbn9jzBxup6PHnw492eD1h/nYduVPVr5j3jldm9ExgDTEv2CYk1ejIwLSKK7aWbM6gveWXEgcvn7zt266BNWWtt1m4PfCTi9H1zzlXnD8sY5wAAAAAAAAAAAACAcRKMBkC+ahX21LD7cDfnIQN1C7mmC8wEoxHRvPh+prB10b1fKhxLcWL2UmPRMoF4tbR4rgTtwQbreDy5+HHdng/YAE37oWWDz8x76IpnCZiW6BNSAWiL3gmNLRjt4BURN/y9+fs+9baIU58dtj1c6NQ9+7fV+fmJd0UAAAAAAAAAAAAAwEgJRgMgX4LRmFW2CEarfUyX12ft9BWKpzgxf5PEWFT0HIzWKnDP8wQbq+vxZHK62/MB689aibpyWwN5doELpILRUmv0RGBaRP/vDfpw6Mj87ZOzEXf8yrBtWVsLxsHHfl163+7J/dsmZ2tczzgHAAAAAAAAAAAAAIyTYDQA8jXpKIhIMNr6qFuwPP25ToPRegrHYgBNi+9nClt7u/eKE7OXCukUjAZkpePv/13BaEBDjcOuKj5fdb7cwrVoILd7l1t7gJVKvkdMBaAtCEbbGmEw2rXPi7j8pvn7jh8dtCkb6XlvTe+b9zOOVJj/NAGgAAAAAAAAAAAAAMBICUYDIF+pMJqmBKOtj9qFXNOFzYLRiOWDE/q694oT85cai3ovcG6xVBMQApur6Xjy7F+KuPpr0vsngtGAphr2Q5XzlmX3Q03WZMAFUuNLIgBtUah5sb10awZXbEUc+p75++77UMTn/2LY9qylBXOYix+XfqZ2Ts45VZ2fn5gzAQAAAAAAAAAAAADjJBgNgHx1FUQkGG2N1CxYni6y77LIWTDaiDUsAixmCl67CmrcR3Fi9iaJe1/0HIy2qLg6yfMEm6vh9/81Xx/xkj+JuO5F8/fvCkYDGuo6XGrp4DTyldm9E4wGTEuNP8k1eiIwLWKcwWgR6WC0iIjjR4drxyYqiojty+bv220ZjGacAwAAAAAAAAAAAABGSjAaAPnqKohoRzDa2qgdTDZV8CUYjYhoXnw/G4zW071XnJi/1Fi0JRgNyEnLANCLHjN//0QwGtBQ43mt4DNy4VkDpqXGs0QA2myw/gX7RhqM9qgnR1zz3Pn7jv9SOkCebmxfOn/7vJ9x1LkX3j0CAAAAAAAAAAAAACMlGA2AfHUVRLQrGG1t1C3kKqcKmwWj0YXegtEU4WcvVWRa9ByM1map5nmCzdV4vrMX4LB98fzdu4LRgKYGDt0w7xmv3O6dwBhgWqqPSgagLVi7jzUYLSLi8C3zt5+6O+LT7xi0KWunahw8cNn87bsn55yrTkhdZuMuAAAAAAAAAAAAAEBNgtEAyFcqjKYpwWjro3bB8nTBV5dFzgqmR6tx8f1MwWtX/dE+nqnspYpM+w5GK9os1RS7wuZqOc5tJYLRJoLRgIYah0tV9VvL7oe6PEvAtFSfkFijJwPTYoBA9R7d8KqI7Uvn7zt+dNi2bJQi/d993s846ryvFAAKAAAAAAAAAAAAAIyUYDQA8pUKo2lKMNoaqVnINV3w1WXx12S3u3MxsCWL3cue7r3ixPylxqItwWhARpoGgBaC0YCOdT2vrezXzHvGK7N7Z00GTEv1CckAtEXBaNtLN2dlDl4Z8SXfPn/fJ94Sceb+YduzVirGwe3L5m/fOTnnVHV+fpLZuAsAAAAAAAAAAAAAUJNgNADy1VUQkWC09VG7YHmq4KvLIue+wrEYQMvAmEcO7+veK07M3iRRZFpkGIzWNBgJWCNN5zt749x2IhhtVzAa0FTDfkjw2ebKbs4qGA2YluqjUgFoC/q0vgPV+3b4yPztkzMRd/zasG3ZFEURcSARjLbbMhhNACgAAAAAAAAAAAAAMFKC0QDIVyqMpqndU92ch9WrW8j1ibdEPPBXe18IRiOWL76/+qu7accsxYn5SxWZFts9X9hSDWig8Ti3F+ywlQhGmwhGAxpqPK9dMhgtu3AtRsuzBFwg0SekwssXvSvs/b1Bz679pojLnjR/37FbB23KeqkYd7Yvnb993h9/qfPzE+8eAQAAAAAAAAAAAICRUm0PQL66CqHj4sQhAAAgAElEQVSaVzTEODUp5Prtr4y4/Ze7Lf4SjLZBigu//LL/cf7HnvL9S15HEX72Ut/3fRc4p4quF/I8weZqON8p9sa57Uvm7xcsDDQ1eOiGec945XbvcmsPsFLJ8ayYv3lRMNXYg9G2tiMOfc/8fZ/7YMQDfz1sezbFgcvmb985uX9bKsz/wg8t1RwAAAAAAAAAAAAAgFURjAZAvmoV9tQgGG2NNCi2L3cj/ui/nV801pZgtBFrWgQ4U/D6mGdGXP93Ltx28WOXD0YbPECCxlL3qFVwWQOC0YAmypbj3PbF83fvnl6qOcAGajyvrei3GvdrsATPG/CIVH+QCEbbvjR9qkuesHRrVi4VjBYRcfzocO1YJ1VjTuqZmvczjkXBfI9cz7tHAAAAAAAAAAAAAGCcBKMBkK86hT11CEZbH02DyXZORHzyrau7PhlZstB9azviuW+KeMZPRjzxpRFP+6GIF7w34tFfsWSzFCdmL/V9X2z3fOEWSzWBDrDBWgajbSWC0SaC0YCmup7XVvVr5j3jleG9sy4Dzkutq1Ph5Zc+PuLKp+3ffvCqiOu+pbt2rcqVXxrxuGfP33f89RET70q7cz68+rL5ux/82P5ttdZtxjgAAAAAAAAAAAAAYJwEowGQr65CqHYEo62N3VPNj/n8n3fYAIVko9U0MKoo9m/bvjjiaf99xDe+NeIZPxFx1ZzC1+YN6+Ac9GpVwWipouuFPE+wsZoGupwf57YTwWi7gtGAhpr2Q5Xz84r9AmHplLU+sCc1ns17T3Te0/9pPBJq9ci2H4nYOtBZs1bq0JH52x/+ZMRn3jlsW9ZCxRxm+9L52+95d8QHv/fCMLo678rNmQAAAAAAAAAAAACAkRKMBkC+yp2OTqTAdW3srjjkbtJRWB8rkGkRYNMACYaXLIrueSnV5vyKXWGDNf3+3wtu2EoEo00EowENdT2vXTY4jXzlOGfNsU3AiqT6gwVr9Ju+K+Kb3h5x+B9E3PiaiG94Y8SX/XAvrVuJG1+dXjccOzpsW9bZ+fC9rYvSn/n4z0d87N9+8etawWjePQIAAAAAAAAAAAAA47Qmf64cgLVUdhRCpfhnfeycXO31u3omGYFioOsowM9e6vu+2O75wm2C1zxPsLEaB7pUBKPtnDh3zmKo8RAYv6br7qp+yzp+feU4Z/W8AXuS4egV8+LrXnjun3V00aMjnvTyiDt/bf++T7w54swDERddNXy71tVWxY/uj90a8dTvP/fvkxrBaMY4AAAAAAAAAAAAAGCk2lTbA8AwJjvdnEcw2vrYfXi11xeMNl6NA2MGon/KX7IouudgtEIwGtBEw/HkfLDDRVfP33/mvogHb1uuScBmaTqvrZqfV57PvIcO5bpeBFYg1R9seGDw4Vvmb999OOLONw7alPGrGHO2Di7ef98fn/vfyU69+ZcxDgAAAAAAAAAAAAAYKcFoAOSr7CgYrWlQBPkSjEZrTYsAByp4FYyWv9T3favgsgbanF+xK2yuxt//e+PcY58VyTHv3j9cpkXApul8XlsVnGbeM1453jvrMuC8RB/V9zuA3D3hhRGXXjd/3/Gjw7Zlbe2ty4oD9T6+e6rmeY1xAAAAAAAAAAAAAMA4bfhv8gOQta5CqAQPrQ/BaLTWsPi+GCgYLctQAC6QDEbb7ve6rYquPU+wuVqOcxc/NuLRT5//mdP3LdckYMM0XXdXBZ9Vnc+8hw55bwScl+wPhnpPlKmt7YibXjd/373vjXjwY8O2Z8yqwl27DkYTJgsAAAAAAAAAAAAAjJRgNADyVe50eC4FQGth5+SKG6BYerRy7QMU4I9A6h71vZQSjAY00Hg8mQp22L4scU6BsEADXc9rzZPXV5ZrsxzbBKxGqj/Y8GC0iIjDR9L7jv/icO1YW3vP2NbBeh+f1AxG8z4bAAAAAAAAAAAAABgpwWgA5KvLMAZF1eth9+HVXr+cZFrETfeGKnj1PGUvNRYV2/1et8359U+wwZp+/0+Nc1sHEqfsMKQYWH+N19wV/VbV+cx76JJ3RsB5qfGl8OPUuOrLIx7ztfP3HTuqL62tYg6TWp/N2j1d83LuCwAAAAAAAAAAAAAwTn6TH4B8TboMY1AAtBZWHYwWoZhstDINTvA85S91j3oPRrNUA5poOM4VU8FoRaLwvtO5OLD2Op/XVvVrmc7vqSHHe5djm4DVSI1nQwXoZ+7wkfnbT94Zcc8fDNuWdXN+jVYcrPf53VM1T2yMAwAAAAAAAAAAAADGSbU9APkqdzs8l/ChtZBFMFqHzyUDaloEOFTBq74pe6nv+b6Dy1qdX7ErbKzGc93pYLRE0GMpGA1oomE/VFbMWyr7NfOe8crw3nlnBJyXGp8KwWgREXHjd0ZsJYK7jt06aFNGq2oOtJUIrp41qRmMZowDAAAAAAAAAAAAAEZKMBoA+eoyjEEB0HrYObnqFghGG6uqosNVybVdfFEyGC0RJNQZwWhAE0sEgBaJwntzHqCJztfc1vAMyDsj4BGpebUfp0ZExMWPjXjiS+fvu+vfR5x9aNj2rJW9NVpqfTZrVzAaAAAAAAAAAAAAALDe/CY/APmadBiMpqh6/MpJxOT0qlshJGS0GgbGFEX1Zzqhb8peqoC072C0osVSTdAebK6m3//T49xWKhity7k4sPYah25U9FtV5zPvGa8s712ObQJWIvkOYKj3RCNw6Mj87TsnIu5607BtGaWKMWfrYL3T7NZ9T26MAwAAAAAAAAAAAADGSTAaAPnqMoBKmNX47Z5adQvO8SzRpSxDAbhA6nu+TXBZE63O73mCjdU4kGgq2KFIBKN1GlIMrL+Bg9HMe+hS43EUWF+p8UUw2iOuf3HEJdfO33fs6LBtWSt7z1hqfTar7rtyYxwAAAAAAAAAAAAAMFKC0QDIV9lhGIMCoPHbObnqFuzxLI1T0+CEgQpeBe3lLxmMtt3vdQWjAY0sMc6l+rMu5+LA+ut8zV3Vr5n3jFeO9y7HNgGrkegP+g5HH5OtgxE3vnb+vnveHfHQ7UO2Zv1sHaz3uYlgNAAAAAAAAAAAAABgvflNfgDy1WVgkAKg8dt9eNUtOGciyGqUykyD0RTg5y81fvReFN3i/I2fc2BtNJ3rFlPj3NaB+Z/ZOdG+PcDmadoPVc1bqs5n3kOXvDMCzkv2B0O9JxqJw7ek9x3/xcGaMU4Vc5jU+mzWbs1gNO8eAQAAAAAAAAAAAICREowGQL4mO92dS5Hr+JUdPg/L6DKwjwFlXASof8pb6nu+2O73uq2C1zJ+zoHuTc5G3POeiOOvjzh5Z8ODp4IdikTh/bFfiHjoeOvmARum6zltZTCaddl4ZThntSYDzksFbxaC0S5w9VdFXP3V8/cdPyrAtI3zz1hqfTatLCN2T9c7rzEOAAAAAAAAAAAAABgpwWgA5KvTICwFQOOXSUGdAvyRavj8tC14ffI/bH6MZypvqQJSwWjAKp39QsTvf+O5f97/PREP/GXDE0wHoy3ozz7YYlwDNlTTNXfVvEUw2trKMiwnxzYBq5Eaf/w4dZ9Dt8zf/tCxiHvfO2hTRqVqHNw6WOMcOxGTU3UvWPNzAAAAAAAAAAAAAAB58Zv8AOSry0LnVLAN45HLPbzvQ6tuATk7dKT5MUId8pa6P62Cy5pocf4sQyaAXvzF/x7x2fe3P346AHTrQPpzn/mPETsn218H2Bxdr9cqz5fJ+pD1kMv7BmD1UuvqtgH66+ym10QUibXE8aPDtmUt7D1jqf+m0yZnI3ZrBqMZ4wAAAAAAAAAAAACAkRKMBkA+dk5EPHTsiwVok53uzq0AaPxyCfx5z0vPFZ8xLo2fn5YFr9c+N+Lm/67ZMfqnvCWD0bb7vW6r4LVM+kmgf3/1r5Y8wdQ4V1V4f/bBJa8FbIam85Cqz1fsnwgXHq8c56w5tglYjVR/4Mep+1xyTcQTv23+vjt+XcByUsWYs3Wwxil26gejCZMFAAAAAAAAAAAAAEbKb/IDsHrlJOKPfyDiTVdH/OaTI/7DzRH3/1k6jKYVBUDjl1Gh8mc/sOoW0NiAz8/1L272+U77OrqXGj96XkoJRgN61SAYbXKm36YA66Fp2G9VcHHV+cyh6ZKwauC8VH9QtAzQX3eHjszfvvNgxF1vHrYto7f3jFWtzyLO/UGZusFoufyxEQAAAAAAAAAAAACAhgSjAbB6f/WvIm776YjJ2XNfP3Qs4l0viNg90d01FLmOX0738GP/dtUtoLGGRYBLFbw2PFaoQ95S96fY7ve6rYLRAGqaHueq+rPybL9tAdZD1+u1yvNltD6koQwDWnJ63wCsWKqPEow21/XfFnHxY+fvO37roE0Zj4pxcKtOMNrZiMnpmtczxgEAAAAAAAAAAAAA46TaHoDVO/76/dtOfzbi0+/o7hqKXNdARsXTWxevugU0VTZ9foYMRtM/ZS11f/oORmuzVGv8nAOba2qsqiq83z3Tb1OANdF0Tls1b6k4n3BhOmUeDZyX6A+El8+3fVHEja+Zv+/ud0acuGvY9ozZ+fDq4mD1Z8udiN1T9c7rvSMAAAAAAAAAAAAAMFJ+kx+A1XvgL+Zvf/hTHV5EAdDo5VTEtS0YjQ4Jdchb6v70XRTd6vwCHYCaiqlgtKIiGK08229bgPXQ9XqtKvDVHHq8cgzzzel9A7Bayf5gmQD9NXf4SGJHGXH7nD+IsumqxsGq4OqIiMnZ+sFo3hUBAAAAAAAAAAAAACMlGA2AzaDIdQ1kVMS1JRhtfJo+P0sUvBYNjxXqkLdkMNp2v9dtE4yWY8gEkL+q/mxyZph2AOPWeM1dNW+pOJ81/ojlOGf1PAHnpfoowWhJVz8j4qqnz9937Kh3FbXtPWNVwdUREeVO/WA0cyYAAAAAAAAAAAAAYKQEowGwGQQPjV9ORVzbgtFGJ+cizJyebfZL3Z++g9FaLdUyfs6BjMyEOmxVFN5PzvbXFGCNdDynrZojW+PTpZzXi8CwUv1Bm/DyTVEUEYePzN/34EcjPvfBYdszdlsHqz8z2YmYnK53Pu8dAQAAAAAAAAAAAICR8pv8AGwGBUBrIKNC5S3BaOPT8PkpiurPpA9u9nGhDnlL3Z++i6JbnT+jfhLI1+wYVwhGAzrQdM1dFUQlGG19ZRlC5p0RcF6qP1jmPdEGuOm16QD5Y7cO2pT8VYyDVeuziIjybMTuqW6uBwAAAAAAAAAAAACQKcFoAGwGwWhrIKMirm3BaOMz5PMjGG2tJIPREgW/XWkTjJZlyASQn6bBaGf6awqwPhqvuZcNRrPGp0Pm0cB5qf5gqQD9DXDpdRHXvWj+vjt+tUGI1ybbe8a2DlZ/dLJT/7+pORMAAAAAAAAAAAAAMFKC0QDYEAqARi+nIq4twWjrb8iC14yebfZL9T1tgssaaXN+gQ5AHTNj3FZF0OPkbH9NAdZH5+u1quA04cLjleOc1ZoMOC8VjObHqZUO3zJ/+9kHIj7x1kGbkreKcXCrIrg64twarXbYXI7jLgAAAAAAAAAAAABAtRq/XQ0AayCnUC1ayqiIa+vgqltAU2XT52eJYLSi4bEToQ5ZS4VuFBVBQstqVXSdUT8J5Gt2nCoqXg1NzvTXFmCNNF1zVwWfVZxPMBpd8s4IOC/ZHwwZoD9ST/y7EQcfHXH28/v3HTsaceOrh2/TmJxfp1WtzyIiyp2Iyel65zXGAQCstaIonhERT4mIJ+5t+mREfLQsyw+vrlUAAAAAAAAAANANwWgAbAYFQOOX0z1UhD9CGQdGeZ4yl+h7cgxGaxwACGym2VCHipCHydneWgKskc7Xa1XBaBmtD2koxzlrjm0CViPVHwhGq7R9ScRN3xVx28/u33f32yNOfirisuuHb1duqt7d1PmDHOVOxO6pmtczZwIAaKMoisMR8bUR8ay9/31GRDxq6iN3lGV50wqaFkVRHIyI/yEivjcinpz4zMci4uci4ifLsvSSHwAAAAAAAACAUWpRbQ8AY6QAaPRyCvwRZDVCDZ+fYpmC16bH6p+yNkl8v7cJLmui1fkz6ieBjM2OUxXjkGA0oI6moRtV67uq81mTjVdOa/vzhMYA56X6qL7fAayLQ0fmby8nEbe/Ydi2jM7eOq2o8TfNJmfqB6N5VwQAUFtRFM8viuLtRVF8LiI+HhG/GhE/HBHfGBeGoq1MURRPiYgPRMS/iEQo2p6bI+LHI+L9RVHcPETbAAAAAAAAAACga36TH4DNoMh1DWR0DxXhj8+gxfcNg9E8T3lL3Z9iu+cLC0Zjxs7JiLvfGfHAR/IMFGE4y97/2fDPqnny5Mxy1wM2Q7nT8fkEozEgcyvgEanxZ5kA/Q3y2L8VceXT5u87fqv+NiIq393Ued/0X360fjCan4sAADTx1RHxLRHxmFU3ZJ6iKJ4QEb8XEc+Y2fWxiHhrRPxmnAt0m/bMiHhHURTX9t9CAAAAAAAAAADolmA0ADaDAqDxy6lwThH+Bhiw4NXzlLnU+NHzUqqwVGPK3e+K+I1rI971gojf+opz/7tzYtWtYlWWntc2DEYrzy55PWAj1A3neETV+q5ivzX+iGW0tn+E5wnYk3r/OBsuzHxFEXHoyPx9D3wk4r4PDdueUdl7xrYvqf7oZ98XcerTNc9rjAMA6MDp2B84NqiiKLYi4i0RcePU5k9HxIvKsnxKWZYvL8vyZWVZ3hwRL4mIu6c+dygi3lwUFjYAAAAAAAAAAIyLansANoOi6TWQUfH0RJDV+Az4/DT9nXL9U95SwXXFdr/XbROMllOAJN3ZPRXxnpddGIT2mXdF/NmPrK5NrNbSgZoNg9EmZ5a8HrARug5GqwxttCajQ9ZkwCNWFI6+Tg69Lv1O49itgzYlTxVzoK0DEdf/nerT1J17eVcEANDU2Yj404j4uYj4voh4ZkQ8KiK+d5WNiojXRsTXTX19X0Q8pyzLd8x+sCzL342I50TE/VObnxMRr+61hQAAAAAAAAAA0DG/yQ/AhlDkOno5FSorwh+hpkWAy/zB7KbBaJ6nrKX6nr6D0Vot1RS7rqVP/oeInYf2b7/tp4dvC3lYdtyYDfCsOt/k7HLXAzZD42C0KoLR1leOc9Yc2wSsRCpEqmkI/ia77IkRj3/B/H13/ErE7ulh2zMW08/Y1/50xBVP7ua8Ob1TBwDI39GIuLIsy68py/K/Kcvy35Vl+SdlWa70JXlRFNsR8WMzm3+oLMvbU8eUZXk8In5oZvM/L4o2f5kJAAAAAAAAAABWwy+7ALAZFACtgYwKlRXhj0+qsDVlyIJXz1PeUven77qBVufPqJ+kO7e/Yf52YVWba+lxY3aMq5gnT84seT1gI0waBqNVzc+r1vDm0HTJOyPgEanxyY9TGzl8ZP72M/dFfPJtw7ZljC6/IeJb/7yjk3lXBABQV1mW95dl2XX6fxe+ISIOTX39yYj4pRrHvX7vs+c9OSKe02G7AAAAAAAAAACgV36TH4DNoGh6/HIqVPY8jdCARYBNQ9VyerbZLxmMtt3vddsEozUNAGQcJsYcZi07bsyMU1XjkBA+oI7djmtGK+c15tCjleWcNcc2ASuRmhsPGaC/Dp708oiDV87fd/zosG3JTXIcnHnGDlwa8ew6WRdV1zNnAgBYA6+Y+foXy7L6Fxb2PjM7qXxlZ60CAAAAAAAAAICeCUYDYLWGKohVALQGMipUFoy2AQYsePU85S1ZFJ1hMFpO/STd0Ucwa9lnYjbUQTAa0IXGwWhLBp8JDh2xDOes3hkBj6gZWsViBy6LuOE75u/71G9HPPyZYdszVode28FJjHEAAGvgxTNfv7vBsbOffclSLQEAAAAAAAAAgAEJRgNgtQYrPlUANHo5FSoLqRmhIYvvGxbLep7ylro/rYLLmhCMxp5yZ9UtIDdLhwHNBqNVnO/kXUteD9gIjYPRKlSt/8yh6VJO7xuAFUusq3t/B7CGDt8yf3u5G3HHLw/alLw0fHfzpJcveTnvigAAxqwoiosj4uaZzR9ocIr3zXz9lKIoLlquVQAAAAAAAAAAMAy/yQ/Aig1UfKrIdQ1kVMSlCH98GhcBNgw3W+ZY/VPeksFo2/1et03RtWLX9WTMYdbSz8TsOFUxDn3855a8HrARmgajVc1bKufI5tDjleOcNcc2ASuRHH+WeU+0oR73nIgrZvMb9hw7OmxbxqBIPGPblyx5YnMmAICR+9KImP6h5D1lWX6h7sF7n/3s1KbtiHhqR20DAAAAAAAAAIBeCUYDYLWGCgQSPDR+Od1DITUjlHGhu+cpb6m+p01wWROtzp/xc0575c6qW0Bulh03Zgvuty+tPubMA8tdE1h/k4bBaNUnXLzbHJou5fS+AVixxLo6FVpFWlFEHD4yf9/n/yzi/j8dtj3ZaPjuZuviJS9njAMAGLnZtOE7W5xj9pintGwLAAAAAAAAAAAMSjAaAKslGI3aMgr8UYQ/Qg2fn2UKXpse63nKW+r+FNvzt3fGUo09+gj2WXZeOzNOHf771YecumfJawJrrSwjdpsGo1XMz8uq/cbH0aq6tyuRY5uAlUj2UdborRx6XXrfsaPDtWMUEu8Tty9Z8rzGOACAkXv0zNdtXtbPHnNVy7YAAAAAAAAAAMCgDqy6AQBsuqECywSjjV5OxdOK8DfAEsFoTY8V3Ji5xP3pOxit7fnLcrlgP/IzWTDmuN+badl5yOwzc8WhiGufF3HPe9LHTJoGHgEbZXKmxUFV67uKObI5NF3yPAGPSIxP1l3tXH5jxOO/OeIz79q/7/Y3RHzNv4zYOjh8u1ap6TvuZYPRjHEAAGN3xczXD7c4x+wxj2rZlgsURXFtRFzT8LAnd3FtAAAAAAAAAAA2g2A0AFZrqMIcBUBrIKN7KBhtfHIK1pvlecpb8v5s9XvdoufzMx6L+ohy0n9IH/lZetyYE+rwvN+MeNOj04fsCkYDFuijj6haw5tDj1iGazPvjICIindHgtFaO3RkfjDa6XsjPvU7EU966fBtylLiGdu6eLnTGuMAAMZuNhitzYu42WC02XO29f0R8aMdnQsAAAAAAAAAAPZRbQ/AaglGo66cgq0U4Y9Q0+dnmYLXhsd6nvKWuj9bPYdRtQ5Gy6ivpBsLg9H0Hxtp0kMw2kVXRbzyM+lDBKMBi7TpI6rWd4LR1liO89Uc2wQMb0FfILy8vRu+PeJAInfh2K2DNiUPDcec7UuGvR4AALlrM8EzKQQAAAAAAAAAYJT8Jj8AKzZUYJlgtPHL6B4qwh+fnIL19sno2Wa/ZChH30upluF8WT/rtCIYjX2WHDeKRP9yybULLnl6uWsC62334e7PWRmMZg5NhzxPQERFX7BMgP6GO3B5xA2vmr/vU2+LOPXZYduTq9Q6bdlgNGMcAMDYPTTz9aUtzjF7zOw5AQAAAAAAAAAgSwdW3QAANtzuqWGuowBo/HIK+xFEM0INn59UMWIfx3qe8pa6P8V2v9ctijhXeN2078uor6QbgtGYtfR9XzBObV8WsXty//ah5uzAOLXqI6rmLBX7jYHjldPa/hE5tgkY3qK+QDDaUg4diTh26/7tk7MRd/xKxJf+48GbNBrLBqMZ4wAAxi7nYLSfiYg3NjzmyRHx1o6uDwAAAAAAAADAmhOMBsDqTM5GvOeVw1xLMNoayOgeKsJnoYbFshPPU9ZS40ffwWgREcVWi/5GwevaKXcW7NN/bKReg9EuEYwGNDfpoY+oWsMbA+mSd0ZAxOLgxmJruHaso2ufF3H5TREnbt+/7/jRzQpGSz5niXXa1sVLXs8YBwAwcg/MfH1Ni3NcO/P151u25QJlWd4TEfc0OaZY5o+TAQAAAAAAAACwcfwmPwCrc88fRHzuA8NcS9H0+C0qThya52mEmj4/Q/5StgLFrKW+34coim5zjZz6SrqxcMzRf2ykZechiwqPti+Zv10wGrBIqz6ias5SFYxmDByvHOernicgYnFfoHh/KcVWxKHvmb/vvg9FfP4vhm3PmKTWaHWZMwEAjN1tM1/f2OIcs8fMnhMAAAAAAAAAALIkGA2A1fnI/zXctRQArYGMiqcFo41P47CoZQpeGx7recpbavwYIhit1XIto76SbizqIyb6j4209Lx2wTi1dfH87ZPTS14TWGuTnebHVM3Pq/o6c2i65HkCIhaPPcX2cO1YV6lgtIiI40eHa8fKNXxvs2wwmvdEAABj9zcRMf3i4tqiKB5V9+CiKK6MiMdNbdoNwWgAAAAAAAAAAIyEYDQAVufu3x/wYoLRRi+ncDtF0yOUcRGg5ylzqWC0AYqitw60OCjjZ512FoXN6D8209L3fUEwWqrofvfUktcE1lrZIhit+qQVu42B45XhfFXYLBBREYzmx6lLe9STI6557vx9x3+pXdDqWkms05YNRsvpnToAAI2VZXk6Ij4+s/nZDU7xnJmvb9s7JwAAAAAAAAAAZM9v8gOwGRQArYEVFE+nih4VTY9Qw+enWBAa0/Wx+qe8pUI3hiiKLloEo5UZBk2wnEXBL0JhNtOy933ROCUYDWijVTBaVfBZxRzZHHq8cpyvmlMBEbHwD2sIRuvG4Vvmbz91d8Sn3zFoU1an4Ti4dfGS1zNnAgBYA7878/XzGxw7+9nfWaolAAAAAAAAAAAwIL/JD8DqtAl8aUvR9Pit4h6mCs8UTbNQ02A0z1PWkn3PAEuprTbjZIZBEyxHMBqzlr7vgtGAjk3aBKNVqAxGMwbSIc8TELG4LxCM1o0bXhWxfen8fcePDtuW3KQCrFNrtLpyDCQFAKCpN898/bqiKLarDtr7zHdXnAsAAAAAAAAAALLlN/kBWJ2tg+2PveJwwwMEo43fCoq4BKOtj8ZFgA3DzZbhecrXoudmiKLoVgGiCl7XjmA0ZvUZjJaa+0xOL3lNYK2ViWC07csirn5G6qCKkwpGW18Zzlc9T0DE4lDO6swB6jh4ZcSXfPv8fZ94S8SZ+4dtzyo0fUe5bDCan4sAAKyDP4yI4/Q6OiYAACAASURBVFNfPyn2B57N890R8cSprz8eEf+pw3YBAAAAAAAAAECvBKMBsDqtAl8i4ut/NeJb3t/smEWFbYzDKu7htmC09TFk8X3DUDX9U74WFkVnGozWOASQ7AlGY9ay40axYJxKFd3vnlrumsB6mySC0bYOLO5zFqnq64yBdMnzBERUjD1+nNqZw0fmb5+cibjj14ZtS1YSc6ZUeHVd3jsCAGSnKIpy5p/nL/p8WZa7EfGjM5t/siiKmxZc46aI+L9nNv9IWZogAgAAAAAAAAAwHn6TH4DV2TrY7rjLbwzBQ5toBWE/qcIzRdMj1PD5aRvg0OZYz1PGVlwUvdUyQJT1UibCZiL0H5tq6fsuGA3oWGqsWhTyWhnmWrXfGn+8MgzyNacCIlYfjr4prv2miMu+ZP6+Y7cO2pTVaDgOptZofV0PAGDDFUXxpKIobpr9JyKeMPPRA/M+t/fP43po2hsi4oNTXz8mIt5XFMW3zPn/8KKIeH9EXD21+X0RsclJxAAAAAAAAAAAjJBKewBWp20wWrEdjYPRFE2PX2XhfA+2BaOtjcbPzxLBaE15nvK1sCh6u//rLwoTSVLwunYW9RGCXzeTYDQgN5NEMNrWgUj3ORVzlqoxzhyaLnmegIjFfYFgtO5sbUccel3EX/6f+/d97oMRD/x1xFVPG75dK5eYMy0bjOa9AQBAU++NiBtrfO6JEXE8se9oRNzSVYMiIsqynBRF8YqI+EBE3LC3+bqIeHtRFLdFxF/GuUnlV0TEzTOH3x4RryzLVfzCBQAAAAAAAAAAtOc3+QFYnVaBL3EujKZoGFr0hb9pdy0ysoIiri3BaLTRsH9SoJivhcFoAyyltgSjERXBaMajjbTsfV80j07NfQSjAYuUiWC0tmv+iOo58sQYOFo51uCaUwERsfDd4xDh6Jvk0JH0vuNHh2vHSjQcB5cORstw3AUAoJWyLD8dES+MiA/P7HpKRLw8Il4W+0PR/iQiXliW5Wf6byEAAAAAAAAAAHRLMBoAq9Mq8CX2CtEaBg/9zb9udy3ysYoirm3BaOuj6fPTsI9ZhucpYysORmsTJqLgdf0sCobRf2ympQM1F/RfBy6bv333xJLXBNbawmC01Ly6Ys5S2dcJFx6vDOer5lRAxOrD0TfJlU+NeNyz5+87/vrNDEBNBVinwqtrM2cCAFgnZVl+NCK+LiL+l4g4tuCjH9/7zN8uy/JjQ7QNAAAAAAAAAAC61jKRBgA6UBxsedx2ulBokcnZiK2W1yQDKyjiShWeKZoeoSGL7xv2T56nfK26KLpNMFqOQRMsRzAas5a974vm0QeumL/97IPLXRNYb5NEMNrWgXZr93MnXbzbGEiXPE9AREUop2C0zh06EvHZ9+/f/vAnIz7zrojrXjh8m3K0fclyxy8drA0AsFnKsrxpgGss9Re6yrI8GxE/HhE/XhTFMyPiqRFx/d7uT0XER8uy/NByrQQAAAAAAAAAgNUTjAbA6rQNKSu2o3HwUIRgtLErVxD2s3XR/O2Kpsen6fPTOsChzbEKFLO16qLoLcFoRCy8p8ajzbT0fV8UjPao+dsFowGLlIlgtEUhr1Xz88r9xsDRWsXavornCYhY3BcMEY6+aW58dcSHfjBicnr/vmO3rm8wWtNxcNlgNO+JAADW2l4AmhA0AAAAAAAAAADWkt/kB2B1WgW+xF4hWovQIoWuI7eC8Kjti+dv9yyNUMZFgBPPU74W9DtDFEUvChNJyTFoguUsCugzHv3/7N15nB11ne//d50+3emEbE0WCGFJmsVABJFlDCEoRFCEi6AyUURJ1JlRYO7AOIA63gDKHRnc8OfAT9QLphkUETEgLsAV2VFAFgmGRbISMHtCtt5yTt0/Omm6T9e3Tu3beT0fjzyg9m84RdW3vqc+79OYwn7ubgGezYZgtJ0EowFwUTUEo5XKCvTs3rdT98WuAbaAT/SpAEju9xarKbl2NIqWsdK+ZzkvW7VQ6nkz2fakztBnssrhxqDoMwEAAAAAAAAAAAAAAAAAAADIKYLRAADpsZoDbtfkHuhgQhFQvqUR9lMiGK1xBQ1wCLAt51N2uRZFJ/AoFShAlGC04nH5TLl+NKbQn3uAYLRegtEAuDBdl1xDXg33N7sqbX1VqnQHOyZyIIP9Vc4nAJJSD0dvRO3znOdXOqWVtyfalOT4vA9alnmM2tPh+E4EAAAAAAAAAAAAAAAAAAAAQD7xJj8AID2lEMFoQUKLKHTNuRSKp5sIRisOv+dPiGA038GNFChmlmvxaAKPUq5hIgZphEgiPRQ4N6bQn7vLfapsCEbbSTAaABf2Tuf5Vlm++tWr7pZ+MVG6+2Dp9V/WOSbPZLlUrUgbnki7FUNxPgGQ0h8DaER7nyINn+S8bFlHsm1JnUufqak1xH4ZJwIAAAAAAAAAAAAAAAAAAACQT7zJDwBITylA4IsUIhiN8JBcS+PzKxGMVhhZDovifMout+uOldFgNApei6XevY/rR2MK+7m7BXg2m4LRtoU7JoBiMwWjuT7z1/RZtrwiPfJhqXuDx2PyfJ9Lf/la2i1wRp8KgOR+LUhiDKARlZqkKZ90XrbuUWnrq8m2JxEBxm3CBKPRZwIAAAAAAAAAAAAAAAAAAACQU7zJDwBIj9UccLsm90AHEwpdcy6FsJ8mgtGKw+f5E+Qa89bG/lbnfMqwlIPRAgWIEoxWKFVD0MxuXD8aU+jP3eU+VTYEo1V7pe6NIY8LoLBM9yurbO5X1wYXr7jNHLDmuD33wFxatTDtFjjjfAIgpR+O3qja55qXLbs5uXakzW0s0vTjHZ4QjAYAAAAAAAAAAAAAAAAAAAAgn3iTHwCQnkCBL+oLRvMbPCSJIqCccytOjEup1Xk+RdM5lOGwqDTObXjj+tkk8ChlBbhP1oaMIN/s3jrLuR81pDiD0ZoNwWiSdMd46fVfhzw2gEIyBZqVyrue3522qelnLbo8mmMi2zY9m3YLnNGnAiDJPRzdcD9DeGMOk/Y81nnZ0o7ijZsFGbdpMoxRx3U8AAAAAAAAAAAAAAAAAAAAAMgAgtEAAOkJEvgiSVZJgYLRKHTNuRSKuJpHOs+vdCfbDqQgSPhiwG25NmWXW/GtlcCjVNAAURRHtU7oC9ePxhQ2GMAKGIwmW3rsY1LX+nDHB1A8pvuVVTY/94cNNqv2hNseGIg+FQAp/TGARtY+13n+jpXS2oeSbUtqXJ7TQgWjFSxYDgAAAAAAAAAAAAAAAAAAAEDD4E1+AECKAgZdWU3ugQ7Gw1HommtpFHGVTcFoncm2A+HZCQbr+b0+cW3KsJSLogMFiKYQIon4VHvdl3P9aEyhP3eX+1TZLRhN0s5tDRRMAMAzU8iZVTYHvYYORqtzjwT8qNKnAqA6/Wy+To3VAR+TSi3Oy5YuSLQp8QswblMKEYzGOBEAAAAAAAAAAAAAAAAAAACAnOJNfgBAeoKGOlhNcg10MB4vhWAtRCiFIi5jMFpXsu1ABPyePwGuMUFxbcout8+GYDQkoV5oDMFojSnWYLQ96m/etSbk8QEUjul+VSqb+zNVgtGQIfSpAEjpjwE0smHjpMlnOC977Q6pd1uy7UmFy3Na07AQ+2WcCAAAAAAAAAAAAAAAAAAAAEA+8SY/ACA9QcOAAgejUeiaa3YKRVzNo5znV7vTaQ+C8/t5WWGC0Xxuy7Upu1zvUwk8SpUCBKNxbSqWeqEvXD8aU9jP3e0e19Raf/tqT7jjAygeU8iZ5RKMVi/8s+4xCUZDhOhTAZDqBKM1JdeORtU+z3n+zu194WiNzMtzmgk/yAAAAAAAAAAAAAAAAAAAAAAgpwhGAwCkJ2jhqdUULLSIIqCcS+HzK480L6t0JdcORCDDYVEU4WeXa1F0Ao9SpiARVxk+1+FfvdAY+jaNKfR9w6UfbZWkUov75tXukMcHUDim+1WpbA56NYWpeT4mwWiIEM9kACS5jj0mMQbQ6Ca9X2qd6Lxs6YJEmxKvAOM2YYLRGCcCAAAAAAAAAAAAAAAAAAAAkFO8yQ8ASE+YYDS3QIeoj4dssFMo4iqPMi+rEoxWbAGuMUG35dqUYSkXRZuCRFxR8Foo1TqhL1w/GlPoQLw696mm4e7LKwSjAahhCjmzyuag13rhn3WPSTAaIkSfCoBU51rA16mxKzVLB5zrvGztg9K25Um2JnluPwRTChGMlsaYOgAAAAAAAAAAAAAAAAAAAABEgDf5AQDpSTwYLWyIBNKVwufXPNK8rEIwWr4kWAToVsjohGtTdrl+Ngk8SpmCRNxQ8Fos9UJjCPFoTGE/93r3qXrBaNWecMcHUDym+5VVNge9EoyGLKFPBUByHwNIIhwdUvs887JlNyfWjFgFGbdpGhbmgCG2BQAAAAAAAAAAAAAAAAAAAID08CY/ACA9QcOArJL/4CGJQte8SyPsp+wWjNaZXDsQnu/zJ8A1JiiuTdmVdlF0kGA0Cl6LpV7oC9ePxhT6c68XjNbqvrzaHfL4AArHFHJWKpv7M1WC0ZAh9KkASC5jAFawsWj413aE1Hak87JlHQUPg3c5x+o9o7kq8n8zAAAAAAAAAAAAAAAAAAAAAEVGMBoAID1BC0+tkoKFFgUMYkNGpPD5lUeZl1W6kmsHIpBkEaDP6xNF+BmWcjBaiWC0hkcwGpzEHow23H15hWA0ADVMIWdW2dyfMYWpeWUTjIYI0acCIMk4BpDE8z/eMnWe8/xtS6V1jybalHgEGLcphQhGK3SYHAAAAAAAAAAAAAAAAAAAAIAi421+AEB6ghSeWk27/hkgGI1C13xLo4ireaR5WaUzuXYgAj7PnyDXmLc29re6TWhjZrl9NkkURlsBgtEoeC2WeqEx9G0aU9j7Rr17XL1gtGpPuOMDKB7T/apUNvdnTGFqXtULDwX8oE8FQJKqhmsBwWjJmvJxc/9hWUeybUmUy3NaoOD83Rh3BAAAAAAAAAAAAAAAAAAAAJBPvM0PAEhPkFCH3cFoQZiK25ATKYT9lEeZl1W6kmsHUhAmGM0nivCzy/U+lcCjVKDCV4LRCqVe6AvXj8YU+nOvF4zW6r682h3y+AAKxxRyZrkEo9UL/6x7TILRcifLAb70qQBIMgdI8VVqolonSJNPd1624mfSzh3JtidyAe6HYe6hWb7/AgAAAAAAAAAAAAAAAAAAAIAL3uYHAKQnSOFpmGA0Y3EbciFIkF5YTcNlDA8hGC1fkiwCtHyGqlGEn2Eu1x0rgUcpU5CIKwpeC6VeaAzXj8YUezDacPflFYLRANQw3a+ssjnolWC0xpPGM71X9KkASObrVKjxaAQyda7z/J1bpdcWJtuWpPgdT/SMcSIAAAAAAAAAAAAAAAAAAAAA+UQwGgAgPUkHo1HomnMpFHGVmqSmVudllc5k24KQ/J4/cRUjOslwQECjcwtvyGwwGgqlXuhLlgNGEJ+wfdp6Bfemvs9u1Z5wxwdQPFVDyFmpbO7PmLbxyiYYLX8y3G9hvAiA5BKMxlepidvndGnYOOdlyxYk2pTIBfrxhjDj4gSjAQAAAAAAAAAAAAAAAAAAAMgn3uYHAKQoQFFsmEI0wkPyLa3Pr2m48/xKV7LtQEhJFgH6DFWjCD+7XK87CTxKlQIEowUqsEVm1QuN4frRoML2ieoFoxn6PrtVukMeH0Dh2Ib7lVU292cGbhPkWa9eeCiyJ8tjMvSpAEjmawHBaMlrapEO+LjzstX3S9tfS7Y9iXB7Tgsx1sM4EQAAAAAAAAAAAAAAAAAAAICc4m1+AEB6qgEKT62m4Mej0DXnUiriamp1nv+HuRTj54nfIkDLZ7jZ4I39rR7kWohkuIU3JFEYbQUIRkvrWol42HXuM/RtGlPYz73ePa5eMFqVYDQANUzBaKWyuT8zMPyz2uP/mDyL5Q/BaAAyz3Sd4qvUVLTPMyywpeX/nWRL0hcq3IxxIgAAAAAAAAAAAAAAAAAAAAD5xNv8AID0BCk8DRWMluEiXNSX1udnCkar7JCe+bdk24KC4tqUXSkHo5UCBKOFKpZF5lQNQTO7EeLRmEIHatYLRjP0ffqPHyDACECxme5Xlksw2sAwtUpXgGMSjJY/GX7uoU8FQDKPPZZCjEcjuLZ3SmPe7rxsaUeOxz8SbjffiQAAAAAAAAAAAAAAAAAAAADIKYLRAAApClCUEyoYjULXfEu4aGxke98/S8PM66z4KcVlueH3/KkTGuO6qc9tuTZll+tnk8CjlClIxFVeC4PhqF7oC9ePxvPaL6SXrw25k3rBaMPdl1e6Qx4fQOHYLsFopqDXsMFoNsFouZPlZ2f6VAAkl+sUX6WmwrKk9rnOy7a+Im14Itn2xM11PDHMWA/jRAAAAAAAAAAAAAAAAAAAAADyibf5AQDpCVJ4GioYLcNFuKjPTriIa7+z+/7pds51r5O61ibTHoTk8/zxG242iM8uNkX42eV237ASeJQadUiAjSh4LZTNz7kv5/rRWDY+Kz06J/x+6t3jynWC0aoEowGoUTUEo5XK5qDXathgtCrP+HmT5c+LPhUAyXwtSOL5H86mnGsem126INGmRCfAuE3rxBCHY5wIAAAAAAAAAAAAAAAAAAAAQD4ZKtNQNJZlNUs6XtL+kiZJ2ibpDUnP2ra9POJjTZV0pKR9JI2U9DdJKyQ9btt2b5THApBziQejUeiab0kVUVvS/nOkI67aNVnnnMtycTfekmQRoN+CWc6h7HINRgsTnufR3rP9b0PBa7EsvsZ9OX2bxrLqzog+8zrXr2ET3JdXeyJoA4BCsQ3BaFZZsgz9KTtkMJokVXulpmHBtkUKMvzcQ58KgGQeAyAYLT3DJ0mT3i+98Zuhy1b8VDr6O1JTa/LtioXLc1r7POn5+QH3yzgRAAAAGptt26pWq7L5DhVAwizLUqlUkpXEuyUAAAAAAAAAAAAAUFAEo6XEsqx2ScdKOmbXP4+SNGrAKits254SwXEmSPqKpI9K2tOwzuOSvm3b9h0hj3W2pM9LOs6wykbLsm6TdLlt2+vDHAtAQQQJA7JC3LoodM23OF9UnTBLOvG3Uufr0rDx0rBxby2rG8bHC7T54PdzCvFiot8AR65NGZZyUXRTq9Q8Rup908dGXJMKo+rh2sD1o7G88NWIdlTnHrf3Ke7LK90RtQNAYZiC0Upl83N/dcA2VYLRGkKWA6HpUwGQZB4DCPFDHQivfZ5zMFrvm9Kqu6QDPpp4k0IJMsY9Yt8wBwyxLQAAAJA/tm2rq6tLW7du1datW9XTw4+9AEhXS0uLRo0apVGjRqm1tZWgNAAAAAAAAAAAAADwgZ85T5BlWSdalnWvZVkbJC2R9FNJl0h6jwaHokV1vA9IekHS+TKEou0yU9LPLcu6xbKsPQIcZ6RlWbdKul3mUDTtasP5kl6wLOv9fo8DoICCFJ6WwmR6ZrgIFx5E/PkNn9RXWHfM9X2haM0jpdFvGxyKJtUPQKKAGrUIRisOU3hDkkXRY6b73ICC18KoegifynLACLKrXohQ2xHSO79lXu7l3ATQWKqGYDSrbA43HximFjRw0e4Nth3SkeV+i5dAWgDFZ7xO8VVqqiafITWPdV62tCPZtsSqTlH0u24Ktts4f2wEAAAAyJgdO3ZoyZIlWr58uTZs2EAoGoBM6Onp0YYNG7R8+XItWbJEO3bsSLtJAAAAAAAAAAAAAJAbvM2frCMlvU/uIWWRsCzrREl3Spo4YLYt6Wn1BZj9X0nrazY7V9KtllUvAWbQcZok3SbpYzWL1km6b9exntHghIa9JN1lWdYsr8cBUFBBwoBMRdVxHQ/ZEXUR1yH/U5rxI+mQC/pC0UzqBSBVKcbPB7/nT4hfaPUdjJbhgIBGl4Wi6Kbh/tan4LU4bEPIzKB16NsggKbW+usc+nlzOFqVQiIANUz3rFLZHG4+KBitK9hxeRbLlyw/99CnAiCZrwXevzJDHJpapSnnOC9bfa+0441k2xNawHGb5qC/r5Xh+y8AAAAQoR07dmjlypXq7WXMEEB29fb2auXKlYSjAQAAAAAAAAAAAIBHvM2fDd2SlkS1M8uy9pX0C0ktA2Y/Jmm6bdvH2LY9x7bt90naV9JFkga+EXSGpP/t43D/Kem0AdO9kv6npH1t237/rmMdLentkv4wYL1hku60LGuSj2MBKJpAwWg+A4cGHY8ioHyL+vPzGHxFMFr+dW+QNj6b3PH8FsxShJ9dpvtGkkXRXgKMBiEYrTCqBKMhJiWP15WRU5znV7ojawqAgjDds6yyOdy8SjBa48nwmEzn62m3AEAWZGEMAM6mznWeb1el5T9Oti1xseqMVZeag+2XAH0AAAA0gN2haDb9XwA5YNs24WgAAAAAAAAAAAAA4JGhMg0x6pX0F0l/kvTUrn8uknS8pAciOsZXJLUNmH5c0sm2bQ+qMrRtu1vSdy3LWilp4YBFn7cs6/u2ba9wO4hlWe3qC1Yb6O9t276rdl3bthdblvVeSfdLOm7X7HGSrpD0OQ9/JwBFFCSoLEwhGuEh+Rb1S6z1is3616tzztkU42dWtSI99VlpyU3yHRbl9fxw3NZngCPXpgzLQFG078JXXvgvDJtgNMTEa+BiaZjz/CrBaABqmO5ZVlmyDP2pgdtUCUZrCFkOq+98o+/5sRQijB9AAZjGALg2pG7c30mjp0lbXhq6bNkC6dBLwo3lJSnoGLcVMBiNcSIAAAAUnG3beuONN4aEojU3N2v06NEaOXKkmpubZeXlmQFAYdi2rd7eXm3btk1btmxRb2/voGVvvPGGDjzwQK5PAAAAAAAAAAAAAOCCYLRkdUi6oTagTFJkX25blnWwpIE/nd4jaZ7TMXezbftOy7I6Bmw3TH2BZZ+uc7grJA18E3+BUyjagON0WpY1T31BcC27Zn/Gsqyv27a9tM6xABRRkDCPUMFoGS7ChQdRF3F5DUarU/xIMX52vfQtacmNATdOMhiNa1NmGT+bBIPR0LiqBKMhJp6D0Vqc51d7omsLgGIwBaOVyub+1MD7XIVgtIaQ9eeeTc9K445JuxUA0mS6TiUZjg5nliVNnSv9+UtDl725WNr4dAGu4XXGIn0H5+9GMBoAAACKraura1DYkCSNGjVKkydPJmwIQOqam5s1YsQITZgwQa+//rq2bt3av6y3t1fd3d1qbfX43S0AAAAAAAAAAAAANCDe5k+Qbdub3ALKIvJxSQPTOH5h2/ZfPWx3Tc30HMuyjN+4W5Y1XNLZdfYxhG3br0i6c8CssvraDKARBQrzCPHiIuEh+ZZWETXBaPn11++lc1y/BbNcm7Irj0XRNgWvhWF7uL9w/UAQXoPRmoY5z7crUpVzD8AApjBPq9z3x4kdQTCaKZANGZXxYLQtL6fdAgBpMz5fZXgMoJFM/aR5PGbpgkSbkoqgwWiMEwEAAKDgBoYMSX0hRISiAcgay7I0efJkNTcPfr7fsmVLSi0CAAAAAAAAAAAAgHzgbf7i+VDN9I+8bGTb9ouSnhgwaw9J73PZ5P2SRgyY/oNt2y95auHQNn3Y43YAiiZI0FWYMJq0grUQkaiLuDy+CFvvnCMYLbu2Lw+xcYgXpeuF6dUi2CjDchiMFvm1EqkxhcwMxPUDQXgNRisZgtEkqdodTVsAFIMpoKzULJU8BKMFvabwjJ8vmf+8st4+ALHLYzh6IxkxWdrrZOdlK26VKnl5RjGN29QZiwwajMY4EQAAAAquNhht9OjRhKIByCTLsjR69OhB82qvYQAAAAAAAAAAAACAwXibv0Asy9pb0jsGzNop6TEfu3iwZvoDLuueWmdbN4+or227vdOyrL18bA+gKAKFeYR4gZHwkHyLuoja68uw9UKubILRUMNvMBoF+NmVy6JoCl4LwxQyM2gdrh8IoGm4t/VKLeZl1Z5o2gKgGExhnla570+9bSpdwY7LM36+ZL3fwvkEwDgG4HecB7Fpn+c8v2ej9MavE21K4kbsF2y7rN9/AQAAgBBs21ZPz+DvK0aOHJlSawCgvtprVE9Pj2ybdzwAAAAAAAAAAAAAwCTLFf3w7+0108/btr3dx/aP10xP93GsP3g9yK42LfJxLABFZNsKFN4SJoyGIteci/pFsIiC0aoEoxVSmF+R9nud4tqUXcbi0Qw/RvHSbHGYQmYG4vqBIJpaPa43zLys0h1NWwAUgynMs1Tu+1Nvm6DBaAQM50vWg1my3j4ACchjOHqD2fcsqXm087KlCxJtSnABx2322D/Z4wEAAAA5UK0OfY5rbm5OoSUA4E25PPQ7E6drGQAAAAAAAAAAAACgD2/zF8thNdOv+tx+SZ39DXRogscCUESBC05DhBVRNJ1vkRcpez2X6nSXCEZDrXpherWqBBtllum6k+miaApeC8MUMjNoHa4fCKDkMRit1GJeViUYDcAApnuWVe7746QaQTAaQVY5k/HPi/MJQB7D0RtNebi0/xznZW/8Rupck2x7ouTlRxr2/VCAHTNOBAAAgOKyHX4wygrzA2gAELNSaeg4k9O1DAAAAAAAAAAAAADQh7f5i+WgmumVPrdfUTM9zrKsttqVLMvaU9KeIY9Vu/7BPrcHkHeBgzxCvMRIeEjORfwimNcXYkt1Qq4IRiuoENcav8FoWQ8IaGgEoyFFXu4v9G0QRJPXYLRh5mXVnmjaAiD/ejaZg81KLsFolR3StuW7/j1oMBr3wVzJevAY5xMA03Ug02MADah9nvN8uyKt+EmiTQkkTLHz2MOTPR4AAAAAAAAAAAAAAAAAAAAApIi3+YtlbM30Wj8b27a9TVJtJeIYD8fZYdv2dj/H0tC2OR0HQJEFLTgN8+uuWS/ChbvIi7g8nkv1Qq5sgtGKKUwwms8uNgX42WW8b2T4MYqC1+Kwd3pYh+sHAvAajNbkEoxW6Y6mLQDybftK6bdHm5db5b5wNJNfvU1647chgtF4xs+VzH9eWW8fgNhtes55vu8AfMRq/ExpZO3vRO2ytCPZYh4TLwAAIABJREFUtkTKw1hkc5CvUhknAgAAAAAAAAAAAAAAAAAAAJBPLpVpyKGRNdOdAfbRKWlglfSoGI8zkNNxfLMsa6KkCT43OzCKYwPwK2DBqd/AoYEID8m5tIqU65xzVYLREBLXpuwyhTeEuRfFjoLXwqgSjIaYeA1GK7WYl1UJRgMg6c9flrYvMy+3ynIN+aj2SE98Rpp8ZrDjcx/MmYwHj1U5n4CGt+JWw4IQ4fmInmVJ7XOl5+cPXbb5z30Bd21HJt8uz0KM27QQjAYAAAAAAAAAAAAAAAAAAACgcWS5oh/+1QaWdQXYR21gWe0+kzxOEBdIesHnn7siOjYAP3ZuD7hhiEK01xYG3xbps6Mu4vJ4LllN7ssJRkNYpvAtZEAGgtH8FvNGfq1EamyC0RATz8Fow8zLqj3RtAVAvi2/xX15qdz3x03n36RNzwQ7Pv3ofMn855X19gGIVfdG87ItLyXXDngz9ZPmZUs7kmtHpDyMVTcHCEbL/P0XAAAAAAAAAAAAAAAAAAAAAJwRjFZsQVIRsrwNgCJZ/0Sw7cKE0ax9UNr0XPDtkbKIi7gsgtHgwk7wcyXYKLuMxaMJPkYd+A8+N6CbXRgEoyEuJa/BaC3mZZXuaNoCoNissjz1mzr/FvAABH3kStaDWbLePgDx6lpjXta7Obl2wJs9DpD2mu28bPmPMz5eG2Lcpnl0gMMxTgQAAAAAAAAAAAAAAAAAAAAgnwhGK5ZtNdPDA+yjdpvafSZ5HABFtu7RgBt6DLMyee3OcNsjPZEXcXkNRqvTXUoyQAvJSTLwhWCj7DKFI4QJ6fRrxGTp4AsGzys1u2xAwWtheCnkJsADQTR5DUZrMgfEVglGA+BBqVw/aFqSegIGztCPzpmM91s4n4DG5uV+hWyZOtd5fvc66Y3fJtuWKHj5EY/mMQF2zDgRAAAAAAAAAAAAAAAAAAAAgHwiGK1YCEaT/n9Jb/f558yIjg3Aj54NwbYLG0bzwlfCbY8UGYqoJ8ySWtoC7M9rMFqdwkgvwTXInyQDXwg2yrAMBKNJ0jHXSTM6pCnnSodeKp3yeLLHRzqqO+uvQ4AHgvAajCZJpWHO86s90bQFQLFZ5b6QxXp2bg22f/rR+ZL1zyvr7QMQL4J/82f/j0jlkc7Lli5ItCmJaRlrXjZ6mmEBwWgAAAAAAAAAAAAAAAAAAAAA8qmcdgMQqTdrpif42diyrJEaGli22cNxRliWtYdt29t9HG6ih+P4Ztv2Wklr/WxjefkVdgDRCxzkwf+zDcs2FHGNbJeO+S/p+SukTc9Kex4j2Tul1+9235/X6z/BaI2pkmQwGsFGmWUKR0g6GM2ypPbz+v5IUqXLvK7pWon8sQlGQ0yG7+N93aZhUmXH0PlJ3icB5JdVlhTj8xL3wXzJevAY5xPQ2Nyes5FN5T2k/c92DkF741dS9wZp2LjEm1WXcdzGw1j1yIOk1r2krjWD5zeNkA78B+nZS3wcDwAAAAAAAAAAAAAAAAAAAACyLeGKfsTsrzXTB/jcvnb9jbZtb6pdybbtDZJq5+8f8li1bQdQdFWC0eCXoYjLKkltR0rvuUs6a6X07l9IYw+P7rAEozWmKsFokEt4Q9qPUW73QgpeC4NgNMSh7Uhpj/28r19qcZ6f5H0SQH6VyvWfp8LIetAWBsv855X19gGIFcFo+TR1nvP8aq+0/NZEm5KIUpN02BeHzj/2eqllT8NG3N8AAAAAQJKmTJkiy7L6/zz44INpNwkAAAAAAAAAAAAAANSRdkU/ovVizfRBPrdvr5lenOCxavcHoOiCBnlYBKM1LGMRtdM54aWL4/Fcsursi2C0YqokGYxGgWJmmT6beteF2BGM1hCqBKMhAntMeevfRx4onXCHv+1Lw5znV3sCNwlAA7EIRsNAGf+8OJ+AxkYwWj5NPGHwM89AyxYk2RIfQo7bTLtYmvVzaconpP0+LL37l1L7PPP3JjbjRAAAAAAAAAAAAAAAAAAAAADyqZx2AxCpF2qmj7Asa4Rt2zs8bn98nf3VLps5YPo4SXd7OYhlWXtIOsLHsQAUUtCC07TDaJAeQxGXU0CRl9AiryF79Qr5d7zmbT/Il2qSwWgEG2VXRoPR3K5fFLwWh5fgTa4fqOe059/qq4ye5v/61WQIRksyQBRAfpXK8fabuA/mS9aDxzifgMZGMFo+WSVp6lzpha8MXbbxaWnzC9LYtyffrkB8/CDM/h/p++Npe8aJAAAAAAAAAAAAAAAAAAAAAOQT6TIFYtv23yQ9P2BWWdIsH7s4sWb6ty7r3lNnWzcnaHAo37O2ba/xsT2AIghacJp2GA3SYyyidij68nSeRBSMtuSHUvcGb/tCfiQZ+EIBfnYZrztp34vcrl8UvBaGvdPDOlw/UI8ljTms70+QfnSpxXl+kgGiAPLLKtd/ngol40FbGCzzwWgZbx+AeFU6024Bgmo/z7xsWUdy7fAsrnEbgtEAAAAAAAAAAAAAAAAAAAAAFEvaFf2I3sKa6U952ciyrGmS3jVg1nZJ97lscq+kgZUix+3ahxfzaqZr2wygEQQO8vAYZoUCMhRxOYZ8RBmM5mFfK3/ubV/Ij0QDXyjAzyxTOELqIZ0EozUEgtEQBStk37k0zHl+tSfcfgHkn+2hzxF3MBr3wZzJ+HMP5xPQ2CpdabcAQY1slyac4Lxs2S1S1cOzdRaEfXYzbe+lzwYAAAAAAAAAAAAAAAAAAAAAGZR2RT+i92NJA6u4PmxZ1sEetvtCzfTPbNs2VoLYtr1DUm0KTO0+hrAs6xBJHxowa6ekn3hoH4CiCVpwGrZACPllCihyCgjyElrk9VzyUsj/l//tbV/Ij0qCwWh2lSLFzMpoMJrb9YtzqTi8FG+vffitf7dt6a83SL87UbpvpvTydzkfoNDDPk2GYLQk75MAssn4fDZAKe5gtIwHbWGwrH9eWW8fgHhVXYLRxr3LvAzZ0D7PeX7Xaulvbr8BlYLYntNNY0WMCwAAAAAAAAAAAAAAAAAAAADIJ4LRCsa27b9K6hgwq0XSAsuyWk3bWJZ1pqR5A2b1SPqKh8NdKal3wPQ8y7I+6HKcVkk/2tWm3W60bXuJh2MBKJrABafcuhqXqYgrYDCaV14K+Xesiu54yIZqwoEvFOFnk/FzSfte5BbsSMFrYdgegtEkacsrff/8y39IT50vrX1IWv8H6emLpOfnx9c+5EPYUOFSs/P8aq/zfAANxEP/1SrHGyhLHzpfMv95Zb19AGJVcQlGO+ifkmsHgtn/bKlpuPOyZR3O8zMn5LObqc+V+fsvAAAAAAAAAAAAAAAAAAAAADgrp92ARmNZ1r5y/u++d8102bKsKYbdbLNte73LYa6Q9CFJbbumZ0r6nWVZ/2Db9ksD2jJM0j9J+lbN9t+ybXuFy/4lSbZtL7Us6/+TdMmA2T+3LOvzkn5g23bPgGMdKun/7GrLbhvkLYANQBHZlWDbhQ13QH6Ziricir48Fd97PJfiLORHdiUdjKaqJA8hfEiWn+tOklzvhQSjFYbX4KkVP5Wm/7v08neHLnvlOunwK6USj/6NK+T1yjKcO0H78gCKw0vIRqnsLWg6cBu4FuVK1oNZOJ+AxuYWjDblE8m1A8E0j5b2+4i0/Jahy1bdKfVsklrahi5LRVzjNqaxIsaJAAAAACBJtm3rmWee0UsvvaS1a9equ7tbEyZM0OTJkzVr1iyNHDky7SYG9tprr+mpp57SqlWr1NnZqfHjx+vwww/XMccco1Ip3HeSa9eu1SOPPKI33nhDnZ2d2meffdTe3q4ZM2aE3reTxYsXa9GiRVq3bp22bNmiPffcU5MmTdKsWbM0bty4yI8HAAAAAAAAAAAAAAiG6ujkPSrpAA/rTZa0zLCsQ9I804a2ba+yLOvDku6V1LJr9vGSFluW9bSkpZLGSDpK0oSazX8lab6H9u32RUnTJX1g13SzpP+SNN+yrGckbZXUvutYA9/K75H0Idu2/+bjWACKJHDBKcFoDcve6Ty/1Ow008MOvQajEVbVkCoJB6PZFfV1o5AtGQ1Gc2NT8FoYpvterUVXSJNOlbrXDV3W+6a06Tlp3DHRtg35ETZU2NQP8np+AiguLyFXVtzBaBkP2kKNjH9enE9AYzMFo417l9TU4rwM2dI+1zkYrdojrbhNOvhzybfJl7DfexCMBgAAAABpWr9+vb72ta/plltu0bp1Dt/bSmppadHs2bN15ZVX6l3vepen/c6bN08dHR3908uWLdOUKVM8bfvggw/qpJNO6p++4oordOWVVxrXtwZ8r/ie97xHDz74oCTp8ccf1xVXXKHf//73qlaHjqPutdde+vKXv6wLL7zQd4jZs88+q0svvVQPPPCA47733Xdfffazn9UXv/hFlctlXXnllfrKV976LeYHHnhAJ554oqdjbdiwQd/4xjd0yy236PXXX3dcp1QqaebMmbriiit08skn+/q7AAAAAAAAAAAAAACil+GKfoRh2/aDkj4kaeBbFpakYyTNkfR+DQ1Fu1XSx2zbe1rRrnXnSLqtZtFESadK+ntJR2vwG/lrJZ1p2/YjXo8DoICCBqOFDXdAflUNARyWQ86rl9Air+cSwWj5FDYcqppGMBoyp2r4XLIQjGZsAwWvhWG67znpWm1exvWlwYUNRjPk6ROMBsDL/cVqirnfRJBVrmQ9eIw+E9DYTMFozaOSbQeCm3iSNGI/52VLFyTalFSYxroJ0AcAAACA2N15551qb2/XtddeawxFk6Senh7dc889mjFjhj772c9q587sf9/2ta99Te9+97v1u9/9zjG4TJLWrFmjf/mXf9HZZ5+tnp4ez/v+9re/rWOPPVb333+/cd+rVq3S/Pnz9Z73vEdr1qwJ9HeQpJtvvlnt7e265pprjKFoklStVvXoo4/qlFNO0Sc/+Ulffx8AAAAAAAAAAAAAQPQyUNGPuNi2/RtJb5d0g6RNLqv+UdLZtm1/3Lbt7QGOs8227Y+pLwTtjy6rbpT0PUlvt237Hr/HAVAwgQtiuXU1LFMAh1Nwmafie69BIR72VRrmcV9ITsiiv0rSwWgZDwloWKbPJQv3IlPBK+dSYfgJnurZbF7WNDx8W5BfYQOJTAGxpuBIAA2kTp/DauoL6IgzaJogq3zJej816+0DEC9TMBrPU/lRapKmftJ52YYnpC0vJ9seI8OYZegfhDFtTzAaAAAAAMTppptu0kc+8hFt3bp10PwDDzxQZ5xxhj760Y/quOOOU1PT4LHyH/zgBzrjjDMyHY72zW9+U1/+8pdVqfSNxb/tbW/TBz/4QZ1zzjk68cQT1draOmj9hQsXav78+Z72/a1vfUv/9m//1r/v3Q477DCdeeaZmjNnjmbMmNH/3+3xxx/XnDlzhqzvxeWXX665c+dqy5Yt/fMsy9K0adN0xhln6OMf/7g+8IEPaMKEwb8zfcstt+i0007L9GcEAAAAAAAAAAAAAEVXTrsBjca27SkJH2+tpPMty7pI0vGSDpC0t6Ttkl6X9Kxt28siOtbPJf3csqypko6StI+kPSStlrRC0mO2bfMTagD6BC1gDhvuIEmvXC8dcmH4/SBZpnOm5NSdiTAYzUshf3mEt30hOXbYor+EiwYJdcgmUzhCFPeisKyS4byh4LUwqn6C0VxysDc8KbUdEb49SFfg+1rI4nrHfpb8BfcBKKZ6IVLWrutHrMFoBFnlS8Y/L57JgMZWNQWjtTrPRzZNnSv95WvOy5Z2SEcalhWBMViNcSIAAAAAiMtzzz2n888/X9XqW2OfRx55pK6//nrNnDlz0Lrr1q3T/Pnz9f3vf79/3j333KPLL79cX/ta9p5XFy1apEceeUSSdNZZZ+nqq6/WtGnTBq2zadMmff7zn9eCBQv6533rW9/S+eefrylTphj3/fTTT+uLX/zioHknnniirrvuOk2fPn3Q/HXr1unyyy/XDTfcoIcffliLFy/29ffo6OjQVVdd1T9dKpV04YUX6pJLLtH+++8/aF3btnXXXXfpoosu0sqVKyVJ999/v+bPn6+rr77a13EBAAAAAAAAAAAAANEgGK1B7AokeyChYy2TFEnYGoACC1xwGjLcQZL+9M9S60Rp/78Pvy8kxxQQYzl0Z6IMLSp5KOQvNUd3PEQk40X3tSjCz6YsB6OZ7ocEhBSH3et93d7N5mVP/qO04qfSCbdLLW3h24V0BP1/21gc73V7Qz+I+xaAusFou64fcfabuBblS9b7qVlvH4B4VQzBaKVhybYD4Yw+RBp/nLT+D0OXLbtZOuIqb2O9cQr9Yw4mhj4X9zcAAADAkb1zp7RuVdrNaAwT9pVVLuZryp/5zGfU0/PW7wTPmjVL9957r0aMGPrjihMmTNANN9yggw46SJdeemn//GuuuUbnnHOODj/88ETa7NXGjRslSZdddpmuueYax3Xa2tr0ox/9SJs2bdJdd90lSapUKrrxxhsHhZHVuvDCC7Vz51vvgH34wx/WbbfdprLDeTJhwgR973vfU3t7uy677DKtX7/e899hxYoVOv/88/unhw0bpjvvvFOnnnqq4/qWZemss87SzJkzdfzxx+vVV1+VJH3jG9/QP/3TP2nq1Kmejw0AAAAAAAAAAAAAiEYx3zgAAGRf0ALmsOEOuy2/lWC0vLH9BKN5KHDzfC55KOQfdbDHfSExeSv6y1t7G4bpc8lAMJoxZCSuAlskzhQI6qTHJRhNktbcL/3qMOl9f5BGTgnVLKQkUN85gn6zUz9LMvfLADSOev3XMdP7/unl2SyuNiBbMv95Zb19AGJVNQRTNxGMljvt85yD0Tpfl9b8Xpp0SuJN8iZsqLUpQJ9xIgAAAMDRulWy57wt7VY0BOtnL0uTpqTdjMg98MADeuaZZ/qnR48erdtuu80xFG2gSy65RA899JB+9atfSZKq1aquvfZa3XTTTbG2N4hZs2bp6quvrrvef/zHf/QHo0nS73//e2Mw2lNPPaUnnniif3rSpEm66aabHEPRBrr00kv1u9/9Tvfdd5/H1vcFmnV2dvZPX3vttcZQtIEmTpyon/zkJ/q7v/s7SX1hb9dee62++93vej42AAAAAAAAAAAAACAaGajoBwA0pMAFsRHdulYtjGY/SI4pIKbkUGhvDAwatJK343oKWSNrNnPCFt0fnfQLjRQpZpIpiCjOgA/PTAWvBDoUhp/gqd46wWiS1LVaev5/BW8P0hUkiCyKQOGSKRgtYMgxgAKp0+c48NN9/4y130S/J18y/nlxbwMam58fZEC27T9HKhkC7ZYuSLQpzuIaAzQ9/zHmCAAAAABx6OjoGDR94YUXap999vG07X/+538Omr711lvV3d0dWdui8uUvf1mlUv33r6ZPn64pU6b0Tz/33HPGdW+99dZB0//8z/+sMWPGeGrP/PnzPa0nSdu3bx8UNtfe3q7Pfvaznrc/9thjdcIJJ/RP//KXv/S8LQAAAAAAAAAAAAAgOgSjAQDSEbTg9JALo20H8sMYUORQoJh0MBoF1BkUsuhv8unRNMMrwqyyyfS5ZCEYzXido+C1MEyBoE4qHl+UX/7jYG1B+gL1NSIIRjNd7/ycnwCKya3/evAF0sGf2zUR4/BzleewXMn6M0/W2wcgXqb+LcFo+dMyVtrvQ87LVi2Uet5Mtj2ehX1+IxgNAAAAAJL06KOPDpr+xCc+4Xnb6dOn66ijjuqf7urq0tNPPx1Z26IwfPhwzZ492/P6hx56aP+/79ixQ9u2bXNc7/HHHx80PWfOHM/HmDVrlufwuUcffVSdnZ3902effbankLeBTjrppP5/X7FihVauXOlrewAAAAAAAAAAAABAeASjAQDSESTcYfg+0vjjom8L8sH2U6DooYtjeQ1G87AvwkGyJ2xR+8j2aNrhGUWKmWQMZMzCY5ThGkagQ3GY7nuO6/K5F16QvnMU1ypTEISf8xNAMbldl9520Vv/HmugLPe/XMlCf+Wk+6Qpn3ReRuA50NhM/dsSwWi5NHWu8/xKp7Ty9mTbMkRMY4CmsW6bMUcAAAAAiNqmTZu0ZMmS/umxY8cOCgbzYubMmYOmn3rqqUjaFpUDDzxQLS0tntdva2sbNP3mm87B5H/+85/7/33s2LE66KCDfLXrmGOO8bRebXDdPvvso+XLl/v6U/v3X7p0qa+2AgAAAAAAAAAAAADC441+AEA6ghSczr6fYrRG5qdA0VMQiNdgNA+F/BRQZ1CIovsx06NrhldZCAnAUMZgtDgDPjwyXucoeC2Maq/3df2EVFUrUikD5zD8CdTX8NjXcd2F4Vyh7wPArf86sJ8SZ6As16J8SfuZZ2S7NOkUacWtzsvTbh+AdJl+9MAUFIxs2/sUafgkqfNvQ5ct65AO+ofk21SP1x/xMGKcCAAAAACSsm7dukHTBx98sCyfz3XTpk0bNL127drQ7YpSbdBZPc3NzYOme3uHfte9fft2dXV19U/vv//+vtvldZvXXntt0PTFF1+siy++2PfxBtq4cWOo7QEAAAAAAAAAAAAA/sVYmQYAgAu/BafNY6Qx0+qvh+LyU6CYeDCaj0AaJMMOUfQXZ3iDCUX42WT6XLIQjGa6hnEuFYefe4uvYLRu/21B+tIKRjOFEpv6ZQAaiFsw2oC+kmUpkuuRE/o9OZP257XrOc8Y+pl2+wCkys8PMiD7Sk3SlE86L1v3qLT11WTbM1CYMUs3pgJ87m8AAAAAELlNmzYNmh4zZozvfdRuk7XQrVIp+vdmNm/ePGh61KhRvvcxevRoT+tt2LDB977r2bp1a+T7BAAAAAAAAAAAAAC4441+AEA6fIc7xFRIjfwwnTOORc0RvqDnJSSLYLQMClP0l0Z2cExFkQjHeN3JQL60sQ2cS4XhJ3jKz7qVTqk8wn97kK4gwWhRXKucAmilgEFtAArFLWSj9vpjNcXzzETQR76k/XntDowx3R+5twGNzXSfMvWHkX3tc6UXv+68bNnN0hFfTbY9dYX9/sO0PeNEAAAAgKMJ+8r62ctpt6IxTNg37RZEzq4JvbZMYdU+RLGPrBs2bNig6Z6eHt/78LpNkH3XU/u5AwAAAAAAAAAAAADixxv9AIB0+C04bYAXwFCHqUCx5NCd8RIE4vWccgxeq0EBdfaEKbpPI/Qq7ZAAOPMVyJg0wzWMc6k4/ATI+Fm30uW/LUhfoL5GBP1n0/WOUFgArn2OpILReA7LldT7qbuD0Ux9+bTbByBVprBpgtHya8xh0p7HShufGrpsaYd0+JXZCL6PDMFoAAAAgB9WuSxNmpJ2M5BTe+6556DpN9980/c+ardpa2sL1SYnlUq2xtBr/46bNm3yvY+NGzd6Wm/8+PGDph9//HEdd9xxvo8HAAAAAAAAAAAAAEhXkd74BgDkie8CZoLRGp6fAkVPRW1ezykPxWOmtiE9eQtGo0gxm7IcjGY8TzmXCsNPgIyf+1Cl039bkL4gfY0o7mdOAbQSfR8A7v3t2utPbP1rgqzyJeXPqz8c3XA+ErQHNDY/P8iA/Gif6zx/x0pp7UPJtqWfYdwm7A/DmLa3GScCAAAAgKhNmDBh0PQrr7ziex8vv/zyoOmJEyc6rlcuDx6b2LnT+3d0QYLH4tTU1KTJkyf3Ty9dulQ7duzwtY9FixZ5Wm+vvfYaNB3kMwIAAAAAAAAAAAAApI9gNABAOvyGFoUtDEL+mQoUnYLRPHVxPJ5T1d7661BAnUFhiv5S6CKHCXJDfEyfSyrhebVMBa+cS4XhJ3jKT4hapct/W5C+QH2NCPrPpiBI+j4A3K4DQ4LRYgqVrXItypXU+6m77oumvnzq7QOQKj8/yID8OOBjUqnFednSBYk2JX6m5z+C0QAAAAAgam1tbTrwwAP7pzdv3qwXX3zR1z4ef/zxQdPHHnus43qjR48eNL1582bPx/jLX/7iq01JmDFjRv+/V6tVPfSQ9+DyjRs36s9//rOndWfOnDlo+r777vN8HAAAAAAAAAAAAABAdmShoh8A0Ih8hykQjNbwTOeMU5G9l9Air2F7noLRfATSIBlhitrTCL2iCD+b/Fx3kmYMdKDgtTC83H92617vfd1Kp/+2IH1BgsiiCBY2BUHQ9wEgt/5rQsForm1A5qT+zLM7GM0U+pl2+wCkytS/LRGMlmvDxkmTz3Be9todUu+2ZNsjxTduYxzPZJwIAAAAAOIwa9asQdM//vGPPW/74osv6umnn+6fbm1t1dFHH+247sSJEwdNL1682PNxfvOb33heNyknn3zyoOkf/vCHnrft6OhQT0+Pp3Xf+973qqnprbHgX/7yl1q7dq3nYwEAAAAAAAAAAAAAsoFgNABAOghGg19+ChQ9BVt5DUbz8FJdlXCQzMlbMBpFitmU5WA04zWMQIfC8BM89aaPX/uudPlvC9IXJBgtiiEfYzBakPYAKBS3/nZtXymu/jVBVjmT8ue1OzDUGDDMvQ1oaKbnL1N/GPnRPs95/s7tfeFomRH2+w/D9vSXAAAAACAW55133qDp6667TqtXr/a07Ze+9KVB0x/72Mc0bNgwx3WPOuqoQdN33323p2Pce++9evLJJz2tm6Rzzz1Xo0aN6p9euHCh7r333rrbvf766/rqV7/q+ThtbW0699xz+6e3bdumSy65xF9jAQAAAAAAAAAAAACpIxgNAJAOvwWnFsFoDc8UPuZUoBhl4b2XYDQKqDMoZ8FoFClmk+lzyUIwmjHQgZC9wvATjOZHpTOe/SJeQfoaUfSfTde7uM5PAPnhGoxW00+Jq+/Ec1i+pP7Ms+u8NN7b0m4fgFT5GXdEvkx6v9Q60XnZ0gWJNqVPTOM2xuc/xokAAAAAIA6zZ8/WkUce2T/95ptv6pxzzlFnp/t3sddee63uuuuu/mnLsvSv//qvxvWPO+44jRgxon964cKF+tOf/uR6jL/+9a+aO3duvb9CKkaNGqWLLrpo0Lw5c+bogQceMG6zfPlgP5p6AAAgAElEQVRynXLKKdq8ebOvY1155ZWDAuf++7//W1/4whdUqfj7bmHx4sV6+OGHfW0DAAAAAAAAAAAAAIgGwWgAgJT4LTiNIRiNotd8MQVwlJwKFD10cbyGhVR7669DOEj2hAqHSqOLTJFiJpnCNtIIzxvCdA3j3lYYpsL8sAhGy6dA/dYI+s+O/SzFd34CyJEsBKPR78mVtD+v3WMAxoBhgvaAhuZr3BG5UmqWpnzCednaB6Vty5NsjYuwz2+G7QnQBwAAAABHq1ev1vLlywP92e3GG29US0tL//SDDz6oE044QU888cSQ461fv14XXnihPv/5zw+af9lll+mII44wtnPUqFH66Ec/2j9dqVR0+umn67777huybk9Pj374wx9qxowZWrNmjdra2vz8J0nM/Pnzdfjhh/dPb9myRe9973s1Z84c/fznP9fzzz+vl156Sffdd58uvvhiTZ8+XS+++KJaW1t15plnej7O1KlT9YMf/GDQvK9//euaNWuW7r77bu3caf6+c/ny5br++us1e/ZsTZ8+Xb///e/9/0UBAAAAAAAAAAAAAKHxRj8AIB2+C05jCEar7pSaWuqvh2wwBXBYDt0ZT6FFXoPReuqvQwF1BoUouk8j9CrtkAA4MwajxRTu4Ycx0IGC18KIK3Sz0hXPfhGzAPeJKO5npusdfR8Abv3XIcFoMfWvuRblS+rPPLvHAAznY++bibUEQAb5GXdE/kydK730bedly26WDr88wcbENW5jGutmnAgAAAAAnJxzzjmBt7V3fSd/1FFH6brrrtPnPvc5Vat9459PP/20ZsyYoYMOOkjTp09Xa2urXnvtNT355JNDgrhOOeUUXXXVVXWPd9VVV2nhwoXavHmzJGnt2rV6//vfr4MOOkhHHHGEhg0bpjVr1uiJJ57Q9u3bJUl77723rrnmGs2dOzfw3zMuLS0t+vWvf63Zs2fr1VdfldT33/T222/X7bff7riNZVm6/vrrtXLlSt11112D5rs577zztHr1an3pS1/q/4z++Mc/6oMf/KBGjBihd77zndprr700fPhwbd26VevXr9fixYv7/1sDAAAAAAAAAAAAANLFG/0AgHRUfRYw13mRKRB7pySC0XKj2u083ymwI+lgNFPxJNITpug+jWC0MEFuiJHhc8lCMJrxGsa5VBjV3nj2W+mMZ7+IV6D7WgT9Z1MQRFzBfQDyw/W6VBuMFlffiX5PvqT9ee26L5rOxw1P9J3XqTwPAkidqX9b4mvUQmg7Qmo7Utr03NBlyzqkt8+P5/sHP8IeP+32AwAAAECD+sd//Ee1tbXpU5/6lLZt29Y//9VXX+0P/XLy6U9/WjfccIOam5vrHmPy5Mm64447dNZZZ2nr1q11jzF16lT9+te/1po1a3z+bZKz33776ZFHHtEFF1yghQsXuq47btw4dXR06PTTT9cXvvCFQctGjRpV91iXXXaZjjjiCH3qU5/S6tWr++fv2LFDjz32mKf2trW1eVoPAAAAAAAAAAAAABAtqnwAAOmwfQajRRHsMKQNBDrkxpuLzcucChS9FN57LRbzEkzDuZRBdohtU+gi22Hai9gY71UZeIwyBTZwLhVHXPeWSlc8+0W8ggSjRVEYbwqC8N2XB1A4bteB2n5KXMFoYcKQkby0P6/d90W34LP1TyTTFgDZY3r+MgUFI3+mznOev22ptO7R5NoR27iNy/2NsSIAAAAAiNXZZ5+tJUuW6KKLLtL48eON6zU3N+t973ufHnvsMd14442eQtF2mz17tp588kmdeeaZsgzfAU6YMEGXXnqpnnvuOR166KG+/x5J23vvvfWLX/yiPyDtsMMO09ixY9Xa2qr29nadfPLJ+v73v68lS5bo9NNPlyRt3rx50D7GjBnj6Vinnnqqli1bpuuvv15HHnmk8b/hbs3NzZo5c6auvPJKvfLKK7rooouC/SUBAAAAAAAAAAAAAKHwRj8AICV+C2JjCEarEmaVG0s7zMscCxS9hBZ5PKf2/aD0yn+5r0M4SPaEKbp3K5SPDaEOmVQ1/L8dV7iHL6ZrGOdSYcTVT6l0xrNfxCxIIXsE9zPT9W7zIun5K6XJ/0Mad0z44wDIH7f+9pD+dEz9a57D8iX1YLSmwf908tK3pQm3J9MeANliev4iGK04pnxcevYS5xC8ZR3SxBOSb9MgIb//cCvotqsZGcsCAAAAgPQsX7481v1PnDhR3/nOd/Ttb39bTz/9tF566SWtW7dO3d3dGj9+vPbdd1/NmjVLo0aNCnyMadOm6c4779T69ev10EMPadWqVdqxY4f22msvTZ06VSeccILK5bfGMk488UTZPsKy/axba8GCBVqwYEGgbWfNmqVZs2Z5Wnfx4rd+WNOyLE2cONHzcVpbW3XBBRfoggsu0MaNG/XHP/5Rf/vb37Rx40b19vZq5MiRmjhxog455BBNmzZNI0aM8P13AQAAAAAAAAAAAABEizf6AQDp8FvAXOeXGoO1gWC03Hjx6+ZlTgWKUQZbTXyP1NIm9Wwyr8O5lD1pB6Mde4P01Oe8rx/iBVPEyXAelTJQTGo6TzmXiiOue0ulK579Il5B7mtR9J/dgiBe+Ir0wleld90oHfip8McCkDNuwWhN7tNRSTtoCz6l/Hk1tfb90+15b+vLybQFQPaYnr9KfI1aGK0TpMmnS6vuGrpsxc+ko78rlfNc8Oz2/MdYEQAAAAAkpVQq6dhjj9Wxxx4b2zHGjx+vj3zkI7HtP6u2b9+uZ555pn/6kEMOCRw0t+eee+q0006LqmkAAAAAAAAAAAAAgJhEmBoCAIAPfoPRXAt7AqoSZlUITkX2noKtPJ5TpWbp3XdJ5ZHmdewqYURZEyokIYIu8n4fkvaYMnhe82iXDQh1yCTjvSoLj1GmaxjnUmHE1U+pdMazX8Qr0H0timC0emFGtvTMxVKlJ/yxAOSL63Wppq8UV6is73EFpCrtILuSh2C0OMaeAOSD6fnLLSgY+TN1rvP8nVul1xYm1AjTGHLYexDBaAAAAACAYuvo6NCOHTv6p4877rgUWwMAAAAAAAAAAAAASEIWKvoBAI3IbwGzp6Arv23ojX6fSF7JoUDRy/li+Sg2m3iC9OHV0vR/N69DUX7GhCj4i+J60zpROvkh6aDPSXseLR34j9LJD5vXTzskAM5M/1/XDQpKgOk8JaSxOOLqp1S64tkvYhbgPhHF/cypn1Wrd4u0+v+GPxaAfHHrvw65/sQ0BE0fOl/S/ryadgWjuQbHEIwGNCzbEIzmpT+M/NjndGnYOOdlyxYk2pTIuY11M1YEAAAAAMi5VatWaf78+YPmnXfeeSm1BgAAAAAAAAAAAACQFILRAADp8F0QG0NxatVQ8IZ8sZwKFL10cXyeU+U9pH3+h3k5wWjZEqboPqogxj32l/7ue9Kpf5Le9QNp1MHmdSlQzCbTeZSJYDTTNYyAkMKIq59S6Yxnv4hXoPtaBP1nx36Wg82Lwh8LQM64BaPVXH9i6zvR78mVrASjVbrTbQeAbDIFo3ntDyMfmlqkAz7uvGz1/dL21xJoRFxjgG7Pf4w7AgAAAACy5Y477tC///u/a926dXXXffbZZ/Xud79bGzdu7J/3jne8QyeddFKcTQQAAAAAAAAAAAAAZABv9AMAkpdWsEMtU8Eb8qXk0J3xFGwV4JxyK+i3d0oa5n+fiEkGgtGG7thlGaEOmWQKPIztHPHD0AZC9oojrn5KpSue/SJeqQWjeQwzcuqPASg2Y4CsQx8lrmA0wqlzJivBaITEAnBgCqamn1s87fOkV/7LYYEtLb9Fmv6lpFvUxxiA73V7t7EqxooAAAAAANmydetWXX311frmN7+pU089Ve9973v1jne8QxMnTlS5XNbGjRu1aNEi/epXv9Ldd98te8B7EC0tLero6Eix9QAAAAAAAAAAAACApPBGPwAgeUGKl8MWBjkxFbwhX6yAwWhBzim3YkjOp2wJFCCzW0yhV27nJWFW2WQMRosp3MMP0zUs1LmPTIktGI0wkHwK8P92FCGOXoMgnPpjAIrN+FzvFIwWU/+afk++pP15eQlGi2PsCUD22bb5+Yt+bvG0vVMa83bpzReGLlu6QDrsi/HeD2IbA3Rpc9r3YAAAAAAADHp7e3X33Xfr7rvv9rT+8OHDdfPNN+sd73hHzC0DAAAAAAAAAAAAAGRBTFVpAAC4CBKM5lbYE1RcgSNIlmNAUVzBVi7FkIHOa8QnRJFhXMENrvulQDGTshyMZrzOEbJXGHEFbla64tkv4hWoeD6C/rPX6x2BEUDjMQVsOF034uo7EfKRL2l/XiUPwWhxjD0ByD636xP93OKxLKl9nvOyra9IG55ItDlvCXsPctuesSIAAAAAQLaMHTtWTU3+vjs4/vjj9fDDD+vss8+OqVUAAAAAAAAAAAAAgKzhjX4AQPICFcMSjAaDkkN3xlOwVYBzyq2gn/MpW8IU3ccVjOZ2zqUdEgBnfgI/kmYZzifOpeKo9sazX9cwEGRXgP+3o7ifeQ2CMF2TABSXsZ/kcO2JLRiNcOp8Sbmf2rQrGG3nDpeVuJ8BDcltTM9p3BH5N+Vc6bkvOPclli6Qxs+I8eAxhZS5PZMFCtoGAAAAACA+Z511ltasWaN77rlHjz32mBYtWqQVK1Zo48aN6urq0vDhw7XnnnvqgAMO0AknnKDTTjtNxx9/fNrNBgAAAAAAAAAAAAAkjDf6AQDJC1K8HEfYQpUgq0JwCuyIKxjNrRiSovxsCRUOFVMwmut5SYFiJpn+v44tPM8PUxs4lwojrsDNSlc8+0W80goW9hpmVOkOfywAOeMnGC2mvhOBsPmS9ue1Oxit4hKMZscUTAsg29yevbwGBSNfhu8tTTpVeuPXQ5et+Kl09Hfeum8kJuzzm9v2jBUBAAAAALJn3LhxOvfcc3Xuueem3RQAAAAAAAAAAAAAQEZloaIfANBoAgVIxRCMFlfgCJIVNBgtSNieWzgIQXsZE6LgL7bQK5dzLu2QADgzBqN5DAqKk+kaxrlUHLEFo3XGs1/EK8j/21EEC3sNguC8AhqP8brkFIwWU9+JcOp8Sbuf2h+M5nLP2rk9mbYAyBa3MT23H0lAvrXPdZ7f+6a06q4YDxxTSJnr8x/BaAAAAAAAAAAAAAAAAAAAAADyh2A0AEDyghQvRxHsUIsgq4JwKq720sUJEozmUgxp9/rfH+ITpug+rmA0ChTzx3QeZSEYzXid41wqBLsaX3hIpSue/SJegYLRIrifeQ2CIBgNaDzGfhLBaDDJSDBa03DzOgSjAY3JLZTaa1Aw8mfyGVLzWOdlSzuSbYsUwfcfLs9/aYeTAgAAAAAAAAAAAAAAAAAAAEAABKMBAJIXqBAnhmA0t6I35IdTUbOnIJAA51R5hHlZ7xb/+0N8QgWjxRh6ZTo3KVDMJlPYRlzheX6YCmY5l4ohzqAXAqxyKqX+s9d7IucV0Hj89JPi6jv1bIxnv4hH2v3U0q5gtGn/al6nSuA50JDcfjyDYLTiamqVppzjvGz1vdKON5JtT1j8IAMAAAAAAAAAAAAAAAAAAACAgslART8AoOEECvuIIRjNregN2dI82rysZezQeV4K712LxUzHGifjudi11v/+EKMwwWhxdpEJs8oVY+BHjOF5npnOU4pdCyHOUI5KV3z7RnzSChZ26mc5IRgNaECG65JjMFpMfaeu1fHsF/FI+5mnaVcw2rgZ5nXSbiOAdLj9eEaJYLRCmzrXeb5dlZb/OJ5j2qZxm7DPby7bG48J/D/27jxejqrO//+7+y5JLiEJkIUlkIWwRnYYFtkRdBgEv1+ZEXAUZpRBdBzUUb8wuMCMgqM/BxzRr8go4AiI4yiRr05QJICIgIQlskbMiiRkD1lu7tb1++Nyk7vUOV3bqTrV/Xo+Hnk86KquqqN1uuqc6vt5NwAAAAAAAAAAAAAAAAAAAOAvgtEAAPlLEoyWJMSqbjscho4gW6bi5AM+Hr7cVeF9tUUaNTF8HcFofklV8OdwiGwMXaNA0U+mwA8PgtFM90XCHBqDrTA/LQKsSirBfSKLoM/xs6O9j8A9oPmYxhxh4yRXY6fOFW72CzeKHqcOBKO1tEtH/bvhTczLgKZkm39VCEZraLv9mTTuwPB1i28rWaCY7fuTMv3vAAAAAAAAAAAAAAAAAAAAAIB+BKMBAPKXJBjNWtiTUM1h6AiyVTOE2O3+NsMGUYY4CfvU6MnhywlG80yKovssgmTMOw9fXHRIAMLVDPcrp30kKkL2GlYQSEvudLd/gtHKKdF9IoPxc7VNat+1/vvoV+Xy2n3SEx+S5n9MWv1o/fe/Okd67APS/I9La55w3z6Ug/G6FDZGcTR26l4v9XW52Tcc8CQYTZJ2mh7+HuZlQHOyPSOuEozW0CoVacbF4es2viCtm+/goKbnNinnb7YflilVwBsAAAAAAAAAAAAAAAAAAAAA9POhoh8A0GyKCnYYLiAYrTRM56raFr48SmiRrVjMxhSM1kUwmlfSFLS7DL0y7psCRS+ZgjwrLfm2I7QNhOw1rGf/Sfrd5e7237fN3b7hTpLPdtKxznB7vL3+ewhGK4+F35QefIf0ys3Sy1+T7j9FWn6P+f0v/Kv08LukRd+VXr5R+sWx0qv35tde+Mt0XQob77ocO21b6W7fyFbR49TBwWjGeyRjaaAp2Z4RVwhGa3gz3md+Xrf49nzbkopt/sdzRwAAAAAAAAAAAAAAAAAAAADlQzAaACB/pqAZm6yCHQar9WS/T2QvCMx9Jk0wWtKwvVGTwpdvIxjNL2kK/lwOkQ37LjokAAamwA8fgtEI2WtIXWulF7/s9hi1bqmWYCyGgiW5T2R0P6u2139PL8FopVDrlRZ8ZuiyoFf6/efC39+3Tfr9tSOXP3yutPHF7NuHkokRjFZ1GYy22t2+ka2i5zzVUYNfhL+n6DYCKIbtGbEP83+41bGXNOVt4euW3Cn1dWV8QEfPbWzPw7m/AQAAAAAAAAAAAAAAAAAAACghgtEAAPlLEoyWNMTKhmC0crAWJ7YalrsMRpsYvrx7fbL9wY00BX+R+k/SfRv6HQWKfjLdr7wojKYvNaTF38/nHNa2uT8GspWkX2QVLNwyqv576FPlsOrh8DHrht9LnStHLv/TvVKfIfTu0Yv6A4zRvIzXpZCxtGnelgXm9SVSdDDaoKBP05yPsTTQnGqW4KuW0fm1A8WZeUn48u510ms/y6cNqedvtu0ZtwMAAAAAAAAAAAAAAAAAAAAoH4LRAAD5S1RoGlLY85bPpmsHAQ7lEPSa11XbTCvq7zdpsVnVEA5Ss7QT+fM1GM3YNylQ9JIxyNODaZSxn9KXSm3jc/kch3tW+WQ1fk5icJCMSa8hPAt+6fyTeV3PGyOXbVlmfv/6Z6TVv0nfJpSXMUA252C0osO2EF3RoWPVQf2QsTSAwfosz4gJRmsOU98ltY0LX7fotmyP5SxcmGA0AAAAAAAAAAAAAAAAAAAAAI3Fg4p+AEDzSVAMGxZiNe0iqW18+Punv6/+Pm1Fb/BHrce8zhSMVmlx0xZpaDH1YLYAN+QvVdG9wyGyKZCv6JAAhDOdF5fXmMjoS0iBe1b5JPlsZxX0GSUYrY9gtFKwhVOFhVzVu9+9/LV07UG5GcdJIdce0xwqk3aYgmzhnaLHqZUIwWhFtxFAMUzPiCtVx+Ge8EbrGGmf94Sve+3nUufrOTQiZbC17UdAnIWxAQAAAAAAAAAAAAAAAAAAAIA7BKMBAPKXqNA0pLBn/IHS6fdLU9+1Y1nrTtLsz0jHfbf+LglGKwdbeIupODFSEEjCYjNTGBshM55JUfCXVZBMKNO+KVD0kiloo+pBMJqxn9KXyi1lIXRUNe5Z5ZPks51RfyIYrXHYgs5Cg9HqBIFsfiVde1ByMQJkXYbKEIxWIgWHjg0J6DONpQlGA5qS6RlxdbQ9bAqNZebF4cuDPmnpnRkeyNVzG1tf5VkRAAAAAAAAAAAAAAAAAAAAgPLhp84BAPnLKhhNknY7Wjr5J8naQTBaOdR6zOtMIWW20Icdb0rUHGNRPyEzfkl0nXmTy2A0077TtBfuGIM2fMiXNlzD6EuIgjDP8kny2c7qflYdVf89BKOVg22MXOsaucw01h4QELDQ1EzXpbBrT9VlMBpjn9Io+lwNnsubgo6KbiOAYpieEbeMzrcdKNbEE6Sxs8LDfxfdLh34cccNSBvCRzAaAAAAAAAAAAAAAAAAAAAAgMbiQ0U/AKDpJAl2SFsYFNaMkOJ/+McWjGYKKYsSjJa0T5mOSciMZ3wNRjP1OwrwvWQKRosUvuiYsZ9S7FpqLsY7YbhnlVCGwcJxtbTXfw+Bw+Vgu3+FncN6YVY+3A9RHGOAVMgYxTSHyqQdpiBbeKfo0LEh/dAy5yP0EWg+BKNB6p+Pz7w4fN2GZ6X1z2R0IEf3GdvzzKLvwQAAAAAAAAAAAAAAAAAAAACQAMFoAID8JSpcdhAUQoBDOdjCW6pt4csjhTQk7FOmgIgaITNeSVXw53KIbNg3xfd+MvUjL4JgDNcwil0RBfes8kn02c5o/FyNEozWmc2x4JYtfDFsblQvzMplmCz8ZxwnEYwGg6LHqYPn8oTHABisRjAa3jTjfeZ1i253e+y0QenW7XnuCAAAAAAAAAAAAAAAAAAAAKB8qGAEAOSvyGCHwQhGK4daj3mdMRgtyhAnYZ8yFfXbAtxQgBQFfy5DPkxFihTf+8kUtOFDEIyxDRS7IgLbvRV+SnKfyOpaFTUYjZBP/9lCEZMEo7mYo6E84oyTTOHSmbSDcXR5FHyuKhGD0RhPA83H9IyYYLTms9M0acrp4euW3OH5XNoyNmeuBgAAAAAAAAAAAAAAAAAAAKCEPKjoBwA0nUTBDgSjNS1bwZkprKHS4qYtkrmon2A0v6QJSHAaekWYVakYAz8cXmMiI2QPKXDPKqECx8/VUdHeV+vK5nhwxzauDpsb1Q2z4p7T3EznP2S8WzdkLwXTeA3+KXqcOuSaZpnzFd1OAPkzPSOuEozWlGZcHL68a7X02v+k378xpCzt/M22Pc8dAQAAAAAAAAAAAAAAAAAAAJQPwWgAgPwlKjIlGK1p2cJbqm3hy6OEFiUNCzEV9dcImfFKqmJ2h0NkU+gaxfd+Mp0XH4LRjAF+FLuWm4PxThiC0cqnyPFztT3a+/o6szke3AliBqPVC4u1Ba2h8cUZJ9UN2UvTDoLRSqPoOc/gubz1eQBzM6DpmJ4RtxCM1pT2ebfUOjZ83eLb821LHNZ7G8+KAAAAAAAAAAAAAAAAAAAAAJSPw6o0AABMPAlGqxGMVgq2wIU0wWhJ+5SpqN8WNIECpCj4qxcCkoqp31F87yVT0IYPwWimvlR04ATiqfVJ6+ZL65+Wxh0g9W7O6bgEo5VPgvtaVvezyMFojK29Z/vsh82N6t1TCFlsbsZxUsi1xxQunUk7GPuUh0fBaLYwbPoU0HwIRsNgrTtJ+5wvLbpt5Lo/3St1rZVG7ZbiAK5CyizPugOC0RrS8nukZXdLLR3StPdIe5xVdIsAAAAAAAAAAAAAAAAAAACATBGMBgDIX5Ii04qDYDTCG8rBFoxmKrCPFASSsE+ZjknIjF/SFLO7DEYz7ZsCRf8EgYzFqk7D8yKiL5Vf7xbp1+dLK+bmf2zCjMon0X0to/FzS9RgtM5sjgd3bEG+YXMjU/DVAMa/zW3TK+HLQ4PRHIbK1uun8EfRgWODQ85t4/mi2wkgf6YfzyAYrXnNuCQ8GK3WIy25Szrg7x0cNOX8jXtbc3npa9JTH9vxetGt0nHflWZeUliTAAAAAAAAAAAAAAAAAAAAgKx5UNEPAGg6RQY7DNbXlf0+kT1beEu1LXx5lML7pGF7pmA0Qmb8kqrgz+UQ2dTvKFD0jq0PuQz3iIy+VHoLbyomFE0izKiMihw/VyMGo/USjOY9W+BwWLBd3WA0y/7Q+Fb/Onx5+64jlxGMBqn4UJZKxGA0UzgygMZl+vEMgtGa1+STpJ2mh69bfFu6fTsLtLfN/7i3NZRan/TctcMWBtLv/7n48RYAAAAAAAAAAAAAAAAAAACQIYLRAAAFSFCckTTEytoMQ9Eb/FLrNq8zFdhbi5zfNO7AZO2pGoLRCJnxTIoisCj9J+t9OyuKRGK2kA0fgtHoS+W39AfFHZswz/JJUtyc2f0s4jg8LFgLfrEGo4XMjer1O64lzatns/TGS+HrJp80chnBaJCKD+qoRgxGK7qdAPJnCkarjsq3HfBHpSrNuDh83br50obnHBwz7fcfBKM1jY2/l7rXj1y+ZbG08cX82wMAAAAgV8uWLdNnPvMZnXTSSZoyZYra29tVqVS2/7vtttuKbiIAAAAAAAAAAAAAAJkhGA0AkL9ERaYOgtFMRW/wS19X+PKW0ckLxqZdKLVPSLZtxRCMFlaMhOKkCYcqIhgtTZAb3LAGo/kwjTJd/+hLpbH+meKOTZhRCRU4fo46dicYzX+xg9HqBE5xLWlem18xr5v6rpHLXI6dCLEqkYLP1ZC5vO0eSZ8Cmo7pGXHL6HzbAb/MfL953eLbU+zYUUiZ7Tk5IfqNpWezed3mRfm1AwAAACiZ6dOnDwkQe/DBB4tuUmy33HKL9t9/f33xi1/UI488olWrVqmnx/LdDwAAAAAAAAAAAAAAJedDRT8AoNkkKVx2UUhNMFo51AznqToq+T6Puy35ttW28OV9W6Wudcn3i4ylKGZ3GnplKFIk0MFDlnNSacmvGcY2GPopxa7lYCtizcO2VcUeH/ElGj9nFSwc8brC2Np/QcbBaLagNTS2TX8IX15tl3Y+YORyp8Fodfop/FH0nGdwMJqtTxbdTgD5IxgNYcbOlCafHL5u8felWtYhwWnnb7bteVbUUFo7zOs6X5O2/kl68grplydKT35U2rIsv7YBAAAAcObnP/+5LrvsMnV1GX5ccpgHH3XGYEIAACAASURBVHxwSBDcNddc47aBAAAAAAAAAAAAAAA4QDAaACB/iYpMswp2GITwhnLoM/xRX5rixJb25NsOLqYe7g/fTL5fZCtVMbuD6832XZuG3xQoescWsuFDMJqxnxLkUApblro/xr4flFp3Cl/36HvdHx/ZSnRfy+qRT9RgtM6MjgdnbEFmocFodfpd5mEQKI1NfwxfPnamVA0ZJ7kcOxGMVh5FB44NmYsRjAZgENMz4irBaE1vxsXhy7etlFb8IuFOXT0DJBitadjGvxt+L91/irTw36XVv5EW3iTdf7LUuTK/9gEAAABw4qqrrlIw6EfSLrroIv3qV7/SwoULtXjx4u3/zj///AJbCQAAAAAAAAAAAABAtghGAwDkL1HhcoLinWP+r309wWjlYDpPaYLR0qhagtEWfDa/dsAuTTG709ArQ5Eixff+sQajeTCNMrUhoNi1FPIIRmsZI9W6zeu7N7pvAzKU4LNdySjoM+p1hWA0/9mC0WphwWh15m0BwWhNq3dz+PIxexo2cDl2YhxdHkUHow26L1rH84yngaYTNg6Sinv2CH/s85dSS0f4usW3Z3ustPM3272N546NxRZQ/YdvSJuHhRhvWSot+6HbNgEAAABw6uWXX9aCBQu2vz777LN1xx136PTTT9d+++2n6dOnb/83duzYAlsKAAAAAAAAAAAAAEC2PKjoBwA0nwSFOOufib/NXu+U2saZ1weWYAD4w1ScWB2VbzsGVCzBaPBHogDGN7kMvTLum+J779iKRp2G50VlKpil2LUUet5Itt2U06K/t2WMPQRp7ePJ2oBiJCpkzygYbcKh0d7X15XN8eCOLcgsLIy43njKdo1BYzP1pWpb+HLb2Gm3P0vZlhTjfuTLp1AWwmMADObbjzLAH207S3v/7/B1r94jda/Ptz1Wtvkfzx0bSpKA6vlXZN8OAAAAALl58sknh7w+//zzC2oJAAAAAAAAAAAAAAD5IhgNAJC/JEWmvVvib9Oxl3T6/eb1tQQFJMifKWSjqOLEKsFopZAqGM1h6JWpAJ/ie//Y+pAPwWjGvkSxayn0dSbbbqqhIDtMS50AUYI+SybBfSKrczxuP2ncQfXfVyMYzXu2ILMkwWhJCvLRGExzadN1xxZCdfRN0pE3SlNOl8bOTNAWgtFKw6s5jyU8xqt2AsgFwWiwmXlx+PJat7T07vj7Mz63SRlsXbHd23hW1FAIBgYAAACazuuvvz7k9dSpUwtqCQAAAAAAAAAAAAAA+SIYDQCQv0RFpgkLg3Y7Rjr5HkM7KOQvBVNxYrVO4IsrBMmUg6/BaKZrGcX3/rH2IR+mUab7In2pFGqGe5vNmb+Rdt43+vsrbfb1BH2WS5L7RJbn+IQ7pPZd7e8xjdngD2swWkhgY71+F/QRstCsTHNp03XHFoxWaZEOvEI641fSyT9N0BjGPuXh0bmy9Umf2gkgHwSjwWbyaVLH3uHrFt2Wa1PsbN+fMGZvKHyvBQAAADSdzZs3D3nd1lbne2AAAAAAAAAAAAAAABoEldAAgAIkKDKtJAxGk8xBVjUKSErBt+JEgtHKIU3QmLVIPiXjvilQ9I4tGM1peF5Epr5EQE05xA2QOuEOadIJ0opfRN+mWucP4rmflUuS+1qW53jXI6RzF0mrHpQeflf4e2pd2R0PbliD0UKuS1GCZoM+rifNyDSXNvUF29hp8JgmyTg8TSAy8uVTGLStr/nUTgD58O3ZI/xSbZFmvE96/rqR69Y+Lr3xsjTugBg7dPTcxvr9Cc+KGgrfawEAAABeC4JATz31lF566SWtWrVKXV1dmjRpkvbaay+deOKJGjt2bOx91mo8swQAAAAAAAAAAAAANCcqFwEA+UtSZJqm2NlUnB1QQFIKppCNoooTqwyfSiHVNcNl6JWhSJHie//YzknVg2A0U19KEj6K/MUNRhsYy8QJjKl3v3IZAonsJblPZD1maR8vTT1Pmni8tOa3I9f3EYzmvcBBMFqth/FxMzLNpY3BaLZ7zqAxDcFojc2rOQ/BaAAGqRnmZ1WC0fCmGReHB6NJ0qLbpcMN62JJ8cMwkuz3NoLRGgrfawEAAABeWrNmja677jp9//vf1+rVq0Pf097ertNPP13XXHONjj32WOO+lixZohkzZhjXn3baaaHLb731Vv3N3/xN6Lprr71W1157rXGf8+bN06mnnmpcDwAAAAAAAAAAAABAEaiEBgDkL1EwWorCVFOhPgUk5WAKj6mOyrcdA0zF/vCLr8FoprAHiu/9Y+tDTsPzIjL2JYpdS6GvM977B8YycfpevftVjXFQuSS4T7gas5jGYHED/5C/WsxgtCj9jjlVczKdd2NInuUR9JAxTZJgNMbRpeHTubKG8DGeBpqOaRxb1I8ywD/j9u8PiA6z+HtSLc5zSEf3mYotWM2jezDSIxgYAAAA8M4999yjmTNn6oYbbjCGoklSd3e35s6dq+OOO06XXXaZenv5jgUAAAAAAAAAAAAAABuSPQAA+cu7GNYUChHU+v9ZC2JRuFpX+PKiihONxf5vCoI6hWjIRaoCMZfXBNO+Kb73jrUPeXDfMF1nfAqcgFncAKntY5kYfa9eKBZhRuWSJPSw3pglKdMYzDRmgz9swWi1kOtSlIAHriXNyRSuabr3WIM9B93bkszNCYYoEZ/GqZY5O+NpoPn0efbsEX6aeYm05rcjl3f+SXr9AWmPM9PtP/XzZNu9jeeODYWgewAAgGzUeqWtrxbdiubQMdXdd1Ye+O53v6tLL71UtdrQ54r77ruvDj74YHV0dGjZsmV64okn1Ne343n2t7/9bS1btkz33nuvWlsb9/8fAAAAAAAAAAAAAADS4Bt1AEABci4ytf2BXdBHMJrvTOExRRUnRgmaqbTl0xaYpQlIsAY3pESYVXnYzonLPhIZIXulljQYLU7fq9a5FxFmVDIJ7hP1xixJtYwKX24KlIA/bMFoYdelKOMp2z7RuEz3ENPc2zbnHjw+Jhitsfk057H1NZ/aCSAfYQGxEsFoGGqfv5Ke/IfwQOhFt0UPRnMWUmYLVuNZUUPheQ4AAEA2tr4q/XRG0a1oDuculsZOL7oVTjzzzDO6/PLLh4SiHX744frGN76hE044Ych7V69erc9+9rO6+eabty+bO3euPve5z+m6664b8t6pU6dq8eLF21/feOON+trXvrb99V133aXjjjtuRHsmTpyoU089VZL02GOP6cILL9y+7oorrtDHPvYx4/+W3Xffvc7/WgAAAAAAAAAAAAAA8kcwGgAgf3kXmdpCIWq99YNDUCxjMJohlMO1eiEjfdvoU15IcZ1xGnpFmFVp2EI2fAhGI2Sv3Po6471/IGgmTmBMvV9er1FIWypJPtuuxiNVwxgsLCAAfrEV0IeOuSP0O64lzcl03k1zJevYadC9LVEwGmOf0vDpXFn7mkftBOBerc8c9EowGgZrnyDt/b+kpT8Yue7Vn0jdG6X28SkOYAs2i7K5ZXtnYWwoBMHAAAAAgDc+8IEPqLu7e/vrE088Uffdd586OjpGvHfSpEn61re+pVmzZulTn/rU9uX/+q//qgsvvFCHHHLI9mWtra2aPn369tcTJkwYsq/dd999yPrBxo4dK0lasmTJkOUTJkwwbgMAAAAAAAAAAAAAgK8SVJsBAJBS3sWwtmAQWzgA/GAK2agWVJxYL2TEFOSGfNVSFIglCWSIvG/CrErDGozmwzSKkL1Si3uvqBfKmWQbxkDlkuQ+kaTfRGEKRmMM5D9T6IcUfv6iFNxzLWlOpvNuDEaLOnZKEoxGMER5+DTnsfQ15mYok84V0jP/JN13vDT3z6SXv04AUly2cN+inj3CXzMuDl/e1ykt+6+IO3H1GbUFq3FdaCiEUwMAAABemDdvnp566qntr8eNG6e77747NBRtsE9+8pM655xztr+u1Wq64YYbnLUTAAAAAAAAAAAAAIAy86GiHwDQbPIuXLaFQlDI7z9TyEaLIZTDNVvQnkQoiC/SXGcqLdm1YwTT8Jvie+/YAhGc9pGICNkrt7j3ioFQzjjb1QvFopC2ZDwKRmsxBETYQiXgB2swWufIZVHGU7Z9onGZ5tHGuZLtEfSg61uS8FmC0crDp3Gqta8RHoMS2LxYeuJyac4M6YXrpbWPSet+J83/B+n5LxbdunKxzbFM4140r93PlMbsGb5u8e0pd24LNouyOfe2psF3WgAAAIAXbr996DzwIx/5iPbc0zBnHOZLX/rSkNd33XWXurr4ng0AAAAAAAAAAAAAgOEIRgMAFCDnYlhbKASF/P4zBqMVVJxYL2SEYDQ/+BqMZipSDChQ9I6tD/kQjGacytGXSiHuvWLg3hMWXGQyEKZmQiFtuSQJk6kX5pqUKZy2j4IN7wW2YLRtI8cjUcZTXEuakylc0zRXqlrGTkHaYDSPwrZg59W5soTPeNVOYJiNL0iPvl+6dz/plW+FB9Mu/DrPGOIgGA1xVFuk6X8dvm71I9KmV/JtzxDc25pG0ufe9AMAAAAgU4888siQ13/914b5YojZs2fryCOP3P5627Ztmj9/fmZtAwAAAAAAAAAAAACgURCMBgDIX94FGLZQCFNBN/wRVuQpSVVDKIdr9YLRagSj+SHFdcZpMJqhSJHCNP9Yg9E8mEbRl8otTsCZtGMsEysYrd79ijFQqST5bNcbsyRlGoMRDus/ayh0MHJ9lH7HtaQ5mQLxjPcey9hpyJgrSTBaikBk5MyjcaptPM94Gj5aN1/69buln71FWvKf9mvftlXStpX5ta3sbM/xCEZDmJkXm9ct/l6EHRiCC03PeSKzbU9YYkNJGk5NmDkAAACQmfXr1+uPf/zj9tcTJkzQQQcdFGsfJ5xwwpDXv/vd7zJpGwAAAAAAAAAAAAAAjcRRlSwAABZ5F5naQiGSFpEgP6YAh2p7vu3Yftw6wydCQfyQJiDBaeiVad8UKHrHdq9yGZ4XGX2p1OKGaA6MZcbF+IP6eqFYjIFKJsFnu96YJSlTQIQpzBb+sAajqf/a1DJojB1lPBXU2ScakykQz3TvsY2dBo+5kozDCUYrD58Cx6x9zaN2Aqselp6/TlpxX7ztfPq8+c72HI9gNIQZf7C06zHSupCC9UW3S4dcU0ygvi1YLeBZUUNJGk5d2yZpTKZNAQAAKLWOqdK5i4tuRXPomFp0CzK3evXqIa/3228/VWIGXh944IFDXq9atSp1uwAAAAAAAAAAAAAAaDQEowEACpBzcZ4tFIJQEP+ZCt2LCiaqFzRDMJofUgWjOexbpj+GpWjZP7Y+5EMwGn2p3OLeKwbGMuMPlnaaJm1ZGmGbNvt6xkDlkuSzXanTB5KqjgpfTjCa/+oFo/Vtk9rG7XgdZTyVtCgf5Wa6hxiD0SzhIIP7WaJgNMY+peHTubL2SY/aieYUBNKKuf2BaKsfSbgP+nFkq35tXkcwGkxmXhwejLZ1mbTqIWnKaeZtnYWU2QrwCUZrKL2bEm7XKbXvkm1bAAAAyqzaKo2dXnQrUFLr168f8nr8+PGx9zF8m3Xr1qVqEwAAAAAAAAAAAAAAjaiAn6wGADS9vIvzbEFWFPL7z7tgtDrHJRjNDzVPg9GMw2+Klr3jezCasS9R7FoKfZ3x3j8wlqlUpONuj7eNCWOgckkyfraFA6fRYghG6yMYzXtBhGC0Ie+P0O8IWWxOpvNuuu5EDaFKFIyWYtyPfHkV1EQwGjxU65OW/Uiae5T04NnJQ9H6d5ZZsxreyzea11UJRoPBtAukanv4ukUR5+wj2ILN0m7Ps6KG8uzVybar8b0FAAAAkJVgWOh1xfSjZjFksQ8AAAAAAAAAAAAAABoNwWgAgPz5FIxGIb//TMEtrsI+6qm22dcTjOaHNAEJSQIZ0u47oEDRP5Z7lcs+EpXpD6MJciiHuPeKwfeeKaf0F2HX3abOfZIxUMkk+GzXC8dLqmoKRmMM5L1a3GC0COOpevtEYzLN0UzXnV0ON+9r530HvSAYrbF5NE61FhkyN0POaj39QUo/f4v0yF9K659Ov0/mhdH1bDKvq/cMEM1r1G7SXu8MX7f8R1LPZsvGju4zUYNoUW7b1iTfljk7AAAAkJldd911yOuNGzfG3sfwbXbZZZdUbQIAAAAAAAAAAAAAoBF5UNEPAGg6SQpxJr01+fFswSCmgm74w1ToXmnJtx0DWkZJE08wr69RYOSHFAV/TvuWqQCfAkXv2EI2fAhGM07lCHIohbhBQsODZsbuG/6+4dsc9sXs2oBiJRk/uwqRbRkdvrzW5eZ4yE69uU+SYDRCFpuT6bybrjsdU6Vdjx65fNKJ/cEiAxKNsRhHl0aRoSxHfGXYAsJj4IHeTmnhN6V795Meu0R646Xo2044VDriq+b19OPo2nY2r7OGKKLpzbwkfHnvFmn5fyfYYcr+VqmYn2nWutPtG/74073JtyUYDQAAAMjMpEmThrxeuHBh7H28/PLLQ15Pnjw5VZsAAAAAAAAAAAAAAGhEPlT0AwCaToLivFkfSn644WEig1HI7z/TObKdV9cOu868jgIjP0QJ8jBxGYxmCnsICLPyjm+hjMOZCrQpgC+HuOOP4UEzpmCqIdu0Sfu8J7s2oFhJPtuuxkoto8KX9xGM5r2gTiBikmA0gqabk+m82647J9wpdey94/VO06Xj/3PY9gkeVacZ9yNfRY5TZ/7N0Ne2vsZ4Gq71bJJe+LL00xnSkx+RtiyNvu1ux0mn3Cv9+TPStL+yvJFnDJGZnuPN+rt824Hy2ePt0mhD0fqi2ywbOvx8towJX97X6e6YyFeac8ncDQAAAMjMLrvson333fFDVhs2bNCLL74Yax+PPvrokNfHHHNMJm0bUCHwHQAAAAAAAAAAAADQAAhGAwDkz1RkOuFQadoFI5dP/2tp2oXJjzc8TGQwikH852M40ZRTzOsIRvNDqmA0l0Nk0x+fUnzvnZrp2uPJFMrYDgrgSyHu+GN40EyUYLRKq7TzvuaQGsZAJZPgPmEbA6dRNQSj1RgDea9WLxhtWJF9lHAgQhabU5Lw6nH7Se98RXrbw9KZj0jvXCiNnT7sTQSjNbYC5zyjdhv62jqmZ24GR7rWSgs+L82ZJj3zf6Rtr0ffdve3SWc8IJ31qLTXOW8GZRPwlwnTc7zJp+baDJRQta3/e4swqx6UNi+Jt78sCtZNwWi9BKM1jDT9hLkbAAAAkKkTTzxxyOs77rgj8rYvvvii5s+fv/316NGjddRRR2XWNkkaNWro93ldXfzAEQAAAAAAAAAAAACgfDyp6gcANBVTcV61XTrhDumsx6UDruj/946npONvl6opQrBsxdkUg/jPFNziKuwjqvGzw5cTjOaHVMFoDkP3TAX4FC17yHBOigxlHMJQCElfKoe4448RwWiGYufBBu6Tuxr+iJ4xULkk+WzbxsBptHaEL6fY3n91g9GGjWOjjKfq7RONyXQPqTdHa2mXJp8kTXprf5jIcEkCaAlGKw+vxqkESiFHnSukpz7ZH4j23D9L3eujbzv1POmsx6TTfylNOW1oII7tmkk/js70HC9KGDUw42LzusXfC18eOAy0N83Vhgcgo8RS/GkHz4EAAACATL3//e8f8vqmm27SypUrI2171VVXDXl9wQUXjAgyS2vChAlDXq9YsSLT/QMAAAAAAAAAAAAAkAeC0QAA+TMVLleq/f8m/pl01I39/3Y9Illx9JD9EoxWasb+UnA4kalAkmA0P5QtGE0OiyKRjK/XngH0pXIzhX6aDA+aiVKkPzD+MYXUxG0DCpbgsx0WOpQFUzBf31Y3x0N26oWY1RIEozGfak6me0jaQMZEwWiE/5SGT+eqYggZlsR4GpnZvFh64nJpzgzppa9KvVuibVepStMuks5eIJ18jzTxWPP7jDz6vPlu+PhnAMFoiGKXQ6Vdjghft/j2mCFotntTRMzVGp91DFMHz4EAAACATJ1++uk6/PDDt7/euHGjLrzwQnV22sOpb7jhBs2ZM2f760qloo9//OOZt2/mzJlqb2/f/nrevHnq6eHHbgAAAAAAAAAAAAAA5ZKyWg0AUlj3tNS9tv+/BxeI7DRdGrdfIU1CXkzFeY7yOm2FghSD+M/XcCKC0fyWqujeZXawoXjNp5AA9DOGwfiSLU1fKrW4QULDg2ZMxc6DDYRiVQzhWIQZlUuSz3bagCKTlo7w5UFff/CWq0A2pBfUKXgZPo6N0u+YTzUn0z3EFMYZWZJgtBSByMiZT+NUS6gI42mktfEF6fkvSUvvjHeNqrZJMy6RDv60tPOsKBuYV9GPowkC83M8gtEQ1YyLpfVPj1y+eZG0+hFp8kn5tcUYjGYvykeT4DkQAAAAMMTKlSu1ZMmSRNtOnz5dkvSd73xHxx9/vLq7uyVJDz74oE466SR94xvf0LHHDg27X7NmjT7/+c/rm9/85pDln/70p3XooYcmaodNe3u73vrWt2revHmSpGXLluncc8/Vhz70Ie23337q6Bj6fd/uu++u0aN5HgIAAAAAAAAAAAAA8AvBaACK88yV0spfjFx+8JXS4dfn3x7kx1ScV3UUdFWp9AdDhBV+UAziP9M5chX2EVXV8AeBNYLRvJAmIMHVtUgyBzUODgiFH0z3qqJDGQcYQz/pS6UQd/wxPGgqSpH+wH3SFFLDGKhcfApGazUEo0lS71apfbyb4yK9WtxgtAjjqXr7RGMyBeKlve7YQs1NCEYrD5+CmioV9YejhYydfWonymXdfOn566TlP1GseVnLGGnWZdJB/yh1TI2+XYWAv9Rq3eZ1pud+wHDTL5Ke/mT4HHvx7SHBaKbrg+UzHZUpGK2XYLSGkSaYmlBrAAAAYIgLL7ww8bbBm3/fceSRR+qmm27Shz70IdVq/c9j5s+fr+OOO06zZs3S7NmzNXr0aC1fvlxPPPGEenuHjsvPPPNM/cu//Evy/xF1fOITn9gejCZJc+fO1dy5c0PfO2/ePJ166qnO2gIAAAAAAAAAAAAAQBIJqs0AAEjJWJzn8LY0PFBkAMUg/jMVuhcdTmQKpRkeKIFipAlIcNq3TEWOFC17x9SHXAbnxWLoSxTAl0Pc8cfwoJkoRfoDgWimkBrGQOWS5LNtCsVLy1RsL0l9W90cE9lwEYxGyGJzchVebQv5MbaFsU9p+HaujEF8nrUT/lv1sDTvHdLco6XlP1bkULS28dLsq6XzlkpH3RAvFE2qEyZJP47E9gwvShg1IEmjJ0l7/UX4uqU/7A+PzotprtZHMFrDSPPdA3M3AAAAwIlLL71Ud999t8aOHTtk+SuvvKI5c+bo7rvv1qOPPjoiFO1v//Zv9bOf/UxtbYa/Z8vAOeecoy984QtqafHlbxwAAAAAAAAAAAAAAIiHYDQAQP5MxbDWgr6UTAXaFIP4zxTc4irsIyqC0fyWJhjN5RDZdJ3zLSQA/oYyDjDeMyMW4aM4QU2xz9Pw891qCabavk2dYDTGQCWT4D6RNqDIpLXDvC7Pon/EE+XaM2IcG6HfcS1pTqbzXsQcLdW4H7nybc7D3AxpBIH02v9IvzxJuv8UacV90bcdNUk67Lr+QLTDvtAfqpSI5dkF/TgagtGQlRkXhy/v3SQt/8mwhQ6f2xCM1vhqKb57qBeUDQAAACCx888/X3/84x91xRVXaOLEicb3tbW16ayzztJvfvMbfec733Eaijbg6quv1oIFC3TllVfq5JNP1u67764xYyJ81wwAAAAAAAAAAAAAgAcKThQBgDAEejS+AoLRTAXaFPL7z9dwIoLR/JamCNhl3yLMqjyMfciXbOlK+GIK4P1nCvw0qbRKlWHnuxqhSL/65h/Sm8ZAcduBYiX5bLsKKGqxBKNRcO+vKEXww4vsaxECpyiub06me4irQEYbgtFKxLdxqmk8zdwMFrU+6dWfSM9fJ61/Ot62HVOlgz4l7ftBe9BsVLbnqMwLo7EFDBGMhjj2/Atp1G5S19qR6xbfLs14b/19DJ/3J2G6tjBPaxxpvnvguzAAAAA0uSVLljjd/+TJk3XjjTfq3/7t3zR//ny99NJLWr16tbq6ujRx4kRNnTpVJ554onbeeefY+77mmmt0zTXXJG7bwQcfrOuvvz7x9gAAAAAAAAAAAAAAFIVgNADFyaLQA+VURNiMqUCbUBD/mQp2iii6H4xgNL+lCUhwGrpHmFVp+BrKOICQvfKKW4gaFm4VpUh/4D5pul9SEFsuSe4TrsZKtiCP3q1ujon0ogSY9Q4LTIgynmI+1ZxM9xBXgYw2jKPLw7dzZRxPe9ZO+KHWIy25U3rhS9IbL8XbduwsafaV0vT3SS3t2bWJYLT0bM/wCEZDHC3t0rSLpIVfH7lu5f3SluXSTnv3v3YZwNkyJnw5wWjlEgTSxuekLUulSW+V2nfZsS7Ndw/M3QAAAIBcVKtVHXPMMTrmmGOKbgoAAAAAAAAAAAAAAKVHMBoAPwWB9OL/Jy3+Xn8AyT7nSwdfJVU9CSNBOqbiPFtBX1qmAm1CQfznazhR1VAgWSMYzQupgtFchjQSZlUavl57tiNkr7Tijj3Cwq1Mxc6DDYx9TGOgKCFJ8EiC+0S1LftmSPb+10cwmreCCJ/54ePYKOMp5lPNqXdL+PIiwqvTjPuRL+/GqYa5mXftRKF6O6VFt0ovfrk/oCaOCYdKs/9J2vt8R8+0bc8ueMYQCcFoyNLMS8KD0RRIS74vzb6qzg4y+CEh01yNAOvy6O2UHj5PWvnL/tfVNum426SeTdLax6RFtyXfN3M3AAAAAAAAAAAAAAAAAAAAlAzBaAD8EwTSgs9Jz39hx7INz0obfi+99QdSJYMCERSsgGA0U4F2jWIQrwWBudDdFPSSl1ZDoZmtqBL5SRWM5jL4ijCr0igixDMOQvbKK+7YIyzcKkqR/sDYxzQGoiC2XJLcJ1wFFFWqUnWUVOsauY6Ce39FCUMcMY6N0O8IWWw+G18wrytijkYw4LiqPwAAIABJREFUWol4NucxjaeZm0HqD6D5w7ekl74qbXs93ra7HSe95Wppz79w+xzbNjelH0fT12leZ/pBBMBklyOk8W+RNj43ct2i26SDr3zzmuDwuY0pGM3W1+GX57+4IxRN6p9vPfrebPbNcyAAAAAAAAAAAAAAAAAAAACUjCdV/QCakykcpk965f+OXL7sh9JL/+a2SciHsTivgGA0ikH8ZivkdBpeFYGpQJJgND/4GoxmKlxeMVfavNjdcRGfqQ8Vfe3ZjpC90oo79ggbw5iKnQcbCFQzhdQQDlsyCT7bLgOKWjvCl1Nw768kwWhRxlPMp5rPq/eY17kKZLRZMVda8Hlp5QP9wdrwl2/jVGOolGftRL661vZfU+ZMk575dLxQtClnSGc8IJ31qLTXOe5/3MMa2k0/jsT2DK9lVH7tQGOoVKSZl4Sv27RQWvt4vR2kb4PxhzyYp5XGwpvc7ZvnQAAAAAAAAAAAAAAAAAAAACgZgtEA+Gfbyv4itDBPf1Lq2Zxve5A9UzGstaAvJVMwBIX8frOFMRQdTtRCMJrX0hTdu7wWmYbfW5ZKP50p/ea90YJL4J7vwWimfupb4ARGiluIGjaGMd2DBhvoq4TDNoYkn22XAUWmcL6+re6OiXSSBKP1bIqwX64lTWfZf5nXFRGMJknP/bP0wBnS7y5nLOQz784NQcMYpHOF9NQn+wPRnvtnqXt99G2nnied9Zh0xv3SlNPcB6JtZ3l2QT+OpmtN+PJqu+NnQ2hY099rfm606LY3/8NhkKtxnkYwWmn0bHS375e+KnU73D8AAAAAAACA1Hr7Av36D4F+8Tw/CgYAAAAAAAAAgEQwGgAf1QsVeuPFfNoBd4xhMw5vS6YCbQr5/WYLbSmq6H4AwWh+s4Xq1eMy+KpegfTSO6WF33B3fMRQQIhnHMb7GsF63osbSBZ2riMFo1XN20vS0rvitQPFSvLZNgUDZ6GlI3x5L8Fo3oobjBYE0ron629DyGLz2bDAvK5W8FzolZulNb8ttg2w8CyoyTiup8igqWxeLD1xuTRnRn9gTO+WaNtVqtK0i6SzF0gn3yNNPNZtO01tMCEYLZqnPx2+PMp8CwgzZndpj3eEr1v6A/tz4yxCFY3Pq7vS7xvlt+kP0o8mSIu/X3RLAAAAAAAAAAyyaVug/54f6JJba9rjkzWd8pWarvox3/UAAAAAAAAAACARjAagUIZCj3qhQlEL1OAvU3Gey7AZUzAEhfx+s4VbuQyvisJUaFZ0GAD6+RqMFmX4/fLXHB4fkdVMIZ4FX3sGtIwKX16j2NV7WQSjVdujb28LxyLEqjySfLZdhsi2GoLR+uhT3opy7Rk8jt20MNp+CeRsPrsebV43aqK747buFO19K+931wYkFwT+BTWZnkH51k64sfFF6dH3S/fuJ73yrehjrWqbtO+l0jkvS2+9Q5pwiNt22lhDlOjHkfRuCl9OMBrSmHlx+PKejdKrc9weu8qzIkTw2/dJmxcV3QoAAAAAAAAAku55OtCkT9T0lzfX9L3fBlr7ZonE08ul5ev4QScAAAAAAAAAAAhGA+CfekUa9YLTUAKmYDSHYTOmYAgK+f1mC3CwBb1I0uFfDl9+0KeSt2cwU5Ek1yg/pApGczhEbokQZrRlibvjIzpTH/ImGM10DaLY1Xtxxx7VtpHLKpXo16q2ceZ1656M1xYUJ8lnO6zvZMVYcN/t7phIJ8q1Z/A4dv0z0fZL0HTzGTvLvG787PT7n3pe+PIDroi2fffG9G1A9lzfHw65NsFGBKM1pXXzpV+/W/rZbGnJf0Z/dtAyRjrgY9K5i6Rjvy3tbLkW5soQjkY/jsY0p9q2Kt92oLHs9U6pfZfwdYtu7w8LDWULO4yI59WIatmPim4BAAAAAAAAAElH7CN1G/7s4h/u4vseAAAAAAAAAAAIRgPgn3pF/xRxlJ+xOM/hbckUjEYhv99qlgLVeuFEU88dGdpRaZH2fnf6dklSlUIzr6UKRnMYfGXqN/CPMRjNkymUMZSIYDTv1WKOPVrGhC+f8X7zNnu8Y8d/736m+X29W+K1BcVJ8tkeNTn7dgwwBdTG7d/ITxAlGK1z0H9HHNNyzpuPbZydRSDjwVdKrWOHLtv/o1LHPtG2rzEf81KW8+Th/aw6Ktk83zSuJ1CqMa16WJr3Dmnu0dLyH0syBRMN0zZemn21dN5S6agbpI6pTpsZG/04HdO1afZn8m0HGkvLaGnaBeHrVt4ndb7m7tg8K0JUCz5XdAsAAAAAAAAASJq2W0WHGb5+mvOsVP27Ph16TZ8+cHtNP1sQqFaL+B0XAAAAAAAAAAANwpOqfgBNqVIJX16vWJLQofIzFee5DJshvKGcbEX3prC7AeMOkE65V9p5v/7XO02T3voDaeKx2bSthWA0r6UpAnYZjNZqCDiCh0z3Kof9Iw5TsSvXIP/FDWU13W+O+Ko08YTwdQdfueO/J51k3jf9pTzqhUeHGT0x+3YMIHS4fGpRgtG2hf+3TZTANTQW0+d8vw9ns/+Jx0ln/kY66JPS9PdKx39POuprUoth7DMc9zY/ZXVe2neVTvzRjnn+uAOlU/+fNP7gBDszPJc0zQNQPkEgvfY/0i9Pku4/RVpxX/RtR02SDruuPxDtsC9Ioye5a2caBKOlY7o2TXprvu1A45lxSfjyoCa9/qvwdabvy+IwjZcYH2E4X374AQAAAAAAAIDeeZj9+fBzr0m3/ibQO2+q6Yq7AwUB4WgAAAAAAAAAgOZRJ1EEAApQ79fr+XX7BlBAMBrhDeVkOz9Rwon2OFN650Kpe4PUNj6bArMBBKP5zRaqV4/La1ELwWilYepDvgSjmYpdGSf5L6tgtFG7Smc+Ir3+gPTs1dK6J6V9PyjNulTa9agd76u2SKMnS9tWjdwH96zyqHXHe/++H3TTjgHVtvDlhA77K3YwWmfE/XLOm47pPlYvuDqOXQ6VdvnK0GWmUNjhkgRJwr1aRmOOSlWaem7/v55NUtvO6fYVhkKC8gtq0vIfS89fJ61/Ot62HVOlgz7VP5Zq7XDTvkyZnl/Qj+sKauYxtmkOBkS12zH94Z1vvDRyncvgQuPzasZHGC7D70kAAAAAAAAApHLuYRV94WfRvtv5xrxAHzm1ogP3cNwoAAAAAAAAAAA8QTAaAP/UC/QgwKH8jMU/DsOIqoZbHoX8frOFW8UJJ2qfkL4tw5kKzWrb+gupswxhQ3ypgtEcBl9RXFse3gejUexaWnHHHrbrRqUi7X5G/z/rPgyhjFGDj1C8uKGHO89y044BhA6XT+xgtIjzbs5586kVNEYyhcIOl1UAF7KV1bO8wWFmaULRhu9rCIeBNXCr1iMtuVN64UvhYUQ2Y2dJs6+Upr9Paml30z4XjAF/9OO6bHNnnt0grUpFmnGx9OxV+R7XFCRLiD6G47sLAAAAAAAAwBtHTZMOmCK9/Hq09z+0MNCBe/CMDwAAAAAAAADQHBwm0ABAQvWKJQlGKz9TcZ6xKDUDhDeUk+38mMLu8mIqkgxq9CsfeBuMZggngn+KuFfFYSt2DaL9giQKEvcekcV1wxikx7i6NOKGHlYdhzmYxmGMgfzlKhgtyn7RWEyfc9fzM9PYZzjubX7K7LxkORYnUKph9HZKC78p3buf9Ngl8ULRJhwinXCXdM5L0r4fKFcomkTAXxq2IE2C0ZCFGe+L+QwpgyI24w95dHN/wzAUTQIAAAAAAAC+qFQq+p8roj9PXrvFYWMAAAAAAAAAAPCMJ1X9AJqT4Q/v6xVL2oqWUBIEoyGimiXcymV4VRS2IkmK8YuXptjPh2A0W99HPkzhekVfewa0WMJBCKnxWy1uMFoGRfmmkCzuV+VRixmM1uo4iNM0tub6468gwrkZPNeOOu9mPtV8jGMkx8FotrHPYNzb/JTVeclyLG56BkVwTHn0bJJe+Ir00xnSkx+RtiyNvu1ux0mn3Cv9+bPS9AukqifzvNjox4nZrkuuQ4bRHDr2kqa8Ld9j2oJka935tQP+8+WHHwAAAAAAAABIkqZPrOj1r1Y1fbf6712/1X17AAAAAAAAAADwheOKNQBIoK9O0T9FruVnKs5zWYxRNYU3UMjvNVvQguvC+3psRZJ926S2nfNrC0YyBTZE4vBaFDXgqNYlVTvctQP1+R6MZi123Sa1tOfXFsQTN0Qoi2A00z4IHC6PenOk4VyHOTC2Lp8o52bwXDvqvJtz3nxM9zHXYyTb2Gcwnhn5KbNgtCznaoYfbDCF+cMfXWull78uLfx3qXt9vG2nnCG95Wpp8qlSxdQHSoSAv+Rs16Us5mCAJM28RFr5i4hvzuCaZAuS7euib2OQBrgHAgAAAAAAAA1m0s4VLbq+RUvWBHpllfSub9a0NeQ3LzYQjAYAAAAAAAAAaCIEowHwT88G+3qKXMvPWJznMIzIFKIVN5wE+bKFWxUdTmQrJOM6Vbw0wWguQxpbxkR7X982qZVgtEIVca+Kw3oN6pLa8msKYoobIhT1upFkH72d6feNfNRiBqO5LnhnbF0+QU/99wwJRot4fYiyXzQW033MFJiYFYLRys3HYDQCpcqnc4X04lelV74l9W6Jt+3U86SDr5ImHuumbUUxfibox3URjIY8TH2X1DZO6nkjn+PVfV49Pp92oAQIRgMAAAAAAAB8NX1iRdMnSn99XEXffjgYsX7D1pHLAAAAAAAAAABoVASjAShQwj+8p8i1/EyBRS7DiExF2nHDSZAvW7iG68L7eghG81uqYDSHhWFxgtFQLOO9quBQxgG2cJC4AUrIV9zgqGoGRfmme1aNa00p1Pri39cIRsNwtQgBZrXu/v5WbYk+FmE+1XyMYyTH87OW9mjv497mp8zOSw7BaKKQwDubF0svfFladGu8uU6lKu1zgTT7SmnCIe7aVyjD8wsC/uojGA15aB0j7fMe6Y+31H9vFs8jeVaEqFx+FwcAAAAAAAAgExMMv6u7fmu+7QAAAAAAAAAAoEgEowEoHwo4ys9UnOeyGIPwhnKyhYAUHU5kK5KkGL94aYLRXIpaXEsfKp7vwWgtlmLXPsZKXos79siiKN+0D0IYy6HWHX8b12EOhA6XT5RgNKl/vl3tiH59YD7VfEzn3PUYyRb0MRj3Nj9ldV6yfG5k2heBUv7Y+KL0/PXS0jvjzfGrbdKMS6SDPy3tPMtZ87xAP06OYDTkZebF0YLRsmB9VsQYCYO4/GEQAAAAAAAAAJnYxRCMtoFgNAAAAAAAAABAEyEYDUD5UMDRAEzBaA4LqQlGK6eaLRit4GGMrUiS61TxfC0CbhkT7X30oeIVEeIZhy0chBBZv8UNjiIYDUk+067DHBhbl0/UYLS+bVJrjGC0qPtF4zDdx0yBiVmxBX0Mxr3NT5kFo2X53IhAKW+tmy89f520/CeSgujbtYyRZl0mHfSPUsdUZ83zCsFoydkC6aOGcQJRTDxBGjtL2vxKnTdmEFRVtf2QB8+KvBfEuOel5snzTQAAAAAAAABGpmC09QSjAQAAAAAAAACaCMFoAIqT9BfJKXItP2NxnsNijGpb+PI+CoK8ZgvXcBmkF4WtSJLrVPECS6hekaIG1dCHimfqQ0VfewYQzlhecYOjogYqJtlHX2f6fcO9JONV12EOpgAk+pS/ghjBaFL0c0kYXvMxjpEcP2aOel3rfM1tO5BMZsFoGT43Mj2XJFCqOKse7g9EW3FfvO3axkv7/710wBXS6Elu2uYt02ciz3CdklrzePjy6qjk31sAYSoVaebF0oLPuj+WLUiW70H8l+fzbK5zAAAAAAAAgPd26ago7DuftZulIAhU4TkfAAAAAAAAAKAJ8HPAAMqHsI/yMxWZZlngOpwpvGHpXVLN0wAl2IuBig4nqraai/+5ThXP22C0iAFH9KHieR+MRrFradXiBqNFDFRMsg+uNeVQSxKM1p59OwYzjYGW/1iqRQzgQr6inpfaQDBaxOtD3Gsays8Uhud6jBQn8HHjS+7agWR8DEYzfjVCMFqugkB67X+kX54k3X9KvFC0UZOkw66TzlsqHfaFJgxFk/kzQcCf3bY10rNXha+zzbWBpGa8X1K9ArUMCtgI0S+3XK/dFEwCAAAAAAAAvpsyLnz5G9ukVZvybQsAAAAAAAAAAEUhGA1A+fR1Ft0CpFZAMJopvEGS1j7h7rhIx1R0L/kRTkTQjL8IRkNaxhBPD649kj30aNvr+bUD8W14Nt77swhGqxr2sfy/pV7G1t574+X427gORqu2mdetesjtsZFM1GC0vpjBaFuWjly29TVp4TekJ/9Beu6L0hrmWw3FNEczhZFnJU5Qzas/cdcOJFPLan6T4XMj0zOo136e3TFgFtSkZT+S5h4lPXi2tPqR6Nt2TJWO+pp03hJp9lVS+3hnzfSe8VkqwWhWtgC+njfyaweax077SFNOc3+cSquMgVdJAreRsxyv3bVu6ZVbpF+eLP3XBOmZq7j+AQAAAAAAAJ45aA/zuhdey68dAAAAAAAAAAAUiWA0AOWzZXHRLUBam03nsKBgtJe+6u64SGfFL8KXV6pSxVDklSdTWE1mRd9IzNdgtDGWv1YZjBDQ4pn6kMsQzzgqVXMw0a//l/TGwnzbg2jWPim9+JV420QNVLTuwxKu9tA5Us3TayakjS9K886Kv12cAKEkbGPr5693e2wkEzcYLep4dusy6f7TpO4N/a9X/1b6f/tLT/69tPDr0oLPSL88Xvrjd+O3GX4y3TNch8dWY1zXTPNIFCer4Ocs+5lpXL/iPstzK6RW65EW3S79bLb0yF9K65+Ovu3YWdKx/yG984/SAf8gtXa4a2dpGPqxKegb/Tb9oegWoBnNuNj9MSoV81yQH2HwX57Ps7vXS0/8nbT611LPRumFL0n/NV56g+sjAAAAAAAA4ItJO1c0aefwdc+/FuTbGAAAAAAAAAAACuJJVT+A5pQw1OiNl/v/aB/lVOuRNiwIX+cybKZqCW947efujot0Xrk5fLktjCNPpqAZCs2K52swWtTCbYLRimcMRnMc+hGHLSBk/hX5tQPR/e7y+NvYQs0i78MSrvb6A9Lax9MfA268+OVk28UJEEq0f8tY7PUH3B4byQS90d43MI6NM55d9aD0+Af7//uJv5N6tww7dk166uNSX3f0fcJfpr7keo5mCoQNs+Y37tqBZDILRsvwuZGtz756T3bHQb/eTmnhN6V795Meu0R646Xo2044RDrhLumcl6R9PyC1tDtrZumYPhMEo9n5+swIjW2fd0utY83rs/oRkKrphzy6stk/3PHh2v3kR4puAQAAAAAAAIBB9p8cvnzlG/m2AwAAAAAAAACAohCMBqCc1v6u6BYgqQ3Pmde1jXN3XFvBqy8hWxipfdfw5TVPQhVMhWYEoxUvavjHcLuflW07wuz/9/XfU+tx3w7YGYPRPLpnmK6RkrT6kfzagWh6t0jr5sffbswe6Y9db4z1/PXpjwE3Ft2WbLs2S8F9Fny6FiKaqGOL7cFoMUNa//RTaetr0kbDfK/njWTXQPinqDFSnLCQKae7aweSyWp+k1cw2lOfyO44za5nk/TCV6SfzugPW9myNPq2ux0nnXKv9OfPStMvkKoehVT7wviZ8CBcx2e2Z0aTT86vHWgurTtJ+5zv/jgthpDsPoLRvOdDMNrKX0q9W4tuBQAAAAAAAIA37WR45NvrweNEAAAAAAAAAADyQDAagHJa83jRLUBS3evM6/b8c3fHrVoKXm3rUCxT8XSLIZAsb6Z2EIxWPFNgg02lKu3/4ezbMpwtzGpA0mA3ZMd0Dny6Z0w5zbyud7MUBPm1BfX1bJYU85yMntwfCJHWpBPs69c/lf4YKEZrSADaLkdK7bu4PS7BaOUTNZRo4P4Xdzxb65E2LLC/p29LvH3CT6YxUiWHwKKx+0Z7X8sYt+1AfJnNbzL8OsOncX0j6lorLbhGmjNNeubT0rbXo2875QzpjAeksx6V9jonXjBi0zF8JnwI1/GZ7ZnRnn+RXzvQfGZcYlmZ0bWuagpG43m195I8z3ahZ2PRLQAAAAAAAADwpjbD1/C9njxOBAAAAAAAAADANYLRABQnTVHbWoLRSstWkL/bMe6OawtvyKOAG8nUDAVbR30933aYEIzmr1rEwvsDPyFNOETa4x3SST+Wpp7ntl1StGC/qO2HO6Zz4FMY0BFftq+nGN4vpnvagNadhr4ePVk65WdSNYNxyq5H13kDYROltOc50qFfGLqs2iYdco37YxMmUz5BxGC0WsJgNKl+8BHjm8ZgOo95XBfe8rlo7+vrctsOxJfV57+S4dcZPo3rG0nnCunpT/UHoj13rdS9Pvq2e50rnfWYdMb9/SHQBKLVZ/r/iLmgne2adOAn8msHms/kk6Sdpoevq7ZncwzTc8ca4yPv+XLtZt4GAAAAAAAAeKPV8PVoD8FoAAAAAAAAAIAmQfUPgHJa+7gUBBTIlZGpWH54GEjWrMFo3A69ZQpkGDUx33aYEIzmr3rBHAOO/KrbdoSpjqr/nqjthzumc+BTGNDoydLbHpLuPyV8fdArifBPb/R2mte9a7nUvqu09AfSpoXSTtOkff5KGrVbNseuVKQJh0kbns1mf/DDPu+WZl4i7TxLevUeqXWsNO090sTj3B+b8XP52AKqBwtSBKPVC6NifNMYAsNfWOdxXWgdE+19BH/4J6vPf5bB9j6N6xvB5sXSC1+WFt0a7zNYqUr7XCDNvrI/tBzxGMMCPQnX8ZXpmjT1XVwb4FalKu37QWnBZ0auy+pHY1oMzx0JjvWfaZwtSQdfKb3wpXj7O+DjUuefpGU/jLcdY2kAAEaoVCozJB0uaU9JYyWtkLRU0qNBEPUXKZy0a1dJR0uaIWmC+n8FZ6OkVyX9LgiClUW1DQAAAEA2Wg1fj/byVRAAAAAAAAAAoEnwF/4AyqlrjbRlsTR2ZtEtQVymX5t3XURtK2qj4M1fpkCGlogF8a4Zg9Es4TdwL/D8rz5MBYqDERxSPNM58C0MqKXDvC7olRShvyEfNUvIUOtOUmuHtO/fuju+9d4ZuDsu3Km+OQ7Z6y/6/+V6bM+uhagvTjBarTfZWKR3S502ML5pCMYxUg5hrFXD/Gs4whz8k1kwmikEKsm+CBDOxMYXpeevl5beaQ90Ga7aJs24RDr40/0hr0jI8Jnw/blI0YoM+QQO+sf+oKoNC3Ysm3yytM97stm/abxkeyYBT1iu3XucFT8Ybe93SWNnxQ9G47sNAAC2q1Qq50v6hKTjDW9ZV6lU7pb0uSAI1uTUpoqk90j6iKQT67z3aUnfkvTdIODLZwAAAKCMWqsVhf1dV2+Mr+UAAAAAAAAAACgz/sofQIEq6TZf8zjBaGVk+nvLapvb49oK2yh681NQk2rd4etMgWR5MxWamQLdkA/fQzei9F/f/zc0g6KCPOOyBTrQj/xiuzdEDXpJw5d7J7JT5Dn17VqI+qIGo9V6k49lezfb11N71xhM44s8AhOjXveYj/knq3FppsFo3MtSWTdfev46aflPFCtkt2WMNOuy/mCgjqnOmtc0TJ+JgOBjqyJDPoGW0dLbH5de+Q9p8yvShEOkaRdJLe0Z7d8QkN9HcKz3bKGWSZ4bVUcle27AWBoAAFUqlbGSbpF0QZ237irpckn/u1KpXBwEwX2O27W7pDslnRZxkyMk3Szp7yqVygVBELzirHFAA9i6daueeuop/eEPf9CaNWu0bds2jRkzRlOmTNH++++vI444Qu3t2czdli1bpm9/+9t66KGHtHDhQq1fv149PTu+x7n11lt1ySWXhG77xBNP6NZbb9Wjjz6q5cuXa+PGjarVdswnFi9erOnTp0uSTj31VD300EPb1wU8MwIAoHTaDF9d9PIbOQAAAAAAAACAJkH1DwC/veVz0rL/kt54ceS6tU9I0y/Mv01Ix1SQ77og1VbYRtGbn2zFWr6Eu5jaUaN4qFCB5z+HVzUUKA5GcEjxjEGenk2hbO2hH/mlr9O8Lo/7WtX2h/opA4tRjJYxxR2bMJnyCSIGowUOg9EI7GwMprF2HvPqyMFoBH94J7NxaYbBaL6N68ti1a+l578orYhZ6902Ttr/o9IBV0ijJ7lpWzMyhgVSDWNlupdxXUBeWkZLB/y9m32bnjsSduU/2zPt1gTz/5bRBKMBAJBApVJpkXS3pLOHrVot6WlJGyXtq/7QsYEvV6ZImlOpVN4WBMEjjto1SdI8SQcOW9XzZruWqn8yOFXSUZIGDwSOkjSvUqmcGATBUhftA8qqr69PP/zhD3Xrrbdq3rx56u01P8ccPXq03v72t+uDH/ygzjnnnMTHvOWWW/TRj35UXV3xnmP39vbqwx/+sG655ZbExwYAAOXTagpG8/xPZAEAAAAAAAAAyAp/5Q/Abx17SROPNQejoXwKC5qxFARS9OanogNkojC1g+KhYvkeBtUSIRiN4JDimc6Bb2FAtvbQj/xiujdUR0mVHILJ8jgG8lXkeIjxc/lEvSfUepOH/PZssq/3fYyGaEznMY8xUtTrXo1gNO9kNS7NMoDPt3G9z4JAWjFXev46aXXM+u5Rk6QDPy7t92Gpfbyb9jU1QzBaQDCalXG+z49noAEYf8iD8ZH3bNfuKD+0EbZNku1s38sAANAcvqShoWg9kj4h6dtBEHQPLKxUKgdL+g9Jx7+5aJSkeyqVyiFBEKxw0K4bNTIU7VuSPh8EwarBCyuVygRJ/0fSp7Vj4jhV0s2S3uGgbUApPfDAA7r88su1cOHCSO/ftm2b5syZozlz5ujoo4/WzTffrCOPPDLWMX/+85/rsssuUxAEsdt79dVXE4oGAEATajF8FdTLV0EAAAAAAAAAgCZB9Q8Av43ZS9r1GGnRbSPXbV2We3OQgaKCZmxFuBTD+skWLkYwGmx8D92oRui/vv9vaAaFBXnGZLuH0Y/8Yro3eHFPi//H98hBvUCLIvsOoRHerce7AAAgAElEQVTlU+uJ9r6gN/lYtrdOMFrUNsBfQSAFhp+ezmOMFPW610fwh3eyGpdWDH/5n2hfno3rfRTUpOU/7g9EW/90vG07pkoHfUra94NSa4eb9sH8mSAYza7IkE/ANdMPMjA+8p9pnC0lm/+3jJKqLVK1Ld5cjO82AABNrFKpzJR0xbDFfxkEwZzh7w2C4IVKpXKGpF9pRzjabpI+L+lDGbdruqSLhi2+PgiCfwp7fxAEGyRdValU/iTp64NWvb1SqRwbBMHjWbYPKKNrr71W11577YiAskqlooMOOkhTp07VbrvtptWrV2vZsmUjwtOefPJJHX/88brpppt06aWXRj7uVVddNeSYF110kT7wgQ9o7733Vltb2/blEydOHLLd66+/rhtvvHH76/b2dl155ZU6++yzNWnSJFWrO54RTZ06NXJ7AACA/9oMf57Ta3mcCAAAAAAAAABAI+Gv/AEUqFL/LWP2lHoMxdW17vDl8FtRhWe2ohKK3vxUIxgNCdU8/6sPU4HiYLYwR+TDeL/yLAzIFkJCMJpf+jrDl7eMybcdKI9694Ii+w5hG+UTxAlGM1yv6undXH/fKDfbZz+PMVKUgGHJPpdEMYxj62q8e0qmwWiejet9UuuRltwpvfAl6Y2X4m07dpY0+0pp+vv0/7N35mGyVPXBfk9Vr9OzL3fnLqz3sgUVRcBEEIOiohE3EpKoMaJGE4ggBpMP8YoGUZOg0cQVEp+AfqhB9CPKoiiCiBiQ5V7gwl2469zZZ7qn16rz/XG6Z+mZ6mWmp7t67u99nn6661TVqV8tfc6p5byFHVqa+IRpPP8T0lYrSSMln4Kw1Hi1l6R95H9KtYmsBdSphXsXdrRKMdoCzwcFQRAEYXnwcSA4Y/jm+aRoBbTWSaXUu4AngEKF/R6l1A1a6501jOvCouF+4BMVzPcl4L3AqUV5iRhNOKK5/PLLufHGG2eltbW1cfXVV3PJJZewfv36OfM899xz3HzzzXzuc58jnTbi6Uwmw6WXXkoikeDyyy8vu9xnnnmGxx9/fGr4da97Hf/1X/9VUcy33347mcz0c5LXXXcdH/nIRyqaVxAEQRCE5ibgcUsz68hLMAVBEARBEARBEARBEARBEIQjgxr2JBIEQVgComvM28zno5oH+QX/4LXfvPZzrSglRpNOb/6klFys0g7xS42I0fyJ36UblYj9/L4ORwJeQiK/yTRLxSOCPX/hVTf4QvZZgbBYqD/l6oJGHjul2taCP6n0/NnNLbwtmxUx2rKn1D6sRxup0nLPSS9tHEL1eLVLqz63r+HtDLkWNJdcEp79MvzwOHjoXdVJ0TpPgbNuhTc8Dce8R6RodcPjPyES29J4nu+LMFFYBni9kEHaR01AKQnxAtpAVv5YqPbagdzbEARBEI5QlFJR4K1FyZ8pN5/W+lng9hlJAeBPahgawNFFw3dprcs28LTWGvhhUfJxNYtKEJqQ//iP/5gjRXvFK17Btm3buPrqq+eVogEce+yxXHfddTz++OOcfPLJs8ZdccUV3HfffWWX/cgjj8wafutbi4uc2s973333obWe+giCIAiC0HwEPC4N5uRWkCAIgiAIgiAIgiAIgiAIgnCEIGI0QRD8iwpApE/EaMsNr47US90htdEduIXqKdUBxxcSGbw7cbvSeaih+F3WYnl0UJyJiEMaT6Pqq2opFY8cR/7C12I0wZeIGE2oJZWeP+tFiNFyZcRoIuxsfkr99/0kRnNF/OE7vOq0auuyhUhBPPPyWbu+kWQnYNtn4Y5N8MgHIbGn8nl7zoA/uAMu+B1svBgsEUvVFa//hIjRSuNVJkm5ICwHvK47iuzK/5Rsay+gfi1I8qoV0cqxIgiCIBy5vAZomTH8K611pcbwm4qGL6pNSFPEiob3VTHv3qLhrkXGIghNy7PPPsuHPvShWWlnnXUW//M//8O6desqyuP444/n3nvvZcuWLVNpruvyp3/6pwwODpact7+/f9Zwpctc7LyCIAiCIDQ3XmK0/SOQc0R8KgiCIAiCIAiCIAiCIAiCICx/RIwmCELjUKr0+Ohq07lLxGjLC6/O8Evd8axUpxK/SW4EQ0kxWrR+cZTCqxO3dB5qLH6XQdkViNFEHNJ4GlVfVUupeOQ48hdOcv70utVpZdregv8o9x8WMZpQDZWeP7uLEaNNlB7v9zaaUJ5S+7AeMqRKyz0nDVoeAvcVXnVa1WK0Gh5nci0I0kPw+LXwgw3w2FWQ6i87yxQrz4Pzfgrn/wrWXVj+Oq+wRHhtdxGjlcSrLVvLMkYQGoVX3SriWP9TUmq5gEc6CpK8attbXtevBEEQBGH589qi4fuqmPd+YObFjxcppVYuOqJpDhUNV1PBF087vMhYBKFpufLKK4nHp1/w0tnZyfe+9z1aW1urymfFihV897vfJRQKTaXt37+fT37ykyXnm7lsgGDQ43nIGs8rCIIgCEJzE/S4dfHoXgh9wOWln3L45Q65Ny4IgiAIgiAIgiAIgiAIgiAsX6T3jyAI/iW6xnx7idG0iNGaEq+O1EstmikllvCb5EYweAoZlHe5UG9EjOZP/C5rsSp4Vl3EIY2nUfVVtZQSOshx5C+86oa6ya3kIbimo5zIqpGiWL/XtcJcKj1/1rmFd4TPxkuPP3QPbP7bheUt+INGn1dXXGdqcywrn5w3Ct7t0qrFaDV8z4vf2vX1JHkQnv4n2PFvkEtUN+/aN8JJH4PeM5YmNqE6vP4TJeU6gmd9JsJEYTng9UIGR8RovqfUefZC2kCFMq3aawdyb0MQBEE4cjm5aPhXlc6otU4opZ4AXjQj+SSgCgN5Se4vGn5xFfO+pGj4N4uMRRCakqeffpof/ehHs9Kuv/56Vq1ataD8TjzxRK688ko+/elPT6V94xvf4Nprr6Wrq2veeVx34ddrFjNvLdi2bRtPPPEEQ0NDjIyMEIlE6OvrY8uWLZx66qmEwxW8HHAecrkcDz/8MDt37mRgYIB0Ok1fXx8bN27k7LPPJhJp4EuiBEEQBMEnBMq80+W3e+C1N7o8ea3Fxl55kZEgCIIgCIIgCIIgCIIgCIKw/JCn/AVB8C8FMZpXR1btmk8tO0UKS4+X4GGpRVclO5WUuXMsNIZSAhnlkxv4IkbzJ6WEDX7Aq4PiTPy+DkcCXvIGv3WULiV0EDGav2i4GK0Eyf2NjkCYj3L/4UYeO+XEaHu+A+vf7p82m1BetFfgmRvhhMsXtoyR/y09/sCd8Pg1cOrWheUvNJ6S59V1aCNVs4zhR6H3ZUsXi1AdnmK0KkUdIkZbHPFdsO0G2HkTuFUIcpQF698BJ10NnacsXXxC9XiK0USKXBKv+uxILBeE5Yflcd3RlevVvqeU1HIx97CqvXawUFG2IAiCIDQ/W4qGn6ty/ueZLUY7EfjpoiKa5l7gGeCE/PDvK6VO1Vo/XmompdRa4C0zkrLArTWKSRCaihtvvBE943pJb28v7373uxeV5+WXX85nP/tZsllz/yWRSPC1r32Nq666CoDdu3ezadMmz/nPPffcedNvuukmgJLxKY/7b7t27WLjxo1Tw+eccw4///nPp4Z1FdeM9u7dyw033MBtt91Gf7+35zEajXLuuefyzne+k7e85S3Ydvnzl+3bt3Pdddfxox/9iPHxcc983/jGN7J161aOP/74iuMWBEEQhOVGJdX3ZAaO/pjL3/6hIhqE1vxlYqWgJWSGlYJkBnIudERhPAnpHGQcCNmwrgtetVnR1ybP+QiCIAiCIAiCIAiCIAiCIAj+Qp7yFwShgZS5eday1nyXEma52coEM4J/aJRopmQHbpHr+RKvzlp+EMgUEDGaP/G7DKqSY9jv63Ak4CWn81tH6VLxDP4auotfBC80DK+OpdUKQRZMmbb3vjtg3RvrE4pQGeXqgkaWR+XEaA9cDKOPw+99qj7xCOWpVLqaPACPXbV0cTz5STjmLyG2fumWISwdpcqlegjHq5Et3nUGvOFpaD+h/LTC0uNVBlV9fl9LMVqZY9bN+U+KvFDGtsNT/wh7bilfh8/ECsKmd8GJV0HbsUsWnrAIPK9plpDrCN71mbw8Q1gOeF6vrkKIKTSIUmK0RbSBqm1vPfcVOPUTC1+eIAiCIDQhSqluoLso+YUqsyme/riFRzQbrbWrlPoLjGgtjLlA8l2l1Pla693zzaOUWgncDrTMSL5Oa32gVnEJQjPx4x//eNbwn//5nxMKhRaVZ19fHxdeeCHf//73Zy2nIEZrVrTWfOpTn+KTn/wkmUym7PTJZJI777yTO++8c46YrRjHcbjyyiv5whe+gOuWvn6VTCb5zne+w/e+9z0+97nPcdlll1W7KoIgCIKwLHhiX+Vi03++e3Evzulq0Xz/AxavPEHkaIIgCIIgCIIgCIIgCIIgCIJ/WCY9ewRBWJZE15hvEaMtLxolmuk+3XtcNZ1ChfrhJRfzkxjN8ojFS+om1Ae//6etCuotEaM1nkaJPKulVDyPfAiO/6v6xSKUxu/12mNXiRjNb5QTWVUjCKo1ldS12z4DW66CUMfSxyOUR2cbHcE0z30Nfu+TjY5CWAhuiePIb20kgOe/Di/6bKOjEMC7bV1tO6iW0qJyx6yTAqu1dstrBMO/hac+DXv/G6iiI4QdhWPfB1uugJZ1SxaeUAs8RDlaxGgl8RSj+bAuE4Rq8ZKvJ/fXNw6hetxSL/dZRBuo2vZWqt/UI/JCIUEQBOHIorNoeFJrnagyj8NFwzW9MK61flAp9QbgFqAPI157XCn1DeDHwB7Myf864DzgUqBnRhZfAeSi7AxyjmbfSKOjODJY1wUBu3H3tPbt28fu3btnpZ1//vk1yfv888+fJUZ76KGHyGazBIMlnnX0Mblcjosvvpjvfe97c8atWrWKU045hd7eXtLpNP39/fzud78jHo9XlHcymeSP/uiPuOuuu2alB4NBTjvtNNatW0c4HObQoUM8/PDDTE5OTsV0+eWXMzIywrXXXrvodRQEQRCEZuMlGxU/+N3ihGeVMjIJ7/2Wy/atFrbl3X5zXI2lQDXyuSVBEARBKCKZ0RwYhawDjgbXBVfDxh7oaFlYnZXKalwXoiH/13ta65Ixam22zwvDkMrC6g5zzeaFYbN+azogaIOVbwMk0prJDIRsaI/OXv9EWjM6Cd0xiAQhnYPBOPSPQyxk8g7aZj9obZaXc8HJ7xPHhUPj0BqGgGUuauYcyDhm2tFJaI/AizeArSCVg4NjMDgBqzshmYGJlIn70BhYCk5ZB2s7a7efMjlNOmfi2jNstsO6LhP/gVHzrTWsaDfrEQvPXW4mpwnaJqZsTjOegrH8O9Yd16x3LAQB22yH9ggEA2pqf2Uds/yADaGAv48/QRAEQRAEQRCEpUae8hcEwb9UJEYr/2ZCwWc0quPZUW+GX3mMKyedEBqDk5w/3UtG1gi8OhV5yW+E+lDpf3r925c2Di8qEXpKudR4GiXyrJaSHSM1ZMZESuQXvKSZ9arX1r4BDv7Ye/z4M5AahEhvfeIRyuNnSWbn75WfRjsw8iisPGfJwxEqwE/nzofuEjFas+KkvcdVIv+tBa3HQvy5yqYd/PXSxiJUjlfbutp2UC3FaOXyclIQbFIx2uH74alPwcGfVDdfsB2O/2s44TKI9C1NbEJt8ZLWiBitNF6S31qWMYLQKFqPmT99ch8kXoDY+vrGI1RBibJbWXD8h+DZf60+24UI+Seeh/bjqp9PEARBEJqX4gsAHg8qlKR4nrYFxuKJ1voepdQW4HLgEmBT/vflJWZ7GrhGa31breNRSq3ASNqqwaPBWn/2jcDRH5Pz53qw89MWGxt4+/GBBx6Yk3b66SVerlkFL3nJS2YNJ5NJHnvsMV760peybt06du3aNTXuX/7lX7jxxhunhm+99VZe/vKXz8mzt9dsrHPOOWcq7eKLL+bXv56+3j0z35msW7e4lxxcccUVc6Ror3vd67j22mt56UtfOmd613V56KGH+Pa3v83NN99cMu8PfvCDs6RoHR0dXHvttbznPe+hrW12kZlMJvnyl7/MP/zDP5BKmXvsW7du5YwzzuCCCy5Y4NoJgiAIQnNy+gZFVS9AWiTPHYbg+11OXQfpLDzTP/90loKWkHmno86H19sKtmWEJlkHwgEjRUnljChlfTd0RI0IJJGGgbiRffS2mumzDrRFjFwknjbzn3G04oa3KHpbIZmFyYwRr7RFYF2XQmtNKmukboNxM6+rzXiATM7E0BMzsVmWmSfnGEFLJGhiGU7AUMKsz6p2IyZ5YRj2j0IsbGLOOia9JWTkLLZl4pxIaXpbFas7oLPF5DeaNNuoIHtxXCNUCQfNekWCZl0Oj5v8bMtIT9rCZvp42myzeAo6WmDzKuiOiRBFEARhPh58XnPtHS73bC893dnHwNouRdYxgk/bUqSymkNjpg5J5Ux5nXNMORwKGPlWgaBtPq42ZXpvq6nXNKYu1Jh6J5GeFn31T8AJK0391NkCazsVsXxdNZaE/nEj7g9Ypi4IBUz9YCsYT00LxUYn4fiVZtzopKmTlJqWjOXc6fq4JWTyiwTNZzxlYspW8C7kcnS1QCJj1rOAlY/DL7SG4eKXKSxl4g3aRriWyeU/+d+WAssyAr2sY7ZjPK3Z0W/q/3iJxyTnY0UbrGw3++zgmMkzvcBHwCNBk89M1nVBX6tp44QD5ng9pk8xmX8seGOv2e/94zA6qUlmpsV0WQcOT5h13DVotsExfWacq818sbykLuuYbRgNwVAcJtJwxiZF0DbjtqyGaNAc2zp//A1MmPbQZAZWdShWtBmZ3lDcLCsaNNMVhIXpnDl+V3eYZR6egAOjmo29inDA/Bdslf+e+ck3hQ5PmGMeoNA6Umr6XeOWMulK5X/P+FbMTVvacWr+6a355ys5Tk2vW/E01Y6bE2uNxvldICk0H66rp87hCseX1hrHNeWCHHOCIAiCcGThs179giAIMyiI0VQpMVrWe5zgT7z2mbXEVVKgBWIbILFn7jg/SyeOZLzkYgvpyLNUiBjNn3h1cC3m+A8tbRxeVCKNkHKp8TRK5FktXh3hC2RHRYzmF3Ie/WgC0fosf8MfwyNlyr1cHBAxmm8oJclcVZs32S+Y1a+BQGv+mClBLlGfeITy+Kl9qn30JIxQHW6JJ34qkf/WgrUXwjP/XNm0XrJtof54ta2rPb+v6fWAMg9FeElt/YrWRoL71Kdh4JfVzRvug81/C8f9lZw7NBue54PSsbsknrJGn53vC8JC6D3Te9zAAyJG8zOlrmkrGzZ/GPb9ACb3Tqf3ngmD87wRaP07pn/bC7ju5Mi5vCAIgnDEUSxGW8hFgeILUUtlWy+cuFTSNe9B4FrgniWK5a+Ajy9R3oJQM/bt2zdreOXKlfT09NQk75NPPnne5b30pS8lEAiwcePGqfTOzs5Z061atWrW+GJaW6eLkUhk9nXRUvMtlLvuuosvfOELs9Kuv/56PvrRj3rOY1kWZ511FmeddRZbt26dE2eB2267jZtuumlqeMOGDdx3332e6xGNRrniiis488wzOe+880ilUmit+Zu/+RueeeYZLKvMMxKCIAiCsIz4g+PgpDXw1IH6LvfxfaXHu3quMKScQGTX4Pzpe0emfw8VXZp8pl/zn7/yfsZkppitEgpSj9qztM/BBCz44h8r3vdKaQcJgiDMZNeg5g1fdBmdLD/tA8/D7PK6dNldLLUqSDzBSKvGK7yC+PShmUMLry9m5+NNQZRVaXzVMDLPdvaTFA1Me+Tr99c/qMMT5lMLiqVoYF7ysG9kdtr9Oxa+ns8drmbaapazmG3vs4OpJizHdSpNpUK1+URySzFuqWR44ykjuJzMmLZ6d8xIDR13WlpZ7vtgXsxZ4HNvU6RzJt/WMHRGjQRxJGHmsZSph8ZT5rwmnRc+FtY9aBvJYSEOMBLPgQl45pAmkTGi54EJk09vK8TCakoUaSsjHUykNas6FBt7jUB62wFN1oFNvYpjVxjZZkfULKd/3IgSbWVEiCMJzYFRI/rMOuZcLZeXRIcC05LRcMDUKenctIQ6k8t/O2YZxWVqa14inZhx3rm2E/raTB7pnCk/07np34X5WsPTEu6p3xEjK52THoa2iJo7XwRiISPbFgRBEAShMchT/sKSoJTaBJwGrME87HUQ2AM8qLUWk5WQp8yJQMta822FvKeRw6n58OoMa5UQ4NWK4z4Aj/3d3PRKJUpCfWl2MZrW06+dEOpLpVKxvrOXNg4vrIDpzFaq7CklwxHqg2d91WSnUFo6xPsGL7mGVad6LdwNL/sKPPw+72n8JE4SStdnp36yfnHMhx2Cl34ZfvXnpaeTY8o/LHZfdL8Ejnkv/Ob9NQjmyLvZv2woKUarU3128t/D8MNG7FEOKYP8gy/FaGVoluNHu7D3+0aINvJodfO2rIMtH4Fj/tK8UEBoQjw6P8h5YGm8rsf4TYQuCAsh0gvtm2H86bnjBh6AjX9c/5iEyihZdlvQugnOfwj2fBviO2HlOXDURXDf640ctYAdmf1CkIW0n7zk/oIgCIJw5LCQC5hLftFTKfVe4J+BWIWznAXcBTyplHq/1rqCC2qCsPwYHh6eNdzV1VWzvCORCOFwmHR6+tp58fKaha1bt84afv/7319SilZMsfitgNZ6Vt6BQIA77rijIrlbQbh21VVXAfDcc89x++23c9FFF1UclyAIgiA0Oy1hxY8vs/g/P9D89GnNUV3w8QstbnlYc/OD8uxFte/lWxop2tKTc+ED/6U58xjNqetq/1y662osS5HJaYK2ESB0RMlLEipbntaanANPHYTdgxBPa9ojivaoETQMxY2wYEW7ESfYFrRHze9kFlZ3QHvUxLB3GLpiRhSxe9Dst64YrGo3wpt4Gjb1QEvIyCJSWSOkGIibY2I8CcOTMJHS9LUqzjoGOlpKr0cyoxlOmFiDtslDKSO7CNpGuBAOgFIKrTWuBrdIcFHJb8eFJ/eb70jQbOdUFjpbzIWFTF5w0RYxy48EjRRjNAk5x+QxGIeJFKxsNxKOVNaIIyIBM5+jzT4M2bCuy+xHjRlO5mURXS1mnJJ+DsIi0Fo3/Bj6xA91RVI0QRAEoT5obdoigLzXs0quvK0R53dey5wvvbHnn/OJuPePmk8pUtnZArppSq2P97jYHIlaQaymaJ1HstYagbYZ44rniwSlTS4IgiAIlSJP+Qs1RSn1VuDDgNcryYeVUt8BrtFae7z3RRDyRNeY71LCLFfEaE2Hl+ynHh3PvJYhAiJ/0sxiNLQpn+wSYkdh6ahEdrj6AlANfHuaHYFcwnt8pXI3YeloZH1VS5xKXhgv1AU/1GvHXgodJ8Hdr5h/vJe8TWgMpeqCji31i8OLTX8Gu74Fh+72nqZZpDJHAovZF+0nwKt/YaQ5yoaH31u7uITmolS7wgrXJ4ZwD7zqXhj6DUzsgI4TYejX8NvL5k4rZZB/8GpbN1SMVuZBDb8fP24Wdt8C266fX35TitZj4aS/g41/Jtctmh2v6xoiRiuNVztb2fWNQxCWir6z568bBsWD4WtKld2F8r5lDWz58Oxxf3A7bPsM9N8LLRvguPdD31nT4xci5JfrQ4IgCMKRR3GXiOgC8iieZ95uFgtFKfX3wHVFyY8AXwbuBw5guhmtAl4OXAqcm5/uZODnSqn3aK3/o5ZxCUIzUCwq8xJ4LZTOzk76+/unhoeGhmqafz14/PHHeeCB6XPGtrY2PvOZz9Qk75/97Gc8+eSTU8OXXHIJp556asXzf/CDH+Saa64hlTLnKXfccYeI0QRBEIQlQY+bNoNq725wJHNZ26X45rtmd5Q+bwu89mS44zF4+pCRNAVtI3GKhcyd0KE4jCWNPEopI1JK5yAUgHjKyLaE5uK0rS6v3mL2YzIDARtWtpljZCgOP3tGY1tGhLWhx8gD9o1MS7k25A/vnGs+WcdIuA6Ne0vmWkLTcq9MzhxLazrMuPGUyXsy4xWxH+R9JoZoEE5YBaOTRkKQSMOBMbN+YERilaBU9UI+P/OqzXBMnyKZAatwKyJkyolo0IjU2iJw+gZFNGj2dThgypuJNChgOKEJ2EZOt2sQoiEjfEvnzPQHx4xELhQwx4vjGmFKOAB9rWYPzRTNacxvR5v95LjmmG6LTM+rMMtQysQ5ljTLS+W7liWzZj+lsuZz3EozfTIzXfYl85KMglCut9UI8MBMl8yafFe0wYvXK1683iwjnjYiukKpfGjcbI+sY7adbUE6L6Cb/miSGfOfcbWJbWW7Wa+gbfJ3XHhivxH6jadMmT0yaY5ZxzXyvn2jZrktITO+IMzb0GO2Qzhotlkya7ahxixLY7ZDW8TkN5Y08a7pNLEOxk15ErLNfrItk98je6aPlZPzXfsKZUf/OGQcs91sZdKtvOiwI3+VrLCNCq4PpUy8kxmzXdoiZntEAmY+pfJCRmX+ky0hIwuxlNnug3EjA9zYY2SKL1qv+M9fLaM/pCAIgiAIvieRNp/+8eIxCxOt2da0TG2OUC2iiM2Sr80Wsc2WrzElXwsFRLQmCIIgLE+arFe/4FeUUq3A14CLy0zaDXwAuEgp9U6t9U+WPDihObGjEMzfNREx2vLCs+NZPcRoHp3bKpEoCfXHUyCzkOeQl4hSnbLdlHQwbhSVyA4b/b+3woCI0XyN1z6wmuwUykk2OgKhgNe+qHe91vVi73F+F4AcaZQ61/GLpLH3zNJiNOlM7R8W8/8+6m1GigZw7F9CYjc89alFBCMPJDUtpY4jq47nPnYYVrzCfADGn5l/OimD/INX27qhYrQy+LVd5KTg+W/C9hsgsaf89DPpPAVO/BisfxtYIoBaFngK36UnS0m8rhs12/m+IHjRezY8/4256aOPQ3YCgm31j0koj+f1ajXdY2Q+7DCcco35zDt+Ae0nv7aDBEEQBGHp8LUYTSn1KuCTRcnXAlu1ntMde3f+822l1KXAv3wJIP4AACAASURBVGP6odrAN5RSz2mta2XM/TJwW5XzHAP8oEbLFwRfoEq115uEe++9d9bwn/zJn9De3l6TvO++e/Z9xHe84x1Vzd/S0sLLXvYyfvGLXwBw//331yQuQRAEQQDQrguP/QL931+B+74Pb/pL1JVfanRYFaGU4u2nK95++sLzePQFzUuuk3tKzcY92+dLnfsczv7RuVM9eaD65RVLz7SeP2+/k8zCY3vnpqeq7Iq0nKRoAD99Gn76dCUrtcxWvGqWev0Xl//OwYXNd3Cs8mm9yo8D85QHlYoGx8o83h6f5/2dw4np/P/fE0f6cSkIgiAIQrPjuKZNNH+7aGGytVCgWKI2W6jWOo9QzXyreeeLhcG2mv8+iCAIgtD8yFP+wqJRStnAd4DXFY0aAB4FxjAPNr2Iaen/SuAHSqlXa61/Wa9YBZ9R6sGg6Nrp8SJGW1547bN6dDzzEkiIgMifeHVir2dH6HJYJWJxUhCszYOCQpVU8p9utBjNDpceX4ncTVhavPaBX2RElSIdGf2Dp/CzzvVaqfJHRHr+olRd4BdpQ7njV8ogf6D14gRRgaI+fX4SFQv1xZ3niTMwUrRGdv7yKoukDPIPnhKiKttB1U6/GPx2/GQnYMe/w9Ofh1R/dfP2nAEn/T2sfUNj/6vCEuCxP7V0YimJ1zWhZjvfFwQv+s6eP127MPgQrP7D+sYjVIhH2e0pwayQBYnR5PqQIAiCcMRR3A20RSkV01pX2I0TgBVFw7XsJv4pZp8A/ofW+hPlZtJaf1UpdRTwD/kkG7gRWIQ6YVb+h4HD1cyzHARSQvPR3d09a3hsrIqe3xUwOjr77168vGbgwQcfnDV8zjnn1CzvX/5y9qPB3d3d7N69u6o8Zkradu/ejeu6WNYiz5UEQRCEIxo9dAj+51voH30T9u+cHvGDr+NOJlAf+xoqUKLvQpOjXReGDnJabzuffFOMa+7Qy072JAiCIAiCIAiCIAhHIpkcDOe8ZLULk61FgzOEafMI1WLzithmiNZmzNMahpaQ3DMUBEEQqkee8hdqwfXMlqJlgQ8DX9VaT70jRCl1IvB14Mx8Uhi4XSl1itb6YL2CFZqEljXTv0uJ0bSI0ZoOL2FRPTqeeQkkRIzmT/wikClFqVj81on6SKIS6Vmj//flOvQ3Oj7Bu43RbB2lpSOjf/BLvaYsI7BxM3PHSd3lL0rVBX4pi0SM1hzo3OIEKcXtFj+1x4X64niI0Rp9TIgYzf94ta2rPXbqeawtRihZS9JD8MwX4dkvQGakunlXngcn/z2sOEeEaMsVL1mO9F4pjef1abu+cQjCUtF2HIT7ID0wd9zAAyJG8yuul7RxkWXTQsTW0o4WBEEQjjC01kNKqRGga0byemB7FdlsKBresejAAKXUWuDlRcllpWgzuB64Aig0Cl6ilDpVa/14LeJrZtZ1wc5Pi1ipHqzrKj/NUlIsKhsZqfIaWwlSqRSp1Oz2c09PT83yrxcHD85+dPekk06qWd579+6dNfzylxcXadXhui6jo6NNKaATBEEQfMTPvof+yj/MP+7uW9F334p+218DGoYPm/su0RiMDpjfXStQr/wj1JkX1CwkrTU8+yg89WuYjKOHD6G6VqJTCVQoAoGgiSHaCvFRaGmHzl7IpGBi1KS1dprrjLF2sAPgupBKwNgQemwIDuyEvTvgwC5ITQJwdWsHb1PreaTvVWRPOpvoOa9nMmcxGIeABeMpeHyvJhI0HZ1ftB5cDavaFbZlNodSpuP1QFwTtCESAEfDRApCNhyegMkMhAMQtCEWNt/7RkyH6FgY2iOQysFIvuP2//lBc9zrspTZHoIgCIJ/+MA5imsvVAzG4Z/u1uwd1gQs6IopgrYRcWjAcU0ZHrBgfTes7YSDYzAQN9OcsBLWdiqCARhPQjwNg3FNOgepLNiWeZOBUqY+UMrkFQtDOgs/f9bUk7YFqazm0Dj0tZphS4FtKQI2rGiHFW0m/3QWAjb0tprYfvQ7TTQEK9sVHVH4zW5NNAhvOk2xvluRdUz9e2jM5NvXZmIIWGbYcaE9qmiLmLo3HIDVHeb3YNzUz1lnOibHhXQOBiY0QVsRDZnfh8ZNjB1RRSxk1jEcgIwDyYzZXp0t0BOD4UmIp0z8hW0TC0/HpLUZt6INklkTQ9A2bYGgDaGAme7J/TAwYeZtCUE0ZPIfnYSca6bV2sR/y8Oae7ZrhuJm31oKOqMmn3DA5BkKmHZJKKBwXIinNcmM2baRINi2mW9jDxzTB7GworfVLKM7ZrZLIm2W3R4x+6uw3caTsHdEM5wwca3uMHkentBkcmYZfW2m3dOef/QtYJvjJ5k1271/HJ46oIkEzfZZ3aEIBczynzus2T9qYvjWrzRDCThuBXS1wIYehaWgf1xj5dd3XZci50LOKRwDcFQ3xEJmOVnHHAdtEbMPhxNmfTqiZhtNpOCxvZqHd8GhcRO3paCn1eSRccyx7GpIZOD4FdAZUwzHNWNJk3/OnW7/hQMm/6EErGjVtEYUEymz3FQODoyabfmqE6b/m1MfPXu4sP27Wqb1PVoX/c4fY5oZv4u/fTJOM//0giAIfiOZNZ/DE/ON9Sq4vAs0pYolarOFarE58rXCeOU5XyggsjVBEITljk960grNilLqaOCyouS3aa1/UDyt1nqbUuo84F6m5Wg9wMeB9y9poELzEZ0hRlMlxGiuiNGaDtej41kpAV6t8OpA4tXhRGgsXp1vygml6omI0fyJVzkzk0aLx+xw6fGVrIOwtHjWV012CiViNP/gtS8W0kF1sdhREaM1A6WEDX65aF/u+JUyyB8s9r8dKNrPixUTiayleXE9xGhWmbbtUuNVFkm95h+82tZVi9HqeKw1+vhJHoSn/wl2/Bvk5n11mzdr3wgnfQx6z1ia2AT/4CVGYxFC1COB5XK+LwheKAV9Z8G+ObdqYfCB+scjVIhH2e1Z1lfIQs7f5FxeEARBODLZDpw1Y/hYqhOjHT1PfrXgtKLhnVrrXZXOrLVOKKUeAs6dkXwGcMSL0QK2YmNvo6MQ6sHatWtnDR86dIihoaGaCMyeeuqpsstrBoaGhmYNd3XVzmZXnHctmJiYEDGaIAiCsDjO/2P4t6sh43H/G+C2L5bMQv+/m+FDN6DeUdyNpnp0Love+k742fdmpxd9LwnxMY7lCY6deAJ23giJt6I++hWIxirqUKxzORgfgmTcXJseGTDStY5e82x+Mg72CCQmIBSGjh4jcItEIZeDbGZK3kZyHCYGIZ3i6hMP82x2Jb9yNnOo92RWbd7EsSstOqNGsnFo3Ag0osFpWUosZKQdGiNp0Ri5x/5RIynJ5IxcI5R/7OrgmBGiHLtCsaLNSGgcDU8fhH2jmjUdipcfbZY3OmmEL4NxiATNtCHbSE3AiD0mMzCWNJ2yO6Jm+em88KUrZjx1BZnOSF7qclSXkYU42kw3lJfx/N9HNFt/JM/WCIIgVEuQLFfv/Dg9n9hGz/gIXwmGIBiCYBjiYzA5bn5n0+YZxnDUDA/sh5Y2kx6JmZfQFuyfw/0mcztg2g7hKERbIBQ14zt6INICI4chFMkvL8R7O3pNHsk4tLShNm6BjZtNXZnLwuggenwYUhr6C5YkDUz//nAgb0kayhnLVcCGkSH4wbCpZ7U2FQz572jMxHlgF/SugeFD0N5jrF9ODlYcZUSpuSxrXdesZ3s3tHWCZUMyYerrcBQS4zB0CBJjZl27VsDgAdj3nNker/wjs6zU5PQ2CrewEqC1HeLjRirrZDEKMMz2KnxCUTrau8w2beuEWIcRwSbjkE1zSiBk5k+Mm/bCxAhkUnTlsmZd27uNINbJcW0wzLWtHWYdQxGzXq5jpnNn/nbAcaAlBl0roWcVjMyIDUweKLOP4qP5/DTseMxsg2NOgfFh80mMm22glBHTKpV/ebll8rAsE3sgaI6LwjEUyBvPHCcfm8Nm1+GVuZzJN5UwMtxkHCyb82NtsO5YOOp4Pn/GOujsM/vIyZlPLgt9SdPeau+GFWvNcTYxYtZbKZjIx5PLoUcHYdew2eeZtFmP8WHoWwtdfSafkX7zUtEV7SZ+yzax2gEIKBgahtFBM3wwf8yOHDbrm0mb/R4Mm+PDts12SSXM+EiL+b+5rjlWUklIJ2Gvmt6GSpll9qwyyz3rdai+tWZ9Xcd8a40eGYDBg9CzEtW7xvwfC8dboRWti75n/Z4nrdrpZj0PXSKPUtPNM712NS7K/M0BjcJ1NRplhGpuPq0gVMuna62mZGxT06DQ+XnzJQauzuetFVrr6em0NmkwvXw9+/f08hQaPZ1XPs0sd/Z00zI4NXvczHjzy52afuZ3fvkzpyuOc/Z8am6ezIhz5jrM2H5m+ul8CmlMza/QloUVsAkph925XhI5m82hfgKWNsJES2FbCluBbSssy8gwrfzHthVXbPN+rrM7mKLLThEOaCzbJulYrAoniagsGRXG0ZBzNBuicaIB1+wzRzOSDTGci5JIQzAArrKxlSZsa1ZEUnQF0uQIEM1N0J4bIaMDZCbTuOkUTjCKG4zgpNOMpgOM2e1MEiHkpFin+2kJwZ7QBgZ1B0kVoT/XSjpnDqZowEEDm9rSqEAAhSadcWmxsqyMpNnUMk5YZwjbmmwmSzYYI6kihFSOaEDjBCL0xjSR9lYCTopQNm72w1A/dmqC5+Jt7E628mJnG2sy+4mPJ9keO4XDsY1sWhWkw0oRJkPYSRAeOUCEDOEghMMBtLJIBDuJuyHiToi4EyTuhJjIBc1v1/xOuCEmcoXxQSacEGktzxEuJVobEedEyohpi8aWmtNzTACHVjtDm5Wm1crQapvvoHIYcyKMu1GUbdETyrCqzWFdKM6G4DDtgTSJlhXE3TCZeJJuZ4icCmJForwwbrM5OkRrSLNvRHMwtJZwOEDOVeS0heO4ONrCsYM4KoDjanKOecFLKylaoxYHnQ72JyK0B7O84eVtvPsPgthWZX3BdGLc1IeFdkogBKOHzW87aOroQN7JkBg3v13H1LV2ABWOorWeur6jXdfU+WODpv4NRaC9y7SpEuOm3s5lYfVG094Y6YfJuKmb9z4Lh/aYunzL6Wb8yqNQsfbK1kVrM28wBJSX2OlczrQhtEZZFtpxYOgg9O81bYpA0GyDjm5YdxzKlpciC8KRgNTOwmL5ODDTZnTzfFK0AlrrpFLqXcATQCif/B6l1A1a651LF6bgT0o0XmaK0UoJs0SM1nx4Ch7qUCV5LaPRgiRhfrw6IS9WxFBLRIzmT3QFssNGCxHLySOkXGosunDJfx7qUV/VEimL/IOf6jU7Atk5V5DlePEbXsIGP5VD5Y5fOab8wWL3Q7F0yk/tcaG+OB4PhtdTVjXv8j2OSZ0zZamIbhqP1/lNteWJFSo/Ta1olBAkvgu2fxae/6a3jHA+lAXr3wEnXQ2dpyxdfILP8JDlaBGjlcTrupHXSzUEoRnpPXt+MdrEc/WPRagMz7K7EWI0OZcXBEEQjkieZLYY7Uzgh5XMqJSKAafOk18t6CwaPrSAPIrnER2YcERx1llnzUl75JFHeM1rXrPovB955JFZw9FolNNOK/YZNh+VSFAqJZOZ52Vdi0TLC3gEQRCERaLau9GvfDPc/e1F5aP/9Sr0w3cbCVgwBLE2I3XIZKCzx8gbCvKVvBRDx8dMR07LguHDRsTy9G9rtGY14KffRf/0uwDojl5YvQGOOj4vwQgaQcnooOlEOzpohBtLxPH5zxSBoOmgC/Cqt5mOvsm4EYeEIzA+Mi0dKUhCLJvjV61Hnfgy6F1txtkB07n2qDWolrap7LXW4ORYsTFnOgUnEzBuE0nG6c5mIBOm+7knzDqv2QSbTjQxpJN0h1voDmZZlxyGXbvMfu9eaeJKTcJY2khCsvlPtNUITYbywp10EhLjbOzqgw2bOS0EsG7Jtm29CFguOXeR17gFQRCq4NP9/8Ca7aXlpo2i7mey++a7L/zQwvPb8/Ts4Z/fvvC8asHggdnDowOVzzs2CAf3VL/M+Bjs3VH9fAthbIZofuQw7HseHvpJ/Y+jpSA1aT5Qfr8NHTTfzz1edt2XxbYpotCKkqeZlh/f2XgfD0dfNid9XXYfu7cfP88cQr3JEiBhxZiwWonnPxNWK4n8t0mLMWG1Ebdi86YnrNjUfBNWG46f+gAtQ3LYjDpRRh2Pl60XSABLdymjJHfshEtvcQnoLO06TpsbJ6aTREgzqaIcsvr4/czDdOpxAtkkvzf5v1wy9m263NEFLW9K7znzekqN0a2dRs6rLMhljCw2l4WDu6cnCoWnX06Qv2aj27rMdZ7C9ZvCd0H+O3MZeZkaWe/7TXrDZtQ7r0b94cVzxjmuZjIDbREjGR1PGel9MgPtUSPSH09BT8y8WGs+UlmNAkKBuffQhhMarY0MvyVkhPm2ZfLP5FenJWTSXA2hQF5UpzUTKYjlu+EcHoeV7UawKQjC/EhNKiwYpVQUeGtR8mfKzae1flYpdTvw9nxSAPgT4LraRig0NdEZb08UMdrywmuf1aOjstcyREDkT/wkkPFCxGj+pJL/dKP/9+WOY6nfGouXjAiaT6zRKKGDMBc/1Wtey5S6y1941VV+KocsEaM1BbUWo5Xb72VZjo8gHCF4SZrKSX+XmnLnZVZr/WIR5serfV21GK3ENcKqKVMW1bsOG9sOT/0j7LmlMtl3ASsIm94FJ14FbccuWXiCT1EiRlsQjXxxhyDUi9ZN86dnFvaglFAHlkraKGI0QRAEQaiUHwOXzhg+p4p5f5/Zz2A+qrXur0VQQHEDLraAPIovjsUXGIsgNCXr169n/fr1vPDCC1Npd911V03EaHffffes4TPOOINQqI4vd6gRvb2zfYnDw8OsXbvWY+rq8z5wwHRWjkQiTE5O1lS8JgiCIAgLRb3h3ehFitEAePhuz1FN/2TEWF6A5hdx28xOvD+9rapZvfaFDkXMfTUnB65/7q/1Rs+AjT/zHP++ka+RUC08FTmJntwgMT1JRoUYsHtZn92LjUPYTbMh+wIbs3uYtFoYsrtpcycI6BwBHAI6R1BnyakAe4LrWZnrp88ZZFK18HzoaE7IPEubGyeoM1jaRaOIW61kVRBH2bhYdDmj2OQYszrYFdqIRvGa+N2cnH6KoM4SIEeOAJNWCxkVosMZI6NCOMomo0IcCqxkd3AD98ZehYNNtzPMutx+2t1x1mQPENYZVuUOkVVBFJq41UpEp+h0xngudDRJFSWkM9g4pFSEVbl+VuX6sXFod8e5s/W13B89mwm7nZgbpzfq0umMMKDbcRzNsG4j6k5yWvpxOp1RYm4CR9mEdIZ2ZwJXWUTdJAcDqxgK9BJz41jaxd5wHFasFdvNYY0exhrYi51NYeFiawcL10xH0W/tYuNCIMjqwBjJRIaArXEjbWQDLdihEKHDO7FwGbU7Cegcw3YXw3Y3q3L9tLiTWLiEdIZgKMBgoBflOqBderKDOChSVhS7s4eIypHRNvvUCrI5TXtmiEzWJUmY29rfwuPhU0hYLbS4SVr0JBE3RX9gJQOBPlblDqG05s62C6o6bm2dw8UipDP0usPEnDgtOkmbM06rTuBiYWtnarsM2j2kVRiFxtIuFi6qoxsrGMTKplHZFNFcHEtBVgVIOTbKdQi6GSatKINWj1keWWztgOswYncR1mna3DgOFk9GTkZply5nhHZ3gg53nDZ3HJSF0i5t7gRB5TJutzOouhm0u7G0S1QnCeosI3YXhwKrFvQ/DpAjrHKELdd8qxwdKkHAzZLOap5Ux3jOe3J6G63uBG0kCekMVsAiSYS4asFysvRkB4joFONWO+lgjKy26Qyk6F6/mhUtDrHMKFZmEmXbWJaFApI6iKvBSifIpjKEQhYDVg/doTRHtyXJpTJsy61lx2Q7q9Uo4YBmV6qDDivJCmucdePPEHGTBNZuIKA0oWyCqJVh8vAQWlkETjubiZWbyWVztGRGUW4OtEbnP7ianAOj4xnCbopw2CblBnCwSLs20SC0tEdp7Wgh58BkBsbTCjfn8Mg+m10TUU7uGOfn/T10hh1yLsQzFrGJAwR1lqMzu/irkX/n/MQ9C9pfgiAIglBP7t3zWto2D89Jv2Ts1gZEI8xHkByd7hid7lhN8tNAWoXnCNXM8PTvmSK2uNVKXMWYsNuIq7nytbjVivZ6flTwNTkVZFh1MWx1zRn3w8gfmh9RoP1PuXzVPwGwJb2duNVKtzNCxE2ywhlgwO5ld2gjSms6XHO+vTN09FReR2X3YmsHR9nsDR4FwOnJRwjpDA42WilyBBmz23GwcZTN2ux+1mf3EtUpwjptzke0Q1aFmLRaGLPacZRNSoUZsbuJWzGyKkirmyCjgoR0FgLwwvHrUFozHOgB4NzEz3CwmbRiuFhopViffYHe3BDrsy9g4xDSGRSaiE4zZHezJ7iBcasNWzvsD67hsL2CDdk9HJXbTw6bnAqYDwFyTgDnmza5Bw7htPeRcyHnwKFxeL4Kf27QhlXt5n0GrgtjSSNNK54mGgSlIOdCoop3oAP0tkLAgsG4mb+Y1jC89iQjVTs0Zs6NbMtI2QrLSmRMHK5rfp+yFo5ZoTg0qtk1BPtH4NDnLWyRrAnLDHnKX1gMrwFaZgz/Smv9tNfERdzEtBgN4CJEjCbMJLpm+reyzGe+Dl1axDFNRyM7nnl1IKmmw6lQP7xkPn4So5USALjSeahhVCRGa/D/3i4jj2i0uO1Ip9T2b7aO0tKR0T941mtl3kixFHjVpVJ3+QsviYyfyqFy7TIpg/zBosVoRfs5sNhyq+kf/z1y8ZR8+lyMFhQxWsPxlH1WeX6vailGK0O96rDh38JTn4a9/01V5aMdhWPfB1uugJbmf1u4sEA8H2zxT8cNX+IpH/JRO1sQFkuwY/703Li51yYPxvkPL6nlYvfVQsTW8qIFQRAE4cjkJ0AS85g5wJlKqc0VPgf3rqLh/65hXAeKhk9QSrVorSeryOPFRcOHFhmTIDQdr33ta/nqV786Nfytb32L66+/nmBw4dcbBwYGuOOOO+YspxlZvXr1rOFt27Zxyimn1CTvlStXTonRUqkUL7zwAhs2bKhJ3oIgCIKwKF70Sjj1bHj8gUZHIjSSjD+fa1qV83Zt/37ifr506LI6RrM4guTocMenhkM6O3VbvM8Z5JT0U1wYv7PqfFcky/dsfn38x7w+/uOq8y7m2OzO2Qnb71tchvnHJ1oLv+NzT/F7nSEAOt0xjs7unptHGlanJ2YlBYGIk4SB4anhE3huzqynDDxVcahpFWJ3cAO2dtiY3YONYwR1booAOeJWKy3upBG+LVMG7R6eDJ9IjgCtbpyITk9JByJuiqhO0erGieokCRUzYkKdxqrg+Y9nQsdxd+w8RuwuVucOcW7iPo7J7lp4sDsWPmvFeB0+v6vDsgVBEARhmRDVKe7ffQ5vXncbg4E+AN48fjsfG/xMgyMTlgoFRHSaiJOeausvFhdFUkVnCdUK34ki+dqE1UqiaJppMdt0WtJqKb9goSFsD28BmBKcFXOQ1XPS5pv2kejpJZezN3gUD/HyBURYmp/Fzp2T9mjktKrz2RE+rvQEB5h7d70Ksg7sHSk/TXYR3dIHy7zCLJ6G7/5vdXn2j8M922efg+4fgfU9VQYnCD5HnvIXFkPxkxz3VTHv/ZjLuIVj8EVKqZU1fGOm0AzkEt7jWtbMHlZB0POoU10RozUdXoIHqw6dW706t3nFJDQWz073fhKjBcxxNV8nbxGBNA63grPLRovHynVIk3KpsZQ6PqwmO4WSjoz+wU/1mlcZJHWXv/CUyPioHCp3/Ipszx8sdj8UCxwX0rFeWB64Hq+0afQxUWr5Ug75A686rdp2UD2uHRVY6nbR4fvhqU/BwZ9UN1+wHY7/azjhMoj0LU1sQhPhIcvxkusIBs92tsdLNQShGfESo2kXcnFTnwj+wlPauMiyaSFia7k+JAiCIByBaK0nlVLfBf5sRvJHgXeXmk8pdTzw5hlJOeCWGob2ODACFF4ZHsnH+JVKZlZKvQFYW5T8y5pFJwhNwmWXXcbXvvY1tDadAgYGBrjpppu49NJLF5znjTfeSDY7/dxiLBbjve9976JjbQRnn302t91229Twfffdxzve8Y6a5H3WWWfx6KOPTg3fddddTbudBEEQhOWFUgq23oJ+x2ZIy/N1gr/YlN3Nxsxudoc2zhl3YqYSf7cg1IawznBCZrZtq82Nz/t7udLrDHHO5P0VTduqS/SPm4cTMjvmbF9BEARBEI4Mzkw+zL4dR/O7yKmszB1mXW5/o0MSmgwLTUxPEnMmWekcrkmeDtaULC1eJFcrlqiZ9NnytbjVSkLFmLDbiOe/sypUk9gEQaiOXYMiRhOWHz7qTSs0IScXDf+q0hm11gml1BPAi2YknwSIGO1IIllCvRotei7PCs7fAVfEaM2HV8czL2lZLfGSSDRakCTMj1cH9kZ3ui/GjpjOZMVI56HGUcl/utHiMTtceryUS42l1PFRj/qqlkhZ5A+09pbJNEKMViw5KiAiPX/hVRb5qRwqd/zm5JjyBYutC4rLjMWWW7r8GzEFn+J41WVl2rZLTaljUtpCjUe73pKmqsVodbxBvhTHjtZGhPbUp2Cgyj7I4T7Y/Ldw3F9ByEN2Ixx5KBGjLYhmaGcLwmIJdXqPy4yJGM2XeJTdXmV9pZS8n6KAec7PpA0tCIIgHLlcC1wMFMzs71JK/bfW+o75JlZKRYCbgJkXLL6htX6+1EKUUsUV8Lla6/vmm1Zr7eSFbTMtQtcrpR7QWj9ZZjnrgX8vSn5Aa32w1HyCsBw58cQTueCCC7jzzjun0j760Y/ypje9iZUrV1ad37Zt2/jsZz87K+3d73433d3di461Ebz61a+eNXzLLbdwww030NbWtui8X/Oa1/ClL31pavjrX/+6iNEEQRAE36B6VqHuGUVvfwR9963QxJW0ZAAAIABJREFUv3f2S3lzOdj/PHT2wbZfg1PBC3trybGnglIwOQGTccikjMQtGIZIC8RHIZuZnj7SAqlJM0+0FSIxsCywA9DaAUefhDrqOFh3LDg5OLwf/bVr6rtOQkUo4IuHLufC9bfPGXfJWC1d3IIgCIIgCIIgNIoADi9JPVp+QkGoEzYuHe44He54zfLMECwSqpnfiXnka4X0cvI1d7EvmRSEI4Cdg5pXnqAaHYYg1BR5yl9YDFuKhp+rcv7nmS1GOxH46aIiEpqLkmK01bOHreD804kYrfnw2mde0rJa4nXSo+t8s1qoDK/ONwEPmUujEDGa/6jkP93o/70lYjRfU2r7N1tHaRFd+YNSdYKXpGwp8ZKQSN3lL7RHu9lP5VA5oY2X6FaoL74To0k7p2nxknyWa9suNSJG8zelzr2qFqN5XB9cCmp57GgX9n4fnvo0jFT5IEvLOtjyETjmLyHQUruYhOWBpyxHxGgl8SqX5IEZYTkRLCHRzI4BR9UtFKFCvKSWixajlRDLhrogMzw3Xa4nCoIgCEcoWuudSqkbgStnJH9XKfVh4Kta6ynjgFJqC/B14KwZ0w4Bn1iC0LYCfwoULtR2Ag8qpT4GfFNrPTlzYqVUCPhj4HNAb1FeVy9BfILQFHz+85/nvvvuY3LS/GVGR0e56KKL+MlPfkJra2vF+QwMDPDWt76VTGZaQrJ69WquuaZ5pSInnXQSr3zlK/n5z38OwPj4OFdffTX/+q//uui8L7jgAo455hief944Ix9++GG++c1v8hd/8ReLzlsQBEEQaoXacjpqy+klp9Gui77yQvjNPfWJaeutqHMvKjuddhywLJQyHR11OgmhyNRwWVZvQP/TZUayttRYFrge10EjLRCOQs8qCEXg6d8ufTw+54LEXXx/79u5dPWXGAz00ZMb5LOHr+as5K8bHZogCIK/CUfhlDONSLRvjRGFatfUQeEoKhID24aWNpicQMfHjBg1lwXXQXWtABQ6k0K1dhi5qOtCIGjEo5mUkZamk6A1enQAsmlAmTpMKUjGYegQvPAM7HlmdnwdvRDOPy/V2QfdK8z9QKVMXYkyvwsflIk/k4JwC7R2QlcfKhSenk8p9NgQjI9AcgLiY0aMatkmFq1h7w7zu2cV7N9ptsEr3ggbN8PEKKCNcDWVNL9bWs16B8NmGU7OtINiHSaPzj4IhSGdgvgIdOfF845jpm3tgFgHqrXdbDet8y/U1fntNmiEruPDkMjLV4JhiLbA2LDZJx29qHXHmG3f0Wu2T/9ek38wZPZ1IGjSM2mTlsua9bZts31m/rZtGB00y06MTb/gd+rbNdsuFDHxR1vNsgYOwOB+GD4MG7fAinVm3Q/vN3nG2lGF9dfabDftguugJ0Zh6CC0dUIgZGS33SshYPaPsuzpGC3LxJlMQCQK7T3mWOnfi37+CXj2MXNcoc3+LXyUBYf3zj7OAkFYedS82x5lQXu32cfjI5BKmG2/Yq2JLxwxx1qkxaz/6ICJKdpqtkswbGJuaTX/o0zKbM+OXlRvvi/w2JCZPhCA7lVmmaGQOT7Ghsx+yqSm91t7t5m+EKPron/4Ddj+iDkWIjHIZcz/rqXNbMNQJL/dbBNfenK2NJgZ7eFC23hmG1lVOp2aPd1842a1vRc4XalllptuqfKteF2K56tDbEu9zvNNp5Q51iZGTPkVjppjMhw1//FC+ec607+nhnNFn/w0EyOmbA4ETfp8Lx4PhU0ZOD5slgfm/5mvh4jGTJk8ctjE1bsGYm1wcI/5nxWItZv/YvcK6Flt/p+TcfOfPLQHNmw2/8fEuPmvbzzRlAfBEBzeBz+fK22uiEJ9FgxPxz9zXCUvWw9FTJk2eNBsrwLRVujoMdsvGDLbpVBv9e81ZYvt0e+m1Dmz17iS59kLmGdB42ocd6XXDhaxnBDQrRRzXyszmf8MVpWf1pBSYSZ0lDgR4joy/ZsW4npmWpSEjpDNaXpSB7BzaYacGM+oDfxv5EVopYi5k7TqSRIqyoTVyqjdNWeZvbkBbFzGrHZiboIXZZ8kqDPY2iHgmm9bO9jKxVIwrDoYsToJkOP54DEcDK6eZ00EYWnZ5fHXEoRmxke9aYVmQinVDXPaIi9UmU3x9MctPCKhKUn1e48r7ujn1fFx580w9FDNQhLqwMSO+dPrIXjwWkZuEh79yNIvX6iOxJ75061FihhqjVdH7p03w/Bv6hqKkGf0ifLTNFrIUU4AMLlfyqVGkp1HdligHiLPWnLgTshNNDoKwfEQycDiBUMLwWuZB34snV/9xOiT86f7qRwqd/yOPCb1mR/waldXSvF+Xmy5Je2c5uXwL+ZPt30sRtt2A0RX1i8WYS5uiXOvRorRyj1QceBOyNXgrWfaNXmNP13dfK3Hwkl/Bxv/DOwSQhPhCMdDljP4a6lrS+F1zuMnAbEgLJZQCTHaU/8ILWvqF4tQGWPb509frLSx1EOMwbb5xWgD9y9tPfJ715sH1AVBEATBn/wdcBJwQX44CHwR+D9Kqf8FJoCjgRczu/dBBniz1vpgrQPSWu9TSl0C3AYUKtG2fFw3KKV+CxzAWLJXAacD81me/l5rfX+t4xOEZmHz5s188Ytf5D3vec9U2oMPPsgFF1zArbfeyrp168rmsWPHDt7ylrewfft0+92yLL71rW/R19e3JHHXi2uuuYbzzjtvavhLX/oSmzZt4oorrqho/rGxMcLhMJHI7Gu+gUCArVu3cskll0ylfeADH6Czs5OLLiove5nJPffcw9FHH83RRx9d1XyCIAiCUAuUZcENP4D/+U/0U3kxVTRm5AsFscP4MCQmTOfxsSHTsT0xAQP7zL3JQNBMGwgamUNHD+z43ewF2QHUp/4v6uzXVxaXPfs6mwpX94JO9YcXw9mvh0MvwM4nTcdxrc26ZFLoHb+D/c+bDvMdPSburhWozl7TOb8z/4m1mw7/yjK/hw9DZw+0dZltFGlBKYXO5YyELZMyHdaDIQiGUeG59431ru3w65+gD+9Dda9E73wKxgaNPCASM1KWaMzElkkZmYgdADtovlMJsx92PGYkJ37GDpjO/snZz62+Mf4jLtzxIw4E1rA6dxCL/D3uQNBIQQJB87ED5tgaHSgSgsygs89IS5Q1LWSolIJoINZhvgNBc413T5X3wAvMFCCEwmafFdJdxwgdCkRaoKXd7OOO7rxQKGr2aVsn9K01x2syAYMHpiUrrmOO533PLSwuQRCakze/D+vDX6hqlgVoR6qaThfqVdeFjh7TplgCFqA1aSiNjLeey67VsirJR7uukQ7lMhBtQwWa+xkY9eq3NzoEQagLOjUJgRAqEEAPHjRt0oJsMZkw51Iz6g6t9fS5lVJzzglnTsfAftN271pRuTy7VKwD++HALiN6jMbybfU206ZPjJtzkYK4UlkmXVlG5lnII5c1UriZYsvEGIwOmnPJjh6zDUIRc46TGIfWzqkyTWcz8Nzj0N4Fa46uyXoJzUcs/1ko2nWnxKAq2DcrfTKjsSwLSwHZDKGQBfQaAWe0BXT0/7N35+GWpXV96L/vqTo1dA1d1d3V88xMM2iDE6IQwAkjoBghqKHVaKIxN0aMEUwuiT5ouKKJCRi5EUGJKFeUSeMQEFAwDtgo0LTQDT0ATTc9VHfX0F3je/9Yp6rO2Wfa++xh7eHzeZ71VK111vDutd/zXfu8e+3fTtl05r2UenyhAOL8ljNF648eaQqj7rs0eehADt7xqfz+Xx3KnQc356qdhzM/dyIHj2/OgWOb88DR+Vy//+z87f492VxO5nidyyce3N3Ho4PGLV88kVXvMYcJNdl/4dCmPR3zh2uth3rcxxc75te4S5+ZV1b54OMdv9dMTL5RFHhY7cNt9Xhy42uGf3wGo40CMmtZrVDbF/6gmRhPa304fxTWKx5x9D65NK4m7YPS9/5lMzG+2ij4udq19L6/VtRzEqz2t1Eb1vuA9sHPuJ5Ng03b157v1bH79YtpMzfGhdFuffPo2kHvei6MNsICYff+RTtfxrDnicnjX5Fc/o8UDGF9q93Y88DHm4nejFMBYujXpm3NdfPkCh+Auu0to28PfRjiDUqrvRa7/2PdffnIRj35Z3KmpgsAjJda64lSynck+ZUkL1r0o/OTfOMqm30xyUuHWXSs1vr2Usrzk7whyeJvAdie5OnrbH4oyU/UWl87rPbBpPje7/3eXH/99Xnd6153etkHP/jBPP7xj88rXvGKfOd3fmcuu+yyZdvdfPPNedOb3pTXvOY1OXJk6RdivfrVr15SUGxSPetZz8rLXvay/PzP//zpZT/2Yz+WD3zgA3nlK1+ZpzzlKcu2OXnyZP7yL/8yv/Vbv5U3vvGN+ehHP5orr7xy2XoveclL8t73vje/+qu/miQ5evRoXvjCF+YlL3lJfvRHf3TFfSfJiRMn8tGPfjTvete78ta3vjU33nhj3ve+9ymMBkBryubNybd8b8q3fG9P29Xjx5JaU+ab9zpPfZD91P+bok4Hk/MuaaWARTlrV3L1Nc3U+bON7vTsc8/8f/OZ+5zK5s1NIbVu2nXV45KrHne6Df183L0eeehMMbDjx5MH701u+2TzgfyzdpwppnZq2jzfFLirtfmg/4H9TaGR7TubfTx8uPlQ9LGjpwvdZOv2pkDA7r3N/++7qzn4qUIBW7Y1xeCOH03uuDXZtr05zu5zUrZub/rC/Xcn93yhOfZFVyWHHkw5fjSX1toUBNi6vTnW9p0rFgA4XSRhoTjaqT63bL0TJ5p+d3iheMHe85vHfargwuGDTRu2bG8+3L1GEZ96YH9y+6eaPrzj7KYfbVk4d8eONudr83xy9OGUnWefbmdqTU4cX9bGWmuy/4vJ4QNNu87a1Vexg3rnbcnffaj5QrNjR5u2bdnWPCdbtyVbz0r2XZycd3FzDo481JznA/ubIg0njjUFGT7656m3f6p53stc817+pk1NoYcdu5PHf1my94Jm/VP97NS2Bx9oigRu2doUbjvyUHLk4abQxalibAf3JwcfTPbuS65+QtPegw8kB+5vttt9TvP8nDje9LmjDzdtmJtbaM/Cv4cPNNvVk822u/Y0heW2NEUIc86Fzf4euLcpZpE0+9u2PTlxMjl2pCleePJEctGVzT5Lac7JFz/X7P/Y0eYxPHy4KSZw+EBy1eObgoWb55u+cOhA8/NzL0h27mnO81xJjh1r9n3q92v/F1N/6780bT52pDne7nOaYiD7Lk45+9zUAwvFFE+cSDlrZ1Pk79wLlz7RRx9uzul5FzaP98F7m/mzFurGL/Sl3PXZpr0H7m+Kdmw768zzvlB4JOdf2pzbv/rjpiDj9e9vHtupfnj8WNM/6snmsaQkF13RFO3bu+9Mcb3tO5tz9eB9zbG2bGv2v21H87v38OFm+YkTzeM/+9zkysel7N2X+tmbkh27Uy5e+Nvn5ImmnQ/c0/zs7z6YPPFpTbvf89Yz56GU5rGee1Ezv3nzmd/HUzbPNwUFHz7cFCF56FBTdHLX3iZnjh5p+vauvc05S5rnfv8Xz+z//Eub/dz8sabgw1rmFvpQmTtz/k5lZq1N/6snm3Y8tMaXmq9UuHDnnqaPHTuanH9ZU1T0Rf9q7fa0oJSy9LoIQ1Lm5hayvZ9SMcColW1nnfn/eRct/eFZy78D59Rr4/X+diylNNfsASr7LmleR6zk1OuG9fZxqrjzKVu3NdM5K3wB9vyWZX8/lvktyeOe2m2TYUVlbm7FPlvm5rJj8a1U84s+H7F55WJlze/i0t/HsmVr8/dUkuzam12P2ZsXP6b79h07XvORzyYf+FTNHfcnO7Ym+3Yl9xxMDjyc3H0g2b092b0tufq8ZNt8ctt9yYdvrfnTTyXPflxy1Xklj74geeCh5Of/uOboieTYieTyc5LnPblk17ZmP3c92Gz/mAuTHVuS2+9L7j2UHD+RHDmeHD1ec/xksnVzsm2+ZPf2ZMvCLV/n7EjuPpjcek/NFeeWXLC72W7/4eTSvclr/6Tms/uTay5OHrkvOXdXySV7kpM1+fz+5PP7ax4+3vwpeuJkcuhIUpM8dDQ5d2eyb2dyyd6SLz5Yc+u9TbvO2ZE87sKSreVoNv/v38jmeryZcjybTv//xOnlZ9XD2VKPZf+mPXn0kZtSUnOyzOXiY3ekpGb/pnOS1Jx18nAOze3MgbmdOVq2ZC4nU1JTUnOo7EgtJVcdvSXb6sM5Urbm0NyOnMimbMqJfHHT+dleH8rFx+/I9pMP5ViZT03JWScPZ0uO5XDZnrs3n58Tmcu2+nAOzu3MiWzKyTKXvSf2p6Tm187+7nx4+1Oy7/g9ueD4XTmrHs6ukwdz9on7s60eycNla847cW/u3HxhDs3tyI6Th/K5zZfkZJnLkbI1O04eyomyKXtOPJCrjt2Sq47emid93/+d5BHddzyYAO7yZ6M6X1U/tIF9dG7T3avfNZRSzk/S69fvSfZJMDdGH/5nOEZR4MEHSqfDuBVGG7f20J16ot3jt1EIicHwQWkGrY3rSL9FjWiXHGLUlhVG8zqGDm33ibK5uYGunmy3HfSu17+Lpnl88NyvSK75yeSSf7h6sSvoVHyb10CtV/QXJs2WPcnDnd9RxcQZZjYZHwKAFdVaDyZ5cSnlbUleluQrV1n1viRvTfLKWuvdI2jX75dSHp/knyX5vqx/v9tdSd6c5LW11tuG3T6YFK997Wuzd+/evOpVr2qKLiQ5cOBAXv7yl+cVr3hFHv/4x+eyyy7L3r17c++99+a2227LJz/5yWX7mZ+fzy/+4i/mB3/wB0f9EIbm1a9+dW6//fb89m//9ull7373u/Pud787F198cZ74xCfm3HPPzZEjR3LnnXfmox/9aA4cONDVvn/5l385+/fvz9vf/vbTy97ylrfkLW95S/bt25cnP/nJOffcczM3N5cHH3wwd9xxR2688cY8/PDDA3+cADBqZfPS9zgXF3k6XSxFwZShKls7xkL37kuueGz3O7hgefHcdS0UAVtm0/bkqsctW1xOFRzae/6ZhYuLAKxWgKBzH1m9INrp9TZtas7B3lU+dtVlUYMkKbv2Jtd8xUqNaQocnLJl66IflebnK3wxWimlKYqwUmGEDSgXXpFceEX3G5wqTLH7nKXLL3lEX8X5psKAnpMlrnxcypc+Y81VBnreL3tU9+te8+WtPedrHXfZz17566n339MUSTvngnV//zfq1N/PnYUKa63JPXckn/l481mt8y5JzruoKey2RlHFFY9x+EBy9+ebInC79i4UVCtNsbuF/5dSmmOePNlkGQAATJn5zSVfflXy5VcN5i+Sf/MNA9nNWB231q2pv/WjTZHsKfDNB/9w4PssR74tyucwbXyalo3qLIy2katHZ2G05SWMe/dDSV45gP0wCnuvTfZfv3z5Sh+o3XzW8mVMl1F8kFohoumwecy+wWLc2kN39q33xdlDpt9MLtcSBm3zIP4M6vWYMmiitV2AaLH5PW23gFHozAwZQqe2x2xKSTbtSI539wEsxsj87jS3bdb11mxsXeP7MDbvSI4fWr58tevmrh5ueB2mC56dXPOK5IJ/oCAavZvbuv46dG+cXmfDIGzZqzDaNNjUZ9ZvO3/1n+24Itn/t/3tHwCmWK31bUneVkq5Ksm1SS5OsiPJnUluS/KhWuvRDex3wwMAtdb7kvxskp8tpVya5ClJLkqyJ80gywNJ7k7ykVrrzRs9Dky7n/7pn84znvGM/NAP/VBuuumm08trrbnhhhtyww03rLn9tddem9e//vV56lOfOuymjtSmTZvy1re+Nddcc01e9apX5dixY6d/dscdd+SOO+7Y8L7n5+fzO7/zO/m5n/u5vPKVr1xS8Ozuu+/Oe97znq72sWOH96gAAAAWK4uLKA7rGKvcz1JKaQo3dlG8cd1jnLWrq6KVpZREUTQAAJhZpZTUCy9Pbv9U200ZX5+9af11YML4OnkGpctPr/W9DdPkEd+38vIv/3+XLzvvq4fbFtq3bwTP8TnX+sDgNDjvaW23YKm2C2yxMY97WbvH128m085HJNuH8K1n/XqCusATa/djkm3DvylhGRk02cbpb6MdlzX9mOm154nJlo5vsd12frLr0e20h/E0DteV87+m7RbQq63nJXuekJz7Zd2tv/PqZPcaN0A+9bW9Lb/iRcnc/Mo/G4VLnpd8/V8kz35PcuGzFEVjY8ZtjGySbdrWfJELTJN9X9t2CxiEfrN+z5OT7St8GGXHlcnVq7xPCwAsUWu9pdb6O7XW/1Zr/U+11jfVWt+3kaJoA27X52qt76y1/vJCu3621vpLtdbfVhQN1vec5zwnn/jEJ/Ibv/Ebefazn53Nm9f+jumtW7fmW77lW/LOd74zH/7wh6euKNoppZS88pWvzCc/+cl8//d/f84555w119+5c2de8IIX5B3veEcuv/zydff94z/+47nlllvyEz/xE7niiivWbc+uXbvy3Oc+N6973evyhS98IV/2ZV2OJwMAAAAAADCdvvYFbbdgrFVF45hCpVa1qehdKeVJSf5u0aJ7a609faK/lPIvk/zXRYt+t9b6wj7b9R+S9FUZ4uMf/3iuueaafnZBt47en7znmcn9i7rSOU9NnvP+ZHPHt/s9cGPy3mf6dvtpdfmLkq9+S1JGUK/zhv+U/N3Lh38chuMx/zp5yi+03YqlDt6SvOdrk8Ofa7sldOuyb0+e/tbRZM5qTjycvP+bk7v+pL020JsylzztLU0BhXFz+PPJH3xJcuSetltCL8qm5Kt/M7n8H43+2MceTN77nOS+vx79senPtguT53wg2T1GRaluf1vyoRcl9WTbLaEX83uSbfuSA2t8E0jZnHzN25JLn7/8Z7f9f8mHXhw178k5T0me9d7lBfRG7e4/T973Dcnxg+22g+59+euTR/5AcscfJn/6/OTkGp8lLnPJV/3P5Mp/vPo6K72+Wa9/fuynko+NsMhwmWvGwK55eVN4Evp17EDyJ1+X3PuXbbdk8j35Z5NrfqLtVsBgeV9t8m09N3n2+/p/3fCZX0v+4nty+u+3Mpd81ZuTy16YvP+5ox+jfvHRdgvUzpAbbrghT3jCExYvekKt9Ya22gMApZRrknz81Hy/9+gdP348N920dIz7UY961LoFrmAlhw4dyt/8zd/k5ptvzt13352jR49m69atueCCC/LoRz861157bbZunb0v4zx58mSuv/76/P3f/33uueeeHDx4MDt27Mj555+fxz72sXnSk56U+fmNv76/5ZZbcv311+fuu+/O/v37Mzc3l127duXiiy/OYx/72DzqUY/Kpk2bBviI2iW3AAAAAAAA+lMPH0z99y9O/up/977x1u3Jlm3J9p3JvV9IThxvls/NNV90fuoz58ePDa7Bo7JzT3L5o1Oe9tyUl6qjMQruzxsdhdHYkFLK1Uk+vWjR4VrrjtXWX2UfP57k1YsW/Xqt9aV9tuv8JPt63OwRSd55akZhtBE7cm9zQ/7+65O9X5I86oeSzWetvO7BzyS3vDm598NJfOh+KszvSS58VnLVS5O5Ed7g87l3JZ9/d/LQHaM7Jv3Zui+56BubgkSltN2a5Q59NvnMm5oPYNcTbbeGxcqmZNsFSWpy4mhy/tcmV790PD54dfyh5NNvSL74geSO30vmtiX7ntZ2q1jJzkcml397cv7XtN2S1R2+I/nUf00+sfDy+oJnJ5tm78bsibHzkU1BtPOf3l4bjj3YZNDdH0pOPNReO+hO2dQUkb7qu5OdV7XdmuXu/lBy61uST/+P5jX+ub6tfXzNNX97n+pLn/m15It/2hQs37rvzLVj16OTy78j2fdVq+/qix9MbvvN5KZfaubPeWqy7fyFw8wnB25OHlg0nrvrUc3EdNi0Ldn39OTq70m27Gm7NY37P5bc+hvJ/R+Pon1j7KzLk8u+Lbno684su/evk9vemjx4Y5MjFz832XpeU3yzbO7+tfjRB5LPvDG578NNUbSrr0u27F17m8++vbmGfe4dyY7Lk92P7evhrWhuPtnzJclV35XseuTg989sO/pAMyZ19595Xb8R2y9OLnlecum3tN0SGI6Dn0k+8+vJfX8T76tNkrnknGuTK78r2T2gv6Huel9y++80769c9u3JBc9olp8ao777T5PjhwZzrPV87TtH+57gDHPjFQDjRmE0YNbJLQAAAAAAgP7VkyeT2z6ZfObjydnnJBdcnuy7JNm8JTn6cLJpc/Pv8aPJ/NZkx+7k5MmklJS5pvjZqTpLZYWaBfXwweSu25Pd5yR7z2/uu/vczcntn0wuuKIppPbgfcmhB5PU5OCDTTu27UgOH2imTfPJpk1NWzbPn2nTg/uTXXuSPfuSkyeST/xV6ic/khx6IJnf0rR385Zkfr6Z37I95aydTXtrTdl2VnL2ucm+i5vjbTsrOf+yZM95Kz4Whsf9eaOjMBobUko5N8k9HYt31lq7vmO6lPKaJC9btOi/1lr/1SDa14tB33QFAAAAAAAAANAWN14BMG4URgNmndwCAAAAAACA6eD+vNGZa7sBTKZa671J9ncsvrzH3VzRMX/TimsBAAAAAAAAAAAAAAAAAAAAAAAw9RRGox83dsw/ssftr15nfwAAAAAAAAAAAAAAAAAAAAAAAMwIhdHox8c75r+q2w1LKTuSPGmd/QEAAAAAAAAAAAAAAAAAAAAAADAjFEajH3/YMf/MHrb9miSbF81/pNZ6V98tAgAAAAAAAAAAAAAAAAAAAAAAYCIpjEY//ijJQ4vmv6qU8tgut72uY/7tA2kRAAAAAAAAAAAAAAAAAAAAAAAAE0lhNDas1no4yds6Fv/b9bYrpTw6ybcuWnQ8yVsG2DQAAAAAAAAAAAAAAAAAAAAAAAAmjMJo9Os/JDm2aP66UsrzVlu5lLItyRuTbFm0+A211k8Pp3kAAAAAAAAAAAAAAAAAAAAAAABMAoWi+bsXAAAgAElEQVTR6Eut9TNJfrFj8dtKKT9cSllc/CyllMcleW+Spy1afG+S/zjcVgIAAAAAAAAAAAAAAAAAAAAAADDuNrfdAKbCTyS5Jsk3LczPJ/lvSf59KeX6JAeSXJ3k2iRl0XZHk3xrrfULI2wrAAAAAAAAAAAAAAAAAAAAAAAAY0hhNPpWaz1RSvmOJL+S5EWLfnR+km9cZbMvJnlprfXPht0+AAAAAAAAAAAAAAAAAAAAAAAAxt9c2w1gOtRaD9ZaX5zkHyX5izVWvS/Jf0/yhFrrH46kcQAAAAAAAAAAAAAAAAAAAAAAAIy9zW03gOlSa31bkreVUq5Kcm2Si5PsSHJnktuSfKjWerTFJgIAAAAAAAAAAAAAAAAAAAAAADCGFEZjKGqttyS5pe12AAAAAAAAAAAAAAAAAAAAAAAAMBnm2m4AAAAAAAAAAAAAAHSjlLJsWa21hZYAdGeljFopywAAAAAAAABoKIwGAAAAAAAAAAAAwESYm1t+6+uJEydaaAlAd1bKqJWyDAAAAAAAAICGd1QBAAAAAAAAAAAAmAillGzatGnJsoceeqil1gCs7/Dhw0vmN23alFJKS60BAAAAAAAAGH8KowEAAAAAAAAAAAAwMXbs2LFk/sCBAy21BGB9Bw8eXDK/c+fOlloCAAAAAAAAMBkURgMAAAAAAAAAAABgYuzatWvJ/OHDh3P06NGWWgOwuqNHj+bw4cNLlimMBgAAAAAAALA2hdEAAAAAAAAAAAAAmBg7duxYMl9rzWc/+9kcP368pRYBLHf8+PF89rOfTa11yfLODAMAAAAAAABgqc1tNwAAAAAAAAAAAAAAurVp06bs2rUrBw4cOL3s6NGj+fSnP53du3dn9+7dmZ+fz9yc7w8GRuvkyZM5duxYHnzwwTz44IM5efLkkp/v2rUrmzZtaql1AAAAAAAAAJNBYTQAAAAAAAAAAAAAJspFF12Uo0eP5siRI6eXnTx5Mvfff3/uv//+FlsGsLKtW7fmoosuarsZAAAAAAAAAGPPV+EBAAAAAAAAAAAAMFE2bdqUyy67LJs3+45gYPzNz8/nsssuy6ZNm9puCgAAAAAAAMDYUxgNAAAAAAAAAAAAgIkzPz+fyy+/PDt27Gi7KQCr2rFjRy677LLMz8+33RQAAAAAAACAieBr8gAAAAAAAAAAAACYSFu3bs3ll1+eY8eO5YEHHsgDDzyQY8eOpdbadtOAGVVKyfz8fM4+++ycffbZCqIBAAAAAAAA9EhhNAAAAAAAAAAAAAAm2vz8fM4777ycd955qbWm1pqTJ0+23SxgxszNzaWUklJK200BAAAAAAAAmFgKowEAAAAAAAAAAAAwNU4VJZqbm2u7KQAAAAAAAAAA9MgdHwAAAAAAAAAAAAAAAAAAAAAAAEDrFEYDAAAAAAAAAAAAAAAAAAAAAAAAWqcwGgAAAAAAAAAAAAAAAAAAAAAAANA6hdEAAAAAAAAAAAAAAAAAAAAAAACA1imMBgAAAAAAAAAAAAAAAAAAAAAAALROYTQAAAAAAAAAAAAAAAAAAAAAAACgdQqjAQAAAAAAAAAAAAAAAAAAAAAAAK1TGA0AAAAAAAAAAAAAAAAAAAAAAABoncJoAAAAAAAAAAAAAAAAAAAAAAAAQOsURgMAAAAAAAAAAAAAAAAAAAAAAABapzAaAAAAAAAAAAAAAAAAAAAAAAAA0DqF0QAAAAAAAAAAAAAAAAAAAAAAAIDWKYwGAAAAAAAAAAAAAAAAAAAAAAAAtE5hNAAAAAAAAAAAAAAAAAAAAAAAAKB1m9tuAIyBLYtnbr755rbaAQAAAAAAAADQlxXue9iy0noAMELu0QMAAAAAAAAAJp7780an1FrbbgO0qpTyvCTvbLsdAAAAAAAAAABD8Pxa67vabgQAs8s9egAAAAAAAADAlHJ/3pDMtd0AAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgNaVWmvbbYBWlVLOTvKMRYs+m+ToBnb1iCTvXDT//CSf7qNpAL2SQ8A4kEXAOJBFQNvkEDAOZBHQNjkEjINZzaItSS5bNP+BWusDbTUGAAZ4j94ps3qNB8aHHALaJoeAtskhoG1yCBgHsghomxwC2jarOeT+vBHZ3HYDoG0L4fKufvdTSulc9Ola6w397hegW3IIGAeyCBgHsghomxwCxoEsAtomh4BxMONZ9JG2GwAApwzqHr1TZvwaD4wBOQS0TQ4BbZNDQNvkEDAOZBHQNjkEtG3Gc8j9eSMw13YDAAAAAAAAAAAAAAAAAAAAAAAAABRGAwAAAAAAAAAAAAAAAAAAAAAAAFqnMBoAAAAAAAAAAAAAAAAAAAAAAADQOoXRAAAAAAAAAAAAAAAAAAAAAAAAgNYpjAYAAAAAAAAAAAAAAAAAAAAAAAC0TmE0AAAAAAAAAAAAAAAAAAAAAAAAoHUKowEAAAAAAAAAAAAAAAAAAAAAAACtUxgNAAAAAAAAAAAAAAAAAAAAAAAAaJ3CaAAAAAAAAAAAAAAAAAAAAAAAAEDrFEYDAAAAAAAAAAAAAAAAAAAAAAAAWqcwGgAAAAAAAAAAAAAAAAAAAAAAANC6zW03AKbI3Un+Y8c8wCjJIWAcyCJgHMgioG1yCBgHsghomxwCxoEsAoDp5BoPtE0OAW2TQ0Db5BDQNjkEjANZBLRNDgFtk0MMVam1tt0GAAAAAAAAAAAAAAAAAAAAAAAAYMbNtd0AAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgNYpjAYAAAAAAAAAAAAAAAAAAAAAAAC0TmE0AAAAAAAAAAAAAAAAAAAAAAAAoHUKowEAAAAAAAAAAAAAAAAAAAAAAACtUxgNAAAAAAAAAAAAAAAAAAAAAAAAaJ3CaAAAAAAAAAAAAAAAAAAAAAAAAEDrFEYDAAAAAAAAAAAAAAAAAAAAAAAAWqcwGgAAAAAAAAAAAAAAAAAAAAAAANA6hdEAAAAAAAAAAAAAAAAAAAAAAACA1imMBgAAAAAAAAAAAAAAAAAAAAAAALROYTQAAAAAAAAAAAAAAAAAAAAAAACgdZvbbgBnlFI2JXlkkscnuTjJ2UmOJNmf5NNJPlxrPTTgY84n+eoklye5KMnBJHck+Uit9dZBHmtUSinXJPmSJPuSbE1yZ5LPJflQrfXhNts2SqWUvUmuSfKoJOck2Zbk/iR3J/mbWuunW2zeMqWUq9I8bxcn2ZnkC0luS/LntdZjbbZtlsihwZBDDTnERsmiwZBFDVm06nH0j3XIosHQ1xqTlkWMBzk0GHKoIYeWKqVcluZcXJrkvCTbkxxN8kCS29Ock7vba+H4kEWDIYsasoiNkEODIYcacoiNkkWDIYsasmhl+gfQBtf4wZDhjUm7xrtHZjzIocGQQw05xEbIocGQQw05tOpx9I81yKHB0M8ak5ZDjAc5NBhyqCGHlnKPXvdk0WDIooYsYiPk0GDIoYYcYiPk0GDIoYYcWtlE949aq6nFKU1Q/kiS30vzR31dYzqe5A+SfPMAjrsvyS8luXeN430oyQv7PM7VSV6U5OeSvD/Jgx3HuHVA53FXkp9M8vk1Hs+DSd6c5BEtPt9DOx9J5pN8Q5LXJvn4On2pLpyrn0pyYcu/A9+e5M/XaOe9C331vA3se71zsN50ZZvnZoTPgRwazHmUQ3Jo8T6vHEAGLZ6ua/Mcjeh5kEWDOY+ySBZNfP9o+XmQRYM5jxPR12RRa/1jR5KnJ/nXSX4jyaeSnOw41nVtnYe2Jzkkh+TQ0M7Ho5L8TJL3pXlDY73zUZNcn+RfJNna1jlp8bmQRYM5j7JIFq20/27yZ63pyrbOzYifBzk0mPMoh+TQ4v1eOYAMWjxd19Y5GuFzIYsGcx5lkSya+P5hMpmma3KNn60Md41fsd3u1Wt5kkNySA65V6/tSQ7JITnkPr22Jzkkh2Y5h0bYP9yjt/b5kUODOY9ySA517ts9er2dL1k0mPMoi2TRSvvvJn/Wmq5s69yM+HmQQ4M5j3JIDi3e75UDyKDF03VtnaMRPQ9yaDDnUQ7JoYnvH+s+jrYbMMtTkrf0cSF7d5ILNnjcb0pyVw/H+p9JdvSw/2cm+aN1LgYD+4VM8hVpqm92+3gOJfnBET7PQz8fC+fgvg32pf1JvquF/r8zyW/20M47k3xDj8fY6O/XqenKUZ+XFp4HOSSH5NAQciiD/wP2RaM+PyN+LmSRLJJFQ8iiSeof4zDJIlk0i1k0yv6RZtD4Y2kGo9c71nWjOgfjNMkhOSSHhtc/kvzTPn6/PpnkK0Z1TtqeZJEskkXD7R99/H6dmq4c1Xlpa5JDckgODe18XDmADFo8GbOWRd0cTxbJoontHyaTaTon1/jZyHDX+FXb7F69MZjkkBySQ+7Va3uKHJJDcsh9ei1PckgOzWIOjbJ/xD163ZwjOSSH5NCQ+kfco9fLuZJFskgWDbF/9PH7dWq6clTnpa1JDskhOTS083HlADJo8WSsWg518zsoh+TQRPaPXqbNoU2PXmX555PclCZUN6ep9vfkJHOL1vmHSf60lPKMWuud3R6wlPLMJO9IsmXR4pqmuvpnkuxJ8qVJzlv08+9MsruU8oJa68kuDvMlSb6+2zb1o5TynDRVQLd2/Oi2JB9N88t3aZpf2vmFn52V5JdKKXO11teNoJmjOB/7kuxdYfnRNIPad6aplHpukqcu/HvKniRvLqWcX2v9hSG3M0lSStmU5K1Jntvxo7uTfGShrY9I0xfLws8uSPLOUspzaq0fHEU7Z4Qc6pMcOk0ODc/hNJWsp5ks6pMsOk0WrXycSegf40AW9WlC+posWmpk/SPJS5KcPaJjTSo51Cc5dJocWl9NM8B/c5o3FQ6n+bbcq5JckzP9I2l+N99bSvnmWusHRt3QFsiiPsmi02QRGyWH+iSHTpNDw2PMWhatSxadJotWMCH9A5hOrvF9mpAMd43vMGH3yEw7OdQnOXSaHBqeaR/3kEN9kkOnyaGVjzMJ/aNtcqhPE9LP5NBS7tEbL3KoT3LoNDm0PvforU4W9UkWnSaL2Cg51Cc5dJocGh5j1XJoTXLoNDm0ggnpH91ruzLbLE9JPpwz1fOuT/LDSR6xyrqXJHl9llfd+7MkpcvjXZrl1Q4/mORxHettTfJ/pfllX7zuz3R5nB9ZoZ01ycNpBjIGUqkwTdXUzmqINyf5uhXW3Zvkv3Wse2KldYfwPA/9fKS5gJ/ax4Ekb0jy7CTbV1i3JPnWNKHV2aahn4+FNvxcx3GPLvT/LR3rPT7Jn3ese0+Si7o8zuLt/mKhz/QybR7F+WhzihySQ3JoKDmU5g+u9TJmtemDHcd70yjOSZtTZJEskkVDe000Kf1jHCZZJItmMYtG1T8WjnX/Ksf63Ao/u27Yj30cJzkkh+TQUPvH9yX5+zSvv745yd411t2T5EfTvPmx+PifT3L2sM9J25MskkWyaOiviRbvy5j1yudIDskhOTSc82HMurfzJYtkkSya8f5hMpmmc3KNn40Md41fsb3u1RuTKXJIDsmhoeRQjHv08lzIITkkh4b0emhS+kfbkxySQ7OYQ6PqHwvHco/e+udIDskhOTS8/uEeve7PlSySRbJouK+JFu/LWPXK50gOySE5NJzzYay6+3Mlh+SQHJrx/tHTY2q7AbM8JfnrNFX2ntrDNj+0Qkd/cZfbvqFjuw8l2bbG+i9Y4Rfqii6O8yMLYf+RJP8jyQ8kuTZNpcBnDvAX8jc79nVTkvPX2ebHO7a5IcmmIT/PQz8fC4F9V5KXJdnR5TbnJvlEx/FvTJcvAPo4H1dn+YuB56+x/vYsf4Pxl7s81uJt3j/MxzWpkxySQ3JouDm0gbZdkuR4x7G+ZpjnYxwmWSSLZNHwsmhS+sc4TLJIFs1oFo2kfywc6/4037Lw+0n+48J5umDhZ+/vONZ1w3zc4zrJITkkh4baP+Y3sM2XJDnY0YZ/O8zzMQ6TLJJFsmjor4kW7+v9w3xckzrJITkkh4abQxtomzHr7reRRWeOI4vOHEMWTWj/MJlM0zm5xs9GhrvGLzuue/XGaJJDckgODTeHNtC2mRv3kENySA4NL4cmpX+0PckhOTSjOeQevTGa5JAckkPu0RuHSRbJIlnkHr22Jzkkh+SQe/TanuSQHJJD+kdPj6ntBszylOTKDW73to5O9ftdbPOojgvikSSP6mK7N3Uc61e72GbvaheCAQbU1WkqDS7e19O73PZPOrb73iE/z6M4H/u6DeqO7Z68wnn8siGfj1/rON4bu9jm0Qt99tQ2x5Jc3cV2i4/z/mE+rkmd5JAckkPDzaENtO0nO9r2qWGei3GZZJEskkXDyaJJ6h/jMMkiWTSjWTT087Fof6t+e27cdHXqPFy5we3kkBzq3I8cGlz7fqqjDX8x6ja08Jiv3OB2skgWde5HFq28v8X7ev8wH9ekTnJIDsmh4ZyPPtpmzLq37WSRLOrcjyya0P5hMpmmc3KNn40Md41fdkz36o3RJIfkkBwabg5toG0zN+4hh+SQHBpODk1S/2h7kkNyaEZzyD16YzTJITkkh4ZzPvpsn3v0ut9OFsmizv3IopX3t3hf7x/m45rUSQ7JITk0nPPRR9uMVXe/nRySQ537kUMT2j96meZCa2qtt25w09d1zP+DLrZ5SZJNi+Z/t9Z6Uxfbvbpj/jtKKdvW2qDWur/W+nAX++7HNydL+u9f1Fo/2OW2r+mY/57BNGllozgftda7a62HNrDd3yXpPG/d9KcNKaVsT/LtHYs7+9gytdZPJXnHokWb0/Rp+iSH+iKHlh5DDvWplFKyvC+8YZDHGFeyqC+yaOkxZNFSE9M/xoEs6svE9DVZtOyYo+gfp471hVEcZ5LJob7IoaXHkEOD87865h/ZSitGSBb1RRYtPYYsYkPkUF/k0NJjyKE+GbPeEFkkizqPIYuWmpj+AUwn1/i+TEyGu8afMc73yMwqOdQXObT0GHKoT7M67iGH+iKHlh5DDi01Mf2jbXKoLxPTz+TQsmO6R2+MyKG+yKGlx5BDg+Meve7JIlnUeQxZxIbIob7IoaXHkEN9MlbdMzkkhzqPIYeWmpj+0QuF0SbTRzrmt5dS9qyzzbd2zL+xmwPVWm9M8peLFu1I8vXdbDtkX9sx/0c9bPveJEcXzT+tlHJR/02aWJ396eIhHusbkpy1aP7/1Fr/vsttO/vstw2mSWyQHJJDgySHGs9I8ohF88fTfFMdq5NFsmiQpjGL9I/RkEX62iCNMouYHnJIDg2SHFrqvo75Xa20YjLIIlk0SLKIjZBDcmiQ5FDDmHXvZJEsGqRpzCL9A5hUrvEyfJCm8X1phk8OyaFBkkMN4x69kUNyaJCmMYf0j+GTQ/rZIE3j2CvDJ4fk0CDJoaXco9c9WSSLBkkWsRFySA4NkhxqGKvujRySQ4M0jTk0lf1DYbTJdHyFZVtWW7mUcmGSJ3ds/6Eejvf+jvlv6mHbYbm0Y/7j3W5Yaz2S5OZFi+YyHo+pLZ39adW+NADf2DH//h62/bMsbeuXllIu6LtFbJQckkODJIca39cx//u11jsHuP9pJItk0SBNYxbpH6Mhi/S1QRplFjE95JAcGiQ5tNQVHfN3tNKKySCLZNEgySI2Qg7JoUGSQw1j1r2TRbJokKYxi/QPYFK5xsvwQZrG96UZPjkkhwZJDjWMe/RGDsmhQZrGHNI/hk8O6WeDNI1jrwyfHJJDgySHlnKPXvdkkSwaJFnERsghOTRIcqhhrLo3ckgODdI05tBU9g+F0SbTIzvmjye5Z431n9Ax/9Fa66EejvfnHfPX9LDtsJzTMX9/j9t3rv/EPtoy6Tr70xeGeKzOvvh/ut1woc9+rGPxOPTFWSWH5NAgzXwOlVLOTvLCjsVvGMS+p5wskkWDNI1ZpH+MhizS1wZplFnE9JBDcmiQ5NBS/6Rj/n2ttGIyyCJZNEiyiI2QQ3JokGY+h4xZb5gskkWDNI1ZpH8Ak8o1XoYP0jS+L83wySE5NEgzn0PGPTZEDsmhQZrGHNI/hk8O6WeDNI1jrwyfHJJDgySHlnKPXvdkkSwaJFnERsghOTRIM59Dxqo3RA7JoUGaxhyayv6hMNpk+vaO+Q/XWk+usf7jO+ZvXnGt1X16nf214WjH/NYet+9cfxwe08iVUnYn+bqOxX81xEM+rmN+lH3x8lLKG0spN5RS9pdSjpZS7lqY/5+llB8opXQGPauTQ3JoIGYsh9byj5NsXzT/hSR/MKB9TzNZJIsGYoqzSP8YDVmkrw1EC1nE9JBDcmgg5NBSpZR/keS7Fi06nuS/tNScSSCLZNFAzFgWGbMeLDkkhwZixnJoLcasN0YWyaKBmOIs0j+ASeUaL8MHYorfl16JcY/BkkNyaCBmLIfWYtyjd3JIDg3EFOeQ/jF8ckg/G4gpHntl+OSQHBoIObSUe/R6Jotk0UDMWBYZqx4sOSSHBmLGcmgtxqp7J4fk0EBMcQ5NZf9QGG3ClFJ2Jvm+jsVvX2ezzkqFt/d42Ns65s8tpeztcR+Ddm/H/EU9bt+5/mP6aMsk+2dJzlo0/0CGVFV/4Y/Dzj8Qe+2Lnes/qodtr0pyXZrw3ZNkPsn5C/PfmeT1SW4vpfznhd8zViGHTpNDgzFLObSWzt+pX6u1Hh/QvqeSLDpNFg3GtGaR/jFksug0fW0wRpZFTA85dJocGoyZzqFSyo5SymNKKS8tpXwgyWs7Vnl5rfWjbbRt3Mmi02TRYMxSFhmzHhA5dJocGoxZyqG1GLPukSw6TRYNxrRmkf4BTBzX+NNk+GBM6/vSKzHuMSBy6DQ5NBizlENrMe7RAzl0mhwajGnNIf1jiOTQafrZYEzr2CtDJIdOk0ODMdM55B69jZNFp8miwZilLDJWPSBy6DQ5NBizlENrMVbdAzl0mhwajGnNoansHwqjTZ6fTXLhovn7k/zKOtvs6Zj/Yi8HrLUeTPJwx+Kze9nHENzYMf+V3W5YSrk8ycUdi9t+PCNXSrkyyb/vWPyLtdbOKpCD0tkPD9daD/W4j86+O+jnbUeSH0nyN6WUawa872kihxpyqE9yqFFKeWKSp3YsfkO/+50Bsqghi/o05VmkfwyfLGroa31qIYuYHnKoIYf6NGs5VErZU0qpi6ckB5P8fZI3JfnaRasfTPIDtdbXtNDUSSGLGrKoT7OWRV0yZt0dOdSQQ32SQw1j1hsmixqyqE9TnkX6BzCJXOMbMrxPU/6+9EYZ9+iOHGrIoT7JoYZxjw2RQw051KcpzyH9Y7jkUEM/69OUj70yXHKoIYf6NGs55B69gZNFDVnUp1nLoi4Zq+6OHGrIoT7JoYax6g2RQw051Kcpz6Gp7B8Ko02QUsq3JvnhjsU/WWu9b51NO6sUP7SBw3dus2sD+xikD3TMv7CUctaKay73T1ZY1vbjGalSypYkb83Sx31rkv9niIdtqx8eT/L+JP8uyfOSXJvm25q+NMnzk7wmy1/EPDrJe0opV2ygjVNNDi0hh/owYzm0ns4K1R+otd48gP1OLVm0hCzqwwxkkf4xRLJoCX2tDy1lEVNADi0hh/ogh1Z1V5KfTHJVrfV/tN2YcSWLlpBFfZixLDJmPUByaAk51IcZy6H1GLPukSxaQhb1YQaySP8AJopr/BIyvA8z8L70YsY9BkgOLSGH+jBjObQe4x49kENLyKE+zEAO6R9DIoeW0M/6MANjrwyJHFpCDvVBDq3KPXpdkEVLyKI+zFgWGaseIDm0hBzqw4zl0HqMVfdADi0hh/owAzk0lf1DYbQJUUp5cpJf71j8x0n+exebdwZ2Z1XKbnQGduc+R+3301TxPGVPkv+w3kallMuS/NgKP9pUStk+mKZNhF9J8uWL5k8keekGvgWpF230w3+X5JJa6z+otb6q1vruWutHaq0311r/ttb6rlrrv0lyRZL/lKQu2vbCJL9bSikbaOdUkkPLyKH+zEoOrWnhBfR3dSxW1XsNsmgZWdSfac8i/WNIZNEy+lp/2sgiJpwcWkYO9UcOreyCJP88yQ+WUna33ZhxJIuWkUX9mZUsMmY9QHJoGTnUn1nJoTUZs+6dLFpGFvVn2rNI/wAmhmv8MjK8P9P+vvQpxj0GSA4tI4f6Mys5tCbjHr2RQ8vIof5Mew7pH0Mgh5bRz/oz7WOvDIEcWkYO9UcOrcw9euuQRcvIov7MShYZqx4gObSMHOrPrOTQmoxV90YOLSOH+jPtOTSV/UNhtAlQSrk8TQdcHJK3JfmuWmtdeas1jWqboam1Hkjyix2Lf6yU8q9W26aUcmmSP0xy9mq7HVDzxlop5aeTfHfH4pfXWv90xE0Zej9c+KO1s2r3Sus9XGt9eZJ/2fGja5P8416OOa3k0HJyaONmKYe68Pwk5y6afyDJ2wZ8jKkhi5aTRRs3C1mkfwyHLFpOX9u4McoiJogcWk4ObdwM59CDSa5aND0izTjQtyX5z0nuXljvsiQ/leRjpZQva6GdY0sWLSeLNm6WssiY9eDIoeXk0MbNUg51wZh1D2TRcrJo42Yhi/QPYFK4xi8nwzdujK7x7tWbIHJoOTm0cbOUQ10w7tElObScHNq4Wcgh/WPw5NBy+tnGjVEOMUHk0HJyaONmOIfco9cnWbScLNq4WcoiY9WDI4eWk0MbN0s51AVj1V2SQ8vJoY2bhRya1v6xue0GsLZSyvlJ/neSSxYtvjPJ19Va7155q2UOdsxvpCJf5zad+2zDzyT5ppypyFiS/JdSyrenqYr6t2kqcF68sN4P5sxF73NJLl20r4drrcsqfJZSruy2MbXWW3tqfQtKKT+Sptr1Yr9Qa/25Lre/sttjrXA+xr4f1lpfV0r5+iTPW7T4h5K8ZZDHmTRyaE1yqEdyaJnv65h/S621s3o0kUXrkEU9mrEsGnr/mCWyaE2yqEctZ1QVJ7cAACAASURBVBETSg6tSQ71aJZzqNZ6MsmtK/zoI0neXkr5d0leneSHF5ZfnuQ9pZSvrrV+fDStHF+yaE2yqEeznEXdMGa9Mjm0JjnUIzm0jDHrLsmiNcmiHs1YFhmzBsaaa/yaXON7NGPvS/fMuMfK5NCa5FCP5NAyxj26IIfWJId6NGM5ZMxjQOTQmuRQj2Zs7JUBkUNrkkM9muUcco9ef2TRmmRRj2Y5i7phrHplcmhNcqhHcmgZY9VdkENrkkM9mrEcmrqxaoXRxlgp5Zwk70ny6EWL70nynFrrTT3saioDu9Z6tJTybUn+V5InLfrR0xem1dyb5gXDHy1adv8q697SQ5NKD+uOXCnl+5P8Qsfi/15rfVkPu+nnfExKP/zZLP0D9itLKXtqrav1kakmh9Ymh3ojh5YqpVyW5Os6Fr9ho/ubZrJobbKoN7OWRSPqHzNBFq1NFvVmDLKICSSH1iaHeiOH1lZrPZzkX5ZSjiX51wuLdyf59VLKUzb47UJTQRatTRb1RhZ1zZj1InJobXKoN3JoKWPW3ZNFa5NFvZm1LDJmDYwz1/i1ucb3Zgyu8ZPSD417LCKH1iaHeiOHljLu0R05tDY51JtZyyFjHoMhh9Ymh3ozBjnEBJJDa5NDvZFDa3OP3upk0dpkUW9kUdeMVS8ih9Ymh3ojh5YyVt0dObQ2OdSbWcuhaRyrnmu7AayslHJ2kj9O8sRFi/enqWB5Q4+7e6Bjfl+PbdmZ5YE9Fh241vr5JE9L8vokx7rY5H1JnprkUMfyOwfctLFSSvnuJL+cpSH6xiT/YoTN6OyHZ5VSdvS4j/M75ofRD/8qze/aKZuSPH4Ixxl7cqg7cqg7cmhF12Xpa7G/q7X+TR/7m0qyqDuyqDuzmkX6R/9kUXf0te6MSRYxYeRQd+RQd+RQT34yyR2L5r80yXNaakvrZFF3ZFF3ZFFPjFkvkEPdkUPdkUMrui7GrNcli7oji7ozq1mkfwDjyDW+OzK8O2NyjR+3e2RWY9xjgRzqjhzqjhxa0XUx7rEmOdQdOdSdWc0h/aM/cqg7+ll3xiSHmDByqDtyqDtyqCfu0VtEFnVHFnVHFvXEWPUCOdQdOdQdObSi62Ksek1yqDtyqDuzmkPT1j8URhtDpZRdSf4wyVMWLX4wyTfWWv92A7vsrHp5RY/bd65/X611/4prtqDWeqjW+s+TPCbNQMj7knwuyUNJDiS5Mcmvpame+uxa661JHtexmw+PrMEjVkp5cZpwXvz7/htJ/ukoK+fXWu/N0j8Mk+TyHnfT2Rd7qejalVrrySS3dyzu6UXONJBDvZFDa5NDy5VSSpLv6VisqncHWdQbWbS2Wc8i/WPjZFFv9LW1jUsWMVnkUG/k0NrkUG9qrQ8leUfH4m9soy1tk0W9kUVrk0W9MWbdkEO9kUNrk0PLGbPujizqjSxa26xnkf4BjBPX+N7I8LWNyzV+nO6RWYtxj4Yc6o0cWpscWs64x/rkUG/k0NpmPYf0j42RQ73Rz9Y2LjnEZJFDvZFDa5NDvXGP3hmyqDeyaG2yqDfGqhtyqDdyaG1yaDlj1euTQ72RQ2ub9Ryapv6xue0GsNTCt9D8ryRfuWjxwSTfVGv9qw3u9saO+Uf2uP3VHfOf2GA7hqrWekuSn1mY1vNVHfN/uco+y0rLJ0Up5YVJ3pymOvUpv53kpQt/qPVkAOfjxjSVJU95ZJb3z7V09sVetu3FQx3znZVcp5oc2jg5tJwcWtWzkly1aP5ImhfTLJBFGyeLlpNFZwyjf0wzWbRxsmi5McwiJoAc2jg5tJwc2rBPdsz3+jsz8WTRxsmi5WTRhhmzlkMbIoeWk0OrMma9Dlm0cbJoOVl0hjFroG2u8RvnGr/cGF7jx+UemfUY95BDGyKHlpNDqzLusQY5tHFyaDk5dIYxj+7JoY2TQ8uNYQ4xAeTQxsmh5eTQhrlHTxZtmCxaThZtmLFqObQhcmg5ObQqY9VrkEMbJ4eWk0NnTMNY9dz6qzAqpZTtSX4vydMXLT6c5JtrrX/ex64/3jH/pFLKWT1s/9Xr7G+iLFRTfVbH4g+00ZZhKqU8L8lvZmkBxHckeUmt9UQ7rVrWdzqDcVULL2aetM7+BuW8jvl7hnScsSOHRkMOyaEk39sx/7u11vs2uK+pI4tGQxbJonWOMxP9Yy2yaDRmpa+NaRYx5uTQaMghOdSFYx3zW1tpRUtk0WjIIlnUBWPWcmio5JAcijHrNcmi0ZBFsmgts9I/gNFyjR+NWcnwMb3Gj/370guMe8ihoZJDcijGPVYlh0ZDDsmhdY4zE/1jNXJoNGaln41pDjHm5NBoyCE51AX36MmioZNFsqgLxqrl0FDJITkUY9WrkkOjIYfk0FrGuX8ojDYmSinbkrwryTMXLX44yfNqrX/az75rrV9I8tFFizZn6UVhPc/smP+DftozBp6V5MpF8x+otd7UUluGopTy3DQVK+cXLf79JC+qtR5vp1VJkj/smH9mD9t+TZZefD5Sa72r7xZ1KKWcl+XVW+8Y9HHGkRwaKTnUntZzqJSyJ8m3dSx+Q6/7mVayaKRkUXtaz6IuTH3/WIssGqmp72tjnEWMMTk0UnKI9VzaMT+M115jSRaNlCxiVcas5dCIyKEZZsx6bbJopGQRa5n6/gGMlmv8SE19ho/xNX7s35c27iGHRkQOtaf1HDLusTo5NFJyqD2t51AXpr5/rEYOjdTU97MxziHGmBwaKTnEetyjJ4tGQRaxKmPVcmhE5NAMM1a9Ojk0UnKItYxt/1AYbQyUUrYk+d0kz1m0+EiSF9Ra3zugw7y9Y/57umzbY5N8xaJFh5L88YDa1JZ/2zH/+lZaMSSllK9L8jtJtixa/MdJXlhrPdpOq077oyQPLZr/qoU+1o3rOuY7+/SgvDhLs/GuJDcO6VhjQw6NnBxqzzjk0Hcm2bZo/tYkf7LBfU0VWTRysuj/Z+/Ow2S7ynrxf98QCEMgYQqjJMyDyhiUgJiDgAIKGFBAZAjkyiDOIALXIaAXLj9F8YqCoJAwKoMEZFTEwxAIMo+KTIkQmQmEEDKv3x+7jqfO7urumrqquvvzeZ5+yF6119qrqtZ+O+x+867lWYVYtJkdvT42IhYt3I5eaysei1hR4tDCiUNs5id7xyvxYH+riUULJxaxEc+s9xOHto44tLt5Zr0OsWjhxCI2sqPXB7BYfscv3I6O4Sv+O347/F3ac4/9xKGtIw4tzyrEIc89RhCHFk4cWp5ViEOb2dHrYz3i0MLt6HW24nGIFSUOLZw4xGbk6O0nFm0dsYiNeFa9nzi0dcSh3c2z6hHEoYUTh9jIyq4PhdGWrKoOTvLKJPccar4wyc+11t46x0u9LMnFQ8f3q6obj9Gvv3hf2Vo7b37TWqyqeniSuw81fSRdxccdoaqOTfK6HPgvRm9P98v//OXMar/W2rlJXt1r7q+xNarqJkmOG2q6KMnL5zi1fde5RpLf7TX/Y2utzftaq0QcWixxaLlWJA49snf8wp0eZ8YhFi2WWLRcKxKLNrrOjl4fGxGLFmunr7VVj0WsJnFoscQhNlNVP53k6F7z65Yxl0USixZLLGIjnlmLQ4sgDhHPrEcSixZLLGIjO319AIvld/xi7fQYvuq/47fB36U999hPHNoi4tByrUgc8tyjRxxaLHFouVYkDm10nR29PtYjDi3WTl9nqx6HWE3i0GKJQ2xGjp5YtAhiERvxrFocWgRxiHhWvYY4tFjiEBtZ9fWhMNoSVdWl0gXS+w41X5Tkga21N8zzWq21zyQ5eajpMklOqqrLrtMlVXXfHLjTzQVJnjrPec1q8Atv3HPvl+QFQ00XJXlka+2iuU9sCarqmCRvSHK5oeZ3Jrl3a+37o3stxYnp/qVkn+Or6j7rnTxYoy/KgZU5/7a19rkN+ty0qu49yaSq6prpPr9rDDVfkOQZk4yz3YhDsxOH9hOHNldVt05y26GmS5KcNOk4O41YNDuxaD+xaGRf62MMYtHsrLX9tlEsYoWIQ7MTh/YTh/arqqOr6rjNz1zT7/ZJXtJrfmdr7ePzmdlqEotmJxbtJxbt55n1+MSh2YlD+4lDm/PMejSxaHZi0X5i0VrWB7AsfsfPTgzfbxv9jj8xcvVWhjg0O3FoP3Foc557rCUOzU4c2k8cGtnX+tiEODQ762y/bRSHWCHi0OzEof3Eof3k6E1GLJqdWLSfWLSfZ9XjE4dmJw7tJw5tzrPqtcSh2YlD+4lDa+209TH2m2FLvDDJA3ptT0ny4ao6asKxvjJGhck/SLdzzZUHx3dM8raq+l+ttf/Yd1JVHZLkUUme1ev/rNbaGeNMpqqum9Hr65q944M3eK/ntNa+scmlPl5Vb0zymiTva61dMmIuP5TkyUke3HvpKa21D28y/lxs9edRVbdJ8uYkhw41fzrJ45IcUVWTTPe81tpXJukwidba56vqz5M8Yaj51VX1W0me31q7YF9jVd08yd+kW6v7fDOb/4vDtZK8vqo+nuSlSV47+JeWNarqikkenq6i9zV6L/9Ra+3zY7yt7UwcEofEoc6849B6Tugdv7W19sUpx9pJxCKxSCzqbFUs2hbrYwWIRWLRrotFyeLWR1UdmuRq67zcf5h8tQ2u9aVVerA2Z+KQOCQOHWhe6+O6Sf6hqj6R7o9npyT5dGujd1iqqlskeXSSX+7N67xB204nFolFYtGB5rU+PLMenzgkDolDB5r3+ujzzHo0sUgsEosOtCvXB7Aj+R2/S2K43/H7ydVbOeKQOCQOdeTqLY84JA6JQx15essjDolDuy4OJXL0Vow4JA6JQweSo7ccYpFYJBYdSI7e4olD4pA4dCA5eosnDolD4tCBduX6GFtrzc+SfpK0Of7sGfOae5Kc3+t7SZL3J/n7JG9J8rUR4/9jkktN8N5On8N7OmmM63xj6PzvJnlPupvzZUn+aYN5/OGCv+st/TzS7WQ0r7W0dwGfx6WSvGnEtb+a7hfPK5N8YLA2h18/P8mdx1zn/bG/neTd6R6svSTJawfXuHCdz+Gvlx0jFrQ2xSFxSBzagji0zjUPSZcgMTze/ZcZA1blZ45rRywSi06c41rau4DPYyGxaLusj2X/zHHtiEUrvta2+vPI9otFi1ofx8/pMzlq2fFiC78LcUgcEoe25vP42RHnnz1YH69Pl/zwyiRvS/KVdcY/N8ndlh0nFrQ+xSKxSCzams9jz4jzPbMe/VmJQ+KQOLSF66N3Tc+s1/9sxCKxSCyyPvz48bMDf+YYk/2OX/EYvtWfR7bf73i5eivyM8d1Iw6JQyfOcS3tXcDnIVdvRX7muG7EIXHoxDmupb0L+Dzk6a3IzxzXjTi04utsqz+PbL84tKj1cfycPpOjlh0vtvC7EIfEIXFoaz4POXqTfR9ikVgkFm3N57FnxPmeVY/+rMQhcUgc2sL10bumZ9WjPxdxSBwSh6yPsX9GVZJjB2ut7a2q45KclOTqg+ZKcvTgZ5RXJPml1trFWz/DmRya5JhNzjkryS+31v5uAfNhHa21i6vqAel2VHrg0EtHJLnHOt2+luThrbV3TXnZw5LcaYzzvpfkN1trL5jyOmxCHBKHVsGS4tBxSa4ydPz1dA/4WQKxSCxaBUuKRdbHChGLrDVYNnFIHNrFrpjN18c+pyV5dGvtY1s4n11NLBKLdjHPrFeEOCQO7WKeWa8QsUgs2sWsD2BH8zteDF8FcvV2N3FIHFoFcvV2N3FIHFoF8vR2N3HIOoNlE4fEoV1Mjt4KEYvEol3Ms+oVIQ6JQ7uYZ9UrQhwSh3axbb8+Dlr2BFi81tqbkvxQkuelW6DrOS3Jz7XWHtxa+95CJje5Zyf5cLpqnBv5YpKnJbnhqt6Mu01r7ZzW2oOS/Hy6tbaebyV5bpIfaq29Zczh/z3J05OcmuT7Y/b5zyRPSbezif/zusXEIXFoFWxxHBrlhN7xS1prF84wHjMSi8SiVbCgWGR9rDCxyFqDZROHxKFd4O3pdsR9RZIvjdnn3CSvTnLvJHeUcLX1xCKxaBfwzHrFiUPi0C7lmfWKEYvEol3E+gB2Fb/jxfBVIFdvdxOHxKFVIFdvdxOHxKFVIE9vdxOHrDNYNnFIHNoF5OhtA2KRWLQLeFa94sQhcWiX8qx6hYhD4tAusqPWR7XWlj0HlqiqLpOu2vGRSa6ZrqrxmUk+3Fr7wjLnNomqulKS2yS5froKnZdN939czkzy0dbap5Y4PcZQVddPctsk105yhSRfSXJGklNbaxfMMO5BSW6c5IZJrpPk8OxfH2cl+XKS97fWvj7TG2Bq4hCrYqviENuDWMSq2MpYZH2sPrEIWDZxiN2gqq6R5Obp1vlVk1w+yYVJzk7yzSSfSPLpbbCrz44lFrHTeWa9+sQhYBWIRewG1gewG/kdz6qQq7d7iUOsCrl6u5c4xKqQp7d7iUPAsolD7AZy9FafWMRO51n16hOHgGUTh9gNdsr6UBgNAAAAAAAAAAAAAAAAAAAAAAAAWLqDlj0BAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAHqq6qiqar2f45c9r0Wqqr2997932XPaiXzO21tVndiPFdvh+tYdAAAAAAAAAMDutl3zXgAAAACA3UFhNAAAAAAAAAAAAAAAAAAAAAAAAGDpDl72BAAAAIDVVFVHJfnCBF3OT3J2ku8k+VySDyc5LcmbW2sXzHt+AAAAAAAAAAAAMKyqKl3e25G9ly5OcmRr7czFzwoAAAAAgEkctOwJAAAAADvGIUmunuRGSX4qyZOSnJLkzKp6ZlUduszJ7XRVdVJVtaGf05c9J2BnqarTe3HmpGXPCQAAAAAAAACg525ZWxQtSS6V5PjFTgXmo6r29PJ2WlXtWeJ85CvCHLmnAAAAYC2F0QAAAICtdrUkT0zyiao6ZtmTAQAAAAAAAAAAYMc6YYPXHllVtbCZAAAAAAAwlYOXPQEAAABgW/leks+u89rlk1wlyVXXef3IJG+pqmNbax/ZiskBAAAAAAAAAACwO1XVVZL87Aan3CDJniT/upAJAQAAAAAwFYXRAAAAgEl8oLW2Z6MTquq6Se6d5PFJbth7+UpJXl1VN2+tXbg1U2QeNvuegaS1dmKSE5c8jYm5vwEAAAAAAACAHeohSQ7ptbUkNXR8QhRGW7rtmncDAAAAACzGQcueAAAAALCztNa+1Fp7bpJbJfmHEafcMMmjFzsrAAAAAAAAAAAAdrhH9o4/k7U5bPerqsMWNB8AAAAAAKagMBoAAACwJVpr30vyi0n+fcTLD13wdAAAAAAAAAAAANihqurodJt5DntxkpN7bZdL8uCFTAoAAAAAgKkojAYAAABsmdbaeUmeMeKlo6vqKoueDwAAAAAAAAAAADvSCb3jluQlSd6c5GubnAsAAAAAwAo5eNkTAAAAAHa8t4xoOyjJTZO8d9pBq+qgJLdJclSSqye5SpKzk3w9yWeTfLi1dsm0489TVV0nyc3SzfWwdLuOnp3kW0n+K8n7B0Xk2AJVdbkkP5LkWkmOSHJokm+mWysfba19bonTG0tVXT3JHZLcIN38v5MuYfN9rbUzljm3rVZVh6V77zdOd/+cl+TMJO+d5L1X1bWT3D7dfXhouvvvS0ne0Vo7e87TnkpVHZLkTkmul+SaSS5O8tUkH0/ykdZaW+L0AAAAAAAAAABW0iA/6Bd6ze/cl1tSVS9P8htDr92uqm7VWvvoFs/r0unylm6R5KqD5q8m+dAk166qK6XLe7lpksOTfC/JV5Kc2lr70lwnvfbaV03yo0lumORK6fKW/jsrmndVVddNcqt0OYVXT1cg7+tJvpzktEXkCVXVjZPcLsl1khySLlftv5O8u7V21lZffyeqqh9KcqN0+X9XTXJuuu/19HT5lxdu8fXdy9Nfd1XuyVsluW663MELkny5tfaSMfvLAd4CVXWZJEenux+uli5enp0uL/Z9E4xzo3T35r41dn6Sb6TLDz2ttfb9OU8dAACABVEYDQAAANhSrbWvV9XZ6RIphl1tmvGq6s5JHpfk7umKoa3nW1X1piTPaK19apprTauqrpbkuCR3S3Jskmts0uWCqjotyXOSvGbcgm5VdXqSI9d5+ciqGqeI0l1aa3tHjL033dz3eUdrbc868/h4kh8aavp6kuvMkmxUVb+Q5OW95se11v5qzP4HJfnFJA9J8uNJLrvBuV9I8sokf9Ja+8Z0M94aVbUnyVOS3DVdQcFR53wqydOTvHySwllVdXySF/War99aO32Kefav+9TW2omb9DkxyR8Mt7XWauj12yf53ST3yjrPMavqHUme1Fo7bYPr3DvJ7yS5Y5IaccoFVfXaJE9srf3XRnOe9D1MMM5RSU5MFzf6sXKfr1TV85I8q7V2zqTX6F1vb8a4vwfz+sIGQz28qh6+2fX2fSaDxL4z0yWX7bO3tXaXTSe9gar68yS/1mu+9VYnLwMAAAAAAAAAK+Pn0hWrGXZy759/o/f6I5P8+jQXG+T0/Guv+X/ysAYb+P3vJA9NcsV1xvjPJH+0UWGeqrpluvyZ+6QrecPL+wAAIABJREFUGDPqnPcm+e3W2qmTvYuNVdWx2Z+3dKl1zvlQkucm+dtJN/ybV97NYKwjkvxmknsn+cENTr2oqt6X5C+T/P2kG69ulCM1yFd7eJLfyoG5dMMuHuTt/O5G+U5D1zsxvc+o51+rNv3ITm6tHb/ZSePYynzFda53y3T37U8lufYGp55TVW9L8sxxPtfeNfZkm9/LY+Thbem9vM54q3BPXiHJryb5pXQb0o4y8jvb7jnAm63rSYyY46YxZbPc1Kr6wSRPTHL/JFcYMcTJSTYsjFZV108Xb++V9b/fJDmvqt6V5M9aa2/eaEwAAABWz8j/mBIAAABgzkYV8Vmv+M9IVXWTQaGzdyZ5YDYuipbB6w9J8vGq+puqWrcw1jwNdhf9cpLnJ3lANk+ISJLLpCve9coknxj80X876ScwXD3JT8845vG94/OTvGKcjlV1jyQfT/LiJD+ZDYqiDVw/XeGsz1fVVMmO81ZVh1TVC9Ilp9w9Gz/Hu0WSlyZ5yyCZZ1urzh8mOS1dIthGmzscm+Q9VfWEEeMcVlWvSfL6JHfK6KJoSXf/PTDJp6rqbjNNfgqDNffJdImRG8XFa6YrnvbJqrrdAqY2d4PdPV/aa95TVTefdszBjs8P6zW/V1E0AAAAAAAAANhVTugdn5vk1fsOWmsfSfKx3jkPqaqRBYpmUVX3S/KpJL+cdQopDdwkyYur6pX9eQzyZ34/yYeS/HzWKaQ0cEySd1XVU2ab+f9c+1JV9Zwke9PlXo0spDRw2yQvSPLOQZGahaqqy1TV05J8PsmTsnEBpqTLQ7pTug07PzooVjWPeVw3ybuTvDDrF0VLus/yrkneW1X/Zx7X3omq6lpV9bIkH0nyiGxcFC3pNmn82XSf6ylVtVlu6bjzcC9Pfs1VuSd/NN1394xsXDRrVN/dmAO8MFX1u+nu7YdldFG0zfpfabCuP53kV7L593vZdDm4b6qqd1XV9Sa9JgAAAMujMBoAAACwCIePaDt73M5Vddd0u3/dc4prH5Qu8e0dVTVOgsKs7piNCzlt5uZJTltGgaYZvDTJhb22R0w72CBRrP/+T2mtnTVG3yckeWO6YmGTumKSZw8K6c3yHc5kUMTvzUn+14RdfzJd8sZGCUzbwfPS7Y457rPLSvLHVfWo/2moOjzJvyS53wTXvUKS11fV7SfoM5NBguOzk1x+gm7XSxfPtmVxtHS7YvY9ZobxfiFrf8c8d4bxAAAAAAAAAIBtpKpulK4gzbBTWmvf7bWd3Du+SrpiSvOcy0PSFWQ7bIJuP5+uoNa+MSpdgaKnZuNCRgdcOsn/qapfmeC6awfprv3SJI+bsOuPpctnmagA0SwGxa/+KcnvZYriOukKmJ1aVfeecR43SLcB5DETdn1KVf3RLNfeiarqVkn+LcmDs/5GmBu5b7r8y5vMOA/38uTXXJV78sfTFYObtgDWbswBXohBQbM/zJSfb1UdmeTUdOv60lMM8WNJ/q2q7jDN9QEAAFi8pf0HngAAAMDuUFU3zOiiP58fs/+9k7wma/+IfUGSt6crmPbFJN9Jt/PfUUl+Ismde+f/SJJTqurHW2v9Il5b5eJ0O/19Msl/JPlmuoJwleRKSW6c5A7pdrwbLgJ1aJK/q6rbtNa+uMH4n0ry7cE/Xy/JlYdeu3Dw+mbOGeOcDbXWvlZVb0qXVLTPvarqiNba16YY8mFZWxTrhaNOHFZV/zfJ74x46VtJ/jnJB5N8Ld2OsIen243wHklu2jv/hHSf6xMmmvX8vDDJXYaOP52uUNp/pHsvhyW5TZL7Z+1uhD+e5DeT/MnWT3P+qurXkzxqqOmMJP+Y5BPp3vvhSX40XRLZlXrdn11Vb00XD/4uyXDhsA8meUuSLyT5brrP7SeS3CcHrrXLJXlBVR3dWrtoTm9rpKr6rSSjdvc8fzDXdyb573RJYtdPd3/t21H2CklOydDOxlvkgiQfHTq+RQ6MxWcl+a9JBmytfbKq9ibZM9T8sKp6cmvt3Cnm+Nje8TeTvGqKcQAAAAAAAACA7emRWVtAqV8ELUleluT/y4EFik5I8vdzmsfRSZ4+NJdvJ3lTuqJZX0uXl3LzJA9Il+M27MFVdUpr7VXp8klOGHrtjCRvSJc/8810+TM/Mhinnz/zzKp6Q2vt9Cnfw+OTPGjo+LtJXpfk/Um+Orj2zdLlLf1Ar+8PJHl7Vd26tfbtbKHBpomnDubS94kk70iXs7dvHkekK1x2r3SbZ+5zaJJXVdWdWmsfnGIqV0yX13WdwXFL8p4kb0uXU3NOkqunyw88Lslle/2fXFX/2Fp73zrjfyX7c3cOTXLD3uufy+b5fxPl9mxiS/MVq+roJP+a7r0OuyTJu9J9tl8YzOFySa6b5Ngkd82B9/WN020wervW2nfGmFOfe3nCe3mF7slrJvmHHHiv/Vu6gm1npPscrpUuD+7nxxhvV+QAL8gv5cBCfeeky+s9Nd2aPCjdPX2XdJ/7AQZF0d6XtTmzSfcdn5ou1/asJJdJ9z3fMd2G3IcMnXuNJG+sqtu21s6Y7S0BAACw1aq1tuw5AAAAACuoqo5Kl0Qy7B2ttT0TjvPEJM/sNZ+V5GqttUs26Xv9dEkFhw81X5Tkz5L8cWvt6xv0vXWSv8mBxZGS5E9ba4/f5LpHZe17f0Rr7aSN+g36/meSj6fbbe/t4yTWDP5g/4wkv9B76Y2ttZ/ZrP9gjJOSPHyo6YzW2lHj9F1nvL3pkob22fC7r6r7pEucGfb41tqfTnHt/0yXMLLPl5IcudF6qarj0iW0DDsryZOSvLi1dt46/Srdzq/PS5dsM+y+rbXXTzj9iYz4nM/L/qScryT51dbayOJXVXVokr9MV0hu2LeTXLu19v1Nrn18khf1mq8/TTJVVfUfMj61tXbiJn1OTPIHvebz0yWhnJsuOesFrbVRSS7XSFcw8U69l56fLrnlWYPjzyd5VGvtX9aZw9FJ3pi13/2DW2uv2Gj+672H1tqmO5VW1U2TfCRrkx3fPJjvl9bpd1yS52Z/cs/30yXaTXr9vZng/h7qd3qSI4eaTm6tHb9ZvxHj3D9ri7qd0FrbtABib5zbJflAr/lPWmu/PemcAAAAAAAAAIDtp6oula7w07WHmv87yQ+MyjWqqjemK8SzzyVJbjBpcZSq2pOugNOwfXkvSfIXSX5/VFGhqjokXW7L43ovfTpdHtB70xWI2Sx/5prp8mfu2Hvp+a21R4/xHk7M2tyd4dylFyX5rXXew0HpNm/8o6zNfzmptfaIaa4/Tt7LoO9r0+V8DXvPYL7rFRnbV7zp99LNffhapye5ZWvtu5tct58jNfx5vS/JL7fWPrRO36PSfV+37b301tbaPTa67qD/nqxdc3dpre3drO9W2IJ8xSunyxXtj/GiJCe21tYt8DbYvPcvk/xU76V/aK3df5Pr7ol7eaZ7eTDOqtyTF2d/kbyPJXlMa+296/S97Ki80p2QAzzPeDFNzuA6uanD383zkvxua+2b6/Q/4LupqsskeXeS2/dOfUOSJ7bW/n2DuVwzyR8neUjvpfcnOWbUPQkAAMDqOGjzUwAAAACmU1XXSvKEES+9YrOiaAMvy4FF0c5N8lOttSduVBQtSVprH0mXKPLPvZd+tar6O9zN0+1ba/dvrb123N0GW2tntNYenOTE3kv3qqpRO+itojel27Vt2PGTDlJVd8qBRdGSLpFio6JoR2RtEsVn0iXGPH+9omhJ0jqvTbfLY78Y1TMGhdMWaV9y0eeT3GG9omhJ0lo7J91n/NbeS4en28lxO9pXFO1urbXnrZd00lr7apKfSbcD57CHJHna4J8/mS5xZWRRtME4H8joz2qshK4ZPDdrE8lemeRn1iuKliSDtXps9r/vy6137oo7JWvvt8dOMU6/T0vy11PNCAAAAAAAAADYju6ZA4uiJclLN8g1Orl3fFCmyHFax75CSr/eWvu1UUWIkqS1dn5r7VeyNufnpkn+cTCnc5L8xCb5M19Jlz/Tz6N7UFVNm1OyL5/l/7bWHrnBe7iktfasJD+fbqPTYcdX1Y9Pef1NVdWjsrYA018l+bGNCjAlSWvt24NNVU/ovXRUkl+eYjr7Pq83JNmzXlG0wbVPT3L3rM2xu3tVXW+Ka+80f5kDi6JdnOQhg3W4blG0JGmtfS5dLOjnEN6vqn50irm4lztj3csrdk/uK7x1apI7r1cUbXDt9fJKd2sO8Fbb9908vrX22PWKoiUjv5sTs7Yo2pNaa/feqCjaYKyvtNYemuSpvZdun+TnNp82AAAAy6QwGgAAALAlBrvwvSXJ1XsvnZtuZ7TN+t89yTG95ke21t4+7hxaaxekS9j4xlDzpZP81rhjTGrcRIh1PC3dLmT7VJJHzjajxWitXZRuh7xhP1xVt5twqFEFqfoJS32/nuSwoeNzk9xjowJTfa21LyZ5UK/5FknuM+4Yc3RhkgeMsxNta61l9Hru7365nfzGRglJ+wyStf6k13z5JFdIt+PlA1pr/cJpo8Z5d7pYNewuVdUvXDYXVfXDSe7Sa/5skoeNUzCytbZvR9Fta5Dk1y9gdnRVHT3uGFV1WNbusPnPrbXPzjo/AAAAAAAAAGDb6BfTSZIXb3D+65L0CwQ9oqrm9d/Yvby19v/GPPf3RrQdMfjfX9+soFCStNbOSvKsXvOV0m0oOq29rbUnj3Nia+0NSf5oxEu/NsP111VVByd5Sq/5La21xw3yqMbSWntRkr/pNf9mVR0y6vxNnJ6ugNe6m3cOXfdbWVuc56B0BdN2raq6aZIH9pr/d2vtZeOOMfj+H52kXyTpSVNOy73c2fBeXtF78jtJHthaO3uKvrs2B3hBXtNa+9NJOlTVlZP8aq/5ea21Z04yTmvtxKzdaHva+AAAAMCCKIwGAAAAzEVVXbaqrlNVP11Vz0/ysSS3HHHqL41ZsOp3esfvaq39/aTzGiQp/Hmv+bhJx1mEQSLIS3rNP7aMuUzphSPajh+3c1VdPskDes3vHOzouF6fQ7N2Z8BntdY+P+5192mtnZrkX3rNy1grL2+tfXDck1trn0rS32100oJ0q+I/szbBaSOvWaf9JYPPZVyv7h0fnOSHJ+g/iceMaHt8a+38cQdorb013a6i29nzk1zQa3vsBP0fnq4Q3rDnzTQjAAAAAAAAAGDbqKojkvx0r/lDrbVPrtdnkJ/Rz0E7Msld5zCli7O2QNC6WmvvT/JfI176dDbfSHJYP+8lSW47Qf++SYuaPTNJPx/wvlV1rRnmsJ4Hpfu+9mlZWzBnXE8b9N/nGlm7kes4njphIaW/S7dWhm3XXK95+e0c+N+5fiFrN8zcVGvtwiRP7zXfc4oNMt3L+212L6/iPfmnrbUzp5zDTHZADvBWuiTJE6bo97gkhw4dn5O1+eXjelrv+NZVddSUYwEAALAACqMBAAAAkzi2qtqonyTfT5cU8YYkv5S1BWvOTfKLrbWXb3aRqrpKkp/oNU9SLKnvjb3jI6vqyJFnLt9nese3rapLL2UmExoUovq3XvODJ9i17/5Jrthr2ywx6G5JDu+1/e2Y1xulv1aOnWGsab1gij79z/0m85jIErxowp0iP59uh8e+SdfAh0e03XTCMcZ1z97xl7N23Y3jr+cwl6VprX0tyat6zQ+qqv79vJ5H947PzPYvFgcAAAAAAAAAjO/hSfp5VSeP0e/FI9pOmH06eVtr7YwJ+3xkRNuk+TOfS3J2r3navJfTWmsfn6RDa+28rC0EdHC6vK55+7ne8d7W2menGai19sUk/fc6aa7Y95Jsmg/Zu+5ZWZsjuFV5SiuvqirJ/XrNJ7XW+sXjxvWm3vEhSX50wjHcy/ttdi+v2j3ZMnqD30XatjnAW+ztrbXTp+jXX2Ovaq3175NxvSfJt3tty8gRBgAAYEwKowEAAABb7bvpiprdbJyiaAN3TlK9tvfMMIcvjGi7zQzjja2qDq2qe1XVk6rqxVX1xqp6V1V9qKo+0v9J8pzeEIek2/luu+gXMrtKkvuM2fcRveNzsrZwUl8/KeHMKZKShvXXylETFGqah+9nbZGzcXyud3ypqjp05Jmr7Z1T9Onvtnlukg9OOMbpI9rm/r0Pdiq+fq/5dVMm8r01XXLldtaPd5dP8rDNOlXVsUlu0Wt+QWvtonlNDAAAAAAAAABYeY/sHV+U5BWbdWqtvSdrC9f87GAzz1lMk/cyKs/pXXMYZ9q8l1Om7PcPI9ruMOVYIw0KaN251zxLTmGyNlds0pzC01prF0xx3X6u12FTjLFT3DLJlXttU3+vrbVvZe1Gm5N+r+7lA428l1f0nvxsa+1LM87hALswB3ir/OukHarqykl+uNc8S3y4JGvvsYXkkgMAADCdg5c9AQAAAGDH+0CSvxjs5jauO41oe01Vjb173hiuNsex1qiq2yX57XRFwS4343CHJ5lrssYWekWSP82B7/n4bFLgrKqOTLKn1/zK1tpmhZ/6a+XKg+SSaY0qJna1rN0lbquc0Vq7cIp+/WSupEuYO2fG+SzaNLtFfrd3fMYUBbL6YyRbk3B4uxFtkxZxS5K01i6qqo8lOWa2KS1Pa+20qvpgDvxcHpPk/23S9bG944vSFeAEAAAAAAAAAHaBqrpTkpv1mt/cWvv6mEO8OMkfDh0fkuQXk/zFDNOaR97LvMaZNu9lqjyWJB9PcmGSSw+1jcqTmcXN023SOezhVfUzM4x5vd7xpDmF/QJ74+rneu3mwmijckX/oqrOn2HMy/eOJ/1e3cvj3cureE9+aIZrH2AX5wBvlWm+m2OSHNRre3JV/coM87hR73hLc8kBAACYjcJoAAAAwCS+l9HJGpdOt2vftUa8dpck76+q41trm+7IOXDdEW23HLPvuK465/GSJFV16SR/lq5wT/8P8tPaNolPrbXvVNVrkzx4qPmnquparbUvb9D1+CTVa3vRGJfsr5XLJ7nVGP0mcdVMl6Q0jW9N2W9UMbVLj2hbdWdN0af/3iceo7V2YbeB5QG24vM7YkTbp2cY7z+yjQujDTwnB97rN6+qPa21vaNOrqojkhzXa359a+3MLZofAAAAAAAAALB6ThjRdvIE/V+S5Gk5MF/phMxWGG0eeS/zGmfavJep8lhaa+dX1elJbjzUPCpPZhajcgqvu077tCbNKZxXrtd2zPOal1HfX7/o4awm/V7dy+Pdy6t4T35t1gvu9hzgLTTNdzNqLd1g1on0bEkuOQAAAPMxr/9jDgAAAOwOH2it3XrEzw+21q6d7g/Ex6cr1jPsMkleUlX3HvM6i/hD86w7uK0xSIh4VZLHZb7PXbZb4lO/oNmlkjx0vZOrq0j1sF7zZ1pr7x7jWv0dB7fC3NfKBkYlSO0arbV5vP9V/gwPH9HW3wF2ErP0XRV/l+SbvbbHbHD+Cel+pwx77lxnBAAAAAAAAACsrKo6NMkDes1nJXnDuGO01s5IsrfXfKuqut0MU5tLzsqc8memNc88llF5MrNYxZzCVc5T2i527Pe6C+7lVfzuzp7lYnKAt9Q0380qrjEAAAAWSGE0AAAAYG5aa99qrZ2c5Nbpit0Mu1SSl1bVUWMMdeU5T21RfifJfUe0n5nkr5I8JMkxSX4gXbLIZVtrNfyT5C4Lm+3W+ZckZ/TaHrHB+cdm7S5u/eJqa1TV5ZMcMtnUYKmuOKLtezOMN0vfldBaOy/J3/aa71dV1+ifW1UHJXlUr/kz6WIOAAAAAAAAALA7PCjJFXptf99aO3/CcU4e0XbCdFPaMeaZxzIqT2YW2zWnkI35XrfGIu7lVfzuLpqxvxzgrTPNd7OKawwAAIAFOnjZEwAAAAB2ntba+VX10CTXyIF/5L9SugI4d91kiO/3jr/dWlvpP3BX1RFJntxrvijJbyd5Tmtt3D/qb/vdx1prrapOTvL7Q803q6o7tNZOG9GlXzTt4iQvHuNS5yW5JAcW/z+ltXbcRBOGxfnuiLZ+ou4kZum7Sv4qyROy/16+dLpE46f3zrtnkqN6bX/dWmtbOjsAAAAAAAAAYJWMKl72mKp6zBzG/oWqenxrrZ+/tltcIcnZM/QdNipPZhajvpOfba29bs7XYbFGfa9Xbq19e+Ez2VkWcS/vqHtSDvBKGrXGbt1a++jCZwIAAMBSHLT5KQAAAACTGyQBPCxrkyt+oqoeuEn3b/SOD6+qw+c2ua1xnySX77X9Tmvt2RMkRCTJVeY4p2U6KUm/WNHx/ZOq6tAk9+81/1Nr7czNLtBauyRJPwHq+uNPkXmoqksvew7byKiEvcNmGG+WviujtXZGkjf0mh9VVf3n14/tHZ+XLtYAAAAAAAAAALtAVd0iyR228BKHJ7nfFo6/6uaZxzLvwlb9nMJErthOMOp7PWrRk9iBFnEv77R7Ug7waMvMD91pawwAAIAJKYwGAAAAbJnW2peS/P6Il56+STGlr45ou+V8ZrVl7t47PivJc6YY5wZzmMvStda+kGRvr/lBVXXZXtsDsnaHwRdNcKn+WrlJVR0yQf/d7MIRbdMksVx11onsIl8b0XbTGca72Qx9V00/Xh6Z5J77DqrqgOOBV7bWvrnVEwMAAAAAAAAAVsYJO+Qaq+om03SqqstkbTGrUXkys9iOOYVszve6NRZxL++0724n5QDPKzc0WW6ht522xgAAAJiQwmgAAADAVntuks/32m6QjRPI/m1EW78gzqr5gd7x+1prF0wxzjHzmMyK6Bc4OyzJcb2243vH30ry+gmu0V8rl0uyZ4L+u9nZI9quNMU4N5p1IrvIB0e03W6agarq4OysJJ+3Jfl0r+2xQ//8qKx9nv3cLZ0RAAAAAAAAALAyBhtxPrTXfEGSj874863emHuqahUK2yzDVHks6XJY+kV3RuXJzOJj/z97dx4maVnei//79KwsAwwwIEsUWdxQYxRUEEVwTfQkaAyuiRijHIInag4aDWFRE40/RJKjxiWK4kE9xBhAcwx4RIgiKuBKxAVcGDZlhGGYYXqmZ6af3x/VM3RXV3VXddd09XR/Ptc1F7zPuzx3VXf1VE3f7/dJsqFp7Lk9noOZtyP2iu4IZuK1PNdek3OpB7gnvaGllAOTNC+GPJO+1WLMzwcAAIB5RDAaAAAAsF2NNAa8vcWu00spS9qc9v9ajL14JAhottq7abu5YW5SpZS9kxw3xfk3N20vmOJ1eulzGd9g8aqt/1NKOSTJU5v2f6rWurGLOVp9r7yii/Pns3tbjE2lqfPY6RYyX9Ra70ryi6bh3y+lTOXfaZ+TZJfpV9WV7fZzptZak/xT0/DvllIeMtLY3Bym+b1a6zd7NT8AAAAAAAAAMOv9fpIVTWMX11ofN50/Sf6m6Zolo3qc5pkTpnjeC1uM9bSvo9a6IcnVTcP7lVKe0ct5ZrHmvp2kvz2CveojuibJ/U1jzyulLJ/i9WjY7q/lOfianEs9wHOiN7TWekuSm5uGn1hKeVg/6gEAAGDmCUYDAAAAZsKFSX7aNHZgkte0OrjWenvGrzL30CQn9byy3mluzmlukujEqZn66mprm7Z3neJ1eqbWuj7JRU3DzyilbF1Z76QWp328y2kuz/hVB19aSnl4l9eZj37SYuyJ3VyglLIgyZ/2ppx54z+atvdP8rwpXKflz8/tbHv/nPlEknWjtgeSvDbJC5Ls23TsB3s8NwAAAAAAAAAwuzUvqpY0+tKm66IkQ01jJ01xobsd3VGllMO7OWFkcdQ/bhrenOTLPavqAZe2GDt7O8wzGzX37ST97RHsSR/RyMK7lzUNL0vyP6dyPbaZqdfyXHpNzqUe4Nsztg8v6bI3dMRrp1FDrzR/jw0kObMfhQAAADDz5uM/0AIAAAAzrNa6Jck7Wux6aymlXRPA37UYe88sXunrzqbto0spu3R68kgTylunMf/qpu09Zsmqic1BZwNJ/mSkcfBPmvZ9v9b63W4uXmv9TZKPNA0vSPLpUspOXVU6z9Ra70pyW9PwiSNhZ506NVNbSXA++1CLsfeUUhZ3eoFSyjOT/EHvSupY88+Znn7ta633JfnfTcOvTvI/msbuS/LpXs4NAAAAAAAAAMxepZQDkjy7aXhVxgcqda3Wek/GL3R3YJLnTPfaO6h/7PL4N6fxfI12aa21uZ+uFz6W5FdNY8eUUv5qO8w12zT37ST97dvqZb9iq17RN5dSjpni9WiYidfyXHpNzpke4FrrcJLvNQ0/r5Sye6fXKKX8fpKnTWX+Hjs34xdPfnkp5cX9KAYAAICZJRgNAAAAmCmfTvLjprH9k/z3VgfXWi9Ocn3T8O5J/qPbley2KqUsK6W8qZTyiqmcP4mvNW3vmuSsTk4spRyU5PNJlkxj/htajP3eNK7XE7XWb2T81/2kJM9I8uCm8fOnOM27Mn61vscnuXiqjSGllIeUUt5XSnn0FGvaUTQ3dT44yRs6ObGU8owk/1/PK5rjaq03JLmyafhhST7eyUrDpZTDMj48bKY0/5x5dCnlt3o8x/ubtvdN0tzkeGGttXlFSwAAAAAAAABg7npVGosljnZRrXVzj65/YYuxV/fo2juaZ5RS/raTA0spv5vkjBa7/ldvS2qotQ6mdYjWO0spr5vqdUspzy2l/NPUK5sRtyZZ0zTWz/7AnvUrjiym+rmm4UVp9P9NKZiplLKklPLaUsobp3L+HLHdX8tz7DU513qAm3tDd0rS6ffDYzN+UeS+GAnm+0CLXeeXUv5wKtcspSwopby4lNLqexcAAIBZRDAaAAAAMCNGViB7W4tdbyml7NzmtJcmuadp7OAk3yqlnN7J6mWllIFSynGllA8lWZlGkNODuii9U59LMtw09qZSyjtKKQsnqO+lSb6RB1ZvvG+K83+zxfznllL+oJSyaIrX7JXmBolDM341wqEkn5rKxWutv0ryyiS1addzkny7lPKKib4GW5VSdhlpdvi3JDcneV2SpVOpaQfy0RZj7y6lnFxKKa1OKKVaAjpkAAAgAElEQVQsHVnR8T/SaORpXo2Pyf15xj9vL0vy+ZEVjlsqpZyQ5Kt54GfY4PYpr61rmrYHkny2lHJEryaotd6Y8cFxzT7Uq/kAAAAAAAAAgNltpIflVS12tQozm6ovZHzo1O+XUlb0cI4dwdZ+ltNLKf/crj9vpCfvDUn+LY0Aq9E+UWv96nas8QNJLm0aG0jyvlLKxaWU3+7kIqWUh5ZS/qqU8oM0+qCmFMA1U2qtNY0+w9GeWUp5Vyllnz6U1Ot+xZOT/KJpbO8kV5RSzimldNTzWUp5Uinl3CS/TPLhJIdMoZa5YCZfy3PlNTnXeoA/kWRL09jrSilva/d4RgLDXp3k6iR7ptGTOzSFuXvtb5Jc2zS2c5J/LaV8tJTS0eu8lPLoUsrbk/w0yf9J0tH3JgAAAP0z6Q2hAAAAAD30L2n8gvrwUWP7phES9J7mg2utN5dSTkzyxSSLR+3aJY2Vy95aSrk6ydeT3Jnk3jR+2b1Hkt9K8viRP3v0/JGMr/WnpZQLk/xJ066/SXJSKeVfk/wgybo0GgYenuT3M7bxZn2Sv0rywSnMf2cp5bKMXSFu3ySXJBkqpdya5P6MDw/7s1rr9d3O16X/neSdGbtq6yObjvlCrfXuqU5Qa/1cKeXMJO9o2vXQkfnfU0q5Ksn1SVal8Vzslsb3xqFJjkjy2Exvxb4dTq312lLKpUn+YNTwgjSCp04tpVycRkjcUJIVSZ6QxvfY6Ga6N0RQVVdqrT8upZye5NymXc9LcnMp5T/SWIHyzjRWajw4ja/RY0Yde3uSz6bx/M+US9MIq9xz1NiTklxXSlmb5I60CMqrtT6uy3k+kOS4NvuurrW2Wh0TAAAAAAAAAJibjssDgTNb3VRr/VavJqi1biylfDbJn40aXpTkFUnO69U8O4Az01h4NGk8FyeWUi5Jcl2Su9LotXpEkj9M8uAW59+S5I3bs8Baay2lvCKN4J7mUJsTkpxQSvl+kquS3JRka0/aHmkEbT02jR6o5u+pHcH5SZ7bNPaWNBanvTONvp7NTfs/X2s9s9eF9LpfsdZ6dynl99P4uo4O8VqY5LQkf1FK+UYai0relmR1Gr1+eyTZL8nvpNEDON/CDNuZsdfyXHlNzrUe4FrrHaWU92V8f+GZSV5eSvlckh+N1LxXGr2Jz8vY74d3p7HA9UO6fTy9VGvdUEp5QRrhcb/VtPvVaXx9rk/yn2mEIt6TRh/sHmn0uj4ujZ8PbRetBQAAYHYSjAYAAADMmFrrcCnlbWkEpI325lLKB2ut97c454pSylOT/GvG/0J7lyTPGfkzG/xFkiem0TAy2oGZPLxoU5I/SqPJYKrelOTYNJ6X0Ran/cqHu05jvo6Math43gSHnd+Def62lHJHGqFKS5t275vkxSN/GOu/Jzkyyf5N44/J2CCuVs6ptX64lCIYrUu11veWUvZO8tamXUuTvGDkTzv3p9E09vztVF5LIw1Gb0xyQYvdy9Jo9uqFS5LcmvE/85MpNI0BAAAAAAAAADu0V7cYu3A7zHNhxgajbZ17PgWjvSeN8JgTR7Z3SyMkqDkoqJXbkhxfa713O9W2Ta113UhP4cfTCHZq9tsZH9A0F3wuyRVJntFi334jf5p9bzvW09N+xVrrf5VSjkzyb0ke3eKax478YXIz+lqeQ6/JudYDfHqSZ2b86+mQJG+epJaLRs5/6STHzYiRoLcnplHX05p2L0hjgdcnzXhhAAAAbFcD/S4AAAAAmHe2rpo22ook/6PdCbXWa5M8Po2miU3TmLumserc16ZxjfYXr3VNGk0E3+zy1DuSPLPW+sVpzn9jkmcluXk619lOJgo+uzPJ5b2YpNZ6fpKjknxlmpfakOT/JFk57aJmuVrrr5Ick+6+b4aSnFZrnaw5hgnUWv86jZU1u2mGui3Jca1WeZwJtdZPptEEvHY7zrElyYdb7FqVRoMnAAAAAAAAADAPlFL2SPLCFrs+tR2m+2rG9wodXkqZN0Ertdaa5OVJul0k8etJjq21/rz3VbVWa11ba31RklOS3D7Ny61MozdxVqu1Did5UZJP97uWZPv0K9Zab0oj3Oi9aSweOR3XJ5lWT+aOqh+v5bnwmpxrPcC11vVJnp7k2m5OSyNY72UjP3NmjZFe12ck+Zsk90zzcj/K+EW+AQAAmGUEowEAAAAzaqTh4uwWu04rpSyb4Lzf1Fr/NMmhafzS/Ydp/AJ+MmuT/N80woceWms9rtb6ra4L71Ct9fY0ViN7XZLJmkNuSXJGkkfUWr/ao/m/kcZqdb+X5J+SXJ1G08W6JP1sUvhCkt+02ffJkSCknqi1fq/W+owkT07yyTSCpDpxZxorv74yyYNqrS+ttd7Vq7pms1rrL5I8Nslfp/E8tDOUxop7v1NrPXcmapvraq3/kOTwJBckuW+CQ+9K8rdJDq+1XjcTtbVTa/1YkgOSvCrJ/07y3TTqG+zhNK2C386vtW7s4RwAAAAAAAAAwOz28iRLm8a+UWv9Wa8nGulraxW49upezzWb1Vo311pPSSMc6CuZuOfsu0lek+SpMxmKNlqt9UNJDh6p48vpbIHC4TRqPyfJcUkO2lF6oWqt99ZaX55Gj+DZSf49yc+SrM70Fp2daj0971esta6vtf7PJAel8RivT9JJf+GGNL5n/zqNHqsjpxtUtSPr12t5R39NzrUe4Frr3UmekkZg3UR/d25J8h9JnlJrfdNsC0XbauT7+u+SPCTJ/0zj+Rnq4NTNSa5J8vYkT6y1PmpkkVgAAABmsdL4N1sAAACAHU8pZUWSJyRZkWSvJLumsUrg2jTCsH6c5Jbax38AKaU8LMkTR2rcZaS+25L8oNb6k37VNd+UUg5N8qg0vk/2SrI4jUaRNUl+keTH8yUErROllMcm+e0keyfZOY3n6SdpNJau62dtc1kpZUmSY5I8OMmD0mhk+nWSHyT53mxtNtoeSimfTvLSUUM1yaH9aqIFAAAAAAAAAJiPSil7p7FA5SFp9Ofdl8bCi9/dHgF101VKWZxGT+GBafQ+LU8jEGdtGgt7/jTJT2utvVwAkO2slLJ7kiOT7JNG/9/uaSziuDaN0KifJPl5Lxdo3VGUUs5OctbosVpraXFcX17LO/prcq71AI88niek8VpalsbX4WdJrqm13tPP2qaqlLJzkiOS7J/Gz4c9kmxM47HdlcbPh5trrZ0EqAEAADCLCEYDAAAAAGDWGAm9vDXJklHDl9Vaf7dPJQEAAAAAAAAAAMw6nQajAQAAAOxoBvpdAAAAAAAAjPKajA1FS5IP9KMQAAAAAAAAAAAAAAAAAGaWYDQAAAAAAGaFUsouSV7fNHxzki/2oRwAAAAAAAAAAAAAAAAAZphgNAAAAAAAZou3J9mnaewfaq3D/SgGAAAAAAAAAAAAAAAAgJklGA0AAAAAgL4qpexZSnlPkr9s2nVLkn/uQ0kAAAAAAAAAAAAAAAAA9MHCfhcAAAAAAMD8Ukr5aJIjRjb3TrJ/ktLi0DfVWodmrDAAAAAAAAAAAAAAAAAA+kowGgAAAAAAM+3QJL89yTGfrLV+diaKAQAAAAAAAAAAAAAAAGB2GOh3AQAAAAAA0OTCJH/W7yIAAAAAAAAAAAAAAAAAmFkL+10AAAAAAADz3mCS25N8I8n5tdar+lsOAAAAAAAAAAAAAAAAAP1Qaq39rgEAAAAAAAAAAAAAAAAAAAAAAACY5wb6XQAAAAAAAAAAAAAAAAAAAAAAAACAYDQAAAAAAAAAAAAAAAAAAAAAAACg7wSjAQAAAAAAAAAAAAAAAAAAAAAAAH0nGA0AAAAAAAAAAAAAAAAAAAAAAADoO8FoAAAAAAAAAAAAAAAAAAAAAAAAQN8JRgMAAAAAAAAAAAAAAAAAAAAAAAD6TjAaAAAAAAAAAAAAAAAAAAAAAAAA0HeC0QAAAAAAAAAAAAAAAAAAAAAAAIC+E4wGAAAAAAAAAAAAAAAAAAAAAAAA9J1gNAAAAAAAAAAAAAAAAAAAAAAAAKDvBKMBAAAAAAAAAAAAAAAAAAAAAAAAfScYDQAAAAAAAAAAAAAAAAAAAAAAAOi7hf0uAPqtlLJ7kmNHDd2aZKhP5QAAAAAAAAAATMfiJL81avs/a61r+lUMAOjRAwAAAAAAAADmCP15M0QwGjQari7tdxEAAAAAAAAAANvBHyT5fL+LAGBe06MHAAAAAAAAAMxF+vO2k4F+FwAAAAAAAAAAAAAAAAAAAAAAAAAgGA0AAAAAAAAAAAAAAAAAAAAAAADou4X9LgBmgVtHb1xyySU59NBD+1ULAAAAAAAAAMCU3XzzzTnhhBNGD93a7lgAmCF69AAAAAAAAACAHZ7+vJkjGA2SodEbhx56aA4//PB+1QIAAAAAAAAA0EtDkx8CANuVHj0AAAAAAAAAYC7Sn7edDPS7AAAAAAAAAAAAAAAAAAAAAAAAAADBaAAAAAAAAAAAAAAAAAAAAAAAAEDfCUYDAAAAAAAAAAAAAAAAAAAAAAAA+k4wGgAAAAAAAAAAAAAAAAAAAAAAANB3gtEAAAAAAAAAAAAAAAAAAAAAAACAvhOMBgAAAAAAAAAAAAAAAAAAAAAAAPSdYDQAAAAAAAAAAAAAAAAAAAAAAACg7wSjAQAAAAAAAAAAAAAAAAAAAAAAAH0nGA0AAAAAAAAAAAAAAAAAAAAAAADoO8FoAAAAAAAAAAAAAAAAAAAAAAAAQN8JRgMAAAAAAAAAAAAAAAAAAAAAAAD6TjAaAAAAAAAAAAAAAAAAAAAAAAAA0HeC0QAAAAAAAAAAAAAAAAAAAAAAAIC+E4wGAAAAAAAAAAAAAAAAAAAAAAAA9N3CfhcA81GtNcPDw6m19rsUgHFKKRkYGEgppd+lAAAAAAAAAABA1/ToAbOV/jwAAAAAAACAyQlGgxlQa82GDRuydu3arF27NkNDQ/0uCWBSixcvzrJly7Js2bIsXbpUIxYAAAAAAAAAALOSHj1gR6M/DwAAAAAAAKA9wWiwna1fvz533HFHNm3a1O9SALoyNDSUu+++O3fffXcWLVqU/fffPzvvvHO/ywIAAAAAAAAAgG306AE7Iv15AAAAAAAAAO0N9LsAmMvWr1+flStXargCdnibNm3KypUrs379+n6XAgAAAAAAAAAASfToAXOD/jwAAAAAAACAsQSjwXayteGq1trvUgB6otaq+QoAAAAAAAAAgFlBjx4wl+jPAwAAAAAAAHjAwn4XAHNRrTV33HHHuIarRYsWZbfddsuuu+6aRYsWpZTSpwoB2qu1ZtOmTVm3bl3uu+++MSvqbv35dsghh/gZBgAAAAAAAABAX+jRA3ZU+vMAAAAAAAAAJicYDbaDDRs2jGlUSJJly5blgAMO0KgA7BAWLVqUnXfeOStWrMjtt9+etWvXbtu3adOmbNy4MUuXLu1jhQAAAAAAAAAAzFd69IAdmf48AAAAAAAAgIkN9LsAmItGNygkjQYGDVfAjqiUkgMOOCCLFi0aM37ffff1qSIAAAAAAAAAAOY7PXrAXKA/DwAAAAAAAKA1wWiwHTQ3Xe22224aroAdViklu+2225ix5p9zAAAAAAAAAAAwU/ToAXOF/jwAAAAAAACA8QSjQY/VWjM0NDRmbNddd+1TNQC90fxzbGhoKLXWPlUDAAAAAAAAAMB8pUcPmGv05wEAAAAAAACMJRgNemx4eHjc2KJFi/pQCUDvLFy4cNxYq593AAAAAAAAAACwPenRA+Ya/XkAAAAAAAAAYwlGgx5rtUJbKaUPlQD0zsDA+LcMVqQEAAAAAAAAAGCm6dED5hr9eQAAAAAAAABjCUYDAAAAAAAAAAAAAAAAAAAAAAAA+m5hvwtgZpRSFiV5SpIHJ9kvybokdyT5bq31lz2e66FJHpdk/yS7JrkzyS1Jrqm1burlXAAAAAAAAAAAAAAAAAAAAAAAAMwNgtH6pJRycJIjkxwx8t/HJ1k26pBbaq0H9WCeFUneluTFSfZsc8w1Sd5ba/3cNOd6UZK/THJUm0PuKaVclOTMWutvpjMXAAAAAAAAAAAAAAAAAAAAAAAAc4tgtBlUSnl6kremEYbWMqSsx/P9bpJPJNlnkkOPTnJ0KeVTSU6utd7f5Ty7JvnnJC+Z5NA9k5yS5IWllFfWWi/vZh4AAAAAAAAAAAAAAAAAAAAAAADmLsFoM+txSZ49ExONhLBdkmTxqOGa5DtJfp5kjyS/k2TvUftfnmS3UsoJtdbhDudZkOSiJL/XtGtVku8mWZPkkJG5ysi+fZNcWkp5Zq316i4eFgAAAAAAAAAAAAAAAAAAAAAAAHPUQL8LIEmyMcnPenWxUsqBSf4tY0PRvp7k8FrrEbXWE2utz05yYJLXJ9k06rj/luRvu5ju7zM2FG1Tkv+R5MBa63NG5npCkkcn+cao45YkuaSUsl8XcwEAAAAAAAAAAAAAAAAAAAAAADBHCUabeZuSfC/JR5OcnOQJSZYl+bMezvG2JMtHbV+T5Jm11h+NPqjWurHW+r+SnNh0/l+WUh4y2SSllIPTCFYb7Y9qre+vtQ41zXVjkmdkbDjaXknOmmweAAAAAAAAAAAAAAAAAAAAAAAA5j7BaDPrgiS71Vp/p9b6mlrrR2qt36m1burVBKWUw5K8ctTQUJKTaq0b2p1Ta71kpLatlqSzwLKzkiwatf2JWuulE8wzmOSkkZq2evVIwBoAAAAAAAAAAAAAAAAAAAAAAADzmGC0GVRrXT1RQFmPvCzJglHb/1ZrvamD897dtH1iKWVpu4NLKTsledEk1xin1vrTJJeMGlqYRs0AAAAAAAAAAAAAAAAAAAAAAADMY4LR5p4XNG1/vJOTaq0/SvKtUUO7JHn2BKc8J8nOo7a/UWv9cUcVjq/phR2eB3PSQQcdlFLKtj9XXXVVv0sCAAAAAAAAAACAHZ7+PAAAAAAAAADY8QhGm0NKKQ9K8tujhjYn+XoXl7iqaft3Jzj2uZOcO5GvpVHbVr9TStm3i/MBAAAAAAAAAAAAAAAAAAAAAACYYwSjzS2Pbtr+Qa31/i7Ov6Zp+/Au5vpGp5OM1HRDF3MBAAAAAAAAAAAAAAAAAAAAAAAwxwlGm1se1bR9c5fn/2yS6432yBmcCwAAAAAAAAAAAAAAAAAAAAAAgDluYb8LoKcObdpe2eX5tzRt71VKWV5rXT16sJSyZ5I9pzlX8/GHdXk+AAAAACM2100ZrsNdnbOoLE4ppaNjh+twNtdNUyltzhkoA1lYFm23628a3pSa8V/LBWVBFpTZ/8+5w3U4A8V6HAAA3ai1dvzefL4aGt7YcnxhWZiBsmC7zdur97db6uZsqVt6UNH2181nxS11S7bUzRMeU1KyaGBxL0oDAAAAgDmr1prUmjLg9+0AAAAAAJAIRptr9mjavqubk2ut60opG5IsHTW8e5LVTYc2z7O+1np/N3O1qG33Ls8HAAAAmPdWbvhZPnvXR/OLwZ9mON3dZL/bguU5Yren5gUrXpkFbYIENg5vyEW//nB+sO66rB9e14uSd3gDWZCH7vSw/NE+f5YHLz2kZ9f9yfobcsmqT2blhp+1DkbLwjx0p4flxfu+NgcsOahn8/bKms2r8+lf/VN+uv6G7L5wzxy3/Pk5dvnv9bssAIBZ7cf3fz///pvP5NaNP88BSx6SF+97ch6ytHktrPnt6/f+v1yx+tL8aui2lvuXDuyUR+78uLzsQX+eXRYs69m83117Tb5497/krqE7ctDSh+VlDzol+y4+oOvr3Lnx1vyfX38oPx/8SbZk4gCx2WKPhXvlybsdn+fv/dK2oXCj3/9vrBsmvN5BSw/Lmx9yzvYoFQAAAAB2eHXD+tR/eGNy9b8nCxakPvcVKa99R8qC7bcgBAAAAAAA7AgEo80tuzZtD07hGoMZG4zWqnu8V/OM1pMu9VLKPklWdHla7+5gBQAAAJgh92xalX+89YwMDq+f0vn3bVmdr6z+fLbUzXnxvq9teczH7nhP/uv+66dT5pwznC352eCP8g+3npEzD3pf9li017SvecfGW/KB296ezXVT22O2ZHNuHrwx/7DyjJz50Pdl2cLmtQv6Z7gO5x9vPWNbWMVdm+7IRXd9JEsGlubJux/f5+oAAGanOzauzIdvf9e2UKlfbrgp5608PWc89H9lr0X79rm62eH6+67Op379gQmP2TA8mO+u+0buvm1V/urB56SUMu15f7L+hnz0jvdsCyy+afC/8t6Vf52zHvqB7Lyg+Vfl7a3bcl/ee+tf5/4ta6dd00y6d/Pdueyez6aU5L/t/fJx+5vf/wMAAAAAU1ffcVLy1UsfGPj0ualJyinv7FNFAAAAAAAwOwhGm1uau7AnXpq5tcEkyye4Zi/nmeiaU/XnSc7q0bVgTqm15jvf+U5+/OMf56677srGjRuzYsWKHHDAATnmmGOy6669ehnOvFtvvTXXXXddbrvttgwODmbvvffOYx7zmBxxxBEZGGi9kn2n7rrrrnzta1/LHXfckcHBwey///45+OCD8+QnP3na127lxhtvzA033JBVq1blvvvuy5577pn99tsvxxxzTPbaa/o32wMAAHPHD9ZdO+VQtNGuve+q/OE+r8rCsmjM+H2b780P7//2tK8/V20YXp/vrvtGjlv+/Glf6/r7rp4wFG20+4fX5gfrrstT9njWtOftlV9u+GnLUIRr1lwhGA0AoI3P/+bCbaFoWw3Vjfn2fV/Ps/d6YZ+qml2uve+qjo9dueHm3DF0Sw5YctC05/3Wmq9sC0Xbau2WNfmv+7+dJ+52bMfXuWHddTtcKNpo31jzlTx/r5eNC5v7xeBPhKIBAEAL+vOmRn8eAPNZ/c0dydVfGL/jsgtT//vf9WQhCAAAAAAA2FEJRpvb6hw7B5iC3/zmN3nnO9+ZCy+8MKtWrWp5zOLFi3P88cfn7LPPzpOe9KSOrnvSSSflggsu2Lb9i1/8IgcddFBH51511VU57rjjtm2fddZZOfvss9seP/qXuscee2yuuuqqJMk111yTs846K1/5ylcyPDw87rx99903p59+ek499dSum6S++93v5k1velOuvPLKltc+8MADc/LJJ+ctb3lLFi5cmLPPPjtve9vbtu2/8sor8/SnP72jue6+++6cc845ufDCC3P77be3PGZgYCBHH310zjrrrDzzmc/s6rEAAABz051Dt/bkOoPD67Nm8+rstWifMeO/Grot1T/hTOhXG3sTBnDn0Mouj+/N175X7tzYup5fzbI6AQBmizs33pofrLu25b47unxvOJf9usvwrTs33taTYLQ728zb7n1v+3p27PfD926+OxuG12enBbuMGZ9tn0cAAKDf9OfpzwOAKfvyRUmLvwdzz6+TdWuSZXvMfE0AAAAAADBL9H4pLfppXdP2TlO4RvM5zdecyXmAabrkkkty8MEH57zzzmvbdJUkQ0NDueyyy/LkJz85J598cjZv3jyDVU7NO9/5zjztaU/Ll7/85ZaNUUny61//On/xF3+RF73oRRkaGur42u9973tz5JFH5oorrmh77dtuuy1nnHFGjj322Pz617+e0mNIkk9+8pM5+OCD8+53v7tt01WSDA8P5+qrr86znvWs/PEf/3FXjwcAAJibNtdNPbvWxuHBjsYYa0OPnqNurzPbvjbt6u/V8wMAMNdcsfrStvtm23u9fhruMqi5V89du/ex3V5/w/D6XpTTV62eC9+jAADwAP15+vMAYDrqrTdNsLP135EAAAAAADBfLOx3AfSUYLTkn5J8tstzDknS/u4D2EGdf/75ec1rXjOuceiQQw7Jox71qOy8885ZuXJlrr322mzZsmXb/o985CNZuXJlvvCFL2Thwtn518R73vOenH766du2H/7wh+fhD394dtlll9x555355je/mQ0bNmzbf/HFF+eMM87Iu9/97kmvfe655+a0004bN/6oRz0qhx12WJYsWZKVK1fmuuuuy5YtW3LNNdfkxBNPzNOe9rSuH8eZZ56Zd7zjHWPGSil5+MMfnsMOOyzLli3L6tWrc/31149pnLvwwgtz55135rLLLpu1XyMAAGD72zzcu5tmBlvc2D4XbuLf3nr1HHUbLDA4y7427erfXDdlc92UhWXRDFcEADB73bv5nlx731Vt9wuXHa27YLRevT9vd51urz8XvpatHsNs+zwCAAD9oj9Pfx4ATNuvVrbfN+r9AwAAAAAAzEd+Wzu3rGnaXtHNyaWUXTM+sOzeDubZuZSyS631/i6m26eDebpWa70ryV3dnFNK6cXUPVM3b05W3dbvMua+FQemzOGGle9973s55ZRTxjRdPe5xj8sHPvCBHH300WOOXbVqVc4444x8+MMf3jZ22WWX5cwzz8w73/nOGau5UzfccEO+9rWvJUlOOOGEvOtd78ojHvGIMcesXr06f/mXf5lPfOIT28bOPffcnHLKKTnooIPaXvvb3/523vKWt4wZe/rTn573v//9Ofzww8eMr1q1KmeeeWY+9KEP5atf/WpuvPHGrh7HBRdcMKbpamBgIKeeempOO+20PPjBDx5zbK01l156aV7/+tdn5crGL8CvuOKKnHHGGXnXu97V1bwAAMDcsbm2Xqn+d3Y9Ks/a8wUt971n5VsznPHNs61u8G8VlpYkyxfundfs/+YuKt3xXb3mS7lmzZfHjfcqeKHdc72oLM6mFl/n2RawMFEwwobhwey6QDAaAMBWV63+92yu7UOOZ9t7vX6qtdtgtN48d+2Cf7u9/uBw61+fH7ns2By3/Hld17W9bKqbct6tp7fc1+oxt3t+Dl76iLxonz8dN754YOn0CgQA6DH9eTNoDvfo6c/TnwcAPfHrW9vvGxaMBgAAAADA/DY3Ow7mr5uath/S5fnNx99Ta13dfFCt9e5Syuoky0cNPzjJj6YxV3Pt89eq21JPfHi/q5jzyr/8JNnvoH6Xsd28+tWvztDQAzdOH1vQ57oAACAASURBVHPMMbn88suz8847jzt2xYoV+dCHPpRDDz00b3rTm7aNv/vd785LX/rSPOYxj5mRmjt1zz33JEne/OY3t11hcvny5fn4xz+e1atX59JLL02SbNmyJR/72MfGrQA52qmnnprNmx+4GemFL3xhLrrooparPq5YsSIf/OAHc/DBB+fNb35zfvOb33T8GG655Zaccsop27aXLFmSSy65JM997nNbHl9KyQknnJCjjz46T3nKU3LzzTcnSc4555y89rWvzUMf+tCO5wYAAOaOTXVTy/Hli1bkoJ0e1nLfTgM75/7htePGW93YvmFL67CrXRfs1vb6c9VNgz9sOb69gxf2WLhnVm36VcfH98tE9WzYMphdF+w2g9UAAMxeg1vW52v3XjbhMYLRpq4XwcXDdbjt16DrYLQ2n6n2Xbz/rPpMVWtNSUnN+CC6Vs9pu+dh+aK9Z9XjAgBoS3/ejJnLPXr68/TnAUBPrLm7/T7BaAAAAAAAzHMD/S6AnmoOJju0y/MPbtqeaHm1Xs/VTagaMIErr7wy3/nOd7Zt77bbbrnoootaNl2Ndtppp+X5z3/+tu3h4eGcd955263O6TjmmGM6Wonx7/7u78Zsf+UrX2l77HXXXZdvfetb27b322+/nH/++S2brkZ705velGc/+9mT1jLaOeeck8HBB24aOe+889o2XY22zz775NOf/vS27S1btszarxEAALD9bW4TjLawLGp7ztIFO7Ucb3XD/sba+mb3pQMTf76ci9o95l6FVrQLcNh94V4tx9sFLPTLRM+DYA8AgAd8fc2XMjhJeFcvwr3milZBXRPpxXvPjcMbenb9dl/rpQtm12eqUkqWDLT+rNjq+7Ht42pzDQAAmGv05z1Afx4ATNPa1e33DQ/PXB0AAAAAADALCUabW/6rafuxpZRuuqqfMsn1Jtp3VKeTlFJ2SfLYLuYCunDBBReM2T711FOz//77d3Tu3//934/Z/sxnPpONGzf2rLZeOf300zMwMPlfYYcffngOOuigbdvf+9732h77mc98Zsz26173uuy+++4d1XPGGWd0dFyS3H///Tn//PO3bR988ME5+eSTOz7/yCOPzFOf+tRt25///Oc7PhcAAJhb2gWjLZogGG1JaX2j+sYWN/gPbml90/9Os+wm/pnQ7gb/XoRWDNfhtuELeyzcc7vN20sTB6PNrloBAPplc92Ur6z+wqTHtXpvPl+1C0ZrFwbdm2C03r23HRy+v+X4TrMwbLr9Z57xz0e750gwGgAA84X+vAfozwOAadqyuf2+4S0zVwcAAAAAAMxCgtHmkFrrnUl+MGpoYZJjurjE05u2/2OCYy+b5NyJPDWN2rb6bq31112cD0zg6quvHrP9ile8ouNzDz/88Dz+8Y/ftr1hw4Z8+9vf7lltvbDTTjvl+OOP7/j4Rz7ykdv+f/369Vm3bl3L46655pox2yeeeGLHcxxzzDEdN7ddffXVY1ajfNGLXtRRE9loxx133Lb/v+WWW7Jy5cquzgcAAOaGdsFo7UICkvahZq1udm9303+7cLW5rJuQgG4N1Y1tAx/2WLhXy/F2QWr9MlFAhGAPAICG6++7OvduvnvS4zYMD2a4Ds9ARbNfu/fJ7YLFevH+fHCC97bdXr/d8TsN7NLVdWZCN89pu8e1dBYGvgEAwPagP28s/XkAMDV1yyTBZ4LRAAAAAACY5xZOfgg7mIuTPHbU9quSfGmyk0opj0jypFFD909y3uVJBpNsvSv0qFLKI2qtP+6gxpOati/u4BygA6tXr87Pfvazbdt77LHHmMajThx99NH5zne+s237uuuuy9FHH92zGqfrkEMOyeLFizs+fvny5WO216xZk1133XXccd///ve3/f8ee+yRQw89tKu6jjjiiI5Wh2xujNt///3zy1/+squ5mh//z3/+8zz4wQ/u6hoAAMCOb9MUgtGWtAn4anXzf7uwq6UL5mMwWusb/DfVoWyumyZ8ziczUbjCHgv3bDk+OLw+tdaUUqY8by9N9BgGBaMBAKTWmi/f0/mvRIfqxiydh4HE49TWwWhLB3bO2i1rxo1PFNjbqYmCfbsJRhuuw22v1S54uZ/afVbsLhht9j0uAADoNf154+nPA4ApWnfvxPsnC04DAAAAAIA5TjDa3POpJH+TZMHI9gtLKYfVWm+a5Ly/atr+l1rrhnYH11rXl1L+NckfN13jVRNNUkp5WJIXjBranOTTk9QGdGjVqlVjtg877LCub5J+xCMeMWb7rrvumnZdvdTcSDWZRYvG3py+adP44ID7778/GzY88CNvKk1MnZ5z6623jtl+wxvekDe84Q1dzzfaPffcM63zAQCAHdPmNsFoiyYI6Wp3o3qrG/bb3ey+U5uQsLlsohv8NwwPZtcFUw9Gmyh4YY9Fe7UcH86WbKpDWVyWTHneXproMUy0DwBgvrjx/u/kjqGVHR+/YXhQyFSS1rFoyU4LdklafBzqxXvPicLPNg4PdhxQvHF4MLXNI9hpwS5Trm97aff91ipsrm2I9jz8rAgAwPyjP288/XkAMEW3/GTi/cOC0QAAAAAAmN8Eo80xtdabSikXJPnTkaHFST5RSnlGu6CzUsofJDlp1NBQkrd1MN3ZSV6SZGtXw0mllItrrS2XZCulLE3y8ZGatvpYrfVnrY6ft1YcmPIvk/ySi+lbcWC/K9guVq9ePWZ799137/oazefMtqaegYGBnl/z3nvHrri1bNmyrq+x2267dXTc3Xff3fW1J7N27dqeXxMAAJj9Ng0PtRxfONA+pKtdqFmrm//bBQLMx4CGicLgNg4PZtcFnX0mbGVwS+tQgSTZfWHrYLSt8y4emB3BaIMThEe0C00AAJhPvnTPxV0dv2HL+mThntupmh1Jm2CxNu/PJ3pf2qmJgtFqajbWDVlaJv9MNDjB++DZGDbdPhitxWfFLa2foyXz8LMiALCD0p83c+Zgj57+vKnRnwcA49UP/83EBwwPz0whAAAAAAAwSwlGm2GllAPT+nl/UNP2wlLKQW0us67W+psJpjkryQuSbF227egkXy6l/Fmt9cejalmS5LVJzm06/9xa6y0TXD9JUmv9eSnlH5OcNmr4X0spf5nkI7XWbXfnllIemeSjI7VsdXc6C2CbV8rChcl+B/W7DHZQtY69QaTb1Shb6cU1ZrslS8beSD401DpcYCKdnjOVa0+m+esOAADMD5vr5pbji0r7YLR2N6q3umm/XaDVfLzZfekEwQWDWwYfWDZgCjZOELywx8LlbfcNDg9mWfaY+sQ9NNFjmChYAgBgPvjl4E25afC/ujrHe6iG2iYYrd37816E8k52jQ3Dgx2FRQ8O39923+wMRmvznDaFoNVa235/7jQPPysCADsm/XlMh/68qdGfBwAt3PLjifcPb5mZOgAAAAAAYJYSjDbzrk7ykA6OOyDJL9rsuyDJSe1OrLXeVkp5YZLLkyweGX5KkhtLKd9O8vMkuyd5fJIVTaf/e5IzOqhvq7ckOTzJ745sL0ryviRnlFK+k2RtkoNH5hrdvTGU5AW11ju7mAuYxJ577jlme82aNV1fo/mc5cvb34Q9VVu2zK5f1DY/xuaVPTvR6cqde++995jta665JkcddVTX8wEAAGyum1qOL5wgGK3dDfytgq3a3+w++27i394mCoObbvhCq1C6JFlSlmangV2227y9sqVuzqba/iaj2VInAEC/fHn1xV2f4z1UQ7tgtHafSSYK7O1Uu/fn3c7RHCg22tIJ3uf3S6dhc5vrpmxJ65DuiQKlAQBgrtCfNzX68wBgrLplS7JukvcRw8MzUwwAAAAAAMxSA/0ugO2j1npVkhckWTVquCQ5IsmJSZ6T8aFon0nyklprxx0RI8eemOSipl37JHlukj9K8oSMDUW7K8kf1Fq/1uk8QGdWrBj7sv7pT3/a9TV+8pOfjNneZ599Wh63cOHYbM3Nm1vfBNHKVBqbtqcFCxbkgAMO2Lb985//POvXd3fT0Q033NDRcfvuu++Y7al8jQAAAJK0DaOaKBitXYBAq+CFdmEM8/Fm90UDi7KwtF5jYrqhFe2CFZYO7DRJINv0Qx96YbI6ZkudAAD9sGroznx37Tdb7jt0p8OzpCxtuc97qIZ2wWjtPpNsrpuzabh1gHSnJgs+G9zS2fv/weH7W44vLIuyaKD9Z7Z+aRei3fy9ONH35kSfXwAAYK7Qnzc1+vMAoMldtyZbJvm7fXh2BZ0CAAAAAMBME4w2h9Vav5jk0Uk+lGSiLodvJnlRrfVltdbWHdoTz7Ou1vqSNELQWnf2N9yT5INJHl1rvazbeYDJLV++PIcccsi27XvvvTc/+tGPurrGNddcM2b7yCOPbHncbrvtNmb73nvv7XiOH/7wh13VNBOe/OQnb/v/4eHh/Od//mfH595zzz35/ve/39GxRx999JjtL33pSx3PAwAAsFWtNZtr6ybZRWVx2/Pa3ajefHP7cB3OxuENLY9td8P8XNcufGFDm+epU+2CBZYu2DkLyoIsLkvanDe9QLZemawOoR4AwHx2xerPp2a45b5n7XlCx2FU81brXLTstKB9WPNkwWaTmey57/T6gztY0HT778X1E26PttOC+flZEQCA+UV/3tTpzwOAUe74xeTHbBGMBgAAAADA/CYYbYbVWg+qtZZp/jmpi/nuqrWekuRBSY5P8qokb03yF0n+MMnBtdajaq2f68Fj+9da61FJDk7yopE53joy5/FJ9qu1/nmtddV05wLaO+aYY8Zsf+pTn+r43B/96Ef59re/vW176dKlecITntDy2OaVKm+88caO5/niF7/Y8bEz5ZnPfOaY7X/+53/u+NwLLrggQ0NDHR37jGc8IwsWLNi2/fnPfz533XVXx3MBAAAkyXC2tA1YWFgWtj2vfbjX2Jv7h+rG1DYpBPM3GK2zoIButQte2BpiN9vDMiarY7bUCQAw09ZuXpNvrLmi5b79Fv9WDt/lCVnaJuBruuFec0W7zyQ7TRAutr3en2/VLvCs0+Mmqr2f2n3uaA7Mnuj5aRfEDQAAc43+vKnRnwcAo6y6Y/JjhgWjAQAAAAAwvwlGmydqrUO11itrrZ+otf59rfV9tdZ/q7V2sNRM13P9otb6uZE5/n5kzitrrZ11JQDT8id/8idjtt///vfnV7/6VUfnvvWtbx2z/ZKXvCRLlixpeezjH//4Mdtf+MIXOprj8ssvz7XXXtvRsTPp5S9/eZYtW7Zt++KLL87ll18+6Xm333573v72t3c8z/Lly/Pyl7982/a6dety2mmndVcsAAAw722qm9ruW1gWt923dGBpy/Hm8IANW9rf7N8uXG2um+lgtJ22BaN1FmbXLxuaghLG75/e8wMAsKP6z3u/mE1tfj36zD1PyEAZaBsk1Wn41lzXPhhtl7bnTPd98mTvXzsNrWv3mWrWBqO1Cekb91lxgsc/X0O0AQCYf/TnTY3+PAAYZaiDf2cUjAYAAAAAtLBhU83f/t/hPPu8LTnqXQ/8ufyHrXsuYUcmGA1gjjn++OPzuMc9btv2mjVr8tKXvjSDgxP/AvW8887LpZdeum27lJI3vvGNbY8/6qijsvPOD9wkcfHFF+f666+fcI6bbropr3zlKyd7CH2xbNmyvP71rx8zduKJJ+bKK69se87/z96dh0lSFXi//53IzKrM3rt6VRqGpUGWEZARQWiYpllGQQFHXhWdYUa9jo6+iuMdF1zxOtdtZoSZC47ggOAyyAVZbNEWkIaWRkAaEBQa6JamAemNql4rMysz47x/FFVdWRUnMqJyz/x+nofHjjgnIk5GllXnZJ7ziw0bNuj000/X9u3bY13r4osvLpvQ9oMf/ECf/vSnVSrF+wL7iSee0KpVq2IdAwAAAKAzFP2wYLSUs8wVslW0RRXGnDMsiMG1YL7T1SugzBW80DsajOYIZAsJr2ukSsERrRLgBgAA0EhDfl73bP95YNnMZJ9eP/1kSXvDcMeLGr7V6VzBaGEBXPUKLo5aPiLr7wncn2nR8ZTrno4fG7rub8r0hI5FAQAAgE7C/LzJYX4eAABj5AlGAwAAAAAAABCf71u96VJfX7zV6s4npQee3fvfy7sJRkPnIRgNAFrMpk2btGHDhkn9N+Kqq65ST0/P6Pbdd9+tk046SQ888MCE623btk0f+chH9IlPfKJs/6c+9SkdeeSRznZOnz5d73znO0e3S6WSzjrrLN1+++0T6g4NDem73/2ujj/+eG3evFmzZ8+Oc0sa5gtf+IJe+9rXjm7v3LlTp556qt7xjnfoxhtv1GOPPaa1a9fq9ttv18c//nEdccQRevLJJ5VOp3XOOedEvs4BBxygK6+8smzfN7/5TS1ZskTLly9XsVh0HrthwwZdfvnlWrZsmY444gjddddd8V8oAAAAgLZXtO5gtJQXPxhNKg9fCAtiCAsh6GTuYLTqghdc93rker2uYLQWCcuoFNrRKu0EAABopN/s+JX2lHYFli2b/dbRPnur9/WaL3iSTtKknCFc1QcXhx8fFiId5Txpb2rsNjWCa5xXsEMq2b0LMF2vy/WzDAAAALQi5uc1D/PzAAB4xVC+cp2YgZ4AAAAAAAAAOt9da6VVzzS7FUDjJJvdAABAufPPP3/Sx1o7vEDkmGOO0WWXXaYPfehD8n1fkrRmzRodf/zxWrx4sY444gil02k9//zzevDBBydM9Dn99NP1la98peL1vvKVr+jmm28efSLjli1b9Fd/9VdavHixjjzySPX29mrz5s164IEHtGfPHknSwoUL9Y1vfKMln0zZ09Oj2267TcuWLdO6deskDd/TG264QTfccEPgMcYYXX755dq4ceOEJ3qGueCCC7Rp0yZddNFFo+/R/fffr7PPPltTpkzR6173Oi1YsECZTEa7du3Stm3b9MQTT8R++iUAAACAzhQWjOYKCJDCQ81y/qCmacYr/w5e7G5k1GvSEVvZWVz3rtrghawzMGH4epmEK5CtNcIysqXwYIhqg+MAAADaTcmWdOfArYFlaS+jJTPPGLPd2n29Zhv53ms8Y4zSXka7SxPHRVUHo1Xo31YKBh6R9fcE7s+0aIBYpRDtKYlpktz3t1VfFwAAABCE+XnNw/w8AACG2XyEzxmtX/+GAAAAAAAAAGgr9zwTPK8S6FQEowFAh/rABz6g2bNn673vfa927949un/dunWjk4qCvO9979N3vvMdpVLuhfQj9tlnH/3kJz/Rueeeq127dlW8xgEHHKDbbrtNmzdvjvlqGmfffffVr3/9a334wx/WzTffHFp3zpw5uvbaa3XWWWfp05/+dFnZ9OnTK15r5Kmf733ve7Vp06bR/YODg1q9enWk9rbq0z0BAAAA1FdhssFoibBgtL0Tb7OOMKteL1NxoUmncgejVRf85QpWGAkmqNd1a6VSMETU4AgAAIBO8eiu3+jlQvD3IEtm/pUyiamj2/UK3+10RiPBaDsnlFXbT65076O+N64A4bQ3NXB/s4WHaI8NRnOPFQEAAIBuw/y8yWF+HgAAkqIEo/ml+rcDAAAAAAAAQFtZ17pfAwJ14TW7AQCA+jnvvPO0fv16XXjhhZo7d66zXiqV0hlnnKHVq1frqquuijTpasSyZcv04IMP6pxzznEujp83b54++clP6tFHH9Vhhx0W+3U02sKFC3XTTTeNTsA6/PDDNWvWLKXTaR144IE67bTTdMUVV2j9+vU666yzJGnCkyJnzpwZ6VpvetOb9Oyzz+ryyy/X0UcfXTFgIJVK6YQTTtDFF1+sp59+WhdeeOHkXiQAAACAtlYMCUZLhQWjhS52Hwz8d9TjO91IUNl4uVJ1oRXue52W5A4YaJVgtErBEEVbVMF3/7wCAAB0Emut7ugPXtSdUFLLZr+1bJ+zj9kifb1ms3I92dDULVSuZsFojvcwkwh+z5vN9bMojR8rhgc7AwAAAN2G+XmTw/w8AEDXG8pVrlMiGA0AAAAAAABAuXVbXfMqgc6UbHYDAKDbbdiwoa7nnz9/vi699FJ961vf0po1a7R27Vpt3bpV+Xxec+fO1aJFi7RkyZJIT1B0OfTQQ3XLLbdo27Ztuueee/TCCy9ocHBQCxYs0AEHHKCTTjpJyeTePzlLly6VtdE7XXHqjnfNNdfommuumdSxS5Ys0ZIlSyLVfeKJJ0b/bYzR/PnzI18nnU7rwx/+sD784Q+rv79f999/v1566SX19/erUCho2rRpmj9/vg455BAdeuihmjKFxSUAAABAtyvYIWdZMiQYLWlSSppUYLDa2AXursXumS5e7O4KXnAFHkTlutcjgWiue15t4EOtRGlH3s8q5UVf5AUAANCunh58XBvz6wPLjp1xsmal5pTtGwnDHS/fIn29ZnMFoxmFhcpVd+8q3fuooXU5f0/g/lYdU4WHaI8dKxKiDQAAgPbD/LzKmJ/H/DwAQIPlI3yO6ROMBgAAAAAAAGAva63WbQkue80C6ah9wx8QBLQjgtEAoEt4nqdjjz1Wxx57bN2uMXfuXL397W+v2/lb1Z49e/Twww+Pbh9yyCGTnsjW19enM888s1ZNAwAAANChgoLNRoQFo0nDAQK7Szsm7I8SjNbbxYvd04ngRTDVhlZUCqFzBQy0UzBazh/UNM1oQGsAAACa646BW5xlp/WdO2Gfq3+dbZG+XrO5g9GM895V00/2bUl5mwutE/X8rvcw402N3a5GSJkeefLky59QFmWsSDAaAAAAwPy8emJ+HgCg4wzlK9fxJ35WBwAAAAAAAKB7bdst7XBMYfzuBZ6OeDXBaOg8XrMbAABAu7v22ms1ODg4uv3GN76xia0BAAAA0A2Kthi4P6GkPBP+kV/aSwfuz/mDgf8uP7Z7F7vXK6CsUgidO/Ah+D1qtCjtaJUQNwAAgHp6IbdBT+x5OLDsz6e+Xq/u3W/C/pEw3PGqDd/tHMHBaDLGee+q6SdHC/2N9t7kSsHtyDgCl5vNGKN0hHuaK7mC0VrzdQEAAADoDMzPAwB0nHyEzxlLpfq3AwAAAAAAAEDbWLfFXXbwgsa1A2gkgtEAAKjCCy+8oC984Qtl+y644IImtQYAAABAtyj4Q4H7kyZZ8Vj3Yve9E29di91d4QPdwHXfslUEL1hrnaEXI/faHfjQGmEZ0cIjWiPEDQAAoJ7uHLjFWXZ639sC97tDcFujr9ds1pWLJqNeZ+Dz5O9drYLRrLXK+nsCy1o5QCxKGDQh2gAAAAAajfl5AICONJSrXMcnGA0AAAAAAADAXs9sCZ5UOa1Xmj+9wY0BGoRgNAAAxvjJT36iz372s9q6dWvFuo888ohOPvlk9ff3j+476qijdMopp9SziQAAAACgoi0E7k95PRWPjRSM5ljs38qL+OstLCTAuhIbKsjbnKyCjx0JyYjyfjVTrcIjAAAA2ll/Yase2vnrwLL90wdrcebwwDJXCG6+ij5mJ3H1lY1MXfrJtQr9HbJ5+fIDy1o5bNo55intfc3usSLBaAAAAACiYX4eAACS8hE+x7TBnzECAAAAAAAA6E7rtgTvXzxfMsY0tjFAgySb3QAAAFrJrl279LWvfU3/9m//pje96U069dRTddRRR2n+/PlKJpPq7+/X448/rp/97Gdavnx52cKknp4eXXvttU1sPQAAAIBuUXAEoyVNquKx7oCvwcB/j9XbxYvdXQEGVr4Kdkg9pjf2OfMhwQvp0WC04Hs+EpbR7C8vwl7DCILRAABAp1s5sFy+SoFlp/e9zdlnc/WvrazyNqe06d7+txQejBYWKjdZkfq2pcrBaNmQ8LRWDpuuKkQ70bqvCwAAAEBrYX4eAACShvKV65SCP3MGAAAAAAAA0J3WO547dPB8QtHQuQhGAwAgQKFQ0PLly7V8+fJI9TOZjL7//e/rqKOOqnPLAAAAAEAqOoLRUlUFo41d7B68kD+T6N5ghrAAg6w/qB4vfjBaWGBYpWC0VgnLcP2slNchGA0AAHSuwdJu3bv99sCyealX6ahpxzmPdfX1pOE+VFh5dwgORpPcoXLZCMFlLmGBZiPyNiff+vKM5z5PaY+zLJOYOqm2NUKUsaIrPI6fVQAAAABxMT8PANDV8hG+Q/cJRgMAAAAAAACw1zObg+dUHjS/wQ0BGsg9WxcAgC40a9YsJRKJWMeceOKJWrVqlc4777w6tQoAAAAAyrmC0ZKRgtGCA77GBly5gqzCwsE6Xa+XdpZFCQcLPi5KMJr7nrdC4FiUNkz2/gAAALSDVdtXKG9zgWWn9p0jz7i/cwgLk3IFUHUT6whGMzLOe5e3k79vUfvXeT/4/Y5ynkwLj6nSjiDssf15V3hcN48VAQAAAMTD/DwAAEQwGgAAAAAAAIBYrLV6Zktw2eJ5jW0L0EjJZjcAAIBWcu6552rz5s1asWKFVq9erccff1zPPfec+vv7lcvllMlk1NfXpz/7sz/TSSedpDPPPFMnnnhis5sNAAAAoMsUqgpGcy12z435N8Fo44UFGEw2oCxXcgeGjQSxhYVl5EqDUrJvUteulWjBaIR6AACAzlTwh3T3wG2BZdMSM3X8jFNCjw/rX2dD+ordzhh3MFquNPm+Z9QwuryfVSYR8t75ewL3e/LUY3on1bZGcIdoD98Xa23IWNE9bgEAAACAsZifBwCApKHwhy9IkkoEowEAAAAAAAAYNjAo7XBMcTx4gWlsY4AGIhgNAIBx5syZo/e85z16z3ve0+ymAAAAAECgYj2C0cYEL+T84BCG9CthXd2oN+S1hwWchXGFCvSatDyTkCSlQwIXmh04VrIlFexQxXrNbicAAEC9PLjzHu0sDQSWLZ11pnq88BCssD5m1JCuTmWtDSk1zn5y1h+UtVbGxJ/ok3WMg4LqzdIcZ7l7PDVlUu1qFHeI9vDPYsEOycqPdSwAAAAABGF+HgCg6+UjBKP5BKMBAAAAAAAAGLZ1l7tsv77GtQNoNK/ZzqQG5QAAIABJREFUDQAAAAAAAAAQT9ERRhUpGM0RIDB28b4ryCrtuUO6Op1nEuo1wcEVkw3+ct/nvaECPaZXRsHhCa7AhUaJGtbR7aEeAACgM/nW150DtwSW9ZhenTz7zRXP4RnP2ceMGtLVqazcwWhGRmkTHMTlq+QMkq6kVv3brCM4ORMSetwKXOO9kXFL2M9kN48VAQAAAAAAgNiGCEYDAAAAAAAAEF3/HnfZnKmNawfQaASjAQAAAAAAAG2m4Acv9E95PRWPHRu6NdbIYveSLargCF7r9sXu7ns3udAK13G9Y67jGU+9Xm0D2WolalhHt4d6AACAzvT47t9q89CLgWUnzDxN0xIzIp3H1cfs9nDZ8GA0KZ0Ivm/S5PvnrkCzieevEIzmB89AyrT4eKq3wngn7GfS9XMMAAAAAAAAIMBQhM9/fb/+7QAAAAAAAADQFlzBaD1JaWpvY9sCNBLBaAAAAAAAAECbKdrgYLSkSVY81hVuNrK4P2yRf7cvdk8nwu9dXHk/+CnQ469T6T1rlqhhHc1uJwAAQD3c0X9z4H5Pnk7tOzvyedxhVN3eh3IHo0kmdGxS6/553PO7ytNeaz+WMVMhpC8scK7bx4oAAAAAAABAVNZaaShfuaJfqn9jAAAAAAAAALSF/j3Bcyr7pkjGmAa3BmgcgtEAAAAAAACANuMKRkuZnorHuhas5/xBWWtZ7B7CFVCWDblnYVzHjb/PYe9ZM2UjBk5EDVADAABoF+sHn9Qfc2sDy46ZfqLmpBZEPletw3c7hQ0JRjMyzr65NPl7F7V/Xale1g9+NGOrj6fc451s2f8GH9varw0AAAAAAABoGUPRHtBAMBoAAAAAAACAEf2OaYt9rf28VqBqBKMBAAAAAAAAbcYVjJY0qYrHuhas+/JVsEPKlsIWu7vDB7qB695NNvjLdVy7BKNFfd3ZUnPbCQAAUGt3DNzsLDut79xY53L39bo8GM2diyZjTGgQ12TvXdTA40r1XP3fjNfaM5B6K4w7XP3/HtMrzyTq1i4AAAAAAACgo+Qjfn5ZIhgNAAAAAAAAwLD+4Oe1EoyGjkcwGgAAAAAAANBmCs5gtGTFY8PCzXJ+NjRsi2C02oZWuO71xGC04Pue8yM+SbpOor7uvO3uUA8AANBZNuVf0OO7fxtYduiUo7Rf+qBY52vVENzmcyejGRklTFIp0xNYPtl7FzX4t1I9V3BaJtHa46mM42exaAsq2oIz8K3bx4kAAAAAAABALEMRv+f3/fq2AwAAAAAAAEDbeHl38H6C0dDpCEYDAAAAAAAA2kzREYzmCgYYyxW8IA0HCLhCBJImqZSXitbADuVa8O8KPqjEFSzWOyEYrTXDMqJeP1ciGA0AAHSOXw3cKusI7Tqt79zY53P19aKGdHUq1z0eZiTVI7g42nGV6uX84EczZlo8QGz8OGSsnJ91/kyGjTEBAAAAAAAAjJOP+PmlX6pvOwAAAAAAAAC0jQHH8p2+qaaxDQEajGA0AAAAAAAAoM0UHMFoSVM5uCw8GC2rnB/8dOKwRfLdotYBZa5AhfGBCa0bjBY9OMLasGALAACA9rCjOKAHdq4MLFvUu78Om3J07HO6w3cJRnMZmcbTqsFo2VJwPz3jtfajGcOC2/J+1vm6CUYDAAAAAAAAYhjKR6tHMBoAAAAAAACAV/TvCZ5T2dfa0xKBqhGMBgAAAAAAALSZoiMYLeVVG4w26AzbcgU2dBPXPah18ML4ELpaX7dWco7Ah/FKKjp/ZgEAANrJ3QM/U9EWA8tO63ubjIn/5D1X/zxPMFpI6fB9rn3/PFr/tlI9Z4BYorXHVGFjvmwpq6xrrNjirwsAAAAAAABoKflon19a369zQwAAAAAAAAC0i/49wfsJRkOnIxgNAAAAAAAAaDNFPzhkKmkqB6N5JqEe0xtYlvOzzkX+mZBAtW6RqXHwgivsYnw4RssGo8W4frPbCgAAUK2cn9Wq7b8ILOtLztNfTD9xUucdH4o79noI5r0SQOe+d9ECziYeF+2eV6qX9YNnILX6mMp1P6Xhexp1/AIAAAAAAAAgxFAuWj2/VN92AAAAAAAAAGgbBKOhWxGMBgAAAAAAALSZgh0K3B8lGE0KD9pyLfJ3HdNNer104P5caXLBC1lHYMPEYDRH4MMkr1sr8YLRmttWAACAaq3efoez/7as72wlTHJS53X29bq8/2StDSkdDkar5b0r2aJznDXx/JWC0Vz9/NaegZTyUko6fo7zISHaBKMBAAAAAAAAMeQjfs9eIhgNAAAAAAAAwDCC0dCtCEYDAAAAAAAA2kzRFgP3Rw9GcwdtuRb597LYPTRQbjLyEUPo3IEPk7turbjaH6TZbQUAAKhGyRZ118BPA8umeNN0wszTJn3uVu3rNZuV7ywzFYPR4t+7WKG/IQHFBb+goi0ElmXaIGzaNe7L+lllGSsCAAAAAAAA1RvKRavnE4wGAAAAAAAAQCr5VtsdUxznTDWNbQzQYASjAQAAAAAAAG2maIcC96eqDUbzs8r5wYv822ERf71lEq5gNHcwgou1Vjk/eMLz+Pcn7bxuc8MyYoVHdHmwBwAAaG8P7bxXA8VtgWUnz3qzs38dRa3Dd7uJ896V6hyMFlI35zseyyj3eKKVuO5p3s86g5EZKwIAAAAAAAAx5AlGAwAAAAAAABDd9kHJ2uCyvqmNbQvQaASjAQAAAAAAAG2mYAuB+5OmJ9LxYUFbrpCvasIeOoXrHgzZvHwbb1LykM3Lyo90HXeQXfxAtlqKc32CPQAAQLuy1uqO/psDy5ImpaWzz6rq/K6+Xt7PyrpmsnQBK/drNxp+wmHYvYurVn3bbEhZxmv9GUiZkLEHY0UAAAAAAACgBvIRP78kGA0AAAAAAACApH7381oJRkPHIxgNAAAAAAAAaDNFZzBaKtLxYUFbuVLwJNy0Fxym1k3CFvzHDf4Kqz/+XtcykK2W4rzmZoe4AQAATNYTg4/oT0PPBZYdP+MUzUjOqur8rn62lVXe5qo6dzsLDUYz4cFo2Un0PXN+9HsdFryW890zkNohQKzXOVbMOvv/rmMAAAAAAAAABCjko9UrEYwGAAAAAAAAQHpxu7tsDsFo6HAEowEAAAAAAABtxhWMlqo6GM292L0dFvHXW1g4XPxgNHdYQ6+Xrtt1aynOtcPCIwAAAFrZnf03B+43Mjq175yqzx/Wz+7qPpQ7F01GrwSjJYL7yZO5b3GCfPM25wwozpbc52mHMZVr7JHzB539/wwh2gAAAAAAAEB0pWJt6wEAAAAAAADoaOu2BE+onDNVmpY2DW4N0FgEowEAAAAAAABtxhWMlvSiBqOFLXYPXsjfDov46y08oCx6kIIUHtYwPlgg7N43MxgtTuBEtptDPQAAQNvamFunpwYfDyw7ctpxWtCzT9XXaNW+XrPZsGS0kWC0kMDnuHIhgWZB8n4ucH82ZDzlmUTsdjVaeIh28GvrZawIAAAAAAAARBc5GC344QwAAAAAAAAAusv6rcH7D5rX2HYAzUAwGgAAAAAAANBGfOuraIMnyiZN1GC0sMXuwSEC6YQ7FKxb1DK0IiworNdLj7tuWCBb88IyXKEPQeKEqAEAALSKO/pvcZad0fe2mlyDYLRgYcFoZjQYzRX4PIlgtNj9+eC+cNbfE7g/rE/fSlw/j1l/jzMMbnywMwAAAAAAAIAQxeAH4U0QNUANAAAAAAAAQEf7oyMYbfF809iGAE1AMBoAAAAAAADQRkqOUDRJStUgGM21wL9dFvLXU8r0yHN8pBo3SMEVFNZr0vJMomxfeFhG9HCyWirZkgp2KHL9ZrUTAABgsrYNbdLDu+4LLDsoc5gOyLymJtcZH4o7FsFo4dzjmkFZW/n48mPi9ueDQ8Jc58l4U2Odv1lc476dxe3O9yRsvAIAAAAAAABgnFIpYj2C0QAAAAAAAABI67YEz907cF6DGwI0AcFoAAAAAAAAQBsJC6NKRg5GC17snvMHnYFdLHaXjDGh9y6ObCm4fm/Afa5lIFutuH5OXFyBewAAAK3qVwM/lZUfWHZ639tqdh3PJNRrgsPRco4+Y3dwB5t5Zrhv7Bqj+PJjhfhK8fu3rv5/trQncH+mTYKmXfd0e/Fl5zFBYxgAAAAAAAAADlEDzwhGAwAAAAAAALqetVaPPB9cdhDBaOgCBKMBAGpi48aN+vznP6+TTjpJCxYsUE9Pj4wxo/9dc801zW4iAAAAAHSEonVPfk2ZnkjncC1231XcId8R/kAw2jDXfXAFnbnECaALD2RrTjBa3OvGDZoAAABopt3Fnbpvx52BZQt6FunPp76+ptdzBUs1q6/XCtyxaHuFjVHi3ru4Qb6u+q796US7BKMFt3N7sd95TLuEvgEAAADtjvl5AAB0CILRAAAAAAAAAET0nXvcsykXzzcNbAnQHMlmNwAAut3++++v5557bnR75cqVWrp0afMaNAnf/e539dGPflT5fL7ZTQEAAACAjle0BWdZ0kT7uM+12H2Pvyv2Md2mVgFlrvqucIe0l9GgvzvgPPECHGol9ustdW+oBwAAaD/3bP+5CnYosOz0vnPlmdo+fyztZbSzNDBhf7P6ei3BuifzGA1P5gkbo+T8Qc3QrMiXi3uvXcG/rvO0S3iYazwSNg51BfsBAAAArYL5eQAAoJXYovuztjIEowEAAAAAAABd7/u/cc+lPGheAxsCNEltZ2wDALrOz3/+c33wgx+MPOnq7rvvLntS5cUXX1zfBgIAAABAh3EFNEhS0qQincO12L3Wx3Qi131wBSO4uILFXKECruvmSs0KRot33bhBagAAAM0y5Od1z/afB5bNTMzWsdP/subXdPcxczW/Vrvw5YeUjgSjuccocfufce+16/xZf0/g/nYPRgvT66Xr0BIAAAAAI5ifBwBAh4kaeEYwGgAAAAAAAND1BkKW7iyY0bh2AM2SbHYDAADt7aKLLpK1e5Nm3/3ud+v973+/9t13X6VSexfkz507txnNAwAAAICOU7TupwenTE+kcxCMNnnpRHCgQbZGQWEZx/nTjiCFZgWOxb1u3CA1AACAZvnNjl9pd2lnYNkps9+qlBctjDiOWvUxu4V55X9docJS/P5nrfrzWUdwsas/32pcP4vO+l5GnuF5fAAAAEA9MT8PAIAOQzAaAAAAAAAAgAhyBaunNweX7TtbMsYEFwIdhGA0AMCkPfXUU3rsscdGt88880z96Ec/amKLAAAAAKDzFXx3MFoyYkjDZBblE4w2zHUf4gYvuOr3muDzuwIK2icYrTntBAAAiMO3Jf1q4NbAsrSX0ZJZZ9Tluq4+Zr6L+1BW1llmXolGS5iEekyvhmx+Qp24/c+499rVn3cHIE+Ndf5mSTvGIy5h4XQAAAAAqsf8PAAAOlDRPeejDMFoAAAAAAAAQFf7+i/c8ygvfw8PNEV34CcdADBpDz30UNn2eeed16SWAAAAAED3KFr3JNmUiRqMFnOxu0nLM4lYx3SqjCNUrlbBC+mEIxjNSzuuGy+QrVbiB0d0b6gHAABoH4/uvl/bCsGP1ztx5hmakphWl+u6wnG7uw8VEow25imH7uDi2gSduesHnz/r7wnc3y5B067xiLP+JEK3AQAAAETH/DwAADpQ1MCzUqm+7QAAAAAAAADQ0q5Y5Z5HuWBGAxsCNFGy2Q0AALSvzZvLFwctWrSoSS0BAAAAgO7hCkYzMvIULbwsnYi3eL1dFvE3Qq2CF7KO4AXX+V2BA80Ky4gfNJGVtbYsxAIAAKCVWGt1R/8tgWWeElo2+611u7YrjKpZIbitwLrn80gaG4w2RTtL2yfUmEx/NVb9kisYLfg9y3hTY52/WeKO/RgrAgAAAPXF/DwAADpQ5GC0iPUAAAAAAAAAdJS1L1mtesZq8053nT6eaYouQTAaAGDSdu/eXbadSqWa1BIAAAAA6B4FRzBa0qQih071mF4ZGVmFpg2M6mWx+yjXvYgbWpH3c4H7XQForReMFvx6jTxZ+RP2+yqpYIfUY3rr3TQAAIBJeSb7ez2Xeyaw7NgZJ2t2am7drl2r8N1OEtSnHGHGBKP1eunAOrlSvP65616nTI8Kdihyfdd1M47+fKtxjTvc9RkrAgAAAPXE/DwAADpQqRSxHsFoAAAAAAAAQDex1uozN1n96y8rr/Xqa49ntQJVIxgNALqEtVYPP/yw1q5dqy1btiifz2vevHnaZ599tGTJEk2bNi32OX3fvSgFAAAAAFAfxZBgtKg846nXS0cOWkgn2mMRfyO4Ag3ihla46ruCBdxhGfECH2rF1f4ZiZnaURoILMv7WfV4BKMBAIDWdEf/zc6y0/rOqeu1Wy0EtxVEi3B237u8jds/D+5Xz0rO0dbCS5Hql2xJeRscgJxpkzFV3KCzuEFqAAAAQCdjfh4AAIikGDznYwKC0QAAAAAAAICucu86RQpFk6SZPNMUXYJgNADocNu2bdNXv/pV/fCHP9TWrVsD6/T09GjZsmW6+OKLddxxxznPtWHDBh1wwAHO8lNOOSVw//e+9z29973vDSz78pe/rC9/+cvOc65cuVJLly51lgMAAABAtynaocD9qRjBaNLwAvaoQQuZmIvjO5k7tCJeQJmrfvxgtOaEZeRKwdedmZrjDEbL+llN16x6NgsAAGBSXsxv0B/2PBxYdsTUv9A+vfvX9fquvl6+i4PRwqLRjMzov12BY1lHfzVIwS+oaIMXGc5K9kUORgt7vzJeezyeMWGSSpkeFRzjzvHiBqkBAAAAnYj5eQAAIJaogWcEowEAAAAAAABd5YY1UR8pK3meqVwJ6ABesxsAAKifW265RQceeKAuueQS56QrSRoaGtKKFSt0/PHH64Mf/KCKRb5IBQAAAIBW5Vqwn4wZjNYbYwG7KwysGzkDymIEL0juQDN3MFptAtlqxdX+Wck+5zHdHewBAABa2Z39tzrLTu87t+7Xd/UBs03q67UCGxaMZvZOc+g1rgDh6PcurJ86KznHcf6Jx2T9Pc7zZNpoTBUn7IxgNAAAAHQ75ucBAIDYCEYDAAAAAAAAMM6a56wuuytaMNqb/7zOjQFaSLLZDQAA1MfVV1+tD3zgA/J9v2z/QQcdpMMPP1xTpkzRxo0b9eCDD6pUKo2WX3nlldq4caOWL1+uZJI/EwAAAADQagr+UOD+uMFomRgL2OOEqHU6ZzCan5W1VsZUfuqKtdYZLOa612HXbQZX0IQrOELq7mAPAADQugYK2/TbnasCy/4sfbAOztR/Bomrr0ewbLCxPe50ovp7F9annpWKEYxWcvd32ylsOu1ltKu0I3JdAAAAoFsxPw8AAExKsRCtHsFoAAAAAAAAQFf4r7t9feR/ooWiSdLHT/MqVwI6BN+oA63GL0qDLzS7FZ1vyiLJ69xfgY8++qj+8R//sWzS1dFHH63LL79cJ5xwQlndrVu36gtf+IKuuOKK0X0rVqzQF7/4RX31q18tq7to0SI9++yzo9uXXnqp/uM//mN0+7rrrtPxxx8/oT1z587V0qVLJUn333+/zj///NGyCy+8UB//+Medr2XhwoUVXi0AAAAAdJeiDZ4km/J6Yp0nzsL8TBst4q83130rqaiiLShlKr8PBTskKz+wzHWvWy8YLfi6U7xpSpkeFezEAD+CPQAAQCu6a2C5fJUCy07vOzdS8G21XH3MnJ+LHL7baXwb3F8etvd+uPrJcUJ5XaG/kjv4N6hvG3bNTKJ9xlRxxortFPgGAAAwivl5jdPBc/SYnwcAACYtauAZwWgAAAAAAABAx9sxaPWxH0cLRdt/jnT133ta+prum1OK7tWZMw6Adjb4gvTTA5rdis539rPStP2b3Yq6ef/736+hob0LkJcsWaJf/vKXmjJl4uKEefPm6Tvf+Y4WL16sT37yk6P7v/GNb+j888/Xa1/72tF9yWRS+++//+j2rFmzys61cOHCsvKxpk2bJknasGFD2f5Zs2Y5jwEAAAAATFS0wZNfkyYV6zy9jgCBIK6wgW6UTrjvRc4fjBRQFxaY4HpfXIEDRVtQwS8o5cV7/6vlCjlLexmlvYwKpYnBaGGBEwAAAM0wWNqte7f/MrBsbmqBjp42cbF5Pbj621a+hmxevSbdkHa0C1MWjBbcT877ucjnC+unzkz2Be4P6tNn/T2BdVOmRwnTPlMz4oz/GCsCAIC2xPy8xungOXrMzwMAAJNGMBoAAAAAAACAV6x8SiqFPUdW0u8v9nT4qwlDQ3fymt0AAEBtrVy5Ug8//PDo9owZM3T99dcHTroa65//+Z/1lre8ZXTb931dcskldWsnAAAAAGByCnZi4JQkJWMutM/EWuwePqbsJmH3IusICxvPFSo2fH5XMJr7/Qo7X73kQoPRgu9RLkY4BQAAQCPcu/125W1wH+XU2efIM4mGtCMstNjV7+p0Vu4nII6d3uPqJ8cJ5XXd46RJalpiemBZwQ6pZEtl+7Kl4GtmvKmR29IKCNEGAAAAwjE/DwAAVCVyMFqpch0AAAAAAAAAbSk7ZPXvt/v66/8KT0VbNFt6zcIGNQpoQQSjAUCHufbaa8u2P/KRj+jVr351pGO//vWvl21fd911yufzNWsbAAAAAKB6RVsI3J8yPbHOEyfsjMXue9UioCwspMEdjOZ+v5oRluG6Zq+XqUk4BQAAQL0V/ILuGlgeWDYtMUNvnHlqw9oS1sfs3j5UWDDa3mkO7r5n9D6yO/R3Smg/fHz/3/VeZRLtFTSdiTVWbK/XBgAAANQC8/MAAEBVihGD0aLWAwAAAAAAANBWhopWp37L1ydvdM+THPH/nmuU8EzFekCnIhgNADrMvffeW7b9N3/zN5GPPeKII3TMMceMbudyOa1Zs6ZmbQMAAAAAVK/gCEZLmlSs8/TGCDsjGG2vsHuRjRhaERbS4Hpf0onWCssIC30gGA0AALSD3+66RztLA4FlS2edpR6vt2FtqUX4bqexIcFoGjPHpxZ9T3cwmjv0N+g413ig3cLDGCsCAAAA4ZifBwAAqlKKGHgWtR4AAAAAAACAtnLLo1b3/zFa3b99I7FQ6G78PwAAOsjAwIDWr18/uj1r1iwddthhsc5xwgknlG3/9re/rUnbAAAAAAC1UXQEo6ViBqNlYizOb7eF/PWUMEmlTE9gWdTwBVfwQo/pVcIkAsvCAxkaGzjm25KGbD6wrNfLOIMUwgLhAAAAGsm3vu7ovyWwLGV6dPKsNze0PeHhu93Zh7KhuWh7k9FcY5Wcn5MNO0lZXVegWSZ0LDT+OGd4cJuNp+KEnaUT7fXaAAAAgGoxPw8AAFSNYDQAAAAAAACgq/3qyWj1PvNmU7kS0OEIRgOADrJ169ay7YMPPljGxOvwHHrooWXbW7ZsqbpdAAAAAIDacQWjJWMGo7HYffJcwQZRg79c9cLek6RJOd/jRgeOhV0v42Xc96fUnaEeAACg9fx+z0PaPPRCYNkJM0/TtOSMhrbHMwn1mN7Asny3BqPJd5ZFCUaz8p1hvuO5++dTYoXWZUudEYyWiTH+izOuBAAAADoB8/MAAEDVCEYDAHSRP261eu/3fHn/UBr9711X+npoQ7QHHAEAAABAJ1q3JdqY6OyjCEYDks1uAIBxpiySzn622a3ofFMWNbsFdTEwMFC2PXPmzNjnGH9Mf39/VW0CAAAAANRWwa9NMFpvnGA0FruXSXtTtLO0fcL+6oPRwgMI0t4U7S7tmPR1ayXser1exvmz1eh2AgAAuNzRf3PgfiNPp84+p8GtGZb2pmioNDHIyxW2hWFhY5Wcn1Wvl654Dlc/tdfLKGV65MmTHxDUNj60LuvvCW5jmwVNM1YEAAAdj/l5jdOBc/SYnwcAAKpWDJ7zMUEpYj0AAFrUn7ZbvfHrvrbuKt///z9k9bPHrH79KU+v249F/gAAAAC6z7oIz036h5ONjjug/m0BWh3BaECr8ZLStP2b3Qq0KWvL02HjPo0ySC3OAQAAAAConaJ1BKN58YLRMjEW57PYvZwrXCEXMbTCVa9SaEPaSzuC0RoblpH3c86ytDfF+fPS6HYCAAAE+WN2rdZnnwwsO2b6CZrbs6DBLRqW9jLaWRqYsH98+Fa3sHI/EdFo73dX4cFog5qp2RWv5eqnZrwpMsYo7U3RoL+74nGugLWMN7ViG1pJpkJg81iVwp0BAABaEvPzUAXm5wEAgKqVirWtBwBAi7p6tZ0QijZicEj6/+6yuvrvGRMDAAAA6C65gtUL293lbzlS+vhpnk55Dd8jAhLBaADQUfr6+sq2d+yYuFi6kvHHzJ5decEIAAAAAKBxCnYocH/KxAtG640RdsZi93Ku++EKQhgvb4PrVbrP1V63VsICztJeJiQYrTtDPQAAQGu5o/8WZ9npfec2sCXl6EONFxKMZrzRf4cHo0W7d656I8HFaS/jCEYrPy7r7wk8T7sFTUcdKxp56jG9dW4NAADtwRiTkLRY0uGSXi1ppqS8pAFJ6yU9ZK0N7ixM/popSSdK2k/SqyTtlvQnSY9YazfU8loA9mJ+HgAAqFrkYLSSrLUsfmwi7j8AVGfF793f90nSD++3uvrv9277/nB9Y1j8j3L8TQYAAEAn2bRDso7h0hNf9nToq+j7AmMRjAYAHWTevHll208//XTsczz11FNl2/Pnz6+qTQAAAACA2iraQuD+pOmJdZ5MjMX5GYLRymQSroAyd2DYWNmSKxgt/D1pnWC04OuNBCOknfenW0M9AABAq9g89KIe2/1AYNlrprxW+6UXN7hFe7nCqLq1DxW+TGKvkfCyINUGo430v52hdaXy/n+2FDweyHhTI7WjVUQNckt7aRYgAAC6mjFmP0l/Lek0SSdJmhFSvWSMuUPSZdba26q87jxJX5b0Tkl9jjr3SfqWtfYn1VwLwETMzwMAAFUrBs/5CFQqSUmWfTXas9usPvIjX6vXSwfPl774Fk9nH81noQAQ15MvhZcXfalYsvoizKhjAAAgAElEQVT6CqtrVlv9cdvw/hlp6dTDpG+/x9OCGfz+7Wbrt1j97+t83ffK3+SLz/b0liP5mQAAAOEefd7q0zf6euBZ6dCF0r/+L08nHUwfAq2jP+SRavPDZh0AXcqrXAUA0C5mz56tgw46aHR7+/btevLJJ2Od47777ivbPvbYY2vSthEskAAAAACA6hRt8NODkybeZFhXyNZ4Rp5SMUPXOp0zGCFiMFreGbxQKRituuvWiut6I8EIrna6XjcAAECj/Kr/VllH5NbpfX/d4NaUc/f1urMPZa3vLDPa+12TZxLqNcHhaOODy1xc/dSRgOiooXWufrIrWLlVRQ3GjjqmBACgExlj/kfSc5IukXSWwkPRJCkh6U2SfmaMWW6MWTDJ675Z0u8l/aMcoWivOEHSjcaYHxpj2iulFWhxzM8DAABVK5Vi1A2eH4L62ZO3OvHrvlb8QdqVkx7eKL3tv3zd/VTUx3kAAKThwLOBCF/VfehHVl+8dW8omiTtzEk3PyKd8m++fJ/fv91qd87qxG/4+uWYv8nnXu7r18/wMwEAANz+tN3qjEt83fHkcL/ywQ3Sqf/u6/EX6EOgdbiC0YyRZkZ7pinQVQhGA4AOs2TJkrLtH/3oR5GPffLJJ7VmzZrR7XQ6rb/4i7+oWdskqbe3t2w7n8/X9PwAAAAA0OmKdihwf9KkYp3Htbh/vLSXYRHNOFGDEVxc9SoFC7RKWIbreiP3xfU6sg0OcAMAABhrR3FA9+9cGVi2T+/+OmzK0Q1uUTlXH6rRIbitImwq2thgNKn6fnLWEaA20r91BYWNP3/WD56xFDVorFXEGSsCANDFDnHsf1HS3ZKul/QTSY9IGp/4+hZJq4wxC+Nc0BizVNItkuaP2W0lrZF0g6Q7JG0bd9h7JF1njGGeKFBDzM8DAABViRN2RjBaw930sNWmneX7rJWuuIcF1AAQx3MvR6t39b3u369rN0m/WlujBqHt3Piw1ZZd5ft8K32Hv8kAACDET39ntW13+b6iL12xij4EWkf/YPDP46yMlPBYuwWMx4QXAOgwF1xwQdn2ZZddpk2bNkU69qKLLirbfte73jVholS1Zs2aVbb90ksv1fT8AAAAANDpirYQuD9lemKdJ+ri/HZbxN8IUYMRXFzhFr1eOvS4VgnLcL3OkfviCkjI+1lZy5eKAACgOe4euM3Zlz5t9rlNDwMO60N1p+j9RndwcbR+sqveyHsSJRjZt35IP3lqpHa0iqiBZ5WCnQEA6CKPSPqopMXW2kXW2lOste+y1p5nrT1G0n6Srhx3zCGSbjARO6HGmEWSbpI09kPg1ZKOsNa+3lr7DmvtGZIWSbpQ0tiO71sl/cukXhmAQMzPAwAAVSEYraX9tyOg5/qHJu7fusvqT9srf5adL1g9tclq7UtWuUJ5/a27rIaKVtsHrZ7dZvV8/3DdzTutNmyzemm7le8zzwJAfWzeOfx7pi7n3lW5ThRrnuN3YD0US1bPbB7+27Qn35r3+KpfB7frugfL92eHrNZtsSrx9xIAAMgdvPvtu4f7DGtfGv5vhyOYCmiEl3cH7+9rr2mGQMMkm90AAEBtLVu2TEcffbQeffRRSdKOHTt0/vnn6+c//7kyGfdChksuuUS33nrr6LYxRv/0T/9U8/YdeOCB6unp0dDQkCRp5cqVKhQKSqVSNb8WAAAAAHSigiPMIWnifdSXMj3y5MmXH1ov6qL4buK6J9GDFxyBCYnwYAHndUuNDctwtX8kMMLVTl++CnZIPaa2i7wAAAAqyflZrdr+i8Cy2cm5ev2MJQ1u0UTpRHAfKtvgENxWYUOC0cy457+lE1PKoz9ekfdzka7lqjfSr3W9N2P7/0M272xzuwWIRR0DVgp2BgCgw1lJt0m62Fr7UGhFa1+U9EFjzO8kXT6maImkd0r6cYTrfVnS7DHb90k6zVpb1pGx1uYl/acxZqOkm8cUfcIYc4W19rkI1wJQAfPzAABAVWz4HI0yBKM13K+fcZetfcnq0FcZrdti9c4rfD3y/PD+g+dLP/q/PL1+//Ls65Jv9c83WF2xyir3ymfYvUnp704w+shSo7+92tdjL0Rr1w/eb/Se47zKFQEggif+ZHX+d309/uLw9qELpf/5gKej963dg6QG9tTmPOu21uY8GGat1TdWWH3tF1a7XvlkMelJbz/G6L//zmhqb3MfJjbW6vXusmLJquRL//gjqx89YFUoSbOmSJ870+j/PoO/lwAAdLNHn3eXHfL5vZ/JGCOdfpj0w/d7mju9dfpA6A79jvHSHILRgEAEowFAi9m0aZM2bNgwqWP3339/SdJVV12lN77xjaOTm+6++26ddNJJuvzyy3XccceVHbNt2zZ96Utf0re//e2y/Z/61Kd05JFHTqodYXp6enTiiSdq5cqVkqSNGzfq7LPP1oc+9CEdfPDBmjKlfHHIwoULlU6zsAIAAAAARhQdwWgpryfWeYwx6vUyyvrhs5B6CUabwBVskHUEho1XKVjMfV1XIENjg9HyjuuNBkeEBD/k/Kx6PILRAABAY923/Q5nv3fZ7LOViBkyXA+uvl7UcK9OE/ZMTjNuLlrGce+ihMpZa5310q8EF0fph2dL7nFVpQDkVhM1GC3TZoFvAADU2P+y1m6Ic4C19tvGmGWS3j5m99+qQjCaMeZgSX83ZteQpL8fH4o27lq3GGOuHXNcr6QvSXpfnDYDnYr5eczPAwCgqUqlGHUJRmukFwbCPpmWDv+Sr9y3PZ1xia8NL+/d/8wW6bRv+Xr+m56mp/d+gP3NX1r9x6/Kz5kvSleusrpyVfi1xvvbq6wOmmd1/IEs1gZQnaGi1Wnf8rVp5959azcN/x7b+HVPU2oUjNW/J97vOZd1m2tzHgz7nwetPntz+T0t+tL1D1lleqSr/749/s48PyD956+srrlv72vZPih98karfft8veP1hKMBANCt9uuT/ritcj1rpdufkN79375u/6dE/RsGjNHvmNbYRzAaEKj5M7wBAGXOP//8SR9r7fAHesccc4wuu+wyfehDH5LvDycYr1mzRscff7wWL16sI444Qul0Ws8//7wefPBBFYvlX5qefvrp+spXvjL5F1HBJz7xidGJV5K0YsUKrVixIrDuypUrtXTp0rq1BQAAAADaTcEPDkZLmlTsc2W8KRWD0VjsPpE7tCJaQJmrXqV7nXYEKuQiBD7UkjM4YjQYzR2kkPMHNUOz6tIuAACAICVb1F0DywPLMt4UnTjr9Aa3KJgrXLbRfb1WYa3vLDMqn5DvChiO0j8v2oJ8BS9ETJvw4N+yYLSQ9yksOLgVeSahXpNW3p21Iqn9XhcAALUUNxRtjMtVHox2SoRj3i1p7Gz8m6y1z0Q47hsqD1R7hzHmw2GBakC3YH5eOebnAQDQYH6MYLRi8PwQ1MdND1cO37l4uS0LRRuxMzd8/N+dsPfz6++trm2YzzX3EYwGoHq//IPKQtFG9O+Rbv2d1flvqM3vmYEafcW5bmttzoNh14T8bfrxb60uf7dVpqf5f2sKxfC/oU9vlr7/m+A61z1g9Y7X16NVAACgHUQNRhtx55PS8/1W+/Y1vw+E7vHy7uD9fVP5OQSCEH0NAB3qAx/4gK6//npNmzatbP+6det066236vrrr9d99903YdLV+973Pt12221KpeIvqI/qLW95i/7lX/5FiQQpygAAAAAQV9EGT3xNTSIYzRUgMFY6UblOt6k2tMIVmlDp/XAFjuUiBrLViitgIlowWmPbCgAAsGbXavUXg2fMnzzrzaF9l0Zqlb5e6wib7F4+Aaia/nlYnZGxUJTzhwWjtWPYdJSxYpQ6AABggkfGbWeMMZWeIvC2cdvfi3Iha+2Tkh4Ys2uqpDOiHAsgGubnAQCASQl5KMQEJXcw2p681d1PWS3/ndW6LXY0wBWTFyV85+u/cN/n372w99+Deat1W2rQqDGuXMV7DKB6j7/o/l1y1b22YiBVVP3hz2qN7E/bh//moTYef9FdlitI61skiG5jf3j5zY9YZ/jefX+sfXsAAED7mDOtcp3x/vCn2rcDCLNhW/AYZ970BjcEaBMEowFABzvvvPO0fv16XXjhhZo7d66zXiqV0hlnnKHVq1frqquuquukqxGf+9zn9Nhjj+kzn/mMTj75ZC1cuFCZDAsoAAAAAKASVzBachLBaFFCIFwhAN0sLLTCrzCJ2VpbMVjMfV1XIENjwzJc1xtpX1hAQtTwOAAAgFqw1urO/psDy5ImqaWz39LgFrkRjFYueixadfcuG1JnpH/rOv/Yfn2uFLy6I6GkUqanYjtaTZSxYoYQbQAAJqMYsM/ZWTDGLJR01LjjV8e43t3jtt8c41gAETA/DwAAxFYqRa+bzwfuvvkRq/mf8LXs332dc7mvQz7v683/4WtnluCYavTvru74S++0emFg+D24/9kaNAgA6uBff+n+W3HXWunAz/p69Pnq/564Qqsmo1XCutrdzqzVll3hdd5xhS/fb35/olJYaVhY6O5cjRsDAADaSjHGxy4j1m1pfv8H3eUZR5j+4vmNbQfQLpLNbgAAdLsNGzbU9fzz58/XpZdeqm9961tas2aN1q5dq61btyqfz2vu3LlatGiRlixZounT48fIXnzxxbr44osn3bbDDz9cX/va1yZ9PAAAAAB0o0INg9EyEULPoiyI7zZhYXF5P6dMwl1esEPyFRyeVjkYzRX4MChrrYwZHxFRH66AiZFAtIRJqMf0ashOnKTdrcEeAACgOZ4cfFQv5DcElh034xTNTM5ubINCuMJlc362oX29VmFDotHMuOe/VRMg7AotHj5vpux/xxsbquYKWMskprTlexdlHNhrGCsCADAJi8dtFyVtC6n/5+O2H7PWBieyBrtv3PYRMY4FOgbz85ifBwBAS6nwsLUyhYnfuW/ZafWuK30Vxi30vf0J6Us/tbrkne33eWSr6N9T/ULoD/3A188+ltDZl8V4n2MY2GM1eyrvMYDJ2bTDakeFr89e3D4cjrX2//HkeZP/fbO9hsFoz2yWjlxUu/N1q3WO8IWx1m6Sfvo76dzX1b89YaoJJ/GtuvL7dQAAMGxoEsFoBPGikXbnrF7aEVy2eD59WCAIwWgA0CU8z9Oxxx6rY489ttlNAQAAAABMUsmWZB2hWqlJBKO5whfGCgsB61ZhwWd5PxtaHhbOMNlgNF++CnZIPaY39PhayZWCZ66NDdpLexkNlQhGAwAAzXVH/82B+42MTus7t8GtCefq69kG9/VaR0gw2rhJ7GkvHVgv51decZENqVMpGG1sqFrOD84nadeg6XTImCZOHQAAMMF547YfsjY0FeHwcdvrYl5vfYXzAagh5ucBAIBI/BgrdAOC0X7ysJ0QijbiugetLnnnJNsF9ceJoXZY8Yfh8LrBoerPFeSZLdIbDqjPuQF0vhvXRAubWrdFeui56n7fbNtdfdjkaHu2WkkEBFRr+D5Wdt2DVue+rrn3O0qIm0u+KGWHpCnd9vU6AACQJA0V4x+zPmI/CaiFDS+7yw6e37h2AO2EYDQAAAAAAACgTRSse+ZkchLBaOlElGC09lzIX09hgXJZf1CzNMdZHh6MFh4sEFae87Pq8RoUjOZ4Db1jAinS3hTtLG2feKwjVA0AAKDWNubW66nBxwLLXjvtWC3o2afBLQoX1tfL+oMN6+u1ijjTzVz3Lkoob95RJ2V6lDDJ0PMX7JBKtqiESToD1jLe1IptaEVRxoEZxooAAMRijJkm6f3jdgcn+e61eNz2xpiXfW7c9hxjzGxr7UDM8wAAAACoFT8sG3mcoYnBaL8ZH388xpZdUv8eq76phMdMxss1CEbzrfTf99ZvQfUzW6zecEC093fLTqtfrbV6erPUk5RSCWlWRlr6GqPF84fPkS9YrXpGevxFK99Ki+cZnfIaaeYUfoaATvTES3HqDv++efIlq1VPW+0a8yfpNQuMlr5Gmp4e/l0xVLRavU569Hmr0iu/An/x+9q1+5kqQrK6zfj36/BXGf3lIVLJly69M9rfpxvWWC34sa/9+vbuGxyS1r4kLZwpvXrW3v0HzDFadqg0u8Z9j2rDSfoHCUYDAKBbDcXIox9RTSgrENeOkCmNY/vaAPYiGA0AAAAAAABoE0VbcJYlTU/s82UqBHFJlcO6ulFYSECl8IWcIzCh0nkrX3dQM9SYb0Jc4RFjf1bGhqSNFSWcAgAAoBbu7L/FWXZ63183sCXRhPX1hvtfsxvXmBZgbfDiQBPwNHjXvYvS93T1z8ees1L/f2piurKOAOB2HU9FCUYLC4wGAACBviZp4Zjt7ZL+u8Ix4z/wizUt31q72xiTkzT2w7qZkghGAwAAAJrAWivZGEEfQ7myzd89b/XDB8KPX7dFesMBk2kd+msQjCZJn7+lfsFoX/mZ1XuOq1zvnqeszv22H7jY1jNWl7/b6O3HGL31Ml8PPDu21Gq/PukXF3o67FWEowGdZt2W6L+fnt4sfWOFr4tuCjrG6uD5w78r5kyV3vZtX3c/Xbt2jnf1vVbf/VsrY/i9FObrv/D12ZvHv19WPUmpWBoO74zqsruiVrZ61Uzp5x/zdNS+tXt/qg0neXqztKi7vl4HAACvGCrGP+aP26SSb5Xw6G+i/nZPfA6CJCnhSb2kPwGB+L8GAAAAAAAA0CaK1v1NTcpLxT5flIXsURbEd5tek5aRkdXECUBhwWfD5e5whkrvR6VgtEZxvYby8IjgAAiC0QAAQCNsG9qsh3etDiw7KHOYDsoc2uAWVdYqfb3WFxSMNvm+Z87PBe6PHow2OByM5gevmMsk2jUYjRBtAABqyRjzNkn/e9zuz1lr+yscOm3c9mQ+XMuqPBht+iTOUcYYM1/SvJiHHVTtdQEAAIC2VyrFq18oXyn5sR8HP1BirGe2WL3hABbyxlXyrbaHjLimj3s2XK4gFWK+nZI0e4pUfOVt3BX88XSopzdLu3JW09Pu99j3rT7wg+BQNGk4GOdjP7Z64FmNC0UbtrFf+ucbfN32sUT8BgJoac/ECJv6+eNWj70Qfq6LbrJ67SLVNRRtxG/+KJ3Ap0tOT2+2AaFowyYTDhLHSzukj17na9WnavN3o+Rb/XFbdee46CZfD3yWv2MAAHSjsL5PKhE8lh8qSi8OSPvNqV+7gBF7HMFo03pFGDTgQDAaAAAAAAAA0CaK/pCzLGnif9QXbbE7wWjjGWOU9jLKBgRUVA5GCy5PmR4lTPhknPBAhsYEjvm2pLydfHgEwWgAAKAR7hr4qXwFLxA7bfa5DW5NNGEhud3YhwoKIZaCYtHcfc+8n5W14U+Pd/XPx46VwsZN2VJWSrnfo4w31XlsK4syDmSsCABANMaYoyR9f9zu2yX9V4TDxwejTWLZvLKSZoecczI+LOlLNTgPAAAA0F1s5WCzMoW9c0Q277T69TOVD3m2yiCRbrVtt2SDP5bWQ5/zdMyfTfyc+R3fKenGh6NfY9mh0p2fiBbS8pmbfH1zRXCD7nhC+utj3Mc+/qK0rkL4UaEkXXOf4wVLWvEHaXfOalpIABuA9pIrWG2sFNE/Rlgo2ohbf2e1dtPk2zTeoQvlPN9tj1mdcBC/k1xuetj9O70R7l0nbdlpNX9G9e/Rph3Vh7k98VLVzQAAAG1qyBFi/p/vMrrgjUazLgz+bGbdVoLR0Bi788F996m9DW4I0EYIRgMAAAAAAADaRMEWnGVJ0xP7fNEWu1cOT+tGvc5gtPDQirwzMKHyffZMQr0mHRhM1qiwjLzvXnuZTlQOj6gUHAcAAFCt3aWdum/HnYFlC3r20WunHdvgFkWTMAn1mF4N2YmPBCQYbS8jb8I+17jGyipvc0qbsNA5VzBa5dBfaW//PuvvCSyP0s9vRYwVAQCoDWPMfpJuU3kY2XOS/sZa15L7UI06BgAAAEA9+OWrc6+c9X5tTO2rPd5U7fGmareZqt3eNL2quEnT/Z3a/ZvXSi/4SnjSrogfE/cHf1SJMX67wepnj1k9/JzVSzukN/250bzp7vr7zA7ef9IhRjfGCKI5aF70sJi/PNg4g9FWPmX1hgOkG9dYPfnS3kGftdKK31u9uD3yZZysldZvlY7at/pzAWgN67e6AyAna6g4HMZYK5843egffhDcyJd21O46neinv2v+R4CHfdHX8o96VQfYvVyDvkx2SMoXrHpThOkBANBtXAGrPUlpRsZo/nRpy66J5Rdc7evhz3s1CXoFJOnOJ6zueNJqYFA6bKH09mOM9ptjtGfi9FBJ0jSC0QAngtEAAAAAAACANlEMCUZLmVTs87HYffIy3hRt18sT9lcKrcg5gsV6I7wXI/XypYnnyJYaEzgW9vqihEe4guEAAABqZdXALwLDxSTptNnnyjMTg7VaRdr7P+zdd3gcxcEG8Hf2Tro7FduSLbnJVZKNjQGbGGyDHQwGU0MnkFBCSyGBQBKSEJJQEkIgdEJIIQQICUn4ANObMbbpBoMpxk2Se5UsyVa705Wd749zke5m9qquvr/n4cE3szc72tvbm72bfdcFb4DBaFaEYu6Z1TmLx3Rbnvfotm3P8bldFMAGOwIInzm3N1hNNx7P1vOpaPrtivIchoiIKF8JISoBzAcwvEfxdgDHSSmbomymI+RxPB/Aoc8JbZOIiIiIiFLFNHs9/FvZ5fjUeYh++fUA1scWdNLKYDRL/3jHxHcelzB7bNZPNuq3cakTqNSEpl0wTeC+NyTW7oxu3bWDo+/n3AP1dX9aKPGnhX0fgHPX6xL/vIwXhBPlirod6e6BtckjgItm6IPRWjrTH/yVqV5dLvHB2nT3AmjtAmbebuLecwV+OCf+3+STEfJqSmB9MzB+SOJtERERUXbxBtTlhXtSdWoq1cFoW3cBQ641seYWAzWVPBemxPxynonfv9L7HOb3r0i8do2BDk0wWnFhCjpGlKUyd9Y3ERERERERERER9WIVjGaPKxgt8sXu0YSn5SPdttsbjKCjq492O6c7cCzqYDSbup/uCNuHiIiIKBFesxuLdr2srOtnK8Ph/Y5KcY9iox9j5l8wmpSmpiZ84pnVWDrSONkTUNe7erwWQgjtOva+NrpxvsuWrcFokc9Pog13JiIiykdCiHIAbwAY16N4J4BjpZR1MTSVqcFoDwKYFON/pyVhvURERERE2c3sfXVusZn83GIGx+i5vRI/fap3KFokNRXB74hVyooF3v9F9Jfl1VREf2G1zRC45Mj0Xoj9ryUSZiwbi4gyWl2j+v1coQl/TNTwAcBXRlkvc/ho4Ku1wPUnCSz+qYFCu8CvTlYf+5IRlpWLpJT46VO631Wj8+JVyb3E/Nr/k9jdFf/nR7Je6/rG5LRDRERE2cUbft9LAEChLfj/6gjn5re/yvNgSsyGZonbFPvRzg7gpudNdGqC0UqcfdwxoixmT3cHiIiIiIiIiIiIKDq+pAejRb6OThdwle90284diBSMpg5eiDoYzVYEKHaDVIVlWK2nZzCCPsDNk/Q+EREREe31QdtCdAR2K+tml52MAiOzb6vnMNSzWzwRxpi5SEI9yUyogtEswsfiHZ+Hhn45bS50muG3C937fLepnqHviiKMOhNFCtE2YEOByOz3ExERUboIIfoDeB3AQT2KWwEcJ6X8MsbmQge3FTH2pQThwWi7YuxDGCllI4CYLi3UBQkQEREREeWVsGC05H/328zgGK0P1gKtMW7y2sHW5zIVpQJ3nC3w06ciXzhdUxnbug8aHtvyfWH1DmDC0HT3goiSYc0OdflXRgKfbgK2tyVvXa4CYOPtBoQQML4T0C73wfW2sLKBJeplGYymtrEF+HJr/M/v5wROOkjguAnA/JXJ6ZPfBN5cDZwxJb7nNycp5LW+SUJ10y0iIiLKbd26YDR7cFxQHeHc/MmlEg9dlOROUV55dbmE1AxpX/0SGKv5xb+YU/GItBiMRkRERERERERElCX8mmA0AzYYIvY790UVjBZlYFe+iTf4y6OZ2BwavBDret19MGFapVsTHCEg4BD7gzx0QQq6v5+IiIgoUaYMYEHLs8o6h3DiqwNOSHGPYqcdY8rUhOBmklimuxcKh7Yu0vhTVx/6WjiE+rXZH4yma6fYcv2ZKtJ5oMsoYrgJERGRghCiFMCrAL7So7gNwAlSyk/jaLIu5PGoGJ8funyLlLI1jn4QEREREVEymGavhyVmR9JXweAYvWBASmyqo4inPv7AyMFoI8piDxibO1Egtm/Lk6+OwWgxkVLivx9JPP8pUOIELpohMKs29u/SPT6J+xdIvN8gUTNY4AezBUYPyszv5KWUePwDiZc+Bxrbg/troQ04bIzANXMEBpVmZr+z3aYWiQcWSnyyQcK/56OlslTg5IOBC6cLCCHg9krc/6bEO3USzgLg6U/UbdUMFujyyqQGox1/YPwh+eWae/cw+DNcQ6PE1/9qRl7QwoUz+uY9etafTRw1Lvhvhx34yigBRwEw7xOJzzbvX276WGBUucDODolCO9DlBRavSU4fEgmMIyLqqaFR4qF3JP7wanCsU1MJPPANA3MP5DiHKBN5dcFoezJ5j58ocNPz+nPtdg/Q2S1R7OB7nKK3fqfEnxZJLNso8eYq/XK+ALBym3r/K9FPgSTKewxGIyIiIiIiIiIiyhK6YLQCURBXey5NeNX+dgthj7PtXBdv8JdHEywW6bXYv15dIFtqwjJ0gQ8Ow9VrQpuun7q/n4iIiChRn3UsQZNvu7Ju5oC5KLJpbi+eQXRjTHcgH8dQ6glABsIDoQ1hwGm4lGPNSONP7fjcVmT5eP/zuyClhEfzGumel+kiBaM5DKdlPRERUT4SQhQDeBnA9B7FHQBOlFJ+GGezK0Me18T4/LEhj1fE2Q8iIiIiIkoGM9DrYbGZ/JQXBqPp1e2I/Tm1gyMvM2m4wGUzBR5+R/29ts0AbjtLwGbEdlH1xGEC3zxc4IkP0xeOFgyT48Xg0bpBxuAAACAASURBVLrheYnfvbT/9XrsPYn/fdfAGVOi34YBU+KEe028tS8qXeLx9yXe/bmB6srMey1+9rTEXa+H76PzV0o8uVTi/esMDCzJvH5ns43NEkfcbmLrrtAaif/7GPhiC3DbmcDce0y82xC5vXGVgNsr8FZd8o41vz4l9hu87hXcX8L70tIZDOLjjXuCVm2TmPUHM6HAuBFlwI+Pi7w9Dx8NfLh+/+OBxcHPtsZ26+f1DDh7fYV6//pgLfDB2vj3vTkHACMHCjzybngbf39b4i/nSxgxfv4SEfW0ZofEUXeY2NEjQLS+ETjhPhP/uFjg4iPi/8wjor7hDajLC/ek6hw+Bpg4FFixTd9GfSNwyIjk941yU0OjxJG3mxHHx3st26QuZxgfkR6D0YiIiIiIiIiIiLKEz/Qqy+1GfOFljogXu1vX5zOnTb1tdMFhe+kCE6Ld1vEGsiWLLoAtNDhBH4yWmn4SERFRfpFS4vWWeco6AzYcXfa1FPcoPukOwc0kUhOMpuNIcjBa6PhcN173mG74pBcBqG83qhu/Z7pI/c7Wv4uIiKivCCFcAF4EMLNHcReAk6WU7yXQ9PKQxwcLIYqklNF+yXZkhPaIiIiIiCiVTLPXw+Koh/bRY3CMXkNT7MErNRXRbce/XSgwd6LAwtUSu3t87TyiHDhzisDhY+J7PR6/LHnBaD87QaDLCzR39C43BPDvJep11DUmZdV5obUzPCDMbwI3v2DijCm2qNt5YyV6hKIFNbYDf1woce+5mfW+bmyTuH+Bfv+sbwQee19GFbxE0XtwsVSEou13/wKJA4chqlA0AKgdLOD2JS8U7duzBKaMjP81Ly9Wl/sCQEc3UMp79wAA7l0gEwpFA4Al1xsY0j/ya/XUFQbeqZN4ux6orgDOnyZQ4gBKrzIjPjeZShzAxUcKNHcAzgLgiGrgwukC97+p338XrgbmTEhhJ4ko5/x5kewVitbTTc9LXDhdxhyATER9R0oJr3oK175gNCEE3rvOwICr9WMZBqNRLP64UEYdigYATZplix3J6Q9RLmIwGhERERERERERUZbwS5+yvEAUxtVepIvZXQxG09IHlFkHL0QbLKZfry6QLTVhGbrgt9B+6YMjPJyETURERElX5/4SGzx1yrqp/WahvKAixT2KT7pDcDOJlOoJ7LpxpNMowm60hJVHCpXTbVtXyGthFfxrFY4c2k62iHR+Eu35CxERUT4QQjgBPA9gdo9iD4BTpZRvJdK2lHKbEOJzAAfvKbIjGL72epRNzA55/Eoi/SEiIiIiogSZgV4Pi80OzYLx85vBCywr+yW96axXtyP259QOjm45IQTOmQqcMzW5cyGEEJhVC7yt/gkkaneeI/Dj4wxtfanTxF8Wh38v39CYvLCkXLdwNeBRTOv6fDPQ0ilRXhzdvvHkUvU2f+gtiXvPTaSHyfdOfTCsysqi1RI/Pi41/ckXC1dZvy99AeB3L0X/3q2tBLp9AojxpkU6cycmdhwcqAlGA4AtrcABQxNqPmc89HZir9dphyCqUDQgGEh23uEGzju8d/nPTxC4/dXUfU5cfKTA/eeFf5bVVgK6/XfRGok5EzhPkYji93ad/ji3sQVoaALGRXnOQER9z29xflLYI6+6n0ugshTaMKu6RgmAYwiKzqLVyRkTlzAEmkiLwWhERERERERERERZwqcJRrOL+L7mKzAKYBd2+KX61jiRgtPymVUwghVdcFr0wWjq1yRS4EOyRBvspguAkDDhld1wCP5yQ0RERMnzRsuz2rpjy05PYU8S4zDUY6RI4bu5SGovvlBPOtOFOluFlgH6bRsa9Ksb33pMt+U5QNYGo9ms+x2pnoiIKF8IIQoBPAPg2B7F3QBOl1IuSNJq5mF/MBoAXIIogtGEEAcAmNajqDOa5xERERERUR8yzV4Pi/vophgNTQxGC2WaEg1NsT9vcL/0Xwh9+mRhGcgQjVMneGE+eDPw4XxgwCCIM6+A+OppkN5uyH/8BjUflgH2H4U9r64xodXmjTa3xNl/MbX19Y3BG8Lc9oqJTzYGAwz3GjYAOG2ywC9OFDAE8Mi76tfa7QOa2iWunyfx1hqJju79deMHA5fNEjh/Wnhg0N/fNvHP9yU2tgBfGQXccIqBQ0ao92uvX+I3L0q89LncFxCwbff++opSwN5jFT3rdF78PPIy1NvOdolfzJN4u06i3RMscxUAR9YITB0NfLQ+chvRHu8KbMDIcqCyFCh1Yt/64lVUCBw3MbE2RpQDQgCqeyjVN+VvMJqUEn97S+JfH0isaVRvn56OqAbea9DXn3hQ9J9vxZp79p4xJbXBaCceqO7znAP0z2ng5xgRJag+wnFkLYPRMsbmVonrn5F4r0HCrb7cgvKA1RjJUdD78WmThTZstj6O7w8o/+w9d/t8c3LaG1WenHaIchGD0YiIiIiIiIiIiLKEXxOMViA0s0+i4DBc8AfUt7uJNqwrH8UbUKYLTYg2WCDeQLZk0Qe7FVk+Dm1DF/pBREREFKut3RuxvHOpsm5i8aGoco5ObYcS4NKMCfMxGE1HN0U/NMhsL6vxuZQy6uBiXfse0w13oFO7DpfN4rb2GaxQOCAgtAF1PFckIiIChBB2AE8COLFHsQ/A2VLK15K4qn8D+BWAvfcxP1MIUSulrIvwvJ+HPH5SSpng5a1ERERERJQQM9DrYYnZkVBzJQ70Ckfaq65RYkZ1+gO9Msm23Yj54vi7zsmMbXj5LIEXP5dYuFpdf0Q1cOsZBmbfqQ7m+u1pAmPvOxf44NV9ZfLjhcBvnoB89V/Aey+juuQkYER4MNrGFqDbJ+EoyIxtkYlMU+LYu/WhaADw1McSf1qoDmjYthv4eEMwuCzSRdCDf6Jez7bdwKI1Em6victn7U8uu+t1Ez99av/3/BtbgPkrTHz0SwPjh4S/phf83cRTn+jX36SeXhbRh+skDh/DfSgaXr/ErD+YWL0jvG7tTonHP0ju+qorALtNoMQGPPANgcsek72C+1TOmALMWxZebjOAP35DoJ8rsdfaWSAwoiy4v4aqb5TQ/1qY2/7wmsQvnok+hOz5Kw2c+1cTC1aF1504CbhgWvTbscCuXvaw0cAP5wjcv6Dvw9GqK4C5B6rrSpwCVWXA5tbwuuA+Q0QUv8p+QJvFLytrd+bvZ1Mm2d0lMeP3JrbsSndPKJMV2no//tXJ+mC0Bo4hKAKrc7d4ja3g5wmRDoPRiIiIiIiIiIiIsoQuGM0uCpTl0XAaRejUBKPpLv4nfRCAO2IwWnTBC8leb7Lo+h+6r1gFn3nMLvRHWVL7RURERPnrjZZntXXHlZ2ewp4kzip8K9/oArkEDGW5LpjXatv5pBcS6qs7QsfdVgHFunUIGHCI7AwENoQBh+FM+PyFiIgoVwkhbAgGlp3Wo9gP4Fwp5YvJXJeUsk4I8RiAS/cUFQJ4VAgxRxd0JoQ4DcDFPYq8AG5OZr+IiIiIiCgOIcFoxQncAG1WLdDhAZZtCq+rb4y72ZxVF8c2uWB6ZlyQWuoUeOVqAwtWAh9vlPDv2Y1sBjBlpMCxE4JBQo13GXjqE4knlkg0tgNHHyDw7ZkCU8yVkLe9GtauvP17QGcbAKDWW69ct5TA2p3AhKF99udlvUVrgKUbrJe58/XIF9X/XXNBfizueE3i8lnBfwdMibvnh7fZ0Q38ZbHEPef23r/XNknLULRE/PZFEy9cZYu8IOH5z5DUC+sjqa3c/+8LZxiYNlZi/gqJq/6j3x+f/K6BhauAjzZIdO+ZyjioBDh2gsABQ5Nz3Kyt1AWjJaX5rOMPSNyjeD/rnDEFKC8WePmHBhasApZuCH52FNiAaWMEjhqnDzuLhRAC954rcO5UiT8vktjRJvGV0QKFtmAg4qtfJryKfRZda8Bm6Pt886nBYL9QDU3J6wMR5SdfwLo+Xz+bMs1/PpIMRaOICkNSdUaUC/zuDIFfzgsfQ8TzHQLllxf64NytuiK57RHlEgajERERERERERERZQlfnwSj6S9od2nCBcgqeMF64nLiwWjq9XanORjNFdJ/q30nVX0lIiKi3LfL14yP2t5S1o10VGNc0UEp7lFidGPC/Bw/6YLR1BPe9cFl+m3nthi7h467rV4bt9mp7ZMQmXHhXDycRpHF+QvPFYmIKO/9A8DXQ8quB7BMCDE6xra26wLOergRwBnAvrsNHAHgDSHE5VLKVXsXEkI4AHwHwF0hz79LShnhMm0iIiIiIupzZu8bNZSYHXE3ddlMgZc+B5ZtCv8ulRfnh6tvjC10qrw4GPSTKQrtAiceBJx4kP4750GlAt87SuB7R/Uul/98Qf2EPaFoADDGtx6GDMAU4eFV9Y0MRrPyfkPigWbJUtcINHdIDCwRaGgCtu1WL7dw9f4+SynR2Q0sWNV3fwePSdF7f21q96fxQ3ofU8YNFhg3WKCx3cRvXwzvy5lTAJshcOxE4NiJffcbWHWlUO6TsR7Lc8W6nUCj+r63ShP2BNQV2AVOmAScMCnya3X5LAPzV4bfUKqyNPL6ZlQLzKjuvY7mDomKH6tvUBWrUicwbID1MtUVAqrfl1u7gJZOifLi7P3NlojSq1s9bX+ftU35+dmULp3dEnLPJrfbggHRALBkbRo7RVlDdY5/6Ej1GGLrruD+VuzgGILUkn3uVmgHRpYntUminMJgNCIiIiIiIiIioizhT3EwGi921wsNAtvLL33wS5/yNZFSJhwsoA98iP9O0rHQrccR0i+H4dS24c7LYA8iIiLqC2+2voAA/Mq648rPyLpQKt2Y0CrAK1dppw5pXtJ4xslWdaHt6V8bt/b1yfag6dAxfk/RBjsTERHlsIsUZX/Y81+sjgawyGoBKeVmIcSZAF4DULin+EgAK4QQHwNYC6A/gEMBhN5L+kUAv46jX0RERERElGxmoNfDYhn5u98fzhG4f0Hvb0xdBcCphwis2q7+JvW/H0k88e34u5mL6mIMZjr3MJF1vzGoyIblkA/dEHE5h/RipG8T1heODqura5TQfjlPeO7TzArDuPF5ifU7Tby8XL/M55uBgClx/TyJf74vsaNNv2wyrN0J+AMSdhv3o0gefz+1+9M3Dle/JucdJpTBaF87JDWvYW2lujxfQ/Zi/bvPnRr763TSQcHxhTtkeuq3jojvNR9YInDsBOCNlXE9vZevT438mVyj2WcAoKEpGHhKRBSPbvWUpH3y9bMplaSUuP9NiXvfkNjQvL9cCGByFXDveQYeS/EYirLPYaOBitLw8URN6K+qPcxbJnHBdJ7DkNoTS5J73DlzikChnfsbkY6R7g4QERERERERERFRdHymV1lekFAwmv5ifaeNF7vrWIUE6MLPfNILEwFlnVV7PekDH9wwZXLusmilWxvs1rtfhrDBIdThaJ5A/gV7EBERUfK5A514Z/dryrqBBYMxuXRGinuUON1Yr9t0Q8r8msQnNWNbobn4ymqcrKMb26ras3pt3JrxbbYHTevCoAEGoxEREaWDlHIRgDMANPUoFgCmAvg6gOMRHor2HwDnSSnVX0oSEREREVFqmb2/5y02OywXH4RduOU0gZMm7S9zFQD/utzAgCJheQHvZ5vy6zvlSBoao98eR1YDvzk1+y9GlW0tkFceE/XyNd56ZTnDHvR2dUks3ZDuXvT24CJpGYq215hfmLjjtb4PRQMAXwDY2NL368l2G5oldlp/LCTVH84WmDJSfaybMFTgvvMEjB7V354lcGGKgiFqKtXrWd8MeP359/lW3xT933z31wUOqor9dSp2CMz7voGiwv1lx00Abjgl/tf8LxcYGDc47qcDAKaPBW49I3IfhvYPjpFU6mMYAxARhYoUjLZ2J2CaPM70pYffkfjR/3qHogGAlMCyTcBRd/T93HnKbiPLgScuV0fqjBoI2DVpOxf9Q6K5g+9vCrepRWJ7Es+lK0qBO8/J/u+hiPqSPd0dICIiIiIiIiIiouj4pfoXVruRSDAaL3aPh8si5MATcKPE1i+s3Cp4wSp0oCercAWv7IZT9O1r5tYGo4X3y2G40B3whJVbhVMQERERRevtXa9pxxXHlp0Gm7CluEeJ042/TZjwSS8KhSPFPUof/bQyXTCaepxsNfbUjW2D7UUXjOYxu+A2O5V1Llt2B6NZhmhneegbERFRtpJSviyEmATgZgDnAijTLPoBgDullE+nrHNERERERBSZ2TuzuFjz3eJe1eZGlDgH4vkrDazaDmxqBaaNAQYUBb8nDQbHqL9N/dMiib9dyIsq96pvUpf/+hSBM6YIrNgqIUQwDOig4YDNyIFtt+BJoGN31IvX+NbiDUU5A2X0/vtR9m6bza3xP/dfl4W/P/q5BA4eDoz+hTqYoq4RGGsR5kjAo+/Ftz9tut3AX96S+N1L+uf//kyBEXu+RSoqFJg2Bhg6wPo4d9UxBs75isQnG4GJQ4HRg1J3XKypVJebMhiOlmjYVraxCqh86CKBdg8waqDAEdXA4H7xv05zDxTYfqeB99cCVWXAAUMAIeJvb2yFwOc3GvhkI7B2T7ibwy7g8QdDGb9aKzCoBPh4A9Dtl6gqExg/BFi2EWjplJgwVODgqug+k4UQqK4Alm8Nr2PAJxElIlIwmscHbN0dPG5S3/jL4vjH3N+aIXDcxCR2hrLO6EECh40CCuzq8YTdJjBmUPB8ReU/H0pceUwOfD9ASfXY+/rj0s9OELj5awKfbgLcPuDXz5p4t8G6vc23G9p9lIiCGIxGRERERERERESUJfzSpyy3i74KRuPF7jpW28ZjdmnK9cELjiiD0azCFTyBrj4Ps9OFu6nW6zRcaAuEz6TUbR8iIiKiaPlMHxbuelFZV2wrxYz+c1Lco+SwGst5TDcKjfwJRtNdzGdog9H0wWU6urFtoXDACAnW07Xvl350BNS3gHQZxdp1ZwOrcxSGaBMRUb6TUqZtZrKUshHAFUKIqwEcCWAUgCEAOgFsAbBMSrkuXf0jIiIiIiILsndg0CjfJsvFJ/lWA5gCwxCYOAyYOKx3/YSh+ueu2pa9gU19oaldXT52EDB5hMDkEblxAaqUEti2DvD7IF96LKbn1njrleUMlFHz+CQeeTf/3mdzJwLfnGZo64f2B7Yp8vjqdkgcf2BuvM+SodsnsWo7EDCBkeXAoFKBZRvj258GlgBH1Qr8TvPbWrED+PGxIq4L7Yf0FzjpoLi6tc9tZwpc90x43y6dqe9PdQUgBCAVf1J9Y/4FozVoAiovmylw2Uz9+zEeJc7kBsgU2gWmjwWmj+35evd+7UcP6l12wqTwZaJRU6kORlurCUclIookYEoE1JmvvTQ0xhaMFjAltu8G7LbEAi1zkZQS65sB0wyG6voDwOeb42/vt6cLVJVxG5O1ScP1wWgfb0htX+K1s11ie1sw2NZuC+7zHp/E6j3nHDWVwTBrSg6rc7cLpgk4CgSmjQ0+PmyMwLsN+uWnWgT3EdF+DEYjIiIiIiIiIiLKEn7pVZYnFoymD9rixe56ViEB8QSjuaIMobNar9vswgAMjKqdeHkC6r9NF4ym0m16ktonIiIiyj9L29/Cbn+Lsu6oASdlbYCYdfiuG/0wIIW9SS+puXhDNwleH4ymH4O7tWPb8NfB6rXZ5W9Wlkc7xs9ULgajERERZTQppRfAwnT3g4iIiIiIYhAI9Ho43L8V07s+wAdF05WLX9D+PwDnaZurKNVfOPlOffCiciF4cSUAdHSry3PpwmC5bDHkD+fG/fxq71pl+caWYIiToyB3tlUiTFPi189J3DVfwutPd29S74Lp1vtBbaUmGI0BewCCx+VbX5b43csSnh73Rz1uAvD5ltjbcxUAzgKB2eMlqsqAzeH3r8Q3Do8vFC1ZTpss8KtnJfwhwTLnfEXfJ2eBQNUAYJPi76lvlIgnNCub6d4/NZWp7UemG1shoLr5Vr0mWI6IKJJu9b3MwyyukzhqvP6zSUqJNTuABask3lwpsXA10LpnusqZU4DHLjVQ7MivzzaVzzZJnPNXc18w84gy4HdniLAxRCwYikbRuHC6gXnL1DvaY+9LzB5v4ltHJDeMNlmaOyS+8ZCJN1YGH5c6gTvPEdjYAtz5mkT3nnNWQwTPCx66SMDJc/uE1e3Q1x0YclODi2YI3PuGfjx64Qy+HkTRyMyjMBEREREREREREYXxS/WMuoKEgtGsLnbP7gv5+1KBUQC7UN93Qhe+YBXKYBV41pPV69Vt0X6y6P4GVf+dNvX+49YExxERERFFw5Qm3mh5VllXIApx1ICTUtyj5LEa6+nCd3OXekKQbiqQ7txFF+wL6LepOvRXf27U6tsZU5+yhdU5CoPRiIiIiIiIiIiI4mAGwoqe2vwNTOta0qus2OzAn7ddiVm734zY5L8v119A+eh7DAIBgkEEumC0kuy8z0oYuWsn5NXHJ9RGrbdeWW5KYJ36a/C89Mh7Er9/JfFQtB8cndkXPw8fANxyusDgfsHHDjtwwykC50+z7nfNYHU9g4mCnlwaDNbzhAStzF8J7GiLvT3fno8Vu03glasN1PYIyhICOGMKcPc56d3Xxg8ReOp7BgaVBB+XOoH7zxM4/sAI+5Im9CvfQvb8Aak9BtdUZPZxJNV0+0xDU2r7QUS5wxt++qZ00/Ph45zNrRKPvWfiW/8wMfLnJibcYOLKJySeWbY/FA0AnlkGXP0/jpO6fRJz790figYEA1Iv+kf82+axS/g5SdE5bTJQVaavv+RRiQ/XZeb79NJH94eiAUC7B/ju4xK/e2l/KBoQPK//9xKJXz6bmX9HNjFNqR1f3nqGCLtBweQRAo9fJlCouOzoR8cJfH82j1VE0VBfuUdEREREREREREQZxye9ynJ7QsFo+ov1ebG7NadRhI5A+Kw0fTCaOnihQBTCJmxRrdMhnBAQkIqgCKvgtWQwpYlu6VHWuRT7kW7/SUWAGxEREeWuLzs/xjbvJmXdjP5zUGrvn+IeJY9VEFVfj/UyjSk1E7GEejKQduwpPTClCUOE3zOu21SPbdXBaPrXptXfrCx3aYKCs4X1uWJ2/21ERERERERERERpYZphRUMCO/DuhqOxzT4EW+zDUCi9mNC9CgUIXsEq/X4Iu/7Sr+ljBXQ3mnjkXYlLjkxKz7NalxfQfeVc6kxtX/rMwqf1f2QIcekNwIwTehe6OzDm6lNgyABMxfyVukbggKHJ6Gj2e/z9yNv5m4cLPPGh9XJ3nSPwp4XqZb4yCnj8UgNjK4C364Dj7gk/dgDAvecKXJPEII1iB7DwJwb6u4IBQ0IIXHdCMJRpeBngLIh8wXatJpioPs/CrHT+GcX+E+rVqw2ccJ96H6go3f/vA4cJrPqtgQ3NwM4OoLoCKCvOjIvsT50ssP1gA+t2AqMGBoPcIqmpFFi4Onx7rW3KrzCHTa2AX/3ya4PA8lV1hXpMtL0N6PBIlDgz4/1ARNmjO4Yg3A/WSmxuBRaskli4SmLNjuifO+8Tib9dIGEY+Xuceu1LoKk9uW3OrM3f7UmxEULgz+cb+NoDmkEXguP4w8dk1j61s13ipS9ie84/35O482wZFt5F0du6G3D71HVzJqi36/nTDJw7VWLVdqDAFvyeavxgoMjB14EoWgxGIyIiIiIioqznNbux1r1Ke2F0shSIQox1HYChhSP4RWAf8ZlerPOsRpt/N8YXTUKpfUC6u0Q5wmd6sda9Clu9G9PdlV5swo4xznEY7hitvFA/lF+qv0UvEIVx98HqAn9e7G7Nabg0wWjqADRdmEUsAXRCCDgMl3IdH7e/s++zUEBgmGMkxjgPQIFhHZy3w7sFDe6V2mCIvfxS/yu/KsRD93et99RhYeuL+x73t5djXNEklNj6Wa6/M9CONV3LsUsTPOE0XKhxTURFofVsXK/ZjQb3Smz3brZcLtUKhSM4znCMiLuNNv8urOlajvbArqifYxcF+45DyR7feEw3Gtwr4TW7Mb7oIBTZSpLa/t6/1ye7Ue2aiMoIrz0Rxc7qM8IuCjDWNR7DCkfx/IhSan7LPGW5gIE5ZaemuDfJZRM2FIhCZSDy0ra3saV7veXzDRgY5hiFMa5xCYUn96WuQAfWdC1Hq19za/M9NnjqleUCmmA0ixCyBa3Pwy7Cp0as6VLPDlO1ZRVa1xHYrW4ny8+nVOHHe2X730ZERERERERERJQWZkBbNdS/HUP928Mr3B1AqX7+1Mhy/eo2t8bSudzV0a2vK3Gkrh99ST7z5+gXPvECiCGjej/fNOEoMDDStwnrC0eHPaW+UQKa7+fzzVt1kZeZNNy6fvIIoNAuMGMs8P7a8PpbTjdwwNDg9p42RsJZAHhCpowV2ICvTxX49XMS7dbTfaJ2+UyBqaN7v86GIVAdQ/hSbaU6mGjdTsAfkFEFYuWyL7bE/pwZ1cDwAcAWxVSgWSGBH0IIjB4EjB4UZwf7UKz70qiB6vJkh6ZkOqu/V7eN8pVVUFxDE3BI/FPyiChPdWuCb1SOuE0fqBRJa1cwhM0V/6UAWe/LbckNPi2wWZ8rE4U6ZETwXp26vPEHF0nMrAm+zwvtAoeNBkaUp/fcZvUOwIzxrdPcCexoA4Zk731n067OIviypkJfZ7eJiN8VEJEeg9GIiIiIiIgoq7X4mnD/phvR6NuasnUeXXYKzqq4NKoQI4pem38XHth8EzbvudDbLuz4zrDrMKlkalr7Rdlvl78Ff9x0E7ZlWChaT4eVfhUXDf0hbIqL9XvyaYLREgk9sA5Giz6wKx/pwgDcmgC0ZASj7V1eFYz27u75YWVVjjG4qupGZdCklBIvN/8PLzX/N6b16/oUShcesd6zBus9a8Ke/73hv8S4oknK59R3rcCDW27Rhs71dGbFxTi2/HRlXTrGDbGaW34mTht0YcwhQ190fISHtv5BG6AYyRH9j8U3B18BQ3H353g0erfi/k03osXfBCAYrHFV1U0Y7RqXlPaXdyzFQ1v/0Cs45vRBF2HuDjrRNAAAIABJREFUwDOT0j4RAa80P4kXdj4Rcbnp/Y7BBUN+kLTjB5GVde7VqHevUNZNKZ0eMSA1GzgNF3yB8GC0d3a/FnUb1a4JuGL4L5MeSpqo9e41eGDzb9BldiS9basx9bymRxNuq8AogF3YLcOCQ1kFi2UDh+HU1vFckYiIiIiIiIiIKA4yjovlIwSj2QyBiUOBFdvC6za2AF6/RKE9v4OIOixCo3IlGA3rV0a33PTjw0LRAEAYBuTwsaj2NiiD0eoaE+xfjmjpjHzVud0Axg9Rh4Pt9d2vBt+T3z1K4P21vZerrgCOnbD/cYlT4PxpAg+/03u58w4TGNJf4OIjBP74pn5dE4cC1xwr8J3HrftuN4DLZiZ+rKjVBBP5TWB9s3VwUa7r6pYxB1YO6QeUOgW+e5TADc+Fv4bfmpG7x/eBxeryls7U9iPdWjVT5WwG0J8/1/Uyoix4LPMrhlsMRiOieHRHPz0kYbowpnyxtim57Y0dFDxXJopWVZnAyQcBL36uX+abf9/7Rg3+/0fHCdxxloCRpn1t3rL4DhwXP2LilasN3gw5TvVN6u0+sBgoK+Y2JeorvIKbiIiIiIiIstpTjQ+nPNxkYeuLWNn1aUrXmQ+e2/n4vlA0APBLPx7eeid8ZnwBL0R7Pdv0WEaHogHAR+1v4cO2xRGX82veDwVGAsFoNv3F+tl+IX9f04UB6MK79MFosW3nWF6Xzd3r8PzOfyvrNnjqkxKKBqj3o1j66THdeGTrXTAVE8GllHh02z1RhaIBwDNNj2J792Zl3dON/8joUDQAeL3lGdS5l8f0HJ/pwyPb7o47FA0A3tv9Bj7t+CDu54f6746/7gtFAwC32YVHtt0NmYQZHH4Z/Ht7hqIBwLM7/4ktPcYSRBS/zZ51UYWiAcAHbW9iafs7fdwjoqD5LfO0dceWnZHCnvSdWMeGKg3ulZjf8mwSepM8wTHdvQmHohmaKQ7JDOrStRXzuN2muWIjS1j9vboQZCIiIiIiIiIiIrIQCMT+HHfk71Sf+Lb6e1NTAhuaY19lruno1teV6u8PkTVkvcWV23sVlQLHnQdxs3r+CACgqga1vgZlVd32OPbdHNQQRWDDmEFAaYTAve/sCUa7aIaB+88TGD0QcNiBuROBhdcaYSEOf/qmwBWzBcqLgbIi4PJZAn+9MLjMnWcL/HCOwKCQe+U4C4CTJgFv/NjAZTMF7jlXYNRAdX8OGg68/EMDk4YnfhF3dYW+rm5Hws1ntWj2n1C1g4P/v/5EgV+fIjCkX/DxAUOAxy8TOPGg3L3wvlwTKtAS3fSxnKELZCwrAsMsQthtAmMGqevqG/M8cYiI4pLKYDQzzw9T63YmdwPsHUMRxeKJy42w8yor98yXeCGK0/G+IKXE3fPje9+8vgJ4uy7JHcojuvNaHneI+pY93R0gIiIiIiIiipcpTazoXJaWdS/vWIoDiw9Ny7pz1ZcdH4eVdUsP1npWYXzRQWnoEeWK5Yp9KxMt71iKGf3nWC6jCz2yiwSC0Xixe9x0204fjKYuj3U7xxrIsLxjqbq8U10eD1V4RKzhFLsDrdjcvQ4jndW9yrd6N/QK2IrG8s6lGOKo6lVmShNfdn4SUzvpsrzjY4yL4bOvwb1CG7wX63oPLT0y4Xa6TQ/WdH0RVt7k246dvu2oKByaUPtr3avg1ryflnd8jOGO0Qm1T0SIOShxdefnOLzfUX3UG6KgRu9WfNaxRFlX65qE0a7aFPeobyQr4OvTjvdxWsUFSWkrGZp825MSUGsIXTBa8kKddW05DRc6Am0xtJPd51MuTYi2XRQkFM5NRERERERERESUt8w4wqU62yMuUlupr2to4sWZ7R59XUmEAKtsIN940nqBc6+GuOL3EDab9XJVNaj+Uh2M1rDZA4DfC0cTrFNbCbgK9fXfPUr0CjO68hgDVx4D+AMSdps65KjQLvCnbwr88bzg+o0ewWkFdoF7zxW45+uy177uKgjW7XX1HIGr5wDtHome97MrsAGuwuSFKxU5BKrKgM2t4XV1jRInIn+DnOIJRqupDG4vwxC4+VSBm74m0eUFih25vx3LNfcf2tUFBEwZFiCYq1o61eW67ZPvqiuAusbw8nUMiiWiOKQyGC3Pc9Gwfmdy29s7hiKKRYlT4P3rDNT+Kvwm7zr//VDitMmp399WbEvs+f/5SOKr4/g+iUdDk/qIXVPB7UnUlxiMRkRERERERFnLK7vhlRa3dOxD7YFdaVlvrjJlAG2abdoZw0XHRKF8pg9dZuS752YC3XugJ18fBKNVOUajQBTCJ729yocWjtBeCE9BLk1ggjugDmzSleva0RntqsU6z+qol28L7IaUMuwukW3+5HyWDS0cqQx9GOMcH3Nb7Yo+xdNP1XO6TU/axg2xiuZ4kMjy2nb8ipmpcegI7IYJ9Q/DHYF2VCCxYDSrfYJjNKLk2OnbHtPyXaZmNi5REr3R8hykZirg3PIzUtybvjPaNQ6butcm3E6zbwdMaWqDxFItWeOMkc4aZbnDcGJo4Uhs825MeB1jnOM05eOx06e57WMIAYHRmnayxShnDQRE2Psu2/8uIiIiIiIiIiKitJEWF9cKgV5pRXt1qH//lJ4uYOkCYO0KOEeOw/D+p2DL7vDvg4MXbObfxZmrt0u8uUpicD8Bv6n+bcFuAIW5cFXdh69bVosTLogcigZAHDgNNS88pqxb31mEbp+EoyD/9qWe6hVhO6GmjRVwWkzj0m1BXShaT4ZFEJQQAv2iuF9LqTP5r6H0eYFPFgFrPgUCftTaL8ZmhCcyqsKK8klzZ+yRJ6HBl0IIFOdAoGM0rIK/WjuBQaWp60s6MRgtSDYsB5YtgqxfDjRuAgYMAiqrIJy9N0TVzuMBTA57/s72fI8cIiIr3b5gwGx7dzBUee9/yzYlfuyYOBQ4ZoLAnAME+jmBOXerzwnN6HOYslqHR2L+SmBHm8RXawUmDguOTdcmORht+tjktkf5Y/QgYEg/YHuUl7B9viW5Y4w2t8T8FcDqHRKThgkcOyEYPh1qVYLBaGu2c2wUrzrN1MGaPL8pAVFfy4WvcImIclpXVxc++eQT1NXVYefOnfB4PHC5XBg8eDDGjRuHKVOmoLDQ4pYyZGn27NlYvHjxvsdS9YNyEixatAhHH330vsc33ngjbrrppj5ZFxERUT7xaAJmUqErwAv/k8ljurV1PtOrrSOKxJNFIR3uKI4rfk0wWkECwWgOw4mjBpyEN1qf7VV+XA6FS/QVpyY4zm1qgtE0+6PLFttMpZn9j8eS3YuiDv2TMNEtPXCK3jMgdf2JlW5fqSk6EGOc42MKcVMF68TTT9VzkvX3pkI0x4NEltdJVpCk1TgpNIQxrvYtXkuO0YiSo9kX66x0TpSgvtXm34UP2t5U1g0rHImJxYemuEd9Z1b/E7C07S3tmDJafulHe2AX+tvLk9SzxCRjLFYgCjF7wMna+rnlZ+Cx7fcltI7BhVU4uORwZd3sspPxWceSqMJ2Z/Sfg372AQn1Jd3628sxrd/Rvd57BgwcW35aGntFRERERJR8nJ/Xtzg/j4iIqIdAQF1uLwCKSoG2lvC6tvCbTsjm7ZA/PRWo+2xf2djat7DFPjVs2YamuHubtR5+x8T3/iURMAGr37BKnAi7wVy2ke++1Gs/CDP1GIiag6Nr7MiTUeO9QVt96t2dePVnxVm/zRIR6f1UVgRccqRAm34qZM79qiq7OiCvPxv4eOG+spohg7Cw7LKwZesbc+2vj01rHD/91Vbm7/ttoMV0upYuBqOV59H9buV/74H803XqupDH5RUGMCg8GE23HYkoO3n9cl94WUdImFl7t+z1uKMb6PAA7Z7w8LO9z/VpTtPiMWogcMwBAsccABwzXmDogP2f5Z9aBK1pspxzytZdEsfdY2LlnkAnmyHxp28KzB4f+3inrEg/tqqpBE6fnL9jKEqMzRD40XECP386ujflym3A7i6J/kWJ73Prd0ocf6/ZI1BaYsoI4OWrDQzu17v9YAh+/KIJ/aZwpim13wvUVKS2L0T5hsFoREQZKBAI4Mknn8QjjzyChQsXwu/3a5d1Op04/vjjcfnll+OUU05JYS+JiIiI0s8qTGtwYRVsCL8LZqw6Am1oC4TfeTPRC5SpN+sAFXUQFFE0rMJzknWciFWX2Yld/mZleSS6QCF7AsFoAHBGxbdQUTgUn3UsgUM4cHi/2TikdFpCbeYDl6GegaUL5NOFQRRp2tEZ6hiBH4+8FYtaX8R6Tx1MGfxV3i/9aPRtVa870Amn4QorUymx9UM/W+QQh8GFwzGt/9Ha4AibsOGqETfh9eZnsKbrC3h6fHY2+rbCL8O/71D1SfcZYYMdTsOFTrM9vB3Ftrb6rBlSWAUjDceD9sButAd2h5XHGhyiO34UiEJUFAwJK+80O7DbHz6pPlmhYp2B8NdkL13AYyysguCyKQCPKJPpgtEEDEiE36JS5twUfso0i3e9pP0MObb8jJy6CKfKORo/GnErFu96CRs8dTCl9W1hJSS2eTcp61p8TRkUjKb+HsWADUMKh1s+VwgDIxxjMXPAXIx1HaBdblr/o+GyFWPJ7kXY4d0cU/8KDQeqXRMwt/wsbXDxGNd4XDPiFry16xVs6l4LqXhtSu0DMKl4Ko4uy43f7C4Y8gMMd4zGl50fo8TWD0f0PxYHFB+S7m4RERERESWM8/OIiIgoLXTf9xoG0K9MHYzWHl4mn7grLAyrumMF3h6gCEbLsyCi1k6Jq/6zNxTNWqmj7/vTl6TfD3n79/QLlA+BuO2ZqNsT9gKM/erhEJtNSBE+f2J+gwtL1gHTx8bT29xgFex11qHALacbqCoTWBfIo/fdS4/0CkUDgBpvvXLRuh2p6FDmao1jOkvt4OT3I1uUWwWj5dHUIF3oS3lx7vw+bkU2bob88/VRLz8woBhLAWjOo32GKBP5Az3CykKDzDyyd7hZSJBZePAZ4NV/lZsy35oh8E69hJTA1NHBILQ5BwiMrdCHL1sdufNh9HjzC3JfKBoABEzg6v9KHDQ8tr9++ABgyfUGrviXiRc+319eXQHMqhW4/SyBQnt+fE5S37h2rkCpE/jXB/tDsHa06Ze/+UWJu7+e+D530wuyRyha0LJNwB2vSdx5TmgwWmLr2tQKuL0SrkK+V2KxdTfg1lwGUTuY25KoLzEYjYgow7z55pu44oorsGbNmqiW93g8eO655/Dcc89h6tSp+Otf/4pDDz20j3sZu9GjR2PDhg0AgFGjRmH9+vXp7RARERHlBI9FONnPR90RFgATj8WtL+N/jX8LK7cK5KDYWYWY6IKgiKJh9V5N1nEiVp+2f4C/bb0trDya44oqSAoA7KIwoT4JITBrwPGYNeD4hNrJNy5DfetFd0D9+aQLndIFL1gZ5hiJbw75fq+yNv8uXNdwsbpPZifKMKh3fzTH3qPLvoYTB54Tc59UnIYLp1acH1Z++4afYoOnLqxc1SddiMZQxwhMKJ6M+S3zwp+jeA2sPmuuH31PwgGD8VjQ8hyebnokrDzWgDLd8aPWdSCuHHFjWPlHbYvxyLZ7wtdrdsS0Xh2roMekBKNZtJ+scDeifOYzfcrwRACoLByKHd4tKe4R5TuP6cbi1leUdQPsAzG138wU96jvVTlH4/whP4hqWSklflR3HryyO6yu2deEMa7xye5eXHTjlYrCIfjVmPuTtp6DSw7XBvcmw2hXLUa7avus/UxjCBvmlJ+KOeWnprsrRERERERJw/l5RERElDaBgLrcsAGl5QAawuvaWsPL3n4urGisd62y6UQvls02r6+Q8ET5k3Sps2/70udWLQVa1Tc7AgBx5/MQjtjmRTknHYqR6zZhQ+EoZf28ZRLTx+bvxb71ms395/MFvnvU/jA5l8X0k1zbevLtF8LKar2KYxmADS2AaUoYRq5thejoAq6s1FQkvx/ZotgBFNgAn+Kj0yqYItc0tqnDYgbEPt0wO737EmBGkXa6hzYYLTlT4ojyRsCUIeFlPQPKZFi4WUdImFlofXcGBJklUz8n8Mglsd+I2WoIFMOhLmu9ujz8M63bDyzdEFs7NZXAsAECz11pS1LPiHoTQuB7Rwl876j9ZU3tEoN/on6jvrUm8WhDKSXmLVO38+wyiTtDLutoaEp8net2AhOHJdxMXtF9JwDk97kbUSowGI2IKIPcfPPNuPnmmyFl70GpEAITJkxAVVUVBg4ciKamJmzcuDFsctbSpUsxY8YMPPDAA/j2t7+dyq4TERERpYXHdCvLBQQcIjkzl4o0YTVWgR8Uu74OUKH8pdu3BIykHSdipTuudEsPAtIPm9B/Zad7P9gtnkN9RxuMptnvdOVFRnJmKun6A8QWFJas/liJZdvpQjRcRjFcmr4q29H8vYXCkZZQNEAfimcV/BXL8rr2i4wSZXlXoANSSu0d66LVFdDPJvOZiQeeWoWfxbrtiChcq78JUnMfyoEFgxmMRin3/u4F2vDOY8q+lrbP8UwhhEB5QQW2ezeH1bX4LGbjpJju3MxqDEtERERERJRsnJ9HREREaSU1V7sbNqB/ufopbS0QAOSS1yGXvA40bga2hV85Xu1TB6Ot2JZfQUQ3PR/9xcFH1mT5Ntlcr68bUAGMnhB7m1OOQs3T9dpgtDtek7j9rNibzXZd3RIPLpZobFfX11T23pecFj9dJX75et+S7buA15+AXL0MCOxJMSkfDHHESRBTvtp72W3rgWWLw9oY5t+qbDtgArvdQFm+BDqF2BVjMNq0MUCRI8uPUyHk9g3AG09CvvQI0NEGFDqAsZMAXzdQVQNRfRBw/PkQRSUQQqCqLBjYECoYBJFb20Zn2SZ1edWA1PYjXeSm6ELt99IGo3E6GeW4gCnR0TO8rFcwmQwJNgvW9woyC6l389INS9PHxvc8wyJLzcz0QWKCpJTYpMj8jsfwAfkxBqDMMkg97R4A8MlG9Jp77w9I/HuJxHsNgNsbPP85/kCBkw5S77td3RJ3zg8ej1XW7gQ8Pglnwf7nf7Q+un4fNwF4c3XwXCxUfSOD0WJV16iZV10MlBXz2ETUl3jFJBFRhrjmmmtw33339SorLS3FL37xC5x//vkYOXJk2HPq6+vx6KOP4s4770R3dzcAwOv14jvf+Q46OztxzTXXpKTvREREROniNtUzBRyGK+FAj710gSseszMpwSEUpAu9AZIToEL5S7dvFRnFaXv/6o4rQDC8qsTeT1vvl+r3Q0Geh0Gkiz7USv35pA340rQTqwKjEHZRoAzQUwVR9HV/rOgCAlV90od+FWmDNFTBWfqAtfSFccQS7GZFFxSma7/Ipv6F1oSJbumBU8R21+jw/lgEoyUh8NRq+zAYjShxzRZBSgPtlcry0IuJiZIlIANY0PKcss5lFOHI/nNT3KPMNLCgUhmM1uzPnGA0q7BbIiIiIiKiVOD8PCIiIko7UxeMZgCl6mA0tLVCPnIL5D9+a9n0WO86bd38lcDxB0bbyez1foPE6h3RL3/VMdk970/e/j1tnbj4eoiCwpjbFGMPRJVzdSLdyjkdHolj7zbx4Xr9MjUhP6G6snQal2xthLzqOGDDqvC6/94DXH03xNk/CD6u+wzyB0cr2xkYaNauo7kzf4PRWrui/029wAb86mSL9JQsJOu/gLzmBGB3SNJZ457fOD9eGAwOfOEfwP2vQ5T0R02FOhitPnN+Au1TO9okdrSp68ZWZPdnWDSklMD/PRDTc8o1xx+PLxg6kmthg5S9TFOi09szvKxnOJlUhJthT/CZ7BVutvffXbzUImUcduC6E+P7jLY6AuX6zLtk7qP5Opak9BJC4PuzBR5cpH63Xv0/ifvPE/AHJE59wMSrX/au/+ObEj8/QeD3Z/Y+frR7JI6LcL4JADN+b+KTXxsQQmBDsz5EraeRzg48dFE/HHOXibWKMXUw5Itjo1jozkNqB6e2H0T5iMFoREQZ4LHHHgubdDVz5kz85z//QVVVlfZ5NTU1uOWWW3DRRRfhrLPOwvLly/fV/eQnP8HkyZMxe/bsvup2Tli0aFG6u0BEREQJ6DbdynKnkViYR08uTXCIX/rhk14UCkfS1pXPrEJMkhGgQvnLKlApXXSBUEAwvKoE6mA0KSX80q+ssxuxT2akxOkCtdyBLmV4piqcLNhO8n6ldRlFaA/sDu+TYt2p6I+Obh2qPulCv4qMYn3AWix/bwqC4HSKtAGsbpgyAEPYompHd6zTbR9dMBoQDDVLdCyl29aAPuAxFlaBqrr9hYiipwtG62cbgELNmEPm/PQsSpdP2t9Fi79JWTdrwAlpHddnknJNaGGLT73t0kF/bsYZi0RERERE1Pc4Py99OD+PiIioh0BAXW7YgH5l6roNqyDn/ydi0zXeBm3d9/9touHW6H57zmY3Pq8JnlO4/iSBScOz9wJgubsZ8Gvm1NkLIM76ftxt26bOBj7V15umhGFk77aL1b+XSMuL1AvtQFVZeFlWeu7vylC0veRDNwInfQuiqATy0d8BbvVvPwMDLdo2mjvCg+TyRatmOsuNXxMYUAQsWCmxqwsYP0Tg4iMEjqzJrfeZfOzW8FA0lbpPgVcfB86+EtWVAvNXhs9FqG/Mj/kJN7+g/zvHDkphR9Ll83djfkp5oFVb19IFFHHKP8VJSonO7p7hZT3DyaQi3Cwk5CykvqM73X8RRWIzgFInUOrY838ncMgIgUuPFDh8THyf0VZDaF2Gdq5oSeK03nJOM6I0+cWJ+mC0B96UOGNyMPQyNBRtrztek/j+bIkR5fsPBv/50Pp8c6/PNgPv1gMza4HrntaPEad1LYFLujHDvQSXe5/CiJJ3UVNZqAxGq8+caYVZQ3ceUpMHocVE6ZatX7UREeWMNWvW4Morr+xVdsQRR+CVV15BSYn+ItWexo0bhwULFmD27NlYuXIlAMA0TVxwwQX49NNPMWhQPnzjSURERPnIbXYpy3VBNfGwasttdqLQ4K+kyWAVYpKMABXKX7p9KxXBTzpW67YKCfRbhATaRZbeajTL6V7LAMLDM00ZgEfzuaULx4q3T8pgtJD3gs/0avepZPZHR7ftPIHwbWQVoqFrRzVG0IVppfV4YBHm4jHdlgFmPcUacmf1GncFOlBeUBHVeq3a0ElG4KlV8JrH7IIpTRgit+6cS5RKzb4dyvKBBYPBO8RRKkkpMb9lnrLOLuyYXXZKinuUuXSf3ZkVjNb33+EQERERERGpcH4eERERZQypudpdGEC/cnXdyo+iarrM3IWyQAtabeHttHRCeXO3XOL1S7ypz3MKc8rBWb4tPlmsr/v6DxNq+uRJwD8sgtGaOoDB6ns+5qRXl1sHMI0ZCNhCUi6s3muHjUpKt/qEXPK69QJd7cCXH0B+5RjAYtlSsx126YNfMZ+tOY/vdbejXV1eUQp8f7aBq+ektj+pJKUEFj0T/fILn4E4+0rUakL06tX3ess5X2zWH3/G5MHXEPKD16JeVvxvFbBrJwZ9/3TtMtt2hwdZUu6SUsLt3RtcFvqf3B9u1qO+w7M/yCy0vqMbkPmRyZi1DLE/wGxvoFnJvmAzEfy3sl70Lt/zn8NuPaaLh1Vzub57JTMYbSCD0ShNhvYHXAWAWzMN/vp5Jg4dpX+jmxKYv0Li0pn7l3nty+jf/a8sl5hZK1BnERL8xsYT4ZKe/QUrPkJ15UxgRfhzGvIkbDiZ6tRTq1EzOLX9IMpHDEYjIkqza6+9Fh0d+y8WHTBgAJ5++umoJ13tVVlZiaeeegpTpkyB1xsMjtiyZQt++9vfht3tkoiIiChXeEy3stxhuJK2DuvgkE70t2smpVFMrMKgkhGgQvlLt28V2dL3q5jTKIKAgFT8jKkLbgKsg9EKGIyWFlahVm6zq1d4pu4zK9hO8vbHIlsxoNhVQt8LVsFSyexPrOtQ9UsbjGYUw6UJDvNLH3ymFwVGYY92NMF0aTweWIWydQU6ow5G04a+af42q3a7TH2oWbSs2vCZiQeeWo0bJCS6TXdK9mOiXNXsU88iHliQp7fuprRZ1fUZNnevU9Yd3m82BvB8fB99MFpjxlzslokhtURERERElB84P4+IiIgyhhlQl9tsEJVVCV8MP1ATjLbbDTR3AINKE1xBBlvfHLzIOFo1id0rrM/JBf8HufBpYOtaoO6zYOHkr0JcfRdEzcHABn0KnJh+QkLrPnqS9Y1iWzvzKxitPsI9aE7ShOydPhl4NiRgrtAOnDM1/b/ZaG1piLiIvPdHEHe/BHTr50EJAOWBFjTaw68Ob+6QyMebcXn9Epta1HUjyvJge7TGmGT2+bswb/02qif9GMC4sOr1zUC3T8JRkFvbzu2VuPN1ifcbJNw+4F2Lt2RZcW797UpRHJMAACPHAUNHA5VVGBhohtN0w6O4jqChUeKw0Xmw3XLYu/USD78j0dQucfyBAt+fLfDC58B/P5RoaOoRdrYnyCyWsSGlnhCh4WU9/xP7ysPrhTL8zFWY/CCzZDMsupfr+2syg9HKOc2I0sQwBE6cBDyzTF2/ZB2wZJ31m/nyf0r87a0AbAZwyAiBeZq2VH7/isQbKwP4ZKN+mV6haACwdS1qKmYql82XsOFkebdeYvlWdV2mf8dElAsYjEZElEarVq3Ciy++2Kvstttuw5AhQ+Jqb+LEibj22mtx66237it7+OGHcdNNN6GsLLdua1BfX4/PP/8cW7ZsQXt7O4QQKCoqwuDBgzFmzBgcdNBBKCrSX6CeLN3d3Vi8eDHWrVuHlpYWVFZWoqqqCrNmzeqT9W/btg1LlixBY2MjmpubUVJSgsrKShx22GEYO3Zs0tdHRESU6bo1ITPOJAajWYVqWIVyUGy6LMKgfDLxABXKX7rwp3RefG8IA07DpQxpsgqrsgpGszMYLS2s9iN3oBP97fvPxa0+M6xCOGPlNNTnoqH7m1UIXzL7E+s6VNvJKkTDpfl7geD7qX+vYLTMOx4hVep3AAAgAElEQVQka5yhDYHU/G02YYdDONEd+gMorD+To9UV0AejWR3LomW1/wLB157BaETx0wWjlRdUwpTqC3ZUga9EiZrfMk9bN6fstBT2JPPpggu7pQedZjtKbOm/Qkk7FuNnNhERERER9SHOz4sf5+dxfh4REfUB01SXGzZgeOKfMw9uuwpzR72irKtrzO1gtLURwqt66ucEBsaWkZtS8om7IP98fXjFp29BXnIY8NB7kA/frG9g8qyE1t9/gAu/bboBv65Qr6NVfU+6nGSaEg0W+1ZNJXDNHHXCxU2nGnin3sTOHtMnbj9LoNSZmYEdsrMtuvCqjWsgz66NuNhAXTBank653diiDzypzoOL6OW/7oj9Sa/8EzWLPwZGfaSs/tvbElcdk5nvp3gETInj7zXxTn3kZX95cu783ZY2RxGMVuiE+P5twTAkewGMybMwtm0dVjgmhi1qdTynzPfqconT/mTCt2fa0ktfSPzwv5yrlGoloQFmex6XOEV43b56dV1RFgSZJZtlMJrmVDFXJPMcojwfwkEpY93wNQPPLEvsDfvh+uD/318b++fYR+v1dbfv+EVYmdyyFjXTBKCY37uxJTfDhvvCGysk5t6rf91rB3MbEvU1BqMREaXRfffdByn3DygHDRqESy65JKE2r7nmGtxxxx3w+YIXmXZ2duKhhx7Cz372s7BlL774Yjz22GP7Hq9btw6jR4+Oaj2LFi3C0Ucfve/xjTfeiJtuusmy/b02bNhg+cXFt771LTz66KNh5d3d3bj//vvx0EMPoa6uzrJ/NpsNkydPxumnn44f//jH2klQs2fPxuLFi/c97vl6WNm9ezduuOEGPProo2hrawurLy0txbnnnoubb74Zw4YNi6pNHZ/Ph4cffhgPPvggvvjiC+1ytbW1uPbaa3HppZfCbudHPBER5QdVqBAAy5CUWBUKBwzYYCI8AEC3fopdl2kRoGImHqBC+UsbqJTmi+9dRrHyGGIV9uNjMFrGsQ616v36WoVNOW3J+9wq0vQpdN+yCt1KxftDtw7Ve0D3eVtkK7YMcQsLp7MIWEsXq3VbBSX2JKXU7l9Wr6XLVoxuvyIYzeIzOVpWwWjJCDyNtG3cgU6Ah0WiuOmC0QYVVKLRu03zLE42pOTa5FmLVV2fKesOLjkcQx0jUtyjzFauCUYDgBZfU4YEo2nGdGkcixERERERUe7j/Dw1zs/rjfPziIgoZUz1DWhgGMCwMbG3d8zZwJtP7Xt4dNdi7aJ1jRIzqnP3Qs2Gpuh/qxo1MHNDGGS3B/Lfd1ovc/OF+sqzf5Dw3yYMA9d1/pnBaAC27AI8mulalxwp8IezBAaWqLf3wVUCS39p4JllEk3twImTBGbWZuZ+BwDYsjapzZUHWpTl+RqMZhXINGZQ6vqRNv/3x7ieNsZdBwETEkZY3S/nSVx1TKIdyxyL1yCqUDQAuOzIDD6WJImUEthiEYxWVglx5hXAUadDjNkfgiYu/RXG/kETjLbVC8DZB72lVPj9K/tD0Sh6xY4e4WW9wskESkLDzRz760LDzUqcQHEhYFgle1FEVsP0XJ9519IZ219oNwC/JoPIHj4sIEqZg6sENtxmYNR1mZdmeMHu/2fvzOOjKPL+/6memUzukxAh4UrCLcopcnqAgoiKJ4L7eK27rLrq7uO6ruu5uu4jK+oPb2VXdF3XY5FLWA9QkUMRYQHlEJJwGK4k5M7kmpmu3x9DQiZT1dMz03Pm+369eJHpqq6q7umjpvtb73rXc+HRAyiUhBWqHDhUCQz0bx6hLsVTn2h/34VdQHZNEOGG3soSBEGEkU8++cTt84033oi4uLiAyszOzsZll12GpUuXutUjCryKJkpLSzFt2jTs3btXV36n04lt27Zh27ZtuP7661FYWGhYW3bu3IkZM2bg2LFj0jz19fX429/+hqVLl2LlypV+17Vt2zZcd911OHDA+4umoqIizJs3D6+88gpWrVqF3Nxcv+slCIIgiGih2dkkXG5VEgyrgzGGRFMSGpyewdZaAiPCN7RlUIELVIiui0z+FO7B94mmZFQ5PCOetGQ/Dg0xmoXEaGHByuLBoIDD82VH52NPU0Rm4PEoK8tD1CZpjwIT4pjVsPbIkLVT1C7ZvktQknyT08nKCaMo0cRMsLJ4tHBPQZnefkYrbxEKXAHta12ikowaVHos15Ka6UVLrqYledSDXW3VvB666qc+GkH4S6vagjpntTAtU1OMRhDGsrZquTRtasasELYkOkg1pcPMzHBwh0dalb0CveMLwtAqdyJVWk0QBEEQBEEQRGxD8Xn6ofg8is8jCIIgQoAqGUipmIBuuUBcPNDq+e5YBPv9K2CX3Qp+/2vg07JcywAMb96JHfFne+QvEs+LEzMcq9Gfd0iPCBY6HNwN1ImFUu0ckYtiWO+BhjSDJSSju6MM5eYcj7TqRg7X0Rb7HK+Vpy24hiEjSXs/9M5i+M3UKNlXWgIiP+jm9IxHAYCj4lfRMc+xGrEMpEcakBAXJceIn/B6Hy7QnbDyVpzhKMNxcw+PtBYH4FQ5TDEi6dlYrE8YE28BemUGuTGRQE0F0FgvTGIvrwMbNk68Xm4B8luXCJMOHG8BidGiE7uDY4O2vz9mSIzrLDBrE5e5RGYeafFAivW0yKxjepIVMXONjBW0vg41xs1oR33sDvx8EsNrX4l3ygDPnygEEVJ6ZTLseETBiCdU6JwHJuikOmvR3Sl48HO0BPndXGJGUVuLy0mM5g2nqt0P6ZYMr88GCIIIHBKjEQRBhIkjR47g0KFDbssuvvhiQ8q++OKL3QKvNm/eDLvdDoslOgfKt7a2Yvr06R5BV5mZmRg2bBhycnJgsVhQX1+P48ePY8+ePbDZgjMAds+ePZgyZQoqK91f1OTk5GDEiBFIT09HWVkZNm/ejKamJlRVVWHmzJl4+umnfa5r1apVmD17Nhob3Qdy9+jRA2effTYyMzNhs9mwZ88etxk6d+zYgbFjx2Lz5s3Iy8vzb0MJgiAIIkpoVsXTD8Yr4tmo/SVBSRSK0Ui6YRxawqBABSpE16ZRNvg+zGI0qbzKT0mgmcRoYYExhnglQXgN63yPkh2LVhYPEzMZ1ia9x5bsWEs0JYVkZmSZsMvB7bCrrbAoroFpTu5EsyoWoSYoiYhjVigwCcVgnnI6cb8h3KLEBFMSWhwCMZrOfobWdUPrWpdoShYulx2rvqBVRqDCU9n36JaH5LUE4TfVjpPStCxLd+k9IkLiO4gYodJejm31G4Vp/eIHoiBhcIhbFPkoTEGGuRsq7Cc80qrskTHaTXYPTzD4GQ5BEARBEARBEEQbFJ+nH4rPo/g8giAIIkSo4gmvwBiYyQQ+8TLgi397L8dkBiZc6lo1MdntPU3/1iKhGK24zI/2RhHV3l8jt3PlyOC1wx/4wT3grz0E7N0KVAX4RU2caUyjEpOQ4awRi9G60Ov4eomnkDEgzbi5eyMCvm+7oeX1aT0sXF5c3jXfLFdJzpvslNC2IyysXxHQ6oNb9grFaHanS7TXOyug4iOGkzrnsZw1nHUN0VFpsTwtT2NSsG49UaCWCpPWH0nGV/s4zhvYBfZfjHFI7NqMCOItHeVlHeVkLpGZu9ysLZ0J5GZAcjyJzCIdzjnw7rPga98Hjov7OpqYcoGe30nKDrBxEc6XP/q2gcPzgHPzgc2d5rIYdAbQtxudJ0T4OSuP4cKBwOc/Gl/22H7AkWrfhIJX1a8Q68v3/RdWC0PvTOCw4H5aXNF1xOf+cqTa9dtDxlUjaf8RRCggMRpBRBhO7kSNxsAjwhjSzd0MHXTsD5s2bfJYNnr0aEPKHjVqlNvnpqYm7NixA2PGjDGkfL0sWLAAjz32GABg4sSJOHr0KAAgNzcXGzeKBzUBQHKy+8DcxYsXY8+ePe2f+/bti5deegnTp0+Hoige63POsW3bNqxatQp///vfDdgSF3a7HTfccINb0FWPHj2wcOFCXH311W5taWhowDPPPIMnn3wSNTU1Ps8IumfPHlx//fVuQVfTp0/Hn/70J5xzzjke+bdv34577rkHGzZsAAAcPXoUc+bMwbp162AyhfdYJwiCIIhgIhWlmIyNOvFHYET4hpZAxRGgQIXo2sjEQgmm8IqQEiX1a4mQHNwhTWuTSBGhJ0FJFH5vna9roToWE0xisURnEYVM7hkqaaDWdjeqNqSdOqZlEtS2MhhjSDAlwub0nCHS4zuQ3GviJfssVCQoSaiB59tGvf0MLVGr1n6WXYcaVZ2RdhJUrmpfy9TAhKd6hHF6pXIEQXhy0i4fbJFp7g4mC4KI9egsIqR8Ub0SKlRh2kWZV4ZE4hqNZFqyhWK0Skf4xWh2tVUqRw23tJogCIIgCILoelB8XugId4wexedRfJ4WFJ9HEARBhAWZGO3UvYTNexx8/3+BIyXyMhQF7J5nwTJPC6vY/a+Cz/8VAKCwVbxuUYzLiPTKuuacw3Dl8Mh5z8DLSsFvPw+weU7a6g8sO9eQcpCQjPRW8SjsKh8kdNFOQ4t4eVIcoMSQuIRzDrzju2jYg/7DgaIdrj/t4mtRcfhfW4UFmRgtM8bnD+LHD4E/9cuAynjl+F0YWLhbmFZSETtitFod11bGgD/Pip1rjxb8kbnihMQUID1buh5TFOSniscWAMAFz6j45g8KxuZ3jf0YK9z5L3H8iD9YzR3lZZ3FZKyT3KztH3MTm3VMN5voWOpK8EWPAm/P93t9ZpbHx6gx/HOtppFjfZH3fB3JTGJ4/nqGy15UUXbqp1JaAvDGzZ7PqgkiXAw4g+FzH6V/enj5BgVldcC1r6mwSX6TdmRIyx48WvGENJ2vX4HC7JliMVoX/X3mC799X94P6ZMFPHwp9QUIIhSQGI0gIowax0k8fGBeuJsR8zyR/xqyLJ6z14SSI0eOuH3OyclBVpYxT2TPPPNMYX2hDrzq1q0bunXrBgAwm0/fcsxmM/r27au7nBUrTs8QYjabsWbNGhQWFkrzM8YwevRojB49Gg8//DBU1ZgHYC+88AJ27NjR/rlHjx7YuHEj8vPzPfImJyfj0UcfxZlnnonrrrsO1dXVuutRVRWzZ892m1Xzsccew6OPPipdZ8SIEfjiiy8we/bs9tlIN27ciHfeeQc33nij7roJgiAIItqQyVLiFWOjBWRSEZJuGIfWvrQHKFAhujYysVBimAffywb/a0kC7apcEmhm9JgvXCSaklDlqPBY3llEFqpjUXpsqfokYaGSBmptd5PThjRzxqm/5VFfbWUkKklCMVrne4vsXhPu64FcUKavn6ElUNPatkQlWbi80RmYGK1ZbQSH/EWvTIqiF63rZHse6qMRhN9U2sWRDmnmTFgUC2Szw2md9wThCw3OOmyqWSNM627pibOSPQcmEy4yLd2Fy6vsnn3VUNO5b9wRmdiXIAiCIAiCIIIFxeeFjnDH6FF8Xl/d5VB8HsXnEQRBECFCds9krsHdrGc+8Pdvgf+uAw7v88yXkg6MOA+sV3/35eNntP/Zv7VYWEVRuUt+FKuTj1Q3it9V3TiOYdpQoKwOOKcfw7n9IktoxVe/aZwU7S4DxFZtJCQjs1ncv6puUAF0DSFBQ4v4uEq2hrghweaHbwIvo89AYODIdjFaoeRadKIOqG/mSImPnPMwFFRLXpVlxvj8QXz1W9oZJlwKmC1A1hlAzUngiyUeWQrsB5FssqPBafFIO3CS4wLZ5G5RRpXNe8xFxbMKMpNiY3u14C1NQOVxcWJugde+TEGOAojdngCAl9dxEqNFEZxzrN3r2zpLfqVI5WcWM333hH/wlmZg2asBlaFoxNfFshhtxQ7fNy4zCRjdl+GHRxV8tR9ocXBcPIShWwqdw0TkUCB3tQIA/vlzhn7dGHYd46iyAXVNwP99rH0+XDkCGNHbdZz/+LiCz3/kOF4ryNhkA958EoNbf8QFtq+QxOWxefzt+Sg47zKhxK0kxiX6gcI5x/Id8vRdjylIstJ1iSBCAY2YJAiCCBNVVVVunzMyMgwrOz4+HlarFS0tp3XAneuLJg4fPtz+99lnn60ZdNUZk8lkyIyMqqrihRdecFv2+uuvC4OuOnL11VfjjjvuwIsvvqi7rqVLl2LXrl3tn6+77jrNoKs2zGYz3nrrLWzcuBHl5a4BjAsWLKDAK4IgCCKmaVbFszpZlQRD65FJRbRkLYRvaIrRAhSoEF0bmRwnVPInGTIRkta54OBiSSADg4ke84WNeMk9ornTdxmqYzFBIgftLM8KtyRMa7s7ijO0zom2MmQyuI7bzDmXCrXCfT2Qtl+n3Et2bJmZBRYlTrpeokkiRgtQKuZNXGaXXMv0ome/aMniCILQpkoiRssyi4VLBGE0G2o+QSsXT3U4NXMWFNY1Btr4g+w8jQwxmkafLsySWoIgCIIgCIIgYheKz9MPxedRfB5BEAQRIlSneLly+l7KElOAiZe5/ukl4/TzYZmMqL4ZKK8HclL1FxtNyKRDA3KAOecE590C5xyorwYSkgHFBOZjn4hzDnzzsXEN6jPQuLJSM5BVUSlMKj1mA5BmXF0RiMPJwbnrvBGRHB/a9gQT7nSCf/0feYZh44EfvvZeUO+BYHkF7bqP/NaD0qxldS5BTSzDOUdlA8ABxFuAasmrsvRYl1zt2SJPO/8qKE+867ZILT8K7PIU9Q22nsB3jb08lpeE/zWoYVR5CXUq7I4uIUUDIJbDttGzn9fV++alwFrVjBZFfKH59iAJQKKJYxqSOxG3TGC4amQXOVeI0HKkGGgQ2Yn0w7TEaC0tAGKzg7S91Pd1sk6FN3dLYbh6FCCbzJUgwsnAHAZIzusHL2WYO9b1LGJcwenj961vnJr3tvEd8uZmMNw4TjKR8Xffglc9p6+hVeUolIT/FsdQfzoYlNfL087Og89SNG6rA1QnWIpx7ysJoqtAkeMEQRBhonMgVHp6uqHldy6vslL8YiraaAsoCjXr16/HoUOH2j+PGTMGM2fO1LXuI488AovFc3YSGc8//3z734wxPPXUU7rXTU5Oxrx5p2e1/eGHH9zaTRAEQRCxRotEjJZgsBhNJkzRKywhtHFyp1RyB8hlUAThDbtql4r1QiV/kuGPCEl2LpiZJWZn9I0G5CIy96hb2XdrtAhC7z1LKgkL0bkRx6xQJI+nO7ZVS9IVf2rf69lmO2+FCnGQecReD3TKvfyV3MnSG50NuuqV0ahqr+8IUHjqTbwGUB+NIALhpL1MuDzLkgNAHmLENQK3CEIvrWoL1lWvFqalmtIxNvX80DYoysi0iKehjAgxmsb9WyZrJQiCIAiCIAiCCBSKz/MPis/ThuLzCIIgiIBQVfHyACWjjDGgu0sY07+1RJrv/62N3fc5MjFahjikI2D4ikXgl/Zw/bswBfz8RKjzbwdvFU/+4rYu5+Bv/xX8it7Aj9uMaVBGd2DkBcaUBYBNvBz97IeEaSXlkuM4Bmi2c9z2DxVZv1WR+VsVd7wjPmdSrCFuWBDgDjvU//db8Jk9gXeeluZjf1wEWL3H47JpNwB5pwXL2c6T0ryVgYWlRDSccyz4TEXufSq636si514VaXereH+r+FjKDNI1KmL4bq00iU2d7bkwr0CYt8D5k3D5km2xc1/zJkabe07XiQ/lbz4pTWPT5npd39qrL66sXyFNP3jSJcAkooMfjvqWv0AcNkEQgVO0M+AiFC7vR6tq7F6XZIJYLfK7Gd8OgjCaqYOBboKwN7MC3CwRml0/Rt6nUxhw7Sidfb493+nLBwDlpShIF8fuHzwJ2B2xe/0JlCJxODUA4PLh+vvnfNuXUH92Fvj0bPAZZ0C9bgD42vcNaCFBdB1IjEYQBBGjxNKg+EGDBrX/XVpaigULFoS8DRs3bnT7PGfOHN3rZmdn4+KLL9aV12azYfPmze2fx4wZg379vM9o0ZELLnB/qblhwwaf1icIgiCIaKJJFUc0xUskNf4ik95oyVoI/TRLvsc2ZGIrgvBGs8Y5KhMphQpZ/VrCH7tUjGY2pE2EfySYJGK0Ttc2mQwi0eBjUSbZsvNWN7meVKYVonODMabrPJDtNyuLh4m5gsP13Kf1CNbChWyfy/o5Hvlkkjsv36VMQhKwGM3L+rJrmV70SM/0yNMIghBTZRcPfM2ytE0ZFzvPnYnI49u6dah3imdXPT/jUliUuBC3KLqQidFsar2mjDwUyPo1DAqsLDZnvCUIgiAIgiAIIvah+Dxjofg8giAIokugiifzAgt8aBd7/F8AgG7Ok0hz1gjzzP+EY/tPsTngVSaUCYYYja9bBr7g10B9tXvCqjfAF/7WewHLXwN//WGg2iAhbVoW2J/fB7MY+B5lxo0olEj2imsTwHlsHkd3vMPxxkaO+mbApuG4S46BVxv8lT8CH74MNIivFwCAzDPA8gpd15cEL/FEky53E6OlqPUwS+JDvAmgopk3NnH8fgnHiTp9+TPDG8IYVPi2L+WJvQe4jplOsFyxGC3f9qNweXE5cKI2Nq5HVRphYleNAH53cew8g9CCb/sS2LBSnmHiZd4LySvAs2W/R7zkHbndCZRWC5OICGTG874JWQu7e89DEP7An7w14DIUyI/nWO1fA0CVzbdt654CpCZ0jfseEd1YLQwf3q64PXewmoHXb2Qo6C4+hh+ZyTB9qOfyODPw1q0MvbP0Hfv8b4/51NZCiE2jThU4XCVMIgAUV8ivXw/O0Pld/bQf/N6ZwOF9pxcePwz+pxu1fzMRBOEGjZokCIIIE5mZmW6fa2vFg338pabG/QVF5/qiiblz52Lp0qXtn++77z4sX74ct9xyC2bMmIEePXoEvQ1bt251+zx27Fif1h87dixWr17tNd/mzZtht59+AZSfn+/zjJJqp9nESkrkM38RBEEQRDTj5A6pMMuqeJ+hzhdkkhmZiITwDW/7MVCBCtF10ZIKyc7rUJEou65oCH8cknPBwkgQEU6k94hO36VMzGX0sahVXpOzESnmtFN/h6Y9WiQqSbA56z2Wd9x3snOio/RLJgBrdp6+Bmjda0Ilg5Mh2+d65V7+HltSMVqA4tdG1YsYTQ1MeKqn/6VHnkYQhJhKr2I0MRyxG5xFhAaVO/F5lXjWZiuLx+T0S0LcouhD6zytspejp7VPCFvjjrRPpyTGlEiAIAiCIAiCIIjIguLz9EPxeYd8qovi8wiCIAi/USUD4RVT4GUPGA4oCpiqon9rCbYmjBJme2MTxwu9Y+u5rKpy1EhChDKSjN9W/tHf5Ymf/gv8rgVg8XIjG1/xN691sJ8/CgweBQweA9ScBPZuBSxxgNninjEtCxg0GsxqrKmLMYbCfqmA4PW+zWnBiVqgR7qhVYad+maOd7foe+eZbA1yY4IMd9iB/7zlNR+b4xL9sfEzgJVHwC/KEGc0mcAUBTw3//S6ADKdVSg353hkr2rkiNUJuRat9+29eUyL0T58WZrG/vwBmCKQguZJxGhVOwDJq9Bl2zluPz+6jyfOuVQY+NJchl+dx7rMO1X+0RvyxPEz9O2H3AJ0d1bgeFEfZAwUx8AUlwP9uvnZSCJk1DX5HotUkN01zhUitHAvQmP25Ae6ylEOHgM2idM6P2+MJXyV4vYnwSERRUzqz3D0aQXfHQKaWoExfbWfQ6QmMKy+W0FxObD7GMABpFiBsflASrxO0dahvT63M//7fwO4T5hWVEZiURlFZeLlo/oAcWad39fHbwNOhzjtozfARl0gTCMIwh0SoxEEQYSJzoFQ1dXGTTfQ3NyM5uZmt2VZWVmGlR9qrrrqKlx11VVuwVebNm3Cpk2uJwGFhYUYP348JkyYgEmTJmHw4MGGt6GszL0H279/f5/WHzBggK58paWlbp/fe+89vPfeez7V1ZmqKlI2EwRBELFJs2QmJ8A1sNZIZMKVQMUhhAtv+zFQgQrRddGSCoVbjOaPcFEmRjMzi3A5ERr0fpdNTnEUrtFSLq3ymlQbUuASo0llWiGUhOnZd7JzoqNcUCYa7LiNWveasF8PTOJ+i165l5595Et6o7MBnHO/A+oandpiNNm1THf5OvaLXqkcQRDutKjNqHeKBwi3CZdYjAaoE+FnZ8MWlNuPCdMmpF8kFXoSp0k3Z4FBARfMMFtprwirGE12bw5l35MgCIIgCIIgiK4Hxefph+LzKD6PIAiCCBGSgZAwBS5GY5Y48JzewPFDGNaySypG21kae5PdHKsFVMlmZRv8eoE7ncCWNfIMLU3A4X3AwBHu69nqgIN7gNZmoOQH7UqsCcCc34JZT00Om5oJ9NbX1zGSvj0SgMPitPL62BOjfX8EaJGcop1JtkbnO1OuqsBP+1yivQYd4uj8oe1/svhE8EtvAVYv9sz3s/tP5+meB5QfAQBkOquFYrRK7bCSqEVVOXYe8W2djMToPJZ0cUJyAQGAnv3Ey3PFYrShth3Son484UujIpP6ZsAp8eGM6hP9UjTusAM/7Qdy80/f2zrnOXkMOPET8LmGXCj/TH0Vdu8FmMxIcTbgDMcJnDCf4ZGluJzjoiHRvV9jlbI6DlsLkJEIvPWNb/1Wi4mESkSQOLBbnjb7HrDJV+gqRkn9XkOMFlu/01SVY1+ZS4q2TyIWkjE0l67PRHQRb2GY5MPrDMYY+ucA/T1/KmnCHQ7g4G7wVYLfZF5I+OCvyD3rf3G0zvP5U0lF7IqrfaG0iqOsDhiWC1gtrv1RLPFi9u/uub8450BpkUtu35Glr8gr3b/d3+YSRJeDxGgEEWGkm7vhifzXwt2MmCfdHH6tf25urtvnEydOoLKy0pAAqd27PX9sd64vmmCM4f3338ejjz6KZ5991iOorLi4GMXFxfjHP/4BwBWI9bOf/Qx33XWXYTNxdg6MS01N9Wn9tLQ0XfkqKyt9KlcP9fX1hpdJEARBEJGAlhgtXhG/OPUXmTikmaQbhqAlggIAOycxGuEfMqkQgwKrYuxMqb4iEwC08GY4uQMm5vnYzmzxXYIAACAASURBVE5itIhELrVq7PRZIoMwWMqlJQft2CZZe7zJtIxEj3hUj8BNj2BNds82wQwLi/Pa1mAibb9eMZqfkjuZYEaFE628BVbm33XSm5QsUDGat34DoH/fEQThTpW9QprWLkaTxj/EVnAWEVo451hTtUyYpkDBhRmXh7hF0YmJmZFuzkS146RHWpVde/baYNO5b9yG0WJ7giAIgiAIgtADxeeFjnDH6FF8nn4oPi8wKD6PIAiC0I1MjGY2KO4jrwA4fgg31ryNxek3CbPIBnVGMyUa25SfbVw9fPMn4A9e5z3fbecC/9gO1m8IuNMJ/uJ9roGwqsR605mps6XimFDSrXd3qRit0hZ7A6c3Fut/35lkDWJDggT/cRv4g7OB8lLvmQGXWGjkBW6L2Iz/Ae8sRlMUsGlzT3/OK2wXo2U4xXLq//6ku9lRxdEa/XK9NjJjdA4hzjlw7KA40WwBs0pikvLEYrTRzdukdVXHQIhQlcY2RPsxwr9YAv7UPKCpwdXfue0xYO697bI3XlcF/vAc4L/rvJbFpt+gq05mNoP36AMcKUFBa4lYjCYPjyHCRF0Tx9xFKv6zy/8yrh7JkJoQW/0TIjLgmz+VprEZ4t9dIhST/PjkMSRG23qI46pXVBzxc56Sm8bReUwQneEbPwJ/8ufeBdeX3Qp89Ibn8iYbCuwHcBSeBreu3i86Uctx9Ssqvjng+hxvAZ67jmHeeQqKysXX5oJOIlZ+YDf4H68Bjh7wrfLSIvAdG8CGT/Kj5QTRtSAxGkFEGCZmQpbFR80rEZWMHz/eY9nWrVsxbdq0gMveunWr2+eEhAQMHz484HLDidlsxpNPPom7774b//znP7FixQps2bIFLS0tHnmLi4vx2GOP4bnnnsNrr72G2bNnh6HF/tHaarz0g/PYeTBCEARBEB1plgyqBYB4gwfW6hG3EP7jbT86uB2c86if9YwIPXIRVSIUpoS4Ne5oyaeanI1INnsO9pDJhEiMFl5kModwidGsSgIYGLhAUNNRKCWTS3mTaRmJ7DxwE5pJJRodxGiSNjfpFKyF+/6SKOtn6BSwyvJ5O7YSFfnU2I3OBr8Fko2q9tS+gQpP9UjPSIxGEP5RaRdPz8jAkGHp1v5JBD2BJAKhpGkPDjXvF6aNSpmETIuBo5ZinExLtlCMVhluMZqf/RWCIAiCIAiCCAYUn9d1oPg836D4PP+h+DyCIAhCNzIxmsmgoV15hcB3n2NS09e4vvZ9vJfmeY8+UQc0NHMkx8dOHFZJhfhenJEIpCcas5288gT4A9cADn0TgfH7ZwHv/QiseB1Y8pL+ii68BuyeZ/1spbGY8/KR6qxFnclTQFu1fTswaFQYWhU8Hliqv0+XEt75OH2Gt7aA/+5yoNbzHZKQgmFgj78DZna/NrGzJgAPLAJ/8fdAfTWQmQP2+1fAenUYXJ9X0C44ynJWCYv/xzcci2+OvXjQIj9ex0W79EpKbSVgqxMmsb8ul67GUjLAUzOBOvdjhwGY1eMnLD/e22OdKlv0/x6LVTEaLy0Cf7SDzMxhB3/1QbD8ocC4S1x5FvxalxQNNz8I1meQ/sp79AOOlKCw9QA2JU7wSC4ui/7jJtb47Qc8ICnarOHAqz+LrfsKERlwzoH3npOms/yhusvS6vuoMSJGa7FzzHhexUntMGIAwPVjGD7dzVF9Kkw8M8klIxpXQOcyQXSEl5W6JO3eZOsJyWC3/wV83TLX77VOFJ74GuvTPMVoJRL5V1fh5sWnpWgA0GwHbn+HY1gel/7G699BjMadTvDfzwLK/DOA87umAp9WgiXKx3UQBAGEdwQoQRBEF6Z3797o3dv9oexnn31mSNlr1qxx+zx27FjExcUZUnYbTqfT0PL0kpOTg3vvvRfr169HbW0tvv76ayxYsABXXHEFkpPdO361tbWYM2cOli+XPzjXS0ZGhtvnujrxQ3oZtbVeTMyn6NbNfabUv/zlL+CcB/TvzTff9KmtBEEQBBEtNDubpGnxirEzJsoG6tp5K+yqvmAnQk6jU/vNBweHEz5OpUcQ0JAFhVD8JEOrDTKBk0NyvTErJEYLJ/GSe0Sz013oFarjUWGK9D7YURbVWdzW3h6D5aJa6BKa6ZBoyO7THbdRJuPQkhSGCln7m9VGqNz7jNEyCZhMuHY6XUOM5kVupoW3+7pdInnUix7pmV6pHEEQ7sjESenmLBKxEkHls6pl0rSLMmeFsCXRT6a5u3B5lSO8UztKJcGm0PU9CYIgCIIgCILoelB8nn9QfB7F5xEEQRDBg8ukWgaJ0VhuQfvfT1Q8Js1XEt5HxoZzsFK8vMDIeVe++LduKRoA4Phh4PtN4J/+S/cq7NNKKH96Bywh/HEMAIDcfGQ6PQdTA0DV1u9C3JjgckAi15ORbA1SQ4LFd2v0SdHSs8GWH4by5law3gOFWdiMG8FWHQNbegBs+WGwCZe6p+cVtv+dKRGjAcCe4/qaHk0U+yEUyIjVV2XHD8nT8s/UXrfDvawjw1mJcHmVfI7tqEEmRmMMSDM2HD6k8DXviZefujfyxgZgw0pdZbHrf+Nb5T37AQAKW4uFycUx1heKduwOjve/038NvWoEcGKBgtL5Cn54TEHNQgVL7zAhNYFkSkQQ2L9DnjbtBnmaAEWRKz14jIjRPt0NXVI0APjNVIaKZxXse8L1r/wZBf8zjrQnBOHB5x94l6IBwMybwVIywG56QJhc2FIkXF4c3vlWw0pZHcdne8Rpz36mwuY5bxAAoH/3Dn2O7zf5LUVrZ9OqwNYniC6AQdOKEARBEP4wffp0vP766+2f3377bTz11FOwWPwfZFZRUYGVK90fDE6fPl2Y19xpBheHQ79sorpa/JIrlFitVowbNw7jxo3Dvffei9bWVixbtgyPPPII9u/fD8BlZb/77rtx+eWXaz488EZOjvtMsUVFRcjO1v+2tK09vtajdz2CIAiC6Io0S4QuJpgNH7QvE5a42mGDRUk3tL6uhh7BiV21w2wiGQPhG1JZUASIkLTaIGu3QyITspCoJKzI5FNNqg2cu2Y3VbkqvW8F43hMUJKE4rM2WZRdbYWdt0rXDRUyCZu7wM27REP6HXSQY8mEgxEhSpTscw6OFrXZqzBEum1evkstcVogYjFvUjWZ5FF3+Tra1qw2QeUqFEZBEgThCzIxWpbltGiJQRxEyHlsBGcRoed4Syl22bYK0wYnDkdefL8Qtyi66Xi+dqTKHplitEj4bUYQBEEQBEEQRGxD8XmBQfF5BEEQBGEwTklfwCAxGvJOy2R62Y/AwlthZ57y1uJy4OxexlQZCcgG3udliJf7Az8oGSmrtc7LfwD2it+BeDDpcrBE+eRmYaH3AGQ69+AQ+nokVVaLY06ilQM+vkYZ0jM47WiDt7YAP24FSsVCHyGWOGDwaLBe/T3L2/ypvjImXgaWdYbXbExRgOxccWIHMdrQFvl5s+sox9CesSWw8UcokBmrr8rqJb9nFQXIzBGntZHTC9jrKV/MbBWfqDKpWDRR1SiOt0hPAEyK9nnCG2qB79YCh/a69q351H0/LRPIHwoc+hGo9vEix5hr3cKzwcy+91E458DhH4HFfxZn+PwD8DFTwYt36pOO5hWAJaX61AY2YAQ4gMJWsVBv3wnAqXKv+7cr4VQ5dpYCPxzlSLIyjC8AeqaHZv8crgIafehajOjN0D3V1bZcA/t7BCFE43cAGzDcp6IYk59TaoyI0XYf178d3VMARWHo76VrQBCxCq+vBr7/GqjpILE2W4DBo4BeA9qvGfzgXl3lsf6nrklX/gr48GUPWbGsX7S/vOv2i37UEHYv3S5P65N1+m++7YuA28G/+QTsout9X8/e6nruVNpJejd8otvkCQQRC5AYjSAIIozcc889WLRoUfugsYqKCixevBi//OUv/S5z4cKFsNtPPxhMSkrCL37xC2He1FT3B4M1NTW669m9e7dP7dL64W4UcXFxmD17NqZNm4YzzzwTR48eBQCUlpZi27ZtGDNmjN9ljx49GitWrGj/vHnzZowfP173+t9++62ufOPGjQNjrP2YWLNmTftAeoIgCIIg3GlWm4TL400Jht87NcUhqg0pIDFaIOgRozl4K4BYnR6PCBYyeU4kiJCsSgIYGDg8XwA2SdotE1kZLYMkfEMm91KhooU3I54loEVtEn7XQHCOxwRTEuDwDGhqu96KpGltaN3zjEYm7up47sra2nHdeMl30MKb4eQOmJhZKqaTfX+hRGufN6k2r2I02TXD27FlZhbEMStaued0Ro1OnVO2CfAmLpNdy/Sip9/AoeqSyhEE4Y5MjJYpES25ExvBWUToWVu1XJp2UeaVIWxJbJBpEQ8YD7cYLZJ/mxEEQRAEQRAEEdtQfJ6xUHweQRAEQQSITP5hNijuo4OQyAwn+rUewn7rAI9sReUckEyGE41US14hZyYbs42cc+CjN3xfUa8UDQCb5X//NFiw+ERksjphWlVtC3iTDSwhNp7zy6REIs5IBS4dFrzzh5eVgv/+CuCAb78H2te/5k6wXz8NZjK5Pv/zaWD5617WcsHyDBg43UHMdl3dEtyf83/CbHMWccwYxpESHzvXopIK39+Zp8QHoSGRQKMk7igxxftvr7RM4eKs1jLh8pgQo8nuY14usXz7evC7LzK+QW0Mnwz85QOwFP3mKe6wg//1DuDjf2jne0r/fY/Nmqc7bzsXXgM8fQcK7AeEySoHtv8EjO7re9GxSF0TxzWvqljb7l3hUBjwwhyG288P/sSkH+3Uf/1MjANuHBc79w4i8uFHxSIhAMBFc3wqS9GQDqkxMinpg8v0bUecGeglvuUTRJeAf7cW/KHrgcZ6cYYrbgN+sxAwmYBP3vZeYEZ34DxXrCWLs4KfMxVY8Te3LAWt4n4R58DWQ8DYfF+2IDbw5zccAGSd6qfzZa8Bb4l/8/rEmnfBC84Eu+F3ulfh5UfA77sCOLDLI4098hZAYjQixgj+rxKCIAhCypAhQ3DJJZe4Lbv//vtRViZ+YOuNPXv24Omnn3ZbdssttyAzU/wrsXt39wFte/bon8noP//5j09ts1qt7X+3tHgOuDWS9PR0XHXVVW7LDh48GFCZEydOdPv87rvv6l63oqICn332ma682dnZGDFiRPvno0eP4uOPP9ZdF0EQBEF0JaRitCAITmTiFgBocsrlMoQ+vAlUAMDOdcwKRhCdkMlztM7pUKEwRXq9apS02yE5DyyC2X2J0KF132k+dY+QfadAcI5HWZltkjEtsVQozw+ZCKNj+2TSr44ysUQd92mpjCMCrgdacjY990jZ96m1X9rzmMQzTjeq/ovRbE7JS9pT2Lm9fcCZP8iOCY98OgRqBEG4U2kXP5fuZjk9LSOTDJKJjdAsItTUOKqwpe4rYVovaz4GJp4V4hZFPzIxWp2zGnY1MDlpIMglteHvixEEQRAEQRAEEdtQfF5woPg8giAIgvATp0O83GQ2pvwe/YAOwhmZDKQ4vHNpGE61TfymKtOoMMIdGwwqqBOMAQXDwB5/F+ycIIptAiBz2FDh8mpTJvgbj4e4NcFDr1jposHAV/cpSE8Mohjtpfv9lqIBAJa8BGx29W/5vu3grz2kf90OckW/yS0AFNdw1V6Oo+hhPy7N+vznsfWWuciPn5kxK2iWCR4SU7yvmyL+fZ3RdEK4vMoGqGp0H0v+iNG4wwH++E3BaVAbO9aDv/1X39ZZ+75XKZovsDv+D7jubt/XS04DLHFSAQgA3PA3NZCmxRRPf8Y7SNFcqBy4818cB08G//y699/66phQ4LoP98qM0WsnEZnIxGh9BoJliGN0ZCgaRg8e5fcyADhSrX8b8rsBJg1RHEHEMry1BfxPN8n7zIBLarZhhffnEdYEYPSFYC9/CZZ4ekwA6+lpOdPqF81Z1DX7RSV+PB9LsgJWCwM/dhD8Wd/7qTL4qw+CF+3Un//lB4RSNIKIVUiMRhAEEWaeeeYZJCaefutWU1ODq666Cg0Nvg1AraiowDXXXIPW1tMDW3r06IFHHnlEus7IkSPdPn/00Ue66vr000+xZcsWn9qXnp7e/vfJkyfdZs0MBmaz+wvijoFf/jB58mT07du3/fPWrVuxatUqXes+/vjjPm3vr3/9a7fPv/vd73w+HgiCIAiiKyAbVBuvJBhel1WJB5P8hCbpRuDo2Yd2Hr4B3ET0IhUqRcjg+0SZFErSbgcXB8iamUEBsoRfyOReQAcRmYbIKRjHo0y01dYOLdmW1vYYjWzbO+4vmVSuo0RD+zuwuf3v0YYQbq+MeC2xm5d7JOdcLn3TsW2y70CPkE2GlggQADhUqHAGrfz2fAFsA0F0VSod5cLlWZbuwuUEEShfVn8EJ8R93Isyr4zdgQBBROt8rXKEb6RbJEtqCYIgCIIgCIKIfSg+LzhQfB5BEARB+IFDcr8yWwwpnsVZgZze7Z/7txYL85WUR/+g+45USeY11RLK+AL/4t/SNPb0CrDbHvOtQGsC2Bf1YF80QHlzK9gFV3lfJ0xkdhNLjMpN2cCWtSFuTfDQI0YbkAN8+lsT+ucEUYpmbwU2rAy8nC8+dP2/bqlvK+YWBFw3s8QBPfq2f766fpk07wdbY+tadLDSt/y56d7zRC1Nkt9XCeIJHDvC0sRitMzGI8LlKgeqo3x+a3/EaNi9GTh5LCjtcePLD33Kzr9YYljV7PevgM35X//jBoaMRZpah2xJLMzBkwhocs9Y4t8a1+Ml24K7j07Uei+/ewpgf1XBhvtNGNWH4kiIEHP8kHj5xMt9LoqZ5EoPVY1+KdGy7fqvF4UUjkh0ZXasB2pPes3GP/+39vOIBSvBPquC8tzHYJ0l14LfdsnchjMcYtnw4aqu2S/6qcr3dbLa+uje+sk3PQD2ZYP7v0ff1lyF6+x7c4cdWL9cV16CiBVIjEYQBBFmBg0ahBdeeMFt2ddff41LLrkER46IH9x2pqioCFOmTMHevaf1/Iqi4O2330Z2ttw8Pm7cOLegr2XLlmHr1q1e67rpJt9nlRg8eHD73w6HA19++aWu9RobG/HCCy+gvl7DftyJhoYGLF3q/hKnY/3+oCiKR0DUvHnzvM50uXTpUrz88ss+1XXjjTdi0KBB7Z/37t2LK6+8EtXV1T6VU1FR4bEfCIIgCCKWaFabhMuDIUZTmCItl8RogaNHXGJXgxu4T8QmUqFSBIiQALkEQNZumSDQzIwJkCX8Q0ts1naP0BI5JZiMmqK4Y5kS4VibqE3SHgUKrCze8PbIkLWz4/6SSeU6yt/0fAfycsJ/PbAoFlhYnDDNWz+jlbdIJWN6pHuJJnHAYaPq/wCwRqf3de3cv/u6XbXrlqVSH40gfKNZbYLNKX4Gm9lBtMQgCzDsekERRGA0ORuxoeZTYVqWpTtGpIwPcYtigwxzN2lalT18YjSZ3D4YfWGCIAiCIAiCIIjOUHyeNhSfR/F5BEEQRAhxiicLgcnACfGGjWv/s6D1gDBLsdgPErXIhDIZRj2C/mm/PG3gKLd9rovhk8AscWDmyJ8IsWe2OIZkVcqlQLm+vnQ0UKkjvGDK4NPvSfm+7eDvPgu+5j3w+hrjGnK0RC5Q9IXP/gV13iTgn3/1bb3c/MDrBtwEjeOaNkuz/XAUUNXYeM/cbOewtfi2zgUDQy/34U4n+OZPoL7xBNRFj4J/uRS8KQjxNY2S2KFEsWzRjRSxGK1nvVj2CQB7j+tpVOQiF6PJjxH+zcdBak0nThwGX/IieFmpq97iH6AuuBPqL8aD/+sZ8JOunc+//xrqQ9cDRrVLUYBzLgqsjNQMAEC2UywecahAhf5HITGL3cFRohFK8KPYn2IY+3SUP7k/YFJIiEaEiVqx+ZRl9/S5KK3DOBa6RL5cL87Np3Oa6MLs/lZfvq+WActfl6cPHgOmSFRBkt923SXCWM6Bsjp9zYol6pp8v/i2yYv5ljWa+djwSWBmi9s/nDkW0JL+vj0f6qsPgf/zafDd7pMn8T3fuZb/6xngX88Cdn3jKQgiViAxGkEQRARw66234s4773RbtnHjRgwZMgRPPfUUSktLhesVFxfjoYcewrBhw/DDDz+4pc2fPx9TpkzRrDclJQWzZ89u/+x0OnHppZfis88+88jb2tqKRYsW4dxzz0VZWRkyMjL0bh4A4IILLnD7fMstt+Dll1/Gtm3bcODAARw6dKj938mTpx86tra24u6770ZeXh5uvfVWfPTRR5pBWFu2bMGUKVNw+PDh9mXnnnsuBgwY4FN7Rdx99904++yz2z8fO3YMEyZMwJIlSzys7DabDY8//jiuv/56qKrq0/4ymUxYsmQJUlNT25etXbsWZ511Fl555RXN7a+qqsL777+POXPmoFevXnj++ed92EKCIAiCiC5kg2rjleAMqk2UyVt0SL0IbfSISxw6JSgE0RGZCEmPLCgUyIRMsnY7JCIhmVCJCA0WFgcFJmFa23cp+06tLB4mZnygq+wYbxe1ySRhpiT/Z1j0A1k77bwVdtUOznm7zK0zHaVqViVBKupp21Z5OZEh45DtC2/9DNmxBeiTvknFaDrkZiJUrkr7aB2xq/7d15t9kJ2RGI0gfKPSXiZN62bxPkUjJzEa4SMbaz+T3jMuzLgcJibuXxHaxClWpJrE08uHU4wmlVZHyG8zgiAIgiAIgiBiH4rPo/i8jlB8HkEQBBE2HBIxmtm4CfHYNadFowWtJcI8R2uAxpbYebdTLXlFrSWU8YkjchkPy8gGhk8GhpyjryyTGWz2Pca0KwQUarwmfNkyG7zeN7FspFLtJbwg2Qrceb7reOLvPQd+27ngLz8A/vhN4PMmgpf9FHAbuL0V/Fadx5Ee9mzxnqcTLMGY9zbs1ofb/76i/iPNvHMWxca1SOsY+uMMz2tRvAX41fmhFYJwhx38kTng910BLP4z8I+nXJ/vmgpeIxZH+V1Xo+Q3VaI4TsmNNLEYrUfNj0iyileZ/LQa1fe1apu47ZqCzyb/J730Fb7wXvCbR0P9863gt4wGVvwN+HEb+Ct/BL+yL9T/nQF+5wUueYdRXDwXLKdXYGWkuJ4TPFzxF2mW97dG73FjFIcqAacqT1+8iQdVYllcoV12nBm4ZyppEIgwUifp76aK71daSAVGALjWiRgllJTru1Z0TwFuGU9iNKJrwo+WgL/xhCFlMa3rUM9+wsWPVjwpXSXWJPp6qG/2fZ2sJIBv/Rz47zp5pkGjgJEXeCxmZ/QBLpqjXcE7T4O/9hD4ryaBL/4zAIAvftL17OG1h1x98EWP+N5wgohyIn96CYIgiC7Ciy++iIyMDDz55JPg3PUjsL6+Hg888AD++Mc/YsiQIejVqxcyMjJQWVmJw4cPY9++fR7lWCwWLFy4ELfffruuep944gksW7YMNTWumWrKy8sxbdo0FBYW4qyzzoLVakVZWRm+/fZb2Gyup/VnnHEG5s+f79PMlNdeey0efPDB9lk2jx075hFs1sZNN92EN998021ZXV0dFi9ejMWLF4MxhsLCQuTn5yM9PR1msxmVlZXYtWuXxyyeiYmJeP11DSuyD1gsFrzzzjs477zzUFnpsr0fP34c1157LXJycjBq1CikpaWhrKwM33zzDZqamgAAaWlpmD9/Pn75y1/qrmvo0KH48MMPcc0116C2thYAcOTIEdxxxx246667MGzYMPTu3RupqalobGxETU0N9u/fr3sWU4IgCIKIBZrVJuHyeCUhKPVJBUYk3QgYLalLG3aJEIogtJCdnwkS0WGokQkXZe22q+LzwMyMC5AlfIcxhgRTImxOz4CuNhlXqI9FmeyrXdQmaU+opYFa29+s2mBRrOAQv+zv2FaFKYhXEoTys3YZXITLOBJMSah1egZQeOtnyLarrUxv+Ctkk9GsNuqSI9n9FJ5qba9HXpLXEoRPVNrFUQ0KFKSbu4W4NUSs4+B2fFktHgSRpKRgfNrUELcotsi0ZKPOWeOxvEoy42OwUblTKsGLFGk1QRAEQRAEQRBdA4rPOw3F51F8HkEQBBEmnCEQow0ZAz7nf4F3n0WhRIwGAAdOAmfmGlZt2HCqHDVSMVrg5fPmRqBcfP9nTy11/a8owHMfg7/xOLDtS8BWK8isAPlngl1zJ9goz8GxkUr/HAZIYgDuPuM5zC35AZnDfRP6RiJVEikRAFw/huH+6QxDejLwk8fBX33IPUNpEfjb88F+91JgjfhqOWDXiKXo0cdz2fHDnssiAHb2xPajJp63YH/xEAwo3CPM++9tHA8e4TgrL7rlGJUaISp3ns8wug/Dog0q9pcBI3sz3D2FYXxBiLd5w0fA+hWey/f9F/zDl8F+buDgeqkYLcX7uhLBA2tpwoBsFduPiKUy737H8fOJ0XkcVflzH6s84V9lomsJALS0AFUaZTbUAJ++I0777nP99Z/RB8L5T9uuZ2ndwK67C7jhPv1lykh13Z+uqV8KmX7invc47row8KqiGT0SlC/3AVMGh77+q0YAv5mqYEJhdJ7bRPTDOQcaJGK0FPGkhVooivxYDqJ/MGRonc99swCrGRibz/DoZQw90um8Jrom/E25sNUX2P8t0U5PTAHP6A5Uu5+YlzfIxdXFFRwT+3etc7Ohxfd1MpMA/txv5BnMFrCFn0plmOyBReC7NwNHD3iti7/xBHDWBNfzJr306APEaxmWCSI6ITEaQRBEBPHEE0/gvPPOwx133IGioqL25Zxz7N69G7t379Zcf+TIkXjttdcwevRo3XXm5ubiww8/xKxZs9xmOiwuLkZxsefsRv369cPq1atRVlamuw4ASEhIwLJlyzBr1iwcPXrUp3U7wzlHUVGR2z4SkZubi6VLl2LYsGEB1deRoUOHYu3atZgxYwaOHz/evrysrAz/+c9/PPKnp6dj5cqVcDqdPtc1depUbN26FXPmzMHWrVvblzudTuzYsQM7duzwWoavM4cSBEEQRDQhkp8AZw13OQAAIABJREFUYRCjOSVvpAnd6JGc+CtQIbo2ES9C8lFI5JAIAi0KidHCTYLiTYwmvlcE61j0JvOUCSlDfW5o1deo2mDRkGJ2ln4lKEkSMdqp7yBCtlmGvJ+hfY/UStcjGkk0iWdibVT9m1W00alvPdn1zBt6ZKrteUleSxA+IROjpZuzYGKm9s+Mda3AByI4bK3bgBpHpTBtcsYlsCrxIW5RbJFpycahZs/3J7LzPNjIxPaAXOhLEARBEARBEAQRLCg+Tx8Un0fxeQRBEESQcEjek5pM4uV+wi6eC/7us+hj/wkm7oCTeQ4dKy6PDTGaTIoGABlGPILWGqjae0D7nywxGezXfzWgwsiif3ft9A+32PGL4aFpSzCpkoQXPDyT4U+XdxjM/O2nYsHhhlVAgGI0vmmVPPHsSVBeXOu5TtlP4Nf0D6jedvqfbUw5bYy6wCUKBJBvP4RsRzkqzOIDasWO6BejyY4hwDVwftYIhlkjjL3W+wrfKJcgYMNKwFAxmiR+KEEcp+RGiliMBgD905ux/Yj44v7RTo6fT9TTuMhDdvxoitGOyOWnUm55CMqtD0uT1asLpDLQQGGfVYElhDZOj6VkgMPlYRvevBM74sXXufpmjpT46L4GBUJxhXcb0/IdHFMGB2cf/VQlXj7nHIZ3bhMLRQgiZDQ1ALJnjim+PxNUJJIcAOCqeBLpaIFzLj2fl96uYNaIrnudJYg2OOeAVp/cF3rp+B2Ym+8hRmMARjX9F9sSRnpk1yNLjTX8EaNloRb4ab80nc1fBqYhhGZmM/DAIvBfT9FVH18gngBJyMjzoSz8VH9+gogiSIxGEAQRYUydOhV79uzBBx98gDfeeANfffUVHA7J7FAArFYrLr74Ytx222247LLL/BqYduGFF2LLli34wx/+gJUrV7bPiNmR7Oxs3HzzzXjooYeQmprqc+AVAIwePRp79uzBu+++i08++QS7du1CeXk5bDabNDApLS0NX331FVavXo3PP/8cO3fu1NwfADBw4EDcdNNNuOeee5CYaPygmuHDh2Pv3r14+OGH8eabb7oFrLWRnJyMa665Bo8//jh69eqFdevW+VVXYWEhtmzZgtWrV2PhwoXYsGEDWlq0e9uDBw/G1KlTcd1112HChAl+1UsQBEEQ0UCLZGBtvBKcQbWJJm3JDOE/eiQn/gpUiK6N7NiSnc+hxtfrikwQaGYkRgs33qRWcilXcO5Z3qR7UmlgiM8NLSlZk7MRTkX++7/zuommJFQ5KgTlnPoOJNscKdcD2b731s+QfZdmZoFFifNab6IiEaPpFJx5tkffev4KT/XIVNvwRaJGEIRcmJRl6RycLn7+LHqmTBAiOOdYU7VcmGZhcTg/fUaIWxR7ZEoGlVTZPftKoUCrPxMpklqCIAiCIAiCILoWFJ/nDsXnUXweQRAEEUJEQiUAMBsc95GbDwCwwIG+9sMoiSvwyFJU3qYKiW6qNcRomkIZvRzxFNkCcMnsevQ1oILIJjWBITEOaJS84n+vqBt+EdomBYVKnVIivvLv4oxVJ8Ab6zUHP4vgqgp89i/wF+4D6iQmCQBs1PnihO69gLxC+XHqA2zuvQGX4caZ49rFaABwoW0d3k+7Tpi1JDyvsAxFJrZKsgJWS4Rca49qiLRKfgDn3LiJ0po8f8MBABJ1iNG6y62dF2aU4gMMFKat3AnYWjiSrBGyv33AVzEaLy0CSn7wuR424jztDCMvAD552+dyvTJ0bMilaADcpEWDWn6UitFKKoDhvULVqMhDjwSlpDx4MUFVNnHZPdL0rc9bW4DVi8F3fQu00GT3hMG0NMvT/BCjMUV+j1KjPPSurglwSNxuuTSvBNHF4ZtWg3/zMXBoL9BQG3iB3fOAPB1itMKzgF2bPRYXtJYIxWi7jkb5hcgP6jUu8zImH/5Anmi2AEPO8V7IwJFAUipgq/Oe1wchMht5vu68BBFtkBitC8EYSwEwEUAegG4A6gEcA7CLcy5XU/pejwXABAC9AfQA0HCqnu2c80NG1UMQsYzZbMbcuXMxd+5c2Gw2bNu2DcXFxaioqEBrayusVitycnIwYMAAjBw5ElarNeA6Bw0ahOXLl+PkyZP46quvcOTIETQ2NiInJwf9+vXDpEmTYDafvm2cf/75fg12S01Nxbx58zBv3jxd+RljmDx5MiZPngwAaGpqwu7du1FSUoITJ07AZrOBMYbU1FT07t0bZ511Fvr06aO7Pf4GRKWlpeH555/H008/jXXr1uHgwYOorq5GdnY28vLyMGnSJCQlnX5w6+/+Alz7YObMmZg5cyaam5vx7bff4vDhw6isrITNZkNSUhIyMjJQWFiIwYMHIysry696CIIgCCLaaJaI0cIlmSH8w8mdaOHenybaVf8EKkTXxcHtaOXiQQuRMvheKtOSiAMcXBwgS2K08ONNahVqEZm8Pa7AD6k0MMTnhlWJB4MCDs+34U2qTVOK2fl+Hy+7T6s22FW7VMQVrH6Dr8j2vTcRmFT4pvO7lB0rvgjI3NbT2S+yq/4JT32Rnfm7DQTRVZGL0XLcPsvCszi6XlAE4R+7bdtwvPUnYdq5aRcixZwe4hbFHp5CQxdhE6M55cHHkfLbjCAIgiAIgiCIrgfF552G4vMoPo8gCIIIIU7Je1KTsUO7WEISeLeewMljKGwtEYrR9EgwogGZTAYwRozG/0+i/erRF8xooV2EYlbkaV/W9g5dQ4KI7DjK6nwMcYntAQCOHgD6i6U7MvifbwXWvOs942U/Fy5mjAG3PQb+xE2ARITsQXI6kJENlBadXjZoFDB5lr71dcKuvh38rb+0f76v8lm5GC2Iwp1QIRP7ZEZGWJILbwPqv1sLnHORMXU1ysRo3uWBLCkVPKM7UO15o5qTsBm/kojRAOD8BSrW/U6JKjka51zjGuS5HXzfdvDbzvW9onOnAcMnaWZhc34L/vVqTVGjz8RZwW592LjyfCE1s/3Pxyv+hPfSZguzPbFKxYe3m0LVqohDzzW4OIihBr6KATvCHXbwe2cCO9Yb2yiC0IMfYjQoChhXwZlnB1uNcjNalZawOpL6QwQRYvjiJ8HfeNy4AhkD+/mjYCbvfRf2P/eDL3/dY3mB/YAw/8qdQLOdIz5SxM4hoEF7jhwPzkn4CTM3/kGazm5+ECzZu92VxScCN/8R/CV5WT7Tsx9w2a3GlUcQEQaJ0boAjLEJAB4GMAWS75wxthPAqwBe435GBjDGsgH8CcBsAJmSPF8DeJZz/qE/dRBEVyQpKckt8CjYdOvWDVdffXVI6vKHhIQEjB49GqNHjw53UwC4ZgSdNm1ayOqLj4/Heed5maWDIAiCILoIsoG1ViUhKPUlmMRP5GVCEkIfegUndg05DkGIiIbB91IhkeS8kEmiSIwWfmRyrXCJyGTtaVYboXJVeu8KlqhNhsIUJCiJaFQbPNKaVBscTHzMW1gcLEqc27JEmQzOaUOzxr061NssQypK9HKflKXr3a5ERTwTa5PT8zvRg80pCWzshEMiqvNG2zmlKy/JawnCJ6qkYjSxYIkg/GVN1TLhcgaGKRlXhLg1sUmmJVu4vMZRCSd3wsRCG9StJSuVPWshCIIgCIIgCIIIJRSf5w7F51F8HkEQBBFEHOIJ8WAKQtxHbkG7GO1TQXJJRXQPvG9DJtMwKUBKfGBl8/pqwFYnTswrDKzwKIJ5GRO9f8dBDBjeLzSNCQJaUqLMzlIiu0asw5ESn8RofN92XVI09qd3wLr1kKdPuRbIOgP8rqm66mVPvAvkDwVWLQYv2QU2YDhw9R1gcYHLoN3qyegO3mcQcPhHAMDwlu9xd+ULeD7rLo+8wRTuhAqZDMQIQaMR8IZaoPakdp6F/wv2zg/GVNgojjtiOsRoAFzXWIEYLalsH9b8VsFFz4klhdsOA+9/x3HrxOiROTS1Ai2S7oHo+OFvP6VZHltSBGxZC771C6C+GkhMARsxGbjiFy6Zota6+UOB1zaAr1oMvLNA7yZol/nSl2CDRhlSls+knJ6ULd9+CMnOejSYPI/BZdsBp8phUqLnuDESPdfgQycBu4PDYjZ+H8nuwRl6Qgm+/g9J0YjwkeLPxI8MClQ44SlG83fCh0gh2MJqgohGeG2l175bG2xJEfg1/bUzXf5zsAuvBRt1gb4yu+eBZ+YAVWVuy/u3FkvXWfpfjrlju0afiHMuFaOlJwLn9D39OTEOGJ9Ti18+PxqJvElaJrvpAd31s+t/C/TqD75+JVBx1CWqDgD26nqwDIr3JmIXEqPFMIwxC4AXAOiZ9u1sAK8AmMMY+xnnvNTHui4B8CYAb1fM8QDGM8beATCPc06j0wiCIAiCIAiC8ItmiRgjPlhiNJmwhMRoAaE1QLoj/gpUiK6L1rkpEyiFGpkUS9Z22XlgITFa2JGK0U4J+mTXumBJuWT3LA6OFrVZ3p4wSAMTTElCMVqj0waLRIwm2t/y+3SjtowjwkWJ3voZgX6XiSaxGK1RbQDn3GtAnN72dMbBJRF9XvCl36W3LQRBuDhpLxMu9xSjdY2gByI4HGraj6Km3cK04cnj0D1OPqiD0I9MjKZCRY3jJLIsOSFtj0xWamXxMDEKVyAIgiAIgiAIgiAIgiAIogvhlEwMaQrCs9K8AmDnBhS0lgiTi8Vz5kQd1Y1igUBGInx+3+3B95vkaSRGa2ftutKoFqPZWgC7U5zWUeLAOQeOH5IXdPKoT/XyDSv1ZRw61msWNnwS8KsnwV990Ht5eQVgmTnAjX8I/pvfM89tF6MBwCW2T4VitLI6oKGZIzk+et9FH6sRL48YEcjRA97z1FYZV1+jZGLFRHGckge5BcAPX3suP1KM4b20V/1sD3DrRH3VRALHa+VpncVQnHPgu8/lKySnA917gV12K9hlt/rVHpZXCParJ6GWHwHWvOdXGe1lPfbP8EnRACA10+3jpKZN+Dh5ujDr/jJgcBcMV3A4OQ5qOxNd+VTgcBVQGATXRnUAYkm+ZY2xjSEIvSSng5n9iN1XFDCIf7+oztgUozEGpAVneBdBRD47N2rLtdvofzaQnQfEJwLN4hsj+81zYFff4XsbzpoArFvqtkj2nAgA1uwB5nr/CRoTNNsBp9i3jNV3KRhX4P77lK/+CFww5qWdWb/0uQ1swkywCTNd5a9fAf7gdT6XAQC49i6SohExD0UaxyiMMTOAjwB0nibNDuBbAEcAJMElROvdIX0ygDWMsQmc80qddZ0PYDmAuA6LOYD/AjgAIB3ACADdOqTfACCVMTaLcy65bRAEQRAEQRAEQchpUZuFyxNMeqYI8h2ZwKhRMsCX0IdewYmdSwIDCUKC1rkZMSIkmchJ0na7RCRkJjFa2In3IrmTXeuCdSxq3QubVJv0GAuHNDBRSYLoIWSTaoOTiY95kURMKqfT2F7XepFxPZCKEp2SyJ/2dMl3GaAYzcEdsPNWxDHfZgRudGq88OuA3U/hqS/9LpLXEoR+Gp0N0nOms0CJScLjuSRoiyA6sqZquTTtosxZIWxJbJNplge5VNorQi9Gk4ntg/T8hiAIgiAIgiAIgiAIgiAIwhv8y6Xgb/759IKak0CVYBKZoWOB0VPA/ud+MGt84BU7JfYlfwbVe4HlFoADKLCLZTg/VQHNdo54S/SKiAD5AHyZTIMf2A3+/kKgaAfQMx9s+g1gEy8TZ9YQCbEJl/rY0ujF2xGy80h0vyes1AgtcDuOPnwZsNXJMzv0xzfympPAW3/xnrHwLKB7nr5CJ1wKeBOj5Z8J5PTWzmMgbPwM8NVvtn8uaJWfUxuLgelnhqBRQaKkXHwe9MkK/jWWf/sp+EeLgdL9rgXJ6cCoC8B6DwD//N/AsQPAAfHkVW7UngQvLQLr1d/3NhTtBP/geaD4e0B1AqVF4oyJKbrKY70KxREIG1chs3Qbzs0fgc2Sw+mDrRwPXcpxZm503N+KNESlvTM7LaipkEvnAGD8jMCloKdg42eAByhGw5gphrTFb1LS3T5e3LBGKkYrqeiaYrTSarkctDPF5caL0VSVS8VoGYnMJQNcsQh8/Qqg8rhnJj3XNoIIBudM9W89xqBwVdjB5jy6+9RVNrmwWlGi455MEEbCm2zgj8zRl3n8DDBFAR93CfDlh+I848R9GK/kFngsGtO0TZq9WPK7JlrhnOPldRwrd3DUNAHn5jM8dClDdgpDQ4t8vWTB8Am+6g3NugJ+TjTyfMCaALQ0+bwqGz8jsLoJIgogMVrsMh+eUrTnATzGOa/uuJAxdjGAVwDkn1o0EMBSxtj53EtvmjGWB2Ap3KVomwD8gnO+t0M+K4B5ABYAaHtrcxmAPwP4ow/bRRAEQRAEQRAEAc65dGCtVQnOlCIiCQtA0o1A0ZLVdMSu+idQIbousnOTQYFVMSBY1QBk15UW3gwnd8DE3B/dOSQiIRKjhR+ZiKz51L0q1CIyLSlWk2pDY4hFbVrIzoNGpw0ORSJGE7RTqxzZ9kbD9cBbP0Mq3dN5bGkdK43OBsQpPorRtGZC6oC/wlNf+l16+xgEQQBV9gppWpZFb1RjbAVEEMZT3nocOxq+Eab1TxiKvgkDQtyi2CXBlIhEJVl4X9Y634OF7P6tV+RKEARBEARBEARBEARBEARhOPXV+kQKu78Fdn8L/v0mYOGngctGJOIkZgrC0K68QgBAYWuJNMtLX3Lce3F0D1L3RYzGD+4Bv+P803Krop3gXy0DHnwDbPoNnvmPyvcdRl7ge2OjFG+H/aK6iXjJ7oTZYgpNgwxGdgwBQOapcCD+wfPgL9ynXZBDHOPSGd7YAH77ZO8ZE5LA7pyv+7rD+g4Gn30P8P5CeXl3/dUwaZIuxrsPDO9tL4WZ2+EQxLrNeF5F+TMKuqVE5zWpWPIKzmiJUGf4F0vAH/sZ0Hn45/eb/HqDz+eeCXxcDpacpn+d/TvAf30h0KQjTkenGE0kcGiv79cXYv793+C8A4OkeSbOV/H1HxQM6Rn5x9P1r6vC5bnpQKLVvf38H0/JC4qLB7vpAeMaNnkWMPZi/H/27jvOjeL8H/hnVtJVt7tz99nYvjPG9GIIzaETOtiUHzgkAUIgJkCAQPgmQAiBFGoghJJAgNA7JmAwmGLAuFKMbTC2z/3cfcXldEXSPr8/dLZ10jyjXZ3q6Xm/XveytTu7O5JGuyvtzGcx6/2EFldX3wPVIzrZLc2itn9x49O4tv+92qLhEJDsby/Jdsck53uKVLxGW1tid187lJcC9OhNwPP690yIjOk9EOrimxNbVllQzBHatnO7753bwGohujKybdA1J/Hh+JGG7w01bgIAQF18C2j+DGDz2o5lfnIj1MDhmoXjU5VVMXudAgQwpnUGPis8LKY8970mV133MuGBD3e9AnNWEN6ZT/jqFgtzVvDLdYsaXkIzJwMLZvILHDUWOPiETtVVdesJTPgL6IHr+BMknWPPDYeqCdHFSTBaF6SUGgXgmqjJvyGi+3Tlieh9pdQRCAea7Tgy/hDA/wMQL9r9NgBlEY+nAzieiFqittEK4B9KqVUA3oiYdZ1S6l9EtDLOdoQQQgghhBBipwC1wYb+R8IiSx9O01lcWIyEbnQOF1YTLZhggIrIX1x4YrFVAktZaa6NnjG8KuRHN2+PDtOCtv5z4LMKtNNF+nDvpb/9GJHuILIiY9tqYo9dGQlGY47bzXYTQqTvNKp7vbn3oMVu2hlQp9t2tuwPuNch3nHS38n30hTO57e3oxcqHK1nV30cBqMlGHjq5rzL6TmGEALYHNignW7Bg17ejh1FVR52BBXJ8WHDmyCmc9/x5WPTXJuur9zXB/5WXTCa4ZbjKcIdv1P1+40QQgghhBBCCCGEEEIk3defAPNnAPse3rn1hJjgJG8KbohXGQ6VGda2AhaFYKvY0Ko/vkX4zYnJ33Q6Nei7A6BM8xM0vfrPXaFokdNfuE8bjIY1y/QrP/0SKCs7+hqkg5Org5Nf/xKn/b9DUl6XVDAFo5WVAhQMgJ67J/6KmODDGB+9AtQaQvfaqSdmQ7UHHDplXXkX6NCTQM/cCSz/LrzP6T0Q6uQLgSNOgxo8wtX6Okt5vaBjzw0/ZwBehDA0sBI1Bfrn9d8ZuRnWaNuEZZkKRnvmTneD5p2Y8gIw9pfO6/DKP52FogFASTdn5Sr5YDS0teKIaX/G05c8i58+oX/uW1uABz8mPPLj7G5P21oIW1v087Rt59WH2HWpV5dAlSWvwamCQuBvbwCf/Q/03Wygrb2izU3A7ClA3Tpg6CjgwKMAKKB+QzgsYo8DoS68EWqvLDgmlPYMp3u2f0a6UROO8H+Oz0uOiClak/7L6Fnhyc9dBKOlICjFeAxW24DXHk5sxf13Aw4/JbFlheAoBTV8r/A5VUX/hNdhQR+ImeO5aHwwmnQNEvlozgfAd7PNZc69Emr3A4AxZ0CVhscMqWGjgMdnhM+/ViwEuvWEOugYqAOOSrwuTODwTevvwEm7TYqZvmFr+By1e1F2n0c7Ubed8MgnsTvXpZuAF+cQnp3J73i7R91Xnp4zBLUO3wvqT88n5XcidfYVwJ6HALPeBzVoTlBXLwmf31ZWA0UlUPscBhx+al79RiXylwSjdU03Aojcg33AhaLtQETrlVKXAJgaMfkvSqlXiEibNqCUGgHgZxGT2gBcFB2KFrWdiUqp/0YsVwjgVgCXmOonhBBCCCGEEJFa7WZ2XrFVnJJtFjPBIa3UghCF4NF0HhPxOQ04CVBiASoif7HBT57sucLG7VeAcKBPN0QFozEhUV7NXTRFenGhDjsCubj2aAql6gyf5YNPFWj3nc22H81MYFSq6mPCB4/6EbL0bb5I8znmPk/+UBMfHpaB58vh6tIcagIRsXfs7ex7WWLxHQ6dhpx1XCa1gaduws4kvFYI57igpHJfb1gOv+fkeN8skWLbgo2YueUj7bwBBUOwV+mBaa5R11fu64Pa1uUx0+uD6b+tYzadewohhBBCCCGEEEIIIUTC5k/vfDAaF5zkSUG/s0HDAQAFCKB/cAPW+gbGFGkLAsEQwevJ3QGvaxr00ytKNc9p6hv6wssWgFr8UEVRfRHW6MOr3IZV5bobT1b47avmq4HTFvhx2v9LU4WSbHWD/rmVlQAeS4FW1YQDf+KgUMBRiBzNmx63jPr94wm3MzX6WKjRxya0bErsNrLDwxFtNWww2rQluRnWWNsAtDK5l1V9Urd/Jf82oGZe8tc7bzqUi2A0zJvmvGwvh8FdldUdAq1itzkdJ16vYOqpMG1J9vdimLuan1fVt2PbIU2w507D9kxqKNoOyusFjhkHdcy4pK87HZRlgcr7h0Pc2u3VupAJRsv+9pJsrQF3z3lpCl4jLuAWAMrWfAO08uNFTNS9b0ENGRm/oBDppiw2GI1yPBmtnvk8l0vXIJGHaL75O5+69n6ocRP08yr6A2ddlrzbFzOBw9UBPqx76SZg/8HJqkDmzF4e/t1LZ9oSoM4wTKJHxLBUCoWABTPYsuqC3yQ1mEyNGg2MGi23sBYiisT/dTEqPELu1KjJDm5NARDRJwDmREwaBuBowyLjAURegXmdiJY42NSdUY/PU0oVOamjEEIIIYQQQgBAsyEYjQun6awSJrgF4Af5ivicBpwEEgxQEfmLa1tcCFMmuN2vcAGBXiX3Psg0NtTKboJNNppt/RXfVLZHbt1bg41sW8rE54MLxGi2m/gQDU09i5njv2k93DKZwO0PbNho5e9D0el9nc8qgE8VuFq3id92FqaWaOCpm7CzZtsPm/SdSIQQHdUF9cFoFb7YjrNcUCNJNJowmNr4DrvvP6H8LFhKLlknW7lX3/G9jglCTKVc+G4mhBBCCCGEEEIIIYQQ8dDcTzu/khAzItOb/BviqZLuQHk/AMDerd9qywRCwKr6pG86ZWybcMckG6NuCaH7VSEcfXcIr3ypv0Y1tHfHx2TbwFbDk23ueK2bgkFg3Up92TwLRjvnwPjDce/aMAahHA1zqGEunQzb0YaWL3S2Ii74MNrU1+OXOfwUZ+vKAeqosR0ej9s6kS375jeprk1q1BjuS1TdJzXbpGAAdNN5qVn5By+5qgc2rHJWuLw/MGI/R0VVaQ/g4OP5AnXr0Mfnx5gRfJFv1wIbt2b3fumxT/n6nXdQ1L63toZf0f5jklSjLujwkzs8rGrTh4C8/x3gb83u9pJsH37vrvySFHQ1qGe6AioF9Hjd0ZD4WMP3BgbvnnilhEglpaCY0M8cPZXeqYH5PJfrAquj0LoVsH93NuxT+sM+rifsCUeBPnZwzixEGtG3s2BffSLsEytgH9s9/HdcT9iXjwF9Ev6OQ8Eg7EdvAv77V35FHg8w5ow01RpAxQCgsDhm8uBALXwqpF3k27U5vkNq9/Vq/nk8M5Pw3Tp2Ngq8EfuujavN3/ejzjeFEKkhvcy7nj0BRP6E3wZgqovlJ0c9PsdQdmzU4yedbICIFgKYFTGpFEAO3tNBCCGEEEIIkSktTMAMABRZsT/aJYNpwK6bkA7RkdPXLtEAFZG/uLaVTYPvC61iKOZeHrr6B5mAQC7USKQPF7DVYjejxfaDmDt8pTQYzaOvUz0TfgPwIWWpxL0GzXYT/NznWFNPbj0tdjOaQvqwrmzaHyR6nsHu61y8l1wom5953UycLpNo4KmbMFqCjVabD5UTQuzCBSWVa4LRWNydmkXea7Vb8GnDu9p5vbwVGN1DOmmnQoVPP8qiPmAYmZEiLaH0hwQLIYQQQgghhBBCCCFE0s18D+Tf1rl1cAMpPSm6Id6gKgDAo+t+xRa57JncudnUzW8S/vAmYdEGoKkV+HQJX7Y6+jLXaw+ZVx4VjIaNq/ggu4HD49a1KxnaW+Gf4xWY+yftdP0ruXm9kAtGG9E3/ITpDxc4W5GDYDRauzy2rUVRN/0HqmeFs23mAFW1d4fH47e+aCz/1crca0c1G/V17tMd6FkSPwwkEXTnBOCLj1KybgCg5d85K7hqUcrpAAAgAElEQVR+JRDSByp0UNId6rZnoSznQ5nVr+81F1izFA+NN69v95vtrA1tnLmM8Owsvm7Hj+r4mP74E7asuuz2ZFWry1G/uK3D4xFMMBoAjH04d86JOmvFZsJpD7p7vss3A8FQcj9P9U369fXyBWDNih7m7kCvPlA3Psre9FGIjLMsWEx/crJzex/EfZ7L4nQNIv920ISjgWlvA9sagLYWYMFM0K3jQZ9PSn5FhUgArfwedPWJwNefhL/PBdrCf20twHezQbecD5rxLujeq4DnzMGe6pr7ofoMSlPNET7/HhT7G4YHNoa36IN3f/Kf7Dx/duvmiYk9jxcv63geQfddzZZV1/0Dqkd5QtsRQrgjwWhdT2XU4yVE1Opi+flRj0/VFVJK9QcQGdMfBPC5i+1MjXoscZhCCCGEEEIIx0zBaIUpCkYzhcU0G+ojzJwGnATtxAJURP7i2lYmgp84lrJQxARq+aPqH6IQbOZiqFcl/87Bwh0u1IFAaAzWsculsj1ydaozhGFkIpyCC/Dyh5rY46suiI57LcPvwWbtvGzaH5iCzEznGey+zsV7WeLppp2eUDCa7WyZYIKBp9H7xnjcBKkJkc+4YLTevn6aqdJ5ULgzfcsHaLL1A8WOKTtdzmVThAs2bAhugk3p7UzJHb/dBLkKIYQQQgghhBBCCCFEUu19KNSv7wPGnOFuuS8/7tx2uaAtb4p+K6+sBgAMCdaigrlu/tH3AOXADXDagoRHP3Fezx2hVjvQS/8wL+CP+i27lg9O0Q0q7uquONrC0j9bOKnfWrbM49MI/tbsb0vRlmzQ17m6H0B1652vyEkw2ltP8DMPOQHq1Rqoky50vs1ccf61O/9bSG2YvvyHbNF7p+ReG+LC9ar19zHqNGrcDEx5odPrUXdN5LfxyoPOVrKG31eqq++B+vV9ULe/CPXyIqj93d0wSw0ZCfXOBr5A7VLsPUhhxV/54dFbW4APF7rabNqYjmnnHAhY1q7jGAXagFp9cAUqq6G69Ux29boMVdYXOPbcnY+rDMFoUxYCS5mgw67mic/dP89ACFjdkNx6NDDdIsuZ89Yd1K/vi/3788tQz8+H2vPg5FZSiGRSig1Gy9IcT8fqma665fG6Bk19HahbFzudCPT2k52ulxDJQG89EQ5BYwsQ6Om/Ae89a17RxTdDnXVZcivnRHtofrSqtmXsImsbc3un9M3qxOt//KiI83AiYOZ7bFk19vKEtyOEcCdFtxURGRQdK9nocvno8oOVUj2JaEvU9L2jHs8jIjejzKZHPd7LxbJCCCGEEEKIPNdiN2unF6hCeJQnJdssMgSuNYckdCNRfoevXSDBABWRv7i2lYngJ5MST6k2uCd6vxIkvvOcT8IkMq7Yow+4A+IFkfHLdRa37nom/AbITDgFF+DVbDchRPpO4brPsemzzQX+ZNP+wNQWuPMMIuL3dS7eSzYYLYFQMadhaoEEA0/dnnP5Q00o96Wop6kQXQQRsfvJcm9ssBIXi0bI7Y4QIjVCFMJHDf/TziuySnBkzxPTXKP8UcEc/4IUxLZQI3p603enQu74ncpzYSGEEEIIIYQQQgghhDBRw/cChu8FHHceaNpbgNNgsGXfug9Ta0dEwIbV+pkpCkZTlVU7r+AMC6xEnbe3tty6LcDAXimpQtIs3QQ0urh3aXXEZS4iArbyN7UDAPijbvKyhhkgXN4fqjh7+hqk09DeCrcf24jJLwzUzm9qBRZtAA4YkuaKdQIRYYkp1GrJXOcrcxCMhsVfs7PU9f+E6jfY+fZySOS+CABGti1myy5mguqy2bJN+jpX9XF20zFq2AgUd4MqcnjtrOYbPmjTqYHDgD1G8/NnTA6HcREBWzYDBUWA1wdV2qNjOW5f2Xsg1LlXda6OAFT3XqDBI4DVS2JntoeyDalQ6N8DWL9Vv45pNYQT98q+G8DNWcG39ZEDouq7lg+tyMewTtcq+u/87/DAchTYrWizCrVFv1oFVOnvQdZlhGzCHZMS29eu3wIM059OJoQLUipr5fu4qstuhzrnV8mrhBDppCwo6I/hdo4mo9k2Ye0WYJP+nplxg9Ho+y/4mUvnJ14xIZJpoaGd7rBgZtwi6tCTklCZBAwdBXwW24dzj7bv8Q5O1i4yd3X2/05kYjrXNlEKKC+NOBevNwQ1j9gvoW0IIRLDR6KLXBU9Ulz/LZ2nK7+ng2lM7DwrOl5dtw0hhBBCCCGE0OKC0YpSOKjWUh42HC2R4BARpguE0gkYQqGE0OHaVkkGgp9MuGCm6P2KKRjNK8FoGWcK2DIFkRWlMJiLC8aqZ4LaLFgoVEUpqw+He+2aQ02uPscJBaMZAu3SzacK4FX6+5hw5xlt1AobIe08LnBOh90POQw528GmEJptZz3REwk8DVIAbdTqahmn5xlC5DO/vR0tzGe3wqcLRsu+DsMie329bTp7HB7T60dZdSzuanTBhjtw70mqcOcHmQjlFUIIIYQQQgghhBBCiEiqrA9wyAmOy9OcDxPaDn3wEmjsMKCtRV/Ao79W3GmDqnb+99ytr7LFlvL3e8saN0+0HZftWQz0jrw/2MZaoDnOtePmjtfHaU30kKd2lVX66XnigAMGYvdWPtTq61W5FeiwcRuwnemGMKKfAmqZdqATdBBUZQg3UgOGOt9WrhnU8XPT02YSrAB8ubI9zDCH1DD70HjhSjTnA9jnjQSdMRh0cl/Yvz0LtK3BvMyqRaBrT0mwphFOuCB8DORsXgs6tjvouB6gccNBpw0EndQH9pXHgSJCPmnGu/rlByVxX8msix69CdT+uRv/A74fwx2TCD9+3EZTa/a0K9smLFzHz7/g4Kjns8gQqnjShUmqVdeleuy6aVgxtWDstjfZslMXZ087STYiwh//Z6P3teZzqkG9gALm1JQLMkvE2kbCzRP1r7cpGA3HnZu8SgiRbkrBIv1nMMdOf0BEuGOSjd7X2Rhyo41FTHZQebyuYW/8i5/X4iIZW4gUobXLgXmfd35FlVXAKEMwcQqpE87XTh+/5SV2mZnLcmynFGXSvMTqf0B0VnnNN2xZdfS4hLYhhEiMBKN1PdG3MRngcnld+ZGaadVRj1e53M7KqMcVSqkyl+sQQgghhBBC5KmWkP5Hbi64LFnY8BYJ3UiY82A09wEqIr9xbcsUnpQJTgOJTOGAEoyWecWGYM76oL73m08VwGel7r3j6tQQ1N8FudhTCqXSH3bDBWK0UguamGAu3efGFKyyJVjveD2ZopRyfZ7RHOKPoW6eW4mnm3a633YXjOY0FA0whz2y62fO/4zLyDmaEHGZApJ6+/qlsSaiqyEiTKl/QzvPAy+OKTs9zTXKL6We7ihQ+vtncUG5qcKG3WbRuZgQQgghhBBCCCGEECJ/qRsfBXY/wFnhbz4LD4p1gebPAN32U6DOkIDiTVHfgYgQr2vqH2SLLd2U3QNeP1xIeIPPhIlR3Rcd+j/QHx2ExkQHp61hAqySGfaTg6xeFXi14TJ2/qVPZ3dbiraECXAAgBF9Aaqtcb6ykLkfBAWDwLrooXRh6ld3Ot9OLhocPQQReLn2Arb4Qx/nTjsiItQwl9yrDcFotGYp6IYzgXUrwhOCAWDGu6Cb9aEFAEBtraCrTky4rjsdczbUT34LAFA3PeFu2W+mgX5zKogIFGgDZr6nL5fMEElN+9mBnvozAOCPp5v7vL0wm/DLZ7OnXf3lXb4uVx6rsOfAjs+Hbr+IX9lx5yWnUl1Zj45Dlh/Y8Bu26CNTCbadPW0lmR6eSvjT24Qt+nvT79SrhA8yqm9KzmtDRDjtQT6grSzUqJ2uLrsdauCwpNRBiIxQFhT0n6Nc2/f8+1PCH94kNMbp1lteyh+j455rN7vrwyxEslEoBPrF4Z1fUf/doP78SkbGaQCAGrandvr+rfPYZe6YlFv7pEitAcKbfJ6Z0fO/6Bi9RNefwRcef31iGxFCJESC0bqe76MeD1JKVbpY/jDNtJ6aab2iHru6tTgRbQcQfbsb3XaEEEIIIYQQIkaLrb8ql7FgNEMwiTCLDn/iBGwJRhPu+JnPJRfClCklTH2iwwOCNt95LpXhWsIZn1UAr9LfJo8Lnkh1EAR3zCLoO5RkKpjCFCpnI8QsE1tXj/KiUBVpyxPTkSDbwjjcnmf4DaFfbvZ1JRYTjOby/MbpMR1ILPDUTfDaDm6fgxD5iAtG88CLHl7d/Wz0nTO4fa3IX4v887C6VT9o6JAeR6GXt1w7TySHUgrlPv1d3tMZjEZEbLip6TxQCCGEEEIIIYQQQggh0kX1GQT1+Ayo5+ZBPTMX6qNtQEl3tjy9+4yr9dPbT8Yv5NH3N+i0iBAvD2wc1PyVthgX6pMtnvjc3XWoEX0jQtGIgAUz4y8UPeh+zVJtMTVouKu6dEV79rdxwvYp7PwNW3PnuuGSjfq69iwGencD4CoYLWiev3E1X2b0sc63k4v6VAIFHW/oc4R/Blv8P9Nypw2t3wL4mS4w1X0MQSCTn9O3h6+mgurW6xeaORmoZ+Y5oK66G+qN5bD+9DxUYXtf6wN+6H5FKxeF96szJ/PbGpi8faUyBVK+/SSICN2KFP453hw08cqXhK3N2dG2np7B1+P2M6JC0bj2AAAHHZOxgI2c0qNj34TeoTpcUf8oW3y6/hQg5z3hcN9aUgCUM10P691339P6ehUwdzU/v9xu0M+44LrkVECITFEKFtOHO9eC0Zx+R+P2JwBAk581L9ziB9l8iKIQKff1J8BW/c3ZHRs8AurFhVDD90pOnRI1boJ28kWNT7OLfLc2t/ZLO0yan9hyxb5wQPoOtE0f1AoA2OMgKG+KfssTQmjJJ66LIaL1SqlFAEZGTP4JgL/GW1YpVQpgnGaW7qpO9Gi5OFnhWs0AIkcr8lePHFJK9QWg7+XPy+9btgghhBBCCJGD2GA0T2oH1fIBRkm60peHTKEukYJkvqOiENGig8V2yNUgJFOIkFdJMFo2KLZKsS20JWY6FzyR6pA+t+vn2mKqccdWE+65FXtK0RqMvheD+/VkSomnFNAc7rhjpSmY1c2+jnsP3ASdAc6P6QAQMIQ9crj9OgD09JZjSzD24rNpGSFEWF1Afxv0cl8fWCr2/kqGrttJq5PoGqbUv8HOO778rDTWJH9V+PpifVttzPS6YPpGuAWoDSHoB/lk27mYEEIIIYQQQgghhBAifymlgCG7huDQqNHAlx/rCz/1Z+Dnf3C0XtqwGnjnv/ELpigYTXXrCerVB2gM91sYHliGL4sPjCm3LH3300jIN6vdXYeqihjIirp1zhaKCEYj2wbWLteXMwX05IvKauz9zbeY0u0E7ewFa4B+PdJcpwRs8RMbwFXdN7xfICYgTysYpx/EWv0NhQAAA4c5304OUpYFGjAMWPn9zml9Q/z1qg1b01GrzmkLEuauBibN5/dP1X3ZWcD3X/Dz1q0AKvrHTl8aZ4T/2MuBN/6ln2dZwAkXQJVFDbnsMygcGuUy8IFeegBoMFxzrNrb1fqMqvfl59WtA7bUAb16Y99BCqZ+C21B4IXZhJ8fCXg9mQsTIyLUMplPANCzJKpuy7/jCw/bMzmV6up6xQ413qd1AVv8m1rCkSO6VuBcyCYsWOus7P6DFRau03+W6pPQFa+5jfDIJ+Zzu+o2TTDpiP0kgETkPsuCxRyriHKn751tE+ascFa2jyk1It65DQC0+IES/c2fI5FtAysWOv/+J/JH/92AyurEwmRr5nV68+rE8VAeT6fX0+l6VO+r3fvsbTgnmr+GsOfA3Dsnmleb2P50x+8AO0V8f40xePeEtiGESJx8E+iangVwe8Tj3yqlniaiNXGWux1AT810J8Fozkcc7tIMoMywzkRcAeDWJKxHCCGEEEIIkcVamCCyIqs4pdvlQmP8hmASYWYKdYlkCoUSQodrW5kKf+KwgURRYT6mcECfKkhqnURiuGC0uoC+E1iq26LbEMDiFIeLsttN4HXgnluxVYJG1KV026nkNChxBy6IzKt88FnO9wslHv3Psn7bZTCaiyC1YALHde51UFAo8/bWB6PJOZoQcXHHqQqfqZd2rNzpmiXSobZlORb652rn7V06GgMKB6e5Rvmp3Kv/HNczn/tUMAWnZtu5mBBCCCGEEEIIIYQQQuxkdW7QKvm3gW69EJg52dkCqRwkW1m1KxitTR/29eIcwvO/SF0VOsO2CUtdBreNiPx5/Ls5zhZqjvg9u24d0Kq/cSsGDXdXma5oUBUu/uRp/L3iGu3s178mHDcqewdPExFue4tw+yQClz8xoq8CNTcBtUkMRlvDBKOV9YUqMSVGdBGDqzsMLFcARjd/iS+KD4opun4r0Ogn9IoOiMoSkxcQLnjMxhZmNwEAPYuBctOlsHUr+XkBfZ8aeukBfpmCIqiLbwYt+xb4Zlrs/CNPjw1FQ3to3Sk/A178u6GyGp/wN8kCAPzgRHfrM9nncKC0B9CkT8yj+66G+tPzOLwKGNkPWKS/NxwAYMJzhD++RZh4hYUfDM9M+3pqOqGF2V2cqMk5I8O5hDr14iTVqovTHLvP3foaJgz4p7b4VS8QfnoYoXtRdu6DErG6HgiEnJUdf4jC3z9ITTDa87NsXPgfcw+jIrsZ47ZOjJmuTr2ocxsXIisoKOYE1LZzp/edKeAzkscCdivXzyMiYNrb8VfS0hQ3GI1Wfg/6v3Huzt1FfqneF7j7f1C9BzhehPzbQA/d2LnterzAiRd0bh3JcszZwF0TYiZfsOVlXN/vLu0iFzxGGHsAocCbW+dEbn9D2mFgr6gJtZqg1nZq7OWJbUQIkbDYW72LruCfACJHYfYC8K5SahC3gFLqOgD6X6UB28E2Eznrzp0zdSGEEEIIIURWyVgwGhMa02wY6Ct4QQqgjVodlQ0YQqGEiBaiIFpJn+FezASRZYrTICRTMJpX+ZJaJ5GYIuYYsTWkvwLMheIli9u2nqlgiiKrBAruLphxr7Xb55B1+wOX5xncdLeheCUWE4zmMlSsyUUwWiLHdS5YpcgqQSkT7ibnaELE5zoYLZE754m8M6U+tpPqDieWj01jTfJbuS92cAMA1AcS7P2TAFNIabadiwkhhBBCCCGEEEIIIcROlnmoFdnmITb0r1uch6IBwFaHI8sTMahq53+r2phgJgDTlmTn8J7aBqA16G6Z6r67rmfRTec5Wob823Y94AKsgHDQXJ5TldXYs+17dv4jUymrgx3e+gb409t8KBoAVPcF6MHr3a04TjAace0qX8L2BsV+dv679hK2+HUvZ2cbqm8ijHvEHIoGhNuQYq6tk20D61bwCwdjg9GofgMbDAYA6v7JUGV9oW5/ETj4+F2Bm14fcNRZUL9/nF/2sj8BZ/4CKExS/+sxZ0B5k9efUVkW1FNf8AU+fg009zNYlsJ711g4Is5uesNW4IyHbLQF09/GNmwl/Py//Hb/87OO5x9EBBgC8VT1PkmrW5fWd3D4sxChl70F+7XMYxe55c3s3AclqsbBvdPKSoCnL1E4aqRCeal+/9XQia54NRspbigaALyz6gwMCdbGzhgXG+YiRM6xLFhMXIPp3DTbLHF4P8ahFYCPC1Sa9Z6zlTSb+yUTEegP4yUUTZjVzAPd9lNXi9Bjt5oL/PiGcHgvZ8BQqHvegho4zNV2U0V16wl1f+zvVP1CG1EWir0x+Q4PfJhDO6d2NRv1dTYGVwPwRv0USKZgtH0Oc1stIUQnSTBaF0REjQCifx3cB8BCpdRdSqljlFIjlVL7K6UuUkp9BuBeYOcIxOhvjo2azUSfTSby61f0Ms5HzgkhhBBCCCHyWout71VQZOkDRZKFDTCS0I2ENIf0AXc6QdLfBU8IHVPbchsYlGpcGED0fsUUIuRV3qTWSSSm2OUxKNVBZK7rk6FgCktZroJNLVgoVEXaeW6fQ9btD1yeZ3BBI65fB6a833b3c62b8oEEjuvc8y3xlLKvHRemJoTYxW0wGhdmSbnUO0ukVF1gI77c9pl23tCi3VFVrLnNtUgJUzBauj6zpt9Lsu1cTAghhBBCCCGEEEIIIXZScYZa1a1jZxERMOVFd9vzFbor74KKDEYL8IPFn56Zndd6ahK410d1+8/j1BonuShS5ID7Nczr1L0MqnuZ+wp1Ne3hcD9tfIYtMmt5uirj3vOz47f1EX0BzHrf3YrjBKNhLfOiDMyPYDRVWR0zbXjbcnhIn3z44cLs3Ce98TWhxcG9AKv7GG44tmkN0Ka/6SsAIKDpU/Pxa2xxdcPDOwfmq7I+sO6bBPXOBqiXvod6dyOsO16CMoQ2KF8BrOv/CfXuRqBvJV8vh9ShJ3V6HTHr7L8bMGI/dj5NeQEAMKRC4bMbPTh2D/P6Nm0DPliYzBo688oXfLsuLQQG9oqauMJQyZMuTE6l8oDyeABNKMl5W19hl3luJnWpfjBLN/HPpeF+C6vutLD57xYuPDR8DlzGXMqvb0r8NXnBwfH395v/hh82fx4zXf32ETZsUoicohQU9J8FO4f2OUuY0KFo1cx9WQGA3uW/S3TQHGe80dIFwLJvna1L5Ld500DbdHEpseL9rqOuvAvWL++AmrQe6uVF4fPuyL+JK2G9vAhq9LHJqn1SqIOOAXr2jpn+ky3Ps8s4OX5nGy4Q9m/jFFoe5n/v229w1LnGaiYY7dhzEqyZEKIzJBitiyKi1wH8GugQH9wdwA0APgLwPYCvATwJ4MiIMv8A8GHU6nIpGO1hAHu7/DszCdsVQgghhBBCpFGmgtHY4BAmqEOYuQmUC9gOepMI0c4UhJOp8CcOFwYQ/RyCTDCaBQ8s5Ul6vYR7boMdUt0W3QavZTKYwk1diz2lbCcX9+F0qT1vcIsN92LOM7h9nfv3vpt2epACaLNbHa/HH3L+8y63TzOu3/B82ZBJOUcTwoiIUM8Go/Vzu7bOV0h0CR83vAWbubvpCeVjpbNqGnEBh63UgiZ7W1rq0GzrOyha8MCnCtJSByGEEEIIIYQQQgghhHDNE6cfxppl/LxVi4BtDe62t/8Yd+XdqNwVjLZPCz9gfPH67LzWU+Nw0P0Ou1UAfbq3PzC9T9EiQoqIWy7itcxrw8I3wRnd8hVb5Lt12dmeAGeBWwcNJmBjrbsVh/QBXzutZdrVoPwIRsMeB8VM8iEILxOMtnk7YNvZ146+43MxO6gyBIFg9WLzwpqQPVr5PV9e89qqku5QA4dBFTnvG6V8BcDR4xyXZ40a3fl16Gie504rF3V4eOwe8a9Jv/dt+tuXqf2M3g2x19JX8O+7GnlgkmqVJwbFHsMPauaPY3VN4f1QV8E9l4OHAj1LFCrLFJRSoFAI9O1slK+coy1f34mueAsd7D9Hc++JtHfRVSgLFtOnqimQO3EfS5jQoWijhxqOx6uXOFtJc5ydcc03ztYjhG0DDQ4bb8NGYEsdP7/9vFR5PFADhobPuyP/KvonocIp0is2GO3A5q/Z4vNrCXaLIdQ5yzQ0EeqY85XqvgoFXoUDBuvnjzsgap+1apG+oCb0WwiRerlzpiRcI6J/ADgZALPn7WA7gF8BuAbAoKh56zXlt0Q91t9ynKGU6obYYDRnUasGRLSRiL518weAv+2NEEIIIYQQIiu1MANri6yilG6XCxppcRHwJXZxEygXIM1d8IRgmEL3Mhn+pMPtV6LDfLgQIZ/yJb1OIjFFHnchW6lui8Uu6+M2TCuZuOBRbVlDPd2GzWVdUCIX7sWc93ChX27bVolHH4wGmIMmY8q6CEYLJBCMxj3fYquUfc5uQliFyEdNoW1oJX2nBS5QiZN9XdJFJvhD2/F54xTtvL6+gdiv2yFprlF+Kzd8jusDm9JSB/Z8xRB2K4QQQgghhBBCCCGEEBmn4gy1WqMfgkKLvgJduJ+7bR1+ClTvAe6WcSNiwGa5zQe21aTnZ2PXuEH3hw4HTtk7dvpVx6pdvz/X1jjfUGvETcOY9xcD8yTAKg5VEk6eu2DLS2yZP72VnVcPX/2SHyS9w/GjgFH1s9yvXBNmtQMRsUF9Kl/aFRNq8/PGp7TTmwPAuuiRi1ng71Octe1q5jIdtfhB155iXjig6Stbyw99VLvv76hOTqjTLwEKOtEPe78joUa4PA46pM78BT/zm2mgiM/gzw5T6B7naTz4EeHfn+rDaVJlqSHs88pjYs896PVH+JWdeEEyqpQ/NOGmx/qnordhOPPYh+3w/rsLqNd3P0RFRJc7am4C/e5s0C/HoOyTZ1ytxwknYbcnb58cO3GPg5K6nxMio5SCRfpjz5WfDMequtzY59RsiF/PkgLgkiP0/YKoxQ8scRho1sKfvNOWOtCff+5sPUIAcNLLlWwbdMOZfIG+lcC+RySxTumlLrg2Ztq4bRPZ8iFSmP/Ln4LqdFEz2Wep4betHd/Rrjw2dt90RBVwwJBdj6nFD9TM065HSTCaEBkhwWhdHBG9D2AvAGcD+A+AhQDqAQQArAEwDcD1AEYQ0cMU/ra+R9RqvtCsOjqOdzeXVYsuX09ELm+LI4QQQgghhMhXzXazdnqR5S4Exi0uNMZNwJfYxU1YCRcKJYQON/heQaHQis5pzywumKmNWju0e+4z4LUkGC1buA0WS3UQmev6ZDAkrMhFXU3HereBYKk+b3DLaVDizunMcdTte2kMRnMRdubquG67Dzzl1l/iKZVzNCEStDmwgZ3HBaMpSJCR4H3a+C4btndc+ZmwlCfNNcpvPTy94FVe7by6gMM7YHYSF7JanGXnYUIIIYQQQgghhBBCCNGBZR5qRZqAGiIC3flLd9s54+dQtz3nbhm3ooJA3lw9TltsbSPQ1Jp9A/G5EJnd+ym8fLmFXx2jUFkG7DMIuP//KVx7fMS1LDfBaIHIYDR9gJUuVCVfqb+9hjK7EaObdcPNgNUNQENTdrWn7S2E8/5lDkG6dIzC6xMs0G0/4Qtd+Fv9dEMwGho3A/5t+nmD8iMYTSkFdcktMdNv2/QndhkuGLlJDh0AACAASURBVDFT5q523qar+zDX1d/6T/yFdcFoXGDjxTc7rpMTaugoqAfeA/b/IVDEXM/zeGP/yvsDp/wM6s43klqfDnUbeSAw/jd8gfdf2PnfQWUK035r4YRR5nX+6nnC2sb07au4ENLRuwFnH9SxzVBbKzD3U/0Cg4ZD9ShPcu26NjUo9hhugTC/7kfsMtOXAp8sTmWt0qeB6UJXXhrR7v73ODDj3fD0UL22fH2CXfGIKO4+ffmSEfAhGDNd3a8JSxMiVykFZQhmumlidp0/c0yf59JC4JiRwCc3WBjWmwlGe+4e5xtrNgSjxVuP7pxF/vLgz9A/0Ung6ZwPgMVfs7PVk3Ny+2agp/wsZlIJNWP28sPZRX4ZvAb0yO9TWauk4YJYi3zAwJ7h/198hIV//0Rhv0pgQE/gosMVJl1tdXhf6dm7+Y1IMJoQGeHNdAVE6hFRCMDr7X9GSqnBACojJq0hojWaogujHrvdi0f/cvudy+WFEEIIIYQQeaw1Q8FoJUzQiJsgELGLm9ctQG0gotz+EVmkDTf4vsgqgRXvrr5pZgpyag750d0b/gU+wIQIeZUEo2ULt+EOqQ4icxuM5jZULJm446vbsm6ec5FVDE+WhbO4Pc/gQr+S+d67CUZzUzaQQOCp6fnKOZoQiakP6nsp+VQBenjKtPP4YLTc6JglUidgt2FqwyTtvO6envhBj6PTWyEBS1ko8/bGpkDsHRvrA4bbIyZRS0h/y+hUhwQLIYQQQgghhBBCCCFEp8TrW6ILqFm7DFjyDb/M7gfA+s/MztUrAap7GahHObA1HHAxqvV7tuzSTcC+lezsjOAG3Vf1AUoKFR68QOHBC/RliAsS0mkPRiMiNoBIF6qStwaPAACctP19fFE8Wltk0nzChYdmT1+/KdGj4KI03G+hZ4kKhxzWrdMXKu8H1b2X/sqoKRhtLRO2B+RNMBoAYPf9YyaV2Y2oCNahzlsRM69mI+HokdnThl790vk18ao++un0cdyhnUCwYz9BCgaADau0RdWI/RzXySm196FQD05J+nqTQZ16Eej5e7Xz6NOJUKf8dOfjfSoV3rvWg7sm2/i/1/XvXcgGJs4lXHF06ttZW5Cwsk4/7+ZTNecdXCgaAPzgxORUKp8w4aZ9Ns7H/vvamLtGf+736pfZtR9KVD0TVloWcdmepu7aP5XZDdryDX7AtgmW5e41qW8CtuiHfuw0OKgZwn7AUVClPVxtS4hsppSCl2IDAHd47SvCUxcTPC4/Y+lERFjBHM9evEzhvNEOxmnMet/5Bv2GfslTX+PnnX8trF/9zfl2RJdB9RtAZw5hZsY/n6ephqDf3Q/I+XBapRSoel+gZl6H6Qe0zEUPTwu2hopilllaMBx47zng5ifSVc2ELWf2T1V90OH85dIxFi4dY1jRFx/y8yQYTYiMyK6RoCIbHBf1eCpTbkHU432VUm5Gfx4RZ31CCCGEEEIIwWqx9QNri6zilG6XG7jbYjfDJvPdBEUsLuCEEzRcCBIiUjPTttyEL6VLiacbOy8y0Idr/z4JRssaroPRUhwGUWgVQbn4+TfVQW3Gbbt4LUxl3TyHVIepJqKIeW7NdlO487Vmuo7bfV2BVciGLLoJFvPbboLR9GGPJqbny7WLZiaMRQgRVhfQjyQp9/VxHUhMEoyW92ZtnYqtoUbtvKPLTkWBVZjmGgkg/HnW4YIRk40Lrc7kuacQQgghhBBCCCGEEELE5Ylzk61aTXDWoq/Ny+x7eOL16ayIgbtDAqvhZW5kNXd1dl3vsW3CUuY+HyP6OljBsu+cb6ytJfzv1npg+xZ9mXwKsIpnYDhg5kj/52yRj/gMvox4fhbfv9PnAXqWtF8f3bwWCIX0Bcv7AV6mr5YpGG0NE4xWXAqUOWnMXQQTLlgV0IcRZlsbenues31kVR+gf09m5nez468gENWnZv1Kvk3m26D8gYb98Hp9eNwR1ea+D1O+Tc+xb0UdYDObqtbtBlYvYdel9sngOUWuMoSbHtGPOe4DWLIhu86NElXPdAEsj7xsH9HmykP6YDSi+AFnOlzQ7Q4XNj6nn5HJ82chUmR061fsvJYAsLo+jZVx4auVhL+8Y+O+KYQW5rS3ssxhf8OFc5xvuD3AOhq1tgDrVrKLKdl/5C9Tv1cnh/XP3uTndZV2pTkvUgBKqUVbfLO3D5pVEYj7TpJF6pihDIN66afTwi9A//0r7Aeug/3oTaDP324Ppl7Nb6RX785XVAjhmgSjiWg/j3r8uK4QEa0DEBkH6gVwpIvtHB31+F0XywohhBBCCCHymE02Wmz9VbWUB6MxA3cJxIa1CZ6bsBUACCYQoiLyEzv4PsVBVIkw1SkyPDDIdErlwoxE+rkNd0h1UJ+lLFfHxZIMfj5cBaMZXjc368nk8+VwdQpSUBsklsx9XYmlD2n0h5yHnbkJPOX2aSbceUORVcK2Cz8TKieECNsc2KCdXuHNo873IilssvFB/UTtvAJViB/2OjnNNRI7lPv0n+f6ADOSLMm447fbUGEhhBBCCCGEEEIIIYRIKxVnqNWapR2uQ1LDJtCtP+bLd+sFNfbyJFXOPXXpH3f+34sQhrct15a76EnC5m3Zc3117Rawg+6r+5oH3ZN/G7BghvONtbUPuNeF3u1gCFXJN8rrBfb/IY71T2XLPDWd8MWK7GlPr/EZFLAim5OhDahf3MYHo4UMN33lgtEGDnd9w6qcNmCYNqhgRFuNtviLcwizlmVHG3pnPmFerbOyvztZad9XWvatuZ3sEIzqI7TGsF8aOMxZpboI5fUCexykn7l2ubaP0OFVwNG78+t88xvg85rUt7N/f6rfhlLAcM29ruj+a/mVjTkzSbXKI/13Y4NvJ9Q/zC5Wk57L6ikXLxiNtjUAW+p2TQ/xyUzfrnW//ZqN/GesxG7C1Q0Pxc7o1Qfq9Oih7kLkvgmNjxnn16TnPoeu/PtTG4f8xcbNEwk3vMp/nsscdAWyH73Z3caZYDRjeFVRCXDYKe62I7oQ0/cr8zkfffxah+NhzJrH/jLBOmWZSv1vG7fY/2EXebP76UCLu/F/mcCd81R003w/e/Uh0OVHgh7/I/DqQ8Bz94D+72zQ/40LB6brnHB+fn2HFyKLSDCa2EkpdSQ6hpstIqKphkXeiHp8scPt7AHgBxGTmgC872RZIYQQQgghhGgj5sdthIMxUskUNNIswWiuuQlbAYBAAiEqIj81M+E82RiMVmgVQTE/0UWGCOhCkQAJRssmbttXOtqjm/A1t8FuyeSqnobXLVeeL8dUJ12oCLuvS+C5ca8dF76m0xTa5rhswHYfdso93xKrlA2VI9hoZe5gJYQA6gP6nlQVvn7sMorpOJId3dFFpszbPhsbA/rOIIf3PAGlnu5prpHYgQs6rGM+/8mWzPMVIYQQQgghhBBCCCGESBsrzlAr/zagcVdSBr3+iLG4emQq1JCRyahZYo49p8PDqgAT0gTgUSa4JROW6O/xAwCojnefnzfNgQMxAu3XsLkAouJSoJy/hpaP1DV/hwXCNXUPsGVuesNOY414yzaZ27Un8iNfqw/pAgB1+CmGYDS+byOtZT5zg4Yb69XVqMIioE9lzPSqNn6f9H+vZ74NERGueclcjz0HAGfuB7w2wcIlR+qPIXTvVc422BbVR5oL6+szCKowtTeTzkbq6nv1M5q3Aw2x10CVUph0tQWfPhMLAHDja6ltZ0SE+6bo90ODy4AiX8d+GNRgSOM66qzwZ0m4orw+YMBQ7bw93v0z/jpW3xdmZR3QFsyec6NEscFoO4ZdRAV4loca2HX94U33nxdT0NPUlSfgwJa5MdPVvz6F6jfY9baEyHaHt87BtOVHsfNr4py3ptv2FsL1rxBsB9WKF4xGm9cCz93trgLR50U71nXHJewi6tWacJiqyE+m0CrDjbYpFALdNYFf7ZV3QQ0xpO3mEMWEvl+0VhNU2u6SAf8On29nuYYm/XscvX+ibQ2gR36vbxOz+MgbdcktnameEKITJBhNAACUUiUAHo2afFOcxZ4DEIp4PE4pNcLB5m6MevwykYxOE0IIIYQQQjjTEuIDyIo9qQ1G40I3AH6wr+C5CVsB+GAoIaLpAoSA1O8jEmEpC8VMqGPk8wgywYA+VZCSegn3uPeR4ybEK1FuwtcyGRzoZtumY3GuPF+O6bn5NecZ3L7OtB5+292Y7Tq/iOnmuJ5I2Cm3/mJPqTFcxW0QqxD5hAtGqvAZRpKwHUeyq1OWSB8iwpT66HsphVmwcFz56WmukYhU7tPcXhxAfSA9t7Zmv5tl4bmYEEIIIYQQQgghhBBC7GQZ0lN2iAyqmf4OX+7Ui6GGjup0lTpDKQVU7bPzcXUbE7ID4O1vsueaDxcK0Lsb0KvEMNgZAM350N3GAu0D7tcwAU0Dh4dfR7FLe6jXAS3fsEU++B5obst8m3pnvrkOE47e9d4SF4w26uDwvx4mGC0Y5DdgaFd5pzJ2EL5pn/TJYmBrc2bb0OIN5lCfaTdaWHCbB2/8yoOxBxj2E5tqnW0w2LFPDXGBjUygQZdnChSc8a52cnGBwvOX8sOopy8F6pkQhWRY08jPq9Jdzv2CP4apkQd1vkL5yvCZOb3/au10m4AVdamqUHoQEeqZoRflpe37rKgAxh72VviYPvtLErgH26p6/fSxWydqQ9Fw1mVQ+XiMFPlBKRzaMgeH+6drZyfyGUulTxYD2/XZZDHiBaOZwoZYgdh9EQUDADEhjQOGQvWscL8d0XUkGIyGpfOB7Vv4+YedlHidso3mOxkAFGxZj+GF+nDUkPIguD37++Pz5zxRE76cCrS5jLbxeID+uyVSLSFEEkgwWhellHIcZ6uU6gZgEoC9Iia/RkSvmZYjoiUA/hsxqQDAU0opNnZeKXUmgIsiJrUBuM1pXYUQQgghhBCi2eaD0Qqt1N79zBSq5DbkS7gPk+OCoYSIlsywoHTgAn0ig5C4ECGv85+ARIq5Dd5LRxiEm7C2Eo8+GCsd3ITEmQKw3DzfbAzjMD23lqjzHyLShqXFWw+He//9trOLmDaFYupoLI8QQhSKXzACd95QbJWaw2vlHE0ILSJig9HKTcFohvWJ/LS0eSGWtyzSzjuo+5Go8PVLc41EJC4YzW9vR4vdnPLtNzPh9tn63UwIIYQQQgghhBBCCCEAAMrBUKv2oCOybWDx1/yqDjk+WbXqnIiBr8c38YErs1cA17xk48uVmb/2s2SDfnq1k0tZa5kgKk77gFg+gEjCOaKpohKgbyWO9n/KliECvlyZxkoxFqw1zz/nwIjB80uYoLfK6vC/Xi4YzdC3kQlGU/nYrjRBN6Y2BABfr0pVZZwxhaJ1KwQOHBJ/HRQMABudBaNRdAAIF6yXr8FoZX2BvpXaWfS3y2E/fhtI81r/cHfzau+bkrrj3uc1/LoPGaYJ76jlwwKRLecVOUjtewQ7b5h/MZujYtoH5AJ/G9DGZHfuDAlZvbjDdAUgwNy0edN2IGS7+7xwwYODgvoDtDpY2rnowtq/a45ggmEf/yzz38MiTZzrrD7FPqDQFye8eqW+f5lRUBPSuG4FYPPBaCLPJRqM1mA44PcbAlSOSLxO2aZiADur0qdP9A0pL1Zv1IempsOGrYTb3rJx5j9DOOWBjn8/ftzGk5/bsG1CPTNkICYYbfUS95XoNwSK+z1ACJFyEozWdV2ulPpIKXWRUkrb410p1U0p9TMA3wM4OmLWCgBXONzOrQAi4z8PB/CBUmqPqG0VKqWuAvBK1PL3ElEW/MwthBBCCCGEyBWmgbtFKQ5G8ygvClShdp7bkC/hPqgkYGfuh1SRW5IZFpQOXChA5GeECwb0MZ0PRPoVuQx3cBPilSinbV7BQiF/r4OUK3IVaMaXdfMZdxPGli4FqhAW9Hcejw5gbaNW2NAHiyUSNMK9Htz+NKZcAuFjbgJPQxRCK+nvzFTiKTV+/uQcTQi9baEtCDB3d+1tCEZTMHdgEvnng4aJ7Lzjy89KY02EToXh81zPhCMmE/e9P1u/mwkhhBBCCCGEEEIIIQQAwIo/1GpHgBZdfzpfSCngSMP8dNoR6gTgpO3vw2u4XvuPDwlH3mnj/W8zOyh/6Sb99kf0jTPgPhgA1rscptTWGv5XAojcGVSFQcG1uLruQbbID++22UCUdAjZhH9/ym//3IMUDhkW/j+1NgNzPtCWU4MTC0aj5iagfr1+mYHD2Hp1Vaoy9rM0MLgO19X9nV3mmHttbPFnrg3VMPsiAPjb2QpFcUJAAAAbVgEhhzcQjA4AYQIbda9lPlBKAceeyxf4719Al48BrVvRYXKf7go3ncq/V395h/DXd5mQlU5Y10i44DG+DV13Qmyd6Ik/seXVyAOTUq+8dNZl7Kyi9UswuEw/76oXkt8u0okLCAF2hYTQE7fHzLtv/fXaZdqCwJoG7SzXdSgLMSs6/BR3GxAil7SHNlUxwWjbWoCnZ2TPfuc/05ydg5XF6QZERMAL9/EFivU3d6Yd39Mi1dawq1FX3WOuiOj6jMFohs/WNn0gGACoy2+HcvA7Uc7oUc7Ouq8v3xf0runMyVKKrWskHP43G7e9RXhrHjD5245/L8wm/Py/hEufdh6MRv++xX1F8jHYXIgs0oX2wiKKAnAMgCcBbFBKLVVKvaOUek4p9YZSagaAOgBPARgUsdxyACcQkaOe8ERUC2AcgMhf3Y4A8J1Sao5S6iWl1GQAqwH8A0DkL8BvA0jgyCGEEEIIIYTIZ61MMJqCSkuoCzd4123Il3AetrJDwEWAishv7OD7BMKC0oHbr0R+RgK2vv17LbnrSLZwE0blUwXwWakPtXPa5kus0nCnsQxx89qZnlOy1pMpSikUe/TBb9HhXqawr0SeW4ml71TgD213tLzbYzoANpBJx3SeVWyVwmf52KDIRELbhMgHdYZAJFOQksSiiUjrWldj3vbZ2nl7lOyHwUXSGSTTenkroJguAab9QLI0237t9HSEBAshhBBCCCGEEEIIIUTCLP0NrTpYsxS07Fs2RAkA1CuLoQr0N+FMNxUR7OWBje+X7mMs3xoE/vhWZgfk1zA/Y1fxl7LC1q3gA4jOv1Y/PdB+/VoCiNxpf13u3XijsdhT0zMXavXet/y8kf2A53+hdvWZ+ehVvnBlYsFoWLucX2c+DqxmQgbv3HiTcbFnZmauDS3dxM+74miHQ3NN7SBaYFd/GgqF+GXzsf20Uyf/xFxg81rQaw/HTL79TPP79Zd3CNtaktvW/mUIZty9XziwLRKtWsyv7NyrklWtvKR6lAPV+2rn0ZqlqGbOL5ZvBprbMhsW2xl1cYLRaPFc7byfbXmWXa7GsF/UYUNKQvWxE48aC8Uda4XoCtrDlaqZYDQAuHkiIWRnfr+zss55HcridQNaMJOfd8zZwP5j9PMCLoPRqs3fc0U+MAWjGdr0Nj71U51wfifqk4W69WJn7R/gv0D/+7v+4ZDDNHtsGmH55vjlnppOWLdFP6+8dFe7oGWGHwlMJDBfiIySYLT8oAAMB3AygPEAzgJwKIDokWL/A/ADIuLPCjWIaCqAsQAiv9IqAKMBnAfgRwD6RC32AoDzicjh7Q6EEEIIIYQQIowbVFtkFacl1IULXeHqJXhuw+TcBKiI/MYFBrkJTUonLsQo8jMSZIIBvcqbkjoJ97hAK23ZNLVFp9txU/dU4MIB3Zb1WQXwKmedYtxsM524/VR0uJcp7CuR51biYYLRbKfBaM7KRQoygY86piC4kvbny56jJRDaJkQ+qAts0E4vUIXo5ulpWFL/nYuQ+c5YIv0+bHiTnXdC+dg01kRwPMqLXl79XR7rAy57KyeAOw5nY0itEEIIIYQQQgghhBBC7GQ56INWuxT48iN+fmkPoO/g5NWps6KCvXYLrEJJnL5bM5cBTa2ZuQZk28QGo1VHj06KxoSbAYAauod+RlsLKBgEGpiNDhwWZ6P5SbWHhSkAP9r+Plvu4+8zdy3xQ8O2/zzWgifi805fTeVXtDMYjemrFWL6QHDt0eMB+g3ht9dVMSGDCsCPCr5hF/sog21o6Ub9ti8d46K/8pplzssGI/rJbqrtEJTWQR4PzFfD9wJG7G8u9OXH2sljD+AXaWoF5qxIvF46prZ7yFBNGzLsh9Tg6iTUKM+NPEg/fXUNqvrwn+m5q1NUnzTgQsmA9iAj5ny2p70VvYP6PgVLN7nbJ/PBaJoQmmF7ulq3ELknvK8Z0cbHONQ28CHR6fTpYuef9fJ43YC+4L87q8NPBbhAcU0wGtUy59cHHh2nEiIvmMYUJhKMNurgztUnCymvF+jG9BFu2IjD/DPYZdczwWOp9NHCzn8X7LCPMv2WZ6DyOJhaiGwgwWhd1zQArwDgI0rDggDeBXACEZ1JRAn1gCeidwDsDeDRONucCeAcIhpPRDIiTQgH/H4/pk2bhieffBJ33303br/9dtxzzz145plnMGvWLLS1JS8cYtWqVbj55psxZswY9OvXDwUFBVBK7fx76qmn2GVnz56NCRMmYL/99kN5eTk8Hk+HZVesWLGz7NFHH91hnhBCCCGEGy1MAFmhVZyW7bMBRhK64Zrb14wLhhIiGhcYlGtBSJGfET4YLTr3XmSKR3nhc/h+pKstOg08y3QwhZvQwnhliy2nzzmzYXAcp+cZxqCwBN5PNpDN4bHaaYBaJDeBp6Yw1R2vGfe5MoXICZHP6gL63lMVvr4J/mYrwWj5ZkuwHrO3TtXOqywchj1K9ktvhQSr3KcfIcbtB5IlREG0Uot2XrZ+NxNCCCGEEELkJ+mfJ4QQQogYysFQq4VzQN9M4+cfeXp2HYejAnQUgNO3TYq72Effp6g+cazbAjQzXcVG9IvzutYyIQN9K4HuZfp5gVagxXBtubv+JiR578jTdv73jG1vs8WWZDDYoWYDfx3z+FFRE7i2A+wKYfIyN+wLMg12LROI1W8IFLeurmz43uys05vfY+e9yWempdy7C/TTq+KFNLajxs2ge69yvsHIIDQu+AMA8nxgvjrzUnOBmnmg5tj9+un7mY8h5/3LRksgef0fphl2K7q6kClE77CTk1Cj/MaGy82cjNP34d/3Cx6z0ZrEdpFOXChZjyLA61EgQ6BsVZu+PboJbCIi1DP3ni/TBKOpiHMLIbokK/xdc9/W+egb1N/YFABe/iLz+5w6F11vh5Sbj6+mfQ1+cCLgZfrf636b587ZmQBekWcs0+85/OeKuGC07r06V59sxf020rgJY/z8b12T5qd/37Rsc+fXsVvETzq0eG5iK8njYGohsgFzmwKR64hoLoDzVPhKyu4A9gRQCaAHwkfuRgCLAcwiom1J2uZGABOUUr8GcASA3QD0B9AEYA2Ar4loeTK2JURXFwqF8PLLL+PJJ5/Exx9/jGAwyJYtKirCj370I1x66aU47bTEf/x57LHHcNVVV6G1NTZF2yQYDOKKK67AY489lvC2hRBCCCHcaLGbtdPTFXAioRvJ4/Y1C9jJG3QgujYuMCjT4U8cJ/sVLhjNp/Kwg1wWK7ZKEQjF31clElyVCKfbKclwMIWbYIx4YW/FVim2heLfjijTz5nDvRbRwWDcMdSrfPBZ7gMTSzzdtNOdBp75Q/pyCgrEXEgOuAg85QLaFBSK2s8BJbxWCHe4QKRyX1/jcgpZNIBHZNTHDZMQJP21ixPKz8quwV55rtzbF0uxMGZ6PXN352RpZoLtgewNqRVCCCGEEELkD+mfJ4QQQggj40DaCJ9MZGepi36fpMokSe+BQGEx0Lqr792tm+/AjJJDsco3hF3szIdsrL3bQv+e6f3d/6aJ/GDb6jhhRMQFCVVWAz5uwH0r0Gy4Pl6cnX0MMk0NGbmzR8CFW57Hrwb8Q1tu2SYgGCJ4Pem/frSYyZsYWgH0KI6qD9d2Dj0Jyts+BNPDDMVkgtHYkKM8DbVSlgU67jzgw5dj5l1Y+zCu3O232uWIgEXrCSP7p7cNza817Yvi14Vam0ETjnK30UBEW+KC9cr6QpX2cLferua0S8LH4TkfsEXokoOB57/tcO36/IMVXp5DmPytfpn6JuCsh2xMvsbT6SpOXcS3n9JC4Mz9NTMMwTGq/26drlPeMwRa/OjNSwE8rp23qh44+xEbb1/d+XaRbvVN+nZYvuPUxhDAWBVYhln4Qcz0ZZuch6L424A25me38lB9zDQ18kDH6xYiJ7Ufkzyw8e91V+Cswa9pi936P8KZ+xP2rcxc/ysuWFFnWO84Bbjjm8cLVdYH5CvUzw9q+uQz61KVTPilyDOGzwwZjl/bGvXTuQCxXNejHFi3InZ642bcWHcv7up9g3axy54hHD+KMLR3evZNLQHCGuatcarIBwzoGf4/hULA5GcTW5EEowmRUQ5/rRe5isIWEdEbRPQgEf2ZiP5CRA8T0QfJCkWL2mYbEX1MRE8R0d/at/u6hKIJ4cxHH32EPffcE+PHj8eUKVOMna4AoKWlBW+++SZOP/10HHzwwfjqq69cb/Odd97B5Zdf7rrTFQDcdNNN0ulKCCGEEGnFBaMVpSsYjdmOhG64E7ADCJC7oDM3ASoif4UohFZq0c7L1iAkLrwqcr/CtX+vBKNlFacBX+kKgnB6bMx0aKCbY3i8ujr9nGf6OXP4/UHHYJHooLR4y8fdLheMxgSeOS3XzcN3wgy6OA/gnm+hVQyr/W7t3HvPLStEvqsL6EcAVMQJRuNwIYiia2oO+fFZ47vaeeXePjiw+xFprpEw4T7X9YEUB6MZfifJ1u9mQgghhBBCiPwg/fOEEEIIEZfVydCLH1+fdYOylWXFBDHt3laD2cuPwJNrLzUu++T09F4HIiI8PUO/zYpSoKw0zgDc2hr99EHDAW7AfaAV8BuGV5Xor6kLQF36RwBAKfkxc/mR2jJBOxwqk27BEGHZZv28u87pOKSStm8BGvXXTtT51+x64GH6ahGFB1lH44LRBuZnMBoAqHOv1E7vi0A0PwAAIABJREFU5t+Iz37ZwC535+T0X5O+YxK/zSonl9Y/mcjvkzgRASBs0GOeButFUh4P1D1vQf32Eb5Q7VJg/vQOk4p8Cv+70kIvQ3e1978Dvl7V+fZ26/9sdt7Xt1go8GqOZ8w+Q13yh07XRwCo5AMtPB88j9P30Pc9BoB3FgDzDGGJ2YoLNtoZjMYdpwBUtenn1ejvxehq+wBQbkft88dNcL5iIXKV2nUOetr2dzEksIot+s+PM7vPcROMNjxOeDUXwqiuvT/8nwJDgHUECgaA9Sv1ZSW0SAA7wwe1TMFoW+r007v36lx9slUPJvCtYSN62luxd8sCdtHHPkvfvmnZJvPb5sTw3oBltbeLLz5MfEUDh3WuIkKITpFgNCGEyCK33XYbjj/+eCxevLjDdKUU9txzT5x44om44IILcPzxx2P33XePWf6LL77AYYcd5roj1O9+9ztQxNnh+PHj8eGHH2Lx4sVYvnz5zr9zzjmnw3IbNmzA/fffv/NxQUEB/vCHP2DmzJlYunRph2UrKytd1UkIIYQQgtNi+7XTC62itGyfC73xS+iGKy0JvF5uAlRE/jIF4GRrEBK3X4l8Llz7l2C07OI08MxpgFpnOQ4Jy3AwhUd5UGQVxy2noOKGqDkPg0tPOJ1bTvYHAB80kuh7yQWqBagNATt+MKnf1gej9fTyd8oKkHmwYYf1M883st7cPl7O0YTQqwvoeylW+PoltL7c6/opOuPzLe+jmfluflz5mfAob5prJEzKffreh/XMfiBZuDYCZO93MyGEEEIIIUTXJ/3zhBBCCOGI1bmhVmqvHySpIknWf7eYSb1DdfjJludx6gj+uurMpem9EmQagF/JX4LeZQ0z6H5QFVDA9DEkArY18usskt+1WREBBKNav2eLLUntZQmtlXVAQJNVBgAjokOtmHYDoGOQjtfQVyuk6QdRt15bVA0Yyq+nqzMER+4VXMLO+359+q9KL95gCEaLFwACgBbMcL/RQEQ/wc3r9GUGyKB8oD3087SLgR7lfKH5se+B16Nw/YnmkM3pSTj21fI5fxhaETuNiIC1TEiVIdBLuDBwuPE8bw+r1rj4G1/nXu8Yrh1WlALU1gps4EOZ2GC0TejwO5eJMRgt1LFyareRjtYpRE6LCm06ZftktuiMNH8Pi9bAd/uJMaIvf1w1BRDv/C5hCrDuUKmNgC6MOHJdIr8lEIxGRMD3X+qX6dk7CZXKQj00J6MAEAyPGdi3dT67aDr3TVMXd35b1RHf/WnBzMRW0nsgVFF2jj0RIl9Ir3QhhMgS11xzDR544IEO07p3747f/e53+PGPf4whQ4bELFNTU4OnnnoK99xzz867Sba1teGyyy5DU1MTrrnmmphloi1atAjz5s3b+fiUU07Bc88956jOEydORFvbrh/d77jjDtxwww2OlhVCCCGESFRLqFk7PV0BJ1xwSCJBX/nMFFLiUwUIaEKgAhQ/mEUILiwIcB4SlW5OwnyCTPv3KeYOSSIjHAejpSkIwul2uGNbOhVZJWix9cf4HQqtYljK3AE9V8LgOFwbij5ucsfRRNtWiYe/u7Xf3o6elrl3ORdc1t3TCwoKpIlMCtrOA0+50MvI95ENlTMcF4TIVzbZqA/qOxtV+My3tVamjiMiLwQpgI8a3tLOK7G64bCex6W5RiIeLhhta6gRAbsNPis13ylMx2AnobhCCCGEEEIIkWzSP08IIYQQjsW5Lh3XISckpx5Jpo45GzT9He28c/svxaQl+2rnvTUPeHG2jfMP6eTr4lCNIUDrR3ubr1VRMACsW6mfOXgEUMAMuAeArfX8PAlG40WE9ZSSHwMC67DONyCm2MkP2Nhwr4U+3dN3vXHBWn5edfRl0VomGK2gEOgTEUJsCkYLBmLb2DYmkabMfF22S+tRDnTrBWyPDSPsuepLAIdoF5vJ5EWlChHhG0NGUvciB235w1fcbzgY0Z9ma52+TJmDVLY8oZQCHXM28KY+wJwevQkY/5uYvg7nHKRw80Q+aOGqFwhXHE0J95FoCxJWMm9f96JwOFuMuvVAC5NCM3B4QvUQHamSbqBDTwKY86Gz6SPcDT688blZhFtPT1XtUmPpJn07H+rZBDprfzYkBkqhKqA/Nja1Ahu3Af16xN++KRitVyjqOPDDM+OvUIhcF/Vd85ytr+HRssu0Rb9dC6xtJAzslZn+enNXOw8kOtR0mPrwZX5epctgtK2G1FE5PxJAQsFo+G4OsFn/5VGNPCAJlcpCcYK6z9n6/9k77/g4irv/f2bvTrrTqctykWRjS7JxwUCwTTEYDDY9ENoTCCEklOQHcRqBhzwQQhzTTBJInAAPIYUaAw8x3RQXsAEXjLGNbVzlLldZvZyku9v5/aHiK/Od25PuTifp+369/LJ2Z3Z37m52dnb3O+95A3OzvqNMW7INqG6UyHHHv236cGP3xWjF+QHlXLWwazth8SLD9DiJeSrNMAzDaHn++efDgq7OOussbNq0Cffcc48y6AoASktL8eCDD2L9+vU44YQTgtLuvPNOLFmyJOKxV69eHbQcOutkPLZdsmQJpJSd/xiGYRiGYaKBkqY4EyRGIwVGLN2ICt33lWlXy1dUsjSGCYWS5wCJk1FFCyVyChQJ+KRiRlEAdsHzHiQTLpu1a1GiJH1W5V/JcG5YkbNZydObZHAqqPKHikUo0UhXP1eaoRGj+Rsibt9kqvOk2dJhF+qg4Giu6x5THfQX+H1Rn113XWCY/kqdv4aUrkYUo4EKZuDnvP2F1XWfocanjuA+J+diFl4lIbrzmpIkxgJK5Oo00mAIW9yOyzAMwzAMwzAMo4Lj8xiGYRiGiQqjG88wx50GkZqkz8qnX0cmXZeyHG6NM+z6f0jMX5+YfgUl8ACA+y+NMPD20B7Ar46xQWEJPeAeoMVoKU4IO8fnkIQMEC5tLSOznv8nM6H90yufMpXrC7MBd2pIXSonyl1QDGEEDL/UidH8inewVL3K1E9Q15cRQgQJ9QKRc+7E0zfQ5/lb6xJXf575hD7WS7dElgDIw3v1wsVCwiDiDRSjqeUfIisv4vH7E+KW+/UZnn8kbNWoQQJ/vlb/Oz6+sOv1bXclYBKb/+c2Ykj3AY39j6ovTNSInz9Gpk14XS/ALzvSJr3rTVDC2ZKlT9DyTiGASdNR2krXSZ3INhBKjJblr4Ed/uDDDiiwtlOG6c2ESJvOafoU5zfQop6Rvzbhpy4ocaTZK7H5oLW8354oYDPU11R5cDfkH3+i3tCRckxATAmsW0PFaJq+VUb/7V8zgej6d+pzSd42RZ3dMIBvnNP9IiUhgrgf6+DShvdQ0krIwwFMfzz+9/YtXomPtqrTzj3e+n5K2p2Jsqke2LSqa4XhvjjD9DgsRmMYhulhtm3bhp/8JPjmbvLkyXj//fdRVFREbBXMqFGjsHjxYowZM6ZznWmauOGGG3D06FHttocPHw5atnrM7m7LMAzDMAzTVZoJMYbTlpiAMlJgxNKNqKC+LwED6Tb1FFI+Uy1vYJhAKOmegEiYQDFaKBFSq2zplJZ4TbVAiBIOMT2DVSlXokRklsuTIFFbd8tgKY/Fz+xMVjEa8RlDxSLUdbSrv2WaTSNGs9DHoeRpaYZOjGb9uk6K4AI+L8trGcY6lV46OjGSGI2CB9j2D6SUWFT1hjLNLhw4J/vSBJeIsUKOfQCZVuWNnxiNen7jStL7MoZhGIZhGIZh+i4cn8cwDMMwTNQYXR9qJf7rpzEsSGwRdjtwylRlmv3Adiy9S/+5n16qlkzFmh3Eo+txBUBaqMwqlP30wF0UFtMD7gGghujXuej36QwgMrKBrGPvIkZ66d9gfTnwGe1NiylH6uj3lyMVr0RlOVHuotLgZZ0YzRccByFbPECLeiJgZObS++kPFNID8c/P3kWmPbYgMe0QAPzlI7oOXTA2shgN771IJolfPU3LKgPrUZ16wioWfwQjcgZCzJhNpss3/gZphtedn00zcPtU+rd8aknX4yB00qgpI4mE/YSEyp0JsAwvZoiCYuCS76vTAJyQR7Tb7by3IQ6FihNen8Ruohkp9RCmEQAYNAwYMRYD/EeR4a9TZtGJbAOpalLny/WHSNmmXmVpfwzT6wm51xQAXt5/I5nd4wUWbY5zmRQs+Np63msm0NdS+T7dH0JBMYStTUouKIG1N2T8BCV0dKVDOFJ0xWT6C0LTT1f0B+VOTWUfPREiPSsGhUpCNPdjAGCDiXf2XUmmr90HrNsX60IFs2wH0NiiTrvuVAv3Y+2U5Lfn/Xhel8siInxfDMPEHxajMQzD9DB33XUXGhqODR7Nzs7GvHnzkJ4e3Qu0gQMH4j//+Q9SUo7dwO3fvx8PPPCAdrvAYwOAw2F9UH13tmUYhmEYhukqpBjNSIwYjRKpePzqcjFqKElJmuGGQ6hfSrRK4qkmwwRAyYKchguGSM5HYTqRU0fb4iMEQg6DX+IlE8kmIrMqnUhLAkmYle/OUh4L361DpMBhJOczDOq3CBWDUdfRrkr3HCIFdqGe4ZqSngXlIdreNBt9XfdJtfAxmv0Hfl6W1zKMdaq8h5XrU4UTbiMjwaVhehObGtfgQOteZdrpmech056d4BIxVkgxUpFpU/82OlFid4l1f4VhGIZhGIZhGKarcHwewzAMwzBR0534kuFjIufpSYqIwZzlZRg1CHDY6E2/3BOfIoVCidFUMqsw9hHWrfxCCGca4KTjKGSV+h0a0vi5dkTyCzr/HNuySZt1zd7ETLj0VTmdNqZAMYi6nKg7oeeMTR1bASBMjIa6KjpvPxejiRFjybShh1aTaftr4lEaNUfULiAAQJ6F20m5bQ2dePIUWt4RKACpI+Qf/bz+KCk9kU6rOgQcPaBM0knudh0Fqhq71maVHVFvNzQHcDrUx5SU3LOwBEIn+WCiRow8iUz78RDNuQvgywRdx2LBzqOAn/BJlrRqZLKDhkEMHwMBoNSrFvbp5H+BVBGhe2FitAyON2H6C+HtebZZiwInLWX890qJOk9i256NB6wf77QRmsStmjY18N6Z6hf5QuKMqf41942YDnR9JtXkv7o6OuHc7pcnWQkVgCsY0bobLmL8JgB8uSe+7dIHG9X7z3IBF58QjRit7X+5bW3XC1NY3PVtGYaJCck5GpRhGKafsGXLFrz77rtB62bPno3Bgwd3aX9jx47FXXfdFbTun//8J6qriYfhaJu5sqt0Z9tYsGnTJrz66qt46qmn8NBDD+Gxxx7DCy+8gC+++AItLV2XZvh8PixfvhwvvfQS/vSnP2H27Nn45z//icWLF6O5uTmGn4BhGIZhmK7QbKof+jstyl+6i066IVUPShkllKTEZUuDQ6gD+ikxFMME0hsH31PtCnDsXPES9d9OnC9Mz+CyJZeIzGp5EiVq06E7DzqwInqz8t0mc3tA/Rah103qOmrle1QhhCC/F0tiNCJPmi2dlNBR7ZqKUDFcB4FlpsrP8lqGCecoIULKcwyMGEwrFMFZTP9hQdUbyvUCAtNzv5Xg0jDRkOvIV66v8hKjy2KA7r6fYRiGYRiGYRgmUXB8Xvfg+DyGYRim32LT2MF0lIwHisfFtiwxRlCDX1ctRLpT4Mpv0O+CDtUBjS3xj4/bQchkivMjv6eSi19TJxS2y610A+YP71Ovd0Un1O2PiGnf7vz723XzYNfEA9zxqoTXF/96tJ2oRwBw4+mKukQIiURhiBjNronVChOj0fcJ/V7ecP61ZJLxwI0Y7PYp03YdBT7fGf/6U90oUUnIfCYcB2uSqs/eJZNEUSkt2TP9AADp9wMNhAkuq5/XHxUnnwO46LgpeXUJZHV4rMRFES7b6zWSRR1lxGvYUp3kc79aQMUihjhw3jVk0jU7/6rd9KH5Ek0J6A91Bykl/rTQxJj76edKxa276B24M4BzrmzPp66XOy2GGlBitBx/iNyov18Xmf6DodZ63HDcbnKTlz6XyP2Ficv+6kdNU2Lan2qLYbdTRwFDcwnhZ+UhYPl75Lbigu8cW6DEaK0hz6BJMVqOrphMf0LbTw8/fyTV/wIgvnlTDAqUpOQN1orjAcABH75dN49Mf3d9fNujD79W73/6GCDf4mMaQwDH5QHS0wi8/nTXC0NNMsAwTMLQTFPAMAzDxJs5c+YEyTMGDBiAm27qXmf5F7/4Bf7whz/A6217qdLY2Ii///3vuPvuuwEAu3fvxogRtIb73HPVFuNnn30WALTlox7u79q1C8OHD+9cnjp1KpYuXdq5HI1AZN++ffj973+P1157DYcPE7MyAXC5XDj33HPx/e9/H1dffTVsFl5Qb968GQ8++CDeffdd1NWpp3dxuVy4/PLLMWvWLIwaNcpyuRmGYRiGiR09LUajpBsmTLTIZjiFKyHl6O3oBCcOQ/1iwytblesZJpBYy4ISgU7S1CF6o8SAlEiQ6RmsXosSJSKzCwccIiVi+5koUZsOK7IyK99brPL0FNRv4ZWt8JreTslYEyUa6cZvmWZLR72/Nmx9k9kNMZqRDrsgruum9eu6lbZdJ5WTUvLMqQwTQBUpRhtkYWsikEkRNML0LXZ7tmO7Z6My7aT00zAwpSDBJWKiIdeRj93N28PWV/ksTuPcBUgxWhL0PRmGYRiGYRiG6T9wfF4bHJ/HMAzDMFEi1IPVI2720KvJ/14yVPIUgFw2H09efwk+3yWxp1KdZ0cFcGJRnMoWcAwVWpkMANnUAGxcoU5sF8KJVBdkihNoVchYj7AYrct855fA3+4DABT4DuI/5dfhiqH0AOqH3pOYeXl8z5UyzSuQ04qDjy0b6wCFMAlAZ93pJCoxGiFuAICM/i1vEAXF2jfM8/ZcjTMHvKVMO2O2ifq/GnCnxq8OUVIrAJh7a+RrhFy9mEwTtz/c9gd1D+Vvl8LVVwPUvVwGC4RCEXY78NQSyJsmkXnkb2+A+MuCoHWpDoGV9xg4/RG1QOrSv5hofDJ6YSol+SwZqKm3lJijgMVosUbkDoLMGahs+3O/fBsfPtGKC58kJD0Afv6qxN9vTN4+35vrgDtfo1vZAu8BuKXGeuR0Q2RkQwIoaVWLQ8s0AtJAKDFarj9YHir6+XWR6UcQ94v3j96I328dQ25mSmD+BuCmZ028MaOLIu8osCJGm3gc8OItdL9I3vtf9MalJwJTLj+27EhV5/MGi9EkJR7mNoTpRHN9VvWtCUE2AIgC+j1Pb0cIAVlYAuzYoM33+OH/xvPZ31Omvf0V4PVJOOyx7xPtr5bYsF+dduE4gVSHgMsBeCLM0T4sF0ixC5iP/rx7BeL+OMP0OF17Ws8wDMPEhA8++CBo+cYbb0RKCv3gzAr5+fm47LLLtMfpjUgp8eCDD6K0tBRPPPGENugKADweD9577z1ce+212LePeEnZjt/vxx133IETTjgBc+fOJYOuOvb76quvYty4cZgzZ06XPgvDMAzDMN2j2VQ/ZXcazoQcXydXomRfTDiU0CXN5oadED15zQhPLRkGvXPwfarhhCAe03V8HkqMRp0vTM9gtZ4lUkRm5VjOJDg/rMgLrXwWK79BMojgKHS/RXNA+0YKRrshfUsz1MHcVvo3lDwtzZZOChypdk25f41QVfV3IB3yWoZhjlFJitEijCbRwGK0vs+i6jfItPNzr0pgSZiukGtXn99VXovTOHcBqg+RzNJqhmEYhmEYhmH6HhyfZx2Oz2MYhmGYAIwuDLVyZ0JopGNJQ6jkKQD51t+Rly6w/UH681PSsljR0CxxiOgqlORHGGz7iVqiBACiKOC3ySSEQoeJPo0zMRO29maEzQYcf0rn8jcb3sfMillk/ueWx//dIiVs+cFkRT0qpwfDoyjkvNaK0XzBy7WEYdCVDuHo3n1Jn+A7vySTTjr6CYTmHfTbX8W3DlH1x+UASvIjby/f+gedOOG8tv9tdnV6hxitjqg/AJDFYjQVovREYAwtRsPapZAHd4etPnWEwNgh6k08XsDTGn19o+SMpbr6c0AtRhOh7RATE8TVPybTph99F898j+53vLxKotmbvHEyzy1Ti/46oGRnnXRIYc/6Jkq8u5RZdALJQKob1d9TrhkiN6L6ZwzT1yAk3C6bD09cH1ku9M564Gh9/NufGuLc/X/nCOx91MDOhw2s+rUNhTnEJKt7twGbVpH7F/f8PVgqnmJNjEb2r7kNYTrQPc9RitEIMe13/zs25UlmLPQxs8w6/KbiITJ9waZYFugYn5XR7dyF49rajhwLIYgl+YBsbgI+eq3rhcnMhcjI7vr2DMPEBOIJCsMwDBNvysvLsXv37qB1F1xwQUz2fcEFF+D111/vXF65ciW8Xi8cjt45YN7n8+G6667DvHnhswYNHjwY48ePx4ABA9DS0oLDhw/jq6++QkODekBuKB6PB1dccQUWLAie9cPhcODkk09GUVERUlNTcejQIaxatQpNTU2dZfrFL36B6upqzJw5s9ufkWEYhmEY6zSbHuV6p5GYACSdcMVjNiIHAxJSjt4OKXQx3HAIddCPT7bGs0hMH4GU5yTx4HtDGHAZaUqxUIcYzctitF6BVclDIkV9TpsbtX5ihqx2kkFOYeU7sXIeuyz0B6zk6Sl0v0WT2YgMtL1YoySQ3ZG+UcempGcd+KWf7J+1idHU13VvFNd18vMGlDmSvNZpuCwfj2H6OpVe9aBWK2K05J3vloknFa0HsbZ+pTKt1DUWI1yjElwiJlqo85sSJcYCDyG2T2ZpNcMwDMMwDMMwfQuOz7MOx+cxDMMwTDDCsNE6ntxBQFX4uxZx3R1xLVPM0MnbDu8FANhtAiX5agnam2slvnUSYBjxeWu08yidFklGJHdupBNLTzz2d2YOcPRAeJ6K/eptXepJxpgQSk8Ctq7pXJzgWUNm3VsF1DZJZKXF7+3jdsLzO3KQYuV+QhCTkgoMHBq8TidG84fEdx3arc6XY8Gs1Q8QpSeSba1TtmCM6yg2edTf1Yb9wHfiVzRSalWSb7H9o+oUAAwd2fZ/JDHaob30PrK5DpEMGwVs/oJOX/cpMGR42OrifGDTQfUmWw8DJw9Vp6nw+SV2Edez0oGEQKa+hpa9FBZbPzhjncC+QQhyxwZMuOgagGilmlqBXUeBMYRQr6fZqOjmBHJSywZ9Bld7fGVGLilRq2psk57luPVtYh0xn2mmvzZ4BV8bmf6CIM4Z08TJQwWodqczm2y7Lg3IiH3RAqki5lPOSQOKCBlaELs0tqQU57H+UAdOIpaosT54+aBa1shtCNMJdY4BhBhNfZ3rF2Jai3L/k5vXk2mf75K49MTY39cfrFWvLx0IDM1tO97ADOBAjX4/JQMFsHcb0NqNCdYHFnV9W4ZhYgaL0RgmyfD5Jcr1Y1WZGFCU0/bCridZtmxZ2LqJEyfGZN8TJkwIWvZ4PFi3bh0mTZqEoqIi7Np17Abwz3/+c9DMii+//DJOP/30sH0OGNAm+Jg6dWrnuuuuuw6ff/5553LgfgMpKupex+/OO+8MC7q65JJLMHPmTEyaFD6bh2maWLlyJV555RU899xz2n3PmDEjKOgqKysLM2fOxC233IKMjOAnBB6PB0899RTuu+8+NDe3dYRnzZqF0047DRdffHEXPx3DMAzDMNHglz5SopE4MRp9HErIxIRDC07SYUA9SwclhmKYQOIhC0oELptbKR/qaFd8RP13sBgtqbB6LXLZEifmslL3k0FOYUmMZuH7tSJ5S2ZRolbA2t4eSCnjIoFMM9TB3E1+/eA2Snbatk83KXCM5rpOte2B5xzLaxnGGqb0o8qrjsDNc6hGAYTCarT+yOLqtyGhnlH4/NwrE1wapivkOtQBgDW+KvilDzYR+7ABsr+SBH1PhmEYhmEYpn/D8XmJo6dj9Dg+zzocn8cwDMMwIRjq2CUAwGU3Ay/MDh5Q60gBLvpu/MsVA0SqEzI9G2hQjB49sAtSSgghUDpQLUZ7caXEJ9slPrvbQKGVAfFRojomANgNYFhuhI0P7KTTJpx37O+MSDsKgcVolhCX3QQ5/9nO5fMbF0NIE1Koz6ftR4CJw+NTFr8pScleab6i3paXqTMPGQER2h5QMisA8AXHQUhqvxYHoPd5zv4WkJVHyqBuTv0Id3muVabNfl/i4Ti+pqTEaEqxXghSSqCcEKM5UiDS2tsUqi511KMDhPgjdzCEM3knhexpxFW3Q374bzqDQm4KAD89z8C769XvxE95wMTa3xg4aai1697eKsCn3hVKqfnqdNewAhajxYXTNPL8Fx/FyT/8HcYXtokYVSzYJDFmSPLF0LT6JPYQjj0AMKQfP6h5Qb+TDkFRZg5KWxeT2XZUABMjvP5vaFGvTw+NByws1e+IYfoKlGC1qQ5nFANjh9Cizg52VEicWRrf9qdaPRcicix2QeRHr9GJ538HwhXSeGTmqPPWV0Oa5rE++X719VJw/5ppRwih0QsGp8j6GqCuSp21H4hpRWFJBBVjGxc3fECmPThfYtQgEzecrnmO1gUoOeOQrGN/l+QD6/bp91MiDkHeclr3CuPO7N72DMPEBBajMUySUV4NFN9LPP1iYsbOhw0M7+GxkOXl5UHLgwYNQl5eXkz2fcIJJyiPN2nSJNjtdgwfPrxzfXZ2dlC+wYMHB6WHkp5+7MWe0+kMStNt11UWLFiAv/zlL0HrZs+ejV/96lfkNoZhYPLkyZg8eTJmzZoVVs4OXnvtNTz77LGXb8cddxyWLFlCfg6Xy4U777wTZ5xxBqZNm4bm5mZIKfGzn/0MW7duhaF7Cc4wDMMwTExoNj1kmtNwJaQMDiMFduFQSoooaQcTThPxXbkMN/zSr0yjpHgME0g8ZEGJIM1wQxWL4DEbIaUkxWiUcIjpGayIu9ryJa4+RiqTgIFUQ33fnEisnKPW5Gm9QwRHkWo4IWAo5TMd185W2QIT6mtldySQaTZCjBahf6OSOgbu02GkKNO8prXrul/6yT5g4OdleS3DWKOR2A7JAAAgAElEQVTWVw0/fMq0PAcVgXsMQcyoJy2FSDC9kXpfLVbUqgNdB6cUYZx7gjKNSS4oMZqEiRpfpUUxYnQ0m+ooyURKghmGYRiGYRhGBcfnJY6ejtHj+DxrcHwewzAMwyggRE4AIEZPAB5+DfKJu9sGZQ8fA3HXExCDj0tgAbuHmD0P8ifTwhOam9qEMXmDUZwvEDpouIM9lcCMuSbenGGLednKjqiPOXyABekuJSK65PsQ9oDhc9Sge4q05I0xSCbEuNMgr/gR8OYzAAA7/Ni64wSMKt2kzL/tsMTE4fEROuytArzqsAql2EpSdWeoQtJi18Rq+UPew1L7LWJxA4A2udcTiyG/d7Iy/ee1T+MuqMVoALCzQra3VbGHaotKrByv+gjgUcfSiD++c2yBEqO11yNJidH6gaShO4ixk7TRC/LIPuV0cOeP1f+23/6biS0PGGTMRCCUWA9oEzgoIUQvSEkF8gsjHpOJHmF3QJ5/HbDwFXWGg7uw8I4RGHyX+jniHa9K/FzRneppdlcCpuYkeL382zi5Zb12H6JdCisy81DgOwCn6UGzYpxG2ZHI1/JGUowW0E4KARSM0O6HYfoOROzdcw/DuOYnWHCHgR88a2LpNro/u5OQSceS7ojRpN8PfPQfMl3c8efwlZmEvFpKoLEWyMiBbGkGDu9V5ytiuSJjARlygdSJafuDbM/ifWkKvLigYSEWpJ+vTL/xXxJnFEuUDIzdvRklRssLeDxTOpB+btVB8YePatPFA69A/uY6fWFCRY4Mw/QI/IaYYRimh6iqCjYJ5+RE+YJNg9PpRGpqqvZ4vYVZs2YFLd92223aoKtQsrOzlYFXUsqgfdvtdrz99tuWgsc6Aro6KCsrw5tvvmm5TAzDMAzDdB1qUC2QODEaQEtHPJry9RV2ebbi5UNP46nyB5X/Xjg4B+vqV0bcj4cQlKTZ3HAY6uAhn6kWQzFMIOTg+yQWIQG0FKrJ3wifVMtLAMBOCIeYnsFKPbMLOxwicb9bJOGYy0iDoQnqThRWhF5pVuRpFvJY2U9PYQiDFHx1tG/UNRToXltHfS9Nflp8Fik9zUiHgxA4UsLHUHT9v8Df22GkkOcWy2sZ5hiVXvXsx4A1MRpJaNAI02dYWvMeKak+P/fKpOhHMJHJtdPnd6U3PhGTOiE6wzAMwzAMwzBMIuD4PGtwfB7DMAzDKNDJOA0bxFmXwXhlM8SiGhgvroM46azElS0WHDeaTmsXs5RS4pZ23lkP1Hli/35oB/HImhTJtCOlJAc1i1OmBq+gBt1TuNSTjDHhiO/eFbRc7N2N8c0blHm3a8RB3SVqKVF5mTqzajC8TSNG84XEQRBiNMHihk7E8DEQ//2UOm1/GZ6/iR5c/8oX8XtHXUa0RaVWXqlTQjwAGDHu2N+kGK3dgnJwtzqd5UGRGTiUTtP8PheMpTfbfgT4co+1w5dVqOvmkCzAnUrUaapcQ0ZAsCQ8bohJ0+nExf/BwEyB6WPoLPuqki9WZu1eukwNmI5vNrwfeSeu9vjFzBwYkChpVfexqLYy6JikGC0gniC/CCK15yf3ZZiEYCPk0rVt06sXZAssuMOGmjkGpoxUZ423GE1KiUoi5DYnzYL4aMNyOu2KH6nP9wzNs/u69ufuh/fQMYosHmYCoUS2ofWH6n+lpAIDCmJbpmQkCvnb+Y2LtOlvrottn4iUM7qP/bZW7s2KDyyjEyeeB+RamEyWnwkxTFLAd8UMwzA9RGggVOjMkN0ldH+VlZUx3X8iWL9+PZYtO9bxzMjIwKOP6g29Vvn444+xcePGzuXvfve7OPHEEy1vP2PGjKCArrfffjsm5WIYhmEYRo/H7yHTnIREJB5Q0hWdqKQvsK5+Jf649x58WvsBNjauVv5bWfcxnjkwG/OPEjNotaMbIE1JTajB+AwTSBNxHib74HuqfB6zET5N3XcIIkCK6RFctsjXIpfhtjRzZKyIVPetiMQSgZVyWDmPU4UTRoTH3onsM3QFnSgRoK+hum2tkGaoX9xFFKMR5TFgwGm4un1d1/WvQoV6VB2hrg0M0x+p9KpHAbiMNKTZIr/Ap65gyRfqycSCVrMFS2veU6Zl2XMxMePsBJeI6SouWxp5ra+KkxhNJ0RnGIZhGIZhGIZJBByfFxmOz2MYhmEYAq0Y7ViaSE3cRJ4xJSsPSMtQpx3YBQA4dYQ+rkFKYBs9H0+X2UnIZIrzI8RZVB0GPMR74dBB8rpB9yp4EKx1FDKi0lb1YPPfvSPjJpTZfkS938GZQIZTUZf2RyEwo2QWQJAYTbY0A0f2qfNFMQC9XzCUEMXVVmLSwHpys2Vl8ak/tU0SFcRhSwdaiPmiRHvuTCB7wLFlUozWPolqLXGPmV8YuQz9HHHVbXTi7i1k0qQI175bXzDxzlcS9c36ukfJGXXyBknIPVFYrD0W003GTiKT5J62unLyULpefPh18kXLfPi1en1JPuAs32xtJx19n5Ent23rJcRoFiSnlBjNLQP6bSw0YvoTjlQySTYdi9V1pQicXqxuf176XMLnj1/7U1EPNBLn7uAsCzvYQ19rxegJ6oSsPHp/ddVt/9donr8PGmahYEy/waoYbT/R/yoo7h9i2ijuKyZ5VmvT1+7tbmGCqWxQt3G5AWGHp0XouwPAqNbtdOKYSYBDPcYhCH4mxDBJQT9olRmGYfoniRxkHS8WL14ctHz99dcjMzMzJvteuHBh0PK1114b1fZpaWk49dRTO5c//fTTmJSLYRiGYRg9LWaSiNEo6YZGVNLb8Us//u/I3yFhWsr/fuVr2sHV1ABpl+GGXahnVfRKr3I9wwTiIc7DZB98Hyr36cDjb4RPU/fthHCI6RmsXIsSLemLJGuj6l6isfK9WJF+CSEi7itZPjOFi6hHHe1bNKKwaKCESJH6N41+dTSoy9YmAezudT0aERwpr+3DfTSGiRZKjJbnsDK1NUCr0Zi+yIraxWQ7f272N+Ew1G08k5zkOvKV66uIdqE7SCnhMdVTNya7pJZhGIZhGIZhGMYqHJ+nh+PzGIZhmF6N0InRNFKkXoIQAigYoUyTL/0eADC5BBgZ4fXR8ytiPxh/BxFuVqp+xH0MakAzABQES2VEZm5UZRKu5I4xSCaEYQDfOCdo3UjNQOTjf2PizbWxr0f//Zp6nyMHha+TjXVtYj0VClGLEAKwE+/IAsRoOLArfOB9B5QIrL+iEcUdv/1dMu39jcAXuxPXDgGR20UAkC88ok4oLAm+j+yiGE1kRdeG9UsuuoFOO7IPslr9I99ypkCGU5kEAFhfDnzrSROTHjKx6yhd93YQcsYSQvIppQTmP6feGYsU44o4bjSd+OG/IU0Tt51DP//50YsScz+3FlefCKSUpKxtWkkLUF9tbUfO9r5PuziuhJCcvrBCwjT17XBDs3q9OzCejwWATD9CXPn/6MQvFgUtFg8g8qHtetTYEh85Wrf7QuXqNgMAcO7V6vVpGbSAuK59ApT6KnV6ihPCybFITACkGC34mi0JQXZ/uS4JwwDGnho5I4AzPSsw0fMlmT53lcTKnbFrk6qIsP9AMdoJhfp3dAWOergk0RFxpUN88wcWxWj8TIhhkgEWozEMw/QQubnBD6Nra2tjuv+amhrt8XoDy5cvD1qeOnVqzPb92WefBS3n5uZi9+7dUf0LDALbvXs3TDN5HmYyDMMwTF+lmRhUaxf2hA7I1gmM+iqbGtegxmd9lnMTfnxet4RMbzIblOvTbG44CNGTT7ZaPj7Tf6HkN4mWUUULJfNpMhu18iBKOMT0DDZhQ6rQREch8ZK+SHXfimwsEVgRelk9jyPJ4JLlM1OQAtb2fgYlCrMLBxxG12WJ9HHV1+xI6W6jbYbx7l7XKakKEC5WIftoLEZjmE4oMVquRTGaIMVoyTcLLtM9/NKPRdVvKdOchgtTsi9McImY7kKJ0Sp9sRejtchmUqye7JJahmEYhmEYhmH6DhyfFxmOz2MYhmEYAkMnRusjw7Cogb57tkB6GiGEwKp79Z/1yY9lm8wlRrT6JPYQ4WmUTKYTakCzOxPIDjEKZOZEVzAnP9eOBnH3U0HLIwmZCgA0e4FbXzDR7I1dPTpcJ+EhQq2U9Ugn1aOERFbEaPvL1HkMAxiiFhP2WwYUAKkuZZJ86Gb8+Vr6/J/x79jfI2wnpFapdqAwW7+tbGqg61RRiBAvkhiNEhhl5ukLwUDkDYZ44BUyXT5xt3L98AECn94d+Tq/7TDwmzfpdquMknxSYRlffUYkAKKfiDl6EvHTP9CJaz5Gcb5Aeiqd5baXJOqbkyNmZsN+4CDx+OvCAeXWd+Rqi8kTQgDX/UJ7Lf94K70bv0lfk9MDxhEIFgAy/YnLf0gmyd99L2hZdw/0/kbg2WXxaXvKiL5QhhPIz7CwA+re7JSpEGnqHQghgAzi+XpHn6iO6hv1vufyTLyhxGghdZvqt/ej65L45V+s5QPw4d5LtXluf8mM2TMiUowWMkTkl+fT7eQruU+SaeLJjyAKigGbhbFYLvXE8wzDJBbiCQrDMAwTb0IDoaqrLVr3LdDc3Izm5mCTbV5e73v4ffDgwaDlcePGxWzf+/btC1o+/fTTu7U/0zRRU1PTKwPcGIZhGKY34TE9yvWphjooIl44CeFKX5ZuLK9dFDlTCCtrP8JFudeEzZbuNVvhI0RPLsMNByF60smhGAZokzc0E+1EsouQdMJF6nwB2sSQTHLhsrnR4iNml0HiJX0uI4IkLEnEFJFkZoB1iUZEGVyE76SnoeR5Hf0Mqr/RXclImk394q5VtsAnvaSIkRK1dXwOSl7rNa1d1ynxrNNwwSaCZ4gjJZN9WF7LMNFCCZAGOBTTo0eBZDFan2Nd/QpUeg8r087KujDp+9dMOLl2daR9lVcz1WsX0Ynjue4wDMMwDMMwDJMoOD4vMhyfxzAMwzAEho1OE31EjKYTM61eDEy5HFlpAplOoI4OgcCmg8C4gtgUaU8lYBKvnEoizPEjqQHNBcVhsWtRD5znQbDRMXh4m/CpXe40snW7NntVI/DJNuCCGHVF311Pv7ccqXolWk4IzBwpwMCh6jRKjNYhtAKAQ3vVeQYNhXB0fdK7vogwDMjCYmDn18r0E/JbAKi/s9V7gL2VEsPyIsgTo6CMmFOoJB8wjAjHWb2YTisKESzYiGtNRz2qq1KnRyt37K+crpnoa8tqMunEIoG7LxL4/Qf6GIg31kqYpgyrE6YpsTNKMZr85E36QCxGiz/FJ5BJcumbEBOn4epTBJ5foa4TDS3Awk3AVafEq4DW+XyXuox2AzjPvt76jgL6PuL4U1Dy9r/IrPPWSEwbo24bmzTzproDJ0sdOtJ62RimlyNsNshho4C928ITva2Qfj9Eex+hWD3/YSevr5H4yXmxL+NuUlaN8HsrFYQYTXzjHP12mTlAjeIi2tEn4r4RYxWqnoaJ0Yi62p/6X1F81iyzDr8dvxW/23C8Mv2rcmDX0chtlxWqiTnVc0LCDieXCDy+UN3/GVWxUr2T6++EGHlS29+OyGI0wc+EGCYp4JGTDJNkFOUAOx/uIy/LkpiiJLjXKSwsDFo+dOgQKisrYxIg9fXX4S8EQo/XG6isDL6LzsmJ3Q8Xuu9YUF9fz4FXDMMwDBNnWgjhkTPBghNKPNJXpRt1vhpsaKADASgqvAex07MFJWljgtZTAhWgTaLiMNRBLF5T84aUYQA0m8QTcHRfGBRvKDmAx9SL0RyCA+WSDZeRhhrQ95yJFkFQkq3O9CQ5N2zCjhSRilbZQuaxIk9ryxdBjEYIwJIFSuzWIRihRCPdrVtpBv29NPkbkWlXT3vb5G9Qru/Yn51op3RtWyCUCE71PZGSyT4sr2WYaKn0qqO4cx0RRpN0EruAciZ5kVJiYdUbyjQb7Dg355sJLhETC/Ic6qijuIjRNNfeZBHzMgzDMAzDMP0Xjs9LHD0do8fxeZHh+DyGYRiGIdAN9tZJ03oR4uSzIF/5kzoxYHDwj84W+OMCWg7z9FKJv34nNu+PdmgeVxcPiLAxMaBZOcg3I8o+T1pyxxgkG8JuD5pU6RvNXyHDX4d6Wya5zfYjEheMi0092qae9wcAcPZIxTHKibpTMKJTShGGjRg87QuIg2iqV+fJ6d6EVX2WolJSjDbBsRuGGEWKE1fvAYbF0FNNtUWU1CoIleSkHXHimcErbMSwXr8PssUDtKjjpZHZ+6TcPYFwptHTu+3dBnP2bYAQEIOGAmddBlE6vjP57JGRxWgeL7CnChgRcn3aXwO0+NTblOYT7dw+QtAIAGMmacvBxIDRE+i0dnnmlJHA8yvobJ9ul7jqlJ6Pp9lOXANPGQZkHt5ibcpDuwM4PsDyVliCic1ryOzry+m9NmjkuulmQMxhYQmdkWH6IvmFdJ/h8F6goE1ifVweMDQH2EfM97GCcEN3l6PqkGBLz/ulaQKUtDpUEhsKJbCua/sCZD3xRWTw82ImBIN6B3jsmiWbm4CjB9TZ+tF1SaRnRTUlcq6s0aa/sEJi5uXd6xNJKVFP9CGyXMH7nno8kGoP73+PHgzkfbxAuQ8R+PtS0vNA0jjWkWGSARajMUySYbcJDI/00obpE0yePDls3erVq3HhhZpZKSyyenWwtMLlcuHkk0/u9n57GktGcYu0tsZeqiFDjdEMwzAMw8QcSnrkMlwJLYdOYNQX+bxuCUz4lWlnZE1DmuHGx9XvwoQZlr6y7qMwMRoldAHaBkjbhfrholWBCtN/iVS3khmqfE1mI7yauk+dL0zPEamuJVpE5oxwvESL2nS4bG60+tRitBSRCpuw9jg72X6DaKFkdp72fhAlGO1uO6eT6DX5G2gxmkmI0doFdA6indK1bcHHtv55I0nlGKa/45d+VBMCpDy7NTEa9YSWn4z2LbZ5NmJvi3oQyKTMKchx8Ius3gglQKz2VcCUJgwROzGEThzvSrDcnmEYhmEYhmFC4fi8/gPH50UPx+cxDMMwjAXIAba9jNMuIpPkk/8Dcd0dAIDbpwo8vlCSQqInP5bIzzBx/ze7/72UHVEfpDAbcKVE6KdQg+9VA5qpAfcUruSOMUhGxM2/hfz7/QAAt2zCnVV/xsz8+8n8P31ZYsa5sTk2VY8AYLKiOkhKqldUSh+EGjwdIEaTHuJdCdcnJeLWmZCfvKVMy6zYhnsuOR4PzVf/ttc8beLQHw0MzIzN/QxVh0oGRt6//Nt9dOKk6cHLdlqMhroqej+ZPWwh703ccDfw0u/VafOfBdAe6/DCI8DMlyDO/hYA4MJxwGkjgM936Xc/+jcm6v9qIMV+rG788zO6DSpRz2NFyz0BiCwW4cUbkZ4F6UwDmhVjFNp/m2sntYlitxxS72POYonbzpE4fnDPydGklKTMdtQgAfmvB6zt6JoZEO4AmWlRCbLMOrjMJngU7/qX7wDqmyUynOGfvVHzaChIjNYugWKY/oL44SzIL6co0+Sbz0D8+BEAgM0Q+PWlAre9pD63W3zAloMSo4fEtu2pJrqxuW4Lx6k8SMtdI8mmCIG1rKtqi1mk+kfcN2LCIOpq4PuFA5qOnkqw3pf51q3AW/+wlDXbp7lPATDrXYlBmSZun9r1Z0StPsAXPjQRAJCeGryc6xb42TSBP3x47LcVAvj1hH0QHxMHCJQ0UrLqQFwZkfMwDBN3+sgTeYZhmN7HsGHDMGzYsKB1CxaoDbTRsnDhwqDl0047DSkpKTHZdyIZMCA4CrGqSt9p7uq+nU4nTNOElLJb/4YPHx6z8jEMwzAMo8ZDiNFSEy1Go6QbRPl6M1JKLK9dpEzLdwzBDYN+gqsH3oxxbvWMWV/Wf4ZWM1hyoxPIuWxuOIS67+qVsQ+eZ/oWlCwI0At/kgFShORvhM+k5UEOg8VoyYbLphc9JFpEFkkClkySMF1ZovneIn2mZJLBqaD7GW1tHCX56u5v2SEyU0HJzwCNuKz9e6au6z6L13Wq36BqN6nfVnd9YJj+RI2vUikzBoA8R3dnJudBqX2JhVVvkGnTc69IYEmYWJLnUEfa+6QPdX79bI7RQj0fsQsHHEbve1/FMAzDMAzDMEzvhOPzIsPxeQzDMAzTBQxbT5cgJgi7HbjoBjJdHj0AABgxQGDbg/qhZw+8K3Gwpvvvinao5/ehRTKBEFIZUaQSo0U5cN5Fv0tnCK78UdDifUdn44X9N2k3OVwXm/eN2w+r199zsVCLgMvL1BvoxA0WxGjwEHEWLEZTIkaMpRMP7MSsy/Uijv9dGrv31duPqNePjDDXmNy7lU781q0QoWJNahC+3wfU6sRoUcod+zHi2z+zltHbCvnE3ZBmWzyFzRBY/EsD939T4NzjNZv5gbfWBa+b9a66LuZnAFlp4fVY+nzAwd3KbcQDr1gpPRMDxMwX1QmH90G2tsCdKvDZr/T9odnv92zczJq9dFqJg+hkdXDSFODMSyHu/l+IH88OShIZOUBmLubu/z65+fPL1Z+9QT1HLgAgvSOeb0ABBF8bmX6GGHcqnfjy40GTQ/zobAN//C+6H/SzVwh7UDeoalSf0zlW5kEsp2WfUN2bBUL1cTqEaHXV0W3H9F+oCWACxWiUmNZmAwYfF/syJTHihrst5/V6miPm+Z/XJRpbut4v0vYfUsPXzb5K4O83Clx+EnD9qQLv/czAdz6g+y1B9/pWxGhp/EyIYZIBFqMxDMP0IBddFDzT0osvvgivlx7wboWKigq8/fbb2uP0FoYMGRK0vGnTppjte9CgYwP9mpubsXev5gkgwzAMwzBJQ7Opnj3EqZiBKJ5Q4hFKVNKb2dW8FYdby5VpZ2RN6wwWOj3rPGWeZtODdQ0rg9ZRchIDBlKFEw6hDhzyyu71lZm+j+4cdCZYoBgtlAipVbagWRIzJwGwwcLDeCahUL+l1fRYk2yiNh2678YVxbU+4mdOcL8hWqjydQjIKFFYd3/LVOGEAXUQf5NfJ0ZTp6UZbS8C7ULdTlm9rlPiNVX/rz/10RimK1R6iQhu0MKkUJSDBQBIFqP1Gcqbd2NT4xpl2gnuiShI7V+BP32JXDs9WqNK0z50BVJsmkRSXoZhGIZhGIZh+gccn6eH4/MYhmEYhkBq3nuEim16MaJ4HJ246thEmsX5AjPOpQfj+01gwabuvyvaWaHeR8lAvRBJ1lcfGywfSmFx+LpoB847+dl2tIiMHCA9O2jd9XWvYtaRmeQ2izbH5n3jXqIqjCsgNiDkDaKolD6InYjXChSjNROT7LJoj2bSdOVqWb4DQgj8YDLdFry3ITb1p8UrcbhOnVaSr2+LsPojMkmUjA9fSYrR/EBdJX0cln9YJ3uA9XPu4G4gQG6Xliow83IDi++04XTFpaSD9zceq3v1zXQ9LMomEo7sC247gjbStENMbKG+a9MEDu4CAOS6BeZcp2mHNvZs3IzuOlpcuZpME3c9AeOJRTBmvw5x2c3quKDCEpS2EiJRAJ9sI8RoGneKuyOmQNVXY5j+wIln0mmVh4IWf3qugI24Dd11NIZlaqeK6MbmWrktomRTmblt9wg6KIF1pxiN6OhH2i/T/7AiRjuiHiOHQcMgKBF2X2XgUMBhbeKf4307I+apbwaW0d2GiEQrRhNC4JazDLw5w4aXbjVw4ThB/74pqUB+4bFlK781C1wZJinoO0/kGYZheiE///nPgx4YVVRU4Nlnn+3WPufMmRMUvOV2u/HDH/6wW/vsKc48M/gGf8mSJTHb9+TJk4OWYzUbKMMwDMMw8aWFEKMlWnBCCVco4VdvZnntIuV6AQOnZ57buTw+fSLctgxl3pW1wQEflJwkzZYOIQTshvqhqk96g2bAYZhQqHPQaaTBEMk9Y69OCFXvq1GutwsHKSdheo5Iss6EX7OSTNSmQyf2iqacurwGbEgRirdiSQT1PXQIRihRWHd/SyEE0mzqYEBdH8djEmK09n1R13Wv2WqpXKRYRfE9RfruGKa/U+lVT4+eZqRHIVfkvkdfZ1H1m2Ta9NwrElgSJta4bRlkP6jKG2GG6Cih7vsTLbZnGIZhGIZhGIbh+Dw9HJ/HMAzDMF3ASO74k6g47UIySX7wUtDyReP074huek6SUgyrlBGPqksize+zXzMwt7AkfJ0rnRYSqXAm92SMSYti8PAFjepYRADYfLD7h/T6JOoICcuQrPA6LJvqgapDitwAihR1pwNq8LQ/QG7kISag40HVNJQcZ9MXAIALNS7HL3YDD8030eztXjtUTYhAAGBIln5bWaMxk5x6fvg6XTtUTTSIaRn9T9TQDYQQ6u+egpC5XKi5Bj63XOIfn5qQUuIoPe8kxhcp2qBDeyDv/S96IxZGJY4hI2iJylfLOv+8YCxdFyrqgdqmnotxr6in06Y1f0InElLKIIpKcHzrNjK5kgjNo8QmDtmKFLRfM/MGRz4+w/RFxkyk0zatClp02Om2Z0cF0NgS27anijinrYjR5O7N6gTVfVkIIoOQvx5tv1Gor1Zvx9JYJhQrYrQ6dX1C7iD1+j6MMAzLz0gmtn6FHAvhfxfNMfH5zq61TVoxmjPy9rLFQ4vR7Cltn7cDK5+b5YsMkxSwGI1hGKYHGTt2LC6++OKgdb/61a9w+LB6gFokNm3ahD/84Q9B62666Sbk5vbOm7vp04Mfrs2dOxf19ZondVFw4YXBL3L/8Y9/xGS/DMMwDMPEF4+pjjpwGokNPqLEIx5/Y58SdzWbHnxZ95kybZz7FGQ78jqX7cKBSRlnK/NubVofNMiakqt0fK8OQQdu+GT3ZnBn+jakPCeJxE8UKsFPB3WEGE13rjA9ByXP7ED3W8eDSKKbRJdHh+5cjaacus+cZnMnvVBQ188AohOFRQv1GzT56ci9RiLN3S5Go9oqq9d06vOqvifqu+uL8lqG6QqV3iPK9XmOgZb3Qbagfec2qF9T5a3A6rpPlWnDnSMx0qUZbcAkPUII8nyn2oeuEs/+CsMwDMMwDMMwTDRwfHkdzi0AACAASURBVJ4ejs9jGIZhmC5g9J1hWKJY89x/7VLIZfM7Fy86AbgowmuCaY+beH1N114amabEzliL0VJSgQEFYauFEEA0g+dTWYzWFcQv/hS2bkLzGjL/w+/Jbsde6qRWeap54nRSvaJSOo0aPO33HfvbQ8QpOPldCYWghBnb10HWV+OKkwXpOACA37wlccGfTPjNrtcjSu4DWJCB1FWRScrPphWjEe/usnrnvWdPIn5wL5A1wFJeOesHyvW3naOPNfvRixIz5kpSJAMA/3NR8D7kgZ2Q/28KsGODeoO8IRAsUkwYIiUVGDRMmSb/8GPIdinP8YMFvnkivZ8nl/Rc8Iyu/g0+tI5MEwUjIu+8sAQGJCZ5vojq2I2E2CQ9cCJWlo0w/RTx3f8m0+Svvw1ZWxm07n+/S1+LTphpwuxG/yeUrorRpJTAq3PUiTrpcAeZRHuwfR2k30/3tajtmH4Mdb4cO09kPVGf+ul1Sdz5V0v5HA1H8ejV1sZhnPNHEws3Rd82NRCycwBIV88JG8yB3WRS2Oe0IkZj+SLDJAV954k8wzBML+Wxxx5DWtqxQdM1NTW46qqr0NCgmSpCQUVFBa655hq0trZ2rhsyZAjuv//+mJU10YwbNw7nnHNO53JdXR3uueeemOz74osvRknJsRvqVatW4V//+ldM9s0wDMMwTPxoNj3K9amJFqPZVFEygB8+eGWrMq03srZ+OVqk+qniGVnTwtadnnWeMq+ExOd1SzqXO8QuoXSIbBwihSxTX/p+mdgTqW4lM5TMBwDq/OoZaewsRktKdL+llfRYkyqcEJrHwIkujw7duRpNOXWCtWT6vBSUMKRFNsMvfREFo907trqPoxOjUWlpRocYTX1dt3pNbyLadtX3RH13fU1eyzBdpSoGYjQKyWa0PsHH1e/AhF+ZNj33yqSXizKRyXWoR48FysxjAXX97g19MYZhGIZhGIZh+h4cn0fD8XkMwzAM0wVEHxuGdeP/kEny+Yc7/7YZAm/NMFCQTe/KbwKz3jW7VIwDtUCLT51WOjDC+4n9O9TrC4ohKJFdNIPnWYzWNSZfErZKALiz8nFykxUaT5kVdFIYpcihvEyd2ZECDBxK78xGxGz5AiaIo8RoLnVcBgOgsJhOm/8cUh0CZQ/p2+DPyoAPv+56EaKuQ4HUqWP8cNEN6vWaQfiyhnh3l8GD8qNFlJ4I8fdlED96ADj/O8D519GZm+ohG2rDVg/KFHjlR/pr0TOfSHy1j46bGDUoeFm+/jRQpZG2WxHIMLFF1wa988/OP9/4Md0O3fdmz8XOVDeqj/3jqYIUgYqf/kG5Pixfu9zxR9X/VKZTbWdDi7pMbjPAZMqyEaafInLygSHD6QzvPR+0+J1T6evQnkpgybbYlMs0adFnrjvCfdlXn9FplAA3EF178MVCuq/F7QgTChXjGBhHXl+jztNPxWg492pr+eqqcOsUA5/ebeCn5+nbhFYf8OD86J8RNRBiVSEAl5XhU/uJ+3wg/HPaLewwK8/CQRmGiTd97Ik8wzBM72P06NH461+DLbPLly/HxRdfjPLyckv72L59O6ZNm4bNmzd3rjMMAy+++CLy8yNNkZTchAaOPfnkk3jssccsb19bW4vm5nCZh91ux6xZs4LW3X777Xj99dejLuOiRYuwc2c338IxDMMwDGOJZr96Sj+XkaZcHy90whUPISvpjSyvXaRcn27Lwvj0iWHrh6YWoyDlOOU2K2s/6hSSUN9Rx/eqF6N5yTSGiacsKN6kGrS8qs6nfvGiO1eYniPSNYmSa8YLIUSvEYXpvrtoyunU7iexfYauoPusHrMprhJISoxGXbv90kdKVDskZZTE0eo1nTq26nuivjsTJllOhulPHI2JGE0dzMBitN5Pk78Bn9UsUKblOwbj5PTTElwiJh7k2tXne5WPmHW+izSbxPMbW/L3xRiGYRiGYRiG6XtwfJ4ejs9jGIZhGBWa9x6GLXHFSABi6Eg6cfNqyAC5k8Mu8OAV+oGv68uBKkLMoaNM85i6JEJ3S5YTYjSdVCYauRCL0bqEsDuUkpnjW7aT2yzZ2r13jpU6qZXqFQVVdwpGQNg05zo1eNoXYPdrVhdGuJInTifpKKLbI/nVMgDA8DzAnarfzWuru16PKBFIWgrgdESQgdRXqddTsg7dIHxKmBWN1JHpRAwZDvG9u2Hc/xyM+58HrvgRnXnLauXqScP1v78pgXe+Ute9XDdgGCHbr1mq3Z8lgQwTW4pKySS59pPOv22GwEgizEYIoNnbM/EzVepX9Mh1+oAj+9SJms8cnK+tPuYSkzxTx6bEJunmsckKBLdrTH/m+FPIpMB2BwDcqQKFGkl1d/vRHTS2tl3TVGRHui0KKXMgwkp7k0PHMMovPwYaWGTFWIQSo5kBkq56QrSXoTnR+jAi1QUMKIicsV1QeGapwJzrDDx0pb6PvKwMaPVF1z5R/Qd3iqJPrYISoA8ZDuEIGX8V6RmfYQDp/bNOMEyywWI0hmGYJODmm2/GjBkzgtZ99tlnGDt2LGbPno19+9QPoMrKynDfffdh/Pjx2LBhQ1Dao48+imnTpsWtzInivPPOw5133hm07q677sLll1+OL7/8UrmNaZpYsWIFfv7zn2Po0KE4dOiQMt/111+Pm2++uXO5tbUVV199Nb773e+S+wYAv9+PtWvX4ne/+x3Gjh2L888/H3v37u3Cp2MYhmEYJlqaTY9yvdNIbPCRTjzSRMhKehuHW/djh2ezMu20zHOUkhMhBM7IOk+5TYX3IHZ6tgCgv6MOmYnDoAM+fLKVTGMYShaUFgNZULwxhEEKm+r96hd5lGyI6Vkiyal0krJ44dQIKJLp/NAJwaKRfuk+UyzkYfFGV36PvzGiYLRbxyb2QV27df2eNKNNsuYw1BJHq9d0UgSnKGuk745h+jtVpBhtkHK9CkGI0Zjezyc1H5ASyWm5V8AQfWugV38l16EePVblJWad7yK9WVrNMAzDMAzDMEzfhOPzaDg+j2EYhmGixOhjw7BOv0ifvj9YHHXJCQKOCK8MbnrWhJ8aTU+wo4KWyWSnRXg/dYAQqBaES7k6iUbCkeK0npcJ5qzLwlZd0vABmf2+NyV2EnXBCpTUKtUOOL31MB//GcwbToT5reNgfus4yGd+o94gkpCIFKMFTBDnaVDnYTEazfDRdNpn70D6fBBC4IqT9W3C8ytk5yS+0UKJHXOt/Gx1armCoMRoNju9r2ri3V1mnoWCMJEQUy4n0+SvrgySgnYw1MJl41PCwRBaf2RTPbB9nXZf4my6jEx80NWLUMHG+EJ1NimBXUdjWKgooK6Bub7KtoKp0ElkA2m/Lub41QLIxhagRSGEayTFaAGFjUZWyzB9DG27s+J9yJbgOK5vafpAD86XuPp//Vhf3j1BWoNm/uGMCLdFcj8hHQaA0y+MfPDxk+m0LWvoNKqvxfRfKDFaIPUs2gujYETkPCEy6Ej3ZqYEdldGV4yGFnU7FqkN6kBuXKlOUPR7hGHon/Nl5LTlYRimx9E8QWEYhmESyRNPPIGcnBw89NBDnQ/h6+vrcc899+Dee+/F2LFjMXToUOTk5KCyshJ79uzB1q1bw/bjcDgwZ84c3H777Yn+CHHj0Ucfxd69e/Haa691rnvnnXfwzjvvoKCgAOPHj0deXh5aWlpw6NAhrF+/HvX19Zb2/fTTT6O6uhpvvPFG57q5c+di7ty5yM/Px0knnYS8vDwYhoG6ujocOHAAmzdvVs5yyTAMwzBM/Gk21VMK6YQv8YCSFwEgZSW9jeW1i8i0yVnnk2mTMs/BGxXPw4QZlray7iOUpI1Bk6kO+umQmdiFWqACAF7TS6YxTG8ffO+yuZXnR52PEqPxo71kRHeNAHpGzJVmuEG9U0qm80MntYpG+qX7TD0hposWXfmbzEZaMBqDupVmSyeOq752U+sD9+UgJI4+6YMpTRhC/8KQFMEpPq/uu/OYjcjBAO2xGKYv45c+VPvUV4M8Bz3bonV6ZsZbJjZ4zVYsqZ6vTEu3ZeH0zHMTXCImXujEaFJKCCuBYRaIRmzKMAzDMAzDMAyTKDg+j4bj8xiGYRgmFM2z0j42IFJkDwB+8SfIP9+hTJcP3wrxr1WdywMzBR7/tsBPX6bfDb2zHrj93xLPfM/6M+cdhAOoVP1YO5hy9QB8oZN9WB08n+KM2bPz/oj4zi8h1ywBtn/VuW6w/zDs0gsfEUtwxmwTG35rYGBm9N87JbXKcwO44yJgCy3nDaKLYjTp8x5rPTzqWFc4+V0JhRAC8vJbgLf/qUyXD98Kcf9z+N3lAv/+XP9++tdvSjx8ZVfqkHq9NTGaWhhEihhtGstktXrSs6ikjgzNRI3kvLUF8u4rgL8sCGr/7bbI9YmsPwHhhFJKyFtO0+/oguuB0yKIS5nYM2k6MKAAOHogPK1iP2RzE4Sz7cecc52B19eGx8kDwIx/m/jorsRPPEfVv5xPX1InGAYweLi1nWcPANyZyPWpBZAAUN0EDM4KXtdAiNHSAuMBuV1j+jNTrwIe+AGZLO+9BuKxdzuX771E4KkldB/ojbXAos0mvvi1gVGDunYP06iZ7zg9NcLGlBjNnQmRFVnuKlKdkMeNBvZsCU/csprekNsRJgyi/geKQom+u8jIjkN5egkFI4D1y/R5PI2QrS0QKW0NwpghAvddKvDgfLpt+ulcEx/eYb1vRAkaI7ZBAGRrC7D0TXUidZ9vdwCtRKfFQtvFMExi6FtP5BmGYXo5DzzwABYsWICRI0cGrZdS4uuvv8YHH3yAl19+GQsWLFAGXZ1yyilYvnx5nwq6AgCbzYZXX30VM2fOhMMR/BLpwIED+PDDDzF37lzMmzcPy5Ytsxx0BbQFqs2bNw+PPvoonM5gZXBFRQUWLVqEV199FS+//DLmz5+PtWvXhgVdORwOuN38gophGIZhEkGz6VGudxquhJYjRaTCgPrBHDX4tzfhlz58XvuxMm2E83gMSR1Kbptpz8ZY9ynKtC/rl6HVbIk4QJoSqACAV2retjD9nt4++J4SNtX5CTGaQUsEmZ4jkhitJ8RcTqJMAgZSjeSZ2Vh3rkYj/dIJ1npCTBctun5Nra8KJvzKtFjUrTSDEKP5CTGapt9zTIxGt1U+qReemtIk+3+q+qI7/3RlZZj+QLX3KKRCXgzERozGWrTezaq6pajzqwNYp2ZfghTDQlQJ0yugzvcW2YxGv/V3K5HwEGL73tAXYxiGYRiGYRimb8PxeWo4Po9hGIZhQtG8+ehjYjQAEFf/mE7c/hWkNzhea8a5BjbM1H8Pzy+XqKi3/gZpB+EAKhmoH9AvPY1A5UF1YkExvWGGxcHzqYmNS+xriLzBEE+GxyH++dBd5DYV9cDzK7r29rGSkhLZGq1L0QCIoaX6DHZiMktfQAyEh5hozqWOy2DaEJffSicufBmyYj+K8wWuVoeodvLUxxJNLdHXI7IOWZm7mRSjEYPpbZpJUSkxGg/MjwnCMICLbqAzrPskqjYjEkFivQ0rSKEnAIhZcyHu+xcE1c4wcUMYBsRfF9IZAn63whyBQZnqbEu2AX4zsVE0UkpajFZGCE4GDe2UmkRCCAEUliDPT7RzULeflBgtPUiMZlFWyzB9EJGSCvHPz+kMqxZC7t7cuViQLfDna/X3R/XNwDOfdL0Nos5bAEiPFG5OCat/PNvy8cUNd6sTmgnpMMDtCBMO9dwmUIxWrx6fY/lZQR9EFIywljHkvmfWtwx88Wv6GdHCzYAZRd+onuo/WOm2LHuXTBKUGE13X0bdyzEMk3D4DplhGCbJmD59OjZt2oT/+7//w7/+9S8sXboUPp+PzJ+amooLLrgAt956Ky677LI+OyOREAK//e1vceONN+KRRx7BvHnzUFVFP1BLT0/H9OnT8YMf/ADDhg2LuO+7774bN954I+bMmYOXX34Ze/bs0W6TkZGBKVOm4NJLL8W1116LvDzu4DIMwzBMvJFSasRoVqIOYocQAmk2Nxr8dWFp1OBfADjcuh+f1XyIvc07lVICp5GGkWknYGr2pXAYtBwscD+DUgpxeta5KHaN7tJnWVO/DOvqV6LGV9m5rtVsIUVMZ2RpZkrrzHMeNjaGz8rSbDbhj3t/haPew8rtOgZId0eg0sEOzxZ8XvsxDrXus5S/g0x7Nsa7J+HUzKnavnWr2YKlNe9je9NGNGt+81AMYcOw1BJMyb4Q+SlDyHx+6cPSmvextXE9PGY0IheBotThOCNrGoY6NcF9UdJserCk+l2UeTaj1Uze2dn3t+xWrtdJkpIJShJACQp0EkGm54gke9C1cfGCOgdcRhoMkTxB27rvLpJwLjhvbPbTUxjCBqeRpry+vH7kOXK7WEggqbqyt3kHHt97b9h6SjZmwECqaIuCsGvaKp/0IgX0m8pmswmSGHSgKqvDSIFDpChFqq8cfrpT1hYtNmHHcOconJNzCbLtHETB9E4qvUTgNIDcKMRogppNT4OUEp/XLcHGxi9Q5yMCSoijDUkdijMyp2G4a2Tk7FHwdeMafFn3KXlvMjClABMzpmC0+6SYHjcZMaWJRdXqWfJSRCrOzrk4wSVi4onufH+i/Hcxk+AdaFG/Y+kJSTDDMAzDMAzDMEwoHJ+nhuPzGIZhGMYihnoyzV7PpOnAF4vUaQd2AscFx6aNKxD4rwkCr32pfp/r9QNr9wIXjLN2+B0V6v0U50fY8MAuOq2IGPQKQGTmWpv4h8Vo3Ua43JCX3gTMf7Zz3fGt4RLiQFbu7JrMoVw9DxAG+CvVCRRDR+nTHcT7lNaAuLoWIqbQyXVKS1Fpm8jAVE/6hS1fAvmFuPlMA/PWEHkA1DUDmw8BE46L7vDlxC3QgAjhJtLTSIvRsog4E60YrUK5WvRjUUOsEceN1l8HNq0CxkwMWnXH+QJ/Whh9+5SXHvAcYZNGgJOeDUy9qs8+d+gVDB7edm76Fc+JysuA0vGdi8cPAg6HDyNoy1oNHJfAxxhHG4AW4tFWHnUNHEhPkq4kvwC5278mk8urgXEFwesaSTFagDyUhUZMf2foSMBmA/zqCZOx6Qtg+JjOxYnDBSJNYbqsrBtiNM0wEbcm/F021AI16v6L7r4sjMIox78IweJhJhyqL9UuRpM+L1Ctjhvt19elSPfBHVTsBwYEj4WbcJzAmSXAMsL/e6AWKLJ4K0O1QxHljADk15q+9nHHq9fr7ssysiMflGGYhMBiNIZhmCTEbrfj+uuvx/XXX4/GxkZ8+eWXKCsrQ0VFBVpbW5GamopBgwZh1KhROOWUU5Ca2vWBKjNnzsTMmTO7tO2SJUsSuh0AjBgxAs888wyefvpprFmzBlu2bMHRo0fR0NAAt9uNgQMHYvTo0TjxxBPDZq+MxODBg/HII4/gkUcewa5du7BmzRpUVFSguroahmEgIyMDBQUFGD16NEaOHAmbrY++2GYYhmGYJMUrW2FC/cDfaSQ+WMRlqMVoTYTE6mDLPjy+715ScNTBxsbV2Ny4Fj8puh+GCO9vhO5nu2cjVtYtxm2Fv8ZY9zei+gwfVL6Gt4/+23L+FJGKCRlnRcx3gnsS3EYGGs3wz1pOiKuAYwOkdQIVlegklK8bvsTT+x+BH/QABh1r6pfjYOs+XJF/ozLdL3342/5HsLlpXZf2v61pA1bVLcEvhz2MgSkFYelSSvz9wO+xvmFVl/Zf5vkaK2oX42dDf4cRLuLhbRR4zVb8dd9M7GrWB6QlM7GQBSWCaMupO1eYniPS79gTgUuUDCySxC3R6EQZ0ZRV1y/oLe1BmuFWitGOeA+Q28Ti96TEYS2yGWWeTVHsJ6OzrutkgJGu6zo5qJP4LV2GG15/+H4PtO7VHisSW5vWY3X9p7hr2CPIYjka0wup9KnFaOm2zKjup+jrGB1Q9UbF86R4KxJlnq+xsvYjzCj6DUaljY+8gQVW1C7Gi4f+GuG4m7Ci9iPcNOQOTMycEpPjJisbGr7A4db9yrTJWdORbiOmOWZ6JZm2bNiFHT4Zfr+8t4WemTxWJFpszzAMwzAMwzAMQ8HxeTQcn8cwDMMwETCSZ/KxWCKmXwtJiNHkK3MgfvW/YeuvnUSL0QBg1rsmLhgX+XoupcQOYgx9aSQx2n7i2bbNBgzSyFszLY7IZYlVTBDTvw0ZIEab0rQMQ7wHcdChnlj0jbVAdaNEjju6GJsdR9T1cUTtBus7cbmBkyO8H6TkC81tMQ5SSqCVsMFQUjUGACDcmZBnXAwsm69MlxtXQky5HOeNBvLcQKVmztk5iyReuCW6OlRGSBpH5EfYz/6ddFrBCPV63QB8T4N6fRYLo2PGuVcBf7uPTJarFkJc/eOgdddO7JoYbcSAgP2u+IDOOO0alqL1MMJuhxwyvE2CFoL8zXXALb8Fvn8PhBC4eoLAJ9vV9WHj/sSK0crouRJR3LpbuV6cdVlUxxDTr0Xqsvko9O7HfkehogwSF44Lrr+kGE0GNN4sfGT6OcLlhjzzm8AnbynT5dqlEJccG9Ny2ghgWC6wl57PAp/vAi79ix//uNHAkOzoriuNREiv3QBSdEYSXV+oMI5itBQnXzsZBRFiXA/toUXMVN+9PzD54rb7YY/mJgtoew4TIhAGgCu+IbBsh7pvdMYjJjbNMpDhjHy+NlD9Byu30tQzIgCYcJ56ve6+LC3DwkEZhkkELEZjGIZJctxuN84++2ycffbZPV2UpMIwDEycOBETJ4Z3oGPBiBEjMGJEP76JYRiGYZgkpNn0kGk9IkazuQFv+HqPX/0QcGnNexGlaB1safoKOz1bUZo2NixtSc38sP34pA8fVs6LSozWarbgw8p5lvMDwCkZk+GyRR7E7DAcmJg5BUtr3otq/x1CFyEE7MIBnwz/gr1mZDHaB1X/6bIUrYPFVW/jwtyrlZKZnZ6tXZaidVDnr8GnNR/i6oE3haWVt+zqshStgxbZjEVVb+GHhXd3az8AsLlpXa+WogFAWpLJnyh0UigVLEZLTigJWU9CCbOirXPxRif2iqashrDBaaQpxWLJJoOjcNncgI+I/CaIxe+ZZsRm5rTAsjgMjfDUVHSmAmgi+lWhxwjEZXOjzk9MA91NKr2H/z979x0eR3WvD/w9s7vSFnW5W66SKwYXwDRjeu+QS8cJkIQQkpAAISGFhNSbC5cEAiGBkHDzIwkhkIQWeu8ldDC4AcY2YGzZliWtpN2d8/tDWlnaPd8zs6vVqvj9PA8P0pyZM8fSaObMzpn34Pktj+Hg2uP7pX6i/rQxYZ7hriY0qiD1a20e0NCaasYjm+7qU90J3YEHG/9VkGA0rTXu2XCLv3Xh4t6Ntw77YDQptE7Bwf7VRxe5NdTfHOWgOjgCnyY+HpD9D5V7MyIiIiIi2r5wfJ4Zx+cREREJnGEa3HnwqcDPv2Auu/sP0Icvgdpxj16Lj5kHnH+AwlUPm58TPbMSuPt1jSN3sr/4urEZ2CIMDaz3DCMSXnodMwkqaBlXU+FzMqwSBqMVxM779fo2iBT+uvZ07Dv5YXGTY6518cTFuf29LReCYerXP++7DnX5nfZjB5CD0dIvkCctYyFKwr7bsr1S3/gVtBCMhr/8L/SXforSkMLfznFw4JVCoAGAm5/XOG8/jd2m+g/LWG5+rI4Gr8fqYkhjEBglhDTaXsCXMECoYNT4euCbv4G+/MvmFZ75N3R7G1Tptr/ZXScDPz9e4ZJ/5BaOlj5+dFsr8PJjcps+f1lO9VI/qWswBqMBgL7xMqhQCXDaRfjSYoXzbzEfC0dd48K9vnh9xuVCMGhZIIFRKeHi+JnzctvJ/v8FXLYE9R0rjcFopmtwc7u5XTGXwWhEPanzr4QWgtFw383Q3/odVLCz3xBwFG75ooOjr3GxQchRBYB73wQOuNLFmz904Dj++0LNbeblsVKPicGF8yZKSoGR2ecMUfUof8FM3fWzb00G0rGaHuO67j1527GTC96coUJFy4Ef3gz9g9OAtux3MLqtMd/7fG1/hW/eZr72r90MnHqDi7u+6t0/koPRfJzLPhTORTvvB1UiJKsFLPf/0r0/ERXd8JyqhIiIiIiIiIYdU7hJWngAQmikMI5W1/yEYWV8aU71S+tLgVnL42+KYQQma9s/QLsWnlwI9qw80Pe6e1QKsylYlAcqu78OCYFPCUNYWk+udrEq3vcQrxSSeL9tubHsvQLUDwAr428bl68Qlheq/lytaC1MPQOpLFAx0E3wpTxYldP6hQowosIqdSJwYH5oMzk8rcit6dTz/NrTYPvbkNoJ5N5WqS7bPgaTXNtZqsIIOSV932+O5yFJRY96gkpuV0LbA0+twbgB8wD0/v4dF+o6TVRsGxPmgY4jChSMJnm/bTlcpPpcT6H6tk2pTWjMIXjyo44PreeioW5l61Lx3nPn8r0womR0kVtExVAbGrjf61DpixERERERERERERGJ1PB8DUsFg8Au8ngvfeeNWcsCjsIvT3Kwz3S53uufkEOL0lZaHt3Uj7Rvq6UwovH19g39hnCUMhitEJRSneF7PSyKP4uHPzhY3OapFcDb6/yPh0y5Gqs2mMsaOoTjJGvFnaDmLvJeLyJMBNPaNeFtQniTG+gMhyArNXoicPTZ8gpvPgcA2H+mQtPVDmxZH79/yv8xtKlFY6OQwdHgFdIohYGMndwdZJIln2A0v6GO5Is6+mzg5K/LKzzVexI4pRS+daiDdZc72H2q//00jOo6fh43T1oGAOrLP4eqGuG/Uuo/ExqsxfqOGwAAoaDCnpbuxqaW3AL0+kLqSzWUbIDx7DVrF+8Q0AzKcYCaMWhIrDK3wRDOJgWbdAejhaO9wgeJtldqVB1w2kXyCi880Ovb3acqvP9zBzd+1t4/eedj4PFlubWlpUMIWvTqwkr3ZeOmdp4/fFJKAeNyuMiG2Lcmg3yD0WrHQoWL/27iYKL2PBzqXx9AXXGXeO+q3zOP5Q0FFXazzIVzzxvAwquqIQAAIABJREFUBxu9+0ctUv/B489dp1LAOnM/RR39eXlD6X4NACLb9/FANJgMz0/kiYiIiIiIaNixBmM4xR+AFBGC0eIpc4Bba8oyJYupHtc8wmJLslHcJpcX9ptTTTm1Z1zJJNRHZvtef0JpPSblEABUqsKoj8zq/j4khKh4B6i0QsN7QJ0f0u8gVYBgBwBoTZnrjwvLc65faH+upJ/DUBFSJZgWnTPQzfBldmx+TuvPjO3UTy2hvnCUgzllOxvLdizbtcit6TQ7tsC4fAdh+UCJBsowOZw9YnpUaBxGhMbkVJfp78mBg5mxuXm3r5hyPR/sUFaY3+XkcANiTnmf6+l5zElhpwCQ9Ag8la77DhwEhXpz/dnlaqhfF2n7JQWj1QRzC0ZT5iGTolzvgyRtbhwpnexzPR2u5SUEgasL0/8fjB7c9E+x7MCaY4vYEiqmuWW7Dch+ywIVmBD2eBGNiIiIiIiIiIiIaLDL4aXuIWfKDnLZ8lfFokPnyM+P7n4d2Nxqf/F15afm8mgJMCZjvg2dTEKvegv63Zeh168B1ppfesV4j5fp/YYLMRitYNTU7ONrfttrCFnGAz6x3H+ozJpNQIfwOLG+QzhOMjX4HFMSFSazjHeNJ+iwPJNkeIMvato8ubDH+agsrPCtQ+Vz0Cur/R9DtpDGaR7zDuk1QhhIneXZWD7BaJUMRis0NW+xWKaFa9+YSoVvHuK/PzC5tqu+Za/IK9Xv6Ls+6l/K1h8CgI/eh966GQAwY4x8/nn7owI2ysNGYWjOxNRac0GdPfxNVFGNeiFsdIVhWJIUbFKWnoSeYY9E3ZStH7ri9axF0VKFJXsolHtkC77yYW4hjWKgodCF1W2t0Mtfg14m3C/a+kKSXLZh6DCZeAWjbTKPpcWYif3TniFGxSqgdjsY+MxXzCv851Fo1/zO3pzx9vHFr37ovf/mNiGgUTjfpc9DWP0ukBA+X7CF5wcCcllEuPcnoqIbxp/IExERERER0XDS5poDx4CBCUaLBoRgNCEsI25pv4kUmmXdxvUfOtCSQzBaLFCO08ec1zkDi09KKZw6+lxUBKo813UQwGljvoISZ9uDCSnsxCtApZBhJdLvQOv+DV4rVKBZUieQcO1Bcn4M5QAYBw5OHX3ugJwj8tEQmY19qg73te78sj2wa4U8KIcG1vEjP4eaYO9pi+sjs7Bv1RED0p4JpVNxSM0JvZbNjM7FXlXyzLsD5eTR56AsUNH9fdiJ4LQcr0EAcFjtiRhfOrn7ewWFkzLqHswWVR2CGVF/A95qQ6Nx7IglBdlvQAVxxtivitdhPxoiO/Q6l0lhp4D3dV0qt9W5T9XhaIh4DFDrg0IFmBIVmxSMVhvKLRgNQjCahnkwQq73QTb53CNlSnicd0zcAgUvDzYft6/BG80vGstmRHfCRAZYDVu7V+6P2dH+DRLNFFQhnDHmqwgoy0AiIiIiIiIiIiIioqHAGb6fc6pDTpMLV74hvvh6yq725/k1X3dx0u9ctLabnyetEMKI6kei11gBfd/N0EeMgf7sAujP7wF9Qj3w0iPGbZXtpVcAqKi2l6eVeiQNkH8HnpS1qMLdimO33ilu8uU/a5x1k4uOpHeggymQJa0+4S8YTU3wFxSjpJej413jNzva5I1D8ngH6mG/E8Qi/cBfe31/+u7yOejl1cAba/wFgixfb14vHALGVRqLtlkrBaNZjql8gtHKGSJUcAsPkstuu1YsOmwOUGseRp5lRBmgt24Cbr1aXmnBfv4qo/637/He66zrvK6cvUg+/3ztr8UbayIFkFXEhYtj3sFoNWgQgtFWbQBSbu/zqBiwlB6XXu6zP0a0PVh0pFik77zRuDzgKJy2m/1e7KancwtGEwMNM/LHdCoF9+oLoQ8dCX3WQuBxYXJOr/syk3EeIdc9MRiNjKS/i86/B93UaC6urO2f5gxRau4ic8GWDcCDtxiLluxhPycd9xsXb661n5ek/oPxPHTNxdCHjYI+ayH0Est4SFt4fkB+Z0KFfXb4iajf5fEJChEREREREVHxtblx4/ISVQpnAF6sjThCMJrhZX1Xp8Rgt7JAJZpTW7LrMYRRpXTK2qbWVLPvYIOW1Fbj8opAFRZXHdb9fXVoBObEdkZ50DvgLNOE8FR8b/LVeLPlJTQmzCPYyoKVmBWdi5ElY3stDznmAUBeQV/xlBy8cEjNCcYglSe33I8tyewPt3MNBKsJjsSelQdmLV+f+AgvND1mrF9rnRX2IwWujC+djPlle2Qtb0414bHN9xi3aXVbUCn8LP2SAigaIrMxM+pzlswBUBaowMzYXIwqGTfQTfHNUQ5OHPUFLKzYFyvibyPhZn+qH1BBTI3MxNTITIYKDGKjSsbhO5N/iXdaX8f6jrWYGG7AtMgO4rmtvymlcMzIMzC/fA+sjL+DsSUT0BCd3afwq/4yMVyP70++Gu+0voakTmJWbD6qgrkP6qsIVuGiif+NZa1vYFNiA6ZHd8SY0rp+aHH/CDsRnFd3KVa0vo3325bBFUI5x5ZOwIzoTogGCjcj0U5lC/GDKddgactraEpu8r2dUg4mhRswLTIHIWfbsWU7zhKWmZ8B+bofdOQ6I4Eovlr3QyyPv4kP2lbkHWi6pv09vNr8XNbyQgWYEhVTwk0Y+7sAMCLkMbW1T2IwmtCXrArWYlFldkBn3G3Fw5vuMG7T6jajHF4jzu2SHucdo9zGhw0ZD2+6Q/y9HVRzXJFbQ8VU6oRxbt13say181rpenzW0FeVwRrMjM3NI4iRiIiIiIiIiIiIaIBoy8MBxyleO4pMzZgPfcKXgdt/Y17hT/8NfO47WYsn1ipcdbLC+bfIP7e//0djZDlwzanZL8musgSjpel3/gP907Ot7e/F9tIrAFT4HIdQOjQmYxwK1OgJ0KURoL33ONDrPvoq/l7xGXG7m57RGFcF/ORY+wvWK4RQq1HJT1DhmsdKZhk72d96EeHl6HQwWkJ4kxtgeINPqrIWevxUYK0h1O6t56Fbm6GinWNlZo1VOP8AhaseNh8Du/zURfOvHYSCXseQeXn9SMBxPCZ0FILRrCGNeQWjMUSo0FSoBHrRUcBTd2UXtsehP/kQavSErKJwSOH+rzvY5af2cUllpUBJUMG94ivySgedDBXka96DhSqvAn7xT+hvWcZNrFkJzFiAPevlc8MrHwL3valx6JzcJoTNR7MQPlvW8rFxuWeArKSiGvUd5rDRRAr4sBGYPKJnu8zVlKXH3/ntjxFtB1Q4Cj13EfDaU9mFn6yG3vQpVPXIrKIrPqOwsbnzfsvkzXXA5laNqqi/c5HfQCLcdg3w92s868vnfKPGT/U/XC/EvjUZSJOxp8Pem4Sx8bwu9TZ/n85g70T2mFv9kzM7+7AZn5HtPU3hd2conPP/5L/iQ69y8f7PHQQD5t+T7/PQP38L/O0q6z8BAFA1EqrMMu7Ydl8m3fsTUdHxjpmIiIiIiIiGBCkYLexEi9ySTpGA+QMuU1iG1HYAGF86Ee+2vpG13BQg4BXUJYWdmTSnmozLR5eMx+EjsmdnzFdZsAK7V+6f83YhIUQloRPW7WxhJUeOOAUBlf1RyLL4m8agCCkQzIV5IENtaJTxZ7cy/o4xGC2pk0joDpSo3p/QSv+G+sgsY/2bk41iMFo81YLKYN8Gw8SFUL/ZsQU4tFYelEb5UUphSmQ6pkSmD3RTqI+igTIsKN9zoJvRy8RwAyaG85ztr4jKg1XYtWKfPtdT6oSxY9muBWjRwAiqEGbG5mJmrPghlLWh0VhUlR1YlA+lFIIqhKThGu51XZfKTUGnvcqdEGbH5mN2zDL7k4dXtz5nDEaTQp6IBrNNyQ1iAFZNjkFFuQ7XlPq2o0vGGfu28ZQlGK0Af38J137eMdFC/38o25LchOebHjWW1ZVOxqzovCK3iIotoIKYFZuHWTH+romIiIiIiIiIiIhy4gzvSezUWd+HFoLR9MO3QhmC0QDg3H0ULrhVI2V5rHLzcxpXnawRyAgYWvWp+TlW/aht6+n7bvZoeYbxHmMjYpWdL0vbQvAABqMV2vHnAn+9steiKncLLtrwv7hixIXiZn96VuMnx9qrXiEF7AkBLkYjx/tbLyJMXhfvep7ZYZmsqSTsvz3bOXXEmdDXf99c+OSdwCGndn/77cPkYLRECnhoKXDYjvb9SSGN0zweqev2NmD9GnNhXQGD0coqGZ7VT9Q+x0GbgtEA4KG/AaddZCxaMEnh+jMUvmgJfqiJAbp1K/CEeRwEAKhFR+XUXup/as/D7aE8PcIQT9xF4daXzGv/6dliBaOZl8cSm80FdXmOIS2vQX3iMbF4xfrewWgtYjBaV5BoBcMeiXpSB5wIbQpGA4BHb+vsS2eIlir87RyFmXe6+PHd5nPR7S9rnL2ob8FosYxAIt/3Z7a+kMQr5Lonhg6TiRSMlr7/bzJPMswQ4t5UJNYZ2PjSI+YVXnsKmL84a/EX9nbw4vsufv+k+Zy0bnPn/dmhc8zV+g1G0/f/WWp6b17nIWswWuEmrieivhm+U5UQERERERHRsNKWMoczhZ2BGXwUdczBaKbwMtsL/FIQgSlAwCuIozX9oNAHKUQtFij3XUd/CgqBJwltGTQE+WdUqsLGUDQAiOTwu7Qzf4AuHSuA+ffcmjL/HqV22uv3f0xIpJ+pbb9EREQ9BaXAU9d+XTeFqQFygGohRYUQ3HbdhpRO9fv+iQppY+ITsaw252C03AZsSn1JqW8bdiJwhMeXhejbet1PmPiegXIIeWzT3UjqpLHswJrjoKTBQURERERERERERERE27th/hm6qqiRC1e/KxYFAwpz6+x1N7UBazZlL/9UmAt0Ys+mrHrLXnmmcZOtxcpxgGofz8n4YnRBqenmCVsWtL1q3W7NJmBLq/2p3cr15vKGjpXG5VnCUWDGAn/rRoUxlq1dzzMTwpvcABBieINvwvECAPq9t3t9P6ocGFclV/Xou95PfT/dal5nYm2PkMZkAvqtF6AfvR163SporYGmjXKloyfJZU6Or/XGKnNbn/ybIU+8qJ+917rp5Fp7v6AmBmD1MiBpmcStYSdrHTRAdj1QLNJrtl1b5k2Qq/jHK7rzPNHPmtvMy8ukcfD5BBUBQM0olLvNGJ00j0NakRF2KwWbRHXXOyFl7GcR9TLdcj1a/rp10/1myNej3z2u0Z7wdy4SAw1Le/aHksAKe3u6jc/jfDMuh2A09q3JROpnp6/JzebgUOvnIdsptfuhcuH7b4tFCyfb6318mXxO8hOMprUG3vmPfSdp0zwmqA9a3kmI8J05osGCwWhEREREREQ0JLS5cePygQpGiwhhGaYX/20BW7VBIRjNEI7lFdTVIgRqmdc1jygrC1T4rqM/SYEnUkBKmvQzkn5fgCXkTghx0DBPbeoIAx9t+87leJECWkKqBAGYQ9+8wvT8MIW3AfZ/FxERUU/5XtelACMpQLWQpNAmIJ/wVKKBtTGx3ri8IlCFEqcwg4O0EB+Wa/9cKSWWSQHCuUh4nHdMpH/bUNXmxvHEZvPg7ergCOxcvleRW0RERERERERERERENIQM82A0AMDCg8zLXRf6jhvEzb60j/fP5oTrXLhu72cvjeb5UlHb9chIJ5PAK4971t1tVB1UqY8xhT5e0lf5BoeQ2d5HAzWjsxYf3Xw3xiQ/tm76qJzLBwBYYX4kivrEKn9tO+Q0KL8vPUvrxZs7X9C2BaOVMLzBt10OkMv+fHmvb5VSOGexfA664gGNXz9iHveZ5nku+vgD6DN3hf7S3tCXngp90izoy78MNAoHHwBUyuEKSikgYB73aRQt878u5URNmS0XvvYU3KsugE6ZJ1Gs9jht1EY19AVHyCvM3wdq4nQfraRiU8d+US6890/dgWdL9pDPPR1J4L9+6yLe0b/jTsQAEdMEhOXVUJW1ee1HdYUV1Quho1c+uO3fmUxptAlDdLrbVcFgNKJeZu8ql939B+hPPhSLF0+TN33pA2D691y8udb7XCQFo8V6BhL9/oee9QDoDBsaZUmPlIya4L+PxL41GUnX5q6/gaZGczGvS9mO+JxYpG/9tVh24i4K1VG52l/cp3HjU+b7MzHwNdzjmzUr5MozqCPPsq9gO98wGI1o0GAwGhEREREREQ0Jcdc86iAcsHxa1o+ksIxWtzlrdidbeEZNyByMZtqm1SPkKpeggOZUk3F5LCDMZlhkISHwRApISRNDvCzhJmLwglCXPHmX+QN0KXhN2ocYHiHUYw2P6GNwi9ZaDFez/buIiIh6yve6LgWnSUFrhSQFkgKFCR4lKiYpGE26F7ESX/bJLRjN1peMOuYB3YUIRkt6nHdMhlsw2tObHxTvrw+oPhoBlcPgeyIiIiIiIiIiIiIiGnbUN68Vy/QVX4Fu/MRYdvYihStPVJhkydp4eTVw31s96tMajcLj15pY13Opf9/k0eIMPgLPfK/nty7yRZVGoK59JGt5WLfj8fcPwOKWJ8Rtj79ODrVyXY2Vn5rLpnVkvzCtLv0/4KizgLIqoGokcMKXoc6/0vsfkBYRAqpSSaCjHegQ3uQGgBDDG/xSgQBwxJliuV69rNf33z3cHs54/i0ab62Tn/3K56Ku/V15PvD+0t6Fd/0B+p+/lXda7hGukFMw2uAY2ztcqS/9VC687VrgyTuNRTUew2irW9YAWzfJ+/3Z3/00jwaAWnwMMMsSUvTGswCAcVUKvz5FPv/84xXg2scGKhjNcGLrS+jrhAYAwDQhGG3FemBLa+e/VQpX6tkuVSGHRxJtj5RSwGnfFMv1VReIZY6j8JX95XPRh5uAz/3RHhILAC3t5vNVOhhNr12ZFVArGjcFKpj7ODQVDAJjJ/lbmX1rMpHGuKZfBGsS+mZeffftkCqrBGbtYi5cswK6dauxqCKi8OTF9hijL/4/jfc2ZJ9zxH5N6bbfq778PGvd3Y79ItT0efZ1bBMghPnOHNFgwWA0IiIiIiIiGhLa3bhxedjxMbtjP5Be5E/qZFbIhxRoVqrCKBOCyOJuS04BawDQkjJ/qJjLuoMlGC3omANPEq4wfVQXMcTLEm4i/S6lujTMD4WUEIwWUiUIwPxQJ24Id5COl0L+G/xK6A6kkDSWSWFsREREmYJCkFlCCD7rLnfNAUYhxxy0Vki2UFUpUIhosNqYML+cUptHMJrU55VIfVvb31g0IASj9TH0F/A+7xjJychDTkon8cgm84DtqFOGPasOKnKLiIiIiIiIiIiIiIgGoVilXKa2g9ewRtYBIcsz2cf/ZVyslMLXD3Tw3s8DmFsnb37LC9uevWxtA1LC+/ndYUQP5xgaM26qr9VUV7iHVZ2PdSgnqq4B6gd/ylpen3gPj6w+FNPCjeK2UlDDR1uAuPAYsL5jVfbCWbvAufg6qLvXQd35IZyv/xLKdsxnkoLRACDe3BmOZhIIQjnbwTmkgNT8xXLho7f3+tZxFH55kv159q0vyc9+NwrzdNXEAN3SBDx/v3mFe24yL4+Wex9XuQSjRThes19JgQ9d9MO3GpdXe8ztXfPpUrlw0VGdYRM0aKkvXiaW9TwmTlnoce55caCC0Qwntr70bboCY+uFYDQAuOv1rmA0y7yF3e2qYAANUSY1Zze58Jl7oOPy+Lm9G+znopdXA8s+sZ+P5ECiri8e/Yd1+176EjLt854OJQxGIwNLMJrWGtgq3HPyumSk9j5GLnxOuEcCMHucwv/+l3xe0hr4e8b9WSKp0W5+fQ2xnrdWK9+Q29SDOvYc75USljRX3oMRDRr8NI2IiIiIiIiGhDYhgCLseDxV7ie2UKjMADMp0CwSiCEivPSfS8Bad7npAaZACkYrC1T4rqM/hZR5QEhSW56UwvKztgQvSL9LqS7pcZAUEqGU8r0PV7visZ7Pv6Gv4RG27W3tISIi6kkKMksKwWdpUoCRFLRWSLbw3b4GjxIV28bEeuPy2tDogu1Dyg6z3QtJpNDfVkOocK6kwEUbLd4BDD0vNT2FTckNxrK9qw4dsOBxIiIiIiIiIiIiIqJBZd/jzGE1E6dvFwEmKhAAZsoBMXr1u5517D9Lfvn15uc1bn3JxeZWjUbLo9d0MBpefsxzfz2pOp8v4O9gCR0AgKqRwLgpOe2bfJq9q1g0q+MdseyqhzXaEtnP7laYH4cCMASjVY8CxkwG0HmsK+mleZuoZdxcvFl+sboknPu+tnc7LBSL9AfZx8oeU+2/zx/frXHNIy6WftT7OHJdjU3CHHm1MQWsWQG4QoqjpKLGe51cwjxsgXzUd9Pm2kNBn7rLuLgiLGdvAMCYphVimZotH980SEybJ5f94zroriDMmpjCNMvchC+vRtZk6YUkB6Nld7T6dNyNGAcA2C3+grjKu5/Y2wQAsfQ4+XIf50mi7c3MneWyVApYawj97bJwiv2aBAD/esV+LmoR/nZjXV0WvXqZfQc9KK/7Ldu2c3b3tyL712Qi/R1oDbRu7fxbMuF1ycxyTwaPc8LuHvdn3/6HxoNvayRTnecm6Z4MAKq6Xh3VHe1Akxyo3q2syl8gbKv53crOOob/Z4BEQwWD0YiIiIiIiGhIiLtx4/KBenE7KgSaAdkBZlJ4RsSJiS/9A/4D1tJafAYFaK3RLASjxQLlvurobyEh8EQKSEmTwuOsoWJS8IIYjGYe4KIsM8LK4Q6999HuxsXgBdsxFxECAr2OGS+24JeoJcyCiIiop3yv61IgqhSgWkiOCogBvH0NHiUqtkYxGM0yKjNHUh82nkfor9TvzSUIWpLMI3BxuASjaa3xYOM/jWVBFcK+1UcUuUVERERERERERERERIOTipYDR3w2e/kJXx6A1gwMdfLX5cLbrvUM9zhnsf3l15Ov19j1py5efF9epzYG6FuvttZjNH6qv/Xm7wPMWCAWqxO/BhXs/0m7tkdqnPw7+s7Ki8Wy7/1L48ArXWxq6X38LV9vPh5rkxtQ7W7uve+TzocKGoIPc2ELqIq3AAlhsqZcQrAIAKBsL7I/eAt0RqjBrpOBxdPsdX7tFo2dLnPx+ye3jQNtagNc4bRWEwP0PTf5a3BP5dXe6+QS5sFgtH6lyquBI8+UV0gmoO/5v6zFjqNQaRnGPm3Tf+TCw87IoYU0EFRlrbVcf+Mw6K2d15mLDpH7Pq4G3lhb0KZtq9vVcpCRaZzNwafkvS/lOMDCg7Bf6+PiOj+9p/Nk2twm11OWbleFj/Mk0XZGjRgHHHSyWK7/fZNYNqlW4cSdvUOIbnhSDnsVgxZLuwIe7/2Ttf5uFTXA4Uv8rWtyePb9uFGI/WsyEZPR7IFavC6ZzVssFukbL7NuuvtUYC+P7PpDfuXi+OtcxDt8hue/8IC9wrTPnAdV6uN+q8USjOYn7JqIioLBaERERERERDQktAkv1EuBFf0tl0AzKTwjGoghYgmXygpYE34G29b3FxTQrtuQQtJYNliC0YJC4ElCCEhJk4LAbCFeUpkUCiYN7LM9RhL34fNYAfILj7AFm/lhC1aztYeIiKinfK/rUnCaFLRWaFJ/r6/Bo0TF1OG2Y0tqk7Esn2A0ZRs0YiD1R639c0cIRutj3xaQzzu2wMXhEoy2tPVVrOv4wFi2W8W+qAxyYA8RERERERERERERUZq64NdQX7gMmLkzsGBfqEtugDr+3IFuVtGoxccAc3aXV3j7Bev200crXH2y/aX8lZ8CX/2rNEElUNH2KfSvv+nZ1izjPd66Te/DcaCuuh847hxg0gygZkznf3P2gLrgauD0PPZNvqkLzKF3u7S9bN3umZXAtY/1fn634lPzuvWJVdkLT73QV/usrMFozUCHkCjB4Ia8qAuukgszXopXSuGerzmo9hhWnHI7A9LSIXu2F/Croxr45+/8NnebSh8v0ecSlhdlMFp/U+f/Elh0lFiu//uL0C1NWcvjluFPDfFl5n395G9QI8bm3EYqPvXTW+XC158G7rgBAPCFvR384gS573PO/5ODiPqi1XL8lWWOcZuxAKqPAR/q67+EA43zGq8T13npfY0WS7ti6XYxbITISH3nRrnw79dYQ6r/dJbCd4+w34ede7POChpOE4MWSwG8+qS1XtSMAcZMAvY7Aeq6x6FGjrevb6FGT4C6NDuQNEuo/ydZpiFICX8DWgNN5rG0AHhdEijHAY6QA4T1R+/L2yqFe893EPBINLr7deCWFzUaLa9MpoPR9I8swYnl1cAOu0Gd/79QZ33fvtO01uz+fbeyKn91EFG/YzAaERERERERDQntbty4POxYptrqRyFVggDMMwdmvvwvhWdEnFhOAWteIVetppmdDJqT8gd3ZYEKX3X0t5BjDjxJCgEpaVJYgi3ESyrr0O3G/cnBCPJDJGkfme21hdvZjhWpzO8xIZGOuQCC1vAIIiKinqQgM6/ruhRgJAWtFZoUYNvX4FGiYtqU3CCWFTYYLVtSJ9ChzaOlbAHXUmia3yBoGylwscSxDTgfHsFoDzb+w7hcQeHAmmOL3BoiIiIiIiIiIiIiosFNBQJQS74N54Zn4Fx1P9ThSwa6SUWnTvq6WKafvNNz+xMWeD9XWr/VvLw6CjjP3+e5vdH4qb5XVbEKOBdcDefm1+Hc8UHnf9c9BnXcOVDSy9RUGJNniUWHNdt/93e82vv53QfCI9H6jt7BaOqcnxTm91oaARzhlcx4M9DRZi5jcEN+LMeKfiL7XBQrVbjrq96vzLYlgAfe7jyWPrG8C1/dZJ58ylO5j4mpSsL+67MF8lFBqEAA6pLr7Su9+HDWolmWfLOGjpXmgoUH5dAyGlATp1uL9RN3dH990cEKEWG+z/fk4Tt90iyEGAE9AsjSFuzb9x2OmQQEAljQ9oq4yl9f1GgWLoUlbjtC6cndyxk2QmSigkFg90PkFdYK1xYAoaDCj49x8MXFcp/X1cD9b5nHw0nnlLJS+z2g+p9/dd5L/X0ZnB/9Bcrj3OnLnod7r5NLyCxtP6R7PtcFtjZU/IhmAAAgAElEQVTK28Qq+69NQ5yaPlcufPpu67ZlYYW7fdyf/esVLQZWlwSBaAmgUymg3fxuKcZOgvPvj+H89gmoz3zF/72/FGyOrlA4IhoUzG9wExEREREREVn8ft3/4JOOdUXd5ycda43LI5YX6vuTUgqRQAzNqS1ZZa1ZgWbmaQsiTgwhVYKgCiKpk1nlmaEbmfVmakkJI8Uy13Pl9WKBcl919DcpdCvhWqaQgiWETghXAOyhafFUK8qDmR9wmx8E2UIixGCVzGPF8juOBORjXapfCorzSzrmIoEYB/8REZFvIUe4rgvBZ2lJ1xxgJAWoFprUR4i7limpiAaZjYn1YllNcGTB9mPqIUv3QYBH6K9wTxLvY+gvACSF806JJXDRNsvmULG6bQXebX3DWLZT2W4YXZL/DJ1ERERERERERERERDRM7bSnXPbnK6BPvxiqTH5xeEwlMGM08O4nue+6JgboD5fnvuH0+VCxwTExKHmYsQAIR4G27GeK+7Y8jnvLDhU3/c8HwLsfa8wY0zl+bWOL+XneuGTGGNe6hvzb24NSCjpSBrQY0rRam4GE8GI1gxvyM2OBXLbS/Ax0Xh1QGQG2CO/Mpy3rOj+t/NR8DMVKgaoNeZyLAGBUnfc6OQSjKQajFYWqqIGu31E8tvSffg4sPqZXSMK+MxRe/TD7GNqpfCOq3c3ZldSOhYrIYyZokBk7pTMsRRo7svTF7i+VUoiVAnHDkLf1W4GX3tfYZXJhx16b9pUW073HgKu6+j7vT4VKoEdPxOJPnxTXue9Njd2nmP+dZT3H/lTU9Lk9RMOV2nFP6OfuNxeuXenZr91vBnD9E3L5n57VOHlh9nI5GE2J10YAwA67WduTDxWrgK4eBWySxz/mFDJL2w/xPScNNG0yF5VVQQUC/dakIW/+PmKRvu47wNFfgLLc7+42BQiHOsOpJc+uAk7Y2dzfqol23Yev/7Az4M5kBMfAEg1njCkkIiIiIiKinK3vWIe17e8X9b+kNn8CVupEivyv30Z6mT8z0EwKu4p2hUtJoRvZAWv2kKvWlL+gAClATcGxhoQVU1CZA08SwnGQJgWV2IMXLMFoht+dziMYTdp/ZnCZFGRWqsIIKDnfvr+CW6RjzvbzJCIiyiRe14Xgs+5yIcBIClAtNKmP0NfgUaJi2pAwv2lSGagWQwvzk91HtvVFbcHFfvvO+ZDOO7bzitT/H0oebPyXWHZQzbFFbAkREREREREREREREQ0Vqma0tVyftx/0lo3y9krhB0cpOHnkf9RE0fnCfy4CQagzv5v7zmhAqGgZ1BnfNpZ9dsvNmNqxyrr9rEtdPL2i8zleo/AYsTbV2HtBAQJhukkhVfEWoEMKRmNwQz5UtByoHmUuXPoitCGgLlqq8J3DvU8+P7iz8xhaLuRtNIwEcP33/Da1FzXex/GWyzERZTBasaizvi8XLn8N+qdn95pg7dx9FEZnZHIGHODSpeeZ6yjkuYj6nSoNA6MmWNfRbz7X/fUvTpDPPQt/5uKRdwo7BiVumZc07GZcj/ycl/wYX48piQ/g6JSxeOlHwNsfmf+dZemwtkBQvpYSEXD058UifeOPPTc/dp69H3TfW9nLXFejVTinRNEGvPyYWJ/qr6BDr2DjEIOHyUQ4/rUGmhrNZeVV/decYUBNmS0XdrRDX3gktHQfDKAqqnDhwfbz0oZm4LU15rLari6D/sd1chu//HNr/UQ0tDEYjajAlCFJVkuJ8EREQ4RrSFE2ne+IiIgGQngAg9Gkl/kzA82kF/jDTrSznj4GrKV16HbPgBEAaE4ZZioEEAuUwVGD46MCKZggKQSkpElBXpFAVNzGFgZn+t2JwWiW/pF0rGT+TqXfsS04AvAf0perzGPZb3uIiIh6yve6LgWiBi1hoYWU7qtl8uqTEQ0mjQnzCO7akP1FFokUBmzqI9v+VuzBxeaBj62uvyBoGylwscSRB0kN9WC0DR0f4+WtzxjL6iOzMDUys8gtIiIiIiIi6juO0SOi4Ybj84iIaLBS379JLlz1FnD3H63bn7zQwYPfcHDmXrld12piANasMBfuegDUH18Ejj8XmLcYmLs3cNRZUFfdD7XoqJz2QwNLLfmWcfmI1EY8/f6+OLv6Bev2l97R2YeSgtFqUpt6LyhUIAwARITnna1bgYQwFoLBDXlT3/qtXHjPTcbF3zzEwW1fcnDqQvv55401GiulYLQRLrD8NZ+tzOAn/Kokh2OCAUJFoxYfA0ybK6/wwF+Ad1/u/nbaaIWnLnbwzUMU9p8JnL1I4aEzN+DYrXeatx83tcAtpn433v4707/6RvfXp+9mP+d871/Z9/990WZ5bSCi470XFCqUr6ue91bMEFf55yvmz2pj6bFEFTX83IPIQlWNACZONxcufRE6aX9nqDTk/ff1xpref6dSKBoAlL16n1imfvQXz33lzaP/rti/JhNHeCdOa2DrZnNZf4X7DSPqnJ/Iha8+ATwp9H27/OhohZvPVphuGbr8ywfN/YeaWNdz4Ft+Jbdvzu7W/RPR0DY43nYmGkYcQ4cpkfAOJiAiGsySyWTWMtP5joiIaCCUBwduZoaIz7AMKRAg2hUuFRUD1nq/+C8FrNm2MWlJbTUujwXKPbctlpAKGZdLASkA4GoXcbfVWGYLPyt1wlDCRySm3530Yo0UEmHbf2bwmBRkZguOAPyH9OVKDGoTjn0iIiKTfK7rgBycFhSC1gpNDB5lMBoNIRvFYDRhRm0vOQxKlPq2CgqlloBrKRitzY0jJcw261dSOO9IAY7A0A9Ge3jTndAwD6w9qOa4IreGiIiIiIioMDhGj4iGG47PIyKiQauuwVqsn3/As4r9Zirc+FkHi+xV9VJtCUZTB58G1bATnG/8Cs6vH4RzzUNwLr4Oau4i/zugweMz5xkXj0xtwG/XnoPysLzpY8uAtoS2BKM1bvumdiyUFGaWDymkKt4MnWg3lzG4IX+WUCL9n0fFsuMXKNz8eQfXnSY/577vLY3VjeZnwvXOR/7bmMnj/AkAKLEc4JkKefySJ3X4Z+0rZFz/6kcp/OIEBw9dEMANSxws3mAJkClUOBUVj0cwGho/6f4yFFSoHymv+twqYEtr4cahxC0fiYZ127ZvSkqBkXUF2afqCioan1yHndpeN67z+hrzttuC0aoL0haiYW32bnLZyjc8N//eEfZxfve91ftc1GIJRosufUou9NPnyZOa4FF3LiGztP2QxrhqDd3UaC4r53XJkxTW2EU/d7+1XCmFU3dz8OJ3c3/uURMFsElIswaAvoSizd/HvLx2bP51ElHB8YkpUYEppVBS0vsFmuZm72ACIqLBLPM8VlJSwpkZiIhoUIg55ZgcnjZg+xcDzVK9r51yuFSs1/+z6/EXsGbbt4kUjFYWqPDctliCjjmYIOHKT1za3TbxhX9bMJqjHN8hd4AcjGALRpPCHTLDIqQgMyn4rLt+Kbgl1SIGufkRT+UeNEdERJRJCjKTAorSEq4UYGQOWis0MXjUR1gt0WCxMfGJcXlNvsFoOZD6tmEnAkfJjyhtocBS2JpfCSFwMeQMz0FSzckmPLPlIWPZ6JI6zIntUuQWERERERERFQbH6BHRcMPxeURENGhNnwfUjJHLX3kc2hDwaXLYjv6vbTWBOBAXngsxUGZYUbsfKpd98C4O38E8HhAAtAYOv8pFU5u5vDq1ads3Iwr8UrMQjKbjLUCHEIxWUpxJ4IaliTPksuftL+ADwKFz5PPPivUQw/XGrHvJs26jYAgYNcF7vVyC0UrlyceoH+x2sLVYewTS6LUr5cI9DsunRTSAlNfv7NO10M1bur/16vOs2lCIVnVqE4bfKe2ipOcYmbFToAoVwN6jL7ZH/PmcNi1LTwBfXlOYthANY2r3Q+TCde95bn/MPPu56Fu3a/ztxW197WahTw0AZa8/LBdOnePZlrxZ7hUAAKN99LdoOyQd+xrYuslcVMHrkqf5i+33L+tW+aqmPJz7c4/qmALWWPrXs3bNuc40dfTZ5uXn/izvOomo8BiMRtQPysvLe33f1NTUpxfRiYgGktYaTU1NvZZlnueIiIgGQokqxVnjLkRABQasDVI4VGaYlhQulQ5Wk0I3surxEYwmhZ711JxqMi6PBQbPNV4KPLEFqNh+PlKIXVouwSd5BaP5PVY8QvTE+oXgtRSSYviDH1J7vH6eREREPYUc83U94RWMJgYYFWewsN/rN9FgtjFhniVtRGh0XvXZhiRkPgeRQszy7dsCQKvbt5fcpcDFEiHAEQBcLb9sMdg9sfle8Vx6YPUx1oA6IiIiIiKiwY5j9IhouOD4PCIiGsxUMAT1lV9Y19HfP9lXXV/cO4dgtOVPyIV1Db7roSFg1wOB0RPF4u8+eypqLY8XH1sml9WmGru/Vhddk0/rZBGhUfFmoENIlQgNz8maikE5DnCQcK5JpaA/eMe6/aRaWzCaxkZhGEjNf+7028Texk2BCvgY25xLMFoJj59iUhOmASedL6/w6O3QScu4J0swmpo2tw8towGxx+Ge4Tx6yfzuzyYvPEhhcq287qV3FG4cSlw4DMO6rfcYn0IGy/boizV0rMhp07L0uLuK6sK1h2i4WnyMWKR/9FnPzXeepHDmXvZ7sFNu0Ljigc5zUovllZOyVvPkrFh0lL8+T57U9Hn2FXhvSCbShCNaA02N5jJelzyp8mqoL1wmr2ALLsvwixNyC0eriQH6ivPEcrXk2znV18vexwALD+q9bOf9gH2Ozb9OIiq44EA3gGg4Ki8vx8aNG7u/TyQSWLt2LcaPH88Z3IhoSNFaY+3atUgken9SWlFRMUAtIiKiweLAmuPEcK1iqAhUY0Z0DsqDVQPWBkB+Yb9nmJarXcRdczBaOhDAT+hGSqfQ5sY92+QnKEAKTxtcwWjmQRy2kC9TiFmaZ/iCE8NGw3JT8IkYjGa535OD15qhte7eVvo3eAa7Wf59ralmlDj5DYrJN8yCiIiop5AQOJRw7eGdUiBqUAhQLTQxvNbS5yAaTDrcdmxNbTGW1YZG5Vmr/2cc+YbsRh1LMFqqj8FoUuCicP8xlHW47Xhs8z3GsopANRZW7FvcBhERERERERUYx+gR0XDA8XlERDQUqINOBpwA9A9PN6/w1F3QH7wDNWmmtZ7aMoV/nOvg+Ou8w0Bq3nzAXFBWBVRakkZoyFGOA9z4HPSR44zls1feiVf/9w1M+P2OOdddk9q0bT8zd867jUZRYaxlvBlwhHCIXEKwKIs6+RvQD95iLNN/+DHUZX+2bv/LkxS+8bfssZ+vfAhsNg/xRU1KCE7Y5zioeXtDX3WBuXy8zwCiXI4JBusVnfOV/4H7wbvAc/eZV3j6HjkwQQqG6EtoAw0YFQwCP78deOAv0D//gnmlT9cCrz8NzF2ESbUKL3zHwagLzX2ee94AXFfDcfr+GWabJRitF7/nJT/GTukMndEaDR2rcto0lh5LVM4AGiIvKlQCvesBwIsPZxcmE9AtTVAx+2eIv1+i8N6n2hom/It7Nb66n0Zzu7xOTBgHqE6/2Lr/gliwL/DyY+ayQp7baPiwBqNtMpdV1PRfe4YRdfLXoZu3AP/3s+zCxo+hW5uhovL437TP7anwrdv9T3ZVE04C771tLqxrgKoa4buuTKo0DPzsNuDpu6GXvgTVsBOw3wlQDKYmGlQYjEbUD8LhMEKhUK+BClu3bsXKlStRUVGBsrIyBINBOI4zgK0kIjJzXRfJZBLNzc1oamrKGnQVCoVQWspOPRHR9m5hxT4D3YRBQQqH6hmE1u62QcP8YDPiRDv/L4ZmbXuA0CaEq2WSQs96kkLtYs5gCkYzB54khIAUQA5eAIBIIGrdn5/fQVp6Rq9s8gNqKfzOhYt23YawigCQ/w1eQWRS+wGg1W1BFfIbENgqtccjzIKIiKgnKchMCj5LkwOMzEFrhZbuq2Wy9TmIBpONifViWU2ewWjK0ufV0L3K8+3bhp0IHDhwDfdRUv/UL+m8U+LI5xUpGHmwe3bLw+K93/7VRyHkFCdkkoiIiIiIqL9wjB4RDVUcn0dEREPSPscCgSCQSprLX3sK8AhGA4AFE/3trmegVS9jJjIIeRhSlbXQlbXAFtPUpsC4lY/g0B12xH1v5VZvd6jV7IV9bKFBTBhr2fgJUCm8lM1gq76pswRfrLakfXSZPkoBhme/UigaYAlGmzzLflxNmObZHgBALv1+BusNCHXCudBCMJp+7SkoQzCa1hpYaw5GU3UNBW0fFY8KBoHDl0D/4cfAJ6vNK732FDB3EQBgRLnCgbOAh5aaV127GZhQgAyWeId5TEvE7R2Mpmzn0BypklLo2rHAhnWo7xBCAAVl6XE/FQxGI/Jl0kxzMBoAvPtyZ2iYhVIKFx7s4LFlcjj1xhbg7Y+A5jZzeQAplGohNa2A5xaJOmwJtCkYbcQ4XwFMtB2yBaNtNffvVVlVPzZoeFGHL4E2BaMBwLpVQMNOnnWMKAOqovZ7sZ6q4x/JhdPm+qvEQpWGgf0/A7X/Z/pcFxH1DwajEfUDpRTGjRuH1atX93phPpFIYOPGjb1mqiQiGkrS5zc+UCYiIuokhV3Fe4Rp2cO6Orf3E7AWNwR0mZiCvDJJ4WllgcEz63RICCZICgEpgPyzLlGlYiBLmvw7MNVpfojsQH6xxhb+EE+1IOx0BqNJv7+oRxCZdCym68+X9DO17Y+IiCiTFGQmBZ+lJbV5UL0UoFpo0vW7zY3D1S4cxZdqaXDbmPjEuFxBoSaU/wxpst79ZKlv6xWyq5RCJBAz3rf4CYK2kQMX5QHnUtD1YObqFB7edIexrFSFsajq4CK3iIiIiIiIqPA4Ro+IhiOOzyMiosFKBUPQex0BPGF+/qDffgnq6M971jOxVmGXScBLH9jXq5aC0eYv9twHDVGLjwHu+oOxSP/mEhx30Sm47y3/kz+F3TiiOt75zfjCBzaoMZPMowg/XAFEhNC0Egaj9YWKlstTWq14HbqpEapCThnaexoQLQFa7UNVeqlxzecite9xwJQdgFETgPUfZpfvc5y/HeQSdsZgtIEx3zKRuBB+hs0bgBbzJGb9cT6iIlt8DPD3XxuL9CuPQy35dvf3h81ReGip+cx1+o0uHrnQQcDp2/1/m5BZG9YZCUeFPvYmTgc2rMPUxHtQ2oX2OY4u5jYDAFR5AVLhiLYDavGx0LddayzTt10L5RGMBgD7z/QOILrxKY0DZpnPR7FUsziVqqqs9dx/n+1xaGc/uiMjnM0QTkrUSTpiNdAkfNZguY+gDKMmAMEQkMyepFjfdzPUV/7HswqlFI6br/DHp/1NWlzTnH3P1V2X33svIhrS+NYOUT+JRqOYOJGz0RDR8KGUwsSJExGNRge6KURERIOG9EJ/a48wKVtQWTpcyk/AWqslYK33vr2DAqQwgVhAGJAzAKQgs6ROwtXmYIJ8gxcAf7+DNC0PrxHZ2tAzfEwKIrMFqwGdQXLSz8zvsWNsWx9+pkRERGlBZZ6jJaGzH4r2LhcCjIQA1UKTgkk1NNpcn9NUEQ2gjYn1xuWVwRrP4GCJ7YlHZi85374tAEQd82yOralmz21tpPNOieW8onPv/g+4V5ufwwYhGG9R1SGIBjhbJhERERERDQ8co0dEwwnH5xER0WCnzv2ZXHjPH6FTKV/1XHuag5Eew9RqUo3mNpx1qa990NCjzvyetfy06/fA0bPbrev0VNMzXK+uH4KIpICZdauAdmE8Qag4Yx2GM/Xt34ll+ox50K486VVZWOH8A3L7/KDGFNJ44ElQDTtBBQJQ3/4tEMl49nri14Ad9/C3g9KI/8YwWG9AqNIIMHNnc6EUjCYtB/rnfERFpc64WC586RHo+LaxMufuK59znlwOnPeXvg9IiQthjxE33ntBgY89dfFvAABh3Y4JyTW+t4vprmtkRXVB20M0bM3bWy578k7olx72rCJSonDDGQ5KzcN4AQC/eUzj0XfN56QyYQygOv9Kz30XgqqshbrgaiAQ2LZw2jyoM75VlP3TECQ9M3RdoMn8WQOvS/6pYBAYO9lc+LeroJe/5quey45W2GGcv31W/+0nciFDEom2CwxGI+pH6YFXoVB+LxgREQ0WoVCIg66IiIgMbGFa6ZnppTAAAAing9GEl9J7BlpJAVWZWnwEBTSnzDORDaZgtJCSBwElhTAD6Wct/Z568hNylyYFoynLxyy2NvQMdJN+z36CC8TjsQ/BaFKomp8wCyIiojQpyCwpBJ91l7vma36+gU65sl3v+nJ9JSoWKRitNuR/JvVs/geKx1PmAf++gtF83CPlI+mazzslSh5EriEPnh+MtNZ4sPFfxjIHAexXfWSRW0RERERERNS/OEaPiIYDjs8jIqKhQNU1ACd/XV7h5Ud91bPrZIW3fmh/na3GNYQRTZoBVVbpax809KiR46G+8COxPNz0EW4b+Vv85jR/zyt7huspKcSsL+oazMsTHcDaVeayEIOt+mwvy7POxk+Alx+zbv7twxTGVPjfXbUhGE199w/bvt71QKi/vAn1/ZugvvErqBufh/PVy30HuKuSsP/GMBhtwKhTLzIXrHvPHAq6RghGi5QB1X0Zr0GDgaoeBfWV/5FXePT27i/DIYWFk+VVb3pGY1NL38LR2oR5ScO6R5hoIAiMmtin/WRS4+uBWOcJtb7DEgaYocztes+hoqag7SEarpRSwMGniuX69t/4queEnRXe/bH9HuyaR6RgNOH9pCKGEakjPgf15zegvn091BV3Ql33GFTtmKLtn4YYqS/e3gZ0tJnLeF3KjeUeW99xva8q6qoVnrvEwV+/4H3vZPyMCAD2PBwqyOfDRNsDBqMR9bNoNIr6+npMmTIFtbW1KCnhDB9ENDSUlJSgtrYWU6ZMQX19PQddERERGUhhWikkkegK+pBCM0KqBCEnZK2nZ8Ca3wCAVo9gtA63vbttmcoCOYz46GchS+CJ1H4pVMxX8IIl5C5T+neSyTaWJeSUiGFvPY+RvgSR2Y6jfCTcDjGELuKwb0hERP5J1/WEEHzWXS5c820BqoUkXVsBOfCJaDCRg9FG99Mee/eTxeBiy99W9zpC/9frfsdLQujfSgGOQ9Hy+Jv4oG25sWzXisWoCY0scouIiIiIiIj6H8foEdFQxPF5REQ0FKnZC+XCpf/xXc+IcoWJlveOawxhRGIQFQ0fM+Zbi52lL2DJ7gpBH29D9gxGQ10/BKNNsByP771lXp5LCBaZVdYClSPk8qUvWTcvDyv87Hif4XrJjQhkTqJVVw8VDPZapEaMhTr4FKjjz4WaPs9X3d1yCTtjsN7Akc4hiQ7gw2VZi/VaISSqrt53aB4Ncpa/db30xV7f7zBe/p13JIHX1/StKXExGC2+7Zuxk7POXQUxZQcAwKz2d31vUuFu7fqiuvDtIRqm1KSZcuHb9r5PTxNrFS46OPfrUEwLY2Vrx+ZcV1+o8fVQR3wWardDoEojRd03DTFCf0s3b5a3Kavqp8YMU5Mt56UcPhuKlSqctKuDPT1u2UckN5gLJs7wvS8iGtr64W6GiDIppRAOhxEOhzFq1ChoreG6rvgyPRHRQFJKwXEcfuBORETkgy2sqtVtQYlTKoZS9XzRX3rpP4UkOnQ7SlVYDBXI2q9HUEBLaqtYFguU+9pHMdiCCaQwA+lnZAs18VrHVKeGEIzmkT8fcWJIpLIDXlq7jhFXp9Dmmh8cScdIZv0mfkP1MsWFtgD+wiyIiIjSgkKQmRR8BgApnYKbOcC0iy1AtZC8+npEg93GpBSMlv8MxAryZ4aZ/eTWvgQXB8qMy1ulGSh9yidwUer/D1YPNv5TLDuw5pgitoSIiIiIiKi4OEaPiIYKjs8jIqIhbfdDxSJ9w6XAqRf6Dt6wddWrUtkvLKtDTvdVLw1hO+8H1IwGGj8xlz/+T0QW/gHHzPscbn/ZXlWvcL3xhQ9GU9FyaKmtrnmsQ04hWGSklII+6CTgtmuN5fr67wOnfAMqKI8rWbK7wu8e13j+Pfu+pibez15Y6IDGXMLyGKw3cMZPFYv0GfOgdz0A6rt/gKod07nwkb8L9fRDSCMNjB33ksv+dT30woOg9j4aAHDyrgp/fFru9Dz3nsY+M/L/fEAMRnPbtn3THwGh6XrffBYnNv0dv6n5kq9NJne83/lFuSUhl4h6O/C/gBsuNZc1fgzduhUq6u89oFMWKlzxQG7PTGKm8Xqj6qAcH2nFRANBCcdmq/wuHSJ8PyoX6sCToG/5lblw2SvQ69dAjarzXd9OdQrPrDSfm0IqhfHJdeZ2HHyK730Q0dDGYDSiAaCUQiAQGOhmEBERERFRH9nCoeKpFlQFa8TQjHCPbW3BAPFUC0qdsBiwlqnFIyigOdUklpUNomC0oCXwJOmawwykn3XE8Z5ZO7dQMSkYzWMfgRiaDLOZpsMdbEFkfsLdxPAIj7A8iS2Mz0+YBRERUZoUZJYUwk4Be2iaFLRWaAEVQKkKo123ZZX57ZsRDaTGROGD0aTZ9ICul1d6FMvBxd7986gj9W379rcnnXdKHPklhKEUjLa2/X281WJ+C2SH2AKML51c3AYRERERERENII7RIyIiIiIqPBWJQU/dAVj1lrFc33Ap1Lk/6/N+gkhlL9zn2D7XS4ObCoaAn/wN+sv7iuvoy7+Mqy+twwcbD8RLH8h11bhd4/TKKoHK2sI2NG18vRziZqBCDEYrBHX2D6CFYDQA0Nd9B+qrl4vljqNwx3kODr3Kxasfyvtp6FiRvbDQwVYMRhsSrEGIAPDiw9AXHgn88UWgqRFYvcy8HoPRhg0VDELv/19iCJ7+7onA9U9DzdwZB84CLjta4Qd3mseeXPIPjW/JubOe2oThd5Ge49366dhT4+uhAewVfxb//cl3cMmon0BLYTRdpia6UikrqvulTUTDkRo3FfrM7wF//ImxXF91IdQl1/uqa/5Ehc/tqXDTM/7Hww03m6sAACAASURBVMUM77ioH/3V9/ZERSeNcY1bxp5GzONVyUzNWAC97/HAY/8wlusv7An8833fAYoNliHNU0saERAmWlfT5vqqn4iGPsaxEhEREREREeXJFg6VDqOSQjOiPba1hV6lg7mk0K/s/VpmsQDQYimPDqJgtJAl8CQhhBlIP2t/oWLmdUx1umIwmv1jlqhwvKT3YQtYkbb1Vb/PYyeTLXTCz8+UiIgoTbquJ3QHtDANeNKVQ9NCjhygWmjSNS/f6ytRsbS5cTEUuTY0Ou96c5mjVgr+9ROyK/XP8w39TUsIIcu2+w/pPDUYPdR4h1h2UM1xRWwJERERERERERERERENV+qos+XCe26Cds0vrGYamctQtYUH+X6hloY2teMeUL9+yLrO6Id+i+cucXDuvvLTy+pUY+cX4+uhLJM/9UldQ27rh4ozCdxwp8oqob7xK3mFf/8fdDJprWNUhcJ/vufg9N3kY6O+Y1X2vusGMhiNwXoDyitYauUbwNKXgIdvFVcp+PFDA0oddJJcqDX0PTd1rqcUvn+kg4Nny6u/tS7/cSlxYe7RcI9gtH479rrqVQAuavwVPlk2AXu3PCmurrSLSYnVnd+UMxiNKBdqySVyoRDSKPnlibn1jcvcjPF6jgNMn5dTHURFJd3/tVretWMwWs7U166QCxs/AV5/2ndd00bJ56WpWGsuOPhU3/UT0dDHT4WJiIiIiIiI8lTilCKozMEc6SAzKTSjZ8iGLfTKT2hWTy0eQQHNQjBaxIkhoAK+9lEMIeHnCnSGqJhIP2s/oWJSOEOHbkcyK4hNeADt8YzIK1jFFn7nJ4hM+jf4PXakdmVy4KBUcfZBIiLyL+jIg3uT2jwYVbreA/YAo0KTrq9+Q2uJBkpjYr1YVhu0TK/WJ9v6ya5OoU0IRvMV+hswDzSJZw60ypEUsmw/rwyNYLRNiQ14sekJY9nEcAOmReYUuUVERERERERERERERDQsTd1BLtuyEfhUeGk1w8WHmgdbHdT8YPbC8VN91UnDRP2OQCAoly97FY6jcPKu8oC9hnSo1chxBW7cNqo+x+dvDLYqnPod5bLmLcB/HvacAEsphf/aRT6Gdmp/I3vh1AI/c/UbjOY49r8J6n+2a1/aK49DL3/dUgef2Q8rXsfEit7nkP1myuebV1bnPy5la5t5eaznmB2vYL98ZdRb427CuZuuF1cfl/wIYd3e+U1ZVf+0iWiYUsEgUC2M+etog+5o911XZVRhQg7ZhOWZ4/XGTIJi4C8NZlIwWlwYe+o4vFfLR+1Ye9DpCku/OMOc8XLZjnHDfRkAjJviu34iGvoYjEZERERERETUB9JL/fHuYDTvMICQU+IZsOY3fCPutsDV8qybLakm4/KyQIWv+oslaAkmkMIMWoUAMCnQxO868VTv36E0YEZ5JKNJx0p3iJ4lwCziRK11A3J4Wr7BLeLPMxDrv1k0iYhoWLIFniaFADTpeg9A7Df1h6gUbJpn8ChRsWwUgtEUHFSHavOu19bn1T0CxNrcuLien9DfqGMORpP6qH6kdAouUsayEkce2KKHSDDaI5vuEv99B9ccxz48EREREREREREREREVxty9gYoaufyNZ3xVc/gchcpI9vJTmm7NWqbGMRhte6LKq4B9jpVX2LAO+pl/Y696YJohHyLituLorXd31nX05/uplQAOPCm39f2GYJG3HfcERsihd/qio6FP3wl69bvWag7ZARhjGDpbm9yAI5rvzS6Yu3euLbXzG8AQKuXz3gGmDlviuY7+7XeBu/8grzBrlwK2iAaaGjcVmLdYXuHNZ3uNNz91ofw3vOQPGs+vym9sSmOLebua1MZt3/RXMFpddr1TE++Jq4d1V4pbWRVUYPBM5k40ZCw+xrzcdYFVb+ZU1ef28t+vqE419l5Q15DTvoiKTzi+W4VgtEgZ+9p5UI4DHHq6WK6vugC6zfw+ZaYpIxT2mW7YhwLOeO9K8/4ZjEa0XWEwGhEREREREVEfSC/1p8MypNCMzCAuz4A1nwEAGhptQhgbALSkthqXxwLlvuovlqCSZ7dLuuYAlbgQACYFmvhdJ7NeKRjBKxhNCl9L/26lALOwE4WjvB8Ai8dQnuER4s/TR9AcERFRT6E8Ak+lwDSv+gpNvH5b+ltEg8GGxCfG5dXBWgQsfW1v/gaA2ALM/IT+Sv3z1swZKHOQtAQulljOK0MhGK011YyntzxgLBsRGo15ZbsXuUVERERERERERERERDRcqUAA6ndPiuX6Mu/wGAAoCys8cqGDGaM7v68Ia/x4w2U4Y8ufs1cez2C07Y26+Dpg8iyxXH/rOKiWzbj3fAc7127pXj6l4z3ct/pIjE51TSS1+6H918baMcCoOv8bhHyGYJEn5ThQ1z5sX2n1MuhLPiNOhAsAJUGFhy5wMKdHxtqs9qV4YPURCOv23isffXbhg3z8huUxVG/AqR0WQn3/JqAyz4noTv46AzeGIfUjQ5+lp0dv7/5yQo1CueVP+fCrXcQ7ch+f0igMz6lJber8wnGAsZNzrtcPVV6d9TdR37FKXF+nxxxVVPdLe4iGO/XVy8Uy/d0Tc6rre4crnLuvv+tSdWpz7wWGUESiQUXqc8WFsadhvh+VL/Wln1rL9Y2X+a7rb190sP/Mbb++0RXA7fPuw6wOIeyawWhE2xUGoxERERERERH1gRSWkQ65ksKuIoFoxvceAWtCPSZS+BkANA+RYDSllBh6khCCUuIpc0CJ9Dvyu05mqEO+wWhSuEN3+F0fg8jEYyiHY6fXdkKYRdhHkAUREVFPIRUSy6TruhSYBgAhp5jBaObrXr7Bo0TF0phYb1xeGzJMmZ4Dv8N0bX1Qqd/aU9QpMy5vc+NI6ZTPVvQmnW8AoMSRX0KwDZQfLJ7a/ADa3Lix7IDqY3wFLRMREREREREREREREfml6hqAOfLELHrzBl/1zJ+osPTHAXx0hYNPL3ofl3z6C/PzqPF8+X57o2IVUH980b7SY//E1JEKL+zzb3y0bCLeXz4Ny1fugL3iz3WW14zp9yAideSZ/lcuYTBaIalxU4G5e9tXWr0MePdl6yqzxym8/sMA1l3u4MO5V+KNVTtjbvsb2fvb7ZC+NNeMwWhDijr4FKg71wAH5BY+AwBq5/36oUU00FT1KKhb3hbL9b1/6vX9OYvla9KmVuDeN3Nvg2cw2uiJUKF+HGuX0UerdjcLKwK7xV/o/KKcwWhE+VClEWDMJHPh+jXQKf9j6kJBhWtPdfD/zvbuK3efT9Lt4L0ZDXbSPWCrEIwWYTBavlRJqT0c7f6/+B5/O6pC4aELAthwpYOVP3Ow7nIHR7/2C3kDBqMRbVcYjEZERERERETUB1JoVXegmRCakRnE5RmwlkP4RktK+MAWcmhaWaDCd/3FEhRCVExBKVprSwid9wfVpU4YSviYJDPUQQ5Gs3/MIv6OvY4VH+231p9vMJoU1OazPURERGlBS5BZUghAS7hygFFQBfvcJr+k63C+11eiYtnYT8FoNj37ydZgNB/Bv9GAORgNyD+YMOlaAheVJRhN6P8PFgk3gUc23WUsKwtUYI/KA4rcIiIiIiIiIiIiIiIi2i5MmiWXrX43p6pGVygEP1olr8AXXrdLKhgCps0Ty/Xffw3d2gw0NWJkagPqkmt7r1BZ088tRG6hff0ZTLO9mrnAe52XHvFV1ZhKhbFrX5BXmDbXZ6NyUOo3GI3HzmChHAdqvxNy35AhMsPX6Ily2XP39woq2lnIM0p75+Pcx6c0mucUR02qsfOLun4+9gzH9oHNDxlXPbnp1s4v3PwmRCQiACPGymUb1splgj3rvYPRqt3ewWiYPj/n/RAVlRiMZn6XjsFofTTDck7YtB5oasypuuqYwpQRqjPk/NN18oq1lvMhEQ07DEYjIiIiIiIi6gMpLCMdBCAFAmRuJ7343x2wlkP4RqtrC0ZrMi6PBcp9118sIWUezJHU2UEp7boNGq5xfSm8ridHOYg4UWNZVjCaNGOFx3MhKVCsO/xO+L35CY6w1R9PtfieZcPUrnzbQ0RElBYSwk6BzkAfEykwTUEhgCIGo0khuAxGo0FODkYb3cea5U5vzwAxKdi5VIURUAHPvdjCeG33OzYJw31EmnTv0WlwB6P9f/buPE6Sur7/+Ptb3T1Hz7E7M8suyy7I5cEGEBGQQwE5lUMFb7zQmBhj1BhjPBOPBHMfaqJREzXRmOQXFcRbUBHxVjyIGg88OVxgZ6+Znt3t7vr+/pjt3Z6e76e6qs85Xs/Hgwc79a2u+k7PTHVNT/Wrv77789rV8M6cNeesvUQDEe88DwAAAAAAAAAAOs894QXmmH/BefJl+28zwdvc8F/hgamNckPh67qw8rnHP98e/Nn35a86Xv7Wm8Lj4z0Io20+Nv26Bf5u12nu0mc3Dc75t79G/qPvTrfBO2+397XxyAwzS2kgbRgt5XrojTMvSY5hNcrlpEObFLGwbLl8IfHr619xxXzEU9JjT3LatNbe1jUfy3Z9SjX22tEsjNbtKF8gvPb87e9ctOzofT/VxTM3zH8ws6O7cwJWMPeUl5hj/o+fmvk1I0etczpxc/I6E43XpT344Zn2AfRe1jCa/Sa+SOHkR0qja8xh//pntPR6Nr93TrrnV+HBLafJRWSSgNWEn3gAAAAAANpgxTJKB4Jm4b84Nsa6rHhX7UX/mcJoVTsUMBOHn8wdXYphtCgcUSkHQilJn7MVr0u73uKoQ/hJ2ajJ0yxmWGX/9q14RFIUYsF6xvZjxdrr96TaRmhejdLenwAA1CQFh0LBU8kOGOVdYf5doHokKTwKLGV2GG19W9tN+/OXNhBtKUb2xSZJ5/5JQr9H1CTFw+IlHEaLfawbpq8LjhXcgM5Ze0mPZwQAAAAAAAAAAFYLd+wJyStYobMAH8fSp/4jPBgIbmD1cJdeLa0/3F5h293SFz8WHhub6MqcFsjy/UncquPcUcfJ/f0npC2nJa7n/+YF8vfembxOHEt3hMNo7uX/3PIcEw2kjOUR1VtSXGFA7p8+K518brobbDhCrknAD8ube9377MGvfEr64FslSUMFp1tebl9rPleW7tud/hoVK4omSZP7Q0auy2E0t35xUemxMx/Rv935HJ2w5zaNV3fq8t0f1U2/uFB5VedX2E0YDWiVO+dx9uAPviF96/OZt/mR30t+DcxkfRjtSS/q6fW7QEusYFa1El4+zOuj2uGiSO5937VX+PpnpNu+lH3Dd/3c3uer/yX79gAsa4TRAAAAAABogxnLiGflvTdjV41BgKRoVtVXtSeeSz2n2arxThYJYyO58dTb75W8EVEpx4tDKXuMAJ1kB8PSrtcYdWg1jGBFIObikmIf2/GIlPNPiky0Eo+w5pP2/gQAoCbv8uaYFSqylidF1rrBPEfLEK0Fem2uOnsgsNxoss0wWpY5hKQ9tx2MhuWMP2OWWvz5s0KMUrNjy9INo/3v7De0dd8dwbEz11yg0fzS+z0PAAAAAAAAAACsIOc90Rzyn/tg+u38+Dv22GFHZ5gQViL3e3/Z2g3HJzs7kQA3Ppk+wEYYrSvcgx+u6O1fkJ72MnulalX6fPgNpw647y5pn/EGtMee2PoEk6T9niCMtuS4DYcretOnpMkNzVfucpgKS8AR908crj8nut+U05ueYkeFrv9O+mtUtieE0Sbi/SGjbgdmN4XP056267/0rZ89TNt+tFHX3vEkHVa5++DgqRd0d07ASnf8GeaQ/+wHMm9uQ5PLyybqwmjuNx6WeftAz2WN9w3x+qh2ualDpWPseH4rxybd+ZPw8iiSNh6VfXsAljXCaAAAAAAAtMF6YX8pntU+v1dx7d2NGjTGpayoVSmeTYx+hW9jR7Bmq7uCy0dyY5n20QsFVwgurwRCKVaATpKG2gyLLd52+I/OVrihxgqKecXaG+8xPwcrvpd2+1Jr8RYz6kcYDQCQUeRyyikcRysboaJQCFWyzw+6xYzgVrOdnwG9tK18jzm2rpDiotwESZeMeH/wPHnO+B0m7blt5CLz/LaV6K8kleNwcFGSCpF9bFm6WTTphulrg8udIp0/8ZgezwYAAAAAAAAAAKw27gT7Rfn6yifTb+hXP7L3cfzpGWaEFWnLadlf3C5J6zZ2fi4hST8HNc5JR23p/lxWMXfimYnj/pufS97AnbfbY0b4p21pw2gDhNGWrBOSv++kJo+VWBHc2IR0vwfZK9zx4wXX1Jx5jP2YdovRAAnZbbQcJWlN7fUCh2xKv8FWPOiUxGNZ6DN1Fz6le/MBVoOk348+/E75PdmubR3IJ59nT9aF0bp2TgR0VMbfHQeHuzON1SbpnPeDb5X/6feybe8O4/ezDUfIFXr7JusA+o8wGgAAAAAAbbBiWnPVGc0lxrqKCz62XvQ/V51N3E7IrBEKqPiy9sRzwbHRJRlGCz9ZGQqoWOGvghtIjBzUs4Jfjdv2VhityfPn1vdKbR/W55A2RJYUgMv6PVSbU3A+KWMWAADUsx6PQ8HTpOX5qLd/zGw8Z6spxbMLLlgDlhIrjBYppzX5dt8VPTGNduBf7Z7bSnZEreUwmhFidHLKKW+Gjr2PW9pft/107v90+9wPgmMPGTtD6wYO7fGMAAAAAAAAAADAqnPxVYnD/v1/m247d/7UHrvgSRkmhJXIbThcuij5ey14u83HdmE2gf08+cXNV7ry+XLF0e5PZjU77SLp2BPt8Vs+Iv/dL9njvzJqRGum5qNH3ZA2wpALvxkh+s896UVSUphhzTrp0qt7Nh/0j3vaH9qDc7PS9NYDH558hL3qe77k9Z1fpbsmbWavPTZae5P18XavE0rmhkekNI+D9U67sDuTAVYJ99jnJo77F14gv3Nbx/a3Jt558IPDCKNhGcga1Say1RHuyucnjvvnnCr/ifem3p63wtWbj8kyLQArBGE0AAAAAADaUIzCF6uU4lmVjBiAtPhF/mZgrcl2gvuu7g4ut4JpkjSyBMNoeRcOqJQDoZSSEf7KFF5IiNPVsyIoVkjh4PbtC5tKCQE8a16NClHBjMll/R6S7JhalvsUAICavBU8jcOhIiuMVjDOD7rFehz2irXXJ7ztJtBH2yrhMNpEYZ1yLtfWtl3Kd9PrxPn5cM76XavVMJoRXHQFOZf2M1s6bpi+zhy7cPKKHs4EAAAAAAAAAACsVm5sQu6vP2yO+7e9Sn57+G9XC9azwmjHnSpXXHrXtaH33CveIfdbb8h2o029ecG0O/lcubfcmLzOi1JGAtEyl883/Tr4f/wje8x84X0XA3uFwZTrEWtYqtyJZ8r9wyelc6+cjzQcdtT8f/d7oPSop8u9/Wa59Zv7PU30gHv0M+Re+hZ7hbpzHeecXnqRfZXKq69N9wZ+M8ala4PxHhVUmf+gy2E0SXK/9fr0Kx9zglzaKCSAILf5WLkX/IW9wv99U7r27R3bX1R7s9Q1U3Jjazu2XaBrCKP1hTtqi9xz/theoVqVf9MfyM+lfG2b9ftZj37PB7C0EEYDAAAAAKANjYGzmrmE0JW0OAhgBQJKcfJ2rNuEzFZ3mbcZyY1n2kcvFKL0AZU543O2gnNZ1m28P72sMFqz7RfNsaQAXpbPIW3cLY25uBTeR4b5AABQk3fhd6+1QkVlHw6mWRHQbkl6HC4lRGeBftpW3hpcvq6wvqv7rT9Pts/P7XPiRta5rRVda6bS5LhihY5jpbvgtJe27rtT3535anDsgcUTdL+hLl6cDwAAAAAAAAAAUO/EhyePf/XTzbdxlxFGO+GM7PPBiuTyeblnvly65Fnpb3R47/5m5k56hHTUlvDgwy+Ti3gJZy+40TVy1/w/e4UffF1+26/DY7/+RXj5YUe3PzGDy+WkfIo3CEyzDvrGnXiWoj/9T0X/+X1F//1/8/+977uKXv2vcoQbVpfH/pZkBV0bznW2bLQ388nvSXvL4WvV683sDS8frb3hYC5nz6eDnHPSlc9Pt/Ihh3V3MsBqcealicP+lo90fp9dPCcCOipzGC1lrBjNnXtl8vjsLunbN6fb1h3hMBrn18DqxLNqAAAAAAC0wQqaxYq1o7ItOJZ3+UVRj6TAWinOFt2Yre4OLp8xlkvSSLT03lmz4MIXc1QCARUrvGDFFLKs2xgVs8NoyU+z5F1BAy78pHmpOmPGy6zvseC6KeNuzVR8Wft8+C/mWeYDAECNFTSzQkVWMC1vnB90S9K5hHX+AfTbtvI9weWTXQ6j1bMiu1nOJYu50eDyrL8f1VjHldrvHVmvh+mnz0x/2Py95ILJK3o8GwAAAAAAAAAAsJq54qi05TRz3L/tVfKVSvJG7gyH0dwmXnyPhdxDH5luxeKYtPaQ7k6mgbvoqvDy857Y03mseieelTz+vfAbUGnXdHh5tyM+A0PN1yGMBiwLzjnJOHfx//yaBedDj3ygfZFK7KUfGA3HejN7w9eNjNauaRubnJ9TD6R+fB4c7u5EgNVi0zHShiPs8R/eKu+bBxYz2UyMCCvUAGG0jjn8AdIhm5LXuTMcPKvny/ukrb8MD3IsAlYlwmgAAAAAALTBCppJdpBgOBpZ9IfG5MCaccGFoVQNhwJmq7uCywfdkArR0rtwwgqolAMBlZIVFUv4+qRdtzF6YgUI2tnHTHWX9vo9wbGk77FF60bheIQVXbPMVcMhC4kwGgCgNVbw1AoVWcG0QhQ+P+iWoaQwWsLjJdBP08bvIVP59sNoTukumLTOPztxbmv9vtNMOQ4fV/IHjivhz62d8/9u2FXZoa/s+lxw7LCB+2lL8SE9nhEAAAAAAAAAAFjt3HNeYw9Ob5V/1RPk4zg47PfOSffdFb4tYTQ0Oudx0nGnNF9v87E9i8EccOnVi1+kfdyp0tmP6+08Vjm3dp30jJeb4/7VT5LfFigO7doe3t74ZKemFpYqjNbba2UAtOEw49xl293yr37igVDRkeucrj7Tfpw6+U9jlYzwWc1M+P2vNVp7w8E1XT5+1TvzknRhmQHCaEAnuFxO7rmvTV7pti91dqfW8Q1YarL+HlggjNYpLp+X+83XJn4NvBHGX+Dun0vGc0jafGxLcwOwvBFGAwAAAACgDUmRqG0VO4zWqJXAmmXWDKPtDi4fzY9n2n6v5DMEVBrjZTXFDBEv62tZaty28e45kWv+NIs1n2nje2X+NuEgRIgVXlv0OTRh3Z9StpgFAAA1eSNoZoWKynE4mGYF1rqlEBXMWGvS4yXQL9573WeF0QoburvvuoCYdf6ZJbI7kjPCaC3+7FWMEGPtuGJF37w3LrDok5u2f8z8XC6cfFzvX+ABAAAAAAAAAABWPfewi6VTL7BX+PInpO98ITx218/s2/HiezRwg8Nyb/q03HNfl7xiH14s7SYOkXvbzfMvBD/viXK/++dyb/603GCK8BU6KvrtNySvcP2/Ll62y3gD47GJ9ieUJFUYbem98TEAQ1LU9Usfl75984EP//VZydd3fODW1sJoI37/dTVjvQujuXxB7r9/2HzFQcJoQKe4Rz1d7rX/bo77t7yss/trDAADS1XG6ycdYbSOcpc+S+7vP2GvcMftzTdyp7GOc9LGo1qbGIBljTAaAAAAAABtGI6K5ti0ESQIxauSAl5Zw2ilePeBd5SqN2OE0UaisUzb7xUrQlLxiwMqc9X2wwtW8Ktx27GsMELzJ9Ct+SR9ja3YWYj1fWTdP5ZSwvpZ7lMAAGqsoJkV9ykHHu8lKW+cH3STGU/N+PgK9MJcPKs9cSk4NlVY34E9JLyTW10YzTr/zBLZLVphNCME3Yx1XKn93mGG0VraW3fsief0+R0fD45N5NfplPFH9HhGAAAAAAAAAAAA89wFT04c91+7MTxgveA1l5MOvV+bs8JK5IZH5J71SmnDEfZKfQo3uLXr5K5+laLXv0/uqX8gN2RfX4ouO/9J5pD/euB4ZIXR1kx1aEKGgRQhBsJowLLhNiU//tSfDznndPb97XVv/H7yvmb2hJePxvuvqxnvctixgVu3URpdk7wSsVCgs85/kh0c3H5v6s2cYvzadc7s5w9+cBgxIiwTWd9YdqD316WvdO6hj5R73p+FB+/6afMNbP1VePkhmwmPA6sUYTQAAAAAANpQiAbMgJcVuwrF1IYSw2hbg8tHc+PB5RVfCb7of7a6K7j+SG6JhtGi8MUc5XhxQKUUG2G0DOEFK3qyz+81oy310jx9bs0nKYyWFM1Lu33r/rHMGes7OQ1GPJEMAMjOOl+yQkXWY68VWOsm6/HVerwE+inpvLITYbTEa0b2F8S895oz4mxDCWHpRsWo02G08HElv/+4YoXRllIa7Us7bjCPPedNXK6cy/d4RgAAAAAAAAAAAPuddqGUS/hbxfv+Krz8TuNFsesPlyvwAmUkOOsSc8ideWkPJ4KlyJ2V8D1w25fkKwf/fuwrZakUfuPhroeFhsN/F1+AMBqwfJx+sRQlvGz/+19b8OGlJ9oX4rzvq1633WFfszKzN7x8tHZdyaEJAdFuaRaTtAJOAFrinJMGjNd2bP2l/O4dqbbzO+eEj0UvmX7zwQ8mOvGmrEAPuIz5nEKKUDGy23R0ePkvfxQOVdfbtT28fGpDe3MCsGwRRgMAAAAAoE1WUGu6HH6XlWIgrlGICpkDa1MF+0m92eriizRCyyQ7sNZv+QwBFSu8kCkqlrDuXPXg9r3i4DouxdMsVtzB+hrPh8jS/xHY+hyyhlus9YeioqKsfygAAEAHw0ONrFCRFUyzzpe6yTqfIIyGpeg+I6qcU15r8pNtb9+Ohx201+8xz5mznJ+Hfm+Sskd/ayrWcSWaP644o/rml0gYreor+uz2jwTHhqOizlp7UY9nBAAAAAAAAAAAcJBbt1Huua9LXMf/198vXnaXEUazXkQL7Oeueqm0+djFA5c9R9pyau8nhKXlnCsS3/nLv/IJBz/YbbzwXpLG2v87e6Jiijc2JowGLBtu/Wa5q19jr3Dr9MQnewAAIABJREFUTfJ7Dl6T/tyHJ1+H8+A3xPreXeHrVuww2vwbDrpNxyRPtgvcy/85eQXCaEDHJf3c+adukY/D1/HVe8qpThcct3DZ43d9SBfP3HBwwXiXz4mATkl8998AwmjdkXAe4v/gUvkvftQe3z0dHhjrcrQawJLFK1kBAAAAAGjTsPGC/X0+/BdHK16VNbqxLjGMNrNo2YwRRhvJpbiwog8GjPBJJRBQmauG7yPraxNihRekhV8DK4uQ5vlzax87K+EnbrOGyKztW/ePpT4El2b7AAA0YwXNrABaOQ4H0/JR7y/2tM4nrMdLoJ+mjeDuZOGQrgduawGxUuB3kZpM5+dGVHhPXFLsq9kmJ/u4UjgQbjTCaH5phNG+ufuLmq6E49tnr320hjIElQEAAAAAAAAAALrBPf1l81Eqg3//38lXGv5mcydhNLTGbThC7u1fkHvFO6QnvlB6xsvl/uZ6uT96q/mmSFg93MCg3L9/y17hK5+U//kP5v+9c5u93niXX3xfDP9dfIFC799EEEDr3LNfLV1unw/ppg8d+OfEiNNHfi/5ep63fDZ83cqsGUbbf814H8JoevAjEocdYTSg8x6W8GaaO7dJ3/xs000UB52u/71IH7joe/rje6/Rtb96gt5/5zNVUOXgSqNrOzBZoAey/i44QBitK5o8p+P/42/twV1GuJpAI7BqEUYDAAAAAKBNVtDMYoXRskQCJGkqIYxWihdH0GaNMNpobjzTfnsl78Lhk3IojGbE44ajYur9WV8XSSrVhcW8D79rjkvxNIu1D2/k1rKGyKztl2I7ThFe37o/CaMBAFpTMIJmFSNUZAXTrMBaN2WN1wL9tM0Io00V1ndoD0kXjcyf0yb9bGT53amYsy8At85Xk1jHlfz+44qzwmhmGrl3vPe6cfra4Fje5XXuxKU9nhEAAAAAAAAAAECYe/TT7cHt90i/+snCZffdHd7OxqM6OCusVG58Uu7SZyl60d8o+u03yD3sYqJoOGjTMVI+4Q34bvvy/P+tF95L3X/xfTHFGxvnev8mggDa4y692hzzt31pwccnHZ68rXfcHL5uZedcePlI7Zrxw3ofmXVRJB15nL3C2nW9mwywSrihorR+sznuv/slc6zeUMHpiqmf6LX3XaPLZz6unOpeMzO6Ri6Xa3eqQI9k/H2wQBitG9zIuDRpv+ZR3//q4nB+za7p8PJuR6sBLFmE0QAAAAAAaFPmeJWxftbo1FhuXENR+J2T6kNeNVYYbSSX4sKKPihE4fBJOV4YNPDeBz9fKVtsbjAaMuNm9XGHdrIIWeN3Wb8nrO9F6/6xzFn3J2E0AECLrKBZJRA8TVpeMMKp3TRkhFazPr4CvXBfeWtweafCaFY8TDp4nmydS0rSUKYwWrpwcVrNjitLOYz2g9K3dcfenwfHHjb+SK3J8054AAAAAAAAAABgidjyMGlNQvTi599f+PFuI0i09pDOzQnAquQKA9JZl5nj/q+er/jFF0vf/Fx4hYGh+dhINxXtNww7ICnuBmBpetAp9tj1/6r4EYMH/tv4lmc33VwcL752Zbtx6cxEdcf8P/oVITv3Snvs1At6Nw9gNTnnCnvsPdfI/+jb6bZj/W42tjb7nIB+yRrKLvT+DbtXjXMTjk3VqvTVT4XHzGMR18kCqxVhNAAAAAAA2pQ5XmWs30pgrRiFL4oIRdBmqruC6y7ZMJoRPin7hWG0fX6vYlWD61r3dUjkIg0b4ZOFYbQ4uE6U4mmWLPORpGIuxUUvC7YfXn9PXFLsw/MOqf98F86HMBoAoDX5lI/rzZZb2+km6/HPerwE+mm6fE9weafCaGnMxaXg8oIbUCFK/zNsndtKUqk6k3le1nGlFm60o2/9D6PdMH2tOXb+xGN7OBMAAAAAAAAAAIBkLp+Xe917zXH/J1ctXLBzW3jFNbzgFUD73Av+InmFW2+Sf9cbwmPjPTgOFZtfv+uINQDLjsvlpIdfnm7lG/5Tf1Z9W+Iqb785EEYLX56jyer+mEifQkbuSS+SHnJOw0In90dvk1u/uS9zAlY698xXJI773ztP/te/aL4hYkRYCbKG0QYGuzMPyF39aumoLea4f8Xj5bffu3jAeJ7IjU90amoAlhnCaAAAAAAAtGm4haBZcHnGaNZwNGKGs0rxwlBA7KtmvGM0N55pv72Sd+GLORqDBnNVO0qS+T41vjalhH10Yvvm+h2av5fX3ngu9XaszzfrfAAAqCmYj+vlTMut7XST9fhXIoyGJcZ7r219DKP5/QGxTp1LDkbDcsafMht/30mjHIePK/n9sTZnXBDj+xxG++We2/XD0neDYyeOnqZDB7loFAAAAAAAAAAALC3ulPOkBzzEHPfbfj3//71z0l7jmqZeBIkArHhu45HSVS9t7ca9eOF9ijCa8r1/E0EA7XOXPiv1ulf+PDmM9g83Lr52Zdq4dG0i3i4Nj8r16djhxtbK/d3H5N56k9wfvFnuNe+W+8BP5C5/Tl/mA6wGbu06uZe+xV5hblb+4//edDveCqMRI8JykjWMlidC3C1uYr3cv3wleaVPv3/xsl3WsYjniYDVijAaAAAAAABtKrYQNAsuzxjNKkYjGjHCaLPVhaGAUnXWfEH/SC7FhRV9UHDhP8hWGkIpSVGSVu7TkPqonPfh+9G55k+zZP1e6dT3lpQt3mJF9IZzxUzzAQCgphBZj+v7wsvj8PK8sZ1uss4nkuKsQD/MVndrr98THJsqbOjIPpySLhqZP0+2zyWzndtGLjLPh0vVFsJoxvHmYHDRCKMZ5/+9cuP0debYhZNX9nAmAAAAAAAAAAAAGZz0CHvs5uvkZ3ZK995przPGC14BdIZ70ENbu2EPjkNuOMXf0XP5rs8DQBcc8cDUqx657xcaiirm+I/vke7a4VXaO38NSxx7bS+F152obpfG+hsxcvmC3AlnyF3xPLmLr5Jbz5v+AV13/wcnj//g6823sWs6vLzPxxQgk6xhtIHB7swDkiQ3MCidcp457n9468KP9+6Rtm8Nr7xmqpNTA7CMEEYDAAAAAKBNSTGqEOvF/ZkjWLkRFaNw1KxU3b3g45nqLnM7SzaMFoXfeaPcEEpJipK0cp+GlOr2YQXm0jx9XswYg+hU2E3KFm8xYxYZ708AAGryznpcL4eX+/DygrGdbrLDqcbVZUCfbKvcY45NFdZ3ZB8uxUUj1rlk1nNzyT5/biWM1hhYrqkFma3PrJ9ZtPv2bdWtu78YHDt66EE6ZvhBPZ4RAAAAAAAAAABAOu6ip5pj/u9eLP/o9fJP/Q17A+O8+B5Ah5z+KGlkPPvt1vQg0FhMcf1uoffXygBonzviAanXHVBZT1j3o8R1Nv9RrNEXxnr826q6c4cUGxe0TFR3SGNrs0wVwEpw3KnSpqPt8a98Sv4D/5i8jd07wsv53QzLSsYwWoEwWre5C+3nh3TDf8nf+N8HP777Z5L1ZsZJxzgAKxphNAAAAAAA2tSp2FUxN5ptv9GIRozblOKFoYDZhlBavdFcCxd89EB+f6CgUWMopWSEF/KuYMbVLFb4qz7uYIfRmj/N0qmInrn9XNEcs+6nECui1krMAgAA6WB4qFHZ78u03NpON1nnbnPVWXnrj69AH2wrh8NoeVfQWK77FzzWfhrmquFo4HBkn6tahlP+vpOGfVyZ/53BOp/3ijPvq1M+u/16xcb+L5y8osezAQAAAAAAAAAASM898OT2NjDGi+8BdIYbHpH7iw9Ja6ay3XBsiYTR8r2/VgZAZ7jnvi71un+34TodmuKS/mu/JT3mH+1rWSaq2zmPAlYhF0Vy1/xP4jr+TS+Vv+lae4Vd0+HloxxTsIxEGfM5hNG67+KnScP2a9H8658pf9uX5z+48/bwSlEkHXpk5+cGYFkgjAYAAAAAQJuyxq6sIEDm7eRGzJjabLUhjBaHw2gFN6CBaGk+kVsLFDSKVVXVVw98PGcEv1qJeFm3qQ+F2WG05u8sYoVVOrV+zuU16IaCY6Vq+niEFVHLOh8AAGqsx/VKQ/C02fK8sZ1uss7dqqqYoSWgH7aVtwaXTxXWK3I9+JPg/lCgdX7eyrmkdX5eMkK+SRoDyzW1ILN9Nt+fAOJMdZe+tPPG4NiGgU06YfTUHs8IAAAAAAAAAAAgo8uf09rthkfkBpbmNW0Alid30iPkrvul3Mv/Of2NxnsQASmmeEPlfO+vlQHQIQ85J/Wqk3N36Vd/le76nu/ckbCd6nZprPtvoAhg6XHHHC/3r19NXMd/7N324O7t4e324pwI6BTX/HVdCwxwrt1tLpeTe+MHEtfxH//3+X/c+dPwChsO53kiYBUjjAYAAAAAQJs6FbsqZtzOUFRUMQpfFNEYwZqp7gquN5JL8W5zfVJw9rvc1cdS5owoQivhBes29aEwM4yW4gn0rPG7VuJu1udgBSqC61r3aQvzAQBAOhgeamSFxawwWtL5QbckPf5ZMVGgH7aV7wkun8qv79g+kmLAtfNkK1rWyrmkFYIuxemjvzWVOHy8KUTzF7Y4Ix7XnyyadPP2T2if3xscu2Dicb2J3QEAAAAAAAAAALTB3f/Brd1w7SGdnQgASHL5vHTBk6WB8JvPLlp/fLLLM5I0sqb5OvneXysDoEOOOV4qpAyu7N6hXOR08hHt7XJNvFNau669jQBYvo54QPK5zlc+Jb93Ljy2e0d4+RhhNCwnGcNoRIh746gtydG6j75LvrxPfjp8HbQOPbIr0wKwPHDFPAAAAAAAbbLiZCGRIg268B8asoQChqJh5VzODJvNVncnflwzuoTDaHlnP8FcH1Gxgl8thReM29SHwryPjVs3fwI953Lm1z+klbhbms8hSdVXtdfvCW+7hfkAACAlhdHCAbRybITRot7/ATrp8S/t4yvQC1YYbbLQuTBamnNe6/y8lXPJtCHoNKzjTbPgon3+3z374r26acfHg2PjubU6bTz9OwoDAAAAAAAAAAD0zXlPlIaK2W+3+ZjOzwUAJLmh4nwcLY3xHkRA1kw1X4cwGrBsuZFx6dzHp1v589dKkp59VsagS5211e3KKZbbxLkUsFq5oaJ04VMS1/EXrJX/zP8sHtg1Hb5BL2KxQKckxbdCONfuCTd1qHTGoxPX8Y85XLrpg+HBNL83AVixCKMBAAAAANCmLC/wH86NyBlPtGYJedXWLeaMUEBDjGCmuiu43khuPPU+e60Q2U8wV+piKSUjSDIcZb+ozgqRWXGHelHKdxbJEjuzImetbL/xe8KS9Lm2EpsDAECyg2aVQAAt9lVVVQmubwXWuinp8S/NOQLQK9vKW4PL1xU29GT/Xl6SNBeXguNDLZyfp/19J436uHK9WpDZGefzPvOe2veVXZ/TTHVncOzcicv6EokEAAAAAAAAAADIyq2ZknvTp6X7PSjbDYl5AOgi9wdvkk46u/mK4z148f1Yivhagb8PA8uZe9k/zQcZBwaT4yvey8/u0u+e6/Tay1uLo01Ud8z/Y/OxLd0ewMrgXvIP0vFnJK7jX/8M+V//4uDHlbJU2h1eeWxtJ6cHdFfWMFou3515YBH3x+9JDpzN7JDu/Gl4rBfRagBLFmE0AAAAAADalCUWlRS6yhRY27+dESMUsCcuqeoPBkVmq+E/UozkxlLvs9cKzr6Yoz5qYAVJsgTIDtzG+PqUqjMH/u0VG7dO9wR6lthZJz+HtOGWOSM0l7RtAACaKRhBs1CoqOLDUbT57fT+Ys+CG1Dehf/wnfS4CfSS917byvcExyYL6zu2nzRnvNbPRSvRX+s29efnaVX84hCjdPD4ZIfRrPP/7oh9VZ+Zvi44NuiGdPbaR/V0PgAAAAAAAAAAAO1wW05V9L7vyH3kzvS3IeYBoIvc4LDcmz7VPJrQixffj082X4dYA7CsueERRa/9d7lP3Cv3yXvnQ2mWL35Mzjm99vJIH31h9pf/T1a3z/+DyCywqrnBYbm33JC8kvfSZ/7n4Me7d9jrpjlfAZYKwmhLlhtdI/eeb7R24zGOQ8BqRhgNAAAAAIA2DeeKqdcdiux1MwXW9gezilE4jCZJpbogwfIMo9nvilWuixpYwa+WwgtGiKxUtw9v3NalfAK9aMTsQloJkVmfQ9pwS1JALUu8DwCAelbQrOzL8t43LFscSzu4nYR3zewS55yGrDhTyvAo0G0z1Z3mz85UR8No9jmv33+mbP1ctBL9tc6dWwmjlePw/VOI5o9Pac/nu+07M1/VveVfB8fOWntRpt8nAAAAAAAAAAAAlgq3dp101UvTrfygh3Z3MgBWPRdF0sia5JV6EAFxA4PScJO/ped7f60MgM5zA4Nyg8PSMSea6/h3/In8T78nSTrzGGkwY6tlbS2MtmFzq9MEsEK4fKHp71X+PdfI/+S78jf+P+nz19orjvUgFgt0DGG0JW1qo7TusMw3c72IVgNYsgijAQAAAADQprwraMANplo3KSyVJbBWC2YlvSi+FB+MBcxUdwXXGc2Np95nr+WNgIokVeqiDyUj+NVKeMEKkZX9PpXj+Rib93FwnaRIRJp9hLQSPbC2nzbcMlctmWND0XDm+QAAIM2fL4V4xYpVXbCsPoDaqBYw6jUruJo2PAp0233le8yxdR0MozXjvTd/LloLFxthtBaihNax5eDxKXw+7800cud573XDdPgis0g5nTdxec/mAgAAACA959zRzrknO+f+2jl3k3Nul3PO1/338za27dv878iOfaIAAAAA0CZ32bObr3T/k6QTz+r+ZADgyt9JHu9VBGR8Knm80J9rZQB0yZZT7bGtv5R/1smK3/xSrRnyeuYZ2eIuk/F2ybnm4UcAq4J7/AuSV9hTkn/2qfKvf4b8377QXo8wGpaTrG+QS4S4p5xzck9ocmwK6UG0GsDSRRgNAAAAAIAOSBvhSopiZQms1fY3khsz15mt7g7+u17S7futENlPMNciZZI0F4dDXlkCZGlus2d/fKHdLELa75VIkQbdUObtW/E9KyC3aD0jMjEUFRW5XOb5AAAgJQfNGmNFlXifsaYdWOs26/G7lTgT0A3bjDBawQ1oNNfJix2TLhrxKvt9qqoSHG0lXGzF1PbEJcW+GhwLqfrqoghjTe24EllhNN+7MNpP5r6vn+/5cXDslPGHa7JwSM/mAgAAACCZc+5c59ynnHPbJN0u6b8k/aGkcyQt3T++AAAAAEAfucPvL/eOL0qHbFo4UBiQJg+VLn6a3Js+KZf1hcwA0AL3tJclr9CrF9+PN4mNEGsAVhTnnPTY30pe6X/+Ubr1Jv3TVU6veHT686KJ6g5pbEIuIh0AQHKPeprcK9/Z3kbyBWk4+3V/QN9kfT4hl+/OPGC76qVyL/jLbLchjAasahypAQAAAADogGI0op2abrpesxjAcG5E+yp7U+1PkgbcoPIur4pfHB8oVWcO/NsKo43mxpvuq19yysvJyQdSZGV/MJgyZwS/rIhCEisqJs2HT8a0Vl5xcDxK2Z9PO6/h3EhLF/lZcbe5lOEWa71W7k8AAGoKCUGzcrxPQ9HwwY8bQmkLt9Ofd8EdjorB5WkfX4FumzbCaFOF9R194UjSprxP/ploJVxczI2aY6V4NvXvM5VUxxUjjNZ2Gjm9G6avNccumLiiZ/MAAAAAkMpJki7q9yQAAAAAYLlxx50i96Gf9nsaACBXHE3+a/BQ+FqRjmv2Iv8cYTRgpXEPPLnp1Sj+pg8pf8p5euMVTq96tNf4i8LXr9ebqG6XxtZ2ZpIAVgR3yTOl9ZvkX3JJaxsYmyBcjeWFMNqS55yTnvL70pop+Tc+N92NxprEpAGsaGSfAQAAAADogLQv8m8WlypG9gv/F+xvf8DLOWfeZnZ/GM17b4bRRnJjqfbXD8455Y2ISn0wpWTEF5pF6IK3Sfj61AJs7WYR0s6r1RCZGUYzAnJp12vl/gQAoCafEDSrD56GPq6XFFjrJiueOlct9XgmQNh95a3B5VOFDR3eU/JFI6WEc85WzieTfj9K2lej5DDa/HHFmZ9bb8Jod+39pf539hvBsS3Fh2jz0JE9mQcAAACAtu2VdHuXtv1VSUdl/O+OLs0FAAAAAABg+TvHeIOqk87uXQSkWRhtmGs3gRXnhDOar/Phdx745+hQuuPRRHV782MKgNXngSdLA0Ot3XacGBGWGZchn+OcXC7XvbkgWZrzoZp1G7s3DwBLHmE0AAAAAAA6IO2L/JsF1KzoxqL16rZTzIVjAaV4Pow2F88qVvhdokaipRtGk6SCEVGp7A+meO/NkFcrYbHBaEjOeLqkFmDzPnxfupRPoKedV9rY3qLtm98P6cIRZmiuxfkAACAlB80qvrLg43JCwCgpsNZNZng05eMr0G3T5XuCy6cK63s4C5/4M9HK+XnS70el/SHoNJKOK4Vo/rhiXdQe9yiMduP0debYhZPGxfgAAAAA+q0s6duS/kXS8yQ9VNKYpJRvbZ3ZHu/9zzP+V2m+WQAAAAAAgNXJPfnFi0MhuZzcU36/d5MgjAasOu7I4zLf5iUXNo+jTcQ7pNG1LcwIwErmxiakK5/f2o3HCKNhmckSN87luzcPNOU2Hytd8OTmK+Zy0sYjuz4fAEsXYTQAAAAAADogdeyqSfgsbXyqfjsjuXDcbLa6W5I0s///IaO58VT76xcrolILG5T9PlUVfk1P2lhdvchFGo6KwTErwFbjlO4J9NQRvRbmL9nfi3vikmJfbXp76/O07hcAANKwYqfSweDpgY/jfcaaUt7154/QZhityfkB0CvbKr0JoyWd83rZ0eKc8onHActQVDT3WQtBp5F8XKn9zmF8br77YbQd5W36+q6bg2NHDB6jBxRP6PocAAAAAGT2b5LGvfcP8d7/lvf+Hd77W71PKDMDAAAAAABgSXEnnCH3lhuli58mHXuidP6T5P7mo3JnXdq7STQNo4XfLBfA8uZe8BdN1/F79xz49ysf1fw69cnq9ubHFACrkvvdP5d76Vuy35AwGpYbwmjLinv1u+R+55rklSYPlcvbb9AOYOXjaA0AAAAAQAcUc+kuPGgWPksdRqtbrxiF912qzocCZhPCaFZUbanIRwNSoOVV3h82mIvtGEna+3LR7XIjwchCbV9ecfB2acNo1tdr8Xqtz9+yJ55r+r1aMu7TVkNtAABIUj6y/yBZbni9cNmHA0Z5V5DL8gfrDrIeB63HTaCXYh9rW9kKo23o2Ty8pLm4FBwbzhVb+vmdDxeHz89LGcKEjceZerVgW2Scz3t1P4z22e0fMYPPF0xe0bdjHwAAAACb9357v+cAAAAAAACA9rktp8ptObV/+x+fTP6rdHFpX+cLoEX3e1Dzde7+mXTkcZKkqVFpzbC0c85efW11uzSWYrsAVh3nnPS435b/9S+l//jr9DckjIZlJ8O1lsS2+s7l89LT/lB6xGPkn2a8gfCRnNsAq13U7wkAAAAAALASpI1wFZvEpZqNH1ivbn8jRuiqFg+Yre4KjkfKaSgaTrW/fim48BPNlf1hg6QYQtr7ctHtjK9lbV9WGCFtGC1tYKzVEFlSUC1NPGLOWKfVUBsAANLB8FBILXh64GMjYGSdF/SC9TiYFGkFemV3dceB8+NGU4X1Hd1Xs3NeM7LbxrmkdV4fiqVZrOCiVH9s6U8Yba46q1t2fio4NlXYoIeMndHV/QMAAAAAAAAAAAAA+mh80h7L5aWCfc0NgGXshDOlweTr+P0zTlL8j38k/7PvyzmnNU0u+5+sbidiBCCRO+2CbDcY55iCZSbLm9Dm8t2bB7LZfKy08X7BIXfahT2eDIClhjAaAAAAAAAdkDp21SQIkDYYUL+/ohFGm63OhwJmqruD46O58fl3flnCrIhKLWyQFCNpNb5gfS1r+zLDaCnvy7SBsU7PX0oXj5iLS5m3CwBAMzmXU2T8SaIx6FQxAkZJcbVuM88PquHHTaCXtpXvMcem8p0NoyXzZmS3nXPJYmSEoKtZwmjhcJwk5fcfW6yz+W6H0b6w41PaE4ffzvf8icco53Jd3T8AAAAAAAAAAAAAoI/WJITRhkeW/HW+AFrjRtfIXf3q5iv+95vkf+ds+e99TW9+SnISYKK6XY6IEYAkJ50tnXlJ6tVdUsAVWIoIoy1LLorknneNlGu4XvaoLdIlz+rPpAAsGRytAQAAAADogE7FrtIGA+r31ywUMGuE0UZyY6n21U95Vwgur4UNrPBCTvmW4ynW16hUC6N5I4xmphTSbb+RFbxrZigqmmPW/bVgHSM2l/Z7HAAAS8ENaK/fs2h5uSGEZgWMrPOCXrAev5MirUCvbCtvDS4fdEMdP+dPOuf18l05l7TOi7OE0SpxOLgoSXk3/+dS58IXj3YzjFaOy/rcjo8Gx0ZyYzpjzfld2zcAAAAAAAAAAAAAYAkYSwiORLyRFrCSuae/TDr2BPmXPTZ5xdJu+ff+hS574wcTV5usbpfGCKMBsLkokq75H+mT75X/zi3SHbdL//tl+wZja3s3OaATsoTR8v27Lh2LufOfKG04XP6mD0n33S33oJOlS58tx3EIWPUIowEAAAAA0AFpg2bDOTtaJWUIrNXtz4od1IJoM9VdwfHRZRBGK0ThuFllf0ClZIQXhnOtv0ue9TWoRcWsMELaMFqxhfhdFjmX01A0rD3x3KIx6/6qZ8XT0n6PAwBgyUcF7a2GwmgLQ2hlI2BknRf0wrARHi37fSrH+/o6N2Bb+Z7g8qnC+s6/c3ST7c1VS8HlaePAIdb5c5YwYWOAsabgBg7cR+ZnZoSRO+Ebu2/Wzsp0cOyctZdoMBrq2r4BAAAALEtHOOfeLek0SYdJGpG0XdJ9kr4l6WZJH/Deh3/RAAAAAAAAwNKzJiGMNhu+/hfAyuFOf5T8Fc+Trn178oq33iTnpAdskH4UeA/F4bikET9LGA1AUy6fly57ttxlz5Ykxa96ovSF68MrJwVcgSUpwzWzOVI7S407/nS540/v9zQALDGcPEZOAAAgAElEQVThtz4HAAAAAACZpI1YNVsvbXxqqC7OUcyNBtepRbBqgbRGVlBtKSm48DtwlOP5gIoV8Wo1KibZX4NaeMEKo6V9An0oGm5rHqlua8XdUsQjzNicEYQBACCtggvHwxpDaBVfMW7fv3fmSgqbzsXhEBTQK1YYbbKwvsczsc83mwWikxSj8O8tpepM6m00Bhhr8guOK+Hz+W5l0WIf68bp64JjBTegc9Ze0qU9AwAAAFjGjpJ0taQtktZKKkhav//jp0l6u6RfOuf+3jkX/uMRAAAAAAAAlpYNR9hj1fA1NABWFnfWZc1XmpuVbr9NV54cvr7l4pkb5q98IYwGIKuNR9pjY2t7Ng2gI7K8mXAu1715AAA6howlAAAAAAAdkCZi5eQ02CSKlSboNRQNK+cOPgFrBc5K1d3y3i/zMJoRUPHzARUz4tVGVMz6GpSqyWE0lzKMFrmchqKi9jSJqFhxszSKuVFtr9y3aLkVkquJfdWcVzvzAQBAkvIu/CeJSkOwqPY4v/j24fOCXkh6HJyLZzUuLv5A/1hhtHWFDR3fV9IZr/c+IbLb3rltSClOH0arGMeV+t83rPN5rzj1frL43uw3dfe+XwXHzlhzvsbya7qyXwAAAAAr3oik35d0iXPuSu/99zq9A+fcekmHZLzZMZ2eBwAAAAAAwErghopde8MuAMvEqRdIF10lffr9iav5Z5+qF39wWp/8dl7fvvvgtXibynfqz+597fwH45PdnCmAFchNHWqfi3BMwXKToYumHKkdAFgOOFoDAAAAANABaV7oPxQVFbkocZ1iiqDXUFRceBtj37Fi7YnnNFPdFRwfzY033Ve/WWG0WkBlzgwvFIPL07Ciagf25Y0wWoZ3FilGI03DaGkieRbr+9EKVdTsiefs+bQRmwMAQGoePK1pDKUdvH2h43NKKym6WmoSHgW6zQqjTRXWd2Fv9jmvlzdDvO2cSzYLF6dRto4r0cHjih1G644bpq8LLneKdP7EY7q0VwAAAADLVEXSLZJulPRdSXdI2i1pVNIRkh4h6ZmS6n8RfICkG51zp3vvf9Hh+fyupNd2eJsAAAAAAAAAsCq5KJJe8y7p0U+XbvuK/LveYK67/usf0M1PP12fePGf6NtDD9YD9/5IF8/eoEOq+99Qe4w3+ASQ0diEPTYcflNTYMmKkl+zt0C+f9elAwDSI4wGAAAAAEAHpIlYpYkBpAmsNe6rmBsz1y3FuzVb3R0cG0m43VKRj8JPNO+L5wMqvQwv1PbljTSCFVII7iM3ounKvYnrJAVY0mw/xLq/apLiEmm+NwEASJI3wmaNwaLGUFqNFVbrhUE3pEiRYsWLxqxQK9ALsY81XQ6fV052IYzW7JzXDhe3c24bvriqFM+k3kY5Dh9X8nXHFWdErL1f/HPfrp/N/VA/mftecOwhY6frkIGNHd8nAAAAgGXrNZLe6b0PV7Glb0u63jn3x5qPlb1cB6vWh0r6kHPuFO+Nd30BAAAAAABA/110lfTp9y9efvlzej8XAH3hnJNOOV865Xz5L39C+sHXg+v5b39BI5uO1uN3X6fH7w68KV9S4AgAQh5ydni5c9L6zb2dC9C29K/rUo7UDgAsBxmSlwAAAAAAwJImYpUmBpBqOw3rjBihAEmarc5oNg6H0UZz40331W9WAKWyP5hS6kJ4wfoa1PbViTBaqgBewte11e03i0ckhV3aCbUBACA1f1yvKcfl4HpWMLUXnHPmY2Gz8CjQTTsr06qqEhxbV9jQ49nYPw/DUbHlbZphtGr6MFrFh48rhbpgY4bLYdp2w/S15tgFE1f0cCYAAAAAljrv/TUJUbT69fZ4718p6YUNQydLempXJgcAAAAAAICOcI/5zfDy0x/V45kAWArceY+3Bz/5XvkXXhAeKwxIQ61fowNgdXKbj5UeePLigRPPkhtb2/sJAe1whNEAYKUhjAYAAAAAQAfkXE6DbihxnTQxgFTxtIZ1hqOiGeXaVdmu2equ4NhIbqzpvvqtPlRQr7w/bGCHF1qPeBWN25b9PpXjspFFyxhGSxEZs+aRavtWGK1JuCUxjNbGfAAAkKSCETZrDKE1htIO3N4Iq/WKdS6X9PgJdNu2sv3a+KnC+o7vL+mM18vb4eI2IrvWefFcXFLsq6m2UU51XAl/dlYYuVX37LtL35n5anDs/sPH68jh+3d0fwAAAABWF+/9P0m6vmHx73Z4N2+VdHzG/x7b4TkAAAAAAACsHCeeJT3rlQuXPeEF0iMe05/5AOivxz2vtduNTchlCcIAwH7uFW+X1m8+uGDDEXKvfEf/JgS0KsvjYL5/b9gNAEiPjCUAAAAAAB0ynBvR3sqexPFmaoG1vd7eTrFhO5HLaTgaUSmeWbTuW+/8M3M7yyGMljcCKLWwwVxcCo433kdZJH2d9sSz8oqDY1n+kNwsepZTvq34i/X5Nwu3WOG0QTeknMu1PB8AAKTmj+sHPy4H17OCqb3SangU6CYrjDYUFbsUtrXPeSu+bAbI2on+FnOj5thcXEr1e411XMnXHVes0LF1/t+qG6c/bMbWLpq8oqP7AgAAALBq/bmk+lfNnu6cW+u939GJjXvv75Fkl7oDeDEeAAAAAACAzTkn99zXyV/yTOknt0nHniB32NH9nhaAPnFDRelvrpf/w4xxxLGJ7kwIwIrnjj1Reu93pP/7huS9dOJZcoX+vpkx0JIsf5PMkdoBgOWAozUAAAAAAB1SjEa0Q9sSx9NoGlgLbKeYC4fRkozmxjOt3w9WAKWyP2xghb7aiUAk3bYUz8poGCgpErFoH03CbcO5kbZeJGR9DnNNwi3m/dlGaA4AgJpmj+s1VljJCqv1SqvhUaCbtpW3BpevK6zv+YvOrWix1N75ZDGyw2iz1Zl0YbQ4fFwpRAePK3YYrXN2VXboK7s+Gxw7bOAIbRk5uYN7AwAAALCKfU3Sdkm1V8HlJG2R9KW+zQgAAAAAAABNucOOlgiiAZCko34j+20IowFogyuOSief2+9pAG0ijAYAK03U7wkAAAAAALBSpIldpdEsoBaKchRTxAAapQkI9Ft9qKBeLWxghb7aCi/k7PDCXHVWseLgmBVSCGkWbksb0TNvb3z+pSbhFvP+bHM+AABIUsEImzWG0Ro/PnD7KBxW6xUzPJoQgwK6bVvlnuDyycL6ruwv6Zy3VLVDze2cT1rnts32Wc88rtQFG+2QXOfSaJ/f8TFzLhdMXtHzmB0AAACAlcl7H0v6ZcPiQ/oxFwAAAAAAAABAdm795uyBonHCaACAVS7LNZiE0QBgWSCMBgAAAABAhzR7sX/aGEDTwFpgO+sKG1Jtu6YYjS6L2FXehQMo5f0xASv01c7nNuiG5IynTOb3Fw4jZAmjJcXXpPbCblJCuMUIn9VY92dSjAIAgLTyRtis7Pct/DjeF1zPCqv1ivX43OzxFeim6XI4jDbVpTBa0ilvt8JoQ1HRPNcuxenCaI3HmZr644q1D+87E0bbE8/p89s/ERxbm5/SKeMP78h+AAAAAGC/uYaPh/syCwAAAAAAAABAS9wfv1s67tT0NxgjjAYAWOUIowHAikMYDQAAAACADmkWj0odRmshsPbQsbNSbbvm5LEzFbml/7SAFUCp+H0qx/tU2R9Ia1RsI7zgnDNvP1edle9EGK3p17iYelvB7Rvfi3v9HlV91bzdXBdCcwAA1FiP6+V44eN52Xh8t4KpvWI9HlphUaAX7jPDaNnCyWklnfNaPwtOkQajoZb3GbnI/vlLGSZMd1wxwmjG+X9WX975GTPkdt7E5X0/xgEAAABYcdY1fHxfX2YBAAAAAAAAAGiJW3eYonfcIveBH8u9+YbmNxgnjAYAWOWyhNHyhNEAYDlY+q+ABgAAAABgmWgWj2oWTku7Xmj8pNEz9Nh1zzCDIzVOTg8ePV1PWP+bqebSbwUjDlD25cQIyXDK+9q+fThMNhfPynsjjJbhCfTm3yujqbeVdftzCfGIuWop8/YAAEjLflzft+DjSsPHB2+ffJ7TbUnhVKAfqr6q7eXw69qn8ut7PBv7Z2E4KrYdZbZ+R7JCY43SHFes6FsnwmhVX9Vnpj8cHBuKijprzUVt7wMAAAAAapxz6yQd3bD4rn7MBQAAAAAAAADQHrfhCLmHnC1tPiZ5vbWH9GhGAAAsUQPD6dfNEUYDgOWAozUAAAAAAB3SLGiWNi5VjJKjWKHtOOd08dTjdd7EY3T3vl+o6uPgbdcPbNRIbizVPJaCQhQOoJT9vsQIiRUuScv6WpWqs2YYwQopBLffLH7X5vyTvhdL8axGNR4cmzNic2mjfgAAJMkbYbOKLy/4uNzw8cHbh8NqvWI9fluPn0C37axMK1Y1ODZV6E4YLemc1/pZaDdaLNV+R9q6aHmpmi6MVo7Dx5VCdPC4YoWOOxFGu3X3FzVduTc4dvbaR5lhZgAAAABo0VO08E1zt0r6QZ/mAgAAAAAAAADohE3HSHfcnjwOAMAq5sYn0l/xmevvdekAgHQIowEAAAAA0CFNg2YpgwBNo1kJ44WooCOGjk21n+XACqBU4nJihKTd+IJ1H8/FdhhNGcJozcJn7c4/KcKXdL+VjNhc2qgfAABJCsbjetnvW/hxvC+4nnX7XjHDqYTR0Cf3lReHwmq6FUZLYkXKhqP2o1/FXPh3rdRhNB8+rtQHG+2z+fbCaN573TB9rbH/vM6duKyt7QMAAABAPefcBkmvaVj8Ee99+9VnAAAAAAAAAED/NAufbV45ryEAAKAl45Pp182R2gGA5SBqvgoAAAAAAEijadAsZVyqaTRrFUWqCnWhgnplv8+MkETKacANtrXfpPCJFUaLMoTRmn2vtPs1HoqKcsZ85oz4mWRH04Zz7ccsAAAoRNbjennBx5WGj5vdvlescOqeaqnHMwHmTZfvCS4vRqNth3Yt1jmmZEcCO/H7S1K4OA3zuFIXXHTGn03jNtsBPyx9V3fs/Vlw7NTxc7Q2n+FCHAAAAACrhnPugc65yzPe5lBJH5W0oW7xPkl/3sm5AQAAAAAAAAB6zx3eJHy26ejeTAQAgKWKMBoArDgcrQEAAAAA6JBmL/hPGwRoGs3qUuRgKaoPFdSLFWumsis4VsyNyLn0kbIQ6z6ej4oZYYQM+2wWv0sb0bNELtJQNKy5eHGoxQpWSAlhtFUU4wMAdE/eeFyvxPsWfFz2+4LrWbfvFevxcK/fo6qvKOf4kwt6a5sRRpsqrO/xTOZZAV4rapZFMRoNLi9VZ1LdvjHAWGOFmBdqL4z26ekPmWMXTDyurW0DAAAA6C/n3GaFr8E8tOHjvHPuSGMzM977+wLLN0q63jl3m6T3SbrWe/9jYx5jkp4l6TVaGEWTpD/z3v/U2DcAAAAAAAAAYLk47lR77IgHyI2u6d1cAABYirKE0Yq8TgoAlgNepQMAAAAAQIc0i1kN54qpttOpwNpKkE8IFeyu7ggu78T9Y30t5+JZxT4cRnBKH0YbjIbl5OSNyEIn4nfF3GgwjGYFKySp1MWYBQAAVoCoMVjUXsCoe4Yj+1xurlrSaH68h7MBpG3lrcHl3Q2j2ee8pTgcKevI+XnOCKMZ+2xUjo3gYnQwuGidz7eTRfvVnp/q/0rfCY6dMHKqNg4e3sbWAQAAACwBt0i6X4r1Nkn6mTH2b5KuTrjtCZL+UtJfOud2SvpfSfdJ2i1pVNLhkh6s8LWg7/De/2mK+QEAAAAAAAAAlrotp0nHny7971cWDbknv7gPEwIAYInJEkYbn+rePAAAHUMYDQAAAACADmkWsxpKiGnUSwqsDboh5Vwu07yWs0JdqKDRrooRRutAxMuKN8yHw9oPo0Uu0nA0YoYcrPBDFubnEIfjZ7GPtScQUkvaFgAAWeRd+HG97BcGiypmGM0+L+iFpHOMUjyrURFGQ29tK98TXN7NMJpzCWE0I7KbNhCdpBgZYbSE6G89+7hyMLjoXBRcxytOtY+QG6evM8cunLyi5e0CAAAAWLXWSDorxXqzkl7ivX9nl+cDAAAAAAAAAOgR55z0tx+Vf+srpK/dKO3eLt3vQXKX/6bcpc/q9/QAAOi/8YnUq7oM6wIA+ocwGgAAAAAAHZIUNBuKhlMHzZKiG52Ifi0n9aGCRruq24PLh1MG6JJY9/NcPCvfgTBabR9mGK0DITI77hbe5954j/m5EUYDAHSCFTarDxZ5782AUT6yzwt6Ienxec4IjwLdZIXRJrsYRkti/Rx04lyyaJyfW+fTjRoDjDX1xyXrbN778DlyM9vK9+ibu28Jjh019EAdM3xcS9sFAAAAsGr8QNIbJZ0j6WRJwylu8yNJ75H0Tu/9fd2bGgAAAAAAAACgH1xxTO4P/6nf0wAAYGkam+zOugCAviGMBgAAAABAhyQGzTLEAJKiG50IZi0neSOgIkm7KjuCyztxH1nbmKt2LoxWjEa0zRjrZjzCClYkBV2sbQEAkEXBCJuV44PBIiuKJtlhtV4ZjIbl5ILnAnNVwmjoraqvaHslfDa5rrChx7OZZ8XHOnJ+nhsNLreiv43KVnCxLsTsFAXXsc7/m/ns9usVKw6OXTh5xfy7+AIAAABY1rz3R3Zx21slvVqSnHORpPtLOkbSJklrJQ1JmpO0XdLdkr7uvb+3W/MBAAAAAAAAAAAAgKXMDQ7Jr5mSdlqv1qozPtH9CQEA2kYYDQAAAACADhmKiuZYltBVYmBtlQWqCi4cUJGkXZXtweWduI+sbZQS4mFZwwbd/jpb33NWuKWUEHTpRKgNAAAreFofLLLCSlLyeUEvRC7SUFQMxkSTAqNAN2wvb5M3oltThfVd22/WGLDUmXPbYhQOo83FJcW+qsjlEm9fMY4t6YKL2cNos9Xd+uKOG4Jj6wuH6cTRUzNvEwAAAMDq5b2PJf1w/38AAAAAAAAAAAAAgJBNx6QLo62Z6v5cAABtI4wGAAAAAECH5FxOQ9Gw9sRzi8aGc3Y0rVGnAmsrQSGyAyg7q0YYrQP3UdHYRlKsRRkjEUnztPafRdEIUOyq7tCuyo5Fy7eVt5rbyvL9CwCAxQqbxaqq6qvKudyCSFojK6zWS8NGGG26fF/w8RXoljv2/swcm1xqYbQunttK0r3lXx/Yx3A0okK0+FhRjsPHlvrfN6zPbW+8J/PP9+d3fFz7/N7g2AWTj20acgMAAAAAAAAAAAAAAAAAAEBGm46Rvv+15uuNre3+XAAAbSOMBgAAAABABw1HI+EwWoYYQFJgLSkIsBIVEgIos9XdweWduI+GW9hG1kiEFT/Lu0JiEC4t63vuh6Xv6hW3X516OwU3sCRCNACA5S/pcb3iy8q5nCoJEVIrrNZLxdyIpiv3Llr+wXvfpQ/e+64+zAhYaDQ3rqFouN/TWKCVc+tGxWjUHHv9z15w4N8FN6DjRk7SMw99kYq5+dvEvqqqKsHb1p/nOhc+n79l56d1y85PtzLtRcZya/Sw8Ud2ZFsAAAAAAAAAAAAAAAAAAAA4yB1+rHyaFdes6/ZUAAAdEPV7AgAAAAAArCS1F98vXp4tBmC98D9LYG0liJSTy/j0RSfuo1a2kTWMZgUirGBaVtb3YubtrLLvOQBA9+QTwmbl/UG0clw21ylE/Q91rrZzMSw/k4X1/Z7CIp04n0x7blv2+/Tdma/pn+9844FlFR+OokkLg4tZz+dbce7EZR2JIAMAAAAAAAAAAAAAAAAAAKDBaRc1X+fYE+XWTHV/LgCAthFGAwAAAACgg6xYRtaIhhnNyhhYW+6ccyq4bBGUTgRLWomKZQ0pWIGI4Q4FzToVbrG+FwEAyCopbFbZH0SrBdKCt08Iq/UKj4tY6qby3Q2jtRIP68R56VBUzLTvn8x9X/ft2yqp2XGl/rjU3TDaoBvS2Wsf1dV9AAAAAAAAAAAAAAAAAAAArFpbTpUufEriKu53runRZAAA7cr3ewLoHefcsKSTJB0naULSkKRdku6RdKukn3jvfQf2U5B0lqQjJG2UNCPpLknf8t7/vN3tAwAAAMBSdsjAofrJ3PcWLy8cmm07hUN1596fL1q+LuN2VoJ1hQ26a98vU69/yED799GgG9JYbo12V3emvs1UIVuE4pCBjeHlHfoaW9vPajV+zwEAumPQDZlje/0eSVLFl8118hljqd3QqcdpoFs2Dh7e1e3nXUHjuQntqm5PtX7BDWg8v7bt/UYu0rrCobq3fHfq29xTvkvrBjaonHBcKUQHg4tZz+ezOmvthRrJjXV1HwAAAAAAAAAAAAAAAAAAAKuVc056zbulsy6T/9bnpS9+TLrvrvnB858k94yXyx1zfH8nCQBILer3BNB9zrkznHP/LWmHpP/P3n2HR37V9+J/n5G0u9JWr73r3gsG22DjRjU2mGJCL+b+CDUECJAfJJcQSiB0AgnhXgiQBLihtwAGYxIw1TYxNhAb27Exwb33trvaova9f2h9V9bOjEZazai9Xs8zz+p7zuec89mir0bSzlu/SPJ/knw4yfuSfCzJ15L8PskNpZR3l1JWT/GcNaWUTya5NcnPknw+yQeTfDzJaUmuKaWcW0p57o7+ngAAAGarY5Y/drux7tKTI5c/cnL7rDhhu7HFZUmOWHbslHubqx6+/NEt1+7cs2v2W3LIDp9ZSskxK7b/u2xk/yUPyqqenSd1xuFLj86SWt9248dO4tzmPR0yLeEOx9b5twgAU9HbtbTh3Mbh/iTJYDXQsGY2BKMdvfwxKSkz3QbUVUstx604sa1nlFJy1CQ+tzly2SOyqLZ4Ws6e7PPS++8rQyOt3VeOXPaItr1/99b68oSdntmWvQEAAAAAAAAAAAAYVWq1lCc8P7W/+Hhq374mtZ9vGX2864tC0QDmGMFo81gppbuU8vEk5yY5NcmiCZbsmeSvk/y2lPKUSZ51SpJLk7wmSbNgtUcl+WYp5UullMavggMAAJijHrz0yLxw19dmadfyJMnq7jV53Z7vyOqeNZPa5+HLH5Xnrnl5emujnzqt6dktr9/73VnWtWLae57tnrLz83PiqqdlUWkeqLDP4gPzhr3ek1qZni93PHvNS/OIFY9vGsJSUsshfUfkT/Z826T37+1amj/b+z1Z27PH6HWtL8/a5SU5dsXjptzzWLVSyxv2ek/2WXzglNZv60cwGgDTY1FZnFqDb0tsGrk/GG2w7nx36Z62j/E7Yr/eQ/Ly3d+YFV2rZroVeICVXTvlT/Z8W9Yu2r3tZz137ctz/IqTmj5PrqUrRy17VF6422un7dyn7nxqHrfqqekpE327a9RE95UkD9jroL6H5CW7vSErunbasUbHWd29Jq/a863ZqWeXad0XAAAAAAAAAAAAAADmq1JV1Uz3QBuUUkqSf03yvDrTv0tyeZJNSdYkOSbJ+Fd5DCR5ZlVVP2jhrBOTnJkHBq9VSS5McnWSVUmOSjL+FR9nJHlWVVUjE53RTqWUwzIa6pYkufTSS3PYYYfNYEcAAMB8MFKNZP3wfVnRtSqjn6JNdZ/hbBhenxXdwjeGqsHcOXBbqmz/tYxlXSuyvHtlW84dGNmSuwZvrzu3snun9HUt2+Ez1g3dm2Vdy1MrXTu8Vz3rh+7LhuF1LdfXSi1renZrWz8ALFxvuvLF6R9ev934H+3+FzlmxWNy0frz86mbP7jd/JJaXz5y8Fc60WJLqqrKXYO3NQ1cgk5ZVFuU1d1rd+jzjqlo9jx5p55dsqTW25ZzB0cGc9fgts8LPnPz3+WWgeu3q3vWLi/Jk3Z+Tq7ffFU+eN0b6+719wd9Ob1dD/w5PtP5/r2otjiru9d0/O8GAC677LIcfvgDfsLt4VVVXTZT/QCA/6MHAAAAAAAAAMwH/n9e53TPdAO0zR9n+1C0c5K8rqqqS8cOllK6k7w4yf9Kcv+ryBcl+Xwp5ZCqqu5rdEgpZa8kp+WBoWjnJnllVVWXj6lbnOTVST6cpGfr8NOTvC/J2yb3WwMAAJj9aqWWld3jM6insk+XULStuktPdlu8V8fPXVRbnN0X793WM9r9d7y8e2XbguMAYDL6akvrBqNtGulPMhqEWk936ak7PlNKKdll0W4z3QbMqE48T66np/bAzwtWdK+qG4y2cet9pVnAWXdZtN2Y928AAAAAAAAAAAAAAJhZtZlugLYZHzZ2TpKTx4eiJUlVVUNVVX02yclJtoyZWpvkTyY4591Jxr7S/xdbz7l8bFFVVVuqqvpYklPHrf+fpZR9JzgDAAAAAIB5oLe2tO74puH7A4wG6s73zLJgNGD26Gt0X7k/cHGk/n0lSbqLnyEFAAAAAAAAAAAAAACzjWC0eaiUckSS/cYNv76qqsFm66qq+s8knx43/PQm5xyc5KVjhgaSvKyqqs1NzvhOks+PGVqc5J3N+gIAAAAAYH7o7aofYLRx5P5gtPpfxu4pi9rWEzC3NbqvTBy4uCillLb1BQAAAAAAAAAAAAAATI1gtPnpgHHXN1RVdXGLa08fd31wk9oXJukac31aVVVXtHDGh8Zdn1pKWdJKcwAAAAAAzF19teYBRkMj9QOMuktP23oC5rbeWl/d8U0TBC66rwAAAAAAAAAAAAAAwOwkGG1+Gv/KshsnsfaGcdc7Nal99rjrz7ZyQFVVlyf55ZihpUme1MpaAAAAAADmrt6uBsFoWwOMhqqhuvM9tUVt6wmY23obBC5uvD9wsaofuNhT3FcAAAAAAAAAAAAAAGA2Eow2P9067nrJJNaOr727XlEpZbckDxszNJTk3Emcc9a461MmsRYAAAAAgDmoYYDR1mC0wYYBRj1t6wmY2yYKXBysBuvO99TcVwAAAAAAAAAAAAAAYDYSjDY//TrJljHXDy6l9La49ug6e9Vz+LjrS6qq6m/xjCT5xbjrwyaxFgAAAACAOaivUYDRcPMAo27BaEADfQ0CF//ffWWkfuBid1nUtp4AAAAAAAAAAAAAAICpE4w2D1VVtT7JF8YMLUnyionWlVK6kohUJLMAACAASURBVPzpuOHPNyh/yLjrK1tucNRVE+wHAAAAAMA809sgwGjjyGiA0VBVP8CoR4AR0EBvg8DFbfeV+oGLPQIXAQAAAAAAAAAAAABgVhKMNn+9Jcm1Y67/tpRycqPiUkpPkk8lOWrM8E+TfKvBkoPGXV8/yf6uG3e9cyllp0nuAQAAAADAHNIoGG3T8GiA0eBIgwCjmgAjoL6+BveVwWoggyODGRS4CAAAAAAAAAAAAAAAc0r3TDdAe1RVdXcp5aQkp2U07Kw3yZmllG8m+WaS3yXZlGSXJI9M8uokDxqzxa+SPK+qqqrBEavGXd8+yf42lFI2J1kyZnhlknsmsw8AAAAAAHNHX1eDYLSRrcFoDQKMugUYAQ30NrivJMnmkf4MVvUDF7uLwEUAAAAAAAAAAAAAAJiNBKPNY1VVXVtKOT7Jy5K8KsnRSU7d+mjkriQfSfJ3VdXglSKjlo273jSFFjflgcFoy6ewxwOUUtYmWTPJZQfu6LkAAAAAAEyst1Y/wGiwGsjgyECGGnxZukeAEdBAo/tKkmwa2ZjBkfqBiz01gYsAAAAAAAAAAAAAADAbCUab/7q2PrYkqZKUJrU3JPnrJF+bIBQt2T4YbfMUetuUZKcme07Fa5O8cxr2AQAAAABgmvV1TRBgVDUIMCoCjID6+roaf3tp43C/wEUAAAAAAAAAAAAAAJhjajPdAO1TSnl0ksuT/GOSR2fiv++9k3w2yfWllD+e5HHV5Duc0hoAAAAAAOao3lqzYLT+DDYIMOoWYAQ0sLgsSWnwLbDR+4rARQAAAAAAAAAAAAAAmEsEo81TpZQnJPlxkv3GDN+U5C1JjkqyKsmiJLsleUqSzycZ2lq3JsmnSymfKqWUBkdsGHfdO4U2x68ZvycAAAAAAPNIb1fjYLSNw/0ZHGkQYFQTYATUV0pJb62v7pzARQAAAAAAAAAAAAAAmHu6Z7oBpl8pZU2SryZZMmb4jCQvqqpq3bjy25KcmeTMUso/Jflekp23zr0yyVVJPlTnmNkajPbJJN+Y5JoDk5w+DWcDAAAAANDE4rIktdQykpHt5jaN9GeoQYBRjwAjoInerqXZOLL9t5k2DvdnqGoQuFgELgIAAAAAAAAAAAAAwGwkGG1++p9J1oy5/l2SU6uq2txsUVVV55dSXpDkx2OG31lK+WxVVbePK79v3PWaTEIpZVm2D0a7dzJ71LO1z/G9TtTLjh4LAAAAAEALSinp7Vqa/uH1281tGu7PoAAjYAr6aktzV53xTSP9GRxpELhYE7gIAAAAAAAAAAAAAACzUW2mG6Atnj/u+kMThaLdr6qqnyT5+Zih3iT/o07pFeOu9229vbr1d1dVdc8k9wAAAAAAYI7pqy2tO75ppD+DVf0Ao+4iwAhorLer/n1lY5PARfcVAAAAAAAAAAAAAACYnbpnugGmVyllaZIDxw3/ZJLb/DjJY8dcH1+n5vJx1wdN8owDxl3/dpLrAQAAAACYg3obBKNtHO7PkAAjYAoa3Vc2jfRnSOAiAAAAwKi7L0yu/2bSf+32c9VQMjKYLN032f2UZI8nd7w9AAAAAAAAALifYLT5Z1WdsVsnucf4+l3q1Fw67vqhpZS+qqo2tnjGoyfYDwAAAACAeai3q3GA0eBI/QCjntqidrYEzHF9jYLRhvsz2CAYrae4rwAAAAALyA3fTs59wWj42UT++6PJQ9+XHP5X7e8LAAAAAAAAAOqozXQDTLt764zVfzVIY8vGXW8YX1BV1S1JLhkz1J3kMZM448Rx19+fxFoAAAAAAOaoRgFGG0f6M1gN1J3rKT3tbAmY4xoHLm7M4Ij7CgAAALDAVVVy0ZtbC0W736XvSbbc1b6eAAAAAAAAAKAJwWjzTFVV/UnWjRs+apLbHD3u+tYGdd8ed/3yVjYvpRya5PgxQ/1JfthaawAAAAAAzGVLuvrqjm8a7s9QVf+Fed1lUTtbAua4RoGLm0aa3Fdq7isAAADAAtF/TbL+ismtGRlIbvlRe/oBAAAAAAAAgAkIRpufzhp3/apWF5ZSdkvyjHHDP29Q/uUkw2Oun1NKObiFY9487vpfq6ra3GKLAAAAAADMYY0CjDY2CTDqKT3tbAmY43q7GtxXhvszWA3UnXNfAQAAABaMW86c2rqb/216+wAAAAAAAACAFglGm5++Pu76BaWUF020qJSyOMkXkywbM7whSd3/EVFV1RVJPj9maFGSz5VSljQ545lJXjZmaCDJuyfqDQAAAACA+aG3QTDahqH7UqWqO9dTFrWzJWCO66311R3fNNKfwYaBi+4rAAAAwAKw/qrk16+d2tprvzS9vQAAAAAAAABAiwSjzU9fS3LxmOuS5AullI+WUnavt6CUclKS85OcPG7qQ1VV3dPkrHcmGTv/qCQ/LqUcOm7/xaWU/z/JN8at//uqqq5rsj8AAAAAAPNIb1f9YLR1w/c2XNNT62lXO8A80ChwcdNwf4aqgbpz3cV9BQAAAFgArvjkjq1fd8X09AEAAAAAAAAAk9A90w0w/aqqGimlPC/JuUnWbh0uSV6f5E9LKZckuTrJpiSrkxyVZLc6W/17kg9NcNaNpZTnJDkzyaKtw49O8ttSygVbz1mZ5OFJ1oxb/r0k75jc7w4AAAAAgLmsr0GA0bqhxsFo3WVRwzmARoGLW6rNKVX9nxPVU3NfAQAAABaA28/ZsfV3/DxZcfD09AIAAAAAAAAALRKMNk9VVXVlKeVxSb6Y5JgxU7UkR259NFye5NNJ/qyqqsEWzjqrlPLsJJ/LtvCzsvXcYxos+2qSV1ZVNTzR/gAAAAAAzB+NAoxG0vjLxT2lp13tAPNAo8DFJKkyUnfcfQUAAACYd4YHkkventx4erLpliRVMrShcf0hf5r8/uPN9/zlK0YfSdK9PBlav21u9dHJ8f+S7PTQHW4dAAAAAAAAAMaq/yPSmReqqvpdkkcmeWmS8zIaeNbMpiRfTvKoqqpeXVXVpkmc9e9JDk/yT0nuaVJ6fpLnVVX1wqqq+lvdHwAAAACA+aFZgFEjPWVRGzoB5otGgYvNuK8AAAAA8875L0su/7tk/e9HA8yahaKtfEjy8I8kB/5x6/uPDUVLkrsvSH74iGT9VVNqFwAAAAAAAAAa6Z7pBmivqqqGknwhyRdKKSuTHJNk/ySrkixOsj6jQWaXJvmvrfVTPev2JK8ppbwhyaOT7JtktyT9SW5K8puqqq7Zgd8OAAAAAABz3FQCjLprPW3oBJgvphK42F3cVwAAAIB5ZOPNyfVfb73+8T9Jaj3JcZ9KDnpV8rMnJwPNfi5yA8Obkgv/PHncdye/FgAAAAAAAAAaEIy2gFRVdV+Sn3TgnIEkP2v3OQAAAAAAzD29Uwgw6imL2tAJMF8srvWmpKRK1fIa9xUAAABg3hgZTm7+t6Qaaa2+Z1WyZNfRt0tJdj42OeYTyS9eOLXzbzojuebLyX7/X1JqU9sDAAAAAAAAAMbw3WcAAAAAAKBj+rqWTXpNd+lpQyfAfFErtSyp9U1qTU/NfQUAAACY40aGkgvfmHxrl+RXr2p93X4vHA1EG2vPpyXdk/+hFv/PeS9Kvrk6ufgdrQe0AQAAAAAAAEADgtEAAAAAAICOWVyWpEzi2xO1dKWrdLWxI2A+6Oua3At3u8uiNnUCAAAA0CH/9e7kdx9JBu9tfc2uT0ge9v7tx3uWJ489LelZMfV+Bu9LLntfcvnfT30PAAAAAAAAAIhgNAAAAAAAoINKKemrtR5g1FN62tgNMF/01vomVe/eAgAAAMxpVZVc9emJ6/r2Sk44ffTxtN8nj/9RsmhV/drdn5Q857bkqA/vWG+t9AUAAAAAAAAATXTPdAMAAAAAAMDC0tvVl/6R9S3V9tQWtbkbYD7onUTgYpL0FPcWAAAAYIpGhpP7LksG70tSTfPmJSm1pHtZUlucbLm9ftmmW5PNt0283WF/lez1jNaP71qSHPjHycVvTUYGW1831vorki13JYt3ntp6AAAAAAAAABY8wWgAAAAAAEBHTSbAqLv0tLETYL7o7ZpcMJp7CwAAADAlt52V/OSkme6iNV19yT6nTn7dopXJ3s9Nrvva1M/+1i7J0R9NHvT6qe8BAAAAAAAAwIJVm+kGAAAAAACAhaVvEgFGPcKLgBb0TTJwsZTSxm4AAACAeWlwXfLTJ8x0F61ZdkDy+B8ni1dPbf1xn0r2enZSuraNrXhwsvKwJC1+XeWCNyS3nzO18wEAAAAAAABY0LpnugEAAAAAAGBh6Z1UgNGiNnYCzBe9AhcBAACAdrvhO0k1MtNdNNe9LHna75K+PXdsn57lyQmnJYMbko03JkvWbgtZG7g3qfUk3UuTr/cmw5sb73PNF5O1J+xYLwAAAAAAAAAsOILRAAAAAACAjhJgBEy3yQQu9ghcBAAAYCEaHkhuPysptWT1scmilTPd0ey28abkjv9IBtdvG/vVK2eun1bt94c7Hoo2Vs+yZOWhDxxbtGrb23v8QXLDtxqvv+ozyc7Hj77dvTTp3SPZdHMy1J+Ukqw8LFl99GjQGgAAAAAAAABsJRgNAAAAAADoqL7JBBjVBBgBE5vMfaVb4CIAAAALzYZrkh8/Ltl4w+h1757JCd9Odj52Zvuara78VPLr1ybV8Ex3MjmlOznoVZ098+DXJjeclqRqXDNRoNwuj0pOOD1Zssu0tgYAAAAAAADA3FWb6QYAAAAAAICFpVeAETDNersELgIAAEBD579sWyhakmy6KfnVq5KqSZjVQtV/ffLr18ytULTSlex8XHLSD5LVD+/s2bs9Pnnst3Zsjzt/kVz2vunpBwAAAAAAAIB5oXumGwAAAAAAABaWSQUYFQFGwMQmE7jYI3ARAACAhWSoP7nj3O3H77koufs/k52P7XxPs9kNpyXVyOTXHfa25KHvndqZ1UjytQm+XvHgNyVHfrDxfJnBn5W997OTZ16bnL7f1Pe4/l+To//3dHUEAAAAAAAAwBw3g98FBwAAAAAAFqI+AUbANOubROBit8BFAAAAFpKBe5NquP7cjd/pbC+z2b2XJpd/OLnwz6e2fp/nj4aTTeVR6052Pan5/mse03yPmda39+hjqjbdkgzcN339AAAAAAAAADCnzYLvhAMAAAAAAAtJrwAjYJr1ClwEAACA+hqFoiXJZR9IRoY618tsdfXnk+8fmfzmTVNbv/tTkp2O3LEeHvympHTVn1v10GSPp+7Y/u1WaslD3rxje/zw+GSkyb9XAAAAAAAAABYMwWgAAAAAAEBHTSrAqCbACJjY5ILRBC4CAACwgIwMNp+/5czO9DFbDW1MLnh98wC5+y07cPQx1kPenJzwnR3vY49TkhO//8AAtBUPTg55fXLyOUmte8fPaLdDXpc88kvJ7k+u/2c1kXX/ndz6w/b0BgAAAAAAAMCcMge+Sw4AAAAAAMwnAoyA6dbX1fp9pVvgIgAAAAvJ8Mbm8zd9N9nzDzrTy2x0+9nJ4LqJ6x53RrLn09rby+5PHH3MZfv/4ejjfnf8IvnRo1tff+N3R0PiAAAAAAAAAFjQBKMBAAAAAAAdNakAoyLACJjYklpvy7UCFwEAAFhQ+q9rPr/+qs70MVsM3Jtc+enkik8m/de2tqa2ONnlUW1ta97a6ahk0U7JwD2t1a+/or39AAAAAAAAADAn1Ga6AQAAAAAAYGHprbUejCbACGhFrXRlSa2vpdoegYsAAAAsJBuunWD+6o60MSsM3JP86DHJRX/ZeihakjzkLcni1W1ra17r7k2OeFfr9RuubFsrAAAAAAAAAMwd3TPdAAAAAAAAsLAsri1JSS1VRias7akJMAJa01dbms0jGyes6xa4CAAAwEIyUQDYxuuTkcFkIXwd7uovJPdd1nr9AS9L9nx6svdz2tbSgvCg1yfLD05uOC3ZeFPSt1ey5fbkxtO3r+2/PhneknQt7nyfAAAAAAAAAMwagtEAAAAAAICOqpVaemt92TiyYcJaAUZAq3q7liZDd0xYJ3ARAACABaX/mubz1fBoGNXyAzvTz0y65czWa4/82+Qhb2pfLwvNHqeMPu533+/qB6OlSjZck6w8tGOtAQAAAAAAADD71Ga6AQAAAAAAYOHp7VraUl1PEWAEtKa31up9ReAiAAAAC8CNZyTfe0hyw2kT1264qv39zKQ7zkt+8aLklu+3vmbPp7WvH5Jl+yelwX9jX39FZ3sBAAAAAAAAYNYRjAYAAAAAAHRcnwAjYJr1tRi42C1wEQAAgIVgcF2y7vLWas9/eXt7mUl3nJv89PHJtV9ufc2hb0xWPrh9PZF0LU769qk/t+HKzvYCAAAAAAAAwKzTPdMNAAAAAAAAC0+vACNgmi2p9bVUJ3ARAAAAxtl0czK0KenunelOpt9/fywZ3txa7eHvSHY9afRB+y0/KOm/dvvx9YLRAAAAAAAAABa62kw3AAAAAAAALDy9tdaC0XpqgtGA1vS1el8RuAgAAADbW/fbme6gPe76ZWt1+zw/eeh7hKJ10rKD6o8LRgMAAAAAAABY8ASjAQAAAAAAHddqgFG3ACOgRb1dLd5Xaova3AkAAADMQfMtjOru3yQ/Pinpv661+r2f195+2N7yBsFot/4w+f5RyTVf7Gw/AACzRVUll/998r2HJF9bkpz5iOSmf5vprgAAAAAAOkowGgAAAAAA0HGtBhj1FAFGQGtaDVzsEbgIAAAA29tw1Ux3MH023pj89OTk9rNaqz/g5cnez2lrS9TRKBgtSe65KDnvJcl1X+9cPwAAs8Xlf5f85i+SdZcnI1uSu36ZnPOM5LazZ7ozAAAAAICO6Z7pBgAAAAAAgIVHgBEw3QQuAgAAwBg7H5sc84kHji3ddzRk4fY6gQrrr+xMX51w6XuTgbub1xz4imTn45Kdj09WPTQppTO9sc2yJsFo9/v9PyT7vqD9vQAAzBZVNfocaLvxkeSKTya7Pq7zPQEAAAAAzADBaAAAAAAAQMe1GmDULcAIaFFvi4GL3QIXAQAAWAhWHDL6GO/WH9cPRttwVft76oT+65OrPztx3RHvTvr2bH8/NLb8wIlr7r5gNASk1NrfD0yXkcFk4w3bjy/ZNRnekqRKUpKelUmtq9PdATDbbb4t2Xhj/bnbftrZXgAAAAAAZpBgNAAAAAAAoONaDTDqqQkwAlrT1/J9ReAiAABMt1JKSfKmJEvGDH+hqqprd3Df/ZO8eMzQxqqqPrwje8KCt/yg+uPr50kw2m8/NBpKNJFFq9vfC811LUlqPc3/voY3J/3XJcv271xfMFUjQ8mFb0yu+kwyvLG1NYf/dXLEu5JS2toaAHPIZR9oPLflztHg2NVHd64fAAAAAIAZIhgNAAAAAADouL6uFgOMigAjoDW9Ld9XBC4CAEAbvDDJB5NUW69P29FQtCSpquqaUsoRSZ5z/1gp5eqqqk7b0b1hwVp2YP3xTTclQxuT7r7O9jOdNt40GkjUiu7e9vZCa0789+SnT2xe84sXJU86tzP9wI649H3J7z82yTXvSZbsmhzy2vb0BMDccssPk9//Q/OaHxyTnLoh6W7t+2IAAAAAAHNVbaYbAAAAAAAAFp7eWmv/UbtbgBHQor4W7ysCFwEAYHqVUmpJ3nP/ZZIrkrx0Go94WZKrtu5dkrx/GveGhWf5QY3nrvli5/poh9/+bTIyMNNdMBk7Hz9xzZ2/SKpq4jqYaVf/y9TWXfV/prcPAOam4YHkP/+0tdobvt3eXgAAAAAAZoHumW4AAAAAAABYeFoNRhNgBLSqt0vgIgAAzJCTk+yf5P7UmrdWVbVxujavqqq/lPKWJN/cOnRIKeXxVVX9dLrOgAVl6b5J99JkqH/7uUvenuz7gmTRqs73tSOqKrnz/OT3H2utfu3j2tsPretZniw7INlwdfO6a76YrDg0WX1UUvO1HWaB4YHknguTgXtHrwfuSTbeMLW97rkwuenfkq4lyepjkuGNSf8NyU5HJl0Nvkey5e7krl8n1dBoIGRtcVJqyaKdktUP934CMNdUVXLB65P1V7RWf+8l7e0HAAAAAGAWEIwGAAAAAAB0XF+LAUY9NcFoQGuW1PpaqhO4CAAA0+5FY96+oKqqb0/3AVVVnVZKuSDJ0VuH/jCJYDSYilpPss/zk6s/t/3cljuT/3pPcvRHOt7WlA3cm/zH85Nbf9z6mv1f0r5+mLwD/zi5+G3Na85/6eivi3dJTvhOsubR7e8LGrnlh8l/nJoM3jd9e579tO3HelYlj/1GstvJ28aqkeTitye//ZvGey1anZzw7WTtCdPXHwDts/mO5IePSjZc2fqaVgPUAAAAAADmsNpMNwAAAAAAACw8vbUWg9FKT5s7AeaLrtKVxWXJhHU9NfcVAACYZk8Z8/b/aeM59+9dkjy1jefA/HfEu5OuBp9D//4fknX/3dl+dsRFb5k4FG3VEUnKaKjWw/4mOeDlHWmNFj34L0cfPSsmrt1yZ3L2M5Lhze3vC+oZuC8551nTG4rWyOC9ydnPTAbXbRu74bTmoWhJMnD36PvJ0Mb29gfA9Ljg9ZMLRUuS9ZOsBwAAAACYgwSjAQAAAAAAHbe4tiRlgm9TlNRSS1eHOgLmg96uiUMXu8uiDnQCAAALQyll3yS7jBn6XhuPG7v32lLK3m08C+a3pfskD35T/blqKLnwjZ3tZ6qqkeS6rzavefj/Tp56SfL8dclzbksOe0tSSmf6ozW1ruSoDyXPvTtZfvDE9QN3J7ec2f6+oJ6bvpsMb+rcecMbkxvP2HZ97VdaWzd4X3Lz99vTEwDTZ2jTaOjlZG24cvS5MAAAAADAPNY90w0AAAAAAAALT63UsqTWm00j/Q1rekpPihcpApPQV1uae3NX05qe0tOhbgAAYEF42NZfqyRXVVV1U7sOqqrqxlLKlUkO2jp0ZJIb2nUezHsPeXNy1b8km+q82978b8nNZyZ7PLnzfbVq8+3JNV9KBtc1rlmyNjnolaNv9yzrTF9MXa0r2fXxyforJq797YeStScmi1a2vS3mgM13JreflVTDo9elNvrvY8ma0estdye3n51snIanDRf/1Y7vMVnnvSgZ2Po1zxu/3fq6G7+T7PPc9vQEwPS48xfJyEDj+X1ekFz/9e3HhzcnG29KlsoLBwAAAADmL8FoAAAAAADAjOjrWjpBMNqiDnYDzAe9XUsnrHFvAQCAabVmzNs3d+C8m7MtGG1tB86D+at7aXLkB5PzXlx//sI/T3a7OKnNwoDxW3+cnPOcZGh987ojP5R093WmJ6bHQa9Orv5s84CQJLnzvOTfDktO+n6y6ojO9MbsdNvZyTnPTAbve+B4z8rkhO8kXb3J2U9LttzZ+d5Kd/K47yXn/WGypfkPc5jQBW+Y/Jprv5QsPyg54p07djYA7XHzD5KzTmk8v/ro5JiP1Q9GS5IbTksOncLHBwAAAACAOaI20w0AAAAAAAALU2+teYBR92x80SUwq010X0mS7uLeAgAA02inMW/f2oHzxp6xqgPnwfy23wuTnY+vP7fu8uSKf+xsP60YGUrOf/nEoWjHfybZ/6Wd6Ynps/qo5PE/StaemHQva1676abk16/rSFvMUtVIcv7Ltg9FS0bHzn9Z8stXdC4UrbZ49NG9NFl7QnLSmckeT06edH6yx9OarGvj1yv/613JPRe3b38ApmZkcPTjVDNP+GmyZG2yeJf68xf+2bS3BQAAAAAwm3TPdAMAAAAAAMDCNFGAUY/wImCS+romCFwsPSmldKgbAABYEBaNebsTP6h17BmLO3AezG+llhz90eSHj6g//1/vSvb7w2Txzh1tq6m7fpVsvLF5zc6PSA58RWf6YfqtPSE5+Wejb//+k8l/Ngk/u+Pnyabbkt5dO9Mbs8vdFyb91zae77+uY63k+M80vu8sPyg58YzGawc3JN/cKamG2tPb9d9MdnpYe/YGYGruODfZfFvj+d1PSXpWjL69/ODGIZ+eBwEAAAAA85hgNAAAAAAAYEZMFGDUUxY1nQcYT+AiAAB03MYxb6/pwHljz9jYsApo3S7HJ/u9KLn2S9vPDdyTXPLO5NiPd76v8fpvSG78TnLxWyeuXfvY9vdDZ7Tyd3ndV5ND/6z9vdA+g+uTG05L7vp1cs+FSe/uyZLdJ153xSfa31urdnn01Nf2LEuO/UTyq1dPXz9jrbu8PfsCMDUbb0wueH3zmrHPgXY6MrnzvPp19/wm6X1K4336r0tu/G4y1J/s+QfJqiMm3y8AAAAAwAwRjAYAAAAAAMyIiQKMugUYAZMkcBEAADru1jFv79uB88aecVsHzoOF4cgPjoYSDdfJG7zyn5KDX5OsOqzzfd3v7guSnz052XLXxLWLd04O/pP290RnrDoi2euZyY2nN6658M+T7r7koFd1ri+mz+Y7k589MbnnopnuZOr2fl6y8tAd2+OAP0pu+E5yy/enp6exbvhWMjyQdPnaKMCMu+ei5KdPSrbc0bimd4/Rjwv3e/Cbkiv+sX7tWackz70rWbx6+7m7fj161uC9o9eXvD151JeTfV8w9f4BAAAAADqoNtMNAAAAAAAAC9NEAUaC0YDJWiJwEQAAOu2qrb+WJPuWUg5q10GllAOT7FfnbGBH9e2ZPOQt9eeq4dHgqarqbE9jXfxXrYWiHfSq5InnJcsOaH9PdM5jvpE87P3Nay78i2SovzP9ML2u+MeZCUVbdcSOP9aemDzsb5JHf3XH+6l1J4/9ZnLEuyfuc+Xh268/4OVJafLSkJu+u+M9ArDjLn5781C0JHnyL5PeXbddL9s/6VnVuP7Kf64//pu/2BaKlow+r//1a5OR4db7BQAAAACYQd0z3QAAAAAAALAw9U4QYNRTW9ShToD5os99BQAAOu3iJANJ7k8hfkaSj7TprGeNeXswyQykqMA89uC/SK76TLLx+u3nbv1RctMZyV7P6Hxfw1tGz5/IYW9PHvbe9vdD59V6ksPeLnWOnAAAIABJREFUltx7WXLdV+rXDK1Pbv95ssdTOtsbO+7m73X+zINenRz3T50/dyLdfckRfz36mIoD/ij58WPrz930vWSf5029NwB23MhgcsuZzWsOf2fSt9f243s8Jbnua/XX3PS95LC3PnBsaFNy+znb1w7cndz2k2T3J7XWMwAAAADADGryY4EAAAAAAADap7drggCj0tN0HmC8ie4r3e4rAAAwraqqGkhydpKy9fGXpZTmT8ynYOueb0pSbX2cs/VsYLp09yZH/W3j+XOemWy5q3P9JMn130h+9JikGpm4VrjD/DfR3/FZpyS//bvRIBBmp4F7k0vfl5z19OSnTxp93PWrzvex+5M7f2YnrD668dw1n+9cHwDUd89FSTXUvKbR851mH7vu/MX2Y8NNng/d99vmPQAAAAAAzBKC0QAAAAAAgBnRV5sowGhRhzoB5ouJ7isCFwEAoC2+uvXXKsmaJE2Slabsg0nWZjR8LUm+0oYzgH1OTdY8pvH8t3ZJhvo708sl70r+49Tk7v+cuHavZzXvm/lhn1OTnY9vXnPRXyY/fUIyMtiZnmjd4LrRoMNL3pHc/L3k1h+NPjpt7YnJnk/r/Lmd0N2brDy88fxlH+xcLwA80MB9yZnHNa/Z+znJLo+sP7fPqc3X3nPx1PoCAAAAAJjFume6AQAAAAAAYGHqFWAETLPeLoGLAAAwA76S5P1JdstocNmflFJuqqrqA9OxeSnlLUlel9HgtZLktghGg/YoJTn6o8kPjsnou1wd1309OfCP2tvHwD3J5R+auO6AlyVrTkj2f8lo78xv3b3JE36W/Gtf87o7z0tuOmM0XITZ49qvJPddNvl1i1Ynu57UvGZw3fYha7s9MelZse26qy9Z86jkgJcntXn8vYeHfyT52ZPqz13y9uSQ1yU9yzvbEwDJtV9qPv+Izyb7vbjxc9ruvuSplyT//tD68xe9OTnpB9uuq6Gp9QkAAAAAMIsIRgMAAAAAAGbERAFGPQKMgEkSuAgAAJ1XVdVAKeWtST6XbeFl7y2lPDTJa6qqumcq+5ZSViX5ZJIXjNm3SvK2qqoGpqN3oI7VDx8NDrr6X+rP3/az9gej3XFeMry5ec1uJ48GSLCwdPcmR34wuegtzetu/algtNnm1p9Mbd0pFyVL957eXuaz5Qc3nquGk7v/c+KgOQCmX7OPg7ueNBr4O5EVh2bbp8Xj9F//wOsRwWgAAAAAwNxXm+kGAAAAAACAhalvggCj7poAI2ByJrqv9NQELgIAQDtUVfWFJKdn26u0S5LnJ7milPK3pZQmKR0PVEo5qJTyt0muyGgoWrn/mCRnVFX1uensHajjYe9vPHftl5KL/yoZ3jK9Z/Zfl5z30uR7hyZn/8HE9Xs9a3rPZ+7Y8xkT11zxieQrJTnjQcndF7a/Jx5o7Pvz6fuNPm745uT32enhQtEma+m+yaqHNp4/51nJ0MbO9QOw0N3yw+Sspyc3frtxTavPa2s9qRuKliTrLk+u+9dt11WzYLQGewAAAAAAzDLdM90AAAAAAACwMPV2TRBgVAQYAZPT29XXdL67CFwEAIA2enGSnyY5JtvC0VYneWOSN5ZSbknyqySXJ7l36yNJViZZleTBSY5LssfW8bGBaCXJBUle1PbfBZD07pbsc2py/b/Wn7/sA8k9lyQnnjE9522+MznzEcnmW1ur3/Xxyf4vnZ6zmXtWPjg54I+Sq/9l4tr1v09+cHTy1EuSVUe0vzcm//7cSM+q5OiPTk9PC0kpydEfS35yYv35wXXJz56SnHz2aC0A7XPzD5Kzn5ZUw83rDnh563s+8ovJeS+uP3fuC5KRgWT/FyUjg63vCQAAAAAwSwlGAwAAAAAAZkRfbaJgNAFGwOR0le4sLkuypdpcd17gIgAAtE9VVRtKKU9I8rkkz85ooFmyLeBsjyTP3PpoZGxCx9j1pyd5aVVVG6atYaC5g1/TOBgtSW7+XnLvZcmqw3b8rGu+0HqI0gnfTXZ/ctLlc/wF7fjPtBaMdr/ffzw57p/b1w/bTOb9OUnWnpjs8sikGkr6r0+WrElWPTTZ45Skb6+2tTmv7fq40T/X28+qP3/Hz5M7z0/WPLKTXQEsPJd/eOJQtJN/nvQsb33PvZ7RfP6/PzYajFYNtb4nAAAAAMAsJRgNAAAAAACYEYtrvSkpqf7f65wfSIARMBW9XUuzZahRMJrARQAAaKeqqtYneW4p5c+TvDdJX7LdJ/5lu4Vbl4+rLUk2JXlnVVUfnu5egQmseNDENXeeNz3BaHee21rdUR9O9nr6jp/H3FdKsvro5O4LWqu/8lOC0Trlzl9Mrv4x30iW7NKeXhay3Z/YOBgtGb1/C0YDaI9q66e1E35MLJN/Lt2zIundPdl0S/35ey4c/XVEMBoAAAAAMPfVZroBAAAAAABgYaqVWpbU+hrOdwswAqagt+l9ReAiAAB0QlVV/yvJvknen+TejIac3f+oGjzG1ty7de2+QtFghvTunqx5bPOaX70yuegtycjw1M4YuC859w+TG05robgk+zxvaucwP+1z6uTqN97Ynj7Y5vpvJDd8q/X6XZ8gFK1d9n5+8/nfvDG55K+TaqQz/QAsBAP3Jb94UfKtnZOv1pLhTc3rd39ysminyZ+zzwsaz1Vbn5dXg01q6v/QMgAAAACA2UYwGgAAAAAAMGP6upY2nOupCTACJq+31uy+InARAAA6paqqu6qqekeS3ZKckOQdSX6Q5NIkNyfZsvVxy9axM5P8dZLHJdm9qqp3VFV150z0Dmx13KeSpfs1r/nth5KL3jy1/c95ZnLdVyauK13Jcf+cLN13aucwPx3yp8mez2i9/rsHJSND7etnobvlh8l/TCKsbtmBybH/2L5+FroVBydH/0Pzmkvfm1zyzs70A7AQnPOM5NovJwP3TFy7/JDkmI9P7ZzD39F8vqo85wEAAAAA5oXumW4AAAAAAABYuJoGGBUBRsDk9TYLXCwCFwEAoNOqqhpM8h9bH8BcsvLQ5A9+m5x1SnL72Y3rrvp08rD3J12LW9/73sua75kkB/1JstvJyZpHJb27t743C0N3X3LCt5P7LkvuvTTpvy65+K2N60e2JLecmez5B53rcSG54p+azx/06mSXR4y+veyAZOfjkq4l7e9rIXvQnyYbrkz++6ONa678p+SIdyW1ro61BTAvrft9cvs5rdWefE6y87FT/zi4eHXyhJ8lPzmp/nw1kowMTm1vAAAAAIBZRDAaAAAAAAAwY5oFo3ULMAKmoK/pfUXgIgAAAExKd29yyOuah5gNrktu/E6y8rBk2YGja+43PJBsuTPp22M0pGHjjcnIQHLNF5qfW7qSIz+QLNppen4fzE+llqw6YvQxMpxc9oFkaH3j+uu+nuxxSjK8Odlwdf2anpWj/6ZTjV737Z0sWjntrc8bg+uS/uuTG7/duKZ0JUf+jffnmbDrE5oHo225M+m/Jll+UOd6ApiPrvtaa3VrHpusfeyOn1dr9n30kaQa2vEzAAAAAABmmGA0AAAAAABgxvR1NQ4w6hFgBExBb9P7isBFAAAAmLQ9njZxzbn/Y/TXWk9ywMuTo/8hufTdye/+VzK8afJn7vl0IUpMTq0r2e+FyZX/3Ljm2i+OPiaj1EbfBx71xaRnxY71OJ8Mrk/Oe0ly03dHQw+b2fNp3p9nyu5PShavSbbc0bjmjIOTo/4+OfTPk1I61xvAfLL5ttbq9n/x9JxXao3nfvy45EFvaLK4mp4eAAAAAADarMlXQgEAAAAAANqrt9YkwKjpT7oGqK/pfUXgIgAAAExed2/ypPNaqx0ZTK78VHL63sllH5haKNraxyXHfXry6+CoDye7PWl696xGRsO/fvXq6d13rvv1a5IbvzNxKNriNclxn+lMT2yva3Fy0veTvr2b1/3mjaP/zgFon+7lyYGvmKbNmrwc8M7ztoUW11MNTVMPAAAAAADtJRgNAAAAAACYMb1dfQ3nugUYAVPQ1yVwEQAAAKbdLo+YXP3m26d2zv4vSU4+K1myy9TWs7D1LEsef2by0PdO/943fCsZXDf9+85FQ/3J9d9orfaZ13l/nmmrjx79e1i8c/O6qz/XkXYAFqwTvp2UaXoZ347sMzI4PT0AAAAAALRZ90w3AAAAAAAALFy9tcYBRoLRgKlwXwEAAIA22f8lyTVfaO8Zezy1vfuzMOz2xOSSd0zvniODyUVvS9Y8KhkZSEp30t3gB3/UFiWrj016d53eHmbawH3JXb9Mbv/56J/BRJYfknT3tr8vJlZKss//SK74ROOaG09Pqmq0FoDJmfDjYklWHt7ydvcN3Z3rN1+VoWpou7me0pMDqi1p/OPHJjCy/Z4AAAAAALORYDQAAAAAAGDG9DUJMOopizrYCTBf9HW5rwAAAEBbHPjK9gajLVmb7PmM9u3PwrHzccmqhyX3Xjy9+17xiebBUuMd/s7kiHfOj6Cpq7+Q/OqPRwPiWnXQq9rXD5N34CuSK/8xqUYaFFTJ2c9IHvP1xqF/ANQ3cHfz+b2f01Jg6kg1ktPv/GJ+dPe3m9aVJM9ee2BOvv2qSTS5VTWJj+UAAAAAADOoNtMNAAAAAAAAC1dv0wCjng52AswXS2qNX7TnvgIAAAA7YO1jksd8Y/r3LV3JLo9KTv550t07/fuz8JSSnHRmsvspM9vHpe9ObvvJzPYwHTZcm5z/stZD0ZasTY54V3Lo/2xjU0za6qOSE85oXnPz95LL/64z/QDMJ/+XvfuOk7uq9z/+OrM7m2TT66YHAqGEFjqEIh0RRRQVudeuV8Verlgv9nrVawWx+1NRwQIoKCJdOtISWgokIWUT0nu2nd8f3113Q+Y7OzM7M7ubvJ6PxzzmO+dzvud8Astk2f1+37Ojm2C0439R0DJztzzYbSgaQAT+OOVgFgweVdC6Oykm5FSSJEmSJEmSepHBaJIkSZIkSZIkqdcMyuQJRsvUVbETSbuL+jzvK7W+r0iSJEmS1DNTXwX/EeHC7fDqDfDK56GuhECGDideBa/eCGfdBcP2K1+f0qAGOPUGOOfR/PMGNsC4F1Wuj0VXVm7tallyNUkESzfGHA8XrIZXNMIhn04C6tS3THoJvGZL/jmLf1edXiRpd7Lj+fRa/VSoTf/dVVf3b7y9qG3njBhf1HwA2lqKP0eSJEmSJEmSekFtbzdQjBDCLe2HEbgoxriqxHUagN90rBVjPL0c/UmSJEmSJEmSpOLU1+QJMArZKnYiaXcxKM/7Stb3FUmSJEmSyqNmQPLIAhPPhUW/LH6NzACY8GKorS97e9K/DT8QBoyBHatz1yeeA5POg1XFBZEU7JmfwdAcoX+DxsP4M6B+cmX2LadC/9lMfAkMGF3ZXtRztfUw4hBYPyd3ffMCaGuFTE11+5Kk/iq2weZn0uuHfKbgpVbsWFLU1huzA4qaD0BsLv4cSZIkSZIkSeoF/SoYDTiFzo+bGtiDdQa2rwUFfXyVJEmSJEmSJEmqhEGZ9ACjulBXxU4k7S7q87yvZH1fkSRJkiSp/PZ7Nyz5HbQ1FXfejIshO7QyPUkdMlnY730w59IctTqY8S4YOQuGzoBN8yvTw6Mfzz1eUw8nXg2TXlKZfcvh+Xtg+fXdz8uOgOlvrnw/Ko8DPgT3pvz7amuGbUth8LTq9iRJ/dW25dC6Lb0+7TUFLdMaW1nVtKKorZtDCSGWbS3FnyNJkiRJkiRJvSDT2w2UIPR2A5IkSZIkSZIkqTzG101hYKZ+l/FRtWMZUjO8FzqS1N8NqRnOmGzDLuMDwkDG103phY4kSZIkSdrNjTkWTrsJJpwNA8ZC3cjkkckTUH7oF+CIb1SvR+3ZDv4UHPF/MOqo5GtzwNjk6/W0f8Doo5PwtDPvgr3fAEOmw/gz4ejLYPL5le2rdSvc/7YkiKovihEeuDj/nEETkn9OZ90D9ZOq05d6bvqb4Kjvp9c3P1O1ViSp31s/N732krlQm/6BPl2tbm6kldyhZTXU5hxvyZRwW2Dso993SJIkSZIkSdIL5P7JqCRJkiRJkiRJUhVkM1lOH3ke16/57U7jZ416JSH4WSmSihdC4KxRr+TKlZfvNH7aqJeRzWR7qStJkiRJknZz405OHlJfFAIc8IHkkWbgWDj+FzuPzbgYHv8SPPrJ/OtfsBpatsK1U4vvbdsKWH0fjDux+HMrbcuzsP7R9PqpN8KEs6rXj8prv3fBnEthx5pda5ufgYZTq9+TJPU3McLjX8hdGzAaRhxU8FIrdjyXczwQOGnE2dy2/vpdas2hpuD1/60td/iaJEmSJEmSJPU1e2owWtc/tz/RlSRJkiRJkiSpF71k9IWMzI7hkU33kgkZjhn2Io4YekJvtyWpHztxxNkMrhnKAxvvoCk2cfiQ45k9/IzebkuSJEmSJEn9zeTz8wejDZ8JdaOgbiQMmZ4EShXrqW/A2BOSALe+ZOO8PMUAo4+uWiuqkCH75A5Ge/xLsPebIFNC4I4k7UmWXAXP35W7Nvq4opZqbFqae5nsOOprhuSsNWcyRe0BQFtz8edIkiRJkiRJUi/YU4PRxnQ53tJrXUiSJEmSJEmSJEIIzB5+hqFFksrq8KGzOXzo7N5uQ5IkSZIkSf3Z8Jkw9TVJ8MkLhQwcfGl7oFlIju99U/F7LL0GHnwPHP39nnZbXpsWpNdmfiwJg1P/NmQ6rLl/1/HNz8Bdr4ETr06+ziVJu2rZBg9fkl7f791FLbeyaVnO8fF1U6gN2dwtlBJgGVuKP0eSJEmSJEmSesGeGox2cvtzBJb3ZiOSJEmSJEmSJEmSJEmSJEmSpD5q9pUw5nhovAka/wEDG2DcKbD362HCmZ3zpr8RBo6DRb/OHSq25r70PeZflgSoDJ9Z9vZLtml+eu2wL1avD1XOkOnptef+CCtvhfGnV68fSepPnvsjbF2SuzbhbJjw4qKWa2xamnN8fN1ksqEuZ62llPDKtubiz5EkSZIkSZKkXtCfg9FiMZNDCFlgAnAW8MkupTnlbEqSJEmSJEmSJEmSJEmSJEmStJvI1MABH0ge3Zl4TvLI5bFLYe7n089d/te+FYy2OUe4G8A+b4UQqtuLKiNfMBrA8hsMRpOkNCtvyT0eauDwbxT1d2WMkZVpwWgDJtOSEmbWnCkhGC22FH+OJEmSJEmSJPWCEn4CWlkhhNa0R9dpwKJ8c3Ocux14FrgCGNZlreuq+MeTJEmSJEmSJEmSJEmSJEndCCEcGUJ4VQjhZSGEfXu7H0mSemxCSmBah4f/G/5xCjz0YdiyuCot5bXixtzjQ2dUtw9VzvgzSW7NSPHUN6vWiiT1O6vuyD2+1+tgxEFFLbW+ZQ3b27blrDXUTSabqctZaw41Re0DQErImiRJkiRJkiT1NX0uGI3kN2tpj0LndfeI7Ws8Bfy+cn8USZIkSZIkSZIkSZIkSZL2XCGEgSGE6V0eee/cDiGcF0JYBNwP/A64Bng6hPDPEMLMKrQsSVJljDkOpr02/5xVtydhVDceB5sXVaWtnDY8BbE1d22IeaW7jcFT4cCP5J/z1Leq04sk9SfbGmHzgty10UcXvVxj09LU2oS6ydSGbM5aS6aE2wJjS/HnSJIkSZIkSVIv6IvBaNAZXFYpAXgQeGmM0Y+6kCRJkiRJkiRJkiRJkiSpMj4MzG9/3Aq0pU0MIbwG+CMwhV0/EHU2cF8I4chKNyxJUkWEALN/DaOP7X7u9kaYf3nle0rz2P+k14bOqF4fqrzDvwp7vyG9/vgXoHVH9fqRpP5g3nfTayX8PZkWjDasZgT1NUPIhrqc9eb8ueO5tXkbnSRJkiRJkqT+oba3G8jhDtKD0V7U/hxJPg1ye4FrRmAHsB54Erg1xnhnT5qUJEmSJEmSJEmSJEmSJEndOp8k2CwCP4kx5rw+MIQwEriC5ANfY/sjtJc7zhkM/DGEsH+MsdDrByVJ6jtCBg7+FNz+su7nrrqt4u2k2vR0em3oPtXrQ9Wx//vh2f+Xu7ZjDWx4HEYdUd2eJKkvW31vem3ofkUvlxaM1lA3GYBsyOasN2cyRe9F09riz5EkSZIkSZKkXtDngtFijKek1UIIbXRe4HRhjHFJVZqSJEmSJEmSJEmSJEmSJElFCSEMAmbRed3fX/JMfy8wnM5AtGXAH4EW4JXAtPZ5k4H3AV+rQMuSJFVew6mQHQbNG/PPW3M/3PlqOPoyGDi2Or0BxDZYPye9Xju4er2oOkbOgvopsPW53PXNCw1Gk6QOLVth5S3p9cHT0mspGnfkDkYbPyAJRqvN1OVuJVOzU6J4QdbPgRghFHWWJEmSJEmSJFVdCR8N0ev8yaskSZIkSZIkSZIkSZIkSX3fIUANyXV/W2KMD+WZ+zo6Q9GeBg6OMb4/xvjh9nUeaJ8XgDdVrGNJkiqtdjAc/QPIZLuf+9zv4aYTobWp8n11eOZn6bVjf1q9PlQ9IQPH/ji9vmlh9XqRpL7u1rPTawd9oqTAsZVNKcFode3BaCH9e4aWkOPWwEkvy79hvr/rJUmSJEmSJKmP6G/BaJ9tf3wOWN/LvUiSJEmSJEmSJEmSJEmSpHR7tz9H4Im0SSGEA4B9u8y9NMa4oaMeY9wMvLfLKfuHEKaUuVdJkqpnr4vg3CeTgLR935l/7qZ5sPwv1ekL4PEvpdemnF+9PlRdE86CEYfmrm02GE2SAFj3GDz/z/T63m8oesmtrZvZ2Jr7FrmOYLRsnmC05kyOWwNP+hOceHX6po98rKgeJUmSJEmSJKk31PZ2A8WIMX62t3uQJEmSJEmSJEmSJEmSJEkFaehyvCLPvJPanwOwCfjTCyfEGO8PISwFJrcPHQo8V44mJUnqFUP3SR4xwuIroXlj+tz5P4DJr0jm1AyAUANtzdDWBLVDoGULSbboCwXIDoMQuu8ntkHzBtj8TO56pg7qRhbyJ1N/Ne5FsP6xXcc3Pg1N6yEzAGoHlXfPtmYItYV9jUpSb1tzb3otUweD906vp2hsWppa6wxGq0ud0xxqgJYX9FIDU18FA8fB9lW7nrRjNWx/HgaOLbpfSZIkSZIkSaqWfhWMJkmSJEmSJEmSJEmSJEmS+o36Lseb8sw7of05AjfHGFtS5s2lMxhtag97kySpbwgBpl4IC3+UPqfxJvhNprT16yfD/h+EAz6YO3yqdQf86/2w+HfQvD59nRGHlLa/+o8h++Qef/5O+P3IJJBv1NFw7I9gxME922vbCrj3LbDyVhgwGvZ/Hxx4iQFpkvq2lben16ZcADXpAWZp0oLRBmYGMaJ2NADZkE09vyWT5/uDcS+CJVfnKER48utw+FeLaVWSJEmSJEmSqqrE345KkiRJkiRJkiRJkiRJkiTl1TXZIv1Obpjd5fjOPPPWdDkeVlJHkiT1RYd9qXJrb10KD38Ynvlp7voDF8OCK/KHogEc/8vy96a+ZWhKMFqH2Apr7oWbToSmbr5e8q4T4ZYzYMXfoG0HbFsOj3wM5l9e+pqSVGltrbD4yvT6Ed8oadnGHbmD0RrqJhPawyJrM+mBa82hJn3xY65Irz35NdixtqAeJUmSJEmSJKk3GIwmSZIkSZIkSZIkSZIkSZIqYVOX44ZcE0II44F9uwzdnWe92q6n9qAvSZL6loFjYPpbKrvH/B/sOta8ERblCXnpUFMPww4of0/qW4Z0E4zWoXkDLLmq9H2e/ydseGLX8QV5AnwkqbetvDm9dtAnYNCEkpZtbEoLRpv07+NsSM8Zb87kuTWwbiTMeHd6ffFvuu1PkiRJkiRJknpLbfdT+q4QwqnAacDhwDhgOPk/VTKXGGMs8Dd4kiRJkiRJkiRJkiRJkiSpQMvanwNwSMqcl3Q53gE8lGe9EV2Ot/SgL0mS+p5pF8IzP63c+msfhOfvgVDTObbmPmjb0f25Iw6BYCbpbm/IdKgZBK3bup+79uHS91ny+9zj6x+D1iaoqSt9bUmqlHV53vdGHFryso1Nz+UcH183+d/H2ZD+vtiSqUmtATDpXJj//dy1dY90258kSZIkSZIk9ZZ+GYwWQjgb+A47f0pkqb9pjT3vSJIkSZIkSZIkSZIkSZIkvcBjXY5HhRDOjjHe+II5b25/jsD9McbmPOtN73LcWI4GJUnqMxpOg/rJsHVp5fa4aXZp501/U1nbUB9VMwCmvRae+Vn3cxf8AI65vLR9NjyeXtuyCIbtV9q6klQpLVvgkY+l1ye9rKRlm9uaWNO8KmetazBabUi//a85ZPJvMv7M9NrCH8OxP8p/viRJkiRJkiT1km5++tn3hBA+AtxAEorWNQwtlvCQJEmSJEmSJEmSJEmSJEkVEGNcCMwnuV4vAJeFEPbuqIcQPgyc0OWUa9PWCiEMYecPU11Y3m4lSeplmVo49UaoHdLbnXTKDICZH4V9397bnahajvwOTHkldBe0A7DhiRI3aUsvbVpQ4pqSVEEPX5JeG3M81NaXtOzKpuXElNvbJgyY8u/jTKihhtzhaM2ZmvybZGphxsXp9XWPdNunJEmSJEmSJPWG9I+M6INCCGcDX21/2RFu1hGOthVYD+T7tEhJkiRJkiRJkiRJkiRJklQ9Pya57i8CewNPhRAeBcYBU+i8DnA78Ks865xC5/WCLcDjFepXkqTeM3wmvGYTbF0KW5fD348tfo1zHoa/Ht6zPoZMh5P+BMP2g5qBPVtL/Ut2CJz0B2jaAFuehaV/hjmX5p777C9h1peL32Pr0vTaZoPRJPUxba2wKM//qk59TclLNzblfj+soZYx2YadxrKZLK1tLbvMbSkkyHLSeTD/8ty1Z34BR87qfg1JkiRJkiRJqrICfvrZp3yl/bnjQqilwHuAvWKMQ2KMk2OMexf76LU/jSRJkiRJkiRJkiRJkiRJu7dvA0+1H0cgCxwJTKUz6CwC34wxPp9nnVd0mftojHFHBXqVJKlvqJ8Mo4+G+inFnTf55TByFkx4cc/2n/5mGHmooWh7srr+2Xo0AAAgAElEQVThydfS9Delz3niK7D+cYhtnWNtzfD8PbDydmjN8e1aWwtsyhN+tvDH0LKt5LYlqey2PgfNG9PrI0sPI21sei7n+Ni68dSE2p3GakNdzrnNmQJuDRx5WHrt6W8lYZiSJEmSJEmS1Mf0m2C0EMI+wGEkFzUB3AccHGO8LMa4pPc6kyRJkiRJkiRJkiRJkiRJucQYm4CzScLROoLQAp3XAgbgj8Cn09YIIQwBLuhyzs0VaVaSpL4kBJjxruLO2fedyfOMi0vft2YQ7P3G0s/X7mVwN+F8NxwMd5wPLVtgyxK4/mC4aTbcfApcNz0JTutq7b/o/JYuh/Vz4M8zYN1jPe1cknqurRVue0l6vX4qjDup5OUbm5bmHB9fN3mXsWzI5pzbEmq632jQhPz1a6bA8hu7X0eSJEmSJEmSqqjfBKMBx7c/d1wQ9YYY46Ze7EeSJEmSJEmSJEmSJEmSJHUjxvgcMAu4GPgr8ATwJEkg2qtijK+OMbblWeJNwDCS6wcDcH1FG5Ykqa+Y+VE49PNQv2tAyr+FGhh2IMy+Eia+OBmbfB4c9wsYtn/he4UaGH0MnH5b92FY2rMc+5P89WV/hqe/A/e/HTbN6xzfthzuvmjnuf98Tff7bVsG97wBYp4ANUmqhmXXwsYn0+tn3w+h9FvzVjYtyzk+vm7Xv4ezoS7n3OZMgfvP/k16rWVT8n7dsq2wtSRJkiRJkiSpCmp7u4EijGt/jsDDMcb5vdmMJEmSJEmSJEmSJEmSJEkqTIyxGbii/VGsnwC/7LLWhnL1JUlSnxYCHPwpOOiT0LYDagbCv7NEQ1KPbblDWaa/IXm0bu9yTr69aqEmd+iK9nAjZ3U/Z+GPYfMzu46vnwObn4UheydBZ1uXFLbn+keTkLViwv0kqdwW/za9NvYkGNRQ8tJtsTU9GG3AroGotSGbc25zpqawDUcemr/etA4ab0rCVSVJkiRJkiSpD+hPwWihy/GCXutCkiRJkiRJkiRJkiRJkiRVTYxxG7Ctt/uQJKnXhJCEosGuIWi5QtG66jhPKtWwAyE7HJrzZNPmCkXr8MhHYfjBUDOouH3XPZI7GK1lG6y4EbY8mwQTjT6quHUlqRDNm2DJ1en1Mcf3aPk1zatoic05a+Prdg1Gy2Zyh5e2dPd9QIch+8KA0bBjTfqcjU8BBqNJkiRJkiRJ6hsK/Olnn9D1YzAK/DgLSZIkSZIkSZIkSZIkSZIkSZIklaR2EOz33tLPX3I1zPk0PHJJcefd9dpdA3y2r4Z/vAjufAU89CG48Wh47DOl9yZJuWxdCjcem3/Ovm/v0RaNTUtTaw11k3YZy4ZszrnNmQJvsaupg/0/mH/OIx8tbC1JkiRJkiRJqoL+FIz2eJfjKb3WhSRJkiRJkiRJkiRJkiRJkiRJ0p7i0M/Bkd+B4TOru+/T39359bzvwNoHdh6b+1nYOK96PUna/T3+Zdj4ZHr92J/C0H16tEVaMNqo2rEMyAzcZbw2LRgtFHFr4EGfgKMvzz9n87OFrydJkiRJkiRJFdRvgtFijHOAuUAAjgwhjOzlliRJkiRJkiRJkiRJkiRJUolCCJNDCCeHEM4PIbw+hPCG3u5JkiRJOYQA+78Xzn0cBoyu3r5L//SC19ekzLu28r1I2nOkvdd0mHJ+j7dIC0YbXzc553g21OUcb8nUFL5pCDDjnUnQZRrfTyVJkiRJkiT1Ef0mGK3dN9qfa4AP92YjkiRJkiRJkiRJkiRJkiSpOCGEaSGEb4UQngEWA7cCfwB+Dvws5ZyTQgiXtj/eW71uJUmStItxp1Zvr/WPwWOfhvWPw4Ifw/o5uec9/oXq9SRp99a8EbYtT6+POAzqRvZ4m8YdKcFoA3IHo9WGbM7x5kwJtwY25Hkf3zS/+PUkSZIkSZIkqQL6VTBajPEXJBdABeCSEMI5vdySJEmSJEmSJEmSJEmSJEnqRgghE0L4IjAfeC+wF8m1gF0faVYDnwE+DXwrhLBPRZuVJElSupkfLe96p9+Svz73c3DDwXD/f6XPad4Iba3l7UvSnidG+OsR+ecc8pkybBNpbEoJRqvLHYyWzaQEo4Wa4hsYcXB6bdOC4teTJEmSJEmSpAroV8Fo7d4IXAfUAteGED4XQhjRyz1JkiRJkiRJkiRJkiRJkqQcQghZ4G/Ax0iu/XuhmO/8GOOTwK10hqf9R1kblCRJUuFGHwUvmVPG9Y6Bly/p+TqNf+/5GpL2bM/fBZsXptfPuB2mnN/jbTa2rmdb25actYa0YLRQl3O8JVPirYGzvpp7fP2j0Lq9tDUlSZIkSZIkqYxyXWDUZ4UQLm0/fBSYDYwBPgl8KIRwD/AEsA5oK2bdGOPnytmnJEmSJEmSJEmSJEmSJEn6t58AZ5AEoEWSgLM7ScLOmoAvFLDGH4BT24/PAj5f/jYlSZJUkBEHw7D9YePTPVsnk4Waeqivh+wwaN5Y+lrL/wYTz+lZP5L2bCtuTK8NOwDGnVyWbRqblqbWxqcEo9WGbM7x5lBTWhPD9s89vn0lPP0dmHlJaetKkiRJkiRJUpn0q2A04DPs/MmQHRdI1QOntT9KYTCaJEmSJEmSJEmSJEmSJEllFkI4HXgdndf7LQD+I8b4YHt9GoUFo10PfK99jaNDCANjjNsr07UkSZK6NfHcngej1Y2EEJLj7IieBaPN+07yGDmL5FtGIFMHo4+GAy+BwVN61quk3d/T306vTTw376mLts3njvU3sGzH4m632dK6Kef44JqhDK0dnrOWDXU5x5szmW73y2nsSRBqIbbsWnvko9CyBQ75NIQS15ckSZIkSZKkHupvwWi5xO6npAo9PF+SJEmSJEmSJEmSJEmSJKX7dPtzABYDs2OMq4tdJMa4OISwHhgBZIEDgEfK1qUkSZKKc8AHYdlfYNO80teoG9l5fMwP4bYX97yvdS/4FnHNffDcH+HsB6B+Ys/Xl7R7euYX0JI7sAxI3vNSLNz2FN957lKaY1OPWhhfNzm1ls1kc46XHIw2YBTs81ZYcEXu+tzPwY7n4ejLSltfkiRJkiRJknqoP35sQyjjQ5IkSZIkSZIkSZIkSZIkVUAIYRQwm+QDTCPw/lJC0bp4osvxfj3pTZIkST1UPxnOuicJNJv+FqgZVMIiXW5pGX9G2VrbxbblsPAnlVtfUv8WI8z9fHp91tegflJq+aa1f+xxKBrkD0arDXU5x1tCTekbHvo5yA5Lry/4IWxbUfr6kiRJkiRJktQDtb3dQJFO7e0GJEmSJEmSJEmSJEmSJElSQU6kM+1iVYzxuh6u1zVUbVwP15IkSVJPDRgF+/5X8jjmCrhqMLQVEQ40bP/O40wNDJ0Bm+aXv0+A5++szLqS+r9ty2HzwvT66GNSSzFG5m+dW5Y2xtdNSa1lQzbneHMmk3O8IAPHwUGfgkcuyV2PrbD6HpjyytL3kCRJkiRJkqQS9atgtBjj7b3dgyRJkiRJkiRJkiRJkiRJKsiE9ucIPFiG9TZ1OR5ShvUkSZJULplamPxyWHL1zuMDxsKQfWDNvbueM+mlO7+un1q5YLTGm+Cq9m8ha4fAuBfBEf8H9RMrs5+k/mPj0+m1TBbGzk4tb2rdwLa2rT1uIZBh1tDjUuvZUJdzvCXU9Gzj/d8HC65ID4a78wKoGwWjj4XDvwojDunZfpIkSZIkSZJUoB58LIQkSZIkSZIkSZIkSZIkSVKqUV2O15VhvUFdjpvLsJ4kSZLKadZXYOiMztc19XDcT+GYK2DQpJ3nTnkV7PW6nccy2cr217IleWxfCUuugptmQ+v2yu4pqe+7/aXptZOuyfve1Ni0tMfbBwIXjH0To7PjUufUhtw9NGd6eGtgzQA45fr8c5rWwoq/wk0nwpYlPdtPkiRJkiRJkgpU29sNSJIkSZIkSZIkSZIkSZKk3dLGLsdDy7BeQ5fjtWVYT5IkSeU0ZDq8+CFYdQc0rYOGU6F+YlI7dy6svA22Pgejj4VRR0KmZufzB4xJX3vmR2Hzs9C8CcadBOPPgBuP6Vm/WxbDc9fAXq/t2TqS+q/mjdC6LXetfgpMekne01c2Lcs5PjBTz7mjL+x2+4GZevatn0lD3aS887KZupzjLaEm53hRhu0P098Mz/ws/7zmjcmcQz7d8z0lSZIkSZIkqRsGo0mSJEmSJEmSJEmSJEmSpEp4vsvxjJ4sFEKoAQ7vMrSiJ+tJkiSpQrJDcgcJ1Y2AKefnP3faa2HRr3Ydr58Cs76y6/iR34Z/vb+0Pjssvx6mXQghQMtWaFrfWcvUwoCxSU3S7mn93PTauBd1e/rKpqU5xyfWTeX0US8vtatdZEM253hzJlOeDUYf030wGsCa+8uznwoTI7RuTf5+qhsBmSy0bIGa+uTvptbtEGqTv68kSZIkSZKk3Yw/9ZIk9Q3P3w3zvpd82tLUVycXNoQy/ZJOkiRJkiRJkiRJkiRJvWFO+3MA9g8hTI4x5r5rvHvnAPXtxxG4t6fNSZIkqY8ZfwYMGA071uw8Pu2i3POnvhoe+hDE1tL3XPQrWPxbiC1JuExs2bk+aBIc9gWY/qbS95DUdz1/Z3pt79d3e/rKpmU5xxsGTCq1o5xqQ13O8bIFo025AP71Pmhrzj9v+Q0w7zLY713l2VfpFvwQ7n9H7lqmDtqakufMAJj+Rjjim0lwmiRJkiRJkrSb6PeJMyGEbAjh5BDCJ0MIPw0hXBNCuDmEcHNv9yZJKtCyv8BNJ8Di38DSa+Du/4RHP9HbXUmSJEmSJEmSJEmSJKkHYoxPAh13iQfgw6WsE0LIAB0Xk0Tg0Rjj+p53KEmSpD6lZgCcdE0SjtZh4kvh4P/JPX/QBDjhd1AzqHNs37fD+c/BqKMK37cjDO2FoWgA25bBvW+G5TcWvp6k/iFGeORj6fXxZ3a7RGNKMNr4usmldpVTNuQOvGoJNcRybDBwLJx4NdTUdz/3wXfDkj+UY1elWXpteigaJKFoHc8tm2De9+CRj1enN0mSJEmSJKlKanu7gVKFEAYDHwTeA4x9YRly/1w3hHAR8MX2l2uBo2OMZfkZsCSpBLENHnzvruNP/m9yYcKQ6dXvSZIkSZIkSZIkSZIkSeXya+ASkuv63hNCuCHGeFORa3wJOK7L6x+VqzlJkiT1MeNOhPOXw7qHYWADDJ4GIaTPn3oBTDwnmT9kehKWBnD2/bDxKdi8MHm9+Hew6Fel97XwxzDx7NLPl9T3rHskvTbtovzvPUBT2w7WNq/KWWuom9STznaRDXU5x2MItIZAbTlujZv8crhgNax9AFbdCY99Kn3uwh8n77+qjAUl/Nhj4U9g1lchU1P+fiRJkiRJkqRe0C+D0UIIhwJXATNILpaClCC0HP4M/AAYCkwDzgT+Xu4eJUkFev4u2LJo1/HYBot+Awd/suotSZIkSZIkSZIkSZIkqWy+BryT5Jq9GuDaEMIHYow/7O7EEMIY4OvA60muEQxAI/DTyrUrSZKkXldTB2OOLXx+bT2MPWHnsRBg+IHJA5LQtJ4Eo617uPRz1f+1NcO6R6Flc/I6ZCBGct7KlBkAIw+F2sFVbVElWPHX9NqIQ7s9fVXTCmLK7WxlD0bLZFNrzaGG2thSno1qB8G4k2HUUfD4F6B1e+55jcXmne/BdqyBDY8n98gUavn1xe/TvB6e/QUM2QdCDQzbDwaOK34dSXu2pvWwfi4MOwAGjoEtz3Xe91c/BbY+B0NnwKDxha23dWnyd8mQfboNHJUkSZIk6YX6XTBaCGEmcDswjOQip46LnQoKSIsxbg4hXA28pX3oAgxGk6Tes+LG9NqiXxuMJkmSJEmSJEmSJEmS1I/FGNeGEN4H/Jzk+r6BwOUhhI8AvweWd50fQjgG2B84CzgPGELn9YGtwJtjjE3V6V6SJEm7jeEzYfSxsOa+0s7fvDD5QOgXBrBp97f0Orj7ddCyqfBzMnVw5LdgxsWV60ula94Id10Ey29In7P367pdZlXzspzjNdQyJttQanc51Ya61FpLJgNFZG4VtmE9TL0wCdrKJbbCbefCiVcnc7WrtmZ44GJY+JPq7XnfW3d+PfXVcNwvksA7ScqnrRUe+iDM+x7d3KKdmPxyOP5XkB2Su960Hu54Bay6LXk9/GA45XoYPLVcHUuSJEmS9gCZ3m6gGCGEgcBfgOFdhucAbwWmAwfSeQFUPtd2OT69bA1Kkoq3fk56beOTyadMSJIkSZIkSZIkSZIkqd+KMf4/4Avs/GGo+wCXAN/qMjUA95CEqP0HMLRjifbnj8cY/SBUSZIklebka2DcKaWff9OJ0Lq9bO2oH9i6HO58ZXGhaABtTfDAu2DNg5XpSz3z8Efyh6INHAf1k7tdpnHH0pzjY+vGUxNqS+0up2zIptaaQ01Z9/q3o78Po45Mry+/AeZ8pjJ77w6e+lZ1Q9FyWXI1PP7F3u1BUv+w8Icw77sUFIoGsPRaePQT6fX739kZigawYS7c+aqedChJkiRJ2gP1q2A04H3AXnT+3/V3gCNijD+LMS4CCv0N0610Xly1dwhhXJn7lCQVakM3wWeLf1OdPiRJkiRJkiRJkiRJklQxMcZLgTfTeZ1fx3WAHWFpHY9A5wekdrxuAt4YY/x61RqWJEnS7mfQeDjjVjjvmdLXWHFj+fpR37f4txBbSz9//uXl60Xl0dYKi67MP2ffdxS01MqmZTnHG+q6D1UrVm2+YLRMhW4PrB0MZ96df86iX1Vm791BX/ln01f6kNS3PVvCe8WiX0PMEaTWugOWXbfr+NoHYMvi4veRJEmSJO2x+lsw2nvpvBjqmhjjB2KMbcUuEmPcDCzqMnRgGXqTJBWrZQts7ubCgqU5fhAqSZIkSZIkSZIkSZKkfifG+AuS6/UuIwlI6whAC+wciNYx1gb8P+DAGOMvq9iqJEmSdmdD9obBe5d27r8+AAt+CMv/Cs2bytuXdtW8CZZdD6vugNam6uy5bSUs+X3y7/nhD/dsrWd+CjvWlKcvlce2pdCyOf+cUUcVtFRj09Kc4w11k4rtqlvZUJdaa87UlH2/f6upg5Gz0uvbVkDTusrt31+1tcL6x3q7i8SWxfD0d2Hdo1D8bZiSdnet22HlbbC6myDMXJrWwtwvJN8zLfwJrP1X8j6zbRm0bst9TuMtPWpXkiRJkrRnqe3tBgoVQpgJdPxkOAIf6eGSC4GO32RNB27v4XqSVB7Nm+CJr8Lzd8HQfeHA/4Zh+/d2V5VRyKc8bHwq+SV2Tfov8iRJkiRJkiRJkiRJktQ/xBiXAO8JIVwCnNj+mAKMBuqA1cBK4G7g5hjj+t7qVZIkSbux/d5TWujVlkVw/zuS40ET4JQb8ocGqXRrHoBbzoLm9v8lGLofnH4L1Jc/dOrflvwe7n4dtO0o35p/GAOn/A0mnl2+NVW6TfO7nzPxnG6nxBhZ1bQ8Z218BYLRajPZ1FpLyJR9v53s9x64723p9TsvgNNuhhDS5+xpHrmktzvY2b/elzxPey0c93OoGdCr7UjqI7YsgdvOgQ1PlL7GnEt3fj3pZTDzY+nzY0vpe0mSJEmS9jj9JhgN6PhNUQTmxhif6eF6XS+WGt7DtSSpPNqa4ebTYO2DyetVt8HCH8NJf4LJ50Glf2FVbVuWdD8ntsDmBTB8ZuX7kSRJkiRJkiRJkiRJUlXEGLcCf29/SJIkSdV1wAeT54U/hI1PJ8fZ4dBwGhz9fbhmCsTW/GtsWwH3vhXO+Vdle90TxQh3vqozFA1g0zx44GJ40XWV2bN5I9zzxvKGonW453Vw/jI/LLwv2LQgf33vN0CeELIO61vWsCNuz1lrqJtcSmd5ZUP6105zpqbs++1kn7dCWxM88K7c9ZW3wqrboeGUyvbRX2xaAE99s7e7yG3xb6HhdNg3T9CdpD3Hw//ds1C0XJb9GWJbngmxvPtJkiRJknZr/SkYbWyX4wI+nqNbXX9TUV+G9SSp51bc2BmK1tWdr4CB4+GE30LDi6rfV6Vsfa6weeseNRhNkiRJkiRJkiRJkiRJkiRJUnmEAAd+KHnkcuS34cH3dL/Ouodg8zMwZHp5+9vTrXsItub4EO5lf4bWpsoEjC27AVq3lnbuec/CvW+EVXfkru9YnQRHTTiz9P5UHt0Fo407uaBlVjYtS6011E0spqOC1IQaMmRoY9ewmeaQ6XxRqfeiGRfD/Mth/Zzc9SVXG4zW4bk/pNcGNsArG8u/Z4zwm0z38wCW/M5gNEnJ91NLr6nM2suvT681b6zMnpIkSZKk3VJ/CkYb2OW4HB+/MrzL8aYyrCdJPbfsz+m17Y1w8ykw9dUw9mTY581QO7hqrVXElhy/rM5l6Z9gr4sq24skSZIkSZIkSZIkSZIkSZIkAYw9ofC51+0Lww+EvV4H098EgyZ01jY8CfO+B6tugxGHJtd/r74Xhh8MB3wQxhxb7s53D6v+mV5r2Qw1o8q315YlyXX8hQTh5VI/GQZPhUnnpQejAdzxcpjxruR44FiY8GIYeVhpe6p0G5/MXx8zu6BlGpuW5hwfVjOC+pohxXZVkGyoY0fcvst4S6am88UR/1eRvQEYc0J6MNr8y+Dwr0PtoMrt3x+0NcMTX0uvF/j1VbQQYMLZsOLG7uc2/gMe+zSMOwkaTk/OlbTnaNkCy/4CS65K3rOq7YmvwfS3QNNaWHY9bH0uGd+8AGqHwIRzYPLLIDus+r1JkiRJkvqc/hSMtrrL8ZgyrNf1IzDWlGE9Seq5Z37e/ZwlVyeP+d+Hs+/r3z/o25b7l4G7WHFj8gk2/sJFkiRJkiRJkiRJkiRJkiRJUqWNnJUEV634WwGTI2x4Ah79RPI45+Hk/MVXwV0Xdk7b8ESX48dhye/gsC/BQR8ve/v9XsjkKcby7bPqn3D7S6F5Q+lrzPxY0u++74CnvwVbU66Rb90GT32j8/Wjn4CjfwD7/lfpe6s4rdth+Q3p9cnnJyGHBVjZtCzneEPdpFI6K0htJsuO1l2D0Zoz7f+9jDgMxp9esf3Z7z2w4Afp9ZtPg1P/CnUjKtdDX9ayDe58RRL2k+aAD1Vu/wP/u7BgNIC5n0ue9/kvOOYK79WR9hQ71sCtZ8Paf/ViD8/DH0an1xf9GoYfBKfdtHPYsCRJkiRpj5TvNwV9TWP7cwAO78lCIYTRQNefVC/oyXqSVDbZ4YXP3fhU/k+S6Q+aCvwFcvNG2Lqksr1IkiRJkiRJkiRJkiSpKkII2RDCySGET4YQfhpCuCaEcHMI4ebe7k2SJEn6t5OvgYM+BaOPhaEzCj/vkU9AaxM8+O7u5z76CdiaO2Bpz5YnpCe2lm+bhz5YWCja0Bkw7mQ44ptwxLdg3Ckw4RyYfSXs1/7vOTsEzn6g8L1jW/v+m0pqXSVYfFV6bdiBcGKe+gukB6NNLrargmVDXc7xlqEzYP8PwOk3Q+3giu3PiIPg0M+n19fcCwt+VLn9+7olV+UPJpv2Whh3YuX2H38GnH4rDNmn8HMW/ghW31u5niT1LfMuKywUbcorYa//hNHHpM8ZOgNqh5avt642PA5PfbMya0uSJEmS+pXa3m6gCHcDbSRhbqNDCKfFGG8pca230Plbki3Ag2XoT5J6rmZAcfOf+Aoc+rluPhGrD2vdVvjc9XNh8LTK9SJJkiRJkiRJkiRJkqSKCiEMBj4IvAcY+8IyEFPOuwj4YvvLtcDRMcaccyVJkqSyqRkAh30+eQDc80Z49v91f17jjfD8HbBjdWH7LP8r7Pu20vvcHYU8wWhtLeXZY9sKWFvA7URHfa8z/KzDAe/PPXfQeDjkszDn04X10LIFVt4Kk88rbL56Ztl16bXZv4RMtuClGpuW5hwfXzep2K4Klg25+2s++BMw4qyK7buTyefDY/+TXl92Hcz8SHV66WvyfX0B7PX6yvfQcAqctyA5bm2CqwYlIYz5LPszjD2+4q1J6gO6e58CGHsCnPSHwtaLEa4emnw/U25Lr4PD/7f860qSJEmS+pV+E4wWY1wXQngAOLZ96PMhhFuLvbgphDAJ+BidF1DdFGN3P+GTpCpoa4XtK4s7J7bCIx+Dw79WmZ4qrXVr4XM3zIVJ51auF0mSJEmSJEmSJEmSJFVMCOFQ4CpgBp0fbFro9X9/Bn4ADAWmAWcCfy93j5IkSVJe488oLBgttsEtZxa+7v3/lQRVhBoYeUQSkjZoQvH9Lb0Olv0F6kbCXv8BIw8rfo0+I08wWmwubcllf0n+GWWHwV4XwbzLCjuv4fTi9hl/RuHBaAB3vBymXghjjk2+BlbfCy2bYcBoGH82TLswf1CcCrf67vTa8EMKXmZ72zbWt6zJWWuoYDBabajLOd4cmyq25y6GHQCDJsK25bnrz/8T5v8A9nkbZPrNbYs9FyM898f0es3A6oeP1dTBuBcl4Yv5PPFl2PgkbJoHgyYnoaBN65L3o2EHwtQLkvc1qVp2rE2+33r+LmjbUd61l/05eR66H0x4MUx77e4bDLj0z8mfd3tj8jrGwgJhG4r47z2E5PukQgLXirVpHlzZ/v1P7WBoOC1PHxkYMQv2eSsMnlL+XiRJkiRJvaa//YTx28CV7cfHkVzo9I5CTw4hNADXASPbhyLwzXI2KEkl27II2kr4Je2T/wv7vh2G7lv2liqupYhgtOV/g5kfrVwvkiRJkiRJkiRJkiRJqogQwkzgdmAYScJBbH8uKCAtxrg5hHA18Jb2oQswGE2SJEnVNuUCePq7sPaB8q/dEdSx9BpY+CM4804YPK3w8+d8HuZc2vl63vfglOuh4ZSytlk1+YLA2lqKX+/xL8Ojn+h8/dQ3Cjtv+pth+AHF7TXmeJh8fvLvslBLfpc8XuiZn8Pqu+Co7xbXg3a1dRlsW5G7NvbEJESqQKuaUkLBgIa6ycV2VrBsyOYcbyk1LLAUmVo49PNw31vT5zxwcRJCeMr1e06o3yPd3Osy8xNJaGW1HfxpWH0ftHZz707H+9WGJ3YeX1BVi9cAACAASURBVHU7LPgBHPU92O/dlelR6qppHdxyOqx7pLL7bJqXPOZfBif8Bqa+qrL7VdvjX4JHP1n8eYP3Tu5RLMZBn4RVt0HzxuL3K1TLls7vldMsvRYWXAFn3AHDZlSuF0mSJElSVWV6u4FixBh/C3T8VCMAbwsh3BlCOCnfeSGEwSGEd7afO4vkIqoI/D3GeFcle5akgr3wFwjF+POM5JPF+pvWbYXPXXVb8qkfkiRJkiRJkiRJkiRJ6jdCCAOBvwDDuwzPAd4KTAcOpDMgLZ9ruxyfXrYGJUmSpELV1sMZt8LhX09C0ipl63NJAFuhmjfC41/Yeax1K8z9XHn7qqp8wWhFhkA1bYC5X+h+Xld7vQ6O+zkc+5PizoMkCOrE38MxV8C0i2DiucmjVPO+D5sXlX6+EnM/n147/H+LWmpl09Kc49lQx6jsmKLWKkY2kzu8rbmtqWJ75rTPW7r/b2PFX2HlrdXpp7dtWwFP5vkamvlxOOR/qtdPVw0vgrPugQM/0rN1HrsUWreXpycpn4cvqXwoWlexJQkQi3k/s6F/KeX7ntHHJqGXZ98L9ROLO3fMMXDWvTDzYzDxpZ3f90w8F8afUdxaPbW9EZ76ZnX3lCRJkiRVVG1vN1CCVwH3AqPbX58A3BZCaAQWdJ0YQrgc2A84HhjAzp80uQx4fZV6lqTubXyyZ+c3/gMmnFWeXqqlpZtPnXmhJ78Os75UmV4kSZIkSZIkSZIkSZJUCe8D9iK5dg/gO8CHYkw+BTCEMK3AdW6l8/q/vUMI42KMq8rca58XQsiSXDc5FZgAbAaWAw/HGBf1YmuSJEl7htrBcOCHk+MbZsH6RyuzT+M/Cp+79FrIFYy08tbkw7dDpnx9VU2eYLTYUtxSq25PguIKNe0imP3L4vZ4oUwN7Pv25NHhqf+Dhz5UwmIRVt4CQ97Ss572dOseTq8NnVHUUo1Ny3KOj6ubSCbUFLVWMWpDNud4cywyLLAc9n4jPHBx7veeDo3/gPGnVa+n3tJdANyB/12dPtKMPBRGfg0mvwJuml3aGk1rYc0DMO6k8vYmdbXuUVhYQiBpT22al4TSDp5a/b0rYfXd0Lqt8Pm1Q5IAxVDI51akGH4gzPpyen3Bj+D+t6fXy6mY76ElSZIkSX1evwtGizE+E0J4KfAnkot6Oi50mgCM7zI1AG/vckyXuUuBl8YYV1elaUnKZfMiWPRr2L4yCTTb8ETP1rv7P+EVyyGT+5ddfVIxv2AGWHwlHPbFnv2wVZIkSZIkSZIkSZIkSdX0XjpD0a6JMX6glEVijJtDCIuAvduHDgR6PRgthDAdOBo4qv35CGBolymLY4x7lWGfscBngQuBUSlz7ga+GWP8Q0/3kyRJUgEmvbRywWjrH4Xbzk2C2Fq2wOaFsPHpzvqw/ZPnrmO5NG+AupGV6bGS8l0v3tYMMcK878LSa2Db8vxrdffP6IUmnVfc/EJNfGmJwWjAfW+FJ78Gww5MwtYmnlPe3vYEa+5Prw0YXdRSK5uW5hxvqJtY1DrFyoa6nOMtMU84WaVkamDiubD0T+lznvgybFmchEmOOqJ6vVXLtkaY+zmYf3n6nLEnwICc/wtffaOPgoHjYXtjaef/42QYfQw0nAoH/0/y95PUU9tXw9zPwvN35Q+wrLRrp3V+bwUweC/Y63Ww9+t6raWiLbse5n0fVvy1uPMmvbTy9+lNOg9q3l9cYFupNi+AthbI9Ltb5yVJkiRJOfTL/7uLMd4fQjgC+CnQ8dP8+ILnnU4hCUQLwE3AG2OMJf4UT5LKYN0jcMsZsGNN8nred9PnHvDh5JMTnvoWbJibPm/H6mTN025JfsnUH7QUGYy2ZTGsuQ/GHFeZfiRJkiRJkiRJkiRJklQ2IYSZwKT2lxH4SA+XXEhnMNp04PYerleSEMIpwMdJwtAqfodzCOEc4OfAuG6mzgZmhxB+Dbwjxril0r1JkiTt0fZ/Hyz+DWx+pjLrL78hvVZo2NeOtf0zGI08AR2xBf71AZj3nfJvO/FcmPKK8q8LMGwGzPx4EhZVio1PJ4+l18KJV8HUV5W3v93ZsuvTa4d9sejlVjblDuNrqJtc9FrFyIZszvHm2FzRfVMd+vnk/o584YSLr4Rl18IZd8Kow6vXW6U1bYC/H5fc45LPrP+tTj+FyGThqO/C3f8JbSWG6a25P3msugPO/CeETHl71J6lZSvcNBs2ze/tThJdv7fa+DSsuBG2r4IDSww1rabFv4O7LiL3rdV51E+BQz5TiY52NqgBZn0N/vU+iu6xFAt/AjPeUfl9JEmSJEkV1y+D0QBijCuBc0MIRwLvB04HJqRM3wDcDHw3xtgrF0JJ0k7mfLYzFK07w2fCPm+Bfd4K8y6DB9+dPnfVHbDolzD9TWVps+LSPulhv/emh8Ut+b3BaJIkSZIkSZIkSZIkSf3DrPbnCMyNMfY0MWJ9l+PhPVyrJ2YBZ1Vjo/YQtmuAui7DEXgIeAYYARwOjOlS/09gWAjh/BhjWzX6lCRJ2iMNHAfnPAJLroanvw2ZATD2xJ3ntDXBqluhbhTM/CjUDoGn/g82zYMxs6GtObn+u1Ka1gL7VG79iskTjLatERb8oPxb7vM2OPpyyFTwVqtZX4KJL4aVtyahHVufK2GRCE98xWC0Yjz2qfTa3m8saqm22MqqlGC08XWTco6XS22oyzneHEsMueqpEQfBix+Cu16T3MuSpmVLcn/IcT+tXm+VtujX3YeiTXstjD2+Ov0UauqrknuUlt8A6x6FRb8qbZ3V98Cq26Hh1P/P3n2Gx1Hdbx//HvXiIhfJlnsvuGFMs2kGbHpvCSShJUAgCSGElCeBEJL8CQmBhJCeECCd3nuzwVSDDTZuYBvj3qtkWVpJ53kxEpLlndnZ3dnZXen+XNde0sxpPxftrmZn7gm2PulYVj7gLxRt8IVQ0COJhSws+U1iQxf9EkZ+wwkWzGQLfo6vwLGR33K+GuM8F/Q9DYrKU1pay9pfd64HXPdcyzWVeSXO++GKI2DJb2H1I7D1vRjzNP0ZGqph6V+i95l/o4LRRERERERE2omsDUZrZq19D7gQwBgzBOgP9MA5CWgzsAFYoJN7RCRjNDbAumf99+8yuuX7EVdBwx6Y+233/p/8IzuC0Rojzt26ohlwrnMgc/Mb+7Ztn5faukREREREREREREREREREREQkKK2vrPNxpWNMta2+LwlgvqDVAqsJKHnCGNMPeJi9Q9FeBy6z1i5q1a8QuAL4FdB8peapwM+AHwRRi4iIiIi4yO/cdBPsS/2P6TW15XtrYe1TTQFmKVCbonlTzXgEo215ywmcC9r4n6U2FK1ZxZHOo98Z8Mz+sftHs/U9qK+BvOJga2uvatZF329yoLhPXFNtjWx2DSLrVdAv3sriku8SzFPfGEnpup6Ke8HEX8FzB3v32/R6OPWEZdOs2H16T0t9HYnoup/zsBbWPAmR7bHHRLPpdQWjSXL8/BxVHAWH3uP9vsDXWq/D1tnxj9uzAaqWQ5eRya2fSpEq2P5B7H4Tb4XR16W+Hi89DnQe0Yz9ofN46xJYfk/0Pn1OgUm3t2yvfDD6e+jITuc5Ltn/NyIiIiIiIpJ2WR+M1lrT3SSTvaOkJMkYkw8cBgwAKoEqYC0w11q7Io2liWSG6k+ccDM/Csuh+6S99w29FObdAA27o4/ZMMP54K64MqkyU67epX5w7vjQ99TowWip+tBfRERERERERERERERERERERIJW1Or7Wtde/nVt9f2uAOZLRgRYALwLzG76Oh/n3LlXAlrjJqBbq+03gGnW2r1OPrLW1gK/NcasBB5p1XStMebP1tpPA6pHRERERIJmjHNT6aV/Ts38M0501rCNLfu6TYQjHoROQ1KzZhCsdW/bsci9LVG9pzkBT2EqGw+dh8OuBDOk7y9xgr0ASofA4C/B2Otb9okjstMJtommuE/coSkb6la7tlUUxBeyFq98UxB1v1tQW2i6T4LSQVC9wr3Pro/gvhIoPxwm3QFdR4dVXWp8+l/v9pwC6HtaOLUkyhgYcA4s+1ti4+fd4DzaKujmBK9NuAUqDk+uRmmf6qvhvWti/98zOXDAbcGEWw04J7FgNICXp8EpS5xr3TKR3/cR/c9KbR1B6X+uezDagHP33u4yKvq1hw01MOdaOOB2haOJiIhIsJb+BT76HexYCHgcuzJ5zu/K43+SuaHZIiJZQke72yFjzD3GGBvQY0Uc65YbY/4ArMc5sete4Bbgdzh3rfzEGPO6MebsVPy5RbLGjJP99x19HeS2+fCqoAz2/7nHIOvc8SDTNdS4t+WWQGH36G3ZetcyERERERERERERERERERERkY5nc6vvewYwX+vkhi0BzJeoe4Eu1tqJ1trLrLV/sdbOsdZGglrAGDMcuKjVrjrg4rahaK1Zax9tqq1ZIXBjUDWJiIiISIqMu2nfm2kHxu4digawbS48dzBEqlK0ZgBsg3vbzoCD0UoHw6TfBjunH8bAofdCYY/E57CNzqNqKcy/MXpIUUc35zr3tsPui3u6DXVrou4vy+tBUU5x3PPFI8/kRd0fCe5X0cSYHJh8rxOI5aWhBta/AM9PgT2bvftmsu0LvNtNHhz8VygqD6eeZIz/qROWGaS6bbDpdSdMasfCYOeW9uG1c/2Fok3+Z3Dvj4ZfBX1OSmzs7tXw6pn7vp/KFG+cH7vPpN9mdiBua31OgBHf2Hf/wPNh4Of33nfo3e7zLPkNLPplsLWJiIhIx7bs7/DOFbB9vnPcqvmYTLRHYx1sfhNeORE2v5PuykVEslr0I6IiLTySi1oYY04E7gEqYnSdAkwxxvwbuMJaW51ceSJZZvGvnTvd+NHjEBh1bfS2kVc7B3dfcLl7ytI/QfkU6Dpu32C1dKhZBzsWQMMe6DwSugyHht3u/fNKoMAlGK1OwWgiIiIiIiIiIiIiIiIiIiIiWWJ901cDJHWlrTGmBzC61a6lycyXDGvtthCWuQDIbbX9sLX2Yx/jfsHegWrnGWOu8gpUExEREZE0K+4F09+ALW/Di0eGs2btFlh5Pwy9NJz14mXr3dt2Lo6+v+JIJzTDfVKoWgG5hVDcx9lVOhjKD4P8TolWmpzyyXDqUtj4GtQ0BW4V9YbOw53z7+u2wuwr/c/38R9h3I8hJz8l5WalZX91b+txSNzTrXcJRutd0C/uueKVZ6JfG1Jv61K+dkwVR8Jpy2DNU/Dml7z7RrbDin/BqGvCqS1oH93p3jb8KhjzAyjpG149ySjuDce9CVvecULMCsogvwxqVjvPl7Ye1j4D2z+If+7GWlj6F5j0m8DLliy2aymse8a7z5CLYf9fQFGsy1TjkN8JjnzcCYetWgb5XZ1r3RprW/p4vd6ufx5W/BsGx3h+C1tjBHYu8e7T42AYGSVoLFOZHJh0Bwz/Kqx62Pkz9j8LysY7obKtdRkBeZ2g3iXsd8mdMPq7+44TERERSYTX74JubD0s/TP0PDj4ekREOggFo0ksD8XqYIyZCjwKtD7CboE5wHKgDOekttZ3/PwC0MUYc4a1mRqXLxIwa2Hx7f765hY5d8zJ8XiaLj/M+cBkwc37tu1YCM8eCHmlMOU/0O+0xGpOVmPEOTC87K699/c4GCbe6j4ut9j9bkGRHdDYADm50dtFREREREREREREREREREREJFO8ATQCOUAPY8wx1tqXE5zrUpyANYBq4N0A6stkZ7bZvtvPIGvtImPM20DzFf6lwHHA4wHWJiIiIiJByy2AiiNg8EXwyb3hrLnoVqg4CkwulA5wgigyhW2If0zliU6IRrYpKIN+p+67v2yM83XtM7DG59v5um1QtRy6jAyuvmwW2eXeVtI/oWsSNtStjrq/V0Hqg7DyTfTAu0hjJOVr+1LQDQZ/Ed7/fkvQn5sts8OpKRV2fOjeNu7GYMOcwpBb6Lz+VBwRvb3PSYmHdi65Q8Fosre1z8buM+7Hqfk5ysmFHgc6j2h2LPQOu3jzQug5BToPDb62RG2dG7vPfv8v9XUEzRjoup/ziKXbBNj0evS2mjWwZ4MTAikiIiKSiMYG2L0SGvbAtvcTm2PlfTD+p1BcqcBWEZEEZNCnFrEZY8YaY15uerxkjIn7CIcxplfT2OZ5RqSi1jS7DhicwOPcNvNY4O9eCxlj+gEPs3co2uvAGGvtgdba86y1xwH9gG8CrY+2nwr8LIE/n0h2qlkHu6N/CLaP3tP9fRjZbX/v9vpqeO0sZ+10+Oj3+4aigXM3mRePch+XVwoF3d3b68K46a6IiIiIiIiIiIiIiIiIiIiIJMNauw1ofbXzT42J/4xvY0xf4Ps457RZ4IX2fENOY0xvYEKrXfU45+X5NaPN9onJ1iQiIiIiIRn0hfDW2rkYnhgGjw+GB3vAotudm4FngkSC0ToPC76OTDD4i/H1f3IULPldamrJNts9Aqz6Rgmj82FDXfTAr1CC0XIKou6P2LqUrx2XQRfE7vPpf+CjP6S+lqBZ6x7AA9kXiuZHzylQOijx8U+Ogi3tPdteYtr2Pjw1Ft77hne/8iOgdGA4NbXl5z3YE8PgscGw4ZXU1+OlagU8PwWeP8S7X0F36HNCKCWlTax/twX/F04dIiIi0r5YC/N/Ag91h8eHwFM+Alvd1FfDo33hsYH+goJFRGQvWRWMBlwBTAWOAuqstRvjncBauwEnnKt5nssCrC8jWGs3W2tXxPsAprWZ6hVr7fIYy90EdGu1/QYwzVq7qE1Ntdba3wLntRl/rTEmTUerREIW2em/b/lh/vp1HRu7j22AlQ/5Xzso1sKS38Y/LqcAckug0CMY7c04P9wVERERERERERERERERERERkXS5o9X3hwJ/imewMaYX8DjOeWrNoWq3B1Naxmp7UtA8a211HOPfaLM9Jsl6RERERCQsvafB/r8Ek+vdb8B5MOXfzg2pgxDZDnO/DSsfCGa+ZDXWxz+mvQaj9T8HxlwPJo5LwN77Bqx+LHU1ZYtXPcLPDrgt7ul2N1Sxs2F71LbeBf3ini9eeSY/6v56G0n52nEZ92Pof3bsfu9+DVY/kfJyArX8bve2yf8Mr44w5eTCUY8nHla1cwm8dDTU7Qi2Lske9dXw0jGwY4F3v7IJMOVf4dQUTc9D4CAfgY3VK+CV42H36pSXFJVthBknwOY3vfsVVcDUpyC3KJy60mXoZTDi6+7tH/0Otsx2bxcRERGJZtlfYf6N8WVDxLJ7Fcw8WeFoIiJxyrZgtNNbfX9vEvM0jzXAmUnM024YY4qBz7fZfVeMMcOBi1rtqgMuttbucRtjrX2Uvf/tCoEb46tWJEvF8+a3p89gNL93XVn0C/9rB2XLbKj+JP5xBd3BGOerm3XPOXe3EBEREREREREREREREREREZGMZq39H/B+06YBvmKMec0Yc4TXOGNMqTHmq01j9wds0+N5a+3rqaw5A7S97fjSOMcvizGfiIiIiGQqY2C/78A522Haq3DMizDtNTivCs7aCMe+Ameuh8Pvg0EXwNlb4IT34JytcOL7cOzLcMxLzrhjXoQeh8a3/vK/p+bPFS/bEP+YTkODryMTGAMTfgpnb4VjZ7T828ayLEP+LdOlMQK1W6K3dd0voaCYDXVrXdt6FfSNe7545ZuCqPszLhgtrwSOeBDOXAtjb/DumynPOX4t/Yt7W4XnYY7sVjYOTlsOJ83z/xzUWn1V5gRvSvhWPQp127z7VJ4AJ86F0gHh1ORm+JVwXjV0P8i7X2MEVvw7nJra2vSGEzjopaA7nLEWesb5PjAb5eTBgXdC6WD3Pl6hliIiIiLRxHNMpfl3pMPvj93XNsKs82D7h4nXJiLSweSluwC/jDFDgObbZzQCTyYx3RNAA5ALDDbGDLDWrkyyxGx3DtC11fY24OEYYy7A+Tts9rC19mMfa/2CvQPVzjPGXOUVqCbSLtTHEYzWfZK/fn4/jNuzwf/aQfn0f4mNK2wKRMvr5Pz5GlyeGjbOhE6DEltDRERERERERERERERERERERMJ0DvAW0KNp+zBghjFmPW1Cv4wxfwRGAJNxbrxpcALRDLAG+FJINafTsDbb8Z7f+Gmb7R7GmG7W2hhXoYqIiIhIxsjvtG/ITl4pFE3de19uIXQ/wPm+oFuUebrAcwf7X3fdc7D2mb33FfSA7hMhJ9//PMmy9fGPye8cfB2ZpKAr9DqqZXvkNbDkN+791zwO9budkKqOqLrtr0WtlCQWvLOhbnXU/YWmiLK8HlHbgpRvov8MRjItGK1ZcSWM+AYsuNk97HD1o1BfA3nF4daWqN2r3NuK+7m3tQcmxwlIa9bnZFj7lP/xC2+BsvHhv55I+m16LXaf/mc7QaCZIK8Ejn4WnhjmHei2YQbs973QyvrM9nmx+wz+EuTkxu7XnvQ6GpZ/Er1t2/vR94uIiEh2amyAxlonf6D5a0MtNDZ9bd5f0h+6jPL/PnP3GtixACK7YMvb/sZUngC9j23ZLukHu6MfO/hM/S6YeQpMutMJeXVT1Mv5s5SNd44TNuxx3teUDobiXv7qExFpB7ImGA0Y2/TVAkustVWJTmStrTLGLKHlLojjiP/Eofbmy222/+0jqOzMNtu+otOttYuMMW8DhzTtKgWOAx73M14ka9Xt8Nev3xn+P9QxBnIKnTfoXhojYG14B4ltI6z0kWwcTfMH8sZA7+mw5ono/SI+/z5FREREREREREREREREREREJK2stcuNMacAjwCVtASdVQK9W3U1wOWtvqdV39XAKdbazaEUnV5lbbY3xjO46RzJPUDruy52xblhqoiIiIh0JN0PdC6g9BOi0WzGSfvuKyyHIx+F8inB1ebFLUTJTd9TU1NHJhtyCXz0W+fcfTcPlsGUf8OAc8OrKxNYC29d6t4+4usJTfvq9mei7q8o6IMJ4VqN/JyCqPsjti7layesqNy5RmbVQ+59HuwGh/0P+p8RXl2JqN0CNWujt3Ud2/FCiIZ+Jb5gtKpl8PwhUFQBRz4GPQ9NXW2SGax1AjyX/tm7X36XzHudKuwOE2+Ft7/i3mfds/DBD2H8z8INddu11Lvd5DjvETqaoV+G5X+P3rb5Tdi+AMrGhFuTiIhIe9McSNY6jKxhz76BZG0Dy9z2N+5xDzXzCj2LJ0y/y0g4+jkoHejex1qY8y1Yckf8fydDv7Lv9vwfxx5X/Sm8epr/dSpPhE2vQn21sz3scjjw997BaiIi7UQ2PdO1frVZFsB8y2gJRkvsVh/thDFmKHBkm913xRjTG5jQalc98Hocy86gJRgN4EQUjCbtXWRn7D5FvZ0DovHILY4djAawbW7L3cBSbdMbULMmsbEF3Vu+H/8zj2C0XYnNLyIiIiIiIiIiIiIiIiIiIiKhs9a+Y4w5APg7zvli4ISetf661xCcQDQDvABcZK1dn/JCM0OnNts1CcxRw97BaJ0TL6eFMaYCKI9z2NAg1hYRERGRBBgDU5+BmafCtjmJz1O7yblg84w1kFsYXH1uGuO4yBXg4L+mpo5M1m28Ey400yMUrjECr58PPadASd/waku39S/Aptfc2/ueHPeUexprWLHn46htvQv6xT1fIvJMftT99Y2RUNZP2KF3w46FsHNR9PbGWph1LpyxGop7hVtbPN65wr3t8AfCqyNT9D8DDvoDzL4qvnF7NsKrZ8AZqyAn+v9paSc2vwFzrvXuUzYeJt8LBV3DqSkeQ7/sBE+89033Pgtuhu6ToP9Z4dVV5RGMVjoQJt0J3Sa492mvyqc4QSTL/ha9fcYJcPrKcEPsREREguIaSNY2QCyeQDKPsUEEkmWKnUtg1nlw/NvufT75R/yhaEUVMOYGGHD23vvHXA/1VbD0L/5yJfxa1yaofelfoGwCjIjz9zERkSyUTcForU/K2RHAfK1fSboEMF82u5SWu2sCzLHWvh9jzNg22/OstdVxrPlGm23FrUv75/UGduyPnDfB/c+J/4OcvGKIbI/db/VjIQajzUp8bOsP5bqNhy6jo38AVl+V+BoiIiIiIiIiIiIiIiIiIiIiEjpr7QbgZGPMJOCbwLFApUv3HcBLwJ3W2pkhlZgp2gaj7Ulgjhqgm8eciboKuDGguUREREQkDCV94MT3nHCPp8dD1fLE5qnd4gRO9T0l2PqisQ3x9S+qSE0dma7vKXBeFdzv8XbfNsDK+2HUt8KrK91W/Me9rfyIhKacXzXbta1XQTihc/mmIOr+iK0LZf2E5Xd2LkJ/wOPyPVsPqx6EEV8Lr654bXw1+n6TB52HhVtLphh+JQz7KtTvcl5jGuudUMI3vuA9bs8GWP8y9Dk+nDolPbyei8EJ8Br59XBqSdTIq53wtpeOdu+z4j/hBqPtcglGG/lNmPSb8OrIRGN+6B6Mtns1bHsfuk8MtyYREcluvgPJ2gSIxRNItk97OwkkyyRb3oGa9VDce982a2HRrf7nOn0lmFworoweuJqTCxNvhQm3QM1a55jMa2cnd7MCN5/+R8FoItIhZFMwWus7HgYRZNY6aC3OT0zaD2NMLnBRm913+Ri6X5ttj6j5qJbFmE+k/Ym4ZDr2nALjb0p83txif/2qP018jXjtWBh9f+Xxzt1+HunjPrbtLxZdRkYPRovsSrw+EREREREREREREREREREREUkba+17wIUAxpghQH+gB1AAbAY2AAustY1pKzKz2JDGiIiIiEh7llcKo74N7yYRPDT7SudG2L2mQkG3mN0TFk8wWu9p0S9G7SjySqHrfu7n8APMuRbIgYKuUHEkdBoSWnlpsf5F97buByY2Zd0q17ZBxSMSmjNe+SY/6v5GGmmwDeSa3FDqSEh+Z+gyCnYudu/zyb9g+FWZ9/NsLWx9F2o3RW/PLYKcbLpEM2DGQH4X5wFgjgQMMQ9LzLkGSu6HsnGprlBSbfdqWPmA8zrUaWjLdW4f/8F7XOX01NcWhLLxkFMAjS4hlKsect4b5UR/jg6UDq4q4AAAIABJREFUbYx+jR041yd2dCX9oaiXE74Yzcd/hAPvhNzCcOsSEZHUsha2fwCb324JEdsnyCyOULPW7Y2RdP/pJCg16/bNL2iohYW3wI4F/uaoPAFK+/vrm5Pb0nf6q/DCEbBtrv96/dj0Oiy+Y9/9jbVNNTS958krdt4rlo0Ndn0RkZBk01G3za2+HxjAfANafb8lgPmy1QlA61uT1AAx4vgBaHsri5Vxrts2oamHMaabtXZbnPOIZI/Izuj785PMevQbjOZ24DNokSpY8c/obWXjnQOMXrq2+VAjr3P0fvUKRhMRERERERERERERERERERHJZMaYzsDgVruWWWurW/ex1i4HlodaWOararPt8wQhzzFt5xQRERGRjmjQ+TD/RqjdHLtvNLtXw2tnQVEFHPUU9EgsZComW++/74irU1NDNhlxNcz+qnefOdc4X00OHPg7GH5l6utKh1WPQM0a9/ZhlyU07aa69a5to0omJDRnvPJMgWtbxNaRaxL51TFEI6+G2Ve5t295C965DA76U+YEjTU2wLtfh6V/cu8z4hvh1ZMNSvrBgHOcoCwvOxfD0+OdwM6Jt2ZeIJ74s/IBmHVe/OMqT4AuI4OvJxUKu8PgC2HZ39z7vDwdjnzMCSBNpQ9+6N7Wue3lvh1QTq7znDzv+ujty/4K296HqU9BUXm4tYmISGrYRuf9+sd/THclkuka9uy9vWejE1a26yOfE5jEf/fLK4WjnoDnDvE+XpGI5mM9foz+Duz/C/3uJSJZJyfdBcShOXjLAOOMMT0Snahp7PhWuwJ+Bckql7bZfshau93HuLI22xvjWdRaWwW0eQdB0kd+jDEVxpgx8TyAocmuK+JLyoLRivz12/IO1Nckt1Ys9dXwzET39q77OR+kehlw9t7b+W7BaDpXU0RERERERERERERERERERCTDnQ/MbXq8AxSmt5yskcnBaH8Axsb5OD2gtUVEREQkWQXd4Li3oO+pUNS7ZX9usXNeevMjlj0bYwdxJcM2+Ot3+APQ79TU1ZEthl8BB//ZX1/bCO9+A3avTW1N6VC/2wnuc7P/L6Hr6ISm3lgX/e/r8K7HkxPrGomA5Ofku7bVN0ZCqSEpw690Qs+8LLsL1j4VTj1+rHvOOxQNYKxLAE9HNvmfMPIaKB0cu+/i22DTrNTXJMGLVMGbF8U/rnQQHPFQ4OWk1EF/hN7HubdvnAlLfpvaGnavgYW3uLd30iWyAIz5gXf71tmw4OZwahERkdRb97xC0cSfxtq9tz/8mf9QtJ6TnfevfU9KfP2SvnDCbBhwHhSW730MrvmRk+KP0RfdCpvfTO0aIiIpkCG3T/DlLaAWKMAJR/sa8JME57qKllC4euD1pKvLQsaYcqDtJ0B3+Rzeqc12ImlLNUDrT8xc0o/ichVwYwDziAQvsiP6/vwkMwGN+4db+5h1jnNXg1RZ+QBULXVvL2vKpKw8EdY9s2/7wM9D6cC99+W1fbppEtmVWI0iIiIiIiIiIiIiIiIiIiIiEpaeOOf7Acy21m5NZzFZpO2JRuXxDDbGdGLfYDQ/N0yNyVq7kThvpGp053ERERGRzNJ5KBz1uHefxXfAnGu8+2x9D6pWQKdBQVXWorE+dp9eR8OAc4JfO1sNu9wJRXl5Wuy+tgHWPOYEVbUnG172bh/0hYSmtdayMbIuatvg4hEJzZmIfFPg2haxdaHVkZThV0BhD5h1rnuflQ9CvwzJ1171oHd7UW/IKwmnlmySWwiTfu08Ft0Oc7/t3X/VQ1BxRDi1SXDWvwgNCVxSevRz2fdzk5MHh98HD3Zz77PqQRh3Q+pqWP2Ye1thORQkeX1ie2GME8y45DfufVY96Dw/iYhI9ov1fl3CZ/Kc3weag75ah37tta8Qcor27btPu58+rfY/3AtslGNKDW2C0Vb5DOrtdgAc90byfy8AxZXOe0ovT42DHR8Gs140Kx+E8impm19EJAWyJhjNWltrjHkNaD5Cf50x5hFr7fx45jHGjAW+A9imXa9ba6sDLDWbXAi0TlRaBsz0ObZtUtGeBNavAVofDXJJPxJpJyI7o+/P75LcvI1x/PitfRrm3wSjv5Oag8jrX3RvK+kP3fZ3vh9+Jax7lpanYqCoAqb8e99x+S6ZifVB3cRWRERERERERERERERERERERFKkOeDLAqvTWUiW+bjN9sCovdy17b/VWrstiXpEREREpKPxG1Az6zyY+AsnpCxItiF2n24HBLtme9B9EuQW+wuqWfBzGHo55OSmvq5Us42w+nGYdbZ7n05DnYuQE1DVsIM9jbujtpXnJzZnIvJMvmtbxEZCqyNpPSeDyXH+3aJZ8S8o6ec8r/Se7oTchK1mHax6BJbf7d2v/PBw6slmfl5PltwBZeOg/9lQUJb6miQ5jQ2w+lGYlUA4aXEldBoSfE1hKChz/p9ud7mcefs853nN5AS/9o5F8O7X3Nv1XLS38sO9g9F2r3b+HcvGhVeTiIikxpZ3011B5ogWSLZPkFg8gWQe4WZec6T7GENuUfT8geYshl1LYcV/oWatv/mGXhpcbX70np7aYLQlv4aBn4eeB6duDRGRgGVNMFqTX+EEo1mcEK1njDHnWGvf8jPYGHMw8CBQinMXSts0Z0d1SZvtv1trbdSesSUyLtG1RLJTqoLR4r27xvwfOx/6Hf0sFMV1M9kYddTCiijBZs0GX9RycLffqXD4/bD411CzBiqOggN+Hf3gb55LMNrmN5OvWURERERERERERERERERERERSaV2r7wvSVkX2WdRme1ic49teYbowiVpEREREpCPqfgD0Ocm5MbeXrbPhpWNgzA9hws+CW9/Wx+4z8pvBrddeFJTByKth4S9i9929ygkSO/xByMm2y8tasY3w+vmw8n7vfmOvTzhga2PdOte2ioI+Cc2ZiHzj/mt1va0LrY6klfSFIV+GZX9177PwFucx8hqY9OvwagPYsRBenuaEo3nJLYbR3w6npmzW/UCoPAHWPevd7+2vwKJfwTEvQUl4P1cSp8YGJxBt9aOJjd/vB9n9mjPmh/D6593bN82CiiODXXPNkzDrXO8+o68Lds1s1/dUKJsA2z9w7/P0eDh2BvQ6KrSyREQkYLVbvZ/rw+IrkMwjZMxP2Nhec2RoIFmmyC2MHozWUAsbXoGZp0Vvj6Z0MAz6QrD1xTLiKljxD6jdkro1nj8UDvo9DL8ydWuIiAQoq44iWGufN8bMAKbihGr1AV41xvwT+DMwu22wlzHGAAcCVwBfAvKbxlrgNWttjE9p2idjzKHAmFa7GoB74pii7St+cQJltB3j812Epz8AD8Q5ZijwWABri3hzDUbrmty89XEGowFsmwOvHA8nzklu7c9qqIaHe3v32e97e28POMd5xJLfyb1t11LoHO95nyIiIiIiIiIiIiIiIiIiIiISkta3tB6ctiqyT9tbgY83xpRYa3f7HH9YjPlERERERGI74hFYdCusfxE2zvDuu+BmGPoV6DQomLVtg3d7UW8o7R/MWu3NhJ9Dp6Gw6mGoWQvb57n3Xf2YE1bU95Tw6gvahpdjh6KV9IchFye8xMbI2qj7i3KK6Zyb5PUgccjPcQ9Gi9hIaHUE4uA/Qd1WWPWQd78lv4Fhl0HX/cKpC2D+T2KHopX0c54jexwYTk3ZzBg48jFY9EuYd4N3352LYckdMNFHuKOkx7pn/YeilY1v+b7TEBh0AQyIEfCV6QZ+zgnkfOOC6O1vXgynLw9uPdsI730LGva49+l/NpRPCW7N9iC3AKa/6jyfL77Nvd/c78AJ74RXl4iIBGvhLd7tFVO9Q8ZyiuIMJHMJN1MgWWbJKYy+v7HWee33E4rWZTT0ng5jf+gE0Iep8zCY/iYs/hUs/UvL/rLxex/f6ToWTE7Lttexn31YmPtdGPRFyO+cdMkiIqmWVcFoTT4PzAEqccLN8oCLmx7VxpglwLamtu7ACKA5Vcc07TfAKuC8EOvONF9us/2MtTb6kfroMjIYzVq7EdgYzxiT4B1fROIW2RF9f36X5OZt9Di46WXbXFh0u3OnrGi/eO1eDVtmQ+0mKCyHvFIwuc4b5dqtTp+cfOi2v5MO7PXLwJT/egecefEKjlv/ooLRRERERNKlvsa542txX+g8NN3ViIiIiIiIiIiIiIhIBrLWfmSMmQeMxwn36mutXZPuujKdtXZdq783cM6TPBx43ucUU9tsPxNQaSIiIiLSkeQWOBeBjv0hvHUpLL/bo7N1wlKGfzWYtWMFo/U+Nph12iNjnCCpYZc52ysfhFkeQTRrnszuYLQ1T8XuM+rapJbYVLc+6v7y/MpQr0nKN/mubZHGutDqCITJgQPvjB2MBs6/cVjBaNbC2idj95v+OpQOSH097UVuAYy9HvqdDk+P9+679kkFo2WyNT5+PgBGXwcTb01tLeky6Hx49+tOuGNbe9ZDQ53zfz4IOz+CqqXefQZ+Ppi12pv8LnDAr5wQWLe/w62zYc9GKKoItzYREQnGptfd285YAyV9wqtFMkduUfT91Z/C1vf8zXHyAufYSrp0GQ4H/9l5+LXoNph7nf/+9VWw8VXoe3L89YmIhCzrgtGstRuNMScAjwODcILOwAk76wRMarPvs6G0hKItBU5vCtHqcIwxpcDn2uy+K85p2iY8lcdZQyf2DUbbHmcNItklsjP6/mSD0eprEh8799vw6X+du6+0/iVv/k9h/o+Sq6u1ZMLLenrctaJuW+LzioiIiEji1r8Ir57ZEo7b9zQ4/D73A8giIiIiIiIiIiIiItKR3Qn8FefcvZ+w7009JbpHaAlGA7gEH8FoxphRwCGtdlX7GSciIiIi4qn3cTGC0YDZV0J9NQz9MhSUJbdeY713e+Xxyc3fkVQcBTkF4BactfTP0OsYGHheuHUFYc9mWPKb2P0qj0tqmY2RtVH3VxSEe6F9DrkYDPazy+Za1NtIqLUEoqg3lI2D7fO9+73/Xeg6OvUBfnXb4YMfOM9jXrqMgpL+qa2lveoy2rkZb41HZv6OhTDjVCifDCOuhvxO4dUnsS39k79+/c9JbR3pVjYeNs7Yd39DDXz8Bxh1TTDrLLjZuz2nACqmBrNWe1V5PHzsES733CEw4WYnYC6dASgiIhKfrXNg8xvu7cWV4dUimSWnMPr+eTf4Gz/g3Ox8T1B5HMyNc8zMU6D3NCjp57x/V0iaiGSonHQXkAhr7Yc4AWj/oyXszLZ6fNaVvQPRGoF/AAdZaxeFWXOGORfo3Gp7A+Azrv8zH7fZHhjn+Lb9t1prlXAk7Ze17sFoBV2Tm7txT3Ljt74Lzx3Usr3+pWBD0QA6DU58rFcqd0OSf3YRERERiV99Ncw8vSUUDWDN4/Dh/6WvJhERERERERERERERyVjW2ruAp3DO4bvYGPPdNJeULf4NNLTaPssYM9zHuO+12b7fWquTbEREREQkOf3PhPLDY/ebex28ciJEqmL39WIb3Nt6Tm7/gStBKiqHMT/w7vP65+ADnxcJZ4o9m+H5ybH7Df0KdN0vqaU21a2Lur88P9yL7Y0x5Jn8qG0R6xJ8l8mMgQk/d4J9Ypl5Kiz2EYKXqLod8PwU+PiP3v1y8p2as/FC+UyQkwf73wImxiWta5+ED34ILx4J9TXh1Cax+f0ZHHAe9Dg4tbWk2wG3ubfN+ZZzbV6y5v0IVvzTu8+YH0BRz+TXas9GfcsJZHRTvQLeuMAJxhQRkeyw4RV4dpJ7+8hr9H69I8t1CUbzK9bxk0xVNg6GXBr/uPUvwvJ7nJC0JXcGXpaISBCyMhgNwFq7zVp7AbAf8Gug+fYQps0D4APgV8BIa+3F1todYdebYdrecfMf1toYt9PZR9tguWFxjh/SZnthnONFskt9FUS5Kw8AeV2Sm7vrOPe2aTOh1EduYc1aWPQr2L0W3vtmcvW01W1/KOyR3Bxud/Rq0AccIiIiIqFb+ww07N53/5rHw69FRERERERERERERESyxfnAIzjn9P3cGPOcMeboNNeU0ay1HwP3ttpVANxjjClyG2OMOR24uNWuOuCmlBQoIiIiIh1LbiEc8wIcFCM0CGDLW7DgZ8mt53WJyzEvQV5xcvN3NONuhOFXevdZdCvUbg2nniAsvxuqlrq353WCKf+Fg/+S1DLWWjbWrY3aVlEQbjAaQL6JHiIWsZGQKwlI35PhuLdgv+/H7vvhT1IXkrXiX7Cz7aVybYz+Lkx/A/qfkZoaOorBX4Rps2DIxbH7bpsLKx9IeUniQ8MemBcjQDOvMxx6Lxz23/YfRtL9AOg61r39w58mN3/tVlj4S+8+Rz3pvL6Lt85D4fh3YvdbfDvs2ZT6ekREJHkfxjjeMOqacOqQzJTj+jGqt2GXw2nLnEyEbHXI32DKf5yA+KGXwWH3wfRZ/sd/eBM01KauPhGRBOWlu4BkWWs/Ar4NYIzpBPQCmhN4NgMbrLXVaSov4xhjRgBtb9NzVwJTfdhme7wxpsRaG+Xq+KgOizGfSPsS2enelp9kMNqY78Os8/bdP/xrUHEknL4CXpwKG2d6zzP3O84jaEc8lPwcuS4fXDfoZrYiIiIioVvicse37fPCrUNERERERERERERERLKCMebvTd/uBHYBnYFpwDRjzC6cG59ubGrzy1pr294gNFTGmH5EPwezd5vtPGPMIJdpqqy1mz2WuRE4E+jWtD0FeNEY8xVr7eJWtRQClwO3tRl/m7X2U4/5RURERET8yy2C4V91gk/e/KJ33yV3OOezl/ZPbC3bEH3/iG8oFC1RI6+Bjz2C7RprYfObTlBVNtjwknf7sS9Dj4OSXmZnw3ZqbfTrFsoL+iQ9f7zyTX7U/ZHGupArCVD3ic6j4kiYcZJ7v7ptsP0D6Hlo8DVseNm7vcfBMPEXwa/bUZVPdv4dVz0Kke3efTe8DEMuDKcucbftfaivcm8/ZTF0GRlePZlg2GXw3jejt216DRrqIDd6mGVMm990Xpdd174ie16vM0FJHxjwOVh5n3ufxjrY/Ab0Oz28ukREJH6NEe9r5XMKoSTB4xDSPuQWxte//9lwxIOpqSVsxsCg851HaxN/BXOviz2+dgtsnw89DkxNfSIiCcqaYDRjTG/g4Fa7Zllr97oVibW2CqgCloVZW5a5tM32LGvtkngnsdauM8bMA8Y37crDCVx73ucUU9tsPxNvDSJZJeJx3maywWiVx0OnoVDV6qkvtxiGtjr3c/R3YgejpcKkO6DTkOTnyXVJaFYwmoiIiEh4ts+Hdc/BptfTXYmIiIiIiIiIiIiIiGSXiwHbatsCpun7Lux7o89YTNMcaQ1GA2YBA3306wt84tJ2L87fT1TW2tXGmLOA54DmKykPAxYaY94DlgNdgQOA8jbDnwRu8FGfiIiIiEh8Ko+HnHzngmQ3DXvgmf0hr5Oznd/ZCT2a8H9Q0M193GfjXcJATNZcBpV5Og+HLqNh5yL3PjNPgWFfdf6dCruHV1s8Irtg3g3OuWxuSvpBtwMCWW5T3TrXtor8ykDWiEdeTgFEyQ2stx4/j9mi4ijI7wqRHe59np8MJQOc63B2fNiyv6gCJv8LKqfHt+bqx53AwHXPevfrd0Z880psxkC/0+CTf3j3++ReJ5Sr8jgYd5PCMcOyZzPMu94J6Kr+1PvnsstI6DwivNoyRb8z3YPRbCPcVwilg6BsHIz6FvQ62t+86190Xo8919ZzUtz6ne4djAbw6hnOa0zpABhwrhPIa4z3GBERCdfG19yD1MF5f2lywqtHMk9OnMFoHSEUte+p/oLRAN66CE78AHJ0/E1EMkc2vbKfBTzS9Pg34BF5LtEYY3KBtrdIuCuJKR9ps32JzzpGAYe02lWN/0A1kezUsNu9La80ubnzu8C0mTD4Qicgrc8pcMxLzh1zmvU9GabG+KAmaAf8GkZeHcxcuS4fXDTUBDO/iIiIiHhbdjc8MxHmfse7X2N9OPWIiIiIiIiIiIiIiEi2s60e4sFaOwM4E9jUarcBDgTOA45n31C0/wKft9br6hARERERkQQV9YSJt9OSd+yibivsXuk8dixwwodeONw7UK3Zumei78/JjbtcaWIMHPg7yOvs3W/pn/z/O4XNNsJLx8KSO7z7HfTHwP6vbIpED0YrzimhU26XQNaIR77Jj7q/XQSj5ZU4/0djBSDuXrl3KBrAno3wynGw1iMwr62VDzkhOLFC0XpOhuFf9T+v+DfuRuc6qFi2fwCLbnXCoqwOJaVcQy28cBgs/TNsn+cdigZw4O87ZnhUaX+Y8HPvPtUrYM0T8PJxsOGV2HOuex5eOcG7z6AvQe84QyAF+p/lL/hk90rYNMsJvfvgB6mvS0RE/KvdAi8f695eWA7jfxpePZKZcov89+1zihOG2t51GQFjf+Sv746F8Ha6700mIrK3bApGK8P51MQAs6211WmuJxudBLS+Hcku4IEk5vs3e99n5CxjzHAf477XZvt+a+2eJOoQyXz1XsFoJcnPX9IXJt8Lpy2FqU9A+eR9+/Q5Hi6wMOzy5NeL5YDfwKhrgpvP7ReRBj11iIiIiKRcZBfMucb7rirN6qtSX4+IiIiIiIiIiIiIiGQjE+Cjw7HWPg2MBf4EbPPo+hZwjrX2Ap1jKSIiIiIpNfLrcOJcmHgbFHTzP27HQljzlHef3Wvd22IFJom33sfAyR/G7rdzkRPkkmk2zICts737HPkY9D0lsCU31kX//1he0AeThiCgfFMQdX/E1oVcSYoM/iKcND/x8Ytv89930a3EzGsf8wM49uX4nufEv05D4ITZMOU/0OOQ2P03vAxb30t9XR3d6sdg10f++nabCL09AkrauzHf99fP1sOi22P3W3y79/nanYY61w8qKDZ+uYVw+EMwNUYYZmsf/d4JChQRkczwyb+8209ZBF1GhlOLZK7cwth9Rl8HU5+GIx+JL0gtm42/CY57G/b/hfN7rpcV/4Lda8KpS0TEh2z6RGBr01cLRL/dhsTSNp7zf8mc/GSt/dgYcy9wadOuAuAeY8yxbkFnxpjTgYtb7aoDbkq0BpGs0eASjGbyICf6HXtSZvjXYOlfUjf/2Bth1DeDnTNHwWgiIiIiaVH9KSy+AyI7/fWvr4KCstTWJCIiIiIiIiIiIiIi2WZwugtIBWvtoJDX2whcaYz5JnAYMBDoDVQDa4C51tpPwqxJRERERDq4bhOcx8hvwJP7QdVSf+M2zoB+p4HJAWuhbbiUV/BVYc+Ey5UmpQPggNthzrXe/TbMgD4nAwZyo4dxhW7jq97tJhd6Tw92ybrol7BV5FcGuo5feSb69ScRGwm5khTqOgrGXA8Lfhb/2PUvNF1nEiO0rrEOtrwdYzIDo7/TcS6UT5eCbjDofKg4Ah7tH7v/5jegx4Gpr6sjW363/74dORStWe9psP7F2P02ztw7ZMvkNYWgNQc0Wue118vwq/Z93yT+5eRCn+Nh0h3wno9rH+t3wa6PoWxs6msTERHn+EBjhM9eG00u5LSKQtn8uvvYXsdCYY+UlidZIidGMFpxH5h4azi1ZJqeBzsPcN6HLvxF9H62ETa+BoM+H15tIiIesikYrfWR5NK0VZGljDG9gJPb7P5bAFPfCJwJNN/6YgrwojHmK9baxa3WLwQuB9reeuM2a+2nAdQhktnqXYLR8krCrQOg23g48lF49YzYfTsNhaFfhg880n97TnE+WCjoBhN+DsMuD67WZnnF0fc31AS/loiIiIg4Hygs+D+Yf6NzQNOvyK7U1SQiIiIiIiIiIiIiIllJ54cFy1pbB7yS7jpERERERD6Tkw8TfwmvneWv/5I7YMlvcS52NlA6EIZdAft9zwn72PWx+9jK44KoWPqfDXO+TUsYSxQf3ek8ADoNg5FXw4ivpyeQZd0L8P73YNtc7359T3O/9iBBmyJro+4vL0hPMFp+TvSQunpbF3IlKTbwvMSC0QDuC+j/QOXxulFsmEr6tVyf5OW9b8Lu1TDh5r2DMiR59bth9pWw7ln/YwZ8LnX1ZIsB5/kLRqvfBfclE7RoYMA5SYyXz/Q/G+Z8y9858k+Pg8n/gMFfSn1dIiIdkbXO8YE51+zblpMPPQ6F8T+BhbfAuufc5xmo9yTSJFawtd6/OgZ8zj0YDeCN853jMEO/AmOvVziviKRVTroLiMNcWo64j0hnIVnqIvYOwvvQWvtOspNaa1cDZwGtj6AfBiw0xsw2xtxnjHkWWAX8Fmh9a5IngRuSrUEkKzS4BKPlpiEYDaDf6XCBhaOfj97e/yw4ayOcthT6nuo+T5fRMH0WfK4GztkKw69IzZvbHJdfRBr3BL+WiASv+lOY+x2YeTosvNU9LFJERDLH5jdg3g3xhaIB1Felph4REREREREREREREREREREREclc/c90brLtm235Wr0CPvh/sPg2Z9eupe7DysYlWKDspXQAHPJXMLn++lcthfeuhmV3pbauaLbOgRknxg5F6zoGJv0m0KWttWyqWx+1rSI/TcFoJj/q/khjJORKUqxsHEy8DUjTxdedR8CBv0vP2h3ZIX9zwjJjWXSrc32CBOvNL8En//Dff8LN0H1S6urJFoMvgkEhhGYd8lfn9VuSV9IXDrkLjM9wxTcvhNWPpbYmEZGOaulfooeiATRGYNNr8NLR3qFoAIMvDL42yU45hd7tY68Pp45M130i7O8RjAaweyXM/xEsuDmcmkREXGRNMJq1diXwFs4RzZHGGIWjxeeSNtuBfRphrZ0BnAlsarXbAAcC5wHHA+Vthv0X+Ly1tiGoOkQymlsIUF6agtGaVU6HkxdC5QnOdnElHP4AHP4gFDX92HrWaJ0gtFgJyslym79BwWgiGW/XMnjuEFj0K1jzOLz/XZh5inNgSkREMteK/yQ2TsFoIiIiIiIiIiICzuejkZ3O3X1FRERERERERKRjGPN9OHM9HH4/HHoP9J4e3/iP/+h8dQtGG/61pMqTNoZ+Gc5YAwPO9T/+PHKwAAAgAElEQVTm4z+krh43S/8KsS49GvQlOGFO4IExOxu2UWujX7NQUdAn0LX8yjMFUfdHbF3IlYRg9LVwxirnGpdD7wlv3WmvwUnzoPPQ8NYUR9fRcPIiOPYV6DLau++yu3RNUZB2r4VVD/vvf/pKGPP/nGvKOrrcAph8r/N/d/K/4JC/B7/Gmeud120JzpCL4cw1cMTDzmtMTvTg0c98lIb3QCIiHUEQv2NOnwW5McKwpOPw+r9w8J+hsHt4tWS6/b4L/c6I3e/jP+r8LxFJq6wJRmtyq8v34sEYcxgwqtWuOuBfQa5hrX0aGAv8Cdjm0fUt4Bxr7QXW2uogaxDJaA0uwWi5xeHWEU3X0XD0M3CBhTPXwoBz9j4wnRsjGC0Mbn9PDTXhrC8iifv4D7Bnw977NrwCG2empx4REfFnwyuJjYvsCrYOERERERERERHJPgt/CY/0hQe6whMjYNOb6a5IRERERERERETCUtzLCdoachFM/GV8Y6uWQ8062DQrenvnYcnXJ3sr7gVjrvfff9tc2DoHts9veVQtT90FsvXV8Mm9sfsNu8wJpgnYxrp1rm3lBZWBr+dHvoke3FJv2+lNq0v6Ote4DLkIRl6T+vUqT4SKwxWskE55xdBrauzXkPpdsPpxhaMFZd0z/vv2nAyl/VNXSzYyBrqOgsFfgKGXQLeJwc3d4xDn9VqCV1QB/c90XmMaY7yOrn8e6naEU5eIdAw1653fp3Z+BFUroPpTaIwRCN3eNNTC9nnJzWFyoMuo2P2k4yjxCEwvGx9eHdmi8vjYfWrWQO2m1NciIuIiq4LRrLWPAn8HDHCKMeb3xpi8NJeV8ay1r1trTatHobV2cwrW2WitvRLoDRwDXAL8P+Bq4GxgiLV2srX2oaDXFsl49W7BaF6hYxnCK7zNNoZUQ1H0/foAQyTzLb49+v4V/w63DhER8a+hFnYuSmxsfVWwtYiIxKt6FSy5Exb8HLZ9kO5qREREREREOp5VD8P734PIdme7ainMOEmB+iIiIiIiIiIiHVHZBCgbF9+YR/pAY230NgWjpUbZOOffyq9nJ8HT41sejw+FR/snfjPOaBpq4a1L4IGy2DdTLx0M5YcFt3YrG+vWRt1fnFNKaU7nlKwZS76JHgAXsXUhV5IGg78YwhoXpn4N8af3cU5okZfXP+c8T8z5dscLEglKQx28fRm8/RX/YwZ/KXX1tBdBPpfo7ztzPFgGM0+HyM50VyIi2azqE3jmAHik0vl96smR8PhgeGwQ/C8Plv413RWG56PfJT9Hn5OhsEfy80j70fcUyIkSKN55uBM4K3sbcC7k+AgG//Cnqa9FRMRFVgWjNbkCuAMnHO2rwPvGmEuMMXrXkiGstXXW2lestfdYa2+x1t5prX3YWvtJumsTSZsGl2C0vCwIRsuEGhWMJtL+rHky3RWIiEg0tVucD1cSpQtcRSSdNr8Dz+wP710NH/wAnj0Qlv8j3VWJiIiIiIh0LPN/su++yHZY8Z/waxERERERERERkfQyBo58NP5wNDedFIyWEsbAkQ9DWRLnjdWsgVdOgJoNwdQ073pYfg/Yeu9+nUfA1KfApObyuE2RdVH3VxT0wRiTkjVjyYt2gTcQaYyEXEkadJ8Eh94NuSm4xiUnH8beCAM/F/zckpjcApj6LJQO8u7XWOvczH3JHaGU1e58eBMs+5u/viYXRn4Lhl6e2pragxFfdx4mN/E5mv++h301uLokeWseh3f0byIiCbKN8PI02DbXvc87l8OGmeHVlC5Vy2HudcnPc8hdyc8h7UvnoXDEw1DQvWVfl1Fw1BPO8Q/ZW2EP57hKYbl3v49+B1s9nrtERFIoL90FxMMY83KrzV1AZ2A/4G9N7auBjU1tfllr7bGBFSkiEo3bXYpS8YFM0Fw+OAPA2nBqyC2Ovr9mLexYCF33C6cOEYlP9Sr3toJu4dUhIiL+LbkTdn2U+Pj6quBqERHxY+0zMO9G2Dp73zZbD3O+5dzFJs/l90oREREREREJztpnYfsH0du2vAPDrwi3HhERyRjGmAsDnM7inB+4A1gPLLY2rBNYREREREQkbp2GwIkfQPUKePNC2DQrwYkMdBocZGXSWqchcNIHULUCaprCwF6YEt8cjXXw6X9h1DXJ1WKtE4oWy7RXofzwlF7YvLFubdT9FfmVKVszlnxTEHV/xNaFXEmaDLkYBn0Btn8IDXtazglqqHWCJhKRkwddx0BeFlzf09F0nwinLYfHBsDu1d59P7kXRl8bTl3tiZ/nW4Dj3nJ+TvI7pbScdiMnDw68Eybc7Fz31vz89O5VsO396GOmvQqm6XJvk6O/70y26iGIVOnfR0Tit+19JxAslk/ugV5HpbyctPrkn8nP0eNQKIoR5iQdU99T4OxNsGMB5JVC6WCFonnpfSyctR52LIKnx7r3++Re53c0EZGQZVUwGjAV58SmZhYwTQ+A/k0Pvyc6mTj6iogkrn539P1Z/8FJSE+hXn9PT42BM9dDca9wahERfxob4AmPO/MpGE1EJHPU18Cm15wP0T+8Kcm5FIwmIiHa+CrMPMX7pMa6rc5J1ZXTw6tLRERERESkI6rfDW9/2b193bPh1SIiIpnoHlJ3kkm1MWY2cC9wn7W2NkXriIiIiIhIokxTqNnwKxMPRsvJh9zCYOuSfXUa5DwA+p4Ka56Ib/z8m6CkPzTWQt02yCmA4sqmC9Z7+ptj2/tQu9m7T1FFykPRADZF1kfdX16QzmC06De+r7eRkCtJo5x8XYzdkRgD/c+FJb/27rd9HuzZ7P+5pqOpXgm7PoZuE6H6Uyesq2at84hl7A3Q85DU19ge5Xfe++/ugNvhpWP27ddtf6g4Iry6JDmNdc7Pk16LRCRe1Sv89Vt+D/Q5BToPh7KxzrU+7c32D5OfY9hlyc8h7ZfJgbJx6a4ie5gcKBsDQy6B5XdH77PkDqg40gnw7TxCYXMiEppsC0aLRsFmIpL51j4dfX9ulgejJXpHnXh13c+7fdnfYOwPw6lFRPxZ/7xzsN+NgtFERDLD9vnw8nTYs8H/mKJezokR0S5mjewKrjYRkViW3Onv99J1zykYTUREREREJNU+/a/3xTORnc7vcO3xhF0REYlHKs6O7oRzw9WpwM+NMZdYa59PwToiIiIiIpKsfmdCYTnUbop/7MDzg69HvA27PP5gtMh2mHVO9LaJv4JR17pfOGsb4f3vw6JbY68z9PKUX4BrrWVT3bqobRUFfVK6tpd8UxB1f8R6nLctku2GXgIf/RZsg3e/h8th/1/Cft8Jp65s0BiB2VfCsrsSn2PwRcHV09FVHOWESOz6aO/9w65ITz2SuJknw+mrICc33ZWISDZpjCPMuPn3qu4HwVFPQHGv1NSUDtbCqgeTmyO/Cww4N5h6RKTF0Mvcg9EAXjvb+Vp5PBx+v/OzKCKSYtl4xqkJ8CEiknqN9e5J3nlZHowWltKBUDbBvX3e9eHVIiL+LLnDuz2sYEUREfH2xhfiC0XrNBRO/MC5g1k09VXB1CUi4offD0TrtqW2DhEREREREYFP/+fdXl8F1Z+GU4uIiGSq1ufr2VYPL9ZH3+b9BqgEnjHGfC2JOkVEREREJFXyimH6a1B+WPxjJ/0m+HrEW99T4NC7oXRQMPPNvQ62zHZvX/1Y7FC0wh4w+rsw7sfB1ORhR/1W6mxt1Lby/MqUr+8mz+RH3R+xcYQsiGSbsnFw1FPQZXTsvu9/F1YmGbTRniy/J7lQtGkzofPQwMrp8EwOHPsy9J4OOQVQXOmE+SkYLfvUrEs+1EdEOp54gtGabZ0Nc64NvpZ0Wv+Cd/v+t8CgL0Fep+jtxZUw/Q3365pEJHHlk2HIpbH7rXsOPvy/1NcjIgLkpbuAeFhrszHITUQ6uk2z3NtyszwYrauPDxWCUjYWtn8Q3noikrjVjzm/2HpRcI6ISPpVrYDt8/33n/BzGHaZc3KZ2wcMen4XkbBEdvrvu+FlqK+GvNJ92+q2tVyYX9AdSgcEU5+IiIiIiEhHsmej87tXLNvnQ6fBqa9HREQy0SVNXzsDPwJ64ASZNQJvAbOBlcBOoADoDowDjgB6N421wH3As0AxUAbs19RnIHsHpP3aGLPIWuvjBUpERERERELVZSRMnwXL/v7/2bvv6Diqu43j36tqybZcZbl3sHHDdIxppvceWmgJCakvCQkpJCSkUtITEkJIAQKh946BgKk2BmwD7r1b7pKtutLO+8dIUZuZnS0zuys9n3P2aHfunTs/GbE7O+W5MOdqf+sU9IWC3sHWJc5GX2U/6neD1diyfPPL9qSc8Vr7IPQ/1KUtxuQL3UfCWSvtUJkQbI1scm0bUJDGYLQc52C0hmh9yJWIhGzwyTB4EUT2wOP9wetvft53YMiZkFsYXn2Zau2D8a9TMg5O/RhyC1Jfj0DxEDhuJjTWQ04+GBN7HQleYT+o2xHfOmsfhBEXBVOPiHROie6zr38covfYnxudwer73dtOfNcOZgKINkCkoqUtrzuQo30UkaDt9x1Y9a/Y/dY+CAfcFnw9ItLlZVUwmohIVlr7sHtbv4PDqyMZo66E1fd2XD7h++HVUFjq3V651D74LiLp98lPY/dpqAq+DhER8bb5Jf99z98BhX1bXue5zKwS2ZNcTSIiflUs8d+3ag080gNGXAqH3AEFvaC+At69DDY917Zvz33hqMftcG4RERERERHxZ/3jYEW9+3QfBY214dQjIiIZx7Kse40x+wDPYIeiAfwd+IVlWevd1jPG5ABnA78BRgGfARZblvWzdv1OA/4IjMEOSMsDfgsckOJfRUREREREUmXwaWBy24ZtuennEqQl4WkfTDfwRDB5YDXEN87SP0D1eiidDrlF9iT0jbXQZyqse8R73cGnhRaKBrC1frPj8u45Peme63L9XAjyjXMIQMSKhFyJSJrk97TfDzY85d6nag08ORjKjrPDjkZ/zv4s6awBVLs+hu3vQPEI+3fc/Sns/BCIQvnr8Y9XdrwCR8Kgf+PMMuUXMPcrHZd77e9seBoW3mJfdzrweAX5ikhs0QT32aN19ntUz32hzwEw4Jjs/RxprIM197m3t76GPyfP3pcTkXD1HOMvNLZ6PSy4sSm0ECjoY38HK9k3+BpFpEtRMJqISJCiEVhxp3v74NPDqyUZ+3zZPtHYWNOyrN+h0H9aeDV0G+Dd/uJUuKjGu4+IBK9uB+yaF7tfw97gaxERkY4ql9oXg9RssS8y8+PoZ9qGogHk93Duq/d3EQlL9br411n7ANRth+Nehrlf7RiKBrBnGbwwGS6shs0vwo73oddEGHZeywkbERERERERactroqiT3rO/V+Wn70ZBERFJP2NMMfAUMA6IAJdblhXjjnewLCsKPGmMmQm8CBwJ3GSMWWdZ1j2t+r1gjHkLeAOY2rR4ijHmRMuyXknpLyMiIiIiIqlRNBBGfhZW/9u7n8mBcd8Ipybxr1spjL4SVv4z/nXXP24/2i/zklsE+ziElQRoW8Q5GK20YFCodbSXb/IdlzcoGE26knHXwsZnvcM163fC+sfs5yv+Bvt8DQ6+vfOFo33yc/jkx6kbLw3vtyIZYei58OnPoWZTy7L8XnD00/Dase7rLfiB/bP7SJjxEpSMC7JKEcl2iQajQdvvXmUz4OinIL8k+ZrCVLcTZp3h3p5brGtLRDJBTj7s+w1/3zMW/rLta5MLh/wVxn4xmNpEpEsKb6oMEZGuaOub7m3DLoCCXuHVkoz+h8Nxr8LwC6HvQTD+W3DcK3bidlhi3YDeWAt7VoZTi4i4q1jor5+Cc0REwrfpZXjxQJj/fX+haH0OgGNfhKFndmzLUzCaiKRZ3bbE1tsy075hf/2j3v0eKYa3zodFt8F7V8BrJ0B9RWLbFBERERER6cyqN7mfE534Q/s8oy5cFRER+BmwH2ABt/kJRWvNsqwq4DxgJ2CAPxtjStv12QNcADQ0bQfgpCTrFhERERGRIB32D/sYUm6Rc3vZcXYYxeBTwq1L/DnkTpj0Y+g1CQr6BndTfkEfOP4N6D0pmPFdbK13DkYbkOZgtDxT4Lg8omA06UrKZtjXtw48wf86y//ifY9XNqpcmtpQtMGnp+X9ViQjFJXBCW/CiIuhx2g7KO2EWVB2DEx/KPb6VWvsa/RFRLykap+9/HVYfmdqxgrT0j/C9vfc2495OrxaRMTbpBvhwD9A34PjO95jNcIHX4e6HcHVJiJdToiJNiIiXUzlcvivx0H2IQ4BE5ms9Aj7kS6WFbvPlpnQUzOTiKRNZC/M8vneFlFwjohIqCwL5n0bGqv99R97DRz6N/f2PJebWSN74q9NRCQRtdsTX/edi+NfZ8dse5bqcf+X+HZFREREREQ6k9pt8MlPYPkd7n1GXBRaOSIikrmMMXnAFU0v64DbEhnHsqztxpi/ATcARcClwB/b9VltjHm0qc0Cpidat4iIiIiIhCAnH/b/hf2Q7JOTB1N+aj+aPWBSv53TF9thJSHbVr/JcfmA/MEhV9JWvsl3XN5g1YdciUiaDTrRftRsgWf38Tex7/on7JCjzmLDU6kba+ptMOG7qRtPJBv1HAPTH+y4fPDp/tbf+Cw01kOuc4ipiAhRl2C0vgfDKXPt568cBdvejj3W+iey77N7w5Pe7T33DacOEYnNGBj/DfsB8Mw+sHeFv3Wj9bDpBRh1eXD1iUiXkpPuAkREOqX6Cnj1SO8+wy8Ip5bOwteMIwGcSBUJS9VaWPcobJ8DVjTd1STmvSsgUumvb2O1+8E8ERFJvaq1ULHQf/8JN3i35/dwXu7nwhIRkVSo2xb+Npf/NfxtioiIiIiIZCLLgtlXeYeilewHvfyc3xMRkS7gSKA/dlDZ+5ZlVSUx1sxWz89x6fNy008DDE1iWyIiIiIiIhKvMVendryScdBtQGrH9CFqRdkW2eLYVlowMORq2srPcQ5biei6bOmqigbCfj5DQZb9CWZ/Dj641g4Tsaxga0tWQxWs+DvMuQZeORoezIPnJ9q/w+zPwfzvp25bQ89O3VginU1+D+h7UOx+ViPsWRp8PSKSvaIuYcat9/EH+Axx3TGnZZ9gwY2wY27y9QUhGoFV98ATg2D3J+79eoyGYp3WE8lYZcfG1/+9K2DOF2HZX+zvNSIiSchLdwHJMsZMBc4CjgLGAH2BnoBlWVaH388Y0xsoaXpZZ1lWeVi1ikgXsv4JqN3q3l48DPKKw6unMyg9Cgr6QP0u9z553cOrRySVVtwFc78GVoP9uux4OObp7PqbXv7X2Kn97dXtsE9EiohI8CrjPMnaY6R3e55LMFpkT3zbERFJVDqC0SoXh79NERERERGRTLT1TXtmTy8jLrJnDxUREYHhrZ5vSnKsza2ej3Dp0/pAXp8ktyciIiIiIiLxGPdNWPnPFA1mYNKP03KccXfDDiKWc2hBaf7gkKtpK8/kOy5vpIGo1UiOyQ25IpEMsN/1UP6qff4illX32D+X3Q6jPweH/yvQ0hJWXwH/PQF2ftB2ecUi+5FKIy6xgyhFxN2kH8Fb59vhZ15emAIXVkNeUTh1iUh2cQszzmm1jz/2Glj1L6jZ7Ny3teb9GoBFt8Lhd8Ooy5MqMaUa6+GN06D8tdh9J/0YTE7wNYlIYsZ9E9Y9BpHd/tdZ+Q/75/K/wknvQn6Jd38RERdZu4dgjJlsjHkV+BC4CTgOGIkdemaaHk5mAKubHsuNMUomEpHUW/uQd3v/w8OpozPJLYCpt3r3aawLpxaRVKre2DYUDeyDPYt/k76a4tVQBXO/Gv966QizEBHpqqrX+u+7/y9j93E7GNlQCVbU/7ZERBJVq31JERERERGRtFn+l9h9hl8UfB0iIpItBrV6nuzsYM3X+hnAbRau1jPuFSa5PREREREREYlH70lw+iIYdEriY/Q7HEZeDjNegpGXpq62OGyrdw8hGFAwyLUtDPmmwLWtofX16CJdSV4RHPMc7H9zfOutuht2fhhMTclafW/HULSUMJDXdIiu32Fw0B9h2n0BbEekkxl6Nhz3Goy+yt5X8bLukVBKEpEs5CcYrftwOGk2jLsOSo+C4mH+xrYaYd533LeRDhuf8ReKNu3fMPrK4OsRkcT1nggnvQf7fh1Kp9v7Q7H2iZpVLISlfwq2PhHp1PLSXUAijDFXAX8BumFf5GS1arZwD0UDeBpYhz1jZHfgfEBHb0QktbbM9G4v6BtOHZ3N2Gvg/S+5t7//RRj7hfDqEUmFdY+2DUVrtvE5mHxT+PVYUaheDzndoKjMu2/1RjuJf92jiW1LYRYiIuHZs9J/36Hnxe7jtj9rRSFSCQW9/W9PRCQR9TvSs91dH0OfKenZtoiIiIiISCaINsY+L9B7f+g1Ppx6REQkG1S2ej4hybEmtnq+16VPt1bPa5LcnoiIiIiIiMSr134w48W2y54cCjUbY697/OtQdmwgZcVjW8Q5GK1HbgnFuT1CrqatfJPv2hax6ilQRrh0Vfk9YeIN0GcqvHGa//U2vQh9DwqurkRtejF2n3icOs/+txGRxJUdYz8AXjseyv/r3G/TCwr4ERFnlktoWft9/O7D4aDfNa0ThUd6QKOPU1615bBzHvQ/NLk6U2X9E7H75PWAkZcFX4uIJK/XeDj49rbLVt4Ncz4fe911j8GkG4OpS0Q6vawLRjPGnA/8k7aBaAY77Gwn4HmExrKsqDHmYeC7TYvOQsFoIpJq+SV2IISbgj7h1dLV7FkJPcekuwoR/z66znl5ILP7xLD7E3jvStg1z3498rNw6F2QV9y2X91OePsCKH89ue3VKRhNRCQ0e30Go429xt9Nq4UeQb/1OxWMJiLBi+xJz3aX/A6m3ZOebYuIiIiIiGSCpb+P3WfERcHXISIi2WRD008DjDbGHGZZ1pwEx7q86afVatz2Brbqo5PSIiIiIiIimWDYebDsdu8+hf2g/+Hh1BPDprr1jstL8weFXElH+TkFrm0Rt6AFka6k9CjILYbGan/9P/4R1O2AcddCj1HB1mZZsOIu2Pxix0nmC/pC6TRoqIbts6H8tdRtt3gY9JqcuvFEBAad4h6Mtu4R2Hsb9BgZakkikgWiLvvrOe7hx5gc+z1nw5P+tjHzMBjzBfvR/7D4a0zWrgWw4m/2farb3o7df/CpYEzwdYlIMAadaL9PWVHvfrsXwMwjAAO5RdB/Gux3PRT0CqXMTqVuByz+DeyYA411Hdsn3gBDzgi/LpEAZVUwmjFmEHBv08vmULQ7gN9alrXaGDMSWOVjqKexg9EMcEyKyxQR8f4iCmCy6u03s4y7zvuGi9X3wpSfhVePSDKq1nq3W1bwB3b2rIB1j8LuT2HtA23b1vwHigbBAb9uu3zO55MPRQOo3Zr8GCIi4s2yYNPzsP7x2H37HACH3Olv3AKPYLS6ndBjtL9xREQS1bA3dp8LdsKz+0Ld9tRtd/W9CkYTEREREZGupbEWVt0L1evsYz7zvhN7HQWjiYhIW7OACPa1iga4wxhzlGVZPu9OtRljLgJOouW6wVdcuh7Y6vma+EoVERERERGRQIz/Fqy62/t6j6m3QW638GpyYVkWb+x+zrGttCD9wWh5xv1elYZofYiViGSo/B5wwK/gg6/7X2fpH+x7KU56L9jrX+d+FVZ4XKe7yfm9Jykmz74fJCc39WOLdGVjrob533Vvn3l403tKwIGLIpJd3PbXPcKPAZj8Y9j2lv9r4lf+A1bfB8c+DwOPj6/GZGyfA/89Hhqq/PUvLIVJPwq2JhEJVvFQmHADLPxl7L7b32t5Xv4abHgKTp4DecXB1dfZ1O+GmdNgz3L3PrpvXzqhnHQXEKcfA8XYF0hFgQsty/q6ZVmrm9ot1zXbmot9sRVAP2OMvl2KSOo01Nhpq166jwinls5o2Hne7Ts/CqcOyX6W392GAG14xrt9zhcSH7v59/P6Pbe9Cy8dBAt+0DEUrdmyP0Nkb8uMBJE9sOkF/3Uc8lfof4RzW50m5xYRCdxH34ZZZ/rre+I7/gM580uwv5o7qN/lbwwRkWT4CUYr6AMDT0z9tiN7Uj+miIiIiIhIJmqosc8jzP0yLLzZ33mLsuMUmi8iIm1YllUJPId9YsECpgIvG2OG+R3DGPMF7AlVrVbj3O/S/eRWzxckUrOIiIiIiIikWI+RcNZKmPwzyCm0J+YsPRK6j7RD00581w4YyQDLaj51bRuQn/5gtHzjHpoQsSKubSJdyr5fgxPegoEnAAb6HR57ndqtsPTPwdVUtR5W3pXaMUddYT/KZgDGfk8ddQWMuNT+OfFGOHm2JrQRCUJhXzjW496q2nJY/tfw6hGR7BB12V/PcQ8/BqDPVDjlA5j6Kxh1pf05H3NbdbDwlvhrTMbiX8cRitbP/p16Tw62JhEJ3v6/gGNfhHHX+Xt/albxKax7NLi6OqM1//EORRPppPLSXYBfxphc4BJaws9usyzr8UTGsiyrwRizBGjeWxoPrPZYRUTEv8rFsfv0nhJ8HZ1V6XTvdreDAyLNKhbD3K/Ajveh5772l64hZ6Snlqo13u2r/mWn3vcY6X/M+t3277f2oZZlpUfCIXd0PFC04AcQqfQer7EWHu1pPy8aAiM/6+//s+KhcPZaMDmw+WXnPrUKRhMRCYwVhfeuhDVu9wS1M+wCyCvyP77JsQOH6nd2bHNaJiKSSlbU/0nTkvGp3/7ml2D4Z1I/roiIiIiISKZZdAtULPLfv/tIOPgvgZUjIiJZ7XrgVKCw6fV0YJEx5n7gUeCDpgC1/zHG7AvMAL4AHEjLjC0W8E/Lsj5pv5GmsLVjabnG8K3U/hoiIiIiIiKSsG4DYPKP7EcGW17tEYxWMCTESpzlG/fQhIhVH2IlIhluwJFw3Cstr7f8F/57vPc6W2cFV8+2t+zr3lKlbAZMuzd144lI/Poc6N0e5HuKiGSnRIPRALqPgAnfaXldNAgW3ea9zra3INoIObn+a92C23wAACAASURBVEzG1jf89z3meeg+PLBSRCRkg0+xHwD5vWHZn/ytt3UWjL4yuLo6m/I30l2BSFpkTTAacDhQ0vS8HvhVkuNtoCUYzffskyIiMe12PxEG2MFE/Q4Jp5bOyBjoexDs/NC53WoItx7JLvW74JUjWwJbdi+AN8+2ZwMqPSL8eiJ7YveZeRiMvhqGnWe/f2x/F2o2w4BjoLjdyfU9K+HZsR3H2PY2vDAFRlwMg04Gcux/g3gPstdshMU+d8Em3miH5gAUljr3qVMwmoiIo8he2DEH6rbD4NMhv0f8Y3x8k/9QNICxX4x/GwV9FYwmIunRUO2/78hL7ZO+jT7WGXEJrH0wdr+3L4SL6/2dhBYREREREckWlgW7P4Zd86HvgdBrIqy62//6Rz5in4PIL4ndV0REuhzLslYbYz4P3AfkYAeXdQeuaXpgjKkE9gAFQK+mn9A2EM0Ac4BvuWzq+03jA9QCr7j0ExEREREREXG0pX6Da9uE7lNDrMRZnilwbYtYmmRexFXpkfZ9DV73MOz6CB7vz/8OR0Xr205EX9i/5bnJgd5TYPy3YPCpbcdpqIHlf4HV90FeD9jnK/Y5mFQaem5qxxOR+BWVQf8j7Pu8nOx4H+Z+DabeCvk9w61NRDJTMsFo7Q09L3YwWrQeHsqz70ua9CPof1j823HTWAsLfgibXoDKJfGtWzwU+h6culpEJLOMusx/MNqqu2HbOzDoJHufKa97sLVlotX3wYq77PsxB58OU34OteUw/3uw9qGWfvm9IbI7fXWKpFE2BaM1p3xYwNz2M0QmoPX6ujJXRFKnYqF729Bz4bC/2+FekrjGWve28v+GV4dkn3WPdgxrsaKw8h/pCUZr2Bu7T+1WWHSL/WgtJx+m3Q8jLrRfL/8bzP2y91hrH2r7RSgoB/ymbcBONwWjiYj4tnc1zDqzZZ8yvxcc9QQMPM7/GNFG+7PNj5LxsP8t9gHEeBX2BaePsrod8Y8lIhKPhir/fXuOhWNfgLlfgcrF7v1GXWHPoDn6KvjoOqhY5D3uxudh2Dn+6xAREREREclk0Ub48P9g+V9blpUeBdXuNwC2MehkGP6ZYGoTEZFOw7Ksh4wxUeAu7Ov1rKam5otoejU9Oqzaqt/LwMWWZbkdJLwPeKTp+V6PfiIiIiIiIiKOyus3Oi7vndeP4twEJjlNsTzjfitgQ7Q+xEpEskxuARz6N3j3Uu97kryuga3b3vb1llfte5iOfbHtdbjzvwvL/tzy2i00KVEDT4LRn0vtmCKSmIP/BC95hPssv8OemOrEt3U/qYiAW5Bxjnv4sat+h/jvu+l5KH8NTpoDfabEvy0nb11gj5uIQ++CnNzU1CEimaffITDhe7HDG5vtWWY/dn8Cx7/etfaZVv4T5nyh5XXFItg1z76vtGZz274KRZMuLJuC0VonaqxPwXjRVs+z6d9BRDJd1Wrn5SM/C0fcH24tnZXXSQiAJ4fC5JtgzBe61g6wxLbkD87LV90Nh/8r3FoAInsSXzcagXcugrJj7RNssULRwjJjJgw6se2ywgHOfWu3Bl+PiEi2mX9D26DdSAXMvhJOXwz5Pi+qqtsGtVv89T3DIyQolnyXjPF4AotERBLhJ2C4tbJj4PSFsO1tWHUPrHuk7RjdBsLEH9jPB51k9y2fBa8d6z7mwpsVjCYiIiIiItmtbid8fGPbMLTWtr3lf6z+01NTk4iIdHqWZT1ijHkX+A1wHi3X7VkO3U2rn6uBX1qW5Xli37Ks2amqVURERERERLqeqBVla/0mx7ZzSq8IuRpnxhjyTQERq2MImtMyEWll2Ln29bhrH4QFP0jNmFYUlv6xJRht72o7CClVymbA2C9BQV87LKBkPAw4GnLyU7cNEUlc34Pg5LnwskdA0fZ3YftsKJ0WXl0ikpmiLsFoJoHPdWOgoA/U7/LXv7HW3kc59M74t9VexZL4QtHGfRP2roT+R9j32XcflnwNIpLZpt4Kw86Hbe/Y9xlueiF2YPTWWbDzQ+jnETrb2Sz+TcdlW16Nf5zBp0P/pn3NvgcmV5NIBsqmQLDWFz+lIga2b6vnikcUkdSpWue8vPuIcOvozKJ13u01G+H9a+xZ7Kf8NJyaJDtUJhH+EoR4Ax2cPFGW/Bip0nuyfeKtvW6lHZeBHdwjIiItrChsfLbj8uoNdojPmM/7Gyes4MmcQufljTH21UREkpXIfrQxMOAo+3HQH2HD07B7ART2t0+wFg9p27/sGCgZB5VLncfbOdd+v8t1eS8UERERERHJZA018OoxUPFpasYrHpqacUREpEuwLGsDcLExZhBwAXAEsD/QH+gN1AG7gLXAbOBVYKZlWU7haSIiIiIiIiIps6thm2u42MCCIY7L0yHP5LsEo7kELYhIix4jYcL3YfGv/QeJxLL55ZaxVt1tXw+cKtPua7m2rf0E9iKSGfocALlF0Fjj3mf7e9kVjBZpuk7X78TuIuJP1CXIONHAUxNnTMjml9z3f/J729fbg70vE6nwHscvkwsH/d5/fxHpPPodYj8ARl4Cz4yJvc7ml+xgL5MTbG3pYllN768W1FdA5ZLUjDvtXijsl5qxRDJQNgWjtU7OGJyC8Sa1er4jBeOJiMDeNbBjjnNb8fBQS+nUGmv99Vvye9jvOzoIJ/401EBeUcjb3BPu9oI2/WHIcdi9LHQLRttp//+c2y3YukREskXDXmisdm77+Ef+g9HqQgpGcwsDcjtZIyKSKskGDOf3gFGfBT7r3a94mHswGtghAifPTq4WERERERGRdNj0QupC0QBKj0jdWCIi0mVYlrUZuL3pISIiIiIiIpJ2W+o3urYNyKBgtHxTQA1VHZY3uIS6iUg7xsCIS2D5HakZz2qEx/qmZqzWBhzdccJPEck8Obkw/DOw+t/ufeZ9G2o2wdRbne+7yhSbXoKPvgWVi+3XJePhgN/CkNPSW5dIZxF1CTJOOBjNxNe/aq37Pku3MhhztX2/59qHILI7sZraG3BMasYRkezWYzT0PRh2fuDd7+MfweLfwshL4cDfQ25BOPUFzbJg0a2w7Hao2Zz68RWKJp1cNkUlrmv6aYADjDEJ7uWBMWZfoPVRoY+TKUxE5H/eucS9rXhYeHV0dhNu8NevYU/snWTpOmIF6lWvD6eO1pINdAjCkY/AyMviX2/fr0Ov/Zzbiga5rGTZB81FRMQW8QjMrNkE9T5PLNT6DEab8nN//dzkuBxcVDCaiAQtEtJ+dKzvEDvmwPqnwqlFREREREQkUTs/ggU/hPk3wPY59kWsb1+QuvGHnQ8l41I3noiIiIiIiIiIiEialNdtcFzeO68f3XJCnoDbQ75LcELEcglaEJGOpvzcDh5Lp4K+cOyLkNejY1vPfeCwf4Zfk4gk5oDfQL/DvPss+S18fGM49SRi1wKYdUZLKBpA5RJ480z7nLOIJC/VwWjEGYzmpbYcFt4MK+5MXSgawPhvpW4sEclu0+6D7iNj94vstkOsP/xG4CWFZtmfYcEPgglFG3VF6scUyTDZFIz2HlADWEAR4JE+FNO1rZ6XW5a1NJnCREQAqFwOO2a7t3cfHl4tnd3Qs/33nf354OqQ7FFfAS/HOMC8Z0U4tbTmFYCTDmeusGcp2efL8a/r9f9lyTgo6OPctvXN+LclItJZxQrM3OAzfMdvMNrQc/31c+MajFaX3LgiIrE0dpzxNhAl42P3mfslO1RARERERETiZ1n2Q4Kz4WmYebh98eqiW+3nj6dwhsj9b4HpD6ZuPBEREREREREREZE0Kq/f5Li8rGBIyJV4yzPOwQkNbkELItJRYV84/nU47VN7cvn2jzDs920YfAqcuxmOe7Vl2yfNgdMXQs+x4dQhIsnrVgonvRs7mGLlPyDaGE5N8Vr5L7AcarOisFJBjSIp4RZk7HZvTmeQX5LuCkQkU/QaD2cug5Pegz4HxO6/+t/QUBN8XWFY8bfgxu6h743S+eWluwC/LMuqM8a8BpzRtOiXxphnLMuKK3bWGDMd+BJ2wBrAEyksU0S6quqN8Ny+3n26DQinlq6g5xg45A6Y+9XYfatWQ/1uKOgdfF2SudY9Crs/9u4z63R7do6D/gT9Dw2nrlgBOGEpGgLHPGv/vwXQ/wiY8H37Jik/9rseyo53b8/Jh0GnwFqHm6Nqy+OvV0Sks4oVmLn2YRh9VYwx9sJH18Xe1tTboPdE36U5yil0Xh6tT25cEZFYwjq5MfKz9kUoXmq3wtI/wZSfhFKSiIiIiEinsOMDeP+LULkUek2E/X8Jg05Kd1Wd0/zvuc84nIzuI+DIx6DfwakfW0RERERERERERCRNttRvcFyeacFo+S7BaBG3oAURcWZy7Gtpna6nLZsB5a8Hu/1ek+yf+T1goMf9GCKSHUwOjLjEDvFwU7cDajZC9+Hh1eWmepN9T1eviZBbANvfde+7/jE4+M9gTHj1+RGNQMUiaKxNdyUi/tTvcl6e47x/3ymYrIkyEZEw5ORD/8Nh8k/hzbO8+zZWw5r/QO/JLct6jLYDaTNBtAH2rIAeoyC33T2WVhQql9j3ijbWQsXC4OrozJ8hIk2ybW/il9jBaBYwBJhpjDnDsqytflY2xswAHgNyAAM0AL8JqFYR6SqsKPzXxwHovJ7B19KV7PMVGHIWvH8NbHrBu+/cr8KhdypdvCvbMtNfvx1z7P+fT18Y/EFmywo+GG3fr0NuEfQ50P5yU/46FA+G3GJ7Fo+8YigeBqVHQUGvlvWMgam32OE7z413H//Qu2DA0VAyLnYt3cqcl0cq4vqVREQ6tVifC5tfgsrlULJPx7ZoA2x8Dt461339HmNhys+g/2H2gcBkuc1Ko2A0EQlaNKQLGEqPgpLx9gkJL2vuh8k3Zd4FHyIiIiIimahqHbxyJETr7Nc7P4A3z4XTFmjW+1SrWmuHz6XawBPgqMd13k1ERFLCGJMPHAqMAfoCPQFjWdbP0lqYiIiIiIiIdEnl9Rsdl2daMFqecb52L2Lp2j2RlBl1VcdgtLzuMP7b8GkKDl0VlsKgk5MfR0Qyy8DjoWiIHX7m5ukRcO4WKHK5zypoNeXw9vmw7R37dW6Rfc9ZpNJ9ndqt8MwoOOoJ6HtgOHXGsvo++57RoO/NEwmDS/BxUgafDpueT/248VJgj4g4GXSyfc95bbl3v/e/6LDuqTD9wbb3xIdt3WMw52p7/ymnEKbeCuO+Yd9TtOW/8O4l9v5TGHKyLTJKJH5Z9VduWdYcY8xDwMXY4WgHA0uMMb8HHgE6HME1xuQCxwJfBD6DHYhG0/p/tCxrTfCVi4gvjXX2QZ9ugyCvKN3V+Ff+X383FeR2C76WrqZ4CBzxgH1A0Ctcae2DsPEZOHW+bqrpqtY/4b9vw167//hvBlcPQGONHawYhMJ+cObKjl/shp8f3zgl42DM1bDyn+0aDJyzDoqH+h8r3+VLpoLRRERaRPbE7vPcvnDqPOgztWVZ7XZ4ZTrsWea97tgvwMhLkquxNbdgtMa61G1DRMRJWDO75eTC8W/AB1+DDU+D1eDcb+9K2Pkh9Ds4nLpERERERLLZmv+0hKI1a6yGT34GR3jMnC3xq9sezLgTvqdQNBERSZox5kjgeuAkoNChS4e7S40xpwAXNr3caVnW9cFVKCIiIiIiIl1NTWMVlY27HNsGFsRxzXQI8l2CExqsSMiViHRioy6HqtWw6Fb7erXi4TD9Ieh3qH3z+/I7Ep9IuOe+cOSjkOt0WExEslpOPhw3E966ACoXu/d77zI47pXw6mqz7StaQtHAvr+tsSb2elVr4fVT4Jz16X//2jXf/j1EOosgwsP2vxm6ldohglZj6sf3S4E9IuIkt8DeF3r7M/FP/Ln5Rfjg63DEfcHUFkvlcnj7Quy4IuxrIT+6DnpNgL4Hw6zTw7vnCcDofVY6v2z8K78aGAccgP1u0Rv4SdOjzdEkY8xiYBTQvEdomtYxwLvA98MoWEQcRBtg/vfsWeGr19k/a7fYbSe+DaXT01tfPDbP9NfPmNh9JH4FveDA38Ocz3v3a6iC+d+Hox7z7heNwKLbYMMz9kG90iNh8k/SNwuDpEZuN/tvwC+vg8+p0lDt3nbqAigZD4/3S2zmitM+TV3a9YQb7Pe56vUtyyb+ML5QNHC/ScprRhERka6mwUcwGsCca+DkOS37lx99M3YoGsCwOAMyY3E7oZnohR4iIn6FGcBYVGZ/j7QsO1TgyUHOJ4fXPaxgNBERERERP3Z/7Lx8zX1w2D/si54kNaIBXNha2A8GHJP6cUVEpMswxnQH7sKeGBVaJjltzXJZfSFwOZDTNNZ9lmUtSHmRIiIiIiIi0iWV1290bSsrGBJiJbHlG+dj6RFL1+6JpIwxMPkm+36K2i1QPKzlut2Dfg9Tb4HKZbgfygK6j4SaTW2vqy3oA92HB1m5iKRbrwlwxiJ4cjDUbHbus+VVu61oULi11WyGLT7vhXVStw02vwxDz0pdTYlYnaYgFJGgBBGMltcdDr8bDrrdngTcyYtTY4/TbQDM8HjfyO8Fz4xyb3cJdRYRofdkOGMJVK2HmYe57zc5WfcoHHoX5BUFV5+bNffj+D1w1b2wd3V8oWinzrd/mjzIKbAnmG2taAg0VsG878K6R5zHCOIzRCTDZF0wmmVZNcaYk4GHgONoedcw2LNHNgefGewAtf+t2qptJnChZaUz4lakizO5sOLvzuEPVeuyJxitsR4W/zrdVciYz0HvSfDyod79Njxt30DvNSvBu5e13Tms+NQ+2Hjqh+7BTpnOikLFQsjrCT1Gprua9CgeBpVL/PePJBBGFq+ox5eb3CL75q/hF8Cqe+Ifu1sKg/x6joGT58L6x6FmI5TNgIEnxD+OW1BbpCK5+kREOpOPb/LXb+dcWPUvGHiiPSvCmv/4W6/n2MRrc5LjcqOygtFEJGhe+9JBMcaeNWvgCfZFHe2Vzwq/JhERERGRbLT2Ife2ysXQZ//wauns/Ibwx2O/7+hiKhERSZgxpgR4C5hEywSnrTVf2+fIsqz1xpgXgDOb+l4MKBhNREREREREUmKLSzBagSmkd16/kKvxludynDYSjYRciUgXkFvgHGSW2w36TIm9fqomvBeR7DPkTFhxl3v7ir9D3wPte9jyiqDf4fZkvkGo2QzbZ8PG55If682zYdq/of806DGmJTQyDFYUKhbBkt+Ft02RMJTsl/oxc5oiRPJ7uF+LM+JSWPuA9zijrkruWp6crIsyEZGwdR8Goz8HC2/2v060Dj75CfSaCLXl9mSfg09NTeisZdnXMe6aD05xRJ/+zHm9tQ/Apjj2tYZd4PP9tb+dOeDG6H1WOr+s/Cu3LGu7MeZE4PqmR2lzU7ufzZqD0nYDvwZ+pVA0kTQzxj4wXLGwY1v1+vDrSUT1Jngqs2b+6dL6HQIzXobXT3bvYzXAnmV2irCTZX9xTszduwI2PAOjLktNrWGqWAKzToe9q+zXZTPgqCegoHd66wpbvAEtDSEEo3mlPud2s38e/Geor4CNT9sHb/0oHpr6g8pFZbDvV5Mbwy1YsF7BaCIiAEQj9j6HX3O+EFwtfrkFozXWhVuHiHQ96XyfGXquczBaxUJ7n93khF+TiIiIiEi2+OSn3u01WxSMlkqpPtcx9BwY/+3UjikiIl3NY8BkWq7tqwceAV4HosA9PsZ4EjsYDeBE4IbUligiIiIiIiJdVblLMFpZwRByMux6kHzjfO1eg6VJTUVERDLGmC/Cyn86B2oAfOIwqfohf4V9vpzaOpb/FT74P/c6EvHeFfbPsV+Gg28PJ/iooQreuQQ2Phv8tkTC1GMslB6R4Moe95D6CcrZ50uw9kE6xnI0ySmAMZ9PqLKWMTT5noj4MPpzsPi3duCZX4t/1XHZgX+A8d9IvI6GGns/Z/1jia0fqfTfN559Pq99LQVQSheQWUdm42DZfg2MAK4GHgI20jJzZOswtOeBa4FRlmXdolA0kQxR7DBjBkDVunDrSERDlULRMtHAE+wDAV52f+q8vH43fPB19/V2vJ94XeliWfDWuS2haADlr8NH16WvpnSJ9+afjc+kZhaM9vausm/8ev9LsPrf7v2ag9HyusPRT8D52+HcLXCMj5oGn5GaWlMt32Wmo8hu+29VRKSra/15HYRxAXz+5xY6L483kFREJF5eIcPNxl4TzLb7HOC8vLEaqtYGs00RERERkc5gw9P2LI1e6raGUkqXEdmTurFGXApHP6kLqUREJGHGmAuAE2i5s+I9YB/Lsq60LOseYJbPoV5qHhLY3xjTI6WFioiIiIiISJdVXr/BcXlZQebdN5JvnMMFIlYk5EpERETEVb+D/d0H1trcr8CelamrYc8KmPu11IaitbbiTlj/eDBjt7f0TwpFk84lr7t9H+gJs4IJD/Mz5oCj4ajHoffktstNDvQ9CI57FUrGJVeHn4A2EZGeY+H416DvwWByEx/no29CxeLE11/xt8RD0fzqNRGOfAQGHu9/HZfjQDHbRDqJrN+bsCyrFri76YExxgB9gAJgh2XpqK5Ixuo+zHl5dYYHo9VXwBNl6a5CnJgcOP0TeLjIvc+2t2DkJR2Xr33Qe+z6XcnVlg67F0Dlko7L1z0Kh/69a9280lAV/zqzzoQpP4dJN6amht2fwGszoG5H7L7NwWjNCvrYP/0cSBp9VdylhSK/xL2teh10HxFeLSIimSjocGCn/Z9k5TjPOqlgNBEJnJ9gtNGfC2bbvSa4t5W/AT1GBbNdEREREZFs5+cC5fe/DKMuD76WrqIhRcFoQ8+GI+5PzVgiItKV/aDV80+BEy3Lqo53EMuythhjtgIDsCeF3Q+Ym5oSRUREREREpCsrr9/ouDwTg9HyjPO1exFL1+6JiIhklMGnwIiLYe1D/tdZ9yhM/H5qtr/2IVrmKwnI2odgxEXBbqN5O7GcPNcOGxHJBjn5wd7f6zeQbNi59qOxDqxo07q5kOtyv1C8ggh9E5HOqXQ6nDIXGuvbhrq+cQpsfdP/OOsegck3JVbD2ocTWy+W6Q/BkLPsHIzcwvjX9/q86EpZEdJlZfxfuTFmf+AkYALQv2nxdmAx8IplWfNa97csywJ2hlqkiCSmeLjz8qq14dYRr9eOg2hduqsQN7ndYPDpsOl55/b1T8JBt0NOu8TgWAfH6rPwo2XTS87LG6qgdgsUDw23nnSxookFowF8/CMYeAL0Pzz5Ohbd5i8UDToGozXrMdp7vUk/hv6HxVdXWPJ7ubctvR0O/E14tYiIZKLq9cGO3++Q1I/pGoymfWURCVis95n9b07NPryT/B7Qcx/Ys7xj27qHYUxAgWwiIiIiItluh4+8ksZqqFwOJfsEX09XsOaB5MfILYZp94MxyY8lIiJdljFmEDC11aL/SyQUrZUl2MFoAPugYDQRERERERFJUqPVyLbIZse2soLMu+Y+3yVcoMGKhFyJiIiIxNTv8PiC0RbcAL0nw6CTkg8U2jUvdp9kbXrBYbsfQ/nrUDTIDofLL0l8/OpN9jZ2f+zdr7Af9J6SujAnkWwXb1BOIkE9fvgNaBMRadb+s3zAjPiC0T75CUQbml5EoWo9FA+BgcdD2XF2OFlrVeth80t2vsmO2clU7szkwoCjIa8oiTE89gn1PitdQMb+lRtjDgR+Dxzp0e0WY8w7wLcsy/ognMpEJGW6uwSjVSyCyB7I7xluPX58cC3s+ijdVUgs477hHoxWuwW2vwsDjmpZVr0Btr7lPWZdFgajNex1b9v5YdcJRmtI5npqYOY0uKgu+QOja/7jr5/Jcf8iYnKg32GwY07HtqFnw5SfJl5f0Ar7ubdteErBaCIiVeuCG3vSj4IZN8flxEdjbTDbExFp5vY+k9cTzlhsn7QI0pCzYMlvOy7f8irUboNupcFuX0REREQkG8W6SLnZ2odgckDHMrqSrW/DtreTH2f0VXZAtIiISHKmNf20gPWWZcVx1bKj1hdweJyIFhEREREREfFnR2QrDVaDY1tZweCQq4kt3zhf1x6J1odciYiIiMQ06jJYfBvUOIewOpp1Bgw8AY5+CvK6J77tXfMTX9evaD3Ubodu/e3XS/8MH16LfUoAKBkHM2a630vsZdt79r9FvY/7Osd9U6Fo0vV4TXLnFaITpmQDHkVExlwNy273tz/QbOEvOi5bdCuMuBim3dcSHln+Brx5NkQqU1Kqo1FX2mGxyfAKu9T7rHQBObG7hM8YczbwFnYommn1+F+XVo8jgTeNMeeEXaeIJKnPVOflVgNsnRVuLX7M+5694ySZb9CJ9o6pmy2vtn29eSb/O9jmZsdssKJJlxaqyB73tjfP6fjv0Fl5BcT59aLL+1UQcgq9D0oNPct5+fhvB1NPqnQb4N62dyWs9vh/VkSkK6heH9zYQ84MZtwclxOH1esh2hjMNkVEwD0YbeQlwYeigX0yxInVCOsfD377IiIiIiLZqHS6v35r7g+2jq5ijc9j7rkeM1FOuAEO+lNq6hERka5uYKvnC1IwXuuLAJTgKSIiIiIiIkkrr9/g2lZWEMK1KHHKcwk5iFiRkCsRERGRmAr7wUmzYdDJ8a235VVYdW/i262vgL2rEl9/v+thwDH++i74gf2zdhvM+xZt7tOsXAoLb06shg+/ETsEpdckOOQOmPjDxLYh0ll5heiEyWRIHSKSvboPg5Pes+/j6TEGiocmPtbah2DTC/Zzy4IPvuYvFM3k2tttfngpGmT36XsITPkFHHpX4vU28wo/0/usdAEZF4xmjBkPPAgUYQefWbR8C2odkGa1enQDHjDG7BdutSKSlF6ToFuZc9vqDLvp4aPrYfGvYvcbdp7z8sk/S209Etuoy2Dwac5t7WdY2LPc35gbnk6uprCt/Id3++zPuwcKdCapCEarXAy7krg+u7HOf9/cbt7tY78MfQ5su2zUFVB6ZPx1hW3wGe5t718DkRT8txIRyVa1W5yXJ/v+PuZq6Htwqo8CRwAAIABJREFUcmO48ZpRaeMzwWxTRLqmHXNh1lnw3ASY80WocbkYNacwnHr6HmSfUHEy9yvh1CAiIiIikm3cAtbb27MMKhYHW0tXULEwdp9TF8AJbzq39RgNU2+GnNzU1iUiIl1Vr1bPUzHVcuswtC5w0YOIiIiIiIgErbx+o+PyvnmlFIR1PUoc8o3zMfcGqz7kSkRERMSX7sPh2Bchr3t86214KvFt7v448XUBhl8IJ7wBl1oxu7Jjjv1z80sQdQhqTeSezJrNsHOud5/CfnD6J7DPV8AY774iXY3JkOs9vMJ8RET8KtkXpj8IZ62Ac9bD4UmExzbvX+1dCRWLYvfPLYaLI/Z2mx/7Xuvc1+TBuZvsPqe8D5N+mJrr77zCzzIlCFMkQBkXjAbciR101hx6ZoAG4D3gEeDRpucR2oakdQP+FnaxIpIEY2DgCc5t6x6GnR+GW4+bpbfDkt/G7jfoFBh/PS1vTU1MnntgmgSraJDz8sjutq+r1/sbb80DydUTpo3PQ2O1d5/q9bDppXDqSaeGqtSM88HXoHZrYuvW7/LfN1YwWmFfOPEtmPZvmHgjHPMcHH5PdhzAHXq2e1tjLWx6PrxaREQyjdtnTO8p8Y/V7zCYeisc8zwc+vfgPiO8Lvja/HIw2xSRrmfXfHjlKNj4rB1YvPIfsO0d576x9qVTxRgYcZF7+7zvhFOHiIiIiEg2sRr99133aHB1dBVu35ua9TkQ+kyxg59LxndsH3FJMHWJiEhX1fqEeS/XXv4NbvV8ZwrGExERERERkS7OLRitrGBIyJX4k2+cwwUilkMQiYiIiGQGY6DsuPjW2fIKzJwOC26E3Z/Et+6u+fH1by+ecNjdH8PbF8J7Vzi3126BBww8tx+881lY/FuoXAaLf2e/fvM8u/0BA2+eY//OL0yOvd0BM/zXKNLVmAyJEPEK8xERSdSgkxNfd9XdsPRPsO1tf/0L+3e8N3P4Z5z7jv5c4nV58QqZ1PusdAEZsldjM8ZMAo6mJRAN4LfAQMuypluWdbFlWRdZljUdGAj8ut0Q040xCdw1LiJpM/h097a1j4RXh5uqtfChS2pre0fcD6XTYNp9UFhqLysaBEc9Dr0nBlejuMvr4bx83aNtU3zX/MffeOsfS76msCz+lb9+G58Nto5M0BAjIM6vbe/AE2Ww5A/xr1u/O3afZjk+whzyimHU5bD/z2HI6dkRigZQEOMa90RmABER6SzcgtH67A89Rsc31thrYML3YMhpwX5G5DjPOgnACuWWi0iKLPkDROv89Q0rGA1gxMXubavuhmgcoQ8iIiIiIl1BPMFoycx6LbbcIu/2o5v+jY2BGS9B30Ps1zmFMPZLMPkngZYnIiJdzrZWz5O6gMYYUwhMbbVoQzLjiYiIiIiIiABsqXf+ellWMDTkSvzJc7l2LxKtD7kSERERicuEGyCve3zrbH8XFv4SXj4Mtrzqf71kg9HivSbXzwRolUtg7QMw73p4bhzM+7b9esOTLX02PG3/znU7vMfKL7HvmRDp0rLgntKc3HRXICKdUVEZjP924ut/+A2Y7TPELM/hOrzS6TD4tLbLCvvD+OsSr8mLV/iZV2iaSCeRUcFowPlNPw12ONq1lmV9x7KsXe07Wpa127Ks7wFfa9Uf4LxQKhWR1Bh2HuT3dm7b+WG4tTh547TYfQCOfhoK+9nPR30WztsC52yAczbC0LOCq0+8uQWjAbxzKVhW/H9nqQrZClK0EXa8769v+WvB1pIJGmvc2077OP7xProOHsiBdy+DVffaf0deGqrgk5v8jx9mmEPY8kpidMiCg3EiIkGwLKhzCUbrVgaTfhzfePk9k6/JD69gNBGRVFl9r/++8cxOl6xek6DHGOe2uh1QtSa8WkREREREskG0wX/fXfMgsie4WroCr+M2n6mA7sNaXncfAae8D+dtgwt2waF3Qo5mkhQRkZT6qOmnAUYaY8YnMdb5QPMHXQMwO5nCRERERERERADK6zc5Lh9YMCTkSvzJN843vTZYkZArERERkbiUToMT34Vx34DiOANYG2tgwQ/99/cKRis7DsZ+2Xv93BCvyY3XuOvsf8d+B6e7EhEREUmXA34N0+5ruSc/r6e9j1N2XGq34zRBqTH2xKQH/RGGXQD7fQdOmg299kvttltvz7VN1/lJ55dpwWhN0xBjAbMty/pLrBUsy7oTeIeWJI1DA6pNRIKQWwhDz3Zus+K4QSIIFYvsh5dh58PJ73cMPzM5UDzEe0dDgucVjLZ7AVR8CsvuiG/MPcuTqykMe1dBY62/vlVroWJJsPWkW6NLmF1uEfSeDAOOTmBQC9b8B2ZfBe9f496toQZeOwHWPeJ/6M4cjFbQK90ViIhkpoa97p/dhQNg9JVw7Esw4mJ/43ntA6WSZhQQkaDFG4QQ5r60MTD2S+7tq+8DKxpePZ1NQ7UdnNFYp39HERERkc7Caoyv/1PD4wtT68yiDfY+coPHRDCtWVGIVDq3TX/YnjnbSbf+zjNcioiIJMmyrNXAilaLbkhkHGNMIdB815cFzLUsqyrJ8kRERERERKSL29tYyd7GCse2sowNRnOeHEPBaCIiIlmgzxQ46A9wznq41LIfF9XQcou8hx3vQ/3u2P2iEfu+SSeH3wPHvwaH/hX6THUfo/Vkxf0Oi73NsIy4BA76HfSemO5KREREJJ2MgVGX2ftRl1pwYaW9j3P8a1A6PXXbcQpGA/u+ynHXwlGPwgG/gp5jUrfNeGgCVOkCMi0YrXUE4r1xrPfvVs+TmVFSRNKhxyjn5TvmhltHe+se926fMROOegz6HeLdT9InVijI5ldg1b/iG7N+V+L1hMXtwKWbpX8Mpo5M0ehyo1Dzl5FD/wElrXYfeu4b3/gr/wGVS53bNjwNO+KcoLozB6O53WzVbO+qcOoQEck0tVvd27oNsH8OPhmmP9hy8vOYZ93XCSsYLRv2i0QkezXWwZsuQepuwt6XHn+de9unP4VHS2DJ78Gywqsp2zVUwdsXw2O94aF8eLgbPJgLr5/i/XkpIiIiIpkv3gmRIrvtY+xdmRWF+d+3940f6Q6PFMMDBj7+iXeAcMNe7KwYB91HBFGpiIiIH3c3/TTAZcaYK+NZ2RiTA/ydttcXxpx0VURERERERCSW8vpNrm1lhUNDrMS/POM8qWnEqg+5EhEREUmJ3G4w8AR/fR/rY583bn48MQg2vdi2T8ViiLrsF7QJQ/OIGMhtFYy279f91RaGIWekuwIRERHJdINTuL+Q6ff85zgfIxLpTDItGK13q+cfxbFec1/TbgwRyQYm13l5YzXU7Qy3ltZW/9u9re9BMOjE8GqRxOTHCAWZ9+34x4xUJlZLmKrXx9d/xZ3B1JEpGmIEo5XsA6d8BKd8CCfMgjMWQ984Aw9fmAJL/wTvXg7vfxnePBdePBDevST+ejP9S1Iy8nt5t++YDdE4b44TEekM6na4txX2d2nwmBHKhJT033Mf7/aGqnDqkM6voRo2PAsf3wQLboQVf4fqjemuSoK26DYofz2+dWLtb6ZaTh4MPs29vaEKPvoWvHwIrHnQnoFPvL13Fax7uOO/1eaX4Q2Hk1ON9bD6P7D0z7D7k1BKbGPXfFjyB1j7cHYcLxARERFJJ6sx/nU2v5z6OrLJotvsR3uf/hQW/8Z9vTX/cW8L+3uTiIhIiz8CW7HTOw3wT2PMzcaY4lgrGmMmADOBzzatbwErgIeCK1dERERERES6iq31ztchdcspoldun5Cr8SffNRhN16aIiIhkrf1/mdh6tVvgjdPs61SbzTrTuW9OPpS0mn/EeEQM5LS6v23Y+TAwA+6lHXgCDDsv3VWIiIhIpht7DfQ5IEWDZUIkUwbcRyqSRpn2V976KlyPO8M72NXqec8U1SIiYXELRgNY+xDs+9Xwamm2+j7Yu8K9few14dUiicuLEYzmJbfYDudrLxtudG50CQLrqtz+PZqD0QDyiqDvgS2vh38Gds71v41oPXz4jcTqa8/lRHWnkF8Su8/Lh9hBdcbji5qISGfj9dnttj/jlebvtX+dSiXjvdtfORJmzIRupeHUI51T/W54/RTYMaft8oI+cPQzMODI9NQlwbKisOz2+NcrOzblpcTe5vGw6QXvPjs/hHcvhU9/Die9CwWa18FRZA9sfNq9fedc2L0Qek+0X9duh5nTWh2/MXDAr2G/BELQE7HkD3bwHZb9umQczHgFug8LZ/siIiIi2cZtUoz8EvdzLyv/Dof8FXJCOtaRaVbf69H2b5jwXee2T3/uvl6BgtFERCQ9LMuqNsZcCTyHfeVwDvA94GvGmBeAda37G2MuAvYFTgKmYV/p23wSuRa4xLIsK6TyRUREREREpBPbUr/BcfmAgiGYDL2eOS+nwHF5gxXBsqyMrVtEREQ89DsEzlwOz8aYvNzNwl/CyEvs8+/V65z79JoIua32I7yC0XILW57nFcExz8KGp2HXPCgaZE+Otmc5OB2qr99hT45ctz2x38XJEQ/A8Au876MQERERASjsCye8CesftycZ3b3Avj8tWh//WJl+jEXBaNIFZNpfeetvUfFMGd26byZELopIPBrr3NsqPg2vjmbVG+C9K7z7jLw8nFokOYkGo426wg5eqFzasS0rgtFqE1invu2Bzc7EKeAOIM9j4umx17R82QlbXvfwtxkWP/9P7poPuz+BPlOCr0dEJFO4BaPl5Lvf+Nv/cLs92m6Gx9wi6D0ptfW5MQZGXwWr7nFu3zUflvwOpt4STj3SOS39Y8dQNID6XfDhtXDKh5l/kDmb7JoPn/4CKpfYM8Id+Lv0hDztXR3/xRD73wLFQ4Opx8s+X7G/O+z6KHbfysXwWB8o7AdFQ2HERTDhe94XlnQle5Z3/Fxrr+JTO4hu8a8c/kYsmHe9/Rh6Lky9DUoSvEAolpotMP+7/C8UDexjCAt/CYfeGcw2RURERLKd5XL6f/z18MmP3df78Fo45C/B1JTJoo3O56maVSy0LzBv/53YsqBms/t6+QpGExGR9LEs62VjzFeBO2i5xq8ncGG7rgZ4oN3r5gMxDcDVlmX5OCAnIiIiIiIiElt5/UbH5QMLhoRciX/5HhNxN1gR8k0nvS9ARESks+s5FnqMbTVhbBwqFtrXV+/62L1P7/3bLfC4frX9ta25hTDiQvvh11sX2IEkyTr8Hjv0TUTa0X0UIiKu8nvA6CvtR7NZZ8HGZ9NXUxAUGitdgO66E5H0K+jj3rbb40BMECwLnopx0/cZy+yUe8l8LjMhxTT+25BX4tzWWYPRUjkDQ6ZxC5vJ9fj/uKAXnPIBTPs3FJYGU5cbr8C2bGcM9PQRTLDh6eBrERHJJIl8VuWXwOAzOi4fek64nyXDzvduX/9EOHVI57XlNfe2XfPcZzST+NVshteOty9AqFgI6x+Dlw60L5II24Yn/fWbcAPsfzOc/D5M/H6wNbnJK4LjZkKfA/yvU7fDDmFe8AOYdWZwtWUbP7PvvHOxHUgW6zvshidh5mFQU56a2jqM/7RziNuKvwW3TRGRMEUbYevbsPTPsPVNe1IFEZFkWQ3Oy4sGwbEvuq+3/A6oWBxMTZmsfkfsPg17Oy6rcb6B73+8jjeJiIiEwLKsvwMnA1tpG3hG0/Pmh2m33ADbgZMty3ownGpFRERERESkK9hSt8FxeVlBGibo88kr+Cxi6dyeiIhIVht+QeLr7lnpfT/uiIvbvg56cuphSfwuzXIKYPDpyY8jIiIiMvVWMHlxrpThIZQ58f4+ItlHwWgikn4DjnRva6gOrw6Aco+b7gF6jIaeY8KpRZLn56ZqJ32mQH5P57ZOG4y2NfV1ZIqGBMJmwP4yMOpyOK/cnm0jLP2PCG9b6bD/LbH7fPJjqFobfC0iIpkikWA0gGn3wtBz7WT/nAIY/hk47B+pr89LXg/v9j3LwqlDOq9YoVy7Pw2njq7gk59C/c62y+q2w+r7w6uhsQ7euRTmfce7X7/D4cK9MPVm/p+9+46Tor7/OP6a3WvcHRz96BwdpEgTsCGCotiNBdQYjTFqNFFjfkl+xlRTTaIx0V+a0TRjb9gbYEeqovQicCDSOeDuuLY7vz/Gy7WZ2dnd2Xb3fj4e94Cb73e+3w/H3d7M7Hzfw8hbocsxyanPSW4XmDGv5Q0jXux40XrqjF3IVltTV+HveDUH4JP7/R2z3rrfObc93QNW/cIK3xcRyUSHN8Jj+fD6ibDsG/D6SfBoHhz4MNWViUimM0P2240gdJ/qvu/6//O/nnRX5eF9G7tzZrfz5C6TE39ju4iIiAemac4HBgPfAbZh3Unc/INGf98H3A4MMk1zQdILFhERERERkVYrZNaxt9b+AWjFOb2TXI13WUa2Y1utqXtQREREMtqI/4l9bdmiq2HZjc7tPU9r+rmR4IiBfhdAyWWx728E4Zg/QV5X/2oSERGRtqvoKDj+4cQfA/nO5Z6/qIPeRDKPvstFJPU6jXNuq9yWvDoAPvyee/uYn2XgwU4b5va95eSoW60/szvYt7fWYLTlt8DUuc6BcJks1rCZeoYBY34KCy8DM+xfXacvhXnTm35PFY2MLUwhk/T9gvWkjh0vuPdbcgNMez45NYmIpFqsv6uy28PUpz4PkglAlsffbX7KKojcJ1ynpw9I7MLV7u0HV0FvPQUsbuE62PgX+7Z9i4BvJKeO9f8HWx9279P3Qjjx8eTUE42cTtYbJAOugDdmRbfvp8/BCyPhzNVt+/Wy9rD/Y664DUZGuNYTi5qDkedd+XMYdDUMu1Eh+yKSWd6dY/PACRNeanSttftUyO9vXcfqfUZSyxORDBaus98eyIKsfBh8rfN5yd73EldXuvIajFbQr+m28k+c+x/9i/hqEhER8ZFpmhXAb4HfGoYxFDgB6At0AXKAvcAu4D1guWkqhV5ERERERET8t6dmJ2HsH+zRI42D0bKNHMe2OjPGh8uLiIhIesjtAjPmW++TV5RCMM+6n8eLshXObSWX2TxIK8HrZAPZcOy/YeiNcHAldBhhraM7tLqhT4cR0HEM7F8KNWXWPQRVuyGnI3Q/CQoHJLZGERERaVv6XQjdtsPOeVC9x9qWVwzvOYW5pvmDSAPO4fkirUU6rrSrv4lpimEYJR736dH4E8MwTiSKVxjTNN/y2ldEEsAIwLSX4Y3TW7ZV77VCnoJ5ia9j15uwf4lze5fJUHJJ4usQ/7Qrhi6TYN9i7/uUXGr96RiMdtC6qJjX3fq+rN5nLYCvPQw5RfHX7IdwDMFouxZYIV2nvGktQGpNQpX226P5d5bMgXY9YetDUHcEtvw7vprO3WotVjpvG6y7Bw58CJ3HW4vmczvHN3a6Mww48Ql4NEJ4z44XoHwLFJYkoyoRkdRyCjX1egzsJZwsUbzMXb3POi4TiUWLUI5myj5OTh2t3aE1zm1bH4bjHkxOHaWPubfn94MTHk1OLbHqdbp1XvX6SdHtd3gDLJgJx/3HOvdoi+rKEzPuxz+F0T/wd0yn88zmfdb/AT75O5y2CIpG+FuDiEgiVO2G/csi99v9+dtqW/4NE+6BYV9PbF0i0jqY9gvLMILWn5P+7ByMdmgNhEMQCCamtnTkNRitsboKOLTWvm92B+gxPf66REREEsA0zfXA+lTXISIiIiIiIm3PzprtttsNAnTLTt/7N7JdFr3WhmuTWImIiIgkRDAXik9u+LxiK3z43fjG7DC85bZhN8Get1tubz80vrkaMwzoOsn6qNfrtJb98s/xb06RtmLUbbDk+pbbO45Jfi0iIpmkXU8Y8MWGz8N1zsFoLYJl04yRjpFRIv5K1+9yA3g4jn3fiKK/Sfp+HUTaDrfgm8pPof2gxNfw8Y/d20d9P/E1iP+OfxhemWyF7EUy4R7oOMr6u1Mw2pYHrQ87XabAhN83vVCXCk7hKpHsXwrbn2kIh2stQkfstwcjBHM1V3yS9QFAGLb8J7Z6htxghaKB9X026rbYxslkwTzrSSORvobbnoIRtySnJhGRVPLrd1UqeAlGq9qlYDSJXajavX3Lg9DlGBj6dSt0W2Jz5DPntrwk/fyGqmHfIvc+E+/NjP/n7lPh/B3w9oXWE/u82rUAnu4FBf1h8gNtL7Sg7nBixv34hzD4Gv9+F5mm8+9uO3WH4aPvw4lP+jO/iEgiVe2Jfp+PboOBV0J2oe/liEgrY9bZb298Y87xj8K7s1v2CVXB4fVtK2y2amfkPtuehuJpcGQXLLwcdr7m3LfXWb6VJiIiIiIiIiIiItJa7K7ZYbu9S3Y3sgM5Sa7Gu2zDubZaM8KDKEVERCTz9J8dfzBa/zktt/U6HbIKWz7YtsQhGERE0kufL8Cym1s+jH7QV1JTj4hIpgqkedyQWzhbutcu4oN0XUloYgWcRfNhNvqIdl8RSbX8Ps5tVbuSU8P+Zc5thYOg1xnJqUP8VTgQzveweOTMNTDs6w2fZxdFP9e+9+GdC6GmLPp9/eQUjJbVPvK+nz7nby3poHqf/fZ4wmaG3gguT9pyFMyHo+K8EN1a9L0gcp/9SxJfh4hIOqjL5GA0D8cXK25NfB3SeoUjBKMBLLvJClSV2LmFoFTvs4KgEu3D/43cp9PRia/DL+16wqnvwKwP4Zg/w3EPQW43b/tWbIX5M6BiW9PtVXth3T2w5i6rT2tTWx65T6w+nevfWLUHIdqnK3/6AtQmKPhNRMRPzW+Q8qL2ELwwEj74Dmy63/pcRCI78CGsvgM2PwjV+6Pbt/aQtd8H34UPvg0rvg/bn03OcXs8zJD9diPY8PfeLuFdXs4ZWpNdCyL3Wf8HOLwRnu7hHooGDQ9sEREREREREREREZH/2lmz3XZ7cY7L+pY0kGU438deZ0Z5T4OIiIikv4L+1n2o8Wg/uOW2rAKY9iJkd2zY1n8OjNT9/yIZoV0xTH3GCjisN+irMOSG1NUkIiLJZSgYTVq/dP4uj+fOba/7KhRNJF0E88EIgBlu2VZXkfj5645AncsC1dOXWPVJZgoEod9FUPq4fXvfC6FoeNNt+b1jm6tym7UAcMS3YtvfD07BaEOugzW/cd936yMw5R8QzPW9rJSo3ucc9paVH/u4XSfB9Nfh49th17ymbUYQRvwP9DkfPv4RHFhhpTF3GgdjfwUFfWOftzXpMSNyn7KVia9DRCQdhDI4GC2nU+Q+O19PfB3SeoU8BKMBrL8X+l2Y2Fpas2qXYLRwjdWe1z1x89cdgXV3u/fpNA7yM+xY2jCsMLf6QLd2vWDeNO/7z+0Hl4Ss6xF7F8OCUxvCZlZ8D054FPqc63vZKeN2XSZen70Cg6/xZ6yq3dHvE66GPe9Br9P8qUFEJFFiCUYDqCxtuO648udw6tuxX18VaQvW3QvLvtHweeEgmP4aFA6IvG/lpzD/VDi0pmVbn/PhxCfdnw6YSk7BaI2fWJiVD52PsX9oxqfPWq8xo25LTH3pxDRh9xve+j43xFu/gv4xlyMiIiIiIiIiIiLSWu2q+dR2e4+c9H6vyy0YrdaM8T0/ERERSW8ll0Cfc2DvIqgrh3fnOK9DaG7Et53bup8IF+yG/R9Afh/I7+VPvSKSHL1mwQX74MBy6x6kPI8P8vaTkQVmXfLnFRFJhmBeqisA3DJO0vR+UREfpVswWinxBaKJSKYyDAgW2C+CTUYwmtsi8BlveAt8kPQ25ufWhb/K0qbb8/vAxHta9s/vF/tcH/wP9DilYfF7sjkFowXzoO8FsO1J9/13vAh9z/evnt1vwYrbrJCrQBC6TIZxv4Gio5z3CVXBh7c2DUfIKrAukhSNhDE/sb7GkTw/zLktr9j7v8FO96kwI0LQy8kvxzdHa5bdwfq/PLjKuc/hdRCuhYDzm/ciIq1CJgejeVls3fjpM36q2ArLvwX7FkHRKBj1feh2fGLmyhShauu469NnIbsIBn3FCsfNZGGPwWj7FlkLx9M1ACDdVe91b685mNhgtJ2vRu4z+ieZ///bfar1c7npfu/7vHsplG+C/Uubbg9Xw+JrrfOirAJ/60yV2vLEje1n6HIswWhgBQYpGE1E0l2swWiNVWyGZ/rAJeHM/90tkgjV+2H5TU23lW+CVb+Ayfe571u+BZ51CU/b/jRsfRRK5sRdZkKEHW6ANIJNP+93kX0wGsBH37faOwz1t7Z0E65tCEX2S+Egf8cTERGJgWEYAWAUcDTQD+gGtMO6X/AIsBvr/sEVwCrTNHUfoYiIiIiIiCSMaZqOwWjFaR6MFjACZBlZ1NmED9SatSmoSERERJIiqwB6TLf+PvBK2PAnb/t1HO3eHsiGrpPiKk1EUiiYA12npG7+SX+FRVe13F5yefJrERGJVZfJ1tq05oZ9M/m1NNd/NnzwrZbb83q0nvVEIi7SKhjNNM2SVNcgIimUlcJgNLdFrZEu/Ehm6DAEZn0An70Mu9+2gkY6jbUOBoO5LfsXxBGMBvDSWJj8NyuQomo3ZOVDj5nJeWqCWzBadlHk/Usfjz8YLVwL+5bC9mdgza+btu140fo4cw0UDbff/91LrUVcjdW/Fux9D+afChPugaE32C+wDNfB8m9C9T7nGr0Eq0liDb4Wlt3o3B6uhcMb3EP0RERaA6dgtKwMCEYDGHgVfPKAc3tdAoJuasrg1ePgyA7r88rtVhjrzPdSF06bDhZebh3L1du/1Pp9OuwbqaspHuEQmCFvfUNVVghH4cDE1tRauYWFQ2J+jusdXAsf3+7eZ/A10OfsxNWQLIZhnSeWXAalT8KG/4u8T+mjzm1Vu2DRNTD+TmjXw786UyWR32eH11u/K/L7xD9WpJ8XJ7vmwdbHoP/F8dcgIpIofgSj1XvlGDj6l9YNV9nt/RtXJNPteBHMcMvtm/5mBaOFQ3DwYziy03poT/lm67yorhyWeAi+XnoD5HW19u00Dgy3JwUmmdP5ndHsloX+F8OH33EeZ+Xt0H+O9R6PH8d36cjvRWtGlsLkRUQkpQzDmApjNpKcAAAgAElEQVRcC8wCPNy0AMABwzBeAO4zTfOdhBUnIiIiIiIibVZ56CCVYft7FYpz0v/6c5aRYx+M5ud7fiIiIpK+BlzpLRgtuwj6xLlOUETETa9ZkNW+ZT6A7pkWkUzSf07LYLT8Pulx311+b+h6nJWv0Fi/i/UQa2kT0uhOaBFp85wSSUNJCEY78IH9diMLcjomfn5JjtzOUHIpTPoTTLgLBn7JPhQNID/OYDSARVfDOxdZC5He/zI80xs++jEk+qHGYYdgtIDHYLStD8Oe9yL3c1K5A149Fl47rmUoWmMvjIBdC1puL/+kZSianWXfgFentAxPrCiFF46C9fc675vXAzpPjDyHJJaXoJODqxJfh4hIqjkFowUzJBit91nu7eEaCPl8s9X2ZxpC0eqFKmHzv/2dJ5NU7YbSJ1pu3/DH5Nfil3B1dP2fHQRVMQYWtXWRvm6JCCwP18Lia63zggPL3ftOzODvYzvFJ8PEe/wZa+tDMLcENt3vz3ipZBeWDzDoKzDaITzv2H/B+Tuhx6ktAzWae6YvbPNwrhmJW7h+JGvvjH9+EZFEclsk0SvCcX9z+5fBgpnw3FDYszC+ukRak89edm6r3gfzT4GXxsEbs6zr3+9dAgu/6C0UDaBmv/VgkZcnWn/Gc+ziN5vFWQAYwaafF/SH7lOdx9nyH3jzbOv47sP/Tfx7LqkQdvhaxWrAF60H+IiIiCSZYRhHGYaxAFgAzAE6AobHj87AF4E3DcN43TCMocn/F4iIiIiIiEhrtrPmU8e2Hjm9k1hJbLKNbNvtdX4/fENERETSU9dJcNzDkNfduU+HETBjAWQXJq8uEWl72vWA6a9Ch2HW53nd4Zg/Rl5rJCKSTobdBCO/B9kdrM87T7COowIR1qkky9S5n6+bCVprTgdeBeN/m+qqRJIiTX4KRURwDkartX8Kj68WX2O/Pa8bGMqQbJNyiuxTyuO18ifQ/UToMcPfcRsLOQSjBfOcg+Cae+NMOGs1tOvprb9pWkEknz4H22wCOZzMmw4XHW56gfWzV7zvv28xLDgNTm30gOhFX4HDG9z3m/RnpSCnA6eFcI2VrYJ+FyW+FhGRVHL83Z0pwWjnQLcTYc/bzn1CFRDM8W/OZTfbb197Z9u9qFf6BGCzGPzQWghVez8OTCfRBqMBvH6SdRwr0Snf5N7++onWRf1Jf4XO42Ofp+agFZ686hfe9zlrPQSCkftlGsOwnhyz5934xwpXw5KvQfeToP3g+MdLlbpK++3BAhjyNfjkfqjY2rC9+zQoucy6bjP9VSvAzwjC4x2s4D07b38BjvoujPqB83UoO4c2wMY/W+ea8fyf7Vucua/JItI2OAWjZbWHac9ZQT2lj8F7X8T22NNO1U7rAQqzq/T6JwKQ7fIwnmU3w+43/Jtr13xY+XOY+Hv/xoyVaTo/KKN5MBrAuN/CK5Mij7v6Dus4uNes+OpLN07Hs7E6+pf+jiciIuKBYRgXAw8A7bCCzsD+RMJL23RgmWEYV5qm+aSvhYqIiIiIiEibtbtmh+32doECCoMeHkaeYtmG/f14tabPDzEVERGR9FUyB/rPhsrSlg8yz+4A7YpTU5eItD1dp8BZa6FqL+R20dpdEck8hgFH/xxG/8TKlsjplOqKmsrraq2bqT0EgVzdky1titJ+RCR9OC1IratI7LxOQRQAuS6J+dL65XVLzLjr74l9X9O0fiZqDkL1fvvFMW7BaHUegwZry2DZTd7r+vB/4f0rogtFq/d4ewg3WhC15Pro9t/zLmyfa/299jDsWuDev8tk6HNudHNIYnh5jT20NvF1iIgkU6gajuxqtu2Ifd9MCUYLBGH6azD06859/A47rj3o73itQc1+5zavx4DpJhRDMNqhNbD1Mf9rac3CdXBoXeR++5fByxNgz3uxzVNXaQXXRROKNukv0GFIbPNlgkFX+zdWuBY2PeDfeKngFIYYzLPexDnjIxj9Y+vJNsf8GU5+uWmYfVaB1bf9UPd5Vt8B80+Fyu3WOTY0nGebdgGT6+G142HtXVYYuNvrrReH18e3v4hIIjkFo9WHHAeyoORSOOUtGHwd9DrD+9gvjIq/PpHWwO1mmS0P+j/f+j9YN8KYJtQccH9PLJHMsHOb3RMVuxwDM97wNnb9+wOtiZeHing1+QHrybwiIiJJZBjGRcBDQD5WuJn5+YdBQ9jZHmA98D6wGNgA7G3Up/F+AAXAw4ZhnJ+cf4WIiIiIiIi0dodD9vegdc0uxsiARfxZRrbt9lrT54dviIiISHozDCjob91v2/hDoWgikgp5XRWKJiKZLZCVfqFojWV3UCiatDkKRhOR9JFVaL89lOBgtL3vO7cVliR2bklvAfunKMVt+1x4cSwc2hDdfuVbYN40eKwQnugIT3aBp3vD5maLpdyC0WoPeZ+v9HE48lnkfjUHYN3vvI9r55Es2PESVGyLbf+3zrP+bVW7wQy5953+amxziP96nwVG0L1Pzb7k1CIikmimCR/eCk90hqd7wPPD4cAKq80xGC0vefXFK5gLI29zbt/+TPJqaavcfqe+PLFlIF8mcArmiGTZTfbhRmKvfLNzIJWdRVfH9vXd/gyUrfDe3whC77OjnyeT9L8Uhn7Dv/FW/9I6P8tUjueyn79pk90BRv8IptwPQ651fjOnaGTkufYuhGf6wuMd4NnB1rn1Ex3huSEtrxOt/z+o3uP93xFJ2Ur/xhIR8VvzJ8fWa36dtPsJMOlPMO0FmO1wPtNc+UYrbFKkrcspSv6cjxfBwwHrmsTcEth4X/JrcLtu73Q+W3xS5NBbgI1/aX2vL3YPxYnVwCv8G0tERMQDwzCGAX/Hui+xcSDaIeBu4Eygq2maPUzTHGGa5nGmaU4xTXO4aZrFQDfgbOAPwGGaBqRlAf80DKMVP01BREREREREkqUiZH9ffftgCq7lxyDbYa1DnYLRREREREREREREpJVQMJqIpI+sAvvtdQkORpt3snPbUf+b2Lml7SpbAQtOhbDDYqBwHWx9FFb+HN77EnzwbXh2AOx+q2m/6j3w/pfhwIcN29yC0fpeEF2de95zbzdNWPULfxbpvHEGvHlW7Pu/Mwdq7Z/c9V8zF1qL6SU95HaGAV9y71O9Pzm1iIgk2oY/wupfQajS+vzQOph/qvV7+8gO+32cjo/TlVPQMcCyG6Hy0+TV0hYZWc5tFVvgnYuSVopvQi5hXYUDnduqdsKB5f7X01pVeQhDbuzQmui/vmUr4b3Lotun74XQrmd0+2SaYA5M/AOcWwqnLbb+jNebGRwm5/QzH4jyaTZFR3nvW1cO5ZsaziXLN1nnprXlDX3W/yG6+SOp3O7veCIifnIKpnV7gEQwD2Z5DD99fhh88B3rgQxmOPr6RFqFFD8RtWoXLL4W9ryb3HnNOuc2t/PZifd4G/+di6z3VVoLt69XNPpfAoZuCRERkaS7F8inIRDNBH4C9DVN8xbTNF8yTdMx3d80zX2mab5gmubNQF/gp5+PUa8Q8HiQICIiIiIiIuKsPHTYdntBMDPuNc82sm231/n58A0RERERERERERGRFNJdsCKSPlIRjFbjeK+lpeuUxM0tUrEV9rzTcnu4Fl47Ad6dAx99H7b8G9b81nkcsw5W/erzv5sNgSvNBfKgeJr7QsbmKre5ty//pntt0Sr7KPZ9d71uhX44mT5PP9PpaNJ9MOanzu2RXqdFRDLF5n+33Fa9xwoEOLTOfp/CwYmtyW9Z+e7tm/+VnDraKiPo3r7nbSj/JDm1+CXsEow2/TX3fXe87G8trZlTAIqbnfO99934V3hxdHTj53SGCb+Pbp9MVtAXuhxj/XnuFve+gWwIurze7nkPjuzytbykcfqZD+ZFN063E+Oro+YAbH04vjHcOJ2zi4ikg1iC0QA6jYGZi6DXGZHnWPMbeOdiePMchaNJ2xTL8Xe9YF7T0Nj8fjEO9PkDT5LJdHhIDLifz/ac6W38so9g5+vR1ZTO/Fq0NvDL/owjIiLikWEYxwMzaAhFOwycZprmT0zTLHfd2YZpmodN0/wRcDpQQUNA2qmGYRznU9kiIiIiIiLSRpWHDtluL8xqn+RKYpNl2L+HV2vG8V6EiIiIiIiIiIiISBpRMJqIpI9UBKOVrXRuK/li4uYVqTdvmhUUALDp7/DSeHgkB/Ytim6c0ketxdsVm50XVuV0guwOMPlvYHg8BFh7pxW2tv6P8OIYeLo3LL7O+rksWwXrkhhWUHIZtOvp3B6utQ+dASs4oMf0xNQl8QkEYdT34YTH7Ntr9ie3HhERv5kmrLvX+Xf7wi85Lw7uGGWQUKoZAedjeoANf/RnHtOM3KdN8vB12fpI4svwk1swWk4XuLDMub3sY//raa1iWXD/4Xesc5fN/7E+rymDhVfAUz3hIaPpx+Jrox9/wOXQrjj6/VqDgv5w3nboNK5hm5EFkx+AS02YUwOzK6CHU0CEaQVsZyKnn/nG4R9edJ8Kud3iq2Xlz+DFsdb3cCzcfoeHjsQ2pohIMsQajAbQdRJMe8H6feXFjhfg4aB1LfTxTlZQWvkWz6WKZKxYA68KSmD2EZhTZf2cXWrCuZsht0ts4+14MbkPpTDrnNsCWe779v2CtznemAUVER72kincvl5eDbwKepwS/zgiIiLRuf7zPw2si9bXmqY5L95BTdN8Hbi20bgAX4t3XBEREREREWnbKpyC0YIdklxJbLIM++vrtaZPD98QERERERERERERSTEFo4lI+gimIBjt4GrntmE3Jm5eyQx9zk3OPIuvhddPgkVXwYEPYh/nic7w7CDn9qKjrD8HXA5nrYMhN0Qes3I7vHEGLL3BCpc4sgM2/gXevgA+e8l7bQOvhBlvwJS/e9+nsY5j4LgH4dyt0P8S5347X7ffnlMU27ySPDmd7bfXHoSwQ2CQiEgmWPs7WPaN6PcLZEOHof7Xk0qV2/0Zp+6wP+O0NqGqyH0qdyS+Dj+FXILRgrnWMd6Ib9u3b3u8IUTv0AYrwGvHS1B7CKr2wva5sPXRzPuaJIJTAEokBz6AhV+E0sdh/kzY/C+o2hl/PVntYfi34h8nk+X3hlPfhpOeg2P+DOdugUFfbtpn5K3O+2/6W2YGyzi9jgWjDEYLZMGoH8ZXS2UplK2Ibd+sQjjlLWjv8Hu8rjL2ukREEi2eYLTGzo/iGCtcC7Vl8Olz1kMk9DoprV2sx99Drmu5zQjA4DjyQN48F3bO93Y+GS+3a7xG0H3fQdd4n+fZEvdzyUwRS4DesQ/CSc/DhN9bx6OT/wZGjEG/IiIiMTAMIxc4Gyu4zASeNE3Tt6d1mKb5MPAkVjiaAZxjGEaUJysiIiIiIiIiDcodgtEKMiQYLdvhtLjOjPG9CBEREREREREREZE0o2A0EUkfWU7BaOWJm/PAcue2Lsckbl7JDAOuSN5cu99K7Pj5fZuGg7UfDEc5hEg099nLNttegV1veJ9/wj1QfJIVkNbnPO/71et9jvVnIBuOf8ha8GXH6fUiW8FoaS+nk3PbtieTV4eIiJ8Ob4IPYgz36TzR+r2XcSIsuPVjcXKk4OT6MKy2JnQkch8/QquSKezy/VIfztFpvH27GYZ3Z8PSm+D5oVaA1xtnwONF8FQ3eOs8eHcOPNMb1t7tf+2ZJJYF9429dznsX+JPLQAnzYWCvv6Nl6myCqD3WTDkWisorbniaZDfx3n/Nb9OWGkJ4/Q7IpgX/VhDr4+vllh1ngAzF0JOR+vvdtbfk9yaRESi4VcwWrue0PO06Oev2Aqf/CP6/UQySbTH37ldYdQPnEOhR/8o9lr2vA3zZ8DLExIfrGvWObcZWe779joNpvzT4zxhePVY73WlK7evl5MBl0HvM60HP3U/UaFoIiKSClOAQhreKLgrAXPc2ejvhUAr+MUvIiIiIiIiqVIesn9AZ2GmBKM53F9YG++9QCIiIiIiIiIiIiJpQsFoIpI+HIPRIgQfxCocgu3P2LcNujoxc0pmKRoBA7+c6ir80Wlsy215xbEtMK+34wVv/fqcC9mFDZ8Puzn6udoPbvr56Nuj21/BaOkvp7Nz27uz4w/sEBFJhXcujn3ffrP9qyOZOk90b6/aFf8ckQLAdr8R/xyZyFMwmg9f/2RyCkkKZDcE5XYc7bx/6eOw/g+R51n+TTiwIvr6Wot4j7PcAuyikdsN5tRC8cn+jNcWnPiUc1vpExCOIUwhlZy+lwK50Y9lBODkV+OrJ1pHfRdOXwodR1mfZ+U7993vEtQvIpJKfgWjAYz9NWS1j36/pTfAS+PgIcP6ePcS2OdjCKtIqjn9nNkpGglf2A1jbnd+WEggC058Or6aDq6GZwfEN0YkZsi5zQhG3n/gl+Bij+8XHvgADm3w1jddRXueNjzGYH4RERF/1YeUmcAa0zTf93uCz8dcbTOniIiIiIiISFTqzFqqwpW2bYXBGN7jSoEsw/49vFozivciRERERERERERERNKYgtFEJH1kFdpvT1Qw2qG1ULXbvq14RmLmlMwz+W9w7IPQ++xUVxKfAV9quS2YBz1nJX7u4bc0/bzbCVBQ4n3/QC70OafptoJ+0dWQnRlP7mrTcjq5t+9+Ozl1iIj4pWoPHIgj9GTAF/2rJZn6nOfeXr45/jnq7G9I+69502HXgvjnyTSRvi7gfP6TrhyDORqFJBWNgHY945+r9In4x8hU6RJAO/xmK9RBvOs80TnsunpP5r0WOoUhBmMIRgPofhLkdom9nmgFmwX+B12C0bbPTWwtIiKx8jMYrdMYOGMFHHUr9P1CdPse+LDh71sfgVePhR0vRV+DSDqK5vh7+C1gGJH79TzNn4eDrLjNua2uAiq2gmnGNrZbMJrX84CsfOtBLF6UPuatX7qKNuQ42tdZERGRxBjZ6O/vJnCedxzmFBEREREREfGsInTYsa0wmBn3nWcb2bbb68w0uRdIREREREREREREJE4KRhOR9JFVYL89UcFoO1+1325kQe+zEjOnZB4jAAMug5OehfF3pbqa2Dktipl8H3RN4EOUx90J3ac23RYIwtSnIb9v5P2zi+Ck51qGZnnZt/k4kt4ihdcd3pCcOkRE4mWa8NEP4anusY8x6kfJDXLx09Cvw6CvOrfPmwYffi/2hdTgLQBszZ2xj5+pQkci9wk7hA6lK6fAgECjm/qMAPSbHf9cq34GK34Q3/dmpkqHmyFLLocR3051FZnHMGDmQuf20keTV4sfwlX22wMxBqMFc+CkF2OvJ1pZ7ZrN386+H8DK2xNbi4hIrPwMRgMoHABjfwEnPglnb4COY2IbxwzBx3rtlFbC6efMzoArvPXLagfTXoDcrg3b+l8CY35qnTN5teoXVvhZY+FaWHIDPF4Ec0vguaFwYIX3MeuZLkFfRtD7OJP+Bl2mRO738Y+9j5mO3M7Txt9tvZcJ1uvzxHuh23HJqUtERMTdoEZ/X5TAeRqPPcixl4iIiIiIiIiL8tAhx7aCjAlGs38Pr9aM4r0IERERERERERERkTTm8fHLIiJJ4BSMFkpQMNryW+y3tx8C2YWJmVMyW7/ZsOa3cGRHqiuJzoz5zoufcrvAzPfg8EbYOQ+WXOfPnIEcOG8b5DmEwnQaC+dshoMfQ05nyO9j1VCxpaFPdhF0GmctZm+uoH909eR0jK6/JJ9hwMCr4JMH7Ntry5Jbj4hIrLb8B1b+NPb9i2fAmB/7Vk7SBYIw+a+w+Z/Oi71X/9IKSBjsEqDmJuQhGG3PO7GNncm8BKNVbIVPX4Res6zfvenOaeG80exy1lHfhXV3xz/fqp9BbmcY/s34x8ok0QQz+OGUt63j/9yuULHZCsiN9vheGnQaC/0ugtLHW7Ztewom/tH+nMovB9dA6RNwZLv1s9lpLPSfHTn4uDkz7ByGGMyLvb6uk+D0pfDyxNjH8Kp5EFpWfuLnFBHxm5dg2li1HwynL4dDaxqury44zfv++96HZbdYD7HoPCH+ekRSxWsw8ZmrrHNsr7odD+d/BmUfQbte0K6HtX3YjbB/OSy7yWqLZG4JzKlp+Llfcyds+GNDe/lGeGkszK6O7jgzHHJua36O5yavK5y2EA5tAMLw/HD7fmYdlK2EjqO8j51Owi7nw8NvgsFXQ9kq6DjS+f1VERGR5Ctu9Petjr3i13jsHgmcR0RERERERFqx8tBhx7bCYPskVhK7LMP+PbzadHhIooiIiIiIiIiIiIgPonhEtIhIgjnduF+XgGC0Rdc4txUd5f980jrk94JT3oJBV0PBgNTUMHVudP3bD4FuJ3roNxiGXAvHPxpbXY0N/TpcuN85FK1eIGgtmi/oZwW3dRgKPWc2fHSd7LywqqAE8qK4x7n9EO99JXUGu7w2V+1JXh0iIvFYe2fkPn3OhROegD7nN2zLKoSR34NpzyeutmTqMMK93S7AxysvAWC1ByHUxp58WechMA7gzTNh4eWJrcUvTgvBmwdztOsB01/zZ87lt0D5Zn/GyhROASiJ0v0EKCyxAsk7jlYomh/6X2q/veYA7F+WuHk/fRFeGgcf/xA2/tUKzFh8Dbx6XPTH724BfYHc+OrsNC6688dYNQ9wC7oEowUSGFYnIhIPp9djv163AkErpKj++t/4KMNt1/0OXpkMn/zTn3pEUsHtXLXTeOg/xwoRjOW9qkAWdB7fEIoGVmBt8TQ4/hHvAWTr7gHTtD423W/f57kor7k7BV8DGFEEwNXrMAQ6DIPJDvUBvDgaQtUN/5ZM4hhU+fn/YVaBFQKsUDQREUkvXRr9PZFPvaof2wA6J3AeERERERERacUqQodst7cL5BOM5oEeKZTt8B5ebbIfkigiIiIiIiIiIiKSIApGE5H04XTzfqjK/Uny0ao5CJvuc27vPNG/uaT1aT8IJt8H534CU/5hBXrV6zQeLtgLvc5MzNwDr4x+7Ml/a1go40Xf8yP3cTN1Lky8J/GLcQwD+l3kvX/H0YmrRfzTdbJzW9Xu5NUhIhKrJTfAgQ/d+wz6Ckx9BvpdAFOfgktN6+Piw3D0z1uGqmSqSAGpO+MIsfIaAFa9N/Y5MpGXwLh6W/4Dn76QuFr84vT0UrubD4unQ25Xf+Z9dmDmLZqPRzKD0XrMTN5cbUmv062ATTvxvN66CYdg6Q0Qrm7ZdnAVPNUd1v/R+3ghm3HqBeMMRjMCcNyDEGwX3ziRNB/fbb5E1yIiEqtEB6M1N/R66Hl6dPuYIXj/SqjcnpCSRBLO6TxnyNdg1jI4/mHoPM7/eYtGwNg7vIWQffAteDhgfZRvtO9TWWqF43plurzPF0swWr2ux7m3P5pn/TseK4QFp8Nhh39PunEKkjOy7beLiIikh8YXcRIZjHaw0d9byZsqIiIiIiIikmzldfbBaIXBDkmuJHbZDteM65zeixARERERERERERHJMApGE5H04RakFKrwb55d893bB17h31zSug28As7eAJMfgJNfhZnvQm4XGHyNff+jfwHTXoQep3obf/zv4LiHYcLvYeZCa55AFAuEzlwN3ad67w8QyIbsouj2qXfeNuhzTmz7xqL/HO99i0Ylrg7x17Cb7bdXJzEYLVwHexdB6eNwZFfy5hWRzLbuXtjgIQCm99mJryUdRApGi0fIazDansTVkI7CVdH1/+SBxNThp7DDQnC74F8jAEOu92/uNb/xb6x0l8xgNKdzJYlPMA86jrFv+/hH/obN11t7J1Rsce+z9AbY+Dfn9rKVsO0ZKFtlheI7CcQZjAbQYwacsxmm/DNxgfgtws7CUfQVEUkTIYdgtGCCgtEC2TDtBZj+Ooy7Ewr6e9/3mb6wa0Fyj2VE/JDsAMLGRtwCZ66CY/8F4++Of7zF11o/h144BX1BdA93aa5ouLd+oUr47BV4bgisvdu6/pvOgdhOr23xfK1EREQSr/FFnEQeqDc+sFBqqIiIiIiIiMSkPGQfjFaQUcFo9u8t1JoO70WIiIiIiIiIiIiIZBgFo4lI+nALRqvzMRjt8Hrntna9oV1P/+aS1q9wIAz6MvQ81VqMDlY42JR/QPsh1uK+4ulWgNrIW6HXLBh6g7exh98MJXNg2I3QdQoYhrf9ukyCWR9A0YiY/knkdo1+n/N3Qn6f2OaLVdcp1tc4kqJRya9NYucUpFOVpICy2sMwbzq8OgXeuRie6Q1bH0vO3CKS2byETOV1h56nJb6WdNDB48LkWNR5DEarSmKoZjpwCrFwsu0p6/deOnNaOG84LAQf9UMY+T1/5t54nz/jZIJEhYnMWGCdCwVyoHAQTLoP+l2QmLkEikY6t+143r95zDC8fRF8+F1v/Tf8yWYME5b/D7w4Gt4+H14cBQu/6DxG/bl2vNoVw8AvwWmLYdQPoF0vyGoP/S6Csb+y36frsVA8w9v4zcPO3MLesvK9jSkikmypCGwyAlaA5YhbrOMHI4q3LudNh9dOhOp9iatPxG+OgVdJyvToMAwGXA7Db4JjH4x/vHnTYckNkcN4S59wbjOieCCMnfO2Rdd/+Tcbrv86BXKnmtP5cLK+T0RERERERERERERaufKQ/X1ThRkUjJZl2F8zrjX1YCERERERERERERFpHfRIYRFJH1mFzm1+BqNVlDq3DbvJv3mkbRt4hfURroNAs1+3XoJC+pzv3Db+Llh+i33bWeuhg4ewMDe5XaB8k/f+PU6xFpgnmxGAiffCgggBM2Pv8B4qJ6mX18N++4EPoaYMcjomdv6VP4M9bzd8bobgvUut7/PczomdW0Qy28FV7u1GACb+0b9wl3TX9djIfXa8DL1Oj37skMdgtOo90Y+dyWK5oe2NWXDK2+l7rOS0QL358fV/twfh6J/DmJ9Z3ydGNoQ/DybKKrR+DtfdC8u+EXnu8o0wbwYc+8/WH7LrFIASj2E3QfE068PunEj812msc9uSr0Gfc/2ZZ+N9sM0l1KK5A8uh5iDkFFmfmya8fyVs/lfTfjtfdx4jmBt1ma4MA8bcDqN/YgW9Be6uLKkAACAASURBVIJQdwS2PgoHPmjo1+1EK6AnELTCNufPhLIVzuPm9236uVswWvMQNRGRdBGutt+eyGC0xgoHwLCbYe1d3vfZtwg+/jFMvCdhZYn4KhUBhE4GXGY9kOKDb8U3zoY/Wg+F6XUmbLoftj1pHcP1+QIcWg3bnnZ/aJFT+LVX+X2s4NuVP41uv21PwKbpMORr8c2fCE4BevF+rUREREREREREREQEgIrQIdvthcH2Sa4kdtkO7y3UmQm4F0hEREREREREREQkBaJ47LqISIJlFTi3+RWMZprWAg0nA77kzzwi9ewCADoMgy6T3Pcb+GXntj7nghFsuX3ivfGHogHkdImuv9sC/ETrORN6ugSqzPoQep+RvHokfkUjnNtePNp5QZhf1vy65TYzBKWPJ3ZeEcl8bq9PA6+CWSug3wXJqyfVIh3rALxxRmyvr6Ej3vpV741+7EwWy+/IPe86B+6mA9MhGM3haacN7YZ1fhnMgewO1ofx+SUwt/PO5nbNh+eHQ80B7/uks3AtlG+BqmY/G34+JXbI9XDi0zD+dw3bFIqWHP0udm478hmURhFm5mbDn6Lf5/nhDa9RH/2wZShaJAGfg9HqGYYVegaQ1Q5mvg8T7oHht8DkB2DGvIb2vO5wypsw5Ab7sdoPgaKjmm5zC1VsK0GpIpJ5nEIdk/m6Nf5OmPosDL7GeoBDQf/I+2y637n2ugrrGKjWfnGLSNI5Bl5FOM9JlGHfaHkcE4stD8OyG2HxV+Gzl2H7XHj/Clh9h3soGvgT9jXmdsjtGv1+S66HPe/BviVQuT3+OhoLVcO+pVD5afT7Op0PB1L0fSIiIiIiIiIiIiLSypQ7BKMVBDskuZLYZTu8t1Cb6HutRURERERERERERJJEKxNFJH0kIxht+Ted24pGQbtif+YRieS4h+Cdi+HA8qbbjQCM+Sn0Pst538KBcMLjsPAKqDtsLYQZ+QMrhMAP0S4e6jTen3ljNfI2a6FVc73Phk5HJ78eiY/bIrzKUtjzDhSfnLx66m15EIZcm/x5RSQzhEOAad826gfW4ty2JtvLkzNNWP0b6HdRdGPXVXrr5zVArbWI9Ya2dXfDyFut0J9047gQPI7LWdmF0fWvq4CVP4fxv419znSw601YdDWUb7RClgdfBxN+b4U+OX3v9DrDCnba+Ff79mA76+cspxOMvwsGXpmw8sWDvK5WoNfau+zbV/0c+l0Y3xwVpVC2Ivr9qnbCjpegeJpzfW6SFcYTzIFhX3duzymCY+6FrpNh8XUQ+vz3UfuhMO0FK2itsT7nwqKv2I9lhvypWUTEb+Fq++2JCql00uds62PSX6zPX58Gu9907h86Aku/AZPva7p987+t9wSq90FWoXXddfjNCStbxJNwjf32YE5y66gXyLYeujJvenzjbH0oxvlz/fu3z1oB7862riFH47XjG/7e+RiY/irkdIyvltV3wMc/abg2UTwDjn/I+7m3Y4Cebu8QEZG0V/9myRTDMEoSNEePBI0rIiIiIiIibYhTMFphBgWjZRn219drTYf3IkREREREREREREQyjO6cFZH0Eci1bui3W/xeezD+8Y/sgnW/d24fdlP8c4h41X4QnLYYqnaBWQt5PeHQGmg/2D0ksF7f863wtINrrLG87ONVbhfvfQM5VmBCKnU73grK2rWgYVsgB0Z8O3U1SeyyO1jfg9X77Nv3LU1NMJoRSP6cIunoyGew9RGo3A7dT7JCKJuHgLRFpksgVc/Tk1dHuhl8HWz8s3uf/Uvgs9fgs1es1//+c6BwgPs+XoPRDnzkrV9rEc+TPrfPhcFf9a8WvyRiIXgwhuPmtXfCztdhzE+g9zmZ9bpnhq3z4OW3NNoWgg3/ZwUgTPid89c5kGOFkQRyYP29TduO+SP0mw3Ve6FdD+sYTlJv7B2w8S/24fJlH0GoGoI2wTZmGEqfsIK783parwdZ+S377V8We2173rECaUIeX8MbC7aLfd5EGHA59L0Qyj62AjPaD7F/XXA7tw45BA+JiKSa0+tTsoPRmjv5VXjhKCjf5Nxn09+sYOqCftbnZSutgMr6Y526ciskbfk34ehfwMCr9KAUSQ3H85zs5NbRWPHJ1vF96aP27Se/Yp2HvXWe9bAWPw38sn9j5feCU96Cii1WqC/Aoqug/BPvY+xfAk90gkFfta5R9IghMG7J161zrsZ2zYOniq3Xn2E32R9vN+YYFJ7C7xMRERHvDODhBM9hfj6PiIiIiIiISEwqQvbXuzMpGC3b4b2FOrf7GUVEREREREREREQyiBIeRCR9GIbzotGqPfGPH+lp9b3Pjn8OkWgEgtZCnYL+EMyBTkdHF3AWyIZOY/wNRQPI7eq9b8llkFPk7/zRMgw46QUYeRt0Pc5awDXjDeh+Ymrrktj1dAnbK0tVyI3uqxfh8CZ4ZZIVrrP2LnjrXFimYFkAdrzk3NaWF6wOuspbvwUzreCpFd+DlydYIZhuvIbqbH0Ids731rc1iOeGtr0L/avDT2GnheBxBKPFGmpWtsIKAVichgFyTswwLDi9aShaY+vutn7ewg5Pia1//ZrwBzjmT1A8wwqGO/5RGPI1yO0MHYYqFC2dBLKgxyn2bWYYDq9vui0csn7O3rkY3p0Nq++A5TfDc0Oh5gCYJoSqPv+ogQMrYq+t/BM4uCr6/bpMie9nPlGy2kHXSdbPgNvryqS/2m8PVSWmLhGReDm9PgXzkltHi/lz4PQlkR9usrHR6+7au5wDqFZ8D14c3fbClCU9OB5/5yS3jubG/9b+vYZ+F0PPmVZA2EVl/s87+Bp/xzMMK3C9+CTr46x1MPbX0O2E6MbZdB/MnwGrfx3dfqt+2TIUrbEV34One0PtIfdxEhEULiIikjz1oWWJ/BARERERERGJS3nI/jptQbB9kiuJXbZh/95CnVmLaZpJrkZERERERERERETEfwpGE5H0ktvNfnu1D8Fo610WIvQ5D9oVxz+HSGvgFFDYXMcxMO43ia3Fq6x2cPTPYOa7cMIj0O3YVFck8eg/27ktr3vy6hCRptb8Giq3N922/h44tC419aQLM+welNSWg9G6HAMlX4xun5oD8PGP3Ps4LSK3s+LW6ObPZE6Lpr2o2uVfHX4yHYLR4lkIboZi3xdg0/2w+634xkiWT5+Dna+591n0FefvnfpgBsOAIdfBjNfhpLnQ/2J/6xR/TX7Aua3s82CyIzvhrS/AI1nwSDZse7JpvyOfwhOd4eEAPNru849cWPkT57GH3uhe17YnYVmEPnaOfzj6fdJJMN9+e1jBaCKSpsLV9tuDucmtw05OJ5hwt/WABCerfg51lVbw55YID0qp3gMrb7f+vul+mDsAHu9oheGWf+Jf3SLNOR5/p/j6QX4fmPpM0yDEDsNh7C8bPjcCcNx//Jtz7K+g8zj/xrMTyIKjvg2nvg0Tfh/9/h9+1zo2Prg2ct/qfZGvaQDUlsHjRbDuD1YYsR3HoPA2fJ1JREQyjZngDxEREREREZGY1YSrqTHt3xcrDGbOAwKzHB66YmISwuE6s4iIiIiIiIiIiEgG0SOFRSS95HWDgzbb4w1GqyiF8k3O7Sc8Ed/4Iq1JbtfIfUb/GEZ+HwLBhJcjbVCvWc5tdZXWn+WfwOYHobIU+nwBesyIf5Gu29PRDOUJi7DjJfvtWx6GMT9OailpZdcCa+GrE6ONL1gdfxdseTC6fT57FUI1ELS/cSuqYLR9i6Fqd9sI1owrGG23f3X4KRHBaPn9nNuyi6DW7oS0mc3/gu5TY68hGcwwrPhe5H5lH0FWoX2bFtxnptzO0H4oHF7fsm3Vz6BmPyy9wd85R/yPFZpdNByWXO/fuAOvgsIS/8ZLhcbBIo0d+cw6n8nvA91OsAI7RETSQcgpGM3h9SwVep7m3v5ERzh9uXPIW2PbnoTXToA97zZs2z7Xuu502lLncxKReDid0zosXkqqHqfAedut8/KcztD9BMgqaNqn1xnxzTHgS9BhGPS9EDoMjW+saA38Mqy+A47siG6/mgPwxulw5mrIcgi+Bdj9ZnTn5stuAiMIQ22Oz02HceI5HxYREUm8UhRaJiIiIiIiIhmgPHTIsS2TgtGyXe5NrA3XkhXUvT8iIiIiIiIiIiKS2XTnrIikF6dApuq98Y279i7ntrG/VriTSGO5Xdzb84ph1A8UFCWJYwSgx6mw87WWbXXlsOHPsORrDds23Q8FJXDaoviCb8yQW1GxjyvSGphhqNxm37bxz207GG37M+7tbT1YKNgu+n3MOji8ATqOtG+PNgDs4Kq2EYzmFCLmRboGo4Ud/k3x/Fx1HA35fVu+phWNhJnvwwsjreBVN5vuh8l/i72GRAtVw8LL4eBqb/33vme/va0HO2aybsfbB6MdXOV/KBpAt8+DAod8Dfa+b4UH+mHQ1f6Mk0puQUILL7f+7HocnPwyZLdPTk0iIm7CVfbbA3GG0fspEIRZK+Clo+3bw7Xw4mjv4zUORatX9jGUPgoDLo+tRhE3Tue06XL9ILcLlFzi3J7T0Qp23fNO9GMfdSuM/UXstcUruz1MnwdLr7d+9qMJXq/YCp/83T7E7L99IpxL2ln6dStsrnBA0+2JOB8WERFJMNM0S1Jdg4iIiIiIiIgXFaHDjm2ZFIyW5XJvT51ZA7g87ENEREREREREREQkAyjRRETSS243++1Ve2Ifc/9yWPd75/Zes2IfW6Q1Khzo3j7+dwpFk8RrP8R+++ENTUPR6lVsgZU/i2/OcLVzm77npa1zC6mtdX56YptwcI17e1tfsBpLMBpYQQROog1GK1sVWw2ZJtqvS2PVu8E0/avFL05hb0YcOf+G8fnxbKMxArlWYHZ2IZy1GoIebgqsijO8OxFC1fDRD+HRPCh9PP7x2vrrVybre2Fy5+txSsPfR97mz5iDr4Nux/ozViq5BaPV2/serPpl4msREfEi5HBtJJ2C0QA6jbFC9RNp62NNPz+0Ht7/CrwyBZbemL7hwpL+ag/ab8/KoMVJY26Pfp+CEhjl07FiPIqGw4z5cHElXLgfCgd533fro+7tTg8ViGTxtS23OQbo6bl3IiIiIiIiIiIiIvEqD9nf82hgkB8sSHI1sct2CUarNeO4l0xEREREREREREQkTejOWRFJL07BaEc+jW28/cvg5YnufYpGxja2SGtV0B+6TIZ9i1q2TboPSi5Jfk3S9mQV2m+3+76st/0ZmPiH2OcM17g0GrGPK9IaVG53bgsdscLRsjPnSYm+OqRgNFeBYGz77XwVSubYt0UbAHZwZWw1ZJp4gtFCVVBXDtnt/avHD4laCN7vAihcDNvnWmP1ORc6jrbasgpg8LWw7nfuYxxcBXknxVeHn0wT3jgDds33b8y2/vqVyZIZKNbvYshqFILZYWj0Y4z4jvUaVLndukbT7TjodaZ/NaaSl2A0sH7v8YuEliIi4olTaLzX17NkGv5N2Pla4sbf8bx1jGUYUP4JvHZ8Q2j4vkXW3KctarvnwhKbULVzMFpu9+TWEo/ik+HsjfDcYOc+2R0AA4ygFZ479Pr0ei0JBCGnE5y5Cj55AJZcH3mfPW/Dzteh4xio/LTh/zJUBbld4cCK2GrZ/aZ1/tv4HMwxKFznaSIiIiIiIiIiIiLxcgpGyw8WEjBivN8tBbKNHMe2WtPtnmgRERERERERERGRzKBgNBFJLwX97bcfWgtmGIyA97F2vQnzprn3OeMja2GTiDR14lPw1nmwf4n1eXYHOOZPUHJpauuStiMrhieuVW6DUA0End/odxVSMJqII7dgNLDChQZcnpxa0knNATiyw72PodPumGx7yjr2COa2bIv2aZZtIRjNNJ0XTXtVtTv9gtEcF4L78HPVeZz1YWfM7dbPdumjzvsfWA7FaRSMtnehv6FooGC0TJbTCfKKoWpX4ufqP7vltgl/gGU3etu/YACMu8PfmtKJ1/CP/csSW4eIiFehKvvtdsflqdZrlhWsX1eeuDnW/AaO+g5s+ntDKFq9Q2th+3Mw4LLEzS+tT/Ue57a8DApGA2g/CGZXwZKvwSf/AEwoGgVT/g5dIjywKJ0Ec2HI16DfbFj8Vet6hJv5p/pfQ7gGDm+EohGNtiUoKFxEREREREREREREHIPRCoOZ9UCcLJd7e2rjecimiIiIiIiIiIiISJrQnbMikl6KjrLfXlcBFaVQWALhEJRvhLKPrKev15RB4QBr4UJWvtW/tjxyKFqf86DjaD+rF2k98nvB6YutIJzqfVA0UgtuJLliCUYDK8SksCS2fcPVzm3RBHOKtEbV+9zbtz7WNoPRKkoj91GwEBQOto7fo1F7ED57Bfqc07ItHOXTLMtWWsFhrTkQ2WsoWn4f56DDt8+HITfAwCvTJ/gi7PDvSvRxaXYhnPAIVN0Lc/vaB4Qsv8U6n+xxSmJr8Wrn6/6PGYgxbFbSQ9HIxAejdT8J+pzfcnuvM7wHo/X9gr81pZtgFOc12+dC77N17iEiqWOazsfagTQ5PmzuvO3wRMfEjf/hd6H3ObDqZ/bta+9UMFprUx86Ha6BULX1Z/1H88/D1daDFhp//t++DtuqdjrPnWnBaGCdO055AMb+CkJHoF0fCARTXVVscjvDiU/Ckc/gzXMbHhrjpy6TYd8i+7b3r4TprzcEltdV2PdL19djERERERERERERkQxSETpsuz3TgtGyDed7e+rMKO+xExEREREREREREUlDSjgRkfTiFIwGsPgaqDkAB1faL0zf+Bc4fbm1iH37M5HnGnxN7HWKtBX5fawPkWSLNRitclscwWhuNwG04jAdES/cggMBdr5iHafldEpOPemianfkPgpGg56nwYYog9EAdr3hEIwW5dMsaw9aC5vze0VfQ6bw+jWZ9SE82dW+rexjWHIdbH0ITn4NgmkQiuUU+GYk6XJWXlcY8V1Y+RP79vmnwvi7YfhNyanHiWnCxz+K3G/MT2HkbfDSOChbEbm/odevjNZ/NuyaH/v+xTOsMIauU6D4ZNj8T9i/DCq2Qo9TodsJMOJb9qGThQOh80TYv9R9DiMIg66KvcZMEM25yVvnwcAvW+EiIiKp4HZdJJiXvDqikVMEU/4O73/ZW//60GYjy3u4cOmjzm0HPvA2Rr1wXdt++IRpWucuruFijcLE7MLFPAWWRRli1rx/KhjBzL6mkomhbk7a9YRT34Kne1nXuvw09Ouw0CEYbd9ieHYQnLnaes11CjnO6+ZvTSIiIiIiIiIiIiJtUHnokO32gmD7JFcSnyyXe3tqzSjvsRMRERERERERERFJQ2347nsRSUvZ7SG/H1SWtmzb+Zr7voc3wOo74OifRl7kPewm6DUr9jpFRCSxsgpj269yW+xzui18LI8h0EekNbELpW0sXAvb58LAK5NSTtrwEoymYCE4+mewb1HkgJzmqj6z3x5tMBpA1U4FowHkdoGC/lawkZPdb8H2p61QpVQLO4RVJDNwsP9s52A0gOU3W+F7o35gHxCVDLsWRO7TrqcVimYYMPNdeLI7hCrd98nv7U99khoDvgQ750HpYy3b8nrA1Lnw6mTn/We83vRzu6BKJ4YBk/4Kb54FR3Y49AnCuN+6B+S3BtEGCX3ydxhwuRVGJyKSbG7nfcHc5NURrY6jvfU7+pcw8n8bPt/0d1jkIaDz4x/HVFYTh9bDoqth70LI72sdOw7yGObmVYvQsUjhYrEEjvkQYib2cruBEUh1FVIvmAcz34fnh/k7biAH+s+BrY/Yt1fvgaciBJ/ltqIQOhEREREREREREZEUcQpGKwx2SHIl8QkaQQIECRNq0VZr6n0ZERERERERERERyXwKRhOR9FN0lH0wmhdb/g1jbod9S5z79DwdJtwd2/giIpIcWQWx7RdPMFqo2rnt8Aaoq4i9rnRlhmHfUjjwAXSeYH2kKtRF0lvY5eej3tq720YwWl0lbH8W6g7But9H7p/MAKd0ldPRWlD8SJSXIGoO2G+PKRjNQ4hdJvPyNSkosf7M7e4ejAaw46X0CEYzHYLRjCRezioaAb3OgB0vOvf5+EfW13fgl5JWVhOfvRy5z4hvN/yOzyqwQq6cFuPX6zkz/tokdYJ5cPzDcNT/wv5lDT9P7XpB96nWa3PP0+CzV1ruWzw9/vk7j4Oz1sDud6xwyk5jrRDBQ+ut78Fux0HhwPjnyQROX2cnn/xTwWgikhpu532BKIMekyk3QohQfZ8h1zXdVnIJfHQbHHEIZPZLxbam4UoVm61AtnV3W+9VxBIu5rRNMle7HqmuQJrrMBTyuvt7PSGQDb3Pjnwu5ibPw2ueiIiIiIiIiIiIiLiqaCXBaADZRjbVZstgtDozhnvsRERERERERERERNKMgtFEJP0UjfS2sNtOxVb49DnY/aZzn3G/jm1sERFJnlgDyCriCEaLtIB0+3NQMif28dNNOASLr4ZP/tGwbfA1cMyfwAikrCxJU27BgfXKVsDWx6D/xYmvJ1XKVsGCmXBkh/d9jGDi6skkgSDkFUPVLu/7VO+33x7LTVutPRjNy9dk1A+tP/O6R+67+Z9w7D/iKskXToFvgSRfzjrmT/DiaKi1vykSgPevgB6nQH6v5NVV7+Bq9/YJ98DQG5pu6z/HfTF+j1OhoH/8tUlqGQEroKzzOPv2wdfYB3aVXOrP/NkdoPcZTbe1xcCvfrOjC0ZLl9dgEWl73M77grnJqyNakYLROo6G4x+1QkEbC+bBzIWw5Hr3EFxXEcLl9y2FV46xbyv7yPoQAeihUOK0dNZaeKKzf+MFcqzzxpxOzmHwkeR6OKcXEREREREREREREVflocO22wsyMRgtkEN1qKrF9lo9VEdERERERERERERaAQWjiUj66eSwYNert851bgvmWwuhREQkvWUVxrZfZTzBaBGCn1bc2rqC0bY/0zQUDWDjX6HXWdDn7JSUJGnM5sYZW+/Ohn4Xts5wvcOb4MVR0e9nRFgo35YE86Lrv3+JFc7QPITBKSzLTTSBbJko0tekeDr0n239PS9CcES9x4tg+Ldg5K0QyI6tri0PW79bdr/RsK3jaOh+Mhz9Uys0yY1ZZ7/dSPLlrIJ+cNzD8OaZ7v2e6Q2XmsmpqTGnYLTcLnDBXvu2nqdDdhHUHrRvn/QXf2qT9NbrLOh1RtMwmO4nWUFe4p+SS2HRVdHts/7/2bvP8LjuOm/j95lRsyT33uM4sR2nOE53qtNJIz2B0GGBZemwLGF3gST0Tlg6+wCBZcMSCJAQ0nvvxenNiXuvkmWVmfO8ODGWpTmj6Wr357rmss6//iRLU6RzvvMj2PNffB4xEKy8GZ7/Lmx5AeiFxwgpH9meUyb6cDBa1ZDs/ac8Ef8atWE6LLwOnroEnr40/717Cox75MPZ+yWAYbNh9sd7uwplUjMSjroa7rkg/vVpPhLVUD0UDvwB3P+OwtbIJexckiRJkiRJkpRVUyrzmyM2JodWuJLiVQWZz+tqL+TNRyVJkiRJkiSpjzEYTVLfM/UceGwstK4t/doLrij9mpKk0qtqKGxeUcFoPbw7WvNrha/dF73wvcztL//MYDR111NwYGdPfBbmfyu/9VPbofl1CJIwdI/85lZCy2q4tg/W1d8UEqbw6CfgkJ/s2lbIu1m2rsl/Tn+SLcRi/2/CrI/sDIxI5fjz3L4FFn0RVt4IJ92beUwYwuZnIExD24Zo7ZoR0c/ys9+ApX/sPmfTouj24g9g4d+BN0IqaobDiHm7Bluk+0gwGsDkU+HYm+D2k7KPe/5ymFPBUIN0e/xzlEN/GT8vWQt7fQae+s/ufeeuh9pRJSlPfVyyBo7+Kyz9E2x8PPoZnHJWzwEzyk+yNgrqT23Lfc4jH4GWlTDvy+WrS+URpqPHxm0rosfQuNddUn+Tb8hxpY05HNbd1729cffcgrsLDaLM9hqnZSWsf6iwddVPBNHjfKIm+l5I1ES3ZJfjRE2ncZ2Pa2HUQdHfxHz+3XdNPRtOeRz+HvOmS/t8Hp7+Um5rJWqif2e8HYbPhRsOzL8eg9EkSZIkSZIkqShhGNIcG4zWw5s89kHVQU3G9o6wgHPsJEmSJEmSJKmPMRhNUt9TNQSO+Rvc9zZoejlqqx0dXaA7Yr/oNnI/uOdCaHolv7XHHF76eiVJpdcbwWipQXYSwNqYkJsV11W2DvUPqe25j33u27D/N3K7+Bxg/cNw70U7n/dNPgOO+D1U1edfZ7k8/+3ermBgSBYQjPbyT2H2R6MLhnfIFgIWp2V1/nP6kzAmQAxgt7ftGnKU68/mDuvug5uPguNu2fX/sHkJ3H0ubHgkv/U6u+PUXY9rR8OC38Gkk6PjuM8r0Uu/zpp4IhxzHdx5WvyYpy+LgugSycrU1LoeCDP3NeyWfe7cz8K2ZfDq/4t+rkbOh8P/x1CGwSZRBdMvjG4qn+F7w4aH85vzwg+in9Pq/veO1IPWlhfgzjNg60u9XYlUeoU8l6+kuRfDXW/u3j7+2BwXKDAYLVtoc9Nrha2pNwQ7w8N2CRTLNXSs0/GO8cma7iFmOc2PW7NCz/nV+0bsAxdsg4feD69fGQWhBskobHrfS2DOp+HBf8ocDt5Zonrnx6MOgPM25TZvh5qRMGyvgj8NSZIkSZIkSRK0htvpiDknqX8Go1VnbG8PCzjHTpIkSZIkSZL6GIPRJPVNYw6BM16Atk3RBdp14yDocnFSw/T8gtH2+CDUTyptnZKk8qhqLGxe67o3LkzLM/QFIN1a2J6qvDANr/4aVt8Br/8vhCmYeg7se2l0oaJKL9+fj3UPwNgcAmnTHXDjIbu2Lb8W/tAAFzT3jXC0MIQlV/V2FQNDoq6wea9dCfO+tPO4kGC07SsL27u/yPY1SXQ5+W3KWfDa7/Jbf+098Px3osCJ138Pa+6Cl3+Wf509aV0P970VTn8R6sZkCUbLfEJfRUw+FY6/DW49LnN/2wb4fRWM2Bc2LYraZn0EZrwTRh9c/P5b+BFGAgAAIABJREFUXooCA1Mt0WNf3fj4sXVjs6+VqIJDfgL7fzU6rh7R/XW3pNIYe3j+wWgdW2HRpdC+aWcI4rK/Rn2zPgb7XQo1I0peqgoUhvC3Ob1dhVQeyfro1pdNPh0mvxmWX7OzrXpYdH+Z0/zTYNEX89831RI9F8/0/HTDo/mvVzFxoWM5BIwlMwSOFRM6FhdiZuiY+pqqIVGQ9ME/joIPh+6x8/dWNcPhqKugdQPc/y5Y8bfMayRqdj3eMa9tI9xwyM43DYgz9+LoZ02SJEmSJEmSVLCmji2xfQ39MBitquvvnt/QYTCaJEmSJEmSpAHAYDRJfVeQgNpR8f1143Jfq2G36GIFSVL/UNVQ+NxUS2Hz022F7znQdDQX939QiHRHFNDSk1Qb3P8OWPKHXduXXh3dTrgbxh1ZnhoHs1SewWiv/1/mYLSOFkjWRWF2iSq4bm78Gn/fD057JrpIupJSrVE4b6IKakbB6tuh+fXK1jBQFfp/ufL6XYPRCjlpa8vzhe3dX+QTjDbxpChsIN/Awxd/GIU7LL06//ry0bYxCm6b8/HosSGToJd/nTX+WJh0evzF7rAzFA2ir91LP4Ejr4KpZxe+79r74JZjdgbGvfSTKIAtTu2Y3NatGVl4TZJyM+0CeOHy/Oc9/53M7S/+AF78Lzh7JQzJEpCoyrn3Lb1dgVQ+E0/K7fV6bwoCOOJKeOWXsPJGqJ8Me30Ghs7Mbf7I+VA/FbYtzX/vts1RqG9n25bDox/tee6oA2HIpBxDx/INGDN0TCqL6mEwcr/MfbWjYNT8LMFoMSHfNSPh9Gfhue/Ak5/LPOaI38P0C/OvV5IkSZIkSZK0i6ZUfDBaY3JoBSspjeog8++e79p0A882PwZAMqhmRt0sjh5xCkOrhleyPEmSJEmSJEkqSh+/kkGSsqjNIxjt+NujoDVJUv+QrC98bnuTwWjF+kMjjD0SDvt17hcRF+qVX8GT/w7bV+1sGzYHDrw8uvh6h1W3wEMfgqaXs6/39GVw3E3lqXUwS23Pb/zSq+DA70cXpwM0vQYPvBvW3LlzTLIu+7pNr8Btx8OJ9+S398v/DQ+9f9e2XALztq+Dh/8Zll+TPWRKlbfhUbh+Piz4TRQCVcj/z7ZlcPPR0RqNu5W8xF6XTzBa9bDoguq78wzoallZ/lC0HR77BOz5QdjyXOb+3g5GAzjyD/CHPJ6vhCl49GMw+YzCgkXCMLqPCruExXUOYOusekT8RfeSKm/MAtj3Ulh0CRCWaNEQnvkqHFRA4JpKq21T9+BmaaAYtlf/ecORqnqY/ZHolq8gET2/u2lB/nNTzUCXYLQXftDzvGOuhcmn57+fpD4uiO9K1GTpq4a9L4bRB8N9F8H2NVH7yPmw8HrDcCVJkiRJkiSpRJpjgtESJBiSqPAbCpdAdZD5d8/r21ezvn31P46fbX6MR7bezaenfo3GqmGVKk+SJEmSJEmSitIHriSVpALV5RiMNvqwgRl+IEkDWSIJySGQasl/bkcTkOVCsY1PwIbHoG48TDplZ3BmLnulU1Ftg8Hae+DWY+HNr5Q+WKV1A6y4Dp77Dmx6snv/lufh9pPh6L9C8+uw9l5Y8n+5rb3q5ig8JshyEaLyl27N3F47GlrXd29vWQmrb4MJx0O6A249DpoX7zoml7C1tffCdXvDuGMhWQvVw6FhGkw8GYZM3DmufQu88kt47JOZ17nlKNjzw92fPza/Bg27wZjD4IXLYcXfe66ps8N+DcPnwo2H5DdvsKrLct889ZzsoVsbn4CbDoezlhQeZLn2brjlmDfu1wbIr0OaX4cVN2T/3s30rqBTz4LzNsCau+GuM8tXXzFuOwm2r87c1xf+/6qGwJFXwT3n5z5n2zJ48Ucw5+P577fxifgQtExqx/Q8RlLlBAHs+wWY8Xa4poTBw0uvMhitL1hzV+5jp50PE08pXy1SKQ2bA6MPGjxhq2MOg/O3wh+HQ5jOfV57U/e25dfGj0/UwLnroHpo/jVK6t8yvT7vasLxcMbL0e/EkkNg3FG+8ZMkSZIkSZIklVBTTDBaY3IYQT8877Qql989v2F123Ie3noXx470zXskSZIkSZIk9Q994EpSSSpQ/eTcxs18X3nrkCSVR1VDEcFoMZ79FjzxWSCMjkcdCCfcHYWbtG/tee10GySG5F9Tf7VtKay4Hqa8uXRrbnoGbj8JWlb0PLbQsJ4dgVwqnVRMMNrU8+Dln2Xuu+0EOOyKKMCsayhaPjY/G906qxkJx1wLY4+AjU/C9fv3vM5LPyq8hkwOuwJ2f2dp1xzoxh8LS//UvX34PlHA1BMXw3Pfip/f0RSFp6XbM/c3zoy+17KFGGxbAqtvh4kn5ld7X7T8b3DPhZDaln1cXIhYzcjo/n3GO2Hxb0pfX7HW3h3f11cuCp90Wv5Bro99Igotm/G2/PZ6/ff5ja8bm994SZXRuDvs/h549VelWa9lJbSsgiETSrOeCtP0Sm7jhu8NR/6hvLVIKk51I+zzBVh0Se5zuv4eKt0BW56LH7/flwxFkwa0LBfNJWtyW6J6KEx6U2nKkSRJkiRJkiTtoimV+VzhhuSwCldSGvXJxrzGv7TtaYPRJEmSJEmSJPUbfeRKUkkqQP3UnsdMOBFmvrf8tUiSSq+qobB51+8Pd5wB6x7c2RaG8NQX4Yl/4x+haAAbHt15sesrv+h57XRbYTX1ZxseKX6NjhZ47ttw/QHw931yC0Urxn1vL+/6g1F6e+b2uvFQPyV+3gPvioLwSq1tIzzyEdj8fG6haKU2cn/Y7a2V37e/m/EuGHf0rm1VDXDg96Kgq/nfhPpp2dfY9AyEqcx9h/43vKUdqkdkXyNbSEF/0boB7jyj51C0INFziFhdmcN09vhnuCiEUx4v3Zotq0u3VjGqhsCUs/Of98hHoG1Tz+NW3QK3Hgf/G8Bz38xvj6Gz8q9LUmXs84XSBjxeMyN6nn33+dFzI1VW6wZ47FM9jxsxD05+uPz1SCpedZ4XvXQNRtv6UvbxI/bNb31JA0dQ3dsVSJIkSZIkSdKg15TakrG9Mdk/39hmTv1+eY2PC4aTJEmSJEmSpL6oqrcLkKSC9RSMduRVMPWc0l5sKkmqnERt4XNX/C26Hf0XmHJmFMr19GWZxz73TRi6B2x5oed10+2F19Rfrc/z4v0wDRsfh0QNDJsLiSQ8+vHcgudKZfsqaF0PtaMrt+dAl2rN3J6sg+F7w7Zlla0HYOMTcN1eld83WQcLfgMJL2bNW3UjLLwBVvwd1j8AQybB5DOi++Adhs6EbUvi11h9a3xfojp67j/j7fDiD+PHLb8Wpp4H9ZPy/xx6S7oj+p5vehWCAO65ILd5uVx0PaTMwWgNb7xuG7k/jDkc1t1X/Jqdv2d629x/gyV/gLAj9zntm+Dxf4M5n4Rhc2DzM9CxDaqHwpbnIbU9eizLJWgnzm4XFT5XUnk17gZnr4bFv4bHP1P8eqnt0fPvjY/D0j/COWugbmzx66pn6Xa45ZjsY+Z8GkbsF4Xq+vxR6h+qh+c3vmsw2uans48fvk9+60saOBI1vV2BJEmSJEmSJA16zbHBaHm+eU4fceDQo3iy6UGebHqw58HEf/6SJEmSJEmS1BcZjCap/8oWjDbz/TDtvMrVIkkqvUQJnqredRZMOAnW3pV93EMfyG29dFvxNfU3K2+Ara9EYUU9aXoVbn8TbH0pOh6xH0w5q7KhaDvccRqcdH8UIKTipbZnbk/UwvjjYeWNla2nNx13C4zYt7er6L+qhsC0c6NbJo0zYfXt8fPrxsX37bjAeP63oH0LLP5N5nGrboG/ToN9Pg/7fKHv309segbuPAOaF+c/N5cAltosX9NSGNcpMOaIK+GBd0f/x4lqmPHu6Ov/8s/zW3PUQaWssDgj50VhiQ99EDryeEfVV35RvsfHIZNh4knlWVtSadSNgb3+NQrWevLfS7v21ePgLR1RQLHKa+VN2QOQRh8KB3y7cvVIKo3qPC96ae8SjPbM1+LHDp0F9VPyr0lS/5HtdwyGpEqSJEmSJElSr2uKCQZr6KfBaNWJav5p0r/x0ranWbz9BTrC6A2gV7Qu5cmmB7qNj/v8JUmSJEmSJKkvMhhNUv9VNQSGTISWld37DEWTpP5vR8BNsVbdVJp1YOAEo6Xb8xv/+Kfh6L/0PO7et+0MRQPY9FR06w3rH4SlV8eHLyk/6dbM7clamP5WePmnUTBeUQLY91JY9IUi1ymTCSfCcSW8P1Fmjbtn79/yQnzfjguMk3Ww4AoggMVXZB4bpmDRJTD2KJhwXCGVVkYYwv1vLywUDbIHye1Q3VjY2rmYeDKMOXznccM0OP426GiBsD0KnWhanF8w2uQ3w6gDS19rMXZ7K0w9F1LN0fH2tdA4A1pWwF93q2wt9VPhtCwhPZL6lslv7jkY7aT7YfsauOvM3Ndd+keYfmFxtalniy7N3j/jHZWpQ1JpVQ/Pb/yO54AArRtg4+PxY/e7rO8HM0sqn1L9vluSJEmSJEmSVLCmVOY3Pmzsp8FoAMkgyZyGecxpmPePtmeaH8sYjNac2koYhgT+zUqSJEmSJElSP5Do7QIkqSjTLujeVj0Mxh1T+VokSaVVNbS3K+huoASjpVryG7/sGmhZnX3MtmWwvvtJFL3qhct7u4KBIxUXjFYHtaPgpAdhWhHhGyPnw5tfhn0/D8fdUvg6mSSHROFXO275GHtUFFhy8I/h2Bvixw2ZWFyN2qmnYLRtS7s1pcIEzal6CKp37WjYref9Xvnv3GvrDZufho1PFD5/4ik9j6kdW/j6mSTrYNLpMP/bcPQ1mYMfqoZEr9sgChA7c0luax/wPTji95BIlq7eUknWQM3I6DZsVhTU1zAdTn6ofHvu/w2Y/QkYfyyMPx72+jc45fGdX1tJfd/wuTBiXua+2R+HM1+HMYfBlDdHAbK58nlw+S3/G2x4OPuY+qmVqUVSaeUbjNbetPPjpX+KHzduoaGV0mBQMzK+L1Ed3ydJkiRJkiRJqojm1JaM7Y3JPnjOchHigt7SpGlJN2fskyRJkiRJkqS+xmA0Sf3bvpdEFxTtUNUIR/8FkrW9VZEkqVT6YqjHQAlG69iW54QQ/jwB2jbGD1mRJTSqHOrGwR4fyD5m7d3w6CchDCtT00CW3p65PfHGc666MXDk7+HQX+a/9ryvwSmP7QzEmnA8jDq4sDp3mHI2vDUNF4Vw4TY48a6dt7emYfYne17j7JXR+GP+Cnt+CIIsL58P+H7m9lkfK6z+waxxZs5DO9JJPvLi5Yy6Zx2j7lnH6b+cyvqmTj/vdeN6XuT1K2HLiwUUWgFhGu4+r/D5QRXs/7Wex406IP/whzhzPwcXNMPCa2GvT0dhYblomBoFLA6Z1L2vbjyccHf08zznE1GoWn8y+mCY9ZHSr5uoju6bDvweHH8bHH8LzP8G1I4u/V6SyicIYMGvoX7azrZhs+GspXDg96GhU/ue/5z7uuvuh+v2hfU9BHepMOl2eOiDPY8zGE3qn/L9fdRrv9v58aan4sft8x+F1SOpf5n+ViBDQPjwuZCoqng5kiRJkiRJkqRdNcUEozXEBIn1V9mC3ppSWytYiSRJkiRJkiQVzmA0Sf1bzQg4/lY49Sk49iY4ZxWMP7a3q5IklUK2C1EX/HbXYMxKSbdXfs9yaM98YkeP4i7+3/gUPPT+wuspxJ4f6TkYDeCF78Nr/1v+ega6uFDArmG0M98DC6/Pfd39vw57X9y9PVsIWU+mvwWOvjoKGskkCODA78Kpi2L6E1Gw05AJue858WRomLFrW3II7P7O3NdQZEdAXg4ufvVr/HjFh9maGkZ7WMPfn2/g7B+ndw4YMjG3hW5/E6T6UPBlGMLa++Dv+8HWIkLbzt8M1Tm8k2myLrf7056cuQT2/2rhP79jDoHTX4DjboHDfxfdjr0JzngJxh1ZfH29af+v5/W9nZP9vpTb/6+kvm/k/nD6c3DiPXDifXDqM1A/pfu4unFQOyb3dTc/DTceAs98FZqXlq5ewapboWVFz+MMRpP6p5o8Q4M3Pgav/x88cTG8+MP4ceOPK64uSf1D3ViYdn739j0+VPlaJEmSJEmSJEm7SIdpmmNCwRqrBlYwWragt+aYcDhJkiRJkiRJ6msMRpPU/wUJGLEvTDwRqhp6uxpJUqlkC0abdEp0q7S4cKj+5oXvFzZv6Z+gZeWubU9/Ga6fV1w9DTNg7BEw51M9jx2xHxzwXdjnP2HUgXD8HVFIRDZPXxoFDalwcaFRQXX3tklvguNuhbFZgoyG7x0FHM79bMy6BbxUrR0DB3wPFvwmt/Ej9omCnKaeB3UTou/DPT8E52+Bqvr89q4ZDifcGYWyNUyHiafAsTdG36PKT83InIalw4D/XfPWbu33vAzLNr7x855r8EDzYlj+11wrLK8whPvfCTcfAZufKW6tfL6P9/86zPsqjJgX/Xzu9yXY78u5z9/zX6ChBOEv1Y0w4XjY7aLoNvHEgRH+VdUAh/6ydOtNfwvM+XTp1pPU+6rqo+fDYxdAIhk/bspZ+a/95H/A3/eB1XcWXp92tfrWHAYFUDu67KVIKoNsv4+Kc+9b4NlvxPfve0lxAeCS+pcFv4W9PgPDZsPoQ+GQn8Hsj/R2VZIkSZIkSZI06G1PbyNNOmNfY5Ygsf6oNqijKtP5nUCTwWiSJEmSJEmS+omq3i5AkiRJyijbhaiJ2ijAaNlfYN39latpIASjtW2EV39d2NwwDX+eBMdcB5NPhY1PwVOfL7yWiSdHa+0IfwhDeP678ePPXgFDJu7aNv4YOGc1PHVJFICWydaXYOMTMGp+4bUOdmFH5vZE5hNnmHBcdCtYkOOwquji0pnvLWybhqlw1FWFzc201hFXlmatwSwIYOxRsPburMM2dYxgVdvEjH1/XxTygaODKLAuV6//Hqadn0+lpZdOwQ3zYdOi4tea/pb8xgcJ2Ptz0W2Hto2w5CrY9GT2ucNmx4ccaqfxx0RhiRseLW6d2R+HAwsMOJXU/+3zn7D6Dmh6Ob957Vvg1oVw4XZI1pajssFlWQ6BqqMOjJ7XSOp/kvVRePb2VaVbc9zRpVtLUt+XrIH534xukiRJkiRJkqQ+I1sgWGNyALx5YydBENCYHMamjvXd+gxGkyRJkiRJktRfGIwmSZKkvmn4PvF9ydookOm4W+HqsdDRXJmaBkIw2sanINVS3Bp3ngYHXg5b8wxkANjr36L/u1EHwpQzozCeHYIAgiSEqcxza0bGrzv9wvhgNIhCjwxGK1y6PXN7XDBasTp/X3R19ipYcV308zjmcBi5X3lqUO+Z+d4eg9G2dMSHZ+6SQTL7E/BCDiFSS6+Gxb+F8cdD/aQcCy2xh/85/1C0fS+DZ77c/fFp5vuLr6dmJJx0Hyy7Bl74HlQNhTmfhEmnwIbHYPWtUD8VJp0KNSOK328w2PcSuPOM+P5Jp0dhR1VDYcxhUNUIw/eKHhfbNkaPnYZqSINbw3R408Ow/FrY9DQQwsu/gPZNuc2/8WA49amyllg2HS2w6Y3aRx/Se6Fjza9Hwcs9mfm+8tciqTyCAHa7KHtwe76y/Y5LkiRJkiRJkiRJFZEtEKwhmeXNnPupxuTQmGC0rb1QjSRJkiRJkiTlz2A0SZIk9U1Tz4lCYrqGeI0+ZGcYU9UQOOTncN/bKlPTQAhGKzYUbYdHP57f+NGHwYIrYNis7OMS1ZCKCUZL1sXPG75XFBiz4dHM/Sv+BvO/kVut2lUYQtiRua9cwWhkCbqoGxsFZ2ngmvEuaFkFT34udsimjvggrsbaTgc1o3Lf9/53Rv/u/R+w35cqG7jSuh5e+e/85w2fA8feCA+8F5oXQ+0Y2P+bMOG40tRVVQ+7vSW6dTb6oOim/Ew+PQoW7foYOvU8OPTn2QNAJWmHmhEw4x07j+d9JbpfeeknPc/dtCgK9mqYXr76ymHD43DvhTsDyUYdCEdf0zthpk9+vucx874Ge3yg/LVIKp/9v17aYLS6saVbS5IkSZIkSZIkSQWJC0arCqqpDbKcn9pPxYW9NWcJiJMkSZIkSZKkviTR2wVIkiRJGVU3wt7/vmtbohr2+eKubVPOhFFdwlkady9PTen28qxbSXEBV+XQMANOfwHO2wAn399zKBpAUETQ1kE/iu/b/GwU8KX8ZfueKeb/K5sgy0vVbH0aGIIA9r4Y9okPHtnYER8g1VjbKdCskKCpZ74Cq2/Nf14xNj5R4MQEjF8IZ74K566Dc9bAzPeUsjKV2uyPwYXbo9uZS+CCZjjqKkPRJBUuUQ0H/xgubIWp5/Y8/q6zIEyXv65SCdPw4Pt2hqJBFIb8yL9Uvo4Xfgiv/Tb7uPM2Rs9jfM4q9W+Japj85tKsNeGE0qwjSZIkSZIkSZKkojSntmZsb0wOI6jkm2hWSGNMMFpcQJwkSZIkSZIk9TVenSNJkqS+a5//hKP+BLu/B2Z9BE64CyafuuuYqgY47hbY/5sw9bwoSOfkh8tTT7qtPOtWUrqCwWinPxeFoeUT9jL6kML3G3MoHPbr+P7FVxS+9mCWLRAwUVWePYfuUZ511b8kh8R2beoYntsahX6PLu4h9KTUmpcUNq/z/Wvt6ChUTn1fsja6NUyFqvrerkbSQJGsgSOvggX/A7Vj4sdtfAIe/Xjl6irW+kdg4+Pd25f9FZperVwd914Ej340+5j9vw41IypTj6TyK1Vw7e7vK806kiRJkiRJkiRJKkpcIFhjcmiFK6kMg9EkSZIkSZIk9XcGo0mSJKlvm3oOHPZLOOi/YMxhmcfUDIe5n4GjroL9LoPaUTD3s6WvZSAEo4UVCkY74c4o9CVfe306c/tu78ht/rij4/se/lD+9aiHYLTq8uy554czt086NXO7BqZE/H3Ixo74kIKOdKeDMFXY3ot/U9i8Qq25I/85VQ0wZkHJS5Ek9WNBADPeBueuhWRd/LgXfwhLrqpcXcVYd19839K/lH//VCvcdiIs+b+exzbuXv56JFVOzaji15j1MZh2XvHrSJIkSZIkSZIkqWhxgWANMQFi/V1DTOBbc2prhSuRJEmSJEmSpMIYjCZJkqSBaca7S7/mQAhGS+cQjDbxlOL2GH0ojD2qsLkTToDhc3dtS9TAnh/MbX7t2Pi+1HbYvrawugazbMFoQZmC0UbuD2OP7LJXAvY03G5QyRLosqljRGxfR+cstNGHFL7/4v8pfG4+0h2FBbHN/ABUDSl9PZKkgeG0Z7L333MBpPrB65t198f3bX66vHs3LYarJ8CqW3IbXz28vPVIqqzaIoPRJp0GB10OiarS1CNJkiRJkiRJkqSixAWjNQ7QYLS4zyvu6yBJkiRJkiRJfY3BaJIkSRqYhs8p/ZoDIRgt7CEYbcR+sPBvsP/XoaaAi4AnnADH3QRBUFh9iWo44S6Y+T4YOgsmnQrH3gBjj8htflVD9v7NzxZW12AWZglGS5QpGC0IYOH1MOsjMGwvmHAiHPUXmHx6efZT35Ssje3a2DEyti+VDncejDoQhkwqbP/73wHbVhQ2Nx8rb8jeP+pA2Otfo/vl0YdGx/O+Bgd8u/y1SZL6r8bdo8eMbFZeX5lairHuvvi+7WvKt+/q2+HaPaB9U+5zqgfmyfLSoFUT/5ojJ3t9ujR1SJIkSZIkSZIkqSSaU1szthuMJkmSJEmSJEl9k29TLkmSJOUqNcCD0apHwEH/BUEC5n4WZn0U/tBD0FhXR/8VquqLq7F2NBz634XN7SmQ7daF0b/jj4W9/z0KclN26SzfM+UKRgOoboy+HzV4JeKD0ban62L7OtKdDoIEHPILuOdcSG2P2urGwfS3wguX91zDXybDOaujOeXy+h/i+w76Icz68M7juZ8tXx2SpIFn+kWw4dH4/rvOgrNXwpAJlaupJ02vwiMfhy3PQVUjbFsWP7ZcwWhhCI9+HMJ0z2M7Sxb5OkhS3zJsduFzZ/4TjDumdLVIkiRJkiRJkiSpaE0dmQPBGpJDK1xJZcQFo21LNZEOUySCZIUrkiRJkiRJkqT8GIwmSZKkgWvIJGhZUbr1Us2lW6u3ZAu5Om0R1E/ZeVxIwFmxoWilMHwubH42+5jVt8Pae2Dh34EAkkNg1EGQrKlIif1K2B7fV85gNCkZH36WCuNPyurommEy+VQ47TlYeWN0HzXhJBgyHvb4Z3j1V/DcN7PXccOBcMYr5bt/WP9gfN+088uzpyRpcJj5Pnj6MmjfHD/mzxPhmL/B+IVQlWcocqk1vQrXzMx9fGuZgtGaX4NNi/KfVzO85KVI6kXjjoH6abBtya7te3wQRh8CYQoe+kD3eVPOgkN+3nNwuyRJkiRJkiRJkiqqKZU5GC0uQKy/iwt8CwnZlmqmsWpgft6SJEmSJEmSBo5EbxcgSZIklc2+l5R2vScuhk1Pl3bNSgtjgtGGzd41FG2HyW8ubz3lMOm03Mal2+G2E+G2E+DmI+CGA6DptbKW1i+lswSjBQajqYwStbFdqZqxsX0dqQyNjbvBnh+EGe+IQtEAhs+B+d+AC1uy17FtGay5o8dyCxKG3YMWdpjzaagbV559JUmDQ81wOO6WnsfdeTr8bS/Y8Hj5a4qz9t78QtEAtq+JHktLrZDXfI17RAFKkgaORDWccAeMPQKCBNSOhXlfg4N/AjPfC3u8H858DcYeFfVXj4B9Pg9H/clQNEmSJEmSJEmSpD6oObU1Y/tADUbL9nnFhcRJkiRJkiRJUl9iMJokSZIGrmkXwMj5pV3z3gtLu16lpWOC0YKqzO17fw6qMr9rXDdTziqsplKb9eHC5m1+Bh77RGlrGQiyBaMlDEZTGSWzBKMlGmP7OtL57lMHx92afczGJ/JctActK+H+d8GVCUhtzzxm2gWl3VOSNDiNPgiO+L+ex21bGgUFh/k+kJZAqhXue0cB81rggffApkXF17DxCXjoQ3DXOXD/2/OfP+/LBiFJA1G/5G7VAAAgAElEQVTjDDjxHjh/C5yzGva+eNef9YbpcOJdUf9562G/y6KQNEmSJEmSJEmSJPUpqTDFtnRTxr6BGozWkIw/99dgNEmSJEmSJEn9gWfnS5IkaeCqGQ7H3wbzvwNTz4Fhs2HKmbDvpXDYrzPPGTEv+5qbn4U195S81IoJ44LRkpnbxxwGJz8Acz8Hu78nClU44yUgw0X/084vWZlFaZgOJ9xd2Nxlf4V1D+4MKkp3wPa1EIalq6+/yRqMFhOoJ5VCsi62K5VoiO3rSBWw14TjYOq58f3tmd8ttCDb18K1e8Li32Qf1zC1dHtKkga3yadB9fDcxt755vLWksnKG6F5cWFzF18BNx0B6x8pfP9Vt8JNC+Dln8KyP0N7nieAj5gH0/t5gLak7KoasocfVjUYiCZJkiRJkiRJktSHbUs1EZL5PNBsAWL9WU2iltog8zl4BqNJkiRJkiRJ6g+8il2SJEkDW80I2OtTwKd2bQ9D2PoiPPPV6DhRCwdeDnt+EG47GVbdFL/mLUdB4x5wxJUw+qCylV4WscFoWV4aDJ8L+39117bDfgUPfQDSbdHxnE/B9LeUpsZSGHtE4XNvOiz6t2G3KBSsZTnUjonC9CafVorq+pdswWhBdeXq0OCTqI3tSsWcsAWQKjTHcMFvYemfMve9fiXM+1KBC3ex6IvQ0Zx9TKIa6saXZj9Jkqoa4Kir4bbjex674rooELS6gid+L/tLcfM7tsLz34Uj/rew+c99e2cwciEmnVr4XEmSJEmSJEmSJElS2WULAmtMDqtgJZXVkBxKa0f3v4c3p0r4RqGSJEmSJEmSVCa+fbkkSZIGpyCAeV+Bs1fBCXfDuWujUDSAZHzgzj80vQy3nQBtm8tbZ6mFqcztiTwzk3d/F5y7Dk68B85ZAwd8B4I+9PIiCGDqucWt0fxaFIoG0LoO7jwDNj1TdGn9TpglGC1hMJrKKJktGG1IbF9HzN1cj6qGxAc8Nr0CTa8VuHAnqTZ46Sc9j6ub0LfuUyVJ/d+E42C3t+c2dsMjpd9/+1p46afw1Bdh9Z279m1+tvj1X7+ysHlhCKtvL27vurHFzZckSZIkSZIkSZIklVVzlmC0hmQF3ziswuJC37IFxUmSJEmSJElSX+FVtpIkSRrchoyHcUdCdacTG2rH5Da3fTOsuqk8dZVLuiNze5BnMBpEX7OxR/TdIIBcgx9yFsKSq0q8Zj+QNhhNvSQRH1KZDuJD0zrSRexZleUktxe+X8TCb7j5iNzGjTum+L0kSeqqblxu40odBrz1ZbjhIHj4Q/D0ZXDrQlh06c7+7WtKs8/Gp/Kf07EV0q09j5v3FahqzNw38ZT895UkSZIkSZIkSZIkVUxTamvG9tqgjppE/Llo/Z3BaJIkSZIkSZL6M4PRJEmSpK7yCfp6+svlq6McwphgtEQBwWh93ZQzYeis0q65ucQhEf1B3PdMkIhuUrkEydiuVBAfmtaRKmLP6mzBaJfDvRfBnyfBldVw7azoMSDMMYlt3QOw4ZHcxk5/a27jJEnKR3XmE5672fx0afd95iuwbcmubYsugRsPi0LYWksUjPbwh/Kfk1MoWwCzPgaH/KJ7MPC+l8HwOfnvK0mSJEmSJEmSJEmqmLggsIZklvPFBoCGmGC0ZoPRJEmSJEmSJPUDAzD9QJIkSSpS7bjcx6a2l6+OckjHhVwNwJcGQQALr4Nr9yzdmsv+Urq1+ot0e+b2oDpzu1QqVQ2xXamq4bF9HTnmlGXeszF7/+tX7vx460vw1Odh4+Nw1J+yz0t3wE0Lcqth7BEw8eTcxkqSlI/q+MfPXTS9CusfgbX3QstyGHskTDo1e5hy81JYdx90NEXHVUNh3NFQNx6WX5t5zvoH4e/75Pc5ZLPuPkinIPFGuGpHM6y5K3qtM/7YzPXnEoxWPRyqG2G3t8Dog2H1rdHrwHELYeR+patfkiRJkiRJkiRJklQWccFojTHBYQNFY1Xm4Lem1NYKVyJJkiRJkiRJ+RuA6QeSJElSkeryCEZL1JSvjnIIB1EwGkD1iNKuF3bAhkdh1IGlXbcviwtGSxiMpjKrnwRDZ8HWF3dtHzKRdM3Y2GmpYoLRqgt4B9ClV8ODH4CDfxT/c5FrqOK4Y2DBb3cGukiSVErVOZ7Qverm6LbDc9+CIAlnvgb1U7qPf+mn8OjHMjxvDGDfS6F1faEV52/dfTDuKFh7H9xzHrSsjNqHzYaFN0DjbruOzyUYraZToNzQmdFNkiRJkiRJkiRJktRvNA/WYLSYzy8uKE6SJEmSJEmS+pJEbxcgSZIk9TlVjbmPHSjBaIkBGoxWMxJi3vGuYHefC2FY2jX7MoPR1Jvmf3PX4MYgAfO+ljX8rKOYYLSgwO/rV34Bv6+BRV+CVGv3/rX3ZZ9/URjdTrgDGqYWVoMkST1JZ3iMylWYioJAu9ryUkwoGkAIi75Q+J6FuOVouPetcPMRO0PRALa8ANfM6D6+NYdgtFwD5SRJkiRJkiRJkiRJfVJTamvG9oYBHowW9/nFBcVJkiRJkiRJUl9iMJokSZLUVe2Y3Mf2t2C0dEwwWjBAg9ESSZhyZua+428rbM3m12Hri4XX1N+kWjK3D9TvGfUtU86Ek+6DOZ+Gvf4Vjr8Tdn8XqSzZhB2pIvaL+37P1aIvwG0ndg9PXH5N/JwDf1DcnpIk5WrIpOLmr7x+1wC0jm3wzFfig3RLbeIpuY17/ffxfQ99aNfjbct7Xq96eG77SpIkSZIkSZIkSZL6pKaYILDGUr/xbh/TGBOMFvf1kCRJkiRJkqS+xGA0SZIkqavRB0GuJzsk+1kwWhgTjJYYwCFXB/0Qxi3ceTx0Fpz2DIw/tvA119xVdFn9wiu/gvvfkbkvUV3ZWjR4jT4YDvg2zP8WjDsSgFQ6fnhHlr4eFRuMBrD2blh9a5d1t8WPL+a+SJKkfIw5AoIi/yTQ0RT9+9JP4K/TYPEVxdeVqyETYPShxa3x8k+joOMdNj/b8xyf90qSJEmSJEmSJElSv9YcF4wWExw2UDQmM58L3ZLeRirufGJJkiRJkiRJ6iMMRpMkSZK6StbB7I/mNjbRz4LR0jEnMgQDOBitZjiccDuc8TKc/jyc9iwMnxv17f7uAtccUbLy+qx1D8GD743vNyBCvahswWgTTihicie3nQh3nwu/r4E/joaWlZnHJethxD6l2VOSpJ7UjYHd31PcGh3bYM098PCHoXV9aerKVaIW5l4MBMWt89fdYNUt0cebn+55fLvvlC1JkiRJkiRJkiRJ/VlTTDBawwAPRmuICUYDaEptrWAlkiRJkiRJkpQ/g9EkSZKkTPb7Mkw8uedxQT8Lh4p7h7eBHIy2w9CZMGw2JJI726ZdWNhayYbS1NSXvfqr7P397XtfA0rWYLRUEQuPWQA1o4pYoJOlV0O6Hdo2xI85/dnS7CVJUq4O/hns/3UYfVhhrwE6tsGzXwPCkpfWo0QNTD0LFv4dJp9R3Fq3nQiPfRq2vtTz2LbNxe0lSZIkSZIkSZIkSepVcSFgjQM8GC3b59ccExYnSZIkSZIkSX3FIEg/UCZBEMwB5gFTgCHAdmAN8DLwZBiGzUWsXQ0cAUwDJgJNwArg8TAMXyuuckmSpAoJAtjni7DyxuzjwvbK1LPD5mfhyf+ENXdC/VSY/y2YeGLu8+OC0RKD9KXBhBNhj3+Gl3+a37x0W3nq6Ut6+pokDEZT78kWjJatr0eJKjj8d3D32ZDaXsRCOagZCfXTyruHJEldJZIw97PRbc09cMtR+c3/26zy1JWLZE3076Q3RbdrZ8PWFwtf7/nv5jau3WA0SZIkSZIkSZIkSeqvOsJ2tqe3ZexrTA6tcDWV1ZDl82syGE2SJEmSJElSHzdI0w8GpyAIRgAfB95LFFoWJxUEwRPAH8Mw/Hoe648FLgUuBEbFjLkP+G4Yhn/KuXBJkqTeUjeu5zGplvLXsUN7E9x5BjS9Gh23bYDbT4YT74Gxh+e2RjomGC0YpC8NEkk4+Mewxz/BY/8Ka+7IbV66taxlldzGJ6FpMQzfC4bN7nl8mEOylMFo6kWpML6vo5hgNIiCVt78Kqy6BWpGwcj5sP6B6Gdo2zIYdQCk2+GF78OmRYXvM3yfKIRTkqTeUtXQ2xXkJ1Gz63H91OKC0XI1453l30OSJEmSJEmSJEmSVBbNqa2xfY3JYRWspPKqgmrqEvUZg+GasnxdJEmSJEmSJKkvGKTpB4NPEATnAz8BRucwPAkcCEwBcgpGC4LgFODXQE/pIYcDhwdB8Dvgg2EYNueyviRJUq/IKRhte/nr2OHln+4MRfuHEF78Ue7BaGFMMFpiEL80CAIYdSAc/jv4yxQgS+LSDum2spdVEmEI974VlvzfGw0BzPsq7H1x/JxUK9xwUM9rG4ymXpTKEn6WrS9nQybCjHfsPK4/p/uY3d8Niy6Fpy8rbI9JpxQ2T5KkUunvwWjD5sDqW8u/77Tzy7+HJEmSJEmSJEmSJCkvYRiypn1F1uAzgHXtq2P7GgZ4MBpAY3JoTDDalm5tqbCDFa1LaA+7nyObDKqYVDON6q5/u5ekCujpPn9E1WhGVY+tcFX9W1u6lfXtaxhXM4lkkCx4nVSYYk3bCkZXj6MmUVvCCiVJkiRJMhhtUAiC4IvAJRm6lgAvAmuBOmAisC+Q1xVxQRAsBP4CdP7tdgg8BrwKjADmA2M69b8NGBYEwVlhGJbisnVJkqTSq2qE6mHQ3v2P//+QaqlcPU/+R+b2DY/kvkY6Jhgt8KUB9ZNg7mfh2RyygVOt5a+nFF75RadQNIAQnvwcTD4DRuzdffza++HmHEP26qeUpESpENnCzzpSFSoiSMB+l0LNCHjsU/nP3+MDpa9JkqR89HYwWtVQGDoTNj6R2/iuJ87NeAe89KPS19XZ9Itg9MHl3UOSJEmSJEmSJEmSlJcl21/h58u/zoaOtUWt05gcWqKK+q7G5LCM4XDNXYLRHtlyN79b9SNaw/g3jK4KqjlrzDs4duQZBEFQ8lolKZNl21/j5yu+ljXoEmC3ull8YPLFjKgaVaHK+qcwDLlxw5+4bt3vSdHBkEQ975zwceYNPTTvtZ5qeogrVl5OS7qZJFWcNuZCTh51no8RkiRJkqSSSfR2ASqvIAg+TfdQtCuB/cIwnB6G4YlhGF4UhuE5YRguAIYBRwLfA9bnsP4U4Gp2DUW7F9g7DMODwjC8IAzDk4ApwMeB9k7jzgC+XOCnJkmSVH5BAOMWZh/TUaFgtHQHpLu/AxsAW1+EdI5JQKHBaFnN+yoccy1MPSf7uHQ/CUZ7/vuZ21+4fNfvmebX4alLcg9FA5h8ZlGlScXIGoxW6ejtOZ+E426F2Z+MwlMmntLznIXXQ+3o8tcmSVI2vRmMtu9l8KaH4U2PwVFXw6yPwv7fzP442vVdp0cfAuOPLX1tiRrY88Nw+JWw4DdRGKokSZIkSZIkSZIkqU9oT7fzo2WXFR2KNiRRT3IQnDvbkByWsb2pUzDaytal/HLld7KGogF0hO38ce0veX7bkyWtUZLipMIUP17+pR5D0QBe2/4iV6z8XgWq6t+eanqIa9b9Dymi60pa0tv4+YpvsL59TV7rbGhfy8+Wf52WdDMAKTq4Zt3veLLpwZLXLEmSJEkavAb+b3AHsSAI5gFf79TUDlwUhuEf4+aEYZgmCja7Nwhy+g3/pcDITsf3ASeE4a6/DQ/DsBX4QRAES4A/d+r6VBAEPwvD8PUc9pIkSaq8cUfB8mvi+1MVCEYLQ3jum9nHtCyHhmk5rBUToJbwpQEQheFNPh0mnQp/ngTbY/6ImuoHwWiLfwtbnsvc98ovYOUNcNgv4YnPwYZHcl83UQ1zPg27v7skZUqFyBqMlgorV8gOE46Lbjusvh0eeB80L951XKIG5n8HJr2psvVJkpRJbwWjzfoo7Pv5ncdTz45uEAX2xukajBYEcNiv4PaTYcsLpatv/rdh9kdLt54kSZIkSZIkSZIkqWSe2/Y4W1Obi16nMSYwbKCJ+zybOrb+4+MHt9yR15oPbrmdvRr2L6YsScrJC9ueYlPH+jzGL2JD+1pGVY8tY1X924Nbbu/WFpLm4S138qbR5+e8zsNb7iKk+wndD265nf2HHlZUjZIkSZIk7WD6wQD1RqjZL9n1//iD2ULRugrDsKOHPfYE3tWpqQ14d9dQtC5r/iUIgis6zasFvgi8N9e6JEmSKqq2hz+KbV8F6RQkkuWrYe298OR/ZB/T9EpuwWjpmKd4g+Bd7/ISJGDuZ+GxT2XuT7dVtp58pVrh/ndmH7NtKdx2Yn7rjj0Cjr2x90I0pDdkyz7LFppWMeOPhdOfj8JdqhuhfQu0bYIR+/jzI0nqOxLVvbPvnv8S35eszdJX072tYXr0mLv1FXjpJ/D8d4qvr35q8WtIkiRJkiRJkiRJkspieetrJVlnYm0O59wOAI3JoRnbm1Nb/vFxvl/TFa1Z3vRMkkpoeQH3NytblxiMlkXc13RF65I813ktZh0fIyRJkiRJpZPo7QJUNucDB3Q6vjUMw1+VeI+LgM4JIFeHYfhSDvO+0eX4giAI6kpXliRJUgnlEmBz2wnQ3hQFpJXDq/+v5zFbX8ltrbjs24TBaN3M+WR839NfqlwdhVh1a3nWPfgnhjqpT8gWftbRF4LRIApvGbYnDJkIw2bDmEP9+ZEk9T3TLuzeVjsGqvN8Z+wZ74JDc3jdMvEUGD4nvj+Z5dfEiSyhaUNnwt7/XprA5waD0SRJkiRJkiRJkiSpr1rVurwk6xw+/ISSrNPXNSQz//2/qVMw2uq2ZXmtubptBemwr5yoJ2kgW9OW/33+6gLmDBbt6XbWt6/O2Jfv1y1u/Lr2NbSn2/OuTZIkSZKkTAxGG7g+2OX4q2XY4+wuxzkFr4Vh+BzwYKemBuCkUhUlSZJUUrmE2Ky5A64aGt3ufDNsK/Ef0179dc9j1t7d85imV2HVzZn7ShEgMBCNPz5ze2obtG2ubC35aMoxKC8f+14CI/Yt/bpSAfpFMJokSf3BAd+NAjx3qGqABf8D7Vvi53RVPw0W/Bomndrz2PHHZO+vGR3fl6jJPrd2FBz2awg6/dljzOEw93O7tmWTrIehs3IbK0mSJEmSJEmSJEmquHxDvLqaVDONd0/8JPs1HlKiivq2xh6C0drTbaxvX5vXmu1hGxs71hVdmyT1ZFUB9/mr21aUoZKBYV37KtJkPtF6TdsKwjDMaZ0wDFkT83UOSbOufVXBNUqSJEmS1JnpBwNQEAR7AJ2vMHsNuL3Ee0wA5nVq6gDuzWOJO4BDOx2fAlxTfGWSJEkllksw2g6pFlh+bXS7oCm/uXHSHbmNW/wbOPT/QSLmKX5qO9x8ZPx8g9EyS9bG9y37K+z+zvj+MITNT8P6R2DkfjByfu6BDMXavqY068z9LAzfJ6p9xN6lWVMqgazBaKnK1SFJUr9XPwlOeQLW3gNtG2Hs0TBkfGFrDZmQw5gp2fuHz43vS23ref0Zb4Pxx8Lq26F+chSMlqyB3d8Nm5+BMA3pVlh9G6y7HzY/22X+O6F6aM/7SJIkSZIkSZIkSZIqLgxDVrdlfvPit43/MIcMW5h1fhBAVVBdhsr6rrhgtObUVgDWtq8kjAnJ+cy0b/CtJZ/N2Le6bTmjq8eVpkhJihF3n3/BuPezsm0pd2+6oVtfIWFqg0Xc1xOgNdzOpo71jKwe0+M6mzs20Bpuz7rPxNqpBdUoSZIkSVJnph8MTMd2Ob41zDWuPXf7dDl+KgzD5jzm39fl2JQFSZLUNxUabvaHRjhnNdQV+Uf/psW5j11zJ0w4PnPf0j9Dy8r4uYlkfnUJNjwaH4wWhvD4Z+D57+xs2+0dcNgv48PrSqk1v3fv62b6W+HgH0PNiNLUI5VY1mC0LH2SJCmDZB1MOKE0ax35B7jngvj++p6C0bL8mjjVmlsN9ZOigLTOhs2KbjvsdhF0tMAzX4FXfgHJeph2Acz7cm57SJIkSZIkSZIkSZIqblPH+tgglkm106hODK7Qs1w0JjO/OVhruJ32dBurYkJyEiSZVjeT4VWj2NyxoVv/6rblzG2YX9JaJamzpo4tNKW2ZOybVDuNkMyXy67JEv412PUUGre6bXlOwWjZAtZy6ZckSZIkKVeJ3i5AZXFIl+P7AYLICUEQ/CoIgmeDINgcBEFzEASvB0FwSxAEFwdBsFuOe8ztcvxynjW+0sN6kiRJfUOywGA0gEWXFr//9tW5j33+e/F9K67PPrdlVe77DCYd2+L7qurj+9bcsWsoGsBrv4UlfyhJWd2k2mDRZXDjArh2Nrz8s8LX2vdSOOJ/DUVTn5bKEv2dLTRNkiTlaM9/KWzemAXZ+4fumb2/fgrUji5s7XxVDYmC0M5ZDWcuhvnfAE+SlyRJkiRJkiRJkqQ+K1vQyviayRWspP9oSA6L7WtObWV1TEjO2JqJJIMqJsR8XXsK15GkYmW/z58Se7+/ObWRllSWawAGsZ5C43INNDMYTZIkSZJUKQajDUwHdTl+7o3As1uAm4F3A3sBw4B6YBpwPPA14MUgCH4UBEGWlAcA9uhyvCTPGl/vcjw6CIKRea4hSZJUftnCr3qy/NrC5jUthqbXoo/bN+c+b8V18OoV0LIS1twNbW/M7dgWhXJl07h7QaUOeB3N8X3JLN8br/wyc/urvy6qnFj3XgiLvgjrH4CtLxa+TpCA3d9VurqkMskWftbWUbk6JEkasKaek/vYsUfs/Lh+Ckw4KfO4cQuhflL2tYIAdn9f9/bG3WHkvNxrkiRJkiRJkiRJkiQNOHFhXMOSI6hPNla4mv6hMUswWlNqC6taM4fX7AhEGxcTPNRTuI4kFSvuPn9Iop5hyRFZAzHXtK8oV1n92uq27F+Xnvr/Ma7dYDRJkiRJUmVU9XYBKouJXY7rgYeBMTnMrQb+BVgQBMFpYRiujBk3osvxmnwKDMOwKQiC7UBdp+bhwMZ81pEkSSq7qobC57asgDAdhU3lNH4V3Hk6bHg0Oh59KOz2tvz2fODdOz8OEjD7kzByfs/zchkzGKWyBKNlC8177X8yt6+6ubh6Mnn2m7DsL6VZ66iroWF6adaSyihbMNq2tsrVIUnSgDXheDjoh/Dkv0P7luxjZ3141+MFV8A958Hae3e2jVkAR1yZ2977fjEKe94R7jx8bzjqz7m/rpIkSZIkSZIkSZIkDUhxQSvZwnEGu/pkIwEBIWG3vqbUFlbHBA+Nr5kCwIQ3/u1qlaE3ksos/j5/CkEQMLJqDNVBDe1h9xOHV7ctZ3rdHuUusV8JwzA2bG6HXEMvewpQW5NjwJokSZIkST0xGG1g6hpa9it2hqI1Az8FrgeWAQ3APOC9wJGd5swH/hQEwTFhGLZn2KPrW6m0FFBnC7sGow0tYI1dBEEwDhib57SZxe4rSZIGsGKC0cIUtG2E2tG5jb/vbTtD0QDWPxjdCt4/Dc9/B5JDso8btxDGHl74PgNZR5ZgtKZXK1dHnPYt8MRni1+nbjyctQwSvkRU/5AtGO1p/5YuSVJpzPowzPwnaH49el1z02Hdx4xbGIWedTZkApx4D2xbAduWQf0UqJ+U+75V9XD4b+DgH0LremicUdSnIUmSJEmSJEmSJEkaGOICXcbHhHcJkkGS+kQjzemt3fqiYLTMITgT3gibiwud29yxge3pFuoSPZyjLEkFirvP33H/lAgSjK+ZxLLW17qNiQt9HMyaUptpSWe5NgL+P3v3HSbJVd/7/3Oq0+Sd3Z2ZnrC7ykI5gIRAIAzYGOk6EJzANjYY44BzIjj8CNe+Nk6P8c/GXCcMBmNjDAZsIRDJgBICIUArIVZC0oaZ7pndyalTnfvHaKXZmTrdVTOd+/16nn12+5xT53ynt7u6e7rqU8oWwgajlR+34i9pubiovvhA6PoAAAAAAAjCWe9txhiTkpTa0nz6N/z3S7rRWntsS/89kt5ljPkNSX+6qf2Zkl4v6fcDltoajLa+g3LXJO0tM+dOvFbSm6owDwAAwAZv61uriNanwwWj5U5J2c/sbi2XUpkM28t+T7roNyQvUZu1W125YLQj75DOf42096ot7e+sbU2bHftwtPE9B6WuUalrWFqbkhL9Uvr50iWvJxQNLaVcMJok3T9pdcm4qU8xAAC0s1hKGrhw498vvFu666ek+W9s3L7sTRvvI40XvG3PeLRAtK0SAxt/AAAAAAAAAAAAAACQO4hl1BHehQ29sf7AYLTjuUeVs8Gng50Om3MFo0kb/x9ndZ1fnSIBYAvXPn9zGOZIcsIRjBYu4KuTZELcJ7OFGeX9nJJlzqEp+HnNFqYrzpXNnyAYDQAAAACwa5z53n5ijvYFBYeiPcFa+2fGmAlJv7ap+deMMX9hrV2usK6NWOdOtwEAAKgvs8tgnfVpac/FlcedvHN36+zE8LOkK95a/3VbSXG1fP833io950NP3i7lpXvfUH4ba3f/uDrtkXeHH2vi0vc9JMWS1VkbaKBShU+Tf/wJq396FcFoAABU1f5rpP/19UZXAQAAAAAAAAAAAADoQOv+muaLpwL70qkDge3Y0Bcb0HRhclv7w2v3O7dJJzcuhLY3PqSESapg89vGZHLHCUYDUBMFv6CThWxg3+bARld4Yza/fZ/X6cKExVlZzRSmNJE62zlmujApG+K04Ez+uM7rCXEeDQAAAAAAZXiNLgDVZa1dleQHdP15uVC0TX5PGyFqp+2TdFPAuK1Bad3hKiy7TaXwNQAAgNaz8li4cTboLVyNnfvq+q/Zas55Rfn+zK1n3p67VyosBI897QsvkXLBB+dEkp+Tsp8NP77nIKFoaBulCrvM99xBDjcAAAAAAAAAAAAAAAAAtItygS6jjmAcbOiLDwS2P7Z+JLB9ILZXPbE+SZJnvCdC0raaLlQO2QGAnZgpTMkGniIbLhhtOj8pvxHnZzSxMMFoG+PKh8qFDZ0Lux4AAMqodT0AACAASURBVAAAAOUQjNaeVgLa3hNmQ2vtiqQPbWl+bsDQZg1Ge4ekyyL+eVEV1gUAAO3s3FcGtz/lV6SeQ1L/he5t7/xJaf5wiEUa8MVb78H6r9lqzvnJ8v3FLW9h83OV5zz+EenmK6Xs53ZcliTpob+PNn7vFbtbD2gilYLRAAAAAAAAAAAAAAAAAADtI5M7HtieMEntjQ/XuZrW0hvrD2wv2mJg+9agoRFH8FAmR+gNgNrI5oP3+Z48DSdHn7jtCsYs2LzmiidrUlurCh+MVn5c2HmmC+EC1AAAAAAAKCfe6AJQE/OSNv/WOmutfTTC9ndKetWm2xcHjFnYcjvStwjGmD5tD0abjzJHEGvttKTpiLXsdlkAANDuLv0dKfNpafXYk21X/qF06Rukp/3Fxu1PXCed+lLw9nf8uHTgxdKJ/5ZSQ9L5r5EOvuTMMbZUm9rL6Tu3/mu2mqHroo0vbH2b7LB2Qvr086Xh66XEXmltUko/V7r8LVKir/L21kr3vi5abRe8Ntp4oIkRjAYAAAAAAAAAAAAAAAAAncMVxJJOTsgzXp2raS19sYFI47cGo40mDwSOCxuOAwBRufYvQ4lRxU3iiduu4MbTc+xPjFS9tlZV72A0XiMAAAAAANVAMFp7+pakg5tuT0Xcfmsc+/6AMUe23D4r4hpbx89aa+cizgEAAFAf/edLL7xbOvERafW4NPoCaeSGM8ck9ri3n7t3489pUx+XznuNdOFrpT2XS15MKq7WpnaXvnOl3nPqu2YrMp501sulx97vHuMXJe/xj1aFxQiTW2nmtidvzt0jnbxDesEXN9YNsj4tLT0s3fXqCOtIGnqmlP7OaNsATSxMMNq/3OXrR6/jgDcAAAAAAAAAAAAAAAAAaHXZ/PHAdldoF54UNRhtdEvQUDo5HjhuujAp35bkmdiOawOAIBlHqNZo6sx9fpfXrT3xfVoozm4bm82f0CW9V9ekvlZT8As6WciGGlsp0Gw6ZODZTD6jki0qZjiFHQAAAACwc5wh3J4Ob7mdi7j91vFdAWMe2HL7/IhrnLvl9v0RtwcAAKiv7rR0/s9IV7x1eyiaVD4YLcjDfyd9/GrpYxdI84el4kp16gxr4kWSMfVds1XFusv3l9af/HdhYXdrnbxj489Wfkm662ekD6WlW6+XFre+Hd/khv+QzvvpJ2+nnyc98583AviANlGylcf87/8KMQgAAAAAAAAAAAAAAAAA0PRcITnpLSFe2C5qMFp6S/BQ2hE+V7QFzRZO7rguAHBxhXMF7fNdrwOVAr46yclCRlYhrkqtjfvN2uBjsK21oe9XX6XQYWwAAAAAALgQjNaevr7l9mDE7beOPxUw5r4tt68wxvREWONZFeYDAABoLYloBw08YeUR6ebLpLt/Ltp2z3iXdPAHdramJO29aufbdhovWb7f35QrXFjc/XoP/8P2tiPv2AjTq2TftdLBl0rX/Z30w6vSSzLSd35G6j9v93UBTcQP8d38g1mpUCQcDQAAAAAAAAAAAAAAAABaWcmWNFOYDOxzhXbhSb2x/kjjR7eEDI0kx51js/njO6oJAFw2wreC9y2jAfv8dIJgtEqi3Bfr/qoWS/OBfUulBa35qzVZFwAAAACAIASjtaePS9p89ve5xpiuCNtftuX2tt8kWWundGYAW1zSsyOs8dwttz8eYVsAAIDmk9hT3/W6J6SJ79v59oNb3/LByV8v31/a1F9Y2P16p+7a3nbsg+G2vWBTwF68W+pO774eoAmVQuadZaqQVQgAAAAAAAAAAAAAAAAAaJxThWkVbTGwb2uIF7bri4W/+HPCJLU3PnxGW5fXrcH4/sDxhN4AqLaF0pzW/bXAvnTAPj+dIhitkkzEEEvXfRf1Ps3mg0NNAQAAAAAIi2C0NmStnZR0x6amhKTvjDDFjVtuf8Ex7sNbbr8qzOTGmIskXbepaUXSJ8OVBgAA0KQS4Q8aqIquEensH5e6x6JvG++XBi6ufk3tqljhqkZ+7sl/F6qQwrRwv5T59Jlt058Pt+25r9z9+kCTs9bKhgxGOz5X21oAAAAAAAAAAAAAAAAAALWVdQS6GBmNJMfrXE3riRKMlk6OyzPbTzcMCiOSpAzBQwCqLJtzh3gFBqM59k/zxVPOgLVOMx1xX+0aHzUYLeq6AAAAAABsRTBa+3rXltu/HmYjY8wNkp6+qcmXdLNj+PsklTbdfqkx5oIQy7x+y+0PWGvXw9QHAADQtJJ76rtealjyYtL174u+7QU/L8W7q19Tu6oUjFba9Fa2sFB+7NmvkF58rPKan7tJmv+GNHmL9M23Vx4vSS8+IQUcjAK0m5IffizBaAAAAAAAAAAAAAAAAADQ2lzhW/sSw0p6qTpX03qiBaMdCGwfdbRHDckBgEoyjjDM/tge9cb6t7WnE8HBaJI0nZ+sWl2tLBvxfnDt26Pu83mNAAAAAADsFmfNt693SXpg0+3nG2PKhqMZY0a0PVDtA9bah4PGW2uPSHr3pqakpH8yxnSVWeNFkl65qSkv6S3l6gIAAGgJsZ76rpcaenzd3ujbXvWH1a2l3ZUqBaPlnvx3ft497uLfkp7xD1LPAam7whUK/YJ08xUbAWn3/GrlGm+6V+rhqofoDNGC0WztCgEAAAAAAAAAAAAAAAAA1FzWEZLjCvHCmbq8HnkhTyFMJ4MDhkaSwceoEnoDoNpc+xXX/mlfYkhxk4g0Vyex1jrD5tz3W3CQmuv+jCke2O4KNgUAAAAAICyC0dqUtbYk6VckbT5l/M+MMW83xuzdOt4Y812SbpN03qbmOUm/XWGpNz0+7rTrJX3KGHPRlvlTxphfkvTvW7b/M2vtYxXWAAAAaH6FhfquF0tu/B2PGMiWGpIMHwMiKVYKRluXvv0e6VPfIWU/Ezzm6j+Rrv5jyXv8y0MvWb36rvpjae+V1ZsPaHKRgtHKZBUCAAAAAAAAAAAAAAAAAJqfK4hl1BGSgzN5xlNvrD/U2FFH2JyrfbE0p7XSyo5rA4CtXCFermA0z8Q0kiC80WW5tKA1P3g/fVFP8DkIrvvN1X5Bz6XOtVdLyyGqBAAAAAAgGIkIbcxae6s2wtE2+2VJWWPM540x7zfG/Kcx5lFJt0o6f9O4vKSXW2sfqbDGcUkvfXz8ac+SdL8x5m5jzL8ZY26RdEzSX0raHCP/X5J+bwc/GgAAQPMZeEpj1o33Rht/4MW1qaOdDV1Xvv/Bt0t3/qQ0/Xn3mIGLz7w98b27r+u0se+u3lxACyjZ8GNPzFUeAwAAAAAAAAAAAAAAAABoXu6QnOCwLmzXFxsINc4VPORqlwgeAlBd7jBM9z7ftY9i/yRlytwHV/RdG9h+qpBV0RbOaCvagk4Vso55nu5cg/8DAAAAAMBuEIzW5qy1fyXptZJWNzUnJN0g6WWSXiTprC2bZSU9z1r7iZBrfE7SSyTNbGo2kq6R9MOSXihpeMtm75f0MmttKdQPAgAA0OxGvkMy8fqs5aWe/HdqKNq2Z/9YdWvpBOe9unz/0X+rPMfgZWfePvendl7PZnsukQavqM5cQIso+eHHHp+LkKIGAAAAAAAAAAAAAAAAAGgqy8VFrZSWAvvKhXXhTL27DEYbjO9X0qQC+wi9AVAt6/6a5oonA/vK7fMJRnNz3Qc9Xp/O674ksM+Xr5l85oy2mXxGvoIP4r6w5zKlTFek9QEAAAAACINgtA5grf0bSVdIeq+k4G8DNmQkvVnSU6y1t0dc42ZJl0l6p6S5MkPvlPSD1toftdauRFkDAACgqSUHpYt/oz5rXf0nT/470R9+u9HvkoZvqH497W7PZdLBH9z59vF+qefQmW17r5IOvGR3dUnSte+UjNn9PEALiRaMVrs6AAAAAAAAAAAAAAAAAAC1lckfd/aNJg/UsZLW1herfLzxvviwkl5w+JlnPI0kxwP7MoTeAKiS6fyks6/cPj/t2D9N5yfl2wgHHrchVzBZOjmhocSojOMU863bueYx8jScGHe+RhCMBgAAAADYjXijC0B9WGsflvQKY0y3pGdJOiBpVFJe0oykr1lrv77LNaYl/bwx5lceX+Osx9dYkXRC0lettY/sZg0AAICmduUfSnsul+56teTnarNGrEs662Xhx1/8W9LSkY1AtAtfK3mx2tTVzoyRnvUv0r9+cGfbp5+7PbzMGOnZH5CO/I30lV/e2bzd49IIQXfoPFGC0U7MS9ZaGQIEAQAAAAAAAABACzLGvFnSm3Yxxbutta+sTjUAAAAAUH+uQJVur1f9sT11rqZ19cUGKo5JJyfK9o8mD+h4bvtpYdOE3gCoEtc+P24S2pcYdm7n2n/lbU7zxVNlt2135YLREl5CQ4kRzRQy2/q3htS5Quv2J4aV8BJKJyd0LPft0OsDAAAAABAGwWgdxlq7JulTNV4jL+mztVwDAACgKRkjnfNjUt+50q3XV3/+WLf0jHdJXRG+mLv6j6tfRyfyElLPQWn1WPRtD7zIMWdcesovSee/Rvrgfqm0Gm3ep/9d9FqANuDb8GNLvrRekLqTtasHAAAAAAAAAAAAAAAAAFAbmfzxwPbR5AEumBlBb6hgtANl+0eS44HtGUJvAFSJK0RrJDEuz7gvEF8u2HE6P0kwWoDT99lIciIwGG3rdu55Dpwx3/Z5ggPVAAAAAAAIw2t0AQAAAEDb6RrZ3faxHuk5H5Ve9Kj0o1b63gel598qvfiYdNaPbB8/9sLgeQ68ZHd14EyFhZ1t139B+f5YlzQcMUhv9AXS+E07qwdocVGC0SRprVCbOgAAAAAAAAAAAAAAAAAAtVUp0AXh9IUIRhutcJ+OOoLTZgqT8m1pR3UBwGbOMMxU+f1Td6xXA7G9kebsBAW/oJOFbGDf6ddRd6BZ2GC08vPMFKZ4jQAAAAAA7Fi80QUAAAAAbSdMMNr5Pyc99M7gvu//ttSdfvL2wIUbf1wu+Hlp6hPb2w/9YOU6EF6sRyosRt+u52DlMc/7hPR+91WsntB7lnTwB6RL3ihxpUN0KBsxGG01L+3rrU0tAAAAAAAAAAAAdfZySXdGGL9cq0IAAAAAoB6yrpAcR0gXgvXG+iuOSafK36eu0JuiLepUYVrDybEd1QYAp7nDtyrv89PJcS2uzYWesxOcLGRk5Qf2VQxGK5woezvsPEVb0GxhRkPJ0VA1AwAAAACwmdfoAgAAAIC2E++Tuit8uX/tX0tX/dGZbXuvll584sxQtDDG/5d06IfObJv4/o0ALVTP0HU72647xFUJjSdd+jvlxyT2SC96VHrqn0ldQzurBWgD/g6C0QAAAAAAAAAAANpExlr7aIQ/JxtdMAAAAADsVMHP62RhOrDPFcCCYH0hgtFGK9ynI8lxZ1+mg4OHAFSHb0uazk8G9oXZ5zsDvjp4/+T62T15Gn48qCzt2LevlJa0XNy4qPxyaVErpaXAcae3L/ca0cn/BwAAAACA3SEYDQAAAKg2Y6SzX1FhjCdd8nrpe+6Xrv5T6fr3Sy/4otTj/kLIyUtIz/pX6bkfl678Pxt/3/BBKZbaWf0Iduhl0bfpHpNiyXBjz6owf2o4+vpAG4oajLZGMBoAAAAAAAAAAAAAAAAAtJyZwpSs/MC+0dSBOlfT2vpiA2X7u7weDcT2lh2T8rq0Nx58Yd9pQm8A7NJs4aQKNvig30rBjZI7GM0VttYJMvnjge1DiVHFTUJS+dC504Fm2TL34entU16XBuP7y84DAAAAAEBU8UYXAAAAALSlK/9Amv+aNPWJ7X2bA7D2XLzxZ7eMJ43fuPEHtXH2y6T1jHTPr4XfZvS7w48dvEyKdUulteD+5J7wcwFtLGow2irBaAAAAAAAAAAAAAAAAADQcjKOIBVPMQ0l0nWuprVVCkYbTU7IGFNxnnRyQnPFk9vaXeE7ABBWtsx+ZGQXwWizxRnl/HWlvK4d19aqXKGVI8nxJ/49ENurLq9b6/72cxiyhRM6Txc7/2+6vO4zQjXTyQnNF09tG+d6PQcAAAAAoBKv0QUAAAAAbcmLS8+7RTr7x89sTwxKF/9mY2rC7l30q+HHJvdKF/16tPmf+W53X/8F0eYC2pQlGA0AAAAAgJb1kXutXvkuXz/zz74+882IH/IBAAAAAAAAAB3FFcQynBxTzMTrXE1r660QjJZOHgg1jyt4KJufjFwTAGzmCs8ajO9Xl9ddcXvX/kmSpjt0H+W6TzffV8YYZ/Bc9vHts86AtTNDNd2vEQSjAQAAAAB2ht8CAwAAALX0zHdL6edLmU9JPQekc18p7bm40VWhlsZukgYvlS78Ran3rGjbHvqhjcfJasDBPAdfWp36gBbnE4wGAAAAAEBL+otP+fr1Dzz5wf4fv2j1z682evnTuZ4bAAAAAAAAAGC7TC44SGW0TPgNgnV53YoprpKKgf3lAoU2G3UEqLlC7AAgLNd+xLXf2Wp/YkRxE1fRbt/PZfOTOth17q7qazXWWmcg2db7NJ2Y0NH1h7aNqxSMlk6c+drhei2ZJhgNAAAAALBDHGEMAAAA1JLxpPNeJT3rfdLVbyMUrR1c8gZ33/c+KD3vZunqP4keinbaC74oDV55ZtvFvyUd/MGdzQe0majBaGuFiBsAAAAAAICqKxSt/vd/nfkZ3bfSWz/G53YAAAAAAAAAQDBXSE46ZEgOnmSMUV+s39kfNnjIFXqzVFrQaml5R7UBgCRlXOFbIYMbPRPTcGIssK8Tg7mWSwta81cC+9LJ8TNuj6aC7+NsfvKMvyvN4/q/WijNaa20WrZeAAAAAACCxBtdAAAAAAC0lHNfKR15h1RYPLP9B05JqX27n7/3LOnGL0vz35DWTkj7rpW607ufF2gTvh9t/Gq+NnU0q3zR6iP3Sg/NWH3HhUbPPHfjoDYAAAAAABrpCw9JcwHHuj+YlU7MWU3s5bMrAABASD9rjPldSRdL2i+pIOmUpMckfVHSLdbaLzSwPgAAAACoCmutso4gm9GQITk4U29sQAulucC+sMFD5ca988Qfqsvr3lFtLgmT1Pk9l+iZe76z6nPX2vH1R3XX4medj+PB+H5d3f9MXdx7VZ0rAxrvq0t36L7lL2uptPBE29H1hwLHhg1ulDb2UVP5Y9vaXc/DdnFk9bC+svRFzRZmnmhzhaJJ2wNGXfv2mfyk3nH89zXjDEabKHt7s3ee+AOlqrwfj5mYDnWdpxsGb1RfbKCqcwMAzrRWWtHn52/RY+tHVLTFbf1JL6lzui7ScwZvVMJLNqBCAADQrghGAwAAAIAoBp4ifefnpMO/vxFetu8a6ao/qk4o2mleXNp3taSrqzcn0CZsxPGdFIy2sGr10r/x9dkHT7dYveYGo//7Ck4uBwAAAAA01ok59yf65VwdCwEAAGh9L9tyOyWpT9JZkp4j6beNMV+W9EZr7adqUYAxZkTScMTNzqtFLQAAAADa13zxlHJ2PbBva6ALwumLD0gBx9N58jScHA01x2B8v1KmK/D/5qG1w7stMdBXl2/XVxa/qF86+GalvK6arFFt31q9T399/K0q2PIHMH5x4RN62cjP6jl7b6pTZUDjfezkv+jjpz4QenzY4MZyYzP546HnaDVfWvwfvXvq7bIKd+XpHq9vW4jYSCL4fvPl676VLzvn2vp6vDc+pIRJBu77jtToNeJry3fpzoXP6DcPvU398T01WQMAOt1aaUV/evSNmsofLTvunqXb9dWl2/Vrh35fMUOECQAAqA6v0QUAAAAAQMvZd7V0w39I3/ct6Vn/IvUeanRFQMfwIyajdVIw2nvvsptC0Tb83ResbrkvapwcAAAAAADVVe6TaX77hWQBAACwO9dI+qQx5g+MMbW4esprJd0X8c9HalAHAAAAgDaWzZ9w9qWT43WspH30xfoD24cSo4qbRKg5jDEaacD9/+31b+oby3fXfd2d+u+T/1oxFO20/zr1fhX8Qo0rAprDUnFBt85+KNI2oxHCMF3BaNP5SVnbfsfS+rakj868N3QomrRxH239leFIckxG0X6NaGQ0khw7o80zXkNeI2YKGX1x4ZN1XxcAOsWdi5+tGIp22rfXv6mvLd9V44oAAEAnIRgNAAAAAAC0DD/8d/eSpLUOCkb75OHggzZ+64MR7zQAAAAAAKqs3HkGy7n61QEAANDCTkj6O0mvkfRsSZdIukjSsyT9kqRPbBlvJP22pP9TxxoBAAAAoGrmiicD2/tje9QT66tzNe1hILY3sN0VJOQSJaSomh5ee6Ah60ZV8PN6aO3+0OOXS4s6kXukhhUBzePI2mEVbfirJqVMl/bE94Ue79qf5ey6FoqzoedpFTOFjGaLM5G2CQoXTXop7UsMR5pnb3xISS8VMH+015Rq+ebKvQ1ZFwA6wTdXvlbT8QAAAOUQjAYAAAAAAFqGH/GCbSsdFIx2833B7YcnpVLUOw4AAAAAgCoqlsnsJhgNAACgrC9JeqGkg9ban7HW/r219jZr7QPW2gettbdba//KWnujpGslHdmy/RuMMS+qe9UAAAAAsEtr/mpge19sT50raR8X914V2H5V/zMizXN539OrUU5kRVtoyLpRzRSmZBXtYqbZ/IkaVQM0l0zuWKTxV/RdJ2NM6PHlQrna8Xm2k5/pir7rAtsv7422b3fNc0WDXiOm8scbsi4AdIKorzft+JoLAAAah2A0AAAAAADQMqLGey2s1aSMplQqcyzVzFL96gAAAAAAYKuVMuFnBKMBAAC4WWtvttZ+0lpb8SsSa+2XJT1D0re2dP2RMSZWxbLeIemyiH8IZwMAAAAQSc4PPvCry+uucyXt45Lep+qa/hvOaLuo50o9rf/Zkea5qv86Xd57bTVLC8W30cLGGiWzgyCIbH6yBpUAzWcyfzT02H3xYX3P0I9Emr8n1qd+R4Bmpg2Ds6IGz1zV9wxd3he8//7ufS9ROnkg1Dzp5AG9YN+LA/uu7rtel/Y+LVJd1bBcWtBScaHu6wJAuyvagk4WMpG2IRgNAABUU7zRBQAAAAAAAITlRzy2aWYxapRa69rbI80FXyhVC2vSKBdLBQAAAAA0SLnws5WclRT+Su8AAABws9bOGmNeLunLevJN1kWSnifpU1VaY1rSdJRtjOH9HgAAAIBo1h3BaCmvq86VtI+YiemVY7+qZ+x5vh5bP6Kx5CFd3netYhGztOMmoZ+deIPuW/mKHl07ooLNV7XO+1e+qqmA8KSSSlVdp1ZcQRB9sT0aiO0JDIbKtmFgExBkKncssP387kt0VtcFkiQjo7HUQV3ee6364gOR10gnJ7S0tj0gqx0DCF37m+HEmK7oe/oTtxMmqXO6L9SlvU+TZ7zAbQYT+/W6Q2/T15fv1onco7IBl7I2MppIna0r+q5Vd6w3cJ6El9DPTfy27lv+sh5dP6KiLezgJ3Mr2aI+N//fgX1T+WPqj3OwNABU08l8Vr6CT+K5tPdpOrzylW3ti6V5rZaW1RPrq3V5AACgAxCMBgAAAAAAWoYfMedseqk2dTSjVJnf8iyu168OAAAAAAC2WirzubRcaBoAAACis9beY4z5pKQXbmq+UVUKRgMAAACAenAFo3V53XWupL14JqZLeq/WJb1X73qeK/qefkbwTrWsZ1YDg9F82yrBaMEhZ+d2P0UHUudo8lRQMFpwuBHQTkq2qGlHONlzBm/SNQM3VGWddHJCD63dv619ug2fZ659x6W9T9MPjLwq8nzdsV5dt+e5u6xqI4jzyv7rdGX/dbueaytrre5e/LxW/O0HiGdyx3Rhz2VVXxMAOlnG8d7WyNMPjfy0Dj+yPRhN2ggkPaf7wlqWBgAAOkRwvDcAAAAAAEATihqMll2sTR3NKF7mwp0Lq/WrAwAAAACArcqFnxGMBgAAUBO3bLl9RUOqAAAAAIAdyhGM1rE8BR8I58uvcyU7k3EEFaWTE0onJwL7pgtTLRP8BuzUdH5KJRUD+8ZSB6u2zojjeZYtdE4w2qjjPmgHxhiNpg4E9k3lj9W5GgBof65Q0/2JYQ0nRpUyXYH9rrBgAACAqAhGAwAAAAAALcNGDEab3n5BsLaVDz5eRJK0EHycIAAAAAAAdbFSLhhtvX51AAAAdJBHt9webkQRAAAAALBT645gtBTBaG3PM8GnO7ZCcJi1VtlccAjEaPKARpPBYT5FW9BsYaaWpQENN5U/GtjuydNIonpBXq5QsNnCjPJ++1yxaaW0pOVS8NWjXSGM7WIsGRykRzAaAFRfxhFwlk4ekDFGI8lxx3btF0gKAAAag2A0AAAAAADQMvyIwWgLa1KuEHGjFpUrG4zWGfcBAAAAAKA5La27P5eu5OtYCAAAQOfYmiBAcgAAAACAluIKRusiGK3tOYPR5Ne5kugWirPK2eArwqSTE87gCEnKEh6BNjeZCw5GG06OK+ElqraOKxTMymo6P1W1dRqt3D6j7YPRUocC2zM5gtEAoNpcrzenX2tcwb+8twUAANVCMBoAAAAAAGgZUYPRJGlmufp1NKP1grtvIfg4QQAAAAAA6mKlzMXXl9vnwuwAAADNZGjL7ZMNqQIAAAAAdsgdjNZT50pQb55ige2+bf5gtEz+uLMvnZxQyuvSYHy/Y1vCI9DephyhVWOOQJWd2p9IK6Z4YN90oX2eZ67AmZTp0p74vjpXU19jyYOB7YuleS2XFutcDQC0L2ut8/Vm9PFgNFcYZ7bM+2IAAIAoCEYDAAAAAAAtYyfBaHMr1a+j2VhrlSu6+wlGAwAAAAA0UrnP88VS/eoAAADoINdtuT3ZkCoAAAAAYIdyzmC07jpXgnrzTPDpjr5t/i8UXMER/bE96o31S5JGHSFQrm2BdjGVPxrYPpY6VNV1YiamoeRoYF87Pc+y+eBf940kx2WMqXM19TWaCg5Gk6SMI4APABDdcmlRq/5yYF/68fe0rmC0mXxGpRZ4/w4AAJofwWgAAAAAAKBl+Du46ONsBwSj5cuEokkEowEAAAAAGssSjAYAAFA3xpgumyZUuwAAIABJREFUSS/d0vy5BpQCAAAAADu27ghGSxGM1vY8xQLbS2r+LxRcoUvpTWForvCIbP54TWoCmkHRFjSdnwrsG0tWNxhNktLJ8cD29gpGC95nuMIX28me2F51e72BfVPsSwGgasq9Pz39njbteN0pqahThWxN6gIAAJ2FYDQAAAAAANAyypxHrd5UcPvcak1KaSrrhfL9i+v1qQMAAAAAgCDlPs8XdxCCDgAAgLJeL2nzWdYlSf/doFoAAAAAYEdyjmC0LoLR2l7MBAej+bb5v1DIOIOKnvyY7g5Gm6xJTUAzmM5PyXeEG46nDlZ9PVc4WDs9z9xBjMH7mHZijNFYMvhxM5U7VudqAKB9uV43u71e9cf2SJJGkmMyMoHjXO+NAQAAoiAYDQAAAAAAtAzfcSa1MdK+nuC+2ZVyp1+3h1yxfP9avj51AAAAAAAQxJb5aF4MPgcCAACg4xljXmGMSUfc5jWS3rSl+Z+stY9VrzIAAAAAqC1rrXJ+8JUgCUZrf57jdEdXqFIzcQcVHdj07+DQosXSnNZKKzWpC2i0qdzRwHZPMY0kx6u+njuA8LhsuS8uW0TJljSTzwT2jXRAMJokjTkC9abywY81AEB0rmCzdHJCxmyEoSW9lPYlhgPHud4bAwAAREEwGgAAAAAAaBm+46KPRtK+3uC+2dWaldM01gvl+9fyrX8gBwAAAACgdZX7VFoo8ZkVAADA4dWSHjHGvNsY8z3GGMc3IZIx5hpjzIck/a02vjY57YSk361xnQAAAABQVTm7Luv4zXKKYLS25xlHMJp1HDzYJNb9Nc0VTwb2jW4KKnIFNkmER6B9TeWPBbaPJMcUN4mqr+cKB1v317RYmqv6evV2qjCtkoKvqJyuQdBcMxpLBgejZXLBjzUAQHSu96ajW15nN4cAh9keAAAginijCwAAAAAAAAjLd5wr7Rlpb09w31wHXERxPfj4hiesVQhOAwAAAACglspdeL3Y3OcxAQAANFq3pJ94/I9vjDki6VFJC5JKkvZLulJSOmDbWUk3Wmsz9SkVAAAAAKoj5685+7oIRmt7nmKB7b6a+wuF6fyks29zGNpgfL+SJqW8zW0bl82f0NndF9akPqCRpnJHA9vHkodqsl65cLBs/oT2xPfVZN16KRc0Uy58sZ2MpoKD0RZKc1otLasn1lfnigCg/bheb7YGkI4mJ3T/yj2htwcAAIgi+BIKAAAAAAAATch1HrXnSft6g/tmV2tWTtPIVQg+IxgNAAAAANBI5YLRbn+4fnUAAAC0OE/SUyS9UNIPS3q5pO9WcCjapyVdaa29r37lAQAAAEB1rJcJRkt5XXWsBI3gmeDTHX1bqnMl0WTzxwPb4yahfYnhJ257xtOII7QpQ3gE2tRk/lhg+5gj3Gq3+mID6o31B/Zly4QYtgrX/mZffFhJL1XnahpjLOl+7Ezlgh9vAIDwCn5BpwrZwL7R5IEzbm8NSjuNYDQAAFANBKMBAAAAAICW4Tsu+ugZabDXBPbNrdSwoCaxXizfv5avTx0AAAAAAER1cll6eLpMchoAAEDnerukf5H0WMjxK5I+LOm7rLXfZa0NPkMSAAAAAJpcrkwwWpfXXcdK0AieiQW2l5o8GM0VajaSGN/2M6Ud4RHThEegDRX8gmYcYWTjqUM1W3draMtprlCxVuIKmnGFLrajwfh+dXk9gX1TjiA+AEB4JwsZ+Qo+eWfre9lRx3vb5dKilouLVa8NAAB0lnijCwAAAAAAAAjLd5wnbSQNOo55W1xr/5Or1wu76wcAAAAAoJYqfTL/wFes3nhTcOA5AABAp7LWflgbQWcyxgxKulTSQUlpST3auDDuvKQ5SQ9I+rq1TX6WOAAAAACEsFYmGC1FMFrbiyk4GM06ghmahStsaTS1PSjCFYzmCjsCWtl04YQzWGU0ebBm644kx/Xw2gPb2tvheZZ1BM259i3tyBijseRBPbL+4La+DMFoALBrrtdLT56GEqNntKUdYaSn5+mLD1S1NgAA0FkIRgMAAAAAAC3DFYzmedKA45i3Bfdxcm2jUOE0pzWC0QAAAAAADWQrJKP9zoet3nhTfWoBAABoRdbaeUm3NboOAAAAAKiHnCMYLWGSipng0Cy0D2O8wPZSk2eBu4OKtgdFuMKLpgtT8m1JHo9ztJGpXHBooKeYRpJjNVs3nWjfAMJpx8/QScFokjSaOhAYjDaZO9qAagCgvWQcob/7E2klvMQZbQOxQXV5PVr3V7eNzxZO6DxdXJMaAQBAZwj+TSEAAAAAAEATcp1I7RlpjyMYbXG9dvU0i1KFi2ESjAYAAAAAaKQKuWgAAAAAAAAAADxh3RGM1u311LkSNEJMwaFgvpo3GM23JU07gtFGA4KKRgPC0iSpaAuaLcxUtTag0abywSFV6eS44iYR2FcNrpCwU4UZFfzWPah2tbSsxdJ8YJ9r39KuxpOHAttdYT4AgPCihHAaYwLf80pSxhGQCgAAEBbBaAAAAAAAoGX4OwhGWwg+Tq6tVAxGy9enDgAAAAAAgriCzgEAAAAAAAAA2MoVjJbyHAeIoa14Jvh0R99WOEiugWYLJ1WwwQfppQOCikaS4865CPRBu5nKBQejjaUO1nTd0VRwSJiVr5nCVE3XrqWsI4RRKr9vaUejjsfQfPGU1korda4GANpLJkIwmiSNONqzjnkAAADCije6AAAAAAAAgLBcwWjGSHu6jaTtAwhGk9Za9+J2kqSFVav33Gn11aMb/9fXnCX91LOMUgnT6NIAAAAAACEQjAYAAAAAAAAACCvnCEbrIhitI3hyBKOpeYPRsmXCzIKCilJelwbj+zVfPBUw16Quq2p1QGNN5Y8Fto8lD9V03aFEWp5i8lXa1pfNH9d4qrbr14orYCZpUhqM769zNY01lnSH603lj+nc7ovqWA0AtA9rrfP1ZjQg9HejnWA0AABQGwSjAQAAAACAluEKRvOMNNAV3Le0Lvm+lee1b4hWpWC09cLGF1TGtN59MLNk9dw/9fXApgv0ves26d23W33+dZ6S8db7mQAAAACg05CLBgAAAAAAAAAIa90RjJYiGK0jeCYW2O7b7eFGzSLjCHzYGx9yBvqNJg84gtEIj0D7KPgFzeSnAvvGahxMFjNxDSXSmi5Mbutr5eeZq/aR5Lg8Exws2a72xoeUMl3K2fVtfVM5gtEAYKeWSgta81cC+9IBob8b7cGBaScLGRVtQXGTqFp9AACgs3TWJ10AAAAAANDSbJlgtD1ljntb2v6dd1txBcZttl6ofR218I7P2TNC0U770qPS336eU+sBAAAAoBW4Ps8DAAAAAAAAALBVzhGM5gqYQnuJuYLRVOHqoQ2UzR8PbE8nJ5zbuPpccwGtKJs/4XzujiUP1nx99/Nse1haq5h2BKOV29+0K2OMxlLBj6NM/lidqwGA9lEuQNQVgOZ6HfLlayafqUpdAACgMxGMBgAAAAAAWobvOJO6UjDaQvCxcm2jFOKYr7UWDUa75T732fP/fCdn1gMAAABAK+DTGwAAAAAAAAAgrHWC0TqacZzuWLKlOlcSXmYHQUXtGNgEbDWVPxrYHlNcI8mxmq/vfp65A1+anav2TgxGk6Sx5KHA9qkcwWgAsFOuoN4er099sYHAvuHEmPN9fCu/7gIAgMYjGA0AAAAAALQM33EmdccHozkC4zZbb8FgNGutDpc5zuvuR6WHpzm9HgAAAACaXYiPrQAAAAAAAAAASHIHo6W8rjpXgkaImVhgu9/EwWjTjrCH0eQB5zauEKPF0pzWSitVqQtoNFc4VTo5rpiJ13z9csFotgW/wPRtSdOFqcC+Tg1GG00dDGyfyhOMBgA7VS6E0xgT2JfwEhpKpCPNBwAAEAbBaAAAAACAUP7nQauX/HVJN7ytpDd+yNfyeut9IYzW5wpGM0Ya7HFvl1msTT3NouRXHrOWr30d1XZ0VlrOlR/z719hXwQAAAAAza4FzysAAAAAAAAAADRIzhGM1uWVuXIm2obnON3RV4iD5BpgtbSsxdJ8YF+5oKJyfYRHoF1M5Y8Gto+lDtVlfdfzbM1f0VJpoS41VNNsYUZFG3yV5E4NRhtzBFDOFU9qrbRa52oAoD1kygSjleMOJD2+65oAAEDnIhgNAAAAAFDR579l9cK3+/rI16TbHpbedovV9/2V35JXy0Jrcz3kPCMl40bpgeD+Y7Pt/VgNFYwWfCxEU3t4pvKYz3+rvf9vAQAAAKAdhPnkVijy+Q4AAAAAAAAAIK07gtFSBKN1BM/EAtt925zBaOVCzEYdgT2SNBjfr6RJRZ4TaCVTuWOB7WPJg3VZv90CCMvVPJIcr2MlzaNcyF6GIB4A2JFpx+tNufe2UrlgtMld1wQAADoXwWgAAAAAgIr+8tO+8sUz2/7nW9LN32hMPehcfplgNEk6uDe4/+hsbeppFmGC0XLFymOazWq+8pjDfE8GAAAAAE0vTLb+SojPgAAAAAAAAACA9pdzBKN1EYzWETzH6Y6+SnWuJBxX8E7KdGlPfJ9zO894ziCjTAsGNgFbFfy8ZgqZwL6xVH2C0fpiA+rx+gL72ikYbTC+v2NfI/fGh5QyXYF9mXxwMB8AwK3gF3SyMB3YVymE0xWclskflw1z4BAAAEAAgtEAAAAAABV91fG94K9/oDmvwIf25QxGe/w3HAcdxxEdm6tNPc3Cdb9s1orBaIUQx7Idm5MWVvmiDAAAAACaWZhPbSu5mpcBAAAAAAAAAGgBawSjdTTPxALbrax823zHrLqCitKpAzLGlN3WFR4x3YKBTcBW2fwJWQU/Z8eSh+pSgzFG6eREYF9rBqMFX0nY9TN2As94SqeC96VTOYLRACCqmcKU8/Xb9d71tLQjOG3NX9FyaWHXtQEAgM5EMBoAAAAAoKJHTga3Hwm+EAhQM77juKbThw8d3Bd8INHx2fYOziqFON4rV6h9HdVWKIX7f/tm8EUFAQAAAABNIsyFX1fyta8DAAAAAAAAAND8co5gtBTBaB3BK3O6oyukoZEy+eOB7aMhgopGHOERmRYMbAK2msofDWyPm7iGk2N1q6OdgtFc+5tODkaTpPHkwcB212MQAOCWdbzWePI0lEyX3TZdJjiN97cAAGCnCEYDAAAAAOxKMWRwEVANrkeb93geWnoguH8++Fi5thEmGC1fqn0d1VYIWfPR2drWAQAAAACovcU2/+wOAAAAAAAAAAhn3RGM1uX11LkSNELMxJx9Jdt8B8G5wpXKBUM8OSY4zGimMCW/CX9WIIrJ3LHA9pHERNnnebW1UzDatHN/09nBaKOuYDTHYxAA4OZ6fRxKjCpuEmW37YsNqNfrd8wbHLgGAABQCcFoAAAAAIBdyS42ugJ0Et+RjOY9/huOPY6Lgrb7ydVh8glzhdrXUW1hg9GOzRHQCAAAAADNzIb42Da/Wvs6AAAAAAAAAADNrWSLKtrgA526PMfBYWgrXpnAJF8hriBaRyVb1Ew+E9gXJqho1BGeVrQFzRZmdlUb0GhT+aOB7eOpQ3Wtw/VcPFXIOl9vmtFaaVULpbnAvk4PRhtLBQejzRZnnGGrAIBgmV2EcBpjNJIcD+xrxUBSAADQHAhGAwAAAACUVSiWP3P1ePB3rEBN+I7jmjyz8fdAV3D/4npt6mkWpRDHe+WKta+j2vIhaz46W9s6AAAAAAC7EybOeoFj0gEAAAAAAACg45ULMCEYrTN4ZU539G3IK23WyclCVr6CaxoNER7hCo6QpEz++I7rAprBVO5YYLsrxKpWXEEuvnxnsGEzmi5MOvvSZfYlnWAs6Q7by+TYlwJAFNO7CEaT3MG/rsA1AACASghGAwAAAACUtZov339ivj51AJLkO86kfjwXTf1dJrC/3YPRXPfLZrkKIYfNqBDyOLbjs633swEAAABAJ7EhPrbNr/HZDgAAAAAAAAA6XblgtBTBaB3BM+WC0UJcQbSOXIE7Rp6GE2MVt095XdobHwrsy+bdIUhAs8v7OZ0sBIeOlQuxqoWhxKgzcDHbQiEtrloTJqm98eE6V9Nc9iWGlTDJwL5MPjigDwCwnbXWGWAWNhjNNS5L6C8AANiheKMLAAAAAAA0t7VC+f7JeasnY6mA2nKdIu09fszCQFdw/0pOKvlWMa89H6ulEMd75Yu1r6PawgajHZurbR0AAAAAgN0JE3k2v1rzMgAAAAAAAAAATS5XJhiti2C0juAp5uw7nntEvcX+Hc07GN+v/vienZYlSVorrZ4R9nRk7XDguKHEiBJecEjPVunkhOaKJ7e1P7L+oI6tf3tnhUrq9nq0P5GWMe15zCQao2SLyuZPqGTLH9w5U8jIOr4hHEsdrEVpTgkvof2JtGYKU9v6Hlo7rP2JkbrWs1MPrz4Q2D6SHC8bKNkJPONpNHlAx3Lb95lH1g5rInX2jufujfVrX6I1g+fCPl8364n1tcxzAqiXki1poTirpJdSX2ygrmv7tqRsflJFW+GkrhDC7M8WS/Na94MP3hlNHgi1jisY7VRhRo+tP+QMK90pI0/p5IQSXqKq8wJAo3116Q5l8sc1mpxQOjmh4cRY6N8zAO2GYDQAAAAAQFmr+fL98+7jkICq8x0BYKfzzgbKHPu2tC4N9lS/pmYQJhgt187BaLO1rQMAAAAAsDs2RDLaAr9jAgAAAAAAAICOt04wWscrF/Dzl8fftKu5L+i+VK8e/y0NxAcjbZf3c3pf5h368tIXZFX5YL10yOCIjbET+ubq17a137N0m+5Zui1SnVvtjQ/pp8Z/U+d1X7SreQBrrT479zF99OT7lLe5Hc8TN3ENJUarWFk46eREYDDaZ+Y+ps/Mfazu9VRTOjne6BKawljqUGAw2h0Ln9YdC5/e1dzp5AG9Zvx1Gk8d2tU89WKt1a2zH9bHT31AObseefuRxLh+evx1OtB1dvWLA1pA0Rb02PrDOrJ6nx5au1/fXntA6/6aPHl6+sBz9WOjr1XM1D6e446FT+s/pt+lVX+5anOOJg/oNeOvd4aUZvPHndu6As+2rZEKfh9s5ettj/1mqDmiSpikru6/Xt839KOEOwJoG19Z+oLuWbr9idtGnvYnhnX9nhfoxv0/2MDKgPrr7ChwAAAAAEBFFYPRgi8IAtSE7ziR+olgtC73tottfIJ1pwejZZekfDHEWfYAAAAAgIYIE4xG+D4AAAAAAAAAwBWMZuQpYZJ1rgaNEFOsZnMfWTusd039eeTtPnryvbp76X9ChaJJ4YMjoo6Naq54Un917M1aK3GgL3bnvpWv6IMz/7irUDRpI2AqZmr3HHev277hYbXch7SSsWRwyE81ZPPH9VfH36KSDXlQc4N9dfl2/efJ9+woFE2SpguTevvx31PBL1S5MqA5Ffy8vrV6n24++W96+7H/T79x5Mf0Z0ffoI+efK/uX7nnic8nvnzdufgZfSD79zWv6aHVw/rnzP9f1VA0ScpU2J9l85OB7b2xfvXFB0KtMZRIy6vh+/kgBZvXlxY/p7c88gv6z5n3aK20Utf1AaAWMrkTZ9y28nWykFXBVjjRF2hDtY+kBQAAAAC0tErBaAuctIo6cgWjmdPBaGUuCnrvMenQ/urX1AzaNRgtH7Jma6UT89I5Q7WtBwAAAACwM2GirBc4JwcAAAAAAAAAOl7OEYzW5XXJnD5IDG3Nq3Fo0oOrX9dsYUb7EsOhxvvW1x0Ln4m0xmjyQOixtQ41ytl1fXX5dl2/57tqug7a250RnwMutQyvKqedw8NGEu37s0UxlqrtY2u+eErfXP2aLu19ak3XqYa7F7+w6zlWSkv65urXdHnfNVWoCGguOX9dj6w9qCNrh3Vk9bAeXf+WijZ8EOAXFm7RtQPP0fk9l9SsxnuX76rZ3HPFk3pw9eu6pPfqbX3Z/PHAbaK8t42ZuIaTo8rmT1QeXGVFW9AnZz+k2xc+pZv2/7CeM3ijYoYoFQCtx7e+ZgpTgX3t/NkGcOHVHAAAAABQ1lqlYLTVMKe2AtVhHQ8373QwWpd72z+6xdf3X1X/K83VQynE07AVg9EKES6udvQUwWgAAAAA0Kxcn+c3W1jjd0wAAAAAAAAA0OnWHcFoKa/MFTPRVgbig+ryup2PhWo4kXssdDDaXPGk1vyVSPMf7Do39NgDqbPlyZOvEFdH3aETuUdrNjc6Q7UeQ2d1XVCVeaI61HVeQ9ath3b+2aI4mDpXRkY21CW7dubE+qMtEYw2kw8O0Yg8jyOMA2g16/6aHl57QEdWD+vI6n16bP0h+YpwkkKA92f/Rm88+88VN4kqVXmm2cJ0TeY97UTuscBgtKncscDxI8nxSPMfSp3XkGC005ZLi/r36b/X/8zdrBcP/4Su7LuOkG0ALWWuOKOCDT6hl2A0dCKC0QAAAAAAZa1WCkar3bEnwDZ+hWC0rjLfLbXzY9UPcUxUvs2D0U7MW0l8YQUAAAAAzSjM4efzqzUvAwAAAAAAAADQ5FxhWF0Eo3WMuEnoaf3P1m0Lt9ZsjWz+uC7XNaHGZvLHI819dtcFOpgKH4zWHx/UVf3P1D1Lt0VaJ4psrnHBFGh9JVvUyUJ21/OkTJeuG3ju7gvagYOp83RW1wV6bP1IQ9avlfO7L9VY6mCjy2gKexNDurzvWn19+Us1W6ORIT9RrPhL1ZmnVJ15gHpbLS3robX7N4LQ1g7r2Pq3ZascQDuVP6ZbZ/9TN+3/oarOe1otA3OljffCQabywcFo48lDkeZ/9uALdffS5yPXVW3ThUn97eQf6bzui/XS4VfpnO4LG10SAISSKfO+k2A0dCKC0QAAAAAAZVUKRptv47ApNJ9KwWjlruRS6bHcykohzjDPtXkw2sxy7eoAAAAAAOyODfG5tZ0DzQEAAAAAAAAA4RCMBkl6Wfpn5ZmY7lm6rSbBLFHCbbK5cMFoCZPUxb1X6cfTv1j2OMYgPzH6y0qalO5dvlPrfvWvJJMttEaYD5rTTD4jXxEO5tzCyNPBrnP1o+mfV198oIqVRajBGL124nf1vuxf64GVe1WwrX1AcdKkdGnvU/Vjo7/Q6FKayivHfk3/mv2/+vryXc73E7sRNSizEay1WiktVmWu5SrNA9TacnFRR9YO68jqYT20dp9O5B6TDXX5vt35+KkP6Gn9z9JIcrzqc/u21sFo298brpVWNF88FTh+NGII5wU9l+qnx1+nj868V9OFyR3VWE0Prz2gPzn6Oj2t/9l60dArNJRMN7okACjL9TuLPfF9/H4MHYlgNAAAAABAWWuF8l8KcNIq6skVjLb5OKI3f7/Rmz+6feDsSo2KagKlEN99tX0wGhcmAwAAAICmFSYYjfB9AAAAAAAAAEDOGYzWU+dK0EgxE9fL0z+nHxn5mV0FhX1k5r36wsIt29qjhNtkHCckX9B9qX524o1P3E55XYqZnZ2qmfRS+omxX9aP21/YVZjPAyv36h+m/nRb+2xhRnk/p6SX2vHc6Fyuk/KNjP7wvHcpXuFxHzeJpnjs9cf36OcmflslW1TOX290Obuym/1NO+vyuvXKsV9VyZac7yfCuHPxs/rg9D9sa8/mT8haGzn8sp5ydl1FG3zA+C8deLPO6jp/W/u/T/+D7lr87Lb2agWsAdW2UJx7PARtIwxtKn+0JuukTJfO675YObuuh9ce2NZftAW9P/s3+uUDb636fsG3wSdRPHfwe/W9Qy8LPc8dC5/Rf8z847b2oNf2cu+Px5LRgtEk6an91+up/ddr3V9z/jzVcM/Sbfqvk+/XYmm+4tivLH1RX1u+U98x+D26af8PqSfWV7O6AGA3srngz2CjyYk6VwI0Bz79AgAAAADKWq1wUaz56l+cDnBynUjtbfou6YbzjRRwlZ+ldalQtErEm/cL6Z0KFYxWqH0d1ZaP8B3YNMFoAAAAANC0wlyLl98xAQAAAAAAAABcoVApr7vOlaAZeMbbVWDBROqswHZX0FMQV0jEeOqsqocpeCa2qzkPdp0b2G5lNZ2f1IGuc3Y8NzqX6/myLzGigfhgnavZvZiJE4TS5mK73JceSAXvK1f9ZS2XFtUf37PjuWutXJjZ/kQ68H7ZE98XOH65xIHZaA6zhRk9tHa/jqzepyOrhzVdmKzJOt1ej87rvkQX9FyqC7ov1cGu8xQzMS0V5/WWR35Rq/7ytm0eXP2GvrT4OV2353lVrcVX8MkhKS8Vaf/meu+3XFrUcmlRfbGBJ9qm8seC1zRd2hsfCr3mVl01/hz37MEX6pqB5+jW2Q/rU7P/qYItfwJc0Rb16bmP6I6FT+um/T+s5wzepISXqGmNABBVthD8GWyEYDR0KILRAAAAAABlVQpcWtj5BZWAyPwQwWj7et3bz69Jw/3VrakZhAlGK9TuQjs1U4xQ88ximNPsAQAAAACN8P/Yu/M4R+oC///vqtzp+0y6p+eCaY7pAeELKKCCoCwKioAiC4uI51fddVdd15/ren69VndlxQtW3eVQEUFALkGRGx0YUI6ZnhnoYRimj+mk73Tuoz6/P4aZ6Zl8PpVKd5KuJO/n4+HjIakcn0lXKpWkPq9Shc4XiiQBwxDQ9doLmhMRERERERERERGRNaowWrkn1FNtCnj6pJdHcxFEsxE0OpulyxcKKcJoQbf8vpdThysAB5zIIZu3bDw9yjAaLYpqUn6Ak/KpRplt30PpEVuH0cxiZo0O+QH0DYrLYwyj0TIQQmAqE8ZQYm8EbSgxiKlMqCyP1aA3YZ1/Pfp9A+j3b8AKz2romiPvek3OVlzQ9T78MvQj6f3cOnEtBhpOsLRfaVVOyCdRyMZnJmjyXh1Kj6HRtyCMltotvV6PZyU0zd7H8Xh1H97ReSne2HI27pq6EU/MPQhR4BSOcSOKWyf+F4/M3oPzuy7H8Y2n2v7fSUT1I5SSfw/Bz2BUrxhGIyIiIiIiIlOqENU+qSyQzAh4XfwSmMpvqWG06Vj9htFS+cc62V4xMbcwf38nIiIiIiKyLStxy7uEAAAgAElEQVQpayGA+STQ4i/7cIiIiIiIiIiIiIjIplIMo1EJmccgRgsGLGK5eczn5qTL7Dgh2aE50O3uwZ70cN6ycFoetyIqJJwek14ecPdWeCREldHkaIFPb0DCiOUtC6XHsM4/sAyjsiaai0gv16HDq8t/iFcF01T3RVRKQgiEM2N7I2jxQQwltmA2O1WWx2pytKDfP4B+3wb0+wcQdK+ErumWbntqy1vwZORh7EgM5i2L5iK4beI6XN7zjyUbq4B8cogDxYXRmh1t8Op+JI143rJQegSH+47a/997lDHglUU95nJqdXXgvcFP4IzWd+D2ieuwLf5swdtMZkL42dh/YK33SFzYdQUO9x9dgZESEaklcnHM5Waky+wYaCeqBIbRiIiIiIiIyJSV4NJcAvC6yj+WepBI750q7HMzNCejCqNpRYTRalGhgCEApDJWpqHbC8NoRERERERE9WU2wTAaERERERERERERUT1LKsJoHobRaBHMYhDj6ZGC4YNxk5hY0GPPSETAvUIaRhtXxC6ICgkpXgcBl/3igESloGkagu4+vJx8IW+Z3bel0aw8ZtbgaFIGoBod8khoLBeBEAKaxjkNVDpCCOxJD2MovgVDiUHsiG9FRBF/WapWZwf6fQN7Y2j+Deh29S56fdY0DZcEPopv7voUcsg/W/0TkQdxcssZOMJ/zFKHDQDICfkkCs1iyO3A9TUE3CvwSnIob9l4auSQ/87ffwSAHs+qoh7TDvq8a/CJlV/B1tgzuC18HcbSrxS8zcvJF/Dd4X/F8Y2n4J1dl6Pb3VOBkRIR5Qtn5GFqgHFqql8MoxEREREREZEpK8Gl2TgQMD9xHhUQSQh88HoDdz63N/J1/nEafnq5hiYvf0xcSCjWR33B0+R3Ay6HPKo1k398U02wEjBM5f8GZ3vprPWYG8NoRERERERE9qX6PH+oOfl8NyIiIiIiIiIiIiKqEylFGM2reys8EqoF++I2u5Iv5i1TxZ4Ovo48gOPVfWhxtC15fOUQcMtjVVb+vUSHiuXmEc3JQ0uqdY2oFgTcvdIwmt23pTFDfjC1Kn5mtiwrskiJJLwa47S0eIYwMJrahaHEIIbig3gpsVX5vrJUHa7uV0NoG7DOtx6drmBJw349npU4u+Nd+N3Ur6XLbxy/Gv+25ntw6e4lP5YB+eQQBxxF35cqjLYwvJM0EpjOTkhv3+PuK/ox7WJ9w/E4as2xeCLyEO6a+CXmLET4noluxHPRTTit9W04p+M9aHRyohwRVdah4cp9XJobbc6uCo+GyB4YRiMiIiIiIiJTVsNotDQfut7ArX898N83Py3g0IFffohhtIVU6+PCMJqmaehoAMYlv5m9MiUA1N5zmrPwOo2nyz+OUpPF7VTmk0AyI+B11d7fl4iIiIiIqNpZDaPxOyYiIiIiIiIiIiKi+pZUhNE8OqMctDhB9wppGG1cET076DqKCckBd19JQxulFFDEK0LpURjCgK7pFR4RVTOzCBTDaFTL1NvSwu8dyymmCE41OJqUtzFbFstF4OU+GBUhJ3IYTu7EUGIQO+KD2JHYioQRK8tjdbt60e8fwDrfevT7N6DdVf5YzNnt78LTkccOiortE86M4ffTt+LtnZcs+XEMIZ9EsZj9uKDi/Xrhfu54alh5+x7PyqIf0050zYFTW96CE5regAem78D907cjJZKmtzGQw8Ozd+PJyIN4a8dFeFPruSUJ3hERWRHOyD+Ddbt7+Xme6hbDaERERERERGQqJz/ZyEHm5McikUXhiMBtz+RffsvTAj+4RKC9wZ4H0CwHZRjtkO/21nXLw2hb8n+DqglWXqczVTi5vJgwGgBMzAMr28szFiIiIiIiIlo8i100fsdEREREREREREREVOdUYTRGOWixlhK3UcXTgor7tANV/CItUpjNTlUkGkK1QxVG82hetDh5sCbVLlX4bzITRsbIwKW7Kjwia6LZeenlDY5m5W0aTZZFc/PocAWWPC6qXVmRwSvJl7AjPoihxCB2JrYp9+eXqse9Eut8A3tjaP4BtC7D+5BLd+OS4Mdw1fAXpcv/MH0rTmx6I4Kepe0rGpBPDtFRfBBHvT0bR1Zk4NRc2JOWh9E8mhdtztrYd/ToXpzTeTFe3/o3uGfyV/jT3B8hFM/zPgkjjtsnrscjM7/DO7suwwlNb2SUiIjKbjwl/wwWcPdWeCRE9sEwGhEREREREZlShagWmk0IAIx3LdamXfLnOWsAz+wG3nx0xYdkW4bit4dD176BFRoe35H/pA6OWp2KXV0YRtsrzDBa3Xlou8DX7zEwMQ8cv0rDdy/S0NnE9yMiIiIiIrsRFj+Oz8b5HRMRERERERERERFRPUsxjEYlZh63ScOlu5W3VUWhVPdpB2ZjC6VHGUajooTS8rMRd7t7oWn8TY9qlyqAKWBgIrMHvZ5VFR6RNTFDclZxAI2OJuVtvLofOnRpiCmak98f1a+Mkcau5BCG4lswlBjEy4kXkBapkj+OBg29ntXo3xdC861Hk7O15I+zGEf6j8HJzWfiiciDecuyIosbQ1fjkyu/tqSAliEUYTTNUfR9qSLBBgxMpkMIevqwJyUPowU8fTUXAmtxtuHS4Mfxpra347cTN2BL7OmCt5nOTuDaPf+FB2buwoVdV+AI/4YKjJSI6pX6ewj7BtqJyo1hNCIiIiIiIjJlJYw2V56TutSNF0PqJ3n7uMCbj+bBA/uonin9kKfoGMWxPdvHSzoc21AF4xaajpV/HKVWdBiNv7/XlWeHBc7+noHsq+v/ljGB258RmP6eDqeD200iIiIiIjuxmimf5XdMRERERERERERERHVLCIGkkZQu8zCMRotUOG6zWro8Y6QxmQkVdZ924HM0oNnRhkhuJm9ZKD2KoxuOW4ZRUbWqxjggUSl0ugPKWFgoPWLbMFo0Ny+9vMHRrLyNrulocDRhPjeXf39ZHphd79JGCjsT2zGUGMRQfBC7ki8iKzIlfxwNOlZ61qLfP4B+/wYc7jsaDSZBv+V2YdcV2Bx7CjHJa25HYhBPRB7EqS1vWfT9G5BPotBRfKSsy9UDDTqEZHs2nh7ZG0ZLy8NoPe6VRT9etej1rMLH+76A7bHncNvEdRhJvVzwNruTO/C94S/g2MbX4vzOyxH02PczARFVJ0PkMJHZI13Gz2BUzxhGIyIiIiIiIlNWgkuz8fKPo5ZtlX9nBQDYIj/ZWt1Shfr0Q37j6e/WIJt2HZ4HUhkBj6u2oklWAobzSSCTFXA5q+ffns4Wd/3QvABQPf8+Wpp/ve1AFG2faAo49/sGfv+p4s+IRURERERE5SMsltEY3yciIiIiIiIiIiKqXxmRlk7YBwAvw2i0SF3uIHQ4pIGJ8fSoMow2kdmjXB/tHEYD9k6YjiTkYTSiYoQZRqM65dRc6HQFEc7kH8g/buNtqSpk1lggMKUKo8UMeWiNalfSSOClxDYMxQcxFN+C3cmXkEORB/RboMOB1d51e0NovgEc5jsKPkdDyR+nXBqdzXhX1wdww/hV0uW3ha/DMQ0nosnZuqj7N4R8H1TXij8+3qW70OnqxkRmPG/Zvn3D8ToMo+1zVMNr8Dn/d/FU5BHcMfkLzGanCt7m+egmbIk+jTe0no1zOy5e9N+ZiOhQ05lJZERauizIz2BUxxhGIyIiIiIiIlM5CxNXI/KTNJJFk/PqJ3lw1OLM4TqhCvXph7SwVrap72NkBji8u3RjsoOchYAhAMwmgC77njwpT0Z+siOlqWh5xkH2Mx0T+P2gfNn924ChkEB/gJE8IiIiIiK7sBpGY3yfiIiIiIiIiIiIqH4lDPWXxAyj0WI5NCe63EFpFCyUHlHeblyxTIcDXe5gycZXDgH3CgwltuRdrvo3EckYIoeJjPzMzwGbxwGJSiHo6ZOG0ewcmYzlVGG0ZtPbqZar7o9qRzwXxY7EVgzFB7EjsRXDyZdgKMKwS+HUnFjjPQL9/gGsezWE5tG9JX+cSnpd85vwZORBvBDfnLcsbkRx68S1uKLnU4u6b1nQFwAciwijAXvft+VhtBEkjQSmMmHp7Xo8tR9GAwBd0/G6ljNwfNOpeHDmLvxh+lYkDfMzOxow8OjsvdgUeRh/034hzmw7D27dU6ERE1GtCmXU+5ndDKNRHWMYjYiIiIiIiEypQlQLRRlGWxKz+NOWMUAIAU1j4AcADMVE6kOfnZXt6vvYPV2/YbSZeG2H0aZj5RkH2c9fXzFffuMmgS+/g9tNIiIiIiK7sJp9nzU/rpCIiIiIiIiIiIiIaljKZPK5V/dXcCRUawLuFdKQzXhKPel4PCWPiHW5e+DQ7D0lM6iYMG3nmA/Zz1QmjKzISpcF3L0VHg1R5XW75Ou5XbelQgjEjHnpsoYCYTTV8mhWfn9UvaLZCIYSg6+G0AYxmtoFYfmIDutcmhuH+Y7EOt8A+v0DWOM9ouaiUZqm4ZLAx/D1Xf+ErMjkLd8UeQSvaz4DRzccV/R954R8EoUGvej7Ava+b2+RzLMIpcdMt2k97voIo+3j1j14a8e78fqWt+B3Uzfjsdn7CoYCk0YCd07+Eo/O3ofzOi/Da5tPh64t7u9ERBRSfA/R4mznCQOortn7WzgiIiIiIiJadqoQ1ULzqfKPo5aZxZ9m48DYLLCirXLjsTPV+qgf8ttBg0dDe4M8lLV7WiA/pVbdclZeqKi+cFixYbSpKvv30eIViiU8vav0P9ITEREREdHiCYu76JE49+WJiIiIiIiIiIiI6lXSNIzGCaC0eEF3H57HprzLQ2n5pOO9y+SRCFV0zE4Cnj7p5bPZKSSNBF9PZIlZKKWbYTSqA0HFtjSUHrHlSc9TIqmMGTY6zM+qrVoezUWWPC5aXnPZGeyID+6Poe1J7y7L43g0Lw7zHYV+/wD6fRuw2rcOTs1Vlseyk253L97WcRHumrxRuvym0DX4tzVXFR2FE0Ie43IsMrgVcMu3Z+PpEexJydcJl+ZGu6t7UY9X7Zqcrbg48BG8qe1c3D5xPZ6P5n+OONRsdgo3jF+FB2fuxIVdV+CohtdUYKREVGtC6THp5dXwPQRROTGMRkRERERERKZy5ie4AABEk+UfRy0rFH96aYJhtH1UE6l1yW/Lq9rlIbAXQ6Udkx3kLM4bnysQk7Ib1WtD0+TrwgzDaHUjlTVf6QflvwcQEREREdEysZo7KxRBJiIiIiIiIiIiIqLaZRZG8zDkREsQVMQgQulRZdxmXBFNU4Ul7CTgUk+aDqdHscq7roKjoWqlCqO1OTvh0b0VHg1R5am290kjgUhuBi3O9gqPyFw0q46YNTiaTW+rWh4z5pc0Jqq8mczkqxG0LRiKDyKcKc8B1V7dj3W+9a+G0Aaw0nsYHFp9JivOar8AT0Uele47TmTGce/ULXhn12VF3WcO8klcGhyLGqMqqJMwYngxvkVxmz7oiwyx1YqAewU+uuLzGIoP4raJ6/BKcqjgbUZSL+P7I1/GQMMJuKDrfej1rKrASImoVoQy8s9g3QyjUZ2rz71MIiIiIiIissywMHM1mrQ6vZVkCoXRdk8LAPY6q9RyUa2PsjDakQENzw7n32DLaO2tr1YChgCQzJR3HKWWVrw2gs3Anrn8y6ditfe3JblUgXVZtk0gIiIiIqLlowqdH2omXt5xEBEREREREREREZF9pRRhNJfmhkNbXASACFDHbVIiiZnsJNpdXQddbghDGYVSRdbspN3VCZfmRkak85aNM4xGFqleAwFOyqc6EXD3KpeNp0dtF0Yzi5g1OppMb6tabhZbo+UnhMBUJoyhxN4I2lBiEFOZ8pxBvkFvwjr/evT7BtDv34AVntXQuX8OAHBqLlwa+DiuHP68dPn907fjpOY3otez2vJ9CiGfHOJYZKjM7L17c/Qp6eU9npWLeqxa1O8fwL+s+jb+Mv847pj4OaazEwVvMxj7C7bGnsGpLW/G2zsvsd17BhHZUyglD7RXw/cQROXEMBoRERERERGZshJGm0+Vfxy1rFAYbXimMuOoBqr1UXLCRmxYAfz66fzLN8uP1ahqVl6nAJDMVFdkT/XaUIXRpmPlHQ/ZRyprvnxkFjAMAZ2FNCIiIiqBTFbg334rcMezAi4HcPkpGv7lbE165ngikrMaRhuXfNYjIiIiIiIiIiIiovqQVITRPLqvwiOhWmMWtwmlR/PCaLPZKaSF/MDYYBVEoXTNgW53L0ZTu/KWqWJXRIdiGI3qXaOjGY2OZkRz+XGwUGoER/qPWYZRqcnGCQA6dPj0BtPbNjqapZfHFPdJy0MIgXBmbG8ELT6IHYlBzGQny/JYTY4W9PsH0O/bgHX+9ehxr4K+yChXPVjnX4/Xt5yFP83dn7fMQA43jl+NT6/6puXnMAf5JAodi4vRNTpa4NcbETeiectUUcWgm2G0hXRNx0nNp+G4xpPx8OzvcN/UzUgY5md/FDDwp7n78XTkMZzVfgHe3P5OeHRvhUZMRNUmkYtjLiefQMrPYFTvGEYjIiIiIiIiUzn5yUYOEk2Wfxy1LFsgjLZ7ujLjqAaqAJisfXTMCg1A/g12TQHzSYEmb+1EDKy8TgEgmSnvOEpNGUZrATCcf/lU/m91VKMKhdHSWWBkBljVUZnxUOkJIfD4jr0BjWP7gFZ/7WyziYio+nzk5wLXbzzw2eJztwnMJYBvXMD3JyKrLHbRsGcOyOYEnA6+voiIiIiIiIiIiIjqTUoRRvNy8jgtkd/RiGZHGyKSScbj6REc3XBc3mUqAXdfycdXDgH3CkUYTf1vI1oolB6TXt5tEhokqjUB9wpEE/lxsHEbRiajWXnErMHRVPDEfw2KMFo0Nw8hBE8cuEyEENiTHsZQfAuGEoPYEd8q3ZcphVZnB/p9A1jnH0C/bwAB9wr+3Yt0Qdf78Hx0E+Zz+WcE3Jncjj/N3Y83tp5t6b4MoQijLTJOp2kaAu4VeDn5guXb9HpWLeqxap1Ld+Os9vNxSsuZuHfqZjw6cx9yMJ/YkBJJ3D31Kzw2ex/e3nkpTmk5E7q2uMgdEdUus4g5w2hU7xhGIyIiIiIiIlOqENVC8/IT45FFqvjTPsNTVqcP1z6hDKPl//B2rMnxR1tGgVMOL9GgbKDewmiBZnn0btr8pDtUQwqF0QBgcIxhtGo1MS/w1u8ZeObVAGJvK3Djh3ScdgQPsiAiosqbigrcuCl/3/Nb9wq892SBo3r4/kRkherz/KEMsTeOtrK9vOMhIiIiIiIiIiIiIvtJKsNovgqPhGpRwL0CkUR+TEQ2+VgVRmtxtsPn8Jd8bOWgmjg9nrJfzIfsJ5GLK+M7nJRP9STo7sNLiW15l4dtGEaL5eRhtEZF9Ozg6zRJL88hi5RIwqtxX6wSDGFgNLULOxJbMRTfgh2JrYgq/q5L1e7sQr9/A/pfDaF1uoIMoS2R39GId3d/ENfuuVK6/LcT1+PYxpPQ4ix8QIwB+eSQpcS0ig2jBd0rF/1Y9aDR0YyLuj+E01vPxR0TP8cz0T8XvM1cbga/DP0ID83chQu734/1DcdXYKREVC1UYTSX5kabs7PCoyGyF4bRiIiIiIiIyJSVMFo0Wf5x1LJCYbTx8vyeVZVU66Mu+R1udQfQ5AXmJevn5lGBUw6vnR/vLIfRLMSk7EQdRpNfHksBqYyAx1U7f1uSsxRG2yPwtmO4LlSjT/xK7I+iAcDYLPDB6w1s/5oOh2yDT0REVEa/HxTK/dJzvm9g57d49kaiUhueYRiNiIiIiIiIiIiIqB6pwmgehtGoBILuPgwltuRdHpJE0MZT8jBasIqCUKqxTmT2wBC5JYU1qPapJuUDDKNRfVFGJhUBzeUUM+allzdYCKOZXSeajcDr5r5YOeREDsPJndiRGMRQfBA7EluRMGJleawuV8/+CNo6/wA6XN1leZx6d2LTG/HE3IPYFn82b1nCiOM34f/FB3s/U/B+DCE/WM2Bxe+/Bd19lq/r0tzo5DpiSbe7Bx9e8Vm8lNiO28LXWorPjaV344cjX8VR/tfgwq4r0OddW4GREpHdhTPyz2Dd7l7oml7h0RDZC8NoREREREREZMpKcGk+Vf5x1LJCYbSw/HfKuqQKo8lOUKRpGjb0Aht35i/bPl7acS03y2G0THnHUWppRfwq2KK+zXQM6Gktz3jIPlIW1uUXQ+UfB5Xe2KzALX/J39i/NAE8PgScfuQyDIqIiOra7mn1sl1TQDgi0N3McCdRIRa6+/uNzAgAfF0BwExs7zPX1sDng4iIiIiIiIiIiGpfShFG8zKMRiUQ8KjiNvmTj2WxNAAIuleWdEzlFFDELzIijenMJDrdgQqPiKqJKozm0txoc3ZWeDREy0cVRpvOTiBtpODWPRUekVo0qwqjNRW8baPJdaK5CDrB94xSyIoMdidfwlB8EEOJQexMbFOGgZcq6O5Dv28D+v17Q2itTp6drhI0TcMlgY/ia7v+ERmRzlv+l/nHcXL0DAw0nqC8DyEEDMgnh2hLCOMUEzYNuFcwolukw31H4TOr/h3PRDfitxPXYzJTeCLD9vhz+NYrn8bJzWfiHZ2XotXVUYGREpFdjafkn8EYpiZiGI2IiIiIiIgKUIWoFoqlAMMQ0HVO0lwMK2E0IQQ0Wf2rzqjWR9Wqt65bw8ad+TeaqLHYXM7iDPNqCqMZhlD+vYMmJy+bYhitLqQU0byFZmPFpBfILm75i4BQ/OmeHRE4/Ui+FxIRUWXF8o9RO8jzI8Bb1ldmLETVTLWPJzMyU75xVItURuAD1wvc8rRA1gBOOQy46SM6VrZzf5iIiIiIiIiIiIhqlyoM4WEYjUogqAiFzWWnkcjF4XP491+mikJV04TkbnevclkoPcIwGpkKZ+SvgW53L/QlRFmIqo0qMgkA4fQY+rxrKzgac9FcRHq5WfRsH5/eAB26NMYUU9wvFZYx0tiVHMJQfAuGEoN4OfEC0iJVlsda4VmDft/eCFq/bz2anDyYfrl0uoM4t+Nv8dvJG6TLfxW6Bl/0/wAe3StdLhRRNABwoDJhtJ4qigHbiaZp+D9Np+LYxpPw6My9uHfqFsQM84lLAgIbIw/g6fnH8Jb2d+Ks9gsZBieqU7XwPQRRuTCMRkRERERERKashNGAvZPFm+TfzVMBWfVvFwCAdBaY2z2Klqd+CxGZgXbK26AdfWJlBmczqonUqjBap+K33In52gomGQXWoX2qKYxmFgwMNGsA5H/D6Vh5xkP2YiWMNleek6hRmd38lHr7vH28ggMhIiJ61WTUfHmh0DUR7VVMGG14unzjqBafvkXgV5sOPGkbdwIXXWPgic/zjLxERERERERERERUu1JGUno5J4ZTKZhNJg6lR7HG1w8AiOeiiORmpddTxdXsyKv70OrswGx2Km9ZKD2KAZywDKOiaqGelK8O7hHVog5XN5yaE1mRf9DqeHrUVmE0VXyn0WFyNupXaZqGBkcT5nNzecuiuRo7G3kZpY0Udia2YygxiKH4IHYlX0RWlP7gfQ06VnrWot8/gHW+Aazzr0eDhQAeVc6b28/DpsgjGEu/krdsOjuBeyZvwoXdV0hvKwsU7qNpiz9mpMsdhA4HDBQ+2C3oYRhtKZyaC2e2n4eTW87EfVO/wcOzd0vfRxbKiDTunboFj8/+Aed2XoLXt5wFxxL+3kRUXQyRQzgzJl0WZBiNiGE0IiIiIiIiMpezGFyaTzKMtlhWJtKH/vE9aJ7+CwBAXPt14DM/hPbOD5d5ZPajDKMpTn7T1Si/fKLGfqPNWZxgXithtAbP3v/FJCfNYhitPqQthNEi8mNlycaiSYEnXlYv//OO2opaEhFRdRidMX//mYoJAIpSMxHtV8yeXKHXXa0TQuC2v+Y/B5t2Ac8NC7xmJbc5REREREREREREVJsSRlx6OcNoVAptzk64NQ/SIv+gs1B6ZH8YbTw9oryPagqjAXvHKwujjSuiV0T7hNLySflmgUGiWuTQHOhy9WBPejhvWcjk/WI5RLMR6eVWg1mNjmZpGC2Wk98vAUkjgZcS2zAUH8SO+CBeSe5ADhYOcC6SDgdWe9dhnX89+n0DONx3NHyOhpI/DpWOQ3Pi0uDH8N3d/wohOWLmwZk7cVLzaVjpPSxvmSHUE7gcUEyasTimTldAGd5ZqMfNMFop+B2NuLD7CpzW+jbcOfkLPD3/WMHbzOfmcFPoGjw8czcu6HofNjScCE3jcUJEtW46M6mMqfIzGBHDaERERERERFSAYXEualQSKCJrrITRwgkX+hf8t/jR/wec/XfQvP6yjcuOVOujrviuv0vxW+4z+b9PVzWrAcNk6X9rLZu0yevC5QA6GuRhNIYp6oOVMNpcovzjoNJ6ZVodwASAzaPAoy8KnHbE8r/G//sRA1c/IhCOAGcPaLjqbzU0+5Z/XEREVHrzBWKrtRZdJioXs/28Qw3PlG8c1SCTA0KKY8uvfkTgmsu430lERERERERERES1KWXID/bw6vV1jByVh67pCLhXYDi1M2/ZwhiaKozm1X1ocbaXbXzlEHCvwPb4c3mX2y3mQ/ZiCANhRRit28VJ+VR/Au4VijCavSKTqoBZo6PZ0u0bFNeL5nhgzD7xXBQ7EluxI74VQ4lBDCdfggGLB/EXwak5sdrbj37fBvT7B7DWdyRDwVXoMN9ReEPr2Xhs9r68ZQYM/Cp0NT6z6t+ha46DluWEehLFodctVtDTZy2M5mEYrZQ63QF8oPefcWbiHbht4jrsSGwteJvx9AiuHv0GjvAfgwu7rsAq7+EVGCkRLZdQRr1f2c0wGhHDaERERERERGTOsPhbTaHJ4qRmJYwWcgYOviARA7Y8AZx4ZnkGZVNW18d9uho1QHKWHQB4KSxweHdtTCa2GkZLyU8gYUtmrwu3A2hvAHZP5y+bipZvTGQfKQthtAjfl6rO7vwT1OZ5038ayFyjw6EqYlbA/z5u4GO/PPDecv1GgZcmBB797NIOOCAiInsqFGSd4P4nkSVFdHAyMRcAACAASURBVNHw0kTZhlEVzCJyL4wX80wSERERERERERERVZekIozmYQiCSkQdRjswCXk8JY+GBdx90LTqOt4woJhAbbeYD9nLTHYSGZGWLlOtU0S1LODuk15up22pEEIZMFMFzw7V6JCfjTyqCK7Vg2g2gh2JrRhKbMFQfBCjqV0QRR39YI1Lc2Ot70j0+wbQ7x/AGu8RcOuekj8OVd75ne/F8/NPYi6Xf4bAXckhPDp7H97Udu5BlwuT2J4OfUnjsfI+7tSc6HQFl/Q4JLfGdwQ+tfIbeC76JH47cYOlSN2L8c3491f+Ga9tPh3ndV6GdldXBUZKRJUWUnwP0ersYByVCAyjERERERERUQGGxd9uogzQLFrWQtRq2Cn5UXXrpvoLoynWR13xG0+X/DdaAMBX7xK44YPVdaCSitXXabJGwmguB9DZKF/GMEV9SGULr/Rz8mNlycaGZ6xtzP64DTh7oMyDMfE/j+eP8/EdwNYxgfW9tfG+QkREB6QLhKwneGJcIkvMYl+HmowC4YhAd3N97luZfcZ/Ybxy4yAiIiIiIiIiIiKqtJQijMZJoFQqQWXcZmTB/5eHbqoxCKX690Zys4jnovA7FAfhUV0ziz1V4+uAaKmCJpFJQxjQtaWFikohJZLIQX7mv0aLYbQGRRgtpgiu1aK57Ax2xAcxlBjEUHwQe9K7y/I4Hs2Lw3xHod8/gH7fBqzyroNLd5XlsWh5+RwNuCjwYfxs7DvS5XdO/gLHNZ6MVlfH/styQn2wmq4t7QTOVt7HA+4+OJb4OKSmaRqOazoZxzSeiMdn/4B7pm6yFKDcFHkEf53/M85sOw9nt18In6OhAqMlokoJpeWhxIC7t8IjIbInhtGIiIiIiIjIlGEh2gUA86nyjqOWmQWg9tntWpl/obv+zgSkmhzsUMyVXtMhvxwA7tkskM0JOFU3riLWw2ilP0tVuRQKo3U1aYDkrFtTDKMtSs4QuPWvAj/fKNDi0/C+UzWctd6+r42UhchfLIWaeY3Xi+H8E6JJPbFT4OyB5fu7bsw/cTAA4EcPC/zoUq5vRES1ptB+x2y8evaxiZZTMWE0ABgcA7qtHZ9dc8w+40/yMy8RERERERERERHVsKQyjOat8EioVqliEBPpceREFg7NifEFkbSFVGEcOzOLX4TSY1jrO6KCo6FqoQqjNTva4HP4KzwaouWn2pamRQqz2Sm0u7oqPKJ80aw6qqMKnh1KFVCzEuypVjOZyVcjaFswFB9EOCOPkiyVV/djnW89+v0DWOcbwCrvYXBozDvUi+MbT8GGhhOxJfZ03rKkkcDN4Z/iIys+t/8yA+oJXDqWFmIMKKK5C/W4JfOWqOQcmhOnt52D1zafjt9P34aHZu5CRqRNb5MVGfxh+lb8ee5+nNNxMd7Yeja3JUQ1QvU9hJXtNlE94LsdERERERERmbIaXJpPCgDFx0BiKYFQBFjbuffsF/UmZwhLk4NHXPlfZonZqUU849VNtT7qit94elo1NHuBSDJ/2Uwc2D4ObKi+45XyWA0YJi3EpOyiUBitQ3Gyyol5hikW41v3Cnzpjn3PncCvnhK4/v0aLjt5+c9kJ5OSn9guz3wSaOMJkarGK5PWrre1PMeeLFlojtsfIqJalC4Qso7I5+cQ0SGK3VN6MSRwxlH19q3HXmbfxWUtfv4nIiIiIiIiIiIiqkaqMJpH91V4JFSrVJOKc8hiMhNCu7Mbk5mQ9DrBKoxEtDo74NG8SIn8AyhD6RGG0UgqnJYfnBVw91Z4JET2YBaZHE+P2COMZhIva1xiGC1WI2E0IQSmMmEMJfZG0IYSg5hSvOcvVYPehHX+9VjnG0C/fwB9njXQNUdZHovsT9M0XBz4CF58eTPSIpW3/NnoE3g+ugnHNr4WAGAI9cFqS12PrLyXBxnhqSifowHnd70Xp7W+FXdO/hKbIg8XvE00F8HN4Z/i4Zl7cH7X5XhN4+vqci4eUS0JK+LUZvuhRPWEYTQiIiIiIiIylbM44TKa/x19gfsV+OdbBH78kEDWAFZ3AL/5qI4TVtfXF7Jm8aeFhiVhNMxOlHYwVSCnmB2sm6w2T39BxxFfkK/Ie+ZqI4yWszjDvJrCaGmT8JXLAXQpw2jlGU8tG50R+NrdB69EQgDfuU/g714nbPlDmdUw2lyCYbRqMjhmbWO2xeL1ykGY1EytrpdERFRdzPZLAXmEmYjyWYnCL1TPr61inysiIiIiIiIiIiKiWpATOWREWrrMyzAalUi3uwcaNAjJKV1C6VHkRA4C8mMNq3FCsqZp6Hb3Yji1M29ZSDHxmki1blTja4CoFHyOBrQ42jCXm8lbFkqPYn3D8cswqoOp4mU6dPh0awfRNijCaNFcdR6YLYRAODOGofggdiQGMRQfxEzW4tl7i9TkaNkfQev3D6DHvQq6Zs8TU9Py6HB14+2dl+C2ieuky28K/TeO8B8Dr+6DAfUEI8cS16tGRzMaHc2mMcUez6olPQYtTrurC1f0fBJntr0Dt01chxfjmwveJpwZw0/G/h2H+47Gu7rejzWMHhNVpUQuLt3PBPgZjGgfhtGIiIiIiIjIlKJDlWe+yAmrP3hQ4PsPHLjzV6aAs/7LwOh3dPjc9ovwlIvVMFrIEci/cCZc2sFUAdX66DD5jWddt4b2BmA6lr8sPC8AVP/6ZlgMGCarKNpj9tpwO4EuxQnMJqLlGU8t++ljQvp8bxkDZuJAuw3DYlYDVBNRYE1necdCpZEzBLaNW7vuzom9B60sR7Qva7JtYhiNiKg2Fdq+13O8iagYxba+iv2eqZZY/S6OiIiIiIiIiIiIqJakjIRyGcNoVCpu3YN2VzemMqG8ZeOpEWSF/MdBHQ50u3vKPbyyCLr7pGG0cYbRSGE8PSK9nJPyqZ4FPH2Yi8vDaHagipc1OpotH2fZ4JAfmB3NRZbteM1iCCGwJz2MHfFBDL0aQosoIiNL1eJsR79vAP3+Dej3DSDgXmH754eW3xlt78BTkUel+2Wz2SncPXkj3t39QRhCPTFEw9KDewH3CkQTJmE098olPwYt3irv4finvv+HLbG/4PaJ65T7ZQu9lNiG7+z+LE5seiPO67wMnW7J3DMisi2z/Ul+BiPai2E0IiIiIiIiMmUIa7Mxo6ni7vdXm/LvdzYO/GEr8M7jiruvamYWWFkoIvuxsR7DaIrfefQCvyUGmhVhNPVvOlXF6qTphPykqrZkFkZzOYDORg2yqfUT1XlismV17xb1CjQxX91htOFp4KQ1ZR0KlcjOCSCZsXbdVHbvutktP0FhWaUZRiMiqjvpQmE09RwdIlrA4tdL+xX7PVMtYRiNiIiIiIiIiIiI6lHSJIzmYRiNSijoXiENo4XSo8hB/uNglzsIh1ad0zBVE6lDFiILVH9SRhKz2Snpsm5Oyqc6FnCtwIvYnHe5XbalsZz8gHhV7Eym0SE/INNADkkjAZ/Dv6ixlYshDIylXnk1grYFOxJbEVU8D0vV7uzaG0HzD6DfN4BOV5AhNCqaQ3Pg0uDH8Z1XPguB/EkxD83cg9c2n2762cehOZY8jqC7Dy8ltsnvH050uYNLfgxaGk3TcEzjiVjfcDz+PPdH3D15I+ZzcwVv9/T8Y3g2uhGnt56Lt3VcBL+jsQKjJaKlUoXRXJobbc7OCo+GyJ6q8xs5IiIiIiIiqpic+oQjB5lPFne/T+2SX/6TRw2887ilf2FfLcziTwtF9GYIAAf9hBa2x1mmKimnmBxcMIzWBGzbk3/5lrGlj8kOrL5O4zUURgsogkjRFBBJCDT7+INzKUzMA0fa8PfNQoGSfYZn8racZFODRW6Ph2eWKYxmsu6lLIbdiIiouhQKX0aK/CxMVK9UYbRmr/x1VOz3TLVEFYXfJ2cIOAp9EUJERERERERERERUZVKG+othL8NoVEJBdx8GY3/Nu3xL7Gm4E17pbVRxsWqgGns4vQc/Hf32ou/XoTmx2rsOp7a8BT6HDc+8SfvNZaexce4BjKR2QQjzH6LMtsXV/DogWqqAR77+70oMLWlbWqxWVweObzwF6/wDB10ezcnPKt2giJ3JNJpE1GK5yEFhNEMYeHr+MbwQfx7JXNzyY5RKSqTwcuIFJAzJWdNLoMvVsz+Cts4/gA5Xd1keh+rPau86nN56Dh6evTtvmYCBn459B12uHuXtdehLHoNZ6DTg7q3aGHAtcmgOvLH1bJzUfBrun74df5z+LTLCfEJQVmTxwMwd2Dj3AM7peA9Oa3sbnJqrQiOuLoYw8FTkUbyY2Lws72Wl5NTcWOPrx+tbzoJb9yz3cKhIqjBawN0LXVv6dp+oFnDvhIiIiIiIiEwZiomrh5pTn7AxTyKtvtPp8vw+ZVtWw2g5zYmY1oBGseAJmh6HyKShudzlGZwNqSYHF5oP3N2sAchf7679k8BP3yugV/mEYquv01gNhdH62tTLR2eBZh4PWRJh+bESy65QoGSf3dPlHQeVzpYxixuyVw1PAyesLtNgTJite1bXSyIiqi7pAp/Z5pOAYVT/ZwqiclPt7TUpwmixVFmHY2uF9ozj6b3PGxEREREREREREVEtSRrqAxA9DKNRCQXcfdLL53NzQG5OuizoXlnOIZWV6t9rIIdnohuXdN9Pzz+GP8/9EZ9e9U00mAR1aPlMpkO4cvjzmM1OLel+HHAyDER1LajYlqZEcsnb0mI9PPM7XBb8e5zS8ub9l8UUYTSz2Fn+ddURtWgugk4cOMvyz8d/gCcjD1m+b7sLuvvQ79uAdf716PcNoNXVsdxDohp2Xtff4dnoRul781QmjKlMWHlbXXMs+fGDJmG0oKd693lrmVf34R2dl+KNLWfjrqkb8cTcgxAFji6KG1H8ZuJ/8fDsPTi/63Ic33gqNI3HNy50w/hV2BR5ZLmHUTJPzT+CpyKP4pMrv8Y4WpVRhdHMQpZE9YaJQCIiIiIiIjJlNbg0EbEeNNkjP3YEAOCos0+qVsNoABA59AdHIYAJ+RdgtUq1PhZab7pMftd9YPvix2MXlsNoVTSxPK0IDDl0QNM09LaobzsyU54x1aqESTAvPF9crKpSrAaoRhhGqxrb9hR3/eGZ5Vk3VdsmgGE0IqJaJIQw3fbvE62i/Wwiu1EFvuaT9vwsUgmFPuNHJSE5IiIiIiIiIiIiomqXUoTRNGjwaDxbBJWOWQyilLexi253DzSUL4KwJz2MP889ULb7p6V5YOaOJUfRAKDLHYSjBDEWomoVcPcu9xD2EzBwx8QvkBWZ/ZdFcxHpdYuJVnp1P3TIX+cL7384ubPqo2i97tU4vfUcfKj3s/j24dfhS2t/iEuCH8VJzacxikZl59V9eE/3hxd1W9VrtBgBk/3aniqOAdeDVlcH3hv8BP519ZU42n+cpdtMZkL42dh/4D93fw4vJWpg4lSJDCd31lQUbZ9dyRfx1/k/LfcwqEiqMJrZ9pqo3jiXewBERERERERkbznD2vXC8hMNSTGMdkAxYbQ5vRm9OKQcEx4BeteWdlA2ppocrBc4bufwLvWys79nYOZ7Olr81XsGlFoMo6leG+5Xf8/zuDR0N8m3PSMzAijjwVy1JpFRL5soYtteSSmTMS8UKiLaSctrKlrc32oqWqaBFJA2ed9mGI2IqPZY/bwWSQLNvvKOhajaCcXuXrNiLls9BweNAt/F1fNzQ0RERERERERERLUrYcSll3t0HzSNxwFR6QTcfRW5jV24dQ/aXV2YyoTL9hjbYs/grPbzy3b/tHjbYs+W5H44KZ/qXZuzCy7NjYwwORNxBUVyMxhLvYJV3nUA1GG0xkNPym5C0zQ0OpoQyc3mLYvlDhxMXKrtSqVo0NHnWYN+/wb0+wawzr++qGAcUTkc13QyXtP4OjwXfdLybXTocGquJT92hysAp+ZEVuQf9NzjYRitGvR51+ITK7+CrbFncFv4OoylXyl4m5eTL+C7uz+H4xtPwTu7Lke3u6cCI7WvrbFnlnsIZbM19gxObjlzuYdBRZjOyj+r8zMY0QF1Nt2ciIiIiIiIimU1uFSqMFrCHr8XVkzWYngO2BtGy7NnV6mGUhVUob5CYbQLjze/wluvMpCzurLbkNWAYdYA0tnq+HeqIhSuBSc66muTX2c0/zd5MmEWRitm215JVgNUE8sUz6LiJS3G7vaZk58ouuzSJuseAxVERLXHbLu/UGSZ3peIqonqk2iTIow2nyzbUGyv0NcT3O8kIiIiIiIiIiKiWpQy5D+4eHWenYZKq8nZgjXeIyxfv8XZjlXew8o4ovI7puGkst5/KD1a1vunxcmKDCYz4yW5r2May7sOEdmdrunY0HDicg/jIHtSw/v/f6wEYTQAaFBcP7ogjGb3bb4OHWu8R+Cs9gvw8RVfwH+u+zn+dc2VeHf3B/Captcxika28Z7uD8OjKQ6akVjrOxIufelhNIfmwPqG/5N3uUtz40j/sUu+f6qc9Q3H4/NrrsRlwX9Ai0MxseYQz0Q34msvfwK3hH+mjGrWA7u/ly1FLf/balFWZJBUfB/W6myv8GiI7IthNCIiIiIiIjJlWAwuhYr4TnTPnHqG59gcIER1hJtKQRV/kplztORdJl7ZXsLR2J9qcrBe4BuOVR0a3neKOo725MvATU9V73pXTNMtViUTqFX/JseCv3VQ8Xu9XWNedhU3CVJO2vS5tBpGm2QYrWoUG0aLLFMow2zdm5gH7ny2et9LiIgoX9ri57VYnQW+iRZD9VVPs2I+Wz3HvxhGIyIiIiIiIiIionqkmgjqYRiNyuDCrvfBq/sLXs8BJ97d9QE4NGcFRlU+b2k/H12unrLd/0x2Eimjjs96Y1MT6XEYKOLszQpH+I/BiU1vLMGIiKrbuZ1/azk8Uwl70gvDaPKDfVWhM5VGRTRsYTxnPD1S1H2Wm1Nz4nDf0Xhr+0X4h74v4z/7f4nPrv4OLuh6HzY0ngifo2G5h0gk1ebqxAd6PwOnVjh25tP9eFfX+0v22O/ovBTNjtb9/61Bw/ldlzMcWIV0zYFTW96Crxx2Nd7ecYml2F4OWTw0cze+vPOjuH/6dmSM+jv4sZbjYeH0WF3Nyax2qn04oPjALVEtq+5v5YiIiIiIiKjscha/D4umgHhKwO9Rx6f2GZ9TLxubBTaPAsf2WRygTaUyAv/zJ4GndwGtfuDC4zW8oT//uSkmjDavS35o2LVt8YOsQspYVuHVDv92robrN6pX6F8/JfB3r1vkwJZZUWG0NNBWBb/xKiN4C/7W3c0agPwr2jXmZVcJk9+ywvP2+1HEMITlbedUdO/1dd3CRoKWVdJi7G6fSGJ51s10gXFe/r8GNn9Fx8p2rnNERLUgZTHcGWekiKgg1fFWTV7557r5Op47U+jYtGgdPzdERERERERERERUu1RhNC/DaFQG6/wD+PzqK/FcdBMmM+PS67Q423FM44lY4VlT2cGVQburC59d/R08O/8ERlO7ICS/zViRNlLYGHlAuiycHsNK72FLGSaVmCr4oEHHaa1vLXh7p+bEam8/jms62VK0hajW9XpW4XNrvovn5p88KEpWbi/Gt2BPenfe5XtSe8cghEBUGUYrLnKkun7s1TCaEEK5bTnK/xoE3CuKerylaHa24TDfUVjrPQJu3VOxxyUqpWMaT8TnV/8XNseewnRmQnqdgHsFjmk8ER2uQMked4VnDT635ko8N/8EYrl5HN1wHNb6jizZ/VPleXQvzum8GK9v/RvcM/kr/GnujxAFArkJI47bJ67HIzO/wzu73osTmt4AXdMrNOLlFU6PSS+v9HvZUsRy83h6/rG8y1MiibncDFqd7cswKirWwvjsoRirJDqAYTQiIiIiIiIyZRRxsrDwPLDGwu9Ke0zCaABw4yaBY/uqNyiSzgqc9A0DWxZ8V3rVAwJX/52Gj5x28BfFxYTRZheclWW/V7YvcpTVSRnLsvD9+2GdgM8FJBRxg7ufr96AUq6I12msSqINhmIm+MK/dZfie147xrzsyjAEUiahp7ANI3PpIrabhgCmY0AnfxOwvaRi29ziA+Ykxz5H5MdDl12h9S+SBH78sMC3Lqy+9xIiIspndb8jVn8nTSQqmupTWpPiRKWROo5/FYqfx7nNISIiIiIiIiIiohqUUobRFF8kEy1RpzuIN7eft9zDqJgGRxNe33rWku7DEDk8Nf8osiL/QJ/x9AjDaDajihd1ugK4OPCRCo+GqDa0ONtxWtvbKvqY903dgjsnf5l3+b5YWtJIIAf5gcCNjuaiHkt1/dir4bVoLoK4EZVe520d70G/f6CoxyMiIOjpQ9DTV/HHbXW24/S2cyr+uFReLc42XBr8ON7U9nbcPnE9BmN/KXib6ewErt1zJR6YuRMXdl2BI/wbKjDS5RPNRhAz5JNk3tpxUdX8+1VhNGDv5wCG0apDTBG3BRhGI1qoPrKdREREREREtGiFJmMuNG9x0uqD283v9Dv3CVz2MwPTseqLG92w0YD34wdH0QBACOBffiMwFz/435QtIvAz5uzJvzA8CqEISNUiVQDMSstM1zW8dq35dXZOFj8mOyjmdVotYTQrf+tuxfe8EzaMedmVKka1jx2fy1SBMR9qQn4MBtmMal1Uvc6XK5SRNgkJ7vPt++rnfZmIqNZZ2e4DjBQRWaH66qKjQX55LAXMJ+tzv6rQZ/xYuj6fFyIiIiIiIiIiIqptSUUYzaP7KjwSIlLRNQe6XZLjWKGOcNHyCaVHpJcH3CsqPBIiWooe9yrp5VOZMNJGyjSo0VhkUKNBEUaL5iIA1NsVAAhy20JEZBu9nlX4+74v4h/7voo+T4FJVK/andyB7w1/AdeMfrOm9+3N/m3VtJ/c4GhSBk1r+e9Xa6KK/Tiv7odTc1V4NET2xTAaERERERERmVLFiWSiBYJLQgjc87zA7unC93XjJoHOTxkYClXPZM+7nhO44lr1eOeTwG+fPXh5pogw2ohLciaYdBKIWHhCa4RqcrCVMBoA/MMZ5l+FvPuaIlZ4GzFK+Dq1Cyt/6y7F7/VhG8a87CpRIDI2GQWMYsp7FZCyGCjZ5/Ed9ho/HWzbHoGfbzSU+waqMNqc/HjosrMayKnXiAcRUa2xut8RZ6SIqCDVq2SVyckph+vn646DFAyjVcnneiIiIiIiIiIiIqJipBRhNC/DaES2EnBLjmMFJ9/b0bjib1JNwQciAno88jCagMB4emR/tEymocgwmiqwsi/aEUqPSZf79AY0OlqKeiwiIiq/oxpeg8+t/i4uD/4TWp0dlm7zfHQTvvbyJ3BT6L8xn50t8wgrL5SR7yN7dT+aHa0VHs3SdLt6pZeHFe/XZD+q/bhi9+GIah3DaERERERERGSqmB6OWXApmRG45KcC7/hhceGpI79o4CePVkes6uqHC4/z7ucXH0YbdioORpionwNKVAEwh8VvON51gobr3q+uqD0/AmRz1Rc1KOZ1Wi0TqFV/64VhtO4m+d9yYh7I2SzmZVfxtPlyQwDTscqMxap0EdtNALh/kOuCXX3zdwYGvmzgfSZR0W75cTaIJMs0qAKsBnLqNeJBRFRrrAYxq2Ufm2g5CcUu34o2DZriY7qVsH4tUj1X+8QKfI4jIiIiIiIiIiIiqkZJRRjNwzAaka0EPfLjWEPpkQqPhMwIIZSxuqAibkdE9tTp6oZLc0uX7UntRkwR1NChw6c3FPVYqgjHvscYV2zrg+4+aKof/omIaFnpmo6TW87AV9b+GOd1XmYpPm7AwKOz9+LLL38M9039Bmmjdg6QVO0jB9wrqu69TBU8ZrS6eqj241SxWqJ6xTAaERERERERmSqmLXT29wz89DEDQjKD8+anBW5+enFxmo/+QuDaP9k7jiaEwKZdha/3/CG/BxYTRhtxKQ5GCNfPASWq9VEv4vvny0/R8eaj1Mt3hIsbU7mkMgJfusPAKd/K4fwf5XD/VvXrJ1fEy6NaJlBb+Vv3KE4uZgjgpYnSj6kWJTKFrxOeL/84ipGyMOaFRmrvREU14ZndAl+6o/B+QXezfAM/Jz8euuzSFuOZwzNlHggREVWE1SBmodgsEam5HUBQcRzP8Ex9Ro4LfRfHbQ4RERERERERERHVIlUYzcqkbSKqnG6XavL9GAxh7+N868l8bg4JQ35GVFVAgYjsSdccytftnvQIoiZBjWIDL42KMFo0N28aXAy4e4t6HCIiqjy37sFbO96Nr669Gqe3ngPdQmYmaSRw5+Qv8JWXP44n5h6qif39WnovU+0fhBlGqxqxnHyylmqfjKheMYxGREREREREpooJLgHA//25wDd+lz+D85ZFRtH2+eD1Ar/bXPkJsUIIbBkV2DMrpMG3fcbngGn5MQQH2TEBJNIH7qeYMNqwsw/SEUzUz5eWqvWxmDAaAHzgDeobbLbJ0/me/zbw9XsEnnwZuPO5veHBu5+Xr4PFBAyjqeqYWK76NzkWfJt1RED9tx8cK/2YalHCwoR624XRLAZK9oksU0CLzP3kMWFp29Wt+E0nlgLm4pXfnqUtrn/D09WxrSUiInNWt/vVEh8mWi5m36doGrCyTb5stE5js4X2k2O1cxJWIiIiIiIiIiIiov1SRlJ6OcNoRPYS9MhP8JsRacxkJys8GlIZT6tPuMwwGlH16XGvlF6+J7VbGdRocCjOUGaiUXEbAzkkjbhJTEZx8nciIrKdJmcrLg58BF9c+wMc2/haS7eZzU7hhvGr8O1XPoPtsefKPMLyCqXlE42qcR+5WxFzm8yEkRWZCo+GFkMVuG1gGI3oIAyjERERERERkaligkv7XHm/OCj+BQD3bF76WD59s2E6mbbUNo8IHPf/DBz7VQMrPmvgwh8bygiL1QiTEMC2PQf+O1tEeC7qaMKc3pJ/n3UURlOtj8WG0f72JPUNLv7J8p/FZNsegbuez7/8vB8amJWsg8W8TqslEmXlb+1zazi8S369zaOMElmRsPB7x0SVh9HmqmSdrydCCFz/Z2uvIQYzYAAAIABJREFU0aOD6mVP7SrNeIphOYxWpxEPIqJaY3U/O84wGpEps69yNAABxfHY0/GyDMf2GEYjIiIiIiIiIiKiepQ05Ad4eBhGI7IVs2CAKphDlaf6WzToTcrwERHZV49HHkYbTw8jqgyjFR/UMLvNbHYak5mQdFk1xmSIiOpdwL0CH13xeXxq5TewyrvO0m2GUzvx/ZEv40cjX8NYaneZR1h6OZHDZHpcuqzbJY+M2Znq/VfAwITi30n2otqP42c2ooMxjEZERERERESmFhNGm40Dmxf8pm4lZnbL/y38EfXFEHDVA5WJHaWzApf9j3HQv+OO54DP/1b++DsnrY9rZEEsJZMr7t8z4pJ8cRmun4NJVOujo8hvODRNw0UnqONoP354eeNovx9Urxf/dFP+slwRw43IT65qO8ow2iF/6wHF7w8vT5R2PLUqZSGMFp63V2Su2DBatazz9WQuASQtnoToyKCGzkb5sk27Kr9uWl3/huTH/xARUZWx+nmYkSIic2YvJU0D2hrkn89nYuUZj90V+hqNMUYiIiIiIiIiIiKqRSlFGM3LMBqRrXh1H1qc7dJlDKPZh+pvEXCvgKYVeSZiIlp2Qbc8jDaZCWEmOyld1riIMJpZhGNX8kUIyA9YZxiNiKh69fsH8NlV38H7ez6NdmeXpdsMxv6Cb+z6JG4c/zHmstVzNvGpTBg5yCcDVON7WacrCE2RC+Jns+oQUwZuGUYjWohhNCIiIiIiIjJVTHBpoc2jB2ZxPjtsft113cAFxwMXn1j4x/ZP3yxw21/LH0K5b8vBcbd9btokpKG33dPW73smfuD2mVxx4xp29uVfGC7wBNcQ1fqoL+I4jQ0m31v/w40COyeWLwb15E71sp8/IZA9JKhXTMBwTn4Moe0YFv/Wazrlf/zhGXvFvOzKyrozIf+ufdlYibktNJ8EcoupfFLZDBfxnulzAa9bK1+26eXK/13TFt+3t4xynSOiyslk5Z9RaOmsPq2MFBGZM3staRrQ5pcvm4nV57at0McXbnOIiIiIiIiIiIioFiWMuPRyr674EpmIlk1QEQ0YT49UeCSkElL8LQKe6gs+EBHQ61klvVxA4KXEVukys8iZilf3Q4dDuuylxDbp5Tp0dLmDRT8WERHZh67pOKn5NHx57Y9wQdcV8Fn4HC5g4PG5P+ArOz+G303+GinD/mezN4uFdbt7KziS0nDpLnS6uqXLwumxCo+GFiOai0gvX8x+HFEtYxiNiIiIiIiITC22JbMwKva5W83ratdeoUPXNfzXxRpeI+l+Herd1xi4YaOBezcLrP9SDu6P5rDhyzn8YbB0E2a/do98zDNxeVhqpIiTXMwuuH2xYbQRl+QJCtVPGE21PuqL+IbjmBXmNbVv37d8E7B9bvPlMwuOAyw2glE1YTTV3/qQP9vKNvn1igkv1TMr2/iw3cJo8pP0mIra/3e2ujJcxHum1wW8dq18e/3ky8VvA5cqbXH9eyG0N1RERFRO8ZTA+6810PZJA+2fNPDxXxpIZrjtKSWrn4fjqfKOg6jamYbRALQ1yJfNyOfA1bxC255Yitt6IiIiIiIiIiIiqi1CCKQM+UFNXt1X4dEQUSHdijBa2CQ0QJU1rvhbBFwMoxFVo05XAE7NJV02mQlJL29wNBX9OJqmKUMcqjBapyuoHBsREVUXl+7GWe3n46uHXYMz2t6ujGUulBJJ3D31K3xl58fw57k/whBFTpKrINXnlXZnF9y6p8KjKQ1V0C2U4WezahBThNEWsx9HVMsYRiMiIiIiIiJTiw2jDYUO3DBkEtWZuFLH69ftDZ4EWzQ8/QUd/3K2ebAKAK64VuDcHxjYPg5kDWDrHuCtVxn45K8NXPWAgWd2L22S6M4J9TJZJGh42vrjzcQO/P9skd/5DsvCaCM7IEK7i7ujJRJjOyHu/BnEY3dCZBdRKVok1froKLzK5Dm2QITvjmeXb6JxOGL+2FPRA/+/2NdopMbCaKva5X/84ZnKB5OqkZX1Z+H6ZgeLCaNVSxCwXhTznul1Aa9ThNFCEWC2wrEMq2G0TA4YCpd3LEREH7xe4PqNAvH03ve6ax4R+OSvuf9TSlb3taOMFBEtmqYBbYqTjE7H5JfXOsP8/AKIMcZIRERERERERERENSYj0jAg/3LUwzAake0E3fKDL1UxLqqsjJHGdEZ+4FLQY+Hs1URkO7rmQFARpVRRBc4KUYU4QqrgYpHjIiIi+2t0NOOi7g/hS2t/iOMbT7V0m7ncDH4x/kN8c9ensTX2TJlHuDiq9zJVXKwaqN6Hw+mxCo+EipUVGSQVJwloZBiN6CAMoxEREREREZGpXIHJmCrD0wf+v9lE1o7Gg2MnDl3Dt9+l46aPLKJ0BeD7Dwh86tcCJ3zdwNfvWeTgAZhNaw9Lgvy7p/MvU5ld8L1Vpsgw2ohT8ePhQ7cVd0dLIH7zQ4hLN0D8x99DfP4iiI+/CWLGpCRXQspY1iK+4VjbCRy3Ur08PA9s37M8gYNC69PUgtdUsa/RuUR1RBushtFWtsuvl8zYL+hlR1ZiH3ZbZxYTRoskSz8OWrzhGevX9bqAo3vUy0eKuK9SKCZGuWXMXq8dIqotsZTAbc/kb2du2Cgwn+T2p1SsdnZnKhzqJKo2Zi8lTQPaG+TL6vW1VWjTE0tXZBhEREREREREREREFZNSTAQFAK/ureBIiMgK1eT7uew0Erk6/YHHRsKZMQjFL04MGBFVrx73qqKu37DIMFqxIQ5uV4iIale3uwcfXvFZ/POqf8da75GWbjOWfgU/HPkqfjD8FYwkd5V3gEWqxchnt2Lsqn8r2UcsN69cttjALVGtYhiNiIiIiIiITKkCIBt6905eVVkYdlJNZP3i29V38J4TdUz919I+tn7pDgH9Izmc+PUcvnGPgWzO2qx2IQSiJhGd8CHfPSXSAi9PWh/X7ILno9gw2p9azpBeLh66tbg7WiTx7GMQV/0zkFsw8G1PQdzyg4o8vioCdmgsywpN0/Af7zZfx9Z/2cBPHjUgrBYRSiCbE3hRfrK+/RYGv4qJ9ADAnPo4QluxGsFb2aa+j2LiS/XKsBDWm7XZsWqqbXmLyQmCq2W9rxfFxMw8TiDYrN7O2zqMxt8TiaiMXgzJP0skM8BD2ys/nlpldbtvFgMnIvPIoAagzS/f2ZuOoaKfx+2i0LYnzjAaERERERERERER1ZikaRjN5IAQIloWZuGA8P/P3n2Hx1EcbAB/Z+9O3VaxrWbZBtPcgNCrqYbQQseU0D8CoQQcSIAAARNqaAFCDxCSEAjNGNMCxpQYDBhjDO69SJYlWb2f7m7n++Ms6yTN7O1e00l6f8/jx7rd2d2529253b2dd33lCawJqehCEAy4MNxTkODaEFGsFKZaPA1cwWnAWdd0zoI4ClNLIloOERH1Hzulj8PvRt+Py4pvtH08ubx1Ee7b+Fv8a8tfUe+riXMN7ansUJ+r9OdgNF3dmwONlsFb1PeaA43acZkRHscRDVQMRiMiIiIiIiJLutCc66YIzLvJwNHj1OMb24GGVgmfX6LFqy5z1G7WaVa5mQKf/y76U9eFm4A/viORc52J/8w38eb3Ep8sk6huUvc0rW8F/BZhQVU9pltR4Swopa6lq7DTYLS1ogR1Rk7vEcvmQ1ZsdDYzG6RpQq5fDjnvA8jP3oL8zRR1wU/+E/Nlq2jDsiIIRgOAo8cLrL3Xehv79csS932YuI7Ya6qADr91mZqQbchOsFWo/hIQpXtfPdd1wVDA41KXDQ1oJDU7bVd9km0zujpnpgIpbvW4HzYNvjCFZFZaa399pLoBj1ugMFs9vqw+sevWyff92q3xqwcRke74BwCWbuH3XqzY/SR1YeBEFGS1LwkB5GWqx/lNoDHJzkcSIdx5vu46GxEREREREREREVF/ZRWMlspgNKKkk+seDo9IUY6r8JYluDbUky4YbURKEVxCc4MdESW9ohRnwWiZDgPOIp2uwNN/w2SIiMg+IQT2HnIw/rjDEzhzxKXIMLLCTiMh8XXjHNyx/kq8W/2K5bl/vLUFWtEYUD+RvV8Ho3mKteOqNEFwlByaLYLrGIxG1B2D0YiIiIiIiMiSVRDVAWMFXrhIf2q5qdY6UCcnI/zyD9tV4O8XR5h61UNrB3De8xJTnzVx7KMmin5v4sGPevc2DRemVNkjlH+hw8Cd0E7zToPRAOCxvGvUI758z/nMLMi6Kshrj4G88GeQN50Geft5+sJbNkK2xv9pErrOwa4ornDsOFxoA/463TZTYlFpYgImlti49lzT0vV3wGG1+kunct376hmMZhgCIxVZgYCz8KXByk7IU7KF6QUsQvPGFarHzVzEbSGZlKp/U+wl3RPcxwFgVK5mXgkOQHQSjFbfyu2OiOLHqj1aznsZYsZuCHFtCyAl230iHavdQwAotLivuqw+5tVJeuGOOVs6ElMPIiIiIiIiIiIiokTxWnSOTmMwGlHSMYSBghR1B3xdKBclToVXvQ4K+3HgAxEBRanOgtGyIgzUcBrEUZDKtoWIaDDxGB4clXcy/jT2GRydewrcNoJ3fbIDH9a8junrrsTc+o8QkBF0pIuS1XlKfw5Gy3bnIVWkKcfx3Cy5tWiC0dKMDLiFJ8G1IUpuDEYjIiIiIiIiS1YBNABQnNM7qKhTaV33ELCecm0EowHARQcbePuq2J/CBkzgprck8qYF4L4iAOPyAHa5NYC97rLu/b5ua/fXMxY66wAfGqzm1ywq02zWTv/q8AuhWqJc/aOjeujI+mqYL/wJ8uRRwI9f2p9w/bKYLN+KVVBfNKafHH77mvyAmZCwg3Vbwy+jJmTzsBvW0Km6uX+ENujel2pdj8pTl7UbvjSY6dr4UPUW7Xhf0LUDLgM45WfqxuCHTf1ju4+Xz1dK/PplE9NeM/Hl6r79HKSUKLO5bw4J+Y2uRBOMZndeseKkze0vQZRE1D9ZheaUNwze77xYsxuI6QsEg7iJSM0yGE0AI3OC/6skOgg3GYRrelq8CakGERERERERERERUcK0a4LR3MLNzqBESaogpUQ5nJ3v+15lR5lyeH8OfCAiYLin0NFxUZbL4gllMZou0zUk4uUQEVH/luHKwhn5l+D2HZ7EvkMm25qmMVCPVyufxj0brsPi5gUJ7d+hO0/xiBTkuIclrB6xJoRAPkOr+6XmQKNyuNOQWqLBgMFoREREREREZMkqgAYA3C6B4hx1mU21El+t0V+ozM20X49Tfibw5q/jcxpb39r1PtdutS4LAEvLu96TlBL/W60uN9oirKnzAq5P86CL/doWaJe/VpRgs1txg8L6pdpprPj8wbpIvw9y/TLIi/cFXrrH+YzWLolo+U6EC+qL1CE7C5yxt3WZFi/w3YbI5t/hl+jw27tobyfMq6al62+7YQ2dvP7+EdbjJARvVK56A0h0YFJ/ZGf78fqBdl/yBKxYtQNHj1NvC3WtwJaGOFYqib00z8RRD5t47n8Sj8+ROOIhE//+1mGiYgxVNgLtPntls1K7/h6p2c831yV223TS5jb0g7aWiPovq3DTGn3GMjnk5FumtiV8GaLBKty+5HELFGrulS5N8PFeMggXxtvaMbiDn4mIiIiIiIiIiGjgaTfblcNTjfQE14SI7NKFbOlCuSgxpJTaAAQGoxH1by7hsr0fG3AhzbD5BPseshyEcRRqQjKJiGjwGJ5SgEuLb8CNox/AzukTbE1T0VGGpzffjcfKbsem9rVxrmFQlU93jFwMQ/TvyB39uRmD0ZJZiyYYjaGzRL3171aaiIiIiIiI4s5OOJEuAGxTLXDHLPUMXEb3wBM7Tt9b4K0rDcfTxdryLYC57YNpbAsGZqlcfaQ6xKXd1xVWoAtGS5E+vF16prYOZW7FEx3WL4P020ybAbC1SeLCF0ykXx1A5hVtmHbe39B60UFAzRbb8wglIwxmc8JJWJZT/7zUwIm7W5c58D4Tt79jImAzGafFK3HBCyZyrgv+O/95E83t1tOW1oafd21zVxmnwWgAUNnkfJpE065rxdWsUZo26NX50tbnOZjZ3X6SKeDJKrBzovphNwCAJYPwdx3TlLhlRvcPzJTAbTOl7XYs1pY5+IrJDPm+H5WrLmMnTDKWnHxsjer7tomIYsKqPaphQFfMhAsnClXXGr96EPV3VhleYtv5vPZ4rzb29Ul2do452zriXw8iIiIiIiIiIiKiRPGa6htT0hiMRpS0dJ3vq3xbYErNjbEUdw3+Wnil+qYlBhgR9X9FKaNslctyDYEQkd1c7ySMg4GLRETUaYf0XfHbUffg8uKbke+x6NQRYlXrYty/8Qa8tOVR1Pq2xrV+upCw/AHwXZafov68qzrKE1wTcqIloO7Y5ySklmiwYDAaERERERERWQpoOoJ3D0ZT/3BWWqvv/JrmQUQ/uJ22l8Daew28c7WBf1wi8OVNBpr+amDujcHXt58Ug4SsMNp8wPrq4N9WAVOH7qyvy6ZtHXt1wWge6cNJzR9op69yF/Qe2N4KfP+pvkIhpJQ47AETL38rYUqBNpmCv+ZcgdtGTLc1vdK6vgtGc8UgGS09RWDWNQZmXGl9ueTu9yUuetFeMs4V/5L497cS7b5gIN4r8yWueNl62vnrw883NOxCt49aqVQ/WCKpOAnB0wWjAcCYm0089bmJz1dKSEWDtGSzxJOfmXh1vgmff/CFqJlWCQUhkikYzep7aViWQKHmnowNNYNv/a7dClQo9veNNcDCTYmvDwAsLY9sPZRYBKOp9u14cRKMlkz7DRENPFbHgNXNiavHQOfkG6Y/HGMT9RWrfanzFE93XsdgNLUWBqMRERERERERERHRANKuCUZLFQxGI0pWupAtv/TFPdSA9Co6yrTjGGBE1P8VpdoLRst0EG7We1r7YRxsV4iIKJQQAj8bciD+uOPjmJr/K9thm/MbP8f09Vdh5tZ/oS0QnycDV2pCwgbCdxlDq/un5oD6puNojuOIBioGoxEREREREZElO0FUus6rm2ol6jWhINHEWI0YIvCLPQUuOMjAwTsJZKYKHLJz8PX0kw3Mu9nAkbsBET7oyJZlW4L/V1l0ft99JOBxqceFC0Zzww8BYJSvVDm+Ml39w6ac96G+QiGue01iZWXv4S/kXIJ2kWprHr2sXAjpi2/PXDtBfdEQQuDUvQSuOcp6hq/Ml7jpLetEstoWidcX9N6BXl8gUdOs3rHmrpbKEKOeakLCLpyE9HTqD6EN+ran97BRudbr65pXJI562MS5f+sejvbgRyb2/JOJ37wq8cvnJfa400Rty+AKzzJtBuvVt8a3Hk6EC80bqQnQqo3Pb2RJrcbiPf+wqW+29aUOHjzkD9k+SzT7eYs3sdunkza3sT2xoW1ENLhYtUftPgzKwNd4sBsiCwCltfzMiXSsdqXOaze6473SusG3b9lpelq88a8HERERERERERERUaJ4NcFo6a6MBNeEiOzKTynWjrMK56L4quzYrBw+xJWNDFdWgmtDRLFWlDLaVrksB+Fmvae1H8YxEMJkiIgo9lzCjSNyT8SdOz6NY/POgFt4wk7jlz58XPsW7lh/Jb6o+wAB6Y9ZfUxpomoQBqMFQ6urE1wbsqs50KQcHs1xHNFAxWA0IiIiIiIishQugAYARmlCaFZU6Dtq/vXc+KWWHThWYM4NLgSedWHzAwZKNPWLxtLy4AdTpb4OhcxUICtNaD+blZXB6f2aUCKP9AEACvxVyvGVYw9VT7h2iXp46LIrJJ74VL1im11DsDJlV/WEE/aH+KQBr1+7EEeN/i9G7rIeR4z5GB9k/jw4vqURmD877PKjod0eY3yF466Tw2+fD34ksdMtASwqVVfq+43q9Rswge82qOd50Yv2UqpCw44iC0ZL/o7lusAuVQieLpyxp9cXSLw6P/jeP18pcdNbsluH85WVwG632UwKGyDsbj/JFIymC0jsDM3L09wTOxiD0Tosfg9c30e/cTkJjfGHhIeOGaYvt6Iiigo5ZDdMEAgGWjQzsIKI4kT3fdhp5qLE1GOgc9Lul9bFrx5E/Z1lMNq2/3XndaW1Ma9O0rNzntYa31x6IiIiIiIiIiIiooRqM9U3pqQa6QmuCRHZlWqkIdc9XDmuUhM6QPGnC0YrSClJcE2IKB6KUtUPVu8pM4pAjUwHwWiFbFuIiMhCuisTp464ANN3fAr7Dz3C1jTNgUa8VvUc7lp/LRY1fROTh5TX+avhk+qbrfI9+sDn/sIqtLrKx3OzZNWiCUZzcixGNFgwGI2IiIiIiIgs6TrchwZRjc5Th0ht1YSGAcBBO8UvGC1UUY7Aij8ZeOZ8gUsPFThnP4Frjxa47USBaVMEdi1QT3fe/gL3nCZQnKMev6oy+H9Vk/oia8G23xPHF6mnX74l+L8voB7fGYyWrwlGq8rRhJetWGB54TdgSoy/3bp3/7LU8b2Gidv/AfHkp3hlUQrOmz0O/8s8DJXuAnyZcShOHv02po78N+alHwD/J29azjtadoL6YiE7w94M11cDe99l4r9LZK/PfWWFfj10BuOFqmiQ2FBjr361Ldi+PKtQjALN9dCKRnvL6UtO1rUugFDl+bkSbR0SRz2s/uBqWoB/zBs84Wh2g9Ea1A/m7RPhto28TPX+W5tE4W6JYhXKtUrRDiXC5nr7ZUPDJUfmAEPS1OWWlCfuvQQcLqoxifYdIhpYwgV2nf2ciR81Ab5kn5NPcNMgDG8isstqXxLbDt9115ZK6xCTG9z6EzvnaS1RBqNVNEh8tkKiqX1wfbZERERERERERESUnLym+sf1NENzowARJYWClJHK4ZUdZQmuCXWq0Hz2hZp1RUT9y3BPIdzCHbZcVhSBGmlGOlwIvwwX3Bjm0XTEICIiCpHnGYGLi6bh5jEPYdeM3W1NU+Urx3Pl9+MvpbdiQ9uqqJavCw8G9Oc0/UmakY5st/qppFbvnfpWc0DdsS+a4ziigYrBaERERERERGRJ1xnTFdJfdfQw5/PNj/xBRI5lpApcfpiB5y808MqvDDx6toE/nWLgkakGVtzlwl/OFsjJCJYdVwh8eoOBly8z8IfjDZy1j7pj7ua64AdTqQmYyt92HWpckXr6ZdtCXPxhgtEKAupgtFJDk7jmbQM+flU9DsA7f/9cO67T0tQJ3V6L2XUQx5wD4fbgL7PVG8SMoafhsB0+w4jSR7BiU/xSYLTbYxyucOw0wn7ZEx43cfITJppDOhQvsXiwxsKNvYctcXC92esHWrd1grbqMF2crR6u226TiZNgtLxM+/P9fBXw3Fzrjt93zOoddDdQ2Q1Gq29Lns9DFwbY2Q7karaHupbkeQ+J0mIRjOakzYmlzXX2y4Z+RwohMFHzMKOlCXyQUbggop6SKVSQiAYWO0GNt7w9eMJe48XusRIAlNYOvmMNIrusTq86g9F0gdftPqC6OfZ1Sma2gtEsjvUt521KTHvNRPHvTRz9iIlh00y8NIjCwYmIiIiIiIiIiCg5tWuC0VKN9ATXhIic0IUIVLDzfZ/RBR8MhMAHIgJcwoWClJKw5TKjCNQQQiDTFb6jx4iUQriEK+LlEBHR4DM6bWdcV/InXDnyNhTa+D4DgDVty/DAphvxYvnDqO6ojGi5VR3qzgZDXblId2VENM9kow+t5rlZsmrRBKPZOQ4jGmwYjEZERERERESWdAE0RsgZ5Wj1gwW0PC4gO4nuWbruaAMVDxloeNzA4ukGjtitK3mpRNMxt6w++P8adW4ZCrZdh9pN8yCk8m3T+7TBaH4AQLFPfQF2zuZctAr1hyjvvgTS7+s9fNMq/GdOjXqBIe4ffuP2v8Xf5kGkBS/01rZILNxkPW2jMRSXPtMct1Ap7faozp+LylVHOJvp+4uBodea+Hxl8L2X1+s/g1k/SnT4u49fUu7sM6vZ1jHcqsN0kSYYraox+UMbnASjCSFwzVH219ctM6zf/6ZahN3WBwq7YR/JFO4UbtvQBeXVtsSnPsms2atfwWu2Am0diW0L2jokahysB3+PNn9CsXo/31CduPfhJCAHANZXx6ceRER2ghpnLwsew1PknJzWVDXFrx5E/Z3VrtR5hGd1bWlVZPe09Vt22p5Ig9FemS/x+JyuBfhN4NKXJFZs4fcFERERERERERER9R1dMFoag9GIkpouzKCKne/7hNdsR51ffbMSg9GIBo6ilFFhy2RFGahhZ3o7AW1EREQ9CSGwe9a+uHWHx3BuwZUY4tJ0euphQdNc/GnD1ZhR9RJaA86esqkPD9Y8tb0fKvAwGK0/8Uuf9lpYtMdxRAMRg9GIiIiIiIjIUs9Qkk6ekAf85GYAman25zliSPBiZjJJcQsMSRNw9UhdGrlqtrJ8WW2ww+iSzeqOo7sVBeczvG61cnxdQ7AHq18TjOZGMBjt0LavlONbfQLf7nKOemIA+P7TXoPMt5/DZ2mT9dOEuOfQNyD++QPEuH0ABMNshv/WRvoCgG+q8/Dt+t7DA6bExhoJnz/yzrZOwrKiNXVfAXcEV06OetjEy9+YqLMI/2lo6x28tdjh9ebOcCGrUIyiHPUHU6l+sERS0a5rzTq56nD7G0Fb79zAXv7z3eDoFG4nVAUA6lvjWw8ndNuGa9u2wWC0Ls0WYQlSJj5g4qcyZ+UnFHV/vcMwdbnS2sjqEwmnwWhLHYZeEhHZFbDRvPhN4J1FbIei4aTdtzr+JxrsrIK+Oi8PFWYDQ9PUZc5+zuaJywBhp+1psRlybJoSm2ok1ldLtHolXv5GPd07P/L7goiIiIiIiIiIiPqOl8FoRP2SLmyrMVDvOKyAolfVoX4QM6APsSOi/qcoNXwwWqZraFTLsDM9AxeJiCgaLuHC5Jyf486xz+D4YVPhESlhp/FLPz6pm4k71l2JT2tnwS9tdAyCVTDawPkuy9eEvFmdI1DfaQnon8ScFeVxHNFAxGA0IiIiIiIisqQN7go5oxRCYFSu/Xnm95PweultR/HmMR5cAAAgAElEQVScJ5XjmrwCNZsqsKJCPe2kbdcUsz//p3J8G1LR/vpT8GkSDTzbLtAe2fIFcgPqxJd3R1+mr/yaxd1eyg//hbXvvI8a93D9NCHurj8R9fnjAQCrKiUyr3HWCfng+7vKm6bE3e+byLnOxI5/MJE7zcS1/zEjCkjThTjFIxhtZK7A3y8RSHE7n/bCFyW+Wmtdpmeo3t+/cvZ51Gy7b8gqFKNI8/CUfhGM5nBdjysSOGPv2C3/4Y8lapoHfsdwu2EfDer7T/tEIMy2wWC0LlbBaEDi24JZDsMWbji2++Vr3bFGaV2kNXLOeTBafOpBRGQ33PTtHwb+8Uw8OWn3a5MoSJYo2VgGo3X+LwQmae41K68HyusHT3tmp+0JF14tpcTjc0wM+62JHf5gYqdbTGRfZ+LjZeryf5gxeD5fIiIiIiIiIiIiSj7tmmC0VMFgNKJkZhUkUMkO+AlX0aF+aqVbeJDnGZHg2hBRvBSmhA9Gy3JF11nDTiBH4QAKkyEior6TZqTjF8PPw507Po2Dhh4NgfCdw1rMJry59UXctf43WNg0D9Lq5jTow8EGUjBagSYYrc5fDa/ZnuDaUDjNAX1Hnswoj+OIBiIGoxEREREREZGWaUptZ0x3jzPK0Xn259tfgtGwehFKGpZrR3905e/g9avHTRopIE0TuSs+005f99R96OhQJ8+5twWjuRHAnu0/Kcs8vnkv+OHCpxmH4/HcqzBjyCkIbDvVl+uWbi8nv/8MSx96CON2XqKtS0++AHD0Iyauf93EuD86C0Xr9PS71ZBvP4u//OUr3P6ORMu2gJ7WDuCJTyXuel9i4UaJB/5r4u73TcxdHb4Trm57dMXpCscvDzCw5UEDH00z8LPwvyM7siTk2rqd995TTUtwGqtQjOIc9fCKRoS9+N/XdOvaKgTvgTNjuyFMeSSybb8/sR2MlkRBH+HagWGZ6o2kohFo9yX3dh9rS9QPN9quqimxn8fizerlDU1DrxDK8UXAkbt1HzYqT71uq5uBxrbEvBenwWgbagbXNkdEiWMVjhvquw3O5rt8i8Qjs03c9JaJ298x8f5PEqbTxm8AcXLI3OIFOiIIfyYa7ETIId6EYv0J3xvfD579y074Zbjg5/d+Aqa9JruFXOtCpomIiIiIiIiIiIj6mq6TbprBYDSiZJbjHoZUkaYcV6kJ6aL4qexQ3yyW7ymCIVwJrg0RxUtx6uiwZewEm1mxE8hRkFIS1TKIiIhC5XiG4YKi3+APYx7BuIw9bU2z1VeB58sfwEObbsa6thXKMh2mF7X+rcpx+QMqGE3/XnTBcNR3mgNN2nEMRiPqzR2+CBEREREREQ1WfosOk+4ev5EHw0rsdVLNHxL+CQ5JYd1SjPKVIc1sQ7viJqvXhp6lnMwQwLhCAFvWI7etQjv7OlcOfPM/BbKO6TXOsy0YDQAmeZfh88wjlPPYY9IqrAoUbX+9X9t3+GLDFKQs3vbUi+YGvHL7i7hgp4XaeugsKgUWlUbe8fjqd3Ox88YZ+P2Yy5Tj735f4p4PZEjYgMRvjxF4+Cx1uJWU+qA+q7CsaOVmChwzAThiVwPT35W478PYdMZeGhIQ9MKXkQSjBf+3yqkoylbvl+0+oKkdGJrE9w7qOmxbresxeUC6B2jz6cs48WMZUFortWFMA4HtYLQEhU7ZEW7b2CVfP93KCmDPGIccJqvXF5h4dX6Ypx/pf0+Ji9Ja9fDf/Vzg4J0EHvzIxJoqYPIuAvefLpDq6b7vleTq533X+xIPnhn/fdVOSEWo6ub41IOIyG57VNkIVDdJDLdxDvaf+SYu+ruEr1t2s8QpewKvX2HA4x64x0Q6TjPh6lqBgujuLSUakKx2pdBgtNN+JvD8XHXp2Uslrjs6tvVKVnbannDBaA9+xBQ0IiIiIiIiIiIi6j/azTbl8FQGoxElNSEE8lOKUepd12tchSaki+JHF4zG8CKigWW4pxBu4YZfap7ujugDNewEqxWkFEe1DCIiIpWStB1x7ag7sazlB8yo+jvKOzaFnWZ9+0o8tOlm7JV1ME4ZcQHyU7r62FmFglmFifU3wzz5cMGNAHofH1R2lGNU2tg+qBXptGiC0dKMDLiFJ8G1IUp+DEYjIiIiIiIiLX9AP87dI7tqdJ79+Y7oJx3F5fqlcMHE+I6V+CHtZ73GvzvkJOV0O48A0jwC8uv/IjdQr51/nSsHPs0FK0/Ixci923/QziM0FA0AvkvfDw8MvwG3bbkf8rA0lHuKcMHOa7XTx9vPx3xgOV726Oz7l9kSFx8ksXtJ79CFnmVDxTMYrZPHLXDPaQL3nAb8/k0TD38cXVDUkpDr6+u26uc1oQhYtqX38JptYTu6kCgAKM7Rj6tsTO5gtEhC8AxDYK/RwLwYbvJv/yBx7dEDNwTEbthHvfr+0z6hq7Nr2/fSzvlAihvoUNzzsaRcYs9RA3d9diqvlzjnufArN+HBaHXq4aPzgKPGCRw1zvrJpGPygMxUoMXbe9yzX0jcfpLEkLT4rl/dd5HHhR5BQkFbE/wZE9HgEXBwKJp/g4mh6od0b9faoQ/GfudHYOYi4Kx97S9zoLA6B1Gpa2EwGpGK1b4UevT284n6cmvVD+4ckOw0PbWt+nEVDRJfOTwvTsR1FSIiIiIiIiIiIiIdryYYLY3BaERJrzClRBmMpgvpovip7ChTDh9IgQ9EBLiEC/mekSjv2KgtYyfYzEpWmGC1oa4cZLiyoloGERGRlQmZe2HcDnvg64ZP8V71K2gIaDoihPiheR5+ap6Pw3KPw/HDpiLLNVR7XuKCG8M8+bGudp8xhAsjUgpRoTgnqOK5WdJpDjQqh4c7BiMarIzwRYiIiIiIiGiw0nWMB4IBIKGcBKPl95frNOuXAQAmeJc5mmxC22LI1mbIx65HpmyBS/NEpnojB36hzix3h0xzRuPbjpb/Qs4lMCHgFSkYbSMULd0TXcBXrL23WF0fqwAnV4KvcDx4poGvbjJw72kCY4ZFNo/KRmBrU/BN6cKCAGjnX9MS/N/qcynKtl5+MtMGo4VZ15dNjm1v7liGrCUj06KdD1Vv0ek+0XRhgJ0d+d0ugXGF6jKrK+NTp2RTcqO9FVuVwHag1StR26IeNyrX3n6b6hGYuq+6bLMX+GJVpLWzT9c26UJwaluAgN0EQiIiB+x+h3dqbLf+Z3XuBwAzFw3OtsxpE24VVEQ0mFntSiLk8M4wBF79lfp4r7QOkE7TCvspO218XYv+s/hmnfNgx9DrKgFT4rsNEl+tkfD5B8dnTkRERERERERERH3HlCa8sl05jsFoRMlPF7qlC+mi+DClicqOcuU4BqMRDTzFqaO14wy4kGZkRDX/zDDBavlsV4iIKAEM4cIhOcdg+tincdKwc5EqwjwhGEAAfnxW9x7uWPdrzK6dic1edZDoiJRCuIT1Q937G/25mfo8gfpOiyYYLdwxGNFgxWA0IiIiIiIi0rLqHO/uFYxmP4yovwWj7de2wNFkJaXzgJnPAgAEgFzNkynqXTnwwaMc55G+7X9nylaMzlaHq6mUekZhYdpeuHP4rWHL5mQAM6+O7GJuRgrw/B5zMXfDERFNr7OxRj1cF4YEhA/LioeDdhK4+XgD6+9z4Y0rIqvAgg2AaUps1gSjvXKZwLBM9b5V2xz83yqsYUgqkJWqHtdvg9HCNDUXHSRw3+kCudH9pr/d6wskzAEcamT3rTWoH8zbJ+xsGztoAgW3Nse+PsnmznftJ+WU1SVu27YKgBzlIFz17lP0jcDS8vi/H932pzu2MSVQpwmEIyKKRiDB4UCvzpfwBwbuMZGO08NAtvlEak6aLN31pdYOoG6QhA/aaXt0ocMAsHiz8/bave2yxuY6id2nmzjgXhOTHzCx060mVlYMvvafiIiIiIiIiIiIEsdrqkPRACCVwWhESU/X+X5rRwUCMpDg2gxedf5q+GSHclxhakmCa0NE8VaYot+vs1xDIER0D5nOcll39ihkMBoRESVQqpGGE4afjeljn8Kh2cdC2IjIaTNb8fbWl/Df2jeU4wdieLA2GM23OcE1oXBaAk3K4eGOwYgGK3dfV4CIiIiIiIiSl9/ingR3j+uITkJNCoZG92NbIsi6rUBtJQDg5Kb3MK3wEdvTDvXXQT79p+2vhwVqUe0e0atcpTsfbZqbt1Klt9vro3b246Xv7Z/GH7jjl2HLjMoFFt1uIMdhgNTJewJP/dJAUTaAwCGoeWO1sxmEUVqr7nBr1TE4XFhWvJ2xj8DH0wwc+6j9QCIAeOsHib1GC20I4a4FAt+uV7/x6ubgcMvPxQAKhgLNW3uPq2iUCEb3JSd9+JV1nYUQuOk4gd8fK1HeADz3P4m73w/fifuWEwTu/UBd7sa3JB46K3k/q2jYDfuoT6IAAl1Ioivke2n4EAGg95urVv9+0O81tUs8+JHE7GUS3663P90Xq4D6VomcjPhv36W1+nElufbnU5QjcOwE4ONlvcctTcBvdrp9psDi4TzVzcDwJP6NasEGiSc/k/D6gTP3EThtLzi6MerL1RL//EaixQucsDtw3v4i6huriCg809lhZ0y8Ol/igoMG1/7tNH+uoS25j7GJ+orVvtRzj7G6vlRaC+RlxqRKSc200fhYBaMtjeAhn50PQLjsnyZWVHQNL6sDzn7OxKLbB9YTUomIiIiIiIiIiMg5KSVqfFXwhzzwMxaaAg3acemuGD0ZkYjipkATzhOAH6taFyPXPTzmy8zxDENalMGJrYFmNPrrlePyPCOQYmieSJskTBlAta8K5rbwufXtK7VlB2LoA9FgV5Q6Wjsu02VxM6NN4eaha/uJiIjiKdudh/MKr8IRuSfh7a3/wNKW7yOe10A8Rta9p6qOzajwloWdfqg7BxmurFhXixSaA43K4bE4jiMaiBiMRkRERERERFq6sCagq8NkJyehJuOLIqtPQm3oSlwZ7S/DKF8pSj2jbE2a3eNmrWJ/OVam7tarXJl7JBqMbOU8cnrMY0R2bDugnrOfwBPnCeRmBrsgb37AwMgb9Sv8uIlAdrrA0eOBSw8RMDqTyNwe5D35DvB47Oq2SROek8zBaAAwZYLAglsNvPiVxFOf20tQmLFQ4iKLcImSXCBfc12zalvAky4kCgBcIhjWs1YRjFapvo6aNHRhH3bXtWEIlOQCP5+IsMFoY4YF9wldMNojsyV+NVlit8Ik2NBizG4wWpMXME3Zte/3IX1oXtffIzS/x3QGCg4kXp/EwfebEYUf+ALAvLXBMKt4K61Tf/YjhgBpHmfb1Z6jBD5e1nt+S8vjv351bVO+JowPAMobgHFJcuzT4g3W0RDB47yv1gAnPN71pv7zncQtJwj8dkowdCRcwNl7P0mc/pS5/Zjx1fnBII57T+v7toJooAv0wVdaMBgt8cvtS3aPlTo1tcenHkT9ndWu1PNwoyg7GHqsOtfdUAPsae/STL9mJ5TRKhhtyWbnXxJuA2hul/hoae9xP5UB67ZKjB3BYzwiIiIiIiIiIqLBakHjl3i96m9otggxi4fUKIOPiCj+8lOKICAgFb8I/bVselyWacDA7ln74cLC6xwHKDb5G/D3LY9gZetPyjoDgFu4sVfWITi/8Gp4jJRYVDmmvqj7ALOqX0abGf5pp9nuvKhD5Igo+RSl6H84z3JF/xTXrLDBaMVRL4OIiChSxamjcXXJH7Gi5UfM2PoSyrwOniy/zUAMRsv3qL+f2802/GnDNWGnFzCwc/p4/F/x7zHUnRPr6lGI5kCTcngsjuOIBiKjrytAREREREREycsf0I9z9zijTPMIFNgIps9MBcbkRVevhFjXvSfoOO8K25MONbtfoCrxbVaWK3cXo0Hzw2G22SMYLcdje/nhPLLPUrzyKwN5mV0dWotyBN69xkBOj3tEJu8CVDxk4IPrXHj1cgOXTTZ6BSOJifvjcP/8mNVvYw0QUCQQWIUSuJLkCsfeYwSeOM+A7xkDlxwSvsNwfSvw6CfqlJ3MVGB4FpCvua7ZGWxmGRhnQLtfJn0wmi78yuG6PmgskB3mvp6PpxnYrQAYkqYv84cZFgl0/ZjdsA8pgcYkCfrQhQGGtgPDNcFoW9W/H/Rrz82VEYWidYokNCESpXXq4aMcBKt2mqS5p2Z5hfr7I5Z0s89IBYZlqsct39L3gXxSStwxy8SQ3wT/ZV5jIvtas1soWqd7P5AYcb2Jfe42MW+tdd3ved/sFaT7l9kSdS19/56JBjqrcNw8TXsUrZWV8ZlvMrMTThSqyRufehD1d1b7Us9gNJchtNeNkuG4KhHsHNLqgtG8PhlRe+0ygM31+vFfrxscnz0RERERERERERH1tql9LV7c8lDCQ9EAMMyHqB9IMVKR5xmR0GWaMPFj87f4d+WTjqd9YctDWNH6ozYUDQD80o/vmr7Am1UvRlPNuFjcvACvVT1nKxQNAAoHYOADEQEjUorggls5LlyomR1Zbut5FKaURL0MIiKiaI3L3BM3j3kYFxZehxz3MEfT6kLE+rNow94kTKxuW4qnN98ToxqRTosmGC0zBsdxRAOR+syHKEJCCA+AQwCMBlAEoBlAOYAfpJQb+rBqREREREQUAZ+DYDQAGJ0XPmxpQhF6BWslI/nTV91ej/euwOysY2xNm93jJrBi/xZluU2eUWgwssPPIzUdxbkCsLgRw67ncT8u+dUflONO3ENg4/0Gvt8INLQBY4cDE4qDnZKtCCEw7UiJL+ZGXT0AQLMXmLsaOGK37sOtwh+SbZNyGQIvXCRw6xGNWPLrCzHKV4YjxsxGk+Ii5ds/qOcxcdu+EgxG673uq5qCQTeWwWgCKBiq3naqGpO7U7PufbkcrmvDELhsssDDH6tn+MhUgV0KgjM9Zz+Bv81Vl5u5CLjrPRPpKcAv9xcoykmyjS5CpoO8t4Y29ApP7Ava0LyQVTJCEyi4tTn29YmFn8okPl0hMWOhxME7C4wdDnj9wNqtwNA04MjdBI4c13ub+7FU4rr/2NuX9ywBfizrPXyZ+isq5kpr1cMjCUabWKxu19p9wLqtwC4Fzudply54zRDAxGLgf6t7j1sSRXBdrFzxssTzmvZNZ1EpMPVZE4vvMJCb2Xv78wckvlU8YMvrB95aKHHZ5IHRThIlK9334eg8YMn04DF9fVtk8z7tKfUBwoYaoNUrkZE6ePZvp3mbzUkSJEuUbKx2JVWLMqEYWFfde/jyBB27RuunMokPFkvkZAC/2ENgZK6zdtNO29PmA9o6JNJTus97ZaX19ROd6mbgznf1C3Zy7khEREREREREREQDy9cNc/ps2Skitc+WTUT2FaSUoMZXlfDlLmr6Bq2BZmS4NE/R7KG6oxKrWhfbnv+CprmYWvAruIQr0irG3NcNnzgqX8DwIqIBySVcKEgpRnnHpl7jMl2aG2gdSBUWT5oGEh6ISUREpGMIAwdmH4m9hxyMT+vexce1b6HdDH/zbLQhYskoyz0UmcYQtJjq0C27NravRo2vCsM8+TGqGfXUHFB3vo1FwC3RQMRgtAFICDEdwB1RzOIfUsqLHS5zBIA7AZwNQPkMbyHEPACPSCnfiqJuRERERESUQH6LTo8exe/8o/OA7zZYz/PQXZK/E70sXwd8+ma3YYe2zcPj+I2t6Yf0uIhY4t+sLLc8dRykUCTMAcg2Qy5ypWXi2AnRB6NdUP8yLnnhaghDvUwAGJImegWS2XHKBQfj7Q+vwBmZf4UZg5tA/rtU4ojdum8r4QLAktGOgVLs0PwhAODUpln4V875tqedODL4pgo01zV9gWBQVbjAON30ldFd6447qQu/0m++WpccLPDYJ7JXm5adDkyb0jXDZ87XB6MBwB2zguP+OFPiw+uMXttof+Qk7KO+FRjj7EE6caENzQvZNkZkqdvM6mbANGVSBXT+Y56Jy/4pt+/LX67pXe+735e4+XiBe0/repP//NrExX+3twK/+L2BWT9K/FjWu/ySzYkJSdxcp15OSZ7zdTG+CBBC3U4s2xLfYDSrYL6JIwX+t7p3gWXlfRtEefMM03EoWqfyeuDFryRuOLb3emqyCP/5fhNwWURLJCK7dMeALgPIShM4PIJj+k4r7zKw2x97L0BKYMFG4LBdI593f+M0GK3JG596EPV3uvM7IHhc19P4IoH3flIcV21J7oBvAHj5m+Bxemf7cccsiQ+vNbD3GPvHvXbbnrpWID2l+7Bojj3/851FMFryf/REREREREREREQUJ2VexROzEiDfUwxDc28dESWXUak7YlnLwoQv10QAW7yl2CljvK3yTtuzNrMFzYFGZLsjePJjnDh9D6NSx8apJkTU10an7awMRotFIKIQAiNTd8Bm74Ze43ZI2wVGEgVGEhERAUCKkYrjhp2JQ7Kn4P2a1/Bl/Ucwob7RNtc9HFnugRlAVZK2I1a2/hT1fBiMFl8tmmC0WATcEg1EvEJMURNCHA9gCYAroQlF2+ZgAG8KIV4WQmQmpHJERERERIOAnPMGzEv2gzk5Nfjv6KEwbz4dcv3yqOdtFYzmVvyeVZIbvpPnGXsnTxiNiqwshTy7900SP2+ejQyzxdY8ss2Gbq9H+3r/6AgADa4c7TxyAvVdL9IzMXyIwLETbC1e63c/NyCG6JcZrZP/9iA6fAdjasMbUc9rsSK8xwwTAJaUKrvW/VmNznLCdy37DNI0kW9xXXPaaxKHP6j/YFyGPhitokE9PFlYhQ85NaFY4O5TRbcO9xOLgQ33db80JoTA4unhL5d5/cD//cOEP9D/e4ZbBev11BD+wTkJoatz6Lah2+4DJlCVRKGAXp/E796QttbD/R9KGJcHtv+zG4p2z2kCk3cRmFSsHr98CxBIQMrB1mb18OIIvpbSUwTGaK5CbmmI73uxDEbTfMZLNgPSKg0kClJK/GW2id2nB5B1TQD73xPAB4vl9nEX/93EA/+NbtnT31VP32gRjNaYJO0F0UBmJyg0UmNHABkp6nEzF/X/4x8nnDbfVqGRRIOZZTCaYtiEInXZ5VuCQcfJqsMvcc0rslsbvbUJuHWmgxMv2G97ahWXqXTH3dFK4o+diIiIiIiIiIiI4qyyo7xPlrv/0MP7ZLlE5NxB2UfDQN+E5FR0lNkuW9mhfsixFV2H9b7gMztQ49tqu3y6kYG9hxwSxxoRUV+anHNcr2EpIhV7DTkoJvM/cOhRyuGHZB8bk/kTERHFwxB3Ds4puAK37fA49sjaX1nm0JyfJ7hWiXNojL6npXR2vxvZ55c+tJvqzhZZDEYjUmIwGkVFCHEEgJkAQiM/JYDvAbwBYDaA6h6T/RLAq0Lw0S1ERERERNGSX70POf18YE1Imn+HF/jqfcjrT4BsqtdPbIM/oB/nVhzRj7aKSt5G17k1GcjWJsgzd1aOy5StOKnpA1vzye5xI8RE7zLHdck2Q+aRlgEAeO83kZ9GTWpfgkn77RTx9HaIzKEQz3+DW84dHvW8vlzTe5hVJ9xYBEDERVXXTTdTWj5FbqDW9qTDvn4N8m93WAaj/fNr657JQggUDFUniVU2xi+oJxZ0QXgiwhC8G48z8OPtBp7+pcBrlxv44Y8GsjN6z2xiscDhu4af3/pq4LOVkdUlmTjp3F4dpw72TumDYLrW5yiL76NN9nfDuPtqLVBjL3PTsYfPElhwq4E/HB9sICcWq3eeNl9we463Gs32MyzCxyfowu/iHXynDUYzgEmaz7iuNX5hlA9+JHHDGxJLy4HWDmDBRuCkv5qYu1riz/+VYb8n7GjxqsPzrMLPGlqT9/uFaKCwExQaKZchMEXzQO0ZC/tm//YHJL5aIzFnuURTe+Lq4DQIqMUbn3oQ9XdWu5LqHG+C5riqtSO5jud7+t8qdXjsR0sBn99+g2K37VEFo9W32l6MI05CtYmIiIiIiIiIiGjgaA40ojmQ2KcvZrqG4Ni8M3DcsLMSulwiilx+SjGuKbkd+R7NUwXjyEnYWSTBaM1JFIy21bcFEuF/tBEQGJU6Fr8ddS/SXRkJqBkR9YUd03fFr4pvQp57BACgOGUMrim5A3meETGZ/1G5v8CJw85BlisbAJDlysZpIy7CwdlTYjJ/IiKieCpMLcGvR96CaaPuxm4Ze8AFNzKMLBybdwZ+nnd6X1cvbvYZeijOzr8c2a7cqOYTgEWHUopKS0Df4SXLpekkQzTIufu6ApQQ5wL4xkF5W91chRAlAGYASAkZ/BWAX0kpl4eUSwVwBYCHAHi2Df4FgLsB3OKgXkREREREFEJKCfnMrfoC1eWQb/wV4tI/RrwMv8Xv527Fw91G5wlYdXfNSgWy0yOuTlzJ0tWQ502yLHNW9o94HeFvuBpqdr8RYrSvFFmBJjQ7SO7PNkNuKEsPpsa4XQJzrjdw9CPOe6Ne4J0J7HaT4+mcEm439jh1CmaMkTj96ch7zTa1A29+L3HmPl2doa064cYiACIeZGXp9r9T4MNxzR/j1exzbE2ba9YDb7+N9Itvxc75Hqypcrbszs+kUHNdtM0HNHuBIWnO5pso2vChKNb1pJECk0aGn8HkXQS+WBW+J/or30ocMyFJNz6bnIR9lNVJAH3/fu0EwQzPAtI8QLuvd7nSWmD/HeNTN6fWbY1PsMsjUwWmTemeGDneIph0aTmwc75+fCyoQhsAYFhmZNuULjRya7yD0Sy2v4kW93YuKQeKcmJbFyklHpuj3oYOfzC2yRVVjb3rrwr96FQXp0AOIuqiDwqNzfxP2F1g1o+9F7KpFnhpnomLD05cMvGWeokpfzGxfEvw9YghwKyrDRwwNv7HJU6/qRMZ2kbUn1hlcquC0cYV6ssv2wLsEH0ee1x8u17/RquagJE27zeLJhitwSK8NhpOgyKJiIiIiIiIiIhoYKjsKNeOu2XMoxjizo75Moe4smGIZH1KJhHpjMvcE9PHPoXWQDN8UnHTVpTerHoB3zd92Wt4RUeZorSaLhhtcs5x+K7xC7SbvX9oaQzq7jUAACAASURBVLbotJ5ouvobcOGusc/CEMEbu1NEKgPRiAaJvYYchL2GHIQO04sUIzWm8xZC4MTh5+CEYWejOdCILNdQiEifbk1ERNRHds2YhF0zJqHD9MIjUgbFd9nhuSfgsJzj0RxogBnmLtg/rrscfsX5m5R8ima8WIVvZzrod0o0mPBK8eBQIaXc4OBftc353gkg9PbteQCmhIaiAYCU0iulfBzA1B7TXy+EGBP52yIiIiIiGuTWLwM2LLcu88lrkFa9T8PwWwT8uxVnlDuG6Zg6Kg9JeRFRShk2FA0Ajr92KrJs/GaYY3Z/SqYBiQkdYdZVD6myo+tFWub2P48cJ3DLCerP8GejgLpHDew6pHve9R7tP+E3U0dCpCYuAevUvQTM51wInP4qtq4sRvOKXFxa/5KjeUx91oTX17X9WnXCNZL1CkdV95tu9mhfbHvS3EAt0NIIOSUbp1S96njRnSFRuvAgAKixFY3eN+IRjGbXniX2FvKPr2W3bbQ/ctK5vbQufvVwwk4QjBACozShA5tqk2edVcbhgaJ7lAC/Prz3NpyZKjBW8z29ZHN8PxOfX2pDtIZlRTbPEUPV+2ncg9Es2qZhWULb5m6sic1nHDAlHptj4uxnTRz7FxNbEvRg7s31vYc1WQSjfbcB+N0bJo57NIAb3zRR3ZQ8+x3RQGEnKDQau1uEyV76ksRB9wUw84fE7NtX/bsrFA0ItvW/fN6M6lzXLl0gpo5V20g0mFntrarWZkiawOg8dfllW5L3uCI9RT/OybG//WC03gXr+zAY7YPFEhe8YOLwBwP4/ZsmSpPo3IuIiIiIiIiIiIgiU6kJHEoz0jEydQyy3bkx/8dQNKL+LcOVFZe2oSRV/SRMXVhYT1JKbYjaqNSxyHKpn0Br1Wk90So073VESiFyPcO3f1YMRSMafGIdihZKCIEh7uyk7ANCRERkV4qROqi+y4Lf3zlhz7NccCmnD8CiQylFxSp8m8FoRGq8WkwREULsAuCikEEdAC6WUmq7fEgpZwL4R8igVAB3xKeGREREREQDi/S2QVaXd+v4LT97K/yEpauBVT9EvFyfxXUsj+La1+4jgbzM3sM76UJq+pr87fHhC514CTIm7YX91fdWbJdmtiHL7J02dXTLZ7brU+Cv7DHT7jcp3H2qgbeuNHDu/l0XZe87XeDrmw1kZwj8cN9QPDS5FFfkfY0H89/BvKsbkXbGZbaXH1M7jEeuWY806cX/1f3d8eQfLe362zIYLVmvT29e1+3lRO8y25PmBbpSqM5a/6TjRXeGRGWn68vogoqSgTbsIwFXs07Y3botCzXhjsQ8CaW5XaKmOfadyp0Eo5XVxnzxEbEbBDNKE6SwoSa29YlGmSJsKhq/miww7yYDaR51ozixWD3dsi3q4bFS26ofZ3df60kXQFbREN/whXChjWOGqceX2QgW3NoksaxcwufXv4dTnjDx29ck3vheYs6K8POMFVX9G9v19fSbwCOzJT5eBjz0scSB95loaGUwBlEs2QkKjYbuO6PTt+uB05828eRn8T0W8geCbUlP66qB+evjumgAzo6VAKDZG596EPV3VjmGuvvNJhSphy8rj74+8aJ6iECnCgd9ZuzmPlYrws51x1zn7CeQ5rFfh56srhECwEvzTJz0VxP//lZi7mrg4Y8lJj9goqyOx4BERERERERERET9mS5wqCClZFB1KCaivleQMlI5vNpXCZ/pCzt9U6ABbWaLclxhykhkaoLRWpIoGE3fJqs/GyIiIiIiIiu6cHpTJqaf1GDUoglGSzMy4BZR3OBHNIAxGI0idR7QLQJ0hpRytY3p/tzj9VQhRFrsqkVERERENLBIbzvMx38HOSUH8rQdIX99GOSaxcGRc2fZm8dlB3VN45Df4jqWqsO9xy1wxt76G57GFSXfzVDy6w+B78OHlonrHwMATCy2fg/5ga1QlTi78Q3bdTqw7dvuA9J7p8actpfAvy8zYD7ngvmcCzcdZyB1WxBOeorA9RfsgKfvPxQ33H06Mg443PayY26H8dt7OR/Q/h0eqrzR0eRvLezqQKsLQwJiFwARK1JKyJcfBJZ83W343u2LbM8jNyQYbZ/2hdipY62jOnSG9Ay1CEZraHM0y4QyNT3BExGCl54iMONKexvV+mrg5W/id9G/okHi8AcDGHqtiaLfmTj/eROt3th1LDcdVH1TbXJ0aNeFBPRsB3Ycrt5YVmxJjvcBAKU1savLKXsCz15gICNVv5NMHKket6g0vp9JrfqeQgDAsAiD0UZkqYf/bzXwweL4vZ9wwWgjc9TjN1uE4FU0SBzzSAAFN5iYNN1E7jQTT33efef0+iQOuDeAD5ZEUGkbDtgRePFi/baj2v8bHXyHrKsGXvo6efY9ooHAblBopIamC+xZEr7cXe9JdFgEOkarsR1o09zD/l4c2/tOTpfQlMTBw0TJStdsjddcf/mpLHmPKazCESsb7dfbbiij6hizXhNKPGYYMOtqwzI83Uq7RX8iKSXu/aB3pTfVAv/6JnnXFxEREREREREREYXHEB4iShaFKeofsCVMbPWFfypkRUeZdlxBSgmyXOqnNDYzGI2IiIiIiAYoo1tcTBcJBqPFi+4cU3dOSkQMRqPIndbj9d/tTCSlXA4gtId/JoBjY1UpIiIiIqKBRj57K/DGX7sGLJsPecm+kJ/NADYstz+fS/aF9Drvoe0PqIe7DGif+Hju/vqe+KfsmVzBaHLzWsgbTw1bTjw+GyIlFQAwKcz9A/n+rcrhk7zLMKkg/FPpAODXdc91H5AWYWpMEhBpGcDIsdtfT6t9AhWrRuHTDcfgzbJz8O36Q7Bl1Wjt9N9v7OpAa9UxOBFhWY58/jbks7f1GlwYqMSBrd/YmkVeSDCaAHB31R2OqmBsu+qT4hZI0zw0IrmD0dTDE7WuD9tVwPuUgUnF4cte+KJESwzDykKd+YyJudui6P0m8Mp8iZtmxDAYzcGsKpLkHi9dEEzPr6XxRepyy8LfB5cQ7T5pK+RqpxHhy4wrBN60Eean256XbwFWVcYvsKCmWT8uL8KvuAL1Q1oBACf91cSG6vi8H23btO3jH5mrbqQ213WfsLFN4olPTdwxy8Qed5qYs6JrXGsHcM0rEsblAdz+jomGVol7PpD4bkMM3gCAL35v4MubDLQ8YeCnO4L/5t1s4OKDDRw0Vj3N7GWKYDSHh5Zvfc9QDKJY0rVHsQwMvum48AdeVU3AUQ+buG2miS9Xx34/b7EIGapr6Ij58npyEiILWIciEQ1munBjoPdxfKcJmuP5hZuAsrrkPK6wOsd2cj5l9zxN9Tno6pCdDkyZIFD1sIELDnR+Ym0VjFbTDKypUo9778fkXFdERERERERERERkT4VXHSRUyBAeIkqw4SkFMDRdYSstQs+6yqhDxTKNIchyDUWmS30zUrO/yX4l40hKyWA0IiIiIiKKKSHU51gByWC0eGnRBKPpzkmJiMFoFAEhRCGAPUMG+QF85WAWn/d4fXy0dSIiIiIiGojk0m+BN55Qj7v9XCDgdza/cyc4roNfcx3LbXE2OXkXdRjNuELgsF0dVyFu5OofIc+x8ZkMKwJ2P2j7y8N2se48OiKgDkYT/1mGY/dICbu4zzZMwTEtn3YfmJYRvp7JbMeJ3V4OD9TgsLavcGrTLOzT/gNGBKpxf+UtyklXVQJeX7ATbX8KRpPv6/PDj235JOz0KaYXGbK127CzmmbgrdKzcXTzHIzp2Igx2dZBe6GfSXa6ukxDW/J2UNaFUCRyXXvcAt/fZuCuU8IvtPj3sb/wv6lGYt7a3sOf+UJia1Ns1p2TYLS61vBlEiFcMFWnCUWagKr65AhSOOwB623mwLHAI1MFlkw3sOpuA788QOCAHYHcjGBY2g7DgkFnvzlK4OubDbhs7ByH7qwv8/qCOAajtaiHp3uA9JTIdupdCqynG3uLCX8g9u8pXNtUkqseX9qVdYn11RI/+5OJa/8jcdd7EtUWwXF3vy+RO83E3e/H7r1M3kXg4J0E0lMEJo0M/usMvD1Es43MXh4McwvV5DAY7cs1EVWXiDR0QaGxPFY6Z38Dz5wffobz1gL3fiBx2IMmHvhvbI+JrILG6j/9CLJOk8QTI05b37b4Z7UR9UtW+5IuGG2yxfWXN5M0cNUqOLbSSTCazaa0rK73sHpNMFrOtktLHrfAMc4vEaLN4hJEk0VbXaqoIxEREREREREREfUPfulDta9COY4hPESUaG7hwXBPoXJchSYwLJRVqJgQAlmaTui6TuuJ1hioQ7upvoGvIKUkwbUhIiIiIqKBwKWJG5IIJLgmg0dLQB2+neUakuCaEPUfDEajSEzq8fonKaWme6PSvB6vJypLERERERENcvKha2I7w62bITetdDSJNhjNpZ/GZQi8eJGBYZldw4ZlAi9ebC+0Jd7kyh9gXnUk5KX7hy+clgHx+ych3J7tg3YrFNjD4h6C/D0mdg8yKxgN8doKiJE7Yfcw94Od0jQLk9t6njIBSEkLX9dkNrbnaWRvxzd/pBzuN4PhaED/CUaTUgLffqwdv7s//H44PFAD1Vs6pfldfFT6C6xdOx5rxz+Ia4/Wv3FXyFUffTBa2Kr0GW34VYLXtcctcOuJBsznXEh168s1tQMnPBaAzx+7Dvpr1DmLCJjAWwvDL2fhRonDHwwg/aoACm8I4Kp/m2jxdp/OSTBafSsQcDJBnOiCYFw9tg2rNveR2Yl9H03tElf8y4RxeWD7vwUb1WVzMwDvUwbm3ezCtCkGUj0CO+cL/Ov/DMy72UD1US9h5bo9sGbZWCxKvRKPHlOF7Ax7O8boYQIHjlWPe/27+H0mtS3qeQ/LinyeExQhrD29+1Pk89fR7QKdbe7oPPX4NVVd+88DH0lsqIl93ey48gjrbeW0vdTjO/zAh0u6v/kWiwAMneb2vm9DiAaKcO1RrFx+mIGXLhHwWJwDhrp9lkRVY+z2dctgNK8L8qV7Y7YsFaeHPq0MRiNSkhE0C7sWCO0x/ds/JOcxRaPFOfaHi+3X2W7J0trew+o1gdY5IdcF8jKdn1i3WwSjWR0XRrLuiYiIiIiIiIiIKDlUd1TChPomDYbwEFFfKExVtz2VHWVhp9WV6Qx61HVCbzbVndYTzSr8rSClOIE1ISIiIiKigUII9U3HARnbhyRTl2ZN+HamJqybiBiMNlhcIYT4RAixWQjRLoRoEkJsEEJ8IYS4Rwgx2eH8ej5Deo3D6deGmR8RERER0aAnm+qBNXFI85j3gaPifk3AvzvM2eQBYwXW3GPgn5cK/PPS4N8Hju375CpZuQnyysOAxYrwsR7E1X+GePkniENO7DXu7P307yV/l9EQry6D+MPfIKa/DPHvxRDFOwIAJo20/gxObPpQPcJlkcbUD4ix4fOwd+1YDY9Upwgs3hzsRasLQwJiHwARlZnPWY6euM+YsLMY5SsNv5zXH0e+RaiQL2T/HarJ1uuXwWh9uK63PmK98P8uBUbdZOLbdTIYkBclq07136xo146rbpJ49gsT+95jYu5qwOsHqpqAZ76QOPXJ7juS07CPZNhm7G4bI3MFJmnu+XpsjsRXaxLTQz9gSoz9g4m/zbW3vJP3FPC4e39fyPZWyDsvhHzwKqBsDVBbAXzwD8grD4M0u9ar9Pshl3wD+dlbkKWrIefOgvzfO5CfzYB852+YmvaNcrlLyoFl5fH5TGo0j1TIy1QPtyMzVWDscOsy7/4Y+/cTLrRxXKH6u97rB9ZXB/9+20awYTy4DODig62PRQ7YESjOUY/7dn33120W4Rg6nyx3Pg0RqemOjeMRInvhQQaW3mnvIKzDD7zvIPwnHKuwnVpXLjDndUi/P2bL68l0eG+H158cQbLU/0i/D/KH/0F+9R5koyLtqp+z2iusmq0z91GPXWTjlLkvNLbp3+nqKtgOjrTbjFQ2AR0h4dxSSn0wWkiYciTH4ZEGo7FJJCIiIiIiIiIi6r8qNCFCAgZGeGw8zYyIKMY6Q8x6sgoNC1emKxhN3Qm9RdNpPdEqNfXPcg3V1p2IiIiIiMiKS6ifmiw1QfkUveaAOnxbF9ZNRAxGGyzOAXA0gGIAqQCyAIwBcBiAWwD8TwjxnRBiis357dzj9SaH9dnY4/UwIUSuw3kQEREREQ1s65fFZbbyyZsdlfdrrmN51Ne9usnOEDj/QAPnH2ggO6PvQ9EAQM54BvCpw7dCiesfhzhnGkTBKOX4c/cT2nC4KeMFxPAiiBMuhDj6LIjUrkSqPUYCRdnq6TI9AZzaNEs90t2/g9EwYb+wRTzwY5x3pXLc4m33c1h1po1HAESk5PPT9SMPPQm73HQHhoXphDzab6OXd0sj9lj+in50SMfk7HR1mWQIudIJFz7UF7LSgmGPVqqagIPuN3Hqk2a3DuqRaGrXT7/06xWQC+b0Gv7ZCon8G0xc+W/1tHNWAI9+0tW4Ow37qNUEXCWSqdk4XIpVc87+6vUlJXDpSyZavfHtpd/QKjHielMbDKZyrqLOct1SyOOGA3Ne7z3Blo2Qt50dLNdUD3nDiZBXHg55+3mQ502CvOUsyFunQt5+LuRD1+CMd86H0DzB57UFcQpGa1YPD9cWhnPSntb740vzJPyB2L6ncG3TbgWA0FRrWTlQ2yJR1QcPkt1xODDjSgP77WD9mRmGwLET1GUe/aT7m48kGO3DJUzGIIoVXXsUr8DgnfMFHplq70Ds//4hUWkz/CecZouwnS3uIqChBlg2PybLUtG9i8xU/TRt4U85ibqRNRWQF+8Lee0xkDefATl1N8hFc/u6WjFllRutO3YCgMm7qEc2tQO+KM+34iHcOfZDH9sMRrN5niYlUF7f9bqtQ38tL/S6QMyD0SzaPauQeyIiIiIiIiIiIkpuuhCe4Z4CeAxPgmtDRAQUppQoh1d6yywfZNphelHrq1LPMzU4z0xNuFizP1mC0dRhlbqwOCIiIiIionAMTdxQQAYSXJPBo1kTvq07JyUiBqNRl30BfCyEuEcIq9vPAQA5PV6rrwxqSCmbAbT3GKyJBiAiIiIiGqQ2RBiMlj8KmHyyZRG5cqHt2fk0YSK6ULCkt9RGh/mTLoU47QrLIjsMF7j1xN6nTiftARy5m346j1vg/tOFMtjpz0dVI8+sU04nXP07GE0UjgHG7xu23ESverv/838lmtulZcfgZAlGk0vnA4216pE5IyDufROu9DScvrd1hUt86ptYejp61pW2yjEYLXbOP9BAbkb4cu/+BKRdZeLGN000tll3fl9UKnHpSyb2uyeAs54JYM7yYPkmiyCQZe5d4P/tSZDLF2wfZpoSF74Yvtf59a9LtPuCy7AKHFSpa3VWPh50OVeG4rvpqiMECjW/D6yuAm6dGd8whV88YaLe4Wd2zISuv6XfD/nui5AX7Q0ELH5cmjsLcvNayNceBRZ+bjn/kf5yHNI2Tznurvek5U2CPUkp8dFSidOeDODMpwN45VtTOb0uUC/aYLTrpwiUhHncwsxF0S2jJ12wQ2fblJEqsMMwdZnlFRLLt8S2Pp2O3A3wP2PAfM6FwLPB/xseN+B/xoD3KQNr73XhF2GC5DpNKNaP+2Jl1/ptjyD4Z+3W5AswIeqvwrVH8XDKz+zPvOh3JozLAzjp8QA2VEe+7zdbBMVu9hTDhADW/hTx/MPRHStlpuinaWUwGjkkH7se2Liia0BLI+Qd50NaHf/1M5bBaBbTWQV4JcO5SU/h6vTG9/aOt52cp5WFXEqqtzjHzwk5j9WdI1mxDEazOHdlm0hERERERERERNR/MYSHiJKNrv3xynY0+DX3bQKo6tgCqXksVuc8szSd0L2yHT6z73/wqOwoVw5nm0xERET/z959x0dR538cf31n0xNKAiQBBAuidAtYaPZ21rOe3tl7OT3b/WznefaznOU8G+odp6fn2bGDDWxYALHQpLcACSQhvezO9/fHgiTZ73d2ZrMp6Of5ePAgmW+Zb7bMzszO9z1CCJEoR4WMy13kbphtpTpSaVxuOyYVQkgw2s/dauAJ4DxgHDAEGASMBS4FJreor4DrgTvi9JvT4vdEplG3bNMlgT5iKKXylVJDg/wDBiRj3UIIIYQQQiSTnvFhYg2790Td+jzsvp+97zee8t1d2DIHN8V83qvz+/YT7/JBI1H/94ivrm46yuHNSx0u3Fdx5hjFU2coXr7QISXkHRZw2miHj//P4cqDFSeNUvz+AMWHVzlcNLplfnQToa3/DpvqgBPj1hlWP8datvttLrUek3BNgUjtTbsu+sLx9gr7HcvmLPKT9/B+nWx74H5w/MWoi+5ATSmFUQcY66XrBnaq/9FY1qdJrHnXTPP6yi1hRZ2BLQgv1Ame61V3+x/EvVM03f/g8vlizfTFmmXrNZEms9xnLNOMu8tl4ueamcvh5Vlw8P0u//rM5XvzjXcBqHWy+Dxzb/T5Y6OBfMCXS2F1ub9xfbgpdyFoMJot4Ko9WV8bhpd59yzF46fZn6+/f6j5ZGHbBDVNmaP5dFGwNsXXrYFF36Eb6tHl69G3nYW+218Aon72Xvj3nb7qnlTxsrXs2Ef8f4n13FeaXz3oMulbeOUbOPUpzc1vmILRzI9xbnbr0nv691B8d5PD0bvY6zz/VXK/lPMT2ji40Fxn/hpYWJzc19sZoxWPnaqYfLmDs2kQmz9rumQoHEeRmhLscR5caK8/4ZMt469tDP63rDJnwAohEmDbHrXlvtL2PRW79w/W5u0fYIfrXYrKAwRvui56+Xz0snmsnjLFWi+sUikO5aOXJhgs7oNtvyM73d7G67hFiJa01vCRYd+sdC18M7Xdx9NWvLYAXrfs8gql7ozBaBuqvMuXb4A1G+P3E2Qva2XZltpeoczdmwSmd81U7NYvwEqAmgb7qKrr7WVV9dEQbyGEEEIIIYQQQgghxNZHQniEEJ2N1/ZnrSXMEaC40XwhXogUeqYWAN6T0G0T19uTPaxym3YeiRBCCCGEEOLnwrHEDbn653NT186mOlJhXJ4dSkrcjhA/SykdPQDRJr4CDgXe0/ZbTn8O/EMpNQp4DhjYpOxapdQXWutJlrYtg9E8Zu9b1QK5Hn0m6mLgpiT1JYQQQgghRIfQNZXw+duJNe6/EyoUgqv/gf7tMHOdqa+hL38QlRL/kDBsmQSe0gmCiYLSX7/vXcFxULe/8FOYiB+HD1ccPjx4qMuYAYoxA5q308Vp9gahrTWJrokDToCHr/GsMrbmc2vZomJ4aaZ9Im0Xj2CCdjP1Fc9idfFff/p5n52gb3d7iNXow3fH2W7klgUHnWwNTPzH2j9wyLbvxCwf0eQaoHzLNTuryjrv5GQ/4UMdJTNN8eX1Dnvd4T9wadxdzet+cZ3Dntsr/jZFU2O4oeQ5/47/3Lza9deMr/0c/ew9qDteZME6/8/nD6s1hw9XCQSjaaLZ+h0nYnttWD6bjtpFcfpoxdPTYxtqDWdPdJn9Z4fs9OT+Xbe86f/1UZAT4ZnKK8k7/YlAIQjNvPFP31WPq3iNywvuxTXc4ef1b6G4QpPf1fvxWFOuOe2p2NHe957mioM03bK2tLcFRPRIwhnB7lmK5851yLnU/HjPXdP6dTRl3TY1ef0N6q14+4fYinPXaAb3Tt7rLPzYljC0ZNpze3vZ699qauo1WemK2gRuhruqLBoAE2R/SwhhFrF8zLT1vtJJoxSzVgT/tNrm/1xf2y393efoW86AdSt4MPcS/lh4j2f9lanbULik7YLRbH9ptsfhm2nfTgirSNhapL+cghp1YDsOpu1Yv7HGOxgtL9te1tmC0bTWrI8TjAawdmPzIHMTWyijSdPg2XKP25l1bxEyd8peim9W+t+eb/TouzrOdq+mAXIyfK9KCCGEEEIIIYQQQgjRCWitrSFDhRLCI4ToINmhLnQJdaMyEnsnmnUNqxmUbb674tp68/asZ1ohIRW9ljrHYxJ6VaSC7qk9EhhxcjS49ZQ2lhjLCtL6tPNohBBCCCGEED8XyhaMRnJvTi+iwrqROtd8IZ7XMakQv3Rb4VR2EY/W+m2t9RSPULSmdWcAewM/tij6q1KGmZGWboKOMcE2QgghhBBC/DJ89hbUe8w29KDGHx39v99ASLPMONy4HmZ95Ks/azDaVpbTpdetQF95hHel4y9B5XfgRVupHsleoa0/11zlbwO7jPOsM672c3arm20tf/1b86FkXnojoQnXo1/6B3q9+U6l7UF/8IK98LBTUZlbZnSHHMWdx5lnfx8wCEZt22Lhob+1dr1/zTSOyPyu2bKQA1cevOW0T/88c9uVqypw77oI/czd6FWL7OPvAJ05GA1gj+0Uq+5O/NTa3ne6/OZxl//NSPwUycyM3aI/fPI6ruvy+DT/fc3Z9FYJGoxW3gnCB2whASGP18b9Jylr+MDiEnj4o+ScqtJa8/pszTUvu3y+OH79I4bD18fPYunXeRww/4mkjMGPwsg69qn5xFr+8qz4j8f4u81PRFU9zFjefFmp5XXTwyPoIoisdMUIy0f4wmKob0zeqUjb66/ptmlwb3OdJSXEDcsYVAi1D8fftqy5t21C0QB6dVHWv6G6Ht76PvpzbWPwvmsaOl+IiRBbK9tneKiNv/n7/f7Kum8Zz8kTXGxfXX27UnPjU6u58NYfuDlyGgf2f4er4oSiASxO2wG+/aRZvx/M05z0WIS0CyPc8KrLkpLEPwdsj7NXwI8Eo4lAwh4fqLXV7TeONub1LvTao8lKg1TLOajSTvbwVNbZz6M1VVwZv06Q47SVTYLRNlr2s1JDkJHafNlF+yq2CzB/x+vxrq73bluZyG3WhBBCCCGEEEIIIYQQHaoyspFa13xisCCtr3G5EEK0hwJLOKMtzBGioWkmhU22Z1lxgtE6UnHDGrTlGzcJqxRCCCGEEEIkKmSJk9FagtHaQnXEfvFgTqhrO45EiK2LBKMJtNalwCk0vyZ9ELC/8qRE5AAAIABJREFUpUnL6XuZCay2ZRsf988WQgghhBDil8EzXMlLtx4w5vCfflVv2L/k1x++5D2GTZPKwxFzeUoCR5M+spvbhF6xAH3CQM866rJ7Ub+/u51GZBHySJvL+nmk/qsDT/QuB54outBa/uM68/L8isXw3/vQD16FPn8ceuXCVowyOO266Po6+HiStY4aNDJm2al7O7x8kcNhQ2GnAthre7juV4o3L3VQqvnUcJWSinrsY3PfwH9/PIabDo+w705w1AiYfLnDQUO29NEv1zzVfHVdFpE3J6In3Ig+dzT6++k+/uL20dmD0QD6dFcsvsPhtL0TG9SLM1u3XZyTPuSnkzkX3buML5cGaFsUbWkLebKpijPhvT1EbK8Nj8+m3GzF46faK7zQioC6ps59WvPrR1zumezd36794D/nKF7LvZ/dbhtHGgkkTLXSeeX/tJa9N9d7/GXVmuWl9vIfipq332A585eXpGA0gOfONT+/Edf++ZEIP9um7XqYtwkbqmGlx+N2yf6KT69xSE9VlD9of70uvM2hoGvbbgy/udG+/imbXh+1CQb/rCqLX0cIEV/ER1BjW8hKV3xxncNJo4Kv6KVZcNnzmnCLD/PXvtHsfmuE278s5Incc7i11w1My97XV5/z0gZFf/j6fQBuedPl4PtdXpoVDSi68x3Njje4fLZIJ3RMamuSnWZvI8FoIpBGjxfMzykYzePtpzw2J0op6z5jWU3nug/XBp9P193vxj8ICxKMtrpsS+XyWnPD7lnEnGfITldMv87h/H0Uu2wD+3ifOvMORouz3esMx5FCCCGEEEIIIYQQQohgvAKGJBhNCNGRCi3bIFv4Gdi3aU1D1kIqRJaTY6xX5TF5vT2ss4w/RAo9UgvaeTRCCCGEEEKInwulLHMwtGVCqWgVr9DtbAlGE8JKgtEEAFrrWcCUFosPs1TvzMFojwDDAv47JknrFkIIIYQQotV0ZRl82XLX3B910R2ojKwtv2d1gYN+Y6788SS0YfKt/uBF3DN2Rx/aA/eaYwmXmdM7Uj0yvGL6XF+Ee+1x6MN6Rft+5xn/jZNAP3q9d4XTr0WdeCnKK1GnPXTJhZ59Ypc7Dow/uv3H0xb2O847AA7Ytf47MnVtoG57hUu2/FKyGv3svYmMLjC9YS3udSegD+uFPqibd+XBexgXH7ub4u0/hJh/a4jp14W4/ViHjFTzrHA1dC/YzRwQkVW1jhvX3sxHV4eY9PsQBwxq3ke/PPOwIiqFtSmF0V+qK9AT/uz9d7Qja/hQJzubtX1Pxb/Pdlh2Z/sPrDyUy5qU3nybPpwnFm0bqO2KTZv3IBPuASrrgtVvC7Ywt1CcfJYjRijOHGOutLC4lYMCHv7I5V+fxX9Al97pMOvGEKdsX4T6582tX3GCTqqwh6R+v8o7rOH71fZAns3lTdlCFHpkJy+9Z2C+PQxoZRKDuPwEo9m2uQCzV5o7+P0BiodOccjb9Jh0zVS8f6VD7pZdO/rnwbxbHAbkt31CZFqK4tzx5vU89emmYLQE8/wkGE2I5LBtj0LtsEtS2E3x/PkO7oQQ7oQQlQ85cQN1Nnv4I03aRS673RJh2gLNizM0xz3qokls2zY/fWcA9F0XUVyh+cvr5gdm/N0ueZe7nPqky8YAYUq2xzktxR4YLsFoIpCwxwumvqb9xtHGPIPR4rRtuj/U1IfzEx5Om1jv89vuqT9CbYP3dihIjmPT4N1yy0umu+Xb/IKuisdOdfjmzyGm/tH7fE2Zx8uxOk7wWWc4jhRCCCGEEEIIIYQQQgRTbAkYyna6kCMTNYUQHahpmFlTtmA0rTXFDUXGspYha7btW7XH5PX2YPvbeqUVElIBLugWQgghhBBCiCZCmI8nXOLf/FME5xW6nR0yB3ULISQYTTT3bovfR1jqbWzxe68gK1FK5RAbjFYepA8brXWx1npOkH/A4mSsWwghhBBCiKT4cgqEE0iZ2GU8HH5GzGK1//Hm+pVlMOODZov09HfQfzkVlsyB2mr4/G0aXplgbG6bAN6SDjeiLz0YPnsLaiphyRz0HeeiP3rFXwcJ0OXr0R+9jP7sLfT0d+DTNz3rq+MvbrOxBKGUgl+dFlsw5ghUbqDDrk5L5ebD0efGrXde6ZOB+s2PlDRf8NbEQO2D0nO/Rj//APrX28Knb0BtnNnPOwyFwaOSsm517xv2wmfvRa9baSzq7xHSsyqlycU9sz9G13Ts3Q03s4Uu2YKPOlr/HoqKv7f/qbYf0ofwdo4t295ufVV0Mn7QYLSqOBPe21plnea9eeYyP6F5Z401v4Aq66C6PuCD0URJpebS/8Zvv10P2LaHQofD6NvPAUNIaVtTN06M/g+8vNIcoLpkvaLG4/H4ocj7b333B4276cVV26CtAVo9kvjdTWqKotCSUbm6PPHntiU/wWjbdLe3X7DOvLyX4bE4YJBi0e0Oz52rePECh/m3Ouxc2H4bwZH97WX3THatARePnar4/Fr7G3JlafKeDyF+yTrTvlJ2uuKDqxzeu8IhO91fm29Xwf5/c/nNhNZdPLE0dfvoD+UlTP7Bu6+NtfDcV5pjH/G/Tq/tflaauUyC0UQgXvuDtZZ02a2Q16e/irPd6pFtXv6vzzSPTg0WdtiWNgS4DdiXS73LgxynNQ2d3WjJme+WyG3OWqhpgLpG88DiBaPZxiWEEEIIIYQQQgghhOi81lpCeArS+kavcxNCiA7SMsxss7Lweurc2C8lysMbqNfmi1xahqxlh7oY61V10mC0AstjIYQQQgghhBB+OMp8zb+rI+08kl+GakswWoaTRYpKbefRCLH1kGA00dSyFr/bZt4vbPH7tgHX07J+qda6zFhTCCGEEEKIX5oDT0I9+QWcciUUeKRRtKAeeNd8wdFeh0KW+Yt6/UXzbGT9evMwKg3ckH65sW2K3xuMfT8dVi2KXffk//jsIBj92Vvokwej//xb9LXHof/v15711SV3ofIK2mQsiVDn/gVOvxbyt4FuPeCIM1E3Pd3Rw0oqdcldcOKl0b/PIs8NdoiYHy6JXykJtNa4t56FvmAc+uFrfLdTD05J2gWBKi0djjjTWq5P2BEdiT0BnZsFqZb3bUlKz+YLllpSp9qZn/ChziYnQ7HyLofDh7XfOuekD2Fu+uCE2q4qAx0wQ8AWhNQeFqzV7HqLPcjEz2ujtyU4C2BNy1sBBPC/r/09kPvspNDr16DPHAmzpia2sp13Rz0yNRq6GEQohHpyOuqQU6DvDgAMrZ9jrKpRzFtr7+rrOEEOReXw6aaP/w0eeR55lpCLRNkCyf79eTsEozU5056VrqwBHja9zLtr5GYrTt7T4fiRiozU9t0ADuljX981L2uWbTCXZabC3jso9t7BXL4qKbfIEELYtkehDvrmL+QoDhysKLnP4ZrD2m979dO+bEMd8xf7+zCf+iPMX+Pvs8G2r+QVjFbb0DlCmsRWIuwRjPbVe+03jjbmddwR73B5+Db2Cpc8p9nhepcP5nX8+25Dtf8x3P+ed0BjkGC0dZVQvymwrNwSQNY9y39/XlZbTtdUxwmELKnq+OdHCCGEEEIIIYQQQggRzLqGVcblBekSwiOE6Fgtw8yaKm4oillmCxWL9tWn2e85oa7Gep03GM3+WAghhBBCCCFEPI4lbsildTc9Fma2Y8scS0i3ECJKgtFEUy0vlbbdO7rlDOkdA66n5ZS4uQHbCyGEEEII8bOllELtvBvOxXeiXlgQDT7Jzfduc99bqJQUc1l6Bow90tzwlcdwL94f99zRuA9eCZ++2az488y9aXDSjU1TfB5N6om3mws+e8tfBwHoqo3ouy6Eap8XIBx2Kupkc/BbR1GOg3PezaiXFqFeX4Vz7eOojCTNXu0kVHomzmX3ot5YjXq/HHbfL6ZObiRYYkrfcOxFH6ZwsNbQ4Ub0abvClOeCNRx3FKp7z/j1AlAHneRZrh+IfV0rpci3nCctCTXPRddP3pTw2JLJtZxH78zBaAB9cxVvXhbCnRAi/JhD9T8cTh/ddoOekz6UOelDrOUnjrSve2VZsAn3AFXF63EvOQB3fHr03wNXoEvXBeskQVe+4LJ0vb3cTxBMofnaNaB1wWizzdcDxzg+8j762O1g+fzgKznqbNSHlThPTkcNH4167BP/bX91Os7UGtTOuwOgnvoS+u/E9o3LyHRrjE2+v+Sc6HN8TH/cyw5Bv/wI2nVpDGsmfRv/hfPCjGidUo9gtKDhYfH0zTUv/3wxhCPJCWPwu23a1p7/adSnW+fbuA3tk9g2NzMt2sgWVGcL1BBCBBPppPtKGamKO49zeOiU9hlIcagXm7fwG0v8f5h/uMDf54JtX0kpyLQEo9XECQgSoplG7xeMrjPvq21tvN5x8bYWx+zqXaOsBs6a6FJd37HhW+ur/Nd94zvv/dMgx2law8Li6M/llpdLd9u3/i3EC7a8/lXzwGrqvfst7ti5QkIIIYQQQgghhBBCiASstYXwpEowmhCiY+Wl9iRVmb+sNYU6rrUEPXYNdScrlNNsmS0YrTpSGXCUyaO19ghG62NcLoQQQgghhBB+OMoSjKYlGK0tVFuC0bItx6JCiCgJRhNNtZypbZtq+kOL30copYLM1B8bpz8hhBBCCCEE0ZAsNXw06sWFsO0gc6VdxqP2OMi7nx2H2wu//xwWzIKXHo4pmpJ9sLVZmjmHLVZFqc+KSTDtVSgr9le393ao659s2/G0glIK5fy8D9mVUqj0TNg+NtCpe8BgtP2rp8UurPF3IYquLEevWIBeNg9dvArdUI9e8SN6ffM7B+qrjkwoyEgdfnrgNnHttp93+WsT0AtmxSy2BaOtS2kRvjjjQ/Sz9yY2tiSyTQTv6LCPIBxHkZmm+NeZikmXOAzpHV2+U4G9ze/2Ulx/uGKXbWDvfo2cUPEy/RtXWOvPytiVH9MGGsuOGeHy/PnKGj61dL22hqrYVM78Cr77bMuClx9BX3E4uiHOTPhW2lijeSfOGSQ/r42cDEWOOfOTNRsTD1JYVRq/7c71Czjk38cm1L+67X+oPz6CSt1yUZ/KzEY98G78xiPGoq6b0Ly/7K6oJ6YT2u/XDK5fYGw2J31w9IfSdfDNNPQDV6DvPJ/5a+2BC009MlVT36hZ4bErkJf0YDT7i2D6kuSsw++2aXBv/xurFAfGBr31RDvIy1YM9M7nNcpMjf5vez5WlXVsaMlmFbWaxcWahnDnGI8QQdm2R6FOsrN06l6Krhltv556J4MqJ3qx+uoi/xejL9/gr5722O5nWYLRqiUYTQQRDnuXz/ywfcbRgVSczdaBllNiTa0qgze/69jP9A0BgtEAvvDYPw0aYD2nKNpgo2U/vVuWv8+Gk0Z515v0rcY1DK4qTihdccfNFRJCCCGEEEIIIYQQQiSgwa2ntNF8HV5h+jbtPBohhGjOUSHyLYFgplBHe6hYbNBjdsh8kWWVZfJ6e9gYLqVe1xnLCtNkmyyEEEIIIYRInEPIuNxFgtHagu3YMsdyLCqEiPp5z7IWQe3V4vciUyWt9RrguyaLUoBxAdazX4vf3wnQVgghhBBCiF8clZ6B+ssz0DWvecHeh6LumRS/g4L+Ca23NJRnLdtjO5+T7V37iTD3+hPR9bVBh2Wk62rQf73Ad311+wuoeDNvRbtQubGJK67ljhM2e9Z9HbuwxvtCFO266Kf/ij68AP27EejTdkUfPwB9YFf074ajj90e97az0TVVuGfvCbOmBhoTKamo82+FcUcFa+eDCoVQj3/qWUefOxr96RvNluVbbiBRHOoV237i7Ul7fybKGj60FZ7NUkpx1C6KH24O4U4IMf/WEP85R9Elo2kd+MOBiolnKW77tcM3fw7x2alLeH71aSxZNIh/Fp1n7Pu7jBHUOZnGsqsHL0IpxYDYpxiAOUXBJ9xXOYYkqyU/wKQJscuT6P158euEfL42enczL1+z0f94WlpZ5l2e6dbwz6LzSSVO8EVLOwxFPTMbte+vjZ9bauT+qCsfhC651i7UDU+Z22bloG5+lqFqqbHdnPShsQvffYblD9/ne/iZl7gc/Q/zvkDXDEgJJfezeOwAe9m+97g0JiEAy28w2pAAN2QdMwB65HTO/ZKpfwy+0c3cFBRke6+VdIJgjLvfdel3jcvAP7n0vMLllVkSjia2PrZw006Si0a3LMUbl7Z+x+2simeomp/L/EXDrHVKQtH7/iwv9f/H1zX6q2fb7iuFNWy1ynxNuhBm4ThJesuCB3R3RraQQYB479yUkGLy5fG3J09+0sHBaNXB6q8ut4/X6/Eymbsm+v/GWnPDbuZDxhi79Vc8c479GWkIw4zlscur4+RkSzCaEEIIIYQQQgghhBBbl5LGNWjM5xtNQUJCCNHebNuidQ2rYpatNSyL9hEbKpYTMl9k2ZHBaLbxg2yThRBCCCGEEK3jWObvuTrSziP5ZaiOmC+ky7YciwoholI6egCic1BKZQDHtVg81aPJq8CIJr+fBUzxsZ5BNA9gq/bTTgghhBBCiF86teMIeLMIipZAfR30KER16+GvcX5idwSrdyyzvIGzx/qccK497hDwyevoh69BXfn3gCNrsYoF36DP3dt/g4NPRg3cpVXrFEmUG5vYNKLue9/Nby++0TyJuqoCCjwaTn8b/cRN3p1PfhY9+VnfY1GX3QuDRkFKajTMKN3nzOMEqCF7oI85FyY9aa2jrzsBXliA6r0dAPldFBguWixJMaRm1dXA0rkwaGSSRhycn/AhXVYM7z2PXr0Ytct42O841KbkNF1dAW9NRK9ciBq6Nxx4Iio1rR1G7s9v93I4fnfN3DVQH4ZBhdA9q8WrefGW98Lomi8CryPvh8lw4GCG9lV8tSz2AZ2zWpOXHSw9pcox34lEv/gP1ImXBh6jXyc+Hv+OM36DYHp3g4WGGxsXlQcc1CYfzdfMW2MvT3PreW716exlCnFs6cCTUNc8Bit+hOwu0HdA3CBPdeyFcOjvYPJz6Psua1548MmoPtvb2zoOQ7bNgHWxZXPTBxvbFP2wEHrH/Uvi6tUGN7U5ehfzdm6zf3ykueLg1iUGWQNyPnoRvWQJ7H88qv9ODOvjPZamdujVSVKMDAq6RgMbz/yX/3SOzNTo/7bnuKQqCQMLIBzR/Hu65qWZmslzYsur6uGEx1wW3e4Efi5cV/PabPh4oaZvd7hwX0WXjM77fIqfF9v2yG9QaHsYP1Ax/1aHQTf6v3Pc3euuZfThI3EO+g07F0JuysmwZBgFWQVwu7lNcagXWW4t34YG+V7PylJ/2zWvfVJrMFqcgCAhmmn0DkbTy+bFDQ7bGgQN+mrp4CGK8QPhk4X2Op8ugopaTdfMjnnENgTcx1nvUT9ogPXcomiDcku+efcs/339bi+HjbUuv3/OPIi5azR7bt/8MY633SuplBBaIYQQQgghhBBCCCG2JusaVhuXh0ihZ6rXBVlCCNE+Cg2hZgBr62O3X7ZtWqEhVCw7ZL7YpSOD0Wzj7xLqRlYop51HI4QQQgghhPg5UViC0fB/3a/wr8oSjJZjORYVQkR1oukRooNdAzQ9oxcB3vKo/+ymOpsdp5Qa6HM9Tb2gta7zN0QhhBBCCCF+2ZRSqL4DUDsM9R+KBgkHozWQaly+53YwqLfPSaZunBNhk58LNqgW9OTnAoWiqQtvR13/VKvWKZKse2wo1/D6H3w3v2rDA+aC6o3WNrqhHv3q477X4ctJl6FOvBQ1fDRq8Kg2DUXbTF31j7h19Ek7o8NhwB5QU5RiTjjSD1+b8NiSwRpCgUbX16LXrURfuA/6oT/CK4+hb/od+s7z0Fqjy0rQF4yLlr02AX372eg///anx6KzSE9V7FrYwF6FVXSjCl1TueXf6sXom0//qe6OjYvpFTakeXnIm/4/tNYMzS41ls9bG3zCfaVjuZhqzTJ0hXk9rXX1i/6+VPEbBNO7m/kzLJFgtAfedznwPvv4tmtYxsyle3NU1dvxO0vLQF10ByozG7XzbqhtdowbiraZyuqCOvYC1IOT4aDfwMj9o33d8M+4bYeOH25cviK1PxWGILxVKcm50+iIxHZPPGWmKY7f3V7+0Ica3cpUDuu26asp6Cf/gj5vDHrWVMbuCCk+X5P981o1pDZ3+miHSZf4/yohc1MGZU/L5qKkklY/D365rubg+13Oe9ocitbU/2YEH9Np/9Sc8JjL3z/QXPOyZrdbXNZVbOknEnQjK0QAtkMtv0Gh7WWnAsXc039gbM1nzZb3aSxieN33P/37dcUk3tZXctXloxl7wcmMHqDIy1ao9AzU4FF07b8NaZbbPZWk9GJ61t5oy53rTFaW+atn21w5StElw1xWKd96iSDiBKOxbF77jKONeX0i+tzl5aDB3hXrwzBpdsd99m6oCrbuEvM1TkACwWibgprLa8zl3QOeorh4P/v2dEVp7D5OvGC04o6bKySEEEIIIYQQQgghhEjA2vpVxuU90woJKcsXNkII0Y4KDKFmAMWNRbh6y3THOreW8vAGcx/psRcv5YS6GutWRyrb7VqXlmzBaLbHQAghhBBCCCH8CqmQcbmrJRitLdhCt7Mtx6JCiCgJRvuZUUqdppQKdAsWpdR5wE0tFk/UWi+3tdFaLwT+3WRRGjBRKWWZBgJKqWOAM5ssagBuDjJWIYQQQgghRAJ69oHM7MDNGlSacfku/QLMtI93IqwmsYsF9FsTcY/dHn3bWf4a9OqLeupL1O+uRqXIxVmdSm5+zCIHzVUb7ovbdEzN56Q0y+zeQl9yAHpx84A1vWAW7vlj0Qd3hy+nJDZekwNPQl1yV/L680kphXrOR4jct58AsE2uuXhB+s7mgtkfoxvizG5uQ7awD/XQVeiDuqNP2BGKljYvfPc/8ONseG0CLF/QvOzTN2D2tLYZbAL0nK9wz9kbfXB39KE9Y/+dPKRZfQWMrv0y0DpyV38LH7zAgOkTjOUlGyPW0B5b0EeVLRgNYLH/UEO/GsKa+97z9znhNwimnyWEav7aYJ9HxRWa61/1bvP5sn0Z3LDAsw4ASqGu/DuqoF+gMcR0s/t+ODc9jfPAu6jfXoUKmb+oamr4yG2tZXPTBsUsK0rt06oxbjZ6QNsk9xw8xN7vsg3w9PRWBqNZtk2hzRdV1lSiJ95BXrZi35389dnZg9EAjtpFUfaAw5gB3vUy3Fp2+F0P3PHp9Lx6H2OdxghsrG2DQW6yslTzm8ddnPMjpFzoMu1Hf+1mLQ/22nj7e81/v2reZsn6aADfd6s0Y/4aIfNilyF/jvDqNxKQJpLPFprjNyi0rWmt0c/fjzs+nZ2u25Npyw8mPC/rp38rFu3IN0v3+unfy2fXc9gTD6L2P87Yn1KKXrbAxVAv1ocChIfjP6TH9jgrBTnp5s+c6o7bhRZbo3CcYLTl89HxQue3Al6nfvwGow3tE7/iCwkEnSbL+qpg9Us86gd9yheuix47WYPRsoL1B3DMLublf3ldk3mxy263RPhgXvTxjrfdq5TtohBCCCGEEEIIIYQQWxVbCE+hhPAIIToJWyhYWDdS2ljy0+/Flu0ZQEFqbB+2YLRG3UCD7pgvPNY2mMMqJRhNCCGEEEII0VqOJW7ItczVE61THTHfTdV2LCqEiJLZ4D8/5wCPK6VeBF4Apmqtq00VlVKjgOuBY1sUrQb+5GNdN21qu3lq9RjgfaXUuVrr+U3Wkw6cD/ytRfu/eYWvCSGEEEIIIZJDhULoPQ+Gaa8FalfvpBuXp6cG6MTPTM5wI6SaQ9hM9NRX0X+9wF/lgbuizv4T7LoPKqeb73WIdpQXG4wGcETlO/ytx5WeTX9f+qhnuT5zJLxZhOrWA11Wgj53dMLDNDr9WtTYI2HwKJTfmdxJpvoNhD/ch37Q47H67jMYuf+mSeSxk8TXphSyPtSDnhHDnRF//AaG7Z28AXtwXc30JTBjuUZr+KHIXM8WhreZfvcZeMX82tAzp6JGHdjaobaKXrMM3vsf+ok/B247pmY6r3c5ylfdbpFyUoigbz6dvMy9YbtrYurUuyGqasKYThF2y4TKuth+Kz2D0b6H3cxBSIn6zxf+gw38BsEMseR6zVsTfR06PhPWXpqlqWu0l+9R+zX5kRJ7hU3U2X+GX52KKrQHlLWl/nmQkw5Vhmv35mQMZe+6r5stK0rpnZT1jmmjYLST91Bc/Ky2BtmcNVFzwkhNtiXMJp6IpV+HJvs830xD19UwsCCDD+bHfw33z+uYz5CgumUppl7t8MlCWLBOc/MbmnUtgoV+U/ESOZtOR+dHiq19lVTGD+ioqdd8sgiKyjUHDFJs2yP+4xRxNSdPcJm+JG7VGLNXBqv/78/Nz+3T0zUPfah/2obOXwvHP+oy7Y8O4wduHc+1iIZ6RdxoKFbExf6zjh7yRLRHnYT60XHbzi0yvwY7aLc01osPoR++1ldVdceLqPFHx62X3wVWl8cuL0npSZqOEy7VQnFl9HmOtx9vC3NyFORYgmQr6yQMUQTQGOe1W1sNxSuhg/YVk8XrXeF3szXMx9yOKXOhrFqTm93+G8Ogwa8bPILRbI/Xdj2iYb8thV34cZ19DN0ygz8e2+SZzyFsXt+3q+CIh1y+ut4xHks0JYGRQgghhBBCCCGEEEJsXWzBaAVp27TzSIQQwiw/zX5jx7UNq+iZVrjpZ/P2LFWlkZfaM2Z5Top9MnpVpIJ0x/IlcRsqbjBfSFko22QhhBBCCCFEKzkqZFzu6q3/Zq6dUXXEfFfnnFCXdh6JEFsXCUb7ecoETt/0z1VKLQSWARuBCNAD2AUoMLQtBQ7TWq+NtxKt9Sql1HHAZGBzisFYYK5SaiawBOgG7A70atH8TeDGYH+WEEIIIYQQIlHqV6ehAwajNShzWFma+ZyXmZ8TYY31voPR9Ia16BtP9r169dQXHRZYJXwq3A5yukNV84SDHHPG90+eKjqfkypfjt//5GfRJ16KPjrJF4GMPxrnvJsxewduAAAgAElEQVST22eijr8YKkrhX7cZi3V9LQoYZr8WiDnpg9m35tPYguXz2yUYrSGsOfVJl5dmxa/brzFOcs3UV+2hjP+9Dy64NfgAk0R/9DL6trOhwZA45sPIOh8P0CY9IqU//ZwXKbPWKy3agOkUUY45G5NaJxONObxAz/0KxSW+xxjPbW+5/HmS/2ARn3lmDOltnuBf0wDLS2H72GvejP73tffYzij/T9w+1N/fQyU5TC4opRRD+8CXS2PL5qQNjllWHDIHWga1e/+kdBOja6Zi3i0OO99o3wd55gvNhfsmtn9g27w0C0YDKCumX56/P7J394SG0iFSQor9B8H+gxTnjHW586wHeSrlWDLcOo6oeps7i7ec8u0VXm/tp6QKBprOTm+ydqPmVw+6fLvpprchR/P02YpT9vROQHznBxIKRYNo0IhfVXWaF2eatwGrLJvcfe9xqXnYISPV32tPxwvGarNArs11dMJtE1l/bFsf60/W42FoawvD2hr4DQptS3rFj+iH/uiv8pjDfYWiAfSyfO9fEupJN9d8sYBNfTgaCtolznXrtqBNpez7S/ECgoRoJuyRtLvZsnlbfzCax3bV72mbgfkwvC98b56/AkBjBF79RnP2uPY/FxS27Cf27gZrNsYuL66wPyi2bc/OhdF9DdO6Zq/U1FpeTvECaU365cav0xCGZ7/UEowmhBBCCCGEEEIIIcTPiNbaGoxWmObjDhZCCNEOMpxMclN6Uma4NmVdw2qGMWrTz6uM7fPT+hgDALI9JqNXRyrpkZqc66b8qnfrKA2bb8yZL9tkIYQQQgghRCs5mC86dom080h+/sK6kTrXfOdTr2NRIYQEo/0SOMDOm/7F8wFwptbafNbPQGs9VSl1LDCRLeFnChi16Z/Jf4HztNbyiSiEEEIIIUR7GXNE4Cb1tmC0IEeStvSQphob4lbRa5ejn7oV3n3G33oLt0U9/omEom0FVCiEHn80vPN0s+U7NCwlpMNEVOwLrujUz8m/IX7gEIBe+B3qIx8BagGpS+9Jep+JUkqhzr4R1xKMRiR6+F3YLToZurwmtsqK1NjwnggOf/8qj3cWRNv/fn+HX+9mfk+9P1fzt/dcqurgsGGKKw5SZKVH606eo3l0qsucouhk+IEF0b6OGLGlr/99rX2FogEMr/vBu0KpR9Z7r/a5GEg3NsCkCegHr9qy0BAAGNSw+rm+6+Y1CUbLjdjXu77SvJ22BX1EVAqNpJKGYcb9e8+j/+9RVEYCs+5beHGGDhSKBv6DYAb3tpfNKfIXjLaqTPPJQnv5uC4rOWfev+wVDjwJddPTneZzakgfxZdLYx/vObudCZOvabZsXUrrL/AbMwDf4VCJGFigmHiW4sx/mV9DL83UXLiv//5qGzSPf6x5cYZmrSV3x2kZBlu+nn65/oLReuX4H0tnoBd9h775dELL5vEn4E9ca6yXravJcGupczJjykoqvddxy5v6p1A0iIZVnTVRc+QITZcM+2snXmChl3Lz94xGb36X2HqyLnEp7OovzEuIRPkNCm0resUC9O9G+Ks8YDjq9hd9992riznctCSlFymNYd/9bFZckXgwmqPsbSsTy8AVv1R+gtHWrmj7cbQxz2A0n30opbjreIcTH3c9g7bOfVpz9rhAw0sK2+d33+7mYLQfi+192U6npadEj6nnrYkt+2qZvb942zqTQYXmbW5L90yOX6c6/qk/IYQQQgghhBBCCCFEJ1Ee3kC9Nn/ZUSAhPEKITqQgra8xGG1tkzA0W9CjbXuW5WSjcNAtb5AIVEWC3awrGYobiqxlElYphBBCCCGEaC1TYDSA23JuhGi16oh9AkVOqGs7jkSIrU8nuG+8SLIHgeeA5T7rVwOvAgdprQ8KEoq2mdb6bWAY8BhQ5lH1C+AErfVvtdbVQdcjhBBCCCGESJxSCvWm/QtykwZLMFp6kGA0r5mvm8UJRtNlxejzx/kPRTvkt6h/fY3KK/BXX3Q4NWJMzLLu7kYOrXovZvkxu0BBxHwHPKNpr6Bff7I1w4uh3ixC9d4uqX0mxZjDzcs3nZBWSrFdD3OVd7IP5bUuRzM1azylTi4AlxY+wB/XHMGH8+HD+XDcoy5nT3SZNFszeY5mZammrFpzw6suhzzgMnkOfLYYbpykOWti9L3/5neaIx9yef1bWFwCS9bD5Dlw1D9cXvtmy/bhpZn+AmZyIpX0D6/0ruQVyNij0Nd6Wks/el3zUDRodSgaQK/IevJT4qQJbZIX2XKKJte1n67ZEMk2LrcFowHUGkKONtMXtD6BoLhC85sJwb9IaRkEo8ON6CVz0PNmoL+fjp7xAbqilC4Ziv4Z5sdxblH0tbihSvPZIs20BZoNVbGvzxdm2F+zVx+ieK//I6RiDmhRtzzXqULRAIb1MS+fU94F9a8ZP/2ugeKUXsa6J230H2xz+UFtf1r6hN3tj+/UBdHXmV9/+J/myhc005fY6zgtL4gsK6ZfbvznWCnosRUFo+mVC9Fn7QHL5sWtq4hut0xKKr0f/8emxZY3hGHKHHub2gbdumA0Q3Cojdc2IJ61FVBcCRuqo+usqIPqeqhrjP6NEoomWivVfI1C0unqCvTiH9AbN2xZtmGt/1C07K6op75Epfg/wOxluSFaSagX1U7wjWmxj90q2yGto+z7S1UegU1CxPATFl8c+OvbTsfrkzPIbvFhwxTf3+Rwx7Hejf42pf0/UG2f4cP6msdaVA5l1eZHxiuUcYgl6Hn2CvujnJlqLbI6dGjwNjbV9aD9nCMUQgghhBBCCCGEEEJ0OFuIEEgwmhCicylM28a4vOl2bG29eZtma+uoENkh83fP1R0QjGbbJqeoFHqktv7mlkIIIYQQQohfNscSN+QSaeeR/Px5hW1nSzCaEJ6CTGcXWwGt9atEg85QSnUHhgL9gAIgi2gYXjnRALN5wHda61Z/Mmmti4GLlFJ/AMYC2wKFRIPXVgPfaK2XtnY9QgghhBBCiMSpbj3goffRd18EKxdCahocfga88ww0xN7l0RaMlhbkSNIroGizxjizxt+cCGXF8fvJzEb94T7UEWf6GZnoTLY3z7adWHQuJw+bzIeNwwA4aDBMON2BqQECptIy4JtpyRgl7DgC9Zdnou+lzsixpGC4Ww77++XCbEOu2AvdTuSFbif+9PslpY/yz+5nxNSb+Llm4ufxJzO/OFNz2SLN/e+51snh17/qcsyuDkop5q6J2yUAu9XNplVRUg1tn1KhVy+GF//RNp0fcALDcrL4cGH8qj0iW0JK0nUDWW41NU5sCFql5QR6Toa97xoni26u5aT8kjnooqWoPtvHH6SB1prCqxMLMWgajKbnfIm+7SxYtTh2HSPGMqTsalbkHBpTNue71dwf6stVLzZ/nd91vOLqQ9RPYWa28KVhfeDuExzc20vNgzz4FNT+x/v8i9rP0D4KU1zF2gpY0nUY24/cH2Z+RJmTS6Nl/+CK0r+zY9dqHsw4k2rLWy0tBW44XHHcbkkcvEVWuuKpMxTn/Dv273I1vPKN5sJ9429Rvl2pefKT+Nu92GC0EkbuHn+cPXMg1DLVrxPTj98YqH6v8HpWpvaLWV5SZW/j2pJAiH6+HD/S/Hi98wOEW5GBUuYzGK0hrHnXI6BNiI62V2IfwYHoN/6JfuS6aPBrSiqccxPseTD6nL38dXDACaj/exQVCpbiZg1GS+lFQXidsey0vRUvzNDUG/JKWxOMphR0sewvVcYeXgthF44fjMa6OOHQWwGvTKygecHb9VRc+yvFQYM1e95h/vB/6EPNVYcE67e1bMe+I8zzagCYUwTjBsYutz1cjoKBBeZ99x/Nm0EgsWC09FTFuB3h00XB27bk6mg4mtdxphBCCCGEEEIIIYQQonOwhfB0DXUnyxIWJIQQHcEW1rh203bM1RGKG803lC5Is9xFkuiEdNOE9aqIvxuaJpNtm9wrtQ+Oaqe7pgkhhBBCCCF+thxlCUbTcqfvZPM6prQFdAshoiQY7WdMa10OfNbO62wAPmrPdQohhBBCCCH8U7uOh6e/gfISyMhG5XRDX/UQ+ozdYencZnUbVLqxj/QgR5J+ToQ1ek8C1t99GrcLddm9cOyFqJQEZnqKjrf9YOPiPLeMKfPHU/zKRtJSIC87OltaV5b573vjhvh1AJRC/ec76NkHMrNh7XKorojO3nYj0L0n5Pf7KRSpU7IFS0SaBKPlmSdQt/Rw3kWtHs74u73f//PXwverYWC+Zsl6f30eXfVm6wZVFeC1kyD93/sTazjuSNSZNxgKFGRmQbeeqG49GPK8y4cL4z+HeZGymN9NwWg22Wn210qNyvRu/PEkOPly3+tq6tkv4/9tNqFN38nouhr0zafDmmXmit99xuD8I3jXEIz2zKI+PLModgzXvKzZewfF+IGwpETztaXr3+yxaRtRaQlG69Ld82/oKMM8bup8zMMu3x9wInrmR6xLsd9ptCC8jlvmX8zV75xJo3bIy4Z1FbChCgb0gtIayM2C7PT2246eOUZx5zuaRYZ81Zdmai7cN34fT37q7zXptHy/lJeQk6H485GKW96099FrK/oOS1dXwLRXA7XpFSkxLi+usD8mpdX2/rLMuXxANHDTy+3HKs4YrXhvruasibHrL6+JhjPG+6xfWQp1jZ5VhOgww/vCUSPadjur534dDdveLNyIfvxP8PiffLVXD7yLGrl/QuvOtwWjhXpSbdnPycmItltp2A0sqdQQJ3bXK5wox3zITFXbZ/GKn5M450QAKF7V9uNoY157VIlutUZuC327w2pDdvqK0uh7vFeX9tv3tGW79s9TdM3QVBhCE5es14wbGDtGW8iao6B/nrnMK+wx02MfysuRIxSfGo6PEnHDa5oHT+7E51SEEEIIIYQQQgghhBAArG0wn5O2BRAJIURHKUwz352mKrKRqkgFdZEawtp8gUeBpS1ATqgLpvvRmMLS2potGM0r2E0IIYQQQggh/HIwz0NzW940XrRateWYMsPJIkXJfFghvEgwmhBCCCGEEEL8wqiU1Gj40+bflYInpqMP6tasXoPlpEpakJuMNQlksgrHSZZYMse7fPAo1ImX+h+T6HRUVhf7JOmGegrWfoPaefefFulVi5I/iEN+i+q/05bfe2+X/HW0Ncfy5nS3vA9tE6g7ygszNCeOVGgf86yz3SpO2fhC61ZY0bbBaHrZPJj0RLBG2+6MOvUaOPS3voL3hvm8pikv0jyYKzdSxqpU+wVdLWVn2MtqnCzPtvqHLxION/j7B4lPui+rAR2JwPv/s4eibTK0fl7g/id8rBk/UPH+PPsYtwSjGdIZALp2sjfhJr27QfesaDBUS3PXQMXo4+nS7UbWNdqD0fI3BWB1ffACnBueBKBP9+g/gCxLeExbUkpx0ijFHW/HPmdTF0TDufK7er9aX5/tMxitRRis3rAGBfzlaIcvlkSYMtfczhby0xnpM0cFbtMrbA5GK/l6JvxmT2PZizPtj3mG5Tu/l2dqfjRdlbrJO39wOHRo9Lke3BtM8Syujm5H8uJkSJZUeZcL4Zejov9CTvRf3J8VOJv+b1knOx322UnxhwMU3bLaLnRGN9SjLxiXWOM+26PueAk1YFjC6++VYw5uLQn1pNIxJ01mp0F+V3MwmleI0Gaux7UdXTLM46k0hB8JYRX2EYy2+Ht0uHGrDoP3OuZLNH9cKcVv9lDc956587++q/nbie0XxGULMws5sH1P+NYwl3ClJU/Z3peiv8/A86YyE3zp9Evi4ct/v9I8eHLy+hNCCCGEEEIIIYQQQrQNewiPBKMJITqXgnT7tXDrGoqojdgv8Mj3CBbLCXU1Lu9cwWj+rwMUQgghhBBCCBtHOcblrvYxH1QEUhUxX7ScE9qKJpQI0UEkGE0IIYQQQgghBCo9A33gSfDBltChBpVmrJseZDKl9nGHgFrzxQdaa3jub1BsvgvlZurSewMMSHRW6p5J6D8eYyzT91+Oeuzj6M9awydvJHflO+2GuvD25PbZESwnpJu+D5M5qTkZ7nhbs3xD/HqZbg2Pr7mEwohH6o0f1RXocBiVktxTYrq+Dv34DfDiP/w3SklFXX4/6pjzAq1rWF9/k+BbBqP1ipjDiWxyPEKsalWmd+PqjYHWtdmSEs2M5Qk1BWDRlE/Qtx7iq+7g+vmB+588J/q4f2++3oxd+8GO+ZuCFyrMCQeqS/fA620PSin23A5reNcbi7vyu+smUHzvq8bybpFyMnR99Jd3n0GfcgVqh6FtM9iAThxpDkZzNZz3tMuk3wdJfLVTLe+KtGzLa+y/5zkUXu3SaPh+cES/9gvraA29fD6sDf4G7RlZb1xeUlSKXjLH+Dq57PngwWhXvWjf55xyucNBQ7Y8zr27Wasyfy2MGWAvByhu/+tc24xjCNgKGsiVeFsVU9/x2U9yxhK7/mQElPlt6yh8BaJ2NvqqIxNqp+5/GzXqwFavv5flu/96J4N1KQXGspzaEvK79DSW+QpGs2ySHMe+v1QfhsawJjVl63uORQdo9BGMVlkG30yDPQ5q+/G0Ec9gtFb0e8ex9mC0+9/T3HC4Ji+7fd6LEdv2QkWPxY3BaJbsbq+QtX65wcdm24eKp19u8BA2m/USLiuEEEIIIYQQQgghxFZhbYP5Wj0J4RFCdDbdQrlkOJnUubUxZesaVlEbMdwhEshN6UmGY7/+zRaMVt3OwWiudiWsUgghhBBCCNGmrMFoLedGiFazHVNmW45BhRBbSDCaEEIIIYQQQogop3kwSL0yz/JOM+SH6OoKmPoqZGTBbvug8jZNSvea+bq57b2/R/3r6+jPGzfAV+9BQz16/gx4bYJ343FHwrC9465DbAVGeUzwXvjtlp9L10F5sIAno+2HoH5zOfTdAYbuhUo1BwFuVUKWcJ8mM6r7dU/OhOZkevZL+5gmFF1Ed7ec0bVf0ju8NjkrLFkFvbdLSld6xY8w80P0fX/wVV9dcBt07wmZOTBsL1RB/8DrHNrbX70eLYLR+jVa0rwssj3eEjUeF4YBULQ00Lo2e2FG616fB859xHfdIQ3zAve/vgoawpo5q83jHLVdk8CFynJzJ107WTphE5cd6DBlrvkLrBdmaE79/ZEUl+0Dr8eWF4SLm/2uz9gdJm9AZeW0xVCNtNbR9+OHL0E4jDrkFBi5PyO2gYH5sLA4ts0b38GfJ7n0z4P9d1ZkpsF7czXrKqLP5/47Q4nPAAen5Zd/S7ekzOVmKy49IDa0Iz0FzhzT+UNz9OxP0H+7NKG2vSzBaBtCPdFT/ou68LZmy+sbtTUIBKAhHLusuEKzwpxFSH4X2G/n5su2yYUuGVBZF1t/TpFmzADv56S4Mti26qL9FEP7RLerzYPIVIcEcm1uq7bSYC7RcfTcr2H2x8EbHn1OUkLRIPqetlmaup1xedbkp+i139VA7L5yiY9gNNs73lHRbYlNVT3kyrewwg8/wWgA82Zu3cFoHmWt+ThKS1GM3gGmLzGX732ny4+3JScINx6vMLNtLAFjq0rNj4xXX/0DHlKkOJASSuxB7mzh6kIIIYQQQgghhBBCiLZV59ZSHjbf4bBQQniEEJ2MUoqCtG1YXrcwpmxt/SrqXHMwWrxQMduk9KqIjy+Yk6g8vIGGzTeqbEG2yUIIIYQQQohkcLAEo2kJRku2KkswWk7I4+JoIQQgwWhCCCGEEEIIITZrEarUoMypOGktjiT1vBnoKw+Hqo3RBXkFcNv/UMNHgxuJv95F36HDjbBsPvqqI6HUZ/jR8Rejzr5RAh1+JlRKCjp/Gyg23HW0oQ4992vUkD3go5eSs74LbkWNPTIpfXUajmWyd5P3Yf+ujUBq+4ynlU6oeJmzN/476f3qs/aA11eh0szhj777efc/6LsuhHCjr/rqn1+hBu7SqnUCdMtS9MuFlWXe9XIjzSts02i+o69NaggyUqHO8OfVqCzvxmuWoetqUBlx6rXw9vf2uISR28LyDTB+IGyshQ/nx9YZU/uF73V1cavYp/pjPs7eJ9AYv1wK36w0lw3rE/1flxVDuSGFC6BL90Dra0+HD1dskwurDK+t9+ZGQ+HWNeZgCnTIj8T+vfrQHvDKElSvtr8QT7su+voT4LO3tix752nY7zjUX/7DiaMUd7xtfn3d9tbm5S3LNYcNNb8HTJyWX/6tL0JXlqG65AJw57GK7HT4zxeatRthr+3hL0c77Nqv8+7HaK3Rd5wL7/4n4T7yIuaNVVmoO3zxLrQIRjO9/pqqNlzvOafIXv/w4SomCESpaFDZF4YAFa++NisOcJ3r9Gsd9tqh8z7HQgShn7s3eKNdxqOueDBpY+jl8d1/peXi9JyNq+hVOh8YGlNW4iPo0LVc26HwEYyWHbd78Qunw43oJ27yV3fZPLbmTxSv3PzWntY5chfF9CXmFSwqhsXFmgH5bf/oeYWZ2QLGbMd1Xn11y1LsVAA/rvM3rsxW5MD36ZZ4WyGEEEIIIYQQQgghROv8UDWDGZWftOs669xaa1lB2jbtOBIhhPCnIK2vMRhtVuVnRDBfvxwvGM02Kb0qbJ7EHsTGcClfVXxMUf1ydMubMAZYX7y/QQghhBBCCCH8cJR5HtrKusVMXHN/O4/GnxSVyvYZOzOq63jSHY8LeTvQ+oa1zKj8hLUNq9k8T2Vp7QJjXVs4txBiCwlGE0IIIYQQQggR1SJUqd4SjJaesmUyqY5E0LefvSUUDaB0HfqhP6ImfGqfRd5S0RL0Q1f7D0U76TKcS+/xV1dsNdSf/om+7BBjmb5gHHxch37wquSsbO9fJaefzsRHMFrv7DAhrYiozn9KaEj9vLbpuLoCPnsT9j8+oea6ohR998Uw7VXfbdS/Z6F2iA3jSNTwvvGD0XpESpv93i8cLBhNvf0vskInU0fsFwW1TqZ3Y61h2TwYNNL3+sIRzawV5rK/Hqf4v8O23IlmcbHm4PtdljW5SfHtxTfSO+zzM2STO4tvZOz20wK1Of9pl42W64CH941+PuqrjoKIJRg0v1+g9bW35893GHdX7Gd3fRiG3uSSZwl4KQibg+D0cTvApBWovIJkDjPa98YN6Ak3wuxPYMWP5kpTX4Fpr3LiyOOtwWhe3p3jv65julhx6VwYMRaA1BTFzUcrbj468DA6zhfvJhaKtu+xUFcNX04hr8W2aLPSUC4snodubEClbtnnjLdtq6yLfR5/KLI/t3870RyCsnOB4gtDgMrajYbKLZT4DEY7e5ySUDTxs6Ary9EPXgnTXgvW8Mizca55NKlj6ZIRDepuCPtvk+NW0Wvl15iC0fwEHdq2MI4DOR45u5V1voYnfuk+ecN/3WVtdHzUCbT20/LCfRQ3vGrfH7j6RZdXL7EcLydAf/Mx+tl7oufChuyJOu9mVGa2PcxM2QPGNlSbl3sFowGcMNIe/NtSZiuy0VNTkrsvE3E1IUf2j4QQQgghhBBCCCGE8GNtwyq+qgh2TUNbSVGp5KX27OhhCCFEjEJLQFhpuMSjjXfQY45lUnp1pHXBaMUNa3hg5Z8oD2+IX9lD11AumSG5S5cQQgghhBCi9Rwc4/KNkbJOc17K5PON7zN94wf8vt9NZMSb39TOVtQt4u8r/0KNW+Wrvi2cWwixReefBSuEEEIIIYQQon20CFVqsASjpTU9kvxmGiw3JNbP+xq9bgX2aeQtVFXArKn+6gLquAt91xVbD7Xbvp6vGH3jKd4djD0CPnsr/npeX4kKJW9SdKfhmE9INw0oTKGRvuESVqT2D9z9/62/h+IRR9I9SzG1vB977JRBWnoK/fPguN0UPXLg4PtdZi5P9A9o7tCq95LTkYG+7SxIS4fC7WD7ISjbYwfoxgb4cTaUl0DVxmjbIM64PqmhaACHDFW8/YP39rUgvK7Z79s0BgtGc9YuJzN3A6TGXjxWq3x8cfDVe4GC0eatgZoGc9kBg5pPnB+Qr/j6qjpeen8tRRsdDnn5dEbXfuV7Xex/POqQU9h70fc88vKlXNz7Id9NF6wzL++aAaMHgH7/f7BwtrlSr76wwzD/4+wAo7aFFAfChiCGxSXRfyb5HhcT6jNGwkuLUOnB78aj62th7tewbgWkZ0Lapj5SUtFXH+Wvj+f+xognjqdrBlS0YUhNvGC0zkY31MPqxdHPiB2GolTz95mur0M/fmNCfatfnQZ7HgyfvUX3mRvBsKu4MdSdSMSlfsliZjuDGFgABV0VK0u9t21V9bHL5hSZ6+65HeRmm4M38i03ViqpjL/vagtG2zEfTt5D0RiB8QMVv+rcb3ch4tLhMCz+Dn3u6MBt1c3PJhxC69mvUuR3gVVxQhSbynZryF/+BRSeGVNW7OO6ddc1bxcU0aA2G9P2SoiW9Cev+6+8bC66oR6V5pHI1wnV1Gu+XgafGwJJkyU3WzHlcodDHjCniU36Fh78wOWsMYquma0L5dLzZqCvOGxLEPKcL9Fzv4JHp2HZXBByIDdLYTpHVl5jbhMvGG2E93ydZjLNp/c6RG0D5HTOm3QKIYQQQgghhBBCCCE85Kf2wVE/w2uthBBbvYI4IWfmNuYwtc2yLcFoVZFKtNYx19j49V7pK60ORQMoSOvT6j6EEEIIIYQQAtiqz/csqZvPrMrPGNPtoI4eSjNvrn/edyga2I9BhRBbSDCaEEIIIYQQQoioUPNgIFswWnqTI0n9xj/t/a1ZDlUbfa1af/62r3oA6q8vo/oO8F1fbGX2PRamvWousy3fRI09Eu0VjJbTHXXHi6jc/FYMsBOzBqNFtvwcDjO+5lOe7fZbazcKF93krh871y/g30XnMKpuFnxw05aKn4C6/x3UqAN+WvTuHxz6XeNS12juOyfdX0jEgIbF7Fn3dfyKiWqoR1+7KaxjwHC46xVUQWxYnJ7zFfr6E6DUkoYVz++uRp31p1YM1OzEkYorXtBoj2yBXpH1zX7vFzQYDZcs1zxLv8bJittef/oG6vRrfdiUhNIAACAASURBVK9v5grzH5MaguEtrkXTH08i97azOK+22nf/QPQ9MvZI1DWPobK7wrijOG/WoTxd+gVfZO0drK8Wfr2bIiNV4b7wd2sddfzFnT6UMS1FsXOhPWjKJj9SbC8sL4F3noZfnx+oT/3xJPQNJwUbiMmCWej7LmPmDQ8wMLGcL18cHZteoZfMoXXRG21DL52L/supsGROdMGIsXDrf1F5BdHyH2ejz9nLX2f7HgtzvoT1RdAlF3X2n1Bjj4iW7ff/7N13eBtVugbw9xs1y73EJY6dnpBeSAiEFEgIEFoKJIHQy3KpCT0ssMCyF7gsnSV0WOrSwtJZem8LJNRU0km105zYjps05/6huGqONJLl/v6eJ0+kc86c+WxLo5E08850dOqpgJutkz0eSTsXV93TCxX7AjznTBRkhrngUbFFuN2STdbbj5Hd9b993Xq22/gOslATnjZ1mOBvU/VBm0RtidqyLrANXvlL5Asfejxk4oyY11RtYG6kwWglcFT5LPt2aQKJ6tIFHRkCxIcIG1q9TWFUj9b4KkCtyocv2B9bVQms+hUYcEDT1RNjLy80ceaTSvv+sFqU547UM2mAoH/nQOCylcteUrjhDYUnzjAwY0T0K1Tz59WGolVb8h3MHz8HMM5yGYcBpGreQu2tBCp9Cm5n/Zp8mo1P9Ud3XdOtg9asxDXyiJB5kwW3vxebYLuyKgajERERERERERERtUXhQoSIiFpKThMEoyVqTkr3w4dyswxeR/hj56wsKf0xquUa4jaZiIiIiIhixSNt+2CuFaW/tqpgNFP5sXzvzxEtk+RIaaJqiNoPnqVDREREREREAUZtWIsJgU9clsPc+4YpXxXww0fa6dSTN9tf99O32homd70NGXOs/XmpzZEzrol+4YkzgO79rfsmnwZ5axNk+Pjo52/tDE3gUt1gNH8VLt1xP5L9waGFTkPhtQsN7LrgZ/y8ZiR+XjMSa1f2weI1wwOhaBbUZUfBPPdgqBU/AQAyEgU3DFpuObbg9zwUdToLjwz9JuyPckfBNSHDhOScGyFvbgCS08POFdbq36DuvDioWfl8UNefFHUomvx7NYzzb2mSIKzOqYJD+uj7E9wK8ZkZ9dryMyL7GNCAiXhVZtm31/CGn2D9iojWt3qbdfugXMDjqn00qF3boG46DYgkFK1bP8g7WyD/KYBx64JAKNo+xp9uxMNbL7Z8TkRixuYnoJZ8ByxbaD3AMIApf2rUOprL4C6RB0Vkdw79ZYy6aw7U3mLb86mt62MTilbt9UfRY0Y8/rfvotjN2YABi/CvdcuabH3RUNu3wHz4L1CnD68NRQOAX7+GmtoV5rxpMG85x34oGgC55lHIq2sgr62FvLkRMqP+9jQtxLGgc3PuQYVZu428/5NAYEkoDcM1lVJYoglAGRTiONDMROv2bTYepoWaMVlhQt2I2hJ1x4XRhaJ5EyB/ujH8uEaYOiyy16kEVYo0v3WSWoUPKKsMvd3R9RoGYBiCRI91/ymPxyZEiKiepd+3dAW2/bFDYfZj4UPRAEBikYwG4N25od/zFJcDsx4x8cqi6J6flZv/wEMbBuL03Cfw105/wSZnbk2f/2f9+1xD9MFoALDb4m2X3zpXFs6aYDQ7FQd4Q4Q42nHe+NiFPJZVxmwqIiIiIiIiIiIiakaDE0e2dAlERJay3V2Q4cq2PT7P0x2pzoyQYxId+gNASv17bK+rrnKzDEW+HVEt29AgbpOJiIiIiChGescPaOkSGmWvaeOq6M1oR1UhfMr6Ys46/eKHNlE1RO0Hg9GIiIiIiIgooE6oUqXoz5p0OwFVVho4Ub7Y+gRzAMCPn8WwOEBufgky6vCYzkmtj/QZGgg4i2bZhGTIA58AZ1wLZHQONB54BOQvT0KufQzidMaw0lbI0HzM468TjOarwvCKX/DF+sNw0c6HMHbvVzh47zc4q+hpfHRGAaYOEyQPPwCDhuVhUMVS5Ps2hQwoAwAsXwT1p4OgPn8d5oPXYN7z++OFjafi+D2v4dDSz3DZjnux9fd8ZPh3Ah+9hHNenIS3/5iqnW7BxtmYUvK2fn0OB3D06ZC0rNgFb/z3/UDgllJQfj+UUsDPnwPbNkU1nVz3BCQr8qtRRuLEA/R/mdJKgfzze+CUK4FDjwdOuxopT3yM5Agu5iJQ8Jp7reeXhNo7Ls3rxd5iqFL7B4Jt0ryc9Mps0PDpK0BlheVYHZk1B5KcXi8QraZvyMEYNG4wvlo3AeftegzH73kNtxf8GYUr7F9ZM82/E5Peuwzq/BDBiwcfA0lKjajuljJ7VBTBaGddBHgTQo5RM/oE9h8AKNMMhA/6fFBm/dQHZZpQM/tGXIMd17wxDgkob5K5LYPRfvwssD1pBdT65VBnjgD+dYd+0LfvAu89Z3/S7K6B114RSKdcy9fZ9NAPi4jtafDnK9gDFFlvqjAwV/9Y7pRo3be9BGH/ZoWaTVsmg9GonVB/rAB++Nje4NmXA0edDgwdB0w9F/LEd5Bu/Zq0vkP6RvY6lWiWIl0TjAYAO0sDz/tKn/Vz39SEE1VX0TCwsa69Fa3jNYBaJ1X3fZrdZdpQMNprPys0925Q1wzB8Pzw42Y9YuLlhSaqfAqmaa9IpRSm/aMKc3LuxfMps3Fz5rUY3f0LrHN1BQD4fvxSu6zDAFJDZEtHEozm2Pe2Pzu5NiQtHK/1dQ9s69FJcPes2ISjldkIyiMiIiIiIiIiIqLWpbd3IPZPGtPSZRARWTLEwAmZZ8Ep4Y8NdYsH0zLPCHvRnkRH8DFm1UqiDEYrrIzuOMSGBiWMxKCEETGZi4iIiIiIqHtcXxyUPLGly4hauWlx8F0L2hrhe79JadPQyW0/7Juoo2rnZwQTERERERGRbY7at4ihgtFc914E9dtT9cOWmtqQMZBDpjXf+qhFyfVPQX3ySnTLJqcHwrJiFZjVltQJN6zHrPNc9QeuPDGoYinuK7ii3jDpubL29vm3QH33QUSrV385seb2zOJXMbP4Ve3YyaUfYteKLByf9xI+TZgAAEj37cATW87HcSXvhFyPXPVQbejYlHOBuy+JqE4dde+lwOL/AoUbgbzewMZV0U106jzI5FNjUlMoJ+wvuOBf1ifxOw1AUjIg599Sr71ruh+LN9ubv5NvBxLMUsu+UiO+9k5ON2DDSstxKNwE9NAfKFbXxl3WP0uXtNoD0dQvX0Hdc6mt+eo57pyQ3TLvIQz4KB0PbK3/WOpXsRzLPeHDXaYXvwk3Qp/hL9c/Gb7OVuKYwcClkwT3fmQ/ySIn3QV5axPUqUOBreutBxXvAl55ACqvN9QNs+v33fYqZMwxgdvvPhtl5fYsXTkI04Z9hZ9Kc2I6r2iSP9T4OOCCW4HZl4c9sLIpqefvBnbH5sqzNQYeGHZIUlwgwEMX7hGprbsDwSTVv8s/durH7hfiO0JdiJnPDISTpMZb95umwnbNhaWyklru70sUK6q4COqUIbbHy7FnQbo2TZilTu/MwL6Oz+Z2JdEsgdfUh2J+vFzh8S8VvloVCHO8dbrg3HFSs53RvRoaNp7y20qAbh57dVIHtGNL5Mss+S72dTSRddvtjYv17tErFxjodW34DcRJjypUP8P/foLgyiMk5L7aJ8uB93Z2r9e22ZWL+9Ln4J6Cq+DfvRPQ7D84DCAlRDCaVchruGA0hyHo3glYVaift5pX/xGfbX2zBfoton3lDEYjIiIiIiIiIiKyLdfTDaNTDmux9TvFhR5xfTEiaRxcRiOvwEBE1ISGJR2Eea478WvJd9jhs/7yJNOVg6GJB6GzJ/xVduKMeBhwwETwMdLRBqPpTo53ihMHJB8Sdnm3eNDT2w/7J42BIZrjRImIiIiIiCJkiIFTcy7G0MQD8XvZb60uaKza1oqNWFu+Iqi9zK+5wnoL0YVie414DEsaXXM/3khEv4ShGBA/vLlKI2rTGIxGREREREREAXVClSpEf/a2e9m3zRuKBgSF+1D7Jk4X1OijgG/ftb/Q4Sc1XUFthS4YTdU5o9oX4ixkR+1BjNJ7CNT4qcAXb8SouGBJZgk++OMYLIwbgd1GMkaW/4hUc3fIZeTNDZC0rNr7Dgfw/GKokwc1vqC6YXwRhqLJdf8EPHHAfsMhuT0bX4sNnZIEo7oD368L7jtuqPUy+emwHYw2oGIpEpUuGC2x9k5WXuD3ZRUKtW0j0KO/rfVt3GXdnpcW+F9t3wJ12VG25qpLnlwYNoxKvAnA1Q9D/f38eu0X7noEc3PuCbuOmXvCBDl27QuJ16QwtUKGIbh7lmDORIWhN5koqQi/THYyIB4v8PKKQBCYhnr0euv2Px8P/OmvwOzLoZ64KbrCAVuhhl18m/H1wv2wsM+JWOvqjp15w3HZhsgfWw3pni8AoB66NrDtOuq0Rq/HLmWagdfRlb9A/fIlsPCT2K7A4YDMuCjsMBFBWjy0YWKRqvABt/5H4aIJQGq8YIMmGC3OpQ8/A0L3/bFTH4xWVKYPY8pqO09zameUUsCvXwOrfg1sB0cdHnUQY92g27DcHqBLr6jW0xgup6BPNrDMZqZUgrkXKSH2Mc98snYfZmcpcP5zCllJgmn7jjUwNTlAdn7Feyvt1UgdVIRB1ACAzWuh9ha3iX1Lu6/9iTEOD+zRSfDgKYILNSHSVq7+t8KjXyicNKr+EzvVC0zsF9jfmPag9Q7AW4nHBILRNq8DelvP7zACYbEi1m+brILRdPsb1cFoADAo12YwWgzOV3TH6PyaMgajERERERERERER2TYgYTgGJPDkSCIiO/LiuiMvrntM5hIRJDqSsMdfFNRX4i+Oas4CzcnxWa4uOC1nTlRzEhERERERxYIhBoYmHYihSeEvmt5Svi760DIYrdxsXcFoWys3WrZ3j+vL935EjWCEH0JEREREREQdgqP2LMdKcWuHeUwbCSkxJHe8ARk8OvxAaldkUGR/cxk3tYkqaUMcmjOV6wYZhgo1dNTPz5e/PAnMvDgGhekJgAPKF2HS3k9Dh6IdfUZQKFrNHPl9II9/23RFhiHn3AiZfApkwgnNFopWbd5k64/2pgy1TurIS7MfkjKgcjmSNAdyFdcNRouLB9KyrSdZv9zWupRS2BAmGA1vPwlURZYuIhfdBuk92N7gQ6YFAl7quHDXI2EX61a5HhNKPw89aMhYezW0Mj06CZ44w97Hx9nJgf9FBHLezVGtTz3+V6jDkoFt1gcChjT1XMj7OyDPL4bMuSPscDeqcPDK53DK0psx54MTULw8HZfvuBc9vNFd1TXRX4zB5YtDjlHvPB3V3NFQPh/UvKlQfz4+EDQX61C0YeMhd75le/8sNzW2q7/+DYWuV5v4YZ3Chl3WoSd5aQgZDJWfBrg0L5vLtuiDVLaGeKliMBq1BKUU1E2nQ118GNS9l0FdeRzUjadAhQrD1c21fQvw42f2Fzj4mEBIbQsY3cv+Pk2iWQKPqkS8qQ+wbGj+p7WJRKYmnMiwUUJp8751pjZGhQoCN0Lsg62zt4/d0gr32AsmG6cJE2uM88YLHjtdkJNsf5nV24Bb3lH1/l31isKIm01tKBoArHN3R4W4Yfr1P6/DCIQPp3it+4ssLrLp16zSWeehMbCLvW1hXAyC0bz6jwkjUsbASCIiIiIiIiIiIiIiagMSHNZfNJX6ozu2qEBzcnyOp0tU8xEREREREXUkXof1Vc/LWlkwmi4UO9vN935EjcFgNCIiIiIiIgowak9qrwgRjOZWzXcWo7y0HHLQ5GZbH7UiE0+IbPzYY5umjrZENB/zmHXC0EKFZDjrny0t3gQYc+8KhI4lpsSgwOgZ1zxqGYpWTfbbH3L1w81Y0T79RgAnX9H8691n+nDglAPrnwx/5EBg5gjrE+Tz0+3Nm+IvQrJZjCSzxLK/2KiT/uN0Abk9LMepr962tb7NRfrgkPy4Eph3XBgId4qEyw1MOdf2cElKg1wdHIS2dmUf9Khca7lMvFmKB7fOgRMhAgcByCFtN7hxkI3vX1K8QIKnzmNu5sVAVn7TFVWXNwFyz7swrpwPiU8MBLPNmguZe2dk06hy3F54LVb+mIM3p68JOfaGlLeQ5qndlooy8diWC+CCL/RK1i2LqKZoqYpyqKn5wHcfxH7yw2dDviiHcf+HkJGH2V4sPy38mEiVVACzHzVx+cvWISTh1ulY9TP6YINl37It+uVWFFi3iwBZEYSvEMXMxy8H/tX16b+hHv9r5HNtDr39qycrD3LODZGvI0Z0+zoNiTLhVYHEoTSLq3nrfLI8EDoHALqoo+pgtNMO0tfy1SqF6Q/4MfQmP2Y/amKTJsyROqjVv2m75NZXAgHEVtYubaKCGqe0QuHSl0z0u96P7n/240Mbuz5ZScCdM2N/uIKI4JyxBjbf6cADJ9sPUozW7+4+8Is+KLJ6e5GqC0bbG7xt0AWjOeoGo3W2V1+8u/G/g+H5sQlYK4s8t5OIiIiIiIiIiIiIiKjZJTqsr45XEnUw2mbLdp4cT0REREREFF6cYX08ZblZVnO8b2uwlcFoRE3C2dIFEBERERERUStRJxgt1b8bNxXehEpxoyKnN6oOnYXKRV+iYt0qJJvFzVPP4bMhmrAdav8kr7c2hCBo7CurIC59mF+HYWhOxK4bjOYPEdzjsP6YSPbbH3hxGfDhi1A/fQ588UYjimxCk08F/n5+069n2Hhgv+GQfiOACTMgDv0J8E1NRPDM2cC54wT/XaPQK1MwbTjgMDTBaDbDiaYVvwUASNAEo5UYCbV3HE5g5ERg8bfBA5cthFIKIqFPxF8aIoRov/tnAcs+DVtzkMNnQ+ITI1pEjpgNDDgA6tWHgFceAJRCvm8TFq4djVeTpmGZZz8oBH6WLr7NOK74HfSqsg5Nq9F/JHDA4ZHX30r0zgTcTqAyxKZjRLf698XjBV5aBjUhst+/HXLjM4DhgPr9Z0h6FjD2OOt9haNOB164B9hm/cVSKEffOgizjt+Kl5cFp1wNK/8F1y47GRc6UvFS8kzsFS+mF7+B3lU2woR2b4eqKId44iKuKRTlqwqErlWUAf0PgDpvLLBnZ0zXAQDyt+eBQ48P+3y2kpcu0EcLRW/Ndn1ffrq+TvXHCqhLjkD/1AexNDk4xG/lH3sBWD9+l2y2/jl6Zih4ln4NlZEDdOkV1e+JKBrq9cesO/51J9SkkyC9B9ufrFKTUgoAh82CzL4cWPgxkJIBjDkWkpYZWbExdJDNt4kJZimqn43p/p3Y5LJ/YMH8TxXmTBSYms1X9dP85AMFz/7XelDd8MbfNil8ukJh1S0GEuO4jejoVFkpsNl6P1Iuug0y5hio7v2B5YuCl123FK3tEaSUwoyHTby/JPzYFC9w2eGC3BRgylBBVnLT/jQXHGoAMHHR80138NNST39k+wq1/dVhZqnxAHYE9+8uC27za8qtG4zWLcPePlZiDHY/4z2C6cMFL3wfvL6DewHfrLY3T1nzXWuBiIiIiIiIiIiIiIgoaokO66vjlfojP37aVCYKtcFoeRHPR0RERERE1NF4NcFoCiYqVQU8EttzNKJR6i9GiX+3ZV8O3/sRNQqD0YiIiIiIiAgAIA5HzemU6eYuXLfj74E7XcbCOPEkmBteBr59vPnqufTuZlsXtU5y51tQVx4Xflx2cKhJh6QL6DLN2tu+Kv3yTpe2S1IygBkXQWZcFJjy1KHA+uXRVNlkxOmCOuAw4IePm24dj/8Xst/wJps/GiKC8X2B8X3DBwrk2wwnenDrHABAkiYYrdioc0VMhxNywCSop24JHlhWApQUAUmhE9mWbrGuqbO3HGk/RhiK5nQBE06AXHpPZMvtI3m9IXPvAubeBfXT51Bzj0CKuQdn7X4muvlufKZFw/May+UU5KcBq7fpx4zqEfzYE6cLmPcQ1O0XxK4Ytwc48AhIUhpk4oyQQyUxBbj5Jag7LwZW/hzxqp54rTuSsu/CE2ln1bT1rFyD5zedBif86OTfgYt2PRzxvNixGcjtGflyGmrTaqgbTwVW/BizOa3Ihf8HmXBC1MvbDWWMpcEhso/Ue/8CSvega8Iflv3b1m0B0Meyb6n1caoYuPEDqIunB+4cPhu46gGIN8F6MFGMqJLdwC9f6vvPGgl8ttf+65BPn1Yjl98HSU4HWsl+UEp84PVpw67Q4xJVac3tbF8BfoP9oLjb3lWYMxHQXUiuOof2yIH2Q50Ki4EnvwkErlEHt26Zvm/clMD/mmC0kMu2kG/XwFYoGgA8e46BY4c073PggkMNxLtNnPVU04SjLfYMxPi9X2n7Hft+3FSvdX+RRTCazx/cVncuAMhPt1dfUoyO+XrsNIHPD7zxi4JSwDGDgafPNpAUJ/jnVyZuekthwy6gZyd9gG1ZlQJaXbQfERERERERERERERFRfQmaYLQS/56I59rl24YqZf19fLbb/sW9iIiIiIiIOqo4TTAaAJSZe+ExWj4YraByk7Yv28NgNKLGMMIPISIiIiIiog7B0Jww7993NuY2TRJEUxh1eODEe+rYho4NP2b81Kavo63QPYfrBqPtDXHFQof9/Hx57BsgM8RBOaOPgnxRDvlwF+SWl/XjTrkS8vp6yAs2z6IPV9eZ1wEezdnmjZ37+cWtLhQtUr0zw48ZXP4bPPsOxErUBKOVGnXCfhxOIKerfsKCDWHXubnIur3vnsgCreSaxyDvbYdxw9MxCSSS4YcAh0yLbuFOuZAPdkK69Gp0HS0tKyl0/4EWwWgAgKNOA/bbP3aFnHQZJEzIXl0y4ADI499C3t8B9BkW0aq8qhyPbL0IxcvTUfB7HnYv74QVqwehb+WqSKuuL8b7Uuq0YbELRcvtYd0++ijgpMsaNXXXFtilmz48RODGL4HgkiyfdeLftj2mZTsArN1uHajSv+TX2jsfvgC8/kj4Iokaa6ONbdIbj9qfr7LCuj0huVW+NxuYG35MglkbjJbv0x9wYGV7CVDlUzA1OUpSZzOTF0EA5NeNfCmhdqJwo3W72wN0DrwmS/f+1mPWtr5gtFcW2Q8cy0xswkJCOONgA29e3DSHRizxDIAf+hBKx77VpuiC0fYGt/k1uyOOOj9C55T693WSPOHH2BHvEbx0noFd9xrYcY+BVy90ICkusDE8e6yB1bcaKL7fwKpbHejZyXqOshBZ7URERERERERERERERK1FojYYLcTxlxpbQ50cz2A0IiIiIiKisLwhgtHK/RYH4LUAXTCaR+KQ4miBK80TtSMMRiMiIiIiIqIAbTCaL/D/1j+ar5Zdhc23Lmq1JC4eMMJ8dJFmI+mpgxDd78oMhBsqXxXUlcdpFhaIQ38id9BwbwLkuV+B2ZfXNu63P3DIdMjVD0NuexUiAomLh4yfCkw/L3gSjxcy5RxIRg4kr7ftdYesa8gYyEOfAydcCBxwGDBrbkzmxZnXQfL7xGauFtQ1Q5AQ5qT4gRVLa24naYLRio06SVkOF5DRGdA9fmwEo+3SfA+RVaYJjLDiTQQmnADxxPZKL/LXfwF5ocPN5KoHIbe9Chx1OnDQkcAZ10Ke+Skm4WytQfhgNOt2cbog8z+GnHtTIFxr/0Nr/0UiNRNy47OQP/01suUQ2C5KfCLk5MvDD7bgVeXI8O9EgtqLEDFbtY45C3Lh/+n7G7EvpSrKoSrKoLZvgdq8FuaD1wBV1leTjYY8uRAy905g3JTA32jcFMgld0FufQUitn56rX45jVs+Ugd0B3pmhlhnSSCNMctvHYxW6Nc/6Dfssm7vXrW+3n31wQshayQKRSkF5fdDVVUGnvdlpVCle6CKd0Ht3gG1qxBq+xZg9eLwc331tv0V67Yprhgl6sTYwC7hty2JnbNrbudVRbBfAaDKD6wshDYYzaiz+gS3/XlfXmg/QIrasSLr1yBk5NS+r+sxwHpMwR9Qm9c0TV1R+na1/cd1lvU5JM3i2CGCH64zMLpn/fZD+wIT+wX+Degc+bxLPf3hD3HYRXV4WWq89XZrt1UwmuZX6qzztsthiK1gxsQYXwzT6xYkxgX/LE6HIMEj+8ZYL1vOYDQiIiIiIiIiIiIiImoDEh3Wx46U+vdEPJfu5PgUZzrijKa5CCwREREREVF7EucIEYxmto5gtK2V1scpZ3vyGn0+BlFH52zpAoiIiIiIiKiVCBGqpPx+YOPK5qtlb+RXVaP2SS65G+qeS/UDUrOar5jWThtuGAhGw6JP9cs6Iv+ISOITAwFAoUKAqsdecg9UaTHwwfOBhoRkyKX3QnJ7hl4wCtJnKOTSe2rum288BlSURT/hlHMgZ/0lBpW1Dl9cZWDEzaa2f0DFsprbiZpgtBKjTuCX0wFxOKA6dQEKLEKfCm0Eo5Van/Wf7tckEDXk9kBufrFJgsjE6QSe/SUQKmj1HHK6gEOmQVIyIGOOifn6W4NOSQLA+m+UkQDkpOi/pJG4eOD0P2tDxVRxEdT1J+m3T937w3j258gKtnLYLGDJd8ArDzR+rhDksBmQAyZBvf88sPq3oH71/nOQI0+OaE5VvAvq3strt59NoecgSHwiMHMOZOacmE/fvzMgAqhmygI68YBwXxwG+jN91qE024x0+HduhyO9U732Kp/Clt3WMwYFLq36FUqpNvslplIqsP+gzEDAqtVtvz9wv+5t06zzf/Vtf/jbNfOb9tcVtN7adSvb6zVD/4wxq9HU/J40t2P5ZPnhI/tjtcFoEaR+NaOBueHHZGQmQi65C2r+1ciPMBgNAH7eoLR/jrrBaPER/or2VijEe9rm9oFiZJcmGK3u+9s+Q/XLf/YacPIVsa2pEbZF8BFOZmLT1WHHiG6Cr/8cOhT834sUzv5nJYqr7L1PXu3qiRJD/4NVB6OlaI7NKioL3tD4NW/ZHA02HT0ygPU7QteX1AL5lnEu6/ay2OX6EhERERERERERERERNZkEh/XVfkqiCUarsA5Gy3F3iXguIiIiIiKijsgtHggEyuK8lrJWEoymC8Xmez+igfUG1wAAIABJREFUxmMwGhEREREREQXogpFMP7BlLVBZYdktVz0I9B8JdO8PNbUrUGwzyCYEmfKnRs9B7cSxZwMhgtEkI6cZi2nldMFoyoRavxzqqin6ZZ2as5ZjRBwOyPVPQp1+NbB7B9CtHyQlo0nXWWP25cBTt0S+XL8RkL8+C+nSK/Y1taDhXQXHDwde/cm6f6CNYLRio84VMatfO7LyLIPR1IL5wJRzIQ59+MDOnWUAgq9+meov0i6DscdCpp4LeLxAv5FNEopWTZwuyL3vwbx+NvDZq/U7T7u6+R7LLSTL+gKoAICMRgZbSFIqcPd/gPeeg/q/c+t3pmZC/vl941ZQvR6RQNDmzIuBpT8ApXuAynKgx0Coh64Fftc8ISLVd3jg/279LIPR8MPHUCW7IYkptqdU913R6FA0ueddwB0H9BsBdeMpwFdv1e+fFfswtLoSPIIeGcCa7U26mhrnjw8TNlQS2LZk+q0L8okLRSt+R8bo+sFom3fr86ryfcGBS+rJm4EeA4E/VkCVFEUfzBUUvKXChJJZ3TbtBXJV326uFDtqXaqs3+819X5itAbl6oM7q3VNF8iMi4EJM9Dtk3XAh5Gt461fAFOzirq5h1sjPPb97d8UZo1kMFpHpnYVWnekZdbclMwuUP1GAMsXBS//0cuQVhSMVqzZfDTkdQEJLRDSZYcyTeDrt6FW/Ijpe0tw6OJn8YN3BPYYgZNeulX9gQSzFEN6/Ri8rBhY6umvnbs6SDE1+C0PAGC3RY63z2891tHgmgb9cwWf/R56W5gU1/zbG68uGK2qeesgIiIiIiIiIiIiIiKKRqLTOhit1F8MU5kwRHMhagsFVdYnx2fx5HgiIiIiIiJbDDEQZ3gtQ9DKW3kwWrY7r5krIWp/GIxGREREREREAbrQGr8fWL9Cv9zhJ9UE0qjJpwAL5je+llFHNH4OahfE7QEe/Rrqf8ZYDzjoyOYtqDUzNAfbLPkO6syRrSLkRLr1a/51jj4KyioY7ZgzgXee0i933s3tLhSt2v+MN/DqT2ZQe5IqwcSDsyF9b4eaP08bjFZhxKEKTrjgqw1GS8+2XtmGlVCXTgbufAviiQvqVt+9j50rsgHP4KC+dP9Oyyll3kPAMWdCdI/5JiI3PA0MHg31n2cC9489E5h2XrPW0BKyrI/zAwCkxyCPTgwDOPp0oHP3QJBU0TZgwIGQc66HuNyNX0HddeX2BHJ71m+c/zHU0dmAr5EpDRmda0LypHs/fVTPe88CMy62NaXavBZ4/1+NKkv+vRqSVefLtJv+BfXYDcC37wEpGZDjzoFMPqVR67BjUJfmCUb74FID8R59+IeqqgQKAyFmWT5NKA2ArSvXI2P0wfXa/rDeJAEA8quCg9Hw5M1hIpuIWhlfpXW7u3WmGA3JA5LigOJy/Zi8tMD/kpGDcdOygQ+D939CeetXhQGdrfuMOpuaLbsjmhbvLQZmjYxsGWpnirZZt6dl1b9/4JGWwWhY+TPUt+9CRh8V+9qisMci2MtKZlIgsLa1UaYJde0M4Ot3atrSABxR+nG9cX4YiDPLUG4EJ5z9FjdIO391mFlqvHV/kcVxWX7NTkTDYDTdNqquxBbYjDMYjYiIiIiIiIiIiIiI2rJEh/UBUyZMlJt7Ee+wfzXJggqLY0oA5PDkeCIiIiIiItvijHhNMJrNAxibkF/5sK1yq2VfNkOxiRqtec8eJCIiIiIiotbL0ASjmX5gZ4F1X2aXmlA0AJCz/gL0HNi4Ok6+AuilP6GUOh7pPxJy8e3B7efeBOncvfkLaq1ChUSFC/wpb/krZMi5f7PumH154ybuPxI44cL6bUPGQObcAfQeYr1MaiYwbHzj1tuKHTFQcM7Y+oEETgO476wkpFz/QE3IWaqpT/nY7uwUuOHYd8Z7WqZ+hT9/Abz7TL0mVVYK8+65UFdOwU4j1XKxdP+uoDZ5bxvkuLObPRQNAMTlhsyaC+OphTCeWgiZcTHEqTnjvx3JTtL3pWnCHaIhw8fD+McHMJ75CcafH4ZkNs8XQOJNgHy4CxgxIbjTmwi5+x1g4szwE+03vPZ232HaYerTV23VpYqLoE5sRJhkXm/Ia2vrh6IhEDhqXPR3GM/9AuOBT5olFA0ABuRGH4KyfNUgHFnyQdhx1x0jmDQgzHpeuKfmZra/EKKsQ5JWrC4ObttqnVCS4i9CirknbH1ELcW88VSoBfdDLfkOqrJCP1DX54xtSGWsuJ2CqUNDP+dz6+xixLkE8yZHti3aWwksXG/d15hsp182MDaxw9ulCUZLrb9PLSE+G1F3XATVCsKvK6oUKnz2xmaF2K9sSWr+VfVC0XQcMNGncpVl3yanft81qmA0TY6js8HboMFdwm+MkoLzqZucV/PSUabJ4CQiIiIiIiIiIiIiImpNEh36L7ZK/PaPESnz78Vui2PgAJ4cT0REREREFIk4w/oAvDJ/aTNXEmxb5VaY8Fv25fC9H1GjOVu6ACIiIiIiImolQgWjFW237kvLqndXktKAR78BvnwDat3yQBhH0Xaox26wXFz+/EggbOT7D4FNq4GhY4EBoyCNOcuc2iU58RJg/0OBRZ8Apgnsfyik34iWLqt10T2H24pDpwNP3QxU1TlT2uGATJzRqGlFBLjkbmDiDGDxf4G83sDooyAuN/DYN1ATgq/eKKdfDXG274/NHj1NMHuU4NvVCgke4PABgoHVwUUSONs+21eoXb7AkYXOvq2AY9/vqcHrQUPqrjko3+8g/OIcgErlwMF3Toax7HsAwC6bwWhyyd2QBOurcVLTyU8XANahG0Y7ebkWpwu46x3gm3egVv4C+KognToDBx8NyekGeOKhPlkQeo4p59TeOfBI/cCl30P5qkKG6imloK45IdIfI+CIkyEHTALGT4XE2786bVMbmBvdcglmCXpXrcHrG2bgxZRZOCv38aAx+2UDT55l4KCeoR+QSimofz9Qcz9OVaBX1RqscvcOGrtkTQmmK1Vvn3TpFut5+1WssPnTELWQTxbUbsNcbqjeQ4EBB0AGjAIGjgJyewYe67ogXben+WqN0NVHCZ77Th8M1T2j/nbh/6YL3vxZYXmDi7J1rtqCCnFjpzPD9rrrvgaeOFLw0kL7AVVLtwA+v4LT0U5eSClyhRssmyW1U/2GHgP0c2zbBKxbDvToH8PCIldcbn9sZisLRlO7dwAfvgAsmG97mWxfAX7D4KD2Lc4c7TLVT/VUr/V+9c4IgtEcDYLRDuwBpHiB3SEuetkiwWgu65+1LExmOxERERERERERERERUWuQ4NAfo1bi34Ms2DsQpqByk7aPwWhERERERET2eTXBaOVmiIPnmonuvZ/AQKarczNXQ9T+tO8zPImIiIiIiMg+hz4YTRVts+5reNIuAPHEAZNORPUp3mrreuCfNwH+Bsn3Q8dBjjkzcPuQaVGVTB2L9BkK9Bna0mW0XrrncBshXfsCt78OdddcYOMqoEtPyIW3xSQAT0SAIWMC/+q2O13Av36DunsusOhTIC4eOPES4ISLGr3O1k5EMLEfMLGfRSCHETjbvpN/OwzlhynBj60CZxZQAWBfgJykZWqiswKWuPvjpNsMLPMIABP9Kh7G664Z6Fq1ASWaK2ymmg2ulskwxBaRn6bvK6lovjqamjgcwLgpkHFTgvuGHAzc+AzUP64EdjUIDEzLgpx9PWTMsbXjnS7gb89D3XBy8Ip8VYFtXHd9iIl6+Drgl68i/xnu+Q9k5GERL9ccBuXqA/ZCeX/9MQAAF3w4bffz6F25Cud2fhjLPf2Q49uKm7t9ibNvPMneZGuWADsL6jUNqFhmHYxWmQus/g3oPaSmbdmq3QCCD3ztX8lgNGpDqiqBZT8Ay36A+veDgbaUTlD9RwKlmqtaO93NV1+EBuYK/n2BgRMeCk4QSvAAB/eq3yYi+OxKA5e+pPDiDwoO5cM5RU/h9oJrMDfnbjyTeprtdSfU+bVM7A+8tNB+3RU+YPFmYFi+/WWo/VBlpcDmtdaduT3q38/vC2R0BnZo0jkLN7R4MNqeCILRundqPWGA6ss3oW4+G9hbHNFymX7rCwdsdWZrl6kOM8vQZNaWVgB7KxTiPbW/H5/NYDSPSzB1mOCZb/X7WS0SjKZ56SivtG4nIiIiIiIiIiIiIiJqTTwSB6e44FPBV30p8Wu+W7egOzneJW6kOYOPvyYiIiIiIiJrcQ7rYLQy0+LKpM1M996vkysLLqP1HodN1FYwGI2IiIiIiIgCDE2okt8PFFmf+InUzLDTSk43qOMvABbMr210uSGX3xdFkUSkpXsOtyEy8jDIC0ug9hZD4q3DsmK+zq59gXveDWzrRALhSB2dBM62d8BEpn87CixO8q9uE0fg48U/XN1wZ/Zd2OLMwaTST3DG7mfhUbVnvc/JuQfLPLWhDcs9/dCv92IMLF+iLaOTb0ftHcMAeg5s1I9F0clN1feVtqNgtHBk0omQSSdCVVYALncg4Gz3DiAjJxC+2NCYYwOBlQ2DYQFg7VJtMJrasxN4/q7I62vFoWgAsF9O5MvEmWUYUf5TvbbRZd9j8Zr9scdIQpJZDMmYDMBmMNrKX4Ka+lcsx5tJxwW1b3LlBsbXCUZb/8ceWAWj7VfBYLSoGEZg36Xm/3C3Q4x3OAKvXfVuG9btjn3LWt42bNcjoWqzrMeqBqm9XW9+Oz+nUX+uz16FeuDP0f0tdm8H/vuevt/Vur+Qnz5c8OU8A+Nur58i9OfJgmRv8PY5K1nw/LmCp89SwI9fw3HFXADA4IrFEa03sU7Q0EzHlzgPYyNafv//NXF4/8Cfst4/ARyGBLcHjQn8c4bptxxTr1+Cx0jwnKHnsBhj0W8IrF8zO5r1ywGlCbFqsL8rDgdw/i1Qt5xtPb5wY4yLi1xxBMFog3Kbrg47VMluqBfuBp65LfKFDz0exv++gKxnSgGL/NpQwWjGvod9Voi3uNtKgG6e2vt+TTCa8f6zUD3GQXJ71rTNGBE6GC0jQb/ephLnsm4vr4o8KJeIiIiIiIiIiIiIiKi5iQgSHckoqnv82j6lfvsX3tGdHJ/tzoUhhmUfERERERERBYszvJbt5a0gGG1rpfWxnFnuLs1cCVH7xGA0IiIiIiIiCtCFKplm4GR5K6n2rlgmc+4EBh4E9fMXgDsOMuMiSOfu0dVJRNba0YEyzRWKVrM+EcDJj8lqGLWPpWxfgXUwmiMrcMPhwrItCqPfm4g96UcAAF5Nno4PEiZhwabZEABrXd3wRcJ4y1UtibMOO3MoH3pXra5tGD+t2R8XFOB06ANMhnfteOEm4t6XWOFyA506hxyn8noD64NDs9SPn0EmnBDcrhTUMfo5tev6x4eQ4dbPsdYiziXYLxtYUWB/mZP2LIALPsu+ZHPfQaYRBMKotcFBjLm+LZZjtzkyodb8B1AKa7cDqVsXY4OvK2DxUtut6g/bNQAADpnWBoK57NyWCNdVf70MR4otNf0CINpgtHBaeTAaAIzpLVhyk4GHPg8E7hwxQHDskNCPMZdTgFEToe59D+rSyRhYsTSidSbVCTBK/uJ53Lf1VVySc3dEc3y4TNfTnMFBzRtSFCo4zSGA09G4foexb4xFwJxhOSbcHHZD6cReaJ0BGL9ug+EZDI+qQO/K1XBiX4iqxwt07hH0O5PJp2iD0dTtF0CO04SmNYJSCjtKgPQEwDBCP5f2RBKM1qXltv2qohzqf8YAG1baX+jAI4CEZMj+hwLHBn7PWZleWD1vCkMEozn27T+EDEYrBrpl1N7XBaM5Fn0MdfolwD+/D4R8Azi8P5DiBXaXBY8f3AVIiW/+37suGK2sqnnrICIiIiIiIiIiIiIiilaiI8kyGK3Ev8f2HLpgNJ4cT0REREREFBmvEW/ZXtYKgtF07/1y+N6PKCZ4xicREREREREF6ILR/D6gyDoYTVJsBqOJAIfNhBw2M9rqiCgch+Y5bMehx8euDmr76oTVZPkKLYcUOKuD0Ry4432FPZX1P2Z8PXkq3is6AkeVfoBfPUMiLqFv5Up4VGXgTr8RkEvuingOip3jhwOv/hTcfupBDDYKqc8wy2A0fPEG1OX/CA6GWvhxZPNn5UOue7zVh6JVG9NHsKIgOEhk1kjBvCMFUx8wsalo39i9X+O2wuvCT2ozGE35qoDng7cjmb5t1tM6M/HmCi/Ov9JEYTEADLAMRQOALvmpkAs+gpozKWwdcs6NkDOvtVUzUUTcnvBjotUGgtEAoH9nwT9Oivx1SUZMAO58EyPnnRHRcklxddb1zlMY6xkc8bo7Ir+pD3yKvdYaMHc40PNwAECqfxeu3f53XL7zH0B2PkT3nm78VOCLN6zXXLABkp0fYb3WlFJ4/CuFy19WKK0A+ncG7j3RwOED9M+tIpvHFCV6gGGxKTMqkYaiyVOLIL0GBbWHCjfTMZZ8C4w4GKnxgcA8n8VzoLC4/n3d88SpfEBFGdTD10FuXQAA8LgE04cLnvom+HF40qiW2V/3MhiNiIiIiIiIiIiIiIjauARHsmV7ZMFo1se15LjzoqqJiIiIiIioo4rTBKOVmxZXFG1GSils1bz3y+Z7P6KY0JzKQ0RERERERB2O7gRc0w/s2Grdl2ovGI2ImoEu3NAGmfY/MSyE2rw6YU3ZfutgtG3OzMANhxMv/mAdBHFc19cxoOfPuKjzfRGXMLBiKZDXC/LMT5BHvoJ0yo14DoqdORMNOBt8kjyyG3Bwr5app62QcVOsO3YWWAZ6qQ9eCD1hfh/IR7shLy6FPPxl4P/9D218oc1k7kRBXIOQjF6ZwPzZgv27CdbcauDbSZ9i8eph+Gz94ejkD77qbpCSIqi9JeHHvfWEZXOm3zoYrciRhuPL/xIUUmIl/+q/QYaNC/xt5n8MuTzENm/YuPATEkVBRICktKaZPCGlaeZtReTAI5Hx7iocVfKe7WUS92XRKTOQXtSvcgUcytcU5VE7VuRIw7zs2/BK0nQgPkTiVojgM/WPK2JWz4dLgfOeDYSiAcCyLcCR95rYsFMf/PbpCnuhcBdNkPqBgs1AlZVCvfYwzCn5wJrFtpeTc/9mGYoGAFlJkf8MxoLAvoGIIMv6/BkUFtf/PVqFpwGAA/7AjS/fhCreVdP+1+MECQ0yMrtnAHMmtFAwmiZTs6yyeesgIiIiIiIiIiIiIiKKVmIjg9FM5Udh1RbLvmw3j4UjIiIiIiKKhFcXjOa3eXXXJlLi340ys9SyL8fdpZmrIWqfGIxGREREREREAQ6ndXtlBbDD+st5ZPEDGqJWI8pgNLnt35ARE2JcDLVpRu1Hhhn+nZZDdhmB8JVFe3NQXqWf6ndPX2x15kRcwgl7XoMcdw6kxwCIwY8wW9oh+wnev9TAsUOAgbmBYIsPLzPgMFomaKHNOGCSvm/dsnp3VUU58N5zIaeTf3wA8cRBuvSCDBwFcWkSJ1qpIXmCL64ycNwQoH9n4Kwxgq+uNtBpX8CIyykY1Xkv+lX+jogeWTaCTtRzd1q2Z/msg9HsEmWiS9eMwG1PHGToWMj084ExxwQPTukEDDywUesjCumwmdoueW0t5MmFkKseBI45E+gxoF4QaigydGyMCmzdJD4Rrx+7yvb4pLh9Nwr+AAB4VCUOKvuuCSqjjuCl5JmAN1HbL2OO1S/8xRswH78pJnU8+bV1yFm3P5vwm8F9pqnwyiJ9MNqBPYCxvYH7Zwtund7MoWjbN0OdPAjq7kuAXdZhz0GS0yFX3A+cNk87pEtq5LU4vn6z5naWJv+usMH5M35tMFqdji/fqrnZNUPw9dUGpg0D9u8KnDFa8OmVBhKbOYyumtdl3V4W4r0jERERERERERERERFRa6ILRiv127jKHoCdVdvgU9ZfjmS786Kui4iIiIiIqCOKM7yW7WVmywajba3cpO3jez+i2NCc9U5EREREREQdji5UqaRIv0xWftPUQkSRiyY8atKJoU+yp45Jah9Laf5dlkN2OgLBaDN/mdwkJUwrfhOIZ2BfazKhn2BCv+gCGDsqSUqF6pQLbN8c3Ll2KdTg0VDz5wFv/TP8XHe9DenU9q8WO7K74I2LQzyO3HH6Pg31+euQQQdZ9/l8UE/cBBRusOzP8jcuGC0nvhIuZ3Dyh5x3C9TKX2vX63JD5j3Y5sLsqG2RU+dB/fd9YOv6+u2X3BXYfnTKBXoPhkw5BwCgSvcAyxcBS76HWvY9sPQHYGdB/UkPmgwcdXpz/QgtznnYdFz46sN4MP38sGNrgtGKa98vP7zlYgzu9VMTVUft2Tp3dyBeH4yG4YeEnuDpW6EGHQg5qP6++derFK551cRXdTL/8tKAw/oJfCbwyXKFHfsuVNglFVi7Xb8K1/kmemcBE/YT3DFDkOwV/HctsNH67QKePFNwxsEtE3CsNq6Cmj0womXk/Fsgp1wZdlx+euT1GDChlIKIIFPzZy5scP6MNhhN+Wtuq08WQI6u3UYPyRO8emHr2F/3anZ5yiqbtw4iIiIiIiIiIiIiIqJoJTisr3hT4ttj2d5QQYiT47Pcbf8YICIiIiIioubkdSRYtpe3cDBaQeVGy/Z4I1EbuE1EkWEwGhEREREREQVEE6qUxeR6olZDF26o4/ZAzrimaWqhts0IH4y2y5GGHY50bCy3/nKhMdau7AMXfIBF2BBRm9Ojv2Uwmlq3DDihd+gA2mp5vYCRhzVBca1QFMFoWPyttks9+b/Ac7dr+9P9O2EIYKrIVwsA+Z2sv2KRHv2BJ78Hfvg48Dc+YBIkt0d0KyGySbLzgad/BH74COqNRyHDDgHGHgvpaR0OJAnJwIgJwIgJEABKqUCo2tIfgN3bgS69gFGHQ0Sa9wdpQZLdFbM6LcWDmkCiuhI9+26U1x5Q0b9yBe7dejkuzbm73tg+FSvx3bqxeDfxSKx094YfDphjpsCnBH7Lf0bNbcsxqO33mwI/IlzexhgTLRNo1VHtFS/g1QejiWEAz/wMdfow7Rh11VTgoyKIJ3BVxFWFCoffY6K8wUXoN+4Cnv42+IUvVChatVWFgXlXFih8cqUDLy+0fgF1O4Gpw5pm26F8VcCiT4GkNKDXoJqft6a/rDTyULSLb4eceImtsZ0SgTgXgn6v2rmVCQGA0j1AYgqykgVA8O9tm+1gNF/tnYWfQO3eAUnJsFdMM/Jq3sqV+6zbiYiIKHoi0gPAMAC5ABIBbAGwHsA3Simbey1ERERERERERNSQNhjNby8YbasmGC3VmYE4w2vZR0RERERERNZ076NaOhhN994v292lQx2DTdSUGIxGREREREREAY4IQ5XikyCJKU1TCxFFLpJgtG79IOffDOnev8nKoTZMaoMw0jXBaDsdafgoYSL8KnahGQMqlmL+lkuQ79NfLZOozenePxCO1dA7T9meQu59LxCI0hFEE4y2dimUUkFfHKrSPcCL94Zc1HHIVAxyA79aX6gprC6aYDQAkOR04LCZ0U1MFCWJTwQOmQY5ZFrky4oAnbsH/nVgY44YjJ5vrsEad8+Q45KqN1cV9Q+ouGjXw6gQD+7JuAS7jWSMLvsvntp8LpLNYpy455XagW/cEuPKY0sBMGHADwd84oRfHPDDEfw/jLD9ftk3R4N+s+a+Ydnvt91fO8aMYZ1166tus65D32+Kvfdoe414IF4fjAYEQjdVn6HAyl/0f7eTBkBeWwsAOPXx4FC0WPnsd+CHdQqvLLIORjtyAJAaH/sDetTKX6Cung5s2/d+oecg4PbXINlda8dM7apZ2oLbA7liPuTo020vIiLISwuExNnhgD9wY1chkJiCTOvzZ1BYXP936dMFo1XPBwB+H/DFG8BxZ9srphnpgtHKKpu3DiIiovZMRGYAuBzAaM2QnSLyEoAblFI2YnCJiIiIiIiIiKiuREeyZXupv9iyvaGCECfHExERERERUWTijHjL9nKzDKYyYUjLnG+he++X485r5kqI2i8GoxEREREREVFAJKFKAJCR0zR1EFF0bIYbykV/B2bN7TghOxS5Oo+NNE0w2i5HGn72DIl6FQ9smYsTil9DwqRpKP7oTcSpciSb9g4aI2pLpPsAWEeG2Fz+7nfqhX20e54ogtFK9wCFG4Hs/PrtX70NVJaHXFTOvA7Tlgp+3RjdXykvjVdxImpvjOPOxj2PzcTxeS/DL/qvUePd+26U1w9GEwBX7LwPl+ycDwf8aKtbCQEQiAYz4VZVaNSLWQdWN2DOLw68knw8zsp9PGhcmcQB8ZrErDpkzh1Qc4/QD9i+GSs+X4SpHw3D7wWNKNyGA2/VJHcBmDmyCULR1i+HOntU/cY1i6HuuRS49RXgg+ehbjnH9nxy6wLIuClR1dItPYJgNLUvyKxoO5DfB1m6YLQ99e/7dcFoyl/vvvpkAaQVBqPFuQRWG46yJgrrIyIi6khEJBHAYwBOCjM0HcAFAI4XkTOUUu83eXFERERERERERO2ILhhtr1kCU/lhhLlIUkGl9VX6eHI8ERERERFR5LyaYDQFhUpVgTjxNnNFAbr3fgzFJoodngFLREREREREAZEGo9k4aZeImpHdq1vsfyhD0Sg0qQ0ySNcEo/nEhe+8oyz7wplS/Bb+p+hxZN72T8Sf/xdk+bdZh6KlZEQ1P1Gr0r1/9MumZgLDD41ZKW2C2xPdcmuX1NxUe3ZCFRdBfbIg9DKnzoP0Hoz9u0Yf3pKfHvWiRNRKicuNY++/Gd+sOyTkOMPYt+2oKLPsd7bhUDSKneqAOTeq4FXlSPUXWY7ba8QD3sTw8w0/BPLQ55Z9CsA33gPR/19NH4oWiscJTBka20e/WvET1KlDrTt/+Ajq9gsiC0X7v1eiDkUDgH6d7f98DgSCzNTrjwKAPhitztshpRRMTRhh9Xw1fvwMatc22/U0F6/bur2ssnnrICIiam9ExAHgJQSHom0D8AGABQB+RP2E0mwAb4jI2GYpkoiIiIiIiIiondAFoyko7PWXhl2+oHKzZXuWO7cKlCbWAAAgAElEQVRRdREREREREXVEcZpgNAAo9+/V9jWlKrMSO6qsr7LKYDSi2OFZsERERERERBTg0py1qBOX0DR1EFF07ISdORxAt35NXwu1bXVC9tJM62A0APgy3vpcumuOEhza13qZY4vfwbPbzofxzhbIQZOBjM5A5+7BAz1e4IBJkVRN1Dr1GhTY9kZj4gkQpzO29bR27rjolluzBMpXBfOOC6GmdYM6Ohv45j/68cedDTnnBgCNCzc7sAdjj4jaI+k9GCMOyMeU4rcs+w/1/1B7RxOMRmQl3rQ++GavkQB49Aft1CWDDoJcdm+9ti+8Y5DXZy3Gd/+00TU21uSBQLI3Nq+Pyu+H+Y8roP50kH5QZQXwzlO255RbF0DGHteougZFcK6KQ+0LMvvgeQBAZpL176awOBCIBgBrt+vncypf/QbTBL5+235BzcTrsm73mYDPr0l9IyIiIjtuA3B0nftVAOYAyFNKHamUmqWUGgFgEIBv64zzAHhdRDo3X6lERERERERERG1bgkN/8egS/56Qy5b5S7FHc0HSHHdeo+oiIiIiIiLqiOIc+mMsyzTHZja1wqrNULA+Hi7Hw/d+RLHCYDQiIiIiIiIKcEYYjOa1d9IuETUTO8E7XXpBPFGGzlDHUSdkL8O/UztMifVHiwf1FHxypQPLT/0Zr285CW9sOB7/+eM4rFvZB6/v/h8kvr8JkhxIIhIRyImXBE8y9VxIHF9nqO2ThGRg2Pjolj3j2hhX0wZEGYym1i4FnrsDePMJoKoy5Fi55WUY8x6COAOJHflpUa0SADC2d/TLElHrJv/7Ii7e+SBcqv42xVB+zNl8J9SaJYGG8hAHUww8sAkrpLYoXukfL2W7Q588UZccfwGQFHgB+yx+HCZ2/xAFzuxG1xcLM0fWBn8ppaC+fhvmw9dBvfM0VMnuQHtFOdTbT8Kc3gPmCb2g3n0Walch1GuPBMZ+/2EgJOzfDwAL5semsKx8yAc7IeOmNHqqQV3sB78ZMGtuq7JSZCdbj6vyA5uKANNUOPUJ03oQAAf8QW3qgxds19NcvCE+Yiyrar46iIiI2hMR6Qmg4QepM5VS85Wq/8ZFKbUUwGGoH46WAeDGpq2SiIiIiIiIiKj9SHRovthB+GC0gspN2r5sd5eoayIiIiIiIuqovIb+/KLyFgpGK6jcbNluwIFOrtZxTCdRe+Bs6QKIiIiIiIiolXB7Ihsfl9A0dRBRdAwbwWhDxzZ9HdT21Qk8S/fvRJxZhnLDa3vxQfuO3eo7fgT6pF4GteB+YPNaYPgMyNnXQxqE+MkJFwIJKVAfPA9UlgfCCmbNjcmPQtQayIQToBZ9Gtky970PSe+AX4ZFGYyGRZ9CffGGvbGjj6p3NyMRiHMqlPvsh5wAwN/2+xEiB0S0DBG1HeJw4LBH7sN/zpuCB9IuwG9xgzCgYhnO3fUEji59H/j5MKDnQH0wWr8RkAc+Bd57FurFe4F1ywLtWfmAg9et6qjiK/VpUeUJmYjkUxZ5dQ1eOv5PODnv2UbX5YAfu+934Y1fFF7+QWHxZmC/bOA/iyObJzMJmDI08HqqlIL6+/nAO08F7gPAK/OBWxdA3XAysHxRzXLq1j/Vm0f9605g5sXAx6804qeq48zrIKdcGbPg5VHdgc4pwJbd4cc6VJ0gs22b0Cerj3bsks3Amm3Af9eEms8iNO2nz6G+fgcy5pjwBTWTeDeQ4AG8LiDOFfjf6w7879fnvhEREVFoNwJw1bn/lFJK+2GIUqpMRM4E8BuA6h3Rc0TkdqVUiD0OIiIiIiIiIiICALfhgVs8qFQVQX3hgtG2aoLR3OJBqjMjJvURERERERF1JG7xQGBAIfgAtLIWC0bbaNme6e4MhzDKiShW+GwiIiIiIiKiABeD0YjaNCN8wIKMm9IMhVCbV+exJAC6Vm3A756+thaNdwPd0mvvy5CDIUMODrucTD4FMvmUSCslahvGTwXunguYNlMgUjKAoeOatqbWKlww2tjjgK/eCm7fpr/Sbj1JaRBX/VAaEcGQPMH36+xNUe2Q3v7wg4ioTZPu/TEhvwQTVswO6lP3XAoMGg1VUWa9sCc+EAZ7zJmQY85s0jqp7UgoUMD11vsDewcegkhOgSgTL+Z2ewiw8XL09h9TMbn0Q7yYPBOndnk6qH9Y2S/wbk7A7FEDMHtUbfuqQoVJd5v4Y6e9mh49zUBi3L6g0WULa0LRaif8FeriSUDhhvCTLZhvb6XhTD8Pxjk3xGaufVxOwXXHCC5+XoUd66j7B9q+GalJqcg1BJvN9KCxR90Xfl/RofmDq4euAQ4+GiKRBb02lYG5guL7bYS3ExERkS0i4gUwo0Hz38Mtp5T6XUReBzBrX5MTwMkAbo5thURERERERERE7VOiIxk7fduC2kv9xSGXK9AEo2W5c2EIL6RFREREREQUKRFBnOFFmVka1FfeQsFoWyus3/tlu3ObuRKi9o2fpBAREREREVGAyxV+TF3e+Kapg4iiY9g46bgTP1wlGxocfJVfZSO4YJ+BuYBhtI6T8YlaC0nLAgaPsb/AUacHwnQ6ogahZQ3JFffbCgLVSu1k2XzKQZFtt4aU/4oxg5Ojr4OI2o4E/XP9/9m78zg587pO4J9fVd9HJgmZZDKTORjmDoxz4XA43AgoDKcjwq4ggopcHii4glyKuoKK4LGisCgil4DHgqICLgvIrhwLyLVyDMcMMzBXkk53ju5n/8gwSbqfqq6qrj7S/X6/Xnml6/f7Pd/fdyaVTlX183ye6lkPSq79Qv3kyOgyNcSJbKzNP3P7d+3uqtbffbrKd2YnFl33rJt/Pw+d+sckyWP3vDOXznyydk0+uDB49JztJZ9/WSM/cNfF+/nqrzfyyEuO/ntaveuP6xd2EorWR+UJP78sdZ9+35KBDl6SNI+9O+WN30j1kh/N7j0f63nfZtUiCe/aLyTfurbnugDAmveQJMf+UO4jVVV9vsNjXz/v8WP60xIAAADA+jfenKwd3ze7p+1xNxz8Ru34KUO7ltwTAADARjXaqL+WdXp2dYLRvPeDlSEYDQAAgCMGh7tbPzK+PH0AvekkGK1NsAPcYV7o0BmH6z+sr7P7VKFoUKe84m86W/j4n0n5qV9b3mbWsFJKcul96+fe8PGUbTuTi67sfYMt22uHn3n/1t+7mtXhXLn/o2lUsxmZm84P7n133vO1q1N2+IElbAjtgir3703e97b6uRFB4izULhht+lDnr6OnDlR5/B9XHa39rRuef8fXgzmcN3/jiXn0nndlaO5ATjv0zfzh9c/ME/f8ZarX/krt8SODJX/7rPanFNz6qkbOuNO8/t/zZx31t5zKq/4h5ZQzl6d2Kbn3OYuvOzbIrPr7NyYfe3/ucugrPe87kMOtJ2+7qee6AMCa99B5jz/QxbEfTI57EXFpKWXHkjsCAAAA2AAmmvXnWy4ejHZd7fj2ITe2BQAA6NVIi2C0mbnpFe4kqaoqNxz8Zu3cjqHTVrgbWN8EowEAAHDEYJsrdGuUUcFosKYIRqNvjg812HWom2C0fvcC60MZGUt55d+1X/PSN6XxjN9MaRfCswGUp70kmfc6szzjN1PO3n3kwV129158y8n1e5aSr1z8O9lx+Ibjxkfn9uefrn1oPnTt/bPnC9tyyxd25K+/8bjsGJlJ8W8qbAydvMauMywYjYXaBqMdXPz42/ZXee7b5jL5rLmO9vvsly7OQGaPG7vLoa/kbd98Qqa+sCXX/se5edqtr7vj1X/1gXfW1iml5FuvaGTXluPHBxrJe57TyKbRtROOXH75T9P44IE0Pngg5bL7LeteF3UQCt089v//x96fpLv3VwvqVbOtJ/fe0nNdAGDNu+u8xx/p9MCqqqaSfHre8BI+XAEAAADYOFoFo021CUabq2bz7UP1wWinDLkJHwAAQK9Gm62C0favcCfJbYdvzoFqpnbOez/or4HVbgAAAIA1YnC4u/UjLvSGNaXRQf69EBc6Me+5tOPwjR0furuDcADYqMr3PjhVuwVnXrBSraxp5W73TF774VT//LZkel/Kld+fcsUDj87feXf7/4/tbN7WcuqMC07PJ97+vXnt5qfkC8Pn5cxDX8sTb/vLXHDwi0mSkerA0cXb/bASNoxmjz9KHR7pbx+sC8MDSSlJVfMP2f5FgtEOHa5yn9+ay6frbzC4wGuv+6mcd/A/Ws7XvWqvXvj45BV/m2w/PTnz/JRj3hds31TyyV9p5I//Z5V/vy7ZtSV5wveW3G3XGnv9f99Hr9hWF+1cfE2jWhhid/pSgtHSLhjt1gVD1W03Jd+5Ptm/N9l5Zsq2pSdZVzffkMzNpWzr4H8AANAvF8573PqFXr0vJbn0mMcXJXnfkjoCAAAA2ADGWwSj7Zvd2/KYmw7dmMPV4dq5HUOn9aUvAACAjWikUX8t6/QqBKN962Dr8wC994P+EowGAADAEV0Ho40vTx9AbxrN9vMjYykDgyvTCye2ecFo22c7D0a79Ix+NwPrzEnbktu+Uz83OLSyvaxh5cwLUp7ywvrJ8y/rve7ue7SePO/SbJ/9dn75pt9cvFC7OsD60mswmiBxapRSMjpYH4K2WDDan/1r1XEo2tDcgTxq799032CS6rmPOPLF1lOSl7wx5ZKr7pjbOl7y/IetsSC0Y5TnviZldOU+q7poZ0kWiWutCzLbdbj3YLS5tAlE33vLHV9Wc3OpXvMLydtec9yS6ooHpPzKG1K2bO9672rvLale8Pjk4x848vjie6f82ltT2gTPAgBLV0rZmmTrvOGvdVlm/vpze+8IAAAAYOOYaE7Wjt92+ObcdKj+nLovTX+uZb3tQ0u/iQ0AAMBGNdoiGG1mBYLRpmb3ZmZu+o7HX5n5Yu26yeZJGWtOLHs/sJEIRgMAAOCIbsM4VvBiU6ADiwWjjZ+0Mn1w4ivHX2x/8uFvd3TYve6S7Ni0doMSYE1oF7Az1GVI7UZ14d2PhLXc/K3uj73q6tZzp5+bnHlBcu3nFy1THvvT3e8NnJh6DUYbGu1vH6wbY0P1IWhTB6okrV9Lv+Bd7QO4jvVTt742W+Zu7aG7Y9z8rVTPelCqxzw95eE/lnLu9yx6SDWzP3n3G1Ld1MO/0f3w4Mev6Ha7O7hupVktDEY781C3OSZHnTzbImA3SfbddvTrv/7jBaFoSZJ/e1+qZzwg5U2f6Xrv6uVPvSMULUnyqQ+leumTUn77f3RdCwDoyuZ5j/dXVTXVZY35V+n6YQEAAABAByaam2rHv37gy3nhl3+iq1pbB07OcGOkH20BAABsSCON+nNzlzMY7eszX84brn9Vrjt4bUfrdwztWrZeYKNqc0thAAAANpSBwe7WjwhGgzWlscjHPOP1dy+EBeY9l3bM1t/dcr4HXyQUDRbVbBNiOSgYrROl2Uwe/uTuj3vzZ1MmWl/3W0pJecRTFi/0mJ9KOeduXe8PnKB6DkbzPZ16Ey2eGvsOtD7mzz4ylxv2LF77fuclv/uA6/LKCz+anHl+/aJzLk55782LF/uud/xhqqfdK9W/vKvtsmr/3lRPvjzV7/xM8me/0Xn9bgy1uVBk4qSUsZV9z7t9U8m529uvaaY+GO3UQ9d1vd/FM5/KttmbWs5Xf/nbR36fm0v1F69sXejr/y/V22tC09qopqeSj7534cTH359q7xJD+ACAxcy/lfR07ar25h+z5BdOpZTtpZTd3fxKcpel7gsAAACwkiYG6oPRerF9qIO77gAAANDSSGOsdnx6dnmC0aZnp/K7X39Bx6FoSXLK0GnL0gtsZILRAAAASHIkDCKDQ50fMFKfsg+skkabsJ0kGW8dBgPHKcd/ZLj98Lc7OuziXYLRYFHtAnYEo3WsPPEXklPv3PkBZ16QcloH194+5unJPR/Wev7+j015zu90vi9w4usxGK34nk4Lky2yvfbO1I9XVZWfe2vVtuZdT02+/puNvO+5zTz78aen+bI3pfHGT6W89sPJ1h1HF95pZ8rz/zhldDzlRX/eedOzh1P9zs+kOnSw5ZLqdS9Lvvnlzmt2qzmQ7Dyz9fz21bnL4mMua/8eaOfh6xeMlSSP2/uOtse9/NElp24++njL7M3579c9tX0zt92UamZ/8pl/TW74Wtul1at+PnOPvzDVezp8Hnzp00ndn//sbPLv/9pZDQCgV/OD0Vq8cmxrfjDa/Jq9+Okkn+ny11/3YV8AAACAFTPe7F8w2ilDq/PzLAAAgPVitFkfjDYz18v9xRb3qX3/J9Nz3YWu7RCMBn3X423OAQAAWJcGh+svdKwzLBgN1pTmIsFoE/07SYd1rnF8MNpJc7dlaO5ADjbaB3zczef3sLhGm3uVdBNQu8GVsYnkTf+e6n71P9xcsP6xT+9s3eBQ8pvvTP7v/zoSALLt1GTztuQ71yfbd6Xc7Z5LaRs4EfUYjOZ7Oq20Ckbbd6B+/PrbkpunWtf7u2c18oALkpHBhQFd5YLLk7/8bPLRfzgSfnzl96eMjh+Ze9A1qT7wjuRf3tlZ4zddn+o1v5Bc/H3JRXdP2XnWHVPVgenkLa/qrE6vtp2ajIy3nl+lYLSfvE/J7/5TlQOH6+cfNPW+2vEf2vP2/N7WZ7as+4sPKfmJ+5R88Lm/nIPXfikP2fePmajaPBG+6/9+MNWH/kcnrSff/HKqlz81ueHryennJrvOSTn/0vq1VZtwviIgGwBWWPvU3P4dAwAAALDhbR/c2bdapw2f1bdaAAAAG9FIo1UwWnfhZZ268dA3uz5m13AXN38HOiIYDQAAgKMGh5Ps7WztkGA0WFMGBtvPjwlGo1NlwaNLZz6Zj45d2fKI7ZPJ2duWuS1YDxptQiwH24cPcrzSbCbvviHVD+yoXzA8mtzplJTHPD151E92XreU5JKrjvwC6DUYbcj3dOpNtHhq7J2pH//GLa1rPesBJT9wt/ahVGVsIrn/Y+vnXvj6VNt3Je/9y+S277StkyR5xx+lescfHQn+e/YrUx71E6lu/U6qRywtIbn8+ItS/elL2i9aLPhs052W1EOvztpW8uKrS37pHQuzRgZzOD984N21x91j+n/nggOfz+eHL1gw99mXNNJolGwdTx5R/a9k70c77qd67tXJ6ETn/wHJcf/vqwc8LuXFbzzyeui4RbJUAGAV7Zv3uJcfzs0/Zn5NAAAAAGpsGdyW88fuli/s//SS6ow0xnLZ5L371BUAAMDGNNKo/3H59DIFo+073OE1trc7eXBnzh2767L0AhtZY7UbAAAAYA0ZHOp87bBgNFhTFvv7O3HSyvTBia+xMFzhcXvf0faQx15e0qg5Dpin2ToYrbSZo16Z3JzyW3+dHBveMTSc8rI3p7z35jTe8vmUH37OwnAPgE71+r1Z2CUtTI7Uj+89UD/+zVtb1/q1Ry3t37cyPJrGs1+R8rffSHnl33V+4KGDqV75rMxdNbzkULQkyZkXpDzzv7Zfc/q57QMHxyeX3kePfv7BJddcsfDP4kWPGsxZ/+MTKa/+pwVhZSXJH17/zAzPHZ+I99qhV+WCncfUmj3cfUPTS8g5ed/bk7/5k4Xj1Vybg7zOAoBltlaD0f4gyV27/PXIPuwLAAAAsKKeeuovZvf45Wmkt58d7xw6Iz97+q9mtDnW584AAAA2ltHGeO34zHIFo83u6WhdScmdR87Ps09/cRpFhBP0W4+3OQcAAGBd6iYYrd0FqcDKG1jk7+/4ppXpgxNfzQfx1+z5q/zi9l9P1eJD+h+5u4vhoSNNH8n3W7nHQ5M3fSbVe/48ZXA4uc8jU87evdptAetFr9+3u3lvzYYyOVKSVAvGp2YWrk2Sb96ycG2SnLIpmRjpz2vwUkqqKx6YnHVh8tXP9aVmV3acnnL/xyTnXZrq2Q+uXVIe/PhUb/291jXGVy8IfKBZ8hdPTR5zWfI/v5gMDSQ/cNeSB110+5/PJVclr/to8k9vTfWta1POuiDVvtty1Rt+PZ/90vfkdZufnENlINfs+atcsmMmyc8dLX740Ir/91Rve01y9VOPD5Y92OIJmvQW3gYAdOO2eY/HSinjVVVNdVFj+7zHbeJ3O1NV1Y1JbuzmGMH1AAAAwIlovDmZZ+x6YQ7MzWTv4fkf1bQ30hjNxIDzNgEAAPphpFF/H7GZuenMVXN9DyVrFYx2n80Py4O2POqOx2PN8Yw1J2rXAkvnKiwAAACO6ubi7eFebkoPLJvF/v4KRqNTjYU/DDjt8HW5//4P5H3jD1gwd9adknvdZSUag3VAMNqyKLvOSXnaS1a7DWA96jkYTZA49cZbPDX2ztQHoH2jRWTFuTv61NDtSqORvPRNqV7yo8mXPt3f4ovZvutID5feJ3nHl1O9+D8nn/rQkbmhkZSn/1rKFQ9I9a4/blmirPL73Waj5JorSq65on6+7DonefJ/yR1RIO97e6okZx7+el7ynZcdXfi1pJqbO/LnkbQOHbv8/snH3t+n7ue59vNHfp114dGxA9Ot1x88sDx9AABJkqqqbiql3JJkyzHDZyTpJtH2zHmP/9+SGwMAAADYYIYbIxkeGlntNgAAADaskcZYy7kDc9MZbY73db+p2b214ycPnpJtQ30+iRNoqb+RhwAAAJzYurl4WzAarC2LBKOt9oXinEBqgtGS5OU3/koGq4MLxv/r4xppNErNEcACjeZqdwBAN3oORusidJwNZbLFtRL7WmRLXXdL/fhpm/v/+rvc+aKUP/1oyruuTXnth/tev9bwaLL16AlC5eTTUl7zzylv/4+UP/lIyntuTHncM49MjrQ+qemECwLfcXrrub/6/aNfHz5Uu6RcdXXL92198YVPHP/4wEzrtTWhaVVVpfrwuzP36l9I9fpfTXXLjX1uEAA2nPkhaOd0efzZi9QDAAAAAAAAgDVttNn6HMLpuf19329qdk/t+Hhzsu97Aa0JRgMAAOCoIcFocMIaWCR8YeKklemDE1+p/8jwipmP50NfvV9++La35pIDn8qjL03e85xGHne5UDTo2FZ3BgI4ofQajNbNe2s2lFbBaHtb5E5989aqdvzUzX1qaJ7SbKbc6ZSUCy5Pzr2kP0W/56rk7g+sn7vq6pR5AV+llJQdp6ecf1nKsX+Xtu1svceJFoy2fVfLqeptrzn6YPZw/aKhkZS3fL7PTR3Tw5c/c/zAwTbBaDVz1e8/L9XzHp289fdSve5lqa4+PdUXP5lq32197hQANox5/zjnnp0eWEoZT3LxIvUAAAAAAAAAYE0babQORpuZW3iDz6Woqir7ZvfWzo03T7DzFeEE1+PZ/AAAAKxLiwUrHWuoxdW8wOoYXOTv75gPXulQo/W9FC6b+WT+4ronJ1t3pPH0r61cT7BOlP/0C6k+8p6FE/d46Mo3A8DiBnr8UWo3763ZUCZaZObtO1A//v4v1I+ftkzBaMcqL/2LVD+ye2lFTr1zynNemew6J9UvPTb52PuPzt35opSnv7zzfrbvSn1MXE68YLStpySbT05u/fbCueu/mur6r6bsPCuZna0/fmAw2XFGMjKWzPT/TpeZH4x2oPVJY9UNX0v18qcl//zWI38Om7Ym1y4Mbat+/Mqk0Uj5l/6egAYAG8TfJ/mJYx7fr4tjr8rx54h+oqqqG/rRFAAAAAAAAACslNG2wWj9PY9uZm46s6m/semEYDRYUYLRAAAAOGqxYKXvGhhMaTaXtxegO81FPuaZ8MErnSqLLxmbWP42YD3afY/krAuTr37uuOHyA09apYYAaKc0B1oHMbUz1CL9ig1vskXG/K01WVGfva71s++0LX1qqI2y65zk51+d6pXP6vygrTtS3vL55GPvOxKov/vKlLHJI3O//e7kMx858jro9HOTi65MGe4idH/rKa3nRsc7r7MGlGYz1b1+IHn3G+oXfOnTyc6zksOH6uebAymlpNpxenJti/S8pbj+q8c9rL755dZr3/DrR78+OJPccmPrtXNzS2oLADawf0gynWT09sf3LKVcUFXVwjTShZ487/E7+9kYAAAAAAAAAKyEwTKURpqZy8Ibjk73ORhtanZPy7mJ5mRf9wLaa6x2AwAAAKwhnQajDY8uvgZYUaUsEmY1ftLKNMKJr9HBR4ajPsiHXpRmM+X33pvc/7HJSXdKzr0k5Zdfl3L/x6x2awDUWSx8uJVBwWjU2zZR/77t23uTqjo+CO3V728djLZrSwdhxv3wyKel/Pyrk9POTrZsPxLW1c5D/1PKyFjKvR+ecvcHHQ1FS1IajZSL751y9VNTLr1vd6FoSbKpTRrcYu+H16DyvD9qPXnLt4/8Plt/x8kMDB75/R4PXXyjU87srrEk2XPLHV9W7/+r5M2/032NOifgnxMArAVVVe1P8vZ5w89b7LhSynlJHn3M0OEkb+pjawAAAAAAAACwIkopGW2M1c7NzPY3GG1f22C0TX3dC2ivx7P5AQAAWJc6vXhbMBqceEYnVrsDThSlg2C0Mc8n6FXZsj3lpW9KVVWLh1oCsLoEo9Fn21vkCx+aTW6bTjYfc87On3+kdTDaOSf3ubEWSinJo34i5VE/sWBu7qVPSv7xzUcHzjgv5Un/ZfmaOf+yI4Fghw8dP95oJHe52/Ltu0xKo5HqvEuTL35i4eR3rjvy+/z/1u+6/XtTuebZqd7yqvb7POLHU73ld5M9N3fe3C03Zu45D0mu+0ryrWs7P24xXvsCwFK8OMnjk9yekJonl1LeWVXV39QtLqWMJHl9kmPviPSnVVV9aVm7BAAAAAAAAIBlMtIczdTc3gXjM3PTfd1nanbhHknSSDMjLcLZgOXRwVWOAAAAbBhDnQajjSxvH0D/jfrglQ41OvjIUNAeLJlQNIATQLPZ23GDg4uvYUNqFYyWJDcecx7N566vsv9gmzqbVv91RHnhf095+duSH3tBynNfk/L6f0tZxgDlMr4puffDF05c8cCUTVuXbd9ltXlb7XD1upel+rf3JfturT/u9u9NZcLK1l8AACAASURBVPuulNf/W/s9xieT+z+m+94+/oH+hqIBAEtSVdWXk8xPRH17KeWZpZRjw89SSrkwyT8nudcxwzclecnydgkAAAAAAAAAy2e0RSjZ9NxUX/fZN7undnyiOek6EFhhPd7mHAAAgHVpYGjxNUkyNLq8fQD9NywYjQ6VDoLRxtokOgAArBfNHn+UOthh6DgbzsntgtH2JOftOPL1L759ruW6d/702rj3WSkluerqlKuuXrk9n/dHqQ7sT/71H44MXHa/lBf92Yrt33cn1QejJUn1sw9rfdzAMeGLd77oyPeq2cP1a0cnUp71ilR7bkn+57uS2dkemwUA1oDnJ9md5LsvFAaTvDrJC0spH0+yN8nZSS5LcuyZ2AeTPLqqqutXsFcAAAAAAAAA6KuRFsFoM3PTfd1n3+ze2vHx5qa+7gMsTjAaAAAAR3V68fbQyPL2AfTfsEBDOtQQjAYAkKT3YLQhwWjUGx8uGR9Opg4snLvx9vNopg9W+cAX648vJbnvecvX31pXJjen/NbfpNp7a3L4YMqW7avd0tIcnOntuEbzji9Ls5lq26nJDV+rXzs2mTI8mvLSN6Xac3PygXek+q1n9LZvj8qffnRF9wOA9aqqqtlSyjVJ/iTJDx8ztT3JQ1scdmOSJ1VV9cHl7g8AAAAAAAAAllPrYLT9fd1n3+ye2vGJpmupYKWtjdtJAwAAsDYMDXW2TsASnHj8vaVTpSy+ZusJHkAAANCJXoPROg0dZ0Pa3uK8mBv3VkmSf/j3+uC0JLnglGTzWAev19e5Mrn5xA9FS1LOu7S3A48JRkuSbN/Veu3o+NH9Nm1NTjmztz17VN6/L+W8S+74BQAsTVVV+6qqenySH0ryr22W3pzkD5Pctaqqv1+R5gAAAAAAAABgGY22CEabnu1vMNpUy2C0TX3dB1hcj2fzAwAAsC4NdBiMNuQibzjRlGZz8UWQJGXxeymshxACAIBF9RyM1uF7azakbRPJV76zcPzmqSO///Unq5bHvuPp7nu2rpzfY1BYY97zYNvO1mvH5iXxXXB50mwms7O97d2praekvPytKQODy7sPAGxQVVW9PcnbSyl3TnJZklOTjCf5VpJrk3yoqqqDq9giAAAAAAAAAPTVSItgtJm5fgej7a0dH2+2uDMusGwEowEAAHBUp4FnvV4cDsDaN/8i+zpbdyx/HwAAq63nYDRh4rS2dbx+/LvBaP/nq/XBaE/43pLzTynL1BWr4vIH9nbc/DDrHWe0XjsvGK1s2prq/o9L/uktve3drq2f/vVkbi45e3dyt3ulTJzU9z0AgONVVfWVJF9Z7T4AAAAAAAAAYLmNNEdrx6f7HIy2b3ZP7fh4c1Nf9wEW50p2AAAAjhoY6nDd4PL2AcDqmX+RfZ0t25e/DwCA1dZrMJr3zLSxZawkWRh+dsv+5NDhKl+8of64h1+8vH2x8srAQPK6/53qKd/b3YHzwqzLaWfXPKNuN7LwRLDyS69NtWV78i/vSm78euf7jk4k0/sWjt/7B1P+y5+kbNraeS0AAAAAAAAAAADowkhjrHZ8pu/BaHtrxycEo8GK6+AqRwAAADaKMjTc2cLBDgPUADjxNDr4yHCrYDQAYAPoJRht+66UUvrfC+vG5vrzcnLLVJX/+HZyeK5+fvepnlfrUTn3e1Ke+uIuD5r3nu3eP5jUfd8ZGkm2nbrw8KHhNJ79ijT+6j9SXvTnne35kCem8d6b0vjggYW/fuMdQtEAAAAAAAAAAABYVqMtgtGm56b7us/U7J7a8YnmZF/3ARYnGA0AAICjOg08Gxhc3j4AWD3zL7Kvs3XH8vcBALDaeglGe8AP9b8P1pWt4/Xjt+xPPnd9/VyjJOd5Cb5ulSf9UvK4Z3R+wLww63Lyack9H7Zw3fc9ImV4tH2t+zwyOe3sxXt8+I913h8AAAAAAAAAAAD02UiLYLSZuf1926Oqquyb3Vs7N9Hc1Ld9gM4IRgMAAOCoToPRmoLRANatxiIfGQ6PJhObV6YXAIDV1Gx2fUj5yZctQyOsJ1vqz8vJzVPJZ6+vaufO2Z4MD5Zl7IrVVp71ipRn/EaHixe+Zyu/9Nrkyu9PSjnyveuqq1Oe90eLlxoaTnn525NzLm695vn/LeWSqzrrDQAAAAAAAAAAAJbBSKP+RqEzs/0LRpuZ25+5zNbOjQtGgxXXw23OAQAAWLcGhztbNyAYDWDdKosELmzflbLYGgCA9aDZ3Y9Sy0v/MsX7ZRaxdbx+/Jb9yeeur5+7aOfy9cPaUBqN5PE/m+rW7yR/8Yr2i2tCG8vmbSmv+NtU+/cls4dSJrd0vvfZu1Ne/39Sfef6ZP/eZOKkpKqSudnkTjuP9AYAAAAAAAAAAACraLRZfwLmgWomc9VsGqX7GyLPt292T8u5iebkkusD3RGMBgAAwFEDQx2u83YSYN0qi1z0vuP0lekDAGC1dROMNrkluedDl68X1o0tYyVJtWD8xr3Jv3xx4XiSXLhTMPFGUe50Ss2zY/6i1u/ZythE73tv25lECh8AAAAAAAAAAABrz2hjtOXczNx0xpq9nz/3Xftm97acG29uWnJ9oDtu7QsAAMBRQ8OdrRsYXN4+AFg9jUU+MtwuGA0A2CA6DUYb35TyK/89ZWRsefthXThtS/34wcPJdbfWz128a/n6YY3Zsn3xNYu9ZwMAAAAAAAAAAIB1ZqTR+jzdmbnpvuyxb3ZP7XgzAxlpE8wGLI8ubnMOAADAujfYaTDa0PL2AfRm95XJv3904fg5F698L5ywSimp2i04+bSVagUAYHUNtzmB4eJ7p/zsq5JbbkguuCJlcvPK9cUJ7cJTuls/NJA8ZHdZnmZYezafvPiaIhgNAAAAAAAAAACAjWW0TTDa9NxUkg7Ov1vEVItgtInmZEpxLiesNGfMAgAAcNTgYGfrBjpcB6yocs2z68d/9JdWuBNOeI3WHxuWiU0r2AgAwCo668LWc+ddknLO3VLu/iChaHRlYqTkzts6X//Q3cnmMSfTbBidBKO1eb8GAAAAAAAAAAAA69FIm2C0mdnpvuyxr0Uw2njTtVSwGpwxCwAAwFGDw52tE4wGa9N9Hpnc91HHj9330cn3PXx1+uHEVdp8bDgyvnJ9AACsojK5Obn8/vVzZ5y/wt2wntz11M7X/tAVQtE2lFPPSoYW+Xyu3fs1AAAAAAAAAAAAWIcGymCaGaidm5nb35c9pmb31o6PNyf7Uh/oTv3feAAAADYmwWhwQisDg8mL35h87P3JFz6RnH9JcvkDUwZ8BESXGo1ktsWcYDQAYAMp/+kXUn3s/ccPjk4k93rY6jTEurD7tJK//VTV0dp7ni0YbSMpY5Op7vvo5B/f3HpRw3MCAAAAAAAAAACAjaWUktHmWPbN7lkwN92nYLS62kky0dzUl/pAd9xKGAAAgKMmN3e0rAhGgzWrDAymXPn9KT/6vJQrHyIUjd6UNhfajwpGAwA2jnLFA1Oe+5pk4qQjA2ecl/Lyt6XsOGN1G+OEtvvUztaNDiZn3ml5e2HtKc/9/UUWOM0DAAAAAAAAAACAjWekMVo7PtO3YLS9teOC0WB1uDIWAACAozZv62ydYDSAda5NMNrI2Mq1AQCwBpRHPi15xI8n+25NJrektAuRhQ5cfFpJUi267vxTkmbD822jKWMT7Z8dDcFoAAAAAAAAAAAAbDwjjfprmqbnpvtSf2p2T+34xMBkX+oD3XHGLAAAAEedJBgNgCSzh1vPjY6vXB8AAGtEaTRSNm0VikZf3PW05OJdi6+7aKfnGzUEowEAAAAAAAAAALABjbYIRpuZm+pL/X0tgtHGm5v6Uh/ojjNmAQAAuEMZHEomTlp8oWA0gPWtXTDaiGA0AABYilJK/vwpi/+o/sKdK9AMJ57iNA8AAAAAAAAAAAA2npEWwWjTs9N9qT81u7d2fLwx2Zf6QHecMQsAAMDxNm9bfI1gNICNa6T+hwgAAEDn7rar5PvOab/mwp1lZZrhxNJornYHAAAAAAAAAAAAsOJaBaPNzO1fcu25aq5lMNrEwKYl1we6JxgNAACA453UQTBaUzAawIY1Or7aHQAAwLpwzvb2wWf3PHuFGuHE0nCaBwAAAAAAAAAAABvPaHP5gtFm5vZnLnO1cxNNwWiwGpwxCwAAwPEmNy++ZkAwGsCGNSIYDQAA+uHsk1vPXXnnZOfm9sFpbFDFaR4AAAAAAAAAAABsPCON+mC06T4Eo+2b3dNybqI5ueT6QPecMQsAAMDxBoc7WDO0/H0AsDaNCkYDAIB+eOju1sFn11whFI0WGk7zAAAAAAAAAAAAYOMZaYzWjs/MTS+5drtgtPHmpiXXB7rnjFkAAACONzSy+JqBweXvA4A1qfg3AAAA+uLyM5OLdi4cHxpIHne5YDRaKE7zAAAAAAAAAAAAYOMZbYzVjs/M7V9y7anZvbXjA2Uww6WDa26BvnPGLAAAAMcbHF58TXNg+fsAAAAAWMdKKfmDJzbSmJeB9oIfLDl9q2A0Wmg4zQMAAAAAAAAAAICNZ6RFMNr07NKD0fbN7qkdH29OphTndMJqcCU7AAAAxxvuIBhtYHD5+wAAAABY5+5zXsmnX9zIH3ygysyh5LGXlTz0rk6goQ3BaAAAAAAAAAAAAGxAo836YLSZuX4Eo+2tHZ9oblpybaA3gtEAAAA43qBgNAAAAICVcuHOklf/iDA0OlQEowEAAAAAAAAAALDxjDRGa8cPVgcyW82mWZo9156a3VM7PtGc7LkmsDTOmAUAAOB4QyOLrxkcWv4+AAAAAIDjNZzmAQAAAAAAAAAAwMYz2hhvOTczt39Jtfe1CEYbb25aUl2gd86YBQAA4HiDw4uvaQ4ufx8ArD3D9XdWAQAAYIUUp3kAAAAAAAAAAACw8Yw0Wl/XtNRgtKnZvbXjE4LRYNU4YxYAAIDjlKGRxRcNCEYD2JBO2rbaHQAAAGxsDad5AAAAAAAAAAAAsPGMNMZazk3PTi+p9r7ZPbXj483JJdUFeueMWQAAAI43NLT4GsFoABvT3R+42h0AAABsbMVpHgAAAAAAAAAAAGw87YLRZuamllR73+ze2vGJ5qYl1QV654xZAAAAjjc0sviagYHl7wOA1fODP1Y7XJ743BVuBAAAgOM0mqvdAQAAAAAAAAAAAKy4wcZgBspg7dz03PSSak/N7qkdn2hOLqku0DvBaAAAABxvcHjxNQP1Hx4BsD6UJ/xcsnXH8YOPeErK6eeuTkMAAAAc0XCaBwAAAAAAAAAAABvTSGOsdnxmbn/PNeeq2UzN7qudG29u6rkusDQDq90AAAAAa8zQyOJrBoaWvw8AVk0547zkv30wee+bU934tZRL7pM88JrVbgsAAIBSVrsDAAAAAAAAAAAAWBWjjbHsm71twfjM3HTPNffPTaXKXO3chGA0WDWC0QAAADje0PDiawYGl78PAFZVOeXM5EefF5fcAwAArB1FMBoAAAAAAAAAAAAb1EhjtHZ8enaq55pTs3tbzo03J3uuCyxNY7UbAAAAYI0RjAYAAAAAAAAAAAAAAAAAwBoy0hirHZ+Zm+655r42wWgTzU091wWWRjAaAAAAxxsUjAYAAAAAAAAAAAAAAAAAwNox2mwVjLa/55pTs3tqxwfLUIZKB9fbAstCMBoAAADHGxpZfI1gNAAAAAAAAAAAAAAAAAAAVshIoz4YbXoJwWj7WgSjjTcnU0rpuS6wNILRAAAAON5I/QdDxxkYWv4+AAAAAAAAAAAAAAAAAAAgyWiLYLSZpQSjHa4PRptobuq5JrB0gtEAAAA43hnnJc2B1vOlpDSbK9cPAAAAAAAAAAAAAAAAAAAb2sgyBKNNze2tHReMBqtLMBoAAADHKWOTye4rWy8YGFy5ZgAAAAAAAAAAAAAAAAAA2PBGWwSjTc/2Hoy2b3ZP7fh4c7LnmsDSCUYDAABgoZ1ntZ4TjAYAAAAAAAAAAAAAAAAAwAoaaYzWjs/MTfdcc2p2b+34RHNTzzWBpROMBgAAwEJDw63nmoLRAAAAAAAAAAAAAAAAAABYOaPNsdrxmbn9Pdfcd3hP7fh4c7LnmsDSCUYDAABgocE2wWgDgtEAAAAAAAAAAAAAAAAAAFg5I436YLTppQSjzdYHo000N/VcE1g6wWgAAAAsNNQmGG1waOX6AAAAAAAAAAAAAAAAAABgw2sVjHaoOpjD1aGeak7N7a0dF4wGq0swGgAAAAsNjbSeGxhYuT4AAAAAAAAAAAAAAAAAANjwRhqjLedm5qa7rjdXzWb/7L7aufHmZNf1gP4RjAYAAMACZXC49WRzcOUaAQAAAAAAAAAAAAAAAABgwxttjLecm5ntPhht/+xUqlS1cxPNTV3XA/pHMBoAAAALDQ61nhsQjAYAAAAAAAAAAAAAAAAAwMoZaY62nJuem+q63r7ZPS3nxpuTXdcD+kcwGgAAAAsNj7SeE4wGAAAAAAAAAAAAAAAAAMAKGm2MtZybmZvuul67YLSJ5qau6wH9IxgNAACAhQaH28wNrVwfAAAAAAAAAAAAAAAAAABseM0ykMFSf43rzNz+ruu1CkYbKsMZarS5zhZYdoLRAAAAWKhdMFpzcOX6AAAAAAAAAAAAAAAAAACAJKONsdrx6R6C0aZm99aOjzcnu64F9JdgNAAAABYaahOMNiAYDQAAAAAAAAAAAAAAAACAlTXSIhhtZrZ/wWgTzU1d1wL6SzAaAAAACw2NtJ4bGFi5PgAAAAAAAAAAAAAAAAAAIMlIs0Uw2tx017X2ze6pHR9vTnZdC+gvwWgAAAAsNDjUem5gcOX6AAAAAAAAAAAAAAAAAACAJKON0drx6bmprmu1CkabaG7quhbQX4LRAAAAWGhwuPXcQJvQNAAAAAAAAAAAAAAAAAAAWAYjjbHa8Zm56a5rCUaDtUswGgAAAAsNjbSeG5tcuT4AAAAAAAAAAAAAAAAAACDJaItgtOm5/V3XmprdWzsuGA1Wn2A0AAAAFhoabj03LhgNAAAAAAAAAAAAAAAAAICVNdIiGG2mj8Fo403X0cJqE4wGAADAQoNtgtHGfKADAAAAAAAAAAAAAAAAAMDKahWMNj3bfTDavtk9tePjzU1d1wL6SzAaAAAACw0OtZwqgtEAAAAAAAAAAAAAAAAAAFhho836YLSZue6C0War2eyf21c7N9F0HS2sNsFoAAAALDQ03HpOMBoAAAAAAAAAAAAAAAAAACtspNEqGG26qzr7Z/e2nJtobuqqFtB/A6vdAAAAAGtQaZOjfadTVq4PAAAAAAAAAAAAAAAAAABIMtIYrR3fP7cvew7f2nGdGw9e13JOMBqsPsFoAAAALHTyacmW7cktNx4/PjSc3P1Bq9MTAAAAAAAAAAAAAAAAAAAb1mhjrHZ8anZvnv+lJ/dlj/HmZF/qAL1rrHYDAAAArD2l0Uiu/vGFEw/+kZSJk1a+IQAAAAAAAAAAAAAAAAAANrSRFsFo/TJcRjLYGFrWPYDFDax2AwAAAKxN5cdflAyPpfqHNyZzc8l9Hpny1JesdlsAAAAAAAAAAAAAAAAAAGxAyx2MNt6cXNb6QGcEowEAAFCrlJL8519M+c+/uNqtAAAAAMCGUZ7/31L9xk8unHjwj6x8MwAAAAAAAAAAALCGbB3clkaamcvsstTfPnTqstQFutNY7QYAAAAAAAAAALjdlQ9JRicWDJf7P2YVmgEAAAAAAAAAAIC1Y6w5kd3jly1b/btvus+y1QY6JxgNAAAAAAAAAGCNKNt2przib5PTzj4ycNKdUn7md1Kuunp1GwMAAAAAAAAAAIA14Mk7fyZ3Hb8ijT5GJ400RvOIbU/IPTY9oG81gd4NrHYDAAAAAAAAAAAcVS6+V8qbP5fq5huSzSenNNz3DgAAAAAAAAAAAJJktDmen971gkzP7s+th29acr1GaWTb4ClplmYfugP6QTAaAAAAAAAAAMAaVLbuWO0WAAAAAAAAAAAAYE0abY5ltDm22m0Ay0AwGn1VShlMcu8kZyTZmWRfkuuSfKKqqq+uYmsAAAAAAAAAAAAAAAAAAAAAAACsYYLRNrBSypuT/PC84Wurqjqrh1onJ3nJ7fW2tljz4SS/XVXVX3VbHwAAAAAAAAAAAAAAAAAAAAAAgPWtsdoNsDpKKVdnYShar7UeluQzSZ6eFqFot7tXkreXUt5YShnvx94AAAAAAAAAAAAAAAAAAAAAAACsDwOr3QArr5SyOckf9qnW/ZK8K8nQMcNVko8n+XKSzUkuTbLtmPknJtlUSnlUVVVz/egDAAAAAAAAAAAAAAAAAAAAAACAE1tjtRtgVbwyyam3f7231yKllF1J3pHjQ9E+lGR3VVVXVFV1TVVV359kV5LnJDl0zLpHJPnVXvcGAAAAAAAAAAAAAAAAAAAAAABgfRGMtsGUUh6U5Cm3Pzyc5FeWUO4lSbYc8/jDSR5UVdXnjl1UVdWBqqp+L8k1847/uVLKmUvYHwAAAAAAAAAAAAAAAAAAAAAAgHVCMNoGUkoZT/LaY4Z+O8kne6x1bpInHTN0MMmTq6qaaXVMVVXvSvKGY4aGk7yol/0BAAAAAAAAAAAAAAAAAAAAAABYXwSjbSy/nuSs27/+cpIXL6HWE5I0j3n8jqqq/l8Hx/3mvMfXlFJGltAHAAAAAAAAAAAAAAAAAAAAAAAA64BgtA2ilHKvJM84Zugnq6qaXkLJR897/PpODqqq6nNJPnrM0HiS719CHwAAAAAAAAAAAAAAAAAAAAAAAKwDgtE2gFLKcJLX5eif9xuqqvqnJdQ7Jcn3HDN0OMmHuijxgXmPH9ZrLwAAAAAAAAAAAAAAAAAAAAAAAKwPgtE2hhcnOf/2r7+d5OeXWO+u8x5/qqqqqS6O//C8x7uX2A8AAAAAAAAAAAAAAAAAAAAAAAAnOMFo61wp5bIkzz1m6GeqqrppiWUvmvf4P7o8/kuL1AMAAAAAAAAAAAAAAAAAAAAAAGCDEYy2jpVSBpK8LsnA7UN/X1XVm/pQ+px5j7/W5fHXznt8p1LKliX0AwAAAAAAAAAAAAAAAAAAAAAAwAlOMNr69vwk33P711NJnt6nupvnPb6xm4OrqtqXZGbe8ElL6ggAAAAAAAAAAAAAAAAAAAAAAIAT2sBqN8DyKKVclOQFxwy9sKqqr/ap/MS8x9M91JhOMnLM48ne2zmqlLI9ycldHnaXfuwNAAAAAAAAAAAAAAAAAAAAAABA7wSjrUOllEaSP00yfPvQx5L8Xh+3mB+MNtNDjekkW9rU7NVPJ3lRn2oBAAAAAAAAAAAAAAAAAAAAAACwQhqr3QDL4jlJ7nH714eTPLWqqtll3K9aoWMAAAAAAAAAAAAAAAAAAAAAAABYpwSjrTOllLOT/OoxQ79dVdUn+7zNvnmPR3uoMf+Y+TUBAAAAAAAAAAAAAAAAAAAAAADYQAZWuwH6p5RSkrw2ydjtQ19O8uJl2GotB6P9QZK3dXnMXZL8dZ/2BwAAAAAAAAAAAAAAAAAAAAAAoAeC0daXpyV5wDGPf7Kqqull2Oe2eY9P7ubgUspEFgaj3bqkjm5XVdWNSW7ssp9+bA0AAAAAAAAAAAAA/P/27jxaurSg7/3vaZqGZupGhmbmZVQGBwheFTC2BlTkCjJcMWhCKw5xSjDxxqWYFTC5eHMdouvGKFeRJohcCWGSOSgNAkHFNAKCSCOgDI0NNGA3NE3Dkz/qvO+ps6tOndpVu2rvqv35rLUX7HprD2ef53zr9PPutV8AAAAAAAAAWIMHo+2Xp079/5cnuayUcuqEbW7TWD97zjYfrrVeO7X+nsaf33nJ8zvu/Z+otV7Zch8AAAAAAAAAAAAAAAAAAAAAAADsEQ9G2y/nTv3/b0vyvhX2cfs5290vyVun1t/V+PO7tzzGXRvr72y5PQAAAAAAAAAAAAAAAAAAAAAAAHvmrL5PgJ30jsb6V5RSbtRi+wedsD8AAAAAAAAAAAAAAAAAAAAAAABGxoPRaK3W+pEkb5t66ewkD26xiwsb669Y95wAAAAAAAAAAAAAAAAAAAAAAADYbR6MtkdqrefXWkubJck3NnbzgTnve+ucw72wsf69y5xjKeXLknzN1EtXJ3n10l8kAAAAAAAAAAAAAAAAAAAAAAAAe8mD0VjVc5J8YWr90aWUeyyx3U811p9Xa72mu9MCAAAAAAAAAAAAAAAAAAAAAABgF3kwGiuptb4nybOmXjonycWllBset00p5ZFJLpp66dokT93ICQIAAAAAAAAAAAAAAAAAAAAAALBTPBiNdfzbJFdOrT8wyWtKKV82/aZSyg1KKT+e5L82tv+lWusHNnyOAAAAAAAAAAAAAAAAAAAAAAAA7ICz+z4Bdlet9YOllEcneVWScw5eflCSd5ZS/izJXyc5L8n9k9yqsflLk/ybbZ0rAAAAAAAAAAAAAAAAAAAAAAAAw+bBaKyl1npJKeVRSS7O4cPPSpIHHCzzPDfJD9Rav7D5MwQAAAAAAAAAAAAAAAAAAAAAAGAXnNX3CbD7aq0vT3LfJL+R5MoFb31zksfWWh9fa716KycHAAAAAAAAAAAAAAAAAAAAAADATji77xOgX7XWS5KUDvbzd0l+uJTyL5I8KMmdk9wmydVJPpTk0lrr+9Y9DgAAAAAAAAAAAAAAAAAAAAAAAPvJg9HoVK312iSv7fs8AAAAAAAAAAAAAAAAAAAAAAAA2C1n9X0CAAAAAAAAAAAAAAAAAAAAAAAAAB6MBgAAAAAAAAAAAAAAAAAAAAAAAPTOg9EAAAAAAAAAAAAAAAAAAAAAAACA3nkwGgAAAAAAAAAAAAAAAAAAAAAAANA7D0YDAAAAAAAAAAAAAAAAAAAAAAAAeufBaAAAAAAAAAAAAAAAAAAAAAAAAEDvPBgNAAAAAAAAAAAAAAAAAAAAAAAA6N3ZfZ8ADMA50yuXXXZZX+cBAAAAAAAAALCWOfc9mwCVcQAAIABJREFUnDPvfQCwRe7RAwAAAAAAAAB2nvvztqfUWvs+B+hVKeURSV7c93kAAAAAAAAAAGzAI2utL+n7JAAYL/foAQAAAAAAAAB7yv15G3JW3ycAAAAAAAAAAAAAAAAAAAAAAAAA4MFoAAAAAAAAAAAAAAAAAAAAAAAAQO9KrbXvc4BelVLOS/INUy/9bZJr19jl3ZK8eGr9kUneu8b+ANrSIWAItAjomw4BfdMhoG86BAyBFgF9G2uHzklyx6n119VaP9XXyQCAe/SAPaRDQN90COibDgF90yFgCLQI6JsOAX0ba4fcn7clZ/d9AtC3g7i8pKv9lVKaL7231voXXe0f4CQ6BAyBFgF90yGgbzoE9E2HgCHQIqBvI+/QpX2fAACc5h49YN/oENA3HQL6pkNA33QIGAItAvqmQ0DfRt4h9+dtwVl9nwAAAAAAAAAAAAAAAAAAAAAAAACAB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9M6D0QAAAAAAAAAAAAAAAAAAAAAAAIDeeTAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgd2f3fQKwh65I8tTGOsA26RAwBFoE9E2HgL7pENA3HQKGQIuAvukQAOwnn/FA33QI6JsOAX3TIaBvOgQMgRYBfdMhoG86xEaVWmvf5wAAAAAAAAAAAAAAAAAAAAAAAACM3Fl9nwAAAAAAAAAAAAAAAAAAAAAAAACAB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9M6D0QAAAAAAAAAAAAAAAAAAAAAAAIDeeTAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgdx6MBgAAAAAAAAAAAAAAAAAAAAAAAPTu7L5PgFmllOsluXuSeye5XZLzknwuyZVJ3pvkLbXWqzs+5vWTPCjJnZLcNslVST6c5NJa6/u7PNa2lFLuk+SrktwqyQ2SXJ7kg0neWGu9ps9z26ZSys2T3CfJPZJ8SZIbJvlkkiuS/Fmt9b09nt6MUspdMvm+3S7JTZJ8JMkHkryp1vr5Ps9tTHSoGzo0oUOsSou6oUUTWnTscYyPBXSoG8bZxK51iGHQoW7o0IQOHVVKuWMm1+IOSW6Z5Nwk1yb5VJK/yeSaXNHfGQ6DDnVDhyZ0iFVpUTe0aEKLWIUOdUOHJnRoPuMD6IPP+G5o+MSufca7N2YYdKgbOjShQ6xCh7qhQxM6dOxxjI8FdKgbxtnErnWIYdChbujQhA4d5f685WlRN7RoQotYhQ51Q4cmdIhV6FA3dGhCh+bb6fFRa7UMYMkkmE9K8tJM/uO+LliuS/KKJA/v4Li3SvKfk3x8wfHemOQxax7nrkkel+QXklyS5NONY7y/o+t40yRPTvKhBV/Pp5M8O8ndevx+b+x6JLl+km9J8p+SvOOEsVQPrtXPJblNzz8Dj03ypgXn+fGDsXrLFfZ90jU4aTnV57XZ4vdAh7q5jjqkQ9P7PNVBg6aXi/q8Rlv6PmhRN9dRi7Ro58dHj98DHermOu7EONOh3sbHjZM8OMlPJHlOkr9K8sXGsS7q6zr0veiQDunQxq7HPZI8LclrM/lLjZOuR03yP5P8aJIb9HVNevo+6FA311GHdGje/pdpz6LlVF/XpofvhRZ1cx21SIum93uqgw5NLxf1dY229H3QoW6uow7p0M6PD4vFsl+Lz/hxNdxn/Nzzdo9ez4sO6ZAOuUev70WHdEiH3J/X96JDOjTmDm1xfLg/b/H10aFurqMO6VBz3+7Pa3e9tKib66hFWjRv/8v0Z9Fyqq9rs+Xvgw51cx11SIem93uqgwZNLxf1dY229H3QoW6uow7p0M6PjxO/jr5PwFKT5HfX+ED7/SQXrHjchyX5aItj/U6SG7fY/4VJXnXCh0JnP5hJviaTp3Au+/VcneSHt/h93vj1OLgGn1hxLF2Z5Ht6GP83SfLcFud5eZJvaXmMVX++Ti+ntn1devg+6JAO6dAGOpTu/0P2cdu+Plv+XmiRFmnRBlq0S+Oj70WHdGiMHdrm+Mhk4vjtmUxIn3Ssi7Z1DYa06JAO6dDmxkeS71/j5+vdSb5mW9ekz0WHdEiHNjs+1vj5Or2c2tZ16XPRIi3Soo1dj1MddGh62dv56uiQDunQ6MeHxWLZz8Vn/Dga7jP+2HN2j94AFh3SIR1yj17fS3RIh3TI/Xk9LzqkQ2Ps0DbHR9yft8w10iEd0qENjY+4P6/NtdIiLdKiDY6PNX6+Ti+ntnVd+lp0SId0aGPX41QHDZpezFXr0DI/gzqkQzs5PtosZ4chuOcxr38oyXsyievZmTz17yuTnDX1nv89yetLKd9Qa7182QOWUi5M8qIk50y9XDN5yvpfJzk/yf2S3HLqz787yc1KKd9Ra/3iEof5qiTfvOw5raOU8pBMngZ6g8YffSDJ2zL5IbxDJj+81z/4sxsl+c+llLNqrb+2hdPcxvW4VZKbz3n92kwmty/P5Impt0jygIP/Pe38JM8updy61vrLGz7PJEkp5XpJfi/JtzX+6Ioklx6c690yGYvl4M8uSPLiUspDaq1v2MZ5joQOrUmHztChzflMJk+03mdatCYtOkOL5h9nF8ZH33RoTTsyznToqK2NjySPT3Lelo61q3RoTTp0hg6drGYyyX9ZJn+x8JlM/sXcuyS5Tw7HRzL52fyDUsrDa62v2/aJbpkOrUmHztAh1qFFa9KiM7Roc/Z9vlqH1qRDZ+jQHDsyPoD95DN+TTvScJ/xDTt2b8y+06E16dAZOrQ55jx0aCEdOkOH5h9nF8ZH33RoTTsyznToKPfnDYsOrUmHztChk7k/73hatCYtOkOLWJUOrUmHztChzTFXrUML6dAZOjTHjoyP5fX9ZDZLTZK35PApev8zyY8ludsx7719kqdn9ul7f5SkLHm8O2T2qYdvSHKvxvtukOSfZ/JDP/3epy15nCfNOc+a5JpMJjQ6eWJhJk9PbT4V8bIkD53z3psn+X8b7/3CvPdu4Pu88euRyQf56X38fZJnJPlHSc6d896S5FGZxKt5Thu/Hgfn8AuN4157MP7Pabzv3kne1Hjvx5LcdsnjTG/35oMx02Y5exvXo88lOqRDOrSRDmXyH14nNea45Q2N4128jWvS5xIt0iIt2tjvRLsyPvpedEiHxtihbY2Pg2N98phjfXDOn1206a99iIsO6ZAObXR8PDHJX2byu9fDk9x8wXvPT/IvM/kLkOnjfyjJeZu+Jn0uOqRDOrTx34em92Wu+vjrpEVapEWbuR7mq5e/VjqkQzo08vFhsVj2c/EZP46G+4yfe77u0RvIEh3SIR3aSIdizqPN90KHdEiHNvT70K6Mj74XHdKhMXZoW+Pj4Fjuzzv5GumQDunQ5saH+/OWv1ZapEVatNnfiab3Za56/jXSIR3Soc1cD3PVy18rHdIhHRr5+Gj1NfV9ApaaJH+aydP2HtBimx+ZM+C/a8ltn9HY7o1Jbrjg/d8x5wfrzksc50kH0b80yW8m+cEk98/kiYEXdviD+dzGvt6T5NYnbPOvG9v8RZLrbfj7vPHrcRDujyb5V0luvOQ2t0jyzsbx35UlfxFY43rcNbO/FDxywfvPzexfNP7Gksea3uaSTX5du7rokA7p0GY7tMK53T7JdY1jff0mr8cQFi3SIi3aXIt2ZXz0veiQDo20Q1sZHwfH+mQm/9LCy5I89eA6XXDwZ5c0jnXRJr/uoS46pEM6tNHxcf0VtvmqJFc1zuGnNnk9+l50SId0aOO/D03v65JNfl27vGiRFmnRZlu0wrmNbr5ah3RIh4wPi8Wyn4vP+HE03Gf8zHHdozegRYd0SIc226EVzs2cx3Lb6NDhcXTo8Bg6tKPjo+9Fh3RopB1yf96AFh3SIR1yf94QFi3SIi1yj17fiw7pkA65P6/vRYd0SIeMj1ZfU98nYKlJcmrF7Z7fGFwvW2KbezQ+GD+X5B5LbHdx41i/vcQ2Nz/uA6HDUN01kycOTu/rwUtu+4eN7b5vw9/nbVyPWy0b7MZ2XznnOn71hq/HsxrHe+YS29zzYMye3ubzSe66xHbTx7lkk1/Xri46pEM6tNkOrXBuT26c219t8loMZdEiLdKizbRol8ZH34sO6dBIO7Tx6zG1v2P/Bd248er0dTi14nY6pEPN/ehQd+f3c41zePO2z2HLX++pFbfTIR1q7keH5u9vel+XbPLr2uVFi7RIizZzPdY4t9HNV+uQDumQ8WGxWPZz8Rk/job7jJ85pnv0BrTokA7p0GY7tMK5mfNYfjsd0qHmfnRoR8dH34sO6dBIO+T+vAEtOqRDOrSZ67Hm+Y3q/ryDr/nUittpkRY196NF8/c3va9LNvl17eqiQzqkQ5u5Hmucm7nq5bfTIR1q7keHdnR8tFnOCr2rtb5/xU1/rbH+jUts8/gk15taf0Gt9T1LbPcfGuvfWUq54aINaq1X1lqvWWLf63h4cmQcv7nW+oYlt/3Fxvr3dnNK823jetRar6i1Xr3Cdn+epHndlhlPKymlnJvksY2Xm2NsRq31r5K8aOqlszMZ06xJh9aiQ0ePoUNrKqWUzI6FZ3R5jKHSorVo0dFjaNFROzM++qZDa9mZcaZDM8fcxvg4fayPbOM4u0yH1qJDR4+hQ915eWP97r2cxZbo0Fp06OgxdIiVadFatOjoMbRoTWOdr9ahtejQ0WPo0FE7Mz6A/eQzfi0703Cf8YeGfG/MWOnQWnTo6DF0aE3mPFrTIR1qHkOHjtqZ8dE3HVrLzowzHZo5pvvzBkSH1qJDR4+hQ90Z1f15iRatSYuOHkOLWIkOrUWHjh5Dh9Zkrro1HdKh5jF06KidGR9teDDabru0sX5uKeX8E7Z5VGP9mcscqNb6riR/PPXSjZN88zLbbtg/bKy/qsW2f5Dk2qn1B5ZSbrv+Ke2s5ni63QaP9S1JbjS1/j9qrX+55LbNMfvobk6JFemQDnVJhya+Icndptavy+RfrON4WqRFXdrHFhkfm6dDxlmXttkh9ocO6VCXdOioTzTWb9rLWQyfDulQl3SIVWmRFnVJiybMV7ejQzrUpX3skPEB7Cqf8RrepX38+2g2T4d0qEs6NGHOox0d0qEu7WOHjI/N0yHjrEv7OPfK5umQDnVJh45yf97ytEiLuqRFrEKHdKhLOjRhrrodHdKhLu1jh/ZyfHgw2m67bs5r5xz35lLKbZJ8ZWP7N7Y43iWN9Ye12HZT7tBYf8eyG9ZaP5fksqmXzsowvqa+NMfTsWOpA9/aWL+kxbZ/lKPner9SygVrnxGr0iEd6pIOTTyxsf6yWuvlHe5/H2mRFnVpH1tkfGyeDhlnXdpmh9gfOqRDXdKho+7cWP9wL2cxfDqkQ13SIValRVrUJS2aMF/djg7pUJf2sUPGB7CrfMZreJf28e+j2Twd0qEu6dCEOY92dEiHurSPHTI+Nk+HjLMu7ePcK5unQzrUJR06yv15y9MiLeqSFrEKHdKhLunQhLnqdnRIh7q0jx3ay/HhwWi77e6N9euSfGzB++/bWH9brfXqFsd7U2P9Pi223ZQvaax/suX2zfd/+Rrnsuua4+kjGzxWcyz+j2U3PBizb2+8PISxOFY6pENdGn2HSinnJXlM4+VndLHvPadFWtSlfWyR8bF5OmScdWmbHWJ/6JAOdUmHjvqnjfXX9nIWw6dDOtQlHWJVWqRFXRp9i8xXr0SHdKhL+9gh4wPYVT7jNbxL+/j30WyeDulQl0bfIXMeK9EhHerSPnbI+Ng8HTLOurSPc69sng7pUJd06Cj35y1Pi7SoS1rEKnRIh7o0+g6Zq16JDulQl/axQ3s5PjwYbbc9trH+llrrFxe8/96N9cvmvut47z1hf324trF+g5bbN98/hK9p60opN0vy0MbLf7LBQ96rsb7NsXinUsozSyl/UUq5spRybSnlowfrv1NK+cFSSjP4HE+HdKgTI+vQIv84yblT6x9J8oqO9r3PtEiLOrHHLTI+Nk+HjLNO9NAh9ocO6VAndOioUsqPJvmeqZeuS/IrPZ3O0OmQDnViZB0yV909LdKiToysRYuYr25Ph3SoE3vcIeMD2FU+4zW8E3v899HzmPfolg7pUCdG1qFFzHm0p0M61Ik97pDxsXk6ZJx1Yo/nXtk8HdKhTujQUe7Pa02LtKgTI2uRuepu6ZAOdWJkHVrEXHV7OqRDndjjDu3l+PBgtB1VSrlJkic2Xn7hCZs1n1j4Ny0P+4HG+i1KKTdvuY+ufbyxftuW2zff/6VrnMsu+6EkN5pa/1Q29HT9g/9IbP6HYtux2Hz/PVpse5ckF2US4fOTXD/JrQ/WvzvJ05P8TSnlPx78nHEMHTpDh7oxpg4t0vyZelat9bqO9r2XtOgMLerGvrbI+NggHTrDOOvG1jrE/tChM3SoG6PuUCnlxqWULy2lPKGU8rok/6nxlp+utb6tj3MbMh06Q4e6MaYOmavukBadoUXdGFOLFjFf3YIOnaFD3djXDhkfwM7xGX+GhndjX/8+eh7zHh3RoTN0qBtj6tAi5jxa0KEzdKgb+9oh42ODdOgM46wb+zr3ygbp0Bk61I1Rd8j9eavTojO0qBtjapG56o7o0Bk61I0xdWgRc9Ut6NAZOtSNfe3QXo4PD0bbXT+f5DZT659M8lsnbHN+Y/3v2hyw1npVkmsaL5/XZh8b8K7G+tcuu2Ep5U5Jbtd4ue+vZ+tKKaeS/JvGy79aa20+DbIrzXH4mVrr1S330Ry7XX/fbpzkSUn+rJRyn473vU90aEKH1qRDE6WUL0/ygMbLz1h3vyOgRRNatKY9b5HxsVk6NGGcramHDrE/dGhCh9Y0tg6VUs4vpdTpJclVSf4yycVJ/uHU269K8oO11l/s4VR3gQ5N6NCaxtahJZmrXp4WTWjRmrRownz1SnRoQofWtOcdMj6AXeQzfkLD17Tnfx+9KvMey9GhCR1akw5NmPNYiQ5N6NCa9rxDxsdm6dCEcbamPZ97ZbN0aEKH1jS2Drk/r3NaNKFFaxpbi5Zkrno5OjShQ2vSoQlz1SvRoQkdWtOed2gvx4cHo+2gUsqjkvxY4+Un11o/ccKmzacVf3aFwze3uekK++jS6xrrjyml3GjuO2f90zmv9f31bFUp5Zwkv5ejX/f7k/w/GzxsX+PwuiSXJPnZJI9Icv9M/tWm+yV5ZJJfzOwvM/dM8ppSyp1XOMe9pkNH6NAaRtahkzSfVP26WutlHex3b2nREVq0hhG0yPjYEB06wjhbQ08dYg/o0BE6tAYdOtZHkzw5yV1qrb/Z98kMkQ4doUNrGFmHzFV3TIuO0KI1jKxFJzFf3YIOHaFDaxhBh4wPYKf4jD9Cw9cwgr+Pnmbeo0M6dIQOrWFkHTqJOY8WdOgIHVrDCDpkfGyIDh1hnK1hBHOvbIgOHaFDa9ChY7k/bwladIQWrWFkLTJX3SEdOkKH1jCyDp3EXHULOnSEDq1hBB3ay/HhwWg7ppTylUn+S+PlVyf59SU2b4a7+XTKZTTD3dzntr0sk6d5nnZ+kqectFEp5Y5JfnLOH12vlHJuN6e2E34ryf82tf6FJE9Y4V9DaqOPcfizSW5fa/3GWuv/VWv9/VrrpbXWy2qtb621vqTW+n8muXOS/ztJndr2NkleUEopK5znXtKhGTq0nrF0aKGDX6S/p/Gyp3svoEUztGg9+94i42MDdGiGcbaePjrEjtOhGTq0Hh2a74Ik/yzJD5dSbtb3yQyNDs3QofWMpUPmqjumRTO0aD1jadFC5qvb0aEZOrSefe+Q8QHsDJ/xMzR8Pfv+99GnmffokA7N0KH1jKVDC5nzaEeHZujQeva9Q8bHBujQDONsPfs+98oG6NAMHVqPDs3n/rwTaNEMLVrPWFpkrrpDOjRDh9Yzlg4tZK66HR2aoUPr2fcO7eX48GC0HVJKuVMmA3E6lh9I8j211jp/q4W2tc3G1Fr/PsmvNl7+yVLKvzhum1LKHZK8Msl5x+22o9MbtFLKv0vyTxov/3St9fVbPpWNj8OD/3htPr173vuuqbX+dJIfb/zR/ZP84zbH3Fc6NEuHVjemDi3hkUluMbX+qSTP7/gYe0OLZmnR6sbQIuOjezo0yzhb3YA6xA7RoVk6tLoRd+jTSe4ytdwtkzmgRyf5j0muOHjfHZP8XJK3l1K+uofzHCQdmqVDqxtTh8xVd0uLZmnR6sbUoiWYr16SDs3SodWNoUPGB7ArfMbP0vDVDegz3j16O0SHZunQ6sbUoSWY81iSDs3SodWNoUPGR/d0aJZxtroBdYgdokOzdGh1I+6Q+/PWpEWztGh1Y2qRueru6NAsHVrdmDq0BHPVS9KhWTq0ujF0aF/Hx9l9nwDLKaXcOsl/T3L7qZcvT/LQWusV87eacVVjfZUn8zW3ae6zD09L8rAcPpmxJPmVUspjM3k66lszeRLn7Q7e98M5/PD7YJI7TO3rmlrrzJM+Symnlj2ZWuv7W519D0opT8rkqdfTfrnW+gtLbn9q2WPNuR6DH4e11l8rpXxzkkdMvfwjSX63y+PsGh1aSIda0qEZT2ys/26ttfkUaaJFJ9CilkbWoo2Pj7HQoYV0qKWeO8SO0qGFdKilMXeo1vrFJO+f80eXJnlhKeVnk/yHJD928PqdkrymlPKgWus7tnOWw6RDC+lQS2Pu0DLMVR9PixbSopa0aIb56iXo0EI61NLIOmSuGhg0n/EL+YxvaWR/H92aeY/5dGghHWpJh2aY81iCDi2kQy2NrEPmPDqiQwvpUEsjm3ulIzq0kA61NOYOuT9vPVq0kBa1NOYWLcNc9Xw6tJAOtaRDM8xVL0GHFtKhlkbWob2bq/ZgtB1QSvmSJK9Jcs+plz+W5CG11ve02NVehrvWem0p5dFJXp7kK6b+6MEHy3E+nskvDq+aeu2Tx7z3fS1OqbR479aVUn4gyS83Xv71Wuu/arGbda7HrozDn8/R/5D92lLK+bXW48bIXtOhxXSoHR06qpRyxyQPbbz8jFX3t8+0aDEtamdsLdrS+Nh7OrSYDrUzgA6xg3RoMR1qR4cWq7V+JsmPl1I+n+QnDl6+WZL/Ukr5Byv+C0M7T4cW06F2dGhp5qobtGgxLWpHi44yX70cHVpMh9oZW4fMVQND5jN+MZ/x7QzgM35XxqF5jyk6tJgOtaNDR5nzWI4OLaZD7YytQ+Y8uqFDi+lQOwPoEDtIhxbToXZ0aDH35x1PixbTona0aGnmqqfo0GI61I4OHWWuejk6tJgOtTO2Du3jXPVZfZ8Ai5VSzkvy6iRfPvXylZk8yfIvWu7uU431W7U8l5tkNtyDGMi11g8leWCSpyf5/BKbvDbJA5Jc3Xj98o5PbVBKKf8kyW/kaEyfmeRHt3gazXF4o1LKjVvu49aN9U2Mwz/J5GfttOslufcGjjN4OrQcHVqODs11UY7+TvbntdY/W2N/e0mLlqNFyxlri4yP9ejQcoyz5QykQ+wYHVqODi1Hh1p5cpIPT63fL8lDejqXXunQcnRoOTrUirnqKVq0HC1ajhbNdVHMVy+kQ8vRoeWMtUPGBzBEPuOXo+HLGchn/NDujTmOeY8DOrQcHVqODs11Ucx5LKRDy9Gh5Yy1Q8bHenRoOcbZcgbSIXaMDi1Hh5ajQ624P2+KFi1Hi5ajRa2Yqz6gQ8vRoeXo0FwXxVz1Qjq0HB1azlg7tG/jw4PRBqyUctMkr0zyD6Ze/nSSb621vnWFXTaffnnnlts33/+JWuuVc9/Zg1rr1bXWf5bkSzOZEHltkg8m+WySv0/yriTPyuQpqv+o1vr+JPdq7OYtWzvhLSulfFcmkZ7+uX9Oku/f5hP0a60fz9H/QEySO7XcTXMstnmy61JqrV9M8jeNl1v9srMPdKgdHVpMh2aVUkqS72287OneDVrUjhYtNvYWGR+r0aF2jLPFhtIhdosOtaNDi+lQO7XWzyZ5UePlb+3jXPqkQ+3o0GI61I656kNa1I4WLaZFs8xXn0yH2tGhxcbeIeMDGBKf8e1o+GJD+Ywf0r0xi5j3mNChdnRoMR2aZc7jZDrUjg4tNvYOGR+r0aF2jLPFhtIhdosOtaNDi+lQO+7PO6RF7WjRYlrUjrnqCR1qR4cW06FZ5qpPpkPt6NBiY+/QPo2Ps/s+AeY7+NdoXp7ka6devirJw2qtf7Libt/VWL97y+3v2lh/54rnsVG11vcledrBcpKva6z/8TH7LPNe3xWllMckeXYmT6k+7b8mecLBf7C10sH1eFcmT5g87e6ZHZ+LNMdim23b+GxjvflE172mQ6vToVk6dKxvSnKXqfXPZfJLNQe0aHVaNEuLDm1ifOwrHVqdDs0aYIfYATq0Oh2apUMre3djve3PzE7TodXp0CwdWtmo56oTLVqHFs3SomOZr15Ah1anQ7N06JC5aqBvPuNX5zN+1gA/44dyb8xJRj3voUOr06FZOnQscx4L6NDqdGiWDh0y57E8HVqdDs0aYIfYATq0Oh2apUMrG/X9eYkWrUOLZmnRysxV69BKdGiWDh3LXPUCOrQ6HZqlQ4f2Ya76rJPfwraVUs5N8tIkD556+TNJHl6Dc7dAAAAPuklEQVRrfdMau35HY/0rSik3arH9g07Y3045eKrqNzVefl0f57JJpZRHJHlujj4I8UVJHl9r/UI/ZzUzdpqBPNbBLzVfccL+unLLxvrHNnScwdGh7dAhHUryfY31F9RaP7HivvaOFm2HFmnRCccZxfg4jg5tx1jG2UA7xMDp0HbokA4t4fON9Rv0chY90KHt0CEdWsJo56oTLdoWLdKimK8+lg5thw7p0CJjGR/AdvmM346xNHygn/GD//voA6Od99Ch7dAhHYo5j2Pp0HbokA6dcJxRjI/j6NB2jGWcDbRDDJwObYcO6dASRnt/XqJF26JFWrQEc9U6tFE6pEMxV30sHdoOHdKhRYY8PjwYbWBKKTdM8pIkF069fE2SR9RaX7/OvmutH0nytqmXzs7RD4eTXNhYf8U65zMA35Tk1NT662qt7+npXDailPJtmTy58vpTL78syeNqrdf1c1ZJklc21i9sse3X5+iH0KW11o+ufUYNpZRbZvYprh/u+jhDpENbpUP96b1DpZTzkzy68fIz2u5nX2nRVmlRf3pv0RL2fnwcR4e2au/H2YA7xIDp0FbpECe5Q2N9E793DY4ObZUOcawxz1UnWrRlWjRi5quPp0NbpUMssvfjA9gun/FbtfcNH/Bn/OD/PnrM8x46tFU61J/eO2TO43g6tFU61J/eO7SEvR8fx9Ghrdr7cTbgDjFgOrRVOsRJRnl/XqJFW6ZFHMtctQ5tiQ6NmLnq4+nQVukQiwx2fHgw2oCUUs5J8oIkD5l6+XNJvqPW+gcdHeaFjfXvXfLcvizJ10y9dHWSV3d0Tn35qcb603s5iw0ppTw0yX9Lcs7Uy69O8pha67X9nNUZr0ry2an1rzsYY8u4qLHeHNNd+a4cbeRHk7xrQ8caDB3aOh3qzxA69N1Jbji1/v4kf7jivvaKFm2dFvVnCC06yV6Pj+Po0Nbt9TgbeIcYKB3aOh3iJN/cWB/E5P4m6dDW6RCLjHKuOtGiHmjRuJmvnkOHtk6HWGSvxwewXT7jt26vGz7wz/hd+PvoUc576NDW6VB/htAhcx5z6NDW6VB/htChk+z1+DiODm3dXo+zgXeIgdKhrdMhTjK6+/MSLeqBFrGIuepDOrQ5OjRu5qrn0KGt0yEWGez48GC0gSilnJ3keUkeNvXy55M8ttb6qg4P9ZwkX5haf3Qp5R5LbNccxM+rtV7T3WltVynlCUkeOvXSWzN58uNeKKV8Q5IX5+gvSH+YyS8Bn+vnrA7VWj+T5PmNl5tjbEYp5Z5JHjX10nVJfrfDUzt9nAuS/Gzj5d+vtdaujzUkOrRdOtSvgXTo+xrrv73vnVmGFm2XFvVrIC1adJy9Hh/H0aHt2vdxNvQOMUw6tF06xElKKQ9P8oDGyy/u41y2RYe2S4dYZKxz1YkWbZsWEfPVM3Rou3SIRfZ9fADb5TN+u/a94UP/jN+Bv48e5byHDm2XDvVrIB0y59GgQ9ulQ/0aSIcWHWevx8dxdGi79n2cDb1DDJMObZcOcZIx3p+XaNG2aRGLmKvWoW3QIWKueoYObZcOscjQx4cHow1AKeV6mQT1kVMvX5fkcbXWl3Z5rFrre5I8a+qlc5JcXEq54TGbpJTyyBz9F2+uTfLULs9rXQcffMu+99FJfnPqpeuSfF+t9brOT6wHpZSvS/LSJOdOvfz6JN9ea/3s/K168ZRMfjk57aJSyiOOe/PBGH1mjj6h8xm11vcu2OZLSynf3uakSim3yeT6XTD18rVJfr7NfnaNDq1Phw7p0MlKKV+V5P5TL30xycVt97NvtGh9WnRIi+Zua3ycQIfWZ5wd2qEOMSA6tD4dOqRDh0opDyilPOrkd85s99VJnt14+fW11rd3c2bDo0Pr06FDOnTIXHU7WrQ+LTqkRSczXz1Lh9anQ4d0aJbxAfTFZ/z6NPzQDn3GPyXu0RsMHVqfDh3SoZOZ85ilQ+vToUM6NHdb4+MEOrQ+4+zQDnWIAdGh9enQIR065P68drRofVp0SIsOmateng6tT4cO6dDJzFXP0qH16dAhHZq1b+Nj6S+GjfrtJN/ZeO1nklxaSjnVcl+XL/GkyX+byb9gc/OD9QcmeU0p5ftrrX95+k2llBsk+cEkv9TY/pdqrR9Y5mRKKXfI/HF2m8b62Qu+1qtqrR874VBvL6W8LMl/S/LHtdYvzjmX+yb56SSPb/zRz9RaLz1h/53Y9PUopdwvySuS3GTq5Xcn+dEkty6ltDnda2qtl7fZoI1a61+XUn41yU9Ovfz8Usq/TPL/1VqvPf1iKeVeSX4rk7F62sdz8i8Qt03yklLK25P8TpIXHvzyMqOUctMkT8jkyd4XNP7439da/3qJL2uX6ZAO6dBE1x06zhMb66+qtf7tivvaJ1qkRVo0sakW7cT46JkO6dDoOpRsb3yUUm6S5JbH/HFzQvmWC471wSFNrnVMh3RIh47qanzcIckLSinvyOQv0F6U5N21zv9Xlkop907yQ0l+pHFe1xy8ts90SId06Kiuxoe56na0SIu06Kiux0eT+epZOqRDOnTUKMcHsJd8xo+k4T7jD7lHb3B0SId0aMI9ev3RIR3SoQn35/VHh3RodB1K3J83MDqkQzp0lPvz+qFFWqRFR7lHb/t0SId06Cj3522fDumQDh01yvGxtFqrpeclSe1wuXDJY16Y5HONbb+Y5E+T/F6SVyb5uzn7//0k12vxtb2/g6/p4iWO87Gp9/99kjdl8kP6nCSvXnAe/27L3+uNXo9M/kWjrsbSJVu4HtdL8vI5x/5oJh9Az0vyloOxOf3nn0vy9UuO8+a+P5nkDZlMsD07yQsPjvH5Y67D0/tuxJbGpg7pkA5toEPHHPMGmdwoMb2/x/TZgKEsHY4dLdKip3Q4li7ZwvXYSot2ZXz0uXQ4bnRo4ONs09cju9ehbY2Pizq6Jqf67sUGvxc6pEM6tJnr8R1z3v/pg/HxkkxugHhektckufyY/X8myUP67sQWvhc6pEM6tJnrceGc95urPv56aZEWadEGx0fjmOar518XHdIhHTI+LBbLHi4dNtln/MAbvunrkd37jHeP3kCWDseNDunQUzocS5ds4Xq4R28gS4fjRod06CkdjqVLtnA93J83kKXDcaNDAx9nm74e2b0ObWt8XNTRNTnVdy82+L3QIR3Soc1cD/fntft+aJEWadFmrseFc95vrnr+tdIhHdKhDY6PxjHNVc+/LjqkQzpkfCy9zHuSHCNQa72klPKoJBcnudXByyXJAw6WeZ6b5AdqrV/Y/Bmu5SZJvu6E91yZ5Edqrf//Fs6HY9Rav1BK+c5M/mWlx0390a2TfOsxm/1dkifUWv9oxcOel+RBS7zv6iQ/UWv9zRWPwwl0SIeGoKcOPSrJl0ytX5HJRD890CItGoKeWmR8DIQOGWfQNx3SoRG7aU4eH6e9OckP1VrftsHzGS0d0qERM1c9IFqkRSNmvnogdEiHRsz4APaaz3gNHwL36I2bDunQELhHb9x0SIeGwP1546ZDxhn0TYd0aMTcnzcgWqRFI2aueiB0SIdGzFz1QOiQDo3Yzo+Ps/o+AfpTa315kvsm+Y1MBupx3pzksbXWx9dar97KybX3K0kuzeSpnIv8bZKfS3K3of5Qjk2t9apa63cl+T8yGWvH+USSX09y31rrK5fc/buSPC3JG5N8dslt/irJz2TyL5z4j9gN0yEdGoINd2ieJzbWn11r/fwa+2NNWqRFQ7ClFhkfA6VDxhn0TYd0aAT+MJN/Ffe5ST645DafSfL8JN+e5IFuutosHdKhETBXvQO0SItGynz1gOiQDo2I8QGMis94DR8C9+iNmw7p0BC4R2/cdEiHhsD9eeOmQ8YZ9E2HdGgE3J+3A7RIi0bAXPXA6ZAOjZS56gHRIR0akb0aH6XW2vc5MACllHMyeerxnZPcJpOnG38oyaW11vf1eW5tlFJuluR+Se6SyZM6b5jJf8B8KMmf11rf2ePpsYRSyl2S3D/J7ZLcOMnlST6Q5I211mvX2O9ZSe6R5G5Jbp/k/ByOjyuTfCTJn9Zar1jrC2BlOsRQbKpD7AYtYig22SLjY9h0COibDjEGpZQLktwrk3F+iyQ3SvL5JJ9O8vEk70jy7h34l332kg6x78xV7wYtAvqmQ4yB8QGMkc94hsI9euOlQwyFe/TGS4cYCvfnjZcOAX3TIcbA/XnDp0XsO3PVw6dDQN90iDHYl/HhwWgAAAAAAAAAAAAAAAAAAAAAAABA787q+wQAAAAAAAAAAAAAAAAAAAAAAAAAPBgNAAAAAAAAAAAAAAAAAAAAAAAA6J0HowEAAAAAAAAAAAAAAAAAAAAAAAC982A0AAAAAAAAAAAAAAAAAAAAAAAAoHcejAYAAAAAAAAAAAAAAAAAAAAAAAD0zoPRAAAAAAAAAAAAAAAAAAAAAAAAgN55MBoAAAAAAAAAAAAAAAAAAAAAAADQOw9GAwAAAAAAAAAAAAAAAAAAAAAAAHrnwWgAAAAAAAAAAAAAAAAAAAAAAABA7zwYDQAAAAAAAAAAAAAAAAAAAAAAAOidB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9M6D0QAAAAAAAAAAAAAAAAAAAAAAAIDeeTAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgdx6MBgAAAAAAAAAAAAAAAAAAAAAAAPTOg9EAAAAAAAAAAAAAAAAAAAAAAACA3nkwGgAAAAAAAAAAAAAAAAAAAAAAANA7D0YDAAAAAAAAAAAAAAAAAAAAAAAAeufBaAAAAAAAAAAAAAAAAAAAAAAAAEDvPBgNAAAAAAAAAAAAAAAAAAAAAAAA6J0HowEAAAAAAAAAAAAAAAAAAAAAAAC982A0AAAAAAAAAAAAAAAAAAAAAAAAoHcejAYAAAAAAAAAAAAAAAAAAAAAAAD0zoPRAAAAAAAAAAAAAAAAAAAAAAAAgN55MBoAAAAAAAAAAAAAAAAAAAAAAADQOw9GAwAAAAAAAAAAAAAAAAAAAAAAAHrnwWgAAAAAAAAAAAAAAAAAAAAAAABA7zwYDQAAAAAAAAAAAAAAAAAAAAAAAOidB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9O5/AXpnFOxFOo7tAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "from uuid import UUID\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor\n", + "\n", + "\n", + "location_names = {\n", + " UUID('53998a51-60de-48ae-b71a-5c37cd1455f2'): \"Loft\",\n", + " UUID('1bc63cda-e223-48bc-93c2-c1f651779d69'): \"Living Room\",\n", + " UUID('ea0683de-6772-4678-bfe7-6014f54ffc8e'): \"Office\",\n", + " UUID('5aaa901a-7564-41fb-8eba-50cdd6fe9f80'): \"Outside\",\n", + "}\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 10), dpi=300)\n", + " configs = get_known_configs().values()\n", + " for i, config in enumerate(configs, start=1):\n", + " plot = figure.add_subplot(2, 2, i)\n", + " coros.append(plot_sensor(config, plot, location_names))\n", + " await asyncio.gather(*coros)\n", + "\n", + "display(figure)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9f576f5bb8e34cb8ab1d3c09f770d027", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(DatePicker(value=None, description='Start date'), DatePicker(value=None, description='En…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "from uuid import UUID\n", + "import functools\n", + "from concurrent.futures import ThreadPoolExecutor\n", + "\n", + "import ipywidgets as widgets\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor\n", + "\n", + "\n", + "def wrap_coroutine(f):\n", + " @functools.wraps(f)\n", + " def run_in_thread(*args, **kwargs):\n", + " loop = asyncio.new_event_loop()\n", + " wrapped = f(*args, **kwargs)\n", + " with ThreadPoolExecutor(max_workers=1) as pool:\n", + " task = pool.submit(loop.run_until_complete, wrapped)\n", + " return task.result()\n", + " return run_in_thread\n", + "\n", + "@wrap_coroutine\n", + "async def plot(*args, **kwargs):\n", + " location_names = {\n", + " UUID('53998a51-60de-48ae-b71a-5c37cd1455f2'): \"Loft\",\n", + " UUID('1bc63cda-e223-48bc-93c2-c1f651779d69'): \"Living Room\",\n", + " UUID('ea0683de-6772-4678-bfe7-6014f54ffc8e'): \"Office\",\n", + " UUID('5aaa901a-7564-41fb-8eba-50cdd6fe9f80'): \"Outside\",\n", + " }\n", + "\n", + " with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 10), dpi=300)\n", + " configs = get_known_configs().values()\n", + " for i, config in enumerate(configs, start=1):\n", + " plot = figure.add_subplot(2, 2, i)\n", + " coros.append(plot_sensor(config, plot, location_names, *args, **kwargs))\n", + " await asyncio.gather(*coros)\n", + " return figure\n", + "\n", + "\n", + "start = widgets.DatePicker(\n", + " description='Start date',\n", + ")\n", + "end = widgets.DatePicker(\n", + " description='End date',\n", + ")\n", + "out = widgets.interactive(plot, collected_after=start, collected_before=end)\n", + "display(out)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "60091fa7d9ea415985ec53937e422b4a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(DatePicker(value=None, description='Start date'), DatePicker(value=None, description='En…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from uuid import UUID\n", + "import ipywidgets as widgets\n", + "from apd.aggregation.analysis import interactable_plot_multiple_charts, configs\n", + "\n", + "location_names = {\n", + " UUID('53998a51-60de-48ae-b71a-5c37cd1455f2'): \"Loft\",\n", + " UUID('1bc63cda-e223-48bc-93c2-c1f651779d69'): \"Living Room\",\n", + " UUID('ea0683de-6772-4678-bfe7-6014f54ffc8e'): \"Office\",\n", + " UUID('5aaa901a-7564-41fb-8eba-50cdd6fe9f80'): \"Outside\",\n", + "}\n", + "\n", + "start = widgets.DatePicker(\n", + " description='Start date',\n", + ")\n", + "end = widgets.DatePicker(\n", + " description='End date',\n", + ")\n", + "\n", + "plot = interactable_plot_multiple_charts(location_names=location_names)\n", + "out = widgets.interactive(plot, collected_after=start, collected_before=end)\n", + "display(out)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "08a4d937037b45bda2298879df7f80b6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(DatePicker(value=None, description='Start date'), DatePicker(value=None, description='En…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import datetime\n", + "import uuid\n", + "import ipywidgets as widgets\n", + "from apd.aggregation.analysis import Config, configs, interactable_plot_multiple_charts, draw_map, get_map_cleaner_for\n", + "from apd.aggregation.database import DataPoint\n", + "from apd.aggregation.utils import merc_x, merc_y\n", + "\n", + "start = widgets.DatePicker(description='Start date')\n", + "end = widgets.DatePicker(description='End date')\n", + "\n", + "def get_literal_data():\n", + " # Get manually entered temperature data, as our particular deployment\n", + " # does not contain data of this shape\n", + " raw_data = {(53.8667, -1.3333): -1, (53.35, -2.2833): 1, (52.45, -1.7333): 3, (51.5, -0.1333): 6, (51.55, -2.5667): 5, (54.9667, -1.6167): -1, (55.9667, -3.2167): -1, (54.7667, -1.5833): 0, (53.7667, -0.3): 1, (53.7667, -3.0167): 0, (51.4833, -3.1833): 4, (53.2667, -3.5167): 2, (52.0833, -2.8): 2, (52.0167, -0.6): 2, (52.6667, 1.2667): 5, (50.4333, -4.9833): 9, (50.35, -4.1167): 10, (50.5167, -2.45): 9, (50.8333, -1.1667): 9, (56.45, -5.4333): 4, (57.5333, -4.05): -2, (54.5167, -3.6167): 3, (53.0833, 0.2667): 4, (51.35, 1.3333): 7, (50.8833, 0.3167): 8, (58.45, -3.1): 3, (50.1, -5.6667): 9, (58.2167, -6.3333): 4, (55.6833, -6.25): 7}\n", + " now = datetime.datetime.now()\n", + " async def points():\n", + " for (coord, temp) in raw_data.items():\n", + " deployment_id = uuid.uuid4()\n", + " yield DataPoint(sensor_name=\"Location\", deployment_id=deployment_id, collected_at=now, data=coord)\n", + " yield DataPoint(sensor_name=\"Temperature\", deployment_id=deployment_id, collected_at=now, data=temp)\n", + " async def deployments(*args, **kwargs):\n", + " yield None, points()\n", + " return deployments\n", + "\n", + "def draw_map_with_gb(plot, x, y, colour):\n", + " # Draw the map and add an explicit coastline\n", + " gb_boundary = [(-2.6653539699999556, 51.617254950000074), (-2.6937556629999335, 51.59617747600004), (-2.71312415299991, 51.58661530200004), (-2.760487433999913, 51.579779364000046), (-2.7980850899999155, 51.56350332200009), (-2.816395636999914, 51.555568752000056), (-2.8587133449999556, 51.546128648000035), (-2.943348761999914, 51.54254791900007), (-2.9562882149999155, 51.54572174700007), (-2.9641007149999155, 51.552801825000074), (-2.969471808999913, 51.559881903000075), (-2.9746801419999542, 51.56297435100004), (-2.984038865999935, 51.55853913000004), (-3.0102432929999168, 51.53803131700005), (-3.0156957669999542, 51.53164297100005), (-3.0737198559999115, 51.50836823100008), (-3.0764867829999503, 51.50775788000004), (-3.088937954999949, 51.505072333000044), (-3.105620897999927, 51.49721914300005), (-3.1317032539999445, 51.48041413000004), (-3.1350805329999503, 51.47630442900004), (-3.1409399079999503, 51.46478913000004), (-3.1453751289999445, 51.45994700700004), (-3.1524145169999542, 51.45718008000006), (-3.1666560539999296, 51.45600006700005), (-3.1723933579999084, 51.45327383000006), (-3.1727188789999445, 51.453111070000034), (-3.160064256999931, 51.43183014500005), (-3.167144334999932, 51.41046784100007), (-3.1848038399999155, 51.39760976800005), (-3.204009568999936, 51.401597398000035), (-3.218861456999946, 51.402777411000045), (-3.289418097999942, 51.38422272300005), (-3.539173956999946, 51.398504950000074), (-3.557443813999953, 51.40509674700007), (-3.5753067699999406, 51.420436916000085), (-3.6047257149999155, 51.44570547100005), (-3.6631973949999406, 51.476223049000055), (-3.6769913399999155, 51.47703685100004), (-3.695423956999946, 51.47150299700007), (-3.717925584999932, 51.478583075000074), (-3.7376195949999556, 51.49087148600006), (-3.748036261999914, 51.50092194200005), (-3.7494197259999282, 51.50535716400009), (-3.747670050999943, 51.507025458000044), (-3.7445369129999335, 51.50763580900008), (-3.741851365999935, 51.50836823100008), (-3.7493383449999556, 51.52806224200003), (-3.7519018219999225, 51.53306712400007), (-3.758941209999932, 51.54677969000005), (-3.770130988999938, 51.56329987200007), (-3.782215949999909, 51.57664622600004), (-3.7902725899999155, 51.58197663000004), (-3.8077286449999406, 51.589178778000075), (-3.8169652989999463, 51.59650299700007), (-3.8326716789999296, 51.61554596600007), (-3.8416235019999476, 51.621527411000045), (-3.8548884759999282, 51.62384674700007), (-3.8867895169999542, 51.62140534100007), (-3.9623917309999115, 51.61562734600005), (-3.9766332669999542, 51.61188385600008), (-3.989979620999918, 51.60651276200008), (-3.998768683999913, 51.60028717700004), (-3.999908006999931, 51.59088776200008), (-3.9922582669999542, 51.58112213700008), (-3.9818009109999366, 51.571600653000075), (-3.974598761999914, 51.56297435100004), (-4.016184048999946, 51.56297435100004), (-4.016102667999917, 51.56037018400008), (-4.0208227199999556, 51.555853583000044), (-4.026519334999932, 51.554022528000075), (-4.029204881999931, 51.55927155200004), (-4.031971808999913, 51.56313711100006), (-4.0385636059999115, 51.56622955900008), (-4.046457485999952, 51.568426825000074), (-4.0531306629999335, 51.569240627000056), (-4.056304490999935, 51.56704336100006), (-4.065581834999932, 51.55756256700005), (-4.070220506999931, 51.555568752000056), (-4.0768123039999296, 51.55695221600007), (-4.087269660999937, 51.56191640800006), (-4.112131313999953, 51.565619208000044), (-4.121652798999946, 51.56598541900007), (-4.132191535999937, 51.56297435100004), (-4.142730272999927, 51.55695221600007), (-4.156809048999946, 51.54629140800006), (-4.1664119129999335, 51.54254791900007), (-4.176503058999913, 51.544256903000075), (-4.18773352799991, 51.54877350500004), (-4.1967667309999115, 51.54938385600008), (-4.200550910999937, 51.538763739000046), (-4.213368292999917, 51.539129950000074), (-4.272450324999909, 51.554754950000074), (-4.2899063789999445, 51.555568752000056), (-4.293324347999942, 51.55914948100008), (-4.29515540299991, 51.56195709800005), (-4.297352667999917, 51.569240627000056), (-4.278309699999909, 51.578192450000074), (-4.280832485999952, 51.58881256700005), (-4.2897029289999296, 51.601548570000034), (-4.2899063789999445, 51.61701080900008), (-4.255767381999931, 51.62384674700007), (-4.252023891999954, 51.62710195500006), (-4.241281704999949, 51.63934967700004), (-4.234730597999942, 51.644964911000045), (-4.228505011999914, 51.63743724200003), (-4.234730597999942, 51.63743724200003), (-4.234730597999942, 51.631293036000045), (-4.2278539699999556, 51.628119208000044), (-4.22101803299995, 51.62384674700007), (-4.1900935539999296, 51.63027578300006), (-4.139027472999942, 51.63231028900009), (-4.0912979809999115, 51.639878648000035), (-4.070220506999931, 51.66229889500005), (-4.0698136059999115, 51.66893138200004), (-4.070383266999954, 51.67430247600004), (-4.07054602799991, 51.67597077000005), (-4.0754288399999155, 51.677801825000074), (-4.087269660999937, 51.668850002000056), (-4.095448370999918, 51.66510651200008), (-4.106841600999928, 51.66425202000005), (-4.146351691999939, 51.66705963700008), (-4.200550910999937, 51.68585846600007), (-4.214955206999946, 51.679673570000034), (-4.293690558999913, 51.67226797100005), (-4.3152970039999445, 51.67747630400004), (-4.342355923999946, 51.69086334800005), (-4.3664444649999155, 51.70848216400009), (-4.379261847999942, 51.72687409100007), (-4.338042772999927, 51.72333405200004), (-4.319976365999935, 51.72483958500004), (-4.310454881999931, 51.733710028000075), (-4.328724738999938, 51.73297760600008), (-4.3471573559999115, 51.73578522300005), (-4.3625382149999155, 51.74286530200004), (-4.371815558999913, 51.754787502000056), (-4.368763800999943, 51.75698476800005), (-4.362904425999943, 51.76386139500005), (-4.358021613999938, 51.773138739000046), (-4.358225063999953, 51.782131252000056), (-4.365101691999939, 51.789048570000034), (-4.3714900379999335, 51.78595612200007), (-4.379261847999942, 51.77529531500005), (-4.384917772999927, 51.77187734600005), (-4.3929744129999335, 51.763739325000074), (-4.399159308999913, 51.76162344000005), (-4.409331834999932, 51.76316966400009), (-4.417876756999931, 51.76788971600007), (-4.426503058999913, 51.77529531500005), (-4.445790167999917, 51.77326080900008), (-4.449330206999946, 51.76630280200004), (-4.441395636999914, 51.75678131700005), (-4.426503058999913, 51.747300523000035), (-4.460764126999948, 51.73578522300005), (-4.4988907539999445, 51.73484935100004), (-4.574208136999914, 51.74115631700005), (-4.603423631999931, 51.73924388200004), (-4.639230923999946, 51.73318105700008), (-4.6453751289999445, 51.732123114000046), (-4.678212042999917, 51.71743398600006), (-4.680287238999938, 51.692694403000075), (-4.689442511999914, 51.69159577000005), (-4.69163977799991, 51.689886786000045), (-4.69163977799991, 51.685980536000045), (-4.693959113999938, 51.67841217700004), (-4.712310350999928, 51.650091864000046), (-4.721424933999913, 51.652044989000046), (-4.734934048999946, 51.65924713700008), (-4.741851365999935, 51.65607330900008), (-4.759185350999928, 51.644964911000045), (-4.8482966789999296, 51.64630768400008), (-4.86351477799991, 51.64411041900007), (-4.878977016999954, 51.63743724200003), (-4.887806769999941, 51.62995026200008), (-4.8957413399999155, 51.621079820000034), (-4.904774542999917, 51.61383698100008), (-4.923695441999939, 51.608628648000035), (-4.931996222999942, 51.59902578300006), (-4.941029425999943, 51.59650299700007), (-4.946034308999913, 51.59760163000004), (-4.956450975999928, 51.602769273000035), (-5.021595831999946, 51.61603424700007), (-5.0457657539999445, 51.62689850500004), (-5.0366104809999115, 51.63743724200003), (-5.0511775379999335, 51.65692780200004), (-5.100493943999936, 51.66469961100006), (-5.119740363999938, 51.67841217700004), (-5.113433397999927, 51.68528880400004), (-5.0366104809999115, 51.67841217700004), (-5.038726365999935, 51.68183014500005), (-5.04133053299995, 51.68939850500004), (-5.043446417999917, 51.692694403000075), (-5.028675910999937, 51.69293854400007), (-5.002552863999938, 51.68740469000005), (-4.988189256999931, 51.68585846600007), (-4.974598761999914, 51.687933661000045), (-4.941029425999943, 51.70014069200005), (-4.892648891999954, 51.706366278000075), (-4.868275519999941, 51.716782945000034), (-4.8580623039999296, 51.71832916900007), (-4.844838019999941, 51.71381256700005), (-4.844838019999941, 51.720038153000075), (-4.873402472999942, 51.73773834800005), (-4.879017706999946, 51.76203034100007), (-4.8625382149999155, 51.78237539300005), (-4.824330206999946, 51.788275458000044), (-4.824330206999946, 51.79572174700007), (-4.836008266999954, 51.790716864000046), (-4.864979620999918, 51.783270575000074), (-4.921294725999928, 51.78001536700003), (-4.933583136999914, 51.77529531500005), (-4.9172257149999155, 51.77533600500004), (-4.905181443999936, 51.771185614000046), (-4.900542772999927, 51.76211172100005), (-4.906239386999914, 51.747300523000035), (-4.8920792309999115, 51.73940664300005), (-4.895659959999932, 51.728176174000055), (-4.9105525379999335, 51.71820709800005), (-4.988189256999931, 51.70685455900008), (-5.009917772999927, 51.706366278000075), (-5.149240688999953, 51.718085028000075), (-5.166900193999936, 51.71381256700005), (-5.156971808999913, 51.69757721600007), (-5.1686091789999296, 51.68891022300005), (-5.1828507149999155, 51.68927643400008), (-5.180653449999909, 51.70014069200005), (-5.180653449999909, 51.706366278000075), (-5.230132615999935, 51.73004791900007), (-5.2495011059999115, 51.733710028000075), (-5.228138800999943, 51.73395416900007), (-5.213937954999949, 51.73574453300006), (-5.202870245999918, 51.74079010600008), (-5.191151495999918, 51.75104401200008), (-5.176828579999949, 51.75967031500005), (-5.1432185539999296, 51.76386139500005), (-5.125965949999909, 51.76850006700005), (-5.110259568999936, 51.778509833000044), (-5.107085740999935, 51.78807200700004), (-5.112294074999909, 51.81317780200004), (-5.113392706999946, 51.82880280200004), (-5.11750240799995, 51.84369538000004), (-5.125884568999936, 51.85602448100008), (-5.139637824999909, 51.86399974200003), (-5.146473761999914, 51.85716380400004), (-5.16437740799995, 51.86676666900007), (-5.2037654289999296, 51.87018463700008), (-5.221587693999936, 51.87767161700003), (-5.2358292309999115, 51.87103913000004), (-5.2914119129999335, 51.86399974200003), (-5.3109431629999335, 51.86399974200003), (-5.304269985999952, 51.867621161000045), (-5.297352667999917, 51.87018463700008), (-5.297352667999917, 51.87767161700003), (-5.300689256999931, 51.882025458000044), (-5.302561001999948, 51.88523997600004), (-5.300160285999937, 51.888332424000055), (-5.2905167309999115, 51.89199453300006), (-5.2905167309999115, 51.898138739000046), (-5.2983292309999115, 51.91095612200007), (-5.288929816999939, 51.91693756700005), (-5.252837693999936, 51.91864655200004), (-5.234201626999948, 51.923041083000044), (-5.204172329999949, 51.942287502000056), (-5.191151495999918, 51.946600653000075), (-5.16038977799991, 51.94944896000004), (-5.1195369129999335, 51.95892975500004), (-5.088042772999927, 51.97601959800005), (-5.085031704999949, 52.00185781500005), (-5.070790167999917, 52.00185781500005), (-5.070790167999917, 52.00804271000004), (-5.082753058999913, 52.01447174700007), (-5.081206834999932, 52.021185614000046), (-5.070220506999931, 52.02635325700004), (-5.053700324999909, 52.028509833000044), (-5.0266007149999155, 52.027411200000074), (-5.015044725999928, 52.02533600500004), (-4.961740688999953, 52.007513739000046), (-4.942534959999932, 52.007473049000055), (-4.913685675999943, 52.014837958000044), (-4.920521613999938, 52.028509833000044), (-4.9016007149999155, 52.02643463700008), (-4.863189256999931, 52.01699453300006), (-4.841420050999943, 52.014837958000044), (-4.83226477799991, 52.01898834800005), (-4.833851691999939, 52.02875397300005), (-4.8382869129999335, 52.04010651200008), (-4.838002081999946, 52.04901764500005), (-4.83039303299995, 52.05292389500005), (-4.796986456999946, 52.05646393400008), (-4.77757727799991, 52.064886786000045), (-4.7631729809999115, 52.075873114000046), (-4.7386775379999335, 52.100816148000035), (-4.720285610999952, 52.113348700000074), (-4.7065323559999115, 52.11347077000005), (-4.673451300999943, 52.09739817900004), (-4.675689256999931, 52.126939195000034), (-4.637521938999953, 52.13849518400008), (-4.513824022999927, 52.13568756700005), (-4.50226803299995, 52.138373114000046), (-4.495757615999935, 52.14350006700005), (-4.490956183999913, 52.150376695000034), (-4.484283006999931, 52.156317450000074), (-4.454701300999943, 52.16205475500004), (-4.4348038399999155, 52.170355536000045), (-4.415394660999937, 52.18154531500005), (-4.385568813999953, 52.20343659100007), (-4.371245897999927, 52.20929596600007), (-4.3547257149999155, 52.212103583000044), (-4.334339972999942, 52.21283600500004), (-4.315825975999928, 52.21629466400003), (-4.197132941999939, 52.279282945000034), (-4.1390681629999335, 52.33022695500006), (-4.10960852799991, 52.365301825000074), (-4.096262173999946, 52.387884833000044), (-4.0873917309999115, 52.430121161000045), (-4.0789688789999445, 52.45302969000005), (-4.067941860999952, 52.47361888200004), (-4.056548631999931, 52.48786041900007), (-4.0618383449999556, 52.49705638200004), (-4.064035610999952, 52.50918203300006), (-4.062570766999954, 52.52098216400003), (-4.056548631999931, 52.52944570500006), (-4.048491990999935, 52.530462958000044), (-4.0266007149999155, 52.52338288000004), (-4.016184048999946, 52.52195872600004), (-3.998768683999913, 52.52594635600008), (-3.9473363919999542, 52.549261786000045), (-3.9473363919999542, 52.556708075000074), (-3.9744766919999392, 52.55654531500005), (-4.025868292999917, 52.545355536000045), (-4.0531306629999335, 52.54242584800005), (-4.068470831999946, 52.550116278000075), (-4.1141251289999445, 52.58860911700003), (-4.125477667999917, 52.60390859600005), (-4.122222459999932, 52.62872955900008), (-4.105946417999917, 52.653509833000044), (-4.0848282539999445, 52.67267487200007), (-4.067128058999913, 52.68024323100008), (-4.063547329999949, 52.68309153900003), (-4.05882727799991, 52.696600653000075), (-4.056548631999931, 52.70066966400003), (-4.052723761999914, 52.70221588700008), (-4.041981574999909, 52.70465729400007), (-4.001088019999941, 52.72410716400003), (-3.988270636999914, 52.73427969000005), (-4.014719204999949, 52.73232656500005), (-4.031971808999913, 52.723944403000075), (-4.048817511999914, 52.721584377000056), (-4.125152147999927, 52.77830638200004), (-4.144357876999948, 52.802801825000074), (-4.149037238999938, 52.81207916900007), (-4.146229620999918, 52.82021719000005), (-4.128895636999914, 52.82363515800006), (-4.117339647999927, 52.83075592700004), (-4.1197810539999296, 52.84625885600008), (-4.127756313999953, 52.86172109600005), (-4.132191535999937, 52.86831289300005), (-4.131988084999932, 52.882473049000055), (-4.129872199999909, 52.88922760600008), (-4.123605923999946, 52.89325592700004), (-4.064035610999952, 52.919175523000035), (-4.071400519999941, 52.921087958000044), (-4.074574347999942, 52.92279694200005), (-4.0776261059999115, 52.926662502000056), (-4.0891007149999155, 52.918850002000056), (-4.100493943999936, 52.914129950000074), (-4.1105850899999155, 52.915676174000055), (-4.118560350999928, 52.926662502000056), (-4.144398566999939, 52.91478099200003), (-4.171620245999918, 52.91347890800006), (-4.228505011999914, 52.919175523000035), (-4.300689256999931, 52.905585028000075), (-4.317290818999936, 52.89935944200005), (-4.337310350999928, 52.89203522300005), (-4.406605597999942, 52.89252350500004), (-4.4272354809999115, 52.885972398000035), (-4.446197068999936, 52.87592194200005), (-4.4816788399999155, 52.850897528000075), (-4.477935350999928, 52.84833405200004), (-4.475493943999936, 52.84414297100005), (-4.491363084999932, 52.83820221600007), (-4.500965949999909, 52.82680898600006), (-4.501332160999937, 52.81391022300005), (-4.4891251289999445, 52.803168036000045), (-4.501942511999914, 52.794989325000074), (-4.509185350999928, 52.791449286000045), (-4.5164688789999445, 52.789496161000045), (-4.5285538399999155, 52.79047272300005), (-4.5424698559999115, 52.80068594000005), (-4.5639542309999115, 52.80524323100008), (-4.583078579999949, 52.81464264500005), (-4.594634568999936, 52.81679922100005), (-4.606516079999949, 52.81509023600006), (-4.61351477799991, 52.81110260600008), (-4.619211391999954, 52.80654531500005), (-4.626332160999937, 52.803168036000045), (-4.648589647999927, 52.79962799700007), (-4.704497850999928, 52.803168036000045), (-4.719309048999946, 52.79751211100006), (-4.733225063999953, 52.78750234600005), (-4.747425910999937, 52.78343333500004), (-4.762847459999932, 52.789496161000045), (-4.752512173999946, 52.79877350500004), (-4.7514542309999115, 52.80320872600004), (-4.755441860999952, 52.80931224200003), (-4.7492569649999155, 52.81427643400008), (-4.734934048999946, 52.83047109600005), (-4.596058722999942, 52.92841217700004), (-4.580962693999936, 52.93349844000005), (-4.562082485999952, 52.93451569200005), (-4.543527798999946, 52.937933661000045), (-4.523996548999946, 52.944240627000056), (-4.443430141999954, 52.98216380400004), (-4.423695441999939, 53.00263092700004), (-4.358225063999953, 53.02846914300005), (-4.349964972999942, 53.04148997600004), (-4.345692511999914, 53.059475002000056), (-4.343861456999946, 53.10106028900003), (-4.340891079999949, 53.11273834800005), (-4.334339972999942, 53.11676666900007), (-4.3276261059999115, 53.11469147300005), (-4.324696417999917, 53.10789622600004), (-4.320668097999942, 53.10150788000004), (-4.312245245999918, 53.109442450000074), (-4.304758266999954, 53.12099844000005), (-4.303618943999936, 53.12531159100007), (-4.263539191999939, 53.15452708500004), (-4.2523494129999335, 53.159409898000035), (-4.234527147999927, 53.16400788000004), (-4.221302863999938, 53.175034898000035), (-4.200550910999937, 53.20099518400008), (-4.17796790299991, 53.21759674700007), (-4.151519334999932, 53.22809479400007), (-4.122222459999932, 53.23346588700008), (-4.0906876289999445, 53.23517487200007), (-4.08234615799995, 53.23354726800005), (-4.074330206999946, 53.23065827000005), (-4.066883917999917, 53.22907135600008), (-4.054107225999928, 53.234361070000034), (-4.032297329999949, 53.24070872600004), (-4.008900519999941, 53.24445221600007), (-3.974598761999914, 53.261786200000074), (-3.8653051419999542, 53.289129950000074), (-3.8312882149999155, 53.289129950000074), (-3.841420050999943, 53.30744049700007), (-3.870757615999935, 53.32562897300005), (-3.8784073559999115, 53.337591864000046), (-3.859974738999938, 53.33633047100005), (-3.840565558999913, 53.33283112200007), (-3.822987433999913, 53.32656484600005), (-3.8101293609999516, 53.31708405200004), (-3.7905167309999115, 53.323431708000044), (-3.7688695949999556, 53.31915924700007), (-3.748199022999927, 53.307806708000044), (-3.7319229809999115, 53.29287344000005), (-3.7162979809999115, 53.28693268400008), (-3.6022029289999296, 53.28888580900008), (-3.5623266269999476, 53.29441966400003), (-3.372059699999909, 53.350897528000075), (-3.33031165299991, 53.35179271000004), (-3.2923884759999282, 53.34052155200004), (-3.2713110019999476, 53.33055247600004), (-3.262074347999942, 53.32050202000005), (-3.250803188999953, 53.312567450000074), (-3.122222459999932, 53.26227448100008), (-3.107533331999946, 53.25189850500004), (-3.0951228509999282, 53.23932526200008), (-3.0877579419999392, 53.23468659100007), (-3.0845434239999463, 53.23859284100007), (-3.0845434239999463, 53.25857168200008), (-3.0845434239999463, 53.275458075000074), (-3.09593665299991, 53.28713613500008), (-3.1111954419999392, 53.302801825000074), (-3.1354060539999296, 53.33380768400008), (-3.171538865999935, 53.36225006700005), (-3.185210740999935, 53.37726471600007), (-3.186350063999953, 53.39276764500005), (-3.175526495999918, 53.40273672100005), (-3.157297329999949, 53.40875885600008), (-3.1146541009999282, 53.41266510600008), (-3.0942276679999168, 53.41738515800006), (-3.058257615999935, 53.434759833000044), (-3.0355525379999335, 53.43374258000006), (-3.0121964179999168, 53.41669342700004), (-2.9529516269999476, 53.323919989000046), (-2.9351293609999516, 53.309475002000056), (-2.9105525379999335, 53.29633209800005), (-2.8814998039999296, 53.288397528000075), (-2.850575324999909, 53.289129950000074), (-2.849598761999914, 53.29120514500005), (-2.848378058999913, 53.29555898600006), (-2.8449600899999155, 53.300116278000075), (-2.837554490999935, 53.302801825000074), (-2.8286026679999168, 53.302435614000046), (-2.813384568999936, 53.297756252000056), (-2.8061417309999115, 53.296576239000046), (-2.789784308999913, 53.29743073100008), (-2.775502081999946, 53.29987213700008), (-2.7481176419999542, 53.30963776200008), (-2.753651495999918, 53.32245514500005), (-2.750884568999936, 53.33161041900007), (-2.743153449999909, 53.33852773600006), (-2.734486456999946, 53.34442780200004), (-2.7261449859999516, 53.34198639500005), (-2.7174373039999296, 53.34271881700005), (-2.708607550999943, 53.346136786000045), (-2.6997777989999463, 53.35179271000004), (-2.7141007149999155, 53.35236237200007), (-2.764393683999913, 53.34516022300005), (-2.775380011999914, 53.341009833000044), (-2.782378709999932, 53.32636139500005), (-2.799794074999909, 53.32103099200003), (-2.810332811999956, 53.32172272300005), (-2.843658006999931, 53.323919989000046), (-2.886463995999918, 53.33356354400007), (-2.924956834999932, 53.35000234600005), (-2.956939256999931, 53.37055084800005), (-2.980824347999942, 53.39276764500005), (-3.096587693999936, 53.54433828300006), (-3.101918097999942, 53.55805084800005), (-3.0994766919999392, 53.57200755400004), (-3.087635870999918, 53.58771393400008), (-3.021839972999942, 53.65281810100004), (-2.968658006999931, 53.69403717700004), (-2.9603572259999282, 53.69757721600007), (-2.9517309239999463, 53.70807526200008), (-2.9114477199999556, 53.725043036000045), (-2.899037238999938, 53.73541901200008), (-2.9848526679999168, 53.73607005400004), (-3.021473761999914, 53.745794989000046), (-3.049183722999942, 53.769517320000034), (-3.056385870999918, 53.80304596600007), (-3.044911261999914, 53.87848541900007), (-3.056630011999914, 53.90615469000005), (-3.040679490999935, 53.923529364000046), (-3.017567511999914, 53.93195221600007), (-2.925689256999931, 53.95270416900007), (-2.909250454999949, 53.95384349200003), (-2.896107550999943, 53.94773997600004), (-2.8885391919999392, 53.94603099200003), (-2.885365363999938, 53.950506903000075), (-2.881988084999932, 53.95652903900003), (-2.874175584999932, 53.96165599200003), (-2.865142381999931, 53.96548086100006), (-2.8579809239999463, 53.96759674700007), (-2.869252081999946, 53.97882721600007), (-2.8344620429999168, 53.99982330900008), (-2.830067511999914, 54.01601797100005), (-2.8475235669999392, 54.00836823100008), (-2.864857550999943, 54.00429922100005), (-2.895497199999909, 54.00234609600005), (-2.900298631999931, 54.00495026200008), (-2.9160863919999542, 54.026556708000044), (-2.91820227799991, 54.03432851800005), (-2.911284959999932, 54.03998444200005), (-2.9007869129999335, 54.044907945000034), (-2.8920792309999115, 54.050116278000075), (-2.872670050999943, 54.071600653000075), (-2.8588761059999115, 54.08100006700005), (-2.826771613999938, 54.08881256700005), (-2.815174933999913, 54.09878164300005), (-2.795969204999949, 54.12518952000005), (-2.8128149079999503, 54.139878648000035), (-2.8364151679999168, 54.16758860900006), (-2.8509415359999366, 54.18463776200008), (-2.854237433999913, 54.19407786700003), (-2.8328751289999445, 54.19904205900008), (-2.810292120999918, 54.21190013200004), (-2.7952367829999503, 54.22947825700004), (-2.795969204999949, 54.24872467700004), (-2.8028051419999542, 54.24872467700004), (-2.806630011999914, 54.233710028000075), (-2.8208715489999463, 54.22174713700008), (-2.850575324999909, 54.20774974200003), (-2.886382615999935, 54.19627513200004), (-2.904652472999942, 54.18764883000006), (-2.9126684239999463, 54.176988023000035), (-2.9203995429999168, 54.16205475500004), (-2.939198370999918, 54.15509674700007), (-2.9842016269999476, 54.15314362200007), (-2.997710740999935, 54.15957265800006), (-3.011341925999943, 54.17413971600007), (-3.017323370999918, 54.19009023600006), (-3.008168097999942, 54.20034414300005), (-3.015370245999918, 54.21190013200004), (-3.024484829999949, 54.221584377000056), (-3.035755988999938, 54.22597890800006), (-3.049183722999942, 54.22207265800006), (-3.044667120999918, 54.208319403000075), (-3.047840949999909, 54.19432200700004), (-3.053537563999953, 54.181301174000055), (-3.056630011999914, 54.17023346600007), (-3.0610245429999168, 54.16193268400008), (-3.090728318999936, 54.13947174700007), (-3.10765540299991, 54.11855703300006), (-3.117909308999913, 54.10883209800005), (-3.145253058999913, 54.100043036000045), (-3.147450324999909, 54.08869049700007), (-3.1443985669999392, 54.07514069200005), (-3.1453751289999445, 54.063788153000075), (-3.1805313789999445, 54.09284088700008), (-3.1897680329999503, 54.09788646000004), (-3.2057185539999296, 54.098537502000056), (-3.219553188999953, 54.100775458000044), (-3.2311091789999296, 54.105129299000055), (-3.240956183999913, 54.11212799700007), (-3.2381078769999476, 54.12759023600006), (-3.232533331999946, 54.14468008000006), (-3.233143683999913, 54.15916575700004), (-3.248402472999942, 54.16681549700007), (-3.248402472999942, 54.17365143400008), (-3.215199347999942, 54.17983633000006), (-3.206776495999918, 54.20892975500004), (-3.2090551419999542, 54.24274323100008), (-3.207386847999942, 54.263006903000075), (-3.2231339179999168, 54.25763580900008), (-3.231353318999936, 54.24721914300005), (-3.240956183999913, 54.22207265800006), (-3.232167120999918, 54.20254140800006), (-3.247141079999949, 54.19794342700004), (-3.270130988999938, 54.19912344000005), (-3.2860001289999445, 54.19721100500004), (-3.306792772999927, 54.19188060100004), (-3.3285212879999335, 54.204738674000055), (-3.3644913399999155, 54.24249909100007), (-3.394195115999935, 54.26439036700003), (-3.407378709999932, 54.27773672100005), (-3.412912563999953, 54.29376862200007), (-3.41038977799991, 54.30145905200004), (-3.405995245999918, 54.30963776200008), (-3.4041235019999476, 54.31854889500005), (-3.4114477199999556, 54.33274974200003), (-3.4134415359999366, 54.342962958000044), (-3.4163305329999503, 54.344916083000044), (-3.440174933999913, 54.35175202000005), (-3.474273240999935, 54.39350006700005), (-3.497710740999935, 54.40582916900007), (-3.5918676419999542, 54.48309967700004), (-3.608143683999913, 54.488267320000034), (-3.613189256999931, 54.49164459800005), (-3.6236873039999296, 54.50608958500004), (-3.6341853509999282, 54.512884833000044), (-3.6268204419999392, 54.520412502000056), (-3.616200324999909, 54.52757396000004), (-3.61156165299991, 54.52993398600006), (-3.5903214179999168, 54.56464264500005), (-3.5638321609999366, 54.64276764500005), (-3.5301407539999445, 54.68805573100008), (-3.5160212879999335, 54.712876695000034), (-3.5091853509999282, 54.72166575700004), (-3.500721808999913, 54.72597890800006), (-3.478871222999942, 54.730902411000045), (-3.4681290359999366, 54.73529694200005), (-3.455433722999942, 54.745021877000056), (-3.439564581999946, 54.76146067900004), (-3.4309789699999556, 54.780462958000044), (-3.440174933999913, 54.79743073100008), (-3.4075414699999556, 54.85602448100008), (-3.3879288399999155, 54.88336823100008), (-3.3644913399999155, 54.89980703300006), (-3.3449600899999155, 54.90253327000005), (-3.3333634109999366, 54.89728424700007), (-3.3227432929999168, 54.889878648000035), (-3.3064672519999476, 54.88617584800005), (-3.295725063999953, 54.88690827000005), (-3.254628058999913, 54.89980703300006), (-3.267323370999918, 54.905503648000035), (-3.317290818999936, 54.92031484600005), (-3.2914932929999168, 54.93667226800005), (-3.276519334999932, 54.943426825000074), (-3.213612433999913, 54.954413153000075), (-3.2010391919999392, 54.95221588700008), (-3.1936742829999503, 54.94863515800006), (-3.1879776679999168, 54.94448476800005), (-3.1801651679999168, 54.94082265800006), (-3.14281165299991, 54.93353913000004), (-3.122792120999918, 54.93268463700008), (-3.0395401679999168, 54.94717031500005), (-3.021839972999942, 54.954413153000075), (-3.090728318999936, 54.954413153000075), (-3.090728318999936, 54.96124909100007), (-3.0715225899999155, 54.96312083500004), (-3.0562231109999516, 54.968817450000074), (-3.040923631999931, 54.97247955900008), (-3.021839972999942, 54.968085028000075), (-3.021839972999942, 54.97553131700005), (-3.0462947259999282, 54.982123114000046), (-3.0502913779999403, 54.981510325000045), (-3.1354060539999296, 54.968085028000075), (-3.453846808999913, 54.981756903000075), (-3.470692511999914, 54.984442450000074), (-3.486236131999931, 54.989488023000035), (-3.501047329999949, 54.99249909100007), (-3.515288865999935, 54.98920319200005), (-3.5123591789999296, 54.98712799700007), (-3.511463995999918, 54.98688385600008), (-3.510894334999932, 54.985988674000055), (-3.5091853509999282, 54.981756903000075), (-3.5260310539999296, 54.97711823100008), (-3.5418595039999445, 54.98065827000005), (-3.57054602799991, 54.995428778000075), (-3.583607550999943, 54.968085028000075), (-3.5756729809999115, 54.95734284100007), (-3.5706274079999503, 54.937567450000074), (-3.5687556629999335, 54.916001695000034), (-3.57054602799991, 54.89980703300006), (-3.581695115999935, 54.88361237200007), (-3.598378058999913, 54.87799713700008), (-3.691761847999942, 54.88320547100005), (-3.7176407539999445, 54.880845445000034), (-3.739247199999909, 54.859808661000045), (-3.8101293609999516, 54.86627838700008), (-3.8078507149999155, 54.86107005400004), (-3.806792772999927, 54.86090729400007), (-3.803334113999938, 54.85887278900003), (-3.8123673169999392, 54.855169989000046), (-3.8198136059999115, 54.855902411000045), (-3.826079881999931, 54.85993073100008), (-3.8312882149999155, 54.86627838700008), (-3.819976365999935, 54.878566799000055), (-3.815052863999938, 54.87714264500005), (-3.8101293609999516, 54.87250397300005), (-3.8116348949999406, 54.88003164300005), (-3.813221808999913, 54.88312409100007), (-3.8169652989999463, 54.88617584800005), (-3.828846808999913, 54.874986070000034), (-3.8443090489999463, 54.86627838700008), (-3.839751756999931, 54.855902411000045), (-3.8374731109999516, 54.851996161000045), (-3.844105597999942, 54.85097890800006), (-3.8578995429999168, 54.84454987200007), (-3.823841925999943, 54.82469310100004), (-3.833607550999943, 54.82005442900004), (-3.885731574999909, 54.80646393400008), (-3.9641820949999556, 54.771918036000045), (-4.011708136999914, 54.76821523600006), (-4.042876756999931, 54.76947663000004), (-4.042876756999931, 54.77692291900007), (-4.046783006999931, 54.77802155200004), (-4.050200975999928, 54.778550523000035), (-4.053334113999938, 54.77997467700004), (-4.055775519999941, 54.782538153000075), (-4.05296790299991, 54.78546784100007), (-4.050160285999937, 54.78900788000004), (-4.049712693999936, 54.78998444200005), (-4.051747199999909, 54.800034898000035), (-4.0477188789999445, 54.81305573100008), (-4.049956834999932, 54.82322825700004), (-4.063588019999941, 54.82684967700004), (-4.064035610999952, 54.83152903900003), (-4.078602667999917, 54.82412344000005), (-4.09007727799991, 54.809759833000044), (-4.093495245999918, 54.792669989000046), (-4.083851691999939, 54.77692291900007), (-4.122954881999931, 54.77301666900007), (-4.173939581999946, 54.792303778000075), (-4.209136522999927, 54.826239325000074), (-4.200550910999937, 54.86627838700008), (-4.215402798999946, 54.861029364000046), (-4.2397354809999115, 54.843003648000035), (-4.255767381999931, 54.838324286000045), (-4.2707413399999155, 54.83942291900007), (-4.345285610999952, 54.86017487200007), (-4.3569229809999115, 54.86554596600007), (-4.3656306629999335, 54.87250397300005), (-4.375152147999927, 54.88690827000005), (-4.379872199999909, 54.89789459800005), (-4.386789516999954, 54.90477122600004), (-4.402902798999946, 54.90729401200008), (-4.409006313999953, 54.90302155200004), (-4.416818813999953, 54.89280833500004), (-4.423573370999918, 54.88035716400003), (-4.426503058999913, 54.86945221600007), (-4.4172257149999155, 54.84593333500004), (-4.4094132149999155, 54.831244208000044), (-4.402902798999946, 54.82469310100004), (-4.386708136999914, 54.82416413000004), (-4.372425910999937, 54.82184479400007), (-4.35960852799991, 54.81663646000004), (-4.347645636999914, 54.80731842700004), (-4.344471808999913, 54.79450104400007), (-4.353179490999935, 54.78310781500005), (-4.358143683999913, 54.77098216400003), (-4.343861456999946, 54.75641510600008), (-4.356516079999949, 54.741888739000046), (-4.353260870999918, 54.72089264500005), (-4.348133917999917, 54.70197174700007), (-4.3547257149999155, 54.693793036000045), (-4.360340949999909, 54.69159577000005), (-4.365305141999954, 54.68695709800005), (-4.371896938999953, 54.68227773600006), (-4.382394985999952, 54.68008047100005), (-4.405262824999909, 54.682074286000045), (-4.426503058999913, 54.687567450000074), (-4.4518123039999296, 54.69879791900007), (-4.46117102799991, 54.701239325000074), (-4.4967341789999296, 54.70062897300005), (-4.505604620999918, 54.70465729400007), (-4.563628709999932, 54.75641510600008), (-4.596669074999909, 54.77529531500005), (-4.714466925999943, 54.81785716400003), (-4.759592251999948, 54.82534414300005), (-4.781076626999948, 54.83307526200008), (-4.799631313999953, 54.86127350500004), (-4.821034308999913, 54.86664459800005), (-4.859120245999918, 54.86627838700008), (-4.88304602799991, 54.86009349200003), (-4.905873175999943, 54.84979889500005), (-4.925770636999914, 54.83738841400003), (-4.941029425999943, 54.82469310100004), (-4.9496150379999335, 54.81582265800006), (-4.953684048999946, 54.81000397300005), (-4.954823370999918, 54.804754950000074), (-4.954701300999943, 54.79743073100008), (-4.952870245999918, 54.78896719000005), (-4.9479060539999296, 54.777329820000034), (-4.940256313999953, 54.76703522300005), (-4.930165167999917, 54.76264069200005), (-4.923247850999928, 54.75185781500005), (-4.911936001999948, 54.728216864000046), (-4.8959854809999115, 54.70453522300005), (-4.867258266999954, 54.69013092700004), (-4.866932745999918, 54.68146393400008), (-4.872141079999949, 54.663316148000035), (-4.872425910999937, 54.65403880400004), (-4.872059699999909, 54.64923737200007), (-4.859120245999918, 54.63296133000006), (-4.880604620999918, 54.63621653900003), (-4.923491990999935, 54.649725653000075), (-4.944081183999913, 54.652777411000045), (-4.953684048999946, 54.65973541900007), (-4.959868943999936, 54.67552317900004), (-4.958973761999914, 54.69196198100008), (-4.947255011999914, 54.701239325000074), (-4.954823370999918, 54.707464911000045), (-4.958892381999931, 54.714056708000044), (-4.959055141999954, 54.72093333500004), (-4.954701300999943, 54.728501695000034), (-4.973378058999913, 54.729722398000035), (-4.981556769999941, 54.731634833000044), (-4.988189256999931, 54.73529694200005), (-4.992665167999917, 54.74433014500005), (-4.997059699999909, 54.75836823100008), (-5.003285285999937, 54.77130768400008), (-5.0130102199999556, 54.77692291900007), (-5.033192511999914, 54.782416083000044), (-5.1282445949999556, 54.848944403000075), (-5.157134568999936, 54.87909577000005), (-5.175526495999918, 54.91461823100008), (-5.180653449999909, 54.954413153000075), (-5.177601691999939, 54.99054596600007), (-5.170806443999936, 55.008693752000056), (-5.156727667999917, 55.01654694200005), (-5.1356095039999445, 55.01585521000004), (-5.124582485999952, 55.016791083000044), (-5.119740363999938, 55.01992422100005), (-5.115142381999931, 55.03156159100007), (-5.105213995999918, 55.02619049700007), (-5.095529751999948, 55.01508209800005), (-5.091867641999954, 55.00971100500004), (-5.076893683999913, 54.99555084800005), (-5.069488084999932, 54.986029364000046), (-5.064564581999946, 54.97553131700005), (-5.0637914699999556, 54.96458567900004), (-5.065256313999953, 54.940334377000056), (-5.06086178299995, 54.93113841400003), (-5.0475154289999296, 54.92031484600005), (-5.030995245999918, 54.911322333000044), (-5.013091600999928, 54.90961334800005), (-4.9955948559999115, 54.92031484600005), (-4.992298956999946, 54.924261786000045), (-4.988189256999931, 54.927720445000034), (-4.988189256999931, 54.93455638200004), (-5.0240779289999296, 54.97638580900008), (-5.029774542999917, 54.98550039300005), (-5.032500779999907, 54.99371979400007), (-5.033029751999948, 54.99526601800005), (-5.047027147999927, 55.01508209800005), (-5.0502823559999115, 55.02680084800005), (-5.0496720039999445, 55.04897695500006), (-5.047596808999913, 55.05573151200008), (-5.043446417999917, 55.06427643400008), (-5.0257869129999335, 55.08869049700007), (-5.018950975999928, 55.10224030200004), (-5.016184048999946, 55.12262604400007), (-5.007801886999914, 55.14118073100008), (-4.988270636999914, 55.15265534100007), (-4.947255011999914, 55.16791413000004), (-4.882394985999952, 55.21857330900008), (-4.877552863999938, 55.22089264500005), (-4.867258266999954, 55.22247955900008), (-4.865305141999954, 55.22565338700008), (-4.865589972999942, 55.236314195000034), (-4.864816860999952, 55.24135976800005), (-4.841949022999927, 55.275091864000046), (-4.838002081999946, 55.28400299700007), (-4.8372289699999556, 55.293850002000056), (-4.839751756999931, 55.31557851800005), (-4.838002081999946, 55.32501862200007), (-4.832508917999917, 55.33112213700008), (-4.7992244129999335, 55.354722398000035), (-4.781076626999948, 55.36351146000004), (-4.773101365999935, 55.36937083500004), (-4.767160610999952, 55.37905508000006), (-4.758778449999909, 55.40228913000004), (-4.7492569649999155, 55.413763739000046), (-4.71703040299991, 55.43048737200007), (-4.650502081999946, 55.448472398000035), (-4.626332160999937, 55.468410549000055), (-4.617787238999938, 55.49559153900003), (-4.626779751999948, 55.51972077000005), (-4.6507869129999335, 55.53705475500004), (-4.687163865999935, 55.544134833000044), (-4.66624915299991, 55.562201239000046), (-4.666493292999917, 55.56329987200007), (-4.6711319649999155, 55.584418036000045), (-4.692738410999937, 55.60521067900004), (-4.7219945949999556, 55.619208075000074), (-4.776519334999932, 55.632879950000074), (-4.808745897999927, 55.63361237200007), (-4.818104620999918, 55.63719310100004), (-4.810617641999954, 55.646551825000074), (-4.810617641999954, 55.653998114000046), (-4.868560350999928, 55.67560455900008), (-4.900990363999938, 55.69232819200005), (-4.920521613999938, 55.70856354400007), (-4.876332160999937, 55.735256252000056), (-4.861073370999918, 55.756740627000056), (-4.865305141999954, 55.79047272300005), (-4.8717341789999296, 55.802435614000046), (-4.8777970039999445, 55.81102122600004), (-4.882720506999931, 55.82135651200008), (-4.888661261999914, 55.864528713000084), (-4.888824022999927, 55.865301825000074), (-4.892648891999954, 55.89288971600007), (-4.886463995999918, 55.91966380400004), (-4.872141079999949, 55.937201239000046), (-4.849354620999918, 55.94822825700004), (-4.818104620999918, 55.95563385600008), (-4.799387173999946, 55.957912502000056), (-4.7857966789999296, 55.95697663000004), (-4.722320115999935, 55.94009023600006), (-4.705433722999942, 55.93846263200004), (-4.693959113999938, 55.94135163000004), (-4.6725154289999296, 55.93378327000005), (-4.505970831999946, 55.91909414300005), (-4.4816788399999155, 55.92829010600008), (-4.590606248999961, 55.941514390000066), (-4.630034959999932, 55.94627513200004), (-4.673451300999943, 55.96185944200005), (-4.724517381999931, 55.99835846600007), (-4.765044725999928, 56.007066148000035), (-4.78343665299991, 56.017645575000074), (-4.7992244129999335, 56.030951239000046), (-4.810617641999954, 56.04376862200007), (-4.8237198559999115, 56.07367584800005), (-4.824330206999946, 56.07851797100005), (-4.8391820949999556, 56.08063385600008), (-4.844309048999946, 56.07298411700003), (-4.843739386999914, 56.06297435100004), (-4.837554490999935, 56.05060455900008), (-4.790150519999941, 56.010199286000045), (-4.778920050999943, 55.99209219000005), (-4.785308397999927, 55.984035549000055), (-4.803618943999936, 55.982082424000055), (-4.828033006999931, 55.98232656500005), (-4.851551886999914, 55.98802317900004), (-4.862294074999909, 56.00214264500005), (-4.865386522999927, 56.02020905200004), (-4.866851365999935, 56.05833567900004), (-4.865386522999927, 56.06671784100007), (-4.826324022999927, 56.124212958000044), (-4.755441860999952, 56.188381252000056), (-4.750884568999936, 56.20270416900007), (-4.755523240999935, 56.20652903900003), (-4.7662654289999296, 56.20209381700005), (-4.7799373039999296, 56.191473700000074), (-4.837269660999937, 56.12441640800006), (-4.851673956999946, 56.112616278000075), (-4.873117641999954, 56.11200592700004), (-4.880604620999918, 56.11985911700003), (-4.878977016999954, 56.15053945500006), (-4.883168097999942, 56.16400788000004), (-4.893544074999909, 56.174261786000045), (-4.9070938789999445, 56.177069403000075), (-4.920521613999938, 56.16791413000004), (-4.909087693999936, 56.14996979400007), (-4.895253058999913, 56.11473216400003), (-4.8862198559999115, 56.08038971600007), (-4.889149542999917, 56.06484609600005), (-4.901926235999952, 56.06191640800006), (-4.904367641999954, 56.054348049000055), (-4.900054490999935, 56.03412506700005), (-4.900054490999935, 56.01459381700005), (-4.898019985999952, 56.001166083000044), (-4.892648891999954, 55.98973216400003), (-4.906402147999927, 55.98574453300006), (-4.921457485999952, 55.98867422100005), (-4.937489386999914, 55.993841864000046), (-4.954701300999943, 55.99656810100004), (-4.954701300999943, 55.98973216400003), (-4.942005988999938, 55.986314195000034), (-4.928863084999932, 55.98114655200004), (-4.918446417999917, 55.97333405200004), (-4.913685675999943, 55.96185944200005), (-4.917388475999928, 55.94745514500005), (-4.9272354809999115, 55.93768952000005), (-4.9387100899999155, 55.92963288000004), (-4.947255011999914, 55.92084381700005), (-4.952137824999909, 55.90912506700005), (-4.954986131999931, 55.89935944200005), (-4.95921790299991, 55.89012278900003), (-4.96898352799991, 55.87986888200004), (-4.983143683999913, 55.87103913000004), (-4.994740363999938, 55.86981842700004), (-5.026356574999909, 55.87372467700004), (-5.0424698559999115, 55.884751695000034), (-5.056752081999946, 55.91030508000006), (-5.0668025379999335, 55.938788153000075), (-5.070790167999917, 55.958685614000046), (-5.1108292309999115, 55.98895905200004), (-5.116037563999953, 56.00169505400004), (-5.123605923999946, 56.00991445500006), (-5.139637824999909, 56.00275299700007), (-5.123768683999913, 55.986314195000034), (-5.085682745999918, 55.93187083500004), (-5.078236456999946, 55.91095612200007), (-5.086537238999938, 55.901271877000056), (-5.105620897999927, 55.90497467700004), (-5.171538865999935, 55.935532945000034), (-5.180653449999909, 55.948431708000044), (-5.180653449999909, 55.96930573100008), (-5.190825975999928, 55.96173737200007), (-5.1996150379999335, 55.948553778000075), (-5.2057185539999296, 55.93451569200005), (-5.207915818999936, 55.92462799700007), (-5.212635870999918, 55.91714101800005), (-5.242054816999939, 55.89288971600007), (-5.218129035999937, 55.86469147300005), (-5.208159959999932, 55.849269924000055), (-5.201079881999931, 55.83148834800005), (-5.2193904289999296, 55.83144765800006), (-5.2631729809999115, 55.845770575000074), (-5.296701626999948, 55.85268789300005), (-5.307118292999917, 55.86041901200008), (-5.313384568999936, 55.88544342700004), (-5.319325324999909, 55.889105536000045), (-5.327219204999949, 55.89154694200005), (-5.3348282539999445, 55.89667389500005), (-5.3382869129999335, 55.90375397300005), (-5.3391007149999155, 55.91303131700005), (-5.3382869129999335, 55.93138255400004), (-5.336089647999927, 55.93919505400004), (-5.326161261999914, 55.95026276200008), (-5.323963995999918, 55.958685614000046), (-5.325754360999952, 55.967230536000045), (-5.3382869129999335, 55.99656810100004), (-5.313628709999932, 56.01235586100006), (-5.204497850999928, 56.11945221600007), (-5.146473761999914, 56.13312409100007), (-5.104603644999941, 56.15151601800005), (-5.0949600899999155, 56.15737539300005), (-5.0594376289999445, 56.203111070000034), (-5.043446417999917, 56.21629466400003), (-5.013295050999943, 56.22760651200008), (-4.974964972999942, 56.23700592700004), (-4.9400935539999296, 56.25141022300005), (-4.920521613999938, 56.277777411000045), (-4.938099738999938, 56.27098216400003), (-4.975087042999917, 56.24799225500004), (-4.991932745999918, 56.24298737200007), (-5.0327042309999115, 56.24115631700005), (-5.049549933999913, 56.23704661700003), (-5.064564581999946, 56.22931549700007), (-5.0754288399999155, 56.21698639500005), (-5.099436001999948, 56.18195221600007), (-5.1088761059999115, 56.174709377000056), (-5.228138800999943, 56.12921784100007), (-5.3109431629999335, 56.05805084800005), (-5.319935675999943, 56.05491771000004), (-5.338042772999927, 56.05410390800006), (-5.345692511999914, 56.051214911000045), (-5.345285610999952, 56.046128648000035), (-5.350209113999938, 56.03192780200004), (-5.356353318999936, 56.01976146000004), (-5.359364386999914, 56.020738023000035), (-5.3686417309999115, 56.009426174000055), (-5.390288865999935, 56.00568268400008), (-5.415028449999909, 56.00690338700008), (-5.43382727799991, 56.010199286000045), (-5.434559699999909, 56.014960028000075), (-5.434722459999932, 56.02362702000005), (-5.437123175999943, 56.03001536700003), (-5.444406704999949, 56.02757396000004), (-5.4479060539999296, 56.02228424700007), (-5.448231574999909, 56.016058661000045), (-5.447621222999942, 56.009426174000055), (-5.454986131999931, 55.95563385600008), (-5.45140540299991, 55.95343659100007), (-5.436431443999936, 55.94896067900004), (-5.430775519999941, 55.94818756700005), (-5.420806443999936, 55.92829010600008), (-5.416737433999913, 55.91681549700007), (-5.416005011999914, 55.907416083000044), (-5.4125056629999335, 55.899603583000044), (-5.400380011999914, 55.89288971600007), (-5.400380011999914, 55.886704820000034), (-5.407215949999909, 55.886704820000034), (-5.407215949999909, 55.87986888200004), (-5.402943488999938, 55.87872955900008), (-5.39289303299995, 55.87372467700004), (-5.3976944649999155, 55.87156810100004), (-5.402495897999927, 55.868353583000044), (-5.407215949999909, 55.86627838700008), (-5.35179602799991, 55.83242422100005), (-5.326771613999938, 55.808579820000034), (-5.317779100999928, 55.78302643400008), (-5.324574347999942, 55.769232489000046), (-5.3385310539999296, 55.76264069200005), (-5.372425910999937, 55.75641510600008), (-5.3875626289999445, 55.75031159100007), (-5.433461066999939, 55.72101471600007), (-5.4445694649999155, 55.71161530200004), (-5.4539688789999445, 55.70058828300006), (-5.46117102799991, 55.68813711100006), (-5.463612433999913, 55.67983633000006), (-5.466175910999937, 55.662176825000074), (-5.468617316999939, 55.653998114000046), (-5.490101691999939, 55.644598700000074), (-5.488270636999914, 55.640326239000046), (-5.484283006999931, 55.63572825700004), (-5.482289191999939, 55.632879950000074), (-5.4838761059999115, 55.61005280200004), (-5.474761522999927, 55.603949286000045), (-5.462635870999918, 55.60203685100004), (-5.454986131999931, 55.59194570500006), (-5.461089647999927, 55.57880280200004), (-5.476918097999942, 55.57489655200004), (-5.488758917999917, 55.56907786700003), (-5.482289191999939, 55.55027903900003), (-5.503529425999943, 55.52651601800005), (-5.509632941999939, 55.516791083000044), (-5.5106095039999445, 55.51146067900004), (-5.509632941999939, 55.49258047100005), (-5.5109757149999155, 55.484442450000074), (-5.514271613999938, 55.48387278900003), (-5.5187882149999155, 55.48517487200007), (-5.523264126999948, 55.48265208500004), (-5.545521613999938, 55.44916413000004), (-5.561512824999909, 55.435532945000034), (-5.5846248039999296, 55.427435614000046), (-5.5846248039999296, 55.421210028000075), (-5.572132941999939, 55.422308661000045), (-5.562082485999952, 55.41986725500004), (-5.553089972999942, 55.41453685100004), (-5.543690558999913, 55.40692780200004), (-5.527455206999946, 55.38434479400007), (-5.5266820949999556, 55.38027578300006), (-5.5149633449999556, 55.37368398600006), (-5.525054490999935, 55.358628648000035), (-5.557972785999937, 55.33185455900008), (-5.574370897999927, 55.32200755400004), (-5.594105597999942, 55.31313711100006), (-5.616281704999949, 55.30658600500004), (-5.6399633449999556, 55.303900458000044), (-5.649525519999941, 55.30516185100004), (-5.669097459999932, 55.31085846600007), (-5.6808975899999155, 55.31134674700007), (-5.691395636999914, 55.308579820000034), (-5.714019334999932, 55.29913971600007), (-5.725575324999909, 55.29706452000005), (-5.7545466789999296, 55.29734935100004), (-5.772287563999953, 55.30125560100004), (-5.782866990999935, 55.31354401200008), (-5.794667120999918, 55.35639069200005), (-5.796701626999948, 55.37909577000005), (-5.7914119129999335, 55.39862702000005), (-5.763417120999918, 55.41205475500004), (-5.725412563999953, 55.437567450000074), (-5.715646938999953, 55.44790273600006), (-5.7152400379999335, 55.46889883000006), (-5.720122850999928, 55.491522528000075), (-5.7219132149999155, 55.51386139500005), (-5.707753058999913, 55.54336172100005), (-5.712066209999932, 55.55072663000004), (-5.718861456999946, 55.55731842700004), (-5.721831834999932, 55.56460195500006), (-5.718129035999937, 55.57575104400007), (-5.694488084999932, 55.605536200000074), (-5.6733292309999115, 55.640611070000034), (-5.6694229809999115, 55.66071198100008), (-5.6808975899999155, 55.67446523600006), (-5.626535610999952, 55.70062897300005), (-5.61945553299995, 55.71198151200008), (-5.613189256999931, 55.725775458000044), (-5.5982966789999296, 55.74298737200007), (-5.581206834999932, 55.75763580900008), (-5.5678604809999115, 55.76386139500005), (-5.539173956999946, 55.77094147300005), (-5.504628058999913, 55.78937409100007), (-5.4735001289999445, 55.815659898000035), (-5.454986131999931, 55.845770575000074), (-5.551747199999909, 55.783636786000045), (-5.587473110999952, 55.76715729400007), (-5.599436001999948, 55.76422760600008), (-5.6126195949999556, 55.76386139500005), (-5.60578365799995, 55.77684153900003), (-5.6332087879999335, 55.78278229400007), (-5.64671790299991, 55.78750234600005), (-5.66038977799991, 55.79734935100004), (-5.667958136999914, 55.81102122600004), (-5.669016079999949, 55.83783600500004), (-5.67406165299991, 55.845770575000074), (-5.631988084999932, 55.88178131700005), (-5.625599738999938, 55.889837958000044), (-5.61937415299991, 55.90314362200007), (-5.6043595039999445, 55.91364166900007), (-5.586293097999942, 55.92332591400003), (-5.571034308999913, 55.93451569200005), (-5.593495245999918, 55.92796458500004), (-5.6275935539999296, 55.90534088700008), (-5.6537979809999115, 55.89760976800005), (-5.671701626999948, 55.88690827000005), (-5.6808975899999155, 55.886704820000034), (-5.687977667999917, 55.89337799700007), (-5.694162563999953, 55.90497467700004), (-5.696400519999941, 55.91596100500004), (-5.586822068999936, 56.01203034100007), (-5.57843990799995, 56.02448151200008), (-5.5826716789999296, 56.028957424000055), (-5.576649542999917, 56.032538153000075), (-5.571034308999913, 56.037543036000045), (-5.583892381999931, 56.040716864000046), (-5.596424933999913, 56.036810614000046), (-5.609852667999917, 56.03001536700003), (-5.625599738999938, 56.02448151200008), (-5.6317032539999445, 56.005926825000074), (-5.674875454999949, 55.977728583000044), (-5.67406165299991, 55.95563385600008), (-5.690785285999937, 55.93764883000006), (-5.694488084999932, 55.93451569200005), (-5.704497850999928, 55.936753648000035), (-5.707508917999917, 55.942572333000044), (-5.705881313999953, 55.949652411000045), (-5.701975063999953, 55.95563385600008), (-5.696441209999932, 55.98216380400004), (-5.659901495999918, 56.02326080900008), (-5.5846248039999296, 56.08466217700004), (-5.5815323559999115, 56.08828359600005), (-5.580067511999914, 56.09292226800005), (-5.5774633449999556, 56.096991278000075), (-5.571034308999913, 56.09902578300006), (-5.564605272999927, 56.098089911000045), (-5.556548631999931, 56.09589264500005), (-5.550689256999931, 56.09349192900004), (-5.550526495999918, 56.09218984600005), (-5.547840949999909, 56.09003327000005), (-5.5394587879999335, 56.08685944200005), (-5.531605597999942, 56.08633047100005), (-5.530100063999953, 56.09218984600005), (-5.534738735999952, 56.098537502000056), (-5.5414119129999335, 56.10248444200005), (-5.5475154289999296, 56.10488515800006), (-5.550526495999918, 56.10643138200004), (-5.55695553299995, 56.12221914300005), (-5.558705206999946, 56.13080475500004), (-5.554676886999914, 56.13739655200004), (-5.522531704999949, 56.16575755400004), (-5.515736456999946, 56.174709377000056), (-5.509632941999939, 56.188381252000056), (-5.5399063789999445, 56.18341705900008), (-5.562489386999914, 56.16791413000004), (-5.5826716789999296, 56.15058014500005), (-5.60578365799995, 56.139960028000075), (-5.599354620999918, 56.160589911000045), (-5.586415167999917, 56.18113841400003), (-5.569406704999949, 56.20026276200008), (-5.550526495999918, 56.21629466400003), (-5.5594376289999445, 56.22955963700008), (-5.547230597999942, 56.24017975500004), (-5.52562415299991, 56.247259833000044), (-5.50617428299995, 56.24982330900008), (-5.494740363999938, 56.253119208000044), (-5.4928279289999296, 56.26040273600006), (-5.4992569649999155, 56.267645575000074), (-5.512684699999909, 56.27094147300005), (-5.554269985999952, 56.26349518400008), (-5.5631404289999296, 56.26032135600008), (-5.572621222999942, 56.25385163000004), (-5.58234615799995, 56.24876536700003), (-5.592152472999942, 56.24982330900008), (-5.5980525379999335, 56.25861237200007), (-5.595570441999939, 56.26992422100005), (-5.5846248039999296, 56.29075755400004), (-5.57258053299995, 56.32807038000004), (-5.56273352799991, 56.341050523000035), (-5.543690558999913, 56.352850653000075), (-5.525217251999948, 56.34662506700005), (-5.498199022999927, 56.34833405200004), (-5.4481095039999445, 56.35968659100007), (-5.4481095039999445, 56.36591217700004), (-5.4721573559999115, 56.364935614000046), (-5.515370245999918, 56.35683828300006), (-5.5375056629999335, 56.35968659100007), (-5.517323370999918, 56.39276764500005), (-5.509632941999939, 56.40062083500004), (-5.498931443999936, 56.404730536000045), (-5.486073370999918, 56.40810781500005), (-5.4780167309999115, 56.41290924700007), (-5.482289191999939, 56.421128648000035), (-5.457020636999914, 56.44086334800005), (-5.423573370999918, 56.45001862200007), (-5.322865363999938, 56.45498281500005), (-5.242054816999939, 56.44220612200007), (-5.208729620999918, 56.44684479400007), (-5.18187415299991, 56.45966217700004), (-5.118519660999937, 56.50775788000004), (-5.085682745999918, 56.54877350500004), (-5.064564581999946, 56.56513092700004), (-5.086537238999938, 56.55849844000005), (-5.099598761999914, 56.54364655200004), (-5.1105850899999155, 56.52586497600004), (-5.125965949999909, 56.51048411700003), (-5.166900193999936, 56.49005768400008), (-5.190174933999913, 56.46865469000005), (-5.201079881999931, 56.462103583000044), (-5.243763800999943, 56.45921458500004), (-5.350168423999946, 56.47296784100007), (-5.378081834999932, 56.458970445000034), (-5.394276495999918, 56.46548086100006), (-5.4105525379999335, 56.50364817900004), (-5.42414303299995, 56.500067450000074), (-5.4359431629999335, 56.49115631700005), (-5.454986131999931, 56.46954987200007), (-5.468617316999939, 56.47573476800005), (-5.433338995999918, 56.52362702000005), (-5.427642381999931, 56.53782786700003), (-5.4037979809999115, 56.524603583000044), (-5.379261847999942, 56.519191799000055), (-5.3566788399999155, 56.51968008000006), (-5.3382869129999335, 56.52415599200003), (-5.2905167309999115, 56.54466380400004), (-5.265044725999928, 56.551214911000045), (-5.252552863999938, 56.556341864000046), (-5.242054816999939, 56.56513092700004), (-5.27562415299991, 56.553615627000056), (-5.286773240999935, 56.552069403000075), (-5.306792772999927, 56.552801825000074), (-5.3109431629999335, 56.552069403000075), (-5.327707485999952, 56.54466380400004), (-5.338693813999953, 56.542303778000075), (-5.360340949999909, 56.53221263200004), (-5.372425910999937, 56.53034088700008), (-5.384348110999952, 56.53343333500004), (-5.400502081999946, 56.54364655200004), (-5.413929816999939, 56.54466380400004), (-5.410878058999913, 56.552069403000075), (-5.407297329999949, 56.55532461100006), (-5.402699347999942, 56.55744049700007), (-5.396636522999927, 56.561712958000044), (-5.392689581999946, 56.566473700000074), (-5.3893123039999296, 56.57489655200004), (-5.386626756999931, 56.57880280200004), (-5.360707160999937, 56.60626862200007), (-5.351918097999942, 56.612941799000055), (-5.31086178299995, 56.63361237200007), (-5.304514126999948, 56.64016347900008), (-5.298451300999943, 56.64642975500004), (-5.317779100999928, 56.65387604400007), (-5.317779100999928, 56.661322333000044), (-5.309071417999917, 56.66425202000005), (-5.286773240999935, 56.674994208000044), (-5.261463995999918, 56.67332591400003), (-5.248199022999927, 56.67405833500004), (-5.218902147999927, 56.688666083000044), (-5.196441209999932, 56.688666083000044), (-5.153309699999909, 56.68121979400007), (-5.132639126999948, 56.68451569200005), (-5.093373175999943, 56.69904205900008), (-5.012806769999941, 56.70929596600007), (-4.9955948559999115, 56.71596914300005), (-5.1605525379999335, 56.69586823100008), (-5.238270636999914, 56.71662018400008), (-5.23851477799991, 56.72256094000005), (-5.228423631999931, 56.73647695500006), (-5.222075975999928, 56.741522528000075), (-5.154652472999942, 56.78229401200008), (-5.136382615999935, 56.79877350500004), (-5.119740363999938, 56.818426825000074), (-5.179066535999937, 56.78925202000005), (-5.187489386999914, 56.78115469000005), (-5.191761847999942, 56.774644273000035), (-5.202259894999941, 56.76911041900007), (-5.214670376999948, 56.76520416900007), (-5.224964972999942, 56.763739325000074), (-5.233469204999949, 56.76068756700005), (-5.237049933999913, 56.75336334800005), (-5.2389216789999296, 56.74445221600007), (-5.242054816999939, 56.73647695500006), (-5.255238410999937, 56.721584377000056), (-5.268462693999936, 56.71308014500005), (-5.283355272999927, 56.70937734600005), (-5.30101477799991, 56.70856354400007), (-5.3098038399999155, 56.70648834800005), (-5.319162563999953, 56.69749583500004), (-5.34015865799995, 56.693060614000046), (-5.348378058999913, 56.687201239000046), (-5.359364386999914, 56.674994208000044), (-5.388050910999937, 56.65521881700005), (-5.403879360999952, 56.64923737200007), (-5.4242244129999335, 56.64704010600008), (-5.434396938999953, 56.64288971600007), (-5.4487198559999115, 56.62457916900007), (-5.458119269999941, 56.620347398000035), (-5.470773891999954, 56.618394273000035), (-5.482574022999927, 56.613267320000034), (-5.493316209999932, 56.60639069200005), (-5.53343665299991, 56.57290273600006), (-5.599598761999914, 56.52903880400004), (-5.667388475999928, 56.498480536000045), (-5.67406165299991, 56.49689362200007), (-5.683013475999928, 56.50063711100006), (-5.694691535999937, 56.51386139500005), (-5.70539303299995, 56.51666901200008), (-5.721791144999941, 56.51850006700005), (-5.740834113999938, 56.52326080900008), (-5.7582087879999335, 56.52997467700004), (-5.770253058999913, 56.53782786700003), (-5.7551977199999556, 56.554022528000075), (-5.751047329999949, 56.56199778900003), (-5.749134894999941, 56.571966864000046), (-5.756662563999953, 56.571966864000046), (-5.793853318999936, 56.54328034100007), (-5.8543595039999445, 56.550482489000046), (-6.0034073559999115, 56.61871979400007), (-6.009836391999954, 56.62653229400007), (-6.008168097999942, 56.642279364000046), (-5.998036261999914, 56.64988841400003), (-5.983509894999941, 56.65281810100004), (-5.933583136999914, 56.654730536000045), (-5.899037238999938, 56.650824286000045), (-5.866851365999935, 56.64154694200005), (-5.8391820949999556, 56.62653229400007), (-5.831695115999935, 56.633978583000044), (-5.855620897999927, 56.64472077000005), (-5.865589972999942, 56.65143463700008), (-5.865834113999938, 56.661322333000044), (-5.75999915299991, 56.70075104400007), (-5.735503709999932, 56.702337958000044), (-5.672596808999913, 56.68414948100008), (-5.647368943999936, 56.68121979400007), (-5.5941462879999335, 56.68333567900004), (-5.564808722999942, 56.68764883000006), (-5.543690558999913, 56.69546133000006), (-5.636545376999948, 56.688666083000044), (-5.658558722999942, 56.690741278000075), (-5.708851691999939, 56.70856354400007), (-5.749989386999914, 56.714544989000046), (-5.859038865999935, 56.68121979400007), (-5.89679928299995, 56.675116278000075), (-5.907378709999932, 56.674994208000044), (-5.9203181629999335, 56.67796458500004), (-5.942738410999937, 56.686753648000035), (-5.955555792999917, 56.688666083000044), (-6.0248917309999115, 56.68569570500006), (-6.098622199999909, 56.696966864000046), (-6.123850063999953, 56.69562409100007), (-6.143544074999909, 56.684881903000075), (-6.161732550999943, 56.67820872600004), (-6.186594204999949, 56.68109772300005), (-6.2096248039999296, 56.68846263200004), (-6.222767706999946, 56.69546133000006), (-6.228179490999935, 56.70107656500005), (-6.232533331999946, 56.70652903900003), (-6.235340949999909, 56.71238841400003), (-6.236398891999954, 56.71906159100007), (-6.234486456999946, 56.728583075000074), (-6.229562954999949, 56.72907135600008), (-6.222767706999946, 56.72719961100006), (-6.215321417999917, 56.72964101800005), (-6.193470831999946, 56.74852122600004), (-6.1805313789999445, 56.75462474200003), (-6.026966925999943, 56.763739325000074), (-6.0148819649999155, 56.76703522300005), (-5.979888475999928, 56.78156159100007), (-5.965199347999942, 56.784857489000046), (-5.948231574999909, 56.782538153000075), (-5.937977667999917, 56.77692291900007), (-5.928537563999953, 56.769964911000045), (-5.913644985999952, 56.763739325000074), (-5.860910610999952, 56.75079987200007), (-5.8522029289999296, 56.746975002000056), (-5.853342251999948, 56.757879950000074), (-5.858143683999913, 56.768459377000056), (-5.8683975899999155, 56.77586497600004), (-5.886341925999943, 56.777411200000074), (-5.886341925999943, 56.784857489000046), (-5.874012824999909, 56.78571198100008), (-5.861805792999917, 56.78510163000004), (-5.850087042999917, 56.782456773000035), (-5.8391820949999556, 56.777411200000074), (-5.8246150379999335, 56.78758372600004), (-5.8020727199999556, 56.79181549700007), (-5.7766007149999155, 56.787990627000056), (-5.756662563999953, 56.784857489000046), (-5.831695115999935, 56.80536530200004), (-5.8508194649999155, 56.818019924000055), (-5.851185675999943, 56.82892487200007), (-5.837473110999952, 56.83661530200004), (-5.7338761059999115, 56.84479401200008), (-5.692738410999937, 56.85492584800005), (-5.66038977799991, 56.87299225500004), (-5.673573370999918, 56.87653229400007), (-5.692005988999938, 56.87531159100007), (-5.7084854809999115, 56.87055084800005), (-5.724354620999918, 56.85382721600007), (-5.744496222999942, 56.85415273600006), (-5.783924933999913, 56.85993073100008), (-5.775380011999914, 56.86994049700007), (-5.735503709999932, 56.89411041900007), (-5.7805883449999556, 56.89874909100007), (-5.874867316999939, 56.887152411000045), (-5.9211319649999155, 56.89411041900007), (-5.8875626289999445, 56.89911530200004), (-5.8522029289999296, 56.90033600500004), (-5.8522029289999296, 56.90770091400003), (-5.859852667999917, 56.91054922100005), (-5.8801163399999155, 56.92202383000006), (-5.8625382149999155, 56.93374258000006), (-5.851429816999939, 56.95425039300005), (-5.842518683999913, 56.977443752000056), (-5.831695115999935, 56.99713776200008), (-5.814116990999935, 57.00950755400004), (-5.786040818999936, 57.02057526200008), (-5.755238410999937, 57.026556708000044), (-5.729318813999953, 57.02383047100005), (-5.719878709999932, 57.017564195000034), (-5.699940558999913, 56.998114325000074), (-5.688303188999953, 56.98969147300005), (-5.67406165299991, 56.983587958000044), (-5.658558722999942, 56.97947825700004), (-5.625599738999938, 56.976629950000074), (-5.571278449999909, 56.98383209800005), (-5.523264126999948, 56.99713776200008), (-5.523264126999948, 57.003973700000074), (-5.540435350999928, 57.001166083000044), (-5.556507941999939, 56.996079820000034), (-5.571278449999909, 56.99331289300005), (-5.5846248039999296, 56.99713776200008), (-5.607085740999935, 56.98851146000004), (-5.628814256999931, 56.991888739000046), (-5.6498917309999115, 56.999660549000055), (-5.6703181629999335, 57.003973700000074), (-5.685536261999914, 57.00958893400008), (-5.681711391999954, 57.02240631700005), (-5.680043097999942, 57.03620026200008), (-5.701975063999953, 57.044907945000034), (-5.710926886999914, 57.044175523000035), (-5.731353318999936, 57.03900788000004), (-5.742339647999927, 57.03807200700004), (-5.752552863999938, 57.04059479400007), (-5.769602016999954, 57.04975006700005), (-5.780181443999936, 57.05174388200004), (-5.791127081999946, 57.05927155200004), (-5.776193813999953, 57.075832424000055), (-5.734486456999946, 57.10541413000004), (-5.722645636999914, 57.116441148000035), (-5.715646938999953, 57.12006256700005), (-5.703277147999927, 57.120754299000055), (-5.673695441999939, 57.11904531500005), (-5.663482225999928, 57.12372467700004), (-5.645863410999937, 57.12946198100008), (-5.620838995999918, 57.12409088700008), (-5.57843990799995, 57.10639069200005), (-5.558257615999935, 57.10040924700007), (-5.4598282539999445, 57.09979889500005), (-5.454986131999931, 57.10297272300005), (-5.447417772999927, 57.11017487200007), (-5.430775519999941, 57.11074453300006), (-5.41429602799991, 57.10822174700007), (-5.407215949999909, 57.10639069200005), (-5.400380011999914, 57.10639069200005), (-5.400380011999914, 57.11383698100008), (-5.420033331999946, 57.12067291900007), (-5.503895636999914, 57.11269765800006), (-5.527414516999954, 57.107489325000074), (-5.540638800999943, 57.10639069200005), (-5.5477188789999445, 57.11009349200003), (-5.573312954999949, 57.12787506700005), (-5.5846248039999296, 57.133693752000056), (-5.668446417999917, 57.147650458000044), (-5.6808975899999155, 57.157904364000046), (-5.673817511999914, 57.174994208000044), (-5.638824022999927, 57.202378648000035), (-5.625599738999938, 57.21625397300005), (-5.644154425999943, 57.23322174700007), (-5.620106574999909, 57.25214264500005), (-5.578236456999946, 57.26675039300005), (-5.543690558999913, 57.27090078300006), (-5.511586066999939, 57.25763580900008), (-5.480091925999943, 57.23700592700004), (-5.446278449999909, 57.22304922100005), (-5.407215949999909, 57.22992584800005), (-5.407215949999909, 57.23672109600005), (-5.448841925999943, 57.24209219000005), (-5.458119269999941, 57.24664948100008), (-5.47288977799991, 57.26121653900003), (-5.482899542999917, 57.268011786000045), (-5.49250240799995, 57.27090078300006), (-5.501942511999914, 57.27765534100007), (-5.4889216789999296, 57.29242584800005), (-5.464833136999914, 57.306626695000034), (-5.4406632149999155, 57.311835028000075), (-5.4406632149999155, 57.31928131700005), (-5.464995897999927, 57.32493724200003), (-5.4817602199999556, 57.31671784100007), (-5.494292772999927, 57.30442942900004), (-5.50617428299995, 57.298163153000075), (-5.523426886999914, 57.29515208500004), (-5.558461066999939, 57.28143952000005), (-5.57843990799995, 57.27765534100007), (-5.599436001999948, 57.27924225500004), (-5.637440558999913, 57.28900788000004), (-5.656971808999913, 57.29132721600007), (-5.7000626289999445, 57.28359609600005), (-5.720570441999939, 57.284491278000075), (-5.729318813999953, 57.298163153000075), (-5.7252498039999296, 57.30158112200007), (-5.701975063999953, 57.33234284100007), (-5.6937556629999335, 57.337103583000044), (-5.671986456999946, 57.34442780200004), (-5.663482225999928, 57.349676825000074), (-5.654367641999954, 57.353949286000045), (-5.647206183999913, 57.34992096600007), (-5.6414688789999445, 57.34320709800005), (-5.636545376999948, 57.33978913000004), (-5.613189256999931, 57.34198639500005), (-5.5012914699999556, 57.37099844000005), (-5.456654425999943, 57.39354075700004), (-5.4481095039999445, 57.42169830900008), (-5.46507727799991, 57.423895575000074), (-5.492054816999939, 57.40875885600008), (-5.5375056629999335, 57.373928127000056), (-5.563465949999909, 57.36310455900008), (-5.586659308999913, 57.36505768400008), (-5.610910610999952, 57.37140534100007), (-5.6399633449999556, 57.373928127000056), (-5.615589972999942, 57.382473049000055), (-5.607085740999935, 57.389105536000045), (-5.609201626999948, 57.397772528000075), (-5.617746548999946, 57.41010163000004), (-5.619618292999917, 57.41669342700004), (-5.624012824999909, 57.41640859600005), (-5.6399633449999556, 57.40802643400008), (-5.707183397999927, 57.35976797100005), (-5.732411261999914, 57.352769273000035), (-5.784575975999928, 57.34857819200005), (-5.807769334999932, 57.35492584800005), (-5.8248591789999296, 57.39435455900008), (-5.822255011999914, 57.39350006700005), (-5.817372199999909, 57.39520905200004), (-5.812855597999942, 57.398098049000055), (-5.8111873039999296, 57.40119049700007), (-5.813872850999928, 57.40452708500004), (-5.8231095039999445, 57.41233958500004), (-5.8248591789999296, 57.41547272300005), (-5.825266079999949, 57.428900458000044), (-5.821888800999943, 57.435532945000034), (-5.8111873039999296, 57.44220612200007), (-5.8215225899999155, 57.44546133000006), (-5.852528449999909, 57.450384833000044), (-5.859038865999935, 57.45270416900007), (-5.861195441999939, 57.46344635600008), (-5.870513475999928, 57.48078034100007), (-5.872670050999943, 57.49371979400007), (-5.869699673999946, 57.500881252000056), (-5.856068488999938, 57.51780833500004), (-5.8522029289999296, 57.52411530200004), (-5.8510636059999115, 57.538397528000075), (-5.851470506999931, 57.55109284100007), (-5.847075975999928, 57.55890534100007), (-5.831695115999935, 57.55882396000004), (-5.833851691999939, 57.563381252000056), (-5.837025519999941, 57.57477448100008), (-5.8391820949999556, 57.579291083000044), (-5.821400519999941, 57.583197333000044), (-5.803618943999936, 57.581366278000075), (-5.7863663399999155, 57.57518138200004), (-5.732574022999927, 57.54523346600007), (-5.715646938999953, 57.538397528000075), (-5.707020636999914, 57.542303778000075), (-5.68976803299995, 57.52789948100008), (-5.6808975899999155, 57.52411530200004), (-5.650868292999917, 57.51264069200005), (-5.6399633449999556, 57.511053778000075), (-5.645334438999953, 57.51666901200008), (-5.648304816999939, 57.52187734600005), (-5.650542772999927, 57.52680084800005), (-5.6535538399999155, 57.53156159100007), (-5.5815323559999115, 57.538397528000075), (-5.5402725899999155, 57.534491278000075), (-5.5168350899999155, 57.534857489000046), (-5.512684699999909, 57.54148997600004), (-5.543120897999927, 57.55536530200004), (-5.588368292999917, 57.56102122600004), (-5.632720506999931, 57.55768463700008), (-5.66038977799991, 57.544582424000055), (-5.694488084999932, 57.56631094000005), (-5.689198370999918, 57.56940338700008), (-5.6808975899999155, 57.579291083000044), (-5.714222785999937, 57.58270905200004), (-5.7316788399999155, 57.59829336100006), (-5.744252081999946, 57.61798737200007), (-5.762806769999941, 57.633978583000044), (-5.778146938999953, 57.63743724200003), (-5.7936091789999296, 57.63857656500005), (-5.8058975899999155, 57.642645575000074), (-5.8111873039999296, 57.65509674700007), (-5.805409308999913, 57.667181708000044), (-5.785023566999939, 57.67951080900008), (-5.790760870999918, 57.68854401200008), (-5.790760870999918, 57.69599030200004), (-5.753570115999935, 57.707464911000045), (-5.734486456999946, 57.70795319200005), (-5.704986131999931, 57.69013092700004), (-5.692494269999941, 57.691066799000055), (-5.68195553299995, 57.69871653900003), (-5.67406165299991, 57.70966217700004), (-5.685170050999943, 57.71141185100004), (-5.692290818999936, 57.716498114000046), (-5.698841925999943, 57.723089911000045), (-5.708851691999939, 57.72955963700008), (-5.720529751999948, 57.73338450700004), (-5.803822394999941, 57.743841864000046), (-5.80695553299995, 57.75462474200003), (-5.8020727199999556, 57.780585028000075), (-5.803822394999941, 57.792222398000035), (-5.801258917999917, 57.800441799000055), (-5.809925910999937, 57.82062409100007), (-5.8111873039999296, 57.833197333000044), (-5.807362433999913, 57.84393952000005), (-5.799956834999932, 57.85370514500005), (-5.789540167999917, 57.86200592700004), (-5.776519334999932, 57.86790599200003), (-5.751128709999932, 57.87335846600007), (-5.724761522999927, 57.87352122600004), (-5.698638475999928, 57.86908600500004), (-5.67406165299991, 57.86050039300005), (-5.677886522999927, 57.846909898000035), (-5.674794074999909, 57.82709381700005), (-5.667958136999914, 57.80695221600007), (-5.66038977799991, 57.792222398000035), (-5.650542772999927, 57.78180573100008), (-5.6373591789999296, 57.77423737200007), (-5.622141079999949, 57.77020905200004), (-5.60578365799995, 57.77049388200004), (-5.613270636999914, 57.77521393400008), (-5.617909308999913, 57.78021881700005), (-5.625599738999938, 57.792222398000035), (-5.613026495999918, 57.792629299000055), (-5.603260870999918, 57.791083075000074), (-5.5846248039999296, 57.784816799000055), (-5.591175910999937, 57.80442942900004), (-5.587025519999941, 57.81858958500004), (-5.5852758449999556, 57.83144765800006), (-5.598988410999937, 57.846869208000044), (-5.6375626289999445, 57.86635976800005), (-5.650380011999914, 57.87775299700007), (-5.6399633449999556, 57.88784414300005), (-5.6476944649999155, 57.88898346600007), (-5.6507869129999335, 57.89081452000005), (-5.6535538399999155, 57.89468008000006), (-5.643950975999928, 57.90420156500005), (-5.620757615999935, 57.92088450700004), (-5.6126195949999556, 57.92877838700008), (-5.598215298999946, 57.91901276200008), (-5.587310350999928, 57.91510651200008), (-5.550526495999918, 57.91510651200008), (-5.556263800999943, 57.88776276200008), (-5.527902798999946, 57.86758047100005), (-5.487049933999913, 57.85586172100005), (-5.454986131999931, 57.85370514500005), (-5.46117102799991, 57.86050039300005), (-5.449045376999948, 57.869126695000034), (-5.437123175999943, 57.897650458000044), (-5.427642381999931, 57.908270575000074), (-5.4149063789999445, 57.90814850500004), (-5.369496222999942, 57.89752838700008), (-5.355620897999927, 57.89126211100006), (-5.327504035999937, 57.87327708500004), (-5.293853318999936, 57.86204661700003), (-5.221587693999936, 57.846869208000044), (-5.236317511999914, 57.86078522300005), (-5.2475479809999115, 57.86701080900008), (-5.276763475999928, 57.87417226800005), (-5.320668097999942, 57.898504950000074), (-5.384917772999927, 57.914129950000074), (-5.39289303299995, 57.91819896000004), (-5.394398566999939, 57.923895575000074), (-5.396839972999942, 57.926214911000045), (-5.3973282539999445, 57.928900458000044), (-5.39289303299995, 57.935614325000074), (-5.386545376999948, 57.936428127000056), (-5.378977016999954, 57.93183014500005), (-5.3717341789999296, 57.93105703300006), (-5.366200324999909, 57.943060614000046), (-5.3471573559999115, 57.936712958000044), (-5.319162563999953, 57.91474030200004), (-5.297352667999917, 57.908270575000074), (-5.2860001289999445, 57.90875885600008), (-5.266957160999937, 57.91400788000004), (-5.2562556629999335, 57.91510651200008), (-5.2436417309999115, 57.91290924700007), (-5.22101803299995, 57.90403880400004), (-5.211293097999942, 57.90208567900004), (-5.198801235999952, 57.897772528000075), (-5.162261522999927, 57.87848541900007), (-5.1199845039999445, 57.86798737200007), (-5.0911352199999556, 57.84031810100004), (-5.070790167999917, 57.833197333000044), (-5.07648678299995, 57.83852773600006), (-5.083404100999928, 57.84756094000005), (-5.0893448559999115, 57.85724518400008), (-5.091867641999954, 57.86420319200005), (-5.0971573559999115, 57.87091705900008), (-5.197255011999914, 57.91787344000005), (-5.221587693999936, 57.92133209800005), (-5.221587693999936, 57.92877838700008), (-5.201893683999913, 57.92865631700005), (-5.193959113999938, 57.935980536000045), (-5.19554602799991, 57.94765859600005), (-5.204497850999928, 57.960150458000044), (-5.216704881999931, 57.96588776200008), (-5.2488907539999445, 57.96938711100006), (-5.2631729809999115, 57.976548570000034), (-5.292632615999935, 57.98061758000006), (-5.333892381999931, 58.00853099200003), (-5.359364386999914, 58.011379299000055), (-5.357167120999918, 58.01406484600005), (-5.3566788399999155, 58.014878648000035), (-5.351918097999942, 58.01752350500004), (-5.366932745999918, 58.02887604400007), (-5.386586066999939, 58.032538153000075), (-5.427642381999931, 58.03119538000004), (-5.424305792999917, 58.03554922100005), (-5.422352667999917, 58.03896719000005), (-5.419585740999935, 58.04205963700008), (-5.413929816999939, 58.04547760600008), (-5.413929816999939, 58.05231354400007), (-5.447010870999918, 58.08437734600005), (-5.428089972999942, 58.09796784100007), (-5.390044725999928, 58.09218984600005), (-5.366200324999909, 58.06598541900007), (-5.344309048999946, 58.075506903000075), (-5.322865363999938, 58.07172272300005), (-5.300770636999914, 58.07013580900008), (-5.276763475999928, 58.08641185100004), (-5.283070441999939, 58.08641185100004), (-5.278065558999913, 58.09625885600008), (-5.2787979809999115, 58.10537344000005), (-5.283558722999942, 58.11347077000005), (-5.2905167309999115, 58.12055084800005), (-5.276763475999928, 58.12055084800005), (-5.276763475999928, 58.127386786000045), (-5.297352667999917, 58.134833075000074), (-5.284087693999936, 58.14008209800005), (-5.255523240999935, 58.143784898000035), (-5.242054816999939, 58.14789459800005), (-5.242054816999939, 58.15534088700008), (-5.275054490999935, 58.15452708500004), (-5.290842251999948, 58.156317450000074), (-5.304798956999946, 58.162095445000034), (-5.297352667999917, 58.168402411000045), (-5.304798956999946, 58.17332591400003), (-5.313059048999946, 58.17731354400007), (-5.321888800999943, 58.18024323100008), (-5.331450975999928, 58.18203359600005), (-5.3293350899999155, 58.186712958000044), (-5.326161261999914, 58.198431708000044), (-5.323963995999918, 58.203111070000034), (-5.336822068999936, 58.203192450000074), (-5.346791144999941, 58.20685455900008), (-5.39289303299995, 58.24469635600008), (-5.3920792309999115, 58.261379299000055), (-5.375884568999936, 58.26422760600008), (-5.352894660999937, 58.25893789300005), (-5.31078040299991, 58.243394273000035), (-5.293853318999936, 58.24091217700004), (-5.276966925999943, 58.243394273000035), (-5.237294074999909, 58.25763580900008), (-5.2160538399999155, 58.261419989000046), (-5.194325324999909, 58.25999583500004), (-5.173207160999937, 58.25092194200005), (-5.165638800999943, 58.258246161000045), (-5.152251756999931, 58.264837958000044), (-5.138335740999935, 58.269598700000074), (-5.129383917999917, 58.27138906500005), (-5.11156165299991, 58.26825592700004), (-5.0812882149999155, 58.25409577000005), (-5.0676977199999556, 58.25092194200005), (-5.017730272999927, 58.253241278000075), (-5.002430792999917, 58.25092194200005), (-4.933583136999914, 58.22304922100005), (-4.943430141999954, 58.233587958000044), (-4.954823370999918, 58.23981354400007), (-4.982004360999952, 58.25092194200005), (-4.968861456999946, 58.25678131700005), (-4.940337693999936, 58.259466864000046), (-4.926747199999909, 58.26459381700005), (-4.990223761999914, 58.27142975500004), (-5.009917772999927, 58.27138906500005), (-5.018055792999917, 58.26862213700008), (-5.029367641999954, 58.25971100500004), (-5.040028449999909, 58.25775788000004), (-5.0501195949999556, 58.25991445500006), (-5.0707087879999335, 58.269232489000046), (-5.081654425999943, 58.27138906500005), (-5.096424933999913, 58.27676015800006), (-5.125965949999909, 58.30019765800006), (-5.1362198559999115, 58.305568752000056), (-5.137440558999913, 58.30927155200004), (-5.156361456999946, 58.32461172100005), (-5.160145636999914, 58.326605536000045), (-5.167795376999948, 58.33926015800006), (-5.171009894999941, 58.34666575700004), (-5.173207160999937, 58.353949286000045), (-5.153309699999909, 58.353949286000045), (-5.1634008449999556, 58.364569403000075), (-5.162912563999953, 58.37449778900003), (-5.155913865999935, 58.384466864000046), (-5.146473761999914, 58.394964911000045), (-5.145497199999909, 58.400051174000055), (-5.14671790299991, 58.40664297100005), (-5.146839972999942, 58.41242096600007), (-5.143055792999917, 58.41478099200003), (-5.135487433999913, 58.413763739000046), (-5.122222459999932, 58.40957265800006), (-5.116037563999953, 58.40859609600005), (-5.057972785999937, 58.38727448100008), (-5.016184048999946, 58.38812897300005), (-5.043934699999909, 58.400091864000046), (-5.0533748039999296, 58.40664297100005), (-5.0502823559999115, 58.41478099200003), (-5.0570369129999335, 58.42218659100007), (-5.066151495999918, 58.41714101800005), (-5.076161261999914, 58.414496161000045), (-5.086822068999936, 58.41388580900008), (-5.0980525379999335, 58.41478099200003), (-5.0980525379999335, 58.42218659100007), (-5.08812415299991, 58.421942450000074), (-5.085031704999949, 58.42218659100007), (-5.085031704999949, 58.429022528000075), (-5.091786261999914, 58.429754950000074), (-5.09601803299995, 58.43146393400008), (-5.105539516999954, 58.43650950700004), (-5.0501195949999556, 58.45380280200004), (-5.025542772999927, 58.447699286000045), (-4.9955948559999115, 58.43650950700004), (-5.105539516999954, 58.48737213700008), (-5.105620897999927, 58.505560614000046), (-5.103667772999927, 58.51422760600008), (-5.095855272999927, 58.518866278000075), (-5.042795376999948, 58.53546784100007), (-5.0279841789999296, 58.54409414300005), (-5.016184048999946, 58.55939362200007), (-5.0229386059999115, 58.55939362200007), (-5.015207485999952, 58.580064195000034), (-5.011586066999939, 58.60057200700004), (-5.004953579999949, 58.61774323100008), (-4.988189256999931, 58.62832265800006), (-4.859486456999946, 58.61322663000004), (-4.835926886999914, 58.60504791900007), (-4.818104620999918, 58.59292226800005), (-4.817941860999952, 58.587591864000046), (-4.81281490799995, 58.571966864000046), (-4.806752081999946, 58.55841705900008), (-4.803822394999941, 58.55939362200007), (-4.804595506999931, 58.54832591400003), (-4.807240363999938, 58.53961823100008), (-4.811634894999941, 58.53204987200007), (-4.818104620999918, 58.524644273000035), (-4.799794074999909, 58.532456773000035), (-4.791818813999953, 58.54165273600006), (-4.7899063789999445, 58.55174388200004), (-4.790150519999941, 58.562486070000034), (-4.785755988999938, 58.577053127000056), (-4.777088995999918, 58.583319403000075), (-4.771595831999946, 58.59039948100008), (-4.776519334999932, 58.60716380400004), (-4.758859829999949, 58.59910716400003), (-4.7280167309999115, 58.577460028000075), (-4.7113337879999335, 58.57306549700007), (-4.683257615999935, 58.56150950700004), (-4.670399542999917, 58.55939362200007), (-4.660023566999939, 58.555853583000044), (-4.659291144999941, 58.54755280200004), (-4.663238084999932, 58.538397528000075), (-4.6673070949999556, 58.53204987200007), (-4.6790258449999556, 58.52391185100004), (-4.714466925999943, 58.50560130400004), (-4.732411261999914, 58.480454820000034), (-4.751535610999952, 58.46161530200004), (-4.7609757149999155, 58.44798411700003), (-4.74242102799991, 58.44953034100007), (-4.682972785999937, 58.48456452000005), (-4.673451300999943, 58.48737213700008), (-4.6668595039999445, 58.50291575700004), (-4.650502081999946, 58.50995514500005), (-4.630441860999952, 58.514960028000075), (-4.612131313999953, 58.524644273000035), (-4.6010636059999115, 58.54193756700005), (-4.595122850999928, 58.56000397300005), (-4.584950324999909, 58.57416413000004), (-4.560536261999914, 58.57990143400008), (-4.517486131999931, 58.575506903000075), (-4.475493943999936, 58.565619208000044), (-4.426503058999913, 58.54637278900003), (-4.426503058999913, 58.53888580900008), (-4.427886522999927, 58.53530508000006), (-4.428700324999909, 58.53473541900007), (-4.426503058999913, 58.524644273000035), (-4.449940558999913, 58.510199286000045), (-4.464751756999931, 58.49201080900008), (-4.477650519999941, 58.47134023600006), (-4.4953507149999155, 58.44953034100007), (-4.478098110999952, 58.453558661000045), (-4.46117102799991, 58.46246979400007), (-4.43390865799995, 58.483628648000035), (-4.432728644999941, 58.487616278000075), (-4.4339900379999335, 58.49237702000005), (-4.4342341789999296, 58.49628327000005), (-4.430165167999917, 58.49799225500004), (-4.425933397999927, 58.49909088700008), (-4.385365363999938, 58.52240631700005), (-4.382394985999952, 58.524644273000035), (-4.343861456999946, 58.53888580900008), (-4.317005988999938, 58.54572174700007), (-4.306996222999942, 58.54637278900003), (-4.287180141999954, 58.54291413000004), (-4.2573136059999115, 58.52798086100006), (-4.234730597999942, 58.524644273000035), (-4.248931443999936, 58.53204987200007), (-4.238189256999931, 58.536444403000075), (-4.232248501999948, 58.54242584800005), (-4.227691209999932, 58.548163153000075), (-4.22101803299995, 58.551947333000044), (-4.209706183999913, 58.55292389500005), (-4.190785285999937, 58.54783763200004), (-4.1769913399999155, 58.54637278900003), (-4.16820227799991, 58.54938385600008), (-4.1605525379999335, 58.562567450000074), (-4.149322068999936, 58.565619208000044), (-4.111195441999939, 58.565619208000044), (-4.0902400379999335, 58.56207916900007), (-4.081450975999928, 58.561835028000075), (-4.070220506999931, 58.565619208000044), (-4.061512824999909, 58.57282135600008), (-4.048817511999914, 58.58958567900004), (-4.039784308999913, 58.59292226800005), (-4.030629035999937, 58.59406159100007), (-4.029042120999918, 58.59516022300005), (-4.027821417999917, 58.59271881700005), (-4.0092667309999115, 58.57330963700008), (-4.003773566999939, 58.57062409100007), (-3.981434699999909, 58.57306549700007), (-3.8957413399999155, 58.565619208000044), (-3.8101293609999516, 58.57306549700007), (-3.7669571609999366, 58.58372630400004), (-3.6983536449999406, 58.61115143400008), (-3.659901495999918, 58.62083567900004), (-3.597564256999931, 58.62714264500005), (-3.565500454999949, 58.626613674000055), (-3.542591925999943, 58.62083567900004), (-3.552479620999918, 58.61546458500004), (-3.556263800999943, 58.61399974200003), (-3.532053188999953, 58.60211823100008), (-3.504017706999946, 58.60333893400008), (-3.447010870999918, 58.61399974200003), (-3.3914688789999445, 58.60065338700008), (-3.364084438999953, 58.600816148000035), (-3.3508194649999155, 58.62083567900004), (-3.3677465489999463, 58.624701239000046), (-3.3860570949999556, 58.631740627000056), (-3.402251756999931, 58.64203522300005), (-3.412912563999953, 58.655585028000075), (-3.3900447259999282, 58.67177969000005), (-3.3748673169999392, 58.677069403000075), (-3.3582657539999445, 58.675482489000046), (-3.3543595039999445, 58.67015208500004), (-3.35179602799991, 58.66083405200004), (-3.34788977799991, 58.652044989000046), (-3.340565558999913, 58.648138739000046), (-3.3098852199999556, 58.648138739000046), (-3.244252081999946, 58.65900299700007), (-3.204090949999909, 58.66111888200004), (-3.1519262359999516, 58.64126211100006), (-3.118763800999943, 58.64109935100004), (-3.052886522999927, 58.648138739000046), (-3.0191137359999516, 58.640326239000046), (-3.025380011999914, 58.62213776200008), (-3.0444229809999115, 58.601629950000074), (-3.049183722999942, 58.58673737200007), (-3.060454881999931, 58.57843659100007), (-3.0754288399999155, 58.56037018400008), (-3.0845434239999463, 58.551947333000044), (-3.1107478509999282, 58.53864166900007), (-3.1180313789999445, 58.53204987200007), (-3.129261847999942, 58.51264069200005), (-3.1293025379999335, 58.49640534100007), (-3.1187231109999516, 58.484442450000074), (-3.0975235669999392, 58.47748444200005), (-3.0850723949999406, 58.47825755400004), (-3.073963995999918, 58.481675523000035), (-3.064442511999914, 58.48297760600008), (-3.056630011999914, 58.47748444200005), (-3.053334113999938, 58.46576569200005), (-3.0577286449999406, 58.45685455900008), (-3.066761847999942, 58.451157945000034), (-3.077056443999936, 58.44953034100007), (-3.0863337879999335, 58.41421133000006), (-3.129790818999936, 58.36928945500006), (-3.182769334999932, 58.32843659100007), (-3.2205297519999476, 58.305568752000056), (-3.2622777989999463, 58.292629299000055), (-3.34984290299991, 58.27610911700003), (-3.38499915299991, 58.26459381700005), (-3.438099738999938, 58.236029364000046), (-3.447010870999918, 58.22675202000005), (-3.454741990999935, 58.210150458000044), (-3.473459438999953, 58.193426825000074), (-3.515288865999935, 58.168402411000045), (-3.7350154289999296, 58.07217031500005), (-3.809193488999938, 58.05190664300005), (-3.8275040359999366, 58.04205963700008), (-3.8362524079999503, 58.03143952000005), (-3.8460994129999335, 58.01117584800005), (-3.851714647999927, 58.003892320000034), (-3.8605850899999155, 57.998928127000056), (-3.8856095039999445, 57.991400458000044), (-3.9173070949999556, 57.98745351800005), (-3.981434699999909, 57.96356842700004), (-3.990956183999913, 57.96039459800005), (-3.997670050999943, 57.954413153000075), (-4.001372850999928, 57.94611237200007), (-4.001942511999914, 57.935614325000074), (-4.018299933999913, 57.940619208000044), (-4.023060675999943, 57.943060614000046), (-4.016184048999946, 57.949286200000074), (-4.0301407539999445, 57.953192450000074), (-4.055775519999941, 57.95498281500005), (-4.0843806629999335, 57.964178778000075), (-4.0891007149999155, 57.960150458000044), (-4.0863337879999335, 57.95189036700003), (-4.0776261059999115, 57.943060614000046), (-4.062652147999927, 57.93695709800005), (-4.03148352799991, 57.93618398600006), (-4.016184048999946, 57.93219635600008), (-4.009429490999935, 57.92767975500004), (-3.988270636999914, 57.908270575000074), (-4.008941209999932, 57.88959381700005), (-4.013824022999927, 57.879339911000045), (-4.009348110999952, 57.86790599200003), (-4.025135870999918, 57.868068752000056), (-4.054839647999927, 57.874335028000075), (-4.070220506999931, 57.87417226800005), (-4.0793350899999155, 57.87026601800005), (-4.0969132149999155, 57.85736725500004), (-4.1049698559999115, 57.85370514500005), (-4.132923956999946, 57.85415273600006), (-4.190419074999909, 57.87006256700005), (-4.218169725999928, 57.87417226800005), (-4.298898891999954, 57.86277903900003), (-4.3209529289999296, 57.87103913000004), (-4.353179490999935, 57.89520905200004), (-4.3723038399999155, 57.90448639500005), (-4.392404751999948, 57.908270575000074), (-4.339588995999918, 57.86570872600004), (-4.307728644999941, 57.85146719000005), (-4.269398566999939, 57.846869208000044), (-4.229074673999946, 57.85724518400008), (-4.2082413399999155, 57.85919830900008), (-4.190581834999932, 57.85028717700004), (-4.173451300999943, 57.83901601800005), (-4.1497289699999556, 57.82982005400004), (-4.1334529289999296, 57.830145575000074), (-4.1390681629999335, 57.846869208000044), (-4.0750626289999445, 57.82318756700005), (-4.0399063789999445, 57.81818268400008), (-3.9835098949999406, 57.84235260600008), (-3.9514867829999503, 57.838324286000045), (-3.933705206999946, 57.82566966400003), (-3.9473363919999542, 57.81268952000005), (-3.914784308999913, 57.80768463700008), (-3.877674933999913, 57.81671784100007), (-3.8418676419999542, 57.83490631700005), (-3.813547329999949, 57.857123114000046), (-3.798451300999943, 57.866522528000075), (-3.786040818999936, 57.86542389500005), (-3.779449022999927, 57.85565827000005), (-3.782215949999909, 57.83942291900007), (-3.790028449999909, 57.83071523600006), (-3.92601477799991, 57.734808661000045), (-3.948841925999943, 57.72492096600007), (-3.975209113999938, 57.70327383000006), (-3.988270636999914, 57.69599030200004), (-4.00804602799991, 57.693793036000045), (-4.02367102799991, 57.69782135600008), (-4.0286352199999556, 57.70770905200004), (-4.016184048999946, 57.72333405200004), (-4.042958136999914, 57.73729075700004), (-4.077951626999948, 57.73029205900008), (-4.155344204999949, 57.692572333000044), (-4.168568488999938, 57.689439195000034), (-4.1939998039999296, 57.68854401200008), (-4.2592667309999115, 57.67869700700004), (-4.277821417999917, 57.68060944200005), (-4.294789191999939, 57.68016185100004), (-4.302154100999928, 57.66860586100006), (-4.30882727799991, 57.65485260600008), (-4.324045376999948, 57.64826080900008), (-4.33820553299995, 57.64508698100008), (-4.4031876289999445, 57.60952383000006), (-4.412180141999954, 57.60297272300005), (-4.4203181629999335, 57.592962958000044), (-4.428456183999913, 57.57754140800006), (-4.423451300999943, 57.57680898600006), (-4.409901495999918, 57.582464911000045), (-4.379872199999909, 57.58934153900003), (-4.365101691999939, 57.59723541900007), (-4.3510636059999115, 57.60736725500004), (-4.340809699999909, 57.617173570000034), (-4.328724738999938, 57.626288153000075), (-4.283111131999931, 57.64142487200007), (-4.2445369129999335, 57.66303131700005), (-4.201893683999913, 57.674994208000044), (-4.1937556629999335, 57.67552317900004), (-4.182240363999938, 57.67279694200005), (-4.169016079999949, 57.663763739000046), (-4.118723110999952, 57.65770091400003), (-4.096791144999941, 57.65810781500005), (-4.0807185539999296, 57.66498444200005), (-4.068104620999918, 57.672308661000045), (-4.0246475899999155, 57.687201239000046), (-4.009348110999952, 57.68854401200008), (-4.004505988999938, 57.67597077000005), (-4.025257941999939, 57.65521881700005), (-4.0541886059999115, 57.63572825700004), (-4.083404100999928, 57.62335846600007), (-4.118560350999928, 57.592962958000044), (-4.11546790299991, 57.58783600500004), (-4.112294074999909, 57.58413320500006), (-4.1088761059999115, 57.58144765800006), (-4.1049698559999115, 57.579291083000044), (-4.151356574999909, 57.57684967700004), (-4.170643683999913, 57.570746161000045), (-4.187489386999914, 57.55882396000004), (-4.178089972999942, 57.54954661700003), (-4.184925910999937, 57.548163153000075), (-4.207997199999909, 57.552069403000075), (-4.262603318999936, 57.552069403000075), (-4.262603318999936, 57.544582424000055), (-4.233957485999952, 57.54511139500005), (-4.220285610999952, 57.543402411000045), (-4.207997199999909, 57.538397528000075), (-4.226307745999918, 57.51544830900008), (-4.237456834999932, 57.50531647300005), (-4.248931443999936, 57.49746328300006), (-4.212798631999931, 57.492173570000034), (-4.1948136059999115, 57.49160390800006), (-4.173898891999954, 57.49746328300006), (-4.157622850999928, 57.50849030200004), (-4.150054490999935, 57.51504140800006), (-4.149322068999936, 57.51788971600007), (-4.126779751999948, 57.518866278000075), (-4.116200324999909, 57.52179596600007), (-4.097523566999939, 57.53668854400007), (-4.082997199999909, 57.54441966400003), (-4.067290818999936, 57.54995351800005), (-4.0531306629999335, 57.552069403000075), (-4.034982876999948, 57.55687083500004), (-4.046457485999952, 57.56785716400003), (-4.083851691999939, 57.58612702000005), (-4.056019660999937, 57.585150458000044), (-3.9643448559999115, 57.592962958000044), (-3.8682755199999406, 57.587876695000034), (-3.8374731109999516, 57.592962958000044), (-3.6848038399999155, 57.65444570500006), (-3.625152147999927, 57.66193268400008), (-3.632557745999918, 57.65094635600008), (-3.637684699999909, 57.64622630400004), (-3.6456192699999406, 57.64142487200007), (-3.632476365999935, 57.635646877000056), (-3.6196182929999168, 57.63621653900003), (-3.606068488999938, 57.63947174700007), (-3.590972459999932, 57.64142487200007), (-3.61156165299991, 57.66811758000006), (-3.5747777989999463, 57.66111888200004), (-3.55492102799991, 57.659857489000046), (-3.535755988999938, 57.66193268400008), (-3.521473761999914, 57.66779205900008), (-3.5054418609999516, 57.67865631700005), (-3.4959610669999392, 57.69135163000004), (-3.501698370999918, 57.702826239000046), (-3.491851365999935, 57.71312083500004), (-3.4828181629999335, 57.71401601800005), (-3.4730525379999335, 57.711004950000074), (-3.460682745999918, 57.70966217700004), (-3.447865363999938, 57.71246979400007), (-3.4212540359999366, 57.72138092700004), (-3.409169074999909, 57.72333405200004), (-3.2847387359999516, 57.72044505400004), (-3.2100723949999406, 57.69399648600006), (-3.0786840489999463, 57.66941966400003), (-3.034901495999918, 57.66860586100006), (-2.994496222999942, 57.67552317900004), (-2.932687954999949, 57.69961172100005), (-2.9160863919999542, 57.702826239000046), (-2.75804602799991, 57.702826239000046), (-2.7512100899999155, 57.70062897300005), (-2.741118943999936, 57.69086334800005), (-2.731068488999938, 57.68854401200008), (-2.719878709999932, 57.690619208000044), (-2.711537238999938, 57.69399648600006), (-2.7035212879999335, 57.69472890800006), (-2.6929418609999516, 57.68854401200008), (-2.658924933999913, 57.69745514500005), (-2.573394334999932, 57.68146393400008), (-2.541981574999909, 57.68235911700003), (-2.526112433999913, 57.66860586100006), (-2.5181371739999463, 57.67011139500005), (-2.5110570949999556, 57.677801825000074), (-2.497954881999931, 57.68235911700003), (-2.4800512359999516, 57.68121979400007), (-2.4328507149999155, 57.66811758000006), (-2.425526495999918, 57.67572663000004), (-2.4177953769999476, 57.674261786000045), (-2.4087621739999463, 57.669623114000046), (-2.398060675999943, 57.66811758000006), (-2.3865860669999392, 57.671576239000046), (-2.369496222999942, 57.680568752000056), (-2.360503709999932, 57.68235911700003), (-2.3410538399999155, 57.675848700000074), (-2.3289688789999445, 57.67405833500004), (-2.3235977859999366, 57.678941148000035), (-2.32054602799991, 57.68455638200004), (-2.313384568999936, 57.68992747600004), (-2.3040665359999366, 57.69399648600006), (-2.295643683999913, 57.69599030200004), (-2.274322068999936, 57.69383372600004), (-2.230132615999935, 57.67914459800005), (-2.209950324999909, 57.67552317900004), (-2.1840714179999168, 57.67845286700003), (-2.1243383449999556, 57.702826239000046), (-2.108143683999913, 57.70498281500005), (-1.9976700509999432, 57.702826239000046), (-1.9969376289999445, 57.69904205900008), (-1.990834113999938, 57.69037506700005), (-1.982167120999918, 57.68109772300005), (-1.9735001289999445, 57.67552317900004), (-1.961293097999942, 57.674709377000056), (-1.9447322259999282, 57.68256256700005), (-1.9324845039999445, 57.68235911700003), (-1.9256892569999309, 57.678168036000045), (-1.914214647999927, 57.66474030200004), (-1.8294571609999366, 57.61347077000005), (-1.820464647999927, 57.59634023600006), (-1.817005988999938, 57.578192450000074), (-1.8113907539999445, 57.56049225500004), (-1.7960098949999406, 57.544582424000055), (-1.7960098949999406, 57.538397528000075), (-1.8000382149999155, 57.52586497600004), (-1.7895401679999168, 57.514837958000044), (-1.7611384759999282, 57.49746328300006), (-1.7753800119999141, 57.496527411000045), (-1.7821345689999362, 57.48899974200003), (-1.7812393869999141, 57.48041413000004), (-1.7717179029999102, 57.476263739000046), (-1.7593481109999516, 57.47357819200005), (-1.7659399079999503, 57.46743398600006), (-1.7891739569999459, 57.45644765800006), (-1.8301488919999542, 57.42617422100005), (-1.8474828769999476, 57.40814850500004), (-1.849964972999942, 57.39435455900008), (-1.9544978509999282, 57.341131903000075), (-1.9802953769999476, 57.31928131700005), (-2.044667120999918, 57.22650788000004), (-2.068511522999927, 57.17462799700007), (-2.074126756999931, 57.15420156500005), (-2.0714005199999406, 57.13556549700007), (-2.052357550999943, 57.12742747600004), (-2.0493057929999168, 57.118841864000046), (-2.065256313999953, 57.10053131700005), (-2.0658259759999282, 57.09983958500004), (-2.156158006999931, 57.020697333000044), (-2.1869197259999282, 56.98468659100007), (-2.200103318999936, 56.94871653900003), (-2.1971329419999392, 56.94025299700007), (-2.1912328769999476, 56.93414948100008), (-2.186268683999913, 56.92674388200004), (-2.1863907539999445, 56.91453685100004), (-2.191314256999931, 56.90892161700003), (-2.209706183999913, 56.895819403000075), (-2.213693813999953, 56.890692450000074), (-2.219878709999932, 56.87262604400007), (-2.23460852799991, 56.861395575000074), (-2.2689509759999282, 56.84634023600006), (-2.295806443999936, 56.82526276200008), (-2.3198136059999115, 56.80158112200007), (-2.336089647999927, 56.79083893400008), (-2.3918350899999155, 56.771185614000046), (-2.4086807929999168, 56.762925523000035), (-2.4264216789999296, 56.751288153000075), (-2.4359431629999335, 56.74038320500006), (-2.4407445949999556, 56.73484935100004), (-2.4516495429999168, 56.69098541900007), (-2.4637345039999445, 56.67877838700008), (-2.4774063789999445, 56.66868724200003), (-2.487456834999932, 56.65387604400007), (-2.4875382149999155, 56.64606354400007), (-2.481271938999953, 56.63239166900007), (-2.480620897999927, 56.62653229400007), (-2.4861954419999392, 56.619574286000045), (-2.504058397999927, 56.60883209800005), (-2.514556443999936, 56.591498114000046), (-2.530018683999913, 56.58075592700004), (-2.623768683999913, 56.543402411000045), (-2.6409399079999503, 56.522365627000056), (-2.6613663399999155, 56.51422760600008), (-2.6997777989999463, 56.50364817900004), (-2.708729620999918, 56.49599844000005), (-2.7276505199999406, 56.46954987200007), (-2.737294074999909, 56.46702708500004), (-2.74437415299991, 56.46954987200007), (-2.752308722999942, 56.47361888200004), (-2.764800584999932, 56.47573476800005), (-2.819325324999909, 56.47129954600007), (-3.055653449999909, 56.45213450700004), (-3.0606176419999542, 56.45172760600008), (-3.099273240999935, 56.44188060100004), (-3.1339005199999406, 56.426947333000044), (-3.238189256999931, 56.36774323100008), (-3.280181443999936, 56.35789622600004), (-3.3234757149999155, 56.36591217700004), (-3.311512824999909, 56.35651276200008), (-3.294016079999949, 56.352769273000035), (-3.2515356109999516, 56.352850653000075), (-3.230620897999927, 56.35602448100008), (-3.188384568999936, 56.37018463700008), (-3.149566209999932, 56.37555573100008), (-2.950266079999949, 56.43187083500004), (-2.9399307929999168, 56.43854401200008), (-2.930653449999909, 56.44806549700007), (-2.909087693999936, 56.45571523600006), (-2.88499915299991, 56.45799388200004), (-2.867909308999913, 56.45184967700004), (-2.8500870429999168, 56.44204336100006), (-2.8147680329999503, 56.44041575700004), (-2.8028051419999542, 56.42796458500004), (-2.800892706999946, 56.40892161700003), (-2.808257615999935, 56.391058661000045), (-2.8216039699999556, 56.376166083000044), (-2.837554490999935, 56.36591217700004), (-2.8129776679999168, 56.36591217700004), (-2.809193488999938, 56.36286041900007), (-2.8047582669999542, 56.34910716400003), (-2.8028051419999542, 56.345404364000046), (-2.7914932929999168, 56.34247467700004), (-2.7826228509999282, 56.34162018400008), (-2.7752579419999392, 56.33942291900007), (-2.768625454999949, 56.33234284100007), (-2.6771541009999282, 56.32843659100007), (-2.655262824999909, 56.32217031500005), (-2.621205206999946, 56.30442942900004), (-2.613189256999931, 56.30190664300005), (-2.5768123039999296, 56.28392161700003), (-2.5768123039999296, 56.277777411000045), (-2.6301163399999155, 56.24852122600004), (-2.648345506999931, 56.22870514500005), (-2.672027147999927, 56.22239817900004), (-2.7202042309999115, 56.21629466400003), (-2.7835994129999335, 56.19196198100008), (-2.8061417309999115, 56.188381252000056), (-2.8307185539999296, 56.190741278000075), (-2.8920792309999115, 56.20888906500005), (-2.940052863999938, 56.209418036000045), (-2.9643448559999115, 56.20563385600008), (-2.9746801419999542, 56.19830963700008), (-2.982411261999914, 56.189113674000055), (-3.0355525379999335, 56.16791413000004), (-3.0910538399999155, 56.13226959800005), (-3.107533331999946, 56.12689850500004), (-3.127552863999938, 56.12287018400008), (-3.138295050999943, 56.112209377000056), (-3.152251756999931, 56.07851797100005), (-3.1635636059999115, 56.06386953300006), (-3.1783748039999296, 56.05809153900003), (-3.2484431629999335, 56.055975653000075), (-3.268381313999953, 56.05093008000006), (-3.3030492829999503, 56.037543036000045), (-3.342681443999936, 56.02716705900008), (-3.381825324999909, 56.02338288000004), (-3.420969204999949, 56.02488841400003), (-3.5825902989999463, 56.05174388200004), (-3.671498175999943, 56.050848700000074), (-3.710031704999949, 56.05809153900003), (-3.7454320949999556, 56.07221100500004), (-3.7464900379999335, 56.072780666000085), (-3.782215949999909, 56.09218984600005), (-3.8031306629999335, 56.107123114000046), (-3.817005988999938, 56.11225006700005), (-3.8374731109999516, 56.112616278000075), (-3.8374731109999516, 56.10643138200004), (-3.777699347999942, 56.08283112200007), (-3.769154425999943, 56.07514069200005), (-3.7608536449999406, 56.07245514500005), (-3.7264298169999392, 56.03803131700005), (-3.721424933999913, 56.03070709800005), (-3.712635870999918, 56.028998114000046), (-3.693470831999946, 56.03115469000005), (-3.6866348949999406, 56.03070709800005), (-3.6795548169999392, 56.025458075000074), (-3.674794074999909, 56.01870351800005), (-3.6682836579999503, 56.01276276200008), (-3.656239386999914, 56.010199286000045), (-3.599720831999946, 56.017238674000055), (-3.5773819649999155, 56.01703522300005), (-3.405425584999932, 55.98973216400003), (-3.3582657539999445, 55.98973216400003), (-3.340891079999949, 55.99445221600007), (-3.331044074999909, 55.99408600500004), (-3.320423956999946, 55.986029364000046), (-3.303456183999913, 55.97760651200008), (-3.121815558999913, 55.96930573100008), (-3.1147354809999115, 55.966131903000075), (-3.096831834999932, 55.95197174700007), (-3.090728318999936, 55.94818756700005), (-3.078236456999946, 55.94684479400007), (-3.0156957669999542, 55.950506903000075), (-2.9399307929999168, 55.96930573100008), (-2.9166560539999296, 55.98061758000006), (-2.900054490999935, 55.996161200000074), (-2.8828832669999542, 56.00849030200004), (-2.8579809239999463, 56.010199286000045), (-2.863636847999942, 56.02228424700007), (-2.8663223949999406, 56.02676015800006), (-2.8709610669999392, 56.03070709800005), (-2.8527725899999155, 56.03978099200003), (-2.823150193999936, 56.059759833000044), (-2.8028051419999542, 56.06484609600005), (-2.635121222999942, 56.05805084800005), (-2.615956183999913, 56.053168036000045), (-2.587554490999935, 56.030951239000046), (-2.569406704999949, 56.02448151200008), (-2.57835852799991, 56.00800202000005), (-2.583648240999935, 56.00275299700007), (-2.5695694649999155, 55.99994538000004), (-2.5440567699999406, 56.00267161700003), (-2.528960740999935, 55.99656810100004), (-2.5248103509999282, 56.00055573100008), (-2.514556443999936, 56.00576406500005), (-2.507923956999946, 56.010199286000045), (-2.4932755199999406, 56.00153229400007), (-2.4525040359999366, 55.985256252000056), (-2.4143774079999503, 55.97833893400008), (-2.3509415359999366, 55.94818756700005), (-2.307769334999932, 55.93500397300005), (-2.146839972999942, 55.917303778000075), (-2.1380102199999556, 55.91461823100008), (-2.132557745999918, 55.90643952000005), (-2.13109290299991, 55.89720286700003), (-2.1287735669999392, 55.88979726800005), (-2.1209610669999392, 55.886704820000034), (-2.0994766919999392, 55.88178131700005), (-2.080189581999946, 55.86937083500004), (-2.0228572259999282, 55.80548737200007), (-2.009673631999931, 55.79083893400008), (-1.8778376939999362, 55.69489166900007), (-1.8631892569999309, 55.67161692900004), (-1.8530981109999516, 55.65932851800005), (-1.8315323559999115, 55.65070221600007), (-1.8260798819999309, 55.64362213700008), (-1.8216853509999282, 55.636419989000046), (-1.8164770169999542, 55.632879950000074), (-1.8071182929999168, 55.63450755400004), (-1.8007706369999141, 55.63922760600008), (-1.7962947259999282, 55.644232489000046), (-1.7925919259999432, 55.646551825000074), (-1.781402147999927, 55.64565664300005), (-1.768625454999949, 55.641913153000075), (-1.7564998039999296, 55.63361237200007), (-1.7476700509999432, 55.619208075000074), (-1.7679744129999335, 55.619208075000074), (-1.7679744129999335, 55.612982489000046), (-1.7559708319999459, 55.60887278900003), (-1.720855272999927, 55.614569403000075), (-1.6991267569999309, 55.612982489000046), (-1.6308487619999141, 55.58510976800005), (-1.6308487619999141, 55.57827383000006), (-1.6363419259999432, 55.57168203300006), (-1.6346736319999309, 55.56439850500004), (-1.6276749339999128, 55.55711497600004), (-1.6171768869999141, 55.55027903900003), (-1.6308487619999141, 55.544134833000044), (-1.6308487619999141, 55.53729889500005), (-1.6222224599999322, 55.534084377000056), (-1.6029353509999282, 55.52362702000005), (-1.6029353509999282, 55.516791083000044), (-1.6113175119999141, 55.50804271000004), (-1.6063533189999362, 55.503241278000075), (-1.5963435539999296, 55.49990469000005), (-1.5893448559999115, 55.49567291900007), (-1.5849503249999088, 55.483710028000075), (-1.5813695949999556, 55.41665273600006), (-1.5831192699999406, 55.40692780200004), (-1.5882869129999335, 55.39057038000004), (-1.5891007149999155, 55.385199286000045), (-1.5893448559999115, 55.37653229400007), (-1.5833227199999556, 55.354722398000035), (-1.5585831369999141, 55.32892487200007), (-1.5558162099999322, 55.31134674700007), (-1.5570369129999335, 55.306626695000034), (-1.5589900379999335, 55.302069403000075), (-1.5619197259999282, 55.29779694200005), (-1.5657445949999556, 55.29364655200004), (-1.570057745999918, 55.28620026200008), (-1.5682266919999392, 55.27960846600007), (-1.5642797519999476, 55.27326080900008), (-1.5620824859999516, 55.26666901200008), (-1.5564672519999476, 55.25503164300005), (-1.5439346999999088, 55.24388255400004), (-1.5209854809999115, 55.229396877000056), (-1.5291641919999392, 55.21625397300005), (-1.5240779289999296, 55.21010976800005), (-1.514271613999938, 55.204779364000046), (-1.507964647999927, 55.194647528000075), (-1.510812954999949, 55.184759833000044), (-1.5175675119999141, 55.176214911000045), (-1.5221248039999296, 55.16746653900003), (-1.517933722999942, 55.157131252000056), (-1.5007218089999128, 55.141791083000044), (-1.4959610669999392, 55.13458893400008), (-1.492543097999942, 55.112982489000046), (-1.4837540359999366, 55.09170156500005), (-1.4800919259999432, 55.08539459800005), (-1.4762263659999348, 55.083644924000055), (-1.4632869129999335, 55.08030833500004), (-1.459584113999938, 55.07859935100004), (-1.458078579999949, 55.07575104400007), (-1.4547013009999432, 55.067572333000044), (-1.438303188999953, 55.042303778000075), (-1.4291886059999115, 55.033270575000074), (-1.4240616529999102, 55.02435944200005), (-1.4195043609999516, 55.011704820000034), (-1.412912563999953, 55.00031159100007), (-1.4015193349999322, 54.995428778000075), (-1.398182745999918, 54.992621161000045), (-1.3702286449999406, 54.97553131700005), (-1.3626602859999366, 54.96478913000004), (-1.3617244129999335, 54.958685614000046), (-1.3635147779999102, 54.95425039300005), (-1.3640030589999128, 54.94818756700005), (-1.3628637359999516, 54.92593008000006), (-1.3603409499999088, 54.91705963700008), (-1.3531388009999432, 54.91351959800005), (-1.355824347999942, 54.904282945000034), (-1.2967830069999309, 54.77993398600006), (-1.2754613919999542, 54.74843984600005), (-1.2404679029999102, 54.72166575700004), (-1.2250870429999168, 54.71503327000005), (-1.172230597999942, 54.701239325000074), (-1.172230597999942, 54.693793036000045), (-1.1926163399999155, 54.693793036000045), (-1.192453579999949, 54.68927643400008), (-1.1907852859999366, 54.68618398600006), (-1.1851700509999432, 54.68008047100005), (-1.1827286449999406, 54.67206452000005), (-1.1788223949999406, 54.66474030200004), (-1.172922329999949, 54.65835195500006), (-1.1647029289999296, 54.652777411000045), (-1.172922329999949, 54.644191799000055), (-1.1824845039999445, 54.63922760600008), (-1.2062882149999155, 54.63296133000006), (-1.203724738999938, 54.62571849200003), (-1.1988419259999432, 54.62156810100004), (-1.1918025379999335, 54.61977773600006), (-1.1821182929999168, 54.61928945500006), (-1.1793513659999348, 54.62091705900008), (-1.1784561839999128, 54.624212958000044), (-1.1769913399999155, 54.62677643400008), (-1.172230597999942, 54.62612539300005), (-1.1695857409999348, 54.62360260600008), (-1.1654353509999282, 54.61871979400007), (-1.1629532539999445, 54.61395905200004), (-1.1647029289999296, 54.61180247600004), (-1.1526586579999503, 54.61318594000005), (-1.1467179029999102, 54.618475653000075), (-1.1380509109999366, 54.646551825000074), (-1.1205948559999115, 54.63300202000005), (-1.1036270819999459, 54.624660549000055), (-1.0842179029999102, 54.620428778000075), (-1.042062954999949, 54.61709219000005), (-0.9934789699999556, 54.59813060100004), (-0.7879125639999529, 54.56077708500004), (-0.5629776679999168, 54.47736237200007), (-0.5346573559999115, 54.461004950000074), (-0.5228572259999282, 54.44708893400008), (-0.5217992829999503, 54.43805573100008), (-0.5235896479999269, 54.43024323100008), (-0.5204158189999362, 54.42007070500006), (-0.5099991529999102, 54.41156647300005), (-0.47679602799991017, 54.39720286700003), (-0.46275794199993925, 54.38898346600007), (-0.4477432929999168, 54.37319570500006), (-0.43057206899993616, 54.349310614000046), (-0.4184464179999168, 54.32404205900008), (-0.41803951699995423, 54.303941148000035), (-0.4145401679999168, 54.297308661000045), (-0.4090063139999529, 54.29075755400004), (-0.4011938139999529, 54.28563060100004), (-0.39073645699994586, 54.28351471600007), (-0.3948868479999419, 54.273138739000046), (-0.39757239499994057, 54.269191799000055), (-0.3892716139999379, 54.26406484600005), (-0.3704727859999366, 54.247707424000055), (-0.3627823559999115, 54.24249909100007), (-0.3220108709999181, 54.23607005400004), (-0.31191972599992823, 54.231634833000044), (-0.30011959499995555, 54.224676825000074), (-0.2770889959999181, 54.21775950700004), (-0.26960201699995423, 54.20766836100006), (-0.26256262899994454, 54.18109772300005), (-0.2603653639999379, 54.176988023000035), (-0.2338761059999115, 54.16046784100007), (-0.11143958199994586, 54.13157786700003), (-0.07551021999995555, 54.11212799700007), (-0.16392981699993925, 54.08340078300006), (-0.1946915359999366, 54.06232330900008), (-0.2194718089999128, 54.022772528000075), (-0.1974177729999269, 53.99481842700004), (-0.1686905589999128, 53.929348049000055), (-0.1511124339999128, 53.899318752000056), (-0.045155402999910166, 53.801214911000045), (0.13347415500004445, 53.642645575000074), (0.1492619150000678, 53.60960521000004), (0.13689212300005238, 53.57713450700004), (0.13119550900006516, 53.573431708000044), (0.1096297540000819, 53.56289297100005), (0.1313582690000885, 53.59369538000004), (0.1359969410000872, 53.610663153000075), (0.12020918100006384, 53.61810944200005), (0.09945722700007309, 53.622300523000035), (0.056162957000083225, 53.64126211100006), (0.034515821000070446, 53.64606354400007), (0.014821811000047092, 53.64325592700004), (-0.023915167999916775, 53.62885163000004), (-0.04503333199994586, 53.62555573100008), (-0.06940670499994894, 53.626939195000034), (-0.09227454299991678, 53.63104889500005), (-0.11261959499995555, 53.63751862200007), (-0.1300349599999322, 53.64606354400007), (-0.2253311839999128, 53.719916083000044), (-0.2603653639999379, 53.73541901200008), (-0.2956436839999128, 53.738796291000085), (-0.3051651679999168, 53.73969147300005), (-0.4311417309999115, 53.71430084800005), (-0.4496964179999168, 53.71430084800005), (-0.5104874339999128, 53.71430084800005), (-0.5444229809999115, 53.70945872600004), (-0.5515030589999128, 53.71116771000004), (-0.5762426419999542, 53.72565338700008), (-0.5791723299999489, 53.72797272300005), (-0.6370336579999503, 53.73200104400007), (-0.6583552729999269, 53.72797272300005), (-0.7264705069999309, 53.70062897300005), (-0.7173559239999463, 53.69867584800005), (-0.7085668609999516, 53.695746161000045), (-0.7001846999999088, 53.691839911000045), (-0.6924535799999489, 53.68699778900003), (-0.6774796209999181, 53.702826239000046), (-0.6498103509999282, 53.710598049000055), (-0.6195369129999335, 53.71185944200005), (-0.5961807929999168, 53.70807526200008), (-0.5554906889999529, 53.69049713700008), (-0.5447485019999476, 53.683579820000034), (-0.5299373039999296, 53.67767975500004), (-0.5140274729999419, 53.681301174000055), (-0.48631751199991413, 53.69448476800005), (-0.3072403639999379, 53.71426015800006), (-0.27936764199995423, 53.707098700000074), (-0.2603653639999379, 53.68699778900003), (-0.1886287099999322, 53.620428778000075), (-0.1440323559999115, 53.606634833000044), (-0.11318925699993088, 53.58462148600006), (-0.09593665299991017, 53.57713450700004), (-0.06094316299993352, 53.57396067900004), (-0.0466202459999181, 53.570379950000074), (9.199300006912381e-05, 53.53534577000005), (0.0959578790000819, 53.488348700000074), (0.11508222700007309, 53.48322174700007), (0.1340438160000872, 53.48061758000006), (0.15186608200008322, 53.475816148000035), (0.1678166020000731, 53.464504299000055), (0.17090905000009116, 53.457017320000034), (0.1731063160000872, 53.44676341400003), (0.17579186300008587, 53.43768952000005), (0.1814884770000731, 53.43374258000006), (0.1906030610000471, 53.43187083500004), (0.21949303500008455, 53.41950104400007), (0.21192467500009116, 53.41266510600008), (0.2293400400000678, 53.40477122600004), (0.24488366000008455, 53.39093659100007), (0.2561141290000819, 53.375067450000074), (0.26042728000004445, 53.36147695500006), (0.34213300900006516, 53.22630442900004), (0.35621178500008455, 53.18854401200008), (0.3566186860000471, 53.145738023000035), (0.3357853520000731, 53.093451239000046), (0.32984459700008983, 53.08649323100008), (0.31869550900006516, 53.083685614000046), (0.29883873800008587, 53.08120351800005), (0.2824813160000872, 53.07485586100006), (0.19304446700004974, 53.02008698100008), (0.17448978000004445, 53.01544830900008), (0.16081790500004445, 53.008978583000044), (0.08212324300006912, 52.938666083000044), (0.061167839000063395, 52.924994208000044), (0.03760826900008851, 52.919175523000035), (0.022146030000044448, 52.91258372600004), (0.008555535000084546, 52.89862702000005), (0.010264519000088512, 52.88646067900004), (0.04066002700005811, 52.88507721600007), (0.09253991000008455, 52.89252350500004), (0.10564212300005238, 52.88934967700004), (0.13347415500004445, 52.87518952000005), (0.14714603000004445, 52.87201569200005), (0.17090905000009116, 52.86212799700007), (0.22242272200008983, 52.813666083000044), (0.24675540500004445, 52.79572174700007), (0.2644962900000678, 52.80369700700004), (0.2856551440000885, 52.805568752000056), (0.32553144600007045, 52.803168036000045), (0.34180748800008587, 52.79743073100008), (0.36988366000008455, 52.77301666900007), (0.38453209700008983, 52.76837799700007), (0.38453209700008983, 52.77521393400008), (0.37924238400006516, 52.79083893400008), (0.39942467500009116, 52.80951569200005), (0.42554772200008983, 52.827378648000035), (0.4386499360000471, 52.840725002000056), (0.44402103000004445, 52.86505768400008), (0.45671634200004974, 52.89199453300006), (0.47234134200004974, 52.916449286000045), (0.48568769600007045, 52.93349844000005), (0.5202742850000845, 52.95526764500005), (0.5695906910000872, 52.96930573100008), (0.6233830090000652, 52.97565338700008), (0.6718856130000859, 52.97443268400008), (0.6643986340000652, 52.98187897300005), (0.6847436860000471, 52.986395575000074), (0.7067977220000898, 52.98322174700007), (0.7291772800000444, 52.97748444200005), (0.7504988940000885, 52.97443268400008), (0.8357039720000898, 52.97443268400008), (0.8754988940000885, 52.96816640800006), (0.9210718110000471, 52.95465729400007), (0.9684350920000497, 52.94749583500004), (1.013926629000082, 52.960150458000044), (1.0034285820000832, 52.96474844000005), (0.9915470710000704, 52.96747467700004), (0.9790145190000885, 52.968410549000055), (0.9660750660000872, 52.96759674700007), (0.9660750660000872, 52.97443268400008), (1.2746688160000872, 52.92918528900003), (1.3960067070000832, 52.89142487200007), (1.6442163420000497, 52.775824286000045), (1.6733504570000832, 52.75568268400008), (1.6970320970000898, 52.73102448100008), (1.7158309250000912, 52.68374258000006), (1.7341414720000898, 52.65460846600007), (1.747243686000047, 52.62518952000005), (1.7407332690000885, 52.60390859600005), (1.7468367850000845, 52.58852773600006), (1.7487085300000444, 52.568793036000045), (1.7475692070000832, 52.53278229400007), (1.7711694670000497, 52.48590729400007), (1.7671004570000832, 52.47695547100005), (1.7544051440000885, 52.46735260600008), (1.7292586600000845, 52.41559479400007), (1.7301538420000497, 52.405910549000055), (1.7278751960000704, 52.39630768400008), (1.6836043630000859, 52.32453034100007), (1.6518660820000832, 52.289129950000074), (1.6411238940000885, 52.28180573100008), (1.6305444670000497, 52.27045319200005), (1.6282658210000704, 52.24481842700004), (1.6308699880000859, 52.19977448100008), (1.6254988940000885, 52.18036530200004), (1.6074324880000859, 52.14594147300005), (1.6035262380000859, 52.127834377000056), (1.5892033210000704, 52.100816148000035), (1.5875757170000497, 52.08698151200008), (1.582286004000082, 52.08148834800005), (1.5036727220000898, 52.060980536000045), (1.4868270190000885, 52.04901764500005), (1.4720158210000704, 52.05621979400007), (1.4668074880000859, 52.04800039300005), (1.4638778000000912, 52.035142320000034), (1.4558211600000845, 52.028509833000044), (1.4489852220000898, 52.02496979400007), (1.4248153000000912, 52.00185781500005), (1.3548283210000704, 51.95404694200005), (1.3435164720000898, 51.94285716400009), (1.332286004000082, 51.94009023600006), (1.2644149100000845, 51.99437083500004), (1.2348738940000885, 52.00031159100007), (1.1852319670000497, 52.025091864000046), (1.1578882170000497, 52.028509833000044), (1.1578882170000497, 52.02167389500005), (1.1935327480000524, 52.00079987200007), (1.2143660820000832, 51.991441148000035), (1.2602645190000885, 51.984808661000045), (1.2707625660000872, 51.98151276200008), (1.2751570970000898, 51.976996161000045), (1.2744246750000912, 51.96088288000004), (1.2710067070000832, 51.95644765800006), (1.2507430350000845, 51.95962148600006), (1.2389429050000444, 51.958644924000055), (1.2176212900000678, 51.954331773000035), (1.2057397800000444, 51.95343659100007), (1.193207227000073, 51.955511786000045), (1.1652938160000872, 51.96702708500004), (1.1430770190000885, 51.966050523000035), (1.0944930350000845, 51.955959377000056), (1.0691024100000845, 51.95343659100007), (1.0954695970000898, 51.945746161000045), (1.2620548840000652, 51.939154364000046), (1.2819930350000845, 51.946600653000075), (1.278493686000047, 51.92792389500005), (1.1995548840000652, 51.87767161700003), (1.2122501960000704, 51.87164948100008), (1.2278751960000704, 51.86737702000005), (1.2644149100000845, 51.86399974200003), (1.2747501960000704, 51.870306708000044), (1.2822371750000912, 51.880560614000046), (1.2866317070000832, 51.88165924700007), (1.288259311000047, 51.860581773000035), (1.2763778000000912, 51.84479401200008), (1.2192488940000885, 51.811835028000075), (1.167816602000073, 51.790228583000044), (1.1354272800000444, 51.78172435100004), (1.0654403000000912, 51.77529531500005), (1.0466414720000898, 51.777044989000046), (1.0372827480000524, 51.78217194200005), (1.021332227000073, 51.80255768400008), (0.9887801440000885, 51.83026764500005), (0.9798283210000704, 51.84357330900008), (0.9770613940000885, 51.82461172100005), (0.9620874360000471, 51.813788153000075), (0.9251408210000704, 51.80255768400008), (0.8942977220000898, 51.78461334800005), (0.8869735040000819, 51.782131252000056), (0.8864038420000497, 51.776678778000075), (0.8834741550000444, 51.76471588700008), (0.8789168630000859, 51.75275299700007), (0.8737085300000444, 51.747300523000035), (0.8619897800000444, 51.74555084800005), (0.8459578790000819, 51.736761786000045), (0.8357039720000898, 51.733710028000075), (0.8234969410000872, 51.73383209800005), (0.8014429050000444, 51.73969147300005), (0.7917586600000845, 51.74115631700005), (0.7671004570000832, 51.739447333000044), (0.7208764980000524, 51.728176174000055), (0.6985783210000704, 51.720038153000075), (0.7142033210000704, 51.715277411000045), (0.7324324880000859, 51.713771877000056), (0.7492781910000872, 51.70848216400009), (0.7607528000000912, 51.692694403000075), (0.7890731130000859, 51.710150458000044), (0.8530379570000832, 51.71889883000006), (0.8835555350000845, 51.72687409100007), (0.9123641290000819, 51.741522528000075), (0.9300236340000652, 51.74359772300005), (0.9455672540000819, 51.733710028000075), (0.9474389980000524, 51.72524648600006), (0.9445906910000872, 51.71548086100006), (0.9404403000000912, 51.70799388200004), (0.9381616550000444, 51.706366278000075), (0.9401961600000845, 51.698431708000044), (0.9440210300000444, 51.69057851800005), (0.9518335300000444, 51.67841217700004), (0.9417423840000652, 51.673041083000044), (0.9379988940000885, 51.664496161000045), (0.9381616550000444, 51.64126211100006), (0.9347436860000471, 51.63589101800005), (0.9267684250000912, 51.630926825000074), (0.9114689460000704, 51.62384674700007), (0.9384871750000912, 51.624986070000034), (0.9480900400000678, 51.621527411000045), (0.9518335300000444, 51.61701080900008), (0.9244897800000444, 51.588324286000045), (0.8733016290000819, 51.559475002000056), (0.8282983730000524, 51.541856187000064), (0.8162541020000731, 51.537176825000074), (0.7712508470000898, 51.52826569200005), (0.6920679050000444, 51.536322333000044), (0.6643986340000652, 51.53506094000005), (0.6637475920000497, 51.53554922100005), (0.6505639980000524, 51.53579336100006), (0.6466577480000524, 51.53534577000005), (0.6440535820000832, 51.53506094000005), (0.6427514980000524, 51.53351471600007), (0.6233830090000652, 51.52204010600008), (0.6086531910000872, 51.51898834800005), (0.5952254570000832, 51.51862213700008), (0.5822860040000819, 51.51654694200005), (0.5688582690000885, 51.50836823100008), (0.5527449880000859, 51.51797109600005), (0.5472111340000652, 51.51772695500006), (0.5254012380000859, 51.516913153000075), (0.45606530000009116, 51.505560614000046), (0.45085696700004974, 51.49827708500004), (0.44800866000008455, 51.48822663000004), (0.4416610040000819, 51.47703685100004), (0.42847741000008455, 51.46710846600007), (0.41407311300008587, 51.46190013200004), (0.39918053500008455, 51.45840078300006), (0.38453209700008983, 51.453111070000034), (0.4484155610000471, 51.45994700700004), (0.45679772200008983, 51.46312083500004), (0.4614363940000885, 51.47016022300005), (0.46485436300008587, 51.47724030200004), (0.4695744150000678, 51.48041413000004), (0.5348413420000497, 51.49168528900009), (0.6948348320000832, 51.47703685100004), (0.7094832690000885, 51.47052643400008), (0.7219344410000872, 51.456284898000035), (0.7231551440000885, 51.44672272300005), (0.7131453790000819, 51.44122955900008), (0.6923934250000912, 51.439520575000074), (0.6565047540000819, 51.444525458000044), (0.6409611340000652, 51.44415924700007), (0.6093856130000859, 51.425116278000075), (0.5727645190000885, 51.419582424000055), (0.5545353520000731, 51.412176825000074), (0.5622664720000898, 51.40656159100007), (0.5691024100000845, 51.399603583000044), (0.5765080090000652, 51.39362213700008), (0.5859481130000859, 51.391058661000045), (0.6718856130000859, 51.391058661000045), (0.7129012380000859, 51.38422272300005), (0.7049259770000731, 51.39598216400009), (0.7003686860000471, 51.409816799000055), (0.7053328790000819, 51.41950104400007), (0.7264103520000731, 51.41901276200008), (0.7283634770000731, 51.406236070000034), (0.7392684250000912, 51.387925523000035), (0.7534285820000832, 51.371527411000045), (0.7644149100000845, 51.36440664300005), (0.9772241550000444, 51.34918854400007), (1.1009220710000704, 51.37323639500005), (1.4238387380000859, 51.39207591400009), (1.4482528000000912, 51.382879950000074), (1.4391382170000497, 51.35008372600004), (1.4355574880000859, 51.343736070000034), (1.430837436000047, 51.33779531500005), (1.4251408210000704, 51.33295319200005), (1.4186304050000444, 51.32965729400007), (1.3829858730000524, 51.329779364000046), (1.3776147800000444, 51.326239325000074), (1.3806258470000898, 51.304754950000074), (1.387868686000047, 51.28790924700007), (1.4043074880000859, 51.261379299000055), (1.4130965500000912, 51.22174713700008), (1.4047957690000885, 51.18353913000004), (1.3844507170000497, 51.151678778000075), (1.3571883470000898, 51.13100820500006), (1.2903751960000704, 51.116522528000075), (1.2629500660000872, 51.10325755400004), (1.2516382170000497, 51.10252513200004), (1.2299910820000832, 51.10370514500005), (1.2181095710000704, 51.10097890800006), (1.2082625660000872, 51.09467194200005), (1.1997176440000885, 51.087591864000046), (1.1920679050000444, 51.08258698100008), (1.1722111340000652, 51.077378648000035), (1.1067000660000872, 51.07636139500005), (1.0871688160000872, 51.07298411700003), (1.0669051440000885, 51.06439850500004), (1.027598504000082, 51.04165273600006), (0.9764103520000731, 50.99445221600007), (0.9664819670000497, 50.98273346600007), (0.9690861340000652, 50.95685455900008), (0.9798283210000704, 50.91815827000005), (0.9451603520000731, 50.909369208000044), (0.8698022800000444, 50.925116278000075), (0.8022567070000832, 50.93919505400004), (0.7624617850000845, 50.930894273000035), (0.6643986340000652, 50.870306708000044), (0.6241968110000471, 50.858710028000075), (0.4074813160000872, 50.829331773000035), (0.3702905610000471, 50.818793036000045), (0.36524498800008587, 50.81899648600006), (0.35425866000008455, 50.80963776200008), (0.34441165500004445, 50.79905833500004), (0.3422957690000885, 50.79515208500004), (0.3081160820000832, 50.780951239000046), (0.2710067070000832, 50.747381903000075), (0.23389733200008322, 50.74701569200005), (0.2141219410000872, 50.748928127000056), (0.16830488400006516, 50.759833075000074), (0.1573999360000471, 50.761053778000075), (0.12208092500009116, 50.76080963700008), (0.11304772200008983, 50.76414622600004), (0.09555097700007309, 50.775051174000055), (0.07703698000005943, 50.778998114000046), (0.034515821000070446, 50.780951239000046), (0.01754804800009424, 50.784857489000046), (-0.17316646999995555, 50.829006252000056), (-0.20612545499994894, 50.83104075700004), (-0.20889238199993088, 50.83010488500008), (-0.2331436839999128, 50.821926174000055), (-0.2696833979999269, 50.831284898000035), (-0.39757239499994057, 50.802069403000075), (-0.5689591139999379, 50.802069403000075), (-0.7327367829999503, 50.767279364000046), (-0.7415665359999366, 50.769232489000046), (-0.7498673169999392, 50.773871161000045), (-0.7582087879999335, 50.77708567900004), (-0.7675675119999141, 50.774725653000075), (-0.7731013659999348, 50.76601797100005), (-0.7662654289999296, 50.74713776200008), (-0.7709854809999115, 50.73688385600008), (-0.7899470689999362, 50.73004791900007), (-0.8128149079999503, 50.73476797100005), (-0.9041235019999476, 50.77187734600005), (-0.9114884109999366, 50.77781810100004), (-0.9058731759999432, 50.78803131700005), (-0.8924861319999309, 50.794623114000046), (-0.8636368479999419, 50.802069403000075), (-0.8636368479999419, 50.808254299000055), (-0.8736059239999463, 50.812933661000045), (-0.8931371739999463, 50.82534414300005), (-0.9046931629999335, 50.829331773000035), (-0.9095352859999366, 50.82599518400008), (-0.9217016269999476, 50.821600653000075), (-0.9289444649999155, 50.82282135600008), (-0.9190160799999489, 50.83616771000004), (-0.9297989569999459, 50.83999258000006), (-0.9391983709999181, 50.84324778900009), (-0.9707738919999542, 50.846991278000075), (-0.9948624339999128, 50.84707265800006), (-1.0018611319999309, 50.84711334800005), (-1.0207413399999155, 50.84365469000005), (-1.033558722999942, 50.82591380400004), (-1.0426326159999348, 50.80190664300005), (-1.0562231109999516, 50.78302643400008), (-1.0827530589999128, 50.780951239000046), (-1.1030167309999115, 50.79547760600008), (-1.0936173169999392, 50.812933661000045), (-1.0753067699999406, 50.83002350500004), (-1.069162563999953, 50.84365469000005), (-1.0873103509999282, 50.84979889500005), (-1.0881241529999102, 50.84975820500006), (-1.1498103509999282, 50.84666575700004), (-1.1647029289999296, 50.84365469000005), (-1.129709438999953, 50.825100002000056), (-1.1237686839999128, 50.818793036000045), (-1.1212052069999459, 50.79938385600008), (-1.1249080069999309, 50.788723049000055), (-1.1380509109999366, 50.780951239000046), (-1.1511124339999128, 50.78139883000006), (-1.1693416009999282, 50.78587474200003), (-1.1856176419999542, 50.79242584800005), (-1.1926163399999155, 50.79865143400008), (-1.1992895169999542, 50.807928778000075), (-1.231516079999949, 50.81891510600008), (-1.2551977199999556, 50.83193594000005), (-1.288156704999949, 50.839178778000075), (-1.3014216789999296, 50.84365469000005), (-1.3185929029999102, 50.85691966400009), (-1.338937954999949, 50.872707424000055), (-1.4492895169999542, 50.91205475500004), (-1.4664200509999432, 50.91815827000005), (-1.4664200509999432, 50.91193268400008), (-1.4564509759999282, 50.90875885600008), (-1.4379776679999168, 50.90131256700005), (-1.4256078769999476, 50.900091864000046), (-1.4011124339999128, 50.88117096600007), (-1.323068813999953, 50.82575104400007), (-1.3142797519999476, 50.812160549000055), (-1.3172908189999362, 50.80023834800005), (-1.3398331369999141, 50.79515208500004), (-1.4039607409999348, 50.79157135600008), (-1.4186905589999128, 50.788397528000075), (-1.4113663399999155, 50.78489817900004), (-1.4049373039999296, 50.780951239000046), (-1.4049373039999296, 50.774725653000075), (-1.4505102199999556, 50.76935455900008), (-1.4762263659999348, 50.76341380400004), (-1.4875382149999155, 50.75771719000005), (-1.491932745999918, 50.75726959800005), (-1.5247289699999556, 50.761053778000075), (-1.5571996739999463, 50.72329336100006), (-1.559396938999953, 50.71922435100004), (-1.5611873039999296, 50.71898021000004), (-1.5807185539999296, 50.722642320000034), (-1.6021215489999463, 50.731756903000075), (-1.6706436839999128, 50.74005768400008), (-1.672922329999949, 50.74005768400008), (-1.6930232409999348, 50.739935614000046), (-1.7150772779999102, 50.73578522300005), (-1.7535294259999432, 50.72284577000005), (-1.7717179029999102, 50.72011953300006), (-1.7974340489999463, 50.723171291000085), (-1.8350723949999406, 50.72768789300005), (-1.8574112619999141, 50.72695547100005), (-1.8773494129999335, 50.72284577000005), (-1.8963516919999392, 50.71629466400009), (-1.8968806629999335, 50.716050523000035), (-1.9138891269999476, 50.70742422100005), (-1.9291072259999282, 50.69586823100008), (-1.9400121739999463, 50.69082265800006), (-1.9443253249999088, 50.69765859600005), (-1.946115688999953, 50.707912502000056), (-1.9492895169999542, 50.713324286000045), (-1.9877009759999282, 50.72011953300006), (-2.01390540299991, 50.71893952000005), (-2.0219620429999168, 50.72011953300006), (-2.0254613919999542, 50.723863023000035), (-2.026193813999953, 50.72508372600004), (-2.0338435539999296, 50.73712799700007), (-2.038970506999931, 50.739935614000046), (-2.0480850899999155, 50.734808661000045), (-2.0826716789999296, 50.69896067900004), (-2.0695694649999155, 50.700100002000056), (-2.0577286449999406, 50.702826239000046), (-2.046620245999918, 50.70726146000004), (-2.0356339179999168, 50.713324286000045), (-2.0141495429999168, 50.688788153000075), (-2.0025121739999463, 50.681301174000055), (-1.984120245999918, 50.67853424700007), (-1.9674373039999296, 50.67865631700005), (-1.9527888659999348, 50.67658112200007), (-1.9458715489999463, 50.668850002000056), (-1.9529516269999476, 50.65184153900009), (-1.9382218089999128, 50.645819403000075), (-1.9324845039999445, 50.64443594000005), (-1.9672745429999168, 50.61709219000005), (-1.965199347999942, 50.60219961100006), (-1.9837133449999556, 50.59662506700005), (-2.065174933999913, 50.59552643400008), (-2.082183397999927, 50.59784577000005), (-2.1573380199999406, 50.62051015800006), (-2.3426407539999445, 50.63377513200004), (-2.377064581999946, 50.64752838700008), (-2.398345506999931, 50.64557526200008), (-2.435902472999942, 50.63751862200007), (-2.447621222999942, 50.62787506700005), (-2.4600723949999406, 50.60651276200008), (-2.465646938999953, 50.585150458000044), (-2.4564509759999282, 50.575506903000075), (-2.4312231109999516, 50.57025788000004), (-2.428700324999909, 50.55756256700005), (-2.4392797519999476, 50.54181549700007), (-2.45335852799991, 50.52765534100007), (-2.4595434239999463, 50.52765534100007), (-2.4603572259999282, 50.56549713700008), (-2.4835098949999406, 50.59039948100008), (-2.6929418609999516, 50.69281647300005), (-2.8648168609999516, 50.73379140800006), (-2.887318488999938, 50.734361070000034), (-2.94554602799991, 50.725816148000035), (-2.9627579419999392, 50.72329336100006), (-2.998199022999927, 50.708238023000035), (-3.021839972999942, 50.70648834800005), (-3.059722459999932, 50.713324286000045), (-3.071359829999949, 50.711004950000074), (-3.0941462879999335, 50.69896067900004), (-3.099232550999943, 50.69708893400008), (-3.115834113999938, 50.68797435100004), (-3.1254776679999168, 50.68528880400004), (-3.135894334999932, 50.68593984600005), (-3.1551407539999445, 50.69135163000004), (-3.1664932929999168, 50.69281647300005), (-3.1856176419999542, 50.690741278000075), (-3.2191462879999335, 50.68081289300005), (-3.2598363919999542, 50.67454661700003), (-3.271392381999931, 50.664496161000045), (-3.280425584999932, 50.65119049700007), (-3.2955623039999296, 50.63751862200007), (-3.368153449999909, 50.61709219000005), (-3.390736456999946, 50.61782461100006), (-3.4075414699999556, 50.62128327000005), (-3.420969204999949, 50.62946198100008), (-3.433338995999918, 50.64443594000005), (-3.446359829999949, 50.66828034100007), (-3.4504288399999155, 50.672308661000045), (-3.453277147999927, 50.67328522300005), (-3.455433722999942, 50.675441799000055), (-3.458607550999943, 50.67755768400008), (-3.4644262359999516, 50.67853424700007), (-3.467762824999909, 50.67641836100006), (-3.468902147999927, 50.67169830900008), (-3.467844204999949, 50.66697825700004), (-3.45531165299991, 50.657904364000046), (-3.4420466789999296, 50.62352122600004), (-3.433338995999918, 50.610256252000056), (-3.451161261999914, 50.59943268400008), (-3.4672745429999168, 50.585598049000055), (-3.4817602199999556, 50.56854889500005), (-3.494862433999913, 50.548163153000075), (-3.505970831999946, 50.520819403000075), (-3.505034959999932, 50.501206773000035), (-3.487456834999932, 50.459418036000045), (-3.509755011999914, 50.45848216400009), (-3.532134568999936, 50.454779364000046), (-3.549427863999938, 50.446519273000035), (-3.556263800999943, 50.43211497600004), (-3.5493057929999168, 50.41559479400007), (-3.531971808999913, 50.410223700000074), (-3.487456834999932, 50.41156647300005), (-3.487456834999932, 50.40477122600004), (-3.4974666009999282, 50.38735586100006), (-3.49828040299991, 50.383693752000056), (-3.5073136059999115, 50.382798570000034), (-3.5149633449999556, 50.37995026200008), (-3.520130988999938, 50.37482330900008), (-3.5269262359999516, 50.34979889500005), (-3.5388891269999476, 50.34442780200004), (-3.5545141269999476, 50.347642320000034), (-3.57054602799991, 50.35639069200005), (-3.577788865999935, 50.334051825000074), (-3.5991104809999115, 50.325832424000055), (-3.6215714179999168, 50.321926174000055), (-3.631988084999932, 50.31232330900008), (-3.6373591789999296, 50.29539622600004), (-3.6475723949999406, 50.27456289300005), (-3.653309699999909, 50.25104401200008), (-3.6456192699999406, 50.22601959800005), (-3.6606339179999168, 50.22101471600007), (-3.700917120999918, 50.21352773600006), (-3.7180069649999155, 50.21238841400009), (-3.740386522999927, 50.21588776200008), (-3.758615688999953, 50.22174713700008), (-3.774240688999953, 50.22296784100007), (-3.788970506999931, 50.21238841400009), (-3.826324022999927, 50.23419830900008), (-3.8841853509999282, 50.280462958000044), (-3.949940558999913, 50.31899648600006), (-3.9610082669999542, 50.322251695000034), (-3.9702042309999115, 50.320746161000045), (-3.995757615999935, 50.311428127000056), (-4.005604620999918, 50.30923086100006), (-4.011341925999943, 50.30695221600007), (-4.024769660999937, 50.29718659100007), (-4.032948370999918, 50.294907945000034), (-4.044056769999941, 50.29645416900007), (-4.054351365999935, 50.30036041900007), (-4.070220506999931, 50.30923086100006), (-4.067941860999952, 50.31281159100007), (-4.064035610999952, 50.322251695000034), (-4.086008266999954, 50.326239325000074), (-4.1082657539999445, 50.33661530200004), (-4.118723110999952, 50.35187409100007), (-4.1049698559999115, 50.37067291900007), (-4.141753709999932, 50.36904531500005), (-4.1527400379999335, 50.37067291900007), (-4.1655167309999115, 50.37636953300006), (-4.171457485999952, 50.382798570000034), (-4.175770636999914, 50.39085521000004), (-4.18382727799991, 50.40106842700004), (-4.191477016999954, 50.417629299000055), (-4.18390865799995, 50.431708075000074), (-4.1703181629999335, 50.44513580900008), (-4.159535285999937, 50.459418036000045), (-4.179432745999918, 50.45307038000004), (-4.189564581999946, 50.45368073100008), (-4.200550910999937, 50.459418036000045), (-4.203684048999946, 50.45140208500004), (-4.204741990999935, 50.44867584800005), (-4.2123917309999115, 50.441473700000074), (-4.222523566999939, 50.43797435100004), (-4.234730597999942, 50.43829987200007), (-4.234730597999942, 50.43211497600004), (-4.2202042309999115, 50.425848700000074), (-4.2161352199999556, 50.415716864000046), (-4.219715949999909, 50.40509674700007), (-4.228505011999914, 50.397365627000056), (-4.2414444649999155, 50.39468008000006), (-4.2899063789999445, 50.397365627000056), (-4.273019985999952, 50.38190338700008), (-4.216175910999937, 50.38776276200008), (-4.1937556629999335, 50.37689850500004), (-4.228505011999914, 50.37067291900007), (-4.228505011999914, 50.36383698100008), (-4.220122850999928, 50.365301825000074), (-4.200550910999937, 50.36383698100008), (-4.207997199999909, 50.35639069200005), (-4.180043097999942, 50.35639069200005), (-4.180043097999942, 50.35016510600008), (-4.191314256999931, 50.34756094000005), (-4.197987433999913, 50.342230536000045), (-4.199126756999931, 50.33539459800005), (-4.1937556629999335, 50.32843659100007), (-4.1937556629999335, 50.322251695000034), (-4.214995897999927, 50.323146877000056), (-4.225697394999941, 50.33539459800005), (-4.235096808999913, 50.34955475500004), (-4.2523494129999335, 50.35639069200005), (-4.337717251999948, 50.37067291900007), (-4.383697068999936, 50.36749909100007), (-4.456206834999932, 50.33820221600007), (-4.4953507149999155, 50.32843659100007), (-4.659820115999935, 50.322251695000034), (-4.659575975999928, 50.32062409100007), (-4.662709113999938, 50.31777578300006), (-4.667795376999948, 50.315334377000056), (-4.673451300999943, 50.31541575700004), (-4.687163865999935, 50.34271881700005), (-4.694325324999909, 50.343451239000046), (-4.700184699999909, 50.34088776200008), (-4.705555792999917, 50.337551174000055), (-4.7113337879999335, 50.33588288000004), (-4.731556769999941, 50.33466217700004), (-4.752105272999927, 50.33030833500004), (-4.763295050999943, 50.32208893400008), (-4.755441860999952, 50.30923086100006), (-4.755441860999952, 50.30174388200004), (-4.7623591789999296, 50.298041083000044), (-4.771636522999927, 50.29157135600008), (-4.779855923999946, 50.28432851800005), (-4.783355272999927, 50.27789948100008), (-4.7818904289999296, 50.27179596600007), (-4.776519334999932, 50.26508209800005), (-4.776519334999932, 50.26080963700008), (-4.788441535999937, 50.24209219000005), (-4.790150519999941, 50.23655833500004), (-4.800160285999937, 50.22955963700008), (-4.849720831999946, 50.23456452000005), (-4.868723110999952, 50.22943756700005), (-4.887318488999938, 50.21499258000006), (-4.904774542999917, 50.20844147300005), (-4.947255011999914, 50.19936758000006), (-4.960682745999918, 50.19049713700008), (-5.002430792999917, 50.14411041900007), (-5.014556443999936, 50.15656159100007), (-5.0203751289999445, 50.19196198100008), (-5.033192511999914, 50.19936758000006), (-5.05296790299991, 50.19578685100004), (-5.053618943999936, 50.18691640800006), (-5.051869269999941, 50.17552317900004), (-5.064564581999946, 50.16461823100008), (-5.064564581999946, 50.15839264500005), (-5.058501756999931, 50.155462958000044), (-5.043446417999917, 50.14411041900007), (-5.051869269999941, 50.144598700000074), (-5.058461066999939, 50.14272695500006), (-5.070790167999917, 50.13727448100008), (-5.08031165299991, 50.13271719000005), (-5.081613735999952, 50.12539297100005), (-5.080962693999936, 50.117173570000034), (-5.085031704999949, 50.10993073100008), (-5.093902147999927, 50.105536200000074), (-5.125965949999909, 50.09634023600006), (-5.114654100999928, 50.09662506700005), (-5.106068488999938, 50.09511953300006), (-5.091867641999954, 50.089504299000055), (-5.086903449999909, 50.089056708000044), (-5.075347459999932, 50.09048086100006), (-5.070790167999917, 50.089504299000055), (-5.068470831999946, 50.085150458000044), (-5.064930792999917, 50.07184479400007), (-5.06086178299995, 50.06903717700004), (-5.056507941999939, 50.060614325000074), (-5.069488084999932, 50.042181708000044), (-5.0980525379999335, 50.01439036700003), (-5.107289191999939, 50.013006903000075), (-5.127430792999917, 50.01544830900008), (-5.139637824999909, 50.01439036700003), (-5.146473761999914, 50.01056549700007), (-5.176136847999942, 49.987941799000055), (-5.18773352799991, 49.964504299000055), (-5.191151495999918, 49.95913320500006), (-5.200103318999936, 49.961371161000045), (-5.210357225999928, 49.96674225500004), (-5.240386522999927, 49.988348700000074), (-5.245228644999941, 49.99310944200005), (-5.2495011059999115, 50.000067450000074), (-5.253041144999941, 50.01264069200005), (-5.25226803299995, 50.020697333000044), (-5.252674933999913, 50.027777411000045), (-5.259755011999914, 50.03766510600008), (-5.2884008449999556, 50.067694403000075), (-5.304351365999935, 50.08026764500005), (-5.323963995999918, 50.089504299000055), (-5.384185350999928, 50.10797760600008), (-5.424712693999936, 50.11273834800005), (-5.458119269999941, 50.125881252000056), (-5.47484290299991, 50.13043854400007), (-5.495676235999952, 50.12962474200003), (-5.521839972999942, 50.12372467700004), (-5.540923631999931, 50.11347077000005), (-5.540638800999943, 50.09975820500006), (-5.5346573559999115, 50.08234284100007), (-5.5455623039999296, 50.06891510600008), (-5.563465949999909, 50.05963776200008), (-5.57843990799995, 50.054754950000074), (-5.61945553299995, 50.046210028000075), (-5.667388475999928, 50.04287344000005), (-5.705148891999954, 50.05231354400007), (-5.715646938999953, 50.08270905200004), (-5.705962693999936, 50.08348216400009), (-5.698801235999952, 50.08539459800005), (-5.694488084999932, 50.089504299000055), (-5.694406704999949, 50.095770575000074), (-5.697092251999948, 50.10053131700005), (-5.700306769999941, 50.103216864000046), (-5.701975063999953, 50.103176174000055), (-5.707386847999942, 50.12201569200005), (-5.70921790299991, 50.13263580900008), (-5.70539303299995, 50.13727448100008), (-5.7035212879999335, 50.140611070000034), (-5.684641079999949, 50.16152578300006), (-5.676747199999909, 50.16502513200004), (-5.647368943999936, 50.17206452000005), (-5.583607550999943, 50.19586823100008), (-5.549427863999938, 50.20351797100005), (-5.5109757149999155, 50.21946849200003), (-5.4891251289999445, 50.21979401200008), (-5.458119269999941, 50.20075104400007), (-5.437977667999917, 50.19432200700004), (-5.417388475999928, 50.202460028000075), (-5.402943488999938, 50.21735260600008), (-5.395863410999937, 50.22724030200004), (-5.39289303299995, 50.23655833500004), (-5.3875626289999445, 50.240301825000074), (-5.351918097999942, 50.240301825000074), (-5.3148494129999335, 50.253607489000046), (-5.200306769999941, 50.33075592700004), (-5.1635636059999115, 50.34723541900007), (-5.1498917309999115, 50.35016510600008), (-5.146473761999914, 50.35529205900008), (-5.145659959999932, 50.366888739000046), (-5.147043423999946, 50.37938060100004), (-5.153675910999937, 50.39948151200008), (-5.142404751999948, 50.40448639500005), (-5.12726803299995, 50.40521881700005), (-5.119740363999938, 50.40477122600004), (-5.0502823559999115, 50.42869700700004), (-5.0481664699999556, 50.43439362200007), (-5.038726365999935, 50.44790273600006), (-5.029774542999917, 50.486761786000045), (-5.0286352199999556, 50.507025458000044), (-5.025257941999939, 50.52423737200007), (-5.015614386999914, 50.53803131700005), (-4.9955948559999115, 50.548163153000075), (-4.975168423999946, 50.548163153000075), (-4.967844204999949, 50.55158112200007), (-4.954823370999918, 50.56122467700004), (-4.947255011999914, 50.56244538000004), (-4.941477016999954, 50.55695221600007), (-4.937123175999943, 50.54531484600005), (-4.9344376289999445, 50.53164297100005), (-4.933583136999914, 50.52024974200003), (-4.926869269999941, 50.52289459800005), (-4.924305792999917, 50.52448151200008), (-4.920521613999938, 50.52765534100007), (-4.902414516999954, 50.52057526200008), (-4.860951300999943, 50.519191799000055), (-4.844838019999941, 50.51406484600005), (-4.855824347999942, 50.527411200000074), (-4.87328040299991, 50.534084377000056), (-4.906239386999914, 50.54197825700004), (-4.921864386999914, 50.55487702000005), (-4.92023678299995, 50.564154364000046), (-4.915191209999932, 50.57249583500004), (-4.920521613999938, 50.58295319200005), (-4.920521613999938, 50.589178778000075), (-4.895659959999932, 50.585923570000034), (-4.821197068999936, 50.589178778000075), (-4.7924698559999115, 50.59520091400009), (-4.7766007149999155, 50.60984935100004), (-4.765044725999928, 50.62799713700008), (-4.7492569649999155, 50.64443594000005), (-4.755441860999952, 50.659369208000044), (-4.751942511999914, 50.67007070500006), (-4.741932745999918, 50.67487213700008), (-4.728138800999943, 50.672308661000045), (-4.657297329999949, 50.71112702000005), (-4.645578579999949, 50.723537502000056), (-4.637806769999941, 50.74115631700005), (-4.619007941999939, 50.754787502000056), (-4.577259894999941, 50.774725653000075), (-4.5501195949999556, 50.80955638200004), (-4.55492102799991, 50.897772528000075), (-4.543771938999953, 50.93919505400004), (-4.536854620999918, 50.94757721600007), (-4.5226944649999155, 50.972723700000074), (-4.5266820949999556, 50.98037344000005), (-4.530425584999932, 50.99469635600008), (-4.531320766999954, 51.008693752000056), (-4.526437954999949, 51.014960028000075), (-4.437326626999948, 51.014960028000075), (-4.4264216789999296, 51.01268138200004), (-4.4057511059999115, 51.00287506700005), (-4.3957413399999155, 51.00067780200004), (-4.337717251999948, 50.99664948100008), (-4.317290818999936, 51.00067780200004), (-4.302316860999952, 51.007513739000046), (-4.234730597999942, 51.05532461100006), (-4.2291560539999296, 51.06110260600008), (-4.224680141999954, 51.06708405200004), (-4.218495245999918, 51.07245514500005), (-4.207997199999909, 51.07636139500005), (-4.214263475999928, 51.086004950000074), (-4.226307745999918, 51.11322663000004), (-4.228505011999914, 51.120428778000075), (-4.2319229809999115, 51.12669505400004), (-4.249012824999909, 51.14288971600007), (-4.255767381999931, 51.15151601800005), (-4.222320115999935, 51.149725653000075), (-4.214833136999914, 51.15151601800005), (-4.208363410999937, 51.16229889500005), (-4.2098282539999445, 51.17283763200004), (-4.217274542999917, 51.18138255400004), (-4.228505011999914, 51.18622467700004), (-4.228505011999914, 51.19245026200008), (-4.152333136999914, 51.21161530200004), (-3.969471808999913, 51.22239817900004), (-3.931996222999942, 51.231350002000056), (-3.9131973949999406, 51.23338450700004), (-3.840891079999949, 51.23338450700004), (-3.818959113999938, 51.23607005400004), (-3.787098761999914, 51.24677155200004), (-3.769154425999943, 51.247707424000055), (-3.6397598949999406, 51.22638580900008), (-3.559315558999913, 51.22809479400007), (-3.434193488999938, 51.20978424700007), (-3.4043676419999542, 51.19204336100006), (-3.38499915299991, 51.18622467700004), (-3.2707413399999155, 51.18939850500004), (-3.198882615999935, 51.203558661000045), (-3.1627498039999296, 51.206732489000046), (-3.096750454999949, 51.20453522300005), (-3.057525193999936, 51.20815664300005), (-3.029286261999914, 51.220404364000046), (-3.021839972999942, 51.21356842700004), (-3.0355525379999335, 51.199286200000074), (-3.021839972999942, 51.19245026200008), (-3.004790818999936, 51.21312083500004), (-3.0013321609999366, 51.220404364000046), (-2.9995824859999516, 51.23322174700007), (-3.0015356109999516, 51.23969147300005), (-3.0049942699999406, 51.24506256700005), (-3.008168097999942, 51.25454336100006), (-3.0076391269999476, 51.29197825700004), (-3.0106095039999445, 51.310980536000045), (-3.021839972999942, 51.32282135600008), (-3.0024307929999168, 51.31907786700003), (-2.992176886999914, 51.321926174000055), (-2.992095506999931, 51.32204824400009), (-2.988392706999946, 51.33112213700008), (-2.9877823559999115, 51.34666575700004), (-2.9798884759999282, 51.35586172100005), (-2.965972459999932, 51.364935614000046), (-2.959584113999938, 51.374253648000035), (-2.9746801419999542, 51.38422272300005), (-2.9529516269999476, 51.398504950000074), (-2.9210098949999406, 51.39443594000005), (-2.8841853509999282, 51.41697825700004), (-2.816395636999914, 51.47361888200004), (-2.798573370999918, 51.48261139500005), (-2.780873175999943, 51.48908112200007), (-2.7612198559999115, 51.49286530200004), (-2.7376195949999556, 51.49408600500004), (-2.716420050999943, 51.49957916900007), (-2.6961563789999445, 51.51264069200005), (-2.6078181629999335, 51.60736725500004), (-2.599598761999914, 51.611395575000074), (-2.5892227859999366, 51.61424388200004), (-2.580433722999942, 51.61863841400009), (-2.5768123039999296, 51.62750885600008), (-2.57445227799991, 51.63572825700004), (-2.568959113999938, 51.644964911000045), (-2.562245245999918, 51.65338776200008), (-2.556385870999918, 51.65924713700008), (-2.499175584999932, 51.69676341400009), (-2.464995897999927, 51.725897528000075), (-2.4477432929999168, 51.73187897300005), (-2.404896613999938, 51.74115631700005), (-2.3885391919999392, 51.750433661000045), (-2.380767381999931, 51.76190827000005), (-2.3833715489999463, 51.77326080900008), (-2.398060675999943, 51.782131252000056), (-2.4024145169999542, 51.76357656500005), (-2.4203995429999168, 51.753119208000044), (-2.4434301419999542, 51.74843984600005), (-2.4632869129999335, 51.747300523000035), (-2.482085740999935, 51.74286530200004), (-2.495838995999918, 51.73200104400007), (-2.507964647999927, 51.71857330900008), (-2.5221248039999296, 51.706366278000075), (-2.581695115999935, 51.681708075000074), (-2.5911352199999556, 51.67536041900007), (-2.600209113999938, 51.66559479400007), (-2.6653539699999556, 51.617254950000074)]\n", + " draw_map(plot, x, y, colour)\n", + " plot.plot(\n", + " [merc_x(coord[0]) for coord in gb_boundary],\n", + " [merc_y(coord[1]) for coord in gb_boundary],\n", + " \"k-\",\n", + " )\n", + "\n", + "country = Config(\n", + " get_data=get_literal_data(),\n", + " clean=get_map_cleaner_for(\"Temperature\"),\n", + " title=\"Country wide temperature\",\n", + " ylabel=\"\",\n", + " draw=draw_map_with_gb,\n", + ")\n", + "\n", + "out = widgets.interactive(interactable_plot_multiple_charts(configs=configs + (country, )), collected_after=start, collected_before=end)\n", + "display(out)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "apd.aggregation", + "language": "python", + "name": "apd.aggregation" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Ch12/apd.aggregation-chapter12-ex01/LICENCE b/Ch12/apd.aggregation-chapter12-ex01/LICENCE new file mode 100644 index 0000000..86685d4 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/LICENCE @@ -0,0 +1,31 @@ +Copyright (c) 2019, Matthew Wilkes + + +All rights reserved. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + +* Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + +* Redistributions in binary form must reproduce the above copyright notice, this + list of conditions and the following disclaimer in the documentation and/or + other materials provided with the distribution. + +* Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived from this + software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND +ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. +IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, +INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, +BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY +OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE +OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED +OF THE POSSIBILITY OF SUCH DAMAGE. + + diff --git a/Ch12/apd.aggregation-chapter12-ex01/Mapping.ipynb b/Ch12/apd.aggregation-chapter12-ex01/Mapping.ipynb new file mode 100644 index 0000000..916e704 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/Mapping.ipynb @@ -0,0 +1,254 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "datapoints = {\n", + " (53.8667, -1.3333): -1,\n", + " (53.35, -2.2833): 1,\n", + " (52.45, -1.7333): 3,\n", + " (51.5, -0.1333): 6,\n", + " (51.55, -2.5667): 5,\n", + " (54.9667, -1.6167): -1,\n", + " (55.9667, -3.2167): -1,\n", + " (54.7667, -1.5833): 0,\n", + " (53.7667, -0.3): 1,\n", + " (53.7667, -3.0167): 0,\n", + " (51.4833, -3.1833): 4,\n", + " (53.2667, -3.5167): 2,\n", + " (52.0833, -2.8): 2,\n", + " (52.0167, -0.6): 2,\n", + " (52.6667, 1.2667): 5,\n", + " (50.4333, -4.9833): 9,\n", + " (50.35, -4.1167): 10,\n", + " (50.5167, -2.45): 9,\n", + " (50.8333, -1.1667): 9,\n", + " (56.45, -5.4333): 4,\n", + " (57.5333, -4.05): -2,\n", + " (54.5167, -3.6167): 3,\n", + " (53.0833, 0.2667): 4,\n", + " (51.35, 1.3333): 7,\n", + " (50.8833, 0.3167): 8,\n", + " (58.45, -3.1): 3,\n", + " (50.1, -5.6667): 9,\n", + " (58.2167, -6.3333): 4,\n", + " (55.6833, -6.25): 7,\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAARS0lEQVR4nO3df4hc13nG8eexYodFuJWDVkq0tiqH2oIksiV3LEJFfshuJNukjiIItPQP0RRUmyTQgJVYFTRtjbGwUtxSSqlKTEOJGlKq3YS6tqTGENM/nGQVyZVCrcQ1SuJdN5JSRFOy9Q/57R9zx9pdzXpmdufee87M9wNmd+7OaF9rtM+ee+4573VECACQn6vqLgAAsDgEOABkigAHgEwR4ACQKQIcADL1tiq/2cqVK2PdunVVfksAyN7x48cvRMTo/OOVBvi6des0OTlZ5bcEgOzZ/lG740yhAECmCHAAyBQBDgCZIsABIFMEOABkqtJVKMBiTJyY0oEjZzR9cUZrVoxoz/b12rFprO6ygNoR4EjaxIkp7T18SjOvXZIkTV2c0d7DpySJEMfQYwoFSTtw5Myb4d0y89olHThypqaKgHQQ4Eja9MWZno4Dw4QAR9LWrBjp6TgwTAhwJG3P9vUauXrZnGMjVy/Tnu3ra6oISEfyFzFZgTDcWu81/waAKyUd4KxAgNR8r3m/gSslPYXCCgQAWFjSAc4KBABYWNIBzgoEAFhYVwFu+6ztU7ZP2p4sjm20/WzrmO3N/S6OFQgAsLBeLmJujYgLsx4/KulPIuJJ2/cUjz/cz+JYgQAAC1vKKpSQ9EvF578saXrp5VyJFQgA0F63AR6SjtoOSX8TEQcl/YGkI7a/qOZUzK+3e6Ht3ZJ2S9LatWuXXjEAQFL3FzG3RMRtku6W9CnbH5R0v6TPRsQNkj4r6UvtXhgRByOiERGN0dErbqoMAFikrgI8IqaLj+ckjUvaLGmXpMPFU/6xOAYAqEjHALe93Pa1rc8lbZN0Ws057w8VT7tD0g/LKhIAcKVu5sBXSxq33Xr+oYh4yvb/SvoL22+T9H8q5rkBANXoGOAR8aKkW9sc/zdJv1ZGUQCAzpLeiQkAWBgBDgCZSrqdLKpF73UgLwQ4JNF7HcgRUyiQRO91IEcEOCTRex3IEQEOSfReB3JEgEMSvdeBHHERE5LovQ7kiADHm+i9DuSFKRQAyBQBDgCZIsABIFMEOABkigAHgEwR4ACQKQIcADJFgANApghwAMgUAQ4AmSLAASBTBDgAZIoAB4BMEeAAkCkCHAAyRYADQKYIcADIFAEOAJnilmo9mjgxxX0jASSBAO/BxIkp7T18SjOvXZIkTV2c0d7DpySJEAdQOaZQenDgyJk3w7tl5rVLOnDkTE0VARhmBHgPpi/O9HQcAMpEgPdgzYqRno4DQJkI8B7s2b5eI1cvm3Ns5Opl2rN9fU0VARhmXMTsQetCJatQAKSAAO/Rjk1jBDaAJDCFAgCZIsABIFNdBbjts7ZP2T5pe3LW8c/YPmP7+7YfLa9MAMB8vcyBb42IC60HtrdK+pikWyLiFdur+l4dhg6tCoDuLeUi5v2S9kfEK5IUEef6UxKGFa0KgN50Owceko7aPm57d3HsZkkfsP1t29+yfXu7F9rebXvS9uT58+f7UTMGFK0KgN50OwLfEhHTxTTJMdvPF6+9TtL7Jd0u6Wu23x0RMfuFEXFQ0kFJajQaIWABtCoAetPVCDwipouP5ySNS9os6SVJh6PpO5LekLSyrEIx+GhVAPSmY4DbXm772tbnkrZJOi1pQtIdxfGbJV0j6cJCfw7QCa0KgN50M4WyWtK47dbzD0XEU7avkfS47dOSXpW0a/70CdALWhUAvXGVmdtoNGJycrLzExfAEjMAw8j28YhozD+eTS8UlpgBwFzZbKVniRkAzJVNgLPEDADmyibAWWIGAHNlE+AsMQOAubK5iMkSMwCYK5sAl7gbDgDMls0UCgBgLgIcADJFgANApghwAMgUAQ4AmSLAASBTBDgAZIoAB4BMEeAAkKmsdmICg4wblqBXBDiQAG5YgsVgCgVIADcswWIQ4EACuGEJFoMABxKw0I1JrrI1cWKq4mqQCwIcSEC7G5ZI0qUI7T18ihBHWwQ4kIAdm8b0yM4NWmZf8TXmwrEQAhxIxI5NY3ojou3XmAtHOwQ4kBBu3o1eEOBAQrh5N3rBRh70FbsJl4abd6MXBDj6ht2E/cHNu9EtplDQN+wmBKpFgKNv2E0IVIsAR9+wggKoFgGOvmEFBVAtLmKib1hBAVSLAEdfsYICqA5TKACQKQIcADJFgANApghwAMhUVwFu+6ztU7ZP2p6c97UHbIftleWUCABop5dVKFsj4sLsA7ZvkPQRST/ua1UAgI6WOoXymKTPSWrfhR4AUJpuAzwkHbV93PZuSbJ9r6SpiHiutOoAAAvqdgplS0RM214l6Zjt5yXtk7St0wuLwN8tSWvXrl10oQDmovc6uhqBR8R08fGcpHFJH5J0o6TnbJ+VdL2k79l+Z5vXHoyIRkQ0RkdH+1Y4MMxavdenLs4odLn3OnevHy4dR+C2l0u6KiJ+Xny+TdKfRsSqWc85K6kx/yIn0G+MOpveqvd6Sn8fvF/l6mYKZbWkcdut5x+KiKdKrQpogzv+XJZD73Xer/J1nEKJiBcj4tbiv/dGxMNtnrOO0TfKxh1/Lsuh9zrvV/nYiYls5DDqrEoOvdd5v8pHgCMbOYw6q7Jj05ge2blBYytGZEljK0b0yM4NSU1N8H6Vj37gyMae7evnzKlK6Y06q5R673Xer/IR4MgGd/zJC+9X+RxR3S74RqMRk5OTnZ8IAHiT7eMR0Zh/nDlwAMgUAQ4AmWIOHOiA3YRIFQEOvAV2EyJlBDhKlfvoNZeeIxhOBDhKMwijV3YTImVcxERpBqEXBrsJkTICHKUZhNFrDj1HMLyYQkFp1qwY0VSbsM5p9MpuwjTlfm2lXwhwlGZQemGk3nNk2AzCtZV+YQoFpcmhYx7yMwjXVvqFEThKxegV/TYI11b6hRE4gKywMugyAhxAVlgZdBlTKACywsqgywhwANnh2koTUygAkCkCHAAyxRQKAPRZVTtFCXAA6KMqd4oyhQIAfVTlTlECHAD6qMqdogQ4APRRlTtFCXCgJhMnprRl/9O68cEntGX/05o4MVV3SeiDKneKchETqAEtUQdXlTtFCXCgBtwsebBVtVOUKRSgBrRERT8Q4EANaImKfiDAgRrQEhX9wBw4UANaoqIfCHCgJrRExVIxhQIAmWIEjoFSVRc4IAUEOAYGm2MwbLoKcNtnJf1c0iVJr0dEw/YBSb8p6VVJ/ynpdyPiYlmFAp2wOaZ8nOGkpZc58K0RsTEiGsXjY5LeFxG3SPqBpL19rw7oAZtjytU6w5m6OKPQ5TMcerjUZ9EXMSPiaES8Xjx8VtL1/SkJWBw2x5Sryj7X6E63AR6Sjto+bnt3m69/UtKT7V5oe7ftSduT58+fX2ydQEdsjikXZzjp6TbAt0TEbZLulvQp2x9sfcH2PkmvS/pKuxdGxMGIaEREY3R0dMkFAwvZsWlMj+zcoLEVI7KksRUjemTnBuZo+4QznPR0dREzIqaLj+dsj0vaLOkZ27skfVTSnRER5ZUJdIfNMeXZs339nFU+Emc4des4Are93Pa1rc8lbZN02vZdkj4v6d6I+EW5ZQKoG2c46elmBL5a0rjt1vMPRcRTtl+Q9HZJx4qvPRsR95VWKYDacYaTlo4BHhEvSrq1zfFfLaUiAEBX6IUCAJkiwAEgU/RCwVBiSzgGAQGO5JQdrjS9qh+/QPuDKRQkpYp+G2wJrxc9VfqHAEdSqghXtoTXi1+g/cMUCpJSRbiuWTGiqTZ/HlvCqzFsv0DLnC5iBI6kVNFvg6ZX9RqmniplTxcR4EhKFeHKlvB6DdMv0LKni5hCQVJaIVr2CgW2hNenqvc4BWVPFxHgSA7hOviG5T0u+3oLUygAUJKyp4sYgQNAScqeLiLAAaBEZU4XMYUCAJkiwAEgUwQ4AGSKOXAA2Rr2roYEOIAs0RaYAAcGzrCMSt9qm/og/v+2Q4ADA2SYRqXD1tWwHS5iAgNkmHptD1NXw4UQ4MAAGaZR6TB1NVwIAQ4MkGEaldIWmDlwYKDs2b5+zhy4NNij0mHpargQAhwYIMPUaxsEOCBpsJbeDfuodJgQ4Bh6w7T0DoOFAK/JII34cseGEOSKAK8BI760DNPSOwwWlhHWIKXNFhMnprRl/9O68cEntGX/05o4MVV5DXUbpqV3GCwEeA1SGfG1zgSmLs4odPlMYNhCnA0hyBUBXoNURnwpnQnUiQ0hyBVz4DVIZbNFKmcCKWDpHXLECLwGqYz4UjkTALA4jMBrksKIL5UzAQCLQ4DPMmxrs9l2DeSNAC8M69rsFM4EACxOV3Pgts/aPmX7pO3J4tg7bB+z/cPi43XlllouVmQAyE0vFzG3RsTGiGgUjx+U9M2IuEnSN4vH2WJFBoDcLGUVysckfbn4/MuSdiy9nPqwIgNAbroN8JB01PZx27uLY6sj4mVJKj6uavdC27ttT9qePH/+/NIrLgm78QDkptuLmFsiYtr2KknHbD/f7TeIiIOSDkpSo9GIRdRYCVZkAMhNVwEeEdPFx3O2xyVtlvRT2++KiJdtv0vSuRLrrAQrMgDkpOMUiu3ltq9tfS5pm6TTkr4haVfxtF2Svl5WkQCAK3UzAl8tadx26/mHIuIp29+V9DXbvyfpx5I+UV6ZAID5OgZ4RLwo6dY2x38m6c4yigIAdEYzKwDIFAEOAJlyRHUr+2yfl/Sjyr6htFLShQq/X6+ob2lSri/l2iTqW4o6avuViBidf7DSAK+a7clZW/+TQ31Lk3J9KdcmUd9SpFQbUygAkCkCHAAyNegBfrDuAjqgvqVJub6Ua5OobymSqW2g58ABYJAN+ggcAAYWAQ4AmRqKALf9GdtnbH/f9qN11zOb7T+2PVXcru6k7Xvqrqkd2w/YDtsr666lxfZDtv+9+Hs7antN3TXNZvuA7eeLGsdtr6i7ptlsf6L4mXjDdhLL4mzfVfysvmA7qbt82X7c9jnbp+uupWXgA9z2VjXvHnRLRLxX0hdrLqmdx4rb1W2MiH+pu5j5bN8g6SNqNi1LyYGIuCUiNkr6Z0l/VHdB8xyT9L6IuEXSDyTtrbme+U5L2inpmboLkSTbyyT9laS7Jb1H0m/bfk+9Vc3xd5LuqruI2QY+wCXdL2l/RLwiNXua11xPjh6T9Dk178yUjIj4n1kPlyu9+o5GxOvFw2clXV9nPfNFxH9EREp37d4s6YWIeDEiXpX0VTUHX0mIiGck/Xfddcw2DAF+s6QP2P627W/Zvr3ugtr4dHGa/bjt6+ouZjbb90qaiojn6q6lHdsP2/6JpN9ReiPw2T4p6cm6i0jcmKSfzHr8UnEMC+j2lmpJs/2vkt7Z5kv71Px/vE7S+yXdrmYP83dHhesnO9T315IeUnP0+JCkP1Pzh70yHer7QzVv4lGLt6otIr4eEfsk7bO9V9KnJX0hpfqK5+yT9Lqkr1RZW/G9O9aXELc5ltRZVWoGIsAj4jcW+prt+yUdLgL7O7bfULMZTWV3WH6r+maz/bdqzuVWaqH6bG+QdKOk54obelwv6Xu2N0fEf9VZWxuHJD2higO8U322d0n6qKQ7qxw0tPTw95eClyTdMOvx9ZKma6olC8MwhTIh6Q5Jsn2zpGuUUJez4n6iLR9X88JSEiLiVESsioh1EbFOzR+w26oK705s3zTr4b2Sur7ZdhVs3yXp85LujYhf1F1PBr4r6SbbN9q+RtJvqXnrRixg4HdiFv8QHpe0UdKrkh6IiKfrreoy23+vZm0h6ayk34+Il2stagG2z0pqREQSvwBt/5Ok9ZLeULNN8X0RMVVvVZfZfkHS2yX9rDj0bETcV2NJc9j+uKS/lDQq6aKkkxGxveaa7pH055KWSXo8Ih6us57ZbP+DpA+reQb/U0lfiIgv1VrToAc4AAyqYZhCAYCBRIADQKYIcADIFAEOAJkiwAEgUwQ4AGSKAAeATP0/KVaoHKMq6aEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "fig, ax = plt.subplots()\n", + "lats = [ll[0] for ll in datapoints.keys()]\n", + "lons = [ll[1] for ll in datapoints.keys()]\n", + "ax.plot(lons, lats, \"o\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJcAAAD4CAYAAADhPXT2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAL9UlEQVR4nO3db6ieZR0H8O/XqXEQa8bOTKfrWOmCUqc9jmikLbOplC4hqFejgpVokNBK8Y0FoTgjehWdSPBFEQZzRWHTNIpeWJ41bTOc2pi2cyTPgoHSUme/Xjz3Wc8Oz3PO/dz3/buvP/f3A2PnPOc8ey7Gl+v/dV80M4h4OCV0ASRfCpe4UbjEjcIlbhQucXNqmx+2atUqm5qaavMjxdmePXuOmNnksJ+1Gq6pqSnMzMy0+ZHijOSLo36mZlHcKFziRuESNwqXuFG4xE2ro8XU7do7ix27D2Du6DGcu3IC2zevw5bL1oQuVrQUrpJ27Z3FHTv34dibbwEAZo8ewx079wGAAjaCmsWSduw+cCJYC469+RZ27D4QqETxU7hKmjt6bKzXReEq7dyVE2O9LgpXads3r8PEaStOem3itBXYvnldoBLFL1iHPrWR10LZUipzaEHClerIa8tla6IuX2yCNIsaeXVDkHBp5NUNQcKlkVc3lAoXyUMk95F8iuRM8dp6kk8svEZyQ9kP1cirG8bp0G8ysyMD398L4Ftm9jDJ64vvP1bmH9LIqxvqjBYNwNuLr98BYG6cN2vklb+y4TIAj5A0AD80s2kAXwOwm+R96DevHxn2RpLbAGwDgLVr19YvsSSjbId+o5ldDuA6ALeQvBLAzQBuM7PzAdwG4MfD3mhm02bWM7Pe5OTQQyKSqVLhMrO54u9XADwEYAOArQB2Fr/y8+I1kROWDRfJM0ieufA1gE8C2I9+H+uq4tc+DuB5r0JKmsr0uc4G8BDJhd//qZn9huRrAL5P8lQA/0HRrxJZsGy4zOwggEuHvP5HAB/yKJTkQVtuxI3CJW46e0Ajtf1kKepkuFLdT5aaTjaL2k/Wjk6GS/vJ2tHJcGk/WTs6GS7tJ2tHJzv02k/Wjk6GC9B+sjZ0slmUdihc4kbhEjcKl7hRuMSNwiVuFC5xo3CJG4VL3Chc4kbhEjcKl7hRuMSNwiVuFC5xo3CJG4VL3Chc4iapbc46JZ2WZMKlU9LpSaZZ1Cnp9CQTLp2STk8y4dIp6fQkEy6dkk5PMh16nZJOTzLhAnRKOjXJNIuSHoVL3FS+Eq94/askD5B8huS9fsWUFFW+Eo/kJgA3ArjEzF4nubrx0kVES0/jq9OhvxnAPWb2OnDiXqAsaempmrJ9roUr8fYUV9wBwEUAPkryTyR/T/KKYW8kua24SXZmfn6+iTK3TktP1ZStuTaa2VzR9D1K8tnivWcB+DCAKwA8SPI9ZmaDbyzuZpwGgF6vZ0iQlp6qqXMl3mEAO63vzwD+C2CVV0FD0tJTNXWuxNuF/lV4IHkRgNMBHBn176RMS0/V1LkS73QA95PcD+ANAFsXN4m50NJTNWwzD71ez2ZmTkyTaXifAZJ7zKw37GfB1hY1vM9fsOUfDe/zFyxcGt7nL1i4NLzPX7BwaXifv2Adeg3v8xd0J6p2luZNmwXFjcIlbhQucaNwiRuFS9woXOJG4RI3Cpe4UbjETVLPishRzhsmFa6Act8wqWYxoNw3TCpcAeW+YVLhCij3DZMKV0Cb3j851uupUbgC+t2zw5+dMer11ChcAanPJW7U5xI3uR9S0STqIm3OmOd+SEXhGhBixjznQypqFgfkPmPeNoVrQO6jt7YpXANyH721TeEakPvorW3q0A/IffTWNoVrkZxHb21TsyhuFC5xo3CJG4VL3NS6Eq/42ddJGsksb8+Q6ipfiQcAJM8HcA2AlxotlWShbrP4PQDfQP9WM5GTVL4Sj+QNAGbN7Gm30knS6lyJdyf6l0wtqQjjNgBYu3Zt5YJ2RU4nsKteiXcVgAsAPE3yEIDzAPyF5LuGvHfazHpm1puczONUi5eF/WSzR4/B8P/9ZLv2zoYuWiXL1lzFNXinmNmrA1fifdvMVg/8ziEAvcUd/hx51ixL7Sdb7jNirPEqX4nnWqpIee9UrbqfLNZnTizbLJrZQTO7tPjzATP7zpDfmepCreW9U7XqfrJYd9Bqhn4M3jtVq+4ni3UHrcI1Bu+dqlsuW4O7b7oYa1ZOgADWrJzA3TddvGzTFusOWu3nGsP2zetO6tsAze9UrbKfrI1yVaFwjSHWnaqxlivoHdeSvqXuuFafS9woXOJGfS5HMc6at0nhchLrrHmbFK4R6tY6ddYJc6FwDdFErRPrrHmb1KEfoom1ulhnzdukcA3RRK2j506oWRzq3JUTmB0SpHFqndhmzUOMXBWuIZpaq4vluROhRq5qFoeoujshVqH2e6nmGiGWWqcJoUauqrk6INTIVeHqgFAjVzWLHRBq5KpwdUSIPqSaRXGjcIkbNYuypDoz+wqXjFR3Zl/NooxUd2Zf4ZKR6s7sK1wyUt2ZfYUrkF17Z7Hxnsdxwe2/xsZ7Ho/yGVx1Z/bVoQ8glcMbdWf2Fa4AUjq8UWdmX81iAF05vKFwBdCVwxsKVwBdObyhPlcAsR3e8KJwBZLTNupR1CyKG9VcNXT9KTbLUbgqSmUiNKRS4SpuyHgVwFsAjptZj+QOAJ8G8AaAvwP4gpkd9SpobEJPhKZQa47T59pkZusHnn/5KIAPmtklAJ4DcEfjpYtYyInQVO4IqtyhN7NHzOx48e0T6F8u1RkhJ0JjvTFjscr3LS7yRQAPD3sjyW0kZ0jOzM/PVy1ndEJOhKayfFQ2XBvN7HIA1wG4heSVCz8geSeA4wB+MuyNuV6JF/J5EqksH5Xq0A/et0jyIQAbAPyB5FYAnwJwtbX5QPtIhJoIjfXGjMWWrblInkHyzIWv0b9vcT/JawF8E8ANZvZv32LKoFSewlP5vkWSLwB4G/rXEgPAE2b2FbeSyklSWD5aNlxmdhDApUNef59LiSQbWlsUNwqXuNHaYoNSWJJpk8JV0nLBiWkhO5aQq1ksocxaXixLMjGtOypcJZQJTixLMrGEHFCzWEqZ4DRxMUITPEJetZlVzVVCmbW8WE70NL3uWKeZVbhKKBOcWJZkmg55nWZWzWIJZY+CxbAk0/SxtTrNrMJVUgzBKavJstbpS6pZlCXVaWZVc8mS6jSzCpcsq2ozq2ZR3Chc4kbhEjfqc3VI27slFK6OCLElSOGKVNO1TIhnWyhcEfKoZUJsCVKHPkIee7JCnNJWuCLkUcuE2BKkcEXIo5YJsSVIfa4IeT0Lou2dHQpXhHJ5lLjC1bCmphBS2j82isLVoJjOLsYgi3DFcgg09EN4Y5N8uGKqLWI5uxiL5Kciqkw4et3SmsrjJNuSfLjGrS08j7vHcnYxFsmHa9zawvO4eyxnF2ORfJ9r3AlH735RDlMITUm+5hq3tlC/qD3J11zAeLVFKo/ZzkH04Wp6DiuXpZUURB0urzks9YvaUarPRfIQyX0knyI5U7z2TpKPkny++PuspgsX04PMZHx1rsS7HcBjZnYhgMeK7xulGe+01Rkt3gjggeLrBwBsqV+ck2lkl7Y6V+KdbWYvA0Dx9+phb6xzJZ5mvNNWtkO/0czmSK5G/66fZ8t+gJlNA5gGgF6vN9bNZhrZpa3OlXj/JHmOmb1M8hwAr3gUUCO7dFW+Eg/ALwFsLX5tK4BfeBVS0lTnSrwnATxI8ksAXgLwWb9iSorqXIn3LwBXexRK8pD8wrXES+ESN2zz3nOS8wBedPyIVQCOOP77KfL+P3m3mU0O+0Gr4fJGcmZgeUoQ9v9EzaK4UbjETW7hmg5dgAgF+z/Jqs8lccmt5pKIKFziJrtwkbyL5GyxJfspkteHLlMoJK8leYDkCyQb3ym87Ofn1ucieReA18zsvtBlCYnkCgDPAbgGwGEATwL4vJn9ra0yZFdzyQkbALxgZgfN7A0AP0N/a3prcg3XrST/SvJ+j1NJiVgD4B8D3x8uXmtNkuEi+VuS+4f8uRHADwC8F8B6AC8D+G7QwobDIa+12geK+lDsKGb2iTK/R/JHAH7lXJxYHQZw/sD35wGYa7MASdZcSyn28y/4DPpbsrvoSQAXkryA5OkAPof+1vTWJFlzLeNekuvRbwIOAfhy2OKEYWbHSd4KYDeAFQDuN7Nn2ixDdlMREo/smkWJh8IlbhQucaNwiRuFS9woXOJG4RI3/wOfdKaAPZfJtAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "fig, ax = plt.subplots()\n", + "lats = [ll[0] for ll in datapoints.keys()]\n", + "lons = [ll[1] for ll in datapoints.keys()]\n", + "# Don't draw lines\n", + "ax.plot(lons, lats, \"o\")\n", + "# This is a map of the UK. Here, 1 degree latitude is \n", + "# 1.7x as far as 1 degree longitude\n", + "ax.set_aspect(1.7)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Set up mercator transform from https://wiki.openstreetmap.org/wiki/Mercator#Python\n", + "# Thanks to Paulo Silva and the OSM contributors\n", + "import math\n", + "\n", + "def merc_x(lon):\n", + " r_major=6378137.000\n", + " return r_major*math.radians(lon)\n", + "\n", + "def merc_y(lat):\n", + " if lat>89.5:lat=89.5\n", + " if lat<-89.5:lat=-89.5\n", + " r_major=6378137.000\n", + " r_minor=6356752.3142\n", + " temp=r_minor/r_major\n", + " eccent=math.sqrt(1-temp**2)\n", + " phi=math.radians(lat)\n", + " sinphi=math.sin(phi)\n", + " con=eccent*sinphi\n", + " com=eccent/2\n", + " con=((1.0-con)/(1.0+con))**com\n", + " ts=math.tan((math.pi/2-phi)/2)/con\n", + " y=0-r_major*math.log(ts)\n", + " return y\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJkAAAEDCAYAAAAm1qYrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAARk0lEQVR4nO2de7BdVX3HP98mgqE8biTgwA1pghNCHTU8LoJaLQ9LgE4bcGhLtUVSbEpB+pgxo4zT6gwzVSd1xjIUMsBYSlVQMI1IlWgLiFMJmAgkPLx4IWO4CZbwCLYh05Lw6x973XBycu6957HW2Wvv8/vM3Mk5a6997u+efGft9fh915KZ4Tgp+ZWyA3Dqj4vMSY6LzEmOi8xJjovMSY6LzElOqSKT9GVJz0t6rM36vy/pCUmPS/pa6vicOKjMeTJJHwD+B7jFzN4xTd2FwDeAM83sZUlHmtnz/YjT6Y1SWzIzux94qbFM0tsk3S1pg6QfSjo+XPpT4B/N7OVwrwusIuTYJ7sBuNLMTgY+AVwXyo8DjpP0n5LWSTqntAidjphZdgCNSDoYeC9wu6SJ4gPDvzOBhcDpwFzgh5LeYWY7+h2n0xlZiYyiZd1hZie0uDYOrDOz14DNkkYpRPfjfgbodE5Wj0sz+yWFgH4PQAWLw+U1wBmhfA7F4/OZUgJ1OqLsKYxbgQeARZLGJV0KfAS4VNKjwOPA0lB9LfCipCeAe4EVZvZiGXE7nVHqFIYzGGT1uHTqSWkd/zlz5tj8+fPL+vVOAjZs2PCCmR3RXF6ayObPn8/69evL+vVOAiT9vFW5Py6d5LjInOS4yJzkuMic5LjInOTktnZZGdY8vJWVa0fZtmMXRw/NYsWSRZx/4nDZYWWJi6wL1jy8latWb2LXa3sA2LpjF1et3gTgQmuBPy67YOXa0b0Cm2DXa3tYuXa0pIjypi2RSfrrkFf/mKRbJb256bokXSNpTNJGSSelCTcPtu3Y1VH5oDOtyCQNA38BjIQ8/BnARU3VzqXI7VoILAeujxxnVhw9NKuj8kGn3cflTGCWpJnAQcC2putLKcwgZmbrgCFJR0WMMytWLFnErDfN2Kds1ptmsGLJopIiyptpO/5mtlXS3wNbgF3A98zse03VhoFnG96Ph7LnGitJWk7R0jFv3ry95VUbqU3EVqWYy2RakUmaTdFSLQB2UOTf/5GZfaWxWotb90tUM7MbKIwijIyMGFR3pHb+icNZx5cT7TwuPwhsNrPtIb9+NYXZo5Fx4JiG93PZ/5HaEh+p1Z92RLYFOE3SQSosRGcBTzbVuRO4OIwyTwNeMbPnmj+oFT5Sqz/TiszMHgTuAH4CbAr33CDpMkmXhWrfoTB1jAE3Ape3G4CP1OpPWzP+ZvYZ4DNNxasarhtwRTcBrFiyaJ8+GfhIrW6UvqzkI7X6U7rIwEdqdcfXLp3kuMic5LjInOS4yJzkuMic5LjInOS4yJzkuMic5LjInOS4yJzkZLGsVDZVy8ytGgMvsqpm5laJgX9cemZuegZeZJ6Zm552fJeLJD3S8PNLSX/VVOcwSd+W9GgwAS9LF3JcPDM3Pe2kX4+a2QnhAIeTgVeBf22qdgXwhJktpjgx5IuSDogdbArcQ5meTjv+ZwFPm1nz3qAGHBKMJgdTHMq1O0J8yfHM3PR0KrKLgFtblF9L4VjaBhwC/IGZvd5caTJzb9l4Zm5a2u74h8ff7wK3t7i8BHgEOBo4AbhW0qHNlczsBjMbMbORI47Ybydup6Z0Mro8F/iJmf1Xi2vLgNVhL4wxYDNwfIt6zgDSicj+kNaPSigMwGcBSHorsAg/XMsJtNUnk3QQ8FvAnzWUXQZgZquAq4GbJW2i2Bfjk2b2QvxwnSrSrrn3VeDwprJGc+824Oy4oTl1YeBn/J30uMic5LjInOS4yJzkuMic5LjInOS4yJzkuMic5LjInOS4yJzkuMic5LjInOS4yJzkuMic5FTWQe5bC1SHSorMtxaoFlHMvaHe6eH645J+kCbcAt9aoFq0c97lKIUDCUkzgK00mXslDQHXAeeY2RZJRyaIdS++tUC16LTjP5m598MUbqUtAGb2fIzgJsO3FqgWnYpsMnPvccBsSfdJ2iDp4lY3S1ouab2k9du3b+801r341gLVou2Of4O596pJPudkipZuFvCApHVm9lRjpVYn93aDby1QLToZXU5l7h0HXjCzncBOSfcDi4GnWtSNgm8tUB1imXu/Bbxf0szg0TyV/U/3dQaUKOZeM3tS0t3ARuB14CYzeyxBvE4FiWLuDe9XAivjhebUBV+7dJJTyWWlMvE1085xkXWAr5l2hz8uO8DXTLvDRdYBvmbaHS6yDvA10+5wkXWAr5l2h3f8O8DXTLsjK5FVYXrA10w7JxuR+fRAfcmmT+bTA/UlG5H59EB9yUZkPj1QX7IRmU8P1JdsOv4+PVBfshEZ+PRAXYlm7g11T5G0R9KF8UN1qkoUc2/DtS8AayPH6FScWOZegCuBbwJJjb1O9Yhi7pU0DFwArNrvjn3rRTH3OtUi1sm9X6I4fnBPi2t78ZN7B5NY5t4R4LbinHvmAOdJ2m1mayLE6FScTkQ2qbnXzBZMvJZ0M3CXC8yZoK3HZYO5d3VD2WUTBl/HmYpo5t6G8kt6D8upE9msXTr1JatlpUGnCpnB3eAiy4Q6Zwb74zIT6pwZ7CLLhDpnBrvIMqHOmcEuskw44/jWy2yTlVcJF1km3PvT1gkDk5VXCRdZJnifzEmO98mc5NTZreWTsVPQzxn4Oru1XGSTUMYMfF3dWv64nIQ6z8D3GxfZJNR5tNdvovguJX1E0sbw8yNJi9OF3B/qPNrrN9OKzMxGzewEMzuB4iS4V9nfd7kZ+E0zexdwNeEkuCpT59Fev+m049/Sd2lmP2p4uw6Y22tgZVPn0V6/6VRkkx2q2silwHe7Cycv6jra6zexDlWdqHMGhch+Y5Lry4HlAPPmzesoUKe6dDK6nMp3iaR3ATcBS83sxVZ13Nw7mEQ5VFXSPAq73B83HwntOFEOVQX+lsIyd11wke82s5Ho0TqVJIrv0sw+BnwsbmhOXfAZfyc5LjInOS4yJzme6pMpdXKTu8gypG5uchdZD6RqbabKZWvn83NrBV1kXZKyteklly3HVtA7/l2SMnO2l1y2HDN6XWRdkjJztpdcthwzel1kXZIyc/b8E4f53IfeyfDQLAQMD83icx96Z1uPuxwzer1P1iUrlizap+8DcTNnu81lSx1XN7jIuiTXzNkc45KZlfKLR0ZGbP369aX8bicNkja0yr7xPpmTHBeZkxzvk/WB3Gbg+00sc68kXSNpLBh8T0oXcrWYmIHfumMXxhsz8Gse3lp2aH0j1qGq5wILw8+pwPXh38rTayvU6zpkHYhi7gWWArdYMVRdJ2lI0lFm9lyUKEsixjpgjjPw/SbKoarAMPBsw/vxULYPVTtUNcY6YI4z8P0m1qGqalG23wRc1XyXMVoh31Mj3qGq48AxDe/nAtt6CSwHjh6axdYWguqkFcpxBr7fo90oh6oCdwIfl3QbRYf/lar3xyDeOmBOe2qUkW8W61DV7wDPAGPAjcDlkeMshV6yIXKljHyzWOZeA66IG1oe5NQKxaCM0a4vKw0YZYx2XWQDRhmjXV+7HDDKGO26yAaQfvcz/XHpJMdbMqctepnAdZE509LrBK4/Lp1p6XUC10XmTEuvE7guMmdaep3AdZFlwJqHt/K+z9/Dgk/9G+/7/D3ZpWb3OoHrHf+SyXEXnmZ6ncB1kZVMVTwAvUzg+uOyZAbBA+AiK5lB8AC4yEpmEDwA7WbGDkm6Q9JPJT0p6T1N1w+T9G1Jj0p6XNKyNOHWjzpm3zbTbsf/H4C7zezC4Fo6qOn6FcATZvY7ko4ARiV91cz+L2awdaVu2bfNTCsySYcCHwAuAQjCaRaPAYeoOL3rYOAlYHfUSDNn0Pe7mIp2HpfHAtuBf5L0sKSbJP1qU51rgV+nsMFtAv7SzF5v/qCqmXvbxfe7mJp2RDYTOAm43sxOBHYCn2qqswR4BDiaYt+Ma0MLuA9VM/e2S9k7Tue+YtCOyMaBcTN7MLy/g0J0jSwDVlvBGLAZOD5emHlT5lxXFVrRaUVmZr8AnpU0MaY+C3iiqdqWUI6ktwKLKHyYA0GZc11lt6Lt0O482ZXAVyVtpHgc/l2Tufdq4L2SNgH/AXzSzF6IH26elDnXVYUVg3bNvY8AzRvONpp7twFnR4yrUpS530WM/TpS4wvkkShrrivHffubcZFVnBx3DWrGRVYDcl8x8AVyJzkuMic5/rhMgK9j7ouLLDI55eznInYXWRdM9Z+XS85+TmL3PlmHTLdWmMsMfE7LTS6yDpnuPy+XnP1cxA4uso6Z7j8vl5z9FGLvNqXIRdYh0/3n5ZKzH1vsvaQUece/Q9pZK8xhBj72clMvAxoXWYdUYa1wgphi76WP5yLrghxaqn7TS0qR98mctuiljxfF3BvqnB5O9n1c0g/aDd6pBr0MaKKYeyUNAdcB55jZFklHdvg3OBWg225CLHPvhyncSltCnec7jsSpLbHMvccBsyXdJ2mDpItbfVBdzb3O1MQy984ETgZ+m8Lo+zeSjmv+oLqae6tGv83A7fTJWpl7m0U2DrxgZjuBnZLuBxYDT0WLdICJmbKT5aGqbZp7vwW8X9LMcADrqcCTUSMdUGI7xMvIzohi7jWzJ4G7gY3AQ8BNZvZYioAHjdiiKCM7I4q5N9RZCayMFJcTiC2KMszAPuOfObFTdspIRXKRZU5sUZSRiuQL5JmTIuuj3wv8LrKExJp6qHrWh4ssETm5hcqmdiLLxWuYizUuB2olspxaj5zcQmVTq9FlNxOXqdbxcrHG5UCtRNZp65FyU99crHE5UCuRddp6pFzHy8UalwO16pN1urVl6n5T1aceYlGrlqzT1sP7Tf2hUi1ZO9MTnbQeVdjUtw5URmQppieqZNStMpURWarJTe83pacyfTKf3Kwu0cy9od4pkvZIujBumN5JrzLttmQT5t7jKQwi++XvS5oBfAFYGy+8N/DJzeoSy9wLhQ/gm8ApEePbi3fSq0s7Hf9Gc+9iYAPFybw7JypIGgYuAM5kCpFJWg4sB5g3b17HwXonvZrEMvd+ieL4wT3NNzfi5t7BJJa5dwS4rTjnnjnAeZJ2m9maaJE6lWVakZnZLyQ9K2mRmY3SwtxrZgsmXku6GbjLBeZM0O5k7IS59wCKY5+XNRh7V015pzPwRDP3NtS9pMeYnJohMyvnF0vbgZ+X8suLfuPAnJHeQOq/+9fMbL8RXWkiKxNJ682suWWuPWX93ZVZu3Sqi4vMSc6giuyGsgMoiVL+7oHskzn9ZVBbMqePuMic5FRWZJI+K2lrOAXlEUnnNVy7StKYpFFJSxrKT5a0KVy7RmGxVdKBkr4eyh+UNL/hno9K+ln4+WhD+YJQ92fh3gP685d3jqRzwncxJql53Tk9ZlbJH+CzwCdalL8deBQ4EFgAPA3MCNceAt4DCPgucG4ovxxYFV5fBHw9vH4LxTLaW4DZ4fXscO0bwEXh9Srgz8v+Tib5nmaE7+BY4IDw3by9nzFUtiWbgqXAbWb2v2a2GRgD3i3pKOBQM3vAim//FuD8hnv+Oby+AzgrtHJLgO+b2Utm9jLwfeCccO3MUJdw78Rn5ca7gTEze8aKhNPbKP7evlF1kX1c0kZJX5Y0O5QNA8821BkPZcPhdXP5PveY2W7gFeDwKT7rcGBHqNv8Wbkx2d/QN7IWmaR/l/RYi5+lwPXA2yi2fH8O+OLEbS0+yqYo7+aeqT4rN0qPNWvfpZl9sJ16km4E7gpvx4FjGi7PBbaF8rktyhvvGZc0EzgMeCmUn950z30Ui8xDkmaG1qzxs3Jjsu+jb2Tdkk1F6GNNcAEwcTjFncBFYcS4AFgIPGRmzwH/Lem00Ke6mOIklYl7JkaOFwL3hH7bWuBsSbPD4/hsYG24dm+oS7h34rNy48fAwjAaPoBiYHNnXyMoe/TTw6jpX4BNFKeg3Akc1XDt0xQjqlHCCDKUj1CI8WngWt5Y8XgzcDvFIOEh4NiGe/4klI8ByxrKjw11x8K9B5b9nUzxXZ1Hcc7V08Cn+/37fVnJSU5lH5dOdXCROclxkTnJcZE5yXGROclxkTnJcZE5yfl/ynbAcPHJPm4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "\n", + "x = tuple(map(merc_x, lons))\n", + "y = tuple(map(merc_y, lats))\n", + "ax.plot(x, y, 'o')\n", + "ax.set_aspect(1.0)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJkAAAEDCAYAAAAm1qYrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAdbElEQVR4nO2de3Qc9XXHP1e7MtixAwa7kZEs/MAvqsY2CGzcJCWhhUDbUMqjhBAeDXWTBkh72iRNe8jpKee0p6Q5BUIDx3XTNqENwYYk9AVpSlLSYgM2tmPFxrGNgywhGRMeMciAtLr9Y2bNaDS7OzP7m53f7M7nnD1azfPu7Hfv/T3vT1SVnJwkaUvbgJzmJxdZTuLkIstJnFxkOYmTiywncXKR5SROqiITka+IyAsi0hfy+CtEZJeI/EhE/iVp+3LMIGm2k4nI+4DXgK+qak+NYxcB9wMfUNWXReTnVPWFRtiZUx+pejJVfQx4ybtNRBaKyMMislVEfiAiS91dvwP8raq+7J6bCywj2FgmWwfcpKpnAn8EfNndvhhYLCL/JyKbReSDqVmYE4li2gZ4EZHpwBpgg4iUNx/n/i0Ci4BzgS7gByLSo6qvNNrOnGhYJTIcz/qKqq4I2DcAbFbVUeCAiOzBEd1TjTQwJzpWhUtV/RmOgC4HEIfl7u5vAe93t8/CCZ/PpmJoTiTSbsL4OrAJWCIiAyLyMeAjwMdEZAfwI+Bi9/BHgJ+KyC7ge8CnVfWnadidE41UmzByWgOrwmVOc5JawX/WrFk6b968tG4fmZ0vHDr2fva0d/Cu6dORKse3Ilu3bn1RVWf7t4cSmYj8AXADoMBO4HpVfcOzX4A7gIuAEeA6VX262jXnzZvHli1bwn+CBrDgzi9W3NfpeX9OWyfr115Ke7GNYlshecMygog8F7S9pshEpBO4GThdVY+KyP3AlcA/eg67EKc5YRGwCrjb/Wsd1YQUxLSBySWKHQxxw7oHWHFGJ5sHDvLAFVeZMq8pCRsui8BUERkFpgHP+/ZfjNP/qMBmETlRROao6pBBW0MRVUR+gkQVxI7+IXb0DzHSNV7X/VqBmiJT1UER+WugHzgKfEdVv+M7rBM46Pl/wN02QWQishZYC9Dd3R3b6HqF5CWsqKqx4M4v8uzNf2jAmuYkTLicieOp5gOv4HT5XK2q93oPCzh1UtuIqq7D6Zukt7e3atuJSSGVMSGooGvm3qw6YcLlLwMHVPUwgIg8iNO/6BXZADDX838Xk0PqJI6OjnL1NzewbTiZqJqEqCqRe7PKhPkW+oHVIjLNrUWeB+z2HfMQcI3bDbQaeDVMeay90Mbqrrm1DgvNtIG2Ca8cOwhTJntCRDYCTwNjwDZgnYh83N1/D/AfOM0X+3CaMK6veV1gtDTO5oGDtQ4NxCYR5SGzOql1K3UtXaqr/vzzoUNlWqKaPvi2eF7rrGxDWWStHDJFZKuq9vq3p9bif3jk9aoCs0FUUci9WWXsiTkeGiWw6YPjk171kkStOOvYNmgxUUyIKCc6VnoyEyThpWpR9sC5N5uIlZ5spGs8cshshIimD45XLfznBGOlyMKQh77skP8sDZOHzMlY68nihMx6mXHg6LH3R+ZPbei9m5nUPJm0px/uZhw4OuHl3xeX3JtNxFpPZpp6ROMlL/xHJ7NPq9YXXc1LNZLcm6UssuIpI1X3Z7mbxqYO/LRp2ieRF9ztIdMiS7psVG+YzSsADqmLrFbItJG8ITgaqYusFkmWy4r7B+mZOYWrfrWHZT2dtU+og1b2Zk3dhHFk/tSqIW9p73z+cuPv095e4MNj43zm5nvZ3Tdo1IZ8nFkGPFkt6imXvXvNYtrbCxSKBYrFNpavPDX0uXFCZqt6s5rfkIgsEZHtntfPROT3fcecICL/KiI73MzUNcf4e0mrKWPbcy8zOlpizH3t2DZ5ln01T5iXzcIRZiLJHmAFgIgUgEHgm77DPgnsUtVfF5HZwB4R+WdVfcu0wSbZ3TfI5y67nXevWcwPH/8xu1+Obm6YHoBWD5lRY815wH5V9f/kFZjhTpmbjpPResyAfXVTq73smS0HuP/OR3hmy4GG2NOKITOqyK4Evh6w/S5gGc6E3p3Ap1R10k9XRNaKyBYR2VL62euRja1EPeWysYX11yrDhM1W7gEI/clFZArwIWBDwO4LgO3AKTih9S4Reaf/IFVdp6q9qtpbeOc7JuzLehdTlPJZq3mzKD+vC4GnVfVQwL7rgQfVYR9wAFgacFwq1AqZZW9W3B/cfBG25T+vCAQTRWQfJjhUgpPK4DwAEXkXsIQGZ6a2ZfhNNaG1asgM9alFZBrwK8CDnm0fL6cqAG4F1ojITuC/gc+q6otRjcliF1MQYTxaK4XMUC3+qjoCnOzbdo/n/fPA+WZNm0ySQ7LHFnZWDJdxqNS00YrNGS3jv20c+tMq3qypRFZvuayaN4sz7CevCDhYJ7IkmzJs8WbekN8K3sw6kaWNicZZL7k3a0GR2eLNWgkrRVZPU4Yt7WW1aKWQmY1vxEdaTQBxx/y3esjMpMjqxZaQ2SrerClFZmPIbGVvZt+34ZL0qAxbvJmXZvVm1oqsXmz0ZkG0Qqd583/CKsTxZvVM+G3VkNnUIsuiN2vGkGn1t5D10bJBtKI3s1pkjSCvACRPaiLrmTmnIffJYshsNqz/ZI0ImVG9Wb3Zflpt5GyqIlvWETQnxTxJeLM0szdmDSNpCtzjznX3/0hE/icJY1d2zOETvWezsmNiqM1aXyYEe7NmDZk1P5Wq7lHVFaq6AjgTZz3LCWkKRORE4MvAh1T154HLTRu6smMO915yOX+w+he595LLJwmtXuJWAJL0aM0SMk2lKbgKZ95lP4CqvhD2gmFCZvGUEVZ3zaW9UKDY1hZrxd8kKwAmhdaM3sxUmoLFwEwR+b6IbBWRa4JO9qYpOHz4cKQbbx44yGipxNh4KXDF3zQqAF6SmgPQDN4sdBI8T5qCz1W4zpk4nm4qsElENqvqj70Hqeo6YB1Ab29vpCWDtw0PcfU3N7C6ay6bBw6GXvHXy2udbS3ZGJo2ptIUDAAPq+rr7qTex4DlJgz0sm14iLu3PBlLYGGxwZv5Q2bWvZmpNAXfBt4rIkV3tvkqYHfYC4ctl9UiTMi0PWN2M2IkTYGq7gYeBn4IPAmsV9U+8+ZmAxNCa6YKQKhPoqojqnqyqr7q2XaPL1XBF1T1dFXtUdXbkzC2UZjoz4witGavAFjzc2mmkFkmD50O1ojMNkyNzqgnt1mzVABykTWAVvdoucgahCmhZdGbWSUy28plQSFzWU8nV350TaxlcmoJrVk7zZt62RvTLOvp5LY7r6a9WGB0rBRrmZwZB45aORo3SbL/M2kgy1eeSnuxQKHYFnmZnHrIegWgpUUWNWTu2PYco2MlxsZKjI2NBy6TE4ZWW0pHVCP1Uxujt7dXO29fHbhv9/C7ap4/9vy0mseEKc+E+VK9oljW08nylaeyY9tzda8oVylsBok/qJz57M1/WNf9TSMiW1W11789L5OFwLuk4e6+QWPLFVYqnwUlNc5yQuOmDpc2tf4nQVbKZqk+4Uu7zmfJjPmTtptqyjBJUjXCKO1nWW3OSNXqj5z6q9zac1Og0EyRVW/WTBWAVJ9uQQoUpEDPCYtind8s3qweshAyUxXZ2HiJkpboe3XvpH0m52Ta7s0qhcxm6QFI1eJ/6f93bun7EnuOxF/QNPdm9nuzVEX2wMB3qgrMVm+WhNCaeaRG9nxvAGmsLtcojxY2ZNrszawXWaPyZZSJUjazMXTaiLFcGO6xZ4lISUQuM29qdUwNAYqKSaE1awXASC4MABEpAH8FPGLaSJu9mU3YGjJN5cIAuAl4AAidB8M0zezNsoyRXBgi0glcAtwz6YyJx03IhfHt99wV8faNI6o3S7p8luUKQOgn6cmFsSFg9+04646Xql1DVdepaq+q9s6ePTu0kWGG/pRJy5tBXhGohKlcGL3AfSLyE+Ay4Msi8hsG7EuVOGWzJCcGZ9WbGcmFoarzVXWeqs4DNgK/p6rfMmBfLNL0ZpB7ND9GcmEkSZRQmQRxa5r1Cq2ZKgDGcmF4tl+nqhtNGRi3+SJtbwbJeLQshsxsNgg1mHrazfLQ2eQis8Gbgfmkx2EHNNrizZpaZCaptxcgaY9mczeTvZYZwqQ3a1R3kzcVQr0VABu8WT4lLiL1JDf2Tq2rRFAqhCdff2nScVmaNtf0niwsUb6cJCsCaaVCSJJMiKyeURhhZprHISmhBaVCyHrIzMOlh5Gu8UgF6HpDJ0yuQe7uG+QzN98bKhVCVkJmJjyZzZiodXpflciyN2tqTxYnVEb1ZqY59VcWcNufXE6xWGBstHYOtCx4s9Q9mc1jysJismnjjNPnUiwWKBbaKLabLfin5c1SF5mNxPECpoT29K6DTqG/5BT8Nw0PH9uX1U7zzITLZR2HIo3ISKpWWQ2/0OJUCvr2DfGZm5yC/6bhYfr2DUGN9jXbQ2buySqQ5mrAu/sGue9rjzsCc6lUG41KGiEzF1kFVnbM4Yb3n8Xy7ngrBMfxYn4BmV46Jy2aUmT1hsryUtQ3XrCG9WsvjS20KIQRVNRO9kq15EZ7s6YUWb1MXIq6wFkLuyKdH9WrVBOYf1+Y/k/byEUWwMSlqEs8tX8g9LmNCFuVPFqUmeaN9GY1a5cisgT4hmfTAuDz3uUGReQjwGfdf18DPqGqO0wa2kjKS1G/d0Y3T+0fYEd/uJWCTZTDKh2T5RG2NUWmqnuAFXAsFcEgk9MUHAB+SVVfFpELcdYZX2XY1sjNGPWwbXiIPVvCd8wnJbBmwEiaAlV9XFVfdv/dDEQqxHxg1jMRzbCLRgjM5JKGZRoVMo2kKfDxMeA/g3b40xTYTJL9l63iwcqYSlNQPub9OCL7bND+amkKTHqzRibFM1mTNHWubd4sSrdStTQFiMi7gfXAhar6UxPG2Y7NDaA2YSRNgYh048wu/6iq/tiEYWliak0mPybCZBKhNmlvZipNweeBk3ESrWwXkS3GLXVpdEK8ILJQk4wSMpMuXhhJU6CqN6jqzHJGxqCVwqrxqaXfjWZ1imRBYLaRt/j7MF2rTEJg9VQAKrF4461xzalJ04osjbTrfmz0YEE/oqTH3lklsrQbZW2e6u8nCQEn5c2y81Qzhi1eLGwFIElvlossAUwLzJsbI8n7JEUmRZZEM4apUJmEwG6782qu+51zue3OqycJLQxpVwAyKTJbScKz1MqNEfeejQyZucjqpOe0OVzzobM5+x0nJXL9oNwYUek5Ldp8BdPezLopcR+Y9QyPvrjUyLWKp4yE+nXGDZU9p83hrvJs74tX15ztHYdauTFqDWb02jhaKnHDugeODcJs1LS53JPVgX+299LzTguV1yIq5SlyUQXmtzHMfIXyj9KkN7POk2WJ8mxvUMbGxnl618EJ+/0iMFVmiyJgr42jpfFI8xVMkVmRmRyKHTfJSt++IW78iw2ccfpcnt51cMJk3CCCxBFVeFE9ZNnGntXB8xWCQubY89OM9phkVmS20LdvqKa4qhHF28UNwZuPHmLz96I3+yzeeCs/vuyWWPf0kpfJLKNSeS6uwGxYuzN9CxLGho7yOIRNjleNsAKr1mZmogJgjci8Y8rS7ihvBmzwYGXssSQDZGVMfxyBJenNcpG5NKJRstw70HNaMglcXutss8qDlTGVpkCAO4CLgBHgOlV92rCtk2jkjHKY6CGierUJvQNjJW78iw111Uqr2WYbNS1T1T3lsfvAmTgi8qcpuBBY5L7WAnebNjQtlncH9/uVvUbYL3dC70CxjTNOn2vMRlMCSypkRm0nC0xTAFwMfFVVFdgsIieKyBxVNfdTTYHl3XNYv/ZS2guT+/28lL/kat6tVu9AXOIKzF88SHJUsKk0BZ2A96kNuNsmECVNgQ0zys9a2OXkKQvZ71eNcsv7uo2PGwmV9ZS/gsqfI13jNXs+4nqz0J7Mk6bgc0G7A7bppA2q63Ay/tDb2ztpv208tX+A0VIJIFSeslorlNTbO+C9T1xqVXCC9tfbzWQqTcEA4C1kdAHPx7bKEnb0D3HDugc4a2FXpDxlSZKkwMIQp6spisgqpikAHgJuFJH7cPKSvdqo8ljSHeU7+oeaXlwrO+awumsumwcOsm04+LPW481CicyTpuB3Pds+Ds5McuA/cJov9uHUPq+PZU0TEGZRr6j5/pMW2L2XXH6scnP1NzdUFFpcTKUpUFX9pKouVNVfUNXEcmFknSDBVCvEJx0eJyZhbmN1V+2mlagVAHtb8AzTyI7yuMLwi60R5a+JSZjH2TxQuWkl7kQTq0XWbB3lYUVTb/NElAJ+OQnz32x+PFKojOLN8kGLDaIR3T5xa4/bhodCiytOBcBqT5YGpjrKG92XmMZaUGG9mVUii5unzPSMctNfWJKCixoe41A8ZeTYKw5WicwmbFnGrxqNstFb4I8jtFxkCZLk+C5bfgRhQqb1Ikuzo9yWL9KPrXZVwnqR5bxNI8pflajWRnbFo18BYMaMGe8I2p+LrAa2eA1b7PCz4qRO/ul9HwVg0aJFi4OOaRqR2ZB6PSlsEViQN1s1ex7tbYXyv0FDvppHZEmS1pecZngMyxOHf8LoeKn8b+AYwVxklmK7uMpsf2mQax/7GgB79+4NXI2m5bqVwuYs8xM3KUsUlnfP4ayFXfzgSH/dw20q2VqPeCvVzre/5KS0OnLkyOuB58W+YwMxmRjPVo5NWikW+N3Sqqqd1Wmkgm/U8OuWJ0lvtuKMTtqLzrguFN47ozvSysFJUu8wqbxMZgEjXeO+cV21J63EJeqPxMQ4vKbyZI2eUW6CchmpPK6rPNZ+T3/6XszUQM+wY/xPxFkwtQenmvrbqrrJs/8E4F6g273mX6vqPxix0DJMhkx/Idw7rmtaykHG5EjisJ/kDuBhVV0KLAd2+/Z/EtilqsuBc4EvuvM0I9PoZQnrGcJSD3HmP5qi1o/E9POoKTIReSfwPuDvAVT1LVV9xXeYAjPcxCvTgZeAMZOGmu4or0dc9QrA5jawJH5wYTzZAuAw8A8isk1E1ouIvyP0LmAZzoTencCnVHXSk4ySpqDRNMqbRRFYUmJstMjDiKwInAHcraorgdeBP/YdcwGwHTgFWAHc5XrACajqOlXtVdXe2bNn12e5hVTKAFTGBg9WzYakfmhhRDYADKjqE+7/G3FE5+V64EF3/uU+4ACQSutpPR3lUR6y/8sqN6beeP4a1q+9dILQ6umDNCnMNAQG4fKTDQMH3WR44KSP2uU7rN/djoi8C1gCPGvQTuuplAGo0d6rkjdNS2AQvp3sJuCf3Rrjs8D1vjQFtwL/KCI7cYZ7fFZVX0zC4KSJ27cZlAHIlMDCNptUyqeWtMCWdRzi4v+9sfI9wlxEVbcDvb7N93j2Pw+cH8fALOP98v0ZgDaNm13IKwxeb1r+v5od9QosbNEkU91KjZpRHvfh7+gfYv33nkpEYGG8YtmbjpXGGS2V+MGR/orHNkpg0GTdSjaQZg3S602rDReqR2BxKla5yOqkHDIbIa4w99g0PsimveZDZD219kyFy7CYGO9fT3OGrcQR2LKOQ3U/z6YUmY1kcY0nU5Nz8nBZhbjNGf5rmLyeCTtqYXrmV+ZElqWh2DZ4rzTFVaalwmWc8kXsZLwVzmuE8OKMMkly3qqVnuxTS7/LHc/8srHr+R9g0iNoi6eMsOKkTlbNnscTh39ybDaPd78tNGJStJUiM0FZSKZqmmHKUmXxlKfut7cVGB0vce1jX5sktDTwCv/NKYmvr3aMphUZJPcrDcp77/VO5an7xbY2QFk1e17qIisLf0qhjbHx93BL38vsOXKgIfduapFVI2rILHuzoLz3O9v2Tzj27an7yuj4OE8c/olZ42PwawtmMaXQRkEKqEDPCYtykdmKN+89KGuWdbBzz0SRlafuVyqTNQK/F+97dS9j4yVUoKQl+l7d2zBbMikyU80YcbzZU2/sZXR8NbW81PaXBhsurmrFgz1HDnBL35foOWERfa/uNe7FlsyYT2dnZ0fQvkyKLE3q8VKmy4hRKzZ7jhxIJEQumTGfW3tu4tGOr09afhJykcVqzojipZJsIrAlJ1vPCYsovp2jbBItL7IksUUESXPNvA8BzhpbQftbqsW/EqbFYGLkQlb49nvuOvb+0KFDgWuc5iIzTKuICyYKDGBwcHA46DgjuTDcY84FbgfagRdV9ZciWx0B0x3lJrqa0hRYpaHpSQwm8IurFmHLZOVcGJe5M5Ym9LG4Ivwy8EFV7ReRn4tkhaWkIRq/WKqJJMychyjXq3X+oy8ujSwwCCEyTy6M68DJhQG85TvsKpzJvf3uMS9EtsQC0vJE1cRievJMNdHVulccgUE4T+bNhbEc2IqT68KbH3Qx0C4i3wdmAHeo6lf9FxKRtcBagO7u7lgGh6X8wGwee2bDep5hbKg301IYkZVzYdykqk+IyB04uTBu8R1zJs4s8qnAJhHZrKoTsiGr6jpgHUBvb29gdbde/A/NtkGONggrCiZSeYURWVAuDH/ClQGcwv7rwOsi8hhOHrPAlNthiDOmzOYv0GbbADqOX0bXtBUMjGxn+I3dRvPE1RSZqg6LyEERWaKqewjOhfFtnEw+RWAKsAr4G2NWhqBWuSYtb2ZaXH4xmLrmb3Z/gYK0U9JR2tuON3LdMkZyYajqbhF5GPghMA6sV9U+o5YGUBaPjV4iCZv8Yniw/9NGhNY1bQUFaadNCrRJ5e6huBjJheEe8wXgC4bsCk3YLzOMN7NRrF68YgCla9qKukTWqNSpLdl3abuYKjEwsp2SjgJKSccYGNke6fxG5+Mt01Iiy6q4ygy/sZsH+z8dqkyWlqCCaCmRNQPDb+yeJC6bBBVELrKMYbuggshFZjFZFFQQucgSJkq7VrOIyk/Liuyi6f72ZPMcP+VMOmfdBjJlUrtWswoqiKYRWSWP0QgxVWLqcecg0o64jZy/Ne9LqdmSJk0hso7jl3F5922ItKN6FYMvXsEbb21NxZZFXYEjkFuaphDZeTPnuB6jCChTjzsnlMiOn3ImU487h6NvboolylxQ4ci8yC6avoujb05F3ZZw1TGOvrmp5nlOeel+1/uN1vR+uaDik1mRectab7y1lcEXr4jkld4uL032frmgzCIVpsolTm9vr27ZsqXmcUFjykwU5suerK1tat3XynEQka2q6h9IkT1PVo/Acg+VDpkRWVRx5YKyB+tF1nvSh+nmW7zhnx/lIxeVvVgvsjWzr53U9pULKlukVvAXkcPAc5X2d3Z2dnR0dHSCk8jj0KFDz1eaBh+SWUAml0dMiCSex6mqOmlJ5tRE1mhEZEtQzadVaeTzyBOu5CROLrKcxGklka1L2wDLaNjzaJkyWU56tJIny0mJXGQ5iZMpkYnIn4nIoIhsd18XefZ9TkT2icgeEbnAs/1MEdnp7rtTRMTdfpyIfMPd/oSIzPOcc62I7HVf13q2z3eP3eueO6Uxn9wsIvJB9zntExF/8hzzqGpmXsCfAX8UsP10YAdwHDAf2A8U3H1PAucAAvwncKG7/feAe9z3VwLfcN+fhJPv4yRgpvt+prvvfuBK9/09wCfSfiYxnmHBfT4LcJLj7ABOT/KemfJkVbgYuE9V31TVA8A+4GwRmQO8U1U3qfOEvwr8huecf3LfbwTOc73cBcB/qepLqvoy8F/AB919H3CPxT23fK0scTawT1WfVSdr5n04zyIxsiiyG0XkhyLyFRGZ6W7rBA56jhlwt3W67/3bJ5yjqmPAq8DJVa51MvCKe6z/Wlmi0udLDOtEJiLfFZG+gNfFwN3AQmAFMAR8sXxawKW0yvY451S7VpZo+OewbhSGqoZKrygifwf8m/vvADDXs7sLeN7d3hWw3XvOgJu87wTgJXf7ub5zvo/TmXyiiBRdb+a9Vpao9KwSwzpPVg23jFXmEqCcaO8h4Eq3xjgfWAQ8qapDwBERWe2Wqa7ByQpZPqdcc7wMeNQttz0CnC8iM91wfD7wiLvve+6xuOeWr5UlngIWuTXlKTiVnocSvWPatZ2INaOvATtxMjo+BMzx7PtTnFrTHtwapLu9F0eM+4G7eLuX43hgA04l4Ulggeec33a37wOu92xf4B67zz33uLSfSczneBFOPt/9wJ8mfb+8WykncTIVLnOySS6ynMTJRZaTOLnIchInF1lO4uQiy0mcXGQ5ifP/zauNAradx70AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "\n", + "x = tuple(map(merc_x, lons))\n", + "y = tuple(map(merc_y, lats))\n", + "\n", + "ax.tricontourf(x, y, tuple(datapoints.values()))\n", + "ax.plot(x, y, 'wo', ms=3)\n", + "ax.set_aspect(1.0)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJwAAAEDCAYAAADA/21vAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOydd3iUVdrGf2dakknvvQEBQm8CAgqKoljAtjbs3V3b2ll33V391rK6a3cVC/aCioiC2EUEgdBBCCGk997LtPP98SaTSTKZzCSTkITc1zVXZk57zyR3ntOe5z5CSskwhtFfUB3rDgzj+MIw4YbRrxgm3DD6FcOEG0a/Yphww+hXDBNuGP2KAUs4IcSbQogSIcQBJ8tfLIQ4KIT4XQjxQV/3bxg9gxio+3BCiJOBOuAdKeWEbsomAauAU6WUlUKIMCllSX/0cxiuYcBaOCnlL0CFbZoQYqQQYoMQYqcQYpMQYmxL1o3AS1LKypa6w2QboBiwhOsCK4DbpZTTgXuBl1vSRwOjhRCbhRBbhRBnHrMeDsMhNMe6A85CCOEDzAE+EUK0Jnu0/NQAScACIAbYJISYIKWs6u9+DsMxBg3hUKxxlZRyip28PGCrlNIIZAohDqMQMKU/OziM7jFohlQpZQ0Kmf4AIBRMbsleA5zSkh6CMsRmHJOODsMhBizhhBAfAr8BY4QQeUKI64FlwPVCiL3A78DSluLfAOVCiIPAT8B9UsryY9HvYTjGgN0WGcbQxIC1cMMYmhiQi4aQkBCZkJBwrLsxjB5i586dZVLKUHt5A5JwCQkJ7Nix41h3Yxg9hBAiu6u84SF1GP2KYcINo18xTLhh9CuGCTeMfsUw4YbRrxgm3DD6FcOEG0a/YphwTsJgMPDaa6+Rn59PU1MTw0eCPcOA3PjtLQwGA7t27WLixIl4e3v3uJ3GxkYyMjIICAhgxYoVPPLIIwCoVCrGjRtHXFwc06ZN49FHH3VX14c+pJQD7jV9+nTZG9x9990SkGq1WqpUKnnbbbdJg8EgLRaLNJvNduukpKTI/fv3SymltFgs8rXXXpN+fn4S6PS6++67ZVJSkgSkVquVJpOpV/0dagB2yC7+tsecXPZevSXc9OnTJSBvvvlmK0kWL14sExISpJ+fn7z//vtldXW1TEtLk88++6xcsmSJtdzJJ58sR48eLQF56qmnyrvvvltGRkbKmTNnSi8vL/nBBx9IKaUsLCyUnp6e8uqrr+5VX4cijivCvf322xKQy5Ytk7m5uZ2s04QJE+xarZCQEHniiSfKOXPmyHPPPVeuWLHCoeW65557pEqlkmlpaT3u61DFcUU4Pz8/GRoaKouKimR1dbVcsGCBlVTBwcHyySeftH6Oj4+XycnJMjc31+XnxMbGSkCmpqb2uK9DFccV4VrJtGTJEimllBs3brSm5eXlSbVaLQG5YcOGHj9DSilvuukmCcgHH3ywV+0MRTginFOrVCHEn4EbWv5w+4FrpZRNNvkCeA44C2gArpFS7mrJO7MlTw28LqV8wrnljOv4/vvvre/Xrl0LQEhICAsXLuTxxx8nOjqa5cuX4+XlxRlnnNFteyOe/4/d9FtnzOT0RYtYsWIF8+bNc0/njxN062IuhIgGfgXGSSkbhRCrgPVSyrdsypwF3I5CuFnAc1LKWUIINZAGnI4SWZUCXCalPOjomTNmzJA98YebOXMmKSlKoNZ1113HG2+80W2drkhlD/o8ZdtyUkw42ateJuPoUX4/fJggPz+X+zqUIYTYKaWcYS/P2X04DeAlhDACeqCgQ/5SFEkGCWwVQgQIISKBBCBdSpnR0pGPWso6JFxP0Uq2DRs2MG3aNGu6K6SyRSvBOuKHT9+nZPNmLrnzAW7c8BWfXXx5j9o/HtEt4aSU+UKIp4EcoBH4Vkr5bYdi0UCuzee8ljR76bPsPUcIcRNwE0BcXJyz/cdsNmMwGBj/2sv4L1pI9bc/sOy1V9BFR6OLiULl4dF9I3RNLlvU5xyhYs8Wag7vxW/sFPZrw2gsKnS6r8NwgnBCiEAUq5QIVKFEvl8hpXzPtpidqtJBeudEKVegSDkwY8aMTmW6slIl73xA/c5d6GKiMeTlA1D+2RqlUzotCU89breeMwSzRcWeLRR+9ylqL2+CTziFsDmLUKaukhHP/4eMO+5xqb3jFc4MqacBmVLKUgAhxGoUyQVbwuUBsTafY1CGXV0X6Q4hgUajkSs+/4Td3VgQoVaIY8jLRz9pIkIlqN+zT2nHYLSWc5VgtjDWVFL4/Wp8EscSe961qDTadu02xFh63PbxBmcIlwPMFkLoUYbUhUDHGf1a4LaWOdosoFpKWSiEKAWShBCJQD5wKdDthEcAWrWK2TGx3RIu8JyzqNuudCfo3LPQhoWiz1PRVFIAAjx7QTQAc1MjeeveR6gEkQsvaEc2WwxbOefQ7V9DSrkN+BTYhbIlogJWCCFuEULc0lJsPYq0QjrwGvDHlrom4DaUyPhDwCop5e/dPhMwmi1szcvtrigafz+EWg1A1ftrrJbMMywKz9Cobus7QnNlKRnvP0djQTbRZy1DFxjSq/aGMUAj72PGjpWzHnm4S+vWSqrGolxyPnsdU0MtAKFzzyBsTvf7a86gLusweWveQahUJJ10FX5hI6mL7vr/s3VYHbZy7tkW6VeUNtR3Ipu9OVhzebGVbAAB40/o8TN98hXCSIuFrB2rKUnfipd/BGPmX4eHT1CP2x1GewxIwtlDQ4ylE+n00YnW98EnnILO33litBLMFlJKio9soSR9K+Gj5xE7ZTFqjUe7Ol1ZueHFg3MYNISzB11AMImX3U7euvcoT/kJc0MdkYv+gErT+WvZI1gr6isLKMvYQXVRGo3VRXj6hRE/7VyESu1yn4YXD44xKAlXdSCFhoIsQmaeSs6aNzE31ivpv6fgkziGaD97moVtMJsMGJtq8fQJBqC6IJWiw78AEDV+IVHjT+0R2YbRPQZVTEO1vozynb+Q//WHVO79jcwPX7SSrRV5X71Hc11FFy0oKD78K3vXPk7m9k8pz95DYEybSHpwwlSkxYKxqd5BC/bROuT39CjteMCgsXDm+gYKnnoWS0ODNc1UV2237J61jzHr8qe7bCsofjK5e9dTkr6VkvSt7fKaakpJ+/kNMFqYctHf3NP5YVgxaCycoaAAS0MDGh9/a5p/8lSiF1/G6Fv/jn/kGMKSTgRA4+njsC1Pn2DGzL/ebt6RTW/TXF9Js6Ea38zGTvmO5oIwbOW6w6CxcCovLwB8RyRTuU+xSqFzz8QjUJEhi7niZnzyLSTMuABpMXfbXqwhgdgTH0VKSV1DETV1+ZjMTRzJ/gaAaeOu7aNvcnxjQBJOaO1YkRap/Mp9W1HpPPAdOR5dQOedfyEEQt3+a9mzVLbla+sLScvegNncDEBS/JkE+Y+wlmmqK6f06HaaastRa3Xop07BJ3GsNd9YV4PF2IxQa9D6BnT5LKPRyKFDhwgJCSEqqnenIIMVA5Jw9qCLirS+txiaiTnnCqfr1iZ6dSKd0dTIkexvKCjZ2S49PHgCcZFzlOdYTFTkHSBv79c0Vhej0wdgMRkoPbodfexI/EZPxlBRQsXuzdg6wai9vFEH+aP/3wrOmzqddevWERsbi9lsJjU1FYAJEybwySefMHbsWI4nDBrCNWfnWN/HLLnKbpm6aFW3cywAKS3sT/uYiuqjnfKSR54HQF5xCqkZa63p4UlzSDjhAixmE9mFm6jav52iH1YDgsDJJ6KPScRQUUJ97lFUHp7UZaZCvoUPU9MAKCsrw9PTk1deeYWvvvqKr776inPOOYeUlBQCAwNd+VUMagxYwmmiGjAV6Ns+BypDlcrHG31kfK/a3nv4QyvZkkecx6EMxX/O3zeOorJ9VFQfpaS8zccgYuzJxE09R3m+WkNizCnUzjwVY1U5Kp0HGm/fTs+oC2tGGo2Yq6vJffwpbG7P4eabb2bLli0sWLCAu+66i7fffrtX32cwYcASriOKX3kdAEtdPWmvPop3XBKBU+bgP2ZyNzXbQ0pJWeVhAEbGnmYlG0B1bQ7VtTkIVIyMO42EqJMQQkVtolendoQQDr1HfEo8aIjRovbWtyNbK+bMmcMll1zSLvDneMCg2RaR5vYrz/qcI+StfRtTQ51T9VtJI4RgytgrmTftHjLzN7Yrc88995Censn1Vz5LYvR8hHDPr6erLZIZM2ZQUFDAwYN9EuIxIDEoCCdNJowlpfgtOBnfObMB0MeMIPqsy1F7tRerceRC1IqQwCQ8PQIICRxtTXvzjTd5+umniY+PZfaJ47ttw5m5YndexieddBIADzzwQLdtDRUM6CHVOo9TqxEaDXXbdxD3r38QdN65CLUaj6PNGCpK8AgO71H7o+PPxM87mqlTZ3LZZcswGc2YzBb27u5S9d2tyMlRFkL+/v7dlBw6GJAOmJ4jo2Xck4ozcevCofClV2lKO0LUvXdR+ML/0IaGYMjLR6XzJPnOx9rVd2R9utqTmxCoY9Kc0ezOruTQgfxO+fbmcdC9RbV1WbL1IjEYDCQmJuLv78+uXbvw9PR02M5gwqBzwLQH76mTaUo7QsHTzwJYI7TUXnpH1ZxG6o5MUndkKh9GRjtdz5GPHNj3k2tsbOSiiy6ioKCAl156aUiRrTsM+DmcJko5rNePG4vaToS7Ru/TaUHhzDyuI0wukKwjnJnPQdviYfny5Xz99de8+uqrnHfeeT1+7mDEgCdcKzQBAUTdc0en9MbCHKfOTvsajkhnu3ioq6vj9ddf58orr+Smm27qj64NKAwawgGo/f0JPGdxp/SG/Eyn2+hqLga9s3LgnKVbvXo19fX13Hjjjb161mBFt4QTQowRQuyxedUIIe7qUOY+m/wDQgizECKoJS9LCLG/Ja9XN7YJIfCdNRMAr3HJaMPDAOzuxfVkWHUERw4AtuiOdLf+92liY2OZO3euO7o16OCMtshhYApAixpSPvB5hzJPAU+1lDkX+LOU0tbt9hQpZVmPO2lzzFW7bTsAXmOS8F9wPV45IFTuI5dpZDSao/m9ntN1JHzr4qE5K4e5ixfbPX04HuDqKnUhcFRK6Wij6jLgw553qWtYmpupXLcBgIrP11LxuXK4HrPkKvzHOI5jsIU975H+gqW5mc9Tth2TZw8EuGoaLsUBmVrkIM4EPrNJlsC3QoidLQpJXdW9SQixQwixw1xjP56g9IOPQUo8k0a1Szc3Ntgtfyxhb2g1FJcgm5vRhtq9u/a4gNMWTgihA5YAyx0UOxfY3GE4nSulLBBChAHfCSFSpZS/dKxoq57kOTK60260tFhoaBGpMdfWkvCfJ5BmM0KnwzvffoSVI3clR1aut4sHe5BSUvXealSeHgSefeZxG07oioVbDOySUhY7KNPJAkopC1p+lqDM/Wa62kmAxsy2YchYVEzWPQ+S968nAfotANnVYdiW7PXZR6jPSSfw7MVojmPFTFcI53BuJoTwB+YDX9ikeQshfFvfA4uAAz3paO3GPWiCAglZdok1zWvsmEEz+a7PTgOVirDYE491V44pnBWV1qPo9N5sk3YLgJTylZak81HUMW0nYOHA5y2k0AAfSCk3uNrJup2HadirOExKg5GE/z4JQji1Ou3psOpumJsawCKtenZwfEbpO0U4KWUDENwh7ZUOn98C3uqQlgG45iFpBw0706zvyz9ZTfknq4l77BHU3u45R+1L+ORbqApsoPboQfTRCS0+dsevBsmgOGkIvf5sPJNirJ9VXp6oPNtr9zbEWDDV11L8yzqnnTLB8cmDOyClJO/LdzE3NRA690yg/VHX8Ra/OmC9Rcy1DRjyS2k6WkDNDzsx5JZY8+Iee6TTcGppbubwy38HwG/0JDT6tmBoZ4NrnIFvZqPTJLWYjWTvWkt9zhEiF/0Bn/gkt/RhMGNAEs5c10jmTU8hTZ0P5QPOPN3u3C3noX8AoPH2Q+sfhNnQhFp3bN1+cvd8TcmR34gYczKBk2a3y7N1Wzqe5nIDk3CVtQrZ1Gq8Z4xBFxlM/c7DGHJLqNrwHVUbvkNotYQuuxT9xPGUffo50qgISJvqazj8oqIJMv6+/1rbPBaLh4rcfQTGTiR++hLqBslquq8xIAmn8vHCXFmLSqehfttB7J07SKMRQ2Eh9fsOUL9rd6f8mCVX931HHaChsgBDQxURY08GunfUPF4wIAmnCfQl9vGbUPvqyb7jeUzlbSpJSZ88QtMhIyqdjtL3P6Zhf9u2XszfluNd4dVu/uYs3G3lKvOVSKyAqK4j64/HYXXA/stpg/1R6bQEXThf2XPz0OJ70iRK31yPxt+fmi1b25HNc9RIzLW11HpVULF7M/ZiNdxlYbojZm1pFsVpm9EHROLp0xa76q6Fy2DGgLRwntq2Cz38T5+ByteL4uc/o3aTcpaqDval8svv0cXGYMjNA6Ap/Sg1v2y2Dq+BU+a4/Fx3WLma4nQO/bgCD30AI0+8zCXXqePByg1IwnWE7+zxeMSGU/zKGppScyh/7zs8EuLx9/OlpIVwan9/mo5mAOAZHtPlkZe7tkhat0ektGBoqKKptoyyjJ2UZe1Epw9g/Bl3ovX07rad402MekCGCQaMDZNh/3e73bzm7CIa9qYz94zL2XjbXVRVVXUqE//04/gUd32pW0/CCDuiojqD9JzvqKnLa5fu4RPM+EV3OCRbx6G9I+EGu5VzFCY4YOdwyRH2nVI84iMIXDKPKdHedskW89ADqLT2rydqhaO5nDObuqUVh9h1cGUnsgGMO/1PTlk2W/TmHrDBhkExpNrDS3c+BEBsbCyp6elcuebTdpeJ2LvXobeoqslmT+p7mMzWy7BJiD6ZhKiT2PL7ixgaqtF5Hb+uR85gUP5rWRqbKdunHOgLX1+nbh10BV1ZOaFSW8kWEz6Tk6bfx6i401GrPfAUylZMyqqHyNj2icPQxe7mkEP5fHVAW7jkiGIOFXXWDWk6ogxlmuAgxDXL2FNc1KlMzebfqMutIWxe57BC6Nniwd8nhtNOfLRTuhCC6eOvI79kBxWUUHp0G0IIEmde5HTbx8viYVBaOEO+EgBmKq+gMTWtXZ6xtIzMO++lfNVnlP72HYDdPbnu4OwBvZQSk6kJlUpDVNh0AqWy72YxGR3WO16t3IC2cF3BZ/Y4St9cB4B+wrh2eYXPv2R9H7T0HEp/+46y7T8x+ua/ovZs7z/X2y0Ss9nAgfTPKK04iE7ri5QWjKZ6fL2jSJz1B5fbOx6s3KAkXNW636zvzfX1aPz8sDQ3U/ruB5hrlNsFA89ZTMUXX7VVcvPhudHUyO5D71BTl0dEyGSaDNUIBIkxpxDoF0+duve/2qG4ETzgCWdvHqcJadFTU6nQ+PkhpSTnb48gmxXZ+9CrloHNMOo/fgZqD+eGSGNjLUc2v0dA1Fiixp1id19OSgs7DrxOQ1MZk8ZcRljQuE5lnPGbOx4P9Ac84exB5aVs6qq9PVFH1lP6+i9WskX/5X504WHtVM9DZixwvnEBtSVHqS05Sk3REaJ9JuDtGYKfTzRCqKirL6KwdA/1jSWMTjjbSrbi8gOUVhzCQ+eHl0cgEaGT8c103aN4qA+rA/akYf7rF1s/21o4Y2kVWX9U/Nz8z5hJ7S97sTQqZAtZdglqPz+8RifR8PshSl5fCYBXRCyJy+7s8lyz4zyusaaUfV892blfvvFU1eYAkvCwaJYuXk5GWiV5RdtJzfwSjdoLi8WIRZoQQsXMibfg6x3ZLemG2slDr04anBSzWSCEqLYp87BN3plCiMNCiHQhxIO9/TKF//nI+r7hQIaVbCpvPU1p6RT/7zXKV6+xkg2Uq8rz13/g9GrVyy+UMQtu6JReVZsNSJYtu4Lly+/nT3fPJzJWQ2rmlwCcOOU2Tpn1MEH+I5HSwrZ9L5Oa8SX6dPuX0HWFoXzy4JKFsxGzmWWrLyKEWADcK6U8x075NJQQwzwgBbhMSulQtrujhYM2K3fkD1Yu43fqNGp+3AWA5+gkmtKOWPM0oSGYSjvr53gEhxN15qXoo9rueuhqpSotFqTFjPZICeVVR6ipy8ciSqmoLMZobNv2UKm0TB5zOcEBigRFs6GOorK9VNZkUlaZhrdXCBGhk9GOGolvaCKqDgsKe/O4wWzl3Cm56oyYjS1mAukt4YIIIT4ClgJu0Yn3HB1rJZwt2QAr2fSTJqLy0FGXolxx1FxeTOW+re0I19X2iFCpECoV5uRoYjOV682TJ0TzxLOXc/jwIVaufIud2wpQmxPx0LVdDuKh8yE+ai7xUXMprzrCkexvOJrzPeR8j3/kWMYsuK6dJP/xtHhwlXCOxGxOFELsBQpQrN3vQDSQa1MmD5hlr3KL0M1NAF7hXXvs+p40mdpNe9FFh+I5ovMFaT6zTqBuW4r1s37ieHxnziB+wTJMjfUYayrxCI5w9B0d4tCBfB686wMmT42Hpsno1SHg4PLo4IAkggOSMBobSMveQGHhbooPbyZi7EkOn9Nx8TBUtkic/reyEbP5xE72LiBeSjkZeAFovd7F3uaX3TFcSrlCSjlDSjlDF9B5kt3qPeIxQrnkLfiyheTc/79O5fxOnkfUfX8m9Brl8jdzba01T+PljVd4DCpN7xbnhw7k89G7W+yqnXcFrVbPuJHnE+g3gsL932M2NbfLP168gd0iZiOlrJFS1rW8Xw9ohRAhKBYt1qZoDIoF7DE84pW5XOHTyuLBZ+5EhEaN18QRRN7xR3RRkXjEROM9ZTLqgAAMecrjuttq6G5Ic0fAtBCCkXELMRjryd3zda/bG4xwi5iNECJCtLjYCiFmtrRbjrJISBJCJLZYyEuBtfbasIWn2oMLYxYxxjexU55+4kjre6/keJpSc5BS4nfyZDxHjrBufVhq65BGA9JkcuEr9j0CfOOIjZhNcdqvlGfvcVi242p1KJyvOkU4GzGb1TZpt7QK2gAXAQda5nDPA5dKBSbgNuAb4BCwqmVu5xDRXmEsiz+bRyfc3o50yRHFNGcVofLxwmt8Ip5JMZiqaon9vxvxWzDVKrEPULdjJ5b6BusthDAwrBxAUvwZ+PvGkbFtFcamtiH/eBhWnSKclLJBShkspay2SXulVdBGSvmilHK8lHKylHK2lHKLTbn1UsrRUsqRUsp/OfM8gUAt1KiFmgn+7eUR6rb+jqWukZCrz6QuJRWPxEg8R3UWEPSZPRNddBQ1GzdR+PIKLE1NncocK6hUGsaNWIrFZGDX6n9SfGRLl3uEQ83KDci1uERispgxSzMHqttvdzQdzUcT7IdHfDjGkipUHu3dyVutnFqvJ+JPN6MND6PpcBoFz76IxWgcMFbOWx/GyNiFAGSlrCbtl5WYTc1D3soNSMLlN5bwQc46/nbgBQ7Xtt3BYGo00rA3Hd95kxTvD7MZU3lNl+2ovb2J+cv9BF14HsbCIhp/P+SW/rmLdIkxCxiz4HoCYyZQlX+Q8qzOCgL2MJit3IAkXJO5mc/yvm1HNgBpsoAEdaAPhrxSAHznd1Yvt53LAWiDFWm7qh9+Ano/lwP3kS4gKtnqO1eaYf8ai6F01DWovolQK9t6Yfoaan5QTg58507stp5+fDL6iRMwlVd0W9YVuIN0vpmNaD28CYqbRGONsuM0lIfVAUm4UT5xdtOrUhWNOGNdM1XrfkPl5YE2Ishu2VYrZzEaKX59JQ37D+A1tu1CXndYOXCfpdPpAxwG3gyVxcOAJJw9mA1mUv66AX20H1HzR6L20CiSXt04H9Tv3E3D/t8JOON0Qi692GHZnqK3pPPNbERaLCi+DgqGqpUbNISTJjPG2mbizkrGNzGIwPHhijeH0cFNgh5FVKxdhzYykoDFi1Dp2q9o3WXl3AGVWoPFbMDYbP9SFHsYjFZu0BBOo9eh9fMg9bVtfHXqK5Ttyif4klM7bYvYonbr71jq6wm98rI+l9fvrZXzC09CWszUlXXtiDMUFg+D6htM/PPJhM9NIOH8CUTc9QcCz3PscWHILUHl5YEuonNsayvcaeV6Qzp9sQEAi8lgTXNmWB1sVm5QxTTEnDaamNOUib+9AGlbGMurqdtyAP2UJITagf+Qm9FTya8A3zg0Ht4UHPyR4HjnL6obbBhUFs5ZmKrrKXpmFdJiIfiyhd2Wd/dcrieWTq3WERg9nqba8nbpHa3cYB9WB3fvu0DpyvU0pecTfstSdJHBnTaC+wM9IZ2+SYfF1Iyxsbb7wjYYTMPqkCOctFhoOpSNzwnJyhGYk+iLFaurpAsNVPSAK3L3OSw3mK3c4O25HZgqa8l7+E1MFTV4Tx/dLu9YWDlwjXR+PjF4e4V28h4ZSouHQbVo6A4Fj79Hc6Yi2yXNrm+c2tOUK9/1K+UpP+EVlYBXWDTeBm80Ht5odHqqCg7h6RdGaOJ0h+06s5BInhDN5KnxyA8y+OnXd6guTCUgKtnl7zDQMaQIZyxri/+sWvcb/gvbE0ET1YCpwLUL4Yp//gJpNmOsqaQm1b43R0jCtG73+RyRLnlCNP9+/gq0GjXnXjiZ0eO+I3vXlw4JZy9CfzAE2gypIVWoVVYZCENuCRaDfcms6p83UbbqM7tOjw0xFppKCzE3N9JUVoRHUDieYdGMu+dpPMNjOpX38g93elO5q+F18tR4tBo1ao2KoKAAZk2Zh6G+0uVhdTBg0Fo4eyI3HvHhGPJK8T9zJtrQAEpeWUtzViEhV52B95Qkq3Wr+Fy5Q9jS1IypooLAcxYr8RBC0JSZReFbL7Zr12/MFKpTd9NUrAgh+owYR8y5V+BbpOoU1NwT7N2djdFkVhxPTRaMzV5YzEYaa4rR+3cd0jgYdUiGlIULOHcupvIazFX1NOzLoHbLfoxFFRQ8/j7lH/1gtXiaoEAA6nfuojkzi8r1G8hZ/jCGwiJK32uLEwqafhLRZ11O5OkXUn1wJ1q/QJJufIi4869DrfOkIU7nch9rE72sr1YcOpDPy89+w+4dWbz87DcYG8IAqMpv7zA6FBYPg9bC2YP35FEEXTifis82AuAzezzBl55K+Uc/UvHZRmo2HiD8xusIOm8JJW++jdfY0TTn5NJ8VHH0zH/iaQA0IcEknn8LuoC2O4nrc9PxHzutXRr0TtSwlXQTRkXyxz+fgVatZq57u7oAACAASURBVOKUOLIyStmTGkFV/kGixp3So7YHKgashfti3ovdF7KDoItPwWviCEAJuNGGBRJ5zyVE3HYL0mCg+LWV6KKVYGqPhHii7r7TqqKpjQgn8OzFxDz0QDtile/ahDSZ8AiNtPvM3nqVTBsXi6ZlDqfRqJg8NZ7QoLHUlmVRmec4yM3entxAtnLuUk9aJoTY1/LaIoSYbJOXJYTY31LXvg+1GyFUKsJuPNf6uWr9VgC8kkYRsuxSTGVl5D36BABqHx+0oSGE33gdic89Tczy+whYtBChapsbmeprKf75S/TRiQQ5uE6pN6TbdTAXk8mMyWzGZLawd3c2cZFzQErSflnZLn51sC8euv0tSSkPSymnSCmnANOBBuDzDsUygflSyknAo8CKDvmntLRhV1HH3dCGByJa3Jbqd7dFfenHjiHi9lvxnjIJj4R49OM7K1d2ROW+rUiziagzLkal6f7CkdaXKziQXsj9t7/H2ys2cttjn7C9vgKtxovxoy4EIH3zezTVlXfTSnsMVCvnFvUk2zhUYCuKpEOfoytZfaFSEXnvpZSs+BKPhIh2e29eo0biNWpkpzr20BBjoS7rMF6RcXgEO/ZO6Q18Mxs5RD6HDuRb53W1iV6Yi9pclfaufZzg+KkExU3G3zSaxvi2264H02rVnepJrbgesBXOkMC3QggJvCql7Gj9gPbqSXFx9mMaXIH3lCQSX74bAFMP1UwmBQWzobyQuBnzXKrnyrDXcTPYVhvYb9Y8koUaU0wAtcVHKc3YQXn2blRqLYHT5hI290xUWtdXyscS7lJPai1zCgrhHrBJniulnIYihvMnIcTJ9uraqieFhoY6260+w9SISE6va6K5sZEX/nY/k+PsLxj6EkKlxm/2PIJiJhA/fSnTLvwHY0+9maDYSZSn/Ez6yqeoy1LuqRgsiwe3qCcBCCEmAa8DS6WU1gmHlLKg5WcJytxvZs+76zpcPcpqxeyYWEJb4ll3bN/OCSOdmyX0xrp1l65SqfGPSGLknMtIXngrQqUi+5NXKN36vdPPPNZwl3pSHIrQzZVSyjSbdG8hhG/re2ARcMBeGwMNW/NyOWfpUi699FIefvhvrF23vts67iCbs/ALH8nIa+7FZ0Qypb99i8VosFtuoFk5d6knPQwEAy932P4IB35tUVXaDqyTUm5wW++dQE/dknYXFXLlmk+ZcvF1+IZHs3HFfzHWdS0r0Z9ka4VKoyVo6jykyUzul+8MCj85d6kn3SClDGzdPmnd/pBSZrQoKk1uUVdySj2pFaeGpLpS3O3YXVTIu78dIHTx5VhMBgq+XWW3XF+QzZlyPvkWfEckE3bSYuqOHqSp1P6NigPJyg38f4lu0NVFvu5Aq8XwCA7Hd9QE6rPTkFJiMRmRFoVkx8KydYT/2KkA1KYfGPBWbmD3bgDBJ3400mSics8WDj3zAGUpP2GsrbJuyJZn7yFrx5puWnENzlo5rb8id1GW8jP1eRlu7YO7MeAJd6yH1VYETJqFLjCUwu8/A6AuM5XcD19l79rHKUnfSvrm9yhO+7XL+n1l3UDRDo6/+FaEWk32x/+jOb/zxuNAGVYHPOGOFToOTSq1hsjT2y7c1WsCaKxWhvPM7Z8CoNP7222rN2Rztq5PfBIjr7obKS1UvL2K+r37rcM+HLuYjo4YJpwL8IlPInKRouVWlqnIhWk9ffGPHINa64W9WwL60rJZ+9Uyj9T6BhB15iUYqsooefNtyj9Z3a7c6E8732bd3zguCOfO/27vuFHW9/6RY5l2wd8Jjp+C2diIPqD9aYS7yOZKO/6jJ6PRK7fiqLzanDx7ugHubgxowt051rkddHevVB2t9DwCQ5l63t8IiBpL3JSzsFjMZKYo87pIG2fJ/rBstmi1cjVp+zBUlhJ73rUELTm7U7ljbeUGNOEGKnR6f8YsuAF9YBRCCKRZuQuipji9z57pLIFFyy07Kp1Hn/WlNxgUhBsoK9WOqCo4xP71/7V+Dh1xAuAe65Y8IZpLr5xD8oTOVwI4gu/I8Qi1hrqjhzpZ6oEwrA4KwvUnXNk4zUr5HGNTLdETFzF+0e14eAe6jWz/fv4KrrlxAf9+/gor6bpr2yffgkqrQx87kpoj+7CY7IdJHsthdZhwvYBQa/ANTSRm4iJ8QuLdNm+zjVNtjXFwBSEzFmCsqaT0t+865R1rK3fcEM5dK9V2R1mmJsaNTmTCqEi3LhJa41RNJjMmkxLj0ApHz5kwKpIbTjmBufMXEDBhJmXbfkTstO99eqys3JAKE+wtXBlOJ4yKpDgsmIaqfOYmGGCED9kZdW7px6ED+dx/x3tMnhrP3t3Z1msybWNZpZQ0VBag1ujw9AtlbHww50zzoaLoCP+55FwMDXWseSSV/K8/JHLyndbFxLGGS1eQ9xdmzJghd+xQPJyeSz0NgB/LxnZbrztVzO6GE2cI12rhrloyE3X1IW65+WYAFi29gmrvNuVKd2+L2JLNYjaxY9VfkNK+40B4eDh3vfQ2L7+/itzP3yR07hn4XHx6uzKtFj/tor+5tZ/g+Ary42ZIdTd2Hcxl1qzZAERERBA+dn67fNsI+46R9q6iY12zobFLsgEUFxfz8v89jHfsSNSeXpRu/gZDgX3Xpf7GoLFw0L2V608LJ6Uk+9fXqasq4twb/kVmcc9uK+zOEnZFVFNzAwgwNtbSVFtGQHQyE5OiyTy4jh8//aBTeZW3nvjHHmmXpolqGLZwxxKuhNpV5u6nOPcwYeMW9ZhsYF9rxDa9K2g89Gh0erz8wwmMGY8QKrY2FlMYPRHvuLYrP0NmnQqApd7+oqm/Fw/DhOshGmuUa5j8I0Z3U9J59Gb4bQ2+Vuk8iL/4ZkJOPB2hVlN9SNG0C52zyG397A2OK8K58xA/OGEqCEHxkd/c1mZP0THSXwgV4fMWE3v+dZibGlF7eqHx6ew61TrF6E8rN6QI15fu5h0hhAApKTz4I2aT/Yip/oAjWQnfxGRGXPVntP7BFH77CXLL0X7smX24S8xGCCGeF0KktwjaTLPJO1MIcbgl78G++BL9jeIjW9jzxWPWz60OmF1hwqhIrloykwmj3BdM7ayGiUdgKHEX3ABA1sf/Q5pMbutDT+AuMZvFQFLL6ybgfwBCuR7vpZb8ccBlQojuFWS6QH8c4tfnHKFky7cYqtvuVpUWC9WHdpP5wQsc2PIaJUV7AUg66WoAyrN2UZK+lW0f3Meu1f/E0NCmNTxhVCQv/uUP3HTRXF78yx/cQjpXxXK0Pn7ELLkKAPOvae3y+ntYdYuYDbAUeEcqeyxbhRABQohIIAFIl1JmAAghPmope9DZB9459vt2WyN9CSklOWtXYmlsonTzBoJnnoIQAkP2YWqK8vENjaChvBhzkzIXLC7Zi3/yVIWMLVbO2FSLStOm99Gq/aZRqwDJtHGxHEjv+Z5YT2TBGmIs+JonoPLwpPbIfgIX9Ph/vtdwtfddidlEA7k2n/Na0rpKHzCQUmIoLqE2ZScF//4vlkZli0Oo1ZRv/4mKHRtJjAjlw48+ojAnizPveQRdkCKJWnN4D0FT5rVTVkpeeCsaXdsqs532m8nCroO59AQ9kQFriLFYt3qa4lXoJ42n5uiBTsNqf1o5py2cjZjNcnvZdtKkg3R77btVPakrdJTOL1/1GbVbFNFCta8vIcsuISRkMiqtBxZDMzedMY/bz5iLRq3CZLZw2txZZNTfTd6696k9sh+Nty8jr70fLBZ8izp/3QPphdz22CdMGxfLroO5PbJuPbVqHeE9ZTJ1KTtpPHwE/fhjcweEK0OqIzGbPCDW5nMMUADoukjvhBYZrxWgnDS40K8eozZlJ7VbtuJz4iy8J07AM2kUKp0WdcuJg9rDkx0Z+RjNyiXARrOZlKN5qLQ6Ypdeg6m+Bm3rdoNaDdjfOD6QXtjjYdRdZAPwGjsaodXSmNY14UZ/+mifnD60whXCdSlmA6wFbmuZo80CqqWUhUKIUiBJCJEI5KMMyZf3psPdoSuRwo4o/3wtNT//gkdCPMEXnodKa1/dcm9OITes+IwTRsaQcjSPvTkKcYQQbWRrQXcC063kcTZa351kA5gSEUm+SkWYXk/He7RNBfp+CSV0inA2YjY326TdAorGCLAeOAtIR1nFXtuSZxJC3AZ8A6iBN6WUjlWS+wk1P/8CQPiN13ZJtlbszSm0Es0d6I547iYaKOKKfLoGY3Mz/7zyaj5TWdhd1P8H+u4Ss5FSyj9JKUdKKSdKKXfYlFsvpRzdkueSmI09uGNrpDUy3W/+Sah9fHrdni26Iou9dHsLgb4gm7mhkf3/fY41n3/OPffcwwUXnM/smNhO5fpj8TAwvPL6Ec2ZhRQ+9yYqb298T5xlt4y9S976Er1RQO+ObNJiofSd92hKS+etd95h2bLLMZotbDqSRs2vW6j44it0UZF4xMeh9vFGHQL1u9LYM+pcJk6ciNrNt2kfN4SzNBspe/cban7ajcrLi8g7/ojQaqnffwBjUQlIif/ppzp9b5Yr6O09DvbgjGeLlJKq736g8dBhgi86n7Ueakq2bmFT2mE2PPAXjCWlADRnZWMoLEIaDNDirjZ16lQCAgKYN28eF110EcuWLUPjBq/h44Jw0myh6LlPqU85hPfMZFQeWkreeg9DXr71FwzgPWMq2qCgXj/PdvFwrMgGULdjF1XrvwHAIy6W3UWF7C4qpPqnjRhLSgm/6fp2q1VTVRX1u/ag8jWgDvBhSXMwP/74I9dccw2PPfYYK1euZM6cru+qcAZD6vC+FbaH+FJKSt74ivqUQ4ReexYqTx21m/Yh1Gr8F55C2LVXAqCfPLEd2Ww3TQcSXOmT2scbtb8/Ki9PCp59kaYs5YCo4WAq2sjIdmTTRDXgOU6H/6kLCFw6D7/5U/h5USxHjhxhzZo1mEwm5s+fz7PPPmv3FkZnMeQtXOPvmdR8p6xhKlZvxFxdj1dyPBG33K7kH1YuDtH2gXK6u62bq/8A+uSxxD3yN8z19eT/+xkKn3nBmue/aKHdOh23RoQQLF26lPnz53Pttdfy5z//mV9//ZU333wTPz8/l7/DoLRwrqxULY2K65A2OgRdVAjCU4f/4tnWfG1YKAhBY9oRGg+ntZO4Atf/yK1wJ9l6a23V3t6EXbUMj5GJ1rSARa6dTwcEBLB69Wqeeuop1qxZwznnnIPF4nqfBnxMA2D38N6V+AZLswGVR/sLNGyPt6p/3mS9QzXmoQcUEtrgWMqYuntYN1VWYSwpxWtMUqc8exu/U4KiWXXqde3S3njjDW644QY2bNjAGWec0anOcR/T0JFsnWBR9t31kyZ0Ihu4/4/uLPriuZrAALtks4cpQdG8ffKVndIvvvhihBBs3brV5ecfF4Szh9b/ZmmxUPXdj3iOTiLs2quOca8UDJQFy6zQBLSqzvtwvr6+jB8/nm3btrnc5qAgnLM6cT2HxFxVRc0vm2nKyOzjZznGsSRaxzDKbaVZGC0dT10VTJ8+nT179tjNc4RBQbiewNn4BqFSEXDG6RhLSqn4/Auqvv3Bbrn+IMJAsGq22FORz9W/vGs3z9/fn7o616Uthvy2iDPQxbT4hKpUhFx8Yb8+e3JcJCeMjGFTbU6PDtO7WtD0hLz2Fg17KvLtlg0NDaW2tpbCwkIiI513mx+0hDs1JNUpvRFnYMhTfqmx//grGv+u95bcfcY6OS6S12++EK1azc3mWVzx+SftSNefq2NXXZNycnLQ6/Uu78UN2SHVFRgKClH5eDskW19gyrRotGo1GpUKrUrNSb5x6PNU1ld/oTuydfQesVgsrFu3jrPOOgtvb2+XnnXcE87c0Ej9nn14jXYugt5d86yGGAtb83Ixms2YLGaMFsWb2F1wlrA9cbrctWsXBQUFLFmyxOW6g3ZIdQfUkfWU/PsLpMGA/8IF/fbcVtLuLirkis8/YXZMLFvzcjmc03+B3NBzJYKnnnoKT09PzjrrLNef2aMnDhI4cje3NDZT8tpX1O/YS8CZi/CeGQg09LkkaUcL2erBAUCMe+dt+jxVlxa5p2QrKSlh1apVLF++nOCWC4xdwZAmXFeo35VG0bOfYGlsJvjShQReMNel+j1dPPT3toe7yQZQVVUFwPjx43tUf1ATztmVqpSS+h2HMRSU0rgvg4Z9R/FIiCDkmsXoxye2K9sxjNBZtG5v2Aba2MJZsrlrJdwXZAMoLFS+W0BAQI/qD2rCOQOL0UTGNY8jDS0S8kLgv3gWIZefjsqzmzNWB7AlxuS4SF6/SdneMJrN3LDis3akG2gbur3BunXrUKvVzJs3r0f1hyThjLXNaLx1NBTWUPCvdUiDEeGpI+7JW9AE+6PycByl5SpOGBmjbG+oVdbPe3MKe0w0Z61cV1bVXdbN1sumurqa2bNnk5qayoIFC/D3t39zYndwNkwwAHgdmIASOX+dlPI3m/z7gGU2bSYDoVLKCiFEFlALmAFTV24r7sKuR78j79v2gi2BS+cRcoXzgnyuDqspR/M6BUv3tVXryqq6i2yNh7LJe/gNhFZDwgt38cQTT5CamsqVV17Jk08+2eN+O2vhngM2SCkvapF8aPfXkFI+BTwFIIQ4F/izlLLCpsgpUsqyHvfSCUgpKd6STeEvyo3IAclhVB8pI/CC+QRdOL+b2j1DqyXqGCz9m8X+cVBP2u4K9qxqV891lWzG0ipKXl0LgDSayLzlaZ4Arr76at566y2X2urUl+4KCCH8gJOBawCklAbAkQKfowj9PkF1ehl7//0TVYdK0PjomPnEWUTMbVsMHCpyfRLuqpVrDZbur/laR6u6qTbHbrmeLBKCivaTlV/aLm3hwoW8+uqrrne0A5z5S4wASoGVQojdQojXhRB2zzNaIvTPBD6zSZbAt0KInS2CNXYhhLhJCLFDCLGjtLS0q2J2kfX5fqoOKZq7QeMjCJvVd2I4juBusjlqr9WqPrNtM1es+cTuwX9PyDYmuICIkxJZ+PGV+I5o22dbt24dHh69v6HQGcJpgGnA/6SUU4F6oCsly3OBzR2G07lSymkoYjh/EkKcbK+ilHKFlHKGlHJGqJ2Alq584k4NScU7tm2JXrIth9KUNkksU5P9C86cgTN/sFZnyb6ybLbtd3z9Zsnnfzu2u4VsyRHFjA7MZ/Mda1h/+go8g/WETm9TVnMH2cA5wuUBeVLKVvfOT1EIaA+d9OOklAUtP0tQlDNn9qyrXWPUpVNZsulPzHxCuZC2NrOCgp/SWXvSS6w/fQXG4jb+m6rryfvnStKXPUpzVpG7u9IOhoJCCp5/CUNh3z6nI1whW3JEsdV3cOcj31F5QOnrdxe9Q8an+/AM8WbB25e6r2/dFZBSFgkhcoUQY6SUh1FUMDspWAoh/IH5wBU2ad6ASkpZ2/J+EfBIx7ruwO8vbeboR4oHanNlI1lr2zRzVHpPCv+7isbfMzHX1FvTi15cTfzTf3TYbk83gmu3p1D2/scANGXvRhe52OU2egJnydZKsubKBjbfvoa67EprXtSpozDVG/AfE8qoy6ai9XHfZb/OrlJvB95vWaFmANd2UE8COB/4VkpZb1MvHPi8RT5BA3wgpdzglp53gErX5nvfSjwABFSs/oW63w7gPWMsKi8PDLnFNGcVYcguIv//3kYXF4Ha25PApfMQmt5radRs2Ur5x4oEq35qEoFL5mEu6XWz3cJVsgHU5VS1IxtA2Ox44ha7x9ewI5winJRyD9Bx/+yVDmXeAt7qkJYBTO5595xH8o2zkWZJ+vu72qWrdRqqvtqCytuLyHsvRahVjA0v4si7O0l9bRsNe4/SsFeRk/cYFY2pogZMFvxOnYpoEXJxxcpVfPU11d8pbuqBF5xMyGWnudyGK3B1+OyI4MlRzH/zYqrTyxFCsPtf36PS9p3X2pA6aRh3y4nEnjmGjdevwmJQtgwiTkpE6+uB5cSTEGpVyy9dED4ngdTX2kcdFfzfO9b3xpJKQpa1v4HPHsz1DQidFqSk+vufrGQLiYtmwR+vYm9lm+Bnfwj+2UN38R3+SaH4J4Wy5S4lNtfc1HfS+kOCcLaH+L4JQZy26kryvk3DO9qfyJNHAEpgtO0vvrnS/qVqwZctxFBQTuWaTfjNn4IuRlkx21qoqRGRzI6J5dvffuPHRx9TjoA8PbE0tBHq5w3fMSJpFFf/8m6XcQF9hSlB0cwKTWBbaRbNul12yzSW1lFztJyyXflIiwVTnYHyPfn4jggi+jTn4lZ7giFBuI7wDPZm1GVT26V1/C8PnRHDpHvnk/7+bsye3niNS0AbFoj/GSdgqqyjduMeil74jOiHr0Ht7WmtNzUikvfO/wPvv/MOm//2DyyNTXiNT0QaTRgKJJa6Rh76618Zn5yMyWJmVmhCvxKuNXhZp1ZhsszjbwcqOVzbPvTxwIu/kvHx3nZpKp2auLOTGXfrHDSe7j1rtsWQJJwzEEKQsHQCCUsndHLS1Ib4o5+aRMPuI+Tc+xLRf70aXXQImqgGZkfF8stPP3HjDTcwZ+4cFv7zTt7L3Enug6+ClCRdcBr3PvhAi9u4hW2lWf3yfVr/oc6JmYxOrUIt1EgBE/yT2hGu8JeMTmQDmPnE2YSd0FkV0904bglnC3uewVH3X07dtoOUvrGO/Effwmt8Imp/H1Z67SPva0Vz7elnnuHer98h++mVyGYjMY9eDyOiuGnbKuuQ1pfWzd7c7ED1EUwWM1KAWZo5UH2kXb53tD8BY8OIXpjE7y9ttqZnf3HASjgpJfW5VTQU1dJc0YBvnSf3fH4P8+bN4/zzz+9VnweFmE0rHN1I09uQwa5c0Rt+z6T8w+8xVdRirqpDGk14R4Uxae4som9eymeLb0EaTUQ9uAzv6WPsttHTS+fs9cmZtsb4JjLBP4kD1Uc6DaetMDUa2XTTJ9RmtW2J6CP98ArzobGklobC2k51AgMDqaio6JTeEY7EbIYtXAu6in/Qj09E/383Asp/vmwyIDx1lAlB5rpvkUYT/mfOsku23t5u2NP6h2szuyRaKzReWk55V7nBoD6/muwvD9JYUktjcR2+I4JJumI6PglBLB2/CP3vJm77021MmTKlR/1p99xetzCEYDGaaD6aj6mqDkNuCZ4jo9HFhKLy8kDtq0cIgfDqvOvuO29iu8/9eY2mO+Ad7c+4W060m1fqW8fCkRMAuPXWW3v9rCFDuJ5E4pubTRx5dyfFW7JoKq+nuaoJLPanGNrIYPxPm442MhhDTjFNGYXUbz8EgDS1Cb4MNrI5whfzXgSgaYxy/1hqau+vLBgyhOsJDr26lYxP9qLSqYk9YwweQXpqw0ejCfJFGx5Ec0YBxtIqzHUN1O9Mo+zdb611tdEh1vceccpQ3N9kc6fcRUe0kg0gKysLgCA3CG4PKsK5+yrLpnLl2PfkFX/Ab2Sb71frXE4/aaQ1LXDJPJozFDcgbVgAal9lE1gaTQitpt/I1lFu1p78bE9IaEveVrKlpqbywgsv8O677+Lt7d3rFSoMMsK5G6EzYin4MZ2mioZ2hOuSPJGtB/u1La/eoa8uHO7YbkcCdvXcVqKtXbuWu+++m6NHlTPmSy65hHvvvZeoqKhe9+24IFzrL/ir36M59OpWVGoVAePCOPLeLjxDvfEb0fuhoif9GUjPa3Vw3b59O+effz6TJk3iL3/5C7feeisxMTFu68uQJ5ztLzs0LYXvv1MiunI3pKL19WDO8+fhGeyaAlBv+zHQcOfY72lubkan03HfffcRGRnJzz//3ONQQEcYUoSznYfY+wNX5DeBSrD4q+tpLK3DK8zHrc6FXfXJFfz6YR71lUZOvyUBlcq91zBFeCYTo59CXsMeipoOcefY75FS8tBDD/Hkk08SFxdHZmYmCxcu7BOywRAjXCu6+iPnp9YSnuiF1tcDre/AIlorPn3kMABfv5DBI7/MIy54PBRH0OCVTUnTEfzDPXp0H1iEZzIXxD2FWmgxSyOGRjObNm3izTff5K233mLp0qU0NzeTk5PDpEmTetR3ZzDkCOfoDy0QqNR9L4nXm+HziR3zeXDGRgAePvlX4NfOZVLm4+mjwWKWFKTVYWwyYzFLjmyr5OAv5Qhg9IlBTF4URnSyD0IIYvRTUAst69d9zd///nf27t2L2WxGrVbzwAMP8Pjjj/fJxXYdMeQI1xWa6kyUZjWg06s77V8NlPlVSWYD37+e1W251/64Fw8vNdn7a6ivbItKEwLCR3gjkXz/WhbfvZpFbGwsc+bMIeGyEF7O/R933HEHo0ePZvny5cyaNYtZs2ZhL0qur3BcEE5Kycq79lOS1cA1zyjHNL0lmZSS9JQqSjLqOfBjGSqNYPKiMCYuDMXLt+tf69qn0/nxjWxOuS6OploTCEjfVoneX0tFQRO1ZUqM+UlXxHDNfYv5/V0fnnvmeR78ywOU+23jlft+4GiKIpk1/Zxwkk8OwSdIy/mxTzJu3DjrirKsrIwvvviCb775hrVr1/Lxx0pAz7x58/jqq6/6bI7WHQaVtwg49hixB2OzmZV37ufgxnKW3DuKU6+Pd7k/1SXNbHwnl0W3JlCe28j65zLI3F1FQ7Xiih0a74XJIKksbEKjU7H49hGcen1cpyHKZLBw7+Sf2qV5+mqIHuuDxSwpTKvjgofGcMLSCGvdjhP9zN1VZK+K5YorruDCC51TXK+vr2fr1q3k5uZy/vnn9znZjmtvkd9/KuPgxnJmLInglOt6FpGfuauKH9/I5sc3svH01SAEjJkTRNwEP0ZMDyBukh9CQPa+Gn58I5sv/5NO5p4qAiM82fFlEZFJ3kSM8iEw0pOz7xrJumeVDdUL/zqak5Y5dnosajrEJQlttwAyFkVMwwV4e3uzcKH92wP7G+5ST1oAfAG0+sSsllI+0pJ3JooYjhp4XUr5hNt67wDb1xTy89s5VBU24Req4+J/jO3xpDg0oS3aKiDcg6v/O4HIJJ9O5RIm+3PtH3pWHgAAB5VJREFUcxP55d1cPn+8zfHR0qRj77cl7eZbAJNOD+vURt/funNs4Rb1pBZsklKeY5sghFADLwGno0Twpwgh1kopOwVSuxPfvJzJ1y9kWD/f+cEMdF7dx5ue5dPWrfV146zvf3hdsWx3fTiD8BF6h8QVQjD/qjhGJiTx9M3rAUjbl8PqnPs4kreHlC+KqKs0kjjVn4dP3tSTrzeo0RfqSbaYCaS3xKcihPgIWIqdyH13YvtnbVHH/uEeJE5tP2exJVZjozKH9fISXZZ5fGcpJ8/Tcd3kbKf74H3+Laz9Tzq33HILaqFRhsUEoGfCkUMGzlg4W/WkycBO4M4OEfYAJwoh9gIFwL1Syt+BaCDXpkweMMveQ1qUlW4CiIvrufqRJT+C8oI6/vnPf3DZZRdRWn0HoT72+Z2TZeK0k0rx8RXsOhhht8zmTc0UF1nIPOp8rGZSjBKLevjww65/gSEOd6kn7QLipZSTgReANS3p9sYeu8vi7tSTnMHWTwu4+7T38fHx4YILLmTUqNGMTuo8WTY0S77b0MRpJymyYHW1EkzX4amb3qlsWqoy78rKtE+4pJiCTq9hdA1nLJw99aR2hJNS1ti8Xy+EeFkIEdJS13YZFoNiAXuMrnzijM1mNn2gGNP9+3cSH5+IlCbKKjbxyku1HEkzsfRCL3JzzLz1Wj15ue2vZbzxmk28+OIzmNXL0fvuB8BikWz/TZk9XHSJfphMboBb1JOEEBFAsZRSCiFmoljOcqAKSBJCJAL5KHJel7v7S5iNFtbf+xsFqc3c9xdf1Pp7KK85kcbm33j15V957j/KNYvrv1RcpceO0/DsywH8fsDIay8rM4ONG39h4sTpREb58cpKHcnjtKz9+G5++O5+AJ5+8oj9hw/DJTi18SuEmIKyLWJVTwIuAUU9SQhxG3ArYAIagbullFta6p4FPIuyLfKmlPJf3T3P0cYvKJu/UkrKchopyWhgxxsH2b3TyCOP+3HpFW2uRjtTDFx2QTkBgYKnngvA319FaJiKqGi1daVZXDCWCaM/5JZb7kQIwcaNGzGbzbz99tvcc889aLVadu/e3S/njEMFjjZ+ldC3AfaaPn26dITb35km4yf7SZT5oATkI0/4y7TcSPnb7jC5+BxPGRunliqVknftjd4yLTfS+nKEffv2tWv37LPPdlh+GJ0B7JBd/G0H3UnD8uXLeeGJXYSE6Bg1WkNdrYU33wti1GhFD+PD9xr4+itl6LzoEi/++9RhoqOjUamc8xKZOHEiBw4cYNWqVcTFxbnFj38YNuiKicfy5cjC6XQ6GRISIq+66goJSJUKOWOmTn7wWbCsqamxWqZp06ZJs9nc23/WYfQAOLBwg+q+VCklBoOBsrIyPvjgI8aOHctf//owxYXhXH9FA/v27bOW/fbbb522asPoR3TFxGP5cmThHnjgARkcHCznz58vd+/eLaWUMjc3V2q1WqnX6yUgExISZHNzc2/+SYfRC+DAwh1zctl7dbdosIezzz5bAnLmzJkyJSXF5frDcB8cEW7IjDkrV67krrvu4uOPP2bGjD69zmsYvcCgW6V2hdDQUJ555plj3Y1hdIMhY+GGMTgwTLhh/H875/NSVRDF8c8XJVtVaptoURptXAVF1C4K1NxY0MJVUruifyDc+A+0iSApCKpNVqsIQoxqF1mL/LExn7QxXBRWtAqC0+KeV7fHUyx17n15PjAw78ycYWbel7kz3DsnKSG4ICkhuCApIbggKSG4ICkhuCApIbggKaW8eS/pI7D6K1J/z07g0wa2XyaKGOseM6t7MaWUgttoJL2x5b5I/c8o21jjkRokJQQXJGWzCu5G0R1ISKnGuin3cEFxbNYVLiiIEFyQlIYVnKRhSR8kvfXUlyu7LKkiaVZST85+UNK0l12V326W1CJp1O2vJO3N+QxKmvM0mLN3eN05992SZuSrR1Kvz0FFUm08mGJY7tvzsidgmCxKU629C5gEWoAOYB5o8rIJ4ChZkJ0nwEm3XwRGPD8AjHq+jSzSQBvQ6vlWL7sPDHh+BLhQ9JzUzEOTj72TLGLCJNBVdL8adoVbgX7gnpl9N7P3QAU4LGkXsM3MXlr2j9wBTuV8bnv+IXDCV78eYNzMlszsMzAO9HrZca+L+1bbKgu/YvNZFtOvGpuvUBpdcJckTUm6JanVbfVi0u32tFDH/oePmf0AvgLtK7TVDnzxurVtlYXl+l4opRacpKeSZuqkfuA6sA84ACwCV6pudZqyFez/4rPquHcFUso+lvrWlpmtKka+pJvAY/+5XEy6Bc/X2vM+C5Kage3AktuP1fi8IHsZvkNSs69ya457twGse2y+9aDUK9xK+J6symlgxvOPgAE/eXYA+4EJM1sEvkk64nuws2SR16s+1RPoGeCZ7/PGgG5Jrf7I7gbGvOy518V9q22Vhdd4bD4/QQ+QjbNYij61rOEUdheYBqbIJnJXrmyI7IQ2i59E3X6ITJjzwDV+v2nZCjwgO2BMAJ05n/NurwDncvZOr1tx35ai56TOHPUB73y8Q0X3x8zi1VaQloZ9pAaNSQguSEoILkhKCC5ISgguSEoILkhKCC5Iyk/jxQq/5JK0ZgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "gb_boundary = [(-2.6653539699999556, 51.617254950000074), (-2.6937556629999335, 51.59617747600004), (-2.71312415299991, 51.58661530200004), (-2.760487433999913, 51.579779364000046), (-2.7980850899999155, 51.56350332200009), (-2.816395636999914, 51.555568752000056), (-2.8587133449999556, 51.546128648000035), (-2.943348761999914, 51.54254791900007), (-2.9562882149999155, 51.54572174700007), (-2.9641007149999155, 51.552801825000074), (-2.969471808999913, 51.559881903000075), (-2.9746801419999542, 51.56297435100004), (-2.984038865999935, 51.55853913000004), (-3.0102432929999168, 51.53803131700005), (-3.0156957669999542, 51.53164297100005), (-3.0737198559999115, 51.50836823100008), (-3.0764867829999503, 51.50775788000004), (-3.088937954999949, 51.505072333000044), (-3.105620897999927, 51.49721914300005), (-3.1317032539999445, 51.48041413000004), (-3.1350805329999503, 51.47630442900004), (-3.1409399079999503, 51.46478913000004), (-3.1453751289999445, 51.45994700700004), (-3.1524145169999542, 51.45718008000006), (-3.1666560539999296, 51.45600006700005), (-3.1723933579999084, 51.45327383000006), (-3.1727188789999445, 51.453111070000034), (-3.160064256999931, 51.43183014500005), (-3.167144334999932, 51.41046784100007), (-3.1848038399999155, 51.39760976800005), (-3.204009568999936, 51.401597398000035), (-3.218861456999946, 51.402777411000045), (-3.289418097999942, 51.38422272300005), (-3.539173956999946, 51.398504950000074), (-3.557443813999953, 51.40509674700007), (-3.5753067699999406, 51.420436916000085), (-3.6047257149999155, 51.44570547100005), (-3.6631973949999406, 51.476223049000055), (-3.6769913399999155, 51.47703685100004), (-3.695423956999946, 51.47150299700007), (-3.717925584999932, 51.478583075000074), (-3.7376195949999556, 51.49087148600006), (-3.748036261999914, 51.50092194200005), (-3.7494197259999282, 51.50535716400009), (-3.747670050999943, 51.507025458000044), (-3.7445369129999335, 51.50763580900008), (-3.741851365999935, 51.50836823100008), (-3.7493383449999556, 51.52806224200003), (-3.7519018219999225, 51.53306712400007), (-3.758941209999932, 51.54677969000005), (-3.770130988999938, 51.56329987200007), (-3.782215949999909, 51.57664622600004), (-3.7902725899999155, 51.58197663000004), (-3.8077286449999406, 51.589178778000075), (-3.8169652989999463, 51.59650299700007), (-3.8326716789999296, 51.61554596600007), (-3.8416235019999476, 51.621527411000045), (-3.8548884759999282, 51.62384674700007), (-3.8867895169999542, 51.62140534100007), (-3.9623917309999115, 51.61562734600005), (-3.9766332669999542, 51.61188385600008), (-3.989979620999918, 51.60651276200008), (-3.998768683999913, 51.60028717700004), (-3.999908006999931, 51.59088776200008), (-3.9922582669999542, 51.58112213700008), (-3.9818009109999366, 51.571600653000075), (-3.974598761999914, 51.56297435100004), (-4.016184048999946, 51.56297435100004), (-4.016102667999917, 51.56037018400008), (-4.0208227199999556, 51.555853583000044), (-4.026519334999932, 51.554022528000075), (-4.029204881999931, 51.55927155200004), (-4.031971808999913, 51.56313711100006), (-4.0385636059999115, 51.56622955900008), (-4.046457485999952, 51.568426825000074), (-4.0531306629999335, 51.569240627000056), (-4.056304490999935, 51.56704336100006), (-4.065581834999932, 51.55756256700005), (-4.070220506999931, 51.555568752000056), (-4.0768123039999296, 51.55695221600007), (-4.087269660999937, 51.56191640800006), (-4.112131313999953, 51.565619208000044), (-4.121652798999946, 51.56598541900007), (-4.132191535999937, 51.56297435100004), (-4.142730272999927, 51.55695221600007), (-4.156809048999946, 51.54629140800006), (-4.1664119129999335, 51.54254791900007), (-4.176503058999913, 51.544256903000075), (-4.18773352799991, 51.54877350500004), (-4.1967667309999115, 51.54938385600008), (-4.200550910999937, 51.538763739000046), (-4.213368292999917, 51.539129950000074), (-4.272450324999909, 51.554754950000074), (-4.2899063789999445, 51.555568752000056), (-4.293324347999942, 51.55914948100008), (-4.29515540299991, 51.56195709800005), (-4.297352667999917, 51.569240627000056), (-4.278309699999909, 51.578192450000074), (-4.280832485999952, 51.58881256700005), (-4.2897029289999296, 51.601548570000034), (-4.2899063789999445, 51.61701080900008), (-4.255767381999931, 51.62384674700007), (-4.252023891999954, 51.62710195500006), (-4.241281704999949, 51.63934967700004), (-4.234730597999942, 51.644964911000045), (-4.228505011999914, 51.63743724200003), (-4.234730597999942, 51.63743724200003), (-4.234730597999942, 51.631293036000045), (-4.2278539699999556, 51.628119208000044), (-4.22101803299995, 51.62384674700007), (-4.1900935539999296, 51.63027578300006), (-4.139027472999942, 51.63231028900009), (-4.0912979809999115, 51.639878648000035), (-4.070220506999931, 51.66229889500005), (-4.0698136059999115, 51.66893138200004), (-4.070383266999954, 51.67430247600004), (-4.07054602799991, 51.67597077000005), (-4.0754288399999155, 51.677801825000074), (-4.087269660999937, 51.668850002000056), (-4.095448370999918, 51.66510651200008), (-4.106841600999928, 51.66425202000005), (-4.146351691999939, 51.66705963700008), (-4.200550910999937, 51.68585846600007), (-4.214955206999946, 51.679673570000034), (-4.293690558999913, 51.67226797100005), (-4.3152970039999445, 51.67747630400004), (-4.342355923999946, 51.69086334800005), (-4.3664444649999155, 51.70848216400009), (-4.379261847999942, 51.72687409100007), (-4.338042772999927, 51.72333405200004), (-4.319976365999935, 51.72483958500004), (-4.310454881999931, 51.733710028000075), (-4.328724738999938, 51.73297760600008), (-4.3471573559999115, 51.73578522300005), (-4.3625382149999155, 51.74286530200004), (-4.371815558999913, 51.754787502000056), (-4.368763800999943, 51.75698476800005), (-4.362904425999943, 51.76386139500005), (-4.358021613999938, 51.773138739000046), (-4.358225063999953, 51.782131252000056), (-4.365101691999939, 51.789048570000034), (-4.3714900379999335, 51.78595612200007), (-4.379261847999942, 51.77529531500005), (-4.384917772999927, 51.77187734600005), (-4.3929744129999335, 51.763739325000074), (-4.399159308999913, 51.76162344000005), (-4.409331834999932, 51.76316966400009), (-4.417876756999931, 51.76788971600007), (-4.426503058999913, 51.77529531500005), (-4.445790167999917, 51.77326080900008), (-4.449330206999946, 51.76630280200004), (-4.441395636999914, 51.75678131700005), (-4.426503058999913, 51.747300523000035), (-4.460764126999948, 51.73578522300005), (-4.4988907539999445, 51.73484935100004), (-4.574208136999914, 51.74115631700005), (-4.603423631999931, 51.73924388200004), (-4.639230923999946, 51.73318105700008), (-4.6453751289999445, 51.732123114000046), (-4.678212042999917, 51.71743398600006), (-4.680287238999938, 51.692694403000075), (-4.689442511999914, 51.69159577000005), (-4.69163977799991, 51.689886786000045), (-4.69163977799991, 51.685980536000045), (-4.693959113999938, 51.67841217700004), (-4.712310350999928, 51.650091864000046), (-4.721424933999913, 51.652044989000046), (-4.734934048999946, 51.65924713700008), (-4.741851365999935, 51.65607330900008), (-4.759185350999928, 51.644964911000045), (-4.8482966789999296, 51.64630768400008), (-4.86351477799991, 51.64411041900007), (-4.878977016999954, 51.63743724200003), (-4.887806769999941, 51.62995026200008), (-4.8957413399999155, 51.621079820000034), (-4.904774542999917, 51.61383698100008), (-4.923695441999939, 51.608628648000035), (-4.931996222999942, 51.59902578300006), (-4.941029425999943, 51.59650299700007), (-4.946034308999913, 51.59760163000004), (-4.956450975999928, 51.602769273000035), (-5.021595831999946, 51.61603424700007), (-5.0457657539999445, 51.62689850500004), (-5.0366104809999115, 51.63743724200003), (-5.0511775379999335, 51.65692780200004), (-5.100493943999936, 51.66469961100006), (-5.119740363999938, 51.67841217700004), (-5.113433397999927, 51.68528880400004), (-5.0366104809999115, 51.67841217700004), (-5.038726365999935, 51.68183014500005), (-5.04133053299995, 51.68939850500004), (-5.043446417999917, 51.692694403000075), (-5.028675910999937, 51.69293854400007), (-5.002552863999938, 51.68740469000005), (-4.988189256999931, 51.68585846600007), (-4.974598761999914, 51.687933661000045), (-4.941029425999943, 51.70014069200005), (-4.892648891999954, 51.706366278000075), (-4.868275519999941, 51.716782945000034), (-4.8580623039999296, 51.71832916900007), (-4.844838019999941, 51.71381256700005), (-4.844838019999941, 51.720038153000075), (-4.873402472999942, 51.73773834800005), (-4.879017706999946, 51.76203034100007), (-4.8625382149999155, 51.78237539300005), (-4.824330206999946, 51.788275458000044), (-4.824330206999946, 51.79572174700007), (-4.836008266999954, 51.790716864000046), (-4.864979620999918, 51.783270575000074), (-4.921294725999928, 51.78001536700003), (-4.933583136999914, 51.77529531500005), (-4.9172257149999155, 51.77533600500004), (-4.905181443999936, 51.771185614000046), (-4.900542772999927, 51.76211172100005), (-4.906239386999914, 51.747300523000035), (-4.8920792309999115, 51.73940664300005), (-4.895659959999932, 51.728176174000055), (-4.9105525379999335, 51.71820709800005), (-4.988189256999931, 51.70685455900008), (-5.009917772999927, 51.706366278000075), (-5.149240688999953, 51.718085028000075), (-5.166900193999936, 51.71381256700005), (-5.156971808999913, 51.69757721600007), (-5.1686091789999296, 51.68891022300005), (-5.1828507149999155, 51.68927643400008), (-5.180653449999909, 51.70014069200005), (-5.180653449999909, 51.706366278000075), (-5.230132615999935, 51.73004791900007), (-5.2495011059999115, 51.733710028000075), (-5.228138800999943, 51.73395416900007), (-5.213937954999949, 51.73574453300006), (-5.202870245999918, 51.74079010600008), (-5.191151495999918, 51.75104401200008), (-5.176828579999949, 51.75967031500005), (-5.1432185539999296, 51.76386139500005), (-5.125965949999909, 51.76850006700005), (-5.110259568999936, 51.778509833000044), (-5.107085740999935, 51.78807200700004), (-5.112294074999909, 51.81317780200004), (-5.113392706999946, 51.82880280200004), (-5.11750240799995, 51.84369538000004), (-5.125884568999936, 51.85602448100008), (-5.139637824999909, 51.86399974200003), (-5.146473761999914, 51.85716380400004), (-5.16437740799995, 51.86676666900007), (-5.2037654289999296, 51.87018463700008), (-5.221587693999936, 51.87767161700003), (-5.2358292309999115, 51.87103913000004), (-5.2914119129999335, 51.86399974200003), (-5.3109431629999335, 51.86399974200003), (-5.304269985999952, 51.867621161000045), (-5.297352667999917, 51.87018463700008), (-5.297352667999917, 51.87767161700003), (-5.300689256999931, 51.882025458000044), (-5.302561001999948, 51.88523997600004), (-5.300160285999937, 51.888332424000055), (-5.2905167309999115, 51.89199453300006), (-5.2905167309999115, 51.898138739000046), (-5.2983292309999115, 51.91095612200007), (-5.288929816999939, 51.91693756700005), (-5.252837693999936, 51.91864655200004), (-5.234201626999948, 51.923041083000044), (-5.204172329999949, 51.942287502000056), (-5.191151495999918, 51.946600653000075), (-5.16038977799991, 51.94944896000004), (-5.1195369129999335, 51.95892975500004), (-5.088042772999927, 51.97601959800005), (-5.085031704999949, 52.00185781500005), (-5.070790167999917, 52.00185781500005), (-5.070790167999917, 52.00804271000004), (-5.082753058999913, 52.01447174700007), (-5.081206834999932, 52.021185614000046), (-5.070220506999931, 52.02635325700004), (-5.053700324999909, 52.028509833000044), (-5.0266007149999155, 52.027411200000074), (-5.015044725999928, 52.02533600500004), (-4.961740688999953, 52.007513739000046), (-4.942534959999932, 52.007473049000055), (-4.913685675999943, 52.014837958000044), (-4.920521613999938, 52.028509833000044), (-4.9016007149999155, 52.02643463700008), (-4.863189256999931, 52.01699453300006), (-4.841420050999943, 52.014837958000044), (-4.83226477799991, 52.01898834800005), (-4.833851691999939, 52.02875397300005), (-4.8382869129999335, 52.04010651200008), (-4.838002081999946, 52.04901764500005), (-4.83039303299995, 52.05292389500005), (-4.796986456999946, 52.05646393400008), (-4.77757727799991, 52.064886786000045), (-4.7631729809999115, 52.075873114000046), (-4.7386775379999335, 52.100816148000035), (-4.720285610999952, 52.113348700000074), (-4.7065323559999115, 52.11347077000005), (-4.673451300999943, 52.09739817900004), (-4.675689256999931, 52.126939195000034), (-4.637521938999953, 52.13849518400008), (-4.513824022999927, 52.13568756700005), (-4.50226803299995, 52.138373114000046), (-4.495757615999935, 52.14350006700005), (-4.490956183999913, 52.150376695000034), (-4.484283006999931, 52.156317450000074), (-4.454701300999943, 52.16205475500004), (-4.4348038399999155, 52.170355536000045), (-4.415394660999937, 52.18154531500005), (-4.385568813999953, 52.20343659100007), (-4.371245897999927, 52.20929596600007), (-4.3547257149999155, 52.212103583000044), (-4.334339972999942, 52.21283600500004), (-4.315825975999928, 52.21629466400003), (-4.197132941999939, 52.279282945000034), (-4.1390681629999335, 52.33022695500006), (-4.10960852799991, 52.365301825000074), (-4.096262173999946, 52.387884833000044), (-4.0873917309999115, 52.430121161000045), (-4.0789688789999445, 52.45302969000005), (-4.067941860999952, 52.47361888200004), (-4.056548631999931, 52.48786041900007), (-4.0618383449999556, 52.49705638200004), (-4.064035610999952, 52.50918203300006), (-4.062570766999954, 52.52098216400003), (-4.056548631999931, 52.52944570500006), (-4.048491990999935, 52.530462958000044), (-4.0266007149999155, 52.52338288000004), (-4.016184048999946, 52.52195872600004), (-3.998768683999913, 52.52594635600008), (-3.9473363919999542, 52.549261786000045), (-3.9473363919999542, 52.556708075000074), (-3.9744766919999392, 52.55654531500005), (-4.025868292999917, 52.545355536000045), (-4.0531306629999335, 52.54242584800005), (-4.068470831999946, 52.550116278000075), (-4.1141251289999445, 52.58860911700003), (-4.125477667999917, 52.60390859600005), (-4.122222459999932, 52.62872955900008), (-4.105946417999917, 52.653509833000044), (-4.0848282539999445, 52.67267487200007), (-4.067128058999913, 52.68024323100008), (-4.063547329999949, 52.68309153900003), (-4.05882727799991, 52.696600653000075), (-4.056548631999931, 52.70066966400003), (-4.052723761999914, 52.70221588700008), (-4.041981574999909, 52.70465729400007), (-4.001088019999941, 52.72410716400003), (-3.988270636999914, 52.73427969000005), (-4.014719204999949, 52.73232656500005), (-4.031971808999913, 52.723944403000075), (-4.048817511999914, 52.721584377000056), (-4.125152147999927, 52.77830638200004), (-4.144357876999948, 52.802801825000074), (-4.149037238999938, 52.81207916900007), (-4.146229620999918, 52.82021719000005), (-4.128895636999914, 52.82363515800006), (-4.117339647999927, 52.83075592700004), (-4.1197810539999296, 52.84625885600008), (-4.127756313999953, 52.86172109600005), (-4.132191535999937, 52.86831289300005), (-4.131988084999932, 52.882473049000055), (-4.129872199999909, 52.88922760600008), (-4.123605923999946, 52.89325592700004), (-4.064035610999952, 52.919175523000035), (-4.071400519999941, 52.921087958000044), (-4.074574347999942, 52.92279694200005), (-4.0776261059999115, 52.926662502000056), (-4.0891007149999155, 52.918850002000056), (-4.100493943999936, 52.914129950000074), (-4.1105850899999155, 52.915676174000055), (-4.118560350999928, 52.926662502000056), (-4.144398566999939, 52.91478099200003), (-4.171620245999918, 52.91347890800006), (-4.228505011999914, 52.919175523000035), (-4.300689256999931, 52.905585028000075), (-4.317290818999936, 52.89935944200005), (-4.337310350999928, 52.89203522300005), (-4.406605597999942, 52.89252350500004), (-4.4272354809999115, 52.885972398000035), (-4.446197068999936, 52.87592194200005), (-4.4816788399999155, 52.850897528000075), (-4.477935350999928, 52.84833405200004), (-4.475493943999936, 52.84414297100005), (-4.491363084999932, 52.83820221600007), (-4.500965949999909, 52.82680898600006), (-4.501332160999937, 52.81391022300005), (-4.4891251289999445, 52.803168036000045), (-4.501942511999914, 52.794989325000074), (-4.509185350999928, 52.791449286000045), (-4.5164688789999445, 52.789496161000045), (-4.5285538399999155, 52.79047272300005), (-4.5424698559999115, 52.80068594000005), (-4.5639542309999115, 52.80524323100008), (-4.583078579999949, 52.81464264500005), (-4.594634568999936, 52.81679922100005), (-4.606516079999949, 52.81509023600006), (-4.61351477799991, 52.81110260600008), (-4.619211391999954, 52.80654531500005), (-4.626332160999937, 52.803168036000045), (-4.648589647999927, 52.79962799700007), (-4.704497850999928, 52.803168036000045), (-4.719309048999946, 52.79751211100006), (-4.733225063999953, 52.78750234600005), (-4.747425910999937, 52.78343333500004), (-4.762847459999932, 52.789496161000045), (-4.752512173999946, 52.79877350500004), (-4.7514542309999115, 52.80320872600004), (-4.755441860999952, 52.80931224200003), (-4.7492569649999155, 52.81427643400008), (-4.734934048999946, 52.83047109600005), (-4.596058722999942, 52.92841217700004), (-4.580962693999936, 52.93349844000005), (-4.562082485999952, 52.93451569200005), (-4.543527798999946, 52.937933661000045), (-4.523996548999946, 52.944240627000056), (-4.443430141999954, 52.98216380400004), (-4.423695441999939, 53.00263092700004), (-4.358225063999953, 53.02846914300005), (-4.349964972999942, 53.04148997600004), (-4.345692511999914, 53.059475002000056), (-4.343861456999946, 53.10106028900003), (-4.340891079999949, 53.11273834800005), (-4.334339972999942, 53.11676666900007), (-4.3276261059999115, 53.11469147300005), (-4.324696417999917, 53.10789622600004), (-4.320668097999942, 53.10150788000004), (-4.312245245999918, 53.109442450000074), (-4.304758266999954, 53.12099844000005), (-4.303618943999936, 53.12531159100007), (-4.263539191999939, 53.15452708500004), (-4.2523494129999335, 53.159409898000035), (-4.234527147999927, 53.16400788000004), (-4.221302863999938, 53.175034898000035), (-4.200550910999937, 53.20099518400008), (-4.17796790299991, 53.21759674700007), (-4.151519334999932, 53.22809479400007), (-4.122222459999932, 53.23346588700008), (-4.0906876289999445, 53.23517487200007), (-4.08234615799995, 53.23354726800005), (-4.074330206999946, 53.23065827000005), (-4.066883917999917, 53.22907135600008), (-4.054107225999928, 53.234361070000034), (-4.032297329999949, 53.24070872600004), (-4.008900519999941, 53.24445221600007), (-3.974598761999914, 53.261786200000074), (-3.8653051419999542, 53.289129950000074), (-3.8312882149999155, 53.289129950000074), (-3.841420050999943, 53.30744049700007), (-3.870757615999935, 53.32562897300005), (-3.8784073559999115, 53.337591864000046), (-3.859974738999938, 53.33633047100005), (-3.840565558999913, 53.33283112200007), (-3.822987433999913, 53.32656484600005), (-3.8101293609999516, 53.31708405200004), (-3.7905167309999115, 53.323431708000044), (-3.7688695949999556, 53.31915924700007), (-3.748199022999927, 53.307806708000044), (-3.7319229809999115, 53.29287344000005), (-3.7162979809999115, 53.28693268400008), (-3.6022029289999296, 53.28888580900008), (-3.5623266269999476, 53.29441966400003), (-3.372059699999909, 53.350897528000075), (-3.33031165299991, 53.35179271000004), (-3.2923884759999282, 53.34052155200004), (-3.2713110019999476, 53.33055247600004), (-3.262074347999942, 53.32050202000005), (-3.250803188999953, 53.312567450000074), (-3.122222459999932, 53.26227448100008), (-3.107533331999946, 53.25189850500004), (-3.0951228509999282, 53.23932526200008), (-3.0877579419999392, 53.23468659100007), (-3.0845434239999463, 53.23859284100007), (-3.0845434239999463, 53.25857168200008), (-3.0845434239999463, 53.275458075000074), (-3.09593665299991, 53.28713613500008), (-3.1111954419999392, 53.302801825000074), (-3.1354060539999296, 53.33380768400008), (-3.171538865999935, 53.36225006700005), (-3.185210740999935, 53.37726471600007), (-3.186350063999953, 53.39276764500005), (-3.175526495999918, 53.40273672100005), (-3.157297329999949, 53.40875885600008), (-3.1146541009999282, 53.41266510600008), (-3.0942276679999168, 53.41738515800006), (-3.058257615999935, 53.434759833000044), (-3.0355525379999335, 53.43374258000006), (-3.0121964179999168, 53.41669342700004), (-2.9529516269999476, 53.323919989000046), (-2.9351293609999516, 53.309475002000056), (-2.9105525379999335, 53.29633209800005), (-2.8814998039999296, 53.288397528000075), (-2.850575324999909, 53.289129950000074), (-2.849598761999914, 53.29120514500005), (-2.848378058999913, 53.29555898600006), (-2.8449600899999155, 53.300116278000075), (-2.837554490999935, 53.302801825000074), (-2.8286026679999168, 53.302435614000046), (-2.813384568999936, 53.297756252000056), (-2.8061417309999115, 53.296576239000046), (-2.789784308999913, 53.29743073100008), (-2.775502081999946, 53.29987213700008), (-2.7481176419999542, 53.30963776200008), (-2.753651495999918, 53.32245514500005), (-2.750884568999936, 53.33161041900007), (-2.743153449999909, 53.33852773600006), (-2.734486456999946, 53.34442780200004), (-2.7261449859999516, 53.34198639500005), (-2.7174373039999296, 53.34271881700005), (-2.708607550999943, 53.346136786000045), (-2.6997777989999463, 53.35179271000004), (-2.7141007149999155, 53.35236237200007), (-2.764393683999913, 53.34516022300005), (-2.775380011999914, 53.341009833000044), (-2.782378709999932, 53.32636139500005), (-2.799794074999909, 53.32103099200003), (-2.810332811999956, 53.32172272300005), (-2.843658006999931, 53.323919989000046), (-2.886463995999918, 53.33356354400007), (-2.924956834999932, 53.35000234600005), (-2.956939256999931, 53.37055084800005), (-2.980824347999942, 53.39276764500005), (-3.096587693999936, 53.54433828300006), (-3.101918097999942, 53.55805084800005), (-3.0994766919999392, 53.57200755400004), (-3.087635870999918, 53.58771393400008), (-3.021839972999942, 53.65281810100004), (-2.968658006999931, 53.69403717700004), (-2.9603572259999282, 53.69757721600007), (-2.9517309239999463, 53.70807526200008), (-2.9114477199999556, 53.725043036000045), (-2.899037238999938, 53.73541901200008), (-2.9848526679999168, 53.73607005400004), (-3.021473761999914, 53.745794989000046), (-3.049183722999942, 53.769517320000034), (-3.056385870999918, 53.80304596600007), (-3.044911261999914, 53.87848541900007), (-3.056630011999914, 53.90615469000005), (-3.040679490999935, 53.923529364000046), (-3.017567511999914, 53.93195221600007), (-2.925689256999931, 53.95270416900007), (-2.909250454999949, 53.95384349200003), (-2.896107550999943, 53.94773997600004), (-2.8885391919999392, 53.94603099200003), (-2.885365363999938, 53.950506903000075), (-2.881988084999932, 53.95652903900003), (-2.874175584999932, 53.96165599200003), (-2.865142381999931, 53.96548086100006), (-2.8579809239999463, 53.96759674700007), (-2.869252081999946, 53.97882721600007), (-2.8344620429999168, 53.99982330900008), (-2.830067511999914, 54.01601797100005), (-2.8475235669999392, 54.00836823100008), (-2.864857550999943, 54.00429922100005), (-2.895497199999909, 54.00234609600005), (-2.900298631999931, 54.00495026200008), (-2.9160863919999542, 54.026556708000044), (-2.91820227799991, 54.03432851800005), (-2.911284959999932, 54.03998444200005), (-2.9007869129999335, 54.044907945000034), (-2.8920792309999115, 54.050116278000075), (-2.872670050999943, 54.071600653000075), (-2.8588761059999115, 54.08100006700005), (-2.826771613999938, 54.08881256700005), (-2.815174933999913, 54.09878164300005), (-2.795969204999949, 54.12518952000005), (-2.8128149079999503, 54.139878648000035), (-2.8364151679999168, 54.16758860900006), (-2.8509415359999366, 54.18463776200008), (-2.854237433999913, 54.19407786700003), (-2.8328751289999445, 54.19904205900008), (-2.810292120999918, 54.21190013200004), (-2.7952367829999503, 54.22947825700004), (-2.795969204999949, 54.24872467700004), (-2.8028051419999542, 54.24872467700004), (-2.806630011999914, 54.233710028000075), (-2.8208715489999463, 54.22174713700008), (-2.850575324999909, 54.20774974200003), (-2.886382615999935, 54.19627513200004), (-2.904652472999942, 54.18764883000006), (-2.9126684239999463, 54.176988023000035), (-2.9203995429999168, 54.16205475500004), (-2.939198370999918, 54.15509674700007), (-2.9842016269999476, 54.15314362200007), (-2.997710740999935, 54.15957265800006), (-3.011341925999943, 54.17413971600007), (-3.017323370999918, 54.19009023600006), (-3.008168097999942, 54.20034414300005), (-3.015370245999918, 54.21190013200004), (-3.024484829999949, 54.221584377000056), (-3.035755988999938, 54.22597890800006), (-3.049183722999942, 54.22207265800006), (-3.044667120999918, 54.208319403000075), (-3.047840949999909, 54.19432200700004), (-3.053537563999953, 54.181301174000055), (-3.056630011999914, 54.17023346600007), (-3.0610245429999168, 54.16193268400008), (-3.090728318999936, 54.13947174700007), (-3.10765540299991, 54.11855703300006), (-3.117909308999913, 54.10883209800005), (-3.145253058999913, 54.100043036000045), (-3.147450324999909, 54.08869049700007), (-3.1443985669999392, 54.07514069200005), (-3.1453751289999445, 54.063788153000075), (-3.1805313789999445, 54.09284088700008), (-3.1897680329999503, 54.09788646000004), (-3.2057185539999296, 54.098537502000056), (-3.219553188999953, 54.100775458000044), (-3.2311091789999296, 54.105129299000055), (-3.240956183999913, 54.11212799700007), (-3.2381078769999476, 54.12759023600006), (-3.232533331999946, 54.14468008000006), (-3.233143683999913, 54.15916575700004), (-3.248402472999942, 54.16681549700007), (-3.248402472999942, 54.17365143400008), (-3.215199347999942, 54.17983633000006), (-3.206776495999918, 54.20892975500004), (-3.2090551419999542, 54.24274323100008), (-3.207386847999942, 54.263006903000075), (-3.2231339179999168, 54.25763580900008), (-3.231353318999936, 54.24721914300005), (-3.240956183999913, 54.22207265800006), (-3.232167120999918, 54.20254140800006), (-3.247141079999949, 54.19794342700004), (-3.270130988999938, 54.19912344000005), (-3.2860001289999445, 54.19721100500004), (-3.306792772999927, 54.19188060100004), (-3.3285212879999335, 54.204738674000055), (-3.3644913399999155, 54.24249909100007), (-3.394195115999935, 54.26439036700003), (-3.407378709999932, 54.27773672100005), (-3.412912563999953, 54.29376862200007), (-3.41038977799991, 54.30145905200004), (-3.405995245999918, 54.30963776200008), (-3.4041235019999476, 54.31854889500005), (-3.4114477199999556, 54.33274974200003), (-3.4134415359999366, 54.342962958000044), (-3.4163305329999503, 54.344916083000044), (-3.440174933999913, 54.35175202000005), (-3.474273240999935, 54.39350006700005), (-3.497710740999935, 54.40582916900007), (-3.5918676419999542, 54.48309967700004), (-3.608143683999913, 54.488267320000034), (-3.613189256999931, 54.49164459800005), (-3.6236873039999296, 54.50608958500004), (-3.6341853509999282, 54.512884833000044), (-3.6268204419999392, 54.520412502000056), (-3.616200324999909, 54.52757396000004), (-3.61156165299991, 54.52993398600006), (-3.5903214179999168, 54.56464264500005), (-3.5638321609999366, 54.64276764500005), (-3.5301407539999445, 54.68805573100008), (-3.5160212879999335, 54.712876695000034), (-3.5091853509999282, 54.72166575700004), (-3.500721808999913, 54.72597890800006), (-3.478871222999942, 54.730902411000045), (-3.4681290359999366, 54.73529694200005), (-3.455433722999942, 54.745021877000056), (-3.439564581999946, 54.76146067900004), (-3.4309789699999556, 54.780462958000044), (-3.440174933999913, 54.79743073100008), (-3.4075414699999556, 54.85602448100008), (-3.3879288399999155, 54.88336823100008), (-3.3644913399999155, 54.89980703300006), (-3.3449600899999155, 54.90253327000005), (-3.3333634109999366, 54.89728424700007), (-3.3227432929999168, 54.889878648000035), (-3.3064672519999476, 54.88617584800005), (-3.295725063999953, 54.88690827000005), (-3.254628058999913, 54.89980703300006), (-3.267323370999918, 54.905503648000035), (-3.317290818999936, 54.92031484600005), (-3.2914932929999168, 54.93667226800005), (-3.276519334999932, 54.943426825000074), (-3.213612433999913, 54.954413153000075), (-3.2010391919999392, 54.95221588700008), (-3.1936742829999503, 54.94863515800006), (-3.1879776679999168, 54.94448476800005), (-3.1801651679999168, 54.94082265800006), (-3.14281165299991, 54.93353913000004), (-3.122792120999918, 54.93268463700008), (-3.0395401679999168, 54.94717031500005), (-3.021839972999942, 54.954413153000075), (-3.090728318999936, 54.954413153000075), (-3.090728318999936, 54.96124909100007), (-3.0715225899999155, 54.96312083500004), (-3.0562231109999516, 54.968817450000074), (-3.040923631999931, 54.97247955900008), (-3.021839972999942, 54.968085028000075), (-3.021839972999942, 54.97553131700005), (-3.0462947259999282, 54.982123114000046), (-3.0502913779999403, 54.981510325000045), (-3.1354060539999296, 54.968085028000075), (-3.453846808999913, 54.981756903000075), (-3.470692511999914, 54.984442450000074), (-3.486236131999931, 54.989488023000035), (-3.501047329999949, 54.99249909100007), (-3.515288865999935, 54.98920319200005), (-3.5123591789999296, 54.98712799700007), (-3.511463995999918, 54.98688385600008), (-3.510894334999932, 54.985988674000055), (-3.5091853509999282, 54.981756903000075), (-3.5260310539999296, 54.97711823100008), (-3.5418595039999445, 54.98065827000005), (-3.57054602799991, 54.995428778000075), (-3.583607550999943, 54.968085028000075), (-3.5756729809999115, 54.95734284100007), (-3.5706274079999503, 54.937567450000074), (-3.5687556629999335, 54.916001695000034), (-3.57054602799991, 54.89980703300006), (-3.581695115999935, 54.88361237200007), (-3.598378058999913, 54.87799713700008), (-3.691761847999942, 54.88320547100005), (-3.7176407539999445, 54.880845445000034), (-3.739247199999909, 54.859808661000045), (-3.8101293609999516, 54.86627838700008), (-3.8078507149999155, 54.86107005400004), (-3.806792772999927, 54.86090729400007), (-3.803334113999938, 54.85887278900003), (-3.8123673169999392, 54.855169989000046), (-3.8198136059999115, 54.855902411000045), (-3.826079881999931, 54.85993073100008), (-3.8312882149999155, 54.86627838700008), (-3.819976365999935, 54.878566799000055), (-3.815052863999938, 54.87714264500005), (-3.8101293609999516, 54.87250397300005), (-3.8116348949999406, 54.88003164300005), (-3.813221808999913, 54.88312409100007), (-3.8169652989999463, 54.88617584800005), (-3.828846808999913, 54.874986070000034), (-3.8443090489999463, 54.86627838700008), (-3.839751756999931, 54.855902411000045), (-3.8374731109999516, 54.851996161000045), (-3.844105597999942, 54.85097890800006), (-3.8578995429999168, 54.84454987200007), (-3.823841925999943, 54.82469310100004), (-3.833607550999943, 54.82005442900004), (-3.885731574999909, 54.80646393400008), (-3.9641820949999556, 54.771918036000045), (-4.011708136999914, 54.76821523600006), (-4.042876756999931, 54.76947663000004), (-4.042876756999931, 54.77692291900007), (-4.046783006999931, 54.77802155200004), (-4.050200975999928, 54.778550523000035), (-4.053334113999938, 54.77997467700004), (-4.055775519999941, 54.782538153000075), (-4.05296790299991, 54.78546784100007), (-4.050160285999937, 54.78900788000004), (-4.049712693999936, 54.78998444200005), (-4.051747199999909, 54.800034898000035), (-4.0477188789999445, 54.81305573100008), (-4.049956834999932, 54.82322825700004), (-4.063588019999941, 54.82684967700004), (-4.064035610999952, 54.83152903900003), (-4.078602667999917, 54.82412344000005), (-4.09007727799991, 54.809759833000044), (-4.093495245999918, 54.792669989000046), (-4.083851691999939, 54.77692291900007), (-4.122954881999931, 54.77301666900007), (-4.173939581999946, 54.792303778000075), (-4.209136522999927, 54.826239325000074), (-4.200550910999937, 54.86627838700008), (-4.215402798999946, 54.861029364000046), (-4.2397354809999115, 54.843003648000035), (-4.255767381999931, 54.838324286000045), (-4.2707413399999155, 54.83942291900007), (-4.345285610999952, 54.86017487200007), (-4.3569229809999115, 54.86554596600007), (-4.3656306629999335, 54.87250397300005), (-4.375152147999927, 54.88690827000005), (-4.379872199999909, 54.89789459800005), (-4.386789516999954, 54.90477122600004), (-4.402902798999946, 54.90729401200008), (-4.409006313999953, 54.90302155200004), (-4.416818813999953, 54.89280833500004), (-4.423573370999918, 54.88035716400003), (-4.426503058999913, 54.86945221600007), (-4.4172257149999155, 54.84593333500004), (-4.4094132149999155, 54.831244208000044), (-4.402902798999946, 54.82469310100004), (-4.386708136999914, 54.82416413000004), (-4.372425910999937, 54.82184479400007), (-4.35960852799991, 54.81663646000004), (-4.347645636999914, 54.80731842700004), (-4.344471808999913, 54.79450104400007), (-4.353179490999935, 54.78310781500005), (-4.358143683999913, 54.77098216400003), (-4.343861456999946, 54.75641510600008), (-4.356516079999949, 54.741888739000046), (-4.353260870999918, 54.72089264500005), (-4.348133917999917, 54.70197174700007), (-4.3547257149999155, 54.693793036000045), (-4.360340949999909, 54.69159577000005), (-4.365305141999954, 54.68695709800005), (-4.371896938999953, 54.68227773600006), (-4.382394985999952, 54.68008047100005), (-4.405262824999909, 54.682074286000045), (-4.426503058999913, 54.687567450000074), (-4.4518123039999296, 54.69879791900007), (-4.46117102799991, 54.701239325000074), (-4.4967341789999296, 54.70062897300005), (-4.505604620999918, 54.70465729400007), (-4.563628709999932, 54.75641510600008), (-4.596669074999909, 54.77529531500005), (-4.714466925999943, 54.81785716400003), (-4.759592251999948, 54.82534414300005), (-4.781076626999948, 54.83307526200008), (-4.799631313999953, 54.86127350500004), (-4.821034308999913, 54.86664459800005), (-4.859120245999918, 54.86627838700008), (-4.88304602799991, 54.86009349200003), (-4.905873175999943, 54.84979889500005), (-4.925770636999914, 54.83738841400003), (-4.941029425999943, 54.82469310100004), (-4.9496150379999335, 54.81582265800006), (-4.953684048999946, 54.81000397300005), (-4.954823370999918, 54.804754950000074), (-4.954701300999943, 54.79743073100008), (-4.952870245999918, 54.78896719000005), (-4.9479060539999296, 54.777329820000034), (-4.940256313999953, 54.76703522300005), (-4.930165167999917, 54.76264069200005), (-4.923247850999928, 54.75185781500005), (-4.911936001999948, 54.728216864000046), (-4.8959854809999115, 54.70453522300005), (-4.867258266999954, 54.69013092700004), (-4.866932745999918, 54.68146393400008), (-4.872141079999949, 54.663316148000035), (-4.872425910999937, 54.65403880400004), (-4.872059699999909, 54.64923737200007), (-4.859120245999918, 54.63296133000006), (-4.880604620999918, 54.63621653900003), (-4.923491990999935, 54.649725653000075), (-4.944081183999913, 54.652777411000045), (-4.953684048999946, 54.65973541900007), (-4.959868943999936, 54.67552317900004), (-4.958973761999914, 54.69196198100008), (-4.947255011999914, 54.701239325000074), (-4.954823370999918, 54.707464911000045), (-4.958892381999931, 54.714056708000044), (-4.959055141999954, 54.72093333500004), (-4.954701300999943, 54.728501695000034), (-4.973378058999913, 54.729722398000035), (-4.981556769999941, 54.731634833000044), (-4.988189256999931, 54.73529694200005), (-4.992665167999917, 54.74433014500005), (-4.997059699999909, 54.75836823100008), (-5.003285285999937, 54.77130768400008), (-5.0130102199999556, 54.77692291900007), (-5.033192511999914, 54.782416083000044), (-5.1282445949999556, 54.848944403000075), (-5.157134568999936, 54.87909577000005), (-5.175526495999918, 54.91461823100008), (-5.180653449999909, 54.954413153000075), (-5.177601691999939, 54.99054596600007), (-5.170806443999936, 55.008693752000056), (-5.156727667999917, 55.01654694200005), (-5.1356095039999445, 55.01585521000004), (-5.124582485999952, 55.016791083000044), (-5.119740363999938, 55.01992422100005), (-5.115142381999931, 55.03156159100007), (-5.105213995999918, 55.02619049700007), (-5.095529751999948, 55.01508209800005), (-5.091867641999954, 55.00971100500004), (-5.076893683999913, 54.99555084800005), (-5.069488084999932, 54.986029364000046), (-5.064564581999946, 54.97553131700005), (-5.0637914699999556, 54.96458567900004), (-5.065256313999953, 54.940334377000056), (-5.06086178299995, 54.93113841400003), (-5.0475154289999296, 54.92031484600005), (-5.030995245999918, 54.911322333000044), (-5.013091600999928, 54.90961334800005), (-4.9955948559999115, 54.92031484600005), (-4.992298956999946, 54.924261786000045), (-4.988189256999931, 54.927720445000034), (-4.988189256999931, 54.93455638200004), (-5.0240779289999296, 54.97638580900008), (-5.029774542999917, 54.98550039300005), (-5.032500779999907, 54.99371979400007), (-5.033029751999948, 54.99526601800005), (-5.047027147999927, 55.01508209800005), (-5.0502823559999115, 55.02680084800005), (-5.0496720039999445, 55.04897695500006), (-5.047596808999913, 55.05573151200008), (-5.043446417999917, 55.06427643400008), (-5.0257869129999335, 55.08869049700007), (-5.018950975999928, 55.10224030200004), (-5.016184048999946, 55.12262604400007), (-5.007801886999914, 55.14118073100008), (-4.988270636999914, 55.15265534100007), (-4.947255011999914, 55.16791413000004), (-4.882394985999952, 55.21857330900008), (-4.877552863999938, 55.22089264500005), (-4.867258266999954, 55.22247955900008), (-4.865305141999954, 55.22565338700008), (-4.865589972999942, 55.236314195000034), (-4.864816860999952, 55.24135976800005), (-4.841949022999927, 55.275091864000046), (-4.838002081999946, 55.28400299700007), (-4.8372289699999556, 55.293850002000056), (-4.839751756999931, 55.31557851800005), (-4.838002081999946, 55.32501862200007), (-4.832508917999917, 55.33112213700008), (-4.7992244129999335, 55.354722398000035), (-4.781076626999948, 55.36351146000004), (-4.773101365999935, 55.36937083500004), (-4.767160610999952, 55.37905508000006), (-4.758778449999909, 55.40228913000004), (-4.7492569649999155, 55.413763739000046), (-4.71703040299991, 55.43048737200007), (-4.650502081999946, 55.448472398000035), (-4.626332160999937, 55.468410549000055), (-4.617787238999938, 55.49559153900003), (-4.626779751999948, 55.51972077000005), (-4.6507869129999335, 55.53705475500004), (-4.687163865999935, 55.544134833000044), (-4.66624915299991, 55.562201239000046), (-4.666493292999917, 55.56329987200007), (-4.6711319649999155, 55.584418036000045), (-4.692738410999937, 55.60521067900004), (-4.7219945949999556, 55.619208075000074), (-4.776519334999932, 55.632879950000074), (-4.808745897999927, 55.63361237200007), (-4.818104620999918, 55.63719310100004), (-4.810617641999954, 55.646551825000074), (-4.810617641999954, 55.653998114000046), (-4.868560350999928, 55.67560455900008), (-4.900990363999938, 55.69232819200005), (-4.920521613999938, 55.70856354400007), (-4.876332160999937, 55.735256252000056), (-4.861073370999918, 55.756740627000056), (-4.865305141999954, 55.79047272300005), (-4.8717341789999296, 55.802435614000046), (-4.8777970039999445, 55.81102122600004), (-4.882720506999931, 55.82135651200008), (-4.888661261999914, 55.864528713000084), (-4.888824022999927, 55.865301825000074), (-4.892648891999954, 55.89288971600007), (-4.886463995999918, 55.91966380400004), (-4.872141079999949, 55.937201239000046), (-4.849354620999918, 55.94822825700004), (-4.818104620999918, 55.95563385600008), (-4.799387173999946, 55.957912502000056), (-4.7857966789999296, 55.95697663000004), (-4.722320115999935, 55.94009023600006), (-4.705433722999942, 55.93846263200004), (-4.693959113999938, 55.94135163000004), (-4.6725154289999296, 55.93378327000005), (-4.505970831999946, 55.91909414300005), (-4.4816788399999155, 55.92829010600008), (-4.590606248999961, 55.941514390000066), (-4.630034959999932, 55.94627513200004), (-4.673451300999943, 55.96185944200005), (-4.724517381999931, 55.99835846600007), (-4.765044725999928, 56.007066148000035), (-4.78343665299991, 56.017645575000074), (-4.7992244129999335, 56.030951239000046), (-4.810617641999954, 56.04376862200007), (-4.8237198559999115, 56.07367584800005), (-4.824330206999946, 56.07851797100005), (-4.8391820949999556, 56.08063385600008), (-4.844309048999946, 56.07298411700003), (-4.843739386999914, 56.06297435100004), (-4.837554490999935, 56.05060455900008), (-4.790150519999941, 56.010199286000045), (-4.778920050999943, 55.99209219000005), (-4.785308397999927, 55.984035549000055), (-4.803618943999936, 55.982082424000055), (-4.828033006999931, 55.98232656500005), (-4.851551886999914, 55.98802317900004), (-4.862294074999909, 56.00214264500005), (-4.865386522999927, 56.02020905200004), (-4.866851365999935, 56.05833567900004), (-4.865386522999927, 56.06671784100007), (-4.826324022999927, 56.124212958000044), (-4.755441860999952, 56.188381252000056), (-4.750884568999936, 56.20270416900007), (-4.755523240999935, 56.20652903900003), (-4.7662654289999296, 56.20209381700005), (-4.7799373039999296, 56.191473700000074), (-4.837269660999937, 56.12441640800006), (-4.851673956999946, 56.112616278000075), (-4.873117641999954, 56.11200592700004), (-4.880604620999918, 56.11985911700003), (-4.878977016999954, 56.15053945500006), (-4.883168097999942, 56.16400788000004), (-4.893544074999909, 56.174261786000045), (-4.9070938789999445, 56.177069403000075), (-4.920521613999938, 56.16791413000004), (-4.909087693999936, 56.14996979400007), (-4.895253058999913, 56.11473216400003), (-4.8862198559999115, 56.08038971600007), (-4.889149542999917, 56.06484609600005), (-4.901926235999952, 56.06191640800006), (-4.904367641999954, 56.054348049000055), (-4.900054490999935, 56.03412506700005), (-4.900054490999935, 56.01459381700005), (-4.898019985999952, 56.001166083000044), (-4.892648891999954, 55.98973216400003), (-4.906402147999927, 55.98574453300006), (-4.921457485999952, 55.98867422100005), (-4.937489386999914, 55.993841864000046), (-4.954701300999943, 55.99656810100004), (-4.954701300999943, 55.98973216400003), (-4.942005988999938, 55.986314195000034), (-4.928863084999932, 55.98114655200004), (-4.918446417999917, 55.97333405200004), (-4.913685675999943, 55.96185944200005), (-4.917388475999928, 55.94745514500005), (-4.9272354809999115, 55.93768952000005), (-4.9387100899999155, 55.92963288000004), (-4.947255011999914, 55.92084381700005), (-4.952137824999909, 55.90912506700005), (-4.954986131999931, 55.89935944200005), (-4.95921790299991, 55.89012278900003), (-4.96898352799991, 55.87986888200004), (-4.983143683999913, 55.87103913000004), (-4.994740363999938, 55.86981842700004), (-5.026356574999909, 55.87372467700004), (-5.0424698559999115, 55.884751695000034), (-5.056752081999946, 55.91030508000006), (-5.0668025379999335, 55.938788153000075), (-5.070790167999917, 55.958685614000046), (-5.1108292309999115, 55.98895905200004), (-5.116037563999953, 56.00169505400004), (-5.123605923999946, 56.00991445500006), (-5.139637824999909, 56.00275299700007), (-5.123768683999913, 55.986314195000034), (-5.085682745999918, 55.93187083500004), (-5.078236456999946, 55.91095612200007), (-5.086537238999938, 55.901271877000056), (-5.105620897999927, 55.90497467700004), (-5.171538865999935, 55.935532945000034), (-5.180653449999909, 55.948431708000044), (-5.180653449999909, 55.96930573100008), (-5.190825975999928, 55.96173737200007), (-5.1996150379999335, 55.948553778000075), (-5.2057185539999296, 55.93451569200005), (-5.207915818999936, 55.92462799700007), (-5.212635870999918, 55.91714101800005), (-5.242054816999939, 55.89288971600007), (-5.218129035999937, 55.86469147300005), (-5.208159959999932, 55.849269924000055), (-5.201079881999931, 55.83148834800005), (-5.2193904289999296, 55.83144765800006), (-5.2631729809999115, 55.845770575000074), (-5.296701626999948, 55.85268789300005), (-5.307118292999917, 55.86041901200008), (-5.313384568999936, 55.88544342700004), (-5.319325324999909, 55.889105536000045), (-5.327219204999949, 55.89154694200005), (-5.3348282539999445, 55.89667389500005), (-5.3382869129999335, 55.90375397300005), (-5.3391007149999155, 55.91303131700005), (-5.3382869129999335, 55.93138255400004), (-5.336089647999927, 55.93919505400004), (-5.326161261999914, 55.95026276200008), (-5.323963995999918, 55.958685614000046), (-5.325754360999952, 55.967230536000045), (-5.3382869129999335, 55.99656810100004), (-5.313628709999932, 56.01235586100006), (-5.204497850999928, 56.11945221600007), (-5.146473761999914, 56.13312409100007), (-5.104603644999941, 56.15151601800005), (-5.0949600899999155, 56.15737539300005), (-5.0594376289999445, 56.203111070000034), (-5.043446417999917, 56.21629466400003), (-5.013295050999943, 56.22760651200008), (-4.974964972999942, 56.23700592700004), (-4.9400935539999296, 56.25141022300005), (-4.920521613999938, 56.277777411000045), (-4.938099738999938, 56.27098216400003), (-4.975087042999917, 56.24799225500004), (-4.991932745999918, 56.24298737200007), (-5.0327042309999115, 56.24115631700005), (-5.049549933999913, 56.23704661700003), (-5.064564581999946, 56.22931549700007), (-5.0754288399999155, 56.21698639500005), (-5.099436001999948, 56.18195221600007), (-5.1088761059999115, 56.174709377000056), (-5.228138800999943, 56.12921784100007), (-5.3109431629999335, 56.05805084800005), (-5.319935675999943, 56.05491771000004), (-5.338042772999927, 56.05410390800006), (-5.345692511999914, 56.051214911000045), (-5.345285610999952, 56.046128648000035), (-5.350209113999938, 56.03192780200004), (-5.356353318999936, 56.01976146000004), (-5.359364386999914, 56.020738023000035), (-5.3686417309999115, 56.009426174000055), (-5.390288865999935, 56.00568268400008), (-5.415028449999909, 56.00690338700008), (-5.43382727799991, 56.010199286000045), (-5.434559699999909, 56.014960028000075), (-5.434722459999932, 56.02362702000005), (-5.437123175999943, 56.03001536700003), (-5.444406704999949, 56.02757396000004), (-5.4479060539999296, 56.02228424700007), (-5.448231574999909, 56.016058661000045), (-5.447621222999942, 56.009426174000055), (-5.454986131999931, 55.95563385600008), (-5.45140540299991, 55.95343659100007), (-5.436431443999936, 55.94896067900004), (-5.430775519999941, 55.94818756700005), (-5.420806443999936, 55.92829010600008), (-5.416737433999913, 55.91681549700007), (-5.416005011999914, 55.907416083000044), (-5.4125056629999335, 55.899603583000044), (-5.400380011999914, 55.89288971600007), (-5.400380011999914, 55.886704820000034), (-5.407215949999909, 55.886704820000034), (-5.407215949999909, 55.87986888200004), (-5.402943488999938, 55.87872955900008), (-5.39289303299995, 55.87372467700004), (-5.3976944649999155, 55.87156810100004), (-5.402495897999927, 55.868353583000044), (-5.407215949999909, 55.86627838700008), (-5.35179602799991, 55.83242422100005), (-5.326771613999938, 55.808579820000034), (-5.317779100999928, 55.78302643400008), (-5.324574347999942, 55.769232489000046), (-5.3385310539999296, 55.76264069200005), (-5.372425910999937, 55.75641510600008), (-5.3875626289999445, 55.75031159100007), (-5.433461066999939, 55.72101471600007), (-5.4445694649999155, 55.71161530200004), (-5.4539688789999445, 55.70058828300006), (-5.46117102799991, 55.68813711100006), (-5.463612433999913, 55.67983633000006), (-5.466175910999937, 55.662176825000074), (-5.468617316999939, 55.653998114000046), (-5.490101691999939, 55.644598700000074), (-5.488270636999914, 55.640326239000046), (-5.484283006999931, 55.63572825700004), (-5.482289191999939, 55.632879950000074), (-5.4838761059999115, 55.61005280200004), (-5.474761522999927, 55.603949286000045), (-5.462635870999918, 55.60203685100004), (-5.454986131999931, 55.59194570500006), (-5.461089647999927, 55.57880280200004), (-5.476918097999942, 55.57489655200004), (-5.488758917999917, 55.56907786700003), (-5.482289191999939, 55.55027903900003), (-5.503529425999943, 55.52651601800005), (-5.509632941999939, 55.516791083000044), (-5.5106095039999445, 55.51146067900004), (-5.509632941999939, 55.49258047100005), (-5.5109757149999155, 55.484442450000074), (-5.514271613999938, 55.48387278900003), (-5.5187882149999155, 55.48517487200007), (-5.523264126999948, 55.48265208500004), (-5.545521613999938, 55.44916413000004), (-5.561512824999909, 55.435532945000034), (-5.5846248039999296, 55.427435614000046), (-5.5846248039999296, 55.421210028000075), (-5.572132941999939, 55.422308661000045), (-5.562082485999952, 55.41986725500004), (-5.553089972999942, 55.41453685100004), (-5.543690558999913, 55.40692780200004), (-5.527455206999946, 55.38434479400007), (-5.5266820949999556, 55.38027578300006), (-5.5149633449999556, 55.37368398600006), (-5.525054490999935, 55.358628648000035), (-5.557972785999937, 55.33185455900008), (-5.574370897999927, 55.32200755400004), (-5.594105597999942, 55.31313711100006), (-5.616281704999949, 55.30658600500004), (-5.6399633449999556, 55.303900458000044), (-5.649525519999941, 55.30516185100004), (-5.669097459999932, 55.31085846600007), (-5.6808975899999155, 55.31134674700007), (-5.691395636999914, 55.308579820000034), (-5.714019334999932, 55.29913971600007), (-5.725575324999909, 55.29706452000005), (-5.7545466789999296, 55.29734935100004), (-5.772287563999953, 55.30125560100004), (-5.782866990999935, 55.31354401200008), (-5.794667120999918, 55.35639069200005), (-5.796701626999948, 55.37909577000005), (-5.7914119129999335, 55.39862702000005), (-5.763417120999918, 55.41205475500004), (-5.725412563999953, 55.437567450000074), (-5.715646938999953, 55.44790273600006), (-5.7152400379999335, 55.46889883000006), (-5.720122850999928, 55.491522528000075), (-5.7219132149999155, 55.51386139500005), (-5.707753058999913, 55.54336172100005), (-5.712066209999932, 55.55072663000004), (-5.718861456999946, 55.55731842700004), (-5.721831834999932, 55.56460195500006), (-5.718129035999937, 55.57575104400007), (-5.694488084999932, 55.605536200000074), (-5.6733292309999115, 55.640611070000034), (-5.6694229809999115, 55.66071198100008), (-5.6808975899999155, 55.67446523600006), (-5.626535610999952, 55.70062897300005), (-5.61945553299995, 55.71198151200008), (-5.613189256999931, 55.725775458000044), (-5.5982966789999296, 55.74298737200007), (-5.581206834999932, 55.75763580900008), (-5.5678604809999115, 55.76386139500005), (-5.539173956999946, 55.77094147300005), (-5.504628058999913, 55.78937409100007), (-5.4735001289999445, 55.815659898000035), (-5.454986131999931, 55.845770575000074), (-5.551747199999909, 55.783636786000045), (-5.587473110999952, 55.76715729400007), (-5.599436001999948, 55.76422760600008), (-5.6126195949999556, 55.76386139500005), (-5.60578365799995, 55.77684153900003), (-5.6332087879999335, 55.78278229400007), (-5.64671790299991, 55.78750234600005), (-5.66038977799991, 55.79734935100004), (-5.667958136999914, 55.81102122600004), (-5.669016079999949, 55.83783600500004), (-5.67406165299991, 55.845770575000074), (-5.631988084999932, 55.88178131700005), (-5.625599738999938, 55.889837958000044), (-5.61937415299991, 55.90314362200007), (-5.6043595039999445, 55.91364166900007), (-5.586293097999942, 55.92332591400003), (-5.571034308999913, 55.93451569200005), (-5.593495245999918, 55.92796458500004), (-5.6275935539999296, 55.90534088700008), (-5.6537979809999115, 55.89760976800005), (-5.671701626999948, 55.88690827000005), (-5.6808975899999155, 55.886704820000034), (-5.687977667999917, 55.89337799700007), (-5.694162563999953, 55.90497467700004), (-5.696400519999941, 55.91596100500004), (-5.586822068999936, 56.01203034100007), (-5.57843990799995, 56.02448151200008), (-5.5826716789999296, 56.028957424000055), (-5.576649542999917, 56.032538153000075), (-5.571034308999913, 56.037543036000045), (-5.583892381999931, 56.040716864000046), (-5.596424933999913, 56.036810614000046), (-5.609852667999917, 56.03001536700003), (-5.625599738999938, 56.02448151200008), (-5.6317032539999445, 56.005926825000074), (-5.674875454999949, 55.977728583000044), (-5.67406165299991, 55.95563385600008), (-5.690785285999937, 55.93764883000006), (-5.694488084999932, 55.93451569200005), (-5.704497850999928, 55.936753648000035), (-5.707508917999917, 55.942572333000044), (-5.705881313999953, 55.949652411000045), (-5.701975063999953, 55.95563385600008), (-5.696441209999932, 55.98216380400004), (-5.659901495999918, 56.02326080900008), (-5.5846248039999296, 56.08466217700004), (-5.5815323559999115, 56.08828359600005), (-5.580067511999914, 56.09292226800005), (-5.5774633449999556, 56.096991278000075), (-5.571034308999913, 56.09902578300006), (-5.564605272999927, 56.098089911000045), (-5.556548631999931, 56.09589264500005), (-5.550689256999931, 56.09349192900004), (-5.550526495999918, 56.09218984600005), (-5.547840949999909, 56.09003327000005), (-5.5394587879999335, 56.08685944200005), (-5.531605597999942, 56.08633047100005), (-5.530100063999953, 56.09218984600005), (-5.534738735999952, 56.098537502000056), (-5.5414119129999335, 56.10248444200005), (-5.5475154289999296, 56.10488515800006), (-5.550526495999918, 56.10643138200004), (-5.55695553299995, 56.12221914300005), (-5.558705206999946, 56.13080475500004), (-5.554676886999914, 56.13739655200004), (-5.522531704999949, 56.16575755400004), (-5.515736456999946, 56.174709377000056), (-5.509632941999939, 56.188381252000056), (-5.5399063789999445, 56.18341705900008), (-5.562489386999914, 56.16791413000004), (-5.5826716789999296, 56.15058014500005), (-5.60578365799995, 56.139960028000075), (-5.599354620999918, 56.160589911000045), (-5.586415167999917, 56.18113841400003), (-5.569406704999949, 56.20026276200008), (-5.550526495999918, 56.21629466400003), (-5.5594376289999445, 56.22955963700008), (-5.547230597999942, 56.24017975500004), (-5.52562415299991, 56.247259833000044), (-5.50617428299995, 56.24982330900008), (-5.494740363999938, 56.253119208000044), (-5.4928279289999296, 56.26040273600006), (-5.4992569649999155, 56.267645575000074), (-5.512684699999909, 56.27094147300005), (-5.554269985999952, 56.26349518400008), (-5.5631404289999296, 56.26032135600008), (-5.572621222999942, 56.25385163000004), (-5.58234615799995, 56.24876536700003), (-5.592152472999942, 56.24982330900008), (-5.5980525379999335, 56.25861237200007), (-5.595570441999939, 56.26992422100005), (-5.5846248039999296, 56.29075755400004), (-5.57258053299995, 56.32807038000004), (-5.56273352799991, 56.341050523000035), (-5.543690558999913, 56.352850653000075), (-5.525217251999948, 56.34662506700005), (-5.498199022999927, 56.34833405200004), (-5.4481095039999445, 56.35968659100007), (-5.4481095039999445, 56.36591217700004), (-5.4721573559999115, 56.364935614000046), (-5.515370245999918, 56.35683828300006), (-5.5375056629999335, 56.35968659100007), (-5.517323370999918, 56.39276764500005), (-5.509632941999939, 56.40062083500004), (-5.498931443999936, 56.404730536000045), (-5.486073370999918, 56.40810781500005), (-5.4780167309999115, 56.41290924700007), (-5.482289191999939, 56.421128648000035), (-5.457020636999914, 56.44086334800005), (-5.423573370999918, 56.45001862200007), (-5.322865363999938, 56.45498281500005), (-5.242054816999939, 56.44220612200007), (-5.208729620999918, 56.44684479400007), (-5.18187415299991, 56.45966217700004), (-5.118519660999937, 56.50775788000004), (-5.085682745999918, 56.54877350500004), (-5.064564581999946, 56.56513092700004), (-5.086537238999938, 56.55849844000005), (-5.099598761999914, 56.54364655200004), (-5.1105850899999155, 56.52586497600004), (-5.125965949999909, 56.51048411700003), (-5.166900193999936, 56.49005768400008), (-5.190174933999913, 56.46865469000005), (-5.201079881999931, 56.462103583000044), (-5.243763800999943, 56.45921458500004), (-5.350168423999946, 56.47296784100007), (-5.378081834999932, 56.458970445000034), (-5.394276495999918, 56.46548086100006), (-5.4105525379999335, 56.50364817900004), (-5.42414303299995, 56.500067450000074), (-5.4359431629999335, 56.49115631700005), (-5.454986131999931, 56.46954987200007), (-5.468617316999939, 56.47573476800005), (-5.433338995999918, 56.52362702000005), (-5.427642381999931, 56.53782786700003), (-5.4037979809999115, 56.524603583000044), (-5.379261847999942, 56.519191799000055), (-5.3566788399999155, 56.51968008000006), (-5.3382869129999335, 56.52415599200003), (-5.2905167309999115, 56.54466380400004), (-5.265044725999928, 56.551214911000045), (-5.252552863999938, 56.556341864000046), (-5.242054816999939, 56.56513092700004), (-5.27562415299991, 56.553615627000056), (-5.286773240999935, 56.552069403000075), (-5.306792772999927, 56.552801825000074), (-5.3109431629999335, 56.552069403000075), (-5.327707485999952, 56.54466380400004), (-5.338693813999953, 56.542303778000075), (-5.360340949999909, 56.53221263200004), (-5.372425910999937, 56.53034088700008), (-5.384348110999952, 56.53343333500004), (-5.400502081999946, 56.54364655200004), (-5.413929816999939, 56.54466380400004), (-5.410878058999913, 56.552069403000075), (-5.407297329999949, 56.55532461100006), (-5.402699347999942, 56.55744049700007), (-5.396636522999927, 56.561712958000044), (-5.392689581999946, 56.566473700000074), (-5.3893123039999296, 56.57489655200004), (-5.386626756999931, 56.57880280200004), (-5.360707160999937, 56.60626862200007), (-5.351918097999942, 56.612941799000055), (-5.31086178299995, 56.63361237200007), (-5.304514126999948, 56.64016347900008), (-5.298451300999943, 56.64642975500004), (-5.317779100999928, 56.65387604400007), (-5.317779100999928, 56.661322333000044), (-5.309071417999917, 56.66425202000005), (-5.286773240999935, 56.674994208000044), (-5.261463995999918, 56.67332591400003), (-5.248199022999927, 56.67405833500004), (-5.218902147999927, 56.688666083000044), (-5.196441209999932, 56.688666083000044), (-5.153309699999909, 56.68121979400007), (-5.132639126999948, 56.68451569200005), (-5.093373175999943, 56.69904205900008), (-5.012806769999941, 56.70929596600007), (-4.9955948559999115, 56.71596914300005), (-5.1605525379999335, 56.69586823100008), (-5.238270636999914, 56.71662018400008), (-5.23851477799991, 56.72256094000005), (-5.228423631999931, 56.73647695500006), (-5.222075975999928, 56.741522528000075), (-5.154652472999942, 56.78229401200008), (-5.136382615999935, 56.79877350500004), (-5.119740363999938, 56.818426825000074), (-5.179066535999937, 56.78925202000005), (-5.187489386999914, 56.78115469000005), (-5.191761847999942, 56.774644273000035), (-5.202259894999941, 56.76911041900007), (-5.214670376999948, 56.76520416900007), (-5.224964972999942, 56.763739325000074), (-5.233469204999949, 56.76068756700005), (-5.237049933999913, 56.75336334800005), (-5.2389216789999296, 56.74445221600007), (-5.242054816999939, 56.73647695500006), (-5.255238410999937, 56.721584377000056), (-5.268462693999936, 56.71308014500005), (-5.283355272999927, 56.70937734600005), (-5.30101477799991, 56.70856354400007), (-5.3098038399999155, 56.70648834800005), (-5.319162563999953, 56.69749583500004), (-5.34015865799995, 56.693060614000046), (-5.348378058999913, 56.687201239000046), (-5.359364386999914, 56.674994208000044), (-5.388050910999937, 56.65521881700005), (-5.403879360999952, 56.64923737200007), (-5.4242244129999335, 56.64704010600008), (-5.434396938999953, 56.64288971600007), (-5.4487198559999115, 56.62457916900007), (-5.458119269999941, 56.620347398000035), (-5.470773891999954, 56.618394273000035), (-5.482574022999927, 56.613267320000034), (-5.493316209999932, 56.60639069200005), (-5.53343665299991, 56.57290273600006), (-5.599598761999914, 56.52903880400004), (-5.667388475999928, 56.498480536000045), (-5.67406165299991, 56.49689362200007), (-5.683013475999928, 56.50063711100006), (-5.694691535999937, 56.51386139500005), (-5.70539303299995, 56.51666901200008), (-5.721791144999941, 56.51850006700005), (-5.740834113999938, 56.52326080900008), (-5.7582087879999335, 56.52997467700004), (-5.770253058999913, 56.53782786700003), (-5.7551977199999556, 56.554022528000075), (-5.751047329999949, 56.56199778900003), (-5.749134894999941, 56.571966864000046), (-5.756662563999953, 56.571966864000046), (-5.793853318999936, 56.54328034100007), (-5.8543595039999445, 56.550482489000046), (-6.0034073559999115, 56.61871979400007), (-6.009836391999954, 56.62653229400007), (-6.008168097999942, 56.642279364000046), (-5.998036261999914, 56.64988841400003), (-5.983509894999941, 56.65281810100004), (-5.933583136999914, 56.654730536000045), (-5.899037238999938, 56.650824286000045), (-5.866851365999935, 56.64154694200005), (-5.8391820949999556, 56.62653229400007), (-5.831695115999935, 56.633978583000044), (-5.855620897999927, 56.64472077000005), (-5.865589972999942, 56.65143463700008), (-5.865834113999938, 56.661322333000044), (-5.75999915299991, 56.70075104400007), (-5.735503709999932, 56.702337958000044), (-5.672596808999913, 56.68414948100008), (-5.647368943999936, 56.68121979400007), (-5.5941462879999335, 56.68333567900004), (-5.564808722999942, 56.68764883000006), (-5.543690558999913, 56.69546133000006), (-5.636545376999948, 56.688666083000044), (-5.658558722999942, 56.690741278000075), (-5.708851691999939, 56.70856354400007), (-5.749989386999914, 56.714544989000046), (-5.859038865999935, 56.68121979400007), (-5.89679928299995, 56.675116278000075), (-5.907378709999932, 56.674994208000044), (-5.9203181629999335, 56.67796458500004), (-5.942738410999937, 56.686753648000035), (-5.955555792999917, 56.688666083000044), (-6.0248917309999115, 56.68569570500006), (-6.098622199999909, 56.696966864000046), (-6.123850063999953, 56.69562409100007), (-6.143544074999909, 56.684881903000075), (-6.161732550999943, 56.67820872600004), (-6.186594204999949, 56.68109772300005), (-6.2096248039999296, 56.68846263200004), (-6.222767706999946, 56.69546133000006), (-6.228179490999935, 56.70107656500005), (-6.232533331999946, 56.70652903900003), (-6.235340949999909, 56.71238841400003), (-6.236398891999954, 56.71906159100007), (-6.234486456999946, 56.728583075000074), (-6.229562954999949, 56.72907135600008), (-6.222767706999946, 56.72719961100006), (-6.215321417999917, 56.72964101800005), (-6.193470831999946, 56.74852122600004), (-6.1805313789999445, 56.75462474200003), (-6.026966925999943, 56.763739325000074), (-6.0148819649999155, 56.76703522300005), (-5.979888475999928, 56.78156159100007), (-5.965199347999942, 56.784857489000046), (-5.948231574999909, 56.782538153000075), (-5.937977667999917, 56.77692291900007), (-5.928537563999953, 56.769964911000045), (-5.913644985999952, 56.763739325000074), (-5.860910610999952, 56.75079987200007), (-5.8522029289999296, 56.746975002000056), (-5.853342251999948, 56.757879950000074), (-5.858143683999913, 56.768459377000056), (-5.8683975899999155, 56.77586497600004), (-5.886341925999943, 56.777411200000074), (-5.886341925999943, 56.784857489000046), (-5.874012824999909, 56.78571198100008), (-5.861805792999917, 56.78510163000004), (-5.850087042999917, 56.782456773000035), (-5.8391820949999556, 56.777411200000074), (-5.8246150379999335, 56.78758372600004), (-5.8020727199999556, 56.79181549700007), (-5.7766007149999155, 56.787990627000056), (-5.756662563999953, 56.784857489000046), (-5.831695115999935, 56.80536530200004), (-5.8508194649999155, 56.818019924000055), (-5.851185675999943, 56.82892487200007), (-5.837473110999952, 56.83661530200004), (-5.7338761059999115, 56.84479401200008), (-5.692738410999937, 56.85492584800005), (-5.66038977799991, 56.87299225500004), (-5.673573370999918, 56.87653229400007), (-5.692005988999938, 56.87531159100007), (-5.7084854809999115, 56.87055084800005), (-5.724354620999918, 56.85382721600007), (-5.744496222999942, 56.85415273600006), (-5.783924933999913, 56.85993073100008), (-5.775380011999914, 56.86994049700007), (-5.735503709999932, 56.89411041900007), (-5.7805883449999556, 56.89874909100007), (-5.874867316999939, 56.887152411000045), (-5.9211319649999155, 56.89411041900007), (-5.8875626289999445, 56.89911530200004), (-5.8522029289999296, 56.90033600500004), (-5.8522029289999296, 56.90770091400003), (-5.859852667999917, 56.91054922100005), (-5.8801163399999155, 56.92202383000006), (-5.8625382149999155, 56.93374258000006), (-5.851429816999939, 56.95425039300005), (-5.842518683999913, 56.977443752000056), (-5.831695115999935, 56.99713776200008), (-5.814116990999935, 57.00950755400004), (-5.786040818999936, 57.02057526200008), (-5.755238410999937, 57.026556708000044), (-5.729318813999953, 57.02383047100005), (-5.719878709999932, 57.017564195000034), (-5.699940558999913, 56.998114325000074), (-5.688303188999953, 56.98969147300005), (-5.67406165299991, 56.983587958000044), (-5.658558722999942, 56.97947825700004), (-5.625599738999938, 56.976629950000074), (-5.571278449999909, 56.98383209800005), (-5.523264126999948, 56.99713776200008), (-5.523264126999948, 57.003973700000074), (-5.540435350999928, 57.001166083000044), (-5.556507941999939, 56.996079820000034), (-5.571278449999909, 56.99331289300005), (-5.5846248039999296, 56.99713776200008), (-5.607085740999935, 56.98851146000004), (-5.628814256999931, 56.991888739000046), (-5.6498917309999115, 56.999660549000055), (-5.6703181629999335, 57.003973700000074), (-5.685536261999914, 57.00958893400008), (-5.681711391999954, 57.02240631700005), (-5.680043097999942, 57.03620026200008), (-5.701975063999953, 57.044907945000034), (-5.710926886999914, 57.044175523000035), (-5.731353318999936, 57.03900788000004), (-5.742339647999927, 57.03807200700004), (-5.752552863999938, 57.04059479400007), (-5.769602016999954, 57.04975006700005), (-5.780181443999936, 57.05174388200004), (-5.791127081999946, 57.05927155200004), (-5.776193813999953, 57.075832424000055), (-5.734486456999946, 57.10541413000004), (-5.722645636999914, 57.116441148000035), (-5.715646938999953, 57.12006256700005), (-5.703277147999927, 57.120754299000055), (-5.673695441999939, 57.11904531500005), (-5.663482225999928, 57.12372467700004), (-5.645863410999937, 57.12946198100008), (-5.620838995999918, 57.12409088700008), (-5.57843990799995, 57.10639069200005), (-5.558257615999935, 57.10040924700007), (-5.4598282539999445, 57.09979889500005), (-5.454986131999931, 57.10297272300005), (-5.447417772999927, 57.11017487200007), (-5.430775519999941, 57.11074453300006), (-5.41429602799991, 57.10822174700007), (-5.407215949999909, 57.10639069200005), (-5.400380011999914, 57.10639069200005), (-5.400380011999914, 57.11383698100008), (-5.420033331999946, 57.12067291900007), (-5.503895636999914, 57.11269765800006), (-5.527414516999954, 57.107489325000074), (-5.540638800999943, 57.10639069200005), (-5.5477188789999445, 57.11009349200003), (-5.573312954999949, 57.12787506700005), (-5.5846248039999296, 57.133693752000056), (-5.668446417999917, 57.147650458000044), (-5.6808975899999155, 57.157904364000046), (-5.673817511999914, 57.174994208000044), (-5.638824022999927, 57.202378648000035), (-5.625599738999938, 57.21625397300005), (-5.644154425999943, 57.23322174700007), (-5.620106574999909, 57.25214264500005), (-5.578236456999946, 57.26675039300005), (-5.543690558999913, 57.27090078300006), (-5.511586066999939, 57.25763580900008), (-5.480091925999943, 57.23700592700004), (-5.446278449999909, 57.22304922100005), (-5.407215949999909, 57.22992584800005), (-5.407215949999909, 57.23672109600005), (-5.448841925999943, 57.24209219000005), (-5.458119269999941, 57.24664948100008), (-5.47288977799991, 57.26121653900003), (-5.482899542999917, 57.268011786000045), (-5.49250240799995, 57.27090078300006), (-5.501942511999914, 57.27765534100007), (-5.4889216789999296, 57.29242584800005), (-5.464833136999914, 57.306626695000034), (-5.4406632149999155, 57.311835028000075), (-5.4406632149999155, 57.31928131700005), (-5.464995897999927, 57.32493724200003), (-5.4817602199999556, 57.31671784100007), (-5.494292772999927, 57.30442942900004), (-5.50617428299995, 57.298163153000075), (-5.523426886999914, 57.29515208500004), (-5.558461066999939, 57.28143952000005), (-5.57843990799995, 57.27765534100007), (-5.599436001999948, 57.27924225500004), (-5.637440558999913, 57.28900788000004), (-5.656971808999913, 57.29132721600007), (-5.7000626289999445, 57.28359609600005), (-5.720570441999939, 57.284491278000075), (-5.729318813999953, 57.298163153000075), (-5.7252498039999296, 57.30158112200007), (-5.701975063999953, 57.33234284100007), (-5.6937556629999335, 57.337103583000044), (-5.671986456999946, 57.34442780200004), (-5.663482225999928, 57.349676825000074), (-5.654367641999954, 57.353949286000045), (-5.647206183999913, 57.34992096600007), (-5.6414688789999445, 57.34320709800005), (-5.636545376999948, 57.33978913000004), (-5.613189256999931, 57.34198639500005), (-5.5012914699999556, 57.37099844000005), (-5.456654425999943, 57.39354075700004), (-5.4481095039999445, 57.42169830900008), (-5.46507727799991, 57.423895575000074), (-5.492054816999939, 57.40875885600008), (-5.5375056629999335, 57.373928127000056), (-5.563465949999909, 57.36310455900008), (-5.586659308999913, 57.36505768400008), (-5.610910610999952, 57.37140534100007), (-5.6399633449999556, 57.373928127000056), (-5.615589972999942, 57.382473049000055), (-5.607085740999935, 57.389105536000045), (-5.609201626999948, 57.397772528000075), (-5.617746548999946, 57.41010163000004), (-5.619618292999917, 57.41669342700004), (-5.624012824999909, 57.41640859600005), (-5.6399633449999556, 57.40802643400008), (-5.707183397999927, 57.35976797100005), (-5.732411261999914, 57.352769273000035), (-5.784575975999928, 57.34857819200005), (-5.807769334999932, 57.35492584800005), (-5.8248591789999296, 57.39435455900008), (-5.822255011999914, 57.39350006700005), (-5.817372199999909, 57.39520905200004), (-5.812855597999942, 57.398098049000055), (-5.8111873039999296, 57.40119049700007), (-5.813872850999928, 57.40452708500004), (-5.8231095039999445, 57.41233958500004), (-5.8248591789999296, 57.41547272300005), (-5.825266079999949, 57.428900458000044), (-5.821888800999943, 57.435532945000034), (-5.8111873039999296, 57.44220612200007), (-5.8215225899999155, 57.44546133000006), (-5.852528449999909, 57.450384833000044), (-5.859038865999935, 57.45270416900007), (-5.861195441999939, 57.46344635600008), (-5.870513475999928, 57.48078034100007), (-5.872670050999943, 57.49371979400007), (-5.869699673999946, 57.500881252000056), (-5.856068488999938, 57.51780833500004), (-5.8522029289999296, 57.52411530200004), (-5.8510636059999115, 57.538397528000075), (-5.851470506999931, 57.55109284100007), (-5.847075975999928, 57.55890534100007), (-5.831695115999935, 57.55882396000004), (-5.833851691999939, 57.563381252000056), (-5.837025519999941, 57.57477448100008), (-5.8391820949999556, 57.579291083000044), (-5.821400519999941, 57.583197333000044), (-5.803618943999936, 57.581366278000075), (-5.7863663399999155, 57.57518138200004), (-5.732574022999927, 57.54523346600007), (-5.715646938999953, 57.538397528000075), (-5.707020636999914, 57.542303778000075), (-5.68976803299995, 57.52789948100008), (-5.6808975899999155, 57.52411530200004), (-5.650868292999917, 57.51264069200005), (-5.6399633449999556, 57.511053778000075), (-5.645334438999953, 57.51666901200008), (-5.648304816999939, 57.52187734600005), (-5.650542772999927, 57.52680084800005), (-5.6535538399999155, 57.53156159100007), (-5.5815323559999115, 57.538397528000075), (-5.5402725899999155, 57.534491278000075), (-5.5168350899999155, 57.534857489000046), (-5.512684699999909, 57.54148997600004), (-5.543120897999927, 57.55536530200004), (-5.588368292999917, 57.56102122600004), (-5.632720506999931, 57.55768463700008), (-5.66038977799991, 57.544582424000055), (-5.694488084999932, 57.56631094000005), (-5.689198370999918, 57.56940338700008), (-5.6808975899999155, 57.579291083000044), (-5.714222785999937, 57.58270905200004), (-5.7316788399999155, 57.59829336100006), (-5.744252081999946, 57.61798737200007), (-5.762806769999941, 57.633978583000044), (-5.778146938999953, 57.63743724200003), (-5.7936091789999296, 57.63857656500005), (-5.8058975899999155, 57.642645575000074), (-5.8111873039999296, 57.65509674700007), (-5.805409308999913, 57.667181708000044), (-5.785023566999939, 57.67951080900008), (-5.790760870999918, 57.68854401200008), (-5.790760870999918, 57.69599030200004), (-5.753570115999935, 57.707464911000045), (-5.734486456999946, 57.70795319200005), (-5.704986131999931, 57.69013092700004), (-5.692494269999941, 57.691066799000055), (-5.68195553299995, 57.69871653900003), (-5.67406165299991, 57.70966217700004), (-5.685170050999943, 57.71141185100004), (-5.692290818999936, 57.716498114000046), (-5.698841925999943, 57.723089911000045), (-5.708851691999939, 57.72955963700008), (-5.720529751999948, 57.73338450700004), (-5.803822394999941, 57.743841864000046), (-5.80695553299995, 57.75462474200003), (-5.8020727199999556, 57.780585028000075), (-5.803822394999941, 57.792222398000035), (-5.801258917999917, 57.800441799000055), (-5.809925910999937, 57.82062409100007), (-5.8111873039999296, 57.833197333000044), (-5.807362433999913, 57.84393952000005), (-5.799956834999932, 57.85370514500005), (-5.789540167999917, 57.86200592700004), (-5.776519334999932, 57.86790599200003), (-5.751128709999932, 57.87335846600007), (-5.724761522999927, 57.87352122600004), (-5.698638475999928, 57.86908600500004), (-5.67406165299991, 57.86050039300005), (-5.677886522999927, 57.846909898000035), (-5.674794074999909, 57.82709381700005), (-5.667958136999914, 57.80695221600007), (-5.66038977799991, 57.792222398000035), (-5.650542772999927, 57.78180573100008), (-5.6373591789999296, 57.77423737200007), (-5.622141079999949, 57.77020905200004), (-5.60578365799995, 57.77049388200004), (-5.613270636999914, 57.77521393400008), (-5.617909308999913, 57.78021881700005), (-5.625599738999938, 57.792222398000035), (-5.613026495999918, 57.792629299000055), (-5.603260870999918, 57.791083075000074), (-5.5846248039999296, 57.784816799000055), (-5.591175910999937, 57.80442942900004), (-5.587025519999941, 57.81858958500004), (-5.5852758449999556, 57.83144765800006), (-5.598988410999937, 57.846869208000044), (-5.6375626289999445, 57.86635976800005), (-5.650380011999914, 57.87775299700007), (-5.6399633449999556, 57.88784414300005), (-5.6476944649999155, 57.88898346600007), (-5.6507869129999335, 57.89081452000005), (-5.6535538399999155, 57.89468008000006), (-5.643950975999928, 57.90420156500005), (-5.620757615999935, 57.92088450700004), (-5.6126195949999556, 57.92877838700008), (-5.598215298999946, 57.91901276200008), (-5.587310350999928, 57.91510651200008), (-5.550526495999918, 57.91510651200008), (-5.556263800999943, 57.88776276200008), (-5.527902798999946, 57.86758047100005), (-5.487049933999913, 57.85586172100005), (-5.454986131999931, 57.85370514500005), (-5.46117102799991, 57.86050039300005), (-5.449045376999948, 57.869126695000034), (-5.437123175999943, 57.897650458000044), (-5.427642381999931, 57.908270575000074), (-5.4149063789999445, 57.90814850500004), (-5.369496222999942, 57.89752838700008), (-5.355620897999927, 57.89126211100006), (-5.327504035999937, 57.87327708500004), (-5.293853318999936, 57.86204661700003), (-5.221587693999936, 57.846869208000044), (-5.236317511999914, 57.86078522300005), (-5.2475479809999115, 57.86701080900008), (-5.276763475999928, 57.87417226800005), (-5.320668097999942, 57.898504950000074), (-5.384917772999927, 57.914129950000074), (-5.39289303299995, 57.91819896000004), (-5.394398566999939, 57.923895575000074), (-5.396839972999942, 57.926214911000045), (-5.3973282539999445, 57.928900458000044), (-5.39289303299995, 57.935614325000074), (-5.386545376999948, 57.936428127000056), (-5.378977016999954, 57.93183014500005), (-5.3717341789999296, 57.93105703300006), (-5.366200324999909, 57.943060614000046), (-5.3471573559999115, 57.936712958000044), (-5.319162563999953, 57.91474030200004), (-5.297352667999917, 57.908270575000074), (-5.2860001289999445, 57.90875885600008), (-5.266957160999937, 57.91400788000004), (-5.2562556629999335, 57.91510651200008), (-5.2436417309999115, 57.91290924700007), (-5.22101803299995, 57.90403880400004), (-5.211293097999942, 57.90208567900004), (-5.198801235999952, 57.897772528000075), (-5.162261522999927, 57.87848541900007), (-5.1199845039999445, 57.86798737200007), (-5.0911352199999556, 57.84031810100004), (-5.070790167999917, 57.833197333000044), (-5.07648678299995, 57.83852773600006), (-5.083404100999928, 57.84756094000005), (-5.0893448559999115, 57.85724518400008), (-5.091867641999954, 57.86420319200005), (-5.0971573559999115, 57.87091705900008), (-5.197255011999914, 57.91787344000005), (-5.221587693999936, 57.92133209800005), (-5.221587693999936, 57.92877838700008), (-5.201893683999913, 57.92865631700005), (-5.193959113999938, 57.935980536000045), (-5.19554602799991, 57.94765859600005), (-5.204497850999928, 57.960150458000044), (-5.216704881999931, 57.96588776200008), (-5.2488907539999445, 57.96938711100006), (-5.2631729809999115, 57.976548570000034), (-5.292632615999935, 57.98061758000006), (-5.333892381999931, 58.00853099200003), (-5.359364386999914, 58.011379299000055), (-5.357167120999918, 58.01406484600005), (-5.3566788399999155, 58.014878648000035), (-5.351918097999942, 58.01752350500004), (-5.366932745999918, 58.02887604400007), (-5.386586066999939, 58.032538153000075), (-5.427642381999931, 58.03119538000004), (-5.424305792999917, 58.03554922100005), (-5.422352667999917, 58.03896719000005), (-5.419585740999935, 58.04205963700008), (-5.413929816999939, 58.04547760600008), (-5.413929816999939, 58.05231354400007), (-5.447010870999918, 58.08437734600005), (-5.428089972999942, 58.09796784100007), (-5.390044725999928, 58.09218984600005), (-5.366200324999909, 58.06598541900007), (-5.344309048999946, 58.075506903000075), (-5.322865363999938, 58.07172272300005), (-5.300770636999914, 58.07013580900008), (-5.276763475999928, 58.08641185100004), (-5.283070441999939, 58.08641185100004), (-5.278065558999913, 58.09625885600008), (-5.2787979809999115, 58.10537344000005), (-5.283558722999942, 58.11347077000005), (-5.2905167309999115, 58.12055084800005), (-5.276763475999928, 58.12055084800005), (-5.276763475999928, 58.127386786000045), (-5.297352667999917, 58.134833075000074), (-5.284087693999936, 58.14008209800005), (-5.255523240999935, 58.143784898000035), (-5.242054816999939, 58.14789459800005), (-5.242054816999939, 58.15534088700008), (-5.275054490999935, 58.15452708500004), (-5.290842251999948, 58.156317450000074), (-5.304798956999946, 58.162095445000034), (-5.297352667999917, 58.168402411000045), (-5.304798956999946, 58.17332591400003), (-5.313059048999946, 58.17731354400007), (-5.321888800999943, 58.18024323100008), (-5.331450975999928, 58.18203359600005), (-5.3293350899999155, 58.186712958000044), (-5.326161261999914, 58.198431708000044), (-5.323963995999918, 58.203111070000034), (-5.336822068999936, 58.203192450000074), (-5.346791144999941, 58.20685455900008), (-5.39289303299995, 58.24469635600008), (-5.3920792309999115, 58.261379299000055), (-5.375884568999936, 58.26422760600008), (-5.352894660999937, 58.25893789300005), (-5.31078040299991, 58.243394273000035), (-5.293853318999936, 58.24091217700004), (-5.276966925999943, 58.243394273000035), (-5.237294074999909, 58.25763580900008), (-5.2160538399999155, 58.261419989000046), (-5.194325324999909, 58.25999583500004), (-5.173207160999937, 58.25092194200005), (-5.165638800999943, 58.258246161000045), (-5.152251756999931, 58.264837958000044), (-5.138335740999935, 58.269598700000074), (-5.129383917999917, 58.27138906500005), (-5.11156165299991, 58.26825592700004), (-5.0812882149999155, 58.25409577000005), (-5.0676977199999556, 58.25092194200005), (-5.017730272999927, 58.253241278000075), (-5.002430792999917, 58.25092194200005), (-4.933583136999914, 58.22304922100005), (-4.943430141999954, 58.233587958000044), (-4.954823370999918, 58.23981354400007), (-4.982004360999952, 58.25092194200005), (-4.968861456999946, 58.25678131700005), (-4.940337693999936, 58.259466864000046), (-4.926747199999909, 58.26459381700005), (-4.990223761999914, 58.27142975500004), (-5.009917772999927, 58.27138906500005), (-5.018055792999917, 58.26862213700008), (-5.029367641999954, 58.25971100500004), (-5.040028449999909, 58.25775788000004), (-5.0501195949999556, 58.25991445500006), (-5.0707087879999335, 58.269232489000046), (-5.081654425999943, 58.27138906500005), (-5.096424933999913, 58.27676015800006), (-5.125965949999909, 58.30019765800006), (-5.1362198559999115, 58.305568752000056), (-5.137440558999913, 58.30927155200004), (-5.156361456999946, 58.32461172100005), (-5.160145636999914, 58.326605536000045), (-5.167795376999948, 58.33926015800006), (-5.171009894999941, 58.34666575700004), (-5.173207160999937, 58.353949286000045), (-5.153309699999909, 58.353949286000045), (-5.1634008449999556, 58.364569403000075), (-5.162912563999953, 58.37449778900003), (-5.155913865999935, 58.384466864000046), (-5.146473761999914, 58.394964911000045), (-5.145497199999909, 58.400051174000055), (-5.14671790299991, 58.40664297100005), (-5.146839972999942, 58.41242096600007), (-5.143055792999917, 58.41478099200003), (-5.135487433999913, 58.413763739000046), (-5.122222459999932, 58.40957265800006), (-5.116037563999953, 58.40859609600005), (-5.057972785999937, 58.38727448100008), (-5.016184048999946, 58.38812897300005), (-5.043934699999909, 58.400091864000046), (-5.0533748039999296, 58.40664297100005), (-5.0502823559999115, 58.41478099200003), (-5.0570369129999335, 58.42218659100007), (-5.066151495999918, 58.41714101800005), (-5.076161261999914, 58.414496161000045), (-5.086822068999936, 58.41388580900008), (-5.0980525379999335, 58.41478099200003), (-5.0980525379999335, 58.42218659100007), (-5.08812415299991, 58.421942450000074), (-5.085031704999949, 58.42218659100007), (-5.085031704999949, 58.429022528000075), (-5.091786261999914, 58.429754950000074), (-5.09601803299995, 58.43146393400008), (-5.105539516999954, 58.43650950700004), (-5.0501195949999556, 58.45380280200004), (-5.025542772999927, 58.447699286000045), (-4.9955948559999115, 58.43650950700004), (-5.105539516999954, 58.48737213700008), (-5.105620897999927, 58.505560614000046), (-5.103667772999927, 58.51422760600008), (-5.095855272999927, 58.518866278000075), (-5.042795376999948, 58.53546784100007), (-5.0279841789999296, 58.54409414300005), (-5.016184048999946, 58.55939362200007), (-5.0229386059999115, 58.55939362200007), (-5.015207485999952, 58.580064195000034), (-5.011586066999939, 58.60057200700004), (-5.004953579999949, 58.61774323100008), (-4.988189256999931, 58.62832265800006), (-4.859486456999946, 58.61322663000004), (-4.835926886999914, 58.60504791900007), (-4.818104620999918, 58.59292226800005), (-4.817941860999952, 58.587591864000046), (-4.81281490799995, 58.571966864000046), (-4.806752081999946, 58.55841705900008), (-4.803822394999941, 58.55939362200007), (-4.804595506999931, 58.54832591400003), (-4.807240363999938, 58.53961823100008), (-4.811634894999941, 58.53204987200007), (-4.818104620999918, 58.524644273000035), (-4.799794074999909, 58.532456773000035), (-4.791818813999953, 58.54165273600006), (-4.7899063789999445, 58.55174388200004), (-4.790150519999941, 58.562486070000034), (-4.785755988999938, 58.577053127000056), (-4.777088995999918, 58.583319403000075), (-4.771595831999946, 58.59039948100008), (-4.776519334999932, 58.60716380400004), (-4.758859829999949, 58.59910716400003), (-4.7280167309999115, 58.577460028000075), (-4.7113337879999335, 58.57306549700007), (-4.683257615999935, 58.56150950700004), (-4.670399542999917, 58.55939362200007), (-4.660023566999939, 58.555853583000044), (-4.659291144999941, 58.54755280200004), (-4.663238084999932, 58.538397528000075), (-4.6673070949999556, 58.53204987200007), (-4.6790258449999556, 58.52391185100004), (-4.714466925999943, 58.50560130400004), (-4.732411261999914, 58.480454820000034), (-4.751535610999952, 58.46161530200004), (-4.7609757149999155, 58.44798411700003), (-4.74242102799991, 58.44953034100007), (-4.682972785999937, 58.48456452000005), (-4.673451300999943, 58.48737213700008), (-4.6668595039999445, 58.50291575700004), (-4.650502081999946, 58.50995514500005), (-4.630441860999952, 58.514960028000075), (-4.612131313999953, 58.524644273000035), (-4.6010636059999115, 58.54193756700005), (-4.595122850999928, 58.56000397300005), (-4.584950324999909, 58.57416413000004), (-4.560536261999914, 58.57990143400008), (-4.517486131999931, 58.575506903000075), (-4.475493943999936, 58.565619208000044), (-4.426503058999913, 58.54637278900003), (-4.426503058999913, 58.53888580900008), (-4.427886522999927, 58.53530508000006), (-4.428700324999909, 58.53473541900007), (-4.426503058999913, 58.524644273000035), (-4.449940558999913, 58.510199286000045), (-4.464751756999931, 58.49201080900008), (-4.477650519999941, 58.47134023600006), (-4.4953507149999155, 58.44953034100007), (-4.478098110999952, 58.453558661000045), (-4.46117102799991, 58.46246979400007), (-4.43390865799995, 58.483628648000035), (-4.432728644999941, 58.487616278000075), (-4.4339900379999335, 58.49237702000005), (-4.4342341789999296, 58.49628327000005), (-4.430165167999917, 58.49799225500004), (-4.425933397999927, 58.49909088700008), (-4.385365363999938, 58.52240631700005), (-4.382394985999952, 58.524644273000035), (-4.343861456999946, 58.53888580900008), (-4.317005988999938, 58.54572174700007), (-4.306996222999942, 58.54637278900003), (-4.287180141999954, 58.54291413000004), (-4.2573136059999115, 58.52798086100006), (-4.234730597999942, 58.524644273000035), (-4.248931443999936, 58.53204987200007), (-4.238189256999931, 58.536444403000075), (-4.232248501999948, 58.54242584800005), (-4.227691209999932, 58.548163153000075), (-4.22101803299995, 58.551947333000044), (-4.209706183999913, 58.55292389500005), (-4.190785285999937, 58.54783763200004), (-4.1769913399999155, 58.54637278900003), (-4.16820227799991, 58.54938385600008), (-4.1605525379999335, 58.562567450000074), (-4.149322068999936, 58.565619208000044), (-4.111195441999939, 58.565619208000044), (-4.0902400379999335, 58.56207916900007), (-4.081450975999928, 58.561835028000075), (-4.070220506999931, 58.565619208000044), (-4.061512824999909, 58.57282135600008), (-4.048817511999914, 58.58958567900004), (-4.039784308999913, 58.59292226800005), (-4.030629035999937, 58.59406159100007), (-4.029042120999918, 58.59516022300005), (-4.027821417999917, 58.59271881700005), (-4.0092667309999115, 58.57330963700008), (-4.003773566999939, 58.57062409100007), (-3.981434699999909, 58.57306549700007), (-3.8957413399999155, 58.565619208000044), (-3.8101293609999516, 58.57306549700007), (-3.7669571609999366, 58.58372630400004), (-3.6983536449999406, 58.61115143400008), (-3.659901495999918, 58.62083567900004), (-3.597564256999931, 58.62714264500005), (-3.565500454999949, 58.626613674000055), (-3.542591925999943, 58.62083567900004), (-3.552479620999918, 58.61546458500004), (-3.556263800999943, 58.61399974200003), (-3.532053188999953, 58.60211823100008), (-3.504017706999946, 58.60333893400008), (-3.447010870999918, 58.61399974200003), (-3.3914688789999445, 58.60065338700008), (-3.364084438999953, 58.600816148000035), (-3.3508194649999155, 58.62083567900004), (-3.3677465489999463, 58.624701239000046), (-3.3860570949999556, 58.631740627000056), (-3.402251756999931, 58.64203522300005), (-3.412912563999953, 58.655585028000075), (-3.3900447259999282, 58.67177969000005), (-3.3748673169999392, 58.677069403000075), (-3.3582657539999445, 58.675482489000046), (-3.3543595039999445, 58.67015208500004), (-3.35179602799991, 58.66083405200004), (-3.34788977799991, 58.652044989000046), (-3.340565558999913, 58.648138739000046), (-3.3098852199999556, 58.648138739000046), (-3.244252081999946, 58.65900299700007), (-3.204090949999909, 58.66111888200004), (-3.1519262359999516, 58.64126211100006), (-3.118763800999943, 58.64109935100004), (-3.052886522999927, 58.648138739000046), (-3.0191137359999516, 58.640326239000046), (-3.025380011999914, 58.62213776200008), (-3.0444229809999115, 58.601629950000074), (-3.049183722999942, 58.58673737200007), (-3.060454881999931, 58.57843659100007), (-3.0754288399999155, 58.56037018400008), (-3.0845434239999463, 58.551947333000044), (-3.1107478509999282, 58.53864166900007), (-3.1180313789999445, 58.53204987200007), (-3.129261847999942, 58.51264069200005), (-3.1293025379999335, 58.49640534100007), (-3.1187231109999516, 58.484442450000074), (-3.0975235669999392, 58.47748444200005), (-3.0850723949999406, 58.47825755400004), (-3.073963995999918, 58.481675523000035), (-3.064442511999914, 58.48297760600008), (-3.056630011999914, 58.47748444200005), (-3.053334113999938, 58.46576569200005), (-3.0577286449999406, 58.45685455900008), (-3.066761847999942, 58.451157945000034), (-3.077056443999936, 58.44953034100007), (-3.0863337879999335, 58.41421133000006), (-3.129790818999936, 58.36928945500006), (-3.182769334999932, 58.32843659100007), (-3.2205297519999476, 58.305568752000056), (-3.2622777989999463, 58.292629299000055), (-3.34984290299991, 58.27610911700003), (-3.38499915299991, 58.26459381700005), (-3.438099738999938, 58.236029364000046), (-3.447010870999918, 58.22675202000005), (-3.454741990999935, 58.210150458000044), (-3.473459438999953, 58.193426825000074), (-3.515288865999935, 58.168402411000045), (-3.7350154289999296, 58.07217031500005), (-3.809193488999938, 58.05190664300005), (-3.8275040359999366, 58.04205963700008), (-3.8362524079999503, 58.03143952000005), (-3.8460994129999335, 58.01117584800005), (-3.851714647999927, 58.003892320000034), (-3.8605850899999155, 57.998928127000056), (-3.8856095039999445, 57.991400458000044), (-3.9173070949999556, 57.98745351800005), (-3.981434699999909, 57.96356842700004), (-3.990956183999913, 57.96039459800005), (-3.997670050999943, 57.954413153000075), (-4.001372850999928, 57.94611237200007), (-4.001942511999914, 57.935614325000074), (-4.018299933999913, 57.940619208000044), (-4.023060675999943, 57.943060614000046), (-4.016184048999946, 57.949286200000074), (-4.0301407539999445, 57.953192450000074), (-4.055775519999941, 57.95498281500005), (-4.0843806629999335, 57.964178778000075), (-4.0891007149999155, 57.960150458000044), (-4.0863337879999335, 57.95189036700003), (-4.0776261059999115, 57.943060614000046), (-4.062652147999927, 57.93695709800005), (-4.03148352799991, 57.93618398600006), (-4.016184048999946, 57.93219635600008), (-4.009429490999935, 57.92767975500004), (-3.988270636999914, 57.908270575000074), (-4.008941209999932, 57.88959381700005), (-4.013824022999927, 57.879339911000045), (-4.009348110999952, 57.86790599200003), (-4.025135870999918, 57.868068752000056), (-4.054839647999927, 57.874335028000075), (-4.070220506999931, 57.87417226800005), (-4.0793350899999155, 57.87026601800005), (-4.0969132149999155, 57.85736725500004), (-4.1049698559999115, 57.85370514500005), (-4.132923956999946, 57.85415273600006), (-4.190419074999909, 57.87006256700005), (-4.218169725999928, 57.87417226800005), (-4.298898891999954, 57.86277903900003), (-4.3209529289999296, 57.87103913000004), (-4.353179490999935, 57.89520905200004), (-4.3723038399999155, 57.90448639500005), (-4.392404751999948, 57.908270575000074), (-4.339588995999918, 57.86570872600004), (-4.307728644999941, 57.85146719000005), (-4.269398566999939, 57.846869208000044), (-4.229074673999946, 57.85724518400008), (-4.2082413399999155, 57.85919830900008), (-4.190581834999932, 57.85028717700004), (-4.173451300999943, 57.83901601800005), (-4.1497289699999556, 57.82982005400004), (-4.1334529289999296, 57.830145575000074), (-4.1390681629999335, 57.846869208000044), (-4.0750626289999445, 57.82318756700005), (-4.0399063789999445, 57.81818268400008), (-3.9835098949999406, 57.84235260600008), (-3.9514867829999503, 57.838324286000045), (-3.933705206999946, 57.82566966400003), (-3.9473363919999542, 57.81268952000005), (-3.914784308999913, 57.80768463700008), (-3.877674933999913, 57.81671784100007), (-3.8418676419999542, 57.83490631700005), (-3.813547329999949, 57.857123114000046), (-3.798451300999943, 57.866522528000075), (-3.786040818999936, 57.86542389500005), (-3.779449022999927, 57.85565827000005), (-3.782215949999909, 57.83942291900007), (-3.790028449999909, 57.83071523600006), (-3.92601477799991, 57.734808661000045), (-3.948841925999943, 57.72492096600007), (-3.975209113999938, 57.70327383000006), (-3.988270636999914, 57.69599030200004), (-4.00804602799991, 57.693793036000045), (-4.02367102799991, 57.69782135600008), (-4.0286352199999556, 57.70770905200004), (-4.016184048999946, 57.72333405200004), (-4.042958136999914, 57.73729075700004), (-4.077951626999948, 57.73029205900008), (-4.155344204999949, 57.692572333000044), (-4.168568488999938, 57.689439195000034), (-4.1939998039999296, 57.68854401200008), (-4.2592667309999115, 57.67869700700004), (-4.277821417999917, 57.68060944200005), (-4.294789191999939, 57.68016185100004), (-4.302154100999928, 57.66860586100006), (-4.30882727799991, 57.65485260600008), (-4.324045376999948, 57.64826080900008), (-4.33820553299995, 57.64508698100008), (-4.4031876289999445, 57.60952383000006), (-4.412180141999954, 57.60297272300005), (-4.4203181629999335, 57.592962958000044), (-4.428456183999913, 57.57754140800006), (-4.423451300999943, 57.57680898600006), (-4.409901495999918, 57.582464911000045), (-4.379872199999909, 57.58934153900003), (-4.365101691999939, 57.59723541900007), (-4.3510636059999115, 57.60736725500004), (-4.340809699999909, 57.617173570000034), (-4.328724738999938, 57.626288153000075), (-4.283111131999931, 57.64142487200007), (-4.2445369129999335, 57.66303131700005), (-4.201893683999913, 57.674994208000044), (-4.1937556629999335, 57.67552317900004), (-4.182240363999938, 57.67279694200005), (-4.169016079999949, 57.663763739000046), (-4.118723110999952, 57.65770091400003), (-4.096791144999941, 57.65810781500005), (-4.0807185539999296, 57.66498444200005), (-4.068104620999918, 57.672308661000045), (-4.0246475899999155, 57.687201239000046), (-4.009348110999952, 57.68854401200008), (-4.004505988999938, 57.67597077000005), (-4.025257941999939, 57.65521881700005), (-4.0541886059999115, 57.63572825700004), (-4.083404100999928, 57.62335846600007), (-4.118560350999928, 57.592962958000044), (-4.11546790299991, 57.58783600500004), (-4.112294074999909, 57.58413320500006), (-4.1088761059999115, 57.58144765800006), (-4.1049698559999115, 57.579291083000044), (-4.151356574999909, 57.57684967700004), (-4.170643683999913, 57.570746161000045), (-4.187489386999914, 57.55882396000004), (-4.178089972999942, 57.54954661700003), (-4.184925910999937, 57.548163153000075), (-4.207997199999909, 57.552069403000075), (-4.262603318999936, 57.552069403000075), (-4.262603318999936, 57.544582424000055), (-4.233957485999952, 57.54511139500005), (-4.220285610999952, 57.543402411000045), (-4.207997199999909, 57.538397528000075), (-4.226307745999918, 57.51544830900008), (-4.237456834999932, 57.50531647300005), (-4.248931443999936, 57.49746328300006), (-4.212798631999931, 57.492173570000034), (-4.1948136059999115, 57.49160390800006), (-4.173898891999954, 57.49746328300006), (-4.157622850999928, 57.50849030200004), (-4.150054490999935, 57.51504140800006), (-4.149322068999936, 57.51788971600007), (-4.126779751999948, 57.518866278000075), (-4.116200324999909, 57.52179596600007), (-4.097523566999939, 57.53668854400007), (-4.082997199999909, 57.54441966400003), (-4.067290818999936, 57.54995351800005), (-4.0531306629999335, 57.552069403000075), (-4.034982876999948, 57.55687083500004), (-4.046457485999952, 57.56785716400003), (-4.083851691999939, 57.58612702000005), (-4.056019660999937, 57.585150458000044), (-3.9643448559999115, 57.592962958000044), (-3.8682755199999406, 57.587876695000034), (-3.8374731109999516, 57.592962958000044), (-3.6848038399999155, 57.65444570500006), (-3.625152147999927, 57.66193268400008), (-3.632557745999918, 57.65094635600008), (-3.637684699999909, 57.64622630400004), (-3.6456192699999406, 57.64142487200007), (-3.632476365999935, 57.635646877000056), (-3.6196182929999168, 57.63621653900003), (-3.606068488999938, 57.63947174700007), (-3.590972459999932, 57.64142487200007), (-3.61156165299991, 57.66811758000006), (-3.5747777989999463, 57.66111888200004), (-3.55492102799991, 57.659857489000046), (-3.535755988999938, 57.66193268400008), (-3.521473761999914, 57.66779205900008), (-3.5054418609999516, 57.67865631700005), (-3.4959610669999392, 57.69135163000004), (-3.501698370999918, 57.702826239000046), (-3.491851365999935, 57.71312083500004), (-3.4828181629999335, 57.71401601800005), (-3.4730525379999335, 57.711004950000074), (-3.460682745999918, 57.70966217700004), (-3.447865363999938, 57.71246979400007), (-3.4212540359999366, 57.72138092700004), (-3.409169074999909, 57.72333405200004), (-3.2847387359999516, 57.72044505400004), (-3.2100723949999406, 57.69399648600006), (-3.0786840489999463, 57.66941966400003), (-3.034901495999918, 57.66860586100006), (-2.994496222999942, 57.67552317900004), (-2.932687954999949, 57.69961172100005), (-2.9160863919999542, 57.702826239000046), (-2.75804602799991, 57.702826239000046), (-2.7512100899999155, 57.70062897300005), (-2.741118943999936, 57.69086334800005), (-2.731068488999938, 57.68854401200008), (-2.719878709999932, 57.690619208000044), (-2.711537238999938, 57.69399648600006), (-2.7035212879999335, 57.69472890800006), (-2.6929418609999516, 57.68854401200008), (-2.658924933999913, 57.69745514500005), (-2.573394334999932, 57.68146393400008), (-2.541981574999909, 57.68235911700003), (-2.526112433999913, 57.66860586100006), (-2.5181371739999463, 57.67011139500005), (-2.5110570949999556, 57.677801825000074), (-2.497954881999931, 57.68235911700003), (-2.4800512359999516, 57.68121979400007), (-2.4328507149999155, 57.66811758000006), (-2.425526495999918, 57.67572663000004), (-2.4177953769999476, 57.674261786000045), (-2.4087621739999463, 57.669623114000046), (-2.398060675999943, 57.66811758000006), (-2.3865860669999392, 57.671576239000046), (-2.369496222999942, 57.680568752000056), (-2.360503709999932, 57.68235911700003), (-2.3410538399999155, 57.675848700000074), (-2.3289688789999445, 57.67405833500004), (-2.3235977859999366, 57.678941148000035), (-2.32054602799991, 57.68455638200004), (-2.313384568999936, 57.68992747600004), (-2.3040665359999366, 57.69399648600006), (-2.295643683999913, 57.69599030200004), (-2.274322068999936, 57.69383372600004), (-2.230132615999935, 57.67914459800005), (-2.209950324999909, 57.67552317900004), (-2.1840714179999168, 57.67845286700003), (-2.1243383449999556, 57.702826239000046), (-2.108143683999913, 57.70498281500005), (-1.9976700509999432, 57.702826239000046), (-1.9969376289999445, 57.69904205900008), (-1.990834113999938, 57.69037506700005), (-1.982167120999918, 57.68109772300005), (-1.9735001289999445, 57.67552317900004), (-1.961293097999942, 57.674709377000056), (-1.9447322259999282, 57.68256256700005), (-1.9324845039999445, 57.68235911700003), (-1.9256892569999309, 57.678168036000045), (-1.914214647999927, 57.66474030200004), (-1.8294571609999366, 57.61347077000005), (-1.820464647999927, 57.59634023600006), (-1.817005988999938, 57.578192450000074), (-1.8113907539999445, 57.56049225500004), (-1.7960098949999406, 57.544582424000055), (-1.7960098949999406, 57.538397528000075), (-1.8000382149999155, 57.52586497600004), (-1.7895401679999168, 57.514837958000044), (-1.7611384759999282, 57.49746328300006), (-1.7753800119999141, 57.496527411000045), (-1.7821345689999362, 57.48899974200003), (-1.7812393869999141, 57.48041413000004), (-1.7717179029999102, 57.476263739000046), (-1.7593481109999516, 57.47357819200005), (-1.7659399079999503, 57.46743398600006), (-1.7891739569999459, 57.45644765800006), (-1.8301488919999542, 57.42617422100005), (-1.8474828769999476, 57.40814850500004), (-1.849964972999942, 57.39435455900008), (-1.9544978509999282, 57.341131903000075), (-1.9802953769999476, 57.31928131700005), (-2.044667120999918, 57.22650788000004), (-2.068511522999927, 57.17462799700007), (-2.074126756999931, 57.15420156500005), (-2.0714005199999406, 57.13556549700007), (-2.052357550999943, 57.12742747600004), (-2.0493057929999168, 57.118841864000046), (-2.065256313999953, 57.10053131700005), (-2.0658259759999282, 57.09983958500004), (-2.156158006999931, 57.020697333000044), (-2.1869197259999282, 56.98468659100007), (-2.200103318999936, 56.94871653900003), (-2.1971329419999392, 56.94025299700007), (-2.1912328769999476, 56.93414948100008), (-2.186268683999913, 56.92674388200004), (-2.1863907539999445, 56.91453685100004), (-2.191314256999931, 56.90892161700003), (-2.209706183999913, 56.895819403000075), (-2.213693813999953, 56.890692450000074), (-2.219878709999932, 56.87262604400007), (-2.23460852799991, 56.861395575000074), (-2.2689509759999282, 56.84634023600006), (-2.295806443999936, 56.82526276200008), (-2.3198136059999115, 56.80158112200007), (-2.336089647999927, 56.79083893400008), (-2.3918350899999155, 56.771185614000046), (-2.4086807929999168, 56.762925523000035), (-2.4264216789999296, 56.751288153000075), (-2.4359431629999335, 56.74038320500006), (-2.4407445949999556, 56.73484935100004), (-2.4516495429999168, 56.69098541900007), (-2.4637345039999445, 56.67877838700008), (-2.4774063789999445, 56.66868724200003), (-2.487456834999932, 56.65387604400007), (-2.4875382149999155, 56.64606354400007), (-2.481271938999953, 56.63239166900007), (-2.480620897999927, 56.62653229400007), (-2.4861954419999392, 56.619574286000045), (-2.504058397999927, 56.60883209800005), (-2.514556443999936, 56.591498114000046), (-2.530018683999913, 56.58075592700004), (-2.623768683999913, 56.543402411000045), (-2.6409399079999503, 56.522365627000056), (-2.6613663399999155, 56.51422760600008), (-2.6997777989999463, 56.50364817900004), (-2.708729620999918, 56.49599844000005), (-2.7276505199999406, 56.46954987200007), (-2.737294074999909, 56.46702708500004), (-2.74437415299991, 56.46954987200007), (-2.752308722999942, 56.47361888200004), (-2.764800584999932, 56.47573476800005), (-2.819325324999909, 56.47129954600007), (-3.055653449999909, 56.45213450700004), (-3.0606176419999542, 56.45172760600008), (-3.099273240999935, 56.44188060100004), (-3.1339005199999406, 56.426947333000044), (-3.238189256999931, 56.36774323100008), (-3.280181443999936, 56.35789622600004), (-3.3234757149999155, 56.36591217700004), (-3.311512824999909, 56.35651276200008), (-3.294016079999949, 56.352769273000035), (-3.2515356109999516, 56.352850653000075), (-3.230620897999927, 56.35602448100008), (-3.188384568999936, 56.37018463700008), (-3.149566209999932, 56.37555573100008), (-2.950266079999949, 56.43187083500004), (-2.9399307929999168, 56.43854401200008), (-2.930653449999909, 56.44806549700007), (-2.909087693999936, 56.45571523600006), (-2.88499915299991, 56.45799388200004), (-2.867909308999913, 56.45184967700004), (-2.8500870429999168, 56.44204336100006), (-2.8147680329999503, 56.44041575700004), (-2.8028051419999542, 56.42796458500004), (-2.800892706999946, 56.40892161700003), (-2.808257615999935, 56.391058661000045), (-2.8216039699999556, 56.376166083000044), (-2.837554490999935, 56.36591217700004), (-2.8129776679999168, 56.36591217700004), (-2.809193488999938, 56.36286041900007), (-2.8047582669999542, 56.34910716400003), (-2.8028051419999542, 56.345404364000046), (-2.7914932929999168, 56.34247467700004), (-2.7826228509999282, 56.34162018400008), (-2.7752579419999392, 56.33942291900007), (-2.768625454999949, 56.33234284100007), (-2.6771541009999282, 56.32843659100007), (-2.655262824999909, 56.32217031500005), (-2.621205206999946, 56.30442942900004), (-2.613189256999931, 56.30190664300005), (-2.5768123039999296, 56.28392161700003), (-2.5768123039999296, 56.277777411000045), (-2.6301163399999155, 56.24852122600004), (-2.648345506999931, 56.22870514500005), (-2.672027147999927, 56.22239817900004), (-2.7202042309999115, 56.21629466400003), (-2.7835994129999335, 56.19196198100008), (-2.8061417309999115, 56.188381252000056), (-2.8307185539999296, 56.190741278000075), (-2.8920792309999115, 56.20888906500005), (-2.940052863999938, 56.209418036000045), (-2.9643448559999115, 56.20563385600008), (-2.9746801419999542, 56.19830963700008), (-2.982411261999914, 56.189113674000055), (-3.0355525379999335, 56.16791413000004), (-3.0910538399999155, 56.13226959800005), (-3.107533331999946, 56.12689850500004), (-3.127552863999938, 56.12287018400008), (-3.138295050999943, 56.112209377000056), (-3.152251756999931, 56.07851797100005), (-3.1635636059999115, 56.06386953300006), (-3.1783748039999296, 56.05809153900003), (-3.2484431629999335, 56.055975653000075), (-3.268381313999953, 56.05093008000006), (-3.3030492829999503, 56.037543036000045), (-3.342681443999936, 56.02716705900008), (-3.381825324999909, 56.02338288000004), (-3.420969204999949, 56.02488841400003), (-3.5825902989999463, 56.05174388200004), (-3.671498175999943, 56.050848700000074), (-3.710031704999949, 56.05809153900003), (-3.7454320949999556, 56.07221100500004), (-3.7464900379999335, 56.072780666000085), (-3.782215949999909, 56.09218984600005), (-3.8031306629999335, 56.107123114000046), (-3.817005988999938, 56.11225006700005), (-3.8374731109999516, 56.112616278000075), (-3.8374731109999516, 56.10643138200004), (-3.777699347999942, 56.08283112200007), (-3.769154425999943, 56.07514069200005), (-3.7608536449999406, 56.07245514500005), (-3.7264298169999392, 56.03803131700005), (-3.721424933999913, 56.03070709800005), (-3.712635870999918, 56.028998114000046), (-3.693470831999946, 56.03115469000005), (-3.6866348949999406, 56.03070709800005), (-3.6795548169999392, 56.025458075000074), (-3.674794074999909, 56.01870351800005), (-3.6682836579999503, 56.01276276200008), (-3.656239386999914, 56.010199286000045), (-3.599720831999946, 56.017238674000055), (-3.5773819649999155, 56.01703522300005), (-3.405425584999932, 55.98973216400003), (-3.3582657539999445, 55.98973216400003), (-3.340891079999949, 55.99445221600007), (-3.331044074999909, 55.99408600500004), (-3.320423956999946, 55.986029364000046), (-3.303456183999913, 55.97760651200008), (-3.121815558999913, 55.96930573100008), (-3.1147354809999115, 55.966131903000075), (-3.096831834999932, 55.95197174700007), (-3.090728318999936, 55.94818756700005), (-3.078236456999946, 55.94684479400007), (-3.0156957669999542, 55.950506903000075), (-2.9399307929999168, 55.96930573100008), (-2.9166560539999296, 55.98061758000006), (-2.900054490999935, 55.996161200000074), (-2.8828832669999542, 56.00849030200004), (-2.8579809239999463, 56.010199286000045), (-2.863636847999942, 56.02228424700007), (-2.8663223949999406, 56.02676015800006), (-2.8709610669999392, 56.03070709800005), (-2.8527725899999155, 56.03978099200003), (-2.823150193999936, 56.059759833000044), (-2.8028051419999542, 56.06484609600005), (-2.635121222999942, 56.05805084800005), (-2.615956183999913, 56.053168036000045), (-2.587554490999935, 56.030951239000046), (-2.569406704999949, 56.02448151200008), (-2.57835852799991, 56.00800202000005), (-2.583648240999935, 56.00275299700007), (-2.5695694649999155, 55.99994538000004), (-2.5440567699999406, 56.00267161700003), (-2.528960740999935, 55.99656810100004), (-2.5248103509999282, 56.00055573100008), (-2.514556443999936, 56.00576406500005), (-2.507923956999946, 56.010199286000045), (-2.4932755199999406, 56.00153229400007), (-2.4525040359999366, 55.985256252000056), (-2.4143774079999503, 55.97833893400008), (-2.3509415359999366, 55.94818756700005), (-2.307769334999932, 55.93500397300005), (-2.146839972999942, 55.917303778000075), (-2.1380102199999556, 55.91461823100008), (-2.132557745999918, 55.90643952000005), (-2.13109290299991, 55.89720286700003), (-2.1287735669999392, 55.88979726800005), (-2.1209610669999392, 55.886704820000034), (-2.0994766919999392, 55.88178131700005), (-2.080189581999946, 55.86937083500004), (-2.0228572259999282, 55.80548737200007), (-2.009673631999931, 55.79083893400008), (-1.8778376939999362, 55.69489166900007), (-1.8631892569999309, 55.67161692900004), (-1.8530981109999516, 55.65932851800005), (-1.8315323559999115, 55.65070221600007), (-1.8260798819999309, 55.64362213700008), (-1.8216853509999282, 55.636419989000046), (-1.8164770169999542, 55.632879950000074), (-1.8071182929999168, 55.63450755400004), (-1.8007706369999141, 55.63922760600008), (-1.7962947259999282, 55.644232489000046), (-1.7925919259999432, 55.646551825000074), (-1.781402147999927, 55.64565664300005), (-1.768625454999949, 55.641913153000075), (-1.7564998039999296, 55.63361237200007), (-1.7476700509999432, 55.619208075000074), (-1.7679744129999335, 55.619208075000074), (-1.7679744129999335, 55.612982489000046), (-1.7559708319999459, 55.60887278900003), (-1.720855272999927, 55.614569403000075), (-1.6991267569999309, 55.612982489000046), (-1.6308487619999141, 55.58510976800005), (-1.6308487619999141, 55.57827383000006), (-1.6363419259999432, 55.57168203300006), (-1.6346736319999309, 55.56439850500004), (-1.6276749339999128, 55.55711497600004), (-1.6171768869999141, 55.55027903900003), (-1.6308487619999141, 55.544134833000044), (-1.6308487619999141, 55.53729889500005), (-1.6222224599999322, 55.534084377000056), (-1.6029353509999282, 55.52362702000005), (-1.6029353509999282, 55.516791083000044), (-1.6113175119999141, 55.50804271000004), (-1.6063533189999362, 55.503241278000075), (-1.5963435539999296, 55.49990469000005), (-1.5893448559999115, 55.49567291900007), (-1.5849503249999088, 55.483710028000075), (-1.5813695949999556, 55.41665273600006), (-1.5831192699999406, 55.40692780200004), (-1.5882869129999335, 55.39057038000004), (-1.5891007149999155, 55.385199286000045), (-1.5893448559999115, 55.37653229400007), (-1.5833227199999556, 55.354722398000035), (-1.5585831369999141, 55.32892487200007), (-1.5558162099999322, 55.31134674700007), (-1.5570369129999335, 55.306626695000034), (-1.5589900379999335, 55.302069403000075), (-1.5619197259999282, 55.29779694200005), (-1.5657445949999556, 55.29364655200004), (-1.570057745999918, 55.28620026200008), (-1.5682266919999392, 55.27960846600007), (-1.5642797519999476, 55.27326080900008), (-1.5620824859999516, 55.26666901200008), (-1.5564672519999476, 55.25503164300005), (-1.5439346999999088, 55.24388255400004), (-1.5209854809999115, 55.229396877000056), (-1.5291641919999392, 55.21625397300005), (-1.5240779289999296, 55.21010976800005), (-1.514271613999938, 55.204779364000046), (-1.507964647999927, 55.194647528000075), (-1.510812954999949, 55.184759833000044), (-1.5175675119999141, 55.176214911000045), (-1.5221248039999296, 55.16746653900003), (-1.517933722999942, 55.157131252000056), (-1.5007218089999128, 55.141791083000044), (-1.4959610669999392, 55.13458893400008), (-1.492543097999942, 55.112982489000046), (-1.4837540359999366, 55.09170156500005), (-1.4800919259999432, 55.08539459800005), (-1.4762263659999348, 55.083644924000055), (-1.4632869129999335, 55.08030833500004), (-1.459584113999938, 55.07859935100004), (-1.458078579999949, 55.07575104400007), (-1.4547013009999432, 55.067572333000044), (-1.438303188999953, 55.042303778000075), (-1.4291886059999115, 55.033270575000074), (-1.4240616529999102, 55.02435944200005), (-1.4195043609999516, 55.011704820000034), (-1.412912563999953, 55.00031159100007), (-1.4015193349999322, 54.995428778000075), (-1.398182745999918, 54.992621161000045), (-1.3702286449999406, 54.97553131700005), (-1.3626602859999366, 54.96478913000004), (-1.3617244129999335, 54.958685614000046), (-1.3635147779999102, 54.95425039300005), (-1.3640030589999128, 54.94818756700005), (-1.3628637359999516, 54.92593008000006), (-1.3603409499999088, 54.91705963700008), (-1.3531388009999432, 54.91351959800005), (-1.355824347999942, 54.904282945000034), (-1.2967830069999309, 54.77993398600006), (-1.2754613919999542, 54.74843984600005), (-1.2404679029999102, 54.72166575700004), (-1.2250870429999168, 54.71503327000005), (-1.172230597999942, 54.701239325000074), (-1.172230597999942, 54.693793036000045), (-1.1926163399999155, 54.693793036000045), (-1.192453579999949, 54.68927643400008), (-1.1907852859999366, 54.68618398600006), (-1.1851700509999432, 54.68008047100005), (-1.1827286449999406, 54.67206452000005), (-1.1788223949999406, 54.66474030200004), (-1.172922329999949, 54.65835195500006), (-1.1647029289999296, 54.652777411000045), (-1.172922329999949, 54.644191799000055), (-1.1824845039999445, 54.63922760600008), (-1.2062882149999155, 54.63296133000006), (-1.203724738999938, 54.62571849200003), (-1.1988419259999432, 54.62156810100004), (-1.1918025379999335, 54.61977773600006), (-1.1821182929999168, 54.61928945500006), (-1.1793513659999348, 54.62091705900008), (-1.1784561839999128, 54.624212958000044), (-1.1769913399999155, 54.62677643400008), (-1.172230597999942, 54.62612539300005), (-1.1695857409999348, 54.62360260600008), (-1.1654353509999282, 54.61871979400007), (-1.1629532539999445, 54.61395905200004), (-1.1647029289999296, 54.61180247600004), (-1.1526586579999503, 54.61318594000005), (-1.1467179029999102, 54.618475653000075), (-1.1380509109999366, 54.646551825000074), (-1.1205948559999115, 54.63300202000005), (-1.1036270819999459, 54.624660549000055), (-1.0842179029999102, 54.620428778000075), (-1.042062954999949, 54.61709219000005), (-0.9934789699999556, 54.59813060100004), (-0.7879125639999529, 54.56077708500004), (-0.5629776679999168, 54.47736237200007), (-0.5346573559999115, 54.461004950000074), (-0.5228572259999282, 54.44708893400008), (-0.5217992829999503, 54.43805573100008), (-0.5235896479999269, 54.43024323100008), (-0.5204158189999362, 54.42007070500006), (-0.5099991529999102, 54.41156647300005), (-0.47679602799991017, 54.39720286700003), (-0.46275794199993925, 54.38898346600007), (-0.4477432929999168, 54.37319570500006), (-0.43057206899993616, 54.349310614000046), (-0.4184464179999168, 54.32404205900008), (-0.41803951699995423, 54.303941148000035), (-0.4145401679999168, 54.297308661000045), (-0.4090063139999529, 54.29075755400004), (-0.4011938139999529, 54.28563060100004), (-0.39073645699994586, 54.28351471600007), (-0.3948868479999419, 54.273138739000046), (-0.39757239499994057, 54.269191799000055), (-0.3892716139999379, 54.26406484600005), (-0.3704727859999366, 54.247707424000055), (-0.3627823559999115, 54.24249909100007), (-0.3220108709999181, 54.23607005400004), (-0.31191972599992823, 54.231634833000044), (-0.30011959499995555, 54.224676825000074), (-0.2770889959999181, 54.21775950700004), (-0.26960201699995423, 54.20766836100006), (-0.26256262899994454, 54.18109772300005), (-0.2603653639999379, 54.176988023000035), (-0.2338761059999115, 54.16046784100007), (-0.11143958199994586, 54.13157786700003), (-0.07551021999995555, 54.11212799700007), (-0.16392981699993925, 54.08340078300006), (-0.1946915359999366, 54.06232330900008), (-0.2194718089999128, 54.022772528000075), (-0.1974177729999269, 53.99481842700004), (-0.1686905589999128, 53.929348049000055), (-0.1511124339999128, 53.899318752000056), (-0.045155402999910166, 53.801214911000045), (0.13347415500004445, 53.642645575000074), (0.1492619150000678, 53.60960521000004), (0.13689212300005238, 53.57713450700004), (0.13119550900006516, 53.573431708000044), (0.1096297540000819, 53.56289297100005), (0.1313582690000885, 53.59369538000004), (0.1359969410000872, 53.610663153000075), (0.12020918100006384, 53.61810944200005), (0.09945722700007309, 53.622300523000035), (0.056162957000083225, 53.64126211100006), (0.034515821000070446, 53.64606354400007), (0.014821811000047092, 53.64325592700004), (-0.023915167999916775, 53.62885163000004), (-0.04503333199994586, 53.62555573100008), (-0.06940670499994894, 53.626939195000034), (-0.09227454299991678, 53.63104889500005), (-0.11261959499995555, 53.63751862200007), (-0.1300349599999322, 53.64606354400007), (-0.2253311839999128, 53.719916083000044), (-0.2603653639999379, 53.73541901200008), (-0.2956436839999128, 53.738796291000085), (-0.3051651679999168, 53.73969147300005), (-0.4311417309999115, 53.71430084800005), (-0.4496964179999168, 53.71430084800005), (-0.5104874339999128, 53.71430084800005), (-0.5444229809999115, 53.70945872600004), (-0.5515030589999128, 53.71116771000004), (-0.5762426419999542, 53.72565338700008), (-0.5791723299999489, 53.72797272300005), (-0.6370336579999503, 53.73200104400007), (-0.6583552729999269, 53.72797272300005), (-0.7264705069999309, 53.70062897300005), (-0.7173559239999463, 53.69867584800005), (-0.7085668609999516, 53.695746161000045), (-0.7001846999999088, 53.691839911000045), (-0.6924535799999489, 53.68699778900003), (-0.6774796209999181, 53.702826239000046), (-0.6498103509999282, 53.710598049000055), (-0.6195369129999335, 53.71185944200005), (-0.5961807929999168, 53.70807526200008), (-0.5554906889999529, 53.69049713700008), (-0.5447485019999476, 53.683579820000034), (-0.5299373039999296, 53.67767975500004), (-0.5140274729999419, 53.681301174000055), (-0.48631751199991413, 53.69448476800005), (-0.3072403639999379, 53.71426015800006), (-0.27936764199995423, 53.707098700000074), (-0.2603653639999379, 53.68699778900003), (-0.1886287099999322, 53.620428778000075), (-0.1440323559999115, 53.606634833000044), (-0.11318925699993088, 53.58462148600006), (-0.09593665299991017, 53.57713450700004), (-0.06094316299993352, 53.57396067900004), (-0.0466202459999181, 53.570379950000074), (9.199300006912381e-05, 53.53534577000005), (0.0959578790000819, 53.488348700000074), (0.11508222700007309, 53.48322174700007), (0.1340438160000872, 53.48061758000006), (0.15186608200008322, 53.475816148000035), (0.1678166020000731, 53.464504299000055), (0.17090905000009116, 53.457017320000034), (0.1731063160000872, 53.44676341400003), (0.17579186300008587, 53.43768952000005), (0.1814884770000731, 53.43374258000006), (0.1906030610000471, 53.43187083500004), (0.21949303500008455, 53.41950104400007), (0.21192467500009116, 53.41266510600008), (0.2293400400000678, 53.40477122600004), (0.24488366000008455, 53.39093659100007), (0.2561141290000819, 53.375067450000074), (0.26042728000004445, 53.36147695500006), (0.34213300900006516, 53.22630442900004), (0.35621178500008455, 53.18854401200008), (0.3566186860000471, 53.145738023000035), (0.3357853520000731, 53.093451239000046), (0.32984459700008983, 53.08649323100008), (0.31869550900006516, 53.083685614000046), (0.29883873800008587, 53.08120351800005), (0.2824813160000872, 53.07485586100006), (0.19304446700004974, 53.02008698100008), (0.17448978000004445, 53.01544830900008), (0.16081790500004445, 53.008978583000044), (0.08212324300006912, 52.938666083000044), (0.061167839000063395, 52.924994208000044), (0.03760826900008851, 52.919175523000035), (0.022146030000044448, 52.91258372600004), (0.008555535000084546, 52.89862702000005), (0.010264519000088512, 52.88646067900004), (0.04066002700005811, 52.88507721600007), (0.09253991000008455, 52.89252350500004), (0.10564212300005238, 52.88934967700004), (0.13347415500004445, 52.87518952000005), (0.14714603000004445, 52.87201569200005), (0.17090905000009116, 52.86212799700007), (0.22242272200008983, 52.813666083000044), (0.24675540500004445, 52.79572174700007), (0.2644962900000678, 52.80369700700004), (0.2856551440000885, 52.805568752000056), (0.32553144600007045, 52.803168036000045), (0.34180748800008587, 52.79743073100008), (0.36988366000008455, 52.77301666900007), (0.38453209700008983, 52.76837799700007), (0.38453209700008983, 52.77521393400008), (0.37924238400006516, 52.79083893400008), (0.39942467500009116, 52.80951569200005), (0.42554772200008983, 52.827378648000035), (0.4386499360000471, 52.840725002000056), (0.44402103000004445, 52.86505768400008), (0.45671634200004974, 52.89199453300006), (0.47234134200004974, 52.916449286000045), (0.48568769600007045, 52.93349844000005), (0.5202742850000845, 52.95526764500005), (0.5695906910000872, 52.96930573100008), (0.6233830090000652, 52.97565338700008), (0.6718856130000859, 52.97443268400008), (0.6643986340000652, 52.98187897300005), (0.6847436860000471, 52.986395575000074), (0.7067977220000898, 52.98322174700007), (0.7291772800000444, 52.97748444200005), (0.7504988940000885, 52.97443268400008), (0.8357039720000898, 52.97443268400008), (0.8754988940000885, 52.96816640800006), (0.9210718110000471, 52.95465729400007), (0.9684350920000497, 52.94749583500004), (1.013926629000082, 52.960150458000044), (1.0034285820000832, 52.96474844000005), (0.9915470710000704, 52.96747467700004), (0.9790145190000885, 52.968410549000055), (0.9660750660000872, 52.96759674700007), (0.9660750660000872, 52.97443268400008), (1.2746688160000872, 52.92918528900003), (1.3960067070000832, 52.89142487200007), (1.6442163420000497, 52.775824286000045), (1.6733504570000832, 52.75568268400008), (1.6970320970000898, 52.73102448100008), (1.7158309250000912, 52.68374258000006), (1.7341414720000898, 52.65460846600007), (1.747243686000047, 52.62518952000005), (1.7407332690000885, 52.60390859600005), (1.7468367850000845, 52.58852773600006), (1.7487085300000444, 52.568793036000045), (1.7475692070000832, 52.53278229400007), (1.7711694670000497, 52.48590729400007), (1.7671004570000832, 52.47695547100005), (1.7544051440000885, 52.46735260600008), (1.7292586600000845, 52.41559479400007), (1.7301538420000497, 52.405910549000055), (1.7278751960000704, 52.39630768400008), (1.6836043630000859, 52.32453034100007), (1.6518660820000832, 52.289129950000074), (1.6411238940000885, 52.28180573100008), (1.6305444670000497, 52.27045319200005), (1.6282658210000704, 52.24481842700004), (1.6308699880000859, 52.19977448100008), (1.6254988940000885, 52.18036530200004), (1.6074324880000859, 52.14594147300005), (1.6035262380000859, 52.127834377000056), (1.5892033210000704, 52.100816148000035), (1.5875757170000497, 52.08698151200008), (1.582286004000082, 52.08148834800005), (1.5036727220000898, 52.060980536000045), (1.4868270190000885, 52.04901764500005), (1.4720158210000704, 52.05621979400007), (1.4668074880000859, 52.04800039300005), (1.4638778000000912, 52.035142320000034), (1.4558211600000845, 52.028509833000044), (1.4489852220000898, 52.02496979400007), (1.4248153000000912, 52.00185781500005), (1.3548283210000704, 51.95404694200005), (1.3435164720000898, 51.94285716400009), (1.332286004000082, 51.94009023600006), (1.2644149100000845, 51.99437083500004), (1.2348738940000885, 52.00031159100007), (1.1852319670000497, 52.025091864000046), (1.1578882170000497, 52.028509833000044), (1.1578882170000497, 52.02167389500005), (1.1935327480000524, 52.00079987200007), (1.2143660820000832, 51.991441148000035), (1.2602645190000885, 51.984808661000045), (1.2707625660000872, 51.98151276200008), (1.2751570970000898, 51.976996161000045), (1.2744246750000912, 51.96088288000004), (1.2710067070000832, 51.95644765800006), (1.2507430350000845, 51.95962148600006), (1.2389429050000444, 51.958644924000055), (1.2176212900000678, 51.954331773000035), (1.2057397800000444, 51.95343659100007), (1.193207227000073, 51.955511786000045), (1.1652938160000872, 51.96702708500004), (1.1430770190000885, 51.966050523000035), (1.0944930350000845, 51.955959377000056), (1.0691024100000845, 51.95343659100007), (1.0954695970000898, 51.945746161000045), (1.2620548840000652, 51.939154364000046), (1.2819930350000845, 51.946600653000075), (1.278493686000047, 51.92792389500005), (1.1995548840000652, 51.87767161700003), (1.2122501960000704, 51.87164948100008), (1.2278751960000704, 51.86737702000005), (1.2644149100000845, 51.86399974200003), (1.2747501960000704, 51.870306708000044), (1.2822371750000912, 51.880560614000046), (1.2866317070000832, 51.88165924700007), (1.288259311000047, 51.860581773000035), (1.2763778000000912, 51.84479401200008), (1.2192488940000885, 51.811835028000075), (1.167816602000073, 51.790228583000044), (1.1354272800000444, 51.78172435100004), (1.0654403000000912, 51.77529531500005), (1.0466414720000898, 51.777044989000046), (1.0372827480000524, 51.78217194200005), (1.021332227000073, 51.80255768400008), (0.9887801440000885, 51.83026764500005), (0.9798283210000704, 51.84357330900008), (0.9770613940000885, 51.82461172100005), (0.9620874360000471, 51.813788153000075), (0.9251408210000704, 51.80255768400008), (0.8942977220000898, 51.78461334800005), (0.8869735040000819, 51.782131252000056), (0.8864038420000497, 51.776678778000075), (0.8834741550000444, 51.76471588700008), (0.8789168630000859, 51.75275299700007), (0.8737085300000444, 51.747300523000035), (0.8619897800000444, 51.74555084800005), (0.8459578790000819, 51.736761786000045), (0.8357039720000898, 51.733710028000075), (0.8234969410000872, 51.73383209800005), (0.8014429050000444, 51.73969147300005), (0.7917586600000845, 51.74115631700005), (0.7671004570000832, 51.739447333000044), (0.7208764980000524, 51.728176174000055), (0.6985783210000704, 51.720038153000075), (0.7142033210000704, 51.715277411000045), (0.7324324880000859, 51.713771877000056), (0.7492781910000872, 51.70848216400009), (0.7607528000000912, 51.692694403000075), (0.7890731130000859, 51.710150458000044), (0.8530379570000832, 51.71889883000006), (0.8835555350000845, 51.72687409100007), (0.9123641290000819, 51.741522528000075), (0.9300236340000652, 51.74359772300005), (0.9455672540000819, 51.733710028000075), (0.9474389980000524, 51.72524648600006), (0.9445906910000872, 51.71548086100006), (0.9404403000000912, 51.70799388200004), (0.9381616550000444, 51.706366278000075), (0.9401961600000845, 51.698431708000044), (0.9440210300000444, 51.69057851800005), (0.9518335300000444, 51.67841217700004), (0.9417423840000652, 51.673041083000044), (0.9379988940000885, 51.664496161000045), (0.9381616550000444, 51.64126211100006), (0.9347436860000471, 51.63589101800005), (0.9267684250000912, 51.630926825000074), (0.9114689460000704, 51.62384674700007), (0.9384871750000912, 51.624986070000034), (0.9480900400000678, 51.621527411000045), (0.9518335300000444, 51.61701080900008), (0.9244897800000444, 51.588324286000045), (0.8733016290000819, 51.559475002000056), (0.8282983730000524, 51.541856187000064), (0.8162541020000731, 51.537176825000074), (0.7712508470000898, 51.52826569200005), (0.6920679050000444, 51.536322333000044), (0.6643986340000652, 51.53506094000005), (0.6637475920000497, 51.53554922100005), (0.6505639980000524, 51.53579336100006), (0.6466577480000524, 51.53534577000005), (0.6440535820000832, 51.53506094000005), (0.6427514980000524, 51.53351471600007), (0.6233830090000652, 51.52204010600008), (0.6086531910000872, 51.51898834800005), (0.5952254570000832, 51.51862213700008), (0.5822860040000819, 51.51654694200005), (0.5688582690000885, 51.50836823100008), (0.5527449880000859, 51.51797109600005), (0.5472111340000652, 51.51772695500006), (0.5254012380000859, 51.516913153000075), (0.45606530000009116, 51.505560614000046), (0.45085696700004974, 51.49827708500004), (0.44800866000008455, 51.48822663000004), (0.4416610040000819, 51.47703685100004), (0.42847741000008455, 51.46710846600007), (0.41407311300008587, 51.46190013200004), (0.39918053500008455, 51.45840078300006), (0.38453209700008983, 51.453111070000034), (0.4484155610000471, 51.45994700700004), (0.45679772200008983, 51.46312083500004), (0.4614363940000885, 51.47016022300005), (0.46485436300008587, 51.47724030200004), (0.4695744150000678, 51.48041413000004), (0.5348413420000497, 51.49168528900009), (0.6948348320000832, 51.47703685100004), (0.7094832690000885, 51.47052643400008), (0.7219344410000872, 51.456284898000035), (0.7231551440000885, 51.44672272300005), (0.7131453790000819, 51.44122955900008), (0.6923934250000912, 51.439520575000074), (0.6565047540000819, 51.444525458000044), (0.6409611340000652, 51.44415924700007), (0.6093856130000859, 51.425116278000075), (0.5727645190000885, 51.419582424000055), (0.5545353520000731, 51.412176825000074), (0.5622664720000898, 51.40656159100007), (0.5691024100000845, 51.399603583000044), (0.5765080090000652, 51.39362213700008), (0.5859481130000859, 51.391058661000045), (0.6718856130000859, 51.391058661000045), (0.7129012380000859, 51.38422272300005), (0.7049259770000731, 51.39598216400009), (0.7003686860000471, 51.409816799000055), (0.7053328790000819, 51.41950104400007), (0.7264103520000731, 51.41901276200008), (0.7283634770000731, 51.406236070000034), (0.7392684250000912, 51.387925523000035), (0.7534285820000832, 51.371527411000045), (0.7644149100000845, 51.36440664300005), (0.9772241550000444, 51.34918854400007), (1.1009220710000704, 51.37323639500005), (1.4238387380000859, 51.39207591400009), (1.4482528000000912, 51.382879950000074), (1.4391382170000497, 51.35008372600004), (1.4355574880000859, 51.343736070000034), (1.430837436000047, 51.33779531500005), (1.4251408210000704, 51.33295319200005), (1.4186304050000444, 51.32965729400007), (1.3829858730000524, 51.329779364000046), (1.3776147800000444, 51.326239325000074), (1.3806258470000898, 51.304754950000074), (1.387868686000047, 51.28790924700007), (1.4043074880000859, 51.261379299000055), (1.4130965500000912, 51.22174713700008), (1.4047957690000885, 51.18353913000004), (1.3844507170000497, 51.151678778000075), (1.3571883470000898, 51.13100820500006), (1.2903751960000704, 51.116522528000075), (1.2629500660000872, 51.10325755400004), (1.2516382170000497, 51.10252513200004), (1.2299910820000832, 51.10370514500005), (1.2181095710000704, 51.10097890800006), (1.2082625660000872, 51.09467194200005), (1.1997176440000885, 51.087591864000046), (1.1920679050000444, 51.08258698100008), (1.1722111340000652, 51.077378648000035), (1.1067000660000872, 51.07636139500005), (1.0871688160000872, 51.07298411700003), (1.0669051440000885, 51.06439850500004), (1.027598504000082, 51.04165273600006), (0.9764103520000731, 50.99445221600007), (0.9664819670000497, 50.98273346600007), (0.9690861340000652, 50.95685455900008), (0.9798283210000704, 50.91815827000005), (0.9451603520000731, 50.909369208000044), (0.8698022800000444, 50.925116278000075), (0.8022567070000832, 50.93919505400004), (0.7624617850000845, 50.930894273000035), (0.6643986340000652, 50.870306708000044), (0.6241968110000471, 50.858710028000075), (0.4074813160000872, 50.829331773000035), (0.3702905610000471, 50.818793036000045), (0.36524498800008587, 50.81899648600006), (0.35425866000008455, 50.80963776200008), (0.34441165500004445, 50.79905833500004), (0.3422957690000885, 50.79515208500004), (0.3081160820000832, 50.780951239000046), (0.2710067070000832, 50.747381903000075), (0.23389733200008322, 50.74701569200005), (0.2141219410000872, 50.748928127000056), (0.16830488400006516, 50.759833075000074), (0.1573999360000471, 50.761053778000075), (0.12208092500009116, 50.76080963700008), (0.11304772200008983, 50.76414622600004), (0.09555097700007309, 50.775051174000055), (0.07703698000005943, 50.778998114000046), (0.034515821000070446, 50.780951239000046), (0.01754804800009424, 50.784857489000046), (-0.17316646999995555, 50.829006252000056), (-0.20612545499994894, 50.83104075700004), (-0.20889238199993088, 50.83010488500008), (-0.2331436839999128, 50.821926174000055), (-0.2696833979999269, 50.831284898000035), (-0.39757239499994057, 50.802069403000075), (-0.5689591139999379, 50.802069403000075), (-0.7327367829999503, 50.767279364000046), (-0.7415665359999366, 50.769232489000046), (-0.7498673169999392, 50.773871161000045), (-0.7582087879999335, 50.77708567900004), (-0.7675675119999141, 50.774725653000075), (-0.7731013659999348, 50.76601797100005), (-0.7662654289999296, 50.74713776200008), (-0.7709854809999115, 50.73688385600008), (-0.7899470689999362, 50.73004791900007), (-0.8128149079999503, 50.73476797100005), (-0.9041235019999476, 50.77187734600005), (-0.9114884109999366, 50.77781810100004), (-0.9058731759999432, 50.78803131700005), (-0.8924861319999309, 50.794623114000046), (-0.8636368479999419, 50.802069403000075), (-0.8636368479999419, 50.808254299000055), (-0.8736059239999463, 50.812933661000045), (-0.8931371739999463, 50.82534414300005), (-0.9046931629999335, 50.829331773000035), (-0.9095352859999366, 50.82599518400008), (-0.9217016269999476, 50.821600653000075), (-0.9289444649999155, 50.82282135600008), (-0.9190160799999489, 50.83616771000004), (-0.9297989569999459, 50.83999258000006), (-0.9391983709999181, 50.84324778900009), (-0.9707738919999542, 50.846991278000075), (-0.9948624339999128, 50.84707265800006), (-1.0018611319999309, 50.84711334800005), (-1.0207413399999155, 50.84365469000005), (-1.033558722999942, 50.82591380400004), (-1.0426326159999348, 50.80190664300005), (-1.0562231109999516, 50.78302643400008), (-1.0827530589999128, 50.780951239000046), (-1.1030167309999115, 50.79547760600008), (-1.0936173169999392, 50.812933661000045), (-1.0753067699999406, 50.83002350500004), (-1.069162563999953, 50.84365469000005), (-1.0873103509999282, 50.84979889500005), (-1.0881241529999102, 50.84975820500006), (-1.1498103509999282, 50.84666575700004), (-1.1647029289999296, 50.84365469000005), (-1.129709438999953, 50.825100002000056), (-1.1237686839999128, 50.818793036000045), (-1.1212052069999459, 50.79938385600008), (-1.1249080069999309, 50.788723049000055), (-1.1380509109999366, 50.780951239000046), (-1.1511124339999128, 50.78139883000006), (-1.1693416009999282, 50.78587474200003), (-1.1856176419999542, 50.79242584800005), (-1.1926163399999155, 50.79865143400008), (-1.1992895169999542, 50.807928778000075), (-1.231516079999949, 50.81891510600008), (-1.2551977199999556, 50.83193594000005), (-1.288156704999949, 50.839178778000075), (-1.3014216789999296, 50.84365469000005), (-1.3185929029999102, 50.85691966400009), (-1.338937954999949, 50.872707424000055), (-1.4492895169999542, 50.91205475500004), (-1.4664200509999432, 50.91815827000005), (-1.4664200509999432, 50.91193268400008), (-1.4564509759999282, 50.90875885600008), (-1.4379776679999168, 50.90131256700005), (-1.4256078769999476, 50.900091864000046), (-1.4011124339999128, 50.88117096600007), (-1.323068813999953, 50.82575104400007), (-1.3142797519999476, 50.812160549000055), (-1.3172908189999362, 50.80023834800005), (-1.3398331369999141, 50.79515208500004), (-1.4039607409999348, 50.79157135600008), (-1.4186905589999128, 50.788397528000075), (-1.4113663399999155, 50.78489817900004), (-1.4049373039999296, 50.780951239000046), (-1.4049373039999296, 50.774725653000075), (-1.4505102199999556, 50.76935455900008), (-1.4762263659999348, 50.76341380400004), (-1.4875382149999155, 50.75771719000005), (-1.491932745999918, 50.75726959800005), (-1.5247289699999556, 50.761053778000075), (-1.5571996739999463, 50.72329336100006), (-1.559396938999953, 50.71922435100004), (-1.5611873039999296, 50.71898021000004), (-1.5807185539999296, 50.722642320000034), (-1.6021215489999463, 50.731756903000075), (-1.6706436839999128, 50.74005768400008), (-1.672922329999949, 50.74005768400008), (-1.6930232409999348, 50.739935614000046), (-1.7150772779999102, 50.73578522300005), (-1.7535294259999432, 50.72284577000005), (-1.7717179029999102, 50.72011953300006), (-1.7974340489999463, 50.723171291000085), (-1.8350723949999406, 50.72768789300005), (-1.8574112619999141, 50.72695547100005), (-1.8773494129999335, 50.72284577000005), (-1.8963516919999392, 50.71629466400009), (-1.8968806629999335, 50.716050523000035), (-1.9138891269999476, 50.70742422100005), (-1.9291072259999282, 50.69586823100008), (-1.9400121739999463, 50.69082265800006), (-1.9443253249999088, 50.69765859600005), (-1.946115688999953, 50.707912502000056), (-1.9492895169999542, 50.713324286000045), (-1.9877009759999282, 50.72011953300006), (-2.01390540299991, 50.71893952000005), (-2.0219620429999168, 50.72011953300006), (-2.0254613919999542, 50.723863023000035), (-2.026193813999953, 50.72508372600004), (-2.0338435539999296, 50.73712799700007), (-2.038970506999931, 50.739935614000046), (-2.0480850899999155, 50.734808661000045), (-2.0826716789999296, 50.69896067900004), (-2.0695694649999155, 50.700100002000056), (-2.0577286449999406, 50.702826239000046), (-2.046620245999918, 50.70726146000004), (-2.0356339179999168, 50.713324286000045), (-2.0141495429999168, 50.688788153000075), (-2.0025121739999463, 50.681301174000055), (-1.984120245999918, 50.67853424700007), (-1.9674373039999296, 50.67865631700005), (-1.9527888659999348, 50.67658112200007), (-1.9458715489999463, 50.668850002000056), (-1.9529516269999476, 50.65184153900009), (-1.9382218089999128, 50.645819403000075), (-1.9324845039999445, 50.64443594000005), (-1.9672745429999168, 50.61709219000005), (-1.965199347999942, 50.60219961100006), (-1.9837133449999556, 50.59662506700005), (-2.065174933999913, 50.59552643400008), (-2.082183397999927, 50.59784577000005), (-2.1573380199999406, 50.62051015800006), (-2.3426407539999445, 50.63377513200004), (-2.377064581999946, 50.64752838700008), (-2.398345506999931, 50.64557526200008), (-2.435902472999942, 50.63751862200007), (-2.447621222999942, 50.62787506700005), (-2.4600723949999406, 50.60651276200008), (-2.465646938999953, 50.585150458000044), (-2.4564509759999282, 50.575506903000075), (-2.4312231109999516, 50.57025788000004), (-2.428700324999909, 50.55756256700005), (-2.4392797519999476, 50.54181549700007), (-2.45335852799991, 50.52765534100007), (-2.4595434239999463, 50.52765534100007), (-2.4603572259999282, 50.56549713700008), (-2.4835098949999406, 50.59039948100008), (-2.6929418609999516, 50.69281647300005), (-2.8648168609999516, 50.73379140800006), (-2.887318488999938, 50.734361070000034), (-2.94554602799991, 50.725816148000035), (-2.9627579419999392, 50.72329336100006), (-2.998199022999927, 50.708238023000035), (-3.021839972999942, 50.70648834800005), (-3.059722459999932, 50.713324286000045), (-3.071359829999949, 50.711004950000074), (-3.0941462879999335, 50.69896067900004), (-3.099232550999943, 50.69708893400008), (-3.115834113999938, 50.68797435100004), (-3.1254776679999168, 50.68528880400004), (-3.135894334999932, 50.68593984600005), (-3.1551407539999445, 50.69135163000004), (-3.1664932929999168, 50.69281647300005), (-3.1856176419999542, 50.690741278000075), (-3.2191462879999335, 50.68081289300005), (-3.2598363919999542, 50.67454661700003), (-3.271392381999931, 50.664496161000045), (-3.280425584999932, 50.65119049700007), (-3.2955623039999296, 50.63751862200007), (-3.368153449999909, 50.61709219000005), (-3.390736456999946, 50.61782461100006), (-3.4075414699999556, 50.62128327000005), (-3.420969204999949, 50.62946198100008), (-3.433338995999918, 50.64443594000005), (-3.446359829999949, 50.66828034100007), (-3.4504288399999155, 50.672308661000045), (-3.453277147999927, 50.67328522300005), (-3.455433722999942, 50.675441799000055), (-3.458607550999943, 50.67755768400008), (-3.4644262359999516, 50.67853424700007), (-3.467762824999909, 50.67641836100006), (-3.468902147999927, 50.67169830900008), (-3.467844204999949, 50.66697825700004), (-3.45531165299991, 50.657904364000046), (-3.4420466789999296, 50.62352122600004), (-3.433338995999918, 50.610256252000056), (-3.451161261999914, 50.59943268400008), (-3.4672745429999168, 50.585598049000055), (-3.4817602199999556, 50.56854889500005), (-3.494862433999913, 50.548163153000075), (-3.505970831999946, 50.520819403000075), (-3.505034959999932, 50.501206773000035), (-3.487456834999932, 50.459418036000045), (-3.509755011999914, 50.45848216400009), (-3.532134568999936, 50.454779364000046), (-3.549427863999938, 50.446519273000035), (-3.556263800999943, 50.43211497600004), (-3.5493057929999168, 50.41559479400007), (-3.531971808999913, 50.410223700000074), (-3.487456834999932, 50.41156647300005), (-3.487456834999932, 50.40477122600004), (-3.4974666009999282, 50.38735586100006), (-3.49828040299991, 50.383693752000056), (-3.5073136059999115, 50.382798570000034), (-3.5149633449999556, 50.37995026200008), (-3.520130988999938, 50.37482330900008), (-3.5269262359999516, 50.34979889500005), (-3.5388891269999476, 50.34442780200004), (-3.5545141269999476, 50.347642320000034), (-3.57054602799991, 50.35639069200005), (-3.577788865999935, 50.334051825000074), (-3.5991104809999115, 50.325832424000055), (-3.6215714179999168, 50.321926174000055), (-3.631988084999932, 50.31232330900008), (-3.6373591789999296, 50.29539622600004), (-3.6475723949999406, 50.27456289300005), (-3.653309699999909, 50.25104401200008), (-3.6456192699999406, 50.22601959800005), (-3.6606339179999168, 50.22101471600007), (-3.700917120999918, 50.21352773600006), (-3.7180069649999155, 50.21238841400009), (-3.740386522999927, 50.21588776200008), (-3.758615688999953, 50.22174713700008), (-3.774240688999953, 50.22296784100007), (-3.788970506999931, 50.21238841400009), (-3.826324022999927, 50.23419830900008), (-3.8841853509999282, 50.280462958000044), (-3.949940558999913, 50.31899648600006), (-3.9610082669999542, 50.322251695000034), (-3.9702042309999115, 50.320746161000045), (-3.995757615999935, 50.311428127000056), (-4.005604620999918, 50.30923086100006), (-4.011341925999943, 50.30695221600007), (-4.024769660999937, 50.29718659100007), (-4.032948370999918, 50.294907945000034), (-4.044056769999941, 50.29645416900007), (-4.054351365999935, 50.30036041900007), (-4.070220506999931, 50.30923086100006), (-4.067941860999952, 50.31281159100007), (-4.064035610999952, 50.322251695000034), (-4.086008266999954, 50.326239325000074), (-4.1082657539999445, 50.33661530200004), (-4.118723110999952, 50.35187409100007), (-4.1049698559999115, 50.37067291900007), (-4.141753709999932, 50.36904531500005), (-4.1527400379999335, 50.37067291900007), (-4.1655167309999115, 50.37636953300006), (-4.171457485999952, 50.382798570000034), (-4.175770636999914, 50.39085521000004), (-4.18382727799991, 50.40106842700004), (-4.191477016999954, 50.417629299000055), (-4.18390865799995, 50.431708075000074), (-4.1703181629999335, 50.44513580900008), (-4.159535285999937, 50.459418036000045), (-4.179432745999918, 50.45307038000004), (-4.189564581999946, 50.45368073100008), (-4.200550910999937, 50.459418036000045), (-4.203684048999946, 50.45140208500004), (-4.204741990999935, 50.44867584800005), (-4.2123917309999115, 50.441473700000074), (-4.222523566999939, 50.43797435100004), (-4.234730597999942, 50.43829987200007), (-4.234730597999942, 50.43211497600004), (-4.2202042309999115, 50.425848700000074), (-4.2161352199999556, 50.415716864000046), (-4.219715949999909, 50.40509674700007), (-4.228505011999914, 50.397365627000056), (-4.2414444649999155, 50.39468008000006), (-4.2899063789999445, 50.397365627000056), (-4.273019985999952, 50.38190338700008), (-4.216175910999937, 50.38776276200008), (-4.1937556629999335, 50.37689850500004), (-4.228505011999914, 50.37067291900007), (-4.228505011999914, 50.36383698100008), (-4.220122850999928, 50.365301825000074), (-4.200550910999937, 50.36383698100008), (-4.207997199999909, 50.35639069200005), (-4.180043097999942, 50.35639069200005), (-4.180043097999942, 50.35016510600008), (-4.191314256999931, 50.34756094000005), (-4.197987433999913, 50.342230536000045), (-4.199126756999931, 50.33539459800005), (-4.1937556629999335, 50.32843659100007), (-4.1937556629999335, 50.322251695000034), (-4.214995897999927, 50.323146877000056), (-4.225697394999941, 50.33539459800005), (-4.235096808999913, 50.34955475500004), (-4.2523494129999335, 50.35639069200005), (-4.337717251999948, 50.37067291900007), (-4.383697068999936, 50.36749909100007), (-4.456206834999932, 50.33820221600007), (-4.4953507149999155, 50.32843659100007), (-4.659820115999935, 50.322251695000034), (-4.659575975999928, 50.32062409100007), (-4.662709113999938, 50.31777578300006), (-4.667795376999948, 50.315334377000056), (-4.673451300999943, 50.31541575700004), (-4.687163865999935, 50.34271881700005), (-4.694325324999909, 50.343451239000046), (-4.700184699999909, 50.34088776200008), (-4.705555792999917, 50.337551174000055), (-4.7113337879999335, 50.33588288000004), (-4.731556769999941, 50.33466217700004), (-4.752105272999927, 50.33030833500004), (-4.763295050999943, 50.32208893400008), (-4.755441860999952, 50.30923086100006), (-4.755441860999952, 50.30174388200004), (-4.7623591789999296, 50.298041083000044), (-4.771636522999927, 50.29157135600008), (-4.779855923999946, 50.28432851800005), (-4.783355272999927, 50.27789948100008), (-4.7818904289999296, 50.27179596600007), (-4.776519334999932, 50.26508209800005), (-4.776519334999932, 50.26080963700008), (-4.788441535999937, 50.24209219000005), (-4.790150519999941, 50.23655833500004), (-4.800160285999937, 50.22955963700008), (-4.849720831999946, 50.23456452000005), (-4.868723110999952, 50.22943756700005), (-4.887318488999938, 50.21499258000006), (-4.904774542999917, 50.20844147300005), (-4.947255011999914, 50.19936758000006), (-4.960682745999918, 50.19049713700008), (-5.002430792999917, 50.14411041900007), (-5.014556443999936, 50.15656159100007), (-5.0203751289999445, 50.19196198100008), (-5.033192511999914, 50.19936758000006), (-5.05296790299991, 50.19578685100004), (-5.053618943999936, 50.18691640800006), (-5.051869269999941, 50.17552317900004), (-5.064564581999946, 50.16461823100008), (-5.064564581999946, 50.15839264500005), (-5.058501756999931, 50.155462958000044), (-5.043446417999917, 50.14411041900007), (-5.051869269999941, 50.144598700000074), (-5.058461066999939, 50.14272695500006), (-5.070790167999917, 50.13727448100008), (-5.08031165299991, 50.13271719000005), (-5.081613735999952, 50.12539297100005), (-5.080962693999936, 50.117173570000034), (-5.085031704999949, 50.10993073100008), (-5.093902147999927, 50.105536200000074), (-5.125965949999909, 50.09634023600006), (-5.114654100999928, 50.09662506700005), (-5.106068488999938, 50.09511953300006), (-5.091867641999954, 50.089504299000055), (-5.086903449999909, 50.089056708000044), (-5.075347459999932, 50.09048086100006), (-5.070790167999917, 50.089504299000055), (-5.068470831999946, 50.085150458000044), (-5.064930792999917, 50.07184479400007), (-5.06086178299995, 50.06903717700004), (-5.056507941999939, 50.060614325000074), (-5.069488084999932, 50.042181708000044), (-5.0980525379999335, 50.01439036700003), (-5.107289191999939, 50.013006903000075), (-5.127430792999917, 50.01544830900008), (-5.139637824999909, 50.01439036700003), (-5.146473761999914, 50.01056549700007), (-5.176136847999942, 49.987941799000055), (-5.18773352799991, 49.964504299000055), (-5.191151495999918, 49.95913320500006), (-5.200103318999936, 49.961371161000045), (-5.210357225999928, 49.96674225500004), (-5.240386522999927, 49.988348700000074), (-5.245228644999941, 49.99310944200005), (-5.2495011059999115, 50.000067450000074), (-5.253041144999941, 50.01264069200005), (-5.25226803299995, 50.020697333000044), (-5.252674933999913, 50.027777411000045), (-5.259755011999914, 50.03766510600008), (-5.2884008449999556, 50.067694403000075), (-5.304351365999935, 50.08026764500005), (-5.323963995999918, 50.089504299000055), (-5.384185350999928, 50.10797760600008), (-5.424712693999936, 50.11273834800005), (-5.458119269999941, 50.125881252000056), (-5.47484290299991, 50.13043854400007), (-5.495676235999952, 50.12962474200003), (-5.521839972999942, 50.12372467700004), (-5.540923631999931, 50.11347077000005), (-5.540638800999943, 50.09975820500006), (-5.5346573559999115, 50.08234284100007), (-5.5455623039999296, 50.06891510600008), (-5.563465949999909, 50.05963776200008), (-5.57843990799995, 50.054754950000074), (-5.61945553299995, 50.046210028000075), (-5.667388475999928, 50.04287344000005), (-5.705148891999954, 50.05231354400007), (-5.715646938999953, 50.08270905200004), (-5.705962693999936, 50.08348216400009), (-5.698801235999952, 50.08539459800005), (-5.694488084999932, 50.089504299000055), (-5.694406704999949, 50.095770575000074), (-5.697092251999948, 50.10053131700005), (-5.700306769999941, 50.103216864000046), (-5.701975063999953, 50.103176174000055), (-5.707386847999942, 50.12201569200005), (-5.70921790299991, 50.13263580900008), (-5.70539303299995, 50.13727448100008), (-5.7035212879999335, 50.140611070000034), (-5.684641079999949, 50.16152578300006), (-5.676747199999909, 50.16502513200004), (-5.647368943999936, 50.17206452000005), (-5.583607550999943, 50.19586823100008), (-5.549427863999938, 50.20351797100005), (-5.5109757149999155, 50.21946849200003), (-5.4891251289999445, 50.21979401200008), (-5.458119269999941, 50.20075104400007), (-5.437977667999917, 50.19432200700004), (-5.417388475999928, 50.202460028000075), (-5.402943488999938, 50.21735260600008), (-5.395863410999937, 50.22724030200004), (-5.39289303299995, 50.23655833500004), (-5.3875626289999445, 50.240301825000074), (-5.351918097999942, 50.240301825000074), (-5.3148494129999335, 50.253607489000046), (-5.200306769999941, 50.33075592700004), (-5.1635636059999115, 50.34723541900007), (-5.1498917309999115, 50.35016510600008), (-5.146473761999914, 50.35529205900008), (-5.145659959999932, 50.366888739000046), (-5.147043423999946, 50.37938060100004), (-5.153675910999937, 50.39948151200008), (-5.142404751999948, 50.40448639500005), (-5.12726803299995, 50.40521881700005), (-5.119740363999938, 50.40477122600004), (-5.0502823559999115, 50.42869700700004), (-5.0481664699999556, 50.43439362200007), (-5.038726365999935, 50.44790273600006), (-5.029774542999917, 50.486761786000045), (-5.0286352199999556, 50.507025458000044), (-5.025257941999939, 50.52423737200007), (-5.015614386999914, 50.53803131700005), (-4.9955948559999115, 50.548163153000075), (-4.975168423999946, 50.548163153000075), (-4.967844204999949, 50.55158112200007), (-4.954823370999918, 50.56122467700004), (-4.947255011999914, 50.56244538000004), (-4.941477016999954, 50.55695221600007), (-4.937123175999943, 50.54531484600005), (-4.9344376289999445, 50.53164297100005), (-4.933583136999914, 50.52024974200003), (-4.926869269999941, 50.52289459800005), (-4.924305792999917, 50.52448151200008), (-4.920521613999938, 50.52765534100007), (-4.902414516999954, 50.52057526200008), (-4.860951300999943, 50.519191799000055), (-4.844838019999941, 50.51406484600005), (-4.855824347999942, 50.527411200000074), (-4.87328040299991, 50.534084377000056), (-4.906239386999914, 50.54197825700004), (-4.921864386999914, 50.55487702000005), (-4.92023678299995, 50.564154364000046), (-4.915191209999932, 50.57249583500004), (-4.920521613999938, 50.58295319200005), (-4.920521613999938, 50.589178778000075), (-4.895659959999932, 50.585923570000034), (-4.821197068999936, 50.589178778000075), (-4.7924698559999115, 50.59520091400009), (-4.7766007149999155, 50.60984935100004), (-4.765044725999928, 50.62799713700008), (-4.7492569649999155, 50.64443594000005), (-4.755441860999952, 50.659369208000044), (-4.751942511999914, 50.67007070500006), (-4.741932745999918, 50.67487213700008), (-4.728138800999943, 50.672308661000045), (-4.657297329999949, 50.71112702000005), (-4.645578579999949, 50.723537502000056), (-4.637806769999941, 50.74115631700005), (-4.619007941999939, 50.754787502000056), (-4.577259894999941, 50.774725653000075), (-4.5501195949999556, 50.80955638200004), (-4.55492102799991, 50.897772528000075), (-4.543771938999953, 50.93919505400004), (-4.536854620999918, 50.94757721600007), (-4.5226944649999155, 50.972723700000074), (-4.5266820949999556, 50.98037344000005), (-4.530425584999932, 50.99469635600008), (-4.531320766999954, 51.008693752000056), (-4.526437954999949, 51.014960028000075), (-4.437326626999948, 51.014960028000075), (-4.4264216789999296, 51.01268138200004), (-4.4057511059999115, 51.00287506700005), (-4.3957413399999155, 51.00067780200004), (-4.337717251999948, 50.99664948100008), (-4.317290818999936, 51.00067780200004), (-4.302316860999952, 51.007513739000046), (-4.234730597999942, 51.05532461100006), (-4.2291560539999296, 51.06110260600008), (-4.224680141999954, 51.06708405200004), (-4.218495245999918, 51.07245514500005), (-4.207997199999909, 51.07636139500005), (-4.214263475999928, 51.086004950000074), (-4.226307745999918, 51.11322663000004), (-4.228505011999914, 51.120428778000075), (-4.2319229809999115, 51.12669505400004), (-4.249012824999909, 51.14288971600007), (-4.255767381999931, 51.15151601800005), (-4.222320115999935, 51.149725653000075), (-4.214833136999914, 51.15151601800005), (-4.208363410999937, 51.16229889500005), (-4.2098282539999445, 51.17283763200004), (-4.217274542999917, 51.18138255400004), (-4.228505011999914, 51.18622467700004), (-4.228505011999914, 51.19245026200008), (-4.152333136999914, 51.21161530200004), (-3.969471808999913, 51.22239817900004), (-3.931996222999942, 51.231350002000056), (-3.9131973949999406, 51.23338450700004), (-3.840891079999949, 51.23338450700004), (-3.818959113999938, 51.23607005400004), (-3.787098761999914, 51.24677155200004), (-3.769154425999943, 51.247707424000055), (-3.6397598949999406, 51.22638580900008), (-3.559315558999913, 51.22809479400007), (-3.434193488999938, 51.20978424700007), (-3.4043676419999542, 51.19204336100006), (-3.38499915299991, 51.18622467700004), (-3.2707413399999155, 51.18939850500004), (-3.198882615999935, 51.203558661000045), (-3.1627498039999296, 51.206732489000046), (-3.096750454999949, 51.20453522300005), (-3.057525193999936, 51.20815664300005), (-3.029286261999914, 51.220404364000046), (-3.021839972999942, 51.21356842700004), (-3.0355525379999335, 51.199286200000074), (-3.021839972999942, 51.19245026200008), (-3.004790818999936, 51.21312083500004), (-3.0013321609999366, 51.220404364000046), (-2.9995824859999516, 51.23322174700007), (-3.0015356109999516, 51.23969147300005), (-3.0049942699999406, 51.24506256700005), (-3.008168097999942, 51.25454336100006), (-3.0076391269999476, 51.29197825700004), (-3.0106095039999445, 51.310980536000045), (-3.021839972999942, 51.32282135600008), (-3.0024307929999168, 51.31907786700003), (-2.992176886999914, 51.321926174000055), (-2.992095506999931, 51.32204824400009), (-2.988392706999946, 51.33112213700008), (-2.9877823559999115, 51.34666575700004), (-2.9798884759999282, 51.35586172100005), (-2.965972459999932, 51.364935614000046), (-2.959584113999938, 51.374253648000035), (-2.9746801419999542, 51.38422272300005), (-2.9529516269999476, 51.398504950000074), (-2.9210098949999406, 51.39443594000005), (-2.8841853509999282, 51.41697825700004), (-2.816395636999914, 51.47361888200004), (-2.798573370999918, 51.48261139500005), (-2.780873175999943, 51.48908112200007), (-2.7612198559999115, 51.49286530200004), (-2.7376195949999556, 51.49408600500004), (-2.716420050999943, 51.49957916900007), (-2.6961563789999445, 51.51264069200005), (-2.6078181629999335, 51.60736725500004), (-2.599598761999914, 51.611395575000074), (-2.5892227859999366, 51.61424388200004), (-2.580433722999942, 51.61863841400009), (-2.5768123039999296, 51.62750885600008), (-2.57445227799991, 51.63572825700004), (-2.568959113999938, 51.644964911000045), (-2.562245245999918, 51.65338776200008), (-2.556385870999918, 51.65924713700008), (-2.499175584999932, 51.69676341400009), (-2.464995897999927, 51.725897528000075), (-2.4477432929999168, 51.73187897300005), (-2.404896613999938, 51.74115631700005), (-2.3885391919999392, 51.750433661000045), (-2.380767381999931, 51.76190827000005), (-2.3833715489999463, 51.77326080900008), (-2.398060675999943, 51.782131252000056), (-2.4024145169999542, 51.76357656500005), (-2.4203995429999168, 51.753119208000044), (-2.4434301419999542, 51.74843984600005), (-2.4632869129999335, 51.747300523000035), (-2.482085740999935, 51.74286530200004), (-2.495838995999918, 51.73200104400007), (-2.507964647999927, 51.71857330900008), (-2.5221248039999296, 51.706366278000075), (-2.581695115999935, 51.681708075000074), (-2.5911352199999556, 51.67536041900007), (-2.600209113999938, 51.66559479400007), (-2.6653539699999556, 51.617254950000074)]\n", + "fig, ax = plt.subplots()\n", + "\n", + "x = tuple(map(merc_x, lons))\n", + "y = tuple(map(merc_y, lats))\n", + "\n", + "ax.tricontourf(x, y, tuple(datapoints.values()))\n", + "ax.plot(x, y, 'wo', ms=3)\n", + "ax.plot(\n", + " [merc_x(coord[0]) for coord in gb_boundary],\n", + " [merc_y(coord[1]) for coord in gb_boundary],\n", + " 'k-'\n", + ")\n", + "ax.set_aspect(1.0)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "apd.aggregation", + "language": "python", + "name": "apd.aggregation" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Ch12/apd.aggregation-chapter12-ex01/Pipfile b/Ch12/apd.aggregation-chapter12-ex01/Pipfile new file mode 100644 index 0000000..32814fd --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/Pipfile @@ -0,0 +1,26 @@ +[[source]] +name = "pypi" +url = "https://pypi.org/simple" +verify_ssl = true + +[dev-packages] +pytest = "*" +pytest-cov = "*" +pytest-asyncio = "*" +mypy = "*" +flake8 = "*" +black = "*" +pre-commit = "*" +wheel = "*" +twine = "*" +sqlalchemy-stubs = "*" +yappi = "*" + +[packages] +apd-aggregation = {editable = true,extras = ["jupyter"],path = "."} +apd-sensors = {editable = true,extras = ["webapp"],path = "./../code"} + +[requires] + +[pipenv] +allow_prereleases = true diff --git a/Ch12/apd.aggregation-chapter12-ex01/Pipfile.lock b/Ch12/apd.aggregation-chapter12-ex01/Pipfile.lock new file mode 100644 index 0000000..e3c4287 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/Pipfile.lock @@ -0,0 +1,987 @@ +{ + "_meta": { + "hash": { + "sha256": "1c3bf4b1b80582f2eba10739c2798bff13bb3d7662a9e5def7a2be63683711e8" + }, + "pipfile-spec": 6, + "requires": {}, + "sources": [ + { + "name": "pypi", + "url": "https://pypi.org/simple", + "verify_ssl": true + } + ] + }, + "default": { + "aiohttp": { + "hashes": [ + "sha256:173267050501e1537293df06723bc5e719990889e2820ba3932969983892e960", + "sha256:438f1f1555c02c50894604d94944cff188fe138b46467b7fa99fdceb51ab5842", + "sha256:90bed250d1435aef33a1f8c439c5056d5d25a44fe6caf33fcafafed805bad4dc", + "sha256:93c3b14747413f38f094a60e98f55e73831f0c9a23ae7faa3dc97d8963e13021", + "sha256:a6e70a38d883185b1921d8122759661c39ade54949770394412a9e713fec6fa7", + "sha256:b5036133c1ba77ed5a70208d2a021a90b76fdf8bf523ae33dae46d4f4380d86f", + "sha256:c138451a82cdbf65cddf952941d5c7a1a2cac8ce3bc618dee8d889e5251ec7a5", + "sha256:c94770383e49f9cc5912b926364ad022a6c8a5dbf5498933ca3a5713c6daf738", + "sha256:ea26536ae06df6dac021303a0df72c79e55512070e6a304ba93ad468a3a754dc" + ], + "version": "==4.0.0a1" + }, + "alembic": { + "hashes": [ + "sha256:035ab00497217628bf5d0be82d664d8713ab13d37b630084da8e1f98facf4dbf" + ], + "version": "==1.4.2" + }, + "apd-aggregation": { + "editable": true, + "extras": [ + "jupyter" + ], + "path": "." + }, + "apd-sensors": { + "editable": true, + "extras": [ + "webapp" + ], + "path": "./../code" + }, + "async-timeout": { + "hashes": [ + "sha256:0c3c816a028d47f659d6ff5c745cb2acf1f966da1fe5c19c77a70282b25f4c5f", + "sha256:4291ca197d287d274d0b6cb5d6f8f8f82d434ed288f962539ff18cc9012f9ea3" + ], + "version": "==3.0.1" + }, + "attrs": { + "hashes": [ + "sha256:08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c", + "sha256:f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72" + ], + "version": "==19.3.0" + }, + "backcall": { + "hashes": [ + "sha256:38ecd85be2c1e78f77fd91700c76e14667dc21e2713b63876c0eb901196e01e4", + "sha256:bbbf4b1e5cd2bdb08f915895b51081c041bac22394fdfcfdfbe9f14b77c08bf2" + ], + "version": "==0.1.0" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:8a18b4ea89d8820c5d0c7da8a64b2c324b4dabb695804dbfea19b9be9d88c0cc", + "sha256:e345d143d80bf5ee7534056164e5e112ea5e22716bbb1ce727941f4c8b471b9a" + ], + "version": "==7.1.1" + }, + "colorama": { + "hashes": [ + "sha256:7d73d2a99753107a36ac6b455ee49046802e59d9d076ef8e47b61499fa29afff", + "sha256:e96da0d330793e2cb9485e9ddfd918d456036c7149416295932478192f4436a1" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.3" + }, + "decorator": { + "hashes": [ + "sha256:41fa54c2a0cc4ba648be4fd43cff00aedf5b9465c9bf18d64325bc225f08f760", + "sha256:e3a62f0520172440ca0dcc823749319382e377f37f140a0b99ef45fecb84bfe7" + ], + "version": "==4.4.2" + }, + "flask": { + "hashes": [ + "sha256:4efa1ae2d7c9865af48986de8aeb8504bf32c7f3d6fdc9353d34b21f4b127060", + "sha256:8a4fdd8936eba2512e9c85df320a37e694c93945b33ef33c89946a340a238557" + ], + "version": "==1.1.2" + }, + "idna": { + "hashes": [ + "sha256:7588d1c14ae4c77d74036e8c22ff447b26d0fde8f007354fd48a7814db15b7cb", + "sha256:a068a21ceac8a4d63dbfd964670474107f541babbd2250d61922f029858365fa" + ], + "version": "==2.9" + }, + "ipykernel": { + "hashes": [ + "sha256:003c9c1ab6ff87d11f531fee2b9ca59affab19676fc6b2c21da329aef6e73499", + "sha256:2937373c356fa5b634edb175c5ea0e4b25de8008f7c194f2d49cfbd1f9c970a8" + ], + "version": "==5.2.1" + }, + "ipython": { + "hashes": [ + "sha256:ca478e52ae1f88da0102360e57e528b92f3ae4316aabac80a2cd7f7ab2efb48a", + "sha256:eb8d075de37f678424527b5ef6ea23f7b80240ca031c2dd6de5879d687a65333" + ], + "version": "==7.13.0" + }, + "ipython-genutils": { + "hashes": [ + "sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8", + "sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8" + ], + "version": "==0.2.0" + }, + "ipywidgets": { + "hashes": [ + "sha256:87b30e4dfd68a7c4e3c6462eedb95ac7d1a776cc182f87168d960151151de31c", + "sha256:9cb5590e583b8ea309a2d8e88fb02e44d054df2a77891f7d3356b0b883b99d3d" + ], + "version": "==8.0.0a0" + }, + "itsdangerous": { + "hashes": [ + "sha256:321b033d07f2a4136d3ec762eac9f16a10ccd60f53c0c91af90217ace7ba1f19", + "sha256:b12271b2047cb23eeb98c8b5622e2e5c5e9abd9784a153e9d8ef9cb4dd09d749" + ], + "version": "==1.1.0" + }, + "jedi": { + "hashes": [ + "sha256:cd60c93b71944d628ccac47df9a60fec53150de53d42dc10a7fc4b5ba6aae798", + "sha256:df40c97641cb943661d2db4c33c2e1ff75d491189423249e989bcea4464f3030" + ], + "version": "==0.17.0" + }, + "jinja2": { + "hashes": [ + "sha256:c10142f819c2d22bdcd17548c46fa9b77cf4fda45097854c689666bf425e7484", + "sha256:c922560ac46888d47384de1dbdc3daaa2ea993af4b26a436dec31fa2c19ec668" + ], + "version": "==3.0.0a1" + }, + "jsonschema": { + "hashes": [ + "sha256:4e5b3cf8216f577bee9ce139cbe72eca3ea4f292ec60928ff24758ce626cd163", + "sha256:c8a85b28d377cc7737e46e2d9f2b4f44ee3c0e1deac6bf46ddefc7187d30797a" + ], + "version": "==3.2.0" + }, + "jupyter-client": { + "hashes": [ + "sha256:3a32fa4d0b16d1c626b30c3002a62dfd86d6863ed39eaba3f537fade197bb756", + "sha256:cde8e83aab3ec1c614f221ae54713a9a46d3bf28292609d2db1b439bef5a8c8e" + ], + "version": "==6.1.3" + }, + "jupyter-core": { + "hashes": [ + "sha256:394fd5dd787e7c8861741880bdf8a00ce39f95de5d18e579c74b882522219e7e", + "sha256:a4ee613c060fe5697d913416fc9d553599c05e4492d58fac1192c9a6844abb21" + ], + "version": "==4.6.3" + }, + "mako": { + "hashes": [ + "sha256:3139c5d64aa5d175dbafb95027057128b5fbd05a40c53999f3905ceb53366d9d", + "sha256:8e8b53c71c7e59f3de716b6832c4e401d903af574f6962edbbbf6ecc2a5fe6c9" + ], + "version": "==1.1.2" + }, + "markupsafe": { + "hashes": [ + "sha256:06358015a4dee8ee23ae426bf885616ab3963622defd829eb45b44e3dee3515f", + "sha256:0b0c4fc852c5f02c6277ef3b33d23fcbe89b1b227460423e3335374da046b6db", + "sha256:267677fc42afed5094fc5ea1c4236bbe4b6a00fe4b08e93451e65ae9048139c7", + "sha256:303cb70893e2c345588fb5d5b86e0ca369f9bb56942f03064c5e3e75fa7a238a", + "sha256:3c9b624a0d9ed5a5093ac4edc4e823e6b125441e60ef35d36e6f4a6fdacd5054", + "sha256:42033e14cae1f6c86fc0c3e90d04d08ce73ac8e46ba420a0d22d545c2abd4977", + "sha256:4e4a99b6af7bdc0856b50020c095848ec050356a001e1f751510aef6ab14d0e0", + "sha256:4eb07faad54bb07427d848f31030a65a49ebb0cec0b30674f91cf1ddd456bfe4", + "sha256:63a7161cd8c2bc563feeda45df62f42c860dd0675e2b8da2667f25bb3c95eaba", + "sha256:68e0fd039b68d2945b4beb947d4023ca7f8e95b708031c345762efba214ea761", + "sha256:8092a63397025c2f655acd42784b2a1528339b90b987beb9253f22e8cdbb36c3", + "sha256:841218860683c0f2223e24756843d84cc49cccdae6765e04962607754a52d3e0", + "sha256:94076b2314bd2f6cfae508ad65b4d493e3a58a50112b7a2cbb6287bdbc404ae8", + "sha256:9d22aff1c5322e402adfb3ce40839a5056c353e711c033798cf4f02eb9f5124d", + "sha256:b0e4584f62b3e5f5c1a7bcefd2b52f236505e6ef032cc508caa4f4c8dc8d3af1", + "sha256:b1163ffc1384d242964426a8164da12dbcdbc0de18ea36e2c34b898ed38c3b45", + "sha256:beac28ed60c8e838301226a7a85841d0af2068eba2dcb1a58c2d32d6c05e440e", + "sha256:c29f096ce79c03054a1101d6e5fe6bf04b0bb489165d5e0e9653fb4fe8048ee1", + "sha256:c58779966d53e5f14ba393d64e2402a7926601d1ac8adeb4e83893def79d0428", + "sha256:cfe14b37908eaf7d5506302987228bff69e1b8e7071ccd4e70fd0283b1b47f0b", + "sha256:e834249c45aa9837d0753351cdca61a4b8b383cc9ad0ff2325c97ff7b69e72a6", + "sha256:eed1b234c4499811ee85bcefa22ef5e466e75d132502226ed29740d593316c1f" + ], + "version": "==2.0.0a1" + }, + "multidict": { + "hashes": [ + "sha256:317f96bc0950d249e96d8d29ab556d01dd38888fbe68324f46fd834b430169f1", + "sha256:42f56542166040b4474c0c608ed051732033cd821126493cf25b6c276df7dd35", + "sha256:4b7df040fb5fe826d689204f9b544af469593fb3ff3a069a6ad3409f742f5928", + "sha256:544fae9261232a97102e27a926019100a9db75bec7b37feedd74b3aa82f29969", + "sha256:620b37c3fea181dab09267cd5a84b0f23fa043beb8bc50d8474dd9694de1fa6e", + "sha256:6e6fef114741c4d7ca46da8449038ec8b1e880bbe68674c01ceeb1ac8a648e78", + "sha256:7774e9f6c9af3f12f296131453f7b81dabb7ebdb948483362f5afcaac8a826f1", + "sha256:85cb26c38c96f76b7ff38b86c9d560dea10cf3459bb5f4caf72fc1bb932c7136", + "sha256:a326f4240123a2ac66bb163eeba99578e9d63a8654a59f4688a79198f9aa10f8", + "sha256:ae402f43604e3b2bc41e8ea8b8526c7fa7139ed76b0d64fc48e28125925275b2", + "sha256:aee283c49601fa4c13adc64c09c978838a7e812f85377ae130a24d7198c0331e", + "sha256:b51249fdd2923739cd3efc95a3d6c363b67bbf779208e9f37fd5e68540d1a4d4", + "sha256:bb519becc46275c594410c6c28a8a0adc66fe24fef154a9addea54c1adb006f5", + "sha256:c2c37185fb0af79d5c117b8d2764f4321eeb12ba8c141a95d0aa8c2c1d0a11dd", + "sha256:dc561313279f9d05a3d0ffa89cd15ae477528ea37aa9795c4654588a3287a9ab", + "sha256:e439c9a10a95cb32abd708bb8be83b2134fa93790a4fb0535ca36db3dda94d20", + "sha256:fc3b4adc2ee8474cb3cd2a155305d5f8eda0a9c91320f83e55748e1fcb68f8e3" + ], + "version": "==4.7.5" + }, + "nbformat": { + "hashes": [ + "sha256:049af048ed76b95c3c44043620c17e56bc001329e07f83fec4f177f0e3d7b757", + "sha256:276343c78a9660ab2a63c28cc33da5f7c58c092b3f3a40b6017ae2ce6689320d" + ], + "version": "==5.0.6" + }, + "parso": { + "hashes": [ + "sha256:158c140fc04112dc45bca311633ae5033c2c2a7b732fa33d0955bad8152a8dd0", + "sha256:908e9fae2144a076d72ae4e25539143d40b8e3eafbaeae03c1bfe226f4cdf12c" + ], + "version": "==0.7.0" + }, + "pickleshare": { + "hashes": [ + "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca", + "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56" + ], + "version": "==0.7.5" + }, + "pint": { + "hashes": [ + "sha256:308f1070500e102f83b6adfca6db53debfce2ffc5d3cbe3f6c367da359b5cf4d", + "sha256:5690c85948dfb283382aa73357c3d5a333e8c7d818be7d8643db18e07597dd99" + ], + "version": "==0.11" + }, + "prompt-toolkit": { + "hashes": [ + "sha256:563d1a4140b63ff9dd587bda9557cffb2fe73650205ab6f4383092fb882e7dc8", + "sha256:df7e9e63aea609b1da3a65641ceaf5bc7d05e0a04de5bd45d05dbeffbabf9e04" + ], + "version": "==3.0.5" + }, + "psutil": { + "hashes": [ + "sha256:1413f4158eb50e110777c4f15d7c759521703bd6beb58926f1d562da40180058", + "sha256:298af2f14b635c3c7118fd9183843f4e73e681bb6f01e12284d4d70d48a60953", + "sha256:60b86f327c198561f101a92be1995f9ae0399736b6eced8f24af41ec64fb88d4", + "sha256:685ec16ca14d079455892f25bd124df26ff9137664af445563c1bd36629b5e0e", + "sha256:73f35ab66c6c7a9ce82ba44b1e9b1050be2a80cd4dcc3352cc108656b115c74f", + "sha256:75e22717d4dbc7ca529ec5063000b2b294fc9a367f9c9ede1f65846c7955fd38", + "sha256:a02f4ac50d4a23253b68233b07e7cdb567bd025b982d5cf0ee78296990c22d9e", + "sha256:d008ddc00c6906ec80040d26dc2d3e3962109e40ad07fd8a12d0284ce5e0e4f8", + "sha256:d84029b190c8a66a946e28b4d3934d2ca1528ec94764b180f7d6ea57b0e75e26", + "sha256:e2d0c5b07c6fe5a87fa27b7855017edb0d52ee73b71e6ee368fae268605cc3f5", + "sha256:f344ca230dd8e8d5eee16827596f1c22ec0876127c28e800d7ae20ed44c4b310" + ], + "version": "==5.7.0" + }, + "psycopg2": { + "hashes": [ + "sha256:132efc7ee46a763e68a815f4d26223d9c679953cd190f1f218187cb60decf535", + "sha256:2327bf42c1744a434ed8ed0bbaa9168cac7ee5a22a9001f6fc85c33b8a4a14b7", + "sha256:27c633f2d5db0fc27b51f1b08f410715b59fa3802987aec91aeb8f562724e95c", + "sha256:2c0afb40cfb4d53487ee2ebe128649028c9a78d2476d14a67781e45dc287f080", + "sha256:2df2bf1b87305bd95eb3ac666ee1f00a9c83d10927b8144e8e39644218f4cf81", + "sha256:440a3ea2c955e89321a138eb7582aa1d22fe286c7d65e26a2c5411af0a88ae72", + "sha256:6a471d4d2a6f14c97a882e8d3124869bc623f3df6177eefe02994ea41fd45b52", + "sha256:6b306dae53ec7f4f67a10942cf8ac85de930ea90e9903e2df4001f69b7833f7e", + "sha256:a0984ff49e176062fcdc8a5a2a670c9bb1704a2f69548bce8f8a7bad41c661bf", + "sha256:ac5b23d0199c012ad91ed1bbb971b7666da651c6371529b1be8cbe2a7bf3c3a9", + "sha256:acf56d564e443e3dea152efe972b1434058244298a94348fc518d6dd6a9fb0bb", + "sha256:d3b29d717d39d3580efd760a9a46a7418408acebbb784717c90d708c9ed5f055", + "sha256:f7d46240f7a1ae1dd95aab38bd74f7428d46531f69219954266d669da60c0818" + ], + "version": "==2.8.5" + }, + "pygments": { + "hashes": [ + "sha256:647344a061c249a3b74e230c739f434d7ea4d8b1d5f3721bc0f3558049b38f44", + "sha256:ff7a40b4860b727ab48fad6360eb351cc1b33cbf9b15a0f689ca5353e9463324" + ], + "version": "==2.6.1" + }, + "pyrsistent": { + "hashes": [ + "sha256:28669905fe725965daa16184933676547c5bb40a5153055a8dee2a4bd7933ad3" + ], + "version": "==0.16.0" + }, + "python-dateutil": { + "hashes": [ + "sha256:73ebfe9dbf22e832286dafa60473e4cd239f8592f699aa5adaf10050e6e1823c", + "sha256:75bb3f31ea686f1197762692a9ee6a7550b59fc6ca3a1f4b5d7e32fb98e2da2a" + ], + "version": "==2.8.1" + }, + "python-editor": { + "hashes": [ + "sha256:1bf6e860a8ad52a14c3ee1252d5dc25b2030618ed80c022598f00176adc8367d", + "sha256:51fda6bcc5ddbbb7063b2af7509e43bd84bfc32a4ff71349ec7847713882327b", + "sha256:5f98b069316ea1c2ed3f67e7f5df6c0d8f10b689964a4a811ff64f0106819ec8" + ], + "version": "==1.0.4" + }, + "pywin32": { + "hashes": [ + "sha256:300a2db938e98c3e7e2093e4491439e62287d0d493fe07cce110db070b54c0be", + "sha256:31f88a89139cb2adc40f8f0e65ee56a8c585f629974f9e07622ba80199057511", + "sha256:371fcc39416d736401f0274dd64c2302728c9e034808e37381b5e1b22be4a6b0", + "sha256:47a3c7551376a865dd8d095a98deba954a98f326c6fe3c72d8726ca6e6b15507", + "sha256:4cdad3e84191194ea6d0dd1b1b9bdda574ff563177d2adf2b4efec2a244fa116", + "sha256:7c1ae32c489dc012930787f06244426f8356e129184a02c25aef163917ce158e", + "sha256:7f18199fbf29ca99dff10e1f09451582ae9e372a892ff03a28528a24d55875bc", + "sha256:9b31e009564fb95db160f154e2aa195ed66bcc4c058ed72850d047141b36f3a2", + "sha256:a929a4af626e530383a579431b70e512e736e9588106715215bf685a3ea508d4", + "sha256:c054c52ba46e7eb6b7d7dfae4dbd987a1bb48ee86debe3f245a2884ece46e295", + "sha256:f27cec5e7f588c3d1051651830ecc00294f90728d19c3bf6916e6dba93ea357c", + "sha256:f4c5be1a293bae0076d93c88f37ee8da68136744588bc5e2be2f299a34ceb7aa" + ], + "markers": "sys_platform == 'win32'", + "version": "==227" + }, + "pyzmq": { + "hashes": [ + "sha256:0bbc1728fe4314b4ca46249c33873a390559edac7c217ec7001b5e0c34a8fb7f", + "sha256:1e076ad5bd3638a18c376544d32e0af986ca10d43d4ce5a5d889a8649f0d0a3d", + "sha256:242d949eb6b10197cda1d1cec377deab1d5324983d77e0d0bf9dc5eb6d71a6b4", + "sha256:26f4ae420977d2a8792d7c2d7bda43128b037b5eeb21c81951a94054ad8b8843", + "sha256:32234c21c5e0a767c754181c8112092b3ddd2e2a36c3f76fc231ced817aeee47", + "sha256:3f12ce1e9cc9c31497bd82b207e8e86ccda9eebd8c9f95053aae46d15ccd2196", + "sha256:4557d5e036e6d85715b4b9fdb482081398da1d43dc580d03db642b91605b409f", + "sha256:4f562dab21c03c7aa061f63b147a595dbe1006bf4f03213272fc9f7d5baec791", + "sha256:5e071b834051e9ecb224915398f474bfad802c2fff883f118ff5363ca4ae3edf", + "sha256:5e1f65e576ab07aed83f444e201d86deb01cd27dcf3f37c727bc8729246a60a8", + "sha256:5f10a31f288bf055be76c57710807a8f0efdb2b82be6c2a2b8f9a61f33a40cea", + "sha256:6aaaf90b420dc40d9a0e1996b82c6a0ff91d9680bebe2135e67c9e6d197c0a53", + "sha256:75238d3c16cab96947705d5709187a49ebb844f54354cdf0814d195dd4c045de", + "sha256:7f7e7b24b1d392bb5947ba91c981e7d1a43293113642e0d8870706c8e70cdc71", + "sha256:84b91153102c4bcf5d0f57d1a66a0f03c31e9e6525a5f656f52fc615a675c748", + "sha256:944f6bb5c63140d76494467444fd92bebd8674236837480a3c75b01fe17df1ab", + "sha256:a1f957c20c9f51d43903881399b078cddcf710d34a2950e88bce4e494dcaa4d1", + "sha256:a49fd42a29c1cc1aa9f461c5f2f5e0303adba7c945138b35ee7f4ab675b9f754", + "sha256:a99ae601b4f6917985e9bb071549e30b6f93c72f5060853e197bdc4b7d357e5f", + "sha256:ad48865a29efa8a0cecf266432ea7bc34e319954e55cf104be0319c177e6c8f5", + "sha256:b08e425cf93b4e018ab21dc8fdbc25d7d0502a23cc4fea2380010cf8cf11e462", + "sha256:bb10361293d96aa92be6261fa4d15476bca56203b3a11c62c61bd14df0ef89ba", + "sha256:bd1a769d65257a7a12e2613070ca8155ee348aa9183f2aadf1c8b8552a5510f5", + "sha256:cb3b7156ef6b1a119e68fbe3a54e0a0c40ecacc6b7838d57dd708c90b62a06dc", + "sha256:e8e4efb52ec2df8d046395ca4c84ae0056cf507b2f713ec803c65a8102d010de", + "sha256:f37c29da2a5b0c5e31e6f8aab885625ea76c807082f70b2d334d3fd573c3100a", + "sha256:f4d558bc5668d2345773a9ff8c39e2462dafcb1f6772a2e582fbced389ce527f", + "sha256:f5b6d015587a1d6f582ba03b226a9ddb1dfb09878b3be04ef48b01b7d4eb6b2a" + ], + "version": "==19.0.0" + }, + "six": { + "hashes": [ + "sha256:236bdbdce46e6e6a3d61a337c0f8b763ca1e8717c03b369e87a7ec7ce1319c0a", + "sha256:8f3cd2e254d8f793e7f3d6d9df77b92252b52637291d0f0da013c76ea2724b6c" + ], + "version": "==1.14.0" + }, + "sqlalchemy": { + "hashes": [ + "sha256:083e383a1dca8384d0ea6378bd182d83c600ed4ff4ec8247d3b2442cf70db1ad", + "sha256:0a690a6486658d03cc6a73536d46e796b6570ac1f8a7ec133f9e28c448b69828", + "sha256:114b6ace30001f056e944cebd46daef38fdb41ebb98f5e5940241a03ed6cad43", + "sha256:128f6179325f7597a46403dde0bf148478f868df44841348dfc8d158e00db1f9", + "sha256:13d48cd8b925b6893a4e59b2dfb3e59a5204fd8c98289aad353af78bd214db49", + "sha256:211a1ce7e825f7142121144bac76f53ac28b12172716a710f4bf3eab477e730b", + "sha256:2dc57ee80b76813759cccd1a7affedf9c4dbe5b065a91fb6092c9d8151d66078", + "sha256:3e625e283eecc15aee5b1ef77203bfb542563fa4a9aa622c7643c7b55438ff49", + "sha256:43078c7ec0457387c79b8d52fff90a7ad352ca4c7aa841c366238c3e2cf52fdf", + "sha256:5b1bf3c2c2dca738235ce08079783ef04f1a7fc5b21cf24adaae77f2da4e73c3", + "sha256:6056b671aeda3fc451382e52ab8a753c0d5f66ef2a5ccc8fa5ba7abd20988b4d", + "sha256:68d78cf4a9dfade2e6cf57c4be19f7b82ed66e67dacf93b32bb390c9bed12749", + "sha256:7025c639ce7e170db845e94006cf5f404e243e6fc00d6c86fa19e8ad8d411880", + "sha256:7224e126c00b8178dfd227bc337ba5e754b197a3867d33b9f30dc0208f773d70", + "sha256:7d98e0785c4cd7ae30b4a451416db71f5724a1839025544b4edbd92e00b91f0f", + "sha256:8d8c21e9d4efef01351bf28513648ceb988031be4159745a7ad1b3e28c8ff68a", + "sha256:bbb545da054e6297242a1bb1ba88e7a8ffb679f518258d66798ec712b82e4e07", + "sha256:d00b393f05dbd4ecd65c989b7f5a81110eae4baea7a6a4cdd94c20a908d1456e", + "sha256:e18752cecaef61031252ca72031d4d6247b3212ebb84748fc5d1a0d2029c23ea" + ], + "version": "==1.3.16" + }, + "tornado": { + "hashes": [ + "sha256:0fe2d45ba43b00a41cd73f8be321a44936dc1aba233dee979f17a042b83eb6dc", + "sha256:22aed82c2ea340c3771e3babc5ef220272f6fd06b5108a53b4976d0d722bcd52", + "sha256:2c027eb2a393d964b22b5c154d1a23a5f8727db6fda837118a776b29e2b8ebc6", + "sha256:5217e601700f24e966ddab689f90b7ea4bd91ff3357c3600fa1045e26d68e55d", + "sha256:5618f72e947533832cbc3dec54e1dffc1747a5cb17d1fd91577ed14fa0dc081b", + "sha256:5f6a07e62e799be5d2330e68d808c8ac41d4a259b9cea61da4101b83cb5dc673", + "sha256:c58d56003daf1b616336781b26d184023ea4af13ae143d9dda65e31e534940b9", + "sha256:c952975c8ba74f546ae6de2e226ab3cc3cc11ae47baf607459a6728585bb542a", + "sha256:c98232a3ac391f5faea6821b53db8db461157baa788f5d6222a193e9456e1740" + ], + "version": "==6.0.4" + }, + "traitlets": { + "hashes": [ + "sha256:70b4c6a1d9019d7b4f6846832288f86998aa3b9207c6821f3578a6a6a467fe44", + "sha256:d023ee369ddd2763310e4c3eae1ff649689440d4ae59d7485eb4cfbbe3e359f7" + ], + "version": "==4.3.3" + }, + "typing-extensions": { + "hashes": [ + "sha256:6e95524d8a547a91e08f404ae485bbb71962de46967e1b71a0cb89af24e761c5", + "sha256:79ee589a3caca649a9bfd2a8de4709837400dfa00b6cc81962a1e6a1815969ae", + "sha256:f8d2bd89d25bc39dabe7d23df520442fa1d8969b82544370e03d88b5a591c392" + ], + "version": "==3.7.4.2" + }, + "wcwidth": { + "hashes": [ + "sha256:cafe2186b3c009a04067022ce1dcd79cb38d8d65ee4f4791b8888d6599d1bbe1", + "sha256:ee73862862a156bf77ff92b09034fc4825dd3af9cf81bc5b360668d425f3c5f1" + ], + "version": "==0.1.9" + }, + "werkzeug": { + "hashes": [ + "sha256:2de2a5db0baeae7b2d2664949077c2ac63fbd16d98da0ff71837f7d1dea3fd43", + "sha256:6c80b1e5ad3665290ea39320b91e1be1e0d5f60652b964a3070216de83d2e47c" + ], + "version": "==1.0.1" + }, + "widgetsnbextension": { + "hashes": [ + "sha256:cb6181b4037da02deeabab39d5cb1113a7390aee7468b1f8237c2abbd6df6107", + "sha256:fee3b6ec261393db5b4ec7c4fc96bf85c146cc6e5f38069c27d54fb7892bbb15" + ], + "version": "==4.0.0a0" + }, + "yarl": { + "hashes": [ + "sha256:0c2ab325d33f1b824734b3ef51d4d54a54e0e7a23d13b86974507602334c2cce", + "sha256:0ca2f395591bbd85ddd50a82eb1fde9c1066fafe888c5c7cc1d810cf03fd3cc6", + "sha256:2098a4b4b9d75ee352807a95cdf5f10180db903bc5b7270715c6bbe2551f64ce", + "sha256:25e66e5e2007c7a39541ca13b559cd8ebc2ad8fe00ea94a2aad28a9b1e44e5ae", + "sha256:26d7c90cb04dee1665282a5d1a998defc1a9e012fdca0f33396f81508f49696d", + "sha256:308b98b0c8cd1dfef1a0311dc5e38ae8f9b58349226aa0533f15a16717ad702f", + "sha256:3ce3d4f7c6b69c4e4f0704b32eca8123b9c58ae91af740481aa57d7857b5e41b", + "sha256:58cd9c469eced558cd81aa3f484b2924e8897049e06889e8ff2510435b7ef74b", + "sha256:5b10eb0e7f044cf0b035112446b26a3a2946bca9d7d7edb5e54a2ad2f6652abb", + "sha256:6faa19d3824c21bcbfdfce5171e193c8b4ddafdf0ac3f129ccf0cdfcb083e462", + "sha256:944494be42fa630134bf907714d40207e646fd5a94423c90d5b514f7b0713fea", + "sha256:a161de7e50224e8e3de6e184707476b5a989037dcb24292b391a3d66ff158e70", + "sha256:a4844ebb2be14768f7994f2017f70aca39d658a96c786211be5ddbe1c68794c1", + "sha256:c2b509ac3d4b988ae8769901c66345425e361d518aecbe4acbfc2567e416626a", + "sha256:c9959d49a77b0e07559e579f38b2f3711c2b8716b8410b320bf9713013215a1b", + "sha256:d8cdee92bc930d8b09d8bd2043cedd544d9c8bd7436a77678dd602467a993080", + "sha256:e15199cdb423316e15f108f51249e44eb156ae5dba232cb73be555324a1d49c2" + ], + "version": "==1.4.2" + } + }, + "develop": { + "appdirs": { + "hashes": [ + "sha256:9e5896d1372858f8dd3344faf4e5014d21849c756c8d5701f78f8a103b372d92", + "sha256:d8b24664561d0d34ddfaec54636d502d7cea6e29c3eaf68f3df6180863e2166e" + ], + "version": "==1.4.3" + }, + "atomicwrites": { + "hashes": [ + "sha256:03472c30eb2c5d1ba9227e4c2ca66ab8287fbfbbda3888aa93dc2e28fc6811b4", + "sha256:75a9445bac02d8d058d5e1fe689654ba5a6556a1dfd8ce6ec55a0ed79866cfa6" + ], + "markers": "sys_platform == 'win32'", + "version": "==1.3.0" + }, + "attrs": { + "hashes": [ + "sha256:08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c", + "sha256:f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72" + ], + "version": "==19.3.0" + }, + "black": { + "hashes": [ + "sha256:1b30e59be925fafc1ee4565e5e08abef6b03fe455102883820fe5ee2e4734e0b", + "sha256:c2edb73a08e9e0e6f65a0e6af18b059b8b1cdd5bef997d7a0b181df93dc81539" + ], + "index": "pypi", + "version": "==19.10b0" + }, + "bleach": { + "hashes": [ + "sha256:cc8da25076a1fe56c3ac63671e2194458e0c4d9c7becfd52ca251650d517903c", + "sha256:e78e426105ac07026ba098f04de8abe9b6e3e98b5befbf89b51a5ef0a4292b03" + ], + "version": "==3.1.4" + }, + "certifi": { + "hashes": [ + "sha256:1d987a998c75633c40847cc966fcf5904906c920a7f17ef374f5aa4282abd304", + "sha256:51fcb31174be6e6664c5f69e3e1691a2d72a1a12e90f872cbdb1567eb47b6519" + ], + "version": "==2020.4.5.1" + }, + "cfgv": { + "hashes": [ + "sha256:1ccf53320421aeeb915275a196e23b3b8ae87dea8ac6698b1638001d4a486d53", + "sha256:c8e8f552ffcc6194f4e18dd4f68d9aef0c0d58ae7e7be8c82bee3c5e9edfa513" + ], + "version": "==3.1.0" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:8a18b4ea89d8820c5d0c7da8a64b2c324b4dabb695804dbfea19b9be9d88c0cc", + "sha256:e345d143d80bf5ee7534056164e5e112ea5e22716bbb1ce727941f4c8b471b9a" + ], + "version": "==7.1.1" + }, + "colorama": { + "hashes": [ + "sha256:7d73d2a99753107a36ac6b455ee49046802e59d9d076ef8e47b61499fa29afff", + "sha256:e96da0d330793e2cb9485e9ddfd918d456036c7149416295932478192f4436a1" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.3" + }, + "coverage": { + "hashes": [ + "sha256:00f1d23f4336efc3b311ed0d807feb45098fc86dee1ca13b3d6768cdab187c8a", + "sha256:01333e1bd22c59713ba8a79f088b3955946e293114479bbfc2e37d522be03355", + "sha256:0cb4be7e784dcdc050fc58ef05b71aa8e89b7e6636b99967fadbdba694cf2b65", + "sha256:0e61d9803d5851849c24f78227939c701ced6704f337cad0a91e0972c51c1ee7", + "sha256:1601e480b9b99697a570cea7ef749e88123c04b92d84cedaa01e117436b4a0a9", + "sha256:2742c7515b9eb368718cd091bad1a1b44135cc72468c731302b3d641895b83d1", + "sha256:2d27a3f742c98e5c6b461ee6ef7287400a1956c11421eb574d843d9ec1f772f0", + "sha256:402e1744733df483b93abbf209283898e9f0d67470707e3c7516d84f48524f55", + "sha256:5c542d1e62eece33c306d66fe0a5c4f7f7b3c08fecc46ead86d7916684b36d6c", + "sha256:5f2294dbf7875b991c381e3d5af2bcc3494d836affa52b809c91697449d0eda6", + "sha256:6402bd2fdedabbdb63a316308142597534ea8e1895f4e7d8bf7476c5e8751fef", + "sha256:66460ab1599d3cf894bb6baee8c684788819b71a5dc1e8fa2ecc152e5d752019", + "sha256:782caea581a6e9ff75eccda79287daefd1d2631cc09d642b6ee2d6da21fc0a4e", + "sha256:79a3cfd6346ce6c13145731d39db47b7a7b859c0272f02cdb89a3bdcbae233a0", + "sha256:7a5bdad4edec57b5fb8dae7d3ee58622d626fd3a0be0dfceda162a7035885ecf", + "sha256:8fa0cbc7ecad630e5b0f4f35b0f6ad419246b02bc750de7ac66db92667996d24", + "sha256:a027ef0492ede1e03a8054e3c37b8def89a1e3c471482e9f046906ba4f2aafd2", + "sha256:a3f3654d5734a3ece152636aad89f58afc9213c6520062db3978239db122f03c", + "sha256:a82b92b04a23d3c8a581fc049228bafde988abacba397d57ce95fe95e0338ab4", + "sha256:acf3763ed01af8410fc36afea23707d4ea58ba7e86a8ee915dfb9ceff9ef69d0", + "sha256:adeb4c5b608574a3d647011af36f7586811a2c1197c861aedb548dd2453b41cd", + "sha256:b83835506dfc185a319031cf853fa4bb1b3974b1f913f5bb1a0f3d98bdcded04", + "sha256:bb28a7245de68bf29f6fb199545d072d1036a1917dca17a1e75bbb919e14ee8e", + "sha256:bf9cb9a9fd8891e7efd2d44deb24b86d647394b9705b744ff6f8261e6f29a730", + "sha256:c317eaf5ff46a34305b202e73404f55f7389ef834b8dbf4da09b9b9b37f76dd2", + "sha256:dbe8c6ae7534b5b024296464f387d57c13caa942f6d8e6e0346f27e509f0f768", + "sha256:de807ae933cfb7f0c7d9d981a053772452217df2bf38e7e6267c9cbf9545a796", + "sha256:dead2ddede4c7ba6cb3a721870f5141c97dc7d85a079edb4bd8d88c3ad5b20c7", + "sha256:dec5202bfe6f672d4511086e125db035a52b00f1648d6407cc8e526912c0353a", + "sha256:e1ea316102ea1e1770724db01998d1603ed921c54a86a2efcb03428d5417e489", + "sha256:f90bfc4ad18450c80b024036eaf91e4a246ae287701aaa88eaebebf150868052" + ], + "version": "==5.1" + }, + "distlib": { + "hashes": [ + "sha256:2e166e231a26b36d6dfe35a48c4464346620f8645ed0ace01ee31822b288de21" + ], + "version": "==0.3.0" + }, + "docutils": { + "hashes": [ + "sha256:0c5b78adfbf7762415433f5515cd5c9e762339e23369dbe8000d84a4bf4ab3af", + "sha256:c2de3a60e9e7d07be26b7f2b00ca0309c207e06c100f9cc2a94931fc75a478fc" + ], + "version": "==0.16" + }, + "entrypoints": { + "hashes": [ + "sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19", + "sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451" + ], + "version": "==0.3" + }, + "filelock": { + "hashes": [ + "sha256:18d82244ee114f543149c66a6e0c14e9c4f8a1044b5cdaadd0f82159d6a6ff59", + "sha256:929b7d63ec5b7d6b71b0fa5ac14e030b3f70b75747cef1b10da9b879fef15836" + ], + "version": "==3.0.12" + }, + "flake8": { + "hashes": [ + "sha256:45681a117ecc81e870cbf1262835ae4af5e7a8b08e40b944a8a6e6b895914cfb", + "sha256:49356e766643ad15072a789a20915d3c91dc89fd313ccd71802303fd67e4deca" + ], + "index": "pypi", + "version": "==3.7.9" + }, + "identify": { + "hashes": [ + "sha256:2bb8760d97d8df4408f4e805883dad26a2d076f04be92a10a3e43f09c6060742", + "sha256:faffea0fd8ec86bb146ac538ac350ed0c73908326426d387eded0bcc9d077522" + ], + "version": "==1.4.14" + }, + "idna": { + "hashes": [ + "sha256:7588d1c14ae4c77d74036e8c22ff447b26d0fde8f007354fd48a7814db15b7cb", + "sha256:a068a21ceac8a4d63dbfd964670474107f541babbd2250d61922f029858365fa" + ], + "version": "==2.9" + }, + "keyring": { + "hashes": [ + "sha256:197fd5903901030ef7b82fe247f43cfed2c157a28e7747d1cfcf4bc5e699dd03", + "sha256:8179b1cdcdcbc221456b5b74e6b7cfa06f8dd9f239eb81892166d9223d82c5ba" + ], + "version": "==21.2.0" + }, + "mccabe": { + "hashes": [ + "sha256:ab8a6258860da4b6677da4bd2fe5dc2c659cff31b3ee4f7f5d64e79735b80d42", + "sha256:dd8d182285a0fe56bace7f45b5e7d1a6ebcbf524e8f3bd87eb0f125271b8831f" + ], + "version": "==0.6.1" + }, + "more-itertools": { + "hashes": [ + "sha256:5dd8bcf33e5f9513ffa06d5ad33d78f31e1931ac9a18f33d37e77a180d393a7c", + "sha256:b1ddb932186d8a6ac451e1d95844b382f55e12686d51ca0c68b6f61f2ab7a507" + ], + "version": "==8.2.0" + }, + "mypy": { + "hashes": [ + "sha256:15b948e1302682e3682f11f50208b726a246ab4e6c1b39f9264a8796bb416aa2", + "sha256:219a3116ecd015f8dca7b5d2c366c973509dfb9a8fc97ef044a36e3da66144a1", + "sha256:3b1fc683fb204c6b4403a1ef23f0b1fac8e4477091585e0c8c54cbdf7d7bb164", + "sha256:3beff56b453b6ef94ecb2996bea101a08f1f8a9771d3cbf4988a61e4d9973761", + "sha256:7687f6455ec3ed7649d1ae574136835a4272b65b3ddcf01ab8704ac65616c5ce", + "sha256:7ec45a70d40ede1ec7ad7f95b3c94c9cf4c186a32f6bacb1795b60abd2f9ef27", + "sha256:86c857510a9b7c3104cf4cde1568f4921762c8f9842e987bc03ed4f160925754", + "sha256:8a627507ef9b307b46a1fea9513d5c98680ba09591253082b4c48697ba05a4ae", + "sha256:8dfb69fbf9f3aeed18afffb15e319ca7f8da9642336348ddd6cab2713ddcf8f9", + "sha256:a34b577cdf6313bf24755f7a0e3f3c326d5c1f4fe7422d1d06498eb25ad0c600", + "sha256:a8ffcd53cb5dfc131850851cc09f1c44689c2812d0beb954d8138d4f5fc17f65", + "sha256:b90928f2d9eb2f33162405f32dde9f6dcead63a0971ca8a1b50eb4ca3e35ceb8", + "sha256:c56ffe22faa2e51054c5f7a3bc70a370939c2ed4de308c690e7949230c995913", + "sha256:f91c7ae919bbc3f96cd5e5b2e786b2b108343d1d7972ea130f7de27fdd547cf3" + ], + "index": "pypi", + "version": "==0.770" + }, + "mypy-extensions": { + "hashes": [ + "sha256:090fedd75945a69ae91ce1303b5824f428daf5a028d2f6ab8a299250a846f15d", + "sha256:2d82818f5bb3e369420cb3c4060a7970edba416647068eb4c5343488a6c604a8" + ], + "version": "==0.4.3" + }, + "nodeenv": { + "hashes": [ + "sha256:5b2438f2e42af54ca968dd1b374d14a1194848955187b0e5e4be1f73813a5212" + ], + "version": "==1.3.5" + }, + "packaging": { + "hashes": [ + "sha256:3c292b474fda1671ec57d46d739d072bfd495a4f51ad01a055121d81e952b7a3", + "sha256:82f77b9bee21c1bafbf35a84905d604d5d1223801d639cf3ed140bd651c08752" + ], + "version": "==20.3" + }, + "pathspec": { + "hashes": [ + "sha256:7d91249d21749788d07a2d0f94147accd8f845507400749ea19c1ec9054a12b0", + "sha256:da45173eb3a6f2a5a487efba21f050af2b41948be6ab52b6a1e3ff22bb8b7061" + ], + "version": "==0.8.0" + }, + "pkginfo": { + "hashes": [ + "sha256:7424f2c8511c186cd5424bbf31045b77435b37a8d604990b79d4e70d741148bb", + "sha256:a6d9e40ca61ad3ebd0b72fbadd4fba16e4c0e4df0428c041e01e06eb6ee71f32" + ], + "version": "==1.5.0.1" + }, + "pluggy": { + "hashes": [ + "sha256:15b2acde666561e1298d71b523007ed7364de07029219b604cf808bfa1c765b0", + "sha256:966c145cd83c96502c3c3868f50408687b38434af77734af1e9ca461a4081d2d" + ], + "version": "==0.13.1" + }, + "pre-commit": { + "hashes": [ + "sha256:487c675916e6f99d355ec5595ad77b325689d423ef4839db1ed2f02f639c9522", + "sha256:c0aa11bce04a7b46c5544723aedf4e81a4d5f64ad1205a30a9ea12d5e81969e1" + ], + "index": "pypi", + "version": "==2.2.0" + }, + "py": { + "hashes": [ + "sha256:5e27081401262157467ad6e7f851b7aa402c5852dbcb3dae06768434de5752aa", + "sha256:c20fdd83a5dbc0af9efd622bee9a5564e278f6380fffcacc43ba6f43db2813b0" + ], + "version": "==1.8.1" + }, + "pycodestyle": { + "hashes": [ + "sha256:95a2219d12372f05704562a14ec30bc76b05a5b297b21a5dfe3f6fac3491ae56", + "sha256:e40a936c9a450ad81df37f549d676d127b1b66000a6c500caa2b085bc0ca976c" + ], + "version": "==2.5.0" + }, + "pyflakes": { + "hashes": [ + "sha256:17dbeb2e3f4d772725c777fabc446d5634d1038f234e77343108ce445ea69ce0", + "sha256:d976835886f8c5b31d47970ed689944a0262b5f3afa00a5a7b4dc81e5449f8a2" + ], + "version": "==2.1.1" + }, + "pygments": { + "hashes": [ + "sha256:647344a061c249a3b74e230c739f434d7ea4d8b1d5f3721bc0f3558049b38f44", + "sha256:ff7a40b4860b727ab48fad6360eb351cc1b33cbf9b15a0f689ca5353e9463324" + ], + "version": "==2.6.1" + }, + "pyparsing": { + "hashes": [ + "sha256:67199f0c41a9c702154efb0e7a8cc08accf830eb003b4d9fa42c4059002e2492", + "sha256:700d17888d441604b0bd51535908dcb297561b040819cccde647a92439db5a2a" + ], + "version": "==3.0.0a1" + }, + "pytest": { + "hashes": [ + "sha256:0e5b30f5cb04e887b91b1ee519fa3d89049595f428c1db76e73bd7f17b09b172", + "sha256:84dde37075b8805f3d1f392cc47e38a0e59518fb46a431cfdaf7cf1ce805f970" + ], + "index": "pypi", + "version": "==5.4.1" + }, + "pytest-asyncio": { + "hashes": [ + "sha256:6096d101a1ae350d971df05e25f4a8b4d3cd13ffb1b32e42d902ac49670d2bfa", + "sha256:c54866f3cf5dd2063992ba2c34784edae11d3ed19e006d220a3cf0bfc4191fcb" + ], + "index": "pypi", + "version": "==0.11.0" + }, + "pytest-cov": { + "hashes": [ + "sha256:cc6742d8bac45070217169f5f72ceee1e0e55b0221f54bcf24845972d3a47f2b", + "sha256:cdbdef4f870408ebdbfeb44e63e07eb18bb4619fae852f6e760645fa36172626" + ], + "index": "pypi", + "version": "==2.8.1" + }, + "pywin32-ctypes": { + "hashes": [ + "sha256:24ffc3b341d457d48e8922352130cf2644024a4ff09762a2261fd34c36ee5942", + "sha256:9dc2d991b3479cc2df15930958b674a48a227d5361d413827a4cfd0b5876fc98" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.2.0" + }, + "pyyaml": { + "hashes": [ + "sha256:06a0d7ba600ce0b2d2fe2e78453a470b5a6e000a985dd4a4e54e436cc36b0e97", + "sha256:240097ff019d7c70a4922b6869d8a86407758333f02203e0fc6ff79c5dcede76", + "sha256:4f4b913ca1a7319b33cfb1369e91e50354d6f07a135f3b901aca02aa95940bd2", + "sha256:69f00dca373f240f842b2931fb2c7e14ddbacd1397d57157a9b005a6a9942648", + "sha256:73f099454b799e05e5ab51423c7bcf361c58d3206fa7b0d555426b1f4d9a3eaf", + "sha256:74809a57b329d6cc0fdccee6318f44b9b8649961fa73144a98735b0aaf029f1f", + "sha256:7739fc0fa8205b3ee8808aea45e968bc90082c10aef6ea95e855e10abf4a37b2", + "sha256:95f71d2af0ff4227885f7a6605c37fd53d3a106fcab511b8860ecca9fcf400ee", + "sha256:b8eac752c5e14d3eca0e6dd9199cd627518cb5ec06add0de9d32baeee6fe645d", + "sha256:cc8955cfbfc7a115fa81d85284ee61147059a753344bc51098f3ccd69b0d7e0c", + "sha256:d13155f591e6fcc1ec3b30685d50bf0711574e2c0dfffd7644babf8b5102ca1a" + ], + "version": "==5.3.1" + }, + "readme-renderer": { + "hashes": [ + "sha256:1b6d8dd1673a0b293766b4106af766b6eff3654605f9c4f239e65de6076bc222", + "sha256:e67d64242f0174a63c3b727801a2fff4c1f38ebe5d71d95ff7ece081945a6cd4" + ], + "version": "==25.0" + }, + "regex": { + "hashes": [ + "sha256:08119f707f0ebf2da60d2f24c2f39ca616277bb67ef6c92b72cbf90cbe3a556b", + "sha256:0ce9537396d8f556bcfc317c65b6a0705320701e5ce511f05fc04421ba05b8a8", + "sha256:1cbe0fa0b7f673400eb29e9ef41d4f53638f65f9a2143854de6b1ce2899185c3", + "sha256:2294f8b70e058a2553cd009df003a20802ef75b3c629506be20687df0908177e", + "sha256:23069d9c07e115537f37270d1d5faea3e0bdded8279081c4d4d607a2ad393683", + "sha256:24f4f4062eb16c5bbfff6a22312e8eab92c2c99c51a02e39b4eae54ce8255cd1", + "sha256:295badf61a51add2d428a46b8580309c520d8b26e769868b922750cf3ce67142", + "sha256:2a3bf8b48f8e37c3a40bb3f854bf0121c194e69a650b209628d951190b862de3", + "sha256:4385f12aa289d79419fede43f979e372f527892ac44a541b5446617e4406c468", + "sha256:5635cd1ed0a12b4c42cce18a8d2fb53ff13ff537f09de5fd791e97de27b6400e", + "sha256:5bfed051dbff32fd8945eccca70f5e22b55e4148d2a8a45141a3b053d6455ae3", + "sha256:7e1037073b1b7053ee74c3c6c0ada80f3501ec29d5f46e42669378eae6d4405a", + "sha256:90742c6ff121a9c5b261b9b215cb476eea97df98ea82037ec8ac95d1be7a034f", + "sha256:a58dd45cb865be0ce1d5ecc4cfc85cd8c6867bea66733623e54bd95131f473b6", + "sha256:c087bff162158536387c53647411db09b6ee3f9603c334c90943e97b1052a156", + "sha256:c162a21e0da33eb3d31a3ac17a51db5e634fc347f650d271f0305d96601dc15b", + "sha256:c9423a150d3a4fc0f3f2aae897a59919acd293f4cb397429b120a5fcd96ea3db", + "sha256:ccccdd84912875e34c5ad2d06e1989d890d43af6c2242c6fcfa51556997af6cd", + "sha256:e91ba11da11cf770f389e47c3f5c30473e6d85e06d7fd9dcba0017d2867aab4a", + "sha256:ea4adf02d23b437684cd388d557bf76e3afa72f7fed5bbc013482cc00c816948", + "sha256:fb95debbd1a824b2c4376932f2216cc186912e389bdb0e27147778cf6acb3f89" + ], + "version": "==2020.4.4" + }, + "requests": { + "hashes": [ + "sha256:43999036bfa82904b6af1d99e4882b560e5e2c68e5c4b0aa03b655f3d7d73fee", + "sha256:b3f43d496c6daba4493e7c431722aeb7dbc6288f52a6e04e7b6023b0247817e6" + ], + "version": "==2.23.0" + }, + "requests-toolbelt": { + "hashes": [ + "sha256:380606e1d10dc85c3bd47bf5a6095f815ec007be7a8b69c878507068df059e6f", + "sha256:968089d4584ad4ad7c171454f0a5c6dac23971e9472521ea3b6d49d610aa6fc0" + ], + "version": "==0.9.1" + }, + "six": { + "hashes": [ + "sha256:236bdbdce46e6e6a3d61a337c0f8b763ca1e8717c03b369e87a7ec7ce1319c0a", + "sha256:8f3cd2e254d8f793e7f3d6d9df77b92252b52637291d0f0da013c76ea2724b6c" + ], + "version": "==1.14.0" + }, + "sqlalchemy-stubs": { + "hashes": [ + "sha256:a3318c810697164e8c818aa2d90bac570c1a0e752ced3ec25455b309c0bee8fd", + "sha256:ca1250605a39648cc433f5c70cb1a6f9fe0b60bdda4c51e1f9a2ab3651daadc8" + ], + "index": "pypi", + "version": "==0.3" + }, + "toml": { + "hashes": [ + "sha256:229f81c57791a41d65e399fc06bf0848bab550a9dfd5ed66df18ce5f05e73d5c", + "sha256:235682dd292d5899d361a811df37e04a8828a5b1da3115886b73cf81ebc9100e" + ], + "version": "==0.10.0" + }, + "tqdm": { + "hashes": [ + "sha256:00339634a22c10a7a22476ee946bbde2dbe48d042ded784e4d88e0236eca5d81", + "sha256:ea9e3fd6bd9a37e8783d75bfc4c1faf3c6813da6bd1c3e776488b41ec683af94" + ], + "version": "==4.45.0" + }, + "twine": { + "hashes": [ + "sha256:c1af8ca391e43b0a06bbc155f7f67db0bf0d19d284bfc88d1675da497a946124", + "sha256:d561a5e511f70275e5a485a6275ff61851c16ffcb3a95a602189161112d9f160" + ], + "index": "pypi", + "version": "==3.1.1" + }, + "typed-ast": { + "hashes": [ + "sha256:0666aa36131496aed8f7be0410ff974562ab7eeac11ef351def9ea6fa28f6355", + "sha256:0c2c07682d61a629b68433afb159376e24e5b2fd4641d35424e462169c0a7919", + "sha256:249862707802d40f7f29f6e1aad8d84b5aa9e44552d2cc17384b209f091276aa", + "sha256:24995c843eb0ad11a4527b026b4dde3da70e1f2d8806c99b7b4a7cf491612652", + "sha256:269151951236b0f9a6f04015a9004084a5ab0d5f19b57de779f908621e7d8b75", + "sha256:4083861b0aa07990b619bd7ddc365eb7fa4b817e99cf5f8d9cf21a42780f6e01", + "sha256:498b0f36cc7054c1fead3d7fc59d2150f4d5c6c56ba7fb150c013fbc683a8d2d", + "sha256:4e3e5da80ccbebfff202a67bf900d081906c358ccc3d5e3c8aea42fdfdfd51c1", + "sha256:6daac9731f172c2a22ade6ed0c00197ee7cc1221aa84cfdf9c31defeb059a907", + "sha256:715ff2f2df46121071622063fc7543d9b1fd19ebfc4f5c8895af64a77a8c852c", + "sha256:73d785a950fc82dd2a25897d525d003f6378d1cb23ab305578394694202a58c3", + "sha256:8c8aaad94455178e3187ab22c8b01a3837f8ee50e09cf31f1ba129eb293ec30b", + "sha256:8ce678dbaf790dbdb3eba24056d5364fb45944f33553dd5869b7580cdbb83614", + "sha256:aaee9905aee35ba5905cfb3c62f3e83b3bec7b39413f0a7f19be4e547ea01ebb", + "sha256:bcd3b13b56ea479b3650b82cabd6b5343a625b0ced5429e4ccad28a8973f301b", + "sha256:c9e348e02e4d2b4a8b2eedb48210430658df6951fa484e59de33ff773fbd4b41", + "sha256:d205b1b46085271b4e15f670058ce182bd1199e56b317bf2ec004b6a44f911f6", + "sha256:d43943ef777f9a1c42bf4e552ba23ac77a6351de620aa9acf64ad54933ad4d34", + "sha256:d5d33e9e7af3b34a40dc05f498939f0ebf187f07c385fd58d591c533ad8562fe", + "sha256:fc0fea399acb12edbf8a628ba8d2312f583bdbdb3335635db062fa98cf71fca4", + "sha256:fe460b922ec15dd205595c9b5b99e2f056fd98ae8f9f56b888e7a17dc2b757e7" + ], + "version": "==1.4.1" + }, + "typing-extensions": { + "hashes": [ + "sha256:6e95524d8a547a91e08f404ae485bbb71962de46967e1b71a0cb89af24e761c5", + "sha256:79ee589a3caca649a9bfd2a8de4709837400dfa00b6cc81962a1e6a1815969ae", + "sha256:f8d2bd89d25bc39dabe7d23df520442fa1d8969b82544370e03d88b5a591c392" + ], + "version": "==3.7.4.2" + }, + "urllib3": { + "hashes": [ + "sha256:3018294ebefce6572a474f0604c2021e33b3fd8006ecd11d62107a5d2a963527", + "sha256:88206b0eb87e6d677d424843ac5209e3fb9d0190d0ee169599165ec25e9d9115" + ], + "version": "==1.25.9" + }, + "virtualenv": { + "hashes": [ + "sha256:5021396e8f03d0d002a770da90e31e61159684db2859d0ba4850fbea752aa675", + "sha256:ac53ade75ca189bc97b6c1d9ec0f1a50efe33cbf178ae09452dcd9fd309013c1" + ], + "version": "==20.0.18" + }, + "wcwidth": { + "hashes": [ + "sha256:cafe2186b3c009a04067022ce1dcd79cb38d8d65ee4f4791b8888d6599d1bbe1", + "sha256:ee73862862a156bf77ff92b09034fc4825dd3af9cf81bc5b360668d425f3c5f1" + ], + "version": "==0.1.9" + }, + "webencodings": { + "hashes": [ + "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", + "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923" + ], + "version": "==0.5.1" + }, + "wheel": { + "hashes": [ + "sha256:8788e9155fe14f54164c1b9eb0a319d98ef02c160725587ad60f14ddc57b6f96", + "sha256:df277cb51e61359aba502208d680f90c0493adec6f0e848af94948778aed386e" + ], + "index": "pypi", + "version": "==0.34.2" + }, + "yappi": { + "hashes": [ + "sha256:5650e28b53f624cccc4fd0f8697e7a0a823424197fc8da9ce6770e3d0bc1e392" + ], + "index": "pypi", + "version": "==1.2.4" + } + } +} diff --git a/Ch12/apd.aggregation-chapter12-ex01/README.md b/Ch12/apd.aggregation-chapter12-ex01/README.md new file mode 100644 index 0000000..604f0e4 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/README.md @@ -0,0 +1,128 @@ +# APD Sensor aggregator + +A programme that queries apd.sensor endpoints and aggregates their results. + +Generic single-database configuration. + +# Database setup + +To generate the required database tables you must create an alembic.ini file, as follows: + + [alembic] + script_location = apd.aggregation:alembic + sqlalchemy.url = postgresql+psycopg2://apd@localhost/apd + +and run `alembic upgrade head`. This should also be done after every upgrade of the software. + +# Defining endpoints + +Endpoints to collect from are managed with the `sensor_deployments` CLI tool. After installation +there will be no deployments defined + + sensor_deployments add --db postgresql+psycopg2://apd@localhost/apd + --api-key 97f6b3e5ceb64a6ba88968d7c3786b38 + --colour xkcd:red + http://rpi4:8081 + Loft + +The optional colour argument is the colour to use when plotting charts with the built-in charting +tools. This uses matplotlib's colour specification system, documented at https://matplotlib.org/tutorials/colors/colors.html + +The sensors can then be listed with `sensor_deployments list`: + + Loft + ID 53998a5160de48aeb71a5c37cd1455f2 + URI http://rpi4:8081 + API key 97f6b3e5ceb64a6ba88968d7c3786b38 + Colour xkcd:red + +The ID is the deployment ID, as set by the endpoint. It is only possible to add endpoints if they can be +connected to at the time. + +# Collating data + +Data can be collated from all defined endpoints with the `collect_sensor_data` command line tool. +Although you can specify URLs and an API key to explicitly load data from a one-off endpoint, running +without specifying these will use the configured endpoints from the database. + + collect_sensor_data --db postgresql+psycopg2://apd@localhost/apd + +# Viewing data + +You can write scripts to visualise the data from the database. I recommend using Jupyter for this, as it +has good support for drawing charts and interactivity. + +All configured charts can be displayed with: + + from apd.aggregation.analysis import plot_multiple_charts + display(await plot_multiple_charts()) + +More complex charting can be achieved by passing `configs=` to this function, consisting of configuration +objects as defined in `apd.aggregation.analysis`. Iteractivity can be achieved using the +`interactable_plot_multiple_charts` function with Jupyter/IPyWidgets' existing interactivity support. + +More control can be achieved using other functions from this module, such as getting all data points from +a given sensor with: + + from apd.aggregation.query import with_database, get_data + + with with_database("postgresql+psycopg2://apd@localhost/apd") as session: + points = [(dp.collected_at, dp.data) async for dp in get_data() if dp.sensor_name=="RelativeHumidity"] + +These can be called from any Python code, not just Jupyter notebooks + +# Analysis and triggers + +The aggregator allows for a long-running process that processes records as they are inserted to the database +and apply rules to them. + +This is configured with a Python-based configuration file, such as the following to log any time the +Temperature fluctuates above or below 18c: + + import operator + + from apd.aggregation.actions.action import OnlyOnChangeActionWrapper, LoggingAction + from apd.aggregation.actions.runner import DataProcessor + from apd.aggregation.actions.trigger import ValueThresholdTrigger + + + handlers = [ + DataProcessor( + name="TemperatureBelow18", + action=OnlyOnChangeActionWrapper(LoggingAction()), + trigger=ValueThresholdTrigger( + name="TemperatureBelow18", + threshold=18, + comparator=operator.lt, + sensor_name="Temperature", + ), + ) + ] + +This is run with: + + run_apd_actions --db postgresql+psycopg2://apd@localhost/apd sample_actions.py + +The optional `--historical` option causes the actions to be triggered for all events in the database. +If it's omitted then the default behaviour applies, which is to only analyse data that is added to the +database after the actions process has started. + +The possible actions are: + +* `apd.aggregation.actions.action.LoggingAction()` - Log data points +* `apd.aggregation.actions.action.SaveToDatabaseAction()` - Save data points to the db + +These can be wrapped with `OnlyOnChangeActionWrapper(subaction)` to only trigger an action when +the underlying value changes and/or with `OnlyAfterDateActionWrapper(subaction, min_date)` to +only trigger if the date on the discovered objects is strictly after `min_date`. + +The possible triggers are: + +* `apd.aggregation.actions.trigger.ValueThresholdTrigger(...)` - This compares the value of a sensor with threshold, using the specified comparator. + Any records that don't match the `sensor_name` and `deployment_id` parameters are excluded. + + +# Tips + +The `--db` argument to all command-line tools can be omitted and the `APD_DB_URI` environment variable +set instead. \ No newline at end of file diff --git a/Ch12/apd.aggregation-chapter12-ex01/Yappi Profiling.ipynb b/Ch12/apd.aggregation-chapter12-ex01/Yappi Profiling.ipynb new file mode 100644 index 0000000..153122f --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/Yappi Profiling.ipynb @@ -0,0 +1,3140 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAEwsAAAmZCAYAAABbjid3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdd5RkVdWw8WcPM+TMkNMgIAiISBSUJAgoiqAEBcQhmMWE8XsNmHPEHMiCooKBFzGg6IsEQVCRoIiAgkgacmZmf3+cGqm+fau7UndVM89vrV5w973nnF1xrened5/ITCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNn2mDTkCSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJElSPZuFSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSUPKZmGSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEnSkLJZmCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkjSkbBYmSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDSmbhUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJElDymZhkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0pCyWZgkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZI0pGwWJkmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA0pm4VJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJQ8pmYZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSdKQslmYJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSNKRsFiZJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNKZuFSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSUPKZmGSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEnSkLJZmCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkjSkbBYmSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDSmbhUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJElDymZhkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0pCyWZgkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZI0pGwWJkmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA0pm4VJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJQ8pmYZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSdKQslmYJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSNKRsFiZJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNKZuFSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSUPKZmGSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEnSkLJZmCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkjSkbBYmSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDSmbhUmSJEmSJPUgIrLyc/Sgc5I0dfmdIkmSJEmSJEmSJEmSJEkLlog4ulo7NpHjBiUiZtXUyM1eUNaXJEmSJKlX0wedgCRJkiRJemKLiOnARsBTgGUbPwsB9wP3ATcC1wPXZ+bDA0pTkiRJkiRJkiRJkiRJkiRJkiRJkiRJGko2C5MkSZIkSX0XEYsA+wCHAc8CFmtj2KMR8RfgYuA3wM8z8/aJy1KSJEmSJEmSJEmSJEmSJI0nImYB13Uw5GHgHuBu4FrgMuBC4KeZ+Ui/85svIp4NnFNz6meZuUef1tgJ+PUYl+ycmef2YZ1DgBPGuGSdzLy+13UkSZIkSZI0dUwbdAKSJEmSJOmJJSL2Av4OnAo8h/YahQHMAJ4OvBL4NnBLRHxhQpKUpD6JiOsjIpt+jh90TpIkSZIkSZIkSZIkSdKALQKsCKwH7A68E/ghcFNEfDwilpygdQ9vEX9ORKw1QWtWHTZk80iSJEmSJOkJwmZhkiRJkiSpL6L4MvAjYI0+TDkNmKziHEmSJEmSJEmSJEmSJEmSNLFmAm8H/hIR2/Zz4ohYFnhRi9PTgNn9XG8ML46IpXuZICKeBOzQp3wkSZIkSZL0BDF90AlIkiRJkqQnjK8Cr2xx7p/Ar4ArgNuA+4ElgeWA9YEtgKdRdhOUJEmSJEmSJEmSJEmSJEnD7X7g7y3OLQ4sD6zQ4vzawNkRsWNm/rFP+RwELDrG+UMj4oOZmX1ar5XFgQOAb/Qwx2FA9CcdSZIkSZIkPVHYLEySJEmSJPUsIvamvlHYpZRdAH81XoFNRCwO7AHs0/hZot95StKwy0yL/CRJkiRJkiRJkiRJkjQVXJKZO411QUSsAbwAOApYt3J6aeD7EfGUzHy0D/kcXjlORjbcmgXsAvyyD2tV3UnZPHW+w+iyWVhETANeXgnPoTRf0xNUZh4NHD3gNCRJkiRJ0pCbNugEJEmSJEnS1BYRAXy25tTpwHaZeU47O/Fl5gOZeXpmvgxYHXgzcE1/s5UkSZIkSZIkSZIkSZIkSZMhM2/MzK8AT6PUFFatC7yq13UiYjPg6ZXwZ4FHKrHDel2rhe8Ac5uOnxERT+lyrt2BNZqO7wJ+2m1ikiRJkiRJeuKwWZgkSZIkSerVdpQd95rdBMzOzIe7mTAz787Mz2Xm23pNTpIkSZIkSZIkSZIkSZIkDU5m3g8cBFxVc/plfVjiiOqSwOeBMyvxF0XEcn1Yr+rfwM8rsW4bk1XHnQI81OVckiRJkiRJegKxWZgkSZIkSerVc2tix2fmvZOeiSRJkiRJkiRJkiRJkiRJGjqZ+RDw0ZpTW0bE8t3OGxGLAgdWwudm5j+BEyrxRShNyybCsZXjl0XE9E4miIgVgL3GmVeSJEmSJEkLqI5+2SRJkiRJklRj7ZrYHyY9ixYiYiVgS2Clxs9c4FbgFuDCzLxngOmN0Mh1Q2BdYFlgCeBeYA5wE/D7zLxvknJZFtiqKZdpjTx+mpk3TFIOawGbA6sBywH3AdcBF2fmzZOUw2LA1sCqlPfPksAdwG3AnzLz2knIYRngGcD6wDKU5+E24NLMvHoC190EWI/yuFcAHmisez3lNXh0otZurL8QsBmwEbAysChwP/DnzDynzfFPonymVgeWBhYC7mz8XA1cnpnzJuQBDImICOCplPfPisDywN2U78HrKO+jCX8OBvU+liRJkiRJkiRJkiRJ0lA5uyY2DdgAuKDLOV9EqS9rdmLjv2dRalRWbDp3OPDFLtcay4+B24GZjeOVgec14u06GFi46fjPmfmHUgI0HBbEuqyIWJ3yeGdRap8WA+6h1FT+k1JP99DAEuyTiFiYUjO4IbAK5bWF8jjnUF7Xv05SLtMptb8bUz5T84CbKTVvF2bm3MnIo13DUGsqSZIkSVow2CxMkiRJkiT1aqWa2P2TnkWTxh/dXw8cQGk21apS5rGIuAA4HjhhsosHImIpyi6AuwE7AWuNM2RuRFwGfA04MTMf6WLN44GXN4VuyMxZTeefC7wF2JlSwFN1KOX5mhCNxkYvB15LaVZWJyPid8DHM/PMprHXM7J53QmZObuLHKZRdo88GNiB0qSq1bXXAacBn8rM2ztc53jGfi02A95NeY/MaDHHDcCnga/2o3lXRGwKvAnYndKkrZX7IuKXlNfgwg7X2An4dSW8c2ae2zi/FvB2ym6f1SI+gN8Atc3CImJ9SvHfs4FnUhrujeXuiPgF5fW7qM38Z1EKjlp5eUS8fIzzAGRm7fdSRGQl9P7MPLqd3CrzPJnyPD6PUoDUyh0R8TPKc3BZF+scz5C9jyVJkiRJkiRJkiRJkjScMvO2iLiHx5sQzTez7vo2HV45fgD4fmO9xyLiFOCNTec3i4ind1MrM5bMfCQivl1Z6zA6axZ2WOX42J4T64PJqMtqrHM5sElT6DZg9V5qiiLipcAplfDrMvPLY4yZCewD7ArsSGn8NpZHIuJCShO6H3TTKC0ijgbe1xxrVWPWT436rr0pNaPbAIuMc/1twJmU1/bKCchnZeCdwGzKRrd1bo2I04APZOZt/c6hXZNVaypJkiRJUrNpg05AkiRJkiRNeXW7oa1dE5sUEXEAcA3wCWALWjcKg9JIfXvgW8CfImKHic+wiIhPALcCJwOHMH6jMCjNu7YEvgFcGxHb9zGfJSPi+5SdFHelvlHYhGo0YfotcBytG4VBeU2fBfwkIr4bEYv3MYc9gMspO0vuxhjFGw3rAO8A/hERbxzn2nZzmBYRHwQuAV5MiwZLDWsDXwAuioi6xn3trrlqo1Dtj5SGcGM1CoOy693ewAUR8cOIWL7btSt5HA5cBbyO+kZhrcatEBGXAn8DPkZ57cYrSIOyy+O+wIUR8aOIaFVcNGVExOIR8WXgCkoh5FiNwgBWoDRm+0NEnBQRbT/v4+Qx6e9jSZIkSZIkSZIkSZIkTQn31cSqzcPaEhHrUJocNTs9M5vXOKFmaLXBWL98q3K8Z7v1MBGxJbBpU+gRSn3hwAygLuu4yvGKwJ7t5tvC7Mrxw8CprS5uNJe7Gfg6sD/jNwoDWJjSLOo04C8RsXFXmU6iiNgwIv4KXEZpUrYD4zQKa1iRUmP4l4j4RkS0M6bdnJ4HXEnZ8HSs98xKlA2Fr4qIl/Rr/U4MQ62pJEmSJGnBZLMwSZIkSZLUq//UxPaf9CyAiHgP8B1g9S6Gbwz8IiIO7G9WLW3N+MUBY1kDOCciXtZrIhGxBHAOpaHPQETEupRGYc/qcOj+wE8jYuE+5PBW4H+BjboYvhTwuYj4ZkRM7yGHaZTikXfTWcO2pwO/jYglu1jzacDvKQ2jutmJ8IWUoq4ndzG2OY+3Ad8Eumn+thTlOejFXsDvI2KNHucZmMaOlr8CXkNphtjRcMoOh+dFRDvNC8fKY9Lfx5IkSZIkSZIkSZIkSZoy6poA3dPlXIcxuubpxOaDzLyM0tSn2UER0Uv9Xq3MvBz4Q1NoOtBujd9hleMfZ+YdfUmse5Ndl3Uy8Ggldmi3CzfW3LUS/mFm3jnGsO3ovPaq2VMo9XTVdYfNKkAvNX8BHEGp9+qq2d+IySJeAPwI6GTj0hWAUyLilb2u34lhqDWVJEmSJC24/MekJEmSJEnq1flA9Q/tu0bEkZl5zGQl0WgU9oGaU48BvwZ+CdxE+X3ImsDzgGcwslBoYeDkiHgsM0+b2IxHSEox0uXAVcBtlOKnuZTCgCcBW1F2QJzRNG4G8I2IuCIzL+1h/a9TmpfN92/gLODPwK2UXRvXphTt9F1ELENpcLRmzel/AD+k7Ex4J2VXuqdSGlSt0rhmB+AzPebwMcqubVVzgF9QCrhuBR6gFKttDOwBbFC5/nDgLuCtXabyYeCgpuN/UYpKLgduB5akFBO9mLLTXLMNKLs3vr7dxRq7Uf66MW+zecD/UT7f11Ee02KUJnU7ArswsgnU+sBZEbFFZt7d7vpNdgPe2XT8cCOvcykNCR9rrL1NTa517gMupnyergHuBu6lfMaXoxTp7Ex5LputD3w3InbMzMdazP0I8Kem440Y+bm8E/hnGzn2VUQsRnnONqk5fTtwBo9/plfg8ffRapVrN6I0DNssM+d0mc6kvo8lSZIkSZIkSZIkSZI0NTQ2lazbTPAfXcw1DZhdCd9E2Tiz6kTgk03HywIvAk7pdN02HAts0XR8GPDpsQY0Gpe9tGaeYTORdVlk5q0RcRalPnC+50XESpl5axf5HgJMq8Q6eV7nApcCVwBXA3dQajuDUle5PqUO9ZmVdZYEvhMRT8/Mf3WR9yDcyeOv7bWUx3kfpW5wJqVmcjeguhHl1pRNQnvZZHgd4Bgev985KbWLZwE3No7XBJ5Lea6b634D+GpE3JGZP+ghh7YMUa2pJEmSJGkBZbMwSZIkSZLUq7OABykFAc2+EBHPAT6RmedNZAIR8UzgfTWnzgMOz8y/1Zz7UERsSyn82LB5OuDrEXFRZt7Q/2z/ax7wc0oR0s8z87bxBkTETOC9lCY684sdFgFOoDTQ6sYawIGN/38QeBfw5cys7s4H8O6J2E0R+CyjC0jupRRBfCMzszogIt4AvA04mvI7rtdSmjh1LCL2YXTxxp2U5lUnZuZDLcYFsDfwVWClplNHRcRvM/PHHaayalMe9wJHAcdm5tyatf8fpTneOyunXh0RH83Mm8ZbLCKWA77H6OZbxwFHZ2arhlcfaRTtfQnYvSm+LuXz9OLx1q7xdh5/T/8AeHOrIqkx3oN3UXaW/D5wfov3cHWu7YDPA1s2hbcD3gR8qm5MZv4b2KxpjuspzfTm+3Fmzh5v7QnwWUY3CpsLfBz4YN37OCLeDLwF+CDlu2S+NSkFXC/qIo9JfR9LkiRJkiRJkiRJkiRpSqmrLbqT0qCoU7tT6t+anZyZ82quPZmygV3zBomHMzHNwk6hNAebX+e0UURsk5kXjTHmRZTGQvPdRKkvHAaTUpfV5FhGNgubDhxMdxuKzq4c30jZeHYsjwCnUx7zr9rZPDMi1gY+ysiGbysAXwGe326yA/Af4HjKRpSXtPjs/FejZvK5wOcojdLm2y8i9s3M73eZx9t5/PNyNTC7xeflIxGxdSPn5oZ0AXwlIn6Tmbd3mcO4hqjWVJIkSZK0AKt2RZckSZIkSepIo8nVF1ucfgHwfxFxY0QcGxGviIinRUTfGpg3/oj+LUYW8UBpYrZLi0ZhAGTmBZRdxi6vnFqG1o+pX/bJzN0z89vtNAoDyMzbM/MNwKGVU5tExG5d5jH/ebsf2CMzPz9WMU+rYoZuRcQzGP147mvk8vW6RmGNPB7JzA9TGp3NpRR7LFJ37Tjrr0RpjtXsGmDTxvotH28WZ1AKmm6snP5o473ZiYUpj2MOsH1mfqOuwVJj7Ucz813ANyqnFmL089nKl4BZTcdzgYMz87AxGoXNX/9aStFP9bl7UURs0+b6zea/D48B9htrN8UWr8m/gdUy88jM/E07BWmNuc4HtgfOrpx6Qz+/pyZao2HiqyrhecChmfk/rd7HmTk3Mz9JKTasPmf7REQ3jd8m+30sSZIkSZIkSZIkSZKkKSAiVqVsIFl16nhNilo4vCZ2Yt2FmfkfRjff2jki1uli3TFl5l2U5kvNxquFqT6WE1rV3EyyQdRlnQXcUonNbmfdZo2aqvUr4RPaeK9tlZkvzswz2mkUBpCZN2TmgZTNT5s9LyI2rBkyDH4PrJmZ78rM37fzGWzUTJ4FbANcVjn9lh5ymd8o7ArgWWM11svM31PeW1dUTq1I2VhzQgxZrakkSZIkaQFmszBJkiRJktQP7wUuGOP86pRil68DfwTujYiLIuILEbFvRKzcw9p7AhtUYv8E9s/MR8YbnJlzKLvQPVidNyKq8/ZNu0UkLcaeQNmlr9kRvWXEOzPztz3O0Y3X1cTe1igWGldmfo+yA2G33khpDjffA5RGZdWCjLFy+Bfwkkp4I2CvLnM6NDP/1Oa17wSqRSa7jzeo8d4+oBL+n8z8dpvr0mjk9ipG7+r5znbnqPg98OZWDeLGyeWRzKx+htsd+xDwcsprP9+aQLcN+AbhzTWxz2XmSe0MbhRwvafm1FE95DTh72NJkiRJkiRJkiRJkiRNDRGxLqVx1IqVUw8AH+1ivpmUzUybXZKZV44x7ITqNEzchnbHVo5fEhGL1V0YEbOAnSvhalOigRhEXVZmPgacXAk/NSK26DCFutd23Oe1l9pO4APAxU3HARzWw3wTJjMfaDzX3Yy9EzikEt42IjbqIaVHgBdl5h1trH8HZYPMao3wQY3vhokwjLWmkiRJkqQFkM3CJEmSJElSzxpFHc8DftLmkEWBrYEjge8BN0fEuRFxWEQsOvbQUV5fE3trZt7f7gSZeR2jdxQL6htZDYvqDojP6mGua4Ev9TC+KxGxLLBfJXwVpalcJ94H3NXF+ksCr62EP52Z/+h0rsz8HXBOJbxPp/MAv8nMH3ew7hzKTorNNouI8X7v9zZG/m7wOuBT7a7btP6jwEcq4ed28TmG0iRuILthZuatjN7FspfP1KSJiNWBvSvhWylNHDvxGcpOh822jYjNu0hrst7HkiRJkiRJkiRJkiRJGkIRsWhErB4Re0bE14E/A5vWXPqKTprtNDkEWLgSq9bUVf0IqDaCmj1BNSrnADc0HS8DvLjFtYdS6hXn+21m/n0Ccpp0PdRlVZutAcxud92IWBzYvxL+bWZe2+4c3WhslFnd4HFK1KF1KjP/AlxaCffyWI/JzL91sP7fgGMq4UXo4H3SriGtNZUkSZIkLaC82UqSJEmSJPVFZt4FvJBShNNpoUoAOwLfAv4aEQe1NShi4ca4Zv8BzuhwfYCvAdVd0p7TxTyTpdrUZ9WIWKvLuY5rFKlMtmdSijOquczrZJLMvA/4bhfr7wosW4l9q4t55vvfynH1vdmOb3Qx5veV4yWB1VtdHBFB2VWv2fE9NOqqNnlaBNimwzmuyczfdrl+v1Q/U88YSBadezawUCV2YicNE+G/jd/q3n/dfA9O+PtYkiRJkiRJkoZd48b4XSLi8Ih4R0S8MSL2i4inDTo3SZIkSeqTHSMi636AB4EbgTOBVwCLV8Y+AByUmad0ufZhleNHgVPHGtDYFPW0SnhNYLcucxhrrQSOr4SrOdNoVPbySriuUdZU1nFdVmZeyeh6ogMjolpv2MqLgaUqsePaHNur6uPdPCJmTNLak62fNXfd1JzVbUz73B5yaGUYa00lSZIkSQuo6YNOQJIkSZIkPXHM3xUtIk4F9gAOBPYElu5gmrWAkyNiV+DVmfnwGNduDixaif0wM6tNv8aVmf+JiPOAnZrCG0TECpl5R6fzdapRxPIs4GnAJsCKlOdtSUY3AoLRuyJCee7+2cXyv+5iTD/UFYZUG0+160zgVR2OqRZY3JSZN9Re2Z7rKsezImLZRiO9dv2mi3XrdjtcBvhXi+s3BZarxM7vYl0AMnNORNzdWHO+p9PZYzm32/VbiYjVge0oj/fJlPyWBhZj5E6c861SOe62+d5ke2ZN7PtdznUa8Ik25h/PZLyPJUmSJEmSJD2BRMSTgK2ALRv/3ZyRN/XekJmzBpBaxyJiE+C9wAsY/Xes+ddcQ7lJ+dOZ+cgkpidJkiRJg3YvZWPID2RmV3UhEfEMYONK+KzMvL2N4SdQmpc1Oww4u5tcxnEc5d+H82uVdoqIdTKzuc5sV2DtpuN76b72Z1JMYl3WccDWTcfLA3sB32tj7KGV4/vaHDdKRCwJ7EB5vBsBK1Ae7xLAtJohS1aOFwFWpjTPG2oRsS6lrnNTYF3K41ya8hjqXtvqa9ltzd3VmfnXTgdl5t8i4gpGfh9sFRHTOt20dhzDWGsqSZIkSVpA2SxMkiRJkiT1XaNZ15nAmRGxELAZpRHWlpSbOzagvgFWs9mUYor9x7hm85rYJZ3m2+RiRjYLC0rTo1/2MOeYImI94J3AvoxsttSN6s5l7Ujgjz2u262nVo4fBK7ucq7LuhhTbYK0XET08lxUi3wAZgLtFnA8lJndFATdXRMb671U1/zpmIgYqzHfeKo7f87scPylPaw9QkTsC7yWUqBTV4zVrm4+T4NQ/R58DPhTNxNl5g0RcSuw0hjzj2ey3seSJEmSJEmSpriI2Al4F+XvR8sPNpveRUQA7wGOpv4G2mbrAx8BXhoRB2bmXyY4PUmSJEkaFpcAx3TbKKzh8JrYie0MzMzfRcTfgfWawi+MiJltNhtrW6MW51fALo1QUOoi39d02WGVYd/NzPv7mUe/DKAu61TgM5QmZPPNZpymXxGxNiPrQAFO6/R5jYgtgLdRGpQtNs7l41mWIW0WFhHTKJ+pV1AauPei25q7P/Sw5qWMbBa2FKWJXbe1qHWGrdZUkiRJkrQAs1mYJEmSJEmaUJk5l/KH/P/+MT8iFge2AXYG9gM2bDF8v4g4MjOPaXG+riHRVT2ke2Wba/RFRLwX+H+UXdf6oZvGOvdl5gN9Wr9TK1SO/9V4v3QsM2+KiEeBGR0MW6NyvDjwtG7WH8MKwN/bvHZOl2s8WhMb63moPm5o/RnsVvW1Hc+tvS4YEasBJwHP7nWuhqnSqKr6HXVdZj7Uw3xXMbJZWKffgZP1PpYkSZIkSZI09W0G7DboJProG4y+YX0e5Ub464GFgY0oN6zO91TgnIjYNjP/MRlJSpIkSVIf3U99bdQMYDlg1ZpzOwMXR8TszDy10wUjYgnggEp4DmVz03adCHyg6Xhh4GDgc53m04ZjebxZGMDsiHh/Zs6LiOWAvWuuHyqDqsvKzLsj4gzgwKbw7hGxambePMbQ2Yxu4n1cu8lFxAzgs8Br6K0pWrOhrEWLiKcA36ZsqtsP3T7Ov/awZl1TsJVaxLs1bLWmkiRJkqQFWL9+WSFJkiRJktS2zHwgM3+dme/NzKcAewBXtLj83Y3mYnWWq4n1srPWnTWxCdnJPiK+BLyf/jUKg+4a69zTx/U7VX397u5xvk7HT8hrW9HJjoJ1zZImQqeNvLrR6U6KPb0PI2J14Fz6V5AGU2ejhernqNfdBavfg4uM8R1cZ7Lex5IkSZIkSZKeuB4Grh10Ep2IiCMZ3SjsO8BamblNZh6Qmftk5gbA1sBlTdetBPw0IhadpHQlSZIkqV8uyczNan42zszVKHVKsxndtGdh4KSIeEEXa+4PLFWJfSczH+lgjhOBrMSq/6brl9MZWc+zFo83DzuIkfWDV2fmBROUR1eGoC6r2uRrIeBlrS6OiAAOqYSvyczz2lms0Sjse8Dr6O+9t0O3aWJEbAL8hv41CoPuH2cvtaN1Y5ftYb46w1ZrKkmSJElagNksTJIkSZIkDVxm/gzYCvhpzemVgL1aDK0W/UDZrbBbdWPr1uhJRBwMvLbm1BzgW8BhwPbALEojoMUyM5p/gHX6lM5jfZqnG9VGaZ0UbNV5uN0LG82P+tmobSqpa7I3aL2+D48H1q+J/xH4KLAPsDmwCrA0sHDNZ+r9PeYwKNXvqF6+A1uN7/v3oCRJkiRJkiQ1PEr5Xe43gVcBW1B+J3nEIJPqRESsAHykEj4mM1+ambxgrjgAACAASURBVDdVr8/Mi4EdgN83hZ8MvGnispQkSZKkyZeZczLzBGAzSkPlZgsBJ0fErA6nrWvqdWKHed1AaZLUbJOI2LrDXNpZ6yHg1Er40MZ/D6vEj+33+n1wPIOtyzoHuKESO7TuwoYdgSdVYtWGY2N5B/DCmvhNwJeBg4FtgTUpDakWrXm8O3ew3kA0mqKdBqxYc/p3wNHA84GnUWp4lwKm1zzWE/qU0tDW/S7gtaaSJEmSpCHUSRd2SZIkSZKkCZOZD0bESyg7xc+snN6F0cVCAPfWxJboIY26sXVrdK1RZPGJmlMfAz6QmQ+2OdUTYRex6o5uvRZoLN3BtQ8B8xjZTP+HmblPjzlMBXXvseUy866a+NCLiD2BXSvhW4FDGo0I2zVVP1P3MnInxF6+A1uN7+v3oCRJkiRJkiQ1nAB8tXHj9AgRMYB0unYksGTT8VXAUWMNyMz7IuIg4EpgRiP8roj4WmbeOTFpSpIkSdJgZObDEfEyYGVGNlJamrK55i7tzBMRGwDPrDl1YZ/+HXkYIxs798txwGuajveJiJ2BpzfFHgNOmoC1uzYMdVmZmRFxAvDepvCGEfGMzLywZki1kdhc2mwmFxErAe+qhB8D3gZ8MTPb3RBzKtShvRJ4SiV2LfCSzLykg3n69ViHue53Qa41lSRJkiQNoWnjXyJJkiRJkjQ5MvMeyk50VRu0GFJ3s8SyNbF21Y2d08N8dXYEVq3EjsnMd3XQKAxg+T7mNCjV12+FbieKiIUZeSPOmDJzHlBtjrVOt+tPMbfXxGZNdhJ99NLK8VzgBR0WpMHU/UxVP0e9fAfWjX84Mx/ocU5JkiRJkiRJGiUz76xrFDYFvaBy/PnMfHS8QZn5d+CHTaGlgRf1MzFJkiRJGhaNRkuHAPdUTj07Ig5oc5rD+5vVKC+NiMX7PWlmXgxc3hRaFDi5ctlZmfmffq/do2GpyzoeyEpsdvWiiFgSeHEl/PPMvKnNdfYCqq//OzLzcx00CoOpUYdWfW3vBXbtsFEY9O+xLtPnsX3bOHUBrzWVJEmSJA0hm4VJkiRJkqRhU7cz38wW195WE6vudtaJjWpidY2VevGcyvE84MNdzPOkPuQyaP+qHK8eEct1OddTgU63h7ylcvzkiFiky/WnkurjBth00rPon+pn6uzM7GaHz6n6map+D67T4/u4+j3Y7+9ASZIkSZIkSRq4iFgyInaPiEMj4u0RcVREvCwitoyItmtrI2IpYLNKuJObps+uHO/bwVhJkiRJmlIy80bgvTWnPhIRM8YaGxHTKc3GJtLSTNy/y46rHK9WOT52gtbtxVDUZWXmdcC5lfBLImLRSmx/YIlKrPq8j6X6eO8EvtjB+PmGug6t0VRt20r4xMy8vovp+vVYn9zD2LrNiG/tYb46C2qtqSRJkiRpCNksTJIkSZIkDZu7a2KtdmW7tCa2ZQ9rb1U5zhZr9GLNyvHfMrOuedN4qsUaU1Fd4dAzupyrm3HV9RcDdupy/amk7nl/7qRn0QcRsTCwUiX8f13MsxCwdV+SmnzV76jpjL4xrS0RsRajn88/dDOXJEmSJEmSJA2jRoOwXwFzKI26jgU+DnwKOBG4GLglIj7W5gYnqzGyFvf+Dm+uvbxyvIs3m0qSJEl6gvsK8I9K7EnA4eOMez6wciX2H+BPPf5UjZdHt04CHmlx7lbgfydo3a4MYV1WtenXMsA+ldjsyvEc4McdrFGt7bwoM1u9ZmMZ9trO6u8yoLvXdiX61yxsiz6OvRf4Ww/z1VlQa00lSZIkSUPIZmGSJEmSJGnYVAt6YPSuXPNdCjxUie3dKDDpSESsDGxfCf81M+d0Otc4ZlaOO56/sYvi3v1JZ6AuqIkd2OVcB3Ux5hc1sYO7XH8qOR+4vxLbs82bnoZN9fMEXXymgOcBS3aZQ7WZYcffPz06vybW7Q6n+7U5vyRJkiRJkiRNKRExMyJ+QWkQtjMwY4zLZwLvAK6JiB3GmXr5yvFdHaZWvX4GsGGHc0iSJEnSlNFovvSBmlP/M07z5LomXodm5ma9/DC6CdAOEbFet4+vlcy8HTizxemTMrPVhqqDMgx1Wc1+ANxTiR06/38iYl1G139+OzMf7mCNftR2zqT83mGY9eu1PaDXRJo8JSI26HRQRDwZ2LgSvjgz5/Unrf9aUGtNJUmSJElDyGZhkiRJkiRp2Dy7JnZt3YWZ+Sjw60p4FbprpPVKYHol9vMu5hlPtUlTXeHFeA4EVu1DLgOVmX8Crq6E942IdTqZJyKeRXe78f2M0c3mXtpN0clU0ii4O7sSXgo4agDp9Kr6eYLuPlNv6SGHeyvH/Shu68Q5wNxK7GURsUQnk0TEdOAVNacm4ntQkiRJkiRJkiZN4ybvi4BdK6fuBc4Fvgt8H7gEaL6ZdAXgFxGx+xjTP1I5HuvG9jp112/U4RySJEmSNNWcDPytEluD+toVImJV4LmV8C3UN/DpJpeqw/owb51jO4wP0jDUZf1XZj5A+fd7s10iYs3G/8+uGXZch8v0o7bzdcCiXYybTD2/to0Nb4/sTzr/dUQXY+q+M37aayI1FshaU0mSJEnScLJZmCRJkiRJ6klEvKDT5k5jzLUusH/NqVY76gF8qSb2qYhYvIN11wbeWQlni7l7dXPl+MkRMavdwRGxMvCpfiY0YF+tHC8KfDUiFmpncEQsWTNHWxq7NX69El4IOCUiFutmzinkwzWxtzcar00ZmXk38EAlvFsnc0TEEcBOPaRxZ+X4ST3M1bHM/DdwRiW8MvC+Dqd6E1AtXvpdZl7WbW6SJEmSJEmSNGiNvxedwcjf3f4V2BdYLjN3zsyXZOZ+mbkV5eb0bzRduzBwckSs3mKJOyrHy0VEJzcF120O442mkiRJkp7QMnMu8MGaU+9q8W+q2ZS6rmanNubp1XeAxyqxl7dbv9ahsyj/Dmz+WTkzr5yAtXoyJHVZVdXmX9OAQyJiGnBI5dyfuqh7qtZ2btfJho0RsTHwrg7XHITq44QOX1tKbdr6fcil2ZGNhu9taVxbbVj2MHB8P5OCBb7WVJIkSZI0ZGwWJkmSJEmSerUn8LeIOC4iNux2kohYjXKzRrXJ123AL8cYehZwdSU2i/JH+OltrLsc8KOadX+SmdXdC/vh/2piH29nYEQsT2mc1s2OdcPqWODGSmw34ISIWGSsgRGxLOX52LiH9T/K6J3yNgfOaLw3OhYRa0fEMRGxSQ95TahGIdQPKuEZlMe9QzdzRsQiEfHKiHhzzwl25rzK8U4R8bx2BkbEHsAXelz/8srxJk07Vk6Wz9bEjoqIl7QzOCJ2p76B3Kd7ykqSJEmSJEmSBu+TQPPv638KPD0zf1B3U3lm3pyZrwSOagrPpP4mdih/47iv6XghYMsO8tu2JrZMB+MlSZIkaao6hdF1f6sBr6659tCa2Mn9SCIzbwN+VpPHc/sxf2WtzMz/VH5u7fc6fTTouqwRMvMCRr9nZgO7AGtV4sd2sUS1tnNJ2tywsbFh7I+BMWseh0HjPVetjT0oIp7WzviIOJSJaYq2CHB6O3WbjWtOZ/TzfUqjsddEWCBrTSVJkiRJw8dmYZIkSZIkqR+mU4ouroqICyPi9RFRtxP6KBGxeES8GrgMeGrNJW/LzIdajc/MBA4Hqjd0vBD4+Vg7jUXENpSClmqRw12M3nGsX84G7q3E9o+Ib461C11E7AZcyOM3mNwzQflNqsy8F3hlzamDgL9ExMsiYsRNMRGxSkS8nlL4s2MjfB1wSxfr/wd4OZCVU7sDf4iIg9tsOrdERBwQEacDfwdeD9TtcjlMXkV53prNBM6JiE9GxCrtTBIR20TEp4Hrga8B6/Y1y/GdVhP7bkTs22pARCwaEe+lNAqcv7Nft5+p8yvH04DvRUQnN4P1JDPPB75Sk8dJEXF0RCxcNy4iFoqItwA/BKrXnJGZZ/Q/W0mSJEmSJEmaHI2Nao5oCl0P7JuZD443NjM/Q9mwZr6D6n5vnpmPAb+rhF/WZn4BHFxzaql2xkuSJEnSVJaZ84D315x6Z0T8d+PPiNgRWL9yzdWZ+Yc+plPXeOzwPs4/VQ26LqvOcZXj9YDPV2KPAN/uYu4fAPMqsbdFxAfHqiGMiJcCFwBPaoSmQm1n9bWdAZwdETu1GhARy0bE54Fv8fh9yf16rPNrhJ8KnBcRW4+Rx1aUxm7VeuPbgHf0KZ9RFvBaU0mSJEnSEBn3H5+SJEmSJEkd2qbxc0xEXA9cBFwJ3A7cQflD+dLA2sCmlF3dWjXJOi0zTxhvwcw8PyLeD3ygcmpn4MqIOAf4FXATZUf3NYHnAdsBUZ0OeFVm/nO8dbuRmXdGxGeB91ZOHQ7sHRHfAy4F7gSWpRSQPJ+RhQ1zgTcyuvBlSsrMn0bEh4H/qZxaDzgRmBsRt1CauM0EVmTk6/YIcAiji7aqDeRarf+DRoHSByun1gFOAj4VEecCl1AKSu6nvIeXbeS4JeW9PPS7AjbLzDsiYi9Kw7zmhmzTgbcCb4iIC4DfAjdS3pOLUB73qsDTKY99xcnMu8aJlJ0Km5uULUlp2HUp8BNKUc2jwErAFpTP1ApN11/ZuK6bYqEfAXOA5Zti2wAXR8S9wL95vJjpvzJzsy7WGstRwPZA8y6D0ym7W74mIs4A/kz5Ll4O2Ah4EbBGzVz/YuQNdJIkSZIkSZI0Fb2akRslvD8zH+hg/Kcpf0+iMc8ewPE1151MuTF0vkMj4iuZ+cdx5j+S0Te8g83CJEmSJC04TgPeDWzcFFsZeC3wqcZxXdOuk/qcx48oTY+WbortGRErZeatfV5rKhl0XVadk4CPUOpA53tK5ZqfZOYdnU6cmX+LiJMptYjN3g3MjojvU+qv7qPUim0A7MXI5+cBymOtbvw4bD5LaVK1bFNsFeDXEfFb4GeUpuvzGvHtgOdSXv/5zqHU5Fafr258AnhLY/6NgAsj4jzgp5RaNih1v3tQauTq6n5fk5m39SGXlhbUWlNJkiRJ0nCxWZgkSZIkSZpIsxo/3TiBDnbny8wPNnZgr+42OINSILBHG9M8ChyamXU74vXTh4AdGz/NVqDcuDKWpBRDndv/tAYnM98dEUkprKlaCFit8VP1MHBQZp5Xsytb27vWZeaHIuLfwJcYvUvbysABjZ8nlMz8S2OnvdMZ2WQKyo1Pde/ToZKZj0bEfpSmZ4tXTm/e+BnLTcCewOwu138oIt5M+c6qWopSFDbhMvPBiHg2cCZQ3VlxJeBVbU51FbBHZs7pZ36SJEmSJEmSNADPafr/ucD3Oxx/HvAYj9fabk99s7DvAEfz+M3BM4CfRMQemXlF3cQRcQCP3/heNa/DPCVJkiRpSsrMeY1NQqv1em+PiK9Q6sZeXB0GfLvPeTwYEaczsn5oBqUJUqt/uz3hDbouq0VON0fE2Y15Wzm2hyXeQKm92rASXwN40zhjHwX2ozQMG2qZOSciDgJ+zMjGawA7NH7G8hfKY/1sn1K6DjiIUse4EKUZ2PaNn/Ek8OrM/EGfchl7sQW01lSSJEmSNDymDToBSZIkSZI05Z1EKb65q0/z/QN4YWbOzsy5nQzMzA8ALwX+3cW6VwLPycy+FhLVycxHgRdSmvp04i5g/8z8ev+zGrzMfA+wG3BNm0P+CDyrqchjucr5uztc/1hgW+BXnYyr8RDlxqB/9jjPpMjMa4BtgM9QdrLrxSXAWT0n1aHMvAzYHbi5w6EXAs/IzOt7XP9E4Ajg3l7m6VVjZ8Sdga9SbmDraDhwCvDMzJwS711JkiRJkiRJaiUiFgW2aAr9C5gZEbPa/aFsYtL89691qZGZj1FuaH2kKbwGcGlEfDkido+IDSPiqRFxQEScSfk7wozGtTdWpuzX39wkSZIkaSr4PvDnSmxF4EjgQEY3qTovM2+YgDxOrom1vdnpE9Wg67JaGKsZ2M3Az7qdODPvBnal5N+JfwO7Zuak1851q5HrfnSwKWvDmcD2mXlnn/P5MbA3nf1eZA5ls9lJraldUGtNJUmSJEnDwWZhkiRJkiSpJ5n5u8w8GFgJ2AX4AOUP4Pd1MM0tlIZjewIbNP7o320+3wHWA94OXEppgNPKY5Rd744ANs3M33S7bqcaRSV7UW4eqRY7Vd0KfJLy3HS66/2Ukpm/ADYGng8cB1wO3A7MpTT/+hPwdUoB0uaZeQlARCzF6MKwOV2s/8fM3AV4BnAio2/QaeVmSsHYy4FVMvOlmXlrp+sPSmY+kJlHAbOAoylNv9pp1vcQ5fP+/4CNM3OrQRU8ZeZ5wNOATzB+wdAllNfqmZnZ7ms83vrfAlYHDqU0UbyM8tl9sB/zd5DHA5n5GmATSmHcf8YZMgc4FdgiMw/qdxGXJEmSJEmSJA3IKjzejAvK77+v6+JnZtMcy7daLDMvAg6m/N58voWB1wBnA1dR/h70Hcrfw+b7IXB8ZTqbhUmSJElaYGRmUuqVqt4KvKomXtfUqx9+DdxUiW0YEdtN0HpTxqDrsmr8hFJTWOfETjeprcrMm4AdgNdTNr8dyw3Ae4ANM/O3vaw7CJl5BrAp8DXGrnObB5xL2Qj4BZk5Ib+7yMwzgY2ALzF2E7PbgC9SnvdTJyKX8SyotaaSJEmSpMGL8vs0SZIkSZKk/oqIoDTOWR9YC1gaWIrSvOse4F7KH70vz8zxmtn0ksfKwFaUZmYrUhog3UZpoHNho2nXwEXEWpSdxlamPFcPUXabuwL4c/pLnDFFxHOAn1fCu2Rmrzu3ERHrUQpQVmj8LExphnc35Uahq5+IxRoRsQyPf3ZWAJahFATdS3lv/hX4R6/FVRMhIhYCtqQ0npsJTKfkfR1wyUR+5wybxnfxppTv4pWAZSnfwbfx+PMxb3AZSpIkSZIkSdJoEbET5Ubt+W7IzFkdjN+CcoNyP12fmeuMs+6WwJcpv18fy6PAR4APN64/ouncmzLz870kKkmSJEnSRFgQ67Ii4snA1pT60yWA+ymNof6cmX8dZG79FBGLANsAG1DqBadRmsNdC1ycmR1v3tpjPjMov1/ZuJHPPErN8XXABUNat7hA1ppKkiRJkiaXzcIkSZIkSZI05UXE54A3NoXmActl5li7y0mSJEmSJEmSpCHUh2Zh2wLn9zmttnNobHKyF7A9sBplI4c5wA3A/wInZeZ1jWvPA57ZNPxZmfm7PuYtSZIkSZIkSZIkSZKeAKYPOgFJkiRJkiSpFxGxPHB4JfwnG4VJkiRJkiRJkrTAur1y/PPM3H2yFs/MXwC/GO+6iJgBbNEUegy4dKLykiRJkiRJkiRJkiRJU9e0QScgSZIkSZIkdSsiAjgBWLJy6usDSEeSJEmSJEmSJA2HWyrHTx5IFuN7JrBo0/FFmfngoJKRJEmSJEmSJEmSJEnDy2ZhkiRJkiRJGriIOCQidu1wzNLA6cDzK6fuAk7uV26SJEmSJEmSJGlqycx7gCuaQrMiYv1B5TOGwyvH3xxIFpIkSZIkSZIkSZIkaejZLEySJEmSJEnDYDvgFxHx14j4WETsHBHLVy+KiBkRsVVEfAi4Dti7Zq7XZ+Z9E52wJEmSJEmSJEkaaj+rHL9iIFm0EBHrAvs2he4CvjugdCRJkiRJkiRJkiRJ0pCLzBx0DpIkSZIkSVrARcRXgVfVnLqdcnPMw8CywExgkTGm+lZmHtH/DCVJkiRJkiRJ0mSJiJ2AXzeFbsjMWR3OsR5wFTC9EXoI2DIzr+hHjr2IiIWAs4Fdm8JvzcxPDyglSZIkSZIkSZIkSZI05KYNOgFJkiRJkiRpDDOB9YCNgdUZu1HYh4BXTEZSkiRJkiRJkiRpuGXm34HjmkKLAmdFxEadzBMR/5+9e4/zqq7zB/46A8NNQJCbF0xESRMvZWqIeMPc7LJlZZZZZrVl6u5qrt1+ZdjWau5WWqubm5tJWayleasWTYW8kPdKE68p4pWLiIJchsv5/TEwzgwzw3dgmO/APJ+Px3nwfX/O5/I+MwzyePD2fXoXRXHieub0bOt+s7m1SX6Wpo3C7k5yQXvyAgAAAAAAAAC6F83CAAAAAOgK7kgyawPX3pTk0LIszyrLsuy4lAAAAAAAgE2pKIqRRVGMan4l2bbZ1J4tzVtzDW3jiDOSPNAofkOSe4ui+LeiKHZsI6++RVG8vSiKHyR5Jk2bjrXkqKIo7i2K4pTW9l3TdOz9a/I5rtGtl5OcUJblqvWcAQAAAAAAAAB0Y4X/fxIAAACArqIoir2THJzkgCS7pP5/2hmUpG+Slan/H2ZeSvJokluT3FSW5czqZAsAAAAAAGyMoihmJdlpI7eZXJbliW2csWOSG5Ps3sLtJ5M8kmRhkp5Jtk4yKsmuSXo0nliWZdHGGe9Jcn2joWeTzEyyIEltkhFJ3pJkq2ZLX0ry7rIs72ptbwAAAAAAAACApL6wAQAAAAC6hLIsH0jyQJKLqp0LAAAAAACw+SvL8pmiKPZPcnGS45vdHr3mWp+F7Tx25JqrLXckOaEsyyfbuTcAAAAAAAAA0A3VVDsBAAAAAAAAAAAAANhUyrJcXJblx5Lsk+TyJC9XsOz5JD9P8qEk265n7kNJJid5cX2pJLl1zZ4HaxQGAAAAAAAAAFSqKMuy2jkAAAAAAAAAAAAAQKcoiqImyd5J9kiyTZJBSZYleTXJrCQPl2X5zAbuPSrJXkl2TLJ16l/s+2qSvyW5qyzLlzYuewAAAAAAAACgO9IsDAAAAAAAAAAAAAAAAAAAAAAAALqommonAAAAAAAAAAAAAAAAAAAAAAAAALRMszAAAAAAAAAAAAAAAAAAAAAAAADoojQLAwAAAAAAAAAAAAAAAAAAAAAAgC5KszAAAAAAAAAAAAAAAAAAAAAAAADoojQLAwAAAAAAAAAAAAAAAAAAAAAAgC5KszAAAAAAAAAAAAAAAAAAAAAAAADoojQLAwAAAAAAAAAAAAAAAAAAAAAAgC5KszAAAAAAAAAAAAAAAAAAAAAAAADoojQLAwAAAAAAAAAAAAAAAAAAAAAAgC6qZ7UTgGorimLrJIc2GnomSV2V0gEAAAAAAAAA2Bi9kuzYKP5DWZavVCsZAFCjBwAAAAAAAABsIapan6dZGNQXIV1b7SQAAAAAAAAAADaB9yW5rtpJANCtqdEDAAAAAAAAALZEnVqfV9NZBwEAAAAAAAAAAAAAAAAAAAAAAADto1kYAAAAAAAAAAAAAAAAAAAAAAAAdFE9q50AdAHPNA6uueaa7LrrrtXKBQAAAAAAAABggz3xxBM5+uijGw8909pcAOgkavQAAAAAAAAAgM1etevzNAuDpK5xsOuuu2bs2LHVygUAAAAAAAAAoCPVrX8KAGxSavQAAAAAAAAAgC1Rp9bn1XTmYQAAAAAAAAAAAAAAAAAAAAAAAEDlNAsDAAAAAAAAAAAAAAAAAAAAAACALkqzMAAAAAAAAAAAAAAAAAAAAAAAAOiiNAsDAAAAAAAAAAAAAAAAAAAAAACALkqzMAAAAAAAAAAAAAAAAAAAAAAAAOiiNAsDAAAAAAAAAAAAAAAAAAAAAACALkqzMAAAAAAAAAAAAAAAAAAAAAAAAOiiNAsDAAAAAAAAAAAAAAAAAAAAAACALkqzMAAAAAAAAAAAAAAAAAAAAAAAAOiiNAsDAAAAAAAAAAAAAAAAAAAAAACALkqzMAAAAAAAAAAAAAAAAAAAAAAAAOiiNAsDAAAAAAAAAAAAAAAAAAAAAACALkqzMAAAAAAAAAAAAAAAAAAAAAAAAOiiNAsDAAAAAAAAAAAAAAAAAAAAAACALqpntRMAAAAAAAAAALqOsiyzevXqlGVZ7VRgi1EURWpqalIURbVTAQAAAAAAAACADqfuDKiW7lSfp1kYAAAAAAAAAHRjZVlm2bJlWbRoURYtWpS6urpqpwRbrF69emXAgAEZMGBA+vTp0y2KkwAAAAAAAAAA2PKoOwO6mu5Qn6dZGAAAAAAAAAB0U0uWLMnzzz+fFStWVDsV6Bbq6ury0ksv5aWXXkptbW2233779OvXr9ppAQAAAAAAAABAxdSdAV1Rd6jPq6l2AgAAAAAAAABA51uyZElmz56tYAuqZMWKFZk9e3aWLFlS7VQAAAAAAAAAAKAi6s6AzcGWWp+nWRgAAAAAAAAAdDNrC7bKsqx2KtCtlWW5RRYkAQAAAAAAAACw5VF3BmxOtsT6vJ7VTgAAAAAAAAAA6DxlWeb5559fp2CrtrY2AwcOTP/+/VNbW5uiKKqUIWx5yrLMihUrsnjx4rz66qtN3qy69mdyl1128XMHAAAAAAAAAECXpO4M6Kq6U32eZmEAAAAAAAAA0I0sW7asSSFEkgwYMCA77LDDFlEIAV1VbW1t+vXrl2HDhuW5557LokWLGu6tWLEiy5cvT58+faqYIQAAAAAAAAAAtEzdGdCVdZf6vJpqJwAAAAAAAAAAdJ7GBRBJfYGEgi3oPEVRZIcddkhtbW2T8VdffbVKGQEAAAAAAAAAQNvUnQGbgy29Pk+zMAAAAAAAAADoRpoXbQ0cOFDBFnSyoigycODAJmPNfzYBAAAAAAAAAKCrUHcGbC625Po8zcIAAAAAAAAAoJsoyzJ1dXVNxvr371+lbKB7a/6zV1dXl7Isq5QNAAAAAAAAAAC0TN0ZsLnZUuvzNAsDAAAAAAAAgG5i9erV64zV1tZWIROgZ8+e64y19DMKAAAAAAAAAADVpO4M2NxsqfV5moUBAAAAAAAAQDfR0lvRiqKoQiZATc26ZTtbwpsLAQAAAAAAAADYsqg7AzY3W2p9nmZhAAAAAAAAAAAAAAAAAAAAAAAA0EVpFgYAAAAAAAAAAAAAAAAAAAAAAABdlGZhAAAAAAAAAAAAAAAAAAAAAAAA0EVpFgYAAAAAAAAAAAAAAAAAAAAAAABdlGZhAAAAAAAAAAAAAAAAAAAAAAAA0EX1rHYCNFUUxe5J9kkyMknfJMuSzE3yRJK/lGX52kbsXZvkPQtRGwAAIABJREFUoCRvSLJdksVJnk/yp7IsZ21c5uuctXOSNyfZPkn/JC8keTrJjLIsV3TkWQAAAAAAAAAAAAAAAAAAAAAAAFsqzcK6gKIoBiU5LcmnUt/IqzWriqL4c5Iry7L8djv2H5bkG0k+nGSbVubMSPK9siyvqjjxlvc5JskZSQ5sZcqCoiiuSPL1siznb8xZAAAAAAAAAAAAAAAAAAAAAAAAW7qaaifQ3RVF8aEkTyQ5O203CkuSHknemuT0duz/ziR/TXJyWmkUtsb4JFcWRXF5URRbVbp/o3P6F0UxJcmv0nqjsKzJ4eQkfy2K4h3tPQcAAAAAAAAAAAAAAAAAAAAAAKA70SysioqimJTkl0mGNLs1O8lNSaYkuTrJnUle24D9D0tyTZLhjYbLJPelvqnX75PMb7bs+CRTiqKo+PdGURQ9klyR5CPNbs1LcuOas+5fc/ZaI5JcWxTFhErPAQAAAAAAAABor9mzZ+drX/taDj744IwYMSK9evVKURQN12WXXVbtFAEAAAAAAAAAALYIo0aNalKfNX369GqnBFuMntVOoLsqiuJfkpzdbHhKknPLsnywhfk1SQ5M8sEk76hg/5FJfp2kV6PhO5J8pizLhxvN653kpCTfSVK7Zvjvk3wryf+r8HG+neRdjeIVSc5I8qOyLOsanbVHkv9Z8xxJ0jvJNUVR7FWW5QsVngUAAAAAAAAAdIJRo0bl6aefboinTZuWww47rHoJbYBLLrkk//RP/5Tly5dXOxUAAAAAAAAAAACADVZT7QS6o6Io9kl9g621ViT5UFmWH22pUViSlGW5uizLO8qyPCPJPhUc840kgxvFM5K8vXGjsDX7Li/L8gdJjm22/oyiKHaq4FlGJzmt2fCHyrK8sHGjsDVnzUxyRJI/NhoekmTS+s4BAAAAAAAAAGiP3/3udznppJMqbhQ2ffr0Jm+0PPvsszdtggAAAAAAAAAAAAAV6lntBLqboih6Jrk0Tb/2J5VleWWle5RluXI9Z4xJ8olGQ3VJTizLclkbe15TFMXkRut6p76J16fWk86kJLWN4svKsry2jXOWFkVxYpIHk/RaM/zpoij+vSzLJ9dzFgAAAAAAAABARb7yla+kLMuG+KMf/Wg+/elPZ8cdd0xt7eulDkOHDq1GegAAAAAAAAAAAAAV0yys830oyb6N4pvLsvxJB5/x0SQ9GsW/Lsvy8QrWnZemTcaOLYrilNaajBVF0TfJMS3s0aayLB8riuKaJMeuGeq5JudvVZAjAAAAAAAAAECbHn300TzwwAMN8bve9a78/Oc/r2JGAAAAAAAAAAAAABuuptoJdEMnNYvP2QRnvL9ZXFEzsrIsH05yV6OhrZL8XRtL3pGkX6P4j2VZPlJRhuvm9IEK1wFdQVkm8+9KHv1BMvfWZPXKamcEAAAAAAAA0ODee+9tEh9zTPN3oQEAdBOrVyR/+0ly/5nJnOnVzgYAAAAAAAAA2EA9q51Ad1IUxa5JDm00NCvJtA4+Y9sk+zQaWpnkjnZsMT3J2xrF70xyXStzj2phbaVuS31ua38PvqUoihFlWc5pxx5ANZSrk3v/MXn8h6+P7fjB5KApSU1t9fICAAAAAAAAWGPOnKblByNHjqxSJgAAVfTa08m1o16PH/lu/a9HP5P08/cjAAAAAAAAANicaBbWuQ5vFt9clmXZwWfs2Sx+oCzL19qxfkazeGw7zvpjpYeUZflaURQPJnlLs7M0C4Ou7sWbmjYKS5Jnrkpm/SIZ/Ynq5AQAAAAAAADQyOLFi5vEtbVefAQAdEONG4U1ds2OyUc7unwVAAAAAAAAoPOUZZn7778/jzzySObOnZvly5dn2LBh2WGHHTJhwoT079+/2ilusGeeeSb33HNPnn322SxdujRDhw7NXnvtlf322y81NTUbtffcuXNz22235fnnn8/SpUuz/fbbZ/To0Rk3btxG792SmTNn5sEHH8y8efPy6quvZptttsl2222XCRMmZMiQIR1+3pZOs7DOdUCz+I9JUhRFkeSIJMcneVuSHVL/vZmf5PEkNyX537IsZ1Vwxh7N4ifamePf1rNfY2/qgLMaNwvbI8kt7dwD6Gwz/73l8QfP1iwMAAAAAAAAaLdNUbS1evXqTZApAMBmZPmCtu8vfjLpP7pzcgEAAAAAAADoIPPnz88555yTyy+/PPPmzWtxTq9evTJx4sScffbZedvb3lbRvieeeGImT57cED/11FMZNWpURWunT5+eww8/vCGeNGlSzj777Fbn17caqnfooYdm+vTpSZIZM2Zk0qRJueWWW1qsgRsxYkS++tWv5tRTT213Y68//elP+cIXvpBp06a1uPfIkSNz0kkn5ctf/nJ69uyZs88+O9/4xjca7k+bNi2HHXZYRWe99NJL+Y//+I9cfvnlee6551qcU1NTk/Hjx2fSpEl5+9vf3q5n6c46vp0bbdmvWfxwURSjUt8M7PdJTkx9A66BSfoleUPqm4idm+SxoiguKoqi33rO2LVZPLudOT7dLB5SFMXg5pOKotgmyTYbeVbz+WPauR6ohjk3tzz+2qxOTQMAAAAAAADYvM2fPz9nnHFGRowYkf322y8f+9jHcsYZZ+QrX/lK/uEf/iHvfOc7M2TIkLzzne/MXXfd1eZes2bNSlEUDVfjIqUkOfzww5vcX3tddtllDZ8bF2slyTe+8Y0W16y91hZoAQB0SS9Mbfv+s9cnZdk5uQAAAAAAAAB0gGuuuSajR4/O+eef32qjsCSpq6vL1KlTM27cuJx00klZuXJlJ2a5Yc4555wccsghuemmm1p9WeacOXPyz//8zznmmGNSV1dX8d7f+973sv/+++fmm29ude9nn302Z511Vg499NDMmTNng54hSX76059m9OjROe+881ptFJbUvxD09ttvz5FHHpmPf/zj7Xqe7qxntRPoZrZrFvdLck+SoRWsrU1ySpIDi6J4d1mWL7Qyb1CzeG57EizLcnFRFMuS9Gk0vHWSl9dzzpKyLF9rz1kt5LZ1O9cDAAAAAAAAAJuha665JieccEIWLVrU5ry1RVtTp07NZz/72Vx00UXp2VO5CwDAej33m7bv3396Mv+PyX7/mfQekpSrkxp/zwIAAAAAAAC6pksvvTSf+cxn1ml2tcsuu2SPPfZIv379Mnv27Nx9991ZtWpVw/0f/ehHmT17dq6//vouW3v2ne98J1/96lcb4t122y277bZbttpqq7zwwgu58847s2zZsob7V199dc4666ycd9556937u9/9bs4888x1xvfYY4+MGTMmvXv3zuzZs3PPPfdk1apVmTFjRo499tgccsgh7X6Or3/96/nmN7/ZZKwoiuy2224ZM2ZMBgwYkJdffjn33ntvk2Zvl19+eV544YVMnTq1y36Pugpfnc7VvMHWT/J6o7DXklyc5P+SPJtkqyT7JPlUkgmN1rwlyVVFURxaluWKFs7o3yxeugF5Lk3TZmEDNuE5jbV0TrsURTE8ybB2LttlY88FAAAAAAAAACqzJRdtAQB0CatXJs//3/rnzb6i/mpsx2OSXf4hGXFosmJR0rN/svT5pN+OSY9e655TtyDpM7zjcgcAAAAAAABo5s9//nNOPvnkJjVnb37zm3PRRRdl/PjxTebOmzcvZ511Vv77v/+7YWzq1Kn5+te/nnPOOafTcq7Ugw8+mNtuuy1JcvTRR+fcc8/N7rvv3mTOyy+/nDPOOCOXXXZZw9h3v/vdnHzyyRk1alSre99333358pe/3GTssMMOy4UXXpixY8c2GZ83b16+/vWv5+KLL86tt96amTNntus5Jk+e3KRRWE1NTU499dSceeaZecMb3tBkblmWufbaa3Paaadl9uzZSZKbb745Z511Vs4999x2ndvdqJzsJEVR9E7Su9nwyDW/zkxyVFmWzzS7f3+SnxRF8S9JvtNo/MAkX0ryrRaOat7Ea1kLc9ZnaZLBbezZkee0teeGOCXJpA7YBwAAAAAAAIDmVq9Mljxb7Sy2fP1GJjVbZknHpiraGjlyZJ566qmG+IILLsj3v//9hnjKlCkZN27cOvkMHTo0hx12WJLkzjvvzHHHHddw77TTTsvpp5/e6rNsu+2263laAIBqKZJDrkme/03y8HfWP72xZ66sv9pr6IHJyPcng9+cDH5L0mfo+tcAAAAAAADQLZQrVybz1J1tcsNGpthCX8L46U9/OnV1dQ3xhAkTcsMNN6Rfv37rzB02bFguvvji7LrrrvnCF77QMH7eeefluOOOy1577dUpOVdqwYIFSZIvfvGLOe+881qcM3jw4PzkJz/Jyy+/nGuvvTZJsmrVqvz4xz9u0qCruVNPPTUrV65siD/wgQ/kiiuuaPFlncOGDcsPf/jDjB49Ol/84hczf/78ip/h6aefzsknn9wQ9+7dO9dcc02OOuqoFucXRZGjjz4648ePz0EHHZQnnngiSfIf//Ef+exnP5udd9654rO7my3zJ7xr6tHK+CtpuVFYg7Isv1sUxQ5JPt9o+PNFUVxQluXi9ZxbtjPPrr4GAAAAAAAAgGpZ8mxynSKMTe69TyX9R1U7i01iUxVt9ezZs8kbEgcNGtRkr2233bbVNyj271//brNZs2Y1GR80aFCbb10EAOiyanokIw6tvx79QbK6bv1rNtb8P9Zfrfm7u5KhB2z6PAAAAAAAAOh65j2b8tjdqp3FFq/45aPJdqOqnUaHmzZtWu6///6GeODAgbniiitarDlr7Mwzz8wf/vCH/OY3v0mSrF69Oueff34uvfTSTZrvhpgwYULOPffc9c77t3/7t4ZmYUlyyy23tNos7J577sldd93VEG+33Xa59NJLW2wU1tgXvvCF3HTTTbnxxhsrzL6+ydfSpUsb4vPPP7/VRmGNDR8+PL/4xS9ywAH1/5a8atWqnH/++fnBD35Q8dndTU21E+guyrJckmR1C7e+11ajsEbOSn1jsbW2SfLOFuY1bx7Wt7IM21zTUkOyzjoHAAAAAAAAANgCbEzR1nve856GeG3RFgAAFdj7X6udQb0b35b8okhWLl3/XAAAAAAAAIA1Jk+e3CQ+9dRTs/3221e09tvf/naTeMqUKVm+fHmH5dZRvvrVr6amZv1toMaOHdvkBZh//vOfW507ZcqUJvE//uM/Zuutt64on7POOquieUny2muvNWnANnr06Jx00kkVr99///1z8MEHN8TXXXddxWu7I83COtdrLYz9tJKFZVm+luTXzYYPa2Fqd28W9l9J9mzn9b4OOBcAAAAAAAAAaEN3KNoCAOhy9vhStTNo6pdtN4oFAAAAAAAAaOz2229vEn/sYx+reO3YsWOz7777NsTLli3Lfffd12G5dYS+fftm4sSJFc9/05ve1PB5yZIlWby45XY9M2bMaBIfe+yxFZ8xYcKEimv7br/99ixd+vpLo4455piKGp81dvjhhzd8fvrppzN79ux2re9OelY7gW5mYZIBjeI5ZVnOasf6O5N8slH8phbmvNIsHtaO/VMURf+s28RrYQXn9CuKYqs1Tc0qNbyCc9qlLMu5Sea2Z01RFBt7LAAAAAAAAACwHh1RtHX//fcneb1oa/z48R2aIwDAFumYl5MrB1c7i9e9+ngycEy1swAAAAAAAAC6uJdffjl/+9vfGuJBgwY1aZZVifHjxzfUnSXJPffc06XqznbZZZf06tWr4vmDBzf9t99XXnkl/fv3X2feX/7yl4bPgwYNyq677tquvPbbb79cd911653XvC5w++23z6xZs9p1VvPnf/LJJ/OGN7yhXXt0F5qFda7HkuzYKH6hneufbxYPaWHO483indp5RvP5C8qyfLn5pLIsXyqK4uUkjf8EeUOShzfirOa5AwAAAAAAAABbgO5QtAUA0GX1GpQctyqZ0qPamdT7zRtf/7zzCck+5yZ9RiRFkaRY8ysAAAAAAADQ3c2bN69JPGbMmBTt/PfE3XffvUk8d+7cjc6rIzVv/rU+tbW1TeIVK1asM+e1117LsmXLGuINabxV6ZpnnnmmSXz66afn9NNPb/d5jS1YsGCj1m/JNAvrXA8lOaJRvLyd65vP79PCnObNutrX1i8Z3Sye2cbch5M0rrrdtYXz23NWe9YCAAAAAAAAAJuJ7lC0BQDQpRU1yQ5/nzx3fbUzaeqpn9ZfzQ3aOxlzSjL0wGTgG5MeLZXMAgAAAAAAAFuyl19+uUm89dZbt3uP5mu6WiOqmpqaDt9z4cKFTeIBAwa0e4+BAwdWNO+ll15q997rs2jRog7fc0uhWVjneqBZPKid65vPb+mn5a/N4r2LouhXluWSCs84aD37Nb/XuFnYgUkqqiIpimKrJHu34ywAAAAAAAAAqq3fyOS9T1U7iy1fv5HVzqDDdYeiLQCALm+PL3W9ZmGtWfhAcs/n2p5T0ys54EdJ0TNZtbS+sdigsZ2THwAAAAAAAJUbNjLFLx+tdhZbvmFbXt1ZWZZN4va+oLIlHbFHV9e7d+8mcV1dXbv3qHTNhuy9Ps2/77xOs7DO9X9JyiRr/9QYXRRFn7Isl1W4fs9m8bPNJ5Rl+UJRFA/k9UZcPZNMSHJjhWcc1iz+vzbmTk3y2TbWtuXgNP3996eyLOe0Yz0AAAAAAAAAna2mZ9J/VLWzYDOkaAsAoAsYMi4Z8rbkpbuqnUnHWF2X3Hli6/ePmJ6MOLSzsgEAAAAAAKAVRc+eyXajqp0Gm6FtttmmSfzKK6+0e4/mawYPHrxRObVk1apVHb7nxmj+jM1f9lmJSl/mOXTo0CbxjBkzcuCBB7b7PCpTU+0EupOyLJ9P8sdGQ7VJjmjHFkc1i29rZd7VzeJPVrJ5URS7J3lbo6HX0naTsRuSLG0UH7hmj0qc2CxunjMAAAAAAAAAsIXYXIq2AAC2aDU9kok3JrudlgzaJ9nxA8lOH6l2VpvOzYclvyjWvWZfWe3MAAAAAAAAgAoMGzasSfzYY4+1e49HH320STx8+PAW5/Xs2bNJvHLlyorP2JBmXJtSjx49ssMOOzTETz75ZJYsWdKuPR588MGK5o0YMaJJvCHfIyqnWVjn+0mz+IxKFhVFcXCSAxoNrU7yu1am/zxJ45aDHyiKYkwFx3ypWfzLsiyXtTa5LMslSZpXTDTfYx1FUbwxyfsbDa1M8osK8gMAAAAAAAAANkOdWbQFAEAbagcmb70gedefk4OvSg6akhy3Ktn1c0nR4/V5/XZMxk9J3rOev7ft+73kwMuTnltt2rw70u0fWreB2C1HJi/dW3+/LJMVryarWi2hBQAAAAAAADrB4MGDs8suuzTECxcuzMMPP9yuPWbMmNEk3n///VucN3DgwCbxwoULKz7joYcealdOnWHcuHENn1evXp0//OEPFa9dsGBB/vKXv1Q0d/z48U3iG2+8seJzaD/NwjrfT5I0/lNnYlEUbTYMK4pieNZtMvbLsiz/1tL8siwfTzK50VCvJJcVRdGnjTPel+TERkN1Sb7RVl5rnJ1kRaP4xKIo3tvGOX1S/yy9Gg3/uLVnAQAAAAAAAAA2f51ZtLWhiqLo0P0AADYbRU1ywA+TD76UvOvB+uZhR89ORn2k/l5rxl2W7P75ZOfjk/e/kBxyXTJiYn2jsZreSb+RnfYIG+3Fm5Ib9q9vHDalJvnV1skVfddtKvaLIpkzPVld+VvEAQAAAAAAgA03YcKEJvHPf/7zitc+/PDDue+++xriPn365K1vfWuLc5u/vHLmzJkVn/O73/2u4rmd5e1vf3uT+JJLLql47eTJk1NXV1fR3COOOCI9erz+Yqrrrrsuc+fOrfgs2kezsE5WluWqJKclWd1o+LtFUXy/KIrBzecXRfH2JHck2aXR8MtJ/t96jpq0Zt5a45PcVBTF7s32710UxT8l+VWz9d8ty/Lp9ZyRsiyfTPL9ZsNXFkXxj0VRNG4IlqIo3pTk5jW5rPVSKmtKBgAAAAAAAABsxjqraGtD9e7du0m8fPnyDt0fAKDL67V1MmjPpg3C+oxoff6QA17/XDsgGfn3yRE31zca+8iy5Ohnkh0/uOnyrZabD0/+t7blRmIz/z2pq/wN4wAAAAAAAEDbTjjhhCbxhRdemBdffLGitV/5yleaxB/5yEfWqRNba999920SX3/99RWdccMNN+Tuu++uaG5nOv744zNgwICG+Oqrr84NN9yw3nXPPfdc/vVf/7XicwYPHpzjjz++IV68eHHOPPPM9iVLxTQLq4KyLH+f+oZhjf1zkjlFUdxaFMWUoiiuKYpiVpLfJ9m10by6JMeVZfnUes54NskH1sxf66AkM4uiuKcoiiuKopia5JkkP0hS22jeb5Kc1Y5H+nKS/2sU1yb5zyTPFEXxf0VR/LIoinuTPJSmjcLqkry/LMsX2nEWAAAAAAAAALAZ6qyirQ01aNCgJvELLyhnAABIbf9k27evOz5wt2TrN61//c6f6PicurI/fym5cnDLjcSuHpnccmTy7LXJkueTsqx2tgAAAAAAANDlTZw4MW9+85sb4ldeeSXHHXdcli5d2ua6888/P9dee21DXBRFPv/5z7c6/8ADD0y/fv0a4quvvjr33ntvm2c8/vjj+cQnuua/iQ4YMCCnnda0vdGxxx6badOmtbpm1qxZOfLII7NwYftekHT22Wc3qef72c9+li996UtZtWpVu/aZOXNmbr311nat6W40C6uSsiwvTHJKkiWNhmuTHJzkI0nel2SnZsvmJDm8LMv1t+mrP2N6kvcnmddouEiyX5Jjk7wjybBmy6Yk+UhZlhX/tK2Ze2ySK5rdGp7kqCQfSvLWNWevNTfJ+8qyvK3ScwAAAAAAAACAzVdnFW1tqNGjR6dXr14N8bRp07JixYoOPwcAYLNzwI+SrUa9HvcemoyfUtnakX+fHPjTTZLWZmfpc8mLNyW3Hp1cs0Mypaa+idivt01mfDx5/IfJsvnVzhIAAAAAAAA61IsvvphZs2Zt0LXWj3/84ya1XdOnT8/BBx+cu+66a53z5s+fn1NPPTVnnHFGk/EvfvGL2XvvvVvNc8CAAfnwhz/cEK9atSrvfve7c+ONN64zt66uLpdccknGjRuXOXPmZPDgwe35knSas846K3vttVdD/Oqrr+aII47IsccemyuvvDIPPPBAHnnkkdx44405/fTTM3bs2Dz88MPp06dP3ve+91V8zs4775wf/ehHTcb+/d//PRMmTMj111+flStXtrp21qxZueiiizJx4sSMHTs2t9xyS/sftBvpWe0EurOyLH9YFMWNSc5OfXOwAa1MfTHJxUkuKMvylXae8buiKPZM8o0kH07S2p8udyb5TlmWV7Vn/0bnLE7ykaIorkzyL0nGtTJ1Qeqbik0qy3JeK3MAAAAAAAAAgC5mbdHWhhg1alSS+qKtAw88MHV1dUleL9q66KKL8ra3va3Jmvnz52fSpEn5r//6rybj6yva2lC9evXKQQcd1PDmxNmzZ+e9731vPve5z2XMmDFN3hqZJNtuu2369OnT4XkAAHQ5/XdO3vNwMm9Gsnp5MmxCUttayWsLdv54ss1+yS1vT5Y+v+79okdy4OXJgnuSR77XcXlvLpbNSWZdXn/dc8q694e8Ldl6bLLdO5IBY5IVC5NBeycpktqtk5oenZ4yAAAAAAAAVOq4447b4LVlWSZJ9t1331x44YX53Oc+l9WrVydJ7rvvvowbNy677rprxo4dmz59+uSZZ57J3XffvU5zqiOPPDLf/OY313veN7/5zVx99dVZuHBhkmTu3Ll5xzvekV133TV77713evfunTlz5uSuu+7Ka6+9lqS+juy8887LJz7xiQ1+zk2lV69e+e1vf5uJEyfmiSeeSFL/Nf3Vr36VX/3qVy2uKYoiF110UWbPnr3OSz7bcsIJJ+TFF1/MV77ylYbv0Z133pn3vve96devX97ylrdkxIgR6du3bxYtWpT58+dn5syZDV9rKqNZWJWVZfm3JB8viqJvkoOSjEyybZK6JPOS/KUsywc28oy5SU4uiuK0NWfstOaM15I8l+RPZVk+tTFnNDrryiRXFkWxc5J9k2yfZKvUNzx7OskdZVnWdcRZAAAAAAAAAEDn2ZyKtjbUGWec0dAsLEmmTp2aqVOntjh32rRpOeywwzZZLgAAXUqPPsm2Ezd8/dZvSt77ZPLSXUlZJjW1yaqlSd2CZNghSd8RyU4frm+K9dz1ycK/Jouf6Lj8N2cv3VV/PXlp63OGH5r06Jvs8PfJtkckA3erHy/LZD1F+xWrW5jMvyvpt0P996mj9gUAAAAAAIAKfOYzn8ngwYPzyU9+MosXL24Yf+KJJxoaYbXkU5/6VC6++OLU1tau94wddtghV111VY4++ugsWrRovWfsvPPO+e1vf5s5c+a082k6z4477pjbbrstp5xySq6++uo25w4ZMiSTJ0/Ou9/97nzpS19qcm/AgPW/UGrti0A/+clP5sUXX2wYX7JkSe64446K8h08eHBF87orzcK6iLIslya5aROfUZdk2nondsxZTyXpkAZkAAAAAAAAAMCWozOKtjbUe97znnzrW9/KpEmTsmrVqk12DgBAt9SjdzL8kNbvF0Wyy6fqrySZMz159AfJoseSZXOT7d+V9OyXDNor2XrP5N5Tk4UPdkrqXd7cP9T/+kLLjW5zwCXJTscmq1fWfw1ffSxZ8mwydFzSe5u2965bmFy9Q7JqSdPxYxcnPbfa+NwBAAAAAACgQsccc0wOOeSQnHPOOfn5z3+e+fPntzivtrY2hx9+eCZNmpTx48e364yJEyfm7rvvzpe//OVcd911DS/KbGzYsGE58cQT87WvfS0DBw7s0s3CkmTbbbfNr3/969x+++2ZMmVKpk+fnueffz7Lli3L9ttvn9GjR+dDH/pQPvzhD2frrbdOkixcuLDJHmvH1+eoo47KU089lUsvvTSXXHJJ/vKXv7T4NVyrtrY2+++/f/6JHjndAAAgAElEQVTu7/4uH/3oRzNmzJgNf9BuQLMwAAAAAAAAAAA6VWcUbW2or371q3n/+9+fn/3sZ5kxY0Yee+yxvPLKK1m6dGmnnA8AwBojDqu/WvPOvySLn0x69EmKnsk9Jydzbk5WvNrxuQx4Y33Tss3V3Z+pv1pz4E+TnT9e/7ksk5RJUZOsWJxc2cqbu3/zpuTo2R2eKgAAAAAAAJu3WbNmbdL9hw8fngsuuCDf+973ct999+WRRx7JvHnzsnz58gwdOjQjR47MhAkTMmDAgA0+Y/fdd88111yT+fPn5w9/+EOeffbZLFmyJCNGjMjOO++cgw8+OD17vt626bDDDmuzIVZz7Znb3GWXXZbLLrtsg9ZOmDAhEyZMqGjuzJkzGz4XRZHhw4dXfE6fPn1yyimn5JRTTsmCBQty55135oUXXsiCBQuyYsWK9O/fP8OHD88b3/jG7L777unXr1+7n6W7KjbmNw9sCYqiGJvkr2vjv/71rxk7dmwVM4Iu7hdF6/c+6r8pAAAAAAAAXdnKlSvz+OOPNxkbM2ZMk6IV6GyrV6/eZEVbXdmm+nl86KGHsueeezYe2rMsy4c2alMA2Ahq9OhUZZk88aPkns+te2/bv0vm3JSUq9u/74Qrk7/9T/LC1I3PcUty3Kr6pmIAAAAAAMAWTd0ZdC+vvfZahg8fniVLliRJdttttzzyyCNVzqp9ttT6PH/qAgAAAAAAAABQNTU1Ndl///2z//77VzsVAAA2d0WRjDkpKVclT/x3smxOst1RyX7/mdQOSOZMS2ZflaxenvQekjzyvWT1irb33OPLyY4fSOpebrtZ2G6nJ289v/7z6pXJH96TvHBDxz1bV7T0xaTf9tXOAgAAAAAAAOhAkydPbmgUliQHHnhgFbOhMc3CAAAAAAAAAAAAAIAtxxtPqb+aG3F4/bXWm7+dzJmePP7D5NVHk3JFssP7km32rW8mtvWeSZ9h9XN3+XSy+Mlk5rnr7tujb7LzCa/HNT2TPSdt+c3CVi+rdgYAAAAAAABAB3r22Wdz1llnNRk74YQTWplNZ9MsDAAAAAAAAAAAAADonkYcVn+tT1Ekbz4n2fOsZN7t9Q3GXrqzvqHYnl9LtnlL0/lDDkgGjEkWPd50fK+zkwfP7pjcq63ulWpnAAAAAAAAALThqquuyn333ZfPf/7zGTZsWJtz//SnP+WDH/xgFixY0DC2zz775PDDD29jFZ1JszAAAAAAAAAAAAAAgEr07Jtsd2T91ZaaHskRtyR3fjKZe2vSe2iy22nJm76QzPr5uk3ENkdzpq3bJA0AAAAAAADoMhYtWpRzzz033/nOd3LUUUfliCOOyD777JPhw4enZ8+eWbBgQR588MH85je/yfXXX5+yLBvW9urVK5MnT65i9jSnWRgAAAAAAAAAAAAAQEfrNzKZ+Ptk1fKkpldSFPXjB1ySTD8qWbWsPu7RN+nRJ6l7+fW12+yXDB2XPHZh5+ddqaenJG86o9pZAAAAAAAAAOuxYsWKXH/99bn++usrmt+3b9/89Kc/zT777LOJM6M9NAsDAAAAAAAAAAAAANhUevRuGo84NHnPY8kzV9U3Edv+XfWNxZ69Jpl/ZzJoz2THDyRLX0yeujxZsbA6ea/P0PHVzgAAAAAAAABow6BBg9KjR4+sWrWq4jUHHXRQLrjgguy3336bMDM2hGZhAAAAAAAAAAAAAACdaasdk91Pbzr2hmPqr7VqByZvn548dE4y+5edml5Ftt59/XPK1UndwqRuQbLVzklNj6b3lr6Y9N02KWo2XZ4AAAAAAADQTR199NGZM2dOpk6dmjvuuCMPPvhgnn766SxYsCDLli1L3759s80222SnnXbKwQcfnHe961056KCDqp02rdAsDAAAAAAAAAAAAACgKxq8TzLhiiRX1Mer6pIeveo/z701eeGGpM92yeC9k+d+mzz6/WT18s7J7Z5T6q+1dvj75OBfJ4seT24/Nnnlr+3bb5d/SIZNSHptk2y9RzJgl47NFwAAAAAAALqhIUOG5Pjjj8/xxx9f7VTYSJqFAQAAAAAAAAAAAABsDtY2CkuS4YfUX43jt5xX/7ksk1ceqr+GjkuWvpjcOG7T5vbc9cn/1m74+r/9T/3V2H4XJqM/mSybm/TdLunRe+NyBAAAAAAAANhMaRYGAAAAAAAAAAAAALAlKYpk0J71V5JstVPy0bL+8/KXknl3JDW9kxWvJPNuS17+U/1YV3PvP9ZfbXnjPyf7fb9z8gEAAAAAAACoEs3CAAAAAAAAAAAAAAC6i95DkpHvfT3e6dim95c8lzx3XbJsbrLdO5K7Pp28MrNzc2yPx35Qf6018ffJiIlJUVO9nAAAAAAAAAA6mGZhAAAAAAAAAAAAAADU67dDMubk1+Nhh3TtZmHN3XJk6/d6D0kOuTYZdlDn5QMAAAAAAADQATQLAwAAAAAAAAAAAACgZXt8MXni4mpn0TGWv5T8fkLL9/rtmLz520nRI1n0ePLKQ8keX04G79O5OQIAAAAAAAC0QLMwAAAAAAAAAAAAAABa1n/npHZgsuLVameyaS15JplxfNOxp//39c87fiDpsVUy/OBku3ckfUYkPXp3bo4AAAAAAABAt6VZGAAAAAAAAAAAAAAA/5+9O4+zs6zvh/+5Z8+QyR4SIEAgIRA2WWURbEBFpZS60J+ASou4L5VWXKi2ICLV1uen+KB1eRRtpWjdwFJErQ1UREA2EQ0JWwhhCdmTIclklvP8cZPMnCSTdTIny/v9en1fZ67ruu/r+t6RoM6Z85n+7fWaZM5/1LqL2nrqR+Xr7H/b9LUjjkym/VfSOiHp6Uqe/kmy8tlkz5cnww5J6hq3b68AAAAAAADALkdYGAAAAAAAAAAAAAAA/Zv4FmFhW2LJg8kN+27+9Xu9OnnZ9Ul9a1LfvP36AgAAAAAAAHZawsIAAAAAAAAAYDdRFMV6c5VKpQadAD09PevNbejvKAAA7BD2OiNpHJZ0Ltv6PYYdkkx+d3L/3yaV9f/38G7t2Z8lPxi1/vzolyaHX1b++fesTuqHJP5/AwAAAAAAAOyWhIUBAAAAAAAAwG6irq5uvbnOzs40NjbWoBvYvXV1da03t6G/owAAsEOob05e/pPktj9LupZv/n0TXpd0r0pGHZNM+etkyLhkr1cnz/0iaRia/O5jyarnt1/fO7uFdye3/Wn/62fNSoYdNHj9AAAAAAAAADUjLAwAAAAAAAAAdhNFUaSpqSmrV69eO9fe3p7W1tYadgW7p/b29qpxU1NTiqKoUTcAALAZxv1J8obnkgV3JkP2SoYdnCx5MFn6cLLgN8msL1ZfP+q45NQfJev+79zhh5SVJBPPS+b8IFl0TzLy6GS/v0ge+XJy/4cH55l2djdN2fD88MOTgz+QjDwmGXlUUudjAwAAAAAAALCz864fAAAAAAAAAOxG2trasnDhwrXjZcuWZezYsUKKYBBVKpUsW7asaq6tra1G3QAAwBZoaE3Gn947HnlUWfu/KWkelTz61WT10mT8K5MTv7l+UNi66luSA95S1hpTL0kaRySPfSPpXJysfC5pHpu0P7rl/Y49NZn/qy2/b2e39KHk7ndt+rqDL06O+kxS37z9ewIAAAAAAAC2ibAwAAAAAAAAANiNrBsW1tnZmaeffjr77LOPwDAYBJVKJU8//XQ6Ozur5ocNG1ajjgAAYAAURXLEZcnh/5BUupK6xm3bb/Lby+qrp7Pct9KTLP5dUtQnIw5Pnv1Z8r+vT3o6qq8/+p+T8a9KfnbC+muUZn6hrP7sf14y6phkyIQyDG7J75OxpyRjThi8HgEAAAAAAIAkwsIAAAAAAAAAYLfS0tKSxsbGqqCi5cuX57HHHsuwYcMydOjQNDQ0pK6uroZdwq6lp6cnXV1daW9vz7Jly9YLCmtsbExzc3ONugMAgAFUFEmxjUFh/VkTQFbUJaOO7p3f+7XJ6+Ymz99Wnl/XUoZZNY8u16fdlDzwd8mSB5NRx5YBYg99cgsOfjEI7feXD9ST7DyevL6sTalvTca/Mpn0tmTcaUmjMGQAAAAAAAAYaMLCAAAAAAAAAGA3UhRF9t5778yZMyeVSmXtfGdnZxYuXJiFCxfWsDvY/az5O1kURa1bAQCAnVfLmGS/N254bfwrk9e8Mqn0lEFjSdLYljz4D0n3iqRxRLLH/uXX3SuTFXN77y3qkhOuTfb50+ShK8o9WF/3iuTpn5S1xoTXJ13tZUDbonuTjgXJnn+SHPWPSX1L7XoFAAAAAACAnZSwMAAAAAAAAADYzbS2tma//fZbLzAMGFxFUWS//fZLa2trrVsBAIBd35qgsCSZ+qFkygeSF2YnbZOr13q6koW/Ldf2PDVpnVDOv/RryV1vH8yOd25zf1y+PveL3rnF9yczv9A7nvKBpG1KsvdrktZ9k/rmwe0RAAAAAAAAdiLCwgAAAAAAAABgN7QmMOyZZ55JZ2dnrduB3U5jY2P23ntvQWEAAFAr9U3JsCnrz9c1JGNPKquvSRclY09JHvpUMvu6welxVzfr/y1f793INQdemEy9JBl+6KC0BAAAAAAAADsqYWEAAAAAAAAAsJtqbW3NpEmT0tHRkWXLlmX58uVZvXp1rduCXVZTU1Pa2toybNiwNDc3pyiKWrcEAABsiWEHJyd/p6w1Vj6XLLqv/LpjQTL2ZcmQvZMFvy7XRh+fPPCxZO4NG97zuGuS5rHJHecllZ5N93DsF3uv3x08fm1ZfZ35UDLisNr0AwAAAAAAADUiLAwAAAAAAAAAdmNFUaSlpSUtLS3Zc889U6lU0tPTk0qlUuvWYJdRFEXq6uqEgwEAwK5oyPhknzPXnx//yt6vX/7jpLM9ee6/k2duSrpXJ/u+Idn3db3XNLYl93wgaX+s/7P2fWMy+V1JepKmUcnqRQP2GDuVmw9PXn13GcQGAAAAAAAAuwlhYQAAAAAAAADAWkVRpL6+vtZtAAAAwK6lcWgZDtY3IKyvvV+bnP1osvLZ5JmfJk/9KOlantS3Jq37JFM+kIw4IinqyutP/+/kV69PXnhy8J5hR/KzlybnCzoHAAAAAABg9yEsDAAAAAAAAAAAAAAAdgRD9komva2sjRl1dHL2E0n7Y0nLuKSoT373iWTm57dPX+csSppGJj8al6x6fvucsSWK+qSnK6nzkQgAAAAAAAB2D3W1bgAAAAAAAAAAAAAAANhCRZG0TU4a25KG1uTY/5ucsyQ56jNlsNeII5IjLk8OvywZc1Iy7hXJidcm+5+3ZedMfGu5X5Ics53CyLZUpTvpXlnrLgAAAAAAgF3UnDlz8olPfCKnnnpqxo0bl6amphRFsba+9a1v1bpFdkN+jQ4AAAAAAAAAAAAAAOwKmoYnh360rL6OvLz364lvTcacmDzxnWTRb5P6luTAC5N9z0me/PfksW/0Xjvm5OS4L/aO9/mzZNRxyaJ7Nnz+UZ9N/vDppHPZgD1Sv3o6t/8ZAAAAAADAFpk4cWKefPLJtePp06dn2rRptWtoK3z961/PBz7wgXR0dNS6FahSV+sGAAAAAAAAAAAAAACAQVJXnxz818lr7k7OryRvWpkc/+Vk/OnJCf9fcm5XcsZdyVkzk1fdnjSN6L23sS05/b+Tl/zj+vvu9xfJwRcnk94+OM8hLAwAAAAAABhgN998c971rndtdlDYrbfemqIo1tbll1++fRtkt9ZQ6wYAAAAAAAAAAAAAAIAdRF19Mual/a83DU8O+1hZncuSBXcmQyclQw9MiiJ5yaeT9ieSuT/etj6GHZyc+uPkvw7d8Hr3iuSZnyY9XcmeLy/7AgAAAAAA2AaXXnppKpXK2vH555+fiy66KPvuu28aGxvXzo8ZM6YW7bGbExYGAAAAAAAAAAAAAABsucZhyV5nVM/VtyQv/1Gy8rlkxVNloNjK55LRL03uvyR5+iebt/dB7y/36s9PDtz0HsMPS15+Y9I2qf9rulf19g0AAAAAAOy2Zs6cmQcffHDt+Mwzz8x1111Xw46gmrAwAAAAAAAAAAAAAABgYA0ZX1Zff3JjGRzWsTAZfmiy4DfJHW9JXnii95oxJyUHvi2Z/PZkxdxt62HpH5L/nLx5145/VXLaz5Ki2LYzAQAAAACAndI999xTNT7nnHNq1AlsmLAwAAAAAAAAAAAAAABgcPQNERt7cnL2Y8kLs5OWcUlDa/W1dc2D19dzv0iur6ue+/M5yR77Dl4PAAAAAABAzcybN69qPGHChBp1AhsmLAwAAAAAAAAAAAAAAKiNokiGHrDhteYxg9vLum7cr/frqZckR302Ker6vx4AAAAAANhptbe3V40bGxtr1AlsmLAwAAAAAAAAAAAAAABgx1MUyb5vSJ76Ua07SWZ8rqy9Xp2MPiEZc2L52jyq1p0BAAAAAMBup1Kp5L777svDDz+c559/Ph0dHRk7dmz22WefnHLKKRk6dOgW79nT07MdOoWBIywMAAAAAAAAAAAAAADYMZ3yg+T6ulp30evZn5W1RtuUMjhsTXjYiCOSusba9QcAAAAAALuwBQsW5Kqrrsp3vvOdzJ8/f4PXNDU15fTTT8/ll1+eE044od+9Zs+enQMOOKDf9dNOO22D89dee20uvPDCDa598pOfzCc/+cl+95w+fXqmTZvW7zpsjLAwAAAAAAAAAAAAAABgx1QUte5g45bPKuuJfy3H9UOSUcdVB4i17lPbHgEAAAAAYBdwww035IILLsjy5cs3et3q1atzyy235JZbbsk73/nOfOlLX0pDg5gldn7+KQYAAAAAAAAAAAAAAHZcR/8/yf0fqnUXm6d7ZTL/V2Wt0TohGX1ib4DYyGOShiG16xEAAAAAAHYy3/zmN/OOd7wjPT09VfOTJk3KoYcemtbW1syZMyd33313uru7165/7Wtfy5w5c/Kf//mfAsPY6fknGAAAAAAAAAAAAAAA2HHt+4bk95cnXcu3/N7D/z6Z+ObkpkMGvK3NtmJusuIHyVM/KMdFQzLyJdUBYkMnJUVRux4BAAAAALaXnq7y+6RsX60TkrpdM0rogQceyHve856qoLCjjjoqX/rSl3LyySdXXTt//vz8/d//fb761a+unbvlllvyD//wD7nqqquqrp0wYUKeeOKJteMvfOELufrqq9eOr7/++px44onr9TNmzJhMmzYtSXLnnXfmvPPOW7v2wQ9+MBdffHG/zzJ+/PhNPC30b9f8Gw4AAAAAAAAAAAAAAOwahk5MTv95cu/fJAvv3Pz7msckB1yQtE1ORh6TLL5vu7W4RSpdyaJ7y3rkS+Vc8+je8LDRJySjX5o0Da9tnwAAAAAAA2HF3OQnB9S6i13f2U+U30/fBV100UVZvXr12vEpp5ySn/3sZ2ltbV3v2rFjx+YrX/lKJk+enA9/+MNr5z/72c/mvPPOyxFHHLF2rqGhIRMnTlw7HjFiRNVe48ePr1rva+jQoUmS2bNnV82PGDGi33tgWwkLAwAAAAAAAAAAAAAAdmxjTkxe/ZukpzvpWp7M/3Wyx8SkZVxyx5uTeb9MKt3ltSOOTEYdk0z9cBkUliSH/E3ym7cOTC9D9kpWPjswe63RsTB55r/KSpIUyfCp1QFiww9L6uoH9lwAAAAAANiBTZ8+Pffd1/vLQIYNG5bvfe97GwwK6+uSSy7JbbfdlptuuilJ0tPTk89//vP55je/uV37he1JWBgAAAAAAAAAAAAAALBzqKtPmkYk+/xp79zpP0s6lyd1zUl904bv2+//JHNvSJ764badP+4Vyem/SFbMTRbemSy4q3xddG/SvWrb9q5SSZb+sazHX/zgUsPQZPTx1QFiQ8YN4JkAAAAAALBj+fa3v101ft/73pe99957s+79zGc+szYsLEmuv/76/Mu//Euam5sHtEcYLMLCAAAAAAAAAAAAAACAnVtj28bX65uSl303mX97sviBZMSRybCDk9Z9kse/ldzzgaSrvQziWnhn//sc/vdJUSR77FvWfn9RznevTpY8mCy4szdErP3RAXu8JGV/86aXtcYeE5MJr08OuzRpGZsseyR57hfJ0APKYLP+wtMAAAAAAGAncPvtt1eN3/KWt2z2vYcddliOOeaY3HfffUmSVatW5d57783JJ588oD3CYBEWBgAAAAAAAAAAAAAA7PrqGpJx08rq68C/KmuNjkXJ/56dzP919XXDD0vG9vMBovqmZPRxZeX95dyq+cnCu3sDxBbenXQuG5BHWeuF2cnMz5c1ZJ9k5dPV63XNSU9H7/gln04OvbQMPAMAAAAAgB3Y4sWL89hjj60djxgxIlOnTt2iPU4++eS1YWFJ8tvf/lZYGDstYWEAAAAAAAAAAAAAAABrNI9KXnV7MvfG5OH/m7Q/nuw5LTnm80ld4+bv0zI22edPy0qSSk+y7OEyPGxNgNiSh5JUBqbvdYPCkuqgsCT53cfLWmPopORl1yejjks6lyaNw5KibmD6AQAAAACAbTB//vyq8UEHHZRiC38ZxiGHHFI1fv7557e5L6gVYWEAAAAAAAAAAAAAAADrmvDnZQ2Uoi4ZfmhZk95WznUuTxbdUx0gtmoQP6jU/ljys5dueG3I3smJ3yr7qqtP9j0nGTZl8HoDAAAAAHYNrROSs5+odRe7vtYJte5gwC1evLhqPHz48C3eY917Fi1atE09QS0JCwMAAAAAAAAAAAAAAKiFxrZk3GllJUmlkrwwu0942F3J4vuSns7B723lM8n0M3rHv/t4+Tr5ncnYlydjT0r2OCApisHvDQAAAADYedQ1JEMn1roLdkKVSqVqXAzA96MHYg+oFWFhAAAAAAAAAAAAAAAAO4KiSIYeUNbE88q57lXJ4gd6A8TmfK+2PT76tbKSpGXPZMxJvTXquKShtbb9AQAAAACwSxg1alTVeOnSpVu8x7r3jBw5cpt6gloSFgYAAAAAAAAAAAAAALCjqm9JxpxYVpJ0fzv5Xktte1pj1fPJ3BvLSpKiIRn5kmT0iWV42NiTkj0OKEPQAAAAAABgC4wdO7ZqPGvWrC3eY+bMmVXjPffcc5t6gloSFgYAAAAAAAAAAAAAALCzqG9O3rgw+eHoWneyvkpXsujesh75UjnXMu7FsLOTyhp1XNLQumX7rpqf/GgzP8B11GeTSncy7JBk/CuS7tXJiifLPlonbNm5AAAAAADUzMiRIzNp0qQ89thjSZIlS5ZkxowZmTp16mbvcccdd1SNjz/++AHtsfDLMhhEwsIAAAAAAAAAAAAAAAB2Js2jkvMrveNljyQ3TaldPxuzal4y98aykqRoSEa+pDc8bMxJyR4Tk/4+UFXp2fygsCR54KP9rw07OHnZd5O2KcmCO5NfvynpWJAceGFy2MfLPrpfSCqVZPH95fVD9tr8swEAAAAAGFCnnHLK2rCwJLnuuuty5ZVXbta9M2bMyL333rt23NLSkmOPPXZA+2tubq4ad3R0DOj+0JewMAAAAAAAAAAAAAAAgJ3ZsIOS8Wckz/1809c2jkg6l2z/nvpT6UoW3VvWrGvKuZZx1eFho45LGoaUa8/+YuDOXjYz+enR688/fm1Zm7LXq5OjP5eMOHzgegIAAAAAoF8XXHBBvv3tb68dX3PNNXn/+9+f8ePHb/LeSy+9tGp87rnnrhfuta1GjBhRNX722WcHdH/oS1gYAAAAAAAAAAAAAADAzu7lNyT3vG/joVcHvS85/precWd70tOR/HivpKdz886pb026VyapbFO7VVbNS+beUFaSFA3JyKPK4LDnbx24c7bVsz8r66xZZUAbAAAAAADb1emnn56jjjoqDzzwQJJk6dKlOe+883LzzTdnyJAh/d73+c9/PjfeeOPacVEU+Zu/+ZsB7+/AAw9MU1NTVq9enSSZPn16Ojs709jYOOBngbAwAAAAAAAAAAAAAACAnV3DkOTEbyYHXJD86o3J6kW9a+Nflez7hmTyO6vvaRyaZGhywjeT37x102ccflly5OXJ6qXJwruSBb95se5KOpcM3LNUupJF95S1I7ppSnLqj5J9X1/rTgAAAAAAdmjPPfdcZs+evVX3Tpw4MUnyjW98IyeddNLaQK5bb701p556ar70pS/lhBNOqLpnwYIFueyyy/LlL3+5av4jH/lIjjzyyK3qY2Oampryspe9LNOnT0+SzJkzJ2effXbe/e5356CDDkpra2vV9ePHj09LS8uA98HuQVgYAAAAAAAAAAAAAADArmLctOQN85Ilv0/22D9pHrXpe/Y6IykaypCu/tS3JPv/n/LrpuHlPXudUY4rPcmymX3Cw36TLP1jksq2Ps2O61dvSF769WTy22vdCQAAAADADuu8887b6nsrlfJ7zMccc0yuueaavPvd705PT0+S5N57782JJ56YyZMn57DDDktLS0ueeuqp3H333enqqv5e96te9ap86lOf2vqH2IS//du/XRsWliS33HJLbrnllg1eO3369EybNm279cKuTVgYAAAAAAAAAAAAAADArqSuIRl19OZf37JncuoPkl+fm3SvKuda90uaRiZL/5CMfEly9OeS4Ydu+P6iLhk+taxJbyvnVi9NFt7VJ0DszqRz6bY9147m7nckky5KiqLWnQAAAAAA7NLe8Y53ZOTIkbnwwgvT3t6+dv7RRx/No48+2u99b3vb2/KVr3wljY2N2623s846K1deeWUuu+yydHd3b7dzQFgYAAAAAAAAAAAAAADA7m7CnydvXFgGfA2dlOyxXznf053U1W/5fk3Dk73OKCtJKj3Jsof7hIf9Jln6x4Hrv1aW/C4ZeVStuwAAAAAA2OWdc845efnLX56rrroq1113XRYsWLDB6xobG3Paaaflsssuy8knnzwovX384x/P61//+vzbv/1b7rjjjsyaNStLly7NypUrB+V8dg9FpVKpdQ9QU0VRHJbkoTXjhx56KIcddlgNO4IdUOey5IG/S+b9snyDvr6oUUkAACAASURBVD/n++8UAAAAAAAAgFr6wx/+kMMPP7zv1OGVSuUPteoHAPyMHgCwUauXJAvv7hMgdmfSubTWXW2Zk/41OeCtte4CAAAAALabrq6uPPLII1VzBx10UBoaGmrUESQ9PT2599578/DDD2f+/Pnp6OjImDFjMmHChJxyyilpa2urdYvU0Pb691atfz7Pv3UB2LhKTzL9tcmCO2rdCQAAAAAAAAAAAACwK2kakex1RllJ+bPLyx7uEx72m2TpH7ftjOOuSaa8r/z634tt22tDls4Y+D0BAAAAANiourq6HH/88Tn++ONr3QoMGmFhAGzc4gcEhQEAAAAAAAAAAAAA219Rlww/tKxJF5Vzq5ckC+5KFt6ZtD+RLJuZ7H1mMv6VydiTkvbZyW/fkzx7y/r7HfXZ5KD39o4P/Wjyx88OcNM9A7wfAAAAAADA+oSFAbBxD11Z6w4AAAAAAAAAAAAAgN1V04hk71eXtSFDJyan/TSZ/e/Jk99LKj3Jvq9PDrwwKYrqa/c/P5l5ddK9auD6W3R/+Qua2w5KGvYYuH0BAAAAAAD6EBYGwMZ1zK91BwAAAAAAAAAAAAAAGzfx/LI2ZuSRybSfJg9+Iln8YDLq2OSAt5ZhX/NvTxbfv+XnPvfz5Kc/r5477ppkyvu2fC8AAAAAAIB+CAsDAAAAAAAAAAAAAABg9zBuWvKq25NKJSmK9de7VyW/+0TyzM1Jy9jk+f/d8jPueX9Z/Wk7qOyhaVRS6UrqmjfcCwAAAAAAwIuEhQEAAAAAAAAAAAAAALB76S+cq74lOeZzZSXJynnJ9DOSJQ8O3NnLH0l+NK7/9SF7J6+5L2keldQ1Dty5m9LTmSy4KynqkuGHJUV90jh08M4HAAAAAAD6JSwMgE2o1LoBAAAAAAAAAAAAAIDaGDIuee0DyU0HlyFfg2HlM8mPx294bcLrkpf8Y9K5LBk2JWkaMTBnLvl9cvOR/a+PPTWZekky7OAkdcns7ySL70+6VyYHvi3Z/9z+A9gAAAAAAIBtJiwMAAAAAAAAAAAAAAAA+lMUyRGXJ3e8udadJHNvKGtzTHxzMu4VyZ4vL0PFmkdv+LpKJbn1Tze+1/xflbUhz/13csf5veOhByYHvScZe0pS1Cfzb0+WP5a0HZQ8/Z/JvF+W4WN7vybZ+6xkxBGCxgAAAAAAYBOEhQGwCd50BQAAAAAAAAAAAAB2c/u9KXniO8mzP611J5tv9nVlrWvvs5I99k+KuqRjYTL0gGTFUwN3bvvjyf0f3vg1a8LHfvfxDa+3HZSMOjZ5/n/L4LFDP5bU+RgUAAAAAAC7L98lBwAAAAAAAAAAAAAAgI2pq0+m/VfyzM3JspnJE99OljxY6662zjM31bqDTVv+SFlJ8uDfl9W6bzLutGTYIb01dFJS31TbXgEAAAAAYBAICwMAAAAAAAAAAAAAAIBNKYpknz8ta+rfJt8fmXQuqXVXu48VTyVP/Gv1XNGQtE2qDhAbdkgy7OCkaWRt+gQAAAAAgO1AWBgAm1CpdQMAAAAAAAAAAAAAADueKe9N/nBVrbvYvVW6kmUzy8qN1Wst4zYQInZIssd+SVFXk3YBAAAAAGBrCQsDAAAAAAAAAAAAAACALXXghcLCdmSr5pX1/G3V8/VDkrYpveFhw6eWr20HJQ2ttekVAAAAAAA2QVgYAJtQ1LoBAAAAAAAAAAAAAIAdT9vk5JgvJPddXD0/+Z3JS/4x+elRyYqnatMb/etemSz5XVlVimSP/XtDxPpWy55J4WfrAQAAAACoHWFhAAAAAAAAAAAAAAAAsDUO+WCyz1nJ/F8lbVOS0S9N6l78uM4r/ieZ/tqk/dHa9shmqiQvzC7r2VuqlxpHlKFhw9cJERt6YFLXWItmAQAAAADYzQgLA2ATKrVuAAAAAAAAAAAAAABgx9U2qaz15icnZz+SvPBkMu+2ZPF9SeeyMlRs3LRkjwOSBz6SPP+/ZUBVwx7JmJOSoZOTp36YdMwf7Cep1jQyWb1449cM2SvpWZ10LOz/mjPuSsa8tHru34ut72vo5OSFx5NKz9bvsaU6lyQL7yyrr7rGsp9h64SIDTs4aRo+eP0BAAAAALDLExYGAAAAAAAAAAAAAAAA28se+ycHXpDkgvXXTvr2hu85/BPJ3BuSe97fOzfq2KRlXPLMzdulzSoH/00y+R3Jr9+ULPn9hq8pGpJj/9/k+VuTWdds+JrWfZPRx68/P+Wvk1lf3PK+Xv9MGVDW3ZEsfzRZ9nCfmlG+dr2w5fturZ7OF8+dsf7akL02ECJ2SNI6ISnqBq9HAAAAAAB2CcLCAAAAAAAAAAAAAAAAYEfSuk8y5X1ldXckncuTljFJpZI8+/Pk2VuSJ7+bNI9KRrwkmfc/yap56+9T1CXNY5JVz2/+2XVNyaEfTYaMS858sLx30f3J4vuThqFJV3tS6U72OSsZ+ZJk79cm7bOTZ26q3qdhjzIMrSjWP+OwS5N5v0yW/mHz+9r/3DKAK0nqm5MRh5XVV6WSrHy6DA1b+nB1mNjKpzf/rIGw8tmy5k2vnq9vTYYdnAybWoaHDX8xRKztoKS+ZXB7BAAAAABgpyEsDIBN2MAbswAAAAAAAAAAAAAADI765rKSMnhr71eXdezne6/p6UrmfD+Z/+skPUldc9LYlkz482TkMcnyWcmi+8rwqgc+mlS6+j/v6H8ug8LWaNmz98wNaWhNpv1nsuKZpP3R8ozuVcn4V5ahZxsyZHxyxh3JM7ckv37Tpv8Mjrg8OezvNn1dUSStE8oa/8rqtc7lybKZ1QFiyx4u/2x6Oje990DpXlEGry2+f52FIhl6QBkctm41j9lw6BoAAAAAALsNYWEAAAAAAAAAAAAAO5GiKBqSHJPksCRjkzQlaU/ydJJZSf5QqWws/QEAgF1OXUMy8byyNmTYwWUlycijkse/WQaLVbqTlnFlWFbLnskBb00mvmXremjdu6zN1Tgs2f//lNWxKHlhdhmWtWJuMuzQlKFnjVvXywbPa0tGH1dWXz1d5dlLZ6wTJDYjWb144M7fpErS/nhZz9xcvdQ0qjc4bPjU3q/3mFj+Zw8AAAAAwC7Pd4MB2IRKrRsAAAAAAAAAAIDtriiKA5Mcn+S4F1+PSdLW55InK5XKxBq0tlZRFAcl+XCSNyUZtpFLVxZFcXuSf6lUKj8elOYAANh5jD+9rB1J86iykqRp5IuT9YNzdl1D0ja5rPxZ73ylknQsWCdA7MVqfyKD+rP2qxclC+4oq6r3pqTtoN7wsLV1cBmOBgAAAADALkNYGAAAAAAAAAAAALBbKopiWpJLUwaEjaptN/0riqIhyT+k7HVzfvZzSJJXJVmURFgYAABsjaJIWsaWteep1WtdK5P2R8vgsKUPJ8tmvBgkNjPpXjF4PfasTpb+oax1DdmnOkBs+CHJsKnJkL3LZwMAAAAAYKciLAwAAAAAAAAAAADYXR2V5IxaN7ExRVEMSfKDJGeus1RJ8ockc5IsSTI0yYFJDomfDwUAgO2rYUgy4oiy+qr0JCvmvhgctk6tfHZwe1z5dFnzflk93zC0OkRsTbVNTuqbB7dHAAAAAAA2mx8GAWAT/MYgAAAAAAAAAAB2Ox1J5iaZVMsmiqIoknw31UFhq5L8U5KvVSqVpzdwT2uSVyU5N8nqwegTAAB4UVGX7LFfWXutk0u8emmybOY6IWIzkuWPJpWuweuxqz1ZdE9Z6/V+YBkcNnydILHm0YPXHwAAAAAAGyQsDIBNqNS6AQAAAAAAAAAA2J46k/whyT1Jfvvi6++TvCzJ9Br2lSTvTXJ2n/GzSV5RqVRm9HdDpVJZkeTGJDcWReHnRAEAYEfRNDwZ89Ky+urpTNofrw4RW/pikFjn0sHrr9KTtD9a1jM3Va81j3kxOGxqb4DY8EOS1v2TuvrB6xEAAAAAYDfmh0AAAAAAAAAAAACA3dW3k3ylUqmsWnehKIoatFN1/n5JPtNnalWSV24sKGxdlUqla8AbAwAABlZdYzLs4LLy573zlUqy6vnqELE19cLswe2xY0Ey//ay+qprToZN6Q0QW1sHJw17DG6PAAAAAAC7OGFhAAAAAAAAAAAAwG6pUqksrnUPG/HxJEP7jD9dqVT+WKtmAACAQVYUyZBxZY37k+q1rhXJ8keSpTOqQ8SWz0y618tC3n56OpIlvy9rXa37VgeIDZ9avraML58NAAAAAIAtIiwMgE3wJhwAAAAAAAAAAAymoijakpzfZ+qFJFfXqB0AAGBH09CajHxJWX1VepIX5lQHiK2pVfMGt8cVT5X13C+q5xuHVYeIramhk5L6psHtEQAAAABgJyIsDAAAAAAAAAAAAGDH8qYkQ/uMf1ipVJbXqhkAAGAnUdQlQyeWtfdrqtdWL06WzewND1s6o3xtfyypdA9ej53LkoV3l9VXUV8Ghq0bIjb8kKRp5OD1BwAAAACwgxIWBsAmVGrdAAAAAAAAAAAA7G5OW2f8i5p0AQAA7DqaRiZjTiyrr+7VZWDYmhCxvtW5bPD6q3Qny2eV9fRPqtdaxq0fIjbskGSP/cqANAAAAAB2KitWrMh9992XRx55JAsWLMiqVasyZMiQjBs3LlOmTMnRRx+dpqamATlrzpw5+drXvpbbbrsts2bNyuLFi9PZ2bl2/dprr81f/dVfbfDeu+++O9dee23uuOOOPPXUU1m6dGl6enrWrj/xxBOZOHFikmTatGm57bbb1q5VKrI6GHjCwgAAAAAAAAAAAAB2LC9dZ/ybJCmKYkiS1yc5N8lhSfZO0pFkQZL7U4aKXV+pVJYPXqsAAMBOrb4pGT61rL4qlWTVc73BYUv7hIitmDO4Pa6aV9bzt1XP17ckbQdXB4gNPyRpm5I0tA5ujwAAAABsVHd3d/7jP/4j1157baZPn56urq5+r21pacmrX/3qvP3tb89ZZ5211Wd+/etfzwc+8IF0dHRs0X1dXV1573vfm69//etbfTZsD8LCAAAAAAAAAAAAAHYQRVGMSDK5z9TqJI8XRfEnSa5NcsA6t7QkGZ5kUpJzklxVFMUVlUrli4PRLwAAsIsqimTIXmWNO616rbM9WT6rNzxsbc1Kerbsg5fbpHtVsuR3Za1rj/2TYVOrg8SGHZK07Fk+GwAAAACD5n/+53/ynve8J7Nmzdqs61etWpUbb7wxN954Y4477rh89atfzTHHHLNFZ958881517velUqlssX9fvzjHxcUxg5JWBgAm+BNMAAAAAAAAAAAGETj1xk/k+QNSf4jSd1m3D86ydVFURyf5MJKpdL/r2MGAADYGo1Dk1HHlNVXT3ey4slk6bohYg8nHfMHt8cXnizr2Vuq5xtHlKFhw9cJERt6YFLXOLg9AgAAAOwGPvnJT+aTn/zkeqFdRVFk6tSpmTBhQkaPHp358+dnzpw56wWK3XPPPTnppJNyzTXX5B3veMdmn3vppZdWnXn++efnoosuyr777pvGxt7vA40ZM6bqvnnz5uULX/jC2nFTU1M+9rGP5cwzz8zYsWNTV9f7tv2ECRM2ux8YCMLCANiELU9JBQAAAAAAAAAAttqIdcZDk3wnvUFhTyb5UpLbkyxMMirJKUnel2Rin/vekmRekksGqrGiKPZMMnYLb5s0UOcDAAA7uLr6MnRr6IHJPmdWr3UsrA4PWxMo9sLjSaVn8HrsXJIsvLOsvoqGpG1ynwCxqS++Hpw0DR+8/gAAAAB2IRdffHGuvvrqqrm2trZceumlefOb35z99ttvvXseffTRfOtb38rnPve5dHR0JElWr16dd77znXnhhRdy8cUXb/LcmTNn5sEHH1w7PvPMM3PddddtVs833HBDVq9evXZ85ZVX5sMf/vBm3Qvbm7AwAAAAAAAAAAAAgB3HumFhfX+N8feT/GWlUlm5zjV3FkVxTZJ/TfIXfeY/VBTFjZVK5VcD1Nt7k1w2QHsBAAC7k+bRydiXldVXd0ey/NHqILE11dU+eP1VunrPXdeQvfqEiPWp1glJUbf+9QAAAADk29/+9npBYaecckquv/76TJgwod/7Jk+enCuvvDIXXHBB3vjGN+ahhx5au/ahD30oRx11VKZNm7bRs++5556q8TnnnLPZfW/tvbfeeutmnwFbS1gYAAAAAAAAAAAAwI6jv0+a/zbJ+ZVKpWtDi5VKZVVRFOcnmZjk+D5Ln0jy6gHtEAAAYKDUNycjDiurr0olWflMb4DX0hm9X698enB7XPlsWfOmV8/XtybDDl4/RKztoKRhyOD2CAAAALADmTVrVt7//vdXzZ188sn56U9/mqFDh27WHlOmTMkvf/nLTJs2LTNmzEiS9PT05C1veUseeOCBjBkzpt97582bVzXeWDjZQN4L25uwMAAAAAAAAAAAAIAdR3s/85f0FxS2RqVS6SqK4m+T/KrP9BlFUexZqVSeH7AOAQAAtreiSFr3KWv8K6rXOpcny2b2hoetqeWPJD2rB6/H7hXJ4vvLqlIkQw9YP0Rs2CFJ85jy2QAAAAB2YZdcckna23vf+h4xYkR++MMfbnZQ2Bp77rlnfvCDH+Too4/O6tXl932efvrpfOpTn8rVV1/d7319z06SxsbGzT5zW+6F7U1YGACb4E0oAAAAAAAAAAAYRBsKC3uyUqn87+bcXKlUbi+K4vEkB/aZ/pMk3x+A3r68FftMSnLjAJwNAABQamxLRh9XVl89XckLs9cPEVs6I1m9aBAbrCTtj5f1zM3VS02jNhwiNvSApM5H/QAAAICd38MPP5ybbrqpau4zn/lMxo8fv1X7HXroobnkkkty1VVXrZ37xje+kcsvvzwjR47c4D09PT1bdda23jsQ/vjHP+b3v/99Fi5cmMWLF6elpSVjx47N1KlTc+SRR6a5uXmr9u3q6srdd9+dxx9/PPPnz09HR0fGjh2biRMn5mUve1laWloG+EnYHnwHEYBNqNS6AQAAAAAAAAAA2J0s2cDcnVu4x12pDgubuvXt9KpUKs8neX5L7ikKv6wQAAAYJHUNSdvksvY5q3pt1fz1Q8SWPZy0P5FB/dzE6kXJgjvK6quuMWk7KBk2dZ0gsYPLcDQAAACAncTVV1+dSqX3+y1jxozJhRdeuE17Xnzxxfnnf/7ndHZ2JkleeOGFfP3rX89HPvKRJMns2bNzwAEH9Hv/aaedtsH5a6+9Nkk22l9/73k/8cQTmThx4trxtGnTctttt60d9/0z2JSnnnoq//RP/5Tvf//7mTdvXr/XDRkyJKeddlr+8i//Mm984xtTX1+/yb1nzJiRK6+8MjfddFOWLVvW775nn312rrjiikyZMmWz+2bwCQsDAAAAAAAAAAAA2HE8maQjSd9fB/zsFu7xzDrj0dvUEQAAwM6uZWxZe55aPd+9Kln+SBkctnSdILHuFYPXX09nsvSPZa1ryD7VAWLDX3wdsk8ioBkAAADYwdxyyy1V4wsuuCBNTU3btOfYsWPzZ3/2Z/nRj35Udc6asLCdVaVSyac//el86lOfyurVqzd5/cqVK3PzzTfn5ptvXi+sbF3d3d255JJL8sUvfjE9PT2b3Pd73/tefvjDH+Zzn/tcPvjBD27pozBIhIUBAAAAAAAAAAAA7CAqlUp3URQzkxzZZ7pjC7dZ9/qWbesKAABgF1Xfkow4oqy+Kj3JiqdfDA6bUR0itnJL85y30cqny5r3y+r5hqHJsIOrg8SGTU3aJif1zRveCwAAAGqgq7uSuYtr3cWub8LIpKG+tsHic+fOzezZs6vmzjjjjAHZ+4wzzqgKC7vzzjvT2dmZxsbGAdl/sHV1deXcc8/ND3/4w/XWxo8fnyOOOCJjxoxJR0dH5s2bl9/97ndpb2/frL1XrlyZ173udfn5z39eNd/Y2JijjjoqEyZMSHNzc5577rncfffdWbFixdqeLr744ixevDiXX375Nj8jA09YGAAAAAAAAAAAAMCO5cFUh4WN2ML7171+4ba1AwAAsJsp6pI99i1rr1dVr61emiybWR0gtuzhZPkjSaVr8Hrsak8W3VvWer0fWIaHDT+kOkysefTg9QcAAAAvmrs4OfDvemrdxi7v8avqMnFMbXv49a9/vd7ccccdNyB7H3vssVXjlStX5oEHHsjxxx+fCRMm5Iknnli79oUvfCFXX3312vH111+fE088cb09x4wp/8CmTZu2du7cc8/NXXfdtXbcd9++JkyYsFXPscaHPvSh9YLCzjzzzFx++eU5/vjj17u+p6cnd955Z7773e/mW9/61kb3ft/73lcVFDZ8+PBcfvnlueiii9LW1lZ17cqVK/PlL385n/jEJ7Jq1aokyRVXXJETTjghr33ta7fy6dhehIUBAAAAAAAAAAAA7FhuTvKWPuPDtvD+w9cZz922dgAAAFiraXgy5qVl9dXTmbQ/0SdAbEay9MWvO5cMXn+VnqT90bKeual6rXlMdXjYmtpjYlJXP3g9AgAAALukuXOr35oeN25cRo8emPDyww9f923w8rzjjz8+DQ0NmThx4tr5ESOqf7/W+PHjq9bXNXTo0LVft7S0VK1t7L6t9fOf/zxf/OIXq+Y+85nP5KMf/Wi/99TV1eXkk0/OySefnCuuuGK9Ptf4/ve/n2uvvXbteP/998+tt97a73MMGTIkH/rQh3LSSSflFa94RVatWpVKpZK//uu/zsyZM1NXV7flD8h2IywMAAAAAAAAAAAAYMdyU5KOJM0vjo8vimJUpVJZtKkbi6IYmWSdT6znVwPcHwAAAOuqa0yGTSkrZ/fOVyrJquf7hIj1qReeTFIZvB47FiTzby+rqvfmpO2gZPjU6hCxtilJ49AN7wUAAACwjkWLqt/SHjly5IDt3dLSkubm5nR0dPR73s7iiiuuqBq/+93v3mhQ2LrWDUNbo1KpVO3d0NCQn/zkJ5sVeLYmhOwjH/lIkuTRRx/NDTfckDe84Q2b3Rfbn7AwAAAAAAAAAAAAgB1IpVJZXhTFD5K8+cWp5iTvT3JF/3et9f4kfX+F8JNJHhrYDuH/Z+/Oo/Q66zvBf28tqpKqSqXVsmVb3m3JZgvtDvsS4gScNGEC6ZCGE5qQrUn+4EySSRqGxk13pwNZZoYJ9GShIRmm4QRCEyAhwUBiNpMQMInBlmR5lW1ZtqylqlSlUm3P/HEl1XtLJVmySm9p+XzO+Z2q+zz33uf75nBkVHF9AQAATlhVJUvX1bPuZc29qbFkZNs8RWJbk+kD7cs4czAZ+l49cy27tFkgdniWXlR/NgAAAIBD5pZ3HavU6ulasWJFHn/88SPXu3fvXtD3t8Odd96Zr3/960euBwYG8t73vndB3v13f/d3+d73Zn++88Y3vjHPetazTvj5X/7lX8673vWujI+PJ0k+85nPKAs7wygLAwAAAAAAAAAAADiNqqoqc5Z+oJRy21M89h+S/OskSw5dv6Oqqi+UUr5xnHNekOSdc5Z/q5Qy93wAAADOBF3LkpXPrqdVmUlGt89TIrYlGX98/nedLmMP17PzC831roHZ4rDBTbPf91+VdC6Z/10AAAAAp6A6B4rLv/SlLzWu3/CGN2T58uUL8u4vfKH585vXv/71J/X8smXL8v3f//35yle+kiT56le/uiC5WDjKwgAAAAAAAAAAAIDzVlVVl2T+f5/ywjnXXVVVXX6M1+wvpTy5kLlKKQ9UVfXbmS3/6klya1VVv57kg6WUycP3VlXVleRnk/xuZsvFkuSbST68kLkAAABog6oj6b+8nvWvau5N7E2Gtx5dIjZyb1Km25dxaiTZ84/1tKo668Kww+VhRwrFNiZLVrYvHwAAANB2q1atalwPDQ0t6Pv37dt33PPOBrfffnvj+uUvf/mCvftrX/ta43rVqlV58MEHT+odrcVlDz74YGZmZtLR0bEQ8VgAysIAAAAAAAAAAACA89nXklx2AvddnOSBY+z9aZI3L1SgFu9Kcl2Sf33ouj/Jf0vyX6uq+vske5KsSvL8JCvmPPtokteVUiZOQy4AAAAWy5KVyZrn19NqeiLZf39Lgdjm2e8nh9uXr0wnI/fU8+hnmnu9FxxdIrZ8U9K3oS5IAwAA4Jx0ycrk/v/q732n2yVnQEf33PKuvXv3Lti7x8fHMz4+3lhbvXr1gr2/XR577LHG9Q033LBg73744Ycb189//vOPceeJmZmZyb59+87KUrZzlbIwAAAAAAAAAAAAgDNQKaVUVfXTqUvBfrFla0WSVx3n0W8m+fFSyo7TmQ8AAIAzSOeSZHBjPa1KScZ3zhaHDW2Z/X5se3szjj9RzxNfaa539iYD1zVLxAY3JgPXJl3L2psRAACABdfVWeXyNYudgna4+OKLG9c7d+7M7t27F6TU66677nrK884Gu3fvblyvXLlwLW9z370QRkZGlIWdQZSFAQAAAAAAAAAAAJyhSikHk/y7qqo+keQ3krwiSecxbv9ekt9N8v+VUqbbFBEAAIAzWVUlSy+qZ90PNPemRpPhe2bLw4a3JMOb67WZg+3LOD2e7Pvneubqu6xZInZ4etfVnw0AAAA4Y7zwhS88au1b3/pWXvnKV57yu7/1rW81rpcuXZrnPOc5p/zexVYt4M83JiYmFuxdh5VSFvydPH3KwgAAAAAAAAAAAIDzVinl8jacccr/dm8p5UtJvlRV1dokz09yUZI1SUaSPJ7k9lLKI6d6DgAAAOeRrr5k1ffV02pmOhl7KBnaMqdIbEtycFd7M44+VM9jn2+ud6+oS8MG55SI9V+ZdHS3NyMAAACQJNmwYUM2bNiQ7du3H1m79dZbF6Qs7Atf+ELj+nnPe16WLFlyyu9ttzVr1jSu9+zZk4svvnjB3r1jx44kSW9vb8bGxha0jIzFpywMAAAAAAAAAAAA4CxRStmV5LOLnQMAAIBzWEdnXbrVf2Vy8Y809w7uToa3Hl0itv++pMy0L+PkvmT339fTqupKBq5uFogdniWD7csHAAAA56lXtXYQhwAAIABJREFUvepV+aM/+qMj1x/5yEfynve8J93dT7/ce9euXfnMZz5z1Dlno4suuqhxfffdd+eZz3zmgrx73bp1R8rCxsfHs3379lx22WUL8m7ODMrCAAAAAAAAAAAAAAAAAICn1rM6WfvCelpNH0xG7j26RGx4SzK1v335ytTsuXP1XjhbHDa4afb7ZZckVUf7MgIAAMA57G1ve1v++I//OKWUJHXR14c//OH8wi/8wtN+5/ve975MTk4eue7r68vP//zPn3LWxfCiF70on/jEJ45c33bbbXn961+/IO9+4QtfmO985ztHrm+99daz9v9OzE9ZGAAAAAAAAAAAAAAAAADw9HX2JCtuqKdVKcmBHfOXiI090t6M4zvreeK25nrnsmT5dbPlYYdn4Jqka2l7MwIAAMBZ7vrrr8/NN9+cz33uc0fWfuM3fiOvec1rsm7dupN+3913353f+Z3faaz9zM/8TFatWnXKWRfDTTfd1Lj+6Ec/mt/+7d/OwMDAKb/7la98ZT7wgQ8cuf7gBz+oLOwcoywMAAAAAAAAAAAAAAAAAFh4VZUsu7ieC3+wuTc5kozckwxtSYY3z5aIjWxLZibal3F6LNn7nXoaqqTv8tnysMHDRWKbkp419WcDAAAAjvJ7v/d7ue222zI2NpYk2bdvX1772tfm85//fPr7+0/4Pbt27cpP/MRPZGJi9ucEF110Ud71rncteOZ2ueGGG/Kyl70sX/7yl5Mkw8PDefvb3573v//9p/zum2++OVdddVXuu+++JMk3v/nNfOhDH8pb3vKWU343ZwZlYQAAAAAAAAAAAAAAAABAe3UPJKv+RT2tZqaS0Qdny8MOz9DmZGJPGwOWZPSBeh776+bWklWzJWKt039F0uHXNgEAADi/bdy4Mb//+7+fn/3Znz2ydvvtt+fmm2/Oxz72sVxyySVP+Y5t27blda97XTZv3nxkraOjIx/5yEeydu3a05K7Xd71rnflB39wtlT9Ax/4QK644or86q/+6gk9PzQ0lJ6envT29jbWu7q68p/+03/KG9/4xiNrb33rW7NixYq89rWvPamMX/ziF3PllVfmyiuvPKnnOL06FjsAAAAAAAAAAAAAAAAAAECSumxr4Ork4n+VbPq15HkfTH7oa8lP7E5euyu56avJ9/9xsvFXk/U/mvRflVRt/lXJiT3Jk7cn938o+adfT77yY8lfXpt8fFnyVzckX31d8s//e/LAR5Ld/5hMDrc3HwAAACyyt7zlLfnlX/7lxtrXvva1XH/99XnPe96Thx9+eN7n7r333rzzne/MM5/5zHz3u99t7L33ve9tlGydrV7xilccVQz2a7/2a/mxH/uxfPvb3573mZmZmXzjG9/I2972tlx66aXZuXPnvPe94Q1vyFve8pYj1xMTE3nd616XN77xjcd8d5JMT0/nO9/5Tt797nfn+uuvzw/90A9l+/btT+PTcTqpqAcAAAAAAAAAAAAAAAAAzny9a5LeFycXvLi5Pj2ejGxLhrckQ1vqr4dneqx9+WYmk6G765lr6fpk+aZk+cZ6Bg99XXpxUlXtywgAAABt8v73vz8rV67Mb/7mb6aUkiQZGRnJ29/+9rzjHe/I9ddfn0svvTQrV67M7t2789BDD2Xr1q1Hvae7uzvve9/78ta3vrXdH+G0ee9735vt27fnE5/4xJG1z372s/nsZz+b9evX55nPfGZWr16dgwcPZufOnbnzzjszMjJyQu/+gz/4g+zduzef+tSnjqx99KMfzUc/+tGsXbs2z372s7N69ep0dHRkeHg4O3bsyObNmzM+Pr7gn5OFpSwMAAAAAAAAAAAAAAAAADh7dfYmK55ZT6syk4w92iwPOzwHdrQ344Ed9Tz+peZ6V99sgVjrDFyTdPa0NyMAAAAssP/8n/9zXvayl+WXfumXsm3btiPrpZTcddddueuuu477/HOf+9z84R/+YW688cbTHbWtOjs782d/9me54YYb8pu/+ZuZnJw8srdjx47s2PH0f27R3d2dT37yk/md3/md3HLLLY0SsF27duWLX/ziCb2jr6/vaWfg9FAWdp6oqqo7yYuSbEhyUZL9SXYk+U4p5cEFPuuKJM9Jsj5Jf5LHkjyU5PZSyuTxngUAAAAAAAAAAAAAAACABVF1JH2X1nPRDzX3JoeToXlKxEa2JWWqfRmnRpM9367nqOxX1MVhg5uaRWI9q9uXDwAAAE7RTTfdlLvvvjsf//jH86EPfShf/vKXMzV17L979/T05Id/+Ifzcz/3c3n1q1+dqqramLZ9qqrKLbfckje96U35rd/6rXzyk5/Mnj17jnl/f39/brrpprz5zW/Ohg0bnvLdv/7rv543velNed/73pePfexjeeihh477zMDAQF7ykpfkR3/0R/P6178+q1f7+cOZpiqlLHaG80ZVVf8xyS2n8Io/LaW8+STPXJvk3Ulen2TVMW67Pcn/UUr55ClkS1VVP5HkV5K84Bi37EnyZ0neVUp58lTOWkhVVd2Q5HuHr7/3ve/lhhtuWMREcIa59UXJk7ef2L1v8M8UAAAAAAAAgMV011135RnPeEbr0jNKKcf/n98EgNPIv6MHAADAWWdmMtn/wNElYkObk8l9i52u1rOmWR52ePouTzo6FzsdAABwjpmamsq2bdsaa9dcc026uroWKRFnu9HR0Xz729/Ovffem127dmViYiI9PT1Zt25drr322jz3uc9NT0/PYsdsu5mZmdxxxx3ZsmVLnnzyyezfvz99fX254IILsnHjxjzrWc9Kd3f3037/Aw88kDvuuCO7du3K3r1709HRkYGBgaxfvz4bN27MNddck87Oc+PnCqfrz63F/vfz/Kl7Dquq6uYkf5Lkgqe49YVJXlhV1f9I8oullNGTPKc/yR8n+amnuHVVkrcmeW1VVf+2lPL5kzkHAAAAAAAAAAAAAAAAAE6rju5k+bX15Mdm10tJDu5qlocd/n70oSSlfRkPPpns+lo9jew9ycA1zQKxwU3JwLVJd3/78gEAAMBx9PX15aUvfWle+tKXLnaUM0pHR0duvPHG3Hjjjafl/VdccUWuuOKK0/Ju2kNZ2DmqqqqXJ/mLJEtalkuSO5Lcn2RFku9LsqZl/41JlldV9b+UUmZO8JzOJH+W5EfmbO1K8p0kQ0muOnRWdWhvXZJPV1V1Uyllzk8jgTNOVT31PQAAAAAAAAAAAAAAAHAuq6qk94J6Lpjzy8xTY8nIttnysCOzNZk+0L6MMweToe/VM9eyS5slYodn6UV+fwgAAADgLKAsbHH9myR/fxL37z+Rm6qquiTJ/0yzKOzrSX6+lLK55b6eJL+Y5HeTdB9afnWS/5LkHSeY6T1pFoVNJvmVJH9USploOev6JB9M8oJDSz1J/qKqqmeWUh47wbMAAAAAAAAAAAAAAAAA4MzStSxZ+ex6WpWZZOzhZKi1QGxz/XX88fZmHHu4np1faK53DcwWhw22lIj1X510Lpn/XQAAAAC0nbKwxbWzlPLgaXjvu5OsbLm+PclNpZTx1ptKKQeT/N9VVW1P8qmWrV+pquoPSykPHe+QqqquTPK2Ocv/upTy6bn3llLurqrqB5N8KbOFYauT3JLk353AZwIAAAAAAAAAAAAAAACAs0fVkfRdVs/6Vzb3JvYmw1tbSsQOzci9SZluX8apkWTPP9bTyN6Z9F+ZLN80WyB2uFBsycr53wUAAADAaaMs7BxTVdU1Sf5ty9JEkjfPLQprVUr5i6qq/rTluZ7UJV5veYrjbknS3XL9J/MVhbWcc6Cqqjcn+W6Sw/+TAj9bVdVvl1Luf4qzgMVSymInAAAAAAAAAAAAAAAAgHPLkpXJmufX02p6Itl//9ElYsObk8nh9uUr08nItnoe/Uxzr/eCZoHY4em7rC5IAwAAAGDBKQs797whSWfL9f8spWw7gefem2bJ2E9WVfVLxyoZq6pqaZKfmOcdx1VKuaeqqr9I8pOHlroOZf4vJ5ARAAAAAAAAAAAAAAAAAM5dnUuSwY31tColGX+8Lg0b3pIMtRSJjW1vb8bxJ+p54ivN9c7eZODalgKxTfXnGLg26VrW3owAAAAA5xhlYeeeH59z/eETeaiUsrmqqn9I8rxDS31JfjjJZ47xyCuTtP507hullC0nmPHDmS0LS5LXRlkYnLmqarETAAAAAAAAAAAAAAAAwPmtqpKlF9az7geae1OjyfA9s+VhR2ZrMnOwfRmnx5N9d9YzV99lLSViLdO7zu8vAQAAAJwAZWHnkKqqLkzy7JalqSRfP4lX3JbZsrAkuTnHLgt71TzPnqivps52+D9/31dV1bpSyuMn8Q4AAAAAAAAAAAAAAAAAoKsvWfV99bSamU7Gts+Whw1tnv3+4K72Zhx9qJ7HPt9c7x48ukBscFPSf2XS0d3ejAAAAABnMGVh55ZnzLm+s5QyehLP3z7n+oaTOOsbJ3pIKWW0qqrvJmn9yeMNSZSFwZlo6sBiJwAAAAAAAAAAAAAAAABOVkdn0n9FPetvbu4d3J0Mb50tDzs8++9Lykz7Mk4OJbv/oZ5WVVcycPXRRWLLr0uWrGhfPgAAAIAzhLKwxfWLVVW9M8mmJKuTTCbZneShJF9L8jellK+exPuun3N970nmue8p3tdq0wKc1VoWdn2Svz3JdwDtsPeOxU4AAAAAAAAAAAAAAAAALKSe1cnaF9bTavpgXRh2uDxsqKVIbGqkffnK1Oy5c/VeeHSJ2ODGZNmlSdXRvowAAAAAbaQsbHH91JzrniT9SS5L8tIk76iq6ltJ3l5K+eIJvO/qOdfbTzLPQ3OuV1dVtbKUsrd1saqqVUlWneJZc++/5iSfBwAAAAAAAAAAAAAAAAAWUmdPMnh9Pa1KSQ7smC3wap2xR9qbcXxnPU/c1lzvXJYsv+7oIrGBa5Kupe3NCAAAALDAlIWd+W5McmtVVb+V5J2llHKce1fMuX7iZA4qpeyvqmo8SW/L8mCSvXNunXvOWCll9GTOmifb4Ek+DwAAAAAAAAAAAAAAAAC0Q1Ulyy6u58IfbO5NjiQj9yRDc0rERu5JZibal3F6LNn7nXoaqqTv8tnysMGWIrGetfVnAwAAADjDKQtbHI8m+VySbybZnGRPkpkkq5M8N8m/SvLKlvurJO9I0pHk7cd5b/+c6wNPI9uBNMvCBk7jOa3mO+ekVVV1QZK1J/nYVQtxNgAAAAAAAAAAAAAAAACcd7oHklX/op5WM9PJ6APNArHhLcnQ5mRiTxsDljrH6APJY3/d3FqycrY4bPnGZPmm+mv/FUmHX8EFAAAAzhx+UtFe30xdAvaFUko5xj23J3l/VVU3Jvlokmta9v59VVV/X0r59DGenVviNf40Mh5IsvI471zIc473zqfrl5LcskDvAgBgoY1uT/bdmaz6l8nSdYudBgAAAAAAAAAAAACA06WjMxm4up6L/1Vzb/zJo0vEhrfUhV5lpn0ZJ/YmT36jnkb27mTgmjlFYhuT5dcl3cvblw8AAADgEGVhbVRK+dxJ3Putqqqen+QbSa5t2XpPVVV/WUqZPpHXnGzGM/wZAADOVqUkd/yvydb3za4957eT6/+3xcsEAAAAAAAAAAAAAMDi6F2T9L44ueDFzfXp8WTk3maB2NDm+uv0WPvyzUwmQ3fXM9fS9fOUiG1Mll2SVFX7MgIAAADnFWVhZ7BSyp6qqv5Nkm8lOfwToo1JfiDJF+d5ZP+c66VP49i5z8x9ZzvPAQDgXPHwnzeLwpLkn349ueAlyZrnL04mAAAAAAAAAAAAAADOLJ29yYpn1NOqzCRjjzZLxA7PgR3tzXhgRz2P/21zvatv/hKxgavrzwUAAGepap5S3FLKIiQBODHz/Rk1359lZxtlYWe4UsodVVXdmuSVLcuvirKwY/lvST5xks9cleTTC3Q+AADz2fJ/zb++7f9RFgYAAAAAAAAAAAAAwPFVHUnfpfVc9EPNvcnhZHjr0SViI9uSmcn2ZZwaTfZ8u56jsl8xf5FY75r25QMAgKepo6PjqLXp6el0d3cvQhqApzY9PX3U2nx/lp1tlIWdHf4mzbKwZx3jvqE512tP5pCqqvpzdInXvhM4Z1lVVX2llNGTOO6CEzjnpJVSnkjyxMk8cy60/gEAnPGevH3+9Qf+3+QFf9reLAAAAAAAAAAAAAAAnDu6lyer/2U9rWamkv33H10iNrQ5mVyQX2k8MWUm2X9fPTv+qrnXs/pQcdimZolY3+VJR2f7MgIAwHFUVZXOzs5G+c6BAwfS29u7iKkAjm1sbKxx3dnZeU50DCkLOzs8OOf6WCVg2+ZcX3aS58y9f08pZe/cm0opu6uq2ptkZcvyhiSbT+GsudkBAAAAAAAAAAAAAAAAAJ6ejq5k+bX15Mdm10tJDu5qKQ9rKRIbfTBJaV/Gg7uTXV+vp5F9STJwbbNAbHBjMnBd0t3fvnwAAHBIX19fhoeHj1yPjIxk5cqVx3kCYPHs37+/cd3ff278XVpZ2NnhwJzrpce4b25Z19Unec6Vc67vPs69m5O8cM5ZJ1MWNvesk3kWAAAAAAAAAAAAAAAAAODkVVXSe0E9F7y0uTd1IBnZlgxvni0QG96SDG9Npuf+qudpNDORDH2vnrmWXdIsEVu+qf669KL6swEAwGkwMDDQKAsbGxvLxMRElixZsoipAI42MTGRsbGxxpqyMNppzZzrJ49x39yf+jyrqqplpZSxee8+2oue4n1z91rLwl6Q5LMnckhVVX1JnnUSZwEAAAAAAAAAAAAAAAAAnF5dS5OVz6qnVZlJxh5OhrbMKRHbkozvbG/GsUfq2fnF5nrXwGyB2GBLmVj/1UmnAgcAAE5NX19f47qUkocffjiXXXZZurrU1wBnhqmpqTz88MMppTTW5/4Zdrbyp+3Z4XlzrnfMd1Mp5bGqqu7MbBFXV5IXJ7n1BM95+Zzrvz7OvX+T5BeO8+zxvCTN/+x9p5Ty+Ek8DwAAAAAAAAAAAAAAAADQHlVH0ndZPetf2dyb2JcMb20pENtcfx25NynT7cs4NZLs+cd6Gtk7k/4rZ8vDWqdnVfvyAQBwVuvs7MzAwEBGRkaOrE1MTOS+++7L8uXLs3z58nR3d6ejo2MRUwLno5mZmUxOTmZ4eDjDw8OZmZlp7A8MDKSzs3OR0i0sZWFnuKqqepO8ds7ybcd55FOZLQtLkp/JCZSFVVW1Mc1SstGneO7zSQ4kWXro+gVVVW0spWx5qrOSvHnO9adO4BkAAAAAAAAAAAAAAAAAgDPLkhXJmufV02p6Itl/f0uJWEuZ2ORw+/KV6WRkWz2Pfra517M2Gdx0dInYsg1Jx7nxi9QAACyciy66KBMTEzl48OCRtZmZmezbty/79u1bxGQA8+vp6clFF1202DEWjLKwM99vJLm45Xo6yV8d5/7/keSdSQ7/FOa1VVVdU0rZdgLntPp4KWX8WDeXUsaqqvrzJD895x0/c7xDqqq6NsmPtyxNJfnoU2QDAAAAAAAAAAAAAAAAADh7dC5JBjfW06qUZPzxeUrEtiSjD7U348FdyRO7kie+0lzv7E0Grj26RGz5tUlXX3szAgBwxujs7Myll16aBx98MFNTU4sdB+C4uru7c+mll6az89wpw1YW1iZVVf10kltLKY+fxDM/n+SWOct/Uko55k97Sinbqqr60yRvObS0JMmfVFX1g8cq/6qq6jVJ3tyyNJHk3ScQ8T8m+akk3Yeu31xV1adKKZ85xjm9ST58KNNh/72Uct8JnAUA55epsWR0e/3/RKk6FjsNAAAAAAAAAAAAAAAAC6GqkqUX1rPu5c29qdFk+J55isS2JjMH25dxejzZd2c9cy3bUBeHDW5qFon1rqs/GwAA57Tu7u5s2LAhjz/+eEZHRxc7DsC8+vr6sm7dunR3dz/1zWcRZWHt87NJ/rCqqk8k+XiS20op8/5Tr6qqG5O8I8mPz9l6NMk7T+CsWw49u/LQ9QuTfLGqqp8rpWxpOacnyS8k+b05z//e8QrJDiul3F9V1fuS/FrL8p9XVfUrSf6olDLRctamJB88lOWw3TmxUjIAOH+Ukvzz25Mt/2cyM5H0XpC86OPJupctdjIAAAAAAAAAAAAAAABOp66+ZNX31dNqZjoZ2z5PidiWZPyJ9mYc217Pzlub692DzfKwwzNwVdJxbv1yNgDA+a6npycbNmzI5ORkhoaGMjQ0lMnJyZRSFjsacJ6qqird3d0ZHBzM4ODgOVcSdpiysPZamuRNh2amqqptSR5MMpRkOsnqJM9Osm6eZ/ckeVUpZedTHVJKeaSqqtcm+XySJYeWX5Tk7qqqvp3k/iSDSZ6bZO2cx/8yyX84ic/075PckOTmQ9fdSX4/yX+oquqOJCNJrjx0Vmsl/ESSHy+lPHYSZwHAue++/57c/d7Z6/Enktt+JHnNg0nv3H9sAwAAAAAAAAAAAAAAcM7r6Ez6r6hn/c3NvYN7kuGth8rDNs+WiO2/PynT7cs4OZTs/od6WlVddWFYo0RsU7L8umTJivblAwBgwXV3d2fNmjVZs2ZNSikppWRmZmaxYwHnmY6OjlRVlaqqnvrms5yysMXTkeS6Q/NUvpTkzaWUR0705aWU26qq+vEkf5LZQrAqyY2HZj4fS/LzpZz4T39KKdNVVf1kkg8meX3L1gVJXnWMx55I8m9LKV890XMA4Lxx3wePXpseSx75dHL1z7U/DwAAAAAAAAAAAAAAAGeunlXJ2hfU02r6YLL/vtnysKEts99PjbQvX5k6VGa2Ncmnm3u9F84pEduYDG5Mll2aVB3tywgAwCk7XNTT0eG/xwGcLsrC2ud9SR5N8qIkl53A/aNJbk3ygVLKl57OgaWUz1VV9Ywk705d5LXyGLf+fZLfLaV88mmesz/JT1VV9edJfjXJ849x654kf5bkllLKrqdzFgCc8+b+r6cc9t1blIUBAAAAAAAAAAAAAABwYjp7ksHr62lVSnLgsdnisOEtyfDm+uvYI+3NOL6znidua653Lk2WX3d0kdjAtUnX0vZmBAAAgDOEsrA2KaV8KsmnkqSqqhVJbkhyaZJ1SZYl6UiyL8neJJuT3FlKmV6Ac59I8taqqt6W2aKyC1OXkT2a5DullAdO9ZxDZ/15kj+vquqKJM9Nsj5JX5KdSR5K8vVSysRCnAUAAAAAAAAAAAAAAAAAwEmqqmTZ+noufEVzb3IkGbknGdrSLBMbuSeZaeOvh04fSPb+Uz0NVdJ3+Wx52GBLkVjP2vqzAQAAwDlKWdgiKKXsS/L1Np85keTv2nTWA0kWpIAMAAAAAAAAAAAAAAAAAIA26B5IVv2LelrNTCejDzYLxIa3JMObk4O72xiwJKMP1PPYXze3lqycLQ5rnf4rkw6/Tg0AAMDZz99uAQAAAAAAAAAAAAAAAACA+XV0JgNX1XPxjzb3xp+cp0RsS13oVWbal3Fib/LkN+ppZO9O+q+ui8MGN7UUiV2XdC9vXz4AAAA4RcrCAAAAAAAAAAAAAAAAAACAk9e7Jul9cXLBi5vr0+PJyL3zF4lNjbYv38xkMry5nkc+1dxbur6lPKxlll2SVFX7MgIAAMAJUBYGAAAAAAAAAAAAAAAAAAAsnM7eZMUz6mlVSnLg0bo0bGhzs0TswI72Zjywo57H/7a53tWXDFw3Wx42uDFZvikZuLr+XAAAALAIlIUBAAAAAAAAAAAAAAAAAACnX1Ulyy6p58KbmnuTw8nw1maB2PCWZGRbMjPZvoxTo8neO+ppZO9I+q6YLRFrnd417csHAADAeUlZGAAAAAAAAAAAAAAAAAAAsLi6lyer/2U9rWamkv0PHF0iNrw5mdjbvnxlJtl/Xz07/qq517N6/hKxviuSjs72ZQQAAOCcpSwMAAAAAAAAAAAAAAAAAAA4M3V0JcuvqSevnl0vJTm4a7Y8bKilSGz0wSSlfRkP7k52fb2eRvYlycC1zQKxwY3JwHVJd3/78gEAAHDWUxYGAHBWqBY7AAAAAAAAAAAAAAAAAJw5qirpvaCeC17a3Js6kIxsmy0Pa53pA+3LODORDH2vnrmWXdIsETs8S9fXnw0AAABaKAsDAAAAAAAAAAAAAAAAAADOHV1Lk5XPqqdVmUnGHk6G5ikRG9/Z3oxjj9Sz84vN9a7+Q8Vhm5LBlhKx/quTziXtzQgAAMAZQ1kYAAAAAAAAAAAAAAAAAABw7qs6kr7L6ln/yubexL5keOvRJWIj9yZlqn0Zp/Yne75VTyN7Z9J/5Wx5WOv0rGpfPgAAABaFsjAAAAAAAAAAAAAAAAAAAOD8tmRFsuZ59bSamUz23z9bHja0efb7yaH25SvTyci2eh79bHOvZ+3RBWKDm5JlG5KOzvZlBAAA4LRRFgYAAAAAAAAAAAAAAAAAADCfju5k+XX15DWz66Uk44/PFoe1zuhD7c14cFeya1ey66vN9c7eZODao4vEll+bdPW1NyMAAACnRFkYAAAAAAAAAAAAAAAAAADAyaiqZOmF9ax7eXNvajQZ2ZYMzSkRG9maTI+3L+P0eLLvznrmWrZhtjxssKVIrPfC+rMBAABwRlEWBgBwNjjw6GInAAAAAAAAAAAAAAAAAE5EV1+y8jn1tCozyehDzQKxwzP+RHszjm2vZ+etzfXuwdnisNYZuCrp6G5vRgAAAI5QFgYAAAAAAAAAAAAAAAAAAHC6VR1J/xX1rL+5uXdwTzK89egSsf33JWW6fRknh5Ld/1BPI3tXXRg2X5HYkhXtywcAAHCeUhYGAAAAAAAAAAAAAAAAAACwmHpWJWtfUE+r6Ym6MGx4c10eNtRSJDY10r58ZepQmdnWJJ9u7vWuaykP21R/HdyYLLu0LkgDAADglCkLAwAAAAAAAAAAAAAAAAAAOBN1LkkGN9XTqpTkwGOzxWGtM/ZwezOOP17PE19urncuTZZf11IkdmgGrk26lrY3IwAAwFlOWRgAAACjH0ltAAAgAElEQVQAAAAAAAAAAAAAAMDZpKqSZevrufAVzb3J/cnIPXVx2NDm2RKxkXuSmYn2ZZw+kOz9p3oaqqTvsmaB2OCm+mvP2vqzAQAA0KAsDAAAAAAAAAAAAAAAAAAA4FzR3Z+sem49rWamk9EHZ8vDWufgk20MWOocow8mj/1Nc2vJymaJ2OHpvzLp8KvxAADA+cvfiAAAAAAAAAAAAAAAAAAAAM51HZ3JwFX1XPyjzb3xJ5ORrbPlYUNbkuHNyegDSZlpX8aJvcmT36inkb076b96niKx65Ilg+3LBwAAsEiUhQEAAAAAAAAAAAAAAAAAAJzPetfUs/ZFzfXp8WTk3tkSsdaZGm1fvpnJurxsePPRe0vXz1MitjFZdklSVe3LCAAAcBopCwMAAAAAAAAAAAAAAAAAAOBonb3JimfU06qU5MCjdWnY0JwSsQOPtjfjgR31PP63zfWuvmTgutnysMFDXweuqT8XAADAWURZGAAAAAAAAAAAAAAAAAAAACeuqpJll9Rz4U3NvcnhZPieZHhzs0RsZFsyM9m+jFOjyd476mmokv4rZkvElm+a/b53TfvyAQAAnARlYQAAAAAAAAAAAAAAAAAAACyM7uXJ6hvraTUzlex/oFkgNrylLhWb2NvGgCXZf389Oz7X3OpZ3VIi1jJ9lycdfjUfAABYPP5GAgAAAAAAAAAAAAAAAAAAwOnV0ZUsv6aevHp2vZTk4JPNArGhzfXX0QeTlPZlPLg72fX1ehrZlyQD18xfJNbd3758AADAeUtZGAAAAAAAAAAAAAAAAAAAAIujqpLetfVc8JLm3tSBZGRbs0hseEsyvDWZHmtfxpmJZOiueuZadsn8JWJL19efDQAAYAEoCwMAAAAAAAAAAAAAAAAAAODM07U0WfmselqVmWTskXlKxLYkBx5rb8axR+rZ+cXmelf//CViA1cnnT3tzQgAAJz1lIUBAAAAAAAAAAAAAAAAAABw9qg6kr4N9Vz0w829iX3J8NajS8RG7k3KVPsyTu1P9nyrnqOyX5kMbjq6SKxnVfvyAQAAZxVlYQAAAAAAAAAAAAAAAAAAAJwblqxI1jyvnlYzk8n++5sFYkNbkuHNyeRQ+/KVmWT/vfU8+tnmXs/aowvEBjcmyy5LOjrblxEAADjjKAsDAAAAAAAAAAAAAAAAAADg3NbRnSy/rp68Zna9lGT8ibo0rLVIbHhLMvpQezMe3JXs2pXs+mpzvaMnWX7toQKxTS1lYtcmXX3tzQgAACwKZWEAAAAAAAAAAAAAAAAAAACcn6oqWbqunnUvb+5NjSUj9yRDc0rERrYm0+PtyzhzMNn33XrmWrZhtjxscOPs970X1p8NAAA4JygLAwAAAAAAAAAAAAAAAAAAgLm6liUrn1NPqzKTjG5vKRDbPPv9+BPtzTi2vZ6dtzbXu5fPFoe1Tv9VSeeS9mYEAABOmbIwAAAAAAAAAAAAAAAAAAAAOFFVR9J/eT3rX9XcO7gnGd7aUiR2aPbfl5Tp9mWcHE52f7OeVlVXMnDV/EViS1a0Lx8AAHBSlIUBAAAAAAAAAAAAAAAAAADAQuhZlax9QT2tpifqwrC5JWJDm5OpkfblK1OHysy2Jvl0c6933fwlYn0b6oI0AABg0SgLAwAAAAAAAAAAAAAAAAAAgNOpc0kyuKmeVqUkBx47ukRseEsy9nB7M44/Xs8TX26udy5NBq6ts7eWiA1ck3Qta29GAAA4TykLAwAAAAAAAAAAAAAAAAAAgMVQVcmy9fVc+Irm3uT+ZOSeeYrE7klmDrYv4/SBZN8/19NQJX2XNQvEDk/vBfVnAwAAFoSyMAAAAAAAAAAAAAAAAAAAADjTdPcnq55bT6uZ6WTsoWRoSzK8uVkkdvDJNgYsyeiD9Tz2N82t7hV1adjg4QKxTfXX/iuSju42ZgQAgHODsjAAAAAAAAAAAAAAAAAAAAA4W3R0Jv1X1nPxjzT3xp9MRrbOlocNHfo6en9SZtqXcXJfsvvv62lk7076rz5UINY61yVLBtuXDwAAzjLKwgAAAAAAAAAAAAAAAAAAAOBc0LumnrUvaq5PH0xG7p0tERvekgxvrr9OjbYv38zkoXM3H7239KJ5SsQ2JssuSaqO9mUEAIAzkLIwAAAAAAAAAAAAAAAAAAAAOJd19iQrbqinVSnJgUfr0rChLc0ysQOPtjfjgcfqefzvmutdfcnAdbPlYYOHvg5ck3T2tjcjAAAsEmVhAAAAAAAAAAAAAAAAAAAAcD6qqmTZJfVceFNzb3IkGd7aLBAb3pKM3JPMTLYv49RosveOehqqpP+K2RKx1ulZU382AAA4RygLAwAAAAAAAAAAAAAAAAAAAJq6B5LVN9bTamYqGX0wGdo8p0hsczKxt40BS7L//np2fK65tWRVXRo2uKlZItZ3edKhZgEAgLOP/xYLAAAAAAAAAAAAAAAAAAAAnJiOrmTg6nry6tn1UpKDT84pEDs0+x9IUtqXcWJP8uTt9TSyL0kGrmkWiC3fmCy/ri5HAwCAM5SyMAAAAAAAAAAAAAAAAAAAAODUVFXSu7aeC17S3Js6kOy/ty4OG9qSDG8+VCS2NZkea1/GmYlk6K565lp6cbNAbHBjsnxTsnR9/dkAAGARKQsDAAAAAAAAAAAAAAAAAAAATp+upcmKZ9bTqswkY48cKg6bMwcea2/GA4/W8/iXmutd/c0SscMzcHXS2dPejAAAnLeUhQEAAAAAAAAAAAAAAAAAAADtV3UkfRvqueiHm3sTQ8nw1jklYpuTkXuTMtW+jFP7kz3fqueo7FfWxWGDc4rEela3Lx8AAOcFZWEAAAAAAAAAAAAAAAAAAADAmWXJYLLm++tpNTOZ7L+/WSI2dKhIbHKoffnKTLL/3np2/GVzr2dtszzscKHYssuSjs72ZQQA4JyhLAwAAAAAAAAAAAAAAAAAAAA4O3R0J8uvqyevmV0vJRl/olkidnhGH2xvxoO7kl27kl1fba539CTLrz26SGz5dUlXX3szAgBwVlEWBgAAAAAAAAAAAAAAAAAAAJzdqipZuq6edS9r7k2NJSP3JENzSsRGtibT4+3LOHMw2ffdeuZadmmyfFNdHjbYUiTWe2H92QAAOK8pCwMAAAAAAAAAAAAAAAAAAADOXV3LkpXPqadVmUlGtzcLxA7P+OPtzTj2cD07b22udy+fLQ5rnf6rks4l7c0IAMCiURYGAAAAAAAAAAAAAAAAAAAAnH+qjqT/8nrWv6q5N7E3Gd5aF4cNbZ4tEdt/X1Km25dxcjjZ/c16WlWddWFYa4HY4KZk+XXJkpXtywcAQFsoCwMAAAAAAAAAAAAAAAAAAABotWRlsub59bSanqgLww6Xh7XO5HD78pXpZOSeeh79THOvd12zROzw9G2oC9IAADjrKAsDAAAAAAAAAAAAAAAAAAAAOBGdS5LBTfW0KiUZ3zlbHDbUUiI2tr29Gccfr+eJLzfXO5cmA9c2C8QGN9ZrXcvamxEAgJOiLAwAAAAAAAAAAAAAAAAAAADgVFRVsvSietb9QHNvcn8ycs9sediRuSeZOdi+jNMHkn3/XM9cfZclyzc1i8SWb0x6L6g/GwAAi0pZGAAAAAAAAAAAAAAAAAAAAMDp0t2frHpuPa1mppOxh5KhuSViW5KDu9qbcfSheh77m+Z694q6NGxwTolY/5VJR3d7MwIAnMeUhQEAAAAAAAAAAPz/7N17lOZ5XR/497eq+t5VNZeenivMfbp7QBCUcI2LghG8EDWGuCbnQOK6BE1Wj3E37m4UyHGzm2w0u+we4yUq7K4aL1EwKqKgrCDKIoKCdPf0MDM9MNMzPZeequpLdXdVffePXzX1PNU1/VT1VP+e56l6vc75nHp+3+/v9/u+q2GKGWjeDQAAAAAAANC2kdGmdGv3HcnN39i9d/ap7vKwC4Vipx5I6kJ7Gc8/kzz1Z810KmPJ+F2L5WEHOorE9iVbJ9vLBwCwSSgLAwAAAAAAAAAAAAAAAAAAABgk265Nrnt1M53mzyYz93cXiV2YuZPt5atzS+fmfd17O27sKA/rmJ23JGWkvYwAABuIsjAAAAAAAAAAAAAAAAAAAACAYTC6LbnqBc10qjU582hT3jV1sLtE7Mwj7WY8c6yZx/+oe310ZzKxb6k8bPJA83X87mR0e7sZAQCGjLIwAAAAAAAAAAAAAAAAAAAAgGFWSrLz5mZueF333vmZZPpwd4HY9KFk5kiycK69jPOnkxOfbqZLSXbfvlQi1jnb9jTfGwDAJqcsDAAAAAAAAAAAAAAAAAAAAGCj2jKeXPvVzXRamEtOPdRdIDZ1MJk+mJw70WLAmpx8oJlHf7d7a+s1K5eI7b49GVGZAQBsHv7OBwAAAAAAAAAAAAAAAAAAAGCzGRlLxu9q5uZvXlqvNTn7ZHeJ2IU5+WCS2l7Gc08nT368ma7sW5Pxu1coEtvXlKMBAGwwysIAAAAAAAAAAAAAAAAAAAAAaJSSbL+umb1/s3tvfjaZOdIUh00tKxKbP91exoVzydRfN7Pcjpu7C8QmF7/uuLn53gAAhpCyMAAAAAAAAAAAAAAAAAAAAAB6G92eXPUVzXSqC8npRxaLww52l4idOdZuxjOPNPP4h7vXx3YnE/sWS8QOLJWJjd+VjG5rNyMAwBopCwMAAAAAAAAAAAAAAAAAAADg8pWRZNfzmrnx67v3zk0l04e7C8SmDyUzR5I6117GuZPJ059q5qLsdzTFYZP7l0rEJvYn265tLx8AwCUoCwMAAAAAAAAAAAAAAAAAAADgytg6mez5G810WjifnHywo0DsYDK1+Pn8M+3lqwvJyfubefS3u/e27ekuD5vYn0weSHbemoyMtpcRANj0lIUBAAAAAAAAAAAAAAAAAAAA0K6RLcnEPc3kTUvrtSazxztKxDrm1NEktb2MZ59MnvhYM13Zty1mX1YkNn5PsmV3e/kAgE1DWRgAAAAAAAAAAAAAAAAAAAAAg6GUZMf1zVz/X3TvzZ1OZo6sUCR2OJk/017GhbPJM59tZrmdz7u4RGxif7LjxuZ7AwC4DMrCAAAAAAAAAAAAAAAAAAAAABh8YzuTq1/cTKe6kJx6eIUSsUPJ7OPtZjz9xWYe+4Pu9S0TK5eI7b4zGd3abkYAYOgoCwMAAAAAAAAAAAAAAAAAAABgeJWRZPdtzdz0hu69cyeS6cMXl4jN3J/U+fYynp9Onvr/mulURpvCsOUlYpP7k61Xt5cPABhoysIAAAAAAAAAAAAAAAAAAAAA2Ji2Xp3seUUznebPJScfWCwPO9hdJHZ+ur18dT6Zua+ZR36re2/73sXysAPdRWK7nt8UpAEAm4ayMAAAAAAAAAAAAAAAAAAAAAA2l9GtyeT+ZvKtS+u1JrOPLRWHTXWUiJ1+uN2Ms8ebOf7H3euj25Pxfd0FYpP7k/F7krGd7WYEAFqhLAwAAAAAAAAAAAAAAAAAAAAAkqSUZMeNzVz/td17c6eS6fuWysOmDyXTB5u1hbPtZZyfTZ75y2aW23Vrd4nYxIHm6/a9zfcGAAwlZWEAAAAAAAAAAAAAAAAAAAAA0MvYruSalzTTaWE+OX00mTq0rEjsUHL2iXYznjrazLEPdq9vuaopDZvc310mtvuOZGRLuxkBgDVTFgYAAAAAAAAAAAAAAAAAAAAAl2tktCnd2n1HcvM3du+dfSqZPnxxidjJLyR1ob2M559JnvqzZjqVsWT8ru4CsQuzdbK9fADAJSkLAwAAAAAAAAAAAAAAAAAAAIArYdu1yXWvaqbT/Nlk5v6LS8SmDyVzJ9vLV+eWzl1u+w3J5IGLS8R23pKUkfYyAgDKwgAAAAAAAAAAAAAAAAAAAACgVaPbkqte0EynWpMzj65cInb6S+1mnH2smcf/qHt9dGcyse/iErHxu5OxHe1mBIBNQlkYAECSLMwnI6P9TgEAAAAAAAAAAAAAAAAAwGZWSrLz5mZueF333vmZZOa+ZOpgd4nYzJFk4Vx7GedPJyc+3UyXkuy6bak8bPLA0udte5rvDQC4LMrCAIDN7Yu/kXz2nc1/EXLtK5KX/WRy1Qv7nQoAAAAAAAAAAAAAAAAAALptGU+u+apmOi3MJace6i4Qmz7UlIqde7rFgDU59WAzxz7QvbX1mqXisM7ZfXsyov4EAHrxn5YAwOb1+P+bfOzNSZ1vrp/4aPLhr0u+6a+T7df1NxsAAAAAAAAAAAAAAAAAAKzGyFgyflczN39z997sk8tKxA42X08+mKS2l/Hc08mTH2+m08iWZPzulYvEtoy3lw8ABpyyMABg8zr6y0tFYRecfSI59vvJ7X+/P5kAAAAAAAAAAAAAAAAAAGC9bN+TbH9Nsvc13evzs8nMkaY4bOpQd6HY/On28i2cT6Y+38xyO27uLg+bXPy64+aklPYyAsAAUBYGAGxe9//0yuuf+IfKwgAAAAAAAAAAAAAAAAAA2LhGtydXfUUznepCcvqR7vKwC3Pm0XYznnmkmcc/3L0+tjuZ2NddJDaxPxm/Oxnd1m5GAGiJsjAAhtP8bHL/zyRHfyW5623Jbd+VjPiPNdbJwvl+JwAAAAAAAAAAAAAAAAAAgPaVkWTX85q58eu7985PJ1MrlIjNHEnqXHsZ504mT3+qmYuy394Uh00e6C4S23Zte/kA4ArQqgLA8Dn7dPKfOv5h7MmPJ3/2luTNp5OxHf3LBQAAAAAAAAAAAAAAAAAAsFFtmUj2/I1mOi2cT04+eHGJ2NTB5Pwz7eWrC8nJLzTz6O90723b010edmF23ZaMjLaXEQAuk7IwAIbPx//ByuuffUfykn/TbhYAAAAAAAAAAAAAAAAAAIDNbGRLMnFPM3nT0nqtydknusvDLnw+dTRJbS/j2SeTJz7WTFf2bcn43d0FYpMHkvF7ki2728sHAD0oCwNg+Bz7wMrrB/9XZWEAAAAAAAAAAAAAAAAAAACDoJRk+95m9n5N997c6WTmyFJ52JfncDJ/pr2MC2eTqc81s9zO53WXiF2YHTc23xsAtEhZGAAAAAAAAAAAAAAAAAAAAADQnrGdydUvbqZTXUhOfzGZ6iwQO9h8nX283Yynv9jMY3/QvT42vlQcNtlRIrb7rmR0a7sZAdg0lIUBAAAAAAAAAAAAAAAAAAAAAP1XRpJdtzZz0zd07507kUwf7igRW5yZ+5M6317GuZnk6U8205V9NNl951J5WGeh2Nar28sHwIakLAwAAAAAAAAAAAAAAAAAAAAAGGxbr072vKKZTvPnkpMPXFwiNn0wOT/dXr46n8zc18wjv9W9t33vxSViE/ubUrQy0l5GAIaWsjAAAAAAAAAAAAAAAAAAAAAAYDiNbk0m9zfTqdZk9rGl8rCpjiKx0w+3m3H2eDPH/7h7fXR7Mr6vu0Bscn8yfk8ytrPdjAAMNGVhAAyXcyf6nQAAAAAAAAAAAAAAAAAAAIBBV0qy48Zmrv/a7r25U8n0fUvlYV+ew8nC2fYyzs8mz/xlM8vturW7ROzCbL+++d4A2FSUhQEwXJY3JQMAAAAAAAAAAAAAAAAAAMBajO1KrnlJM50W5pPTDy+Vh00dXPp89ol2M5462syxD3avb5nsLg+bPNB83X1HMrKl3YwAtEZZGAAAAAAAAAAAAAAAAAAAAADAyGiy+/Zmbnpj997Zp5Lpw0vlYRfm5BeSutBexvNTyVOfaKZTGUvG7+ouEpvYn0zsS7Ze1V4+AK4IZWEAAAAAAAAAAAAAAAAAAAAAAJey7drkulc102n+bFMYdqE8bKqjSGxupr18dW7p3OW233Bxidjk/mTn85Iy0l5GAC6bsjAAhky59PbcqWRsVztRAAAAAAAAAAAAAAAAAAAA2NxGtyWT9zbTqdbkzKNLBV6dc/pL7WacfayZ4x/pXh/dmUzsu7hIbPzuZGxHuxkBuCRlYQAMmR5lYeeeURYGAAAAAAAAAAAAAAAAAABAf5WS7Ly5mRte1713fiaZuS+ZWlYiNnNfsnCuvYzzp5MTn26mS0l23bZUHjbZUSS27brmewOgVcrCANhg/EMFAAAAAAAAAAAAAAAAAAAAA2zLeHLNVzXTaWE+OfVgd4HY9KFk6mBy7ukWA9Ymx6kHk2Mf6N7aevVicdiBpQKxif3J7tuTEVU2AFeKn7AA9FCS1H6HWNKrYbiMtJMDAAAAAAAAAAAAAAAAAAAA1tPIaDJ+VzM3f3P33uyTF5eITR9qCr3qQnsZz51InvzTZrqyb0nG7+4uEJvYn0zsS7ZMtJcPYINSFgbApZWRpM73O0WHHmVhPfcBAAAAAAAAAAAAAAAAAABgyGzfk2x/TbL3Nd3r87PJzP1L5WFTB5c+z59uL9/C+WTq880st+OmjvKwA8nk4ucdNydFRwDAaigLA+DSBq4srAf/IAAAAAAAAAAAAAAAAAAAAMBmMbo9ueqFzXSqC8npR5aKwzrnzKPtZjzzaDOP/2H3+tiujhKxjhm/q/m+APgyZWEA9DBs5VvDlhcAAAAAAAAAAAAAAAAAAADWWRlJdj2vmRu/vnvv/HQyffjiErGZI8nC+fYyzp1Knv5UMxdlv/3iErHJA8m2a9vLBzBAlIUB0MOglW/Vfgdgo6j+vQQAAAAAAAAAAAAAAAAAAGxCWyaSa1/WTKeF88nJBy8uEZs6mJx/pr18dSE5+YVmHv2d7r1tey4uEZvYn+y6LRkZbS8jQMuUhQFwaWWk3wnWSAEUq3T0P/Y7AQAAAAAAAAAAAAAAAAAAwOAY2ZJM3NNM3rS0Xmty9omO8rCOIrFTD6XV/5//2SeTJz7WTFf2rcn4Pd0FYpP7k/F9yZbd7eUDuEKUhQFwaYNWFjay9dL7VVkYq3To3/U7AQAAAAAAAAAAAAAAAAAAwOArJdm+t5m9X9O9N3cmmTmSTB9cKhCbPpRMH07mz7SXceFcMvW5ZpbbectigdiB7jKxHTc23xvAEFAWBkAPA/Y3tjNHetygLIxVevqT/U4AAAAAAAAAAAAAAAAAAAAw3MZ2JFe/qJlOdSE5/cVk6tCyErFDyexj7WY8/aVmHvtQ9/rY+FJx2GRHidjuu5LRre1mBOhBWRgAl1ZG+p2g2+zxHjcoCwMAAAAAAAAAAAAAAAAAAIC+KiPJrlubuekbuvfOPZNMH14sDzu4VCI2c39S59vLODeTPP3JZrqyjya771gqD5vYn0wcSCb2JduuaS8fQAdlYQD0UPodoNvWqy+9X5WFAQAAAAAAAAAAAAAAAAAAwMDaelWy5+XNdJo/l5x8YKk87MtzMDk/3V6+Op/MHGnmkf/cvbd977ISscXZ+fxkZLS9jMCmoywMgOFSF3rd0EoMAAAAAAAAAAAAAAAAAAAAYB2Nbk0m9zfTqdZk9vGLS8SmDianH2434+zxZo7/cff66PZk/J4VisTuScZ2tZsR2JCUhQHQQ+l3gGWUhQEAAAAAAAAAsP5KKXckeVmSr178+tIk4x23HK213taHaM+qlLIzyWeT3LFs67211re2nwgAAAAAAADgCigl2XFDM9e/tntv7lQyfd/FRWLTh5OFs+1lnJ9NnvmrZpbbdesKJWL7k+3XN98bwCooCwNguNQeZWFVWRgAAAAAAAAAAKtTSnltkv8+TUHYNf1Nc1n+p1xcFAYAAAAAAACweYztSq55STOdFuaT0w+vUCJ2KJk93m7GU0ebOfbB7vUtkyuXiI3fmYxsaTcjMPCUhQEwXHqVhUVZGAAAAAAAAAAAq/aVSf5Wv0NcjlLKK5L8N/3OAQAAAAAAADCQRkaT3bc3c9Mbu/fOPp1MH06mD3aXiJ38wio6DdbR+ankqU8006mMNYVhEweWFYntS7Ze1V4+YKAoCwNgyCgLAwAAAAAAAADgijub5EtJ7ux3kJWUUrYm+bkkI4tLM0nG+5cIAAAAAAAAYIhsuya57pXNdJo/2xSGXSgPm+ooEpubaS9fnVssMzt88d72G5YViO1PJvcnO5+XlJGL7wc2DGVhAAyXXi28VVkYAAAAAAAAAABrcj7JXyf58ySfXPz62SSvTvJHfcx1KT+a5N7Fz0eT/FqSH+pfHAAAAAAAAIANYHRbMnlvM51qTc4cWyoOmz6UTB9svp7+UrsZZx9r5vhHutdHdyQT+5YViR1Ixu9Oxna0mxG4IpSFAXBppfQ7QbdeZWHptQ8AAAAAAAAAAF/23iQ/VWudXb5RBu33zSwqpbw4yT/vWHp7kpf3KQ4AAAAAAADAxldKsvOmZm74uu698zPJzH3J1KHuMrGZ+5KFc+1lnD+TnPhMM11Ksuu2pQKxyY4ysW3XDV6nBPCslIUBMFx6lYXV2k4OAAAAAAAAAACGXq31RL8zrEUpZSzJz2fp93/+cq31A6UUZWEAAAAAAAAA/bBlPLnmq5rptDCfnHqou0Bs+lAyfTA5+1SLAWty6sFmjn2ge2vr1UvFYZ2z+45kRC0RDBp/VQIwZHqUhUVZGAAAAAAAAAAAG9Z/m+Sli5+fTvIDfcwCAAAAAAAAwLMZGU3G72zm5m/q3pt9coUSsUNNoVft1amwjs6dSJ7802a6sm9Jxu9eoUhsX7Jlor18QBdlYQD0UPodoFuvv7GtysIAAAAAAAAAANh4Sin7kryjY+mf1VqP9ysPAAAAAAAAAJdp+55k+2uSva/pXp+fTWbuX7lIbO5Ue/kWzidTn29muR03rVAitj/ZeUtSBqyfAjYYZWEADJeeLbjKwgAAAAAAAAAA2FhKKSNJfi7JtsWlP6y1vqd/iQAAAAAAAABYd6Pbk6te2EynWpMzjzSlYVMHu0vEzjzabsYzjzbz+B92r4/tSsb3NcVhkweWSsTG72q+L+A5UxYGwKUNXHOrsjAAAAAAAAAAADadf5Lk1YufzyR5Wx+zAAAAAAAAANCmUpKdtzRzw+u7985PJ9OHuwvEpg8lM0eShfPtZZw7lZz4i2a6so8ku25fKg/rnO172ifL/oMAACAASURBVMsHG4CyMACGS+1RFlaVhQEAAAAAAAAAsHGUUm5L8q86lt5Va72/P2kAAAAAAAAAGChbJpJrX9ZMp4W55OSDF5eITR9Mzp1oL19dSE5+oZlHf6d7b9u1K5SIHUh23ZaMjLaXEYaEsjAAhkud73VDKzEAAAAAAAAAAKAlP5tk1+Lnv0zy4/0KUkrZm+S6NT5255XIAgAAAAAAAMAljIwlE3c3k29ZWq81OfvEUnnYVEeR2KmH0mpnw9mnkif+pJmu7FuT8Xu6S8Qm9yfj+5Itu9vLBwNGWRgAw6Uu9LqhlRgAAAAAAAAAAHCllVK+O8nrFy8XknxPrXWuj5G+N8k7+ng+AAAAAAAAAM9FKcn2vc3s/ZruvbkzycyRpfKwzpk/017GhXPJ1OeaWW7nLd0lYhdmx03N9wYbmLIwAIZLr7KwqiwMAAAAAAAAAIDhV0q5Kcm/7Vh6d631k/3KAwAAAAAAAMAGN7YjufpFzXSqC8npLyZTK5SIzT7WbsbTX2rmsQ91r4/tXiwOO5BMdpSI7b4rGd3abka4QpSFAdDDoDWn9igLi7IwAAAAAAAAAAA2hJ9MctXi56NJ/kUfswAAAAAAAACwWZWRZNetzdz0Dd17555Jpg9fXCI2c39S59rLOHcyefrPm+nKPprsvmOpPKxztl3TXj5YB8rCABguVVkYAAAAAAAAAAAbWynlO5P87Y6lt9daT/UrT4efTPJra3zmziTvvwJZAAAAAAAAAOi3rVcle17eTKeF88nJB5risKmD3UVi56fay1fnk5kjzTzyn7v3tl3XXR42eaD5uvP5ychoexlhlZSFbRKllC1JXp3k+UluTHIyyaNJPl1rfWidz7o9yVcmuSnJ7iTH0vyphh+vtZ5fz7OANpR+B+jWqyysKgsDAAAAAAAAAGB4lVL2JHl3x9Iv11o/0K88nWqtx5McX8szpQzY7z8CAAAAAAAA4Mob2ZJM7Gvmlo4/K6vWZPbx7vKwC3PqaLsZzz6RPPFE8sRHu9dHtyfj93QXiU3sTybuScZ2tZsROigLG0CllP+Y5O8tWz5aa73tMt51XZJ3Lb7vmme55+NJfqLW+p/W+v5l7/mOJD+Y5JXPcsvTpZRfSfKjtdYnn8tZwGbWoyys5z4AAAAAAAAAAAy0dye5bvHz00l+oI9ZAAAAAAAAAGD9lJLsuKGZ61/bvTd3Kpk5kkx1logdTGbuS+Zn28s4P5s881fNLLfz+UvlYZMXSsQOJNuvb743uIKUhQ2YUsqbcnFR2OW+641J3pNkb49bX5XkVaWUX0zytlrrqTWeszvJzyb5zh63XpPk7Um+vZTyllrrB9dyDkCSpPYoA6u1nRwAAAAAAAAAALDOSin7kvyXHUv/W5KdpZTbejx61bLr3cueWai1Pvxc8wEAAAAAAADAFTO2K7n6K5vptDCfnH64o0CsY2aPt5vx9MPNPPb73etbJpdKxDpn/M5kZEu7GdmwlIUNkFLKVUn+/Tq967VJ3pdka8dyTfIXSR5I8xuDXpJkT8f+308yUUr51lp7tfF8+ZzRJL+S5BuXbT2R5NNJppLcuXjWhfrD65O8v5Ty+lrrx9bwbQH0LgvLqn58AQAAAAAAAADAINqx7PpfLs5a/Z3FuWAqFxeKAQAAAAAAAMDgGxlNdt/ezE1v7N47+3QyffjiErGTX0jqfHsZz08lT32imU5lrCkMW6lIbKv/GZ+1URY2WH48yU2Ln2eSjF/OS0optyT5jXQXhf1Jku+ptR7suG9bkrcl+bdJLlQQfkuSH0vyP6zyuP8l3UVh55P8YJKfqbWe6zjr3iT/IckrF5e2JXlfKeUraq3HVnkWQHqWga2u6xAAAAAAAAAAAAAAAAAAAACAYbbtmuS6VzbTaf5ccvL+pfKwqY4isbmZ9vLVucUys8NJ3t+9t/2GiwvEJvcnO5+XlJH2MjI0lIUNiFLK65P8o8XLuSQ/muTfXebr3pXk6o7rjyd5fa11tvOmWuvZJO8upTyc5Dc7tn6wlPLTtdajPTLfkeT7ly3/3Vrr+5ffW2v9fCnldUk+nKXCsGuTvCPJP17F9wT0Syn9TtCtVxmYsjAAAAAAAAAAAAAAAAAAAACAzWt0azJ5bzOdak3OHFsqDuuc019sN+PsY80c/0j3+uiOZGLfxUVi4/ckYzvazchAURY2AEopu5L8bMfSTyT5zGW+6+4kb+lYOpfkrcuLwjrVWt9XSnlvx3Pb0pR4/aNne2bRO5Js6bh+z0pFYR3nnCmlvDXJZ5NsXVz+7lLKv6m1PtDjLICGsjAAAAAAAAAAADaoWutnkqz5T/crpbwzze/pu+C9tda3rlMsAAAAAAAAANgYSkl23tTMDV/XvXf+ZDJzX1McNnVwqURs5r5k4Vx7GefPJCc+00yXkuy6tSkOu+alyW3/IJk80F4u+k5Z2GD4n5Pctvj5gSTvTPLyy3zXdyUZ7bj+jVrrkVU896/TXTL25lLK9z5byVgpZUeS71jhHZdUa72vlPK+JG9eXBpbzPxjq8gI9MWaf+/hldWzDExZGAAAAAAAAAAAAAAAAAAAAABrsGV3U8J1zUu71xfmk1MPLZWHdc7ZJ1sMWJscpx5Kjv1e8tf/KrnlW5N7fzjZc7lVRQwTZWF9Vkp5VZLv61h6W631TCmXXc7zbcuuf2E1D9VaD5ZSPpGlkrJdSf5Wkt96lke+IcnOjus/rbUeWmXGX8hSWViSfHuUhQGr1qMMrGeZGAAAAAAAAAAAtKuUUpctfW2t9SP9yAIAAAAAAAAArMHIaDJ+ZzM3f1P33uyTyczhpfKwqUPJ9MHk1IPt9F986X3NfP3Hk+teeeXPo6+UhfVRKWVbkp9PMrK49N5a64eew/tuSPLijqW5JH+yhld8JEtlYUnyxjx7WdgbVnh2tT6aJtuFf/+9pJRyfa318TW8A9isev3NkLIwAAAAAAAAAADWoJRyS1b+/ZQ3LLseK6Xc9iyvOVlrbfOPCwYAAAAAAAAA+m37nmaue3X3+vxsMnP/UolY58ydWt8MV7042fOK9X0nA0lZWH+9M8m+xc9PJPlnz/F9L1x2/Ve11rX8dPj4susXrOGsP13tIbXWU6WUzyZ5ybKzlIXBQCr9DtCtzve4QVkYAAAAAAAAAABr8rEkt67ivpuTPPgse+9N8tb1CgQAAAAAAAAADLHR7clVL2ymU63JmUea0rCpZSViZx65vLPu/eGkDFg3CFeEsrA+KaW8NMkPdSz9QK31qef42nuXXd+/xue/0ON9nQ6sw1mdZWH3JvnDNb4D2IymPnfp/aosDAAAAAAAAAAAAAAAAAAAAIABU0qy85Zmbnh999756WT6cHeB2PShZOZIsnB+5fftviN5/ndc+dwMBGVhfVBKGUvy81n69f+9WusvrcOr71p2/fAanz+67PraUsrVtdYTnYullGuSXPMcz1p+/91rfB7YrKYPX3pfWRgAAAAAAAAAAAAAAAAAAAAAw2TLRHLty5rptDCXnHywKQ575i+Th381eeazzd6B/y4ZUSG1WfhXuj9+OMmLFz+fSvL2dXrvVcuuj6/l4VrryVLKbJLtHcuTSU4su3X5OadrrafWctYK2SbX+PyKSil7k1y3xsfuXI+zgQGhLAwAAAAAAAAAgDWotd7WwhnlCr//nUneeSXPAAAAAAAAAAD6YGQsmbi7mVu+JXnB/5gc+2By/88kd7yl3+lokbKwlpVS7k3yLzqWfqTW+tA6vX73suszl/GOM+kuCxu/gud0Wumcy/G9Sd6xTu8ChpKyMAAAAAAAAAAAAAAAAAAAAAA2oFKSm97QDJvKSL8DbCallJEkP5dk2+LSp5K8ex2PWF7iNXsZ71he4rX8nW2eAwyCckX/UNP1V5WFAQAAAAAAAAAAAAAAAAAAAAAbh7Kwdn1/klcsfp5L8l/VWuev4Hl1gz0Dm8fCXDK3vFOPJMmOGy+9rywMAAAAAAAAAAAAAAAAAAAAANhAxvodYLMopdyR5Mc6ln6i1vqZdT7m5LLrHZfxjuXPLH9nm+dcjp9M8mtrfObOJO9fp/PhuVmYS/78nyYP/WKycC656Q3JK96bbJ3sY6jSx7NXMNrrR46yMAAAAAAAAAAAAAAAAAAAAABg41AW1oJSSknys0l2Li49kOSdV+CoTV8WVms9nuT4Wp5p/uWBAfHpH0ru/6ml6y+9P/no30le96H+ZRo0tUcZWK99AAAAAAAAAAAAAAAAAAAAAIAhMtLvAJvE9yT5uo7rt9Vaz1yBc6aWXV+3lodLKbtzcYnXM6s4Z2cpZddazkqydxXnwOZSa3L0Vy5ef/zDyewT7ef5sgEr1FMWBgAAAAAAAAAAAAAAAAAAAABsImP9DrBJvKvj8+8mub+UcluPZ25Ydj22wjOP1lrPdVwfWbZ/6yrzPdv9T9daTyy/qdb6VCnlRJKrO5afn+TgczhreXbYfM4+mcw+tvLew7+a3PN97eYZWLXHvrIwAAAAAAAAAAAAAAAAAAAAAGDjUBbWjh0dn78xyYOX8Y6bV3juJUk+03G9vKzrrjWeccey689f4t6DSV617Ky1lIUtP2stzwKbWe1RBrYw304OAAAAAAAAAAAAAAAAAAAAAIAWjPQ7AOvqc8uuX1RK2bmG51/d432X2nvlag8ppexK8qI1nAWbRO13gCHRoyys5z4AAAAAAAAAAAAAAAAAAAAAwPBQFraB1FqPJfmrjqWxJK9Zwyteu+z6A5e49/d6PHspfzNNtgs+XWt9fA3PwyZU+h1gcNQeZWC99gEAAAAAAAAAAAAAAAAAAAAAhoiysBbUWq+qtZa1TJKvXfaaoyvc95kVjvvNZdf/cDUZSyn7k7y8Y+lUkt+/xCMfTHKm4/qVi+9Yjbcuu16eGTanWvudYGVl0IrKevw6KQsDAAAAAAAAAAAAAAAAAAAAADYQZWEbzy8mme+4/vZSyt2reO6fL7v+1Vrr7LPdXGs9neTXe7zjIqWUe5J8W8fSXJJfWkU+2NwGrrCrj3qWgSkLAwAAAAAAAAAAAAAAAAAAAAA2DmVhG0yt9UiS93YsbU3ynlLK9md7ppTyt5O8tWPpXJJ3reK4dyY533H91lLKmy5xzvYkv7CY6YKfq7V+YRVnwSZQ+x1gOPQqC+tZJgYDbGG+9z0AAAAAAAAAAAAAAAAAAAAAbCrKwjamdyQ50XH9qiQfKqXs77yplLKtlPJPk/zasud/vNZ6tNchtdYHkvzvy5Z/vZTyT0opnYVgKaUcSPLhxSwXPJXVlZIBKZv07BUoC2Oj+sIvJL+xt98pAAAAAAAAAAAAAAAAAAAAABgwY/0OwPqrtX6plPLtST6Y5EJp16uTfL6U8qkkDySZTPLSJNcte/y3k/zIGo774SQvSPLGxestSf6PJD9SSvmLJDNJ7lg8q7Nx6FySb6u1HlvDWQBJepWBKQtjCB3/4+QT352k9jsJAAAAAAAAAAAAAAAAAAAAAANGWdgGVWv9SCnl25K8J0uFYCXJVy/OSn45yffUWufXcM58KeXNSf5Dkr/XsbU3yRue5bHjSd5Sa/3oas8B+qn0vqVNtUeZUlUWxhB66JeiKGyNjv1B8uD/lZx7Jrn5m5O7/uukDNjPKwAAAAAAAAAAAAAAAAAAAIB1MNLvAFw5tdbfTfLCJD+V5MQlbv2zJN9Ra/2uWuupyzjnZK31O5P83cV3PZunk/z7JC+stf7eWs+BjU9R0Or0KANTFsYwuv+n+51guHzxN5OPvDF56P9JHv3t5JP/OPmLH+x3KgAAAAAAAAAAAAAAAAAAAIArYqzfAVhZrfUjSco6vOd4kreXUr4/yauT3JrkhiSnkjyS5NO11gef6zmLZ/16kl8vpdye5KVJbkqyK8ljSY4m+ZNa67n1OAs2n+f842Dj6FUGpiwMNr7P/+ukznev3fd/Ji96V7Jloj+ZAAAAAAAAAAAAAAAAAAAAAK4QZWGbxGJJ1x+1dNaDSdalgAw2lVr7nWA49CwDUxYGG95Tn7h4rc4lD/7fyT3f134eAAAAAAAAAAAAAAAAAAAAgCtopN8BAFiFUvqdYID0KFXrWSYGbFhnHu13AgAAAAAAAAAAAAAAAAAAAIB1pywMYGD0KMHql0ErKutVBqYsDDa2eomflf76BwAAAAAAAAAAAAAAAAAAADYgZWEAQ2HACrv6qlcZkLIg2LTqfL8TAAAAAAAAAAAAAAAAAAAAAKw7ZWEA9DBgRWW1RxlYr31g41IWBgAAAAAAAAAAAAAAAAAAAGxAysIAGB61ruIeZWGwsV3i54C//gEAAAAAAAAAAAAAAAAAAIANSFkYwMBYRRHWpreaXyNlQbBp1fl+JwAAAAAAAAAAAAAAAAAAAABYd8rCAIZC2aRnL1NXUQS2mnuA4VUvURo4c197OQAAAAAAAAAAAAAAAAAAAABaoiwMYFBcqgCHhrIw4FKOfbDfCQAAAAAAAAAAAAAAAAAAAADWnbIwgGFQSr8TDIjVlIXNX/kYAAAAAAAAAAAAAAAAAAAAAAAtURYGMDBqvwMMvrqKX6O6ikIxYIj5WQkAAAAAAAAAAAAAAAAAAABsLsrCAIZC6ePRfTz7IqspAlMWBgAAAAAAAAAAAAAAAAAAAABsHMrCABgedRVFYKu5Bxhi9dm3dt/VXgwAAAAAAAAAAAAAAAAAAACAligLA2B4KAsDLmXnTf1OAAAAAAAAAAAAAAAAAAAAALDulIUBDIza7wDPovQ7QIfVFIEpC4NNqw7qz1EAAAAAAAAAAAAAAAAAAACAy6csDGAoDFJhVx+tpgioKguDDU0hGAAAAAAAAAAAAAAAAAAAALDJKAsDGBQKcHpbTRGYsjDYvIpiRQAAAAAAAAAAAAAAAAAAAGDjURYGMAz6WoAzSCVmysKAS/xMUroIAAAAAAAAAAAAAAAAAAAAbEDKwgAGhpKbnlZVBKYsDAAAAAAAAAAAAAAAAAAAAADYOJSFAQyF0u8Ag2E1ZWGrKhQDAAAAAAAAAAAAAAAAAAAAABgOysIAGCJ1FbcoC4ONbRU/BwAAAAAAAAAAAAAAAAAAAAA2EGVhAAyPVRWBKQsDAAAAAAAAAAAAAAAAAAAAADYOZWEAA6P2O8AQWEUR2KoKxQAAAAAAAAAAAAAAAAAAAAAAhoOyMIChUPodYDCspghMWRhsbFWxIgAAAAAAAAAAAAAAAAAAALC5KAsDGBQKcFZhNb9GysIAAAAAAAAAAAAAAAAAAAAAgI1DWRjAMCil3wkGQ11FEdhq7gGGmGJFAAAAAAAAAAAAAAAAAAAAYHNRFgYwMAa0AKcOUC5lYQAAAAAAAAAAAAAAAAAAAADAJqMsDGAolH4HGAzKwoBLGqByQwAAAAAAAAAAAAAAAAAAAIB1oiwMgCGymiIwZWGwsSkEAwAAAAAAAAAAAAAAAAAAADYXZWEADI+6ipKgOn/lcwAAAAAAAAAAAAAAAAAAAAAAtERZGMCgWE0R1qa30PuWuop7gOHlZyUAAAAAAAAAAAAAAAAAAACwySgL4/9n786jZb3LOtF/n5MTkpAEAoEACZBAQAkgo4hMymCDaBuGRsb2ggyXi63Sja2t12aU5dWG9iIoglcFlBaQeWgmm0FGRSE0JIQxkDRNIIYEQkLGk+f+UXU8lWIP7z577xr2/nzWqlXv+3t/w7Orzq6z16rf+r7AUqh5F7AYhgSBCQtjJ/v+N5Krr5x3FQAAAAAAAAAAAAAAAAAAAADMkLAwgIXR8y5g8Q0KAhMWxg72lhOSNxybfPa5SfvMAAAAAAAAAAAAAAAAAAAAANgNhIUBLIOqeVewIAaEIw0KFIMldtX3ks8+JznrFfOuZE6EpAEAAAAAAAAAAAAAAAAAAAC7i7AwgIUhAGddQ4LAhIWxW3z1r+ZdAWydS7857woAAAAAAAAAAAAAAAAAAABgYQkLA1gKNce1FyjETFgYHHDeB+ddwZws0GcSW+fir867AgAAAAAAAAAAAAAAAAAAAFhYwsIAWCJDgsCEhQEAAAAAAAAAAAAAAAAAAAAAO4ewMACWRw8IAhvSB9ihet4FAAAAAAAAAAAAAAAAAAAAAGw5YWEAi6KF3KxvwGskLAx2Np+VAAAAAAAAAAAAAAAAAAAAwC4jLAxgKdS8C1gMg4LAhIUBAAAAAAAAAAAAAAAAAAAAADuHsDCAhdHzLmAJDHiNBgWKAcvLZ+XO5H0FAAAAAAAAAAAAAAAAAACA1QgLA1gGVfOuYDEMCQITFgYAAAAAAAAAAAAAAAAAAAAA7CDCwgAWRs+7gCUw5DUSFsZWENAHAAAAAAAAAAAAAAAAAAAAwGIQFgawFAQXJUl6QBDYkD6wLuF9i8t7AwAAAAAAAAAAAAAAAAAAAOwuwsIAWMciBfMMqEVYGAAAAAAAAAAAAAAAAAAAAACwgwgLA2B5DAkCExYGO1svUoAhAAAAAAAAAAAAAAAAAAAAwPYTFgawKATgrG/QayQsDAAAAAAAAAAAAAAAAAAAAADYOYSFASyDqnlXsCAGBIG1sDDYtYQuAgAAAAAAAAAAAAAAAAAAADuQsDCAhSHkZl1DgoCEhbElBPQtLp+VAAAAAAAAAAAAAAAAAAAAwO4iLAxgKQguGhkSFrZv+8sAAAAAAAAAAAAAAAAAAAAAAJgRYWEAC2NAENZu11cP6DSkD6zH7+PCau8NAAAAAAAAAAAAAAAAAAAAsLsICwNYCjXvAhbEgJCgQYFiACwWIXAAAAAAAAAAAAAAAAAAAACwGmFhACyPIUFgwsIAAAAAAAAAAAAAAAAAAAAAgB1EWBgAS6QHdBEWxlaoeRfAqgZ8DgAAAAAAAAAAAAAAAAAAAADsIMLCABZFL2gAziLVNSgITFgYAAAAAAAAAAAAAAAAAAAAALBzCAsDWAZV865gQQwILhsUKAYsrwUKMAQAAAAAAAAAAAAAAAAAAACYAWFhAAtDAM66hgSBCQsDAAAAAAAAAAAAAAAAAAAAAHYQYWEAy+CC0+ZdwYIYEqgmLIytILxvOXnfAAAAAAAAAAAAAAAAAAAAgJ1HWBjAwlgj5OYLL5pdGYusBwSBDekDLK8WCAYAAAAAAAAAAAAAAAAAAADsLsLCABZF71v92lUXz66OhTYgJEhYGFui5l0AAAAAAAAAAAAAAAAAAAAAACQRFgawOK6+at4VLL5BQWDCwmBnGxAaCAAAAAAAAAAAAAAAAAAAALCDCAsDWBS9b94VLIEBIUGDAsUAAAAAAAAAAAAAAAAAAAAAAJaDsDCARdFXzbuCxdfCwgB2pCGf7wAAAAAAAAAAAAAAAAAAALBLCQsDWBRXXznvClaxSAEuA4LAhIXBDrdIn0kAAAAAAAAAAAAAAAAAAAAA209YGMCiuPqqeVew+HpISJCwMAAAAAAAAAAAAAAAAAAAAABg5xAWBrAoWljY+gYEgbWwMNjRBoUGAgAAAAAAAAAAAAAAAAAAAOwcwsIAFoWwsPUNCQkSFgYAAAAAAAAAAAAAAAAAAAAA7CDCwgAWxdXCwtY3JAhMWBjsWkMCBVlQ3jsAAAAAAAAAAAAAAAAAAABYjbAwAJbHkCCg3rf9dQBzJFQKAAAAAAAAAAAAAAAAAAAA2F2EhQEsiqp5V7AErl6/Sw/oA8CC8X8gAAAAAAAAAAAAAAAAAAAArEZYGADLo3tAH2FhbAHhfYtr36XzrgAAAAAAAAAAAAAAAAAAAABgpoSFAbA8BgWB9bBQMViLf0OL65zXz7sCAAAAAAAAAAAAAAAAAAAAgJkSFgbAOhYpNGloLYtUM7ClvvPZeVcAAAAAAAAAAAAAAAAAAAAAMFPCwgAWRQu4WldfvbX9gOVT/nzdmfwfCAAAAAAAAAAAAAAAAAAAAKuRtgDAEhkYJiMsDHawWuOawCkAAAAAAAAAAAAAAAAAAABg5xEWBsASGRoEJCwMdqxa489XQYEAAAAAAAAAAAAAAAAAAADADiQsDIDlMTQISGAQm1U17wpY1Vrvjd99AAAAAAAAAAAAAAAAAAAAYOcRFgbAEumB3QQGsUk98N8as7dWkJvffQAAAAAAAAAAAAAAAAAAAGAHEhYGwPIYHAQkMAh2LmFhO5OAPgAAAAAAAAAAAAAAAAAAAFiNsDCAhSEoZX0DXyOBQbCDrREWJigQAAAAAAAAAAAAAAAAAAAA2IGEhQGwPIaGgAkLg52r1vjztffNrg622FohcAAAAAAAAAAAAAAAAAAAALC7CQsDYG3d865gwsBahIWxWSW4aHGt8d743QcAAAAAAAAAAAAAAAAAAAB2oL3zLmA7VNWtk5ya5BZJLk9yZpI3dveFcy0MgM0ZHAQkMAh2rLWC3ISFAQAAAAAAAAAAAAAAAAAAADvQwoeFVdVJSe4/0fTq7r5ilb6V5AVJnp5kz9TlP6iqX+3uV25DmQDMQvfAfgKDYOcSFgYAAAAAAAAAAAAAAAAAAADsLgsfFpbk3yf5lfHxJ7v7L9bo+7tJnjFxvj9VppIcleTPq6q6+xVbXyYA229gEJDAIDZraDAds1fTebCT/O4vL79zAAAAAAAAAAAAAAAAAAAAsJq10hYWxc9mFPaVJKuGfFXVDyX59YySBiZDwvaP7fHxS6rqhO0pFWAzBKWsa3CAk8Ag2Llq9UuCAgEAAAAAAACWRlXdoKqOnncdAAAAAAAAAACwDBY6LKyqbpDk5Immd67R/Rm55s/zjiT/JslDkrwpo2SJTnJEkt/Y2koBmI2BYWECg2AHExYGAAAAAAAAsKyq6sSq+suq+k6SbyX5TlV9vaqeX1VHzLs+AAAAAAAAAABYVAsdFpbkdhPH/9zdZ6/UqaoOySgYbH+KzHu7+9TufnN3v727H5Hk1RmlS1SSR1bVGkkTACwmYWHMiD8TFlet9eer330AAAAAAACAWaqqx1fVOePHGVV12Bp975DkH5M8Lsl1cmA/3/FJfivJP45vMAoAn/UGzgAAIABJREFUAAAAAAAAAExZ9LCwE8fPneTMNfr9aJJjM9o4lCTPX6HPb+dAysxxSU7ZigIBmKEeGha2b3vrAObn0Ousfu2Qa8+uDgAAAAAAAACS5DFJbprkhCQf7O7LV+pUVXuTvC7JDTLa59dTj0py2yRvnEHNAAAAAAAAAACwdBY9LOzYieNvr9HvPhPH53b3R6c7dPf/yjUDx26/ydoAmLmhYWFXb28ZwPwc+2OrXzvmR2ZXB1traBgkAAAAAAAAsDCqak+Se080vXmN7v9Hkh/OgXCwJDk9yaen2u5dVY/a4lIBAAAAAAAAAGDpLXpY2BETx5es0e+e4+dO8t41+n1x4vhGB1sUwO6ySAEuQ2sRFgY7Vi36n68AAAAAAAAAu8Ztk1x7fHxlkr9bo++Txs+V5LtJ7tHdd+zuuya5S5Jv5cDGkKdtQ60AAAAAAAAAALDUFj1t4aqJ4yNW7XUgLCxJPrJGv4snjo86qIoAtksvUijXghr6GrWwMNixfFbuTFXzrgAAAAAAAADYuJPHz53kS9195UqdqurGSX583K+TPL+7P7H/end/JsmvZhQkVknuXVXX287CAQAAAAAAAABg2Sx6WNhFE8c3XalDVZ2S5LiJpo+vMd9k4Ni+TdQFwFwICwPWIkgMAAAAAAAAYIZOmDj+6hr9fiIHgsCuSvIXK/R5c5Lvjo8ryZ22okAAAAAAAAAAANgpFj0s7KzxcyW5Y1UdvkKfh0wcX9jdZ64x3/Unjr+32eIAmLWhQUDCwgAAAAAAAAAAttlRE8cXrdoruff4uZN8vLu/M92hu/clOW2i6VabLw8AAAAAAAAAAHaORQ8L+3RGG4Q6yeFJnjh5sar2Jnny+LSTfHid+W4zcfz1LaoRgFnpgWFhLSwMdq41PgeGfkYAAAAAAAAAsBUOHdjvHhPHH1yj3zcnjq+z4WoAAAAAAAAAAGAHW+iwsO4+L8nHxqeV5Per6heq6tpVdVKS1ya55cSQN6w2V1XdOMlNJpq+tLXVArD9hIUB7EiC3gAAAAAAAGAZXTxxfL2VOlTVkUnuNNH00TXm2zdxfNgm6gIAAAAAAAAAgB1nocPCxl6UUVBYJzkyySuTfC/JV5I8LAeSY87NGmFhSX564vjiJF/Y6kIB2G5Dw2SEhcHOtdbngMApAAAAAAAAgBk6f+L4lFX6/FSSQ8bHneQf1pjvmInj72+iLgAAAAAAAAAA2HEWPiysu9+Y5E05EBhWE49MtP9ad1++xlQP3z9lkk90tzQJYMH4WFrX0I/uFhYGAAAAAAAAALDNTh8/V5ITq+r2K/R59Pi5k5ze3RetMd8JE8ff3oL6AAAAAAAAAABgx1j4sLCxxyb58xwICNuvklye5D909+tWG1xVN0vy4BxI4nnPdhQJwDYbGgImLAx2KaGLAAAAAAAAADN0ekahXvu/rP2Dqjp0/8WquneSR0xcf9dqE1XV3iS3nWj66taWCgAAAAAAAAAAy23vvAsYoruvSPKUqnphklOTnDi+9Pkkb+rub6wzxYNz4C6GSfL2ra8SYKdapPCdgbUIC4OdqxfpMwkAAAAAAABg9+rufVX1miS/nNGmjgck+UxVvT3JcRkFhe3J6KagneSv1pjubkmuNXF+xrYUDQAAAAAAAAAAS2opwsL26+4vJHnBQYz70yR/uvUVATBbQ0OChIXBjvW9L6x+TZDYEvPeAQAAAAAAwJJ6fpJfSHKd8fkPJ/mh8fH+kLBO8sbu/twa8zx0/NxJvtzdF25DrQAAAAAAAAAAsLT2zLsAABhsaBBQCwuDHevs1867AgAAAAAAAADGuvu8JP8myWU5EA72L5fHbV9J8rTV5qiqPUkeOTH2g9tRKwAAAAAAAAAALDNhYQAsEWFhsOtd+Ok1Lg78jGAB1bwLAAAAAAAAAA5Sd78/yR2TvC7J9zP6ArCSfDvJHyX58e7+9hpTnJrkxBz44vCd21ctAAAAAAAAAAAsp73zLmA9VXXW+LCT3Ke7v3GQ85yQ5MP75+ruk7eiPoAt00Ju1jf0NRIWBgAAAAAAAAAwK9395SSPSZKqusG47fyBw7+a5GET5+/Z2uoAAAAAAAAAAGD5LXxYWJKTxs+dzdW7d2ouAJbN0EC1FhbGZtX6XVg8QhcBAAAAAAAA5m4DIWH7+//PJP9zm8oBAAAAAAAAAIAdYc+8CwCA4YSFMStCpwAAAAAAAAAAAAAAAAAAAABYDMLCAFgiwsKAtQh5W17eOwAAAAAAAAAAAAAAAAAAAFjN3nkXMEOHThxfObcqADh4PTRMRlgYAAAAAAAAAMAiqKpjkhydpLr7nHnXAwAAAAAAAAAAy2g3hYXdaOL4e3OrAoBNGBgW1vu2twxgQQ0NFAQAAAAAAABgu1TVQ5OcmuQ+SU5Ksmd8qbPCnsWqOinJzcenl3T3J7e9SAAAAAAAAAAAWDK7KSzsQePnTvL1eRYCsFR6kcJ3hoaFXb29ZbAL1LwLAAAAAAAAAIClUlUPSvLiJLfa3zRw6MlJ/jajjSFXVNXx3X3hNpQIAAAAAAAAAABLayHCwqrq5uv3SpKcULWh8I7DktwkyQOT/NpE+6c3MgnAbCxSKNeCGhpcJiwMdqeFCjcEAAAAAAAA2D2q6llJnpVRQFjlmhthOmsEh3X3+6rqzCSnJLlWkkcledn2VQsAAAAAAAAAAMtnIcLCknwt66fkVJKPbGKNyc1Gb9rEPADMzdAgIGFhAMtF0BsAAAAAAAAsq6r61STPGZ/u//Lv8iSfSHJRkn89YJrXTczxsxEWBgAAAAAAAAAA17Bn3gVMqRUe610f8kgObEL6eJJ3bNtPAMA2Ghgm08LC2CzBRcvJ+wYAAAAAAAAwS1V16yQvzOgL284oJOw3khzb3fdN8isDp3rb/imT3KeqpvcOAgAAAAAAAADArrZoYWHbZf/GoTcm+bnuliQBsIyGfnwLCwNYMvb5AwAAAAAAwJJ6XpK9GX3pd1mSB3T3C7v70g3O85nx+CQ5Osmtt65EAAAAAAAAAABYfnvnXcDYq9a49vjxcyd5U5KLB865/y6F30lyZpK/6+6zD7pCABaAsDBgLfJgAQAAAAAAAGalqg5LcmoOfFn7n7v74wczV3dfXVVnJrnzuOk2Sb64+SoBAAAAAAAAAGBnWIiwsO7+xdWuVdXjc2Az0a919zmzqQqAxTM0CEhYGJtV8y4AAAAAAAAAABbdvZIcMT6+JMlLNznfN3IgLOz4Tc4FAAAAAAAAAAA7yp55FzCQxA5gFxgahLWL9cDXqIWFwa7kdx8AAAAAAABglk4aP3eST3T35Zuc76KJ46M3ORcAAAAAAAAAAOwoe+ddwAC/OHF8/tyqAGABCAsD1vDNv513BRw0gZkAAAAAAACwhG44cfzNLZhvzyrHAAAAAAAAAACw6y18WFh3v2reNQDsbgsU4NJDaxEWBrvWvsuTQw6bdxUAAAAAAAAAu8HlE8db8UXtsRPHF27BfAAAAAAAAAAAsGMsfFhYVT1r4vRF3X3RQc5z3SRP33/e3c/bbG0AzNrAELAWFrai7qRq3lXA9jr33clNHzLvKgAAAAAAAAB2g3+eOL7pFsx3x1XmBgAAAAAAAACAXW/hw8KSPCdJj49fmeSgwsKSHDM1l7AwgGXTvX6fRFjYtC+8OPnyy5PLz0+O/5nkri9ODj163lXB9rjyYP9UBAAAAAAAAGCDzho/V5I7VdWR3X3JwUxUVXdJcsOJpk9ttjgAAAAAAAAAANhJ9sy7gIFqQecCYKYGhoVFWNi/+OJLk08+Pfnu55LLzkvOemXyoYfMuyrYRv7UAwAAAAAAAJiRT2R0889OcmiSJ25irmdMHJ/d3WdvpjAAAAAAAAAAANhpliUsDGDn66FBWLvZwNeohYX9i7P+4gfbvvWB5OKvzbwUgFX5PxAAAAAAAACWTnfvS/LfM7qrUyV5blXdbKPzVNXDkjw2o40hneQ1W1knAAAAAAAAAADsBHvnXcAM1cTx3FNkquqIJLdJcmKS45McndHdFS9K8u0kpyc5o7uv2qL1Dk1yryQ3T3KTJBcn+UaS07r7a1uxxsRat0hyp4x+rqOSnJvk7CQf6+4rt3ItYJcZGiYjLOyACz65cvun/kPyE2+ebS0wE7V+FwAAAAAAAAC2yu8keVRGX9Yek+SDVXVqd58xZHBVPSHJn2QUElZJLk3yh9tTKgAAAAAAAAAALK/dFBZ23Ynj78+jgKr6xST3T3L3JCcn2bPOkIur6m+SvKS7P32Qa94wyXMz2pB1/VX6fCzJH3T3Gw9mjYl5HpHkGUnusUqXC6rqdUme1d3nb2YtYLcSFrZlvv6WeVcAcEAJeQMAAAAAAIBl1N2fr6qXJHl6Rhs7bpHkU1X16iR/k+SC6TFVdbMkD0zy5CQ/lgN3heokz+7u82ZROwAAAAAAAAAALJPdFBZ2p/FzJ5lXUNXvJDlhA/2PSvLEJI8fb6j69e6+aujgqnpwklcmOW6drvdMcs+q+m9Jntrdl2ygxlTVUUn+vySPXqfr9ZM8LcnDq+rx3f2ejawDMDgsLMLCAAAAAAAAAABm5NeS3DbJv8poc8ehSZ4wfmTcVklSVZckOXxibE1cf3N3v3AmFQMAAAAAAAAAwJLZFWFhVXXrJL850fS5edUy5ftJvpLknCQXJdmTUaDWjyS58US/Q5L8+yQnVdUjunvfehNX1X2TvCXJtSaaO8mnkpyV5Jgkd05yg4nrj0tynap6aHcPStqpqkOSvC7Jz0xd+uckpyX5bpKTx2vtvwPkjZK8tap+qrs/MmQdgCRJDwwLG/YRBuxEVev3AQAAAAAAAGDLdPfVVfWQJC/NKCBs/waP/V/g9kTbEZNDJ/r9RZL/a3srBQAAAAAAAACA5bUQYWFV9f6BXV9bVZdtYOrDktwkyYlT7e/bwBxb6ZIkb0vyriQfS3L6aqFcVfXjSZ6f5AETzQ9N8owkL1hrkaq6aZI35ZpBYR9N8pTuPnOi32FJnprkhRndzTFJfm687v898Gf6vVwzKOzKcY1/2t1XTKx12yR/luQe46bDkrylqn6ku88duBYwFwMDumZCWBiwHmFhAAAAAAAAALPW3ZcleWJVvSvJM5PcfrWu4+caP76S5Fnd/Zrtr3K5VdURSU5JcpskN0xyVJKLk1yQ5PQkn+3uq+ZXIQAAAAAAAAAA22khwsKS3DfrJ8BUkrsfxNyTdydMku8kefVBzLMVbt/dVw7p2N1/X1UPTPKqJP924tJvV9WLu/vyNYY/N8n1Js4/luSnxhuyJte4PMmLq+qcJG+euPSMqnp5d5+9Vo1VdcskT59q/vnufusKP8/nquoBGQW17Q8MOzbJs+OOkDC2SKFci2poWNi+7S0DgK3V/g8EAAAAAACAnaC7X5/k9VV1vyT/Ksm9k9wso71i10pyfpJvZbSn7T1J3tW9OBs9xnvi7pbkR8fPd0ly9ESXs7v7pBnWc5eMbjJ6/yQ/lgM3BV3JJVX1uiR/2N2fmUV9AAAAAAAAAADMzqKEhW2nzoG7EH4vyWO7+/y5FDIwKGyi/9VV9e+SPCzJkePm6ya5X5J3rzSmqm6d5PETTVckecJ0UNjUOm+pqldNjDssoxCvJ65T4rNzzc1Hr1wpKGxinUur6glJPpvRxq8keVJV/ZfuPmudtQA2ECZz9baWASyyWr8LAAAAAAAAANuquz+Q5APzrmOIqrpvkt/KKCDs+vOtZqSqDk9yRpJbbmDYkRnt+Xt8Vb0wyTM3umcRAAAAAAAAAIDFtWfeBUyoVR5D+qz2uCLJeUk+mFGw1W26+z3b/HNsqe6+KMlHpppvtcaQxyY5ZOL8Td39pQFL/f7U+SPHG45WVFVHJHnEOnP8gO7+YpK3TDTtzahmgAEGhoW1sDAAAAAAAAAAAAa5U5IHZkGCwsb2ZuWgsE7y+STvTfLXSd6WZPpGnYck+U9JXltVu+GGsgAAAAAAAAAAu8JChIV1957VHvu7jB8nrdV3hccR3X2T7r5/d/9Od587xx9zMy6YOj96jb4Pmzp/xZAFuvvMJP8w0XRkRhugVvOgJNeeOP94d39+yFor1PTwgeOAXU9YGAAAAAAAAAAAM3F5kq/Mu4gk+5K8K8mjkxzX3ad094O6+3Hd/ZDuPjnJjyb50NS4hyd5zmxLBQAAAAAAAABguyxEWNgANe8C5uzEqfNvrNSpqm6c5I4TTVcl+egG1vng1PmD1+j70+uMXcuHM6ptvztX1Y02MB7YrVpYGLOy2//0WGLlvQMAAAAAAACYlap6//jxvqo6bhPz3Ghyrq2scaArk3w6yZ8leWqSu2Z0U88nz6GW/S5P8scZ3WT1Z7r7dd19/kodu/uTSe6f5DVTl369qqb3HwIAAAAAAAAAsIT2zruAAT6UZH86zGXzLGQequqHktx9oqmT/N0q3W8/df6Z7r5kA8t9bOr8dmv0nV7r40MX6e5LquqzSe48tda3hs4B7FYDw8IiLIzNGvpvjcUjLAwAAAAAAABghu6bA1+yH76JeQ4fz5XM/kv7VyV5WXf/wP7Emt8Nqy5Lcqvu/vrQAd29r6qelOTeSW42br5WkkcmecHWlwgAAAAAAAAAwCztmXcB6+nu+3b3/caP8+ZdzyxV1U2SvD7JIRPNb+jur60y5LZT51/e4JJfWWe+SafMcC3YJYQTrasHvkYtLAwAAAAAAAAAYEaW+q5O3X3hSkFh89TdV20kKGxi3KVJXjHVfL+tqQoAAAAAAAAAgHnaO+8COKCq9ia5XkZBXP86yVOTXGeiy1lJfnmNKW41dX7OBks4e+r82Kq6XndfOFXn9ZNcf5NrTfe/9QbHA7uSsDBgHfO7qzMAAAAAAAAALILTps6Pn0sVAAAAAAAAAABsKWFhc1RVL0ry9IHdP5DkF7r7vDX6HDN1vlbfH9DdF1fVZUkOn2i+bpILp7pOr/P97r5kI2utUNt1NzgemJUeGNA1E0NrERYGAAAAAAAAALBEJvcyXjW3KnaG6dfvWnOpAgAAAAAAAACALSUsbPG9Lckfd/d7B/Q9aur80oNY79JcMyzs6G1cZ9JK62xYVR2X5IYbHHbyVqwNzMDQ4LIWFsZm1bwLAAAAAAAAAIDd5AYTxxu9cSXXdKup83PnUgUAAAAAAAAAAFtqacPCqurYJKckuV6S6ybZs5Hx3f2X21HXNnhwkkOq6rLu/tA6fadDvC47iPUuzeg1XW3OrVxnrTkP1i8lefYWzQUsHGFhwHoEvQEAAAAAAAAsoZ8YP3eSb8yzkB3gEVPnn5hLFQAAAAAAAAAAbKmlCgurqhtkFAb1uPzg3e82ahHCwp6X5EUT50ckOTbJnZI8LMn9kxya5GeT/GxV/XGSp3f3voHzD0zVWZoxwK439KNDWBjsXsLClpM/DQEAAAAAAGAH2NAXf1V1aJKbJHlgkt+euPTZrSxqN6mquyW511Tzm+dRCwAAAAAAAAAAW2tpwsKq6uFJ/iLJ0Tn4FIgej12INILuviDJBStc+kiSP6qqeyd5dZITx+3/LqNAsSetMuXFU+dHHERZ02Om55zlOrC79EJ8NC22oa9RCwtjs/w+AgAAAAAAAECSVNWQm1tWkq9VHfQNniYHvu1gJ9nNxuFrL59q/nB3f2Ie9QAAAAAAAAAAsLWWIiysqh6X5C+zckjYZJrH9PXpawe9E2keuvsjVXW/JP+Y5Nhx8xOr6m3d/dYVhggLS16a5PUbHHNykpVeT2DhDAwBExYGAAAAAAAAALBVhu6728z+vP03Av18kjdsYp7d7AVJ7jxxfmWSX93qRarquCQ33OCwk7e6DgAAAAAAAACA3Wbhw8Kq6hZJ/jSjjUD7NwR9Jsmbk1ya5PfGXTvJLya5TpLjk9wzyb2S7BlfOy/J85N8b4blb1p3f7WqnpfkDyeafyMrh1t9d+p8Qxtyquqo/GCI13cGrHPtqjqyuy/ZwHLHDVhnw7r7vIze68E2cTdLYNa61++TCAuD3cz/6wAAAAAAAADbYf/eve1SSf4pyaO6+8ptXGdHqqonJnn6VPNzuvvT27DcLyV59jbMCwAAAAAAAADAGhY+LCzJf8wowGp/Qsxzkzyvu7uqTsyBsLB096smB1bVrZL8lyQPzSg466lJHtjd586i8C302lwzLOzHq+qY7p4O2PrS1PmJG1xnuv8F3X3hdKfu/nZVXZjkehPNN09y5ibWmq4dYAUDw8IiLIzNEjgFAAAAAAAAAGMfyuqbNn5y/NxJPpHksoFzdpLLM7rJ5JlJPtDdH95MkbtVVf10kpdNNb8jyf8zh3IAAAAAAAAAANgmCx0WVlV7kvzbHNho9Prufu7Q8d395SQPr6rnJnlmktsmeXtV3WOZ7j7Y3edNhXPtSXKLJKdNdZ0O67rVBpe65dT559boe2aSe06ttZGwsOm1NjIW2LUGhoW1sDDYvQS9AQAAAAAAAGyl7r7vateq6uoc2NDxqO4+ZyZFkSSpqnsleWOSQyeaP5LRezH0rnwAAAAAAAAAACyBhQ4LS3KHJEePjzvJ8w5mku5+dlX9SJKHJrlzkl9N8l+3pMLZmQ43O2yFPqdPnd+hqq7d3d8fuMa91plv+tpkWNg9krx9yCJVdWRG7+3QtYC5WqB9g0P3MAoLAwAAAAAAAACYlcpCbTDZHarqrkn+e5JrTzR/IsnPbmDP4MF4aZLXb3DMyUneug21AAAAAAAAAADsGoseFnb78XMnOae7P7dW56qqNe6G91sZhYUlyZOyRGFhVXV4khtMNX9rul93n1tVn8mBIK69Se6d5L0Dl7rv1Pm71uj77iT/5xpj13KfXPPf3mnd/QM/D+w+9kyub+hrJCwMAAAAAAAAAGAGnjtx/J25VbHLVNUdMtoXeN2J5tOSPKi7L9rOtbv7vCTnbWRMVW1TNQAAAAAAAAAAu8eih4Vdf+L4jBWuT6fGHJ7k0pUm6u4vVNWZSU5J8sNVdbvuXmnORfSAJHsmzr+f5H+v0vfNORAWliS/mAFhYVV1myR3n2i6ZJ1x78notT5ifH6PqrpNd39+vbWSPGHq/M0DxgBkcFhYCwuD3csGYwAAAAAAAIBZ6e7nrt+LrVRVt03yP3LN/ZWnJ3lgdwtsAwAAAAAAAADYofas32Wujp44vnCF65es0X8lX5w4PuWgKpqxqtqT5JlTze/u7itWGfLfkuybOH94Vd16wFL/aer8b7r7stU6d/f3k7xhnTl+QFX9UJKHTTRdleSvB9QHkPTQsLB96/cBAAAAAAAAAGBTxvvbmJGq+uEk70tyw4nmzyf5qe4+fz5VAQAAAAAAAAAwC4u+UWcyDOzQFa5/b+r8hHXmu3ji+MYHVdFBqqpfqaqbbHDMoUn+PMndpy798WpjuvtLSV410XStJK+sqsPXWOchSZ4w0XRFkiF3fHxOkisnzp9QVaeusc7hSV4xrmm/P+/urwxYCyDJ0LCwq7e3DGBxVc27AgAAAAAAAIDd5JyqenZVrbd3j02qqlsleX+uuffxS0nu393fmk9VAAAAAAAAAADMyqKHhU3e6e460xe7+4qpPrdfZ77JsK6jNlHXwXhSkq9U1aur6ueq6ujVOlbVEVX1mCSn5ZohXknyV939/nXWenaSCyfO75nkf1TVbabWOayqfiXJ66fG/9fuPnudNdLdZyX5w6nmN1TVL1fVZCBYquqUjO5oeM+J5m9nWCgZwJiwMICdaeDnOwAAAAAAALBojk/yrCRfrao3VdUD513QTlRVt8goKOz4ieazMgoKO3c+VQEAAAAAAAAAMEt7513AOr44cXzrVfqckeQnx8cPSPJXK3WqqiOT/NhE04Ur9dtmRyR53PjRVfXlJF9L8p0kVyQ5OsmJSW6b5NAVxr8jyVPWW6S7v15VD0/yniT7Q7vuleRzVfXJjDYJXTfJXZLccIU1nrmBn+k3k9wuyYPH54cmeUmSZ1bVp5J8L8ktx2vVxLgrkjzMRiVgQ3pomIywMAAAAAAAAACAGdqb5CFJHlJVX03y8iSv6O7z1x7Geqrq5hkFhd1sovnsjILCvj6fqgAAAAAAAAAAmLVFDwv7XJJ9SQ5JcouqunZ3f3+qz4czCgurJD9fVc/u7rNXmOs3kxw1cX7GdhS8AZVRANpqIWiTLk3y/CQv6O4rh0ze3R+sqocleWUOBIJVkh8dP1bymiRP6e59Q9YYr7Ovqh6Z5M+SPGri0nFJfnqVYecleXx3f3joOrA7rBOE9fW3J994Z3LYDZITH50cc7vZlLVQBoaFtbAw2L1q/S4AAAAAAAAAbJUrMrqh5f5NHZXRzSV/L8nzquqNSV7W3R+ZU31LraqOT/K+JCdNNP/vjILCVtonCQAAAAAAAADADrVn3gWspbsvTvKp8WklecAK3V63v3uSI5K8t6p+Yv/FqrpuVT0/yW/nwIakC5L8w7YUvbqnZBT49fEklw8c8/kkz0zyQ939u0ODwvbr7ncmuX2SlyW5cI2uf5/kEd392O6+ZCNrjNe5uLsfneTnx3Ot5oIkf5Lk9t397o2uA7veh05Nvvyy5IznJ+/98eSfPz7vin7QvivmXcGIsDDYxYSFLaUrL553BQAAAAAAAMDBOT7JbyT5cg58Ydvj48OSPCbJ31XVZ6vql6rq6PmUOX9V1VOP+67T/7iMgsJuNdF8bpL7dfdZ21gqAAAAAAAAAAALaO+8CxjgPUnuNj4+NcnbJy929xlV9dYkD8lok9Gtk3ygqi5JclGS45IcMu5e4z5/tNHgrc3q7n9M8o9JnllVhyY5JaM7KJ6Q5Kgkhya5eFzz15Kc1t1rBXwNXfe8JE+rqqcnuVeSE5PcOMklGd1h8LTu/upm1xmv9YYkb6iqWyS5S0YbwY5M8s0kZyf5aHcvSJIQLLmrLk5O/53kfu+cdyXX9L0vJcfcbvvm716/T5JEWBjAUvnii5ObPXTeVQAAAAAAAAAb1N0XJHlhkhdU55f/AAAgAElEQVRW1QOSPC2jfX57c+DmnpXkdklekuT3q+qvk7y8uz+1wpRzUVU3zcr7KW88db63qk5aZZqLu/v8LarnmCR/m+Q2E82XJHlSkivXqGFF3f21ragLAAAAAAAAAID5WYawsNcl+c8ZbRh6TFX9x+7+7lSfpye5e5Ib5cBdCY8aP/bb3/5PSX53u4teyzio7DPjx6zWvCLJB2a01leTbEkAGbCGc981o4WGBnTNwsBaWlgY7FpV6/dh8XxrJn+mAgAAAAAAANuou9+X5H1VdaMkT0ny5CQ33385o/17R47bn1xV/5TkT5K8trsvm0PJkz6S0Y0413NCVt8b96okT9iieu6U5A5TbUcmOdg7C/oyHQAAAAAAAABgye2ZdwHr6e4zktw1yd2S/GSSfSv0OSfJA5Kcnmtuaulc8+6E70rywHFYF8APuuR/JX//xOQdt00+8ujkwk/PuyKuQVgYAAAAAAAAAMAi6+5vdffzk9wiyakZBVzt3/QxuZ/vbkn+PMk3qur/rarbzLxYAAAAAAAA+P/Zu/NoSfO6vuOfb3cP0w0DDIszAyIQBwiBsKOIAs4YZBGNgQCuOUE5xrhEj+YPj0aDmgWXRLMARlyiqEQBESOKgjoDxEFwDqMITAQGwYVpBpjNgXtn6fvLH7c6XV1zl1ruU/U8t16vc+r0rarnqef7PPfWr/ucrvO+AAADcWzVA0yjtXbVFNtcXVWPT/K8JF+Z5KFJzk9yQ5I/S/JrrbU/7HRQYNhuvT75g0uSWz68ff/mq5OTb06e8Y7kHn9/paMxK7EwWFs3vje5/3OS8kuRAQAAAAAAAFaptdaSvDHJG6vqc5J8c5JvSHK/05tkOxp2fpLvSPIdVfW2JK9I8huttTuWPzUAAAAAAAAAAPTTymNhVfXGJJeNbleNPiA0l9baqSSvHd0AZvOx3zkTCjvtthuSj7w6efQPdX/8+Ze//ug6zjPtNWpiYbC2/ux7kw+9MvmSNyd3f8iqpwEAAAAAAAAgSWvtr5N8f1W9JMlzsx0O+5KxTU5/6ORpo9t1VfVzSX6mtfbRJcz34CUcY+oP1rTWLs+ZawIAAAAAAAAAADmy6gGSfFmSH0vyJ0k+VVVvqKrvqKpHrXguYN2888U7P/7eH17uHEPWefBMLIwl6Tp8R7c+/ZfJW//xqqcAAAAAAAAAYEJr7VRr7XWttS9N8rAk/znJp7L9oZCW7UBWJbkwyfcm+VBVvb6qnrKqmQEAAAAAAAAAoA/6EAs7rZKcn+Qrkvxkkj+tqk9U1Wur6lur6uGrHQ849LZuW/UE7EssDJjSzVcnN75v1VMAAAAAAAAAsLt7JLlnkuNjj7WxW5IcTfKVSd5aVW+qqouXOyIAAAAAAAAAAPRDn2Jh4x/wOf3bAe+T5HlJ/nuS91XVtVX16qr6pqp6yIrmBGA3VaueYEQsjAW1KcN09Nu1b1r1BAAAAAAAAACMqaoTVfWNVfXOJFcmeXGSu45vkuSOJBujr8c/U/jMJH9WVc9Z4sgAAAAAAAAAANALfYiFfU+SNyX5u5yJhCU7x8MuTPJVSf5Hkr+oqr+qql+sqhdV1YOWOzYASzdtwKmJhQGxFgAAAAAAAAD0RFU9oqr+W5KPJfmZJE/Mmc8Knv584LVJfjDJg5LcP8m3J3lfzkTDWrbDYq+pqouXOT8AAAAAAAAAAKzaymNhrbUfb619eZJ7J3lSzsTDbsn+8bAHJPn6JD+X5MNV9eGq+tmq+rqquv8STwOApRALA2Yx5ZoBAAAAAAAAwIGrqruMPsv39iR/nuTbktwzZz4TmNHXlyd5YZIHtdZ+uLV2srV2c2vtFa21Ryd5TpKrx/Y7nuS7lnUeAAAAAAAAAADQB8dWPcBprbWtJH8yuv14VR3J9m8PvCTJpUm+KMl547uMfX36Q0APTvINo1uq6kNJLkvyh0kub61d190ZACyqp1Gb1qe5pp1FLAxIz9YvAAAAAAAAgPVQVQ9N8s1J/nm2f4losv0Zv9O/MLSy/ctEfynJy1trV+/1eq21N1XVZUn+T5LHj/b/0m6mBwAAAAAAAACAfupNLGzSKB72rtHtx6rqaLbjYZdmOyD2RUnuNr7L2Nen42EPTfKQJN+UJFV1dbbjYZe11l7f5fwArFATC2NBVftvwwBYCwAAAAAAAACWYfT5vucm+ZfZ/oxfcuZzfG3s/vuS/FSSV7XWbpn29Vtrm1X10iSvHT30OQsPDQAAAAAAAAAAA9LbWNik1tqpJO8c3X6kqo4l+bxsh8MuTfKFSe46vsvY16c/dPSI0e1bMqBzB2Cktf23ScTCgG3TrhkAAAAAAAAAzKWqHpTkXyT5xiQXnH4425/fa6OvTyV5Q5KXt9beusDh3j/29bkLvA4AAAAAAAAAAAzOYINZrbU7krxjdHvpKB72+dkOh12S5MnZOR5WORMPA2BQpg3/iIUByfRrBgAAAAAAAABzuiZnfyZv/HN61yZ5ZZJXttauPYBjfWbiGAAAAAAAAAAAsDYGGwubNIqHXTG6/YeqOifJk5K8IMk3xW8SBFiCrluMU37Wc+tUt2MMRfPZ2Lm5doeD7yMAAAAAAABA145k+wMdLWeiYW9L8vIkvzH6XN9BqwiGAQAAAAAAAACwZg5NLOy0qrpXki9OcmmSS5I8Mt3XawDola1VD8DQtTuST/1Jcv6jkqPHVz0Nc7MWAAAAAAAAACxBJbklyS8leUVr7X1dHKS19tFsx8kAAAAAAAAAAGDtDD4WVlXnJ3lazsTBHpWd42Djj/mtgkAPzbE0tZbUGvUQ25TXqAkEcQB+7/O3Q2FPfHly8TeuehrmMe2aAQAAAAAAAMC8rk7yiiSvaq393aqHAQAAAAAAAACAw2pwsbCqukfOjoM9JmeHwCrbxZ3JONh7krx1dHvbMmYF4KBNGf65/srkxj9Pzn9Ut+Nw+J3aTN754uRej0nu/YRVT8PMxMIAAAAAAAAAutRae+SqZwAAAAAAAAAAgHXQ+1hYVd09yVNzJg722CRHxjfJznGwq3ImDvb21toNy5gXYLkml7/Dbobwz5sel3zhryQP+qruxuk9oaQD8+FfEAsbJO8BAAAAAAAAAAAAAAAAAAAAYPh6Fwurqrvl7DjY45IcHd9kh922krw7Z8fBbu52UoAeaG0JrbCBxnbaqeRd/zL5nOcnR47uvz3s5QMvS57431c9BbNqA12/AAAAAAAAAAAAAAAAAAAAAMasPBZWVXdN8pSciYM9IfvHwW5PcmXOxMH+qLV2S7eTArBys4Z/br8xOfnm5P7P7mYeYPnu/cTk+iun3FgsDAAAAAAAAKAPquo+SV6Q5ElJLkyykeRvkvx+kt9rrd22wvEAAAAAAAAAAKD3Vh4LS3Jj9o+D3ZbkXTk7DraxhNkAem4JIZyZAl07LeEHaY7zvelqsTA4TI6emH7bttXdHAAAAAAAAABrqqrum+TRST4rya1JPpzkva3d+T9pq6qSfG+S70uy03/4fnuSj1bVt7bWfre7qQEAAAAAAAAAYNj6EAs7lu36y3hhZjPJH+dMHOyPW2ubK5gNYHlminL9/50OfIyzbN2R3H5jt8eYyRznW0cOfgxgIJYQVAQAAAAAAABYE1X12CQ/nuSSJJMfyLiuqv5Lkv/UWjs12r6S/GKSr8vZnw88/Z+5px97cJLfqqoXtdZ+pZvpAQAAAAAAAABg2PoQCxvXkvx+kh9N8rbW2h0rngdgvX3452fcoY9hntp/k8NqrgAd9N0sP9feAwAAAAAAAAAHoaq+OsmrkhzNzh/GuDDJf0zytKr6itbaVpLvTPL12f7P2/FA2On9x/9T92iSn6+qq1pr7+/gFAAAAAAAAAAAYNAmf7vfKp3+4M/Tk7wlyU1V9ftV9f1V9dSqOmeFswH0U9cxqPe9tNvXn9U851t9+qsOWCrBPAAAAAAAAICFVdXnJfmlbP9y0srZ8a+M3a8kz0ryr6vq7kl+MGdHwq5N8sYkr07yu0luyNnhsXOS/NeuzgMAAAAAAAAAAIbs2KoHSHJ1kofnzr9t8ESSS0e3JNmsqj9O8tYklyf549babcsaEqCfOg7hfPojM+6w0y+OPUhiYcAstlY9AAAAAAAAAMBh8FNJjubs8NcNST40+vriJPfKmWDYdyW5Kck9Ro99KsmLW2u/Nf6iVXUkyYuT/Jckx0f7fklVXdxau6bjcwIAAAAAAAAAgEFZeUGltfbIJBcmeWG2P1R09djTNXY7keSSJC9JclmSG6vqsqr6waq6pKrOXergACxfmyeO1nXAbKBE1BisGdaBudYMAAAAAAAAAE6rqicleXzOhMA+meR5Se7bWntSa+3zk9w3yXOTXDfa7sIk3z16iduTPH0yFJYkrbWt1trPJPma0Wuf/k/eF3R3RgAAAAAAAAAAMEzHVj1AkrTWPpnkdaNbquqCbIfBTt8ePtp0vPhyPMnTRrcfSHJbVb0ryeVJ3prkitbaZufDA6yUEM6+RLFgjVkjAQAAAAAAABb0T0d/VrbDX89orf3Z+AattZbkN6vqL5P8SbY/l/iwbP+n7S+31t6z1wFaa/+7qi5Lculonyce7CkAAAAAAAAAAMDw9bKg0lq7rrX2mtbat7bWHpHkftn+7YE/neQDY5vW2O3cJE9J8v1J3pLkxqp6e1X9u6r6R1V1YrlnAbCGqvbfZiFzhH/WOhYmlMSaa1urngAAAAAAAABg6B4/+rMlec1kKGzcKAr2qzn7l4L++pTHGd/ukTNNCAAAAAAAAAAAa+DYqgeYRmvt40l+bXRLVV2U5JJs/ybBS5I8dLTp+IeM7pLkC0e370tye1VdmeStSS5vrb1lGbMDTG+OsFPrWQyq83nmef2uA2bAUs20zvRsjQQAAAAAAAAYnoeNff3GKbb/nST/bOz+e6Y8zukIWSW5z5T7AAAAAAAAAADA2hhELGxSa+1ktn8D4a8mSVXdL2fCYZcmuXi06WQ87Mmj2/dkoOcOcLY1C+HMFSMTC9tR30Jz0AU/5wAAAAAAAACLuufY138xxfaT23xqyuN8cuzre0y5DwAAAAAAAAAArI1DEcxqrV2b5NWjW6rq/tmOhp0OiH1uzhR1VGMA1kkdWfUEwMpsrXoATmu+FwAAAAAAADBQ5419fdMU2988fqe1tjnlcca3O2fKfQAAAAAAAAAAYG0ciljYpNbax6rq/UkuSHJhkvsnOXe1UwF0oe2/yTJV1z3Gnp1v77leHEYz/Fw374HeeNc3r3oCAAAAAAAAYD7jHwY5NcX202wDAAAAAAAAAADM6NDEwqrqMUkuSXJpkqcmOX+lAwEsw9qFcOY533W7RsAZ3v+98JmPJdf87KqnAAAAAAAAAAAAAAAAAAAAgMEabCysqh6VM3GwpyW51/jTY1+3XR4H4KB1HS+b5/Xb1sHPAQyEWFgvfOBlq54AAAAAAAAAAAAAAAAAAAAABm0wsbCqemTOjoPdZ/zpsa9bzpQhauy5v0ly2dgNoGfmidr0LIRz89XJPR++6ikm9OwaAYuZJRooFtgPt1yz6gkAAAAAAAAAAAAAAAAAAABg0HobC6uqf5AzcbAvTnLf8afHvt4tDnZtksszioO11lQKgEOoZyGs9/9o8jnP7fAAc5zvLGGhteK6sA78nPeCaBsAAAAAAAAAAAAAAAAAAAAspDexsKr6+zk7DnbB+NNjX+8WB/tEzo6D/UWH4wKwk42PdXyAecI/axwLEkpj3V3/7lVPQJJELAwAAAAAAAAG7vQHEL6gqh68z7YXjd+pqqfm7M//TbUfAAAAAAAAAABwtpXHwqrqV7IdCRv/sM80cbDrk7w1Z+Jg7+t2UoAe6lsMqnUchJnrfHt2jYAFzfCevv7K7sZgen37uwoAAAAAAACYRyX5X3Psc/kM27dMFxYDAAAAAAAAAIC1s/JYWJKvydkf8tktDnZjkrflTBzsPcscEqCf+hZg6XqeOV7/Lvc5+DEAmEHHIUkAAAAAAABgGWYJeY1/wGOW+FffPggDAAAAAAAAAAC90YdY2GmnP0x0+sNBf5fk7RnFwZJc1VrzYSCAPmunVj3BnR2/YNUTAKy3JhYGAAAAAAAAh8Q8n9/zmT8AAAAAAAAAADgAfYmFVZJPJ/mjnImDXdmasgCwRubqIfbt85Rdz9O38+0714vDyM/14Oj9AgAAAAAAwJD9VfxHLQAAAAAAAAAArFwfYmE/kO042Ltaa3esehiAQelbgKXreQ5FUA1g3ViHAQAAAAAAYKhaaw9e9QwAAAAAAAAAAEAPYmGttf+w6hkAOChbHb++4AzA4LSu/24AAAAAAAAAAAAAAAAAAACAw+3IqgcAYBE9i2cJwgBdaz1b95iCvxsAAAAAAAAAAAAAAAAAAABgEWJhAEPWt2hO57Gwnp0v0G/3fsKqJyDp399VAAAAAAAAAAAAAAAAAAAAMDBiYQAcoI6DMPMEZ9Y6UrPO5w6Jf+r2RdchSQAAAAAAAAAAAAAAAAAAADjcFBQAemOesFPPYlCt6yBMz84XWIFZ1gFrRi90/ncDAAAAAAAAAAAAAAAAAAAAHG5iYQCD1rMQjiAM0Cs9WyPXlu8DAAAAAAAAAAAAAAAAAAAALEIsDIAD1HUQZp7XF6kBWCkhSQAAAAAAAAAAAAAAAAAAAFiIWBjAkLWehbC6DsL07Xz7zvXiUJrh59p7oB/EwgAAAAAAAAAAAAAAAAAAAGAhYmEAg9a3EE7X8/TtfIF+s2b0g1gYAAAAAAAAAAAAAAAAAAAALEIsDICD0/oYhBELAlipZh0GAAAAAAAAAAAAAAAAAACARYiFAfTGPDGVngVY2qmOX79n5wssn3UAAAAAAAAAAAAAAAAAAAAAWDNiYQAMiEgQMAtrBgAAAAAAAAAAAAAAAAAAADB8YmEADMgc4Z+2zrGgdT53yJq//3ukatUTAAAAAAAAAAAAAAAAAAAAwKCJhQEMWd9COIIwQOd6tu4BAAAAAAAAAAAAAAAAAAAAdEwsDIDh6FscDeg5awYAAAAAAAAAAAAAAAAAAAAwfGJhAIO2biGcec533a4RcEategAAAAAAAAAAAAAAAAAAAACAhYmFAfRFE7Xan2s0G9eLw2iGn+tjd+tuDAAAAAAAAAAAAAAAAAAAAIAlEQsDAOBwOnLOqicAAAAAAAAAAAAAAAAAAAAAWJhYGMCgtVUPsFxtjvOdZx/gkPD+BwAAAAAAAAAAAAAAAAAAAIZPLAyAARH+AWYgFtgTteoBAAAAAAAAAAAAAAAAAAAAYNDEwgCGrHchnK6DMH07X2DpZlr3rBkAAAAAAAAAAAAAAAAAAADA8ImFAXCAhHl6pXcxOViytrXqCQAAAAAAAAAAAAAAAAAAAAAWJhYG0BvCTvuaK37lusL68v4HAAAAAAAAAAAAAAAAAAAAhk8sDGDQ1i2Es27nC9zZDOtA2+puDAAAAAAAAAAAAAAAAAAAAIAlEQsD4ABVx68vFgbM4PabVj0BAAAAAAAAAAAAAAAAAAAAwMLEwgAGTTxrf+t8jdb53CHJxslVTwAAAAAAAAAAAAAAAAAAAACwMLEwAA5Qx3GqJn4FzLAO3H5jcmqzu1GYUq16AAAAAAAAAAAAAAAAAAAAABg0sTAABkQsDJjR5sdXPQEAAAAAAAAAAAAAAAAAAADAQsTCAPqizRHCmmefTlXHr38YrhGwVBsnVz0BAAAAAAAAAAAAAAAAAAAAwELEwgAAGI5ZA4CbYmEAAAAAAAAAAAAAAAAAAADAsImFAQzajNGcoZs1ErT2XC/IhlgYAAAAAAAAAAAAAAAAAAAAMGxiYQAMyDzxK8EsOFxmfE9vioUBAAAAAAAAAAAAAAAAAAAAwyYWBsDOmsgWcAhsiIWtXNWqJwAAAAAAAAAAAAAAAAAAAIBBEwsDGLQug15iYUAfzbg2bYqFAQAAAAAAAAAAAAAAAAAAAMMmFgbQGz2Lc7V55unwHOaaJ+nddV2mua8ZHCIbYmEAAAAAAAAAAAAAAAAAAADAsImFAQxZpzGorQ5fex7CV0BmX/c2xcIAAAAAAAAAAAAAAAAAAACAYRMLA2BnnYbI5tC3eYBh2LjW+gEAAAAAAAAAAAAAAAAAAAAMmlgYALsQ1wEOga1bk9tvWvUUAAAAAAAAAAAAAAAAAAAAAHMTCwMYtA6DXm2ru9eey5zn2kTP4HCZ4z29cfLgxwAAAAAAAAAAAAAAAAAAAABYErEwAHYxR5Cn0zCX6NfsXDNIkmyKha1WrXoAAAAAAAAAAAAAAAAAAAAAGDSxMIDeEOfaU6fnCgzHHGvBhlgYAAAAAAAAAAAAAAAAAAAAMFxiYQDsrG2teoIDIjIGa29TLAwAAAAAAAAAAAAAAAAAAAAYLrEwAHbRt8hW3+YBVqLNsRaIhQEAAAAAAAAAAAAAAAAAAAADJhYGMGgdBrTmCfJ0qm/zDIFrBkmSDbEwAAAAAAAAAAAAAAAAAAAAYLjEwgDYxdYc+/QxXiaYBYfLHO/pzSXGwrZOJTf/RXLDn55Zt1pL/u5Dyc0f7GGIEQAAAAAAAAAAAAAAAAAAAOi7Y6seAIBF9DHO1TMf/OnkAV+56imAVdpYUizsM3+TXPbs5Kb3bt+/12OTJ74sufI7khvePXrsccklb0pOXLicmQAAAAAAAAAAAAAAAAAAAIDBO7LqAQAY6V2c65DMc+2bko/86sGOcljcdtOqJ4DZzbNWbi4pFnbF158JhSXJDX+avOUpZ0JhSXLDVckVX7uceXqjVj0AAAAAAAAAAAAAAAAAAAAADJpYGAA7a1urnmDCAvGyj/zSwY1xmPz161Y9ASzHrZ9Itk51e4zbbkg+8fbptv34Hya3Xt/tPL3St/gkAAAAAAAAAAAAAAAAAAAADItYGMCQtS4DLD2Luyxyrh/7nYObY0j2u2bX/Pxy5oBVa1vbwbAubX5itsjiDVd1NwsAAAAAAAAAAAAAAAAAAABwqIiFAbCzTkNkAPOac23aPHmwY0yaJRSWJLVO/wyvVQ8AAAAAAAAAAAAAAAAAAAAAg7ZOlQKAQ6jLoNeM4ZvOiZcduBLwYY1sXNvxAWZdM73/AAAAAAAAAAAAAAAAAAAAgOmIhQGws9a3OFff5gFWY861YOPkwY4xqYmFAQAAAAAAAAAAAAAAAAAAAN0QCwPojb7FsHo2z17xsme8Y3lzDMp+30OxItbIZsexsFnXzPL+AwAAAAAAAAAAAAAAAAAAAKYjFgYwaB0GvdpWd6990I6cm5xz/qqnGCCxIgZor3DgXjY6joXNvGau0ftPGA0AAAAAAAAAAAAAAAAAAAAWIhYGwC46DJHNZZ95xGiAvWyKha3MvIE3AAAAAAAAAAAAAAAAAAAAIIlYGMCwdRlgmTl807U9zlUoDNbInOte17GwzLhmWrcAAAAAAAAAAAAAAAAAAACAKYmFAbCLDkNk89gzjCa6A+xjo+NY2MyBxTVat4TRAAAAAAAAAAAAAAAAAAAAYCFiYQDsomexsD0J0exoz8BaBHwYqDnXpk2xMAAAAAAAAAAAAAAAAAAAAGCYxMIABq3DoNfM4Zuu7Xeuwjuzc81YI7ffnNzxme5ef9Y1U6wPAAAAAAAAAAAAAAAAAAAAmJJYGEBvdBj+mkcb0DyiO8A0Nj/e4YvPGlhcp3Vrnc4VAAAAAAAAAAAAAAAAAAAADp5YGAC76FksbM95pgjR9C1+1gsCPgzQIu/ljZMHN8ekNmMsrNbpn+HWXwAAAAAAAAAAAAAAAAAAAFjEOlUKAA4hAZZtlZTwFbCPzQ5jYTOvx9YsAAAAAAAAAAAAAAAAAAAAYDpiYQAMxKJhtHUMq63jOXP4LfBz3WUsrG3Ntr3AIQAAAAAAAAAAAAAAAAAAADAlsTCAIWtrFIPa61ynie6s07WallgR62ajR7GwrNP7b53OFQAAAAAAAAAAAAAAAAAAAA6eWBgAu+hbXGuveSpiNLAuFlibNq49uDHuRCwMAAAAAAAAAAAAAAAAAAAA6IZYGEBftL7FuYZkmuiO63tnYkWsmc2T3b12mzEWVt5/AAAAAAAAAAAAAAAAAAAAwHTEwgAGbZ0CWOt0rgfFNeMQWiSsuNGjWNhaxfrW6VwBAAAAAAAAAAAAAAAAAADg4ImFAbCzRYI8XdhrnqrsH6Pp2fkAy7fZYSxsZusU0LL+AgAAAAAAAAAAAAAAAAAAwCLEwgAGbZ0CLHud6zpFdw6S68aa2TzZnxBief8BAAAAAAAAAAAAAAAAAAAA0xELA+AQmCK605dAUJ+IFTFIC7yXt25Pbrvh4EZZyDq9/9bpXAEAAAAAAAAAAAAAAAAAAODgiYUBMBD7BIKEr1hHIniz2zy56gkAAAAAAAAAAAAAAAAAAAAAZiIWBpD0JLgzxwydzt2HazJmr3OdKhTWs/NZhn1/PgTWGKIF38sbYmEAAAAAAAAAAAAAAAAAAADAsIiFATAQewWCxMKAKW32JRZmTQIAAAAAAAAAAAAAAAAAAACmIxYGMGhiM0mSmiYWBhwKbcF1b6MvsTAAAAAAAAAAAAAAAAAAAACA6YiFASQR3RqC/b5H+wTDFg0MHUoia6yhza5iYTOuMdYkAAAAAAAAAAAAAAAAAAAAYEpiYQDsomchmz3DOqJXO+vZ95AOrOP3eMFz3ugqFgYAAAAAAAAAAAAAAAAAAADQDbEwgEHrYSjo5g909MKLxsJ6eK1WrUTWOMSOnLvz45t9iYWt0ZpkrQEAAAAAAAAAAAAAAAAAAICFiIUBJEnrQ7SlDzMcgA//wvKPWZXpgmHA8E25Vp64386P9yYWBgAAAAAAAAAAAAAAAAAAADAdsTCAIetF5GzC+1/a0Qsveq49vFZAd3aLhW1cu9w5dmVNAgAAAAAAAAAAAAAAAAAAAKYjFgbAzvoWIttznlraGIeL68Yhtlss7NZPJlu3L3eWtWetAQAAAAAAAAAAAAAAACDdzXUAACAASURBVAAAgEWIhQEkSXoWxmIH+8TCap8YTd/iZ0ux3zkL+AzeOv5cT3vOx3eJhSXJ5nUHM8si1up7t07nCgAAAAAAAAAAAAAAAAAAAAfv2KoHWFdVdTTJQ5I8Isn9k9wzya1JbkhyTZIrW2ufPuBjnpPki5I8MMn9ktyS5GNJrmqtfeSAj/X3kjw22+d2XpJrk3w0yRWttdsP8liw3gRYkuwfCkviWsGaObFXLOxkctfPXt4sAAAAAAAAAAAAAAAAAAAAAAsQC1uiqnpgkucleXqSpya5xx6bn6qqtyR5WWvttxc87mcl+aEkX5Xk3rtsc0WSn2it/fqCx3p+ku9O8uRdNrm+qn4tyb9trX1ykWMBa6aJfR24qSJr0DdTrgXn3jepo0k7defnNk4e7EgAAAAAAAAAAAAAAAAAAAAAHTqy6gHWRVW9OslHk/xkkudk71BYkhxN8qwkb6yq36qqC+c87rOTvDfJt2SXUNjIFyZ5XVX9clXdbY7jnFdV/yvJa7N7KCyjGb4lyXur6pmzHge604MQ1TwxrE4DWj24JmfZa54a3ebdHzh06mhyfJd/Pm12EAubeT1epzVJmBAAAAAAAAAAAAAAAAAAAAAWcWzVA6yRh+3y+N8m+WCSj2f7+/G5SR6Ts0NuX57kbVX1xa21qesWVXVJkjckucvYwy3Ju5N8OMn5SR6X5L5jz39dkntU1T9prW1NeZyjSX4tyZdNPPWJJFcluSnJxaNjna5FXJjkN6vq6a21/zPtOQHrbL9YGHfSaUwOVmXKn+s6mhy/KNn42J2f2+ggFgYAAAAAAAAAAAAAAAAAAADQkSP7b0IHrkryr5I8pLX2gNbapa21r26tPb+19vgkD0zyyol9HpbktVU1VRGnqh6Q5PU5OxT2R0ke2Vp7Ymvtha21ZyR5QJLvTHL72HZfkeTfz3A+P5KzQ2G3j87vAa21Z46O9YQk/zDJO8a2OzfJG6rqfjMcCw4xYae5TbM0rmU4a79zFlkbvnX8uZ5SHUlOXLTzc5t9iIX53gEAAAAAAAAAAAAAAAAAAADTEQtbnpbkt5N8Xmvt8a21l7XWrtlxw9b+trX2zUm+beKppyT5qimP90NJ7jV2/4okT2+tXT1xrFtba/8tyQsn9v/uqnrQfgepqs/Ndmxs3AtG53fbxLHen+Qf5exg2H2SvGS/40DnBhuSGurcc9j3eyR8dSdta9UTwMGbdr2uo8nxXWJhG32IhQEAAAAAAAAAAAAAAAAAAABMRyxseV7QWvvy1tqV0+7QWntFkl+fePif7bdfVT00yT8fe+i2JC9qrW3ucaw3JPnFsYfOzXQRr5ckOWfs/i+01n5zj+NsJHnRaKbTXjyKjsGa61v4a0jzTBMK69v5LMN+sTCBNQ6xOpqc2CUWttmDWNhgI5UAAAAAAAAAAAAAAAAAAADAsomFLUlr7SNz7vryifuXTrHP1yY5Onb/9a21D06x349O3H9hVR3fbeOqOpHk+fu8xp201j6Q5A1jDx3L9szAzNYpNiMWNrO2TyysxMIYoinfy3UkOX6/nZ/b6EEsDAAAAAAAAAAAAAAAAAAAAGBKYmH9d9XE/RNVdf4++zx34v7/nOZArbWrk7xz7KG7JXnGHrs8M8ldx+6/o7X2f6c51g4zPW/K/aAjPQhJtR7MMFRVwlc72S8WBodZHU1OXLTzc5t9iIVZ8wEAAAAAAAAAAAAAAAAAAIDpiIX13x07PHaX3TauqouSPGZi/z+a4XiXT9x/9h7bPmuffffy9px9bo+rqgtn2B9YN4vG1NYxxiYWxjqro8nxXWJhd9yS3H7LcudZa2KOAAAAAAAAAAAAAAAAAAAAsAixsP57yMT9O5J8co/t/+HE/fe01j49w/GumLj/yBmO9Y5pDzKa6c9nOBasgTliVl0GsHoX19prHiGaHbVTq56AzvXtfboE065NdSQ5sUssLEk2Tx7MPPPq3RoLAAAAAAAAAAAAAAAAAAAA9JVYWP89f+L+la21rT22f8TE/Q/NeLxr9nm9cf9giceCjvUh2tKHGfps0VjYOl7fvf66SETWONTqaHJ8j1jYxkHHwtZxjQEAAAAAAAAAAAAAAAAAAACWQSysx6rqvCQvnnj4N/bZ7SET9/9qxsN+dOL+farqXjvMdu8k917wWJPbP3TG/eHg3HbTqieYkzhNkqQqwlc72LMtmdF1g6GZct2ro8k55yXH7rbz85sHHQsDAAAAAAAAAAAAAAAAAAAA6IZYWL+9NMlFY/dvTPKz++xz/sT962Y5YGvtliSbEw/fc4rjfKa19ulZjpU7z7bTcWA5/u9PrHqCpAl/7WnR67OO13e/WBgcaqN/5h6/aOenN1YdC1vDNQkAAAAAAAAAAAAAAAAAAACYy7FVD8DOquq5Sb594uF/01q7fp9dz5u4vzHH4TeSHB+7f/cOjzNup+PMpKouSPJZM+528aLH5RC4+sdWPUEP9S1ks9c8tbQphmW/WJjrxhBNuTYdObr954mLkluuufPzm6uOhQEAAAAAAAAAAAAAAAAAAABMRyysh6rqMUleNfHwm5P81BS7T0a8NucYYSPJvfZ4zYM8zl6vOY9vTfKSA3gdWIF54lx9C3p1aY9zrcr+4at1ulYjbb9YGIPX1vDnelo1ioUdv2jn51ceC1uj710JEwIAAAAAAAAAAAAAAAAAAMAijqx6AM5WVQ9M8ts5O5z10SRf39pcRZDDtg+wrvZcAqcJ0azhknPLNaueAA7etP8cOnpi+8/dYmEbq46FAQAAAAAAAAAAAAAAAAAAAExHLKxHquqCJG9J8tljD59M8qWttU9M+TK3TNw/Mccok/tMvuYyjwPrY54e4FwNQdbGR391nw2miazBQJ1zz+0/T+wSC9tccSzM+g0AAAAAAAAAAAAAAAAAAABM6diqB2BbVd07ye8nedjYw59M8vTW2gdneKl1j4W9IslrZ9zn4iS/eQDHhkOmbyGbveappPYJX61jmOevX7/38/tdM+ilKd/Lx87b/vP4LrGwjRXHwgAAAAAAAAAAAAAAAAAAAACmJBbWA1V1zyRvTvKosYdvSPKlrbX3zfhyN03c/6wZZzkvd4543TjFce5aVXdrrX16hsNdMMVxZtJauy7JdbPsU2I59MYaxqxmssf18T4GJtWR7T9P7BIL2/x40rbObLd01nwAAAAAAAAAAAAAAAAAAABgOquqIzBSVXdP8rtJnjD28M1JntVa+9M5XvKDE/cfNOP+k9tf31q7YXKj1tqnsh00G/fABY81OTuwrzWKzbS9znWaWNgaXSvWiJ/r3Y3WhRP32/npdkdy6/UHeDzfCwAAAAAAAAAAAAAAAAAAAKAbYmErVFV3S/I7Sb5g7OFbkjy7tfauOV/26on7D5lx/8+duP/+JR5r8vVgzfQsNLNnnKtvKtMFw4Dhm3JtqtE/c49ftPs2mycXH2duQ1pjAQAAAAAAAAAAAAAAAAAAgFUSC1uRqjqR5I1JnjL28GeSPKe1dsUCL/3eifuPrqq7zrD/F+3zens99+RpDzIKpT16hmMBO1qn2Myi57pO12paAmscZqOf7+MX7L7JSmNh68RaAwAAAAAAAAAAAAAAAAAAAIsQC1uBqjqe5H8nuWTs4c0k/7i19rZFXru1dm2S94w9dCxnB8n2c8nE/Tftse3v7rPvXp6a7dlOu6q19vEZ9ofDp4lZ7Wmv61NCNPNx3RigadfKGv0z98g5ybn33XmbjRXGwqz5AAAAAAAAAAAAAAAAAAAAwJTEwpasqu6S5PVJnj728K1J/klr7Q8O6DC/MXH/G6ac7eFJnjT20KeTvHmPXX4vycbY/SePXmMaL5q4PzkzwIS9wjqVfcNXwjywZsbWhOMX7bzJxrXLGQUAAAAAAAAAAAAAAAAAAABgAWJhS1RVx5K8Jsmzxx6+PcnzW2u/d4CH+pUkp8buP6+qHjrFft8zcf81rbXN3TZurX0myev2eY07qaqHJXnu2EN3JHn1FPPBITdHzKrTANaQ4lr7hMKSDOt8lqSmuW702zr+XE95zjX2z9z/x969B9121oUd/z0nJ8negRASSXICVK6xVRiVi1WD7dDWqnTGIgwC9VKZqdZRp+OUdjq1U4vM+AetlQ7VWm+tYNVKvcF4Kdh21EGitQLekTuoJIcjJAEC7z45532f/nHek7zZZ6+911p7XZ691+czk3mz195rrd+67JUzk3e+Z14RC1uc3X4cAAAAAAAAAAAAAAAAAAAAgJ6JhQ0kpXRVXIp4Pf/E4osR8ZKc8y91ua+c83si4nUnFl0TEa9NKc3WzPf8iHjZiUUPRMQra+zuu+JS8Oyyl6WU/v6a/cwi4seOZ7rsv+Sc31djX8CkTTGKBLR2MoY3q4iFHYwZC/NMAwAAAAAAAKCdlNIzU0ovSSm9/Pifl6SUnjH2XAAAAAAAAAAA9Of02ANMyH+NiBcvLftXEfGOlNITG27rbM55seEzr4iIF0TEjcev74iI/51S+sac859e/lBK6dqI+McR8b1L639vzvlDmwbJOb8/pfSaiPjnJxb/bErp5RHxwznnB07s67Mj4kePZ7nsY1EvSgYT0CYcM6HYTF5zrCejQNUb6GwUYEx1v8snngvziljYYsxYGAAAAAAAAAClSSk9OSK+ICKeffzzmRFx/YmPfCjn/MQRRouU0tUR8c8i4hsj4ikVn3lvXPodvVfnnC+s+gwAAAAAAAAAALtJLGw4/3DFsn93/E9Tfysifn3dB3LOf5FSemFEvDkirjle/JyI+JOU0tsi4v0RcUNc+mWmm5dW/6WI+M4G8/zLiHhaRDzv+PXVEfF9EfGdKaW3R8QnI+LJx/s6WfR5ICJekHO+u8G+gMlaFwhKNYNhPJxzxh5Lpx7699kAsbB1QcPVK3S3bwAAAAAAAABaSyk9NyK+Iy4Fwm4ad5rVUkq3R8RPx6XfwVvnqRHxqoj46pTSS3PO7+19OAAAAAAAAAAABiEWtsdyzr+eUnpBRLw2HgqCpbj0S03Prljtv0fEN+WcDxvs5zCl9OK49DcSvuTEW7dExFdUrHYuIr4h5/yWuvuBvdc4NNO30uZZp0b0qrjzC/TrxHOhKhZ20GEsjDWECQEAAAAAAICifX5EfNnYQ1RJKZ2JiP8VEU9Yeuu9EfHHcel/yj4tIp5y4r1nRcSvppS+KOd8bpBBAQAAAAAAAADo1amxB6BfOedfiYinR8QPRsS9az762xHxopzz1+ScP9ViP/fnnF8aEV99vK0q90TEf46Ip+ec39R0P8CyHgNYFxs/Cnom9tU9AZ+dN8UIXt1jTif+mDuviIU9cE/E4fntZ2pjitcOAAAAAAAAYLecj4j3jTlASulURLwhHh4KuzsivjznfHvO+atyzs/POT81Ip4XESf/1qwnRcQvpJT8gggAAAAAAAAAwB44PfYAU5FzHu0Xbo7/ZsBvSSl9e0Q8Jy794tCZiPhURHw4It6Rc/5AR/v62Yj42ZTSkyLimRHx2Ih4RFz6JaQPRcRbc84PdLEv2D+FhWM+8mtjT/Bw68I6KcXm8FVh5xfo2YlnwqwiFhYRsTgX8Yi/0v84AAAAAAAAAJTsQkT8cUT8bkT8v+OffxiXft9uzF+i+dqI+MITr++JiDtyzh9c/mDO+U0ppTsi4m0RcePx4jsi4iUR8dM9zwkAAAAAAAAAQM/EwibkONI1yC8uHcfHOgmQASP5w+8ae4Il62JfdXqME4uF3fXmsSeAntT8LqdTD/37fF0s7OxIsbCJPZMAAAAAAAAAyvW6iPjBnPNi+Y2URvs7QiOldFVEvHJp8ctXhcIuyzl/IKX08oj4sROLvzul9D9yzkc9jAkAAAAAAAAAwEBObf4IAMNoEY7JYjOXjPeLmcV69/dv/syIv9AK/Ttxf19zU8Spq1d/7ODsMOMAAAAAAAAAUKSc872rQmEF+JKIeNKJ1x+OiJ+osd5/O/7sZU+JiDs6nAsAAAAAAAAAgBGIhQGwIzaF0TaEr6YWVrvrl2p8SCyMXVTzu5xO/DE3pYjZmdWfW4wVC5vYMwkAAAAAAACApl6w9PrHc86Hm1Y6/sxyVOyFnU0FAAAAAAAAAMAoxMIAStEqZjWh2My685NEr5iqCT0DGlt6LlTFwg7GioUBAAAAAAAAwFpfsfT61xusu/zZ5201CQAAAAAAAAAAoxMLAyiG6M96685PnViY83slkTV2UO2w4tL9Pa+IhS3Ewnon6AgAAAAAAADQSErp2oh46tLi326wiTuXXt+eUrpmu6kAAAAAAAAAABiTWBgAuy8lMZqTaseUYI+lpT/mzvqOhTX83k3pezqlYwUAAAAAAADoxl+NiKtOvD6Xc/5E3ZWPP/vRE4uuiojP6mg2AAAAAAAAAABGIBYGUIw2MZUpBVimdKxbOjo/9gTQo5rPguWA4LwiFnZw93bjAAAAAAAAAED3nrr0+s9abGN5ndtbzgIAAAAAAAAAQAHEwgDYDVksrLZ8WO9zyzEl2GezqljY2WHneNCEnmmeNQAAAAAAAABNPXrp9bkW21he54aWswAAAAAAAAAAUIDTYw8AwLE2MaxJBbSqjjUt/Wy6PjAJ84pY2OLspWepoBUAAAAAAAAA5Xjk0uuDFttYXuf6lrM8TErploi4ueFqT+li3wAAAAAAAAAAUyYWBsBuE/i5Uu2InHO3+6YYwWt5zLOKWNjhQcTFT0Zc/aj2I7UyxWsHAAAAAAAAQE3LsbBFi20sx8KWt9nWt0bEKzraFgAAAAAAAAAANZ0aewAALhOOWc/56Z5YGBMyr4iFRUQcnB1ujknyrAEAAAAAAADYUptfnPHLNgAAAAAAAAAAe0QsDGCnTeh3+nLVsR5HaNKGGE3l+sBOaftdnt1a/d5ihFiYZxIAAAAAAAAA1e5fej1vsY3ldZa3CQAAAAAAAADADjk99gAAXCYcs96GWBgnuJfgCqcfEXH6+oiLn7zyvYMRYmGT4pkEAAAAAAAA0FDJsbAfiIifabjOUyLijR3tHwAAAAAAAABgksTCAHZZFmCJJBbWmnPHTqrx3Dv9yNXL52ciPrkiFrYYIxbm+Q0AAAAAAABApY8vvb65xTZuWXp9X8tZHibnfC4izjVZJ/kdFQAAAAAAAACArZ0aewAAjgl/ref8wJV8LypU/JLx7Mzq5QddxMJci2p+6RsAAAAAAACgofcsvX5Ci20sr7O8TQAAAAAAAAAAdohYGAA7oirEk5Z+Nl1/H9U9VgEf9lSq+CPu/LbVyxddxMIAAAAAAAAAoDPviojDE69vSSldX3fllNKjIuIxJxYdhlgYAAAAAAAAAMBOEwsDqOMjvzHATtrErASwBK+AK1U8F2ZnVi8/GCEWlqf0/AYAAAAAAACgiZzz+Yh439LiL26wiTuWXr/neJsAAAAAAAAAAOwosTCAOt75PWNPQJUkFtaac8euqRvYqrq35xWxsMUIsbBJ8awBAAAAAAAAaOFNS6+f22Dd5c/+z60mAQAAAAAAAABgdGJhAHXc9cv976NuBOfhK3U+RrE2np8NMZpW53dHTelYYaWK58GspFjYlL6nUzpWAAAAAAAAgM78wtLrr08pXbVppePPfN2GbQEAAAAAAAAAsGPEwgDYEVWxmQ2RMNhrIkwrpYrnwrwqFnYu4uiwv3kAAAAAAAAAoLm3RMQHTrx+fFwZAVvl6yLicSdevy8i3trhXAAAAAAAAAAAjEAsDKCufNT3Dnre/q4TC+vc4tzYE0BDdZ+TFc+FWUUsLB9GnP9oq4nam9Iz33MaAAAAAAAAIKWUl/557rrP55wPI+IVS4tfnVJ64pp9PDEi/sPS4n+dc++/+AQAAAAAAAAAQM9Ojz0AwM44PB9xej72FA+XpxSbqZDSw38StSNEd/1Kv2PAaCqeB/OKWFhExOJsxPzWfsYBAAAAAAAAoGgppcfH6t+nXP4fzafXxLruzzl3/TdV/WREfFtEfOHx65si4s6U0styzr968oMppS+PiNdGxI0nFt8ZEa/veCYAAAAAAAAAAEYgFgZQ19EiIvqMhQl/rbV1GM35hZ1X9zlQFQ+89ua4FBJbsZ2DsxE3fl7byZo/o8QeAQAAAAAAAErymxHxhBqfe1xEfKDivddFxMu6GigiIud8lFJ6QUT8dkR85vHi2yLizSml90TEH8el/xH+tIh46tLqH4yIF+bsf1ADAAAAAAAAAOwDsTCAuo4Ox55ghSn9Ll/VsVZEgYAJq3gunDodMbs5YnHuyvcWZ/sdCQAAAAAAAABayDnfnVL6uxHx0xHxjBNv3X78zypvj4iX5Jw/0vd8AAAAAAAAAAAM49TYAwDsjNxzLMxf4rnBpliYaNhD3EvTMbVrXfN405o/4s7OrF4+eCxsQtcueT4DAAAAAAAAbCPn/O6I+MKI+I6IeP+aj77v+DNflHN+7xCzAQAAAAAAAAAwjNNjDwCwO47GHoBVakdoJhTmqevWvz32BNCTNc+F2ZmI+IMrlx8MHQubEDFMAAAAAAAAoHA55ycOsI+t/qalnPOFiHhVRLwqpfSsiPisiHjs8dt3RcS7c85v225KAAAAAAAAAABKJRYGUFfuOxbWJqYyoQCL2Ez3rnn02BNAQ3WfA2t+v3p+ZvXyhVgYAAAAAAAAALvhOAomDAYAAAAAAAAAMCGnxh4AYGfkw7EnmLiqSFBa+kntsFrvATwYSVrzPJhVxMIOho6FTSiAuO56AAAAAAAAAAAAAAAAAAAAABuJhQHU1XtYqUU4pm4Uai9sioXRmFgYu6b2M2/Nc2F+2+rli6FjYQAAAAAAAAAAAAAAAAAAAAD1iIUB1NZzWGlS4a8OpZqxMOd3Bedk57mvK6x5LszOrF5+MHAszLUDAAAAAAAAAAAAAAAAAAAAahILA6gr9xwLYz1hnQZqniv3NPtqXURwXhELu3BfxOGin3kAAAAAAAAAAAAAAAAAAAAAtiAWBlBXPux7BwOts6uqjvU4CrQuDsRqYmHsnLrPvDXPg1lFLCwiYvGRRtM8XNPn8ZSe3wAAAAAAAAAAAAAAAAAAAMA2xMIA6hJWGllFWKd2JEyY50ruafbVmufCfE0s7OBs96MAAAAAAAAAAAAAAAAAAAAAbEksDKCu3mNhbWJWAlhro0BTlWveF3U/B8Woec+uiwhefUPEqWtXv7cYMhbm+3eFowtjTwAAAAAAAAAAAAAAAAAAAABFEgsDqK3vWBhrbQxbiYY1557efYJTq615HqQUMT+z+r2Du/sZZ/JqPp/f/2P9jgEAAAAAAAAAAAAAAAAAAAA7SiwMYGOE6vLnDsuYY7Kqzo9IWGtZLIwdU/c5mTb8EXdWFQs722yebXjmX+mPvnvsCQAAAAAAAAAAAAAAAAAAAKBIYmEAlRGq5Y8VGFaaUmym6lhT3VjYhM7VLt/T0IUbnr7+/XlFLGwxYCyMK336z8eeAAAAAAAAAAAAAAAAAAAAAIokFgZQN7jVe1hpSjGrLqWln9TnnmPX1Lxnn/6d69+fiYUNqnbUEQAAAAAAAAAAAAAAAAAAAFhFLAygbnwmH/Y8RpsY2ZRiT1M61oH0HsCDETz++RE3ft76z1TFwg6GjIVN6JlWN8oJAAAAAAAAAAAAAAAAAAAArHR67AEAxldKxES4ab2q65Rqrl7KdR5C3WN1z7FH5o+N+Ox/EXH7t0SkDT3ceUUsbDFkLAwAAAAAAAAAAAAAAAAAAACgHrEwgNoRqZ5jU1m4aa2q65TSw39Sn3tuD0wpghex9nj/xi9EPOav19vMrCIWdnD20rOm1fOk6bWY2rUDAAAAAAAAAAAAAAAAAAAA2jo19gAA4ysk2JIP26zU+Ri7RySstYufHnsC6E6TwNf8ttXLj85HXPh4N/PwEDFHAAAAAAAAAAAAAAAAAAAA2IpYGEDd4FbuOcyVj/rd/s4TRqut7r36wD39zgFd6+o5PD9T/d7B2W72sUnf/00BAAAAAAAAAAAAAAAAAAAA9oZYGEApwZY2sbBSZh9E1bGmpZ9N15+ww8XYE0CHNj0DTpjdWv3eYqBYGAAAAAAAAAAAAAAAAAAAAEBNYmEAtSNSPcem8mG/2991VWG01CAQxBIBNXZNR/fsVbOIqx+9+r2DoWJhvn8AAAAAAAAAAAAAAAAAAABAPWJhAMUEW47GHmBHiYVdqZR7mt5VRfSmqGk4cH5m9fLFULEwAAAAAAAAAAAAAAAAAAAAgHrEwgBqx3Z6jvLkwzYrdT5GuTYd66ZQ0JTOVV3OCbumw3t2NnYszPcPAAAAAAAAAAAAAAAAAAAAqEcsDKCUYEs+GnuCwlVdp02RMCrVDuXBLmj4LJhXxMIOhoqFTYnnNAAAAAAAAAAAAAAAAAAAAGxDLAygbiys77BSq1jYhGJPVec/idBcqe59MaH7h/3Q5XN4VhULu7vd9sT3AAAAAAAAAAAAAAAAAAAAgJ6IhQGUEnjJh2NPsKPEwlor5d6HTjR8FswrYmGLs9uPUofvHwAAAAAAAAAAAAAAAAAAAFCTWBhA1A229Bx2yUf9bn/nbTj/aUMoSJhnBedk97mGrc1GjoUBAAAAAAAAAAAAAAAAAAAA1CQWBlBMbKdFLGxSAayqY90QCZui2vfFlO6fJZP67uyTDq9bZSzsLyOOLna3n0ruQQAAAAAAAAAAAAAAAAAAAKAesTCAUsJK+bDf7e+6quuUxMJam3Qwa8rHvqeaPgvmFbGwyBHn/3LrcQAAAAAAAAAAAAAAAAAAAAC6IhYGUEo0aNLhpm2kpZ9VpnR+ax7rxU/2O0bJfN92VIfXbVYVC4uIg7Pd7aeKexAAAAAAAAAAAAAAAAAAAACoSSwMoG6wpciwS4kz9WVKx7qle3+v/mcvHvQ3R9HcT/tnUzBwybWPiUgVfxReDBALm5SG1wYAAAAAAAAAAAAAAAAAAAB4GLEwgNrRoL7jQuJF61WdHxGaK9z5aN2G+QAAIABJREFUdfU/+5Ff62+Oou3J963IiGGPujzeU1dFzG5d/d7BELGwiV07AAAAAAAAAAAAAAAAAAAAoDWxMIBdDrace8vYEwynKhKULsfCRMMiIuL+90dcuK/+5z/2O/3NUrKpRbYmocUzYHZm9fLFELEwAAAAAAAAAAAAAAAAAAAAgHrEwgDe+e9rfrDAuNAHfnzsCQpQNxBU4PXrw8ffOfYEO2Ii98Pe6fi6VcXCDtrEwprO5h4EAAAAAAAAAAAAAAAAAAAA6hELA6btL34x4p3fM/YUx1qEYy5+svsxiiWsU0/deNrUuZ/2Tmpx788rYmGLNrEwAAAAAAAAAAAAAAAAAAAAgH6IhQHT9oHX1f9sFhcaV8X5vxwIahMKwnljt3T9HJ6JhQEAAAAAAAAAAAAAAAAAAADlEwsDpu3Pf27sCairMhJUM3Yl9sZJe3M/7MtxdKFF+G5eEQs7GCAWtjf3IAAAAAAAAAAAAAAAAAAAANA3sTCA2noOuwjHtNQiEAQiW0REzCpiYYsBYmFTkjynAQAAAAAAAAAAAAAAAAAAYBtiYQDsiE1xJzGaiBDlqU0sbDd1fN3mFbGwC5+IuPjpbvd1BfcgAAAAAAAAAAAAAAAAAAAAUI9YGEBtfYddhGPWyhXnRxyLNqruJ3ZYi2fBrCIWFhGxONt+FAAAAAAAAAAAAAAAAAAAAIAOiYUBsCOq4k51A0HiUJzkfthNHV+3+ZpY2EHfsTD3IAAAAAAAAAAAAAAAAAAAAFCPWBhAXVnYpUx1Y2FT4XzUsy/f5305jg6kFvf+6esjrpqvfm/RdywMAAAAAAAAAAAAAAAAAAAAoB6xMIBiiP6st+n8iGRd4jzUIv63m7q+bilFzM6sfu+gaSys4WzuQQAAAAAAAAAAAAAAAAAAAKAmsTCA2oRdRlUV1kniWNuZ6vnzfd4/Le/leUUsbNE0FgYAAAAAAAAAAAAAAAAAAADQD7EwAHZEVdypbiBoInEo8bSaJnI/7J0ertv8ttXLD/qOhU3pHvRcAgAAAAAAAAAAAAAAAAAAgG2IhQHUlXsOu/S9/b11HKEpKZJ1//sj7npzxIVPjD1JDe479kXLZ8DszOrli75jYQAAAAAAAAAAAAAAAAAAAAD1nB57AACoZweiVkcXIu78+og/e/2l16eujrjjpyI+80XjzrXOVCN1Uz3undfDdauKhR2IhQEAAAAAAAAAAAAAAAAAAABlODX2AAC7Q1xoVFVxp5S2W79L73rNQ6GwiEvxsLe+NOLTH+5/361N9b7ek+MWPXtI3WfBsnlFLGzRdyzMtQMAAAAAAAAAAAAAAAAAAADqEQsDKEaLcMxNz+p+jGJVnZ+09HNE7/zeK5flw4gP/uSAQzQ9DxMNFolscdlsTSzMfQIAAAAAAAAAAAAAAAAAAAAUQCwMoLYCozHXPX7sCQpQQCTsssXZ1cvf/X3DzkENBX6f2ayPeNe8IhZ2dCHigXu7399lQmQAAAAAAAAAAAAAAAAAAABATWJhALtsUrGZXT7WgoJmyyZ1D5001ePeZy2/Z7OKWFhEdQBwlcl+l+oo+BkIAAAAAAAAAAAAAAAAAAAAO0AsDKCu3kMwbbbf40y3Pa+/bbdRdf5TevjP6g10Ok6xNp6HZRM5L8uEnXZUD9dtdkv1ewcNYmGNuQcBAAAAAAAAAAAAAAAAAACAesTCAHZZn8GjW76kv223UnWsTeNYYyh5xqkGi/bluPflOLrQ8nt21bUR19y0+r2Du9uPwwnuUwAAAAAAAAAAAAAAAAAAANiGWBhAbT3HTlqFv/qcaVf+E1FyiGsH3PO2sScYiXjRburpus3PrF6+ONvP/iLCPQgAAAAAAAAAAAAAAAAAAADUtSslGABWmlJsZtOxboiGtYqxdSQNGTRruK+739zPGKUb836gH9t8z2ZjxMKmRNQRAAAAAAAAAAAAAAAAAAAAtiEWBlBbgXGhXoNHhR1v1bEOGuJqq+BYGOySvp55VbGwgx5jYYJ1AAAAAAAAAAAAAAAAAAAAQE1iYQDFaBOOmVJspupYxbFoY0rfnanY4lkwr4iFLXqMhQEAAAAAAAAAAAAAAAAAAADUJBYGUFcWFxrXplhYydGwgme74WljTzCSffk+78txjGxWEQs7EAvrRCr4GQgAAAAAAAAAAAAAAAAAAAA7QCwMoLYSozwlzlSqEc/VkKGcpvv6jC/oZ47Sif/tqJ6u2/y21csXfcbC3IMAAAAAAAAAAAAAAAAAAABAPWJhAKVoEy+aUvCo6liHDHHto3w09gQjmdB3Zyq2eRbMz6xefv6jEUcXam7EPQUAAAAAAAAAAAAAAAAAAAD0QywMoLYSQzB9zlTa8VbNswuxsIJnFAtjp/R03WYVsbCIiMW5fvbpHgQAAAAAAAAAAAAAAAAAAABqEgsD2GkTis3kimNN6eE/qzfQ6TjNDBkLa7ivqcbCqu4ndtgW37O1sbCz7bcLAAAAAAAAAAAAAAAAAAAA0AGxMGC6msaCeo8Ltdi+4BHbyodjTzCSPfnuTO0Z0NfxXntTRDq9+r2DnmJhU7t2AAAAAAAAAAAAAAAAAAAAQGtiYcB03feHY0/QgSnFZqqONQ06xf45GnuAkezLd2dfjqMLWzwL0qmI2a2r31v0FAsDAAAAAAAAAAAAAAAAAAAAqEksDJiuxUcartB3lKfN9qcUCtoUCys4GpYKni0fjj0BNNDjM29+ZvXyg75iYVN6fhf8DAQAAAAAAAAAAAAAAAAAAIAdIBYGTFfag0dg7jE20+e226iaJ9WMhY16PEOGchruKx/1M0bpSru/W9uX4+jAtlG+WVUs7O7ttku4TwEAAAAAAAAAAAAAAAAAAGA7e1DKAWiraVimxNhJiTMN7fg6bhsK2hsN74mpxsL25buzN9Gzuno83nlFLGxxtqcdTu3aAQAAAAAAAAAAAAAAAAAAAG2JhQHTVVpcqlX0Z0qxmU3HWtj1PKm0e+2kfDj2BOPYm8jWvhxHF7b8ns2GjoVNScHPQAAAAAAAAAAAAAAAAAAAANgBYmHAhDV8BO5NXGhXVZ3/tPSz6fpDKDiUk4/GnmAkvs8sqYqFHdSMhflvBAAAAAAAAAAAAAAAAAAAANATsTBgulLBAae6phSnqTrWy9dxH67nKMTCdtu+HEdNfT7z5hWxsEXNWFhTU3p+AwAAAAAAAAAAAAAAAAAAAFsRCwOore+wS5vt9znTroRs0tLPEg05W8Prlg/7GaN0+xJq2pfj6MSW37NZRSzs4qciLty/3bYBAAAAAAAAAAAAAAAAAAAAtiAWBkzYPjwCpxQK2nSsJcfCCpaPxp5gJPvy3dmX46irx+Od31b93uJsDzuc0rXzfAYAAAAAAAAAAAAAAAAAAIBt7EMpB6Cd1DBect8f9DPHNvKUYjNVx3p8HTdezxHPVdN7bRtN7wmxMPbFtt+z2a3V7x30EQubEt83AAAAAAAAAAAAAAAAAAAA2IZYGDBhDcMy7/2hfsZ4UJuYyoQCLFURrAcDQQMGuRobcramsbDDfsYo3d6E9vblOGrq87pd/ciI049c/d6ih1jY3tyDAAAAAAAAAAAAAAAAAAAAQN/EwoAJaxhwWpzrZ4xtiM3EQ9ex5FhYyY7GHoBteAac0MEzYHZm9fKDHmJhk+L5DAAAAAAAAAAAAAAAAAAAANsQCwOmK+1DvKTHUFBxEaJN82x4f9TjGfJea3icR4f9jFG80u7vtvblOOrq+XjnFbGwRR+xsKldOwAAAAAAAAAAAAAAAAAAAKAtsTBgwgqLhbWKWU0pNlN1rGnD+xPT+D466mWM8rlf9k8Hz/TZNrEw9xQAAAAAAAAAAAAAAAAAAADQD7EwYMIKi4W10SowtqOqjjUdX8dccPQqFXyvlXze+rQv3519OY7aej7eeUUs7KBOLKypCV27kp+BAAAAAAAAAAAAAAAAAAAAsAPEwoDpSqU9AtuEYwqNzQwaMLocoSn0XAyu4XnIh/2MUbx9uV/25Tg60EWQalYRC1v0EQubkMlF7QAAAAAAAAAAAAAAAAAAAKBbpZVyAIbTRViGAW2IzWyM0YwZqxnwXmsa5clH/cxRvILiRZ/+8BYrF3Qc+2BeEQs7uHvYOQAAAAAAAAAAAAAAAAAAAABOEAsD2Gl9hoK22XYfc1VtM214vwRDhukanof7fr+fMUrXNKrWp3t/b+wJdkff121WEQtbfKT7sF5J9yAAAAAAAAAAAAAAAAAAAABQNLEwYMJKewS2CMdMKTZTdaxpF2JhhbvwibEnGEFJ98sWMbkpPQM26iDKN6+IheXDiPMf2377U5WGDCYCAAAAAAAAAAAAAAAAAADA/imtlAMwnKbxkutv72eOrRQaCho0YHR8HfPRhs+NeK4GDeW0OM6z/6f7MYpX0HcnbfPHsYKOYxA9H++sIhYWEbE42/HOpnbtAAAAAAAAAAAAAAAAAAAAgLbEwoDpahq0etxX9jPHVkqNzfQx16ZtlnouIh4Mmg2hTajtrl/ufo7SDRq022TImNw+6+A8zm6p3s5B17EwAAAAAAAAAAAAAAAAAAAAgHrEwoAJaxgLOnVtP2Nc1iZeVFTwqGeVx5o2vM9GD9w39gTTlrb549jU7vuej/fU1RHXPmb1e4uuY2FTu3YAAAAAAAAAAAAAAAAAAABAW2JhALWVGHbpc6Zttt3HXBXbTKnHfXYlbf5IZ0o+DyUp6DylLe4PkbyHbHMeT5qfWb38YFMszLUAAAAAAAAAAAAAAAAAAAAA+iEWBkxY07BLiSGYEmcaWs1YWN9RpXXb7ypiVIt7opaiIlvb/HGspOMYwBDXbVYRC1tsioU1VNQ9CAAAAAAAAAAAAAAAAAAAAJRMLAyYrqahlt7DLi22X2psppe5Ro6BbTT2/o+1Og9DxsxKUcj1ihg4JrfPOjqPVbGwg45jYZPiHgcAAAAAAAAAAAAAAAAAAIBtiIUB1FZQXOhBJc7Uk6oI1uXQUj4abpZVRo+VbWGSsaqSrtc2fxwr6TiGMMDxzitiYYuuY2FTu3YAAAAAAAAAAAAAAAAAAABAW2JhwIQ1DbX0HXZps/1SYzN9zFW1zbTh/U3rd2VdrGzIGFep90RhSoq7bRNrK+k49sVsqFgYAAAAAAAAAAAAAAAAAAAAQD1iYcB0NY3slBjl6XOmEo93pbqxsJ6tPV9iYeUp6Txtc3+UdBxj6+h7Nq+IhR2IhQEAAAAAAAAAAAAAAAAAAADjEAsDqE2Up74+ztWGbY4eNxt7/9sYMmZWipKuV0mzlG6AczWriIU9cE/E4fkOd+S6AwAAAAAAAAAAAAAAAAAAAPWIhQET1jDU0neMqtX2JxSbqTo/6XLoauRzkY+q30sDxrha3UcTjIWNHpfryr4cRwe6+p7NK2JhERGLc93sAwAAAAAAAAAAAAAAAAAAAKABsTBgwppGdkqM8pQ4U/QUYqraZt1YWN/nat32h4xxFXpPFKeg87TN92Vvomc1DXG8szWxsIO7u9vP1K4dAAAAAAAAAAAAAAAAAAAA0JpYGDBdjUMtBYZdxGbiwRBXPhp3jBLvj7rSkDEzurXD913nOrqPr7kx4tTVq99bnK1ez/N4Dc8YAAAAAAAAAAAAAAAAAAAA2IZYGEBdvYdgWmz/4K7ux3jQNsfbx7natM2RQz1rY2VDhnIEi+op6TyVNEvpBjhXKUXMzqx+b10srDHXHQAAAAAAAAAAAAAAAAAAAKhHLAyYsKahlgLDLhfvHyBiVoiq40xp/fub1u9MIdeh1XEOGTMrxN58b/blODqQOryPq2JhB13GwgAAAAAAAAAAAAAAAAAAAADqEQsDJmwPYmEREff9wdgTrNDHuaraZtrw/kDWxae6jBhtJBZWT0nf5y1m2ZvoWV0DHe+8Iha26DIWNrVrBwAAAAAAAAAAAAAAAAAAALQlFgZQV+9Rnpbb/9NXdzvGzjkOXY0eTTta896AMa73/kjzdQaNmZViX0JN+3IcXejwPp7ftnr5QZexMAAAAAAAAAAAAAAAAAAAAIB6To89AMNIKV0dEc+JiM+MiNsi4v6IuCsi3pFz/mDH+3pSRHx+RDw2Ih4ZEXdHxIci4s6c84Uu9wVbaRz/KjTKk9dFqkbSS1htwzavvz3ik+/pYb81HV0cb98nnf3V5uvMbu1+jtL1Hv9roKRZuGR2ZvXyRYexMNcdAAAAAAAAAAAAAAAAAAAAqEksbCQppSdHxBdExLOPfz4zIq4/8ZEP5Zyf2MF+bo6IV0bESyLiporP3BkRr845/9yW+3pRRLw8Ir644iP3pJReHxH/Juf80W32Bd3Yk1hYb3MVdrxVYZ2ULv284ekbYmE9H8+536h+76jwTuKpa8eeYASF3d9tTS04NdTxzitiYQcdxsIAAAAAAAAAAAAAAAAAAAAAahILG1BK6bkR8R1xKRC2MtzV8f6eFxGvjYhbNnz0joi4I6X0kxHxzTnnTzXczyMj4kci4qUbPnpTRHxLRLwwpfQNOec3N9kPjK7vSE3b7RcZC+pjpqptph721cK9v1/93mGjx+oIjsYeYAQlfW+2maWk4xhbh8+CWUUsbHH20jM3FfLcAQAAAAAAAAAAAAAAAAAAACZBLGxYnx8RXzbEjo7DZG+IiGtOLM4R8faIeH9EPDoinhERjznx/tdGxKNSSl+Vc65VjkkpXRURr4+Iv7f01l9GxDsi4uMR8ZTjfV0ua9waEW9MKX1pzvk3GxwWdKxpZKfUKE+pcw2lkGjPVbPq9y5+erg52qj3yN8vRUb22tiX46hroOOtioUdHkRc/GTE1Y9a8ea+/DcFAAAAAAAAAAAAAAAAAAAAKM2psQcgIiLOR8T7utpYSunxEfHz8fBQ2Fsj4mk552fnnF+cc/6yiHh8RHx7RFw48bmvjIjvbrC7V8XDQ2EXIuKfRMTjc85ffryvZ0XE0yPit0587tqIeENK6bYG+4JuNY4F9R12abv9EoMzfcy07TZ7Pk+nr1uz64v97ntrJd5DU+L8dyJ1GA6cV8TCIiIOzna3HwAAAAAAAAAAAAAAAAAAAIAaxMKGdyEifi8ifjQivjkinhUR10fEN3a4j1dGxI0nXt8ZEV+ac37nyQ/lnM/nnP9jRLx4af2Xp5SesGknKaUnx6XY2ElfnXP+/pzzA0v7+pOI+Dvx8GDYZ0TEKzbtB4rROC42kL7m+tjv9LPdtqqO88FA0MjX54anV793898cbo428tHYE4yg0O9zU0elh+i6NtB1m91a/d6iq1jYntyDAAAAAAAAAAAAAAAAAAAAQO/Ewob1uoh4VM75GTnnb8o5/3DO+e055wtd7SCldHtEfMOJRQ9ExMtyzouqdXLObzie7bJro17E6xURcfWJ16/NOb9xzX4OIuJlxzNd9o+Oo2Mwgn0JtfRwHIeLiLvf3H79XgJmVdtMFcsHdup09XunrxtujjamGAsrKf63zSz3vK27OXZeh8+C09dFXP2o1e8ddBULAwAAAAAAAAAAAAAAAAAAAKhHLGxAOed710W7OvI1EXHVidc/n3N+T431/u3S6xenlGZVH04pzSPiRRu2cYWc87sj4g0nFp2OSzPDCJoGevqOC7Xdfg9z3fWm7rfZm0JiYWuDTwWFqVaZYiys9GtS171vH3uCYQ0ZeZudWb180VEsrKRgXe+mdKwAAAAAAAAAAAAAAAAAAADQPbGw/fOCpdc/VmelnPM7I+L/nlj0iIj4sjWrfHlEXHfi9W/lnP+01oRXzvTCmutBtxqHWgqNnfQRnHnvD225gT7O1aZtboiG9R7mKfT+qGWXZ2+rpGPeYpZHfXZ3Y+y8jsOB84pY2MHd3e4HAAAAAAAAAAAAAAAAAAAAYAOxsD2SUjoTEZ93YtHFiHhrg038+tLr56357FdsWHedt8Sl2S57Rkrp1gbrwzh6j021VepcHas6/6njQFBra65DsffOsXw09gTDK/2a1HXd48aeYGADXrdZRSxscbajHezJPQgAAAAAAAAAAAAAAAAAAAD0Tixsvzx96fUf5Jw/1WD9O5deP63Bvn6r7k6OZ/rDBvuCnjQNtfQcdmkdL+pjrm23OeRMacP7A1l7/UqPAk0wFlbSNdkmXLYv0bMudB0OrIqFHXQVCwMAAAAAAAAAAAAAAAAAAACoRyxsv3zO0uv3Nlz/fRu2d9JnD7gv6ElhsbC2ph4L6joQ1NoOX4dJ3kNTPGYamVfEwhYdxcIm+b0DAAAAAAAAAAAAAAAAAAAA2hAL2y9PXXr9Zw3X/9DS689IKd24/KGU0k0RcdOW+1r+/O0N14fhFRt2KXCuPs7V1tvs+Tzlo/H2vbV1s++por7P28xS0nEMYMjrNr9t9fKDqljYxK4FAAAAAAAAAAAAAAAAAAAAMBixsP3y6KXX55qsnHO+PyIWS4tvqLGfT+ecP9VkX3HlbKv2A/1qHJ3pOwTTdvtTCdRUHWcadIpqa65DUWGqFdaGzvbUhY83X6fI61jiTGPp+FkwO7N6+flzEUeH3e6Lhzi3AAAAAAAAAAAAAAAAAAAAcIXTYw9Apx659PqgxTYOImJ24vX1Pe7npFX7aSyldEtE3Nxwtad0sW92UcPITpGhoOhnrq232ce5KjwWtvacFXrvPKj0+XrwrteMPcEJEzz/bT1wz3D7mlfEwvJRxPmPRsxv3XIHrvtKP3064h8cRiRNYwAAAAAAAAAAAAAAAAAAALhMLGy/LEe8Fi22cRARN67ZZpf7WbfNtr41Il7R0bZgSc9hl9aBrokHZ9JxLOyGz4n4izdUf6732NsOX4d8NPYEw7vnd1uslKOYON1lpUYM+/LBn1rzZsfXZlYRC4uIWJztIBZGpXe9JuKv/dOxpwAAAAAAAAAAAAAAAAAAAIBinBp7AHrVpiBS8jrQrcPlZt0GH/yJfubYVomxoD5m2rTN27+1+302sma+Eq/RSVOMhZWk9PujJB/+xeH2de3NEanij8oHZzvYgete6e0vH3sCAAAAAAAAAAAAAAAAAAAAKIpY2H65f+n1vMU2ltdZ3uaQ+4F+nf/o2BN0ZCrBmarjTJd+XPe4iNu/bbBprrA2+FT6NSp9vkIUGfUqcaYepdTuvTZOXXUpGLbKootYGAAAAAAAAAAAAAAAAAAAAEA9p8cegE6JhUX8QET8TMN1nhIRb+xo/+ySw/NjT7CkbfSnxFhQHzNtiIVFRDz7+yLe85962HcdOxwLy0djT7Aj+rqO22y38Hura2ngzu3sTMTiI1cu7yIWVmR8DgAAAAAAAAAAAAAAAAAAACiRWNh++fjS65ubrJxSemRcGfG6r8Z+rkspPSLn/KkGu7ulxn4ayzmfi4hzTdZJKW3+EHtqT0ItvQRndujcnPwOpxRx6pqIowdWfLDvY9qhc7ZMLIydsS4W1sN/z+dnIu77/SuXH3QQCwMAAAAAAAAAAAAAAAAAAACoaV1xgd3znqXXT2i4/vLn78k537v8oZzzxyJieflnbrmv5dmB2kqMVPUwU+0o2kgBwHXz9RJ061Lp85Wir/O0xXaLv7c6NnTgc3Zm9fJFF7GwiV07AAAAAAAAAAAAAAAAAAAAoDWxsP3yzqXXT224/pOXXv/JgPta3h70r7jITtt5SjuOvlQd50hxsCusuw6FX6N8NPYEUNO6P7r28CyYV8TCDlbEwor7bwoAAAAAAAAAAAAAAAAAAACwL8TC9ssfLb3+3JTSdQ3Wf86G7a1774vr7iSl9IiI+NwG+4Ke7EnYpcRATS8zbRsL6/s8FXgdahMLq6Wv79pW293l+66FNHAccFYRC1vc3cHGJ3btAAAA+P/s3XmcW1d9///3kWbRjD2O7Ti2Yzv7bjshJJCNAGEPhS8Uyg79krIV+m2hv/JtS6Bl+9JC+4PyZSlbCVspEAiEQCgJJBAITsKSOHHikMRZsOPE+zr7jKTz/UOzSBpd6epenXuPRq/n4yHP3HPvPfdzF8ka6egtAAAAAAAAAAAAAAAAAAAAAAAAIDLCwuYRa+0OSZvKmrokXdxEF5dUTf+4zrLXNVi3nqeqVNu0jdbaXU2sD6DcyFYHnbZRiE11eFDSYULT6gY+eX48fQyc85KPx8nHmlxK+KlrUFjY6M5k62h7nXadAgAAAAAAAAAAAAAAAAAAAAAAAAAAAADQWoSFzT9XV03/WZiVjDGnSzq/rGlY0k/qrHK9pNGy6Qun+gjjsqrp6pqBhHgWXhI1sOnw/a2toyUcHFvvA63q1Od97cW0C+hwvl8fHjH1nro6OI59AWFhk4ek/GjteQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC1GWNj881+SCmXTLzXGnBJivb+vmv62tXYsaGFr7Yikqxr0MYcx5lRJLylrykv6Roj6AHS8oCAgk2gVweoEFW27Utp7W3KlNMsWGi8DeRnq5X0QXYstPSd4nsm2fnt9RwfPG9sVr+9OO3cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAywsLmGWvtFklfLWvqkfQVY0wuaB1jzIslXVbWNCHpAyE2935Jk2XTlxljXlRnOzlJX56qadoV1tqHQmwLaD2CWhxycWxjhoW5Pt+N+v/Zc6T9G93WALecXUM8FoW24pnB8zJdrd9ebmXwvLGdrd8eAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABADYSFJcwYs8YYc3z1TVJ1GkVXreWmbssabOZ9kg6UTV8k6QZjzOlVtfQaY/5K0neq1v+YtXZro32x1j4s6RNVzVcZY/7SGFMeCCZjzBmSbpyqZdo+hQslAxzxLaDHt3rahKkOCwsZHtZyDc5ffkh6+EvJlNIsgvPaWKedu4D7d6andntc3YukbEDe6mjcsLBOO3cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCqrrQL6EC/knRciOVWS3okYN5XJV0WtKK1drsx5qWSrpc0nZ7xFEn3GmNul/SwpCM/q+KTAAAgAElEQVQknSPpqKrVr5X0jyHqm/YuSeskPX9qulvSpyT9ozHmDkmDkk6c2lZ5wseEpJdYa3c0sS1gnvMoOCZueJSL8CnfA63C1PfAp6Unfcp9LU3z/Nh6w9FxinVtd9q5C9jfRae52ZwxUm6lNPyHufPG4oaFAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhENY2Dxlrb3JGPMSSV/RbCCYkfSkqVst35T0ZmttoYntFIwxr5D0RUmvLJu1XNKlAavtlvR6a+3NYbcDuOFZyI7vYVipCzo+JqA97Pqt0sbnj2sP7cIWA2Zk3G0zKCxstDosrNn7Efc7AAAAAAAAAAAAAAAAzD/5gtXeIWn3oLRnULrkNCmbCTvODwAAAAAAAAAAAAAQhLCwecxa+9/GmPWSPqBSkNeSgEVvk/RRa+13I25nSNKrjDFXSXqnpAsCFt0v6UpJ77PW7omyLWB+m0/BMS72JWxYWEqDigJDjNrBfLr2XHJ1nGL023FBbwH7axze7/tW1m4fqw4LAwAAAAAAAAAAAAAAADrTll1Wf/yZonYflvYNV87b9bGMjhpIpy4AAAAAAAAAAAAAmE8IC0uYtfb4hLe3W9LbjDHvkPQUScdJWilpWNJjkjZaax9p0bauknSVMeYESedIWiVpgaSdkrZK2mCtnWjFtoCW8C5kx7d62oTLkKCmtPP5a+faE+TdY0YHCgzly7jbZs5RWBjXEwAAAAAAAAAAAAAAAOaJ/h7p9ztqz9s9KMLCAAAAAAAAAAAAAKAFCAvrEFMhXT9PaFuPSGpJABngVoSglslBqdvRqBWvgmPi1uJgX7w6PrX4Xl8d3h/b+S7O8e+0cxewvy5DA/sCwsJGY4aFAQAAAAAAAAAAAAAAAPNEvTCwXYeldauSqwUAAAAAAAAAAAAA5qtM2gUAQFvZdZPDzjst9KdZQccnbEiQ4+MbNnBrbLfbOiLh2gvHw+PUaUFvgfvrMCwsFxAWNhY3LKzDzh0AAAAAAAAAAAAAAADmrZ4uo8X9tec9+9+Ksp02zgkAAAAAAAAAAAAAHCAsDEAHizD45I6/bn0ZM+bRYBgXA3vChgQZh6FBdYXc5xue7raMSObRtRdWpiftCmYxEK4JxdrNxuFT2r6AsLDRnZy7sDhOAAAAAAAAAAAAAAAA897ygeB5X7uV8SMAAAAAAAAAAAAAEBdhYQDQDFtw2HfEwTC55a2to92kFg5WLeT5O3yf2zKi6MQgn4FTI6zk43HysSaHwoYGtlIuICysOC5NHnK3XQAAAAAAAAAAAAAAAKCNPLAreN7VGztsnBMAAAAAAAAAAAAAOEBYGIDO5V1AUtR6fAnLKufi2Mbs0/X59u56akY7154gZ+eY4x9eCmFhfQFhYZI0uiNGxx103r0JdQQAAAAAAAAAAAAAAIAr739R8BiRHXwnHwAAAAAAAAAAAADERlgYgA7mW1CLT2Fhvh0bKXxIUFqhNJ4cs+5FaVfQJjw5X7HNl/0IyRZrtxuHT2lzK4Lnje10t935pK3DFAEAAAAAAAAAAAAAABDGuy4NHrs3nk+wEAAAAAAAAAAAAACYpwgLA4CmOAyiihqmYtIKx6rHQTBM0PHxZv99CcOJ8l+7L7X7ztVxitFvx4UwpfA4kM1J3YtrzxstDwtr8lx03LkDAAAAAAAAAAAAAADAfNbTZfTRl9cexzM+mXAxAAAAAAAAAAAAADAPERYGoINFCWpxGe4StW9fwrLS4sn+exP8E6EOb2pPUifu8zwQeK06fhzoO7p2+9jO2u0AAAAAAAAAAAAAAABABzqir3b7eD7ZOgAAAAAAAAAAAABgPiIsDAC8MY/Ci5yET8Xt0/Xxbefz1861J8nRcYp1f+m0c1es3WwcP6XtW1m7fTROWFgnnbtO2lcAAAAAAAAAAAAAAIDO1dtVu52wMAAAAAAAAAAAAACIj7AwAJ3LSaBVDD7V41MtM4JqMg2mk+LLMYtShy+1JyjKNd5W94t5KvAcOL7f5wLCwsbihIUBAAAAAAAAAAAAAAAA80tvV+1xPBOEhQEAAAAAAAAAAABAbISFAehgvoXs+FZPHA72JSgkyKQVDlbFyyCpkNq59nmB4x9eMaA9pbCw0ThhYZx3AAAAAAAAAAAAAAAAzC89XbXbxwkLAwAAAAAAAAAAAIDYCAsDAF9EDmzyJCwrNWH333UwjyfBP5GuI09qT9Q8OU6dFvQWGBro+CltX0BY2FicsLBO0mHXKQAAAAAAAAAAAAAAQIfqJSwMAAAAAAAAAAAAAJwhLAxAB/MtvMS3euJwsS8h+zRphae18/lr59rngU4L/Iol6Fg5vt/nHISFcd4BAAAAAAAAAAAAAAAwzwSFhU0WpGKR8TIAAAAAAAAAAAAAEAdhYQDQDKfhLgyEqS+lkKCwvAn+iVCHN7Unab4cJx9rcsgWa7e7DgnsCwoL2yMV+drThry87wAAAAAAAAAAAAAAAKDVeruD500WkqsDAAAAAAAAAAAAAOYjwsIAdK5I4SUOA0+ihqk4CcmJuZ8ugmGC+nQdEhSaL2E4nl3XvvLq/h+n3047d0H76/gpbS4gLExWGt/jdtsAAAAAAAAAAAAAAABAm+jJBs8b5zv5AAAAAAAAAAAAACAWwsIAoCkug3k6LfSnVUKGhbkIMEuyf6fauXZ0lpRCA/uCwsIkje4s/Wz6MYD7HQAAAAAAAAAAAAAAAOaXTJ1hPG09xA4AAAAAAAAAAAAAPNCVdgEAkJ4II09cjlaxxYgrOg7JicTFcQrbZ1rHI+r5azFGVIUU5Ti5OrYx+h15rHVltIPAx0nH9/ueIyWTlWxh7ryxnW63PS/wuAQAAAAAAAAAAACg/RhjTpB0tqRVkhZK2iFpq6RbrLWTKda1VNKTJJ0gabFKb5ofkrRd0m+ttbyRDSA19b7zjxEkAAAAAAAAAAAAABAPYWEAOlekUCWHw1UKI+76nheCjr0nYWntHNLVzrV3ukevks79eNpVJCjgWjUZt5vNZKXccml0x9x5oxHHWHO/AwAAAAAAAAAAAAAvGWNeJulvJF0YsMh+Y8yVkt5rrd2bUE1G0isl/S9JFzdYdqOkz0n6krU2n0B5ADAjU2c4X5HhMgAAAAAAAAAAAAAQi+NkBQCYbxyNVikWoq/bvah1dcyIuZ8uQnCC+qz3VYSVHbSslHT6DytCHYWx1pfhuyjXqKtwpzj9jmxvXR3tIPBYJRAamFtZu32sRoAYAAAAAAAAAAAAAKDtGGMWGmO+Kek7Cg4Kk6Slkt4m6R5jzPMSqGulpBslfVMNgsKmPFHS5yXdZow52WVtAFCt3nA+vlsPAAAAAAAAAAAAAOLpSrsAAEhPlLCgYuvLkKR9v4m+bqa7dXW0perRRQmEBtXky0imCHUcuKMUGJbNtb6cecXVOfbl2mkDgY/BKYaFje6M2GEnnfdO2lcAAAAAAAAAAAAA7cgYk5V0paQ/qpq1R9JGSYcknaRSENf0m9QrJF1jjHm2tfZXjuo6StLPJZ1eNWtyqq6tkoqS1kg6V1L54I9zJf3cGHOxtXari/oAoFq9UTyEhQEAAAAAAAAAAABAPJm0CwCAtuIqLKw45qbfyEIE7/QdXWemi1E9no8UaveRTNu+m3YFCfPpfPlUi+8CjpVJ4Clt0GPeWNSwMAAAAAAAAAAAAACARz6iyqCwSUl/JWmNtfZ51tpXWGvPlbRe0q1ly/VK+r4xpt5Amjj+r+YGhX1uqq7zp+p6lbX2YklHT+1H+QCnNZI+76g2AJjD1Bl6yCgpAAAAAAAAAAAAAIiHsDAAHSzK0BNXw1ViPBw7CakK0eczfupgu/UE1RQi2CwRngxlino93PXu1tYxLzk6x+0eNJekoMDGeqMMW6VvZe320ahhYZx3AAAAAAAAAAAAAPCBMeZESe+oan65tfbT1tqJ8kZr7b2SnqXKwLAjJb3PQV3HS3pNVfOHrbVvs9burl7eWnvQWnu55u7L84wx57e6PgCopW5YGMNlAAAAAAAAAAAAACAWwsIAdK5II08cjVYxcR6OUxpB07OkzkwHNQWdr9AhQa6PU5uPZBrZlnYFCfPpfPlUi+9SDA3MBYSFjUUNC+sgjPQEAAAAAAAAAAAA4Lf3Seoum/6KtfaaoIWttaOSLpNUHiT2xqnQsVb6H1XTuyR9IMR6/y5pU4O+AMCJTJ1hPEWGkAAAAAAAAAAAAABALISFAUAzXAWe+BYWFmY/Q4d0uVZVR1p1eROG40sd85A357iTBYUGJvCUti8gLGx0OiysyeuD6wkAAAAAAAAAAAAAUmeM6ZP0sqrmf2m0nrX2AUnfL2vqkvSaFpYmSdXhYz+x1o43WslaayX9sKr5lJZVBQB11Bu9x3AZAAAAAAAAAAAAAIiHsDAAHSzKyBNXo1ViPBz7OILGSU0e7mcFX+rzpQ7PRbpGXR1bzllothgwI4GQwFxAWFh+UMoPu99+W+MaBwAAAAAAAAAAAOCt50nqL5u+1Vp7X8h1v1w1/dLWlDRjQdX09ibWfbRqeknMWgAglHrf9ckIEgAAAAAAAAAAAACIh7AwAGiGq2CueiNkGkprCE0C4TwVgvYzZB3OQ9UYytRePDpfPgb+eSvgWJkEntIGhYVJ0tgu99sHAAAAAAAAAAAAALhwadX0TU2se7OkfNn0E40xK2JXNGtn1XSuiXWrl90fsxYACKVuWBjDpAAAAAAAAAAAAAAgFsLCAHSwKCNPii2voiTOw7GPI2gc1BQ0UmjO6KKkQ8ym+DKSyZc65iVXx5ZzFlrg9Z3A/b6vTljYaPX47DA47wAAAAAAAAAAAADggfVV07eGXdFaOyzp7qrmdbErmnVz1fQ5Tax7btX0b2PWAgChZOoM47mf7+MDAAAAAAAAAAAAgFgICwPQuaKEKrkKYjIxHo5TC4dKOpQrxZCgUAj+aS8+nS+favFdUGBjAo8DXQulbH/teWNRwsI6SRtc42O7pb23SYWJtCsBAAAAAAAAAAAAkKwzqqYfbHL9h6qm18aopdqNku4vm36qMeasRisZY1ZL+pOypklJ32xhXQAQqN4onlf/R1EHhq0Gx6wsX4oJAAAAAAAAAAAAAE0jLAwAmuJhWJiXISw+1uSaL/vsSx3zkKsBagx8Cy/oWMV6DA3JGKlvZe15o1HCwjjvXigWpNveKH1vhfSTC6XvHik9fn3aVQEAAAAAAAAAAABIgDFmqaSlVc3bmuymevlToldUyVpblPQGSeNTTRlJVxljjg9axxizQtL3JZV/G9aHrLWPt6ouAKinWGdIzJ5B6cj/r6gj3l7U2vcW9Y1fB31xIAAAAAAAAAAAAACgFsLCAHSwKEEthIXNMPW+A9CBwJCgsHU4Pk7eBD75UofnIp0vV8eWcxZe0ADBhB6PcgFhYWNRwsLghQc+KT38pdnp/JD0yxdLY3vTqwkAAAAAAAAAAABAUhZXTY9Ya4eb7GN31fQRMeqZw1p7i6QXStoz1XSKpE3GmI8bY55njDndGHOaMeZZxph/lrRZ0pPKuvi8pP/TypoAoJ5Do+GWu3+X9KdfsvrJZsZOtZNivTS4Jvsp1OjLlo3rKxSt9g1ZWVu6HRypve1C0VasV95XrXYAAAAAAAAAAACgnXWlXQAAtBUfBw4UCw46jbmfTo5TUJ9VIUFJh5jN8PDaQGtZF/c1iWunCbFDA2PqCwgLG90pLTi+ub58/P/EFZ/39cEvzG0rjkuPflc65c+TrwcAAAAAAAAAAABAkhZWTYeMuKm7zkDEWgJZa28wxpwh6a8lvVbSCVO//3Wd1e6T9F5r7XdaXY8xZrmko5pc7aRW1wHAT8cfGX5Za6VLPxH05YElX/yfRi95otHopNSTlY5cKI3npV2HS8FkB4al3YPSCctKy69aLO08JGUz0pbd0gUnSmuWpDWmcH7Yus/qvddYXbvJ6sBI2tW48+rzjMYnrb63sbL9lOXSW55mdP8u6UebrC67yOj4ZVJ3tvxmZn7vyVbPC771dJV+ZjOSSW3sKwAAAAAAAAAAANoJYWEAOliU8BJHgSdxglTsZOvqaErSAxNChoWlxZcwHF/q8F6E41QYb30ZcR2xNu0KEhZ03jLJbD4XEBY2tjOZ7aP1Dt9Xu/33HyUsDAAAAAAAAAAAAJj/qsPCxiL0UR0WVt1nq0yP9QwzeOEWSe+XdIOjWv5C0vsc9Q2gzS0bMDrnWOmOba3p701fs3rT1+KNiXvTU40++1qjbMaTsYZtZN+Q1dP//6K27U+7Eve++Zva19mW3dLfXjU778M/rrVc/HGbYYPFqm9ZI930gDQyMdvXqSukB3ZV9n/RSdKqI6Sr7qhsX9wvHYwQAnfOsdL61UbrVknrVxmduUZavZjQMwAAAAAAAAAAANcICwPQuaKEKtn632IXXYyBAsWJxss0Le7AhQQDq0IPLHBdEyFd856T+5riBbz1LG1dHe0g6DE4qQFGQWFhozvU/GMAjxl+4/wAAAAAAAAAAAAAHcijbx6cZYx5s6SPS1oQcpWLJP1E0j3GmLdaazc4Kw4AavjaGzJa/35XYy2b98WbrU46Svpfl0iHRqWurPSbR6ShcatzjzPaPyz9/XeLunmL9NrzjR47YHVgRNozJI1PSksWSEcukJ58gtF5x0snLDPa/LjV9gPS4Jj0snONFvRK126y+vptVo8flC45TbrkNKOf3mu1cpHRMUulE4+S7nxUOmaJ9OrzjFYtTidUaXzSqmhL4VPZjNH4pNXwhLQoJxWKUjYjjU2WhmR98me2I4LCfDBZKN1aoTooTJJueaj2slGCwqRSIOAd26afBpV+HtEnrV8lrVtttH5VKUxs/apSiCAAAAAAAAAAAABag7AwAGiKq/F9ccLCJltXRlMSfvM+dKBSWoMKfAmW8aWOKjtvkB79npTpkXqWSKM7JZOVjn25tOLpKRQU4Ti5CguLdc48Pd/OBO1vQvf7vqNrt4/tTGb7basNr1Nn4aAAAAAAAAAAAAAAPDJUNd0XoY/qdar7jMUY8x5JH6pq/p2kz0i6WdLjkoqSVkq6QNJbJD1jarn1kn5hjHmjtfarrawLACTJTo3pM1Vf9Ld2ldHgpzK66CNF3f1YGpXNdfn3rC7/Xq0xLJVt//XrucvsG5YelPTrR2zNdT5x49x1rt1UCg+rtbwk/e1VtcfTLFsorVsl9XWXAp8e3ltzMUnSS58o3b5N2rqvNP28daVj/+uHbWAwFODSoVFpw0PShocqr/0ViypDxM5cbbR2lTSQI0QMAAAAAAAAAACgWYSFAehgHn0ZaOggrBqcBRjF4eI4pRwS1Mj2a9KuwF8P/of0m7fUnrfl36WLvikd/6pka4rCx7CwOI8d7Shof00mme33razdPrYrQrhUh527dmPzaVcAAAAAAAAAAAAAwD2vw8KMMc+U9H+qmt8v6YPWznkD/Q9Tt28ZY94i6XMqDarJSrrCGPOgtXZDi0r7jKTvNLnOSZIYXAO0KTs+Kl33ddnd26XvfU4aOjgzz3z9Lum40+ess6DX6K73ZTWZt7rxPum6zVafrBGqhUp7h6RfPBBu2e9trJy+frN0/WaOMfyz63DpduN9lSFixx8prV8trVtltH61tH6V0ekrpd5uT8YFAwAAAAAAAAAAeIiwMABohrNgnjhhYZOtK6MZJuk34z0PCzuwsfEyncgWpbveXX+ZW16dfFhYlPuyq7CwTgv8iiUokCuhx4FcQFhYcVKaOJBMDUjGyKNpVwAAAAAAAAAAAADAvUNV0/3GmAXW2uEm+lheNX2w5lLR/JMq3xD/qrX2A41WstZ+wRhzjKR/mGrKSvqEpCe1oihr7W5Ju5tZxyQ+zghAaxnZj/5l7Vm3/HfNsLBp3V1Gl66XnrdOOq3wkP7qpuNVVEJfDAjAa3/YV7pdu2k2RCybkU5ZLq1fJa1fY7R+KkjspKOkbIbnEwAAAAAAAAAAAISFAehgEQJ6bKH1ZUjxwoLSCgurJ8nwo7CDCV3WNLbXXd/N8DF0as8GaTzE8TmwSVpylvt64rBBQVWxO05p3TYUdI2bhAYQ9gWEhUnS6M7m+vLx/upKJ+0rAAAAAAAAAAAAgLZhrd1njDkgaUlZ87GSft9EN8dVTW+JXZgkY8xqSRdUNTcMCivzEUnvlNQ3NX2uMeYsa+2mVtQHoLOY3lzgKCX7mctlr/68zD99W+aUJ8he/w3ZD/1ZzWX/XNL5vWfpqkUv1UeW/d1Me3+PdPYx0i0Ptb52uLVGuzWpLu3S0qbWy6qggrIz0xdrk4rW6szhu3TRwGM63L9cWrZKO7NHqW/sgD7y6AUayg5U9NFvxnXhkt3aPdqjx4Z7VLBGq7sO6YxDt+u0ZZO60TxZvx4/sSX7OS1jrE5ZbpQvSpOFWjeryQKBVnEUitJ9O0u3q+6wmh4jmeu2OmOFtG6V1cpF0vC41Xkndem81RM6ZqnRiO3WQ3ukvh6jPYPSeF46YZm0bhXnAwAAAAAAAAAAzC+EhQHoXF6Fl8QJIUprPxJ+Az30+Urhjf3CSPLbbBdju8It9+DnpCd/xm0tFaLcbxzd1+I8Fnn1OJaEgMfKpMLCequ/ELrMWJNhYQAAAAAAAAAAAAAAH/xe0kVl0yerubCw6hSSZtat5+yq6YettY+EXdlaO2yMuU3SM8qaz5dEWBiA1tvxB9k3nCd75kXS3bfUXfTs8U06e88mfWjP+2cbc/3SXbNj8ArK6EcL/0hfP+LV2tB/kd574F+16JnPV1dxQrcOPFWHM4u0b8jqzNXSCUdM6PgVXVKmS2OT0jd/Y/WN33TamKpkZW1e27ecqKMKyX3J6ruaXeEx6YMhFy3KyMiGH3l679RPY2qO37OS8urSpOmuvJW1TZieOW3Tt/xU+8wyNdaf7adbkyqt85mlbw27BzOOyu9WVkXt7Ar+Es2szatgZj9y8rqD/6WnjfxK9/eeos2963RP7zpt717T9LabNTZptHG7tHH77Jn67M1WUvfUlK36OeuikVv07r3/omcO36QeteALmi99nczL/0rm1OqnawAAAAAAAAAAAO4RFgYAPogV+OPjwBYXNQX1ybd+zfLxWgh5frZ8tnPDwhCeDQpWTCgsLNsj9R4pje+bO4+wsDq47wAAAAAAAAAAAADw1j2qDAu7UNIPw6xojFkg6awa/bXC4qrpKG9KV6+zLGItABBOg6CwQGOVX9aZVVEvGrpWLxq6drbx25+VJL28QVfjAy/SN9Z8K1odDnXbCU2anrTLaIl/3XV5okFhrmWijm0KGPdrJHUrr26bl+xo9MKa9MldfyNJ+soRf6o3rfr8nPnPG/qJfvToHzvZ9sHMEdrce4Y2967T5t61uqd3re7pXad9XX489bil/yK98NhrAucfmd+r1x36hn654Gn6fc9pGsv0zcx79tANGs4s0DGT2/XDgRfouMltum/r6dJHJalQd7snL5ce3F173jueZXTno1a/eCDcPgzkpOeulYpWunrjbPvbLjG6/PlGh0el4Qnp8Kj02EGrOx+VfvuI1eolRodHrRb3G73yyUZnrpZ+t9Xq6jukK39n9eInSEsWGC1bKD37DKM/7LM6OCKtWSKN56Xv3m5192PSkgXS196Q0VlrSmOCrbWaLJSWGRyTlvRLGVPK0Bsck/7xGqvP/aJ0H+nKSPmi9JSTpPt3SXuHpGOXStv2V+7fkn7pWWcYvfv5Rictnzv2OF+wslbq7mLcOAAAAAAAAACgsxEWBqCD+RReEqOWWEFjMfo0Sb/Z6nNYmA81wDkX97VSxymt24aCwsJMQmFhkpRbWTssbLTZcdkddu4AAAAAAAAAAAAAwE/XSXpL2fQlTaz7VFWOwdxord3ViqIkHayaXhChj4VV00MRawEA6ZxLpDtuSruKhgoNvnTwbfs/r+cO36Dt3au1Ir9L3XZSB7OLlbUFPWf4Rh1V2Ktb+s7Xzq6VWlgc0tNHbtawWaCRTL9uz52jXV3L1WMn1GdHdenQTzSS6deEurWoOKh+O6IeO1ExmnDc9KjXTkiSijL6Wf8l+vTSv9C1Ay8IrHHt+L166sgGjZte3d27Xrf3nRNq31fmd2pn18rA+aeN36+37/933dd7mv7ziNfoYHaJjszv1QuHfqwXDP23rIzypkv7s0v1i/6nasT069d9T9a+rmU6dfwBXTp0vV46+H1dPHprqHqQjlcd/rbevvLfNJKpfOrwnr0fdrbNxcVDesrobXrK6G0zbVbS7uzymeCwzbl1uqd3rTb3rtVwpvopSrr2dS3TJ458e815Nyx8tiRp+qq/r/f00P0GBYVJ0idubG784OCY9N075rZ/9iarz95Ury878/Nbv5273DV3zS7z0Z8E9/PoAensDwZ92Wt9+anVNjw021YeFCaV9m9wTPryBqsvb2h8bJYPlG5dWSmbKQWSdWWmfs+W/V72sytrZn7PzLTVXj9rAvrJVvc5vawJ109A3+V1zO1bMomP2QcAAAAAAAAA+IywMADwwnwLC0qwptBvgDqsyZc3YZ2FWcXgy7GpFulY+RgW1mk8CQs7tHlu+1iUL3EGAAAAAAAAAAAAAKTsekmjkvqmpi80xpxurb0vxLqXVU1f3cK6Hq+aPs0Y02+tHWmij+p0Gd7YBhCZefcXZV92ctplNHTqxJbAeQ9vOVXH5rc37OOi0V9XTPfaCS0tHtCaocfmLHtE8XDdvqaDwiQpI6tnj/xczx75ecMa4phUl37fe7qWFA7omPzcmiXp47v+tm4fbzvwBRelIQE5O66HHjxDly//kH7Vf5FOmXhQ79z38TnXtWtG0orCbq0Y2a1njdw0016U0bbuY0oBYtNBYr1rdV/PaZrI9CZaI9rX7sHSrTkux+q6HQdsTNhAtPqhY7XDz0xFWzZE380Fq5k5ddSqLXzoW2UbQWoAAAAAAAAAOhFhYQA6WIQ35ly9oeRjyFNDCb+5FvYYdYV4/e0AACAASURBVPSbfj5eR/PofLi6n8bq18dz7pAN+ma6BMPC+gK+fXPiQJMdddK566R9BQAAAAAAAAAAANBOrLUjxpirJP1pWfPfS/qzeusZY06V9JKyprykb7SwtE2SDkhaMjWdm6rx82FWNsa8UNLqquZftaw6AB3HrDhG+ti1su98Ydql1LV+fLPOGtukTbmzKtpPnHhYx4QICpsPupXXWeP3pF0GUnRUYa++uOOtaZdRU0ZWx09u0/GT2/TCoR/PtE+qSw/2nFQRILa5d60e7DlJRZNNsWIgfdZKk4XSzUHvLjpNrP+MCRtaFiVYzcwJNKvXd6Pws7k1muB+6tQWJliNIDUAAAAAAABgfiMsDEDnihLQ4yzUKygAJyRr/QrJcnKcgvr0Yb99qMFXvh6bKNeoq/t/jH7bMmgwhqCwMJNgWFguICwMAAAAAAAAAAAAANCu3i/pVZK6p6YvM8Zcba39Qa2FjTE5SV+W1FPWfIW19qF6GzHGVL/J/wxr7U21lrXWFqZCzN5c1vwRY8wGa23dBBhjzLGSPlfVvMFau6PeegDQiDnvOdIvx6SbfyD7nlc0t/L6C6R7bnNTWBkj6eO7/rf+ZM2VOpgt5S3miqP6wo63eTuSbV7IZqWCkxQbdIhu5XXGxP06Y+J+vWzw6pn2UZPT73tPnwoRW6vNvet0V+9Z2tF9dIrVAvBF0UoT+amJyVb33t5BanPCzQJDy6IEq5k54WTN9N04WM2ED1FrMlgtYwhSAwAAAAAAQPsjLAwAfBA78MeqtaFMYepJ+k2SmGFhHRGq1An7mCYPw8I6jQ9hYX0tCgvriMckAAAAAAAAAAAAAPCftfZhY8wnJP3vsuarjDF/I+kL1tqJ6UZjzBmSvijporJl90n6gIPSPijpdZL6pqYXS7rFGPNuSV+y1o6UL2yM6ZH0akkflbSsqq/LHdQHoAMZY6SnvVj695/JXvFB6Y6b6i9/zTaZpStmpu01/yH70b+cXaB/oDSOZnSoNP30P5aWrZK++5nINT595Fe68+HzdP3C52jM5PTiwR9qTf6xyP2hyilny1xxm2StTGZ23Ja1VrrtOmnXo9LYsLR0pdS/UFpzsnT0CVJ3j7R9i/TYw9KS5dIJ60orjo9I+3ZJx5wsZbtkjCn1NTkhZTIyXd0BhUxt8+BeqbdPpn/hTFt5CIjdv0t6YKP0yL2y2x+UOfkJ0pkXlbabyUrHnV76st6enEw2W9n/4f3S3bdKgwekxVP/tWayUiYjyZR+GlMav2ZM1e9TPxsuoxr9BfRTvkz574W89OiDpeN+1Bppcly6+xbZ266TbrteOvZU6YlPl0aGpN/eIPXkpEteIrP+QmnFMaVl7/yltPGX0vDh2QOw/gJp305pxx+knl7pRW+SWXmcdPbTpurR3HFwFdM2oL1qOuh3Sf2yOlfSueXzittUvOfbuvUHt+kruZfpW12XavXk43pd/od64znD+umdo/pQ9o16qOckAUCnKhRLt4nGi0bQ/kFqzYSONResZmZ+z9QNRIsarGbq99NU6Fvl+pkMIWoAAAAAAADtgrAwAB3Mp6CWmLVYm3x2V10JHts53+zi1YGAt9+8E+EadRXuFKtfnx7HkuBBWFiuRWFhnYRgNAAAAAAAAAAAAAD+e5ekdZKePzXdLelTkv7RGHOHpEFJJ0o6R5WDUyYkvcRau6PVBVlrtxtjXivpO5Km00sGpur6V2PM7ZIeV+nN9JWSniRpYY2u3mOtvbnV9QHobOasp8h84npJki0Wpftul73hSmnLXVI2K/OMPykFC1WNHzMvfrPMi99cWm90WMr1z1lGkvTXHy8tMzEu09MrOzYi/fIa2Xt/UwqdmpyQbvyOdHDP7DpPuLgUivTDL2nN6cfqTecfJzs6JI29SCpMStsfkk5cJ7P6JGnRUinXL/XkZL/zKenXPyn1ceI6mZe8VcotkIYPSd290jNeKm3bIvvNj5XGKfUPSHu2S7+9sRTANDkhyUojgzLPfLnsF99fuS9HHi0duVJauqIUinbXr+Id/N4+aXw0Xh9RXfRHMn/32dI5qz63xkgXPj9gxSnHnla6levNlc5HdV89vQ3LMcZIS46a21Y+vXSFdMGl0gWXNj261CxaKj3lBU2ulZIlyyunTz1b5k/+Ity6a58s88p3tL4mh7JnXaSLXyNdrFKKq7RI0umSpNdP3STpunus/uiTAeMOHTph4hGdPXaXrl70xzXnrx2/V9u7Vutw9oiEKwMATAepudHeQWqtCB0LDj8zsyFndQPRGgerza3DNO6nRlvYfSRIDQAAAAAA+IawMADwQtwX7VMIYkk6BMrrsBlPavPyGM2nN0Z8PL4dxga9M5tgWFhfq8LCuJ4AAAAAAAAAAAAAwBfW2oIx5hUq5U28smzWckmXBqy2W9LrXQZxWWuvNsa8WNIVklaUzepTKR+jnmFJ77LWftpVfQAgSSaTKYUNrX1yc+v1LWi8zFRglMn1S899tcxzXz07cypQbI6/++zs+mHqOP+5jRdad57Mh64M0ZtkXn95qOVawebz0v6d0uS4tGy1TG9u7jKFgnTf76RMthSG1ttXCngbPixlu6R9O6RfXy/lJ6UT1pVC1JYdLW17QDq0XxrcL62/UDrlCTJd3YntG9AKl643Kn4hO6d9dMJqcExavqj2o8T4pJ0KEjEaPzwo+4KjVTQZ5ex4cwU8JhVllGnheMFRk9Nvc+fqRwPP10BxSEfnd+r4iT/omPx2HVE4rKMKe7Q7u1wHsot18sRDuju3Xv95xGv1pcWv12sOXalTJx7Q+aO/UY+d1FBmgQrKaqA4pHt7z9CWnpN13OQ2veHgV9SlgiTpq0e8Tl854k+1tHhAp4/fr3PGNmpx4aCsjH7T92RNmm4NFAf1dys+MlPjx3e+U2878AVlVah4HLaSRk2f+u2o8sqqSwWNmx7d23OGPrH0L/X9gRdpKDsQuO9Zm9c/7v1nLXvuC5U/9VzlpwJ/Zn4WNLdtqr28rTDTZkvzy9vs3H6q189XLTvTVlUHALSb6cey8byL3l2OnXc7Lt+YsIFotUPHGoWfZafCzkrBZOGC2cIHq5lw/YQOfav8SZAaAAAAAADpICwMQOfyKVgpdi0e7YskN/UE9enBi8uBAUZJ8+06kLw4P7VEus+5Or5x+vXxnDsUdF8zCYaF5VoVFpaQ4a3Sls9LhzZLyy6QTnu71NV4oGVHaPTYbW3ywZgAAAAAAAAAAAAAUmOtHZL0KmPMVZLeKemCgEX3S7pS0vustXsSqOtHxpi1kv5c0hslndRglV2S/lPSp621W13XBwBIj+nqkpavqb9MNiutO7+yLZORBhaXJvpPkY45Ze6Kqxv9dwO0r74eo76e4Pm93bPjxnoGFsoeuawUrBdBK4PCJKnPjulpoxv0tNENgcusLOzSysIuSdI5Y3fqnLE79fFdf1u33/PGflez/fWHvq7XH/p6zXnPHvn5zO9/s/+TjUqXkdRvRyVpJoys107oieN36Ss73izteHPDPiRJhVFlntVcQGUailNhZHFDx4ID0WzNvhuFn9XqO1+QihV12Ia1xQlWA4B2Yq2Uty4fv9o7SC0oiKw1wWpmpi0bGIgWNVjNhOunTt/19tHwOQQAAAAAgEOEhQHoYBFe9HT2Yl3MF2BTCT5L+oXLuGFhDo/Rls82XqYcATTtydn9LEa/PoUeJsKDsLC+o1vUUQLnbvhR6adPlUYeLU0/9gPp8R9Jz7xBys79FlF3PL1O7/2X+vMf+Zp04uuTqQUAAAAAAAAAAACAN6y1V0m6yhhzgqRzJK2StEDSTklbJW2w1k5E6DfyYBFr7X5JH5b0YWPMGknnSjpa0mKVBs8ckrRH0kZr7YNRtwMAAIBKxhjZ57xS+tb/TbsUTJsYS7uCUDIZox6nw1vbcyy6tVZFWycQLUToWP3QMhu677DBaoWK9W2oQLS6oW8B+1ggSA1Am7FWmiyUbo624Kpjx31LGRM2EC1KsJqpWD8Tsu/wwWomuI5IoW+zbQSpAQAAAEBrEBYGAM1wFcxj476z0+K64u5nkgFGc14kTPhFw6GHpXs/0uRKVm7q9DCQx9cXcYtNj9mVs+PbcYFfMQQ+ViYYFtazRMp0S8XJ5LYZ1UNXzAaFTduzQdp5o7T6BenU5JOt36o//7bLCAsDAAAAAAAAAAAAOpi19hFJj6RdRzVr7XZJ29OuAwAAoFOYt/6zbH5S+sEVbRNUNa8VSVRqZ8YYZacCVHqcfKLN07HrIUwHqQWFljUVrFYzEM2G6rtR+Fn5vMpt2qZC35oJVisy3B5AmylaqTgdpNbyj564flB0H6QWN3QsKLysK2sq5levX6vvRnVUBquZ8P00uY8ZQ5AaAAAAgPAICwPQwXx6xyBuLWnsS8IvQPkaqLT9B82vY207vw/ZJA931Fpp8nCUFVteSvx+Pb1fuBIUFmYSDAszGSm3Qhppg3HX93ygdvvGdyYcFubpdXpwU9oVAAAAAAAAAAAAAAAAAAA8Z7JZmXf8m+zbPyaNjcj0LZizjLVWKhSkTEYyRsYY2ccflh68Wxo8KC1aImW7pLOeIvUtlPKTMr052fFRSWb2y3lHBqVNG6RtD0jnXCLdc6vsT78ljQ5JW+8vLbNslXTymdKBPVKuX1qwSOaCS6XBg7K3/lg67YnS0CHp+v8qLT+wRLr0ddLvfyuNj0n9C6U1J8s851VSfkLasVVad77Um5OGDksDi0t1ZLJSV7d0+89k798oHdonHdxb2sfD+2We+xqpu0fq6ZV94C7puv+Uslnp4v8hc+ZFsvt3SVvukk59olTIS9sflGSlX107e+CWrZKWHS3dd3vZATf1x43H/pJuwE/lQWq9brbgpNckWGvnhpPFCFabG1pmawaiRQ1WK87px0YLfQsRrEaQGoB2U7TSRF6acNJ7ewepVQeL1Q5Eqx9+FhysZuaGqNUMRIsarGbq99NE6Ft13wSpAQAAAHMRFgYAPogbhOVdkJaLeoL6DPtij6NjtPVbEVYqSsq2uhIPrwPJyzcV88OKdD04O76EhYXnQViYJOVWxg8LS/P+evj+9LYNAAAAAAAAAAAAAAAAAEAbMsZINYLCZuZ1VX48x6w6UVp1Yu3OsqVxxKa3r7K9p1d62otnp9c+WeYVbw9f4//8+9mJf/hS6PXqOmFtw9HARpLe88W5bTEUP/h66ac1xmmTjAN0HGNMKUgkS5BatekgtTChY6GC1eYEotm6oWW1+q5XR6EQvu8owWrl7V5+vAYA6pgOxnSjvYPUwgWiRQ1WMzNtmRp9xwtWM437aSr0rbItk2nf5zAAAACIh7AwAJ3Lq1d+49aSwjckJZ7IHnCMqutIuq7iePPreBk61UEmD0Vc0dHx9eqxyHOB3waXQlhYu7M2hcdxAAAAAAAAAAAAAAAAAACAEIK+SDZwLCkAdJ7yIDV1O9mCi04TUSzaOcFitULH6oaf1Q1bs4GhZVGC1YoVbcF9hwp9qxOslue/UQBtaPoxdTzvoneXn+tz/5nBVoSOBYefmZm2euuHDVarXMc0308T+0iQGgAAmO8ICwPQwSL8se0sWCXmH/7FCUm1v6kqFYmGH6X8h3txovl1bKH1dfjKxzCiycMRV/Qw1KvTgsaCBngEDQhxpa8VYWEpn7u7PyCd9f5ktuXjdVoYS7sCAAAAAAAAAAAAAAAAAAAQJGgMcpGUEwBAY5mMUSbjKENNUuqfZYqhWBVGFjZ0rCL8rG4gmm0YWtZMsFrlNsP3HWUfAaDd5J0+frVvkJoxYQPRgkPH6oefmdl5DfpuPljNNAx4ay70rXKe8fHzvgAAoGmEhQFAM1Y+x02/cb/haPs10omXtaSUkjB/bCf8R6GPYTOSVIgQFnbgTumoC1tfS9rhQzV5+OJBlIA3yeE16ON585QvYWG5VoSFpey+f5PWv0fKuHv702uPX5d2BQAAAAAAAAAAAAAAAAAAIEjQ2NC44+4BAOhwmYxRj9OPYHj4OaIQrLUq2uDQsqaC1WoGotm6fUcKVquow4aqLWqwGgC0E2ulyULp5mgLrjp23LeUMa0JHasdfmYq2jKBgWiNw89qB6uZ4H6a6LvWPmYzBKkBANoLYWEAOliEP5q6FrS+DEmx/4DbvzGFsDCX6zfTZ8g/wFwFPdkIrxg8fIWjsLAYjKunBD7+gRz1WvAxLKzTgsY8CQvra0VYWMrnLj8o7bxBWvX8dOtIy+ShtCsAAAAAAAAAAAAAAAAAAABBMkFhYZ02dhYAACTBGKPsVIBKj5OPWPn4+apwpoPUAkPLQoaOBYeW2ab6DhOsVlmHjRb6FmIfCVID0G6KVio6C1Jz/fe6+yC1uKFjweFlpmL9bHU/sYPVTHAdIUPfgvYxYwhSAwAfERYGAM1w9U1EbfmmZcJP7oOO0Zw/MhKuy6c/cuJcRz2LW1dHOZ+Oz7TIx8lV4BxhYaEFPgYnHBaWa0VYmAcmDia0oQ67TgEAAAAAAAAAAAAAAAAAQDxBXyRbJJEBAAAgSeVBao624Kpj56y1c8PJIoSOBQei2cBAtOq+G4WfFWrUUSjaOX23KlityEeJALSZopUm8lMTk63uvb2D1CrCzRqEjjUKP5vbj5kbolYzEC1qsJqp209zoW+V6xOkBiBNhIUB6FyRAnpcPWGO22+L64odXubiOAX12YZPpNMMh1v3D9LmD81tdxWE5+X5iXj8nZ03Xv0MLeg6DRoQ4kpfC8LC2jIkEgAAAAAAAAAAAAAAAAAAIAGZgDHIzsY8AwAAAM0xxpQCRLJSr5stOOk1CdNBanUD0eqEn80JL5vTZmsGokUNVivM6cfGDn0LClbjI2UA2s104OSEk97bP0gtbuhYcLCamWnL1A1Eqx+sVrsO07ifWvWG3MdM0Ot6AFqGsDAAHSzCEzxvw4JSeIXAm7TbsHV0wqsoIfZx6TkBq3bSG+dRrwVH11Ccx5WOe3XQk7CwXAvCwgAAAAAAAAAAAAAAAAAAAFBbJmBsaLGTxjwDAAAA7ak8SM3RFlx17FyxWApSCxs6VjP8rG4gmm0YWtZMsFqxyb6jBKtNTwNAu5kOUhvPu+jd5efH3X82PVwg2tzQsUbhZ6WfZqYtG9B39GA103w/TQSrEaSGViEsDACa4iosKOZfsi0PDIrZn5MAo7B9tsOTpBRD5wJDlVy9muJhmJV3AVtx6vFtXxwLfKxMOixsRQs66aRz10n7CgAAAAAAAAAAAAAAAAAAYgsa89xRX5AMAAAAYL7JZIwyGalbmvqn1drh87W1TQepxQkdqx+IZmsGojUbrDbdXqjox9atLW6wGgC0m+nHOTfaN0jNmNpBZK0KVnvTUzN67rr2fS6A8AgLA9DBIvxn7SxkKG6/aQSxJPxEIejYG56wNCfhN87D3mdWvdDN9muKeH/x9v7fQYKu08AQPEe6F0pdC6X8ULLbbTmuPQAAAAAAAAAAAAAAAAAA4KFMwNjQIp+SBgAAAID5qCJIzYn2/SxycTrorCL8LFzoWGD4WUWbbdh3M8FqxYo6bPOhb03sIwC0E2ulvHUXpPasM6za+f87hEdYGAA0xVGwStwQopYHPfkYXhbUZ9pPWNLefpkw11Hi37IVst9sztH2a4h8f/MxWMnHmlzyJCxMkvqOlga3JL/dduQsaA8AAAAAAAAAAAAAAAAAAMxLiY95BgAAAADAT5mMUU9G6nGWDOLR56SbYK1V0bYmdKx2IJoNDlsLGX5WHaxWqGizoUPfmt1HgtSAzpRN4eP2SAdhYQA6V5TwEmdvLvoYztVI0n/8xQ0L8ymsJsVaAt84L7jZnpchQZ6FhXl5jDwV9BicRlhYbmW8sDDOOwAAAAAAAAAAAAAAAAAAQG0mYIx4kU+7AgAAAAAAyRijrCmF47gJUmvPEDVpNkitZsBYnfCzmuFlNdryRRsYiBYlWK0wpx8bLfQtRLBakY/2Yh7ryqZdAZJCWBiADhbl2ZyrZ4CehYXFDrFJ8Jly9RvBQW8Md4QQx90EPctLOwgvyb+uIm7LWbhTjH47LXAqMLAxhbCwvpXJb7PleLwEAAAAAAAAAAAAAAAAAAAeCvyCZMLCAAAAAAAA6ikPUut1swUnvSbBWjsnWKxW6FjoYLU569vA0LIowWrFOf3YhoFoYYPVqusgSK39daXwcXukg7AwAGiKo2c53gX+hAmdSviJvHfHKIY0Q6cSf+Pcw7CwyMffw7Aw3wOPhh6R7vmQtPcWafFZ0rr3SEvOit5f0HUadF27lIsbFub5uWspD/d1Pv2fAgAAAAAAAABpsUUpPyxNDkqTh0u3/OHZ6Uy3dOR50sDJaVcKAAAAAACAdpMJGBu64UfJ1gEAAAAAAIB5wxijrqzUlXW2BVcdO1ecCiKLGzoW3GZrrh82WK26jkL5Ok303Wyw2mQh7TMTXpawsI5BWBiADhYhKMRVuEjcoCbfQk+c1BPUZ8gnzc6OUbs9aU84LMzLb+/yLCzMt/tvq4ztln72bGno4dL04fuknT+VnnubtOjUiJ16FBbWFzcsDOmap/c7AAAAAAAAAGjEWqk4XhnwNXlYyldNT8/PV01XLDuoUK+3PuGfpLWXJ/9lRAAAAAAAAGhfo0OBs+zPvyctGJAWLJL6F0n9C0u/9y2UyTr7pCcAAAAAAAAwb2UyRpmM1C1N/dNq7Tt2bDpIrZnQseYC0Wxg3830c8ry9j3GaA5hYQDQFFfhInH7bXVdYfqr92QhzbCwdngSk2LoVGCoki2t3/IPaYTc10QDsyJuy1mNcfr1OPBo03tng8KmTRyQtn5LOvO90foMDJ9LISwsFzcszONz1wm8DDIEAAAAAAAAgDqKhdqBXvkaAV9B4V/TyxYnk639rvdIK54lLTs/2e0CAAAAAACgfT14d+As+95XB8/rWyD1DZTCxPqnA8Wmfy/9NOUBYwumfi9v6x8oBY9lUhifCgAAAAAAAMArFUFqTrRDPgZ8QlgYgM4VJfjHWbiIb2FhHgo6X+34DeSJBmNVCQwLk0rXUYuPZ+h9TfCYRD7+HoaFpXkt1TP4oPTQFbXnHdgYvd+gx+C617UjscPCOomP16mPNQEAAAAAAACYd6yVCiO1w7waBXpVL18YSXtv4tlxPWFhAAAAAAAACG/wQLT1RodLt/07AxcJPbq5KmRsNnRsNoDM1Aobq2gbkPoWyLTjmHcAAAAAAAAAgHcICwPQwaIEhTgKF4kb+NPqwKBQ/dV7wzLJEBbeOJ0V5rjXCVWyBQehSz4G8vgWFjYPbXqvZPMBM+OEoxVqt6cRFtYXMyzM16A3F3zcV2fhnwAAAAAAAADmhcLEVJhXyICvoPn5QV6PnDaxP+0KAAAAAAAA0E76B9KuQBoZLN32Bi8SaoRkJiPbNxUkNv1zJoBsNmTMVISRLawIJZtp7+0jeAwAAAAAAAAAOhhhYQDQFFeBJ3H7TSGIJfE3GdvwGCUtTCBPvVAlJx9W8fG4R6zJVeBRrH49PL4H7pK2fjN4fpz9HX0sYEYKYWG5mGFhXkjq+vHwOj20Oe0KAAAAAAAAALRasSDlhxoHejUMABuUiuNp7838Q2gaAAAAAAAAOlWxKA0fLt3qCDXaMpuV7asKFJsJIJtq618kExQ2Vh5S1tNL8BgAAAAAAAAAtBnCwgB0sAjhJc7CguIOjm91XTH7c3KcgvqsfoOSNyzrMtngeS4+pBG6zwTDhCJfn76GBXrmrvckv816IXiu5I5S6fHGt+vJRx7u68NfaryMyZYeLxgIAwAAAAAAALhjrVQYnQ3pygcEfNUK9JoJ/ppedyjtvUFdHr5WDAAAAAAAALSbQkEaOli61REueKxLtjxQrCKAbGAmWMwsmAoX659tKw8m04JFMt09Ldk9AAAAAAAAAEB9hIUBQFM8DQvqXdaaMmaEqSfh8JSggKd2DHHJ9jrqOMR5qxuq5OIb3UNe266C+GpvLOH1HPab6HELYc8G6fEfNVgoYs2TdT7kNfpYtD7jyHSXHnvH9yS/7XbjIogwrvxw42VsQSpOOHzMBgAAAAAAANpYcTJaoFetZW0h7b2BJGVzUvciqWtR6Wf3wNTPqVtX1fT0/Orlb7tMevR7c/v38bViAAAAAAAAtKf+AWlsWCrymlMshbx0eH/pVkeYkb+2u2cqUGwqbKxGAJmZbqsRNla+nunqbs3+AQAAAAAAAMA8RFgYgM4VKWTHw7AgSRo4pTVltIyL4xTUZ9iwMEfnLkpY2VEXt76OsOqFhbn4kIZvYVaSIl8LrvYlVr8eHV9rpTsvd9h/nQ+LLT7L3Xbr6VtJWFgoHl2nzbJ5SYSFAQAAAAAAYJ6wRSk/VBnala8K8Kob/lU2XRhLe28gSSZbP9ArKOBrzryB0pdktKqmmtr4tWIAAAAAAAB4JXP9XllrpbERaWRQGj5c+jnz+5A0Uvpphw9XtQ1Kw4OVy48OeTrmuY1MTkiH9pZuAcIeYduTmwoUG5gKIJv+fepn34DMgkWzbdUhZWXrmWzQ65UAAAAAAAAA0J4ICwOAZrj6xuu4by6m8U3cUUKynKiqI+m6ohz7wA9JxBXmOko4LCz827oOth20qajb8jQs0Bc7rpP23Nx4ucjHv871mVsRsc+Ycisl3R1xZcfnPdRxrvN40ErtPIAmjf9fAQAAAAAAgHLWSsXx4ECvfIiAr+n5+cG09wbTuhZGCPSamtdVNp3NefSe3bSAeni9FQAAAAAAAC1kjJH6FpRuR64MXi5EX7ZYlMaGK8PGagSQ2eHD0mhZ2FjFMlM/R4dat5OdamKsdDsY/IW+oUeo5/qnAsWmw8YWzQSOTYeNmQVTYWP9c8PGZgLJ+hYSPAYAAAAAAADAC4SFAehgdd4iMlnJFppbx1UtoVZv8eD62MEuLo5TQJ9pfwCieyDCSikG5/w/9u48zJX0oO/975XUi6TuPsucM3Nmxp7xzHiZzTM2xjE2PYR4lgAAIABJREFU+2IDDiFsF3ggYQ1c58YJD6uNjcGOsTEQdq6Bm7AEEogDuSwBYt/EBmMDIcF4Vo/tGY/twZ7xzJk5S3dL6kXSe/8oqVUq1VsqlWpT6/t5Hj2nJVWV3pJK6tMl1VcmKg6UwUEacbfNXGNCxykWVpIIk+1Ld78m+9twidyuM7Tu/nBJ4eI893J7/SzJdpoEB68BAAAAAAAgqX43EO2KCnpNiX/ZbtFrA0mqrE0GvWqBuNe0+NfKllRtSpVjfFCZa589+1sBAAAAAABQUqZSGcWkzlzjni7Gsmyv54XHWtujgFh7MkBmhz+3dtwBsr12eiu5rPba3unC485JYofH6k0vItbcnAyQDWJjR+Gx5lZgms3RZetNb5sDAAAAAAAAgASIhQFYYo63dU6/QHraV0j3vC5kloyCJ/N+OD71D9eXMOySa0xqBvVrpYt3zTZPZttRjOVGRZX6YYG8ecVd1zwPEEl4/5d1GyyDR353hudB0vs/ahsp6A3z+tXJ5818e4rznMopFrbQzx0OXgMAAAAAAFgq1krdVnTQqxsn/rUt9TpFrw0k732RWYJeNUfgq7YpVVeLXpsF4dpnv8j7igEAAAAAAIB4TLXqRaGaW9HTxViW7Xalzu5kbKw1DJB5P9tgkCwsUnawl84KLrNOyzs99Zhzklh7QY2RrW+MRcZGgbHRz2YYGasHYmP+SNl6Q6boL18HAAAAAAAAkCtiYQAQdOI2ud9+y+pD7PMut2Qxk0zCMK5lxnxzq1SxmgK3IxP1TfUZbEdx7/c8H5/Et1Vg5C2LedPSPwyPK6YtKhYWFcHLUv1cMbcbR5yIZG4fDijZ76hZpB7jBAAAAAAAQCZ6++HBrmlBr8MdX/xrW+rusk+oLGrN8KBXLSTwFRUAqzZy3BcKSe77m+cWAAAAAAAAMBNTq0mbJ71T1HQxlmW7h4O4mC8g1tkZhcUGITI7MU1IpOzwIJ0VXFbWDmJuO9GTxVlWpSLb2AwEx4YBslFkzBzFyQaXDedp+sJjq+uExwAAAAAAAIAFQCwMQHEuvF86eGry8sb10tazsr/9qMiO80PsJY2Fpf7h+rjjMTNMOy/H7Uw8Vnm/QZXk9ooMPEVElTI5SCPuuuZ5n5QsFjbXcksQC3v4N6SdB2eYIemYSxgLW58nFpbxYxfn+ZxXbK4MUbukOHgNAAAAAAAgO/3eIN41JegVFQDrDs73OTCpFCorg2jXDEGvsfODn2sbUoWPMiwu1z579rcCAAAAAAAARTG1FWnrtHeKmi7GsuzB/ih21fbFxobhsfa27DA21t71AmNhkbLWttTrprOCy6rfl3Yve6cIsT7JW63KNoJBsc1RZGxwMs2Qy4ORstU1wmMAAAAAAABARviELYDi3P2D0mPvmLz81ldJz3tL/uM5YuT+EHtGwZN5Qyqli5nkGYYp+k2kBOtaZHQuKqqUxXYUd5l5bsNJ7/+sHrdFDil1O9K9b8jntiK3kYJiYfV5YmFZi/OcKjj2uAhK9/sVAAAAAACgYNZKvfb0wFdY0Cs4bbdV9NpAkmTGg161aYGviOuqa0WvDMog9y9lAgAAAAAAAJAns7omra5JJ8+4p4mxHGutdLDvxcTaO6PYWGtb6gzCYq1BeKzti435A2X+AFmvl95KLqNeT9q56J0ixNrTW1uRDQbEjgJkW0c/m2BsbCJAtimzsprK6gEAAAAAAADHBbEwAEss4m0K54fYs4qGzPvh+JTHFffD+sbk98F+5+3EjYVlFXpKct8XeDBEVCwsk290j7uued4nSW+rwMhbJvOm4MFfkjqfdFxpFDq+xLG2iO0zcrvO0Po8sbCMH7s4r025HZi1yAeAEQsDAAAAAADHRO/AHfTqhgW+IqYlsF4O1Xq8oNe0+FetUdw+VhxPru2J1w4AAAAAAAAAPsYYaW3dO5260j1djGVZa6X9znhErL09HhRr78gehcZ2JiNl/ggZX34wn+6hdPkp7xQhzr1sV9ekui82NhYUG0bHfLExZ6RsU6a2ks76AQAAAAAAAAUiFgZgebnewDFG7reUyhgLUgYfrp93PbO4n+IuM248LC1J1jWrcFmM5UYd8JPJQRrHKBaW2Zu+cyy3yDeiD7elD7w5/LrKqvS0r5Ae+c8p3mAJY2H1eWJhGYv1fC469rgALN8yBwAAAAAACmT7Und3MtgVJ+gVnL6/X/TaQJJMbTLoVQsJfE3Ev4IBsE2pwlv9KCvXPvsF3lcMAAAAAAAAoNSMMdJ6wzudvso9XYxlWWulTmsQDxuPjY0iY7uyw8v8kbGjSJnvcsznYN87XX7SOUnsIxbW6qOAWH1zFBbzBciMKzbmj5Q1NmWq1XTWDwAAAAAAAJgRnyAGgFA5x8LmjTQV9k3cOYa5IuNuBUpy3xcanYqKhWUQxYm7rnluw4nv/wIjb2X0wE9L+45ve3rmK6TqmmPGpLG2EsbCVk56YbT+wezzZv64lygWtsgHgBX2+xUAAAAAACwsa6Xenjvo5Qp8hV3f3S16bTB0FO6KEfSqOQJfK1tSZa349zWArLm2cfa3AgAAAAAAAFgAxphBLGpD0tXu6WIsy/b70l4rNDbmv8wOw2T+yFgwQNZppbaOS2u/450uPuGcJHZ4bL0xCIoNYmNjkTHvMtMIhMaOImW+y+sbMpWCPgsPAAAAAACAhUQsDMASc+3GNxEfYi9rLKhkH67P5H6KeLwKlWRdCwznREWVMjlII+4y87xPShYLm2u5BW1Le+elD/5U+HW1pnT7a6UHHNcnFbl9FvQGqTHS+jmp/Ugxtx+l254+TV6hukU+AGyRxw4AAAAAAGbTPxyFu2YJek2c35Fst+i1gSRV18ODXmGBr8j410ZxX1gALCTX84X9rQAAAAAAAACWi6lUvChUYzN6uhjLsr2e1NkdD4gdBchGsTEbjIwdhcl8P+930lnBZbbX9k4X3JPEDo/VN0axsUFALBggMw1fZCwYIGtsepGyetOL3QEAAAAAAOBYIxYGoHw+8OPSHW+UKisFDcDI/XZLGWNByiBmEnc8ZXgjIe4YyvTYFTgWU42YPYODNOLGiPKKFnk3lnC2AiNvZXP/j0nd3fDrnvPd0vqVETMnvf8jts8iD9SrlzAWdvkD0p8+N8aEeW3Ti/zc4eA1AAAAAABKzfalbms86NWNE/jy/dwdnO9xUEQpmGp00KsWiHs5A1+bUnW16LUBlpNrnz3vswAAAAAAAABAYqZalTZOeKeo6WIsy3a7UmdnFBtrDcJjw9MgNmaDkbGJSNm2dLCfzgous86ud4oQaw+7MbKNYFBsGCAbhcXMMDTmj40FI2VrdcJjAAAAAAAAJUUsDEA5/a//U/qMX8v4RiJ2lzvDM2UKTvlnTzlmMveH9bO4nxzLDL4BkfcbEknu+yIPhoiMKmURxYn9fTgZ3LbDwcWEM5bx+V/AttT6e+nBt4Zft3pauuX7vJ9Tfy6WNBa2fi7hjBk+du/92pivTcTCpsoioggAAAAAwLKzVurvxw96Rca/drTQ+x6Ok1rTF++KGfQKm75az38/P4CUuZ7D7G8FAAAAAAAAgDIwtZq0eco7RU0XY1n28MAXGRsGx7ZHP7e2pc4wPOafJhApa21L3cN0VnBZWevdj63t6MniLKtSkW1sjQfFjgJkvvBYMEzW2BqPlDU2pdV1wmMAAAAAAAApIhYGoJw++pvSHT8qNa7J7jZcwSZj5HxbI6toyLzxqKJiJsbk2Jop6wFfScaV0brEuo8iokqZbEcx1zXPbfhT70w4Y5GPWwbzJnXfG7yDOcPc+mppNfrbqhKPOXIbKTAWVk8aC8vI9oPS5fvjTZvX865sr9+zjIdYGAAAAAAAI/3uKNDlD3p1tycDX6HxL9/5Ph/0L4XK6vSgV80R+PJPX9uQKtWi1wZAWbi+4IP9rQAAAAAAAABw7JiVVenEFd4paroYy7IH++Gxsfaud1l7R7Y1eVlogKzXTWcFl1W/L+1e8k4RYn0qu1qT9YfGxgJko7CYCblsNK33s1ldS2X1AAAAAAAAFhmxMADlZHvSw78m3f5DBQ3A9VZEVsGTeT8cn/aH6+dcz86j6QxjjGtMMb9hJKtYTaLlZrUdxViu6wANKZuDNGLfPznGhD7675PN9+G3Sjd/d7pjkZTrus9r+0PSw78efl39GunZr8zutqO2z6jtOmvrCWNhWR0UdeF9swwimzEUdjtxzTCenQelrWdnNxQAAAAAALJmrdRrjwe74ga9gtP32kWvDSRJZnrgy3n9MO41+LnKh+kBZCHv91kBAAAAAAAAAMeBWV2TVtekk2fc08RYjrVWOtgbj421tgdxsd2joJg9CowFQmNjAbJtL5yF5Hpdaeeid4oQ510Eu7I6Co4dBcg2vJjYIDZmmltSPTw2dhQpa27J1FbSWT8AAAAAAICcEQsDUF6X78/4BiLiU8bxFkKpglP++Yt688FxP/3Pb5Vu/JaUbytuLMwVDSpR6O1wN/1hSJo7FpZ6dG6WZS7AASK7D0kHF6XVUykveJ51z/l+u+d17teb239YqtV9F6R8MNDBBfd1RcbC6gljYVk9dq7fX2EuvC+D1+oQhf2Octh/Kv607/4y6Ss/JdWvym48AAAAAACE6R0Mwl0xA1/+67uBn8v2t/myqjbCg1614Pkp8a9qY7Z9QACQN9c+e34fAQAAAAAAAAByYIyR1ure6dSV7uliLMtaK+13vJBYa1vqjGJjo6DYjqz/sk4wUjaaLrNjkpbF4YF0+Snv5BD76+5X18YiY15QbGMsQGaa/ssCkbLhfPVNmRqH6AIAAAAAgPywJwJAeRUawMr7G69LFguL+wZE/8B93eGOdxBT1oIHRTlDbxltT0nerPnkH0m3fn8xY4mKKtleemM5WmbM+yfP53utKXVbyeb95J9IN/yTdMcz1xt+Ob5ZeOHvpEd+N/y6jWdKN31btre/94T7OlPgf2nXr042X2bb/AwHin74F6VP/4WMxuFXsje1P/622aZ/9I+lm749m7EAAAAAAI6Xfk/q7k4PenVjxL+i9r0iP6YmrZ6YLegVnHZlS6ptSBXelgWwJJzvRZVsXzEAAAAAAAAAAFMYY6T1hne6wv0l07HCY/2+tNeW2oHYmD8o1tqRbe8MptkNiZTtjs5jPgf70sF56dJ55ySxw2Nr9bHI2NjPg9iYaWx6gbF6IDbmj5TVN2Sq1XTWDwAAAAAAHFt8Kh1AiWX9gfGo5S9YLExpR2dSWM/230snbp1/OUPOoFIwFpb3AQgJ7vt6wrjQVHHGEhULyyJeFDcWluMBIs98hfTBn0o276V70h2LpIU5OObu17ivu+NfS5WVwIVpv45GzLeylXCZKai73/SNltHj7gomurQflRrXZDOWIyXbxh/6pdmm/5t/RiwMAAAAAI4za6VexxHtmhL0OtwZhL+G1ycM1CNlxot1uYJetZDAlysAVlmbfX8LACy9nL/YBwAAAAAAAACABWAqlUFAaiN6uhjLsv2+LyA2CI91JgNk9ujn3ckA2fCyvXY6K7jM9jve6cLjzklih8fqzfGAWGNzdGp6cbGj8FhjMxAp81223vS2OQAAAAAAcOwQCwOwvFxxImPcwamsgkZxlrt2Vtp6jnT+vSHzl/DD9amPKe5973rsMrqPkmwT60njQlPEWcfIA9sy2L5j3z85xoTWzrivu+YfSo/+SX5jmVdekbXH3y099o7w607eKV3/ddmPwbV9V9eLPWAz6fM5s9ftGe+Li+/PPhY263ZqMv4TJc84IQAAAAAgO/3DZEGvsOltr+i1gSRV64PIV0jgKyroFZy+1oz4UgkAQOac77OW8P1MAAAAAAAAAAAWkKlUvCBUM/pLt2OFx7pdLzzW3hmdWtuj8NggMmaHYTJ/gKy1PR4p2++ks4LLrNPyTk+5J4l9lM5YZMwfFxudN67Y2PCyxqZUb8rwJVsAAAAAAJQGsTAABSrxjkLnTsysPsQ+ZVftqedLL/4t6a5XOWYv44fr046xuJYXeKxyPwAhwXpmFi6Ls9yI510mAZ2Y65rrNuxYzyteJH32f5Hetp7jWKRcQ2lJWCvd/YPu6+98U/jzLu03g1zbyMqJdG9nVutXJZuvLLGwXMy4jdca2QzjSMmfcwAAAABwnNm+1N2NF/hyXT/8ubdX9NpAkkw1EO8KCXqFBb4mrtuUKitFrw0AIA3OYCP7ZgEAAAAAAAAAKBtTq0mbJ71T1HQxlmW7h76g2HhszAuQDcJj7e3ANIFIWWdHOthPZwWX2fB+fdI9Sax3byqVUXhsIkA2ioyZRiA21twaBMc2RpGytTrhMQAAAAAA5kQsDMASi4pPOXY8ZhJTkjsac/qF0hf8d2l1EMPJLYSVwnqmfV+5lhfcSew8AKHIQFdQkeGyqJ3qGWzfsbeDPA8QiXjuV9ekjRul3YdzHM48657D/fbJP5ae/Ovw685+pnTNy2dbXuL1dTxvnM/5nNTqXrDs8PKMM2b0OjDzG2c5vNE262Oe1e/a0Q1kvHwAAAAAOGas9cJcrqBXNyTw5Zx2p+i1wVBtI0HQK+R8dT39aDwAYMG53mct45cfAQAAAAAAAACAtJjairR12jtFTRdjWfbwYBQQa+960bGWLzzW3pEdC5MFA2SDaXcvS71uOiu4rPp9737cjT5mItan9KtV2XowKBaIjDW2ZIbXNbekum86f6RsdY3wGAAAAABgKRELA4AJEbGwzAIjrhBWZRQKG54PlfKH61MJteQVMAs+VnkF1Y4WnGCWAsNlUTvCMwn0lDAWNi08l3moKKjEsTDbl+55rfv6O38sYptK+U0X5/ZdcCxMkurnZo+FZfaaVIL7Y0LJDgDL/TkOAAAAAAXpdwPRrkDAa5b4l+WDs6VQWZsMetVC4l5T418bxQfYAQDHl/N3DPtmAQAAAAAAAABAPGZlVTpxhXdyTRNjOdZa6WB/PCA2iI2NYmQ7skeRsfHLJwJkvV56K7mMej1p95J3ihDrXaXaiuwwIDYRIBv9bAYBsqPYmD9QNoiUmZXVVFYPAAAAAIA8EAsDUF6Zxzwilu+K32Q2prKGsOaQW4wlcB85H7sCA11pzJPacqPeDikwFpZrvGfa822RYmEZ+9jvSJfuDb/u6i+VrvzsBAtNuL6u7bsMB7aun5O2PzTbPFm9Dsz6zTh5fJNO6eJcZRsPAAAAAPhYK3Vb0UGvbkjgK2z6XqfotYHk7buYJehVcwW+NqUqH04FACyCnN+rAwAAAAAAAAAAcDDGSGvr3unUWfd0MZblhcf2RiGx1jBA5guKtbZlO4MgmT8ydhQp2/XOt7ZL+Dn7BdM9lLYveKcIce5lu7I6FhhTc0uqb4wFyIwvLiZnpGxTpraSzvoBAAAAAOBALAzA8nLtVDVG7t28Ge2IjRyL//wCxcJSv69i3keuoJqyuo8SrKfN6ptEShgLi71t5rgNT3u+5f18mucNnizfHOodSPf+sPv6O980ZQFpR6hKHgubWVbbWQ7xr5nNup1m/KYnb6oCAAAAyEJvPzrw5Qp6TZzfEZHjkqg1w4NeYYEv5/WbUrWRT6wbAICyWKj3MwEAAAAAAAAAAOLxwmN173T6Kvd0MZZlrZX22qPwWHsUG1NrR+p4ATI7vMwfGRv+PAyQdXb5jPy8Dg+ky096J4e497BdXR8FxBq+sJjvMjO8rLE5GSnzzWeq1XTWDwAAAABwrBALA4AwuX+I3RUvqkSfP5L2uFLYSZz2fRV3x7Xzscs59BYpo+0ozliiDkzM5D6Kucxc35hw3ZaZcn1WSvqmzMO/Ku0+HH7ddV8nnX5+wgUnXF/na0oJYmH1BLGwzLb5WQ8+zuNg5bJt42UbDwAAAIDC9Hu+UJcv2NWdFvgKmbZ/UPTaQJIqK9LKieigVy14PmTa2qZU4QOXAAAk49pvz75ZAAAAAAAAAAAAaRAeqze9k652TxdjWbbfl/Za47GxYICsvSvb2h6PjI1Ns+Nd12mlto5L62DPO118wjlJ7PDYemMQFBvGxgaRsfooNmaGlzc23ZGy+oZMpQTH3gAAAAAAUkEsDMASiwoGuXanZhWcckVwguPIK2KWxnqmfV9NCzwNz+YVVJtjuZlF5+IsN+qtggy279hBpDIdIFKmsUyT0Vi7bem+N4ZfZ6rSHY7rxqZLOULlet44n/M5Wk8QC8vqNWnm+z2H7X3mMFrWY1qk5zgAAACACdZKvfZktCtO0Cs4bZcPOJaDGQ961cICXxHxL//11bWiVwYAALj2U2f2/hgAAAAAAAAAAMDyMpXKKBZ15hr3dDGWZXs9qbPrC4gNImL+n4/CY4NpOoN/gwGyvXZ6K7ms9tre6cLjzkliH7VV3xgFxBwBMjOMjYUFyIaXrTcJjwEAAABAwYiFAcCEAmJh84aw0v5w/cxhl4yWMb7A8IsnDjjIK6g2XG6C9cxsLCWMhcVdZq4HiEx5vqW+7U4zz+1lNNYP/4LUeSz8uhu/Tdp6VvJlJ75/SxwLqyeIhWW2zaccaUtFyQ4Ay/05DgAAAECS1DtwB726IYGviWkH13e3CU2URbURL+gVFv/yT19rph8dBwAABcr7i30AAAAAAAAAAACQBlOtShsnvFPUdDGWZbvdQXjMFxtrebExLzrmRcZsa3sUHHNFyg720lnBZdbZ9U5POY4VUswjlIzxwmNjQbFhgGwUFjsKjzVcAbJNab0hw2eGAAAAAGBmxMIALLGIXVjOb7zOKDDiWm5wHM4oThk/XJ/XmAoKqo0WnGCWAscStRM1i+079rrmGO+Z+nzLOSRUtnDRwSXpAz8efl1lTXruD8dcUMo77F3bUhliYeuLHAvL4Y2VWbfxzJ8TJXvOAQAAAGVm+1J3dzLYFSfoFZy+v1/02kCSTG0y6FULCXxNDYBtShXeYgIAACGc79WxbxYAAAAAAAAAAGBZmFpN2jzpnaKmi7Es2z0cj421tgfBseHPXlTMTkwTEik7PEhnBZeVtaP7NWqyOMuqVGQDkbHxoNggPOaPkzWH0/siZc0taXWd8BgAAACApcGRHABKLOMPjEcGg1w7h7Iak2u5wXHkHcKaQ9of+Hcur+BYWKLlFjmWqB2fWWzfcZeZ5wEi07alqLFkseN4jnXP4sCaB35SOrgYft2zXyk1njbnDSQcs3P7LkEsrF6iWFgp39wo2wFgZRsPAAAAkDJrpd6eL+YVM/AVdl13t+i1wdBYtGtK0MsV+FrZ8kLgpfzbEQAAHB+u/2uU8P1MAAAAAAAAlBfvaQEAgAFTW5G2TnunqOliLMse7A9iV4GoWGvn6HI7/Lm1I3UiAmS9bjoruKz6fWn3sneKEOsIkGpVtrE1iow5AmQmeNkwNtbclOqDaVbXUlk9AAAAAMgKsTAACOMKTuUdCwuOI7cQVhrrmfZ9FXd5eR+AkGA9Cw2XlTQWlmvwbkosLO9vtp/r9lIea+dT0gd/Nvy62qZ066tnWFjKH9JwbSPO1+scrV+dYKastvlZ7488Pkwz63ZaUCwUAAAAKFr/0B3tigp6hZ23vaLXBpJUXR/Eu2IEvvzXT8S/muX4+xcAACAO5/uZ7JsFAAAAAADADNifBAAAMmBW16TVNenkGfc0MZZjrZUO9gfRsUFYzB8TGwTFbHt3PEzW2pY6u+MBss6O1OPzXnPp9aSdi94pQpz/Ydraynh0bCxAtumFxRqbMsHYWGNzIlJmVlbTWT8AAAAA8CEWBmCJRQWDHLv12p/IaCiuaExgHIsUC8sr/hT81qjc7qM5llvkWKK+ZSuLccV+oz7HN/RdYzq6byLGcvm+1IeT67pPc/+bpF47/Lpbvk9ad78ZEl/C9X38neGXX74/+VDSsnbGe+2Z5TmU1etAGb9Jr3Qf2CnbeAAAALDQbF/qtsaDXt2QuFdU/Gs4fW+v6LWBJJlqdNCrFhL3ck1bWSl6bQAAAPLn2k+d6xfHAAAAAAAAAAAAANkxxkhr697p1JXu6WIsy1or7XdCY2NHQbH2jqz/smCkrDOarnzHcCyY7qF0+SnvFCFWeGx1bSIgdnRqenEx4wuQhUbKmltSfVOmRg4AAAAAgIe/DgAUqIRBE0mRsbDMRIXL/GcdISyV8cP1Ke5YjNxJGfc+ymhHZ/8wyUypD8MTZx0jtu0L75Ou+ry0BjMQ837f/pD06H+Trv6SHGJH055vEWN+9E/THkz07U1zEP2NFzPZ/aj00K+EX7d2Vrr5u2dbXtqP4yf+IN3lpalSldaulPY+NcNMWb35MuP9fhD95kU6Zn3NK+EbU9aWM8QGAACAZKyV+vvxg17dkMDX0fS7KuX/YZdRbSNZ0Gtla3z6ap3//wMAAMxlkd7PBAAAAAAAAAAAAIpljJHWG97pinPu6WIsy1ordVqD4Ni2FxObiIztyvrDZBORMt/PmM/BvnRwXrp03jlJ3E8f2rX6WGRM/sjY4GRcsbFGYLpqNZ31AwAAAFAIYmEAyitRhGkWEbtSLt/rvm7nIWnzmekOZfvD4ZdPHJjo+HB9Kb+JO68DZWPeR7sPZ3Pzuw/NPs/f/7/pj0OSDi5MnybqYNcPvEW65XvTG48027b55y+XnvXPpRe+Nd0xTJgSC1vWb9C49/Xu193bXuMdMJ2G43r/1s/NFgvL6nV71gPa/+obpau/WFq7IpvxSCV8zBOM5+++R3rBz6Q/FAAAAMym3x3EvGIEvqKu7+7ksN8JsVTWpge9XIEv//W1DS/kDAAAgOK5vtindPuKAQAAAAAAAAAAgOPFGDOIRW1Iuto9XYxl2X5f6uyGxsbU2j66zLa3JyNjLd9lnR0vYIb57He808UnnJPEDo/Vm1LdFxsbi4wNgmKNQGzsKFLmu6y+IVNxfZkUAAAAgKwQCwNQXpWMX6JcH0g3RupEBF/2zqcfC3vs7Y4rArvenB+uTzk6k8aH9VMdU8R4gmEc1330sf8oveQ/pDckSdqPEedysXYsv57tAAAgAElEQVT2qM8097xuvvn3n0xnHGNm3JYe/CXppu+QTj8/g7EMRD33vQmyu+0w8z7f9p+aP/R06X7po78Vfl3j6dKzXpFgoSlv32W37v72llCZRR4T3O9/9qXSl/yv9IdypGQHgCV5zn3oZ4mFAQAAJGWt1G1FB726wfOOaXvtotcGkrfvZZagV80R+FrZlKprRa8NAAAAUufaT13GLz8CAAAAAABAaaX9OWsAAADMxFQqXhSquSWdvdY9XYxl2V7PC4/5o2MtX3is44XFrD80NhYg802730lvJZdVp+WdLriPoY0fHhvEw4bhscZkgMy4YmNH82xJ9aYXuwMAAAAwFbEwAOV1uJvt8vccOzOq69HzZbHT4dxLpU/8/uTlF94XuG1XaT3tD9dP2Z3zzO/0/q1tegfwJlnGTMOZYVnG8att5WQ6Y/G7fF/yeS/dK526I72xSNLFu6KvP5VhgMslSZTn8XdlGwtzbpuD53Ym0bQocz5Xnni39PSvmm8Z9/yQexzPff3018WZlCwclZb6jLGwrA6KqtZnn+fC/05/HGNmfMzTCFZGOftZ0iNvy/Y2AAAAjoPevhfp6obEvaKCXsH4V3cnw1guZlJthAe9aiGBr4kAmO/naoMP5gMAAMAtry8/AgAAAAAAAAAAALAQTLUqbZzwTlHTxViW7XYHcTFfQOwoLrZ9FBmzwcjY2DSDYNnBfjoruMw6u94p4nC8WEcJVSqj8Njw36Ow2OhnMxYk2xyFx/yRsrU64TEAAAAca8TCAJTX4Xa2y+86YmT1a6WOu4oeb7fTjFw7HyYuz+vD9VN2wdz47d6/znhZ2qLGE7iPXPelPUxtNEe6c3wTgTOylqHnvSX/20wShtr9SPrDGDMlFhbl7GelOhLPnGGkecNKT/6N9Ik/CL9u62bphm+ab/lpOXGrdPkDk5evbOU/ljDrM8bClumgqKzjX7PaenbRIwAAAMhOv+ft75gW9IoTAOsfFL02kKTKyuxBr7BpaxtShbcDAAAAkAPn+4cl21cMAAAAAAAAAAAAYOGYWk3aPOWdoqaLsSx7eOCLiA3jYsOfB2Gxzq5sa3t0mStA1s3g2MVl0u9792Mr+pjiWO86V6uy9c3x4NhRgGwQGWtseuGxsNiYP1K2ukZ4DAAAAKXD0UEAyqubcSzMFS8xFXdwypsgg7E4ojHXf2PgpkvyTdxn/oH3r6m6p0k1DjNDLOymfyY9+qcZj2co4n6/8vO8g3I/+V8zuN0Ezr1MuvJz87/dRQwiXfEi6am/Cb9u7Uz6tzf3tjnn/He/xn3dHW+c42By12tlwvGuXxUeC3v2K5MtL231q2ebfhGfG4k5HvOTd0qX7o4/fVrKFi8DAACwVup1pge+XNf7z3dbRa8NJEnGF+4KxL1WNn0xr2nxry2pulb0ygAAAAAzcn2xzzLtFwcAAAAAAMDc+KwfAAAAMmZWVqUTV3inqOliLMse7A/iYoHYmC8oZo8iY7tedMz/89F121Kvl84KLqteT9q95J0ixAuP1WQngmKDqFjdFx5rDq/fOrrsKDzW8OY3q3weFAAAAOkgFgagvA4zjoU5/5yfsvsmixK468PxwRiX85u4C/pwvXM8eY4h8HhUVh0TZvCGcdRBDV/w/0l/9U/Tv82kPvcPCzrAuIRv1DtDgUVV/guMhX3qf0iPvyv8utMvkJ7+1cmXnTbn4xYRLczTuZeFX26qkg3bSZ/V63YZn3OOdT3zYkcsLGslvI8AAMBi6h8mC3qFTRv6f0bkrlp3B76igl5j5zelWrMc+0wAAACAIjj/L8y+WQAAAAAAAAAAAADHk1ldk1bPSqfOuqeJsRxrrXSwNwqNDcNjY0GxHdmjGNnueJTsaJ7BZX2+1Gkuva60fcE7RYjzbrhdWfUFx0ICZI1NGf/lgdjYUaSssSlTW0ln/QAAALCQiIUBKK/DnYxvICIYFPlNRHnGwoIfpnd8uD7tb+KO+01MeR34OtPj4Xp8coyF1Takykq5Dgyurhd0w2U88CNhKDD2NLOa8z5K+s1p1kp3vcZ9/Z1vni+g5po38Te9zfO45eDEzdIzXyE99MujyxpPl274p9L9b56cPqtvvCvlN+nNGujLeB1cr90n75Au3ZPtbQMAgOLZvtTdjRH4ihH/6u0VvTaQvEDvyonxoFdtWuAr7LpN7295AAAAAHNyvT/Ah9ABAAAAAAAAAAAAIIoxRlqre6fTV7mni7Esa6201x4ExLalziAsNoyMDQJkdixMFoyU+U6lPGZpgRweSJef8k4Oce9hu7o+FhlTY2v0c3NTqg/DYxuDwJj/Z9989U2ZGqkJAACARcP/4ACU1+G2twNhnlhNFOfOiSICTzFjYa74VOofro8bC6vOv4xYZoiFpR4oijLlcStTLKwopdwJWLLo1Nz3UcL5P/H70oX/HX7dlZ8nnXtp4hFlo2SPW5gXvlU690XS+fdIzeul679e+uSfhE+7TAdFler3reSOl0X9TgMAAIWy1gtzBYNdw6BXN2bg63DHuwzlMAx0xQl6RcW/quvZ7TsCAAAAMLvc3s8EAAAAAAAAAAAAALgYY6R60ztdcc49XYxl2X5/EB7zxcaGkbHhqbXjhcc6vtjYWKRscFlnN72VXFYHe97p0nnnJLHDY2v1UUSssTn4eWMsMGbGLnNEyuobMlWOzQIAAMgDsTAAJWalbkta2chu+WGMiT7INIsDUF0fji8sFhZXXqGXWWJIrscng2iV836vBP5dZiU88MMVLlrUg8uTxMb6PenuH3Jf/7wfS+H+SPm5uAiPmzHSdV/tnfyXhcrqubFAgb5c445jNxB+8bRYWJYBUwAAjqt+1x34igx6hUxvu0WvDSQvzBUMetW2wgNfE/Ev3/W1DQLbAAAAwHHl/L9+GfdfAwAAAAAAoLT4vB4AAABQGqZSGcSiNqQz17ini7Es2++PAmLtYVhsMkBmh7Gx9u4gUuYLkA0v22unt5LLar/jnS487pwkdnis3hyLjIUFyMwwNua/3h8ga25J601vmwMAAEAoYmEAChQjlHK4nV0szBkjmbZLIoM/Mm0v3m05P1xfUJAprwN7o8IxE28ElyAWNrxfOPA5h+hPEkmf+1mZ9z5KMP/HfkvafiD8umu/XDrzGfMNKRNle9ziKlvksQgle+ycr91T/jSy/elBMQAAjgM7CHdHBb2iAmD+63qdotcGkve36SxBL2fga1Oqrha9NgAAAABKz/VFEcu0XxwAAAAAAAAAAAAAEMZUKl4QqrkVPV2MZdlu1wuPBWNjw7DYIDJm28Eg2fBf388He+ms4DLrtLzTU+5JYh0JaYxsfWMsMhYWIDsKj9UDsTF/pGy9IUOMGgAAHDPEwgAUp38wfZpuK8MBRMVLIv74y+IPw2nRqSN5RWdixociY1h5RaICj4fr8ckkWkUsbLoSxsIShwKlbNYn51hYb1+650ccVxrpzjfNOZ7hotJ+LpYsOBWX63Ugs4Oiyvici/s7Li+O+6gyLQTWl0QsDABQYr39ZEGvifM7KuX/KZZRrTl70Cvs+mqdb1wGAAAAkB/nvl/+1gQAAAAAAAAAAAAApMfUatLmSe8UNV2MZdnu4SAwNoiNtbalji88NoiM2fZ2YJpApKyzIx3sp7OCy8ra0WMRNVmcZVUqssN42FFMbBggG0XGjD80NgyPBSNla3XCYwAAoBSIhQEoTpxYWKYfGncse+ofa1n8MRczpJJXdCZ2zCevP2yjxhMcg2tMGWxL0wI4xMKU6H7PJOw2dgPhF8fZUZNF4Gne9Z11/od+RWo/En7dM75ROnn7fOPJims9y76Dzfk6kFEsLPPnTxKuMRV0wJjztXtKCCyzwBsAYKn1e5OhrsNtqRuIe0XFv7qD8/3DotcGklRZkVZORAe9aiGBr4kY2EaMmCkAAAAAlFHeX6IBAAAAAAAAAAAAAMB8TG1F2jrtnaKmi7Ese7A/il21x2Nj3r/bskc/70oTATLfz71uOiu4rPp9afeyd4oQ62i2alW2EQyK+SNkg/BY03dZfRAbC0bKVtcIjwEAgMSIhQEoTi9GLCzLD407gyoFxMKc6xkzFpZ6dGaBYmHBP4idfyDnGAsbPm7TwjPLYKHCRbF21aU5kJSWOcP8h7vSfT8afp2pSXe8Yc6xjC3QcXnS9Z3ncSsSB0W5Q28FBRWd45nyp9EyPWYAgGjWSr32eLArbtArOH2vXfTaQJJkxoNetZDAV1T86ygAtilV14peGQAAAAAoluu9OvaxAgAAAAAAAAAAAACWgFldk1bXpJNn3NPEWI61VjoKj217AbFheKwzjI3tyLaCUTL/+Z3R/L1eeiu5jHo9aeeid4oQ6+jJ2orsUXQsGCAbhMWaWzLDwFhzdFkwUmZWVlNZPQAAsDiIhQEoTj9GLCyTMM+0ZRcQnnF9OH4ipFKy6ExU6CXNSNRMy3IdgJBFLMyxc+QoEhaxLZUyopWBJNtm1kV0Zygoxu1m8lzLMRb2oZ+V9s+HX/fM75Q2bpxzLAUoe0Hf+TqZ1WtAGV9bZn3OZb0OCWNhqYc5AQC56x24g17dkMCXKwDW3eEA57KoNuIFvVzxr+H0tWb5/18JAAAAAAsj7/3iAAAAAAAAOJaW5bPWAAAAAOBgjJHW1r3TqbPu6WIsy1or7Xd8QbFdLyA2DIoNw2NhkTF/jGw4P3+zzad7KG1f8E4R4tzLdnVNqvtiY80tqT4Iiw0uM41AbCw0UrYpU1tJZ/0AAECmiIUBKE5/P8ZEGf7B6Ax0GUX+eZzJAcQxY2Gu6EzqB6rHvd/zOpg6ajzBMeQYn5kWeYuKqS2NMu70mSMUmEUUYt4dY3Hn339KeuAnw6+r1qXbf2i+cUxI+bm4qDsQc3vdLjPXY1fQa6Tztbsafvm0+QAA2er3pO5ueODLGfRyxL9i/Q2KzJlaIOblCHxNu762KVXYtQkAAAAApeN6L5V9rAAAAAAAAAAAAAAAFMIYI603vNPpq9zTxViWtVbaaw8CY4PwWMsXHut4/9r2KEI2GSnzzYP5HOx7p8tPOieJe2SmXV0fRcbqg/DYUWRsQ2psybhiY75p1NiUqU45Vg8AACTGEXUAitOLcaB2pnGYpMGgDAJZccMlzvhUyh+uj/th/chwWk5hn+AYMom5uUyLvBELK2csbB5lPJAl5n38gR/3IhlhnvNdUv3q9IaUiTkib0XKPRZWwuec63e5877Jeh0cy58WG+FANgCIz1qp1xlFurrT4l6B6/3Td3eLXhtIkoxU23AHvWoxA18rW1JlLee/2wAAAAAA+crp/UwAAAAAAAAcb3y2AAAAAABKyRgj1ZveSe5jEmOFx/p9aa81Hhsbi4v5wmPByFgwQNZppbaOS+tgzztdfMI5Sezw2HpjEA4bxsb8kTHvMtMYhMaGsbGjSJnvsvqGTIVjtQEA8CMWBqA4/YM4E2U4gIjwTN5vLjpjYZXo89PmT3s8EyLup1RjL1HLCo5hypjSfGyd99PgcQrG3pZRku3g0r3pj2PMHNGpTGJB8z5XYszf/qT04V8Iv27lpHTrD8w5hhCu51ri14YFjYU5x5fR77fMQ1tJxPwdlxtXvGzaazYHsgFYAv3DQLQrZtArbHrbK3ptIEnVdV/Ma4agVzD+VWsW+LsbAAAAALBQCvuiCAAAAAAAAAAAAAAAsEhMpTKKRUVNF2NZtteTOru+6FgwQOaFxWxrezwyFhYg2++ks4LLbK/tnS64J4kdHqsPg2MbRwGxsQBZfVNmGBsLBsiOYmVbUr3pxe4AAFhwxMIAFKe/P32aLD807lr21P/oZzCmadEp5/lp8ycUd3mR91WK91PkdlDgH2bTIm9RB9Pbw/THU0oJts3z701/GH6Jn/uSPvXf0x2LNP/rXJz573uj1NsLv+7WH5BWT803hjzM87gVKa/IY5k5t1HXY5fxAWPO1+4psbBleswALBbbl7qt8aBX1xH4cgXAhtO7/r+AfJlqdNBr7PyU6yorRa8NAAAAAGDp5PwlGgAAAAAAAAAAAAAAYOmZalXaOOGdoqaLsSzb7UqdnfHYWDAoNgyPdQbTjAXIfPMdcJzG3Dq73ilCrCMSjZFtBINig6hYffMoNmaGkbGGL0AWjJStNwiPAQAKQywMQHF6MWJhmQZDIuIlJ58XMVsWY5oSnXKdHyosYJJTLGymZUWMyfYkk+avvjliYZ/4I+mqz09xLCmx/ehxz7y8Mn5L/JRw0bSgQr8rVdLcjua9j6bMv/OQ9JFfDb9u/SrpOf9qztt3STsENWtwqiRcAap+VsHABXrOpflaM5OE49l5SFq7Iv3hAFhO1nrx5LhBr7Hzwet2Vc7X/yVU2xhFumpbMYNeIdNX18sfRAUAAAAAwMX5fib7LwAAAAAAAAAAAAAAQPmZWk3aPOWdoqaLsSzbPRwFxoYBsfYgLOYLkNlWIDLWDkTKWttSN6tjEpeEtYPHYTt6sjjLqlRkG1uj4NhYgGwQG2tuyQQv888zDI+trhMeAwDMhFgYgOL0D2JMVFAs7OlfJb3vX8443zxDmTMWluc3cZ/6tNHPUWGVVD/wH7Gs4B9AUdvV438mXf3SdIYkTX/czn6m9MGfds2c3jjStPtRafOmFBdYwvV0Pm6DqNP1Xy+df697/t2Hpa1npzmgbOe/54cl2w2/7vbXSbXmnLeflwWNhdU2wi/vttKP883j4JK0ejL95Ub+LijosXMGNqeM54M/LX3W21IfDoAF0+/6wl2zBL1CzmcWjsRMKmuTQa9azMCX/3y1KVUckVAAAAAAAJaKa19rUV9+BAAAAAAAAAAAAAAAUAxTW5G2TnunqOliLMse7E/GxlqDn9vbg+jYji86FhEg6zmOOUU8/b60e8k7RYh19HC1JhsMih0FyPzhsY3BNKPLjsJjdW9+s7qWyuoBAMqNWBiA4vT3p0/jDHqkwBUwMUaqrkfNmMFYXOsZjMi4vok7xw/XP+sVvjNRf37mFYkKjKHXcU966Z58YmHDx+maL3PPW1lNbxxDpirZ3uTls8SgYkX8ZpDnthnblFDQuSnbiCu8ldS8Yb2o+S/eLX38d8Kva94g3fQd8912pJRDUFGv2WW2csJxhfVCMquu65NKuD31YvxOTiQq9lhUUCVheO7yfamPBEBOrPUijcFglz/o1Y0R+DrckXrtotcGkhfbnCXoVQsJfNU2vfNV3ggBAAAAACBVri/JKOV7RgAAAAAAAAAAAAAAAIvBrK5Jq2vSyTPuaWIsx1orHeyNwmHD8FggKGbbO+Oxsda21BlGynZG4bI+nwmZS68r7Vz0ThHiHDlqayujiFgwQDYIi5nmllQPxMaGYbKjnzdlVjI4Dh4AkApiYciEMeYGSc+TdI2kDUmPSfq4pL+y1h4WOTYsmiyDUxGxkKj4zLxhn1COP4SCH6Yvw4frN27wnckpFhZ5nwfHkGPAzHW/Dx+nasQfQlk8Zmc/U3riLyYvnykIlfb2XcI/8qc9blvPlm57rXT/m2abP/mAspv/7te6r7vjDdHbaGaSrm/CwFPRnLEwSYeX04+FJf4dldFzNer54vqdljVneK4ifeG7pHd+gWO+Er6eAcddb98LdHUdgS9X0Oso/jU4393hOVwWtWZ40Css5hUV/6o2yh8MBQAAAABgWTn3/eb1RUMAAAAAAAAAAAAAAABwMcZIa3XvdOpK93QxlmWtlfY747Gx4c+tUXzMDi9v7UidQKSs44uVZXIM/xLpHkqXn/JODnHvYbu6NoiMDcNi/p+9AJkZxsb8gTJ/pKy5JdU3ZWpkbQAgTbyqIlXGmK+R9D2SXuyY5IIx5m2Sftha+2R+I8PCyvQ/9VHhmRyDU9L0eJHr/JEc4wf+xyQq9JLqYxexrGAkIM/Qm+2FX26qo5+v/UfSJ/9ryLxZPGaOdV/ZGj9/4lbp8gfCp017XEmXZ/sZhoQiQkFDN39PjrGweTnW5/xfSo/+Sfh1J26Trv+G7IYkZRDwWNBYWFQM7PByfuOYJqvtOjIWVnVfZ22GERjXmIzUuM49W+me+0BJ9XtSd3d60MsVAPNP2z8oem0gSZWVQbhrhqBXLSTwVduQKuyGAgAAAADg+HPs22UfKwAAAAAAAAAAAAAAwLFijJHWG97pinPu6WIsy/b70l5bagdiY8OwWNuLjdn2zmCa3ZBImS9Ahvkc7EsH56VL552TxA6PrdXHImMaRsZ8cbGj8Fg9EBvzR8rqGzLViONSAWBJcJQmUmGM2ZD0byV9/ZRJT0v655K+yhjzzdbad2Q+OCy4DGNhrnCUKXEsTI54UmEfrs/pfpop8pXnYxfjccs18BY3phQVeVuCWJhzTHEeNyn9x27O7TLs+WGtdNcPuue5801SpaA/iJNG+yJfs0tsJSIWdpBFLCzp/ZvV75GoWFhWQcAporalyIAZB7LhGLNW6nWmB75c1/nPd1tFrw0kSWY86hUMeoUFvlzXV9eKXhkAAAAAALBIXPt++eZXAAAAAAAAAAAAAAAAOJhKZRCT2oieLsaybL/vBcOGEbHWjtSZDJDZsTBZIEA2nKfDsVJz2+94pwuPOyeJHR6rNwdBsWFUzB8d8/41ja1RjGwsUjaIjjW3pPWmt80BwAIiFoa5GWOqkt4m6eWBq85Ler+ky5JukvR8jf7/dZWkPzTGfJG19r15jRULKNMwR0RYKSo+k8kH2WPEi6SID9fnGTDxrX9kpCfN+ylqWcExRE2b8mMXJzqVZ+Atbkwp1xDWHLGwrMSJ80XdR6kH1ebdLkPmf+zt0vn3hE9+xYuka798ztssQtwYXslU16TKmtTfn7zuMItYWFIZPeeini9RYS5ZZffYuralSs6vj0AKegeBcFfMoNfEtNsE8cqiWo8X9KpNCXzVGsVFGQEAAAAAwHLL9Yt0AAAAAAAAcGz9g5dKH3xf0aMAAAAAAAALyFQqoyjU2Wvd08VYlu12R+Gx9nhszPt3EB4bRsaOphlM54+U7XfSW8ll1Wl5pwufck4SOzwWiIyNomOjCJlxxcaOLtuU6k2ZyOYCAKSLWBjS8BaNh8IOJX2PpP/HWnswvNAYc6ukfyfpxYOL1iT9gTHmudbax/IaLBZNlt8wHRVWyvk/ZHHiRWHnj+T44fqxsFHeUbUwgTFE3W7aY5onOpVJkCNmTCnXEFbS5RURC/PfTzneR3O/zgXmt33p7te4J7/zzVNCf2lx3UbS9V3QWJjkRVv2z09enkUsLOnrXFaRoMjlFhSxiXoNyPP1EcvL9qXu7mSwK07QKzh9WIgQ+TO1yaBXLSTwNREAC7muwm4aAAAAAACw6Bz77dnHCgAAAAAAgBmYf/wdsr/5lskrvuZf5D8YAAAAAACwtEytJm2e9E5R08VYlu0eeuGx1vYoINb2h8e8sJgdXt7aCY+UtbelA44rm9vwfn3SPUmsI3YrFdn6xlhkbBQgG0XGzFiMLDD98PK1OuExAFNxFCrmYoy5UdJ3BS7+P6y1fxic1lr7AWPMF0p6p0bBsCsk/YikV2Q6UCyuLINTzmVPi4VlMKZ5Y2G5frg+Ziws1fspYlkT/+GNut20H7s5YmGZxLDixpQWIBaW6TbtWnacx03li4UFX8se+V3p4l3h0577IuncF8x3e0VxvWYvwh+9Kyfyi4Ul3Z4ye85FLNdU3ddZm2EHzrUtVZRvKBALxVqpt+cOenUdga+w6bu7Ra8Nho7CXTGCXlHxr+r6Yvw+AgAAAAAAyIPzPZa8vmgIAAAAAAAAx4G58mnSK94k+8uvHV34jFtkvunVxQ0KAAAAAABgDqa2Im2e8k5R08VYlj08mAyIDWJjw/CYPYqM+cJkYZGy7mE6K7is+v1BAG47crJYn56qVmXrgaDYMEQ2vKyxJROMjQ1/9kfKVtcIjwHHFLEwzOtHJK34zv9GWChsyFrbMcZ8i6R7Ja0OLv52Y8xPWGsfzm6YWFxZxsJc0Q8TfbB/FgEz51iCH6Z3xcJ6aY5mSuzAt/5xp5tX5H0+QywstxBWxfFzhmOR4seU8gxhlTEWFifOF3UfpR16m/s1xTd//1C653XuSe9885y3NQvX60Par6EL8Ifqylb45YclCgZl9ZyLWm7k8yxDkb//c3zuIx/9w0HMKyTw5Qx6OeJftlv02kDywlzBoFctEPCKjH8Nrq9tFPc6BAAAAAAAcKw59tvzhQwAAAAAAACYkfnG75Ne8PnS+/5MuvoZ0oteJtN0fCYTAAAAAABgiZiVVenEFd7JNU3MZdmD/UFgzBcQG4bGBkEyG7x8LFK2O5q/l3LzYNn0etLuJe8UIV54rCbb3PICYhMBslFYzDQHcTF/bMwXJlNzy9veAJQGsTAkZoypS/qawMU/Pm0+a+2HjTF/IOlrBxfVJH2DpB9Nd4Q4FjL90LgrrFRR9H9/swiYxYgXhZ0fyvPD9WNho6joVJr30wyxsMjbTfmxmyc6lclj5lq/GWJhqcdwki6vqOf+UI5BtXm3S/82//BvSDsPhk/39K+SrnjhfLdVqJjbdxlVHH8EZxIeSro9FRELq0bNmPpQpi97SiyMA9nyY/tStzUe9OoGAl9x41+9TtFrA8l7vkcFvWpxA1+bUpUdiwAAAAAAAKVWhvczAQAAAAAAcGyYm18g3fyCoocBAAAAAABwbJnVNWn1rHTqrHuaGMux1koHe6OoWGsYHNse/dzalu3sjmJjE5GyYYBsR+rzeaO59LrS9gXvFCHO0bx2ZXUQFBvExhqBqFhzS2Z42fDysEhZY1OmtpLO+gFLjFgY5vHFkhq+839trf1gzHl/XaNYmCR9lYiFIVRBsZC8Y2FxolNh56fNnwnf+pu87qdZlpXlNhO8qTixMFcMJ4PHzBVKm3iccozhJF1eltu0c9kxIm+R8yc17zY7GE+3I937hvBJTEW6I+dfs67Xh8QhwRyf22mrOP7L3c8iFpZQVs+5yFhYVLgwQ87XyoryDSTe0mUAACAASURBVAUeQ7398GBXWNArGP8am35HC/2cP05qzdmDXmHTV+tT/t8IAAAAAACA48O1n5V9fgAAAAAAAAAAAAAAAMBxZYyR1ure6fRV7uliLMtaK+21R+Gx9ig2NgqK7cq2ticjY63A9J3dOY5thiTp8EC6/KR3coh7D9vV9VFArDEIjzU3ff8OwmPDy4KRsubm0Xym6uo4AMcbsTDM40sC5/98hnnfI6mr0Tb4fGPMVdbax9MYGI6TDP/jFTusFHO+ucYSI14Uen6ooFhYXlG1qPs8+HhFxVxSf+xcsTDffyxzDbxFBfD8Z4mFhfJvS5ERo5IFg4br8+Bbpc4nw6e54ZukE7fkN6YsJH3NLgPj+C+3zSAWlvR1LrPnXFQsrKg/wl1jMov13E9LvxeIeu34Yl5RQS/f9cNp+4dFrw0kqbI6PehVcwW+/D9vSBV2lgEAAAAAAGBGzi8TOab7WAEAAAAAAAAAAAAAAACkyhgj1ZveSVe7p4uxLNvvS3ut8diYP0LW8oXHOoPY2ESkbPBvZze1dVxaB3ve6eITzklih8fWG4Og2DA2tuXFxOqj2Jjxh8lckbL6BuExLBRiYZjH7YHzfx13Rmttyxhzr6Tn+y6+TRKxMIzLtNIaEVaKjM9kEQvrOYZSiT5/NH+OH673PyaR0am8CrvBxyrqdlMekzM6VQn/Oc68c0kjFubYFpNKurxMt+k4cb6I14DU76M5t0vb9yI9H/ix8Osrq9JzXz/fbSTiug+Trm/M7buMKjnGwhLfvxk956KeL5FhroJioXm+Ps7DWqnXngx8xQl6BafttYteG0iSzPTA17TraoOfq2tFrwwAAAAAAACWmXM/K9/OCQAAAAAAAAAAAAAAACBfplIZxaTOXOOeLsaybK/nBcP8AbH2ZIDMDn9u7YwCZO1AhGyPYzvnttf2ThfcmZrY4bH6xnhAzB8gGwTGjsJjza3ANJujy9ab3jaXA2utdPEJmdNX5XJ7KA9iYZjHLYHzD804/0c0Hgu7VdK75hoRjqEsg0FR4ZmcY2Gu9SwsFhZ3/fO6n6KWVWQszBWOqTh+jjPvHKICOOMXRCwk7W0p6fIyfO7HirwNXwdC7tPUn2/zbpd96YGfkvafCr/6ma+QmtfPeRtlEHf7LiHj+C93P4tYWEJZhbAiny/5/LE7yfWcq0yJhaXw3O8dDGJe0wJfU+Jf3Z18Q6FwqzYmY15hQa+o+NfKlrecRXg9AwAAAAAAAKYqwZcfAQAAAAAAAAAAAAAAAEDKTLUqbZzwTlHTxViW7XYH4TFfbKw1+Lk9io3ZYZDsKDgWEik72EtnBZdZZ9c7PfWYc5JYRQBjvPCYLzI2CpCNYmPmKEzmCpBtSesNGcdxp9Za2Z//XunPf1/6uXfIXPfsZOuNhUQsDIkYY05LOh24+JEZFxOc/lnJR4Rj68Fflh7902yW3dsPv9xMiYV9+BelT/xBumM53HGMJfhheseH6w8vS+///hTHczniSt9/Y6KiFh/9D9KFv01pPI77J2wMrmCWJH30N6XubjpjkqQn3uMYUyX8Z78Lf5vuYyZJbdfLcOA+inrcHvyldJ9zl+5LNt+9r5dqzfTG4Xfp3vDLw+J8YQGlB39Zeuzt6Y1n9yPzzf/If5EuO+7nWlO6/bXzLT8xx3bWeTTZtr/3xGy3UyamGn754+9K/3VgJ+H29MBPS/UMytGRr9+O+0WS3v8qqRJx/Twu3uUYj1FkwOzgYvTjZftSt+UOfB3uSH3H/z2QL1OTVk/MFvSqhQXBNqQKf1IDAAAAAAAAY5zvQ2XxhUwAAAAAAAAAAAAAAAAAsHhMrSZtnvROUdPFWJbtHg5CYr6AWMcXFmt58TE7MU1IpOzwIJ0VXFbWDmJuEcdXK+an6SoV2UYwKLbhxcTePeqd2H/1Munn3yFz3XPmGzsWBkc2I6ngb5y2tbY14zKC1Y/ofCaW0yP/uYAbNdExpY//p/yGEoyWuMJTvY70wL/JfjhSIMYVcT89+sfeKXcR/zXafTif+ylOLGz7g94pFzPElB753eyGMYsHf6mAG40ZC/v738tnOHE99T/d1z3nu6X1K/MbSxz7T6b8PFyAWJgrJnThb9OLKs7rY7+V/226Xh8l6UM/k984jkz5/S/l97sWIYwX63IFvWohga+JANjg58ra9McaAAAAAAAAQEIR+36tZd8cAAAAAAAAAAAAAAAAAKTI1FakrdPeKWq6GMuyB/uj2JUvNHYUHmtvyw5jY62dQZQsJFLW2pZ63XRWcFn1+9LuZe8U5anHZP/ly6Sfe7vMM27JZWgoFrEwJLURON9JsIzgPJsJx3LEGHOlpLMzznbTvLeL48aoNPGZYEglKqxSiDLcT4Ex2DJ8K3nF8XNBOOginon7qQSP3TxWT0u3fF9xt5/XdrcI27fhv9yhTLXoEYwr3e/YY6JaH0S+QgJfUUGvYPyr1uQxAgAAAAAAABZB1H572y/fvmEAAAAAAAAAAAAAAAAAgCTJrK5Jq2vSyTPuaWIsx1orHexL7UBsrLUtdYaxsUF4rO2LjY1FynwBsl4vvZU8ji58Sva7vlj62XfI3EAw7LijXICkgrGwvQTLCMbCgstM4v+S9CMpLAfLrLrqxShMVbIF/6ehshZ9vgjrV45+Pv3p0vn3FDcWSaqsjp+vX13MOPyqa+E/FyV4H518nvTEXxQzljILPr+qa1J/v5ixpOHWV0urJ4q7/eB2t+i3M4/qetEjKKeVuTux6aqsEnYbMtXxmFcw6FULxL6c8a9NqbJS9NoAAAAAAAAAyFVU9L8viVgYAAAAAAAAAAAAAAAAABxnxhhpbd07nbrSPV2MZVlrpf2OLyIWEhRr78j6LwtGyvzzWpveipbJ9gXpUx+TiIUdexwNj7QkeTU8pq+giO15PyHd9QNFj2KcqUqnX+jFws68WDr/3iIHI5150fhFZz7Du7zIp8+Zzxj9fMM3Sh/6meLG0niad/K78rOLGYvfmZeM//yhnytuLMMx+N38XdKHf76YsZTZ2c8cP3/mJdJjby9mLPOqXyM9+5XFjuHMi3O6nZdMn6ZoZz9T+th/LHoU5dJ8hnTuZVKtKXVbRY/Gc+Yl5Qg8zqO2kSDoFXK+ui6ZOLtYAAAAAAAAACDARMTCjuuHrAAAAAAAAAAAAAAAAAAAmTDGSOsN73T6Kvd0MZZlrZU6rUFAbDw25oXFvMusP0o2ESnzXV4WtRWZN/6OzIu/tOiRIAfEwpDUbuB8PcEygvMEl4nj7sZvlh7+NWn7g0WPZOS210qrJ7yfn/t66d1fJvX2ihnLra+S1q4Yv2z9rHTL90sP/EQxY3rhL49/wP/U86Wt50jbHypgMEa6882TMRNTkZ71L6QH/+8CxiRp62Zv2x669h9KZz+ruPDcdV8rnf608cs2bpRO3CZdvr+YMZXRuS/yTn63v046/57yhIziqq5LL/ltqZbkV3OKTt4hXf8N0sd/O7vbuPHbpM1nZbf8tFz/9dKDvyJduruY269teNvEXa+Sth8oZgx+puK9fldXpTveKP3d9xQ9IunKz5GuGfwB/KJfk/7m2/K77craZNCrFjPw5b++thF9EB4AAAAAAAAA5CLqI1f93EYBAAAAAAAAAAAAAAAAAICfMUZqbHgnXe2eLsaybL8v7bW8kFhrEB4LCZDZ9vZkZOwoQDaYpzNHz2B1TeZHfkvms/5R8mVgoRALQ1JljYW9VdLvzjjPTZL+MIXbxqzWr5S+6N3Sw//eC6hU61K1Ie0+VMBYznlRp6d95eiyc18ovfQvpY//p3yjSutXSte8XHr614Rf/7y3SKdfID3236S9J7Idy/n3SofbkqlKn/NH0rUvH7/eVKSX3yfd/RrpgZ/0LmtcJ528PdtxNW+Qrvtq6arPD7/+hb8onbhF+ttXeudXTkpnX5LtmCqr0pkXSzd+i/cYDtWa0uf9qfTwb0hP/IXUa2c7jqGVE942fMM3h8djXn6PdNerR4/b5rOyjS71D6RP/Y/R+eu+Vrp4l7Tz4fHpGk/zIlN5qTWls58j3fRtUnVt/LqzL5Fe+lfSx39HunSvpBy+7X734fGA4vN/yosGPvHnUv1a6fCy9OFf9K5bv1I6/enj85+4Xbr+6yYDcUUwRnrxb3oRtsffKR1cTG/Zq6elcy+Vbvgnk8HAMlo9JX3hu6SHf106/5dSfz+nGzbe8+kZ3+C9Lp95kfc79yP/Tmp9TDrzEqnWyGksAxs3SU//aumqz/XO3/zd0uZzpE/+odT+RL5jkbz/d1z5udJN3zq6L276VmntjPQXXz6a7pqXh88fVGuGB71qrsDXphdNAwAAAAAAAIDjYvWUdO5l3vtTpiLJjP6N9REqAAAAAAAAAAAAAAAAAADKzVQqUmPTO5291j1djGXZXk/q7AaiY4PAWGtb6gzDY77I2F5LOnedzFd8p8x1z0lvxVB6xtocwhc4dowxV0h6MnDxhrU2dq7QGPNvJH2v76Kft9Z+Vxrjm4Ux5jZJ9w3P33fffbrtttvyHgYAAAAAAAAAAAAAAMDc7r//ft1++9gXPN1urc3xG7IAABjHZ/QAAAAAAAAAAAAAAMBxUPTn8yp53RCOF2vtU5IuBi6+bsbFXB84/2DyEQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABw/xMIwjwcC55854/w3TlkeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUiMWhnncFzj/4rgzGmOaku6YsjwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIClRiwM83h74PznzTDvZ0uq+c6/31r7+NwjAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOEaIhWEe75DU8Z1/sTHm5pjzfkvg/O+nMiIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBjhFgYErPWtiX9XuDiV02bzxjzbElf6buoK+m3UxwaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAsUAsDPN6vaRD3/lvMcZ8uWtiY8y6pF+XtOq7+FettR/JZngAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACLi1gY5mKtfVjSzwUu/j1jzCuNMf4gmIwxt0h6p6SX+C5+StIbsh0lAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAYqoVPQAcC6+WdJukLx2cX5H0C5JeZ4z5O0k7km6U9GmSjG++A0lfaa19LMexAsD/z969R0+XlfWB/+6maRoaBASaq9BcjYASiJmIkrFjAEEnIEqUkGToGDUTk0xwNJlBzZpoMiYzGiauxAuJCo4XRkVBEATGxEaEeAEbRSAKSKMYGrkLLU1z2fNH1dtv1fndqn5VdersXZ/PWnuxTr116uxn1342dZ7zW7sBAAAAAAAAAAAAAAAAAAAAAJphszA2Vmv9VCnlq5P8UJKvWfinK5M84YTT/iTJM2qtr951/wAAAAAAAAAAAAAAAAAAAAAAAFp1yb47QB9qrR+ttT4tyV9P8munvPUDSX4gycNrrS8fpXMAAAAAAAAAAAAAAAAAAAAAAACNunTfHaAvtdYXJHlBKeX+SR6V5F5JrkhyQ5J3JnlNrfXmPXYRAAAAAAAAAAAAAAAAAAAAAACgGTYLYydqre9I8o599wMAAAAAAAAAAAAAAAAAAAAAAKBll+y7AwAAAAAAAAAAAAAAAAAAAAAAAMDxbBYGAAAAAAAAAAAAAAAAAAAAAAAAE2WzMAAAAAAAAAAAAAAAAAAAAAAAAJgom4UBAAAAAAAAAAAAAAAAAAAAAADARNksDAAAAAAAAAAAAAAAAAAAAAAAACbKZmEAAAAAAAAAAAAAAAAAAAAAAAAwUTYLAwAAAAAAAAAAAAAAAAAAAAAAgImyWRgAAAAAAAAAAAAAAAAAAAAAAABMlM3CAAAAAAAAAAAAAAAAAAAAAAAAYKJsFgYAAAAAAAAAAAAAAAAAAAAAAAATZbMwAAAAAAAAAAAAAAAAAAAAAAAAmCibhQEAAAAAAAAAAAAAAAAAAAAAAMBE2SwMAAAAAAAAAAAAAAAAAAAAAAAAJspmYQAAAAAAAAAAAAAAAAAAAAAAADBRNgsDAAAAAAAAAAAAAAAAAAAAAACAibJZGAAAAAAAAAAAAAAAAAAAAAAAAEyUzcIAAAAAAAAAAAAAAAAAAAAAAABgomwWBgAAAAAAAAAAAAAAAAAAAAAAABNlszAAAAAAAAAAAAAAAAAAAAAAAACYKJuFAQAAAAAAAAAAAAAAAAAAAAAAwETZLAwAAAAAAAAAAAAAAAAAAAAAAAAmymZhAAAAAAAAAAAAAAAAAAAAAAAAMFE2CwMAAAAAAAAAAAAAAAAAAAAAAICJslkYAAAAAAAAAAAAAAAAAAAAAAAATJTNwgAAAAAAAAAAAAAAAAAAAAAAAGCibBYGAAAAAAAAAAAAAAAAAAAAAAAAE2WzMAAAAAAAAAAAAAAAAAAAAAAAAJioS/fdAZiAyxYP3va2t+2rHwAAAAAAAAAAGznm7x4uO+59ADAif6MHAAAAAAAAADRv33+fV2qtY14PJqeU8qQkP7/vfgAAAAAAAAAA7MCTa60v3ncnADhc/kYPAAAAAAAAAOjUqH+fd8lYFwIAAAAAAAAAAAAAAAAAAAAAAADWY7MwAAAAAAAAAAAAAAAAAAAAAAAAmKhSa913H2CvSil3TPLFCy/9UZKb99Qd2KUHJvn5heMnJ3n7nvoCjEv+w+GS/wDtsXbD4ZL/cNisAXC45D+wC5cl+ayF41fVWj+8r84AgL/R40C4v4PDZg2AwyX/Adpi3YbDZg2AwyX/4bBZA4Bt2+vf51061oVgquYJ9+J99wN2rZQyfOnttdY37aMvwLjkPxwu+Q/QHms3HC75D4fNGgCHS/4DO3TdvjsAABf4Gz0Ogfs7OGzWADhc8h+gLdZtOGzWADhc8h8OmzUA2JG9/X3eJfu6MAAAAAAAAAAAAAAAAAAAAAAAAHA6m4UBAAAAAAAAAAAAAAAAAAAAAADARNksDAAAAAAAAAAAAAAAAAAAAAAAACbKZmEAAAAAAAAAAAAAAAAAAAAAAAAwUTYLAwAAAAAAAAAAAAAAAAAAAAAAgImyWRgAAAAAAAAAAAAAAAAAAAAAAABMlM3CAAAAAAAAAAAAAAAAAAAAAAAAYKJsFgYAAAAAAAAAAAAAAAAAAAAAAAATZbMwAAAAAAAAAAAAAAAAAAAAAAAAmCibhQEAAAAAAAAAAAAAAAAAAAAAAMBE2SwMAAAAAAAAAAAAAAAAAAAAAAAAJurSfXcAgNG8N8l3DI6BwyD/4XDJf4D2WLvhcMl/OGzWADhc8h8AAKAP7u/gsFkD4HDJf4C2WLfhsFkD4HDJfzhs1gCgK6XWuu8+AAAAAAAAAAAAAAAAAAAAAAAAAMe4ZN8dAAAAAAAAAAAAAAAAAAAAAAAAAI5nszAAAAAAAAAAAAAAAAAAAAAAAACYKJuFAQAAAAAAAAAAAAAAAAAAAAAAwETZLAwAAAAAAAAAAAAAAAAAAAAAAAAmymZhAAAAAAAAAAAAAAAAAAAAAAAAMFE2CwMAAAAAAAAAAAAAAAAAAAAAAICJslkYAAAAAAAAAAAAAAAAAAAAAAAATJTNwgAAAAAAAAAAAAAAAAAAAAAAAGCibBYGAAAAAAAAAAAAAAAAAAAAAAAAE2WzMAAAAAAAAAAAAAAAAAAAAAAAAJgom4UBAAAAAAAAAAAAAAAAAAAAAADARNksDAAAAAAAAAAAAAAAAAAAAAAAACbq0n13AGhHKeVWSR6U5KFJ7pXkjkk+nuSDSd6e5HW11hu3fM1bJ/miJPdNcs8kH03y35JcV2u9fpvXGksp5WFJ/nySuyW5TZIbkrwryWtqrTfts29jKqXcOcnDkjw4yWcmuTzJh5K8N8nra61v32P3jiil3D+z7+1eSW6f5N1J3pnktbXWT2zxOvdL8hcym+93TPKJzMblrZmNy0e2da01+yX/t0D+z7SW/4dO/m+H/J9pIf/HnPMtjAdt6nHt7jGmbRnrXqUVhz4ePeZKjzFty6HP96FDr93M+9ZdvvQY07ZYA1jUY670GNO2yH/1GwAA+uVeaDs8n59p7X5GjdcasC3WgJnW1oBDJ/+3Q/7PtJD/ary0rsd1u8eYtsWzuWXGo8986TGmbTHnlx16/abHXOkxpm2R/wz1mC89xrQt1gD1G5i8WqumadqJLbMfW89M8gtJPpykntI+meQXk3z5Fq57tyTfn+T9p1zvNUm+asPrPCDJ1yT57iTXJvnTwTWu39I43iHJtyX541Pi+dMkP5bkgXv8vnc2HkluneRLk/z7JL97xlyq87H6ziT32HMOPDXJa0/p5/vnc/WuG1zjdkn+aZLfP2NMPpXkpUkeP1Ls8n874yj/G8z/Xc+PFcbgrHbVjuOX/9sZR/nfSP6PNedbGQ+tzdbj2t1jTFv+zse4V7kiyWOSfFOSn8jsnuXTg+tcs+/5f+jj0WOu9BiT+d78eEyydjPvW3f50mNMDc75JtaAqN90lys9xrTl7/yg83+s+RH1G03TNE3TNG3k1vu9UDyfH208Wr2fiRqvNWA742gNaHAN2PX8WGEMzmpX7Th++b+dcZT/jeT/WHO+lfHQ2ms9rts9xrTl7/ygn80ZjyN96y5feozJnG9+PCZZv+kxV3qMqcH53kT+58BrN/M+dpcvPca05e/8oNeAseZH1G80beO29w5omjbdluQnN/iR/ZIkdz/ndZ+Y5D1rXOvHk1yxxudfneQVZ/yg3MrNyvx6fymzXW1XjefGJH9/xO955+MxH4MPnHMufTDJ39rD/L99kuev0c8bknzpOa7z6CR/cI5x+ckkt9th/PJf/h9c/o85PzbIrwvtqh2Og/yX/weV/2PN+VbGQ2uzjTWPj7nuztbuHmPa4ve983uVzB5evDGz4v1Zn3/Nnuf/QY9Hj7nSY0zme7vjMb/OJGs3veZLjzG1NOdbWAOiftNtrvQY0xa/74PP/7HmR9RvNE3TNE3TtJFbr/dC8Xx+9PFo8X4marzWAGvAQa4BY86PDfLrQrtqh+Mg/+X/QeX/WHO+lfHQ2mtjzeFjruvZnGdzNQfw9zlTH48e86XHmMz5dsdjfp1J1m96zJUeY2ppvreQ/1G76Tpfeoxpi9/3wa8BY82PqN9o2lbapQE42UNOeP2Pk7w1sx9ml2a2O/Ajklyy8J7/IcmvlFK+uNZ6w6oXLKVcneRFSS5beLkm+a3MbvjvlOSRSe668O9/M8lnlFK+otb66RUu8+eTPH7VPm2ilPLYzHZPvc3gn96Z5Hcye+h4n8x+2Nx6/m+3S/L9pZRLaq3fN0I3xxiPuyW58zGv35zZD9sbMtth9i5JPn/+vxfcKcmPlVKurLU+e8f9TJKUUm6V5KeSfNngn96b5Lp5Xx+Y2Vws83+7e5KfL6U8ttb6qyte59FJXpnZTcSijyT5zcxy7DZJHpTk4VnOsb+R5MpSypfVWm9eMbR1yP8Nyf9btJT/o82PiZP/G5L/t2gl/8ea862MB23qce3uMaaNjXWvkuTpSe64eY93y3gk6TNXeoxpY+b7MrWbW/SYLz3GtDFrwBL1m5kec6XHmDYm/2+hfgMAQK96vRfyfH6Z5/MDary3sAZsyBpwi5bWADXeGfm/Ifl/i1byX42X1vW4bvcY08Y8m1tmPG7RY770GNPGzPll6jdJ+syVHmPamPxfonZzUY/50mNMG7MG3EL9Blqy7d3HNE3rpyV5XS7utPlbSf5hkgee8N57J3lOju7Q+eokZcXr3SdHdwL91SSfM3jfbZL8z5n9n/7ie79rxes885h+1iQ3JXnb4LXrNxi/q3J09+S3JXncMe+9c5J/N3jvp4577w6+552PR2Y/8i58xkeS/HCSv5rktse8tyR5SmYPa4d92vl4zPvw3YPr3jyf/5cN3vfQJK8dvPd9Se65wjUuP2Z8/2w+ty8/5v0PTPLiY8bkWTsaA/kv/w8u/8eaH/NrLX7Wr83nzDrt0h2Og/yX/weV/2PN+VbGQ2uz9bh29xjTlr7rnd+rzM//0DHjWZO865h/u2aPc//gx6PHXOkxJvO9zfHIxGs3veZLjzG1Mufn509+DYj6Tbe50mNMW/qu5f+I8yPqN5qmaZqmadrIrdd7oXg+P/p4tHY/EzXeC9e0BlgDDm4NGGt+zK+1+FlqvPJf/vsbvcmMh9Ze63Hd7jGmLX3Xns0Zj4PIlx5jMufbHI9MvH7TY670GFMr831+/uTzP2o3XedLjzFt6bu2Bow4P6J+o2lbaXvvgKZp022Z7bz9C0k+f41zvvGY/7N92orn/vDgvNfkmJv6hfd/xeD9NyW53wrXeeb8h9p1Sf5jkm9I8qjM/qtBVw8+8/oNxu/5g896a5Irzzjnnw7OeVOSW+34e975eMx/uL0nyTcnuWLFc+6S5M2D67/lrB+JWxiPB+ToDcWTT3n/bXP0x/0PrnCdawbnfDrJl55xTknyM4PzPpzBDceWxkH+y/9DzP9R5sf8Woufde0u4zpH3+S//D+o/B9rzrcyHlqbrce1u8eYtvA9j3KvMj/3Q5n91zhemuQ75mvY3ef/du3gM6/Z07w3HrXPXOkxJvO9zfHIxGs38+t1ly89xtTKnJ+f28IaoH5T+8yVHmPawvcs/0eeH1G/0TRN0zRN00Zuvd4LxfP50cejpfuZqPEuXs8aYA04xDVAjbfKf/l/ePk/1pxvZTy09lqP63aPMW3he/ZszngcTL70GJM53+Z4ZOL1mx5zpceYWpnv83NbyH+1m4v96y5feoxpC9+zNWDk+RH1G03bStt7BzRNm25LctU5z3vB4P9sX7rCOQ9O8smFcz6e5MErnPe8wbV+ZIVz7nzSj8ls78HbAzL7rw4tftZjVjz3Pw/O+9odf89jjMfdVv3BNjjvblCzNwAAIABJREFUEceM41/c8Xj86OB6z13hnIfM5+yFcz6R5AFnnPOzg+u8cMX+3SNHbzweu4NxuOqc58l/+T/8nJbyf+fjsfB5i5917S7jOkffrjrnefJf/g8/p4n8H2vOtzIeWputx7W7x5i28D2Pcq8yP+/E/7JJJvAQwngsXf+qc5432VzpMaYtfM/m+x7GIxOv3cyvddU5z5tsvvQY0xa+Z2vAcj/Ub2qfudJjTFv4nuX/yPMj6jeapmmapmnayK3Xe6Ex7t/j+fzwc5q5nxnrfjdqvMNzrAEXz7UGXDzP3+jtqcl/+X9o+T/WnG9lPLT2Wo/rdo8xbeF79mzOeJzUh6vOed5k86XHmLbwPZvzexiPTLx+02Ou9BjTFr5n+b/cD7Wbi/276pznTTZfeoxpC9+zNWDk+RH1G03bSrskACeotV5/zlO/b3D8V1Y45+lJbrVw/HO11reucN7/OTj+6lLK5aedUGv9YK31phU+exNfniytsb9Wa/3VFc/9nsHx39lOl443xnjUWt9ba73xHOf9dpLhuK0yn86llHLbJE8dvDycY0fUWn8/yYsWXro0szl9mgcMjl9yZgdn17ohyW8MXn7wKueuQ/5vRP4vX6OJ/J9fc4z5MXnyfyPyf/kaTeT/WHO+lfGgTT2u3T3GtImR71VSa333Wh0cmfG4qMdc6TGmTZjvy9Rujlzr+nOeOtl86TGmTVgDjlK/mekxV3qMaRPyf5n6DQAAver1Xsjz+WWez1+kxnvkWtef81RrgDVgeI0m1oD5NdV4I/83JP+Xr9FE/qvx0roe1+0eY9qEZ3PLjMeyHvOlx5g2Yc4vU79Zus715zx1srnSY0ybkP9Hqd1c1GO+9BjTJqwBy9RvoC02CwN24brB8W1LKXc645ynDI6fu8qFaq1vSfLrCy9dkeTxq5y7Y//94PgVa5z7nzLb2fyCLyyl3HPzLjVrOJ/utcNrfWmS2y0c/5da639d8dzhnP3KM95/xeD4XSteJ0n+aHB85zXO3TX5L/+3acz8Z3PyX/5vUwv5f545v61rTXE8aFOPa3ePMSXj3qu0wHhsrsdc6TGmxHwfUrvZjh7zpceYEmsA29djrvQYUyL/t0X9BgCAXvV6L7QOz+e3x9/nHaXGO2cNOAhqGm2R//J/m1rIfzVeWtfjut1jTIlnc0PGYzt6zJceY0rM+SH1m831mCs9xpTIf3ajx3zpMabEGrAt6jewBzYLA3bhk8e8dtlJby6l3CPJIwbnv2aN6107OH7iGufuyn0Gx7+76om11o8nedvCS5dkGjHty3A+nTiXtuAJg+Nr1zj31Vnu6yNLKXc/5f03DI7X2dl4+N4PrHHursl/+b9NY+Y/m5P/8n+bWsj/teb8lq81xfGgTT2u3T3GlIx7r9IC47G5HnOlx5gS831I7WY7esyXHmNKrAFsX4+50mNMifzfFvUbAAB61eu90Do8n98ef593lBrvsmsHx1PIF2vA9qhptEX+y/9taiH/1XhpXY/rdo8xJZ7NDRmP7egxX3qMKTHnh9RvNtdjrvQYUyL/2Y0e86XHmBJrwLao38Ae2CwM2IUHDY4/meR9p7z/4YPj36m13rjG9V47OH7YGufuymcOjj+05vnD93/uBn1p3XA+vXuH1xrOxf+y6onzOfvGwcunzcVXD44fteq1jnnvb65x7q7Jf/m/TWPmP5uT//J/m1rI/3Xn/DavNcXxoE09rt09xpSMe6/SAuOxuR5zpceYEvN9SO1mO3rMlx5jSqwBbF+PudJjTIn83xb1GwAAetXrvdA6PJ/fHn+fd5Qa7zJrQN/UNNoi/+X/NrWQ/2q8tK7HdbvHmBLP5oaMx3b0mC89xpSY80PqN5vrMVd6jCmR/+xGj/nSY0yJNWBb1G9gD2wWBuzCUwfHr6u1fvqU9z90cPy2Y991sref8Xn7cPPg+DZrnj98/xRiGl0p5TOSPG7w8m/s8JKfMzje5Vz8oSzPk68tpdz2rAuUUp6S5L4LL72p1vr61bu4c/Jf/m/FHvJ/n+5bSnluKeVNpZQPllJuLqW8Z37846WUbyilDP/AZYrkv/zfiobyf905fy4NjQdt6nHt7jGmZNx7lRYYj831mCs9xpSY70NqN9vRY770GFNiDZgS9ZuZKc7BHmNK5P+2qN8AANCrXu+F1uH5/Bb4+7yj1HiPZQ3o1IHVNNR4Z+S//E/SVP6r8dK6HtftHmNKPJsbMh7b0WO+9BhTYs4Pqd9srsdc6TGmRP5PSS+1m6TPfOkxpsQasC3qN7AHNgsDtqqUcvskf3fw8gvPOG24i+cfrnnZdw6O71JKufOan7Ft7x8c33PN84fv/+wN+tKyv5fkdgvHH07yy7u40PxGcXizuO5cHL7/wSe9sdb6jiTPWnjps5I8v5RyuxNOSSnlL2ZWBLvg00n+0Zp93Bn5fwv5vx2j5f8E3D/JNZkVA+6U5NZJrpwf/80kz0nyh6WU/3ueZ5Mj/28h/7dj8vl/zjl/XpMfD9rU49rdY0zJ+PcqU2c8NtdjrvQYU2K+D6ndbEeP+dJjTIk1YILUb2YmlSs9xpTI/21RvwEAoFe93gudg+fz2+Hv85b7qMZ7PGtAvw6ppqHGOyP/5f8Fk89/NV5a1+O63WNMiWdzQ8ZjO3rMlx5jSsz5IfWbzfWYKz3GlMj/CWq+dpP0mS89xpRYA7ZF/Qb2x2ZhwLb9qyT3WDj+UJZvvo9zp8Hxn6xzwVrrR5PcNHj5jut8xg68ZXD8BaueWEq5b5J7DV7edzyjK6VcleSfDV7+3lrr8L8ItS3DefhntdYb1/yM4dw99XurtT47yT9J8on5S09O8uZSyv9WSnlMKeXBpZSHlVK+opTy3CSvycWbj08k+dpa65R+yMr/Gfm/oT3kfwuuSPLMJK8vpTxs3505hvyfkf8baij/zzPn19bQeNCmHtfuHmNK9nCvMnHGY3M95kqPMSXm+5DazXb0mC89xpRYA1qkfjMg/89N/m+H+g0AAL3q9V5oXZ7Pb8jf56nxrsoa0Cc1jWOp8Q7I/z41lP9qvLSux3W7x5gSz+aGjMd29JgvPcaUmPND6jeb6zFXeowpkf8tmnrtJukzX3qMKbEGbIv6DeyJzcKArSmlPCXJPxy8/G211g+ccepwF9+PnePyw3PucI7P2KZXDY6/6rQdzQf+x2Ne23c8oyqlXJbkp7Ic9/VJ/q8dXnYv87DW+j1JHpHkR5J8MMn9Mvtx/Ookv5/kdzPbRfeazHbDTpJfSvIFtdYfPUcfd0L+L5H/G9hT/u/LJ5Ncm+TbkzwpyaMy2z38kZkVt78nRwsGD0nyS6WU+43XzdPJ/yXyfwOt5P8Gc37d6zQxHrSpx7W7x5gWtNDHMRmPDfSYKz3GtKCFPo5J7WZDPeZLjzEtaKGPh0D9Ztlk5mGPMS1ooY+Tpn4DAECvOr8XWpfn8xvw93lqvOe4vDWgIwdW01DjXSb/j9p3PKNqJf/VeGldj+t2jzEtaKGPYzIeG+oxX3qMaUELfRyT+s0GesyVHmNa0EIfD0EXtZukz3zpMaYFLfRx0tRvYL9sFgZsRSnlEUn+n8HLr0zyAyucPvxBNdztdRXDH1TDzxzbSzPb/fSCOyX552edVEr5rCTfcsw/3aqUctvtdK0JP5Tkv1s4/lSSZ5xjV9517HMeXprk07m4A/5pfjTJN9Vaf2udju2S/D9C/m9mH/m/D9+e5N611r9Sa/0/aq0vqbVeV2t9W631DbXWF9da/0lmBe5/naQunHuPJD9XSin76Pgi+X+E/N/M5PN/wzm/rsmPB23qce3uMaYzPm+KfRyT8TinHnOlx5jO+Lwp9nFMajcb6DFfeozpjM+bYh97p34z0XnYY0xnfN4U+zhZ6jcAAPTqAO6F1uX5/Gb8fd7J1HiPZw3oy6HUNNR45f8t5P8tJp//ary0rsd1u8eYzvi8KfZxTMZjAz3mS48xnfF5U+zjmNRvzqnHXOkxpjM+b4p97F0XtZukz3zpMaYzPm+KfZws9RvYP5uFARsrpdw3swdviz9i3pnkb9Va6/FnnWqsc3am1vqRJN87ePlbSin/+KRzSin3SfLyJHc86WO31L1JK6X8iyR/e/Dys2qtvzJyV3Y+D0sptyml/Lskv53k65JcucJpz0jyxlLKi+dzZq/k/1Hy//wmlP87Ny9gDXe1P+59N9Van5XkHw3+6VFJ/sZOOrci+X+U/D+/FvJ/B3P+tGtNfjxoU49rd48x7eh6Pf//ifFYQY+50mNMO7pez/Nd7WZFPeZLjzHt6Ho9rwE7p35zrL3Pwx5j2tH1DjL/1W8AAOjVgd4Lncrz+fOb0P2MGu+KrAFHWQPOb0JrwM6p8R5L/p/wsVvq3qS1kP9qvLSux3W7x5h2dL2e/7/EeKyox3zpMaYdXa/nOa9+s4Iec6XHmHZ0vZ7zf+d6qN0kfeZLjzHt6HoHuQao38A0XLrvDgBtK6VcmeT/S3LvhZdvSPK4Wut7V/yYjw6Oz/Nf5xmeM/zMffiuJE/Mxd1KS5J/W0p5apIfTvKGzHaNvdf8fX8/F38YvSvJYqHiplrrkV1pSylXrdqZWuv1a/V+D0opz8xsN+hFz661fveK51+16rWOGY9R52Ep5dIkL0ryhMVuJXlhZrvbvy7J+5LcJsl9k3xJZjezD56/968leXQp5XG11jeco68bk/+nkv9r2nP+T16t9ftKKY9P8qSFl78xyU/uoz/y/1Tyf00t5P+W5vyq19poPOAkPa7dLcXU0r3KGIzHuFrKlVW1FJP5vqyl8eihdpO0lS+raimmlub8GHq7nx1SvzmR/D+D/F+mfgMAAMtauhfaA8/n1+Tv89R456wB1oBFk/obnX1S4z2R/D9DC/O9hfxX46V1Pa7bLcXU0r3KGIzH+FrKl1W1FJM5v6yl8eihftNSrqyqpZhamu9j6O1edmhqtZukrXxZVUsxWQOWqd/AYbFZGHBupZTPTPJLSR6y8PL7kjy21vrWNT6qux9USVJrvbmU8pVJXpbk8xb+6THzdpL3J/m7SV6x8NqHTnjvO9boUlnjvaMrpXx9kmcPXv6BWus3r/Exm4zH2PPwn2W5kPWxJE+ttb5s8L6bk7wpyZtKKf8hyfcn+dr5v901yS+UUh5Ra33/Ofp7bvL/dPJ/PRPI/1b8qywXs76glHKnWutJc2Qn5P/p5P96Wsj/Lc75Va61jfGAI3pcuxuMqaV7lTEYj5E0mCtnajAm831ZS+PRdO0maTJfztRgTC3N+TF0cz97CvWbo+T/2eT/MvUbAACYa/BeaFSez69nAs/n1XjXZA04nTVgPRNYA1qhxnuU/D/bpOd7C/mvxkvrely3G4yppXuVMRiPETWYL2dqMCZzfllL49F0/abBXDlTgzG1NN/H0M297CkmUbtJmsyXMzUYkzVgmfoNHJBL9t0BoE2llDsmeWWSz114+YOZ7fz5pjU/7sOD47ut2Zfb5+gPqtF/2B+n1vrHSb4wyXOSfGKFU345yecnuXHw+g1b7tqklFL+dpIfzPKPy+cm+QcjdmM4D29XSrlizc+4cnB87Dyc/yAe/iD9xmMKWUtqrR9P8vVJXrXw8r2TfOua/dyI/F+N/F/NRPK/Fb+RWa5dcKskDx2zA/J/NfJ/NS3k/5bn/FnXmvx40KYe1+4eYzrDaPcqjTAeK+oxV3qM6Qzm+zK1mzX0mC89xnQGa0Cb1G+W+yL/z0f+r0H9BgCAXh3gvdC5eD6/moncz6jxrsEasBprwGomsga0Qo13uS/yv3Et5L8aL63rcd3uMaYzeDa3zHisocd86TGmM5jzy9RvVtRjrvQY0xnkf5v2XrtJ+syXHmM6gzVgDeo3MD02CwPWVkq5Q5KXJ/kLCy//aZIn1FrfcI6PHO4Wer81zx++/wO11g8e+849qLXeWGv9n5J8dpJvy+xh47sy2+n8I0nekuRHkzwuyV+ttV6f5HMGH/O60To8slLK0zL7kbb4/0k/keTraq11rH7Md44fzpv7rvkxw7l40k64X5Zk8abhHZnNgTPVWj+d5DsHLz+jlDLKTt7yfz3y/3RTyf9WzPP/Dwcvr1Uo2YT8X4/8P10L+b+DOX/atSY/HrSpx7W7x5jOMvK9yuQZj9X0mCs9xnQW832Z2s3qesyXHmM6izWgTeo3R8j/c5D/q1O/AQCgV4d4L7QJz+dPN5X7GTXe1VkD1mMNON1U1oBWqPEeIf8b1kL+q/HSuh7X7R5jOotnc8uMx+p6zJceYzqLOb9M/WY1PeZKjzGdRf63ad+1m6TPfOkxprNYA1anfgPTdOm+OwC0Zb4r6suSfMHCyx9N8sRa62+c82PfMjh+0JrnP2Bw/OZz9mOnaq3vSPJd83aWRw+Of/2EzxztD1B2oZTyVUl+LLPdmy/4mSTPmN+0rWUL4/GWzP4rUxc8KEfn52mGc/Gkcx8xOP7lNX+k/kqSm5NcNj++S2Z93emNhPw/P/l/1ATzvxUfGxwPd0jfCfl/fvL/qBbyf0dz/qRrbXU84IIe1+6WY2roXmUUxmO3Ws6Vk7Qck/m+rKHxaLJ2k7SdLydpOaaG5vwoWr+fXYP6zUXy//zk/xnUbwAA6FXL90L75vn8URN8Pq/GewZrwPlZA46a4BrQCjXei+R/o1rIfzVeWtfjut1yTA3dq4zCeOxey/lykpZjMueXNTQeTdZvWs6Vk7QcU0PzfRSt38uuYS+1m6TtfDlJyzFZA5ap38BhueTstwDMlFJum+QXkjxm4eU/S/LltdbXbvDRvzs4/rxSyu3WOP+Lzvi8psx3MP+Swcuv2kdfdqmU8qQkz8/yxpUvSvL0Wuun9tOrI3Nn+ED4RPMfvJ93xuddcKfB8Q2rXidJaq2fTPL+wct3Xecz1iX/xyH/95r/rRjm+vt2fUH5Pw75P5383+GcP+5akx8P2tTj2t1jTGsa616lFcbjBD3mSo8xrcl8X6Z2c4oe86XHmNZkDWiT+s1F8v/85P8p1G8AAOiVe6FxeD7v7/POosZ7hDWgQRNdA1qhxnuR/G9QC/mvxkvrely3e4xpTZ7NLTMep+gxX3qMaU3m/DL1mxP0mCs9xrQm+d+m0Ws3SZ/50mNMa7IGnEL9BqbNZmHASkoplyd5cZKrF16+KcmTaq2/ssln11rfneR3Fl66NMs/HM5y9eD4FzfpzwR8SZKrFo5fVWvd+X+RbkyllC/LbDfXWy+8/NIkXzMv1OzLywfHV69x7l/O8o/Q62qt7znhvR8aHF+xxnUuuP3g+KPn+IyVyP9RyX9OVEq5a47uNv7fdnxN+T8e+T8Bu5zzx1xr8uNBm3pcu3uM6RzGuldphfE4Ro+50mNM52C+L1O7OUGP+dJjTOdgDWiM+s0RVw+O5f/q5P8J1G8AAOiVe6FReT6/P2q8J7AGjMoawInUeI+4enAs/yeuhfxX46V1Pa7bPcZ0Dp7NLTMeJ+gxX3qM6RzM+WXqN8foMVd6jOkc5H9j9lG7mV+3u3zpMaZzsAacQP0Gps9mYcCZSimXJfm5JI9dePnjSb6i1vqftnSZFw6O/86KfftzSf7Swks3Jnnllvq0L//r4Pg5e+nFjpRSHpfkZ5NctvDyK5N8Va315v306havSPKxheNHz+fYKq4ZHA/n9KLhzecjV7xGkqSU8uAkdxi8vNbu+WtcS/6PS/5zmqdl+ff7e5K8ZVcXk/+jk/97NtKcv3CtyY8Hbepx7e4xpnMa616lFcZjoMdc6TGmczLfl6ndHH+97vKlx5jOyRrQHvWbi32T/5uR/8dQvwEAoFfuhUbn+fz+qPEefz1rwLisAZxGjfdi3+R/Y1rIfzVeWtfjut1jTOfk2dwy43GMHvOlx5jOyZxfpn5z9Frd5UqPMZ2T/G/PqLWbpM986TGmc7IGHEP9BtpgszDgVKWUS5P8dJInLrz8iSRPrbW+YouX+okkn1o4/sr5DftZhg/tfrrWetP2ujWuUsozkjxu4aU3ZLYbahdKKV+c5OeTXL7w8n/O7Afix/fTq4tqrX+W5AWDl4dz7IhSykOSPGXhpU8m+clTTrl2cPxFpZSHrtLHub83OP69Wut71zh/JfJ/XPKf05RS7p7k2wcvv6TWWnd0Pfk/Ivm/fyPO+SbGgzb1uHb3GNN5jXiv0gTjsazHXOkxpvMy35ep3RzVY770GNN5WQPaon5zhPzfgPw/Sv0GAIBeuRcal+fz+6XGe5Q1YFzWAE6jxnuE/G9IC/mvxkvrely3e4zpvDybW2Y8juoxX3qM6bzM+WXqN8t6zJUeYzov+d+WsWs382t2ly89xnRe1oCj1G+gIbVWTdO0Y1uSWyX5qSR1oX0iyVN2dL0fHlzrNUkuP+X9Tx68/+NJ7rdhH64efOb1G37epWu89yuT3DwY60fueQ5sbTySPDrJRwaf96okt9tnjMf08wGD76EmedIp7798PlcX3/+DZ1yjJPm9wTmvT3KHFfr3hGP69y93MA7yX/4fXP6PMR5JPjvJX1vznHsk+c1j5vwDdhSr/Jf/B5X/Y875FsZDa7P1uHb3GNMW+rjze5UV+3Ht4DOv2WXcxuPM63eXKz3GtIU+mu8jj0caqN3Mr9VdvvQYUwtzfsV+TGINOKOPVw/6eP05P0f95uj15L/832v+jzk/on6jaZqmaZqmjdgO8V5oW/fvC5/n+fzFz2rifmaM+92o8Z50PWuANWDSbVvjETXe464n/+X/XtuYc76F8dDaaz2u2z3GtIU+ejZnPE7qQ3f50mNMW+ijOT/yeKSB+k2PudJjTC3M9xX7MYn8P6OPVw/6eP05P2fytZv5NbvLlx5j2kIfrQF7mB9Rv9G0jdulATjZjyT56sFr35rkulLKVWt+1g317J1b//fMdlK98/z4C5P8Uinl62qt//XCm0opt0nyDUn+zeD8f1NrfecqnSml3Cc5dg28x+D40lNi/Wit9X1nXOqNpZSXJvnZJL9ea/30MX15eJJnJXn64J++tdZ63RmfvxW7Ho9SyiOT/GKS2y+8/HtJ/kGSK0sp63T3plrrDeucsI5a6x+UUr43ybcsvPyCUsr/kuQ/1FpvvvBiKeVzkvxQZnP1gvcn+Y4zrlFLKc/KbF5c8Kgkr59f56W11rp4TinlLkn+cWZzZfG7en+S71k1vjXIf/l/cPmfjDI/7pnkxaWUNyb58SQvrLW+9YS+3CHJMzLb8f7ug3/+l7XWPzjhGpuS//L/0PJ/lDnf0HjQph7X7h5j2sgY9yoL598+yV1P+OfLB8d3PeU7eVet9ZOrXHNdxuMWPeZKjzFtxHxfpnazpMd86TGmjVgDjlK/SdJnrvQY00bk/xL1GwAAetXtvZDn80f64Pn8nBrvEmuANeDg1oBEjXdO/sv/Q8t/NV5a1+O63WNMG/FsbpnxWNJjvvQY00bM+WXqN7foMVd6jGkj8v8otZtb9JgvPca0EWvAEvUbaEmdwI5lmqZNs2V5N85N29UrXvPqzHZ6XTz305nt+PtTSV6e5E+O+fyXJLnVGrFdv4WYnrfCdd638P6PJHltZgWMn0jyylP68S9G/q53Oh5J/vkW59K1I4zHrZK87JhrvyezH6A/neR187m5+O8fT/KX17jOs0+I8X1JXjGfJz8zn/+fOOZ9NyX5Evkv/+V/U+Nx9THv/1CSX03yoiQ/luSFma0xx+V9TfKcHY+B/Jf/B5X/Y835VsZDa7ONNY8H17w6O1y7e4xpS9/1WPcq12xp7K8yHrsdjx5zpceYzPemx2OytZte86XHmBqb89dsaex3vQZcv4U+Pu+MOTF8v/qN/Jf/e8z/seZH1G80TdM0TdO0kVvP90LxfH7U8WjtfiZqvNYAa8ChrwG7Ho+rj3m/Gq/8l/97zP+x5nwr46G118aaw4NrXh3P5taKaUvftWdzxuMg8qXHmMz5psdjsvWbHnOlx5gam+/XbGnsd53/12+hj887Y04M3z+p2k2v+dJjTNaA9uZ81G80bSvtuF09Afam1nptKeUpSZ6X5G7zl0uSz5+34zw/ydfXWj+1+x5u5PZJHn3Gez6Y5Btrrf/vCP3hBLXWT5VSvjqzHX6/ZuGfrkzyhBNO+5Mkz6i1vnqNS33z/LzvSHLZwut3SfL4M859Z5Jraq3XrnG9SZP/8v+A3THJF63wvhuTfFOt9T/uuD+jk//yH2hPj2t3CzGNeK/SBOOxHy3kyrpaiMl8X6Z2sz8t5Mu6WojJGjAJ6jcN5Mq6WohJ/gMAANvWwr3QBjyfb4Qa7/5YA6wBB0yNV/7Lf6ApPa7bLcTk2dwy47E/LeTLulqIyZxfpn6zHy3kyrpaiEn+T8LB126SNvJlXS3EZA0AWnTJvjsAMFRrfVmShyf5wcwezJ3k15I8tdb69FrrjaN0bn3/Nsl1me0We5o/SvKdSR7oIeQ01Fo/Wmt9WpK/ntlcO8kHkvxAkofXWl++5jVqrfVfJ/ncJP8+p8/3C96cWRHs4T0Vsi6Q//L/ALwlyXcleU2Sj614zu8n+dbMdvzuspCVyH/5D7Sos7U7SRsxjXGv0hLjsR8t5Mq6WojJfF+mdrM/LeTLulqIyRowKvWbE7SQK+tqISb5DwAAbFsL90Jr8Hy+UWq8+2MNsAYcADXeE8h/+Q+0pbN1O0kbMXk2t8x47E8L+bKuFmIy55ep3+xHC7myrhZikv+jUrs5RQv5sq4WYrIGAK0ptdZ99wHgRKWUyzLbDfh+Se6R2a6/f5zkulrrO/bZt3WUUj4jySOT3D+znW8vz+wm5o+T/Hat9c177B4rKKXcP8mjktwryRVJbshs9/nX1Fpv3tI1SpI/l+QRSe6a5DOSfDLJhzKbK6+rtb5nG9dqgfynd6WUS5I8OMkDk9w7yZ1ycX58MMm7k/xmrfW9e+vknsh/gPb0snYvaiWmMe5VWmI8xtdKrqyjlZjM92VqN/vRSr6so5WYrAHjUL85WSvjoXbWAAAgAElEQVS5so5WYpL/AADANrVyL3QWz+fbp8a7H9YAeqfGezL5D9CWXtbtRa3E5NncMuOxH63kyzpaicmcX6Z+M75WcmUdrcQk/8ehdnO6VvJlHa3EZA0Aps5mYQAAAAAAAAAAAAAAAAAAAAAAADBRl+y7AwAAAAAAAAAAAAAAAAAAAAAAAMDxbBYGAAAAAAAAAAAAAAAAAAAAAAAAE2WzMAAAAAAAAAAAAAAAAAAAAAAAAJgom4UBAAAAAAAAAAAAAAAAAAAAAADARNksDAAAAAAAAAAAAAAAAAAAAAAAACbKZmEAAAAAAAAAAAAAAAAAAAAAAAAwUTYLAwAAAAAAAAAAAAAAAAAAAAAAgImyWRgAAAAAAAAAAAAAAAAAAAAAAABMlM3CAAAAAAAAAAAAAAAAAAAAAAAAYKJsFgYAAAAAAAAAAAAAAAAAAAAAAAATZbMwAAAAAAAAAAAAAAAAAAAAAAAAmCibhQEAAAAAAAAAAAAAAAAAAAAAAMBE2SwMAAAAAAAAAAAAAAAAAAAAAAAAJspmYQAAAAAAAAAAAAAAAAAAAAAAADBRNgsDAAAAAAAAAAAAAAAAAAAAAACAibJZGAAAAAAAAAAAAAAAAAAAAAAAAEyUzcIAAAAAAAAAAAAAAAAAAAAAAABgomwWBgAAAAAAAAAAAAAAAAAAAAAAABNlszAAAAAAAAAAAAAAAAAAAAAAAACYKJuFAQAAAAAAAAAAAAAAAAAAAAAAwETZLAwAAAAAAAAAAAAAAAAAAAAAAAAmymZhAAAAAAAAAAAAAAAAAAAAAAAAMFE2CwMAAAAAAAAAAAAAAAAAAAAAAICJslkYAAAAAAAAAAAAAAAAAAAAAAAATJTNwgAAAAAAAAAAAAAAAAAAAAAAAGCibBYGAAAAAAAAAAAAAAAAAAAAAAAAE2WzMAAAAAAAAAAAAAAAAAAAAAAAAJgom4UBAAAAAAAAAAAAAAAAAAAAAADARNksDAAAAAAAAAAAAAAAAAAAAAAAACbKZmEAAAAAAAAAAAAAAAAAAAAAAAAwUTYLAwAAAAAAAAAAAAAAAAAAAAAAgImyWRgAAAAAAAAAAAAAAAAAAAAAAABMlM3CAAAAAAAAAAAAAAAAAAAAAAAAYKJsFgYAAAAAAAAAAAAAAAAAAAAAAAATZbMwAAAAAAAAAAAAAAAAAAAAAAAAmCibhQEAAAAAAAAAAAAAAAAAAAAAAMBE2SwMAAAAAAAAAAAAAAAAAAAAAAAAJspmYQAAAAAAAAAAAAAAAAAAAAAAADBRNgsDAAAAAAAAAAAAAAAAAAAAAACAibJZGAAAAAAAAAAAAAAAAAAAAAAAAEyUzcIAAAAAAAAAAAAAAAAAAAAAAABgomwWBgAAAAAAAAAAAAAAAAAAAAAAABNlszAAAAAAAAAAAAAAAAAAAAAAAACYKJuFAQAAAAAAAAAAAAAAAAAAAAAAwETZLAwAAAAAAAAAAAAAAAAAAAAAAAAmymZhAAAAAAAAAAAAAAAAAAAAAAAAMFE2CwMAAAAAAAAAAAAAAAAAAAAAAICJslkYAAAAAAAAAAAAAAAAAAAAAAAATJTNwgAAAAAAAOD/Z+/Ow2S7qrrxf1cYwhBImAeBhEFAUEBmBEwi+DIpo4LMgQiC4MiMiAFRX15BfV9EUJQZFBAZZPKnYJhnZVCUmQgBZCYJQ0LI+v1x6krf09VDVVd3V/f9fJ6nn9yzz9l7r6pzdt0nXeuuDQAAAAAAAAAAAAAAsKQUCwMAAAAAAAAAAAAAAAAAAAAAAIAlpVgYAAAAAAAAAAAAAAAAAAAAAAAALCnFwgAAAAAAAAAAAAAAAAAAAAAAAGBJKRYGAAAAAAAAAAAAAAAAAAAAAAAAS0qxMAAAAAAAAAAAAAAAAAAAAAAAAFhSioUBAAAAAAAAAAAAAAAAAAAAAADAklIsDAAAAAAAAAAAAAAAAAAAAAAAAJaUYmEAAAAAAAAAAAAAAAAAAAAAAACwpBQLAwAAAAAAAAAAAAAAAAAAAAAAgCWlWBgAAAAAAAAAAAAAAAAAAAAAAAAsKcXCAAAAAAAAAAAAAAAAAAAAAAAAYEkpFgYAAAAAAAAAAAAAAAAAAAAAAABLSrEwAAAAAAAAAAAAAAAAAAAAAAAAWFKKhQEAAAAAAAAAAAAAAAAAAAAAAMCSUiwMAAAAAAAAAAAAAAAAAAAAAAAAlpRiYQAAAAAAAAAAAAAAAAAAAAAAALCkFAsDAAAAAAAAAAAAAAAAAAAAAACAJaVYGAAAAAAAAAAAAAAAAAAAAAAAACwpxcIAAAAAAAAAAAAAAAAAAAAAAABgSSkWBgAAAAAAAAAAAAAAAAAAAAAAAEtKsTAAAAAAAAAAAAAAAAAAAAAAAABYUoqFAQAAAAAAAAAAAAAAAAAAAAAAwJJSLAwAAAAAAAAAAAAAAAAAAAAAAACWlGJhAAAAAAAAAAAAAAAAAAAAAAAAsKQUCwMAAAAAAAAAAAAAAAAAAAAAAIAlpVgYAAAAAAAAAAAAAAAAAAAAAAAALCnFwgAAAAAAAAAAAAAAAAAAAAAAAGBJKRYGAAAAAAAAAAAAAAAAAAAAAAAAS0qxMAAAAAAAAAAAAAAAAAAAAAAAAFhSioUBAAAAAAAAAAAAAAAAAAAAAADAklIsDAAAAAAAAAAAAAAAAAAAAAAAAJaUYmEAAAAAAAAAAAAAAAAAAAAAAACwpBQLAwAAABipqmOqqkc/J+x2XDupqk4evf6Tdzum/cj7vLdV1Unjz4q9ML/nDgAAAAAAAADg0LZX814AAAAA4FCmWBgAAAAAAAAAAAAAAAAAAAAAAAAsqXPvdgAAAADAcqqqY5J8eoYuZyY5Lck3k3wyyb8meVeS13f3WYuODwAAAAAAAAAAAFaqqsqQ93b06NT3kxzd3afufFQAAAAAAFt32G4HAAAAAOwbhye5RJKrJLlVkkcneWWSU6vqyVV1xG4Gt99V1XOrqlf8fGa3YwL2l6r6zOhz5rm7HRMAAAAAAAAAwMgts7pQWJKcK8kJOxsKLEZVHTfK2+mqOm4X45GvCAtkTQEAALBZioUBAAAA2+3iSR6Z5N+q6ia7HQwAAAAAAAAAAAD71onrnLt/VdWORQIAAAAAsEDn3u0AAAAAgD3lW0k+sca5CyS5aJKLrXH+6CRvqKpju/sD2xEcAAAAAAAAAAAAh6aqumiSO65zyZWSHJfkn3ckIAAAAACABVIsDAAAAJjF+7r7uPUuqKrLJfnZJA9LcuXR6Qsn+duq+pHu/t72hMgibHSfgaS7T0py0i6HMTPrGwAAAAAAAADYp+6V5PBRWyepFccnRrGwXbdX824AAAAAYDcdttsBAAAAAPtLd3+uu5+R5NpJ/m7KJVdO8ks7GxUAAAAAAAAAAAD73P1Hxx/P6hy2O1fVkTsUDwAAAADAwigWBgAAAGyL7v5Wknsm+Y8pp++9w+EAAAAAAAAAAACwT1XV9TNscLnS85M8b9R2/iT32JGgAAAAAAAWSLEwAAAAYNt093eT/MGUU9evqovudDwAAAAAAAAAAADsSyeOjjvJC5K8PsmXNrgWAAAAAGDpnXu3AwAAAAD2vTdMaTssydWSvHPeQavqsCQ/nuSYJJdIctEkpyX5cpJPJPnX7j5n3vEXqap+KMnVM8R6ZIbdKU9L8rUk/5XkvZPCamyDqjp/khsmuUySSyY5IslXMzwrH+zuT+5ieJtSVZdIcuMkV8oQ/zczJDG+u7tP2c3YtltVHZnhtf9whvXz3SSnJnnnLK+9qi6b5AYZ1uERGdbf55K8ubtPW3DYc6mqw5PcNMkVklw6yfeT/HeSDyf5QHf3LoYHAAAAAAAAALCUJvlBdx81v+VAbklVvTjJr684d72qunZ3f3Cb4zpPhrylayS52KT5v5P8yyxzV9WFM+S9XC3JUUm+leSLSd7e3Z9baNCr575YkhsluXKSC2fIW/p8ljTvqqoul+TaGXIKL5GhaNyXk3whybt2Ik+oqn44yfWS/FCSwzPkqn0+ydu6++vbPf9+VFU/muQqGfL/Lpbk2xnu62cy5F9+b5vnt5bnn3dZ1uS1k1wuQ+7gWUm+0N0v2GR/OcDboKrOm+T6GdbDxTN8Xp6WIS/23TOMc5UMa/PAM3Zmkq9kyA99V3d/Z8GhAwAA7CrFwgAAAIBt1d1frqrTMiQXrHTxecarqpsneUiSn85QIGwtX6uq1yX5g+7+yDxzzauqLp7kTklumeTYJJfaoMtZVfWuJH+a5OWbLXJWVZ9JcvQap4+uqs0UFjq+u0+eMvbJGWI/4M3dfdwacXw4yY+uaPpykh/aSgJOVd09yYtHzQ/p7j/bZP/Dktwzyb2S/GSS861z7aeTvDTJU7r7K/NFvD2q6rgkj01yiwxF9qZd85Ekv5/kxbMUk6qqE5I8Z9R8xe7+zBxxjud9QneftEGfk5L8zsq27q4V52+Q5HFJbps1fo9ZVW9O8ujuftc68/xskkcl+YkkNeWSs6rqFUke2d3/tV7Ms76GGcY5JslJGT43xp+VB3yxqp6Z5Kndfcasc4zmOzmbWN+TuD69zlD3rar7bjTfgfdkkux2aoaEqwNO7u7jNwx6HVX1f5P86qj5Otud0AsAAAAAAAAALI2fy1DAZaXnjf7866Pz90/ya/NMNsnp+edR8//kYU02tfutJPdOcqE1xvhYkietV6ymqq6VIX/m9hmKqEy75p1JHtHdb5/tVayvqo7ND/KWzrXGNf+S5BlJ/mrWTfAWlXczGeuSSX4jyc8mueY6l55dVe9O8vQkL5l1M9L1cqQm+Wr3TfKbOTiXbqXvT/J2HrdevtOK+U7K6D0a+eeqDd+y53X3CRtdtBnbma+4xnzXyrBub5XksutcekZV/VOSJ2/mfR3NcVz2+FreRB7etq7lNcZbhjV5wSS/kuQBGTZpnWbqPdvrOcAbPdezmBLjhp8pG+WmVtU1kzwyyV2SXHDKEM9Lsm6xsKq6YobP29tm7fubJN+tqrcm+ePufv16YwIAAOwVU/+BIQAAAMCCTStss1ZBnKmq6qqT4l9vSXK3rF8oLJPz90ry4ar6y6pas1jUIk12ofxCkr9IctdsnCSQJOfNUNDqpUn+bfJF+F4y/lL/Eklut8UxTxgdn5nkrzfTsapuneTDSZ6f5H9lnUJhE1fMUEzqU1U1VwLgolXV4VX1rAwJGz+d9X+Pd40kL0zyhkmCy55Wg99N8q4MyVHrbXhwbJJ3VNXDp4xzZFW9PMmrk9w00wuFJcP6u1uSj1TVLbcU/Bwmz9y/Z0gWXO9z8dIZCor9e1VdbwdCW7jJLpAvHDUfV1U/Mu+Yk52B7zNqfqdCYQAAAAAAAABwSDlxdPztJH974KC7P5DkQ6Nr7lVVU4v2bEVV3TnJR5L8ctYoLjRx1STPr6qXjuOY5M88Psm/JPn5rFFcaOImSd5aVY/dWuT/M/e5qupPk5ycIfdqanGhiesmeVaSt0wKt+yoqjpvVT0xyaeSPDrrFyVKhjykm2bYxPKDkwJOi4jjckneluTZWbtQWDK8l7dI8s6q+r1FzL0fVdVlqupFST6Q5H5Zv1BYMmxceMcM7+srq2qj3NLNxmEtzz7nsqzJG2W4d3+Q9QtJTet7KOYA75iqelyGtX2fTC8UtlH/C0+e648meWg2vr/ny5CD+7qqemtVXWHWOQEAAJaNYmEAAADATjhqSttpm+1cVbfIsEvUbeaY+7AMyWBvrqrNfGm/VT+R9YsbbeRHkrxrN4oWbcELk3xv1Ha/eQebJE+NX/8ru/vrm+j78CSvzVBAa1YXSvInk+JyW7mHWzIpbPf6JL84Y9f/lSGhYb2knr3gmRl2Udzs7y4ryR9W1QP/p6HqqCRvTHLnGea9YJJXV9UNZuizJZOkvz9JcoEZul0hw+fZniwYlmH3xLEHbWG8u2f13zHP2MJ4AAAAAAAAAMAeUlVXyVCkZaVXdvfpo7bnjY4vmqHA0CJjuVeGImVHztDt5zMUmTowRmUo2vOErF/c56Cpk/xeVT10hnlXDzLM/cIkD5mx680y5LPMVJRnKyYFof6/JL+dOQrOZCjq9faq+tktxnGlDJsi3mTGro+tqidtZe79qKquneQ9Se6RtTeHXM8dMuRfXnWLcVjLs8+5LGvyJzMUSJu3KNShmAO8IyZFvn43c76/VXV0krdneK7PM8cQN0vynqq68TzzAwAALItd+0ePAAAAwKGhqq6c6YVwPrXJ/j+b5OVZ/cXuWUnelKGI2GeTfDPDDnHHJPmpJDcfXX/DJK+sqp/s7nFhq+3y/Qw7wv17kv9M8tUMRdIqyYWT/HCSG2fYGW1lYaQjkvxNVf14d392nfE/kuQbkz9fIclFVpz73uT8Rs7YxDXr6u4vVdXrMiTaHHDbqrpkd39pjiHvk9WFop497cKVqup/J3nUlFNfS/KPSd6f5EsZdg49KsOudbdOcrXR9SdmeF8fPlPUi/PsJMevOP5ohuJh/5nhtRyZ5MeT3CWrd637ySS/keQp2x/m4lXVryV54IqmU5L8fZJ/y/Daj0pyowyJVRcedf+TqvqHDJ8Hf5NkZTGt9yd5Q5JPJzk9w/v2U0lun4OftfMneVZVXb+7z17Qy5qqqn4zybRdIM+cxPqWJJ/PkDh1xQzr68DOoxdM8sqs2AF3m5yV5IMrjq+Rgz+Lv57kv2YZsLv/vapOTnLciub7VNVjuvvbc8T44NHxV5O8bI5xAAAAAAAAAIC96f5ZXVRoXBgsSV6U5P/k4KI9JyZ5yYLiuH6S318RyzeSvC5DIakvZchL+ZEkd82Q47bSParqld39sgz5JCeuOHdKktdkyJ/5aob8mRtOxhnnzzy5ql7T3Z+Z8zU8LMkvrDg+Pcmrkrw3yX9P5r56hryly4/6Xj7Jm6rqOt39jWyjyUaCb5/EMvZvSd6cIWfvQByXzFDM67YZNpQ84IgkL6uqm3b3++cI5UIZ8rp+aHLcSd6R5J8y5NSckeQSGfID75TkfKP+j6mqv+/ud68x/hfzg9ydI5JceXT+k9k4/2+m3J4NbGu+YlVdP8k/Z3itK52T5K0Z3ttPT2I4f5LLJTk2yS1y8Lr+4Qybbl6vu7+5iZjGrOUZ1/ISrclLJ/m7HLzW3pOhiNkpGd6Hy2TIg/v5TYx3SOQA75AH5ODidWdkyOt9e4Zn8rAMa/r4DO/7QSaFwt6d1TmzyXCP354h1/brSc6b4T7/RIZNqg9fce2lkry2qq7b3ads7SUBAADsjuru3Y4BAAAAWEJVdUyGxIqV3tzdx804ziOTPHnU/PUkF+/uczboe8UMX7QftaL57CR/nOQPu/vL6/S9TpK/zMEFg5Lkj7r7YRvMe0xWv/b7dfdz1+s36fuxJB/OsCvbmzaTbDL5EvsPktx9dOq13f0zG/WfjPHcJPdd0XRKdx+zmb5rjHdyhkSaA9a991V1+wzJJCs9rLv/aI65P5YhieKAzyU5er3nparulCHJY6WvJ3l0kud393fX6FcZdgh9ZoYElJXu0N2vnjH8mUx5n7+bHySqfDHJr3T31IJQVXVEkqdnKK620jeSXLa7v7PB3Cckec6o+YrzJBhV1fiXjE/o7pM26HNSkt8ZNZ+ZITHj2xkSlp7V3dMSPy6VoYjgTUen/iJDwsdTJ8efSvLA7n7jGjFcP8lrs/re36O7/3q9+Nd6Dd294Y6WVXW1JB/I6gTA10/i/dwa/e6U5Bn5QcLLdzIkn806/8mZYX2v6PeZJEevaHped5+wUb8p49wlqwudndjdGxYFHI1zvSTvGzU/pbsfMWtMAAAAAAAAAMDeU1XnylAM6bIrmj+f5PLTco2q6rUZitMccE6SK81aMKSqjstQ1GilA3kvSfK0JI+fVminqg7PkNvykNGpj2bIA3pnhqIpG+XPXDpD/sxPjE79RXf/0iZew0lZnbuzMnfpOUl+c43XcFiGDQ2flNX5L8/t7vvNM/9m8l4mfV+RIedrpXdM4l2r8NaBgka/nSH2lXN9Jsm1uvv0DeYd50itfL/eneSXu/tf1uh7TIb7dd3RqX/o7luvN++k/3FZ/cwd390nb9R3O2xDvuJFMuSKjsd4TpKTunvNomeTDW2fnuRWo1N/19132WDe42Itb2ktT8ZZljX5/fygcNyHkjyou9+5Rt/zTcsr3Q85wIv8vJgnZ3CN3NSV9+aZSR7X3V9do/9B96aqzpvkbUluMLr0NUke2d3/sU4sl07yh0nuNTr13iQ3mbYmAQAAlt1hG18CAAAAMJ+qukySh0859dcbFQqbeFEOLhT27SS36u5HrlcoLEm6+wMZkif+cXTqV6pqvBPaIt2gu+/S3a/Y7K503X1Kd98jyUmjU7etqmk7rS2j12XY3WulE2YdpKpumoMLhSVDcsF6hcIumdWJBR/PkCzyF2sVCkuSHrwiw26A4wJNfzApJraTDiTcfCrJjdcqFJYk3X1Ghvf4H0anjsqw499edKBQ2C27+5lrJWJ0938n+ZkMOzWudK8kT5z8+d8zJHNMLRQ2Ged9mf5ebSrJaQuekdXJVS9N8jNrFQpLksmzemx+8LrPv9a1S+6VWb3eHjzHOOM+neTP54oIAAAAAAAAANiLbpODC4UlyQvXyTV63uj4sMyR47SGA8WFfq27f3VaYZ4k6e4zu/uhWZ3zc7Ukfz+J6YwkP7VB/swXM+TPjPPofqGq5s0pOZDP8r+7+/7rvIZzuvupSX4+w+afK51QVT855/wbqqoHZnVRoj9LcrP1ihIlSXd/Y7LR6ImjU8ck+eU5wjnwfr0myXFrFQqbzP2ZJD+d1Tl2P11VV5hj7v3m6Tm4UNj3k9xr8hyuWSgsSbr7kxk+C8Y5hHeuqhvNEYu1PNjUWl6yNXmgGNXbk9x8rUJhk7nXyis9VHOAt9uBe/Ow7n7wWoXCkqn35qSsLhT26O7+2fUKhU3G+mJ33zvJE0anbpDk5zYOGwAAYPkoFgYAAABsi8lubW9IconRqW9n2EFro/4/neQmo+b7d/ebNhtDd5+VIYnhKyuaz5PkNzc7xqw2mxywhidm2K3qgEpy/61FtDO6++wMO6mt9GNVdb0Zh5pWpGmcxDP2a0mOXHH87SS3Xq/o0lh3fzbJL4yar5Hk9psdY4G+l+Sum9mxtLs705/n8S6Je8mvr5ekc8Akgekpo+YLJLlghp0R79rd42Ji08Z5W4bPqpWOr6pxMa+FqKofS3L8qPkTSe6zmSKK3X1g58k9a5L4Ni7qdf2quv5mx6iqI7N6J8Z/7O5PbDU+AAAAAAAAAGDPGBeYSZLnr3P9q5KMi+bcr6oW9W/sXtzd/2+T1/72lLZLTv77axsV2UmS7v56kqeOmi+cYZPNeZ3c3Y/ZzIXd/ZokT5py6le3MP+aqurcSR47an5Ddz9kkke1Kd39nCR/OWr+jao6fNr1G/hMhqJWa25ouWLer2V1wZrDMhQRO2RV1dWS3G3U/Fvd/aLNjjG5/7+UZFw46NFzhmUtD9Zdy0u6Jr+Z5G7dfdocfQ/ZHOAd8vLu/qNZOlTVRZL8yqj5md395FnG6e6Tsnrz6Xk/HwAAAHaVYmEAAADAQlTV+arqh6rqdlX1F0k+lORaUy59wCaLOD1qdPzW7n7JrHFNvrj/v6PmO806zk6YJEe8YNR8s92IZU7PntJ2wmY7V9UFktx11PyWyc5/a/U5Iqt3kHtqd39qs/Me0N1vT/LGUfNuPCsv7u73b/bi7v5IkvGulLMWaVsWH8vqpJ/1vHyN9hdM3pfN+tvR8bmT/NgM/WfxoCltD+vuMzc7QHf/Q4bdJ/eyv0hy1qjtwTP0v2+G4nArPXNLEQEAAAAAAAAAe0ZVXTLJ7UbN/9Ld/75Wn0l+xjgH7egkt1hASN/P6qI5a+ru9yb5rymnPpqNN1dcaZz3kiTXnaH/2KyFvp6cZJwPeIequswWYljLL2S4Xwd0VheR2awnTvofcKms3tx0M54wY3Ghv8nwrKy0V3O9FuUROfjfuX46qzeR3FB3fy/J74+abzPHppHW8g9stJaXcU3+UXefOmcMW7IPcoC30zlJHj5Hv4ckOWLF8RlZnV++WU8cHV+nqo6ZcywAAIBdo1gYAAAAMItjq6qn/ST5ToZEgdckeUBWF3H5dpJ7dveLN5qkqi6a5KdGzbMUEBp77ej46Ko6euqVu+/jo+PrVtV5diWSGU2KM71n1HyPGXZ3u0uSC43aNkqWuWWSo0Ztf7XJ+aYZPyvHbmGseT1rjj7j9/2qiwhkFzxnxh0FP5VhJ8CxWZ+Bf53SdrUZx9is24yOv5DVz91m/PkCYtk13f2lJC8bNf9CVY3X81p+aXR8avZ+ATUAAAAAAAAAYPPum2ScV/W8TfR7/pS2E7ceTv6pu0+Zsc8HprTNmj/zySSnjZrnzXt5V3d/eJYO3f3drC6Oc+4MeV2L9nOj45O7+xPzDNTdn00yfq2z5op9K8mG+ZCjeb+e1TmC25WntPSqqpLcedT83O4eF1TbrNeNjg9PcqMZx7CWf2Cjtbxsa7IzfdPbnbRnc4C32Zu6+zNz9Bs/Yy/r7vE62ax3JPnGqG03coQBAAC2RLEwAAAAYLudnqHQ19U3Uyhs4uZJatT2ji3E8OkpbT++hfE2raqOqKrbVtWjq+r5VfXaqnprVf1LVX1g/JPkT0dDHJ5hh7S9Ylzc66JJbr/JvvcbHZ+R1cWExsZf1J86R6LOSuNn5ZgZihctwneyuvDXZnxydHyuqjpi6pXL7S1z9BnvyvjtJO+fcYzPTGlb+H2f7Gh7xVHzq+ZMbvuHDAmHe9n48+4CSe6zUaeqOjbJNUbNz+rusxcVGAAAAAAAAACw9O4/Oj47yV9v1Km735HVxVzuONngcivmyXuZluf01gWMM2/eyyvn7Pd3U9puPOdYU02KSt181LyVnMJkda7YrDmF7+rus+aYd5zrdeQcY+wX1+6QKh4AACAASURBVEpykVHb3Pe1u7+W1ZtPznpfreWDTV3LS7omP9Hdn9tiDAc5BHOAt8s/z9qhqi6S5MdGzVv5fDgnq9fYjuSSAwAALNK5dzsAAAAAYN97X5KnTXb92qybTml7eVVtepe1Tbj4Asdapaqul+QRGQplnX+Lwx2VZKEJDNvor5P8UQ5+zSdkg6JfVXV0kuNGzS/t7o2KIY2flYtMEi7mNa3A1sWzejex7XJKd39vjn7jBKdkSCI7Y4vx7LR5dhU8fXR8yhxFo8ZjJNuThHe9KW2zFjZLknT32VX1oSQ32VpIu6e731VV78/B78uDkvy/Dbo+eHR8doailAAAAAAAAADAIaCqbprk6qPm13f3lzc5xPOT/O6K48OT3DPJ07YQ1iLyXhY1zrx5L3PlsST5cJLvJTnPirZpeTJb8SMZNq5c6b5V9TNbGPMKo+NZcwrHRec2a5zrdSgXC5uWK/q0qjpzC2NeYHQ86321lje3lpdxTf7LFuY+yCGcA7xd5rk3N0ly2KjtMVX10C3EcZXR8bbmkgMAAGwHxcIAAACAWXwr0xMYzpNhd7fLTDl3fJL3VtUJ3b3hzo0Tl5vSdq1N9t2siy14vCRJVZ0nyR9nKGYz/pJ6XnsmGai7v1lVr0hyjxXNt6qqy3T3F9bpekKSGrU9ZxNTjp+VCyS59ib6zeJimS9xZx5fm7PftAJj55nStuy+Pkef8WufeYzu/t6w0eFBtuP9u+SUto9uYbz/zB4uFjbxpzl4rf9IVR3X3SdPu7iqLpnkTqPmV3f3qdsUHwAAAAAAAACwfE6c0va8Gfq/IMkTc3C+0onZWrGwReS9LGqcefNe5spj6e4zq+ozSX54RfO0PJmtmJZTeLk12uc1a07honK99mKe16JMu3/jQoBbNet9tZY3t5aXcU1+aasTHuo5wNtonnsz7Vm60lYDGdmWXHIAAIDttKj/WQUAAAAODe/r7utM+blmd182w5emJ2QoYLPSeZO8oKp+dpPz7MSXr1vd6WuVSZLAy5I8JIv9vcteSwYaF/k6V5J7r3VxDVWa7jNq/nh3v20Tc413ptsOC39W1jEtaeiQ0d2LeP3L/B4eNaVtvFPoLLbSd1n8TZKvjtoetM71J2b4O2WlZyw0IgAAAAAAAABgaVXVEUnuOmr+epLXbHaM7j4lycmj5mtX1fW2ENpCclYWlD8zr0XmsUzLk9mKZcwpXOY8pb1i397XQ2AtL+O9O20rk8kB3lbz3JtlfMYAAAB2nWJhAAAAwMJ099e6+3lJrpOhAMxK50rywqo6ZhNDXWTBoe2URyW5w5T2U5P8WZJ7JblJkstnSKA4X3fXyp8kx+9YtNvnjUlOGbXdb53rj83q3b7GBcdWqaoLJDl8ttBgV11oStu3tjDeVvouhe7+bpK/GjXfuaouNb62qg5L8sBR88czfOYAAAAAAAAAAIeGX0hywVHbS7r7zBnHed6UthPnC2nfWGQey7Q8ma3YqzmFrM993R47sZaX8d6dvcX+coC3zzz3ZhmfMQAAgF137t0OAAAAANh/uvvMqrp3kkvl4C++L5yhKMwtNhjiO6Pjb3T3Un/pW1WXTPKYUfPZSR6R5E+7e7NfdO/5Xaq6u6vqeUkev6L56lV14+5+15Qu40Ji30/y/E1M9d0k5+Tggviv7O47zRQw7JzTp7SNk1dnsZW+y+TPkjw8P1jL58mQfPv7o+tuk+SYUdufd3dva3QAAAAAAAAAwDKZVtDrQVX1oAWMffeqelh3j/PXDhUXTHLaFvquNC1PZium3ZM7dverFjwPO2vafb1Id39jxyPZX3ZiLe+rNSkHeClNe8au090f3PFIAAAAlshhG18CAAAAMLvJF+P3yeqEg5+qqrtt0P0ro+OjquqohQW3PW6f5AKjtkd195/MkCSQJBddYEy76blJxgV8ThhfVFVHJLnLqPn/6+5TN5qgu89JMk4KuuLmQ2QRquo8ux3DHjItie3ILYy3lb5Lo7tPSfKaUfMDq2r8++sHj46/m+GzBgAAAAAAAAA4BFTVNZLceBunOCrJnbdx/GW3yDyWRRd7GucUJnLF9oNp9/WYnQ5iH9qJtbzf1qQc4Ol2Mz90vz1jAAAAC6FYGAAAALBtuvtzSR4/5dTvb1Bg6L+ntF1rMVFtm58eHX89yZ/OMc6VFhDLruvuTyc5edT8C1V1vlHbXbN6J7rnzDDV+Fm5alUdPkP/Q9n3prTNk9hxsa0Gcgj50pS2q21hvKtvoe+yGX9eHp3kNgcOquqg44mXdvdXtzswAAAAAAAAAGBpnLhP5lhWV52nU1WdN6sLPE3Lk9mKvZhTyMbc1+2xE2t5v927/ZQDvKjc0GR3i5/tt2cMAABgIRQLAwAAALbbM5J8atR2payfVPWeKW3jIjHL5vKj43d391lzjHOTRQSzJMZFv45McqdR2wmj468lefUMc4yflfMnOW6G/oey06a0XXiOca6y1UAOIe+f0na9eQaqqnNnfyW+/FOSj47aHrzizw/M6t9nP2NbIwIAAAAAAAAAlsZkc8p7j5rPSvLBLf58bTTmcVW1DMVedsNceSwZcljGhWim5clsxYeSfHfUdusFz8HO24u5onvBTqzl/bYm91MO8EJyQ6vqcknGGwTvpHdPafP5AAAAHPIUCwMAAAC21eTL8idOOfVbVXX4Gt3+cUrb3SbFcZbVxUfH4ySyDVXVxZMcP+f8Z4+OzzXnOIv08qxOOrjfgT9U1ZWT3Hx0/kXdfeYMc0x7Vu41Q/9D2TemtM2T6HjsVgM5VHT3l5J8etR8+6qa5/e0t0pywa1HNZNt+5zp7k7yZ6Pm21TV0ZNk33GByQ9097sWNT8AAAAAAAAAsPRun+QSo7ZXdPd1tvKT5HGjMSsrcpwOMXecs9+dp7QtNK+ju7+b5G2j5stU1S0WOc8SG+ftJLubI7ioPKJ3JPnWqO12VXWROcdjsO1reR+uyf2UA7wvckO7+5Qknxg137Cqrrob8QAAACwLxcIAAACAnfDCJB8btV0uyQOmXdzdp2b1bmRXTHLCwiNbnHHCyjhxYDMekvl34Tp9dHzEnOMsTHd/O8lLRs23qKoDO7CdMKXbc2ac5h+yene6u1fV1WYc51D00SltN5xlgKo6V5L7LyacQ8brR8eXTXK7OcaZ+vm5zbb7c+a5Sc5YcXxYkgcmuVOSS42ufcaC5wYAAAAAAAAAltt4o7FkyEvbqpckOWvUdsKcm7/tdTepqmvO0mGyYei9R81nJ/mnhUX1A6+a0nbSNsyzjMZ5O8nu5gguJI9oshntG0bNF0rysHnG43/s1FreT2tyP+UAn5qD8/CSGXNDJx64hRgWZfyMHZbk8bsRCAAAwLI4FH9pCQAAAOyw7v5+kt+dcuoxVbXWF+O/N6XtKUu8I9QXRsc/UVUX3GznSWLGY7Yw/9dHx0ctye564+JfhyW5zySZ7j6jcx/s7n+dZfDu/kqSvxg1nyvJi6vq/DNFeojp7i8l+dyo+a6TAmCb9ZDMt+PcoeyZU9qeUlXn3ewAVXXLJHdYXEibNv6cWei97+7Tkrxg1Hxikl8ZtZ2W5MWLnBsAAAAAAAAAWF5V9UNJ/teo+ctZXWRoZt39taze/O1ySW611bH3qP874/WPzPB+rfSq7h7n0y3CXyX54qjtZlX1qG2Ya9mM83aS3c3bWmS+4rRc0UdW1c3mHI/BTqzl/bQm900OcHefk+QDo+bbVdWRmx2jqm6f5CfnmX/BnprVGwrfs6ruthvBAAAALAPFwgAAAICd8uIk/zlqu2ySB027uLtfkeR9o+Yjk7x+1h3PDqiqC1XVI6rqXvP038BbR8dHJPmdzXSsqmOSvDrJ4VuY/8NT2m67hfEWorvfmdX3/YQkt0hyhVH7s+ec5g+yele36yZ5xbzJElV1dFU9rap+dM6Y9opxouMVkvz6ZjpW1S2S/J+FR7TPdfeHk/zzqPmqSZ6zmR1pq+qHs7qg1k4Zf878aFVdfsFz/Ono+FJJxol/L+zu8c6HAAAAAAAAAMD+db8MGwiu9JLuPntB479wStuJCxp7r7lFVT1pMxdW1W2S/PaUU/9vsSENuvs7mV5Y6ver6qHzjltVt66qP5s/sh3x2STfHLXtZn7gwvIVJxuMvnzUfJ4M+X9zFSuqqsOr6oFV9Rvz9N8ntn0t77M1ud9ygMe5oedPstnn4VpZvVHwrpgUq3v6lFPPrqq7zDNmVZ2rqu5WVdOeXQAAgKWnWBgAAACwIyY7VT1hyqlHV9UF1uh29yRfG7VdKcm7q+q3NrPLVVUdVlXHV9Uzk/xXhuJGl54h9M16eZJzRm2PqKrfrapzrxPf3ZO8Mz/Y5e+0Oed/15T5n1pVd6iq88w55qKMkwauktW71p2V5EXzDN7dX0xy3yQ9OnWrJO+vqnutdw8OqKoLThIA/i7JJ5I8NMn55olpD/nLKW1Prqpfqqqa1qGqzjfZ+e/1GZJbxru2sbFfzur37R5JXj3ZCXeqqrpjkrfkB59h39me8Nb0jtHxYUleVlXXX9QE3f2RrC6mNvbMRc0HAAAAAAAAACy3SQ7L/aacmlbga15/n9WFmG5fVZdY4Bx7wYF8lt+qqmetlZ83ycn79SR/l6Go00rP7e63bGOMT0/yqlHbYUmeVlWvqKprb2aQqrpiVT2qqj6UIQ9qrqJUO6W7O0Oe4Uq3rKo/qKpL7kJIi85X/KUknx61XTzJG6vqD6tqUzmfVXWjqnpqks8k+fMkV54jlv1gJ9fyflmT+y0H+LlJvj9qe2hVPWGt1zMponVikrcluWiGnNyz5ph70R6X5D2jtgsk+duq+suq2tQ6r6ofraonJvlYkr9JsqlnEwAAYNls+I8kAQAAABbopRm+tL3mirZLZSic85Txxd39iaq6a5LXJTnvilMXzLDD1WOq6m1J3p7kC0m+keEL4KOSXD7JdSc/Ry38layO9WNV9cIk9xmdelySE6rqb5N8KMkZGb5Ev1qS2+fgZJRvJ3lUkmfMMf8XquoNOXgnsUsleWWSs6rqs0m+ldUFtX6xu98363wzekGS38/Bu3v+yOiav+/ur847QXe/vKoen+R3R6euOJn/KVV1cpL3JflyhvfiwhmejaskuX6Sa2VrO7vtOd39nqp6VZI7rGg+V4ZiTA+pqldkKJx2VpJLJLlehmdsZYLZr0fxppl0939W1W8leero1O2SfKKqXp9hp8IvZNjR70oZ7tGPrbj21CQvy/D+75RXZSjgeNEVbTdK8t6qOj3J5zOleFx3X2fGeZ6e5Pg1zr2tu6ftoggAAAAAAAAA7E/H5wdFWA74eHe/e1ETdPeZVfWyJL+4ovk8Se6V5I8XNc8e8PgMm3Emw3tx16p6ZZL3JvlShlyrqye5S5IrTOl/SpLf2M4Au7ur6l4ZitmMC73cMckdq+qDSU5O8vEkB3LSjspQfOpaGXKgxs/UXvDsJLcetT06w4atX8iQ13P26Pyru/vxiw5k0fmK3f3Vqrp9hvu6srDVuZM8PMmvVtU7M2y0+LkkX8+Q63dUkssk+fEMOYCHWoG/tezYWt4va3K/5QB39+er6mlZnV/4+CT3rKqXJ/mPScwXy5CbeLsc/Dw8OcOmz0fP+noWqbu/W1V3ylBQ7fKj0ydmuD/vS/LmDIUCv5YhD/aoDLmu18nw+bDmRq4AAAB7iWJhAAAAwI7p7nOq6gkZioat9MiqekZ3f2tKnzdW1c2T/G1Wf8l7wSS3mvwsg19NcsMMSRQrXS4bF/T5XpKfz/DF+7wekeTYDO/LSufN2jvkHbGF+TZlRRLD7da57NkLmOdJVfX5DIWGzjc6fakkd5v8cLAHJblBksuO2n8sBxenmuYPu/vPq0qxsBl19x9V1cWTPGZ06nxJ7jT5Wcu3MiRS/cw2hTfVJOnmN5I8b8rpC2VIgFqEVyb5bFZ/5idzJFIBAAAAAAAAAHvaiVPaXrgN87wwBxcLOzD3oVQs7CkZCqrcdXJ84QyFc8bFc6b5XJKf6u5vbFNs/6O7z5jkFD4nQ7GjsWtnddGi/eDlSd6Y5BZTzl1m8jP2gW2MZ6H5it39b1V1gyR/l+RHp4x57OSHje3oWt5Ha3K/5QD/VpJbZvV6unKSR24Qy0sm/e++wXU7YlL87IYZ4vrJ0elzZdj09EY7HhgAAMAuOGy3AwAAAAAOOQd211rpEkl+Za0O3f2eJNfNkEjwvS3M3Rl2J3vrFsZYe/Dub2b4Yv1dM3b9fJJbdvfrtjj/R5L8dJJPbGWcbbJeMbAvJPmHRUzS3c9OcpMkb9riUN9N8jdJ/mvLQS257v5ikptltufmrCQP7+6NEkZYR3c/NsMOjLMkCH0uyfHTdgPcCd39/AyJsadv4xzfT/LnU059OUPSIwAAAAAAAABwCKiqo5LcecqpF23DdG/J6lyha1bVIVN8pLs7yT2TzLpx4NuTHNvdn1p8VNN19+nd/XNJHpzk1C0O918ZchOXWnefk+Tnkrx4t2NJtidfsbs/nqHgzx9l2FBxK96XZEs5mXvVbqzl/bAm91sOcHd/O8lxSd4zS7cMxebuMfnMWRqTXNdbJHlckq9tcbj/yOqNrwEAAPYExcIAAACAHTVJQjhpyqmHV9WF1un3le6+f5KrZPgi+t8zfCm9kdOTvDZDQZ4rdvfx3f3umQPfpO4+NcOuVQ9NslHCxClJfjvJ1bv7LQua/50ZdjW7bZI/S/K2DIkIZyTZzS/u/z7JV9Y49/xJcaCF6O4PdPctktw4yfMzFFfajC9k2CH0vkku3d137+4vLSquZdbdn05yrSSPzfA+rOWsDDuz/Xh3P3UnYtvvuvtPklwzyfOSnLbOpV9K8qQk1+zu9+5EbGvp7r9K8kNJ7pfkBUn+NUN831ngNNOKoT27u89c4BwAAAAAAAAAwHK7Z5Lzjdre2d2fXPREk7y2aUXITlz0XMusu8/u7gdnKJjzpqyfc/avSR6Q5OY7WShspe5+ZpIrTeL4p2xu075zMsT+h0mOT3LMXsmF6u5vdPc9M+QInpTkNUk+meTr2dpGrPPGs/B8xe7+dnc/LMkxGV7j+5JsJr/wuxme2cdmyLG6wVaLN+1lu7WW9/qa3G85wN391SQ3zVDEbb2/O7+f5PVJbtrdj1i2QmEHTJ7r30tydJKHZXh/ztpE17OTvCPJE5PcsLuvMdk4FQAAYM+p4feYAAAAAHtPVV0iyfWSXCLJxZIckWE3udMzFIj6zySn9C7+AqSqrprkhpMYLziJ73NJPtTdH92tuA41VXWVJNfI8JxcLMl5MyRPfDPJp5P856FSGGwzqupaSa6d5OJJLpDhffpohmTLM3Yztv2sqg5PcrMkV0hy6QzJPf+d5ENJPrCsCTjboapenOTuK5o6yVV2K7EUAAAAAAAAAOBQVFUXz7Bp45Uz5OedlmEzwn/djqJtW1VV582QU3i5DLlPF8lQJOb0DJtdfizJx7p7kZvisc2q6sgkN0hyyQz5f0dm2Njw9AyFlD6a5FOL3LR0r6iqk5L8zsq27q4p1+3KWt7ra3K/5QBPXs/1MqylC2W4D59M8o7u/tpuxjavqrpAkusnuWyGz4ejkpyZ4bV9KcPnwye6ezNFxQAAAJaeYmEAAAAAACyNSSHIzyY5fEXzG7r7NrsUEgAAAAAAAAAAwNLZbLEwAAAAYH84bLcDAAAAAACAFR6QgwuFJcnTdyMQAAAAAAAAAAAAAAAAgGWgWBgAAAAAAEuhqi6Y5NdGzZ9I8rpdCAcAAAAAAAAAAAAAAABgKSgWBgAAAADAsnhikkuO2v6ku8/ZjWAAAAAAAAAAAAAAAAAAloFiYQAAAAAA7KqqumhVPSXJb45OnZLkWbsQEgAAAAAAAAAAAAAAAMDSOPduBwAAAAAAwKGlqv4yyfUnhxdPctkkNeXSR3T3WTsWGAAAAAAAAAAAAAAAAMASUiwMAAAAAICddpUk197gmud398t2IhgAAAAAAAAAAAAAAACAZXbYbgcAAAAAAAAjL0zyi7sdBAAAAAAAAAAAAAAAAMAyOPduBwAAAAAAwCHvO0lOTfLOJM/u7pN3NxwAAAAAAAAAAAAAAACA5VHdvdsxAAAAAAAAAAAAAAAAAAAAAAAAAFMcttsBAAAAAAAAAAAAAAAAAAAAAAAAANMpFgYAAAAAAAAAAAAAAAAAAAAAAABLSrEwAAAAAAAAAAAAAAAAAAAAAAAAWFKKhQEAAAAAAAAAAAAAAAAAAAAAAMCSUiwMAAAAAAAAAAAAAAAAAAAAAAAAlpRiYQAAAAAAAAAAAAAAAAAAAAAAALCkFAsDAAAAAAAAAAAAAAAAAAAAAACAJaVYGAAAAAAAAAAAAAAAAAAAAAAAACwpxcIAAAAAAAAAAAAAAAAAAAAAAABgSSkWBgAAAAAAAAAAAAAAAAAAAAAAAEtKsTAAAAAAAAAAAAAAAAAAAAAAAABYUoqFAQAAAAAAAAAAAAAAAAAAAAAAwJI6924HALutqo5McuyKps8mOWuXwgEAAAAAAAAA2IrzJrn8iuM3d/c3dysYAJCjBwAAAAAAAADsE7uan6dYGAxJSK/a7SAAAAAAAAAAALbBHZK8ereDAOCQJkcPAAAAAAAAANiPdjQ/77CdmggAAAAAAAAA+P/Zu/M4u+r68P/vc2cmCYEAARJkUUIAQVMBqXxlCciiaLVfpZQv1dKitl9LhbZYv4D6tQjqryp1a79fqNStxKXWrwsgasEqi0DKIovSAipLCGDINpOQfe7c+/n9QWaYmdzlnJububM8nzx4mHPO55zPmZuc65B88roAAAAAAAAAAAAAAMWIhQEAAAAAAAAAAAAAAAAAAAAAAMA41d3pG4Bx4KnhG9dee20cfPDBnboXAAAAAAAAAICWPfroo3H66acP3/VUvbEAMEas0QMAAAAAAAAAJrxOr88TC4OI/uEbBx98cCxYsKBT9wIAAAAAAAAA0E79zYcAwA5ljR4AAAAAAAAAMBmN6fq80lhOBgAAAAAAAAAAAAAAAAAAAAAAAOQnFgYAAAAAAAAAAAAAAAAAAAAAAADjlFgYAAAAAAAAAAAAAAAAAAAAAAAAjFNiYQAAAAAAAAAAAAAAAAAAAAAAADBOiYUBAAAAAAAAAAAAAAAAAAAAAADAOCUWBgAAAAAAAAAAAAAAAAAAAAAAAOOUWBgAAAAAAAAAAAAAAAAAAAAAAACMU2JhAAAAAAAAAAAAAAAAAAAAAAAAME6JhQEAAAAAAAAAAAAAAAAAAAAAAMA4JRYGAAAAAAAAAAAAAAAAAAAAAAAA45RYGAAAAAAAAAAAAAAAAAAAAAAAAIxTYmEAAAAAAAAAAAAAAAAAAAAAAAAwTomFAQAAAAAAAAAAAAAAAAAAAAAAwDglFgYAAAAAAAAAAAAAAAAAAAAAAADjVHenbwAAAAAAAAAA2iGlFNVqNVJKnb4VgBGyLItSqRRZlnX6VgAAAAAAAAAAAIAJSCwMAAAAAAAAgAmpUqnEhg0bYt26dbFhw4aoVCqdviWAhqZNmxazZs2KWbNmxYwZM8TDAAAAAAAAAAAAgFzEwgAAAAAAAACYUCqVSixbtizWrVvX6VsBKKS/vz9Wr14dq1evjp6enth3331j5syZnb4tAAAAAAAAAAAAYJwrdfoGAAAAAAAAACCvcrkcTz75pFAYMOGVy+VYunRpbNy4sdO3AgAAAAAAAAAAAIxzYmEAAAAAAAAATAhbtmyJJUuWxJYtWzp9KwBtkVISDAMAAAAAAAAAAACa6u70DQAAAAAAAABAHsuXL4+BgYER+7Isi5kzZ8asWbNip512iq6ursiyrEN3CFBbSinK5XKsX78+nnvuuSiXyyOO/eY3v4mDDjrI+xcAAAAAAAAAAABQk1gYAAAAAAAAAONeuVyODRs2jNg3bdq0ePGLXxzTpk3r0F0B5NfT0xMzZ86MOXPmxDPPPBPr1q0bOlYul2PLli0xY8aMDt4hAAAAAAAAAAAAMF6VOn0DAAAAAAAAANDM2rVrR2yXSqU44IADhMKACSfLsthvv/2ip6dnxP7nnnuuQ3cEAAAAAAAAAAAAjHdiYQAAAAAAAACMe6NjYbvuumt0d3d36G4Atk+WZbHrrruO2Ldu3boO3Q0AAAAAAAAAAAAw3omFAQAAAAAAADCupZSiv79/xL7RkR2AiWaXXXYZsd3f3x8ppQ7dDQAAAAAAAAAAADCeiYUBAAAAAAAAMK5Vq9Vt9vX09HTgTgDap7u7e5t9td7vAAAAAAAAAAAAAMTCAAAAAAAAABjXUkrb7CuV/HE3MLHVeh+r9X4HAAAAAAAAAAAAYPU0AAAAAAAAAAAAAAAAAAAAAAAAjFPdnb4BxkaWZT0RcXxEvCQi9omI9RHxm4i4P6W0pM1zHRgRR0bEvhGxS0Qsi4gnI2JxSqnczrkAAAAAAAAAAAAAAAAAAAAAAAAmM7GwDsmybH5EHB0Rr9r6v0dFxKxhQ55MKc1rwzxzIuLDEfEHEbFHnTGLI+IzKaXvbOdcZ0bEeyPi2DpDerMs+2ZEfCiltGp75gIAAAAAAAAAAAAAAAAAAAAAAJgKxMLGUJZlJ0XEB+L5QFjNcFeb5/udiLg6IuY2GXpcRByXZdnXI+LclNKGgvPsEhFfiIi3Nhm6R0S8OyLOyLLs7SmlG4vMAwAAAAAAAAAAAAAAAAAAAAAAMNWIhY2tIyPitLGYaGuY7NqImDZsd4qI+yLi8YjYPSJeGRF7DTt+dkTsmmXZ6Smlas55uiLimxHxxlGHVkbE/RGxNiIO2jpXtvXY3hFxXZZlr00p3V7gywIAAAAAAAAAAAAAAAAAAAAAAJhSSp2+ASIiYktEPNaui2VZtn9EfDdGhsLuiIgFKaVXpZTOSimdFhH7R8QFEVEeNu6/R8T/V2C6T8TIUFg5Iv4yIvZPKb1+61y/HRG/FRH/MWzc9Ii4NsuyfQrMBQAAd3Xq+gAAIABJREFUAAAAAAAAAAAAAAAAAAAAMKWIhY29ckQ8EBFfjIhzI+K3I2JWRPzPNs7x4YiYPWx7cUS8NqX08PBBKaUtKaX/ExFnjTr/vVmWHdBskizL5sfzsbHh/kdK6YqUUv+ouR6KiFNjZDBsz4i4tNk8AAAAAAAAAAAAAAAAAAAAAAAAU5VY2NhaFBG7ppRemVJ6V0rp8yml+1JK5XZNkGXZIRHx9mG7+iPiHSmlzfXOSSldu/XeBk2PfBGvSyOiZ9j21Sml6xrMsyki3rH1ngb96dboGAAAAAAAAAAAAAAAAAAAAAAAAKOIhY2hlFJfo2hXm/xhRHQN2/5uSunXOc67fNT2WVmWzag3OMuynSLizCbX2EZK6VcRce2wXd3x/D0DAAAAAAAAAAAAAAAAAAAAAAAwiljY5PN7o7b/Oc9JKaWHI+KuYbt2jojTGpzy+oiYOWz7P1JKj+S6w23v6Yyc5wEAAAAAAABAU/PmzYssy4b+veWWWzp9SwAAAAAAAAAAAADQMrGwSSTLshdFxBHDdg1ExB0FLnHLqO3faTD2DU3ObeS2eP7eBr0yy7K9C5wPAAAAAAAAAAAAAAAAAAAAAAAwJYiFTS6/NWr7FymlDQXOXzxqe0GBuf4j7yRb7+nBAnMBAAAAAAAAAAAAAAAAAAAAAABMSWJhk8vLR20/WvD8x5pcb7iXjeFcAAAAAAAAAAAAAAAAAAAAAAAAU1J3p2+Atjp41PbSguc/OWp7zyzLZqeU+obvzLJsj4jYYzvnGj3+kILnAzBBlKv9kSJFREQpK0V31rN1fzlSVLfr2l1Zd3RlXXXnnFaanus61VSNUqahSnu169fV4LPSk02LLMtGHEspRYo0Yp5KGohKquS6dlfWFV1Z99Z5XnhWt0cWpegp9Wy9l0pU0kDNcc2ez5RSlFN/3WvnUU2VGBg1//D3jeE/R8Pfk4rOAwAAAAAAAADAC1K1GlnJeiwAAAAAAACAdhILm1x2H7W9osjJKaX1WZZtjogZw3bvFhF9o4aOnmdjSmlDkblq3NtuBc8HYJy7c+3N8e+918Sy/hf6kKXoimpUohRd8XziaPtiYdOzGXHozofHH+59XuzavXvctfbm+NGwOef07BMn7v47ceoeb655/qMb/yuuWfmVeGrL4/Hi6fPjjDnviINmvmy77omprZqq8YPV/xp3rr0pNlc3xhG7vDrO2vvPYkZpp8LX+uXGB+O6lV+JJzc/FimqsVvX7HjVrifG7805JyKyuG7VV+Pu526NShqIw3f5b3HK7DfHt1d8KR7b9PA2ka16urOeGEjl6Mmm5T4nj126dov1lbUxLZse/WlLzTF79uwdC3c7LU7b44wREbRqqsQ1KxfFz567LdZWRn4bmkUpXjLjoHjLXn8Uh+18RN35N1TWxTeWfy4e2vBAbK5uHHGsJ5sWA6kcu3TtGpuqG2MglSOLUsTWd6Xn58nixTMOijfvdXa8fOdXtvgqAAAAAAAAAABMLemGr0X6+qcili2JdOQJkV14RWQvOqDTtwUAAAAAAAAwKYiFTS67jNre1MI1NsXIWNisHTjPcLXmKSzLsrkRMafgaQe1Y24AXvDAujvjK8/+wzb7q1EZ8b/ba0vaHL9Yf3es7F8W/32vs2PRqDlXlpfFd1Z+OXpK0+LE3d8w4tizW56OK57+yFDI6InNv4wrnv5wvH/ep2Pvafu15f6Yen6w+hvxb6u/NbR953M3x/rKujhv/78pdJ1ntiyJf3z6oyMCXmsrffGTvuuiGpXoiu74cd+1Q8cWr/1xLF7748L3O5DKERFtDYVFRKyvrI2IqBsKi4hYXV4e1636anRn3XHqHm8Z2v/tFV+OW9b8oOY5Karx5OZfx+ee+du46CV/F/vPmLftmJTiyqc/Eks2/7rmNQa/1nVb73HwuiPnSbF086Nx1TMfiwtf8ol4yQzfLgIAAAAAAAAANJJ+el2kv/3TF3bc9aNIf3VaxFcfiGx68Q/aAwAAAAAAAGAksbDJZXTEa3ML19gUEbMbXLOd8zS6ZqvOi4hL23QtAFp0z3O3jul8y/qfim+v+FLd43etvXmbWNj96/9jm5DRlrQ5fr7urjhtzzN2yH0yuVVTNe5Y8+/b7P/PDT+LdQNrY1b3brmvdf+6/6gb8Lp77a2RZVnL9zne3PXczUOxsEqqxN053j/KqT/uX39HzVjYivJv6obCihpI5bhv3R1iYQAAAABAXSmluO++++KRRx6JFStWxJYtW2LOnDmx3377xcKFC2OXXdr1R+Fj76mnnop77rknnn766di0aVPstdde8YpXvCJe9apXRalU2q5rr1ixIm677bb4zW9+E5s2bYp999035s+fH8ccc8x2X7uWhx56KB588MFYuXJlPPfcc7HHHnvEPvvsEwsXLow999yz7fMBAMBUlG78+rY7ly2J+MUdEUe/dqxvBwAAAAAAAGDSEQub3NIkOweACeLZ/mfGfM7egZV1jz3b//Q2+65fVWNxWkRcu+orYmG05LnKmniusqbmsRXlZYViYbV+zQ7aUF1X+N7Gs2VbXvha11fWxsbq+lznPbul9mtUb3+rGv1cAAAAAABT16pVq+JjH/tYfO1rX4uVK2v/GcW0adPilFNOicsuuyxe/epX57ruO97xjli0aNHQ9hNPPBHz5s3Lde4tt9wSJ5988tD2pZdeGpdddlnd8cM/mOI1r3lN3HLLLRERsXjx4rj00kvjpptuimq1us15e++9d3zwgx+M888/v3DY6/7774+LLroobr755prX3n///ePcc8+N97///dHd3R2XXXZZfPjDHx46fvPNN8dJJ52Ua67Vq1fHJz/5yfja174WzzxT+8+uSqVSHHfccXHppZfGa18rXgAAANvlp9fV3J2+/NHIxMIAAAAAAAAAtlv7P46VThpdVtiphWuMPqdWrWGs5gFggkqx7V/u6KTxdj9MTn3lVXWPpVQZwzuZWKrDns9KgdepOkbPdTV5/wAAAAAARrr22mtj/vz58dnPfrZuKCwior+/P2644YY45phj4txzz42BgYExvMvWfOxjH4sTTzwxfvzjH9eMeUVELF++PP7qr/4qzjzzzOjv78997c985jNx9NFHx09+8pO613766afjkksuide85jWxfPnylr6GiIivfOUrMX/+/Lj88svrhsIiIqrVatx+++3xute9Lv74j/+40NcDAADktGlDp+8AAAAAAAAAYFLo7vQN0FZiYRH/GBHfKnjOQRFR++PMAGhJitTpWxhB7Iex0DdQ/y+EjVXYaiJKUY2UUmRZVuhZLRIW2x5+7gAAAACA4b785S/Hu971rm1iVwcddFC8/OUvj5kzZ8bSpUvj7rvvjkrlhd/H/PznPx9Lly6N66+/Prq7x+dSjU996lPxwQ9+cGj70EMPjUMPPTR23nnnWLZsWdx5552xefPmoePXXHNNXHLJJXH55Zc3vfanP/3puPDCC7fZ//KXvzwOOeSQmD59eixdujTuueeeqFQqsXjx4jjrrLPixBNPLPx1fOhDH4qPfvSjI/ZlWRaHHnpoHHLIITFr1qzo6+uLn/3sZyNib1/72tdi2bJlccMNN4zbnyMAAJiQuns6fQcAAAAAAAAAk4LVjZPL2lHbc4qcnGXZLrFtxGtNjnlmZlm2c0qpyEd/zc0xT2EppRURsaLIOVmWtWNqAIZJqVgs7NW7nhyv2f13co394m8+Gb0Noky1VGNsokJMbb3lBrGwwsG69gT3Xjx9frxt7z8fse9fV3w+lm5+tOF5r519ehw167jc89z93K1xy5oftHSPEc8Hubqiq9CzWi/i1e5YYXWMomQAAAAA7FhpYCBi5dOdvo3Jb87+kU3iyNIDDzwQ7373u0eEwo488si48sor47jjRv6e6sqVK+OSSy6Jf/qnfxrad8MNN8SHPvSh+NjHPjZm95zXgw8+GLfddltERJx++unx8Y9/PA477LARY/r6+uK9731vXH311UP7Pv3pT8e73/3umDdvXt1r33vvvfH+979/xL6TTjoprrjiiliwYMGI/StXrowPfehDcdVVV8VPf/rTeOihhwp9HYsWLRoRCiuVSnH++efHhRdeGC95yUtGjE0pxXXXXRcXXHBBLF26NCIifvKTn8Qll1wSH//4xwvNCwAANCAWBgAAAAAAANAWk3eV7tT061HbBxQ8f/T43pRS3+hBKaXVWZb1RcTsYbtfEhEPb8dco+8dgAks1Yn41LNHz14xb6eX5ho7vTS6a9lc8VATFNc3sKrusXphqx1t565Z2zxbO5d2aXre3Gn75H4mIyIe2/RI4Xsbrpqq0ZV1FXpWxyri1amfOwAAAADabOXTkc46tNN3Mell/++XEfvM6/Rt7DB/+qd/Gv39/UPbCxcujBtvvDFmzpy5zdg5c+bEVVddFQcffHBcdNFFQ/svv/zyeNvb3haveMUrxuSe8+rt7Y2IiIsvvjguv/zymmNmz54d//zP/xx9fX1x3XXXRUREpVKJL33pSyMCXaOdf/75MTAwMLR9xhlnxDe/+c3orhGWmzNnTnzuc5+L+fPnx8UXXxyrVtX/vffRnnzyyXj3u989tD19+vS49tpr4w1veEPN8VmWxemnnx7HHXdcHH/88fHoo89/0MYnP/nJ+LM/+7M48MADc88NAAA0IBYGMKaeXJ3iqltTvPmILI6Z78PVAQAAAABgMil1+gZoq9GxroMLnj9/1Hajj+ht91xFQmMAjHPVSIXGZwW+JSllxb99qUY1Uip2T1BUb7lBLGyMwlajlbKuGvuaP0NFnsm812xkMDBYjfyvU2WsYmEd+rkDAAAAAMaXm2++Oe67776h7V133TW++c1v1gyFDXfhhRfG7/7u7w5tV6vV+OxnP7vD7nN7LFy4MD7+8Y83Hfe3f/u3I7ZvuummumPvueeeuOuuu4a299lnn/jyl79cMxQ23EUXXRSnnXZa03sZ7pOf/GRs2rRpaPuzn/1s3VDYcHPnzo1/+Zd/GdquVCrj9ucIAAAmJLEwgDGRUoqFl1fiwA9U4/IbUhx/eTW6zq3G5rL1swAAAAAAMFmIhU0u/zlq+/AsyxqvTB7p+CbXa3Ts2LyTZFm2c0QcXmAuACaYlKqFxnfVCBrVU2rx25fBGBHsKH3llXWPVQv++mtX267W85InBFY0/tUVzZ/h7qz+X/waDH8VCYAVCYttj2rB9zMAAAAAYHJatGjRiO3zzz8/9t1331znfuITnxix/Y1vfCO2bNnStntrlw9+8INRKjX//eEFCxbEvHnzhrYfeOCBumO/8Y1vjNj+i7/4i9htt91y3c8ll1ySa1xExIYNG+LLX/7y0Pb8+fPj3HPPzX3+0UcfHSeccMLQ9ve+973c5wIAAE30TOv0HQBMCd+9L2LxY9vuf/3fWwMHAAAAAACThVjYJJJSWhYRvxi2qzsiFha4xEmjtv+twdgbmpzbyAnx/L0Nuj+ltLzA+QBMMnniRYNKBcJiwxWNNUFRfQOr6h7rVHCqVvQrT5yvlCP+1Wye0bqz+p8SOxjzK/KcjtVrOlZRMgAAAABgfLv99ttHbP/RH/1R7nMXLFgQRx111ND25s2b4957723bvbXDTjvtFKecckru8S972cuGfrxx48ZYv359zXGLFy8esX3WWWflnmPhwoW5g2y33357bNq0aWj7zDPPzBU+G+7kk08e+vGTTz4ZS5cuLXQ+AABMZanSYH1Fd/01IwC0zx9+sfaautt+PcY3AgAAAAAA7DDdzYcwwVwTEYcP235nRPyo2UlZlh0WEa8etmtDk/NujIhNEbHT1u1jsyw7LKX0SI57fMeo7WtynAPABFI0zJUnXjSo1GLrtJqqEVlLp0JT/dUtsa6ytu7xTgWnumpEv/I8Q3niXyPHN3+Gn4+Fbap5rJKef32KBMDGKgDYqdAbAAAAADB+9PX1xWOPPTa0vfvuu4+IZeVx3HHHxX333Te0fc8998Rxxx3XtnvcXgcddFBMmzYt9/jZs2eP2F67dm3ssssu24z7+c9/PvTj3XffPQ4++OBC9/WqV70qvve97zUdNzrmtu+++8aSJUsKzTX663/88cfjJS95SaFrAADAlDXQX/9Yl1gYQD2VaorFj0X8/KkUR8/L4r8dGJFlrS12LftcTAAAAAAAmPTEwiafr0fE30QMlSHOyLLskJRSs8+Ded+o7f+XUtpcb3BKaWOWZd+OiD8edY13Npoky7KXRsTvDds1EBH/0uTeAJhgUqRC44sEwIpGjAaNVViIqWnNwOqGx4sHp4o9Q/XUinjlCXsVCfhFRJRqRMlGez4WVtvg81lN+Vcr1Rtb9P2n6TwdCr0BAAAAAOPHypUrR2wfcsghhf/S5mGHHTZie8WKFdt9X+00Ov7VTE/PyN/zLZfL24zZsGFDbN78wrKDVsJbec956qmnRmy/5z3vife85z2F5xuut7d3u84HAIAppdwgFtYtFgZQS/9Aij/6YjW+PdSXT/Huk7L4v2+NKJXa++m4/QMppnX7xF0AAAAAAJjoxMImmZTSr7MsWxQRf7J117SIuDrLslPrxb+yLHtLRLxj2K7+iPhwjukui4i3RsTgn+K/I8uya1JKNT/WN8uyGRHxz1vvadCXUkqP1RoPwMSVUsFYWIEwUZ4oUS1FIkRQVF95VcPjnYrV1Xpe8sT5sgIBv4h8Eb/urP5/eqStMbVKgTBXZYye6eKhNwAAAADGpTn7R/b/ftnpu5j85uzf6TvYIfr6+kZs77bbboWvMfqc8RaiKpVa+7CWRtasWTNie9asWYWvseuuu+Yat3p14w/1aMW6devafk0AAJi0Nm+sf0wsDKCmf70nDQuFPe9zt6Q445VZnPqy9s91zrFiYQAAAAAAMNGJhY2xLMv2j9qv+4tGbXdnWTavzmXWp5QaFSkujYjfi4jBj/49LiJ+nGXZ/0wpPTLsXqZHxJ9FxKdHnf/plNKTDa4fEREppcezLPuHiLhw2O5vZ1n23oj4fEpp6GPCsix7WUR8ceu9DFod+aJkAEwwqWAYKU+8aGhsjihRLYI/7Ei9AysbHu9UrK7W85InztdVIOAXkS/i15XVX/g5GAkr8jpVC4TFtkelQ6E3AAAAANor6+6O2Gdep2+DCWr0h6Rk2fb/xcp2XGO8mz59+ojt/v7+OiPry3tOK9dupuiH4wAAwJT25CP1j02bXv8YwBT2Dz+u/XsP/3hLNU59WWsfrFvPvz8Ucc6xbb0kAAAAAADQAWJhY+/2iDggx7j9IuKJOscWRcQ76p2YUno6y7IzIuLGiJi2dffxEfFQlmX3RsTjEbFbRBwVEXNGnf79iLgkx/0Nen9ELIiI39m63RMR/zciLsmy7L6IWBcR87fONXy1c39E/F5KaVmBuQCYIFIU+8sTeeJFg7pyRIlqqYxRWIipqa/cqOMaUe1QcKpmLCxHnC8rEPCLiOjKEfHryer/p0faGvMr8jqNVQAwCQ0CAAAAwJS3xx57jNheu3Zt4WuMPmf27Nl1RrauUhlffxYy+mvs6+srfI3e3t5c4/baa68R24sXL45jj/U3YAEAYMwMlOseyvY5cAxvBGD8uv3XKb7/YIqerojTj8zi/qdqj7vm/vbP3btBFB0AAAAAACYDsbBJKqV0S5ZlvxcRV8cLQbAsIl619d9avhER70op5V5BnFKqZFl2VkR8MSL+YNihuRHxhjqnrYiIt6eUbss7DwATS9FPWs8TLxqU5YgS1SL4w47UN9AkFlbw11/R4F49teJ6tQJirYwZLk9crDvrqXtsMOZXzf9taIMAYHsXNQkNAgAAAABz5oz8DK5f/epXha/xy1/+csT23Llza47r7h65jGNgYCD3HK3EuHakrq6u2G+//eKZZ56JiIjHH388Nm7cGDNnzsx9jQcffDDXuL333nvE9q9+9SuxMAAAGEv9m+sfy7L6xwCmiKturcZ5X39hbdvl/9b+eNfuMyPWbKx97N/+s+3TAQAAAAAAHdBabYMJIaX0w4j4rYi4KiIarQq+MyLOTCn9YUppQwvzrE8pvTUi/sfWa9XTGxGfi4jfSindUHQeACaOahQLIxUJExUJiw0n+MOO1Fte2fB4kQhWO5WyGrGwGgGx0WpFxhqOrzHPaI1iYYMxtSLvHWP1mgoNAgAAAACzZ8+Ogw46aGh7zZo18fDDDxe6xuLFi0dsH3300TXH7brrriO216xZk3uO//qv/yp0T2PhmGOOGfpxtVqNW2+9Nfe5vb298fOf/zzX2OOOO27E9o9+9KPc8wAAAG2wpUEsrOAHTwJMNlvKKS7+9sj3woEdsCytXigMAAAAAACYPMTCxlhKaV5KKdvOf99RYL4VKaV3R8SLIuKUiHhnRHwgIv4qIn4/IuanlI5NKX2nDV/bt1NKx0bE/Ig4c+scH9g65ykRsU9K6byUUuOaBgCTQLEFXkUCYLXiR3kI/rAj9Q6sani8aECvXWo9W3nifFmBgN/z19y+WFja+vpUCgTAxioWJjQIAAAAAERELFy4cMT217/+9dznPvzww3HvvfcObc+YMSN++7d/u+bYuXPnjth+6KGHcs/zwx/+MPfYsfLa1752xPYXvvCF3OcuWrQo+vv7c4099dRTo6vrhd+r/t73vhcrVqzIPRcAALCdylvqHxMLA6a4Ox6LWN/gbbJdsqzx8d4N3o8BAAAAAGCiEwubIlJK/Smlm1NKV6eUPpFS+r8ppe+mlJ7YAXM9kVL6ztY5PrF1zptTSvlW8QIw4aWisbACYaIiYbHhBH/YUVJKsabcJBZWMGzVriU5tSJeeZ63roLPWVc0j4V1Zd11jw1Gwoq8TvUCbO1eziQ0CAAAAABERJxzzjkjtq+44op49tlnc537gQ98YMT2W9/61pg+fXrNsUcdddSI7euvvz7XHDfeeGPcfffducaOpbPPPjtmzZo1tH3NNdfEjTfe2PS8Z555Jj7ykY/knmf27Nlx9tlnD22vX78+LrzwwmI3CwAAtK7aaH2FOA0wtT27dmzeB2fV/u2mIes3j8ltAAAAAAAAO5BYGADQdqngp0GWcoSGBnXViB/lURX8YQfZWF0fW1LjVTT1wlY7Wq24Xp7gXlbwOctyBMi6s566x9LW16fI6zRWz7TQIAAAAAAQEXHKKafEkUceObS9du3aeNvb3habNm1qeN5nP/vZuO6664a2syyLv/7rv647/thjj42ZM2cObV9zzTXxs5/9rOEcv/71r+Ptb397sy+hI2bNmhUXXHDBiH1nnXVW3HzzzXXPWbJkSbzuda+LNWvWFJrrsssuGxFh++pXvxrve9/7olIp9vu8Dz30UPz0pz8tdA4AANBgvVjBtWQAk82m8tjMM9BkSd1zYmEAAAAAADDhiYUBAG1XNIxUyhEaGpS1+O1L6lCsicmvt7yy6ZhOxepqxfVKOUJgXQWfszzjexrEwipbX59qyv8XtsYq4iU0CAAAAACTw7PPPhtLlixp6d9BX/rSl2LatGlD27fcckuccMIJcdddd20z36pVq+L888+P9773vSP2X3zxxXH44YfXvc9Zs2bFH/zBHwxtVyqVeNOb3hQ/+tGPthnb398fX/jCF+KYY46J5cuXx+zZs4u8JGPmkksuiVe84hVD288991yceuqpcdZZZ8W3v/3t+MUvfhGPPPJI/OhHP4r3vOc9sWDBgnj44YdjxowZ8Za3vCX3PAceeGB8/vOfH7Hv7/7u72LhwoVx/fXXx8DAQN1zlyxZEldeeWWccsopsWDBgrjpppuKf6EAADCVCYIB1HXTI2MzT7nJkrofP+y9GgAAAAAAJrruTt8AADD5pEafFFlDKZrHiwZ1FQiLDVcpECGCIvoGVjUdUy0ctmrPopxaIb5SjrBXkYDf8+ObP8PdWf3/9BgMDBYJDdYPi7V3QVORgBkAAAAAMH697W1va/nctPUvvR911FFxxRVXxJ//+Z9Htfr872fee++9ccwxx8TBBx8cCxYsiBkzZsRTTz0Vd9999zZxqte97nXx0Y9+tOl8H/3oR+Oaa66JNWvWRETEihUr4vWvf30cfPDBcfjhh8f06dNj+fLlcdddd8WGDRsiIuJFL3pRXH755fH2t7+95a9zR5k2bVr84Ac/iFNOOSUeffTRiHj+Nf3Wt74V3/rWt2qek2VZXHnllbF06dK47rrrRuxv5Jxzzolnn302PvCBDwz9HN15553x5je/OWbOnBmvfOUrY++9946ddtop1q1bF6tWrYqHHnpo6LUGAABaVG2w5kNIDJjiXrRb8XNSSk1/H2S0gSbL79ZsLH4fAAAAAADA+CIWBgC0XSq4wKtImChrMRaWCkSIoIi+co5YWOrMr79aIb48z1uWIyg2cp7m47uznrrH0tYgV5GoX/EAW2uKBMwAAAAAgMnvXe96V8yePTve+c53xvr164f2P/roo0MhrFr+5E/+JK666qro6an/e6WD9ttvv/jOd74Tp59+eqxbt67pHAceeGD84Ac/iOXLlxf8asbOi1/84rjtttvivPPOi2uuuabh2D333DMWLVoUb3rTm+J973vfiGOzZs1qOtfFF18chx9+eLzzne+MZ599dmj/xo0b44477sh1v7Nnz841DgAAGNRgvZhYGDDFlVtY6tY/EDG9+W8jDalUU9O32498P8UZR6U4fP9iETIAAAAAAGD8aK22AQDQQNEwVynbNmhUT1eN+FEelQ7Fmpj8egdWNh3TqeBUrWerVkBstK4Cz2S9eba9Zv1OcWXr61PkdRqrZ1poEAAAAAAY7cwzz4zHHnssLrjggthrr73qjuvp6YnTTjst7rjjjvjSl76UKxQ26JRTTom777473vKWt0SW1f4LnHPmzImLLrooHnjggXjZy15W+OsYay960Yviu9/97lA07OUvf3nsvvvuMWPGjJg/f3689rWvjX/6p3+Kxx57LN70pjfQQVaJAAAgAElEQVRFRMSaNWtGXGO33XbLNdcb3vCGeOKJJ+LKK6+MI488su5rOKinpyeOO+64uOyyy+JXv/pVXHDBBa19kQAAMFU1LNSIhQFT26b+Fs4pFxs/kDNIduRHqvHYCu/LAAAAAAAwUdX/G/sAAC1KBRd4lQr0S7OstdZpp2JNTH595VVNx1Q7FKurFdcr5XiGsoJN4bwBsixKNeNbaevrU035P0IxRTWqqZrr69keQoMAAAAAMDEtWbJkh15/7ty58fd///fxmc98Ju6999545JFHYuXKlbFly5bYa6+9Yv/994+FCxfGrFmzWp7jsMMOi2uvvTZWrVoVt956azz99NOxcePG2HvvvePAAw+ME044Ibq7X1j2cdJJJ0Vq+Bf0RyoydrSrr746rr766pbOXbhwYSxcuDDX2Iceemjox1mWxdy5c3PPM2PGjDjvvPPivPPOi97e3rjzzjtj2bJl0dvbG+VyOXbZZZeYO3duvPSlL43DDjssZs6cWfhrAQAAtmrw3xcppWic7wWY3DYXDH9FPB8Y273Ab1WU8y+9i6/fneJDv+udGQAAAAAAJiKxMACg7QrHwrLmoaFBteJHeRSJEEERfQM5YmEFY3VFn6F6asX18oa9isgzvhRdUYpSVGq8FpV4/vks+pw+Hx4b+TVuz19uqzdHSimyzOIoAAAAAGBbpVIpjj766Dj66KN32Bx77bVX/P7v//4Ou/54tWHDhrjvvvuGtl/60pe2HF/bY4894o1vfGO7bg0AABit0XqNNq/lAJhoNvUXfx/cVDAwtmUg/9jLvpfiQ79b7PoAAAAAAMD4sG09AABgO7QS6ikV+JakVCN+lEfRWBPk1Vte2XRMp2J1XTWerTzPUJFnMvc1s1LdcdX0/PNZKyTWSGWMXlfvHwAAAAAAY2/RokWxcePGoe1jjz22g3cDAAA0lKytAKinaPirlXNamQMAAAAAAJh4xMIAgLZKLUR1SllX/rGRf+xwnYo1MblVUiXWDPQ2Hdep2FStZyvPM1TkmXz+mnkCZF11xw2+bxR9Tsfqda1a0AoAAAAAMKaefvrpuOSSS0bsO+ecczp0NwAAQFONPmCyhQ+fBJhMNvYXP2dTwXOKjgcAAAAAACYmsTAAoK1SFF/clSc0NDQ2a+3bl07Fmpjc1g705grkdSpWV+vZyvMMFXkmn79mngBZqe7cla2vT9HntNbruiOWl1ZDbBAAAAAAYHt85zvfif/9v/93rFy5sunY+++/P0488cTo7X3hwzqOOOKIOPnkk3fkLQIAANujYRBMLAyY2loJeW0q79jxAAAAAADAxNTd6RsAACaXagufBNlVIABWiuZRolqqSSyM9usrr8o1rlOxuloRrzwhsKxglC/PNUtRqhsVGwyuFY2qjdVz7f0DAAAAAGD7rFu3Lj7+8Y/Hpz71qXjDG94Qp556ahxxxBExd+7c6O7ujt7e3njwwQfj+9//flx//fWRhv1507Rp02LRokUdvHsAAKC5BmvGWlhPBjCZbBkofk7RwFgrcwAAAAAAABOPWBgA0FaphShSliM0NKhUMGI0aHiEqFn4J6UUWZa1NA9TS+/AylzjOhWb6qoVC6sT7BpxXsEoX55rlrJS3ahYZevzWY1isbBKwfGtKnpfAAAAAADUVi6X4/rrr4/rr78+1/iddtopvvKVr8QRRxyxg+8MAADYLo2CYGJhwBRXbmH52aZysfH9BWJh8/Ysdm0AAAAAAGD8aK22AQBQR2r0KZF11Aoa1VMvNtRMdVjErFn4p5XgGVNTX3lVrnFFY1OpTYskaz0veZ6holG+PHGxUnTVjYoNxtQqBaNqwyOAL2j/AtNOxd4AAAAAACaL3XffPbq6in1QxfHHHx8//elP48wzz9xBdwUAALSNWBhAXf2txML6i713FomFVb0tAwAAAADAhNXd6RsAACaXVmJhWYEAWNGI0aDhUaFm4Z9KqtaNGsFwfQM5Y2Edik3Vel7yPENFf/3nu2apbqhsMNBXO/5VX9EIW6vGah4AAAAAgMnq9NNPj+XLl8cNN9wQd9xxRzz44IPx5JNPRm9vb2zevDl22mmn2GOPPeKAAw6IE044Id74xjfG8ccf3+nbBgAA8qo2WBsjFgZMceVWYmHlYuOLBMmKXhsAAAAAABg/xMIAgLZKLSzu6ioQJipFaxGvalRr/riW1OQ4DOotr8w1rlOxqVrPS71gV9ExI8bneIZLUaobFatsjYQ1eza3PW9sntVOxd4AAAAAACaTPffcM84+++w4++yzO30rAABA2wmCAdTTP1D8nMKxsAJzrN0UcesvU/zsyRSbyxFvOjyLQ+ZGLH7s+bDZCYdEzJqRFbsBAAAAAABgTIiFAQBt1Upoq0iYqF5sqJlqqtT8cS2VJsdhUN/AqlzjisamUpsWUNaKeOUKexV8znIFyLKuurG/wfeNZs/maLXGt+u1GzFPh2JvAAAAAAAAAAATQsMPmBQSA6a2cgvLzzYXjIVtKRAL6x+IOPnTL6xpvOS6ke/TO0+PuP4vSnHSoYJhAAAAAAAw3rRW2wAAqKOVUE9WIExUJCw2XHVYxKzaJGjWSvCMqamvnDMW1qFfU121YmF5wl4Fn7Na89S6Zr0I2WCgr1IwyjVWr2vR2BsAAAAAAAAAwJTSKBbWMCQGMPn1Fwh5DdrUX3SO9r3XbtgSccbnqlFu4zUBAAAAAID2EAsDANoqtbC4qyuah4YGlXJEiWoZHvtpFv4RBiKPLdXNsaG6LtfYamrhowHbIKvx7X69YFez87Z3fCkrRanOsz4Y/UoFn72xel07FXsDAAAAAAAAAJgQxMIA6iq3sMxtU7nY+P42L6VbszFi8WPtvSYAAAAAALD9xMIAgLZKLUR1shzxokGlFr99GR77aRb+qURnwk5MLH3lVbnHdio21VUjrlcv2PXC8VJkWVZonlJWiiwan1PKuuqGygYjYUWfveoYPasCggAAAAAAAAAALRILA6a4VkJehWNhA8XnaGb5Ou/fAAAAAAAw3oiFAQBtVY3iiwO6msSLhivViB/lUU2Vmj+uJQkDkUPvwMrcYzsVm6oV16sX7Mp7vP5czSNk9WJ/la0xtaKvU6Xm+PYvUKo0ec8AAAAAAAAAAJjSqo3WfIjNAFNXtZqi0sLyweVri43/xL+1/732hv9s+yUBAAAAAIDtJBYGALRVamFxV5E4Uasho2q8sNqiWZCoEsJANNdXXpV77PBff2OpVlyvWXCvWfSr/lzNImRddeceDPQ1C/mNVnR8q1KHfv4AAAAAAAAAACaEJAgGUEu5xSVu/3J3/vfVzeUUS1a3Nk8jVy9Okby/AwAAAADAuCIWBgC0VWoS4qqlWbxoxNgWQ0bDA2HNwk2tfA1MPX0DBWJhYxS1Gq1U49v9WvtGHG8xyNf0ulv/qWUw0Fc01DdWYb9Kh37+AAAAAAAAAAAmhgYxGaEZYAprNRZ2wJ75x97yy9bmyGNp7467NgAAAAAAUJxYGADQVqnRwq86mkWGRoxtMWRUHRYVahZuahYTg4iI3vLK3GOL/ppq5TmqpatGiK9ZnK/VIF/T62ZddZ/fwUBf0VBfrWd5RywvTd4TAAAAAAAAAADqaxQEEwsDprD+FmNhs2fmH/vL5Tvuffbx/MskAQAAAACAMSAWBgC0VUuxsAIBsFZDRtVhEaJm4aZKk5gYRET0DRSIhRWMYLVLrYBXszhfq0G+ZueVtv5Ty+AzWYliz95Yhf28JwAAAAAAAAAANCAWBlBTucWlZwMFzutpbVltLo+v8h4OAAAAAADjiVgYANBWqYXFXc3iRSPGthgyqg6LEFWbhH/SGAWImNj6yqtzj232a25HqfVsNY2FtfifCF1NQn6lrFT3+R2McRWNqo1VxGusomQAAAAAAAAAABNSwzVjQjPA1NU/0Np5AwWWrHXvwL8V9MSqHXdtAAAAAACgOLEwAKCtWgltZUViYS1++zI8QtQs/DNWASImrpRS9A6szD2+eGyqPYska8W5SlmzqFdrHzPY9LpRilKdoNjg+0bRqFqt95tWgoXNdCr2BgAAAAAAAAAwEaRGHxC3A9ZyAEwU5RaXnhU5r6e1JX+5LBELAwAAAACAcaW70zcAAEwuqWDkqBSlyLIs//ga8aM8qvHCyolqo8Vp0VrwjKllfWVtDKRy7vHFY2HtUSvO1ewZajXI1+y8UtZVd+7BQF/R12mswn6d+vkDAAAAAAAAAJgQBMEAauofaO28gQJL1hotwZ2/V8Tj2xH8enxV+97fH/pNiv9zU4p7nkgxc1rESYdl8b7XZ7HLjPxriAEAAAAAYKoTCwMA2qpwLCwr9pFmXTXiR3kMD4QND4fVUmkSE4O+gWKrZ6pjFLUaravG89U86tViLCxHhKxWvCzihUBf0fjXWL2unfr5AwAAAAAAAACYEBrFwoTEgCms3OLSsydX5x+7en39Y+efnMX/+lbr78NPbEdobLhHlqV4zSersXrDC/vueCzFzY+kuPl/laKnWzAMAAAAAADyaK0EAABQR7VgaKtZuGi0rMWQ0fAIUbN7rIZYGI31lovGwjrza6pWnKt51Ku1IF+z80pZqe7cg69Ps5DfNucVHN8q7wkAAAAAAAAAAI2IhQHU0t9kidsBe27/HN//Re332cNeFLH7zO279vLnIjZs2f738S/enkaEwgYtfizitke3+/IAAAAAADBliIUBAB1VyoqFibpaDBmlYbGfZoGhlMYmQMTE1TuwstD4olGrdi2RrBXnyhP1akVXk2e5FF1144CVra9P0ahapeb49i8w7VTsDQAAAAAAAABgQmgYBBMLA6au/oH6xzZcUYqPviWre7xvQ773z5fuXfsay9ZGvGyf+tfPa8nq7b5E3P1E/a/lrgbHAAAAAACAkcTCAIC2Gh7lyqNePKierMWQUXV4LKxJ+KdS8Gtg6ukrF4yFdSg2VSvG1ywGVvSZHJQ1Oa+UlerGAdPW16da8NkrGmFrVdH7AgAAAAAAAACYUhrFwhqGxAAmt03l+sdm9EQs2Ld+zGtjf745Buosb1u7KeLoeRF77pzvOvW84rJqnPvVaqzf3Nr7+eZyitsfrX8879cJAAAAAACIhQEAbVYtuLirXjyonq4oNn7Q8FhTs/BP6lDYiYmjb2BVzf1Z1F64UzSi1y5dNb7dbxYDaxYTqztXk2e5tPWfWipbo1/VVCz+VXR8q8ZqHgAAAAAAAACACanaYG2MWBgwhW2qE8Ka0RORZVnDkFej0Nhw/3xH7ffZtx6dRVcpi2+eu/1/begLt6U4/R9bWwc58/zG5/30V/5/AgAAAAAA8hILAwDaqmgUqVm4aJvxLYaMRsTCmoR/BsNFUE9vuXYsbLfuPWrurxSNTbVpkWStGF+zQF+pxSBf0+tmXXXHDAb6ir5OtcbviGVDzQKDAAAAAAAAAABTm9ALQC31gl879Wz932kNzq0TGhuuUq3//rvH1hDZKYdlcdaran8QahE3PRLx6Ipi7/fPrm0+/rZft3pHAAAAAAAw9YiFAQBtlQou/Coa/2oWJKqnOiwA1iz8MzwsBrX0lVfW3L9Xz94193cqNlUrxtcs0NdqkK/pdbf+U8vg61MtGOobq9fVewIAAAAAAAAAQAONPhivTR+aBzARbeqv/R44GAkbjIbVPLdOaGy436ypf6x72HLbc47d/lhYRMQvni42/l/vaf7/ASce0uLNAAAAAADAFCQWBgC0VeFYWMFvR4qOHzQ89tMs/JM6FHZiYhhI5XiuUnuFzZ71YmEdik3Vius1C+6VorUgX7PIWCnrqjtm8PUp+jqN1etaNGIGAAAAAAAAADClNAyCiYUBU1e94NdgJGwwGlbz3P7Wrx8R8Tu/9UIg7ORDI2bNaH695vMVe09ftrb5mLLleQAAAAAAkJtYGADQVqlgvKdZYGi0rMVvXyrDYj/VJjGwSrLygPrWlHvrRvH27Jlbc3+zX3OjFY3u1VMr/NUsuFf0mWw01+h5640ZjHEVjXLVHt/+Baadir0BAAAAACxdujT+5m/+Jk444YTYe++9Y9q0aZFl2dC/V199dadvEQAAoHEsrGFIDGByu2dJ7f2DsbCuUhY9dZbeNQqBDVqyqv6xVx0wbL5pWfzwr0qxx87Nr9nIxhwBs+G+dmfz/w/ot2QXAAAAAABy6+70DQAAk0vRyFGzwNBoXVmx8YOGR8yahX9SwbATU0vvwMq6x+rFwopG9NqlVvir2TNUavEZy3PdeiGyytbXp2iUa6zCflUBQQAAAACYcObNmxdPPvnk0PbNN98cJ510UuduqAVf+MIX4i//8i9jy5Ytnb4VAACAJsTCAGp54Kna74E7TRv2456Ico0lanliYTf8V/332MEg2aDjD87i2U+V4v6nIubsEvGWK6vx4DPN5xhxTwVjYcvWNh+zJcfXCQAAAAAAPK/239YHAGhR4VhYnXhQu8YPqsQLKymq0Tj8M1YBIiamvnLtj+LbqbRz7FSq/bF7lSa/5naUUo1v97Mm/wlQ65xW5xp9vN7zOxjoK/o6jVXEqyogCAAAAACMsR/+8Idx7rnn5g6F3XLLLZFl2dC/l1122Y69QQAAgOGqDdZWaIUBU9iCfbOa++9Z8sKPh4fDhtvU3/wNdHp3/WO1rtvdlcXR87KYt1cWf/jq2vfWyJaBYuMPqf35qyP0W7ILAAAAAAC5NfijAQCA4lLBT4IsRdf/z96dx8lRFXob/53unp4t24QkhFV2IewoFwRUQPG64MJVr+KC2wuu9+rF5b4uiKgv6n3d8IrbVVwRdwFRQPQNICACSQCFsAVC2JMhk2XWXuq8f/T0TC91TnXVdPdMZp6vHz7prlPVVd1T1cLk9NMx108WMrJ2ckJaYP3hn6hxzG0DhU2hyxd3LHXHsGKeU3Gje2FSSsmY+sk8UcG9xLEw47+WUyblfOzyNRc3/hUW8WrGa1e3HwKCAAAAAAAAANrsox/9aNXfubzhDW/QO97xDu2xxx7q6OiYWL5kyZLpODwAAAAAqOabMxZzPhkAzCbDY+HvgcvmT97u7ghdRSP56McfyrnHwuYPVjrtSKNzL7fKxQiAxVlXkjINTBGO+5gAAAAAAAAAAMxlxMIAAEBT2ZB4j09UuGiq65cVNRn7CeQP/0SNY27bnO8PXd6XWaK0I35XnIZzyhXvigr0RUW/3NtFRMhMWsYZCyu9PmHxL59imyJecY8LAAAAAAAAAKbi3nvv1Z133jlx/6UvfakuvvjiaTwiAAAAAIhCEAwAwvxqdfjylx46GfLqzoavM9pALOyb14a//776qOhtD9jZ6HfvS+k9Fwdat0nqyUrDnviYJOVjTtlrZP0cU3YBAAAAAAAAAGgYsTAAANBUQcyJX3HDRFGhI5fABqG3o9YFag0UwmNhizuWyjiCWdNxTqUcYa7oqFeyIJ9rf5Xjacf1Xo5xBTHjX+0K+/GeAAAAAAAAAKCdbrvttqr7r3nNa6bpSAAAAACgQdY3Z4yQGADUuuGByffG7o7wdUYaiIVlUlIxZHrb/C5TvzDEKSuM7v8/aT21zWqnXin7bv9cubhhr1yhOesAAAAAAAAAAICSZCUAAAAABxs3FhbzX0eShoysKmJh8k9msBHjmNsG8ptCl/dllijtiNlNxznlCvE1EvVq5v4mx1PO67c4HgmLG+VqV8SrXVEyAAAAAAAAAJCkp556qur+7rvvPk1HAgAAAAAN8sXCvCExAJibHtg4ebvLFQvLRT/OQbuEL7/z0XjvvTsvMMqkowNjccNe+Qam3hELAwAAAAAAAACgccTCAABAU9mY8Z50RGCoVsoRY4pSjhFJUmD9sw+KEeOY2zYX+kOXL+5YIuOIYVnZtoWtylzhMmOMjOc/A5IG+Vz7m3hcpZzXbzmmVnREuTImE7q8XRGvdv/sAAAAAAAAAMxtg4ODVfc7OhyfGAUAAACAmYJYGADUGR5r7P2v2xULy0dv6wqKveCg6PBXErmYU/YaiYWNEQsDAAAAAAAAAKBh4Z+6BwAASMgq3uQuX7QoTNKQUTlGJEmB/OGfqHHMXSPFIY0Gw6FjfZml3m1L52D7Wr2+ayVtUio4AlhJg3ypiPBfyqSdx1SOcbmiXBmTVcHWzwhqV8SL9wQAAAAAAAAALtZarV69Wvfcc482btyosbExLV26VLvttptOOOEEzZs3L/ZjBgG/kwQAAACwg/HN4SAWBmCO+uI1DcbCsuHLXSGwqnUcQbEDlze069gaiX9VyjUQAssVS79jM6Y1gTMAAAAAAAAAAGYTYmEAAKCp4sbC0jHjX0lDRsWKCWk2IjDUrgARdjwDhX7nWF/HEm0rDDjHAxso3ca5LClPmMwX6Usa5PPtrzzu2m+goqy1ChQ+k6jDdGg0ZHnRxpx5lFC79gMAAAAAAABgx9Hf36/zzz9fP/nJT7Rp06bQdbLZrE4++WR96lOf0jHHHON8rPXr12vvvfd2jp900kmhy7///e/rbW97W+jYeeedp/POO8/5mCtXrtSJJ57oHAcAAACAWLxBMGJhAOamK//eYCyswyjsvdIVAmtkne6OhnYdWyPxr0qNxMWslQpFqYNPNwEAAAAAAAAAEIlfpwMAgKaKGwvzRYvCJA0ZWU0GwKLCP4GIhSHc5nz4B76MUlqUWaztha3ObYsqqtH5N3GvozAp4w7r+cJeUdEv9/4iYmEmpbTjmAIbVF2jtTIm/JULi4s147Wrf0zeEwAAAAAAAABMuvTSS3XGGWdo+/bt3vVyuZyuuuoqXXXVVTrrrLN04YUXKpNhmgYAAACAWcgbCwOAual/0D32s7Mmv3m0Oxu+zmgjsbBc+PLubLJvNj3jOUY/+qv7PT3fgliYJI0W3LGw0bzV7++UVm8oHde8Lqk3K83rLN82FberxzsybfyGVwAAAAAAAAAA2oBZqAAAoKmsjRfVccWDXFKKt35ZZSAsKgYW9zlg7hgoPB26fGGmT2mT8Z7P7T6vvLEwk3Z+aatvu6T7k0rXritEFqioouf1ccbCIsJ/zRIVGAQAAAAAAAAwd1x00UU688wzFQTVv9Pcd999tWLFCvX09GjDhg265ZZbVCxO/m7xO9/5jjZs2KDf/e53BMMAAAAAzEKeWBghMQBzUBBYrQv/blJJ0ssPm4xYdTm+hdQVAqs0OBa+vLvRbzat8e7nG/1qldWwY9+Nxr8kyVqrQoPTJkdy0vyu+uWDo1avvDDQynu9e3KOZDO1YbHS7d5OaV6nUW9deKx6fPL25J9EyAAAAAAAAAAA04kZqAAAoKmsb+JXCOOIB7mkTLz1yyoDYVGBoaIIAyHc5nz47J2+zBJJ/vO53edV2hPW811HrqBXlKjtUiblDIoFNlDgeX06HLEwX2CsmWxEYBAAAAAAAAA7gKAgDT863Ucx+/XsLqVm7zSE22+/Xe9+97urQmFHHHGELrzwQh133HFV627atEnnnHOOvv3tb08su+qqq/TJT35S559/ftW6u+++ux566KGJ+1/96ld1wQUXTNy/5JJLdOyxx9Ydz5IlS3TiiSdKkm6++WadfvrpE2Pvf//79YEPfMD5XJYvXx7xbAEAAAAgBl8QjFgYgDnohgfcY99+s1F3djI25Qp7jeT975+5gnu8O+vd1OmYfYz+3wdTOvZz4XPmcsXG39PjhMVG8uHLf3SzjQiF+eUKpX8GhsNGo56Le7wjPRkOq4+JGfV0+sd7HeNZImQAAAAAAAAAgAizd5YuAACYFnFjYWlHPMglacioMhAWRIR/bJsCRNjxDBTCY2GLO5ZK8ke44p1XU58kaTzH4g+JxbsmJx7Ts11qfH+u6zdQoMDz+mRS4TOXwgJjtgUTTIsRgUEAAAAAAADsAIYflS7fe7qPYvZ7xUPSvL2m+yha5h3veIdyudzE/RNOOEFXX321enp66tZdunSpvvWtb2m//fbThz/84YnlX/jCF3T66afr0EMPnViWyWS01157TdxftGhR1WMtX768arzSvHnzJEnr16+vWr5o0SLnNgAAAADQdMTCAKDKO37ong+3R191EMoV9hrJhS8vW/uEe8wVIGvEP+1tdPYpRl++pv79e8wR9QoTKxbmeK4r75mZ/x+SL5YCZK2KkIXHxExIeKx6vHYZETIAAAAAAAAAmH2IhQEAgKbyBX/CxI1/GWNklJKNCH7VqjyuqG2LIQEiQJIG8v2hy/sySyT5g1lRkbpmS3uuLV9ILGmQL+UNkKW8+w1sEBr+Kusw4TOXgjZFvNr9swMAAAAAAAAw86xcuVKrV6+euL9gwQL9/Oc/Dw2FVfrQhz6k6667TldccYUkKQgCfeUrX9FFF13U0uMFAAAAgLYKfGGUmRl6AYBWWhf+vaSSpOfsU33fFfYaiQhzDXliYgcu928bpctxTKOFxh8jKnZWta7juW4fbfwxZoNWRshCA2NZaV5XKULmG3cFyoiQAQAAAAAAAED7EQsDAABNZWNO7kp54kouaZNSIWaUrDIQVozYNm7wDHPH5oIjFtZRioUZT2ir2KawVZnv2kp7w17xr8nSdu7nXt6fa7+Bit7wV8YVC2tTxKtdUTIAAAAAAAAAM9cPf/jDqvvvfe97teuuuza07ec///mJWJgkXXLJJfrmN7+pzs7Oph4jAAAAAEwfz5wxSywMACot7KkOLHVnw9eLim35xnun+GsnVyys0QCYtVav+07j8/vWPy0duWf98jxT95oiX5S2DJf+qZc8QpZJSfO6KsNi1ZGxnrplNZEyxzgRMgAAAAAAAABwIxYGAACaKnYszBNXcvEFmVwqQ01R4R/bpgARdiyBDbQl/3To2OLMUkmlkJ1Lu88rX/TLeI4zyTVZ2i56f66gWGADFT2vT4cJnw3VrgBbu6JkAAAAAAAAAGauG264oer+m970poa3Pfjgg3XUUUdp9erVkqTR0VGtWrVKxx13XFOPEQAAAACmDUEwAG5Gt0gAACAASURBVJjwxJZ474ndrjBX3r+da7y7QzJmarGlpMdUdvsj0sp7G9/ft64NdNqR9XMQC46pezv1lsJSg6PS4Jg0Vmh8X2ieQtDaCFlvthQPq7zd22nU2+kfr11Wvp3NTP3aAAAAAAAAAIDpRiwMAAA0lbXxojq+oJFL2qSVjzm/rDLUFBX+aVeACDuW7cUtKip8RsnijlIszBeyK8a4NpoxfdIX/fKOeUJi3v01ECBz7TdQ4I34dZjwmUftingFMd/XAAAAAAAAAMwuAwMDWrdu3cT9RYsW6aCDDor1GMcdd9xELEySbr31VmJhAAAAAGYPXyyMkBiAOeamddHrVEoa5hp1jHc6Hi+O7vDv99RIrrHtv/bneO/916wNX553TCv8j1OMPvbSyfmIhaLV0FgpHDaUK0XEyn+WltmK25PjQ2PS4KitWXdy3PUao7VaGSHr7RwPiHXW3i5FyHzj9ctKfxIhAwAAAAAAANBOxMIAAEBTxZ3a5YsWufiCTC6VAbCo8I9tU4AIO5bN+X7nWF9miSR//K7d51Xacyy+40wpfsCv0f25gmKBDbzXZcYVC2tT2I9YGAAAAAAAADC3bdq0qer+/vvvH/vDXwceeGDV/Y0bN075uAAAAABgxiAWtsMbyVk95/OB7ny0dH+/ZdLqT6Q0r4v4CRDXcM79vrfrovplrjDX0Jh/P/li+H6yyaYAVkkaMCu77r7mvPcXHFMEO2qeYyZttLBHWtjjeqRk72XlCNlQrhQSq4yQlZbZitvVEbKhMVu9zZgmgmZEyKZHIZC2jpT+qdecCFl9TKw6QuYaDwuUESEDAAAAAAAAEIZYGAAAaKq4QSRXPKjZ2wQVxxV1jMU2BYiwYxkobApd3mGy6k3PlySlPSG7dgenfCE+71iC60vyR/zK+zOOEFmgogK5r7tMKnzmUbuuVd+xAQAAAAAAYAfRs7v0ioem+yhmv57dp/sIWmJgYKDq/sKFC2M/Ru02mzdvntIxAQAAAMDM4gtsEAub6ay16n1f9dymBzZKC/49UP5bKaVThEqAOHKe6WY3fKR+nl13h1HYe2X/oH8/+QZDWkm4YmEbGvyV1vqnp34MknTbw+HLM8mmOcbWygjZcDkwVhERK/85OGYrbk8uHx4fq16XCNl0a1WELJ1yBcaqI2S+8bDtO4mQAQAAAAAAADs0YmEAAKCpbMzJXSlHPMgnnWCbylBTVGAoiBk8w9wwkO8PXb64Y+nEX5obT2grTtjKNuEbVVPGfZ2kPcfpC4n5pD37KwfIXPsNbOB9fTImfOZRWMQr7ntQI9odegMAAAAAAEALpDLSvL2m+yiwg6r9nW0zPkjFh7EAAAAAzCqBZ25FE+bBoLX+/ph77Nb10rH7tO1QgFkhVwhfvmSetNeS+t8JdWfdj9W/3WrJ/PDfIxVaGAvrcgTMJCkIrFLTHBFsxnOcTpm00YJuaUG3a41kr28xsCHhscoYmQ0NlA15AmVDY9IIEbJpUWxThKw3K83rqrxt1FO3rHzbaF5X2DZEyAAAAAAAAIB2IRYGAACaysaM6qQ80SIXX5DJpTIAZiNiYEGMqBPmjs2FTaHL+zJLJm77QnZR512z+aJfxjOW5Jos7c8TCxvfn2u/gYre16fDhM+GalfEKyxKBgAAAAAAAGDuWLx4cdX9rVu3xn6M2m36+vqmdEwAAGDmMMakJe0naYWkXSUtlDQmaUDSOkm3WWuHmrzPDknHS9pT0i6SBiU9LmmNtXZ9M/cFAA3xBcFaFAuz1hKkaJJLbnH/jL5/o9Wx+0zv68zPGrVm+jmRc0w322Vh+PJl892PtXqD9KKDw8fyLYyF+R7j0QFpz53c40m/LDXOz3VgONEuZr10qrURMldMbHA8QlY7PuQIlBEhm17+CJnkD5H5I2TlcFhvthQSq749GSGrH6+OkFWOEyEDAAAAAAAAqhELAwAATWUjv6moWpIwkS/I5FIZACtGxMCCNkedsGPYnO8PXd7XMRkL84Xsos67ZksZ93WS9oz5ol/+/bmfe3l/rv0GNvC+PhnTEbq82KaIV7uiZAAAAAAAAABmpqVLl1bdv++++2I/xr333lt1f9myZVM6JgAAML2MMXtK+hdJL5T0XEkLPKsXjTHXSPq6tfb3U9zvUknnSXqdpMWOdW6S9GVr7a+nsi8AiKc1QbAwT2yxet8lgVbeK+29k/TBFxm94ZhkX46Hkg2b3WP/8xerdz3f6sg92xvpsNbqi3+0uugGq4Fh6dTDjS54nVFvJ7GQueyBjVb/8fNAf7lfOmgX6RMvS+llh828cyJXCF+edXx65/Dd3Y/liym1MhZ2mOeYhnP+bQfHku0zV5A6K6YKBoH7/1tW7DLzfu6zWSsjZMM5aXB0PCBWeXs8QjYUMl4ZIQsbJ0I2PYqBtG209E+4ZBGylKkPj/V2ji/rlHo7Tel+6LiZvF0z3tVBhAwAAAAAAAA7JmJhAACgqWLHwhR/opYvyORSGQCLioFZwkAIMZDfFLp8cWbyQ2K+89nGitBNfQKlLwhmPMeZJOAn+Z97eX+udYLx/7l0OGJh4ddq8yefBm2KkgEAAAAAAACYmfr6+rTvvvtq3bp1kqQtW7Zo7dq1Ouiggxp+jJtuuqnq/tFHH93UY+RDTQAAtI8x5qeSTo+xSVrSiyW92BhzhaT/Za19KsF+XyLpB5KiqqPHSTrOGHOxpHdaa4fi7gsAYrOe+Rq+sZjyBauTvhTovvF30TXD0pu+Z9XbafXKI/jvoqTyBf/P6AVfDnT7OSntuVP7XuMvXWP1n7+ePK6LbrB6fMDqD+9vQgUJO6Qtw1YnfynQowOl+397SDrtG4H+/MGUnrv/zLr+nbEwx+mbSrmP/5HNVq4QkysWlmnCZTKv0z02FBELW3Z2sjm4I/nqWFjB8zC7LEq0C8ww6ZTR/C5pfpdrjalHyIZypZDYxO1RaShnq5eN3y5tY+u3GSNCNp0C29oIWW9nWIBsMjQWPm5q1p38kwgZAAAAAAAAWo1YGAAAaKogZmgr5QkauaQVf5vATs6KiIqBFYmFIcRAoT90eV/HkonbvkBX3GtjqnzxLl8QLEnAT/I/9/L+XKG/wBarrtFaHSYburzo2aaZ2v2zAwAAAAAAADDznHDCCROxMEm6+OKL9dnPfrahbdeuXatVq1ZN3O/q6tKznvWsph5fZ2f1JzjHxsaa+vgAAKDKAY7lj0m6X9JTKs3N3EfS4VLVX8KeKul6Y8zzrbVPNrpDY8yJki6VVPmXp1bSakkPSlok6UhJSyrG3yhpgTHmVZZvTQPQat4gWPNiYTc8oIlQWKXv3xjolUcQkUrKFRwq2zIs/WaN1Qde2L7wxff+Un/eXHWX9NiA1W59BDjmomvu1kQorKwQSD++2c68WJjjmur0fHpnz8XShs31y1fea/W+k8O3cV27HU14O+wOn7InSfrrOqtnPSP8Nd8ybDXmiKVFGclJi3om7/vem5rxHDF7tTpCNjQ2HhAbq7hdESGrHR8aq46Q1Y4PRwT40BqtjJDVh8cqlxn1OMeNM2BGhAwAAAAAAABlxMIAAEBT2ZiTu5KEiVzBIZ9Ak/Nei/LPbrJijiyq5YIxbS9uDR1bnFk6cdt4zueo867Z/EEwX9gr2Swa33bl/blCf4ECb/grk+oIXR606TVt134AAAAAAAAAzFxnnHGGfvjDH07c//rXv673ve99Wr58eeS2H/3oR6vuv/71r6+Le03VokWLqu4/8cQTTX18AADgtEbSRZKutNauqx00xuwm6ZOSzqpYfICkXxpjnmett65TfozdJf1G1aGwGyWdaa1dW7Fep6R3SvqipPJfsr5c0mclfSzOkwKA2HxvZ9FvdQ37wlXh87ouv0MKAqv1T0uLe6V1m6StI9KRe0h9vUQVag2OWuWK0uLx1yYqFiZJazY0b/+5gtWjA9JeO0mpVP3PpxhY3RsShZOkn95i9eF/5mc6F/3v34Rf/9/9i9V33tzmg4mQc8Sysp5P74SFwiRpn6Xu872VsTBf2KwrfDqfJOnKfyR/zx/JV98veN6bMsm+ExWYklZFyILxCFldgGzitg0NlJVCZOGBskEiZNMmsNL20dI/4aYeIZv4MyvN6yovM55xU7Pu5Hh3lggZAAAAAADAjoZYGAAAaLKYsbAEYaJ0gsBYUPEluVFfmOuLFmFu2lJ42jnW1zH5xcy+QFecL2puxhRJfxDMFxJLNovGt115f77QX9G6v04wYxyxsJDXtHnTS/37AQAAAAAAADC3nHzyyTriiCN0++23S5K2bt2q008/XX/4wx/U3d3t3O4rX/mKLrvsson7xhj9x3/8R9OPb5999lE2m1UuV/oE2MqVK5XP59XR4fn0JgAASMpK+r2kT1lrb/OuaO1jkt5pjLlD0oUVQydIep2knzWwv/Mk9VXcv0nSC621VR89ttaOSfqaMWaDpN9WDJ1tjPm2tfbhBvYFAMn45lY0MRb25Db3WOZd7mPYckFKC7qJIGwftTrje4F+/3epaKXj95V+flaqoVhYoQnTZ4LA6oO/tPruDaXoyZJ50mdeafTO51fPKRrxxE3+89dWb/gnq936+HnONZu2u8fuftxqxa4z55zIOa4pXyzMZWjMPdbKWJgvHLNlxL3doOd4oxzx6UD/+FRKe+4UHTJsxnMEZopUypQiTi2MkIXFxCojZJXjw+NjtWGyQSJk06pVETJjQsJj47dLf5YiZOHjRvM6K9clQgYAAAAAANAOxMIAAEBTBXFjYQnCRL7QkUugyVkDRflnNwUiDIRqA/l+51hfZknV/ZTSVedbWdR512y+EF/aGxJLNovGt115zLffgs2HLjcyypjw/2xp12vKewIAAAAAAACw43vyySe1fv36RNvutddekqTvfe97es5znjMR5Lr22mv13Oc+VxdeeKGOOeaYqm36+/t17rnn6hvf+EbV8o985CM67LDDEh2HTzab1fHHH6+VK1dKkjZs2KBXvOIVete73qX9999fPT09VesvX75cXV3OT58BAAC/11pr18fZwFr7DWPMyZJeXbH4zYqIhRlj9pf0lopFOUlvrQ2F1ezrUmPMDyu265R0rqS3xzlmAIjFFwRrYizszkeTbbfo/YGC71CWedv3A112x+T9Gx6QXvbfgRa5G9gTRvNT/zl+7kqrC/48+Tj9g9K7L7bac7HVSw6djElERUhefEGgO89NEaCYYzoz7hDVSV8K9PDnU+rqmBnnRM7xvZlZz9vQ6482+tmt9dfZt66z+sYbw7dpZSxMkg7aRVr7RP3yj/zK6kMvCt/m6UH/Y552pPTbNeFjg2PSi74aaO2nS9e3L1KYSfadqMCc0s4I2VBOGhwtL7P1y3LS0GhNoKx2fAqxQSRnKyNkoWHe5BGy3qyqY2KdUm9neZlRj3Pc1Kw7OU6EDAAAAAAAgFgYAABoMuv7lsgQScJEKU9wyCewgVImpSDiGC1hINTYXNgUunxeeoGyqc6qZaVzrH4WTtxrY6p8IT7jCe4lifGV9ueJhY0fi++x845YWEpp53MJe51bIeo9AwAAAAAAAMDMd/rppyfe1o5/sP2oo47S17/+db3rXe9SEJR+b7hq1Sode+yx2m+//XTwwQerq6tLjzzyiG655RYVCtWfDD3llFP0mc98JvmTiHD22WdPxMIk6aqrrtJVV10Vuu7KlSt14okntuxYAACYzeKGwipcqOpY2EkNbPMGqeovY39jrb2/ge2+oOrI2L8aY97ji4wBwJR4g2DNi4VNxdZhq4U9czcsMDhqdcXf65ff/oi0bH709iMRAa9G/OK28HPhl6uqY2Ej4dOIJtz1eClgtGLXqR8TdhxdHe6xTdullfdILzm0fcfj44yFZdzvQT2dziEnV0yrWbEwV4xMkgpFq0y6/vn8/TH3Nh98kdHnTjPKvts9H+++p0rvS0fu6d9/s54jgPhaHSErR8SGxoNkE7dHqyNk5fGhUWkoZ6vCY1XjRMimhbXjP78xtSxCNhETq7jd22kqbteOm9BtiJABAAAAAIAdDbEwAADQVDbm5C5f0Mi5TcKYUaCiUkpFxsCKbQoQYccxkO8PXd6XWVK3LK20CqqfsRa0OUKX9oT4fGNJY3y+67K8P+O53gs2fIZUyqScUcG2xcIICAIAAAAAAAAYd+aZZ6qvr09ve9vbNDg4OLH8gQce0AMPPODc7u1vf7u+9a1vqaPD88nWKTr11FP12c9+Vueee66KRf6uAwCAGWhNzf1uY8wia+0Wzzan1dz/fiM7stauNcb8TdIx44t6Jb1I0uUNHSkAxBY+Z2xraoFuzR2iA/qt9loy9Q/fr9hFuvuJZNvetG7mhISmw2Nb3AGjjdujt48KeDXCFRH68c1WF721Yl8NhMlueMBqxa4EHeaSZfNL57HLg/1WSQM1zeaKXPkCV09vD38f7ck2dz9xPLDRPfbEVmmPxfXL91/m3ub1R5vQwFit7/zF6ptvNBr1vO9k+SQUMOtURsh2XhC2RvII2Ui+Jjw2HhErLbP1y8ak4TFpcMyGb0OEbNpURcjC1/Bt7RwpR8hcMbFyhCx83B0o6yFCBgAAAAAAWoBfkQMAgKaKHQvzRIuc2ySMGQU2kEx0DMxawkCoNlBwxMI66mNhxqRC/y4xXoRu6t+o6rtOfNGupDE+X/ivvD9fpKxgw2f2pJRyPpdiSMQr7ntQI9oVJQMAAAAAAACwY3jNa16j5z3veTr//PN18cUXq78//HfIHR0dOumkk3TuuefquOOOa8uxffzjH9dpp52mH//4x7rpppt03333aevWrRoZGWnL/gEAgFdYosWZfzDGLJd0eM32N8bY37WajIVJ0ktELAxAq9j6+Rpf63uPPrzz51XcnpE+Fuilh0i/eGdKPZ3JPyy/z9LksbBi86eU7FB80Z1GNBLw8rEh50hZsWYKUDPCZJh9jt/faM0j7vNoJp03Bcd0s4xn6us/H2J02R31z28kX7p+wkIjrY6F+bgu6TFHlFCSjtqzscceGCr9OfzwQ5KeEbpOd+t6/ABmmVRqMvLUqgjZ0FhYTMxWhcXKfw6NR8hqw2OVf6L9KiNkT4Wv4dvaOWJMKRgWHiArhcZ6PIGy8G2IkAEAAAAAMNcRCwMAAE0VN7TlCww5t0kYMwrGw0I2JDBUqSjCQKi2Ob8pdPnizNK6Za5zOuq8azbfdeK77pJck5I/BFY+Fl+krGDDZxSmTFppx3NpV8QraPPPDgAAAAAAAMDUrV+/vqWPv2zZMn31q1/Vl7/8Za1atUr33HOPNm3apLGxMS1ZskS77767TjjhBM2fPz/2Y3/qU5/Spz71qcTHtmLFCn3uc59LvD0AAGiZ/WruFySFV0dLDqm5f6e1dijG/m6quX9wjG0BIJ6aasyN3cfq7OVfrFr2h39I51xu9aXXJv9QuyuMg2hPbZva9lMNMcX52TWyr0yyKU7YgUXFoaYatGumgmO6me+8PXQ3o7DYiLWl6ycb8skfdyysOfGQpfOlTdvDx7aNhi93Xb/PfsZk1OSNxxhd/Dd3WOUXt1ldcqbV8AUfk3ovDl2nx5ncBYD2qIyQhZtahMwdE7MhYbLyP+GBssExaSjnDj2idayd/Pm0KkLWm5XmddXenoyQ1Y8bxzalf99KpYiQAQAAAAAw0xELAwAATWW9f2FRL0n4K+WJEvmUw0LFiKBZEDN4htlvcyF8fnZfR0gszHF+Rp13zea7tvxhr2TXVyMBMt9+8zZ8llDapJVS+Hbtini1K0oGAAAAAAAAYMeTSqV09NFH6+ijj57uQwEAADPfa2ru32b938i2oub+AzH3ty7i8QCgeWrezn4372Whq/3uDqsvvTb5boiFJbfmkanVIYanGGKKCjn1b7daMt80tK4kpYmFzTlRgZOpBu2aKV8MP9gOz9Q8XwxtJBcvFtasmN4Ru0vXrA0fW7PB6pDd6mMirut3n6WT6zYU+nrobo3090u94cNdEfE4ANhRVUbIloWukSzkZK3VSM4VICtFyMICZcM5aXA0PFBGhGz6VEbIHGv4tvY+dm85INZZiohV3zbqrVtWvj0ZIasd78kSIQMAAAAAoJmIhQEAgKaKHQvzBIaauY00GQGzEYGhQMwqwyRrrbbkw2NhizNL6pa5zk8b47yKex2FcQW2JMk0EPaKvb8GAmS+gFnBFhzHk3Y+dmjEqwV/49yuKBkAAAAAAAAAAACA2ckYM0/SO2oW/zZis/1q7m+IuduHa+7vZIzps9YOxHwcAIhWM1/jR4veFLraAxuntpvCFKZ1feHKQJ+/UnrmcqO9l0iH7mZ00jOlBd1z40PrDcV5PKYaYrrnSf/4O38S6DOvTGnFrka58GlEVWgNzD1BVCxsikG7ZnK9V2U8sTBf/GokLy2MsR9flCyO952c0jVrw+fOpRxTAUcd7xWVMbQj9ojed3Dz1Rox3aFjnRlLcAQAYjLGqKdT6mlhhGwoJw2O1sbE7OSyivFyhKxqm/HbQ+OPR4RsepQjZBu3h402J0LW2zkeE5u4XR0hqx43dWGy8jgRMgAAAADAXEUsDAAANFXcyFHaExhy8UWJfMrBn8D7xbzR45hbhoNBjdnR0LG+jpBYmCOI1e7zyndtpT3RLl/Qy8cbCxsPkPkiZQUbPksoZVLO59KusF9olAwAAAAAAAAAAAAAGvc5Scsr7m+R9N2IbRbV3I+V2LHWDhpjRiV1VSxeKIlYGIDmq/kk/8bMzp5VrYxJ9oHu/BSmcNy4rvTnTevKx2q1e5/0p7NTOmDn2f8B8+EphpQe35J82x//NdBbvu+fV/jbNdJv1wT65KlGR+wR/fOYyrmAHVPUzNSpBu2ayXV++iJe3Z6gn+u5ufbji5LF8YID3WOu95SRXPhPqqvi+b3qCKNPX2H11Db34w/ZLn1i2adDx7o9YTUAQHtVRsgcayR63HKErBwOm4iITcTEbFVYrHy7FLqy1duMESGbCVoVIetxBshKEbKeumWTgbLK5ZXjRMgAAAAAADMdsTAAANBUNubfnvjiQS6pBNtIk7GwYkRgyIpYGCZtzm9yji3OLK1b5jo/gzafVym5Z/wYXyws4fWVbmA7X6TMGQsb/1+YYpsCbO3+2QEAAAAAAAAAAACYPYwxp0l6X83ij1trN0dsOq/m/kiC3Y+oOhY2P8FjVDHGLJNU/5flfvtOdb8AZrgYc8ZyBakzYeil2YGoRwek914c6Jqzm1TWmcFGphgLS2pgyOrtP2z8/Pj0FVYf/ufo9a6/X3r7CVM4MOxwgogpXKMzKBZWcBxrxjPFzhfAcl2/+WL4teWLksXR02m0uFfaPFQ/dsUdVmc+t365K2xW+fx2WWR03YdTOvW/Az3gyOF+ZN0JuqPrYMdjUXkBgNmuMkK2NPQ3GckjZKP58YDYeLyqOiZmJ5dVjFdGyMLGiZBNn+HceMS0xRGy6tiYqVteGSgLC5f1dkq9RMgAAAAAAE1CLAwAADRV3KhO2sSflZDyBId8AluaLWYjAkNFy9cOYtJAoT90eUppLcjUfpGz+/wM2hS2ijoOSUp7QmKpBNekJJkGtvPFAfNB+IymtEk7j8kqUGCDqudqI79DMj7eEwAAAAAAAAAAAAAkYYw5XNKPahb/UdI3G9i8NhY2muAQRiT1eR4zifdIOrcJjwNgNqn4ZHzBMy9FKoVkZkosTJL+fI80krPqzs7uD227Aj5xPLXNaucF8V6nlfdKxZjTpq64M3r+z+AoNYa5JuonPl1BvDCu9ypfxMsbC3Ncv0n2E9fufeGxMNfPw3WsPdnq+wfsbPSHf0/pgE+Ev0F859HwUJgk9RALAwAkZIxRd1bqzrYuQhYeG7OhgbHhMXegrHw74P/2pkUrI2QTAbGsNK+r8nYpNBY+biZv14wTIQMAAACAuYdYGAAAaKq4oR5fPMgllWAbaTLWFBX+sTGDZ5jdBvLhsbBFmcWhEauUY8JjUe0NTvmuE+MJiSW9vtINbOeLAxZsIfx4TNp7TKXrNdkxNyoqMAgAAAAAAAAAAAAAtYwxe0r6vaoDXQ9LepO1NslHPdu1DQAkYPWBnb+ogsnonuwB3jVz4VNEIo3lre54NNm2UbaPloIBs9lwE0JKA0PSzgvibdM/GP//ip7YGr3Ozgv5MPxcExXKGMnPjH/t2TxktfLe8LGMLxbmeQ9yhdAKbYiF3el4310yL/wadB1rWAxt7yXJjqk7w3w+AMDM0uoImTsmZkMDY0M1EbKw7YmQTY9yhGxTkyNk3R214bHxPztLEbKeujBZedxM3q4Z78lKaSJkAAAAADAjEQsDAABNFTeqk/JEi5q5jSQF47GmqBhYkTAQKmwubApdvrhjaehy1/nZ7uBUWMhsYswT10p6ffn218h+Czb8KwVTSnsjY0VbVNq09j9rigQEAQAAAAAAAAAAAMRgjFkm6RpJu1UsflLSKdba8L+ErjdYc787waHUblP7mADQHEGgb/adpWIDczhyCb5vbzRvtezs1s3faEZIa6YbCZ+aE0uSn93DT8ffZstw9DquIBFmr6jU6hV3tuc4fB7fYvXCL7vfq3wRr460lDLh4Y4tI+Hb5NsQCzt+X+nGdfXL/7ou/Afieq8Ji6GlU0bZTPyIJLEwAMBcURkhW9LkCNlYQRocHQ+I5Spul0NjufrxocpAWcg4EbLpM5Iv/dOqCNlkeGzydm+nUW/dsvH1ymMh472dRMgAAAAAYKqIhQEAgKayMb+U1hcBckkp2UyGYDzWFESEf6LGMbcM5PtDl/dlHLEwx/kZ57xK9iXS1ZJcW1Ly68sXAisznhCZMxZmUt4QWTuu13aH3gAAAAAAAAAAAADsuIwxiyX9SdIBFYv7Jb3QWnt/jIeaqbGwb0j6Zcxt9pV0WRP2DWCmslZpW2wsFhYzCiNJl91e+kB6qzy2RdprSesefyZoRlwryc/uy9e0phZALGzuaSQ8cCqoSgAAIABJREFUMTBk1dc7feGBC/5sdc+T7vGMZ4pdOQYyFPJe9+tVVqceVv+82hELO+oZRjeGhMHufSp8fde12d0RvvyjLzE673fx3ieKTOcDAGBKjDHq6pC6OloXIRvKleJhE7dHqyNklePDOWlwtDpCVjlOhGz6TETIQkenFiGbDItN3u6tCI2Fj5u6ZUTIAAAAAMxFxMIAAEBTxY2FmQYCQ7VSnuCQT6DSzIjA+r/ikDAQKg0UHLGwjvAZgq7zM+q8a7ZG4l2h2yW8vnxBr7K0J0TmjIWN/8+lHa9rUe392QEAAAAAAAAAAADYMRljFkr6o6RDKxYPSDrFWntXzIfbWnM//But3McyT/WxsC0xj6GOtXajpI0xj2WquwUw41mlG5xfkSQ4ddENrf1k+LpNVsfvN7vfq0ZyU38NxxL87PZeIm88KamRPLWAuaaRQMS3r7f63y+Zvmv50jX+g4yKeLkiWCPhU+vaEgvzhbmstXX/nuc61u5s+PL5XfGPafUTnfE3AgAALVcVIQtfI9HjhkXIhsYqY2S2Okw2Pj40VoqQ1W1TcZsI6fQoR8j6Q7/WIHmErKujPjBWGSHrCQmQVUbIXAEzImQAAAAAZhpiYQAAoKnixsLSDQSGaqU8wSGfYDwCFsj/G33CQKi0OR/+PSiLM45YmCNsFXXeNVsj8a7Q7RJeX41cy8YTIss7YmFpk/Y+dtCGuB8BQQAAAAAAAAAAAABRjDHzJV0l6VkVi7dJerG19vYED3l/zf1nxNy+dv3N1tqBBMcBANGsVbrBL3zLJZiadc3a+Nu0i7VWl9xidcWd0sIe6c3HGi1fIH3nL1b3PWl1wv5G7znRqKsj/MPFdz1uddGNVrdvsNpnqdEb/snopAOb80HkymO7NMn/E9VIEnprVS9yJNeax93R9G+3OuUrge54tHT/+281estxyb4scqazDUxNvfouq//9ktYfi8v9ETnVTMSPZtQR2so6ps+5YmGZJsbClsxzj+UKUmdHY8fkeg7PP8AoKvoAAADmtlZHyIbGXDExW7W88k/fOBGy6TOaL/3TqghZeEzMVIXFagNlvVlpXlf4OBEyAAAAAEkRCwMAAE1lG5mRUcE4wko+KU9wyCcYj4AVIyamEQZCWdEWtbWwOXSsryP8S5tdka6o867ZXNGyyO0SXl++a7kcEUx7QmRFGz6bMKW0N2DWjrgfAUEAAAAAAAAAAAAAPsaYXkl/kHRsxeJBSS+x1t6S8GFr0zj7xdx+n5r7dyc8DgCIZq3SDc6vSBKcarWphKfOuczq/D9Mzpn79nXV8+cuvd3q6n9Y/f7fU8qkqz8IvPphqxd8OdDWkdL9lfdaff9Gq5+eafSvz5568OkTl1p97srmRXjiht6KgdXaJ5q2+yozOSDXLgNDVss+WD3X8W0/sNo0GOhDL5p9wbCggVN5OiNyNz4QfYAdERGv5+0vXV+bi5X0k79Z/egd9ctdYa6o/cTx0kONPn1F+HMbGJaWL6xe5nqP70iHhxCO2nMqRwcAAJBcZYRsp9BAavIIWa5QGx6rjIlZZ6BsyDNOhGz6tDJCVhUTqwqLlSJk4eOTEbLa8d5O1f3uAQAAAMDsQywMAAA0lVW83z6nHWElH184yCcYj4BFxcAIA6Fsa2GzAsc53ZcJ/14aV6QrzrVhm/BNeUmuLSn59ZVuIDLmC5EVbPjXIqZMyhlgk6SgJsLWjNeufh/8rRoAAAAAAAAAAACAcMaYbklXSDqhYvGwpJdZa2+awkP/o+b+YcaYHmvtcIPbHx/xeADQPNbKNDhnI25wqhEvOURa1GO0Yhdpxa5Gr/5mvLkeI+HTViJtH7X64h+jn/c1a6UbH5Ce/8zq5Rf82U6EwsoCK33mCqt/fXayYyrbNtLYscURN/R284NN3T1q/PSW8J/vR35l9aEXtflg2qCR77FNei03w/+9Ovp9JxMxNe9Zexldf3/4Ew0Cq1Sq+kP/7YiFze9yj112u9U7nz+1YzLG6JWHS5fdkfAAAQAAZhhjjDo7pM4WRsgmYmI5aXC0vMzWB8rGx4c849tHiZBNl3KE7OmhsNHkEbLOTCkeNhETq7zdZdRTu2zithkPldWPEyEDAAAAZhZiYQAAoKnihnpcYSXvNg1EicKUo0+u+FNZVEwMc8dAvt85trjDEQtzhK3aHZwyCa4tKfn11UhkzHdMeRv+tY4pk/aGyII2xP3asQ8AAAAAAAAAAAAAOx5jTJekyyWdWLF4VNIrrLXXT+WxrbVPGGPulHTY+KKMSkGyPzb4ECfW3L9yKscDAF7Waku6r6FVx1oQ8/nv01PaZ2npQ6uPb4kfyBoOn7YS6derbcMBrc9fFej5z6yeX/O7O8OP9a7Hpa3DVgt7kn8Qd9XD7mhPUnFjYede3rr5UobPKOvfLnGf69tGrBZ0z64XKWjg0t5/WeuPw+XyBmJXmYipeV2eT/c8sEk6YOfqZe2IhS3udY/d82T9siTH1NtpFBU8qHTSblslLW54fQAAgNmg1RGyqvBYOTKWkwZHbX2YbPz2cMj4UK60zuCoVOCjWdNirFD6p1URsomYWFVYbDJCVj9eHSGrHSdCBgAAAMRHLAwAADRV3CBSkjBRI1GiMIEtjv/pP8aomBjmjoFCeCysK9Wt7lT4LBjXOd3u4FTaES2LkiTgJ7kjaSV2fJ2UjExoVLBgw2cTppTyRsaKbYqwBTZIHFIDAAAAAAAAAAAAMPsYY7KSfiPphRWLxyS9ylr75ybt5reajIVJ0tvUQCzMGHOgpGMqFg01sh0AJGYbj7zkEkyh2X+ZdP9G9/jeFd/5t+sioxW7SHc/0fjjjyQMmK3b1Pi6V98lpc4q6sg9StttG/WvP5STFvYkO67NQ1ZnXNT8OTW5olWcD6D/v3uafggTrC19qN1QDQs1mpcWdDf3Ma+/z+or1wRatUEqTsMUyy3D0esctOvMPh+6s/7x5x9g9Lkrw99Ph8bql7niC82Mhe28wP2ajoVM+UsSC4t7vB858hERCwMAAGiOyghZeCg2+b9j5wp2IhxWjogNjZVjYrYqLFY5PuQZJ0I2fdoVIauOiRn1ugJl42OugBkRMgAAAMxmxMIAAEBThUWAfJKEiZIGe8oRsKhoU9G2N+qEmWtzPnxGX19miXOimeucjhvSmyp/vKsF2zV4LRulZEOuwYINn3WZNmlv+CyouV7jvgc1KlAxcUgNAAAAAAAAAAAAwOxijMlI+oWkl1Qszkt6jbX26ibu6mJJn5AmvlXtX4wx+1tr74/Y7j9r7v/CWhuRpQGAKYgTCwv/PjmvqJBM7Tye75yR0ksvCCKDXGUjufjHJEl/ezD+PJU1jzS23nDCYxrLW530xUCPbUm2vfexY/zstgy3Zg5PpdF8dHxprhpNGMBzuWmd1T9/NYh1DkyHZj/vRj2xpbHzvbvD/2H15x3gHhsMiYUlCXMlsc8S6cGQ71391nVW33jj5H1rrTPckPV8cikd83hfuOxJSYfH2wgAAABtl80YLc60LkI2ER6ruD00ZuuWVUbIwsaHxqTtRMimTSsjZO6YWHWELGw8LGDWm5U6MkTIAAAAMP2IhQEAgKaKHQtLECZKGuwpx5qiok1W/IYXJQOFkBkukvo6ljq3cZ3T7Y7QpdTa6FctX9Crdr3awJfkjoUZpbzPJSr+1yyBDaby91EAAAAAAAAAAAAAZgljTFqliNcrKxYXJL3OWntFM/dlrb3fGPNDSW8fX5SV9ANjzAtc8S9jzCslvbViUU7Sec08LgCo19pY2EjMANBx+xqt/XRKf7zbas0j0tf+7D++kZG8pM7Yx/WntbE3adjtj0j7LYu/3cp7pb8/1vzjkeL97H7/99bHwkaIhTnFvWai/M/1dsaHwqTk4b+p+uktjcbC/OOdnk/3XH+f1XP3r57A1q5Y2IkHGj14Q/hz3DpstbDHeI8n6piGYiRtu4IRmTtukI7958Y3AgAAwKzSyghZeIBMGhxzB8qGI8Z9/56M1ilHyDbHjpD5x7OZ2rBYKSI2r6sUGeupW1Y9Xr5dO06EDAAAAHEQCwMAAE0VN7SVJEyUJDAmScH4sQURx9juqBNmLlcsbHFmiXMb1znd7ghdyiSLfiXfrrHr0vX6uGJhaZP2hsjadb1GvW8AAAAAAAAAAAAAmDMukvSvNcs+JmmNMWavmI/1pCv6VeFcSadJ6hu/f5ykPxlj/pe19p7ySsaYTklnSfpSzfZfstY+HPO4ACAe23gYaqxgFffDu75I0aG7hS/fZZHRW44zOiMI9OWv90iS3rLrd3XxwjfUrTu8eauk+GWuxb2uD51O3Wg+/uskSas3tC7SFScWtXpDyw5jwkhOUuiHw9HsWNhtD7c+/tYMzX7ejbrr8cbW23mBf9wY9zXfExLGa1csbNl899idj0nP3d9/PFHHdPkdjZ9fn+j/nMy8vugVAQAAgJiyGaNsRuprYYSsPiYWHiirjJC5xomQTY9cQdrcwghZVUyss3zbqLfLPz55u3qcCBkAAMDsRCwMAAA0VYx5X5KShb/SCWNG5ahQYP3Rn3ZHnTBzbc5vCl3e1+GJhTnOzzixKRvj21adx5EgxCclj/H59lf5bIxJhf5+Ox+Ez9RKKe09pnZdrwERQQAAAAAAAAAAAAAlZ4Qs+6/xf+I6SdK1vhWstY8aY/5F0tWSypmI4yXdbYxZJelBSQslHSVpac3mV0g6J8FxAUA8MSaNJYn5+D4Ae+phER96zE02GbuD8D7jSC7ZXJ2ghf2k0YTRo+Fcc4+j0kiMx27lcZRNVxhqpnjBgdKf7wkfi/Oz8hnNW/37z2zDMazp1qzn3ar9HuKIGzZitCbWd++TVv2D4etmUs39MPjLDzP6/JXhb3iVzz1pLCzOtfzabb+WCm9pfAMAAABgmrU6QjaUkwZHq2NiQzk7uaxyPCcNjfrHczFC4WieVkbIqsNi49GxTmleZylC5hufvD35JxEyAACA6UcsDAAANFXccE+SoJFJGEEqH1sgf/SnGBETw9wxkO8PXd6XqZ1fPcl1TkdF6potnTD6lU4cGWtsu7TCj6tgw2f8pE3a+z7Rruu13T8/AAAAAAAAAAAAACiz1l5rjDlN0g80GQQzkp49/k+YSySdaS3fjASgDWLMq7jj0fgP7wvQfOJlER9OfGL9xM1uOxK6ykjC6tSW4USbNSRpCOuPd7WuYBYnADbqWffnZ6V05o8CbRtvtx2/r/TF16b0nM/Hm58zXWGomWJRj3usWSG1t//A6me3trCK12Q/u9Xqp2e2f78/v62x18iY6A9TH757+Pvk//m91UdfUrq9ddjqxC+6rxdfmCuJ5+zrPu7Ht1qVAwdJY2GNygZj2jf/kOzqa2Xe8tGpPyAAAACwA2tVhCxfsKWA2FgpIlYdE7OTyyrHx6ojZGHjRMimR65Q+mcg9HdYySNkHenJcFh9TMyop9M/3usYzxIhAwAAaAixMAAA0FQ28hdF1VIJgkZJI0hFW1Rgg8hjtApkrW1oYgZmr7FgVEPB9tCxxR1LnNu5olntjk0lubYkyTQY/arbnyMC1ujju2JhRinvNR+0aV57EDOECAAAAAAAAAAAAADNZK39gzHmEEnnSXqdpD7HqjdL+qK19tdtOzgAsI3PGfvLffHDQwXH9JDL3ptSdzZijte1v5m42RU4YmFbtsU+pmLQ2oBS0hDWqg2NrdfVIa36REqPDpQ+4Hnyl6LnxsQJULnWffsJRq99ttGph6X01welZfOlg3ctRZRGv5HSdfdJ514eaPuo9MKDjP5pb+mN3w1/rZsVxJqNRpvw2mwbsfr1av95ftqR0quPav88y/N+Z3X/xrbvti12WRgeC6uM9V11l9VTnretZsfCJGnpfGlTyHTK6+6V3npc6bbvw/9ZzyeXlsyT+gejj+GdW75burH2tuiVAQAAACTSkTFalHEFqpsTIRsaq42J2cllleNj0vCYf5wI2fTIF0sBslZFyMJjYiYkPFY9XruMCBkAAJitiIUBAICmsjEmfklSSvHDRCbBNtJ4BKzB4I9VINNg/Aiz00C+3znWl/HEwhznTaD2fllzkmtrStv5ImMV7wtpx+O7YmFpk/Je88U2va7tipIBAAAAAAAAAAAAmNmstdP2qRJr7UZJ7zbGvF/S8ZKeIWm5pCFJj0laY619aLqOD8AcZq1eNHiN/jjvlMhVD90t/tto3jFto5Egjt0+MHG7xzpiYane2Me0MX5fLJbhhLGw5+wj3bQuer33nWR00C5GB+0iDY81NucvTpxrNB/+mL3Z0p/dWaOTD6wey2aMTlkhnbJi8gdbDKw7FpbwNZotfL26gWGr9f3SbotKH/ROYt0m97VX9uZjU3rVke3/V6Ob1gW6f2P4C1AoWmXS4ceUL1g99LSUMqVzcZdFzTn2nRfIG++SStdmI7aNhi9PGU18Ce7aJ/yP0YpYWFgoTJJ2q8jX+s4X3zH928lG514e/T60R/6R0o0VR0euCwAAAGBmaXWELDwmNhkZqx0fihgfI0I2LVoZIQsNjGWleV2lCJlv3BUoI0IGAACmC7EwAADQVI3GuMpSJv6shHSCbSSpaIsKbGPHV7RBomPD7LG5sMk5tsgXC3NEsxo990qm/s2jSc/fVp/3xvX6ON47UiatlEnJyMiGvC61Ea+wdZrBdXwAAAAAAAAAAAAA0G7W2pykldN9HAAwwVq9avvlDcXChnLx53a4AjSZiO/Es9ZKv/z6xP3uwBELK8b/cr2hFoeq4oS5yq640zYUCpOkfzlq8sOMPZ1Gpx0p/XZNxDHFeM45x4dqO2N+eiGdMupIh58DSV6j2STwTGd68/esJKvlC6QLXp/Sa58d78Or1lp97LfR86WO2jPWwzbNSc80+sa14e8lo3lpXsgUuC/+MdBHflW9zdF7Sb95d0q79U3tw72NXBvnvryx95kXHGR007qweXKl6yCbiT73WxELc7nh/sljTRoLe/VRjcXCXr7996UbTz/Z6OEBAAAAmOXaFSGrj5HZquVDVSEy69iGCNl0yRelLcOlf+olj5BlUtK8rsqwWHVkrKduWU2kzDFOhAwAAEQhFgYAAJoqbqgnpfgTrZJsI5ViTY0Gf+JGzzD7DOT7Q5cvSPepI9Xh3M51frY7NpVOeJ0kvb5a9fgppSf+LKr+t+Ltel1ro2QAAAAAAAAAAAAAAAAoszpzy/e0vmNPfW3x+zSa6nauGRWkqhUEVoFjSlpkEOfHX6i6221HQ1cbKcYv63zystZ8oV1Z3BDWfU9Z/cs3GptH8/23Gh27j6lZltLQWKBr1krW8dRixcIcU22yCT690N1BLCxMI2fgk9ukN30v0IpdUzp418Y/aPqjv1pdfVf0er2dDT9kUx2ws3vsnielZ+9Vvey3a2xdKEySbl0vveLrgVadM7W6VtS5ePYpRi86uLHX/xWHG33mivCf7g9usjrreUYX/83/029FLMwVFLz+fmn7qNX8LpM4FvbM5dH7P2pkjfbPj9cQ16+N3gAAAAAApsAfIZOShsgKRTsZFstJg6O1MbLw8eGcNDhaEyirGCdCNj0KQWsjZL3ZUjys8nZvp1Fvp3+8dln5djYjGUOIDACA2YBYGAAAaKq44Z6USRALM8lmMlgFDQd/ioSB5ryBQngsrK9jiXc71/nZ7thU0usknXC7Vj1++T0iZVIqhvwetF3XartjbwAAAAAAAAAAAAAAADsMa2Uknb/pXH2y/3zdl91fP174Bn1lpw9M+aELnikbmYhpKPZ/zq263x2MhK43Uow/pf5nt7Y2FjYcI8wlSZffYb2vVdmX/9XoLcfVz9lb0G101QfSenrQ6r0/tfrFbfXPbyTf+HPOOT6kmigWlpW2hXTeRnJWST+cOxu4Inq18kXpijttrFjYb1Y39uDd7u/cbKnurHvs8jusnr1X9XP99Sr381nziLRuo9W+y5J/0NsVyfrEy4w+eapRJt34Y/te01/cZnXW86TNQ/7HaEUsrDdr5Pog85/WlmJirkhg1DGlU0Yd6fAoYNmrt/+m6r4d2ibTu8BzxAAAAAAw82TSRgt7pIVtiJBVxchytuL25PjQWClCVr3u5PjoHA+1T5dWRsh6O8cDYp21t0sRMt94/bLSn0TIAABoP2JhAACECGygx8ce1oOj96po62etpE1G+3Q9U7t2PiNR7CqMtVaP5x7Wo6MPaa/uA7SsY9cZ8x/JG3OP6/7hu5SzY971jIweGL675ceTUrLXfHN+k1Zvv6mhdZ/KParHcxs0FoxqXnqB9u0+SP35p/T42MOyEb9U6Up164CeQ7RTx84aDUZ0//A/1J9/amJ8WXZX7de9Qp2pLklSPsjpwZF7NBQM6oCeQzQvvaBq+dbigA7oPkSLOnZK9LxnolwwpnUja/Vk7lGlTUZ7dx2g3Tr3atr11Ayb85tCly/ORMTCHOfnrduv14kjL9OeXfs5g1mBLerRsYe0fvT+eAcb4ziimITb+VReM3EfP6XSa5U2aYXNN6yNsBWC1vwm+uatKzU/szByvfnpRXr2ghNacgwAAAAAAAAAAAAAAAAzUjBZqeqyYzps7B96Oh0+12np/HgP7YvHxA3i9NjQT9hpJJh5U+pHY8bCbri/sbjTiw/2z0ncaZ7R7n3hjzUWY1qOMxaWIGLkiieNzPEPrAYxvvvw8S3xHvt3dza2Xtc0xcJ273OPbQ8Jy/30Fv/18fBmad9lyY7Fdx6+/PB4oTBJeoZnmui28d7hEXtINz/oXq8VsbBnLnePre8vhft879dR1/6By6W/P+bZf65mTuXTT0jEwgAAAABAUusjZEO58ZDYeJBsIkY2ZituT44PjUlDY7Zm3clxImTToxBIW0dK/9RrToSsPiZWHSFzjYcFyoiQAQDgNvP+ZhMAgGlWtEX96IkLdOv26yPX/acFz9cZy/9dKUf4p1GBDXTJU9/UjVuvmVh2yuLT9KolZ0zrf9Baa3XF05foyqd/MW3HEMYkDEpd8fQlDa/7Xxs+kmgflY5b+ELdOXirBotb68b6Mkv0/j0+o85Up776yCf1VO5RSVKHyeo9u5+jnbO76YJHztFTudLsB6OUzlj+bzpm4UlTPq7ptjm/SRc8co425Z+sWn7U/OP0tl0+6AxptdtAITwW1tex1Lud7/3g/274Tz2z51C9a7ePT8TiyvJBXt99/L/096Fb4x9szOPwb9faYFvcn296/HjK0bBagSZnvQ0WtunS/h8lPziPqzb/sqH19uzcl1gYAAAAAAAAAAAAAACYW2z9h8WeN3yDfrTozXXLR2JGsApNjIV1ByEVIUnDwfQUj1KmFOBZ+0T92EjYt+p5+F6nsmc/wx/8Kcs6PmGQa2AfUeu6HtunOxu+PO65NNvEO0NaI5WanvmtXR3u/V7wZ6v/fLHV8oWNH9tUziXftq7QnU9vp/u4b3s4ep9Sa2Jhr3mW0TmXhZ9128bfWqcSdzzjOUYf/pX7rH7h4J+rF4yGfrIZAAAAANBErYyQDY8HxGojY6VltuL25PLh8bHqdYmQTbdWRcjSKVdgrDpC5hsP276TCBkAYBYgFgYAQI1btl3bUCistO51OrDncB278OQp7XPN9puqQmGSdM3m3+qgniN0YO/hU3rsqXhw9N4ZFwqTpLQjGjTT3LT1T86xgUK/Ln7yQs3PLJwIhUlS3ub03cf+Swf0HDIRCpMkq0A/evJrWtF7pOZnFrX0uFvtFxv/py4UJkmrt9+kA3oO0/MWvXgajqreQP7p0OV9mSXe7VLyx7buHf67/rT5Ur1syeurll+/5cqmhcJKxzEzrxMT8frUKkfPXPGzwE7OMGpVKAwAAAAAAAAAAAAAAAA+9R/q2rXweOiaIzE/tOeLz2Rifidelw2Py4zYeEWfYjD1TNPBu0rnnGq06mFp7RP1jzfc5BBWT1a68v2phj4Il3VMO8oVGt+fa13XY/u4gkujMY5nNopzGs6EsFizvf5oo5/dGv7M3vWTQJe+t/GT7TdrrF52WLIPifre05LEwiTpv083+rdLwp/bowM28n0004Kpg89cbpQy4efd56+0OvflUt5zTUbFws4+xWg0L33m97bu/eOeBw7RPDtUvXCMWBgAAAAA7KgyaaMF3dKCbtcayf4bvRjYuvBYdVTMhgbKhjyBsqGx+L/PRHMU2xQh681K87oqbxv11C0r3zaa1xW2DREyAEB7EQsDAKDGPUN3xFp/7dAdU46F/WngstDl1225clpjYWuH1rR8HxkTfzZEysSc5TVDrRtZq0D1s9mGgu1aM/jXuuVWVv8YWqXnLHxBOw6vJQJb9F5j9w7dOSNiYdZabS5sCh1b3OGPhaVN9L9i3z20pi4Wtnb49sYPsAFpR1xLkhZldmrqvqIs6Zj8StJMA69PpfT4f7KkHZGxymso7vs3AAAAAAAAAAAAAAAAmsDWf/iqOwgPuRQDKV+w6sg09sEpXyzMF5+xY6MNH1PBdKhQtMqkGzum0QY/IBh8J61iYJVOGW0fterNSrli6TXo7Szt6+7Hg9BtR5ocC7vy/SntNK+x59fpmNKX8/wsGl03m+DTC67gUrNfox1NEH7qzBnuDxRLf7xbyhWsshmjoIGq2rqNyXNqvvOwO5vsMRf1uMeu+oeNjAkmifI14pQV0tV3ucdd79cpI6VS/vcfY4w+/jKjj73UatvL95fdvkWddkyd1vFkiYUBAAAAAGqkU62NkLliYoPjEbLa8SFXoCwnDY4SIZsu/giZ5A+R+SNk5XBYb7YUEqu+PRkhqx+vjpBVjhMhAwCEIRYGAECNoWAw1vrDwfYp7/Ph0ftDl98xePOUH3sqhovxXou4ds7upgWZRbG3SzmiQTuasFBYlLt28FhYzuaUs2PO8ZFgyDnWToPFrSrY8N+49WWWerd9Rtf+kY8/VKx/3xgOWZZUd6pHy7K7OsePW/hCXd7/E9maX1Dt333NATelAAAgAElEQVTwlPZ7xLxj/z97dx4fZXXof/x7npnJCoGEJSI7IgUVVAQV3FBUXNC6VdzqdttaW6ve6rX1tu61P62296JevdRata219irudVeoaIGCogJa2fedAMlkMttzfn9MZjLLOed5ZklmknzfffkiedYzk8yUhPN8HixRvG+dVHdW4uOhFQdifXCV62MOq4w9n5YmfhaVbbPeVM9r3EFVh2N5szmAOKBsMCQktoY2uh4fERERERERERERERERERERUbenioXJzFhXXCAM+FzOYo8YgkheUxCnsSFjUZXUx2UCYaCny8BONpEqT2sgp2dF7M+KtKlvld4ooJgPl+3Fgk49pKosokW60FAo4v4Yum2ziYXJSBh4688o/3x/oDrzhq7d/YJKFw2sBMVLVCsSdbfx1NHuj9kexg/Rr2sJxy74LPNIvPKZ8+Pp2yP3cZi+D3WhOyfjhwjoLj7dus/8HtSnGhhcl9t5nSzfrF4eP58uEmgKO6YTQqBnlQXsNc+nlH+4D1izDPB4AcsT+zP+sTd5mSd1vSdtW0/atqr1imXC6hrzmImIiIiIiMhZe0bImlvDYckRMX9imUz6uG15bB+ZsowRsuKL2sC+lth/arlFyCyRGR6rLm9dVh67KUW1dr1o+zhtfYWPETIios6MsTAiIqI0tswu4BTNcvvOJJpDzCobp9Sdm9N+umgQlb6I3Tl+29QQ2aldV+czx8IOrh6P/cuGYnNonXabsOJud4V8Lzm57hx4DK+Tnt5emNzrZHy0953EMgsWptZ9M6/zTqmdjmX+T1Ie36E9jkJ/X1u47Lje07Co8e8I2M2OxxtSfgC+UTUuNj7N40mO7tnQzw79Zr9vo2p3Dyxq/FC7zSl150JC4o9bH3YcGxEREREREREREXVuzc3N+OSTT7BixQrs3LkTLS0tqKysRH19PUaNGoXDDz8cZWVZXElNKaZMmYK5c+cmPpfZXJWchTlz5uDEE09MfH7HHXfgzjvvbJdzERERERGRgSoWZpvDXPqL61L95h39zxPGAE0wc26KaUzNIaBnhbsxNWcRCzORwQAq3ngawHfzPkfYYepRNtEiXdCrILEwl1P/ZDAAeXLsRqSVg55XbpNNtK2zC0cklm0BFq+TWLwO+GSdxKcbCn+eYFjiwlmGQl+Sfz+luLGkcw4T+P6f9O8PyzcDVz1lY+0u52Pl85o27ZtNpC/Z6P306z74Shov+r12ikhECgvtkqME7n8z8zlfuT0WmdO9D2UTCQQAbNHPvUz4dC7kp3Odt2snUgh1hCwlXGY5rE+Ok5kiZl7AY6nXe70Q6WEzx3G5OK9Xsa0hnpa8LS80JiIiIiIicsdjCfSsMP1OMv8ImT8UC4klR8j8IZm6LJgaIcvYJ8gIWTHZsn0jZNXlqgBZW2hMvV6kbdv2JyNkREQdg7EwIiKiNKbYTCG270x04bQKqwp13r4AgIDdbAwrxR3X6zQMqTgAS5rmo0yUYWLNCTis59E5jcsUQcrW2OqJ+ML/z5z27ePrj3IR+23MrvB2BA13w6QYVSSrFO0Oq7+nvcKLHp4a476VnircOPgevL17Nt5teEm5TURm/nbM9F5yZM0J8MCLTcG1iX09wot+ZQMQlVHsjexCyA6iztcfh/echEm9phrHCAAX138fA8oGY6l/MXp4ajC518kYXX2o434mo6oOwfWD7sK8vW9jT2QnvlF1KE6u+2bKL3gGVQzHjYN/gb/veQPrWlbAlpmPu9yqxIFVh+DUunNRbsVeY5biDqpA6vuULrj2zb7fxuCKEbhiwI0YXDECy/2foMrqgZAMAZAoExU4suYEHNrzKABApVWNf+77O7aFNmb9HPQtM8zUIiIiIiIiIiIioqKKRqP461//iieffBIffPABIhH9Vc4VFRWYNm0avvOd72D69OkdOEoiIiIiIqJOSDH/o1Lqw1wtLi8s29QgMfO9HGNhyzPnhJnGtHRtEPXj3NXCCnZh3GtPomrtZ8AAxTkKHQvLIlqkC3qFsrgXom7bMq/LC8X+9nTiQ93XLRBqnzB1sYUiEss2t4bB1sfCYJ9vBIJZxNpy9dTHEq9+7rzdK9dZOGNscS/6618j8OEtFo77lXrendtQGJBfLEz3WhUih0hWYl+BqaOB977KXPfBv2LHVpk+Drjr7Pb7uhw2WL9u9qcSlmZgxvfqNHLX1ixHVSRSAtFI7L9iD6XYA0gjk4Nl6TExb1rQTBU2yypS5jGuF7o4mnJcSdsax5U+Rs36tHMJq7iBRSIiIiIi6j7aO0LmD7YGxIJtH8f+lCnL4h/H/pMZ+8Q/LtSNGSg77RkhywyPJS8TqNKuF5pwGSNkRETpGAsjIiJKowrXAICAgFT8EKMLanUFuudiXI+JuHLAvwMAPm9aiP/d9EvHYwkhcEzvU3BM71PyHpeFwsTCvMKHawf9DO/sfhEv7njaeYc0397vRxhVNRYA8MjGu7Hc/0lBxtWVhRWRrFK0O7JDubzW2xeWcP4H+x7eGpzX/0ocUDkGszb/v4z1qudB915yYf/vYkrtmY7nzJYlPDip7mycVHd2QY97QNUYHFA1xrjN4IoRuHS/H2Z1XEsTCYwHwqSUsKF+DodVHAggFho8pe5cnFJ3rvFch/U8OueYIREREREREREREZWm999/H9deey2+/vprV9u3tLTg5Zdfxssvv4wJEyZg1qxZGD9+fDuPMnvDhg3DunXrAABDhw7F2rVrizsgIiIiIiLqnmTmvLpKw40X3Yaw/jjfnEApN8yEl6u+yGpMj762B1PHubtJXKFiYfKj11Fp9ynIOZxiYdXZxMI0z2s2sSrdtm6jQfIP9yc+rrQ1sbDdDQD6uh9UCQpFJJZuAhavl1i8rjUMtgkIFbg/pHiJKpnifHHHHABMH1caF+Ydsr9+ndtQGJBnLEzzWq3M8wLGXpX6dbqv509Os9r1osnqcgHdxaDvLAdOGq1el00sDIs/yH5gVFqi0dh/4eJf7V1KITUphHOEzLIc1ivCZ8qImRfwWNqImUhZ5iKO5ua8HsW2hnha8ra82JuIiIiIqHNorwiZ3Roh08XEmoJSGyjzawJlTYyQFY0tgcaW2H9q+UfI1DEykbG+ugzoURGLkLV9nLq+sowRMiLqnBgLIyIiSqML9niFD2GZ+RNitAvHwqKa8E5yrMuCuzsdiRx/2Fee30WsyQ1P6+PINT6Wy/PQ3YVlsNhDcKUhvFO5vNbXL6vj+Cz1LLtIFu8lukhWd+PRvMZsxKKGEuq4IcDnkIiIiIiIiIiIqLu76667cNddd0GmXUkphMCYMWMwaNAg9OnTBzt27MD69eszgmKLFi3CpEmT8Mgjj+C73/1uRw6diIiIiIioc1CUaypsQyzMZQjrL/80Zz769DDMSbMy54tU2c3azV9c635ekNvYmY5c/y9gzovAP99Fec9zlNtkG4syxcJG9gf69XQxLv8+yJvPgm/9UGDgk3mNqcUQUHJl5+a2fTSRt0CgwEWtdhYMSyzdDCxe1xoGWy/xRTuEwfLx1VbnbawSmirZq6ow81L9ecXC1O9Trr/XNcbsL4BPs0sdVWURBczFUcP16/Y0S4Qi6q9HVrGwfVlU3og6EymBaCT2X7GHUuwBpJHpwbLkSJlXETSzdOEyN5EyTRytdZlwE0dLjEt3XlPIrXVfyzDW1uWilP4Pl4iIiIioHVmWiEWc2jFCpo6NSWWgrNkQKGOErHjaK0ImRHpYrO3j2J+xCJl6vYhFyyoy1zNCRkTtjbEwIiKiNLYmOKOLhem27wp04TRPUnjHbYRHFDCm5XER9/KJMuXXK1k8OpZrfCz5efAwRuRK2DbP9JMl8k/QDZEdyuW13uzuROkV6r9uR2QEtrRTvvdsTZzPzfd7d6B7r4m/T0UlY2FERERERERERESU6cYbb8TMmTNTlvXs2RO33norLr30UgwZMiRjn5UrV+Kpp57Cgw8+iGAwdhOMUCiE733ve/D7/bjxxhs7ZOxERERERESdR+acn0oZ0G7tNha2Lp9mzNZ1GYsqbf2YsvHZxtznOMnPP4a8+Swg0AQA8El1NCSU5T1MTbGw284UjhcmycYGyDP2AwCU9RygHpPLvkk4IhHVTOWpzCFmVKH5ugVCpTHXTCUYjoXAFq+TWLwe+GRd7HPT16k9FfKZsrrgNW75XOSpiwfm8r2e7OpjBO59PbuvXL6BMif9euq/+C98AhypiYllEwuTG1dlOSoi6vSi0dh/4eJfcV9Kf7OQQhhjYpnxM12kzHIRMfMCXo82YiaMUbYcz+tRbOv0eFvPzwvuiYiIiMiN9o6Q+UNAU0trTCz549YIWfp6f0tqhCxjfTDnh0p5kMkRsn3KLUx7a9cI0RoQS46JlQPV5fFlAlXa9SJt27b1jJARURxjYURERGl08S+f8EE15UQX1OoKdPEiKyle5DZkZBXwBxDhIu6li7sliweEco0xJQeILAadXIk4fE1Kxe7wTuXyOl92sTCf0M/4icgwykR54nNbE7vKNWbX1WhjYa3v2br3KwDwFDBWSERERERERERERJ3H008/nREKO/bYY/Hss89i0KBB2v1GjhyJX/ziF7j88stx/vnnY+nSpYl1N910Ew477DBMmTKlvYbdJcyZM6fYQyAiIiIioo4kMy+KKZdBCGlDKua+LF4nMfkA5/lkew1tr6mjHXZ+5y8Zi3xwWSlzcNerecTCfndnIhQGAD7NfKpwNLtz6CJU08cB357kYu7MC48lPiyT6ufJbcCs0XBhWy4xo0rZolweaNgLQB0260gtyWGwdbEw2NLNHRcGK/MCYwcCFxwh8MFXEm8vb9/z5RXxaweH7A8s3ZzfMfKKhWneVqryjIUNqct+n3wDZW7cerrA/3tD/f70m3fUy8uymV77wqP6dYceB0RCgB0FIhEgGol9nPiz9ePEn0nr4x/bXfcG0UTUxUjZ9v5V7KEUewBpZEokTRUZc1qvC5+pImUe43qRfiynOJrTeTPG7QG8msBb+lgszpcnIiIi6gjJEbL6GtUWhYmQ+UOxkFji45bUCFl8vb8F8Iekep8gI2TFImXr1yKIdouQJWJiSR9Xl4ukj9PXC+U+jJARdU6MhREREaXRxb+8Qj1LJdqFY2FRF/EiXcAnncjxh1wVN3EvnyhDAH5Xx3H7GNJZSQEiT47H6G7CmolkpaYhoo6F1Xr7ZXUc3fsG0BoLQ1IsTBMqZIguRve6j78Hm8KNub7GiYiIiIiIiIiIqPP6+uuvcd1116Usmzx5Mt544w306NHD1TFGjRqF9957D1OmTMGXX34JALBtG5dddhmWLFmCvn2zu8EEERERERFRl6WIhQlAGQoDzBEwtxzjQAeMBVZ9kTEmnTIrCricp5NrBEpGIsCnc1OW+XRhriy7ELoxnTnW3bw9+cRdSWNSl5OCLsf09Tb9uupy/brEWNK+nyql+hsmIHMoj+WpJSzx+cbWMNj61jDYJiDSQf2hMi9w6CBg/FCB8UOAI4YIHDIQKPPGvs6L16q/ERQv0ZytLbFYWE1l/sfIJxam2zeXMF4yj5X9nNuaivzO6UYvw/O9TXnhoz6opjRoJLBxZebyg46E9ci7WRxITUppjollxMbsto9V+6XsY1qfvH8UsKOQ6cszxhJ1WJ/NeZ2OUfwYERGRa/H3tXDxb2JeSiE1KYQxJpZY5hgps1xEzLyAVxdla42oaeNomqBa/LzJcTRtqM1Snld3XEYPiIiIqDNozwhZINwWDosHrBIft8iUsFh8fXMQaArKjPBY8v7U8VIiZOotTHtr18QjZLqYWDxCpl6vD5RVMUJG1G4YCyMiIkpjawJZuuiPja4bC9PFd5LDWO5jYYW7U4mbc/osH5y+NPHj5Br6Sn0eeCcWN8KaiWSlJCLD2BdpUK6r9WV34ZdP6G/Vl/5cuHm9dWe611j8eYsaXvAMrhEREREREREREXU/N998M5qamhKf9+7dGy+88ILrUFhc//798fzzz+Pwww9HKBT7ve6mTZtwzz33YObMmQUdMxERERERUaelmXOn43U51WpAL2DLXvU6XRxLSgk8998ZoTAn5+y/CcBwV9uWuZiKcuPJigtgQpnRqzLNfCpbCkRt6ToYpHs+fDlMm9HFuUIRuBqTKQY3qt7FAEItqeOx1Qdskfq5WYWyfLPE/3tD4pkFHZ+CKE8Kgx0xFDhiqMDBAwCfV//8xy68KqVsRfvbqnmPyEZzKPbekcuFawFdLKz9vz0z1Fa3/4V3J47O/nts/e4sNtZ9DRq2Z3VO/eFFLELiLf6lVKV0maSUMhZGS4+JRfKNlLXF0bTBNUUcTWrDZhEgauvDZ5G0MSaPK6I6r+08LruDapBERPmSEoiEART/5u6l9rdRmR5Jy4iQpcXJnCJl2vXOcTSRETwzjSub8yad3+t1eLytY7F4DRQREVF3YFltkSe1wkXIUmNiMiNM5k98LJXhMr8xgkXtKTlCpr4XSO4RsqoyXYAsFhqrMgTK1PswQkYEMBZGRESUQRf/0sbCspzo1Jnonovk8I7HZYSnkH/xdhML8xoiTYnjtAbMrBxDZsnPA2NE7kQ0d8IsJXvCuyE1P6DWeftldSyfpb89YNhOfS50sSu3Qb6uTvcasxF7Dza9FzO4RkRERERERERE1L189dVXeO2111KW3Xfffdhvv/1yOt5BBx2Em2++Gb/85S8Ty5544gnceeedqK2tzWuspWblypX4/PPPsWnTJjQ2NkIIgaqqKtTX12P48OEYO3Ysqqqq2n0cwWAQc+fOxZo1a7B79270798fgwYNwnHHHdcu59+yZQsWLFiA7du3Y9euXejRowf69++PiRMnYsSIEQU/HxERERFRlyM1c20iu7Db2ydjebPL+w3mMuVM/uZ64KXfatcf3rIEn1YclrG80nI/ryniMGXwwP7ATacoBh90HwsDYgEwj8upbQWNhdkt2nUtYdOFZbGLxE6faZjH4yZ+lvY8VUr1eALR9p0TtGyzxPh7bO1zW0gVvqQw2JBYGOwghzAYxdw2XeCqp/JLUkgJBCOxr0O2nl+sPndlDsfqDI4Ykv0+3z8hi+/jDSuUi8V538/+xOSaEKItluIrQukufTzFHkASmYioKYJoecfRTOuT42exY8qMc6WH2gp03qjLx0tE1FnE39fCxb/xfSmF1KQQxphY4nPHSJnlImLmBbz6aJvwpAXPHMeVdF5tHE2xrcvjMjxBRETkrL0jZOoAWSw0pgqM+Q2BsqYg4A9p/xmD2pGUbZG49oqQVZcBPSrSP26LkGWuF5p9Yr/TtVzewIWo2BgLIyIiSqMLzvgs9T9+6gI/XUFUOseL3EZ4RI5BLhWPi2P5NHG3lOO0jj3XGFMuz0N3F7Kd/oGl+D9xN0R2atfV+vpmdSxTtC49nGbrXm8FfO10ZpZQPw/x9ynd82fal4iIiIiIiIiIiLqmmTNnQibN8Orbty+uuuqqvI5544034oEHHkA4HPvdrt/vx+OPP45bbrklY9srr7wSTz/9dOLzNWvWYNiwYa7OM2fOHJx44omJz++44w7ceeedxuPHrVu3zjh5/YorrsBTTz2VsTwYDOKhhx7C448/jhUr1Bdkxnk8Hhx22GE455xz8OMf/1gb7poyZQrmzp2b+Fy6nHG3d+9e3H777Xjqqaewb9++jPU9e/bEjBkzcNddd2H//fd3dUydcDiMJ554Ao8++ii++OIL7XYHHnggbr75Zlx99dXwejnNhoiIiIhISfN3/okti/FWj1MzlgdcdrkChqlGqus1pH+fMRQG6GNhIdv9/BJdPOrA/sBNpwqcd7hA357uYmE+RLTnCWURLypoLExmjjNueyMw3BALW7JBv65XpcsBpMfCbPV4Anb7/oz22BzZLqGwCh9w2GBg/BCBI4bGwmBj9mvfMFjxZ+W1n8kHCBTiETaHcouFfbZRvbyjY2FnHNIx57EsgW/UA/9SX92nNLK/u+3k5tX6lX3z+z0QUa6EZcUCI97iFwBL6VJVKSWQCKklxcQiqohZJItIWXpwLWIIl7VtL9OPlbK/rYmrJQfZ3J7Xzlyffly7696Inoi6GCmBSBiA+3B2uw2l2ANII9MjYhmBMVVkzG2kLH0fcxxNmOJo2pCbm/MmxeC0wbW0sVi8LoeIiNpfcoRM/Sul3H46llIiEEoPjyXHyKQiTBb7nWFTi9SEyxghK5bkCJlmC9PexmNXxwNi5bGIWOrHAtUZy+Ift0XI0tdXlTFCRoXHWYxERERpbE38yyvU/7dpCtR0djbU/1jlSQrvuI3wFPKvsW7iXj5DpCn9OLmGvlKeBzAW5kbEcCfMUrE7vEO5vNKqRoXldsZajClaF057LnShQoboYjya11j8PVv3fmXal4iIiIiIiIiIiLqmN998M+Xzyy+/HGVlzv9uYNKvXz+cddZZmD17dsp5VLGwzmTDhg2YNm0avvzyS1fbR6NRLF68GIsXL8ZFF12EkSNHFmwsn332Gc444wxs3rxZu01jYyN+97vfYfbs2XjllVdyPtfixYtx4YUXYvVqw0WorVasWIFrrrkGjz32GF577TUMHDgw5/MSEREREXVZmqthquxm5XJTBCxZi+Ga5e8dr5iR9vUSx2P6pPqg2UShdNv++kIL08cZZsopYmFlhvlUhRiTz5P9zL2+0V3adat3AMMN91t87Qv9hTZ79Q2yVOmxME28LGC3b7jl0Tn5X+VVGQ+DDW0Ngw0RGDMA8ObwdXHD0BAvmO8eV1oXNQ3tU5jjNIeAuurs9jHF0d1GEU2+c5zA7z509324y5//+dzq1zO7WJjr75hlC/Xraurcn5CI2p0Qoi2W4svvd+8FGU+xB5BEJiJqmphYRmws+ziaNrgWSd1WZoTYdPEzU8jNxXmTo2za9V33mhsi6oLikcsSUErtESmEQ6TM0xYg0673pm2jiZRZHsDr0UbMhCqO5va8ruJoquCa5riWZbyhFxERlQYhBKrKgap2jJD5Q0BTS9ufsWUy6eO29f5gLEKWum3S/kFGyIolHiHb3qhaW5gIWXV5a0ws8XFqhCx1vcgIk8XXM0LWvTEWRkRElEYX7NHFp7p0LEzz2JLDWG4jWQKFu4OA5eJYHk3cLfU4npQ/sx9H0vPgMprW3YU1k+1KSUNEHQur8/XL+limaF0k7bmIakKFbuJ43YHueYi/T5nei/kcEhERERERERERdR8bN27E2rVrU5adeuqpBTn2qaeemhILmz9/PsLhMHy+9r04ub2EQiGcdtppGaGwuro6jB07FvX19fD5fGhsbMSWLVuwfPly+P3tc+Xp8uXLMXXqVOzalXpBen19PQ4//HD07t0b27Ztw/z58xEIBLB7925Mnz4dDzzwQNbneu211zBjxgw0N6dGCwYMGIBDDz0UdXV18Pv9WL58OVasWJFYv2TJEhx11FGYP38+Bg0alNsDJSIiIiLqstQXQegiT80uY2GmWJYyyrVrq+MxdXGusO3+goqI5p52XqcpZC3ZxcJCEddDQkgbC3PeV0ZST7R/ZEvOY1q4ugBXMKU9T5V2i3KzBrsq/3MVUFVZUhhsCHDEUIHR+7VfGCxOvv0s5Cu/A1Yvg6x7DKg6O3ObAl5Y9m/HltbFR2XewozHH8x+H9N71Kj98h/Xz89wHwvb3YGxsFMOEpi30v031dEjXD4XAcODGHeM6/MRERWTsKxYYMRb/H83KKX/x5ZStsXJkuNpkTwiZclxNGWITR9Hk9o4WlL4TLU+kjZGp/PatvO4WAAgos5CSiASBlD868JK7Z1TJiJjmkiZcX0WkTJLc6ykiJmw0o6ljaMpgmvG86YF11KCaep9hMVrLYmo60uOkGm2yOm48QhZPByWHCGLLZMpYbHkCJk/KFP3CTJCVgraK0IW/3eJ604UuOhI/n9vd8JYGBERURob6pk8XqH+B5uoZvuuIKqLhSWFdzwuIzyFrOS7Cf94hAcWPLA1AabYNlbr8XL7C3Auz0N3F7ZdzvQrooaw+s6YtV7DLTE1TNG6cNpEP13sypNjzK6r0b1Oo62BR11sLbYvn0MiIiIiIiIiou4uKqPYE9lZ7GF0eb29fYv++/KPPvooY9mECRMKcuwjjjgi5fNAIIAlS5Zg4sSJBTm+Ww8++CDuvPNOAMCxxx6LTZs2AQAGDhyIefPmaffr0aNHyudPPvkkli9fnvh82LBh+J//+R+cdtppsBQTd6WUWLx4MV577TU88cQTBXgkMeFwGJdeemlKKGzAgAGYOXMmzj///JSxNDU14de//jXuvfde7NmzB7fccktW51q+fDkuuuiilFDYaaedhrvuugtHHnlkxvaffvopbrjhBnz44YcAgE2bNuHiiy/GnDlz4PHwd89ERERERAmaaxV0kacWF9eVSim1Ua5JI4Cjhqdtb9uQd33b8bheSz3YkJtBtdIFghzDXM2ZV4H4DDdfNIWICjYmAAg2O2/TKuDwNA3pI6D7hvjmoW5P0pTyaYUmOhcu8qUQxxzQGgYb2hYG81gdm+WQb/0Z8hdXJT4XPTXFq2AAQHXe5/vZmQITh+V9mJLkNmKYLGDY58pJ+X8vDOkjMKAXsGWv87ZXTO64770bTxa44xX3VxUOqXO3ndy4UrtOVJRWHJCIiLIjhGiLpZSAkgqp2XZaIE0XMUv60zFSpgiuZaxPC65FI5Cq4yqDa3me1ynKFt+fiKiziEZL5n2rlPovUgiHSJkqfqYJm8U/9moiZZYH8KYtT1ovHONohvO6iaMlj1ETckNSyK2Q19kSUdeUHCHr11O5RU7HlVKiJdwaEGuNV6XGxGTbsqT1zcHWQFnyPkkf+4OAXUr/J9SNNIeAj1cBH6+SEMLGjIkMhnUXjIURERGlsaV6hpFPEwvTBX66Al04LTleZLkMGYkC/pOKmwuNPPDAEpbx6xMfe64xplyeh+4uYpjcVip2R3Yol4DrUf4AACAASURBVNf6so+FWcKCV3gRkZm31AwnPRdSSu3rTeQYs+tqdK9T2fq86d67Y/vyOSQiIiIiIiIi6u72RHbittXXFHsYXd49I2ahj6++qGPYuHFjyuf19fXo06dPQY59yCGHKM/X0bGwvn37om/f2O+svd62aR9erxfDhg1zfZyXX345Zd933nkHI0eO1G4vhMCECRMwYcIE3HbbbbDtwtxQ5+GHH8aSJUsSnw8YMADz5s3DiBEjMrbt0aMH7rjjDhxyyCG48MIL0dDQ4Po8tm1jxowZ8Pv9iWV33nkn7rjjDu0+hx9+ON5//33MmDEDs2fPBgDMmzcPzzzzDC6//HLX5yYiIiIi6vI0Px9USXWEqrklCjjM54gYpuXdf77iorqvPzUeL65MM80rvMfdzxe2LSE1F704hrmWfJg5HsN8qlBHxcI+zwxv7xfZiq3e/TKWt4QlTBci7d9bf5peVS7nEKaNp9JWx8IAYNV2iQP6F/4CS6n7Irf6/gkCj15a/DlJ8qVZ7jbcth7AGOMmURdXc919tujUF7T++67/xn/1uVG5LpdY2Lrd+nU9K7I/nsr/fd/Csfc7/w6mUOdzo2eFQH0NsG2fu+29bqfXLnxHvXz0EerlREREXYCwrFi0xKu+XqlDx1LsASSRUrbFyRwjZrnF0TJDbPo4mtSeNxL74VUVRLOjsXOmj9F43qjzuBx+ViEiKhlSApFw7L9iD6XYA0gjMyJp6ZExy2F9NpEyxbGS1gtVHM3pvMrgmiYGpwquaUJtnfl3TkSdhRAClWVAZVn7RcjUMTGZGShLipCp9mGELHuPzZGY0bHTGKmIGAsjIiJKY0M9a8YryrLavivQhbaSY12Wy5CRVcBYj5tjWcIDDzyIQP8LJav1cVgu4mPq/a2kjxkLcyMsc5hR08EawupYWJ23X07H84oydSzMbnsudKEwgKGrON1rLNr6PhU1hQH5+iQiIiIiIiIiIuo2du9OvUqztra2YMeuqKhAeXk5gsGg9nydybp16xIfH3roocZQWDqPxwOPJ//fvdq2jYcffjhl2W9/+1tlKCzZ+eefjx/84Ad45JFHXJ9r9uzZWLp0aeLzCy+80BgKi/N6vXj66acxb948bN++HQDw4IMPMhZGRERERJRCfbVGhSby1NwYAGC+GF4XvwJSA1gyHIpddLjiM6dBAr4y+Fr2AYqLYEKV7n5+NI3LMYhTnXlinykWljnlSCmaT8AMAHZsylhUYbcoNw3kcX3neYe7vNCooirl0/0jW7SbfrEJOKB/7mPS2dlkXl9eKldhrPzc1WZyr/PvLza66OWV6kWbRwwFFq8zb1NpN+Pe7XdgZt2PYCvmk+USCzPFsvpXRSFbQhBp38/Z2r+Xu+0qC9QXkY17gB69HL/WbkNhgMv3IQD4xnhg1ReZy79a7P5kRERE1CUIIVrjIaVxHUAp/S1Y2nZmUEwZMcs1jqZbnxw/i20rVSG3lFCbbV7v9rzRCBC1HdZ33Wv7iKgLikZL5n2rlBo8UgiHSJkn7WPV+rSImi5+Znliv8zVRMxENnE0VXDNMY7mcYyntY1VceMMohLT3hEyfUxMKgNjfkOgLP5xV4yQfbqh2COgjlQq/0xFRERUMmypjvb4LPW/pJsCNZ2d7rElh3c8LiM8hfyB1E34xxJWLOZl+Au7J+9YWPLz0DFBp85+ExCnWFgpPLyGyE7l8jpf35yO5xM+qKbORZIm+unCfABDV3EW1M9DPNhoCjfq9iUiIiIiIiIiIqKuJz3e1bt374Iev3fv3ti2bVvi8127dhX0+MUSj2B1tL///e9Yu3Zt4vOJEydi+vTprva9/fbbMWvWLITD7q5Uf+ihhxIfCyFw3333uR5njx49cM011+Cee+4BAHzxxRdYu3Ythg0b5voYRERERERdmmZSU6VUB6f2BJznkjnFwqR/H+RpWd78b8JU+L5W/wwRlu7mt21vNI/LRG5albGszDCfyvQcJPt8o2FMbq4WCGZG3SqlOvQWcAgqmcZ84mgXY1GM54Dwau2mgbBEe1y67xSOKoXr86SUQEtzyjKRxww8t99vpWj6OIHF68yPfVrTOyhDGFV2M5o8mVes5RILM70e6i4aANnSDHnI0RC3/hZi4AHZnwDAsL7uvtkq1fdDdk2+8jvIP/0K2LIO6D8YuPhGiAuu024/oBewZa+7Y3vdTq9N+34mIiIiokzCsmLREm+BarH5jKXYA0gipWwLjzlGzJIiak5xNGVwTRdqawuaSe15I0AkqgmepR/XzXmjzo+3s1+IRkTdh5Sxm0JE8rhbQaGGUuwBpJHKiFhyuEwRNFOFzVxFylRxtLb1wimO5nRe5fq0GJwqCqfYjxG1ri85Qta3wBGyYARoamkNiIWSPg4CTUGZuqz14+QImWp9sSNkjS2xm8t4LL42ugPGwoiIiNLogjNeof5Fqi4u1hXongsLVtLHLmNhBfw1sMfFOT3wOEaW4o/Dg9xCX8nj6KgYkY3O/f0Wtov/yxqTQNSPgK2ecFLrzTUWpp6FkxxOizJ05UgX5IuH1kzBNbdRQyIiIiIiIiIiIiInXWmi2ejRo7F8+XIAwIYNG/Dggw/i5ptv7tAxzJs3L+Xziy++2PW+/fr1w6mnnorXX3/dcVu/34/58+cnPp84cSKGDx/ufqAATjzxxEQsDAA+/PBDxsKIiIiIiOI0F55WaebhLNpW5XhIx1hYtqGwkeMgfjoLZb+aB+zOXB223f28N+VB/fwtUyxMRqPA7P/NWG6KhYVcxJv2BSSOvT+3MSXGtmxhxrJKWx16W7jGfKyIYcw9K9w9x/LtZ1M+N+3lFC/LlT9oXl8S11qHHAaZxM14TV+7UvfT0wSWbpJ44RP1+iMCn+B/t8bCV9WyGU1QxcKyD8/FYnUa/n2xPz+bB/mjU4Bnl0OUV2R1/LiTRgPvf2XeptKX+++s5NyXIB/4YduC7RsgZ94E9KyDmHaJcp/bpwtc+4y7F4Kb9yEAwPv/p15+0rdcHoCIiIiIuishRGs4pDSuHSmlf1GWtp0aF9NGzHKPo6nXtwbXkraV6aGzjGBa1GG9y/Mm1jmsJyLqLOLvaXD/+8D2Ugq/Fo2TQhhjYinxM6dIWXy91xQpUxyr9WORaxxNFVxT7qcJvSWPN/Gn1aXmt7UHIQQqfECFr/0iZP5QLB6W+LglNUKWvL45BDS1pEbIktdnEyFrbAF6O/8THHUBjIURERGl0cW/fLpYmCHy09npnovk8I7bCI/IMcil4hQBi2/jFBWLH8fN8ZzGkesxsmUKInUGYcPktlLQENmpXVfry3KCYStdaDAiI4mPGbpypnuNRVvfp6KGkJ6lCY0RERERERERERFR11NXV5fy+d69ewt6/D179hjP15lccsklmD17duLz//iP/8BLL72Eq666CmeccQYGDBjQ7mNYtGhRyudHHXVUVvsfddRRrmJh8+fPRzjcdkOTESNGYO3atVmdy7ZTfw+9atWqrPYnIiIiIurSNCWiSqkOTgFAc1Ciqlx/wYUplOVt1M/xURFPfwIMPwhCCPjK1HNQwrbz/JI1OyXWGE7tNR3iy38qF/uk/uaLpmBa3FvLgIDh/o2uIj1ff5qxqEIGlJv+c635ihTdmKcd7GIccau+yFg0OvgVviofnbHc9NjzsWid+XF6S2FK17b1GYtEHpfrOX2/9e2R86HbXblP4P++78G6XRIrtwNHDo9dYPXPtcDwbfMx+u4picu7dBHD5hymNur2GRJO+9rs2AR8Ogc4+rTsTwJg7ECB978yf20r1dMUXZFv/1m9/K1ntLGwmkr3x3cVLWxu1K9UvEcREREREZE7wrJioRRvHj80FGosxR5AEillanisEJGytDiaMrimiaNJ7Xmjsbq3MniWflw3542a10fa6RctRETtQcrY+1YJvHeVUkQNAGRGmCz9Y8thvSJ8poufWZpjta4XVtqxjHE0p/MqgmvK5ZqxtHNELSVCpt4ip+PGI2T+YCwc9tVW4PSZ6uup9wYYC+suGAsjIiJKo4t/6YI/EhK2tLtkjCaqeS5yiWSJAv5Kz3IRHrPgcRxbPCZmOUTF3IzDKUxWKJ09ThcxTG4rBQ1h9Ww+AQu9vbld8OWzypTLk8NpujAfwNBVnO51H39NmIJrub7GiYiIiIiIiIiIqPNJj3c1NDQU7NgtLS1oaUm90L1Pnz4FO35HO++883DeeeelBMM++ugjfPTRRwCAkSNHYvLkyTjmmGNw3HHHYcyYMQUfw7Zt21I+P/DAA7Paf9SoUa6227BhQ8rnf/nLX/CXv/wlq3Ol2717d177ExERERF1KZpYWI29T7vLhgbgG/vpD2kKF/nWL3M7MuCUiyBGtJWqynzqOShuYmHPLDBf8mMM4mxYod4H+vlUoYh2VcLnm/IYU9yBh2aMb0HlkcpNDxtsngcY0UyDcjUOALJhO1BZDQT8Kct14bn2ioU5zXY8bmQJXOK8Z4frTd1crKb72sVdfWwJPGYHQ/sIDG39VU3PCmD6OEB+tCvl8RcyFtai+f6rsDO/X+WSeRA5xsKGq68sy3obrb+/rF7+z3e1u4zoK+D2MkiP4u1VhoKxMODWdUB1DbB5jf4AG1e6Og8REREREZFbQojWcIgHQHmxh1NaITXbdhFPa42jxQNkbuJoquBayvrM4JrUHVcRXMvrvIl1hscb7dzXdBJRNxN/T0Ow2CMpqZCatCxjTEwfP9NEyuLxM21QTXGs1j+FLo6mGVe55UG5x4M6jxeVoQoAJygf4171fWCoC2IsjIiIKI0u2qOLhQGxWI2bgFVnE5Xq2UbJ4R23j7uQxV038SSPsBzHFo+JeVwGz1L2hZXymDoq6BQ1BJE6g+RAVinaHVHHwnp5a+ERuf3V2ad574jYbTOFdGE+gKGrOF38Lx4J08XCBASDa0REREREREREhN7evrhnxKxiD6PL6+3N56rEwhg4cGDK51u3bsWuXbsKEvVatizzYvT083UmQgg899xzuOOOO/Cb3/wmI4S2cuVKrFy5En/4wx8AxOJhl112GX70ox9lRNlylR5zq6mpyWr/Xr16udpu165dWR3XjcbGxoIfk4iIiIio09LMuTvZ/752F7/DNSrGWJjt/gIXccpFqftqqlUhF7Ewp5iQKYglF76jXC4AeGUYEcUcIzexsKhD4MlVpCuaeaLB4Y1YWzYsc0xR86U9uq+b0zhkcyPkbRcDmuepwlZf4RJoh+loti1xxZPmxzm18D3t7AULe9XPp+vNj/mC8aV06bJ7cumClM8rpfp5c3pPSvfVFokf/ln9nJVLxcFC6uCdG2cfKnDjc+avjym+mA/7p+dB3PkniIqqlOUTh7k/Rvr8Yfl/D0M+dHMBRkdERERERESFJiwrFkrx6q+l7bCxFHsASaSUqeExY8QstzhaZrxMsaz1Y6k9bxSIRDPPpRyLm/OqomrJ52qnkj8RUXuw7dh/JfDelU9ErQY+YMxe5TrGwroPxsKIiIiSSClhQz17xifKtPvZ0s75tw+6OFkp0I3NkxTecRvaEgX89YwuGpS+jdPY4gGhXEJC6WNwM6ZC6PyxMPMPUVJzl9GOsjusvttibR4XuHk17x3J4TRpeB/IJWbXFemiafHQmi64xtgaEREREREREREBsd+z9fHVF3sY1AEmT56csWzRokWYNm1a3sdetGhRyueVlZU47LDD8j5uMXm9Xtx77724/vrr8ac//Qkvv/wyFi5ciGAw86LWlStX4s4778R//dd/YdasWZgxY0YRRpybUKjwV48X+980iIiIiIhKiubvx30i+nCvU3jLFAvzvvg/bkYFABCTTk/53FemnksSDjvP41uxzfxzgFczDU3u2w28+5x2vzIZUsbCNjZIOE1MDDoExVzFwhQXxpzb+BL+q8+NGcudAmYRzdPotcyPQ/76em0oDNAHngLtcE3PIx+Yv86f3mahurwELlfduCpjkcjxEqNwROI7f9Dv+4erBSYMK4HHnCUZCgJ/+lXKsiq7Wbmt03tSMtuWmPbf+veMMtU8yZdmAdc/6P4kSYb1FaitAhrUQ8fg2sLe0DfFR69DPnQTxC2PpSy2LIFD9geWbjbvfstpaaGwhe8wFEZERERERESdjhAC8Hhi/6G82MMprZCabbuIp8XjaNHM5S7iaOr1yctj20pjHC2aef5cz5sIqTmsJyJqB2UIo8IOoMWqzFjHWFj3wVgYERFREqkJhQGAV+j/bzOfgJOtCdyUAt3YkuM7Au5CW263c8PjIv5jweMY8IofJ5eYkJX2eNyMqRBK+fvFjXAWd/UshoaIOhZW5+uX8zF17x3J4TRd6Apg7CrOo4n6xaOGtuZ9OJcYIBEREREREREREXVeQ4YMwZAhQ7B+/frEsrfffrsgsbB33km9aPmoo45CWZn+ZjO5iBZpsmB9fT1uuukm3HTTTQgGg/jkk0/w8ccf48MPP8R7772HpqamxLZ79+7FxRdfjPLycpxzzjl5nbe2tjbl83379qFfP/e/k9+7V32XxHR9+6beFOSXv/wlbr31VtfnISIiIiIiB5pYWBnC8MqwMoTlzyMW5vt6kX5lspq6zDHpYmGKMaZbrZ5alKANcxkiWEAsFtaM6ozli9cDVzuMKeDwPLqKhUUzC2DK2BGc42S6r5tpHDISAT56zXjcSrtFuTwQtIECzk0EgNte1kezJg4DDh1cGpdjylWfu9/WoSH2j9Xm9ZccWRqPOWufz8tYVKUJz2UTC1u8HtjQoF/vk4qDhfMLmZ85VuBPC9RfyGG53wsVcrPDFx8A/v4K5H88mhEkO3h/gaWbzd9cNRVp5/v7y9kOkYiIiIiIiIhKmLAswLIAr/PvV9t9LMUeQBIpZWp4zClSZtsOEbPkEJvtsD4zfCa1540CEU3gLafzOjxexe+iiSh7vex9mliY801oqGtgLIyIiCiJbYqFWfqLPfIJOMVDNyqFDGzlQhdBS45wWcKCgGUMrQGFvWuZUwQMADzC4xhZih/H4+J4TmNwM6ZCMH2/dAZhzSSyUtEQ3qlcXuvNfTaNT6jfOyJJE4J0oSuAsas43Wss/r6te//O5fVNREREREREREREndtpp52G3/72t4nP//jHP+K+++6Dz5f7xMQdO3bglVdeyTiPitebOhUjEnE/0a2hwXClaQcpLy/HpEmTMGnSJNx0000IhUJ48cUXcfvtt+Prr78GEJvUeP311+Pss8+GZeX+e+z6+vqUz1esWJFVLCw+nmzP43Y/IiIiIiJySx+LqbKbsc/TK2O53+Geg8ZYWM8aYM8u52ENPyhz37A6FBQSPshoFMKjn2syql7g0w36x9q/JvantG1gxWfAqi8AKSGf/bVxmHs8tcrl+9UYdwPQfrGwcqn+AoUcfsTVNbA9Kz+F/bP7gX4DIUYcDHhaf0YfcTBQ1x/w7zMet0o2K5cHAhHkcklES1hi/mpgTzNw/CigrrptfmOjuksGIBZHKhm19RmLhOG1aPKvbeb9LKuEHrdLsmkv5IuzMpZX2ervpWxiYXO/Nj9fZapY2MARkJvXAMsWAHX1wCGTIMorMrfTMJ1xjXraozvbNjpvs3cnEAwAFVUpi/fLfGvPUJn+67htG9yPjYiIiIiIiIiokxJCAF4vYr+7LC/2cEoqHSRt20U8LQpEUoNn2cTREIk4hNpi28qM46afS3EO1T7GcSUdSzeu+Hoil3pF92KbN/PfCPY0RlHoG6xQaWIsjIiIKIkpxOQz3DlQF9Vyw7SvKPKPYLqAUXp8xyMsRBwiVoV8LJaLv6hawoLHIbIUj4k5RcVUPGn7uBlTIUTzCNOVgohqEkwJ2R3RxMJ8ecTCLPV7R9huC6eZQoWMXcXoXqfx9ylt3DCH1zcRERERERERERF1bjfccAMef/zx2F06EQt9Pfnkk/je976X8zFnzpyJcLjt97rV1dX47ne/q9y2pib1au49e/a4Ps+yZcuyGlchb9aiU1ZWhhkzZmDatGk45JBDsGnTJgDAhg0bsHjxYkycODHnY0+YMAEvv/xy4vP58+dj8uTJrvdfsGCBq+0mTZoEIUTie+Kdd96BlLJDnj8iIiIiom5B6jM21ZpYWHPIfHdzYyxs71ZXwxJnXpmxrGz4gcCXivMJXyyGU9VDezyvwzQUjyUg/fsgf3Iu8Nk8V2M02dnkvE3A4d6NrmJhisi1MnYEIOQwfU33dfOtXgJsif38l/Hd0sO5OFRpqyNvu5qyv/nmim0SU39jY2Nrr9trAX/+roULjnD+GfHbR5fQz5ER9zfulA7zNw0v4U5JLnwH8j+/FXtNp9HFwpzCe8mcvguUr59NqyFnjG77vM8AYOabEENHZ26rMGOiwDML1F+obx6Wx/dlUP18ZAj4M2Jhl08SmPme+ZunMv1eq599mMXgiIiIiIiIiIioqxGWBVgW4M39po8FG0uxB5BESmmIozlEylzG0fTrM+NoUnveCBC1NcGzXM6rOFbyesXNTgiosdU3YNm7cy+A3K+Hp86DsTAiIqIkpmCP1xAL00W13J1Tv69V5AsUdM9HehgrFuMx/4W7kDEtIQQsWMavlwWPYyQoHhOzHKJiyuOn7dNRQad8vtdKQVi6n6DU0WxpY09YfcfROm+/nI/rFemzXWLCSROCTNFAxq5idK+x+HOne21YjK0RERERERERERF1OwcddBBOP/10/O1vf0ss+8lPfoJvfvObqK/PvKOek+XLl+OBBx5IWXbVVVehrq5OuX3//v0z9p8wYYKrcyWP2Y3y8ra7jwaDwaz2zVbv3r1x3nnn4eGHH04sW7NmTV6xsGOPPTbl82effRY//vGPXe27Y8cOvP3226627devHw4//HB88sknAIBNmzbhjTfewBlnnJHdgImIiIiISM0UC5N+5XK/w48wxliYyzlI4vRvZ+5bVancNiTKgECTORZmmGZ2wfjYn/KJu7MOhZ3Z+De83jPz55OH35eYeZF530DIHOpxFQtTXGyjjYU5XJcT0Uzp80rDjk17zQcFUClblMtf+KJcudzkiifbQmFAbMwXP27jxG9Y6NPDPGfzxNEldPlYJPNrJDJTbK3M3ydvfNF1amEyGID8+QxlKAwAqqU6jtWcRSzM6XVV7uamqru2QN51BcTv3YXQD+yvX3f0CFeHUAuqX1sZAk1Abeo8ykMHOe9WlTR9UkoZi44RERERERERERFRCiEE4PUilgDK/vfehVZCvwmHzAiKmSJluuCaJo6mCq4ZjitNx00Lrrk6r+7xxLdTjaulGb2iqf+u0iPaiF72PpQHQmAsrHtgLIyIiCiJKcRkioVFDcGvfM4pChjYyoUuYJQe37GEx2kuScFZwoIt9bEwj/A4RoLi63MJfSmfgw7Q6WNhdhYzajpYY3QPoproXa0v9x+OfJr3jkjSpEXT17WjQnSlThccjAcXdeHFQoYKiYiIiIiIiIiIqPP49a9/jTlz5qC5OXYB6J49e3DeeefhrbfeQo8e+gu/0+3YsQMXXHABQqG2328PGDAAt99+u3af8ePHp3z+6quv4vLLL3c811tvvYWFCxe6HhsQC3jF7dy5E+FwGD5f+9150+tNnWaSHCvLxfHHH49hw4Zh7dq1AIBFixbhtddew/Tp0x33vfvuuxEOu79JyXXXXYerr7468fnNN9+M448/PqvvByIiIiIi0jDM46qy1WEev8M0IlMszOtwY0sAwAnnKBf7KtQ/M4VEGbBqPtBnP+0hLcM0lBH9Wy+dmf+m89jSlMvc488Bhx+LygocCws6PPXhqHoiodvAm47uObJEdhMXd/sl5q/OXB61gTeXSZw1LpfRFUm4cHPxsglllbzP5hmDVJWa96Rmh/BeMqdYmO71k2HFEshdWyEM7ztxmrcuAEBtVR6X7mmiahlaMp83yxLweczv1+XJv0pavSy7sREREREREREREVG3JywLsMqcN+wApRJRm3X2RMit16FXdB9q7H3wtl5fLWY8AWBkcQdHHYJXzhMRESUxxad0wZ/YfrkHnKLQn1MU8a+NUkptfMcDj/FzFSEK+9cOy+GcFjyOkaX4MZyOpZL+mHM5Ri5M3y+dQcRx0lfx7lC4O7xTu67O20+7zolPqH8IDSfHwgzBwY4K0ZU6S/MeEn/fjmrev3X7ERERERERERERUdc2evRoPPzwwynLPv74Y5x++unYuHGjq2OsWLECU6dOxZdffplYZlkW/vjHP6JfP/3vjSdNmoSqqqrE5y+++CIWLVrkeK4rrrjC1biSjRkzJvFxJBLBBx984Gq/5uZmPPzww2hsbHR9rqamJsyePVt7/lxYloXrrrsuZdk111yDNWvWGPebPXs2Hn300azOdfnll2P06NGJz7/88kuce+65aGhoyOo4O3bsyHgeiIiIiIi6Pamf86OLhTnFiXTxGa8lXc2qE6MnKJdX9FdHeaLCi0jQPLfJ8DBxweBNsQ8atrsYXar1vsHK5fvVOO8bMDyPh+wPlPvani0ZDkH+4w3IJ38B+cFsSP++2IpI5uMu18SOQo6xMPVyj3QReDNY5RuhXD64Z3YRsh2GH4M/3wjs1jem8I36rE7V/iLuC19Or5r9e+vXXzBeu6o07Ta/BqukOo6VTTCtzOuw3m0sDIgFw179PeRzMyHXLNduNqQu9l+66nLgpNGZy11zGwvTBNhMoTAAqKlI+t5q2OZyUERERERERERERESkM6yvwPDwOtTZDYlQGABg6/riDYo6FK+cJyIiShI1BHu8plhYHgGnqGESTFFjYYbHlB4vchPjsQr8WJwCSpawIBz+qhOPiTlFxXTHTz1Wx/y1Kp8wXSkIZzMJpoM1RHYol/tEGao9PXM+ru69I5L0XOhCVwBg8a/sAPRBvvj7tjZuyNgaERERERERERFRt3X11Vfjhz/8YcqyefPm4aCDDsJ9992HDRs2KPdbuXIlfv7zn2Ps2LH4e1hguAAAIABJREFU4osvUtbdf//9mDp1qvG8PXv2xIwZMxKfR6NRnHnmmXj77bcztg2FQnj88cdx9NFHY9u2baitrXX78AAAJ554YsrnV111FR599FEsXrwYq1evxtq1axP/7dzZdtOMUCiE66+/HoMGDcLVV1+NV1991RgOW7hwIaZOnYp169Yllh199NEYNWpUVuNVuf7663HooYcmPt+8eTOOOeYYPP/887Dt1N+f+/1+3H333bjoootg23ZWz5fH48Hzzz+Pmpq2q+3fffddjBs3Do899pjx8e/evRvPPfccLr74YgwePBgPPfRQFo+QiIiIiKgb0FW0DjkaVVIdC/MHzYfUBWh8lou5enX1wMkXKldVV+jn4gQC5qCVKYpz+E8Phvz4b0DTXufxpbl077PK5Vv3Oe8bMLSybjg5KRQWDED+9DzIW86B/P09kLdfDPmDKZC7twHRzMetix2tcGihRXRfN2QX9Up3ZtMbyuXr9qlv5Khjer5awkDI8DW+55wSm8cVznwwQvdadLiHp+lxXzulxB63kz3qeYBxuoCh03tSMt33eVw2sTD5H9+E/NW1kI/cAnnlEZBv/FG5nRAC/35K5jzca08QqPDlMT/XbSysRR0L+7FiTMnGDEj6pMnFmxoRERERERERERERmdWrb0Ijt6nnQ1LX43BPEyIiou5FGoI9PqGfVBLNI+Bkij+JDgpQqRjjRWnxHY9w/iuFU7grWx5NOCixXngcA17x4JdTeEy5b9r5dSGjQtMFkTqLko6FhXcql9f5+kGI3CfT+Cz1e0dYtk3WMr0PuInxdQe66Ff8udM9hx312iQiIiIiIiIiIqLS9Mgjj6C2thb33nsvZOsFs42Njbj11lvxn//5nzjooIMwePBg1NbWYteuXVi3bh3+9a9/ZRzH5/Nh5syZuPbaa12d95577sGLL76IPXv2AAC2b9+OadOmYeTIkRg3bhzKy8uxbds2LFiwAH5/7GLL/fbbD/fffz+uuOIK14/vW9/6Fn72s59h48aNAGKhrfRAWtwVV1yBp556KmXZvn378OSTT+LJJ5+EEAIjR47EiBEj0Lt3b3i9XuzatQtLly5NHD+uqqoKv/3tb12P08Tn8+GZZ57BCSecgF27dgEAtmzZgm9961uor6/HEUccgV69emHbtm34xz/+gUAgdhFrr169cP/99+N73/ue63MdfPDBeOGFF3DBBRdg797YBfwbN27ED37wA/zoRz/C2LFjMWTIENTU1KC5uRl79uzB119/nfH4iYiIiIgojS5QNOwgVC/RhHkcphFpY2HCUD0aMgo4ZBLEpTdD7DdUuUmloS21crcH43MY06V7/wwRCkLeeZlhb70DQyu16wIhicoy/dwlXfzq2JHAvx2bNO/orWeAhe+kbrR6GeQzDwKRzIOYYkdSSu18Kt1z5M1jjqV47kvU/9stOe+fLGD4vvvLPyW+d7z+uT7+wIIMoXDCWQSpnA4VUW8xZgBw4uji3fQ2F/L5/zGu18XCmrOY2mgKBwJAmcwxjmfbkA9eB5x4PkRFVcbqG6Za6F1p488LJIIR4NzxAteflOfXJ89Y2GVHC/zmHf13WFnS9GL59p+124n7X4T8ybnuxkJERERERERERETUndUPif3pKwP6D4p93n8wxKHHFndc1GEYCyMiIkoSNYSYvJZPu84U+nFiwxDlKnBgKxumKJUnbVxuxplPbEnFKaBkweMYCYqvz+V5Tg8X5RIcy0U+Ybpis6WNiDTffbOYdkfUdxSs9fbN67heoX7vCNtts4tM7z2MXcXoXmPx91/da6OjXptERERERERERERUuu655x6ccMIJ+MEPfoAVK1YklkspsWzZMixbtsy4//jx4zFr1ixMmDDB9TkHDhyIF154Aeeccw4aGxsTy1euXImVKzMvAh8+fDhef/11bNu2zfU5AKCyshIvvvgizjnnHGzatCmrfdNJKbFixYqU50hl4MCBmD17NsaOHZvX+ZIdfPDBePfdd3HGGWdgy5YtieXbtm3D3/72t4zte/fujVdeeQXRaPb/bnLyySdj0aJFuPjii7Fo0aLE8mg0iiVLlmDJkiWOx6itrc36vEREREREXZsmFFNRiWpbHZhpDprzReGoer3P0sy3q66B9cwXxmMCQKV+GiBmfj0STxv2jWjG1Cu6L/ZBQP1YzQPqgR52k3b1P1YDJ43W766LX105OXW+nvzwVfWG814FPJmXFJhiYf/aCoweoF4X0Xx5fDnEk8R/vwlxxIkAAK/hqodt+yTqa9zNT9TF1QBgVH9zBMpXatOQIplfI+GYBVMLaR73yWM6VygMAFDVw7xaquNYhYyFVWrO4UqoBVj0HnDsWcrVV0y2cMXk3A+vPJ8bmve3HuXm3VLec3Vhsl59ISafkeN3LxEREREREREREVH3Ir79E+CyW4C6egireC0KKh7GwoiIiJJIqQ93+TTBH8Ac1nJiij8VOrCVDVMALT2+kx7OUhEodCzMIQQmPI7bxMftZvxO58/lGLmwDd+jpS6S693yOsju8E7l8lpffrEw3XtH8vOhe70JCMcwXnehi/rFg4u68GJ63JCIiIiIiIiIiIi6p5NPPhnLly/HX//6V/z+97/H3LlzEYnob3BRXl6OU089Fd/5zndw1lln5fRvNieddBIWLlyIn/70p3jllVcgZeYlj/369cOVV16Jn//856ipqck6FgYAEyZMwPLly/Hss8/izTffxNKlS7F9+3b4/X5tTKtXr16YO3cuXn/9dbz33nv47LPPjM8HAHzjG9/AFVdcgRtuuAFVVVVZj9PJYYcdhi+//BK33XYbnnrqqZTIWlyPHj1wwQUX4O6778bgwYMxZ86cnM41cuRILFy4EK+//jpmzpyJDz/8EMFg0LjPmDFjcPLJJ+PCCy/EMccck9N5iYiIiIi6LMXPOwCAimptmMffYgOGm+jpYjw+oVlR7u7nlDLD7PkXNg81xsJ0Y/LmMS9K3PE0xt96mXb9nmbz/rrAUWVZ2oL5b6o33LwG2H94xuIjWj7RnrPBMCbtc4QcbjI5pi3aPUJu1m62pxmor3F3SFMQqqYSCBmG6fnv62EHtrs7UUdYuqBgh9J93Uyvl5LVuMe4uspWfwNnEwvTRfHijmn+2P3BVNZ+pY2FFZrUBbzSaWJhI/oCfaqBXZpWYu/yKOTf/gz50izgy0Xqjfaq524SERERERERERERUSbRZ79iD4GKrDP+8w3lSAjRE8CxAAYB6AugEcBmAEullF8X8Dw+AMcAGAJgAICm1vN8KqVcW6jzEBG1h6gh+uU1xMKieQScTFEuUcTIjem5sNImaTlFuYDCPxZdOCjOA8sx4BV/HLmMLf38TuMplHzCdMXmJhZWzDvDNUTUE07qvP3yOq5PpM+8iwkn3X1TF7pKf611Z7rXczygp3svdfP+RERERERERERERN2D1+vFJZdcgksuuQR+vx+LFy/GypUrsWPHDoRCIZSXl6O+vh6jRo3C+PHjUV5envc5R48ejZdeegk7d+7E3LlzsXHjRjQ3N6O+vh7Dhw/HcccdB6+3berGlClTlFExJzU1NbjmmmtwzTXXuNpeCIHjjz8exx9/PAAgEAhg2bJlWLVqFbZu3Qq/3w8hBGpqajBkyBCMGzcOQ4cOdT2eXCNevXr1wkMPPYQHHngAc+bMwZo1a9DQ0IB+/fph0KBBOO6441BdXZ3YPtfnC4g9B9OnT8f06dPR0tKCBQsWYN26ddi1axf8fj+qq6tRW1uLkSNHYsyYMejTp09O5yEiIiIi6hZs9dwXUVmNaltdkGluiQLQz8nTxsJ00anyCtMI2/Y3TCVptvXjAfSBoJxCWABw9GnAUdO0QTUACIQlYLhRZ0AzJavSl0X0WhGPHhper918k6HFFNF93XIIqomqnomP64X+pLrnQLmtIQgVCOm/7wCg7M0nAZT2DTN1nH5y1kXSTK+XUiTXfw3s1IflAGhfb1v3uT+P6fvk6Ob5OKNJE+dzK8ffdeRk4yp327Wo38stS+C+8wW++4fMMf/6AkDeeRkw90XzsSdOdTcGIiIiIiIiIiIiIiJiLKw7EEIcA+A2AFOh+ZoLIT4D8L8AZskcZ9IKIfoBuAvADAB1mm0+BvAbKeULuZyDiKi92YbolykWZgp+OZ7TGOXK/i71hWJ6LtKjPW6CRqLAj8UpAGQJj2PAyxJW4k8BC1ITbFLJeA46KEgUzeN7rdiS41ilqCG8Q7m81tc3r+Pq3jvCSRPgdF/X+Pco6V9j8bCh/jnsZDPWiIiIiIiIiIiIqENUV1enxLLaW9++fXH++ed3yLlyUVlZiQkTJmDChAnFHgoAoLy8HNOmTeuw81VUVOCEE07osPMREREREXU9mqnH5ZWospuVq5pbzNOVtbGwlkbtudzw5jEdRzsmmVssTPzy/yC8PsiyCgwPrcGasuEZ25jiVqb1ler7G6pFMgNYAkCFHUCLlfm8/n6ejQuOUM/J0T9H+UW2Ki39/l9slDhssLv5ibH4mlqzQyzM1wlCYSLH23XqHndZJ5t6Jf/6kOM2VZqAIQDYtoRlOX8v6cKBAPDGhrNRLdXveyXJKeQVF9A/pn871sKQOomrn7ITMcFnviNwUeUCSDfHP/hod2MgIiIiIiIiIiIiIiLGwroyIYQPwMMA3Nw6+FAAjwG4WAhxmZRyQ5bnOh3AUwD6O2w6GcBkIcQzAK6RUur/tY2IqAhMsSifIRYWNQS/nEQNUa5CB7ayYQqgpQeMPC6CRkIU9rF4HAJllvA4RoKSg18eYSFi+FpkHD/t/E7jKZR8wnTFFrZLd7JU2A6hMbpXua7O2y+vY/ss9cy7iN02U0/3dU2P0nVnuihh/LnThRc76rVJRERERERERERERERERERE1G3p7lNcUYUqe5dylT+YYyzMq5mHFnQX5/HlMZVENyZvrrEwX+u8olALKmVAuU3AMOUqEpXaaFGlfrpjpt1blYtVoTAAiBqm2RX6OYqr8OpPujuLLpMpvhYIAyHNMD0yUsTZnPlzSohpX2+dberVkg8dNymXQe26lTuAUfXOp9E9X1P8c9DTbnI+gJMCz7c1GjkOWPm542ayxW98DZxykMCGX6V+w8g/zXM1BNGjl6vtiIiIiIiIiIiIiIiIsbAuSwjhBfAqgPRb7YYBLACwEUA1YpGwIUnrjwfwjhDiGCml+l/nM881BcBLAJJLGBLAJwBWA+gN4HAAfZPWXwqgRghxjpRZlFmIiNpZ1BBi8ggvBASkYtpEPgEn077CRYSrvZgCaOnxHV3EJ1mhw2fpwbJ0ntb/GY+RtD72sfsJSekhMqcwWaHYhqBdqQtLh9tcFlFDRP/XnlpfX+06N3ShwUjSBDjd19XNa6u70EUJE7EwzV8pnd4riIiIiIiIiIiIiIiIiIiIiMhMvv405F9nAmu/BOykORrjjoF48FV9LKy8CtWa+wo3h3KMhTVp5vlsWWc8XmL/PKbjRHRjQg43UTzylJRPK+0W5WZOcSudytZZ3bJhB+QzD2Q7OiNTx0g3pkqZ9PhOOAf4+8v67xsA4mdPpH7uKcw8KtNzFgjrv+/KSnjuWzLtl8ahFhbSPe7OdrXJXufLHw4Ofqld16R+GabYskfi3tfVT2i+UbwEuwNvKut2fl0g+wiabG50t+ERJ2V9bCIiIiIiIiIiIiKi7opXzndd9yMzFPYQgHop5XFSyoullGdLKYe2brc6abtvAJgthPMtaYQQgwDMRmoo7CMAB0spJ0gpL5RSngpgEIAbgJR/DT8LwC+yfWBERO1JGkJMlvBowz35BJxMUa5iMkXMcglliQL/tcMpomQJy3FcyeuzjX2lh4t0IaNCMwXtSl1Jx8LCO7Trar35xcK8oky5PPn50L3eOipC1xkIzWs+2vr+q3svZXCNiIiIiIiIiIiIiIiIiIiIKE97dwKrl6WGwgDg848gT60DIpoCU0UVqu1m5Sp/0DxNWR9t0pzrhHONx4vz5jHNSxsw043JQPzkf9s+GTgCFTKg3O7DFfrKkykkVukDZNNeyB+dDDw3M+vxAcAle59VLn97uX6fVZppWJV22+MTF/07xDUOU8hPnpH6uceH8hyCaulWbtevC4QK+zUuJdLhZq/ax92Jpl5JKYE9+nmAcT1tfcDKFJMDgF1NEic8qJ8v7Eu+Ye3gA4HpVzuOR0V+Mien/XISUr/3ZAio38uNFrztvM23rgMOOCT7YxMRERERERERERERdVOd7V4v5IIQYgyAG9MW3ySl/I1qeynl20KIY/D/2bvzOCnqO3/8r0/fPczAzDAICCIioigRLzxQsxgTr9yJWf1pbnOfZmNi3Li/VWPcJJrdmDXZ7JosmsMcRk2MV/Ai660EFRXEA5BD7hkG5uqrPt8/unumj8/7U1V9TQ+8nnnkQVd9qurzmeqqcqDf/fpkQ75m5Va/FcB5AH7n0t2VADoKlh8H8HatddGnsVrrBIAfK6XWA7ijoOmflFL/rbX2Np0XEVGdZbQlLAwBBFQAGUPtTTUBTrZQrtFkC0ArDTAKegg0CrhnUPri1mcAQQRcAryCBQFmQZ+BQqUBRI0KJHKQgdYaHjI9m07KU8GUyxSGddKdNhcJtQbHIxKIVnXssAob16d0avi9dISgqyCzfYdJgXz5Z6gjPL+9PJ+IiIiIiIiIiIiIiIiIiIiIqA7iLWiRwsJSlYUXhSDUIE0+wNOQQlWUkohj0mlzQ95HvwX88nvZ18eeBnXVLVDjO0faZ81DfJ05sOfuF+TD2oKN4mEAj98DvPGyfWwW8xIviW19QxqtseL3UGu59qtFF1wH4zugLrwEmH8K9M3XAE/+daTtY5dBffxyqFDJ1xyCIRw/+AweGXdq2bHdAp4K3bbcEr6WApKmAlEIYWEf+Lz3juutpQ3q6LdC/SYEeMx+KpQULuGxFBaG1y03y0GHQ33uu9Arn0Hk5mugtANtqEdzC56741ltDZwrehaceCbUl64FFr0f+ol7gdt+6vIDFPj7w963rdaQxwtmqN//sV951t5+/tegvvBvY7IeloiIiIiIiIiIiIhotDAsbO90KVCULPGAFBSWp7XeopT6JIClBauvUUrdqrU5xUYpdQiAjxWsSgL4eGlQWEk/f1JK3VywXxTAvwKobNocIqIaswdkBRBUQaQMtSDVBH7Z+tSjFJwE2APQSgOMAh4CjZTLzHR+lQaWlQqqoGsAWOEx3ILF3Pp3G08taThQDQonq6W042MKxwbrSe0wru8IdVV97LCKGNdrOHCQQRAhMaiwkddVs5MC+fJBa1LgGs8hERERERERERERERERERERUZUsIVBWwTDGKXNZ8UDKXq+VEAKgjKFNABCNexpSNaE0SaGkThxTvs/3fw7q01fKG/RsQ3dworFp9n7ybrZgo3gE0C89ZR2Xm85Mj9i2YhOw8ODidVt65WMVnfXx2Z9VzTsR6to7vQ1m2wbEu8zXklvAU6GTDwZuF/KLBpNyIFyk9D0+80IEvvYj7x03ym+kkCn7PSz+3GPp2yYrnxGb1Df/C2reicDalQCAuB7EgBpXtp1b8NzNj9vP4+bQ1JGFoQGoQAA44QyoE86AnjEH+j9K54MXTD3Q23a1kPAYFta/2/+x2ycBu8wTuQKAOvcLDAojIiIiIiIiIiIiIvLJXyoGNT2V/bTknSWrr/Oyr9b6bwAKPyU7CMAiyy4XAEWpDbdrrV/10NX3S5b/USkV8zJGIqJ6s4V+BRBwDauphC2UyzbTXr1Zz0UFQVmqxr92uAWUBVTQdVzFYWH+AoWCJduXLteTFCzV7FK6icPC0kJYWLj6sLBQICy2pXJFZAy6ciedi/wzVHpmeQkzJCIiIiIiIiIiIiIiIiIiIiKLSsNclEJLMG1s2p0KWevjbn7C3BZ3zME2ymNYWDWkUKoWbQ/bUV1Tre1IJdHmmIN4kubTlx2PJdioJQJgaMDer4uz+paIbQMJwzpLedhbhl4Yfq3aK6jJGuxHi2P+edwCngplLKV3gyn5fIdR3Ik64QzvnTaScK9ql8lepZ879JNvwDl/LpyffAs67eNEN5DeugHO5edDX/sFeaPDjsv+Gc1+ZUG+luw1u4+9bh/LnkDr8Gt10OHFjX6eUanKz7W+55dwPr0Qzunj4bznADhXfhS6Rw7s8hwW1rfL/2D2yIGDOGQ+1OQZ/o9JRERERERERERERLSP4zfn9z6HAyj8BDUJYKmP/e8rWT7Xsu37S5YXe+lAa70KQOFUVeMANOknpkS0r3EgV4IoBCxhNZWHN9lCubRlPPVmC0ArDU0LCiFqhZRLsYlfAeUSFmYJd8srHLeXn6H0+LbleqomnG40pVxm0BxN3SlzMUxnaFLVxw4rS1iYk62Qk54Dfq/LvZkUyJd/TkrP4UYG+RERERERERERERERERERERFRAaXQEpJr4KSAoj89q/HGTnObGMwV9T5v8e/OXC22JYbkGicplEoKMAMAfODzruNRb/9HfHLXzca29d3yfrZwrngYwD3mY3o1Pb1JbHtpc3mo0rY98rHGO5ZGLy68BHHhvf/Z37xPyvrn5+3te4bM68OFtW9nfxR424c899lICsK5cDlFKaEkMbJnG7BpDfC7/4D+gSWMa5TogT7oL58O/O0O63YqFMq+iGQDu+La/EavsWRqefHR3l+PLBx5SnGjn7AwrwFeJfRfb4H+t08DL/8dSCaAnm3AA7+H/so75LC3pMe+dlseRpKMnHaovv2//o9HREREREREREREREQMC9sLTS9ZflVrbZi7SfRCyfI7TRsppaYAmF+wKg3gMR/9LC1ZPtvHvkREdSMF9gQQgFIKQeE/ndWEN9n21W4VGnVkC0ArDd+RQtQKqUpnlxS4BoGpIIIugWKFP4db+FhZ/xWcg1qxBcw1s5S2VKeNsp70DuP6jnD1YWEhFRHb8uckIz17fF6XezMpkC//rJKepW7PCiIiIiIiIiIiIiIiIiIiIiJycezbKttPKYwLy3VoUhDWzx+R9xGDuXwE8cyaJNeyPf6yXHYthoVJAWYA1FGnug8oNg6tTr/YnM6Y6wgHhXIspYAw5JAePyYKdVV3LC8f090vyPWOw+doyoEVjUO1tosBTxmPc7I6jns95m4hLCySr31beA7UZf8DFWzWmiTzte32kyeFksSikLQHfgc9KF+no2LZg8DmN+zbHP0PI69zzwnpOfLAqupqdscV3seRkgDD0mWbSsPC/vILc8O6VcALT5Rvn04BGY/1qLt7/I1l42tim/rebVAHz/N1PCIiIiIiIiIiIiIiymL6wN6ns2R5l8/9S7c/QCk1wbBd6aczK7TWfj79e7xk+Qgf+xIR1Y0Dc9VIPghKCoSqJrzJFsql9eiFhdl+ptIAIy+BRkooQqlUaWBZqYAKQrn8qlP4fvoNFAqWbF+6XE+ZKsLpRlPKac6wMK01elJCWFioq+rjh1VYbEvniqnEZw9/XR8mPX81HDjaEZ9Zbs8KIiIiIiIiIiIiIiIiIiIiIrJThx7tK4xrZMcA9g/1is1vClXO97woH1IKjELE+/imdcj1JG9sExLBAAwI5U9igBkAKbypSKwFYctEjJuE8ySGl4U11LqV7v16sFOon5reUf5zBS2lTi3OQPbFFpdgJ0kojJ5Au7GpNertEOt2um+zR7i8hkOzZsyp+cSptaQqnKA2JZQkRgrDwlJJYMOrFR2/bl63PCxMcvW6r0TnGJsPnVLde9sfGDeyMHFycWPARy1gcqiy+mHb+Xi9dE55+Asl29Ptb0xrLc+gGYd6Pw4RERERERERERERERVh+sDep/STYo8ff1q3P9zDOnnqF7PXPfRBRNRwUthMPrBHCqvJVBEW5liCn6QAoUawBVKVBmt5CcqqdViY9F7kBRF0DxQrGLffQKHS/t3GU0uOJWCumaW1XEiXpyssVqrGgNOHhFBE2BmuRVhYRGwbDguTnj0Muhpme85oOOIzy0uYIRERERERERERERERERERERHZqQu/UcFOCpOjQvoS5LArGzGYy0eY2ZSJ8uR/Q0Np4/qMo5E0NyGuLYE7c+a7Dygax5EJOeRnUMgRG0yZa63ig93QnzzevV9JMOS6yWvbyvuWxgkAwWprIcMRHDu03NjUl/B2COn9KyQFwoV1dmc1/xRvnY0hGUeLIWmh0po/p7kmOtWJAddt1AlnjCzMOdq67ZDLM8ktmO6YoWdH+h1fMge835C5pPzsFPVZ5pk3Hc9PWFgmAwzs8b59Qh6/OuAQ78chIiIiIiIiIiIiIqIi/Ob83qd0zqOpPvc3bW+aumV2yfJ6n/2UTgs1USnV4fMYREQ1J4Uw5QN7pLCaakK9pJAgYHSCk/KkcSmosvAdL4FGqsaBPQGXX2MCKuAeKFYwJr+hTOXnoHG/VtmumWaWssx+OZp6UjvEts7QpKqPHwrIxYWpXDGVFDjIsLARtnssozPy89tDmCERERERERERERERERERERERufjIN/3vo5Q1xMsUFqa1vWYuroVwoGjM+7iicbRneoxNyzaYa01sIUJxxxLqE291H08khnFOv9i8Wzi8FM4lBqp5VRBy9JXuG4ybPL2u/L26bbn5vTut/+GRhXecX9mYwlEsHHhCbE5n3Gstf/yQ+zY/edi8TThf+3bgYa7HaEbaMtnrVXfJ5yVSWvOXabLaxVt+6L7NmReOvB43HgDw8V2/NG66+DH7NeK4XEL7pbe7j8crn2FhOm1Pw9PP/q18pZ+wMADY3e19Ww9BbkRERERERERERERE5B/DwvY+L5csT1NKTfex/0mGdRMM69pLlrf56ANa6z4ApZ9gmfohImooB0JgT+4/mVJYTTXhTVJIEABoIfymEaQANFPwjpcwHmUpNqmEWzhXAEEx3K1wm5HX/n4tKj22W1+1lBGu02aXKp1lsEl0CwU6AQQxPlT6K49/YRUR21L/JOT3AAAgAElEQVROtphKevY08rpqdrbgNAeO+BwOMnCNiIiIiIiIiIiIiIiIiIiIqGoqFAbe9iF/O2UyQDSGyemtxuahVHnyzqrN9kOKwVyWULIysRYcknzN2LT8TfPEgFIwFwC0SAFmXscVjSOu5dCeJ9eYE4pMYWtADcLC2kZqptoye8TNlpdMNb2udMrrnMnpgjLz+LjKxhSOIK7l8KQN5uy3In/8e+WTt4bztW9+rrNRoMQyTfln//WTclsYJReZ02S1iy7hggCK37Pca1s4n9yVFu+5vOH7ePKM8sZgyF+HfoO8Xnjc3r7mper78BUWJhz7QNM89kRERERERERERERE5JXPTxyo2WmttyilVgMo/BTlIwD+zW1fpdQ4AB8wNLUZ1pVOc1XJp8qDAAqn8TL144tSaj8Ak3zudnC1/RLR3sMRwrnyITVSKFY14U22fbWlQKPepBAzU0hX0CW4C/AfxuXGLUQpqILugWIFIUJ+A4VKg4tsQUa1Vk043WhKl84y2CR6UjuM69tDnTV5X4MqiAACxgC+dK6ITH72MNs3z/YMcXRGfJZ6CTMkIiIiIiIiIiIiIiIiIiIiIg8eutXf9lveyAZhCeFVpgCuV12mLxZDtfyEOEXjeCa+wNh0eEc/TCXNA5bSJ2s4l8ewsKhOiM0xc36ZGGBmCx7zZP0rwy+lUDUAeH27xrEHjqRTHT8TeGpt+XaronNHFja+XtmYwhHsn5aT5LbuBg7qsh8iWEUp1pbQlOyLjv0qP8go0tqcIqa1xlpz+RwAIOqUXJevvwA95D9oq+YiMeCwY4EJXUCv5QeY0AWMGz+y3NYBAHg9Msu4+aGT5UMl0+7ZZC35Z8HW9eWNb1lo37mU3yCv7Zvs7YfMN/QhB/AZDfR531Yaf6S5A/eIiIiIiIiIiIiIiJodw8L2Tr8G8J2C5W8qpX6ptXb5BAjfATDBsN5LWJjPT4oAZMPCOizHrMQXAPxrDY5DRPsoRwybyVaJSIFS1YQ32fY1hQs1ijQu0znwEqikIE5ZVxG3PgMq6BoSVPiz+A0UKt2+kYFEo3ldVCPpNGlYWNpcLNQZ9ps/KgupMJKGgr5ULkCNQVfubIF+GZ0Rn1kMXCMiIiIiIiIiIiIiIiIiIiKqEaXc03IKaQ1E44hpc5nxYMqwLmk/fkaqp/ERFqZCYcxIrcX68Iyytt1CRfQuS25PXPj5EAgAQQ/l+tG4tbrOdJ4A4DdPmc+VdL49a50A9PUCAM7qXyJuVhoytXqrebujh54bWZhrDmlzFYpg//SbYrMtzC0vVcUcnWf23w8AUOFI5QdpAOVzgtoh4drKK7229Q+/7HdI9ROJAkk5ZA8AcPqHoAIj9WMqGIQGcNzg33Ff65llm0vXMCDfh4VsQX1q3Hh/747fIC+3cDFTu99AsqSPMUnj9xPsSEREREREREREREREZfjN+b3TDQB6C5bbAdyrlJom7aCU+icAFwvNXhJJ/H2yWPk+RER15WjzIy8fNiMFVEn7eetTrkDRfgqrakwOTjOEhXkINFKqxmFhLn0GELCGC+W3GX7tIfCsULAkgKh0uZ4yVYTTjaa09lAtMwq6U9uN6ztCLlNN+hBW5iKxVO6c+Ann21fZ7nkn9z8TnkMiIiIiIiIiIiIiIiIiIiKiGvEb8uJkgEhcDNNa8lJ5fZxbIM/m8NSajO2DA3cZ19+13jzB4KW3yTWCcUcI3InGvdXNxbJjP2bwWWPzfS+Wn6c12zWWrzcfrsUZcO/T5owLgH94PwCgK7NT3Oyy24vHtUvo9vjBZ4Zfq4PnVTamcNgaqPbgKvday2S6sq4B4D17/gLMO6nyA4wy6ey4haxVfS3Vk1tQ2Ds/AfXla8vXH/8OzE2+LO4m1e0OegikG34WnPVh8wYtpjncBT6DvPTypS7HMzyHkz7DwnyMST/we3NDjGFhRERERERERERERETVYFjYXkhrvQvAJ0tWvwXAKqXUD5RSpymlDlVKHaWU+rhS6hEAPwSGP0PdWLLvLkM3fSXLlXxqU7pP6TGJiBpOCpvJh0oFhP90ZoRgLS8ylkxG7SmvsT4yQgCaKXjHSxiPqvGvHW7hXEEVdA0AK2z3G/ZV+vPU+uezsQXMNbOU9lAtMwp60juM6zvC5sK/SoQCYeP6lJM9J1IAnN8Qu72Z7Vw4OiOfQw9hhkRERERERERERERERERERETkgd+wsHAUiMURE8K0NveWr3MLC5ua2iyMLeZraC1BfxMfPiRnCyGuhQCdiMfzlTuv4xxzKfXW3eXr7n5BDscaCLR469c2nnjr8OL8oRXiprsGsuPY0iuPp+j8RPy9T8NC2ckaOzLdxubl693DwlJVlN3F9SDQOqHyAzSI3zld3e43Keiv2anr/4rAt34GFTLU7bVOQNyRf65Xt5nXu50rAIjlz5f0rGxtdz9Ins+wMGwr/QqIh+P57cMtoK3QkBA05/e/I0REREREREREREREVIRhYXsprfXtAL4KFKXMtAH4BoCHALwM4FkAiwGcUrDNjwE8WHK4sRQW9lMA83z+/7016JeI9hKOEJAVyAVJSaFY1YQ32fbV4nxu9ecIAWimwB5vYWG15RoEhqAY7pYXLAgR8hsoVPozK6UaFkokvTfNLuX4K7BrlO7UduP6zlBXzfoIK3NYWFpnz4kUDOh2De9LbIF+DjLis5SBa0REREREREREREREREREREQ14jfk5eR3AtE4nmg5ydg8a1J5Vdmgy3yE5/TdZ27wGsyVsyndYVw/MWQOuImG5GPFpEAlr+dr4v4AgEfGnWpsnm2Y8/C5DfLhegOWUKs5R7sOR82aB+waSUyamDFPxgiMBJltMlWb58xIrR9ZiFUYFBSJAgB6gp3G5q5W9wrFZBVld4clXgE2vFL5AZpUwi2cLy2E8zW72UfKbauW4YjES2Lzph7zerewsCOGXkIgX/Mr3fvbLDduKb9BXlMO9H+8hM8wOD9jmn6wef2LT/nrk4iIiIiIiIiIiIiIijB9YC+mtf4xgLMBrPaweR+ALwK4GMC0krYthu1L5/IyfAwtU0q1ojwszPIxsTda621a65f8/B/A69X2S0R7D0cM7MmGzUihM9WEN9n21dDQenQCw6TgnaAhEMtLSJaq8a8dbn0GVNA1xKzw/fQbKFRpaFotZIRQu2aX1i6VfKMgozPoTZtnm+wI1zIsLGJcn8qdE+k9bdQ1NRbY7vmMdsRnqS1kjIiIiIiIiIiIiIiIiIiIiIh8iMR8ba5aJwDROE4YMIfDDCbLa+NsgTzHDS7DUYnnzY0+g8xO73/IuH5nuqVsndYafQnhOH0PyhNpRr2dLxXKJpGdPPCYsd10ToYqnLdRffJy+wZd+wMLz4Z66/uGV32u50Zx8/7cebGFvJ04+PTIwsy5XoZZLhcG154xJzm9stVeZ5lxNKopxexwdgEF52SseT1lLvW3Bah9ZNevERRqapudGm8OlQMAHP92HJxaKzYPCA8htyDDT+3635EFv8GKJn7Dwl560t6eNIWF+eyjv/QrJBab15nXH3uavz6JiIiIiIiIiIiIiKgIvzm/l9NaLwFwBIAPAvgFgFUAugGkAGwC8CiASwAcorX+qc4m0hxWcphlhkO/WrLsMhVNmdLtu7XWwjw8RESNIwVkBXJhM6agLKC68KaM0GeexuiEhUnjChiCd7wEbSnlPnOfH6ZxFAqqgOu4CkOE/IYymUPTGvOrlXSdNruUrrBCrY56091iSGBHyFcWqlVIhY3r07lzIgVdeQni21fY7mdHZ8TncK2DComIiIiIiIiIiIiIiIiIiIj2WT4CcNRDe7J/RuNYNPB/xm1MmTwDlkCee9a/1xLM5S+cZ78jDhHbSif47LXk6Vy+49/kRj9jmjwDp/oIC/vt0xXWFbbvB3XHOnPbKe+CuuGBbNDSjDnDq8/u+6t4uFty47CFvEUKJ5mMVBiilDuXn9h1s7H5mXX23ZPpyrotpOYuqP4gdSbdH8uSM43rbefl2m2XuXcYDDXu/15NsX+tQc2aBwAIC5OfPrvE9NUJ+zV+3dZv4ss9/zXSR6w8dBAA8I7zrWMrkhzyvi0AbFpjb0+UH08/tcRXF/qPN3jf+E1zIJs67BhffRIRERERERERERERUTEfn5rQWKW1zgC4Pfd/K6XUAQCmF6zapLXeZNh0VcnybJ/DmlWyvNLn/kREdSGFBuUDe6SwmmrCmxyXoLHRCgtzOxeFgi7BXUDtA3vcQpQCCHraZuS1v/GJoWkNeLsyQrBUs0tpYXrNUdST2iG2dYa7atZPWEWM6/MBatIzxG+I3d7Mdo86yPAcEhEREREREREREREREREREdVbJOptu/d+Giqcq5cJhRHXu42bmYLBBoWwsHfuuQedjjAvsVJA2FyfI4kF5UKvNduBg/cbWf7DMnnbFm1JEovEfAwojpa+AWOT6Tzt1wZs22M+1GHJ1XI/0ThU11SoR1xquQrGHtNyaNGLm3JhYcL7Ns7pKw6w8hnqNrJfdjwRy4SV6YxGKGiOy0rVouQuVuHYG0jLcXoYTGrEI8XtSct5iTkuYVWdUxD48xt+hlcV57sXAff92n1DKagrL3cNdmR6sC00uax504pXACwsWy9d40GdxsXdJSFaIfPkoq5jK5SwPFtK6G0bKzveUL/38QCAU4MCWZ/PaiIiIiIiIiIiIiIiKlbb1A7aG5xesrxU2O7FkuUjlVI+Pr3CyS7HIyIaFVLYTD4YSgqdcaoIb3LbVwuhXfXmJ3jHLZQLAJSlCKUSbgFlARX0tI3ptRfm0LTGhBJVE043mlKOZWq9nNJZOeutJ20OC4uqGOKBcTXrJxwwF/+kc7MTSgFwplC6fZXt/srojPgs9fJ8IiIiIiIiIiIiIiIiIiIiIiIvvNWAqa79RxYSg4g75tAbU/jOoFBiFLeFckXjUMpffdrBbzwotvWUZHb9+klLWJhjDvjKj8uzSFz8GU3nacoE+VAf2n2bZUweA8ymjcwLbTuz8VxZ1GDKfI5K33vV0uqt/1K5c2kLLjOFquUl05V1CwCtmVwq22HHVn6QBmkNyOdnt6HJFqIW0ZYTCgDdWzyOqsHWlc6JXiJ3LZmCwgCgfdD8c4nPJsPzTQ+aQ7jU3AX2sRXyERaG3p2ej6cTQ9BL74Dzk28Bj93tvQ8A6NzPfRsAOmO5sGxtRERERERERERERETkiukDVOqikuWfmzbSWm8GsKJgVQjAKT76WVSyfK+PfYmI6sYRgrnyQVIB4T+dmSrCm9z2bXR4Ul5Gm6tjTKFaXoK2Aj6LsdyPZ+8ziKBrSFBh+FDQZ6BQpaFptSAFSzW7lFvx0CjoTm03ru8MT/JdQGgTUuawsHyAmqOFZw+DrobZ7nkHjvgs9RsESERERERERERERERERERERERVOu0DI6+PeiviQsDTsxvK1w35COQZ5ieUK6frH04T23pLutplyQOzh5h5DOYCgGgcccd8np7fWL5uhWFd3jl991n78aS1vWjxoORa42YPrc7+uUfIqJLee99y47b9bFKYE2APxXLzlZ6fAABUh7egpNF0Xssysc0UOnftffJktmG4TA7qJ/iqkd52rr09kr0vh0PgSmwOTTGuH0wKgXiGZ4A66lRz3299LzD9YPv48vyEhXnZNp2C7t8N/c33Qv/L+cDv/sP78fNWyddXkaTlvp93ov9+iYiIiIiIiIiIiIhoGMPCaJhS6hQUB36t1lovtexyR8nyJzz2cxiAEwpW9QNY4mVfIqJ6E8Nmcv/JlEJnpKAfLxyX4CeNUQoLk4LTDL8+eAnaUjX+tcMtRCmgAq4hQYU/i99AIXNoWmN+tXKqCKcbTWntUjw0CnrSO4zrO8KTatpPSEWM6/MBatJ7agql21dJYY1A9vxJYY9B/pWHiIiIiIiIiIiIiIiIiIiIqLE6C8J2WlqtQV+lk2maAo0AoMUayuU/LCw8dQZCQj3T7c8Wj+nFNy3HESbl9D2uaMwaPOY42vi61A+2fgvjHXMIkp8xqUAACI/UPH249xbjdvmQsD89KwQpFb73h8z31LdRbtwdmR5xE+naAaoLCztx4KnmDcYqMS1oOT8ll3t3v8afnzdvG9ZJuE61efw7fI2tUZRbGFWsBQBwVr/56wu/bP+Icb0URmcMxIu3msc2YSLUfz4IfOhLwKHHAEecYNwOAJDwEbS35kVv2935c2D5UvftIlHvfZsM2J5BLdUdm4iIiIiIiIiIiIhoH8dvzhMAQCnVAuBnJau/7bLbb4CihJsPKKUO8dDdpSXLf9C6VtNGERFVR0thM7nAHikUyy3wy8YtaEwKwKk3P+FFXkKylHvpiC9uIUoBFbSGC+W3GXnt79ciY2hag4KdpFC7ZpcPxmomUlhYZ6irpv2EVdi4Ph+glhGeIbUO2RvLbPeXox3xmeU3CJCIiIiIiIiIiIiIiIiIiIiIqhQrCIOJxBGzlAm/uq14eSBpDp2KWQLHEIn5GV2WJTSrp794ucU8TyAAYJzTLzdG/ISFxa2haqu2jLx+eYu4GQ5IbXTtx8+Y8gKWOsY9QxptMXN9oC6sG3SqqIXMvcctlnMkhTkBQLKKkjvb9dtsWoLySSgNU/vNU3LoXMRTrV+jJ8L1WIPqVguau661cLzDEi8b14thYaZr0nKfqa6pCHzlhwj8/AkEfvZ/wDGLjNvphOWZV6p7m/s2APTtpV8XEVgCvXQy4b7/G+ZzCABoGedtDEREREREREREREREZMT0gb2UUirkY9tWAHcDOKJg9W1a69ts+2mtXwVwc8GqCICblFLiJ+5KqfcC+HjBqiSAK72OlYio3qQQpnxgjxQ6U014k9u+pTMnNooUgBYwBKZ5C+OpbViYWxBYEEHXcRWGv0lBcOK+ptA0n8eo1GgFyFUrJczEOZq6U9uN6zvCtQ4LM1cM5gPU/ITz7atswWkZZMRnKcPCiIiIiIiIiIiIiIiIiIiIiGrFWy2bChfUykRjWDC4TNx210DxshjIYwts8hOAVbBPWpgAMFJShf2uI+Xat3antzbjisZxwuDTYnNvQW7QLkuGkO0YAPwFq02YOPxyVnKtuNnuQSAuBKq9Gi2Yh/r1F7z3XUIFsrVDcS3/8AOWfKtUFWFhYZ0CVj1T+QEaKK7kGr3S8/Pwy1WGhfmcoLVhZh1hbw9HAQCvRmYbm03Pmjue1fjSLebzZXw2RX3cZ9Jzwk9YWNiSaFio25I0WGjaLLltyBKQmJeyXD9TD/I2BiIiIiIiIiIiIiIiMmrST2ioBj6rlHpIKfVxpdQk0wZKqVal1McAvAxgUUHTOgBf8NjPvwLoKVheCOABpdRhJX1FlVJfBnBryf4/1Fq/4bEvIqK600IIU1Dlw8LM/+mUgrW8cNtXGlO9+Qne8RK0FVA1DgtzKTQJqKBr0FLhz+I3UMi0faNCiaRgqWaXctwLiHSDZxvsSe0wru8IGX99qlgoYC4sTDnZ4iwpAM7tOt+XBFRADAxzdEZ8lvoNAiQiIiIiIiIiIiIiIiIiIiKiKrROKF6OxnFQap24+d0vFNcLDQolRnHHEpxTUVhYDMcOLjc2/fm54jE9s85c0xRymzwxEvUxnjhmpDeIzdv3jLyWzhEAHJDeaB1PPnTLk84pwy9PGXhM3GzrbuCuFeZzdHrfgyMLb32v974FtuvAFhaWTFfeZxAZ4IwLKj9AA4WVg4BQX7i9r3h5tyV/L+JhYlA1/2Q/Q2ucAw+zt+eCtc7f/Qdj87Oxo4qWv3OXgw/+l1zHGzNdkz6DAo3WrfR8CL3F49cxkglv2x38FrnNS4jZwB6xSdW4lpiIiIiIiIiIiIiIaF/D9IG9lwJwGoDFALYqpV5XSt2jlPqNUuoOpdQTAHYCuAnAtIL91gJ4h9Z6m5dOtNYbAXwAQOHHqycDWKmUekYp9Xul1H0ANgD4MYDCpIy7APxLZT8eEVF9ZLT5A/18QI0UOuMI+3nhFvzU6PCkPOlnChrCi7yEZEkhP5UKuAQABXL/s25T8LO4Hc9L/8EG/WolBbk1u5SX2QYbKOEMod8xF6V0hrtq2ldYmWfuS+eKqsRwPgZdFTE9f4Bs2Jr0zGLgGhEREREREREREREREREREVGteAh5WfjO4uVoHEE4CAu1Q9+5qyQsTMgoiusah4XFWnCyEIDVW9LVWvN8hPhK9w32PnwFBsWgAMSdAWPz758ZOU/iOXIG7O9QxOd56pw8/LLFcv5veVpjR5+57fDkyyML02f767/U/FMQRkoMw3pqrVxrmaqi5C6kM8DUmZUfoIGUku+VPzxTfH4eetm4GQAg46UWMjbOz9AaJxiyt4eytXyT0sKNXaBvSOO799hreI3nuxZhYc88aF5vcs8vvW/rRVuH3LbNEkiYo5+4z9xQ8EwhIiIiIiIiIiIiIqLK8Jvz+wYFYBaAswFcAOB9AE4EUJpacSeAE7TWr/k5uNZ6KYD3A9he0udxAP4RwJkAJpXs9lsA52s9RtNOiGivJQV3BXNhWFIoVjXhTVJAWZ7WoxQWBu/hRW6hXACgvBSK+RC0BJQFEIBSyjXErDD8TQohkvuvLDStFqT3pplprYeDsZpFT0ou9ukI1TosLGxcnw9Qc3v2UJYUOpjRGWR8PLOIiIiIiIiIiIiIiIiIiIiIqE4SJWFXsRYAQEqYbA8orpEbFOYjjOshuc9I1PPwRvaJI6PkUKF0ZmRME4VMpIGAS1hSJOZ9PAP9AIDBQIuxOVhQNiOeI8cSqAb4D1WbOBLs0yZMyggAb+6SD5EsfN8HhUQxryLZQDVHquO0lGImqyi5CyJTfl03sf5Aq3F9pORynztVPsaOUGnpv0HMfK3WjfJYg+oWFhbO1vI5lprRgUT2/v/7G0AybT9c3DE8m/zca9J9ceBh3o8x70Tv23phG//WDe77t7Wb1w/IzxEiIiIiIiIiIiIiIvKGYWF7r0cB3Aqgx2W7NIB7AbxDa/1erfV2l+2NtNb3AJgH4GcufT4J4Fyt9QVa6/5K+iIiqicNc7VIPqBGCp2pJrzJbV9pTPUmBaCZArG8BBopr4UaHtmCufJtQZeQoMJj+A36MoamNSoszCVgrhllkIbG6ATfSbrT8q897TUPCzMXO+YD1PyE8+3LpGeNozMMXCMiIiIiIiIiIiJfBgYG8Oijj2Lx4sW49tpr8Z3vfAfXXXcdfvWrX+Gpp55CMil887oC69evx+WXX45TTz0VkydPRiQSgVJq+P833XSTuO/TTz+Nz3/+85g/fz46OzsRDAaL9l23bt3wtosWLSpqIyIiIiIiGhVtnUWLKhQGgkEclFwr7pIoCOMZEP461uJYwprcwoFMDpqLg5Ovi82DBfMiSlVPLY69FFr5CTHzURM2mDKPyBqoBgBRH+FlANTCc4Zfx3RC3G4gKdeFFb3vfsPKSlURTpVyCXyyCek0VKsQftRsLP8eUDpv7RGWsDBP/IThNVLIPLHnsHC2lu+QxKviJv2551CffNkPi2tDSJ+fczPYfF+pULOPlBsdD/XS0iTJQ2MndI+IiIiIiIiIiIiIqFlV8MkojQVa6+cA/KPKVgDPAXA4gOkAxiP7mfUuAK8AeEprXZMpWrTW2wB8Xin1VQAnAzgQwBQA/QA2AXhWay1/0k9E1AQyQsFNIDeDWFCYSUwK1vJCCrgZbh+lgCUpvMgUvOMlJEvVOKM0YDlePiTMbVyFQUx+Q5mMoWkNCnbKVBFON1pSTsp9owbrSe0wrh8f7EA44FIw5FNImY+XyoWFuT17KMsW2OgIwYqNCvEjIiIiIiIiIiKi5pfJZPCHP/wBixcvxsMPP4x0Wv6mcCwWw5lnnolPfepTeNe73lVxnzfeeCO+/OUvI5Hw8O3SAul0Gl/4whdw4403Vtw3ERERERFR7bnXsqlF7ytfGYnjB9v+GR+a/lvjPgNJIJYrr9kgTFkcdwyBPHmBCupDYuNw2sDfxObBJNAWGxmfyVsHHrX34RZaVECdeBb0A7/HO/fcg7vbzilrv/uFkXO/vtt8DGNoUSG/YV3Hvb1o8dT+R/DIuFPLNrvzefkQp/c/PPxaHXmyv/5L5cY/LbUJm8LTypr/9U6NS88y75qsouQuiAww97jKD9Bg5+y5F/e0nV22/tdPafzyopHlUFDByz0tqjb8rV7cwgND2bCw/dObxU12DwKT2opDAyVlz6Zo3FeIu3rre6GfeaC8IekS/ldo+VLv23oxbZbYpJc9DPX28+z7J4VnUbXPACIiIiIiIiIiIiIiqnFqBzUdnbVaa32H1vo/tdbf1Vpfo7X+qdb6gVoFhZX0mdRaP6y1vklr/b1cv7czKIyIxgIthM24hU9JITVeuAU/6dEKC5PCiwy/PngJ2gqgtjPYm0LLhvtyCXcbOUag4LW/gjFzaFpjfrVyC5hrRmktVMyNop60OSysI9xV875CQvhYysmeF/HZw6CrItIzOKMd8b6wBQsSERERERERERHRvuOhhx7C4YcfjgsuuAD333+/NSgMAIaGhvDnP/8Z7373u7FgwQIsX77cd5/33HMPPvvZz/oOCgOAb3/72wwKIyIiIiKisSneVr4uGsfcxCpxl0dfzf7pOHKtXFxbgnMC/utDVCCAcUE5CSgfEuQ4GkPCZi3OgL2TcMT7gOLjAACHJlcbm3cVdHXnc+bzZA1UA3yHO6lgEGjrGF4+cfApX/sDQIsuGHisxff+RXLj78rsNDYnLX/VT1UTFqYzzRuMVUZhTvIVT1umM1XWpjb6nHgN4HILC8vdl7ZnygOrsudmMOl+jsqO4/e8tBiemQCQ8BEWVmvRGHDgYea2uxe77y+Nff+DKh8TEREREREREREREREBAFw+CSEiItq3ZISwGZULgZJCsTLa/oWSSvrM00JoV71J4zKF9biFcmXVNixMWQKA8mN0CzErPIbfQKFKQ9NqYSyGhaW0hyn2Gqw7td24vjNU+7CwsDIX/uicLboAACAASURBVKVz50W83xp0TY0VQeE+1ciIAYcMXCMiIiIiIiIiIqIrr7wSV155JbQu/oKnUgpz587F9OnTMXHiRGzfvh3r16/HK68Uf6l22bJlOOmkk3DDDTfg05/+tOd+L7vssqI+L7jgAlx00UU44IADEA6PTDLR1VX879Jbt27Fj370o+HlSCSCb33rWzjnnHMwadIkBAq+BD99+nTP4yEiIiIiImqI1gnl63Ztx6SgXPO0vlsDUNjQIx82aKvRC1RWHxK3VNIP5OZGlILCAA9hYSEfYWG5gKHu4ERj87T2kdfzpikse6M8xGhjeJq9j0jM+3jy9oy8KS3aJYzMoCjYq9pwqf7dAIDnY0f63jVReYknQjoNxFsrP0CDJVVUbktrRELZWs5qAtQAVHY91VswmA25s8ndlx0Z+YHTk7u1+zzkv8dL7wu/17m0fdLH/RYMApka1pVGW4Bd5slYMX22+/4JYezRJrxmiIiIiIiIiIiIiIjGGIaFERERFdAQwmZygT1S6Ew14U1u+2pUOXtbhRyYxxU0hBd5CTRSXmd188gWAJQfoynYTBqT27alzKFpjQklygjXaTNL6eRoD6FMT9pczNIRnlTzvsIqbFyfPy/Sc8Dvdbm3k85HRjvICM8snkMiIiIiIiIiIqJ928UXX4zrr7++aF1bWxsuu+wyXHjhhZgxY0bZPq+99hpuuukmXHfddUgkst8KTSaT+MxnPoP+/n5cfPHFrv2uXr0aK1asGF4+55xz8Jvf/MbTmP/0pz8hmRz5d/Wrr74a3/jGNzztS0RERERENOpmzDGunpjpFnfJBzkNWEqMjky8KDdWGhZmyfIazI1l0BIWFtdD9g7C/sPCpqU2GZv7C85NUgi+6gl22vsImWuYvDqj7wFcOelffO1T9L5XGxYmXFuFUmmNcKi8VnEwWXkdZhAZYPrBFe/faMcN/V1sG0wCkdw3SNLVliFG5FCyUdPa7r5N7r60hd/ln0nd/e6HizmlYWE+A7Gk7ft6Pe2uM5naBoUB2Xu1vQvoNdRYbjc/o4pIYWGRKp8BRERERERERERERESEgPsmRERE+46MENijVPY/mQHhP51OFeFNUihXnhRgVm9+wou8hPEo1DYszNZnvs1PeJffoC9jaFqDQomqCacbLSmnCcPCUkJYWKir5n2FlLnwL6Wz1YRyOB9/XS8k3WMOMuJ9YbpXiYiIiIiIiIiIaN9w8803lwWFnXLKKVi5ciUuu+wyY1AYAMyePRtXX301VqxYgXnz5hW1ff3rX8fSpUtd+162bFnR8rnnnut53JXuu3TpUmith/9PREREREQ0GpQpkGrB2wEAXentxn3+/f7s32EGLSVGrU6f3BisfVjYk2uzY7IFmLU4A/YOQv7Dwo4bWm5s3lXQ1S1Pm//O96me/7X34Se8LO+9nxp+efTQc/73LxTxGaJUQh13uus2UribLfTNTVBngGB1QWsNoxSOG5TDwnoLMpzufkE+zPiMh6CqYBPOW9/mISys4Bk1J/GKcZNfP5m9x7pdbnHAEBroNxDLEqKnvYSAScFc1YjGoT78TbE/13FJY6o2MJCIiIiIiIiIiIiIiJg+QEREVEgK/cqHzUhBNVLImBcZbQ8DG60vc0jjCqjyXx+8BG1JQWuVClgCgPJ9+enTdjzj9qbQtAb9auUWMNeM8qFYzUJrjZ60OSysM1z7sLCwMheLpXPnRb7fGHRVSAr+yuiM+Pw2PbOIiIiIiIiIiIho7/fKK6/gS1/6UtG6hQsX4t5778X06dM9HWPOnDl48MEHMXfu3OF1juPgwx/+MHbsMP8bc97WrVuLlr32We2+RERERERETal9EgDgLYkXjc2bc7lEtkCnuLYE4lRYHxKJhqCEup3f5QK5XtxkG9OQ3Aj4C+fKhejELD/nYNJeSzjecQl4MgW5ucm9dwAQRgoBH7WSBybfKF4RrS4szEvQ0Frhr+u2IDo3IWQqO3ejxHavLFnprR416FajGAxBqdpOIOvKS39tHR4Oo4bfz0OT5rCw13O5ht2WjMK8uFNyvv0GYtnCxXq2ym15Wzf468+LaBxoHS+3r3rGvn8yYVytGBZGRERERERERERERFQ1fnOeiIiogCMUsuTDZqRQLGm/avocbsfohIVJgVSmsB4pwKdQrQtDgpYCr/z75CdoyW+gkOnYXkLTaqGacLrRktJVVFvVQV9mtzimjtAk4/pqhAPmwr90bgzS/cawsGJKuE/TljA6v0GAREREREREREREtHe45JJL0Nc38o3O9vZ23HbbbWhtbfV1nP322w9//OMfEYmM/Dvvpk2b8J3vfMe6X2HfABAOe/9ScTX7EhERERERNaVcQMzuwARzcyj7pxTopLSDiK3+KFBZfYhauxJaqEeZkMu0sQWYdWXsQdK+wsIm7Q8AaHXkdKJ1O7N/Tms3t28NTbb3EfIxnjxnJExNAXB81DO16IHiFbZQJC86snVd//Pm58VNtu8xr7e9j26COgMExs7XLiant4ltewry7aaab0cAwA+3XmrvxM+13UhvrPa2XTgKANgcmmpsntGZ/bO7371+tyw0MBL1Noa8Dsvkpls3uu/vJVDMj3AEKhAAJs+Qt1m70n6MhBBYV21gIBERERERERERERERITTaAyAiImomDsyzBObDZqTQGSnox1uf9n21MKZ6k4PTys+Bl0AjVeOMUlsAUH48XkLM8vxsm92+/OdpVCiRI8xm2cxsYU6FdIPC8XrS28W2jrCl+KZCIWX+Ildap+FoR7zf/F6XezvTfQcAKUcuBm1UiB8RERERERERERE1j5dffhl33XVX0brvfe97mDJlSkXHO/zww3HJJZfgmmuuGV73i1/8AldccQU6OjqM+zhO5f+WX82+tbBy5Uq88MIL2LlzJ3p6ehCLxTBp0iTMnTsXRx55JKJRn196zUmn03j66aexZs0abN++HYlEApMmTcLMmTNx8sknIxbjF0aJiIiIiPZauYCYUwcewd/jx5Q1J9KA42gx0CmuB2GdqjJY+/qQnf3ZPweScj1TTCfsBwl5D39WbR3QAOYm5LCjfJjagFAqc+TQCzUbz/C4jlkE/avv+94PAOJOSYhStMqwsFx40bl7bsdn8F/GTaRraJsQIuZFMKRqPllq3SigRQtBTQCeL8ieSlv++eHMvvvt/VRwLTVEqyUBrVA0Dgz24eih57AsfmxZcz50rrvf/VBxp+R8B31+RWfKTLktKb+Xw6Rgrkrl79PZR1bep9Qe4b/9EBERERERERERERFVi2FhREREBeSArEDRn6UyVYQ3ZYQ+87RuTHhSqYwQYmYKxPIWFlbbYhnpvQBGApaUZZvy4/krGDNt36hQomrC6UaLLcxpNHSnzLN6hlQIbUGPBUM+hJU8k2Jap8TngO063xdJ96ktjM7vvU1ERERERERERERj3/XXX1/0+UpXVxc+8YlPVHXMiy++GNdeey1Sqey/R/b39+PGG2/EN7/5TQDAunXrcNBBB4n7n3baacb1ixcvBgDr+KQvJK9duxYzZ84cXl60aBH+9re/DS/7+Yxpw4YN+MEPfoBbb70VW7duFbeLx+M47bTT8LGPfQwf/OAHEfTwhfxVq1bh6quvxl133YXdu3eLx33Pe96Dq666CnPmzPE8biIiIiIiGiNiLQCAc3ffjh9N/Kpxk6EUMJgy/z2mLIynVKU1Nu//LP750e/hmq5vlTU9uSb7pxQ+1Zne6X78sFwzJIlbgp5efFPjmAOVOKbDknLQGIDKAp6mzSpa/MiuX+NX7R/2tGus9GepMixMBQLQAMY7cvLXw6s13j2//O/RP1xSeR1maAyWcM0fWoHnY+VhT798QuN/PqIRCSmkhTLEz3f/NyZnttk7CPm/tqvnoQb1jAu8HSp3LZ7d91fc2HFRWXP+HusecD9U2T3r8z7LX9dGXoLANq3x1Z+raPZ5rZSCbmkDBsrvN73iMahzvygfQwo5qzYwkIiIiIiIiIiIiIiIMAY/uiIiIqofB+bQr3xgT9AQlJXdr/LwJqnPPC2XAdSVIwSgBQ2FVUEPv1LUemY9WwBQvk16v0z8Bn2ZQ9Ma86uVW8BcM0rp5goL60mbw8I6Ql11eR9DSs7oTeuU/Ozhr+tFpPvedn3xHBIREREREREREe177rvvvqLlj370o4hEqvsS66RJk/Dud7/b2s9YpLXG1VdfjdmzZ+OGG26wBoUBwODgIO655x6cd9552LBhg3XbTCaDr33ta5g3bx5uueUWMSgsf9zf//73OOKII3D99ddX9LMQEREREVETGDfeuFrlAmLiekjcdTAFDAolILb9AADBCutDoi2YkOkVmxMpLY5panqL+/H9BipNmoaITkIJtXsPrsr+PW5ICAtzDVWrJOCpJNxngiP/3c46HqUqCk8r09oOAJie2mhsfvTV8nrLvqHqajCDlV5foyFXpzk1vVnc5NHXsn+mhdLVM/ofcO+nkuC5BlBew6iiMQCGQLsCfUMa3f3uhyp7PgXlWkFRqzDBacLl2QdAv/x3c8PEqVD//aj/seTODQDg4LeYt1m70n4MadwMCyMiIiIiIiIiIiIiqloFn0QQERHtvaSArHzYjBRU41QR3uS2r3YJE6sXaVymc2AL7spTXmZ188EWBJYfj5/QJ7+BQqZwMVOAWD1UE043WpotLKw7td24vj3UVZf+wkoudEvppK/7bV8m3fdpLVRAwn8QIBEREREREREREY1tGzduxLp164rWnXHGGTU59hlnnIHbb799ePnJJ59EKpVCONycX5B1k06ncf755+O2224ra5syZQre8pa3oKurC4lEAlu3bsXzzz+Pvr4+T8ceHBzE+973PixZsqRofTgcxlFHHYXp06cjGo1iy5YtePrppzEwMDA8posvvhg9PT244oorqv4ZiYiIiIiosdSXrzOu1zuzwUVxSzDPYCr7fxPXEKxAhfUhqQRiQs0gAGzbAwyIAWYuYwKASNTfeLZvggKghbq3thjEoDBPYwpV8NWB8ROLFteED/K8a1GIUjRemwlH+3YBADaGpxubD+gsX/emnAfnSTA09uqP5iRfxX0409i2docGoJASyhCDOu3eQbP+W0hh0JV1uxYAwPiMHH73Zq8cYFgoVvp8qiRILRIHYLhQEx6eM11Tzet3bpbbbN5cO/J65VPmbWbOtR9DGjfDwoiIiIiIiIiIiIiIqsawMCIiogKOEMyVD+yRQmcyVYSFue3r6OpmtatURgikMgVieQnJqnVYmC0IzC3czXw8fwU9pv4bFUokhdo1s5QlzGk09KTNYWGd4Ul16S8ckAuAUk5KvN8YdFVMuu9t11ejQvyIiIiIiIiIiKi5pTMaG3tGexR7v+kdQChY288D/HrsscfK1h133HE1Ofaxxx5btDw4OIjnnnsOCxYswPTp07F27ciXKX/0ox/h+uuvH17+7W9/ixNPPLHsmF1d2UksFi1aNLzu/PPPx1NPjXwZs/C4haZPN38x2quvf/3rZUFh55xzDq644gosWLCgbHvHcfDkk0/id7/7HW666Sbrsb/4xS8WBYVNmDABV1xxBS666CK0tbUVbTs4OIif/vSnuPzyyzE0lP0i+VVXXYUTTjgBZ599doU/HRERERERNVxrO7DQ/Du8OvIU6D//3Br61Z+Qg3lcQ7AqDAtTJ52Fd/zln8T2qgLMAP/BOIceA6xeLjb3JeTxZMc0JDcCQFie8FCiQiEUVjAuHHwC97R5+7ta0ftW45CgrvR27AiV13rtNGRcewl8sglFmjQYy+K83lvx484vGdvy5yMtlK6G4CEsLNik58TrdZbbbnZqjbjJYBJIeyjVLHs+BSv4io4UcuYlLMy2Tdf+/scy5cCR1zMPB15/oXyb5Uvtx+gXQti8hrkREREREREREREREZGIYWFEREQFHCG4azh8CuagGilkzFOfQkhQnq7i2NWQzoUpvMhLoJESzl2lbAFA+WCyoI+QIL+hTKZjNyqUqJpwutGSdqqsuKqxntRO4/rOcFdd+gspudAupZOWZw+DrgpJ5yOl5evLbxAgERERERERERHtnTb2ALP+eexNxDDWrLkmgJn1+WdWzzZu3Fi0PHnyZEycOLEmx543b56xvwULFiAUCmHmzJnD69vb24u2mzJlSlF7qdbW1uHXsVjxFydt+1VqyZIl+PGPf1y07nvf+x4uvfRScZ9AIICFCxdi4cKFuOqqq8rGmXfrrbdi8eLFw8sHHnggli5dKv4c8XgcX//613HSSSfh9NNPx9DQELTW+MpXvoLVq1cjEKjtZ0xERERERFQf6vq/QnXsZ26cOAUAENdymNU//cHBybPNAdQxy34AgEr/3jDlQHSlzXVEADCQtAWYuYwJ8B2Qpd73Gejvfw6f2HUzFrd/rKz9l09ofPd9cki3a6haqPqAp0OSr3netihQrVZhYae8G3j0L/hsz8/x3UmXlTX/36vlu9gC1rwIRv2HrI0alb0+Thh6RtxkMAVorcUgrJD2EBZWQfBc1ZSHgHrPYWHZf9Owhf7d/qxGxktYWGlIXyX3mTBuvXwp1Ls/ad9XCgt724egAgH4na5YvesTIwsLzzGHhe3uhk4loQzXgc5Y6lsjtQ0NJCIiIiIiIiIiIiLaF7GikoiIqIAU+hVQubAwIXRGCvox6U13496df8DPNl2Dn268GjtSW63ba98f1deGeC4Mvz7kz4+N8lKo4YOXcC8/IUF+Q5lMx/ZyHmrBLWCuGaW014qrxlzv3entxvUdofp8iy2s5AKgtE7B0fZnD2VJ933aka+vIM8hERERERERERHRPqW7u7touaOjo2bHjsViiEaj1v7Giquuuqpo+XOf+5w1KKxUe3u7MSxMa1107FAohDvvvNNT4Fk+hCzvtddew5/+9CfPYyIiIiIiotGl5hwlN+aCcFqcAXGTe1+UQ51ipWE8pQIVTiYXjaNFy2MaTMpjcg3myh3fl1gLAPt5GrDM2WgLPgIAhKoPeHLto3DbwkC1iDlw2rfcOfV0/nNs58yLMRUWVmDhwOPG9YMpWEOwPIWF1SB4ri48h4Vlt7MFET75uhyoVqjsWgyGvI3BMJ4y3fb6YgDAkHAv5I/Z2m5uF8cycq+q3DPJaMVj5vWbXpf3qfQ50D6psv2IiIiIiIiIiIiIiPZC/OY8ERFRATGwJxckJQXVZDyGN/WkduC69d/CX3bcghV9T+PF/mWu+4xWWFhGCEAzhWQFPQRtmULGquElCMxPn35DmUzH9hJgVgt+wumaRUpXWXFVQ2mdwu50j7GtI1yfopKwkgvG0jolPkO83Fv7Eum+t11ffoMAiYiIiIiIiIiIaGwrDe9qb/f5hUgXpcfbuXNnTY/fCCtWrMBjj418obOtrQ3f//73a3Lshx9+GC+++OLw8oUXXogjjzzS8/5f/OIXi0LI7rzzzpqMi4iIiIiIRpnHgKchMZirTmFhk6YjqhNQQt3gQFIOmrIFeg3zGxaWC9J5OTLH2Dx7Pzm8DPBwnmoQ8HRk4kX3jXJihcFifs+F5OVszeX2oHlSyBZDmdYuD2+VJKAzULUaeyO8umL4pRTsNpSS7zUAiOmEez81CJ6rC69hVLmgq6AwqS4AjIvaQ9XyDk6uKV5RyX22erl5/X4HuO/bt8u8vnV89s9D5vsby+yC7Q9+i7zdzi3m9bstwfr7z7T3/aEvGVerr/+nfT8iIiIiIiIiIiIion0Iw8KIiIgKSCFM+SApKXTGa3jTo71/xc7UNl9j0kIhUr1JP5MpEMtLcJeCqnpMRX16+DVGKe99+g1lMv3MjQolyozSNVGNZgoL25XqFkP4OkP1CQsLKbkAKKWTlmcPg64KSfd9SsvVa36DAImIiIiIiIiIiIhs/Hz20KwefPDBouULLrgA48ePr8mx77///qLl8847z9f+LS0tOP7444eXH3nkkZqMi4iIiIiIRlkkCgCuFWSDQomRFHo0rMKwMBUMQkEOMVu3U2NLr7nOyDWYC/AfkJXb/qz+Jcbm17bJ5whwP0+q0rCwk84efjk9vcnzbkXnqFaBW7mxnDbwN2PzQBLQuvg96+6vfMLWIDK1G3sjLHj78Esp9Gvlm9oldM7lfgNqEjznm5d/kvH6Xh1/xvDLuBD899wGb4dqKT1fwQqeR7OOMK9fv9p93z3miVNVW2f2z/d9xt9Y5p8y8vq4t8nb7dxsXp+wXD/t9vpMdeaHgVhL8cpps+zjICIiIiIiIiIiIiLax/Cb80RERAUcYZawfAiUFDrjeAxvemXA+6x6eVKoUb05EMKLDIFYnsLCavzlmVoHAPkNZTL136hgJ+m9aWYpx1Jd1GA96R1iW0fYPONktZRSYmBYyknKzx6GhRWR7vu0JYyuUSF+RERERERERERE1Bw6OzuLlnt7e2t6/F27dln7Gwsef/zxouVFixbV7NiPPvpo0XJnZyfWrVvn6/+FwWXr1q2D44y9SVSIiIiIiKiExwAfKcDINbwoUEUt2eQZYsjW136vca9Q8ucaYAYAkZi/seTO0wGpjeIm/bawMLfzVGHAk1pwetHyMYPPetqv6BzVKHBLzTgUANCRMQckAeUhT939lfcX0ukxFRamps0afi1dD3c+X13oHAAgHPE7tMbw+F6pQ+YPv75o103GbdbtrHAMldxnxywyr1/5tPu+u7vN68d3AADU286FuuLXwPxTgdYJ2f9bqIL3VkXjwISJxu30z680H0AKCwuFXeuI1aFHQ133l2wo4NQDgXf8f1A/vh/KZcxERERERERERERERPuS0GgPgIiIqJk4WgjIygXUBIXQmYzH8KbetPChvG1MoxQWlhEC0ExhPUEP+aOqxhmltQ4A8hvKZLoWgjUOMJNI12kzs4U5NVp3artxfTwwDrFA/Qq7wiqMtC6vaEwKMzgC3u6tfYn0DLaF0QUZuEZERERERERERLRPKQ3v6umRvzzs19DQEIaGhorWTZxo/sJkM9u8eXPR8hFHHFGzY2/YUPyN7BNPPLGq4zmOg127do3JUDYiIiIiIioQG+dps10D5lq5uB4yrh8WqKI+JBxGGGljU18CiIaAhKE5IEwOOCwShfIbYpYLF2txBsRNnlxjPkdhnUTQbUwVhoWV7teR8VYH2aILfo5gjWp4cmMZZzlHf31J4+gZI6FEPfKmroI64z/0bTQVvFchbb6uAWCPXLKGmKWebViwSb+G4jXYreB6fLTl5NqOoZJzY9lHO479WbJnl3l9W8fwS3X6h6BO/9DwsvP5RcCLT3gbW9f+QK+P5LSE8LxuafO0u5p/CtT8U7z3R0RERERERERERES0j2nST2mIiIhGhyMUy+SDqaRAKS/hTVpr9Kb9fyFFC6Fd9eYIAWimsB4vQVv2+cD8q3UAkN9QJtPPXOsAM4nXcLpmkjKEZJk0IhqvJ20OC+sMT6prvyFlLrZLOHIxo98Qu72ddD5SljA6nkMiIiIiIiIiIgKA6R3AmmsYzl9v0zvct6m3adOmFS1v2bIFO3furEmo10svveTa31iwc2fxFzw7Omr3xpUeuxb27NnDsDAiIiIiorFuwsjfyd695y78pe1dxs227TbvHncGrYdX1QRRbXwdew5tNfcbBrpagQ2Gsr+NIZe/DwYrCOY64BAAwIKhv4ubvCnkAsUsNUjDwhH/YwLKfpYTB5/Gg62nu+4WLxzTiscq67tULnDo8MQqcZO+kqyr/irmuQwiA0SilR+g0QrutTanT9ys13JLRbxMDFpp8Fy9eQ0LS48Eqa2Izqu4uw/uvr18ZSVhYSHLvZlK2H+uoX7z+hbzcw0A1Mcvg77kPeUNF15Svm7bRvNBYi3m9Qnh4vL63hARERERERERERERkRXDwoiIiApIoV8BFcj9KYSFwYHWGkrJkVhDzoA10EaiGxKfVE4+F5WFZCmfYVxuah3M5TdQyNR/o0KJnFEKkKtGJdd+vfSkzF9U6gh11bXfsDIX9FjDwhoUQDdWSOcjbZkFM1DjZw8REREREREREY1NoaDCzPr+EyA1iYULF5atW7ZsGc4888yqj71s2bKi5Xg8jqOOOqrq44422+dbfiWTtf88QOvR+ayMiIiIiIgMKvz9XCk1XAX3zzu+L4aFbe417x/T9rAwqCrqQ2YdgUt3XIf/f78rypoGU0BCKEs5p+8++3EDFYypdQIAYFJmh7jJll7ze1DXgKfDji1a/HjvL/HdSZe57hYvfN9OP6+yvkvNygY7RSBPXrnyzeJztHZ75X+vDOl0ZcFvo2X67OGXF/beghs7LjJutseSLRf0MplppcFz1fDy7xfRmLdjzT95+GVYp5CooPazxenHV7pvKG+o4HpRJ78T+jfXmhuTQ2LQlta6snCuoxcB804CXnxiZF3HflDv/Hj5tud+EVh8dfn63d3QA3ugcgF+wxIDwng8vjdERERERERERERERGTFb84TEREVcGAOYcqHzQQt/+mU9s3rTRumF6xiTPWWEcLCgoaiCNO6UrX8ogkwEuBWs+P5DGUKGvoPNijYSQpya2ZpLRdnNVp3ertxfUe4vt8UDClzEZAtLMzLvbUvMd13AJC2FDvyHBIREREREREREe1bZsyYgRkzZhStW7JkSU2Off/99xctn3DCCYhERuHLsVXq6ir+9/Du7u66HDsWi8FxshPuVPP/mTNn1mx8REREREQ0ig44BAAwLf2muMkaISMrbqmvAQAEqqgPOeIELBr4m9jcK+TwtDtCslleBfVtSikgkg3UmZg2n4zbnzXvG/FSn1Vp6FVJyM9BqTfQ4vS77hZ3Rk6emjGnsr4tY/nA7juMm/zpueLlu1+ovLsgMkBwDM3PXhAQNT29SdzszV1ygFrQS31ipcFz9WYLyCrarmX4ZQjyRJWShQOP48E3zsLJg0+WN4YquF7Gd8hteyy1x+kU4Ag1xpZzoSJRqB/eBfXJfwEWvB04XzcwwQAAIABJREFU94tQNzwIlXtOF2176NFy/w/8vnydFF4W8fjeEBERERERERERERGRFcPCiIiICjhaCAvLhc0ELKEzbgFOvZnKwsK0MKZ6k4PTys+BW3CXqsOvHLb3ohJ+A4VMP1OtA8wkGS8z9zWZpJMY7SEM60mZw8I6Q5Pq2m84YP7CWMIy82mjrqmxQrrvU5Zix3o8f4iIiIiIiIiIiKi5nXXWWUXLv/rVr5BKVTepxfbt23HnnXda+xkrpk6dWrS8cuXKmh178uTJw6+Hhoawfv36mh2biIiIiIiaQDUTRjrZmqc2Z4/vXeOW+hoAQLCKWrJMBi2OfPyEkCMUtkxuBwAIVFizkgv4yfisZ4u4jQeoPOCppa1s1YzUBn/HKAkcq1hBAFJamUOZxpd0dVAVc0gGtVNZ+NNoibcOv2xz+sTNVm2WDxHSHsKzKg2eqzevYWEtI+fp/bv/7Lub/9n8BSwY+ruxTVUSLjduvNy2/hW5LWkJUnQ5F6qlFeoTlyPw73cj8NV/lwP9WuSx6eWGoMWEMCav7w0REREREREREREREVnxm/NEREQFHCGEKZD7T6YpKCvPLcBpd7qyWdk15Bnc6kkKPzOFatnOCwAoVFEkJgjW+NcYv6FMylD4VusAM4lbMF0zSnuZubJBeoRZNzvDVVSFeRBW5gKphCVIze3e2tdI5yMlFDsqBBi4RkREREREREREtA/66le/WvTv+Nu3b8fixYurOub1119fFDg2btw4fPrTn67qmKPl5JNPLlpeunRpzY69cOHCouUlS5bU7NhERERERDTGbVoDwB5gJIlbwrwAVB7MBQA923BYcrXv3VzDuSqtWckF6uwKdvjbTXuYzLHSsLCu/YFps4pWvRw9zHW3Wam1Iwu1CgoqOE5CRc2blPyYLeY5Hj0JIV35eRsFqiAEa2JGrllNWUoQg14mM60kEKtaXsIKQx7f7Omzh19e3P2fvodiDVSrJEht4lS5LWPpK2F5NkZqFNA39zi5rb+3bJWWxsSwMCIiIiIiIiIiIiKimuA354mIiAo42jGuz4fNmIKyRva1F0j0pnsqGtNohYVJ4WemQKyAClgDwQLVzCgpHrO2IUq1CGUKNijYyYH5Om1mqSYJCxvM9GPQGTC2dYTqGxYWUuZCpISlmJFBV8Wk85F2zNdXkOePiIiIiIiIiIhon3T44Yfj7LPPLlp36aWXYuvWrRUdb+XKlbj22mv/H3t3Hh/XWd97/PucZUarZcmWt3iJ7cRxHDv7QkIWSJzQLCQsCSmhZUnZUmhpC5d7oZQEKAVK6S0tbSlQblkulLbABUoplFKgQIA2LAkhIXscssq2vEi2pJk55/4haaSRzjpzziz25/165ZWz/M45j+acGVvWT9+nZtvLXvYyDQ0N1T3GVtq5c2fN+qc+9SkdPHgwk3M/61nPqln/yEc+ksl5AQAAABwBzpr7XmTL5D2pDu32J6ILGugRMec/O1nQ1gKxYWH1BpgVpwN+rjn4xWzHI9Ud8GSMkfnNd9ds+909fxZ73HB5ZG6lkH1Y2K/t/1RgyciCb3HDgrEKEZM8zrL9SkeFhSX1iyfC+1LtJJOZNhLQl6eE92p+yPwpk7env4yiwsLS95EGTV5b9eQj4fuiwsKK2YSFma4eqXdJ8M7vfzX5mDIaDwAAAAAAAAAAR7s2/SkNAACtERbCNBskFRXcExY0NqvusLCY8+YlLPzMCvnrQ1TYlsnhrxzR10sfThYVBJdU1gFmYSpJmnHaTMlL0Iym/MPxRsu7Q/cNusO5Xts1wY1Ik154M2OzAug6Rdj7vhTS7JhFCCAAAAAAAACAzvS+971PPT091fV9+/bpec97nsbGxlKdZ2RkRNdee62mpub+HXL16tV661vfmtlYm+2kk07SRRddVF0/cOCA3vSmN2Vy7ssvv1ybN2+urv/whz/URz/60UzODQAAAKAN+A309qw7vrp45di/pDq0O2IyPkl1hfNU9Q3ISOr10n2/GBvOVW+A2UwY1skTd6QcT4LJHBt4ncyF19Ssb556MPYYd36gUjGjsDDHrQZVLavsCS3zvLlntRzSbnds6eH4y6nceWFhm7ZXF8OC+f71zvDDI4OwZllt2pdVx70yShZ+N19koFqdoXxasTZws/+VT4QfExUWllVAnyRzwxtC9/kLxzAVFhaW3XgAAAAAAAAAADiaERYGAMA8oQFZM407UcEzFUUHOB2oMyzMyzk8KfS6ISFlYaFaUUFq9YR3xcki3Gu+LEKFwoLUshb2nLazcpJmtCYYLQWHhRlZWuoM5Xpt1yoEbo8KC2tWAF2nsEM+Z0KDHnn9AAAAAAAAgKPW1q1b9Rd/8Rc12773ve/p8ssv1y9/+ctE57j33nt1ySWX6K677qpusyxLn/jEJzQ8nO8EFHlbGHb2l3/5l3rf+96X+Pj9+/drYmLxv287jqO3v/3tNdtuuukmfe5zn0s9xq9//et64IEHUh8HAAAAoE2V58K1hirpeum6/ZiwsEaCi5ZM9wyNW32pDivGhYVZdfaSje2XJPkpe+7cuPFI9YcYzVq9obq4zx6ILa8JVFsy2Ni1ZxhjJG+6V6grou/qvpG55VJIu12vfyj2erZf6bywsJlnSEp2nxaykvSs2m34ayi2M/181GG4Ej4JaRAnql/YqfN9dnBf8PZlq8KPmQx/D2QaztUf8Rzd+9Pa9bAxERYGAAAAAAAAAEAm2vCnNAAAtE5Y4MxsMFVUQFVcgNOBlA1Os/yQMeUtLPwsLHzHNuENDnmEhUWFk7XqfFkHmIXxYoLp2lEpSTNaE+wtBzf1DDiDkc9wFpyQ80/6hIUllfb1sDMIAQQAAAAAAADQuW688Ua95jWvqdn2ne98R9u2bdO73/1uPfLII4HH3XfffXrLW96iHTt26I477qjZ9573vEeXXHJJbmNulosvvlivf/3ra7a94Q1v0NVXX63bbrst8BjP83Trrbfqda97ndatW6cnnngisO6GG27QjTfeWF2fmprS85//fL3oRS8KPbckVSoV/fjHP9bb3vY2bdu2TZdeeql27dpVx1cHAAAAoB2ZYzZXl3eOfyPVsV0R/TWSGgsL23FuXYcVYsPC6hzTU9MB16dP/CTb8UiNh4U9/nB10Uvwawju/Akmt9f3OkfZNnV36L7xybnlckgLZo83HnsNWxUZu8PCwvbP9cg95axMdajtl5MVZty/mfCi0bsbCHVL+5lkR/UL1/s+OzwWvN2L6CGejAhSzDKc6+xLw/dNLHgfhY2pQFgYAAAAAAAAAABZyDcRAQCADlMJ+QG+mWlsiQwLiwlw2l+uMyzMTzBLWw7Cws/CwneiQnnqna0tipVxCFAWQV/NCnaq+K0JkGtE24SFlUYCtw86y3O/tmMKgdsnI2a4tMn2rZH2fZ91qCAAAAAAAACAzvOBD3xAg4ODeuc731n9mcvBgwf1pje9SW9+85u1bds2rVu3ToODg9qzZ48efvhh/eIXv1h0Htd19f73v1833XRTs7+E3LznPe/Rrl279I//+I/VbV/60pf0pS99SWvWrNGOHTu0bNkyTU5O6oknntDtt9+ugwcPJjr3Bz/4QY2Ojurzn/98ddunPvUpfepTn9Lw8LBOOeUULVu2TJZl6cCBA3rsscd01113aWIiJgAAAAAAQOc64+Lq4pkT4UHCQboi+mskSVb9PSKm2C1f0qkTP9VPuk5JfFx8WFidY/qVX5P+9ZM6tR3Dwq58qfTlv0tcPn9MptjV2LXnO+OZ0m3/oT4vJFxJ0liisLBDsZdy/HJDIVStYF70BvkffYck6Y2736s/Xv4/Eh/rJA0LaySgLy8N3KfTUr7fIl+net9n17xc+sJHFm+/9Svhx4ztC95ujOQG9yvWwxyzWWGdzP7t35M5c16wflhYWBdhYQAAAAAAAAAAZIGwMAAA5vEV3BVizQT2RAXVxAU41R0WFvoj9vz4vi8v7LUICd+JCuUxcTO61SHrEKAswseyDjALU0nakNNGSl57hIWNlncHbh9yh3O/tmuCm5EmvfDZ/ZoVQNcp0ob68foBAAAAAAAAkKR3vOMduuiii/Sbv/mbuvfee6vbfd/XnXfeqTvvvDPy+NNPP11/8zd/ozPPPDPvoTaVbdv6zGc+o5NOOknvfOc7VSqVqvsee+wxPfbYY3Wf23Vdffazn9V73/te3XzzzTUhYCMjI/r617+e6By9vb11jwEAAABAm5kXFGMkbZx6UA8WNiY6tNsP76+R1Hhw0fZztWn0gWzDwuqdYHPpdB+THdK/FzoeleKLGg0LW5puQkbXnxnTxdc1dt2F1m+RbvsPFf1JGd+TH9BL+K17fF1w/PQ9KIXMA9ubICzMlifZHdaDtHSuF25V+clUh9oxk+ZWNRDQlxun/nAsI2nL5D26p7gl2aWUfViYGV6bulvY//G3g3cUu7Of5HdgmbR/z+Lt//x/pBv/YG49LCysSFgYAAAAAAAAAABZICwMAIB5vJDAr9nAmajgmT/Z9b90THG91hQ3yPM97Sk9peHCKp27ZKckX4e98brG9LHH/0zfGN1UXR9yV2iZu0KHKmN6dPJhaaY9oNdeokFnmSSjRycfrIaMdVu9OqH3ZF249FfkGFdPTj2q7+77Nz08cV9oOFpUQFlYIFbUa2PUho0hC6QNIQo+R3O+zr3lEf3prjeraHXp+O7tumjwChWtDGdezEHJT9CMJmnXxH36011vljQdMreua7POG9ipNcX18n1f3z/wDf1s7DYdrOxTl9WjE3p26MKll8u1kjX6jJZGArcPOuka2erhmuAx7i6FN2Q1K4CuU1gpP0tsXj8AAAAAAAAAM3bu3Kmf//zn+od/+Ad99KMf1be+9S2Vy+G/2FksFnXZZZfp5S9/uZ797Gdn/wuWbcIYo5tvvlkvfvGL9a53vUuf/exntXfv3tD6vr4+7dy5Uy996Uu1fv362HO/8Y1v1Itf/GK9//3v16c//Wk9/PDDkcf09/frggsu0JVXXqnrr79ey5Ytq+vrAgAAANCGBlfUrD7hrEx8aLc3EV3QaFjYk7tUKgZPBBimGBcWVm+Y0tT017q8EjwpYuh4vMn4ogbDwkx3X7Wz8Fnj/6a36pbwWt+bC546GP59Zl1mQoeMFBgUJkm981q1pkK+/e/143s6bb8iOemejZbrngveXl1+ItWhTtKJTBt9z9Uj7t9m0t6ncy6TfvC16upD7obEh9p+RKhane8zf2x/8I7u8CB1s3R5cLfvRHwQXmpBQWGStHx17fpkyOc1YWEAAAAAAAAAAGSCsDAAAObxQmZFs2YaSqKCZ8Yq+/WLQ3foF4fumNs4Lv3H6D83NKZJf0L3Hf753Ib5ywndMf5fuufQHbp6+a/pzx55i8YqB+oeT1ioVtRr0wm/QBMVdpb4HE0KJir7peozcef4j3Tn+G167dpb5Frt2ZRU8Suh760g85/3ew/fqVv3/7t+Z9079IMD39Q3Rr9YU/uz8f/W3Yd+qlcf8/uJAt/2loOb6Abd/MPCHBN8f8oRQWpZhNgdSdK+T60mBfgBAAAAAAAA6AyO4+iGG27QDTfcoPHxcd1222267777NDIyoqmpKRWLRa1cuVJbtmzR6aefrmKxWPe1brnlFt1yyy11HfvNb36zqcdJ0saNG/WhD31IH/zgB/WjH/1Id999t3bv3q2xsTH19vZqxYoV2rp1q04++WS5brqfR6xatUrvete79K53vUsPPvigfvSjH2lkZESjo6OyLEv9/f1as2aNtm7dquOPP162zb+NAwAAAEcis2SoJtRmTflx3V/YnOjYbv9wdEG9wVyzDo/rvMqt+lL/VYkP6fZixlRn34rZdrb8z/11fBjZwvHEvUZSw2FhetqzpI/cIkk6feLHkaWuX1K1a3Ddlsauu1CC0KGJmcwr3/d1KOSlHEjQR2n75c4LCzv9GdXFnePfSHWonbTPrxVhYXFS3idzwdXy54WFTVnJ/x3IUUSoWp3vM3PsicHBX4cjQu284AmDc+EWpFLAm2nPgslSp4I/iwxhYQAAAAAAAAAAZIKwMAAA5vH84B+czwZhdXLwzO1jP9TB8v6GgsKk8LCeqNfGqLmvWz3hZEaNB5plEThWj3sP36l7D/9M23pPa8n140SFYSVx2BvXl/f8ve4Y++/A/XeO/0gPTdyrzd1bI8/j+Z72lYJntxtyhhsaYxKuVYgvWqCTP3PykDY8rVkBfgAAAAAAAAA6T29vry688EJdeOGFrR5KW7EsS2eeeabOPPPMXM6/ceNGbdy4MZdzAwAAAOgsb979Hv3Gmg8lqo0N5mo0uOiaV+iaf/y83rTynYkPyS3AbMup1cU37n6v/nj5/0g4non4IqfBXx3YvKO6aCRdc/CL+kL/1YGlhXlhZ+bpVzZ23QVMsacaqnTqxE/1k65TFtX85z2+3nS5NBmR6bTESxAWpkrnhYUNrphb9PZpSWW/DtgDiQ61/aRhYW3Y15Yy3FxX3Sj9yWurqy/Z9wl9bOmvJzrU8bMPC9Pa8PBEv1ySCXoOyyG9mcedXN8YIphXvkP+X/7PxTueeqR2fTLks7HYlfmYAAAAAAAAAAA4GrXhT2kAAGgN3/flKTgszMwE9rQqDCorD078ouFzdFs9Idt7I47JZ0awsLGc3Hd2dXmJvTSw5sz+C2rWHdN4hmrYeJrhwcON39u8lFLOchnk9rEfyg95f0rSQ4fviT3Hwco+VUJm9Bt0l9c9tqR6rL5U9a4pEHa1gJXy25e04WIAAAAAAAAAAAAAAADI0eoN1cWBBEFNs2KDsOzGekRMd6964gLJ5tf7nor+ZExRnW368wJ1jp+6P/FhsYFqUv0hRjOM49a81ucdujW0dszun1spZtw/OO81WlV+IrDkBw9O//9wROvaQGV/7KVsvyLZHRYW5rg1YV7XHvx88kOVNCysDfuyUt4nY9vSxm3V9SThcbOsiF7Gul+bqPfJU78M3OxXQkLL+gfrG0OUJUOhu/xd8/o3Jw4FFxXy6SMGAAAAAAAAAOBoQ1gYAAAzooKI7Jk/Mu2jPLhn0FmuYXd14L4TesJnItvSsyN0XyNO7jsncPsp87ZfvuwFgTXPHLyqZt02jrb1np7ous8aujZw+7Hdx6towmc/u2jpFYnOX49y1Ex1LVb2Qmavy5CXoElpb2l36L4hZzjL4QQ6sXfxDJZRTug5WVa9TYNHqLSBjZ0e8AgAAAAAAAAAAAAAAHBEefzh6uL60q7Eh3XFhYU1GFzk79+j4cpIqvGYuCKrzr6foVXVxQEvPsxqbkz5h4VJkipzfVrHlB9LdkxEyFBdCnM9ej8vnhhYcvbG6f9PRbSVLfEOxl7KUXk6fKuDGGMkb64fNixQLYjtJwwLazCgry4m5l1Xz33qnpsAtNsLCblaeBm/FP3+r/e9v2xV+L69TwZvDwsLczJ4ry80L+xxkV3zJrsthST0FcJ7awEAAAAAAAAAQHKkDwAAMKPih4eFmZnAmayDZ1YW1mZ6vjwVTFEvWf266UaSAM9a9nytL25etH11YZ2evfxFuYzpmuW/phXumpptz1n+Yq0ozG07b2CnTloQAnbp0HN1bNeWRed7wYqXa6mzrLruGFfbek6rqTm2a4suG3pu4Hgc4+olq39HVkCo3LkDl+jaFb+hC5b+SvwXVockYVmtMuVHTM/YRKPl4LAw1xTUO38my5ysLqzXlct+NVHtoLNc1634jZxH1HmslN++pK0HAAAAAAAAAAAAAABAjnqXVBdPm/hJ4sNcP2aywgYn5DPbzlIxRY9Tt5cgmKvOMZmunuryRYf+M/Fx3V5MoJqUecDT5WNfTVa4ZlOm19WZF1cX15Z+GVjy1IHp/1fC20LV543FXsr2Kx0XFrbQdQc+m7jWTtqH2I6TYLqF9McsGawuPnvsy4kOceImdq03LGz5mvB9EyFBZuWQz8YsggEX2nFe+L7ReWGLYWOq5/4AAAAAAAAAAIBFcvgpAAAAnclXeFeIPRM4k2XwzLXDN+qiwSt076E79dDEvfri7k9mdu60Tu47OzDoa9agu1wn9pyqpe6y0Jpeu1+/t/6PdO+hn2nX5P3yfV9ruzZqS88OdVndeQxbS91l+l/Hvk/3HLpDe0pP6fju7VrbdWxNjWsV9Opj3qz7D9+lRycf1qburVpf3BwYeraisEZvOfb9uvvQ7ZrwDmlrzykacof12OQu3XvoZxourNZx3dtUsIqhYzq1/2m6ZeNf6e5DP9GB8j65VkGbu0/UsV1bZBlLv7riVXrakot13+Gfq+RN6sGJe3Tn+G2Jvt6rlr1Q/3Xw23py6tFF+7ykM/q1QLkJYWG+78fWjJaCZ/8cdJaHhuBlyRijK5f/qk7uO1v3HvqZJkKaBlcV12lrz8nqsfsC9x/N7JSBjWnrAQAAAAAAAAAAAAAAkB9z/e/I/+jbp5dTHBcbFtZoCNbwMZKkcw79QD/oOSe2vNtPEMxVb2CQJPX0S4cOaknlQOJDuv0EAWZZBAidcr700+9Ikga8hOMrhPfb1WXpcHXxyrGv6Hs9i0OMfvzI9P+9iLayPm889lK2vM4MC9txnnTH96YXJ+9MfFhsENYMY7VhX1Y996l/qLq4ffLnyS4TGxZW32tjjFHY4+p/8o9l5oXkVVVCxpLDM2scN3x8f3yTzLNvnF4phfSLduL7CAAAAAAAAACANkRYGAAAMyoRYUvWzCxoxhhZsuRFBIsl1WsvkW0cbe09RVt7T9F3939Ne0pPNXzeepza9zQ9bSCgkSClglXUSX1n6KS+MzIYVTJdVrdO7js7ssY2jrb07NCWnh2x5+ux+3R6f23z0Jrieq0prk88puWFlTq/8KzAfcYYbezeoo3dWyRJDx2+N1FY2NaeU3TF8uv1yOSDgWFhFb/xZzIvpbhmvSbZWw4OCxtyhwO352Vd1yat68p4tsyjhJUy/MtSGzalAQAAAAAAAAAAAAAAHK26aiedXFV+Qk84q2IPsxUzkWIjwVySVOiSJK2oBPcXLZQomMs0MKahFdKhg3JVluOXVDbxITvdIRMX1sgiLKw75QSIxe7sJ3Iszj1HXV54cNvhKV+ViLa6Hj8+LMzxy42H0bVCb3/N6mBlr0btoZDiOXbSSUsbfc/lwa4jjGpg7jVJ9B6S5CgmLKyR56V/UDo4unj7T/4zuD4sLCyL93qQdcdLj9wbuMufnJApdkmVkH5Rh19dAgAAAAAAAAAgC234UxoAAFrDjwgAmx84kzasJoxtan/wbVLNlZitrL4mpGclbISafT7skCYyL64hroVKXshMcU02WtoduH3QXd7kkaBeacO/+GwDAAAAAAAAAAAAAABoH/6B2hAcP0HPXMGbjK9y6ggJmm/tZknSQGV/ovJEoUKNhCn98v7qYpKgMEkq+gl6tLIIELo7fmLMGpPJAphSmXe/eyKC20YOSp4ffpo+byz2UrYqjT9frXDXf9esJgkKkxIE882yWtCXFddrWU8Y1RO75g5P+LU7fkxYWCOvTVBQmCQNrgjePjUZvN0p1D+GKDPBioH2zYQtlkI+i/IaEwAAAAAAAAAARxnCwgAAmFGJmBHNmhfQZKcMqwljLwixMS38YzltAA+yk/S+m5lnMOxeeUln9GuBsh8yU1yT7S2HhIU5hIV1irCwvKzqAQAAAAAAAAAAAAAAkB9z6vk16y/Z9/HYY1wl6D0qdtc7JEmS6R+UJL3owKcT1XdHBFRVNRIWFhXIE6Loh4QGzZdFWNhJZzd+jgaZeaFRO8f/PbTucEmqhM8hq17vUOy1HL/cmWFh2+q7T7FBWLMaeb7z4qYPozJnXpz6mNhQsUbCws7aGbx992PB28PC+Lp66h9DBHPVS0P3+Z94t3zfl8ohn9md+D4CAAAAAAAAAKANteFPaQAAaA1P4V0h8wOarIzCZxaHhcXPkpgXAnVaJ+l9n62zTHAjSSXpjH4tUEoya2UTjJZGArcPucNNHgnqlTbYkCBEAAAAAAAAAAAAAACANtI/VLP6yn1/G3uIm2SiwkJjYWGSpLMu0bmHfpCotNtLEBbWSE/epS+sLr589KOJDkn0OmUQFmZ2nJfugOe+quFrBtp5vSRpoHIgtOSLP/Xl+eGn6PPGYi9jqyLZnRdyZE5+es361Qe/lOg4O6KPtkY7hoXVE0a1cl3N6pt2vyf+MnGBag28Nua614bu80cD+h+nQj6LiukDBxOZ99m0yBc+It3xvfD9dYS5AQAAAAAAAACAxdrwpzQAALSG54eHLc0PCAsLa0rLNrWNN6aFgV0E6rTO/FkOI+tmwsLskHvl+QmbdFqgHcLCSt6UDlb2B+4bcggL6xRpwxqz+rwGAAAAAAAAAAAAAACApGWrGju+WBvq1ZMgdCtRCFYxg7Cw/kF1+wlCwCR1+xPxRY2EKRWL1cWuJNeSVEjSo5VBWFjq17qQU2jRzDh6/EOhJd9/wFcloq0uyX20/Up9IVStVijWrHZ5yZ4jO6KPtobVir6smF7LekLdFjyfPV748zQrPiysgdemqyd83w//bfG2yZDPrCwCFINEjU+S/63/F76zA0P3AAAAAAAAAABoR4SFAQAww4uYEc2a90dmWFhTWgvPY8U1MuSIQJ3WMQn/OjYbkhQWlhQVdtdqJS//sDBfEVNAShot7wndN+guz3o4yEnaYEOLb3cAAAAAAAAAAAAAAAAyY176+8E7Lr422QnWHlezOlwZiT3EjQvm6e6V1h2f7PpR7vpv2RE9hPMV/cn4okYmD911T3VxZfnJRIe4inmdpGzCwraclq6+nCDsrR4P/EyS1BVxL4qOkRfRVpYkGMvxy50ZFrZkWc3q5tIDiQ6zkzxHkmS3Yc9pPfdpaGXN6vbJn8ceYivmuWkkLGzzjvB9e5+oWfVLU9L3vxpcm0WAYgATd96vfCJ8n1vIdjAAAAAAAAAAAByl+O15AABAJkwjAAAgAElEQVRm+H5EWNi8MK2sgrUWnse0MCzMJiysZZLe99m6sOevEteA0kKlJLN75my0FN5YOOgQFtYp0n7+EoQIAAAAAAAAAAAAAACQoeNPlXacV7vNcWWe/RuJDjfFrtr1BMcU/JiJCq9++aLz1uX8qxKXukn6oaz62/TNeVdUl6898LlEx7hxr5OUTVjYSeekKjcXXN34NYPOe96V1eWCFxwY9tAeX5WI/LfY0CdpOkCuE8PCTr+oZvXF+z6Z6LAkAWqSGgvDy0s9z/eKtTWrl43/W+whTlyAYQNhYWbJUOg+f/fjc8uHx+W/4dnh58kpLEySVIj4vD04Gr6vE99HAAAAAAAAAAC0oTb8KQ0AAK0RFbZkzfsj08roj0/b1DYmmBY2T2T1NSE9K+F9r4aFhdwrL2mTTguUkjSiNchXxBSQkvaWg8PC+uwlKljFPIaEHKQNNrTbsSkNAAAAAAAAAAAAAACgQxnblvmTL0rXvVbatF16+pUy7/m8zJkXJz/JltNqVq88+C+R5YHBXKs2SNvOlrnpj2Re857k145g1m2RJD390Hdja2MDzKSGAoO0/Jjq4jHlxxIdkijALIOwMGPb0WFBCw2taviagVZtqC7+9t4PBJZ8/wHJi2grs3xPF45/O/IytiqdGXLU3Vezelzp/kSHzQ9QMze+Nbywkec7L/U83wtCtYoJ3tvxYWEN9qyddlHw9n/487nlL3xI+tE3w8+RRYBimGteUd9xnfg+AgAAAAAAAACgDWUwPRAAAEcGzw+fQs6aF1CTNqwmjK3a85hE8yTmI2lgFbKX9L6bmZCwsOfPU8QUiC1WTtKIlrPR0u7A7YPO8iaPBI1IG2xoqQ2b0gAAAAAAAAAAAAAAADqY6emX+e331X+CBYExvd54ZLmr2t4j89aPyVz6q/VfP0xhesLB2CAgSa5fng7MmpoILzIN9APacz0vXX7ENeZJFmCWUZ/gkiFp93SI2erS43rcXb2o5NxDt04v5BVaNC/kyY7onatEtNXZqqg75vV1/HLN/egYXT01q0mfxurzv/3c6HvXitck7j1VT4CZu3ii0b7KQY3Z/aGHOBETE9c9jpoLhIRq9S2tLvr/N+YzeEEIWqZ6wl+bSISFAQAAAAAAAACQCcLCAABHlf/c91V9e99XAveVvPBmmfkBNVZWYWGmjcLCCNRpmcRhYTONLmH3quLHNKC0UNR7q1lGyyFhYS5hYZ0k7edvVp/XAAAAAAAAAAAAAAAAyMjPf1izet7hW/UPA9eFlrsLw7t2nJvHqKTjTpEkbSjtii0t+FNS75LosLBGgrlWbZg7jXwNl5/SiLMi8hA3bkJH26n2oDVsJihMkl544O/1p8t+d1HJjfs+Nr2QV2jRvCCrffbSwJKlPZLnh5/C8j3d1nVa5GVsv9KRIUfGLSjiSw9lzwZh/exW6dLrIy7QhhPUOul7xYxlLXqdev1DGlNEWFhcoGCjQWpPhnwG9S6ZW943En2OHMPCzBnPkP+xP0p/YAe+jwAAAAAAAAAAaEdt+FMaAADyc7C8T49OPhT431Olx0KPs+Y1NmQVrGWb2sxO08LmiYXBZWgek/CvY7OBdWHhR147h4UlmbWyYdGtTXtLwc0xQ85wHoNBTuyUn79p6wEAAAAAAAAAAAAAAJCzi55Ts3r9gX+KLK8JwbriJTLzgrQytekkSdJNox+KLXX9ktQbHiYkqbEwpeE1NatvG3lH7CGFBGFhmTlrZ3XxlaN/q9Wlx2t275i4Q889+IXpldzCwubOe9nY1wNL9h2SKl74KWxV9Ov7/2/kZWxVJPvoCTmyZ/sQL3lB9L2z2rAvK6Nn/C273xV9GcWEhTXYC2yuelnwjid3ya8k7BPNMSxMO86T3EL64+o5BgAAAAAAAAAALEJYGAAACcwPaLIzCvVaGNBlKaNZ++oQFkCF/CWdrdHMPB9hz5+ndg4Li2lEa4LR8u7A7YPu8iaPBI1I+1llteMMlgAAAAAAAKhL0L+lel7Eb3sCQAcI+hxL+rMjAAAAoGNt2FqzOlzZrb7KwdByd3aiwrXHyfzPD+Y3Lmc6EOr4qftiS11/SupZEl1kNdC3siDo53kH/1/sIYW4CR0zDAszO86tLh9XekDfevgSvXH3e3XFwa/olpG36+u7LtdSb/90QV6hRfOCh/q9A6FlP3kkfBJKS552TN4ZeRnbL1efjY5z4lmpD3Fm+xDXb4kJC2tBX1bc98v1PuOnnF+zesn4NyLLHT8mLKzR12bNpvB9d3wv2TkKXY2NIYJxXJm/+mb6Azv1fQQAAAAAAAAAQJvJcIogAACOTK4pyDVzP6S2lE2wlr3gj2HTwgxPi/zQljEJQ+JmfzEk7Pmr+O37S3GluEa0nPm+r9FSSFiYM9zk0aARacMaCUIEAAAAAAA4clgBv2RXKpVUKBQCqgGgM5TLi3/BOOjzDgAAADiSmGKPFsY3DXr7NGb3B9a7MxMVmhf8lkyOf182xsiX1OuNx9a6fik+uKiRSe4KtSFNfd5YsjFFsTPso+nqqVndVHpIfzRyc3BtXgFBvQPVxYGIsLBv3BUeFmbL06Affux0TaVzQ46mJlIfYvszYWGlqehn+FB4wF/L1BsWVq597wxUop+J2LCwgWX1jWNWb0QQ4Y+/LX/b2fHnyCukb9bgivTHOPw7LgAAAAAAAAAAWaDDEACAGMf3bJdt5poIsgqfsRecJ2loVB4WjgXNkzSobTZMLuz582abdNpQ2YtpRMtAeEuXdMgb06Qf3Pg05C7PZ0DIRdpQRTujcEcAAAAAAAC0njFmUTDYgQPRv7gHAO1ubKz2F/4LhUJ1AhkAAADgiHXqBYs2PeKuCy2vhmAVcg6/mb2eYoKAJBVUklZtiC5qINjMOLWhR13+ZPyY4iZ0tDLsozntosSluX2Ps3FbdfGUidtDyw5GvHR2saAeO/p+234Hh4Xdf0fN6rmHbo09ZDYIy3T3SWuPCy8s598TmFq9YWE9tUGFKytPRZY7UZ8RW06TGVpZ3zhmnXRO6C7/o2+XDo7GnyPvsLAVa9Mf06nvIwAAAAAAAAAA2gxhYQAARFjmrtALV76qZltWwVoLQ59a2fhvEajTMknv+2yYXFj4kaf2DQsrxTWi5Wy0tDt035Az3MSRoFFpP3+zCncEAAAAAABAexgYGKhZP3DggMrl+F/gBYB25Pv+otDD/v7+kGoAAADgCLL9aYs23bT3b0LLq+FdeYffSNWQnvMPfSeyzPVLNWFVgRoIC6tHNVQtTJb9iSecnqzOLcTX1MlYVjUcyononbv7iYhzFLvV7URNUzlz7k4NOfqVX6tZ/cORm2MPqQZhnXS2tKzB0KtmqzMQzzzv1anqnfkTu84PKOvqkXnte+oaQ814unsj9/uvvyr+JDl/XhpjpOtfl+6gTn0fAQAAAAAAAADQZuqcPgUAgM50Yu9p6rJ7EtWuKqzV5u4TVbS6arZbGWVtLgy9MS3M8CRQp3WS3vfZUDHLBNdX/HYOC2vtLIJ7yyOB2y3ZWuIsbfJo0Ii0wYZZfV4DAAAAAACgPQwMDGhkZO7f+zzP08MPP6x169apUMjvl08BIGu+7+vRRx9VqVT7M5QlS5a0aEQAAABA8xjLkl/okqYmqts2lR4IrX/A3Ti9UOwKrcnMCadLd/5Azxj/tr7Tc35oWcGfkukdVmTMVEifV2Lbnyb97PvV1TMO/0i3dYeHdBUUFxaWXR+NMUZ+V480cSi6cPu5mV0z0PWvkz71PknSs8a+pq/2Xbao5OE9wYfaflkq9sSGhdl+RbI7NORo+Zqa1eFy+KSbsxx/Jiysq0cqNOE9l0Zc4J1d56/GLFu9aNOxUw/pocKxgeXV1+i618pc8RLpu1+eDsY7/yqZ9SfUN4aFdl4vff0zwfvuvyP++K78wxXNM54n/zPvT1ZsOy2dUBkAAAAAAAAAgCMJYWEAgKPKxu4t2ti9paFzZBWsZS/4Y9iodT8ItzNsBEI6Se/7bOhR2PPnyctsTFkr+VNNuEp409ZoKbjJaakzRFBeh0l7vxaGMgIAAAAAAKCzua6r3t5ejY+PV7dNTU3pgQceUE9Pj/r6+tTT0yPbtvnlMwBtx/M8lctljY2N6cCBA4uCwlzXVbFYbNHoAAAAgCabFxQmScsrIYlOku4pzvT71RsElMbU5Mx4okOVXL8k9cSE/VoN9uTtr31Ner2x+DHlOZ6F4oLCJKmYc2BRaa4vbY+9LNWhljyp2KXu/U9IA+F1jsqS3aE9SIcO1Kwuq+yNPcTWzKSlvUuk7r7wwpPOaWRkuTD1fkZ0LZ6A2Ivoqa2+Rgf3yxx3snTcyfVdN8qSocaOz/u9J0kDKd5zLhM9AAAAAAAAAACQFcLCAABIyVZGYWELQmysFv7ikpXR14T0kv7C2myoWNjz5/mVzMaUtZLXjLCwcKMhMyIOucNNHgkalTbYkDA4AAAAAACAI8/KlSu1a9culcvl6jbf9zU+Pl4TIgYAncQYozVr1hB0CAAAgKPWzvFvxBdt3p77OMz64+VLunT83yPrCv7UdJhS5MkaDOd67MGa1Q2lXfFjih5QY+OpR86BRWbz9uoUk0856XrBbL8iFbvVfSg6QMs2fsd+r2aWDtdMwbmy8lTsMc5sH+K6LTK2Lf+cy6QffK22aNlqadvZ2Q00K/WGhRW7Fm06buo+7XLXB5ZPmJmg7/6IlLkGmbN3yv/cX9d/gkITwsLWHpe8thnhZQAAAAAAAAAAHCUyniIIAIAjX1bhM7apbUwwLfxjmUCd1rES3vfZ5yPsXlXaOCysHDdrZc72lkYCtw86y5s8EjQqbbBhVuGOAAAAAAAAaB/FYlHHHnusisViq4cCAJkwxmj9+vXq6elp9VAAAACA5rn42prV1eUn4o/piQnnysLpz5QknTB1b2SZ65el3v7oc1kN9gM+/zdrVo+buj9mTDE9Wo2OZ6ETTo+vyTsgaNs51cWX7vt4qkMteVKxWz1nXxBZZ3dmTti0rWcs2nTlwX+JPMTxpwP6jT3dd2V+98+klfNCs7p7ZW7+mEzWz1MiMTfDrrNXLCBY64+eemto+UFr+r1vTr2wvuslce4VjR3fhHAuY0yyzwFJcgr5DgYAAAAAAAAAgKMIYWEAAKRkNTrj3+x5FvwxbFoxc98MAnVaJ+l9n52dMCxczFP7hoWVYmetbJzv+6H7Rsu7A7cPuulmk0TrpQ02zOrzGgAAAAAAAO3FdV1t2LBB/f0xv5QLAG3OdV2CwgAAAHB0mh8+lFQTwm9U7Koubp/4WWhZwZ+Suvuiz9Vg34rpW1qzfvzUfZH1BX9KWrs54oQZ9yeuSnAP572euZh3/n7vYKpDbb8iFbvVPTQQWedY4X1pba9r8fea5x7+fuQhjspS39xrYo7ZLPOx22Te/VmZt35M5u/vkjntosyHmgmrzj7YgM+WDaVdoeVj1sx7P8fnu+EwtmZ8XkrSmRcnq9vzeL7jAAAAAAAAAADgKOK0egAAAHSaLIK1bDnV8KdZpoWhNgTqtE7S+z4bKmaHhCV5vpfZmLJWipu1MmejpeCwsCFneZNHgkal/fy1CEIEAAAAAAA4Ytm2rbVr16pSqWh8fFxjY2MaGxtTpdK+EysAgCQVCgX19/dryZIlKhaLi35mCAAAABwV9j6Z/hi3kP04FhpaWV2csMKDgHzHldxi9LkaDftRbUjViVN3R1bb8qRTL5J+eX9wQdY9goUEYUR5BxYtnZsscnX5iVSHWvKkQpd6uqJ/naKjw8KWrV60ySj663H8sjS2v/aY3iXS06/KdGi5cOr81ZiA4L+Byv6AwmmHrZnnOu4zoFFn7ZT+6+vpj1s6LGM3p2/OLF8d80QBAAAAAAAAAICsERYGAEBKVkhYUxpBgU+zYVCtkMXXhPokve9G081aYfeqovb9BbiyP9Wya1f8ivaV9wTuG3QJC+s0aYMNw8L1AAAAAAAAcOSwbVtLlizRkiVLJEm+78vzPPk+v6YGoL0YY2RZFuFgAAAAgCSz7vjUATPN+Lu0WTJUHdf5h76n+wrHBdZVnC6pqyfmZA2Gc516Yc3q9sk744/pjhhTw+FlCyQJAss5LMz09FXv12Vj6UKVbL8iFbtlFbs0UNmn/fbSwLpu09qJMhuy7vhFm54x/u3IQ+w27kOMZdf3qzHGcRZ9HhWU4L5v3FbX9ZIy518lv56wsGYGu517ufT+1zfvegAAAAAAAAAAgLAwAADSsnTkhYXZGXxNqE/S+27NNLuFPX+e375NOiWvdWFh+8t75ckL3DfoDAduR/tKG2xIECIAAAAAAMDRxxgj2+bfhQAAAAAAaGubt6er33BCPuMIcuqF0k++rdft/Qv93dIXB5ZU3C6p2BV9nkbDuY7ZVLOaqMusqzd8X9btiXFfvySTc1iYpOmAqEpZQ95oqsMseVKxW6bYrQ8/fpNesPbTgXVdppzFKFvCGLMoBGtDaVfkMbZfls66JL9BNSIuMLDOsDBJ0o7zpDu+l+6YvJ/va14pfeHD0gMJggJnnXqhzG/9cX5jWsAcs1n++c+WvvOlpl0TAAAAAAAAAICjXcZTBAEAcOSzG53xT8EBNlYG560XgTqtYxL+dWw2VCzs+fP84ECsdlDyWxcWNlreE7pvyF3exJEgC1bKb1/S1gMAAAAAAAAAAAAAAKAJCvFBUzUGV+YzjiDrjpMk9XljoSXGceKDghrtBww4/8kTt0dfMjIsLOM+miRBSWnvcz1WH1tdXFl+MvFhtrzpwLOubq0qPxFaZ9mtmwQ2Exu21qx2+4cjyx2/LPUP5jmi/DQSFja8JnlpeWR6oZBvWJixbZk/+LvkBzz9Spk//5pM75LcxhTEXPmSpl4PAAAAAAAAAICjHb89DwBASlkEa9la3JRgMp+6LzkCdVrHipvtbsZsqJil4OevokpmY8payS+17NqjpZHA7UXTpW4rojkObclO+fmbth4AAAAAAAAAAAAAAABNsGbjok0v3ffxwNK/evy3pkOdmsVxJUmryk+qywsOVjr/sS9KAzETFVoN9q30LV206RX7PhpYeuH4t6cXlkWEqiXsU0vKBNzDhfyDo5leM9DjD1UXn3SSh8pZvjcdeFbsVrc3EVHY4f1HD99ds9rvHYwsd1TJPQQrN42EhY08tmjT2Yd/GFh6476PSbY9HRqYt5XrktcOrpTJ+H2eyJpN8TXPe3X+4wAAAAAAAAAA4ChBMggAACmFhTWlERRg06rALktWaxoEICl5SNzsPQoLq/P89gwL831f5SaEhfnyA7fvDQkLG3KHee47kEn5OZlFuCMAAAAAAAAAAAAAAACyZdYet2jb8w58ftG2bu+QLh/71+lQpyYxF1w9fW1/Qlcf/OdF+0+cvEvbpu6ScQvRJ7Ia600y9uK+l6sOfjkwwOwFBz47vdAVMXmiybg/8bwrYkvMSedke80gJz+9rsNclebCwvzgUDhJ8q0mBELlaUGPnBXSZzfL9ivNDedLI67fr5Fgt1MvWLTpBQf+adG2Xm9MV4z9a9MC1Uz/YPLasy7JcSQRNm6b/i+CecbzmzQYAAAAAAAAAACOfISFAQCQUlDQVxbnaFVwEWE6rZU0/Gi2Luz589SeYWHNCAqLMlreHbh90B1u8kiQBctYqQLDsgh3BAAAAAAAAAAAAAAAQA4WhGFdMf5VfeDx12l5eXpywI1TD+rLu67RuvKjTQ0L0/GnVhc//PhNes6BL8iZ6YE659AP9JVdV8tcfN10wfAx4eexMmjTP/vSmtV15Uf1z488RxumHpYk9VcO6M27361X7fuwNLAsOkwpi/HMY4aPiT/n0MpMrxk4jue8srr8/AOfS3yc45dlij1SsXs6ICvMnscbGV7rXf0bizb97ydeH1ruqNzc91uW7PqD3cwpi0PnXrf3A3rD7vep1xuTJG2aekD/sutqrao8KRWaF6hmXvPuZIXrT8h3ICGMMTJ/8iVp+9OC97/pwzKnXdjkUQEAAAAAAAAAcOTq8KluAABoPiuDGfZss/iP4DQBOFmyCdNpqaQhcUbTdVbIc1LxvczGlKWSP9XS64eGhTnLmjwSZMU2lsoJn3c76xlRAQAAAAAAAAAAAAAAkI3VG6Vf3lez6dX7PqxX7vuInrJXTAfyzCo0Mbyoq6e62Osf0j89+kKNmV5NWkUtq+yd3uG40//vH5RGHg0+TxZ9K/2DizY949B/6v77T9SjzhqtLD8pZ3aSyYFl0dfMYzLTs3ZKP/ha+P5mhE4V50KberxDiQ9z/PL0sYWu6YCsEN2V8YaG13LFnkWbBrwDoeX7rAGp6Oc5ovw0EBYW9DoZSe8e+QO9Y+RtGnGGtaY8LziumYFqy1Ynqys2L8BsIbNircxff0v+/j3S6FPTn0dTk9KKtS2bSBkAAAAAAAAAgCMVYWEAAKRkZRCuFRTQNRsG1WxZhJ+hMUaWfEWHH1kzDROWCX7+fHnyfK/t7mezwsJ8BTco7S2NBG4fcofzHA5yNP0ZHN6gt7gWAAAAAAAAAAAAAAAAbWdBUNgsS35tUJjU3BCcgBCgPn9cffNDo2ZDiaICg6zG+7jMxm0hXVHSMeXHajfsuif6mnn0lbnF6P3NCFTq6q0u+il6MB2VpUKX5HnaUNql4fJTGnFW1NS4/pQuHf/3zIbaEo89sGjTqvIToeW77eXSk3fkOaL82A30im04IXSXq3JtUJgkPfVI/ddKa+O2ZHXNDDALYQaWTQeFAQAAAAAAAACA3LRXmgQAAB3ANo1nbQadw7Toj+Ww8Ck0T5KguNnnIyhoblZc4FgrlLxSS68/Wt4duH3QISysU6X5zOLzDQAAAAAAAAAAAAAAoE119yWvLTQvLMyYBIFTToKwsCzCuZ75/OS1/YNS1NiTfF0pmct/PbqgGeFF80Kerjv42cSHOX5ZcguSmZ7q86X7Pr6o5toDn9MS72Amw2wVc8YzF2078/CPwuvlBx7TFuKeYbv+3l4zuCK+qFU270hW1wZhYQAAAAAAAAAAIH+EhQEAkJKdQROPHRBgk6jJKAdR4VNoDivBvZ8NFIsKP6r4lczGlJWSP9Wya096ExqvBDdrDbrLmzwaZMVK8S1M0GctAAAAAAAAAAAAAAAA2sAlL0he2+wQnIuvjd4/G0rUFTEuq/E+Q7N+S/LiZz4vJiwsh18b2HFu9P5m3Ld519g2eVfiw1y/LDmF6mv2zpGb9fsj79LGqQe1pvSYXrP3r/W3j70q8+E23Yp1izbZCu8zNPKlZavyHFF+GggLkyQtW5289tIXNnatFIwxMu//anwhYWEAAAAAAAAAABwVGvyJCAAARx8rg3At2yz+I9hSa8LCosKn0BwmQfjRbFhYVFidJy+zMWWl7Jdadu3R0u7QfUMOYWGdKs1nVpL3FgAAAAAAAAAAAAAAAFqgUEhcatzktZkoxITuzIYSucX8x7J+i7Trnvi6Ynd0QFkG4WWB12xkfyZj6Kku9niHEx9mqyy5BalvQJJkydfbdr9Db9v9DvlSi7o5c9DVs2iTHTEpqZE6N3TKbrAXtm9A2vN4stpmv0bL18TXFLryHwcAAAAAAAAAAGg5fnseAICUsgjXCgoca1WojcVfB1rOJGgtMjMhYVFhdV5EE0+rlPypll17tBweFraUsLCOZaf4zLIJQwQAAAAAAAAAAAAAAGhPh8YTl/oH9uY4kMXM5pOiC2ZDeSrl8Jrxg9kM5tH7k9W5RSliIkqZ7OOvTE+/tO744J3HnigTEFSV+RgKc4FtKypPJT7O8WfCwnact/icmYysTRx/6qJNtqLCwvw2DguLuTNRz38SD9+dvLbY5GCuNZuk/sHw/SecLpNHICAAAAAAAAAAAGg7/EQAAICU7IiwpsTnCAiwMTk04yRBmE7rJQoLm6mJCqurtGVYWKkp1/HlL9q2tzQSWLvEXirXcvMeEnKSJrCRMEQAAAAAAAAAAAAAAID2ZJ7x3OS1Zzwzx5EEuPSF0ftnwpTMpb8aWmLOvjSbsVzzymR1jhsdCNZokFLYaa9/Xartuejpn75mikMcvyw5roxbiC68KPlz2o7M4PCibXZEn2F7h4XFaLQH97wrktc2+TUyjiNz3WvD97/gt5s4GgAAAAAAAAAA0Er89jwAAClZGTTNBIaFtWg+ujTBO8iHSfBMzYYeRYW7eREz/rVK2Ztq2bVHy7sDtw+6ixug0DlShYXx+QYAAAAAAAAAAAAAANCelq9OXts3kN84Aphlq6L3d/VML6xYF16U0ZiTBqUZx5WsiD60qH0NMNe8Qubmj0tPe5a0ZqP0tF+RueWTMle9LJfrBXruq6qLm6YeSHSIo7I0GxR24pnhheu3NDKy9rC0tl/OjugznA4L68p7RPlosLfXnHZh8uJWBKq99Pdl3vAB6fRnTL/X1myUzrtC5g8/I3NZTMAhAAAAAAAAAAA4YjitHgAAAJ0mi/AZ2yz+I9i0KMPTEmE6rZYkKM7MzHpnRTwnlYgZ/1plym9dWNje0kjg9iFneZNHgizZKT6z0tQCAAAAAAAAAAAAAACgibp7k9cWWhBeVChKU5PB+2bDlAaGwo9fmtGEhklfJ9uNDksy+U1manZeL7Pz+tzOH3v9Yrf8lMc4fkVyCrNnCC+0joD+I7u2X9WSF1pqfL8177csNPqMd/clv1QLwsKMMdI1r5C55hVNvzYAAAAAAAAAAGgfrUklAQCgg2URPhN0DpNjM04Uu8HZ1NC4qACwWbOBYlFhdZ4f3sTTKuWmhYUtbvcaLe8OrBx0CQvrZFaKz6wswh0BAAAAAAAAAAAAAACQg7XHJ69tQTBPaFCYJBVmxrP+BGnVhsX7l6+RtpyazThOPCtZnetGhyUdyX2C88KtHihsSnSI45cldyYs7JF7wgutI+B12/N4zWpsp2o1RK3NxPXYNtqDe/LTk9cWOzRQDQAAAAAAAAAAdLwj4KdXAAA0V1XeIS0AACAASURBVBbhM7ZxFm1LEhiVByuD8DM0JklQnJl5PqLC6jxVMhtTVkp+qWXXHi2FhIU5Gc3aiZZI85lFGCIAAAAAAAAAAAAAAEB7MmlCmFoRzPOiN4TvmwkvM8bIvPyW2pCimW1ZTR5q+gaSFTpudCBYiyYzbYp5YXI37P90okMcledCsZ776tA6cyT0H133W4lLLXnTz1InavReHXti8tpiT2PXAgAAAAAAAAAAqNMR8NMrAACaK4tQr6DAMRM/X1susgg/Q2OS3PvZ5rGo+1Xx2zAszJtqyXV939doOTgsbMhd3uTRIEtWiqYuwhABAAAAAAAAAAAAAADa2Lazk9UVuuNrMmZOuzB857xwKvOsG2Te/1Xpua+SrnmFzJ/+i8yVL8l2MMtWx9c4rhQVwHYkhF6FmXc/Tpm4PdEhjl+W3OmwMLP2uPDCNKF2bcqceGbyWvkdHBbWWA+uMUY66ZxkxcXmfyYBAAAAAAAAAABIktPqAQAA0GnsDMK1gs6R1UyCaWXx9aAxJkEA3WygWFRQkqf2Cwsr+6WmXMf3a9fHKgdU8oODygYdwsI6WZqAQ8IQAQAAAAAAAAAAAAAA2tjURLK6Yle+4wjStzRi30DNqjntIpnTLspvLJOH4mtsNzoQrEX9iU0x717ZCXvo5oeFLWo+m8efPNyiaWBb46zD/y05L2v1MOqTRbBbV0+yukILPpMAAAAAAAAAAACkBMkUAACgRhbhM3ZAXmeSwKg8WPx1oOWSBMXN3idb4c+f53uZjSkrYYFdeRstj4TuG3SHmzgSZC3qPbColrAwAAAAAAAAAAAAAACA9tXVm6zOLeY7jiAnnC71Llm8vdAlbX9ac8cytj++xi0c2YFgUU69oLp4+uEfJzrEUXkuhG7dceGFk4cbGVl7WL9l0abnHfj8om0Fb1IvOPBPkuM2Y1TpxT7fGTz/xe5kdbNBcwAAAAAAAAAAAE1GOggAAClZKYJqwgQF2JgWzT+XRfgZGpPk3s/WRN2vip9sVsRmalVY2N7S7sDtjnHUbw8E7kNnsKJmQF1Yy7c7AAAAAAAAAAAAAAAAbctc99pkhU7zg3mM48r83p9L1rz+E2Nkfud/y3T1NHcwl784vsZxa8d6FDGDc5NHnjR1V6JjHL8sFWaCoZavDi8st6b/LVNLF0+u+YcjN2tN6bGabX/+5O+p15pMNPlpW8pi3EnDwto1UA0AAAAAAAAAABzxnFYPAACATmOnCKoJP0f7hIXZGYSfoTFJAo3MzHMXFVbnqQ3DwrxSU67jy69ZHy0Hh4UNOstThU2h/aQJbCQMEQAAAAAAAAAAAAAAoI0NrYyvMUayW9MDYi57obRpu/SDr0qVinTOZTInnNb8cazdvKA7KoDjSlF9UX7sGTrb+i3SrnvU7R1OVO6oMhcMVYgIiCodAWFhAQFYW6bu0389eJ6+3He5nnKGden4v+uMiR9Lha4WDDAjWYTlJQ0Lc5sfYAgAAAAAAAAAACARFgYAQGppgmrSnKNVAUaE6bRekpn4ZsPkosLqPL8Nw8L81jRL7S2NBG5f6ixv8kiQtaCwxdBawhABAAAAAAAAAAAAAADa19IEvTxuIVF/VV7McTuk43a07PqJ2c50sNrRas8TkqQufyJRueOX54Kx+gZC68zWMxoeWsv19AduXll5Sjfu/1jtRsdtwoDqFPd8Z/H8e16yunZ+nQAAAAAAAAAAwBGtNakkAAB0sCzCtWyzOK9zNgyq2VoVUoY5Se79bI2J+OtbRQkbVZqo7Jdact3RcnBY2JA73OSRIGtpPoMJQwQAAAAAAAAAAAAAAGhjG7bG1ziF/MfR7k46J77GcaWjuRdw/IAkyZKfqNzxy5I7/WyZrh7p9GcEF559aRajaylTKCYv7ugQrMZ7cM1JZycr5HMJAAAAAAAAAAC0yFH8E0EAAOpjZxIWtvgcUSFQebJFmE6rJbn3s6FuxhhZIffM8yuZjisLJX+qSVeqbfIaLe0JrBpyE8xGirZmpfisJAwRAAAAAAAAAAAAAACgfRmTINzHJZRHG06Ir3ELknUU98rsvD5VuaOKzLzXy7zxr6SV6+cKjJH5nx+UWbUhqxG21qaTktV1clhYFs//069MVtfJrxMAAAAAAAAAAOhoTqsHAABAp0kTVBPGNov/CE7U+JQDK4PwMzTGJJjRbn6NbezAYLC2DAvzSi257t7ySOD2QYewsE6XJrCRMEQAAAAAAAAAAAAAAIA2t2m79MDPwvc7hIWp2B1f47hHd1hYktdoHtt4NevmmM3SJ38q3f5dad9u6bQLZYaPyXKErbVhq/TAnfF1nRyClUUPbiHhc0SIIQAAAAAAAAAAaBHCwgAASCmLcK2gAJskgVF5sAjTaTlj4pu05j8fYYF1FbVhWJg/FbjdMY7KfjmXa5b9kg6URwP3DbrDuVwTzZMmsJEwRAAAAAAAAAAAAAAAgDb38N3R+wnlkbr742tsV2pRD2JbuP27qcrdBWFhkmS6eqSzL81qRO2lFNzHt4jdzr9eEvd8Z/D89y9NVtfWrxMAAAAAAAAAADiSHcXTBwEAUJ+goK/U5zCLGwXSBOBkyU4QVIV8WQmaVOYHioUFIHn+4gamVgsLC3NNtk18/rzl/eW98mu2zBlyCAvrdGkCwAhDBAAAAAAAAAAAAAAAaHOVmAkHHbc542hjxnGk3iXRRY4rWUdxL+DwMdXFy8b+LbbcCQgLO5KZM56ZrLCT328ZPP8m6ddPiCEAAAAAAAAAAGiRo/gnggAA1CdNUE0YO+AcxrRmVr8svh40xiQJC5tXE/T8SJKnSmZjykrZLwVud00xt2vuLe0O3TfoLs/tumiONAFghCECAAAAAAAAAAAAAAC0uee9Ono/oTySJPOmD0cXuAXpaO6V2bituvjGPX8SW+5YwZNRHrHOuSxZXSeHhWXVg7v93PiaTn6dAAAAAAAAAABARzuKfyIIAEB9sgifsY2zaFuSwKg8pAneQT5MgmfKzPtrW9g9q/jtFxZW8qYCt7tWfs0ye0sjgdu7rV51Wd25XRfNkeYz2PDtDgAAAAAAAAAAAAAAQHsr9kTvdwgLkyQNrYze77gxYUlHeDhWca4vrNubiC0/6sLCign75to5BCs2DCyjHtxlq+Jr+FwCAAAAAAAAAAAtwm/PAwCQUhbhWlbAH8GtCrWxDWFhrZYkKM6a1+hihYQlee0YFuaXArc7JutmmbnmrdHy7sCKIXc442uiFayEn1mWbJmsZosEAAAAAAAAAAAAAABALsza46ILCsXmDKTdrdkYvd92JDuir8bzsh1PmzGX/3p1eVPpwdh652hrKxpckayuncPC4lgZ3dTJw/E1nfw6AQAAAAAAAACAjkZYGAAAKSUNqoliG2fRtiSBUXkIC55C8yS59/NrwgLePLVfQ1fZnwrc7pr8mmVGS8FhYYPO8tyuieZJGthIECIAAAAAAAAAAAAAAEAHOO+K6P3F7uaMo82ZZauiCxxXciMmcKyUsx1Qu9mwtbo4XAnuH5vPsdqv1y5PJurZmM/u4BCsjCaWNBdcHV+U9PUEAAAAAAAAAADIGOkgAACklEUATdA5TItCu5IG7yA/Se69mffXtrB7VvErmY0pK1OhYWH5NcvsLY8Ebh90CQs7EiT9DLb4VgcAAAAAAAAAAAAAAKDtmeWrowsIC5szENH/5BamA8PCHOFhYcYYmY/cmrjeORpbiy5/cXxN1DPU9jKasPfk8+JrOvp1AgAAAAAAAAAAnexo/DEXAAANySKAxjZOwHkzalRIKYvwMzQmyb0382qskHvmtWFYWNkrBW53rWzDwnz51eXRUvDMkEPOcKbXRGtYCYMVw94nAAAAAAAAAAAAAAAA6CCEhc1Zuix8n+NKTkRP1hEeFiZJGj4mcelRGRbWNxBfY7dxz5WJ6bO0MrqpST5z7MU9wAAAAAAAAAAAAM1wNP6YCwCAhmQRQGNr8TlMi8LCrICxoLlMgr+SmXmNLnZIfUXtFxZW8qcCt7sm27Cw+UbLI4HbB92ImTXRMZIGNhKECAAAAAAAAAAAAAAA0BnMjX8Qvm/T9iaOpM09/IvwfY4ruUd5WNjSuckkP/7oyyJLHcuP3H8kMpt3xBc5bv4DyUtcmFhScaFzjlvTzwkAAAAAAAAAANBMhIUBAJBSUNBX6nMEhNgY05o/lq0WXRdzkgTFzQ8UCwus83wvszFlwfd9lfxS4D7X5NNUdLhySIe9Q4H7hhzCwo4ESQMbCUIEAAAAAAAAAAAA0AzGmE3GmOuNMe81xnzTGHPAGOPP+++hBs7tN/jfsZl9oQCQp+e8KnzfJdc1bxztbtNJ4ftsNzro6SgICzPWXI/dlWNfiax1jsa2yadfGV9DWJhM3GsQFcoHAAAAAAAAAACQs6Pxx1wAADQkaVBNFNs4i7YlCYzKQ1BwGZorySxz1rznIzQsTJXMxpQFTxX5Cg4wc022DTO+Pz3T42h5d2jNoDscug+dI2kIGEGIAAAAAAAAAAAAAPJijHmGMearxpg9ku6X9PeS3iDpIkn9LR0cAHQgMzgs83/+q3Zjd6/Mh74rs35LawbVjjZsDd/nuJIT0ZP1/9m783DJrrpe3J+1q04P6e70nAlCEkKCkESmACIqiKgggoCACCh4nQAFnO69zvycxevwu15UFBTBCQWDAgp4AZFJFBGRUTJA5jkd0un0cIZ9/+gmOX26dlWd0zV11fs+z3ly9lprr/U9u6rr7Dy9+rMXJ2tv2dCcflaSZOvSHTnr0JWNw9ozuG2ybOvjYZuTHBbWa5/lAPeLle/9+ebO/fsGtg4AAAAAAMBqHZtUAgB0NYgAmk4BXeMKC+s3eIfhKX3kt5Zl77tWw2u2WE/Whq75er6xr10NZ1PRnvmbO7aXlGxr7xjKmoxWvwGHlVxkAAAAAAAAYHgenOQbxl0EwDQp9/vylPcfHHcZk+3e92vu6xXytNC8l2uq3Hrj3d+ed+jSXLnurI7D2rO6tejU+yQ3XtXc35rgsLBe+nhoa99O2jS4uQAAAAAAAAZIWBgArFJTUNPq5jj2V3AZ4FPNVqPqM3iH4eknKG75mKbAuqVJCwtbat68N1e6PMXyONy2cEvH9q3tHWkVt77ToN8QsH5DxQAAAAAAAAAG6GCSa5KcO4S5/yXJs1d5zjVDqAOAMSmPe0bqP3nFsR0PuDilOrynpm46eWlpaHVNlEMH7v72nzZ9TeOwmQ0LO7Cve3+v0LlJNsiwsAc8fHBzAQAAAAAADNCs/jUXAKzZIMK1OoXYVH0ERg1Dy+3A2FV9bFI5KiysIbBuKZO1oWu+bn4a5bDCwvbMdw4L297eNZT1GL1+P4MFIQIAAAAAAABDNp/kP5K8Jsn3J3lYki1JvmdI6x2o6/oLq/xaGFItAIzDuRclj/yGo9uqKuXZP9z73Hqy9paNwjPv+OvGvnZrPPs1x63ne+WEDgsb4F7YL7t4cHMBAAAAAAAMUHvcBQDAiaYpqGlVc3QIsSljCu0SqDN+/bz2ZdlGlk5hc0myWC8OrKZBmK8PNfatq4YTFnbbws0d27fPCQubFk3v/5UG8VkNAAAAAAAA0OB1SV5V1/WBlR2ljweGAcBalFKSX35T8ue/kfrf3pPsPDXlCc9LedQTe5+8NFl7y4bmlHsnN12TJHnAwc82DmvP6taihz62e397gv95Sa97rAHeg5VWK/XAZgMAAAAAABicCf7bHACYTK0BPH2sU9hNNcinmq2CsLDxK+m9SWX5mKbXbCmTtaFrfmm+sa9dBhsWVh/ZmrNnvnNY2I727oGux/j0GwI2iM9qAAAAAAAAgE7qut4z7hoAmE1l3frkBT+Z8oKfXN2JS0vDKWjSPPhrkn/48yRJ3WVfXqs1o+GeJ23u3n/DVaOpYxgGHdj6qCcm//z2Y9vvdd/BrgMAAAAAALAK/gU9AKxSGcCvz1aHvM5+AqOGodVn8A7DU/oINaqWh4U1vAeX6skKC1uoDzX2zZW5oax528ItHdu3z+0aynqMXr/Biv2GigEAAAAAAAAAwNRbmqy9ZcNSHveMu7/fWO9vHNduz2hY2H3u373/YPM1m3gDfrjk8vfSUR73zIGuAwAAAAAAsBrCwgBglcoAnj7WKseG2IwrLKzf4B2Gp5/XfnlIXaf3T5Is1pP19Mf5er6xb66sG/h6S/VSbp+/tWPf9rawsGnRFJZ3zLiGPycAAAAAAAAAADBzliZrb9nQPPzxd3/7iP0faRy2VA3nYZeTrlRVyo/+n+YBiwujK2bVeuyzHMDe3qN8zVOTCx91dNsZ56Q89fsGuw4AAAAAAMAqtMddAADMolY59ldwGVNoVxWBOuPWV1jYso0sTa/ZUibr6Y/z9aGO7VVaQwhyqrN38fYspvNmpR1zuwe8HuPSFJa31nEAAAAAAAAAADD1liZrb9mwlHXrU2/eltx5ezbUBxvHLVTrR1jVZClP/b7Uv/GSzp2LJ/D7ZMBhYeWkzclvvC1555+m/vRHUu57QfINz0nZedpA1wEAAAAAAFgNYWEAMAadQmz6CYwaBoE641f1ERRXcs+YptdsqZ6sjTrzS53DwubKcJ7KeNv8LY19O9rCwqZFv0FzVcYTwAgAAAAAAAAwJPcppbw2ySOSnJFkU5I9SW5J8rEk70vyprqubxtfiQBMrBkJC0uSbN2R3Hl7diw2/0o8de7OERZ0Alns/LDOE8IQHthbTtqcPO2FKU974cDnBgAAAAAAWAv/gh4AxqDVIa+zjOnXcr/BOwxPP0Fxy8c0hYstZrI2dM3X8x3b56p1Q1lvz0LnsLC5si6bWluGsiajV6XPsDCfbQAAAAAAAMB0OSfJC5I8MMm2JHNJTjly/Nwkv5/kqlLKb5VSNo+rSAAm1NLSuCsYnYd9bZLk7Pkrc+6hy4/p3rFwax62+YZRV3ViOJFD5cp4HtgLAAAAAAAwSsLCAGAMWh1CbKoxbVSo3A6MXT9hYcvfH01hSUv1ZG3oWqgPdWyfK4MPC6uT7Jm/uWPf9vauFBuBpkarzydAtvoMFQMAAAAAAACYIpuS/FCSj5ZSLhjGAqWUU0opF6zmK8m5w6gFgFU4kUOgVql8188c/m+S373+JTlpad/dfXP1obzm+helNXfsA19Jsrgw7gqa9doDaI8gAAAAAAAwA/wtFwCMQasc+yu4n8CoYegUXMZolT4C25aPaXrNlurJ2tA1X893bB9GWFiS3LbQOSxsx9zuoazHeDSF5R0zzmcbAAAAAAAAMB0WknwgybuS/GeSa5LsTbI5yX2SfHWS70xyyrJzzk/yrlLKV9R1feWA63lxkpcPeE4Ahq2ux13ByJRdp+dLP+3X3fXe/OcVD8s7N31DFko733jnP+R+81ck7R8ba40Ta5LDwnrp8yGUAAAAAAAAJzJhYQAwBlWHTQn9BEYNg0Cd8St9PNFueZhcU1jSYiYtLOxQx/Z2mRvKenvmb+nYvn1u11DWYzz6/czq9DkLAAAAAAAAcIL56SSvruv6pob+/0jyllLKz+RwgNf/TO7eYHBakktKKRfX9QwlxADMurPun1z5X8e2P3d2w7HOnr8q33/7a45ubA9nD9sJY+vO5Iu3HtNcnvbCMRQzIH3swwQAAAAAADjR+Rf0ADAGrQ55ncvDoEap1RA8xehUfdySLQ8UawpBWqonKyxsYWm+Y/tctW4I7/Y6ty00hIW1hYVNk1afYWE+2wAAAAAAAIATXV3Xv9QlKGz5uAN1Xf9Ekpes6Hpokm8fSnEATKTyzJW/Co60f+NzR1zJZCut2Q4LK8962bGNVZU89umjL6ZfvcLAhIUBAAAAAAAzQFgYAIxYleqo4Kcv6dQ2Ck3BU4xOP0FxZdltW1NY0lKWBlbTIByqD3ZsnyvD2Wi1Z/7mju075nYPZT3Go/T5vzBVn6FiAAAAAAAAANOiruvfSfKWFc0vHvAyv5vkwlV+fcuAawCgyZO+K1kRDFZ+5H+nnPPAMRU0Jk/4ju797dkOC8u3vSx59JPuOW61Un7mj1N2nT6+mo6XvbAAAAAAAMAMaI+7AACYNa3S+ddvvwE4g1ZFoM649RMUtzxQrOk1W6wXB1bTICzU8x3b20MIC5tfms/exS927NvRFhY2TZrC8lby2QYAAAAAAADMqF9J8pRlx19RStlW1/Xtg5i8ruubkty0mnPG9QA9gFlU2u3kp/4wef5PJF/4THLBI1N2nDruskZvZ4+fuT3b/4yirN+Q/MpfH36PXHt5ctFXpmzdOe6yjo/7DQAAAAAAYAbM9t9yAcAYNAXdVBnPRoV+g3cYnn6C4qplT72rGl6zpQkLC5uvD3VsX1etH/haexZuaezbPrdr4OsxPlWfwYotT4oEAAAAAAAAZtO/JtmTZPuR41aSByb50NgqAmCkSinJmecd/ppR5dQzU3cb0B78Ay9PNKWU5JwHHv6aBsLCAAAAAACAGeBf0APAiLUasjrLmIJtmoKnGJ3SR1Dc8jFNIUhLmbCwsKX5ju3tMviNVrfN39zYt70tLGya9PuZ5bMNAAAAAAAAmEV1XS8luWpF8+5x1AIAY/OV39S9X1jYCaf0CgPzcEkAAAAAAGAG+BsRABix7XM7O7b3Exg1DJXbgbHruYklR78/qnQOQVqslwZW0yAs1Ic6ts+VdcmA3+97Fm7p2L65dXLWVesHuhbj1Wp4/6/U9OcEAAAAAAAAYAbsX3G8cSxVAMCYlFPvk1z4Fc0DWp0f+soJrI99mAAAAAAAACc66SAAMGIP2tx5A8q4wsJaRaDOuPUT2FaWjakaXrOlenFgNQ3CfD3fsX2uDP6pjPuX9nVs397eNfC1GK+m9/9KPtsAAAAAAACAGbbyL8s7P4ELAKZY+Zpvae5sDX4PG2MmLAwAAAAAAJgBHokDACNSpZVHbX1cnrDzmR37SxlPhmcVgTrj1k9QXFm2kaXV8JotZdLCwg51bG+XdSOrYfucsLBp0+rzs7Ia02cqAAAAAAAAwDiVUnYlue+K5uvGUQsAjNX6jc1969aPrg4Go9Xjn77YLwYAAAAAAMwAYWEAMGQP2vwV+cYdT89p68/Mhqp580k/gVHDUBVhYeNW0nuTyvL3R1MI0mI9YWFhS53Dwuaq0T2VcUd798jWYjT6DTgUhAgAAAAAAADMqGcnR21EuDHJZ8ZUCwCMT7ewsG59TKZ2j32HZTx7cAEAAAAAAEZJWBgADNk5G87P2RvP7zmuGlNYWMvT1Mau9LFJpVq2j7cp4G0pSwOraRDm6/mO7XNl3chq2D63a2RrMRpNYXkrtQQhAgAAAAAAADOmlHJqkp9e0fzWuq7rcdQDAGPVNSxsw+jqYDDmeuw7FBYGAAAAAADMAOkgADAhyph+LVcRqDNupY+guOWBYq2G12ypXhxYTYOwUB/q2D7SsLD27pGtxWj0+5nlsw0AAAAAAAA4UZVS7l9KefIqzzktyduSnLqs+VCSXxlkbQBwwljXJRBsXZcgMSZTW1gYAAAAAABAe9wFAACHlTFtVKiKQJ1x6ycobvmYptdsccLCwubr+Y7tc2Wur4C0Qdgxt2sk6zA6/X5mVUUuMgAAAAAAADA8pZR7p/MezNNWHLdLKWc3THNnXde3dGg/PclbSimfSPKnSd5c1/WlDXVsSfL8JD+do4PCkuQX67q+omFtAJhu5z+4c3urlZx74Whr4fjNdQkLq6qx7cEFAAAAAAAYJWFhADAh+gmMGoZWhIWNW9XHJpXl4VpVw3tlKRMWFrZ0qGN7u+rxhL8B2t4WFjZtWn2GgDX9OQEAAAAAAAAYkA8kOauPcfdK8vmGvtcleUGXcy9K8ookryilfDHJJ5PckmRvks1JzkzyoHTeC/oHdV3/Qh/1AcBUKqedlfpRT0z++e1HdzzuWSkn7xhPUaxdu8u+w6Wl0dUBAAAAAAAwRsLCAGBCLA+DGqWqz+Adhqef1375U+9apXPA21I9WRte5uvOYWFzZW4ktVapsrW9fejrMFpVnwGHVcOfEwAAAAAAAIAT1NYkj+5j3L4kP1zX9auHXA8ATLzyC29I/fs/nXz4HUmrnXzVk1O++2fHXRZrMTe6h5QCAAAAAABMKmFhADAhqjKusDCBOuNW0juwrVo2puk1W8ziwGoahPl6vmP7XFmXg/WBoa+/rb3T+3sK9fuaNoXqAQAAAAAAAJwAPpPkl5M8JslDk2zs45zPJfnjJK+u6/qW4ZUGACeOsn5Dykt/PXnpr4+7FI6XsDAAAAAAAABhYQAwKfoJjBqGVgTqjFvpIyiu5J4xVcNrtlRPVljYQn2oY3u7zOVghh8Wtn1u19DXYPT6/cxq+nMCAAAAAAAAMAh1XZ89xLlvTPJTSVJKqZKcl+TcJPdKsi3JhiT7k+xJcn2Sj9R1ffOw6gEAGDthYQAAAAAAAMLCAGBSLA+DGqWqCNQZt36C4g7v/T2sVTqPX6qXBlbTIMwvzXdsX1etz77FvUNff0d799DXYPSqhvf/WscBAAAAAAAATLK6rpeS/NeRLwCA2SQsDAAAAAAAQFgYAEyKUsYUFtZHUBXD1U9Q3PIxVToHvC3U87lj4faB1XU86ixlMQsd+9plbiQ1bJ8TFjaN+g04bDX8OQEAAAAAAAAAAOAE0xYWBgAAAAAAICwMACZEGUNoV5VqbCFl3KPq4zU4KiysISzpYH0gP375CwZV1tDMldFs2tne3jmSdRitfgMO+w0VAwAAAAAAAAAAYMJt3DTuCgAAAAAAAMZu9KkkAEBHy8OgRkWYzmToJyhu+ZjWCf66zZW5kayzY273SNZhtPp9/5/of04AAAAAAAAAAAA44tyLmvta7dHVAQAAAAAAMEbCwgBgQlRl9L+WWxGmMwn6CYqryj1jqhP8Fm6uWjeSdba3hYVNo37C9ZIT/88JAAAAAAAAAAAAh5X2XMoP/lrnvtd+ZMTVAAAAAAAAjIdHqMyQUsrGJA9OrtH0bgAAIABJREFU8oAk25NsSHJHkpuS/HuSy+q6rgewzlySRye5T5LTk9yZ5LokH6vr+gvHOz/AJHjmKd+TN970mr7GXnzyV/c1bmt7R1ppZzELHfvbpZ2FunNfJ5taW7JvcW/XMTvmTul7Poann6C45YFiu+ZOHWY5Q9Uu7Wxt78jOHu+9k1vbc8finuNaZ9e6E/c60awqVXa0d+e2hZu7juv1HgMAAAAAAAAAAODEUb7tZcnZD0j9Y0++p+0vP5tyxjljrAoAAAAAAGB0eidTcMIrpTyqlPKXSW5P8qEkf5jk15P8YpLfTvKGJJ9LcnUp5edKKTvWuM7uUsrvJrkhyT8meV2SX03yyiSXJPl8KeWDpZRvPd6fCWDcLtr08MyVdT3Hnb3hvOyY293XnBuqjXngpod07KtS5XmnvSStVeR8Pnnnc3LK3Bldxzxsy6P7no/hqdLqOaYsu23bte60nLn+vsMsaWgu2HRxNlQbc+7GB+Tk1raOY7a3d+Xpp7zguNZ58OZHZUO18bjmYHI9tMdn17b2zpyz8f4jqgYAAAAAAAAAAIBRKI/8hlTvP3j3l6AwAAAAAABglggLm2KllHYp5ZVJPpjkWUl6pdrcK8nPJvl0KeUJq1zriUk+meRFSbqFjX1lkjeVUv60lLJpNWsATJJd607Ni+71U9nRPhwEtrm1Nc8+9YX5ipMfl3aZS0nJeRsvyIvu9VOrmvcFp/9wLtx08VHhUdvaO/PdZ/z3POLkx+R77/U/sq298+6+KlUeuOmh+dH7/GrOWHdWksOhY9+089vy1duekJec+f/l7A3nHbPOurI+j932zXnCzmeu5cdnwKrSR1hYKUcdv/jeP5P7bXxgSkrDGZOlSpWLNj08zz/9ZUmSuWpdXnbmL+Re688+atyZ6++bl535C3nEyY/JBZsetqZ1HrT5K/Kc0148iLKZUN+y+3l59Nav7xjaeOb6++aHzvyFtEr/4YoAAAAAAAAAAAAAAAAAAAAwyUpd1+OugSEohxNF/irJMzp0fzbJZ5LsT7I7ycVJtq8YcyjJt9R1/Y4+1npsknfm6DCyOsm/J7kiybYkD0mya8Wpb03y1Lqul3qtMUyllAtyOOgsSfLJT34yF1xwwRgrAk4kdV3njsXbs6W1NVU5nMF5aOlgFur5nNTavOZ59y/eldsXbs1cWZedc6ccFRRV13VuW7gph5YOZVt7Rza27sle3LvwxZzU2pzWivCpOxfuyN7FLyZJSkp2rTs17TK35voYrPfc9pa86eY/auwvqfI797+kY9++xb25Y+H2YZU2MNvndmVDtbFj3x0Lt2ff4t5sbm3Jlva2u9svu+tT+c2ruwfu/bfTf/SowLFu6zB95pcO5Zb5G+8+XvkeAgAAAACAWfSpT30qF1544fKmC+u6/tS46gEAe/QAAAAAAAAAgGkw7v157VEtxMh9T44NCntfkh+o6/qTyxtLKe0k35Hkt5JsPdK8LsnrSinn13X9xaZFSin3TnJJjg4K+2CS763r+jPLxq1P8v1Jfj3Jl9JpnpzkF5P85Op+NIDJUUrJ1vbReYvrqvVZl/XHNe/G1knZ2Dqpcc2dc6d27NvS3tqxfXP75Gxun3xcNTE81Ypwt5VKSmPfptaWbGptGXRJI3Vye1tO7hDw1Ou6JMnp68/M6evPHEZZnADmqnVefwAAAAAAAAAAAAAAAAAAAKZeNe4CGJqVAVzvS/L4lUFhSVLX9UJd169N8vgkB5d1nZLkhT3W+bkky1NyPnRknc8sH1TX9cG6rn87ybNWnP8jpZSzeqwBAFOtVyhWVZrDwqZZld5hYcXtLAAAAAAAAAAAAAAAAAAAADDlpCtMoVLKRUnOXtH80rqu57udV9f1vyV59YrmJ3dZ57wkz1/WdCjJC+q6PtBljb9J8rplTeuTvLxbXQAw7Vo9QrFmNRCr1SNELUlKZjNIDQAAAAAAAAAAAAAAAAAAAJgds5k8Mf3uu+L46rquP97nuX+74vi8LmOfkxyVbnJJXdeX9rHGK1YcP6uUsqGf4gBgGlWl+y3ZrAZi9bou/Y4BAAAAAAAAAAAAAAAAAAAAOJFJV5hOm1YcX7OKc69ecby9y9inrTh+bT8L1HX9mST/sqxpU5Jv6OdcAJhG1VHZm8ea2bCwHtclSYrbWQAAAAAAAAAAAAAAAAAAAGDKSVeYTjesON6winNXjr2t06BSymlJHrSsaSHJB1exzntXHD9xFecCwFRplR5hYWU2b9l6XZckqWY0SA0AAAAAAAAAAAAAAAAAAACYHbOZPDH9PpLk4LLjB5RSNvZ57sM6zNXJhSuO/7Ou6319rpEkH1pxfMEqzgWAqVL1Cgub0UCsKr3DwkqZzWsDAAAAAAAAAAAAAAAAAAAAzA5hYVOoruu9SV6/rGlDku/udV4ppZXkB1c0v65h+ANXHF/Wd4GHXd5jPgCYGVWPW7Je/dOqKr1/7jKj1wYAAAAAAAAAAAAAAAAAAACYHdIVptePJ/nCsuNfK6U8vmlwKWUuyR8keciy5vck+euGU+634viqVdZ35YrjnaWU7aucAwCmQqu0u/aXUkZUyWRplVbPMSWzeW0AAAAAAAAAAAAAAAAAAACA2dE9mYITVl3Xt5VSvjbJJTkcALYxyTtLKW9K8qYkn02yP8muJI9K8v1J7r9sin9N8oy6ruuGJbatOL5plfXdWUo5kGTDsuatSfasZh4AmAa9QrFmNRCrSh9hYUX2LQAAAAAAAAAAAAAAAAAAADDdhIVNsbquv1BKeWSSFyT5viQPS/KsI19Nbk3ym0n+V13X813GbV5xvH8NJe7P0WFhW9Ywx1FKKack2b3K08493nUB4HhU6R54VXr0T6teIWrJ7AapAQAAAAAAAAAAAAAAAAAAALNDWNj0ax35OpikTromalyd5GeTvKFHUFhybFjYgTXUtj/J9i5zrsWLk7x8APMAwMhUPUKxSpnNQKxe1yVJKmFhAAAAAAAAAAAAAAAAAAAAwJSrxl0Aw1NKeXSSzyT5vSSPTu/X+8wkr01yVSnle1a5XL36Ctd0DgBMnVZ6hIXNaCBW1cetanE7CwAAAAAAAAAAAAAAAAAAAEw56QpTqpTydUneleTsZc3XJvnxJA9Jsi3JuiSnJXlCktclWTgybneSV5dS/qCU0pROcueK441rKHPlOSvnBICZUJXuYWH9hGZNo1aP65IkzbcqAAAAAAAAAAAAAAAAAAAAANOhPe4CGLxSyu4kf5Fkw7LmtyZ5Xl3Xd6wYfmOSdyZ5ZynlVUnelmTnkb7vTXJ5kld0WGZSw8J+N8kbV3nOuUn+dgBrA8CatEr3MLBZDcQqfYSklczmtQEAAAAAAAAAAAAAAAAAAABmh7Cw6fQjSXYvO/5skmfVdX2g20l1XX+4lPJtSd61rPnlpZTX1nV904rhX1xxvDurUErZnGPDwm5fzRydHKlzZa29ajneZQHguFRp9ejvHZo1japSpaRKnaXGMf0EigEAAAAAAAAAAAAAAAAAAACcyKQrTKdnrjh+Ra+gsC+p6/rdSd6/rGljkmd3GHrpiuOz+i+v4/jb6rres8o5AGAqVKV7WNgsB2K1SvefXegnAAAAAAAAAAAAAAAAAAAAMO1mN3liSpVSNiU5d0Xzu1c5zbtWHD+yw5jPrDi+3yrXuO+K40+v8nwAmBqtXmFhMxyIVaX7tanczgIAAAAAAAAATLab3pf8+48mb1iX/HlJ3vukZP/1464KAAAAAAAAAE4o7XEXwMBt69B2wyrnWDl+V4cxn1xx/OWllJPqur6rzzUe3WM+AJgZvQKvSmY4LKy0krq5f5avDQAAAAAAAADAxLv095KPvPjotuv+PnnzGclTPp9sPnssZQEAAAAAAADAiaZ7MgUnots7tG1a5RybVxzfuXJAXdfXJ/nPZU3tJF+1ijUeu+L47as4FwCmSlVaXfvLDN+ytdLj2hRhYQAAAAAAAAAAE2nxUPKx/9nc/6lfGl0tAAAAAAAAAHCCm93kiSlV1/W+JHesaH7IKqd52IrjGxrGvXnF8Xf1M3kp5cuSPHJZ074k/9BfaQAwfXoGYmV2A7FagtQAAAAAAAAAAE5Mez6WLOxt7r/8NaOrBQAAAAAAAABOcNIVptN7Vxx/X78nllJOS/KUFc3vbxj+Z0kWlx0/vZRyXh/LrHxM3F/VdX2gzxIBYOpUPQKxqjK7YWG9rs0sB6kBAAAAAAAAAEy0bkFhAAAAAAAAAMCqCAubTn+54vjbSinP63VSKWV9kj9JsnlZ851J3tlpfF3XlyZ53bKmdUn+uJSyocsa35LkBcuaDiX5uV61AcA0q0r3W7Iyw7dsVY+fXVgYAAAAAAAAAMCE2nfVuCsAAAAAAAAAgKkxu8kT0+0NST6+7LgkeX0p5X+XUk7vdEIp5WuTfDjJ41d0vaKu6z1d1np5kuX9X5nkXaWUL1sx//pSykuSvHHF+b9R1/WVXeYHgKnXSqtr/ywHYrVK87UpKSlldq8NAAAAAAAAAMBE+/zreo+p6+HXAQAAAAAAAABToD3uAhi8uq6XSinPSPLBJKccaS5JXprkB0sp/5nkiiT7k+xI8pAkp3WY6u+TvKLHWteUUp6e5J1J1h1pfnSST5dSPnpkna1JHppk94rT35bkZ1b30wHA9Km6BGIlSSmzm+/a7drMcogaAAAAAAAAAMDEW39K7zEHbko2njr8WgAAAAAAAADgBCcsbErVdX1ZKeUxSf4kycXLuqokDz7y1Xh6klcn+aG6ruf7WOu9pZSnJfnj3BMIVo6se3HDaX+R5Hvrul7sNT8ATLsqPcLCZjgUq9u1KZndEDUAAAAAAAAAgIl39Zt6j3nzacnTb0w29BEsBgAAAAAAAAAzTMLCFKvr+rNJHpXk+Un+OYdDwLrZn+TPknxlXdffX9f1/lWs9fdJLkzyqiR7ugz9cJJn1HX9nLqu9/U7PwBMs1bpfks2y2Fh3a5NKbN7XQAAAAAAAAAAJtpnf6v/sZecmiwtDK8WAAAAAAAAAJgC7XEXwHDVdb2Q5PVJXl9K2Zrk4iTnJNmWZH2SvTkc7vXJJJ84Mn6ta92U5EWllJcleXSSs5KclmRfkmuTfKyu688fx48DAFOp9MhvrXqEiU2zKq3GvlkOUQMAAAAAAAAAmGiX/t7qxl/zt8l9vnU4tQAAAAAAAADAFBAWNkPquv5iknePYJ1DSf5x2OsAwLQopaRKK0tZ7Nw/w6FYVWkOC6t6hKwBAAAAAAAAADAGC3cley9d3Tkfeq6wMAAAAAAAAADoQsICAMAEaHUJxZrlsLCu16XM7nUBAAAAAAAAAJhYC/tWf87SwcHXAQAAAAAAAABTRFgYAMAEqLrclpUyu7dsXa/LDIeoAQAAAAAAAABMrI//1NrO23/9YOsAAAAAAAAAgCkyu8kTAAATpCqtxr5ZDsXqfl3cygIAAAAAAAAATJzPv35t51371sHWAQAAAAAAAABTpD3uAgAASFrCwjpqpct1KbN7XQAAAAAAAAAAxmr/9cn1/5BsOjtZvodj35XJ0sG1zbn30oGUBgAAAAAAAADTSFgYAMAEqLqEYlWpRljJZKm6hqjN7nUBAAAAAAAAABiLpfnkDeuGM/cd/zWceQEAAAAAAABgCkhYAACYAFVpvi0ry5++OmO6XZcqs3tdAAAAAAAAAADG4t2PW/u5j3lrcurXNfdf+9a1zw0AAAAAAAAAU05YGADABGiVVmNfmeFbtla6XRdhYQAAAAAAAAAAI3XzB9Z+7ub7JV/3ruTMZzSP2Xfl2ucHAAAAAAAAgCk2u8kTAAATpBKK1VHVLUStuJUFAAAAAAAAAOiqrpPbP5lcfUmy//rjn2ut2puSzWcf/n7nw5vHXft3Sb209nUAAAAAAAAAYEpJWAAAmADdQ7FmOCxMiBoAAAAAAAAAwNosHkre/63J3190+L9vvldy2avXNtfSYvKv37f2Ws5+XtLacPj7s57dPO7ffiB531OTxYNrXwsAAAAAAAAAppCwMACACdDqcltWZviWrVW6XRdhYQAAAAAAAAAAjS79neSaNy9rqA8Hft35+dXPddVfJpe/Zm11PODHkotfec/xpvt0H3/tW5P/+u21rQUAAAAAAAAAU2p2kycAACZIVVrNfTMcitXtupQuQWIAAAAAAAAAADPvitc2tP/x6ue67u1rq2H3VycP+V9J1T66ff3uHuu9bW3rAQAAAAAAAMCUkrAAADABuodizXBYWISoAQAAAAAAAACsye2f6Nz+mV9f/Vz7r11bDee9sHP7zod3P++m961tPQAAAAAAAACYUsLCAAAmQKtLKFaZ4Vu2VrcQtRm+LgAAAAAAAAAAa7Z41yrHH0hu/MfuY05+QOf2M57Uuf38l66uBgAAAAAAAACYcRIWAAAmQFWab8tKyggrmSxdr0uZ3esCAAAAAAAAADAyV72xe/8z9iRP+mRy5tPvadtwWvK0G5J1Wzufc8Y3Jid/Wfd5lxZXVycAAAAAAAAATLH2uAsAACCp0mrsKzOc79r9uggLAwAAAAAAAAAYuhve3dx38SuTddsOf//Vf726ec95fvLxn2ju/+Inku0PXt2cAAAAAAAAADClhIUBAEyAVukSilVmNxSr63WZ4RA1AAAAAAAAAICRufatzX27v3rt857xTd3Dwg7dvva5AYDVufZth78O3JBUG5LdX5Xc9zuTuZPHXRkAAAAAAHCEsDAAgAlQdQnFqjK7YWFVuoWFze51AQAAAAAAAAAYiav/Jjl0W3P/tovWPve2i5Kzvj258i869y/ctfa5AYD+fepXko//5NFtV/1l8oU/Sx73D8nclvHUBQAAAAAAHKUadwEAACRVl9uyMsO3bFVp/tmrIiwMAAAAAAAAAGCo3v+05r4LfzY5nv0bpSSP+pPm/sX9a58bAOjP/J3JJ17eue/WDydXXzLaegAAAAAAgEazmzwBADBBWqXV2FdmOBSr63VxKwsAAAAAAAAAMDxL89371+04/jWqVrLx9M59wsIAYPhu+2j33/k3f3B0tQAAAAAAAF1JWAAAmABVuoVizW5YmOsCAAAAAAAAALAG17y1e39d955j4a7u/ac9vv96umlt7NwuLAwAhm/xwPH1AwAAAAAAIyMsDABgArRKt1Cs2b1lq7pdlzK71wUAAAAAAAAAoKv527v3Lx3qPcfNH+jev/WB/dfTjbAwABijpe7d9eJoygAAAAAAAHqSsAAAMAG6h2KVEVYyWVpdbldLZve6AAAAAAAAAAB0tTTfvf/gLb3n+Oxvdu8f1J6W1kmd24WFAcDw1cLCAAAAAADgRCEsDABgArTSHBZWzfAtW9cQNWFhAAAAAAAAAACdlXb3/juv6D3H/uub+879ntXV0017Y+f2hbsGtwYA0JmwMAAAAAAAOGH02AkAAMAoVKU5EGyWQ7G6hYV1u2YAAAAAAAAAADOty56LJMnSwd5z3HlZc9/9X7q6erppNYSFHbx5cGswWy591eGv/dckpz4uedhvJxtPG3dVAKN317XJ39z72PaNpyenPzF52P+fpEdY2NKhoZQGAAAAAACsnoQFAIAJ0C0Uq5TZDQtrpct1meEQNQAAAAAAAACA47Kwv3v//N5kab5zX2kl2y4aXC1NYWGX/t7g1mB2XPr7yUdelNz+8eTgrclVb0ze9ZhkUdgNMGMW9ncOCkuS/dcnV/xR8k9PSerF7vNc+5bB1wYAAAAAAKyJsDAAgAnQPRRrdm/ZqtL8swsLAwAAAAAAAABosPPhycW/09y/dKD7+Ve9qbnv4leuraYmi12Cy+64dLBrMf0uf/WxbXs/l9z8vtHXAjBON76n95ib3pvc8V+9x/UKGQUAAAAAAEZidpMnAAAmSFW6hYXNbihW1S1ErUuQGAAAAAAAAADATDv5/OT8Fycn3btzf6/Qjxv/sblv31Vrr6uT69/Z3LfnY4NdaxgW9iV3XpHc9tHk4G3jrobbPtq5/co3jLYOgHH7tx/ob9w1f9N7zJ2XHV8tAAAAAADAQLTHXQAAAEnVJcN1lsPCWkLUAAAAAAAAACZeKaUk+e9JNixrfn1d1184znnPSfIdy5ruquv6149nTpg5rY2d2xd7hIXddWVzX72w9no6WbcjOdQQsrU0P9i1Bmn+juRD35Fc+5Zj+552fbLxtNHXNOuWFpv79l09ujoAJsG+Lr/Ll7v1X3uP+fsvTx72f5L7/+Dx1QQAAAAAABwXYWEAABOgWyhWVZqDxKZdJSwMAAAAAAAA4ETwnCS/mqQ+cnzJ8QaFJUld158vpVyU5OlfaiulXFHX9SXHOzfMjLWGhR24qblv0AFeux+dXPvWzn23fzzJcwe73qB88DnJdX/Xue/NpyfPqTv3MTwLdzT33fAPo6sDYNwW7hr8nB99SbLtwuTUxw5+bgAAAAAAoC+zmzwBADBBhGJ1VnW5Xe3WBwAAAAAAAMBolFKqJD//pcMklyZ5/gCXeEGSy4/MXZL80gDnhunXGBbWJUSkrpO7rm3urwb8rOL2pua+Wz8y2LUG5dCe5Pp3dB9z5xWjqYV7XNMQOgcwa258z3DmvfT3hjMvAAAAAADQFwkLAAAToJVuYWGze8vW6haiVmY3RA0AAAAAAABggjw+yTlJ6iNfP1HXdZcUotWp63pfkh9f1nR+KeVxg5ofpt667Z3b913VfM6hPcnC3ub++37X8dW00vkvbe7bcr/BrjUod34hqRe7j/n0ryX/+qLkitcn83eMpKyZt+/K5r71u0ZXB8C47b1sOPNe9VfDmRcAAAAAAOjL7CZPAABMkKo035bNcihW1S0szK0sAAAAAAAAwCR43rLvP1rX9ZsHvUBd15ck+eiypucOeg2YWpvP7dy+99Lmc7r1rd+VnPyA46tppZ2PaO67/DVJXQ92veNVLyX/8t29x132+8llr0o+/PzkjVuTT/z88Gubddf9XXNfaY+uDoBxWlpM/v2Hhzd/vTS8uQEAAAAAgK4kLAAATIAq3UKxZjcsrNXlunQLWAMAAAAAAABgZJ6w7Ps/HOI6X5q7JPmmIa4D02XLeZ3b936u+ZyPvKi574kfTwb94LuqlZzxzc393QKgxuGyP0j2fGz1533i5cl1bx98PRxW18mt/9Lcv7h/dLUAjNMX/nS481/26uHODwAAAAAANJKwAAAwAVqlSyjWDN+yCQQDAAAAAAAAmFyllLOS7FrW9LYhLrd87lNKKWcOcS2YHief37n9rmuShbs69x24oXP75nOTk84YTF0rnXz/5r5r/nY4a67V8dQzaT/LNOkWgJcICwNmR7ewsM33Tb59KXnqNcnXvGVt8/tdBgAAAAAAY9MedwEAACRVl7CwMuinsZ5AqjRfFwAAAAAAAADG7kFH/lsnubyu62uHtVBd19eUUi5Lcr8jTQ9OcvWw1oOpseW85r47L0+2XXRse73Uefz+6wdTUyfbvry5766hfbR0t7AvufyPkuv+7nB9G89ISpVc/461z3nrRwZXH0fr9T5ZOpQsLSaV/UjAlLv5A819d16RlJKcdK9k3faktSFZPLC6+a9/ezK/N5nbcnx1AgAAAAAAqyYsDABgAlSpGvtKZjcsrNUlRG2paWMqAAAAAAAAAKOye9n3141gvetyT1jYKSNYD058m85OSjupF47t23vpsWFhSwvJgRs7z3W/7x14eXe71zc3913/9uGt22TvZclblwWtXf/Owcy7598HMw/HOnRb7zGL+5Nq8/BrARiXxQPdw792f9U937dPSs75zuSyP1j9Om88OXnSZ5KtX7b6cwEAAAAAgDVrTqUAAGBkuoVilRm+Zau6XJc69QgrAQAAAAAAAKCD7cu+v2EE6y1fY9sI1oMTX9VONp/TuW/vpce2XfkXzXOd/oTB1NTJ+h3Jud/d3H9oz/DW7uSdjxze3LU9L0Px6Vf0HrNw5/DrABinmz/QvX/rhUcfX/w7yQN/ItlyflKtT1obDweKfWWX+4Ev+fuLeo8BAAAAAAAGqj3uAgAA6B6KVVJGWMlkqboEpQkLAwAAAAAAABi7dcu+H8WTsJavsX4E68F02HJe52CwTm3XvaN5nvZJg6upk61dQkdueHdyn2cMd/0vmd+bHLptePN/8dPJtguGN/+sOnBj7zG3/2ey8bTh1wIwLnd8bnXjq3by4F8+/NWp7wPPbD63XkgO3pqs37m6NQEAAAAAgDUbxeYcAAB6qNIlLKzM7i1bq0uIWl0vjbASAAAAAAAAADq4a9n3u0ew3vI17mocBRxty3md2zuFhe2/pnme7Q8eTD1Ndj6iue/gLcNdO0nuuiZ539OTN5483HVG8bPMormtvcf8x48n17w1WVoYfj0A47Bw5+Dm2vnw3mP2XTW49QAAAAAAgJ5mN3kCAGCCtLoEglUpI6xksnQLUatTj7ASAAAAAAAAADq4Ydn3Z41gveVr3DiC9WA6NIWF3fG5o48X9ic3va95nrkhh2h1Cwvb8/Hhrr3n48nfnJlc8+a1nX/Wc5JNfX4MLso6HLi6Tr74yd7j9nwsed9Tkg89V2AYMJ1u/cjg5tp0VnLWt3cfc+3bBrceAAAAAADQk7AwAIAJ0C0Uq8xyWFjpFha2NMJKAAAAAAAAAOjg8iP/LUnOKqXcb1gLlVLOTXJ2h7WBXrac37n9wA3J/N57jq9+U/McD37FYGvqpGol2x7Uue+yVw137fd9y+rGz52cbLsoOfVxyYN/LXnU65KnfD6591N7n3vT+9dWI832/Mfqxl/1V8n17xxOLQDj1O13+Vo86vXd+z/xs4cDGwEAAAAAgJFoj7sAAAC6h2KVMrv5rq0uP/uSDSYAAAAAAAAA4/bxJIeSzB05fkqS3xzSWssTeOaTrDIZBmbYlvOa+/Zelux4yOHvb3xP87i5LYOtqUlrw2jWWa6uk31Xru6cp1yRrN95bPvXvPme7//q5GRh77FjFvcZzLkWAAAgAElEQVSvbi166/bebfKJlyf3etLgawGYJlU7uc+zDocsNrnzimTLuaOrCQAAAAAAZpiwMACACdDqFhaWMsJKJkuV5utSR1gYAAAAAAAAwDjVdX2olPJPSb7+SNP/KKX8fl3X+wa5TillU5L/ntz9F8Xvq+v60CDXgKl20plJtS5Z6vDHZu+l94SFHbi5eY5THjOc2lYax0P1OgV6dbP1gs5BYf3OO45AtGl36PbVn3PbRwdfB8A4LS0OZ96znt09LGzf5/sLC7v5n5Mr/zy547/uaSutZMdDk/v+N4FjAAAAAADQhzH8jToAACtVXW7LZjosrEuIWp2lEVYCAAAAAAAAQIO/OPLfOsnuJL82hDV+Nckpyd1/gf7nQ1gDplfVSjY3BHBcfcnh/y4tJtf9XfMcJz9g8HV1cv4PNvftu3Lw6y0tJu/9ptWd86Bf6W/cprM7t9/8/tWtR283f2DcFQCM32rDL/t1xhO797/n65NDe7qPufbvknc/JvncK5Mb/u89X9e/I/nULyf/99FHh4gBAAAAAAAdCQsDAJgA3UKxyjiemDohWukSFlbXjX0AAAAAAAAAjMyfJ7n+yPclyQtLKT85qMlLKT+e5AdyOIwsSW6MsDBYvS3ndW6/6i8P//fWf2k+98KfScqIHnbXFLCVJB//qcGvd+uHk5s/2N/Y81+SfONHkns/ub/xOx/Rub3f9ejfTe8ddwUA43fdO4Yzb+v/sXfnYXKVdfr/70/1np3ubEAgIWEXlEUWQSSICCKLgCO4IO6jP7dxwXFGR8d1FGf8juio46AiKir7IqAghLBKCEsgYUnIQvZ97XSnt3p+f1R1urr7nFPnVJ2qU1X9fl1XXVX1rJ8qYldMPX2fZuldHcFjXr0huH/hN6V0j3//ng2ZIDEAAAAAAAAAABBo5CZPAAAAVJCgUKyUynTYsgKlAoLSnAgLAwAAAAAAAAAAAICkOee6Jf2LMkFhLnv/LTP7o5ntU+i6ZjbBzK6X9J2cdZ2kf83uCSCKuhbv9jEHZ+43PeI/t7E1/np89wr4sbHi9/HvF/S6JWnSqdJ7XOb2+qultteHX7vXJ1ilYUL4NRBO0J8bABgptj+Xf8ykUwtbu74l+Gdt0OdpX5e0ZV7+PfJ9JgMAAAAAAAAAAMLCAAAAKkHK/MPCRnIkVvD7ki5jJQAAAAAAAAAAAAAAP8656yTdrsGBYf8gaYmZXWVmh4Rdy8wONrOrJC2RdGl2LWXXvdM5d22ctQMjhl/AR/srmftdi/3nTj0r/nr8jDu8fHtJ0vLrgvtnfazwtRvGebf37Ch8TXjr3pZ0BQCQPNcT3J9qkg64pPD1p77Fv2/F76Te3d59254Nt37YcQAAAAAAAAAAjGCEhQEAAFSAwFAsN3JDserk/76kR3SMGgAAAAAAAAAAAABUnMslzdfgwLBWSV+Q9JKZrTazW8zsO2Z2pZl9NHv7opl928xuNrNVkl7OzmkbstbTkt6XwOsCakNQwEf7cmnpL/37xx8Zfz1+zIL7194T314rrpd2vODf39gqTb+08PWnX+bT4aR0nkAXhLfz5aQrAIDK0Nvp32cp6eRfSfUtha//uv8I7r9hjDT0vOvuldK9J4ff44kiQjoBAAAAAAAAABgB6pMuAAAAAFJdQIarG8GhWISoAQAAAAAAAAAAAEB1cM61m9mZkq6VdJG098vu/uSf/SRdmL35yU0Jyp1/u6QrnHPtsRUMjDT1o/z75v2jf9+0i/IHeJXT3POld/fGs9ZL/x3cf/F6KdVQ+PoNY/37Nj4kTT2z8LUxYNmvk64AACpDX0BY2LmLpPGHF7f+2FnSIZ+UlvyP/5itT0ltJww8f/UP0fZY+n/SSb8orD4AAAAAAAAAAEYA/1QKAAAAlE1QKFZaIzcUK0WIGgAAAAAAAAAAAABUDefcLufcJZK+IKlTmaAvl3NTts3rpiFjTdIeSV9yzl3knNtZrtcB1KTmKf596+8rbF4SXF9M6zhp21P+/Yd8origMCn4vdv6dHFrYwDvJQBk9Prk6s76SPFBYf3GHxHcv/LGwc+3BnzW+unaEn0OAAAAAAAAAAAjBGFhAAAAFSAl/7CwkRyKZQFXph3J7wsAAAAAAAAAAAAAVDLn3P+TNF3SdyRt1+BQMOdzyx2zPTt3unPuP8tdP1CT9jmmsHn7nRtvHWG87jul3yPdLbmAC/jF8brHBQSz+AW6ILqgsDsAGEn8QrYaW+PbY99zgvuHhoP1dkTf4+aJ0q6l0ecBAAAAAAAAADACEBYGAABQAeosICzMEYrlxQUd2AQAAAAAAAAAAAAAJMo5t8U592+Spkp6k6R/k/QXSQslrZXUlb2ty7b9VdLXJJ0uaV/n3L855zYnUTtQkywljT00+rz9z4u/lnyOuLL0e+xe6d835Uxpv7cXv4eZf0DLwm8Wvz6kNX9OugIAqBzdW73bm9ri22PsLGnGe/37Nzww+Pnauwrb586DpZ6dhc0FAAAAAAAAAKCG1SddAAAAAKSU+We4OhGK5cWJEDUAAAAAAAAAAAAAqHTOuR5Jj2RvAJI05Qxp1+Lw4w/9dCbwqtxSDcH9neullqnF7bHqJv++1/8kvtc98RRprU+gVV+3VNcYzz4j1Su/SLoCAKgcfmFhfsGVhZr1YWnF7/37d6+SRh9Q/D7r7pUOfGfx6wAAAAAAAAAAUEP8UykAAABQNnWq8+0jFMtbmvcFAAAAAAAAAAAAAAAgvK5N0caPiiHoo1AHXOzft+xXUpdPIEpYXVv8+1r2LW7tXHXN/n2dq+PbZ6Rac2fSFQBA5fD7bGxqi3ef1uOD+7cvGHhcP8Z7zPgj8+/z7JfD1wQAAAAAAAAAwAhBWBgAAEAFSFlAWJgjFMuLc+mkSwAAAAAAAAAAAAAAAKgerSdEGz/tgtLUEcbR3/DvW/AV6eY26a6jpD2bC1t/xe/8+xrHF7aml2nv8O/r7YxvHww35uCkKwCA8unrlnp3efc1tsa7V8O44P6550vpnsxndG+795gjrsy/T+ea6LUBAAAAAAAAAFDjCAsDAACoAEFhYWkRiuXFiRA1AAAAAAAAAAAAAACA0Ma/Jtr4cYeVpo4wJhyVf8yORdIj74y+9rZnpT0bvPv2PSf6ekGmne/ft/SaePfCEJy5AjCCdAWEZzbFHBYmSZfkCetc8FXpsXf794+ZKZ31SPAafXui1wUAAAAAAAAAQI0jLAwAAKAC1AX8tYxQLG+OA30AAAAAAAAAAAAAAADhpRrDj23Zr3R1hNU8Nf+YjXOlzvXR1l11i3/fqGnR1sqnrsW/b82d8e6FwdqXJV0BAJTPlnn+fY1t8e/X1CYd/HH//pd/JK3/m39/XYs06VTp1D/FXxsAAAAAAAAAADWMsDAAAIAKkLI63z7nCMXyQogaAAAAAAAAAAAAAABABJNODT923GGlqyO0kGdDlvxc6t4Wftn25f59Yw8Nv04YqQb/vvpR8e6FvXospcVj2vTMhH318piJ6jGOzAOocX2d/n3Nk0uz5z7H+Pelu4LnjpmVua+Iv28AAAAAAAAAAFA96pMuAAAAAFJKAWFhhGJ5co73BQAAAAAAAAAAAAAAILSGMeHHzri8dHWEddD7pRd/kH/cwm9IC78pHfN96cgrg8c6J634nX//ARdHqzGM5qnSnvXD27c/H/9e0EtjJ+l/Z52orrqBY/JNfb366NJ5OnLXpgQrA4AS2vSwf1+qRL82NP1S6cmPR5+3/wVSU2vm8YTXBo91aYnARwAAAAAAAAAA9uJfzQEAACpAnREWFlVa6aRLAAAAAAAAAAAAAAAAqC7v6gg3btYHS1tHGId+KsJgJz37JWnjQ8HDVlzv39d2kjR2VoQ9Qzrme/59fV3x7zeC7UnV62cHDw4Kk6Suunr9/OCT1FHHdbYB1KB0n7TkZ959Yw8p3b6NE6STfxN93qk5n8Vm0huu8x+7+rbo6wMAAAAAAAAAUMMICwMAAKgAqYArnzlCsTwRogYAAAAAAAAAAAAAABBRfYt04KVJVxFO3ajoc9b8OU//nf59U8+Kvl8Y9aP9+zY9Upo9R6iXx05UT8o7EKw3VafFYyaWuSIAKIOtT/r31Y8t7d4TT442fsblwz8XR8/wH7/i95FLAgAAAAAAAACgllVVWJiZPZC93W9mk4tYZ0ruWnHWCAAAUIiU6nz70o5QLC+O9wUAAAAAAAAAAAAAACC6fY4J7g8KtyqnpjapZf9oc179g5Tu8e/fs86/r/XYaHuFFfR+dwbUg2AeZ4d2NDQHTmlvaCpVNQCQnKDPklJ9tvULCvryMmq/4W0TjvIfv3NxtPUBAAAAAAAAAKhxVRUWJmm2pNOz98Hf5gZrzq7RfwMAAEhUyvz/WjaufkIZK6keU5umJV0CAAAAAAAAAAAAAABA9Zl+qdTY6t//xhvLV0sQM+nQT0ab07FaevBcqXe3d//Gh/znTj0r2l5hjT3Yv69vT2n2HAnS3cOaulP+F2yUpLSsVNUAQHL6Ov37Zn6otHvXNUr1Y8KP96qncR/J6r3H71gouXRhtQEAAAAAAAAAUIOqLSxMEt/SAgCA2nRQ82HD2kwpnTRudvmLqSBvmvA2z/Zz2y4tcyUAAAAAAAAAAAAAAAA1YMxB0lselPY7b3jfG66T9vM+q5GII78sHX+11HZi+Dnr/yYt/knEff5ZahgbbU4Uow/ybg8KeEEwj/euuy44LMxxCh1ALQr6LJl0Sun3P/7q8GNbpnq3vyUgzHPNXdHqAQAAAAAAAACghlVjWBgAAEBNekvrhbIhfz1744S3alRdhKuu1aA3jn+rWlKjBrUd3HKkZrYMD1cDAAAAAAAAAAAAAABACBOOlmbfKb3HDb4ddHnSlQ1mJh32aensJ6TzXg4/b929w9s61vqPHz0jcmmRNLV6t/ftKe2+taxn57Cm7lR94BTHNasB1CK/z5JxR5Rn/4YIZ1zrWrzbxx/uP2fbs9HqAQAAAAAAAACghgV/I1q7cl93b2JVAAAA5Dh27Cn6/6Z9VX/f8YB29+3S0WNO0OkTzk26rMRNaz5InzvgO5q7/W5t6F6rQ0YdqbNaL1a9NSRdGgAAAAAAAAAAAAAAAMpl7CHhx3ZtGd7W7dHWr9SBKn7hKH2dpd23lrUvHdbUnaoLnEJYGICa5PdZ4vfZE7e2k8ONaz1BSvmc+2zcx39e767oNQEAAAAAAAAAUKNGaljYxJzHuxOrAgAAYIjXjD5Orxl9XNJlVJxpzQfpvVM/mXQZAAAAAAAAAAAAAAAASIqZdNwPpac/n3/s9gXD23oDgrlajy+8rjDqmr3bNz5U2n1r2a4lw5q68oWFkRUGoBbt2eDd7vfZE7fRB0gzPyAtu9Z/jNVJr/lyYeu/+APpmO9n/h4AAAAAAAAAAMAIN1LDwt6UvXeS1iZZCAAAAAAAAAAAAAAAAAAAAIAQDv+c1Ngm/f2K/GO7tkhNbQPP+wLCwupaiq8tiN/6G+4v7b61zCMsrCdfWJgImgFQg165xru91J9tuU68Rmp9vbT2L1LXpsF944+QZlwuTX1z8BrTL5Ne/aN33/bnpH1eF0+tAAAAAAAAAABUsWoOC3NRBptZg6R9Jb1V0ldyup6PsygAAAAAAAAAAAAAAAAAAAAAJTLz/ZmbJK26VXr4Yu9xGx+SDrho4LlfWFiqQcoTMlU01xfQl5YsVdr9a1HH6mFN3Xn+O6bJCgNQi/Z5beYzbyjXU74aUnXSoZ/M3ArVMM6/b8McwsIAAAAAAAAAAFAFhoWZWcC34QPDJK0wK/gb29yJdxS6CAAAAAAAAAAAAAAAAAAAiJ+ZHS/pIEldkl50zr2ScEkAKtGk0/z7urYMft7X4T2ublR89fhpnurf17dHqi9DDbWmd/ewpq5U8NF4J9LCANQg8wlK3PpMeeso1uTTpVd+4d3Xs7O8tQAAAAAAAAAAUKEq8TJUFnALOy7fzWXXeEnSTaV7KQAAAAAAAAAAAAAAAAAAjFxm1mxmM3NuPmkGe8dfYGYrJM2T9CdJt0l62cweMbMjy1AygGrSPNG/b95HJecGnndt9h5X1xJvTV5mfci/r9cnxAzB1t49rKk7FfgRQ1gYgNq0YY53+6yPlLeOYk17h3/fyhvKVwcAAAAAAAAAABWsEsPCpIEwr1IxSfMlneec6ynxXgAAAAAAAAAAAAAAAAAAjFRfkLQke5sjKe030MzeJekWSQdo+EVCT5H0hJkdX+qCAVSZCa/179v2zMDj1bd7jylHWFjTZP++zY+Xfv9a5PqGNfXkCwsjKwxArdm11L+vZd/y1RGH+lHS1LO8+3YsKm8tAAAAAAAAAABUqPqkC/DwkPzDwk7P3jtlrhq4J+SaTlKXpO2SXpQ0xzn3cDFFAgAAAAAAAAAAAAAAAACAvN6hTNiXk/RL55zn+UAz20fS/ypzEVSXvfXHuvTPGS3pFjM7zDkX9vwggFrX1Obft+kxqfW4zOPR073HdG+Lv6ahmlr9+9oDgl7gr65Z6hv8UdCdLyxMpIUBqDFbnvDvC/rsqVSW8u9L90l5fs4DAAAAAAAAAFDrKi4szDk326/PzNIaOPRzqXNuZVmKAgAAAAAAAAAAAAAAAAAAkZhZi6RjNHDu788Bwz8tabwGQsLWSLpFUq+kiyX1p/xMk/QZSVeVoGQA1WjqWdKGOd59fbsHHqd7vcf0bI+/pqGCAs3SPaXfvxb1Dc+M7MoXFpabFdayX8wFAUAC+rr8+6aeVb464jL2MGndX737etulxvHlrQcAAAAAAAAAgAoTcNmNisUlnQAAAAAAAAAAAAAAAAAAqHxHS6pT5tzfbufc0wFj36eBoLCXJR3lnPusc+4L2XWezI4zSR8oWcUAqs+hn/Lve/bLA4/X3eM9Zto74q3HT12zd3tfZ3n2ryU+wW/decLC0rnH0DvXxlkRACTjxR/4940+sHx1xGXmFf59j723fHUAAAAAAAAAAFChqi0s7BvZ2zclleEyXgAAAAAAAAAAAAAAAAAAoEAHZe+dpBf8BpnZ4ZIOzhn7Nefcjv5+51y7pE/nTDnMzA6IuVYA1aphrDTpVP/+dF/mvmO1d3/LvvHX5GXSG73bCQuLbut8z+aePGFhjmtWA6glzkk7X0y6ing1jPPvW3uX1Lm+fLUAAAAAAAAAAFCBqioszDn3jZzbzqTrAQAAAAAAAAAAAAAAAAAAvqbkPF4XMO607L1Japd069ABzrl5knKTfl5bdHUAasemRwP6Hpb69khjD/XuL1fwSF2Ld3vfnoHHLj0QbgZ/OxcPa+qTqTdfWNjQrLC+7hiLAoAy66nBX6lpmiRZwK85bX2qfLUAAAAAAAAAAFCBqiosDAAAAAAAAAAAAAAAAAAAVI1ROY93BYw7NXvvJN3vnOv1Gbcw5/GBxRQGoMYEBYvcf4b0pxZp1/CAKUnSqGmlqWkov7CwZb+W0r3S/M9Kt0yRbp4o/f1DUm9neeqqRuk9w5q68wSFSZLTkLSw7q1xVQQA5de7O+kK4tc4Xpr0Jv/+uedlgjUBAAAAAAAAABihCAsDAAAAAAAAAAAAAAAAAAClkJvK0hAw7pScxw8HjNuS83hcQRUBqE0zLi987qRT84+JQ12zd3vPDunuo6XFV0tdm6We7ZkAsb9fUZ66qtG254Y1hQoLsyFhYZ3r4qoIAMrv+a8lXUFpvOE3wf1PfLg8dQAAAAAAAAAAUIEICwMAAAAAAAAAAAAAAAAAAKWwK+fxFK8BZjZV0sE5TY8FrFefO7WIugDUmoYi8gPrWuKro9B9dr40vG3VrVL3jtLVU802D/+oCBMWlh7asPGheOoBgCQs+3XSFZTG6AOlmR/07192bdlKAQAAAAAAAACg0tTnH1K5zOwMSW+WdKykyZLGK/jqg16cc25W3LUBAAAAAAAAAAAAAAAAADDCrcnem6Sjfcacm/O4S9LTAetNyHm8u4i6ANSagz8qLf5xYXNHz4i1lNj2cb3ShjnSAe8oSTlVbfxR0rZnBjWFCQtzQ3MmjetuA6hSLp251aoJrw3u3/yElGrM/hw3yUxSyvt+75jsvTzacu8HrZFn7N69AQAAAAAAAAAoj6oMCzOzsyVdrcFXEyz0X9hd8RUBAAAAAAAAAAAAAAAAAIAhnst53GpmZzvn/jpkzAez907SPOdcT8B6M3Mer4+jQAA1YvxRhc+d4JdlGLNp75AW/Eu0Oemu0tRS7bq3Dm9K5T8W74aeNu/rjKkgACizlTcmXUFpTb9Mevpz/v33nly+WkLJE1gWKXwsIADNb2zsAWghQtiSek2lqKHY9cKODXwNhQbVxfF+AgAAAAAAAKgmVRcWZmZXSvpe/1MNhH0VEvrFv2oCAAAAAAAAAAAAAAAAAFACzrmlZrZEmQuDmqSfmtlbnHPLJcnMviDp1Jwpt/utZWZjNPgCo0tLUDKAamUmnXSN9MRHos076ZflC0kYf7i079ukdfeUZ79atvauYU3ddXV5p7mhR8fX3Ckd+aW4qgKA8uhcLz16WdJVlFbL1KQriMhJzklKF/abTUCihgaPxR2+VuYAtEoOyQsbKBcqWC6m1xT2/RxUU6X8Gel/DgAAAAAAMLJUVViYmZ0t6fvZpy576/9XnQ5J2yUFXVUQAAAAAAAAAAAAAAAAAACUzzXKnPtzkg6S9JKZLZA0WdIBGjgHuEfS7wLWma2B84K9khaVqF4A1WrckQXMOTz+OoJMv5SwsGK5tGdzdypEWNjQMIGO1XFUBADltdo3XxcACkDYHapc1EC5UoavJRWSV5bXFHG9sGPLGZJXcaGDhN0BAAAAAApTVWFhkr6Xve8/HLRKmUNEf3bOrUysKgAAAAAAAAAAAAAAAAAA4OVHkj4o6TBlzv41SDpe2hv81X/h0B865zYFrHNRzvgFzrmu0pQLoGqNjxgWZilp7KGlqcVXxAQGR2LDML27PZtDhYUNbYj6ZwYAKsGi7yZdAQAAlaM/TNj1JVsHUJCI4WNRw9eqISSvEl9T2EC5YkPyShHUV7bQQcLuAAAAgCRVTViYmc2S9DoNfE/7hKS3Oud2JVcVAAAAAAAAAAAAAAAAAADw45zrNrOzJf1F0hHZZtPARUNN0s2Svu63hpmNkXSJBs4P3l+yggFUr8bx0tSzpPX3hRu/33lS88TS1jRU24nRxu9ZX5o6qllvh2dzmLCwtIb8Muvau+OoCADKq2Nl0hWUx0m/kp74UNJVAAAAlJAbCLojKxxVJ2KgXKQQtgoPlCv3aypFoFyxIXmJhw5GCOrzrB0AAKC6VU1YmKQ3ZO9NUlrS+wkKAwAAAAAAAAAAAAAAAACgsjnnVpnZMZI+JOkCSdOzXS9Jut45d0ueJT4gaVzO87tiLxJAbTj9Dum+06St8/3HNLZK0y6UXv+T8tXVr25UtPFPf046/J9KU0u1al/q2dydyn8s3nn9LmDPLqlhbJFFAUCZpHuSrqB8Zn1Q2vmC9OJ/Jl0JAAAAgGEIu0M18wswSzJQrogAtEoOyQu7d6hwvJheU1Hva8J/Rgi7AwBkVVNY2OTsvZP0jHNuSZLFAAAAAAAAAAAAAAAAAACAcJxzPZL+N3uL6peSfpuz1o646gJQY+qapXOelFw68wuLVpf5JZq+bsn1DoyxVDL11UcMC5Mk5/gloFwb53o2d6fq8k518ngfN8yRpl1QbFUAUB6bn0i6gvI69geZ297PcZf5jB9675yk/nufMYPuc8fnuw+zXs66Ycd61l5MDQHz/faO7f2M8r4WuV6+9zPp1wQAAACgCuT+XT/pWoACRA2UK2X4WlIheeV4TWED5QbVVGEhebG8r3H9GenvBxCHagoLy/1f/iuJVQEAAAAAAAAAAAAAAAAAAMrGOdcpqTPpOgBUEUtpUCBYXaOkxsTK2atpUvQ5q26R9jtHqh8dfz3VyKU9m0OFhXn9Isqe9cVWBADl07km6QqSUSmf40A+ecPIYghAK0Wg3NBawgaqRQ1fK0dIXkUGylXJawIAAABQHfr/jdz1JVsHUIiogXJhA8uqKSSvlK9p//Ok1uNL9B8PlaSawsJyv9XI/20uAAAAAAAAAAAAAAAAAAAAAFQKM6ntRGnLvPBzHnmntM9x0pvvlZraSldbtdi+wLO5K0xYmFdjz87i6gGAcunrlh69LOkqAAQZ9MueQJXZGyoWV/CZRwBa2EC5UMFyRYa6RQ1fKzQkrxID5Urxfib9mgAAAABUh9y/v5NbHb+W/QgLGyGqKSxsUc7jAxKrAgAAAAAAAAAAAAAAAAAAAAAKcdS/SXPPjzZn29PSC1dJx36/NDVVk5U3ejb3jJ2Zd6qTDW9c/jvpiC8WWxUAlN6qm5KuAABQy/aG3UlS/iBeoKJ4ht3FHYAWcb2wY0OF4yUUklcxgXIR3teqDMkjJQMAAABx8fgeDDWpasLCnHPPm9lCSUdJOt7M9nHObUu6LgAAAAAAAAAAAAAAAAAAEJ2ZTZM0U1KrpLGSzDl3XbJVAUCJ1Y8pbN6LhIUNuuL8EN2W/xcg0l5jmlqLqQgAymf938KPrWspXR0AAACVhrA7VLugILQkAtAKCparkEA5v9dQCYFyYd/PqgrJI+wOAICKYqmkK0CZVE1YWNZ/Sfq1Mv+P/QuSvppsOQAAAAAAAAAAAAAAAAAAICwzmy7pc5IukDTdY8iwsDAzO03SGdmn25xzPy5dhQBQYq3HJ11B9erb49vVVdcgqS9wuuevLzaML6okACibbc+GH3vCT0tXBwAAAIB4mUlG0B2qVOgQshBhbn4BaKUIlIslWK5CQvLCjiUkz2MdAKg1+S+sg9pQVWFhzrnfmNl5ki6R9CUze9Q5d0/SdQEAAAAAAAAAAAAAAAAAAH9mlpL0LUlXKnPBUK+Tqn4n8zdL+vf+fjO72zm3tARlAkDpNYxNuoLq1dfp29U9+gCpd0XgdGceHz0BawJAxdjxksNsAmcAACAASURBVLTtmXBj9zlGmvaO0tYDAAAAAICUCbuTSZZKuhIgumFhYiUIQAsbwhYqHK/IULdYQtiqJFAu0vtapa8J8OL1PRhqUlWFhWVdIalBmasK3m5m35P0Q+fc9mTLAgAAAAAAAAAAAAAAAAAAQ5lZg6S7JJ2pTEjY0FAwp4DL3DrnXjSzOZLOyI59jzLBYwCAkWTbs75dPan8x+I9EykJCwNQDV78fnD/vmdL9aOl1uOlgz8uNU4oT10AAAAAAADVirA7VLO9QWclDEALGyhXcLBcmHC8MofkFV1DCQLlorz+5qlF/9FCdaiqsDAz+1r24QJJp0iaKOkrkj5vZo9LekHSNkmRohCdc9+Ms04AAAAAAAAAAAAAAAAAALDXLyW9RXtPvcokPSxpjqRuSd8OscbNyoSFSdJbRVgYgGqWapDSPdHnda6TWvaNv55qsWORb1eX+vJOd165lF1bi6kIAMpjw1z/vuN+KB3+ufLVAgAAAAAAACBZe8PuJKku4WIAlFtVhYVJ+ncNvqhT/6GhUZLenL0VgrAwAAAAAAAAAAAAAAAAAABiZmZnSnqfBs77vSLpPc65+dn+6QoXFnaXpJ9k1zjBzJqdc3tKUzUAlNjR/y4t+Er0eUt+Jr12BB97TvcOa3p57EQ93nagVnQvzzvdmUdY2I6FmautWyqOCgGgNHYH/IybUuiv0QAAAAAAAAAAgGpTC99q9l9psBAe3/gCAAAAAAAAAAAAAAAAAICYfD17b5JelXRKf1BYFM65VyVtzz5tkHR4POUBQAIO+URh8xZ+S1r03XhrqSZb5g16+tz4qfrxIW/QvLYDQk1P+3Vsf764ugCglDrW+veNmiZNeG35agEAAAAAAAAAAImqxrAwi/EGAAAAAAAAAAAAAAAAAABKwMxaJZ2igYuCftY5t7mIJV/IeXxoMbUBQKIa9yl87gs/kNI98dVSTVb+adDT+6YcrLSFPw7vzOf4+NJriqkKAErr1T/49514jeT3sw0AAAAAAAAAANSc+qQLiOiMpAsAAAAAAAAAAAAAAAAAAAChvFEDFzXd6Jy7o8j1coPGJhe5FgAk65BPSkv+J/q8nu3SzsXShNfEX1OlG/8aacciSZkEyuVjooWuOb+O3vaiygKAktr8d/++5onlqwMAAAAAAAAAACSuqsLCnHNzk64BAAAAAAAAAAAAAAAAAACEsm/23kmaH8N6u3Iej4lhPQBIzqwPFhYWJklbnhiZYWHpnr0P+8yUtlTA4OGczLtj3X3FVAUA8du+SHruq9LW+VLHav9xE44pX00AAAAAAAAAACBx0b4hBQAAAAAAAAAAAAAAAAAACKc15/G2GNZryXnc4zsKAKpB6/HS0d8obO4TH5baV8RaTlXYtXjvw+5UXeTpznzCwjrXSNsWFFoVAMRr9yrp/jOk1bcFB4VNPEUq4GchAAAAAAAAAACoXoSFAQAAAAAAAAAAAAAAAACAUtiZ83hsDOtNyXm8NYb1ACBZR39NOu8l6fgfR5+78ob466lkLj3oaXeqPvoSQZ3Lfxt5PQAoidW3Sl2b8o/b/+2lrwUAAAAAAAAAAFQUwsIAAAAAAAAAAAAAAAAAAEAp5KYcHFLMQmZWJ+nYnKZ1xawHABVj3GHSYZ+Sznwg2rwtT5Smnkq1Z+Ogp92pOt+hJ4w93bM9bea//rZnCyorUM8uqWtL5t4FRpUBwICnPhtuXMt+pa0DAAAAAAAAAABUnOiXVAKAWtO+XFr8E2nHC1LbSdIRX5QaxiRdFQAAkKSendJDF0sb7s88n3G59IbfSEGHNwEAAAAAAAAAAABUiuez9ybpMDOb5pxbXeBab5M0KvvYSfp7scUBQEWZdJrUNFHq2hxu/KpbpLkXZs5RNE4obW2VoK9j0NOgsLCmVLNnu1PAeZOOVQWV5al9uXTHzOHtx18tHfbp+PYBMLLt+7akKwAAAAAAAAAAAGVW9WFhZtYg6Q2STpM0S1KrpLGS5Jw7M8HSAFSD9hXSfadKndkLja77i7T2LumsR6S6pkRLAwBgxOvtkG4cP7htxW+lLX+Xzl+cTE0AAAAAAAAAAAAAQnPOvWhmayTtr0xg2BckfS7qOmaWkvSv/ctKWuCc2x5boQBQCVL10ux7pAfPlbo2hZuz5g7p4YulMx8obW2VoGfX4KcFhYUF2BXTWRSX9g4Kk6SnPiM1T5GmvyuevQCMbC1Tkq4AAAAAAAAAAACUWSrpAgplZqPN7KuSVkmaI+mbkq6QdL6kMyTN9pn3bjNblr3NN7OAS0QBqHlLfzkQFNZv63xp7T3J1AMAAAas/5t3+64lUveO8tYCAAAAAAAAAAAAoFC/z96bpE+Z2VkFrPFdSSfnPP+/oqsCgErU9nrporXS2fOkC1dIl/VI+54TPGfDHKljTVnKS9Tmvw962h0QFtaY8r5YrMt3bHzXK5HLGmbz48H9K34f3A8AYRxwSdIVAAAAAAAAAACABFRlWJiZvVbSU5K+IWmyMoeIwrpTUpukGZKOlVTIwSMAtWLRt73bX/iP8tYBAACGW32rf9/KG8pXBwAAAAAAAAAAAIBiXCVppyQnqU7S7Wb2sTATzWyimV0r6crsfElaL+lXJagTACpDql5qO0EaPT3zePpl+ee0Ly19XUP1dkjr7pOW/lra8KDUsba0+6XqBz31CwtrsEbVybvPebbm2LWkgMJytK+Q/nZ68Jg1dxS3Ry1pXy4tu1Z64fsDF/5tXyZ1rE60LKAqjJmZdAUAAAAAAAAAACAB9fmHVBYzO1LSXEnjlAkJc9n7/sCwwO9xnXPtZnajpA9lmy6RdG9pqgVQtbbMS7oCAACwfaF/34YHpYM/WrZSAAAAAAAAAAAAABTGObfVzD4j6Vplzvc1S/qZmV0p6SZJg9JlzOxESYdJequkCySN0cD5wD5JH3TOdZenegCoAPudm39Mb2fp68i16D+kBf86vH3qW6XTbpIaxsa/554Ng576hYU1pppk5n0daufTvldvR0GlqXODNPc8aev8cOM3PyFNPKmwvWpB5zrpzsOk3l0Dbc9+efCYyadLb7pNapxQ3tqAanHgPyRdAQAAAAAAAAAASEAq6QKiMLNmSX+WND6n+XlJH5Y0U9IRGjgUFOT2nMdnxlYgAAAAgPi4tH/fq9dLc86Vdr1SvnoAAAAAAAAAAAAAFMQ5d52kb2vwBUJnSfqSpP/OGWqSHlcmWOw9kvrTZvovIvovzjkuDgpgZGmelH/Mhr+Vvo5+q+/wDgqTpPX3SvM/XZp9F3xl0FO/sLAma5b5HCdP5ztm/vKPCipNj707fFCYJN17spTuK2yvWvDIuwYHhXnZOFd64iPlqQeoRm0nJF0BAAAAAAAAAABIQFWFhUn6jKQZGjj4c7Wk45xzv3bOrZC0J+Q6czRw4OggM5scc50AAAAAitU8Jbh/3T3SfW+UureVpx4AAAAAAAAAAAAABXPOfU3SBzVwzq//HGB/gFj/zTRw0dD+592SrnDO/WfZCgaASjL5TcH9WyIEVRVr9a35++MOwkr3DGvyCwtrSDXJfI7I93/waPRB3vtsXxC9tq6tmWCrqLY8EX1OLdizUdr0SLixq26W+sL+egAwgow7POkKAAAAAAAAAABAQqotLOzTGvie9jbn3D8559JRF3HOtUtakdN0RAy1AQAAAIjTuMPyj9mzIXPFWgAAAAAAAAAAAAAVzzn3G2XO6/1UmdCw/lAw0+CQsP62tKTrJB3hnPttGUsFgMoy+fTg/uZJ8e7X0y6tuVva+JDU1z24r315nrk747/wW+e6YU1+YWGN1igb9HEywFm2fbfPa2jZv4Da1kjRj7NLL18dfU4t6FgTbfzulaWpA6hmuxYnXQEAAAAAAAAAAEhIfdIFhGVmR0rq/wbWSbqyyCWXSuq/LNRMSQVc0glARXBOeuV/pTV3Sg3jpYOukPY7O8S8Ag5nAACAMnL5h0jSU/8kzbyitKUAAAAAAAAAAAAAiIVzbqWkT5nZlyS9MXs7QFKbpEZJmyVtkPSYpPudc9uTqhUAKsb0y6QX/0vq6/DuX3mj1Nsh1Y8qfq8t86UHzpJ6sj9+xx4qnTlHGrWf1LVV2hjiyHXXJql5YvG17DX8DEmPX1hYqklm3tfTdv0hYvufnzlzOtTOF6OX1tsZfY4krb+3sHnVroPwL6BoB16adAUAAAAAAAAAACAh3t+EVqZjsvdO0kLn3LIi18s9QDS+yLUAJOnpz0tPfkJae7f06h+kB8/JHHzJJ91bXD8AAIiPc9LOJVJfV05byGDPnhh+N6BzvbT+AcJEAQAAAAAAAAAAgDJxznU45+51zn3NOfdB59wFzrlznHPvc859wTl3M0FhAJA1/kjpzXnCpV64qvh9nJMevnjwWYxdi6UnP555vOBfwq2z+CfF15Krb8+wpu6U9zWzG61Jqf5QsCFcf/P0y/z3ciEvbtdv44PRxvfr3ial+wqbW82e/GTSFQDV74BLkq4AAAAAAAAAAAAkpJrCwiblPF4Sw3o5KQSK4TJaABLRvUNa/OPh7Y+8K/9clycMrLe9sJoAAEA06++Xbt1P+vOh0k0TpIXfyR68jHj4shC9u6XrTbp1X+mBM6U/1Emv/F/p9wUAAAAAAAAAAAAAAIhi0qnS0d/w7193T/F7bHlS6lg1vH3NnVK6R1obco8dLxRfS66+zmFN3ak6z6GNqSaZX1hYf3tdi/9eUWvfvtC73VLS+a8Ez936VLS9akHnmqQrAKpfPb/+AgAAAAAAAADASFVNYWHNOY+7fEeFNz7n8a4Y1gOQhNW3Ss7nympr7g6emy8srIcfDQAAlFzHGumBt0h71mee9+2RnvuqtPIGKZ3nszoOt88Y3jbvY1LH6tLvDQAAAAAAAAAAAAAAEEXbCf59W+ZlLpg25xypc11h629+1L+vt8M7SMxLe56QrKh6I4SFWZPMvI/IpyXp+Kul1tf779W1MVptDWO8211aGjMzeG7UvaqdK+DCgc9+OfNnD8CAfY5LugIAAAAAAAAAAJCQagoL25zzeGIM6+V++7olhvUAJGF3wMGTuW/PHLbw4xcy1q+3vbCaAABAeEt+5t2+/DrplZ+HX2f3yuh7u7TUtdm77/H3R18PAAAAAAAAAAAAAACglKackX/Mur9Kt+4nbV8U795hg8KkzEXaVt0S3959EcLCUk0ymWefSzVKB75TGn2A/15Rg9bW3efdXtcimUkz3uc/d8Xvo+1V7Xa+FH3O6lulG0ZL3TvirweoVi1Tkq4AAAAAAAAAAAAkpJrCwtZn703SscUsZGZtko7IaYr58lUAysbn6m97bQq4yl26N3huz67o9QAAgGgWfce7fe3d0daZe370vf2CwiRpw5zo6wEAAAAAAAAAAAAIxcwazOxNZvYVM/uVmd1mZveb2f1J1wYAFa2uWTrpl+HG3n1UARt4h2xJkp77WrSl5v2jlM5zUdewtswb1uQXFtZgAWFhY2ZILftmntSP8d7rpf8XrbZ2n2Po/SFhp/zWf+6rf4zvPaoGz3yp8LmLvhtfHUA1O/DSpCsAAAAAAAAAAAAJqqawsMckpbOP28zszUWs9SENfJu9W9L8YgoDkKBUY3D/ypv8+1yesLBewsIAAJBLS1vmS8t/J7UvS7oaf9ufk/Zsijana2tpagEAAAAAAAAAAADgycxGm9lXJa2SNEfSNyVdIel8SWdImu0z791mtix7m29mAWk2AFDjRk1LZt+oF17r2pw5zxGH7m3Dm3zCwhpTTTKfC9G6VP3AE/Oer9728HXtCbhQXe764w7zHxfXe1QNNgdcADifF6+Krw6gmjWOT7oCAAAAAAAAAACQoKoJC3PObZP0ZE7Ttwo58GNm+0v6siSXvd3nnEsHzwJQsfJ94bn6Fv8+l+dqbFEOfAAAUIv6uqSHLpL+eoL0+OXSHbOkF/8r6ar8PfvP0cb3dZSmDgAAAAAAAAAAAADDmNlrJT0l6RuSJmvggp9h3CmpTdIMScdKOivu+gCgarSdFH5szy7p5R9Lj71feum/pe7the/bU8DcF6+S+roL37NfXfPwcvzCwqxRKZ+PGOdczgI7vPdKNYWvK+g9GXf4wONJp/mPe+AtnmFoidv4iDT/M9LcCwZuc86VrrfM7U+jpA1zw6/X21n863zio9Kq24pbA6h2k96UdAUAAAAAAAAAACBBVRMWlvWjnMcnS/p5lMlmNkXSHZL20cBBox/GUxqARPR2Bvd3rPbvS/cGz+3ZFb0eAABqyZKfS2vuGNz2zBel7YvCr7FlvvT4B6T7TpMWfEXq3R1riYMs+3W08X15/h4Rx2FVAAAAAAAAAAAAADKzIyXNlXSIMmf3+tNaTCFCw5xz7ZJuzGm6JO4aAaBq5LvIaq4bx0lPfUZa8Vvp6c9lg6l8QrJK4dU/Sg9fLKV7ilunfemwpm6/sLBUk8zniLxTzvWlZ33Ye6/tC6Sw16H2CxyTpAMuHnh8+Of9x3VvlW5qrazAsBXXS/efLi3+sbTmzoHbunsGxvR1SvfPll69If96fXukuW8vvq6l10gPXyQ99/Xi1wIq1a5XgvunXVieOgAAAAAAAAAAQEWqqrAw59wfJT2bfWqSPmJmD5tZwOWWJDMbbWYfz849RpmDRk7Svc65R0tZM4ASyxfyEcTlCQvzOFwCAMCI8vKPvNuXXhNu/pb50v1nSMt/I216RFr0XWnO2VK6L74ah9qzKfzYvj3B/UEHOgEAAAAAAAAAAACEYmbNkv4sKTfd5nlJH5Y0U9IRChEYJun2nMdnxlYgAFSjKWcUNm/rU9LKGwMGhPlxPMTsu4P7194lbXw4+rq5Vvx+WJNvWJg1ycz7daT3ZlVKmniK/35b5oera81d/n1NrQOPxx+Rf60Vfwi3Z6m5tLTgX8MHpj16af4x6/4qbZjj33/6ndLk08PtJ2XOIJUz9A4oJ78ze5J02GelhjHlqwUAAAAAAAAAAFScqgoLy3qnpC0auLLgqZIeNLM1kq7LHWhmPzOz+yVtkvQ/kqb0d0laK+nyslQMoHT6OvKP6Wn3bnd5gkpe/VP0egAAqCW7l3u3v/zf4eYv+ZnUO+RzeNOj0sbs4b90nuDOQtwyOXwYWb7Q0bV5DrMCAAAAAAAAAAAACOMzkmZo4Mzf1ZKOc8792jm3QlKeq/zsNSe7hkk6yMwmx1xnVTCzBjObbWbvN7N/NrNPmtlFZjYj6doAlNH+FxY+9+nPxVeHJDW2SaMPCh6z7i/F7dF6wrAm37CwVJPMJ/TM5QZgNU7w32/TQ+Hq6t7q31fXMvh5vvdo/ifD7Vlqu16Rdr8abU5XwPsg5Q+LG32QdMz3w+/neqXNj4cfD1SToP+9NE8tXx0AAAAAAAAAAKAiVV1YmHNumaTzJK1X5tBP/+GffSW9MWeoSfqYpNmSmoeMXS3p7c65zWUrHEBp7FqSf8zOl7zb8wWUjD8yej0AAIwUq+/IP2bZr7zbHzgrc7/5sfjqybX46nDj8oWFLfl58bUAAAAAAAAAAAAA+LQGgsJuc879kxuU1hKOc65d0oqcpiNiqK1oZjbTzC41sx+Y2YNmttPMXM5tRUz7TDKznypzdnKOpN9I+p6kn0i6RdJyM3vUzC6JYz8AFW7mBwqfO/TCb8VqPVaaembwmC1PxLun8oWFeR+Rd3s/jiRNPj1g8R3hiujr8u+zITVMfXO4NZO288Xoc9bfF9zfscq/r3mqNP4IqfU4qbE1/J5x/zkGKsX2Bf59U2aXrQwAAAAAAAAAAFCZqi4sTJKcc/MkHSfpHmnvpZ9czr3LeZ7bZ5Luk3Sic+65MpQKoJR2LpZe/WP+cbuXe7e7PGFhXVui1wQAwEjxUPYKtek+ybnh/em+/Gus/1u8NfV7+vNSmN8t6MtzgfLenfHUAwAAAAAAAAAAAIxQZnakpP01cM7vyiKXXJrzeGaRaxXMzGab2V/NbEu2pj9K+qKk0yWNLcF+b5O0UNInJAUlqZwi6SYz+52ZjY67DgAVpHF8cYFhfszyjxkq1SAd9W/BYzY+JO1eWVhNkrT1yWFNfmFhDdYkk/frGBQW1tTmv9+ib4er6xWfC9GN88izzPceSdLOl8PtW0oPvSP6nEcvkzb5XDSwt1NaeYP/3BN/nglWSzVIJ/w0/J6d66PVCFSDbQG/4tIwXmo7qXy1AAAAAAAAAACAilSVYWGS5Jzb4Jx7u6QTJP1Omavlmc9tpzJXzjvDOXe2c45vB4Fa8OJV4ca9/CPv9rxhYRuj1QMAwEjz8D9IN02Qbp8hLfru4NCweR8Lnnu9SQu/VbraNjyQf0xfZ3C/CxF4BgAAAAAAAAAAACDIMdl7J2mhc25Zkettz3k8vsi1inGMpLcqOLgrFmY2W9JtkibnNDtJT0m6UZkLqG4eMu29kv5gZlV7RhRACCf/WnrT7dLog5KrYfp7MvejD8w/dsX1sW2bltSTqvfsa0w1KeUTeuaGXnxuWkAwVue64CJ2Lvbvm3jy8LbR04PXk6Rl1+YfU0rtRXxML/EJ+tpwv/+cKWdI0y4ceD79UuncheH2W3NH+NqAavHKL/z7TrqmsEBHAAAAAAAAAABQU6r+IIhz7inn3Pudc/tLOljSGZLeKek9yhzGeZ2kNufcO51zcxMsFUDclv4y3Li+Pd7t6TwBIF1botUDAMBIs+omqbdd6lgpLfiK9JfjpI410sobpWW/Sra2J/KElUlSX1dwfyVcrRUAAAAAAAAAAACobpNyHi+JYb3cL/lGxbBe3LokLY1rMTObpsyFUhtzmh+V9Brn3Oudc+9yzr1V0jRJn5XUkzPufEnfjqsWABVq2gXShcuk9zhp/FHl379l6sDj1hOCx26ZV9geHmdAe63Od3ijNcl8jsg7ucENzZM9x0mStswPrivo9TRN8m5vO7HwNcthcxH7+9X+0g/954w7fHjbhNeE+7M89pBwdQHVJOhnQNDPKwAAAAAAAAAAMGJUfVhYLufcMufcXOfcLc65Pzrn/uace94NuwwUSsnMGsxstpm938z+2cw+aWYXmdmMpGvDCOUXFuZ6g+ele4L7AQDAYNuele6YJT3yrqQrkXYvzz/G5QkOlaQdLxZfCwAAAAAAAAAAADByNec8znM1n1DG5zzeFcN6xeiR9KykayT9o6TjJY2V9JEY9/iGpH1ynj8m6S3OuUFfZDrnupxzV0sa+mXt581seoz1AKhkU84IP3brM/Hsuf953o+9rL41/4XdvPR2DGvqTgWEhaUaZTLPvvTQsLB9z/Hft3trcF19w+vaaz+fdfc/P3jNDQ9I8z8tORc8rlSCXtNRXwueu3uFd/uGB/3nTDrNu/2kEBcT9jsbjJFpzZ+le0+R/tgo/aFOumGM9MDZ0rbnkq4smq6N/n1tJ5evDgAAAAAAAAAAULFqKiwMGWZ2rZm5mG4rIuw7ycx+Kmm9pDmSfiPpe5J+oszVDZeb2aNmdkkpXjfga4/PF6f5wsLy9QMAgOHScZzvL5MwYWHzPlr6OgAAAAAAAAAAAIDatTnn8cQY1puZ83hLDOsV6jeSxjnnjnXOfdQ59wvn3NPOudiuTmhmh0i6IqepW9IHnHO+6SjOuduytfVrkvT1uGoCUOFe85XwY/9ynLRnk0eHd8iWpyO+JE2enfP8i9LUs4LnPP7+8Ov36+sc1hQYFmZNMvM+Iu805PrT0y703/fvHwiua/si/77c9yXX4V+QJhwdvO7in0gLIvy3jNPzAR8ZR39dmnG5f3+6R0p7ncUJCD6b8mbv9oknSvue7T9Pkpb9KrgfI8eGB6WH3iFtfjzz59Clpd7d0vp7pftnS7tXJV1heLtf9W4/8B+kusby1gIAAAAAAAAAACoSYWHIZ/g37B7M7G2SFkr6hKTWgKGnSLrJzH5nZqNjqA8jVU97+LFdmzNf/A6VzhMGlo7t7B4AAEiCx5VlB/H6+8GwNUL9dRgAAAAAAAAAAACAt/XZe5N0bDELmVmbpCNyml4pZr1iOOe2BYV2xeQ9knLTcG5xzi0JMe/7Q56/y8ya4ysLQMVqCjq+62HJzwvb54gvSectlo79vmQ54WL1o6TZ92RCbfysulnq2hptv+0LhzUFhoWlmmQ+oWfODQmuspQ05mD/vTvX+/dt+Jt3e+sJg9+XXPUt0jnPSAflCU174T/CnWuJk3NSx2rvvn2Oy7xXp1wnHXOV/xob7o+2Z12Tf98Zf5He9kzw/HzngDEyLLvW/6KR3dukVbeUtZyC7XzZv2//88tXBwAAAAAAAAAAqGiEhSGfm/MNMLPZkm6TNDmn2Ul6StKNku7T4CtEStJ7Jf3/7N15nFxVnf//96nurl6TdBKSdMhOQsK+KvsOggiKKCIyoIgC44o6+B39OeMyo6Mzysyo48Io7gqoA4qIsu/7JmsCIQnZ973Xqu46vz+qOl1dfc+te2/t3a/n41GPrns/Z0tTqW4edfI+NxjX0V1APhscmyw8Wakv5yDR3a9L956epxubCAAAY5jnSZ81pneTf921SSzb+IXFWQsAAAAAAAAAAAAwNj0qaTDtZLIx5rQCxrpc2pP+0iXp6UIWVgPOz7n+aZBO1trFkp7IutUq6cxiLQpAFYs1SE3Tgrd/8Yvh55hzUTokbPy+jjXUSTPOc/e3A9KuJeHmHOgaccs3LMw0ucPC5BHA1TrLPffOl921iY4MzF2L3X2k9PfIL1BtUNeq/G2KacDnQL1U39Dz6T4/UrZ5/GiO+4TY1Y/zX9PEw6RFV7vrvT5hbhg7drzoX9+Zp14tPIIR92ieUb51AAAAAAAAAACAqlZTQU3GmIOMMfdmHvcYY6bm7zVijGmZvoPjjMZ//X+NpHkRHrmfPFtJP/GbyBgzU9LNkuJZtx+RdKC19k3W2guttWdKminpaknJrHZvl/TVCH8+QOpdH679PTn7DP/k2KiSLZVMn5QGAMBYlL3Jr1blQO51gwAAIABJREFUCwvz2gCaa+WNRVkKAAAAAAAAAAAAMBZZa7dLeirr1r8aY7wTXHwYY2ZI+pzSe9qspLustQE+8KtNxpgOSYdm3epXel9eUPfnXJ9d6JoA1IiZ7wzXfsQeyTxv0XXN+cfc+61SrNFd9wul8tLfPeKWb1hYLK6Y4yxjK489oX7fM7+19o8MMZMkGffa9pgWIDszyCF4xTTQ6651vGXoefsh7nZe+2wS29ztff477jHd50dYf8jXEkafVFLa/qx/mzW3lmcthervdNemnFC+dQAAAAAAAAAAgKpWU2Fhkq6SdIqkkyUlrLX5/vX/CNbajUoHVg2Oc0UR11cVrLVbrLVvhH1IOiNnqPustcvzTPcVSROzrh+VdEbmdMLsNfVZa78j6cKc/p8xxsyJ8MfEWJdK5m+TbWfWaUu7lwXvN3r3FAIA4C/sz9pSOfI70v7XSB1nSAd+QZr17uB9d7zgX+fnPAAAAAAAAAAAAFAO3856foykH4bpbIyZJulWpfepDabY/Gdxlla1Dsq5fsFa60il8fRozvWBBa4HQK044lpp77cFb7/0B+HGr2vJ36ZxsnTKn931V74Rbk6P/R+usLA61avO1Ms4Qs+s1wGyCz/unnv5z921NX/wvr8gwNb0+hbp1Dv826z+ff5ximnZj9y1ff9+6Lkx7tfYjhelvq1D1zuXuMc8/FvB1jX5Te5aZ4j9wBidnvts/jZ9m6WulaVfS6H8/ix1cXcNAAAAAAAAAACMKbUWFnZe1nOfT1/zGuxrJJ1fwDijhjGmWdJFObevz9NnX0kfyLqVkHSZtdZ5tJS19g8a/t+uUdKXwq0WULQT0wY3eezy2XyQq3d9+HkAABgNbH+lV5DejLnw49Lh35ROu0s69KvS0ddLk48J1n/Jtf71oL9P9G4O1g4AAAAAAAAAAADACNbaGyX9LXNpJH3YGPOQMeZEv37GmFZjzN9n+h4myWYed1prHynlmqvAATnXr4fsn5uekjsegNGqvjUd1PXOtdJJt0qn/NW//ZISZS92nC41tHvXNtwdbqxtz4y45QoLi8fSgTqusLCUPA6WMzGpZab33BvvCbbGbEEC1SRp2mn+9ZW/DT93Id64wV2rax5+PeNcd9t1fxl6vuZmd7umqcHWlTt3tvV5AtcwutmUtPLGYG1f/3Fp11IMfY49ahNyM2QBAAAAAAAAAMBYVl/pBQRljNlH0uAnsSlJtxUw3J8kDUiqkzTPGDPbWruqwCXWugskTci63i7J5xNaSdLFSn8PB91srV0aYK5/1/CQsQuNMR/1CxkDRogUFtYvmQYpsSN4n61PujeBAAAwmqUqGBY27XTpqOukcfNH1uITpLc8LC3/ifTklf7jNO7lX7ceG0C9bH9Omn5msLYAAAAAAAAAAAAAvFwg6XFJkzPXx0u63xizQTlBWMaYH0haKOlYpQ+jNEqHhBlJayVdWqY1V9KCnOuw+xtX5lxPNsZMtNZuL2BNAGpJy97pRz6dudmCeay9VXrz/wRrm3Ts1WycEm7OcQukjfcOH9oVFmYaJUnGeJ+nbWW95+he432/ZZZ7XfGJUsLjbbUn4CG1sTzb+B1/hpJJ+Wzjbpo2/Lr9UHfb7NfUbp/XV1vujzoHv7CwusZgY2B0sFbq2yp1r5b6u6TmDql3Y7C+L39VGr+fNPEwacIBkvEOFKwYv31s/bsjDdlvk1rZu0y9A10ji8ZoZuNcTaifFGlsAAAAAAAAAABQOTUTFiZp8EgUK+lVa21n1IGstZ3GmFc1dFrewQq/mWa0+VDO9a8DhHedn3P90yATWWsXG2OekHR05larpDMl3RqkPyApWljYQJ8Ua5D6NgXvU8mgFAAAKskmyz9n2wJp0dXSoo/7t4vVSZOOyD9eYpt/PejvE7tfJywMAAAAAAAAAAAAKIC1drkx5lxJt0iarqHwr+mSOrKaGklXZj1XVts1ks611m4py6Irqz3nOsSGpz17JHslNWXdnqD0IaIAxpqD/ll66V/d9ac/IR357XQ4Vb4Anb2OCT5vxxnShrtH3u/bHHwMSeod2T7hCguLZcLC5P3nsNYRFjbpTdK2p0fe3/GCe11eQWGSNOUEd59ck4+Rtj7uXdv2dDocqVyhRrtedddyQ7n2OtbdtmfD0POBHne7yUcFW5ffnz/M4cGofgO9UtdqqXuV1LUqHQq253nmq99rKp/HLkl/bZwsvfVZqXV2cdZdDAM+/2xj1gWhh3u561ldv+6b6k35f7+OHHeCPjD9atWbhtBzAAAAAAAAAACAyqilsLA5Wc9DHmPlaZmGwsKq6JOe8jPGzJd0Us7t6/P06ZCUfSxUv6RHQkx7v4bCwiTpbBEWhjAihYX1SA1t7g0axZoHAIDRoJyBmft/Vjr8P8L1mXCQVNciDXS72/idTir5n8iY7cUvSQs/GnxtAAAAAAAAAAAAAEaw1j5pjDlC0k+U3i8mpYPAsr8O66J0SJiRdJekD1hrN3i0G43acq6jJGP0aHhY2LjoyxlijJkqaUrIbvOLMTeAiA75F/+wsNf+R2o/VFrw4fxjte0TfN79rvEOC5Okbc9Ik44MNs6aW0bcWjx+qmfTBpMOtYop5lm3cuwVWfhx6fHLvGtdq0aGCrlCxySpZaa7lustD0s3+mznf+M30ry/Cz5eVP0++2+O+dnIe8ak//tte2Zk7fUfSkf9IP3cFew087z0YYFBzbpAWv17j7muk476YfBxUDk2JfVuGh781Z0JBBt83hsqGzW6vq3SIxdJZz5anvmC2PGSuzbv0lBD7e7fqevW/pv6bf79f8/sflgd8Zk6Z6+LQs0BAAAAAAAAAAAqp5bCwrI3quwswni7sp6PL8J4texyadgRWs9aa/+Wp89BOdcvWGu7QsyZ++nagSH6AtECTHYtkZqmSIkQbyEBPigFAGBUKufPQBNi89+gukZpxtulVTe526T6pGRnOizUu0GwufrGwsHkAAAAAAAAAAAAQOlZazdKOscYc6SkqyWdLmm6o/lOSfdI+q619oEyLbFa5H7I2RthjB5JE33GjOqjkr5UpLEAVIs1fwwWFtbUEXzM+maf+W4NHhbmYVdDo+f9eCwuSTLDtkUPsZ7ZlJLqfNa67i/SvlcNv9e10t2+rsldyxWrk479lfTYJd71tX8sT1jYxnvdtfhE7/ttC7zDwqR0MJSJucPCxi0Mtz7n3h9UjWTn8OCvEaFga6RUotKrHLLlMalnvdTs+jW0zNb92V3ze3/y8ErXc4GCwga90PkkYWEAAAAAAAAAANSQWgoLy/60sBjhXtnhYwNFGK8mGWPqJH0g5/b1AboekHP9esipl+UZD/BnI/y1TSXTX/t3+bcrdB4AAEaDwZ+b5RAlLEySjrleSvWmN6y6rLtdmnOhdy3Mz3lr06eiAgAAAAAAAAAAACiYtfYZSe+XJGPMPpJmSZosKS5pi6SNkl621gY8AWjUc6TbFL0PgNGq/WBpx4vuevfqzJM8eyPmvC/4nBN8zhHuXhVsDMfBshMT3iFUb/QulSQZxx4PKytr7cj6xEPda+hZN/Je7yZ3+9Y57pqXsHOXwqYH3bX2Q7zv+4UR9XenA75cYWEhw4/U7fg+NLSHGweFSe5Ov1Z2viR1rR4eBpbYXunVhffg+dIJv5NaZ1V6JdJAt7vWOjfUUDv7t4Vqv71/a6j2AAAAAAAAAACgsmopLGxL1vOQn6J6mp31fCx/wvFWSTOyrnsk/SZAvwU51wE/td8j90itycaYidbaGvykEBURKSysL/01sbO08wAAMBqEOF2wYHufHa1ffat00h+kxA7p945TTHvWuvuH+XcFvZuk5mnh1gcAAAAAAAAAAACMccaYcZLmZd1aZq3tym5jrV0uaXlZF1b9OnOuQ6aqePbJHRPAWHLgP0mPvNdd3/G8NJDIP06YvRONk9215T+TjvxuOlDKjyNsKhHzPphuVuM+kiSjmHNIKyuTG4o2bqF7DbsWj7zXu8Hdvink/hK/ULXNj5T+gLsl/y0t/qa73jbX+/68S6XV/+ddG+hJ/7fd+qR3PWxY2Kx3SRvuHHk/uYMDAMtl12vSPaf578WqNVufkP44Wzr2l9K8Syq7lpU3umt18VBDJWxfuPap3lDtAQAAAAAAAABAZbk/Ca0+g2FURtLBxhifT5D9ZfpmH3M0ij61Cu3ynOv/s9buCNAv9ygmnyOyRrLWdkrK/WRpQpgxvBhjphpjDgzzkDS/0HlRAVFCvPoz+93W3FLaeQAAGA1SyfLM0zRN2uvYwsaI+5wSuuUJdy3Mz/mBrvxtAAAAAAAAAAAAAOR6n6TnMo8nJTVWdjk1o5rDwr4v6aCQj/OKNDeAqOZcKB3zU/82y6/3rzdOCT/vgivdtcXfyt+/K/ds4rSkIyxsUUt6e/iIMLAsVnbkTWOkjjO8O6z63ch7z3/BOb5iIc/yNkY69Ovu+uaHw40XRn+P9Oyn3fX2g901v5CzDfekvw44QojChoWN29dd23R/uLEQzZNX1U5Q2P6flY6/KXj7xy6V+raVbj359PdI3Wu8a3MuCj1cIhUyLMz2KRXm0E0AAAAAAAAAAFBRIT+NrKjHJfVJiisdGPYxSf8ScayPaigorV/SIwWvrgYZY6ZIenvO7Tyf9O+Re5SX99Fd/nokNWVdj4swRq6PSvpSEcZBtYsS4rX+TmnWu0s/DwAAo0Gqv7jj7XWc1LtJ6nx9+P2T/ySZImQYTznBe3PkqpskOU5eDLPJaceLUts+kZYGAAAAAAAAAAAAjGF7SXsSW56y1lYwiaGm7My5DpXQY4xp08iwsCCHiOZlrd2kkIeLGuMO7QFQRvtclg5pesQRPrP+DqnjTHf/+tbwc8Ynumvr75AO+bJ//80Ped5OOMLC4rF0JqXx2YtilZLk0d9vramkFGsYuu5c7t0ubAjWoOYOd239HdLUE6ONm8/qm/3rcZ+zvf1eD1secYevSVJd3H/eEXO1uGvrbpemnRpuPITT3+X8u1gyjVOk1tlSy+zM11nS2tuChcO1zkkHJG56QFr6/WDzbbxHmv2egpYcmd/3tj73n2zkl7DeYWHt9ZO1o3+rZ63fJhU3ZPoCAAAAAAAAAFALaiYszFrbZ4x5SNLgJ4fXGGNusda+GGYcY8xBkj4r7TkW6hFrbVcRl1pL3i8p65NrLZP0QMC+uZ88OY5+8tUjKfuT9fCfZmHsihLitfE+affr+dtlSxEWBgAYo2yRw8IO+Jw04xxp+9/Sp4dO2F+adrpUH3GTZK62+e6TVK1Nn8I64n6IsLBH3ie9tzva2gAAAAAAAAAAAICxazD0ykpaU8mF1JilOddzQvbPbb/NWru9gPUAGC0mH+Wu9Wz079v1RoT5jnbX+rbk7z+Q8LyddISFNZh0CFVM7pBCa608y37hV/1dUrx96Np4z6+BKGcvq/DvU1Rv/Mq/vtcx7lqTT8CZTUkJ71AiSVLrPP95c7Uf4q4l+PFWcontxT18ua45Hf41LAwsKxSsZZb3nrLdrwcLC5vzvvTXee8PHhZWyr9nhczt93fQIZHyDgtrqxvvDAvrS/XuCVsEAAAAAAAAAADVrWbCwjK+pXRYmFU6WOovxpgLrLWPB+lsjDlK0u8ltSr9Ma/NjDlWfTDn+ifWWuvZMr8o/aLOBUT70LlzWXrDRhgp740mAACMeqlkccebfJRkYtKkI9KPYvP7Gb/1Ce+NU2F+nxjoSW9k9Dl5FgAAAAAAAAAAAMAI67Oexyu2itqzOOd6Qcj+++Rcv1LAWgCMJm0+IU1bH5fmXuyu+wWNuUw/y13rDHD46/KfeN52hYUNht0Yv7Aw1/bleZdJy3/mXdvymLT32ZnJd0n9u73bLbjKOa+v8fu5a69fJx31w2jj5rP+r/71fS5317wO7hvUuUzqXOGuh30t1be4a2v+IB3943DjIZz+MAcsGql5eib8a5ZHGNhsqXGy/+vHOXTAPo2T0l8nvzn42Ovvkvb9SPg1FcPmR921me8MPVzCusPC3H16JU0IPRcAAAAAAAAAACi/mgoLs9beaYy5X9IpSgdN7S3pQWPMLyVdJ+mp3LArY4yR9CZJV0m6VFJDpq+V9JC19vay/QGqiDHmGEkHZt0akPSzEEN05lx7HN+TV26f3DGj+L6k34XsM1/SH4swN8op1R+t39YnwrVfd5u0/2eizQUAQC2zEX/WurhOVC2WRZ+QVv/eu/bsP0hnPuJRSIWbI7lr+CmxAAAAAAAAAAAAAPJ5Keu5T0INcryUc32IMabFWhs0reP4POMBGMuO+G/p2U951zbe4+7nF2jlUt8iHfUj6ckrvOs9G6TmDu9aql/a8YJnKdHQ6nm/waRzKY3PYXAp136RtrnOPnr200NhYa5AMUmaeb675seYdDCXIxxN3WullhnRxnbJd770KbdL4/f1bzP/CmnZj0beX3+HNNDr7ucX/uWy78ekpd8beb9va/ixEE7XG+7afv8gTTx0KAyseYZUV6p82ACHPO517NBzE5Mu7JbuOUXa+qR/vzW3FLSygni9riUpPikdrBZS0nFQtl9YWF/KO2AMAAAAAAAAAABUn5oKC8u4SNKzkqYrHfhVL+myzKPLGPOqpO2Z2iRJCyW1ZfqazH0jabWkC8u47mrzoZzrv1hr14XoX5VhYdbaTZI2heljopxMhMqzA9H6PRXy1Ke6CBsSgCAG+qStT0lN06RxC6KdkgYApbT0B8Udr2SbwDKmnOCubXlUWnubNOPc4ffD/j6R2EFYGAAAAAAAAAAAABCCtfY1Y8wLkg5ROvBqhrV2baXXVe2steuzvm9Sep/kCZLuDDjEKTnXfynS0gCMBvGJ7trmR921tgXR5muZ5a5tvE+a+z7vmiMoTJKSjjCwPWFhcu/Hs66QrPpxzj7a9Wo6XMsYaeO97nYNPmPk4xcKtPE+ad4l0cf20r3Gvz7pTfnHiDV432/qSAecOfs15h97RB+fvUelCFPDkM7l7tqhX5PqIvz3jMInBHCPaacNv65vls7KHDR9y0ypx+d1mdxd2N/hKPxC+5qmRhoyYb2Dv9rqJrj7pHzC/QAAAAAAAAAAQFUJ8IlJdcmEQb1V0koNhX8p87xN0pGSTpd0Rub5uExNGgoKe13SWzNjjTnGmFZJ7825fX3IYXbmXE8JuYY2jQwL2xFyDRjLooaFhcXmAZTC5kelmzuku0+Ublso3fdWqT/owa8AUCar/694Y008TGpwn0xYFPk2gz3w9pH3rOOkWJe1t4ZrDwAAAAAAAAAAAECSvpv5aiT9SyUXUmNuybn+YJBOxpj9JB2ddatLwUPGAIwFU09y1/z2Zs46P9p8ex3jriVztyMHqyVi3udlx2MBwsLk2C/SOMm9FklKJTOTb3e3mXSE/xh+/P67+H2fokrm2bbdFGBreK9jK74x/nt5ohyuOvFQd60U3x9k8fnvVa6gMClYWNiiT7prs/OcM5/cHW49xTDgE9IVNSws5QoLcweh9TkCxgAAAAAAAAAAQPWpubAwSbLWvqR0ENiNGgoAs1mPPU2zHkZSStIvJL3ZWru4nGuuMu9ROkRt0EZJt4UcY2nO9ZyQ/XPbb7PW+nx6DuQoV1hYuebB2DGQkO4/Z/hGmw13Ss9/oXJrAoBiudhKh/7b8HumTjroi5VZT67ckxjDhoUl2FgIAAAAAAAAAAAAhGWtvV7Sn5Xew3eZMeb/VXhJteLXkrI3L73LGLNvgH7/mHP9W2utTxIFgDGnba67ltjmrk04MNp88Qnu2sob3LVdrzpLSUfYVNykg4uMzxZ5K+us6eCvuGtdK9N7TzY96F1vmibVNbn759PxFnft6Y9HH9fFL/Ts8G8FG2P2e7zv96yXdr/mXZv/oWBj59r7HHdtw93RxkQwG++r9AoyAvzTF7+ALb8gMUl6+qPhllMMAz3u2n7XRBoy6Qj+aow1q8HEPWuJFL8qAgAAAAAAAABQK2oyLEySrLXbrbUXSzpA0n9JejFTMjkPSXpe0rckLbLWXmatHev/yj/3U9ZfWGv7Q46RG7a2IGT/fXKuXwnZH2Nd2cLCQoaIAPlsuNP7RL7X/qf8awEAl1TYXw2zHPh56cSbpXkfkPb9iHT6fdFPli22dbcPPe98Q+pZF67/RjYWAgAAAAAAAAAAABG9T9ItSu/p+7ox5g5jzKkVXlNVs9YulfTzrFtxST8zxjiTaIwx50m6LOtWQpJP8g2AMWvBleHaN06WHAFdgUw+2vu+K3hLkl79juftlKR+ee9taYilg3BiPmu1uYfNZXOFX0nSsh/5BpjpgM+5a0HUNUqTjnTXu0Puc8lnzR/dtUWfCjZGc0f4eaedEb6PJDWMd9de/HK0MRHMqpu8708+qrzrMHn+6cvJf/Kvt82Vzv6bu77mj1Lf1tDLKsh2n/WMXxhpyEQq4Xk/HmtUPNboWetLeQeMAQAAAAAAAACA6lNf6QUUylr7mqR/kCRjTJukaZImZ8pbJG201nZVaHlVxxizUNIJObevjzDUSznXhxhjWqy13QH7H59nPMAfYWGoVW/82vt+6MxGACihKJt/9rl86Pms86snICzbA+dKJ/1RevC8aP39NqgCAAAAAAAAAAAA8GSM+Unm6S5JuyWNk3SGpDOMMbuVPgx0U6YWlLXW5h6aWVbGmJny3oOZm5xSb4yZ6xim01q7xWeaL0k6X9LEzPVxku42xnzYWrskay2Nkq6UdG1O/2uttSt9xgcwVsUnhexQ4PnUfnsx+7uk+taR9+vbPJsnY+7t7w0mHYRjfNZr5bOW+ER3becr0pZHovUNqsknfGvLI/5hZmEN+OwPitUFG6NpWvh5o36fYg3uWn/Q7euIpL41/fc0V7m/7/kCC4O8tsYvkkydex/6lsekGeeGX1tUu3LPb8/S0B5pyIT1/rsdN3E1miZ1efzKnbC9keYCAAAAAAAAAADlVzNhYcaYDknZx888bK3dlt3GWtspqVPSsnKurcZcnnP9sLXW55grb9ba9caYFyQdkrlVr3QI2Z0Bhzgl5/ovYdeAMc71IW0sLjlORIo2D2FhKDJeUwBqQWJn+D4LP1b8dZRC1KAwSWqbX7x1AAAAAAAAAAAAAGPHZZJs1rWVNJj2MF4jD7/Mx2TGqGhYmKSHJc0J0G6GpBWO2s+V/v54stauMca8S9IdkuKZ28dLesUY84yk5ZImSDpC0pSc7rdJ+ucA6wMwFnWcIb3yjeDt84X05NN+sLTtKe+aKywssW3kPUlJ4w4CazDpt0oj93pTw34k5Wj2Ceta92epy/V2rvT3tFAdZ6Tn8RJlP4+f9UXYuj1uYfg+U8P+2M8wRqprkgY8Qo1SfZK1hb9O4c0VCtaU+6tHqeUJLZz05vxD1DVJU06QNj3gXfcKRSulVNJda44Qxicp4TgotCHWqHis0bPWlyIsDAAAAAAAAACAWlHgMU9l9S5Jt2Qev5bkc5wRvBhj6iS9P+f29QUMeUvO9QcDrmM/SUdn3epS8JAxIM32e9/f53Lp2F+mP8gNY+6ljgLBTiiyVb+t9AoAwF9ip3Tn0fnbZVtwpTTpiNKsp5r4bc4CAAAAAAAAAAAAEIbNesCHtfZ+SedL2px120h6k6QLJZ2lkUFhN0i6yFrXiYwAxrxpp4bsUGAI06Kr3bV1t4+8l0pKnd5nRyf2+4RzqMEgHOMTGmXz/ejpeIu7tvMVd61lhv+4QSy4wl170qcW1ro7pM7l3rXJIfYNRQnn8gqGC+rI77prz302+rhwsz6/rvn9vS4Fn6BATT9bqou769mO/La7tuGucGsq1MtfLfqQCev9z2ziJq54rMm7jyNgDAAAAAAAAAAAVJ9aCgtrV/qTZiPpKWttmY9tGRXeJml61vVuSb8rYLxfS8reTPQuY8y+Afr9Y871b621HEeDcFz72GL10rxLpLc8FG68Ou8PP2UJC0MRJTsrvQIAyO+5z0rda4K3n3m+/0a80YR99AAAAAAAAAAAAEBUpoiPMcdae7ukgyT9UNJ2n6aPS7rAWnsxeywB+DIx6eAvl2++xr3ctSX/OfLeJvce0GTrLGctbtJhQcZni7zNty+043T/upepJ4fv46W+VRq/n7veva4487zydXet/eBwY00MccDgxMPDjZ2r/RB3bcm10kCisPEx0o4X3bXGqeVbhyT1+/xqM891aLSHiYdK8YnetWWFnMMekrVS31bvWsT3lJRNqd96H4gZjzWq0TR61hL8Uw4AAAAAAAAAAGpGfaUXEMK2zFcraX0lF1LDPpRzfWMhG4KstUuNMT+XdHnmVlzSz4wxp7vCv4wx50m6LOtWQtJXoq4BY5grrMPUhR/rqOukbc865iEsDEW05pZKrwAA/PVtlZb9yL/NzPOkRZ+Stj4lTTo8vTEp1lCe9VUcvxcAAAAAAAAAAAAAEcyr9AJKwVo7t8zzbZL0EWPM1ZKOlzRHUoekLklrJT1nrV1RzjUBqHF+oVS5ejcWNpcrmEeSkrtG3tv2jLN5It4u9XjXGmLpsLCYT7aklXWvRZKaOvzrXhqnhO/j0jpH2rXEu7b9Wall78Ln2PSAu+YX7OalucM/xjLbQIGBRM15/tvsfk1qP6iwOTDczpfcteZp5VuHJO1a7K41Ti7OHOMXFWecIPo2F33IpHUH5sVNo+Ix78O1E6m+oq8FAAAAAAAAAACURi2FhWUHhLVWbBU1yhgzTdI5Obd/XIShvyTpfEmDn+IfJ+luY8yHrbV7Pqk2xjRKulLStTn9r7XWrizCOjDWpAKEhZ2/Xrplev6x5l8hbf+Ya6LQSwOcXv/fSq8AAPwt/WH+Ngf/izTxEGnaKSVfTtXpWZ8OEjXu02cBAAAAAAAAAAAADMf+sOKy1iYk3VfpdQAYBfZ+W/nmqm9217pWSv1dUn3W9vDeDc7myYmHSD3eB3fGTaMkyRi/sLA8+0Knn+Vf9zLj3PB9XPZ+m7Tja2WdAAAgAElEQVT+Du/agCMlrZjC/ln2fpu07vZgbSe/Ofx6srXOlpr3lnrWeddtf2HjY8hAr3STz99bSWrbpzxrGeQXNjf1pHBjNU2VEh4pd7teDTdOIRI73LWpp0Qb0if0Kx5rVGOs0bPWR1gYAAAAAAAAAAA1o5b+lftz0p6jnBZWciE16gMaHg73krX2yUIHtdaukfQuSdnH0Bwv6RVjzFPGmJuMMX+VtFrSdyQ1ZLW7TdI/F7oGjFE2QFhYc0ewE56MkfPt0I7ysLANd0tPfFh69BJptffmGRTR5of96zbPiYUAUGov/FP+Nu0Hl34dUR385eKMM/Fwd23JfxVnDgAAAAAAAAAAAAAAgEpqGCcd/ZNgbaedXvh8R37HXXv4vcOvl/yns2ki5r3f08io3jRknru3yNt8+/SaO6QFf+/fJte8S8O197PvR9y1l75a+Pjda/zrU44PN96Cq4K33e8z4cb2csLv3LVVPjWEky8orBL8wsLqmsKNdcDn3bUN94QbK6pH/85dW3BlpCET1icszDQqbry/Twnr870FAAAAAAAAAABVpWbCwqy1qyQ9LslIWmSMITAsnA/mXF9frIGttfdLOl/S5qzbRtKbJF0o6SxJU3K63SDpImtdiU9AHkHCwiTpnMXBNheYMRgW9sZvpHvPlJZdL73xa+mhd0mLr630qkavno3524zm1xuA6rfmT8Ha+Zy8WnFz3qf0r6EFmnKCu/bcNdLuZYXPAQAAAAAAAAAAAAAAUGlzLgrWrnGvwuca57P1e92fpZ4N6eedy93tZp6npE14lupNg0xmX4vx2T+SUoBDPfe5LH+bQU3T3HtQo4g1SOP29a7teKHw8V/+RuFjZIvVS4s+Haxtw7jC52s/xF1bVrTt8WNbYnv+Ns0zSr+OXGEDwfzE2921Fb8o3jwuyU5p29Puen1rpGETKXdYWEOsUY0x7+9hn08/AAAAAAAAAABQXWomLCzjm47n8GGMOV7Sflm3EpJ+Vcw5rLW3SzpI0g8l+X1C+LikC6y1F1tru4q5BowxQcPCjJGOCBCAldtvj1Ec3vTSv0q5m15e+lcp1V+R5Yx6O54P0GgUv94AVDebkh58R/52M99Z+rUUYvxC6bgCf8096jopPtG/zas+J90CAAAAAAAAAAAAAADUiqDhO/XNhc/VOtu/vmtJ+uvOV9xtWmY7w8LipnHPc+MT3mWD7NNrmZW/TZS2QSV3ed83MckGCDvzs/R77lp8UrQx8/23laRYPB2sVijnfl9JvQEOdR1LOpdLa2+XUiHP9l57e/42PWujrakQ++SenZ7Rfmj4sVp8XrN+70HF0rXCXTMxqb4t0rBJ6w79ipu44rFGz1oi1RtpPgAAAAAAAAAAUH41FRZmrf2DpJ9IMpLONcZ8zxhTX+FlVT1r7SPWWpP1aLTWbinBPJustR+R1CHpNEkflPR5SZ+U9G5J+1hrj7XW/l+x58YYFDQsLCjXxhA7SsObutcObazJltwpbXqg/OsZC4J8cO96XY9lyd3SGzdIL35F2nB34RudAHh76iP525h6ad+Pln4thZp7sXRhxEza0++VFlyZ/2TG1wgLAwAAAAAAAAAAAAAAo4Ax0rTT8rerK0JY2Pj9pPH7u+v3nColdki9m91tZp2vRMo7LKwhFt/z3Mg4h7BB9qC17C01z8jfTpJmvTtYuzA6zvC+b1PSQAlDffb/bLR+M96e3lvkZ/pZ+ffkBBF1n/BYsuUJ6TdGunW+9MA50o310r1vCd5/oErPA59+lnfA4ewLwo818TB3rXtN+PHCevIqd23WBVIs2us8kfIJC4s1qtF4B0QmfELGAAAAAAAAAABAdampsLCMqyR9W+nAsL+X9DdjzAeNMZMruywMstYmrLX3WWt/Zq39hrX2u9bam621PkfgACHZfu/7RQ8LG6XhTa5T5yT/jTaIrr8zf5vR+nqLqm+rdPcp0qMXSy9+Ob1Z5ZmrCQwDSuH1/83f5uTbpOkhNo1VUn1L+MCwU++Upp2afh4kLHS0BooCAAAAAAAAAAAAAICx5c0/zN+mGGFhxkin/Nm/zaN/Jz1xubs+7VRnqE3cNO55HvMLC1PA/Wdvfcq/buqlBX8fPWDLz6JPuWsv/FP0cfPtvYv6Zxk3XzrxZv82x/482ti58u0T3vRwceapVX1bpTuPGXl/w93Ssp8GG2PbM/nbtM4Jt65iaJkhnfwnqWlq+trUSfOvkA74fPixjJH2/3/etd4N0dcYxBs3Slsec9eP/nHkoRPWO0wxpjrVmXo1xBo9632pEoYQAgAAAAAAAACAospzhE91Mcbcm3W5W9I4SQdI+nGmvkbSpkwtKGutPb1oiwRQHq5QpVjUtzVHWFgqGXG8KucXShXxNCrk8ZxjU0E2gmeGu+9safuzw++99l1p/uX+p7oBKL4D/0na+6xKryKc+pZg7c5fJzVPz7kZ4P246w2pbZ+wqwIAAAAAAAAAAADGHGPM+4s4nFV6f+BOSRskLbGWU8cAoCCNk/K3KUZYmCS1zZOaOtxhPOtu9+m7QJKUTHmH4TTE4nueG5/ztG2QfSFSej/JxVbqWiWtvllqP2To+2Bi0oQDpIZxwcYKy+/7vfIG6Yhro427a4l/vZD9ozPf7q7NukCKT4w+djbX4cCDVv9emnpCceaqRRvucdeeuFya/8H8Y2x+JH+bptz9VmXScYZ0/vr0a7llVmF/B9sPdtd6NkrN06KP7Wfxf7hrsYaC/kyJlCNMMRMS1mi8w8Jc/QAAAAAAAAAAQPWpqbAwSadIw45zspJM5iFJszKPoJt/TIi2AKqJK+wq34lhLq5+G+6KNl61S+xw16J+D+Fvx/P52/iFuI01256RtjlOZlz6A+mo68q7HmA0S+zM32a+z4mtta6hfeS9VID3423PERYGAAAAAAAAAAAABPMzlW6fXpcx5ilJP5d0k7WWpAMACCtIiFP3muLNN36ROyzMT32rJCnpeKtvMFlhYcZ4tpGkVNiMydbZ0n6fCtenUK1z3LUge31cdr8WvW8QU06UNj808v5+ny7eHD7/bSWlDwAcy4rx33ji4dLOl/3bHPb1wueJajCsr1Ats9y17lWlCwvb/py7Nm5hQUO73h/jmZCweKzJs95newuaFwAAAAAAAAAAlE+eo3VqgvV4ABjtejd7348adOV3CtPAKNxDuP6v7pqptRzJGjDgfZLhCISFDXnhy+7ail+VbRnAmJBvY9e4fdOnutaieJ6Tb2Nxqc5jA1SQ9+Ntz0RbEwAAAAAAAAAAADB2mRI82pQ+hPSnkpYbY84s258GAEYLE2A7+dSTijffvPdH65c57C5pvffjxWONe54buQOlrFLR5i+nhjapaap3baBbCht4Jkk7XpQefKe7fuS3w4+Zy+u/7bh9pclHFz52UJ0ryjdXNcq3BziVzD9GMkAg3ZQTg62nmk05zl3b/Ghp5sy3J33eBwoaPpFyvT+mwxQbs94nh/cjLAwAAAAAAAAAgFpRi2FhxdwoBKBWdTk+zI8aFuZ36t2WEn3gW0l+36e65vKtY6xY8q1g7WwNbEIql3W3+RTJBQWKKt/Jr6feUZ51lMLh3/Svx9u9TxuddX7+sV+p4OmYAAAAAAAAAAAAQO3J/mAu6MGgQQ4RHbxvJE2X9BdjzMcKWCcAjE0Hf8W/3jyjeHPNvzz/ng4vmRCdRMo7bKfBxPc8Nz5b5G2t7D877jfu2oa7wo1lrXT7If5tFn0y3JheFnxYOvxaqWVW+hC/jjOl0++TYhH39kax44XyzVWLlvxn/jZr/+Rff8eK8v43LZVYg7v27KdKs6f3lW/41/e/pqDhE9b7/TFu0iFh8ZjHwZqS+hzvqwAAAAAAAAAAoPrkOTqmulhrazHcDEA5hQ0La5mdv19yd/T1VKsNd1d6BWPL818I1s4OlHYdo8VAT/p0O7+NGgCC693krtU1S23zyreWYtv7HP96wwTv++2HSG3zpc5l/v0TO9KBYwAAAAAAAAAAAAD8fDDzdZykL0qarHS4V0rS45KekrRK0i5JcUmTJB0s6URJHZm+VtJNkv4qqVlSu6QDMm3maHho2H8ZYxZba+8t6Z8KAEaTpmn+9foiH0K6/zXS8/9feh9YUJmDUBM24VmOZ4eFeR0el1EzYWHxSe7ail9J088MPtaO5/3rbfODj5XP/p+R9vt0+r9tXTx/+1Lo7yn+a7Zm5Hl9r71NOuAfow2932ekI66N1rdaNYyXkru8a9v/Jk06orjzrfU7SFfeB1+G4AxTjKXDwhozoWG5UhpQv02q3rAvFwAAAAAAAACAakf4FoDa43dSU3+39/39P+t9/8hvp7/Wt7nHTHlvLKlpWx5112x/+daB4QgLC+73k6SXvpY+8RBAYfp8wsLOebl86yiF5mnStNPc9clHed83Rjrlz1LrXP/x+7ZGXhoAAAAAAAAAAAAwVlhrfy7pUUkfUzooTJJ+JGmetfZ4a+2nrLX/aa39sbX2+9bar1pr3ytppqR3S1qhdAjYeyTNsdb+0Fr7DWvt+6218ySdK2l5po1V+hDVUZZkAQAlNvsC//qEg4o/Z/th4dpngqeSjj2dDbGhYKqYzxZ567cHtZqMX+SubXkk3Fiv/Lt/vbnDvx6WMaUNCtvrOP96Ynvp5q52+V7fuxbnH6Npqvd9v0Mpa9VEn/ehfAdNRtG9xl0rQmhfwnqHhQ2GKcZjTe6+jqAxAAAAAAAAAABQXQgLA1B7Bnrctakned/f5zKpoX34vQkHSR1npJ/H6t1j7loSank1L0VYWMXUyiakatDfKb3wT+kHgMK4NnHNfKfUNq+8aymFY38pNU4eeb+uSdr3o+5+4xdJ71guTTrS3YYNUgAAAAAAAAAAAEBexpgWSX+QtEhSv6T3WWuvstau9utnrU1Za2+RdIikh5Xe7/glY8xlOe1ul3SEpOeybh9ijHlL8f4UADDKNU6Wmmd41ya9WWqcVPw5F34seNv2Q/c8dYfhNO55bmScQ1nVyAGV9S3uWudyacPdwcZ5+RvSyhv92yy6Ovi6qkG+187Ge8qzjqqU5/Xdt1Xa9Zp/G9d+sulnRltSNfPbP/bwhVLv5uLNNZCQeje464MHYBfAFfgVj6XfHxsJCwMAAAAAAAAAoOYRFgag9uxe6q41jPe+P+EA6Yz7pLmXShOPkBZ+XDr9XqmhLf98626Pts5aZQkLK6oN9wZvawdKt47R6uV/k9aOsb+jQLG5Nnc1TSvvOkqlZW/prCfTwaHjF0lt+0iz3yOdepc0Jc8po8ZIB3/FXR9ggxQAAAAAAAAAAAAQwL9I2l/p9Ip/t9b+Nkxna22XpHdJ2ibJSPofY8yUnDa7JV2gdBjZYErGKEy0AIASOm+F1H7I8HvTz5bOfLQ08+3zgeBt9/v0nqfJVMKzSUMsvue5Me6wsFSthIVJ0sl/dtfuDZCJ2bVSev7z+dvNeHvwNVWDuRdLR37HXX/s/eVbS7WxAV7fT3/CXeta6a6Nlv1k2ea817/+4peLN9fK37hrcy+VZpxT8BRJ6/3+OBimmB2qmKvP9hY8PwAAAAAAAAAAKL36Si8AAEJL7HDXWue4axMPk477Rfj5tjwWvk81y7cRgMCq4rr39OBt+d5H88wnpRlvq/QqgNq15RHv+01Ty7uOUmrbRzrmp9H6TjvVXRtggxQAAAAAAAAAAADgxxhTL2kwsaNP0r9HGcdau8UYc52kz0tqlnSxpG/ntFlhjPldpmYlHR913QAwJsUapLc9X+lVeKtv3fPUFYbTkBWCY3zO07Y2Vbx1ldr4hf71rtVS6yx3fXnAPbMxd4BQ1Zr/ofTeQZeuVVLr7PKtp2oEeH1vuk8aSEh18ZG19Xe5+9W1RF9WNRu3UNr9mndtg8/3I6z1d7pr8y8vyhSJlPfhlw2Zv+ONsabQfQEAAAAAAAAAQHVxfxIKANXK78PShnHRxhy/f7R+1aK/K/19WfdXqb87T9tO/3qqv3jrGuuSu8O1r6VNSNWkc5m0c3GlVwHUpsR2qXeTd61xFIWFFaLOvUFKia3lWwcAAAAAAAAAAABQm06QtJfS4V1PWmu7Chgre9PQOx1t7sh8NZJmFjAXAKAcDvpSsHZ7HbPnqSssLG6Ggo+MjHMoqzwHrlaT1nn+9c7l7lpiu/TiF4PNY9zfr6pV3yK1+ISB9Y3RfT35DhSWpFTSvZc4sc3db9Lh0dZU7fY61l3bvbR48/h+b48szhTWO/ArnglTjPsEA/alODgTAAAAAAAAAIBaUPNhYcaYw4wxXzTG3GWMWW6M2WGMGTDGeKbdGGPajTGzM49p5V4vgCJY9uPijznTtX+wBuxcLP1poXTfWdL9Z0u3zvcPTlr1O//xLGFhRZPcFa69HSjNOsaC7jWVXgFQm1bf4q41ERYmSTIx98bCJ64o71oAAAAAAAAAAACA2pP9Ydu6Asdan/V8jqNN9qaZiQXOBwAotf0+lb/N+P2klqH8x0TKOwynISsExz8srIYO9YzV+ddf+Gfv+72bpN9PCjbHcTeEW1M1OfSr7lpyZ/nWUVUChuE9/THv+3/7R3ef+tbwy6kFiz7pX9/yZHHmWX+Huxb1sOwcrvfHwZCwetOgmLzfV1xBYwAAAAAAAAAAoLrUbFiYMeZgY8zdkp6R9CVJp0maK2m80qcCuj7lPVXSisxjqTGmpfSrBVBUfZuLP2Z9c/HHLJfHPyj1ZO2l7N0gPXapu/0TH/Ifj7Cw4gkb/kVYWHS1eLIhUA2e/ri7RljYkAn7e9/v3SB1rijvWgAAAAAAAAAAAIDaMj3reaEJE4N7/YykDkeb7VnPGx1tAADVIt4unfJX/zZHDz9gNmET3kOZ+J7nxhhnYJi1AcOUqsWiq921zQ9JPetH3l96XbCxT7pVmntRtHVVg7mXuGtr/li+dVQTGzAMb+WNI/c9da1yt+84I/qaqt2kI6Qj/stdd4XyhTHg/b4lSTr064WPn5F0BH41ZL0/Nsa8f0XuS/UWbR0AAAAAAAAAAKB0ajIszBhzmaTHlQ7+yv0kN98nuH+UtCrTr1XSu4u9PgAom+510tYnRt7f9ozUs2H4PZuSdr2Wf8wUYWFFMxD2lK0aOrGw6hAWBkQy0OOuERY2pNHne7H2tvKtAwAAAAAAAAAAAKg9u7KeH1DgWAdmPe90tGnKeu7zgSgAoGq0H+hfbxqeD5lMOcJwYvFh186wsLxbzavM5KP865seHHlv+fXBxp759vDrqSZ+h4wmd5RvHVUlxOt7433Dr1/2Ca0yddGWUyumnOCubbw7eAiby/Zn3bWGcYWNnSWRcoQpZgWExY13WFiCsDAAAAAAAAAAAGpCfaUXEJYx5t2Srlc6FWTw0yyjdADYNkmH+fW31qaMMTdJ+n+ZW++Q9MvSrBYASmzXYp/aq1JzZpPMur9Kj10i9W3NP6YlLKxo/EJ4vNiB0qxjLNj+nNRxeqVXAYwufgFZY43fz9tVN0mLPlG+tQAAAAAAAAAAAAC1ZU3mq5G0jzHmaGutx8l4gVya+Wqzxs3VkdVmc8R5AADl1DLTvz5u/rDLpHWE4eQE4BjF5HWAZ6rWDvWc+U7/ejIrl7N7jfTa96SulfnHnXpSYeuqdqbm/plEkYQIC0vkBKqtvMHdtv3QaMupFRN9/nw2JfVulJqnRx8/++9prmmnhhqqN9Wj+7b/SSt6XlNHfKZOnni2NiXW66ldD2hF76uefbLfH+OxJslju/LtW2/SQzvu0NT43jpq/Mma0ThH9+/4s5b3LFEylZQk1Zk6zW1eqJPaz9bkBvYXAgAAAAAAAABQCTX1KZgxZrqkn2cuBz/J+r6ka621K4wxcyUtDzDUH5UOCzOSTi7yMgGgfBLb3bXBU/K610j3nx18TAKrimcg5ClbfO/TbISTG1/9trT/NcVfCzCWNU6q9AqqR8fp0ranvWsD3qfVAgAAAAAAAAAAAJAkPSApqfReRSPp+8aYE6213WEGMca8V9KZGto3eJej6RFZz98It1QAQMUc9b/Sk1eOvH/syPOgdw/s9ByiwcSHXRtjPHOTbJgwpWpQ3yLNe7+04hfe9Rf+WVpwhdS9TrrrRKnrjWDjvun7RVtiRU08PH3YaK5lP5aO/lH511NpYfZfPvcP0v6fST9P9UtJ779bkqQFHn8/R5NYg3TgF6SXv+Zdv/M46e1LpVjEf37z+v+6a+P3DzxMMpXQd1d/eU8o2EtdT+vu7X/I2y8eGwoLa4w1erbZnNygzckNWt67RI/vutc51tKel/XUrgd1zexvaFLDlMBrBwAAAAAAAAAAxRGr9AJC+qKkFqU3DaUkXWit/bi1dkWmHvTTraeU3oAkSZONMfOKu0wAKDLXh/c7XnD3MbF0vz/MCjdXKpm/DYLZ+WK49rbGTiwslSjfh27XgcEAnFb9n3/d1Nr/KpRQ8wx3je8TAAAAAAAAAAAA4GSt3SXpNqX3/FlJh0m6wxgTeEOLMebDSh8yarPG+ZWj+VlZz5+PsmYAQAUsuEI67Z7h9854SJp3ybBbKZ8DORtiOWFhMp7tbC3u0zv25+5a70ZpIJEOEwsSFNa2QDpvpdR+YNGWV1F7HeuuRTm4tOaFfH13vpH+uuUx/3bNHZFWU1P8DqztekPa8mj0sVc79uo1TpGM93uVl8Xdf9sTFBZGPCtMMW6aQvfPtaN/qx7beU/+hgAAAAAAAAAAoOhq5l+2G2PqJL1P6Y0+VtK/W2vzJBx4s9b2S1qSdWu/wlcIACWwa6l075nSb9ukvxwhrb55eL1hgrvvncdIN0R4m7f94fvA2zOfCtfeZyPTmML3ASg9a6UnPuSuH/zlsi2lJkw7xV3L2WgKAAAAAAAAAAAAYIRrJPVmXR8v6RVjzA+MMacZY8bndjDGLDTGXGWMeUrSdZLiGgoKu95aO+IEt0wA2SkaOnT0oeL+MQAAJdVxmnSxHXpMPWFEk83JDc7uDWb4Ho6YY5u8DXw2dZWZdqq7tvPl/GFPg972gtQ6uzhrqgamzl3rWV++dVSLsAFpg6+bfK+fWOEBU1WvYbxU5/Pn3BwxLCyxPVo/D7dv/W2kfi114/Y8b6sf8at3JMt7luRvBAAAAAAAAAAAiq6+0gsI4RhJg59MJCT9R4HjrZF0cOZ54FMKAVRYyidEaP4V5VtHOSR2SvecIvWsS19vf056+D3SqXelN8VI/pscokolij/mWJEakLY+LnWtTJ9W198Zrj8hWRk1eHIjUGt2viwld7rrsy8s31pqwYSD3LXkTim5W9ryuNS5LL1pLD5RamiX4oOPif4byQAAAAAAAAAAAIBRzFq7whhzuaRfKn3AqZXUKunKzEPGmF2SdisdCjYh81VKB4Qp08dIekLSZxxTfU5DB6j2SrqrqH8QAEDFJVJ9ztrejcMDsIwx8soFq9mwsI4zpY33edf+ekSwMSa9SapvLt6aqsFex0mvfde7NtBd3rVUhZCv776t6a+r8oRQxUqwX7namJg0/WxpzS3e9e414cZLDUgv/5v04hfdbSYdGWrIVb2vh1uDpHpTr31bDtxzvX/LYXqh88nQ4+RKWPf7MQAAAAAAAAAAKJ1aCgtbkPlqJT1lrd1V4HjZ/YtzPAqA0vPZ6KH5HyrfOsphw11DQWGDbEp645dZYWHeJ98VZICwsEj6u6T73yZtejD6GISFpVnCwoCSsinpgXf4t6lrLM9aaoUx0uHfkp67ZmRtx4vS7YdKXSv8x4g1DoWHNUzMep4JExt23T4ycCzWUJo/GwAAAAAAAAAAAFAG1tobjTEpSf+r9H69wSSLwTCwCZnHiK5Z7e6QdJG1tssxzS8lDSZddPq0AwDUKL+wsKbY8BAss+dHzHCpWt2ftuiT0vOfL2yM435VnLVUk47T3bVND0njFrjro1HY1/czn5DaD5S2PeNu87aXCltTLTn8m+6wsKXfk478bykW8J/gPPMJaekP/Nsc9vVw6wspppgu7fjEsPfH4yacoZe7ntVLXU8XNLbf+zEAAAAAAAAAACidWgoLm5L1fHURxsv+JKyWvg/A2Ob3weJoCzbxCiSRpOU/k475afq5LcEJdynCwiJ5+RuFBYVJhGQNIjQNKK3X/idYsBWGG7evu5bv+ymlf4fp3Zh+RFHfOjw8LG/gWNZ1/fixcbonAAAAAAAAAAAAqpq19rfGmEclfUvSuzS0b89rA4zJ+rpC0testT/JM/7jxVorAKA6Jaz3HtKY6lRnhm8HN/I+jNV6/tipAfUt6T09UQN6DvuGNH5RcddUDeqa3bWlP5Dmf7B8a6kKEV7fj73fXWs/OB0mNlaMmy9NO13aeI93fcuj0tST8o/T3yUt8/3VNa1lVrj1hfCOvS7RkeOO15T49GH3G2JxXTXjc1rWs0Rv9LymAQ3oz1tuVErh9u663o8BAAAAAAAAAEBp1VJIVvYnV8X4l+6Tsp7vKMJ4AMoh1e+umYbSzbv+Lmn6W0o3vpfezQEalSBcirCwaNb8ofAxCMlKIzQNKJ3eTdIzV+dvV9dU+rXUmvik/G1Kqb8r/ehZG61/w4SsILGsMLGGAIFj9W2S8T5tFwAAAAAAAAAAAAjDWrtG0kXGmOmSLpB0nKRDJe0lqV1Sn6TtklZKelzS3ZLutLYUJ+oBAGpNwhGUFfc4GM849jrUbFiYJLXOlnYvjdZ3/P7FXUu1qG9x14Lsd+nvSe+VGi17Y6L8ytS9xl3b8WL0tdSq8fu5w8K2PRssLGz9ncGC/erHhVtbCKdNfLvne6Mk1Zl6LWw5SAtbDpIkPbj9du0c2B5qfNf7MQAAAAAAAAAAKK1aCgvLTs3ZuwjjHZT1fGsRxgNQDtYnLCxWwre0F79U/rAw432q3TClCFUiLCyanS8VPgZhYRkRX9epASlWjDxRYBRbfG2wdpUOxqpGjZMrvYLCJHemH1oZvq+py4SNTfQPHItPzHqeFTg2mjZUAj/c87UAACAASURBVAAAAAAAAAAAoCisteslfTfzAAAgkIR1hIUZj7Awee/BtLV8mOXe50qv/lf4fnXN0rTTir+eauC313aHz77OLU9IT39c2v6s1NQhLbhSOuiLo2CPSw2/vqvFjHOlpd/zru1+PdgYb/wqWLu6eLB2ETSY4GO31U8IHxbmeD8GAAAAAAAAAAClVUthYasyX42kw40xDdbaZJSBjDELJc3IuvVCoYsDUCY969y1WENhY8+9xP3h7JbHChs7ikBhYSUIlyIsrHJqeRNSMaUivq53vypNOKC4awFGm8X/kb9Ny+xRsOmtBMZygJodkBLb0o8oYvHh4WFhA8dKuCkOAAAAAAAAAAAAAADUjkTKERYWG7m3ICbv/S9WtqhrKqtD/zV9sOmGu8L1O/lWqaGtNGuqBod+TXr+CyPvD3RL/V1Sfevw+12rpHvPkPo709c966QXvyzVtUgHfLbkyy0pW+TX95QTizteLZh+lru29HvSkd/2P9h261PS6puLv64Q4qZRJsQewLa68aHncL0fAwAAAAAAAACA0qqlsLDHJPVIapLULOl9kn4RcaxPZj3faK19tcC1ASiXlTe6a6bAt7R9PxL8JKdySO7K36YU4VKEhVVOKcLfalLE1/X6uwgLw+iR6pdiRf5VffG1wdqdfGtx5x0tGsdwWFihUgmpd1P6EUVdy/DwsCCBY4PXDRP8N+cBAAAAAAAAAAAAAICakbCOsDDTOOKecYaF1fChnvWt0ql3SDcEOIx20JmPSXsdU7o1VYPmGe7ahnukme8Yfm/NH4aCwrKt+EXth4UVOwxvLB46aYw0/a3S+r9617c8Jk09wd3fb697mcRjI98T/YyrmxB6jqRNKGVTigU5HBsAAAAAAAAAABRNzYSFWWv7jDH3SDo3c+trxphbrbU7woxjjDle0lUa+iSssse2AAhn8bfctULDwqYcV1j/SihFuBRhYaUXa5BSyZH3CQtLixqC1xcxhAaoJt1rpSeukDbeKzXvLe3/D9LCjxU+bn+X9LfPBWs78dDC5xuNYg1S4xSpb3Ow9mc9md6ImNwhJbZLiR3pR/Z1MnMv9zq5ozSBoLVqoFvq6U6f4hpFw/isILFMmFiDR/iYV+BY/bixuekRAAAAAAAAAAAAAIAqlHTsb/QKxjGOAJuULXKYUrkZI005Qdr8cIC2MWncwtKvqdLa5rlru18bec8V5rTzJfc4A4l03WvvZzXpWV/pFYwOvq+pV91hYclOad3tpVlTCF4Bin5a68ZFmqffJkPPBQAAAAAAAAAAClMzYWEZX1M6LMxKmiHpTmPMudbaQOkgxphTJf1eUkySkdQvySd5CEBNiZX4LS2xIx0aUQ75NhNselCaelJpgkQICyutqf8/e/cdJslR2P//U5M2717Od7rjlFBC2coCBSRAIgiQCBLYxkYm88P4azBgE43BYBvbyCQbY0ASAgMmCCEhFJGEUECghHQn6aIu3+2FTRPq90fvamZ3u3q6e3p2Znbfr+fpZ6e7q6prZmd7d6erP/VCafcDjrAwgmEkxQ9N27cm2X4AU61UkG4+pzxA7cDT0n3v9MKKnvem2tped51kC7X3cabrO1Ladmu4spkuqXOJpCXRj2NL3uylfgFjYQLH8nujH3M6y+/1loH10eualJTtGx8wFipwbHQ93UHYGAAAAAAAAAAAgIMxJivpZEmrJc2R1CPJWGs/3tCOAQCa1ogd9t2e9QmrMfK/Xm/V4mFhkrTi0nBhYQvPldrm1L8/jTbvVPe+kf7x6wObpR13u8uXilIqPX7b41+Qfvchb8JGzAzLXyM9+R/++379Z9KyV43/2SoVpfvfLT151dT0r4psKhepfE+6L9ZxRkrDvmGNAAAAAAAAAACgfloqLMxa+2tjzLWSXicvMOxESY8bY/5Z0nWSJiXcGGPSkl4o6c8lvVZ67sqvlfQFa+0z9e85gERUm80tla39GMsvkTZ833/f4JbmCQt75prRsLCQoUqzjvZmqzrwdIhjExZWV7vuc79X44ZkTTfVQtOWvNR/5rXh7fXpDzBVdv7afybLtV+rPSys/5Ha6sPTtSJCYf/ZaUMxKSnb6y2RjjmqVJTy/RVBYqNhYq71iYFjxYH4fZ9ubGn0ddkdr34qWxEyFjVwbJaUZjAdAAAAAAAAAACYfowxZ0h6v6QXS/K7IDIpLMwYc6GkS0dXd1lr31+/HgIAmtVIyT8szC+sxh0WNg0m9Tz0ndLARumxz7rLLDxXOv3aqetTI6WyUucy7zWZ6JFPSi/4RHn9jkuC29r6S2nx+eX1zT+THnhvMv1E61h0TvD+u6+QXvjT8vrj/9Q0QWGSlPMJUAzSne6NdRxXgCMAAAAAAAAAAKiflgoLG/UWSYdJOk5e4NcsSR8dXcYl3BhjHpO0StJYKosZrWMk3SXpA1PRYQAOd79Z2v1bqTQsFYek4ujXoz8qHf6eyeUdgzyeYxI4pR39MXdY2E+fL80+Tlp4jnT030nZntqP51ItLGnNl6ST/0MKO2hlpF866YvSHa+uHgZWJCysrgr7pbZ5/vsICxtV5X296Dz/sLChrfXpDjBVnvqG//btd9TetvEf/IiIDqwPX7aRr3kq7c1cGXdm2OKIFzY2Fh6WDxs4NhqqVS30dCYp5b0wy7iBlumOyWFirsCxSQFkfVKqFf/lBwAAAAAAAAAA05UxpkvSV+RNFirJN8XFNZvgI5Ku0OisPcaYb1prH0q8kwCApuYKpvELxjHGf6I36/xV00KMkY77jHTMx6XhHZKsNLxTKg56Y2m7V0ltcxvdy6k161j/sLBKAxu9CR2DPPqZ8WFhrjHFmP7mny5t/5X/vmdvlPJ7vckgJWnD/9a9O7bapNsV/AIUg3Rn+qJ2R5I7wBEAAAAAAAAAANRPy905bK0dNMZcIOlaSeeoPDjIyJtlcCwMzMgLFXuuasW+GyVdai2pLEBD7XtS2vO7ydsL+/zLFw4Et5dEWFjXQcH7dz/oLTvuks67vXoAw/BO6cAz0qwXRAtrCHt6CltuYL209CLpwgekTT+STEraea//IIZqYWKonWMQUtWQuJmi2vu6bYH/9qFtyfcFmEr5Pe59paIXABVbyOCqRedXLzOTzT1J2nZryMKOc30rSOek9HypfX70utZ64a+VAWORAsf2EJ5ZqTgoDQ5Kg8/Gq5/pKQeJ+QaOBaxne9x/swAAAAAAAAAAAERkjOmVdIeko1Se9LPS2Ng+X9baDcaY6yVdPFr2dZIICwOAGcYVTOMXjJNy/FqJErjT9NJtUudS73Hnssb2pdEKe937rPUC1vofq97O1pvHr0eZXHA6mk4/L1H1HuEOC7MFaXCLFxZWHKoeQpeAvA0/vjtrcpHa7k7Hm0DbFeAIAAAAAAAAAADqp+XCwiTJWrvDGHO+pPePLmN3sdsJX8eMhYftkfSPkj5LUBjQBFyzFhUdFw73/qFKewmc0rIhL3buuFvacY+04Az//aWidN87pDVfkWS9wIUzvyctOjdc+6HDwiKGS8060lsk6fcfJywsKVG/D8YR+MOvJk+11zM32397vr88qAdoSQHv3dKIlOqoT9uVTvt2DceYAXoOCV92pp6LjJEyHd7SsTh6fWulwv6K8LDd5WCxUIFj/ck/p1ZW2OctAxtiVDZStq8cIBY1cCzdOXN/DgAAAAAAAAAAgJ/vSTpa5bF9I5Kuk3SLpJKk/w7Rxg/khYVJ0vmSPphsFwEAzc4VTJMzk8ejGsdEb1ZM6jktrbhM2na7/7673iidfrW07bZwbVVO7LjlxmT6h9az6gpp7Vfd+39ymDeJ8y0XTEl3hktDocv6BSgG6U73Re2OJHeAIwAAAAAAAAAAqJ+WDAuTJOtN6/SPxph/k/R6eYN/zpC0RBp3dXe3pLsk/VzSN6213D0ONIt0u/9218XMoAuukmSm+JS2+Xp3WNgT/y6t+XJ5Pb9Huu0i6ZWbpLY51dsOGz41+Gy4cn4XfVOOWaMIC4tu35rwZYNm7yMszFM1LMwxKKGU92Zoy9QSqAQ00Prr3PtKI5JqeG8b/8GPk7TPr15mJttxV/iyYV9zjGeMF96a7ZG0PHr9UtGbKXZcwNjEwDHHen6PVDiQ+FNqXdZ7TfJ7pDgvi8mUw8OeCxKbEDgWFECWjjZoEQAAAAAAAAAANC9jzGsknadyUNjdki6z1m4c3X9QyKZuGGtS0guMMd3W2v2JdhYA0NRcwTQ5n/GQxjHBVSnq5KBoDfNOde9bd410yNukRz4Vrq21X5UO+Qup/9Fk+tYoJi3NPdmbINkl1Sap5I2/9G1jBk8Ut+BM6bRrpLte7y5zw/FT1h1XWKIfvwDFID3p3qjdkRStTwAAAAAAAAAAIBktGxY2xlo7JOnro4uMd2V3tqScpJ3WWseVKwAN5woAKDouHD7138HtTfUF6QNPu/c98+3J24pD0qafSM97U/W2w4RGDWyWnv5G9XKSdMQHJm9zhYXt/HW4NlFmC+HLLnmZtPlnjp0MQpIU/P4//C+lbMAMZvm9hIVhenINxgptBg/aSlK6M0JhXvOGSKVHg6dmx6tfyksj/V6AWD5q4NhuQlcr2YI0vMNb4ki3jw8PqwwcCwogy87ygkVT2WSfDwAAAAAAAAAAqMXfVDx+WNL51tqBqI1Ya7cYY7ZJWiBvQtHnS/pNMl0EALSCvCOYJuczoapxjN2wz2VXYlpJVxk3eOtLwrf12w94YWGbr3eXOfYz0qHvCt9mI5i0lM5JP1whDWzwL3PpfklWutYxpnimO+iy4LCwKeQKS/Tjd04M0pnukZGJfH6M0icAAAAAAAAAAJCMpg8LM8a8QNKLJR0had7o5h2SHpN0k7X2wcry1loradeUdhJAPKl2/+3Focnb7BQOzlhwtrTtturlula59+1yjEN85JPhwsLChEY98N4Q7Yxafsnkba6wMEQXJtxtTPsibwBGre1MZ0EzNx7+vuDXKd8vdSxMvk9Aow1tldrnVS/nEiZQM+34vYyylW+UnrwqXFmTqm9fUB+prPezFvfnrTg0GiK2uyJILELgGH8LlBWHpOIWaWhLvPqZ7orwsBCBY5Xr2V5+hgEAAAAAAAAASIgxZrGkYys2vStOUFiFx+WFhUnSISIsDABmlBHHJF5Z4xcW5n/dt8SkntNTz+rg/YUD4dvK90tD26TBgDEL88+cHhObppr+dpLGMkaac4K06/5G90TDJZ/x9Q45n3NikLRJqzPVrQOlfZHquQIcAQAAAAAAAABA/TTt1R1jzPGS/lnSGQHFPm2M+ZWk91lr75uangFIjCuUpOgzHvDA0/XtS6WD3xouLKzaLGS1CBMUsf674dtr9wlPKkYY+IBgfgF3LnNPkp75tv8+AkJGBQzGSrcHD04ZIS8U09T666RZH4tff2eIP5VXXhG//Zmi9/AIhUMEtGH6SbdLHYu8JSprvYGpYwFjEwPHqgaQ9UvMflxW2O8t2hijspGyfeUgsaiBY5mucCGNAAAAAAAAAADMDKeOfrWSNlhrb6+xvcqBAXNrbAsA0GJGHME0uZRfWJj/dVvLtfXpKZVNtr2fHiUNb3fvn3tyssdD8zrsPdLdYSaKrq8RG36scjbGhNLdmV4dGIkWFuYKcAQAAAAAAAAAAPXTlGFhxphXSLpaUrvG32U/dnW2ctsZkm43xrzBWvvDKeoigCTkZvlvH9k9eduar9S3L5XmnBSuXGF/9Lb3PxWuXJKhUXNOlDp8wsLaFwcc3xJwEEUxwsxYC8+RM8ijlE+kOy0v6P1vUlKmR0rlJL9BBkMBg3OAVratxvHyW26sXoYBbNW5gk598XsUERkjZbu9pXNZ9Pq2JOX3BgeM+a2PPY7zt+20Zb3XJb9HipOva9KjIWOzJwSOTVx3BI5FOtcAAAAAAAAAAND0KmdZeSiB9iovanQn0B4AoIWMlBxhYWZyWFjKMQbSWsLCpq2lF0ubfpxMW0FBYUtfLqXSyRxnSjCOqSarrqgtLCzT5U0gWCPX+c+P3zmxmu50r7ZqU6Q6rgBHAAAAAAAAAABQP00XFmaMOVzSNfKCwqTxAWF+wWEaLXu1MeYEa+1j9e8lgETkZvtv9wsLe/QzwW3NekHt/RmT6wtXbu1XpeOq9GuisCFgthStXZdMj3T8P/vv636eu97ARqlreTJ9mAnCzoy15KVSpkPav9Z//8YfSoe+I7l+taqhbe59JuWFqbQv8N6nEw0H1AVa2exj63+MpRfX/xitLt0RvqxJ1a8fgB+TKgdOxVEqSPn+cAFjfoFjxfCzl057tigN7/SWOFJtFaFi1QLHZk8IH5uV/GzJAAAAAAAAAADUpnIgzt4E2qsMCOMCBQDMMK5gmlxqcjCOkf/YDauExmei+fQcMjXH6VhUvUxTISCvYRIcwxElmMvvnFhNdzrk+PkKUQLMAAAAAAAAAABAMpouLEzSl+SFf1WGhOUl3Sdpw+j6MkknSMqNlrOjdb4s6awp7i+AuHJz/LcPbY3e1orX1taXSibkbF9+oWaSVG3WOWu9sKPAMiFDxYKc8AVp6UXuULBUwK+AtV+TjvlY7X2YKcJ+v573p8H7t/yi9r60usKgdMsF7v1jP59tjrCwZ2+SVr+lPn0D6q1tvntGyqRCJF0WnCV1LKzvMaaDar+/xxeuWzeAukhlpLa53hJHcUga6S+Hh43sqQgVCxE4ZgvJPp9WVhr2/ieK83+R5M1IWxkeFjZwLDdLyvS22OzHAAAAAAAAAIAWUDnAJnoCwWRLKh7vSqA9AEALcQXT5IxfWJj/2A1LcNL0teyV0uP/VP/jzD+j/sdAcznig9Kjn45e77h/kh76QCJdGC6Fz8n1OydW053uiVwnSoAZAAAAAAAAAABIRlOFhRljjpIX9mXl3V1vJX1e0t9ba3dPKDtL0gclvb9i8+nGmGOstb+boi4DqEXncv/tB56RiiNSOuet5/cHt3PYe6QjP5hcv8KGhbkMbAjen98r5aqMfaw1LOyg10uHvTu4TNDzXP8dwsKiCPv9ihQyM0NtualKgdHZHtsX+O9+9oZEuwNMrYCBiMPb6nfYhedIp3+nfu3PVMZ/dlpg2kq3Sx3t8YIHrZWKA+WAsYmBY5XrleFjlYFjDOYuKxzwlsFN8epn+yqCxCrCxLIhAscy3fzNCwAAAAAAAACYqHLGpCNracgY0ybp2IpNPrOMAQCms7wjmCaX8gkLc4zdsNUmhEXrmneqN2an3hMzLntFfdtH8znir6KHhfUdIR30OumhZMa4u8IS/fidE6vpTkfP9Y3SJwAAAAAAAAAAkIymCguT9OrRr2NBYe+21n7Rr6C1do+kvzbGPC3pKpXvDL5EEmFhQCvofp7/dlvyAgDGgga2/MLdxvJLpBP+Jdl+1RoWtm9N8P58f4iwsBoHKoQJKDEBvwJKNYaVzTRhw8IYZFTdQx8K3j/23h7e6b9/1tHJ9geYUgHniKEaw8LmnSrtuHvy9gVnSefeXFvbM83y10gbvheiIGE5QGjGSJkub+lcGr2+LUn5fe6AsWqBY4V9yT+nVpbv9xati17XpEfDxmYHB47lZlc8rggcS7cTNgYAAAAAAAAA088Do1+NpJXGmMOttY/HbOvVkkZnH1RB0j21dg4A0DqKtqiCLfjuy5ncpG3GMXajpDoHSaFxUhnp0gHpO+31O0bnCinbW7/20Zxys6VLtkvfnx+u/DGfkA6+Umqfl1gXRhxhiX6yJnpYWE86+vs6Sp8AAAAAAAAAAEAymi0s7KTRr1bSPa6gsErW2i8ZY94o6fTReifXsX8AkpTKBuysCExZf5272KnfSqw7z6k1LKywP3h/mGCpsOFTLmGeQyrgV0Ctx59peL2S0/9w8P6x97ZrsE3hQDL9KBzwvq8M6sFUCgoU3PrL+O2O7HGfpxa8KH67M9Wso8OFhYUJ7gSQDJPywnhzfVLXQdHrlwpeONZzQWIRA8eKg8k/p1Zli9LILm+JI5UbHx4WNXAsPfkGAAAAAAAAAABAY1lrnzbGrJF08OimD0p6c9R2jDFtksZmILOSfmOtTWiQAACgFYyU3KE0udTkYBxXWJgNmtAPrS/dJvUdIfU/Wp/22xfWp100vyjBX0d9OPHDD5eGQpfNpaKPn+jOVJkI20c+4LwMAAAAAAAAAADqo9nCwp5f8fgbEer9j7ywMEk6PLnuAGgK665x78t0JH+8sGFhXav8t1cLK9r7uNTtqDum5rCwEAElQc/TMfseHAgLmzpj7+3ll0hbb568f/eDtbU/uEX6weLx2158tzTvlNraBUKpMhDRWsn4D2L0tfUW6eZzgssEBUfCX6YrZMEI3ysAjZXKSG1zvSWO4vBo2NjucrBYZZhYtcCxUj7Z59PKSiPS0DZviSPdOT48LEzg2Nh6tk9K1RgcDQAAAAAAAABw+bqkT8m7iHa5MeaX1trQ4wONMSlJX9X48YVVJyIFAEwvI9YdSpM1k8PCUo5xlNaWEusTmlUdx+3MP716GUxfR31EevgTDTl0UGDiRDmfc2I13enok+sGnZcBAAAAAAAAAEB9NFs6wKyKxw9EqDdW1kxoA0BTC7oYXxGYkspO7Q30YcPCrKNPxcHgeo//i7TkJVXarnUwSpiwsIBfAQMbajz+DDPdwtUGt0rP/lwaWO8NbJl/VhMFJ4yeN7IBgxK23CwtOjd609ZODgqTpBtPlU66Slr1ZinTOb78zl9L238l9R7uHTPdHv24QFiDm6TOZeHKDmyqHhQmhf+dh7L8vnDlwgR3Apge0m1SeoHUviB6XWu9/x8mBow5A8cmrOf3JPC/wzRSHJAGB6TBzfHqZ3srgsRGw8SyPuFjfoFjmZ5ooZ4AAAAAAAAAMLN8QdJ7JM2Xd+H/P40xh0n6pLV2IKiiMeYISf8q6UUqDyhaI+na+nUXANCM8gFBObnU5GAc4xijaqtN6IfWt/ot0gPvq0/bz39/fdpFazj8fTHCwpI55wzbodBlsz7nxGpihYWVRiLXAQAAAAAAAAAAtWm2sLC+isc7I9TbXfG4J6G+AKi3oBup+x+VOkZDe7pWSfuemJo+SeGDU1wBZtVu1t95T/W2bTFcH1x23FW9TKrZfgW0sFKN369msvt30i/PlYZ3lLcd9Abp1P/2gvvqqdrr2LG0fN7oO9Jd7pfnSW+IMbhi7x/c+37zdmnt16UXXi+1z/OCPX77Aemxz5bLzD9TeuFPpSx/iiAmW+V9m98bvq113wlXrv+R8G3CE3aGRgJjAIRhjBdGmumUtCR6fWulwj7/gLEwgWNRfrfMBPm93jKwPnpdk5KyfeMDxkIFjo2upzv43QEAAAAAAABg2rLWDhhj3izpJ/JmwEtJ+mtJ7zDGXC9p3AezxpjLJB0q6cWSTpUXMDb2IeqQpNdbW+0CKwBguhmxAWFhhrAwVMjWce7xjhjX9huOa9GJyc2SzvqhdPsrp/zQQYGJE+VMLnL7scLCAs7LAAAAAAAAAACgPpotKSZV8ThK8kpl2ZSzFIDmUjjg3rf5Z9Kic73HrqCwJS9Nvk9S+Bu0XWFhqhIWFiYIrFrgWDV7H69eJt1R2zFQFuZ7ajLSovO8x4e+S3ri3xxt2caGBNz3zvFBYZK07mrpoMukZS+vvf0n/0N6+ptSYUBa/irpyA9LqdGAvonHneicm8qPZx0TXHbzz6UlF0Tr27prgvfv+o103zukM74j7XlofFCYJG2/Q3ryKumIv452XOA5VQYi7lsr9R0RrqkH/zJcuWe+LZ32rXBl4QkbnMi9CQCmgjFSttdbulZEr18qSvn+iiCx0TCxyvWgwLHiQPLPqVXZ0ujrsrt6WT+pbEXIWNTAsVlSOvqswAAAAAAAAAAwlay1PzfGvF3SVSqP8euRdOmEokbS1RPWxy6+FSS9xVr7QD37CgBoTiMBQTm5lE9YmPEfUm6rjfFE65tzQv3aZhIozD6+IYcdjhIW5nNOrKYn3Re5TtB5GQAAAAAAAAAA1EezhYUBmEnSne59Y0EcpYK7TO/hyfYnKldYWLWgrzBBYGHCp4I874+rl2mbV9sxUBbm+7X4QikX4kL67t9Kc46rvU9xFIe8wCs/679be1jYY5+THvyr8vqeh6TBZ6WTvzR6/MHg+n3PLz9OpaVMj1TY51/21gulV++U2uZE6GCIYJ/110kHPic9cZX//kc/S1hYWPufktb+l7TsFdKcExlEJanqe3DzT6VlFyd7yHoOjJuuekMGtpl0ffsBAElIpb2/lyL9zVShOOKFjfmFibkCyCrLlEaSfT6trJSXhrd7SxzpjslhYq7AsUkBZH1Sio8IAQAAAAAAANSftfarxpi1kr4taaHGXyStfFwZEGZH13dIusxae8tU9BUA0HxGrDuUJmtyk7YZ+Y9HKjEB3PQ36+j6tLvy8vq0i9bStdwb87jrvpAVkhkbOWKHQpfNmehhYdlUTm2mXcMRjkNYGAAAAAAAAAAAU487AQE0Tu+h7n19R3pf+x91l8nFvKE9KdYRZFY1LCxEsFStYWELz6teZiyQDbUL+n6lstLil0infau8bWSXu/zexxsbFuay897a2rZWeuLfJ29/6uvScZ+Tst1Sfq+7/unf8dl2tXRbQHDS09+UDn9P+D5mesKVW3+dtPZr/vuCvrfwWCv99PnS3j946498yvt62ZCUjj5AZVqpNhBxxz3JH/PgK5Nvc7pbcmH1Mtm+cAGRANDq0jkpPV9qnx+9rrXe35+V4WFRA8dq/b9pOikOSoODXhhvHJmecpCYb+BYwHq2R3LMyg4AAAAAAAAAE1lrf2mMOVjS2yS9U9IKR9GxVIUdkq6S9HlrrWNGMQDATOAKpcmanFI+16tcYWE2zKSSaG3GSOf/Srrp9Gj1Xni9dOtL3fuP+2xt/cL0cfKXpBtOnNJDDkcI5sql4o3F7M70ajgfPiwsHxDiCAAAAAAAAAAA6oOwoFmIogAAIABJREFUMACNE3QzcWnE+/rUf7vLLAm4ID8VSnn/7UmEhalKG0HmnCQte0X8+mOKQ1K6vfZ2ZgJXcFzHEuniJ6RM14QdAbOEpRr5qzlgEFRhf21ND22VDqybvL00Im2+XjroUumJf3XXX3zB5G3VzgEPvDdaWFi2O1y5x/5Rga/V4LNSx+Lwx51p1n6tHBRW6Tvt0utL3kCtGavKQMTuVckfct4pybc53aU7q5c58Yv17wcAtDpjpEyHt8T528la72/UiQFjoQPH+pN/Tq2ssM9bBjbEqGxGgzJnxwscS3fO8L8BAQAAAAAAgJnHWntA0uckfc4Yc6ikMyQtlzRXUk5eQNhWSXdJesDaajMvAQBmghE74rs9Z/xDcVLyH6NqaxmfidYx/7TodRZfKL1qi/TkF6Udd0v7n/bGfx71EWnJy7zr24AkzTlhyg85EiGYy3VerKY73aed+W2hy7tCHAEAAAAAAAAAQP00Y1jY2MCeU4wxK0PWWVS5Yow5U4FJLBMOaO3tYcsCSFjvYf6hMWMXD3fd666bCRHWUU+24N2gPumm5gTCwkIFijmc8/PwoUdBnr1JWnZx7e3MBK7vV6bLJyhMCvwVZRr4qzko6K7WsLCS/0AtSVJ+r/d17X+6y2R7Jm8zKannUGnfE7X1bUwm5M/N0Nbg/T8+VLqUyYyd7nuXe9+dr5HO/N+p60vTqTK+PUqoyaLzpC2/qF4uTPAVxgsKOx2z6o317wcAzHTGeH8jZnvk3T8WUakoFfaWg8TyFWFjYQLICgcSf0qty3qvSX6PFOdlMZlyeNhzQWITAseCAsjS8QY5AwAAAAAAAGgO1tonJCV04R8AMJ25QmmyqZzvduOYsIYMSjgZI3UslI75eKN7kqwj/p903zsnb+85dOr7Mp1kuqZ07MBIaShUOSOjjMnGOkZ3ujdS+SgBZgAAAAAAAAAAIBnNGBYmeSkq19RQ99YI5a2a93UApr+U46be4ujFw/1Puet2H5x8f8Z0LJUGN1Uvd01Kes0u7wblMUGBS2HFDQs76Uvj+1KLTf9HWFhYru+XM/gr4D1i0jV3J7agQVBjgV5xlfLufY5BWePLOMJ5Xny39L9z3fW2/0qaf3r19iX3+Siqwn4vSCI3K5n2ppugmeQ2fF86sE7qOmjq+tNMqg1EjPJzmA05aCfNbJeRhQkLAwA0v1R6NHgq5v9Ppbw00l8OD3MGjvmt7w4O051pbEEa3uEtcaTbx4eHVQaOBQWQZWdJuT4pFW+QNAAAAAAAAAAAAKaWK5QmZ/zHfRn5j/Gw1SaExfSx8grpmW+GK/u8P6lvXxpp+WukB943+Tr1oe9oTH+miyTGi0fgCkycKGtyzrDEanqihoUx9gEAAAAAAAAAgCnXrCFZVl7oV9Q6Y+Jd3QAw9VzhPGMXNOeeIm38gaNuHUOVDr5S+v3fhiv7vTnSGypOQWEu/g5skjqXuvfHuYDcsURa/upodboPlvav8d83sid6H2YqZ1iY4z1aKrjbyu+rvT+xVQkqsjZcsJefYtCMZjUE77TNkRacLW27zX//TWdIF94nzTmheltxQ/r87Pi1tOSC5NqbSbbdLq26otG9iK84JD17k9T/e+932NyTpGdvkHbdL/UcIi15mdSxKF7bI/0R+hFyEE6GsLDoqpwHV1w6Nd0AADRWKiu1z/OWOIpD5RCxOIFjSf7t2uqKQ1JxizS0JV79THdFeFiIwLHK9WwvQaIAAAAAAAAAAABTJO8Iysk5xqEaxxgPW22cHKaPU/4rXFjYwhdJJ3yh/v1plI6F0ln/J935Wm8yVEla/efSoe9sbL9a3tSeS4Zt0DjcMtc5MYyuiGFhRRVUtAWlnZMrAwAAAAAAAACApDXzp/K1XD0JW5dQMaDRUo7T0NiNz65ZkLLRLkZGtvpPwoeFSdLglorwlxBBX4WB4P2umZZSbdLh75Me/fT47SteKx372eg3qq9+i/TQB+P1EWVRw8JsQFjYrvulVW+svU+xVPn1ufu30pzj4jVdChikYExwgFo1R37IHRYmSTecKB3/z9Lh7w1uJ8lZ3oa3JdfWdGPSweEWd79JWvnG1gxdKAxIt10kbb3FXaZ9oXTOTdKso312VvkZdIU7+hnZFa5cmrCwyKqFJs4/c2r6AQBobel273/IOCGi1kqFA+WAsbEwsefWqwWQ9WuqBy03tcL+0QHxG2NUNlK2rxwkFjVwLNMVP5AZAAAAAAAAAABghhmxjrAw4wgLc1yHKVmulc0YqYy08nLpmW+5y7z8aal75ZR1qWGWXCi9eqe0+wGpe7XUPr/RPZoGpvZa74hrTP0ErnNiGD3pvsh1Rkoj6kg3821JAAAAAAAAAABML832qfx6cbciMLO4wpRKY2FhjtCs5/1JffozpnOZdPBbpTVfCVd+w/elQ9/uPQ4TODSyU9ozLP32g9LOX0vdq6Sd91avl+6Qjv17b0lCzyHufcXBZI4xE7iCruKEhXUs9m7+f+KL0tPfkAr7pGWvlI75hJTKRuvXvrVeGNyOe7xgoqM+Is07xV2+2nt3w/fih4UVAt5PJiMN1RCutejc6mUe/Ctp1RVS29yAQgmGhRG257boPOnZnweX2X6ntOCsqelPktb+V3BQmCQNbfXO/S/8ic/OEH8GD++s8j4eFfYcXsMsgnBY+rJG9wAAMN0ZI2W7vaVzWfT6tiTl904IGJsYODZhvTJwbGymaUiy3muT3yMdiFHdpEdDxmZPCBybuO4IHEu3J/6MAAAAAAAAgHoxxqQkHSXpBZJWSJovqUPehdJBSdvkjR98SNIj1pLkAgAYzxWUk3OMfzHyn6zQJjlODM2ve7V734IXzoygsDHpnHsM6YKz/SdtPfqjde1SSzv5y97kqBMd9IbJ5e7ymUT4oNdVPUS+lNeG4bXKl0aUt44x9RNkaxgT2J2JPpn35uF1Wt35/NjHBAAAAAAAAAAA0TRVWJi1dmWj+wBgijnDlKqEhWVn1ac/lU7+srTiMun2V1S/GXrTT6KFhf3hC9K6a8vrw9vD9altXrhyoQWMqywSdhTa2Pt1Itf7e9ax0sb/c7f1+Oe9cKsxj35GGtgsnfY/4fs0tEO6+UXSwAZvfWCDtO126cV3ecFh/gcPbjNfQyhAaci9z6SkQsCd9cteEdy28R/UNY4tSBt+IB38ZwFlHN/HOLbeIh1yZXLtzTQP/rV0wd2N7kV0D380XLnNP/VCBlMT/hQPM9Z9yy+kgy4LcZCQ4+YdM6iiBt2rGt0DAACCmVQ5cCqOUkHK91cPGPNbz++RigH/G8w0tuiFwQ7vjFc/1VYRKlYtcGz2hPCxWdEDqQEAAAAAAIAYjDFnSbpS0ksk9YWsttsY81NJX7XW3lm3zgEAWsqIjRYWlpL/uBjLvNYzy4pXS498yn+S15Wvn/r+NKuDLpscFtaxRJp3WmP60woWXyBle73JuioddOn49UXnS9k+7zp7pRWvDWz+zj0/13e3/WfokLAxOZOLVL5SZ6o7cp3Pb/iglrWt1NuX/a1mZebEPjYAAAAAAAAAAAinqcLCAMxAxnEaGrsoP+QI0ZqqG1oXnSO95EHpx4cEl3v2Z9KWm6VF50phZp2rDAqLYv+aePWcAga9FAgLC80VMjUxCGjM6rdID3/M3daTX5u8fd3V0on/JuVCjpvdfH05KGxMYb/0zNXSsZ92HLvKIKhawuoKg+59tiTtX+ve/4J/iH/cSg9/okpYWIIzRq7/jqSYP+fTXZhArJ33eOVaLcgqSsjDrgekeSdP2BjitVnz5XBhYUyy3RiLL2h0DwAAqL9URmqb6y1xFIekkf7RELHRQLHnQsVCBI75DeKfqUrD0tBWb4kj0zU+PCxs4FhulpTplVKOgGwAAAAAAABAkjHmCElflHTW2KYI1edIulzS5caYWyS93Vr7RMJdBAC0mJGSIyzM+IeFGccklJZxNTPLrKOlM78v3fdOaWC9ty07Szr8/5NW/3lj+9ZMDv4LaXCrNxlyfo805wTptKultP/PFyS1L5BedJN0z5ulvY9760f93eQJctvnS+f8wivX/6jUNl866iPS8kucTT81+Liu3vofsbrlClAMoy3VHqvexuFn9NVNn9FfHfSZ2McGAAAAAAAAAADhEBYGoLGM48bSsfClvY/570/Fn/UosrDH+uV50utLyQYOTTT3j5JtL2jQS5GwsNBcYWGu93fXcndbwzv9g7NsUdrwfWn1n4Tr071v9d/+6D+4w8KqBd098gnp6I+EO/5ExaCwsIJ060vc+3uqhPVJ0vPfLz32ueAyYwN9nP2o488uKoR8nbfcJC1+cX270kg3/pH0honn4BADEbfeIg3tkNqrhfcxqLEhaglVBABgpki3Sx3tUsfC6HWt9f5XHakID3suSCxk4Bh/J5UVDnjL4KZ49bN9FUFiFWFi2RCBY5nu1gsHBgAAAAAAQGjGmEsl/ZekDpVDwvw+nAuz7xxJ9xtj/tha+7+JdhQA0FJGSiO+27PGf4xnSo6wsLDjlzB9LLtYWnqRNLBRKo1IXSuZGGciY6RjPuqFWOX7pbY5je5Ra5h3snTRY97Y39wc9zXQuSdKL3tktNxsyRFmOOb3+++L3SXXOTGMrnR37LpPD/1B+wr96smEnBQZAAAAAAAAAADEQlgYgMaqFhbmksom35ckjrXjbu9Cbr0se3my7WUCLuqWCskeazqLGhYmSQvOkrbdPnl7achdp3AgfJ8csygGqjZjYikfvc0xQX2/p0oAWphBOUtfXj0sTJL2PyN1r/TfV+28g2SEDWV78P9N77AwyQuuyM0ur4edtXTTj6TVf1qlUIi2OpaGOx7CY+ZZAADqyxgp0+UtnTH+lrElKb9vfMDYxMCxyvXK8LGRPVJhX/LPqZXl+71F66LXNenRsLHZwYFjudkVjysCx9LthI0BAAAAAAA0KWPMayVdLT2X0DJ2Ea0yGGy7pN2jS0rSLEmzJc2vaKqyXpeka4wxl1lrf1C/3gMAmlnB+o9fyzjGeBr5X0uwTC4zMxkTPNErPKk0QWFxtM1NtFx/YVfsrixpO6imuh2pLg2Wxo/5zZqc2lMd2lfsD6zfX9hNWBgAAAAAAAAAAHVGWBiAxko5TkOlQnDgRpTQpFqlIsywdNPp9euHJK16U7LtLTrXvS/Ojdcz0f6npIc/7r8vKCzMON77xYCQr7rPZBdiEJS18W7ILg5ErxPFgjPDlRvY4A4LY8bIKRJysN2eh+rbjWbwh3+Xjv5IxYaQr80T/149LCxMaFXYnxsAAIDpwqSkXJ+3dMUYIF0qSPm9wQFjQYFjxcHkn1OrskVpZJe3xJHKjQ8Pixo4lo4/mzYAAAAAAADcjDGHSfq6vACwyrCv/tHtN0m6x1q721F/rqRTJJ0v6Y8l9Va0k5H0DWPMw9baJ+v1HAAAzaso/wlQ047h8MYxzq3EODEATS9eqGHGZHVy79mxj5oxWZ3Wd65u3v2jcdtP7j1bc7IL9OMd347dNgAAAAAAAAAASAZhYQAayxWmZIvBN9EuiH8hM7IoYWH11rks2fbSbe59QaFV8NiS9Mvz3ftdgWCSVPKf5VBP/VdAe3UOC7MhBkENbJC6VkRvuzgUvU5UL75HuvGU4DLb73AHJIV5/qgdr3PZ7/9WWnW51L1qdEPIAT67HwxRKERbiy8MdzwAAAB4UhlvFu24M2kXh6V8fzk87LkwsZCBY67/I2ei0og0tM1b4kh3lsPDKsPEggLHxtazfVMQ5g0AAAAAANCy/l1Sp7wLlkberF0fl/R5a+3+apWttTsl/VTST40xH5H0fkkfGm1Lkrol/ZskLnYCwAxUtEXf7WnHuDqjlO92G2YSPgBooGpnqXnZhdqV36552UXalt+stDJa1XGoXjbv9VrRvrqmY79q/h8rl2rXfXvvUMHmdXzP6Xrl/CuUUloppXTL7h9rb3FPzJ4DAAAAAAAAAIBaERYGoLGCwsL2/sFdL9tbn/74SWWn7lhBeg+vT7snfEG6/z2Tt5emINyp1e26X9r/lHt/psu9b/sd0Y+XVFhY/+NSn9/7KcRF+qFt8cLCpiIgau7JUts8aXiHu8yu+937HIPJkLAo74Vd90tzTqhfX5rB+uukI/66Dg2H+Hle8Zo6HHeGS/HvFQAACJBuk9ILpPYF0eta64WqV4aHRQ0cI7i3rDggDQ5Ig5vj1c/2VgSJ+QWOzS7vmxg4lumRjKl+DAAAAAAAgBZjjDld0rkqB4Xtk3SJtfbmOO1Za/dJ+jtjzB2Svi+pa7Td840xp1lr70qm5wCAVlG0Bd/taceknkb+n8dbwmwANDnXeeqU3nP0psXvruuxUyali+e9QRfPe8OkfRfMfbXOnHWB3r/mct+6nF8BAAAAAAAAAKg/7mYH0FiOQRqyheDAn+6VdemOL9MkYWHpjqlttzhcn+NNJ2u+Erw/053s8ZIKC3vq69Jxn/HZEeIifd41G1g1MW9Kf8Gnwpc1Rjrz+9Ltr5RGdvmXCfqeJHnjfKYnubamnQiDQW44UbpsyAtVmK5++4FyWFiSs5ZWez+f8o3gQEMEm3uytPPeydsP/8up7wsAAJgZjJEynd6iJdHrWysV9k0IGJsYOLZ7QvhYReBYfm/iT6ml5fd6y8D66HVNSsr2jQ8YCxU4Nrqe7iBsDAAAAAAANKu3j3418i4MXxk3KKyStfYXxpgrJX1b5QvOb5NEWBgAzDBFx2SQace4OuP4PN3GHcsGAFOG0C0AAAAAAAAAAOCPsDAAjeUKP7JF7yZWl2xvffrjJ5VQQFOtXMFqtUo5QnhKhIVVtfGHwfsTD+JJJdNMacR/e5igorVfl+aeImUjBqHFDUFa/WfRyi84U3rp76UfLvXf//T/SKd+w39fkmFhDChzi/o633W5dOZ369OXphPh58TaKgEBVdp63pvCHwuTrXzj5LCwvqOkWUc3pj8AAADVGON9lpLtlbpWRK9fKkqFve6AMWfg2Oh6cSD559SqbGn0ddkdr34qWxEyFiNwLJ1L9vkAAAAAAABIMsa0SbpY5QuV/2utvTap9q211xhjLpH06tFNLzfG5Ky1jgEQAIDpqCRHWJj8x3imHOPtbJIT+gFAHbhOU0aNn1QoqA+WkDMAAAAAAAAAAOqOsDAAjRUUFpbf778vN6d+/WlmqTqdstOOsLCBjfU53nQyvCN4f9u8qelHVM6wsBAhTuuu9pbz75LmnxrhoDEHALQviF6nc4l0zCel3304YsUEA74KB5Jra7qJGha24XvS4FapY2F9+pOk7oOl/Wui17MlyUQMA9z6S2nRuQFtMuimrg59l5TfJz15lTS8U1r4IumUr1cJcAMAAGhhqfRo8NTsePWLI1K+3z9M7LnHAYFjrv9jZ6JSXhre7i1xpDsmh4lVho+NW58YQNZXv8+nAAAAAABAqztF0tisY1bSP9XhGJ9XOSysW9Kpkm6rw3EAAE2qaAu+29OOiVhdgTaE2QBofs60sCZQwySnAAAAAAAAAACgZtzZA6CxXDcYlgpSYZ//vvb59euPyxnfk+58zdQft5IrWK1W6fb6tIvg8J++o6T+h6euL5WcN1lHuEh/xyulVz0bPuAoakCUJPUeHr3OmFTWva+U999v/WeeRNJiDAZZ8xXp6I8k35WkdSyMFxa2+Xppycui1fnDF4LDwoJe57l/FO1YmMwY6agPSUf+jXdOdQVvAgAAwJPOSen58T7TsVYqDo0PD4saOMb/e2XFQWlwUBp8Nl79TE85SCxU4FjFerYnelAyAAAAAABoFWOzjVlJj1lr70n6ANbae4wxj0o6ouKYhIUBwAxSdHzen3aMrTTy/0y6lOSkkgAwhVwhiFPah4AJNYkKAwAAAAAAAACg/ggLA9BYrgAsW5TyjrCwTE/9+uOy+MVTf8yJHLPf1Sy/371vYJPUubQ+x211w7uqlwkK5Fl+SfSwsL2PRyvvkkRY2NA2afdD0pzjQlaIMQTg4Cuj1xkz7zT3vuEdUsfiydvjBJoF2fOwNOuoZNucDuK8zr//Wy8Ya37A97UZxH0P3f4q6bKhaHWq3WBvA37mVl4e7VhwM4agMAAAgHozRsp0eIvf/3LVWCsV9k8OGAsKHKtcz/cn/5xaWWGftwxsiFHZSNm+coBY1MCxdKf3fgAAAAAAAM3oyIrHv6rjce5UOSzsyKCCAIDpp2gLvtvTjrGVrkAbGzSuBgCagHWMuW2GsLAgnF8BAAAAAAAAAKg/wsIANFZQWFjBERaWbUBYWCOOOVGqTqfsA0+79+1+kLAwl6Gt1cssPNu9b+nF0sMfj3bMNV+Wjv37aHX8uC7GRw062vdk+LCwqAMA+o6SDn1ntDqVeg5x7xvaNjVhYTvuJizMl+N1Puy90h/+xV3tV5dJr4xzM/oUijvQxRakHy6JWKlKWJgroC+VlQ59e8RjAQAAAC3MGO9znWyPpOXR65dGP6PyCxgLE0BWOJD4U2pd1ntN8nukOC+LyZTDw54LEpsQOBYUQEbQLwAAAAAA9bS64vGv63icX0t6q88xAQAzQFFF3+1p+Y9DdYXqWNf4JQBAVc0eWAYAAAAAAAAAwHRHWBiAxnLM6CZbkNb+p/++TIOCu1b/mbT2a/Vpe/lrpIMuk+58rbuM67Wq1YKAQKtsb32OOR088cXg/YsvkDJd7v2pXPRjjuyKXseXa7BTxKCjdddIB11a4zEdXvSz2gLy2uZKMvJ9TkPbRrtUkDb+QNr+K6ljidT/aPzj+WJAhC9XoFbnMmnhOdLWX/rvH9hYvz4lJuB9fsFvpJ+f5N4/9r4Ma+MPqhRwvM4nXiWZakFjAAAAAJ6TSpdDqOIo5aWR/nJ4WNTAsdJwss+nldmCNLzDW+JIt48PD6sMHAtaz86Scn1e+DIAAAAAAHBZWPF4XR2PU9n2ojoeBwDQhIq24Ls97RhbaRyT8dmo4+QAYIq5zlPNH9TF+RUAAAAAAAAAgHojLAxAYxn/Gd1ki9LQVv992QaFhZ38lfqFhZ32LSndJs0+Ttr9oH+ZoOCpWsw7pT7tTndrv+ret/Jy6dT/Ca5f7xtMUzmpNOK/79kb/Le7QpxcNv4wfNmobdc6oCGVkdrmScPbJ+8b2ioVR7xwvk0/qu04gRj04M8VqGWkpRe5w8IkKb+vcb8DwnC9z5//fmnOCc3RF9Psg4UAAACAaSaVldrneUscxaHR4LA9PoFju8v7XOu2mOzzaWXFIam4RRraEq9+prsiPCxq4Fgvwc0AAAAAgOlubsXjPXU8zljbRtKcOh4HANCEio7PvNOOcagpxzgZwsIANDv3earx4/+CAss4uwIAAAAAAAAAUH+EhQForKCwMJc9v6tPX6oxRjrvdukXZyXdsBcUJnk3D7rUKywsKLSqOFyfY04HriAuSTrtm9Xrp3LJ9cVPutPdx+Gdjkr1vEwfoe1Mt9SxuPZD5mb7h4UV9knP/jx8UNi8U6Udd8foAMMefFlHWJhJSQf/ufTA+9x1110jHfzW+vQrEY7vedsC73fImd+X7rgkucMNPhvws+IKZePmdAAAAKClpNuljkXeEpW1UuFAOWBsYuBY1QCyfvG/bYXCfm/RxhiVjZTtKweJRQ0cy3QR/gwAAAAAaHZtFY/rGRbWX/G4vY7HAQA0oahhYa5Am5Jr/BIANI1WvUbXqv0GAAAAAAAAAKB1EBYGoLFSjtNQfp+7TmGwPn0JY8GZ0oUPSDccn1ybR3yg/Lgw4C4XFOpVq3SnVPQ5dnGo4vGItPMe76bRBWcHB5tNd0kMFqp3WFi1C+77n5G6V06oEuN5HdggdS0P0Z0IbR98pRccVStXwN7O+yTzQPh20p3S8f8UHGLlh0FlDo73pklVD0W898rmDgtzBqGNDjxc/qpkj/eDJdLrClLKZ8Cjdb3O3FwOAAAAzBjGSNlub+lcFr2+LUn5vRVBYhEDxwr7k39OLct6r01+j3QgRnWTHg0Zmz0hcGziuiNwLM290wAAAACAuqsMC8vX8TiFisd1HEgDAGhGxXG/BsrSxn8cqnFMqmcJswHQ5JzD/xwhiFMpqA+cXwEAAAAAAAAAqD/CwgA0lmNGNxUCwsKqhcnU25zjpAvvl244IZn22heWH4/scpfrOzKZ4/lJt/uHhZWGva+DW6Sbz5H2PuatZ7qkF/7MC0+biXbc7d4X9vuU7Yl+XMegJn9VLrgPrJ8cFhbnIv3WW6Tnvan2/oxJd0jHfiZ6P/y4zhVbbpIGNoRvx6Skw94rPfNtadf9yfRtJnOGqI0OIDnu89KDfxlQ3zZx4JXrfV7R3wVnSdtuT+6Qj35aOurD8foCAAAAAEFMqhw4FUepIOX7y+Fh+YpwsaAAsrHAscoQ+5nOFqXhnd4SR6qtIlSsWuDY7AnhY7PqO4kBAAAAAAAAAIRUtEXf7Sn5j0M1jjFGhNkAaFlNMfwvKCwMAAAAAAAAAADUG2FhABrLGRbmE1w15uC31qcvUcw5Xjr7x9JtF9feVmWg0YrLpEc+6V9uxWtrP5ZLus1/e3E0LOz+95SDwiSpcEC64xLpVVuklON7OJ3tW+ved+IXw7WRiREW1j4/fFnXtGJjCgf8KkXqjiSpFPbG3ZBtv2pzcu8pV/jerKOjhYXtut8LpzrvDum2i6StvwxZkWEPvlxhYWZ0Js/VbwkOC9t6s7TovOT7lQjXdH4Vs5TOPi7ZsLDffUQ68kM+AWqEhQEAAABosFRGapvrLXEUh6SR/nJ42MiEMLHAALLdki0k+3xaWWlYGtrqLXFkusaHh4UNHMvNkjK9M/PzQwAAAAAAAACJKzo+9804JuE0Svlut87JDgGgWfiP/zNNMP4vcK7XamOXAQAAAAAAAABAzQgLA9BYjkEa/kFGo5olJGbhi8KV61gsDT4bUKBi4EnvYe5iuTnhjheHY8Y97fuD93X9dZP3De+Qtt0qLTq3bt1qXgGDhRaeHa4uWQfwAAAgAElEQVSJODdJlqLc5FplQNO226QlLxm/Lc4gqHuvDBfgF6bvp/6PdxNpUkzWf/vm66O1MxY6lumQzv6JtO5a6dd/GuL4/Jnlr0qgVq5POv070q8u8y/36D9KC8+tMuKkQZw/QxV97VoVvd0FL/TOty57fifNfoH3eP8zXgCka9BNM75uAAAAAOAn3S51tEsdC6PXtVYqDvgHjIUNHCMEvKxwwFsGN8Wrn+2rCBKrCBPLhggcy3TzvywAAAAAAAAASVLRMc4x7QwL8/9s0fL5L4Am5zpPNUVYWEAfOL8CAAAAAAAAAFB/pFgAaCzjCEwaWO+uk+2tT1+iynRJL75buvFU//0mLR3yDql9gfS7D7vbqQxRWvZyKZWVSvnxZWYdLWU6a++zy9A2/+1rviId/TF3va23zsywMFcIT8oRTtWMHv2MdOw/TNgY8yK9tcE3bW7+mfTYZ4Pb6DlEWnl5vOO7HPIX0m/elmybmQ5p9Z9IK14t3fFaacuN7rJt85M99nQRJlBr6UXu+ltulH58sHTWD71zY1Nx/QxVPLfOZdGbPfYfpBtPce+/963S6ddIt71c6n+kSmONHywEAAAAAHVnjPfZXaZL6lwavb4tSfl9FUFiEQPHCvuSf06tLN/vLVoXva5Jj4aNzQ4OHMvNrnhcsZ5uJ2wMAAAAAKbO2AXTU4wxK+t0jEV1ahcA0OSstSrJFRbmPw415fhs0FabiBMAGqy5I7eCrrs0d88BAAAAAAAAAJgOCAsD0FgpR1hYkGYJC5OkeadIry9Kux6QioPeuklL/Y9KXSu8vj76meA2FpxZfpztlQ5+m/TEv44vc/j7k+97GENbFXjhthVvtCsVpI0/kLbfJfUeLh10mXcDYSSO16Qjxs2nSRzXt2iMC+5x6kjS4Gb3jbcHNki3vjS4fucy6cX3JP9+Snck216lbK90zs+lgc3SDx3P3TGT5YznCgszqfLjauGI+5+Srj9Gel1eSjXRn7Nhntvck6K323uodPGT0o8P8d+/817pR6tDNtaC520AAAAAmGomJeX6vKXroOj1SwUpv9cLD6sMHAtarwwcKw4m/5xalS1KI7u8JY5UriJULGLgWHaWlM4l+3wAAAAAYPozkq6p8zGsuPAJADOOKyhMktKO4fBGKd/tpbjj5ABgyvifpwx/BgMAAAAAAAAAMOM1UboCgBnJxDgNVQuRmWomJc09cfy2WUdVrPgPOHlO31Hj10/4F6lntbTxR1K2R1r1Zmn5KxPpaizTaWBMqSjdfYW07trytievks75hdQ+P3w7hf2O9odr6181wzsiFI4TFhZzxsQ1X5WO+aj/vjsuqV7/gt9IbXPiHTvInOOTaadjsXtf5xKpbZ7/94awMAfXe3PCufKEf5Xuf3dwU3e9QTrjukR6lQzXc6sYoNO1Qpp/hrT9zvDN5mZ7S7pdKg7V1MOWDHkEAAAAgFaTynifdcT9vKM4LOX7y+FhE8PEAgPHdkulfLLPp5WVRqShbd4SR7qzHB5WGSYWFDg2tp7tizdZBgAAAAC0tqkI8ppGA1kAAGEVbMG5L238P4dzhepYfpUAaHLu81Tjx/8F9YCzKwAAAAAAAAAA9UdYGIDGcgzSmFZMlbCwicEtxkiHvdtbmkLMAKlmtONX44PCJGnP76S1X5OO/GD4dtZ/13/74LPR+nPwldKaL0erM7LHu+GwqjiX3GNepn/4Y+6wsF33Bddd8lKpY1G841bTvjCZdpZcFLzfFXoYMEBtRnOF0k08F4YJhlz/XW9Z8dra+5UEV7jixN8DJ/6bdNvF0sDG6m1ecG/58fLXSM98K37/JFUNsAQAAAAANF66TUovkNoXRK9rrVQcnBwwFiVwLG6g/HRUHJAGB6TBzfHqZ3srgsT8Asdml/dNDBzL9BD6DQAAAKBVkREAAEhcMTAszH/8ljssjM9AASA+97ULwhgBAAAAAAAAAKg/wsIANFbUsLCulXXpRl0FhYXNOnrq+hFk6culTT/y3zedbg588j/8tz/0N9HCwrbfmUx/0iHCkCZ66hvS4e+pXi7W962Gi/TFISndPn7bSH+IinW84THTk0w7C18YvN91HrPFZI4/7bjemxPOlQvPCdfcnZdKL7pRWnx+Tb1KRsggtNnHSi/9vfS92dWbnHtS+fHqt9QeFsZNxgAAAAAwvRnjBXBnOiUtiV7fWqmwrxwklq8IGwsTOJbfm/hTamn5vd4ysD56XZOSsn3jA8ZCBY6Nrqc7+BwAAAAAwFRaL0LCAAB1VAwYi5V2jN8yjrGb1jUhIAA0uWb42N8VxOjh/AoAAAAAAAAAQL0RFgagsRwzujktf3V9+lFPQYFoR/zN1PUjyJzj3WFhPz54avtST+uubXQPxtv7WPQ6O3+dfD/G1DIIaniH1Lls/LYwN4cGhenVKt3utV9r4N3Si4L3u37GN18vrbqitmNPR6732cT3Qvui8G2u/c/mCAtz/gz5DI7JzZJO+7Z01xvd7WW6xq9XC64LpQlGCwEAAAAAmpcxUrbXW7pWRK9fKkqFvT4BY471iYFjxYHkn1OrsqXR12l3vPqpbEXIWIzAsXQu2ecDAAAAYFqz1q5sdB8AANNbUUFhYf7jUF2BNpYwGwBNzhVqGBzUNTVMQGIZZ1cAAAAAAAAAAOqPsDAAjZUKCNLyUxysTz/qacHZ7n3VQoimSlBo28DGqetHvaVyUmmk0b0oe/aG6HVKwyELxrnkHhCq1bFUGtzk3j+ye3JY2MYfhDhmHQcuGCNleqR8f/w2jviAd3Ns4HEc57F110qnfIMbKydxvc8mvBcyHeGbXP8d6emLpFWXx+5VIlwzmLreIysuDQ4LO/+uydsufEC64fjofXuuL40fLAQAAAAAmMZS6dHgqdnx6hdHvM9yxsLD8lECx3Y312d/jVbKS8PbvSWOdMfkMLHK8LFx6xMDyPqkFJcgAQAAAAAAkJyiLTj3peU/Nicl/4ksbdA4OQBoAu5QwyYf/1fLpMUAAAAAAAAAACAURuoDaKygkCo/s4+tTz/qadYxUvdqaf/a8duXXixluxvTp4lcQTbVKybajbpLtbX+DYPFkGFhNsaApqCL9BfcI936UmnP7/33j/gEct3/nurHrHdwUaartrCwYz9dvUzQjY/bbpMWnx//+NOR671p/AfnhXb3FdLwTunwEO+7enGdX1KOwLhURjrk7dKTV03e9/Knpe6Vk7fPOS529zwtdt4GAAAAAMws6ZyUni+1z49e11qpODQ+PKwyTCxM4JgrCHwmKg5Kg4PS4LPx6md6ykFioQLHKtazPbV/VgQAAAAAAIBppRjw2V3KMf7ROMamlWJNxAkAjdcso/+MjG+gmTvkDAAAAAAAAAAAJIWwMACNlW6PVn7uSfXpRz0ZI73o59LtL5f6H/W2LTxXOvWbje1XpdhhYS0m3SYV9jW6F2V+IXLVFIdCFgxxwd2WJtx0F1CnfbH0koekaxw36U0M5BrcWv34kuSYvTExATNKVjX3j0IeI+B123ITYWGTOF4vvxtAOxZHuyH18c9Jh727/iF0LqW8/3ZXWJgkHfc5aXi7tP57kqzUd6R01v/5B4WNOeaT0u8+HLOTzTJcCAAAAACAhBkjZTq8pWNx9PrWSoX948PDJoaJjeyueDwxcKyGwPrpqLDPWwY2xKhspGxfOUAsauBYurNxnw8BAAAAAACgLooB48DSjklrjWOcjI0zEScATCF36FazfPZtFGqcMgAAAAAAAAAASBxhYQAaK9MVrXzH0vr0o956Vksve0Ta/4yU6ZTaFzS6R+OlZsivg0yXNLzDf19h0LuRcCod9h7p/ndHq1MaDlcuKMDqubbyXoDac3UCBkEZ4y1t871go4km3gy58Yfh+llvvUdIQ9vi1V3yknDl9q9x74t6jpsJnO8zn0Esh7wjWijWwEZp35NS76GxuhZZYVAa2uIFmg0+6w4jTGXdbWQ6pDOuG72xuD84JGzMoRFfl0p+oWwAAAAAAMD77Cvb4y1aHr1+qeh9NuAXMBYmgKxwIPGn1Lqs95rk90hxXhaTKYeHPRckNiFwLCiArPIzUwAAAAAAADSFoi0696Udk6Uax0SW7hAeAGgW/ucpVwjiVCMqDAAAAAAAAACAxpkh6TAAmla6M1r59vn16cdUCRMC0wiOwTIhKibajbrLzZUOrPPfN7xNyhw0tf1Zfkn0sLBiyLCwMHY/JM07uWJD0KX70e91ts8/LGzTT6WVbyiv73syXB923huuXFxLXiptuzVe3WWvqP34/Y/V3sZ04woL8wux6j0sevuFfV5Ynol5frLWu0m3MgTM9XhiSJ5LKle9TG62t4SR7QtXLm5fAAAAAABAdKl0OYQqjlLeCxLPhwwYm7gedpKBmcAWvEkjXBNHVJNuHx8eVhk4FrSenSXl+oKD4wEAAAAAABBLSQXnvrRjOLxxjB8iLAxAs2vVsxTnVwAAAAAAAAAA6o+wMACNlelqdA8g1RAW1mKCwuaGtkldUxwW1rk0ep2AGRInFKxe5JFPSWf/X7g6YwOnOhZJ+9dM3r/uaun0b5fX+x8J1UsNbgpXLq7D3iVtv0Pa9GN3mb6jpP6Hx2879h+kWS+o/fjrvyPp2trbmVYc7zO/sLA456YbTpQ6l0uHvE064gPl926pIA1tHR/2NbhFGpr4eEvyN9cmfYNo3CA0ibAwAAAAAACaVSortc/zljiKQ6PBYaPhYWNBYqECx3ZH+NxxBigOScUt3udIcWS6K8LDogaO9fp/TgYAAAAAADDDFQM+v0o7xhgZx2So1jXZIQAgJMIYAQAAAAAAAABoFMLCADQWYWHNwca8OBv2ZqmRfmnrLVLhgLToPKljYbzj1Srb6943tG3q+lGLsDftdSyRBjcHl9n0owltu94HFRf1u58nbb/Tv9j/z96dx8lV1Xkf/56qruolSWcP2QMhCWEzggEEFFAQQVGBccUNnRkZdRSXURmXB/FRZ1HRcXdGRceFeUZxXEaQxQ0EAWUHWQIhbAlZyNpJumu55/mj0unq6ntu3Xurbq2f9+tVL/res/2qursqdJ36Xq8gpfb90yJs8Nrc08L1iyvdJ530U+nKVRMDwUadeaf0zK3S2sukgYXSQW+UJh+UbF3dzLnZzm/zSMxQrD1PSHd9uHSbtqoUAja8WU273l7P5Oas66fewWUAAAAAAKA1pPtKQf/9c6OPtbb0t9v9QWIVgWO+AWTbxtryO9S0v7u0osJQ6aYnYww2UmbqWJBY1MCxnkm1Bc0DAAAAAAC0qKItONvSxn87fEr+oeyE2QBoeY79vKZF/v7rCmMEAAAAAAAAAADJIywMQHNFCQtb+tbk6uh2cd88Xv/L6n12PSxdd4q096nScc8k6ZQrpTknxVszKXtCfnBrkyMoq1HChoVNWVE9LGwCR4hT+c/HpIAQrad+IS06Z98Y/41WExxwarh+tTAp6bhvSdccN7HtyE9IqbQ0+/jSLQmF3QQjlnOFhfn9zIT9OQqy/a7a56hFqleasbr+8x7+Eem+T8WoJ1v/WgAAAAAAQHszRspMLt0GFkYfbz0pvys4YCwocKwwVP/71LZs6bHJb5d2xxhu0vtCxqZXBI5VHjsCx9J9db9HAAAAAAAA9VAM2DfnCgVzhdl4hIUBaHGuUMNWCekyRr7XECGMEQAAAAAAAACA5BEWBqC5+ueXgku8XPW+81+SfD1dK+abx2ECtv70jrGgMKkUnHTj66Szn4wfUhaXK6RIkh78vLT8girjrXTd8+tbU2QB92GckG+473pY+sXyKp3Kvk8r3inde4l/twf/bSwsrDgSbv3lbw/Xr1YzV0sH/630yH+MnZu2qk7rO3Y9jGpEWNiWW6QHPidtvT18oFyz5Hc4GhIKC2u21V+SevrrP+8hF8YMC8vUvxYAAAAAANDdTErKTi3d4vAKpb8ZjYaHRQ0cKw7X9/60M1uURp4p3eJI9ZaFilULHJteET42jb89AQAAAACAxBTlvycqrR4Zxz5E49h7ZIP2EQJAC3CHbrVGWJizDktYGAAAAAAAAAAASSMsDEBzZaaUQsCe/Gm4vkhGUoE8xWHp6Wsnnt+7XtpyszT7+GTWdQp4E3rng6XgLC8vDa70DzLbdntypYUV9o30sBuaqgaFafzPR99sd79Nvx/72gsRFjb/rPgfIIzKpKRjvy4tfIW0+UZp8BBp4dn1Wb9nslTY5W4fWif1zal9HZett0nXPDe5+RvF73cuO7PxdcSV7pf650l9c0v/nXywtPhVpaC6JPTNLr1+rr8yYp19ydQDAAAAAAAQV6pH6p1ZusVRHJZyO8bCw3IVYWKBAWTbJFuo7/1pZ96INLyxdIujZ9L48LCwgWPZaVLPoJRK1/f+AAAAAACAjlF0/A0nbdx/TzCOMBt3CA8AtLbWiQrj+RUAAAAAAAAAgGYhLAxA8z33O9KNr5M2XBXcb0ZCgStQYm8f53e627bd3viwsGoBWqPBWYMrpVOulCYfNL79L/+STF2RhH0jvZ5XP4zx81EMCgsz0rzTpRO+H7uiWExKWvDS0q2egoLCJGnd96VZx9Z3zVFeXvpVpzw3+oQWzjxW6p0ljWxpfDmjsjPGh4CN3sqP++ZKmUH/wLMknXi59IfXVn/9LDe4Mrl6AAAAAAAAmiHdJ/X3Sf0HRB9rrVTc4x8w5gwcqzjmw09jCrtLt71PxRufmVoWJFYWJpYJETjWM7nxf58DAAAAAAANU7RF3/PxwsLqubcOAOrPHbrV2n8D5a/lAAAAAAAAAAAkj7AwAM2XnSq94Erph1XewOyd0Zh6upHxCempBxv0tq/j+22tdP+/SndeVDpedoF0zFfrVGPIt6F3PiD9/izppfeNP5+ZVocaahXyPgQ+9lFVfK8Wv0Z6/P/5dx15RuqdKa2/0r996fnSUZ8t9ekUz/5X6c4Putsf+pK08j3S5KX1X7slAuzqxO9nIpWWDv+IdPt767uW6ZH6DggRAnaAlO6t79r1lBksvX7+7CBp97pwY1KZREsCAAAAAABoK8ZIPZNKt4EF0cdbTyoMuQPGqgWOVbsQQbfJ7yjd9Fj0sSa9L2xsenDgWHZ62ddlx+k+wsYAAAAAAGhhRVvwPZ827q3wKceeQ3cIDwC0Cv/nKVcIYqO56+D5FQAAAAAAAACApBEWBgBILiws6E3fyg/dWFv6YNTvXyFt+t3Y+Ye/IT3yLem1udo/qGMjXBFwx1+k7fdJgyuk4oiUmVz6AFe7iHJfq6l83Be8zB0WdsUs6YiLpeIe//a+AzorKEyS5r04OCxMkn5+sHTWA9LgIfVd++6P1Xe+ZslMk2Ye49+28j3SwELp8R+VPvD32OXR5l71TxNDwHpnJvi81wTZ6eHCwk5xhPgBAAAAAAAgHpMqBbpnBqVJS6KP9wpSfmfpb8/7g8S2Tzx2BY4V99b/PrUrW5RyW0u3OFLZslCxiIFjmWlSOlvf+wMAAAAAAMYpquh7PigszBVm80x+k4q2EDgWAJrpwT33+J5vlesduJ5ft+Q3hhq/o7BNf9h+tZ4aWacD+1bopOlnqi/VX88SAQAAAAAAAADoWLzLCQCQErvSVEBYWKHsQ0wPfkm67d0B0xSknfdLUw+rsZyIV6y68oja1kvC8KaQHet5da6KUCVXqNOoey8JmKq39nJazfRnhet3/TnSWX+p37pRf55bVc8k6eSfSamMu8/iV5ZuUunDd2u+Fm7upedLh19Uc4kd4dAPSPPOaHYVAAAAAAAAKJfqkXpnlG5xFEek/I6x8LDKMDFXANlo+JiXr+/9aWdervT399B/g6+QHhgLDysPEwsKHBs9zkyVUun63h8AAAAAADpM0RZ8z6fl/n9qV5iNJH1z/Wf1t/M/qFQnXXAQQEf45Zb/anYJsf1o0zd12KSjdEB2gbPPzsJ2ff7xj2hTfr0k6c6hm3Xn0M26cNEn1Jvqa1SpAAAAAAAAAAC0LcLCAABSUhtegsKM7ni/dOj7pPVXBweFjbr9H6QXXFlrQTWOT8DAImnPE+H757aVPgCWrhK6VdxTW11Bc/XNiT9Xtbo72c776zvfjnuD24/+fOlDZq2s7wBpzklSZnL4MdOPCt83Mz16TZ3m+T+Rpj9bmnxQsysBAAAAAABAvaV7pfSceH+ztVYq7p0YMBYlcMx69b9P7aq4R9q7R9q7Pt74zGBZkJhf4Nj0sbbKwLGeKZJJ6qIwAAAAAAC0hqIt+p5PG/dWeBOwL/KuoZv15MhaLe5bVnNtAFAvI96wrt56RUCP1v874PXbr9Kr5vyNs/2Wnb/bHxQ2at3wQ7pv9206esqJSZcHAAAAAAAAAEDbIywMQHs47tvNrqDDNenqeLnt0u/OCNd3w1W1r9eKH1ya/1Lp4a9HG7Ppemnei9ztue3S9ntqqytILQFUqQ4NC5uyXNq1prFrDm8Obl/5nsbU0WhRfoa8keTqaBeLzml2BQAAAAAAAGhFxkg9A6Wb5kcfb61U2DUWJBY1cCy/s+53qa3ld5Zuex6PPtakSn+3Lw8YCxU4tu843U/YGAAAAACg5RVtwfd82qSdY/pS/YFzPrL3AcLCALSUx4cfUcHmne3VntcapS89oJHCsG/bI3sfCBz7P5u/43v+F1suJywMAAAAAAAAAIAQCAsD0DpMWnJc/U0Hvr6xtXSbxD4EUiWc66GvJLSui23weiEc8RHp6eukoYfDj9m1Jjgs7KEv115XkFp+Xly/4+3u1N9IP13U2DV7Btxtx/574+potIANfhNkpiRXBwAAAAAAANDNjJEyg6XbpMXRx3tFqbBzLFxsf8BY5bEjcKy4p/73qV1Zb9/jti3e+FRmfHhY1MCxdLa+9wcAAAAAAB9F+e87Sxv3Vvhl/YfJKCXr2McYFMgDAM0w4u0NbF/ef0SDKgm2ov8I/WnX9b5tI55/iFg1G3NP1lISAAAAAAAAAABdg7AwAK3DpNxBQnzQIGGpZKa1VcLC7v5oMuu6VKunGQYWSi++RbpiZvgxXpVNSnd/rLaawljxbumhL0YfN+uE+tfSCgYWhuv30FekFe+sz5rb73W3LX1LfdZoRakI/3wdPCy5OgAAAAAAAADEl0rvC56aHm98MSfld0wME/MNHNs2MXzMy9X3/rQzLy+NbC7d4kj3TwwTy5SFjQUGkE2N9jdfAAAAAEDXKtqC7/m03BceHEhP1nkHvF0/2Oh/UVPXnADQLDnr/rvl6TPO1ZK+ZQ2sxu0Vs9/oDAvLeyMNrgYAAAAAAAAAgO7CzlsALSShwCpUZ5IKC3OEvzWNbXYB/npnSIOHSDsfDNd/+53utk3+b77X3dGXSht/I+0ICKzyM+u4ZOppF3/+e2n5OyRjap/rkW+62zr5w1UBVwOdYNE5ydUBAAAAAAAAoHnSWSk9W+qbHX2stVJxuCw8LEbgWMu9/9FExb3S3r3S3g3xxvdMGQsSCxU4VnacmZLce1wAAAAAgJbiDAurspfoxGkv0s+2fE9DxZ0+c/L/9wBaS1DQ1itmvVGmHntP62BGZrZed8DbdfnGr01oy1nCwgAAAAAAAAAASFIHJ0kAaDuHf1i65+KJ56etanwtXSehN4+tl8y8cbVaPeVMJnzftd+Rjvv2xMApryBdd3Jdy5Ikrfa5smIqLb30HumHEX52jv68lIpwP9tNZqqU31G9X26r1Duz9vWeuaX2OdqRcV8NdILMlOTqaCmtsQEIAAAAAAAAaAvGSD39pVv/vOjjrZUKQ+PDwyrDxHLbpbwrcCzE35G7SWFX6bbniRiDTelv86MBYlEDx9ID9bm4BwAAAAAgca5gr3SIvUQLepfowT33hJ4TAJolZ3O+5+dk5rdMUNioqT3Tfc/nAgLPAAAAAAAAAABA7QgLA9A6DnqDdM/HJdnx55e9rRnVdJekrrpe7800uR1SdmoNE9jqXZrFJ0TLs0Z7igOa3LN7Yv+d90tTDxt/bvONydS24h3utrkvkp6+Ntw8K99Tn3pa1bK/le7/bPV+W26WFrw0+Xo6VcHn98HPlBXJ1tFK+mY3uwIAAAAAAACgexhTulBBZoqkRdHHe8VSONaEgLEqx6OBY2H/RtoVbOlxyW+X4jwspmcsPGx/kJjPsSuALN1b93sEAAAAAPBXS1hY2rFdvqhCTTUBQL25grayqWyDK6kua/z/NpazI7LWtly4GQAAAAAAAAAAnYKwMACtY/JS6fjvSje/ZSxk6qA3ScsuaG5d3SBuWJhPwNU41os3r8vep2oLC6t3PZVWvCv+WDP2kmyt9InHPqavPPUObc3P0AlT/6jvHfomLel7fKz/hmsnhoVt/E389SXpkPdKD35+7HjSgdILqwSBZaeFm3vF38cuq20c+XFp253S09cF98vvrH0t28LBd0nbtSZkv4eSraOVHPlxacPVE88v+quGlwIAAAAAAACgilR6LIQqDi9furhKPkTAmN+x4wOHXckWpJEtpVsc6b7x4WFBgWPlx5lppfe7qr3PBgAAAADYzxXs5QoCK5dyBIq5AsgAoFly1v9vdxlHMFczZVPumvI25wwTAwAAAAAAAAAAtSEsDEBrOeiN0oKXSVtulgZXSpMPbHZF3SFuWNiMY4Lb672ZZsM1EwOyIkkwYCndXwq3iys19pL85afeqUvWXbz/+A87nqdT77xWDx53qNJmX+DZjnsnzrH+qvjrS9JzLpUOfV/p969/vjTzmOofVBlYHG7ubggL65kkveAaadsd0q+e4+53+3ulA19X21o7769tfDtLhfzn68CiZOtoJTNWS9OPlrbdPnbOpKWD/6Z5NQEAAAAAAABIRioj9c0q3eIoDu8LDtseI3BsW/3f+2lnxWGp+LQ0/HS88T2Ty8LDogaODcZ/fw8AAAAA2pAr2MsVBFaux/jvNypa/wAyAGiWnCPoP5vKNriS6oLCwPI2p6wICwMAAAAAAAAAIAmEhe2U5bsAACAASURBVAFoPdlp0vwzml1FlzExh1XZaFPvzTQPfF5a+Z74460Xf+yKd0vrr5R6+qUl50kHvl668yJpy43S4GHS4RdJM1fHnz89sP/L/7fpNROa1w4frD/vWq3jBm8tndh0/cQ5tv4p/voLX1H678BCafErw4+btCRcv8FDotfUjoyRZhwtzTnJ/3skScMbSx8gSvfFX2f3E/HHtrt0f7h+C16ebB2tJNUjnXqddMcHpKd/I00+SDrkQl5LAQAAAAAAAEyU7pP655ZuUVkrFXaXBYntCxArPw4MINuhRC/s0m4KQ6Wbnowx2EiZqWNBYlEDx3omld7TSMqWm6VNv5fmv1SaeniyawEAAADoCq5gr7QjCCxMH1cAGQA0S976h4VlAoK5miWbcteU80Y0KT1lwnmP510AAAAAAAAAAGpGWBgAQLHDwqp9oGP3upjzOux5vMYJHPUe+Qnpnv/jHnb6zdKs4yT92/jzJ/6gxnrKHH6RtPHXkqSbdp7g2+WfHrtIPz3y3NLBpMXjG4cerb7GjGPcgWKr/jlspeMtOke67d3BfU5zhGZ1sqMvlX4VEB736H9Ky97WuHo6yeJXSnf8Q/V+Ia4a2lGy06XjvtnsKtqS51n901VWV9xulU1LrzvO6N0vNDJ8eA0AAAAAAAAYzxgpM7l0G1gYfbz1pPyuiQFjQcfl4WOFofrfp7ZlS49Nfru0O8Zwk94XMja9InDMcVwZOFbtgiiPfl9a85XShXcGFknzX1IKDpv7wlJQGQAAAABE5Ar2SofYI+TqU1SdL4YKADXKeTnf80HBXM2SDQgwyzlCz3LW//4BAAAAAAAAAIDwCAsDAEh9B8QbZ73g9qG18eZNiqveaoEws46rfy2VZp9UtYstD3XLbRvfeOdF1ddYer50+k3SA58b63/UZ6WD3ij1zQlfa7mgDwPNe7F07L9PDDbrBjOeUwoDe/jf/dtvvaB6WFh+p/TMrdKU5dKkJePbinvd42YeG63WdlP5WLhsviHZOtAx3vcjqy/+eixM8tZ1Vjv3Sh87i7AwAAAAAAAAoK5MSspOLd3i8ApSfkf1gDFX4FhxuL73p53ZojTyTOkWR6q3LFSsMmBsWikobNSeJ6SHv1G6HfgG6YTv1ec+AAAAAOgqrmCvdIit8K4+rgAyAGgWV8hWUDBXswQFmOU8//uRd5wHAAAAAAAAAADhERYGACiFYfUdIA1vjDau2mYZLx+/pkRY/9Mm1dgy/KSzVbuMCwvbelsp/Gy09sf/O3hwZpq0/O2lYLTDPlS61ctfPSNdMXP8udOul+Y8v35rtKNjvuYOC6vm0R9It7xl7Hdo6VulY78hpfb90+2JK9xjT7ky3pqdZtsdza4AbWAkb/XNGya+Nnz991YffamVqRYmCQAAAAAAAKBxUj1S78zSLY7isJTbMRYelisPE6sWQLZNsv4fTO9K3kjpfcWo7y3OPzOZegAAAAB0PFewV9qkq4519fEICwPQYlxhWkHBXM2SCQgwy9mc43xwWJhnPaVaYU83AAAAAAAAAAAtjLAwAEApcOpZn5BuvSDaOOtV6xC7JF89U2ob76y3PcJgrK2o89H/lJaeH27wkReXgsKS0DtDOs9Khd2lK9BPWpzMOu3GpKT+edLeDX6NkrX+35OhddIf36hxvz9rvy3NPFZavu93dN333evG/ZBUpznqc82uAG3gNw9Ie3z2JW3YIT20UTpkbuNrAgAAAAAAAJCQdJ/U3yf1HxB9rLVScU9FwFjEwLF6v2/WbkxKmvfiZlcBAAAAoE25gr3ChYX5b5cvEgoNoMW4wrQypvoFiRutx/TIKCWriXuzXaFnOc8/RGx/ux1Rn+mvS30AAAAAAAAAAHQqwsIAACXL3iYNLJaeuEJ65JshB1UJC7N1/tBDYVeNEzjqaZOrUNnKULMHPh8+LCwzte71TNAzqXTDmNVfkW4416fBSvkdUnbaxKb1v5Tvz+pjPxwLC0N1S9/c7ArQBvyCwkaNsB8UAAAAAAAAwChjxt4HGVgQfbz1pMKQT8CY47gycKzm98hawMzncsETAAAAALG5gr1cQWDj+/gHihUICwPQYnKOkK1sqrfBlVRnjFHWZDVihye0uULPXOdH5b0R9aUICwMAAAAAAAAAIAhhYQCAMfPPKN1WfUr6SYirqjuu1lfWoS5ljVPMSemYV8iyrnAzIx33TemWv5nYdOQl8dZqhO13h++7+K+SqwNu01e52574iXTwWyeev+di//6bri/918vXXlc34ANHCCEVkBXpJfASBgAAAAAAAKBLmZSUGSzdJi2JPt4rSPmdwQFjzsCxbVJxb/3vU1QLXtbsCgAAAAC0saL89yq6gsDKpeTfxzUnADRLzvpf/TJrWi8sTCqFmI0UfcLCHKFnrvP726uEiQEAAAAAAAAAAMLCAAB+emeF6+cM39rfoeZSJtj4a2n+mTEHO+oxKWnBy6WBRdKeJ8bOZ6dLS14Xc636szLxBi59a+nDJ2i83jnutlv+2j8srJo1X4tfD4BxUgFPq5awMAAAAAAAAACtItUj9c4o3eIojkj5HWPhYZVhYvu/9gsc21b7hUz65kgr3lHbHAAAAAC6WtEWfM+nQ2yFTxv/Pq45AaBZ8o4wrWyqdcPC/HIXXaFfOW9isNj4dv+wNAAAAAAAAAAAMIawMADARCYVrl+1sLAoSSun3SA99kNp42+lnQ+4+w09Gn7OCfW46jVS32zptN9Ld39MeuZWafqzpcM/LA0uj79enfmGhVlPCnpzfNqR0rHfSK4oBOuZFH2MV2UT2m0XxqsFwARBYWEeYWEAAAAAAAAAOkW6V0rPKYV2RWWtVNw7MWAsTOCYJE0/WjrqM1zYBgAAAEBNitYnjUbuILDxfdKR5gSAZnGFbGVNa4aFZUzW93zOEXrmun9h2wEAAAAAAAAAAGFhAICaVAkLU4Sklf550jFfLX299rvSzef799u7IfycYesZDUebfJB0wvdrmD9Z1vqk2ux5IjiU7ehLS1ebR3OYgCQil/yO+tfRaeadKW24yt0++lwCVBEUFlas9hIHAAAAAAAAAN3AGKlnoHTT/GZXAwAAAKBLFa3/BRhdQWDj+/jvn3PNCQDNknNcPDib8g/lajZXiJkzLMxxPmw7AAAAAAAAAACQUs0uAADQxqpdWS8oxKpSz8DY1wML3f3u+6Tkxbyin3Ulv8QIdGoVa78rFYbc7VOPbFwtqN36q4Pb9zzZmDpa3YHnudvSfdKBb2hcLWhrQWFhXoSXMAAAAAAAAAAAAAAAACSn6Nir6AoCG9dH/oFiRcXchwgACclZ/7CsjCOUq9myKUdYmON+5Kx/GFq1cQAAAAAAAAAAYAxhYQAAf31zq/fZ+WCVDhGSVtL9Y1/POTm4723vCj/vOI56THu8HFq/ULP1v5QKu92DMpOTKwjhrP6yu23H/eOP/3RB8FzDm2uvpxMc9AbpqM9NfJ6asVp68Z+lzJTm1IW2kwp4+icsDAAAAAAAAAAAAAAAoDW4gr1cQWDj+jgCxTxbqKkmAKi3nOcfluUK5Wq2rCPEzHU/XOfDtgMAAAAAAAAAAMLCAAAuz/tRuH42KE0lZNKKSUs9ZeE+qSpX+1vzNWloXbi5x5XjuQqIPlcT+IaF9c4ODgsrD2FDcwwsdLf9/uVjX1tP2v1Y8FwjW4Lb2yT4ri4OfZ909pPSq/dIr/OkVw9JZ/xJmnZ4sytDG0kFPP0HvrwBAAAAAAAAAAAAAACgYYqOYC9XENj4Pv6BYkXrH0AGAM1QtAV5jmDErMk2uJpwMo4Qs7zN+Z7PWcLCAAAAAAAAAACoVRclSgAAIpnzPOnMO6r323Gvuy1s0sqS10qp6lf4G+fxkGFm4zjqaZOAJd+wMFuUfnOqe1Cb3LeOdkDA92fo4bGvt91Zfa7fnh7cPmlpuJo6RSot9fRLxkg9k5pdDdpQUFiYR1gYAAAAAAAAAAAAAABAS3AFe7mCwMb38Q8UIywMQCsJCsrKOkK5mi1r/Oty3ZdqYWD5KmFiAAAAAAAAAACAsDAAQJDpz5bOeii4z4arAxpDJK3MPlFa/eVIZUmS7vygtD0gqMy3HM/REJAW00Ks9alzZEvjC0E0mcnB7fldpf9uv6f2tYp7ap8D6CImKCzM9ZIBAAAAAAAAAAAAAACAhiragu95VxDY+D7+gWJF+c8JAM2QszlnW8YRytVs2VTW93zOEfpVLQysWpgYAAAAAAAAAAAgLAwAUM3gcmnVp93td3wgYLAjLGzOSdIZt0svWyOddoOUnRavtmueKxX2RhjgqCcoLaaFWL9Qs61/bnwhqK8df5GslZ7+de1zHfzXtc8BdJFUUFhYiLxLAAAAAAAAAAAAAAAAJM8V7OUKAhvXR46wMFusqSYAqKd8QFBWNtWqYWH+deUdwWfVwsBcIWMAAAAAAAAAAGAMYWEAgOq8KlfQs57jvCucKy3NOEqasswd1DX3RdXrKuyWNv+her/99Tjq5OUQzVTYLd35QWnd92qfa8l5tc8BdJGgsDCywgAAAAAAAAAAAAAAAFqDK9jLFQQ2ro/pccxZZV8kADRQUFBW1rRoWJijLlco2Ei1sDDPP2QMAAAAAAAAAACMIR0FAFBdtTdfR7Y6GlxRKwHpLKPmv7R6H0la++1w/aSA8LIQ9bQAG+ZxQ/vZdrt0/2drn2fVp6WpK2ufB+giQWFhRVe+JAAAAAAAAAAAAAAAABrKFezlCgIb38c/UMwVQAYAzeAK2JKkTCrbwErCy6aihYUFBaKFaQcAAAAAAAAAAISFAQDCiH2lphrCwsJetc8VAObLlfzSKi+HwY9L5LCwU66soRY0zB0fqH2OqUdIh/9j7fMAXSYd8PTvRXl5AQAAAAAAAAAAAAAAQGJcwV6uILDxffwDxVwBZADQDEFBWVnTomFhxhEW5rgv+YBANCk4MA0AAAAAAAAAAJS0SjoKAKCVxX3z1RXkZUKEXhWHw62RGWxMPY1w9KWBzdZGrHP+mTUUg7YyZVmzKwDaUtDTv+fKlwQAAAAAAAAAAAAAAEBDuYK9XEFg4/rIP1CsKP8AMgBoBldQVo/JKBUiGLEZMilHWJjjvgQFooVpBwAAAAAAAAAAhIUBAMLwclU6OEK4nOdDhF4tOrd6H0l64opw/SS562mRl8OD3iRNW9XsKtCOimyQAOJwZUhKkhfQBgAAAAAAAAAAAAAAgMZxBXu5gsDG9XEEihUtYWEAWkfe+u/Vzhr/QK5W4KrNFfrlChEblY97cWsAAAAAAAAAALpIi6SjAABaWt+84HbnppkawsIGV0qTl1Xvl9tavc/+cjxHOSHqaYTeGdKpv3E22zCP234tcp/QGGyQAGIJygMjKwwAAAAAAAAAAAAAAKA1uIK9XEFg5VLGP1DMypPn2lMIAA3mCtLKplo4LMxRW95xkWpXiFjYdgAAAAAAAAAAQFgYACCMg98S3O4KC7OOqJUw4VzGSKf8snq/KPY87mhooZfD3hnOpkhhYYd9qA7FoG6WvDbZ+QkLA2JxvUxJksdeUAAAAAAAAAAAAAAAgKbzrCcr/40criCwckGBYq4QMgBotJz1D9jKmhYOCzNZ3/Ou0C9XIFrYdgAAAAAAAAAA0FLpKACAljWwMLjdFlwNjvMhQ68GV0jP+WK4vtUMb3G3hQkvawGRwsIWnJVcIYhu+TuSnb84nOz8QIcKDAsLaAMAAAAAAAAAAAAAAEBjBAV6BQWB7e8jd6BYUa69jwDQWK6grEzKP5CrFWRT/kFmeZuTZyeGPLoC0UaNOELGAAAAAAAAAADAGMLCAAC189uMY61qDguTpANfH6eiiTZcFdDYHi+H1kZ43LIzkisE0c15frLzF9kgAdRb0f+CtAAAAAAAAAAAAAAAAGigoECvoCCw/X2Mu48XEEQGAI2UcwRlZY1/IFcrCKot7xMMlncEooVtBwAAAAAAAAAAUvXLKaEjGWNWSlolaaGkfknDkjZJeljSXdba3TXMnZF0oqTFkuZJGpK0XtId1tp1tVUOoCV5ZRtmnviJdO8npaFHpPxO//4mQuhVb51Cr+74oLstSj1NZCcfHL5zz6TkCkHrYYMEEIsr0lKSvKBGAAAAAAAAAAAAAAAANERQoFdQENhYH/d2+YJ1B5EBQCPlHPtAs6lsgysJL5tyh4XlvBH1pvr2H1trnYFo+8dUaQcAAAAAAAAAAISFdRVjzDRJF0p6q0pBXi5FY8ydkn5srf3nCPPPlnSJpNdI8k33McbcJOlSa+0VoQsH0PpGN+NsuFa64ZUKjl+RpIjhXAe+UVr3vTiVScObpc1/kIafDuiUijd3o/XPlV7+iPTzEKFhmcHk60HrmHtasysA2pINeLmysor8egUAAAAAAAAAAAAAAIC6KgYEegUFgY3qCegTNDcANFLe5nzPZ4w7kKvZMsYdZFYZ/JW3uX178txcgWkAAAAAAAAAAGAMYWFdwhjzKklfkzQzRPe0pOdIWigpVFiYMeZMSd+RNKdK1xMknWCM+YGkC6y1u8PMD6DFjYaFPfIfqh4UJkUOX1nymnhhYU9fJ11/jlQYqlJOe4TBWCtp8lLpFeuknx0Y3Dk7rQEVoWUs+7tmVwC0paCwMM9rXB0AAAAAAAAAAAAAAADw90x+k7MtKAhsVNqknW0P7/2LDksdpUnpKbFq6wZDxZ3alFuvlFKa37tE2VTtwUUFm9fm3NOak52///uzq7BDBZvX9MysmucH2lHOG/Y9X4/fuaQE1bZ27wPaUdi6/3jY21t1vmFvr9bufcDZPik9RQdkF0QrEgAAAAAAAACADkNYWBcwxlws6eM+TY9LekjSZkl9kuZJOlLSpIjznyLpp5LKLw1jJd0uaa2kaZKOklT+7u3rJQ0aY8621hLFALS70bCwx38Urn/UcK65L4rWX5K8vHTjedWDwiSpvz3eON6faTNpiXTg66V1P2hmOWgl045sdgVAWwqKt/TCZF8CAAAAAAAAAAAAAAAgETsK2/SNpz6tdcNrnH2CgsD29wnYLn/ZhktlZHTUlOP15rnvUSaVdfbtNjlvRJdtuFR3D90qu2+XTY/p0Qumv0xnz3qTTMyLtN6w/Wr9ZNNlGrHD6ksN6NzZb9ZdQ7fovt23S5KW9C3X3y34R03tmVG3+wK0uvUjj+sPO67xbcuaFg4LC6jtsg2XRp4vb3P67OMXOdtXTX6uLljgbgcAAAAAAAAAoBukml0AkmWMeb8mBoVdLulZ1tol1toXWWvPs9aea609XtKgpOdJ+rykZ0LMv1DSTzQ+KOxGSYdba1dba19trT1d0kJJF0rKl/V7maRPxrxrAFrJaFhYaBE3iaRjbMDZcK00sjlc31nHRZ+/CWx5cM3x33N3PO5bideCFnL4R6IH8AGQVPG8WqFInC0AAAAAAAAAAAAAAEDTfHP9vwYGhUnBQWD7+1QJFLOyun3XTfqfzd+NVF+n+/Gmb+uuoVv2B4VJUsEWdO3W/9GNjlCjatbsuU+Xb/yaRuywJGnY26Mfbvza/qAwSXpseI3+/al/qa14oI0UbVFfeuJiZ3srhxhmU60bZAYAAAAAAAAAQKciLKyDGWNWSfrnslN5Sa/aFw52j98Ya61nrb3RWvs+SatCLHOJpOllxzdJOs1ae3/FvCPW2i9KenXF+PcZY5aEWAdAK7OFaP3jBBtlpkbr/9TPwvdNZaLN3QqMkc5ZP/H80rdKS89veDlootz2ZlcAtK2ArDAVCAsDAAAAAAAAAAAAAABoih2FbXpk7/1V+1ULAiv1qR4oJkl3DP0xVL9uYK3VnUM3O9vv2BXvsboz5GP86PCD2l7YGmsNoN08uvcB7Shuc7ZnTesGcqVNj1Kq/jwMAAAAAAAAAADqh7CwDmWM6ZH0bWncJbMusNb+OOwc1gan/xhjlkt6c9mpnKTzrd13uSf/OX8qqfzSW72S3JfCAdAebFEq5iIMiBEWdvDf+J8fWOx//okrws277O+i19IktjLVpn+edJ6VznpQOuln0qt2Ss/9lmR4eW9J/fOSmbewK5l5gS6XLza7AgAAAAAAAAAAAAAAgO60Lb+lap/J6UFNSg9W7ZcKESgmSTsKW1W0bBiRpLzNaai4w9m+tVD9++Pnt9v+N3Tf+3ffEWsNoN08k98c2D6vd1GDKomn1esDAAAAAAAAAKDTkCbSuV4l6eiy419bay+r8xrnSeMuBfMTa+2aEOP+peL41caYvvqVBaDhinulzX+IMCBGWNjgCv/zex73P1905haOt/yC6LU0SWVW2H6DK6SFL5cyUxpZDqJa+f5k5s3OSGZeoAtMCGEsQ1gYAAAAAAAAAAAAAABAc+TsSNU+xw2eolSIC2umx113OVjeRrloaueq9vjnverfn1pZ945JoKMEPe9MTg/qyEmrG1hNdCdMPa3ZJQAAAAAAAAAA0FUIC+tclek3n05gjXMqjkOFkVlr75d0S9mpSZJOr1dRABISdHW9v/yL9OAXIswVIywsqoGF4fpNf3aydQCjVvy9lB6o/7wHvbH+cwJdgrAwAAAAAAAAAAAAAACA1hMURjW9Z5ZOn3Guzpn95lBzpYP2PlbINSAEqx1UexxyDQhVM3EuSgu0oaBwvvcs+qSm9ExrYDXRnTLtpTp39vmak5kfadxgerokaUp6ahJlAQAAAAAAAADQscJfKgltwxizTNLJZafWSfptndeYK2lV2amCpBsjTPE7SceVHZ8p6ee1VwYgMSYtWUdyyoarpVnHh59rZGv09Tdd72578IvSgpdJkw8aOxdmg89rhqPX0URBoTZoA+le6cTLpetfEW98/3xp7/rx56atIvAOqEHQ0yphYQAAAAAAAAAAAAAAAM3hCs/Jml59cul/yES4YGnKpGSUkpVXfV3CwiRJ+SphYEFhbgCicT3vHNi3QvN7Fze4muiMMTptxtk6bcbZynv50ON6TI+MMbLWqmALocakGnGxagAAAAAAAAAAWlyq2QUgES+oOP61tXWPmDmi4vhua+3uCONvqjg+vMZ6ADTblj+G77vpd9HnH1rrbrvtQunnS6U1Xx87Vy0srH9eKbypjZAV1gEibISY4JynpGO+Kg2ulDKD0qJXSi+8VjL8cw6IK+hfyIXq+0MBAAAAAAAAAAAAAACQAFd4zkB6cqSgsFHpMBcflTukrNtUC03L2RHVf2v6eJYdk+gSeVc4Yqq99jhLUiaVCX0bfS43xoQekzY9Tb6HAAAAAAAAAAA0H38t70zHVhz/UZJM6R2VUyW9XtJxkhao9DOwRdIaSddJ+i9r7boQaxxWcfxwxBofqTIfgJbT5I0XYTaW/Ont0vyXSJMWS9vvCe7bN7c+ddVZ0AaahPfWoBHmnBxv3LwzSv9d/vbSzVqJK6QBNQt6Ws0XG1YGAAAAAAAAAAAAAAAAyuRszvd81sQLz0krrYKqX+ixWkhWt6j2OFhZFWxeGZNNrIaCLSQ2N9BKXL9vSf5+AQAAAAAAAACA9kVYWGdaXXF8vzHmQEnfkvRCn/6L991OlfQJY8x/SPqAtXZPwBrLKo4fj1jjYxXHM40x06212yLOA6BrhEzKWnuZNOM51fvNfn5t5SSEQLAO1zcr3riFZ48/JigMqIug51zCwgAAAAAAAAAAAAAAAJrDFZ6TTcULz0mbnlBbEPOOkLJuk7PVQ9NydkQZJRdmlCe4DV0i59U3HBEAAAAAAAAAAHS2VLMLQCLmVRwPSPqT/IPCKmUkvUPSH4wxlfOUm1ZxvCl8eZK1dkjScMXpqVHmANBodQwnWnZB/eaq9Oh/Sn9+d/V+qz6VXA0JIUisQ7z8keD2gYVS78zS1+k+6dAPSsvelnxdQBciLAwAAAAAAAAAAAAAAKD1uMKqMjHDc9ImXdO63cYV1ha1T0018L1Al3D9rGdThIUBAAAAAAAAAICJeppdABJRGeR1maRZ+77eLenrkq6S9KSkSZJWSXqrpOeVjTlK0hXGmJOttXmfNSZXHO+NUedeSX1lx1NizDGOMWaOpNkRhx1c67oAIlrxrhiDIiRl7X40uP2wi6RM5dNYawi6l2SFdYjJS6VpR0rb75nY9sptUnZaKcFoaK3UP1/q6W98jQAICwMAAAAAAAAAAAAAAGiSnFd5PeKSuOE5aRNuy3zSAVjtIkxQV9QwLxvxaql8L9At8q6wsJjhiAAAAAAAAAAAoLMRFtZhjDG9kirfGVq4779/kXSGtfaJivbbJV1mjHm/pM+WnT9e0ockfdJnqcqUHf935YPtlTQ9YM443iHp4jrMA2CCOkZVTTs8xvIh1x9aG9w+63hp1aejr98gQXdz/fbG1YGEnXmXdNMbpMd+WDqed6Z0yv9KJlU6NkaaQpYlkLSgVxbCwgAAAAAAAAAAAAAAAJrDFUQVNzwnbdLh1iWgSlK4xyHqY1XwvXZ1wPwRw8iAdpXzcr7ns6lsgysBAAAAAAAAAADtgLCwzuN6N3uH/IPC9rPWfs4Ys0DSe8tOv9cY8wVr7VCVdeOkCNUxeQhA56vTU8ayt5WCmFpUUFjYpl2NqwMJM0Y68QelG4CmCXrOJSwMAAAAAAAAAAAAAACgOVxBVNlUzLCwkFvm8wRUSQoX1JWz/gFHtcxZLu8IUAI6jTMcMebzHQAAAAAAAAAA6GypZheA+rLW7pHk+TRdGhQUVuZjKgWLjZoh6UyffpXhYf3hKgwcUy2QDEAzLTy7PvMMrow3bvaJ9VkfAIB9gmIoCQsDAAAAAAAAAAAAAABojpwjKCprYoaFGde1mCvXJSxMCvc45CM+VlEf26jhYkC7cv1uZGI+3wEAAAAAAAAAgM5GWFhn2u1z7j/DDLTW7pb0k4rTp/h0bdWwsK9KOiLi7RV1WBfofCv/oT7z9EyKN+6gNzV3/QYJCq4BANSX5xexu0+BsDAAAAAAAAAAAAAAAICmcAVFZVMJh4URUCUp3OMQ9bGK3J/gdyRnaAAAIABJREFUNnQJ18963Oc7AAAAAAAAAADQ2XqaXQASsV3SlLLjjdbadRHG3yzpLWXHh/r02VFxPDvC/DLGTNbEsLDtUebwY63dJGlTxFpqXRboDjNXS8v+Tnr467XNY2K+9PTOrG1dSTIpac4ptc+TIEtaGAA0jBfwnJsnLAwAAAAAAAAAAAAAAKAp8nUOz0mF3LeY83Kx5u80YYK6oj5WUcO/cpbvBbpD3hWOaLINrgQAAAAAAAAAALSDVLMLQCIeqjjeEHH8+opjv4SeNRXHSyKuUdl/q7V2W8Q5ADSSSUnHfFVa9ana5nnmlpgD6/CSNfd0qS9StiEAoIMF5TPmCqQ3AgAAAAAAAAAAAAAANEPOGZ4TLywsrXRN63abMI+DK+DIPWey4WJAu3L9rGdiPt8BAAAAAAAAAIDORlhYZ7qv4jjqu6WV/ft8+txfcbws4hpLK47/EnE8gGYwRlrwsiatXYeXrBN+UPscCSOaBgAax/PcbblC4+oAAAAAAAAAAAAAAADAGFd4TjYVMyzM9NS0brfJh3gcoj5WYeYcNz/BbegSriC9uM93AAAAAAAAAACgsxEW1pnurjieFnF8Zf9nfPrcW3H8LGPMQIQ1TqwyH4BWFXLTTP3XrfEl65ALpd4Z9aklQbZKWtj2PcSJAUC9eAFPqbli4+oAAAAAAAAAAAAAAADAGFdQVNbEDQtL17RutwnzOER9rKL2jxouBrSrvOv5jrAwAAAAAAAAAADgg7CwznSVpPLog6XGmL4I44+oOH6ysoO1doPGh5L1SHpehDVOqTi+KsJYAM2UyjRr4dqGDx5SnzKaLFdodgUA0HzWWg3naw9P9AISGnm+BQAAAAAAAAAAAAAAaI6cIygqbnhOOuRFUgmoKsl5uRB9IoaFRe1PcBu6QNEWVbD+G9XihiMCAAAAAAAAAIDORlhYB7LWrpf0x7JTGUmnRpjijIrjGxz9/qfi+C1hJjfGrJR0XNmp3ZKuCVcagKYLuWnGafGrY65b40vWwnNrG98gAbk1kqSC15g6AKBVfe4aT4s+5GnwXZ5O/kxR67bEDw3zAoaOEBYGAAAAAAAAAAAAAADQFDnrH1aViRmek1Y65LoEVEnhHoeoj1Xk/gS3oQvkHc91UvxwRAAAAAAAAAAA0NkIC+tcl1Ucvy/MIGPM8yUdW3bKk3Slo/sPJBXLjs81xiwPscyHKo7/21o7HKY+AC0gVWNY2IKXxRtXa1hY/wG1jW+QapE3hNcA6GbfucnTB35stX57KTzxhjXSyZ/xlC/ECwwLCgvL8XwLAAAAAAAAAAAAAADQFHlHUFQ2lY01X9qEDAsjoEpSuMch6mMVtX9QiBLQKYJ+L7IxwxEBAAAAAAAAAEBnIyysc10m6f6y4xcaYwIDw4wxczQxZOy/rbWP+PW31q6R9N2yU1lJ3zHG9AWs8QpJ55edykm6JKguAC3GZGob3zurPnV0KFsl72Yk35g6AKAVXX7LxCfJJ7ZJv3kw3nye527LFd1tAAAAAAAAAAAAAAAASIa1VjnrCAuLGZ6TNuEukpojoEpSyLAwx/eoljkr+9tqGyqBNhf0e5Ex8cIRAQAAAAAAAABAZyMsrENZa4uSLpRUHoHwOWPMvxljplf2N8acJulGSQeXnd4m6cNVlrp4X79RJ0i6zhizsmL+XmPMuyT9qGL856y1j1VZA0AnsTHTV7xCfetoUyM8DAC62LX3+5//6E8DUr8CeAH7CXM83wIAAAAAAAAAAAAAADRc3uZk5b+pozflvJ5xoLRJh+oXNdCqU+VDBIHlvWjBavmIQWyePBXFBh50tqDQvWwqXjgiAAAAAAAAAADobOEuk4S2ZK291hhzoaQvlZ1+t6S3G2NulvSUpH5Jz5a0pGJ4TtLrrLWPVlnjSWPMuZKuljR6+ZoTJf3FGHObpLWSpko6WtLsiuH/K+ljke8YgOZK13ilqt6ZzVm3TVS7Dh5hYQAw0cad8cYRFgYAAAAAAAAAAAAAANBagsJzMiZeeE7ahNsyH7R2NwkTmhb1sYrz2Oa8EfWkM5HHAe0iKESPsDAAAAAAAAAAAOCHsLAOZ639sjGmKOmzkgb2nc5Ien7AsI2SzrXW3hRyjd8ZY86R9B2NBYIZSav33fxcLulvrbXFMGsAaCHZ6fHHZgalmcc2ft0FL48/tsFslbQwwsIAYKKiF29cYFgY/0oFAAAAAAAAAAAAAABouKCgqrjhOemQW+bzIUKyukGYYK8wgWK19C/Vkdu/+R3oREG/FxnTHRdZBgAAAAAAAAAA0aSaXQCSZ639mqRnSfq+pF0BXZ+W9HFJh4QNCitb40pJR0j6uqRtAV1vlvRKa+151trdUdYA0ELihm8961OSacJLz/yXNH7NhIzkm10BALSeRMLCCGcEAAAAAAAAAAAAAABouLzNOdtih4WZdKh+YUKyusFIiGCvoO+TnziPbZyAMaCduH4vekxP6OctAAAAAAAAAADQXcJdJgltz1r7iKQ3GmP6JZ0oaaGkuZJykjZLustae3eNa2yS9HZjzIX71liyb43dkp6SdIe19tFa1gDQIha+XHrq59HHHfL3ta1rUpKNkQgzaUlt6zaQDQiukaQRwmsAYIKg0K/AcQEvKXHnBAAAAAAAAAAAAIB6McZ8XNLFNUzxXWvt+fWpBgAaIyggKmuyseZMm3Bb5nPeiKy1MsbEWqcTFG1BnopV+0UN8sp70cLF4qwBtBvXz3jGxAtGBAAAAAAAAAAAnY+wsC5jrd0r6bqE18hJ+m2SawBoMi/fnHXjBIVJ0pzn17eOBFXLpinEfAgAoJMVYz43BgWCxZ0TAAAAAAAAAAAAAAAA8QWGhaXiBeikTTpUP0+eiiqoR5lY63SCsAFdORstyCtqf0nKxxgDtBPX71vc5zoAAAAAAAAAAND5Us0uAADQhmJc4a1p+udLPZOaXUVotkpaWKH6BfsAoOsEhX7FHRd3TgAAAAAAAAAAAAAAAMTnCpVKKaV0zOtkRxkXNiyrU4UN9Yr6OMV5XHO2jfaqAjG4AvGyhrAwAAAAAAAAAADgL947pgCALhcja/LA19e/jDBWf7k56yakaK0k0+wyAKClJBEWVvTizQkAAAAAAAAAAAAACXqdpJsj9B9KqhAASIorVCqb6pUx8fbOpU06/Po2p4FYq3SGsKFeYUPFos5b6xignbh+xjMm2+BKAAAAAAAAAABAuyAsDAAQ3aKzpdveFdD+SumJKyTtS2GZdKD0rP9b+7pzT5Oevi7amFR7XV2rWt5NodiQMgCgrcQNC7OEhQEAAAAAAAAAAABoL09ba9c1uwgASJIrhCpr4u8FjBQW1uUBVWFDwKI+TlHDxSQpH2MM0E5yNud7Pttme58BAAAAAAAAAEDjEBYGAIhuYKG7bcYx0vN/JG2/R9pwrdQ/V5p3htQ7o/Z1F78meliYSdW+bgMFBddIhNcAgB8v5nNj0FNu3AAyAAAAAAAAAAAAAAAAxOcKoaolPCdtwm+Z7/qwMM8/vKhS3ubkWU+pkHs04zyu3f69QOdzBeIRFgYAAAAAAAAAAFwICwMAxLPktdJj/zXx/LFfL/132pGlWz3NXB19TMiNK+2iSHgNAEwQ97kxKKCRcEYAAAAAAAAAAAAAAIDGy7nCc0z88Bxb7SqeZVzhPd3C9fj7Kdh86O9LlHn3jyEsDB3OGY5Yw/MdAAAAAAAAAADobOEu5QMAQKUjL5H6Dhh/btErpenPTm7NYozgr8FD6l9HgqrtSSoUG1MHgOZYt8Xqoz/19KqvF/WF6zwN50kIDMNLINjL46EHAAAAAAAAAAAAAABoOGd4Tip+eE5RhZrX7xZR7n+UALB8jAu/xgkYA9pJzvF7kU1lG1wJAAAAAAAAAABoFz3NLgAA0KYGV0in3ySt/Y6062FpzsnSwX8tmQRzKNMR3/yefLA0ZUUytSSkWjZNMYFAHACtYe1mq5M+42n99tLxFbdbXXOf1c/emVKmxzS3uBZXjBnsFRTQ6NnSVWWN4bEHAAAAAAAAAAAAAABoFFdAVMbUEBZmw1+ls9sDqvIR7n/OG5HSIfvGeFy7PbgNnc/1e5Gt4fkOAAAAAAAAAAB0NsLCAADxTV4qPesTjVtv6pFSdoaU2zqx7awHpd+9RBp6pHTcP186+edSm4W8BAXXSFKBsDCgY33jers/KGzUr+6TbnpEOvmQ5tTULqo9dzrHhZi3zV5GAAAAAAAAAAAAAAAA2porICqbqiUsrFDz+t0iyv3P21yofp71QvcdV0uMMUA7cf2+ZWp4vgMAAAAAAAAAAJ2NsDAAQPtIpaUV75Tu/b/jzx92kTS4ohQYtv1OyStIM54jpTrvZa4YISzMWqub10q/fsDqoFnSWUcaTR0g9QZoVZ+52j+66uO/8PTbQ0JegrNDbd9j9ct7YiaCBagWMlb0pFSq7ssCAAAAAAAAAAAAQFwXGGM+KulQSTMl5SU9I+kxSX+Q9Ctr7Q1NrA8AapazjrAwU0tYWDF036u3/li37Pxdac1Ur5b3H67jp54aGFbm2aJu3vlbPbj7Hu31dmtKeqoOn3y0jpp8gkybXaluzZ77QvcNGyy2Ob8hVi237bpB60cekySlTEpL+pbr+KmnalrPjFjzwd+GkSd0687f6amRx5QyKS3qXarnTn2BZmYOaHZpHafyueKx4TW+/bIm2+DKAAAAAAAAAABAu+i8FBUAQGc78hIpO0N67HJJRlr8Kmnl+0ptqXQpJKyNVYvCKUQIC/vE/1pd8ouxGQ+fb3X1e1KaP629Nh8B3e6WR5tdQXNt2G71ws95enBj49d+Zrc0d2rj1wUAAAAAAAAAAAAAh9dWHPdKmixpiaSTJH3YGPNnSf9orb0uiQKMMXMkzY447OAkagHQmfKOAKqgsK5qiiqE7vvkyDo9ObJu//Htu27UXUO36O0LPqpMKjOhv7VW39nwBf151/isxj/u/LVOn3Guzp79pth1N9p9u2/XH3f+OnT/MGFhz+Q36tPr3hurnmfym/RMftP+47uHbtVNO67Texd9UjMyUV+K4OfRvQ/pS09+XMPenv3n7h66VTdsv1rvXfxJHZBd0LziOozrucJPLc93AAAAAAAAAACgs6WaXQAAAJEYI618j/TiW6QX3ywd+v7SuQ5hq6SFFUOGhT2yaXxQmCTdt176wnXV4sgAoLV86kqbWFBYtWfETbuSWRcAAAAAAAAAAAAAErRa0jXGmE8Zk8immndIujfi7WcJ1AGgQ+WsIyzM1BAWZouxx0rSA3vu0kN77vZte2pknTP859qtP9VQcWdNazfSL7f8V6T+ru9Vueu3/0p5+//Zu/c4ucrC/uPfc2ZnZi9JNhdCQhIQQQXBe1ER8ALipRb9obX2Z2uprVVLEduiUH+lXKzlVi8UikKtoiCKWBVQqqhAQBFUkItUsIpCLiSQJdnsJrs7c2bmPL8/NruZ2T3PmefMfXY+79drX2TPfc7OORuyz35OUOshzbO98JR+PPaDhm2v131vx9crQmEzxkujun30v9twRAvXE/kNTqEwSUrXcb8DAAAAAAAAAAALG7EwAAC6iGss7MYHoxM4n/g+sTCg2yycHGJtPnN78+5b1QKNhfrGiQIAAAAAAAAAAABAozwh6T8lvVfSMZIOk3SopKMlnSrpe3OW9yT9o6TzW3iMANAQQRgdlkr7mZq3efDAoTWvO+O3U7+KnP7o1MPWdYxC/c6yXqcphAU9nvt1onWCsHos7NFJ+/mp1aOTv2z4NnvVbycfsc6Le28jud8mOJ+D/lATjwQAAAAAAAAAAHSzvnYfAAAA2KtauKboGAv75n1EwQCgmmr33KDYmuMAAAAAAAAAAAAAAIufSXqDpB8YY/0J512SLvM87whJX5H07LJ5H/E87yfGmBubfJwA0DChogfJ+XU8I/sFi16uPq9PRVP7YJCiKUROz4VTsevlw1zN+2ylvIl/HVECUz0Wlq9yfmpR7ZzDXdy55Dw3VpLzeejQC5t4JAAAAAAAAAAAoJsRCwMAoINUS3yVHGNhSwfqPhQA6HmFUruPAAAAAAAAAAAAAEAvM8Z8J8Gy93qed6SkuyU9p2zWhZ7n3WSMadRPQD8j6b8SrnOwJIJlAJyElttVykvVvM2s3693rjpZ1zx5mcyeUXr9/qBSXkoTpV01b1eSClWCWUFYPajVCWo5Tpd1XIJiifdrgoZvsxeVTFEl2QN6hS5573YL12vh91f8kfbNrGny0QAAAAAAAAAAgG5FLAwAgC5SdIyFeV5zjwMAFoJqgUZiYQAAAAAAAAAAAAC6iTFmh+d575R0r6SZ0SOHSjpW0i0N2sc2SduSrOMxkAVAAkbRg+R8z69ru68Yfq0O6D9YD088oMWpYR0+9BJl/KwenrhfG3K/UWlPpOyB3Xdre2H+bc5YRppUC2Y1I5bVDPkwZ52X9jIqRAS6XF5bEEaHvY4aPl5rswdqR2FEKa9PB/Y/W77na0Pu0dlzujXYpIcn7ovYpv1Y4W6hvHe7he1875NepRcuOlID/qAOGXyBDh58bouPDAAAAAAAAAAAdBNiYQAAdBBTpVxTakAszBjDIEwAUPV7bmB/cCYAAAAAAAAAAAAAdCRjzH2e531f0hvKJr9RDYqFAUCzlUz0IDlP9cXCJGlt9kCtzR5YMe3Fi1+hFy9+xeznTwabI2NhtsfS2WJYMwpV5neKuDDUsr59tK2wZd50l9dm2+7zho7QixYfOW/6Cxa9bPbPPx+/0xILI2LVCNViYEGYZ7xpA9nO9/7Zg/WH+/5Fi48GAAAAAAAAAAB0q/p/agoAABqmSrdGxZLbduKGZoTVdgIAkCQVHO+5AAAAAAAAAAAAANBhbp7z+QvachQAUAOj6FhYyku1ZP+eZfSdbdhd1eBSlfmdIi7ANZRaHL2Ow2uzbTfjZ6uum/H7I6fnTa7quqiuWnQtVKiSeNpioxTquBYAAAAAAAAAAABmEAsDAKCDmCohr5Jj6CvuQW6l6LFUANBzqt1SA2JhAAAAAAAAAAAAALrT43M+X9mOgwCAWoQmeoCb16HD3qsFl6rN7xRBGB3gSqlPA6khyzrxr61kigoVPQAn42WqHlPWElEqmoJCw8CeeuUd3pvd8v7tBra4XsYjFgYAAAAAAAAAANx15k9NAQBAJNfQV0wrTKFjcAxAZ4iL/6E+1QKNBddCIwAAAAAAAAAAAAB0lqk5nw+05SgAoAYlS1zKb9Gwd886+i56HIktAOQ6v1PkbSEjP2sNexVMELvNuNBUxhICq1gmJqIUVNk3qis4vDc5z40ThNHnMuNXD+cBAAAAAAAAAADMIBYGAEAHqR6uqX8frsExAJ2h2n0B08IaSoituOcCAAAAAAAAAAAAQBvsM+fzp9tyFABQA2OiB7ilvFRL9u9ZnuxnbLGwmCCWy/xOEYS5yOlZv98a9qr62mNiVOmYENiMjN9vnZe3HC/cubw3C13y/u0GtuvBJZwHAAAAAAAAAAAwg1gYAAAdpFrqxjX0ZRmvlGgbANBuW3a6B8C2TzR+/0Gx8dsEAAAAAAAAAAAAgBZ4+ZzPt7TlKACgBqGiB7h5XnuHvdseSleICWJJ8cGsTmKLb2W8rDKWsFe111YIA+s8l0BSNmYZIlb1y5vqwbVuef92A1uczSWcBwAAAAAAAAAAMINYGAAAXaRILAzoOe65rIXn4QTD1TfuSL79aue2UEq+TQAAAAAAAAAAAABoJ8/z+iW9bc7k29twKABQk9BED3DzWzTs3ZNt8F30SBNbAMh1fqcITHTYK+v3W8NeVV97TGjKFiCrXKbfOs8ldIV4QUzMLckycGO7XlzCeQAAAAAAAAAAADOIhQEA0EFsTx+cUXQM18S0woiFAV2m2n1hIQsTvPZa7m3Vzi2xMAAAAAAAAAAAAABd6B8krS37vCTpv9t0LACQWKjoARutioXZGFssLCaIJUmFKvM7RRBGx7cyflZpLxO9TpXXFhcTcwkkxS3TLRG2Tuby3qz2NYY72/l2CecBAAAAAAAAAADMIBYGAEAHqdbFcY6FxdTCksR3AKCdktyvagl7Vdt8QCwMAAAAAAAAAAAAQJt4nvdnnuetSrjOeyWdM2fyF40xGxp3ZADQXKGJfmKc76VadARxj+qcLwiDuuZ3irwtFuZlrdGuasGuuNCULUDmugyxsPrZvublOM+NYzuXLuE8AAAAAAAAAACAGcTCAADoIKZKuaaWGM5cpeixVAA6VC/3/ZLEwlxjikk04p4LAAAAAAAAAAAAADV6j6THPM+7yvO8P/A8b8i2oOd5R3ie901Jn1Vl5eYJSf/U5OMEgIYKZYuFtWbYuy0VZiyjeAITH1yKC2Z1EttxZvx+ZbzomFGhymuzxZHSXsbp6+l7vnXf+SrnHdW5hMCqfY3hLm+7xizvcQAAAAAAAAAAgCh97T4AAADgruhYzol7tmGpl8tDQBeqFhFcyBLFwmoIIbYi0AgAAAAAAAAAAAAAdRiQdNKej9DzvN9IelzSmKSSpBWSXihpVcS6OyS90RjzZGsOFQAaIzTRAzb8Fj0j27OMvouKhRljqgaXXIJMnSAIo+NbWT+rtB8dMwrCIH6bJnp+kjhSxs8qKM0/h91yXjuZS8iO89w4tnOZsVxfAAAAAAAAAAAAUYiFAQDQQaqFa4qO4Rrf9yTLkwxLNQR1ALRPkmDWQhMmuF81IxYWFJNvEwAAAAAAAAAAAACaxJd0yJ6Pam6V9G5jzObmHhIANF6o6EEgvpdq0RFYHtUZMc6kpKL1eGe4BJk6Qd4WMvL6rXGvaq/NFkdK+xnn47LtO2+Jm8GdSwiMWFhjlExRoaIHACeJ5wEAAAAAAAAAABALAwCgg1RrAhUcY2GW4UqSiIUB3aaXr9kkoTTXmGK5Rt1zAQAAAAAAAAAAAKAJLpH0hKSjJT3DYfkJSd+X9GljzK3NPDAAaCZjLLEw+S3Zvxc3+G6OhRRbsoW/sn5WGT86ZlQIg5q2mSSOlPX7E20b7lzOIee5MeLuA7brCwAAAAAAAAAAIAqxMAAAukjRMRoUN2ApSXwHANopUSysCVG1oNj4bQIAAAAAAAAAAACAC2PM9ZKulyTP85ZKOlzS/pJWSRqU5EvaKWlU0iOSfmGM4ZFIALpeSdG3Mt9rTSzM9qhOE/FYusDEx7IkqeCwTCcIwlzk9Izfr4yXiV6nSkiqYAkkZfzo7UVJW0JK3RJh62QLKXbX6eKulSTxPAAAAAAAAAAAAGJhAAB0EFMljFNwHNIZFwsrNSGoAwDNkCQWVkvYq9o9d2wq+TYBAAAAAAAAAAAAoNGMMTsl/bjdxwEArRCa6AFuvlIt2b9niYUpKhbmEFIqmoJCU5Lvteb4a5W3xIwyXlYZS7CrYAKFJrSG3GwxtXSCOFLWsmxgouNmcOdyDl2CeKgu7l5hu74AAAAAAAAAAACitOoRSwAAwEG1Lk7RMRbmEwsDsACE1WpeZfLFBGWxPaqtsW08+TYBAAAAAAAAAAAAAABQOyNLLMwSpGo0WyzM1BgLk7ojuBSE0eGojJ9VJibuVYh5bbbzkySOlPH7E20b7oKw+vuS89wYgSXGJyn2+gIAAAAAAAAAAJiLWBgAAB2kWhen6Bj6IhYGYCEIE9yv8sXG7/+pXY3fJgAAAAAAAAAAAAAAAOxKJvqJml4HDnsvxASAKpbrguCSLQqV9ftj415xMSnb+UkSR8pa9p3vgnPa6eICVjNc3+OIFxdmSxLPAwAAAAAAAAAA6Gv3AQAAAHeF6HFQ86RixkWVqgTJRnYZXXeP0YObpRcfIL3zpZ6WDcXUxwCgScIq96tytcTCqgUaRyeSbxMAAAAAAAAAAAAAAAC1M4p+upzvtSYW5il6rJzR/IEmcaGsiuW6ILiUN7nI6RmvPzbuFffabOcnSRzJtu/AcrxwF4TVz6Hrexzx4q6TPi/dwiMBAAAAAAAAAADdjlgYAAAdpFq4phg9DiqRMGYbT4wavfZToX791N5pl99udOtpvvZdQjAMQGsliYUFTYiFuQYaAQAAAAAAAAAAAAAA0BihiR7gllKqRUeQIBbmGAELwqCuI2oFWxQq62eV9jOJ15Ps5ycuPjZvWb8/8X7hxuUcdkPorhvYznXay7QshAgAAAAAAAAAABYGfrIAAEAHqdbFcQ3X+DHf4UsxO/n07aYiFCZJv9wife7OBMUeAGiQJLGwfC2xsCrzA2JhAAAAAAAAAAAAAAAALWOMUajoWJjXoqCOZ3umZsRAE9dgVacHl0ITqmCig2YZvz827lWIeW2285PxE8TCLPsmFlY/l/cl57kxbNdJkmsBAAAAAAAAAABAIhYGAEBXKTqGa1K2AUuSStFjqSRJ3/uf6HTO1+4lFgag9ZodC6smaMI2AQAAAAAAAAAAAAAAEM1YQmGS5Lds2Hv04DsTUQtzjYB1enAp7nVkvGxs0CjutQWWAFnayzgfm23feZNz3gaiBWH016dimQ4P3XULazgvJsQHAAAAAAAAAAAQhVgYAAAdxFQJ4xRjQl/l/Jjv8HGxsPs3RU//xWa3/QJAI4WO9zxJyheSb7/aPTdwDDQCAAAAAAAAAAAAAACgfmFcLMxLtfBIokTEwhwjYJ0eXIp7HVk/q5TXJ1/R598WBIvbblx8bP7++xNtG+4Ch+Aa57kxGnEtAAAAAAAAAAAASFJfuw8AAIBWGtlldOHNRnf+xujQ1Z7OeKOnw9dEPwmwHap0a1RwDNf4MS8pLhYGAJ0krHZTLJMvJt9+tc0HNWwTAAAAAAAAAAAAAAAAtQlNTCysRc/I9hQ9+C5qnIlrBKzTg0tBaI9GZbzpWFfGzyoXTkasa39ttvOT8dwDSbZlOz3A1umMMU7vy7gYHNzlG3AtAAAAAAAAAAAASMTCAAA9ZCJv9PqLQz24efrzex43+vYvjH78D76eu1/nBMPiFNsYCyuFRqm4DQNGdf0JAAAgAElEQVRAgzU9FlZl+4XS9MA4z+PeBwAAAAAAAAAAAAAA0GyhYmJhXqtiYe5cI2CdHgvLG3ssLOtPx4wyXlY5zY+FFWKiXYUwOjSV9jPOx5bxo2NK+ZjAGaorqRh7vc0odPh7t1vYzqPt/Q0AAAAAAAAAAGDTmp+aAgDQAW55RLOhsBk7J6XP3ZmgRtNkLuGaeiWJ75Sb4gFxQNuEtV64XS7Jyw5qiIW5aMR9FwAAAAAAAAAAAAAAANWFxj5Qw2/ZsPfoXJjR/IEsQUwoq1xcUKsTBJaolyRl/P49/40OfMWtazs/Gc89kJTds//5++3sc9rpnEN3Hf7e7Ra285j23MN5AAAAAAAAAAAAErEwAEAPuey26KegXfyDzonwVIuFFas/yK3qdmqOhRVqWw9A/UqO1/5C0+xYWLV7bq3bBQAAAAAAAAAAAAAAQHKh7INkfK81w949SyxMUbEw1+BSh4etgjBnnTcTM7IFvuJiUgXL68747rGwWvaL6hbKe7db2M5jkmsBAAAAAAAAAABAIhYGAOghP9/Y7iOorlq3xjkWFjOv1lhYjlgY0DalzmkatlSYIJKWryUW5rBMYH9gLQAAAAAAAAAAAAAAABooNDGxMKVacxCWVljUQ+lcg1WdHrbKm+hYWNrLzEbabFGjuJiU7XXbAmCRy/r9kdOLpqDQMLCnVkneu8bliYyI1YhrAQAAAAAAAAAAQCIWBgDoIYsWwM/UCw0Y25IkvlNuilgY0DbFHh3XliRumC82Z1BaUEOEDAAAAAAAAAAAAAAAAMmFiomFea0Z9u7ZamERj6UrhIHTNgPH5drFFvzKloW60paokS2CZIyxbtcWHotcNiamlI8JlSFePowOxEUpmM5+/3aDRlwLAAAAAAAAAAAAErEwAEAPSbfowYL1qPYANtdgUNx2SjX2dKYY7wG0TanGyF+3SxQLqyFo6PLQyzyxMAAAAAAAAAAAAAAAgJYIjX2AnN+iYe+2WJiJiIXZQlm1LtcutnBUeagr42cil7FFkEoqWuNvcQGwucqDZfP23eHntZMFCQJgnOf62c5hxrO/vwEAAAAAAAAAAKIQCwMA9Iy+LviuV61bExopdKjnxC0R1hgdmqohxAOgMWqN/HW7RLGwGqJeLpsPiIUBAAAAAAAAAAAAAAC0hLHEpSTJ9zpvAKAtlFXrcu1iCxmVh7psgS/bunGvOW0Jj0XJ+PawWGCJnKG6QoL3ZKe/f7uB7RzGvb8BAAAAAAAAAACidN5PTQEAaJK+VLuPoDGKNca+ZsTFd7J99nlT7g+SA9BgpTqv+25lmh0Lc9h+YH9gLQAAAAAAAAAAAAAAABqoZOyDZLwWDXv35EVONxGPpXONKBVMZw++s4eM9sbC0paokS06FcS8Zlt4LOmyeSJWNcsnCK11+vu3G9jOYcZzD+cBAAAAAAAAAABIUkwSBACAhaWvCxKZLuGaYknKVPkOHreduOiQFz3OSZI0VYjfJ4DmKfZosCoubjhXUEMsrJ3bBQAAAAAAAAAAAAAAQCUj++C2lNeqp4VGD6KbLO3WptzvtLRvuRb3LZUkBcYtuDRW3KFNud9pwB/SivS+8uIG6rVYaErakPtN5LzykJEt2jVWHNWm3O/mTd9Z3G7dZ8YSHouSLQuWzbU5/5iMQu2bWRO7XLmJ0i7tKIzMfr48vVJDqcXOx9OJcuGUSqaofn8w8jrJhVMaCbZWTNuQe9R5+5tyv5sNymX8rFamV8tv2fW4MNjibEmuBQAAAAAAAAAAAIlYGACghyyUWFjBIRoUt524+E7cPJf9AmiOUoJo1kKSJBaWryHq5XLPJRYGAAAAAAAAAAAAAADQGqGxx8J8tWYAoGeJhT0y+YAe2fCAJOmZ/Yfo+OX/R5vzjztt81eTD+qCDadJklak99V79vuwDhx4TkOOtx537vy+rh+5SlPhROT8TFmAyxY1Kj8vrmzhsSjpsmDZXFc/eYkkKaU+vXTJq/Snq/9GKS/61yOmShP6/JZP6JHJB2S0d9CQJ0+HDr5Qf7XmdA2khpyPqxOEJtQPdlyv7+34hnLhpJb17aM/W32qDh16oSSpEBb0pScv1X277lKo2geAXrn1kxWfL0kt05/td6oOH3pJXcffKzbkHtXm/GOR85JcCwAAAAAAAAAAABKxMABAD0nHPMgsDI18v/1P63Pp4hTt46GchMbI9vTDuHAOwRygfUp1XvfdqumxMIdlAkKJAAAAAAAAAAAAAAAALVEy9oEanteip4U6DCN8LPe/+s8t/1rT5rcXtunSzefovIM+19Y41f9OPqSvPPWZ2GWyZYGwRkaNbOGxKJ7nKeNlFZi8dZmSivrJ+G1a3Dest67888hlvrj13/Tw5P3zphsZPTL5gK568hL99dp/dD6udgtNSV968jL9dHz97LTR4tO64onzdd7Bn9NQarG+PvJ53bvrRw3f93hpVJ974l/1T8+8VCvS+zZ8+wvJVGlSl2w62zo/ybUAAAAAAAAAdAJjjMIwlIn7hXQAaAPP8+T7vjyv/c2QZiMWBgDoGX0xsbBCScq2aCxRvVxiYXH/ixUXHYqNhZXskTEAzVXs0WBVmCCSVlMszOHfo/KF5NsFAAAAAAAAAAAAAABAckb2wSK+WjPAz2vBGLlcOKVHJh/QSxYf3fR92dy/666qy2S8/r1/9jMN23efl060fMbvV1Cyx8Jm3LfrrshYWC6c0sMT80Nh5X65+z7lwin1+wOJjq0dSqaoq7ZeEhkCC0xePx1br2OXvVkP7vpp044hb3K6ZccN+uNV72vaPhaCX00+oFw4aZ1PLAwAAAAAAADdoFAoaGxsTGNjYyoUCoTCAHQsz/OUTqc1PDys4eFhpdPJfibVLbokiwIAQP36Yr7rBR0S4nH5/6Oxqfr2EcbsI273QQ0hHgCNUerRfzuJu1/NVUsszEWnfH8AAAAAAAAAAAAAAABY6MK4WJgX87TQBto3s6Yl+9le2NaS/dSz/1WZtZF/rse+6TXyvWS/wrA6s85puR2FbZG/pDZe3KmS4gcXlVTUeHFnouNqh6Ip6HNbPhEZCpuxOf/49OspjTb1WO4eu1W7S+NN3Ue3q3ad7ZtuzHUFAAAAAAAANEM+n9fGjRv16KOPamRkREEQEAoD0NGMMQqCQCMjI3r00Ue1ceNG5fPVH0jTbYiFAQB6Rl/MWKFCh8RgXP4X6XcjDtuJ2VBcfCduHrEwoH1K9nGQC1qiWFgh+fZdNv/rp/jHKwAAAAAAAAAAAAAAgFYIjX0gn9+iYe8vGHqZ+v2Bpu8nCNv7iwnV9p/xsnrx4qNmP3/u0Iu1JLW07v0eOXxs09YxMiqa+YOISsZt8KPrcu1SCAN99omL9ODun8Qu92Sw2enBtfUKTF4/HP1u83fUxeKus/2zB2lt9hktPBoAAAAAAADAXaFQ0MaNGzUxMdHuQwGAmk1MTGjjxo0qFGr4JfQORiwMANAz0l0QC2uUuHEecfGduAEiwQI7R0A3Kfbo9ZckFlbLPcplUNxpXzP6zkMEwwAAAAAAAAAAAAAAAJotNPYn6vlea4a975NZpVPXnasD+58jr4ah9qcfcJGePfA8pdQXu1xg2hsLK8Ts/4D+Z+nUdedq38x+s9P6/QH9/QHn6VkDh1d9bVGG+5brTSv+WG9Y/vbE6x41fLzevu97tCK9b9Vlo85rKSZCV8ty7RCEeV3xxPn6n4l7qy77VLBZbo9RjLa8b6Xzsrfv/I4KYVDzvha6wNjPzanrzpXneS08GgAAAAAAAMBNqVTSpk2bVCx29gMWAMBFsVjUpk2bVCp17s+Bkkr+kzoAALpUX8y4nU6JhbmEa/J1/r9VyTKeylTZecD/0wFtU+rRVlWSWFgt90bXJ2ie8O+hilf48n0GZwEAAAAAAAAAAAAAADRLqJhYmGKeFtpgzxw4RGc8418VhHkVTUEfe+xUjZVGq653xOJX6pkDh+jvD/gXFcJABRPoi1v/LTLwFITtjYXZ9v+Wfd6lN66IDnqtyqzVaQecN/vakhjwh+oKIx237M06btmbNVWa0EjhSV244UORywVhXkOpxRXTQrkNLHJdrtXyYU6XP3Gefj35kNPyU+GkxorV369RXr7kWJ20+oPKhZMyZcGx9aM36b+3f3Xe8rtLY/rp+Hods/QNNe1vobNdZy9Y9DIt6lvS4qMBAAAAAAAA3GzdulX5fOW/bfm+ryVLlmjJkiVKp9Py/dY84AMAXIVhqEKhoPHxcY2PjysM9/7cMZ/Pa+vWrVq3bl0bj7BxiIUBAHpGXCysU0JYLuEal2ON244tvlNt30GHBNWAhcrz7NehLfK30IUJXndQnI4eVhtUaJ7cIG3bLB16hKS08/YvvsXoQ68nFgYAAAAAAAAAAAAAANAsobEPUvO91v/iUcbPKqOssv6A5BALy/r9s39O+xmlldGAPxS5bGDaHAuz7H9RqnrAaOa1tcNAakhLzDLr/KjXVYp5X9WyXCtNlSb1mSc+pt9OPZJova3Bppr2l/Gz8jxPA6nK9+2xy07QLTtuUN7k5q1zy44bddTw69pyjXa6guU6y3jZFh8JAAAAAAAA4KZUKmnXrl0V0zKZjJ7xjGeor488DYDOlslkNDQ0pJUrV2rDhg0Kgr0Pv9m1a5dKpZJSqdY9oKhZ+IkMAKBnpGK+63VKiMehFaagVH2p2FiY5bVW22qnBNWAhSouaFjsvHFoLWGLG9rE3adMkFd45jtk/ug5MqccJ/PmtTIjTzhv+/SvJzwYAAAAAAAAAAAAAAAAJBIqenCb3+Yh7xnfLYyVjggA2dYthEHk9FYJLPvP+J0fMcp49q9HEEbFwtwGP7ou1yqTpd36983nJg6FSdKTweaa9mmLWA2mFumopcdHzttW2KKHdt9T0/4Wuqj3o9Qd1xkAAAAAAAB608TERMXnnudp//33JxQGoKv09fVp//33l+d5FdPn3uO6FbEwAEDPSPmedV6xQ2JhLvKF+ta3tcbiAmMSsTCg2WKDhj3YqTLGKHzsV4nWycfFwq6+UPrhjXsnTO6Suftm5233pxMdCgAAAAAAAAAAAAAAABKyxsK89j7hOyoCFiUqAGSLAuXDXF3HVK+CsUSMHF9rO8WFlqJjYW5PanRdrhV2l8Z1yaaz9Xju19ZlFqWWaGV6v8h5T+Y31bTfuHN73LI3W8N9t4zeUNP+Frqgi68zAAAAAAAA9KZdu3ZVfD44OKhMxu2BGgDQSTKZjAYHByum7d69u01H01jEwgAAPSMuxFNs0BiPXMFoKqi96lMt2CVJQZ3HGlrCaGG1WFjnjIMBFqSYnqFKXRQ0bBTzmY/I/PimROvExcL0navmTyu5VxBzdYYaAQAAAAAAAAAAAAAAEC80llhYm4e8xwWUKpbz5v/ClC0KZIsItUoQBpHTXV9rO6XUZ31PRJ3XkhxjYY7LNduu4k5dsulsbcr/zrrMktRS/d3+/6JDBp8fOX9rUFssLOv1W+etSK/SSxYfHTnvt1OP6HdTyR4M2Qui4nVSd1xnAAAAAAAA6E0TExMVny9evLhNRwIA9Vu0aFHF58TCAADoMnGxsEKdYzwm80Z/8p+hlv/d9Mcf/0eoiXzyaJjLGrExnJntxGzIFgWrFioL3Js6AGrQiqBhtzCjI9J1l8h4MQW1CLH3qZEn5u9HybZvXIqOAAAAAAAAAAAAAAAAqEloogfJ+F57h7xnfXtAqVxUAMgWBbJFhFqhZIoqKXqgTToieNZpPM9LdF5Lxm3wo+tyzTRW3KGLN/2Tnsg/bl1muG+5/v6A87Qme4BWZdZFLvNksLmm/af9+K//8ctPtM67ZccNNe1zIbNFAbvhOgMAAAAAAEDvMcaoVKr8d/qBgYE2HQ0A1G9wcLDi81KptCB+V5xYGACgZ8SGeKIfSOjsvV8y+uo9RrnCdMzrv35u9BdfqHOjFvVGu6yxsGr77bFYEdBqcdmqUnNuJ53re1+uXjCM4BJTLJc0Fra7vQ90BQAAAAAAAAAAAAAAWNBCRQ+S8do85D3jRYepXJazrVuwRIRaIQgD6zxbhKvT2M5rVJypZInQ1bpcs4wWntbFG/8pNvS1vG+lTtv/PK3KrJUkrc5Gx8Jy4WRNx1DtvX5A/8E6ZPD5kfMe3P1TbQu21LTfhcoWBeyW6wwAAAAAAAC9JQzn/xt9KpVqw5EAQGNE3cOi7nXdhlgYAKBn+DFNmHpiYZN5o+vvnx+1+dYvpN25ZLEblzaOSwwnbjO26FC1v9fUGykDULt6g4bdxjz28PR/E8a8mh0Lu+PXybYPAAAAAAAAAAAAAAAAd8YSC0t57f1lpLSfcVou4/dHrGuJWsUEu5otKqg1wzWM1m728xoVC3MbVOS6XDNsLzylT206U9sK9tjWPulV+vsDztPKzH6z01bviYY1SjbiPTzX8ctOjJxuZHTrjm819Hi6XWCir/Nuuc4AAAAAAADQW0zEL7l7XrLfwQSAThJ1D4u613WbvnYfAAAArZKKSWQW63gg3P2bpFxh/vSgKN3zuHTsoe7bcvm7Rb3RrtCyj2q7LrR4HMxPfmf0sZtCPbxVOupgT+e/1dMzVvA/lVi44q7BXouFqcbafNJYWFJfu8fohBdU3oeMMbpsvdFXf2b02xFpyYC0dEAaHpCWDkpLBjwtHayctnTA2/vnwenpS/olP65qCQAAAAAAAAAAAAAAsMCVTPRAPr/Nz8d2DftkIgJWtnXjgl3NVogIas3IOIbR2i3JeS3JbYCo63KNNhJs1SWbztaO4oh1mX3Ta/S3+/+zlqX3qZi+rG+l0l5GBUuUKqmo9/Bchw29RGsyB2hLsHHevJ+M36YT9vm/Wty3tCHH0+1s15rLeQYAAAAAAAAAAIhCLAwA0DPiGiz1hHgKMeNDSk0I/LjEcOKiY9ZYWJVaWNDCcTAPbjJ67SdDTe2JsG3YbnTXb43uP8vX0kFiOug99UYCu44/HQszSna95yPCjXGSbj+Tnj/twpuNzrx+7w102675e4na81yeJy3OVgbElg5ISwe96QBZRXCsLDZWFiHL9HF/BAAAAAAAAAAAAAAA3Ss00QPuPK/NsTDHsE/Gmx/asq0bxAS7mi2ICUu5htHazXZeC+H811YyboOvXJdrpKeCJ/Rvm87SWHGHdZn9Mvvrg/t/VMN9y+fN8z1fqzJrtTn/WEOOx+Xr73mejl9+oq5+8tJ58wom0B07v6sT9nlnQ46n29migOkuuc4AAAAAAAAAAEDnIRYGAOgZcS2sYh0hLFt8S5L8hGOUqvS6JEk5hxhOXPjLFjCrtu+g6HJ0jXHlj81sKGzGhu3Stx40OukVxHDQe6avvx5676dq+98UW0zRhNE3vqSxsGDOfckYo/+4ozH3RmOk8dz0x8aKsX9usTFJGkjvDYftDY6VxcbmRMjmBseGstOD+QAAAAAAAAAAAAAAANrBKHqMR0qpFh9JJdeAVlTAKiogJtkjQq0QFypLO4bR2i3JeS0ZtwGirss1ypb8Bl266RyNl3Zal1mbPVAfXPdRLe4bti6zOrOucbEwx6//EUteqRufviYycnbHzu/o9cvf5rythcx2rWX86PcvAAAAAAAAAABANcTCAAA9Iy6gVbQEtOrdri3MVcu2ZrjEwuLY4maWls6soIUPzfv326IP8t1fMDrpFa07DqBTBK0dh9Z+e2JhiWNetvtUMfrGaRKGscamKu9NOyfnhr3aa6ow/fHkePlU2zeW+dNTfnlMbG94bHjAi4yQzZ02PCClfGJjAAAAAAAAAAAAAACgNrZYk+clfGpng7lGj6KiYrZ1i6ag0JTke60PocWFymwRrk5jO69RcaaScRv86LpcI2zOPaZLN5+j3aVx6zL7Zw/Sqfufq0WpJbHbWp1Z17Djcg3j9XlpHbv0BN3w9NXz5k2UdunusVv16mVvathxdSNjjPVacz3PAAAAAAAAAAAAcxELAwD0jLgOV7GOEE9c4GsqaNy2ZuQdxqPEbcYWC6u260KvxYqAFou7/lsZ6+sIqdoGQVrvU5ZYWFLjucrPbffTblUKpR0T0x+Vol5o9Itf3B8VHPO0JCJCFhUc608TGwMAAAAAAAAAAAAAoFcZRT/x0lebY2GOYZ+M359o3cAE6vcGaj6uWhUiglqS1Of1tSVeVgvbeY2KM5XkNvjRdbl6bcg9qn/fdK4mw93WZQ7sf44+sO5sDaYWVd3e6mwDY2GOYTxJeuXSN+jmHf+lXDg1b95to9/SK5e+oWveT81QMPYBxEnOMwAAAAAAAAAAQDliYQCAnhEX4ilGjzFy227MvKmCkdTY8EnOoXkT91pLltdaLVRGLAxon6DXrr9UWpJkEt4/rfep/GTk5KTbH5s/rg1z7MpNf2weLZ9q+wYzf3q2rywoNrA3NjY8GB0hmzttcb/keQTHAAAAAAAAAAAAAADoRqGxxMLaHBxyDftEBazi1i2EefX7rY+FRQW1JCntGEXrBGnLeQ0iQmgl4xgLc1yuHr+b+pUu2/zPyoXR45kk6eCB5+qUdWc7vzdWZxoYC0vwHhhIDeno4dfr1tEb580bKTypB3f/VC9efFTDjq3b2K4zKdl5BgAAAAAAAAAAKEcsDADQM+JjYbVHveK2O2l/MFj0thyWyRVclrILLavbps/ouVgR0EGCYruPoMVKDlXECHNjYSafk7n8/0nf+Ezk8kljYTsm5qwfc99891GesmlpbFLaOWk0NiXtnJJ2Tk5Hx5J+f+gV+aL01Pj0x17usTHfm46GDe8JiJUHx5ZETFsaESHrSxEbAwAAAAAAAAAAAACgHUqKHqTmy2/xkVRyDftEhcHi1o2LCTVTVFBLco+idQLbeY06pyXjNvjKdbla/Wbyl/rM5o8pb3LWZQ4ZfL7+eu2Zyvr9zttdmV4jT76M6nhq7h5J3wPHLjtB60dvUhhx7f5gxw160aJX9OyD/2zXmdRd1xoAAAAAAAAAAOgsxMIAAJBUrCOEFdfYShwLc+iA5RwaOnGbCS3jQarte26EB0Dr9Nz1F0wPlEoa8yoPP5rJ3TJvWNHQw9q4QzLGOA1gO+11np631r5cUJwOiI2VBcR2Tko7p0zZn6XxqenY2Owye9YZm3L7ntFrQiONTk5/aHv5nKiTFX0Ch7LzA2JLBz1rhGzutIGMenaQIwAAAAAAAAAAAAAA9TAmenCb77U5FuYY9olaLh2zbhC252lzBRO9X9coWiewfU2iAk2hcRt85bpcLX418aCueOL82EDcYYMv1vvWfiRxSCrtp7VPepVGClvrPczE+16eXqkjlhyjn43fMW/e47lf67dTj+hZg4fVfVzdyHadSd11rQEAAAAAAAAAgM5CLAwA0DPioirFOh6oFrfdKYewV1JOsbCYYwot86o1Z3ouVoSOZozRJbcaXX230a6c9JYXebrgrZ4yfd0b6Im7BoPmPrSy80zurmm1mfuUGd0m85b9qy6fNEYmSU/vllYunlm/dpk+TysX793WXm7HFIbT7/2ZgNje4JiZDYrNTBubM21mee7r0Sby0x9bdpZPtX21509Pp8oiY2XBseGZsFh5hGzAKwuSTc9b3C/5fvfeywAAAAAAAAAAAAAAqFUoSyxMbY6FOYZ90l4m0bpx4ahmigpqSclDUe1kO6+FiHNaktvgK9flkvrlxH367BMXxsajnjd0hN675gyl/fnvIRerMmvrjoX58pWq4ddLjl92YmQsTJJuGb2hZ2NhtutM6q5rDQAAAAAAAACiHHjggdqwYcPs5+vXr9drXvOa9h0Q0EOIhQEAekZc1KVYRzDFFt+SpMmED/5zCc+4xMLilCxhtLjXIfVOVMYYo0e3SY9slY48SNp3CcGWTvSJ7xv9wzf2vmkv/oHRk2PSl/9qYX69gh65/mbd/KXp/3rJvp6FkmSKBZm/fpXT8rXEvu59XPr951dfLuGhJ+b7noYHpeFB6YDKPTutb4xRrlAWGZsqi41NVkbIxi0Rst3tGa/a8QolaWTX9EelqHfc/GmeJy3prwyOTcfE9nzNK4JjXmV8bM9/uzmcCAAAAAAAAAAAAADoXaGxxMK8VIuPpJJL2KfP61Mq4jgzMfGnuJhQM9kiZa5RtE5gO69BOH/QZsm4Db5yXS6JX+z+mT635V9VNPYQ2YsWHam/XPMh9XnpmvezOrNO/zNxb83rS1LG75dXw6Cndf3P1HMHX6RHJh+YN+8Xu3+mJ/ObtTq7rq5j60Zx13e6i641AAAAAAAAAADQWYiFAQB6hompwtQTworb7lTSWJhDuSbn8PC6uO3YomDV9h0056F5HaVYMnrv1UZX3T19MjxP+vSfePrrV7f3yZSoZIzR5bfPf8Ne+zOjy95ptGxo4UVyeuH6a4RCSdIt10lbHnNa3jiGtcptnzCaCXK53LM7led5GshIAxlpv6UVc5y3USwZjZUFxGzBsXFLhGxsqnqoshcZo9nzOmdO1NKR2xhIVwbEpoNj07GxqAjZ0jkRssGMahr8CQAAAAAAAAAAAABAPUJFD+Tz1d7xWy5hn4zXHzk95fUppT6VNH8AkC3a1WxRQS1JSseEzTqNLWwWdU5LMaGuWpZzdd+uu3Tllk9a39eSdMTiV+rP9/u7yNBcEo2IcdUTizt++YmRsTBJunX0Rv3p6lNq3na3sl3fnnz1efwaDwAAAAAAAAAAqA0/ZQAA9Iy4qEsx+oGEbtuNmTdVSLgtl1hYwm3OVWssrJ6gWrf4wl17Q2HS9Dn5my8bvfo5Rs/dj2hKp9iVkx7fHj3vwpuNLvrDhfe1Cnrg+pthcpN7/5ww5lUoSea89zT6kCqcdKXRSVeWtGxQuva99oGoC+9dOF9fytOKRdKKRXPnuL16Y4x25/eGw/bGxEzFNFtwbGyq/u+JC9VUQZoak7aOlU+1faOfPz3l7w2HDZf9d3jAi4yQLZ0TIVsyIKX8XrgKAAAAAAAAAAAAAACNFL1YBTAAACAASURBVJrogXy+195YWMZ3iIXFLJPxM5oKI2JhYZtiYZaIUT2xqFazne+oc1qyvK/mL9e4QVr3jN+hq7ZeolD2fR+55Fi9a/UH5NcZCpOk1ZkGxMLqiMUdOvhCrcs+U5vz8x/y+NPx9Tphnz/RcN+yeg6v6xRMdJQv42V4iB8AAAAAAAAAAKgZsTAAAFRnLCwmstWMwJZLGCWu+1WyvFZbRGxGL8TCvvjj6JPwtXuNznkzgzM6Rdx78Yo7jC76w9YdSyPF3UuCGh9aWSgabdslrVmq7hlgtHOk5lULu3YlWj5pjKzc6KT0xkvs3zy65XS3k+d5WtwvLe6X9q+c47yNXMFobKosLGYJjo1bImS7co1+VQtDKZS2T0x/VIq6UUXfvBb3z8TEVBYT8yriY3sDY/MjZNk0FxEAAAAAAAAAAAAA9BpbWMlXe2NhWZdYWExoK+NlNaXJedPbFguz7LeeWFSrpS3nOyqEVpLb4KtGxcLuHrtV1zx5mUzMSM6jh1+nd646uWEhvIbEwrz+mtf1PE/HLz9RX9x68bx5RVPUHaPf0VtW/mk9h9d17NdZ90T5AAAAAAAAAABA5yEWBgDoGXEtrGIdYzwaGfip0uuS5BgLi9mQLQpWbd+dEgsrhUYpvzkBkbt/Fz39o982OufNTdklahB3XS3U8E8tsbB/+e9QH/+e0a6cdOAK6dr3+nr5QV0Q39n5dM2rBvfdmWh5Q9Gr6/WnPfWnpVVL5s5x+9qWQrMnJLY3Ijb9X1MxbTo4Nj2tPDg2NlVfcHQh25Wb/tg0Wj7V9reN+dOzfXvDYXvDYp6GB6MjZEvnRMgWZbsokggAAAAAAAAAAAAAkCSFxhILa1BQqVZxIbDZZWJCWxk/K0WMvytEhK1aoWCCyOkur7NT2IJLUYGm0DEC5hoVi3Pnzu/pK09dHrvMq5e+SX+071819H09mFqkJamlGi/trHkb9Uasfm/x0bpx5EsaLc4f//XDnd/V61e8Tf3+QF376CZR4TqJWBgAAAAAAAAAAKgPsTAAQM+IC2jVE/qwxbckKZiYlLTIeVtxxzjDJRYWxxoLq7LvoENiYUFRGuieBxiiCfL1j8nqOkljfdf8JNTZN+69qB/fLr3u4lAbLvS1bKjD4zmj22b/aByDTzMKD9xddZmtfav17UV/oK19q3X3wJGJD89Vh59l7JHyPS0bkpYNzZ3j9hU0xmgyKAuIzUbEzHRkrCw4Nm6JkE3V+X19ocoXpafGpz/2co+N+V55ZExlMbH5wbHhAS8iTCb1pbiSAQAAAAAAAAAAAKCVQkUP5PPU5liYQ9wnHRPass2LClu1gm2/6S6KGNm+JlEBtpJxG3BWcoyK2awfvUn/te1zscu8dtlb9LaVf9GUB6CtyqzV+FT7YmEpr0/HLXuzvjHyhXnzJsPdunvsVh277IS69tFNbNdZN0X5AAAAAAAAAABA5yEWBgDoGXEtrGIdYzzithvcfYvMmw6V94xDa9/BHDmHcSsmpvxli4XFRc+k5LGiZiEWhnqDed0oSBhI++Z98y/o3Xnp278wOukVHR6/GR2pedWCl46d/5urRvTajxe0pbS05n0A5TzP01BWGspKa5dVzHHeRlA0s/Gwiv/uCY7NRMjGbBGynFtstNeERhqdnP6oFHWyok/gULY8MrYnJjboWSNkc4Nj/Wk1ZXAvAAAAAAAAAAAAACxUoSXWlPJSLT6Sufvvk6+UQtkH0cWFlmzzgoiwVSvY9ttNESPbsRZNUSVTqnjPuEbAXKNiUX6w4wZdP/LF2GXesPztess+f9q0sQSrM/vrN1O/rHn9Rnz9j176en1n+3WaCucN2NBto9/Sq5b+ftuv51ZZCFE+AAAAAAAAAGg3Y4zuu+8+/epXv9K2bduUz+e1cuVKrV27Vsccc4wWLVrU7kOs2aZNm3TPPfdo8+bNmpqa0j777KPnP//5OuKII+T79T1IZ9u2bfrRj36kLVu2aGpqSmvWrNFBBx2kI488su5tR3n44Yf10EMPaWRkROPj41q+fLn2228/HXPMMVqxYkXD99friIUBAHpGXEijGP1Awrq3GwQlmSs/Ju+jX3bblsMyQVEKQyPftw8YidtOyfJaq4VGOiYW1iHHcc/jRmdeH+rnG6Tfe4Z04dt8veQZBEFaobRAozix95Jishd9wwPR00/7mtFJr0i0qdYb3Tb7R5MguCTFx8K8f/yc/vm2RdrSojcQfSC4yvR5WrlYWrl47hy3N1EYGu3KVQbEds6ExSriY9L45PxpOyc753t8p5nIT388UfHQXds9ZP70dErzAmJLB6Qlg978CNlMbKxs2uJ+xf59DwAAAAAAAAAAAAAWmlDRg9s8Nf6XFpLK+FnlIgJIM7J+f+y6UYIwqPu4amGLGGX87nmKZ1ycrWACpbyB2c9LcouAuUbF5vru9v/St5+OHyN6wop36vdXvKOpDx1blV1b1/px59RVvz+gVy59o76/45vz5m0vbNP9u+7WEUuOqXs/3WAhRPkAAAAAAAAAoF2efvppnX/++brmmms0MjISuUwmk9Fxxx2nc889Vy9/+cudtvvud79bV1111eznjz32mA488ECndW+//XYde+yxs5+fc845Ovfcc63Ll/9M4NWvfrVuv/12SdJdd92lc845R7fddpvCcP7PxlatWqUzzzxTp5xySuKw1/3336/TTz9d69evj9z2unXr9P73v18f+chH1NfXp3PPPVcf/ehHZ+evX79er3nNa5z2tX37dn384x/XNddcoyeeeCJyGd/3ddRRR+mcc87R8ccfn+i1wI5YGACgZ7QlFuZlpNu+LrnGwhwbNvmiNFDjuJzQso9quy6Upuu7zRys4iKo/eF9sYzryZf06Daj118camxq+vNbHpGOvzjUvWf6OmglUY9mS/ClWjByDXrfT7ZnfKETk5uU/udumZuvqXkbOctAKu/SH8h78at07fsoImHh8X1Pw4PS8ODcOW7fj4wxyhX2RMbKgmNjUyZimjQWERybaM+DjjteoSSN7Jr+qBT1jWz+NM+TlvTPD44ND0x/zSsjZN7eP+8Jjg0PTMfoAAAAAAAAAAAAAKBbhCZ6IJ/vdUAszMsqJ3ssLC4AZJtniwk1W8Gy33QXRYzizncQ5tXvl8XCHCNgrlGxGcYY3bT9Wn13+9dilztxn5P0+hVvS7TtWqzOrKtr/UZFrF6z7ATduuNbkefzlh3X6/cWH932caitYI/ydc91BgAAAAAAAADtcMMNN+ikk07Srl3zfjGvQhAEuvnmm3XzzTfrfe97nz796U+rr6+zM0rnn3++zj77bJVK9p9dPPXUU/rgBz+o9evX66tf/aoyGbeoxKc+9SmdccYZsdvevHmzzjrrLH33u9/VN785/8Efrq6++mqdeuqpGh8fj10uDEPdeeedet3rXqd3vetd+vznP+/8emDX2e9yAAAaKK4vVKyjHxO33cBLJ9uWYwTpsaelw9bUtp2ICKzTvo2RSqHUl6p+fM2Ub1IsrNp2y0Np37jPzIbCZuyclK6/3+hDr1/4g1jarRdjYY2KfOUKjdlOo5lNv5H50B9IWzdUTneMHc14OrVP5HTvxa+q+dhq1QPj2bBAeJ6ngcx0hHS/pRVznLdRKBqN5yoDYlHBsbGYCJktZtrLjNlz3qakuXfHiKUjtzGQrgyILR2Qlg56WjIwP0K2NCJCNphRTwzQBQAAAAAAAAAAANAZjCyxMHVALMzPSDHjDNO+/RcbbHEgW0yo2RZCxCjuWOe+PudYmONy0vR4whuevlo/2HF97HJ/uPIv9drlb3Hebj3qjYVl/f6GHMfSvuV66ZJX6Sfjt82btzH/W/1m6n/0nMHnN2Rfnaxgogf9pT1+CQoAAAAAAAAAbK688kq9973vVTgniHDwwQfrsMMO0+DgoDZu3Kif/exnFVGsz372s9q4caO+/e1vd2ww7BOf+ITOPPPM2c8POeQQHXLIIRoaGtLWrVv1k5/8RLlcbnb+9ddfr7POOksXXXRR1W1/8pOf1Ic//OF50w877DA9+9nPVjab1caNG3XPPfeoVCrprrvu0jve8Q696lXJf//67LPP1sc+9rGKaZ7n6ZBDDtGzn/1sLV68WKOjo7r33ns1MjIyu8w111yjrVu36uabb+7Yr1G34OwBAHpGXGCoaAlouQhjNhzs+aF+eWiqETaPVomFxaxri3G4RDoKpdpjYcYYXX230Y0PGPX50p+9wtebX5j8nARNioXtysXPH5+Shgen//z/vhl9sk7/utGHXt/gA0MimQX6t9uJ9owLbBnzJ89ryHZ2+Ysbsp1GIK2DXpLu87RikbRi0dw5bleCMUa789PhsPLg2GxYrHyaJTjWrJhot5sqSFNj0tax8qm2v/TNn97nl8XEyoJjw4Pe7PTyCNnwnAjZkgEp5XNHBAAAAAAAAAAAAODGFmvyvTY/4VJSxosPKWU8e7zKNi8wbYqFWfYb9xo6Tdyxzn19JeM2qMB1OWOMvj7yea0fvSl2uT/e93169bI3OW2zEZb17aOs16+8qTIY0qKREavjl58YGQuTpB/suKEnYmHWKF8XXWcAAAAAAACAK1MsSiOb230YvWHlOnkLNLT0wAMP6OSTT64Ihb3oRS/Spz/9aR111FEVy46MjOiss87Sf/zHf8xOu/nmm3X22Wfr/PPPb9kxu3rooYf0ox/9SJJ04okn6oILLtChhx5asczo6KhOO+00ffGLX5yd9slPflInn3yyDjzwQOu2f/7zn+sjH/lIxbTXvOY1uuyyy3T44YdXTB8ZGdHZZ5+tK664Qj/84Q/18MMPJ3odV111VUUozPd9nXLKKfrwhz+sAw44oGJZY4xuvPFG/e3f/q02btwoSbr11lt11lln6YILLki0X1RamHcAAAAimJioV7EkbdlpNJCWlg0lCxrERchmYmEqFqR09YEUDr0uSdLTu41qTdGEljBa3OuYUShJAzXtVTr320Yfu2nvTr5+X6gvvNvTnx+V7KmPgfvD+xLZXWXc1VRBGm7OrpFQ3Fv12ENadhgNF/e6FnIsLPzEKdZ5JuF9ruCl503zTv904mMC0Fqe52lxv7S4X9p/ecUc523kCmY2HDbz351Te6fNTB+zRMiqRUN7VTGUtk9Mf1SK+q4V/Z1sSb8qw2KD0tIBT0vmRci8imVmImTZNLExAAAAAAAAAAAAoFcYRQ9u85VsjFkzZPz4wE/cfNu8giUm1GyFMIicXu01dpK4Y50baSrJbdChLVZXLjShrnvqs/rR2M3WZTx5+pNVf6Ojl77Oab+N4nmeVmXWamP+tzWt38iv/5rsATp86CX65cR98+b9cuLn2pLfqDXZAyLWXDisUT6/cVE2AAAAAAAAoGOMbJZ5Rxf/gm8X8b72v9J+B7b7MJriPe95j4Jg788wjjnmGH3ve9/T4ODgvGVXrlypK664Qs961rN0+umnz06/6KKL9M53vlPPf35nPbRix44dkqQzzjhDF110UeQyy5Yt0xe+8AWNjo7qxhtvlCSVSiV9/vOfrwh0zXXKKaeoWNz7QJS3ve1tuu6669QXEZVbuXKlLr/8ch100EE644wz9PTTTzu/hg0bNujkk0+e/TybzeqGG27QG9/4xsjlPc/TiSeeqKOOOkpHH320Hn30UUnSxz/+cb3vfe/TM5/5TOd9oxKxMABAz4gL8Vxyq9Eltxp5nvSWF0hf/itfg1m3MEFcZKswEwsr5N1iYY61sFyh9u2Elnkuuy7UGOqazBtd/IP5e7jgu0Z/flTECjHybg/vS6xaJGSqyjlHZ0gt0J5IrddepzPFonTj5xq2vSAiFqYT/rJh20/CW6DvRaBT9ac99aelVUvKp7pfiKXQaHxPOKw8ODY2ZSKnzY2Q7ZySSpYga68bz01/bBotn+oeG+tP7w2H7Y2JeRoeiI6QDc+JkC3KTv/DIgAAAAAAAAAAAIDOFxpLLMzr/FhY1uu3r+tFr2uLCTWbNWJkOc5OlPbs4zHnvr6ScRt0GFaJioWmpC8/9RndPXardRlPvk5afapePnys0z4bbVVmXe2xsAZ//Y9f/tbIWJgk3brjRv3Zfqc2dH+dZm60bkY3RfkAAAAAAAAAoFXWr1+v++7b+2/KS5Ys0XXXXRcZCiv34Q9/WHfccYduuukmSVIYhrr44ot15ZVXNvV4a3HMMcfoggsuqLrceeedNxsLk6TbbrvNGgu755579NOf/nT28/32209XXnllZCis3Omnn65bbrlF3//+9x2PfjryNTU1Nfv5xRdfbA2Fldt33331la98RS972cskTQfQLr74Yl166aXO+0YlYmEAgJ7hEuIyRrrxQekD1xpd+W7HWFjMvNlwTT4nDS522p6LoI5wkC0WFjoELoIaQ13//ZC0O2Lcw6+fknZMGC0fcg841HoM1UQdX7mp6Icpog3iruXiAg21dGsszOwaldZ/Q+axh+U996XSq98qL1s2MHLzb+LXTxh3KcyJhXn/fos8f3qwqHGtMQLoSSnf07IhadnQ3Dmu8VijyWBPQGxKZTExMxsTmwmLjVkiZIRJo+UK0x9PjZdPtd3T50/3vfKYWNmfBz0tiYiQLZ0TIRsekPoWao0UAAAAAAAAAAAA6DChLLEwpVp8JPNVCymlYwJAtjiQLSbUbEEYPRgu7Vd/IGqn8D1faS+jgpn/Wgrh3FiY2+CruKhYyZT0pScv1c/G77Afk3y9e7/TdMSSY5z21wyrs+ukXbWtm/Ia+6slzxl4ng7IHhwZL/vZ+B1688o/1dK+5Q3dZydZCFE+AAAAAAAAAGiVq666quLzU045RWvWrHFa98ILL5yNhUnStddeq8svv1zZbGf9e+yZZ54p36/+gJzDDz9cBx54oB5//HFJ0gMPPGBd9tprr634/AMf+ICGh4edjuess85yjoVNTExUBNgOOuggvf/973daV5Je+tKX6pWvfKV+9KMfSZK+9a1vEQurA7EwAEDPSJKJuf5+o/88ySjlVw8DxPVngpmn1xXcBvW4HmO1cFDcMZUsMSWXfdcaLPrtiH3rtuOxaVosLBc/n4BH54h7ryZ9P3WLboygmae3ypz2Jumxh6c/l6TvXi1d+E152YHphSZqHJlmEZQ9MdS76Hp5L3rl7Oetfm+QlQF6i+d5GspKQ1lp7bKKOc7bCIpmb2RsT1RsOjxmKiJkY7YI2VT1ffSi0Eijk9MflaL+RhH9t4xF2ajgmKfhmcjYnAjZ8JwIWX96+j0CAAAAAAAAAAAAIF5oiTr5XvVfnGi2TJWQVsazz7fFgYKI0FWzlUxRJUUPwuu2iFHGy0bGwuZGmuIiYJXLRb//SqaoL2z9lO7bdZd13ZT69J41H9aLFh/ptK9mWZ1Z29b9l/M8T8cvf6uu3PqJefNKKur20Zt04sqT2nBkrWGLAdrigQAAAAAAAADQy+68886Kz9/1rnc5r3v44YfrJS95ie677z5JUi6X089//nMdddRRDT3GegwMDOi4445zXv65z33ubCxscnJSu3fv1qJFi+Ytd9ddlT+7eMc73uG8j2OOOUZr1qzRli1bqi575513ampq7y8wvv3tb3cKn5U79thjZ2NhGzZs0MaNG3XAAQck2gamEQsDAPSMuIDWXGNT0vbd0r5Lqi8b/n/27jxOjrLA//j3qb577iQzOUgg4QiXnCZyQ0K4YQMIihhFQEHlJyusLoKLogvi6rrKroAskYVwihgCxCCHyn0IhACBAOHKTc65p++u5/dHT09f9VQ9fc3R/X2/XvPKdD1V1dVnZnqqPlXJWJjmNjoFs+xjStajOtddaizMLtKTKHKd0SrFwpzWG2EsbEyo1VhYqa+94SalBO64HvIvi4BP1xbO8NrfgeceAY47J3U5bB8Lk0Umt+LCM/S9OPyUnLFafW4QUe3wugXam4D2pvwRvffCpCnRF8FQcCwTHsuLkIWBnpDMzBPOzDtW/r8Zbv3R1NfG7uypqh+eC6d73blBsaHAWDoslhcha82LkDX5AUMjYkxEREREREREREREREQ01pmw3sHDwCiIhTmEtOwCQB5FaGxLbCMWbvwFPIYPuwf2wSHNc5TzVsKqgRV4tfdZ5fhYixh5DC+snjJPdC7Ba73PDV1eH/1Ya33rox9j4cZfFEzfkdiGdZEPlcu5hQcXTfkB9mucpXU91TTJO63kZavxV+mDmg7D+O0d2BHfWjD2XPdjOGn8F+A3AiWte3VoJd7qfwVd8e1FLRd0NWLvhgNxUOPhVT3xV1wqYmFjLMpHREREREREREREVG1dXV346KOPhi63trZi7733Lmodhx9++FAsDABeffXVURUL22233eD16v8NqK2tLedyT0+PZSzszTffHPq+tbUVu+++e1HbNWvWLDzyyCOO8+XH3KZMmTIUM9OVf/s//vhjxsJKxFgYERHVjWJiYQCQ0AzL2K13KBYW04uF6XrHOdCqpLpddtGztFIDEm6X/jqlwwPlFEorlVNIKDz8J3EkBbuniO7rdjSqidt1x88g/+9a21nky49DpGNhof6KXv2rgdmIww2PxdlPh/s+rOJ+ZEREllxGKjLVGgR2GZ89oveGJKVEOJYJiGWCYzInKNYTzkzPj5ANVPZH3poRSwBb+1Jfuaz+8y+cJkQqGpYOiA3FxAZjY7kRsqzYWFaEzOPmf0xEREREREREREREREQ0+plSEQsTNjugDROPQ0jLLgCkGouYIazofwkA8Erv03i97wV8e6er4TE8lvOX42+dj2Dxtv+znWesRYxU27s28gHW4oOS1pl+PHR5hBff3Okq7NNwUEnXV2nt3kkwYCjDe8PNJVw4tm0+Htj6+4KxsBnCC91PYt64+UWv9/nuJ3DvlptL3q4Xep7EnNbT8MWJ3yh5HU5ipvVOp07vJURERERERERERET1Ztu2bTmX99hjj6JP9rDXXnvlXN66tfAkFiMpP/7lxOPJ/VtRPB4vmGdgYACRSGTocinhLd1l1q9fn3P5sssuw2WXXVb09WXr7Owsa/l6xlgYERHVjSJbYYgU/sxU9HpjYvAHMc1YmG7Q7PF37Ge0W48qiqVz3bESY2Eem3218gM+TttR6jY4cQoJhTWfD1R9pTy/x7pElZ73lSSlhFxqv0MhAODxe4CrB+cLFVRTctdZwvkqT9n5YTz4jQRa8qaPhfuQiGgkCSEQ9AFBHzC5NWdEex3xhERvJDcg1h3KCosNXu4NF05LR8h0Arb1Rsr0/QiszR2xmttyHUFvdlAsKzYWtIiQ5QXHWgKp5at5RmUiIiIiIiIiIiIiIiIiADBhvYOHAWOYt6SQT/htx702ASC7sWzvhd7Ee6E3sF/j7KK2zUnMjOKR7Xc7zuc19M9oPxro3q/V4hN+fHvqv2FmcL8R3Y5sbuHBBM8kbI2XcUbaCjusZR6Wbf8DQmbhiSX/3vUI5rSdApfQP6wlKZN4ePtdZW/X091/xrxx8zHe01H2uqzEpPV+w2MtykdERERERERERKSlfSrEH98f6a2oD+1TR3oLKq6rqyvncktL/hHCzvKXGW0hKsOo/N+6uru7cy43NTUVvY7m5mat+Xbs2FH0up309dkfY05qjIUREVHd0A1xpenGoezWGxODO8/ENWNheleJ2dNLX48qiqVz3fESYzsum59f89fptB3RhEQx0QpdSYcyRTRR8aukKnCKvo1Vpb72hlVfF7BtY3HLOMTCSvFUw1zc0Gvimrzpwx38Y0+FiOqRxy0wvhEY35g/ovemaJoS/dGsyNhQcEwWTOuxiJB1h4EYf2azFIqlvjblfAas+vm3cLrbQE5ALB0cawkKywhZawBoCWYiZM1+wDD4nyMRERERERERERERERHZM6X1zj+GGPlYWMDVYD9uqMeDNmP5Pgi9U/FY2LrIh4jLmON8fiNY0eutNrv7vNr8RgD/b6cfY7fg3iO2DSqTfFNLioVN8e1Sha1J3VdHt56MxzofKBjrSmzH8r4X8LnmY7TX92l0PQaSldnv7MPQOxjfUp1YWNy0fs2NtSgfERERERERERGRDuF2A5Onj/Rm0Bgl82INogIH6FZiHaOdz5d7copYzPlvQfl0lyll3U7yH3fSx1gYERHVjWJ/XAhr/sxit96hWFgsorcuzY185E29+awkFNEhh1YWgNLjC26bfbWKjTtVK5qUdNiOVEys9n8xGAtsY3hjIapVgjERQduxRW++9p2GvpWfrLKdVZb4mvvTCgPXnJ47rVfvbRgA0CoG8JW5jdhvJ+Clj4A7Xiz+F06+WxARFc8wBJoDQHMAmDYue0T/XTUSl+gOZYJjqZhY7rTuMNA7GCHLzJP6t6+I/y/qScIEtvenvnJZ/R9p/f9ms98qOCbQYjGtNYiCCJnPw/9diYiIiIiIiIiIiIiIap0J651kBEY+FrZncD8sVYz5jQB28e+hXHbXwN5wwY0knHfAi5jhErewvHVO8+2KBlfxZ5wfSXsG98MH4beH/XoDRhDfmfoTzAjMHPbr1rFfw2y81f+K5dhU33T4jQZ8GH4nZ3qDqwl7BD9TtW06pu0U/LVrCRKy8DXw186HMLvpaO0Dt6IVfI1U4/WWlpDWZ7d08RAeIiIiIiIiIiIiohzjxuUcSIaenp6i15G/TFtbW1nbZCWZHF0Hseffxq6urqLX0dnZqTXfhAkTci6/+OKLOOyww4q+PqoM/qWBiIjqRrFx0Yj13+kLmDYRn6FYWDxa3JVrGIhKNPisd46wu63lRIdKjYW5bPbVyo9/OT1OpW6DE6f7ZUzEmuqE3XNEJ3o3WtlterUieRX14jK9+ZpaM98/9WBVNuUdixNj9haxX9dXdizC/3zpUgDAqfvJkmJhREQ0MvwegUktwKSW7Kn6kalEUqI3khUWUwTHesJAj0WErCfsHKGtV70Rq3infmzM78mEwzIxMTF0OeffweBYdoSswVcfZwUhrnALzQAAIABJREFUIiIiIiIiIiIiIiIay0xpvZOMS7iGeUsKTffPxBEtx+OFnidzpgsY+GLHRfAYHuWyAVcQZ3VcgD9uXeh4PTFZ+X0NY9L+zKk+4cdZHRdW/Hqr7ei2k/Fm/z+wPvrxsF1ns6sNl0y9Gjv7dxu26yzW7Oaj8UrvMwUhNZ/w4wsdF8EjPPjthp8ibA4AAAwYOKfj4qq+zlrcbTikeW7B6wcANkQ/wfuht7BXwwFa66rka8TptVGOJEbv+xkRERERERERERHRaNLe3p5zefXq1UWv4/3338+53NHRYTmf252bWUok9MMFpcS4qsnlcmGnnXbCxo0bAQAff/wxQqEQgsGg9jpWrlypNd/EiRNzLq9evZqxsBHEWBgREdWNYmNhYY1Y2FPvSXz/T+oVJ4QHJgRcMb2dE4rZxKfeB07bX7EemxWp4gU690+kxFCXewzEwpyiDow+jA21+jglTUBKOaoDF/KPv9WbMTyQ+X6f2cBLf1Gvs4i4S8GyefdXYZzEnnmUD3C5MPkH/4sLjliA218o7j+RUfxQERGRDbdLYFwDMK4hf0TvjV1KiYFoJhyWiYnJnGndoVTI0ipCpvN7SD2KxIHNcWBzb/ZU1f/PhdNdRjoklhcWC6aCY/kRsta8CFmzP/X8ICIiIiIiIiIiIiIiouoxYb3zj4DNDmjDxBAGzp34bRzYeCg+CK9C1Ayj2d2GzzR8FtP8uzouP6ftVEz374FVAyvQl+zBB6F3sCm2tmC+uFmFWJjNOs9uvxD7Nc5Gu3dyxa+32hpdzbhs2nVYOfAq1kY+gCkzz5+oGcHLvX8ved2zm45B0JX7h+MO7xQc0jwHQVdjyesdDl7Dh0unXYMVfS9hbeRDJGUC7d7J2K9h1tDj/MPpv8Fb/a8gZkaxb8NnMdU/verbNa/tdMtYGAA82blEPxameD674MaRrSdYjr3R/zJ6Ep0F06vxektLKuOHPISHiIiIiIiIiIiIKFtbWxt22203fPTRRwCA7u5uvPvuu9h777211/Hiiy/mXJ49e7blfM3NzTmXu7u7ta/jnXfe0Z53uBx66KFYvHgxAMA0TTzzzDM4+eSTtZbt7OzEm2++qTXv4Ycfjt/85jdDl5944gl87WtfK36DqSL4lwYiIqobRbbCEHI4YdivnzTx/Qec1xoXHv1YWBEbuaFLQjdakC1RRkwpWmK4wGNzIrREfizMYV0x6/0nyuYUmcrfTpUNXRJT2xgRqCa750iy2Bf6GJI0AfdoPqlg52a9+UL9me+j4epsC4BoAvBnnbC1t4irEulnWTIJef03cMtJz2HfL9yi9Z5PRET1TQiBRj/Q6AemtuWMaK8jGpfoSYfF8oJj2dN6VRGyIgOZ9SJpAp0Dqa9cVv+/W/+f3+jLCogFMmGxlqB1hKw1L0Lm9/D3BCIiIiIiIiIiIiIiIjvZsadshhj5WBiQ2o59Gz+LfRs/W9Ly0wMzMT0wEwDw4NY7LGNhMVmFWJhinR2eKTh23PyKX99wCriC+FzzMfhc8zE50/uTvWXFwk5v/wrGedrL3bwR4xYezG4+GrObj7YcH+/pwNy204Z1myb5pmK/htlYOfBqwdi7oTewIbJGK1qmej4HXQ04Z+LFlmNbYhstY2Ex6bCjcIlMaUIq4ocuMZp3AiQiIiIiIiIiIiIaGUceeeRQLAwA7rnnHlx33XVay7777rtYvnz50GW/34/Pftb6bzkdHR05l1etWoVZs2ZpXc+jjz6qNd9wOu6444ZiYQCwcOFC7VjYokWLEIvpfU4+b948uFwuJJOp4MIjjzyCrVu3FtyfNDwYCyMiorpRTIgLALb3q2Nc/RGpHY2JCS/8scofsR/0qsfstkwVvdK5f6IJ53msuGz21Yrnx8IctiNW4jY4cYqo6UbWnlwlccERjABUk91zxCn6NpbFk6M8FqYrnIqFyY0fAa8/bTurVLwHHxxegdcDB9ku2x/JjYVF4vr/CYi8d1HXY4tw+bevxYHTOnDcr/WeZHwXICKiUvk8Ah0eoKM5f0Tvf5ekKdEXyY6MpcNjMuv7dHAsNS0/OFZOYLiW9UdTXxu6sqeqfsYonO51Z0fG0t8LNBdMS0XIWvMiZI0+wDD4UwYREREREREREREREdUuE9Y7t7lQCzvN5PIaPsvpMbPysbC4Yp2qbagFPuEva/lavm9G0vHjzrCMhQHAX7sewvmTL3Nch+o1YveYDefrDQCSUn12WhcP4SEiIiIiIiIiIiIqcN5552HRokVDl2+88UZ85zvfwaRJkxyXveqqq3Iuf+lLX4LPZ/258MEHH5xzeenSpTjvvPMcr+Pxxx/HK6+84jjfcFuwYAGuuOIK9PX1AQCWLFmCxx9/HCeeeKLtchs3bsS///u/a19PW1sbFixYgDvvvBMA0N/fj+9///tDl2l48S8NRERUN4psheGy+yW+fqT12A1/019bTHiBaFhr3mKCZu9v1p83WzkH/qdiO8UfnC5sFsnfHqe7ID8uVilOkSndCFVf5btwVASz2Bf6KOL0+h/N0Q75ybv6M8cikAO9kF/ap+Trmxlb7RgL64sCE5oyl4t677B6MB67Gx3H/EsRKyEiIhoZLmMwMhXMH9H7OV5KiXCsMCDWE5ZDkbF0cKw3DHSHCiNkoeqcfHnMiyWArX2prwz92JghkAqLZQXEWgNAS1AMXc6OkOVPawkAHjdjY0RERERERERERERENHqZ0noHGSFszlY5RnmFIl4kK//HtphUxJUU21AL3MIDAQFZ9J6jKbV834yk3QL7YLp/JtZEVheMvdb7HOZPWIBxnnbbdcQVrxG7x0w1Fle8NsqlCh8CgEvUXvyQiIiIiIiIiIiIqFzHHnssDjzwQLzxxhsAgJ6eHpx77rl49NFHEQgElMv95je/wcMPPzx0WQiByy+/XDn/YYcdhmAwiFAoBCAV13rttdcwa9Ys5TIffPABvva1rxV7k4ZFU1MTvvvd7+K6664bmvbFL34RDz30EObOnWu5zJo1a3DKKaegu7u7qOv6yU9+gvvvvx/RaOqz9bvuuguTJ0/G9ddfD5dL/7PvVatWYfv27Tj66KOLun7KYCyMiIjqRjEhLgAYiKYOlBcWpas/La9SLEx7rcCzq9Vz291WVfRK57qjCY2ZrNZts/L8gI/T4xSrUizsmkfsr1g31KQbFaPSlfL8rgWJKj33K0H+pcjy82N3661XURoUkPhq9924q/UrymX788J95YYG5cqX0GQf0s5hF0kkIiIazYQQCPqAoA+Y0pozor2OeEIOxcN6sgNjIVkwrSdUGCHrCRf/+1s9MGUm3pbL6s6yvgOD3qzIWDo4FhTWEbJAJjyXDo4FvLD8HZmIiIiIiIiIiIiIiKgSJKx3/jFQg7EwQxELMysfL1KtU7UNtUAIAa/wISpLO/unR3grvEUEpB6X48edgYWbflkwZiKJp7uW4fMd59uuQ/V89tg8n4fz9QYASane2dYleAgPERERERERERER1Z7NmzdjzZo1JS07ffp0AMBtt92Gww47DLFY6qQRTz/9NI466ijcdNNNOOSQQ3KW2b59O6655hrcfPPNOdOvuOIK7L///srrampqwjnnnIPbb78dAJBMJnHqqafirrvuwgknnJAzbywWw6JFi3DllVeis7MTbW1t6OrqKuk2VtOPfvQjPPzww1i5ciUAoLe3F/PmzcPZZ5+NL37xi5g5cya8Xi/WrVuHRx99FAsXLkQoFILf78eJJ56YE1uzM2PGDNx666054bRf/vKXePbZZ/HDH/4QJ598Mtxu68/A16xZg2XLlmHx4sV46qmncM011zAWVgb+pYGIiOpGKQeb//Vd4Ph9CqdPbQXe2qC3jhg8QFRvh5NitnHPyYUHaK/vlLj+LxKPvaNeTjd6ZWVUxMJK3AY72/skOgfs59ENNSUZNRhRtRwLKzd2VVX3/bqo2eUN6iq3rhnxNbbjfXn7cRVz/wmbuAYRERE587gFJjQBE5ryR/QiU6Yp0R/NDYilvpepWFZWcKzXIkLWHa7O7w21IBRLfW3KOfmH6peYwukeVyYolg6ItQaB5nRYLCc4JnLnDQLNfsAwGBsjIiIiIiIiIiIiIiJrplTEwoT+2cjHCmW8SFYhFqZYZy3HwgDAZ/gRTRYfC/MKH0+gU0UHNB6Cds8kbItvLhh7vudxnDz+Cwi4GpTLK5/PQv18VsXfqvF6A4CkVO+s5qrB9zMiIiIiIiIiIiKic889t+Rl5WBc4OCDD8aNN96Ib33rWzDN1N+Mli9fjkMPPRS777479t13X/j9fqxfvx6vvPIKEoncg4eOP/54XHvttY7Xd+2112LJkiXo7k4dXLN161aceOKJ2H333bH//vvD5/Nhy5Yt+Mc//oGBgVSAYNKkSfjFL36RE8oaLbxeL5YtW4Zjjz0WH374IYDUffrAAw/ggQcesFxGCIGbbroJ69aty4mFOf195LzzzsPmzZtx1VVXDT1GL7/8MubPn49gMIiDDjoIEydORCAQQF9fH7Zv345Vq1YN3ddUGYyFERFR3Sil4XTab01Ef5f7h/nNPRIvf6K/jpjwQkZDmofF6xvI24dlW5/EnF+Z+GS7/XKq6JVOqCwS19u2YuhGuNKqcdD/46ucb7xuaMis4VjVaGH3aJk1HGsb1bGwYSYg4XPYUWtbX+7lYkKJlrEwIdBQRCyM+wsSERGVzjAEmgNAcyB/RP8/2Eh8MCyWFRwbio1lT1NEyPqrs0/4mBdPAtv7U1+5rH4QL5wmBNDkG4yJ5QTHUo95/rRMeCwTHPO6+YMWEREREREREREREVGtMmG9g4wBY5i3pPpUYaO4WYVYmGKddnGlWuA1fFA8pZyXo6oxhAvHts3H/VtvLRiLmGE83/MEjh93pnJ55fPZ5nFTjcXNmMPWliZp88RzCR7CQ0RERERERERERKRy0UUXoa2tDRdccAH6+zMHr3z44YdDISwrF154IW655RZ4PB7H69hpp52wePFinHHGGejryxyMrLqOGTNmYNmyZdiyZUuRt2b4TJs2Dc899xwuueQSLFmyxHbe8ePHY9GiRTj11FPxgx/8IGesqanJ8bquuOIK7L///rjggguweXPmxCChUAgvvPCC1va2tbVpzUfW+JcGIiKqGzoxrHzZcZ5wTOLLC008/GZx64gJLxANa80ri0iafdqTO++SFdIxFAYAyTJiVtESQ112tyo/gOR0D8SqEEy66Snn+103FlDLsarRwu61XM7ze6Q5vUfVXSysrQPycycAq62HnWJhf3lb4vQDMyGJYu6/uNWZJHfeE0GffpiCCQsiIqKR5fcITGoBJrVkT9X/HzqRlOiNZIXFQtbBsR5FhKw7xN8NrEgJ9EZSX+s6c0as5rZcR8CTCYdlYmKZ2JgqOJae1uBzPtMJERERERERERERERGNDFNa7/xjiBqMhSniRTGHfWJKEVMEkTxGEWfOG4NKjaHVekRtNDisZR6W7fgD+pO9BWNPdf0Zc9tOg1tYH9AVl4rns9U+X4NUj2k1Xm8AkJTqnW1dcCnHiIiIiIiIiIiIiAg4++yzcfTRR+P666/HPffcg+3brQMKHo8Hc+fOxTXXXIPDDz+8qOs49thj8corr+DKK6/EI488AmlxkHd7ezvOP/98XH311Whubh7VsTAAmDRpEh588EE8//zzuO+++/D0009j06ZNiEQimDJlCnbddVd84QtfwDnnnIOWltQBV93d3TnrSE93ctJJJ+GTTz7B//3f/2HhwoV48803Le/DNI/Hg9mzZ+OEE07Al7/8Zeyxxx6l31BiLIyIiOpHqcdpSykhhMBVS2TRoTCgyFhYERv57Ae5ly+7X2/hhCKmpLN0ybEwm5UnTInsg/ad7oNYidtgZ8YEgZc/tr/ivojeutgDGFljORbmpBqhvFHJH4S44zVgyq7AnRJYXfiqEpDwO5xFtT0vXl1MLOxt3z6FE92pX53OPAhYskJ/XURERDQ2uV0C4xqAcQ35I3qRKSklBqKZcFjP0L/SYpp1cCwSr/jNqgnheOprc85xA6rfxAqnu4zsmFh2eExYRsha8iJkLQHAZTA2RkRERERERERERERUDSYUsTDUYCxMFS8yo0P7LFaKKohU61Esr+EvaTmPIuRGleM1fDi69WQ8uuP+grHuxA681vs8Dm2Za7lsTLHfmN3zWRnnc9gHrVRJqd5ZzRCMhREREREREREREdHYt2bNmqquv6OjAzfccAN+/etfY/ny5Xjvvfewbds2RKNRTJgwAVOnTsWRRx6JpqYm55Up7LXXXnjooYewfft2PPPMM9iwYQNCoRAmTpyIGTNm4KijjoLbnckyzZkzxzaIla+YefPdcccduOOOO0pa9sgjj8SRRx6pNe+qVauGvhdCoKOjQ/t6/H4/LrnkElxyySXo7OzEyy+/jE8//RSdnZ2Ix+NobGxER0cHZs6cib322gvBYLDo20LWGAsjIqK6UerPUzv6gQlNwL3/KG0FqViYZmmqSKYpYQwepKx7ILkyFqZx80o9WN1u1fkBH6fNSFQhmLTnJOd5ejUfwlqOVZXKNCWSJuBxV2YHNrvniFnDtbZqhPIqQSYqW7EQX/8xxE67pdZt88bkczirYyjvBJKq9z4rM2MfFk5MpB6AS481sGSF88oquL8mERERjUFCCDT6gUY/MLUtZ0R7HdG4HAqHpcNiVsGxHkWETPd3mHqTNIHOgdRXLqufPa1/Hm3yZ4JjmZiYQLNFhKzVIkLm9/CHRSIiIiIiIiIiIiIiK6ZUxMJqMK6jClKZMJFEAm54KnZdcVVcqcajWL4Sb59XeCu8JWTlmNZT8GTnEsRlrGDsr50P4ZDmOZbRPGX8zlA/bso4n8M+aKVKSvXOfq4afD8jIiIiIiIiIiIiqhbDMDB79mzMnj27atcxYcIEnHXWWVVb/2g1MDCA119/fejyzJkzS46vjRs3DqecckqlNo0cMBZGRER1o9RYWMf3TIRuMrC9v7TlY8IDRMNa8xa7jWt2ALu2F7dMObGtaImxIrvbVRALc7gPYlWIhelE0PrCmQ2b3AJ82lP6uuqFlBJXPyRx2/MS/VHghH2A275moK2hvAPj7Z4jtRxrG62xMKx9v7Lr8zqf0VNICb+0r1/kx8Ly32vsfL5vSeHEZOrFPa5Bfz1ERERE5fB5BDo8QEdz/ojez9NJU6IvMhgZG4yKpcJjMjMtHRgLZcJk2cGxYoKr9aQvkvra0JU9VfWLSuF0nzs7Jpb+XqAlaB0ha8mLkDX5YXlgBBERERERERERERHRWGfCegcPA8Ywb0n12QWpYmYUblflYmHKuJIioFQrvMJ5PyTL5Wo8ojZaNLlbcGjzsXiu57GCsU2xtVgVWoF9Gw4uGLOKiwH2j5tHERJTratcSaneWc3FQ3iIiIiIiIiIiIiIaBRYtGgRQqHQ0OXDDjtsBLeGisG/NBARUd0osRUGADjtt6UfIR0TXiCWGwuT6z8AVjwLjOsADp4LEWwsaRtXfVp8LEwVU9IJlVUjFpYfL3OMhSXKeSSthTX29+jL2l/qwGmMhem4bpnEz/+SebweegPY1mfiuR9U78x4YzkW5vTMrkYoryLWrVaPNbUBfV3qcSsz9tWa7YjQi7bjobx9HIuJhc0deKZwYjL1BtikuQ8h0w1EREQ00lyGGIxN5Y/o/aQipUQ4VhgQ6w7LrO9T03tC1hGy/IArpUQTwNa+1FeGfmzMEKloWEtWQKx1MDjWbBEhy50n9b3bxZ9YiYiIiIiIiIiIiGj0MaX1zj+GqMFYmE3YKGZGEXQ1Vuy6oqb1SflqPYpV6u2r9YjaaDJv3Hw83/M4pMXfxP7a+ZBlLCxmFh+/U42p1lUuE+qdbV2ievtPEhERERERERERERHp2LBhA370ox/lTDvvvPNGaGuoWIyFERFR3dCJYan8/b3Sl40JLxDNxMLkY3dD/sfFQHKwXLPLXsANf4GYMKXobeyPSBSbpEmUEVOKViGElR/wcQwmlRgss6NzAHt2BMzuHmcsLOPefxQ+mi98BHy8TWLX9tIPTLd7nZiVb8mNGtV47leCfH+5ckx877eQP/mK/sqCTcABRzrOJiDRkdxmO8+HW3OfDMXEwtxWZ6nt7wUANHFfQCIiIqoTQggEfUDQB0xpzRnRXkc8MRgWywuO9YRlzrTUdIsIWbi83+VrlSmBrlDqCzuyR6zuLOs7sMFXGBBrDYqcCFl2cCx/WsCbeo4QEREREREREREREVWSCUUsDDUYC7MJG8VkZQNGMWm9g1ytR7FKjoXVeERtNOnwTsH+jYfgzf6XC8beD72FdZGPsLN/t5zpyliYzeOmGqtWLCwp1TuruQQP4SEiIiIiIiIiIiKiylq8eDGWL1+Oyy+/HO3t7bbzrlixAmeddRY6OzuHph1wwAGYO3dutTeTKoR/aSAioroxUscXx4UX6N+c2oZQH+TPvp47w9r3IH//U4gr/7fodf/lbeBLnytuGVUsTOf+KTWEZbfu/O1xOhA8VkTwR5fO7cqex24TI6M06DQS3t9iPf3W5yT+4/NlxMJsxpJlxPBGu9EaC8M9v1KPjZ9U1KrElbdCGJmdO+3eD/wOO0W+9HHu5YTme8e0+Hrrgb/cCfxwIZr8euthN4GIiIgI8LgFJjQBE5ryR/R+WDJNif5obkCsO5QVFssOjllM6woVF42tJwPR1Nem7uypqh/AC6d7XFmRsazgWEs6LJYdIQuIrCBZaqzJDxgGf2gmIiIiIiIiIiIiolymVMTCRA3GwmzCRpUOGMVLiCvVAp/Q3NEnT61H1Eab48edYRkLA4C/dj6EC6d8L2eaKqbnEV7ldage05iMQUpZ8ZPkJKV6Zz+XcFX0uoiIiIiIiIiIiIiI+vr68POf/xy/+tWvcNJJJ2HevHk44IAD0NHRAbfbjc7OTqxcuRJ//vOfsXTpUsisA7i9Xi8WLVo0gltPxWIsjIiI6oZThKpaulytQNfK1IUliiDYE/cCV/5v0UGzu16WWHRhccvoBnOshGKl3Yl2933+gdtO1xC2PslhWXRuVzRr3w272xMtMahWT3rD1Vt3cqSqgMOgGqG8ckm7F8MhJwC77FXU+sTcz+vNV0L+UTcS8fXu260HJkwBAPg8ejuGMRZGREREVD7DEGgOAM0BYOecEb0ftqSUiMSzImNDwTFZMK1HESHrr87JxMe8eBLY1pf6ymX1s3rhNCGAZn9uQCz1vUBLQYRMpMaDuREyr5s/dBMRERERERERERHVGhPWsTCB2ovr2AWpVDGkUqnjSrUdxSo1hlbrEbXRZtfAXtgtsDc+Cr9bMPZ63ws4Pf5VjPd0DE1TxfTsXlOqkJiEiYRMwCM8RW61vaRU76xm1OD7GRERERERERERERGNDvF4HEuXLsXSpUu15g8EArjzzjtxwAEHVHnLqJIYCyMioroxUrGwR5pOw9e2LYY0Tchb/s16pniqgFXKNsYTEp4iDpBNWu9PpXXdpYa67FatG/BJ2zFQ2jbY0bldkawImN3ticZruFZVIaEyg292z1VT8fweC5xegzH1yQZHzkCveswfhGhr1896feawgklOy57ffSfuaD3PcsxtAKYpYRip90fd95pd4uusBzyZHcaEGLn/U4iIiIhInxACAS8Q8AKTWnJGtNeRSEr0RgbDYoMBsW6L4Fjv4LTsedLjJn92LCDlYKQtDKzrzBmxmttyHQFPJhw29G8gKzaWFyFrzYuQBb2o+FniiYiIiIiIiIiIiKg8Ulrv/GMIY5i3pPrcwgMBAWnxObgqhlQqZVzJsA4o1Qq7eJSdWo+ojUbHtZ1hGQszYeKprqU4u+PrQ9NU8Tu7yJvdWFxG4UGFY2Gw3lnNgIt/nyIiIiIiIiIiIiKiimttbYXL5UIyqR9uOOKII3DDDTdg1qxZVdwyqgbGwoiIqG6M1LG5O8fXA9EwsPQ22/lkPIZS/mt+51PgwGn68ydMQEpZ0g4HpUae7KI6ibz9u5wCPF2h4q//6fclFr8u4TKAsw8WOHKP3NsejisWzBLRmAcAIqMx6DTKlBqdS7N7jiRr+CD8WFKimKjBsOjaqhwSX/xuwbSQCGBR61fxin8W9ou+jfN67sGE5I7U4LaN2lebvhcu7bxJGQtLmMBADGjypy7rxsKO3NMFvGIx8OmaoW99buf3hFH2SBERERFRidwugXENwLiG/BG9n/iklOiPZsJhmZiYLJjWYxEh6wnr/z5ab8JxINwDfNqTPVX1S2HhdJeRHRPLBMdaAiInQtaqmNYcAFwGf/InIiIiIiIiIiIiqiR1YKf2YmFCCHiFD1EZKRhTxZBKIaVUx5VqPIrlM/wlLWcXlqLq2K9xNjo8U7A1vqlg7IXuJ3HK+HMQdDUCAOKm9Q6IpcbCYjKGYJHb6yQprXckdQlXha+JiIiIiIiIiIiIiAg444wzsGXLFjz22GN44YUXsHLlSqxduxadnZ2IRCIIBAIYN24cdtllFxx11FE45ZRTcMQRR4z0ZlOJGAsjIqK64RShqpZOVxsAwPzVdxASQTRIRe0q1Acp24pe/wsfSszsKG4ZUwKuvONZde4enaiWFbv7Pj/g4/Q4DRS5H9RdL5k4/w45tN6bnpK480KBcz+X2YFMJ4KWfXC23TbyIG5n8SoWvaQsPYY32sVGY4iua5t6bI8DUv82tQF9XYgIH+ZPW4ynG+YMzbKo5av427qTUsGwSOF7o9P7wQHRlbh/w5dxztR7LccHoplYWNL6xLMFdj32KMhX7rIckwO9EA3N8Lr4WiciIiIiPUIINPlTP5dOzfmVX/93lmh8MCAWzoqNhQqDY72KCFlv4TFGhNTvCDsGUl+5rH4Rsf7lpMlvFRwTg9Gx3AhZa15wrCUA+D2197srERERERERERERUTmktN7BwxC1FwsDAI/hQzRpEQtTxJBKEZfqddV6FMtbaixMeCvnkyHBAAAgAElEQVS8JeTEEAaOG3c67t3yu4KxqIzg2e7HcNL4swGoY3oem/idx+YxjZmVi/OlJaV1+NAlePgOEREREREREREREVXH+PHjsWDBAixYsGCkN4WqjH9tICKiujFCrTD0G434XdvFuH78D7DZPRGzIstx26ZvYp/Ye7kzhvogYR0Lm9oGbOiyXv+l90lcfn9xty5pAq4S9p/a3Fv8Mk4S+bEwh/n7o/oxKCklrloic4JDSRP40UMSX5qdWYdOgCySFWpiLKw85UavnJ4jVjG8WjAqY2HdiliYPwgRaEh9f8bFwF2/wOMNJ+SEwgDgHf++uLvlXFzWeSNw2vnaVyuyngWfjbyunG9dJzCpJfV9fphQKdioHJJ3/RLiW9ch6HUOLtRgr46IiIiIRojPI9DhATqa80f0fuhMmhK9YVgExwojZD0hie4wCoJjCc34br3pi6S+1ud8ZqP6rbVwus+dHRPLio0FrSNk+dMafajJWDYRERERERERERHVLxOKWBhqMxamilLFFTGkUqjCSqnrr/FYWInRr1qPqI1WhzTPxdLt96Iv2VMw9nTXMsxrOx0u4VIG8OweN7ux6sTCrHf2cwlXxa+LiIiIiIiIiIiIiIjqC2NhRERUN+wCT9mO3gO4+lQDJ9xQmSNhH26aj4eb5g9dfjUwG/N2eQyrP/oMmsz+zIyhfoulU5wO+yz2oN1EEvDm/RSgc/9s6gZuf8HESfsKTG7VPxjVbtX5AR+n7UiaqWXyt9/K2xtT25zv4+3Au58C+0xJXR7QOBFjdgTMbhMZC0uRNg9kTDfapFy3/XgiWVoMb7Qr936rBvmPx60H2tqHvhVePySAqzqutZz1+xN/ics6b4TwBQvXr/G+1Ja0eJEP+mS7xOdmpN6rdGJhXz1UAAcerZ7hnv+EPPI0eGN7AigoNRARERERjUouQ6CtAWhryB/R+71eSolQLCsgFgZ6QkB3WGbCY4NjvYMRsuzgWE8YCGn83l2PoglgS2/qK0M/NmaITDzMKjiWP601L0LWEgDctVjbJiIiIiIiIiIiojErKa138DBqNLCjChhVMl5kt65aj2J5DX9py9V4RG208hheHNN6Cv68476Csd5kF17tewazmo5SLm8Xh7N7TCsZ50tLwvq9zMXDd4iIiIiIiIiIiIiIqEz8awMREdUN3VjYmh3AcfsI/PM8gf/5m+ZCRdrm7sBfG+bhzL6HMxMHem23ca9JwHubK3P9xcbFsn19kURbUGLZPxs4dFfdA4vVYwWxMI31xRJ6sbDOAfXY5t6sWJjGvh7RROoAaSHsbzNjYSnFPOaVFk8CPk91r6ManJ77MeuTDY6s1W9YT2/tyHzf1Jqa1TfTfl1e/Z3sRNa91WL2KufrCWe+jyed310Wnicg3O22j4X89jFYt3dIYxuJiIiIiGqDEAINPqDBB0xpzRnRXkcsIdGTFRDLRMZyg2NDsbH8CFlE/3OdemJKoCuU+spldWdZ34ENvtyAWGsAaAkKZYQsf5rfA8fPSoiIiIiIiIiIiIh0SVjv2GagBs8cCHXAKFbBeFFcqs/oUetRLF+psbAaj6iNZke3nYwnOh+0fA38tfMh7NcwS7msx+b57BbqHQpjNq+RUiWl9c5+rhoNHxIRERERERERERER0fBhLIyIiOqG7jGlXzk0dYDjz8+sXiwMAL4w9T7MHXgKl3TdmoqGhfuU2yhE5UJhgHUsrJiDbrtCwAW3m3j3Wr0dF+xWnb8tOtsR04xN+W2CUeGs/TvCGoEvKVMRKq/bfhsjozHoNMqUG71yjGpVOUY2Uip1u0xTwjAqdCB36wTr6V1bM98fNR+44XLndQUaCibpvC2Ji34KPG89dvPTEhcfnfo+YXP/uQ1g0YUCXrfe/fKV7ntwd+sCrXmJiIiIiAjwugXam4D2pvwRvZ/BTVOiL5KKh6WDYz3psFh2hCwM9FpM6w5VP1w9Vg1EU18bu7Onqn4bK5zucWVFxrKCY81BkRUZS4+nYmPZ05r8qNzvqERERERERERERDSmmdKEVHw+aYgajYUpolQxs3KxMLt11XoUq9QYWq3fL6NZo6sZh7XMwzPdjxaMbY5twIq+l5TL2j1uhjDgEV7LeF4lX29pSWn9hynGwoiIiIiIiIiIiIiIqFyMhRERUd3QjWE1DZ5MLuAViNxsYMHvTSx+vTrb9FTDXDzVMBf3b/gyzu7vhVScyE4IwOcGohUKUdlFc3S9vwXY1C0xpdX5gE67+z7/YF2tWJjm/eCziYVFsgJhIc0Tw0Xig7Ewm3miGuGxemB3H730cXWvu1YPAC83spYWTwIr10l43cB+OwFClHFQdvd26+kTpw19Kzqm6sUaW9u1r1YccCTEaT8FDp4D8ZlDsfdHSbz7aeF8rqybtvQt63W5DWDFjw3sO0X/fjgk8iruhn0srJy7lYiIiIiIchmGQEsQaAnmj+j94C2lRCSeFRkbCo7Jgmm9igjZQOWPE6kJ8SSwrS/1lcvqN8HCaUIAzf7C4FhLIPWY50bIRNZ45l/d8DMRERERERERERGNbhIWZ8AcZKA2AzuqmFVMDk8szFNiTGusKDX6Vev3y2g3r20+nu1+zPI94fHOxcrlnB5vr+FDPFm4s2i8gq+3tKS03tnPJXj4DhERERERERERERERlYd/bSAiorqh2QqDN2u/Iq9b4IFvufDntyTm36jeGalc50y9F7GuW4HJ1uMCqYMftxYceFkaq5iS7v2TbdlKiYuOKi8WVkq4rBIxqEhCAhCIJySSmg9tJA40B+xvT6RCQaexTjfOV411VyqqNdpU6nbt+kMTn/akvt9/KvD4ZQYmNpd4YPV7yy0ni3lfzJ3wueMBp/evtsJYmPKxnrY7xHlXDl20CoUBeoHFfz1RFITCxO2vQV4wS7nMuT3349JJN9iul7EwIiIiIqLRQwiBgBcIeIHJrTkj2utIJCV68gJiPemwWFZwrCcrQpYdHOsJA2YVf1ceq6TE0P26NnfEam7LdQQ8gzGxdEQsALQGBZoD+dNSEbL8MFnQW2ZIm4iIiIiIiIiIiCrClDaxMGEM45YMH48ibmQX+CqWKjwmYMBd4+Ein6E4e6uDUiNjVBkTvJNwUNOheL3vxYKxroTi5JYAvMJru16PYrySr7e0JKx3cnXVaPiQiIiIiIiIiIiIiIiGT23/hY+IiCiLbrzIY/G3+NP2F/iPzwtc+WD1jur82TszMW2SevxHpwlcel9lrj9mFQsrYdW6kS07+bEwnc3QjSbZbV8knvo3HNdbV/YytrGwItZXz6SUJR+I6/RcrURMbiQ43a5KhejSoTAAeGsD8PU7TPz5nyu8E1JjS85F8d1fA9c5LNNaGAvT9fUjBW57vvAOXJUVEZvUDGzuLVx2i0XETOy+n+17UavZgwU99+Keli8Xv7FERERERDQmuV0C4xuB8Y35I3q/20op0R/NhMMyMbHBsFhWcKzXIkLWHdILItejcBwI9+T+vqv+hKlwutvIhMPS/7YGgOZ0WCwvQtaSFyFrDgAug7ExIiIiIiIiIiKicpmwiYWhNmNhXqGIhSkCX6VQhZC8wlvzJ1JQ3b/VWo4q57i2My1jYXacIm/q11usqOvRkZSKWFiNB/qIiIiIiIiIiIiIiKj6+NcGIiKqG7oxLK/if8dGsw9AwRGhFfPTjXOwUDEmBHDmQRWMhVXo4NKtFpEdK3ZbnR920nmcrGJnVuxiYeHB/TuKioVp3G+MhaU4PY494dSBtdVQqef3aPPW+urECh99GxiISjT4itv5T67/QD3ozj0Lo9h5JqA4W+KQrFiYlKmD4lW3OH9LD94ZuE0x7yNvSMw/UCgPqp8xXnEdP/w95PXfUG7uHZu+YRsLq+1dKYmIiIiIqFhCCDT5gSY/MC13RHsdkbgcCo3l/BuWBdOsImR9kUrfqtqQMIEdA6mvXFa/lVr/ptrkT8fEsoNjAs3p74fiYpnYWHZwzOfhb5FERERERERERESmIq4DAIao0ViY4bWcHjcrFy9Shcecwkq1oNTbqHpcaPhMD+yBPQL74oPwO1rzCxhwORwao3o+xBVBvXIkpfXOai5R4ZN6EhERERERERERERFR3WEsjIiI6oZuZsej+Ft8w/svAjihUptj6aI7rbdSAJjSKjB9PLBmR/nXYxXN0Y2pZdvcozef3boTZu6gzmboxqDsYmHpSFm4iP2q0iEwp/hZ0pRwGTzI0862vtJjYU7PkfwAXa14TG+/p5Js6AL2nFTcMvLWH6sHw/3Fb0RTGwDgoRUS33vAxCfb9Rf1e9RjZ9xswrzVhZDitX7QzorX6glfBmxiYQLARV23YWHb1/U3lIiIiIiIqAx+j4DfA0xszh/R+wwiaUr0DobD0mGxVExMojsvQtZrMa07bP9ZSz3ri6S+1ndlT9WPjfk9mXBYJjg2GBuziJDlB8cafakgHRERERERERER0VhmQv0BpIHaDOyo4kWqwFcpYooQUl3EwoS/xOVq/74ZC44bdyY+2Ki305xXeB0/J1c9rpV8vaWp4ocuwcN3iIiIiIiIiIiIiIioPPxrAxERUR6v4n/Hho9eRbVjYU6e+r6BGVeVf1SmbmzLyS3PSNy8wHk+p7hWzrwatbCYZgzK7gDW9DrCcb11AZnImtM2RuNAsM73F3J6GH/zV4nxjRKHzBA4fm/A59E/oNXp/td9fow1MydWb90lHU/89IPqsZkHFb8NbjdWrJM451bTMfiWv73H7S1g96z71ROmZSQRAAKK0JhwuYDLfgN5w+XK9boVZ4C02kYiIiIiIqKR5jIE2hqAtob8Eb1fYKSUCMUy4bCecFZsLH+aIkJWzOcw9SQST31t6c2eqvo9t3C6IbJjYlnfWwbHREGYrCUAuF38RZaIiIiIiIiIiEaWKW1iYcIYxi0ZPsp4kSLwVQpVCKkegljuEsNM9RBSGwv2bTgYk7xTsTm2wXFencfMY3gtp1fy9ZaWhPV+ZbUaPiQiIiIiIiIiIiIiouHDWBgREdUNnQgVAHgUf4tv+PAfwM6V255ipKMzu4yvzEF7VjElzbunJHb3faKUWJhm7Gwg5ryOsM08Besb3CfEaRMjCcbCnB7HW55JzyBx/N7AkksMBH0Ven5XKIY32vRFqrfuYu95aTpEC3f7TEnbsWSFdAyFWZk2zv4WXPEn9RMyaL0PWMqZ3wJsYmEu1GiZjoiIiIiIyIIQAg0+oMEH7NSWM6K9jlhCZkXGssNjucGxHkWErDei/xlfPTEl0BVKfeWyurOs78BGn1VwbDA2ZhEhyw+O+T2p5wgREREREREREVGpTKj3RxGo0ViYInBUyXhR3LTeQc5TB0GsUj+zrIeQ2lhgCAPHjTsDd2++0XFenViYMs6nCOqVIymt9ytzCcbCiIiIiIiIiIiIiIioPIyFERFR3dA9jtDrst5BpNHsr9zGFCl7n5XV1xmYebVDqMdBpWJKHhcgpXTcqcbuIM78MJDO46S7/b98TH0/RdOxsLjeugDgo20Sc/YUjgelRotYJwFPvgvc/Q+Ji4/W2znL6TlSSmxqLKhqLKzY/eK22Z+tsdQd7a5bpvdObbX20w8AHn6z+OsM2MTChGFA7nkw8P7rluMuqX4z4uHRREREREREhbxugfYmoL0pf0TvtyjTlOiLpAJi2cGxnrDMnRYGekIyL0iW+r5WPzcoV3809bWxO3uq6vf0wuleNwoCYq0BoCUdFsuLkOVPa/IDhsHfpomIiIiIiIiI6pmpiOsAtRvYGY54kWpdDGKp6YSnaHjMbjoGj2y7B73JLtv5dJ7PqsdVFdQrR1KxX5lL8PAdIiIiIiIiIiIiIiIqD//aQEREdcMp8JTmUexX1NAcrNzGFCn7MLndO8o/aM4qtqV7/2SLJ1MBo+ZA6dtSEAvT2I6Y5kGdT72vHktHwsJF7Ofx0Ta9+SIVirGNZcU+nZa9JXHx0Zrrdlh5pWJ4o004rhfnK0XRr//3V6jHDp5TzqaUbNGFBlq/W3xIMWgTCwMANLcph1zgEeZERERERETDyTAEWoJASxDYZXz2iGaAXEpE4oUBse50WCwrONYzGBzLj5ANVO4YvZoSSwDb+lJfuaw+dCicJkQqGlYQHAsKNBdEyETWeCY45nEzNkZERERERERENJaZUO/3YcAYxi0ZPh5FvChmVjAWplgXg1hqDDqNHh7Dgzltp+KR7XfbzyecdgIbnjhfWlIRP6zV8CEREREREREREREREQ0f/iWLiIjqhm4Mx6v437HRPXoKRPdfbOCcW4uP4qTpxrZ0DESdY2F2d30yb1DnYapEDCodCQsVEQvrH9wnxOm5FImXtk21pNj41NK3Knfd+QG6WpE0U7dN9R6VTYjiHoNDfm7ig+sMjG/UPKi2T32mRnHDY/pXnPaly4ua3aqX1hwQ+MJnBR5YXtyTL+BxmGHGvsCrf7Mc8kr1i70KTTciIiIiIiIqkxACAS8Q8AKTW3NGtNcRT0j0RgqDYz1hmTOtxyZCZpYQ7a91UqbDbcDa3BGruS3XEfQWBsRag4OBOYvgWEswd1rQi6pE2omIiIiIiIiISI+U6v3hhKjNWNhwxItU6/JqxJWIRoOjW0/C4zv+hKiMKOfRid+p5qlknC9NGQvj4TtERERERERERERERFQm/rWBiIjqhu4xeF7FibsaIjuA5optTlHyj1H7pwPKW59VbKvUYxQ7Q/kHV1qs22bliRLCTjqxMOlQSkoHvaJFhMcG0rEwh/lUsbCPt0n87hmJD7dIHLGHwPwDBBa9KPHupxKH7Cpw6VyBoI8HJDpximCNxViY0/M1LRzTi4UZojDEZ6c7BFx6n8S9F2k+/7q2KYdKOahWnHlx0ctY+d1XBN5YL/HBVv1lgg77PYrTL4L84/9YjvlsdszkscVERERERES1yeMWGN8IjG/MH9H7RVBKif5oJoyViYnJofBYdnAsP0LWFapMSL8WhWKpr097sqeqPiApnO42smJiWcGxlqCwjJC1BpATHGvyAy6DHwgQERERERERERWjL9GDgWQfAGBHQr3DhwuKnfrGOFW8KGqGsTm6Yehys7sVQVfmQ8nu+A5EzDCa3C1ocDXZXocqhKQTVyIaDYKuRhzRejz+3rVUOY8qvJfNowjkbYyugSmTMETl3meSsP4g31XB6yAiIiIiIiIiIiIiovrEWBgREdUNzRYPGv2K6WF1HKfa8g8x83sEfrdA4Nv3lJb4iiWkxVpL8+QqiX2n2K/LbisTeSeE1HmcYknn7f/FY/YrCsdS/8aLKCqF0rEwh0WsYmGrt0js82MT5uCyD78pccWfMit66A2Jv6yUePwyAz7P2D+oUPf1VtK6HcaLiWSNNeE40KIxn8sAkuqTrVr6w6sS93xDasW+ZJdi58xDTrCcvL3P/kERU3Z1vM6c+RWbOK5B4KWrDEy4XP/GB5xOkjp5unLILhZGREREREREZEUIgSZ/Kiw1bVzOiPY6IvGssNhQcKxwWo8iQtYXqfjNqgkJE9jen/rKZfW5hvVnHc3+rNhYOjwWEGgpiJAJyzBZLXwuSERERERERESkY1vsU/x+039iffRjrfmFMKq8RSPDq4gXhc0Q/n3Nd4YuCwjsHtgHx7bNx4Pbbse2+Oah6TP8e+IbU/4VrZ7xBevpSXTi5d6/K66bsTAaO+a2/ROe7loGE9b7hXk04neqQN62+Gb864fn4fhxZ+Kk8WeXtZ1pSWl9xlOX4OE7RERERERERERERERUHv61gYiI6oZuP6jBYv8bKSWC4R0V3Z5yXXRUGbEwi/0QSo07PbpS4rLj7OexW3cib1u0YmHWJ13L8cMl9isaiKXG49b7ZNgu4yQ/FrapW2KvHznHi579AHh6NXDivvrbNFqV8nRKJCXcrvIPiCw2kjWWhC1CdFZKvRuTJuDWOXlhlyKe2NpuOfn+14av4DauQWDLfxmY+D29J4LP4Tci4fFCTt4F+HRt4bKKM68Cxb23EBERERERERXD7xHwe4CJzdlT9T8MSJoSveFUPGwoNhZSBceswmS1/flLOXojqa/1XdlT9WNjfk8mHJYJjgm0FExLRcjyg2MNPmiF4ImIiIiIiIiIRpIpk/jv9T9GZ0L/5J0GajQWphE4AgAJiQ/C7+CD8DsF0z+OvIcbN/wU/zb9vws+G7ppw7U21604qyrRKDTe04GDm47Aa33PWY7rxO/s5gmbA3hk+91odY/DoS3HlrydaUlpvZOrS+jsnEdERERERERERERERKTGWBhVlBDCA+AIADsDmAygH8AmACuklGtGcNOIiLRjWA1W+wNEw3DJJAJmCGEjWNZ23HrKZvz2wW1Y6d9Pexmr47vEQA++t2Mh/mv8vxS9DVGN2JaucQ3OB5/Z3ffJvDGdh8kqdgYAL30kcex/mVq3ry9ivy4rA4NdIKdtzI+FTb1C/+jJKxebOHHf+twhpD+aOrDRidNrOWlKFHOA7FgSjqnHXvxI4u/vSewyTj8qlk87Fta91Xp6m3Us7NL7KhsLc3p025sE4rcY8HzL/rXXFtQ7gFZ85QrI//x/BdMPiryhXCbgcVwtERERERER0YhwGQJtDUBbQ/6I3ucpUkoMRDPhsExwTBZM61FEyEr97KLWReLA5jiwuTd7qupzlcLpLiMdEstExFL/WgXHBFpz5gGa/ahIzJ+IiIiIiIiIyM4n4dVFhcIAwBA1GgvTCBzp2BRbhy2xjZjkmzo0bUtsIzZEP6n6dRMNl+PHnamOhRkWZwnO49GY5/W+FysUC7PeMdXFw3eIiIiIiIiIiIiIiKhM/GtDDRJC/ATANWWsYpGU8vwir7MdwE8BnANgnGKeFwH8Wkq5uIxtIyIqWVmxsPAAAKDR7C87Fnb+nAD27N+CY54tLxaGeBTjk50lbUPMIqale//k++NrEgvPk2jyl3YQWSJvnwid7YhaHEz427+b+O4f9G9EOhYWLyUW5nA12bGy19cWd8e+uaGo2UetUp5PfRHNWJjDeFK/zTZq6N5fIUUs7No/m7jmkfKDXNr33at/s5wsWq1jYZWms50uQ6DrBgP/9pDEzU9b3zcn7qv3viXmfwPw+CCv/0bO9KPCL2BKfBM2eabkTJ8zEwh4eWAtERERERER1SYhBBr9QKMf2KktZ0R7HbFEVkBsKCpWGBzrVUXIwhW/WTUhaQKdA6mvXFafjVh/XtLoywqIBTJhsZagdYSsNS9C5vfwMxEiIiIiIiIisrc9vrmo+RtdzQgYBeX7mjDBMwkCBiTK3+FpR3xLTixse3yL7fwd3sllX+dYcMr4c/DojvsLphswYFrc759rPmY4NotKMM2/K/YM7o/3Q28VjHV4d3JcvsM7xXGezrjiJJpFMqGIhYn6PJEsERERERERERERERFVDmNhVDYhxMkA7gDQ4TDr4QAOF0LcA+CbUsqCQxWIiCpBSgn5i28Dy24fmiZueAwSR2st32B18rCP3wYAtJi92Ob4dmfP1diMA0+fAzxb1moqHgsrxz3/kPjWMeqDwOwSRom8/W10ckfRvO1PJGVRoTAA6B8MfxUTCwsPRsqcwk6RuAQgsPRNidNvGoPlqgooJVuVDriVayzGwnSFLUJ563bIioTCACCpsRoZi6oH28p7f5w9HXh1jfN8a3fo3d6WoMCNXxb4z7MlzrnVxJ+z9hPbdQLw88/rH7wqTv4q5KZPgDt+lpkG4LZPL8bnp/5xKCQ5sRm4aUFtns2WiIiIiIiIqFK8boH2JqC9KX9E73f1pCnRF0EmODYYEesO50XIwkBPSGaNZ+bP/1ySUvqjqa8NXdlTVZ/FFE73urMjY5nAWEtQWEbIWvMiZI0+wDAYHCMiIiIiIiKqZTGpOFuewqymo2CI2twXo9HdjH0aDsI7A8vLXlcyL04UM9X7+ASMBuzb8Nmyr3MsOLjpCDzRuRgJmdnp0C08OG/Sd3Hn5v9GQubukDW7SW8/UxoZp0/4Kn69/qqcx9MjvDio8VDHZWcG9kOLexx6Eur9biuzFx6QlIyFERERERERERERERFRdTAWRmURQswB8BCA7LSOBPA6gI8BtAI4CMCErPEFAJqFEGdIKXkoBhFVnLzhspxQGADIy06CPLwLgM9xea/F/45y2SIAQHtiGz707l7W9gm3G01NbkBx5jDLZawmRiOlx8Isrlq1k4PLAJZfbeDMm018st16nuuWSXzL5oR6dnGtRN62OIW4gMJg0ssfOy+TLx2mKiYWlo6UOW1iJAE8uUri87/jf3PF6M/bP60vIvHcB8CkZuCAaYBr8CBBp+eITvBqrApb7Cu58PnK3WCt0NqqV9Rjbe0Fk3pC+tvn9+jNt2K99ioBAAGvwIPfNvDMauCVNRIzOwSO2zt1kGoxRENzwev/+IG/452PDsTfvvkYgrvuhhP2ERjfyANaiYiIiIiIiKrJZQxGpoLALuOzR/R+J5dSIhzLDYilImNyKDKWDo71Dk7Pj5AN2PTU61ksAWztS33lsvqMqHCaELmRsaGYWFAMXc6MZ54H2ct43PxshoiIiIiIiGg0s4tYZQsYDZjVfBTO6riwyls0sr4+5fu4e/Nv8Xb/csRk6R86JWXuGTjt7ufLpl2LJndLydc1lkzx7Yxv73Q1Htj6e2yObcBk7844q+MC7NNwEIKuBizeejs+ja3DeE8HTh3/JezbWB8RtbFqemAPXDj5+1i6/V5sjq3HJO80LJh0CSZ4Jzku6zE8+JdpP8Odm/8HH4XfVcxVqZN2Wp/R1yV4+A4RERERERERERHRaLJu3TrceuuteOaZZ7B69Wp0dXUhHs+EDG6//Xacf/75I7eBRBb414b6cC6Al4uYv19nJiHEVAAPIjcU9gKAi6SU72bN5wPwTQC/ApBOQPwTgOsA/LCI7SIiciQTCeDBW6zH+roBTHRchxAWBxI9eR8AoCO5rZzNwz/7lgGYDwAYuPQNNPz2QK3lrDYJ8ZnPwowAACAASURBVBjGJXaUtB0xi/0QVAEmAWD/qQL/eqLAJfdYz7Sp2/767HafSOTFiXRiYZG8WNjKjcXvoJEOU5USC3MSiQO3PS/1wks1SudxzNcbznz/9/ck5t9oIjQYxzp8N2DZpYZW3KmW7/f8UB4APPb2MMfCOreox/Y7POfioyslzioimpcfD1Rpcu4+FnC7BObtDczbu4yDRVsnWE7eObEBF7z9Ixhf+kPp6yYiIiIiIiKiYSOEQNAHBH3A5NacEe11xBOpgJhVcCx7Wq8iQtYTLu0ztFon5eB9FCoYsZrbch1Bb1ZkbCgwJtAStIiQWQTHAl7F3wmIiIiIiIiIqCJUQaydfbvh21OvHrrc5GqGIVzDtVkjxm8E8I0pVyAh4xhIZnbh/sXa76O7iP0DkzJ3x5u44n5u90zGNP+upW3sGLV3w4H48YwbETOj8BqZHY/2aTgI+8w4CBEzDL8RGMEtpGIc2HQoDmg8BAkZh8fwOi+Qpd07Gd/b+ed4YseDeGj7nQXjslKxMMXJhF118J5GRERERERERERE9WH69OlYu3bt0OWnnnoKc+bMGbkNKsHChQtx6aWXIhrlGYRpbGEsrD5sllKuqcJ6fwqgLevyiwCOk1JGsmeSUkYB/I8QYh2AJVlD/yKE+F8p5VoQEVXKp58oh2SoH/A6x8IKlss6Yqs9sb2kzQKAqYmN+M7Xdh667G9uwKzwcrwWcD4TneVhSbEIxic7S9qWWBGBrLSpbQKlnjXN7qC3gliYxvryg0kTGovftv5o6rEtJhaWjpQ5HcQXiQN/fK2+j/Qr5UDHe1+ROG4fgWhc4sybM6EwAHjxI+CqJRI3LxCO6x6LsTDdu6s/KpH/jmBU8LjFE28wcdw+At+ZKwZf8xa6tiqXF42ZM472RyTOvsXUiuxJKSGE0H7sfnjKCB2sOXGaeuyZJeoxIiIiIiIiIqo5HrfAhCZgQlP+iN7nFqYp0R8tDIh1h2QmPOYQHLM6KQQBoVjqK/ckF6pP4Aqnuw0UBMRag0BzOiyWFyFrDWTNGwSa/YBRyQ/tiIiIiIiIiGpMzLQ+4CLgakCLu81yrB64hSfn9vuKjFclZe6HRar7OTuWVW9Ut52hsLFHCAGPKC4Uls1n+C2nV2qvz/zXY5qLh+8QERERERH9f/buPEyOqtAC+LnV+8xkZpJMhiQECCRhCQJ5yBIgSAIiyuMhID5AAWUHQREQnoBAEAVFEURZREB4GlaVHQMICY/VmEREMGFNCIRAtslklt7rvj9quqeq+t7qqu6e/fy+r7901V3qTk3PpKf63lNEREREg8KTTz6JM844w5Ej4WXhwoWYM2dOcfuKK67A3Llz+2h0RN74aQNVRAgxDcA3bLsyAL7pDgqzk1I+LIS429YuBuAKACf32UCJaOTpbNcWSZ+LtEqseqv4tNHU9+/lh5MW4BtHbIOtdp3Ru7NuFK799Fs4cPIzlY0rm648LEwxD0H3Vlb0nLYDdwjSv8Qn7cBWY6xJGV7vkysJdkpmnNuxCt7RSGktGAuyoK4QelTubf8tC6ubMrJohcRe2468xWR3vSxx5zeBp/8NdCjeUdz6vMTNXy9//odiWJhfqvNSy1fK0lXA0lUSDy6WePEiAxOaS3uXr7+sbvyZfRybzy3vDdgrJ5cHIuHS8ECVSAg4fLcB+vnYddbAHJeIiIiIiIiIhh3DEGhMAI0J6zpqL//XPVJZW7BYMXDM2mcPHNusCSHr5I3QlHImsL7TejiprkyW7hMCGBUrDRxrSgg0lYSQiWLImD2ELBoeedeHiYiIiIiIaOTISk2IlRi5IVYq0YBBSHk475qZ4Xkm0hLa67C1iQvLS/VdbA0Rqkn/RERERERERERERFSdiy++2BEU9rWvfQ2nnHIKttpqK0QikeL+lpaWgRgekSeGhVGlvgbA/mnVn6WU7/ho91M4Q8b+WwjxLa+QMSIiv2TXZsjT99OXVxipI//w8+Lzpvxm3+3O3XAjrjNugfHg2wA+X1qhbhQ+l3wJJ2z6A37ffLxnX0I19EwaY2oYFlbu2HUx7/O3ZpPEhGaBnz1l4sdPSGxOAROagHtONTzb5VxzIvwE8LoDiNIBvh67jhSQVc/JUNrUbf1bbozvrK1sPAU3Pivxh1OH9mKwSqfMrNog8dA/qptwM5zDwjYnS/cZ3j9iFVmxHrhnkcQFX1C8Dp97UN1o9DjH5jPL/H8fsz1hYeW+dw0x4L7TDbSMGpifDxEK1ezukURERERERERE1YpHBMY3AeOb7Hv9XzfJ5a3ruPbAMStMTJbsa0+qgsmG97W4SkkJbE5Zj1WOS/j+wsYAIB4phInBFiZmBcypQsjc++pj1o08iIiIiIiIiAajjKkJsTIYYmUX9Hy4w4kyZkZZL2oECyEjGpY0186knwmsPuSlelJrSHD5DhEREREREREREdFAe+utt/D6668Xtw899FDMmzdvAEdEFAw/baBKHena/p2fRlLKZUKIvwHYu2dXPYAvAHi0hmMjohFKXnOad7mPRVIH7ajYuWxR8Wmj6T8s7Oub7wNGe1RINAAAfrfm9IrCwuSCPyKKLAyZhxnwbmMZRUCWnzkOd50k8M3fqSs+s0yiPgr8z596y9e0A4f80sTpn9Of+5xrMZmfqRbusLDOdGUTNDrTwcLCAGsBXY3mg2jds0jiD6f27TEG0oQm67Wh8tJ7EqEy4Vflzn9+GKc5bVbEq/bVkr8L/yhxwRcUBTvtASxbXLo/4xzca6v8fyMKvwfcvw8KzjtY4Jg9BHabBMQiXORIRERERERERFQL4ZDAmHpgTL27xN/1FyklutK9wWGbugvhYrJk32ZFCNmmZOm1XrKkssAnWeATx0cSuuttpftDRm9wmD1wrCkhbM97Q8iaXCFkTQkgZPA6HBEREREREfWNjNSEhQmGhdkFPR/ucCLdeY7wPBNB9NmsO4s7vK8gFHCuLxERERERERERERHV3uLFzjXSRx999ACNhKgyDAujwIQQ4wHsZtuVA/BSgC4WojcsDAC+BIaFEVGVZLILeP5h7zo+Ptw/bi9FnQ/eKj5tMLt8j2m7zApAjNGWC8OATNQDyS7s3/UCXqjf33ffAIAlCwAAMZlGUtQFappR37RMyX5GTpipDwt7/J8SEcU7i0wO+ONifWhQSViYj3yhZMZZafkn5duobE4GDwt74l+VHWuk8fo+3nCMgWNuU6dCnXufxNGf9QiXy8uygXJ5TeDUcNCeLN3X72v2ujvV+12phi+957/Lwu8B3fduyjhgr225OJGIiIiIiIiIaDARQqAhDjTEgUmOG2f4v46Tzkq0F4LFkrCFiTkDx9ptIWT2wDFVuD5Z19k2dlkPJ9XVVfUV14ZYIUzMFixWJ9CoCCFrVoSQxRn6T0RERERERBoZUxMWZjDEyi7o+XCHE/E8E+n19ZWrPDRhYWBYGBEREREREREREdFA+/TTTx3bkyZNGqCREFWGYWFUic+4tl+XUvpPzwFedm3vXOV4iIiAJc+VrSKF98f7R/4H8LW9nXWk6UyuqQ8QFtZobgbEWO9KiVFAsgv1stuzmnLko1uB1e8jKjNIovqwMD8hXcLjHP5xKaBbVPTJZn2fOdecCD/jaLOdLiklfvaUutGB6RfxF+MixCMvKcPiNnYFDwv79r0mWhqCtRmJvL6N22+hL1vfCaxu07dObdwIQB/CBwzNsDA/r3sA2KDI6TKM2o6lrJT695XY/8sVd1n4OdR978L9/TV6EKfOhbx9bmnB+G36eyhERERERERERENeLCLQGgFaG90l/pbr5U2JjpQzQMwKGZO25z3BYop9m7pLb2hBls609fiozb5XdyGzdH8sbA8TKzwXaCoEirlCyJpcIWQNMcDo9zslEBERERERUX/IyIxyf0RE+3kkg1tUBA0Lc04KzEhNWFjAfolGkvK3MvXHlOo7+oYEl+8QERERERERERERDbTOTudi7UgkMkAjIaoMP20YGc4QQvwAwE4AxgLIAtgA4AMALwKYL6V8IUB/013b7wYcz3tl+iMiCkw+/3D5OprFRftsB/z0Kwb2mQKE3AtP7r/BsTkx97Gv8YRkDgYkUCagDHX1wMbyIWTKbt54FQAQ1Uye8qIKCwt07BpyhwP5mWqxamPv84sf0rcYnV6L0OrXMHbaeqwPjyspX9shA4eFTR3nDCvrK1JKz3C2oUwIKzDs7U/V5c/82wSgTodKLfo/yAlHePY/GMLC5MfvA8uWANvPACZNrdn3ckNn6eu9318l3R3q/fW9Kzql3/SzHoXQQN3CzNAgCgvDuC3V+z/5oH/HQURERERERERECBmiJ2zKXeLvqpmUEsmMFSBmDxxrT0rnviTQ3q0OIesOfol+REjngLUd1qOX/7AxQ1ihYU22ALHmnsCxRlUImWtfUwKIhIfnNXYiIiIiIqKhLmNqQqwMhljZBT0feTgnwmV5nok86K4b1SYsLC/VE1NDIlST/omIiIiIiIiIiIhGCiklli5diuXLl2Pt2rVIp9MYN24cttxyS8yaNQsNDQ2B+zTNQbAQnagKDAsbGY51bccANADYBsDnAFwihFgM4GIp5V999DfVtb0q4HjcSQpjhRCjpZRtytpERH4s+FPZKrqwsDMOEJg1TV0m//cnju29kosxOr8RbaExnsc6ZvOD1hNRJuEmYk28aSgXFuYely2IJyqz3sdQyORLJzT4neJw0I7As8sDH1IrZzqDsfxkDK3cAHSmJBriAtfO1zf4MDIJANCaX6cJCwOyAYLTACAeqdV0EG/ZPBAdwu/Uyn0fdUFhAJDK6X9u0p9+Ajneu++BDAuTUkLeeilwz3W9O7/6beDbP6tJYFhK8Xrtz0w5mcsCHZq3bE1ji0+XrQnWbyG0b8V6dfmgCgsL6X8wpWlCGINpsERERERERERE5EUIgboYUBcDJjY7Snz3kc3J3kCxngAxVeBYexJo71aEkCX9XRcfaUxp3bijrRvWbbCKVCdLfQLrY/aQsd5gsUb3Pk3gWCKKYXtTDyIiIiIiooGUkZoQK8EQK7tIwPORl86JRTzPRHpCc/1P1iwsTD0x1QDDwoiIiIiIiIiIiIj8WL9+Pa6++mr84Q9/wLp165R1otEoDjzwQMydOxd77723tq+VK1di22231ZbPmTNHuf93v/sdTjrpJGXZlVdeiSuvvFLb54IFCzB79mxtOVE1hnAEBdXYHgCeFkJcA+AHUnpOSW92ba8NciApZacQIgUgbtvdBIBhYURUuVn/BTz7gGcVXViY5zKPznbHZhRZXL32cpw14dfaJuNya3Hhhl/0dF5mEUk4CgCoLxMWViLZWXyakMlgbQFkAgRkub+Cs2YbeHZ5bdOYTAmEeg7kd6rFsk+ALZu9a39n400AgHG5dVZUpsslD0mkAmatzX8T2HVSsDYFVx8pcMlD/r7CZGb4hoVVs7QqlVbfcc9OkYXXfxY94wwKA4AHfwV8djaw32FVd59WvF67M1V369+nHhmxo1uLT29aGOybsLELmPuY/vdKeDDlb0Wi+rL29Y7zQEREREREREREw18kLNAyCmgZ5S7xdyXUNCU6084AsWLYWLczhKy9W7rqWM+DXPMfSbrS1uPjTfa9umuXpfsjIZQEiDXXAU2FYDFH4JiwBZJZ/zbGAcNg2BgREREREZFb1tSEWBkMsbILej7y0jmvKsPzTBRYraYe5qGe5xgSQ3hSKBEREREREREREVE/efjhh3HiiSeio6PDs14mk8H8+fMxf/58nH766bjpppsQDvM6LA1/fJUPb6sBPAlgEYBlADYCMAGMBbA7gMMAHGKrLwBcAsAAcLFHvw2u7eApNVYbe1hYyfT5SgghWgGMC9hsSi2OTUQDbMLkslW0YWEB12mctulObJ95G4+d8gwMAXx+J4GVF5+NVxN7YVrmXRy3+X5Mzq7y13lP6ExdmbCwkm46ele2fCb1Jt6NTg30NagWDnnGRNr8166BDuVLLg+EAoYBvfmxxPw3vOsc0fEoAKA1r04MDhoUVuD3XLlNbRXwO52kOwM01VV2nMEu6M+cXSqdL3sG87XNsgtEPnybev8Dv4LwCAvz+5pKK352+3Wt2dP36ctG974F61LPNdTa48fe37TIYLqh4k576Mva1jEsjIiIiIiIiIiIAjEMgcYE0Jhwl/i/8JfK9gSLOQLHZDFkrBA41q4JIesMeD1vpMjmgfWd1sNJdUG3dJ8QVmBYaeCYQFMxZKx3X3PC+lzAHkIWDTNsjIiIiIiIhp+MZIiVH1HhcUM7hbx0TizKSPUdCKOC55lIaCcx1iYuzP3zWBASg2kiHBEREREREREREdHgc+edd+K0006DaTrXHU+ZMgXTp09HXV0dVq1ahUWLFiGf771xw2233YZVq1bhscceY2AYDXt8hQ9Pi2CFgD0jpTZ64mUAvxZC7AHgHgDTbGXfF0K8KqV8RNPWHRaWqmCMSQCjPfqs1LcAXFGjvohoKGlfX7ZKrcLCAOAA/BNz/rs33crcdAdO33SHovMyCVg9YWETc2s8q4Xd3Sx+rvj0qx1/wsONX/Y+jktGfdMyJff5ifTBwpScCRSmIPkNTXpjNfD0m/rKZ7bdhnjPxLLWnDosrBKj6yoLCzvjAIEtGv3X71bP1Royyp2im78u8K15wU9kKp0re/7NWt3erxIvPqbev3RhTbpXBdztNEHgbyv654uW836mL7SFZO2xDfC/r9TuuLtNGkQL4lomaovkafsAj62GqKtJDi4REREREREREZEv8YjA+CZgfJN9r/9rarm8xOYUSgLHisFiPfvaNSFkm7oH+LrsICVl73lbtdFRoqqt7CMR6Q0OK/6bsIWNuULIml0hZPUxr8WvREREREREAyNjasLCGGLlEDQ8zYRzUqDuPEeMYCFkRMOR0Fw70y+9CCYv1ZN0GRZGRERERERERETDlpkDuj8a6FGMDHWTAGN4RgW99tprOOussxxBYTNmzMBNN92Efffd11F33bp1uOyyy/Cb3/ymuG/+/Pm4/PLLcfXVVzvqTpo0CStWrChu33DDDfjlL39Z3L733nsxc+bMkvG0tLRg9uzZAIBXX30Vxx13XLHs3HPPxXe/+13t1zJ+/PgyXy1R5Ybnb4ARTkr5ZIC6i4UQMwG8AmB7W9FPhBCPS6n5pMrVTdAxVtiGiEivrXwYlNQshtDeHyyv/xUovv49P6MCjDJhYeEIAGBSbrVntajIAeidJCAf6H0DeljHk9gxvRzLYzv6GxOATCbv6A8I9ov5ssMErnq8dr/K87ZwX79zLf79scSUccAbH6vLf/LppcXnEc1dEr1MbQXeXVu6vzNd2X9i3zs4WFhYUhEKNZR4fR+FAE6cWVlY2J7vfRdX7+rdLm96Fg9pacUNB2s0P8nnAJLaIvuCs1CZX31B7Thh8CxmE5Eo5KjRQEdbaWEmDXlIC+Sx3wViCYhoHIjGgGjc9YgBsYRzX6y0nij3fwgREREREREREVENhEMCY+qBMfXuEn/X5aSU6Epb4WHFsLFuYFPSFixmCxxzh5BtSqpvlEDWZwXJdmBNu32v7qJw6f6QYQ8T6w0ca0oIZQhZsyuErDEBhIzBc32WiIiIiIiGB21YWMBwrOEuasQD1c9J58SijGQoG9FA0YeFcfkOERERERERERENU90fAY9uO9CjGBkOXwE0TB7oUfSJU045BZlMbybArFmz8NRTT6Gurq6k7rhx43Drrbdi6tSpuPDCC4v7f/rTn+K4447DLrvsUtwXDocxefLk4nZzc7Ojr/HjxzvK7RoaGgAAK1eudOxvbm7WtiHqa/y0gSCl3CiEOA7AYvTO+N4RwBwAf1U06XRtJyo4rLuNu08iomDaFKlOLlKzqEUIayFLyZ3V//mCvrOZX/Q3rkSDd/nYCQCAPZJLPKuF3/sHZNt2EKNbrR3vv1ksq5fdWPjBwfhxy/fxUmJfbJX7EN/Y9AdMyK3BPtuqv4bMirch2ydANI0t+yWoMtYur3FYWM4eFuazzb9WA6s36csbZFfx+dbZDwOPaUKTOiwsm1cHNnmZMg6Y0iogpUTYcH69Ot3B882GDAGgLiaw8hoDky8Onux1yUMMC7Pz83rqb0F/Roac0ePUYWEF990AoPp0XBmJloaMOQLG4p6BYyKWUISVufvoqePuKxwp/X+RiIiIiIiIiIhIQQiBhjjQEAcmjXaU+O4jnZXF4DB74Fh7Ujr2tWtCyDanav5lDQt5E9jQZT2cVFcv1Vc0R8WdgWPWv6IndMwZQqYKHItFeJ2RiIiIiIh6SSmR0dz4kSFWTkHPR94VFpZlKBuRlghw3SooKSXyUE+gC7lu8ktERERERERERERElgULFmDp0qXF7cbGRtx///3KoDC7733ve3j++efx+OOPAwBM08T111+PO++8s0/HSzSQGBZGAAAp5VIhxNMADrHt/iKGXljYzQAeDNhmCoBHanR8IhoovsLCNG65BPLyOyB3nw1x/o0QLVaAl3zwV/rOJk1xbu9/OPDCoyXVxGlXeo5J7Hso5NP3oF52e9aLdm8CHv4tcNKlPTtiQKZ3Mk9LfgOu//TCknbXf3IBzht/Xcn+TDoHPP474OvfK+6TAVJtan0X+ZztJmp+x+EVFHbR+p85tvdLvhJ4TGM8/nboDLDoaItG4I9nGgCsBVOtjcDHHmMvSA7xsDA/38atx/bNhJuhGBbm98evSzGHL6e+CWHNyW6Pt2vT93Js1jIs7Mu71a6vmln1dv8cJ5uxHl2bK2peVViZEJDFMDFFyFhhOxYHoomSsDLhqJNQh5XFXP8WHpEYRIgT44iIiIiIiIiIRpJYRKA1ArQ2ukv8XUfOmxIdqZ4AsWKoGLCpuzSErF2xb1P34Lwxw2DQkbIeHzrun6C7+ujcbwhg3ynADccY2H0bhoYRERERERGQkzlIqP8AizDEyiFoqFdeOicRZaQmLIyhbETQXXOSVd8eEjA1v+MAICS4fIeIiIiIiIiIiIhI5e6773Zsn3322Zg4caKvtj/5yU+KYWEAcO+99+KWW25BLMbPRGh44qcNZDcfzrCwXTX12l3b44IcRAjRgNKwMB+xKeVJKdcCKJ8Y5BxPLQ5NRAOtbV3ZKlLz4b74dJUVxPLCo5Cr3gLuWgIRjgDppLYvUTfKuX3I1yHdYWETtwV22dd7UPseCgAIS+9knYjMQt75Q4iTLoVcscwRFFYiXgekrPCxqMwqq2REFPKV+RA+wsJ0vyVv+brAWfOqnxgBOBfg1KLHMXnHihXUm12B+xhdL7Sj6fA4/Xb7TQEe+7aB5rres1gf9de2e6iHhXl8I+3/9T53gYEDr6vtCqyhGBbm12ZFUF02X5ufw7LWfaQtEid+37Fdy7CwvgqVq8rus4GlCwd6FH1LSuv/QY//Cz2bV3v4cMQZIOYOFIvGnPtc5UIVcObuI+YOL+sJNQtH+DcCEREREREREdEQEzIEmuuA5pIbgfi7ziOlRHemNzisN3BMOvcV9isCx4b6df2+YErgxXeBOdeZWP5DAxOaed2NiIiIiGiky2oCrAAgKnxOrBohgp4Pe1iYlBIZUxMWxlA2Iq1ahIXlPeYDhwRvoEhERERERERERESk8uKLLzq2jz/+eN9td955Z+y+++5YunQpACCVSmHJkiXYd98yOQ9EQxTDwshupWtbFwL2jmt7m4DHcdffKKVsU9YkIvJB5rLAVtOAt//hWW9duFW5X9g/3P/gLeDff4dsmQD8/VnfYxAHHAFc/FvI+28A1qwEdtsf4sKbIKLeE2tEoh7yy6ch/Og8z3pR2bvCRJ44Q1/x8FOsca9ZWdLOLi1iwD9f8DxmOWccYOC8B/JIqfPIAsnZbmrY5TOIy0tLfoNju7KwMH2Z3zF+dQ/hCAoDgHqfc62G86Ii+xnZb0rt+++v7KyB8ulmiS0ae89irr/C0bxCGfc40LGZrsHvhYLYIPyLRezzJcjhHhY20HJZ69HdUVHzqn4NCAHpDiazh4kVt9V1lEFlxYCzhKttaT0R4qRAIiIiIiIiIqL+JoRAfcy6hj+x2VHiu49srjRAbJMicGxz0hY2Zg8hS3rfiGMo60gB9yySuOALDAsjIiIiIhrp0qbiTnk9GGLlFPR85JFzPDehnlQUFTzPRH15hcIe3OcWEoNwMhwRERERERERERHRAGtra8N7771X3G5ubsZOO+0UqI999923GBYGAH//+98ZFkbDFj9tILukazuhqbfMtT014HG2c23/O2B7IiIHEY5A3PEqzNn1QF59Ry6vtRXCVSrv/CFgGPoGR5yu7ufQEyEOPRHSNCG82rvbTdkFEemdrFMnu62xrXD/Cnb1NX4yZNfm4rYuLCyjuOug7hwJj1kRG28wUHd29UlFuRXLgbHWm/Ybn62+vwm5NY7terM7cB+j66oeBuoUN3dc5zP3JpmV6NspKX3L74KmSLj2X2O+v8KzBsj5D0jMO7X3vGX1c4tqSxcWlmiAiDnfNqb1N0cMLB6pXV81wzCn4U1KIJ20HpU0r/bw4UhpyJg7nEwVVFYIG4slFCFkMVd7VZ04EIlCeP3HT0REREREREREWpGwQMsooGWUu8Tf9RbTlOhIQRE4VhpC1t4tiyFjhcCxTd39eL24Av9YNdAjICIiIiKiwSAj9XdpZIiVU9DzYQ8oypj68xwxFJPaiEYc9fUaWfXMH2dwn1sInHdGRERERERERERE5LZunXP98rRp0wKvc9xxxx0d22vXrq16XESDFcPCyK7Ftb1eU+8N1/auQog6KaXfJJb9yvRHRFQR8YM7Ia88UVm2IjLZf0ddm4HlS/TH2cU7RTZIUBgAIFGPsMfkAAAYk28DAMgTZ3j39bnDgXuuK27qw8L8p+94vZWORwTabzTQ9J3q0pmyF30F8n8fhZg0FQ+/VlVXAIDdU85O6mVX4D6aElZQmt/QK5Vxo0rPXs7n7zmaLQAAIABJREFUqepWfOuklHh3LdBcp+57qOjrHJqhGBYW5HV27yKJeaf2buf6a/HXJk1Y2OhxJbtS3vmHgXTobyg7cEI+/oz6zEzr33QKyBQeaevfdNL6l0gll7Ue3T7TJV2qDisrhom5gshi9uCxhDKsTDjCzRL6sLKSwLOe9gziIyIiIiIiIqIRzDAEmuqApjpga0eJv4vqUkqkss4AsULYWDF4rKdssyaErFO/lrxq76ytfrEtERERERENfV4hVlGDYWF2Qc9HXvbOQcxo5g0CDGUjAqBfZFbNhNEe9uA+t5Dg8h0iIiIiIiIiIhqm6iYBh68Y6FGMDHWTBnoENdfW1ubYbmpqCtyHu83GjRurGhPRYMZPG8hub9f2x6pKUso1QojXAezasysMYBaAp30eZ7Zr+y9+B0hE5EV8/hjI5x8GFv65pKwtNFrbbnp6mXPHxk+9D/QZ96/LKsXrYZSJ9vg01Fq+n6POgthmR8g5RwGP3QkAiGnDwqy7A8q2dRA9QT+VznEYFRdYfKmBo24xsarC9805EYa87tsQ19fmv4RxeWfeZVRmEJI55ANMtIiGgPpodQtjRsVL9/38qwIn3FH+ZGdc+XFvfixx+K9NrFhvhW199bMCd58kEIsMztAwr6/QPc/mmqMELv5z7RYJDcWwsGr4DaCrmjYsrPT3U9o7/zCQT9pr11fNGOUDjcRV90G0TNCWSymBbMYWJGYLFEungExPoFjaFjJmqyMLgWPuIDJHm6QtrMzVR66GiW40vBReIxWoOqgsFFaHicVKg8lUgWNCF3BWEkxmr9MTahaJBr7bABERERERERHRYCKEQCIKJKLAeMe8J//XPHJ5K0BMFThm37dZE0LWngRMzUWid3mjRiIiIiIiQrkQK8VkqxEsaKiXaQsoYigbkTfd1ZJazGK0B/e5hQRvpEdERERERERERMOUEQYaJg/0KGiIkq6Qg1qs8+NaQRrOGBZGAAAhRBzAUa7dCz2aPITesDAAOAk+wsKEEDvCGUrW5acdEZFfxlX3QmbSwN+eglzwZ+CZewEAJgxtm62zHzp3rP3I8xhi4nZVj9MhUVe2yhEdj5atI87+qfXv7KMge8LCImXCwvDsA8DRZ3v3m+yAecHxEPv9J3DQf0M0jS2ps/s2AiuuMbD8rBOws3l32bG65UQYWPxc4HYqJ276fck+AaDe7MLmkP8k4VgEaIhVFxYWU7zT+sruPsPCbDeXy+QkdpnbmwglJfDAYonGBLDbJIl/rwH23hY4dk+BaHhw/PESJHzunDnDKCwsHOmXECYpZfEP1az+RoS1PaYuLKy5pWSXO+yuGolo7fqqme0+U75OOOJZLIToCSyKAQiecl7tT7rM59VBZcWwsRSQTiqCynrCyjKaOu5wsmKomaufGtyFk4ahfA5IdlqPClQdVuYIIisEiiX0YWWF7ViiNKisGFIW6w0kU4WVFYLOwrw8Q0REREREREQDLxwSGNsAjG1wl/i7IimlxF/eAA77VemF+rZuYEOnxNiGwfE5BhERERERDYysJsRKwEA4wI0gR4JIwFCvPHon7HiGhQUMISManvouLswe3OfGsDAiIiIiIiIiIiKiUmPGjHFst7e3B+7D3Wb06NFVjYloMOOnqlTwPwC2tG3nATzhUX8egB8AKHxidZQQYpqU8h0fx7F7QEqZCjRSIqIyRDQG7H845OsvFfdJj0UMBvwnC4kzf1zV2JQSJSsuSozJbyxbR0R7JvHM+FxxX7RMWJj8YHnxzGinOJh5YNEzkIueAR76DfDLpyDGbFF6fCGww5sPYvT216MtNEbRkV6u5y1JMlP9RIuvdDzUO6Z5r0M+egewfCnqu7oDhYU1xgUa4hLYXPlYoop3WvGIwJwdgAVvebcthC3lTYn4t9Sv0dtf6D1ftywEHvi7xJ+/ZQyawDAd9+jqkhvwydu7Yvz2HyrrB2UOZAbRqNFA21plkcxmICK1Sb5qTwLNPTmDuf4KR3tlvnp/c2vJrnQNw8JKF6UNAjvvXb5OmbCwgSZCISBRbz0qaV/FsaWUVqieI3CsJ1AsrQgwK5a7gspKAsoKz90BZ64++iHQj4aowmukAlUHlYXCpSFjJcFj+sAxEUs496kCztx1bH3xTglEREREREREVAtCCPzHVvorJe+sHaTXfImIiIiIqN9kpDrEKiqi/NzSJWioV94WUJTVnGcAiAYMISMajkTVt2rUy8MjLIzLd4iIiIiIiIiIiIhKjBs3zrH99ttvB+7jrbecC/dbW0vXPhMNF/y0YZgRQpwA4Gkp5acB2pwG4ArX7ruklB/o2kgp3xFC3A3g5J5dUQB3CSEO0oV/CSG+DOCbtl0ZAFf6HScRUWCxuuJT0+ODfREk3uHos6sZkVq8fFDL9Mxyz3Lx4wd6n0djxa9IFxZmihDyMBDaWP6/C8f5WbkMeOxO4BsXO+rI9Wsgf3I6AKDB7AocFpbvuVvaP2qQFTUq31F8LrbeAeKcawEA9d9PAeUz14qaEsCK9dWNJaZ5p/WHUwxseZF3wlOmZ77ITQv8vz6ffAPY88cmll5mIGQM7OS5QKEpb/4NLfkNyC3r/Zk9aOu/4Pn6Ayo6dr6/wrNU4gl9WbITiKh/NoKGzKzt6A0Ly+rnFtXWmpXq/c0tJbvS2dolth35H4NvIqgIhcp/z+ob+2MoQ5IQAohErUcF56naV4TM54FsWh04lnaFjDnqJEvDytJpKEPP3GFl9nI5kImGNGjlc9b/E8nOippXHVYWjQHRRE+omDpQzAobKw0hE8XyuK0PReCZMvQsDhHmpSkiIiIiIiKi4WR8E1AfA7oU69LfXycxc7vBd82XiIiIiIj6T8bUhIUxwKpE1Ah2U0J7WJjuPANAWAzuG+AR9Q/19QlZ9QwMIC/1d9oMiZC2jIiIiIiIiIiIiGikGj16NKZMmYL33nsPALBp0yYsW7YMO+20k+8+Xn75Zcf2nnvuWdMx8qY3NJhwRebwcwqA3wghHgTwAICFUsouVUUhxB4ALgFwpKtoNYAf+DjWFT1tR/ds7wvgr0KIU6WUxVQbIUQMwOkArnO1v84rkIyIqGrZ3gkv0uMNmAH/yUIi5hEEVKl4XdkqE3NrvCvsvLdyd1RmtU0yIorE6N6kXV3AkjtMTd4+F8IWFiZNE/KUmcDGTwAAo8wOBJWDNQHigw3VT7QYn7cC0MRV9zn219dFAoWFjYoDs7cHnvXOafMU1czrmNAscPkeH+KHi7fStp33qsQ2Y0x89/5g5+Rfq4GL/yxx7dF9+0eHlBLpHNCdsRb8FP7tyljPP9yoH7f7x1F+/6iSOnGPu1uWM6BhYTGPn+dkF9AYLEhPZ+1mYPstrOe5fggLk1ICoRCQLz2YUIQ9pfXznQKZPgHYe9va9NWvEvX8w38QE6EQEKrz9f+vsn0Vx5ZSArmsIqjMFSimCR2TjnJXWFlJ2Jmij6w6RJTIeq1U9n9v1UFloVCZQLGYZ7kzrCxuCzVzh5XZtm11+PuaiIiIiIiIqLaEEDhyhoApgamt1mNaq8C0LYAx9fw7nIiIiIhopMto5gQxLKxUSIQRQhh5+JuIYw8o0p3niIjCEEZNxkc0HNXiFoD24D63kODyHSIiIiIiIiIiIiKVWbNmFcPCAGDevHn40Y9+5KvtsmXLsGTJkuJ2PB7HZz/72ZqOLxZzfpaVTle+Dp6oWvy0YXhKADix52EKId4BsBJAO4A8gLEAdgOwhaLtRgBflFJ+Uu4gUsqPhBBHAXgKQOH2VfsB+LcQYgmA9wE0AdgdwDhX88cBXBbsyyIiCsjsTQwyoZ/gYkifyUL/+c0qB6SRqK+6CzF2vHPHrMOAFx9HVOpDQTIiioS0pjZIKXHe/erzkDBT3gd//M5iUBgANJid/gZtk+uZAPHeusBNS0zLvGs9OeAIx/76gPPJQgZw8iyBZ5dXPv0j6vFO67L2nyG2tgmXtl6lLH9nLXDSXZUd++dPS1xzlEQ62xvepQr06kpL619bnUI96yEd7Qp1C8/NCk+NfSmQ1ATXxIZqWJhX+FBKmd9akbW2TL5aTFAqK9mpDAoDAIxpLdmV0ucU+rbNWOC5CwyEjKG3eEyczLe5pCaEACJR66EI2ivbvsrjS9N0hYmpAseSiqCynrCyYiBZsrSdPZysGGqWdvYr++U3Fg01+bwVqJms7P/JqsPKVKFixTAxj9CxWKI0qEzbhzusLA5EExBhXpYjIiIiIiKi4el/T+HCcyIiIiIiUsuYmrAwwbAwlagRRdL0GRaG3rk92vPMUDYiAF5zcKqf22IP7nMzhOYOtEREREREREREREQj3Iknnoi77767uP3rX/8a55xzDsaPH+/RynLxxRc7to899tiScK9qNTc3O7bXrFlT0/6JguCqxOHPALBDz6OcZwF8U0r5kd/OpZQLhRBHArgLvYFgAsAePQ+VewGcJqXHbXOIiGpAfPUcyPuuB+AdFiZ8frgvvnFx+UqViFthYae33Y7bRp9aUnz12h94t9+m9Fe82OMgyDJhYS3bf4zJ76/HitO9fx3Xm/rgBrluNeTPznbsqyYs7PJHqptosWV2tTWJY/peViCLTX1U2URrhy2ADZ0C1Uz+iHm80xKP3o7/AfBqYm88Nuqwio+hEzlzIBOzAnjzb8rd1YWFDWAYTcwjLKzCEBSVtR0S1ccGBfDRe/qy3WaV7Er7m6Po6c9nGWhtHHpBYQAA3oGVBilhGFaooVewoVf7Ko4tpQTyOWeYWDqlDSbrDRzrrSPT9lAzTVCZrg9NOCWR9dpJw8pXD6bqoLJQSB8oVgwVUwSR9ZSJaEIfVtYTaKYOKosDkZj1O4GIiIiIiIiIiIiIiIioH+lCrCIMsVKKGnEkzW5fde0BRRnN3CuGshFZ3PNLC2RNwsL0c3JDXL5DREREREREREREpHTggQdixowZeO211wAA7e3tOO644/Dkk08ikUho211//fV45JFHittCCJx33nk1H992222HaDSKTMZap7hgwQJks1lEIpGaH4uoHH7aMPz8EsBqAPsB2MZH/S4ATwO4SUr5bCUHlFI+KYT4DIArARwDYLSm6qsAfi6l/FMlxyEiCkq0ToLcdT/g9ZcgPeItDPgLVRITJtdoZC4JKyzsiI5HSsLCwjKLIzc/omrVO66LbindGbL+i/cKC5PCwIp8a9nh1cmkun1nO+RR25XsH1VJWFiN3pKcuulOAIA44IiSsvoA85ymTwAa4gIzt6tu4kdU82XJ1b3BS17fo+EqbLs5nnzsTmWduJmquP/8QOakxeL6Mo+wMBnwpfbsMokzD6isbUXe/oe+rKmlZFctwsLCQzm/hOErRCWEEEA4Yj3qRlXWRxXHl6YJZNPOoLGSwDFX6FgxbCwN6aivrqPsp1BuDpEQT+pf+bz1/qDCQNGqw8oiUVugmCKsLBrTlotY+TrK0LPC81BYO/maiIiIiIiIiIiIiIiIhi+GWAUT5LzYA4p0oWxRhrIR9dB8Xl2DuXh56CfPhURIW0ZEREREREREREQ0lH3yySdYuXJlRW0nT54MALjjjjuwzz77FAO5Fi5ciP333x833XQT9t57b0eb9evX44orrsDNN9/s2H/RRRdh1113rWgcXqLRKPbbbz8sWLAAALBq1SocfvjhOPPMMzFt2jTU1dU56o8fPx7xuMeac6IqMCxsmJFSPgTgIQAQQjQD2BnAVgC2AFAHwACwCUAbgGUAXpfS4/Y1/o+7FsBZQohz0RtUNh5WGNlqAP+QUq6o9jhEREGJH94DecQ2MIU+uEX4+XT/2O/WcFSu44cjkOEIvtD1LH71yXfxg3Fz0R5qRktuHW5fcyamZd/Ttz3/Rohd91MUWBMZYprJVUGEdP9N/PlW5e6GCsLC8iKEDaExgdu5bZFbaz0Jl6bw1scE/M7keOl/rNfLqCrfg8d0YWHXnFF8PtLCwsaNArbqiRWVC/4EPH2Psl6sivOS74/wLB2vkKhUZUEgKo+/3vu8X8LCkvqfazGquWRfTcLChvK8KIafEA06wjCsQKNYAqggq6yqoDIpgXxOEVDmChRThY711JeqdvZtrz4y1b8fpGEqm7EeaA/ctOq3H4YBWQwQS6iDyhyBY7Y6sTiEu04xsEwVVhZz1onErN8JRERERERERERERERE1O8YYhVMkPOSl70TdjKauVcMZSOy6OaByBqkheU1c24FDBgec5mJiIiIiIiIiIiIhrLjjjuu4rayZ6H07rvvjl//+tc488wzYZomAGDJkiWYOXMmpk6dip133hnxeBwffvghFi1ahFzOuZj54IMPxlVXXVX5F1HG+eefXwwLA4D58+dj/vz5yroLFizA7Nmz+2wsNLIxLGwYk1JuAvBSPx8zA2BB2YpERP1EjB0PXHUf5DU36+v46eeLJ9RuUCq5LADgrLbbcFrbHVgV2QqTsx/A8Jh4IOavg6hv1BRaX1VUZqse2s7pN5X75W8vV+4fVUFYWE6E8VT9wYHbubXk11tPItGSsrrSXSWebrkWn7/64uK2EAJbjwFWbaxsPFHdO61/vtBbpwbfo6Hk0kMFDENAfvw+5OVf09aLy1TFx8ibFTetnulx8GTtwsJ237pmXXkyTWl9v/54E56sPwTzGw7BmPxGHLP5QeyUeUvbriZhYYN9XtSBXwWee1BdtosixJGIRiwhhBVkGo4AdRUklaHKsDLTBLJpfVhZMbBMFVSWhvSqoww9c/Xr9X8jjVymCaS6rUcFqp2eLSPR0nCyYuCYKqwsBkStchHT1Cnpo7DPFXoWClu/F4iIiIiIiIiIiIiIiEagrDbEysfkrhEoSLhXHr0BRVmGshGVof7MtjZhYerJcyExlO+eSURERERERERERNQ/TjvtNIwePRonnXQSOjt7MwveffddvPvuu9p2J598Mm699VZEIpE+G9thhx2GH/3oR7jiiiuQz6tvHEHUHxgWRkREw9+4iTChTp0R0md4wZjWGg7IWxh5bJdd6V1ppz31QWEAChMZoprJVUEc3vlEoPoN+Y7Ax8gjjCXx/wjczq0p3249CZW+ka/3Mc9p0rK/ALjYsW/cqCrCwnzM7ajF92iwCRvW+a6LWv/WR4HtxgHH7mngq3tYr015/42efUQnbQ1Ulh0xsGFh0mOyUA3Dwl5533bImvVaavknwPSJwDXxM3BZ03eK+3855hz8ZdV/YeZeE5XtMrUICxvkc6PEEadB6sLCtp/Rv4MhIvIgDMMKKIolgAqyyqqNNJK5nCtMLKUPHbPXcYeVlYSdafpxB6IRqWQz1qNrc+CmVb/3MgxId6CYPUysJISsEFYW7wkr09Qp7LMHlsVK6wljsCeyEhERERERERERERHRcJZhiFUgUcN/iFpe9i5KyUj1eY4wlI0IACCqng2hZ/9ZtAthkE+IIyIiIiIiIiIiIhokjj76aHzuc5/D1VdfjXnz5mH9+vXKepFIBHPmzMEVV1yBfffdt1/Gdumll+LII4/E73//e7z88st4++230d7ejmQy2S/HJwIYFkZERCOBMGAK9YJoAz5ThZpaajgghc/MBN541Xd1cdnvylSoXVjYlzseDVR/lNlZvpJLToQgazD5osnsWewfKZ3UtMlH8FS0fU3JvtYKQjUAYPoEwDDKf00DERYWC9vCvKK9oV694V4CCdc+Z13hCAJz14mEfXwv/3yLZ3Fi+gxgcWVf38CGhXkcPFW7sDDHIfswLeyRf0psNQb4Yewsx/6OUCOuGncpnnj/AmW7moSFDfYcixmfA/7rZOCxOx27xe2vQoi+m0xGRDTUiHAYCDcAdQ2Vta/i2NI0rUAoR5hYUhEylrYFjSXVQWWOeklNWFna1kcSMAfyTQkNWqYJpLqtRwWqfesnwxFnoFhJ8FjMM3BMRONATBNUVmzj+rfwCEf4PomIiIiIiIiIiIiIaITThVhFBcPCVCIBzkte9k7YYSgbUaWqn4yXhyYsTHDpDhEREREREREREQ0fK1eu7NP+W1tbccMNN+AXv/gFlixZguXLl2PdunVIp9NoaWnBpEmTMGvWLIwaFTwIYO7cuZg7d27FY5s+fTquueaaitsTVYufOBAR0fAnhDaIyldYWDQGYfRxak2iPlB1sdW0MhWsrzcuU5WOCABw8fqfwlBMfpBt67RtmrYYHXi+RA5hrAuPCzq80mPn260n4UhJ2cHTgbte9m4flVnHtjRNtGx6F8DUwGM5ZZb6NSc//dB1TPXErGpccqjAgTsKZRBYXRQI+QgxG2ixiVuh0ok3AxsW5jHmpD4srJLAr86URENc1GB6kp4hgHl/k8ii9GfqqYYvANMPUbbLqOc7BVI/yOcmCiEgLroF8vgLIf98K8SkqcAXj4eI1w300IiIqIcwDCusKBavrH2Vx5e5nCtMTBU4Zg8Zs4eapVxhZemS8pK+0646RCq5rPXo2lxR86reewoBWQwUS6iDyhwhYwlHWJlwB5MVQ81ipUFlxb566kRiECHeqZuIiIiIiIiIiIiIaKAxxCqYIOfFlL0TdhjKRuRNaGYE1GIunv1n0S4k+HklERERERERERERUVCGYWDPPffEnnvuOdBDIRo0GBZGRETDnxAwoQ77Ej4SesQ5P6v1iEqtWVnb/nrCwsKaO5T5VW+qw43kGbO0bZr23AdYFOw4eRHC2lANwsLMngXv4WhJ2fQJAuWmcsRkGvKjdyEmTYXMZSHnNGBc64+Bsef5HsNu8Y9x0pe3xHcO0gTMffi2Y9MdUFYLVxwmEAkP3kAwmcuVrRMrzabyLd+X6VnlrHpbWyRTXVWHjti9/B7whZ1r2KGCIYB/faQ/oWLKLsr96fLfYk/xCDCmfvC+hu3ExO0gzrl2oIdBRESDkAiHgXADUNdQWfsqji2lLA0Yc4eOpZO28DJnHemoowgrKwk9cwWe5at8M0DDk5TWayadBDragjev9vDhSGk4WTFwrLCtLy8JK1P1EVPUiSWAcARCDI33t0RERERERERERERE1ejIteNP6+7Uln+Qele5P8IQK6Ug4V555NCea8OSjhfxcvtf1f0xlI3IU8ZM464112vLoyKOaXU7Y/dR+yIk1EtxPs2sVu7X1SciIiIiIiIiIiIiIgqCnzgQEdHwJwSkZqm9AbN8+/Fb13hApcSh34S87TJ/leN1fnqsajwFo8xOdcGaldo2TTvtFDgsLCfC2BxqDNZIdWyz3XpSV19SNtZHRkNUZiD/dDPEub+AvOtqAEAe/u/mdtfqU3D87DoYB92srSNv/UHJMWvp118b3EFhAIBNa73LjzwD8WrCwnz8WPeZdeqJPgCApDp8r1LrOyXk2tWQ6wBgQk37LjAEkEtnAJQG8AGADEWUv20yVeaD/OU7mrA9IiIi8kUIYYUWxeKVta/y+DKXA7JpW5iYInAsXQgZS5YEkcmSeqqgMo86RCq5rPXo7qioeVVhZUJAukPG7GFihW13WFkhqMxepySsLA5EE7a2pfVEiHcpJyIiIiIiIiIiIqL+kZEpLNr8fOB2DLFSC3JecjKHn6/6H2zI6udmBQkfIxrOdDf6MZEv+zvsxfan8FrHKzh54vcQEs7P4Val3sMTG+5TtnPXJSIiIiIiIiIiIiIiqgTDwoiIaAQQMIU6eEb4We6758E1Ho9Cc4vvquLbP+/DgTiNy60L3Ka5pRHwE8Jmk0MYKaEOMtgh/Ra+s/EmnD3hRs8+mvKbECsEb42bVFJer846cojKDPDHmyCPPhu42woL2z/5Mn6J75RvjJ7XU7JbWy67O4C3lpYes4ZO3m+QB4UBwJKFnsVi9zmIVZEVNVBhYTKT9q6Q1ITvVej/3kzh2GtnQzY8CsT6JiysMQH89lX9D4+580y4v1VSSmTzlR/znR8ZmNI6BF7HREREpCXCYSAcBhKlIb6+2ldxbCklkM24gsmS+rCyYrkiqCyjruMMKHOV56tMTaXhSUrrNZJOVta82sOHwj2hZK5AMXvAmKq8EDZWEmRmDyqzPUrqxIFIVLvYgoiIiIiIiIiIiIiogCFWakHPi1dQGMBQNqJa+UfnK3in+w3sWL+bY/+TG+7Xtglx6Q4REREREREREREREdUAP3EgIqLhTwiYJXE2FsNHqJUI98N/l4kG/3UPO6l8HdtC3MM6nsDjo/6zgkEB+yVfCdZgdCvGVpAHkBNhdBt1yrLvbvwVjmu/H99v/RE6Qo3aPlrtwWatirAwH/OcIjILAJDHTi/um9O1sHzDHmkRA1JtyjL50K2QN36vZH+tw8JiQ+DdnfxRmdfw7gcg/mbl/W/S57X1rXSZA6f05Wvagx/utldjuHnth0CAXx9BbTNGwCuaIDdmYskfFJkq8jGO31swKIyIiIiqIoToCTqKAWgK3r7K48tcDsimSwPHimFjrqAyV4CZVAWVOcLJXM8ddSoLoqIRIJ8DujusRwWqDisrhoklnEFkMUU4mauOUJZrwspKQs/iECHeoZ2IiIiIiIiIiIhoKEiE1HPHRrpan5e4Zo4e0UhTi4DCd5P/LgkLe7v7DW39mKG+oS4REREREREREREREVEQQyBOgoiIqEpCQLfk25Dlw8L6xR4H+qt34vchDHXwmYMtLOyCDdfjufrZ6DZ6U7xCModb15yDc8bfgLTHBIQtcx/7G1fhsN+5Dq36PC+tnAgjKRLKsoSZRIPswoUbfoHLW+dq+xiX7w0LEw2loQDRsPey/7DMwlAsgW4yN3u2s2sLNQOpj0r2y2WLIX9xrrJNLcPCYuGecIRBTHaow9SKjjkXonEMYuHKfzbf+rTiptXJZb3Lk53aokNu0H+9iQiQ1HT9YmIfvBXbwc/oKrJivXcsgBktnUCYyVd+vEM+U3lbIiIiosFAhMNAOAwkKkhRRnVhZVJKIJspDSHLpG0BY0lNWFnaCiqzh5qVhJWle0PJ3OWZVPn3wzRyFV4jnZsCN606qCwUdoWTxYBoQh1Upggsv1z7AAAgAElEQVQcKw0rcwedafqJJYBIdND/jU5EREREREREREQ0WGyf2GWghzAo1fq87FDH80wEAJMT2yOEMPKo/M6YGTPt2JZSImXqbyg6rW7nio9FRERERERERERERERUwLAwIiIa/oSACXXAlii37LR5XB8MSDGO5payC2DF+TdCHHmGzw57F6Pun3wZz31wCO5uOgHLYjtgz+RinNn2W2yT+xDT08tw85gzMK/payVdnL/h+gBfQeFgh2NsBe8ucgih21CHhdVJa/LEJRuu9QwLa82t05b54RXadXrb7bht9Kll+1gXagGSpZM95FkHeBy3dgvqY0Phnd1LT3oWi7N/CgCIRwSqXxbezzIp7/Jkl3J3R0ri/fX6Zl5nYfbkZ8uPqwqvvu9dnlNknGUqnz+F5gQX0hMRERFVSgjRE1gUA1AaoFy2fZXHl/k8kE2rA8fS7vCypDqszBFO5n7uCidz9JkC5BD7+4H6Rz5nBTd7hDd7qTqszBEgFnOGienCygpBZbGEIoTMVscWalbaT9wKLyQiIiIiIiIiIiIaAj4/+gi0RLcY6GEMStsmdsBejbOxaPPCqvua2XggtolPq35QRMNA3EjgqNZv4sG1t1fchwnn5LlsmRvHHjT6yxUfi4iIiIiIiIiIiIiIqICrRYiIaAQQkEK97NmAIunG3vLi2/piQGqGAZj68fgOCrNqO7b2SC3FHqmlJbX2Tv0de3/8dxzb/gCOmTQP3UY9AODArudw2fprAhwPwDcugYjFK3pzkRNhJIU6LCxu9gYwbZ1dhVWRrZX1WvM9YWGGOhgOAOadKvD129VLfUMyr23347WX+wsLC7cCb7zi2Ce7O63FyRpeIWVBxSM166rvrFnpWSx6flarDT6TUhb76jeZtHd5Sn3XwPVl1qyfM0fg508PTPDB3a94H7c9CTS6fnTb9DdHLGtIvIaJiIiISEmEQkCoDojXVda+imNLKYFc1hUmluwJJkuVBJP1liuCyjIpIF0IJkv2tE9795GrXQg0DTOF10wFqg4qC4XVIWP2gDGPwDFRbGfvQ9FPLF4SVIZorP//JiciIiIiIiIiIqJBISYS2KfpIF9164wG7FQ/AzvVzejjUQ1dhjBw4vjvYEbDTLyTfAMpM4lkvguvdb7qu4+xkVZ8ZdzJ2LVhLxhCP7eOaKSZM/owbBXbDm92LcXmfJu23ltdr2Oj4ma2pmvOaUbq5w9+Z9KVGB1pqXywREREREREREREREREPRgWRkREw58QMDXLjkW5pZd7H9IHA9KQNQwDCrgg80tdT+Ojd7bDy4mZ2DL3MXZO/xtGwGWp4vBTAtW3y4go0kZcWVYne5OHDu58FneMPklZb3zuE+uJR+DajuMFdMttuw39gvbR5ib8bcV+2Hvbl7R1AOCgrucAAHL9GoiWCdbORc94thnuYWGyuxNY/CzwyQfA7rMh7/yhvrLtdZuo8mvJm0A4VF0fgSW7ypSrU8Gy+pw6AMAJMwcuLKycJ/4lceYBzt8375XOi/JtW86HIiIiIqIKCCGASNR61DcGb1/l8WU+D2TT6sCxYiiZKnQsBaRTzrCytLufpD6srFBey+sJNHzkc9bfoZq/RcupOqysGCqWAGLuoDJb6FgxsCzmDCqLxmxBZAlN4Jkq9CwOEeZHX0RERERERERERAOlIdyIE8Z/e6CHMawYwsCMUTMxY9RMAMDazMeBwsK+tsW3sFM9A9mIVKbWTcfUuumedW7/+Fps7FCEhbluVpwx9WFhYyKtlQ2QiIiIiIiIiIiIiIjIhSsmiIho+BMCUrP015D6YCkAEKF+TBsawLAwAGg0O/DFLu9gK89Dtk4qPr/oiwLXzvf/9XQYo7RlCTNVfH7+xhu0YWFf7Hy67HFGqfPIAAB54f226LOpf3iWC2nikML5e/lJoCc8TV52rGe74RwWJtvWQl5wGPDOP33VFyddVnw+tqG6Y5sDsVZ+U5mULE2YWLmwsJ0nAluPAVZtrHBcfei1D0v35b1/rWrtsiWw3bhqYxqIiIiIiPqfCIWAUB0Q14dQe7av4thSSiCXLQkgKwkUU4aVWdvSHmjmDivLuEPPXOXZ2v1NS8NMJm090B64adVBZaFQmUAxRehYLO4RVlYINXO3i7naW3VEBdfliIiIiIiIiIiIiPwKiWBzGqMi1kcjIRoZDKh/5kzpnPiX9ZgLGjP4c0hERERERERERERERLXBsDAiIhr+hIAJQ1lkoMJUm8Gunxclimsfdmx/9yCB+W9IvP6Rv/ZdRr22LC57w8J2yLyDi9b/DNe2XOioc2bbbdgztdja2OtgbV/1UX/jqcQvP70AY/NWmpN85zUIAHLlsrLtojJbszEMurCwe67zHRQGADjqzOLTlirDwjZ1A62N1fURWHend3mqW7m7PalvcsvXBQxD4NbjDRx64+D7fbVti3PbNCXmPhp8nA0x4JfHqn9PExERERGRnhACiEStR31lfwRVFVZmmkA2bQsTUwWO9YSM2ev07JPFcDPbv6qwsmJgmWu7lsHrNHzk81Zgtya0u5yqw8p0oWLFwDJ9uTKoTNmHKqwsDhEeZBeHiIiIiIiIiIiIqOZCAaf/RxlSRFQVQ6jnteXhDAvLmGltHwztIyIiIiIiIiIiIiKiWmFYGBERDX9CYIfM27hw/c9hCgMSVniYhECd9Ejpmb5X/42xnDFbBKvf32Fh+3zJsT2+SeCFiww8+S+J435bfollt6jTlsWkcwLF1euuwKGd87Gw/gDkEcL+3S9iTvfzxcXN4qiztH3VVznf4q8fHILPb/NUyf4vdD6Db7X9pndHz/mXvzi3bJ8Rj7vJBRUfbO/s7rvBd1Vx5o8hmsYWt0fFqzv0wdebeO1yw1o431+y+sk+AICkOkzsv36lD9c6fqY1/i9Mr3hUWtNagXfWVtdHl+tLPv9BicUf+G9/+WECWzQCX/yMwLYt/ft7i4iIiIiIqicMwwoviiUqa1/FsaWUQD7nDBpzB4q5Q8eKgWXWtkyXr6Mtz9bu73kaZjJp64H2wE2rDioLhdQhY/ZtR+CYPYgs3hNWFteHlRUDy0qDyhCJWb8TiIiIiIiIiIiIqE+FRChQfYaFEVXH0NysWErnvD/PsDD+HBIRERERERERERERUY0MtkgJIiKi2hMCu6bfwK7r3gjWbsb+fTMenc/OAZYsUJftNitgZ/0YuqMZ26i4wDF7Ctz9ch7z3/TuosvQh4VF7WFaXz4NeOS3mJV8BbOSr6gbzPyitq+YxzufqMdEjYLZ3S/g0nXX4MfjLi7u26/7JTzx4ZedFXNZyHWrgX88X7bPaA3DwmIfvwWZmwYRjtSsz34zdRfHZl20uu7+tRpY8gGwx+Tq+gkkU+Y1lOqGNE3Hwtl3PpVo69Y3ifTM7TOM2v9MH7qLwM4TgfMekCWhX36t7eh93pWWuPFZ/8ua559r4As7MyCMiIiIiIgqI4QAwhHrUTeqsj6qOL40TSs02h5W5n6uCh3rKZeOuu46qtCztLPc1AdP0wiWzwPJLutRgarDyiJRW6CYJqxMUy5i5esoQ88K7ULh/g2NJyIiIiIiIiIiGiAhEWz6f0RUORGLaIQzNAF9eXdYmFRPwjMQCvxzS0REREREREREREREpMNPHYiIaPirdJFYtnYhTr7UN+rLwgEn7PTjwjjxlW95lm9Klu+j2zMsLNt7rP/+NuQjv9WP5fwbIUL6OydGPd75xGXKe5A9rlx/FeauvwpvR6dhauY9hKBYnJtJQ/7oZF/9RT//FeAdX1XLim9cBfzxKeDY82rTYX8Szrvv1WJx5+9elthjcj8uEs34eA2lk0Civri54C3vZbgR28v5iW8b+M9f1W4xeMgATt3fwCmzJKJnmchX0PUmW9DZ/73tXXeHLYC/XWJgYxcwuYWLd4mIiIiIaGgThmGFFcUSQAVZZdX+VSRzWUU4mStQTBtWloYslivqFLZ1fZQLy6aRK5uxHl2bAzetNqgMhgFpDxSLKQLG3KFjsd5/hapOLKFp5wo0i8Qc4fBERERERERERER9SRdcpBM1Yn00EqKRwYD6Z0665o5mNDes5c8gERERERERERERERHVEsPCiIhoBKg0LKyfFz5O3FZfFjQ4qR/DwrDfYZ7F9jAhnS6hDwuLFe62NmkKxNY7eC4cFEee4XkcrwCqmOaubsp+AOyQ8Uj42rQOWLrQV1+xo04Bflr1ckgAQFymIZ9/BGIQhIVJGfBr6oMFle9+Wpvz6puf3xndHY6wsM4yTeyv2S/tIvDs+QYO+kVtAsPCod5jtI4C1rQH7+OBxRL3nW49X/yB9/lubQQaEwKNieDHISIiIiIiIicRjgDhCFBXQVIZqgsrk6ZpBUJlkvqwssK2PZSsEFRWEl7mfrhDz1zbZu2CtGkYMU0g1W09KlDtVSQZiarDyQqBYiVBZIXtBERMF2jm7qNnnzsILRypSfA+ERERERERERENDaGA0/+jgkFFRNUwhHpuY17mHdsZzRxU/gwSEREREREREREREVEtMSyMiIiGv0oXSmWztR1HGeKI0yHvu0FTWPuwMPGrv0LM2B/yvushb/p+sP4Lxm8DEfWeyHD8TIEfPOy93K7b0IeFRWUGACBue9na8dk5wJIFJfXEFb8vM1hvRiSi3C/OvxHyibuAt5b67+xvT/uqJm79P8TCAtUvR7TEZBp44xVfdWU+by2wTXX1LqRMdVvbyS6rLNkFpLuBZBekvTzlbqfoI/DCzNovaExEa96lt2ymfJ32DcDY8cXNhoDzgObsKGDeFsK8/zwBJ2x5V7DGLiHbKTdqcPpvWuD9Ov6PrblolYiIiIiIaDgQhmGFFcXiQAVZZdX+dShzOWe4mDtQzBFWlrJCzXRhZYV2xVAzRT/pdG8fmX6+uQANHdmM9ejaHLhp1VcGDQNSFTJWDCZzhYs5wsriELo69n4KgWUxd6BZ3PqdQERERERERERE/SYkQoHqR0R/T6IiGl4MqH/mTLjCwkxNWJjBn0EiIiIiIiIiIiIiIqodhoUREdHwV2FYmNj9gBoPpIyJ22mLxK77BuzMx9fcs4hLHHse5IplwJN3BzwGgHFblq3y/+zdd5xU1f3/8fe5U7YvLG0lIE1EQFFQEEHBRsQaEQtijC2JRBPLT42mfCMYS/SrJl9LTGxfMMao+SqimMRoTDCWoIFILJgIikRQKUtfts/5/bGw7MzO3LnTd2dez8djH+w999xzPjPM3YWZc9/3oP7xw7Dq4oWFTTxRpqK7JMlc8hPZb02SmtuFufUdKB1+kqeSYwmVVEiBYHjgU+9+0pSz5Jw2S6FJab6724ix0ohxKvoifUMWh+olSaGbLooR+rWzLfxLjfXpmzgdMnBRYXlRlsOpvDynW2vCNm2SV4PO3PZbPVl5pp6vSP5172v3lKcSFlbbYPXvL6T122P3KSuSvn44YWEAAAAAgNQZv1/yl0ul5ckdn8LcNhRqfe+oQ6BYlKCyyPaG+oigsohwsqihZw3txqiTWlriF4nCEwrtCfFPQqphZdYfCA8UiwwrCxbtCiOLHjhm2h8Ta4yi3eOUhLf7AzLJ3iwEQMbY2m2yN10klXeTyiql8m4ypRWt20efLlNRlesSAQAAAKBLc4wjI0dWobh9g6aI90+AFDkm+trGkA0/BxttjLAwk+a1pwAAAAAAAAAAoKARFgYAyH/JLnY54pT01hGHMUb2kKOlpX/puPPwkxMdzEunPd9W9Uls/N169Y3b5ZjhUkWxtN0lR2mnKYm5L2gbZb4+u23b7DdGuvsl2Udvk/7zb2nkeJlLb5EpKUuo9Egh45e5b5HsI7dIH78vjRgn862b2i5aMbc9I3vdaSnN0ebUb8p862YZx1FpMNXL8fYo3r3Y5I+PpW3MrImxoCYVxVm+IZ9tjL7YJ8z2zWGbjUlc42vn3ixJ6tucWtJc+1deKlltOxulb/3affHhy1c5GtWfhYcAAAAAgK7NOE5raFFRcXLHpzi/bW7uGFTWIXAsMmRsTz/btr8+ejBZ2Bj1UkNEHyCa5qbWr50uSfIuUnp31BjZDqFiEUFlke1FMYLK2vaXhLcVRY61K7AsUCTj86VSPZC/ttZIry0Ma9p9rptDjpYICwMAAACAlPmMT83WQ1iYQ0gRkCpHMcLCFL74rzEUIyyM8xAAAAAAAAAAAKQRYWEAgPyXRFiY+cFDMqXlGSgmzrxX3SV7+VSp5vM9bZffIdNzrwQH8vKY91yGZU65UPax2zt26bO3NGR/afEL0ac55aK4s5QEje77qtEF/xtSi41eV60TPejLsS3yKST1HRg+76gJMv+9IO7ciQhZyQw/ROYnT0fvcOhx0nHnSC/+JqV5zILVYX+fZWkMtCq2XfiizQzcwXJHtp+OpvhhYfbFx2Umn9q23dic2BS2fqfs//5YklQS2pnYwREamvZ876Tw9Nc2SEtWx95/55lGhw4mKAwAAAAAgFQZv1/yl0tJvm+Zyv/OrbVSU2N4mFi00LGGiD93B5WF9alzCSurlxrrOgaetST4JgoKg7Wtr6eGuuQOT3V6fyBGOFnJnu2i2PujhpW1HVPSLqwssk+xFAjKZOA9VSAt3MIDSyuzVwcAAAAA5DGffGpWU9x+QUNIEZAqn4l+04AWGxEWZqOvHwxwHgIAAAAAAAAAgDQiLAwAUACSCAs74WsZqMPDvAP2k+Ytkf7+J6nmC2nsMTJDD0xiIA+PuXFPkpLpt4/siLHSB0vC+5zwNZnzvy97w9ekVyLCufrsLY05ylM5Xx3v6ODGd7X/owdE3b/ViX5xSNA2tn6ThYtH4l0YZvx+6YcPS6MmyN55WdLzRAa/laVxHUhRVw4LczrefW/aaGnBsuSH3FaX6uV+CfIQFhbZp6klRr9YXlvY9m1RjMVFXjW0u8Y2lbCwv3/ivv/MsVy0CAAAAABAV2eM2RVYlNybWam+O2Cbm1vfV3ELHGtoHzpWFzusrEOf9kFl7fq0HwOIprmp9cstGMlFSu9eGiMbLaisLWAsyvft+pgO+yLDyiJCzyL6GV/0CyQBSdKOrbH3lXfLXh0AAAAAkMd8xu/pzYWAQ0gRkCrHdFzbKElWobDtxlD09XxBzkMAAAAAAAAAAJBGhIUBAPKfl+Cs9t2v/FmGCvE4f/de0pfPzvxEDXXh8962QPamC6V/LJKKy6QTz5O56EcyjiPd+IT06G2yv71b2r5ZGjFO5vp5rQFaHg3v0aBZmx/U/VXf7LBvh68i6jG7w5CyceFRSyh+H+M40rSLpX5DZK86KfFJ9h3doakkEP+w/evfV7/mz/Ri+Zdd+xXHWGzSJURZUPPgeY4WLPPwFxPDtmxfx9nUGL9PcWnYZmOCYWH24Rv2DJViWFhdu5uLphIWdv5c97+j/lWEhQEAAAAAgNQYv1/y+6WSsuSOT2Fua23r+z5hgWOR4WIRYWXt2mzkcY0xQs8aouxvrG8NowIiWdv6+ol4n9/z4alO7/NHDxQriggmixE4ZtqCyUqiB5WFtZWEtwWCrQGG6LxqY4SFBYtlAsHs1gIAAAAAecpnvK2nCxr+HwakylH0863FRoSFxVjPFzSEhQEAAAAAAAAAgPQhLAwAkP8SuWhkyP7ZCerKNC+PuSE8SclU9Za583nZ+p1SoCgsoMsYI533Penca6X6nTKl5UmV5bfNCfUPWg/hS2kSSuDqKDNuisyrDbKrlsueN8b7cdf9skOb4yGladmqcfqv3jfEDwuzaUrHCha3XnhZVCqVlLaGxxWXtvsqk4pL2tpN2P52+z56V/bea73N6XQMC+tZbnTd8Ua3vZDcpWtvfCRd/GhIFcVSeZHa/mz93rT7fld7sVRRJAX8SV5o1uzh9d0YviCoMYFTwlorrfmobbsoxbCw+nanVyphYfUu16tO3jf5cQEAAAAAADoDY8yuoKMiSd0SPz7F+W1zs9TUED1wrKFeaqyLHlS2q59tqIsRVNauLWaf5IKoUABamqW6Ha1fSUg5rKx9eFhRtO/Dw8na9zFR95fEDisLCz0rzsrNTbq82u3R28sT/xkKAAAAAIjOZ7xdAhB0CCkCUuVEuRGqJFmFh4U1xbjZK+chAAAAAAAAAABIJ8LCAAD5z0tw1pfPlhlygHTqN2QqqjJfU2dQVBK12RSXxjzEOI6UZFCYJPkSDAsrD9VKx5yR9HyJ2LdPEgf1+pL3vn32ltnPe7DYbhdueURG3oKhwsLCuvWSTjxvV5hX+yCviNCvkrLW18LucLDi0ta/5zSwMV5j0UU/T38y3dHBA6z+uNyqqqhZd76c2IVYD70a67Kz2JejBf3RwsX2hIyVxQgZK90+QuWlk1QR2qH+TWtV3bK+4+Bvv9L27c4Gqy+2eX8s9qeXh22nGha23157vk/TX3kHj1yUoYEBAAAAAAAKhPH7Jb+/9f27ZI5PYW5rrdTcFBEmtjtgrD48VKxDWFmDbKNLn8iAs2hjNLuk1KOw7X6NJCHloDKfPyKELDJQrMg1cKxDWFlRx0Cz6OO0tplEbpCTK7Vbo7eXVmS3DgAAAADIYz7jbQ1V0BBSBKTKUfTzrcW2hG03xljPx3kIAAAAAAAAAADSibAwAEABiHPhxAET5Fz/SHZKyRYvF4uMPSbzdbRnjAJK7OKuslCtzPceSGsZlxxl9ItFHS8HumlaEqFGJd6D08zPfh9z33EjpReXd2wvDdXqznXXSpKCtjHuHMXtFpuYK+6U+fLZnuvLiG013vu6pFWdOdbozLFGUlB3vtwSs1+6NDZLm5qlTbXR9rpdSnaFNPCKtq2JO9/Q42vPU7/mz/Z0qd2m5harb//G6tHFVvUup8T/+3LEebwg/FwoTjEsbMa4PeM7Gbi+rEeZNLBnF7hwDQAAAAAAAFEZY6RAsPVL3RI/PsX5bUuL1BQjUKwhIrysbX+ssLIGqbEu4tiOAWdhY9hUY6WQl1qapbodrV9JSDmsrH14WFFEoFhRSeywst1BZZGhZEWR4WWxQs+KW8MLvdgR4y4Z5Yn/HAEAAAAAROfzeAlA0CGkCEiVEyOcLxQZFhaKvsYz6ATTXhMAAAAAAAAAAChchIUBAPKfSwiRpNYLHvKNh7AwU1SShULC+W1iQU+OQlJxaVpruOhwo1/9zaq2Xc7SAV+SjhqW+FjG72+9MKexPn7fAbEn+PbRjv70QUihdlcJDWj6jz5aObztgroiD8FQRaF2fQaPjNs/4wbs571vSZmnbqcU/UMLGw5OsqDseqN0ok7d+2n9fdWEPRdGFpXo+uesHnw1/iVhF0zYcx7brR2D18L+vhN0yoHS0D6ZDQt74ptJBPABAAAAAAAAuxifT/KVJv0ecSpveVlrpeam8DCxhvooQWVRQsca6sODytrCyqKEnkUbo6GudW4gmt2vkySkHFTm80nBkughY+0DxtZ+FH2AssoUKwAAAAAA7OYzHsPCTB6ujQSyzFH0dXAhhcK2G2Os8SS0DwAAAAAAAAAApBNhYQCA/BcvOMuXj78OM5D8kypj5LfNCR3yTvGBMh6CzxJxyECjF6909NOXQvrXF9LhQ41uPNWotCjJeUrK41+YEycI65SDjBZ829E9v1qhjeu368jaV3TjhhvC/haDNv7FYcV2Vx17DZT2GRW3f8b1H+qtX7denoPFpnT/RAvXdY2wMElaVnyQPgoM0dCmj1sbGur0f0tCineOHjpIGtW/XVjY//y/Dn28BMhFc+3xRjecEj5/JsLCJu2b/jEBAAAAAACAbDDGSIFg61cSAUepvt1mW1qkpsgQssjAsShBZbvabNv+iOPah5O17xMZVmZTjZVCXmppkep2tH4lg7AwAAAAAEgbn/F56kdIEZA6x8QIC4u4eW5jjJt/BgjtAwAAAAAAAAAAaZSP6SgAAEQowLCweAFb0y/JTh0R/EosLOz2dddJuiPtdUzYx+j/9vG2YCqu0nJp60bXLuYbc+IOc/KBRicOf1x685ao+70EQxXbeqmkTOYHD6U9ZC0Zxhhp9qOyN3wtdqdAUOZH/yvjRF9QE6mqMiCtS1OBWbI6MED9m9dqxD7v6NPA3tKG+MecMKpdUJi10p+e7NCnLRwuAa+tOlITTvmzTCAY1p7usLDD95GKArl/DQIAAAAAAABdkfH5JF+pVFya3PEpzG2tlVqaw8PEGmIEkzVECSFrrJdta6+LElYWGXoWsb+pMYXq0amVdct1BQAAAACQN3zG25pHQoqA1DmKvraxRaGw7VhhYYT2AQAAAAAAAACAdMrDdBQAACLEC03y5+GvwziP2Uy7OEuFtJ/UKGCbEjrka1t/o0yEhaVVSXn8Pl8+29tYLoFZnsLCjjtD5tz/ken1JW/zZYGZcpa03xjZ+74nbd8ic/GPpSEHSK8skJoapCNOkenV1/N41d29hYp9qekzHV/0jrbvNVw7WgKqbfZre3NAO5r92rH7+5ZAsg8rIS3Gpz7D1minU+b5mD4VrX/apkbp2Qei9gnaxC+aM5K0tUaKeM49ZrV59ocr0jwgAAAAAAAAgKwwxkj+QOtXWWVyY6Qwvw2FWt87bgsjixY41i50rH2oWWODbFiIWfQ+HcbZvb+hTrI2herhqqJ7risAACDvGGMGSxot6UuSyiV9Lmm1pDesTXCBBgCgS/HJ240yCSkCUucz0c83a8PDwppirPEMEtoHAAAAAAAAAADSKA/TUQAAiBAvLMyXh78O44WFDR6ZpULC+W2z575LPj5MvVpqMlhNmpRWxO1iqvp4GsoYR7EuQ6pq2Rz3+OIjpsr06uZprmwye+8r85OnwxtPOj+psQ4baKW/x94/oOk/+m7NT3XJ5l0BW+/H7huS0U5Tqh1OuXY4ZdruVGiHU7Zru7xDe61Tru272nf/Wdtu/wZ/9L/ntf5+CQWFSVKfCiNb84XstdOkD9+O2sdLgFxU2zZ1DAtL5eq9CPMvcVRenMYBAQAAAAAAABQM4xfCeVIAACAASURBVDhSUUnrV/y33zsen8Lc1lqppbldUFl9x+9jhY7t6mMbYvRpqIseVNZ+f1PiN4joSszBR+a6BAAA8oYx5gxJV0maEKPLJmPMk5Kut9ZuzF5lAIBsiRVeFCloghmuBMh/TozzrUUtYduNoRhhYYT2AQAAAAAAAACANMrDdBQAACIQFhZu4H7Zq6M9Y+SXt7Cwyzfdq9EN72S4oDQpSSwEyo1tif389PQQnFZcHEhbLZ1V+YTJ0lOx93+0crjni8EcWZXbWpW31Cpi3U5Suu23XrVOeYf25ypOTnisPpWS/fl1MYPCJKk4VJ/wuEZW2trxtZTOsLBpYwgKAwAAAAAAAND1GGMkf6D1y8ONQqKOkcL8NhSSmhqiBJQ1tAscixVU1iDbWNfuuMhgsl1tbWNECSsLhVKoPo5DjpbGfTlz4wMAUCCMMeWSHpR0dpyuPSRdImm6MeZ8a+0fM14cACCrfMbbmkdCioDUOXKitlsb/l5KY4ybfwYN5yEAAAAAAACAwrNz50794x//0IoVK7Rx40bV19erpKRE1dXVGjZsmMaMGaNgkJueJOuoo47SK6+80rZtrc3IPIsWLdLRRx/dtj179mzNmTMnI3PBuzxMRwEAIFIBhoW5PeaybtkrI4LfegsLO3frbzJcSRolecFQVMtejbmrOMZd59orKsn/sDBTUaXKlk3a5uv4Oq5uXpfShVip8tnoiWMLkwgL61VupZeecO1TZBsTHtfISts2dWhPZ1gYAAAAAAAAACBxxnGkopLWryQ+ekj1bV7b3CyFBY5FCyarcwkri9InEJTZf7x04vkyQS6MBQAgFcYYn6QnJZ0YsWuDpLclbZW0j6Qx2vNPg2pJzxpjplhrX8tWrQCAzPMZn6d+hBQBqXNinG8tEXcobQxFX89HaB8AAAAAAACAQtHS0qLf/va3mjt3rv7yl7+ouTl2rkBxcbGmTp2qb3zjGzr55MSvwwYKWT6mowAAEM4UYFiY22Muq8xeHWGMAh7Cwu5Yd60Orl/WujFuSoZrSoOKqvSN9c/YYWFFMe46196+fb0tAuvqLtt0n27u/f0O7Zdu+mUOqtnDaxieF31WvRG3j5fXRCQjK22t6dCerrCw+75K6hgAAAAAAAAAdEXG75f8FUnfJIV3hwEAyLhbFR4U1iTpKkkPWLvnTlPGmJGSHpI0YVdTkaQFxphR1trPs1UsACCzfMbbmkdCioDUOYq+LjPU7uaiLbZZLYq+fjBoghmpCwAAAAAAAAA6kz//+c+65JJL9OGHH3rqX19fr2effVbPPvusxo4dq/vvv18HH3xwhqtM3KBBg7R69WpJ0sCBA/XJJ5/ktiBAkpPrAgAAyDjCwsKVd8teHRH8MRZD7Hbz+h/pyk33tm74fDKnX5qFqlLUvZf7/sEj0zKNl2Co7qWF8U+7c3ssU8/mjWFtvZvXa+a2J3NUUStfxJ0CU9HtuvhBeWVjJyY8bsywsARfOv0qop/L5xzK5WAAAAAAAAAAAAAAkE7GmCGSrohoPtNae2/7oDBJstYul3SspL+1a+4paXZmqwQAZJMvRnhRJMLCgNQ5JvriupBCbd83hhqj9pE4DwEAAAAAAADkvxtuuEFTpkzpEBRmjNHIkSN13HHHaebMmZoyZYqGDRvW4fglS5ZowoQJevDBB7NVMtCl5WE6CgAAEeKGhXlbONOluD3mqt7Zq6M9Y1Qcqnft0rf5C2ngftKA/WRO/YbM+KlZKi55pnsvWbcOoya47fWsyMZeTFJohh05Ti//6njd2eNKvV08WofUv61ran6qIU2f7OlUUhY/yC3NfO0W/6TKcX9VSZIGnjhVvt9ILQlMa2Rl33ldkT8h1m9LrL7Fl27S9xdV69dvttbZo0x6b46jyhLCwgAAAAAAAAAAAAAgzWZLCrTbnmetfTZWZ2ttnTHmAknvSgruav66Mea/rbUfZ65MAEC2+Iy3SwAChpAiIFWOYoSF2T03F210uRks5yEAAAAAAACAfHbllVfqrrvuCmurqKjQ97//fX31q1/VgAEDOhyzcuVKzZs3T3fccYcaGlrfX21sbNTFF1+s2tpaXXnllVmpHeiqCAsDAOS/uGFh+fjr0OUxl1Zmr4wIJbbOdX+3Gx+WM6aLhQ0Fi113m5Mv8j5WVR9p8/qou6qb17keOq5pmaRDvM/VlZWW6YCG5Zr7+cXR91f2kPO7z7NbkyT/rC/kIeMrrplbn/DUr2j0YRrwgrRqY4ITLH6hQ9N/NiU2RKC4SL/6uqNffT3BuQEAAAAAAAAAAAAAnhljSiSdEdF8W7zjrLUfGmMWSDprV5Nf0jmSbkpvhQCAXHCMtxukBk0wficArhwTKyxsz10+m0Kxw8KCDmFhAAAAAAAAAPLTI4880iEo7IgjjtDjjz+u/v37xzxu6NChuummm3Teeefp9NNP13vvvde27+qrr9bo0aN11FFHZarsvLBo0aJcl4Aciv7JBQAAeaUAw8LcAtJy9XiNUXGo3rVLRVdcEzH2GPf9+x3sfawjTo65K6Bm10PPb4x50+A8FOecjrE4J9N8JaVpGefizQ956mcqe6jSPauu4zE2eppZXVOC4wS74skKAAAAAAAAAAAAAF3OVEntP4z+m7X2Xx6PnRuxPT09JQEAcs3nNSyMkCIgZT5FP99C2hMW1mhdwsIM5yEAAAAAAACA/PPhhx/qO9/5TljbxIkT9Yc//ME1KKy9YcOG6eWXX9aIESPa2kKhkM4991xt3LgxrfUC+YSwMABA/nPi/LorsLAw4/O2UCgTim2csLAEg486hf5DXXebeK+/9n2nX+q6/5JN90dtn7jzDc2y8z3P0+W5heFJ8c/5DPGVlqVlnAl1b8btY+b+XZJUnuA6ohaPCwXjzh/siicrAAAAAAAAAAAAAHQ5x0dsL0rg2FelsDuTjTHGVKdcEQAg53zytuYxQEgRkDInxpq7FtvS9n1jyCUsjNA+AAAAAAAAAHnommuu0Y4dO9q2u3fvrqefflrl5eUJjdOnTx899dRTCgaDbW1r167VjTfemLZagXyTh+koAABEiBcsVGBhYXJyFBZmjEpsnWuXrhgWZoyRTddg+xwgnXSh9LvIm/u2umrT/+h3FSfoP4EBbW3H7nhZz605XaZ3Aa3njXdOm9yEhfkTOLVKQ7W6c911uqTvvW1txob04OeXyK8WlyN36bePpMTPmTqTnpPM5ydzGAAAAAAAAAAAAACy4ICI7b95PdBaW2uMeVfSmHbN+0tal47CAAC54/N4w0BCioDUOYq+Vs4q1PZ9o40dFhYwwZj7AAAAAAAAAKAr+te//qXnn38+rO3WW2/VXnvtldR4I0eO1DXXXKNbbrmlre3hhx/WnDlzVFVVlVKtnc3KlSv1zjvvaO3atdq+fbuMMSotLVV1dbUGDx6sUaNGqbS0NON1NDQ06JVXXtGqVau0adMm9enTR/3799ekSZMyMv/nn3+uN998U+vXr1dNTY3Ky8vVp08fjRs3TkOGDEn7fPkuD9NRAACIFCdYyB/IThlZ5fKYcxSkJEnFLndPk7pmWFg6GWOka++T9fukZx/qsH9w02q9/slRerzyLH0YHKZD6/6ur257XEW2UVr/aQ4qzpF4YWFObl7jvgSmPXX7Qn1zy/9qv4Z/a2HFSTKyOnX7Qh1et9jT8aakTJJUUWykBOLqap3W42xjg0ywqO37RP9bEO+vAAAAAAAAAAAAAACQFiMitlcmePxHCg8LGynpzylVBADIOZ/xttaHsDAgdU6McD4rq5ANyTGOGmKsjQ2YoJwcrtkFAAAAAAAAgEy46667ZO2ea5t79eqlCy+8MKUxr7zySt1+++1qamqSJNXW1urBBx/Utdde26HvBRdcoEceeaRte9WqVRo0aJCneRYtWqSjjz66bXv27NmaM2eO6/i7rV69ujULIIbzzz9f8+bN69De0NCgu+++Ww8++KBWrFjhWp/P59Po0aM1bdo0XXXVVTGDu4466ii98sorbdvt/z7cbN26Vddff73mzZunbdu2ddhfUVGhGTNm6IYbbtCXvvQlT2PG0tTUpIcfflj33Xef3n333Zj99t13X11zzTW66KKL5PcTg+UFzxIAIP/FS7Xx5eGvQ7fHnKMgJcmoxNa59ij0sDBJMo4jnfIN2ShhYZLUt/kLXbXp7ixX1cnEWzyTo9e4P4FpL9/0c0nS5LrXNbnu9aTnLE/wnKlzWv9TaI+tlD1tlkz1ANm5N0lDahIah6wwAAAAAAAAAAAAAMgsY0wPST0imv+T4DCR/fdNviIAQGfhixFeFCloghmuBMh/jmIvDAypRY4cNdnoYWFBQ2AfAAAAAAAAgPzzwgsvhG2fd955CgZT+0yid+/eOuWUUzR//vyweaKFhXUln376qaZOnaoPPvjAU/+WlhYtXbpUS5cu1dlnn62hQ4emrZZ//vOfOvHEE/XZZ5/F7LN9+3Y99NBDmj9/vp577rmk51q6dKnOOussffzxx3H7rlixQrNmzdIvfvELPf/88+rXr1/S8xaKPExHAQAgQpywMFNoYWHxwtMyqNjWu+4nLGyX3kkk7R5xSvrr6KzivYZzdCc+XwLTHlL/j7TMWZ7gWqID6t/bs/HM/fKWE91RzjIHAQAAAAAAAAAAAKBwdI/Y3mmtrU1wjPUR291SqAcA0En4PF4CEHQIKgJS5biE84VsSI22QQ99dnvU/QGHwD4AAAAAAAAA+WXNmjX65JNPwtqOO+64tIx93HHHhYWFLV68WE1NTQoEAmkZP9saGxt1/PHHdwgK69Gjh0aNGqXq6moFAgFt375dn3/+uZYvX67a2kSXBHizfPlyHXvssaqpqQlrr66u1pgxY9S9e3etW7dOixcvVl1dnTZt2qSTTz5Zt98e/f1vN88//7xmzJihnTt3hrX37dtXBx10kHr06KHa2lotX75cK1asaNu/bNkyjR8/XosXL1b//v2Te6AFIg/TUQAAiBAvWMjxdpe9vOHL0eM1RiUh97Awn5O7ILPOxPSoTjjEyXxjTgYq6aTintO5eR15DQt79tPpcpKO6QqXSMDe0MaV2rfpo7TMy5kKAAAAAAAAAAAAABlXHrFdl8QYkcdUJFlLG2NMH0m9Ezxsn1TnBQDs4XMJL9rNkeM5VAxAbD6Xm5eGFNLjX/wi5v6gIbAPAAAAAAAAhaHFtmhL88Zcl1EQuvt7efqcIFNef/31Dm1jx45Ny9iHHHJI2HZdXZ2WLVumcePGpWV8r+644w7NmTNHknTEEUdo7dq1kqR+/frptddei3lceXn4R/xz587V8uXL27YHDRqkn//85zr++OPlOB3fe7bWaunSpXr++ef18MMPp+GRtGpqatJXv/rVsKCwvn376q677tLpp58eVsuOHTt055136uabb9aWLVt07bXXJjTX8uXLdfbZZ4cFhR1//PG64YYbdOihh3bo//bbb+uKK67Qq6++Kklau3atZs6cqUWLFsmXq0yMLoBPAAEABSBesJDHhJ+uxC1MKYfhaMXWPSwMSZp5lcw+B+S6iiyKc067LM7JJL/HaU/Y8ce0zdmjzHvfx9aen7Z54+W1AQAAAAAAAAAAAABSFhkWlsyii8iwsMgxk3GppNlpGAcAkCQvFwEFnSIZFvkAKTOKvTCwIVSvZTsWx9wfdAgLAwAAAAAAQGHY0rxRP/p4Vq7LKAg3DrlfPQPVOZt/zZo1YdvV1dXq2bNnWsY+4ICO18qvWbMm62FhvXr1Uq9evSRJfv+eWCa/369BgwZ5HufZZ58NO/all17S0KFDY/Y3xmjs2LEaO3asfvSjHykUCiVefBT33HOPli1b1rbdt29fvfbaaxoyZEiHvuXl5Zo9e7YOOOAAnXXWWdq8ebPneUKhkGbMmKHa2tq2tjlz5mj27NjLC8aMGaM///nPmjFjhubPny9Jeu211/TYY4/pvPPO8zx3ocnDdBQAACLEW/CSj2FhbmFKuXq8xqgklMxNbgvUvgfF3GWuuFP6ytelky6UmbdUzqU/yWJhnUAnPad9HqYd2rhSjmza5tz/S94W9I2r+7sOqX87bfM6rCMEAAAAAAAAAAAAgGxL5sPm9H1ADQDoNHoF+sbt09tDHwDxuYXzbW7aqCbbGHN/78BemSgJAAAAAAAAAHJm06ZNYdtVVVVpG7u4uFhFReE3YYicrytZvXp12/cHHXSQa1BYJJ/Pp0AgkHINoVBI99xzT1jbAw88EDUorL3TTz9dl156aUJzzZ8/X++9917b9llnneUaFLab3+/XI488oj59+rS13XHHHQnNXWjyMR0FAIBw8YKF8vHueW6PyeTu139ATTmbu6sx/zU3+o6+g2TO+I6c794n53u/lNmnY0py3ot7TnfesLCVQe//kfPiiKFS99L4/R7+LL2J7Pn4YxMAAAAAAAAAAAAAOpkdEdslSYwReUzkmACALmhk2WiVOuWufcZWTs5SNUB+My6X3DS7BIVJ0tjKSekuBwAAAAAAAAByKjK8q3v37mkdP3K8mpqatI6fK+vXr8/JvH/961/1ySeftG2PGzdOJ598sqdjr7/++oQCy+6+++62740xuvXWWz0fW15erlmz9lwL/+6774bVjXCEhQEA8l8nDRbKKLfH7OTo8Roj8oW8M0P2l77y9fDGfkNk7n05NwV1JvHO6Ry9xv0epp1+UEta5ywrMvrJacb1KfnW5gc0svFfaZ2XcxkAAAAAAAAAAAAAMq6zhoXdJ+mABL9OTcO8AIBdSn3lunLvG9WvaFCHfSVOmab2OF1TqvjRC6SDz/hi7mt0CQs7oedZGlMxMRMlAQAAAAAAAEDeMvGuIe9Chg8f3vb9p59+qjvuuCPrNbz22mth2zNnzvR8bO/evXXcccd56ltbW6vFixe3bY8bN06DBw/2PJckHX300WHbr776akLHFxJ/rgsAACDz4oWF5c8/Gtu4PaYch6NVtmzVNl+3Du3TRuegmE7OXPNzafxU2Xdel+k3RDrqdJmq3rkuqxOIc862pDeQyyufh1NrQG+/VNlD2rYpfmePZh3paFR/q4X/tPL9+ieasHOxPg4O0arAQE3e+bpO2fF82ubazcnDH5sAAAAAAAAAAAAA0MlsjdguNcaUWWtrExijT8T2lhRrkrV2vaSEbnucTwu6AaCz6F88WD8c9D/a0bxN9aE6Sa3LBqv8veS4hBsBSIyj2OdTUyh2WNgxVadkohwAAAAAAAAAyKkePXqEbW/dGvmxdmq2bAn/SDtyvq7knHPO0fz589u2v/vd72rBggW68MILdeKJJ6pv374Zr2HJkiVh2+PHj0/o+PHjx+t3v/td3H6LFy9WU1NT2/aQIUP0ySefJDRXKBQK2/7oo48SOr6QEBYGAMh/8RYcOrkNz8oMl8fs5HYh0KnbF+rR7ud2bB/NwtBIxhhp8qkyk7nLY5h453RLk/v+DPESFlbkl8y9L8ueNyatc0/cx2jiPkahRx+Saj+TElkangTWcQMAAAAAAAAAAABAZllra4wxmyVVtWseIOmDBIYZGLG9IuXCAACdSrm/UuWqzHUZQN5yXG7Q22Rjr1X0GS7VAQAAAAAAAJB/IsO7Nm/enLax6+vrVV9fH9bWs2fPtI2fbdOnT9f06dPDAsNef/11vf7665KkoUOHauLEiTr88MM1adIkjRgxIu01rFu3Lmx73333Tej4YcOGeer36aefhm0/8cQTeuKJJxKaK9KmTZtSOj6f8QkEACD/xQ0Dy8PUG7ckn5yFo7XW9O3Nv9QzFadqh6+ibc/wphU6bcx+OaoLXU4nTaryewwLU/+hmSsiEMzc2O100r8CAAAAAAAAAAAAAMg3H0ia2G57qBILCxsSZTwAAAB45JjYN+htsg0x9/mU2xv7AgAAAAAAANnU3d9LNw65P9dlFITu/l45nb9fv35h21988YVqamrSEur1/vvvx52vKzHG6Mknn9Ts2bP105/+tEMQ2sqVK7Vy5Ur96le/ktQaHnbuuefqsssu6xDKlqzIMLfKysRuQNOtWzdP/WpqahIa14vt27enfcx8QVgYACDvGWNk3TrkLDwrg9ySfFzucpYNY+v/ob+sPk739fiW/hUcpvF1b+l7TXNVWfJuTutCFxIvqcr1hM8cn5ewsIBkAsHMlRgsztTIYRzCwgAAAAAAAAAAAAAgG95TeFjYBEkLvRxojCmTdGCU8QAAAOCRT7EXBjbZptjHuYSMAQAAAAAAAPnGZ3zqGajOdRnIgokTJ3ZoW7JkiaZOnZry2EuWLAnbLikp0ejRo1MeN5f8fr9uvvlmXX755fr1r3+tZ599Vm+99ZYaGjrejGLlypWaM2eOfvazn+n+++/XjBkzclBxchobG9M+prU5CgzoAvIwHQUAgChcw7PyMPXG7THlKhytXUljGv6pBz+/RK+uPlZ3rP++ejldPNn17CujNpvvPZDlQgpEvH/ch0LZqSOCp7Cw3VG9Bx+VmSJW/ysz40Yw+fhzEwAAAAAAAAAAAAA6nxcito9K4NhJCr+h7NvW2nUpVwQAAFBAjMsNeptC0S9+MjJyCAsDAAAAAAAAkIcGDBigAQMGhLW9+OKLaRn7pZdeCtseP368gsFgWsberaWlJa3jeVVdXa2rr75af/3rX7V161a98cYbuuOOO3TqqaeqvLw8rO/WrVs1c+ZMLViwIOV5q6qqwra3bduW0PFbt2711K9Xr15h27fccoustSl9zZs3L6FaCwlhYQCAwuAWkOXyQX6X5RqO1gkfr69rL4owU2ZIweLwxh7V0oTjc1NQvosXFmZzExbmd+IHaO0OCzNfv961n/n2bckV0X+fpA4b0fBBcvMBAAAAAAAAAAAAADLpj5Lq2m1PMMYM93jsBRHbz6SlIgAAgALiU+z1rU22IfoxBIUBAAAAAAAAyGPHHx9+/fyjjz6qpqamlMbcsGGDnnvuOdd5dvP7/WHbzc3NnufZvHlz4sWlWVFRkSZMmKCrr75aCxYsUE1NjZ544gkNGzasrY+1VpdffrlCodSuma+urg7bXrFiRULHf/jhh0nN4/U4JKcTpoUAAJABjssH727BWl2Wy2NyC07LJLfnuauHhe13sMxtz0gHHSGVd5PGHydz1x9lelTHPxiJixcWluJ/fJLl83BqtYWFHXh462smmr33lWZckVwRR56W1GFzNtzoua+HTDQAAAAAAAAAAAAAQBpYa3dKeiqi+bp4xxljhklq/wFys6TfpLE0AACAgmBcbtDbZKNf/OaTP2o7AAAAAAAAAOSDK664QqZdbsCGDRs0d+7clMa86667wgLHysrK9M1vfjNq38rKyrDtLVu2eJ7n/fffT6guk4UcimAwqBkzZujNN99Uv3792to//fRTLV26NKWxx44dG7a9ePHihI5/8803PfWbMGFC2HP10ksvycbLA0DSCAsDABQGlw/rXfd1VW7/8HQLTsuVzlhTgszYY+Tc+7LM79fJuWOhzKARuS4pj8X5z4HtvGFhDe3Cqc3EE2VufVoKFu1pDBbLXHZ763+ITrow6hjm27fGnsAf8FhtuJN3/F4nbf+9p755ma8IAAAAAAAAAAAAAJ3XHEntkyguMMZ8JVZnY0yxpLmSgu2aH7bWfpSZ8gAAAPKXT7HXtzaFGqO2O6brr4kFAAAAAAAAgFhGjhypE044Iaztuuuu07p165Iab/ny5br99tvD2i688EL16NEjav8+ffp0ON6r3//e27XUuxUV7bkGvKGhIaFjE9W9e3dNnz49rG3VqlUpjXnEEUeEbT/++OOej92wYYNefPFFT3179+6tMWPGtG2vXbtWf/jDHzzPhcTkYToKAABROG5hYXmYfOMaFpajX/9uNfny5y5q2UgILnihOGFg8fZniN/DqXXo4PDXhzn8ZJmHFstcfKPMrJtav5/Q+h9kc9S0jgMEgtKkmGu+ZXzJhYUV2Ub9du05+u2amXH78goHAAAAAAAAAAAAgOyx1n4s6a6I5qeMMd8xxrQPBJMxZoSklyVNbNdcI+mGzFYJAACQn9yCv5ps9LAwn8mfNbEAAAAAAAAAEM2dd96p0tLStu0tW7Zo+vTp2rFjR0LjbNiwQWeccYYaG/e839q3b19df/31MY85+OCDw7YXLlzoaa4//vGPeuuttxKqr3v37m3fb9y4UU1NTS69U+f3h7+/3D6sLBmTJ0/WoEGD2raXLFmi559/3tOxP/7xjxN6vN/5znfCtq+55pqEXw/whrAwAEBhcFzu0pWr8KxMcgusMp3w8br9/QCRrI2zPzdhYV5+lPQo7dhmBo+U+dq1Mud+V2bwiD3thx0vc+XPpPJuuw6ulvnJUzL99ok5vt2yPtGy2xTZRk3f/mzcfvn4IxMAAAAAAAAAAAAAOrnvSWp/292ApHskfWqM+YMx5rfGmCWS3ld4UFijpNOstZ9nr1QAAID84bhcchM7LIw1sQAAAAAAAADy2/Dhw3XPPfeEtb3xxhs64YQTtGbNGk9jrFixQscee6w++OCDtjbHcfToo4+qd+/eMY+bMGFCWFDZM888oyVLlsSd6/zzz/dUV3sjRuy57ru5uVl/+ctfPB23c+dO3XPPPdq+fbvnuXbs2KH58+fHnD8ZjuN0CPGaNWuWVq1a5Xrc/Pnzdd999yU013nnnafhw4e3bX/wwQc67bTTtHnz5oTG2bBhQ4fnAeG41B8AUBhc021cgrXyUc6SflyeZx93UUMi4oSFhXITFubzcGr1Kk9sTHP6pTILP5P57b9lFqyWGT/V/YCXnkxsgiQU2E9MAAAAAAAAAAAAAMg5a22LpLMkRX4o3EfS8ZLOlHSIwj/SXS/pVGvtq1kpEgAAIA8ZY2RiXHbTFIoRFibCwgAAAAAAAADkv4suukjf/va3w9pee+01jRw5Urfeeqs+/fTTqMetXLlS//Vf/6VRo0bp3XffDdt322236dhjj3WdTJBsJAAAIABJREFUt6KiQjNmzGjbbmlp0UknnaQXX3yxQ9/GxkY9+OCDOuyww7Ru3TpVVVV5fXiSpKOPPjps+8ILL9R9992npUuX6uOPP9Ynn3zS9rVx48aweS+//HL1799fF110kRYuXOgaHPbWW2/p2GOP1erVq9vaDjvsMA0bNiyheqO5/PLLddBBB7Vtf/bZZzr88MP11FNPKRRxTX5tba1+/OMf6+yzz1YoFEro+fL5fHrqqadUWVnZ1vanP/1JBx54oH7xi1+4Pv5NmzbpySef1MyZM7X33nvr7rvvTuARFh6SOQAAhcFx+eA9Z+FZGeQWlmQ6YdSPP5DrCtCV2DhhYfW12akjgt/Dj5JupYmff8bvl/oO8tY5WJzw+JFGNizX8qKRsevphD9CAAAAAAAAAAAAACDfWWt3SDrbGPOUpKslHRaj6ya1horNttZuyFZ9AAAA+cqRoxZ1XJfbZGOEhRku0wEAAAAAAABQGO69915VVVXp5ptvlt11/ff27dv1/e9/Xz/4wQ80cuRI7b333qqqqlJNTY1Wr16tf//73x3GCQQCuuuuu3TJJZd4mvfGG2/UM888oy1btkiS1q9fr6lTp2ro0KE68MADVVRUpHXr1unNN99UbW3rded77bWXbrvtNp1//vmeH9+ZZ56pH/7wh1qzZo2k1qCtyIC03c4//3zNmzcvrG3btm2aO3eu5s6dK2OMhg4dqiFDhqh79+7y+/2qqanRe++91zb+bqWlpXrggQc81+kmEAjoscce05FHHqmamhpJ0ueff64zzzxT1dXVOuSQQ9StWzetW7dOf/vb31RXVydJ6tatm2677TZdfPHFnufaf//99fTTT+uMM87Q1q1bJUlr1qzRpZdeqssuu0yjRo3SgAEDVFlZqZ07d2rLli368MMPOzx+uONTCABAYTAuKT75mHxjXcLCchWO5vY8B4LZqwNdX7ywsKboC3AyLRDnZoDdSrJQxNRzpN/cmdIQ39j8v7pqrzti7nfy8EcmAAAAAAAAAAAAAHQV1tqnJD1ljBks6WBJX5JUJukLSaslvW5tjOQKAAAAJMwxjlqiLFuMHRYWZzEhAAAAAAAAAOSRG2+8UUceeaQuvfRSrVixoq3dWqv3339f77//vuvxBx98sO6//36NHTvW85z9+vXT008/rWnTpmn79u1t7StXrtTKlSs79B88eLB+97vfad26dZ7nkKSSkhI988wzmjZtmtauXZvQsZGstVqxYkXYcxRNv379NH/+fI0aNSql+drbf//99ac//UknnniiPv/887b2devW6fe//32H/t27d9dzzz2nlpaWhOeaMmWKlixZopkzZ2rJkiVt7S0tLVq2bJmWLVsWd4yqqqqE5y0kOUoLAQAgy3wuH7y7BYl1VW7/8HI64SIEXyDXFaArcQvDy6FgnBjeg/pnvgbz5Zkpj1EUZ814PuYrAgAAAAAAAAAAAEBXY61dZa192lp7j7X2VmvtPGvtXwgKAwAASK9Y4V+NoVhhYXEWEwIAAAAAAABAnpkyZYqWL1+uxx57TMcee6z8fvf3SYuKinTKKafo2Wef1ZIlSxIKCtvtmGOO0VtvvaVTTz1VJsbFz71799Z3v/tdLVu2TCNGjEh4DkkaO3asli9frl/+8peaNm2ahg4dqsrKSvlc8iu6deumV155Rddee60OOeSQuM+HJO2333665ZZb9OGHH+rQQw9NqlY3o0eP1gcffKDLLrtMFRUVUfuUl5frggsu0DvvvKNJkyYlPdfQoUP11ltvaeHChZoyZYqKioriHjNixAhddtllevXVVzV//vyk5y4EfAoBACgMboFg+Zh84xam5Baclkluz3OAsDAkwEa5RV8nUBTnX9YVxVkoYp8DUh7Cd/l/S/8Xe38e/sQEAAAAAAAAAAAAAAAAACAqo+hrkJttU9R2nzrhTX0BAAAAAAAAIMP8fr/OOeccnXPOOaqtrdXSpUu1cuVKbdiwQY2NjSoqKlJ1dbWGDRumgw8+2FOAVDzDhw/XggULtHHjRr3yyitas2aNdu7cqerqag0ePFiTJk0KC+o66qijZJO4Tr2yslKzZs3SrFmzPPU3xmjy5MmaPHmyJKmurk7vv/++PvroI33xxReqra2VMUaVlZUaMGCADjzwQA0cONBzPYsWLUr4MUitIWZ33323br/9di1atEirVq3S5s2b1bt3b/Xv31+TJk1SWVlZW/9kny+p9Tk4+eSTdfLJJ6u+vl5vvvmmVq9erZqaGtXW1qqsrExVVVUaOnSoRowYoZ49eyY1TyEiLAwAUBjcArIclyCxrirkEhbmFpyWK37CwpCAThoWFowbFpb5mC1jjFJ5dswLGxRYViK5jLKjIYUJAAAAAAAAAAAAAAAAAADoQnwm+hrkJht9MZ3PcJkOAAAAAAAAgMJWVlYWFpaVab169dLpp5+elbmSUVJSorFjx2rs2LG5LkWSVFRUpKlTp2ZtvuLiYh155JFZmy/fdcK0EAAAMsA1ICvzAT5ZF2qJvS9X4WjG5Xn2sTACCYgXFlZcmp06IgTj3AywLPWAa29mXJH0oaasUj7+hwAAAAAAAAAAAAAAAAAAgCTJiXHZTZNtitoeK1wMAAAAAAAAAAAgVUQBAAAKg+MSVJWr8KxMCoVi73MNTssRfyDXFaBLiRMWNnladsqIUBQn866iODt1mKPPcO/QZ+/ox/1hvSTJ3wl/RAAAAAAAAAAAAAAAAAAAkAtOjPCvplBj1HbCwgAAAAAAAAAAQKbEiTQAACBPOC4fvBuXILGuyrqEhbk9F5nk9jz7+CcJEuAWhifJHBMnLCtDgp0kLEzBItfdztMrJUl25w7prZek0ZNkuvdq2+8jLAwAAAAAAAAAAAAAAAAAAEmSo+iL6hptjLAwLtMBAAAAAAAAAAAZwqcQAIDCYFzSb9z2dVVuYUpOJ3y8uQowQ9dkrfv+8cdlp44I8cLCyt0zvNLHH/TUzZSWS0ed1qH9gH5GUpznGAAAAAAAAAAAAAAAAACAAuDEWGfcHCMszDGsiQUAAAAAAAAAAJnRCdNCAADIAJ/LB++dMTwrVdYlLCxn4Wgm9i4f+aVIgEtYmJn9qIw/kMVi9iiK8zKuKs1OHQqk9viH75WmOgAAAAAAAAAAAAAAAAAA6OIcRV+D3BiKHhbmM6yJBQAAAAAAAAAAmZGH6SgAAESRs4CsHKkeEHtfn37Zq8Mrh7uoIQHGJXhu9BHZqyNCMM7LuLrSpe50CgRTOtznZKlOAAAAAAAAAAAAAAAAAAA6OSfGGuSQWqK2+wxrYgEAAAAAAAAAQGYUWHIKAKBguYVROfn369AMGCbtvW/HHUMOkNlrYPYLktwDnnzcRQ0JqKiKva+xIXt1RAj63UO2+lRkqRAR9gUAAAAAAAAAAAAAAAAAQDo4Siz8yyfWxAIAAAAAAAAAgMzIv3QUAACicQsEcwux6sLMd++Tikv3NJSUy1x9d+4KcuPjnyRIwMQTo5/TpRVSn/7Zr2eX4oD7/h5l2alDPffK0kQAAAAAAAAAAAAAAAAAAOQ3n0kwLCzB/gAAAAAAAAAAAF5xyxIAQGEwbmFh+RlUZcZMln71trT4hdbHeNhUmb0G5rAgl1A2H/8kgXemey/Z8VOlv/0hfMfkaTL+OIldGVQWjLO/KDt1GH9ANjtTAQAAAAAAAAAAAAAAAACQ10yC64wJCwMAAAAAAAAAAJlCMgcAoDD4XD54dwux6uJM30HSad/KdRnxOSyMQGLM9Y/I3nyR9LcXWs/vI0+TuebenNYULwysNE6YGAAAAAAAAAAAAAAAAAAA6Fx8SmyNq89wmQ4AAAAAAAAAAMgMPoUAABQGt7t6OYnd8QtJcgtl8/FPEiTGlHeT+cnTsg11UigkU1KW65LUt5v7/rIuFBZ2wUSjeW/YXJcBAAAAAAAAAAAAAAAAAEBOOW5rkKPwExYGAAAAAAAAAAAyhHQUAEBh8Lnd1cslxArZQVgYkmSKSjpFUJgk9aty/1kS8HednzUnjopd6//M6DqPAwAAAAAAAAAAAAAAAACAVDgJXnbjyG3NMgAAAAAAAAAAQPIICwMAFAa3u3o5/DrMOYeFEUBnctqY2PsunkxYGAAAAAAAAAAAAAAAAACgMDgmsTWuPsMNdAEAAAAAAAAAQGaQjgIAKAxuYVSG4JvscHmefSyMADoTn2P0gxM7nrPXHm9UHOBnJgAAAAAAAAAAAAAAAACgMDgJXnbjSzBcDAAAAAAAAAAAwCuSOQAAhcFx+aDekJ2Za8bHwgigs7nxVKOqUunxt6z8jnTGWKOrv0xQGAAAAAAAAAAAAAAAAACgcDgJhn/5DJfpAAAAAAAAAACAzOBTCABAYTAuATdu+5A+bs+zj3+SAJ2NMUZXH2d09XG5rgQAAAAAAAAAAAAAAAAAgNzwJRoWJm6gCwAAAAAAAAAAMsPJdQEAAGSFa1gYvw5zjrAw5Ikxe0dv71mW3ToAAAAAAAAAAAAAAAAAAEDqTIKX3fgMa2IBAAAAAAAAAEBmkI4CAIBbkBjSx+159nEXNeSHy46N/jq/ZTo/ZwAAAAAAAAAAAAAAAAAA6Gp8Cd6U2GdYEwsAAAAAAAAAADKDsDAAQGFwC6py+HWYcw4LI5Afpo8xGjswvG303tJZhxAWBgAAAAAAAAAAAAAAAABAV+MosTWuPuPPUCUAAAAAAAAAAKDQ8SkEAAAixCcr3ALb/IHs1QFkUGWJ0Uv/z9HcN6yWrpYO7C/NmmxUWcLPGQAAAAAAAAAAAAAAAAAAuhrHJHZTYp/hBroAAAAAAAAAACAzCAsDABQGt6AqJ7EP8ZGkUCj2PsLCkEe6lRpdOYVwMAAAAAAAAAAAAAAAAAAAujpHiYV/+RLsDwAAAAAAAAAA4BXpKAAAuAWJIX1ammPv8xEWBgAAAAAAAAAAAAAAAAAAgM7FMYldduMz/gxVAgAAAAAAAAAACh1hYQCAAuESCJbgh/hIUnNT7H1+wsIAAAAAAAAAAAAAAAAAAADQuTjyJdTfZxLrDwAAAAAAAAAA4BXpKAAAGJcgMaRPc3PsfYSFAQAAAAAAAAAAAAAAAAAAoJNxErwpsc/4M1QJAAAAAAAAAAAodISFAQAKg1sgmMOvw6woq4i9r3e/7NUBAAAAAAAAAAAAAAAAAAAAeODIl1B/X4L9AQAAAAAAAAAAvCIdBQAAuQSJIW1Mn/7SwP067ujZVxo1IfsFAQAAAAAAAAAAAAAAAAAAAC58JrHLbnzGn6FKAAAAAAAAAABAoSMsDABQGIxLIJjDr8NsMbNuknztFkEYI/Otm2Tc/n4AAAAAAAAAAAAAAAAAAACAHDAJXnbjGF+GKgEAAAAAAAAAAIWOW5YAAEBQVdaYSV+R7lsk+8ozUkuzzKSvyBx0RK7LAgAAAAAAAAAAAAAAAAAAADrwJRj+5TNcpgMAAAAAAAAAADKDTyEAADCJ3fELqTEjx8mMHJfrMgAAAAAAAAAAAAAAAAAAAABXTqJhYUqsPwAAAAAAAADkm//P3r2HSVbV98L/ru65MTDIAMPNAUa5HAW8BqKir2JQCJxovJ3ogTyJlxDjJZG8GJXEEwHR4zVHjJqL0dHXiDFGRTQmQY34KsQQRINc5CIgIELGYbgMMswMs88f3TRdNTM9XV3VVbV3fT7Psx5m7dpr7bV2rd+i96rq1b/4xS9y2WWX5brrrsvPf/7zbNiwITvttFP23nvvHHrooXnSk56URYsW9eRaN998c/76r/863/rWt3Lttddm3bp12bRp09Trq1evzstf/vJtlr3kkkuyevXqXHzxxbnlllty9913Z8uWLVOv33jjjVm1alWS5Jhjjsm3vvWtqdeqqupJ+6FTNgsDgFIG3QIAAAAAAAAAAAAAYMiMpbM/Sjze4eZiAAAAAABN8OCDD+bv//7vs3r16nzzm9/M5s2bt3vukiVLcvzxx+d3fud38mu/9mtzvuZHP/rR/P7v/34eeOCBjspt3rw5r33ta/PRj350zteGQensUwsAaKLif4cAAAAAAAAAAAAAQKuxDjf/Gi8L5qklAAAAAADD6V//9V9z2GGH5aSTTsrXvva1GTcKS5INGzbkS1/6Up73vOflqKOOymWXXdbxNb/61a/m1a9+dccbhSXJn/zJn9gojNryKQQAo6GUGV7rXzMAAAAAAAAAAAAAgHoYS2d/lHi8w83FAAAAAADq7Mwzz8yZZ56ZqqpajpdS8tjHPjYrV67MHnvskTVr1uTmm2/Otdde23LepZdemqc97Wn50Ic+lFNOOWXW1z399NNbrnnSSSflVa96Vfbff/8sXLhw6viee+7ZUu6OO+7IBz7wgan8okWL8pa3vCUnnnhiVqxYkbGxh9eEV65cOev2QL/YLAyAETHDjmBjnX2IDwAAAAAAAAAAAAA031iHm3+N+zUdAAAAAGBEnHrqqTnnnHNaji1btiynn356Tj755BxwwAFblbn++uvziU98Iu973/vywAMPJEk2btyY3/3d3819992XU089dYfXveaaa3L55ZdP5U888cR8+tOfnlWbzzvvvGzcuHEqf/bZZ+eP/uiPZlUWhoHdUQAYDcuWz/DiDBuJAQAAAAAAAAAAAAAjabzDX7sZ73BzMQAAAACAOvrkJz+51UZhz3jGM3LVVVfl9NNP3+ZGYUly8MEH5+yzz87ll1+eI444ouW10047LRdeeOEOr33ppZe25F/ykpfMut1zLXvhhRemqqqpBINiszAARsMuu27/tTH/OwQAAAAAAAAAAAAAWpXS6WZhC+apJQAAAAAAw+Haa6/N61//+pZjRx99dP7pn/4pK1eunFUdhx56aL7xjW/ksY997NSxLVu25Dd/8zfz85//fMayd9xxR0t+ttfstiwMA7ujADAaStn+azYLAwAAAAAAAAAAAADajGe8s/NLZ+cDAAAAANTNG9/4xqxfv34qv9tuu+Xzn/98dtlll47q2WuvvfIP//APWbRo0dSxn/70p3n7298+Y7np106ShQsXzvqa3ZSFYeBPlgBAZthIDAAAAAAAAAAAAAAYSWOlsz9KPF78mg4AAAAA0Fw/+tGP8pWvfKXl2Lve9a7ss88+c6rvsMMOyxvf+Ma8853vnDr2sY99LGeccUaWL1++zTJbtmyZ07W6LdsLV111VX74wx9m7dq1WbduXZYsWZIVK1bksY99bB7/+Mdn8eLFc6p38+bNueSSS3LDDTdkzZo1eeCBB7JixYqsWrUqT3/607NkyZIe94RB8SkEAIx19iE+AAAAAAAAAAAAANB8Y2W8o/PH09n5AAAAAAB1cs4556Sqqqn8nnvumVe84hVd1Xnqqafmve99bzZt2pQkue+++/LRj340b3rTm5IkN910Ux71qEdtt/yzn/3sbR5fvXp1kszYvlLKNo/feOONWbVq1VT+mGOOybe+9a2p/PR7sCO33HJL3vOe9+Rzn/tc7rjjju2et9NOO+XZz352fvu3fzsvfvGLMz6+4/Xmq6++OmeffXa+8pWv5J577tluvc9//vNz1lln5dBDD511uxlOdkcBgO38AAcAAAAAAAAAAAAAjK6xDjf/Gu9wczEAAAAAgDr553/+55b8b/3Wb2XRokVd1blixYo873nPm/E6dVRVVc4+++wcfPDB+dCHPjTjRmFJcv/99+erX/1qXvrSl+aWW26Z8dwHH3wwf/iHf5gjjjgi55577nY3Cnuo3s9+9rM5/PDDc84558ypLwyPBYNuAAD0xwwbghV7ZwIAAAAAAAAAAAAArcY6+J5xScmYzcIAAAAAgIa69dZbc9NNN7UcO+6443pS93HHHZcvfOELU/nvfve72bRpUxYuXNiT+vtt8+bNednLXpbPf/7zW722zz775HGPe1z23HPPPPDAA7njjjvyn//5n1m/fv2s6r7//vvzghe8IBdccEHL8YULF+aJT3xiVq5cmcWLF+f222/PJZdckl/84hdTbTr11FOzbt26nHHGGV33kcGwWRgAlBk2EgMAAAAAAAAAAAAARtJYZr/517iNwgAAAAAYQZsfrHLrukG3YjSsXJ4sGB/c3ggXXXTRVseOPPLIntT9S7/0Sy35+++/Pz/4wQ9y1FFHZeXKlbnxxhunXvvABz6Qc845Zyr/mc98Jk996lO3qnPPPfdMkhxzzDFTx172spfl3//936fy0+udbuXKlXPqx0NOO+20rTYKO/HEE3PGGWfkqKOO2ur8LVu25Lvf/W7+7u/+Lp/4xCdmrPt1r3tdy0Zhj3jEI3LGGWfkVa96VZYtW9Zy7v3335+PfOQjeetb35oNGzYkSc4666w85SlPyQknnDDH3jFINgsDYDTMtCFYB3/xCwAAAAAAAAAAAAAYDWMdfM943K/oAAAAADCCbl2XPPqPtwy6GSPhhneOZdWeg7v+rbfe2pLfe++9s8cee/Sk7iOOOGKb1zvqqKOyYMGCrFq1aur4brvt1nLePvvs0/J6u1122WXq30uWLGl5baZyc3XBBRfkgx/8YMuxd73rXXnzm9+83TJjY2M5+uijc/TRR+ess87aqp0P+dznPpfVq1dP5Q888MBceOGF2+3HTjvtlNNOOy1Pe9rTcuyxx2bDhg2pqip/8Ad/kGuuuSZjY/baqBvvGADMtJEYAAAAAAAAAAAAADCSxjr4tZuxMj6PLQEAAAAAGKw777yzJb98+fKe1b1kyZIsXrx4xuvVxVlnndWS/73f+70ZNwprt9tuu21zs7CqqlrqXrBgQc4///xZbXj20CZkD7n++utz3nnnzbpNDA+bhQGA3U4BAAAAAAAAAAAAgDbjHWwANl4WzGNLAAAAAAAGq33zrt12262n9bfXt3bt2p7W3w+XX355Lrrooqn8smXL8u53v7sndX/zm9/MFVdcMZU/+eST8/jHP37W5V/3ute1bEJ2/vnn96Rd9JfdUQAgZdANAAAAAAAAAAAAAACGzFgHv3bTycZiAAAAAAC0KqX++z584xvfaMmfdNJJ2XXXXXtS99e+9rWW/Etf+tKOyi9dujS//Mu/PJX/9re/3ZN20V/+bAkAo2GmHwzH7J0JAAAAAAAAAAAAALQa62ADsPHYLAwAAAAAaK7dd9+9JX/33Xf3tP677rprxuvVwcUXX9ySP+aYY3pW93e+852W/O67756bbrqpozqmb1x20003ZcuWLRmz30at2CwMABqwwywAAAAAAAAAAAAA0FsdbRZW/IoOAAAAANBc7Zt3rVu3rmd1b9iwIRs2bGg5tscee/Ss/n752c9+1pI//PDDe1b3Lbfc0pJ/6lOf2lV9W7ZsyV133VXLTdlGmU8iABgNM20IVux0CgAAAAAAAAAAAAC0Gsvsv2c83sHGYgAAAADQFCuXJze80+/r98PK5YO9/iMf+ciW/O233561a9f2ZFOvK6+8cofXq4O1a9e25Jcv792b1l53L9x77702C6sZm4UBwEwbiQEAAAAAAAAAAAAAI2msgw3Axotf0QEAAABg9CwYL1m156BbQT8cffTRWx279NJLc/zxx3dd96WXXtqS32mnnfLEJz6x63oHrfRwL4uNGzf2rK6HVFXV8zqZX7ZmBGA0PPjg9l9bsLB/7QAAAAAAAAAAAAAAamGsg1+7Gc/sNxYDAAAAAKibAw44IAcccEDLsQsuuKAndX/ta19ryT/lKU/JokWLelJ3P+25Z+vOeXfeeee81L1kyZJs2bIlVVV1lVatWtWz9tEfNgsDYDQ8uHn7r9ksDAAAAAAAAAAAAABoM1462CysLJjHlgAAAAAADN6v/uqvtuQ/9alPZdOmTV3VuWbNmpx//vkzXqcu9t1335b8VVdd1bO6995776l/b9iwITfffHPP6qY+bBYGwGh48MHtvzbug3kAAAAAAAAAAAAAoNVYxmd97niZ/bkAAAAAAHX0hje8IaWUqfyaNWuyevXqruo855xzWjYc23nnnXPKKad0VeegPP3pT2/JX3jhhT2r++ijj27JX3DBBT2rm/qwWRgAo2HL9jcLm/7DKAAAAAAAAAAAAABAkoyV2f/ajc3CAAAAAICmO+yww3LCCSe0HHvzm9+cO+64Y071XXXVVXnve9/bcuwVr3hFdt999zm3cZCe85zntOTPPffc3HvvvT2p+/jjj2/J/83f/E1P6qVebBYGwGiYYbMwAAAAAAAAAAAAAIB2Y5n9BmDjWTCPLQEAAAAAGA7vf//7s3Tp0qn8XXfdlRe96EVZv359R/WsWbMmL3nJS7Jx48apY/vuu2/+9E//tGdt7bfDDz88z3rWs6by99xzT04//fSe1H3CCSfkoIMOmspfcskl+fjHP96TuqkPm4UBMBp2ecSgWwAAAAAAAAAAAAAA1MhYmf2v3YyV2W8sBgAAAABQV495zGPy53/+5y3HLr744pxwwgm59dZbZ1XHddddl2OPPTZXX3311LGxsbF86lOfyooVK3ra3n5r3+zswx/+cN7//vfPuvzdd9+dDRs2bHV8wYIFOeuss1qOveY1r8kXvvCFjtv49a9/PTfccEPH5Rg8m4UBMBLKC1+97Ree8Iz+NgQAAAAAAAAAAAAAqIWxzH4DsPGyYB5bAgAAAAAwPF75ylfmda97Xcux73znOznssMPyrne9K7fccss2y11//fV561vfmsc97nH54Q9/2PLau9/97hx77LHz1uZ++ZVf+ZWcdtppLcfe+MY35vnPf36+973vbbPMli1b8m//9m95wxvekP333z+33377Ns876aST8spXvnIqv3Hjxrz4xS/OySefvN26k+TBBx/M97///Zx55pk57LDD8tznPjc333zzHHrHoPkkAoDRsP+hyRP+n+Q/v91yuPzaK7dTAAAAAAAAAAAAAAAYZWNlbNbnjpfZbywGAAAAAFB3H/rQh7J8+fK84x3vSFVVSZJ77703p59+ev74j/84hx12WPbff/8sX77r4kpmAAAgAElEQVQ8a9euzU9+8pNcc801W9WzcOHCnHPOOXnNa17T7y7Mm3e/+925+eab87nPfW7q2Je//OV8+ctfzn777ZfHPe5x2WOPPfLAAw/k9ttvz+WXX5577713VnX/5V/+ZdatW5cvfvGLU8fOPffcnHvuuVmxYkWe8IQnZI899sjY2Fjuueee3Hbbbbn66quzYcOGnveT/rNZGAAjoZSSvOeLqf78TcklX0v22CflBb+b8qsnD7ppAAAAAAAAAAAAAMAQGutgA7Bxv6IDAAAAAIyYt7/97XnWs56V1772tbnuuuumjldVlSuvvDJXXnnljOWf/OQn56/+6q9y5JFHzndT+2p8fDyf/exnc/jhh+cd73hHNm3aNPXabbfdlttuu23OdS9cuDCf//zn8973vjdve9vbWjYBW7NmTb7+9a/Pqo6dd955zm1gcGb/J04AoObK0mUZe/NfZOzz12fsr7+TcuJvDbpJAPPjf7x+m4fLKWf2uSEAAAAAAAAAAABQX7uML8vismRW5+6xcK95bg0AAAAAwPB5znOek6uuuiqf/vSnc+yxx2bBgpn/sMLixYvzvOc9L1/60pdy6aWXNm6jsIeUUvK2t70t11xzTU455ZTsvvvuM56/yy675AUveEHOO++8HHDAATus+01velNuvPHGvOUtb8mBBx64w/YsW7YsJ554Yj784Q/nZz/7WY466qiO+sNwKFVVDboNMFCllMOTXPFQ/oorrsjhhx8+wBYBAHSnuvziVK//lWT6z/oLF6V87JKURz12cA0DAAAAAADm3ZVXXpkjjjhi+qEjqqqa+U90AsA88h09AKDuVt/2f/If935rxnPGMpY3HfieHLDk4D61CgAAAAB6Z/Pmzbnuuutajh1yyCE73PQJtuW+++7L9773vVx//fVZs2ZNNm7cmMWLF2fvvffOoYcemic/+clZvHjxoJvZd1u2bMlll12WH/3oR/n5z3+e9evXZ+edd85ee+2VxzzmMXn84x+fhQsXzrn+G2+8MZdddlnWrFmTdevWZWxsLMuWLct+++2XxzzmMTnkkEMyPj7ewx4Nt/ma1wb9/TyzMgAANEx5/NHJW1en+vBbkjtvT/baP+W0D9ooDAAAAAAAAAAAADp08j6vzeZqYy5f/x95MJu3ev0R48vzP/Y+xUZhAAAAAABJdt555zzzmc/MM5/5zEE3ZaiMjY3lyCOPzJFHHjkv9T/qUY/Kox71qHmpm+FhszAAAGigctz/TJ77suTOO5Ld904pZdBNAgAAAAAAAAAAgNpZNLY4pzzyzXlgy4bcuWlNy2sLy6LssXAv39EDAAAAAADmnc3CAACgoUopyR77DLoZAAAAAAAAAAAAUHuLx5Zk38X7D7oZAAAAAADAiLJZGD1VSlmY5OlJDkiyb5L1SW5L8v2qqm4aYNMAAAAAAAAAAAAAAAAAAAAAAABqx2ZhI6yU8ndJXtp2+CdVVa2aQ10rkpw5Wd/u2znn4iR/VlXV5zutHwAAAAAAAAAAAAAAAAAAAAAAYBSNDboBDEYp5fnZeqOwudZ1QpIrkrwm29kobNLRSf6hlPK3pZSde3FtAAAAAAAAAAAAAAAAAAAAAACAJlsw6AbQf6WU3ZL8RY/qOibJeUkWTTtcJbksyQ1JdkvypCR7Tnv95CS7llJeUFXVll60AwAAAAAAAAAAAAAAAAAAAAAAoInGBt0ABuL9Sfab/Pe9c62klLIyyRfSulHYRUkOr6rqyKqqfqOqquOSrEzyhiSbpp33vCRnz/XaAAAAAAAAAAAAAAAAAAAAAAAAo8BmYSOmlPKcJK+czG5O8qddVHdmkuXT8hcneU5VVVdPP6mqqgeqqvpgkt9oK///llIO7OL6AAAAAAAAAAAAAAAAAAAAAAAAjWazsBFSStk5yUenHfqzJD+YY12HJPntaYc2Jnl5VVUbtlemqqrzknxy2qHFSd42l+sDAAAAAAAAAAAAAAAAAAAAAACMApuFjZb/nWTV5L9vSHJGF3WdlGR8Wv4LVVVdN4ty727L/0YpZUkX7QAAAAAAAAAAAAAAAAAAAAAAAGgsm4WNiFLK0UleN+3Qq6uqur+LKl/Yll89m0JVVV2d5N+nHdo5yXFdtAMAAAAAAAAAAAAAAAAAAAAAAKCxbBY2Akopi5N8PA+/35+squrrXdS3T5InTDu0OclFHVRxYVv+hLm2BQAAAAAAAAAAAAAAAAAAAAAAoMlsFjYazkjy3yb/vSbJaV3Wd0Rb/vKqqu7roPzFbfnDu2wPAAAAAAAAAAAAAAAAAAAAAABAI9ksrOFKKU9O8sZph06tqmptl9Ue1pa/vsPyP95BfQAAAAAAAAAAAAAAAAAAAAAAAMRmYY1WSlmQ5ONJFkwe+ueqqs7tQdUHt+Vv7rD8T9rye5RSlnfRHgAAAAAAAAAAAAAAAAAAAAAAgEayWVizvSXJEyb/fV+S1/So3t3a8v/VSeGqqtYn2dB2+BFdtQgAAAAAAAAAAAAAAAAAAAAA6EgpZatjVVUNoCUAvbFly5atjm1rrqubBYNuAPOjlHJYkrdOO/S/qqq6qUfV79KWv38OddyfZMm0/LK5N+dhpZS9kqzosNhBvbg2AAAAAAAAAAAAAAAAAAAAANTJ2NjYVsc2bdqUhQsXDqA1AN3bvHnzVse2NdfVjc3CGqiUMpbkY0kWTx76XpIP9vAS7ZuFbZhDHfcnWT5DnXP12iRv61FdAAAAAAAAAAAAAAAAAAAAANBYpZQsWrQoGzdunDq2fv36LF26dICtApi79evXt+QXLVqUUsqAWtM79d/ujG15Q5KnTv57c5LfqarqwXm8XtWnMgAAAAAAAAAAAAAAAAAAAABADy1btqwlf88996SqbA0C1E9VVbnnnntajrXPcXVls7CGKaU8OsnZ0w79WVVVP+jxZda35XeaQx3tZdrrBAAAAAAAAAAAAAAAAAAAAADmWftGOps2bcpPf/pTG4YBtVJVVX76059m06ZNLcd33XXXAbWotxYMugH0TimlJPlokqWTh25IcsY8XGqYNwv7SJLPdVjmoCRf6tH1AQAAAAAAAAAAAAAAAAAAAKA2lixZkoULF7ZssHPvvffmxz/+cXbdddfssssuWbBgQcbGxgbYSoCtbdmyJZs3b8769etzzz33bLVR2MKFC7N48eIBta63bBbWLKck+ZVp+VdXVXX/PFzn7rb8ik4Kl1J2ydabhd3VVYsmVVX1X0n+q8P29OLSAAAAAAAAAAAAAAAAAAAAAFA7pZTst99+ufnmm1NV1dTxTZs2Ze3atVm7du0AWwcwNw/NbU3ZX8hmYc1y5rR/fzXJ9aWUVTsos09bfsE2ytxWVdXGafnr2l4/cJbt2975d1ZVta7DOgAAAAAAAAAAAAAAAAAAAACAHli6dGkOOOCArTYMA6ijUkoOOOCALF26dNBN6RmbhTXLTtP+fWKSG+dQxyO3Ue5JSX4wLX912+sHd3iNR7flr+qwPAAAAAAAAAAAAAAAAAAAAADQQw9tGHbbbbdl06ZNg24OwJwsXLgw++23X6M2CktsFsbcXNGWf3wpZWlVVb+YZfmn76A+AAAAAAAAAAAAAAAAAAAAAKDPli5dmoMOOigPPPBA7rnnntx7773ZuHHjoJsFMKNFixZl2bJl2XXXXbN48eKUUgbdpJ6zWRgdq6rqZ6WUy5M8fvLQgiTPSHLBLKs4pi3/Tz1qGgAAAAAAAAAAAAAAAAAAAADQhVJKlixZkiVLlmSvvfZKVVXZsmVLqqoadNMAWpRSMjY21sjNwdrZLKxBqqrardMypZRjknxz2qGfVFW1ahZFv5iHNwtLkldkFpuFlVIek+Qp0w7dN5tyAAAAAAAAAAAAAAAAAAAAAED/lVIyPj4+6GYAjLSxQTeA2vp0kgen5V9USjlkFuXe3Jb/+6qqNvSuWQAAAAAAAAAAAAAAAAAAAAAAAM1hszDmpKqq65J8ctqhRUk+UUpZsr0ypZRfT/LyaYc2JjlzXhoIAAAAAAAAAAAAAAAAAAAAAADQADYLoxtvS7JuWv7oJF8vpTxm+kmllMWllN9P8rm28u+vquon89xGAAAAAAAAAAAAAAAAAAAAAACA2low6AZQX1VV3VpKeVGSf0myaPLw05NcVUr5XpIbkjwiyZOTrGgr/pUk/6tfbQUAAAAAAAAAAAAAAAAAAAAAAKgjm4XRlaqqLiylvDDJJ/LwhmAlyZGTaVs+k+SUqqoenP8WAgAAAAAAAAAAAAAAAAAAAAAA1NfYoBtA/VVV9dUkRyT5yyTrZjj1u0leUlXVSVVV3deXxgEAAAAAAAAAAAAAAAAAAAAAANTYgkE3gMGqqurCJKUH9fxXkteUUt6Q5OlJDkyyT5L7kvw0yferqrqx2+sAAAAAAAAAAAAAAAAAAAAAAACMEpuF0VNVVW1M8s1BtwMAAAAAAAAAAAAAAAAAAAAAAKAJxgbdAAAAAAAAAAAAAAAAAAAAAAAAAGDbbBYGAAAAAAAAAAAAAAAAAAAAAAAAQ8pmYQAAAAAAAAAAAAAAAAAAAAAAADCkbBYGAAAAAAAAAAAAAAAAAAAAAAAAQ8pmYQAAAAAAAAAAAAAAAAAAAAAAADCkbBYGAAAAAAAAAAAAAAAAAAAAAAAAQ8pmYQAAAAAAAAAAAAAAAAAAAAAAADCkFgy6ATAEFk3PXH/99YNqBwAAAAAAAABAV7bxvYdF2zoPAPrId/QAAAAAAAAAgNob9PfzSlVV/bweDJ1SyvOTfGnQ7QAAAAAAAAAAmAe/XlXV+YNuBACjy3f0AAAAAAAAAICG6uv388b6dSEAAAAAAAAAAAAAAAAAAAAAAACgMzYLAwAAAAAAAAAAAAAAAAAAAAAAgCFVqqoadBtgoEopj0jyrGmHbkmycUDNgfl0UJIvTcv/epIfD6gtQH+Jfxht5gCAejFvw2gzB8DoEv8wusQ/MB8WJdl/Wv5bVVXdPajGAIDv6DEiPN/BaDMHwOgS/wD1Yt6G0WYOgNEl/mG0mQOAXhvo9/MW9OtCMKwmA+78QbcD5lsppf3Qj6uqunIQbQH6S/zDaDMHANSLeRtGmzkARpf4h9El/oF59P1BNwAAHuI7eowCz3cw2swBMLrEP0C9mLdhtJkDYHSJfxht5gBgngzs+3ljg7owAAAAAAAAAAAAAAAAAAAAAAAAMDObhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADKkFg24AAH2zJsmZbXlgNIh/GG3mAIB6MW/DaDMHwOgS/zC6xD8AAEAzeL6D0WYOgNEl/gHqxbwNo80cAKNL/MNoMwcAjVKqqhp0GwAAAAAAAAAAAAAAAAAAAAAAAIBtGBt0AwAAAAAAAAAAAAAAAAAAAAAAAIBts1kYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADKkFg24AUB+llPEkByc5LMl+SR6R5IEk65L8OMmlVVXd1+NrLkzy9CQHJNk3yfoktyX5flVVN/XyWv1SSjk8yROTrEiyOMntSW5NclFVVRsG2bZ+KqUsT3J4kkOS7J5kSZK7kqxJ8r2qqn48wOZtpZTyqEy8b/sl2SXJz5L8JMnFVVVt6uF1DkzyS5kY749IsikT9+W6TNyXe3t1rQ7bJf57QPxPqFv8Yw7oFXPAhDrMAf0c83W4H9RPE+ftJvapV/r1rFIX7kcz46WJfeoVY76V9ZvmxUoT+9Qr4p/pmhgrTexTr4h/azcAADSXZ6He8Nn8hLo9z4z6+u5k28wBPWAOmFC3OWDUif/eEP8T6hD/1nipuybO203sU6/4bK6V+9HMeGlin3rFmG816us3TYyVJvapV8Q/7ZoYL03sU6+YA6zfwNCrqkqSJGm7KRM/bJ2a5CtJ7k5SzZA2J/mnJP+9B9ddkeQjSdbOcL2Lkry4y+s8OslLk7w3yYVJ7mm7xk09uo/LkvxJkp/O0J97knwqyUEDfL/n7X4kWZjk+CQfSnLFDsZSNXmvzkqyz4Bj4CVJLp6hnWsnx+qeXVxjaZI3Jbl2B/fkwST/mOS4PvVd/PfmPor/Gsb/fI+PWdyDHaVVfbgH5oDe3EdzQE3mgH6N+brcD6l+qYnzdhP71OP3vB/PKjsneUaSP0zy6Uw8s2xpu87LBz3+3Y9mxksT+2TM1/5+WL9pva74b/Z4r0X8Z8TXb5oYK03sU4/f85GO/36Nj1i7kSRJkiRJkvqcmv4sFJ/N9+1+1PV5JiO8vjvZNnNAb+6jOaCGc8B8j49Z3IMdpVXz3H/x35v7KP5rEv/9GvN1uR9S/VIT5+0m9qnH7/lIfzbnfmzVtsbFSxP7ZMzX/n4M5fpNE2OliX2q4XivRfxnxNduJtvYuHhpYp96/J6P9BzQr/ER6zeS1HUaeAMkSRrelOTcLn7I/nKSved43ROS3NHBtf42yc4d1H9Mkn/ZwQ+UPXlYmbzeUzKxq+1s+3Nfktf08X2e9/sxeQ/unONYWpfkNwcw/ndJ8pkO2nl7kuPncJ2nJblhDvfl3CRL57H/4l/8j1z893N8dBFfD6VV83wvzAHmgJGaA/o15utyP6T6pX6N4W1cd97m7Sb2qYfv97w/q2Tiw4sfZmLxfkf1v3zA43/k70cT46WJfTLm63s/Jq9j/aZPsdLEPtVpvNch/mP9prGx0sQ+9fD9Hvn479f4iLUbSZIkSZIkqc+pqc9C8dl83+9HHZ9nMuLru5NtMweYA0ZuDujn+Ogivh5Kq+bxPoh/8T9S8d+vMV+X+yHVL/VrDG/juj6b89lclRH4bs6w348mxksT+2TM1/d+TF5nKNdvmhgrTexTncZ7HeI/1m4aHS9N7FMP3++RnwP6NT5i/UaSepIWBGD7Dt3O8Z8muS4TP5gtyMTuwE9IMjbtnF9L8v+XUp5VVdXts71gKeWYJOclWTTtcJXkskw88O+W5ElJ9pz2+slJdi2lvKCqqi2zuMwTkxw32zZ1o5TynEzsnrq47aWfJLk8Ex86rszEDzYLJ19bmuQjpZSxqqo+3Idm9uN+rEiyfBvHN2biB9vbM7HD7B5Jjpz870N2S/KpUspeVVX92Ty3M0lSShlP8tkkJ7a9tCbJ9yfbelAmxmKZfG3vJF8qpTynqqrvzPI6T0tyQSYeIqa7N8l/ZCLGFic5OMkRaY2x/5lkr1LKiVVVbZxl1zoh/rsk/qfUKf77Nj5qwBzQJXPAlLrMAf0a83W5H9RPE+ftJvapa/16VklyUpJHdN/i+eV+TGlivDSxT10z5ltZv0nSzFhpYp+6Jv5bWL+Z0MRYaWKfuib+p1i7AQCgqZr6LOSz+VY+m29jfXeKOaBL5oApdZoDrPFOEP9dEv9T6hL/1nipuybO203sU9d8NtfK/ZjSxHhpYp+6Zsy3sn6TpJmx0sQ+dU38t7B287AmxksT+9Q1c8AU6zdQJ73efUySpOakJJfm4Z02L0vy+iQHbefcRyb5q2y9Q+e3k5RZXm9ltt4J9DtJHtt23uIkf5CJ/+lPP/eds7zOqdtoZ5VkQ5Lr247d1MX9W5Wtd0++Pslzt3Hu8iR/3nbug9s6dx7e53m/H5n4Ie+hOu5N8rEkxybZaRvnliQvzMSHte1tmvf7MdmG97Zdd+Pk+F/Udt5hSS5uO/fnSfadxTWWbOP+/mJybC/ZxvkHJTl/G/fk9Hm6B+Jf/I9c/PdrfExea3pd350cM52kBfN8L8wB5oCRmgP6Nebrcj+k+qUmzttN7FOP3ut5f1aZLH/XNu5nleTWbbz28gGOffejofHSxD4Z8/W8H7F+0/dYaWKf6jLeJ8sPffzH+k1jY6WJferRey3++zg+Yu1GkiRJkiRJ6nNq6rNQfDbf9/tRt+eZWN996JrmAHPAyM0B/Rofk9eaXpc1XvEv/n0/b2juh1S/1MR5u4l96tF77bM592Mk4qWJfTLm63k/MuTrN02MlSb2qS7jfbL80Md/rN00Ol6a2KcevdfmgD6Oj1i/kaSepIE3QJKk4U2Z2Hn7K0mO7KDMa7fxP9uXzbLsx9rKXZRtPNRPO/8FbedvSHLgLK5z6uQPat9P8tEkv5vkyZn4q0HHtNV5Uxf37zNtdV2XZK8dlHlTW5krk4zP8/s87/dj8ge3O5KclmTnWZbZI8lVbde/ekc/JPbgfjw6Wz9Q/PoM5++UrX+4/8tZXOflbWW2JDl+B2VKks+1lbs7bQ8cPboP4l/8j2L892V8TF5rel0Xzme/5tg+c4A5YKTmgH6N+brcD6l+qYnzdhP71IP3uS/PKpNl78rEX+P4xyRnTs5fe0++dmFbnS8f0Lh3Px5uX+PipYl9MubreT9i/abvsdLEPtVlvE+WrUP8W7+pmhkrTexTD95n8d/n8RFrN5IkSZIkSVKfU1OfheKz+b7fjzo9z8T67vTrmQPMAaM4B1jjrcS/+B+9+O/XmK/L/ZDql5o4bzexTz14n302536MTLw0sU/GfD3vR4Z8/aaJsdLEPtVlvE+WrUP8W7t5uH2Ni5cm9qkH77M5oM/jI9ZvJKknaeANkCRpeFOSVXMs9w9t/7P9x1mUOSTJ5mllHkhyyCzKfaLtWh+fRZnl2/thMr374O3RmfirQ9PresYsy/5rW7lXzvP73I/7sWK2P7C1lXvCNu7jUfN8Pz7Zdr3Vsyhz6OSYfajMpiSP3kGZz7dd54uzbN8+2frB4znzcB9WzbGc+Bf/7fXUKf7n/X5Mq296XRfOZ7/m2L5VcyxnDjAHtNdTizmgX2O+LvdDql9q4rzdxD714H3uy7PKZLnt/mWTDMGHEO7HVm1YNcdyQxsvTexTD95nY34A9yPWb6aXEf9z7FMP3mfx39oO6zdVM2OliX3qwfss/vs8PmLtRpIkSZIkSepzauqzUD+e3+Oz+fZ6avM806/n3Qz5+u7ktVbNsZw5wBzQXk+d5gBrvJX4F/+jF//9GvN1uR9S/VIT5+0m9qkH77PP5tyP7bVh1RzLDW28NLFPPXifjfkB3I8M+fpNE2OliX3qwfss/lvbYe3m4fatmmO5oY2XJvapB++zOaDP4yPWbySpJ2ksANtRVdVNcyz64bb8s2dR5qQk49PyX6iq6rpZlHt3W/43SilLZipQVdW6qqo2zKLubvz3pGWO/W5VVd+ZZdn3teVf0ZsmbVs/7kdVVWuqqrpvDuX+M0n7fZvNeJqTUspOSV7Sdrh9jG2lqqprk5w37dCCTIzpmTy6Lf/lHTZw4lq3J7mk7fAhsynbCfHfFfHfeo1axP/kNfsxPmrBHNAVc0DrNWoxB/RrzNflflA/TZy3m9inbvT5WSVVVf2sowb2mfvRqonx0sQ+dcOYb2X9puU6N82x6NDGShP71A3xvzXrNxOaGCtN7FM3xH8razcAADRVU5+FfDbfymfzD7O+u9W1bppjUXOAOaD9GrWYAyavaY034r9L4r/1GrWIf2u81F0T5+0m9qkbPptr5X60amK8NLFP3TDmW1m/abnOTXMsOrSx0sQ+dUP8b83azcOaGC9N7FM3zAGtrN9AvdgsDJgP32/L71RK2W0HZV7Yll89mwtVVXV1kn+fdmjnJMfNpuw8e2Zb/l86KPuNTOxs/pCjSyn7dt+k2mofT/vN47WOT7J0Wv7fqqr60SzLto/ZF+3g/J3b8rfO8jpJcktbfnkHZeeb+Bf/vdTP+Kc3zAHmgF6qwxwwlzHfq2sN4/2gfpo4bzexT0l/n1XqwP3ojSbGSxP7lBjz7azfdK+JsdLEPiXin95rYqw0sU+J+O8VazcAADRVU5+FOuGz+d7x/bytDfP6bmIOSMwBvWRNo17Ev/jvpTrEvzVe6q6J83YT+5T4bK6d+9EbTYyXJvYpMebbWb/pXhNjpYl9SsQ/86OJ8dLEPiXmgF6xfgMDYLMwYD5s3saxRds7uZSyT5IntJW/qIPrXdiWP6GDsvNlZVv+itkWrKrqgSTXTzs0luHo06C0j6ftjqUe+NW2/IUdlP12Wtv6pFLK3jOcf3tbvpOdjdvPvbODsvNN/Iv/Xupn/NMb5gBzQC/VYQ7oaMz3+FrDeD+onybO203sU9LfZ5U6cD96o4nx0sQ+JcZ8O+s33WtirDSxT4n4p/eaGCtN7FMi/nvF2g0AAE3V1GehTvhsvnd8P29rw7y+m5gDEnNAL1nTqBfxL/57qQ7xb42XumvivN3EPiU+m2vnfvRGE+OliX1KjPl21m+618RYaWKfEvHP/GhivDSxT4k5oFes38AA2CwMmA8Ht+U3J/n5DOcf0Za/vKqq+zq43sVt+cM7KDtfdm/L39Vh+fbzH9dFW+qufTz9bB6v1T4W/222BSfH7A/bDs80Fr/dln/ybK+1jXP/o4Oy8038i/9e6mf80xvmAHNAL9VhDuh0zPfyWsN4P6ifJs7bTexT0t9nlTpwP3qjiQNOiPoAAB9ASURBVPHSxD4lxnw76zfda2KsNLFPifin95oYK03sUyL+e8XaDQAATdXUZ6FO+Gy+d3w/b2vDvL6bmAMSc0AvWdOoF/Ev/nupDvFvjZe6a+K83cQ+JT6ba+d+9EYT46WJfUqM+XbWb7rXxFhpYp8S8c/8aGK8NLFPiTmgV6zfwADYLAyYDy9py19aVdWWGc4/rC1//TbP2r4f76C+QdjYll/cYfn284ehT31XStk1yXPbDl8yj5d8bFt+Psfi36R1nLyylLLTji5QSnlhkgOmHbqyqqrvzb6J8078i/+eGED8D9IBpZTVpZQrSynrSikbSyl3TOb/tpTyu6WU9i+4DCtzgDmgJ2o0B3Q65uekRveD+mnivN3EPiX9fVapA/ejN5oYL03sU2LMt7N+070mxkoT+5SI/2HSlPWbJsZKE/uUiP9esXYDAEBTNfVZqBM+m+8B38/bWg3WdxNzQGIO6IkRW9OwxjtB/Iv/JLWKf2u81F0T5+0m9inx2Vw796M3mhgvTexTYsy3s37TvSbGShP7lIj/YdKUtZukmfHSxD4l5oBesX4DA2CzMKCnSim7JHlV2+Ev7qBY+y6eN3d42Z+05fcopSzvsI5eW9uW37fD8u3n/7cu2lJnr06ydFr+7iTfnI8LTT4otj8sdjoW288/ZHsnVlV1Y5LTpx3aP8lnSilLt1MkpZSjMrEI9pAtSX6/wzbOG/E/Rfz3Rt/ifwg8KsnLM7EYsFuShUn2msyfnOSvktxcSvk/k3E2lMwBU8wBvTH0c8Acx/xcDf39oH6aOG83sU9J/59Vhp370RtNjJcm9ikx5ttZv+leE2OliX1KxP8Qqv36TRNjpYl9SsR/r1i7AQCgqZr6LDQHPpvvDd/Pa23jUK/vJuaAacwBvTFKaxrWeCeIf/H/kKGPf2u81F0T5+0m9inx2Vw796M3mhgvTexTYsy3s37TvSbGShP7lIj/IVT7tZukmfHSxD4l5oBesX4Dg2OzMKDX/neSfabl70rrw/e27NaW/69OLlhV1fokG9oOP6KTOubB1W35p862YCnlgCT7tR0edH/6rpSyKsn/ajt8TlVV7X8Rqlfax+Evqqq6r8M62sfujO9bVVV/luSPkmyaPPTrSa4qpbyllPKMUsohpZTDSykvKKWsTnJRHn742JTklVVVDdMPsuJ/gvjv0gDivw52TnJqku+VUg4fdGO2wxwwwRzQpRrNAXMZ8x2r0f2gfpo4bzexT8kAnlWGnPvRG02Mlyb2KTHm21m/6V4TY6WJfUrEfx0N+/pNE2OliX1KxH+vWLsBAKCpmvos1CmfzXfJ9/Nqub6bmAMeYg7okjWNbbLG20b8N1ON4t8aL3XXxHm7iX1KfDbXzv3ojSbGSxP7lBjz7azfdK+JsdLEPiXiv46Gfe0maWa8NLFPiTmgV6zfwIDYLAzomVLKC5O8vu3wn1RVdecOirbv4nv/HC7fXmbZHOropW+15V88047mbX5rG8cG3Z++KqUsSvLZtPb7piTvmcfLDmQcVlX1viRPSPLxJOuSHJiJH46/neTaJFdkYhfdl2diN+wk+XqSp1ZV9ck5tHFeiP8W4r8LA4r/Qdmc5MIkb03y/CRPzsTu4U/KxOL2+7L1gsGhSb5eSjmwf83cMXNAC3NAF+oyB3Qx5ju9Ti3uB/XTxHm7iX2apg5t7Cf3o0tNjJcm9mmaOrSxn6zfdKGJsdLEPk1ThzaOgkas3zQxVprYp2nq0MahZu0GAICmavizUKd8Nt8F38+r3/puYg5oYw7owoitaVjjbSX+tzbo/vRVXeLfGi9118R5u4l9mqYObewn96NLTYyXJvZpmjq0sZ+s33ShibHSxD5NU4c2joJGrN0kzYyXJvZpmjq0cahZv4HBslkY0BOllCck+f/aDl+Q5C9mUbz9B6r23V5no/0HqvY6++0fM7H76UN2S3LGjgqVUvZP8sZtvDReStmpN02rhb9J8svT8g8m+e057MrbiUGOwwVJtuThHfBn8skkf1hV1WWdNGw+if+tiP/uDCL+B+GtSR5ZVdWzq6p6R1VVX66q6vtVVV1fVdUPqqo6v6qqP8rEAve7klTTyu6T5AullDKIhrczB2zFHNCdoZ8DuhzznRr6+0H9NHHebmKfdlDfMLaxn9yPLjQxXprYpx3UN4xt7CfrN3PUxFhpYp92UN8wtrHpGrF+08RYaWKfdlDfMLZxaFm7AQCgqUbgWahTPpvvju/nbd//be/ug6a96vqAf09IQwpBsMRIxYGI4tsgDNSZGtHpM9Q4YEcUpEqZOklb6AtOx7Y604G20/oytDOtjE5rBVtbOhZfUAtFiYHaGmhxquIESyGlzkhooQZJhJZEkvBy+sfeT7K79+69e+29e+11zv35zFx/7HXv7nV+5zm/X+7rdz3PyeT6u4kasIIacD4Xpaehxyv/HyL/HzL5/NfjpXU91u0eY9rwfVMc45jMxzn0mC89xrTh+6Y4xjHp3+yox1zpMaYN3zfFMfaui95N0me+9BjThu+b4hgnS/8Gjs9mYcC5lVKelNmDt/lfYj6Y5M/XWuvqT51prM8cTK31E0l+ZOn095ZSvnvdZ0opX5jk1iSPXfe1exrepJVSfiDJdy6dfkWt9R0jD+Xg67CU8shSyj9N8ttJXprkui0+dlOS95RS3nyyZo5K/p8m/3c3ofw/uJMG1vKu9qved3+t9RVJ/vrSj56V5M8dZHADqAGnqQG7a6EGHGDNn3Wtyc8H7emxbvcY04Gu1/N/S8zHlnrMlx5jOtD1el7z+jdb6DFXeozpQNfrOf8Prof+TY+50mNMB7rehcx/vRsAAHp1Qe+FzuTZ/O4mdD+jv7slNeA0NWB3E6oBB6fHu5L8X/O1exrepLWQ/3q8tK7Hut1jTAe6Xs//LTEfW+oxX3qM6UDX63nN699socdc6TGmA12v5/w/uB56N0mf+dJjTAe63oWsAfo3MA1XHnsAQNtKKdcl+Q9Jnjh3+q4kN9ZaP7rl19y79HqX/zvP8meWv/MYXpXkeXl4t9KS5IdLKS9K8hNJ3p3ZrrFfcPK+v5aHfzH6UJL5RsX9tdZTu9KWUq7fdjC11jsHjf4ISil/I7PdoOe9utb6j7f8/PXbXmvFfIy6DkspVyZ5U5Lnzg8ryRsz293+XUnuTvLIJE9K8pzMbmafevLeb05yQynlxlrru3cY67nJ/zPJ/4GOnP+TV2v90VLKNyZ5/tzplyf5qSMNSQ04mxowUAs1YE9rfttrnWs+YJUe63ZLMbV0rzIG8zG+lvJlWy3FZM0vamk+9G8eMql12FJMLa33MfR2L7tsav2blnJlWy3FJP8X6d0AAMDuWroXOgLP5gfy9/Pa6u8masAGasBALfz9nGPS411L/m/QwnpvIf/1eGldj3W7pZhaulcZg/kYX0v5sq2WYrLmF7U0Hz30b1rKlW21FFNL630Mvd3LLpta7yZpK1+21VJMasAi/Ru4WGwWBuyslPLHkvxKki+dO313km+otf7OgK/q7heqJKm1PlhKeWGSW5I8fe5HX3dyrHNPkr+U5K1z5z6+5r0fGDCkMuC9oyulvCzJq5dO/1it9XsGfM155mPsdfj3stjI+mSSF9Vab1l634NJ3pvkvaWUH0/yz5P8xZOfXZvkl0opz6i13rPDeHcm/88m/4eZQP634h9msZn1NaWUx9Va162Rg1EDzqYGDNNCDdjjmt/mWvuYD1jQY91uMKaW7lXGYD5G1GC+bNRgTNb8opbmQ/9mZjLrsMGYWlrvY+jmXvYMk+jfNJgrGzUYk/xfpHcDAAA7aPBeaFSezQ8zgWfz+rsDqQFnUwOGmUANaIUe72nyf7NJr/cW8l+Pl9b1WLcbjKmle5UxmI8RNZgvGzUYkzW/qKX5aLp/02CubNRgTC2t9zF0cy97hkn0bpIm82WjBmNSAxbp38AFcsWxBwC0qZTy2CRvS/JVc6c/ltnOn+8d+HX/d+n15w0cyzU5/QvV6L/Yr1Jr/XCSr03y2iSf2uIjv5rkq5Pct3T+rj0PbVJKKd+Z5DVZ/OXyXyf5rhGHsbwOH1VKefTA77hu6fXKdXjyC/HyL6QvX9HIWlBrfSDJy5K8fe70E5O8cuA4z0X+b0f+b2ci+d+K38gs1y57RJKvHHsQasB21IDttFAD9rzmN11r8vNBe3qs2z3GtMFo9yqNMB8D9JgvPca0gTW/SP9mSz3mSo8xbSD/23T0/k2PudJjTBvI/wH0bgAA6NUFvBfaiWfz25nI/Yz+7gBqwHbUgO1MpAa0Qo93cSzyv3Et5L8eL63rsW73GNMGns0tMh8D9JgvPca0gTW/SP9mSz3mSo8xbSD/23T03k3SZ770GNMGasAA+jcwPTYLAwYrpTwmya1J/sTc6f+X5Lm11nfv8JXLu4U+eeDnl9//B7XWj6185xHUWu+rtf7VJF+W5O9k9rDxQ5ntdP6JJHck+TdJbkzyp2utdyb5iqWveddoAx5ZKeXFmf2SNv/fpNcneWmttY41jpOd45fXzZMGfs3yWly3E+43JZm/afhAZmtgo1rrZ5N8/9Lpm0opo+zkLf+Hkf9nm0r+t+Ik///X0ulBjZLzUgOGUQPO1kINOMCaP+tak58P2tNj3e4xpk1GvleZPPOxvR7zpceYNrHmF+nfbKfHXOkxpk3kf5uO3b/pMVd6jGkT+b89vRsAAHp1Ee+FzsOz+bNN5X5Gf3d7asAwasDZplIDWqHHe4r8b1gL+a/HS+t6rNs9xrSJZ3OLzMf2esyXHmPaxJpfpH+znR5zpceYNpH/bTp27ybpM196jGkTNWB7+jcwTVceewBAW052Rb0lydfMnb43yfNqrb+x49fesfT6SwZ+/ilLr9+34zgOqtb6gSSvOjk2uWHp9a+v+c7R/gLKIZRSvi3JT2a2e/NlP5fkppObtkH2MB93ZPZ/mbrsS3J6fZ5leS2u++wzll7/6sBfUt+R5MEkV528fnxmYz3ojYT83538P22C+d+KTy69Xt4h/WDUgN2pAae1UAMOtObXXWuv8wFJn3W75ZgaulcZhfk4vJbzZZ2WY7LmFzU0H/o3D5P/p8n/HbR+LzvAUfo3LefKOi3HJP8X6d0AAMD2Wr4XOjbP5k+b4LN5/d0N1IDdqQGnTbAGtEKP92Hyv1Et5L8eL63rsW63HFND9yqjMB+H13K+rNNyTNb8oobmo8n+Tcu5sk7LMTW03kfR+r3sAP595SI1YHdqwAb6NzBdV2x+C8BMKeWPJvmlJF83d/oPk/yZWuuvneOr//vS66eXUh414PPP3vB9TTnZwfw5S6fffoyxHFIp5flJfjqLG1e+KclLaq2fOc6oTq2d5QfCa538wvv0Dd932eOWXt+17XWSpNb66ST3LJ2+dsh3DCX/xyH/j5r/rVjO9bvHuKgaMA41YDo14IBrftW1Jj8ftKfHut1jTAONda/SCvNxhh7zpceYBrLmF+nfrNFjrvQY00Dyv02j9296zJUeYxpI/p9B7wYAgF65FxqHZ/P+ft4mx+jvJmrAWNQAPY0t6PE+TP43qIX81+OldT3W7R5jGsizuUXm4ww95kuPMQ1kzS/Sv1mjx1zpMaaB5H+b/PvKRWrA7tSAM+jfwLTZLAzYSinl6iRvTnJp7vT9SZ5fa33Heb671vp7Sf7b3Kkrs/iLwyaXll7/8nnGMwHPSXL93Ou311oP/n+kG1Mp5Zsy2831j8ydfkuS7zhp1BzLrUuvLw347Ndn8ZfQ22utH1nz3o8vvX70gOtcds3S63t3+I6tyP9RyX/WKqVcm9O7jf+fEa6rBoxHDZiAQ675Fdea/HzQnh7rdo8x7WCse5VWmI81esyXHmPagTW/SP9mhR5zpceYdiD/G3OM/k2PudJjTDuQ/2vo3QAA0Cv3QqPybP549HfXUANGpQawlh7vKZeWXsv/iWsh//V4aV2PdbvHmHbg2dwi87FGj/nSY0w7sOYX6d+s0GOu9BjTDuR/Y/z7ypUuLb1WA7anBqyhfwPTZ7MwYKNSylVJ/l2Sb5g7/UCSb621/sc9XeaNS6//wpZj+/Ikf3Lu1H1J3ranMR3L3156/dqjjOJASik3JvmFJFfNnX5bkm+rtT54nFE95K1JPjn3+oaTNbaNm5deL6/pecs3n8/c8hpJklLKU5M8Zun0oN3zB1xL/o9L/nOWF2fx9/ePJLnjkBdUA0anBhzZSGv+8rUmPx+0p8e63WNMOxrrXqUV5mOFHvOlx5h2ZM0v0r85fa3ucqXHmHYk/9szav+mx1zpMaYdyf8V9G4AAOiVe6HReTZ/PPq7q6+nBoxLDeAserwPj03+N6aF/NfjpXU91u0eY9qRZ3OLzMcKPeZLjzHtyJpfpH9z+lrd5UqPMe1I/rfHv69cHJsacD5qwAr6N9AGm4UBZyqlXJnkDUmeN3f6U0leVGt96x4v9fokn5l7/cKTG/ZNlh/avaHWev/+hjWuUspNSW6cO/XuzHZD7UIp5U8l+fdJrp47/Z8y+wXxgeOM6mG11j9M8vNLp5fX2CmllC9N8oK5U59O8lNnfOS2pdfPLqV85TZjPPFXll6/v9b60QGf34r8H5f85yyllM9P8neXTv9irbUe8JpqwIjUgOMbcc03MR+0p8e63WNMuxrxXqUJ5uO0HvOlx5h2Zc0v0r9Z1GOu9BjTruR/W8bu3/SYKz3GtCv5f5reDQAAvXIvNC7P5o9Lf/c0NWBcagBn0eM9Rf43pIX81+OldT3W7R5j2pVnc4vMx2k95kuPMe3Kml+kf7Oox1zpMaZdyf+2+PeVK6kB56AGnKZ/Aw2ptTocDsfKI8kjkvxskjp3fCrJCw50vZ9YutY7k1x9xvu/Zen9DyR58jnHcGnpO+885/ddOeC9L0zy4NJcP/PIa2Bv85HkhiSfWPq+tyd51DFjXDHOpyz9OdQkzz/j/VefrNX5979mwzVKkvcvfea3kjxmi/E9d8X4fvAA8yD/5f+Fy/8x5iPJlyX55oGfeUKS31yx5p9ywHjVADXgQtWAMdd8C/PhaO/osW73GNMexnjwe5Utx3Hb0nfefMi4zcdWY+guX3qMaQ9jtOZHno/o36y6nvyX/0fP/w1jvLQ0xjt3/J7J9296zJUeY9rDGOX/EdZH9G4cDofD4XA4HCMeF/FeaF/373Pf59n8w9/VxP3MGPe7aaC/e3ItNUANuHA1YIz5iB7vquvJf/l/1GPMNd/CfDjaO3qs2z3GtIcxejZnPtaNobt86TGmPYzRmh95PtJA/6bHXOkxphbW+5bjmET+bxjjpaUx3rnj90y+d3Nyze7ypceY9jBGNeAI6yP6Nw7HuY8rA7Dev0ry7UvnXpnk9lLK9QO/6666eefWv5/ZTqqfe/L6a5P8SinlpbXW/3H5TaWURyb5y0l+aOnzP1Rr/eA2gymlfGGysgY+Yen1lWfEem+t9e4Nl3pPKeUtSX4hya/XWj+7YixPS/KKJC9Z+tEra623b/j+vTj0fJRSnpnkl5NcM3f6/Um+K8l1pZQhw72/1nrXkA8MUWv93VLKjyT53rnTP19K+VtJfrzW+uDlk6WUr0jyLzNbq5fdk+T7NlyjllJekdm6uOxZSX7r5DpvqbXW+c+UUh6f5LszWyvzf1b3JPkn28Y3gPyX/xcu/5NR1scfT/LmUsp7kvzbJG+stf7OmrE8JslNme14//lLP/7BWuvvrrnGPqgBasBFqwGjrPmG5oP29Fi3e4zpXMa4V5n7/DVJrl3z46uXXl97xp/Jh2qtn97mmkOZjwU95kuPMZ2LNb9I/+YhPeZKjzGdi/w/Tf8mSZ+50mNM5yL/F+jdAADQq27vhTybPzUGz+ZP6O8uUAPUgAtXAxI93hPyX/5ftPzX46V1PdbtHmM6F8/mFpmPBT3mS48xnYs1v0j/5iE95kqPMZ2L/D9N7+YhPeZLjzGdixqwQP8GWlInsGOZw+GY5pHF3TjPe1za8pqXMtvpdf6zn81sx9+fTXJrkt9f8f2/mOQRA2K7cw8xvW6L69w99/5PJPm1zBoYr0/ytjPG8QMj/1kfdD6S/IM9rqXbRpiPRyS5ZcW1P5LZL6BvSPKuk7U5//MHknz9gOu8ek2Mdyd568k6+bmT9f+pFe+7P8lz5L/8l/9NzcelFe//eJL/kuRNSX4yyRszqzGr8r4mee0I86AGqAEXqgaMteZbmQ9He8dYa3jpmpdywLrdY0x7+rMe617l5j3N/fXm4/Dz0WO+9BiTNd/0fOjfyH/5P738v3MPY3zdhjWx/P5J9W96zJUeY5L/7a356N04HA6Hw+FwOEY+er4Ximfzo85Ha/cz0d9VA9SAi14DDj0fl1a8X49X/sv/I+b/WGu+lflwtHeMtYaXrnkpns0NimlPf9aezZmPC5EvPcZkzTc9H5Pt3/SYKz3G1Nh6v3lPc3/o/L9zD2N83YY1sfz+SfVues2XHmNSA9pb89G/cTj2cqza1RPgaGqtt5VSXpDkdUk+7+R0SfLVJ8cqP53kZbXWzxx+hOdyTZIbNrznY0leXmv9mRHGwxq11s+UUr49sx1+v2PuR9clee6aj/1+kptqrf95wKW+5+Rz35fkqrnzj0/yjRs++8EkN9dabxtwvUmT//L/Antskmdv8b77kvzNWuu/OPB4jkINUAOAtvRYt1uIacR7lSaYj+NpIV+GaiEma36R/s1xtJArQ7UQk/yfhAvfv2khV4ZqISb5DwAA7FsL90Ln4Nl8I/R3j0cNUAMuMD1e+S//gab0WLdbiMmzuUXm43hayJehWojJml+kf3McLeTKUC3EJP8n4cL3bpI28mWoFmJSA4AWXXHsAQAsq7XekuRpSV6T2YO5df5rkhfVWl9Sa71vlMEN98NJbs9st9iz/O8k35/kiz2EnIZa67211hcn+bOZrbV1/iDJjyV5Wq311oHXqLXWf5Tkq5L8s5y93i97X2ZNsKf11Mi6TP7L/wvgjiSvSvLOJJ/c8jP/M8krM9vxu8tG1mVqgBoAtKWzup2kjZjGuFdpifk4nhbyZagWYrLmF+nfHEcLuTJUCzHJ/1Hp36zRQq4M1UJM8h8AANi3Fu6FBvBsvlH6u8ejBqgBF4Ae7xryX/4DbemsbidpIybP5haZj+NpIV+GaiEma36R/s1xtJArQ7UQk/wfld7NGVrIl6FaiEkNAFpTaq3HHgPAWqWUqzLbDfjJSZ6Q2a6/H05ye631A8cc2xCllM9J8swkX5TZzrdXZ3YT8+Ekv11rfd8Rh8cWSilflORZSb4gyaOT3JXZ7vPvrLU+uKdrlCRfnuQZSa5N8jlJPp3k45mtlXfVWj+yj2u1QP7Tu1LKFUmemuSLkzwxyePy8Pr4WJLfS/KbtdaPHm2QR6QGALSll7o9r5WYxrhXaYn5OI5W8mWIVmKy5hfp34yvlVwZopWY5P849G/WayVXhmglJvkPAADsUyv3Qpt4Nt8+/d3jUAPonR7vevIfoC291O15rcTk2dwi83EcreTLEK3EZM0v0r8ZXyu5MkQrMcn/cejdnK2VfBmilZjUAGDqbBYGAAAAAAAAAAAAAAAAAAAAAAAAE3XFsQcAAAAAAAAAAAAAAAAAAAAAAAAArGazMAAAAAAAAAAAAAAAAAAAAAAAAJgom4UBAAAAAAAAAAAAAAAAAAAAAADARNksDAAAAAAAAAAAAAAAAAAAAAAAACbKZmEAAAAAAAAAAAAAAAAAAAAAAAAwUTYLAwAAAAAAAAAAAAAAAAAAAAAAgImyWRgAAAAAAAAAAAAAAAAAAAAAAABMlM3CAAAAAAAAAAAAAAAAAAAAAAAAYKJsFgYAAAAAAAAAAAAAAAAAAAAAAAATZbMwAAAAAAAAAAAAAAAAAAAAAAAAmCibhQEAAAAAAAAAAAAAAAAAAAAAAMBE2SwMAAAAAAAAAAAAAAAAAAAAAAAAJspmYQAAAAAAAAAAAAAAAAAAAAAAADBRNgsDAAAAAAAAAAAAAAAAAAAAAACAibJZGAAAAAAAAAAAAAAAAAAAAAAAAEyUzcIAAAAAAAAAAAAAAAAAAAAAAABgomwWBgAAAAAAAAAAAAAAAAAAAAAAABNlszAAAAAAAAAAAAAAAAAAAAAAAACYKJuFAQAAAAAAAAAAAAAAAAAAAAAAwETZLAwAAAAAAAAAAAAAAAAAAAAAAAAmymZhAAAAAAAAAAAAAAAAAAAAAAAAMFE2CwMAAAAAAAAAAAAAAAAAAAAAAICJslkYAAAAAAAAAAAAAAAAAAAAAAAATJTNwgAAAAAAAAAAAAAAAAAAAAAAAGCibBYGAAAAAAAAAAAAAAAAAAAAAAAAE2WzMAAAAAAAAAAAAAAAAAAAAAAAAJgom4UBAAAAAAAAAAAAAAAAAAAAAADARNksDAAAAAAAAAAAAAAAAAAAAAAAACbKZmEAAAAAAAAAAAAAAAAAAAAAAAAwUTYLAwAAAAAAAAAAAAAAAAAAAAAAgImyWRgAAAAAAAAAAAAAAAAAAAAAAABMlM3CAAAAAAAAAAAAAAAAAAAAAAAAYKJsFgYAAAAAAAAAAAAAAAAAAAAAAAATZbMwAAAAAAAAAAAAAAAAAAAAAAAAmCibhQEAAAAAAAAAAAAAAAAAAAAAAMBE2SwMAAAAAAAAAAAAAAAAAAAAAAAAJspmYQAAAAAAAAAAAAAAAAAAAAAAADBR/x+Xhcjgi63IuAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from apd.aggregation.analysis import interactable_plot_multiple_charts, configs\n", + "from apd.aggregation.utils import jupyter_page_file, profile_with_yappi, yappi_package_matches\n", + "import yappi\n", + "\n", + "with profile_with_yappi():\n", + " plot = interactable_plot_multiple_charts()\n", + " plot()\n", + "\n", + "with jupyter_page_file() as output:\n", + " yappi.get_func_stats(filter_callback=lambda stat:\n", + " yappi_package_matches(stat, [\"apd.aggregation\"])\n", + " ).print_all(output)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r\n", + "Clock type: WALL\r\n", + "Ordered by: totaltime, desc\r\n", + "\r\n", + "name ncall tsub ttot tavg \r\n", + "..futures\\thread.py:52 _WorkItem.run 7 0.000092 3.204091 0.457727\r\n", + "..tion\\analysis.py:373 run_in_thread 1 0.000053 1.844382 1.844382\r\n", + "..38\\Lib\\threading.py:859 Thread.run 2/1 0.000025 1.839877 0.919939\r\n", + "..rrent\\futures\\thread.py:66 _worker 2/1 0.000022 1.839852 0.919926\r\n", + "..lectorEventLoop.run_until_complete 1 0.000027 1.839745 1.839745\r\n", + "..ndowsSelectorEventLoop.run_forever 1 0.000088 1.839611 1.839611\r\n", + "..WindowsSelectorEventLoop._run_once 17 0.000408 1.839497 0.108206\r\n", + "..alysis.py:327 plot_multiple_charts 1 1.643447 1.839309 1.839309\r\n", + "..py:635 ThreadPoolExecutor.__exit__ 1 0.000005 1.837286 1.837286\r\n", + "..py:230 ThreadPoolExecutor.shutdown 1 0.000009 1.837281 1.837281\r\n", + "..8\\Lib\\threading.py:979 Thread.join 1 0.000006 1.837272 1.837272\r\n", + "..:1017 Thread._wait_for_tstate_lock 1 0.000011 1.837263 1.837263\r\n", + "..gation\\analysis.py:291 plot_sensor 1 0.000000 1.407986 1.407986\r\n", + "..query.py:88 get_data_by_deployment 1 1.397146 1.397188 1.397188\r\n", + "..d\\aggregation\\query.py:41 get_data 1 1.283592 1.375576 1.375576\r\n", + "..lchemy\\orm\\query.py:3232 Query.all 6 0.004333 1.362649 0.227108\r\n", + "..ctors.py:319 SelectSelector.select 17 0.000177 1.362418 0.080142\r\n", + "..tors.py:313 SelectSelector._select 17 0.000069 1.362216 0.080130\r\n", + "..y\\orm\\query.py:3400 Query.__iter__ 6 0.000054 0.958316 0.159719\r\n", + "..:3425 Query._execute_and_instances 6 0.000073 0.956631 0.159439\r\n", + "..ine\\base.py:916 Connection.execute 9 0.000062 0.740051 0.082228\r\n", + "..:589 PGDialect_psycopg2.do_execute 11 0.000042 0.738361 0.067124\r\n", + "..y:1159 Connection._execute_context 9 0.000307 0.734166 0.081574\r\n", + "..:291 Select._execute_on_connection 6 0.000047 0.731436 0.121906\r\n", + ".. Connection._execute_clauseelement 6 0.000127 0.731389 0.121898\r\n", + "..b\\asyncio\\events.py:79 Handle._run 29 0.000071 0.476528 0.016432\r\n", + "..lchemy\\orm\\loading.py:35 instances 10836 0.002535 0.400000 0.000037\r\n", + "..esult.py:1257 ResultProxy.fetchall 6 0.000339 0.363463 0.060577\r\n", + "..py:1217 ResultProxy._fetchall_impl 6 0.000013 0.359396 0.059899\r\n", + "..query.py:3440 Query._get_bind_args 6 0.000028 0.225079 0.037513\r\n", + "..419 Query._connection_from_session 6 0.000021 0.224996 0.037499\r\n", + "..session.py:1057 Session.connection 6 0.000029 0.224975 0.037496\r\n", + "..:1136 Session._connection_for_bind 6 0.000016 0.224937 0.037489\r\n", + "..onTransaction._connection_for_bind 6 0.000041 0.224921 0.037487\r\n", + "..py:2248 Engine._contextual_connect 1 0.000009 0.224836 0.224836\r\n", + "...py:2282 Engine._wrap_pool_connect 1 0.000003 0.223656 0.223656\r\n", + "..pool\\base.py:354 QueuePool.connect 1 0.000005 0.223653 0.223653\r\n", + "..alchemy\\pool\\base.py:770 _checkout 1 0.000011 0.223648 0.223648\r\n", + "..lalchemy\\pool\\base.py:490 checkout 1 0.000034 0.223632 0.223632\r\n", + "..pool\\impl.py:112 QueuePool._do_get 1 0.000011 0.223585 0.223585\r\n", + "..y:305 QueuePool._create_connection 1 0.000003 0.223563 0.223563\r\n", + "...py:434 _ConnectionRecord.__init__ 1 0.000013 0.223560 0.223560\r\n", + "..py:644 _ConnectionRecord.__connect 1 0.000043 0.223547 0.223547\r\n", + "..egation\\analysis.py:313 4 0.000024 0.186344 0.046586\r\n", + "..184 clean_temperature_fluctuations 4 0.000000 0.186293 0.046573\r\n", + "..gregation\\query.py:116 subiterator 4 0.000000 0.186226 0.046557\r\n", + "..sycopg2\\_json.py:164 typecast_json 10822 0.016073 0.181846 0.000017\r\n", + "..n38\\Lib\\json\\__init__.py:299 loads 10822 0.032198 0.165773 0.000015\r\n", + "..regation\\query.py:24 with_database 2 0.000043 0.140628 0.070314\r\n", + ".._GeneratorContextManager.__enter__ 141 0.000202 0.140299 0.000995\r\n", + "..ngine\\__init__.py:85 create_engine 1 0.000022 0.138392 0.138392\r\n", + "..s.py:52 PlainEngineStrategy.create 1 0.000087 0.138370 0.138370\r\n", + "..lib._bootstrap>:986 _find_and_load 10/2 0.000144 0.134169 0.013417\r\n", + "..strap>:956 _find_and_load_unlocked 10/2 0.000091 0.134084 0.013408\r\n", + "..lib._bootstrap>:650 _load_unlocked 10/2 0.000096 0.131844 0.013184\r\n", + "..>:777 SourceFileLoader.exec_module 9/2 0.000063 0.131659 0.014629\r\n", + "..y\\engine\\strategies.py:106 connect 1 0.000007 0.125748 0.125748\r\n", + "...py:488 PGDialect_psycopg2.connect 1 0.000005 0.125741 0.125741\r\n", + "..es\\psycopg2\\__init__.py:82 connect 1 0.000015 0.125737 0.125737\r\n", + "..rap>:211 _call_with_frames_removed 14/2 0.000022 0.122924 0.008780\r\n", + "..\\decoder.py:332 JSONDecoder.decode 10822 0.046535 0.121966 0.000011\r\n", + "..es\\psycopg2\\extras.py:686 10830 0.021009 0.119481 0.000011\r\n", + "..s\\postgresql\\psycopg2.py:735 dbapi 1 0.000004 0.113976 0.113976\r\n", + "..es\\psycopg2\\__init__.py:1 1 0.000046 0.102701 0.102701\r\n", + "..on38\\Lib\\uuid.py:130 UUID.__init__ 10830 0.069266 0.098473 0.000009\r\n", + "..lection.exec_once_unless_exception 1 0.000007 0.097685 0.097685\r\n", + "..y:316 _ListenerCollection.__call__ 2 0.000017 0.097680 0.048840\r\n", + "..ListenerCollection._exec_once_impl 1 0.000016 0.097677 0.097677\r\n", + "..ion\\database.py:77 from_sql_result 10822 0.019580 0.089918 0.000008\r\n", + "..ngine\\strategies.py:183 on_connect 2 0.000008 0.075679 0.037840\r\n", + "..tgresql\\psycopg2.py:847 on_connect 2 0.000013 0.075669 0.037834\r\n", + "..tgresql\\psycopg2.py:815 on_connect 2 0.000012 0.075598 0.037799\r\n", + "...py:903 PGDialect_psycopg2.oneshot 1 0.000013 0.075586 0.075586\r\n", + "..02 PGDialect_psycopg2._hstore_oids 1 0.000026 0.075573 0.075573\r\n", + "..ycopg2\\extras.py:909 type.get_oids 1 0.000038 0.075520 0.075520\r\n", + "..gregation\\analysis.py:63 draw_date 4 0.000031 0.072437 0.018109\r\n", + "..\\matplotlib\\__init__.py:1535 inner 4 0.000037 0.072405 0.018101\r\n", + "..axes.py:1651 AxesSubplot.plot_date 4 0.000035 0.072294 0.018074\r\n", + "..xes\\_axes.py:1412 AxesSubplot.plot 4 0.000082 0.071675 0.017919\r\n", + ".._collections.py:121 result._asdict 10826 0.061631 0.063835 0.000006\r\n", + "..nal>:849 SourceFileLoader.get_code 9 0.000243 0.063569 0.007063\r\n", + "..._bootstrap>:1017 _handle_fromlist 20/18 0.000074 0.061614 0.003081\r\n", + "..nal>:969 SourceFileLoader.get_data 9 0.000317 0.060499 0.006722\r\n", + "..b._bootstrap>:549 module_from_spec 10/9 0.000052 0.059592 0.005959\r\n", + ".. ExtensionFileLoader.create_module 1 0.000007 0.059071 0.059071\r\n", + ".._base.py:1842 AxesSubplot.add_line 4 0.000108 0.055449 0.013862\r\n", + "..68 AxesSubplot._update_line_limits 4 0.000106 0.053296 0.013324\r\n", + "..tlib\\lines.py:1018 Line2D.get_path 10 0.000046 0.052416 0.005242\r\n", + "..lotlib\\lines.py:664 Line2D.recache 10 0.001214 0.052370 0.005237\r\n", + "...py:168 AxesSubplot.convert_xunits 48 0.000078 0.048491 0.001010\r\n", + "..b\\axis.py:1562 XAxis.convert_units 12 0.000042 0.048443 0.004037\r\n", + "..s\\matplotlib\\dates.py:1911 convert 6 0.000028 0.048202 0.008034\r\n", + "..s\\matplotlib\\dates.py:401 date2num 6 0.000082 0.048174 0.008029\r\n", + "..on_base.py:2063 vectorize.__call__ 4 0.000117 0.047604 0.011901\r\n", + "...py:2154 vectorize._vectorize_call 4 0.003677 0.047487 0.011872\r\n", + "..\\figure.py:1259 Figure.add_subplot 1 0.000035 0.043835 0.043835\r\n", + "..ubplots.py:18 AxesSubplot.__init__ 1 0.000041 0.043601 0.043601\r\n", + "..tplotlib\\dates.py:210 _to_ordinalf 8467 0.029289 0.041988 0.000005\r\n", + "..oder.py:343 JSONDecoder.raw_decode 10822 0.037424 0.037424 0.000003\r\n", + "..\\_base.py:378 AxesSubplot.__init__ 1 0.000143 0.036550 0.036550\r\n", + "..chemy\\orm\\loading.py:83 6 0.013648 0.033343 0.005557\r\n", + "..\\psycopg2\\extensions.py:1 1 0.000186 0.025350 0.025350\r\n", + "..\\axes\\_base.py:948 AxesSubplot.cla 1 0.000154 0.024886 0.024886\r\n", + "..lchemy\\util\\langhelpers.py:1506 go 1 0.000010 0.021983 0.021983\r\n", + "..ne\\strategies.py:194 first_connect 1 0.000039 0.021972 0.021972\r\n", + "..:715 PGDialect_psycopg2.initialize 1 0.000026 0.021725 0.021725\r\n", + "..2456 PGDialect_psycopg2.initialize 1 0.000048 0.021698 0.021698\r\n", + "..l\\psycopg2.py:747 _psycopg2_extras 2 0.000024 0.020241 0.010120\r\n", + "..:779 PGDialect_psycopg2.on_connect 1 0.000012 0.020232 0.020232\r\n", + "..:307 PGDialect_psycopg2.initialize 1 0.000057 0.019880 0.019880\r\n", + "..53 _process_plot_var_args.__call__ 8 0.000061 0.015955 0.001994\r\n", + ".. _process_plot_var_args._plot_args 4 0.000148 0.015865 0.003966\r\n", + "..\\axis.py:884 XAxis.set_tick_params 8 0.000121 0.015507 0.001938\r\n", + "..\\axis.py:687 _LazyTickList.__get__ 6/4 0.000042 0.013303 0.002217\r\n", + "..tplotlib\\axis.py:56 XTick.__init__ 6 0.000433 0.013213 0.002202\r\n", + "..n\\query.py:76 get_deployment_by_id 4 0.010913 0.013115 0.003279\r\n", + "..function__ internals>:2 atleast_1d 24 0.000048 0.012936 0.000539\r\n", + "..y\\core\\shape_base.py:24 atleast_1d 24 0.000157 0.012825 0.000534\r\n", + "..b\\cbook\\__init__.py:1320 _check_1d 8 0.000033 0.012712 0.001589\r\n", + "..mpy\\core\\_asarray.py:88 asanyarray 72 0.000061 0.012631 0.000175\r\n", + "..xes\\_base.py:2716 AxesSubplot.grid 2 0.000022 0.012290 0.006145\r\n", + "..matplotlib\\axis.py:1456 XAxis.grid 4 0.000042 0.012264 0.003066\r\n", + "..ages\\psycopg2\\extras.py:1 1 0.000066 0.010984 0.010984\r\n", + "..chemy\\orm\\loading.py:84 10830 0.010873 0.010873 0.000001\r\n", + "..otlib\\lines.py:269 Line2D.__init__ 30 0.001371 0.010610 0.000354\r\n", + "..on-68gteq6k\\lib\\re.py:287 _compile 85 0.000336 0.010565 0.000124\r\n", + "..q6k\\lib\\sre_compile.py:759 compile 12 0.000126 0.009982 0.000832\r\n", + "..es\\_axes.py:299 AxesSubplot.legend 1 0.000023 0.009283 0.009283\r\n", + "..tlib\\legend.py:306 Legend.__init__ 1 0.000569 0.009178 0.009178\r\n", + "..ct_psycopg2._check_unicode_returns 1 0.000050 0.009017 0.009017\r\n", + "..portlib._bootstrap>:890 _find_spec 10 0.000165 0.009003 0.000900\r\n", + "..thon38\\Lib\\uuid.py:231 UUID.__eq__ 10834 0.006940 0.008965 0.000001\r\n", + "..y\\util\\_collections.py:112 __new__ 10830 0.004995 0.008821 0.000001\r\n", + "..my\\engine\\default.py:415 1 0.000011 0.008803 0.008803\r\n", + "..ngine\\default.py:378 check_unicode 2 0.000053 0.008793 0.004396\r\n", + "..bootstrap_external>:1334 find_spec 10 0.000027 0.008728 0.000873\r\n", + "..bootstrap_external>:1302 _get_spec 10 0.000084 0.008701 0.000870\r\n", + "..ib\\axis.py:967 XAxis.set_clip_path 2 0.000036 0.008564 0.004282\r\n", + "..e.py:1134 Connection._execute_text 3 0.000057 0.008541 0.002847\r\n", + "..es\\matplotlib\\pyplot.py:427 figure 1 0.000053 0.008060 0.008060\r\n", + "..xternal>:1431 FileFinder.find_spec 17 0.000331 0.007932 0.000467\r\n", + "..ion-68gteq6k\\lib\\re.py:248 compile 10 0.000012 0.007849 0.000785\r\n", + "..d_bases.py:3325 new_figure_manager 1 0.000026 0.007841 0.007841\r\n", + "..tlib\\figure.py:275 Figure.__init__ 1 0.000636 0.007679 0.007679\r\n", + ".._psycopg2._get_server_version_info 1 0.000022 0.007530 0.007530\r\n", + "..end.py:727 Legend._init_legend_box 1 0.000729 0.007464 0.007464\r\n", + ".._bootstrap_external>:80 _path_stat 40 0.000085 0.007435 0.000186\r\n", + "..py:1293 Connection._cursor_execute 2 0.000014 0.007370 0.003685\r\n", + "..8gteq6k\\lib\\sre_parse.py:937 parse 12 0.000138 0.007321 0.000610\r\n", + "..ation\\analysis.py:191 datapoint_ok 10826 0.007280 0.007280 0.000001\r\n", + "..rrent\\futures\\thread.py:158 submit 7 0.000144 0.007162 0.001023\r\n", + "..6k\\lib\\sre_parse.py:435 _parse_sub 59/12 0.000420 0.007081 0.000120\r\n", + "..s.py:129 AxesSubplot.update_params 1 0.000018 0.006972 0.006972\r\n", + "..ec.py:586 SubplotSpec.get_position 1 0.000379 0.006954 0.006954\r\n", + "..gteq6k\\lib\\sre_parse.py:493 _parse 75/14 0.002524 0.006897 0.000092\r\n", + "..dPoolExecutor._adjust_thread_count 7 0.000109 0.006843 0.000978\r\n", + "..kages\\psycopg2\\_json.py:1 1 0.000022 0.006798 0.006798\r\n", + ":1 Select. 8 0.000037 0.006789 0.000849\r\n", + "..sql\\elements.py:405 Select.compile 8 0.000033 0.006752 0.000844\r\n", + "..l\\elements.py:470 Select._compiler 8 0.000041 0.006719 0.000840\r\n", + "..y:527 PGCompiler_psycopg2.__init__ 8 0.000111 0.006678 0.000835\r\n", + "..otlib\\axis.py:1944 XAxis._get_tick 3 0.000021 0.006665 0.002222\r\n", + "..otlib\\axis.py:2231 YAxis._get_tick 3 0.000021 0.006593 0.002198\r\n", + "..y:274 PGCompiler_psycopg2.__init__ 8 0.000058 0.006562 0.000820\r\n", + ":1 DataPoint.__init__ 10822 0.006522 0.006522 0.000001\r\n", + "..py:349 PGCompiler_psycopg2.process 8 0.000029 0.006504 0.000813\r\n", + "..rs.py:86 Select._compiler_dispatch 97/8 0.000331 0.006475 0.000067\r\n", + "..5 PGCompiler_psycopg2.visit_select 8 0.000210 0.006430 0.000804\r\n", + "..ib\\axis.py:334 XTick._apply_params 14 0.000333 0.006152 0.000439\r\n", + "..\\artist.py:731 XAxis.set_clip_path 26 0.000415 0.005825 0.000224\r\n", + "..\\Lib\\threading.py:834 Thread.start 2 0.000033 0.005717 0.002858\r\n", + "..ib\\threading.py:270 Condition.wait 4 0.000112 0.005571 0.001393\r\n", + "..egation\\analysis.py:212 8613 0.005513 0.005513 0.000001\r\n", + "..tplotlib\\artist.py:1095 Line2D.set 70 0.000373 0.005507 0.000079\r\n", + "..38\\Lib\\threading.py:540 Event.wait 2 0.000027 0.005495 0.002747\r\n", + "..otlib\\axis.py:825 XAxis._set_scale 16 0.000049 0.005371 0.000336\r\n", + "..ap_external>:90 _path_is_mode_type 13 0.000052 0.005363 0.000413\r\n", + "..ootstrap_external>:99 _path_isfile 12 0.000029 0.005197 0.000433\r\n", + "..et_default_locators_and_formatters 16 0.000126 0.005196 0.000325\r\n", + "..base.py:553 AxesSubplot._init_axis 1 0.000047 0.005155 0.005155\r\n", + "...py:89 HandlerLine2D.legend_artist 4 0.000047 0.004979 0.001245\r\n", + "..lib\\artist.py:974 Rectangle.update 140 0.001036 0.004733 0.000034\r\n", + "..y:229 HandlerLine2D.create_artists 4 0.000094 0.004674 0.001168\r\n", + "..s\\matplotlib\\axis.py:841 XAxis.cla 12 0.000087 0.004533 0.000378\r\n", + "..my\\sql\\compiler.py:2127 8 0.000069 0.004473 0.000559\r\n", + "..iler_psycopg2._label_select_column 29 0.000356 0.004404 0.000152\r\n", + "..hes.py:260 Rectangle.get_transform 18 0.000077 0.004024 0.000224\r\n", + "..plotlib\\axis.py:744 XAxis.__init__ 2 0.000070 0.003973 0.001986\r\n", + "<__array_function__ internals>:2 dot 67 0.000177 0.003854 0.000058\r\n", + "..\\transforms.py:1986 Affine2D.scale 13 0.000153 0.003812 0.000293\r\n", + "..ib\\axis.py:229 XTick.set_clip_path 6 0.000032 0.003711 0.000619\r\n", + "..:776 Rectangle.get_patch_transform 18 0.000038 0.003626 0.000201\r\n", + ".. Rectangle._update_patch_transform 18 0.000235 0.003587 0.000199\r\n", + "..se.py:2873 AxesSubplot.tick_params 2 0.000242 0.003572 0.001786\r\n", + "..tlib\\artist.py:217 Rectangle.stale 171.. 0.002093 0.003507 0.000002\r\n", + "..sSelectorEventLoop.run_in_executor 6 0.000084 0.003206 0.000534\r\n", + "..\\__init__.py:1640 normalize_kwargs 74 0.002561 0.003200 0.000043\r\n", + "..icker.py:2848 AutoLocator.__init__ 16 0.000044 0.003190 0.000199\r\n", + "..icker.py:2051 AutoLocator.__init__ 16 0.000061 0.003118 0.000195\r\n", + "..t.py:1240 ResultProxy.process_rows 9 0.000037 0.003098 0.000344\r\n", + "..y\\engine\\result.py:1253 9 0.003062 0.003062 0.000340\r\n", + "..ker.py:2126 AutoLocator.set_params 16 0.000144 0.003058 0.000191\r\n", + "..gine\\base.py:908 Connection.scalar 2 0.000026 0.002811 0.001405\r\n", + "..es\\numpy\\core\\_methods.py:32 _amin 2 0.000005 0.002705 0.001352\r\n", + "..10 PGCompiler_psycopg2.visit_label 29 0.000329 0.002675 0.000092\r\n", + "..ges\\numpy\\core\\_methods.py:47 _all 1 0.000018 0.002555 0.002555\r\n", + "..matplotlib\\text.py:170 Text.update 65 0.000382 0.002549 0.000039\r\n", + "..b\\patches.py:42 Rectangle.__init__ 7 0.000199 0.002508 0.000358\r\n", + "..teq6k\\lib\\sre_compile.py:598 _code 12 0.000055 0.002475 0.000206\r\n", + "..ation-68gteq6k\\lib\\re.py:186 match 70 0.000140 0.002414 0.000034\r\n", + "..ages\\psycopg2\\_range.py:1 1 0.000042 0.002367 0.002367\r\n", + "..tplotlib\\text.py:121 Text.__init__ 24 0.000320 0.002354 0.000098\r\n", + "..ent\\base.py:295 dispatcher.__get__ 10 0.000075 0.002312 0.000231\r\n", + "..yncio\\events.py:756 new_event_loop 1 0.000022 0.002309 0.002309\r\n", + "..ib\\axis.py:485 XTick._get_gridline 3 0.000044 0.002301 0.000767\r\n", + "..ctorEventLoopPolicy.new_event_loop 1 0.000014 0.002285 0.002285\r\n", + ".._WindowsSelectorEventLoop.__init__ 1 0.000031 0.002271 0.002271\r\n", + ".. _GeneratorContextManager.__exit__ 142.. 0.000276 0.002267 0.000016\r\n", + "..arkers.py:222 MarkerStyle.__init__ 38 0.000106 0.002225 0.000059\r\n", + "..alect_psycopg2.get_isolation_level 1 0.000009 0.002224 0.002224\r\n", + "..otlib\\axes\\_base.py:363 4 0.000021 0.002202 0.000550\r\n", + "..\\orm\\session.py:1554 Session.query 6 0.000028 0.002200 0.000367\r\n", + "..1 _process_plot_var_args._makeline 4 0.000055 0.002180 0.000545\r\n", + "..y:930 AxesSubplot._gen_axes_spines 1 0.000012 0.002176 0.002176\r\n", + "..my\\orm\\query.py:164 Query.__init__ 6 0.000024 0.002172 0.000362\r\n", + "..lotlib\\axes\\_base.py:945 5 0.000015 0.002164 0.000433\r\n", + "..lib\\ticker.py:2103 _validate_steps 16 0.001337 0.002151 0.000134\r\n", + "..plotlib\\spines.py:517 linear_spine 4 0.000037 0.002150 0.000537\r\n", + "..m\\query.py:193 Query._set_entities 6 0.000089 0.002148 0.000358\r\n", + "..init__.py:791 RcParams.__getitem__ 1343 0.001641 0.002147 0.000002\r\n", + "..sSelectorEventLoop._make_self_pipe 1 0.000029 0.002112 0.002112\r\n", + "..\\numpy\\core\\_asarray.py:16 asarray 176 0.000180 0.002109 0.000012\r\n", + "..psycopg2\\_range.py:290 RangeCaster 1 0.000006 0.002101 0.002101\r\n", + "..py:133 GridSpec.get_grid_positions 1 0.000057 0.002062 0.002062\r\n", + "..lchemy\\event\\base.py:87 5 0.000156 0.002010 0.000402\r\n", + "..hon38\\Lib\\socket.py:579 socketpair 1 0.000134 0.001971 0.001971\r\n", + "..kers.py:289 MarkerStyle.set_marker 42 0.000327 0.001957 0.000047\r\n", + "..lib\\sre_parse.py:254 Tokenizer.get 1519 0.001009 0.001919 0.000001\r\n", + "..lotlib\\spines.py:36 Spine.__init__ 4 0.000116 0.001912 0.000478\r\n", + ".._axes.py:147 AxesSubplot.set_title 4 0.000101 0.001903 0.000476\r\n", + "..ap_external>:578 _compile_bytecode 9 0.000053 0.001885 0.000209\r\n", + "..ray_function__ internals>:2 cumsum 3 0.000009 0.001882 0.000627\r\n", + "..alchemy\\engine\\url.py:221 make_url 1 0.000009 0.001880 0.001880\r\n", + "..ine\\url.py:234 _parse_rfc1738_args 1 0.000020 0.001870 0.001870\r\n", + "..py\\core\\fromnumeric.py:2358 cumsum 3 0.000009 0.001860 0.000620\r\n", + "..y\\core\\fromnumeric.py:55 _wrapfunc 3 0.000014 0.001851 0.000617\r\n", + "..my\\util\\deprecations.py:115 warned 21/20 0.000099 0.001850 0.000088\r\n", + "..ery.py:4539 _ColumnEntity.__init__ 32/7 0.000771 0.001838 0.000057\r\n", + "..mpy\\core\\fromnumeric.py:42 _wrapit 3 0.000024 0.001835 0.000612\r\n", + "..otlib\\artist.py:74 Figure.__init__ 88 0.001132 0.001813 0.000021\r\n", + "..pg2\\extras.py:1007 CompositeCaster 1 0.000009 0.001811 0.001811\r\n", + "..py:1960 Affine2D.rotate_deg_around 18 0.000105 0.001796 0.000100\r\n", + "<__array_function__ internals>:2 any 76 0.000151 0.001772 0.000023\r\n", + "..q6k\\lib\\sre_compile.py:71 _compile 111.. 0.000776 0.001769 0.000016\r\n", + "..nContext_psycopg2.get_result_proxy 9 0.000073 0.001769 0.000197\r\n", + "..ib\\axis.py:603 YTick._get_gridline 3 0.000039 0.001746 0.000582\r\n", + "..ttr.py:227 _EmptyListener.__init__ 77 0.000409 0.001742 0.000023\r\n", + "..b\\axis.py:459 XTick._get_tick1line 3 0.000093 0.001732 0.000577\r\n", + "...py:1247 BboxTransformFrom.__add__ 78 0.000260 0.001679 0.000022\r\n", + "..result.py:767 ResultProxy.__init__ 9 0.000119 0.001671 0.000186\r\n", + "..ction__ internals>:2 unravel_index 1 0.000005 0.001658 0.001658\r\n", + "..s\\matplotlib\\colors.py:157 to_rgba 51 0.000440 0.001653 0.000032\r\n", + "..nction__ internals>:2 column_stack 12 0.000039 0.001614 0.000135\r\n", + "..forms.py:817 Bbox.update_from_path 4 0.000067 0.001561 0.000390\r\n", + "..ery.py:3929 Query._compile_context 6 0.000129 0.001552 0.000259\r\n", + "...py:793 ResultProxy._init_metadata 9 0.000094 0.001552 0.000172\r\n", + "..t.py:49 Spine._stale_axes_callback 302 0.000583 0.001530 0.000005\r\n", + "..s.py:880 memoized_property.__get__ 99/89 0.000358 0.001519 0.000015\r\n", + "..lib\\shape_base.py:597 column_stack 12 0.000149 0.001496 0.000125\r\n", + "..e\\fromnumeric.py:73 _wrapreduction 85 0.000478 0.001495 0.000018\r\n", + "..4 PGCompiler_psycopg2.visit_column 37 0.000844 0.001478 0.000040\r\n", + "..numpy\\core\\fromnumeric.py:2189 any 76 0.000191 0.001477 0.000019\r\n", + "..ycopg2\\extras.py:805 HstoreAdapter 1 0.000007 0.001458 0.001458\r\n", + "..ult.py:269 ResultMetaData.__init__ 9 0.000173 0.001445 0.000161\r\n", + "..res\\_base.py:517 Future.set_result 7 0.000077 0.001440 0.000206\r\n", + "..ger.py:619 FontProperties.__init__ 23 0.000332 0.001434 0.000062\r\n", + "..unction__ internals>:2 concatenate 29 0.000060 0.001405 0.000048\r\n", + "..y:2462 composite_transform_factory 78 0.000261 0.001376 0.000018\r\n", + "..sql\\operators.py:358 Column.__eq__ 10/5 0.000033 0.001365 0.000136\r\n", + "..sql\\elements.py:740 Column.operate 5 0.000015 0.001345 0.000269\r\n", + "..ansform.contains_branch_seperately 4 0.000037 0.001339 0.000335\r\n", + "..b\\axis.py:574 YTick._get_tick1line 3 0.000036 0.001315 0.000438\r\n", + "..teGenericTransform.contains_branch 4 0.000029 0.001287 0.000322\r\n", + ":1 Comparator. 5 0.000021 0.001285 0.000257\r\n", + "..\\sqlalchemy\\event\\api.py:34 listen 3 0.000015 0.001278 0.000426\r\n", + "..\\type_api.py:64 Comparator.operate 5 0.000039 0.001264 0.000253\r\n", + ".. QueryEventsDispatch._for_instance 8 0.000024 0.001262 0.000158\r\n", + "..se.py:325 Future._invoke_callbacks 7 0.000055 0.001261 0.000180\r\n", + "..b\\axis.py:589 YTick._get_tick2line 3 0.000027 0.001250 0.000417\r\n", + "..116 QueryEventsDispatch._for_class 8 0.000031 0.001238 0.000155\r\n", + "..ine\\base.py:69 Connection.__init__ 2 0.000042 0.001217 0.000608\r\n", + ".._comparator.py:41 _boolean_compare 5 0.000056 0.001207 0.000241\r\n", + "..py:77 QueryEventsDispatch.__init__ 8 0.000082 0.001206 0.000151\r\n", + "..cio\\futures.py:364 _call_set_state 6 0.000042 0.001206 0.000201\r\n", + ".. _ClsLevelDispatch.update_subclass 77 0.000399 0.001202 0.000016\r\n", + "..sycopg2\\extensions.py:146 make_dsn 1 0.000017 0.001179 0.001179\r\n", + "..ib\\axis.py:1504 XAxis.update_units 14 0.000096 0.001168 0.000083\r\n", + "..cbook\\__init__.py:1933 _setattr_cm 280 0.000727 0.001165 0.000004\r\n", + "..ctorEventLoop.call_soon_threadsafe 6 0.000037 0.001160 0.000193\r\n", + "..t\\registry.py:193 _EventKey.listen 4/3 0.000077 0.001157 0.000289\r\n", + "..xesSubplot._set_title_offset_trans 5 0.000122 0.001149 0.000230\r\n", + "..er.py:72 HandlerLine2D.update_prop 8 0.000034 0.001139 0.000142\r\n", + "..__init__.py:2073 _check_isinstance 94 0.000869 0.001139 0.000012\r\n", + "..offsetbox.py:783 TextArea.__init__ 5 0.000093 0.001137 0.000227\r\n", + "..MetaData._merge_cursor_description 9 0.000098 0.001134 0.000126\r\n", + "..py:1240 Line2D.set_markerfacecolor 30 0.000106 0.001118 0.000037\r\n", + "..5 CompositeGenericTransform.__eq__ 12/8 0.000035 0.001090 0.000091\r\n", + "..es.py:341 Rectangle._set_facecolor 20 0.000067 0.001055 0.000053\r\n", + "..ms.py:1639 TransformWrapper.__eq__ 4 0.000010 0.001052 0.000263\r\n", + ".._psycopg2._get_default_schema_name 1 0.000004 0.001048 0.001048\r\n", + "..y:163 TransformedBbox.set_children 149 0.000873 0.001042 0.000007\r\n", + "..rms.py:2093 BlendedAffine2D.__eq__ 4 0.000027 0.001042 0.000260\r\n", + "..\\sre_parse.py:233 Tokenizer.__next 1696 0.001032 0.001032 0.000001\r\n", + "..wsSelectorEventLoop._write_to_self 6 0.000028 0.001026 0.000171\r\n", + "..t_comparator.py:359 _check_literal 5 0.000066 0.001021 0.000204\r\n", + "..s.py:1709 IdentityTransform.__eq__ 9/8 0.000612 0.001013 0.000113\r\n", + "..\\spines.py:226 Spine.register_axis 4 0.000008 0.001009 0.000252\r\n", + "..b\\axis.py:470 XTick._get_tick2line 3 0.000027 0.000999 0.000333\r\n", + ".._api.py:527 NullType._dialect_info 26 0.000128 0.000985 0.000038\r\n", + "..matplotlib\\spines.py:238 Spine.cla 4 0.000004 0.000982 0.000246\r\n", + "..9 PoolEventsDispatch._for_instance 2 0.000005 0.000975 0.000488\r\n", + "..:116 PoolEventsDispatch._for_class 2 0.000007 0.000971 0.000485\r\n", + "...py:77 PoolEventsDispatch.__init__ 2 0.000046 0.000963 0.000482\r\n", + "..lements.py:4145 Column._bind_param 5 0.000049 0.000942 0.000188\r\n", + "..pe_api.py:450 VARCHAR.dialect_impl 34 0.000097 0.000924 0.000027\r\n", + "..arkers.py:244 MarkerStyle._recache 80 0.000208 0.000923 0.000012\r\n", + "..nsforms.py:1972 Affine2D.translate 36 0.000172 0.000893 0.000025\r\n", + "..ents.py:942 BindParameter.__init__ 5 0.000112 0.000893 0.000179\r\n", + "..6k\\lib\\abc.py:96 __instancecheck__ 141 0.000157 0.000879 0.000006\r\n", + ".._function__ internals>:2 full_like 4 0.000014 0.000867 0.000217\r\n", + "..ist.py:358 Rectangle.set_transform 85 0.000295 0.000867 0.000010\r\n", + "..umpy\\core\\numeric.py:341 full_like 4 0.000030 0.000839 0.000210\r\n", + "..GIdentifierPreparer_psycopg2.quote 105 0.000165 0.000838 0.000008\r\n", + "..tplotlib\\artist.py:1006 140 0.000107 0.000834 0.000006\r\n", + "..piler_psycopg2._setup_select_stack 8 0.000088 0.000830 0.000104\r\n", + "..ib\\transforms.py:727 Bbox.__init__ 41 0.000282 0.000827 0.000020\r\n", + "..text_psycopg2.get_result_processor 30 0.000083 0.000823 0.000027\r\n", + "..otlib\\axis.py:544 YTick._get_text1 3 0.000044 0.000805 0.000268\r\n", + "..ry.py:4056 Query._simple_statement 6 0.000093 0.000802 0.000134\r\n", + "..sforms.py:1940 Affine2D.rotate_deg 18 0.000166 0.000798 0.000044\r\n", + "..\\patches.py:704 Rectangle.__init__ 2 0.000027 0.000793 0.000396\r\n", + "..threading.py:394 Semaphore.acquire 7 0.000100 0.000787 0.000112\r\n", + "..function__ internals>:2 empty_like 4 0.000014 0.000772 0.000193\r\n", + ":1 select 8 0.000064 0.000770 0.000096\r\n", + "..otlib\\axis.py:559 YTick._get_text2 3 0.000038 0.000762 0.000254\r\n", + "..CompositeGenericTransform.__init__ 69 0.000255 0.000761 0.000011\r\n", + "..ernal>:1479 FileFinder._fill_cache 1 0.000077 0.000740 0.000740\r\n", + ".. NullType._cached_result_processor 30 0.000178 0.000739 0.000025\r\n", + "...py:978 Rectangle._update_property 42 0.000194 0.000726 0.000017\r\n", + "..my\\engine\\result.py:463 6 0.000119 0.000720 0.000120\r\n", + "..lib\\transforms.py:782 from_extents 20 0.000102 0.000710 0.000036\r\n", + ":1 Select.__init__ 8 0.000126 0.000706 0.000088\r\n", + "...py:3065 Select._get_display_froms 8 0.000363 0.000704 0.000088\r\n", + "..hon38\\Lib\\contextlib.py:238 helper 141 0.000235 0.000704 0.000005\r\n", + "..arse.py:164 SubPattern.__getitem__ 707 0.000520 0.000702 0.000001\r\n", + "..tplotlib\\ticker.py:2118 _staircase 16 0.000089 0.000697 0.000044\r\n", + "..ok\\__init__.py:2108 _check_in_list 449 0.000565 0.000690 0.000002\r\n", + "..lines.py:1143 Line2D.set_linestyle 34 0.000284 0.000683 0.000020\r\n", + "..orm\\session.py:1002 Session.commit 1 0.000010 0.000682 0.000682\r\n", + "..ult.py:924 ResultProxy._soft_close 9 0.000043 0.000679 0.000075\r\n", + "..n.py:500 SessionTransaction.commit 1 0.000042 0.000673 0.000673\r\n", + "..xternal>:1265 _path_importer_cache 19 0.000032 0.000670 0.000035\r\n", + "..sSelectorEventLoop._read_from_self 6 0.000062 0.000662 0.000110\r\n", + "..otlib\\axis.py:427 XTick._get_text1 3 0.000032 0.000661 0.000220\r\n", + "..hreading.py:249 Condition.__exit__ 61 0.000614 0.000660 0.000011\r\n", + "..b\\sre_compile.py:536 _compile_info 12 0.000120 0.000648 0.000054\r\n", + "..1254 Line2D.set_markerfacecoloralt 30 0.000080 0.000645 0.000021\r\n", + "..93 vectorize._get_ufunc_and_otypes 4 0.000076 0.000640 0.000160\r\n", + "..sql\\type_api.py:546 NullType.adapt 13 0.000055 0.000638 0.000049\r\n", + "..Preparer_psycopg2._requires_quotes 22 0.000133 0.000636 0.000029\r\n", + "..otstrap_external>:1252 _path_hooks 1 0.000024 0.000636 0.000636\r\n", + "..1333 Connection._safe_close_cursor 9 0.000021 0.000635 0.000071\r\n", + "..transforms.py:1924 Affine2D.rotate 18 0.000301 0.000632 0.000035\r\n", + "..ms.py:986 TransformedBbox.__init__ 21 0.000147 0.000625 0.000030\r\n", + "..hes.py:348 Rectangle.set_facecolor 12 0.000023 0.000619 0.000052\r\n", + "..>:1010 SourceFileLoader.path_stats 9 0.000024 0.000617 0.000069\r\n", + "..egation-68gteq6k\\lib\\re.py:201 sub 5 0.000024 0.000614 0.000123\r\n", + "..ray_function__ internals>:2 hstack 16 0.000025 0.000608 0.000038\r\n", + "..ing>:1 PGDialect_psycopg2.__init__ 2 0.000012 0.000593 0.000296\r\n", + "..\\matplotlib\\transforms.py:763 unit 19 0.000080 0.000585 0.000031\r\n", + "..nghelpers.py:1167 constructor_copy 13 0.000121 0.000583 0.000045\r\n", + "..ase.py:3767 AxesSubplot.xaxis_date 4 0.000017 0.000583 0.000146\r\n", + "..sion.py:3236 sessionmaker.__call__ 1 0.000014 0.000579 0.000579\r\n", + "..qlalchemy\\orm\\base.py:222 generate 6 0.000049 0.000578 0.000096\r\n", + "..nd.py:558 Legend._set_artist_props 9 0.000085 0.000576 0.000064\r\n", + "..iler_psycopg2._compose_select_body 8 0.000089 0.000575 0.000072\r\n", + "..otlib\\axis.py:1812 XAxis.axis_date 4 0.000045 0.000566 0.000141\r\n", + ":1 Session.__init__ 1 0.000005 0.000563 0.000563\r\n", + "..velDispatch._assign_cls_collection 77 0.000249 0.000561 0.000007\r\n", + "..atplotlib\\lines.py:632 Line2D.axes 42 0.000206 0.000552 0.000013\r\n", + "..rm\\session.py:655 Session.__init__ 1 0.000024 0.000551 0.000551\r\n", + "..y\\orm\\session.py:893 Session.begin 3 0.000013 0.000548 0.000183\r\n", + "..b\\artist.py:336 Rectangle.pchanged 373 0.000436 0.000548 0.000001\r\n", + "..selectable.py:2760 Select.__init__ 8 0.000175 0.000540 0.000068\r\n", + "..ansforms.py:1701 Affine2D.__init__ 165 0.000352 0.000537 0.000003\r\n", + "..py:220 SessionTransaction.__init__ 3 0.000029 0.000535 0.000178\r\n", + "..tist.py:804 Rectangle.get_animated 1714 0.000533 0.000533 0.000000\r\n", + "..nsforms.py:126 Affine2D.invalidate 76 0.000275 0.000533 0.000007\r\n", + "..38\\Lib\\socket.py:285 socket.accept 1 0.000037 0.000532 0.000532\r\n", + ".._psycopg2._setup_crud_result_proxy 3 0.000016 0.000524 0.000175\r\n", + "..\\patches.py:436 Rectangle.set_fill 7 0.000032 0.000523 0.000075\r\n", + "..nits.py:197 Registry.get_converter 24/14 0.000201 0.000520 0.000022\r\n", + "..otlib\\axis.py:444 XTick._get_text2 3 0.000025 0.000517 0.000172\r\n", + ".._bootstrap>:477 _init_module_attrs 10 0.000100 0.000517 0.000052\r\n", + "..is.py:1670 XAxis.set_minor_locator 16 0.000092 0.000517 0.000032\r\n", + "..py:663 PGDialect_psycopg2.__init__ 1 0.000027 0.000515 0.000515\r\n", + "..k\\lib\\abc.py:100 __subclasscheck__ 85/14 0.000067 0.000514 0.000006\r\n", + "..:382 WeakKeyDictionary.__getitem__ 248 0.000508 0.000508 0.000002\r\n", + "..\\lines.py:730 Line2D.set_transform 38 0.000085 0.000508 0.000013\r\n", + "..ckages\\cycler.py:349 Cycler.by_key 10 0.000223 0.000505 0.000051\r\n", + "..\\asyncio\\futures.py:351 _set_state 6 0.000023 0.000503 0.000084\r\n", + "..umpy\\core\\shape_base.py:285 hstack 16 0.000116 0.000487 0.000030\r\n", + ".._base.py:3093 AxesSubplot.set_xlim 1 0.000060 0.000483 0.000483\r\n", + "..artist.py:695 Rectangle.set_figure 95 0.000217 0.000482 0.000005\r\n", + "..es.py:2396 FancyBboxPatch.__init__ 1 0.000023 0.000480 0.000480\r\n", + "..on__ internals>:2 broadcast_arrays 10 0.000034 0.000478 0.000048\r\n", + "..e_parse.py:174 SubPattern.getwidth 138.. 0.000375 0.000478 0.000003\r\n", + "..lalchemy\\event\\base.py:243 _listen 3 0.000010 0.000476 0.000159\r\n", + "..__.py:138 CallbackRegistry.connect 33 0.000252 0.000473 0.000014\r\n", + "..ler_psycopg2._truncated_identifier 34 0.000151 0.000470 0.000014\r\n", + "..is.py:1654 XAxis.set_major_locator 17 0.000121 0.000470 0.000028\r\n", + "..gine\\default.py:753 _init_compiled 6 0.000166 0.000470 0.000078\r\n", + ".. _GeneratorContextManager.__init__ 141 0.000401 0.000469 0.000003\r\n", + "..istry.py:246 _EventKey.base_listen 3 0.000082 0.000467 0.000156\r\n", + "..:903 AxesSubplot._set_artist_props 7 0.000135 0.000464 0.000066\r\n", + "..py:913 AxesSubplot._gen_axes_patch 1 0.000004 0.000464 0.000464\r\n", + "..\\futures.py:315 _copy_future_state 6 0.000106 0.000461 0.000077\r\n", + "..lib\\transforms.py:82 Bbox.__init__ 306 0.000454 0.000454 0.000001\r\n", + "..ore\\numerictypes.py:365 issubdtype 4 0.000025 0.000451 0.000113\r\n", + "..lotlib\\colors.py:123 _is_nth_color 51 0.000107 0.000451 0.000009\r\n", + "..ansforms.py:1831 Affine2D.__init__ 49 0.000156 0.000449 0.000009\r\n", + "..offsetbox.py:175 TextArea.__init__ 16 0.000049 0.000449 0.000028\r\n", + ":1 Query.order_by 1 0.000002 0.000428 0.000428\r\n", + "..r.py:63 HandlerLine2D._update_prop 8 0.000011 0.000425 0.000053\r\n", + "..re\\numerictypes.py:293 issubclass_ 8 0.000019 0.000425 0.000053\r\n", + "..53 _ListenerCollection.__getattr__ 45/24 0.000285 0.000424 0.000009\r\n", + "..e_compile.py:276 _optimize_charset 34 0.000263 0.000415 0.000012\r\n", + "..HandlerLine2D._default_update_prop 8 0.000010 0.000414 0.000052\r\n", + "..y\\orm\\query.py:1856 Query.order_by 1 0.000007 0.000413 0.000413\r\n", + ".. Line2D._split_drawstyle_linestyle 64 0.000256 0.000413 0.000006\r\n", + "..ide_tricks.py:206 broadcast_arrays 10 0.000179 0.000412 0.000041\r\n", + "..s.py:424 Spine.get_spine_transform 28/24 0.000181 0.000406 0.000014\r\n", + "..query.py:329 Query._adapt_col_list 1 0.000003 0.000405 0.000405\r\n", + "..b\\lines.py:1327 Line2D.update_from 8 0.000061 0.000403 0.000050\r\n", + "..lchemy\\orm\\query.py:330 1 0.000009 0.000402 0.000402\r\n", + "..ine\\default.py:981 _init_statement 3 0.000233 0.000401 0.000134\r\n", + "..sql\\elements.py:4087 Column._label 10 0.000026 0.000394 0.000039\r\n", + "..y:4564 _literal_as_label_reference 3 0.000009 0.000390 0.000130\r\n", + "..es.py:315 Rectangle._set_edgecolor 20 0.000076 0.000387 0.000019\r\n", + "..array_function__ internals>:2 diff 16 0.000028 0.000387 0.000024\r\n", + "..pg2\\extras.py:303 NamedTupleCursor 1 0.000019 0.000382 0.000382\r\n", + "..py:120 ThreadPoolExecutor.__init__ 2 0.000074 0.000374 0.000187\r\n", + "..xis.py:1525 XAxis._update_axisinfo 13 0.000026 0.000368 0.000028\r\n", + "..elements.py:4099 Column._gen_label 10 0.000123 0.000368 0.000037\r\n", + "..rtist.py:937 Rectangle.set_visible 69 0.000142 0.000366 0.000005\r\n", + "..hreading.py:222 Condition.__init__ 13 0.000311 0.000361 0.000028\r\n", + "<__array_function__ internals>:2 all 9 0.000071 0.000355 0.000039\r\n", + "..zipimport>:63 zipimporter.__init__ 1 0.000016 0.000350 0.000350\r\n", + "..\\langhelpers.py:301 get_cls_kwargs 35/16 0.000206 0.000348 0.000010\r\n", + "...py:399 _ListenerCollection.append 3 0.000007 0.000345 0.000115\r\n", + "..atplotlib\\path.py:96 Path.__init__ 14 0.000076 0.000344 0.000025\r\n", + "...py:1624 FigureCanvasBase.__init__ 2 0.000173 0.000339 0.000170\r\n", + "..ry.py:267 _EventKey.append_to_list 3 0.000231 0.000338 0.000113\r\n", + ".._bootstrap_external>:62 _path_join 82 0.000138 0.000338 0.000004\r\n", + "..ap_external>:294 cache_from_source 18 0.000119 0.000335 0.000019\r\n", + "...py:1626 XAxis.set_major_formatter 17 0.000066 0.000330 0.000019\r\n", + "..ase.py:1731 RootTransaction.commit 1 0.000019 0.000326 0.000326\r\n", + "..._bootstrap>:376 ModuleSpec.cached 19 0.000049 0.000324 0.000017\r\n", + "..mpy\\lib\\function_base.py:1147 diff 16 0.000281 0.000320 0.000020\r\n", + "..er.py:512 ScalarFormatter.__init__ 16 0.000165 0.000317 0.000020\r\n", + "..422 WeakKeyDictionary.__contains__ 387 0.000313 0.000313 0.000001\r\n", + "..l\\selectable.py:3036 Select._froms 8 0.000141 0.000313 0.000039\r\n", + "..9 PGCompiler_psycopg2.visit_binary 5 0.000029 0.000312 0.000062\r\n", + "..tlib\\axis.py:1951 XAxis._get_label 1 0.000030 0.000311 0.000311\r\n", + "..base.py:563 AxesSubplot.set_figure 1 0.000026 0.000308 0.000308\r\n", + "..fierPreparer_psycopg2.format_label 29 0.000027 0.000306 0.000011\r\n", + "..py:1765 RootTransaction._do_commit 1 0.000012 0.000304 0.000304\r\n", + "..5 Rectangle._stale_figure_callback 134 0.000139 0.000303 0.000002\r\n", + "..otlib\\lines.py:645 Line2D.set_data 30 0.000098 0.000302 0.000010\r\n", + "..asyncio\\futures.py:377 wrap_future 6 0.000060 0.000301 0.000050\r\n", + "..tlib\\axis.py:2238 YAxis._get_label 1 0.000024 0.000300 0.000300\r\n", + "..py:4442 _anonymous_label.apply_map 7 0.000252 0.000300 0.000043\r\n", + "..ons.py:971 lightweight_named_tuple 6 0.000162 0.000300 0.000050\r\n", + "..my\\engine\\result.py:496 3 0.000020 0.000296 0.000099\r\n", + "...py:543 NullType._gen_dialect_impl 13 0.000038 0.000295 0.000023\r\n", + "..chemy\\orm\\loading.py:59 6 0.000037 0.000293 0.000049\r\n", + "..ase.py:746 Connection._commit_impl 1 0.000022 0.000292 0.000292\r\n", + "...py:1640 XAxis.set_minor_formatter 16 0.000053 0.000286 0.000018\r\n", + ".._init__.py:1610 safe_first_element 24 0.000070 0.000285 0.000012\r\n", + "..tionContext_psycopg2.create_cursor 9 0.000085 0.000276 0.000031\r\n", + "..ootstrap_external>:424 _get_cached 10 0.000043 0.000275 0.000027\r\n", + "..py:2408 CompositeAffine2D.__init__ 9 0.000044 0.000273 0.000030\r\n", + ".._.py:1309 _to_unmasked_float_array 34 0.000116 0.000273 0.000008\r\n", + "..py:3730 Select._columns_plus_names 8 0.000046 0.000270 0.000034\r\n", + "..y:542 PGDialect_psycopg2.do_commit 1 0.000014 0.000268 0.000268\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..hreading.py:388 Semaphore.__init__ 2 0.000014 0.000267 0.000134\r\n", + ".._psycopg2._generate_generic_binary 5 0.000033 0.000264 0.000053\r\n", + "..s.py:1398 Line2D.set_dash_capstyle 30 0.000145 0.000262 0.000009\r\n", + "..\\cbook\\__init__.py:1938 140 0.000205 0.000262 0.000002\r\n", + "..nal>:1520 path_hook_for_FileFinder 1 0.000022 0.000261 0.000261\r\n", + "..hes.py:330 Rectangle.set_edgecolor 12 0.000025 0.000260 0.000022\r\n", + "..es.py:768 Rectangle._convert_units 18 0.000084 0.000258 0.000014\r\n", + "..y:4696 _ColumnEntity.row_processor 27 0.000176 0.000257 0.000010\r\n", + "..k\\lib\\encodings\\utf_8.py:15 decode 48 0.000188 0.000257 0.000005\r\n", + "..PGDialect_psycopg2.type_descriptor 13 0.000030 0.000257 0.000020\r\n", + "..:136 Affine2D._invalidate_internal 90/76 0.000214 0.000256 0.000003\r\n", + "..:395 WeakKeyDictionary.__setitem__ 97 0.000253 0.000256 0.000003\r\n", + "..chemy\\orm\\query.py:4625 27 0.000065 0.000250 0.000009\r\n", + "..tplotlib\\lines.py:59 _scale_dashes 83 0.000123 0.000249 0.000003\r\n", + "..24 AxesSubplot.get_yaxis_transform 29/15 0.000047 0.000249 0.000009\r\n", + "..numpy\\core\\fromnumeric.py:2277 all 9 0.000041 0.000249 0.000028\r\n", + "..atplotlib\\artist.py:192 Spine.axes 831 0.000248 0.000248 0.000000\r\n", + "..b\\sre_parse.py:96 State.closegroup 27 0.000035 0.000243 0.000009\r\n", + "..s.py:266 MarkerStyle.set_fillstyle 38 0.000124 0.000241 0.000006\r\n", + "..ger.py:810 FontProperties.set_size 27 0.000167 0.000241 0.000009\r\n", + "..s\\_base.py:31 _process_plot_format 4 0.000033 0.000239 0.000060\r\n", + "..chemy\\sql\\elements.py:4327 __new__ 17 0.000109 0.000239 0.000014\r\n", + "..py:2644 ScaledTranslation.__init__ 17 0.000081 0.000238 0.000014\r\n", + "..r.py:774 FontProperties.set_weight 27 0.000211 0.000237 0.000009\r\n", + "...py:180 AxesSubplot.convert_yunits 48 0.000064 0.000233 0.000005\r\n", + "..units.py:58 _is_natively_supported 12 0.000072 0.000232 0.000019\r\n", + "..my\\sql\\type_api.py:1475 adapt_type 13 0.000077 0.000227 0.000017\r\n", + "..s.py:2544 BboxTransformTo.__init__ 20 0.000076 0.000226 0.000011\r\n", + "..48 AxesSubplot.get_xaxis_transform 29/15 0.000037 0.000223 0.000008\r\n", + "..b\\sre_parse.py:249 Tokenizer.match 311 0.000150 0.000222 0.000001\r\n", + "..py:1137 Text.set_verticalalignment 33 0.000098 0.000222 0.000007\r\n", + "..il\\_collections.py:775 unique_list 41 0.000166 0.000221 0.000005\r\n", + "..x.py:690 DrawingArea.get_transform 4 0.000006 0.000220 0.000055\r\n", + "..>:147 _ModuleLockManager.__enter__ 10 0.000027 0.000219 0.000022\r\n", + "..tlib\\text.py:535 Text.set_clip_box 15 0.000057 0.000216 0.000014\r\n", + "..sre_parse.py:172 SubPattern.append 182 0.000164 0.000209 0.000001\r\n", + "...py:523 YTick._get_text1_transform 3 0.000015 0.000208 0.000069\r\n", + "..800 AxesSubplot._update_transScale 2 0.000024 0.000206 0.000103\r\n", + "..indowsSelectorEventLoop._call_soon 23 0.000097 0.000204 0.000009\r\n", + "..xis.py:1969 XAxis._get_offset_text 1 0.000012 0.000204 0.000204\r\n", + "..b\\threading.py:761 Thread.__init__ 2 0.000128 0.000203 0.000101\r\n", + "..manager.py:855 FontProperties.copy 3 0.000012 0.000199 0.000066\r\n", + "..ootstrap_external>:104 _path_isdir 1 0.000003 0.000198 0.000198\r\n", + "..re_parse.py:160 SubPattern.__len__ 261 0.000148 0.000197 0.000001\r\n", + "..on.py:579 SessionTransaction.close 2 0.000022 0.000197 0.000098\r\n", + "..ib\\artist.py:719 Text.set_clip_box 23 0.000038 0.000195 0.000008\r\n", + "..xis.py:2258 YAxis._get_offset_text 1 0.000013 0.000195 0.000195\r\n", + "..lines.py:1092 Line2D.set_linewidth 30 0.000090 0.000192 0.000006\r\n", + "..sSubplot.get_yaxis_text1_transform 3 0.000033 0.000192 0.000064\r\n", + "...py:2266 blended_transform_factory 8 0.000033 0.000190 0.000024\r\n", + "..s.py:749 MarkerStyle._set_tickdown 3 0.000018 0.000189 0.000063\r\n", + "..xis.py:325 XTick._set_artist_props 30 0.000038 0.000188 0.000006\r\n", + "..til.py:368 surface_column_elements 54 0.000119 0.000185 0.000003\r\n", + "..setbox.py:661 DrawingArea.__init__ 4 0.000023 0.000184 0.000046\r\n", + "..lors.py:193 _to_rgba_no_colorcycle 8 0.000103 0.000183 0.000023\r\n", + ":1 __new__ 91 0.000108 0.000181 0.000002\r\n", + "..\\offsetbox.py:356 HPacker.__init__ 7 0.000017 0.000180 0.000026\r\n", + "..WindowsSelectorEventLoop.call_soon 17 0.000051 0.000178 0.000010\r\n", + "..lines.py:1058 Line2D.set_drawstyle 34 0.000088 0.000178 0.000005\r\n", + "..yncio\\futures.py:335 _chain_future 6 0.000060 0.000177 0.000029\r\n", + "...py:1352 Line2D.set_dash_joinstyle 30 0.000088 0.000176 0.000006\r\n", + "..y:4713 _ColumnEntity.setup_context 27 0.000148 0.000173 0.000006\r\n", + "..b._bootstrap>:157 _get_module_lock 18 0.000077 0.000172 0.000010\r\n", + ".._bootstrap_external>:64 82 0.000128 0.000171 0.000002\r\n", + "..pool\\impl.py:35 QueuePool.__init__ 1 0.000011 0.000171 0.000171\r\n", + "..y:2175 XAxis.set_default_intervals 1 0.000018 0.000170 0.000170\r\n", + "..y:949 Text.set_horizontalalignment 28 0.000075 0.000170 0.000006\r\n", + "..ib\\sre_parse.py:286 Tokenizer.tell 171 0.000133 0.000169 0.000001\r\n", + "..text.py:240 Text.set_rotation_mode 24 0.000106 0.000169 0.000007\r\n", + "..539 PGDialect_psycopg2.do_rollback 2 0.000010 0.000169 0.000085\r\n", + "..:220 Spine._ensure_position_is_set 28/24 0.000023 0.000169 0.000006\r\n", + ":1 Query.filter 5 0.000016 0.000169 0.000034\r\n", + "..\\lib\\function_base.py:257 iterable 97 0.000125 0.000168 0.000002\r\n", + "..68gteq6k\\lib\\weakref.py:44 __new__ 33 0.000135 0.000168 0.000005\r\n", + "...py:407 XTick._get_text1_transform 3 0.000009 0.000166 0.000055\r\n", + "..xesSubplot._set_lim_and_transforms 1 0.000026 0.000165 0.000165\r\n", + "...py:1412 Line2D.set_solid_capstyle 30 0.000083 0.000165 0.000006\r\n", + "..uture.set_running_or_notify_cancel 7 0.000124 0.000165 0.000024\r\n", + "..y\\util\\_collections.py:822 to_list 14 0.000064 0.000164 0.000012\r\n", + "..xternal>:1426 FileFinder._get_spec 10 0.000056 0.000162 0.000016\r\n", + "..sql\\elements.py:4451 _as_truncated 10 0.000028 0.000162 0.000016\r\n", + "..\\axis.py:1605 YAxis.set_label_text 5 0.000022 0.000161 0.000032\r\n", + "..es.py:375 FancyBboxPatch.set_alpha 1 0.000006 0.000160 0.000160\r\n", + "...py:526 YTick._get_text2_transform 3 0.000012 0.000159 0.000053\r\n", + "..GCompiler_psycopg2.visit_bindparam 5 0.000043 0.000159 0.000032\r\n", + "..045 AxesSubplot._process_unit_info 6 0.000020 0.000159 0.000026\r\n", + "..reading.py:246 Condition.__enter__ 61 0.000111 0.000158 0.000003\r\n", + "..py:1367 Line2D.set_solid_joinstyle 30 0.000079 0.000158 0.000005\r\n", + "..er.py:1712 AutoLocator.nonsingular 2 0.000009 0.000157 0.000078\r\n", + "..sSubplot.get_xaxis_text1_transform 3 0.000040 0.000156 0.000052\r\n", + "..asyncio\\tasks.py:653 ensure_future 2 0.000023 0.000154 0.000077\r\n", + "..axes.py:256 AxesSubplot.set_ylabel 4 0.000017 0.000150 0.000037\r\n", + "..q6k\\lib\\sre_compile.py:423 _simple 45 0.000051 0.000150 0.000003\r\n", + "..atplotlib\\legend.py:813 1 0.000026 0.000149 0.000149\r\n", + "..otlib\\axis.py:1579 XAxis.set_units 12 0.000039 0.000148 0.000012\r\n", + "..lib\\transforms.py:2779 nonsingular 2 0.000031 0.000148 0.000074\r\n", + "..b\\spines.py:381 Spine.set_position 4 0.000023 0.000147 0.000037\r\n", + "..sSubplot.get_yaxis_text2_transform 3 0.000019 0.000146 0.000049\r\n", + "..s.py:729 MarkerStyle._set_tickleft 3 0.000015 0.000146 0.000049\r\n", + "..\\lib\\enum.py:828 RegexFlag.__and__ 12 0.000068 0.000143 0.000012\r\n", + "..ts.py:724 ColumnClause.__getattr__ 9 0.000082 0.000143 0.000016\r\n", + "..lalchemy\\orm\\query.py:4148 __new__ 32 0.000063 0.000141 0.000004\r\n", + "..\\offsetbox.py:489 HPacker.__init__ 5 0.000012 0.000141 0.000028\r\n", + ".._base.py:2048 _process_single_axis 12 0.000029 0.000139 0.000012\r\n", + "..lib\\lines.py:1282 Line2D.set_xdata 39 0.000084 0.000139 0.000004\r\n", + ".._base.py:3484 AxesSubplot.set_ylim 1 0.000020 0.000137 0.000137\r\n", + "..ib\\path.py:188 Path._update_values 14 0.000068 0.000137 0.000010\r\n", + "..e-packages\\cycler.py:371 20 0.000137 0.000137 0.000007\r\n", + ":1 QueuePool.__init__ 1 0.000002 0.000136 0.000136\r\n", + "..er.py:755 FontProperties.set_style 23 0.000065 0.000136 0.000006\r\n", + "..tures\\_base.py:316 Future.__init__ 7 0.000034 0.000135 0.000019\r\n", + "..orm._iter_break_from_left_to_right 8 0.000027 0.000134 0.000017\r\n", + "..34 new_figure_manager_given_figure 1 0.000007 0.000134 0.000134\r\n", + "..ches.py:458 Rectangle.set_capstyle 11 0.000066 0.000134 0.000012\r\n", + "...py:1423 Figure._add_axes_internal 1 0.000015 0.000134 0.000134\r\n", + "..s.py:2221 BlendedAffine2D.__init__ 6 0.000039 0.000133 0.000022\r\n", + "..book\\__init__.py:1296 is_math_text 30 0.000081 0.000133 0.000004\r\n", + "..tlib\\lines.py:31 _get_dash_pattern 41 0.000103 0.000132 0.000003\r\n", + "..chemy\\sql\\base.py:38 _from_objects 21 0.000045 0.000131 0.000006\r\n", + "...py:410 XTick._get_text2_transform 3 0.000011 0.000129 0.000043\r\n", + "..py:1225 Line2D.set_markeredgewidth 30 0.000057 0.000129 0.000004\r\n", + "..033 PGCompiler_psycopg2.visit_cast 2 0.000013 0.000128 0.000064\r\n", + "..pool\\base.py:63 QueuePool.__init__ 1 0.000050 0.000128 0.000128\r\n", + "..re_compile.py:249 _compile_charset 34 0.000098 0.000127 0.000004\r\n", + "..plotlib\\scale.py:718 scale_factory 16 0.000053 0.000126 0.000008\r\n", + "..ib\\sre_parse.py:84 State.opengroup 27 0.000072 0.000125 0.000005\r\n", + "..ffsetbox.py:187 VPacker.set_figure 16/1 0.000045 0.000124 0.000008\r\n", + "...py:792 FontProperties.set_stretch 23 0.000090 0.000124 0.000005\r\n", + "...py:735 MarkerStyle._set_tickright 3 0.000013 0.000124 0.000041\r\n", + "..chemy\\sql\\elements.py:4279 __new__ 17 0.000095 0.000123 0.000007\r\n", + "..\\Lib\\socket.py:219 socket.__init__ 3 0.000122 0.000122 0.000041\r\n", + "..hes.py:402 Rectangle.set_linestyle 7 0.000053 0.000122 0.000017\r\n", + "...py:3168 BinaryExpression.__init__ 5 0.000064 0.000121 0.000024\r\n", + "..otlib\\text.py:1227 Text.set_usetex 24 0.000053 0.000120 0.000005\r\n", + "..ngine\\base.py:863 Connection.close 1 0.000008 0.000119 0.000119\r\n", + "..selectable.py:2169 Select.__init__ 8 0.000024 0.000118 0.000015\r\n", + "..lib\\sre_parse.py:295 _class_escape 30 0.000080 0.000118 0.000004\r\n", + "..ib\\artist.py:1037 Spine.set_zorder 18 0.000045 0.000118 0.000007\r\n", + "..ib\\lines.py:1196 Line2D.set_marker 4 0.000008 0.000117 0.000029\r\n", + "..sSubplot.get_xaxis_text2_transform 3 0.000017 0.000117 0.000039\r\n", + "..ndowsSelectorEventLoop.create_task 2 0.000057 0.000117 0.000058\r\n", + "..ide_tricks.py:185 _broadcast_shape 10 0.000112 0.000116 0.000012\r\n", + "...py:765 FontProperties.set_variant 23 0.000054 0.000115 0.000005\r\n", + "..lib\\text.py:1042 Text.set_fontsize 4 0.000013 0.000115 0.000029\r\n", + "..r.py:742 FontProperties.set_family 23 0.000047 0.000115 0.000005\r\n", + "..uery.py:4762 QueryContext.__init__ 6 0.000109 0.000115 0.000019\r\n", + "..\\sql\\selectable.py:3746 6 0.000021 0.000115 0.000019\r\n", + "..\\matplotlib\\dates.py:1893 axisinfo 2 0.000024 0.000114 0.000057\r\n", + "..umpy\\core\\getlimits.py:365 __new__ 2 0.000023 0.000113 0.000057\r\n", + "..teq6k\\lib\\sre_parse.py:355 _escape 30 0.000088 0.000113 0.000004\r\n", + "..essionTransaction._remove_snapshot 1 0.000037 0.000113 0.000113\r\n", + "..forms.py:1669 TransformWrapper.set 2 0.000009 0.000112 0.000056\r\n", + "..my\\util\\langhelpers.py:963 oneshot 21 0.000055 0.000112 0.000005\r\n", + "..ase.py:1009 _ConnectionFairy.close 1 0.000008 0.000111 0.000111\r\n", + "..\\result.py:1362 ResultProxy.scalar 3 0.000010 0.000110 0.000037\r\n", + "..threading.py:441 Semaphore.release 7 0.000035 0.000110 0.000016\r\n", + "..yncio\\events.py:32 Handle.__init__ 24 0.000093 0.000110 0.000005\r\n", + "..Subplot._validate_converted_limits 4 0.000026 0.000109 0.000027\r\n", + "..hes.py:382 Rectangle.set_linewidth 12 0.000039 0.000107 0.000009\r\n", + "..ndowsSelectorEventLoop._add_reader 1 0.000026 0.000106 0.000106\r\n", + "..b\\cbook\\__init__.py:2090 type_name 94 0.000106 0.000106 0.000001\r\n", + "..alchemy\\event\\api.py:23 _event_key 3 0.000022 0.000106 0.000035\r\n", + "..bootstrap_external>:68 _path_split 18 0.000082 0.000105 0.000006\r\n", + "..plotlib\\text.py:933 Text.set_color 24 0.000056 0.000104 0.000004\r\n", + "..ers.py:743 MarkerStyle._set_tickup 3 0.000012 0.000104 0.000035\r\n", + "..e.py:853 _ConnectionFairy._checkin 1 0.000008 0.000103 0.000103\r\n", + "..gistry.py:67 _stored_in_collection 3 0.000028 0.000103 0.000034\r\n", + "..y:556 String.coerce_compared_value 5 0.000019 0.000103 0.000021\r\n", + "..py:2249 BlendedAffine2D.get_matrix 4 0.000017 0.000103 0.000026\r\n", + "..lib\\legend.py:938 Legend.set_title 1 0.000008 0.000102 0.000102\r\n", + "..ql\\elements.py:895 Cast.anon_label 2 0.000018 0.000102 0.000051\r\n", + "..lib\\lines.py:1294 Line2D.set_ydata 39 0.000054 0.000101 0.000003\r\n", + "..e\\result.py:1335 ResultProxy.first 3 0.000030 0.000100 0.000033\r\n", + "..tstrap_external>:493 _classify_pyc 9 0.000056 0.000099 0.000011\r\n", + "..otlib\\artist.py:197 Rectangle.axes 117 0.000099 0.000099 0.000001\r\n", + "..:2165 FigureCanvasBase.mpl_connect 7 0.000012 0.000099 0.000014\r\n", + ":1 cast 2 0.000004 0.000098 0.000049\r\n", + "..\\artist.py:1074 Line2D.update_from 8 0.000065 0.000097 0.000012\r\n", + "..lotlib\\dates.py:1921 default_units 8 0.000033 0.000096 0.000012\r\n", + "..\\orm\\session.py:1288 Session.close 1 0.000011 0.000096 0.000096\r\n", + "..y\\pool\\base.py:667 _finalize_fairy 1 0.000012 0.000096 0.000096\r\n", + "..tist.py:1017 AxesSubplot.set_label 5 0.000025 0.000095 0.000019\r\n", + "..sql\\elements.py:2489 Cast.__init__ 2 0.000010 0.000094 0.000047\r\n", + "..compile.py:461 _get_literal_prefix 19/12 0.000068 0.000094 0.000005\r\n", + "..logging\\__init__.py:2003 getLogger 4 0.000010 0.000094 0.000023\r\n", + "..ql\\selectable.py:3735 name_for_col 27 0.000047 0.000094 0.000003\r\n", + "..ines.py:1268 Line2D.set_markersize 30 0.000057 0.000093 0.000003\r\n", + "..317 VARCHAR._has_column_expression 12 0.000092 0.000092 0.000008\r\n", + "..ernal>:629 spec_from_file_location 10 0.000070 0.000091 0.000009\r\n", + "..Context_psycopg2.should_autocommit 9 0.000058 0.000091 0.000010\r\n", + "..ngs\\__init__.py:70 search_function 1 0.000030 0.000089 0.000089\r\n", + "..Compiler_psycopg2._bind_processors 6 0.000020 0.000089 0.000015\r\n", + "..syncio\\base_futures.py:13 isfuture 37 0.000051 0.000089 0.000002\r\n", + "..nes.py:1035 Line2D.set_antialiased 30 0.000046 0.000089 0.000003\r\n", + "..ements.py:1946 ClauseList.__init__ 1 0.000012 0.000088 0.000088\r\n", + "..\\threading.py:341 Condition.notify 15 0.000069 0.000088 0.000006\r\n", + "..-68gteq6k\\lib\\enum.py:278 __call__ 26 0.000057 0.000087 0.000003\r\n", + "..e_parse.py:111 SubPattern.__init__ 135 0.000087 0.000087 0.000001\r\n", + "..\\axis.py:618 YTick.update_position 3 0.000022 0.000086 0.000029\r\n", + "..lalchemy\\sql\\base.py:39 21 0.000053 0.000086 0.000004\r\n", + "..lib\\artist.py:923 Line2D.set_alpha 7 0.000019 0.000085 0.000012\r\n", + "..piler_psycopg2._truncate_bindparam 5 0.000012 0.000085 0.000017\r\n", + "..ession.py:1333 Session._close_impl 1 0.000012 0.000085 0.000085\r\n", + "..y:2463 FancyBboxPatch.set_boxstyle 2 0.000023 0.000085 0.000042\r\n", + "..my\\sql\\compiler.py:2252 6 0.000017 0.000084 0.000014\r\n", + "..__init__.py:1272 Manager.getLogger 4 0.000024 0.000084 0.000021\r\n", + "..38\\Lib\\asyncio\\tasks.py:717 gather 1 0.000016 0.000083 0.000083\r\n", + ":1 VARCHAR.__init__ 9 0.000026 0.000083 0.000009\r\n", + "..\\core\\getlimits.py:398 finfo._init 1 0.000044 0.000082 0.000082\r\n", + "..\\legend.py:1215 _parse_legend_args 1 0.000010 0.000082 0.000082\r\n", + "..bootstrap>:58 _ModuleLock.__init__ 10 0.000026 0.000082 0.000008\r\n", + "..tlib\\axis.py:864 XAxis.reset_ticks 16 0.000077 0.000082 0.000005\r\n", + "..t\\futures\\_base.py:381 Future.done 6 0.000031 0.000082 0.000014\r\n", + "..bootstrap>:194 _lock_unlock_module 8 0.000018 0.000081 0.000010\r\n", + "..\\result.py:777 ResultProxy._getter 27 0.000037 0.000081 0.000003\r\n", + "..123 ConnectionEventsDispatch._join 1 0.000078 0.000080 0.000080\r\n", + "..ections.py:361 OrderedSet.__init__ 8 0.000050 0.000080 0.000010\r\n", + "..ges\\numpy\\core\\_methods.py:44 _any 4 0.000009 0.000079 0.000020\r\n", + "..elements.py:4692 _literal_as_binds 2 0.000005 0.000079 0.000040\r\n", + "..sSelectorEventLoop._process_events 17 0.000043 0.000079 0.000005\r\n", + "..otlib\\figure.py:111 _AxesStack.add 1 0.000033 0.000079 0.000079\r\n", + "..session.py:1588 Session._autoflush 6 0.000022 0.000079 0.000013\r\n", + "..xt.py:1214 Text.set_fontproperties 1 0.000004 0.000079 0.000079\r\n", + "..copg2\\extensions.py:171 1 0.000005 0.000078 0.000078\r\n", + "..e-packages\\cycler.py:227 110 0.000078 0.000078 0.000001\r\n", + "..qlalchemy\\inspection.py:38 inspect 16 0.000051 0.000076 0.000005\r\n", + "..py:1210 Line2D.set_markeredgecolor 30 0.000040 0.000075 0.000003\r\n", + "..tlib\\transforms.py:773 from_bounds 1 0.000008 0.000075 0.000075\r\n", + "..b\\text.py:1059 Text.set_fontweight 4 0.000009 0.000074 0.000019\r\n", + "..__init__.py:1632 sanitize_sequence 8 0.000015 0.000074 0.000009\r\n", + "..alchemy\\log.py:174 instance_logger 3 0.000011 0.000073 0.000024\r\n", + "..init__.py:1677 Logger.isEnabledFor 5 0.000041 0.000073 0.000015\r\n", + "..8gteq6k\\lib\\sre_parse.py:432 _uniq 22 0.000044 0.000073 0.000003\r\n", + "..g2\\extensions.py:180 _param_escape 3 0.000005 0.000073 0.000024\r\n", + "..ase.py:971 _ConnectionFairy.cursor 6 0.000013 0.000073 0.000012\r\n", + ".._range.py:297 RangeCaster.__init__ 6 0.000022 0.000072 0.000012\r\n", + "..y:2444 PGDialect_psycopg2.__init__ 1 0.000008 0.000072 0.000072\r\n", + "..lib\\offsetbox.py:199 TextArea.axes 16 0.000042 0.000072 0.000004\r\n", + "..emy\\orm\\query.py:1790 Query.filter 5 0.000032 0.000072 0.000014\r\n", + "..b._bootstrap>:222 _verbose_message 90 0.000071 0.000071 0.000001\r\n", + "..py:366 GridSpec.get_subplot_params 1 0.000011 0.000071 0.000071\r\n", + "..artist.py:841 TextArea.set_clip_on 16 0.000026 0.000071 0.000004\r\n", + "..\\orm\\session.py:2462 Session.flush 9 0.000021 0.000071 0.000008\r\n", + "..s.py:1642 _fix_ipython_backend2gui 2 0.000025 0.000071 0.000035\r\n", + "..alchemy\\events.py:328 _accept_with 3 0.000026 0.000071 0.000024\r\n", + "..re_parse.py:267 Tokenizer.getuntil 7 0.000040 0.000070 0.000010\r\n", + "..figure.py:199 SubplotParams.update 2 0.000018 0.000070 0.000035\r\n", + "..b\\cbook\\__init__.py:2088 188 0.000070 0.000070 0.000000\r\n", + "..\\axis.py:501 XTick.update_position 3 0.000018 0.000069 0.000023\r\n", + "..hemy\\sql\\compiler.py:650 6 0.000010 0.000069 0.000011\r\n", + "..\\core\\fromnumeric.py:74 85 0.000069 0.000069 0.000001\r\n", + "..my\\sql\\elements.py:1955 1 0.000009 0.000069 0.000069\r\n", + "..ist.py:371 Rectangle.get_transform 31 0.000050 0.000068 0.000002\r\n", + "..ctions.py:933 LRUCache.__setitem__ 3 0.000026 0.000068 0.000023\r\n", + "..lib\\lines.py:1047 Line2D.set_color 30 0.000032 0.000068 0.000002\r\n", + "..bootstrap>:103 _ModuleLock.release 18 0.000061 0.000068 0.000004\r\n", + "..t_manager.py:1043 get_default_size 22 0.000028 0.000067 0.000003\r\n", + "..lib\\axis.py:922 _translate_tick_kw 8 0.000058 0.000067 0.000008\r\n", + "..otlib\\axis.py:666 Ticker.formatter 33 0.000048 0.000067 0.000002\r\n", + "..p>:151 _ModuleLockManager.__exit__ 10 0.000020 0.000066 0.000007\r\n", + "..re_parse.py:224 Tokenizer.__init__ 13 0.000043 0.000065 0.000005\r\n", + "..aggregation\\query.py:82 4 0.000013 0.000065 0.000016\r\n", + "..eading.py:364 Condition.notify_all 7 0.000022 0.000065 0.000009\r\n", + "..\\lib\\sre_compile.py:411 _mk_bitmap 5 0.000029 0.000065 0.000013\r\n", + "..ImmutableColumnCollection.__iter__ 5 0.000030 0.000064 0.000013\r\n", + "..gure.py:168 SubplotParams.__init__ 1 0.000009 0.000064 0.000064\r\n", + ".._WindowsSelectorEventLoop.__init__ 1 0.000024 0.000064 0.000064\r\n", + "..plotlib\\text.py:1151 Text.set_text 46 0.000052 0.000064 0.000001\r\n", + "..k\\lib\\sre_parse.py:81 State.groups 80 0.000048 0.000064 0.000001\r\n", + "..ghelpers.py:281 _inspect_func_args 18 0.000064 0.000064 0.000004\r\n", + "..tstrap_external>:51 _unpack_uint32 27 0.000044 0.000064 0.000002\r\n", + "..GCompiler_psycopg2.order_by_clause 1 0.000003 0.000063 0.000063\r\n", + "..yEventsDispatch._event_descriptors 46 0.000040 0.000063 0.000001\r\n", + "..__.py:185 CallbackRegistry.process 26 0.000047 0.000062 0.000002\r\n", + ".._bootstrap>:78 _ModuleLock.acquire 18 0.000056 0.000061 0.000003\r\n", + "..py:834 XAxis.limit_range_for_scale 2 0.000019 0.000061 0.000031\r\n", + "..pes.py:2997 _resolve_value_to_type 5 0.000017 0.000061 0.000012\r\n", + ".. SessionTransaction._take_snapshot 3 0.000027 0.000061 0.000020\r\n", + "..tableColumnCollection.__contains__ 10 0.000041 0.000060 0.000006\r\n", + "..ib\\axis.py:529 YTick.apply_tickdir 3 0.000024 0.000059 0.000020\r\n", + "..ures\\_base.py:443 Future.exception 6 0.000042 0.000059 0.000010\r\n", + "..schema.py:1640 Column.get_children 27 0.000049 0.000059 0.000002\r\n", + "..hemy\\sql\\compiler.py:652 11 0.000017 0.000059 0.000005\r\n", + "..emy\\util\\langhelpers.py:1188 _next 7 0.000036 0.000058 0.000008\r\n", + "..futures\\_base.py:412 Future.result 7 0.000034 0.000058 0.000008\r\n", + "..\\session.py:2508 Session._is_clean 10 0.000041 0.000057 0.000006\r\n", + ".. interactable_plot_multiple_charts 1 0.000009 0.000057 0.000057\r\n", + "..matplotlib\\patches.py:1818 __new__ 2 0.000037 0.000057 0.000028\r\n", + "...py:1623 TransformWrapper.__init__ 2 0.000009 0.000057 0.000028\r\n", + "..ging\\__init__.py:1412 Logger.debug 2 0.000008 0.000057 0.000028\r\n", + "..ager.py:936 _normalize_font_family 46 0.000041 0.000057 0.000001\r\n", + "..elements.py:4483 _select_iterables 8 0.000017 0.000057 0.000007\r\n", + "..Python38\\Lib\\threading.py:81 RLock 8 0.000056 0.000056 0.000007\r\n", + "..packages\\psycopg2\\tz.py:1 1 0.000016 0.000056 0.000056\r\n", + "..se.py:392 Future.add_done_callback 6 0.000030 0.000056 0.000009\r\n", + "..ericTransform._invalidate_internal 4/3 0.000013 0.000055 0.000014\r\n", + "..py:193 PGDialect_psycopg2.__init__ 1 0.000024 0.000055 0.000055\r\n", + "..til\\_collections.py:779 41 0.000042 0.000055 0.000001\r\n", + "..Compiler_psycopg2.visit_clauselist 1 0.000004 0.000054 0.000054\r\n", + "..eral_and_labels_as_label_reference 3 0.000012 0.000054 0.000018\r\n", + "..my\\engine\\result.py:372 6 0.000054 0.000054 0.000009\r\n", + "..ResultMetaData._merge_cols_by_none 6 0.000022 0.000054 0.000009\r\n", + "..plotlib\\axis.py:653 Ticker.locator 33 0.000047 0.000054 0.000002\r\n", + "..rm\\query.py:418 Query._bind_mapper 6 0.000024 0.000054 0.000009\r\n", + "..s.py:1247 AutoDateLocator.__init__ 2 0.000023 0.000054 0.000027\r\n", + "..plotlib\\transforms.py:177 39 0.000031 0.000053 0.000001\r\n", + "..\\offsetbox.py:410 VPacker.__init__ 2 0.000003 0.000053 0.000027\r\n", + "..se.py:593 _column_stack_dispatcher 12 0.000030 0.000053 0.000004\r\n", + "..EventLoop._asyncgen_firstiter_hook 10 0.000023 0.000053 0.000005\r\n", + "..ation-68gteq6k\\lib\\re.py:323 _subx 3 0.000008 0.000052 0.000017\r\n", + "..on\\database.py:107 from_sql_result 4 0.000025 0.000052 0.000013\r\n", + "..t_psycopg2._use_server_side_cursor 9 0.000044 0.000052 0.000006\r\n", + "..hes.py:475 Rectangle.set_joinstyle 7 0.000030 0.000052 0.000007\r\n", + "..e.py:516 _ConnectionRecord.checkin 1 0.000008 0.000052 0.000052\r\n", + "..elements.py:724 Column.__getattr__ 3 0.000026 0.000051 0.000017\r\n", + "..e._process_projection_requirements 1 0.000008 0.000050 0.000050\r\n", + "..y\\orm\\base.py:353 _is_mapped_class 7 0.000026 0.000050 0.000007\r\n", + "..lEventsDispatch._event_descriptors 36 0.000030 0.000050 0.000001\r\n", + "..\\lib\\_weakrefset.py:81 WeakSet.add 14 0.000040 0.000050 0.000004\r\n", + "..Compiler_psycopg2.visit_typeclause 2 0.000008 0.000049 0.000025\r\n", + "..ernal>:526 _validate_timestamp_pyc 9 0.000023 0.000049 0.000005\r\n", + ".._.py:118 CallbackRegistry.__init__ 19 0.000049 0.000049 0.000003\r\n", + "..tgresql\\psycopg2.py:800 on_connect 2 0.000007 0.000049 0.000024\r\n", + "..quoted_name._memoized_method_lower 21 0.000041 0.000048 0.000002\r\n", + "..py:436 prefix_anon_map.__missing__ 7 0.000034 0.000048 0.000007\r\n", + "..ion\\analysis.py:367 wrap_coroutine 1 0.000014 0.000047 0.000047\r\n", + "..eq6k\\lib\\_weakrefset.py:38 _remove 11 0.000037 0.000046 0.000004\r\n", + "..kages\\numpy\\ma\\core.py:666 getdata 8 0.000036 0.000046 0.000006\r\n", + "..ib\\threading.py:505 Event.__init__ 2 0.000008 0.000046 0.000023\r\n", + "..emy\\sql\\compiler.py:1000 4 0.000005 0.000046 0.000011\r\n", + "..y:208 _arrays_for_stack_dispatcher 28 0.000026 0.000045 0.000002\r\n", + "..b\\transforms.py:909 Bbox.intervalx 3 0.000024 0.000045 0.000015\r\n", + "...py:2680 AxesSubplot.set_axisbelow 1 0.000010 0.000045 0.000045\r\n", + "..\\elements.py:4610 _literal_as_text 16 0.000021 0.000045 0.000003\r\n", + "..tras.py:657 UUID_adapter.getquoted 4 0.000022 0.000044 0.000011\r\n", + "...py:311 RangeCaster._create_ranges 6 0.000040 0.000044 0.000007\r\n", + "..b\\function_base.py:2164 4 0.000006 0.000044 0.000011\r\n", + "..gteq6k\\lib\\re.py:313 _compile_repl 1 0.000010 0.000044 0.000044\r\n", + "...py:235 SubplotParams._update_this 12 0.000021 0.000043 0.000004\r\n", + "..sult.py:700 ResultMetaData._getter 27 0.000043 0.000043 0.000002\r\n", + "..lib\\functools.py:33 update_wrapper 2 0.000026 0.000043 0.000022\r\n", + ":176 cb 10 0.000031 0.000043 0.000004\r\n", + "..is.py:197 XTick._set_labelrotation 6 0.000026 0.000043 0.000007\r\n", + "..ib\\axis.py:413 XTick.apply_tickdir 3 0.000017 0.000042 0.000014\r\n", + "..base.py:375 QueuePool._return_conn 1 0.000003 0.000042 0.000042\r\n", + "..:486 String._cached_bind_processor 5 0.000027 0.000042 0.000008\r\n", + "..b\\scale.py:97 LinearScale.__init__ 16 0.000035 0.000042 0.000003\r\n", + "..ycopg2\\extras.py:664 register_uuid 2 0.000027 0.000041 0.000021\r\n", + "..CompositeGenericTransform. 16/8 0.000035 0.000041 0.000003\r\n", + "..external>:1394 FileFinder.__init__ 1 0.000023 0.000041 0.000041\r\n", + "..init__.py:882 Grouper.get_siblings 6 0.000022 0.000041 0.000007\r\n", + "..iler.py:399 PGTypeCompiler.process 2 0.000006 0.000041 0.000021\r\n", + "..emy\\sql\\compiler.py:1002 4 0.000006 0.000041 0.000010\r\n", + "..tors.py:180 SelectSelector.get_key 1 0.000010 0.000041 0.000041\r\n", + "..s\\_base.py:597 AxesSubplot.viewLim 2 0.000005 0.000041 0.000020\r\n", + "..mpiler_psycopg2._add_to_result_map 29 0.000032 0.000040 0.000001\r\n", + "..ation-68gteq6k\\lib\\copy.py:66 copy 1 0.000013 0.000040 0.000040\r\n", + "..ib\\stride_tricks.py:262 10 0.000024 0.000040 0.000004\r\n", + "..654 _WindowsSelectorEventLoop.time 17 0.000028 0.000040 0.000002\r\n", + "..process_plot_var_args._getdefaults 4 0.000018 0.000040 0.000010\r\n", + "..tplotlib\\legend.py:1253 1 0.000006 0.000040 0.000040\r\n", + "..my\\sql\\elements.py:4488 8 0.000029 0.000039 0.000005\r\n", + "..ttr.py:269 _EmptyListener.__bool__ 17 0.000039 0.000039 0.000002\r\n", + "..l.py:103 QueuePool._do_return_conn 1 0.000005 0.000039 0.000039\r\n", + "..y:3229 BinaryExpression.self_group 5 0.000009 0.000039 0.000008\r\n", + "..r.py:234 _EmptyListener.for_modify 2 0.000013 0.000038 0.000019\r\n", + "..til\\_collections.py:981 3 0.000020 0.000038 0.000013\r\n", + "..util\\langhelpers.py:1175 46 0.000038 0.000038 0.000001\r\n", + "..arse.py:168 SubPattern.__setitem__ 48 0.000030 0.000038 0.000001\r\n", + "..y\\engine\\default.py:796 6 0.000020 0.000037 0.000006\r\n", + "..p>:867 _ImportLockContext.__exit__ 30 0.000026 0.000037 0.000001\r\n", + "..mportlib._bootstrap>:800 find_spec 10 0.000013 0.000037 0.000004\r\n", + "..tplotlib\\figure.py:1959 Figure.sca 1 0.000008 0.000037 0.000037\r\n", + "..ib\\figure.py:1070 Figure._make_key 1 0.000006 0.000037 0.000037\r\n", + "..pe_base.py:219 _vhstack_dispatcher 16 0.000014 0.000037 0.000002\r\n", + "..cbook\\__init__.py:1868 Text.method 5 0.000009 0.000036 0.000007\r\n", + "..ray_function__ internals>:2 copyto 4 0.000014 0.000036 0.000009\r\n", + "..ib\\figure.py:778 Figure.set_canvas 2 0.000008 0.000036 0.000018\r\n", + "..ql\\elements.py:2428 literal_column 2 0.000010 0.000036 0.000018\r\n", + "..y:583 AxesSubplot._unstale_viewLim 2 0.000010 0.000036 0.000018\r\n", + "..owsSelectorEventLoop._add_callback 6 0.000025 0.000036 0.000006\r\n", + "..38\\Lib\\socket.py:512 socket.family 1 0.000006 0.000035 0.000035\r\n", + "..768 IdentityTransform.is_separable 8 0.000031 0.000035 0.000004\r\n", + "..tplotlib\\figure.py:1651 Figure.clf 1 0.000016 0.000035 0.000035\r\n", + "..es\\numpy\\core\\_methods.py:28 _amax 2 0.000003 0.000034 0.000017\r\n", + "..ib\\sre_parse.py:969 parse_template 1 0.000016 0.000034 0.000034\r\n", + "..owsSelectorEventLoop.create_future 6 0.000031 0.000034 0.000006\r\n", + "..:4707 _interpret_as_column_or_from 29 0.000022 0.000034 0.000001\r\n", + "..tions.py:946 LRUCache._manage_size 3 0.000029 0.000034 0.000011\r\n", + "..b\\legend.py:701 get_legend_handler 8 0.000028 0.000034 0.000004\r\n", + "..ngine\\base.py:1869 Engine.__init__ 1 0.000005 0.000034 0.000034\r\n", + "..legend.py:1169 _get_legend_handles 5 0.000016 0.000034 0.000007\r\n", + "..lib\\lines.py:743 Line2D._is_sorted 3 0.000015 0.000034 0.000011\r\n", + "..py:2538 FigureManagerBase.__init__ 1 0.000012 0.000034 0.000034\r\n", + "..alchemy\\util\\queue.py:92 Queue.put 1 0.000018 0.000034 0.000034\r\n", + "..ib\\socket.py:97 _intenum_converter 2 0.000010 0.000034 0.000017\r\n", + "..ures\\_base.py:371 Future.cancelled 6 0.000017 0.000034 0.000006\r\n", + "..b\\sre_compile.py:65 _combine_flags 39 0.000033 0.000033 0.000001\r\n", + "...py:900 AutoDateFormatter.__init__ 2 0.000016 0.000033 0.000017\r\n", + "..m\\state.py:328 type._detach_states 2 0.000020 0.000033 0.000017\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..ession.py:1339 Session.expunge_all 1 0.000012 0.000033 0.000033\r\n", + "..lections.py:316 OrderedDict.values 5 0.000018 0.000032 0.000006\r\n", + "..\\core\\getipython.py:17 get_ipython 2 0.000022 0.000032 0.000016\r\n", + "..m\\query.py:345 Query._adapt_clause 35 0.000032 0.000032 0.000001\r\n", + "..y:528 Text._update_clip_properties 15 0.000032 0.000032 0.000002\r\n", + "..94 QueryEventsDispatch.__getattr__ 8 0.000027 0.000032 0.000004\r\n", + "..._bootstrap>:389 ModuleSpec.parent 14 0.000022 0.000032 0.000002\r\n", + "..etaData._colnames_from_description 6 0.000030 0.000032 0.000005\r\n", + "..\\elements.py:688 Column.self_group 13 0.000031 0.000031 0.000002\r\n", + "..ompat.py:61 inspect_getfullargspec 2 0.000019 0.000031 0.000016\r\n", + "..compile.py:492 _get_charset_prefix 10 0.000024 0.000031 0.000003\r\n", + "..ticker.py:224 AutoLocator.set_axis 67 0.000031 0.000031 0.000000\r\n", + "..kref.py:436 WeakKeyDictionary.keys 1 0.000015 0.000031 0.000031\r\n", + "..tbox.py:739 DrawingArea.add_artist 8 0.000023 0.000031 0.000004\r\n", + "..l\\sqltypes.py:412 Unicode.__init__ 2 0.000013 0.000031 0.000015\r\n", + "..s\\matplotlib\\axis.py:342 70 0.000031 0.000031 0.000000\r\n", + "..6k\\lib\\sre_compile.py:595 isstring 24 0.000025 0.000031 0.000001\r\n", + "..ase.py:867 _ConnectionFairy._reset 1 0.000012 0.000030 0.000030\r\n", + "..n-68gteq6k\\lib\\enum.py:557 __new__ 26 0.000030 0.000030 0.000001\r\n", + "..ool\\base.py:235 QueuePool._creator 1 0.000005 0.000030 0.000030\r\n", + "..s\\numpy\\core\\multiarray.py:707 dot 67 0.000030 0.000030 0.000000\r\n", + "..\\lib\\sre_compile.py:413 5 0.000030 0.000030 0.000006\r\n", + "..owsSelectorEventLoop._check_closed 34 0.000030 0.000030 0.000001\r\n", + "..hemy\\orm\\query.py:537 Query._clone 6 0.000021 0.000030 0.000005\r\n", + "..portlib._bootstrap>:35 _new_module 9 0.000030 0.000030 0.000003\r\n", + "..\\sql\\selectable.py:3079 8 0.000014 0.000029 0.000004\r\n", + "..sql\\operators.py:1497 is_precedent 5 0.000018 0.000029 0.000006\r\n", + "..\\log.py:59 Engine._should_log_info 2 0.000006 0.000029 0.000015\r\n", + "..py:69 _SelectorMapping.__getitem__ 1 0.000022 0.000029 0.000029\r\n", + "..iler.py:410 _CompileLabel.__init__ 29 0.000029 0.000029 0.000001\r\n", + "..:221 Query._set_entity_selectables 6 0.000025 0.000029 0.000005\r\n", + "..per._iter_break_from_left_to_right 8 0.000010 0.000029 0.000004\r\n", + "..:94 PoolEventsDispatch.__getattr__ 12 0.000023 0.000029 0.000002\r\n", + "..ne\\result.py:956 ResultProxy.close 3 0.000008 0.000029 0.000010\r\n", + "..ngine\\base.py:590 Connection.begin 1 0.000006 0.000029 0.000029\r\n", + "..l\\_collections.py:910 LRUCache.get 6 0.000018 0.000028 0.000005\r\n", + "..\\cbook\\__init__.py:1737 74 0.000028 0.000028 0.000000\r\n", + "..ion-68gteq6k\\lib\\weakref.py:51 _cb 2 0.000007 0.000028 0.000014\r\n", + "..y:4590 _expression_literal_as_text 5 0.000009 0.000028 0.000006\r\n", + "..b\\function_base.py:2144 4 0.000013 0.000028 0.000007\r\n", + "..romnumeric.py:2185 _any_dispatcher 76 0.000028 0.000028 0.000000\r\n", + "..n38\\Lib\\socket.py:496 socket.close 1 0.000004 0.000028 0.000028\r\n", + "..ors.py:298 SelectSelector.register 1 0.000009 0.000027 0.000027\r\n", + "..array_function__ internals>:2 tile 1 0.000003 0.000027 0.000027\r\n", + "..ts.py:4056 ColumnClause._get_table 49 0.000027 0.000027 0.000001\r\n", + "..:513 Figure.set_constrained_layout 1 0.000010 0.000027 0.000027\r\n", + "..it__.py:1323 Manager._fixupParents 3 0.000018 0.000027 0.000009\r\n", + "..reading.py:261 Condition._is_owned 11 0.000017 0.000027 0.000002\r\n", + "..>:863 _ImportLockContext.__enter__ 30 0.000019 0.000027 0.000001\r\n", + "..ib\\figure.py:104 _AxesStack.bubble 1 0.000009 0.000027 0.000027\r\n", + "..8 SessionTransaction._prepare_impl 1 0.000013 0.000027 0.000027\r\n", + "..q6k\\lib\\sre_parse.py:921 fix_flags 12 0.000024 0.000026 0.000002\r\n", + "..compiler.py:419 _CompileLabel.type 29 0.000026 0.000026 0.000001\r\n", + "..is.py:1048 XAxis._set_artist_props 4 0.000005 0.000026 0.000007\r\n", + "..utionContext_psycopg2._log_notices 9 0.000026 0.000026 0.000003\r\n", + "..ents.py:3947 ColumnClause.__init__ 2 0.000010 0.000026 0.000013\r\n", + "..\\core\\getlimits.py:239 _get_machar 1 0.000013 0.000026 0.000026\r\n", + "..s.py:302 Rectangle.set_antialiased 8 0.000012 0.000026 0.000003\r\n", + "..io\\coroutines.py:18 _is_debug_mode 1 0.000010 0.000026 0.000026\r\n", + "..ages\\cycler.py:225 Cycler.__iter__ 12 0.000021 0.000026 0.000002\r\n", + "..ine\\url.py:161 URL._get_entrypoint 1 0.000006 0.000026 0.000026\r\n", + "..orms.py:1652 TransformWrapper._set 4 0.000023 0.000025 0.000006\r\n", + "..e.py:1907 Figure._set_artist_props 1 0.000007 0.000025 0.000025\r\n", + "..\\cbook\\__init__.py:1742 74 0.000025 0.000025 0.000000\r\n", + "..etbox.py:303 TextArea.get_children 33 0.000025 0.000025 0.000001\r\n", + "..240 QueuePool._should_wrap_creator 1 0.000005 0.000025 0.000025\r\n", + "..\\elements.py:709 Column.comparator 4 0.000019 0.000025 0.000006\r\n", + "..rl.py:152 URL._instantiate_plugins 1 0.000007 0.000025 0.000025\r\n", + "..base.py:321 _inspect_mapped_object 4 0.000025 0.000025 0.000006\r\n", + "..b\\function_base.py:2120 4 0.000024 0.000024 0.000006\r\n", + "..urceFileLoader._check_name_wrapper 9 0.000020 0.000024 0.000003\r\n", + "..xt_psycopg2.should_autocommit_text 3 0.000008 0.000024 0.000008\r\n", + "..y\\sql\\elements.py:4594 _literal_as 16 0.000016 0.000024 0.000001\r\n", + "..y:355 _ListenerCollection.__init__ 2 0.000018 0.000024 0.000012\r\n", + "...py:343 WeakKeyDictionary.__init__ 13 0.000024 0.000024 0.000002\r\n", + "..b\\socket.py:492 socket._real_close 1 0.000009 0.000023 0.000023\r\n", + "..llections_abc.py:72 _check_methods 14 0.000023 0.000023 0.000002\r\n", + "..\\__init__.py:43 normalize_encoding 1 0.000017 0.000023 0.000023\r\n", + "..ase.py:3227 AxesSubplot.get_xscale 4 0.000017 0.000023 0.000006\r\n", + "..gging\\__init__.py:214 _acquireLock 7 0.000015 0.000023 0.000003\r\n", + "..e.py:1757 RootTransaction.__init__ 1 0.000008 0.000023 0.000023\r\n", + "..lalchemy\\util\\compat.py:148 raise_ 12 0.000023 0.000023 0.000002\r\n", + "..\\encodings\\utf_8.py:33 getregentry 1 0.000010 0.000022 0.000022\r\n", + "..langhelpers.py:344 get_func_kwargs 1 0.000003 0.000022 0.000022\r\n", + "..y\\log.py:221 echo_property.__set__ 1 0.000001 0.000022 0.000022\r\n", + "..tlib\\axis.py:2166 XAxis.get_minpos 1 0.000011 0.000022 0.000022\r\n", + "..my\\util\\queue.py:43 Queue.__init__ 1 0.000009 0.000022 0.000022\r\n", + "..rms.py:1632 TransformWrapper._init 2 0.000008 0.000022 0.000011\r\n", + "..b\\asyncio\\futures.py:269 _get_loop 8 0.000018 0.000022 0.000003\r\n", + "..ok\\__init__.py:2125 _check_getitem 4 0.000018 0.000022 0.000006\r\n", + "..ery._adjust_for_single_inheritance 6 0.000019 0.000022 0.000004\r\n", + "..psycopg2\\_json.py:94 register_json 2 0.000010 0.000022 0.000011\r\n", + "..sion.py:3188 sessionmaker.__init__ 1 0.000021 0.000021 0.000021\r\n", + "..y:102 WeakValueDictionary.__init__ 1 0.000013 0.000021 0.000021\r\n", + "..l\\sqltypes.py:141 VARCHAR.__init__ 9 0.000021 0.000021 0.000002\r\n", + "..syncio\\tasks.py:751 _done_callback 1 0.000012 0.000021 0.000021\r\n", + "..29 _process_plot_var_args.__init__ 2 0.000005 0.000021 0.000011\r\n", + "..y\\sql\\operators.py:1409 is_boolean 6 0.000011 0.000021 0.000003\r\n", + "..dates.py:1496 YearLocator.__init__ 2 0.000012 0.000021 0.000010\r\n", + "..ok\\__init__.py:601 _AxesStack.push 2 0.000011 0.000021 0.000010\r\n", + "..157 CallbackRegistry._remove_proxy 2 0.000017 0.000021 0.000010\r\n", + "..nts.py:709 ColumnClause.comparator 4 0.000012 0.000021 0.000005\r\n", + "..mn._render_label_in_columns_clause 10 0.000014 0.000020 0.000002\r\n", + "..alect_psycopg2.create_connect_args 1 0.000009 0.000020 0.000020\r\n", + "..\\matplotlib\\transforms.py:768 null 1 0.000004 0.000020 0.000020\r\n", + "..\\lines.py:547 Line2D.set_markevery 30 0.000020 0.000020 0.000001\r\n", + ".._json.py:133 register_default_json 1 0.000003 0.000020 0.000020\r\n", + "..lib\\stride_tricks.py:266 30 0.000020 0.000020 0.000001\r\n", + "..58 PGCompiler_psycopg2.visit_table 6 0.000012 0.000020 0.000003\r\n", + "..ctions_abc.py:271 __subclasshook__ 5 0.000009 0.000020 0.000004\r\n", + "..\\numpy\\lib\\shape_base.py:1155 tile 1 0.000007 0.000020 0.000020\r\n", + "..patches.py:491 Rectangle.set_hatch 7 0.000011 0.000019 0.000003\r\n", + "..idspec.py:200 GridSpec.__getitem__ 1 0.000011 0.000019 0.000019\r\n", + "..tlib\\axis.py:2466 YAxis.get_minpos 1 0.000017 0.000019 0.000019\r\n", + "..range.py:449 RangeCaster._register 6 0.000011 0.000019 0.000003\r\n", + "..pg2\\extras.py:790 _solve_conn_curs 1 0.000005 0.000019 0.000019\r\n", + "..59 WeakValueDictionary.__setitem__ 1 0.000013 0.000019 0.000019\r\n", + "..7 BlendedGenericTransform.__init__ 2 0.000007 0.000019 0.000010\r\n", + "..hon38\\Lib\\uuid.py:271 UUID.__str__ 4 0.000019 0.000019 0.000005\r\n", + "..tlib\\legend.py:569 Legend._set_loc 1 0.000007 0.000019 0.000019\r\n", + "..otlib\\axis.py:662 Ticker.formatter 65 0.000019 0.000019 0.000000\r\n", + "..lements.py:2553 Cast._from_objects 2 0.000005 0.000019 0.000009\r\n", + "..book\\__init__.py:833 Grouper.clean 8 0.000016 0.000019 0.000002\r\n", + "..tlib\\transforms.py:274 Bbox.frozen 1 0.000003 0.000019 0.000019\r\n", + "..ments.py:4065 Column._from_objects 10 0.000013 0.000019 0.000002\r\n", + "..ib\\axis.py:819 XAxis.get_transform 4 0.000005 0.000019 0.000005\r\n", + "..my\\engine\\result.py:322 9 0.000019 0.000019 0.000002\r\n", + "..er_psycopg2._get_operator_dispatch 5 0.000015 0.000019 0.000004\r\n", + "..elpers.py:355 get_callable_argspec 1 0.000004 0.000019 0.000019\r\n", + "..g\\__init__.py:1392 Logger.__init__ 3 0.000013 0.000018 0.000006\r\n", + "..\\gridspec.py:246 GridSpec.__init__ 1 0.000008 0.000018 0.000018\r\n", + "..s.py:1096 _importlater.__getattr__ 1 0.000005 0.000018 0.000018\r\n", + "..m\\query.py:3551 Query._select_args 6 0.000018 0.000018 0.000003\r\n", + "..ns.py:738 PopulateDict.__missing__ 5 0.000010 0.000018 0.000004\r\n", + "..my\\engine\\result.py:460 6 0.000018 0.000018 0.000003\r\n", + "..bootstrap_external>:36 _relax_case 17 0.000018 0.000018 0.000001\r\n", + "..ors.py:234 SelectSelector.register 1 0.000009 0.000018 0.000018\r\n", + "..Compiler_psycopg2.construct_params 6 0.000017 0.000017 0.000003\r\n", + "..rm\\query.py:398 Query._entity_zero 6 0.000013 0.000017 0.000003\r\n", + "..nctools.py:524 decorating_function 1 0.000005 0.000017 0.000017\r\n", + "..ctions_abc.py:392 __subclasshook__ 40 0.000017 0.000017 0.000000\r\n", + "..bootstrap_external>:1508 1 0.000012 0.000017 0.000017\r\n", + "..tplotlib\\text.py:554 Text.set_wrap 24 0.000017 0.000017 0.000001\r\n", + "..:171 DynamicClassAttribute.__get__ 4 0.000015 0.000017 0.000004\r\n", + "..packages\\cycler.py:138 Cycler.keys 12 0.000017 0.000017 0.000001\r\n", + "..ler_psycopg2.escape_literal_column 2 0.000013 0.000017 0.000008\r\n", + "..utableColumnCollection.__getattr__ 10 0.000017 0.000017 0.000002\r\n", + "..y\\sql\\type_api.py:1465 to_instance 9 0.000013 0.000017 0.000002\r\n", + "..\\matplotlib\\figure.py:1089 fixlist 1 0.000007 0.000017 0.000017\r\n", + "..ents.py:180 _run_until_complete_cb 1 0.000012 0.000016 0.000016\r\n", + "..ocess_plot_var_args.set_prop_cycle 2 0.000008 0.000016 0.000008\r\n", + "..56 WeakInstanceDict.check_modified 10 0.000016 0.000016 0.000002\r\n", + "...py:258 Condition._acquire_restore 4 0.000012 0.000016 0.000004\r\n", + "..ollections_abc.py:657 _Environ.get 1 0.000004 0.000016 0.000016\r\n", + "..d_inline.py:59 draw_if_interactive 1 0.000010 0.000016 0.000016\r\n", + "..lib\\sre_parse.py:76 State.__init__ 12 0.000016 0.000016 0.000001\r\n", + "..nghelpers.py:248 PluginLoader.load 1 0.000004 0.000016 0.000016\r\n", + "..ections.py:396 OrderedSet.__iter__ 8 0.000012 0.000016 0.000002\r\n", + "..ib\\figure.py:70 _AxesStack.as_list 2 0.000012 0.000016 0.000008\r\n", + "..ql\\elements.py:4475 _expand_cloned 6 0.000013 0.000015 0.000003\r\n", + "..ts.py:4059 ColumnClause._set_table 2 0.000007 0.000015 0.000008\r\n", + "..bootstrap>:342 ModuleSpec.__init__ 10 0.000015 0.000015 0.000002\r\n", + "..registry.py:154 _EventKey.__init__ 4 0.000012 0.000015 0.000004\r\n", + "..WindowsSelectorEventLoop.get_debug 33 0.000015 0.000015 0.000000\r\n", + "..276 PGDialect_psycopg2._type_memos 1 0.000009 0.000015 0.000015\r\n", + "..ler.py:161 HandlerLine2D.get_xdata 4 0.000011 0.000015 0.000004\r\n", + "..s.py:1059 AutoDateLocator.__init__ 4 0.000005 0.000015 0.000004\r\n", + "..tableColumnCollection.__contains__ 10 0.000015 0.000015 0.000001\r\n", + "..til\\_collections.py:317 5 0.000015 0.000015 0.000003\r\n", + "..type_api.py:60 Comparator.__init__ 8 0.000014 0.000014 0.000002\r\n", + "..uery.py:698 Query.is_single_entity 6 0.000012 0.000014 0.000002\r\n", + "..matplotlib\\text.py:1115 Text.set_y 6 0.000006 0.000014 0.000002\r\n", + "..gging\\__init__.py:223 _releaseLock 7 0.000010 0.000014 0.000002\r\n", + "..e.py:117 LinearScale.get_transform 4 0.000005 0.000014 0.000003\r\n", + "..elements.py:4056 Column._get_table 20 0.000014 0.000014 0.000001\r\n", + "..tionContext_psycopg2.no_parameters 4 0.000012 0.000014 0.000003\r\n", + "..ncio\\coroutines.py:177 iscoroutine 2 0.000011 0.000014 0.000007\r\n", + "..nal>:939 SourceFileLoader.__init__ 9 0.000013 0.000013 0.000002\r\n", + ".._api.py:436 Unicode._type_affinity 2 0.000009 0.000013 0.000007\r\n", + "..\\rcsetup.py:163 validate_axisbelow 1 0.000006 0.000013 0.000013\r\n", + "..\\__init__.py:631 _AxesStack.bubble 1 0.000006 0.000013 0.000013\r\n", + "..lib\\figure.py:453 Figure._get_axes 1 0.000004 0.000013 0.000013\r\n", + "..19 ResultProxy._cursor_description 9 0.000013 0.000013 0.000001\r\n", + "..:3361 PGTypeCompiler.visit_VARCHAR 2 0.000008 0.000013 0.000007\r\n", + "..:2053 IdentityTransform.get_matrix 23 0.000013 0.000013 0.000001\r\n", + "..n\\Python38\\Lib\\typing.py:255 inner 1 0.000007 0.000013 0.000013\r\n", + "..py:1202 ResultProxy._fetchone_impl 3 0.000008 0.000013 0.000004\r\n", + "..rs.py:330 MarkerStyle._set_nothing 30 0.000013 0.000013 0.000000\r\n", + "..tlib\\dates.py:174 _get_rc_timezone 6 0.000006 0.000013 0.000002\r\n", + "..b\\function_base.py:2115 4 0.000007 0.000013 0.000003\r\n", + "..es\\thread.py:46 _WorkItem.__init__ 7 0.000012 0.000012 0.000002\r\n", + "..ib\\transforms.py:969 Bbox.mutatedx 2 0.000012 0.000012 0.000006\r\n", + "..-68gteq6k\\lib\\codecs.py:94 __new__ 1 0.000011 0.000012 0.000012\r\n", + "..Figure.set_constrained_layout_pads 1 0.000006 0.000012 0.000012\r\n", + "..y:154 to_unicode_processor_factory 1 0.000012 0.000012 0.000012\r\n", + "..ctions_abc.py:349 __subclasshook__ 5 0.000007 0.000012 0.000002\r\n", + ".. SessionTransaction._assert_active 8 0.000012 0.000012 0.000002\r\n", + "..base.py:707 Connection._begin_impl 1 0.000010 0.000012 0.000012\r\n", + "..\\_internal.py:830 npy_ctypes_check 4 0.000012 0.000012 0.000003\r\n", + "..py:210 WeakInstanceDict.all_states 2 0.000011 0.000012 0.000006\r\n", + "..lib\\os.py:668 _Environ.__getitem__ 1 0.000005 0.000012 0.000012\r\n", + "..b\\figure.py:66 _AxesStack.__init__ 1 0.000006 0.000012 0.000012\r\n", + "..matplotlib\\text.py:1104 Text.set_x 6 0.000005 0.000012 0.000002\r\n", + "..lotlib\\axes\\_base.py:232 8 0.000009 0.000012 0.000001\r\n", + "..208 _EmptyListener._adjust_fn_spec 4 0.000008 0.000012 0.000003\r\n", + "..ib\\threading.py:1110 Thread.daemon 2 0.000010 0.000011 0.000006\r\n", + "..chemy\\orm\\query.py:4634 27 0.000011 0.000011 0.000000\r\n", + "..ql\\base.py:1142 TIMESTAMP.__init__ 1 0.000006 0.000011 0.000011\r\n", + "..ib\\sre_compile.py:453 _get_iscased 29 0.000011 0.000011 0.000000\r\n", + "..200 BinaryExpression._from_objects 5 0.000011 0.000011 0.000002\r\n", + "..\\psycopg2\\_ipaddress.py:1 1 0.000011 0.000011 0.000011\r\n", + "..core\\multiarray.py:145 concatenate 29 0.000011 0.000011 0.000000\r\n", + "..b\\threading.py:1306 current_thread 3 0.000009 0.000011 0.000004\r\n", + "..tions.py:906 LRUCache._inc_counter 6 0.000011 0.000011 0.000002\r\n", + "..ments.py:765 Cast._select_iterable 29 0.000011 0.000011 0.000000\r\n", + "..y\\dialects\\__init__.py:24 _auto_fn 1 0.000006 0.000011 0.000011\r\n", + "..plots.py:214 subplot_class_factory 1 0.000006 0.000011 0.000011\r\n", + "..\\__init__.py:1837 _str_lower_equal 4 0.000008 0.000011 0.000003\r\n", + "..elements.py:4080 Column._key_label 10 0.000010 0.000010 0.000001\r\n", + "..:536 ScalarFormatter.set_useOffset 16 0.000010 0.000010 0.000001\r\n", + "...py:193 URL.translate_connect_args 1 0.000006 0.000010 0.000010\r\n", + "..ql\\operators.py:1386 is_comparison 6 0.000010 0.000010 0.000002\r\n", + "..ger.py:835 FontProperties.set_file 23 0.000010 0.000010 0.000000\r\n", + "..ages\\psycopg2\\compat.py:1 1 0.000010 0.000010 0.000010\r\n", + "..set.py:26 _IterationGuard.__exit__ 1 0.000009 0.000010 0.000010\r\n", + "..stry.py:169 _EventKey.with_wrapper 5 0.000006 0.000010 0.000002\r\n", + "..py:2606 BboxTransformFrom.__init__ 1 0.000004 0.000010 0.000010\r\n", + "..artist.py:1052 Line2D.sticky_edges 32 0.000010 0.000010 0.000000\r\n", + "..m\\session.py:1429 Session.get_bind 6 0.000010 0.000010 0.000002\r\n", + "..Compiler_psycopg2.bindparam_string 5 0.000010 0.000010 0.000002\r\n", + "..my\\engine\\result.py:319 9 0.000010 0.000010 0.000001\r\n", + "..ler.py:396 PGTypeCompiler.__init__ 1 0.000010 0.000010 0.000010\r\n", + "..lements.py:365 Column.get_children 27 0.000010 0.000010 0.000000\r\n", + "..ist.py:605 FancyBboxPatch.set_snap 1 0.000007 0.000009 0.000009\r\n", + "..__init__.py:60 _StrongRef.__hash__ 6 0.000006 0.000009 0.000002\r\n", + "..ure.py:487 Figure.set_tight_layout 1 0.000005 0.000009 0.000009\r\n", + "..tion-68gteq6k\\lib\\re.py:268 escape 1 0.000005 0.000009 0.000009\r\n", + "..on._memoized_attr__exec_once_mutex 1 0.000003 0.000009 0.000009\r\n", + "..pes.py:295 String.result_processor 5 0.000009 0.000009 0.000002\r\n", + "..b\\gridspec.py:31 GridSpec.__init__ 1 0.000007 0.000009 0.000009\r\n", + "..\\elements.py:232 Table._cloned_set 2 0.000008 0.000009 0.000005\r\n", + "..:3418 PGTypeCompiler.visit_unicode 1 0.000004 0.000009 0.000009\r\n", + "..gistry.py:263 _EventKey._listen_fn 16 0.000009 0.000009 0.000001\r\n", + "..\\futures.py:357 _call_check_cancel 6 0.000008 0.000009 0.000002\r\n", + "..CompositeGenericTransform. 3 0.000009 0.000009 0.000003\r\n", + "..\\figure.py:152 _AxesStack.__call__ 2 0.000005 0.000009 0.000005\r\n", + "..teq6k\\lib\\copy.py:257 _reconstruct 1 0.000005 0.000009 0.000009\r\n", + "..on.py:159 _create_json_typecasters 2 0.000006 0.000009 0.000005\r\n", + ".._.py:1663 Logger.getEffectiveLevel 3 0.000009 0.000009 0.000003\r\n", + "..y:980 _ConnectionFairy.__getattr__ 2 0.000005 0.000009 0.000004\r\n", + "..lib\\patches.py:2146 Round.__init__ 2 0.000009 0.000009 0.000004\r\n", + "..abc.py:816 WeakKeyDictionary.clear 1 0.000005 0.000009 0.000009\r\n", + "..ttr.py:257 _EmptyListener.__call__ 8 0.000009 0.000009 0.000001\r\n", + "..ing.py:255 Condition._release_save 4 0.000007 0.000009 0.000002\r\n", + ".._base.py:20 _atleast_1d_dispatcher 24 0.000009 0.000009 0.000000\r\n", + "..ctions_abc.py:367 __subclasshook__ 4 0.000005 0.000009 0.000002\r\n", + "..ler_psycopg2.get_select_precolumns 8 0.000009 0.000009 0.000001\r\n", + "..extensions.py:103 register_adapter 12 0.000009 0.000009 0.000001\r\n", + "..tgresql\\psycopg2.py:807 on_connect 2 0.000004 0.000009 0.000004\r\n", + "..tplotlib\\pyplot.py:612 get_fignums 1 0.000005 0.000009 0.000009\r\n", + "..lchemy\\util\\queue.py:135 Queue.get 1 0.000007 0.000008 0.000008\r\n", + "...py:284 WeakValueDictionary.update 1 0.000007 0.000008 0.000008\r\n", + "..ors.py:293 SelectSelector.__init__ 1 0.000003 0.000008 0.000008\r\n", + ":1 Deployment.__init__ 4 0.000008 0.000008 0.000002\r\n", + "..tplotlib\\path.py:197 Path.vertices 16 0.000008 0.000008 0.000001\r\n", + ".._memoized_property.expire_instance 2 0.000006 0.000008 0.000004\r\n", + "...py:299 NullFormatter._set_locator 31 0.000008 0.000008 0.000000\r\n", + "..mportlib._bootstrap>:725 find_spec 10 0.000005 0.000008 0.000001\r\n", + "..ure.py:155 _AxesStack.__contains__ 1 0.000002 0.000008 0.000008\r\n", + "..p>:143 _ModuleLockManager.__init__ 10 0.000008 0.000008 0.000001\r\n", + "..uery.py:505 Query._no_limit_offset 6 0.000008 0.000008 0.000001\r\n", + "..\\util\\_collections.py:771 5 0.000008 0.000008 0.000002\r\n", + "...py:1689 TransformWrapper. 6 0.000008 0.000008 0.000001\r\n", + "..\\Lib\\threading.py:944 Thread._stop 1 0.000006 0.000008 0.000008\r\n", + "..py:275 SelectSelector._key_from_fd 6 0.000008 0.000008 0.000001\r\n", + "..romnumeric.py:2273 _all_dispatcher 9 0.000008 0.000008 0.000001\r\n", + "..ty.py:17 WeakInstanceDict.__init__ 2 0.000008 0.000008 0.000004\r\n", + "..lotlib\\figure.py:78 _AxesStack.get 2 0.000006 0.000008 0.000004\r\n", + "..chemy\\orm\\query.py:4642 27 0.000008 0.000008 0.000000\r\n", + "..my\\sql\\compiler.py:2125 8 0.000007 0.000007 0.000001\r\n", + "..xesSubplot._request_autoscale_view 8 0.000007 0.000007 0.000001\r\n", + "..\\base.py:364 Connection.connection 11 0.000007 0.000007 0.000001\r\n", + "..py:4065 ColumnClause._from_objects 2 0.000005 0.000007 0.000004\r\n", + "..on38\\Lib\\socket.py:518 socket.type 1 0.000002 0.000007 0.000007\r\n", + "..\\matplotlib\\axis.py:372 14 0.000007 0.000007 0.000001\r\n", + "..artist.py:827 Line2D.get_clip_path 4 0.000007 0.000007 0.000002\r\n", + "..on38\\Lib\\uuid.py:259 UUID.__hash__ 4 0.000006 0.000007 0.000002\r\n", + "..axis.py:215 XTick.get_tick_padding 6 0.000007 0.000007 0.000001\r\n", + "..py:4335 _truncated_label.apply_map 27 0.000007 0.000007 0.000000\r\n", + "..b\\transforms.py:914 Bbox.intervaly 1 0.000005 0.000007 0.000007\r\n", + "..otlib\\transforms.py:394 Bbox.width 1 0.000006 0.000007 0.000007\r\n", + ".. HandlerLine2D.adjust_drawing_area 4 0.000007 0.000007 0.000002\r\n", + "..b\\_pylab_helpers.py:109 set_active 1 0.000006 0.000007 0.000007\r\n", + "..rtist.py:350 Text.is_transform_set 15 0.000007 0.000007 0.000000\r\n", + "..60 ScalarFormatter.set_useMathText 16 0.000007 0.000007 0.000000\r\n", + "..n-68gteq6k\\lib\\os.py:738 encodekey 1 0.000004 0.000007 0.000007\r\n", + "..rms.py:1284 TransformWrapper.depth 24 0.000007 0.000007 0.000000\r\n", + "..215 SelectSelector._fileobj_lookup 2 0.000003 0.000007 0.000003\r\n", + "..\\matplotlib\\axis.py:361 14 0.000007 0.000007 0.000000\r\n", + "..esql\\json.py:177 _PGJSONB.__init__ 1 0.000005 0.000006 0.000006\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..teq6k\\lib\\copyreg.py:99 _slotnames 1 0.000004 0.000006 0.000006\r\n", + "..lotlib\\axis.py:822 XAxis.get_scale 5 0.000006 0.000006 0.000001\r\n", + "..\\matplotlib\\axis.py:383 14 0.000006 0.000006 0.000000\r\n", + "..ckages\\psycopg2\\_range.py:36 Range 1 0.000006 0.000006 0.000006\r\n", + "..:493 Query._no_statement_condition 6 0.000006 0.000006 0.000001\r\n", + "...py:56 QueuePool._should_log_debug 1 0.000005 0.000006 0.000006\r\n", + "..b\\artist.py:819 Line2D.get_clip_on 3 0.000006 0.000006 0.000002\r\n", + "..b\\scale.py:43 LinearScale.__init__ 16 0.000006 0.000006 0.000000\r\n", + "..ycopg2.py:741 _psycopg2_extensions 1 0.000003 0.000006 0.000006\r\n", + "..otlib\\__init__.py:1267 get_backend 1 0.000002 0.000006 0.000006\r\n", + "..json.py:146 register_default_jsonb 1 0.000001 0.000006 0.000006\r\n", + "..otlib\\rcsetup.py:123 validate_bool 1 0.000005 0.000006 0.000006\r\n", + "..my\\engine\\default.py:855 11 0.000006 0.000006 0.000001\r\n", + "..y\\util\\_collections.py:140 __new__ 1 0.000005 0.000006 0.000006\r\n", + "..ngine\\url.py:299 _rfc_1738_unquote 1 0.000005 0.000006 0.000006\r\n", + "..ping.py:717 _GenericAlias.__hash__ 1 0.000004 0.000006 0.000006\r\n", + "..f.py:385 WeakKeyDictionary.__len__ 2 0.000005 0.000006 0.000003\r\n", + "..ib\\__init__.py:1285 is_interactive 2 0.000002 0.000006 0.000003\r\n", + "..07 ExtensionFileLoader.exec_module 1 0.000003 0.000006 0.000006\r\n", + "..ib\\cbook\\__init__.py:1575 10 0.000006 0.000006 0.000001\r\n", + "..ates.py:593 DateFormatter.__init__ 2 0.000002 0.000006 0.000003\r\n", + "..:687 Legend.get_legend_handler_map 1 0.000005 0.000006 0.000006\r\n", + ".._init__.py:44 get_projection_class 1 0.000005 0.000006 0.000006\r\n", + ".._init__.py:573 _AxesStack.__init__ 1 0.000003 0.000006 0.000006\r\n", + "..tion_base.py:1143 _diff_dispatcher 16 0.000006 0.000006 0.000000\r\n", + "..ig\\configurable.py:426 initialized 2 0.000003 0.000006 0.000003\r\n", + "..bootstrap_external>:1400 8 0.000005 0.000005 0.000001\r\n", + "..y:202 _broadcast_arrays_dispatcher 10 0.000005 0.000005 0.000001\r\n", + "..ng.py:1177 _make_invoke_excepthook 2 0.000005 0.000005 0.000003\r\n", + "..idspec.py:508 SubplotSpec.__init__ 1 0.000005 0.000005 0.000005\r\n", + "..ent\\registry.py:165 _EventKey._key 3 0.000004 0.000005 0.000002\r\n", + "..s.py:697 _GatheringFuture.__init__ 1 0.000005 0.000005 0.000005\r\n", + "..eq6k\\lib\\sre_parse.py:978 addgroup 1 0.000004 0.000005 0.000005\r\n", + "...py:112 PoolEventsDispatch._listen 3 0.000005 0.000005 0.000002\r\n", + "..s\\_base.py:386 Future.__get_result 7 0.000005 0.000005 0.000001\r\n", + "..qltypes.py:2793 TIMESTAMP.__init__ 1 0.000004 0.000005 0.000005\r\n", + "..ors.py:209 SelectSelector.__init__ 1 0.000004 0.000005 0.000005\r\n", + "..k\\__init__.py:827 Grouper.__init__ 2 0.000004 0.000005 0.000002\r\n", + "..elpers.py:1079 _importlater.module 1 0.000004 0.000005 0.000005\r\n", + "..is.py:1412 XAxis.get_major_locator 2 0.000004 0.000005 0.000002\r\n", + "..68gteq6k\\lib\\weakref.py:345 remove 2 0.000005 0.000005 0.000002\r\n", + "..esql\\base.py:1226 _PGUUID.__init__ 2 0.000005 0.000005 0.000002\r\n", + "..PGTypeCompiler._render_string_type 2 0.000005 0.000005 0.000002\r\n", + "..matplotlib\\colors.py:225 4 0.000005 0.000005 0.000001\r\n", + "..entifierPreparer_psycopg2.__init__ 1 0.000005 0.000005 0.000005\r\n", + "..oop._set_coroutine_origin_tracking 2 0.000005 0.000005 0.000002\r\n", + "..onfig\\configurable.py:381 instance 2 0.000002 0.000005 0.000002\r\n", + "...py:96 _AxesStack._entry_from_axes 1 0.000003 0.000005 0.000005\r\n", + "..ile.py:432 _generate_overlap_table 2 0.000004 0.000005 0.000002\r\n", + "..ry.py:390 Query._query_entity_zero 6 0.000004 0.000004 0.000001\r\n", + "..copg2\\tz.py:36 FixedOffsetTimezone 1 0.000004 0.000004 0.000004\r\n", + "..py:352 PGCompiler_psycopg2.__str__ 8 0.000004 0.000004 0.000001\r\n", + "..lotlib\\axes\\_base.py:321 12 0.000004 0.000004 0.000000\r\n", + "..packages\\psycopg2\\_json.py:47 Json 1 0.000004 0.000004 0.000004\r\n", + "..ctions_abc.py:252 __subclasshook__ 1 0.000002 0.000004 0.000004\r\n", + "..plotlib\\gridspec.py:382 1 0.000003 0.000004 0.000004\r\n", + "..process_plot_var_args._setdefaults 4 0.000004 0.000004 0.000001\r\n", + "..9 _ConnectionRecord.get_connection 1 0.000004 0.000004 0.000004\r\n", + "..et.py:20 _IterationGuard.__enter__ 1 0.000003 0.000004 0.000004\r\n", + "..py:155 HandlerLine2D.get_numpoints 4 0.000004 0.000004 0.000001\r\n", + "..se.py:2960 AxesSubplot.set_axis_on 1 0.000002 0.000004 0.000004\r\n", + "..f.py:463 WeakKeyDictionary.popitem 1 0.000003 0.000004 0.000004\r\n", + "..elpers.py:1381 parse_user_argument 2 0.000003 0.000004 0.000002\r\n", + "..ore\\numerictypes.py:239 obj2sctype 1 0.000003 0.000004 0.000004\r\n", + "..:964 SourceFileLoader.get_filename 9 0.000004 0.000004 0.000000\r\n", + "..ib\\artist.py:1013 Line2D.get_label 8 0.000004 0.000004 0.000000\r\n", + "..ges\\psycopg2\\extras.py:157 DictRow 1 0.000004 0.000004 0.000004\r\n", + "..teq6k\\lib\\codecs.py:952 getencoder 1 0.000003 0.000004 0.000004\r\n", + "..xtras.py:650 UUID_adapter.__init__ 4 0.000004 0.000004 0.000001\r\n", + "..8gteq6k\\lib\\weakref.py:323 __new__ 1 0.000003 0.000004 0.000004\r\n", + "..y:886 AxesSubplot.set_axes_locator 1 0.000002 0.000004 0.000004\r\n", + "..tenerCollection._memoized_attr_ref 2 0.000004 0.000004 0.000002\r\n", + "..reading.py:1095 _MainThread.daemon 2 0.000004 0.000004 0.000002\r\n", + "..chemy\\util\\queue.py:199 Queue._put 1 0.000003 0.000004 0.000004\r\n", + "..k\\__init__.py:626 _AxesStack.clear 3 0.000004 0.000004 0.000001\r\n", + "..tlib\\artist.py:1201 Text.mouseover 7 0.000004 0.000004 0.000001\r\n", + "..lotlib\\axis.py:645 Ticker.__init__ 4 0.000004 0.000004 0.000001\r\n", + "..py:357 String._has_bind_expression 2 0.000004 0.000004 0.000002\r\n", + "..py:140 _AxesStack.current_key_axes 2 0.000003 0.000004 0.000002\r\n", + "..s.py:1355 AutoDateLocator.set_axis 1 0.000003 0.000004 0.000004\r\n", + "..se.py:1699 RootTransaction._parent 1 0.000004 0.000004 0.000004\r\n", + "..ib\\function_base.py:2116 8 0.000004 0.000004 0.000000\r\n", + "..kers.py:286 MarkerStyle.get_marker 8 0.000003 0.000003 0.000000\r\n", + "..xecutionContext_psycopg2.post_exec 6 0.000003 0.000003 0.000001\r\n", + "..ansaction._is_transaction_boundary 4 0.000003 0.000003 0.000001\r\n", + "..ker.py:2004 _Edge_integer.__init__ 2 0.000003 0.000003 0.000002\r\n", + "..til\\_collections.py:991 3 0.000003 0.000003 0.000001\r\n", + "..Lib\\selectors.py:21 _fileobj_to_fd 2 0.000003 0.000003 0.000002\r\n", + "..WindowsSelectorEventLoop.set_debug 1 0.000003 0.000003 0.000003\r\n", + "..b\\cbook\\__init__.py:886 6 0.000003 0.000003 0.000001\r\n", + "..b\\cbook\\__init__.py:836 8 0.000003 0.000003 0.000000\r\n", + "..lchemy\\orm\\query.py:4795 6 0.000003 0.000003 0.000001\r\n", + "..strap>:397 ModuleSpec.has_location 10 0.000003 0.000003 0.000000\r\n", + "..ylab_helpers.py:29 get_fig_manager 1 0.000002 0.000003 0.000003\r\n", + "..s.py:263 MarkerStyle.get_fillstyle 8 0.000003 0.000003 0.000000\r\n", + "..ckages\\psycopg2\\extras.py:698 Inet 1 0.000003 0.000003 0.000003\r\n", + "..ctable.py:1982 Table._from_objects 6 0.000003 0.000003 0.000001\r\n", + ".._weakrefset.py:36 WeakSet.__init__ 1 0.000003 0.000003 0.000003\r\n", + "..ctions_abc.py:302 __subclasshook__ 6 0.000003 0.000003 0.000001\r\n", + "..__init__.py:51 _StrongRef.__init__ 3 0.000003 0.000003 0.000001\r\n", + "..gine\\default.py:295 get_pool_class 1 0.000001 0.000003 0.000003\r\n", + "..lectorEventLoop._process_self_data 6 0.000003 0.000003 0.000000\r\n", + ".. _ClsLevelDispatch._adjust_fn_spec 4 0.000003 0.000003 0.000001\r\n", + "..ogging\\__init__.py:189 _checkLevel 3 0.000002 0.000003 0.000001\r\n", + "..hemy\\engine\\url.py:56 URL.__init__ 1 0.000003 0.000003 0.000003\r\n", + "..\\matplotlib\\axis.py:153 6 0.000003 0.000003 0.000000\r\n", + "..ections.py:151 immutabledict.union 6 0.000003 0.000003 0.000000\r\n", + "..b\\path.py:251 Path.should_simplify 4 0.000003 0.000003 0.000001\r\n", + "..774 SourceFileLoader.create_module 9 0.000003 0.000003 0.000000\r\n", + "..copg2._check_max_identifier_length 1 0.000003 0.000003 0.000003\r\n", + "..y\\sql\\selectable.py:2987 6 0.000003 0.000003 0.000000\r\n", + "..g2.py:558 _PGUUID.result_processor 2 0.000003 0.000003 0.000001\r\n", + "..stgresql\\psycopg2.py:711 4 0.000003 0.000003 0.000001\r\n", + "..\\Lib\\threading.py:513 Event.is_set 5 0.000003 0.000003 0.000001\r\n", + "..ython38\\Lib\\inspect.py:80 ismethod 2 0.000002 0.000003 0.000001\r\n", + "..d_bases.py:2556 notify_axes_change 1 0.000003 0.000003 0.000003\r\n", + "..b\\weakref.py:328 KeyedRef.__init__ 1 0.000003 0.000003 0.000003\r\n", + "..ffsetbox.py:240 VPacker.set_offset 1 0.000001 0.000003 0.000003\r\n", + "..ath.py:230 Path.simplify_threshold 4 0.000003 0.000003 0.000001\r\n", + "..y:330 _ListenerCollection.__bool__ 1 0.000003 0.000003 0.000003\r\n", + "..tlib\\transforms.py:400 Bbox.height 1 0.000002 0.000003 0.000003\r\n", + "..tlib\\units.py:81 AxisInfo.__init__ 2 0.000003 0.000003 0.000001\r\n", + "..on38\\Lib\\inspect.py:158 isfunction 3 0.000002 0.000003 0.000001\r\n", + "..i.py:279 NullType.result_processor 4 0.000002 0.000002 0.000001\r\n", + "..lib\\transforms.py:931 Bbox.minposx 1 0.000002 0.000002 0.000002\r\n", + "..hemy\\util\\queue.py:195 Queue._full 1 0.000002 0.000002 0.000002\r\n", + "..ExecutionContext_psycopg2.pre_exec 6 0.000002 0.000002 0.000000\r\n", + "..n-68gteq6k\\lib\\os.py:732 check_str 1 0.000002 0.000002 0.000002\r\n", + "..gure.py:2059 Figure.add_axobserver 1 0.000002 0.000002 0.000002\r\n", + "..py:843 TextArea.set_minimumdescent 1 0.000001 0.000002 0.000002\r\n", + "..e.py:1694 RootTransaction.__init__ 1 0.000002 0.000002 0.000002\r\n", + "..teq6k\\lib\\copyreg.py:90 __newobj__ 1 0.000002 0.000002 0.000002\r\n", + "..6k\\lib\\enum.py:659 RegexFlag.value 4 0.000002 0.000002 0.000001\r\n", + "..dConnectionEventsDispatch.__init__ 1 0.000002 0.000002 0.000002\r\n", + "..vents.py:719 get_event_loop_policy 1 0.000002 0.000002 0.000002\r\n", + "..68gteq6k\\lib\\functools.py:63 wraps 1 0.000002 0.000002 0.000002\r\n", + "...py:1006 Legend.set_bbox_to_anchor 1 0.000002 0.000002 0.000002\r\n", + "..ng\\__init__.py:772 Logger.__init__ 3 0.000002 0.000002 0.000001\r\n", + "..ycopg2\\extras.py:65 DictCursorBase 1 0.000002 0.000002 0.000002\r\n", + "..mpl.py:143 QueuePool._inc_overflow 1 0.000002 0.000002 0.000002\r\n", + "..postgresql\\base.py:2708 1 0.000002 0.000002 0.000002\r\n", + "..meric.py:337 _full_like_dispatcher 4 0.000002 0.000002 0.000001\r\n", + "..idspec.py:67 GridSpec.get_geometry 3 0.000002 0.000002 0.000001\r\n", + "..plotlib\\gridspec.py:204 _normalize 1 0.000002 0.000002 0.000002\r\n", + "..my\\sql\\elements.py:4480 6 0.000002 0.000002 0.000000\r\n", + "..\\matplotlib\\path.py:211 Path.codes 4 0.000002 0.000002 0.000000\r\n", + "..mpy\\core\\multiarray.py:1043 copyto 4 0.000002 0.000002 0.000000\r\n", + "..set.py:16 _IterationGuard.__init__ 1 0.000002 0.000002 0.000002\r\n", + "..nit__.py:1220 PlaceHolder.__init__ 4 0.000002 0.000002 0.000000\r\n", + "..e.py:3867 AxesSubplot.set_navigate 1 0.000002 0.000002 0.000002\r\n", + "..tlib\\axis.py:1559 XAxis.have_units 2 0.000002 0.000002 0.000001\r\n", + "..b\\sre_parse.py:98 State.checkgroup 1 0.000001 0.000002 0.000002\r\n", + "..ib\\weakref.py:73 WeakMethod.__eq__ 1 0.000002 0.000002 0.000002\r\n", + "..g2\\extras.py:405 LoggingConnection 1 0.000002 0.000002 0.000002\r\n", + "..\\psycopg2\\extensions.py:109 SQL_IN 1 0.000002 0.000002 0.000002\r\n", + "..2.py:540 _PGJSONB.result_processor 1 0.000002 0.000002 0.000002\r\n", + "..g2\\extras.py:538 ReplicationCursor 1 0.000002 0.000002 0.000002\r\n", + "..\\transforms.py:939 Bbox.get_points 3 0.000002 0.000002 0.000001\r\n", + "..hemy\\util\\queue.py:183 Queue._init 1 0.000002 0.000002 0.000002\r\n", + "..nit__.py:1974 _OrderedSet.__init__ 1 0.000002 0.000002 0.000002\r\n", + "..ase.py:3618 AxesSubplot.get_yscale 1 0.000001 0.000002 0.000002\r\n", + "..end.py:666 get_default_handler_map 2 0.000002 0.000002 0.000001\r\n", + "..plotlib\\patches.py:1833 2 0.000002 0.000002 0.000001\r\n", + "..\\psycopg2\\extras.py:132 DictCursor 1 0.000002 0.000002 0.000002\r\n", + "..ib\\_pylab_helpers.py:99 get_active 1 0.000001 0.000002 0.000002\r\n", + "..\\sql\\selectable.py:3751 2 0.000002 0.000002 0.000001\r\n", + "..e.py:737 _ConnectionFairy.__init__ 1 0.000002 0.000002 0.000002\r\n", + "..:1088 ExtensionFileLoader.__init__ 1 0.000002 0.000002 0.000002\r\n", + "..ib\\axes\\_subplots.py:229 2 0.000002 0.000002 0.000001\r\n", + "..lotlib\\axes\\_base.py:586 4 0.000002 0.000002 0.000000\r\n", + "..plotlib\\axis.py:649 Ticker.locator 3 0.000002 0.000002 0.000001\r\n", + "..ec.py:93 GridSpec.set_width_ratios 1 0.000002 0.000002 0.000002\r\n", + "..lib\\transforms.py:935 Bbox.minposy 1 0.000002 0.000002 0.000002\r\n", + "..ib\\widgets.py:34 LockDraw.__init__ 2 0.000002 0.000002 0.000001\r\n", + "..610 _WindowsSelectorEventLoop.stop 1 0.000002 0.000002 0.000002\r\n", + "..sqltypes.py:2182 _PGJSONB.__init__ 1 0.000001 0.000001 0.000001\r\n", + "..nsaction._iterate_self_and_parents 1 0.000001 0.000001 0.000001\r\n", + "..matplotlib\\axis.py:1486 4 0.000001 0.000001 0.000000\r\n", + "..numeric.py:2354 _cumsum_dispatcher 3 0.000001 0.000001 0.000000\r\n", + "..q6k\\lib\\functools.py:486 lru_cache 1 0.000001 0.000001 0.000001\r\n", + "..Python38\\Lib\\inspect.py:260 iscode 2 0.000001 0.000001 0.000001\r\n", + "..hon38\\Lib\\inspect.py:285 isbuiltin 1 0.000001 0.000001 0.000001\r\n", + "..types.py:256 String.bind_processor 1 0.000001 0.000001 0.000001\r\n", + "..ements.py:1315 TypeClause.__init__ 2 0.000001 0.000001 0.000001\r\n", + "..y\\core\\multiarray.py:77 empty_like 4 0.000001 0.000001 0.000000\r\n", + "..copg2\\extras.py:233 RealDictCursor 1 0.000001 0.000001 0.000001\r\n", + "..indowsSelectorEventLoop.is_running 2 0.000001 0.000001 0.000001\r\n", + "...py:635 Legend._approx_text_height 2 0.000001 0.000001 0.000001\r\n", + "..matplotlib\\figure.py:97 1 0.000001 0.000001 0.000001\r\n", + "..copg2\\extensions.py:164 1 0.000001 0.000001 0.000001\r\n", + "..s\\psycopg2\\tz.py:108 LocalTimezone 1 0.000001 0.000001 0.000001\r\n", + "..matplotlib\\figure.py:74 2 0.000001 0.000001 0.000001\r\n", + "..WeakKeyDictionary._commit_removals 1 0.000001 0.000001 0.000001\r\n", + "..lotlib\\axes\\_base.py:588 4 0.000001 0.000001 0.000000\r\n", + "..ctionRegistry.get_projection_class 1 0.000001 0.000001 0.000001\r\n", + "..as.py:472 MinTimeLoggingConnection 1 0.000001 0.000001 0.000001\r\n", + "..sycopg2\\_range.py:242 RangeAdapter 1 0.000001 0.000001 0.000001\r\n", + "..psycopg2\\extras.py:261 RealDictRow 1 0.000001 0.000001 0.000001\r\n", + "..sycopg2\\extras.py:643 UUID_adapter 1 0.000001 0.000001 0.000001\r\n", + "..matplotlib\\figure.py:1073 fixitems 1 0.000001 0.000001 0.000001\r\n", + "..ycopg2\\extras.py:456 LoggingCursor 1 0.000001 0.000001 0.000001\r\n", + "..3883 AxesSubplot.set_navigate_mode 1 0.000001 0.000001 0.000001\r\n", + "...py:113 GridSpec.set_height_ratios 1 0.000001 0.000001 0.000001\r\n", + "..copg2\\extras.py:125 DictConnection 1 0.000001 0.000001 0.000001\r\n", + "..plotlib\\patches.py:1832 2 0.000001 0.000001 0.000000\r\n", + "..matplotlib\\figure.py:76 2 0.000001 0.000001 0.000000\r\n", + "..opg2\\extensions.py:133 NoneAdapter 1 0.000001 0.000001 0.000001\r\n", + "..opg2.py:548 _PGUUID.bind_processor 1 0.000001 0.000001 0.000001\r\n", + "..365 _ListenerCollection.for_modify 2 0.000001 0.000001 0.000000\r\n", + "..y:632 ThreadPoolExecutor.__enter__ 1 0.000001 0.000001 0.000001\r\n", + "..:505 Figure.get_constrained_layout 2 0.000001 0.000001 0.000000\r\n", + ".. LinearScale.limit_range_for_scale 2 0.000001 0.000001 0.000000\r\n", + "..38\\Lib\\urllib\\parse.py:624 unquote 1 0.000001 0.000001 0.000001\r\n", + "..ib\\threading.py:1095 Thread.daemon 1 0.000001 0.000001 0.000001\r\n", + "..b\\cbook\\__init__.py:828 2 0.000001 0.000001 0.000000\r\n", + "..util\\langhelpers.py:1500 only_once 1 0.000001 0.000001 0.000001\r\n", + "..sqltypes.py:786 TIMESTAMP.__init__ 1 0.000001 0.000001 0.000001\r\n", + "..chemy\\util\\langhelpers.py:906 memo 2 0.000001 0.000001 0.000000\r\n", + "..rs.py:63 _SelectorMapping.__init__ 1 0.000001 0.000001 0.000001\r\n", + "..emy\\engine\\url.py:129 URL.password 1 0.000001 0.000001 0.000001\r\n", + "..b\\gridspec.py:532 SubplotSpec.num2 1 0.000001 0.000001 0.000001\r\n", + "..y\\dialects\\__init__.py:52 1 0.000001 0.000001 0.000001\r\n", + "..ages\\psycopg2\\errors.py:1 1 0.000001 0.000001 0.000001\r\n", + "..y\\lib\\shape_base.py:1227 2 0.000001 0.000001 0.000000\r\n", + "..6 PGCompiler_psycopg2.default_from 2 0.000001 0.000001 0.000000\r\n", + "..ions.py:145 immutabledict.__init__ 1 0.000001 0.000001 0.000001\r\n", + "..emy\\util\\queue.py:191 Queue._empty 1 0.000001 0.000001 0.000001\r\n", + "..tors.py:272 SelectSelector.get_map 1 0.000001 0.000001 0.000001\r\n", + "..extras.py:296 NamedTupleConnection 1 0.000001 0.000001 0.000001\r\n", + "..y:512 LogicalReplicationConnection 1 0.000001 0.000001 0.000001\r\n", + "..ist.py:961 Rectangle.set_in_layout 1 0.000001 0.000001 0.000001\r\n", + "..py:536 PGDialect_psycopg2.do_begin 1 0.000001 0.000001 0.000001\r\n", + "..opg2\\extras.py:526 StopReplication 1 0.000001 0.000001 0.000001\r\n", + "..b\\gridspec.py:528 SubplotSpec.num2 1 0.000001 0.000001 0.000001\r\n", + "..:519 PhysicalReplicationConnection 1 0.000001 0.000001 0.000001\r\n", + "..s\\matplotlib\\dates.py:225 2 0.000001 0.000001 0.000000\r\n", + "..b\\_pylab_helpers.py:115 1 0.000001 0.000001 0.000001\r\n", + "..2\\extras.py:226 RealDictConnection 1 0.000001 0.000001 0.000001\r\n", + "..extras.py:500 MinTimeLoggingCursor 1 0.000001 0.000001 0.000001\r\n", + "..py:2459 AxesSubplot._get_axis_list 1 0.000000 0.000000 0.000000\r\n", + ".. FontProperties.get_size_in_points 1 0.000000 0.000000 0.000000\r\n", + "..ool\\base.py:231 QueuePool._creator 1 0.000000 0.000000 0.000000\r\n", + "..sycopg2\\_range.py:457 NumericRange 1 0.000000 0.000000 0.000000\r\n", + "..re\\multiarray.py:990 unravel_index 1 0.000000 0.000000 0.000000\r\n", + "..ib\\artist.py:800 XAxis.get_visible 2 0.000000 0.000000 0.000000\r\n", + "..2\\_range.py:486 NumberRangeAdapter 1 0.000000 0.000000 0.000000\r\n", + "..ec.py:549 SubplotSpec.get_gridspec 1 0.000000 0.000000 0.000000\r\n", + "..py:117 AxesSubplot.get_subplotspec 1 0.000000 0.000000 0.000000\r\n", + "..hape_base.py:1151 _tile_dispatcher 1 0.000000 0.000000 0.000000\r\n", + "..n\\Python38\\Lib\\typing.py:1146 cast 1 0.000000 0.000000 0.000000\r\n", + "..ycopg2\\_range.py:471 DateTimeRange 1 0.000000 0.000000 0.000000\r\n", + "..lib\\legend.py:918 Legend.get_frame 1 0.000000 0.000000 0.000000\r\n", + "..e\\interfaces.py:901 engine_created 1 0.000000 0.000000 0.000000\r\n", + "..opg2\\_range.py:476 DateTimeTZRange 1 0.000000 0.000000 0.000000\r\n", + "...py:101 State.checklookbehindgroup 1 0.000000 0.000000 0.000000\r\n", + "..chemy\\engine\\url.py:156 1 0.000000 0.000000 0.000000\r\n", + "..s\\psycopg2\\_range.py:466 DateRange 1 0.000000 0.000000 0.000000\r\n", + "..\\interfaces.py:856 get_dialect_cls 1 0.000000 0.000000 0.000000\r\n", + "..ion\\utils.py:58 profile_with_yappi 1 0.000000 0.000000 0.000000\r\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACdsAAAUsCAYAAADFYdzDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdeZhkVX0//vcZhhmQRVDBDRQV0a8YURGMkQhGTdyCRBOXaCIuWYxmMcZoXNFo8jOJ+s3XJXvcSUjcFZfEfUHAFTdQZFdAZWeG2fv8/rjVTnd1VdfaXTU1r9fz9NNd5957zumqe6qYmTefU2qtAQAAAAAAAAAAALpbM+kJAAAAAAAAAAAAwLQTtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAACYMaWUU0opdeHX7jQ+AAAAAMBKELYDAAAAAAAAAACAHoTtAAAAgF1GaVzcXjWtlLK9lHL7Sc8PAAAAAIDZJWwHAAAA7EoemuSOHdr3SHLy6k4FxqOUckKHAOkJE5zPW9vmcvGk5gKzwJoCAACA2SFsBwAAAOxKnrHMsaeXUsqqzQQAAAAAgN2KsB0AAACwSyil3CLJScuccuckJ6zObAAAAAAA2N0I2wEAAAC7iqckWd/WVtseL1f5jlVSaz2l1loWfk16TgAAAAAAoxK2AwAAAHYVT297fH6S97a1PbaUcvNVmg8AAAAAALsRYTsAAABg6pVS7pfkqLbmtyd5W1vb3kl+c1UmBQAAAADAbkXYDgAAANgVtG8PW5O8I8lHk/ykx7kAAAAAADCytZOeAAAAAMBySil7J3lSW/Pnaq2XtI6fmuRPFhw7upRyVK31nBWe155Jjk1yjyS3bDX/OMnXBhm7lLJ/kmOS3C3JAUk2JrkyyRdrrT8c66SXjn3LJPdPcpck+ye5PsnlSc6ptV6wkmMPo5RySJoKhwe1vmqSnya5IsmZtdYbVmEOd01ydJLbJ1mf5Oo0z9kXaq3XrvT4s6iUcs8khyc5OM1auinN63pxki/XWret8PjW8vDjTsuaPCrJIUn2TbI1yRW11nf0ef3tk9w9yWFJbp6mQuoNSa5Jcmmae3Dz+Gc+20op65LcL816uFWa98sbkpxVaz1rgH4OT7M25++xLUmuSvLDNPfYpjFPHQAAAJYlbAcAAABMu19PE4BY6G1tP/9J2/GnJ/njYQYrpZyQ5NNtzQ+utX6mdfx2SV6c5LeS7Nelj+8nedVyYY9Syr2SvCTJiWlCCJ3O+VKS59davzjYb7G8UsrxSV6U5CFJ9uhyzteS/EOSf6u11gH7PyXJyxe21VrLkHM9OMlzk/xqkiOXOXV7KeWsJG9KclqtdW7Acdp/x1fUWk9pHVuT5KlJ/jTJPbt0saOU8pkkL6m1ntnHeKek7Tlq8+lSej5lb6u1ntzrpH6UUi5Ocscuh+/Y4fnp5GfrpI/x7pVm3f5Kktstc+qGUsonkrymn+e1bYwTsouv5V5raaXXcpf+pmFN7pPkD5P8TpI7d+mi42tWSrlVkl9L8tAkxye5dY+pbC2lnJnkjUne0+/vsVJrqtd9PYgOc+z5nlJKOTnJW9qa71Rrvbh1/Mgkf57kcUn26dDF25IsG7YrpdwpzfvtI9P99U2SzaWUzyd5fa31o8v1CQAAAONiG1kAAABg2rVvC3tTknfPP6i1fiPJN9vOeUoppWPoZRSllMcm+W6SP0iXcE7LEUneXkr5r/Z5lMbLknwtyW+kSzin5QFJPl9KedFoM//Z2HuUUt6Y5DNJfjldwjkt903yL0k+1wo+rKpSyrpSyiuTXJjkhVk+1JM0/1PpA5OcmuScVgBqHPM4JMkXkvx7ugftkua5fEiSL5VSXj2OsWdRKeW2pZR3JflGkqdl+aBd0lQqOynN8/r+UsotxjQPa3nwMadlTd4/zWv311k+iNXp2lPTVN375ySPT++gXZKsS/KgJP+V5NutMBkdlFJekmZt/3Y6B+16Xb9/677+XpLnpPfru1eShyX5SCnl86WUOww6JgAAAAxK2A4AAACYWq3t4x7U1vz+WuuNbW1va3t8izQBnXHO5SlpQn7tVfaW8xtpQlrzfZQ0oZdXZPlwzKKhk7y6lPKcAcZd2kkz9juTPHvAS49L8tlSykChllG0AlX/k+SlGSKwkSYU98VSyq+OOI87JzkzTVBqEC8qpbxqlLFnUSnlqCRnJ/nNNPf1oB6T5MxSyhEjzsNaHnzMaVmTD0oTMBw2VPULGW23l/+T5h586Ah9zKRWSO4vM+TzW0q5Y5Ivprmv9xyii+OSnF1K+flhxgcAAIB+2UYWAAAAmGZPz9JQTnuwLkneleRvsjj08owkp41pHvdL8lcL5nJdko+kCWL9JMneaUIYj09yWNu1v1lKeX+t9b/TbPe4sFLfJUk+nOTbSa5OckCSY1v97N/Wz2tKKR+e36pvCM9L8sQFj29M8oEkX07y49bYd0+z9d+hbdcemuRTpZR711qvG3L8vpRSDkgTuLh7h8PfTvLZJN9J8xokycFpwnCPzOIKZfsm+e9SygNrrV8dYir7Jfloktu3HtckZyT5RJJLk2xIclCayl2/lqbC0kJ/UUr5UK2123aJVyY5Z8Fc79J2/ILWGMu5tMfxQXw3O5/TOyQ5cMGxba3jvXSdbynlfmm2vty37dBcks+neW4vas1h7ySHpNnis3171LumqWJ1dK31+j7m1M5aHnAtT9GavE2S92bxWjs7TQjwkjTPw22T3CNNOLKXHWmqEn4nyXlpXrcb0twb+6e5134+zRpf+D+t75vkP0sp96m1XrZM/yu6pqbM72Rx+HNDkv9Nc9/8OM3zd0iSB6d53hdpBe3OSudKg2e3+vlekmvTVBq8bZrg5COyuKLkrZOcXkq5b631ktF+JQAAAOis1FonPQcAAACAJUope6QJEy3cZvLyJIfWWuc6nH96mnDHvLkkdx70H9xLKSekCQUttCU7/0H/DUle1imo0tpm8rVZWnHqe2m21ftSmtDBTWkCM/9Sa+0UPLhNkvekCRMs9M+11t/r43c4JcnL25o3Z2dI5S1J/rTL77AmyXOTvCpLA2RvrbU+bZjxa619VTIrpbwvS6sSntGab7fg2nwg6KVp5r5wrIuT3KtDNcT269v/kmzh83VWkj+otX6ty7WHpXm97tt26OO11ocvN27r+hOy9J57cK31M72uXQmllLcmeeqCpktqrYeN0N+BaUJN7X28JckptdauocFSyl2SvCnJr7Qdem+t9XE9xj0h1vJIa7nVz7SsyR3ZGbz8ZpLfr7V+qcu1e9VaN3do/36Sb6WpDPipfgKbrSDYXyd5Utuh02utj+51fauPt2ZMa2qc7xellIuT3HFB09tqrSf3uObkNPfdQgtfm39M8pJa69Vdrl/02pRS1qXZqvuYtlM/nOTPa63nLjOX2yT52yRPaTv05SQP6LQmAQAAYFS2kQUAAACm1SOyOGiXJO/sFLRraa94tybJyWOay3w4549rrX/UrSJUrXVLrfU5ST7eduhuST7UmtOGJL9Ua/3HbkGAWuuVSR6d5Kdth55YStl7yN9hPmzz/9Van77M7zBXa31tmspQ29sOn9zaxnFFlFJ+N0tDPW9OctxyoZ4kqbVeV2t9XhZXG0uagNcfDDGd+efrw0lO6Ba0a419cZKHpangtNDDSinDbnc5S96UxUG7HUme0roPl63OV2u9IM17QXu457GllPsPMRdrudHXWp6yNTkf5vpikl/sFrRrjb0kaNdyTK31cbXW9/VbGbHWekmt9TeTnNJ26JGllE7V/nZH86/N82qtz+oWtEs6vjanZGnQ7oW11l9dLmjX6uvKWutvpdnOeaFjkvx672kDAADA4ITtAAAAgGnVHtBIkrcvc/4HsnPLvnlPa1V3GodTa63/r89zX9qh7eDW9z/uFVJJklrrtWkqay20f5ZWyBrEZ2qtf9HPibXWD6epiNXuj0YYv6tSyto0W3Mu9LFa67PrAFsz1FrfkuRf25qf26pUNqiL04TCugV3Fo57TZYGPtakCeHttkopd0vyhLbmF9da39VvH63X//eStAdvXjjktKzlxrJreUrX5PVJnlBrvWGIazPk1sPzXpmmYtq8kmarcxrvqbW+bpALWlUv/7Ct+R9rra8ZpJ9a6ylptq1daNj3BwAAAFiWsB0AAAAwdUopByd5VFvz12qt3+l2Ta11S5LT2prvmOQhY5jSjiwNnXRVa/1ymi1w230vSyt0LefdHdratyodxKBBudck+WFb22NKKbcdYQ7dPDGLtzOsWRrC6NcrW9fPu3WSBwzRzysGDOf8Z5p7ZaGjhxh3ljw/i/8O8qIkfzdoJ7XWbUn+qq35EaWU9u1Re7GWd+q1lqdxTb6u1vqjIecwklbA8B1tzcdNYi5TaC7Jnw1x3bOT7Lvg8YYkLxhyDq9se3zv1hbfAAAAMFbCdgAAAMA0emqSPdva2reJ7aRT5btOFfIG9Yla6yUDXvONDm1vGbAi1AVJ2is43W3Aecw7s9b6rUEuaFV0aw+XrE3y0CHnsJz2Lf8+U2v9wTAd1VovS9L+ux4/YDcbk5w64LjXJjm/rXnY12uXV0opSR7b1vzWbluu9uEjbY/XJxl0K1lreadea3na1mRN8u/DjD9G7ev7vqWU9s+q3dGnWttpD6r9HvvvYasWJjkjS6vbDnqPAQAAQE/CdgAAAMA0at+ab3uS/+h1Ua31jCwNQ5xUSrnFiPP53BDXdAr0fH4M/RwwRB9J8v4hr3tvh7afH7KvjlqhrF9saz5jxG4vant8nwGvP7PWunWIcS9oe3zzIfqYFfdKcmBb29Cva2ur3vZKg4O+rtbyYh3X8pSuyR/UWtur842klLJvKeWRpZQXllLeXko5vZTy+VLK10op32j/SvLGti7Wp6nSt7v79KAXtLaQ/bm25lHeH+aydI0Neo8BAABAT2snPQEAAACAhUopD0xy97bmj9Zaf9pnF29P8pcLHq9P8uQkbxhhWsNUc7pxhfoZNrz11SGv+1aSbVlcaXDcW6P+nyTtgcinllIePUKfd2h7fKsBr28PbfarPQy2O4ftHtih7Q2llC0j9HmztseDvq7Wcn9reRrX5NdGGHuRUsrRabY4PjHJ3iN2d0CWbtG7uxnmtXlAlhYD+ItSynNGmMfhbY8HvccAAACgJ2E7AAAAYNp02va1ny1k570jySuTlLY+RwnbXTvENdtWqJ9htyz83jAX1Vq3lFIuTnLXBc0HDzmHbg7p0tapfVi3HPD8a4YcZ1yv1yzo9Pq1B2lHNejrai33t5ancU3+ZNQBW1u+vj7JszK+XV9250DtvGFem0730p1HnUibQe8xAAAA6Mk2sgAAAMDUKKXsm+Txbc3XJvlwv33UWi9J8pm25qNalYyG1SlsM7Ba61j6GVJ7xbVRrh12+8tuViMQMWj1qkm+VrNiZl/X3WAtT+Nrd8Mog7WCdv+d5NkZ79+L786B2nnDvDbTeI8BAABAT8J2AAAAwDR5YpJ92tpOq7UOuu1kp0p4nSrm7U42jvHa/UaZSAcHjrk/poPXdWWsxlqextdu+4jXvyDJYzq0/yjJm5M8Jc3WpoemCSHuVWstC7+SPHjEOcyqYV6babzHAAAAoCfbyAIAAADTpFMg7vdLKb8/hr6fVEp5Xq110xj62hXtk+ErQ7UHIG8ccS7tOr0mJ9VaPzDmcVhdnV7XA2ut1636TGbLaqzlmVqTpZSDk/xFW/P2JM9P8sZaa79hMZXSxqfTPXbvWus5qz4TAAAAGIDKdgAAAMBUKKXcI8nPr+AQByR57Ar2P+1uPsZrxx2WuqpD253GPAarr9PrethqT2IGrcZanrU1eWKSm7W1vaDW+n8HCNolyS3GOKdpMMktcGftHgMAAGA3IWwHAAAATIvV2OZ1d95K9ohhLiqlrMvSgNRPRp7NYj/u0HavMY/B6vO6rozVWMuz9to9rO3xtUneOEQ/dx7DXEa1rUPbsKG5SYYHZ+0eAwAAYDdhG1kAAABg4kopeyb5rbbmrUnOHbHrQ7M4THBCKeXOtdYLR+x3V3R0kk8Ocd29sjTI8dXRp7PIN5NsTrLXgraHj3kMVt/ZHdoekeTtqz2RGbMaa3nW1uShbY/PqrVuHaKfB4xjMiPqtIXw/oN2Uko5JItf39V2Voe2RyR55WpPBAAAAAahsh0AAAAwDU5MclBb2/tqrfce5SvJS9r6LEmetiq/0fQ5acjrOm29e+YoE2lXa92c5AttzbctpTxknONMsU7bWO6x6rPYqX0+w87ljCQb29oeVUo5cMj+aKz4Wp7BNXmrtsfXDNpBKeVWSR485PjjWlNJ561/h6m4d/wIcxhZrfWSJD9oaz62lDJU5UYAAABYLcJ2AAAAwDTotL3rO8fQ72lpKuQtdHIpZXf8O5EHlFKOHOSCUsr6LK04uD3JJ8Y2q50+0KHtlBUYZxrd2KFt31WfxU7t8xlqLq3KYR9ra94vyfOG6Y+fWa21PEtrsj302R6+68ezM3wluLGsqZYfJdnQ1nbsEP387ghzGJf2e2xNkpdNYiIAAADQr93xL5YBAACAKVJKuX2SX25r/mmWhnQGVmu9JslH25oPSfIro/a9i/r7Ac//8zTP10IfqLVeMab5LPRvSa5sazuulPKCFRhr2lzboW2YSlXj0j6fA0aoRvfqDm1/Xko5bsj+aKzGWp6lNdn+e/5CKWWffi9uhRv/YoTxx7amaq1zSb7R1vyoUsrN++2jlHJikgcNM/6YvTbNdsULPbmU8oRJTAYAAAD6IWwHAAAATNrTsnRLvdNqrZ221hxGpwp5nSrp7Q4eUkp5VT8nllIekeSlHQ79v/FOqVFr3ZTOway/KqU8Z9h+SykPL6W8efiZrYrLklzf1vbISUyk5Vsd2oaaT63160ne09a8Z5L3lVKGCvuUUtaXUn63lPLcYa6fESu+lmdsTX6+7fG+SV7ez4WllMOSfDDJ+hHGH9uaamkPke+dpN/74V5J3jLC2GPTCnu+qcOhfy+lPG6YPkspe5RSnlBK6XTvAgAAwMiE7QAAAICJKaWUNGG7duPYQnbeh7I0yHRiKeWgMY6xK5ivHvTiUsq/dKuCVEpZU0r5kyTvTROKWuittdbPreAc35TO2wq+oZTyvlLKUf10Ukq5UynlBaWUb6YJpUxDBaeuaq01yZfamh9aSvnrUsrBE5jSmUnm2tpeW0p5TCml/Z7ox+8luait7VZJPllK+dtSym366aSUcv9SymuTXJzkn5LcZYi5zILVXMuzsibfk6X39PNLKX9ZSlnb7aJSypPSrM35SpM3DDn+uNfUW5PsaGt7TinlFd1+n1YI7RlJvpDkFklqlm6zPgkvSXJ2W9vNkry7lPKvpZS+1nkp5Z6llFcm+X6S/0zS170JAAAAg+r6FwkAAAAAq+DBWbpd5vm11rPGNUCtdUsp5b+TPHNB855JnpLk9eMaZxfwsiR/0/r5mUkeX0p5f5IvJ/lJkgOS3D3J45LcocP1lyRZ0UpitdZaSnlKmjBIe1DipCQnlVLOSfKZJOcnubp17IA04a17JTk6k92CdVj/nuThbW0vTPLCUsoVSa5J0l7t8YO11peNeyK11itKKR/L4spbt07y/iRbSymXJdmYJqyz0DNrrV/p0N/VrW0rv5BkYTBsbZI/S/JHpZQvJflckh+m2XJzfZrX9bZJ7pPkfkl2t4BsN6u2lmdlTdZav19KeWeS32479JIkJ5dS3p3km0k2pAmi3S3JiVkc6LwpyQuS/MMQ4497TV1eSnlDkj9pO/SyNNuwvifJua053zLJzyV5VBbfD69J8qQkdxz09xmnWuvmUsqvpQkkHtp2+BlpXp+vJPlsmqDtNWmq4R6Q5OAk907z/nD71ZozAAAAuzdhOwAAAGCSOm3nOs6qdgv7fGZb2zOye4Xt/i5NIOHxrcf7pwmetIdPOvlhkl+qtV63QnP7mVrrhlLKL6bZ5rDTNoJHZTYrFr0nySeTPKTDsdu2vtp9YwXn8/wkxyfZp619XbpXlNu3W2e11m+XUo5JU2Xtnh36PL71RW+rupZnaE3+UZJj0wQRFzokS0Nr7bYl+Y004bVhjXVNJXlxkodm6Xq6S5I/7zGX01rXP6nHeauiFR48Ns282qse7pHk/q0vAAAAmDjbyAIAAAATUUo5IMljOxx61woM97kkl7a1HVlK2W3+8b61VemTk/zjgJd+McnxtdYLxz+rzmqtN9Zafz3Js5L8aMTuLk0TEppqtda5JL+e5NRJzyVJaq3fTfKwJD8YY5/npwnMvC5NFa9RfCXJR0ae1C5oEmt5FtZkrfX6NOG0Mwe89PIkD621jnS/jXtN1VpvSnJClm7BuuxlacKav9l6z5katdYr04SNX5Kmet0ozk3yXyNPCgAAADoQtgMAAAAm5clJ9mpr+1Kt9YJxD9QKp3QK8XWqrDezaq3ba63PShM4+VSS5cIWX0/yO0l+cTWDdgvVWv8xzfaTv5PkE+mvqtRcmrn/bZptig+rtb52xSY5RrXW62qtT05TeeuUJB9OckGabVW3TWA+X2rN5ZFJ3pxmK9HL02y1OVRQp9Z6U631eUkOS/M7fiXJjj4u3Zzmnn1RkiNrrceMGn7alU1qLe/qa7LW+qM0ldOek6TXc3FJkpcmuXut9XNjGn+sa6rWenWSB6YJQS732bkjyUeTPLDW+vxpC9rNa93Xr06zte3z0jw/W/u4dHuSM5K8MsmxtdZ71FrfvnIzBQAAYHdWmr9rBgAAAGB3U0q5VZKfT7Pt4L5JbkhyRZKvr0TocVSllHVJjk6z7eOtkhyYJmRxY5Krknw/yfdrrZsmNkkGVkq5eZJjkhyc5JZJbp5kU5rX9fIk30tyYa21n1DeTCmlnJLk5Qvbaq2lw3kTWcu7+pospRyRZmvZg9Js77oxzVa736y1fm+ScxtG6/c5Os1a2i/N63BBkjNqraNWi5uIUsrN0mybfLs07w8HJNmS5nf7SZr3hx/UWvsJ5QEAAMDIhO0AAAAAAKZQv2E7AAAAAFaHbWQBAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAeSq110nMAAAAAAAAAAACAqaayHQAAAAAAAAAAAPQgbAcAAAAAAAAAAAA9CNsBAAAAAAAAAABAD8J2AAAAAAAAAAAA0IOwHQAAAAAAAAAAAPQgbAcAAAAAAAAAAAA9CNsBAAAAAAAAAABAD8J2AAAAAAAAAAAA0IOwHQAAAAAAAAAAAPQgbAcAAAAAAAAAAAA9CNsBAAAAAAAAAABAD2snPQHoppRy8yTHL2i6LMnWCU0HAAAAAAAAAACYvHVJDl3w+LO11utXY2BhO6bZ8Uk+MOlJAAAAAAAAAAAAU+sxST64GgPZRhYAAAAAAAAAAAB6ELYDAAAAAAAAAACAHmwjyzS7bOGD97///Tn88MMnNRcAAAAAAAAAAGDCfvCDH+Skk05a2HRZt3PHTdiOabZ14YPDDz88Rx555KTmAgAAAAAAAAAATJ+tvU8ZD9vIAgAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAbDbqFs2pZ7zhdSf/mjSUwEAAAAAAAAAdjHCdgDsFuoXT0991G1Tn/OQ1MfeOXOvenrq9u2TnhYAAAAAAAAAsIsQtgNg5tVrf5r6kickWzbtbPz4u5J3v2FykwIAAAAAAAAAdinCdgDMvk+elmzftqS5nv62CUwGAAAAAAAAANgVCdsBMPPqf/595wMXn7u6EwEAAAAAAAAAdlnCdgDMvg5V7QAAAAAAAAAABiFsB8Ds27510jMAAAAAAAAAAHZxwnYAzL5twnYAAAAAAAAAwGiE7QCYfbaRBWiT9noAACAASURBVAAAAAAAAABGJGwHwOzbIWwHwGIf/VbNmt/d8bOvr15SJz0lAAAAAAAAppywHQCzb8eOSc8AgCny6fNqHvWGuUVtx7x6Lt+7UuAOAAAAAACA7oTtAACA3cpj3jTXsf05p3ZuBwAAAAAAgETYDgAA2M1s2NK5/ZPnre48AAAAAAAA2LWsnfQEAAAAuvnxDTXv/VrNpdckv3T3kofdo0x6SgAAAAAAAOymhO0AAICpdPFVNb/02rlcfHXz+DUfq3nRI0teddLKFejesq1m/Z4CfQAAAAAAACxlG1kAAGAqvebj9WdBu3l/9ZGaS6+uKzbmh7+5Yl0DAAAAAACwixO2AwAAptI/fbZzqO5fv7ByYbtPf2/l+gYAAAAAAGDXJmwHAABM3I65mq9cXPOhc2qu3bh84O0T565cIO6GTSvWNQAAAAAAALu4tZOeAAAAsHu7ekPNr/zfuXzt0ubx2jXJqb8zmf8v6MKrVLYDAAAAAACgM5XtAACAifrT/6o/C9olyfa55PH/NDeRuZxxwUSGBQAAAAAAYBcgbAcAAEzUh765etXkrumxRW2SbN2uuh0AAAAAAABLCdsBAAATs31HzXU3rd54V2/ofc6GLSs/DwAAAAAAAHY9wnYAAMDEbNq2uuNt29H7nE1bV34eAAAAAAAA7HqE7QAAgIm5aYhg25kXDj9eP2G7y64dvn8AAAAAAABml7AdAAAwMd+4bHXH2z7X+5z/+W5d+YkAAAAAAACwyxG2AwAAJmbjlsGvucMthh+vn8p2ZfjuAQAAAAAAmGHCdgDMtFpVJwKYZpu2Df4+vaOP6nTd9BO2e/kHa07/ps8PAAAAAAAAFhO2A2C27egjVQHAxGzaOsQ124Yfb3ufHwu/+sa5fPw7AncAAAAAAADsJGwHwGybE7YDmGbDBOeGCejN66ey3bxXfGiEEnoAAAAAAADMHGE7AGZbFZQAmGbDVrYbdpvwrQOE7c68cKghAAAAAAAAmFHCdgDMNtvIAky1YbeE3bJ9yPFGqIoHAAAAAADA7k3YDoDZZhtZgKl205Dht2FDczdtHa4iHgAAAAAAAAjbATDbhO0Aptqwle1W67pht6sFAAAAAABg9gjbATDbbCMLMNU2DxuaG7Ky3aDjbR1yu1oAAAAAAABmj7AdALNNZTuAqbZtyDDbsJXtBg3PDTsOAAAAAAAAs0fYDoDZJmwHMNW2Dfk2PWwIbsugYbshK+gBAAAAAAAwe4TtAJhtwnYAU23r9jrUdcOG4LYO+LGgsh0AAAAAAADzhO0AmG07hO0Aptmwle0220YWAAAAAACAVbZ20hMAgBVV5yY9AwCWMWiluXnDhuAGDtttTS66qmbbjmRNSQ67ZbJ2j5IbNtVctSG5062SUspwkwEAAAAAAGCXImwHwGxT2Q5gqg1b2W7T1ppk8JDboOG+Y/+qc2h7jzXJjrnk0AOTdzxjTR50hMAdAAAAAADArLONLACzbU7YDmCaDVppbt5qVbbrZkcrg3fZtckj/n4uV15fx9MxAAAAAAAAU0vYDoDZNmcbWYBpNnRluyHDdsOOt5xN25LTvyVsBwAAAAAAMOuE7QCYbSrbAUy1Qbd1nbdp65DjjamyXbtPnrsy/QIAAAAAADA9hO0AmG07hO0AptlqV7Y788KVqUD3kxtVtgMAAAAAAJh1wnYAzDaV7QCm2rCV5s4aIjR30VU1F1893Hi9fOq8pFaBOwAAAAAAgFkmbAfAbBO2A5hqw1a2+/h3Br/m37+4smG4z5+/ot0DAAAAAAAwYcJ2AMy2ubnux9b4GASYtGEr2x1/xODXvPr0lQ3bffp7KtsBAAAAAADMMikDAGbbcpXt1uyxevMAoKNhK9vtWCZLPSmXrNAWtQAAAAAAAEwHYTsAZttyYbtSVm8eAHS0dciw3bAhvW6OuPXofVxxvcp2AAAAAAAAs0zYDoDZtmPMaQwAxmrY0Nz2MVe2WzuGPxldes3ofQAAAAAAADC9hO0AmG3LVbarKhABTNrW7cNdN+6w3eOOHr3a6UVXJdVnCwAAAAAAwMwStgNgtgnbAUy1oSvbDXHdfe/Q/dhjjho9bLd5W3Ll9SN3s8S1G2ve/dWav/7oXN7yxblcdo3PLwAAAAAAgElYO+kJAMCKWnYbWWEFgEnaMVczN+Rb8XlXDn7NjZs7t5/8CyX3WSaIN4gLr0pue8B4+kqS866oecjr5nLFghDfurU17/79NXn0vUYPCAIAAAAAANA/le0AmG3LVbYDYKJ6VbW7y0HJSx7VOVC2ZYjtZ8//SfdxShlPcO2iq8Yb5H7OfywO2iXN1ru/9W9z2bZdaBwAAAAAAGA1CdsBMNuW2yrWNrIAE7V1mcDc2S9ak/NfvUduv0yVuO07xvM+Ps5PgwuvGl9fm7fVfO77nY9dvyn58iXjGwsAAAAAAIDehO0AmG1zc92PCdsBTNTmbd2P7b2u+b7P+u7n3LR1sPH23KNz+3yVvF+7z2D9dfKuM2uuunE8ny83bEq2L/MxdvWGsQwDAAAAAABAn4TtANh9CdsBTNSm5cJ2ezbf73OH7tu7Lnd9ux1zteu2tScc0Yzx3IeO/sej83+SHPy8uTz2zTuyaetonzMnvnGZpF2STdt8jgEAAAAAAKwmYTsAZptAHcDU2rRMZbr5sN3890Gvb/ftH3U/tt9ezffj7lpy1ovG80ek938j+bN3D/8Z9F9fmcvZFy9/zpd7HAcAAAAAAGC8hO0AmHHLBx2qMB7AxCxb2a61jexyYbvltqFt94Fzur/fLxzjmMO6V9Ib1Pu+NvxnzB/+R+9rz7vCZxgAAAAAAMBqErYDYLb1CtMJ2wFMTD/byM6H7ga9vt11N3U/dueDFj9+3H3773c5V96QbNs+3OfMT2/sfc6htxhfMBAAAAAAAIDehO0AmG3CdABTq9s2sKUk69Y2P++13DayA4Ttljt3n/WLQ2tP/YU1KWPKsQ0yx0Ft3bFyfQMAAAAAALCUsB0AuzdhPICJueL6zu/Be++ZlFbabf3adA2+dQvrdfJPn+081hOPWdr5o+9V8q5nlNzn0GYuD75b/+O0W8mw3bbtK9c3AAAAAAAAS62d9AQAYEXZRhZgan3qvM7tC6vZlVKy19rOobVxBNn226tz+xOPXZMnHpvUWlNKyTGv3pGvXjJ4/4MEAued/+P+Ppu2CtsBAAAAAACsKpXtAJhxvQILwnYAk3L7Azu3X7Nx8eO913U+r98gWxOY63xs45blr52vsPfY+w63r+zmIQKB37m8v/O27vAZBgAAAAAAsJqE7QCYbSrbAUyt7Tv6O2/vPTu3b9rW33v4lu3d3+6Pu2t/czjxqNI1sLecbX3+jsNcs2UFt6gFAAAAAABgKWE7AGabsB3A1PrWDzu/Bz/k7osfj1rZbrnz7n+n/hJ0R96u5J3PKNlnfX9jzts6RNiu34p1w/QNAAAAAADA8ITtAACAifjItzu3f7ttG9Xule36G+dH13U/1q3vTp507Jpc/fo1OetFa3LF363J0x7YO6i3dXv//c/rt7LdMH0DAAAAAAAwvLWTngAArCiV7QB2OT++YfHjUcN2F/60+7Fb7NNfH/PWrS055rDm5xs2zfU8fyW3kVXZDgAAAAAAYHWpbAfAbOsZphO2A5h2o24ju1x47eD9+9tGtpN+8trDVJ/r9xqV7QAAAAAAAFaXsB0AM05lO4BpdNWN/b//jlrZbtO2lXmv76fXYarP2UYWAAAAAABgOgnbATDbbCMLMJX+7n8HCNuNWNmuWyjvLgf1PYWO+vkIsY0sAAAAAADA7BC2A2D3JmwHMBGfPHeQynadt3rtt7LdTV1Ced0q5vXrqEN7b0G7ktvIblHZDgAAAAAAYFWtnfQEAGBF9QzTCdsBTMK1G7sfe/0TFofY9upS2W5zv9vIdgvbdem3X888ruQVH1r+c2TrjpqkdyhvoX4r2/Vb2W/jlpqvX5psn0v2XZ/ss37x93VrB5sfAAAAAADA7krYDoDZpnIdwFS68Krux57+wMXhr24V6DZt7e89vlsFvFEr293+wJJnnVDyD5/pPo9hKtv1HbbrI2z4z5+by7NPrdkx1/2cPffYGbxbFMZbl+y7V8k+65c/vm+X40J8AAAAAADArBG2A2DG9QhiCOMBrLovX9z9vfffnlqy3159hu36rGz3li92Hm/UynZJ8sYnldz/TsnJb+k8Rr/BuWGu6VXZ7uyLan7/nb0/57btSK67qflaavgKsWvXJPvutTCYtzikd7Mlba3v61shvy7H161NShHkAwAAAAAAVp+wHQCzrVeYTtgOYNW96L3dy6zdZv+lIapuobh+t1HtFl7bawx/Giql5LcfUPI3H9uR716x9PiWISrbbe0zbLd9Ltm2vWbPLhXkPvzNyX7GbZ9b2RDfzmDezp/3Wd9U4lvueHubEB8AAAAAANAvYTsAdm/CdgCr7pPndT/2c4csbRu1st0Rt05+fMPS9rMu6u/6fqzv8ierzX3OcaFBquFt2pbs2WXsy68ffOxdwUqG+Dpth7swxLfc8e7b6QrxAQAAAADArBC2A2C29QzTCdsBTJNDDhx/Zbtu5z38nuMLQHWb46Bhu+07av7hM/1/Nm3aluy/d+djO4bYwnZ3tn0uuX5T87XU8P89sceabgG9ZN+2EF+3452uF+IDAAAAAIDVJ2wHwGyzjSzAVLl24+Dvu6NWtusWeLv3oQNPpatR5zjvj08b7Pn5+qXJw+/Z+dggFfJYOTtWOMTXOYy3M8S33PFO168X4gMAAAAAgK6E7QCYccJ2ANPk499Z/bBdt/P26tLvMEatvpck27bXnHrWYM/PO86sXSv0bZ/rfM1T7l/y0keXbNiSbNySbGh9bdxSF/y883vzc207d+f3QQOFjMdqhfj2WZfsu9fCn0tutqRt/ueSfffqdI0QHwAAAAAAs0HYDoDZJkwHMFXOu3Lwa/ZeV9IpHNRvkG3r9s7tYw3b7dlljgME0c67sltwqrv/OLvmXc/sfGzbjs6fgQfsk9z11p1CT8MFoXbM1QWhvKVhvA2tEF/78Y3dAn5bkw2bhfgmZfkQX7J8kG/5EN988G6fda1qeot+3hniW3p8cYhv4XEhPgAAAAAAVpOwHQCzzTayu50zLqg57jU7yzm99Wklv/2ANROcEbDQ1mW2Nn3xozoHZrpVtrtxc39jdttOdc89+ru+H90q23XbwraTbpXohrW9y++9dsxviXusKdl/72T/vbudMXyI76ZW8G5hCG/jz9rqgp93tjfX1EVtQnyTt2MuuWFz89XZcCG+NWVpcG/x1ritLXM7Ht+5nW778b32FOIDAAAAAGApYTsAdm/CdjPl7IsWB+2S5OS31GzaOpffO17gDqZBtypzSfLKE7uE7boE2bbPJbXWnoGYbmG7tWvGF6TpViXvE+f2/zlzydVjmkzL/57buX2cIcOVtMeakv32Svbbq9sZo4f4Nm5tVdvbvDDMVxe3bVkc4ltyzRYhvkmaqysb4vvZdrqLAnw7g3qdj5e2c3d+F+IDAAAAANi1CdsBMNt6humE7WbJs0/tXBbqWe+q+b3jV3kyQEfdKtuddO/uAZRule2S5LtXJEfebvkxV6WyXZc5Xn5d/3386+fHW9quW1W9cVe229WsdIhvXNvpzv98U5/bJTNeKxniWxrcW1xt72Zdj5cuwT8hPgAAAACA1SJsB8CMs43s7uSrl3Q/tmVbzfo9/SM0TFq3ynbr1nZfn7fat3t/X7+05sjbDVfZbpxhu+s3dW6/zf799zHubWQPuFly3U1L239843jHobFSIb65+Up8XcJ4G7bUrgG/jV0CfhuE+CZmrjZbYHffBnv0EF/nMF9Zcnyfdc32ufuuLwt+Xnx873VCfAAAAAAACwnbATDbeoXpVihsV2vNJ85NPn9+zRG3Tk48qmT/vf1D5SR97DvJY+496Vkk126s+eA5NRf8NDn+iJJfurt/xGY4l19X84Fv1FyzMfmVI0vud9iucR91DdstE3w7/ODux7pVb1toNcJ2B+032NidnHfleOYyr9suube7+XjHYWWtWVOaENQKhvg6h/U6V9u7aZmAnxDf5KxUiK+U9mDezp+b763tdDseb22nu9fS40J8AAAAAMCuSthuQkopeyQ5PMk9ktwuyc2TbElybZILknyl1rpxzGPumeSBSe6Q5LZJNiS5PMnXa60Xj3MsgKkxgbBdrTV/fFrNGz+1s++jDqn5n+euyUH7+UfFSfm1N8/lxY8q+cvHTG7/xCuvr3no6+by3Suax686veZ5v1zyt7/uvmAw515R8+C/m8tPWhXKXvbBmn94csnvPmj69wftGnxb5k8mywUyru1QuW2hWmvXinHjDNsdd3jJ33586WfK1X3+F/0ZF9Rces1wY++Yq9mjQ7Ku23N99B2957DyIb6NW5MNm1thvIU/z1fbazu+cfPiEN+S41uG/lUZQV0Y4ruh4xnLXd31SCmtAN7CMN76xSG+m3U93rad7oLjQnwAAAAAwEoTtltFpZQ7JHlskocm+cUky20qtaOU8r9J3lhrPX3EcQ9K8ookT0hyiy7nnJHkdbXW94wyFgDJOT/MoqDdfNubPl1zyon+8W+SXn16zTOPq7njLSfzOrz+E/VnQbt5r/2fZk53u417g/696L07g3ZJE4b4k9NqnnL/mputn+57acu2zuGL9T3+ZHL0HTtvFX3qWTXP///Zu/Mwuaoyf+DfU11dXdWdfSUJkJAQVtmRHVlF0BHBDUVRQUZHBweH8aeijsLM6LggboMO4AKKouiALLIkskPYCQGSACEhCQnZ916qqqvr/f1RXd236p5z7rlVt5bu/n6ep59U33PvubfWdN361vu+y7xdzlJZLsqwXarVPCYigeGPE75XeQ/Znqw+MGW67lFeb6Jy3hDfVO073mhCfF3F1rrFy+nSEF9xvCsNdGXFF/zr8lT1o/oTGayGWKsQn2s73cHLSrsNQ3xERERERERERETkxbBdnSil/gDgoyE2aQFwJoAzlVJ3AbhYRDZUsN+zANwAwNJ8CwBwHIDjlFK/B/DZqKvqERE1TGDluugr213zoH7O/7hLcMXZke+OQrp/qeCiExrzYamu6hUA/O/Dgh+dxw9wyd3ti/zL0r3Azc8IPt2gx7errCEAlgh4Z5I3ZNGmj7NvZ2vjGmXorM0StnttA7Dvbubxnmx1/xf19OrDdqbrHm/+AohEPrUM8fX0lgX3vK1x0+Jf5mmnq92GIb6GKQnx6dewbW0cKYb4TGG8YohPP24O+LUzxEdERERERERERDTkMGxXP/sYlq8FsAzABhTuj9kADgHg/QjsHwA8opQ6SUTWu+5QKXUygL8CSHgWC4DnAawAMA7AYQAmecY/BmCMUuocEam8vAYRUdOofxvZPz9rnnNnj+DZVcCWTmDRGsGtzwtaYsBPPxLDyfvywzZXmV7BkysK4ZYjZwLxFvfbbUdPtMciIli+CVj0JnDw7sDeU8Lfj9c+IvjRedEeF41MC5YDnz6h0Udhl83plycCgm8L39Qvb0/olxeZWsgC0Ybt9reE6Xal7dtWG8pZtwOYPLp0Wb3a5xINdbHYYEiqViG+rowujCclwbziv12Z0na6uu2p/rwhPv23IKMJ8emq7bVbAn6mCn4M8REREREREREREdUOw3aNsRDArwHcIyLLyweVUjMAfBPAZzyL9wHwZ6XUO0SCkyFKqd0B3IrSoN3jAP5RRJZ61msD8FkAVwEo1uN4L4D/AvC1MFeKiKgpBb1k1iBs12eZctyl+uTDaVcXlu/6WQwdTd4CstGeWyU488d5bOmvwbrXJGD+v8Ywe7Lb7dbTG92xZHoFH/tlHrcuHFx29iHAHz8TQ7LV/X5M9wKX35rHd85V/GCUqvKbxwVXni3YfXzzPo4qrWz3kbcr/PEZ/wvs8k327WyV7eIRhs7Gpsxjmzvt26YNAUQv0/UHgEP/I48bLlT4xLGD39fps4QMo7zeRKTnDfHpVRfiM4fxRBvQ67IE/IrtdWvwZzEFqGWIr73YTjdRqAhZenkwxOcfLw3xecdTrYXHNhERERERERER0UjGsF39CIC/AbhCRJ61riiyFsBnlVKLAFzjGToBwHkA/uiwvysBjPf8vgDA6SJSUldDRDIAfqqUWg3gNs/QZUqpa0VklcO+iIiaVwPCdtVUKDrpB3k8+w2mIEzyecE51wwG7QDgjc3Ax3+Vx6NfduuLGGXY7qp5UhK0A4A7FgHfvUdwxdnhPoj83r2CY2crnH1odMdHI9Onb8jjvn9t3tcRY2W7gHcme03SL3/BUPGuqF5tZG0Bto9en8e2n5hX2N5tn/sv/xTDKfvCGLYDgAtvEJywtwwEj+tV0Y+I6ssb4puiXaOyIJSIoCdrrqZnqrbXnS202tW10WWIr3FEBislGtawbW2duzyE19Ef6itcVuhImsaVNvjXkSgEAxniIyIiIiIiIiKioYJhu/r5kIisDLOBiPxcKXUqgA94Fl+AgLCdUmougE96FmUBfKo8aFe2r78qpW70bNcG4FsALgpzzEREQ09zffr3/OpGH0FzW/gmsHa7f/mTK4C3NMt1erLRHc9dL+ofP3e9KLji7PDz/e0lwdmH8oNGqs4DrxaqFzVrlUxT2C4oAJZsNY91ZwTthutbr7CdrSplUPvq51eb/y86Zjbw/sMVMr32/69EgD89K7j8rMJxWCv6uWWTiWgEUapQ6ay9hiG+rizQmS4P48ngMs94McRXsk3ZZYb4GqOWIb5iME/XTrcjaRpXnrCfv50uQ3xERERERERERBQ1hu3qJGzQzuMalIbtTnHY5nwA3o8ObxWRZQ7bfQ+lIb0PK6U+bwvpERE1PcuncAJga5eCoVhSxca3A9sCqhRRZV5aa74/12xzm6M7wrDdU2/ol+tCkw5d4HH9o4JrL6jyoGjE68sDW7tsrQsbyxQCSwQE30YnzWNbuwsBkTD7A5qnwpstBnDZOwvJuDaH1tRX3CG4/KzC5bSliqctuEhEFCVviM+wRkXzFkN8XcVqfOnBMF5hmXguDy4vaaerGe/MMMTXKMUQ38ZdutHKQ3zFdrolrXEHwnqD7XT948oQ/GOIj4iIiIiIiIhopGPYrvmVNadDSik1TkRs9XvOLfv9Ny47EpGlSqmnABzdv6gDwBkA7nA6UiKiZqT5tEwAfHfi/8PPJnweG787FXMm9+H7H4zh3MOi+cBkzmTgWTbhrgnbPRTUhrHIFkCppYyhmhdRWC7BzShDpVEzhd+Cgm/vOUjhslv0191WsXIohO1s99e7DnSfx3tduzdtBTBOu16KYTsiGuK8Ib7Jo7VrVDSviCDd62+H6w3xadvlekJ8unGG+BqnO1v4qVWITxfG62hTvmCfN+Cn36ZQmY8hPiIiIiIiIiKi5sewXfPTfTSfMK2slNoNwCFl2z8eYn8PYTBsBwBngWE7IhrS/B+SXDfuYvz7lCsHfl++CfjwtXk8/pUYjtqr+g83bMEOp+1zgtY4P2TRWbnFPHbFnXmnOaJsI2sjIiVtJeu1Xxr+XD6s72lQqNRFzvBUjQcE38a3m8ds17dZwna5PkG8Rf/abjr+yaOB0cnBbT51nMINC9zSGl3fvQTATdqxlPHdBBHRyKaUQipReJ2sVYhPH8aTkuBecbw7Yw74FS/nGeJriGKIDzUI8WnDeAlgVLIQ1NOPK4xK6gOADPEREREREREREUWLYbvmt3fZ7zkAmy3rv63s9xdFpCvE/haU/R6ilgYRURPSpFJ+P/YjvmV9eeBPz0okYTtTkMRVTy/Qyv+htZ5+w/zh1DMr3ebo6a3PJ5KL1gCH7uHdb112SyOAyyO4mcOdlVa2swXEhkJluzc2A3On6sdMrw97TSz93aX965ptghndK9CzYjkwW78OK9sREdVXrUN85jCevtpelyXgV7zMEF9jFEN8myIO8aVaMRjGS5RfVoVKfdrxQojPvw1DfEREREREREQ0cvGj/Ob3wbLfnxURW4zjgLLfXw+5v+UB8xERDXkL2o/TLv/N44Iffqj6+autbNfTC4xJVX8cw9FekxTcokZmUYWQcn3243h9Y2nYjm1kKSp5h0BvM4c7jZXtYvbtbAGxZqlsZ6s8t36nJWxneF0qDxjOmRx8DMs3AtMfvhE9saRxnXZWtiMiGha8Ib5JNQzxdWULrXQ7PUG9kja6/eMl7XS923guM8TXGD29hZ9ahfg6+tvqei8PtNPVjnva6ZaNtyeAFob4iIiIiIiIiKiJMWzXxJRSowB8umzxbQGblVfCWx1yt6vKfp+olBovIttCzkNE1Bxc+i32294dzS5zVYbtpn2pNIkyZzLwrgMVvvVehcmjR/aHDt0RBOWimGPjTsGX/8/+2PrwtXnMmgh851yFjxwVQ9YhbHfUrOqPjYa/kVrZLhZTSMShfS7Zrq+t2mhQwC+sfz7FHLZLWwKBprBgecDwfYcqfOOvYg3vdmcB5PN4PVH+tqBAKSDBd4FERGRRyxBfJtcfzMv2V9NLe8N4Mhjc84x3Z4HOdGmIzzvOEF/jDIT4tKPVhfh07XK9IT79+GCIz9dOt40hPiIiIiIiIiKKBj9maW7/DWA3z+/bAfwyYJtxZb9vDLNDEelUSqUBeEthjAVQVdhOKTUFgEMtjhJzqtknERGAUGG7qFRb2a7c8k3Azx8SPPSq4MnLYxiVHLkfENjCKq4eL6/hGtKutOCUH+axdF3wuiu3AOf/UtCZyeNohxbFT6+s7thoZHD5MLmpK9sZXiNdgm+pVkPYzlbZzhJMi7qy3REzzc/zLZ0CUzjBtbLd3lMU7rwkhs/elMcbm/Xb3LBAcGS+AxdNv14/Z6tAqZH7/wgRETWOUgrJ1kJb9En6NSqaVxfiG2iNmwa6slIa7PO2002LP/jn2b7PoaIwRa8Y4tvcqRuNJsTnUFNSuAAAIABJREFUD+uVhvjKA376bRjiIyIiIiIiIhqJGLZrUkqpcwFcUrb46yKyNWDTUWW/91Sw+x6Uhu2032MO6fMAvhXBPEREVVmc2L/m+4g6bFe0ZB0wfylw7mG1mX8o6M42vmTFvS/DKWjn9eO/C268iB/AUDRcMsQ9WXOwq9HMle2CjzfVCuzQ/HXb02u+vqb9xVShWl7UJo3SfzB872LgI0fptzFXtvMf3+kHKCz/Tgtin9FfsT8/J3jXXub/62zteImIiIaiWof4BoJ73ta5una6mbIgn2GcIb7GqVWIL9lqCvAVQnztloBfeXBvFEN8RERERERERE2PYbsmpJQ6BMBvyxbPA/ALh83Lw3bpCg6hB8B4y5xERENHWSrlheQhxlWjOo+drVHYDgAee11w7mEj94R7VK0x+/JS8QcXz64KH/hbss6tTTGLTZGLIV/ZzvDhctyhylx5pbci22tDpW1rK6X/8BaYNta8jalqZ9JwfQFgTBLYqflLXyng31a/07hdqrXxoWUiIqKhwBvim6g9M1Z5iC+bMwX4+tvpGgJ+XZZxhvgaJ91b+Kl1iK8jAYxKlrbT1Y+rsnUHxzvagLjDl1yIiIiIiIiIyIxhuyajlNoTwN9QGnBbBeDjIhX1QqzXNkRETeumMR/FIx0nog8tuHHcBcb1Zk2sfl9vbhVs7ap+HpNMEwdo6qE7orBdNmcO7dTqGHTVuMqJVBcEpJFhKIftnlgu2GX4KohL+M1Ulc3aRrbOYbuwxwEUKxH62arQHbw78Njr/uUiwI6+pH+gXzvDdkRERA2llEJbK9BWwxCfPqwn2oBe18CPf7wrC+xKM8TXKLUM8RXDeB2J/mp6xcvJ/na62nFVtu7gOEN8RERERERENJIwbNdElFJTAMwHMMOzeD2Ad4rIJsdpyk+/pCo4lPJtDPU5Qvk5gD+H3GYOgNsj2DcRjWQieKz9ePx63KcCV622/esr6wQHfKu2n0K8sXlkhySiChBVE7Z7/PXK7oMHXnHbLt1b+KCCyMTl6xdXzxNcelrtjyWMXz+Wxz/+znzw8VjwHKbn7WsbzNvUO2x3xgHAvCX+5U+/Yb7uphCvLWz3X+fEcPJV4f/PScVH9v8jREREw1WtQ3xdWaAzPRjC60wX/5WSZd7L3QHjporHVFvFEN8W7RcFKw/xtcXLgnve1rhJhfbyYJ+hnS5DfERERERERNTsGLZrEkqpCQD+DmAfz+LNAE4XkWUhpmrKsJ2IbASwMcw2ir30iCgKImiBW4qu2vavX7ut9p8U3PNyzXfR1CIL21VxX7/wZmXb/fwht4BLT5ZhO7JzqWz35rbaH0cYuT7Bl/4i1qCgUxtZQ/jsmgcFP/uofqy3T7/TWoXtJo9W0H0QqatCV2R6bbOFgidpP0QPlnd5ABERERH184b4JnRo16h47myuv5peMbiXKQ3x+ZZlSkN8pnGG+Bojkyv81CrENxDG87bG1bXTHVhPGbYp/MsQHxEREREREVWKYbsmoJQaC2AegIM8i7ehUNFuccjpdpT9PjnksYyCP2y3PeQxEBE1EUGLOIbtctXt6a8vVLe9i5kRtLodyqJsI9usorqONHy5VLYDgOUbBXOmNMcHSC+uAbZ329dxCb+ZqtTZ2oDXu7JdJVVS06awnaWy3dhKvlID4KUNlkmJiIiI6igRV5gQr12IL6p2ugzxNVYtQ3zmMF5/O13LuC4A2JEAWuPN8R6MiIiIiIiIaodhuwZTSo0GcC+AIzyLdwI4U0QqiW2UV8GbGXL78vW3ikiT1UYhIgqhjpXt6iGqcIiI4NX1wEtrgaP3AvacqCAiWPwW8Mp64Lg5wPRx9hPExfWfWSmYOkbhxLnA6GT0J5XzecFLa4HnVglWbYlmzkyFYbucoUJWlKKq3jecpXsFNy4QPP46cNkZCofuMbI+zHAtTLZxFzBnSm2PxdWOnuB1XNrIbjbUW7a9NprCby6V9CoxKmnYn+X6mQLACcu7tenj3I+JiIiIaCSpZYhPF+Dzhvj0AT/z+C6G+BqmGOLbGjrEZx9PxP0BPW9Ir10T4CsJ+SUK7ylKAn4M8RERERERETUVhu0aSCnVAeBuAMd4FncCOEtEnq5w2qVlv+8dcvvZZb8vqfA4iIiaRqxOle3Cmj4OeCtk7dCeCKqe9eUFn71J8OvHBk8Of+u9CovXCv7y/OB615yv8LmT9emQbE7w8V/mPesLxrUD914aw1F7RXcCON0rOO/aPO58MbIpAVR+X3dmoj0OHYbt7F7fKNjnG4OfRt30lODY2cBjX4mNmBb0rpXtmqlZ6HWPBB+NS5j4n09RuOwW/1zLNpq3MX14WavKdh8+QpW8vnqPI9cn2nZVlVTfU0rhohP0+yIiIiKi6CXiCok4ML6GIT5/WE98wb3ieHf/uCkAWEnFZapeNgdsrWGIrySM13+5I6HQkbSPj2orXi4dZ4iPiIiIiIgoPIbtGkQplQJwF4ATPIu7AbxHRBZUMfXLZb8frJRqF5GAxl0Djg+Yj4hoaAlR2a63r1CtrZLATp9DqakrzlZYvRWY2AGceaDC9h7gA78I9xX2KFqM3vy0+MIZV97pP/5//oPg9P0Fc6f6b4//fbg0mAcUWkR++No83vjv6EJPP71fIg/aAZVXMbzmwdqHWlZvAQ7do+a7GbK8QbuiJ1YA85cAZxzYgANqANfKdvkmqZDx1nbBn54NPmiXSnMzximYPoDasLNQZbNcvdvI6j98LXh0GXDKfv7llR7jhwzBPiIiIiIaOmod4uvKFtrglobxPAE/73gW6Erbx+v9RUUqqGWIryOB0jBeW2mIzzZeUqHPM84QHxERERERDWcM2zWAUioJ4A4AJ3sWpwGcLSKPVDO3iKxTSr0I4OD+RXEUAn3zHKc4uez3e6o5HiKihhNBi2NlO6AQeLC17TNxqTh32ekKozxtVu9bHD4gEUXVs1+FCGbc9JTgyrP9J0jveVk/x+qtwNJ1wAHTKz68Ene/VJsQSaUfDvz77bUPtSxeJzj7UJ6U1tnZY779L7oxjzXfr1F6qsm4hu2apTW262udSxvZ9oR5bN5iwQXHNj5sZzvGexcLTtnP/RgTAceYag1xYP1aY3kAI+O5QkRERDSS1SvEVxrGk5Jg3sB4phDis40zxNcY2VzhZ5v2q/rRhPi07XKTAeOGdrsM8RERERERUTNg2K7OlFIJALcCON2zOAPgHBG5P6Ld3IbBsB0AXAiHsJ1Saj8AR3sWdblsR0TU3AQtcC/vlM1VGLZzCMF5g3YAcPiegFLuLSEBIN1befW9oodfc1/3P+8SXPFewdrtwPSxQCymsGGn4L7F5m027gIOqPjoSi1dH9FEZTJNfBK/kvDMSLGjxzwWtiVzJUQEq7YUnoeNtKnTbb0o2k5HYeMut/WSDo/9w/cMv596h+3mTjGPmaqTVnqMlfx/9ZOTVwOYE35DIiIiIiLULsTXm5OB4J03xFdYJqXBPU07XdM4Q3yNUasQX2uLKaBXCOm1awJ63vEOw3iCIT4iIiIiIgqBYbs6UkrFAdwC4CzP4l4AHxSR+yLc1e8BfAODJSver5SaKyLLArb7Stnvt4hIOsLjIiKqOxFBLEzYrsJKUJWEWiaPVvjksQo3LAhXLS3dC6QslZOi1vLZcL0oowj4bNwpOO+6PDY5hnTCquRke961nFiVoqheOFzV6S7Q+utCwSU35+sS6otKszyWXG8zl6DptHHmD0BM17feYTvbhzSvrdc/iE3/9wQdYyXX4QOzNoFhOyIiIiJqNq1xhXFxYFy7bjSaEN9Aa1xNO93y8a6A8Wb+Et9w1ttXCPDVOsRXGsbzh/TKx8uDfcV/GeIjIiIiIhqeGLarE6VUCwohuPd5FucAnCcid0W5LxFZppS6EcBF/YsSAG5QSp1mCs8ppd4H4FOeRVkAV0Z5XEREjRKmjWyl33gOCrXEDOfWrv+Ewr67AX97UfDY62776s5WHraTMGX0KvTqBsFZB1V3MvGcn+fx5IqIDkijklDlD+bVKWzXJNXImlEdHr5ai94UfOjaPPrC5U4bricrqOZDqaj87AG3O86lsh0AnLSPvkLnnYsE33iPf3m9w3YAcOHxCr953H+95y/VVyc1H6P9/nNpves1O7sCk3Kbwm1ERERERDSE1TrEZwrjdWbEV2Wva+BHDNswxNcotQzxDQTwEsCopPdyIcRnGx9lGGeIj4iIiIiosRi2q59fA/hw2bKvAViolJoVcq71DhXnvgXgXADj+38/DsDflVIXi8grxZWUUm0APgPgh2Xb/1BEVoU8LiKi5iOCFrgnqyo9qRkUtpugba8CtMQUvnKmwlfOLPye/8HngTt+hdcSe+OAOS9WtC+bF96sfFtX1YbkVm2RmgbtACBTwW14yzOsbNdojapsd+tCGXJBO8DcsrSeNu1yv9NcWyiPatMvX27IkDUibNduCUS/8CZwWFk7XNMxBrWJDXsd5mSXQ15+EuqE94bbkIiIiIiISthDfEClQb5cn7manq0aX3cW6EzrA34M8TVObx+wvbvw41d5iC8eKw/m9f/bVgjptfuCe6Xj/mBf4d9EHL4vhxERERERkR/DdvXzCc2y7/f/hHUKgIdsK4jIGqXU+wHch0JlOwA4HsASpdRzAFYAGAvgcACTyza/C8C/V3BcRETNRyRUZbt0hUGnoPDW+w93PFF1x68AAKl8j3GVaiqfrahDQaPp46rbvh7HmM6Fr/i1YnNtjqUcK9uZNSpst7JO933UmiG4uXKL+7quFTsXGkLDh+yuX24KsoWtChfGPlPNYys2uYftgsJ08ZBhuy9v+SHU2LPCbURERERERHUTb1EY2w6MrWGIrysLdKbLwnxZGVzmGS+G+Eq28VxmiK8xcvnahvgGg3mDlwfa6ZYs07TT1YwzxEdEREREww3DdsOYiDyklDoXwA0YDNQpAEf2/+jcDOAfRUIkU4iImlq4ynaVhlNyAVWvPvr2cCeU2sUStqsiQNPTW/u0UrUBn3oEhCoJtNmOa9IoYHNn6bKT9wEWrwM27YpuPyOdLWxnqnZWjb684D/vEvzuyQal/KrUDI+lMM811xPvR84E7tjuX761y7+sNyf4wX36+6+Wle3ed4jCpX/U77fwOuzaRta+n7DX4fjuJ4DMKeE2IiIiIiKiIa/WIb6ubH81vfRgGK+wTDyXB5eXtNPVjFf6ZViqTi1DfKXBPO+/pe10deP+YB9DfERERETUWAzbDXMicrdS6m0ArgRwHgbbypZ7EsBVIvJ/dTs4IqJ6CFnZbldQk24DU1ACAP5wscJJ+4Y78WOrbFdNa0hTm8UopauszLZ2e7hg07SxwIadwFF7ubewDRtC6ssLsoZvax+9F/Dol2P44p8ENz8tyOSA9xyk8MtPKqzfAbzjB3ls2Om+L55QNhPLQyNshS8X/3ST4FePDc2gHQDctUhweYOLmJWHUE3OPNB9znfso3DHIv/9smiNf91P3WC+/2oZtttzovk1v7xKZl9ejI/twMp2IarzXbblR0igF/LyExV+jEZERERERFSqliG+7qy/Ha43xGdqt1sM8enGec6lMXJ5YEdP4cev8hBfS8wfwDOF+Ezjuu0Z4iMiIiKiIAzb1YmINOwvcxHZCOBzSqlLUWglOxPAbgC6AKwFsFBE3mjU8RER1VqYynYPvCI4cW74l+ycYRcxBXzkKLc0hKx5feByUsypv2rajN6pCahErZowIADc/aL7Mf7tCzGc+bbCydJUQiH2Gbf7OuxtaDsZ+5OPxBBvUfif8xV+8hFBXx5IxAuPodFJYN1VLehMF070JlsLp5njLcBXbxVc86D/uvZkh264q9Zsle2CWjmHtbNH8Nsn7PfFhccrfPucxp98/cSv8/j7Uv/yJxzDp7V072K3x3NHiMqEqVbz2OsbBXtPKdwnm3YJ/viMLWxX2/vuwOnA4rf8y//2ouCb/zD4uynIC0Rb2e6AzCuFC0/Nc9+IiIiIiIioAeItCmNSwJiUaY3K3s/15aUkmOcL82X0490Zc8CPIb7G6atxiE9bbS8BjEpaqvElFEYl9du3McRHRERENGwwbDeCiEgWwIONPg4ioroSwdTcRufVwwQ+vCptAVhi2aKBizEI2vJpZGJJ32rVtIY8aIbC86trG+aqtlXtrEkKwSfECqaNK5ykSiUKv196msJP7g/eNuxtaDtpmvQEf1piCi2abOWoZOFEm1eq1dRiMtyxjSTWsJ0lsFSJJevsFSuBwjeddxvb+JOkWwzV42ZPqu9x6Ewd47beOYe5347TxppfI55fPRi2e3GNvRpiLSvbAeZKogdOd2shCxQeYzZjjR88+U3NbShcOPh4942IiIiIiIiGkZZYbUN8pjCeqdpelyXg15XhOaJGsYf4APt5S3uIrxDW8wb3SkN87cbxwrlF3fYM8RERERHVH8N2REQ0vIng1K6HEJde5JSlHFK/Sr+JGknYbmNpD8SU9CADf9iuO50DEHxddHb01L5qWjWV9zK9gp8+4HaMe4wHDtm9dNlFx9cmbGerPNVW4V9TxYBguWpuv+HOFpzKC/Dde/JYthE4YibwiWMURiUrP9H45Irgx9EB0yqePlJ7TQIWvulfHlRlcuNOwW+fFPz33YJt3cC5hwHnHqZw/lEKsVg0J2ldH89nHui+v9P2d9tf0PWvddjO9P/J5s7Sx5YtbBd0jKmE++12UvejhQvZCvulExERERERkVa9Qnxd2UIr3U5PUK9TM+5tp6sbZ4ivMfrywM504Uev+hBfR6K/ml7J5cEQn3/c0063bJwhPiIiIiIzhu2IiGh4E8HUvo24Zc3H8NEZv9VWivN6Y3Nlu8nl9cvjjmEO2b4Z8j9fLlnWnu/B9pbxvnW7u3pRSdgumxP89YXQm4VWaRvZbE5wzs/z1kBV0eTRwO2XxHwnfA7aXeG6CxQ+9/tCO1eTsIG2bBWVp0xMrTB5wtPMVtkOAL52W2GF3zwO/PFpwbx/jSHZGv6k4EOvCi67JfiBeNCM5jjh+JGjYrh1of8Bv34nICLaE6PrtgtOvqoQTiy6bSFw20LBA68Av/pkNCdUXR7PN31aYeIo932NtoQor54v+ORxhcvbu+33oevrc6U+d7LCLx7yH8NdLwK70jJwPaoJ2wHA+Ucp/OFp+3X9r43fRLv0fyX/leeCJyUiIiIiIqKGq2WIr9sb3CuG9AaWSemyTOFyYRvxb5NhiK+RahXiiylzO93CZXM7XW+Ir3w82coQHxEREQ19DNsREdEwVzhhcHbnXdj02gwsSB2DpKTx7UlfxfxR7/St/ZvHBb/6ZPi99PbpT0y4Vk6SX13pW5YSfa+Cnp4sgHbXQxvw4KuhN6lIpSfWHngFuG+x27pvfi+GRFx/UubiE2P48JGCZ1YCV9yRx+PLqz9GW2W7RIWBHVa2Cy8obOf12OvArc8Lzj86/Mm7K++0JDU9TIHJerMdx4trgEP28C+//jEpCdp53bBA8KUzFA6YXv2x2R7P/3O+wiePVehoC38fHbx74bqVe2kt0JsTtMYV7lhkf8DUurLdKEtb8tsWCj5xbDRhu1kO7YLP7JxX8rvkclBxvhUkIiIiIiIaiVpiCqOTwGjjd5KrD/EVQ3gDrXHTQFdWPJfL2ummpSS45x2v9Iu9VJ281CfE5w/rlYb4ygN+5cG+4r8M8REREVE98RMWIiIa3jxl0tqlB6d3PwgA6DW0lD16r8p2Y6ps5xzm+Ot1vkWpvD5sl+6xJL8sbnk22hayx8wGnlzhX15pWGz+UrfjO+ttMAbtisakFE7bH7hxgcLjy/3zNnNlu3Rld++IkHfLwA14dhVw/tFh9yF4+DW3dU2ByXobZ8nePrJMcMge/ufLn56xP98eWSY4YHr1JyhNrVQvPlHh8yfHKp7XFmR7aS1w+ExgQoeC7eRurSvb2e8X4BPHFi5XG+a17adobH5H6YI3FgNzDwnekIiIiIiIiMhRrUN8A8E9b2tcTTtdb4hP2063/1+G+BqjliE+c4CvEOJrtwT8TAFAhviIiIhIh2E7IiIakVa37qldHqvwfbOpMlG88iwJkqI/49BTYRrrnpeiDdu95yCFJ1f456z0RNX2brf13nuI+53UavhLx1ZJSqcmle1MbWR5os8o7CPYdr+ZhHlsNEtluyNnmsfe3KpfvnSdfc7OTOXH49Wd1d9r1d52p+6nsEATpAUGjz3oPGitK9uduq857NfleXmvtrLdafvZQ4UzetdiVu+q0oXdu4InJiIiIiIiImoCtQrx5YuV+AxhvM6MaAN+3ZaAH0N8jZMXYFe68KMXXYivIwGMSpa209WPq7J1B8dTCYb4iIiIhjKG7YiIaHgT/RvlT27/Hb415Vu+5ZW2QDWFJaoJc7Tn9emz7p6QSbEauPJshb2n6McqvQ0Nd1WJU/cDLjjG/SSEqepc2BCWNWxXaWW7hD4gU+ntNxKEaSMLhA/nAfYqhuXam6SyXVur+Tlx1TzBBccIDto93Mm7dTuC13FhCo9WWxXw0tMU/utv+nt4xWbBO/ZRxqp6RbUO2719lnnspbWDx15t2O7QPYAvnKrwswf0t8e16z7v/9gho6+cSkRERERERDRSxGKqEIKqYYhPX43PX23PG+LTbcMQX+PUKsSnlCa413+58G9/O13vsrbiZeW5XDrOEB8REVF9MGxHRETDmyHBNSG/Tbu80qpiuRqE7VKmynbbdwCYUfnEAa67QGHlFuCt7cCYFLClE9jZI9hzosLEDuD0/RVOmKtw5yJBlGGxTEAA7oS9gTsvifWH1Ny0GcN24WJYtWgjm2Rlu9DCtpGtRJggZrO0kQUK7ZXveVk/dvFv83jqa+FejH40X/DDD1V/XKbXg2or200cpaCU/iX+0j8KPnVc8HOp1mG7WEzhS2coXDXPf5BLPJUFqw3bKaXw4/OAsw9RuOdlwZ/uXoO1rTPwye2/w1e2/AD7ZF/3b8SwHREREREREVFN1DrE15UFOtP9Ybz+y4V/pWRZ8XJXGujKim+bgfGIuhtQOOIN8e3UrmHb2jiiVHkwr6w1blKh3TiuytZliI+IiMiEYTsiIhrmDC0M8/qgQdSV7VzayIohEGg8xu2drodVIuZwLBM7gItPdOt9awrLdGcL1ynsm+8eQ7vJovOPVqGCdoC5xWuY6mWAOYAVU4VWFpUwtpHtrez2GwmibYSsF6aNbLNUtgMKJ75MnlkJbO0STOgoPKZcwqbVtMD2qlXYDgDGtwNbu/zLi9807um1X8+orqONLYyb7hUkW5X1Meca5lVK4bT9gVNnZ/D9n84N3oBhOyIiIiIiIqIhxRvimzpGt0blIb6e3v4KesXgXqY0xOdblikN8WnHGeJrCJHBaoi1CvENhPG8rXE17XS9IT7dNgzxERHRUMawHRERDW+mIJtEG7bLGSpuOVVO6tWXXzIeo2pzPKpSc6cUqtXZhAkzmap6iRTCaW0hwzRBFcUqCefUuo1spVXtJJ9Hcu0rAPbVjmdy5sp3I1noNrIVpPNcHxuzJgJJS/vWejt6tsJfnjdf4a1dwISOwuXFbwXPN3l0NMdlqi4XRVDRFoIVkcDKdsfNqf39N77dPLYrXXie28K/oavvde9yWk2WPgvMPQSItQAt8f6f/sveZQOXW3jik4iIiIiIiGgYisX625W21S7EF2U7XYb4GqMkxKdfw7a1caQY4tMH+AaDeqaAny7A19FWOPfIc1lERFRLDNsREdGIlMobWrRW0MIznxd86c/6N4xOQQlDhaF2Q2W7LZnKUlhRv7VMPXs3gDO1Yz294cN2QRXF2kNWtQMsYbuwle0M65sq59nIgrshXzkXybZDgNlPaNfpyTJsV5TpFby0FnhulWD+ktrWttvRLTjlh269ar9zbnOdrDn/KIUr7xTjCa/uLLBsg+Ccn+exdJ1+nfL1o2CaJ4oWvJe/W+Hrt/kfE3kpvJ7YwtPHzwHe4VAArlrvPkjh//1F/7jd0VMINdpe+1rCVt/LOlasu+WnkFt+GmpqicXMYbx48XJZYC/WUhgrC+65hfxajOPKO1eL5nh8x1W+X12gsGxd3XFptlMuZWOJiIiIiIiIRhhviE+vuhCfOYwn2oBeV1mIT7c91Z83xLdBv4Zta+OIUhhsl2uottduqLbXUd5O13OZIT4iIipi2I6IiIY3Q2mrZISV7X58v/lNXdwljLXhTe1iU2W7O7bpq6EFqbRqn44seQbJX14OzNaH7bqzwDhLRSedoLBdJeEcYxvZkJXtMoa2m2Er28n6VZCvnAvAfP8ChftqfLiph4V0r+DFNcDzqwXPrQKeXyV4+a1wrV29wkbzLv5tHm9sDl7vb1+I4ayDmuukyrRxCs98PYb9v6kPC27YCXz2d3ms3OI2X1Rhu1q2kT3jAH3YDgBufd5c2a6jDbj70hja6lCZcGzKPPalP+fx139uMT6+W1sqOHn3zP3h1g8jnwfyET0wqlSPltKuBLCG8QqXYw4hP0Nw0Bf4M4Qe43GoksBhzOG4HPZrDCwa5mU1RCIiIiIiIqohb4hvinaNaEJ8/jCelFXm8wb5/FX6Bv7NVtZ9g6ojMhiyrFWIryNRaOtcenkwxOcfV4ZtCudKYzGeRyEiGkoYtiMiouHN1EbWUDWuLw/05gStcfc3Nv/3nPnNl1Nlu6fnaRdvbplo3KQvL2gJ+eYr0rDdI7cj1ddt3lcFeYzAsF2EbWQzjWoju+DugYumxyBQ2e031PRkC8G65zzBusVvmVsy11q6V/C3l4LX++hRqumCdkVz9WcYAQC/eMg9aAcUno9hXwt1TI/lVAWVKn1zWF4T/vycGF/zvvcBhdHJ+tyHtmO888XCv7awXVjieY2hOurLFX4arNnO3Ys38GcM8VkqCIYO+ZkrFwZWQwwTLgyqhuhbzmqIREREREREza5WIT6RwhdCTWG8kmp7WaAz3d8jHaF4AAAgAElEQVRONwt0psUX3CuOM8TXGN4Qn2EN29bWuTuKAby2Qgiv9LJCh29Z8fJgiK98vD3BEB8RUa0wbEdERMOcIWwn+jayAJDOAa0h/od8YoV5bIlDu0bk9ImQv3ecatxka1eh/WAYLgEu57ddzz+IpJhr64dt0woEh+322y38nFFVtksbQjttYSvbPXHvwGXbYzDKYGQz6MkKFq0ptIJ9blWhct3itwrh1mbx6nrz/exVSevgerGdOHl+dfj5urPA2CrfLdSyst0scx4Zu9KWFrZ1bNFsq2zX0n93mV77Qod5gUI1M6JmUayG2Nv4BHkzff4gSjm0NNZUJgzRallbDVHT4lmVBwOdWi0H7DeuWddxXlZDJCIiIiKi4UapQqWz9hqG+IohvNIwnpQE84rjXZlCiK88uDewfYYhvkYphvg27tKNRhPi07XT9Yb4dO10R2nGGeIjImLYjoiIhruQle2AQihtdDKa3b/7bcFvOCSjPxZbmK2StprLNgavY33Lls1AfnE58PhdwLpVSMTGGdcNG2YD7NfpnfsDM8a7vXkTEchX3w8suBuJcRcC067xH1/I288Uwgod2ukdvE+D2sgOVd2ZwWDd86sL/y5Z15hgXZgTQ04tn1FhAKoJrN4afpvuLDA2ZDtor1yfGJ/X7RW0hfbN0WZ+TXjgFSBpeH7WM2wXiykcNwdYsNw/lssXbyP9A7WSynbo6apgIyKqKxFWQzQIrIboDQRaqx06VEMMCBeqksBgQDXEMPt1qbJYFlJkNUQiIiIiIirnDfEZ1qho3mKIrxi884b4CsukJJinbaerGWeIr3FqFeJrNwb4ytrpagJ+3uXecYb4iGgoGaIfFxIREVUnGVFVMQl4h/jOAxwmef5h7eIo24yu3Vb9O1n5z08BD9068HurmG+oqCvb/eVz7h8yyhUfH2jXmhD9DRU2DPjiWv1yU5jH6LkHBy4Ohzay3RnBC8Vg3arCv0vX1y9YN74duORUhVfWFdqGViPu+BBr9rDdyfsAD70WzVymynCubK+lqQjCdgDw7XMVvn6b/77Pi6WyXQQtbMP44YdiOPa7+ifFMyvNVQcrCts9Pb+CjYiImgSrIWqVVkM0VRXUVEMM0Wo5sBpi/3bmaoghqjBqqiyaqyHa52U1RCIiIiKiaHlDfPrOOpWH+NK9bu10vcu7+8fKg3ve7fPN9AZuBOnO9p9/rXGIr7zaXvlyb8BPF/wrVvZjiI+IotbkHxcSERFVyVTZzhK2e+FNYKalPaHX4rfs406hjpef0G8bYeWz2xZW945Ttm0CHr6tZJkpyAZUVnnPtM015yuMTjpWtcvngQf+MvB7VGG7+UsMj6MqKmTF0Ye49CKn/JM0Y2W7rozghTdLK9YtXVe/kxmpVuDQPYDDZyocMRM4Yk+F/acB8RaFj16nDzKF+bak6/VYv6O5z95EFWIDIgjbWbaPqrrcmAqqkNazsh1QOKFj8qvHBQ+9Ek1lO8mZX9jUZ/4T+PC/AH29hWpauRyQ7ytcLv7blyskZYuXvcsHLnuXedbt08xVsk3hsvSZ9tvnn8M3rtlvvq/0ugxs1xd8XPkm6mNNRGTDaohGYqp2qKuGaG1p7NLy2B4uVKZwYYStlgOrIfYvZzVEIiIiImo2SimkEoVzl7UK8enDeOJb5g3xmQJ8nQzxNUwtQ3wDAbxEoT3u4OVCUE8/rgYvl40zxEc0sjFsR0REw5shbTOhz9xTsTsrcH1z9/Ja+x/wTqGOtx0DvPykb/GXt/wQH59xo3YTU1tTk5cDQoFF3/wHw/VeucR3W7bCUtkuwjayoQIna0t7NbYZwnbpkMf39pnAqi3+5a9uCDcPdp8DrBk8xlS+B7ta/A+S7p4+NPLPtM50f7Bu9WDFulfW1+8EQ3vCE6zbEzhipsJ+uxWCdTpRFDVxDYi+ur76fdVSRdXQDGpa2S6iwNvu4xXCfvQ/Y3w0+3Y1bax5bN12wb67ASs2+8d0rzlWW9aZx1paoNqSACLqkV6hZjr1JCJlIT7HkF8x4OcQLtSPe0OA+dIQonHePv2xVrTfvuDjIiIaKoqva6yGWMJYDbGkqmBANcSSdWwhQIdqiKFaPDvstySk6NJamtUQiYiIiIarWof4zGE8fbW9LkvAjyG+xiqG+DZFHOJLtZYH9/r/bSuE+Np9wb7iuBq8XDbengBaGOIjanoM2xER0TCn/0M4KRnjFmGCbEGhLVugRDJpyC+/pQ3aAcCZnfOM24atHOeyfiIOfPAIwx/wGX+VPQUYK7M1LGxX9kFb0tCqNWyb1kdf1y9vCVs0oq/0SqakB7swxrdaT08W9fozTUTw+6cE37m7EKgDCuG1MFXhqtGeAA7zVqzrD9bV+81kzvE51dfkJ0P23U0Bi6I5yJpWtouoAt9p+4Xf5oBp0ezb1cRR5sfy6xuB3Q3hv9CvL5rX6QFHnhZysuFPKVWoLhRv/FviZjp1JiL9rTzLgnvaCoIu1RD94UJ/kLE8JGiohhgqXBhQDdG3X9125dUWWQ2RiIYIVkM0ElO1w8BqiCFCfkHVEIsVCOvQahnx8sAhqyESERERufCG+CZFHOLL5IDOdH8AL+u5XKy2l/WPe0N8unGG+Bqnp7fwU6sQ32Bwb/DyQDtd7binnW7ZOEN8RNFq/CcLREREtWRJDE3JbcDG+FTf8jABk6DQlilQIrleyKePBla9Ytx29NEnAtv1Y2HDdkFBotFJ4OZ/jGH6OFPYTt92t9UQtouyjWyosF3ZB+GmVryZHJDPi1OJ7wdeEWzYqR+76PiQb0zKbsdUXn+79tSxj+z/+4vg6vmlz5NaBe062jzBuv6KdfvWMFgX5mq4PmZdQ3mN8i+nKvzgvuYI2+mqtRW1RxS2G+XYYtqrERVNPneywi8e8t8vyzYWfnT+3VRp1OStFeax3fYMNxeNWEqpwVaFrRH2pa70eBp9AB7GaohhWi0HhAuDqywWKhNKYAtnh1bKzvt1aPFMRDRUsBqilijl0NK4JWDcUDFRF16MG1pA66ohOrVa7t+vU7gw5lYNsX9dVkMkIiKiKCmlkGwFkq21C/F1Zfur6aW9YbzBEJ93vDtb6HLj2ybDEF+jDYT4tKPVhfgGwnje1rhtg0E9/bjyLSte7mhjiI9GJobtiIhoxJqRW6cN24XJOQWta6xst+gxa9AOAFo6OhDb1oe88qfNoqps98HDgS+fGcMhuwOtccsfw4aKSQnJogftvuXZSMN2If5IX/Fyya+mMBsAbOsGJo4KnvLrt5kr2YQODGVLb0dTGDAdts9thbZ0Cn7899q8Wx7VBhy2J3D4noMV6/aZWps3XVF8/pFzLFjU7CcXbC1Lw6o2bHfdI+YbNao2smEdOL0x+917cvhtRreFW19uv9482JYKfwBEVILVEPV81RC9FQSrbbVc0vbYFnR0qYboqcSoG/ceb1A1xJJ1LMfFaohENFSIALleAPX70pfxUBp9AGWM1RAHQnoO1RCdQ34O1RBr3Gq5JLBoCTqyGiIREVFzKQnx6deoaN5iiE/XDrcQzDO30/WG+HTb9/Etc0MUQ3ybO3WjlYf4kq3+gJ43xNeuCfB5Q3ymACBDfNTMGn+WmIiIqJYsJbpS+W7t8jABk6CWs+M7DAMvPh48uVJolV5kNGG7sG1ac4bel5PHKBw5y+GPVUvYTqe3TxD2DVwkle06S0sBjssbSgMCWLIOOHFu8JRPvWEeM96/JpnysJ2psl19wna/e1IiCY+NTpa1gt2zEKxzqRxYS2Eq9Lk+p857e3O/uYvyNu/Khn8el2xv7taNRIPeheywdFqtpQlhXytQKPgRSrf2DElBIhn+AIiIHLAaopkMhBAdw4VB1RA14cLgKouGaoiVtFJ23q9Di2cioqGC1RC1/NUQQ7RSDqqG6AsBllVDLJtDhW7xbKiGaAwXxgLGWQ2RiIiGL2+IT1+4IJoQnz+MVxri6yoP8mVEHwBkiK9h0r2Fn1qF+EzV9josAb+ORKF9rm6cIT6KAsN2REQ0vFnDdvrURVBrWC9bhbn9dgN2H6//g012mUNgRWrOQWhd1YsM/CGJbMgwW9VBtow+mNgq+g/LwoYBgdq0kd0nu8y4aiaCL+2/c3/3+0A0J+iTpsdguj69SpeuC7/N6CRw+J6lrWDnTql/sE5WLgWefQCycyuw/GwAb6tqPteKlhceN3LehFVb2c4W5IzyA4j3HQLcvsht3TXbItttKKftrxD247FjZ4e8jSz/3/EDHyKi+lOxWOED+niDyrl6j6XRB+BhrYYYUatlf5DR3GpZrPPmzfvNlR1j4H41YUpWQySioYrVEI2kPNynq4ZoHQ8T8rO3WvZVQ4y01XJ/ANIYWCwNOrIaIhERedUyxJfNmavpeUN62mp8hnGG+BqnliG+kjBeSTCvv51uovB52LGzFU7dD2hrbaazK9QMGLYjIqJhzvwHVbuhhWeYNrK2sN21F+hPJEm6G/jzz4InnzzDWDkum80DcD9RZTrOuOsUnTu1i43H16CwnWxaW/K77U9fl06t+YCyb3OnhvjjWlMd0NRGdtW2+pyEdKlqd8q+wGGeVrB7T26CinV3/BJy1SWD4aLps4Gx/rCdhCht5xIs+/a5CnOmjJw3VNWG7V5co1/+iWOjvQ1/c2EME77odrbj40c35v7bfbzC9HHAW8E56wGzJobcyYrF+uVnXhByIiIiotphNUQzXzXEUOHCoGqItvChNzzoUA3RtZWyUzVET6jRVv2RiGioKL72NYFmCiJaqyE6tlL2V0w0VRhscauGGCZcGFgN0Rsu1AUlzVUW+eU4IqLoKKXQ1gq01SHE15UttNItLBNfsK843mUZ35VmiK9RiiG+LV260fK/ogQnzgXu+kIMo5P8f5sGMWxHRETDWwWV7cIETEwBsQOnAyfONfzRdeev3CZvH4VW6BNhvb19CPPfeM7wB7trkE3u+o1+e9EnE20hRO38IlUfIwDgDz/0LZqQ24KtcX9qxaWCoemYKtLtDyym8vo2sr9eMhm/jHDXJvMW20+9PvP1GI6Y2VxvHmTnVsjV/+LWI3bTWgB7Os07f4l9vjMOAC4/a/h9E/s/Nl6Bb065QjtWbdhO/0YVOHj36uYtN65d4WvvVvjO3cGPid3GRrvvML7+boV//oP7xx2hXvsAYMdm7WI19+CQExEREVEjsBqinnM1xDAhv7JwobWFc1A1xJLLmmqI3uMNqoZYst+A1tKshkhEQwmrIRr5qiH6qhUGjduqIZaH/Oytlq3VEKtuteyphhhU3ZHVEImoydQ6xFcS3CuG9LJAZ1r8yzKFy90B45F+tkV4dBnw84cEXzmzmd4tU6MxbEdERCNWSvRBp56Me9U4U6jMVpFInrnfaW50jDFXjtu0EcAebvPAUtnONcwxYSqwYbVvsfH4Qobtcpb1QwVORo0DOktLRxnv597gVrxhQ4NWy1/yLWqBfgetsTyAsEmb8Eb7OxSXaG98sRG/5x/2fUtcmU6VblkP17BdUDXGt+81dN5EnbA38NjrwetdtP0GfG3L9/FI+wn4+6jTfePVhO1sVQVrURhx8mi39VINfEyPagu3vvPrc5Bc4z/MICIiIqoUqyGaWash+toxV9ZqObiVcuF3Cayy6NBK2aUKY1CLZ1ZDJKKhhtUQtZyrIbqG/FyqIRpCgNpqiGHChUHVEL3H6FBlkdUQiYYPb4hvQod2jYrnzuZkIHhXDOENtMZNS0kwzzveZRkf6SG+eYsFXzmz0UdBzYRhOyIiGt5MgY9YDO35bu1QT9q9apxr61NZ/Rrw0gLglA8Cu7YFTzz3UGCfw9AqG/T7TWecji/scRqN0peDShi+kRo2pGZbP1zYbqwmbKevYJh2yJ/YQoD7TwtxXADQ608ubW7RpzLHtfYCqH1Fi8P2VFiyznwqLdn4ohp+O7c6ryo5937GY9vt46lmvC0M3neowmOvB58iPa77CQBAh+hfC6sJ29meX+3xPOSVhcCY8VDTZ1e+E4/j5ii4nBaO8n6UTA/w6kJg8nSoabMC13c9xqLQle1MUtozNUREREQ0xLEaot5ANURTC+ZqWy1rg4zmVsvWaoi5Pn1g0Fe90aEaoktraZcK8UREzYDVEI3s1RDjQIumPXIlLY8dWi2rmrZaNlRD1AUdWQ2RyCcRV5gQr12IbyC4522Nq2mX6w3xadvpZgrtdIdCiG/TrkYfATUbhu2IiGh4M70bnnMQkjv0Iaw1W93fQptCYol44Y9V2bUN8u7dBge++9ngSVtaoD55OdA+Gq2yRr/frPuJhk27xFjlyiXMISLAM3/XjsUNbWSDqoSV+8kD5ts8VOBk/SrfIlO74B6Hm9AWAgxdLjrjr7D3qe2/w4L243zLe/rqc3KgM21/rDdlwCzrvz+Nle1CCAqINuVtYfDxYxSufUTw+kbzOgenX8Q5u+4AAGPwuJqwne35deTVZ0C2PQ4AkP2PhPreX6HGT658ZwCOcCtgGFm1Rrn9eshP/w3IFoLPcuDRUN+7DWqsuazpnCnhXjPiIV4GbJUEMWv/UPslIiIiIhrKSqohNoGmCiK6VkOsotVycCvl8mqIpqCjQytll/0GtXhmNUQiGmpYDVFroBqiteqgvX2xr9KgKTyoq4bouRxcDTFEuDCoGmJQlUVWQ6SI1TLEpw/wAZ0Zc8CvO2A8yu5Vho+UaQRj2I6IiIY3UwChrd3YXvTpNe6pmqCKcXLR0c5zAQDecyHUu86HOuwdAIAE9Km13oz7X4gX/sb8lRCnMMejdxiHomgj+9gywddviyhsp9Em+iqAdy4SXHqafVvbH+JHzQr3xkHm3+xbtntOH6bs6avPhwK3L7KPN2PATBbc7b5uiHltVQyBQin3oWLqGIWHvxTDtY8InlslOHh3hfEdwMLVwLYuwXETN+Ofrj8L4/I7AADtpkBqNWE7y7btXZ6KnUufhXz7Iqir7qx8ZwBiMYWj9wKeesO+XhRtZGXxU5CrLilduPgpyH//I9R3b7Vuu/80YOm64H3EVOE6OXvlOcsgT6gRERERERGrIZoEVkMME/ILrIYYHC4Ua5XFPv1yXTXEwCqMDq2lWQ2RiIaKYjXEHKshlnOuhhgm5BdUDdEQAlS6cGFkrZZdqiEObscQYnNJxBUScWB8DUN8/jCePuD3yjrB/KX+uRi2o3IM2xER0TBneGuTTBmrOQGFcsYdbcF/wJkCOq0tgPRmtZXWTNTl10O9+xOl8yj9Dnodv46xKy24+2XnQ9CSx+4yjrUaKtuF+bbI7Yvsbz9dw3bSuUO73FTZbuPO4DltpatDhwBXvepbZDq2PomhNydojTf2DV8UwaTIbfG3VlYRnPwNesxG1tKzTqaNU7jibP3jR+67H5IfbGfdbmgj25Wp/Ha1VbbzPe6ffQDSvQuqfXTF+wOAMcngdaIIkIopgPz0fEi6Gypp7knc4ficiod8vMkjt4fbgIiIiIiIiACwGqLNYDXESsOFQa2WLS2cc6Xraqshhm2l7GnxHFjt0BZ6bJKqYkRETlgNUUtfDTFcK+WSkF9gK2Vzi2cVusWza7gwoBqi93iHaTXESkJ8f18imL/U/+HgzjTQlxe0hPmSPA1rDNsREdHwZgrhJDswOt9p3GzTLqCjLXh6U0An3gKgc3vwBF5z3uZbZArbZR1Lxy15yz6+3Zw3HLTxTeNQIoI2sg++Ek3YDlv9ISwAeLTjRO3yuVODp7QFsMKEYUQEmDwDWFPaz7ddzF+F6ekFWmv8l9qEDmBrl3k80eCwn9aM2cAKxwRpiHfvQZXtjpzZhLdFpcreLKdq0EY2Y3kNSJZXm+zLAds2AlWG7d62u8L8pfY7/aAZEdyPix7TL+/NAju2AJawnWuANeg1VHK9hf/fiv/H/fU688rD6OQIERERERER1Q+rIeqFqoboGvJzqYZYEnTUVEPUBiEN1RB9QUeX/Tq0lmY1RCIaKlgN0Ui0LYkDqiGGCfmFaLWsrYYYWavlsuX9643NtwHQf1axKw2MM5/+pxGGYTsiIhrejGG7dpzVeS8uxdXaYVtVJq9sTj9/awuATMiawvsc5p9H6UuruVa2C/ojPebSRva5B41DUVS2ywccpHPYzvDtrBO6H8Nj7Sf4lrsEAqutbCddOyFXXwo8cQ+wa5tv3FTZDigEncakgvdRqZfXijVo9+1zm+k0pkeI51WYN6k3PWVe+4iZwKF7hJisycmyF0p+N4U+Kw3bdaYF519vfvJo209n9G29w/j40Qo/mm+/1w/everdFE4eG8gXTgd+fA/U9Nna8c+8Q+HRZcGPzNmTDPM//FfIr//TPXBKRERERERERJFiNUSzwGqIYcKFQdUQja2U+6shRtFK2aUKY3k1RF3osUmqihERORmohpgJXLXWGhFEHNM6B9j7Je3Yjh6G7WgQw3ZERDS8mcJ28VZMgLmPaI9jyMQUKmttARCmrd/7/0lbmrk1pg+sZLZscpo2ExAaDKrmJXf/1jquDc0AmLc4uj+B3cN2+it7fPcTFYftbKFBp7Dd5R8EFj5sHE8FVLarlQ07BQdfaQ5DHTUL+OqZzXSqzuPp+b5Fqsq3XDc9aUlVApj3xeFTOl12bAH++OOSZaaW2pWG7T7wizxeWmse175urHkdmH1gZTvsd9ie9vtozwmI5n5c+qx5bN1KyCWnAzct0rbFPeMABZdTBF883X+c8tyDkG9+tHCiN4xh8tglIiIiIiIioubGaoh6JdUQa9RqObjK4mC4UFsNcWDesv0Z53XZb0Br6SaoKEZEVG5s3vzZ8Y6QNVZoeGPYjoiIhjlTqEEh1Wp+y+0adLKF7eTOG9wmAaAmzdAuTxjCdr3r1znN+9Qb9lBHUAbDGrbbcx8kcvo0zhK3w3PiHrbTp+fayltW9rO1uSyyhRHjAVUB5a03rEE7AEjlzdW8XAOflbhzkf1xcfV5wyNc5hrBu2GBec0vnKowvmPo3xYDnrjHt6jdUGGxkrDd2m2C+Uvt6+jCdvLI7VDveF/4HZZ55/4w7n/6uKqnL3xDO8imtcAz9wMnneMbSjmea27XtJuVe38fPmhHREREREREREQNVVoNsa3Rh9NcQcQw1RC91QhDtFo2zttXuq4YxwOqIYbZb1A1RG9QkYgaYmx+h3GMYTvyYtiOiIiGN1NlO6WQaGuBkjxE+VNTkVS2C2OKvrdha9dWoEOz3/HTnKbVBTa83rl/wFvrRY+ax8ZMxLLOudqho2bZp/WKBRyC822Z06fnTNX3sg7vV6upbCf33hQ4f6Mq233hZnsMbY/xtdt31RJJIFsaUqy2st0Dr1h2N8z+WpY3lviWdYi+n3AlYbsFy+3jLZJDCzSBsWQ0tddtz5uN5i+kudux2W29lUu1Ybug1+SilG69lf77zskwCM4SEREREREREdHww2qIeuZqiNG1Wg6e11sN0VZlMajFsm2/QdUQy/bLaohUB22SRVs+jUws6Rtj2I68htnHh0RERGVMYbtYDKothZT0oFv502xRVLZDJsRfXUefYZ5Ht1+HqmyAPSwGAMfvPXhZFj8FuesGYPlLcKoJNmY89tr2Bp5PHeYbSjseHwCkA27ratvIGsN2VbaRjZ0xFvli1bxYDNj38MLlyTOgTnwf0Lk9cP6UoaIYUF1lu7XbBD+5X/D0G4J9dlO4+ASFo/YaPF0QVNVvjwnNdGqhjKGaYq24ViJrdrJyKeS2a4Fbf+Ebi7KNbF/e/tphej5i1zbIb78HWfgQoBTUEacCH/oCVCLct31P21/hsdf1x3DM7Age146v65Lp0Z6gi8UU4jEgF1CgTlt5tXuX076JiIiIiIiIiIho6GI1RLPSaohBrZb7HEKAusqFAdUQ+9c1VkP0hgdDtHgOrHaY01VJZDXEWhib34GNmrDdti5Bcz0jqJEYtiMiouFNTIkGBbQl0Z7vRndMF7Zz+4PJGrZbu8LpENWX/gdq3CTtWGLaDGCbZr/r1zrNHRToSMQL11EWPgz50tm+imFWYybi1K6H8H9j3u8benGN+zRBwcZq28hWE7az3X6t4jnwfB5Y+mzh8tJnIY/cHjw5gFb0IiZ9yCv/ldwZ4q7w2rBTcNIP8ljRX4DrkWWC3z8puPeLMZw4N/gx/efPBvTHbSDp6wvVRrO6encF2gpjQ4y8sRTyhdOAHVu046bQZyVhu9YWBdstbwzbPfAXyAN/GfhVnrkfeOER4Pu3h2pp/J6DFK68U7//Dx1Zv7Cdbb1rL1D49I32R2f5405EgNWvue3bh2/+iYiIiIiIiIiIaOhjNUQ9ESkN7kUR8itrtRw8r6Eaoq/Koq0aYoj9BlVDLP5UYGzfTmyMT/Ut37m9G8CoKu8tGi4YtiMiouHN0kYWiRRSok80uYZMjGG7MHklQ1U7AGht0U+UVW5vJIIq2xXJH38cLmgHAKPHISVbjcM9WUEqEfx2I6iCW7zqsJ0+zRdU3Q0IqGyna4UZkkKhlWyX8v9xPm+J4N0HhX+7dvPTMhC0K+rpBX7y9zxOnBt8Y86ZEnqX9WOoalfNm9qebEDoqfHv2asmd1xvDNoBQLvoK9ulewuV6lqCej17BOXijGE7nSfvA15bOFg1skqRnPzIOL5OWl5PJ3bYA4mA5nG3ytLrOAjbyBIRERERERERERENW0opIB5HIf7DaohexmqI2lbLfcC2Dfje17+OXhXH2L4dGJvfibH5HRjbtxMTZt0F4JBGXyVqEgzbERHR8GYM2wHo3IZUSl99yLWFpzFs1xPcQrRwHAoYPd44nDCEATMtKafpbZXZLjnV8+fu4qed5isxaizG9b1hHF60BjhmdvA0tsp27Qm4V7XK6SdqK7Z6LZN1CCLmTPevZCN7s9AV038LZrS/QrWTm5/WP+ZvXei2/UR/ocfm0Ruu1JpI8L306gb7+KTh8CWlxU9Zh9sD2hmPCvFYzAW0kW0LE7YDgJefDBW227Yof1sAACAASURBVHOCeeyA6eF2reVc2c4StnN4TPme/5W8RhMRERERERERERERjWBhqyHKnvvg7J73aAt8qM2rwLAdFTVvnzAiIqIo2CrbQRkr2wW1Ni0yhu369AEvnwOPgeoYYxxOjdKH6tJoK5SFDmCrzPae1ucKbTkBIN0VOFc5tc+hOLn7YeN4l+NNYLut3/02/zLZuRVy3x+Qv+6bkEduhxRDLTVoI2u8fw3V8kLb/0jjkCnoF+SZlcHr2IJ8e0xopu8clTGE7VQVDWMzAXfl6fs38e3hqsf+/DZVtgPCt5INetyGqmwHAOluyKsLITf9AHLb/0LWr7KuPmWMwtF7+ZcfMA3Ye0pztJE9albw5geWBwMreI0ewMp2RERERERERERERESBVEsLMGWGfnDDm/U9GGpqDNsREdEwZw7bqY98EUlDRadqK9vFXQIlE6ZCffnn1lXaJ+qr3v294xRjJTcvW9jutB+fCPn2pyG5nHuAxGv0eIzJ7zIOb3XIhvTlxRp6u/q80j9VZMObkM+eAPmvC4HffQ/y9Q9DvnIOpKerUOJZwxTuWbcj+PhMlQHj4pDUC7LXAVCnfABH9egrVr3lWByxEmMNhRE/d3KTh3IMbWSrYXuO/M/5CruNbfLbxMXKpdbh9nx0Ybug1tVhw3Zyy88gFx8DufYbkKsvhXzqSMhLT1i3ue6CGKaMHvx9fDvwmwsjetvj+lqZNa/XGlc4aR/75ol46eNO1q82rzxtltsxERERERERERERERGR3dSZ2sXCsB15sI0sERENb8bqbwoYMwEpMYTtqq1slzcHStTFVwCz9gcOPwnK0kIWAFJt+oBIV2wUkOkEWhPW7U1Vps7qvBcxCDD/ZuDQE61zGCXbgVgME3JbsDU+0Td844I8PnRki3WKtOV2vv+yGHYfXxY4+e1/A2uWl6743IPAvD8Y2/EmLFXoMr2CtlZzmKomle0OPxnq/MuAt78TuP16zOxdjadTR/lW+92Tghsvqnw3Or05QWtcGa/XCXtHu7/IhW0j6zKlJRz2uZOGftBOHEK5tjayoSvbWVpXAxVUttu6vvT3rp2Qn1wG9Utz4O6g3RWW/kcMD74K9PYJTttPYdLoiO7LrLk9bImAUN4HDld4+LUQFRn/+CPjkLrhOWDhQ5CvfsCwwtB/HBMRERERERERERER1cVh7wDGTgCm7AE1dQ9gt5nA1D2AGbMbfWTURBi2IyKi4c0UtovFgESyhm1kDYGMWAz4xFehHMMPK3a1G8fe2pTBjFEVHp8nLCY/+LzTsfiMmWAddrkNbUGeSbrr9uid2nXl0Tug3vUx7VjKUrXrmZXACXPNx5Dr0z9+4qiwxyuA2E/uG7gsbYYScwBmT6p4F0aL1wGH7mFuodva0uShHENlu2rayGYNd2UiDufnaVN77YXAVTrEXIYy6sp2KUuwz9mrz0N2bbOGlcd3KLz/cACI+D5Mm19PSmTsoTxbK2et8VOAbRv9yw86Dqp9FESxYDkRERERERERERERUbViF/17ow+BhgCG7YiIaHgTQ5klpYC2FFL5ndrhatvItuYz+oG2VKgAz5pOc+W6dVuymLGXffuatUGduS/UtFmQfF5b1Q4A2u1F9wDYb+eUbntd2AQAnpoHnPZh7dBR6WeN+9gekPupSWU7r3grlrfO0Q51tFU25R7jgTe36cc6+/M/xuvVvRXy2AIgH1CerFE2WFppahgLW3oYbwt7UcahozO4H7EtABe6sl1A2O6EnsfDTWjStdNYzbKmXNvIBqx34lyFoNqLIlJoAbz8JfNrX3nlP61hEBolIiIiIiIiIiIiIiJqEgzbERHR8GZrI9uWQko2aEd7MnkAwZWCzJXtTGE7c6U6nWTC0uI0Exz4qlVYTF18ZeFC+2i8Z9fd+Nvod/vWcalsZ1sn1RryoPr0AcIx+V3GTTrTAlsQxXT7VRxWPPPjZRO14rydt+D51GG+Vd/YXNkubFnOYnDKeL2+/SlI17zKdtxAVVW2M9yViWEStpP7/xy4Thx9SOQzyMb8Cc8oK9vt2bsan9t2XbgJTVxDb1Fz3e+GN63DsycrfOYdCtc94n/sPvhvMcj2zZAvvRd49XnrPOqcz7odDxEREREREREREREREUWC/YaIiGh4M4Xt+ivbtRsqOvVk3NqEmoIliVUv6wcsbUN1Um3mxM/WTZ2B25uqTMVRRWW7Uz8EdfK5hcuHn4Sjep7RruZSHdAatiurbCdBZcpy5slm9K7VLr96vn1OU2VAX1hxt5nWeYrUgUeXLmiJY0rfJu26nYa8ZhDbbVocM7VOjaxiX5MQh4pevYZWwcOhsp1sWQ/cfaPTuu2ib4/67KpwQUbTcwYAHl55Gmb1hqtOaJRuTNhOHrndbcXt+ue11y8+pvC7Tysk+4PFo5PAU1+L4aR9FeSqSwKDdgCA6QHlTQF7ApeIiIiIiIiIiIiIiIhCYdiOiIiGN1vYLtmOlOgDG93p6sJ28R36inlIhOsN2p40/1f90qvB7SFNYbvWKtrIqqNOH/wlkTLehk6V7WxtZMsr2/UGpPcMle0AIClp7fIVAdXjjPdvWVhRnX+ZfaKiUWPLJopbW3h2ZcJXbLPdpj1ZQV9ejE+LhIQsYzYMGCvbDYf6z0+5VylM5fXPkWWGlzIT03Pm6O6nsEdOH3qtSKMq23WbK2WWk6w9MauUwseOjqH7mhbkr2vBjp+24O2zFCTXCzx1n9tO2pLOx0NERERERERERERERETVY9iOiIiGNNmxpdBur/izbRMk503P2CrbJZE0VrZzCzkZ27S2G9rFvrnMad6iNktlu9FtwcdYkzayR5wyePm1hUgZgmzVVrZLloft0l32ybL64wCA5Yk52uXTxmoXD+7ScHxt5aG0A44CZu5rnwwAjj2r9PeWODry5uu1NeAqlxMRa9vPnl57m89WDM3Kdiqo6qGF8TkyDCrbYct651XXtU7TLp80OtwujdUgyx9b73hfuInLZRsUtnOsYgkA6AwORGt17QTS+kqDPnMOrmwfREREREREREREREREVBGG7YiIaEiT898Gee+MwZ+zd4ec0oH8xw+GZNKWynax/qps+oBWt0PYri8vyBtWa33mHv3A1D0D53WVyVr6NfbLGQ4wXmllu0QSyhs2Oe7dxspsb+0Ins4UDEu1Fqo+AYD09SH/0y9B3qMPAxXJzT8yjn1w5/9ply9dZz8+UxjQF9Lc5zCoc//JPlnHGKiOMaXL4q04KLM49P5NevtgfEwW5zNVcgOAxHBrI+uQwTO21B0GYTtxqcIWK7wdaDNUtnMJzRbduCCPK+5we81R/3IVMNH+nLZqVGW7MPu1BIAj2cdJ50BNquI2JCIiIiIiIiIiIiIiotAYtiMiouFp1auQfz0LyBsCaUoBbSljUOyJtanAXVgrhJlCS8eeGTivq4dWVX6MLhXM1P9n776jJbnKc/8/+3Q4fc7MmZyzRqNRlkYRJZRFkJAsIcAiWbbwxTY22NjGXF/jCzZOF9YPJ0zwta9tAbYMNhhMEkgIAUIBhAIKKI3izGjyzMmhu+v3R/fp06H2rl1d3X3CfD9rsaa6au+q3dXVrfGax+/7yx+q3bFsjczXa3tKmo3HWdvIDnjkTGxBnp7s1HbwqT+QvvC30Sc7uMd66OqBr4XuLwbSeN6eyPr2Y+HHat7z0tUyxshc/y6Z930i/EQbj5X5akiyL5W23j8pXtDJZ/zIeBPP7fxFM/d/J50r8/5PyazbHO9GVbHdj+wcCNvpsx+xH9t4nPSW35H58C2SpDcMfDF0mK26Y72v/zTQL/2z/btU82yl0jIrN8h8/Dbp0jf4XaBO8OAPmpqXWJwAXbOBwL0e7XZveK/M/765ufMDAAAAAAAAAACgaenpXgAAAIm4Wov+9IfStgvDj02G7SyV7aRSS87J6mph3KElS/mw7uiAXDX71aUfj0ZXybOtMeVT2e7t71fXjb/vHpPNqcdSEUuSntkT6OgV9ncxMmEJs5VbyAbFovStf4tcahRXoO17T0qXnxB+7IEXLOerfs9LVlQ2zTXvkLnmHf4LS2XUW7S3i4xb2e7Z/e7jUZXt6sN25sO3yFx8XbxFTIfbvxO626e5rO1+zPbKdoEtaCxJF12nrj8pheyC+++QJPXaWmp7Bj7/9V733U6r6sdo5XpJklm3ReaPPif90ecU7N2h4PUxQpP33ir9+l/4j2+VOAG6seYq2wV3WyqjVumajvcOAAAAAAAAAAAAKtsBAGa58TH38d3PWw4YKZPVSJc9/OYK00nSmCMIlQ0sCZWYYbtfv8QeVDut+8XI+WOWIJFPu1DT5fHXBGO0aeI56+End1sPSfKobDc8IB14OXodEY4af8567Mk99pDQ2UeF73+s+/ipF0891OSqJK3aoJwj8Glrs2tzwJE9laIr2zU8t6s3xVvANHGFUqNYK9vN9v+XlMFD9mNBVRCv/JtkC6QOj/tEFqV/vc897pHuE6de7Hy2cUDM38ZWtuSOJU7Ybqi/uWu4gpKSdPVN8c7nCI0DAAAAAAAAAAAgntn+z4gAALiNWoIRxsgYo3PyD1qnjoy7AzeuKmK2amUmZqDk1HX2Y8PF6P+M28JsrmpqkqRM1n180vFn6OSxR+zXj8j02Y5PVrZrug1jnW1j9kCcq3KX7dgx409NvZi/qMlVSWbFOhlJueKIRkOCn3HbyEYFREcmYrSRXXe0tHVbvAXMQuOW+5F+ebuKN71NWrtZ5qobZc5pXQvodgqGBxXc/BfSt/7VOsa88pqpF+XfpJytsl3M6oo2R41XBeyWrGocEDdsF6edq0XwtX9RcMd/SLuekxavKH3GN7xXJu34bR2N+O2sNnCwuYVF/O6ZS66Pd77ALzAJAAAAAAAAAACAaFS2AwDMbbbKQuVKP0vT9lCDq6rYwaFAr/gze/Uha3vabM5+0hDGGP3yyvCg2J3FUyPnW8NsjraqkmT+792R5y6daL6zqtjOQ+6QR2TYbsczfuuIYCStndgReuz2x+1rvHt7+P4rhm6fenHVjQlWJqm3z/p5PLE7XkjmyYjxIxP2cJkkZVQuhXjs6TIf+7qzjfKMYllm4FHzzlrZbt/z0lMPSt/9ooL3X6fge19OsMDOCPJ5Bb/zOulzH5X2hj/vkqTTLpra7i79Jtl+s257vDVre+3grZVt88bfaBwQ87cxaRA3+MxHFPzFO6V7vyW98KT00A8UfPoDCv4sog10nNawzYbt7vhP6yHzvr+TOevy5s4LAAAAAAAAAACAxAjbAQBmt20Xuo/bqh+VQ0SVUFeIp/faj335IXeoyRpmi1u9SdLxC+ytCPMF9zpsgUFrGHBS7/yoZZXkeiVJm8fDU2lfibhP1sp75cJ6wddv9luHzY2/X9k8dvyJ0CHffDR86kTevvaa+9fEZ1pj+Vr1FMM/j5vvjhe2+6e7ou+3TxvZrn+4W2aWtJCVHG1kPSp6jVtaLWeCqgPFooLP/23sdXXcI3eX/hel+pmdbCNrqWznI/C4zzW/id2NwbrYwc4EYbugUFDw738dfvDbtyhwBRXHY1y3/0C8hU2yXf+KN8tc88vNnRMAAAAAAAAAAAAtQdgOADCrmbf8dpMTS/8JXJKxh8522zNu+pcfRoTtbMGVJoJZuaz9P9fPOAKBUoI2sguWRKyqLFt6P7vSIW0hJW1e7g7QWMOAk11sBw/7rcPC9C2ubB9ILQ0dsyl8t57aYz9vzeebcI3KZLUzsyb00PrFobutHnzRfXx0wh4uk+rayM4BiSrbBXUP50Pfb8GK2uzxH/mN6+2b2u4rfdeHu3qbvuyegegxY6Z76sX4WNPXmjphgsp2u56VDu+zH3/8xy25btDfZGU7W5W/0SH7nNlShRIAAAAAAAAAAGCWI2wHAJjdmm2nVw4mLOi2t4Idd1Q2u/NJ9+lztspxTYTtLlltr45ka8MadTyqipWZtyBqWSXZbskYjViCOq5gl2RfX27PdhX/7v3SnV/yW4dNVWhwWT48mThoyf242ghfPHxnZdus3tjU0ioyWeshVxW6ZuQLgVdlu9nGKF4FwGqHLLnTWRk8HI0I0ZaZ7FTwzZSrWJ4wZu8X66ryKLm/K5NOGqsqIXnUCdETosRp51pvNCIwZ6mIGhQK0kSM78hA/Mp2QRBIE5YfpQ1bY58PAAAAAAAAAAAArUXYDgAwq5l0RuYvv97ExHIVIEf4LSrIZpMrjqjLFv4JaZ8YZeNieyDQVrmuctwWtotqI+vJGCNlc3rz4VtCjz++q7k2sj1P3Svd8ldJlyctmCoNd9Ohfwkdsm9QGp1oXKcrQLR2YufUiy2nNr08SVI6q/fuD3+vd4d35w01FvIe6uWL7ipkmWBCuvad/hed5fpHAv2zpUrlbAweBk8/HDnG3PSHofs3TTxvnTMaFZr1uFXrJqpao67cED0hSpLKdoOHIo5bqlXa2pLbNFPZbmLc2v7YnHdV/PMBAAAAAAAAAACgpQjbAQBmPXPmZfEn9ZcrDnX36HhLRSefAEkYa1W78vXi6u7pth77yQv2gFUQBNb3kAscQZW4Vae6e7SssD/00L3PuqeOWivvtSYMONkiU5LmFwetw74aklG6Z3v4vU0HE8qoKn2Ua779piQpk9XyQnhLy4EYt+ErD0WPmShIf/+98PCmCYpKqSizdLX/RWeM8BaaUfHDm++2jwirbBdYQlAzxve+HD1mw7GN+zaf5Kx2edDRvVSSntwdfdme6t+cXPzfwQZxg29VgoiKmcEd/xl+IG7Arz9+ZTvnNZr47wcAAAAAAAAAAABai7AdAODI9PVylbNszhrsslWFi6ogdii12H6wibCEcQRT9tvzYxrPS0XLUnuLjnaT2ZjV97p7lFc69NCiiBzayHj4AntcYcA4lq6sbC4o9luH3fFE4zr6LVmevMnU7sjNa2ppFemMii34K9mdT3pUtivYn5nAlNfQNfv+ethsG9kvPeAI2ymknFvRXmVyRsjag7kVPSHPayGvvqK95OFju9ynfOFA9P2vqabZ2xc5PtJ4gt+IwxEhuIVLw/fHDdsNRFTQi3uNJiqjAgAAAAAAAAAAoLXC/2UcAIC5bnys9Geu11rlzRa2GxxLcN1mKhM55pQCQdnQY642uM42snHX2J3TaCE8BNId8TeNIVvlPUeVrVjWbK5snjn6E+uw/pDLZVKe19h0fMxF1V8oq0UFS9tKSYVioFRXeOW2akMez+VEQerORAxK+n6mg7FVtnPftzuesB8LrfT28F0Kdr8QZ2WdsXqTdMLZUjo79dsWJpWSTj6vcf+u57Q+b/9NyEdkDD0ez5r7aRaviJ4QpVBQkJ+QSUc90CFSET9MGUtoMW7YrplWt64QYbOV7WZ6RUYAAAAAAAAAAIBZhLAdAODI1t1jbZ84aMmeuEJskbLNhe3mFwY0mGqsBjU4bA/bvWzPbzlbRsaunpTt0av3fkv/tOjGhkO77cXkNDQW6LbwDr7qbVFlO2OMgoXLpMP7lAvsIaTP3RvoM++o3bfHUuhreX5P7TXSCf86lc7q9NEHrIdHxqX5Hh/JeCF6zERBuuuZ8GPX93+xtHHC2dEnmmGarWznEhbCDd5zRcuv0zIr1kvD9up0kmRu+qBM36LGAzf8lszNf2GdNzQWyNaqV/L7TXRW05z02l+QvnFz9LhJYyNSM2G7w+Ftm2vOGyZu69pmWt2OOeYkbVkNAAAAAAAAAACAxGZfnzAAAFqpO2et8vbxO8IDPCOWamy+12tmzvkjd4ce+uRd9qDJez9vL0flbNMat3pSrlfzi45+thZ/8jV7QMoZBpSkVRujL7ByQ+nPV7yqsuu9+//KOvyJl2vX88nvhq/v3JF7p170OVoG+8pk1RvYg0jPRuSCJk3kowNntqCdJF0wfFdpYy4FehJU9LK1l56x9rxoP3bs6TIf+5rML7w/9LBZe7Qkae3EjtDj/3SX+z76hO0yKg/aeJx90Mr10Seq1kzlOEm6+xvNnTd2ZbsmnqG94Z+BpOYr2wEAAAAAAAAAAKBlCNsBAI5s3T3qtlQ8W2TJNUQFSzKBI43XTFgi16ucJRDY12Wv1nbnk/ZT9rrCbHGr72W6reuTpB0Hw4M6X33YEbZzhQHXbpa59p3R65oMNmanAo6u9/2NR/yCWTXPi63dZBzprLPq1+0/81uXT2U7l+7J5zbbRCB02jXXRtbF+QzOMuZ3Py5z1uX2AdnSc2z7Ldx5yH1+nwBy5ZNw/AaaqPau9ZoN20WxVaSLez1XS1ibpx+2H2umMioAAAAAAAAAAABairAdAOCIZD58S2kj26P7c6eHjtmwJHzucESw5F0HPmU/2EzYbvk6/Th3Ruih9fPsYQ5XUa/lhb32g3HX+ND3tXHiBethWzvWR3faT2mrNihJ2rFdOu2i6HUdW75nY1NBtjMc7Vrr17nAkjnbk1o+9eLAy9HriNLd7bx/43m/00wkDNsdO/6EJMlkWxAg7DB7G9nmK9udMfqTpufOOJuOdx/vLbWo3p7dHHp45QL39LGIZ/TCoe9NvXBUTgwO7rEeC79wk2G7hUubO2/ssF0Tle0c37/ELasBAAAAAAAAAACQGGE7AMCR6ZxXS5JMd4+uHfhy6BBbBTtXFaf5hQH90uGb7QOaCNuZri5dZ1nj4bFU6P5iMbAGYF438DV3va+4YasLrtbqvD105tNisp6zjezqTdJxZ0y1iQ2T7Za59n9Iksxlb6zsvnzoduuUQ3XF5Wzrfkv/v0+9aEVbx2yPUrK3/PW9f76hPJtzRu5LdoLpZHmghwL3s7x6of3YRUPfT7CgmcVEtQbefKIk6fLB20IPDw65E8auZ68rKOjdBz85tcPRStucdZnzOg2aadMqSYf3R5zXFraLeb3xMQVF+3e7JdeYZJqv4ggAAAAAAAAAAAB/lEcAABxxzFdemgqfdOe0dfzp0HHWsJ0j/HTbC6/VSWOPhR/s6pLSmRgrnXJsbl/o/kf7w9NC/Y68xv/c9xH3xWIGyMyxp6v7B/9tPe7TYrKes7LdWZfJdHVJNz+g4ENvk+7+Ru3xi66VecNvyJxyfun1ivWVQ73BiC4e+q6+O+/ihtN+6s5An3hrabtQDKyV4rZUPy8XXO3xbiKU7/flg7fptvmNrT4/9u1AH/S4TNLKdtlgXLryxmQnmSa2mNGtoyc75+UtOahP7Hq3svJIOWZz0qLl0eNarZCX9u/yG7v1tOgx5WfwiqHbQ5/Be1/MKggCGUugy9XC+D9fukFXD36t4VqhFljKido0UdkuOLC7+fM+93js62moX+pb5D08uO/b4QdOvSD+tQEAAAAAAAAAANByhO0AAEeW86+SWVwVjsn1qicID1bYQmK2/YsKB3Wmq/Vkd481rBKlN2VPsxSKgVJdtef95iP29pm9lvdbEbdaW3dORlJvcUjDXfMaDoeFE3f3u9t79hSH7QfL6zO982U+8l9e66u2fuIl69CJfKBM2jgDgj3FqiBgCyrbme4eBbJ/LgOeha5cgSevdUjOqmOz1fBYoN5uS0jMUpFtZd6vnan56k6ZnsZnvt2CPS8puP5ov8E+6ys/x86Q67OPVSrg1Zuw3Me3H/psbdBOkrKO70zc79N4E21kHcHgCkt1ueDRe+Nf78e3S5dc7z/eFujLzr3vJgAAAAAAAAAAwGxEG1kAwJFloi5FNTZibVk6Mh4eCBuZCN9fE8IK4wqZRAj229u0Hg5Z/of+2x5mc7ZoVSn8FctkUMdy3uGQ+/jCAfcpjx7fbj8Y9z4uX1fzMi17Km3fYOlPV/XCmnDmi0/FW0uYcsBtR3pt6OFVC/xOk7SynSRpnqOv6gzWa+zpyJ2H7fNsYbtM4FmOMao960zg84yWv1NDxv5+Jv7jk9ZjtqBnNgj5Ij1nqfwpSas2liqA+mqmst3uF5s/7+qNsa+nQ+FVSa22nBK+/8kH418bAAAAAAAAAAAALUfYDgBwRDEXXVe74+TzlLNUczowHF4NyxbEslXIq0hQBe3s4k+tx8KqsE2GxsI4q1dJ8aubRVTFClufq3LcttGHdMzEM9bjccOA9ZXHruu3V8Ob/Gzdle2qPucTzoq1llDl93Pp0Heca4piC475WFeu9mfiVOCaQa6Z97D1mO2zLBYD673Neobtmq1U2VHbXhk5xKTTUiqtc0fusY4Zyaesx8bz4eHe0Pt47Bn2dSxcKp39KvtC61kq0DmNe8wZm6qsGXzlH1X8jctVfP1m6Uufjn+9uIHA8bHw/UefFP/aAAAAAAAAAAAAaDnCdgCAI8vpF9W+nr/QWektCBpDJLbwTq+r9amUqEVn38WvsR7bGxKsOzBkP1fLQ4ERle3uCsnNPb3HXnnv6y9cE3G9Ju5jb19l84zRB6zDdveX/nRXtpsK65hjtsVfS73y/btw+Aehh33Ddkkq231g35+XNjYd3/xJptHJ2Z3WY7b79+5b7M+gV9juihuix8wA5oKr/QZ292hR0V4GcKTgCtuF7w+rEGhOPNu5DPOhz0gX/pyU7S7tmO+otthEZTs9FP49qzFa+i0PbvlLBR99l/TQ96W9O+zjX3eTtcVu8Mwj8db34PdCd5uzLo93HgAAAAAAAAAAALQFYTsAwJGlPkjW3eMMnz30UuO+YUsOx1Yhz3rtGHpyaeuxrzxkDw2FniuijayyMcNs5fG2+/jZexrX92/3ha+5r9CvFYW97us1cx8XLqlsuj7vLz1QWtePn/dswxv3XoWpVAYMX9d4XioUoz/jJJXteovDkjFSJtv8SaZRT5c9kRgWjh0aC/TJ7yYM2/XO91lae8SpqOf7fcn1On8bnhpfZj1mbyMbch8j1mPmLVDXn35e5uu7Zf7jKZmv7pLWbQkf3EzY7vEfew0LBg8r+MLf+Z2zOyctWh5+7Af/7bmwCJPhQwAAAAAAAAAAAEwrwnYAgCNL3+La1909WpXfbR3+dhpawwAAIABJREFU05dCKtvZ2shGhdgShO0W9NjDNWMh61m5wH6ulocCy5XmdqTXhB4+ZW3jvhULwt/PQMqx8Mr1mriPualWsvOK9rJ/k5k2V3Ctrzgw9SJlr/blzZT+OtbreH5GParbJals1x2MSUEwO9qihkiZQNliePvNsO/rNyOKjWXlccMPRoRCZ4rFK/zGZXNaXthnPbw3P896zPZ9Cb2Pnt9f090js3KDTCpln9NM2O6YU/3GPXqPtOdFv7G5Xmn3C+HHTnqF3zkUXkm1YjSicioAAAAAAAAAAAA6grAdAOCIYnK9tTu6e7R54jnr+NGQEImtjWxPGyvbdffYqxqFrfHE8NybJKlLEVXSYle2K72vvmJIP1tJYyHrG52IV42vRjP3sSpwlFLROmwy1OYKt2VU9Ya2nBJ/LfW2llrRuiru2aopVrNVF/ORDhJMngmM/f6F3buDw+7nLxN4hO2WOb5kM8nxZ/mNy2S1oDpIWmes2Bgs3XUo0Me+XdQdT4TPCa1s10yFNtt3fjw8YOk0HvE7Pan/oPcpTXePVLR8h+Ks0bW2o0/2P0+DBL+3AAAAAAAAAAAAqEHYDgBw5Dj29MZ95RCHCcIDWB+9NUZlO0dYSlKylqO5Hp03/MPQQ997snGN3/lZ+GnefcCjLWLsynal8b914G9CD4e14rUFFn/l4P/1vl4sS1fVvLx88LbQYZ8pt7z92cvhp1mVrzvQ2xd/LfXmL5Tkroxou1/VklS2SynfmuDgNLKFXV862Pj9KNjzlpL82siaba/0Wtd0M2l7C+oaES2EDxRqg8ov7A90wUeK+t0vxGzH28z31/LbGdiqybk8b0kG1p/76Yf9z5nNyVz5i+HHfvJd//O4KvWtWOd/HgAAAAAAAAAAALQNYTsAwJFj7dENu0w6I6XSOmP0gdApT+9prMI2HW1kle3RUZYKfPc/73+a9RMebRGbDNvZKttJ0kTe7x4uy9vbWE5dr4nQYl0rzQ35kASgpIHRUivHv/1OeIBo43jdzU4SoJxUvn+uyogvehTZcrW+jZIKCg2BxNnG9v371J2Nn+Xd293n8gnbteSzb5Zvu99ykNNLuhS2O3YsPIz2hZHaCnl/e0egZyO+ruGV7Zr4HbR95//7H+Ofy9e//n/+Y7t7pFyC3/dJB+wtzZv63QMAAAAAAAAAAEDLEbYDABw58pYATXePFhQPW6fVh9lGLafpbWdlO0kTyniNCwJ7pam88ahyFXed5UDPfEfY7uEdta/trXgj7qHUVFjHLFtd89rVJvTFA9LmZeHHxrrq7k2SAOWk8vtZUOy3Dnl2X3QbyGSV7QrNteScKYzRmAlvT7o8pPjggoiPLevTRrYVn327pTyr2kmVyna2+7imqzbxGVZRs17ofWzmvtmeTd8WuWXBIY8wbzOKBalg/wK6fpNrvPCk/di8GMFJAAAAAAAAAAAAtA1hOwDAkcPW8rO7R5cM3WmdNlBXcGx4PDw4EVnZLk7wpd7azVpesAdFisWpNY06ckJrJ3ZGXysbHraxKrc3vHD4B9Yh/XW3punqgFJzYZ2zX1Xz8qyRH1uHDoxJKcvfkPq7ap8hk0rFX0sdk05LqbSzMqBPVmc8QdguHeSll55u/gQzwM7MmtD9qZAicAsi8qQ5R5XBqUG90WOmW5zfnHJlu+eym8JPFdQ+YPW/i2FyxZBBzVRosz2bcX9ThwfiX9vHqo3SsvDnT5J/kNUR2DOzvPIkAAAAAAAAAADAXEHYDgBwxDCXvTH8QHeP3nnI3o6wPlTywoHwcbmoqmxdCf6zu3qjru//ovVwdcDOFmSTpBPHHou+Vtqvgt4kU25p6QoD1q/ppzvCx7laqVY0EbYzR59U8/qaga9ax/aPSE/tCT/2Gwc+EfvaXiLe00uH3NMLxcArkGeTUkG68sbmTzDdjNGvH/hk6KG7nmncly+6T9e20GfLeLaRjfNdzpTGXtf/X6GHf1aoDZO5Qr2TQitVNnPfrvrF8P1jHp9TkvG+1h8jHXWC/fi453WTrM+3tTAAAAAAAAAAAAASIWwHADhy9C0O39+d09LCAc2zVBb7f3fVJnN+8kL4aXrCqjhV60pQBS3bo4WONqPVYbZhS4tWSeoNhqOvVW4nGcvKDZKkxYXwJOI92/2SYF4VxZqpjCVJ2y6sbLpatn7qTvta1+R3Tb04+bzm1hGmHEDaPL499PAffMl9/8bzyS6fCgoyi5YmO8k0s927sPa6US132/ocdlKcyovlynYbJ54PPXx/YUvNa1eod1JoeLaZsOxCy7MZN5y215LyTao7534e7rvN7zy2UN7azfHXBAAAAAAAAAAAgLYgbAcAOHLYQh7lkMlSS1Bsn727Z41s4Ei5SfbepD66e8KrRJVVB19GHMvwqtiVbiJsVw6aZIPwBM6uw1PbQ2P24FjkPZSaryiWmarylVZBJggvb3bX0671Vb2/VoatygHH7dnmQjVR4bEo6SCfLAw6A+QCe6vO5/fXfqZR96tLHuHQaa1s5ylOm9XyM+j6Do5NTN0X1+/MpFzY700z9802J27Y7rnH41/bR7ZHys2zHg4esLcpr2F7P7PhWQMAAAAAAAAAADhCELYDABw5Nh4Xvv+Zn0qSXshsCD28pLf2dcaSSRrqsoctJCULM3X3OINy1cEXV8Wp3qhWt1Jzle3KYZDd6ZWhhxdV3cODjuJ6y/L2VrQVme44K5uyq7ZiV2DC/xo06qgStzZfVRmrlQGYPS8lmu5TZcwlpWLz93VGMDp+zB6kqg/M5hOGEyXNjvvV0+c/tvy9X1AcsA6ZbKmdLwTq9yj+17I2stawncciqjXz2+aju0davtZ+vOj5wNneT9LfmiQ9pgEAAAAAAAAAAFCDsB0A4IhhbEGLk86VJL1q8Nuhhx+t6hxaKAbWqliXDt0RsYAE/9nNZNXraG3p20bWq7JdU2G7UppuSX5/6OGaMKBjfceNPxl9rXQmekwIc9Uv1rx+xfC9oeN2HrKfY+NEVQ/hVobtTr84ckjgCMz4VBlzSakgbd2W7CTT7JyR+6zH6u9P0kqAktoX3PJhjN+4vkX+5yxXtLxq8BvWIZO/M4c8ulFLIa21UymZZr6/tu/agZfjnSduOM9Xrlemy/H77tm+NrBVtstS2Q4AAAAAAAAAAGCmIGwHADgyLFxqP3bi2ZLsYbmdh6RisRR0coWa+ooR/WZTzVe2M8aox5Ht+a8Hp4JYLx20j8s5AnsVCdrIvnooPLD499+bWp+rsp2rVW5FsyGnTbWVDW/o/3zsU/QWqxbfwgCMOePSyDHjjop7SSvbpYO8lGouxDhTZGW/CT+oaw38zz9sQaWv2XC/+hb7jy1/r5YU7D8gT+8p/bl/yO+UDd/nZr8zLWrZHNwX/vuUSFfXVAD4ul8JH3PPrX7nsraRbWHLagAAAAAAAAAAACRC2A4AcGQ4HF5xTVKlalKPI4j2k3JBM1eoKTIolqSNrKRc1l7N6puPTIWH7tkeHiTKFUfUJY+QUYI2srlgLPRwvji1bVuf5Fl5r9mQU111LNfnbVMTVmxlACYb3ZL0qT32Y4kr2wUFKZVOdpLpVK70Nr8Q3gL1zidrn7lCMXRYPE1WWOyoOGG78vtxfQdvfax0Hw/4hu3qz9VsNUjHvODgXv/zvPR0c9d36e6Rmaw06FrnIY8W2dawHZXtAAAAAAAAAAAAZgrCdgCAI54pBxmOHXvCOua5clbPFWqKDIolaSMrqeuwPawxvyqrtbg3fMxol2dgo5nQ1ZMPSpKeyB4TeviE1VPbWcfpIwOLxjRfIXDD1pqXayZ2xpreXRytDSu2MAATDJdCYn+36z3WMfschROTVrZLqZCo8uJMMZjqC92/dF5tUHXbevs5fm/fR/0uNp1hO982sju3+5+zHPhcVLT3Ue4qX9Y7bFcfaPUIlYZastJ+zLNFqyRp0/HNXd+lqlqfWbrKPm7PS9HnsrW5Tfpb4/u8AAAAAAAAAAAAIBJhOwAAsqUKZRcO/8A6ZGS83EbWWdkuolJaC8JM3cXwawxVFZRLFLzKZKeqNMVRbsV7wfBdoYcPVWXoXIHFyCunM82tT5JZuaHm9SXDd8aa3xAEbGHYzpx6gSTp5/u/YB3jum9JK9ulg/zsqNRmE/FM/PCZ2sp2EwX72Df1/2f09VIpma6Z/9don/bEFd2llK6r+uXkc3ZgyK8Nb0MAudnqias22Y/ZqsElHeur+nfgouvs48Y9KmmOt6myXdCCtskAAAAAAAAAAACQRNgOAHCk2Hyi/ViuFDLJakKZIDy1NBlgc4btoirbJWwjq0vfoA/t/XDooburCljZ1vjawW9GXyPdRAtZSebk8yRJJ489Gnp8Z1WxLNv6zhz5cfSFmlxfxcKllc1czDayPXVBR9PK1o4LlkiSFhUPW4c8+JI9MPOpO5P1RS1VtpvFbWTLfnv/X4buf26/9NTuqfuXt4Ttfm7gK9o29nD0hZI+h52yPrzSZJjq5/m6/v8KHfPtyTayw37nbPiONfuMuSrixQnQ/eS7obvNOz4ovfV98dY0KVf1O7Bqo31c/4Hoc1nbyLawZTUAAAAAAAAAAAASIWwHAEBVyOTYsSdDh4xOhu1cbWSjWqAmDdtle5zXGJ0oBWGGLWvsLXokZDJNhojK99BV3W/XIXd1wPlFR5/USUmrrx3eX9k0kub5XLOs4d432xIzTFWYZlX+5dAhn/+RPWz3xQeSXT4VFGZ3Zbuy+kBktVuq7l/ekk187eCtfheaLfcqTkiraqztu/jYrtKf+z2/Ng1huybvmzHGXt2tFdXqcj3q+tU/aa6CXNUcY0ylUmq94P47os9ley/ZFgZ7AQAAAAAAAAAAkAhhOwDAEcG8+XfsB4tTyZtcMBY6xKeyXWSltKRtJ4f71ecIhz2zt/TnqCVsF1l5T2q+Ytey1ZKk1RO7rEMe3lH60xYGjGzDKzUfBrQY6prvPbbh/rWyst3ilZXNl9OrQodsWGKfnk1YlC6tWR62K7eRXZO3P38PvRgdtksHeb/rTXdlO99WynGe0aqxL2TWhw45dV3pzyHPtsUNLWmTVE+0vRef9qySAlcr1ZGh0p/NBPdefsFrPaaqqqbVmOW9tPK3BgAAAAAAAAAAAIkQtgMAzH3Zbun8K+3Hjz2tspmzVI6brGg3agnb5Yojioq/mISV7cwJZ+uyIXt1pMk12gKBXmG2ZtsVnn6JJOnM0futQyrrSxQGnL5AWMP9a2EAxvQtihxje/YKxUDjnhkxm1RQmBOBHler5Or7N2FpI5sJHGnaarMlmNhk2G5dfkfokMnfFlsb3khJ7lu53XcD34DceHiQWpK09TT7sShLVngNC3xCgZb30tKW1QAAAAAAAAAAAEiEsB0AYM4zf/6fMn2L7QPmL6xs2gJff/zVcgtUa1U2j8BH0jayp11kbTEqTVWMGxkPr+DktUZboCWC6S1ViEvJUjJM0oGh0rpsoTGv9SWpjBXissHbvcc2BDHbFID5n/s+Err/24+Hj7fdzzhSKljbX84OpajrhvxLOm7sZ6EjqkOotrBYWr6V7eZ22O6SoTtDhzy5u1QhzlYZMFKS76/t+Tyw22/+uOP3Zfna0p+nXxxrSZJkrv/12h3bLgwfePNfRJ/s8R+F7/cKQXtWOwQAAAAAAAAAAEAihO0AAHOeOfsK94CqkImr+tt4PtDIhCXIVvSoWpS0jWyuV2kVlAnCE3+TYSJrm1afynFJAmSbT5QkbRp/LvTwlx6ICCz63MMWt5FdUjzoPba3/v61Opy27mhJ0qLCoVjTbPczjnQmJZP0+Zwh3nL4ltD91aHExG1kM7MkbJft9h9b9d13tcR+eo9UaDZslySkaPltCm7/gt98VwW8yTDbAkevZpueulbUtnaxQaDAVV3Phcp2AAAAAAAAAAAAM8bc+FdVAACSqAoy7E7ZWwJ+6zFXi1afynYJ/7NbbjVqC80NR7aRbXPYrjx3sGte6OGVC0uVl6yBRZ/1Ja0odvTJNS9NEL6WMA3ra3UAZnhIkjRu4gUKh1oQtktlWxti7LiBqYCi7Tka8Wgjmw48+6Ompjts51nFLM4zWlV1zhX4vOuZaapsNzwQvn/9MZ7zB+3HJit6erRzbtC3sPb1vAX2sU89ZD0UuMKARY/ncvVG+7Hla6LnAwAAAAAAAAAAwAthOwAAslOBFFcbyef3B9YqYjmvynbJ2siacqtDW/W9yfax9spxHmG2JNXayvdxX3q5c5j9HvqE7ZKFwswNv1XzetuYPfxSr+H+tTpsd6DUInh9/iXrkIl8YzjwwFDyS8/6sN341HciF4RXD6t+7qzPoE/gU2p5hcW2ifOMbjq+snn+yN3WYSPjUrHpynYJwna7nmt+rlQTyGxQbjNuzrws/nlPfWXNS3OW4xyjji/riOPY+q2RyzAbjpXWbWk8sPkkmZUbIucDAAAAAAAAAADAD2E7AMARz6TTUqoUhHtT/39axwWBq2qcR9gulSxsN6m3OBy6/0fPlf584MXweV5rnKzw1IxyK8bXDXwt9PCjO8phQMs97O1EZbtTzqt5+fOHPVtQKuT+tTpsd9G1kqTjx35mHRLWIni/o2CXr3R3ghDUDGAuuLqybQuVPrG79Ge+YK/MZvtuNUj6HHZKnGe0qqpbX9H+UO0blPKeBQAbJKls9+q3hu9/8gG/+f37w/en0lOtYF95TeV76MvMr6tsd9F19sGH9tmPuSrbrVzvt5bf+2Ttb3hvn8zvftxrLgAAAAAAAAAAAPzM7n9ZBQCgVbI90sigsoG9J+ePnpOOWhZ+zKsilmlBxn3VRmubzL++PdBf/rx9qldluyQBsnLIY8NEeNrv3mdLf1oDiz7rS1pRLFfb4nZB0dKaMkTbK9utWBd+nSpfeSjQ28+tbSF6YNi/Fa5Nqrs78TmmVc/U55pzhEr3DgTKOXJyXoFUKXGFxcSMZxvZbIxn1HPsn3490OtP87x+vSQhxaWrwve/+JTf/P6D4fsXLJEp30+TyUof+px0/3cU/PRuaXxUZsESBZ/+gPcyTSaroGe+NNIYWAw+91GZy94YPtEVtvP8rTGnXSh95kHp7m+W2paf8xoZz6AeAAAAAAAAAAAA/BC2AwBAqlRcWp3fZR0yNBZoZCI8ZOIVFGtFZbtUSpnA3up2T789eJWSRzmqJG1ky/fQ1Yq3ULS34vWrDpjwry51YbvewLOSmUIClbkWh+3K722+o6rYD56W3n5u7b6DLWgj2zXbw3ZV7UnnOarT3f54oMuOtwfFXEG92uvNgsp2qXSpaqevrN8zMJ6XCh5tZLeNhrRoTvL9dbThDsZGZKICaQO2sN3impcmnZZe8SqZV7xq6vy2sF25tXeDbC40bKfDlup6Uk0r5AYxgr1m1Ubpul/xHg8AAAAAAAAAAIB4aCMLAIAkDR6SJF0xdLt1yFHLTbI2so6wiLcd27Umv9N6+EVLnkSSVuT3RJ8/Tjin3jM/leRuxTkyLo1bMn/dwVj0NRKGnEzv/LprjmtlfrfX3J5i3We8alOitTQ4uFeStCFv6QMsaSLk3oW1lpWkBYXDXpdNBXmZOBXQZqLVR1U2zx75kXXY/qHwezjJVdmyRmYWhO1iVl40vtXyJOWL0dUUP7j3Txp3ppq/b2aRpayoJA17VKi0VY7rmR++v/rav/4X4ft/9U/DJxy2tIudt8B+kRZUtgMAAAAAAAAAAED7EbYDAECSFiyRVApf2ew4KHtVNp/Kdq1oI3vMNv3m/r+1Hj7sWMaW8Weiz59gjebyUg/bawa+ah0zMlGqjBXGK+iUtI1siD/a+8de4+rb95qu1v41ypz72tKfjjEHhhpDTrYA6KaJ572umwoKUneCioYzwbLVlc2VBXuodGTCXZUtFXhUf5QShcY6po0BrXzEbTp75D5dHhZcTlLZrqrSXANXUK0ssI3xuU9XvFlac1Ttvi2nSOdfFT7+yhvD9z/7mP0arveQpOIoAAAAAAAAAAAAWoqwHQAAknTmpZXNNx++JXTILT8KNJqksl0r2siecJa2jT1sPbzb0UbWq3JckgBZuaXiksIB65Dn9ktjScJ2rWjfufW0mpdvsXze9WoClSvWJ19Hvb5Flc3fOPCJ0CFfCenM+YUfh3/miwqHvC6bVl7K9XqNnbHqAlPnDN8TOuzLDwTKu8J2Pq2WpelvI+tTha6ZsN2WU7yG7Xe0Lv7Q3j/WrS+8Lvw3Mcl9m7/QfmwoQWU7jyCbWbpK5uO3S299n3TOq6Vf/AOZv75VxlKpzpx+sfVcwT3fjL2+Vgd7AQAAAAAAAAAA0LwE5SUAAJhDqtpo9jqq1O0dCA82eVW2a0Ub2WzOea0fPO2YGliSgtWSVN8rh3t6A/v6vvVokKyyXSsqitWFa3I+QUnVBSrbUQmuKvDW42jFWywG6uqaClsdsASfeoMRdRdHNdblXmupst0sb1NZ95nOK4bflJf73ZXt0r6V7aY7bOejmWc00+017IeWIpm/t++j+sC+8JarkpJVtnM9oz+7Xzr6JPf8JJXtJJnla2V+NaQ1bsxzBnd+Weac1zQeGE22PgAAAAAAAAAAAHQGZRIAAJCk7Y9UNhcW7RXBntsfvj/nCJhVtCJst3O7egN7EMvFK8yWpIJSORSyMr/bOiRflMYteaaMTxiwFW1kjzq+5mWX7NUAq42YqvBSOwIwVeecMPYwV33b2ONXh4/7fu/5kUE7qVzNzTNkNVOZukpvd/eeEzpu68qINrKzpbKdj2Y+08d/VNm8vv+Lsaen5Li5kpROELabv8h+zKdq6JglVNuO73Ldb0yNPS+G708YBgQAAAAAAAAAAEBnELYDAECSzriksnlD/xesw2xVxLzayLagFaA54xK5Gkj2OzJ/XmG7JJXtsqVwjytwc3BYCSvbJS/Ka1791qbmnTty79SLdgRgqqorvm7w69ZhI3W3acKSD7t46Htel00H+da0OJ5BXjl8V+j+wTG528j6VrZL8j1pBZ82ss0EAk85v7L5vv0fiz09HVi+3JMSBI7rA5U1bEE1nzHt+C5vONZ+7ODe8P3jtvW1oYomAAAAAAAAAAAAmkbYDgAASWbTVCWirWNPWcftGwzf37E2sis3SJLOGPlJ6OG7nrZXaetUZTtJumogPCz2N7cH1nCYX9gu+T00p14gveZtNfveefAfIufVtJttS2W7qVDN2omd1mH1le1s4bEzR+/XJUN3RF42peLsqNQW5bSLKpsXWMJ2338qqo1sRFhs0mwIJ6abqAJ5wtmVzTNHw39jnJeMun9J79vmE0N3B/fcGj23g2E2Y4z0tt8LP/jUg+H7qWwHAAAAAAAAAAAwKxC2AwBAqgk09Pi0hK3jNacVYbvyOnssrWRtbW5NUFRaHkGiRJXtpu7hvKKlBKBreocq20mSufj1Na8HuuZHzqlZX7YN1aZqnkF7pcQH67pQ2sKL6SCvrEdr3lRQaNl9nVZVoSnX93FozH4K7zayrfgut1szAcq64JktNGsTef+S3rfu3vD9P/xa9NwOh9nM0pXWY8GLIYHuTra5BQAAAAAAAAAAQNMI2wEAIEkr1lU2XW1QbXqKnWkjqxXrJUlPZLeGHs5aMlPZYNzZfrYiSeWpZasqmy9k1see3t3BsJ165tW8fC6zMXJKpjq4Nn9ha9ZRbcGSyuaywj7rsJGJ2uqFeUu+KRNMeAUY08rPjcp2+3ZVNuc7wp7P7LVXf5w1bWR9pON/V0xdiHRpwZLetV0yqrJd0vv28vPh+4/ZFj133JKybFeYbYXjN/DZxxp2BbYwYJawHQAAAAAAAAAAwEwyC/6lEACADqhqnyhJS/P2sFMYv8p2LfjP7qbjJEkLi/2hh8ctWRevqnFSsjBMVbhk29jDsad3srKdNp8Ue0r1+uor47WCyUy1/cwF9vJrI3W3yVrZTnmvezpnKtttObWyecXgbdZhA45crFf1R0lKTfNfoY1HdLaZAGW2u+bl6wf+K9b0yPuX9Ddw7ebw/bagmscY064w25mXxluL7T3kCNsBAAAAAAAAAADMJITtAACQZOoquv3N7t+ONb+n2Jk2ssYYaeOxesvhW2LN8w7bJQjDmKoA0HnDd8ee39GwXc7SjtIhU12164KrW7OOeqdeUNlcnt8TOmTn4drXtrBdJvAM26kwJyrbmQuvqWyvLITfO0n6lx+2oLLdrGgjm40eU6+ust1Vg9+INT3y/iW8b+bKG8MPPPd49ORH7w3fXxcwbBXT22c9Ftx/R+PODre5BQAAAAAAAAAAQHMI2wEAMGn52srm4sLBWFNzgUcb2SQtWqsddaJfuK9KtroFqkvSNo8LlzU9taNhu7pQkdeUyfWlMw3hzJZZsrKyuTr/cuiQz/+oro2spetxOsh7fe7pIC8zFyrbVYWSuoMxmSD8xtz3nP0UKfmG7WbBX6GbCVBmaoNnRlKvoyVvwyWj7l/S740jeBYE9hBls+dMbONx4fu/9s+N+8Ys/w0hbAcAAAAAAAAAADCjzIJ/KQQAoEMGpgJ2SwsHYk31Cr8lDbJNGjwUe32dqGwnSRos3cOTxh6NPdUrENiiUJipe59v6P9i5JyMyuvLewYXm1EVrDmYWhw65PjVtS1Eba2DM8FEjDays7+ynRYurWwaSUHM75sJiuqSZ2BrVlS2a+IzXXd0w67hrnne0yMr2yX9DXS1zz1kb/0d5B3tbX1a0DZrxBJUnL+ocd+4ZR3tanMLAAAAAAAAAACAphC2AwBg0uhwZXPb6EOxpvYEHoGNVlVDGxvV5UO3x5ritT5JJmkYplAK25w89kjsqT5rbFcFtjf3fz5yTMa3OmASVWG7FzPrQ4cU6gq2jViW1ROM+LeRbVelvk7acmrNyxNH4wU+vavaSTMgbOcInU1qpo3syefFn1Ml6jtikt63zSfZj406KvDlHd+DDVubX0+URZZKn8WQZ63qvz81uuMrzsapAAAgAElEQVRX4QQAAAAAAAAAAED7ELYDAGDSua+tbKZk6c1pkQvGoge1KKBjLn+TNuRfijWn17ftbNLKdlffJKkUBTp19OFYU72qA7YybPf6X6tsrijsjRxeCRJddG3r1lCvKmz3joP/FDrkid211ddGLDminmBUGY+wXTooNFcFbYapb+37l7t/N9b8yKps1eZoG1mTztR8LyTpzJH7/S8pRwU5KXmos6p6YQNXhbqCY11LVzW/ngjmbe8LPzA80Nj21rZ+2sgCAAAAAAAAAADMKLPgXwoBAOiQ5WtqXl7b/2XvqR1tI9vbJ0k6evwZ7yk5z8p2SddoVm6obN9w+N9jzc0Fo9GDWliBzWw8tub17+z/mH1sUJwKYK5tbLXZMlXBmmWF8LaYD9flLG2V7XJFv8p2XSq0NsQ4nTafWNk8dvypWFMjg2LVpr2ynYd0c5+pueT6mtdHTTzrf8kg4h4mvW+u4NnLz9uPucJ27WyhvGi5/dgzP619PWb5/SNsBwAAAAAAAAAAMKMQtgMAYFJd0MwosAxs1NE2suXASqz1daqyXdU9zMi/7Wp3cVRdPu+nlaGwus87V7RXJwyqxxqPFp7Nqgoj+Xy+xWKgCUtBtlIb2ejPIDVHKtuVTH0284uDsWbGq2w3zWE7n2ew2c+0LtwVGaCrEnkPk353cr32Yy86wpXOsF0bg6a98+3H7vt27evx8LCdIWwHAAAAAAAAAAAwoxC2AwBg0rwFNS+HuxzBjjo+oaaWBXRWrJMkPZ3d4j2lx6dqnJQ8DFMVKDxu7Anvab3BsN/AJqt1haprSXn26I/85llCMa1gVm+sbE+Y8Pfam53aLji6HaeDvFe1wLTyc6ey3fZHKpsLi/2xpqY019rIZqPHhJm/sOblxokX/C/Z5jayJuN4T65nOO/4fW5htcwGm0+yHgqG68KgeUsVStd7BgAAAAAAAAAAQMfNgn8pBACgM8yFP1fz+hcOf9Z7bqaTYbvVmyRJ/+PgP3pP8aq8JyUPEZ18XmXzFSOe4TVJPUXPAFsrQ2FVLUcl6YrB272mmTMva90a6p1xSWXz0qHvhg4ZHpeCoFT1ruAofpcKCl4VDedUZbvzr6p5eenQd7ynxqngNu2V7Xw0+5kuWFLz8q2H/83/klGV7dp434Jdz9kPuirbtfHZd4YDf/Ld2tcTlrDdXPluAgAAAAAAAAAAzBGE7QAAmNS3uObl6old3lOzgSUoUa1V1bDKbQVPHX3Ye4p3G1mTcI1VbR69A35xxrYybFfXnjHr2/a2t691a6jXM9V20tUGtb98u4qOynZdCrwqGs6pynabjq95+dbDt3hPTclxM+uYuRy2m7+o5uWq/G7vqamoynatuG8nnRu+/5a/ss+ZrjaykvTKa8L3//SHCsaqvp+26nuE7QAAAAAAAAAAAGYUwnYAAEyqC195t15VhyvbldcZL8zm+V6SBgK7c1ObwZj3NO8wYBvDdm2f5yM7df9cn9l3yh16nZXtVFBvMbo971yqbGfqv8O+z5XK98HXdLeR9Wj37Kyq5pqXStW0ko3zOxNZHbAV9y3bbT0UDFlaBzvbyLY5bOf6vXjwzqlta9iONrIAAAAAAAAAAAAzCWE7AAAmLVtT8/K48Se8p3qF7ZoMvzQoV487ZfSn/lN8Q0dJwzCrj6psRseBpnT7VAaUWhuMWbS8uXkbj23dGupVVQY8duxJ67CDQ6WUnbOyXVD0CkqlVJwzle2CA7VV2FoaFKs2GyrbJflMBw9XNnMxQrPRYbsW3Le6Nrc1Du4J3z/ueA+O8F4rmKNPth/cV1U9lcp2AAAAAAAAAAAAswJhOwAAykyqNgjS52jjWS/j04K0RRXRjDFSOqNtYw95z/GubJewjaxpMriSmYawnWkyWGja2EbWVFUsmxfYq9KNlB+3qMp2OZ82skFeSs+NsJ056/Ka13FaLac0iyrb+WhhSMs3rJvuQBtZc/VN9oNjlud9zLH+dlaqlKRL32A9FHzqAwqC8pd4wvIb2KqQNgAAAAAAAAAAAFpiFvxLIQAAHbTmqJqX/7jznZFTUkHer4pbC0Md5sb/JSPpssHbvcZ7t9NsRYhoyarK5q8d+LTXFK/KgFLrK7BtPC7e+C2ntPb6YV791srmKZaw2P/5ZnRlu1RQ8PrcUyrMmcp2Wri05mVvjMp2c62NbKKQVl1A7Pf3fcRrWmRlu1QLKtudfJ792P3fCd/vCttVtW5uB7PmKPvzcmiv9NmPlrYLVLYDAAAAAAAAAACYDQjbAQBQrS4Q11cciJziHRRrZQWlXOlcqwq7IwaW9AQj0vpjogcmrGxXuthUK9ScZ9gpOx1tZKWatq1e2ljVrqJ7Kvwz31Jd8aWDpT9dle265NlGNijMnUBP3XfMO2Qqj6ps1WZDG9kkn2m27j56fo/TUYHFVvy+OH5Hg9s+H37AFrbr7qmpJtk2J7zCeij4xs2lDVtlu7ny3QQAAAAAAAAAAJgjCNsBAOaGay0V6N72e/HO88KTNS83TrwQOcUrKLZgidQzP95aHILhUgjrmcxmr/G5YEza+Wz0wFZU7NqxvbK5vLDPa0rWpw2v1JrKWNUO74833uceJvXy1DN3MLU4dEhPOX/jrGynglbnX468XDrIz53KdivX17z0DYlJMSvbtfo5bIckn+nO7TUvN0087zWtI21kXb9RPfPC99vay7a7heykwUP2Yy8+paBYlPJUtgMAAAAAAAAAAJgNCNsBAOYEc8UNja0VUymZy94Y70Qbtta8PG30wcgpXpXtLrxWpoUBHXPi2ZKkE8Z/5jU+G4xLm0/yOHFr/2pwXf+XvcZNWxvZ0y6KN37rttZeP0xVq9rLhu4IHTIyIQVB4K5sFxS9wqKlNrJzI9BjFq+oed2lQD3FYa+5acUI27X4e9IWST7To46veXn5kKU9a52OtJF1GW8M1QWH9yv4698OH9+psN1Zl7mPj49KBcu9I2wHAAAAAAAAAAAwo8yCfykEACCaOeV8mfd/WuorVwJbuEzmg5+RqQoueZ2nrkJelxxpprJMWDWnbLkVaFeXdNF1Mr/1sVjriLSoFCo6b/hur+GZYELmmndEh11a0R7zdTdVNrdMPOM1ZbrayJorfyHe+Mve1NLrh15j62mV7Tf1f8E6bjwfXdnOnHRO5PVSQWHuVLaTpOVra15+4uX3eE2rrmxn/uqb0tU32QdPextZj9an6eY/U3P82TWvF3i005bKwU3niVvzf3qYd344/MAj99S8DIYHFLznVdL+XeHjq1o2t5O57OfdA1yV79LZ1i4GAAAAAAAAAAAAicyhf1kFABzpzFU3Sq95m7T7BWnVRne7QZvu3oZdG8ef1/PZjdYpYVXZzDf2SC88UVrH/IXx1xElV6rI1OtZtSsbjEu53lKoquAIxLSijWxuqlqUkTS/MKDBVJ9zyrRVtss1ft5OnaiEVRUAygVj1mF7BhRZ2U59i7V4/wEdTC2xjkurMLeqZ61cL+3dUXm5qOAIMlXpmgyKGSOdfrF0z632wbOhjWySQGDIc755fLu2Z91tqyMr27Xi90WS5i+wHgryEzKTz/Pd35S2P2I/T7ZDle2ifjd+7KgcOJe+mwAAAAAAAAAAAHMAle0AAHOKSaVk1hzVXNBOkoLGUmHzgiHnlIag2Dmvlsl2y2w5pT1BO0lasFSStLSw32t4JpgoBT6iwmqtqDw1UBtuWuaxxux0he0WLq15eamlXeYvHfqX0kYnKmFVBXOW5fdZhz21Ryo4K9sVpQVLNGrca55zle0O7K552e0ILFarBMWCQMYYd0BqVrSRTfCZ1rfkll+wNzps16KQYm6e/djzT1Q2g09/wH2eTrWRXbTUeTh44Un7wQyV7QAAAAAAAAAAAGaSWfAvhQAAdFBI29krBm9zTqkP25nzrmzpksKYxcslSeeP+LWRzfqG7VpReWrRspqXrxpy3z9p+irbmdWbal6/ZvBboeOuGfjv0kZHKttNXWND/iXrsLEJqeiqbKeitGCxRrrc1ftSKiRqOTrj7NtZ8/KUUUdlsyr1LVCN67Oe9jayHpJU39tycsOuS4fuiJyWDmupXa1Vle1Ov9h+bLQqFLjrOfd5OhS2M8vWSJtPtA8YdQS6qWwHAAAAAAAAAAAwoxC2AwCgWl1QTJL+974/c07JBuNTLy66VnrdTa1eVbiFy5QLxrQkH105Lt3BsJ055fya13+8948i59TcQ5c2V2B718FP68qBb9Ts+9WDf6+rBsv7OtF20jMA9MzewF3ZLijILFiq6/u/6DxPOsjPrcp2r39Xzcu+4oDXtFRQDtttOr70p6uK4XS3kQ2pPNcgyWfat7hh1x/u+/PIaenA0aJaat19W77WfuzZR/3P04lKlWXmD/6f/eAXPm4/RtgOAAAAAAAAAABgRiFsBwBAtZCg08Jiv1KO9oiZyWPrtsj80b/KdKrt3/FnSpLeOOAOU0nlMFun2sjW3cNlhf1aXDjgnJKerjayklQVDswFY/rSS2/U3c++Un+/89f04PYz9bcv/5a6VC4hl3NXiWuJuvu3Kv9y6LA//XrgVdnu6PFnnJcrVbabO4Ge+tbNPcGI17xKC9TJaodHchvZkPe+uHgoZGCtyDayLbpvpqvL2l41+PQf+p+oU21kJZmt26STzo0/cQ59NwEAAAAAAAAAAOaCOVTGBACAFuiZH7o7FRRUMOH/2UyrHBQ79QKZTla8CkplzbqLo5FDM5qQcvM600Y22914/YgwnX9luzbc32JtebiUijpr9H6dNXp/49je8OejpXr7al4WZa9iFlXZTguWaknhOefluoLC3KpsV/d5VoKSEVIqzyt/r5zV4/Ke4dDplChsFx4q7QoKKhr7dzCyjezS1c2vqV7R8vAPHfY/h+V9ts2KdfHnELYDAAAAAAAAAACYUWZBWQ4AADrHWCqXjXc1BsgmVYJkHWxJKEmaKAXUQkNhdbLBuHTUCZ2pbDfZhrPKnvRK55RMVEhnUlcbwnZxAnSrNrb++vXqWmTa7l1PRl6V7eYFw87LpZWfW4GekLCnj0pVtud/VvrTFYwqeD6v7eLTRjbBd8Wkw38nXEE7KaKy3Yr10tZtTa+pQWAJ202MK7AF8ep1sLKdJJltF8SflO5QpVQAAAAAAAAAAAB4IWwHAEC9485o2HXR0J3W4ZWwXbbDwY2rflGSdPXA1yLHZoJ8qepeVOW6VlS261vcsOuMkZ84p3hXtvMJGcVkXv+r/mPbcP3Qa6w/pvL6D/b+eei45/ZHVLZTQVqwRD1FdxvV1FyrbHfC2Q27Lh+8LXJapSrba95e+nPdllauqvOSfqanXdSwa2l+n3PKZNjOvPujtdfv6pL5tT9r6ffHvOND1mPBL5+j4PD+6JN0OiB9+Q3x58ylICwAAAAAAAAAAMAcQNgOAIA65vzXNew7Z+Q+6/gxU66k1eEqSVpSqng2LxiKHJrtLa8tsrJd8jCMSWca2r2eOvawc05Um9mpk7ch7LZyg9+4Fetbf20Lc/27KtvbHPfOWdkuKFW26wkiwnYqzq1AT0h1yp8b/GrktFRQkCSZ8vdKmVleUSxh2M684lUN+84fuds5pxJYvOIGmU98V3rL70g3vFfm49+RufxNidbT4ORz7ceeekjBx94TfY5OV7brWySdcUm8SbP9OQQAAAAAAAAAAJhj5lAZEwAAWiSkDWVv0d6K8+7eUujDZDtcJakcFDGSeotDGu6aZx2ayZbDb1EBnFZUtpOkbE4amQoBuu6fFKOyXavWV3Nxz8+tk1WwqtbUXRy1Dts3YD9FSgWpb4l6HPOlcjWyuVTZLiRAFfX8SVVBsUz5++9q39m3qJmVdZalFay3kPvoVSWxPNeccJbMCWclW4NLVFDuO/+R/BztsMTdUrvBXArCAgAAAAAAAAAAzAFUtgMAoF5IGOK00QcjpwWDh9qxGrvNJ1Y2XUE7ScpmyhXhIivbteivBiO11faWFdztJ70r26kNle3WHOU3rpPBnHVHVzZXFPZah73cby9t15XJSPMXKhdZ2a4wtwI9a49u2OXz/Z1sgVqpJLZkpbR6Y+PAbLd0zmuSrDA5nwqPSQOUIc/7ttGH3JdUuTpgb1+ya/vYdHziU5hpCNuZrdv8B3d1za0gLAAAAAAAAAAAwBxA2A4AgHpnXtaw65LhOyOnmbMa57WTmbegsn3joc84x2YzHa5sV2fL+DPO41nfsF0b1md8g2adDOaceE5lc/P4s9ZhQ2P2U6SyWRlj/KqRzaFAjwmpQHjy2COR8yphu+POKJ3HGJnXv6tx4JU3yvS4w60zQhvCdj/f/wXnlC45+hq3mOmdn7zFaierVU669I3+Y7t7ZNrROhsAAAAAAAAAAABNI2wHAEC9qhDbpJ7A3YqzNG9hGxYTYeNxkqS3Hf6cc1imuxwo61RluwuurnkZFbarVLarqtYXql3Bk2Vrosd0MmxXFSLqcVSm++Yjjsp23aV2qD3rNjgvlTbFuRfo6Vtc89JIes3grc4pKRVLG1Wfs7nht2Te93fSqRdIx50h8z/+WOa9f93q1bZHKpVsfsjzviH/UvS8clixE8z7P53sBNlpqGy3Yl2c0W1bBwAAAAAAAAAAAJozd8qYAADQKs2GqqahJaF650tSZPWybLbDle3q7sUx4087h2eDcen0i2Vu+kMFv+GoENiqMGC9nMdnl+1cFSxjjIKeedLIkHKOoOfXLQXbTFCsVHjryUqTObIwKdO5amQdk+uVBg7W7FqWd7cyrlS2q3t2zTW/LHPNL7d0ecl5hLC6kobtmnzeO/k7mLTCYNLKeM1aulravyt63Mhg+9cCAAAAAAAAAACAWKhsBwBAHdNs4CxWxaIW6T8gSTpq4nnnsEx3OWQXFS5pVZjt0N6alwuL/c7h3cFYKaQTdf02tbn1qnDV6TDlyJAkd6zKVpAupUIpcCZpfbf73meMI4k3W+3d0bDrQGqJc0pa5bDd/EXtWFHnJW0ju/bo5ub97P5k141jzeZk89cf05p1xLWuyXsLAAAAAAAAAACAaUfYDgCAFjF90xDSOfe1kqSVhT3OYdnJNrJR1apaFGYzZzZWpztr5EfW8blgtBy2i6jY1a52pz5BuumoXBghsBSl6wqKlfUuiPjIe8x4i1c1Ayxc2rDr8qHbnVMmK9uZ9Bwp/JwwbGeaDaKtOSrRdWM5+iRp0/HNzV29STr+rJYux5e57I3Tcl0AAAAAAAAAAAAkR9gOAIAwJ50bb3y2uz3riGAue1Nl+5TRh63jMt3linZRgbFWVbY76ZyGXX+094+twythu6iwX7vayHqF7TrXRlaSdN6Vlc0/3fOHsaamVJiq1tfdo5t3/JJ1bE9XvqnlzWTmTe9p2HfmqLviWirIT1+ls3ZIWtlOktKZ+HMu/Lnk1/VkjJH52NfiTzzhbJm/vlUmlbDVbrOu/ZXpuS4AAAAAAAAAAAASI2wHAECYnnnxxi9a0Z51RKkKia3I26vbdU0GxaLapbaqTWtIeC0b2CuopYJCKcwWFaZrW2U7jyBdpyvbldvAStL84lCsqV0qTr2n7l4tK+yzjp2Tle2yjZ9nT3HUOSWlwuxpIevzPWhF2G7VxthTjE9L5hYyy9dKb32f/4TTLlLXp78vs3pT29YUxRgjvfHd03Z9AAAAAAAAAAAANI+wHQAAYQ7vb9h1+sgDoUPfc+Djna96Nmnx8srmGwa+FDpkeX6PtOfF0ouDu93n62pRpacljeHDdRM7rMPX5XdIB/dOX2W7xSujx4Q8E50yZrKxxpfCi5OV7XLqKY5Yx6bn4t8GxxuDdVGtltNBfka2Cm5aK8J2+3Y27PrN/X8TOvSVQ98vbUxDlU8T8ntjH9ymwG5MZonHb86lb2j/QgAAAAAAAAAAABDLXPznVQAAklu2umHXrx38dOjQXzx0c2glrU4wy9ZUtq8a/IZMUGwY89rBW6XF5TDKvIXuE7aosp1ZuaFh39ET27V17MmG/VvGn9Yx40+XAnpRQZg2BWXMOa+OHrRiXVuubWNOOb+yfcroT2PNrQmOdfcoF4zZB7eqmuFMsvnEhl1r8rucU9IqTF9oth1a0SI1CBp2XTX4jdChlf3TEVj0+f5OWrO5feuIw2PN5twrI8cAAAAAAAAAAACgs+bgv64CAJCcufLGhn2/cPizuvHQZ2r2/eXLv6NTxh6Z3opYJ5wtSVqdf1n/svMdSgX5yqHTRx7QR/f8vsxpF0qSzHkR4Y1WVo6ruydG0r/teLuW5fdW9i3L79UtL71NRpI5/ZLo67crGHbJ9ZFDzImvaM+1bS78ucpmVFCsXlq1YTujxtDUpLCA5qwXEvaUpLcc/jfrFCrbNTI3/q+GfZcM36kP7P2zmn3X9n9Z7znwd6UX03APzYZj/cde8vo2rsSf2XKKzLs/ah/wupukV725cwsCAAAAAAAAAACAlxb0lwIAYA7K9TbsSqmof9j1K/r9ff9Hj3afqFeM3KdVhXJb1ukM6WzdJj12nyTpLf3/rlcN3aYf9J6vtRM7dProA0qpKKUzfutsZZjtuDOkh35Qs+vUsZ9q+9PH6a7ecyVJ5w/frd6g3OK0OzdtbWRNV5eCo06Qnn3MPijkmWirqs+qJ7C3gQ2TDqaqtJmIzzw4uC/+2mY6S4W600Yf1L8uDA8w1bTenel8Kjy2oo3s/MZKmEbSh/b9id5x6J90T88rdOLYYzp+/GeqrGi67uFr3iZ987PR4zr9PXYwb3qPdOkbpYfvkoYHpInx0v075Txp7dEyM6TlLQAAAAAAAAAAAKYQtgMAIEy2O3S3kbRlYru2TGyvPTCd7SfrKpMtK+zXtQNfqR0zGbyJWmcrw2zzFoTu7g1GdMXQdxoPpDPR129n+CSkZWaNToeIcvMqmwuKA7GmZoIJKVtab/DS01qZ320du37ixebWN5NZ2iWngoJ1ysvpVdLEU+1aUed1taCNrOOZX5/fofUDX2w8MF0BMcvvTYMZFqg0y1ZLl75hupcBAAAAAAAAAAAAT7SRBQAgzKYT4o2fxgCHWbY2etA0VLabbF3rbdMJ0UGddrWRlaS1m93HO/wZm6rA59LCgVhz08pPBUYP79f6/A6dOPpow7j1Ey9q29hDidY5E5mlq0L3nzb6oHXOuMlKB/daj88qXV0yrfiunHJe/Dkbtia/bhPMaRf5DczOrLAdAAAAAAAAAAAAZhfCdgAAhOlbFG98dhor2513ZfSYSmW7iBaKraxsd+WN8cYvWOJx/fZVzTI3vNc9YJpDOpvHt0cPKksHeZl0tvSiHBL8yJ7fV644UjVmQh/b/XttvKMzz9bxp63HjAKZS6/v4GoSiAqltqKFrCStiQighlmysjXXjuvc1/qNm84qpAAAAAAAAAAAAJj1CNsBABDCpDNSKkYbxukMYs3rix5TCdt1sLLdgiVS32L/Cd09Utc0VrZbvcl9fDpCOsefWdl83cDXvKelg7yUqQ3bvXroNt377AX68J4P6oN7P6x7nn2lrhv4ckuXO6OEVCpMyd5G1iiI97zOZC0K25muLmtLbatcRKC3TUy2W+aDn4keOMPayAIAAAAAAAAAAGB2aVHZCwAA5qBMt1QY9hybae9aXKKq1UlSuvyf/FznwnaSpEXLpIGD0eMyWZmuLgVRFbtaWXmvXlRIaDpCRJmpoFN3MOY9La1CpXWw2bBVQXn/ieOP68T9j7dyhTNXpjEk1hUUrcONgrkTxOqKERSOkumWxv2fvWkNHvctjB4zTWFAAAAAAAAAAAAAzA1UtgMAwGbUM2gnSTuead86oixdFT1mMgCz9mj3uHVbkq+n2p6X/MZNBqOiwnRRYbwkFiyxV7dbsV5avKJ917YZ6q9s7sis9Z5WU9nuyl9o9apmh+caQ4WRle3mSovRVoZmq57BSKm0THoa/395tp7m/o1Yf4zMvAWdWw8AAAAAAAAAAADmHMJ2AADYrFjvPdSc/7o2LiTi2sZ4tEAthe1M2l2BL+p4bNe/y2/c5HWjQkJtbCNrjJF583vDj93wm6X73GHm2ndWtl8z+C3veSlNhe3MsjXuwRdM37PbVpe+oWFXKogI22VnS9gu6lls4bO6Yav/2GmuDGgWr5Be83b78Z//zQ6uBgCA/5+9Ow+z9KrrBP49VdV7d/ZOOk12spBASAiLgbAm7MhiDMIICo4OoojKICMgIIoo4jrOiKKjgDqgoiCLgmwyLBKWsCRsIfva2ZdOr9VV9c4f1Z2u6rrvvbdu3aXq1ufzPPepW+d33vf8qrq6q5L7rXMAAAAAgGEkbAcAdZ50YftzDz+6d320obz4Nc0nDCgEU855YnsT94XtWh4T29vAW/mRl6e86T3JuU9Pjnlgcu7TUt7wrpTnv7Kn69Y69WH3Pz1s8q62LxurJpKxlfsHmu3Kd/zpnXS26JWHnjdnrOnOdlU12CNQu6mbodTHP6/9uYvgGN7yq3+e8vK3Jg89b/rv8DEPTB79jJRf/9uU5/63QbcHAAAAAADAEjfAc54AYJGbT3Bk0MdPtgoJDaq/dj+H+4JhrXaP6+HOdvuUp7ww5Skv7Pk6bZmx09qaamfbl806RjZJ1qxL7q6Z3IfP6UA0+NprubPdIgiLdUUXd2Esq9akanfyIvj8ldHR5EW/kvKiXxl0KwAAAAAAAAyhIX11FQC6oOUuazMMOmRy7CnN66vX3v+0vOqPG8+58OVdbGivY05ub97Y3vx/q+DXfP5MhsGMkOQp41e1fdlYDtjZ7uZr6iePjHbS2eLX4O/ESKaaX7NyZfP6YtEyTNfFHSBb/dsy06BDxwAAAAAAANBjy+wVawBoX3n009ufPOiw3emPaF6f2d9jn52sWT+7PjKScsELut5WOaLN43XbPUa2izt2LQkz/tw2T2xp+7KxanJ2cOy4U+snD+vOdg8+d85Qs2NkRzK1/+twqevmn+kPPbX9uavWtp4DAJMLjsUAACAASURBVAAAAAAAS9iQvroKAF1w5DHtzx1w2K6MjDQPCs04ZrYceUzKH30sOeWs6fDaMSenvPn/pjz0Mb1prp3P4/1hu8EfI7uoHPB1tWnilrYuG6tm72xXnvXS2rllSHcLLGNjybqDZo81m58qGR2SsF03j5Fdf/D0McTtGHToGAAAAAAAAHpsOF9dBYBuWD2PXZpWLoLjE486tr62ctWsd8uDH5WRv/5Kyifvycj7vpPypAt719dhR7Wesy8Y1iL4VZbxznZJsmni1rYuG8tEsmLGznbNvpaHOcDYbEe/A5RUw7OzXTePkU2SU89pb55jZAEAAAAAABhyQ/zqKgAs0JoN7c9dDCGTJ13UePywTbUhtdKPvm+7qfWcfSGnYQ5+deKAEOcNYw9o67IDd7bL+K7audXkREetLQk3Xd321Ofc95GlE7br9w6Q7f47sRhCxwAAAAAAANBDXtEGgBplbKz9yStWtZ7TY+W8ZzUunPfM/jZyoEM3tp5z/zGyfjSZqRwQmjps8u62rhurJmbvinfqw+on7xnvpLWlYee2OUM/ffe75owdNXFrHrfji0snbNdKt3eAbPd42Jm7KQIAAAAAAMAQ8oo2ADTz7P/a3rxFEDIpDzk35RfePjtoc9ZjU17xu4NrKkm58OdaT7o/bLfMjoltx/Nfef/TX7z7T9u6ZCwTs3cjO7TJUb4TQxy2a/C193u3vTaP3fGF+98/fOKOfPiGCzOaKWG7Ou2G7UaH5PMHAAAAAAAANeaxZQ8ALD/lyGNTtTNxbPBhuyQpL/il5Bk/kXzny8nmE5PjTqs9QrZv1qxrPccxsrXKxs33fw2un5q7U1sjc3a2W9Vk58Xx3Z03t9itXjtn6KCp+/If1z01P1h5Su4YPTyP3HlJVmbPdHFYwmLd3iHSznYAAAAAAACQRNgOAJobGW1v3iIKmZSDDkse/YxBt7HfuoNaz3GMbL2JiXlfMpbJZOWMne3WHVw7t2w+sZOulojGQdOS5LTxK3JarphdGG3z7/ugtQrQdjtg2+7nZVh2BgQAAAAAAIAaXtEGgGZOe1h780bl12ud9djWc+xsV++Io+9/etruH7R1yVg1MSsAWg4+PDn5oY0nn/u0BbW3mJW6j7mRsRWD3wWyW7r8YZQHPaK9iWP+HQQAAAAAAGC4eUUbAJo57ZzWc1asHJ6QTg+Uee1s5/M4xwmn3//06IktbV2yotozZ5ex8kt/mKxZP3vii16THHfagltctB78qPbnDtOubN3eIfJxz2lv3iI5ThsAAAAAAAB6xfYTANDMqjWt5wiYtHbokcndt9XX930OHSM714yvwTXVrrYuGa0mktEDwnZnPy5591eT//xYqnvvTDnnicnZjxvuoOjqte3PXUJhu1JKquYTurvg2g3tzVtCn0MAAAAAAADohLAdADTTTthuhbBdSytWNa87RrbejMDY6qn2wnZjmWgYfCqbT0ouekW3TxldvFbNI2w3TEdBdzts1+6/cYLHAAAAAAAADDmvaANAE6Wd8JeASWvHtziqdGxf0GnZxMDat+n4+5+ur7a3dclYNSG4mKSsbBHynGl0iHZl6/IOkW3vfmhnOwAAAAAAAIacV2EBYKEETFoqL35N8wl2tqvVVuDzAGOlGu7jYefj2FPamzdMf4978Wd/0GGtl7XLJwAAAAAAAEPOK9oA0Mo5T2xeXzFEIZ1eOfvxzev7dgfs8o5cw+jNt/9myzljI1UfOlkayjN+sr2JY46Rber8i1rPGabAIgAAAAAAADTgFW0AaGXl6uZ1x8i2VEZGkmZHetrZrm1rpna2nDNWhO3ut6rF3999hiko1ovQ6qo1reeMDlFgEQAAAAAAABrwijYAtHLCg5rXm4XI2G98d31tX9DJ0aeNPe459z990PjlLafb2W6GE05vb95Qhe26//eoHHpk60mOkQUAAAAAAGDICdsBQAvlyS9oPmHV2v40stRtPrG2VPbuDliE7RoqT3/x/c/P3/7ZlvPtbDdDqyOM9xldYmG7Zn9XevH36Ek/2nrOMAUWAQAAAAAAoAFhOwBooZx2TvMJ7R5TucyVH391fVFIp6ny+Ocme3cWW1Ptajnfznb7lZWr2jueeJi+BntxjOym41vPcaQ2AAAAAAAAQ07YDgAWatWaQXewNDT7PI2O9q+PpeqZL2l7qrDdAY45ufWcoQrb9eAY2ZGR1kdmD9PnEAAAAAAAABoQtgOAdpxydn1t4+b+9bGUTU3Vlqqd2/vYyBJ15y33P/2hHV9uOnVMdnG2yYnWc4YpKNar45jHdzevr7CzHQAAAAAAAMNN2A4A2lBe+fb62mOf3cdOlrBmx/FOTfavjyWqnPCg+5+/4Y7faTp3rEdZqyXrEee3njM21vs+uqlZoK4Xx8gmybGnNK8PU2ARAAAAAAAAGhC2A4A2lIc9IXnWS+eO/+xvpZz79P43tBStP6i+Nils19KJZ9z/9BnbP9F0qmNkZysvfFXrSaNDFBTr0c525ZW/13zC6BILLAIAAAAAAMA8eUUMANo08tp3pvrF308++ffJxgckZz8uZe2GQbe1dKxcXV+zs11rB3z+ztj93Xx31RkNpzpG9gCr17WeM0y7svXqGNkNhzavO0YWAAAAAACAISdsNyCllJOSPDLJI/a+PSfJzMTGdVVVndDhvRe6nc2JVVVdu8B7AAylsnZD8tz/Nug2lqYmwcRy6tl9bGSJWjM7MLZ1pH6nwLER58jOsq7Jror7DFXYrkebVx/UImw3TJ9DAAAAAAAAaEDYro9KKU9M8rpMB+wOG2w3ANBfZdWaVGc/Pvnm52YXRkaSRz1lME0tJSc+eNa7N644pnaqne1mK2vWpeVvIiy1oFiz3et6tbPdsac2r69a05t1AQAAAAAAYJHo0bYX1Dg7yVMjaAfAMlV+6Q+TQzbOHnv1/0o5yLfGllavnfXui+59b+1UYbsGfvTnm9dHh+h3UHoUtiulJI98cv2EVWvrawAAAAAAADAEhuhVxSVtd5IbkzywB/f+cpIXzvOaG3vQBwCknHxm8jdfT778yeS+u5JHXJBy4hmDbmtJKCMjs3Zn2zRxS+3cMb9OMUd58A+l+ud31E9YajvbNdOrY2STlEdekOqrn2pcXLW6Z+sCAAAAAADAYiBs1397knwnydeSfHXv28uSnJfkP3qw3q6qqq7twX0BoCPl0COTp79o0G0seaPVZG1tbLRHx4guZWvWNa/fc3t/+uiaARwjmySHbaqvtfocAwAAAAAAwBInbNdf70ny51VV7TqwUHr5oigAMHS2jWyorY2N+blijgf/UPP6zu396aMfevlz5aOeMn3/qpo9fvTxyeFH925dAAAAAAAAWAQcMtZHVVXd3ShoBwDQlp96w/1Pn7z9M7XT7Gw3Vzn0yOT8i+onTNbvFLjk9PIY2UM3Jhe94oDBkvJTb/TLIwAAAAAAAAw9O9sBACwR5REXpHrXbyVJ1lQ76ueNjvarpSWlvOFdqT7zT42LkxP9baaXehx6K6/8/eSUs1Nd/PFkzfqU8y9KedRTeromAAAAAAAALAbCdgAAS8WqNfc/XT1Vv1luNbKiH90sOWXFylR1xakltrNds0Bdr8N2pSTP+ImUZ/xET9cBAAAAAACAxcYxsgAAS8WxJ9//9KG7v52xas+cKaPVRM5au6WfXQ0HO9sBAAAAAAAALQjbDb/jSinvKqV8p5RydyllvJRy6973/66U8rJSymGDbhIAaK2s3ZAcMx24O3hqa16w9f1z5ly09QM5eOUS26VtMRC2AwAAAAAAAFpwjOzwO3HvY6Yj9z7OSPKiJH9YSvnLJG+sqmpbL5oopRyZZOM8L3tgL3oBgKWsvPHdqX72sUmSv7z553LExB350IbnpErJc7d9JG+79deSsZ8bcJdLkGNkAQAAAAAAgBaE7UiSdUl+OckzSykXVlX1nR6s8fNJfr0H9wWA5WXdhvufrsye/MFtr80f3Pba2XPGVvS5qSFgZzsAAAAAAACgBcfIDq+JJJ9N8oYkz0lyTpJTkjwsyXOT/H6S2w645tQknyqlHN+/NgFgtvKytzQuPP3F/W1ksTr86NZzhO3qPfS8hsPlZ36jz430UPEjPgAAAAAAAPSCV+KG0xuSPKCqqidVVfXWqqo+UlXVN6qqurKqqm9WVfXhqqpek+T4JG9LUs24dlOSD5RiSxQABuSJP5KMzt18tzzxwgE0s/iU9Qe3niNsV6s8+QVzB9esTx7+pP430yt+jAMAAAAAAICeELYbQnsDdgfuWtdo3q6qql6X5JUHlM5J8l+63NY7kjxkno/ndrkHAJaAcuwpKW95X7Lh0OmB1WtTXvG2lPOeNdjGFpOTHtK8PipsV+t5L0te+Kr9u/8dfnTKH3w0ZcMhg+1rvpoF6oTtAAAAAAAAoCfmbhvDslNV1Z+WUp6a6eNm9/n5JO/t4hq3Ze6xtU3ZXA9g+SqPe07ymGclN16RHH1iyspVg25pcTnyAcnV366vj/kRr04pJeUVb0v1029KbrsxOfaU4fuZwzGyAAAAAAAA0BNeiWOf3zng/XNLKUtsixcAhkkZHU05/kGCdo0cfETzumNkWyqr16Ycd+rwBe0SO9sBAAAAAABAjwjbsc9Xktw94/3RJGcMqBcAoInyyCc3nyBst7wJ2wEAAAAAAEBPCNuRJKmqairJ9QcMbxxELwBACxc8v3l91DGyw69JoM4xsgAAAAAAANATXoljpp0HvL9mIF0AAE2VsRXJC3+5foKd7ZY3O9sBAAAAAABATwjbMdMRB7x/x0C6AABaW72uvjYqbDf0mgXqhO0AAAAAAACgJ4TtSJKUUo5IctIBwzcPohcAoLWyem19cZXNaYdes90LHSMLAAAAAAAAPeGVOPZ5YWZ/Pdya5HsD6gUAaGXV6s5qDIexlfU1O9sBAAAAAABATwjbkVLKUUnecMDwR6qqqgbRDwDQhpXNwnZ2tht6K4TtAAAAAAAAoN+E7YZIKeW0Usqz53nNpiQfTXLUjOHxJL/Tzd4AgC5rtrOZsN3wW9HsGFlhOwAAAAAAAOiFsUE3sNyUUo5J48/7pgPeHyulnFBzm21VVd3RYPzoJB8upVyW5O+SfLCqqitq+tiQ5CWZ3tHuqAPKv1VV1dU1awMAi8Hpj2g8PrYiOfGM/vZC/zULW476ER8AAAAAAAB6wStx/feFJMe3Me8BSa6pqb0nyUubXHtmkt9N8rullHuTfDvJHUnuS7I+ybFJzkrjP/+/qKrqLW30BwAM0gmnJ2c/Pvnm52aPP+1FKesOGkxP9E+zY2RHm+x6BwAAAAAAAHRM2G74HZzkvDbmbU/yqqqq/rLH/QAAXVBKSX73g6ne+YbkK59IVq5OHvfclJf+2qBbox9WrKqvjY72rw8AAAAAAABYRoTthsv3kvx2kickOSfJmjau+UGSdyf5y5qjaQGARaqsXZ/yqj8edBsMwrZ76muXf71/fQAAAAAAAMAyImzXZ1VVndDDe9+a5NeSpJQykuSUJA/M9JG0hyRZnWRnkruTbEny1aqqbu9VPwAA9MhNV9fXrry0f30AAAAAAADAMiJsN6SqqppKcvneBwAAAAAAAAAAAAswMugGAAAAAAAAAAAAYLETtgMAAAAAAAAAAIAWhO0AAGCpueDH6muPfkb/+gAAAAAAAIBlRNgOAACWmPLEC+trL39rHzsBAAAAAACA5UPYDgAAlprHPzd55AVzx897VspJD+5/PwAAAAAAALAMjA26AQAAYH7KyEjyB/+aXHlpqrf9bLJzW8pb/j7lgQ8ZdGsAAAAAAAAwtITtAABgCSqlJKeclfJXFw+6FQAAAAAAAFgWHCMLAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALYwNugGArtt9Z7LjxmRqT7LhlGTlwYPuCAAAAAAAAACAJU7YDhgeu+9MPn9RcttnZ4+v2Zw8+4pkbO1A2gIAAAAAAAAAYOlzjCwwPL7wgrlBuyTZeXPyxRf2vR0AAAAAAAAAAIaHsB0wHHbdkdz6mfr6TR+ZPlYWAAAAAAAAAAA6IGwHDIcdNySpWsy5sS+tAAAAAAAAAAAwfITtgOEwuXPQHQAAAAAAAAAAMMSE7YDhsPX7redMjfe+DwAAAAAAAAAAhpKwHTAcrvuH1nPu/Frv+wAAAAAAAAAAYCgJ2wHDYfXG1nOqyd73AQAAAAAAAADAUBK2A4bDTR9tPefilyS3/2fvewEAAAAAAAAAYOgI2wFL35X/J9lzb3tzP3lecvPHe9sPAAAAAAAAAABDR9gOWNqqqeTSN87vms8+oze9AAAAAAAAAAAwtITtgKVt29XJrlvmf1011f1eAAAAAAAAAAAYWsJ2wNK2577OrttxY3f7AAAAAAAAAABgqAnbAUvblo93dt11f9/dPgAAAAAAAAAAGGrCdsDSVVXJt17f2bXf/NXu9gIAAAAAAAAAwFATtgOWrq2XL+z6nbd2pw8AAAAAAAAAAIbe2KAbAGhq27XJHf+ZrD0mSdk/PjWeXPkXC7v3+F3JmqMWdg8AAAAAAAAAAJYFYTtgcdqzLXn/hs6vf9jvJZe9OZnYXj9nYlvn9wcAAAAAAAAAYFlxjCywOH1w08KuP/1XkqdenJz4k/VzLvuNha0BAAAAAAAAAMCyIWwHLD7VVPMd6VpZdfj020Mekpz77sw6fnamWz/T+RoAAAAAAAAAACwrwnbA4rNn68KuP/jB+5+XkqRqPG/FAo6pBQAAAAAAAABgWRG2AzpXVcn3/yj56BnJBzcnF//0wnak23fP775tYfc46b/Ofv/IJzSet+u25J+PTLZ8YmHrAQAAAAAAAAAw9ITtgM5d/ifJ1/97svV7yc4tydV/nXzuwgXe838m3/3dzq5dcVDyqHcmJ71k9vgZr6u/ZvftyX88Lbnjy52tCQAAAAAAAADAsiBsB3Tu6r+aO3bLJ5Lt13V+z6v+T+fXPvuK5OSXzR0fW9P62mv/rvN1AQAAAAAAAAAYesJ2QOfuuazx+JV/0dn9qiq59zud97PikMbja49tfe2tn+18XQAAAAAAAAAAhp6wHdB9u+/o7LrJXa3nPPxPGo8f+fhkdGXj2voTk0POWvjaAAAAAAAAAAAsW8J2QPdtu6az6675m+b18z+ZnPoLydFPm1t7/IebX/uEDzWvb7uyeR0AAAAAAAAAgGVtbNANAEPolk92dt2lb6ivPet7ycEPmn7+pI8ne7YmN/1rsvG8ZN1xre+97vhk3QnJ9mvr50yO1++OBwAAAAAAAADAsmZnO6AzU5P1tZWHzv9+E9ubHz+76vDZ7684KDnhv7QXtNtn87Oa1+/9Tvv3AgAAAAAAAABgWbGzHdCZqd31tTI6//vt2VZfG1mRrN44/3se6AHPTq740/r6xPaFrwEALA+7bktu/niy9XvT7x90WnL0M5I1Rw22LwAAAAAAAHpG2A7ozOSu7t2rmkr+9fT6+mP+b3fWOfopyckvT67888b1yZ3dWQcAGG73fjf59PnJrltnj6/amFzw6eSQMwfTFwAAAAAAAD3lGFmgM90M2932+WT87vr6xsd2Z50ykjzyHfX1yR3dWQcAGG6XvGpu0C5Jdt+efO0X+98PAAAAAAAAfSFsB3RmqlnYrprfva55T/P62Lr53a+ZUqZ3nWlkws52AEALU5PJ7Z+rr9/xxWRyvH/9AAAAAAAA0DfCdkBn7vhKfa2aZ9ju6nfV18Y2JCsOmt/9Whld03jcMbIAQCvVRPMdfqf2JFO7+9cPAAAAAAAAfSNsB3Tme79bXxu/q3vrPKzJOp0aE7YDADpUTbUxZ7L3fQAAAAAAANB3wnZAZ5rt6DIfu+9sXj/+x7uzzkx2tgMAOiZsBwAAAAAAsFwJ2wGdWXV48/rE9vbuc8unmtdHV7V3n/kQtgMAOtXWznZtzAEAAAAAAGDJEbYDOnPQg5rXd9/R3n12bmleH13d3n3mQ9iOxWZqcvoBwOBNTSYTO5LJ3cmercme+2bXHSMLAAAAAACwbI0NugFgSE20GVzbc2997YzXdqeXA42ubTx+3xW9WQ/qTOxMvvYLyY0fnA5mPODZySP/PFmxftCdASw/E9uTf6z593f9Sclpr0pO+4U4RhYAAAAAAGD5ErYDOjOysnm93V3iLntzfe3s32m7nXkZq9nZ7vr3J1N7kpEVvVkXDnTxS6a/7va59v8mu+9MnvSxwfUEsFzVBe2SZNvVySWvnA5DP+DZre9173eTtQ/oXm8AAAAAAAAsCo6RBTrzyHckL2gSqGsnbLfrtu71Mx/Njn+7/Qv964Plbfze5IYPzh3f8vFk5y397wdgOWv3Z5Kr39PeMbLX/f3C+gEAAAAAAGBRErYDOjeyKklpXGsnbHfvd7raTttu+VR97Y4v968Plrf7rkiqica1u77e314Alrsb/6W9eVu/194Rsde8e0HtAAAAAAAAsDgJ2wGdKyUZXd24Nrmr9fXbru1qO23bcHJ9bWq8f310w84tySX/PXlvmf349lsH3RmtTO2ur7UT5ACge/Zsa2/erluTfzuz9bxqKvn3RycTbfzyAQAAAAAAAEuGsB2wMKNrGo+3s7Pd9mu72krbDj27vrb9uv71sVC770w+9YTk8j+aW7v0Dcmlb+p/T7Rv+/VNatf2rQ0Aknzj1e3P3X1He/PuvDj5x7XtHTsLAAAAAADAkiBsByzMUgzbNXP9+wfdQftu+Ofpo0jrfPst/euF+bvyz+trV7+rf30ALHe72gzPderOr/T2/gAAAAAAAPSNsB2wMCvWNx7fdWvra5vtInfkEzrrpx2bf7i+tvExvVu329p58b7dY/Hov7qgapKs3tS/PgCWu7su6e39v/v23t4fAAAAAACAvhG2AxZm3QmNx5vtuLbP1u/V105+WUfttGXzM+prO27s3brddvO/tZ7zyfOS95bpx1denmy/ofd90Z77rqyvVXv61wfActfOLwgshJ3tAAAAAAAAhoawHbAwG05pPN4qbDd+T7Lrtsa1VYcnx71gYX01M7oqOfxRjWv3fie576rerd0tl/56snNL63n3XLr/+ZXvTD50XHL3N3vXF+2Z2Jlsa/J11s4xzAAs3K47kotf0ts1dt6UTO7q7RoAAAAAAAD0hbAdsDCdhu2++7v1tfM/k4yMdt5TO5qF+b79lt6uvVDbr0++/ZudX//N13evFzpz1f9pXp8QtgPoiyv+rHn9se9PzvuH5Jw/Tk55Refr3Pihzq8FAAAAAABg0RgbdAPAElcXtttxYzKxIxlb27jeLIy3/oQFt9XSioPqa7d+uvfrL8St/7Gw67d8LKmqpJTu9MP8bbumeX1yR3/6AFjubvpI8/pxF+1/vvOW5Io/7WydWz6dHN/DXXsBAAAAAADoC2E7YGHqwnbJ9DGZh5zZuLbnvvrrmgXhuuXIx9fXxu/t/frt2LMtue59ycT25KDTk/G7p8evfOfC7z01Pn2cLoOxp8XXmGNkAfpj25Xtz12zafrnnla79zZy3XuTR74jGfGfXwAAAAAAAEuZV3uAhVl3QlLGkmpibm3rD+rDdrd8ovH4EY/pWmtNHXRqsu74ZPt1c2sT9w1+57cbP5x87rm9u//kTmG7Qbr7683rjb4uAeiu8bv3B9kbWfOAuWNnvy35wgsa/9zTzMT25O9XJD/8g+SgJr+oAAAAAAAAwKI2MugGgCVuZCxZf2LjWt3OL7d/qf5+xzxn4T2169z31Ndu/GD/+jjQ+D29DdolyS2f6u39ae7ubw66AwC21AT/91l/0tyxYy9MnvLF5IxfTY69aPpxxuuSp301ecGu1mv+64M66xUAAAAAAIBFYaA725VSSpLXJFk9Y/hvqqq6doH3PTHJT8wY2lFV1e8v5J5AE3VHqtWF7W7+aP29Rtd0p6d2jK2rr93wL9MvqA/CTR/p/RpbPpEcd1Hv12Gudnet23V7snpjb3sBWM46OQ42SY541PSjkTN/M7nsTfXXVlPJ9huSdcd2tjYAAAAAAAADNehjZH88yduSVHvf/8BCg3ZJUlXVNaWUM5Pcn5QppVxdVdUHFnpvoIENpyb5t7njdS9i79xSf6/DHt6Vltpy8On1tWbHyvXSrtuTb76us2uPe35y/fvbm1vt6WwNFm7nLe3N23Z1suqIwR5nDDDMJnZ0/56HndN6zl1fFbYDAAAAAABYogZ2jGwpZSTJb+57N8kVSV7SxSVemuSqvfcuSd7axXsDM204pfF4Xdjuhia518PPXXg/7Wq2s92O6/vXR5Jc/e7kvSX5wJHJzpvmf/2Kg5Mzf6P9+RM7578G3THZZrjjE+cmHzouueKdve0HYLnac0/373nU+cnBZzSfs6OD7/MAAAAAAAAsCgML2yV5cpITM72rXZXkdVVVdW17iaqqtid57YyhU0sp53fr/sAMdWG7Xbcke7bOHrvnsmTPvY3nn/iTychod3tr5cw3Nx6/59L+9XDb55KLf2p+16w+Mll9VLL2mOTYi5ILPjO9U98Ldidrj2t9/fX/0FmvLNxlv9l6zj47bky++vLpY40B6K4r/qz79xxbk1zw2eZzLvnF6eNkAQAAAAAAWHIGGbZ78Yznl1RV9cFuL7D32NhLZgy9qNtrAKkPc8IFfwAAIABJREFU2yXJfVfOfv/6f6qfu3pTd/qZj2a72239QX96uPrd85s/ujq58NbkwluS592QPO79+4+tG12ZPO+65Mer6ccZv9r1dlmg2z47/2uEIwG6a3K8d/devTE58onN59x1SfM6AAAAAAAAi9Igw3ZPn/H8r3q4zr57lyTP7OE6sHytPTYZWdm4duBRsnVHyybJhgd2r6d2rW+y5oFBwV65+l3zm9+s5wPt3NJ4fPWR81uT7hldM/9rrvv77vcBsJzturW39z/mec3r/foZAwAAAAAAgK4aSNiulHJ8kiNmDH20h8vNvPeRpZRje7gWLE8jo/UBsAPDdduvrb/P5h/uWktt2/SU+trk9t6vP7l7/tcc/8L25x7x6Mbj43fPf10WrqqSyZ2D7gKAdv4tLqXz+x/z3Ob1+exYOrkr+davJR9/RPKhE/c/PvzA5PMXTR9HDwAAAAAAQF8Mame7s/a+rZJcVVXVTb1aqKqqG5PM3Dri7F6tBcta3VGyl75x//M9W5M7vtR43sbHJms3d7+vVlasr6994cd6v/7nL5rf/NNelTz49e3PX39S4/GpPfNbl+4QtANYHLZ+v7f3X39Ccv6n6+s3fii5/v2t71NVyecuTL7z29NHz26/dv9j29XJDf+cfOapAncAAAAAAAB9MjagdTfOeH5zH9a7OcnJe587OxF6oS5sN9PNH6+vHXVB93qZr1Ubk923N65N7kpGV/dm3a1XJDe32Njz6ZckZTQZW5esOz4ZWTG/NZodWXrvd5ODz5jf/ViY2z4/6A4ASJKr/qr3a2w6Pzn0Ycnd32hcv/xPkuOe3/weWy9Ptnys+Zyp3ckVf5Yc+fjO+gQAAAAAAKBtg9rZ7tAZz2/pw3oz1zikD+vB8tMs1DU1Of32rq/Vz1k9wBxsXdAumQ6k9cpdl7Sec9g5yaFnJRtOnn/QLklWH9Vk/ZoX/+mdbVe2ngNAH1Stp5zwEwtfptnPN3d+tfX1zX52mu+9AAAAAAAAWLBBhe1W9rmHmWus6sN6sPwc8ej62tSu6bc7mpwYvfnp3e2nWyZ39e7e93yreX3zMxe+RrMdB6d6+LHRWC+/ngBo39R48/rIita7zrXj6Gc06WF3sv265tff3uaOqNuuar8nAAAAAAAAOjaosN2OGc831s7qnplr7KidBXRu3bH1tW3XJrtuT657b/2c9Sd1vaW2Hf6o+tonz+vNmndcnHz3bc3nnPvuha9TSpMevrTw+zM/l75p0B0AkCSTO+trIyuSx/5TsvLgha9z6s8na4+rr3/ohOTe7zeuXf/PyZV/0f5a3/jVebUGAAAAAADA/A0qbDfzWNfj+7DezDVu7cN6sPw0O0b28j9OrvrL+voDf6b7/czH6Orm9Z09OO36W29oXn/hnmR1l7LIhz288fhVf9Wd+9Oe8XuSSXlvgEVhoiZst/G85MLbkmOe0511RlYkT/hQ8zn/+aK5Y1WVfOPV81vre29Ppibndw0AAAAAAADzMqiw3b5zjkqS40spJ/dqoVLKA5Oc0GBtoJtWHFRfu+ey5NbPdnZtPxx1fvP65X/c3fWqqeS2/1dfP/KJychY99ab2tO9e9G527846A4A2Gdye+PxY5+frDyku2utaLFD3t1fnzu2/brWR8w2cttn538NAAAAAAAAbRtU2O5bScaTVHvf79LWEQ09b8bzPUm+2cO1YPlafWR9rZpM9mytrx/1pO73Mx8P/Onm9S3/3t31Jncl1UR9vdufj7owY+lioI/Wmv0dAKC/xu9uPL7y0O6vte6E5kfJNtLp94yr/trudgAAAAAAAD00kLBdVVXjSf5fpne2K0n+RyllXbfX2XvP12Q61Fcl+dzetYFe2PzMxuN3fS2588v11216am/6adfaY+qPWk2S3Xd1d72JFkeJnvLy7q532i83Hq8m7HrXT5f9+qA7ACCZPqJ1952Na6sO6/56pSQP/5/N5xz4s8FkzTG3rVz33uRfNid77uvsegAAAAAAAJoa1M52SfK+vW+rJBuTvL0Ha7wtyZGZDvQlyXt7sAawzzE/Mv9rHv6/ktGV3e9lvp7w0frajuu7u9bNTdZ62lea7xLYibXH1teu+ZvurkVjd38zue+KxrW1xw5+d0eA5WRyRzJV8/s3Kw/vzZrHPq95/Yo/n/3+fT+on/uw32t+r123Jd9+S3t9AQAAAAAAMC+DDNu9N8mWvc9LkpeXUl7frZuXUl6b5BXZf1TtrRG2g94aXTP/a1Ye3P0+OjHSx8DfrZ+tr63Z3P31xtbW127+ePfXY66r/qq+trIHuygBUK9uV7ukNzvbteO6981+f+v3G88rY8mGU1rf73stAnkAAAAAAAB0ZGBhu73Hub4u00G7au/bt5RS/r6Ucmin9y2lHFJKeW+St864b5Xk9Y6QhR5rdhRr7TWP7H4fnWj14vpdlyTj93ZnrWqyvtaLsN2GU+trE9u7vx5z/eB/19fu+Vb2b8AKQM+NNzkevpcB6Ic0OU78vitnvz+2rvG8aiLZ9NTu9QQAAAAAAMC8DHJnu1RV9TdJPpTZgbvnJ7milPL2Ukob2zZMK6WcXEp5e5Irkrwg+5MLVZKPVFX17m72DjRw8IPmf81Bp3W/j06taLLL3scfkfzTIcmnnpCM37Owda79u/pa6UHoqtkxvXd8qfvrMT8n/dSgOwBYXnY3C9t1/Ds/rZ38M/W1Pfck3/md6edVlVz2G/Vzx9Ykh5zV3d4AAAAAAABoy0DDdnv9RJKvZXbg7rAkr07y/VLKjaWUD5RS3lpKeU0p5b/tffxKKeW3Sin/XEq5Icnle685/IB7fT3JiwfwcQGtbP7h3oTLOvXIP2s957bPJV98YedrXPu++tppr+r8vq2c9dbG43vuSfbc17t1aW3jeQsPcALQvjv+s/H4ioOTkbHerbv2mOSCz9bXv/X65OaPJdf9QzJVsyH30U+ffvuMbySbn9V8vakmO+kCAAAAAADQkR6+mtSeqqq2lVIuSPLuJD+S6ZBcsn9nus1Jnrv3UWdmWmfm9R9K8pKqqrZ1rWGge1YeMugOZhtd0968Lf8+vStOq6NnG7n+H+prY22u34nRtfW1LZ9IjvvR3q1Nc6Nrkru/PuguAJaPu2r+zV11eO/XPvJx0//uT+5sXL/+H5OdW+qv3/ezSinJEz6SvK/J707defF0oBsAAAAAAICuWQw726WqqvuqqvrRTO9MtzP7d6bb98jesUaPHDC3JNmV5H9UVfUjVVVt7dfHAczThlMH3cFsB82jnx3Xd7bGtqvra738fDS7d7Oe6L31Jw26A4DlZdURjcf78f2wjDQ/Anbb1ck9l9bXZ/6sUsr0bnx1tl83//4AAAAAAABoalGE7fapquqPkhyf5K1J7snsUF1V85g555691x5fVdXv97t/IMkZr21/7nEX9a6PThx0evtzP/aw5NPnJ9e/f35r3HNZfW3zM+d3r/k46kn1tbrddei5Las35C93/7+87syn5jVnPT1vOeNJ+cADzsiesqi+PQMMl7suaTzebBfYbjr5ZfW127/YfGe7435s9vunv6Z+rmPiAQAAAAAAum7RvZpfVdWdVVW9McmmJI9P8sYkH0/y7SQ3J9m997Fl79i/J3lTkickObqqqjdWVXXHIHoHkpz9O0kZbW/uwfMIt/VDKcnpv9L+/Fv/I/nCjyXX/WN78y//3/W1016VrN7Y/trzNbYmWXdC49r3fq9361LrzpVr8oennZdvbPtS7l25JtvHVmXLmoPyqU2n5K9PfMSg2wMYTtuvqz+6+6SX9KeHk16arD22ca2arL/u4f8zOeyc2WMPfn39/K++fN6tAQAAAAAA0NzYoBuoU1XVniRf2PsAlpInfSL5zAWD7qIza4+f/zVXvCM5/sfamNckbLfxMfNfd74OOTPZfu3c8YltvV+bOS459AHZPraqYe1bhx6de1asziF7dvW5K4Ah1ywg36+d7UpJHvKG5Cs/O49rxpJTfr7xvQ57eP1ufTu3JGuO7qxPAAAAAAAA5lh0O9sBQ6CdF3XPfnvv++hEJy9I3/2N1nMmdyVbL6+vr940/3Xna3J3k5pQV7/dsPbgpvUb1xzUp04AlpFm37PX9OF78T6r5/nzRjWRjNT8nlSze91Vs4sfAAAAAAAAHRG2A7rvoAcl609qPuekn+pPL/O16cnJSOPdxmrt2Zrc8MGkqurnTOxofo8jzp3fmp3Y+Nj62uTO3q+/nB0+9893fKT5cctVKb3qBmD5avb9bvOz+tfHpvPnN3/9A+trD/jh+tp9V85vHQAAAAAAAJoStgO6r5Tk8R+q363tEf87WX1Ef3tq18qDk8f/y/yPkvv8hcmlb6ivT2yvr537nvrdarrpuOfX1yaE7XqqQbBuvMWfeRVhO4CuqwvbrdqYHHx6//oYW5cc8tD25z+kyc8YD/yZ+tp3f7v9NQAAAAAAAGipD+kOYFk65CHJ865P7vxactclyR1fSg59aHLKK5IV6wfdXXObn5786B3TPU/cl3zuee1d9923JQ/678mqw+fWbvts/XVHPbGTLudvbE19bcoxsj3VYGfDVjvbTfWqF4DlrC5sd8rP9bePZHonvXsubW/uygY/W+wzMpqc/LLkyr+YW9t12/TOu3ZLBQAAAAAA6AphO6B3RlYkGx89/TjtFwbdzfyMrZk+4m1yHiG0aiq5/T+TY549t3bfFfXXrTh4/v11YmR1fc3Odr01ftfcIcfIAvRf3fe70SaB9F5Zecg85rb4WWH1UfW1nVuStZvbXwsAAAAAAIBajpEFaGZ0dbJmHi9QT9zXeLyarL+m1Qvo3WJnu8GY3JVsv37OcMuwXa/6AVjO6na2G0TY7qjz25s3ti45/FHN52x8XH1tYlv7PQEAAAAAANCUsB1AK0/4cPtzG4SqktTvpLNiHrvaLFSzIMH43f3rY7nZdnUaRefGR5pvLmtnO4AeuPfbjcebBdJ75bCHJ6e22Pm3jCSP+NPp8H/Te51TX7v9C/PvDQAAAAAAgIYcIwvQymEPT553Q/KN1yQ3/1uy6anJDf/UeO63Xpc8+LVzx+t20tn05O712UoZm37RvpqaW/v+H/e3l+Wk5gjh1jvbCdsB9M0gdrYrJXn4nyTHPC+59bNzd8ddvSnZ/PTk0LNb36tZ/1/+6eSB/3VBrQIAAAAAADBN2A6gHWuPSc573/73/+2s5J5L279+MRxbV0pSViTV7rm1bVf3r4/lZvt1DYfHRx0jC9BXe2qOek+mA+mDUEqy6YLpx0K02vlux43TP8sAAAAAAACwII6RBejEnq2Nx8fWNx6f3FEzf213+mnXVIOgXVLfNws3sW3O0GRKJkvzb8FTjpEF6K7xe+pra47uXx+9UEaSDafU13ff2b9eAAAAAAAAhpiwHUAnTvulxuMT25Lxu+eO1+2m0+9j6zY/s/H4tqv628dyMjF3V8NWR8gmjpEF6Lq64HuSbDi5f330ypm/UV+baPKxAwAAAAAA0DZhO4BOHPaI+toX/8vcsS0fbzy332G7Y57beHz8rv72sZxc+7dzhtoK28naAXTX5X9SX+v39+NeOP6F9bVr/qZ/fQAAAAAAAAwxYTuATow1eVF+y78ne+YeHdpQv1/cb7be9hv618dy0uDoPjvbAQzAzR+rrw1D2K6UZHR149pt/9HfXgAAAAAAAIaUsB1AJ9a3OG5u1y2z3x9b13je7tu600+7mvW94/r+9bGcHHLmnKHdo2MtL6t60QvAcja6skltCMJ2STK5q/H4ikP72wcAAAAAAMCQErYD6MTKg5Ojzq+vT+zY/7yqkontjecd9aTu9tXKET9UX5vc2b8+lpM9984dausY2QN2tqumutURwPK09fLG4+uOn94VbhisO7Hx+J0X+z4CAAAAAADQBcJ2AJ167Pvra9//g/3Pp8br560+qnv9tKM0+Wd/QtiuJ+797pyhdo6RnTrwGNm63YoAaG3nlvraWb/Tvz567Yz/UV/7RpMaAAAAAAAAbRm6sF0p5eGllItKKc8upbQ45xFgAVYeUl+75m/2P9/e5HjWQRxbt+rwxuN2tuu+8XsaDu9ua2e7Awa2XdWFhgCWqRv/pb5Wd9T7UtTs54or/0KwHgAAAAAAYIEWbdiulLK6lHLSjEfTZEIp5TmllGuTfCXJPyT5lySXl1K+UEo5ow8tA8tNs13iZtp5U31tzdHd6WU+6l6It3Na9937vYbD7exsVx24s92OJl9HADR3zd/W10ZW9q+PXlt7TH1t4r7kviv61wsAAAAAAMAQGht0A028Oslv7n1+Y5IT6iaWUn4syXuTlL2PmR6T5MullCdWVXVJD/oEaOy9JTn83GRqd/2cxRS2237N9Nvxu5Mr/iy565Lk0IclJ788WX1E//obJlONA4x7Rlp/+50Tthu/qxsdASxP93y7vtb8d3qWlo2PTVYclOzZ2rh++R8l576rvz0BAAAAAAAMkUW7s12S52V/cO6vqqqqGk0qpRya5J3Z/7HMnFftfaxL8oFSyuoe9QrQ2J0XJ3d/Y9BdzDZa80/hZW9Otl6efPr85Fu/ltzwgeTSNyafflKyW9CrIzVhh46Okb33O11oCGAZ2rN1ele3Ou3uVLsUjK5Kzv9Uff3qd08/AAAAAAAA6MiifGWplLImydnZH5z7aJPpr0xy8N65JcnNSf5Xkj9Kcn32B/aOSfKLvegXoCOD2NUuqd/ZLkk+9yPJ3d+cPXbvt5Pr/7G3PQ2rLZ9oODy+Yn3LS+fsbHe1nYgAOnLDB1tMODDdvMQd/shk05Pr6xf/VP96AQAAAAAAGDKLMmyX5Mwko5l+5Wt7VVVfbzL3xdkftLs8yUOqqvqlqqpevfc+X907ryR5ac86BpanQ87s/NqVh3avj3mte1h9bev3Go9//dW96WXYrdjQcHi8Gm956dSB2Y9DzupCQwDL0O1fHHQH/bfh1Ob13Xf2pw8AAAAAAIAhMzboBmqcuPdtleS7dZNKKQ9KcnL2Hxf7pqqq7t1Xr6pqWynllUku3jt0Winl2KqqbuhN28Cy84h3JJ96XGfXbnpKd3tpe90nJ1s+Pr9rJnf0ppdhV001HB5v5xjZA3damtzVjY4Alp+7vtp6zrA55nnJFe+or3/r15K1xyalJBlp8bbsPWq3nbcNrq+bW3efbq5d10u792t37Vm9AwAAAAAAw2yxhu2OmvF8S5N5+xIuJcl9SeacEVVV1VdKKTdm+hjZJHloEmE7oDs2ntf5tQ9+fff6mI+Tfzb5xq8MZu3lZuvlDYfH125ueemcsN2Bx/sC0No1f7s8//3cdEHz+pXv7E8fy1Kr4N8ggoMLCBA2DEEu5TBkN8KlbXwM7X4svfja6PjPZ99bAAAAAACaWaxhu7Uznt/XZN6+lEuV5NNVVU3UzPt29oftjltgbwD7lZKc+ebksjfP77ojHp2sPrIXHbW2Yn1y1lund7Wht276cMPh8ZUHJZlseml14Gude+7pTk8Ay8XURPKlnxx0F4NRRgbdwTJWJVWVZGr6v1JhqVmMQcyFBhIXtMPmIglDzvfPpR9/PvMN/fb8a0NYFAAAAID+WKxhu5n/h2xFk3mPmfH8803m3Tnj+UEddQRQZ+0xreccaPVRref00uja1nPomfE2Xgeas7NdMn0srQAFQHvu+NKgOwBYeqqpvW+b/2IILE49DmJ2uitl13fYnMfHNNAwZJc/lnmFS7v8sfTq8zlrPgAAALBULNaw3czd7BomUkopm5KcPGPoP5vcb+bH6f9eAN21+Znzv2Yhx892w+iawa6/HFRVUkYbvlA5XlpvdTNnZ7skmdyVjAlKArRl2zWD7mCwNpya3PeDQXcBAH1U7f/vL7uLsuS0Cv51KUA43+BguztsDnIH1Hl9TB18LIsxKNvTHWXne799bwEAAJaPxRq2u2nv25LkzJo5M9Mtu5N8vcn9DpnxfPsC+gKYa83RyYkvSa55T3vz15+cnPDi3vbUyuGPGuz6y8HUntodQcbXHJVMbml+eaNs+MQOYTuAdu24YdAdDNZj35987KxBdwEAQFscRc8StxiDmI6ib39uP/98OgqX9vJrQ1gUAID5W6xhu0tnPD+slPK0qqr+/YA5P7X3bZXkK1VV7Wlyv5NmPL+lGw0CzHLuu5JDH5Z8/Zdnjx/28GRs/fTzkZXJEY9OTnl5smZT/3ucqZOd7e79XnLw6d3vZVjtqv92M15GWl7e8BjZq/4iefDrF9IVwPJx6RsG3cFgHfrQ5Bnfmh24G12bHHZOpl/Mndr7gu7e5+28nXVd3dt53K/VfQAAgKXBUfQsaT0OYna6K+Vi3mGzb2HIJR6U7dXnc9Z8AGAQFmXYrqqqq0opV2T6mNiS5B2llCdXVXVNkpRSXp1k5hmMH6q7VyllfWYfN3tVD1oGlrtSkgf90vRjKRjrIGx300eE7eZjyydqS+P5/+zdd5xkVZn/8e+pzmF6ch4mAkPOSJYM4ioIKiAmzO4aWVdXXVcU/RlWMaBiREURQQyYkBwEhjggzMBEYHLOMz2d6/z+qO7p6up7Tt1bdau7wuftq19ddc655zxdXV09Uk8/T/b/8BjYRnbNX0m2A4AwOraFX1vO/2Fy9BHSFSWctGYDEv2yJe/FmjgYJYEw4LpsZ2d+jvPsuJIhoz6eeX8tEb6mqM+NbN+XuL8/AAAAAEqEFa3oUbqyJf7FlAwZNXGwIBU2SzEZssgSZWlFDwCxKcpku14/k/R1pf5pO0vSYmPMc5ImSNqvd9xIapd0k2efM3rXSVK3pBcKFC8AlI6GqdGvqfR2fFF173ZOdSqZ9fLAynb8dTAAhNO2Lvxay39JL1rGSKZquKMAcrMvGW8YkyFDJQzGlAwZNXkx1wqbsT+eMXwtxZgom+1ryroPAAAAgNKQ/v8BhjsWIAexJGLGnTiY575DVmGzgMmQsSbKxvS15JRcGvPjaKp61wPFnWz3XaVaxc5V6p8HNZKOlfZlH/T+10F9y1q72bPPxWnrn7PWdhQmXAAoIYlqqWWutGtJ+GuWfl/a+pR05FekSWcVLrZy0b3XOdXp7XyeYoP+oqenNZ+IAKBybLh3uCMAUOn2/Qc9SSJpFCVmQLJokSRDDnlyaYivIVKFzQhnh/oahisRM+LXEulriuu5xrvMAAAAQMno+4Mvik2gFJz+d2nqa4c7ChSJok22s9Z2GmPOl3SnpL6+hUap/2LS+1+t9QdJV7v26G0h+0b1/1eW+woWMACUmmO/Jz1wXrRrtj4hPfha6fwnpNFHFiaucvH854LHx5+mzhB534H1JHa+mFdIAFARdi6Wnrkq/HraFQAAMNCAZFGgBJV6MuSQVdiMkigbcb+oiZhD+bVEfW6E/Zri+v4AAAAAKE68l4A0RZtsJ0nW2tXGmKMkvVvShZJm9E4tlnSztfaPWba4UlJL2v2/xx4kAJSq6qbcrkt2SCtvIdnOx9OS0NaMUGeyPfsWrne2kj1SguooAOC06tbhjgAAAADDiVb0KGWDkvGKIBmSVvTh9i2HRNm8vz8AAADljBay6FfUyXaSZK3tkvTj3o+obpD067S9dsYVFwCUvKbpuV/74teko74aXyzlpsfdQranp0NJ1WTdwrr+OKJzq1Q/IcfAAKACRK0COvqYwsQBAAAAAFHtqy7KG3koQbSiD/c1Ra2wWRaJmDl+LaG+Lzk+N2hFDwCIisp2SFP0yXb5sNa2SWob7jgAoCg1ThvuCMpXt/tXT+eU8yTNy7qFs7JdD7/WAMBr3R3h105+jVQ7snCxAAAAAABQKWhFj1JXrq3oIyWXxpzYGenxzCERM7ZE2bi/lghfk/e5FeFrAVB4/EEM0pR1sh0AAMOie5dzqnPy2dLGEMl2rr+O8CTyAUDFW/MXqXtPuLUTXi2d/JvCxgMAAAAAAIDSQCt6lLJcWtEXOhmykFUp86qwGXMiZlm2oh/q70+p4C8K0I9kOwAA4rb+HudUZ8i/enD+HRKV7QDA7cWvu+dmXymd8HOpfaMkKzVMHqqoAAAAAAAAAKBwaEWPUjagFX2RJEMGzY06bGgfFxS1kky2M8ZMkzRb0hhJIyQZa+2vhjcqAChBM66QVt483FGUn/aNzqnO6rpQWyRdfx3RvimXiACg/FkrbX3cPT/muNR/dGqYNHQxAQAAAAAAAAAAtwGt6KkwitJQMsl2xpgZkq6SdKGkGQFLBiXbGWNOk3Rm793t1trvFS5CAChB09+Ue7Ld9uek0UfGG0+5SHYNGuoyCb3QMkH3bw3XstC6KhHvWS7p/NxjA4Bylezwl5yfdN7QxQIAAAAAAAAAAICyVPTJdsaYhKQvSfqkUmmsQekHrm57WyR9oW/eGHOHtfalAoQJAKVp6oW5X/uPo6RTbpFmXBZfPOVi1+IBdzsSVfrRnBO0pGW81PZCqC2sq7Ld8h9LB34o3wgBoPzsecU9N/NtUssBQxcLAAAAAAAAAAAAylJRN+02xtRIulPSpxWcGOhKsktNWrtI0gPqT9C7ItYAAaDUJaqkA/JI3Hryg4FV3Cre6t8PuPvUmGmpRLsIrHEk2+1YkGtUAFDeFnzBPXfoZ4csDAAAAAAAAAAAAJSvok62k3SDpHN6b1ulkuYelnSNpM8puMpdpj+k3aZ3FABkGnV47td27ZC2PRtfLOXCVA24u3hEtEQ7KUs2+d61kfcDgLK39Un3XHXz0MUBAAAAAAAAAACAslW0yXbGmLMlvU39SXYvSXqVtfZ0a+0XJP0m5FZ/79tS0vHGmPq4YwWAkjbjskHJYZF07YgvlnKRkdSxt7om8hbONrKS1MljDgCSpGSPtPVpaccL/kqrjdOGLiYAAAAAAAAAAACUraJNtpN0de9nI2mlpJOttU9H3cRau1JSX1ZCjaSD4gkPAMpE7aj82uv98yKppzO+eMpB184BdzsT0ZMZk642spK0/q7I+wG0xh1nAAAgAElEQVRA2dm9XPrrHOmu46U7DpPaHFU/p10s+V5TAQAAAAAAAAAAgJCKMtnOGDNG0slKVbWzkj5mrd2Sx5Yvpt0+MJ/YAKAsHf5F6bQ/SdPfLFU1RLu2p11a/M3CxFWKkj2DhnJJtvO2kX32E6nHHQAq2cNvlFpXZl83592FjwUAAAAAAAAAAAAVoSiT7SSdqlRsRtJma+1f8twvPVFvQp57AUD5MUba7w3Sqb+TLtsb/fo1f40/plK1e+mgoc5EdeDSyyd+UKeMPDdwzmarwrTpn5FDA4Cysfslacfz4dZGTSIHAAAAAAAAAAAAHIo12W5y72crKXLr2AC70243x7AfAJS3w6+Jtn7X4sLEUYo6tg4aclW2qzV1Mo5fxd7KdpLUtj5iYBH0tEtde6TutsBKfQAw7KIkHI86onBxAAAAAAAAAAAAoKIUa7LdmLTb22PYL72cRVcM+wFAeZv5FqlmVPj1XTukvx0krf5T4WIqFT2DKwN2uZLtEnUyjgp2Vlkq2wWck7e2jdLNRrq1QbpthPS7RumWaumJ90vJ7vjPA4ChUD9+uCMAAAAAAAAAAABAmSjWZLtdabdHxLDfxLTb22LYDwDK24j9pXMekKZdLDXNkiZfIE06x3/NriXSI2+WNj82NDEWqz0vDxpyV7arVcJV2S5bG9mFX44cmpe10p8mBc+99FPp2U/Gex4A5CPba2Sfo68tbBwAAAAAAAAAAACoKMWabLc57fYB+WxkjKmSdHTaUAH77gFAGRl9lPTqP0oXvSydeYd01j3SGXf6r7E90srfDk18xWrTQwPuJpWlsp2jgl2y78bYE4PPaVuXW3wuO1/0zy//ES1lARSRkMl2NS2FDQMAAAAAAAAAAAAVpViT7Rb0fjaS5hpjpuWx1wWSGntvW0mP5xMYAFS05tnZ1+xaUvg4ilnjwF9ZrkQ7Sao1njayfeOdjoKsibqcwnNa/hP/fE+71L4x3jMBoNCaZw13BAAAAAAAAAAAACgj1cMdQBBr7SJjzFpJU5VKuPuEpKui7mOMSUj6bN+2kp6z1u6ILVAAqDQtIYqN9rQVPg6fjQ9Kj18pta7sH5vyWmnmW6WZVxT+/K49A+66WshKfZXtHG1k+25MPl/avXTwgmSHZJOSySNvvnNHqh3tpoekbU9nX7/9WalxSu7nlbuND0gPvEZKdvaPjTpcmniWtPWpVLLqgR+SxjmqFQKI3/jThjsCAAAAAAAAAAAAlJFirWwnSb/p/WwkfdgYc24Oe3xFUvo72j/NOyoAqHSHftY/v/nhoYkjyIZ7pfvOHJhoJ0nr7pDmvVVacl3hY1j+owF3vcl2xt1G1vaNz3iL+6z2ze65bHo6pPvPkRZfGy7RTpIeep20Z0XuZ5azDfdK9501MNFOknYskJZ8V9oyT1pxk3Tf2dIWiuwC+QvRRnbaG6Sq2sKHAgAAAAAAAAAAgIpRzMl2/ydpl1LFfaok/dkY8/4wFxpjxhljfinpk+ovDrRB0s8LECcAVJbmOdnXJLsLH0eQbMl0i76RqgZXKG2D26z6ku1qEp5ku742stUN7vPW/DFSeANsfEDaNj/6df/6VO5nlrPF3w23rmevtOyHhY0FQMroo4c7AgAAAAAAAAAAAJSZok22s9Zuk/RRpcpWWEn1kn5ojFlmjPmqpAvT1xtjXmWMebsx5teSXpL09t5rjaQeSe+y1maUmwEARFY/IfuaPS8VPo4g6+/yz+9dI7WtK9z5K349aKgrS2W7hKMN7L42snWex3vXkgjBZdj6ZG7Xrbot9zPL2aYHw6995VcFCwOoGCZEZbv68YWPAwAAAAAAAAAAABWlergD8LHW/soYs7+kzymVd2AkzZGUWVbHSHos475Nu+Yz1tq7Cx8xAFSACWdIiTop2eFe091amLO3PJ5qCVs7JtUesHnmwPnMFp5BOrZJjdMKEp5aVw8a8raRTdQ6K9sl+xJJGqe4z+vxfA+y6dmb+7UYrHvPcEcAVJgQyXaTzy98GAAAAAAAAAAAAKgoRVvZro+19vOS3iWpvW+o93N6Ql1fUp1JW2MkdUp6p7X2m0MWMACUu5pm6dRb/WvmvS3+dq3LfyLdfZK08EvSM1dJdx4jbXs2bf5n4fbZ8Xy8cWXhSrarUrWqTLWM41exTU8kGX1U8Oab/5l7YLm0kO3TviX3a8tR24bhjgBAkObZwx0BAAAAAAAAAAAAykzRJ9tJkrX2RkkHS7peqaS7vgwEo4FJdn1jSUm/knSwtXZwTz8AQH6mXSRdstk9v2uRtO2Z+M7raZfmf2zgWOd26bnP9s53SE9/ONxez38uvrhC6EgEF5GtTdRKkoyjFaJNvzP2hODNd76Ye2Ab7nXPjTjAf+1LP8393HK0+NvDHQGATA2ThzsCAAAAAAAAAAAAlKGibiObzlq7StKHjTGfknRq78d+ksZKqpW0RdJGSfMk3Wet3TFcsQJARagfJ9WMlLp2Bs9vfEAae1w8Z63+YyrhLtP6O1Oftz3tb2ubztTEE1OQgMQ6V2W7WlOXCsfRCtEaI1U3997xVAm0ScnEmDu/35uk026Tbva0aNz4gHToZ+I7s9RtenC4IwCQyfYMdwQAAAAAAAAAAAAoQyWTbNfHWrtX0t29HwCA4TThdGntX4Ln/vUpac3t0kFXSdMulhxJZ6HsWOCf79oVfq/2jbnHkU3duEFDXa5ku0Qq2S7hbCMr6djvpu7UT3Sf2dMhVTdEiTIlURecoFhVn/o8533uCnauBMtK1d0a/ZotT0pjj5cclQ0BZJPlZyfg9RgAAAAAAAAAAADIV0m0kQUAFKnDr/bPb5knPfJm6ZZqqX1L4eLwtUTN1L1bWv6TwsTRvWfQkKuyXU1fZTtXG9makdL0S1N3pl3oPrOnLVqMUqoanqsS4Iy3pD4f9VX39VuflHo6o59bjnrapZ0vRL/u7hOk34+Wkl3xxwRAOuzzwx0BAAAAAAAAAAAAyhDJdgCA3I05Rhp1ZLi1f55emBiS3dLib0W75skPSLuWxB/Lsh8NGnK2kU3428gmRx4i1fS2ka1pcZ/Z10o3ii2Pu+fqxvR+Hisd9TX3uqXfj35uOVr0zdyv7dqZ3/VAJctWFXLUEUMTBwAAAAAAAAAAACoKyXYAgPyMOizculwqsO3jSarY+kRuW677R27X+dSMGDSUPdnO0UY2PZGkqtF95ob7wsfXZ90d7rmqtJa0DVNz26OS5Ps4PPfZeOIAKk6W/xtTlUN7bQAAAAAAAAAAACCL6uEOIApjTI2kkySdJmmOpDGSRkiStfbsYQwNACrXmGOlFb8JtzbZIyWqUq0ze9oDk9MC+SoYtW0It0emvWtyu86ncZrUunLAkDPZzvgr21nZtH09SW+2O1qMktS1yz3XMrf/9phj3et2vRj93OHUtUvqCGhlnOySqkdIjVNy2zfX51+6vWtSiY3ZKnUB6FdV556rGy817jd0sQAAAAAAAAAAAKBilESynTGmSdJVkj4saXzmtJSekTDgurdI+n+9d7dJOt5aG7gWAJCj6ZdKz/xnuLWbHpRW/0l65cZUpbsJp0sn3yw1TMz9/Mff5Z5rmCy1rQ+eW3yt1L1HOu77UiKmX4cBSWzuyna1kiRjHJXtbLL/jmONJGnnC+Hj69O9xz1XVd9/u+Ug97q29dLNRjr/KWnscdFjGCptG6V5b5U2PSClP6ZBzn5Qmnh6+L3X/FlqfSWv8CRJt++XStQ8+pvSjMvy3w+oBJseds/N/WgqsRsAAAAAAAAAAACIWdG3kTXGHCFpvqQvSpogby/BQf4qaaykmZKOlnRu3PEBQMXzVV3LdP850rIfpJK9bI+08X7poX/L7/zu3e65i1b5r13+Y+lfn87v/HQ7Fgwa6nQk8vVVtkuEqWwnSXM/HnzmtvlSMmJ1u5d/ETw++8qB942RXvUT/153HS+1B1SMKxYPXyxtvC97op0k3XeG1JrlOdNn+7+kh9/knj/5t9JJvw63l5SqbjfvCmnL4+GvASrV3rXSkm+75w/9n6GLBQAAAAAAAAAAABWlqJPtjDGHSHpI0gEaWMHOKETSnbV2j6Tb0obeGHeMAIA8bZsv7X4p/n1bDk5VrJv1Tv+6lbdIcRQ9dSRzdTmqK9UksrWRzdivutF99uZHs8cXRlXT4LHaMdmvW3dHPOfHbeciactj0a5Z85dw61b9wd/Ct3akNOtt0nE/CH+2TUorfxd+PVCp1v7VPVc3npbMAAAAAAAAAAAAKJiiTbYzxtRL+pukkWnDCyS9R9JsSQcrXJW7P6fdPju2AAEA/ea8J7/rX/5lLGEM0Lkt9XnE/v51bWulZEf+5wW0kJU8bWR7K9u52sgmMxMAmz1fx54IyYrJLvdcT+vgsWyPnyQ9+4nw5w+lHc9Hv2ZtyGS7Pcv9833fr5YDo50f5XsJVKrdnp+/5jlDFwcAAAAAAAAAAAAqTtEm20n6qFLtX/uyDa6TdIy19hfW2hWS2kPu80DvHkbSLGPMhJjjBAAckmcrVtuTZUEOVYqmvDb1eb8QRU07d0bfP1NPW/DWrmS7rJXtMpLtpnra7ToS/QI54pQkTQk4Y9QR2ffsKNI2shvuzeGae6T2zdnXbX3KPTfmOKnlgNTtCadLjdPCn+/7/gBI2bXYPTfj8qGLAwAAAAAAAAAAABWnmJPtPqL+RLvbrbUft9bRo8+jt5XsirShg2OIreQYY2qMMWcYY95hjPlvY8yHjDEXG2NmDndsAMrAiP2lU24p4AE5JNvt/4HU55EHS+NP9a99+OLo+2eKmmxnIraRrffkij9zVfb4+qy6zT3XEvAr0hjpjBBtYvesCB/DUGjfJL30s9yuve8MqXuve37Py/4KdGf8vf92okY65yFp7Inhzt5wT7h1QKVq3yyt+7t7fu5Hhy4WAAAAAAAAAAAAVJyiTLYzxhwiaar6sys+meeW6e+Iz85zr1gYY2YbYy4zxnzDGPOgMWaXMcamfayI6ZzxxpjrJW1QqsrfjZK+Jun7kv4o6RVjzKPGmBClnwDAY8Zl0hVWuniddNHK8MlFUiqhK241aV3Ip17oX7vlMWnvmvzO2/Zs4HDWynaONrKDKttJ0riT3Oe3rffH12fRN91z1Q3B480hfnWu/G2484fK6j+652rH+K/d+aK04T73/LIfuecOu3pwYmTzbOn8x/xnAghnzZ/dc3PeW5jfJwAAAAAAAAAAAECvoky2k3RU72craaG19uU899uRdnukc1WB9VaWu8sYs1WpBMBbJP2XpNMljSjAeRdIWijp3yX5MgtOlvR7Y8xNxpimuOMAUGEaJktN0/2JYUMSx8S025Oyr9/2TH7n9QRXQstW2S7hqmxnA5Lt6j1fhyPZb5D2Te65unGO8fHZ9902P9z5Q8X3/TzgP7Jfv91z/aJvuOdcj6EkHfW17Oc6ki8B9PL9bPpeIwEAAAAAAAAAAIAYFOs7uunv6i+LYb+OtNuNMeyXq6MknSd/4lssjDFnSLpdUnp5HStpvqTbJN0jaUvGZW+V9FvjKrMEAFFM/bfwa1/4ihSUXJarCWdItaP77086TzLBSW/75J1s1x443JWtsp3jV/GgNrKSNPV1nvOD29gOXhccpySppiV4vG6MNO5k/76r/yBtuDdcDEPBkfwoSZr7sRDXh3w8M/m+R3Pem/16m5SSXbmdDfTp3CktvV6a93bpkcukRy5Pvc7uyffvV4qAr8XzlNcOXRwAAAAAAAAAAACoSMWaVFWfdrvDuSq89Gp2u2PYL24dGtjqNi/GmGlKtYitTRt+VNKh1trjrLWXWmvPkzRN0sckpb+r/3pJX44rFgAVbOJZ0dbfdXw855pq6cRfDBxrmCidcov/uoVflDbPy/3ctg2Bw52J6sDxvsp2xtHyMBnURnbWO93nPxui47q17iS0E27wX3vyTdn3v/9cacl12dcNhRW/CR6vGyfVj5NetzjL9Tm2xW2e6Z6rGysd853se3TuzO1sQJI6t0v3nSU9/SFpxU3Sqt9Jq26Vnvsf6a4TpB0LhjvC/Lxyo3tu/DBXVAUAAAAAAAAAAEDZK9Zku/SKa55+bKHNTru9NYb98tEl6V+SfibpA5KOVaqFbIhyN6F9UVJaSSfNk3SOtXZR+iJrbYe19jpJl2Zc/5/GmBkxxgOgEhkjNe8ffv22+c6EtVDmflw69xHpsrbghKfpb5LetGPweLoFV+d+fkACiJWnjey+ynauNrIBle0SVVLz7MHjktT6itSeWbA0g6/aW8tc/7XNs6TLO6VJ5/rXzf+Y1BNHnnwefM+jvoTFlrnSZR1S7/dhkL2r4q222Oegj0lv2iZNv8y9Zu2f4z8XleOVm9ytVju2SC98dWjjiVPQ62KfMBUrAQAAAAAAAAAAgDwVa7Jd37vkRtLR+WxkjBkr6eC0oeX57JenGyW1WGuPtta+z1r7E2vtM9ba2PrFGWMOkJRe+qhT0pXWWmffQGvt7b2x9amTlEfGCQD0ap4Vbf3SHwSPO6q/7TP2BOnYb0vjT5EcleQkSbUjU2tdNj2Ue4JVQLJajzFKOmLfV9nO2UbWEUfNyOBxSdryqD/GHQvdc9XN/mslKVEjTbso+7r1d2ZfU0ibH3bPpT9+VbXSrHe417aujC+mdLWjpWOudc/n29IYlW3TQ1nm/zk0cRTCbs8/4xO17jkAAAAAAAAAAAAgJsWabDdPUl/pirHGmIi9CAd4t7SvbFCrpKfzCSwf1trtvqS3mFwhKb2M0h+ttctCXPf1jPuXGmPqA1cCQFhT/i3a+vV3OSayJNtVNYQ/Y+KZ7rlkl5TsDL/XAIN/pbqq2kkhKtu5ku188Xdl6ZTe0+aeG3mo/9ow5/fZtSTcXoXiexwmZfyTYuyr3Gv3BCT2JHtyiylT41T3nO2O5wxUpvaN+c0Xs27Pz/b4U4cuDgAAAAAAAAAAAFSsoky2s9Zul/RU2tCXjMlW1mgwY8xUSZ9WqpOflXSPDezLV1Yuzrj/izAX9baYfSJtqEnSeXEFBaBCzb5SGndS+PXbnpK6Pa1OXaIk22VrNdi1K/r5ktS6YtBQp6fKXl+yXcLx68356+qgT7hj2LvKPSf5H1tfRcB0LQdnfwz3rg23V6FsuNc9l/l8nPV299plPxo81rHJvf7k3/rjylQ/MXh819Jo+wB99rwibX7Ev8Z2S61ZXiuKle+1ZTL/bAUAAAAAAAAAAEDhFWWyXa/vpt0+UVLAO95uxpiJkv4iabT6SyJ9K57QipMxZpKkI9OGuiVl6Sk4wIMZ9y/INyYAFa52pHTm3dLJv5FGHRHumkWe9pou1RGS7RomSefOc88v/X708yVp5+AWrb7KdjUm1fIwchvZxilSw5Tguef+xx/jlsccwYzyX5fOGOmYb/vXLL0u/H5xs1Za6Uh6G3WkZDIe76o6aczxwetX/0FKZlSZ8z3GIw8JH6ckTcvMj++16cFo+wB9nvr3cOue/VRh4yiUf/23Y8JIVRRkBgAAAAAAAAAAQOEVbbKdtfYWSf/qvWskvdcY87Ax5jTfdcaYJmPMB3uvPUr9Ve3uttZGSTwrRYdl3H/eWtsa4frM7JOQPQUBwKOmWZp5hfTa56QrrHRJlhaGrkQpn90vRVvva+EZY6JTPm1kk65kO0mqn5RbQG3rgseraqPtE6bYrPXEX0gBSY/7VDcGj/uS5LY+OfD+xvuj7++S8DzucbWrReXo6ZA2PhBu7apbpZ5cW2YPoz2O13oS7QAAAAAAAAAAADBEQvaMGzZvkvS4pLG990+R9KAxZoOk5ekLjTE/lHSgpJMk1SmVoGd7P6+V5OkTVzYyswWWB65yy3wHM2KJHgAIoX6Cf37Xouh77ngu2vrGae45m0OSk7WpimkZrV+7fMl2pjfZLrPSWt+W8nQ9d7W6zZZwUuuoYNfuaY2aq2TH8CTAtG92z409IXh8/KnSKzcGz3VsGXi/p8O9f9Msf2yZfEmOPW1Sojnafqg83W2pJNqaEZKMlIyQQLfsemm/N6ZeF2pGFCzEWFU3S53bB4/3tOW1rbVWm7s2qCMZvE9jVZPGVE+QCZNoDAAAAAAAAAAAgLJW1Ml21tqXjTGvk/QnSZPVnzw3WVJ6WR8j6f1pt5W2do2k11lrM94tL0v7Z9xfFfH6lRn3xxpjRltrA97VBIA8zLhCWnmze/7pj0jHfEfal6yWJcGheXa0800i1Yo1qNLb5hyKoCa7BiXaSWHbyAZ/bdZXGW7uR6X5Hx083tPem/jneLxcCSl149xnuZz8G2neW93zHVv8SY2F4ku62f99weMzLpeedMx1ZxSIde0/9sS052tI0y6RFn0zeK6nLVUVEpXLJqW2DdLe1dLeVVJr78feVamx1lVShye5NJtnrkp9SNL0N0sn/ar4K8QFJdpJ0gEfynnLJXsX6Mb139GO7q3edeNqJuo9Uz6pGfWZ/9wGAAAAAAAAAABAJSnqZDtJstY+aYw5RtLPJV3QN5zxecAlSmVlGEn3SHqntXZDwQMtDpkliyKVKrLW7jHGtEtKf6d1pKS8k+2MMRMkjY942Zx8zwVQpI77nj/Zbun3U8lwh34mdT9bNaGmGdFjOOQz0vyPBM+1bZAaIrRq7QxO0thc1xQ4Xmvq9lVIcibb+SrbjTnOPbf+TmnKBcFzy34YPD7Zsd5n5hXSriXSwmuC5x97p3T2fdH3zdeS69xzrnaxNc1SVaPUs3fw3ItflWa+pf++K9nu8M+Hj7FPvefXYts6/zxKX9fuwclzffdbV0lta1KJvENh1W1S7WjpVT8emvNy0bbePTf9jTltuaNrq65f8yV12ewVAbd0bdR3V39eX5lzg+oTDTmdBwAAAAAAAAAAgNJX9Ml2kmSt3Sjp34wxx0r6mKSzlapuF2SnpPskfc9a+9AQhVgsMkvg5NJTq00Dk+3i6iv2H5KujmkvAKUuTPWkVbf1J9tlUz8x3hjW/V2a857we62/J3B4ZWNw29baRN2+2wlnG1lPZTtf7CtvcSfbuVTnmDgy573uZLuN96cShRI1ue2dq82PBI83TPFf17RfKnkw044F/beTPe42nVWN4eIbcI3ncV9/tzT6yOh7ojgku1MJk+nJc3tXSa1pVeq6dgx3lAOt/oN0/A9TlT+L0Zo/u+d8P0seC1qfDpVo16c9uVeLWp/V0SNOzuk8AAAAAAAAAAAAlL6SSLbrY62dL+kdkmSMmS1pP0ljJdVK2iJpo6QXrA3o5VcZMpPt2nPYo03SaM+eAJC/MIkRrSvC73fwJ6PH0HKQe25PhLMlZ9JMc3dwEseenl37bufURtbXNrfD0zW9ZW5wQlnQWBjZqv91bJMackiEzEfDFGnP8sHjQS2D07U6Oq83pOX2+1rU5pLs40sStd3R98PQsDbVzjQzeS79c9u6wNbSRa1jq9S1M1Xhrhj5foabc2vturUrUhFoSdKWHK4BAAAAAAAAAABA+SjKZDtjzAhJs9KGXrLWtqavsda+LOnlIQ2s9HgyNWK9BgCiMUY67H+lhV9yr+mM0MF69NHRYxh3kntuxW+kIz2xZXIkYXUlsleIciXbJX1tZGtHuud8j5srqW7C6e5rfBI10uTzpfV3Bc8HtWUtpKc+HJxoJ0kTz/ZfO+3i4NbG6a0rfcl2uVQHTHj+Gda9J/p+KKyVt0pLvydte8b/XCg2Iw5MJW/uCfHP5t+PkSaeKR3/I6nlwMLHFkXbBvdc/bictuxMdkS+piuHawAAAAAAAAAAAFA+irRPlN4i6dnejycl1fmXo1fmO/O59NTKvCaud/uvl3RYxI+LYjobQDE6/AvS/h/wr1n+sxAbmVTyXlSJKnfCXesr0tq/hd9r1W2Bw52NwR3Pj0lrQWhyaSMrSYd+Nnh8y2PB475ElZaD/Wf5nOD5Hi25Lvd9o3r2U9KyH7jnD/ig//pZb3PPdfcmVnV62n7m2MZSk84JHn/hK7nth8JYdZv06OXS5kdLK9FOko7+pnT2/dkTTvtsfEC69zSpbWNh44rCJqWXfho8N/n8nLftstET5zpsLoWjAQAAAAAAAAAAUC6KNdlunCTT+/GUtXbbMMdTKoo22c5au8la+0KUD0kvxXE2gCJlEtKrfiSdO8+9Zsl3su/TPCv7GpcRB7jnljsSO4Jsmx843FVVHzheY/pzyHNqIytJtWPcc60rB4+t+ZN7vSPOUGpa3HNLhzDZbtE3/PPZkuF88xvuTX1e/4/c93ep9nRr79qd256I37IfD+/5VQ2pNtCTzpXmvCda62yTkJpmSGffG/6a9k3Smtujx1ko255xz9XlVtVOcle2O37E6Tqs6bhI1wAAAAAAAAAAAKAyFGUbWUk7ez9bSWuGM5ASszPj/vgoFxtjmjU42c5TxgcAYtA41T23r+2pp3JdmNaILg1T3HM7ngu/T9OMwAS3rmS7pKZB47VpyXYJR9679bWRlfyxb38+FdOAsX/ltlc2VYO/vn2sTX3kUnkwbtm+Rt/8zgXStNdL3a3uNb7kR5+6se65XUukscEJPxhiUV4PIjOp51/TdKlxv97P0wd+rh0z8OeofUv2BNM+Y9KeQ2NfJW19Mtx1Bf2aIyrQ61eno7JdY1WT82WrI0llOwAAAAAAAAAAgEpWrMl269Nu1w5bFKVnWcb9GYGr3DLXb7PWbs8jHgDIrmm6e852S8keeZPt8jH1QunFrwXPRakqFlRJTlJnzQgpIGmuJtH/q81Z2S5bG9nJ57nnevYGBJOZj51mzLH+s3wSVamEoL2rAiatlOySqgr8qzzZ5Z9v3E8afaR/ja/KYV8bWV/70OocK9tNu1h66YbguVJrV1rOugN+psKqHpFKft2XPLffwGS6xqlSoibano7204EaJvbfPuQz0sMXh7uumJ5/vlimXpjztl3JzsDxGlOrHtMTONdJG1kAAAAAAAAAAICKVqzJdgvTbufRH7DiLMq4v3/E63EHdDMAACAASURBVGdn3H8xj1gAILyTb5bmXRE8t/UJ/7Wz3pH7ueNPkiaeJW28f/Bc5zbJJrMntbQGJZmldDVMlJLrB43XmLRkO0f5JCsra61z3lsR7Yn3STMu67+f7JJW3Rq8duyJqYS5fJx4g3T/ucFzW5+QJpyW3/7ZZKvUdfrfsn8fjZGaZwdXStzdW2Hxha8EXzv6mOwxukz9N/fczoWFf+yQnbXBCax9mmZkVKLLSKarHRl/TGGT7U769cD70y6S9nujtPoP2a99+ZfSib+IHFpBvORp6z3h1Jy3dVW2q03UOauLdtBGFgAAAAAAAAAAoKJFKIsxdKy1SyU9r1QpoyOMMZ4eg0izMOP+EcaYxgjXn5JlPwAojFGHu+cWftl/bVWOFcX6HPLf7rmtT2W/fvmPnVOdJrg6Xe2AynbuX8VZq9u1zA0e794t7V3Xf3/Tw+49xp/sPyOMBs+v6YVfyn//bLI9R0YfEW6f0UcHj6+6TerplGxwpatBLXujqh4RPL7o2vz2RTy6PFUhz3lYumiFdO4/pZNvko76inTAv6eSKEcdXphEOyl8sl3jfhnXGem030uXbJaODtGGtm1j9NjiZq20Y0Hw3PjcE+0kqdOROFdr6lSbqAuc66SNLAAAAAAAAAAAQEUrymS7Xt/r/WwkXTOcgZQKa+16pZIU+1RLivIu5BkZ9/+Rb0wAEErtaPfcjuelak/ecMtBhTt7sydJbd+aR5xTXY7KSLWmP4nD1UZWCpFsV+OL/ZHg24P2GOU/IwzfY7jzhfz3z8aViCNJs94Zfh8b/P3S6KOknZ4zqpvDnxGke0/weKLA7XcRzk5PoV/fc7+gQv4T3tWmu36cdPB/SZMcFSn7bHk0WliFsHeNe87kV5XTV9mu1tQHznU4rgEAAAAAAAAAAEBlKNpkO2vtDZL+rlSy3ZXGmE8Nc0il4k8Z998V5iJjzEGSTkgbapV0d1xBAYBXo6cyWk+bP6Fl2kX5ne2qZiZJXY4kqHTdrc6pzkRwt/aBbWR9le0cyV99Jp3tiSst9u7dnj3O8Z8RRsMk95yvKlhckp3uucOvDr9Pu6OKV0+H1OV5DCefF/6MQI6kSlclPQytnjb33MiDhy6OdGEr2zXP8s9ne/3sHIKf32xcyaiSNO6kvLZ2VrZLUNkOAAAAAAAAAAAAwYo22a7XW5RKHjOSvmqMucsYc+Ywx1TsfiMp/d35S4wxB4S4LrOP4u+stbybCGDoHPjR4PHObf5Ep2zJJNk4EuIkSetDFPjcNj94fMLp6rLBSWA1aRXLEr7KdjZLZbuDrnLPbXm8//bqP7rXjTvBPRfFXEcs3a1S24Z4znDp2Oyei/L8mPPu4PFdi/xnTH9z+DOCHPb54PHdS6VkV357I3++52/YpLe4hTn3lFuzr5l9pTTxLPf8E+8e/uegL9nxwA/ltXWn4zW61tSpLhFc2c6VoAcAAAAAAAAAAIDKULTJdsaYn0u6TtIuSbuVSrg7R9K9xpgdxpiHjDG3GWN+HuHjhuH8moaCtXaZpBvThmol/dIYRy8sScaYiyRdmTbUKemLBQkQAFymXOCee+mnweNNeSba9XFVd9r6pORLePNVfZr5NmeyXWxtZOvGSiMODJ7re8yS3dKel4PXzLgivmShyee7557/XDxnBPFUFtSZd0Xbq95Toe+5/wker26SqoIrYIXWMtc9t+Lm/PZG/hY6/klUO2Zo4xjA/bqxz4xLs6+pbpLOuMO/Zrifg+s9hZbrxue1dZevsp2zjSx/iwIAAAAAAAAAAFDJPOV8ht2VGthXzar/ncUWSadG3M/07vGevCPLgzFmmoIf98x3+KuNMTMd2+yx1m7xHHO1pIsl9fVdPFmpJMX3WmsXp8VSJ+n9kq7NuP5aa+1Kz/4AEL/qJvfczheCx02IhJMwqhrcc7sWSSMPCZ7b+ID7uuomdXYGJ3KkV7bztZFNZmsjK/lb7HZsk3Yvd8/7HvOofHv5kmXytemf7rmoX58veWr3suDxKmcue3i+ODfcI81+Z/5nIHed24PHfVUxCy1bkmyU535VXaod65bHgufX3z28z8HdS91zaa+lUVlrnZXtakytTCL49wuV7QAAAAAAAAAAACpbMSfbBclS4qckPCJpRoh1UyW94pi7UQMr0Q1grV1jjLlE0l1KVbaTpFMkvWiMmS/pZUkjJR0jKbMkyN8k/W+I+AAgXqOPzuGimJLtxp4grbwleK5jq/u6TvecHXuiutb9LnAudGW7bG1kJalpprT1ieC5ji3eGDX+5Oz7hzXG8/3r3BbfOYP2diRCSdGfU6OPjH6+7/kR1lhPK9849kd+qkekfpYytW8a+lj2yZJsN/ZV0bbzJdv5XkOGQsJTOTKPhOtu2y3rSGiuNXVKmKrAuS7bqaTtcc4DAAAAAAAAAACgvBVtG9leJsaPimKtfVCp6nab04aNpOMkXSrpfA1OtPutpMuttT1DESMADFDTLI05LuJFMb28z3yre65tnXtu7xrnVHfTNGcb2JpE2DayISrbzf2oe+5vc6VnPuGen/aG7PuHVd3kTvDpbpV6CtB60VrpMU/FrerGaPtFXS9Js98d/ZpMDZ72tevvlLr25H8Gctfq+NuHAz8ytHGky1bZ7lBH22OX/T/gntuxINpecds2P3jcV9UzhC7rrlBXm6hTnXEn+bkq4gEAAAAAAAAAAKD8FXOy3awCfMwe0q9gmFlr75B0mKQfSfKU/tHjkt5krb3CWts6JMEBQJBTHNXlXOJqI1ufmXuc5tHL3XMLvhA8PvoofyKHSWsj6/lV7ErWG2DU4f75XYuCxxM1Uu2o7PtHcXRmV/I0vqS/XL38c8l2B8+1HJTbnqOOiLZ+4lm5nZPpyP/nnnv6Q/GcgeisJ+F14hlDFsYg2V77Jp0dbb+WA92Jo23rUomtwyHZI217Knhu+pvz2trXDrY2UafahLtFNK1kAQAAAAAAAAAAKlfRtpG11q4c7hgKwVo7c4jP2yTp340xH1OqlewMSZMktUpaK+lZa62rXS0ADK2m6ZKpkkIX2IyxcGndeKljc/Bc997BVc981caqm7yVj2rSku0SnqSZUG1kqxqyrwnSMC2363x8leFW3Sod/4N4z1txs3su18cl6nXVOZ4z6Nwm99yav6SSjhK0rRxy2591z+X6HCtWvkTTnQuzJ/YWgivRTsr78e/0JETXmFpVG3eiZWeyAJU6AQAAAAAAAAAAUBKKNtkO8bLWdkp6YLjjAACvRI006khp+zPh1u9eGt/Z1c3uZLv2TVLzzIyxDe69akapy1P5qCYRtrJdiDayiWqpZa60a0n2tekaC5BsN2J/91zH1lR1rLiqEUrSxvvdc2mPcSQjD5W2PhFtfRxGefbp2iH17JUSI+I5C+G1rnLPxfW9Lxa+52Dr6uFJttu72j038rC8ts5W2c6X7NxhSbYDAAAAAAAAAACoVMXcRhYAUIkOjNAys8pTSS3yuf/hntv86OCxnjb3+jnv9VZNqjV1+24bT3W+ZJg2sr3nRRblcQ6rpkVqmuWeH8rWi/u/L7frZr0j2vqWubmdk2n8q/3zoas9IhatK6WbjfTwJe41TdOHLp6h4HsOtm8cujjS7XjBPTf19Xlt3eWpPlpr6lRHG1kAAAAAAAAAAAAEINkOAFBc5rxbqp8Ubu2My2M815Ow9tjbpD0ZHbef/1/3+knnqCvpaSObXtnO10Y2bLLdQZ8Ity7d9EujXxPGKb91z218KL5z2rIk/0x5XW77TjxdGndyuLVTL8ztjCBVtdIZd7jnN9wb31nw62mX/jzTv6Zu/JCEkpMxx+d2XZWnGuQT785tz3x07pQWftE93zAxv+191UdN7YB235k6aCMLAAAAAAAAAABQsUi2AwAUn4OuCreuqiG+M7PttfoP/betldb82btXp7dqUsg2sjZEG1kp1Zp19FHh1kpSdVO87VzT1Yx0z730s/jOWf4T/3x1Hs+NsImI9fkl+wzSuJ977uVfxHsW3NbdmX2NqSp8HLmqac792ubZ7rmorarztd7zfYihpa2r+miNqZUxRsaYAVVIw1wLAAAAAAAAAACA8keyHQCg+PiSjtLlk1CVKVEr1U9wz+9Y2H/b10JWkhJVzhaF1aZaibREnYSnjWzoynaSNPHs8GvDPr65aJjsnuvcGt85Cz7vn69qyn3vppCPT9yPoy+Ba52n6h3iFaaKW/uGwseRTfP+weOz35X7nr7n9E5PS9dCSH/NzRTDz56rsl1toi7tdnArWSrbAQAAAAAAAAAAVK7q4Q7AxRjzjhi3s5J2S9opaYOkxdbaCBkMAIAhNfn8cOvirGxnjDTtDe6Kaa/cKB1xjdQ0Xere695n/KmS3Ikcma0J/W1kQ1a2k6T9LpYWXxtu7bSLw+8bVa2nst2OBYU7N93Mt0mJPCqPTTonVf2vu9WzyEjTYmwjKxV3tbRS0NMp/evT0pJv94+d85A04dXR9uncHm9chTLtQmnxtwaOJeqkyRfksefF0iZHu+fuLEnGcbJWeuHL7vn9Lsn7CFd1uvRqdnWJOu3pCbjW04IWAAAAAAAAAAAA5a1ok+0k/VKKUtInklZjzFOSbpR0q7X0ggKAolI3Rpr6emntX/3r4ky2k6Rjvu1vT3rPqdK5j0qbHnSvOe4HkuSsbFeT0ZbQ30Y2wq/B8adIx31fevrDnkVGmnG5dPgXwu+bi0P+W3rx64PHO7ZIu5ZKLQcW9vzjr8/v+poW6cy7Ut9vl5N+JY0+Mr9zMmVLtmtb768cWMlsUrr31dLWJwaO33u6dPb90sQz4z2v5aB498vFkV+RWlf1tri2Uu0Y6dTbpPpxue859yPSMx8PnhvKynbz3uqfnx2i+mAWoSrbGUdlO0tlOwAAAAAAAAAAgEpVzMl2fdwlf3LXLOmM3o+vGmPeZa29uwDnAAByNfk1Q59sV90oHfJp6cWvBc/vXS29/EvplV+596gbI0nqSjqS7RIZle08v+aSUXPOD/yQNOe90vq7pZ0LpXEnal/HeGOkkYdKdWOj7ZmLxunuuWU/ko79lns+jLYsLTxrRuS3v5RKXvSZ9bb8z8iULdnulZukQz4Z/7nlYMfzgxPt+tx3lnRFzH+/UdUY7345xVAnnXab1L5FalsrjTwsv4qOkmQS0shDpJ0vDp5b9kPpqK/kt38YHduklb91z898a+r1LE+uhOjMynZBOmkjCwAAAAAAAAAAULGKPdku/Z006xjPlPluatBamzY3WdI/jDEftdb+IHqIAICCCJMUVohWftnO3TJPalvjnq9JtVEN06JQkozxVLaL0ka2T1WdNO31qY/hUjvGPbdlXv77b3k8/z3CmHyBtP4fg8fHnVSY8zzPBUnxPHblaqieE31mvX1oz/OpH5dfNbtMrja6ha5I2Wfrk/553+tLBKEq2yUcle1oIwsAAAAAAAAAAFCxijnZ7l29n0dI+ryksUolxyUlPS7pKUmrJO2SVCtpjKTDJZ0maVLvtVbSrZLulNQgaZSkQ3rXzNDApLtvG2MWWWvvL+hXBQAIZ+JZ2dcUopXjpPMkeaqHrb/Tf31vVbU4KttFaiNbTCZ5vnfdrfntba2/4uGYY/PbP92BHw5Otpv7sfjOGCDL9zvfx66cJbvi26uqQepp86+Z/c74zis2rudZ+6bhPb/PpHNjOabT2eq7/zU6Mzm6T5cjmRoAAAAAAAAAAADlL0sJleFjrb1R0jxJH1Iq0U6SfipplrX2FGvtx62137LW/sxae7219svW2sskTZP0RkmvKJVE92ZJM6y1P7LWfs1a+w5r7SxJr5P0cu8aq1Ti4bVD+kUCANzqx2df0zQr/nNHHS4ddnVu1x5//b6b7sp2A5PtEr5ku6htZItF/QR30tvOhamEuVxYKz39Yenln7vXnHlXbnsHmfKaVFvedDOukPZ7Y3xnpMv2uGy4pzDnlgObpQrk1qfD75Ut0e7gT0q1o8PvV2oO+XTweOsKac/LhT3bWumZq/xrprw2lqPCVLarc1a2o40sAAAAAAAAAABApSraZDtjTKOk2yXNldQt6S3W2g9Ya1f7rrPWJq21f5J0hKRHlPoarzbGXJmx7g5Jx0h6Nm34CGNMPOUyAACFV9UQ/57GSEd8QZrznujXjjl+301nIkdmG1nPr+Kc2sgWC1/1t03/zG3PHc9Ly653zzfvH679cFgmIb3qx9J5j0vHfV869xHppF9JiUIVBi7h7/ewy5Ko+PRHwm2T7HHPmUTquXD0/4UPqxTVT3DPPfe5wp69c6G01/NP/REHSomqWI5yVadLf41OT7xL53p9BwAAAAAAAAAAQPkr2mQ7SddIOlipd0+/bq39XZSLrbWtki6RtE2p6nXfN8aMz1izW9KblErm63uX9rw84wYAxCVbK9nqpsKdPe6U6NdUN++72eVqUZjZRta4K9slS7WNrDTgsRhkzZ9z23P5j/3zYaohRmUS0rgTpAM/JI0/JbZEn0BVIZ7Pe9cW7vySluVnZevjUtfu7NvsWuSeO+eR1HOh3Pl+djfcW9izs+0//tTYjnIlzKW/RtcZR2U7S2U7AAAAAAAAAACASlWUyXbGmGpJ7+i92yHp67nsY63dIqnvnfkGSVcErHlF0m3Svj5+OWRXAAAK4rDP++cbJhfu7FySOkYcsO+mM9kuo42s8baRLeFKZ+NOds/tXprbnst+6J+PMRFnWDRMlEYe6l/TuX1oYik12drISlLXrvzWjMryvSkX4z3/FO7YXNizsz2/fRUzox4VqrJdcLIdle0AAAAAAAAAAAAqV1Em20k6VdI4pcqUPNlbpS5Xd6fdfoNjzV29n42kaXmcBQCIky/p44QbUi1fC6XlAGn2leHX108cUPWsKxmcbJfZltDfRraEK9s1THTPrfu7tHNx+L16OqS7Tsq+7oB/D79nsTriGv/8poeGJo6SE+JnZd0/sq/p9vyTs3pE+HBKWeM0aeRh7vn5/ykVqurm+rvcc6OOkEYdHttRYV6j6xxtZDuSVLYDAAAAAAAAAACoVMWabDc97fa6PPdan3Z7hmNNes+w0XmeBwCIS6JauqxDmvGWgeNn3CHNeXfhzz/hhvBrD7pqwF1X1aRBle08CYMlnWwnSafc4p77+8Hh91n45VQb0GyaZ4Xfs1jtd4l0jieh7ukPSz3BSUIVLUzy15Pvy95Kdsl3g8erGgqb3FtsfK99S74trfxt/Gd2t0pbn3TPv2Z+rN+DUJXtTHCynetaAAAAAAAAAAAAlL9iTbZL7wvYlOdejb2fjaRJjjXpPauC31UDAAyPqlrplJulK2z/x5QLhuZsE+HXZEa7QVfVpMxku4Svsl2Y1pjFbMT+/vk9K8Lts/R7eYdSUia8WkrUuOe3PDp0sZSMkD8rG+71z29/Nni8KridaNmqbvTPr/lz/GduuN89N+OKVPJ1jFytYNNfo91tZKlsBwAAAAAAAAAAUKmKNdluV9rtQ/Lc69C023sca9LfSWvL8zwAQCUafeSAu502bBvZMq5s13KQf37jA+H26dqZfU1TGVS1SzfqSPfc3nyL/pahsG1N27I8dnVjg8c7twePl6sR+0tVnoS7bI9jLtrWuudGe34ecuSsbJfIXtmuw5GoBwAAAAAAAAAAgPJXrMl2a3o/G0mzjTEn5LHX23s/27R9M01KW7M5j7MAAOXm2JBV1cafMuBumBaFkr+NbLLUk+2qmyRPMqG2P+O/fvdy6eaQbSOP/0HosErCAR90z/XwdwGDhfxZefHr/vkdC4LHJ5wRKZqSV1Uvzb7SPb/5kfAJjmH5ntfTL433LLkr26Un29W5KttZKtsBAAAAAAAAAABUqmJNtntIUpdS75waSdcbY7L0sxrMGHOZpPPU/w7sPY6lx6TdXhH1HABAGZv7YX+FJ0k65+FBbT+dbWQTA9vImnJuIytJx1zrnlv6fWmvo5pV1x7prweEO+PEG4eutfBQmfMe99ya24cujlIR9mdl72rppZ8Hzy35vvu62e+KHlOpO/Y6qXa0e37JdfGet+Ca4PGqeql5ZrxnyVN9NC0hOrMSaZ+OZIds3MmGAAAAAAAAAAAAKAlFmWxnrd0l6W9KJdpZSUdJussYs1/YPYwx75V0o/oT9qykmxzLz0+7/VwuMQMAytiRX/bP148fNNTlqGxXYzKT7cq4jawkmWr//Nq/BI9vcOXHB5j9jvBrS8mYY4PHozw2FSPCz8orNwaPz/+I+5qq4ApnZS1RJR39Dff8y46kxVx17QgeH5tPgWvPcWEq25ng77tVUt22qyBxAQAAAAAAAAAAoLgVZbJdr/+SlN6j6RRJLxpjfmiMOcsY05J5gTHmQGPMB4wxT0n6saRa9Sfa3WCtHdQbrDeB7wz1v0v7cLxfBgCg5E272D/fNGvQUKejsl1mpSR/sl0ZVLab9gb//M7FweO7HOOZjvxqtHhKye7lweMjDxvaOEpBlCpjYZ9b6ZpmRL+mHDTNdM/tWhRfK1nfPl274zljwHE2r8p2krtVOAAAAAAAAAAAAMpblnIzw8da+4ox5t2Sfq1UUqCV1CTp/b0fMsbskrRbqaS6kb2fJe3LXOiraveEpP90HPVp9ScdtsvdahYAUKl8LQyb95eqagcNh65sZ4yMTGAVu7JoU9iUpShtx5aB9/e8Ii3+VqrFbBjTLsotrlIw6nBp8yODx7t2DX0sRS9CYmr7pujbjz0++jXlYPxp7rlkl9T6itQ8O/9zHFXmJEmTz3fPebT17NXd2/6gl9sWa2LtNJ05+nVqrhqhu7f9SUv2Pu9MZq5Jr2yXcFc0vHbVZ1RlqjWqeqyOaj5RJ488Ry+0ztfjux7Qxs7+9tjVpkaz6ufqnDEXaUzN4CqoAAAAAAAAAAAAKC1Fm2wnSdbaW4wxSUk/kdSi/upzfcl0I3s/Bl2atu4uSZdba1sdx/xa0u96b+/xrAMAVLI3rJZuD0gcu+DZwOVtyb2B47VmcGKeM9muHNrIStIb1ki3TwueW3mzdNIvpUSN1Lpauuc0qW1t8NpMp/1BGnlwbGEWndlXBifb7VmeqgRm3FURK07UxNR1d0pTXtN//5Wb/OtNMReDLqCqWum0P0oPXxI8f8cRqZ/v2lH5nbPuDvfcjEsjb9eV7NR1a67WyvZlkqRlbS9o3s57ZHv/55P+Gl3rSbbb0LlGkrS2Y4VeaJ2vu7f9QVu6Ngbuv7J9mZ7f84Q+OePrGlk9JvLXAwAAAAAAAAAAgOJR9O8cWmt/J+kwpRLiejSwal3mRx8jaYWk91prL7DW7vTs/7i19qHej/kF+BIAAOWgcZp0hZUufFk6/a/SG7ek7tc0D1ra6anSVBPQltA4fh0ny6GNrCQ1TpUO+A/3fF9C2YqbwiXaJWqlt/RI+zkSgMpFVYN7bteSoYujJERMtlv4pYH3F/1ffKGUG191u+5Wae3f8j/jBU876KrGyNst2fv8vkS7PkklQyUwp7eOrTPuNrKZNndt8O6/rXuz5u8KSJ4FAAAAAAAAAABASSn6ZDtJstausdZeLmmGpI9JulXSEklblUrA2ytpraRHJV0r6QJJ+1trfz48EQMAylbzLGnq66S6sc4l6S0EM9UHVEoyjgplZVPZTpLqxrnntjyR+rz1yXB7Hf2Nyqg05nvMtj4xdHGUhIg/K1vm9d/ubpN2LHCvbSnj6olh1I6SqtwV3mJ5Lrau9JwfvRLcHVt/l32RQ1NixL7bdYn6Qa2/87EiIwEQAAAAAAAAAAAApaeo28hmstaul/S93g8AAIqSr7Ld5NoZg8aMHMl2tkwq20nS5NdIC68JnnvuM1L7JmnN7eH2mnF5fHEVM19FsZ7gNsUVK5+fle49/vnjr89973KQqE79/Lp+Pjt35L735sekVb+TOja719R7kk4dVrQvzSmc6fX7q7m6Zd/9hKnSQY1HakHrUzntl6kj2R7LPgAAAAAAAAAAABg+FVAWBgCAodVp3cl21WZwnnvC8eu4rCrbjTvRP7/k2+H2OfEXUv2E/OMpBdWeNrLr/jF0cZSEHH5Wts2Xkj3SP452r6kbK004PfewysWx33HPrbhJ6skhiWzxt6V7TpaWePY++pvR981RS9UovWPSRwaNXzrxfRpfMymWM3y/GwAAAAAAAAAAAFAaSqqyHQAApcBV2a4+0RDYMtYYE5grVFbJdsZI0y6W1vwp9z0mny/NvjK2kErC2BOC23Su/evQx1LMbA4/K/M/Lh1xjdTmbvus1zybeu5WuqYZ0ux3Sy//PHh+zV+kGZeG369zu/TsJ7OvG3Nc+D1zlFCV3j/1v3VAw2FqqGocND+2ZoL+Z+Z3tbztRW3oXCNJunfb7drRvTXyWb6qpwAAAAAAAAAAACgNJNsBABAzV/WiWlMXOO5qI5sspzayklTTkn2NT8sh8cRRSkyVe65ja6ryGiTl8LOy+RFpdZbWxTUjcgunHNVPdM9tvC9ast2K30q2J/u6qvrwe+bo/LFv1BHNr/KuqU3U6ZCmo3VIU6oK4oI9T+aUbNdFZTsAAAAAAAAAAICSV3JtZI0xNcaYU4wx7zDGfNwY87/GmM8Pd1wAAPRxVS+qSbiS7SqgjawkTXh1ftdPrMB2niMPds917fRfm+yRtj0jrf1bqpJYOculsp0kLb3OP187Krd9y5Hv57czy3Mx08YHwq1rOTDavjlwJUH7NFeNzOmszmRnTtcBAAAAAAAAAACgeJRMZTtjzKmS/kvSeZKC3hW7JuCa10jqK7OxzVr7X4WLEACAlMiV7RxtKssu2W76m6XlP5W2Ph792knnptrIVpoDPyq9dEPwnC/BqW2j9MC50o4FqfsmIb3qJ9Kc98QfY1Eos5+VYjTxLPfcqlsl+9twLXc7t0urfx/uTFMTbl0eah1J0D7NVblV6XT9bgAAAAAAAAAAAEDpKPrKdsaYJmPMbyQ9JOn1kuolmYwPlxckfoLv6gAAIABJREFUvV3SOyVdZYw5ssDhAgCgLkf1IldSh7OyXdm1kR0hnXV39OsO/Ih0+l+GpKVk0Wme6Z5b+CX33FMf7E+0kySblJ54r7RzcWyhFZVy+1kpRlW10tyr3PNr/xZun2c+Ef7MMMl7eaoxtZGvGZFzZTuS7QAAAAAAAAAAAEpdUSfbGWNaJM2T/j97dx4na17Xh/7zVG9nnX3fGBgGGIYd2RQVQQORmGjQRG80JuqNV3LRJGoSREWNJt5cgyt6oy+D0ShGRWMStgEuhEVWQZB1gGGYfeYwyzlzzszpperJH30O02dO/Z6up6q6uqr7/X69zut017P9urrrqZlXf87nm29P/1BdY41JXdc3J3nDhmO/fawLBIA+ys12/UMdnUJufMc12yXrgbtHfne7Yx7zst0ZtEuSub3lbXe/v//jvdXk9jf133bb60df01Taga+VadQ0VnfQn61BQ3lJmv9NzXgM02y3f+7gUNfSbAcAAAAAADD7pn2M7J8keWIe+g3qSpI/SvL2JL0kvzPAOf4s6414SfINSV4+3iUCwKlK7UXlZrtS2G6HtnU99oeSL/znwfZdOKu53W2n6zSM0SwFEFePJN3j/bfd8ZbkmoZmsd5qcvzOwdc3LVaPbPcKdodznlbedvyOzY9fOZwsH2pxwQmE7QrjvZscnB+u2W6tXk2v7qZTzQ11PAAAAAAAANtvasN2VVV9a5Kvz0NBu/cm+ft1Xd9yYvsjBjzVyWqXKsmTq6o6UNf10bEuFgA2KDfbFcJ2Vf+i2V69Q9u6zn5Kcv5XJ4fetfm+j3lpc+BsN7jga5K73nn640dv6L//J/5t+VzLd/d/vLucfPAHkpv+KFk71n6N7A4XvqC87ZY/T+54W3JRn33u+Ujy/u9J7v2rdtcr3BvHaZhmuwNzZwx9vdV6NUvCdgAAAAAAADNrmsfI/tiGjz+e5BtOBu3aqOv6jiR3nfi0k+SaMawNAIpKzXYLrZvtdmjYrqqS571hveGuZPGc5GmvSp70s5Nb17R6zMvK29YeOPXzG343+fSryvvf86H+j3/wpckNrxG0o9n83uTql5a3v+PFyZHrT31s+e7kbc9vH7RLMplmu/7jvZscmBuu2S4pvz8AAAAAAAAwG6ay2a6qqouTPGXDQy+r6/qB0v4D+HSSC058fHWSD45wLgBo1LrZbreNkU2ShQPJ039p/Q/N5vaWt93xtuSyb3ro8y/+webnO3pDcuBRD33eXUlu+uPh18fusv+K8rbecnLz65JrX/7QY7e9MVm9b7hrVe3Ddt2622r/STfbld4fAAAAAAAAmA3T2mz3nBN/10luruu6z+y0Vu7Z8PG5I54LABqVmotKoY7SGNkd22xHOweuKm87+rlTP7/9zZuf78bXnvr58l3J2v3t18Xu1PTzmCT3P+xn8iM/PMLF2oft2jbHLRRC0E32zx1sfcxJmu0AAAAAAABm27SG7S7a8PFHx3C+oxs+PjCG8wFA0WrLZrtOqdmuFrYjyRmPLW/78L9I2v6cHL/z1M8fPop2pyiEWBnRxX8jWTy7vP2G//TQz9QX/kty/K4RLjZE2K4+3mr/YZrt5qq57O8MF7grvT8AAAAAAAAwG6b1t5Bnbvj4yBjOtzFg1+43cADQ0kpvpe/ji53Fvo9XhbfjHT1GlsFVVXLG48rb3/Hi9b+v//XBznf9r66Pjj3p8789/Nqm1d5Lk+f83navYmdaOCN5wdub9/mj/es/j+/9rtGuNcQY2bbNcaUQ9GYOzA83SlazHQAAAAAAwGyb3+4FFNy74eMzi3sN7pINH99T3AsAxmClZbNdVQiU9IyR5aT9j0yOfLr/ttvfmKw9mHz6VYOf79C7kotesP7xp/59eb+/+dFkft/g550GncVk3+XrQa2/+Af997ns7yTP+I31VsD/cXXS3aHtflvl7Ccn1/xo8qn/t7zPh/7pGC7UPmy33HaMbCEEvZkDc2fkztza+riVun8YGwAAAAAAgNkwrWG7Qxs+vnaUE1VVtZTkKRseumWU8wHAZkrNRaVxhVVxjKxmO05YONC8/eY/SY5+fvDz3fCa9bDdZiNoz3rCzh3HuvfiEx8ItQ5lz4Vbf41hmu3ajpGthg/bDUOzHQAAAAAAwGyb1t+efvjE31WSK6uqapidtqmXJDn5W7S1JO8bZWEAsJlSs91CqdmuOEZWCIgTLn5R8/YHbm53vht/PznymaQp+LPvsp0btGN0l3zjeM6zdO54znNCmzDbfLWQTjU31HWGDtsV3h8AAAAAAACYDVP5G9S6rr+Q5HMbHnr5MOc50Wr3ipOnTfLBuq6Pjbg8AGg0tmY7YTtOeuQ/bN5+0+van/NNz0iuf3V5+7N+u/052T3OvCZ5wk+Odo4rvys5/7njWc8JbcJspdHegzgwd+ZQx2m2AwAAAAAAmG1TGbY74TUn/q6SfGdVVd/d5uCqqjpJfivJNRsebviNMgCMx2oh7FEK23UKoxKNkeXLOvPN2+/9cPP2ftbuTz7yI+Xt+x/R/pzsLtf88GjHP+EVm+/T0nJv8DGypXvyIDTbAQAAAAAA7E7THLb75SR3Zb2Rrkry21VV/duqqvZtdmBVVY9Pcl2Sf3Di+DrrTXl/uHXLBYCkW3ezVq/13bZkjCyzZGG4MBG7yNze0Y5fPHs869igTXPcaM12Q4btNNsBAAAAAADMtKkN29V1/UCS707Sy3pYrpPkXyW5vaqq1yZ56cb9q6r6+1VV/URVVe9K8rEkX5f1kF6VZDnJd9R1LbUAwJZarVeK29qOke0J27HRec+Z7PX2XjzZ622b/q8/BtBZGP7Ys5+a7LlgfGs5Yblu02y3OPR1Ds4PN0a21HwKAAAAAADAbJjasF2S1HX95qyH6k4G7pLkYJK/l2Tj3LMqyR8k+akkX5lTv661JN9b1/UQ89UAoJ2m1qKFUrNdVWi2M0aWjZ75m5O71tUv3XwfSJLnvbH9MXN7k6f+wvjXknbNcaV78iA02wEAAAAAAOxOUx22S5K6rn8ryQuzPlK2Sk6p+ak3/Kke9niV5EtJXljX9Wsns1oAdrumIEXbZjtjZDnFWU9I/uZfTeZal79kMtdh9l3youRFLf5NyxN/OnnRXyYXPX9LltNqjGzhnjyI4cN25fZTAAAAAAAApt/Uh+2SpK7r/z/Jo5P8yyQ356HxsBv/ZMPHdyf5mSRX1XX99okvGIBda6VhROBiqdmuGLbTbMfDnPHYyVxnft9krjMVhFpHds5TB9/32lckZ16zZUtZaTFGdqEafozs0GE7Y2QBAAAAAABm2vx2L2BQdV0fS/ILSX6hqqrHJHluksuTnJtkMestdncm+YskH67r2m9OAZi4YZrtOqUxskJAPNzcnslc58wnTOY67CAPL6Au7ba1/9ZnuTd42G6UZrvFzlKWqj1ZbhHuS4yRBQAAAAAAmHUzE7bbqK7r65Ncv93rAICHa2otKrUoFZvt5MbZDnN7k4UD270KZs1X/2nyrm/ZfL+q//1uXNqMaS21jQ7qwPwZWV5tGbbTbAcAAAAAADDTZmKMLADMitVCa9FCtVhssCuF7XrGyNLPgau29vzP+P+29vzTQJB1/C7/5uSSb9zuVbQaIztKs12SHJg7s/Uxmu0AAAAAAABmm7AdAIxRqbWoqUGpMkaWNhbP3trzz+/d2vNPna1tWttVrvmXQxw03ue/1RjZUZvt5g62PmZVsx0AAAAAAMBME7YDgDEqtRYtdPqPkE2MkaWlJ75yuOMKoc7THHzMcOeHM69NqrltXUKb5jjNdgAAAAAAALQ1v90LaFKtV/08IcmTk1yR5Pwke5PUSR5McleSm5J8NMknaqkEALbZSr3S9/HGZrtS2M4YWfq58PnDHbfnwmTfFcnd7y/vc/Dq5KwnDXd+2HNecvnfTW76421bQqldtJ/Rm+3OaH1Mm/UBAAAAAAAwfaYybFdV1dck+f4kfzPJoJUR91ZV9fokv1XX9bu3bHEA0KDUWtTUoNQpFM0aI0tf8/uSv/WZ5H8+tt1xdZ08/7rkuuckhz95+vYDj06+/l1JZawqI3j2a1qG7cZ7n2vTHNfUODqIg0M12/UPZAMAAAAAADAbpipsV1XV45O8OsnXnHyoxeHnJPnOJN9ZVdXbk7y0ruvrx7xEAGhUai1qbLYrhJt6tWY7Cs4YctTrwhnJiz+RdFeS3vH1x+o66Swm83vHt76ZItQ6VvP7k0u+MbntDdty+eX6+MD7jtpst3/uYOtjNNsBAAAAAADMtv5VOtugqqq/l+QDWQ/aVSf+1H3+nNRv28njnp/kL6uqesmk1g8AyXDNdpVmOybhmh956OO5xfXg3cIZyeKZOzhoV/h3G4/8zskug4lZ6bUI243abDc/TLOdsB0AAAAAAMAsm4qwXVVV35bkD5Lsy6khu5PhuSQ5lOT6JO/Leijvs0m+tGGfjcclyf4kr62q6lsm81UAQLJSaFVqDtv1DwQJ29HojMcNvm81nzzi27duLdNqY8DwpPkDySV/a8MDxuZur/E+/23GtC6M2Gx3YO6M1sf00k23XhvpugAAAAAAAGyfbQ/bVVX12CSvObGWjSG7I0l+KcmLk5xX1/VFdV1fU9f1V9Z1/ey6rh9X1/WFSc5P8k1JfiXJ/Tk1dDef5D9XVXX1pL8uAHanYrPdEGNk6xgjS4MXfnCw/TpLyXP/a7Lv0q1dzzR64k+vjzQ9aeGM5Hmv38FNfrtbt15LN4MH2ZpC0IM4MNe+2S7RbgcAAAAAADDL5rd7AUl+LeuNdidDdr0kP5PkP9R1fXSzg+u6vjvJ65O8vqqqn0jyI0lekYdqMg4k+dUkLxr/0gHgVKVWpYWGcYXFMbK1ZjsaLBxIrvyu5MbfK+/zvDckF3xNMr9/cuuaJvN718N1R29IHrglOfdZydxoASsGsE33ruUWI2ST5hD0IA7MHRzquJV6OXuzS1+TAAAAAAAAM25bm+2qqvqqJC/IQ0G7+5O8sK7rnx4kaPdwdV3fX9f1K7MerDuWh0bKfkNVVV85pmUDQNFK3b7ZrmOMLMNaPKu8rbOYXPzC3Ru02+jAo9ZDh/2Cdpd98+TXs9Nd+LzB9z3/uWO7bNvGuFGb7fZ2hnttabYDAAAAAACYXds9RvalJ/4+Ofr1++u6ftuoJ63r+q1Jvn/DeZPkB0Y9LwBsZrU0RrYh1FEaI9szRpbNXPj8hm0vSKrt/k+9GXDND/d//En/ZrLr2Eke9T1JvxDxVd/bZ99/3H/fR373QJc6unYkHzry7rz1nv+Wd9z3hlbLHLXZrnTv3szb7v3vuX35Zu2lAAAAAAAAM2jbfgNbVdVSkm/KehiuTvK6uq7/cFznr+v6tUlel/Xf3lVJ/nZVVeUZfgAwBsM02xkjy9AufXFy+bee/vjS+clTfn7y65lFZz81eewPnfrYOV+RPOb/3p717AR7zkue9h9OfezAo5In/OTp+y6dkzz9l059bP+VyRN/atPLfP7BT+cnbvgn+U+3/0L+9NDv5Lp7XtdqmaM22w3rnfe9Mf/mxpflv3/p993nAQAAAAAAZsz8Nl772UkOnPi4TvKqLbjGf0jykhMfH0jynCT/awuuAwBJyuMBG5vtimNkNduxic5C8lWvTW7/R8mhdyfdB5MzH59c8uJk36XbvbrZUFXJ034xuezvJHe9Kznjcckl35gsHNj8WMoe98+T874qufOtyd7L1oOhS+f23/exP5ic95zkjrckey9d//ndc17j6eu6zn+67ReyXB8feomjNtuN6s33/EmesP/puWrfNdu6DgAAAAAAAAa3nWG755z4u07yqbqu3zfuC9R1/b6qqj6Z5PEbrilsB8CWKTXbLTSUqxab7aLxiAF05teDTJe+eLtXMruqKrnw69b/MD7nPXP9zyDOfcb6nwEdWr0j9659aciFrRtHs12Vqu+9+uz583Kse3/xPeGkzzzwMWE7AAAAAACAGbJtY2STXLvh4/ds4XXeXbgmAIxdt17r+/h8tVA8pqoKzXbGCwL09UD36EjHX7p05VjCdt92wff1ffyF57wkj9z7mE2Pf6B3bOQ1AAAAAAAAMDnbGba7asPH79/C62w891XFvQBgDLp1t+/jc9Vc8ZiOMbIAE1Olyt845++O5VxfcfCrc/7CRac8dsHCJXnawa/K15/zLZnb1iJxAAAAAAAAxm07f/tz4YaPv7iF19l47ouKewHAGJSa7eaq8ltuaYxszxhZgILy/fGypStTpZOLl67IZUtX5q6V23LT8g2p614uXLw0zzrjebn2wNPHsooD82fkh6/4+bzlnj/NLctfyBV7Hp2vO/ubcmD+jFw7/7T84OU/nfcefmved+Ttrb8OAAAAAAAAps92hu3O3fDxfVt4nZPnrpKcs4XXAYB0U2i2S7nZzhhZgHaa7o4/csX/M5YRsYM6Y/6svOSC7+m77ep91+bqfdfmgd6xfOzoB07bXgvbAQAAAAAAzJTtHCO78TdgWxm2O7zh4z1beB0AGLLZzhhZgHZ2RkhNphoAAAAAAGC2TEvYbnULr7Mx9bCwhdcBgHTrQrNd1dBsV3g71ngE0N+s3R9LoeqdEhoEAAAAAADYLbYzbAcAO045bNfQbFcaI6vZDqCvpohaOdi2nUr3eWE7AAAAAACAWSJsBwBjUtd1uimMkU252a5TarYzXxCgv8b74/SF7aZvRQAAAAAAAAxD2A4AxqTX0ETXPEa2fwyjp/EIoLVCWei2ms62PQAAAAAAANoqz7SbjJMpgmdXVXXlFl3joi06LwCcolv3b7VLjJEFGKem8auzFGwzRhYAAAAAAGC2bHfYLlmfqvTaLb5GHdObANhi3bpb3NbcbGeMLEA7szVGtrQmYTsAAAAAAIDZMg1hu0kE4fwWC4At10252a7T8JZbamESwgDob+aidqVFuc0DAAAAAADMlGkI2yV+zQTADjB8s50xsgBtzF4YWagaAAAAAABgJ9jOsN1NEbIDYAfp1uVmu7mq/JbbqYyRBWhntrrtSqFq/zsEAAAAAAAwW7YtbFfX9ZXbdW0A2Aq9MTfb9TTbAfTVHLWbnbCdZjsAAAAAAIDZ0r9KBwBorZumsF05314V3o6FMADaq6rpC9sBAAAAAACwMwjbAcCYNI6RTUOzXSEYImwHUGDMNgAAAAAAANtA2A4AxqQ75jGydW2MLEA/pTDyNI6QTYyRBQAAAAAA2CmE7QBgTBqb7RrGyHaMkQUYk+kM25XW5T4PAAAAAAAwW4TtAGBM1hrDdsbIAoxLudluOhVu83GbBwAAAAAAmC3CdgAwJt00jJFNudmuNF6wZ4wsQF+zF0YWqgYAAAAAANgJhO0AYExKY2Q7mSu21yVJZYwswJhMZ7ddKVQNAAAAAADAbBG2A4Ax6db9m+2aRsgm5RCGsB1AO7MXanOfBwAAAAAAmCXCdgAwJqVmu7mqPEI2Saqq0GxnjCxAX6UwckOJ6LYqLUvUDgAAAAAAYLYI2wHAmPQyXLNdR7MdQDt16f44pWk793kAAAAAAIAdQdgOAMak2GyXTZrtiiEMzXYA/RSb7aY0bFdel7AdAAAAAADALBG2A4Ax6dbDNduVxsj2is1NALvbzN0dC1k7t3kAAAAAAIDZImwHAGMydNjOeEGAlmbr/qjZDgAAAAAAYGcQtgOAMSmOka2MkQWYhNkbIwsAAAAAAMAsEbYDgDHpptBsl+HGyGq2A+ivdH+ctVCb+zwAAAAAAMBsEbYDgDEZttmuU2q2q4UwAAAAAAAAAGBaCNsBwJh060KzXbVJs13h7dgYWYD+SmHkqprOZrvyuHChagAAAAAAgFkibAcAYzJss10pHNITwgDoqxxSm86wXWldwnYAAAAAAACzRdgOAMakm/7Ndp1s1mxXGiOr2Q6gjemN2pVWJmwHAAAAAAAwS4TtAGBMxj9GVggDoJ+Za7YrLKswDRcAAAAAAIApJWwHAGMy9BhZ4wUBdrRysx0AAAAAAACzRNgOAMZk2Ga7TmWMLEA7/cPIsxdqE6oGAAAAAACYJcJ2ADAm3RSa7bJZs50xsgBtlIfITmfYToMpAAAAAADAziBsBwBj0huy2a4UwugJYQAUFO6P05m1Kxr2Lr/aWx3rOgAAAAAAABhMc9UOADCwtbrQbFdt0mxX9c++H+0ezqeO/VWu2f+UkdcGsFP06l7+/NDv9d02a812Hz36vhxeuzdnzp890Hned/jtecPdf5i7Vw/lEXsene+86J/mkqVHjHOpAAAAAAAANNBsBwBj0i2G7YZrtkuS37j153Lb8hdHWhfATvKmu/84h1bvKGydzrBd07p+5eZXpq4377j7xNG/zO/e8cv50uqdqdPLjcevzy/e/ON5oHt0nAsFAAAAAACggbAdAIxJtzRGdpMi2aaw3Vq9mo/c/96R1gWwk7z/yDuK26Y2atewsNtXbsrNyzdseo4PHPlfpz12rHt/PnHsw6MsDQAAAAAAgBaE7QBgTLoZrtnu3IULGrfftXLb0GsC2El6dS+HVm8vbj9nk/vpdjlnfvT7/Afvf2ffx//bod8dak0AAAAAAAC0J2wHAGNSbLbbJGx36dKVOX/h4vJ5CyE+gN1mtV5p3P7UA8+Z0EraecKBp2e+WihuX6mXhz73se79Qx8LAAAAAABAO8J2ADAm3brUbFcOWCRJp+rkBy//qYbz9g/xAew2K71yKO2afU/J15/zzRNczeAuXLw033/py4vbm74uAAAAAAAApoewHQCMybDNdkly7sKFef7Zf7vVeQF2m6YGuO+48P9Kp5re/725dv/TcsWeR/fdNkrYrk499LEAAAAAAAC0M72/jQKAGdNLIWyXzcN2STmUV2rMA9htmkJpC52lCa5kOEtV/zWOMkYWAAAAAACAyRG2A4AxKY+RnR/o+Ln0369bCPEB7Dar9Upx22IhyDZNSoHAzZrt6lp7HQAAAAAAwDQQtgOAMRlljGzTfprtANY1hdIWO4sTXMlwFqv+a2wKESbJWr26FcsBAAAAAACgJWE7ABiTkZvtimE7zXYASXnc6lzmB77XbqfFIZvtmsbMVqlGWhMAAAAAAACDE7YDgDEpjXudy6DNdoUxsprtAJKUQ2kLM9Bql5RH3TaF6ZLNw3gAAAAAAABMhrAdAIzJyM12hVCeZjuAdauFUFopxDZttqLZDgAAAAAAgMkRtgOAMSmF4krjYU/fr9BsV2jMA9htVnorfR9fnJFmuwXNdgAAAAAAADNN2A4AxmSrwnY9Y2QBkpRDaTu/2a5/yBAAAAAAAIDJErYDgDHpZsQxsoVQnjGyAOtWi812MxK2K4QCS+Nxv7y9IYzX034KAAAAAAAwMcJ2ADAmpVBcJyOOkdVsB5Ck3GxXGs86bcrNds3Ndcu948Vta/VaekLZAAAAAAAAEyFsBwBjUgrFDdxsVwjldbUWASQpj1udnWa7xb6Pl0KEg283ZhYAAAAAAGAShO0AYExKzXal8bCn76fZDqBJKXRWCrFNm3Kz3SZhuk22N42ZBQAAAAAAYHyE7QBgDOq6Tq/QQDdws10hlFcK8QHsNqXQ2cLMNNsVwnYjN9sJ2wEAAAAAAEyCsB0AjEE35fa50njY0/YrNtsJ2wEkTc12sxG2K4UC1+rV9Bru9au95jGxK5tsBwAAAAAAYDyE7QBgDJoCcQM32xVCed2spa7rodYFsJOUQmel8azTpikUuFKXA3Oa7QAAAAAAAKaDsB0AjEG3bmi2K4yHbbNfL73WawLYaWa92a4pFNjUXlcanzvodgAAAAAAAMZD2A4AxqC52W60MbLr5y+H+QB2i1KobLGzOOGVDKe52a4cmNu02a53fOg1AQAAAAAAMDhhOwAYg24awnYZcIxsQyivKcwHsFusFkJnCzPSbLfQEApsaqfbtNnOGFkAAAAAAICJELYDgDEYxxjZTkMorxvNdgArhVGrTeNZp0lTs10pSJgM0mwnbAcAAAAAADAJwnYAMAbNY2Q12wGMQyl0tljNyBjZLWu26x9CBAAAAAAAYLyE7QBgDMbRbNcUyms6P8BusTrjzXZz1XxxtHhTYK6p9S7RbAcAAAAAADApwnYAMAaNzXYN42FP2a+x2U7YDqDcbDcbYbuk3G7XFJhb3rTZTtgOAAAAAABgEoTtAGAMemlqths0bNfUbGeMLLC79epeVgvtbwsz0myXlIOBTYG5TcfIarYDAAAAAACYCGE7ABiDxma7QcfIpqHZriHMB7AblIJ2SbJY9W+Lm0alkbdNgbnNxshuth0AAAAAAIDxELYDgDFoGvM6eLNd0xhZzXbA7tYURisF2KbRgmY7AAAAAACAmSVsBwBj0BSG6wz4dmuMLEBZUxitNJp1Gg3TbNf0tQ+yHQAAAAAAgPEQtgOAMeimfxhuLvOpqmqgc8w3hu2MkQV2t6Yw2sIMNduVwnZNo2BXeuURuuvbhe0AAAAAAAAmQdgOAMagFIZrGg37cJ00jJEthPkAdovVuhw4m6lmu9IY2UJgrluvpZvmwPVKw3MDAAAAAADA+AjbAcAYlMa8tgnbVVVVDNxptgN2u6b2tsXO4gRXMprSWkvtdZu12q3vo9kOAAAAAABgEoTtAGAMys125dGw/fcvhe002wG720phzOpc5lvfa7dTsdmu8PWVHm+7DwAAAAAAAKMTtgOAMSiNeZ1rGA3bd/9CYESzHbDbldrbFmao1S5JFjrtxsiuDtBaN8g+AAAAAAAAjE7YDgDGYKub7XqFMB/AbrFaaG8rNcVNK812AAAAAAAAs0vYDgDGoDTmtRSeK5mLZjuAflZ6K30fX5yxZrvFls12pcc3WtZsBwAAAAAAMBHCdgAwBqUwXGdMzXalMB/AblFqb5u1ZruFqn84sNTctzxAa50xsgAAAAAAAJMhbAcAY1AcI5uWzXbCdgB9rRab7WYrbLcVzXYr9XLquh5pXQAAAAAAAGwQFdyCAAAgAElEQVSuXd0OAHCKL63cmfceeVveePcf9d3eeoxsoQnv9+98df762AfzqD2Py3PP+hvZN3eg9Vp3sy88eH0+dP87c+fKbUmSSxavyDPP+NpctueRI597pbecdx++Ljc+eH0uXroiX3XmN2Tf3P6857635PMPfioXLV6W55z5gpy9cN7I14Ldqlf38r/ue0PfbQsz1mxXauI7tHpHfu2Wnznt8SNr9256zjp1fu2Wn05Vlf8t1TMOfnWedebXDb5QAAAAAAAATiNsBwBDunPl1vziTa/Ike59xX1K4bni/g1NeB87+oF87OgH8qH735l/dvnPCtwN6K+Pfii/eevPp5uH2gc/eezDedd9b8o/vewn8+h9jx/63Ku9lbz6lp/JZx/8xPoD9yfvPfzW7O3sz83LN3x5v784/Nb88yt+LucuXDD0tWA3+/07X517177Ud9tip/9Y1mlVarZbrVfyyWMfHvq8n3rgrxq3X7nn6qHPDQAAAAAAwDpjZAFgSO+49/WNQbtkfM12G92yfGM+fP97Wp13N3vD3f/1lKDdScv18bz5nteNdO5PPfBXDwXtTvjS6p2nBO2S5J61Q3n3fdeNdC3Yre5auS3vPfy24vZSU9y0mrX1AgAAAAAA8BBhOwAY0ucf/OSm++zp7Gt1zkHDeZ8b4Nqsj3j94vHPFrd/7oFPFLcN4o13//HA+775nj8Z6VqwW33+wU81bp+1ls99c/u3ewkAAAAAAAAMSdgOAIZ0vPfgpvs8dt8TW51z0LGzy73jrc67W630lhu3L9fHU9f10OdvCvIB47HZvfax+548oZWMxyP3PDZL1Z7tXgYAAAAAAABDELYDgCGt9FYatz967+Pz3LNe2OqcnQzWbLdZiIx1K/Xmz9NavTqBlQDDWm241z75wLPzlIPPmuBqRrfQWcx3XPQD6fhfMQAAAAAAgJkzWH0OAHCaUpDr4sXL83fO/648bt+Ts9hZanXOQcfIDhIiY7BQ4kq9nIUsTmA1wDCa7nffd8mPDnzfnCbPPONrc/nSo/LJYx/Jke69Ax/XSSdX7Hl0Llq8LJ9/8JM5tHrHwMc+au/jhlkqAAAAAAAAGwjbAcCQSkGul1zwPXn8/qcOdc5Bx8hqthvMIKHEld5y9s8dnMBqgGGU7nfX7n/aTAbtTrp46fJcvHT5SMcDAAAAAAAwWWYXAcAQuvVaeun23bZU7Rn6vIM32zWPsGXdoM12wPQqvUYXKo2UAAAAAAAATJawHQAMoSnE1XZ07EZzA5bOrmq2G8igzXaT0qt7E7sW7BSl1+go91oAAAAAAAAYhrAdAAyhKcQ1SgBkftAxstrYBjJYs93kWgLX6tWJXQt2itL9brEStgMAAAAAAGCyhO0AYAjLDSGuUUYbDjpGdrVnjOwgVgcIJU6yJXCSLXqwU2i2AwAAAAAAYFoI2wHAELZsjGyLZru6roe+zm6xMkAocZItgRoJob1SaHZBsx0AAAAAAAATJmwHAENoakwbZbRhZ8Bmuzq1kaQDGCTcNsm2udUJjqyFnaIUmtVsBwAAAAAAwKQJ2wHAEJoCWiONkc1gzXaJlrRBDBKkm2iznTGy0Fop3DxKsBkAAAAAAACGIWwHAEMoBbQWq6VUVTX0eecGbLZLBLcGMUiQbnWAUbP9dOu11sf4nkF7mu0AAAAAAACYFsJ2ADCEUmhq1PDHXKXZbpy2stmuFADaimvBblZ63YzSIgoAAAAAAADDELYDgCE0NduNQrPdeA0Sbhv2eRwmOOd7Bu1tVbgZAAAAAAAA2hK2A4AhlMIfC6M226VF2K4ebvzpbrK6hc12g5x7XNeC3awcbtZsBwAAAAAAwGQJ2wHAEErhj6WRm+0GHyM7TNhrt1keJGw3wWa7VQFJaKVXd7NWr/bdptkOAAAAAACASRO2A4AhbNVYw1ZjZLWkbWqgMbJDPo/DhPSMkYV2mho8Rx3bDQAAAAAAAG0J2wHAEMpjDSfXbCe4tblBnqPV3nBtc8OM8fU9g3aaGjw12wEAAAAAADBpwnYAMIRSaGph1Ga7aLYbp9UtbLYbZoyv7xm0o9kOAAAAAACAaSJsBwBD0Gw3GwZ5joZ9HocJzvmeQTtNr5mFzuIEVwIAAAAAAADCdgAwlNLo0cURwx9zVYtmO8GtTQ0SiFsdYhxsMtzzP+y1YLdqaqfUbAcAAAAAAMCkCdsBwBCKzXajjpFtE7YzknRTK4VQ5Kn7DNts1z44JyAJ7TS9Zka93wIAAAAAAEBbwnYAMIRSAMQY2ekySCBx2NCiZjvYeqVQaydzre6XAAAAAAAAMA7CdgAwhGLYbsSmpU4Gb7YT3NrcIIG44Zvt2h+njRDa2ap7LQAAAAAAAAxD2A4AhrBSH+/7uGa76dGt19JLd9P9Jtls53sG7RRHdo94rwUAAAAAAIBhCNsBwBBWev1b5RZGbFuaqwZvttOS1mzQYNuwAbjVYZrthO2glXKz3eKEVwIAAAAAAADCdgAwlK1qW5rXbDc2g4YRV+uV9Ope+/MP02wnIAmtlMZla7YDAAAAAABgOwjbAcAQSkGrpVGb7dIibCe41ahNGG6tXm1/fs12sOVKr5lRW0QBAAAAAABgGMJ2O1BVVT9VVVU9wp/f2e6vAWDabVWzXasxsoJbjdqE4YZqqdNsB1uufK81RhYAAAAAAIDJE7YDgJZ6dbfYhDZq29JcizGyq4JbjVZ6/cdP9t13mJa6wnjLJqWRmEB/pVDromY7AAAAAAAAtoGwHQC01BSymmyzneBWkzYBumFCcJNqw4PdbKtaRAEAAAAAAGAYg9fnMMu+I8n7Wux/dKsWArATrDYEpkZtW2rTbGckabM2wbZJjYRdrVfSq3vpVP69AwyidL8dtUUUAAAAAAAAhiFstzvcUdf1jdu9CICdYrkpbDdqs13aNNsJ2zVpM2Z3mOeyKXTZZK1e1coFA9JsBwAAAAAAwDRRqwIALTU1mo3abNdpM0ZWs12j5d7xgfcd5rlsGifceJyQJAysNC571HstAAAAAAAADEPYDgBaagpLTXKM7Fq9ml7dHel6O9lWj5EdttlOSBIGV3q9LFSLE14JAAAAAAAACNsBQGtNYalRAyBzLZrt1tcyXLvabtDmuRmu2W640Nyq7xkMbFWzHQAAAAAAAFNE2A4AWio1ms1X863Dcg83l8Gb7ZrWQrvnpm2zXV3XQ4+DNUYWBlcKtS5WwnYAAAAAAABMnrAdALRUHms4evijfbOd4FZJm+em7fPYzVp66bVd0vq1hO1gYKXXi2Y7AAAAAAAAtkO7+hxm1fdXVfXjSa5Jcm6S1SR3J/likncneVNd1+/axvUBzJRS+GOps2fkc89V7d6aP3z/e3PW/DlJkipVLll6RC5evDxVVQ10/JdW7sgXj38uvfRy/sJFuWLPVemM2M43Le7vHh5439KoypLl3vG2y/myjx/7UO5ZO/Tlz3fa8z5r7lk9lBuPfzbdei3nzJ+fK/de3fp1yPj06m5uOv75HFq9I0lyrHt/3/0WRxzZDQAAAAAAAMPwm8Td4dsf9vlSkgNJHpHka5L8WFVVH0ry8rqu3zrpxQHMmpW6fzBrHGMNOy1LZ//s0O+c9tij916bl17249nT2Vs8rluv5Xdv/5V88P53nvL4BQuX5Acv/+mcs3B+q3VMm08f+2jee/htA+/fptnuge7R/Lsb/8Uwy0qSvPme15322IWLl+UHL/upnL1w3tDnpZ1e3c0f3vkf8+7D153y+Nnz5+WHLv+ZXLB4yTatbPe6Z/VQfuXmV+au1ds23VezHQAAAAAAANvBGFlO+ook11VV9XPVoHVILVRVdUFVVde2+ZPkqnGvA2AcymMNR29aGsct+HMPfiL/7dDvNu7zzvvedFrQLknuWr0tv3fHr468hu200lvOf7z137U+ZlCvu+s1pzTTjcOdK7fkv9zxa2M9J83ed+TtpwXtkuTetS/lt2/7hW1YEf/ljl8bKGiXjCfcDAAAAAAAAG1pttvZbk3yhiQfSPKpJPck6WV9lOzTkvytJC/csH+V5MeyHsJ8+ZjX8tIkrxzzOQG2RakFbWGKwh+fPPbhxu1/ffSDxW2ffeATOd57sLEZb5p99oGPZ7luN+Z1tdBW2M/Hj32o7ZIGcv0DH89y7/hYxhGzub8+Wv4+3rx8Qw6v3ZMzT4xoZust947n+gc+PvD+C2MINwMAAAAAAEBbwnY70weyHqJ7S13XdWGfv0jya1VVfUWSP0hy9YZt/7qqqvfVdf3nW7xOgJnUrdf6Pj5Xjedt9aq91+TzD35qpHMc7R5p3H5k7b7itl66Oda9f2bDdoe797Y+ZtBmu17dzf3dw63PP4hu1nKse7+w3YQcWWv+OTmydp+w3QQd696fXroD7dtJJ5cuXbm1CwIAAAAAAIA+jJHdgeq6fkNd19c1BO027vuhJM9Ocv3DNv18VVVzW7JAgBnXq3t9H5+rxvO2+rVnvThVRhsnu9lbwGqhne+kNmNVp81yr12rXVJuKzx9v8Eb8IYxy8/7rNn0NbDF32tO1eZn/5lnPC/75w5u4WoAAAAAAACgP812pK7re6qq+o4kH0q+nO54XJKvS/LWMV3m15P8cctjrkqiXQ+YOr30D9tVY8qwf8UZz81c1cm777su93cP5/H7n5oXn/sd+djR9+c9h9+S25Zv+vK+q/VKHuwda32NzYItmwWRplnT1/bUA8/JR46+t9UxG6027HfuwoW5cPHS3Hr8C6mTnLtwQfbN7U+VTm5evmFDALLOkW7/ZsFBQ3+MbqXXHKZr+l4zfk0/+wfnzkyVTs6cPztPOvDMvOjcb5vgygAAAAAAAOAhwnYkSeq6/nBVVddlffzsSS/KmMJ2dV3fleSuNsdU1WitTgBbpVf3H3XYGWMh6FMPfmWeevArT3ns6Wc8N08/47mnPPbXRz+Y37j151qff7NQ1yw3rK3U/Zvtrt57bS5YvLRwzKDNduX9fuiyn8l5ixdueo5uvZaXXf+t/c8/RCsfw9n0NSD4OFFN95x/e9Vvj21MNwAAAAAAAIzCGFk2etPDPn/StqwCYMqVmu062/K22j+YXKd5jOxmrV6zPEKzFNpZ7OzJYmex1TGn71d+XhY7SwOdY66az1zh3zssC3hNzGbf81kOnM6iUrhxLvOCdgAAAAAAAEwNYTs2uvFhn5+/HYsAmHa9uhC2q6bnbbUpbNet19LNWuPxsxw0Wi6sfamzlMWqfyBu0LG5TfsNGrZr2neWn/dZo9luupRDsv0DsgAAAAAAALAdpicVwDR48GGf792WVQBMuXqKmu2GGbg9SKBrloNGpTGyi9VSFooht8Ga/Jqeu4Vq8FDQUmdP4fzGyE5Cr+5mrV5t3EfwcbJK95xSQBYAAAAAAAC2g7AdG533sM+/tC2rAJhy3brb9/HtaLarhhgjO0iQbnXA8Nk0KjXbLXb2FIM7g4YLS+N156v5zFVzgy0w5QCRMbKTMciYZGG7ySo32wnbAQAAAAAAMD2E7djoWQ/7/LZtWQXAlCs32w0ethqbqtRt1xC22+nNdoV2uMVqqRjcGTRcWHruFlq2b5XXMbvP+ywZ5Hme5dfALCo9321fWwAAAAAAALCVhO1IklRVtSfJ333Yw+/YhqUATL1eXQjbTVOzXTlrN1CIaJZbvUpf31JnTxYLo14Hb7YrjbocfITsybX0s2yM7ETs9NfALNJsBwAAAAAAwCwQtuOkf5Xk0g2fd5O8fpvWAjDVuimMkZ2it9XGMbIDtLjNcqtXObSzp9woV68UQ5SDnbtdIGhhxNAfoxnkNbA6wKhZxme1FGQVtgMAAAAAAGCKTE8qgLGoquq7qqq6sOUx/2eSVz7s4d+p6/qL41sZwM5RF5vtJj9GttRs1zhGdoe3epXa4ZaqpSw2jKQcJFw1rlGXmu22105/DcyiYpDVGFkAAAAAAACmiLDdzvO9Sb5QVdV/rqrqxVVV7S/tWFXVV1RV9adJfjM5Ja1xa5If3+J1AsysXgphu214Wy2OkW04ZpAQ0Sw3rBVHvXaWGluyBnpextRst1j1D9vN8vM+S1Z3+GtgFpXaBhc77UY0AwAAAAAAwFaa3+4FsCX2JvmHJ/70qqr6bJIbkxzO+njYc5M8OUm/Brx7kryorus7JrNUgNlTGjdaVdOUYS/H7UrjGk/ZZ4ZbvUrtcIudPY0tWYOEq8Y16rIUINKmNhkrg7QY+l5MVDEkq9kOAAAAAACAKSJst/N1kjz2xJ/NvC3JP6rr+patXRLAbOul2/fxuUzTGNmynd5sVwrELVVLWdiqZjtjZGfKTn8NzKLS96TpNQsAAAAAAACTJmy38/xy1sfAflWSRwyw/7Ek1yV5dV3Xb9vKhQHsFKVmu852NNtVpTGy5Wa7wUJlmzd/TaNu3c1avdZ323qzXXkk5SCNf6VGtLajLktjZAdZA6MbJEin2W6yNNsBAAAAAAAwC4Ttdpi6rv8syZ8lSVVVZyW5NsnlWR8Zuy/rTXf3Jbk3yaeSfKyu6/4VTQD01UthjGwmH7Zr32s3YNBoRkNfKw3NcEudpcZxr4OEq0rjddsGgkrrWBbwmoiBvtcz+hqYVcXWSM12AAAAAAAATBFhux2sruv7krxnu9cBsNP0ChnlbWm2a1DXdao+zXejjEuddssNAanFak/mqvl0Mtd3FHCpte7UfcYz6rIUIGoKCzI+gzXbzWa746wqhRs12wEAAAAAADBNpisVAAAzoNRs18nchFeSNHXblUbJDhQqm9GwXVNY7WTArRx0Gz6A1TSetp+lwhjZWW0UnDUDfa99LyZKsx0AAAAAAACzQNgOAFrq1YWw3TY021WNg2QLYbsB2tNmdYTm8iBhu0JT1iBfcymA1TYQNErgj9EN9L32vZioUiulZjsAAAAAAACmibAdALTUbwRpknS24W21fdRu0BGasxk0amrtO9kmt9jp30I3yNjQ0vOy0DIQVAoQNYUFGR/NdtNntdhs1641EgAAAAAAALaSsB0AtFRutpuuMbLlZrtBgkabB8+mUam1r0on89VCknLQbZQQYttmu6VOaYzsSuq6FJNkXAYJVq7Vq+nV/YO1jF+xNbIwchkAAAAAAAC2g7AdALRUpxC225Zmu3LYri6F7QYIle20MbJLnaVU1fpzNcoI19Lz0nbUZWkNdXpZq1dbnYv2Bm2tm9XQ6ayp63psQVYAAAAAAADYSsJ2ANBSt9B21am24W21agjbFQrSBgmVrdVrxa9zmg3SjlUa+TrJZrumcN5ybZTsVht0THJptCnj1c1aeoUQc9sgKwAAAAAAAGwlYTsAaKncbDf5MbJNQ2RLY2RXB2zrGnS/aVIaI7vYWdzw8fDNduUwX9tmu/JozEGDYAxv8GY734tJaPqZ12wHAAAAAADANBG2A4CWenUhbLcNzXZDjZEdMMw1i6GvYvPchma7xWqx7z6DNdv1DyC2DQQtNew/i8/7rBn8NTB7gdNZ1DSuV9gOAAAAAACAaSJsBwAtlcYddrblbbW5266fgVu9ZjD0tVz42pY2NMktFMI7m40M7dbddLPWd1spwFfS1IS3YozsllvVbDdVmu41Cy1fWwAAAAAAALCVhO0AoKVys920jZHtb+BWrxkMGpXHyD4UbisF3ZratZLmsbqlAF9J0xjZ5RkMOc6andzuOIuMkQUAAAAAAGBWCNsBQEu9dPs+Pm3NdsUxsju52a6w5o3NdqXwzmZfb2MgqKGprp+5ai7z1Xz/68xgyHHWDPwa8L2YiKamwbavLQAAAAAAANhKwnYA0FK52W663laLYbud3GxXGMG6MbBTCu9sNlq0uX2r/ajLxap/u12pnY/xWek1txg+tN/svQZmkTGyAAAAAAAAzIrpSgUAwAzopX/YrtqGt9WqajdItlf3GsehbrQ6g0GjUmjnlDGyhWDcZgGspvDhMO1bpYY9Y2S33k5ud5xFpe/HYrXU+h4HAAAAAAAAW0nYDgBaKjXbzW1Ds11TDKWuT2+2W6tXBz73bDbblUI7G8bIFoJxm329je1bheBck2HXwegGDdFt1nbIeAwSkgUAAAAAAIBpIGwHAC2Vm+3mJryS9auWnR62W24xonQWW71KX9/SKc12hZDbJl9vc7Nd+1GXSx1jZLdDt15LL92B9p3F18Asamq2AwAAAAAAgGkibAcALfXq/kGdzrY025XDdnWfsF2b1rSVAcfNTpNyQ9ZDwbaFIRvlSmN156uFdKr2QcthQ3+Mps3zq2VwMkrfk2EaIwEAAAAAAGArCdsBQEulZrvODLyttgoazWDoq9hsV21ds92w7VvGyG6PVoHT3uwFTmdR+bXVvjESAAAAAAAAttL0pwIAYMrUdSFsNwPNdqutmu1mL/RV+vo2NtuVAjybPTfl1rwhw3aFMbJtRv3Snma76TPu1xYAAAAAAABsFWE7AGhpuprtWo6RbRE0Wp3BVq/lAUI7pdGUa/VacURwUh6ruzBk+1ax2W4GGwVnSbtmO9+LSRh3ayQAAAAAAABsFWE7AGipWwhkdaq5Ca8kqcpZu/TJ2hUDY/3MYqvXSt2/FW5jaKcpwNP0/KyOuX1rqXDccuFrYDzahEhn8TUwizTbAQAAAAAAMCuE7QCgpXqKmu2axsj202qE5oy1etV1XWy2W9o4RrYhwFMK1CXjb98qjZGdted91rQJ0DX9PDA+5ddW/9cIAAAAAAAAbJf57V4AAMySXt3rO541STrVdI2R/def/8epUuW8xQvzjINfkxee+6153aHXDHzm9xy+Lu89/LZUVZXLlx6VbzjnW/KUg88ex6LH6t7VL+VP7vrtfPLYR4pByI3BtqZw3Ms//73FAGNpfPBiZ7xjZD9+7EN52We+NVWVXLL4iHzt2d+Y55z5gk3P96773px33/fm3LZ805cfW+gs5qq9j8s3n/8Pc+nSlUOtc9o80D2aN9/zuvzlkXdnqbMnzz/7b+crz/z6VBtqHj997KN50z1/ki88+Jn06lO/b92sDXytjxx9b172mW/98ufz1XwesffqvOT8f5zL9zxq9C+GHF07kvceflvfbcO+tgAAAAAAAGCrCNsBQAulMFcyfc12vayPu71z5db8z7tfm/9592tbnbtOvR5MqpMvHP9Mfuu2f5+XXvbjuXb/00Za8zgt947nVTe/Inev3tm439LGMbINzXYnn7M2FoZutisfd/J5v2n58/m9O341VTp59plfV9z/3fe9Oa+98zdOP09vLZ849uHcePyzefkjXpVzFs4faq3T4vDavfmVm1+Z21ceChT+/p2vzmq9kued/eIkyRcevD6/fuvPZq1eHcs1N4bzuvVarn/gr/PLN/9kfvzKX85ZC+eO5Rq7Va/u5pdu/onidmNkAQAAAAAAmDbGyAJACw9vydqoU81NcCWTV6eXv7jvLdu9jFN8+thHNw3aJQ9rthtzgGfY8y0Vxsj2857D1zVuf/fh5u/Lse79+ejR9w98vWl03+rd+cWbXnFK0O6kt93756nr9cbJDxx5x9iCdiUP9Nbb9RjNFx68PretfLG4fdgRzQAAAAAAALBVhO0AoIXSKNFke5rtDs6f2dhuN263LpeDMdvh1uUbN92nk7kcnDvzy58vVkvZ29k/tjWcNT9cu1mb4zZ73m8b4PsyyD7T6p7VQ/nFm1+Ru1Zv67v97tW7cqR7X5Lk9pWbJ7Kmvzj81hztHpnItXaqWxuCdsnwry0AAAAAAADYKsJ2ANBCry6PGe1Uk39bPTB3Rh6193ETu95KvTyxaw1ipV7ZdJ/H7XtS9s7t+/LnnaqTJx54xtjW8OQDzxrquMfte/LAzV2rveavs9vwc9lmn2n0pZU78qqbfiyHVu9o3O/OlVuSJHVD++Q4rdYreee9b5zItXaq1V75ftJJJ0848PQJrgYAAAAAAAA2J2wHAC00N9ttzxjZ773kR3PJ4iOGPv6rzvyGfN8lPzpQ8Guz0NekrTSEdZLkiqWr8t0X/9Bpj//9C/5JHrPviSNdey7z+bYLvi9X77t2qOP3zu3LSy/7iezvHNx0327W0q3X+m7r1b3UDT+XXz7HDIbt7ly5Na+6+RW5Z+3QpvvesXwibDfC9fZ29m2+0wbvuO8Nm/4MUtYU3v2+S/5lzl24cIKrAQAAAAAAgM3Nb/cCAGCW9Bpas7aj2S5Jzpo/J6+48pdy1+ptuXv1rvTqbn791p8d+Pj/48KXpqqqPHH/M3PT8uez3HswXzz+ufyPL/3+aftOW7PdamE9+zsH86OP+Pc5f+GiVNXpY3b3zu3LP7v83+Se1UO540QjWhsL1WKu2HNVljp7Wh+70WP2PSE//+jfyc3Hb8gDvaM5tHJ7/utdv9l335XeSvbOnf6fboOG6LrpH9abVrcv35xfvvknc6R770D737Fy64mPhovbPX7fU/MDl73ixPfi2CnbPn70Q3nHfa8/7Zij3cP5wJF35LlnvXCoa+52paDio/dem6ccfPaEVwMAAAAAAACbE7YDgBZ6KQebqm0sjK2qKhcuXpoLFy9NXdfppNPYwnfSUrXny2G0hc5Crjoxkna+6v+fCKv1Snp1b9uChQ9XCus86eAzc8HixZsef87C+Tln4fxxL6uVuWouV+69Okly+/x5xf1W6uXszenNa4OG6Gap2e6W4zfmV255ZY52Dw98zB0rNydJ6iHDdgudpcxV87ly72NO23bl/2bv3sOjqu99j3/WTGZyIVdIIFwLiIpQFVG2iEEBRa1atdXaum3dtR63Vdt6OdrqtijWVmttS9sj3V6OVrp1e9zd3ahUi4qCilRBvFZECwoB5RIMhEtCZjKzzh9KzJD1m6w1t6zJvF/P4/O4Zt1+ycwQ43z4fEsO1N9anlW7vbfbvkXNj2lK1UzfvCfyiSm8Wxbsl+OVAAAAAAAAAAAAAO7wqSAAAB4ka7YLWr0zRnZ/lmUpHOh5JKwk43HJRlWNPk4AACAASURBVMpGbf+Mko0Y1uJmJK4fJXveooZgYdxts51hDK3fNO5dq99umOUpaCcppYbCroqTfO/LguU6tnqm476t0Y/11u7lad27UJnCsiErnOOVAAAAAAAAAAAAAO4QtgMAwINkbXEBH/1YdRs2M4btkgSPTAGZ3mAKoLkNG/pNsufNqVVNch+icxvK600ftr2v326YpT3xXcZjKoM1jo/v6PhEe+Ntsu3Umu3CVvKRwNNrvmx8jy9qfjSlexa6SLxvhWUBAAAAAAAAAADQ9/knFQAAQB6wkzTbWT4aIxly22xnCLUkC7uYRj/2BtNa8jWskzzk6BxMcjse1u242d6ypnWVfrfhRrXFW43HHFj6Rf1g+Gzj/i2Rj1IeI9tTQHNAaKAmVhzruO+Dvau1tm11SvctZMb3b56GZQEAAAAAAAAAAND3+ScVAABAHojJHGwKyh9jZCX3YTNTKC9ZWM9PzXZ9bQxlsnWbgkluQ3RuQ3m94b09b+nOjTcb2/skaWzZ4bp82CzVh4cbv0+b21MfJZtsjOw+M/t/xbiPdjvvTM2U+fr+BQAAAAAAAAAAQN9H2A4AAA/iedJs5yY4JKXWbBfNh2a7PG3GClgBY9DIFCx03Wzn07Ddqj2v6/cf/TRpY+L4fkfq0qE3KBwoVsAKaFB4iONxmyOph+16GiMrScNLRuvgssMc9721+xVtiXyU8v0LUV97/wIAAAAAAAAAAKDv808qAACAPGDLHLYL+OjHashls50plBcOJGlYy4Nmu3wO65iCjqaQo/uwnf/GyL69e4Xu+uhnitrOI3Il6fDyo3XJ0OsU6vKarA8Pdzx2S2Rj1sbI7mNqt7Nl67nmBSndu1AZ3795OgYaAAAAAAAAAAAAfZ9/UgEAAOSBZMGmgI+a7dwGh0yhlqBVpKCKHPdFkgSjcs0U0srnsE7IEHQ0N9u5HCObZARyb3h91990z0e3qyPJ+idWHKv/NeRaFVmhhMcHhYc6Hv9ps12KYTuXr5lDyiZoSPgLjvte3vmcdnXsSOn+hcj4/s3jsCwAAAAAAAAAAAD6Nv+kAgAAyAPJm+2COVxJcm6DQ6EkoRZTux3Ndtlleu6MYTuXITo/Ndu9uvNF3ffxHYrJvKZ/qjxeFw6+WkGre+izPjzM8ZymyOaUx+UWB3oeIytJlmXpxP5nOe6L2hE9v+OvKd2/EDFGFgAAAAAAAAAAAPmGsB0AAB7E7SRhuz7UbJdsnykgk2u2bRtb9vK52c703Jm+766b7VIMoWXayy2L9YdNcxRPElw9puoEXVD/AwUt5wDrIEPYLqYONUU3p7QuLwGvoyobVF00wHHf8zue9FUg1c8YIwsAAAAAAAAAAIB8459UAAAAeSCWtNnOPz9W3YZVkgWMjKEvnwSJOuwOY9NgssY+v/PcbOcyROeHZruXdjyj/9j8u6QNkVOrT9H5gy5XwBC0k6RB4SGyZDnu2xtvTWltXgJeRVZI02tOd9y3J7ZLf2t5NqU1FJq+2EwJAAAAAAAAAACAvs0/qQAAAPKAnSTYlCwclGumEbD7K04Sagn5vNkummQdYcvd1+9H5mY75xY/1812LsfNZsvz25/UQ1vmypZtPGZGzZf1jYGX9NgSGQqENSA0MKPrcztGdp+GqpNUEih13Pfc9scV90mToF/11WZKAAAAAAAAAAAA9G2E7QAA8CDZ6EtfNdu5bIYyBeqSXcMvzXbJ1pHPzVhev+9uQ3S9OUb22ebH9cjWe5Iec1L/r+rsuu/Ispwb6/ZXHx6eiaV1SvZecFIa7KeGqpMd9zVFN+uN3a9kYll9Vl9tpgQAAAAAAAAAAEDf5p9UAAAAeSBuO4dDLFmuQ0K5ELbctXSlMkY2WaNcLiVr2Avlc7OdIfRl+r67brbrpTGyCz/5b/256f6kx5w64Os6s/Zbnt5Dg8JD011agmQtjybTa05XQM6Nloua58u2zS1+ha6vNlMCAAAAAAAAAACgbyNsBwCAB6ZmO1Pgpre4bXZLNq7RtM8/zXbOIyil/G62CxlGABub7Vw21uV6rKlt2/rLtof1+LYHkx53Ru35Or32PM9h1frwsHSW103Y4xhZSaoJ1eqoyqmO+9bt/YfWtq1Kd1l9Vl9tpgQAAAAAAAAAAEDfRtgOAAAPTIGlgOWvH6nJQnQJxyVttjOFvswht1xK3oyVv2EdY8jR2GzncoysctdsZ9u2Htv2oJ785JGkx3217ts6ZcDXUrpHfXFmx8im+po5seYs475nmh9NdTl9XrJmynx+/wIAAAAAAAAAAKBv81cyAAAAnzM32/nrR6opKNftuFSa7fwyRjZJM1Zej5E1BCDNzXZux8jmptnOtm39uekPerr5z0mPO3fgxTqxvzmo1pN6H4yRlaRhJSM1ruwIx31v71mhTe0b0llWn0WzHQAAAAAAAAAAAPKRv5IBAAD4XNw2hO181mwXykCzXchj6CvXTKG/kBX2PJLUT7yGHONyF6KzZWd9lGzcjuuRrffoue2PG4+xZOmfB12qaTWnpXWvfsEKVQSr0rrGPkVWSAEr9VHQyUKDyb4XhYxmOwAAAAAAAAAAAOQjfyUDAADwOXOzXepBnWxw2wzVF5vt8r0VK1vNdp8em72wXdyO6+Et/64XdvzVeIylgL5V/301VJ+ckXsOCg/LyHXSDXcdXHaYhhWPctz3ys7FaunYntb1+yLT69mSpSIrlOPVAAAAAAAAAAAAAO4QtgMAwANTs53ls2Y7t+GhZME0r6GvXDOF/vK9Fcsccow4Pu4lQBdz2YLnVcyO6Y+bf6eXWp4xHhNQQN8efKUmV83I2H3rMxW2SzOgaVmWZhra7TrsDi3Z/kRa1++L+mozJQAAAAAAAAAAAPo2fyUDAADwOdPIzoDPfqQWB0pcHZdKs13UJ8120bhz+KyvNttFM9Js5/5YL9d8YNMcLd+5xHhMQEFdNOQaTao8LqP3rg8Pzch13L5fkplYcaz6F9U57ntxx0LtjbelfY++JNJH378AAAAAAAAAAADo2/yVDAAAwOdMzXYBvzXbuR0jS7Od73gd3+ulrS7TY2Q77Kj+78e/1MpdS43HFFlF+tehP9IRFVMyem9Jqi8enpHrZOI1E7SKNL3my477WuO79beWZ9O+R19iCu3m+/sXAAAAAAAAAAAAfVtRby8AAIB8YssQtvNZfj1khV0dlzRs5zH0lWum0F++N2N5DTn2VrNdNB7RvR//Qn/f86rxmJAV1r8OvU7j+03M2H27GpShZrtMvWaOrZ6pJz/5f2qLt3bb99z2x3Vc9ZcUtIIZuVe+M72eQ3n+/gUAAAAAAACAbLJtW/F4XLZt9/ZSAKAby7IUCARkWVZvLyWrCNsBAOCBqRksb5vtko2RDTgH9kzjH3MtYjuvw23Q0K+ShRxt2+72H6de2uoy1WwXibfr7o9u07utbxiPCVvF+u7Qf9PYfodn5J5OaopqFbaK0w6AFlvpj5GVpJJAqaZWf0lPN/+5275Polv1+q5lOqpyakbule9M799wnr9/AQAAAAAAACDTotGoWlpa1NLSomg0StAOgK9ZlqVQKKSqqipVVVUpFAr19pIyzl/JAAAAfC5ubLbzV1uV21GMyYJpIWPoa29Ka8q0Qmu2k6SoQ0Ap7mWMrNJvttsbb9PvP/pp0qBdsVWi7w27MatBO+nTkGsm2u0y2aY2reY0BQ1/n+WZ5vn8T5DPRPvo+xcAAAAAAAAAMqW9vV2NjY1as2aNmpqaFIlE+H/MAHzPtm1FIhE1NTVpzZo1amxsVHu7PyanZQphOwAAPLBtQ9jOZ812btrdwlZx0grfZONM/fDLXNTQZuY2aOhXppCj5DzCN5fNdm2xVs3d+BO93/q28ZiSQJm+P3y2xpSNT+tebtWHh6V9jeIMBryqi/rrnyqPd9y3of0Dvd/294zdK5+Z2gjz/f0LAAAAAAAAAJkQjUbV2NioPXv29PZSACAte/bsUWNjo6LRaG8vJWP8lQwAAMDnzM12/vqRallWj6GVcCD56EzT+XHFM9KQli5Ts13IMP42XyRr9nL6mmO2++fCy7H7a43t1v/ZOFtr2941HlMWKNcVw3+i0aVjU76PV5lotgtnaIzsPif0P9O4b1Hz/IzeK1/11WZKAAAAAAAAAEhXLBbThg0b1NHR+5/FAEAmdHR0aMOGDYrF0isG8QvnGVcAAMBR3NAMFrD8NUZW+jRMF4mZK3nDPbTf9RT6KgqGUl5bJkQcRqpK+d+M5XWMbC6a7XbHdur/bJitDe0fGI8pD1bqB8Nu1rCSUSndI1X1xcNdHWfJki3nRsZMB7yGFI/Q+H5H6p09K7vte2fPa/q4fb2GFH8ho/fMNzTbAQAAAAAAAICzTZs2dRu5GAgEVFlZqcrKSoVCIQUC/iqBAABJisfjikaj2rlzp3bu3Kl4/PMim/b2dm3atEnDhqU/taq3EbYDAMCDfGm2k9IL0316frJxphGVpbSqzIn20WasZM+bc7Odh7CdvIftdnXs0G833KSPI+uNx1QGq/WD4T/RkOIRnq+frnqXzXZhq1jt9l7HfZkcI7vPzP5nOYbtJGlR82O6YPAPMn7PfEKzHQAAAAAAAAB0F4vFtGvXroTHwuGwvvCFL6ioiHgHAP8Lh8Pq16+f6urqtH79ekUin5eJ7Nq1S7FYTMGg/4psvPBfMgAAAB+L24awneW/H6nphOl6Ot8UlMmlvtqM5XmMrIeRvl7HyLZ0NGvOhh8nDdpVFfXXVSN+1itBO0mqCw2R5eI/aYuTjE3O9BhZSTqw9IsaUTLGcd+KnS9oR/STjN8zn5jev6E8f/8CAAAAAAAAQDr27NmTsG1ZloYPH07QDkDeKSoq0vDhw2VZVsLj+/85l4/8lwwAAMDH4oZmMDdhn1xLJ0zX0/m+CNsZ1hDqodHP74IqMjYlOgWUvDTbmcYgO9ke3aY5jT/W5shG4zH9i+p09fCfaZDLdrlsCAVCqgvV93hcstd7NtrULMvSzJqzHPfF1KHFO/6S8XvmE5rtAAAAAAAAAKC7/VvtysrKFA7n9+ceAApXOBxWWVnivLTdu3f30moyx3/JAAAAfMzUbBe0/Fd122OYLknTV0/nRw2tVLlkbLbL87COZVnGr8F5jGzmm+0+iW7RrzfcoK3Rj43H1IYG6aoRP1NdeLDr+2eLm7Bfsva6bLUhTqg4RgNCAx33vbjjKbXFWrNy33wQtSOOj/c0/hoAAAAAAAAA+rL9G58qKip6aSUAkBnl5eUJ24TtAAAoMHE5h+3ystmuh1BLkRUy7vNzs12+h+0k83MXsfd2e8xLs13M0MzY1dbIJs1p/LE+iW4xHjMwNERXDf+ZMUiWa/XFw3o8JtkY2WT70hG0gppRc4bjvr3xVi1reSYr980Hffn9CwAAAAAAAACpsG1bsVji/8cvLS3tpdUAQGbs32wXi8Vk23YvrSYz/JcMAADAx0xjOAOW/36khnpstku+P2AFjCNZTa1yuWRuxsr/sI7puYvEu3/NMWWu2W5z+0bN2XCDmjuajMcMDg/XVSN+qppQrev7Zlt9uOewXa7HyO4zpepElQXKHfc9t32Bp2bCvsTYTNkH3r8AAAAAAAAAkIp4vHvhQzDov8lKAOCF059jTn/e5RP/JQMAAPAxU7NdUP77ZafnZrueQy1expnmWl9uxjI32zmNkfXQbJfk2I/b1+s3G36slo5m4zFDi0fqyuE/VVVRf9f3zAU3YTtTcFTKbsCrOFCi46q/5Lhve8c2rdz1Utbu7Wd9+f0LAAAAAAAAAKlwanqyLKsXVgIAmeP051i+N9sV9fYCAADIJ3HbMEbWh812xWk220mfhpD2aFe3x5/f8Ve92/qGwlaxDig9RBMqJitoZf8/K+J2XG/tXq41be+o3WGkqtQ3mrFMz83ync/ro/Z1CY+9s2el6+v+cfNvtbr1Tcd9b+1ert2xncZzhxeP1veHz1Z5sNL1/XJlUHhoj8cka5/M1hjZfabVnKZF2x9Vhx3ttm9R83xNqjgurf9hYtu23tmzUu+1vq22+B7P55cFyjWu3xEa2+/wlNfglbGZkrAdAAAAAAAAAAAAfIywHQAAHtiGZruAD8tiewqthK2eA0ama6xpe0dr2t6RJC3Z8YQO33W0LhpyjYqskPeFuhS343pw8516eedzSY9L1mCWL8KGr2H93n9o/d5/pHzdDrtDy1oWeT5vZMlB+t6wG1UWdB6H2tvKguWqDNZoZ2x7SudnOyhaWVStoyun6aWWZ7rt29i+Tqtb39Qh/SakdG3btvWnrfdpyY6/pLXGRdsf1ZcGnKsv1/5zWtdxy9RsF+oDYVkAAAAAAAAAAAD0Xf5LBgAA4GOmMZwBy39jZHsKrYQDPYfS3LbEvbn7Fb27x7kxLVPW7/1Hj0E7qW80Y/npazig9BD9YPjNvg3a7eOm3c7EUvZr+E/sf5Zx3zPN81O+7ubIxrSDdvv89ZP/0o4kY4QzxbZtx5HIkjloCgAAAAAAAAAAAPgBYTsAADyI51GzXWmgLOn+kh72f3pMqev7vd/6tutjU/Gey+t7WbNfuXlucuHgskP1vWE35cX3tL54WNL9ycJ4/YIVmV6O4/0PK/8nx32rW9/Uxr0fpnTdf7T+PZ1lZf16TkwjZCUp5CIEDAAAAAAAAAAAAPQW/yUDAADwMds2hO0s//1IPbDsi0n3H1R2aI/XcHPMPnvjra6PTYWb69cU1ao2VJ/VdeRCT89dLowrO0KXDv2xigM9jxv2g/H9JibdP73my6oq6t/t8cHhEeofqsvWshKcWGNut1u0/dGUrtmW4ffd3nhbRq/nxNQQKklFWR7pCwAAAAAAAAAAAKTDf8kAAAB8LCbDGFn5b4zsF0rG6J8qj3fcd2zVTA0OD+/xGg3VJ6s+nLwxbJ9I3HksZKb0dP2AAvpq3bdlWdkfCZptkyqmamTJQb12/8PLj9YlQ6/31Tjbnnyx35EaV3aE476T+5+j6qL+OrvuwoQWyiIrpK/UXZCrJeqA0kM0quRgx32v7lyq5miT52uaxrGmKtvvY0mKqcO4LyDCdgAAAAAAAAAAAPAvPs0CAMCDfGq2C1gBXVD/Ax3ab5Leb/u79sbaVBbsp4PKDtWE8smuQmlVRTW6esStWrlzqdbv/YdidlyN7Wu0JfJRt2MzHfrxcv1T+n9Nh1ccrS+UjMnqGnKlNNhPPxh+s1buXKoP9q5WRzwxnLQrtkOrW99M+fpBFWlixbHdHi8JlOqgsi9qYsWxeRdaDFhBXTrsx1q+c4k+aFutSDyi8qIKjSs7QuM+a707qnKqakOD9Obu5QpaQU0on6xhJaNytkbLsnRi/zN178e/6LYvrpgWb/+Lzh54oadrmsJxVUX9dVCpuZny3dY3tDvW0v16WX4fS8mb7YKW/4LLAAAAAAAAAAAAwD6E7QAA8CAuQ9jOp2WxASuoIysbdGRlQ8rXKA9W6viaUzu35zfN0zPN87sd11vNdsdWzdQZdedn9d69oSRQqmOrZ+pYzey274O21VrdmHrYrjxYoQuHXJXO8nwpaAV1TNUJOqbqBOMxI0sP0sjS3m0NrAsNVlN0U7d9L7U8rVMHnKvSYD/X1zOF40aXHJz0Of7thhv1Xutb3a+Xi2Y729xsF2SMLAAAAAAAAAAAAHzMn8kAAAB8Kp5HzXbZEracR4v2VrNdyLCevixslaR3fh6Nh+1rAlZQJ9Sc4bhvb7xNL+54ytP1ooZwXKiH59j0Po7aEU/3T0WcZjsAAAAAAAAAAADkqcJJBgAAkAFxOYdEAiqcgIgpqNVbzXaFGBwrTvNrLsSAop9Mrpqh8mCl477FO/6iDjvq+lqmEKopTLdPKBB2vl4umu0Mf45KNNsBAAAAAAAAAODWyJEjZVlW5z9Llizp7SUBBYGwHQAAHtBsl6zZLruNWKbGrbDlHBrqy8IBmu3yWThQrOOqv+S4r6WjWa/ufNH1tSJxw/vCEKbr3N9LDZVSD2NkCyi4DAAAAAAAAAAAgPxTOMkAAAAyIC7nsJ1VQD9STUEt0zjLTKHZ7nM9tZb1eH4Bfs/85vjqUxUyBEUXNT8q27ZdXSea4njl3nofS1KMMbIAAAAAAAAAAADIU4WTDAAAIANMzXbBAmq2M4V4st2Ileq4zL4o3TGyhfg985uKoipNrprhuO/jSKNW7XnN1XXMzXY9hO382mzHGFkAAAAAAAAAAAD4WOEkAwAAyACa7czjKU3Nc5lCs93nAlZQRVYo5fN7GjGK3Dih5gxZshz3Ldr+qKtrpBpCDRnfx9kdBy3RbAcAAAAAAAAAAID8VTjJAAAAMiBuCIkECiggkqwRy+3oy1QYQ0UFGLaTpGKrJOVzabbzh4HhITq8/GjHfe+1vq3GvWt7vEaqIVTTa8A0ljaTYkrSbCea7QAAAAAAAAAAAOBfhO0AAPDA1GxXSGNkk4V4onb2WrFMoSLTWNu+ztRM5u7cwvye+dHM/l8x7lvU3HO7nbnZLvnrw/Q+znZDpWRutgsoIMtybvoDAAAAAAAAAAAA/IDqCAAAPIjbjJFN1ooWsdsVVuaDXHE7bgzyFWyzXYBmu75gVOnBOqD0EK1te7fbvtd2vaQzo9/UgNAg4/lRw9jXngKVyRoqsy1mOzfbBS1+NQEAAAAAAAAAwG9s29Zrr72m1atXa+vWrWpvb1ddXZ2GDh2qhoYGlZeX9/YSU7ZhwwatWLFCGzduVFtbm2pra3XooYfqqKOOUiCQ3ue/W7du1YsvvqiPP/5YbW1tGjJkiEaPHq3JkyenfW0nq1at0ttvv62mpibt3LlT/fv31+DBg9XQ0KABAwZk/H6FjE+0AADwwDY02wUKKWyXJMQTibdLWZio22FHzesp0OBYOl93oQYU/erEmrMcw3ZxxfXc9gX62sD/ZTw39WY75/2m8F4mmZrtggU0jhsAAAAAAAAAAL/btm2bbr31Vj344INqampyPCYcDmvGjBmaPXu2jj76aFfX/fa3v6158+Z1bn/44YcaOXKkq3OXLFmi6dOnd27fdNNNmj17tvH4rhN1jj/+eC1ZskSStGzZMt1000167rnnFI93//x30KBBuuGGG3T55Zd7Dsa9/vrruvbaa7V48WLHaw8bNkyXXHKJrrvuOhUVFWn27Nm6+eabO/cvXrxY06ZNc3WvTz75RHfccYcefPBBffTRR47HBAIBTZkyRTfddJNOPPFET18LnBVOMgAAgAwwjj8soJBIspBXtsbIJhttaQoN9XU02/Udh5ZP0qDwUMd9y3YsUmtst+O+uB0zBlF7ClSaxi/npNlOhrAdfw8IAAAAAAAAAABfePTRRzV69GjNmTPHGLSTpEgkooULF2ry5Mm65JJL1NHhPN3GT2699VYdd9xxWrRokWMYTpK2bNmiH/zgBzrnnHMUibj//PPXv/61Jk2apGeffdZ47Y0bN2rWrFk6/vjjtWXLlpS+Bkn64x//qNGjR+v22283Bu0kKR6Pa+nSpZo5c6a+9a1vefp64IxPtAAA8CBOs13PzXZZkCwAVKjBMZrt+o6AFdAJNWfqP7f8vtu+dnuvXtjxV50y4Gvd9kWShFt7en2YXgORnDTbmcbIFk5oGQAAAAAAAAAyze7okJo29vYy+r66YbKK+nbU5v7779fFF1/cLSx2wAEHaNy4cSorK1NjY6OWL1+uWOzzv2B/zz33qLGxUQsWLFCRT79Hv/zlL3XDDTd0bh988ME6+OCD1a9fP23atEkvv/yy9u7d27l//vz5mjVrlm6//fYer/2rX/1K11xzTbfHx40bpwMPPFDFxcVqbGzUihUrFIvFtGzZMp177rk67rjjPH8dN954o2655ZaExyzL0sEHH6wDDzxQFRUV2r59u1599dWEsOSDDz6oTZs2aeHChb59jvIB3zkAADywbUPYziqcsJ2pEUvKYtguabNdYQbH0vm6CzWg6GdHV07Tgm0PaVespdu+Jduf0Ak1Zyq0X4tjNI33hWnMbEwditkdClrZ+zWBhlAAAAAAAAAAyIKmjbLPPbi3V9HnWf/1njR4ZG8vI2veeOMNXXrppQlBuwkTJmju3LmaMmVKwrFNTU2aNWuW7r777s7HFi5cqBtvvFG33nprztbs1ttvv60XX3xRknTWWWfptttu09ixYxOO2b59u66++mo98MADnY/96le/0qWXXpp01O3KlSt13XXXJTw2bdo03XnnnRo/fnzC401NTbrxxht111136YUXXtCqVas8fR3z5s1LCNoFAgFdfvnluuaaazRixIiEY23b1mOPPaYrrrhCjY2NkqRnn31Ws2bN0m233ebpvvhc4SQDAADIAGNIpIB+pBZZRbIMX2+2RlDSbNddOJ0xsgU6etfPQoGwptWc5rhvZ2yHlu98vtvj2Wi2k7LfbmdutuPvAQEAAAAAAAAA0JsuuuiihDGjDQ0Neumll7oF7SSprq5Od911l+64446Ex2+//Xa9/fbbWV+rV83NzYrH4/rhD3+o+fPndwvaSVJNTY3+8Ic/6Mwzz+x8LBaL6b777kt67csvvzxhhO5Xv/pVPfPMM92CdtKn37d///d/1y9+8QtJ0rZt21x/DevXr9ell17auV1cXKwnnnhCv/vd77oF7aRP2+7OOussrVixQmPGjOl8/I477tCHH37o+r5IVDjJAAAAMsA2jZEtoEYmy7KMrVg02+VOsZV62C5ZOyF6z9TqU4whuUXbH1N8v2bNZO+L/Vvwuu1P8hqIJgnxZUJMzqHloArnz1EAAAAAAAAAAPxm8eLFeu211zq3Kysr9cgjj6isrCzpeddcc41OP/30zu14PK45c+ZkbZ3paGhocNXo9rOf/Sxh+7nnnjMeu2LFCr3yyiud24MHD9b999/f45jWa6+9VieddFKPa+nqjjvuUFtbW+f2nDlzdMopp/R43sCBA/Wf//mfnduxWMy3z1E+IGwHpzTaMAAAIABJREFUAIAHcVPYrsB+pJoCbrlutgsoWLBtWOm00xVqQNHvyoOVOqbqBMd9WyIb9fc9ryY8Fk2j8THZ6ydbodl9aLYDAAAAAAAAAMB/5s2bl7B9+eWXa8iQIa7O/fnPf56w/fDDD6u9PbufN6TihhtuUCDQ8+e648ePTxgb+8YbbxiPffjhhxO2v/e976mqqsrVembNmuXqOEnas2eP7r///s7t0aNH65JLLnF9/qRJkzR16tTO7ccff9z1uUhUWMkAAADSFDeNkbUK60eqMWyX42a7Qg6NpTVGlmY73zqh5kzjmOZFzY8lbKfT+JjsNZCt0Ow+pj9HgwXUEAoAAAAAAAAAgN8sXbo0Yfub3/ym63PHjx+viRMndm7v3btXK1euzNjaMqG0tFQzZsxwffwhhxzS+e+tra3avXu343HLli1L2D733HNd36OhocF1oHHp0qUJrXbnnHOOq+BgV9OnT+/89/Xr16uxsdHT+fgU9REAAHhgbLYrsJCIKaiTrZCOqcGrkENj6YyRLeSQot/VhgfpiIpj9Nqul7rtW9P2jta1va+RpQdJkiKGca9uGh9DSV4D2W+2M4Xt+NUEAAAAAAAAAIDesH37dq1du7Zzu7q6OiFs5saUKVMSxtCuWLFCU6ZMydga03XAAQcoHHY/OaqmpiZhu6WlReXl5d2Oe/PNNzv/vbq6WmPGjPG0rqOOOspVy9z+YcghQ4Zo3bp1nu61/9f/wQcfaMSIEZ6uAcJ2AAB4ErcZIyuZgzrRuHP4J10Rw3XTGaWa70LpjJEt4JBiPpjZ/yuOYTtJeqb5UV089IeS0mt8DFvm10/UEOLLlJgMY2RVWKFlAAAAAAAAAMioumGy/uu93l5F31c3rLdXkBVNTU0J2wceeKAsy/J0jbFjxyZsb926Ne11ZdL+4bmehEKhhO1oNNrtmD179mjv3r2d26kE19yes2HDhoTtK6+8UldeeaXn+3XV3Nyc1vmFirAdAAAemJrtTGMf+6pcN9uZrlvIobHidMbI0mzna18oGaMDS8frH23vdNv3xu6X1RTZpLrw4CSNjz0HMQNWUEVWkTrs7sG3bI+RNTfbEbYDAAAAAAAAgFRZRUXS4JG9vQzkqe3btydsV1VVeb7G/uf4LcjldeSqGzt27EjYrqio8HyNyspKV8d98sknnq/dk127dmX8moWgsJIBAACkKU5IRJI5rJWt8ZPpNHj1VeF0xsgWcEgxX5zY/yuOj9uK67ntCySZGx+TjYhNOM4Ums36GFlDsx1jZAEAAAAAAAAA6BW2bSdse221c5KJa/hdcXHiZy2RiPfpQW7PSeXaPdn/eYc7hO0AAPDA1GwXsArrR6qpOSvXzXamsFAhKE4jaFjIIcV8Mb7fRA0OD3fct6xlkXZ37Ey78THXodl9aLYDAAAAAAAAAMBf+vfvn7Dd0tLi+Rr7n+N1bKsbsZjzZwy9Zf+vcf+GQDfcNgDW1tYmbC9btky2baf1z7e//W3P6wVhOwAAPInbjJGVaLbzg3Ta6YqsUAZXgmwIWAGd0P9Mx31RO6IXdvw17feF6TUUtTP/N6O6iolmOwAAAAAAAAAA/KSuri5h+/333/d8jffeey9he+DAgY7HFRUlfh7Q0eH8uYGTVMJs2RQMBjV06NDO7Q8++ECtra2ervH222+7Om7QoEEJ26k8R8iMwkoGAACQJtMY2UCB/Ug1hXRy3WxXyONQw4HUxsiGrHDBNTHmq0kVx6sq6Py3vpbseFJ7Yrsc95maJ7sdZwrNZul9vI+x2U402wEAAAAAAAAA0Btqamp0wAEHdG7v2LFD7777rqdrLFu2LGF70qRJjsdVVlYmbO/YscP1Pd555x1Pa8qFyZMnd/57PB7X888/7/rc5uZmvfnmm66OnTJlSsL2008/7fo+yCw+aQUAwAPzGNnCConkutkuSrNdN6mOkS3k71m+CQVCmlZzuuO+3bEWvbJzseM+t89xyDQOOutjZGm2AwAAAAAAAADAbxoaGhK2H3roIdfnvvvuu1q5cmXndklJiY488kjHY/dvvFu1apXr+zz55JOuj82VE088MWH73nvvdX3uvHnzFIm4mzh0wgknKBj8/DPpxx9/XFu3bnV9L2QOYTsAADywjWG7wvqRGjKOn8xOSKfdFLYr5GY7K/VmO+SPqdUnq9jwXO+KtTg+7vY5NoXysvU+3sfUbFdooWUAAAAAAAAAAPzkggsuSNi+8847tXnzZlfnXn/99Qnb3/jGN1Rc7Pw5xMSJExO2FyxY4OoeTz31lJYvX+7q2Fw6//zzVVFR0bk9f/58PfXUUz2e99FHH+knP/mJ6/vU1NTo/PPP79zevXu3rrnmGm+LRUYUVjIAAIA0xWxD2K7AfqSam+3c/c0Lr4xjZAOFGxxLtaGO9rD8UhYs17HVMz2d4/a1YRwHnfVmO8MYWcJ2AAAAAAAAAAD0mhkzZmjChAmd2y0tLTrvvPPU1taW9Lw5c+boscce69y2LEtXXXWV8fhjjjlGZWVlndvz58/Xq6++mvQe//jHP/Qv//IvPX0JvaKiokJXXHFFwmPnnnuuFi92nlAkSevWrdPMmTM9jdCVpNmzZyeEGP/jP/5DP/rRjxSLOX/2YrJq1Sq98MILns7B5worGQAAQBps207SbFdYIRFjSCdLjVim8E8hj0RNOWynwnqt9gXTa77sKdDrtvHRFFaN2NkJze4Tk2GMrAiCAgAAAAAAAACQqs2bN2vdunUp/bPPfffdp3D4888PlixZoqlTp+qVV17pdr9t27bp8ssv19VXX53w+A9/+EMddthhxnVWVFTo61//eud2LBbTaaedpqeffrrbsZFIRPfee68mT56sLVu2qKamxsu3JGdmzZqlQw89tHN7586dOuGEE3Tuuefqv//7v/XWW29p9erVevrpp3XllVdq/Pjxevfdd1VSUqIzzzzT9X1GjRqle+65J+GxX/ziF2poaNCCBQvU0eH8GYz0acBv7ty5mjFjhsaPH6/nnnvO+xcKSeITLQAA3DIF7SSa7fbJViOWaaylaZxtIUh1hC7NdvlnQGigjqxo0Ipd7v6GkdsgpnEcNM12AAAAAAAAAADknfPOOy/lc23blvTpiNc777xT3/3udxWPf/rZ6MqVKzV58mSNGTNG48ePV0lJiTZs2KDly5d3C3fNnDlTt9xyS4/3u+WWWzR//vzOZretW7fq5JNP1pgxY3TYYYepuLhYW7Zs0SuvvKI9e/ZIkurr63X77bf7suEuHA7riSee0IwZM7RmzRpJn35P//SnP+lPf/qT4zmWZWnu3LlqbGzs1gyYzAUXXKDNmzfr+uuv73yOXn75ZZ1xxhkqKyvTEUccoUGDBqm0tFS7du3Stm3btGrVKs8tejDj01YAAFyKE7brFLZMjVg02+VKwErtNUegKT+d2P8s12E7tyHUXDdU7hOzDc12vDYBAAAAAAAAAOh1F198sWpqanThhRdq9+7dnY+vWbOmM0jm5Dvf+Y7uuusuhUKhHu8xdOhQ/fnPf9ZZZ52lXbt29XiPUaNG6YknntCWLVs8fjW5M3z4cL344ou67LLLNH/+/KTHDhgwQPPmzdNpp52mH/3oRwn7KioqerzXvvbACy+8UJs3b+58vLW1VS+99JKr9fq1JTAfFFYyAACANMTtJGG7AguJ5LrZzhT+SbXdrZDRbJefhpeM1sFl5sr1rtyGUI1jZOPZHSMbNzTbBRhxDAAAAAAAAACAL5xzzjlau3atrrjiCtXW1hqPC4VCOumkk/TSSy/pvvvucxW022fGjBlavny5zjzzTGObW11dna699lq98cYbOuSQQzx/HblWX1+v//mf/+kM3Y0bN07V1dUqKSnR6NGjdeKJJ+ruu+/W2rVrddppp0lSt8a5qqoqV/c65ZRT9OGHH2ru3LmaMGFCj414oVBIU6ZM0ezZs/X+++/riiuuSO2LBM12AAC4lbTZLsWWsXxlCrmZxr2myxT+KeRmu1QFCTTlrZn9v6L3Wt/q8ThT82S34wzvn2y9j/eJydRsx68mAAAAAAAAAAC4tW7duqxef+DAgfrNb36jX//611q5cqVWr16tpqYmtbe3q7a2VsOGDVNDQ4OrJjaTsWPH6tFHH9W2bdv0/PPPa+PGjWptbdWgQYM0atQoTZ06VUVFn39+MG3atM6Rt254OXZ/DzzwgB544IGUzm1oaFBDQ4OrY1etWtX575ZlaeDAga7vU1JSossuu0yXXXaZmpub9fLLL2vTpk1qbm5WNBpVeXm5Bg4cqIMOOkhjx45VWVmZ568F3fGJFgAALpnamKTCGyMbMoR0OuwOxexYxsdB0myXOYzqzF+HlE3QkPAX9HFkfdLjTO/PbseZxshmudkuZvizlNcmAAAAAAAAAAD+EwgENGnSJE2aNClr96itrdXZZ5+dtev71Z49e/Taa691bh900EEphxf79++vU089NVNLQxKFlQwAACANycfIFtaP1GQht6id+aCOaTwtzXbe0R6WvyzL0on9z+rxOLchVFMDnincminmsB2vTQAAAAAAAAAAUDjmzZun1tbWzu1jjjmmF1cDt/hECwAAg9bYbn3cvl52l22TQIGN5kwWcntvz1sqC5Z3bg8KD1VlUbWkT6uam6Kb1NKxXUVWSMOKRykUCCW9V8zuUFzO4Ry34zLxOdrD8ttRlQ16fNuD2tHxifEYtyFU03Efta/T1sjHqgsNlmVZKa0zmZhtGCNbYH+OAgAAAAAAAACAwrVx40bNmjUr4bELLrigl1YDLwjbAQCwn5gd00Ob5+qVnUtky9xm1xXNdp+7++Pbuj32xX5H6Yzab+q+TXdoS+SjzsdDVlhfrfu2jq9xrjS2bVsPb7nLvA6a7TyjPSy/FVkhTa/5suY3PWA8xm0I1TRGVpJmf3iZBoWH6rKhP1ZdeLDXZSZlCs/y2gQAAAAAAAAAAPnqz3/+s1auXKmrrrpKdXV1SY99/fXXdfbZZ6u5ubnzscMPP1zTp0/P9jKRAXyiBQDAfp765L/18s7nPJ1jFdhkdq8ht7/veVV/3/Nqt8ejdkSPbL1H9cXDdXDZod32v9TytJa1LDJeN1lYCM5oD8t/DVUz9ddPHtHeeJvj/nSb7fbZEvlIczfeoptGzc1ow515jCyvTQAAAAAAAAAAkJ927dql2267Tb/85S91yimn6IQTTtDhhx+ugQMHqqioSM3NzXr77bf1l7/8RQsWLJBt253nhsNhzZs3rxdXDy8I2wEAsJ83dr/s+ZwAYbu0vLX7Fcew3Ru7kj8XNNt5V/HZSF/kr9JgPzVUnaxF2x913O82hOqmAW9r9GNtjmzU4OLhntaYjDlsx68mAAAAAAAAAAAgv0WjUS1YsEALFixwdXxpaan++Mc/6vDDD8/yypAphZUMAADAhe0d2zwdXxIoVU1oQJZW40/FVon6FyWvP/ZiR7TZ8fFkz0VpoJ+qi/pnbA356Ct1/+L4+OkDztPA0BDHfRMrjs3mkpAj02tOV8ChpTCgoAaFnZ/7/Q0uHuHquJYO5/dnqmLqcHycZjsAAAAAAAAAAJCvqqurFQx6+6zj2GOP1QsvvKBzzjknS6tCNhC2AwBgP5F4u6fj/6lyWsE1MlmWpSlVJ2bseqbwTcQ2PxeTq6YX3Pd9f0eUT1FJoCzhsWKrRBMrjnV8fgaFh+qA0kNytTxkUU2oVqcM6P6L18SKKSoLlru6Rv9QncaW5f5vSRmb7RhxDAAAAAAAAAAA8tRZZ52lLVu26MEHH9Sll16qhoYGDR8+XP369VMwGFR5eblGjBihqVOn6t/+7d+0dOlSLV26VEcddVRvLx0eFfYn1AAA7CduxxW1I66O7V9UpyMrG3Rm7TezvCp/+tKAc2VZAb3Sslhbox+ndS1T+MYUfBwQGqiz6y5M6559QW14kK4cfov+p+kBNe5dq+HFo3RG7TdVXzxMg8JDJUl/2/msdnZs19iyw/X1QZfQHtaHnDrg6woooL/tfFaS9MV+R+nsgd7eF/869Dr9acv/1d/3vKpdsRbHY2zZaa+1q5htarbjVxMAAAAAAAAAAJC/BgwYoPPPP1/nn39+by8FWcQnWgAAdNFhR437/veIn2tUyUGd25YsWZaVi2X5kmVZ+tKAr+lLA76muB3vfHxnx3b92wcXebqWKXxjCtudU3eRAoTGJEkjSg7QlcNvkW3bCa9Hy7J00oCv6qQBX+22D31DwAro1Nqv69Tar6d8jZJAqb41+PuybVvfe/9s2Yp3OybzYTtDsx3vaQAAAAAAAAAAAPgcYTsAALpINkK22CpRwGICu5Ou35fiQInn853CdrZtK2JoGQwHij3fo69LFqYjaIeeWJalgAKKOYTtMo1mOwAAAAAAAAAAAOQrEgMAAHQRsc1hOwJe7qTyfXJquuqwOxxbtiQpbPFcAJlmymRmvNlOhmY70WwHAAAAAAAAAAAAfyNsBwBAF0mb7QjbuRK0ihTwGJpxCt9ECT4COWZK2+VqjCzNdgAAAAAAAAAAAPA3wnYAAHSRtNmONjXXvIbhnMZKJgs+ErYDMs8yhO0y2WwXt+PGxsqARbMdAAAAAAAAAAAA/I2wHQAAXRDwygyvwUSnpqtkwceQFfa8JgC9z9RqJ9FsBwAAAAAAAAAAAP8jbAcAQBemgFdAQYIgHoQD3sJwNNsB/pXJIbIxdX+v7xP0OH4aAAAAAAAAAAAAyDXCdgAAdGEKeBHu8sZzs528Ndsx0hfIPNMY2UzG7eJJm+0I2wEAAAAAAAAAAMDfCNsBANBF1BDwItzljddwotdmO8bIAplnCtvZGQzbOb3X96E9FAAAAAAAAAAAAH5H2A4AgC4i8Yjj417Hoha6kMdwolPblanZLmwVy7JMDVwA/CxGsx0AAAAAAAAAAADyGGE7AAC6SBbwgnvem+0cwnbG4CPPBZANphCrbWew2U5Jmu1Esx0AAAAAAAAAAAD8jbAdAABdmEaXEvDyxms40SmAw0hfINdyMUaWZjsAAAAAAAAAAADkL8J2AAB0YWq28zoWtdBlptnO8FwQfASyIhfDmZOH7Wi2AwAAAAAAAAAAgL8RtgMAoAua7TLDe9iue7OdeaRvOKU1AehJ9uN2Tu/1fWi2AwAAAAAAAAAAgN8RtgMAoAtj2I5mO0+8fr/iisu2E0dVEnwE/CGjY2RFsx0AAAAAAAAAAADyF2E7AAC6MLapEfDyJJXvV0yJjVfmZjueCyAbLGOzXQbDdsma7USzHQAAAAAAAAAAAPyNsB0AAF3QbJcZqXy/YnZi4xXNdkBumcJ2mYvadX+fd8UYWQAAAAAAAAAAAPgdYTsAALowN9uFc7yS/JZSs51Nsx3Qq0zFdjlotrNkKUDYDgAAAAAAAAAAAD5H2A4AgC5oU8uMTDTbReMR52vzXABZYWy2szMYtpNzsx2tdgAAAAAAAAAAAMgHhO0AAOgiamhTC9Gm5kkqTYD7h3BMzXY8F0C25GKMrHOzXVBFGbwLAAAAAAAAAAAAkB2E7QAA6IJmu8xIJRDXbYwszwWQU8Ypshm0f4PlPoyQBQAAAAAAAACgMDU2NurHP/6xpk6dqkGDBikcDsuyrM5/Hnjggd5eIpCACgkAALowtamlMha1kKUSiOs2RtY2jJG1vLfmAeiZaYxsJrvtTGE7xsgCAAAAAAAAAODNyJEjtX79+s7txYsXa9q0ab23oBTce++9+v73v6/2dufPaAE/otkOAIAuInFDwIs2NU9SCSfSbAf4k53RsJ1pjCxhOwAAAAAAAAAACsmTTz6pSy65xHXQbsmSJQmNd7Nnz87uAgEDmu0AAOiCZrvMyESzHc8FkGvZb7aLy9Rsx68lAAAAAAAAAAAUkuuvv162/flnEP/8z/+siy66SMOHD1coFOp8vLa2tjeWBxjxqRYAAF3QppYZqQTi4qLZDuhN2Y/aJWm2Y4wsAAAAAAAAAAAF47333tNbb73VuX3qqafqoYce6sUVAe4xRhYAgM/E7A5j61LYCud4Nfktq812hO2A7LCc43Zd/1ZZuvZ/n+8ToNkOAAAAAAAAAICC8eqrryZsn3POOb20EsA7wnYAAHzG1KQmEfDyKpXvV4ftrtkuxBhZICusHHTbGZvtRLMdAAAAAAAAAACFYsuWLQnbw4YN66WVAN4RtgMA4DOmJjWJgJdXqYyR7RrCidtxRe2I87UJPgJ5K2ZoD2WMLAAAAAAAAAAAhWP37t0J26FQqJdWAnjHvCYAAD5Ds13mhFIYu9s1hNNhR43HpRLkA9AzU7Nd5nrtkjTbMUYWAAAAAAAAAABfsm1br732mlavXq2tW7eqvb1ddXV1Gjp0qBoaGlReXu75mvF4PAsrBXKDT7UAAPhMsmY7Al7eWJalsFWc9Hu6v64hnOTBR+9BPgA9y80YWZrtAAAAAAAAAADIB9u2bdOtt96qBx98UE1NTY7HhMNhzZgxQ7Nnz9bRRx9tvNa6des0atQo4/7p06c7Pv6HP/xBF154oeO+m2++WTfffLPxmosXL9a0adOM+4FUMUYWAIDPROLOY0slmu1S4fV71jWEQ/AR8A87J2E7/g4QAAAAAAAAAAB+8eijj2r06NGaM2eOMWgnSZFIRAsXLtTkyZN1ySWXqKPDecIN0JfwqRYAAJ9JFvBKZSxqofMaiksI2zHSF+iTYjKMkRXNdgAAAAAAAACQlniH1Lqxt1fR95UNkwJ9O2pz//336+KLL+426vWAAw7QuHHjVFZWpsbGRi1fvlyx2Oef791zzz1qbGzUggULVFTUt79HKGy8ugEA+Iwp4BWywgpYlMF6FfLcbNdljCzNdkDOWZbzGFma7QAAAAAAAAAgD7RulB43j+lEhpzxoVQ+srdXkTVvvPGGLr300oSg3YQJEzR37lxNmTIl4dimpibNmjVLd999d+djCxcu1I033qhbb7014dhhw4bpww8/7Nz+zW9+o9/+9red2w8//LAmT57cbT21tbWdo2BffvllnXfeeZ37rrjiCl155ZXGr6W+vr6HrxZIDZ9qAQDwmagh4EWTWmrCHtsA46LZDuhdhrCdncmwnaHZzqLZDgAAAAAAAACA3nbRRRcpEol0bjc0NOipp55SWVlZt2Pr6up01113acyYMbr22ms7H7/99tt13nnn6dBDD+18rKioSCNHjuzcrq6uTrhWfX19wv6uysvLJUnr1q1LeLy6utp4DpBN1PQAAPAZU8CLJrXUeA3FuWm2CyhIAxaQJc5Ru8wyN9sRtgMAAAAAAAAAoDctXrxYr732Wud2ZWWlHnnkEcegXVfXXHONTj/99M7teDyuOXPmZG2dQG8jbAcAwGeMYTua1FLiNaTYNYTDcwHknpWDuF1MhmY7CrcBAAAAAAAAAOhV8+bNS9i+/PLLNWTIEFfn/vznP0/Yfvjhh9Xebp5kBeQzPtUCABSMJ7c9omUti4z798bbHB+n2S41qTTbrWl9R4u3/0Wv7/6b8zV5LoAscg7bPdr0R/31k/9KemZ9eJiOrpqmSZXHG4+JxNv1t5ZnHffRbAcAAAAAAAAAQO9aunRpwvY3v/lN1+eOHz9eEydO7GzG27t3r1auXKkpU6ZkdI2AHxC2AwAUjNb4bjV3NHk+jza11IStEk/Hv9/2dz267T/UYUfN1wyE010WAANTs92e+C7tie9Kem5zR5NWtb6u9vheNVSf3G2/bdv6949+Zjyf8dAAAAAAAAAAAPSe7du3a+3atZ3b1dXVOuSQQzxdY8qUKQljaFesWEHYDn0Sn2oBANCDkEXAKxVeg3Fv7V7e8zVptgN87bntCxzDdh+1r9d7rW8ZzwvQbAcAAAAAAAAA6SkbJp3xYW+vou8rG9bbK8iKpqbEwpIDDzxQluX8l/RNxo4dm7C9devWtNcF+BFhOwAAelARrO7tJeSlyqLMf98qiqoyfk0An+oXrJDMxZKubI5sVCTe3q0RtLF9TdLzKoK8twEAAAAAAAAgLYEiqXxkb68CeWr79u0J21VV3v+//f7nNDc3p7UmwK8Cvb0AAAD87ovlE3t7CXlpfL8j8+KaAD51SL8JGblOXPFuj0Xi7UnPGdfviIzcGwAAAAAAAAAAeGfbdsK211Y7J5m4BuBHhO0AAEhiavUpOrJiam8vIy+NLh2rM2u/lbHrHVE+RdNqTsvY9QAkOrn/2RrfL/1wcdyOdXssWdjuzNpvaXTpWON+AAAAAAAAAACQXf3790/Ybmlp8XyN/c+pqalJa02AXzFGFgBQMI6qmKqhxSNdHVtkFWlUycGqDddnd1F93MkDztbRVdO1tnWVIna7yoNVeqZ5vta0veP6GkdWNOi0Ad/QoPBQ/gYMkEWhQFiXDZ2lTZENaty7VrZDQ90+OzqatWDbQ477Yk5hO9s5bFcXGqyTB5yd2oIBAAAAAAAAAEBG1NXVJWy///77nq/x3nvvJWwPHDgwrTUBfkXYDgBQMEaWHqSRpQf19jIKTnVRfx1Z2dC5vaxlkafzG6pPVn3xsEwvC4ADy7I0pHiEhhSPSHrcpvYNxrCdlzGydeHB3hcJAAAAAAAAAAAyqqamRgcccIDWrl0rSdqxY4feffddHXLIIa6vsWzZsoTtSZMmZXSNlHLALxgjCwAAcipoBT0dH7aKs7QSAKlK9j52GiMbtSOOx4atcMbWBAAAAAAAAAAAUtfQ0JCw/dBDzn/p3sm7776rlStXdm6XlJToyCOPzNjaJKm4OPEzw/Z257/oD2QbYTsAAJBTQY/FuuEAYRzAbwJKErbz0GwXDhCmBQAAAAAAAADADy644IKE7TvvvFObN292de7111+fsP2Nb3yjWzguXdXV1QnbmzZtyuj1AbcI2wEAgJyi2Q7IfwHL/GuEU7NdxDaE7Xh/AwAAAAAAAADgCzNmzNCECRM6t1taWnTeeeepra0t6Xlz5szRY4891rltWZauuuqqjK9v9OhI9A+jAAAgAElEQVTRCoc/L+lYvHixotFoxu8D9MRbtQwAAECaPIftaL4CfCeQbIwszXYAAAAAAAAAAOTc5s2btW7dupTOHTlypCTpvvvu0zHHHKNIJCJJWrJkiaZOnaq5c+fq6KOPTjhn27Ztuummm/T73/8+4fEf/vCHOuyww1JaRzLhcFjHHnusFi9eLElqbGzUGWecoe9+97s68MADVVZWlnB8fX29SkpKMr4OgLAdAADIqaDlcYwszVeA7wSSFGTHbYewnb3X8dgQ728AAAAAAAAAADLivPPOS/lc27YlSRMnTtSdd96p7373u4rHP/3//StXrtTkyZM1ZswYjR8/XiUlJdqwYYOWL1+ujo6OhOvMnDlTt9xyS+pfRA+uvvrqzrCdJC1cuFALFy50PHbx4sWaNm1a1taCwkXYDgAA5BTNdkD+SzZGNuY0RjYecTyW9zcAAAAAAAAAAP5y8cUXq6amRhdeeKF2797d+fiaNWu0Zs0a43nf+c53dNdddykUCmVtbaeffrp++tOf6qabblIs1v3zCCAXzJ+SAQAAZEHQQ9Y/oKDnJjwA2ReUOTRrO42RtQ1jZGm2AwAAAAAAAADAd8455xytXbtWV1xxhWpra43HhUIhnXTSSXrppZd03333ZTVot88NN9ygt956S9ddd52OO+441dfXq7S0NOv3Bfbh02sAAJBTXprtaL0C/Mny3GxnCNvxHgcAAAAAAAAAICXr1q3L6vUHDhyo3/zmN/r1r3+tlStXavXq1WpqalJ7e7tqa2s1bNgwNTQ0qKKiwvO1Z8+erdmzZ6e8tnHjxum2225L+XwgHYTtAABATnlpqqP1CvCnZM12cTmE7YzNduGMrQkAAAAAAAAAAGReIBDQpEmTNGnSpN5eCuALjJEFAAA55a3ZjiAO4EeBJM12cdthjCzNdgAAAAAAAAAAAOgDCNsBAICcCnoo1qXZDvAnK8mvEU7NdlFjsx3vcQAAAAAAAAAAAOQPwnYAACCnvDTbhWi9AnwpYAWMgbv9m+1idkwddofjsbzHAQAAAAAAAAAAkE8I2wEAgJwKeBkjazFGFvCrgClsp8SwXdSOGK9Bsx0AAAAAAAAAAADyCWE7AACQU0HLwxhZWq8A3wpYzr9KxOzEMbKRuPMIWYn3OAAAAAAAAAAAAPILYTsAAJBTQXlptiOIA/iVaSS0vV+zXdKwHe9xAAAAAAAAAAAA5BHCdgAAIKe8NNuFaL0CfMsy/CrRrdnOptkOAAAAAAAAAAAAfQNhOwAAkFOmNiwntF4B/mV6L8cZIwsAAAAAAAAAAIA+irAdAADIKS/NdgRxAP8KGH6ViO8/RjZJs13ICmd0TQAAAAAAAAAAAEA2EbYDAAA5FRTNdkBfEHDZbBc1NNsVWUWemi4BAAAAAAAAAACA3kbYDgAA5JSnMbIBWq8Av0q32S5EmBYAAAAAAAAAAAB5hrAdAADIKU9jZAnjAL4VsAxhO3u/sJ2h2a44UJLxNQEAAAAAAAAAAADZRNgOAADklLdmO8J2gF8FDCOhY0ocIxuxI47HEaYFAAAAAAAAAABAvnFfLYM+wbKsUZImSBoiqVzSJknrJS2zbTvam2sDABSGoBVyfSxjJgH/MjXb2S6b7RgTDQAAAAAAAAAAgHxD2K5AWJZ1jqSrJR1jOKTZsqxHJN1o2/a23K0MAFBogoY2LCc02wH+5b7ZzjlsR5gWAAAAAAAA/5+9O4+yqyzzxf/dVUkqhCRkDkiIAUOahEHARAQZG5qppaUBZXIp2K1eUZRuEBsnRllwwV4dQbuV9gavP1RaQKZWWxxCiwjcgDSQoCTKEKYYQkIGyFj790dCmVOp6VSdqkpVPh/WXuR9z36Hvc85u2qf89TzAgD0NZaR7eeKohhaFMX3kvwgrQfaJcmoJB9P8kRRFMf0yOQA2CZZRhb6h9bey41ls2C7VjPbeX8DAAAAAADQtwi268eKoqhPcnOS05o9tDjJT7MxAO+RJOVmj41PckdRFAf3yCQB2ObUFx1PrDtI5ivYahWtLCPb2GwZ2XWtZLbz/gYAAAAAAKCvEWzXv12V5PjNyuuSnJtkQlmWx5Rl+f6yLN+RZK8kv9lsv4YktxdFsVPPTRWAbYXMdtA/tLYkdGPzZWRltgMAAAAAAKCfEGzXTxVFsVuSTzerfl9ZlteXZbl288qyLOclOTKVAXejk1zcvbMEYFtUH5ntoD+o62Bmu7Uy2wEAAAAAANBPCLbrvy5OMnCz8o1lWd7R2s5lWb6R5Kwkmwfi/d2moD0AqJnqMtsN6saZAF1R18qtRGOaBdvJbAcAAAAAAEA/IdiuHyqKYrskpzSrvrq9dmVZPpXk9s2qBiQ5o4ZTA4DUFzLbQX9Q10rg7Iay2TKylUmVmwwsBNMCAAAAAADQtwi265+OSTJks/JvyrL8XQfbzmpWPqk2UwKAjarJbDdQ5ivYarWW2a6U2Q4AAAAAAIB+SrBd/3Rss/LsKtr+Ksn6zcr7FUUxvsszAoBNqstsJ/MVbK06ntmulWA7mSsBAAAAAADoYwTb9U97NSv/pqMNy7JcleTxZtV7dnlGALBJfTqW2W5AMbDVYB6g97WWpbJ5Zrt1MtsBAAAAAADQTwi265+mNisvqLL9H5qVp3VhLgBQoaPLyMp6BVu3opVbiQ5nthNsBwAAAAAAQB8j2K6fKYpiVJJRzaqfq7Kb5vvv3vkZAUCluqI+RYp29xOIA1u3+qLlW4nG8s+Z7dY0rs6SdX9qcT8BtQAAAAAAAPQ1gu36nxHNyq9vWhq2Gs2/Ed2hC/MBgC10JLudQBzYutW1siR0YzZmtlu5YXn++bnPtdpeQC0AAAAAAAB9zYDengA1N7RZ+Y1O9NG8zbBOzqVJURTjkoytstnbujouAFun+gzI+qxvc59BdYN6aDZAZ9S1k9nuv5bcmoVr/thqewG1AAAAAAAA9DWC7fqf5sF2qzvRR/Ngu+Z9dsY5SS6uQT8A9AMD6wZlzYa2f0QNKgb30GyAzmg9s93GYLunXn+8zfYNdd7jAAAAAADQXV5//fU88sgjmT9/fl555ZWsXr062223XcaPH58pU6Zkv/32y6BBkl901uGHH5577723qVyWZbeMM3v27BxxxBFN5YsvvjiXXHJJt4xFxwi26/86827unisAAGyy6+C/yOOr/l+b+7xtyNQemg3QGa1nttu4jOzrjatabTuoaMiEhl27ZV4AAAAAALCt2rBhQ/7jP/4js2bNyi9/+cusX9/6SlODBw/OMccck7//+7/Pe97znh6cJfRtLX9DRl+2sll5u0700bxN8z4BoEuOHnVSGtrIXLfDgFE5eIeje3BGQLVay2y3IRuD7TaUrd/AHzP6lAy0VDQAAAAAANTML37xi0ybNi1nnHFG7rnnnjYD7ZJk9erVueOOO3LCCSdkxowZeeSRR3poptWZNGlSiqJIURSZNGlSb08HZLbrh7bWYLuvJ/lBlW3eluSOGowNwFbmbUOm5h8nXpkHl/8yz695pimtcn1Rn7cOnpx373B0xgwa38uzBNrSWma7sty4jOybGe6a23fou3Lc6Pd127wAAAAAAGBbc+mll+bSSy/dYinToigyderUTJgwIaNHj87ixYvz3HPP5amnnqrYb86cOTnwwANz/fXX5yMf+UhPTh36HMF2/c9rzcpDiqLYvizL1tfx2tK4ZuVlXZxTyrL8U5I/VdOmKIquDgvAVmyXwbtll8G79fY0gE5qP7Ndy8F204cf2m1zAgAAAACAbc15552XmTNnVtQNGzYsF110Uc4888xMnDhxizYLFizIjTfemGuvvTZr1qxJkqxduzYf/ehHs2rVqpx33nk9Mnfoiywj28+UZbkkydJm1VteOdv21mbl+Z2fEQAA/VF9K5ntGjdlttuQltPT17cSpAcAAAAAAFTn29/+9haBdgcffHDmzZuXiy66qMVAuySZPHlyrrjiijz22GPZa6+9Kh47//zzM3v27O6acr8xe/bslGXZtLHtEGzXPz3ZrDy5yvbN0ww17w8AgG1c0cqtRGM2Bdu1ktmuvhBsBwAAAAAAXfXUU0/lk5/8ZEXdQQcdlB//+MeZMGFCh/qYMmVKfv7zn2fq1KlNdY2NjfnABz6QV155pabzhf5CsF3/9ESz8oEdbVgUxfZJ9mmnPwAAtnGtBc01lm8uI9tKZrtiQLfNCQAAAAAAthUXXHBBVq5c2VQeMWJEbr311gwdOrSqfsaNG5dbbrklgwYNaqp74YUXcvnll9dsrtCf+Karf/pJko9uVj68iraHpPJ18duyLBfVYlIAAPQfda0F26UxZVk2ZbhrTmY7AAAAAADomt/97ne5++67K+quuuqq7Ljjjp3qb9q0abngggty5ZVXNtV961vfyiWXXJKRI0d2aa5bmwULFuSxxx7LCy+8kBUrVqQoigwZMiTjx4/Prrvumr333jtDhgzp9nmsWbMm9957b55++um8+uqrGTduXCZMmJBDDjmkW8Z/6aWX8uCDD+ZPf/pTlixZkqFDh2bcuHGZMWNGdtut+QKYtEWwXf/0X0neSLLdpvKBRVHsUZbl7zrQ9qxm5R/WcmIAAPQPda0tI1tuyIa0nNUuSerdggAAAAAAQJfMnDkzZVk2lceMGZOzzz67S32ed955ueaaa7Ju3bokyapVq3LDDTfkwgsv3GLfs846K9/+9rebyk8//XQmTZrUoXFmz56dI444oql88cUX55JLLmmz/zc9++yzKYqi1b4/9KEP5cYbb9yifs2aNfnqV7+aG264IfPnz29zfvX19dl3331z4okn5h//8R9bDXw7/PDDc++99zaVN38+2vLaa6/lS1/6Um688cYsX758i8eHDRuWU089NZdeemne8pa3dKjP1qxbty7f+ta38vWvfz2PP/54q/vtvvvuueCCC/LhD384Awb4Hqc9lpHth8qyfD3JLc2qP9teu6IopiT5282q1if5bg2nBgBAP9FaZrsN5YZs2LSUbEtktgMAAAAAgK75yU9+UlH+4Ac/WLEMbGeMHTs2J5xwQpvj9EULFy7MfvvtlwsvvLDdQLsk2bBhQx5++OF88YtfzIsvvljTufzP//xPpk2blq9+9astBtolyYoVK/Lv//7v2XvvvfPrX/+602M9/PDD2WOPPfLxj3+8zUC7JJk/f34+9rGPZcaMGXnhhRc6Pea2Qjhi/3VJktOSDNxUPqsoih+WZXlnSzsXRTE4yawkm199v1WW5R+6dZYAAPRJrWW2K9OYDWUbme0KtyAAAAAAALW2odyQZetf6e1p9HsjBozp9T8qf/755/PMM89U1B199NE16fvoo4/Obbfd1lR+4IEHsm7dugwcOLCNVluvtWvX5thjj82TTz5ZUT9q1KjsvffeGT9+fAYOHJgVK1bkpZdeyrx587Jq1apumcu8efNy5JFHZsmSJRX148ePz3777ZcRI0Zk0aJFeeCBB/LGG2/k1VdfzXve855cc801VY91991359RTT83rr79eUb/TTjvl7W9/e0aNGpVVq1Zl3rx5FQGIjz76aA444IA88MADmTBhQucOdBvgm65+qizLPxZFMTPJBZtV31IUxT8m+WZZlmvfrCyKYmqSf09y0Gb7LklyaY9MFgCAPkdmOwAAAACArcey9a/ki3/8WG9Po9+7fLdvZPTA8b06h5aynU2fPr0mfb/jHe+oKL/xxht59NFHM2PGjJr031HXXntt09KyBx98cFO2tZ133jn33Xdfq+2GDh1aUZ41a1bmzZvXVJ40aVK+9rWv5dhjj01d3ZZJBcqyzMMPP5y777473/rWt2pwJButW7cuZ555ZkWg3U477ZSZM2fm5JNPrpjLypUr85WvfCVf/vKXs2zZshaX8W3LvHnzctppp1UE2h177LG59NJL8853vnOL/X/729/m05/+dH71q18lSV544YWcfvrpmT17durrfafTEsF2/ds/JdkzyXGbygOTXJfki0VRPJJkRZLdkuyfZPNFrdcm+duyLF/qwbkCANCH1LeV2S5tBdu5BQEAAAAAgM56/vnnK8rjx4/P6NGja9L3Xnvt1eJ4PR1sN2bMmIwZMyZJMmDAn79XGDBgQCZNmtThfu64446Ktvfcc08mT57c6v5FUWT69OmZPn16vvjFL6axsbH6ybfguuuuy6OPPtpU3mmnnXLfffdlt91222LfoUOH5uKLL85ee+2V97///Vm6dGmHx2lsbMypp55akZ3vkksuycUXX9xqm/322y+/+MUvcuqppzZlNbzvvvty00035YMf/GCHx96WtPwNGf1CWZYbkrw/yc3NHhqX5Ngk70vyjlQG2v0pyXvLsvxVj0wSAIA+qShavpXYULazjGz8FRQAAAAAAHTWq6++WlEeOXJkzfoePHhwGhoa2hyvL3n22Web/v32t7+9zUC75urr62uyfG5jY2Ouu+66irpvfvObLQbabe7kk0/OOeecU9VYt912W5544omm8vvf//42A+3eNGDAgHz729/OuHHjmuquvfbaqsbelgi26+fKslxZluVp2RhY90Abu76a5F+T7FWW5U96ZHIAAPRZrQXNNabtZWRbW34WAAAAAABoX/PgtxEjRtS0/+b9bb70aV/2pz/9qVfG/e///u8888wzTeUZM2bkPe95T4fafulLX6oq4O+rX/1q07+LoshVV13V4bZDhw7Nxz7256WoH3/88Yp582eC7bYRZVneUpblgdm4bOwpST6V5KIkZyf5yyQ7lWV5TlmWi3txmgAA9BF1rWS2a2wvs51lZAEAAAAAYKtVFEX7O/URe+yxR9O/Fy5c2CvZ2u67776K8umnn97htmPHjs3RRx/doX1XrVqVBx74cw6uGTNmZNddd+3wWElyxBFHVJR/9SuLYrbEN13bmLIsn07ydG/PAwCAvq21DHXtZbarl9kOAAAAAAA6bdSoURXl1157rab9L1u2rM3x+pIzzjgjt912W1P5M5/5TG6//facffbZOf7447PTTjt1+xzmzJlTUT7ggAOqan/AAQfkP//zP9vd74EHHsi6deuayrvttlvVmekaGxsryn/4wx+qar+tEGwHAABUra61ZWTLxjSmjcx2bkEAAAAAAGpuxIAxuXy3b/T2NPq9EQPG9PYUtgh+W7p0ac36Xr16dVavXl1RN3r06Jr139NOOumknHTSSRUBd7/+9a/z61//OkkyefLkHHTQQXn3u9+dQw45JFOnTq35HBYtWlRR3n333atqP2XKlA7tt3Dhwory97///Xz/+9+vaqzmmi9ZzEa+6QIAAKrW+jKyMtsBAAAAAPS0+qI+oweO7+1p0AN23nnnivLLL7+cJUuW1CQobu7cue2O15cURZGbb745F198cf75n/95i0DCBQsWZMGCBfm///f/JtkYfPeBD3wg5557bs0y+jUPhhw+fHhV7XfYYYcO7bdkyZKq+u2IFStW1LzP/qDlb8gAAADa0Fpmuw1pzIayjcx2hb/3AQAAAACAzjrooIO2qGu+VGlnNe9nu+22y7777luTvnvLgAED8uUvfznPPPNMrr322hxyyCFpaGhocd8FCxbkkksuyW677Zabb765h2faNWvXrq15n2VZ1rzP/kCwHQAAULXWMtuVZWObme3q3IIAAAAAAECnTZw4MRMnTqyo++lPf1qTvu+5556K8gEHHJBBgwbVpO83bdjQ+ncI3Wn8+PE5//zz89///d957bXXcv/99+faa6/Ne9/73gwdOrRi39deey2nn356br/99i6PO3LkyIry8uXLq2r/2muvdWi/MWMqlzi+8sorU5Zll7Ybb7yxqrluK3zTBQAAVK21oLkNm/5rSX0GpCiK7pwWAAAAAAD0e8cee2xF+Tvf+U7WrVvXpT4XL16cO++8s81x3jRgQOUqNuvXt77iTXPNl1XtDQ0NDTnwwANz/vnn5/bbb8+SJUvy/e9/P1OmTGnapyzLfOpTn0pjY2OXxho/vnJ55/nz51fV/qmnnurUOB1tR/UE2wEAAFWrL1peRrax3NDqMrKttQEAAAAAADru05/+dMUfty9evDizZs3qUp8zZ86sCNjbfvvt85GPfKTFfYcPH15RXrZsWYfHmTt3blXz6ok/4h80aFBOPfXUPPjgg9l5552b6hcuXJiHH364S31Pnz69ovzAAw9U1f7BBx/s0H4HHnhgxbm65557LAPbTQTbAQAAVWsts11jWl9GVrAdAAAAAAB03bRp03LcccdV1H32s5/NokWLOtXfvHnzcs0111TUnX322Rk1alSL+48bN26L9h31ox/9qKq5NTQ0NP17zZo1VbWt1ogRI3LSSSdV1D399NNd6vPggw+uKH/ve9/rcNvFixd3eIngsWPHZr/99msqv/DCC/nxj3/c4bHoOMF2AABA1eo6ldluQIv1AAAAAABAdb7yla9kyJAhTeVly5blpJNOysqVK6vqZ/HixTnllFOydu3aprqddtopX/rSl1pts//++1eU77rrrg6N9V//9V956KGHqprfiBEjmv79yiuvdHm53PY0XyJ382C/zjj00EMzadKkpvKcOXNy9913d6jtZZddVtXxfvKTn6woX3DBBVW/HmifYDsAAKBqrQbbpTEb0kpmu8hsBwAAAAAAtbDHHnvkuuuuq6i7//77c9xxx+X555/vUB/z58/PkUcemSeffLKprq6uLt/5zncyduzYVtsdeOCBFYF+P/zhDzNnzpx2x/rQhz7UoXltburUqU3/Xr9+fX75y192qN3rr7+e6667LitWrOjwWCtXrsxtt93W6vidUVdXt0UQ3Mc+9rF2M+bddttt+frXv17VWB/84Aezxx57NJWffPLJ/O3f/m2WLl1aVT+LFy/e4jzwZ4LtAACAqrW2jGySrGtc22K9zHYAAAAAAFA7H/7wh/OJT3yiou6+++7LtGnTctVVV2XhwoUttluwYEG+8IUvZO+9987jjz9e8djVV1+dI488ss1xhw0bllNPPbWpvGHDhvz1X/91i0uerl27NjfccEPe9a53ZdGiRRk5cmRHDy9JcsQRR1SUzz777Hz961/Pww8/nD/+8Y955plnmrZXXnmlYtxPfepTmTBhQj784Q/nrrvuajPw7qGHHsqRRx6ZZ599tqnuXe96V6ZMmVLVfFvyqU99Km9/+9ubyi+++GLe/e5355ZbbkljY2PFvqtWrcpll12W0047LY2NjVWdr/r6+txyyy0ZPnx4U93Pfvaz7LPPPvnXf/3XNo//1Vdfzc0335zTTz89u+yyS7761a9WcYTbFt92AQAAVWsts12SrC9bTmle30YbAAAAAACgetdff31GjhyZL3/5yynLMkmyYsWKXHTRRfnc5z6XadOmZZdddsnIkSOzZMmSPPvss/n973+/RT8DBw7MzJkz8/GPf7xD415++eX54Q9/mGXLliVJ/vSnP+WYY47J5MmTs88++6ShoSGLFi3Kgw8+mFWrViVJdtxxx1x99dVVZbh73/vel89//vNN2fpefPHFLQIM3/ShD30oN954Y0Xd8uXLM2vWrMyaNStFUWTy5MnZbbfdMmLEiAwYMCBLlizJE088sUU2wCFDhuSb3/xmh+fZloEDB+amm27KYYcdliVLliRJXnrppbzvfe/L+PHj8453vCM77LBDFi1alN/85jd54403kiQ77LBDrr766nz0ox/t8Fh77rlnbr311pxyyil57bXXkiTPP/98zjnnnJx77rnZe++9M3HixAwfPjyvv/56li1blqeeeqrD2RARbAcAAHRCW5nt1pYtZ7ark9kOAAAAAABq7vLLL89hhx2Wc845J/Pnz2+qL8syc+fOzdy5c9tsv//+++cb3/hGpk+f3uExd95559x666058cQTKzKmLViwIAsWLNhi/1133TX/+Z//mUWLFnV4jCTZbrvt8sMf/jAnnnhiXnjhharaNleWZebPn19xjlqy884757bbbsvee+/dpfE2t+eee+ZnP/tZjj/++Lz00ktN9YsWLcqPfvSjLfYfMWJE7rzzzmzYsKHqsY466qjMmTMnp59+esXyvhs2bMijjz6aRx99tN0+qs1AuC2xjCwAAFC1+qL1W4n1rQTb1UdmOwAAAAAA6A5HHXVU5s2bl5tuuilHHnlkBgxo+w/gGxoacsIJJ+SOO+7InDlzqgq0e9Nf/uVf5qGHHsp73/veFEXR4j5jx47NZz7zmTz66KOZOnVq1WMkyfTp0zNv3rz827/9W0488cRMnjw5w4cPT31969877LDDDrn33ntz4YUX5h3veEe75yNJ/uIv/iJXXnllnnrqqbzzne/s1Fzbsu++++bJJ5/Mueeem2HDhrW4z9ChQ3PWWWflscceyyGHHNLpsSZPnpyHHnood911V4466qg0NDS022bq1Kk599xz86tf/Sq33XZbp8fu74o3U0jC1qYoij2TPPFm+Yknnsiee+7ZizMCAOBNz69+Olc++w8tPnbMqFPyX6/eskX9Lg275aJJ/9zdUwMAAAAA6HPWr1+/Rbat3XffvUMBQtCSVatW5eGHH86CBQuyePHirF27Ng0NDRk/fnymTJmS/fffv0MBWB31yiuv5N57783zzz+f119/PePHj8+uu+6aQw45ZKt4Hb/xxhuZO3du/vCHP+Tll1/OqlWrUhRFhg8fnokTJ2afffbJW9/61h6bz5o1azJ79uw8/fTTWbp0acaOHZsJEybkkEMOyfbbb1/z8VavXp0HH3wwzz77bJYsWZJVq1Zl++23z8iRIzN58uRMnTo1o0ePrvm43XVtmzt3bvbaa6/Nq/Yqy7LtFI410vuvZgAAoM+payOz3brWMttZRhYAAAAAAHrE9ttvn0MPPTSHHnpoj4w3ZsyYnHzyyT0yVmdst912mT59eqcy+HWHhoaGHHPMMT023uDBg3PYYYf12Hj9mWVkAQCAqtW1sSRs69rj1N4AACAASURBVMF2lpEFAAAAAACg7xJsBwAAVK3NzHaNMtsBAAAAAADQ/wi2AwAAqtapzHZttAEAAAAAAICtnWA7AACgam1mtmt1GVmZ7QAAAAAAAOi7BNsBAABVqyvayGzX6jKyMtsBAAAAAADQdwm2AwAAqlbfxq3EunJdy20E2wEAAAAAANCHCbYDAACq1mZmu9aWkY1lZAEAAAAAAOi7BNsBAABVq2srs13jmhbrZbYDAAAAAACgLxNsBwAAVK3tzHatLSMrsx0AAAAAAAB9l2A7AACgam1mtmtlGdm2AvQAAAAAAABgayfYDgAAqFrbme1aDrarj8x2AAAAAAAA9F2C7QAAgKq1mdmusZVgO5ntAAAAAAAA6MME2wEAAFUriiJFK7cTrWa2K2S2AwAAAAAAoO8SbAcAAHRKfdHy7USZspX9ZbYDAAAAAACg7xJsBwAAdEprme1aUx/BdgAAAAAAAPRdgu0AAIBOqTZTnWVkAQAAAAAA6MsE2wEAAJ1SV2WmOsvIAgAAAAAA0JcJtgMAADqlrqhyGVmZ7QAAAAAAAOjDBNsBAACdUnVmuyr3BwAAAAAAgK2JYDsAAKBTZLYDAAAAAABgWyLYDgAA6JS6Km8n6guZ7QAAAAAAAOi7BNsBAACdUm3wnGA7AAAAAAAA+jLBdgAAQKcUVWe2s4wsAAAAAAAAfZdgOwAAoFOqzVRXF5ntAAAAAAAA6LsE2wEAAJ1SV/UysjLbAQAAAAAA0HcJtgMAADqlruplZGW2AwAAAAAAoO8SbAcAAHSKzHYAAAAAAABsSwTbAQAAnVJ1ZrvIbAcAAAAAAEDfJbUEAADQKXVFtcvIuv0AAAAAAICe8Prrr+eRRx7J/Pnz88orr2T16tXZbrvtMn78+EyZMiX77bdfBg0aVJOxnnvuuXzzm9/Mvffem6eeeipLly7NunXrmh6fNWtWzjrrrBbbPvTQQ5k1a1buv//+LFy4MK+99loaGxubHn/66aczadKkJMnhhx+ee++9t+mxsixrMn+ohm+7AACATqmrMlNdfZXLzgIAAAAAAB23YcOG/Md//EdmzZqVX/7yl1m/fn2r+w4ePDjHHHNM/v7v/z7vec97Oj3mDTfckHPPPTdr1qypqt369etzzjnn5IYbbuj02NAbLCMLAAB0SvWZ7QTbAQAAAABAd/jFL36RadOm5Ywzzsg999zTZqBdkqxevTp33HFHTjjhhMyYMSOPPPJI1WP+6Ec/ysc+9rGqA+2S5POf/7xAO/okme0AAIBOqa82s53bDwAAAAAAqLlLL700l1566RbLqhZFkalTp2bChAkZPXp0Fi9enOeeey5PPfVUxX5z5szJgQcemOuvvz4f+chHOjzuRRddVDHmGWeckb/7u7/LLrvskoEDBzbVjxkzpqLdokWL8i//8i9N5UGDBuWf/umfcvzxx2fs2LGpq/vzH/tPmDChw/OBnuDbLgAAoFMKme0AAAAAAKBXnXfeeZk5c2ZF3bBhw3LRRRflzDPPzMSJE7dos2DBgtx444259tprm7LSrV27Nh/96EezatWqnHfeee2O+/vf/z6PPfZYU/n444/PTTfd1KE533777Vm7dm1T+YorrshnPvOZDrWF3mYZWQAAoFOqDZ6rL/ytDwAAAAAA1Mq3v/3tLQLtDj744MybNy8XXXRRi4F2STJ58uRcccUVeeyxx7LXXntVPHb++edn9uzZ7Y49Z86civIpp5zS4Xl3tu3s2bNTlmXTBr1BsB0AANApdVXeTshsBwAAAAAAtfHUU0/lk5/8ZEXdQQcdlB//+McdXnp1ypQp+fnPf56pU6c21TU2NuYDH/hAXnnllTbbLlq0qKJczXKvXWkLvU2wHQAA0Cl11S4jG5ntAAAAAACgFi644IKsXLmyqTxixIjceuutGTp0aFX9jBs3LrfccksGDRrUVPfCCy/k8ssvb7Pd5mMnycCBAzs8ZlfaQm/zbRcAANApdal2GVmZ7QAAAAAAoKt+97vf5e67766ou+qqq7Ljjjt2qr9p06blggsuyJVXXtlU961vfSuXXHJJRo4c2WKbxsbGTo3V1ba1MG/evDz++ONZsmRJli5dmsGDB2fs2LGZOnVq9tlnnzQ0NHSq3/Xr1+ehhx7KH//4xyxevDhr1qzJ2LFjM2nSpLz73e/O4MGDa3wk9AbBdgAAQKdUndmucPsBAAAAAABdNXPmzJRl2VQeM2ZMzj777C71ed555+Waa67JunXrkiSrVq3KDTfckAsvvDBJ8swzz2TXXXdttf0RRxzRYv2sWbOSpM35FUXRYv3TTz+dSZMmNZUPP/zw3HvvvU3lzc9BexYuXJj//b//d37wgx9ssYzt5rbbbrscccQR+dCHPpSTTz459fXtJxJ48sknc8UVV+Tuu+/O8uXLW+33b/7mb3LZZZdlypQpHZ43Wx/LyAIAAJ0isx0AAAAAAPS8n/zkJxXlD37wgxXLwHbG2LFjc8IJJ7Q5Tl9UlmWuuOKKTJ48Oddff32bgXZJ8sYbb+RHP/pRTj311CxcuLDNfTds2JB/+Id/yF577ZXvfve7rQbavdnvzTffnD333DMzZ87s1LGwdZBaAgAA6JRqg+eqDc4DAAAAAKBj1m8o8/zS3p5F/zdhZDKgvuUsbD3l+eefzzPPPFNRd/TRR9ek76OPPjq33XZbU/mBBx7IunXrMnDgwJr039PWr1+f0047LbfeeusWj+24447Ze++9M2bMmKxZsyaLFi3K//zP/2TlypUd6vuNN97IiSeemJ/+9KcV9QMHDsy+++6bCRMmpKGhIS+//HIeeuihvP76601zOu+887J06dJccsklXT5Gep5gOwAAoFOKKhJl16W+1TTwAAAAAAB0zfNLk90+19jb0+j3/nhlXSaN6d05/PrXv96ibvr06TXp+x3veEdF+Y033sijjz6aGTNmZMKECXn66aebHvuXf/mXigxt3/ve9/Kud71riz7HjNl4wg4//PCmutNOOy0PPvhgU3nzfjc3YcKETh3Hm84///wtAu2OP/74XHLJJZkxY8YW+zc2NuaBBx7I97///dx4441t9v2JT3yiItBuhx12yCWXXJK/+7u/y7Bhwyr2feONN/L1r389X/jCF7J69eokyWWXXZYDDjggxx13XCePjt4i2A4AAOiUajLbWUIWAAAAAAC67vnnn68ojx8/PqNHj65J33vttVeL482YMSMDBgzIpEmTmupHjBhRsd+OO+5Y8XhzQ4cObfr34MGDKx5rq11n/fSnP81Xv/rVirqrrroqn/3sZ1ttU1dXl4MOOigHHXRQLrvssi3m+aYf/OAHmTVrVlP5rW99a2bPnt3qcWy33XY5//zzc+CBB+bII4/M6tWrU5ZlPvWpT+X3v/996uo6ntyA3ufZAgAAOqWu6PjtRH3h73wAAAAAAKCrXn311YryyJEja9b34MGD09DQ0OZ4fcVll11WUf5f/+t/tRlo19yIESNaDLYry7Ki7wEDBuTOO+/sUMDgm0F8b1qwYEFuv/32Ds+JrYNgOwAAoFPqqridkNkOAAAAAAC6rnnwW/MMc13VvL8lS5bUtP+e8Nhjj1Ustzts2LBcffXVNen7l7/8ZZ544omm8plnnpl99tmnw+0/8YlPVATx3XnnnTWZFz1HsB0AANApddUsIxuZ7QAAAAAAYGtXFEVvT6HLfv7zn1eUzzjjjAwfPrwmfd9zzz0V5VNPPbWq9kOGDMk73/nOpvKvfvWrmsyLnuMbLwAAoFNktgMAAAAAgJ41atSoivJrr71W0/6XLVvW5nh9wf33319RPvzww2vW93333VdRHjVqVJ555pmq+tg88O+ZZ55JY2Nj6urkS+srBNsBAACdUlVmO8F2AAAAAADdZsLI5I9XCtbpbhNG9vYMtgx+W7p0ac36Xr16dVavXl1RN3r06Jr131NeeumlivKee+5Zs74XLlxYUX7Xu97Vpf4aGxuzbNmyPhnUuK0SbAcAAHRKfaoJtnPrAQAAAADQXQbUF5k0prdnQU/YeeedK8ovv/xylixZUpOguLlz57Y7Xl+wZMmSivLIkbWLkmzedy2sWLFCsF0fIqwZAADolKKoYhnZKgLzAAAAAACAlh100EFb1M2ZM6cmfTfvZ7vttsu+++5bk757U1EUNetr7dq1NevrTWVZ1rxPuo9gOwAAoFNktgMAAAAAgJ41ceLETJw4saLupz/9aU36vueeeyrKBxxwQAYNGlSTvnvSmDGVaR5fffXVbul78ODBaWxsTFmWXdomTZpUs/nR/QTbAQAAnVJVZrtCZjsAAAAAAKiFY489tqL8ne98J+vWretSn4sXL86dd97Z5jh9xU477VRRnjdvXs36Hj9+fNO/V69eneeee65mfdM3CLYDAAA6pb6K2wmZ7QAAAAAAoDY+/elPVyyNunjx4syaNatLfc6cObMiYG/77bfPRz7ykS712Vve/e53V5Rnz55ds76bL+Nbq6yC9B2C7QAAgE7Zrn77ju9b1/F9AQAAAACA1k2bNi3HHXdcRd1nP/vZLFq0qFP9zZs3L9dcc01F3dlnn51Ro0Z1eo696aijjqoof/e7382KFStq0vcxxxxTUf73f//3mvRL3yHYDgAA6JS/GLJPh/fdo4p9AQAAAACAtn3lK1/JkCFDmsrLli3LSSedlJUrV1bVz+LFi3PKKadk7dq1TXU77bRTvvSlL9Vsrj1tzz33zGGHHdZUXr58eS666KKa9H3cccflbW97W1P5oYceyv/5P/+nJn3TNwi2AwAAOmXUwLF537i/b3e/aUP2y8Ejjml3PwAAAAAAoGP22GOPXHfddRV1999/f4477rg8//zzHepj/vz5OfLII/Pkk0821dXV1eU73/lOxo4dW9P59rTmwYJf+9rX8pWvfKXD7V977bWsXr16i/oBAwbksssuq6j7+Mc/nttuu63qOf7sZz/LH//4x6rb0bsE2wEAAJ12xMj35EuTrs+p4z6aE8acWbGdOOaDOW+Xy/PxCZ/PoLqG3p4qAAAAAAD0Kx/+8IfziU98oqLuvvvuy7Rp03LVVVdl4cKFLbZbsGBBvvCFL2TvvffO448/XvHY1VdfnSOPPLLb5txT/vIv/zLnn39+Rd0FF1yQv/mbv8nDDz/cYpvGxsb85je/yac//enssssuefnll1vc74wzzsiHP/zhpvLatWtz8skn58wzz2y17yTZsGFDfvvb3+bSSy/NtGnT8ld/9Vd57rnnOnF09KYBvT0BAACgb9uxYUJ2bJjQ29MAAAAAAIBtzvXXX5+RI0fmy1/+csqyTJKsWLEiF110UT73uc9l2rRp2WWXXTJy5MgsWbIkzz77bH7/+99v0c/AgQMzc+bMfPzjH+/pQ+g2V199dZ577rn84Ac/aKq76667ctddd+Utb3lL9t5774wePTpr1qzJyy+/nMceeywrVqzoUN//9m//lqVLl+aHP/xhU913v/vdfPe7383YsWPz9re/PaNHj05dXV2WL1+eF198MU8++WSL2fLoWwTbAQAAAAAAAABAH3X55ZfnsMMOyznnnJP58+c31Zdlmblz52bu3Llttt9///3zjW98I9OnT+/uqfao+vr63Hzzzdlzzz3z5S9/OevWrWt67MUXX8yLL77Y6b4HDhyYW2+9Nddcc00uvvjiiiC6xYsX52c/+1mH+th+++07PQd6h2VkAQAAAAAAAACgDzvqqKMyb9683HTTTTnyyCMzYEDb+bcaGhpywgkn5I477sicOXP6XaDdm4qiyMUXX5zf//73+chHPpJRo0a1uf/QoUNz4okn5vbbb8/EiRPb7fvCCy/M008/nX/6p3/KW9/61nbnM2zYsBx//PH52te+lpdeeikzZsyo6njofcWbKSRha1MUxZ5Jnniz/MQTT2TPPffsxRkBAAAAAAAAQO2tX7++IiNZkuy+++7tBkxBa1atWpWHH344CxYsyOLFi7N27do0NDRk/PjxmTJlSvbff/80NDT09jR7XGNjYx555JH87ne/yyuvvJKVK1dm++23z7hx47LHHntkn332ycCBAzvd/9NPP51HHnkkixcvztKlS1NXV5dhw4blLW95S/bYY4/svvvuqa+vr+ERbd2669o2d+7c7LXXXptX7VWWZdspHGvEVRkAAAAAAAAAAPqR7bffPoceemgOPfTQ3p7KVqWuri7Tp0/vtkx+u+66a3bddddu6Zutg2VkAQAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAHpRURRb1JVl2QszAaidxsbGLepaut71JYLtAAAAAAAAAAB6UV3dluEb69at64WZANTO+vXrt6hr6XrXl/Tt2QMAAAAAAAAA9HFFUWTQoEEVdStXruyl2QDURvPr2KBBg2S2AwAAAAAAAACga4YNG1ZRXr58uaVkgT6rLMssX768oq75da4vEmwHAAAAAAAAANDLmgehrFu3Li+88IKAO6DPKcsyL7zwwhbLYQ8fPryXZlQ7A3p7AgAAAAAAAAAA27rBgwdn4MCBFcEpK1asyB/+8IcMHz48Q4cOzYABA1JXJ68SsPVpbGzM+vXrs3LlyixfvnyLQLuBAwemoaGhl2ZXO4LtAAAAAAAAAAB6WVEUectb3pLnnnuuIpvdunXrsmTJkixZsqQXZwfQeW9e34qi6O2pdJlwZwAAAAAAAACArcCQIUMyceLEfhGQApBsDLSbOHFihgwZ0ttTqQnBdgAAAAAAAAAAW4k3A+4GDhzY21MB6JKBAwf2q0C7xDKyAAAAAAAAAABblSFDhuRtb3tb1qxZk+XLl2fFihVZu3Ztb08LoF2DBg3KsGHDMnz48DQ0NPS7TJ2C7QAAAAAAAAAAtjJFUWTw4MEZPHhwxo0bl7Is09jYmLIse3tqAFsoiiJ1dXX9LriuOcF2AAAAAAAAAABbuaIoUl9f39vTANim1fX2BAAAAAAAAAAAAGBrJ9gOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoxoLcnAG0YtHlhwYIFvTUPAAAAAAAAAABgK9BCDNGglvbrDkVZlj01FlSlKIq/SXJHb88DAAAAAAAAAADYar23LMs7e2Igy8gCAAAAAAAAAABAOwTbAQAAAAAAAAAAQDssI8tWqyiKHZIctlnVwiRre2k60Be8LZVLL783yR96aS5A/+Q6A3Q31xkAusrPEqC7uc4A3c11BuhurjNAfzAoyS6ble8ty/K1nhh4QE8MAp2x6U3QI+spQ39QFEXzqj+UZTm3N+YC9E+uM0B3c50BoKv8LAG6m+sM0N1cZ4Du5joD9CO/7Y1BLSMLAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0QbAcAAAAAAAAAAADtEGwHAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0QbAcAAAAAAAAAAADtEGwHAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0QbAcAAAAAAAAAAADtEGwHAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0Y0NsTAKBmFie5tFkZoJZcZ4Du5joDQFf5WQJ0N9cZoLu5zgDdzXUGoAuKsix7ew4AAAAAAAAAAACwVbOMLAAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtEOwHQAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtEOwHQAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtEOwHQAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtGNAb08A2HoURVGfZHKSaUnekmSHJGuSLE3yhyRzyrJcVeMxByZ5d5KJSXZKsjLJi0l+W5blM7Ucq6cURbFnkn2TjE3SkOTlJM8n+XVZlqt7c249qSiKkUn2TLJ7klFJBidZlmRxkofLsvxDL05vC0VR7JqNz9tbkgxN8lKSZ5PcX5bluhqO89Yk78jG1/sOSdZl43mZn43nZUWtxtoauc7UhuvMRn3tOkPPcJ2pDdeZjfrCdaYnX/N94XxALfTHnyX98ZhqpafuBfsK56Nn9Mf3ZH88plrxvqrkM7ie0R/fk/3xmGrFdYbe0B/fk/3xmGrFdcZncEAzZVnabLZteMvGX97OS3J3kteSlG1s65P8OMlf12DcsUm+nmRJG+P9OsnJXRxntySnJrkmyewky5uN8UyNzuOwJJ9P8kIbx7M8yXeSvK0Xn+9uOx9JBiY5Jsn1SZ5o57VUbjpXlyXZsZffA6ckub+NeS7Z9Fod04UxhiS5MMlT7ZyTDUn+M8nRvXlOuuEcu87U5jy6zvTB60x3vz46cA7a2yb11rmp8Xl2nanNeXSd6SPXmZ56zfeV82Gz1WLrjz9L+uMx1fg574l7we2THJzkH5LclI33hI3Nxjmrt1//zkePneN+957sj8dU4+fc+6rnz4fP4PrZe7I/HlONn3PXmT/P02dwPXOe+917sj8eU42f8236OtNTr4/4DM5m63Nbr0/AZrP13pbku124MbgryfhOjntckkVVjPX/Jdm+iv4PT/Jf7fyCWpMbrE3jHZCNf2XS0eNZleTjPfg8d/v52HQOXu3ka2lpkg/0wut/aJLvVTHPl5Mc04lxDkzyx06cl+8mGdLT56UbzrPrjOvMNned6cnXRxfeX29uk3rqvHTj+XadcZ3Zpq4zPfWa7yvnw2arxdZT76sWxu22nyX98Zhq+Hx3+71gNn7Z9Hg2ftnSXv9n9fLr3/nomfPc796T/fGYvK/67vnYNI7P4PrZe7I/HlNfel/1hetMfAbX0+e7370n++Mx1fD53uavMz31+ojP4Gy2PrlZRha2bVNaqX8hG9PpL8rG5aZ3S/L2JHWb7fOeJP9dFMVhZVm+3NEBi6I4PMntSQZtVl0meSQbPwwZkWS/JGM2e/zMJMOLojixLMvGDgyzb5KjOzqnriiK4qhs/GuGhmYPPZvksWz8InpCNv6iNHDTY0OSfL0oirqyLL/WA9PsifMxNsnIFurXZuMvyi9n4198jE4yfdP/3zQiyXeKohhXluU/d/M8kzSler45yfHNHlqc5Leb5vq2bHwtFpseG5/kjqIojirL8r4OjnNgkp9m403J5lYk+X/Z+B5ryMa003ul8j12epJxRVEcX5bl2g4e2tbIdaaLXGea9KXrTI+9PkjiOtNlrjNN+sp1pqde833lfEAt9MefJf3xmLqsp+4Fk5yRjUsKbdWcjx7VH9+T/fGYusz7qpLP4HpUf3xP9sdj6jLXmQo+g+tZ/fE92R+PqctcZ5r4DA5oXW9H+9lstt7bkszJnyPfH0nyybSyJFiSnZN8I1tGzP8qSdHB8SZky8j8+5JMbbZfQ5JPZeMvEZvve2UHxzmvhXmWSVYnWdCs7pkunL9J2fIvphYk+asW9h2Z5Lpm+25oad9ueJ67/Xxk4y+Nb/axIsm3khyZZLsW9i2S/G02foHffE7dfj42zeGaZuOu3fT6H9Rsv2nZMj32K0l26sAYg1s4v69vem0PbmH/tyW5s4VzclFPnJNuPNeuM64z29x1pqdeH5vG2ryvBza9ZqrZBnT3+eiB8+064zqzTV1neuo131fOh81Wi60//izpj8dUo+e62+8FN7Vf1sL5LJM838JjZ/Xia9/56Llz3e/ek/3xmGr0XHtf9fD5iM/g3jyufvee7I/HVKPn2nXmz3P0GVzPnu9+957sj8dUo+fadaYHXx/xGZzN1ie3Xp+AzWbrvS0b/6rv7iTTq2hzTgs/vE/rYNtvNWv367Twgcdm+5/YbP/VSd7agXHO2/SL32+T3JDko0n2z8ZMLIc36/OZLpy/5umT5ycZ106bC5u1mZukvpuf524/H5t+EVyU5Px0PD336CTzmo3/ZHu/dNbgfOyWLW9Q3tvG/ttly5uFf+vAOGc1a9OYdlJob/ol+Qf/f3v3HjVJUd5x/PfICstNFkFYQGFZXbyhBKIJKEkWAwT0eAGJGhKzK94SjEeNehK8nKgxahIkehKDGhVJvESjYsBFMCiLBC8ILsrNW2RRiCC7LIRF9gZP/uh52Z56Z6a7Z3q6u2q+n3P6j+q3q7uqpurp6Xq7e4J8dyu4gIlpIc4QZ2Y0zjTSP3rHyu9r9TTr1dWFOEOcmbU401Sfj6U9WFjqWFI8l6RYpxo+50auBXt571L29oFVkt7ei6n79v62Otjnypb6Pe3RbHsnNyZTrFMNnzPjqoX2EHNwc3VKbkymWKcaPmfiTH8ZmYNrtr2TG5Mp1qmGz5k403D/EHNwLCxRLq0XgIWFpb1F0pIx830uOHmvKpFnmaRtuTybJS0rke/jwbE+ViLPnsO+nKq+f8YuVfYml/y+ji6Z92tBvtOm/Dk30R6PKPsFMMh32IB2fOqU2+Pc4HjnlMhzSK/PzuXZKmlpQZ7PB8c5r2T5Fmv+hcyx02yTKbf3kjHzEWeIM+F+YoozU2+P3P7y+1o9zXp1dSHOEGdmLc401edjaQ8WljqWFM8lKdaphs+5kWvBXr6hjyZEhAAAGD9JREFUb3JQB/5pRHu00t5LxszX2TGZYp1q+JwZVy20h5iDm6vPkjHzdXZMplinGj5n4kx/OZiDa7a9l4yZr7NjMsU61fA5E2ca7h9iDo6FJcol/7vRAGaMu68dM+sHgvQxJfKcKmmHXPoL7v7jEvn+Nki/wMwWjsrg7hvcfVOJfU/iWVJfDP2Wu/93ybxnBumX1FOkwZpoD3e/w93vHSPf95S9IjuvTH8ai5ntLOmUYHXYx+Zx9x9J+mJu1QJlfXqUpUH6gsICZse6TdKVweplZfJ2EXFmIsSZ/mNEEWd6x2yif6CHODMR4kz/MaKIM031+VjaA6hDiueSFOs0iYavBeXuv6hUwIbRHs1LcUymWKdJMK76MQfXvBTHZIp1mgRxZj7m4JqV4phMsU6TIM70Yw4OwCjcbAdgHGuC9M5mtqggz0lB+pwyB3L3GyV9O7dqV0nHl8k7Zb8dpC+ukPeryp6anPM0M9tv8iJFK+xP+0/xWL8naZdc+pvu/oOSecM+e3LB9rsG6VtKHkeSfh6k96yQNxXEGeJMnZqMM4gHcYY4U6cY4sw4fb6uY3WxPYA6pHguSbFOUrPXgjGgPeKR4phMsU4S4yrEHFw8UhyTKdZJIs4gXimOyRTrJBFn6sIcHDADuNkOwDi2DVi347CNzWyxslfZ5vNfUeF4q4P0iRXyTssjg/R1ZTO6+2ZJP8mteoi6Uae2hP1paF+qwQlBenWFvJerv6yHm9m+I7a/LUhXedIo3PbOCnlTQZwhztSpyTiDeBBniDN1iiHOVOrzNR+ri+0B1CHFc0mKdZKavRaMAe0RjxTHZIp1khhXIebg4pHimEyxThJxBvFKcUymWCeJOFMX5uCAGcDNdgDG8ZggvU3SuhHbHxqkv1/xdbjfCNJPrJB3Wh4epO+qmD/c/kkTlCV2YX+a5mujw774zbIZe3322mD1qL54eZA+ouyxBmz7nQp5U0GcIc7Uqck4g3gQZ4gzdYohzlTt83Ueq4vtAdQhxXNJinWSmr0WjAHtEY8Ux2SKdZIYVyHm4OKR4phMsU4ScQbxSnFMplgniThTF+bggBnAzXYAxnFKkL7K3R8Ysf0TgvRPBm413P8U7K8NW4L0ThXzh9t3oU6NM7OHSTouWH3lFA/5+CA9zb74EfX3k9PMbOeiA5jZSZIOzK263t2vLl/EZBBniDO1aCHOtOlAMzvHzK43sw1mtsXMbu+lP2FmrzCz8OaqWUacIc7UIqI4U7XPjyWi9gDqkOK5JMU6Sc1eC8aA9ohHimMyxTpJjKsQc3DxSHFMplgniTjTJczBVZPimEyxThJxpi7MwQEzgJvtAFRiZrtJemmw+ryCbOFd9T+reNibg/ReZrZnxX3UbX2Q3q9i/nD7x05Qlpi9UtIuufTdki6dxoF6F7fhBW7Vvhhuv2zYhu5+k6QzcqseJenTZrbLkCwys6cqmyCc84CkV1csY/SIMw8iztSjsTjTAQdLWqlsEmORpIdK2qeX/kNJH5L0MzP7h944m1nEmQcRZ+rR+TgzZp8fV+fbA6hDiueSFOskNX8t2HW0RzxSHJMp1kliXIWYg4tHimMyxTpJxJkOYg6upBTHZIp1kogzdWEODpgd3GwHoKp3S1qcS9+l/omJQRYF6V9WOaC7b5S0KVi9R5V9TMGNQfrIshnN7EBJ+wer265P48xsiaS3Bqvf7+7hW3bqEvbDX1V8Tbc0v++O/Nzc/SxJb5S0tbfquZJuMLO/NLOjzWyZmT3RzJ5nZudIukLbL2a2SjrN3WfxizFxJkOcmVALcSYGu0p6raSrzWxWX+MvEWfmEGcmFFGcGafPVxZRewB1SPFckmKdpBauBTuO9ohHimMyxTpJjKsQc3DxSHFMplgniTgTI+bgMimOyRTrJBFn6sIcHDAjuNkOQGm9V+v/WbD6ze5+Z0HW8Mmd+8Y4fJhn9zH2UafLgvTzRz0tGfjjAevark+jzGxHSZ9Rf73XSvq7KR62lX7o7mdKOkzSxyRtkHSQsi/bl0v6kaTrlD3VslLZE3CSdImkI9393DHKGDXiTB/izARaijNt2SZptaS3SHqOpCOUPTV4uLJ/MJyp+RMdh0i6xMwOaq6Y3UCc6UOcmUAscWaCPl/1OFG0B1CHFM8lKdYpJ4YyNon2iECKYzLFOuXEUMYmMQcXgRTHZIp1yomhjLOAObgKUhyTKdYpJ4YydhpzcMBs4WY7AKWY2WGS/jVY/RVJZ5fIHn5BC5++KCP8gtb2q7dXKXsaYc4iSW8rymRmj5L0hgF/2sHMdq6naFH4iKTfyKXvl7RijKdkqmizHy5Q9nMUW4s2lHSupNe5+3erFCwFxJl5iDOTaSPOtOEtkg5w92Pc/W/c/QJ3X+PuP3H3a9z9fHd/o7J/MrxHkufyLpb0BTOzNgreBuLMPMSZyXQ+zkzY56vqfHsAdUjxXJJinQr218UyNon26LgUx2SKdSrYXxfL2CTm4DouxTGZYp0K9tfFMqaOObgKUhyTKdapYH9dLGNnMQcHzB5utgNQqPczYavU/6XoZkl/5O4+ONdITeWZGne/R9L7g9VvMLPXDMtjZo+UdJGGvza5U3WcFjP7a0kvDlaf4e5fb7goU++HZraTmf2jpO9JepmkfUpkWyHpWjM7v9dnZgJxZj7izPg6FGemrje5V/izA+6+yd3PkPTq4E9HSPqDqRSuY4gz8xFnxhdDnJlCnx91rM63B1CHFM8lKdZpSsdL+fxGe3RIimMyxTpN6Xgpjyvm4DokxTGZYp2mdLyU48zUMQdXXopjMsU6Tel4MxlnmIMDZtOCtgsAoNvMbB9J/yXpgNzq2yQd5+53lNzNxiA9zhtPwjzhPtvwLkknavvTAybpfWZ2iqSPSrpG2VMc+/e2+1Nt/6J1i6T8JM4md5/3lIiZLSlbGHdfW6n0LTCz1yp7AizvLHf/+5L5l5Q91oD2aLQfmtkCSV+UdEK+WMp+ruJcSVdJWidpJ0kHSnqGsgvwZb1tny3pKDM7zt2vGaOs0SDOjEScqajlONN57v4BMzte2U9dzDld0qdaKlIjiDMjEWcqiiHO1NTnyx5rovYAYpHiuSSmOsV0LdgE2iNNMY3JsmKqE+OqX0ztwRxceTGNybJiqlNM46oJqc0VhJiD6/6YLCumOhFn+jEHB2CauNkOwFBm9nBJl0g6JLd6naRj3f3HFXaV3Bc0SXL3LWZ2sqQLJT0596eje8sw6yW9VNLFuXV3Ddn2pgpF6vQryM3s5ZLOClaf7e6vr7CbSdqj6X74VvVP8t0n6RR3vzDYbouk6yVdb2YflvTPkk7r/W1vSV8ys8Pcff0Y5e084sxoxJlqOhBnYvFu9U/0HWlmi9x9WB+JGnFmNOJMNTHEmRr7fJlj1dEeQOeleC6JsE4xXQs2gfZITIRjslCEdWJc9YupPZiDKyHCMVkowjrFNK6akMxcwQjMwXV7TBaKsE7EmX7MwQGYGn5GFsBAZraHst+Sf1Ju9QZld+JfX3F3dwfpR1Qsy26a/wWtExcj7n6rpKdJ+pCkrSWyXCrpKZLuDdbfVnPROsXMXizpg+r/snqOpFc1WIywH+5iZrtW3Ef4ExQD+2HvC3b4Bff0AZN8fdx9s6SXS7ost/oASW+qWM4oEGfKIc6U05E4E4srlY21OTtIekJLZZkq4kw5xJlyYogzNff5omN1vj2AOqR4LkmxTgUauxaMBO3RMSmOyRTrVIBx1Y85uI5JcUymWKcCxJk4MQcX8ZhMsU4FiDMVMAcHgJvtAMxjZrtLukjSr+dW/5+kE8Z8lX549/5BFfOH29/p7hsGbtkCd7/X3f9E0mMlvVnZP6BvUfYU5T2SblT2kwXHSfrd3quIHx/s5qrGCtwwM3uRsi99+XPOJyW9zN29qXL0nkoN+82BFXcT9sVhT6Y8U1L+IuQmZX2gkLs/IOkdweoVZhbr03sDEWeqIc6M1pU4E4tenPlZsLrSBE8MiDPVEGdGiyHOTKHPjzpW59sDqEOK55IU61Sk4WvBzqM9uiXFMZlinYowrvoxB9ctKY7JFOtUhDgTJ+bg4h2TKdapCHGmPObgAEj8jCyAQO8phQslHZlbvVHSie5+5Zi7vTFIP6Zi/qVB+oYxyzFV7n6TpHf1liJHBelvD9ln1JM7ZvZ8Sf+m7ImtOf8haUXvQrOSGtrjRmVv7pnzGM3vn6OEfXFY3sOC9KUVv/R+XdlPW+zYS++lrKxJXJgQZ8ZHnJmvg3EmFvcF6XF+FqCziDPjI87MF0OcmVKfH3asWtsD6KoUzyUx1ymia8FG0B5piHlMDhNznRhX/SJqD+bgRoh5TA4Tc50iGleNiH2uoALm4KojzsxHnBkDc3AApok32wF4kJntLOlLko7Orf6VpGe5+zcm2PV1QfrJZrZLhfxPL9hfVHpPRz4jWH3ZoG1jZmbPkfRp9d/Y/UVJp7r7/e2Ual7fCW8SGKr3BfrJBfubsyhIV/pZPXffJml9sHrvKvvoKuJMM4gzrcaZWIQxZV0rpZgC4kwziDPdiTNT7PODjtX59gDqkOK5JMU6VdTUtWAsaI+WpTgmU6xTRYyrfszBtSzFMZlinSoizsSJObjqiDPzEWc6gDk4AHncbAdAkmRmCyWdL2l5bvUmSc9x969Psm93/4Wk7+dWLVD/F5Eiy4P0lycpTwc8Q9KSXPoyd0/iack5ZvZMZU9XPDS3epWkF/YmsdpyUZBeXiHvb6n/S+0ad799yLZ3BeldB2412m5BeuMY++gU4kyjiDMYysz21vynDP+3jbLUjTjTKOJMB0yzzw84VufbA6hDiueSFOs0hqauBWNBe7QoxTGZYp3GwLjqxxxci1IckynWaQzEmcgwBzce4sxAy4M0caZhzMEBCHGzHQCZ2Y6SviDp2NzqzZKe5+5frekw5wXpl5Qs2+Mk/WZu1b2SvlJTmdryF0H6Q62UYkrM7DhJn9f2n1+Qss/s+e6+pZ1SPehi9b+2/aheHytjZZAO+3ReeMF8eMljSJLMbJmk3YPVlZ7M7RriTOOIMxjlReq/DrhdCfz0F3GmccSZljXU5+eO1fn2AOqQ4rkkxTqNqalrwVjQHi1JcUymWKcxMa76MQfXkhTHZIp1GhNxJj7MwY2POLO9bMSZljEHB2AQbrYDZpyZLZD0WUkn5lZvlXSKu19c46E+KSn/WtuTe5MZRcJ/5H7W3TfVV6xmmdkKScflVl2j7OmEJJjZ70j6T0kLc6u/puwL5+Z2SrWdu/9K0ueC1WEfm8fMDpF0Um7VNkmfGpFldZB+upk9oUwZe14ZpH/o7ndUyN8pxJlmEWcwipntK+ktweoL3N3bKE9diDPNIs60r8E+H0V7AHVI8VySYp3G1eC1YBRoj3akOCZTrNO4GFf9mINrR4pjMsU6jYs4Exfm4CZGnNmOONMi5uAADOXuLCwsM7pI2kHSZyR5btkq6aQpHe+jwbGukLRwxPbPDbbfLOmgCcuwPNjn2gn3t6DCtidL2hK09eEt94Ha2kPSUZLuCfZ3maRd2qzjgHIuDT4HV/aa52HbL+z11fz2Hyw4hkn6YZDnakm7lyjfCQPK9862222C9ibOEGdmLs400R6SHivp2RXzLJb0nQF9fmnb7TJhmxJniDMzFWea7PMxtAcLSx1LiueSFOtUQxmnfi1Yshyrg32unGa9aY9uLCmOyRTrVEMZGVcNt4eYg8vXJ7kxmWKdaigjcaZ8GZcHZVw75n6Yg9ter+TGZIp1qqGMxJkW+oeYg2NhiW7J/242gNnzMUkvCNa9SdIaM1tScV+3efGTFH+l7MmGPXvpp0m6xMxe5u4/mNvIzHaS9ApJ7w3yv9fdby5TGDN7pDQwxi0O0gtG1HWju68rONS1ZrZK2St9v+3uDwwoy6GSzpB0avCnN7n7moL912La7WFmh0v6sqTdcqt/KOlVkvYxsyrF3eTuU/u5Bnf/qZm9X9Ibcqs/Z2Z/LunDnnsNs5k9XtJHlPXVOeslvb3gGG5mZyjrF3OOkHR17zir3N3zecxsL0mvUdZX8p/Veklnlq1fBxFniDMzF2ekRvrHfpLON7NrJX1C0nnu/uMhZdld0gplT9PuG/z5ne7+0yHHiAVxhjgza3GmkT4fUXsAdUjxXJJinSbSxLVgLv9ukvYe8ueFQXrvEZ/JLe6+rcwxq6I9GpfimEyxThNhXPVjDq5xKY7JFOs0EeLMfMzBNSrFMZlinSZCnOnDHByAoSy4zgAwQ8yszgBwjLuvLnHM5ZIuVv9vzc89cfhTSXsomxB5RJD1S8pek3u/SjCztZIOKrPtCOe6+8qC46yTtFcvuVHStZJ+IWmTsjocMqQc73T3t05YvtKm3R5m9jZlFwl1uMzdl9e0r4HMbAdJF6j/tc+S9EtJ31X29MhSZX0x/y12i6Rj3f3yksc5S9LrBvxpvbI+v07ZWFgi6dc0f1Jgs6RnuvvXyhyvi4gzhYgz/VKKM2s13fZYLunSYPXdkq5TFlvuUXZx/ihJh2nwpOOH3T38yZzoEGcKEWf6RR9nmurzsbQHUIcUzyUp1qkODV4LrpR0zqTllXSwu6+tYT8D0R7NSXFMplinOjCu+jEH15wUx2SKdaoDcaYfc3DNSXFMplinOhBnMszBARiFN9sBaJS7rzazkyR9XNu/KJqkp/SWQT4t6eVNfIGc0G7KXvM7ygZJp7v7vzdQHgzh7veb2QuUPXHzwtyf9lH2ExKD/FLSirIXCT2v7+V7u/ovnPaSdHxB3puVvRZ7dYXjQcQZEWdm2R6Snl5iu3slvc7d/2XK5UkWcYY4AwCTSvFcEkOdGrwWjALtkbYYxmRVMdSJcdWPObi0xTAmq4qhTsSZTmAOriExjMmqYqgTcQYAij2k7QIAmD3ufqGkQyV9UNk/a4f5lqRT3P1Ud7+3kcJV9z5JayTN+7m1wM8lvUPSo/nHdDe4+0Z3f5Gk31fW14a5U9LZkg5194sqHsPd/T2SniTpnzS6v8+5QdkE4aFM8o2POEOcmQE3SnqXpCsk3Vcyz4+UveZ+CZN8kyPOEGcAYFKJnUskxVGnJq4FY0J7pC2GMVlVDHViXPVjDi5tMYzJqmKoE3GmUczBtSyGMVlVDHUizgDAaPyMLIBWmdmOyp4AOkjSYmVP+twqaY2739Rm2aows4dJOlzSwcqeRFmo7MLrVknfc/cbWiweSjCzg5W98np/SbtKuk3Zk61XuPuWmo5hkh6n7HXye0t6mKRtku5S1leucvfb6zgWtiPOIHVm9hBJyyQ9WtIBkhZpe//YoOznQL/j7ne0VsjEEWcAAJNK5VySF0udmrgWjAntka5YxmQVsdSJcdWPObh0xTImq4ilTsSZZjAH175YxmQVsdSJOAMA/bjZDgAAAAAAAAAAAAAAAACAAvyMLAAAAAAAAAAAAAAAAAAABbjZDgAAAAAAAAAAAAAAAACAAtxsBwAAAAAAAAAAAAAAAABAAW62AwAAAAAAAAAAAAAAAACgADfbAQAAAAAAAAAAAAAAAABQgJvtAAAAAAAAAAAAAAAAAAAowM12AAAAAAAAAAAAAAAAAAAU4GY7AAAAAAAAAAAAAAAAAAAKcLMdAAAAAAAAAAAAAAAAAAAFuNkOAAAAAAAAAAAAAAAAAIAC3GwHAAAAAAAAAAAAAAAAAEABbrYDAAAAAAAAAAAAAAAAAKAAN9sBAAAAAAAAAAAAAAAAAFCAm+0AAAAAAAAAAAAAAAAAACjAzXYAAAAAAAAAAAAAAAAAABTgZjsAAAAAAAAAAAAAAAAAAApwsx0AAAAAAAAAAAAAAAAAAAW42Q4AAAAAAAAAAAAAAAAAgALcbAcAAAAAAAAAAAAAAAAAQAFutgMAAAAAAAAAAAAAAAAAoAA32wEAAAAAAAAAAAAAAAAAUICb7QAAAAAAAAAAAAAAAAAAKMDNdgAAAAAAAAAAAAAAAAAAFOBmOwAAAAAAAAAAAAAAAAAACnCzHQAAAAAAAAAAAAAAAAAABbjZDgAAAAAAAAAAAAAAAACAAtxsBwAAAAAAAAAAAAAAAABAAW62AwAAAAAAAAAAAAAAAACgADfbAQAAAAAAAAAAAAAAAABQgJvtAAAAAAAAAAAAAAAAAAAowM12AAAAAAAAAAAAAAAAAAAU4GY7AAAAAAAAAAAAAAAAAAAKcLMdAAAAAAAAAAAAAAAAAAAFuNkOAAAAAAAAAAAAAAAAAIAC3GwHAAAAAAAAAAAAAAAAAEABbrYDAAAAAAAAAAAAAAAAAKAAN9sBAAAAAAAAAAAAAAAAAFDg/wFRlxEKZVemhQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import yappi\n", + "\n", + "from apd.aggregation.analysis import interactable_plot_multiple_charts, Config\n", + "from apd.aggregation.analysis import clean_temperature_fluctuations, get_one_sensor_by_deployment\n", + "from apd.aggregation.utils import profile_with_yappi\n", + "\n", + "yappi.set_clock_type(\"wall\")\n", + "\n", + "filter_in_db = Config(\n", + " clean=clean_temperature_fluctuations,\n", + " title=\"Ambient temperature\",\n", + " ylabel=\"Degrees C\",\n", + " get_data=get_one_sensor_by_deployment(\"Temperature\"),\n", + ")\n", + "\n", + "with profile_with_yappi():\n", + " plot = interactable_plot_multiple_charts(configs=[filter_in_db])\n", + " plot()\n", + "\n", + "yappi.get_func_stats().print_all()" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r\n", + "Clock type: CPU\r\n", + "Ordered by: totaltime, desc\r\n", + "\r\n", + "name ncall tsub ttot tavg \r\n", + "..futures\\thread.py:52 _WorkItem.run 7 0.000000 9.515625 1.359375\r\n", + "..lchemy\\orm\\query.py:3232 Query.all 6 0.187500 6.390625 1.065104\r\n", + "..lchemy\\orm\\loading.py:35 instances 67353 0.046875 6.140625 0.000091\r\n", + "..esult.py:1257 ResultProxy.fetchall 6 0.000000 5.109375 0.851562\r\n", + "..py:1217 ResultProxy._fetchall_impl 6 0.000000 5.078125 0.846354\r\n", + "..38\\Lib\\threading.py:859 Thread.run 2/1 0.000000 3.125000 1.562500\r\n", + "..rrent\\futures\\thread.py:66 _worker 2/1 0.000000 3.125000 1.562500\r\n", + "..b\\asyncio\\events.py:79 Handle._run 29 0.000000 3.125000 0.107759\r\n", + "..WindowsSelectorEventLoop._run_once 17 0.000000 3.125000 0.183824\r\n", + "..lectorEventLoop.run_until_complete 1 0.000000 3.125000 3.125000\r\n", + "..ndowsSelectorEventLoop.run_forever 1 0.000000 3.125000 3.125000\r\n", + "..gation\\analysis.py:291 plot_sensor 1 0.031250 3.046875 3.046875\r\n", + "..egation\\analysis.py:313 4 0.015625 2.703125 0.675781\r\n", + "..and_clean_temperature_fluctuations 4 0.046875 2.687500 0.671875\r\n", + "..184 clean_temperature_fluctuations 4 0.062500 2.640625 0.660156\r\n", + "..sycopg2\\_json.py:164 typecast_json 67339 0.312500 2.562500 0.000038\r\n", + "..-input-1-879b7ebf06b8>:7 4 0.234375 2.515625 0.628906\r\n", + "..gregation\\query.py:116 subiterator 4 0.390625 2.281250 0.570312\r\n", + "..n38\\Lib\\json\\__init__.py:299 loads 67339 0.515625 2.250000 0.000033\r\n", + "..es\\psycopg2\\extras.py:686 67347 0.156250 1.796875 0.000027\r\n", + "..on38\\Lib\\uuid.py:130 UUID.__init__ 67347 1.000000 1.640625 0.000024\r\n", + "..\\decoder.py:332 JSONDecoder.decode 67339 0.718750 1.546875 0.000023\r\n", + "..d\\aggregation\\query.py:41 get_data 1 0.312500 1.531250 1.531250\r\n", + "..ion\\database.py:77 from_sql_result 67339 0.468750 1.218750 0.000018\r\n", + "..chemy\\orm\\loading.py:83 6 0.328125 0.984375 0.164062\r\n", + ".._collections.py:121 result._asdict 67343 0.375000 0.515625 0.000008\r\n", + "..thon38\\Lib\\uuid.py:231 UUID.__eq__ 67351 0.281250 0.359375 0.000005\r\n", + "..chemy\\orm\\loading.py:84 67347 0.343750 0.343750 0.000005\r\n", + "..y\\util\\_collections.py:112 __new__ 67347 0.234375 0.312500 0.000005\r\n", + "..\\matplotlib\\__init__.py:1535 inner 4 0.000000 0.296875 0.074219\r\n", + "..axes.py:1651 AxesSubplot.plot_date 4 0.000000 0.296875 0.074219\r\n", + "..xes\\_axes.py:1412 AxesSubplot.plot 4 0.000000 0.296875 0.074219\r\n", + "..gregation\\analysis.py:63 draw_date 4 0.000000 0.296875 0.074219\r\n", + ".._base.py:1842 AxesSubplot.add_line 4 0.000000 0.281250 0.070312\r\n", + "..oder.py:343 JSONDecoder.raw_decode 67339 0.265625 0.265625 0.000004\r\n", + "..s\\matplotlib\\dates.py:1911 convert 6 0.000000 0.265625 0.044271\r\n", + "..on_base.py:2063 vectorize.__call__ 4 0.000000 0.265625 0.066406\r\n", + "..b\\axis.py:1562 XAxis.convert_units 12 0.000000 0.265625 0.022135\r\n", + "...py:168 AxesSubplot.convert_xunits 48 0.000000 0.265625 0.005534\r\n", + "..lotlib\\lines.py:664 Line2D.recache 10 0.000000 0.265625 0.026562\r\n", + "..s\\matplotlib\\dates.py:401 date2num 6 0.000000 0.265625 0.044271\r\n", + "..tlib\\lines.py:1018 Line2D.get_path 10 0.000000 0.265625 0.026562\r\n", + "..68 AxesSubplot._update_line_limits 4 0.000000 0.265625 0.066406\r\n", + "...py:2154 vectorize._vectorize_call 4 0.046875 0.265625 0.066406\r\n", + ":1 DataPoint.__init__ 67339 0.234375 0.234375 0.000003\r\n", + "..tplotlib\\dates.py:210 _to_ordinalf 8467 0.140625 0.218750 0.000026\r\n", + "..alysis.py:327 plot_multiple_charts 1 0.000000 0.078125 0.078125\r\n", + "..ine\\base.py:916 Connection.execute 9 0.000000 0.062500 0.006944\r\n", + "..:291 Select._execute_on_connection 6 0.000000 0.062500 0.010417\r\n", + "..y\\orm\\query.py:3400 Query.__iter__ 6 0.000000 0.062500 0.010417\r\n", + ".. Connection._execute_clauseelement 6 0.000000 0.062500 0.010417\r\n", + "..:3425 Query._execute_and_instances 6 0.000000 0.062500 0.010417\r\n", + "..y:1159 Connection._execute_context 9 0.000000 0.046875 0.005208\r\n", + "..:589 PGDialect_psycopg2.do_execute 11 0.000000 0.046875 0.004261\r\n", + "..t.py:1240 ResultProxy.process_rows 9 0.000000 0.031250 0.003472\r\n", + "..y\\engine\\result.py:1253 9 0.031250 0.031250 0.003472\r\n", + "..\\_base.py:378 AxesSubplot.__init__ 1 0.000000 0.031250 0.031250\r\n", + "..ubplots.py:18 AxesSubplot.__init__ 1 0.000000 0.031250 0.031250\r\n", + "..ation\\analysis.py:191 datapoint_ok 10826 0.031250 0.031250 0.000003\r\n", + "..s.py:52 PlainEngineStrategy.create 1 0.000000 0.031250 0.031250\r\n", + "..regation\\query.py:24 with_database 2 0.000000 0.031250 0.015625\r\n", + ".._GeneratorContextManager.__enter__ 141 0.000000 0.031250 0.000222\r\n", + "..\\figure.py:1259 Figure.add_subplot 1 0.000000 0.031250 0.031250\r\n", + "..ngine\\__init__.py:85 create_engine 1 0.000000 0.031250 0.031250\r\n", + "..lib\\sre_parse.py:254 Tokenizer.get 1519 0.000000 0.015625 0.000010\r\n", + "..y:527 PGCompiler_psycopg2.__init__ 8 0.000000 0.015625 0.001953\r\n", + "..my\\util\\langhelpers.py:963 oneshot 21 0.000000 0.015625 0.000744\r\n", + "..rs.py:86 Select._compiler_dispatch 94/8 0.000000 0.015625 0.000166\r\n", + "..Preparer_psycopg2._requires_quotes 22 0.000000 0.015625 0.000710\r\n", + "..\\sre_parse.py:233 Tokenizer.__next 1696 0.015625 0.015625 0.000009\r\n", + "..on-68gteq6k\\lib\\re.py:287 _compile 84 0.000000 0.015625 0.000186\r\n", + ":1 Select. 8 0.000000 0.015625 0.001953\r\n", + "..iler_psycopg2._label_select_column 29 0.000000 0.015625 0.000539\r\n", + "..y:274 PGCompiler_psycopg2.__init__ 8 0.000000 0.015625 0.001953\r\n", + "..fierPreparer_psycopg2.format_label 29 0.000000 0.015625 0.000539\r\n", + "..my\\sql\\compiler.py:2127 8 0.000000 0.015625 0.001953\r\n", + "..gteq6k\\lib\\sre_parse.py:493 _parse 75/14 0.000000 0.015625 0.000208\r\n", + "..GIdentifierPreparer_psycopg2.quote 103 0.000000 0.015625 0.000152\r\n", + "..10 PGCompiler_psycopg2.visit_label 29 0.000000 0.015625 0.000539\r\n", + "..py:349 PGCompiler_psycopg2.process 8 0.000000 0.015625 0.001953\r\n", + "..8gteq6k\\lib\\sre_parse.py:937 parse 12 0.000000 0.015625 0.001302\r\n", + "..5 PGCompiler_psycopg2.visit_select 8 0.000000 0.015625 0.001953\r\n", + "..quoted_name._memoized_method_lower 21 0.000000 0.015625 0.000744\r\n", + "..q6k\\lib\\sre_compile.py:759 compile 12 0.000000 0.015625 0.001302\r\n", + "..sql\\elements.py:405 Select.compile 8 0.000000 0.015625 0.001953\r\n", + "..6k\\lib\\sre_parse.py:435 _parse_sub 59/12 0.000000 0.015625 0.000265\r\n", + "..._bootstrap>:1017 _handle_fromlist 20/18 0.000000 0.015625 0.000781\r\n", + "..l\\elements.py:470 Select._compiler 8 0.000000 0.015625 0.001953\r\n", + "..rrent\\futures\\thread.py:158 submit 7 0.000000 0.015625 0.002232\r\n", + "..dPoolExecutor._adjust_thread_count 7 0.000000 0.015625 0.002232\r\n", + "..\\Lib\\threading.py:834 Thread.start 2 0.000000 0.015625 0.007812\r\n", + "..>:777 SourceFileLoader.exec_module 9/2 0.000000 0.015625 0.001736\r\n", + "..\\artist.py:731 XAxis.set_clip_path 26 0.000000 0.015625 0.000601\r\n", + "..s\\postgresql\\psycopg2.py:735 dbapi 1 0.000000 0.015625 0.015625\r\n", + ".. _process_plot_var_args._plot_args 4 0.000000 0.015625 0.003906\r\n", + "..icker.py:2848 AutoLocator.__init__ 16 0.000000 0.015625 0.000977\r\n", + "..es\\_axes.py:299 AxesSubplot.legend 1 0.000000 0.015625 0.015625\r\n", + "..b\\cbook\\__init__.py:1320 _check_1d 8 0.000000 0.015625 0.001953\r\n", + "..53 _process_plot_var_args.__call__ 8 0.000000 0.015625 0.001953\r\n", + "..lib._bootstrap>:650 _load_unlocked 10/2 0.000000 0.015625 0.001563\r\n", + "..plotlib\\axis.py:744 XAxis.__init__ 2 0.000000 0.015625 0.007812\r\n", + "..ib\\axis.py:967 XAxis.set_clip_path 2 0.000000 0.015625 0.007812\r\n", + "..tlib\\artist.py:217 Rectangle.stale 171.. 0.015625 0.015625 0.000009\r\n", + "..__init__.py:2073 _check_isinstance 94 0.000000 0.015625 0.000166\r\n", + "..sSelectorEventLoop.run_in_executor 6 0.000000 0.015625 0.002604\r\n", + "..y\\core\\shape_base.py:24 atleast_1d 24 0.000000 0.015625 0.000651\r\n", + "..et_default_locators_and_formatters 16 0.000000 0.015625 0.000977\r\n", + "..ine\\url.py:234 _parse_rfc1738_args 1 0.000000 0.015625 0.015625\r\n", + "..end.py:727 Legend._init_legend_box 1 0.000000 0.015625 0.015625\r\n", + "..otlib\\axis.py:825 XAxis._set_scale 16 0.000000 0.015625 0.000977\r\n", + "..alchemy\\engine\\url.py:221 make_url 1 0.000000 0.015625 0.015625\r\n", + "..\\psycopg2\\extensions.py:1 1 0.000000 0.015625 0.015625\r\n", + "..mpy\\core\\_asarray.py:88 asanyarray 72 0.000000 0.015625 0.000217\r\n", + "..otlib\\axis.py:2231 YAxis._get_tick 3 0.000000 0.015625 0.005208\r\n", + "...py:89 HandlerLine2D.legend_artist 4 0.000000 0.015625 0.003906\r\n", + "..icker.py:2051 AutoLocator.__init__ 16 0.015625 0.015625 0.000977\r\n", + "..tplotlib\\axis.py:56 XTick.__init__ 6 0.000000 0.015625 0.002604\r\n", + "..b\\axis.py:589 YTick._get_tick2line 3 0.000000 0.015625 0.005208\r\n", + "..\\axis.py:687 _LazyTickList.__get__ 6/4 0.000000 0.015625 0.002604\r\n", + "..ines.py:1268 Line2D.set_markersize 30 0.000000 0.015625 0.000521\r\n", + "..ages\\psycopg2\\_range.py:1 1 0.000000 0.015625 0.015625\r\n", + "..y:229 HandlerLine2D.create_artists 4 0.000000 0.015625 0.003906\r\n", + "..otlib\\lines.py:269 Line2D.__init__ 30 0.000000 0.015625 0.000521\r\n", + "..tlib\\legend.py:306 Legend.__init__ 1 0.000000 0.015625 0.015625\r\n", + "..ms.py:986 TransformedBbox.__init__ 21 0.000000 0.015625 0.000744\r\n", + "..function__ internals>:2 atleast_1d 24 0.000000 0.015625 0.000651\r\n", + ".._function__ internals>:2 full_like 4 0.015625 0.015625 0.003906\r\n", + "..strap>:956 _find_and_load_unlocked 10/2 0.000000 0.015625 0.001563\r\n", + "..\\axes\\_base.py:948 AxesSubplot.cla 1 0.000000 0.015625 0.015625\r\n", + "..base.py:553 AxesSubplot._init_axis 1 0.000000 0.015625 0.015625\r\n", + "..rap>:211 _call_with_frames_removed 14/2 0.000000 0.015625 0.001116\r\n", + "..lib._bootstrap>:986 _find_and_load 10/2 0.000000 0.015625 0.001563\r\n", + "..ion-68gteq6k\\lib\\re.py:248 compile 10 0.000000 0.015625 0.001563\r\n", + "..es\\psycopg2\\__init__.py:1 1 0.000000 0.015625 0.015625\r\n", + "...py:343 WeakKeyDictionary.__init__ 13 0.000000 0.000000 0.000000\r\n", + "..pool\\impl.py:112 QueuePool._do_get 1 0.000000 0.000000 0.000000\r\n", + "..6k\\lib\\abc.py:96 __instancecheck__ 141 0.000000 0.000000 0.000000\r\n", + "..py:3730 Select._columns_plus_names 8 0.000000 0.000000 0.000000\r\n", + "..y:330 _ListenerCollection.__bool__ 1 0.000000 0.000000 0.000000\r\n", + "..yncio\\events.py:32 Handle.__init__ 24 0.000000 0.000000 0.000000\r\n", + "..py:4065 ColumnClause._from_objects 2 0.000000 0.000000 0.000000\r\n", + "..ions.py:145 immutabledict.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..ections.py:396 OrderedSet.__iter__ 8 0.000000 0.000000 0.000000\r\n", + "..qltypes.py:2793 TIMESTAMP.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..ib\\sre_parse.py:286 Tokenizer.tell 171 0.000000 0.000000 0.000000\r\n", + "..q6k\\lib\\sre_parse.py:921 fix_flags 12 0.000000 0.000000 0.000000\r\n", + "..\\sql\\selectable.py:3079 8 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\result.py:496 3 0.000000 0.000000 0.000000\r\n", + "..opg2.py:548 _PGUUID.bind_processor 1 0.000000 0.000000 0.000000\r\n", + "..es\\psycopg2\\__init__.py:82 connect 1 0.000000 0.000000 0.000000\r\n", + "..ib\\sre_parse.py:84 State.opengroup 27 0.000000 0.000000 0.000000\r\n", + "..gging\\__init__.py:223 _releaseLock 7 0.000000 0.000000 0.000000\r\n", + "..ql\\elements.py:2428 literal_column 2 0.000000 0.000000 0.000000\r\n", + "..dConnectionEventsDispatch.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..y\\engine\\strategies.py:106 connect 1 0.000000 0.000000 0.000000\r\n", + "..tras.py:657 UUID_adapter.getquoted 4 0.000000 0.000000 0.000000\r\n", + "..hemy\\sql\\compiler.py:652 10 0.000000 0.000000 0.000000\r\n", + "..query.py:3440 Query._get_bind_args 6 0.000000 0.000000 0.000000\r\n", + "..b\\sre_parse.py:96 State.closegroup 27 0.000000 0.000000 0.000000\r\n", + "..ctions.py:933 LRUCache.__setitem__ 3 0.000000 0.000000 0.000000\r\n", + "..eq6k\\lib\\sre_parse.py:978 addgroup 1 0.000000 0.000000 0.000000\r\n", + "..yEventsDispatch._event_descriptors 46 0.000000 0.000000 0.000000\r\n", + "..tgresql\\psycopg2.py:815 on_connect 2 0.000000 0.000000 0.000000\r\n", + "..ne\\strategies.py:194 first_connect 1 0.000000 0.000000 0.000000\r\n", + "..sult.py:700 ResultMetaData._getter 27 0.000000 0.000000 0.000000\r\n", + "..ry.py:4056 Query._simple_statement 6 0.000000 0.000000 0.000000\r\n", + "..elements.py:4692 _literal_as_binds 2 0.000000 0.000000 0.000000\r\n", + "...py:56 QueuePool._should_log_debug 1 0.000000 0.000000 0.000000\r\n", + "..session.py:1057 Session.connection 6 0.000000 0.000000 0.000000\r\n", + "..xecutionContext_psycopg2.post_exec 6 0.000000 0.000000 0.000000\r\n", + "..y:3229 BinaryExpression.self_group 4 0.000000 0.000000 0.000000\r\n", + "..py:4335 _truncated_label.apply_map 27 0.000000 0.000000 0.000000\r\n", + "..68gteq6k\\lib\\weakref.py:345 remove 2 0.000000 0.000000 0.000000\r\n", + "..123 ConnectionEventsDispatch._join 1 0.000000 0.000000 0.000000\r\n", + "..lalchemy\\pool\\base.py:490 checkout 1 0.000000 0.000000 0.000000\r\n", + "..y\\engine\\default.py:796 6 0.000000 0.000000 0.000000\r\n", + "..ctable.py:1982 Table._from_objects 6 0.000000 0.000000 0.000000\r\n", + "..emy\\sql\\compiler.py:1000 4 0.000000 0.000000 0.000000\r\n", + "..\\encodings\\utf_8.py:33 getregentry 1 0.000000 0.000000 0.000000\r\n", + "..ery._adjust_for_single_inheritance 6 0.000000 0.000000 0.000000\r\n", + "..ler_psycopg2.get_select_precolumns 8 0.000000 0.000000 0.000000\r\n", + "..ycopg2\\extras.py:664 register_uuid 2 0.000000 0.000000 0.000000\r\n", + "..:3418 PGTypeCompiler.visit_unicode 1 0.000000 0.000000 0.000000\r\n", + "..on._memoized_attr__exec_once_mutex 1 0.000000 0.000000 0.000000\r\n", + "..ngs\\__init__.py:70 search_function 1 0.000000 0.000000 0.000000\r\n", + "..uture.set_running_or_notify_cancel 7 0.000000 0.000000 0.000000\r\n", + "..lalchemy\\sql\\base.py:39 20 0.000000 0.000000 0.000000\r\n", + "..422 WeakKeyDictionary.__contains__ 386 0.000000 0.000000 0.000000\r\n", + "..4 PGCompiler_psycopg2.visit_column 36 0.000000 0.000000 0.000000\r\n", + "..py:536 PGDialect_psycopg2.do_begin 1 0.000000 0.000000 0.000000\r\n", + ".. _ClsLevelDispatch.update_subclass 77 0.000000 0.000000 0.000000\r\n", + ":1 VARCHAR.__init__ 9 0.000000 0.000000 0.000000\r\n", + "..tions.py:946 LRUCache._manage_size 3 0.000000 0.000000 0.000000\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..g2\\extensions.py:180 _param_escape 3 0.000000 0.000000 0.000000\r\n", + "..\\elements.py:232 Table._cloned_set 2 0.000000 0.000000 0.000000\r\n", + "..419 Query._connection_from_session 6 0.000000 0.000000 0.000000\r\n", + "..my\\sql\\type_api.py:1475 adapt_type 13 0.000000 0.000000 0.000000\r\n", + "..y\\sql\\elements.py:4594 _literal_as 14 0.000000 0.000000 0.000000\r\n", + "..94 QueryEventsDispatch.__getattr__ 8 0.000000 0.000000 0.000000\r\n", + ".._.py:1663 Logger.getEffectiveLevel 3 0.000000 0.000000 0.000000\r\n", + "..ngine\\strategies.py:183 on_connect 2 0.000000 0.000000 0.000000\r\n", + "..e.py:737 _ConnectionFairy.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..lalchemy\\util\\compat.py:148 raise_ 12 0.000000 0.000000 0.000000\r\n", + "..sre_parse.py:172 SubPattern.append 182 0.000000 0.000000 0.000000\r\n", + ":1 cast 2 0.000000 0.000000 0.000000\r\n", + "..\\langhelpers.py:301 get_cls_kwargs 35/16 0.000000 0.000000 0.000000\r\n", + "..ler_psycopg2._truncated_identifier 33 0.000000 0.000000 0.000000\r\n", + "..ler_psycopg2.escape_literal_column 2 0.000000 0.000000 0.000000\r\n", + "..s.py:880 memoized_property.__get__ 97/87 0.000000 0.000000 0.000000\r\n", + "..nts.py:709 ColumnClause.comparator 4 0.000000 0.000000 0.000000\r\n", + "..\\orm\\session.py:2462 Session.flush 9 0.000000 0.000000 0.000000\r\n", + "..gine\\default.py:753 _init_compiled 6 0.000000 0.000000 0.000000\r\n", + "..n-68gteq6k\\lib\\enum.py:557 __new__ 26 0.000000 0.000000 0.000000\r\n", + "..y\\util\\_collections.py:140 __new__ 1 0.000000 0.000000 0.000000\r\n", + "..WindowsSelectorEventLoop.get_debug 33 0.000000 0.000000 0.000000\r\n", + "..indowsSelectorEventLoop._call_soon 23 0.000000 0.000000 0.000000\r\n", + "..:715 PGDialect_psycopg2.initialize 1 0.000000 0.000000 0.000000\r\n", + "..t_psycopg2._use_server_side_cursor 9 0.000000 0.000000 0.000000\r\n", + "..lection.exec_once_unless_exception 1 0.000000 0.000000 0.000000\r\n", + "..iler_psycopg2._compose_select_body 8 0.000000 0.000000 0.000000\r\n", + "..sqltypes.py:2182 _PGJSONB.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..ements.py:1315 TypeClause.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..tionContext_psycopg2.no_parameters 5 0.000000 0.000000 0.000000\r\n", + "..:395 WeakKeyDictionary.__setitem__ 97 0.000000 0.000000 0.000000\r\n", + "..xt_psycopg2.should_autocommit_text 3 0.000000 0.000000 0.000000\r\n", + "..ts.py:724 ColumnClause.__getattr__ 9 0.000000 0.000000 0.000000\r\n", + "..qlalchemy\\inspection.py:38 inspect 16 0.000000 0.000000 0.000000\r\n", + "..ons.py:971 lightweight_named_tuple 6 0.000000 0.000000 0.000000\r\n", + "..m\\query.py:3551 Query._select_args 6 0.000000 0.000000 0.000000\r\n", + "..sycopg2\\extensions.py:146 make_dsn 1 0.000000 0.000000 0.000000\r\n", + "..chemy\\sql\\base.py:38 _from_objects 20 0.000000 0.000000 0.000000\r\n", + "..er_psycopg2._get_operator_dispatch 4 0.000000 0.000000 0.000000\r\n", + "..ine\\base.py:69 Connection.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..l\\psycopg2.py:747 _psycopg2_extras 2 0.000000 0.000000 0.000000\r\n", + "..tionContext_psycopg2.create_cursor 9 0.000000 0.000000 0.000000\r\n", + "..til\\_collections.py:779 41 0.000000 0.000000 0.000000\r\n", + "..\\base.py:364 Connection.connection 11 0.000000 0.000000 0.000000\r\n", + "..my\\sql\\compiler.py:2252 6 0.000000 0.000000 0.000000\r\n", + "..033 PGCompiler_psycopg2.visit_cast 2 0.000000 0.000000 0.000000\r\n", + "..ngine\\default.py:378 check_unicode 2 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\result.py:319 9 0.000000 0.000000 0.000000\r\n", + "..chemy\\sql\\elements.py:4327 __new__ 16 0.000000 0.000000 0.000000\r\n", + "..mpiler_psycopg2._add_to_result_map 29 0.000000 0.000000 0.000000\r\n", + ":1 Select.__init__ 8 0.000000 0.000000 0.000000\r\n", + "..py:4442 _anonymous_label.apply_map 6 0.000000 0.000000 0.000000\r\n", + "..py:2248 Engine._contextual_connect 1 0.000000 0.000000 0.000000\r\n", + "..:307 PGDialect_psycopg2.initialize 1 0.000000 0.000000 0.000000\r\n", + "..\\log.py:59 Engine._should_log_info 2 0.000000 0.000000 0.000000\r\n", + "..pg2\\extras.py:790 _solve_conn_curs 1 0.000000 0.000000 0.000000\r\n", + "..k\\lib\\encodings\\utf_8.py:15 decode 48 0.000000 0.000000 0.000000\r\n", + "..tions.py:906 LRUCache._inc_counter 6 0.000000 0.000000 0.000000\r\n", + "..ctorEventLoop.call_soon_threadsafe 6 0.000000 0.000000 0.000000\r\n", + "..y\\sql\\selectable.py:2987 6 0.000000 0.000000 0.000000\r\n", + ".._psycopg2._get_default_schema_name 1 0.000000 0.000000 0.000000\r\n", + "..ns.py:738 PopulateDict.__missing__ 5 0.000000 0.000000 0.000000\r\n", + "..tgresql\\psycopg2.py:847 on_connect 2 0.000000 0.000000 0.000000\r\n", + "..e\\result.py:1335 ResultProxy.first 3 0.000000 0.000000 0.000000\r\n", + ".._psycopg2._generate_generic_binary 4 0.000000 0.000000 0.000000\r\n", + "..se.py:325 Future._invoke_callbacks 7 0.000000 0.000000 0.000000\r\n", + "..\\sql\\selectable.py:3751 2 0.000000 0.000000 0.000000\r\n", + "..:4707 _interpret_as_column_or_from 29 0.000000 0.000000 0.000000\r\n", + "..compile.py:461 _get_literal_prefix 19/12 0.000000 0.000000 0.000000\r\n", + "..ts.py:4059 ColumnClause._set_table 2 0.000000 0.000000 0.000000\r\n", + "..317 VARCHAR._has_column_expression 12 0.000000 0.000000 0.000000\r\n", + "..my\\sql\\elements.py:4488 8 0.000000 0.000000 0.000000\r\n", + "..emy\\util\\queue.py:191 Queue._empty 1 0.000000 0.000000 0.000000\r\n", + "..tgresql\\psycopg2.py:800 on_connect 2 0.000000 0.000000 0.000000\r\n", + "..9 PGCompiler_psycopg2.visit_binary 4 0.000000 0.000000 0.000000\r\n", + "..ery.py:3929 Query._compile_context 6 0.000000 0.000000 0.000000\r\n", + "..til\\_collections.py:981 3 0.000000 0.000000 0.000000\r\n", + "..i.py:279 NullType.result_processor 4 0.000000 0.000000 0.000000\r\n", + "..1333 Connection._safe_close_cursor 9 0.000000 0.000000 0.000000\r\n", + "..ation-68gteq6k\\lib\\re.py:186 match 70 0.000000 0.000000 0.000000\r\n", + "..my\\sql\\elements.py:1955 1 0.000000 0.000000 0.000000\r\n", + "..276 PGDialect_psycopg2._type_memos 1 0.000000 0.000000 0.000000\r\n", + "..mn._render_label_in_columns_clause 10 0.000000 0.000000 0.000000\r\n", + "..sqltypes.py:786 TIMESTAMP.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..ments.py:765 Cast._select_iterable 29 0.000000 0.000000 0.000000\r\n", + "..200 BinaryExpression._from_objects 4 0.000000 0.000000 0.000000\r\n", + "..extensions.py:103 register_adapter 12 0.000000 0.000000 0.000000\r\n", + "..y\\util\\_collections.py:822 to_list 14 0.000000 0.000000 0.000000\r\n", + "..res\\_base.py:517 Future.set_result 7 0.000000 0.000000 0.000000\r\n", + "..ngine\\base.py:590 Connection.begin 1 0.000000 0.000000 0.000000\r\n", + "..eading.py:364 Condition.notify_all 7 0.000000 0.000000 0.000000\r\n", + "..ase.py:971 _ConnectionFairy.cursor 6 0.000000 0.000000 0.000000\r\n", + "..gine\\base.py:908 Connection.scalar 2 0.000000 0.000000 0.000000\r\n", + "..rm\\query.py:418 Query._bind_mapper 6 0.000000 0.000000 0.000000\r\n", + "..result.py:767 ResultProxy.__init__ 9 0.000000 0.000000 0.000000\r\n", + "..:3361 PGTypeCompiler.visit_VARCHAR 2 0.000000 0.000000 0.000000\r\n", + "..l\\sqltypes.py:141 VARCHAR.__init__ 9 0.000000 0.000000 0.000000\r\n", + "..my\\sql\\elements.py:4480 6 0.000000 0.000000 0.000000\r\n", + "..e_parse.py:174 SubPattern.getwidth 138.. 0.000000 0.000000 0.000000\r\n", + "..ResultMetaData._merge_cols_by_none 6 0.000000 0.000000 0.000000\r\n", + "...py:488 PGDialect_psycopg2.connect 1 0.000000 0.000000 0.000000\r\n", + "...py:2282 Engine._wrap_pool_connect 1 0.000000 0.000000 0.000000\r\n", + "..session.py:1588 Session._autoflush 6 0.000000 0.000000 0.000000\r\n", + "..\\threading.py:341 Condition.notify 15 0.000000 0.000000 0.000000\r\n", + "..ections.py:361 OrderedSet.__init__ 8 0.000000 0.000000 0.000000\r\n", + "..ql\\operators.py:1386 is_comparison 5 0.000000 0.000000 0.000000\r\n", + "..6 PGCompiler_psycopg2.default_from 2 0.000000 0.000000 0.000000\r\n", + "..58 PGCompiler_psycopg2.visit_table 6 0.000000 0.000000 0.000000\r\n", + "..elements.py:4483 _select_iterables 8 0.000000 0.000000 0.000000\r\n", + "..b\\sre_compile.py:65 _combine_flags 39 0.000000 0.000000 0.000000\r\n", + "..lchemy\\util\\langhelpers.py:1506 go 1 0.000000 0.000000 0.000000\r\n", + "..utionContext_psycopg2._log_notices 9 0.000000 0.000000 0.000000\r\n", + "..ation-68gteq6k\\lib\\re.py:323 _subx 3 0.000000 0.000000 0.000000\r\n", + "..py:486 UUID._cached_bind_processor 4 0.000000 0.000000 0.000000\r\n", + "..ttr.py:227 _EmptyListener.__init__ 77 0.000000 0.000000 0.000000\r\n", + "..ghelpers.py:281 _inspect_func_args 18 0.000000 0.000000 0.000000\r\n", + "..re_compile.py:249 _compile_charset 34 0.000000 0.000000 0.000000\r\n", + "..nContext_psycopg2.get_result_proxy 9 0.000000 0.000000 0.000000\r\n", + "..uery.py:4762 QueryContext.__init__ 6 0.000000 0.000000 0.000000\r\n", + "..gging\\__init__.py:214 _acquireLock 7 0.000000 0.000000 0.000000\r\n", + "..type_api.py:60 Comparator.__init__ 8 0.000000 0.000000 0.000000\r\n", + "..hon38\\Lib\\uuid.py:271 UUID.__str__ 4 0.000000 0.000000 0.000000\r\n", + "..velDispatch._assign_cls_collection 77 0.000000 0.000000 0.000000\r\n", + "..e_parse.py:111 SubPattern.__init__ 135 0.000000 0.000000 0.000000\r\n", + "..compile.py:492 _get_charset_prefix 10 0.000000 0.000000 0.000000\r\n", + "..arse.py:164 SubPattern.__getitem__ 707 0.000000 0.000000 0.000000\r\n", + "..2456 PGDialect_psycopg2.initialize 1 0.000000 0.000000 0.000000\r\n", + "..hreading.py:249 Condition.__exit__ 61 0.000000 0.000000 0.000000\r\n", + ".. NullType._cached_result_processor 30 0.000000 0.000000 0.000000\r\n", + "..116 QueryEventsDispatch._for_class 8 0.000000 0.000000 0.000000\r\n", + "..compiler.py:419 _CompileLabel.type 29 0.000000 0.000000 0.000000\r\n", + "..m\\session.py:1429 Session.get_bind 6 0.000000 0.000000 0.000000\r\n", + "..\\elements.py:4610 _literal_as_text 14 0.000000 0.000000 0.000000\r\n", + "..Compiler_psycopg2.bindparam_string 4 0.000000 0.000000 0.000000\r\n", + "..53 _ListenerCollection.__getattr__ 45/24 0.000000 0.000000 0.000000\r\n", + ".._psycopg2._get_server_version_info 1 0.000000 0.000000 0.000000\r\n", + "..teq6k\\lib\\sre_compile.py:598 _code 12 0.000000 0.000000 0.000000\r\n", + "..sql\\operators.py:1497 is_precedent 4 0.000000 0.000000 0.000000\r\n", + "..\\sql\\selectable.py:3746 6 0.000000 0.000000 0.000000\r\n", + "..Compiler_psycopg2.visit_clauselist 1 0.000000 0.000000 0.000000\r\n", + "..ExecutionContext_psycopg2.pre_exec 6 0.000000 0.000000 0.000000\r\n", + "..\\elements.py:688 Column.self_group 11 0.000000 0.000000 0.000000\r\n", + "..init__.py:1677 Logger.isEnabledFor 5 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\default.py:415 1 0.000000 0.000000 0.000000\r\n", + "..ql\\base.py:1142 TIMESTAMP.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..l\\_collections.py:910 LRUCache.get 6 0.000000 0.000000 0.000000\r\n", + "..ttr.py:269 _EmptyListener.__bool__ 17 0.000000 0.000000 0.000000\r\n", + "..pes.py:295 String.result_processor 5 0.000000 0.000000 0.000000\r\n", + "..b\\sre_parse.py:249 Tokenizer.match 311 0.000000 0.000000 0.000000\r\n", + "..copg2._check_max_identifier_length 1 0.000000 0.000000 0.000000\r\n", + "..gteq6k\\lib\\re.py:313 _compile_repl 1 0.000000 0.000000 0.000000\r\n", + "..lchemy\\orm\\query.py:4795 6 0.000000 0.000000 0.000000\r\n", + "..ult.py:269 ResultMetaData.__init__ 9 0.000000 0.000000 0.000000\r\n", + "..iler.py:399 PGTypeCompiler.process 2 0.000000 0.000000 0.000000\r\n", + "..GCompiler_psycopg2.order_by_clause 1 0.000000 0.000000 0.000000\r\n", + "..y:305 QueuePool._create_connection 1 0.000000 0.000000 0.000000\r\n", + "..sql\\type_api.py:546 NullType.adapt 13 0.000000 0.000000 0.000000\r\n", + "..rm\\query.py:398 Query._entity_zero 6 0.000000 0.000000 0.000000\r\n", + "..py:1202 ResultProxy._fetchone_impl 3 0.000000 0.000000 0.000000\r\n", + ".._psycopg2._setup_crud_result_proxy 3 0.000000 0.000000 0.000000\r\n", + "..esql\\base.py:1226 _PGUUID.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..nghelpers.py:1167 constructor_copy 13 0.000000 0.000000 0.000000\r\n", + "..piler_psycopg2._setup_select_stack 8 0.000000 0.000000 0.000000\r\n", + "..MetaData._merge_cursor_description 9 0.000000 0.000000 0.000000\r\n", + "..ttr.py:257 _EmptyListener.__call__ 8 0.000000 0.000000 0.000000\r\n", + "..wsSelectorEventLoop._write_to_self 6 0.000000 0.000000 0.000000\r\n", + "..q6k\\lib\\sre_compile.py:423 _simple 45 0.000000 0.000000 0.000000\r\n", + "..\\result.py:777 ResultProxy._getter 27 0.000000 0.000000 0.000000\r\n", + "..ycopg2\\extras.py:909 type.get_oids 1 0.000000 0.000000 0.000000\r\n", + "..arse.py:168 SubPattern.__setitem__ 48 0.000000 0.000000 0.000000\r\n", + "..text_psycopg2.get_result_processor 30 0.000000 0.000000 0.000000\r\n", + "..k\\lib\\sre_parse.py:81 State.groups 80 0.000000 0.000000 0.000000\r\n", + "..l\\sqltypes.py:412 Unicode.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..alchemy\\pool\\base.py:770 _checkout 1 0.000000 0.000000 0.000000\r\n", + ".. SessionTransaction._assert_active 8 0.000000 0.000000 0.000000\r\n", + ":1 select 8 0.000000 0.000000 0.000000\r\n", + ".. QueryEventsDispatch._for_instance 8 0.000000 0.000000 0.000000\r\n", + "..elements.py:4080 Column._key_label 10 0.000000 0.000000 0.000000\r\n", + "..ine\\default.py:981 _init_statement 3 0.000000 0.000000 0.000000\r\n", + "..\\lib\\enum.py:828 RegexFlag.__and__ 12 0.000000 0.000000 0.000000\r\n", + "..py:644 _ConnectionRecord.__connect 1 0.000000 0.000000 0.000000\r\n", + "..GCompiler_psycopg2.visit_bindparam 4 0.000000 0.000000 0.000000\r\n", + "..emy\\util\\langhelpers.py:1188 _next 7 0.000000 0.000000 0.000000\r\n", + "..py:77 QueryEventsDispatch.__init__ 8 0.000000 0.000000 0.000000\r\n", + "..\\__init__.py:43 normalize_encoding 1 0.000000 0.000000 0.000000\r\n", + "..util\\langhelpers.py:1175 46 0.000000 0.000000 0.000000\r\n", + "..ql\\elements.py:895 Cast.anon_label 2 0.000000 0.000000 0.000000\r\n", + "..y\\sql\\operators.py:1409 is_boolean 5 0.000000 0.000000 0.000000\r\n", + "..-68gteq6k\\lib\\codecs.py:94 __new__ 1 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\result.py:460 6 0.000000 0.000000 0.000000\r\n", + "..selectable.py:2169 Select.__init__ 8 0.000000 0.000000 0.000000\r\n", + "..ry.py:390 Query._query_entity_zero 6 0.000000 0.000000 0.000000\r\n", + "..re_parse.py:224 Tokenizer.__init__ 13 0.000000 0.000000 0.000000\r\n", + "..teq6k\\lib\\sre_parse.py:355 _escape 30 0.000000 0.000000 0.000000\r\n", + "..uery.py:698 Query.is_single_entity 6 0.000000 0.000000 0.000000\r\n", + "..19 ResultProxy._cursor_description 9 0.000000 0.000000 0.000000\r\n", + "..y:4696 _ColumnEntity.row_processor 27 0.000000 0.000000 0.000000\r\n", + "..ents.py:3947 ColumnClause.__init__ 2 0.000000 0.000000 0.000000\r\n", + "...py:543 NullType._gen_dialect_impl 13 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\default.py:855 10 0.000000 0.000000 0.000000\r\n", + "..lements.py:2553 Cast._from_objects 2 0.000000 0.000000 0.000000\r\n", + "..til\\_collections.py:991 3 0.000000 0.000000 0.000000\r\n", + "..PGTypeCompiler._render_string_type 2 0.000000 0.000000 0.000000\r\n", + "..reading.py:261 Condition._is_owned 11 0.000000 0.000000 0.000000\r\n", + "..ult.py:924 ResultProxy._soft_close 9 0.000000 0.000000 0.000000\r\n", + "..Compiler_psycopg2.construct_params 6 0.000000 0.000000 0.000000\r\n", + "..l\\selectable.py:3036 Select._froms 8 0.000000 0.000000 0.000000\r\n", + "..ging\\__init__.py:1412 Logger.debug 2 0.000000 0.000000 0.000000\r\n", + "..9 _ConnectionRecord.get_connection 1 0.000000 0.000000 0.000000\r\n", + "..Compiler_psycopg2.visit_typeclause 2 0.000000 0.000000 0.000000\r\n", + "..etaData._colnames_from_description 6 0.000000 0.000000 0.000000\r\n", + "..postgresql\\base.py:2708 1 0.000000 0.000000 0.000000\r\n", + "..ct_psycopg2._check_unicode_returns 1 0.000000 0.000000 0.000000\r\n", + "...py:434 _ConnectionRecord.__init__ 1 0.000000 0.000000 0.000000\r\n", + ".._api.py:527 NullType._dialect_info 25 0.000000 0.000000 0.000000\r\n", + "..lib\\sre_parse.py:76 State.__init__ 12 0.000000 0.000000 0.000000\r\n", + "..lchemy\\util\\queue.py:135 Queue.get 1 0.000000 0.000000 0.000000\r\n", + "..py:352 PGCompiler_psycopg2.__str__ 8 0.000000 0.000000 0.000000\r\n", + "..alect_psycopg2.get_isolation_level 1 0.000000 0.000000 0.000000\r\n", + "..owsSelectorEventLoop._check_closed 34 0.000000 0.000000 0.000000\r\n", + "..\\session.py:2508 Session._is_clean 10 0.000000 0.000000 0.000000\r\n", + "..q6k\\lib\\sre_compile.py:71 _compile 111.. 0.000000 0.000000 0.000000\r\n", + "..e.py:1694 RootTransaction.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..eral_and_labels_as_label_reference 3 0.000000 0.000000 0.000000\r\n", + "...py:903 PGDialect_psycopg2.oneshot 1 0.000000 0.000000 0.000000\r\n", + "..ql\\selectable.py:3735 name_for_col 27 0.000000 0.000000 0.000000\r\n", + "...py:3065 Select._get_display_froms 8 0.000000 0.000000 0.000000\r\n", + "..e.py:1134 Connection._execute_text 3 0.000000 0.000000 0.000000\r\n", + "..tgresql\\psycopg2.py:807 on_connect 2 0.000000 0.000000 0.000000\r\n", + "..chemy\\sql\\elements.py:4279 __new__ 16 0.000000 0.000000 0.000000\r\n", + "..copg2\\extensions.py:171 1 0.000000 0.000000 0.000000\r\n", + "..2.py:540 _PGJSONB.result_processor 1 0.000000 0.000000 0.000000\r\n", + "...py:793 ResultProxy._init_metadata 9 0.000000 0.000000 0.000000\r\n", + "..ts.py:4056 ColumnClause._get_table 48 0.000000 0.000000 0.000000\r\n", + "..\\util\\_collections.py:771 5 0.000000 0.000000 0.000000\r\n", + "..hemy\\sql\\compiler.py:650 6 0.000000 0.000000 0.000000\r\n", + "..pool\\base.py:354 QueuePool.connect 1 0.000000 0.000000 0.000000\r\n", + "..cio\\futures.py:364 _call_set_state 6 0.000000 0.000000 0.000000\r\n", + "..365 _ListenerCollection.for_modify 2 0.000000 0.000000 0.000000\r\n", + "..Context_psycopg2.should_autocommit 9 0.000000 0.000000 0.000000\r\n", + "..xtras.py:650 UUID_adapter.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..ne\\result.py:956 ResultProxy.close 3 0.000000 0.000000 0.000000\r\n", + "..y\\sql\\type_api.py:1465 to_instance 8 0.000000 0.000000 0.000000\r\n", + "..threading.py:441 Semaphore.release 7 0.000000 0.000000 0.000000\r\n", + "..ib\\sre_parse.py:969 parse_template 1 0.000000 0.000000 0.000000\r\n", + "..il\\_collections.py:775 unique_list 41 0.000000 0.000000 0.000000\r\n", + "..56 WeakInstanceDict.check_modified 10 0.000000 0.000000 0.000000\r\n", + "..m\\query.py:345 Query._adapt_clause 34 0.000000 0.000000 0.000000\r\n", + "..my\\util\\deprecations.py:115 warned 21/20 0.000000 0.000000 0.000000\r\n", + "..-68gteq6k\\lib\\enum.py:278 __call__ 26 0.000000 0.000000 0.000000\r\n", + "..:1136 Session._connection_for_bind 6 0.000000 0.000000 0.000000\r\n", + "..b\\sre_compile.py:536 _compile_info 12 0.000000 0.000000 0.000000\r\n", + "..539 PGDialect_psycopg2.do_rollback 2 0.000000 0.000000 0.000000\r\n", + ".._memoized_property.expire_instance 2 0.000000 0.000000 0.000000\r\n", + "..ections.py:151 immutabledict.union 6 0.000000 0.000000 0.000000\r\n", + "..ListenerCollection._exec_once_impl 1 0.000000 0.000000 0.000000\r\n", + "..reading.py:246 Condition.__enter__ 61 0.000000 0.000000 0.000000\r\n", + "..chemy\\util\\langhelpers.py:906 memo 2 0.000000 0.000000 0.000000\r\n", + "..g2.py:558 _PGUUID.result_processor 2 0.000000 0.000000 0.000000\r\n", + "..piler_psycopg2._truncate_bindparam 4 0.000000 0.000000 0.000000\r\n", + "..ql\\elements.py:4475 _expand_cloned 6 0.000000 0.000000 0.000000\r\n", + "..02 PGDialect_psycopg2._hstore_oids 1 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\result.py:463 6 0.000000 0.000000 0.000000\r\n", + "..ements.py:1946 ClauseList.__init__ 1 0.000000 0.000000 0.000000\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..copg2\\extensions.py:164 1 0.000000 0.000000 0.000000\r\n", + "..ent\\base.py:295 dispatcher.__get__ 10 0.000000 0.000000 0.000000\r\n", + "..6k\\lib\\sre_compile.py:595 isstring 24 0.000000 0.000000 0.000000\r\n", + "..:382 WeakKeyDictionary.__getitem__ 245 0.000000 0.000000 0.000000\r\n", + "..py:1293 Connection._cursor_execute 2 0.000000 0.000000 0.000000\r\n", + "..onTransaction._connection_for_bind 6 0.000000 0.000000 0.000000\r\n", + "..e_compile.py:276 _optimize_charset 34 0.000000 0.000000 0.000000\r\n", + "..pe_api.py:450 VARCHAR.dialect_impl 33 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\result.py:322 9 0.000000 0.000000 0.000000\r\n", + "..selectable.py:2760 Select.__init__ 8 0.000000 0.000000 0.000000\r\n", + "..my\\sql\\compiler.py:2125 8 0.000000 0.000000 0.000000\r\n", + "..sql\\elements.py:2489 Cast.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..PGDialect_psycopg2.type_descriptor 13 0.000000 0.000000 0.000000\r\n", + "..Compiler_psycopg2._bind_processors 6 0.000000 0.000000 0.000000\r\n", + "..\\result.py:1362 ResultProxy.scalar 3 0.000000 0.000000 0.000000\r\n", + "..mpl.py:143 QueuePool._inc_overflow 1 0.000000 0.000000 0.000000\r\n", + "..e.py:1757 RootTransaction.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..emy\\sql\\compiler.py:1002 4 0.000000 0.000000 0.000000\r\n", + "..y:357 _PGUUID._has_bind_expression 1 0.000000 0.000000 0.000000\r\n", + "..esql\\json.py:177 _PGJSONB.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..lchemy\\event\\base.py:87 5 0.000000 0.000000 0.000000\r\n", + "..base.py:707 Connection._begin_impl 1 0.000000 0.000000 0.000000\r\n", + "..ib\\sre_compile.py:453 _get_iscased 29 0.000000 0.000000 0.000000\r\n", + "..iler.py:410 _CompileLabel.__init__ 29 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\result.py:372 6 0.000000 0.000000 0.000000\r\n", + "..re_parse.py:160 SubPattern.__len__ 261 0.000000 0.000000 0.000000\r\n", + "..y:4713 _ColumnEntity.setup_context 27 0.000000 0.000000 0.000000\r\n", + "..chemy\\orm\\loading.py:59 6 0.000000 0.000000 0.000000\r\n", + "..py:436 prefix_anon_map.__missing__ 6 0.000000 0.000000 0.000000\r\n", + "..y:316 _ListenerCollection.__call__ 2 0.000000 0.000000 0.000000\r\n", + "..py:635 ThreadPoolExecutor.__exit__ 1 0.000000 0.000000 0.000000\r\n", + "..rs.py:63 _SelectorMapping.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..reading.py:1095 _MainThread.daemon 2 0.000000 0.000000 0.000000\r\n", + "..b\\threading.py:1306 current_thread 3 0.000000 0.000000 0.000000\r\n", + "..tors.py:180 SelectSelector.get_key 1 0.000000 0.000000 0.000000\r\n", + "..\\lib\\_weakrefset.py:81 WeakSet.add 22 0.000000 0.000000 0.000000\r\n", + "..n-68gteq6k\\lib\\os.py:732 check_str 1 0.000000 0.000000 0.000000\r\n", + "..hreading.py:222 Condition.__init__ 13 0.000000 0.000000 0.000000\r\n", + "..ctorEventLoopPolicy.new_event_loop 1 0.000000 0.000000 0.000000\r\n", + "..8\\Lib\\threading.py:979 Thread.join 1 0.000000 0.000000 0.000000\r\n", + "..y:632 ThreadPoolExecutor.__enter__ 1 0.000000 0.000000 0.000000\r\n", + "..ion\\analysis.py:367 wrap_coroutine 1 0.000000 0.000000 0.000000\r\n", + "..ib\\threading.py:1110 Thread.daemon 2 0.000000 0.000000 0.000000\r\n", + "..tures\\_base.py:316 Future.__init__ 7 0.000000 0.000000 0.000000\r\n", + "..ors.py:209 SelectSelector.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..y:102 WeakValueDictionary.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..futures\\_base.py:412 Future.result 7 0.000000 0.000000 0.000000\r\n", + "..b\\threading.py:761 Thread.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..\\Lib\\socket.py:219 socket.__init__ 3 0.000000 0.000000 0.000000\r\n", + "..lib\\os.py:668 _Environ.__getitem__ 1 0.000000 0.000000 0.000000\r\n", + "..b\\socket.py:492 socket._real_close 1 0.000000 0.000000 0.000000\r\n", + "..\\Lib\\threading.py:513 Event.is_set 5 0.000000 0.000000 0.000000\r\n", + "..ib\\threading.py:270 Condition.wait 4 0.000000 0.000000 0.000000\r\n", + "..n38\\Lib\\socket.py:496 socket.close 1 0.000000 0.000000 0.000000\r\n", + "...py:284 WeakValueDictionary.update 1 0.000000 0.000000 0.000000\r\n", + "..hreading.py:388 Semaphore.__init__ 2 0.000000 0.000000 0.000000\r\n", + ".._weakrefset.py:36 WeakSet.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..38\\Lib\\socket.py:285 socket.accept 1 0.000000 0.000000 0.000000\r\n", + "..215 SelectSelector._fileobj_lookup 2 0.000000 0.000000 0.000000\r\n", + ":1 __new__ 91 0.000000 0.000000 0.000000\r\n", + "..tion\\analysis.py:373 run_in_thread 1 0.000000 0.000000 0.000000\r\n", + ".. interactable_plot_multiple_charts 1 0.000000 0.000000 0.000000\r\n", + "..ib\\socket.py:97 _intenum_converter 2 0.000000 0.000000 0.000000\r\n", + "..indowsSelectorEventLoop.is_running 2 0.000000 0.000000 0.000000\r\n", + "..WindowsSelectorEventLoop.set_debug 1 0.000000 0.000000 0.000000\r\n", + "..ing.py:255 Condition._release_save 4 0.000000 0.000000 0.000000\r\n", + "..\\Lib\\threading.py:944 Thread._stop 1 0.000000 0.000000 0.000000\r\n", + "..ors.py:298 SelectSelector.register 1 0.000000 0.000000 0.000000\r\n", + "..lib\\functools.py:33 update_wrapper 2 0.000000 0.000000 0.000000\r\n", + "..ng.py:1177 _make_invoke_excepthook 2 0.000000 0.000000 0.000000\r\n", + "..Lib\\selectors.py:21 _fileobj_to_fd 2 0.000000 0.000000 0.000000\r\n", + "..on38\\Lib\\socket.py:518 socket.type 1 0.000000 0.000000 0.000000\r\n", + "..n\\Python38\\Lib\\typing.py:1146 cast 1 0.000000 0.000000 0.000000\r\n", + "..ion\\utils.py:58 profile_with_yappi 1 0.000000 0.000000 0.000000\r\n", + "..68gteq6k\\lib\\functools.py:63 wraps 1 0.000000 0.000000 0.000000\r\n", + "..ollections_abc.py:657 _Environ.get 1 0.000000 0.000000 0.000000\r\n", + "..38\\Lib\\threading.py:540 Event.wait 2 0.000000 0.000000 0.000000\r\n", + "..py:230 ThreadPoolExecutor.shutdown 1 0.000000 0.000000 0.000000\r\n", + "..:1017 Thread._wait_for_tstate_lock 1 0.000000 0.000000 0.000000\r\n", + "..ndowsSelectorEventLoop._add_reader 1 0.000000 0.000000 0.000000\r\n", + "...py:258 Condition._acquire_restore 4 0.000000 0.000000 0.000000\r\n", + ".._WindowsSelectorEventLoop.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..ors.py:293 SelectSelector.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..eq6k\\lib\\_weakrefset.py:38 _remove 19 0.000000 0.000000 0.000000\r\n", + "..38\\Lib\\socket.py:512 socket.family 1 0.000000 0.000000 0.000000\r\n", + "..vents.py:719 get_event_loop_policy 1 0.000000 0.000000 0.000000\r\n", + "..n-68gteq6k\\lib\\os.py:738 encodekey 1 0.000000 0.000000 0.000000\r\n", + ".._WindowsSelectorEventLoop.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..py:120 ThreadPoolExecutor.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..yncio\\events.py:756 new_event_loop 1 0.000000 0.000000 0.000000\r\n", + "..io\\coroutines.py:18 _is_debug_mode 1 0.000000 0.000000 0.000000\r\n", + "..threading.py:394 Semaphore.acquire 7 0.000000 0.000000 0.000000\r\n", + "..py:69 _SelectorMapping.__getitem__ 1 0.000000 0.000000 0.000000\r\n", + "..es\\thread.py:46 _WorkItem.__init__ 7 0.000000 0.000000 0.000000\r\n", + "..ib\\threading.py:505 Event.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..ors.py:234 SelectSelector.register 1 0.000000 0.000000 0.000000\r\n", + "..hon38\\Lib\\socket.py:579 socketpair 1 0.000000 0.000000 0.000000\r\n", + "..sSelectorEventLoop._make_self_pipe 1 0.000000 0.000000 0.000000\r\n", + "..s\\_base.py:386 Future.__get_result 7 0.000000 0.000000 0.000000\r\n", + "..tors.py:272 SelectSelector.get_map 1 0.000000 0.000000 0.000000\r\n", + "..Python38\\Lib\\threading.py:81 RLock 8 0.000000 0.000000 0.000000\r\n", + ".. _GeneratorContextManager.__exit__ 142.. 0.000000 0.000000 0.000000\r\n", + "..1254 Line2D.set_markerfacecoloralt 30 0.000000 0.000000 0.000000\r\n", + "..HandlerLine2D._default_update_prop 8 0.000000 0.000000 0.000000\r\n", + "..y:980 _ConnectionFairy.__getattr__ 2 0.000000 0.000000 0.000000\r\n", + "..\\axis.py:618 YTick.update_position 3 0.000000 0.000000 0.000000\r\n", + "..y:583 AxesSubplot._unstale_viewLim 2 0.000000 0.000000 0.000000\r\n", + "..py:133 GridSpec.get_grid_positions 1 0.000000 0.000000 0.000000\r\n", + "..lib\\transforms.py:782 from_extents 20 0.000000 0.000000 0.000000\r\n", + "..istry.py:246 _EventKey.base_listen 3 0.000000 0.000000 0.000000\r\n", + "..copg2\\tz.py:36 FixedOffsetTimezone 1 0.000000 0.000000 0.000000\r\n", + "..y\\orm\\session.py:893 Session.begin 3 0.000000 0.000000 0.000000\r\n", + "..ok\\__init__.py:2108 _check_in_list 449 0.000000 0.000000 0.000000\r\n", + "...py:556 UUID.coerce_compared_value 4 0.000000 0.000000 0.000000\r\n", + "..:1088 ExtensionFileLoader.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\colors.py:225 4 0.000000 0.000000 0.000000\r\n", + "..otlib\\axes\\_base.py:363 4 0.000000 0.000000 0.000000\r\n", + "..__.py:185 CallbackRegistry.process 26 0.000000 0.000000 0.000000\r\n", + "..array_function__ internals>:2 tile 1 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:229 XTick.set_clip_path 6 0.000000 0.000000 0.000000\r\n", + "..xesSubplot._set_title_offset_trans 5 0.000000 0.000000 0.000000\r\n", + "..plotlib\\spines.py:517 linear_spine 4 0.000000 0.000000 0.000000\r\n", + "..:776 Rectangle.get_patch_transform 18 0.000000 0.000000 0.000000\r\n", + "..rtist.py:350 Text.is_transform_set 15 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\figure.py:76 2 0.000000 0.000000 0.000000\r\n", + "..gistry.py:67 _stored_in_collection 3 0.000000 0.000000 0.000000\r\n", + "..set.py:16 _IterationGuard.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..nits.py:197 Registry.get_converter 24/14 0.000000 0.000000 0.000000\r\n", + "..tenerCollection._memoized_attr_ref 2 0.000000 0.000000 0.000000\r\n", + "..ler.py:396 PGTypeCompiler.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..lotlib\\dates.py:1921 default_units 8 0.000000 0.000000 0.000000\r\n", + "..base.py:563 AxesSubplot.set_figure 1 0.000000 0.000000 0.000000\r\n", + "..k\\lib\\abc.py:100 __subclasscheck__ 85/14 0.000000 0.000000 0.000000\r\n", + "..lib\\axis.py:922 _translate_tick_kw 8 0.000000 0.000000 0.000000\r\n", + "..manager.py:855 FontProperties.copy 3 0.000000 0.000000 0.000000\r\n", + "..pool\\impl.py:35 QueuePool.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..y:2462 composite_transform_factory 78 0.000000 0.000000 0.000000\r\n", + "..ctions_abc.py:252 __subclasshook__ 1 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:334 XTick._apply_params 14 0.000000 0.000000 0.000000\r\n", + "..t_manager.py:1043 get_default_size 22 0.000000 0.000000 0.000000\r\n", + "...py:1624 FigureCanvasBase.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..owsSelectorEventLoop.create_future 6 0.000000 0.000000 0.000000\r\n", + "..b\\_pylab_helpers.py:109 set_active 1 0.000000 0.000000 0.000000\r\n", + "..y:930 AxesSubplot._gen_axes_spines 1 0.000000 0.000000 0.000000\r\n", + "..es.py:375 FancyBboxPatch.set_alpha 1 0.000000 0.000000 0.000000\r\n", + "..x.py:690 DrawingArea.get_transform 4 0.000000 0.000000 0.000000\r\n", + "..ase.py:867 _ConnectionFairy._reset 1 0.000000 0.000000 0.000000\r\n", + "..ycopg2\\extras.py:805 HstoreAdapter 1 0.000000 0.000000 0.000000\r\n", + "..:536 ScalarFormatter.set_useOffset 16 0.000000 0.000000 0.000000\r\n", + "..emy\\orm\\query.py:1790 Query.filter 4 0.000000 0.000000 0.000000\r\n", + "..text.py:240 Text.set_rotation_mode 24 0.000000 0.000000 0.000000\r\n", + "..ages\\psycopg2\\errors.py:1 1 0.000000 0.000000 0.000000\r\n", + "..lEventsDispatch._event_descriptors 36 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\text.py:170 Text.update 65 0.000000 0.000000 0.000000\r\n", + "..py:913 AxesSubplot._gen_axes_patch 1 0.000000 0.000000 0.000000\r\n", + "..set.py:26 _IterationGuard.__exit__ 1 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:544 YTick._get_text1 3 0.000000 0.000000 0.000000\r\n", + "..rms.py:1632 TransformWrapper._init 2 0.000000 0.000000 0.000000\r\n", + "..:221 Query._set_entity_selectables 6 0.000000 0.000000 0.000000\r\n", + "..\\__init__.py:631 _AxesStack.bubble 1 0.000000 0.000000 0.000000\r\n", + "..6k\\lib\\enum.py:659 RegexFlag.value 4 0.000000 0.000000 0.000000\r\n", + "..CompositeGenericTransform.__init__ 69 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:603 YTick._get_gridline 3 0.000000 0.000000 0.000000\r\n", + "..stry.py:169 _EventKey.with_wrapper 5 0.000000 0.000000 0.000000\r\n", + "..langhelpers.py:344 get_func_kwargs 1 0.000000 0.000000 0.000000\r\n", + "..lib\\patches.py:2146 Round.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..b\\path.py:251 Path.should_simplify 4 0.000000 0.000000 0.000000\r\n", + "..ges\\numpy\\core\\_methods.py:44 _any 4 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:559 YTick._get_text2 3 0.000000 0.000000 0.000000\r\n", + "..xis.py:1969 XAxis._get_offset_text 1 0.000000 0.000000 0.000000\r\n", + "..base.py:375 QueuePool._return_conn 1 0.000000 0.000000 0.000000\r\n", + "..qlalchemy\\orm\\base.py:222 generate 5 0.000000 0.000000 0.000000\r\n", + "..orm._iter_break_from_left_to_right 8 0.000000 0.000000 0.000000\r\n", + "..ngine\\base.py:863 Connection.close 1 0.000000 0.000000 0.000000\r\n", + "..py:1240 Line2D.set_markerfacecolor 30 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:662 Ticker.formatter 65 0.000000 0.000000 0.000000\r\n", + "..7 BlendedGenericTransform.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..lchemy\\orm\\query.py:330 1 0.000000 0.000000 0.000000\r\n", + "..legend.py:1169 _get_legend_handles 5 0.000000 0.000000 0.000000\r\n", + "..tlib\\figure.py:275 Figure.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..t.py:49 Spine._stale_axes_callback 302 0.000000 0.000000 0.000000\r\n", + "..py:834 XAxis.limit_range_for_scale 2 0.000000 0.000000 0.000000\r\n", + "..otlib\\artist.py:74 Figure.__init__ 88 0.000000 0.000000 0.000000\r\n", + ".._base.py:3093 AxesSubplot.set_xlim 1 0.000000 0.000000 0.000000\r\n", + "..774 SourceFileLoader.create_module 9 0.000000 0.000000 0.000000\r\n", + "..34 new_figure_manager_given_figure 1 0.000000 0.000000 0.000000\r\n", + "..xis.py:1525 XAxis._update_axisinfo 13 0.000000 0.000000 0.000000\r\n", + "..ngine\\url.py:299 _rfc_1738_unquote 1 0.000000 0.000000 0.000000\r\n", + "..lotlib\\axis.py:645 Ticker.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..sSubplot.get_xaxis_text1_transform 3 0.000000 0.000000 0.000000\r\n", + "..y:2463 FancyBboxPatch.set_boxstyle 2 0.000000 0.000000 0.000000\r\n", + "..24 AxesSubplot.get_yaxis_transform 29/15 0.000000 0.000000 0.000000\r\n", + "..psycopg2\\_range.py:290 RangeCaster 1 0.000000 0.000000 0.000000\r\n", + "..owsSelectorEventLoop._add_callback 6 0.000000 0.000000 0.000000\r\n", + "..l.py:103 QueuePool._do_return_conn 1 0.000000 0.000000 0.000000\r\n", + "..e-packages\\cycler.py:227 110 0.000000 0.000000 0.000000\r\n", + "..ure.py:487 Figure.set_tight_layout 1 0.000000 0.000000 0.000000\r\n", + "..nal>:1520 path_hook_for_FileFinder 1 0.000000 0.000000 0.000000\r\n", + "..ib\\transforms.py:727 Bbox.__init__ 41 0.000000 0.000000 0.000000\r\n", + "..s.py:1247 AutoDateLocator.__init__ 2 0.000000 0.000000 0.000000\r\n", + "...py:1640 XAxis.set_minor_formatter 16 0.000000 0.000000 0.000000\r\n", + "..:171 DynamicClassAttribute.__get__ 4 0.000000 0.000000 0.000000\r\n", + "..nal>:939 SourceFileLoader.__init__ 9 0.000000 0.000000 0.000000\r\n", + "..610 _WindowsSelectorEventLoop.stop 1 0.000000 0.000000 0.000000\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..b\\function_base.py:2120 4 0.000000 0.000000 0.000000\r\n", + "...py:1423 Figure._add_axes_internal 1 0.000000 0.000000 0.000000\r\n", + "..mportlib._bootstrap>:800 find_spec 10 0.000000 0.000000 0.000000\r\n", + "..:94 PoolEventsDispatch.__getattr__ 12 0.000000 0.000000 0.000000\r\n", + "..axes.py:256 AxesSubplot.set_ylabel 4 0.000000 0.000000 0.000000\r\n", + "..lines.py:1058 Line2D.set_drawstyle 34 0.000000 0.000000 0.000000\r\n", + "..sforms.py:1940 Affine2D.rotate_deg 18 0.000000 0.000000 0.000000\r\n", + "..>:1010 SourceFileLoader.path_stats 9 0.000000 0.000000 0.000000\r\n", + "..b\\cbook\\__init__.py:836 8 0.000000 0.000000 0.000000\r\n", + "..lib\\lines.py:743 Line2D._is_sorted 3 0.000000 0.000000 0.000000\r\n", + "..\\elements.py:709 Column.comparator 4 0.000000 0.000000 0.000000\r\n", + "..tlib\\axis.py:1951 XAxis._get_label 1 0.000000 0.000000 0.000000\r\n", + "..ore\\numerictypes.py:365 issubdtype 4 0.000000 0.000000 0.000000\r\n", + "..\\axis.py:1605 YAxis.set_label_text 5 0.000000 0.000000 0.000000\r\n", + "..copg2\\extras.py:125 DictConnection 1 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\transforms.py:768 null 1 0.000000 0.000000 0.000000\r\n", + "..lib\\offsetbox.py:199 TextArea.axes 16 0.000000 0.000000 0.000000\r\n", + "..nction__ internals>:2 column_stack 12 0.000000 0.000000 0.000000\r\n", + "..ap_external>:90 _path_is_mode_type 13 0.000000 0.000000 0.000000\r\n", + ".._base.py:20 _atleast_1d_dispatcher 24 0.000000 0.000000 0.000000\r\n", + "..py:193 PGDialect_psycopg2.__init__ 1 0.000000 0.000000 0.000000\r\n", + "...py:765 FontProperties.set_variant 23 0.000000 0.000000 0.000000\r\n", + "...py:523 YTick._get_text1_transform 3 0.000000 0.000000 0.000000\r\n", + "..ath.py:230 Path.simplify_threshold 4 0.000000 0.000000 0.000000\r\n", + "..sql\\operators.py:358 Column.__eq__ 8/4 0.000000 0.000000 0.000000\r\n", + "..\\core\\fromnumeric.py:74 85 0.000000 0.000000 0.000000\r\n", + "..sql\\elements.py:4087 Column._label 10 0.000000 0.000000 0.000000\r\n", + "..WeakKeyDictionary._commit_removals 1 0.000000 0.000000 0.000000\r\n", + "..elements.py:724 Column.__getattr__ 3 0.000000 0.000000 0.000000\r\n", + "..k\\__init__.py:626 _AxesStack.clear 3 0.000000 0.000000 0.000000\r\n", + "..ool\\base.py:235 QueuePool._creator 1 0.000000 0.000000 0.000000\r\n", + "..s.py:302 Rectangle.set_antialiased 8 0.000000 0.000000 0.000000\r\n", + "..tlib\\transforms.py:773 from_bounds 1 0.000000 0.000000 0.000000\r\n", + "..68gteq6k\\lib\\weakref.py:44 __new__ 33 0.000000 0.000000 0.000000\r\n", + "..ction__ internals>:2 unravel_index 1 0.000000 0.000000 0.000000\r\n", + "..ycopg2\\_range.py:471 DateTimeRange 1 0.000000 0.000000 0.000000\r\n", + "..asyncio\\futures.py:377 wrap_future 6 0.000000 0.000000 0.000000\r\n", + "..sion.py:3188 sessionmaker.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..07 ExtensionFileLoader.exec_module 1 0.000000 0.000000 0.000000\r\n", + "..\\interfaces.py:856 get_dialect_cls 1 0.000000 0.000000 0.000000\r\n", + "..es.py:341 Rectangle._set_facecolor 20 0.000000 0.000000 0.000000\r\n", + ":1 Session.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..nsaction._iterate_self_and_parents 1 0.000000 0.000000 0.000000\r\n", + "..e\\fromnumeric.py:73 _wrapreduction 85 0.000000 0.000000 0.000000\r\n", + "..\\legend.py:1215 _parse_legend_args 1 0.000000 0.000000 0.000000\r\n", + "..2\\extras.py:226 RealDictConnection 1 0.000000 0.000000 0.000000\r\n", + "..ches.py:458 Rectangle.set_capstyle 11 0.000000 0.000000 0.000000\r\n", + "..chemy\\util\\queue.py:199 Queue._put 1 0.000000 0.000000 0.000000\r\n", + "..as.py:472 MinTimeLoggingConnection 1 0.000000 0.000000 0.000000\r\n", + "..y\\dialects\\__init__.py:52 1 0.000000 0.000000 0.000000\r\n", + "..idspec.py:200 GridSpec.__getitem__ 1 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\text.py:121 Text.__init__ 24 0.000000 0.000000 0.000000\r\n", + "..lotlib\\axes\\_base.py:586 4 0.000000 0.000000 0.000000\r\n", + "..n\\Python38\\Lib\\typing.py:255 inner 1 0.000000 0.000000 0.000000\r\n", + "..extras.py:296 NamedTupleConnection 1 0.000000 0.000000 0.000000\r\n", + "..tion_base.py:1143 _diff_dispatcher 16 0.000000 0.000000 0.000000\r\n", + "..s\\psycopg2\\_range.py:466 DateRange 1 0.000000 0.000000 0.000000\r\n", + "..plotlib\\transforms.py:177 39 0.000000 0.000000 0.000000\r\n", + "..ger.py:835 FontProperties.set_file 23 0.000000 0.000000 0.000000\r\n", + "..py:210 WeakInstanceDict.all_states 2 0.000000 0.000000 0.000000\r\n", + "..8gteq6k\\lib\\sre_parse.py:432 _uniq 22 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\figure.py:74 2 0.000000 0.000000 0.000000\r\n", + "..b\\spines.py:381 Spine.set_position 4 0.000000 0.000000 0.000000\r\n", + "..ib\\function_base.py:2116 8 0.000000 0.000000 0.000000\r\n", + "..mportlib._bootstrap>:725 find_spec 10 0.000000 0.000000 0.000000\r\n", + "..ernal>:629 spec_from_file_location 10 0.000000 0.000000 0.000000\r\n", + ":1 QueuePool.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..:519 PhysicalReplicationConnection 1 0.000000 0.000000 0.000000\r\n", + "..ures\\_base.py:371 Future.cancelled 6 0.000000 0.000000 0.000000\r\n", + ".._init__.py:1610 safe_first_element 24 0.000000 0.000000 0.000000\r\n", + "..cbook\\__init__.py:1933 _setattr_cm 280 0.000000 0.000000 0.000000\r\n", + "..ool\\base.py:231 QueuePool._creator 1 0.000000 0.000000 0.000000\r\n", + "..ker.py:2126 AutoLocator.set_params 16 0.000000 0.000000 0.000000\r\n", + "..\\offsetbox.py:410 VPacker.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..se.py:1699 RootTransaction._parent 1 0.000000 0.000000 0.000000\r\n", + "..__init__.py:60 _StrongRef.__hash__ 6 0.000000 0.000000 0.000000\r\n", + "..lors.py:193 _to_rgba_no_colorcycle 8 0.000000 0.000000 0.000000\r\n", + "..es\\matplotlib\\pyplot.py:427 figure 1 0.000000 0.000000 0.000000\r\n", + "..s.py:1355 AutoDateLocator.set_axis 1 0.000000 0.000000 0.000000\r\n", + "..s.py:263 MarkerStyle.get_fillstyle 8 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\axis.py:1456 XAxis.grid 4 0.000000 0.000000 0.000000\r\n", + "..hes.py:330 Rectangle.set_edgecolor 12 0.000000 0.000000 0.000000\r\n", + "..portlib._bootstrap>:35 _new_module 9 0.000000 0.000000 0.000000\r\n", + "..tlib\\transforms.py:274 Bbox.frozen 1 0.000000 0.000000 0.000000\r\n", + "..plotlib\\text.py:933 Text.set_color 24 0.000000 0.000000 0.000000\r\n", + "..s.py:2221 BlendedAffine2D.__init__ 6 0.000000 0.000000 0.000000\r\n", + ".. HandlerLine2D.adjust_drawing_area 4 0.000000 0.000000 0.000000\r\n", + "..b\\lines.py:1327 Line2D.update_from 8 0.000000 0.000000 0.000000\r\n", + "..ocess_plot_var_args.set_prop_cycle 2 0.000000 0.000000 0.000000\r\n", + "..alchemy\\log.py:174 instance_logger 3 0.000000 0.000000 0.000000\r\n", + "..pe_base.py:219 _vhstack_dispatcher 16 0.000000 0.000000 0.000000\r\n", + "..s\\psycopg2\\tz.py:108 LocalTimezone 1 0.000000 0.000000 0.000000\r\n", + "..mpy\\lib\\function_base.py:1147 diff 16 0.000000 0.000000 0.000000\r\n", + "..lib\\transforms.py:82 Bbox.__init__ 306 0.000000 0.000000 0.000000\r\n", + "..nctools.py:524 decorating_function 1 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\axis.py:1486 4 0.000000 0.000000 0.000000\r\n", + "..emy\\engine\\url.py:129 URL.password 1 0.000000 0.000000 0.000000\r\n", + "..sSelectorEventLoop._process_events 17 0.000000 0.000000 0.000000\r\n", + "..lib\\lines.py:1294 Line2D.set_ydata 39 0.000000 0.000000 0.000000\r\n", + ".._.py:1309 _to_unmasked_float_array 34 0.000000 0.000000 0.000000\r\n", + "..>:147 _ModuleLockManager.__enter__ 10 0.000000 0.000000 0.000000\r\n", + "..\\sqlalchemy\\event\\api.py:34 listen 3 0.000000 0.000000 0.000000\r\n", + "..gure.py:2059 Figure.add_axobserver 1 0.000000 0.000000 0.000000\r\n", + "..teq6k\\lib\\copy.py:257 _reconstruct 1 0.000000 0.000000 0.000000\r\n", + "..artist.py:827 Line2D.get_clip_path 4 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\legend.py:1253 1 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\figure.py:1073 fixitems 1 0.000000 0.000000 0.000000\r\n", + "..r.py:742 FontProperties.set_family 23 0.000000 0.000000 0.000000\r\n", + "..ap_external>:294 cache_from_source 18 0.000000 0.000000 0.000000\r\n", + "..forms.py:1669 TransformWrapper.set 2 0.000000 0.000000 0.000000\r\n", + "..tlib\\units.py:81 AxisInfo.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..ncio\\coroutines.py:177 iscoroutine 2 0.000000 0.000000 0.000000\r\n", + "..\\psycopg2\\extensions.py:109 SQL_IN 1 0.000000 0.000000 0.000000\r\n", + "..plotlib\\gridspec.py:382 1 0.000000 0.000000 0.000000\r\n", + "..xternal>:1265 _path_importer_cache 19 0.000000 0.000000 0.000000\r\n", + "..kages\\psycopg2\\_json.py:1 1 0.000000 0.000000 0.000000\r\n", + "..process_plot_var_args._setdefaults 4 0.000000 0.000000 0.000000\r\n", + "..b\\axis.py:459 XTick._get_tick1line 3 0.000000 0.000000 0.000000\r\n", + "..y\\lib\\shape_base.py:1227 2 0.000000 0.000000 0.000000\r\n", + "..ages\\psycopg2\\extras.py:1 1 0.000000 0.000000 0.000000\r\n", + "..\\transforms.py:939 Bbox.get_points 3 0.000000 0.000000 0.000000\r\n", + "..tlib\\legend.py:569 Legend._set_loc 1 0.000000 0.000000 0.000000\r\n", + "..tlib\\axis.py:2466 YAxis.get_minpos 1 0.000000 0.000000 0.000000\r\n", + "..s.py:1398 Line2D.set_dash_capstyle 30 0.000000 0.000000 0.000000\r\n", + "..on38\\Lib\\uuid.py:259 UUID.__hash__ 4 0.000000 0.000000 0.000000\r\n", + "..otlib\\artist.py:197 Rectangle.axes 117 0.000000 0.000000 0.000000\r\n", + "..py:2459 AxesSubplot._get_axis_list 1 0.000000 0.000000 0.000000\r\n", + "..\\orm\\session.py:1288 Session.close 1 0.000000 0.000000 0.000000\r\n", + "..\\offsetbox.py:356 HPacker.__init__ 7 0.000000 0.000000 0.000000\r\n", + "..ion-68gteq6k\\lib\\weakref.py:51 _cb 2 0.000000 0.000000 0.000000\r\n", + "..opg2\\_range.py:476 DateTimeTZRange 1 0.000000 0.000000 0.000000\r\n", + "..ycopg2\\extras.py:65 DictCursorBase 1 0.000000 0.000000 0.000000\r\n", + "..lectorEventLoop._process_self_data 6 0.000000 0.000000 0.000000\r\n", + "..y:154 to_unicode_processor_factory 1 0.000000 0.000000 0.000000\r\n", + "..:116 PoolEventsDispatch._for_class 2 0.000000 0.000000 0.000000\r\n", + "..hemy\\engine\\url.py:56 URL.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..otlib\\rcsetup.py:123 validate_bool 1 0.000000 0.000000 0.000000\r\n", + "..b\\scale.py:97 LinearScale.__init__ 16 0.000000 0.000000 0.000000\r\n", + "..b._bootstrap>:157 _get_module_lock 18 0.000000 0.000000 0.000000\r\n", + "..ping.py:717 _GenericAlias.__hash__ 1 0.000000 0.000000 0.000000\r\n", + "..y:512 LogicalReplicationConnection 1 0.000000 0.000000 0.000000\r\n", + "..r.py:774 FontProperties.set_weight 27 0.000000 0.000000 0.000000\r\n", + "..er.py:72 HandlerLine2D.update_prop 8 0.000000 0.000000 0.000000\r\n", + "..til\\_collections.py:317 5 0.000000 0.000000 0.000000\r\n", + "..ig\\configurable.py:426 initialized 2 0.000000 0.000000 0.000000\r\n", + "..t\\registry.py:193 _EventKey.listen 4/3 0.000000 0.000000 0.000000\r\n", + "..otlib\\transforms.py:394 Bbox.width 1 0.000000 0.000000 0.000000\r\n", + "..s\\matplotlib\\axis.py:841 XAxis.cla 12 0.000000 0.000000 0.000000\r\n", + "..ootstrap_external>:99 _path_isfile 12 0.000000 0.000000 0.000000\r\n", + "..d_bases.py:3325 new_figure_manager 1 0.000000 0.000000 0.000000\r\n", + "..sSubplot.get_yaxis_text2_transform 3 0.000000 0.000000 0.000000\r\n", + "..nit__.py:1974 _OrderedSet.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..lotlib\\axis.py:822 XAxis.get_scale 5 0.000000 0.000000 0.000000\r\n", + "..s\\_base.py:597 AxesSubplot.viewLim 2 0.000000 0.000000 0.000000\r\n", + "..f.py:385 WeakKeyDictionary.__len__ 2 0.000000 0.000000 0.000000\r\n", + "...py:526 YTick._get_text2_transform 3 0.000000 0.000000 0.000000\r\n", + "..bootstrap_external>:1508 1 0.000000 0.000000 0.000000\r\n", + "..plotlib\\axis.py:649 Ticker.locator 3 0.000000 0.000000 0.000000\r\n", + "..y:528 Text._update_clip_properties 15 0.000000 0.000000 0.000000\r\n", + "..lotlib\\axes\\_base.py:232 8 0.000000 0.000000 0.000000\r\n", + "..ing>:1 PGDialect_psycopg2.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..hes.py:260 Rectangle.get_transform 18 0.000000 0.000000 0.000000\r\n", + "..bootstrap>:103 _ModuleLock.release 18 0.000000 0.000000 0.000000\r\n", + "..lib\\artist.py:974 Rectangle.update 140 0.000000 0.000000 0.000000\r\n", + "..py:2249 BlendedAffine2D.get_matrix 4 0.000000 0.000000 0.000000\r\n", + "..tlib\\dates.py:174 _get_rc_timezone 6 0.000000 0.000000 0.000000\r\n", + "..e.py:117 LinearScale.get_transform 4 0.000000 0.000000 0.000000\r\n", + "..ase.py:746 Connection._commit_impl 1 0.000000 0.000000 0.000000\r\n", + "..ges\\numpy\\core\\_methods.py:47 _all 1 0.000000 0.000000 0.000000\r\n", + "..sSubplot.get_xaxis_text2_transform 3 0.000000 0.000000 0.000000\r\n", + "..ib\\axes\\_subplots.py:229 2 0.000000 0.000000 0.000000\r\n", + "..egation\\analysis.py:212 8613 0.000000 0.000000 0.000000\r\n", + "..mpy\\core\\fromnumeric.py:42 _wrapit 3 0.000000 0.000000 0.000000\r\n", + "..lib\\transforms.py:935 Bbox.minposy 1 0.000000 0.000000 0.000000\r\n", + "...py:2266 blended_transform_factory 8 0.000000 0.000000 0.000000\r\n", + "..93 vectorize._get_ufunc_and_otypes 4 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\artist.py:1006 140 0.000000 0.000000 0.000000\r\n", + "..py:2538 FigureManagerBase.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..json.py:146 register_default_jsonb 1 0.000000 0.000000 0.000000\r\n", + "..chemy\\engine\\url.py:156 1 0.000000 0.000000 0.000000\r\n", + ":1 Comparator. 4 0.000000 0.000000 0.000000\r\n", + "..ib\\stride_tricks.py:262 10 0.000000 0.000000 0.000000\r\n", + "..b\\sre_parse.py:98 State.checkgroup 1 0.000000 0.000000 0.000000\r\n", + "..extras.py:500 MinTimeLoggingCursor 1 0.000000 0.000000 0.000000\r\n", + "..syncio\\base_futures.py:13 isfuture 37 0.000000 0.000000 0.000000\r\n", + "..lalchemy\\event\\base.py:243 _listen 3 0.000000 0.000000 0.000000\r\n", + "..ok\\__init__.py:601 _AxesStack.push 2 0.000000 0.000000 0.000000\r\n", + "..s.py:2544 BboxTransformTo.__init__ 20 0.000000 0.000000 0.000000\r\n", + "..ist.py:961 Rectangle.set_in_layout 1 0.000000 0.000000 0.000000\r\n", + "..opg2\\extras.py:526 StopReplication 1 0.000000 0.000000 0.000000\r\n", + "..nghelpers.py:248 PluginLoader.load 1 0.000000 0.000000 0.000000\r\n", + "..1 _process_plot_var_args._makeline 4 0.000000 0.000000 0.000000\r\n", + "..ation-68gteq6k\\lib\\copy.py:66 copy 1 0.000000 0.000000 0.000000\r\n", + "..entifierPreparer_psycopg2.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..asyncio\\tasks.py:653 ensure_future 2 0.000000 0.000000 0.000000\r\n", + "..yncio\\futures.py:335 _chain_future 6 0.000000 0.000000 0.000000\r\n", + "..alchemy\\util\\queue.py:92 Queue.put 1 0.000000 0.000000 0.000000\r\n", + "..48 AxesSubplot.get_xaxis_transform 29/15 0.000000 0.000000 0.000000\r\n", + "..romnumeric.py:2185 _any_dispatcher 76 0.000000 0.000000 0.000000\r\n", + "...py:77 PoolEventsDispatch.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..b._bootstrap>:222 _verbose_message 90 0.000000 0.000000 0.000000\r\n", + "..mpy\\core\\multiarray.py:1043 copyto 4 0.000000 0.000000 0.000000\r\n", + "..\\lib\\sre_compile.py:411 _mk_bitmap 5 0.000000 0.000000 0.000000\r\n", + "..ctors.py:319 SelectSelector.select 17 0.000000 0.000000 0.000000\r\n", + "..ffsetbox.py:240 VPacker.set_offset 1 0.000000 0.000000 0.000000\r\n", + ".._comparator.py:41 _boolean_compare 4 0.000000 0.000000 0.000000\r\n", + "...py:1352 Line2D.set_dash_joinstyle 30 0.000000 0.000000 0.000000\r\n", + "..ase.py:3767 AxesSubplot.xaxis_date 4 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:485 XTick._get_gridline 3 0.000000 0.000000 0.000000\r\n", + "..\\numpy\\lib\\shape_base.py:1155 tile 1 0.000000 0.000000 0.000000\r\n", + "..s\\matplotlib\\dates.py:225 2 0.000000 0.000000 0.000000\r\n", + "..y:2175 XAxis.set_default_intervals 1 0.000000 0.000000 0.000000\r\n", + "..tstrap_external>:493 _classify_pyc 9 0.000000 0.000000 0.000000\r\n", + "..external>:1394 FileFinder.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..py:140 _AxesStack.current_key_axes 2 0.000000 0.000000 0.000000\r\n", + "..y:355 _ListenerCollection.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:444 XTick._get_text2 3 0.000000 0.000000 0.000000\r\n", + "..copg2\\extras.py:233 RealDictCursor 1 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\path.py:197 Path.vertices 16 0.000000 0.000000 0.000000\r\n", + "..t_comparator.py:359 _check_literal 4 0.000000 0.000000 0.000000\r\n", + "..ctions_abc.py:271 __subclasshook__ 5 0.000000 0.000000 0.000000\r\n", + "..es\\numpy\\core\\_methods.py:28 _amax 2 0.000000 0.000000 0.000000\r\n", + "..nal>:969 SourceFileLoader.get_data 9 0.000000 0.000000 0.000000\r\n", + "..ib\\weakref.py:73 WeakMethod.__eq__ 1 0.000000 0.000000 0.000000\r\n", + "..e.py:853 _ConnectionFairy._checkin 1 0.000000 0.000000 0.000000\r\n", + "..artist.py:841 TextArea.set_clip_on 16 0.000000 0.000000 0.000000\r\n", + "..e\\interfaces.py:901 engine_created 1 0.000000 0.000000 0.000000\r\n", + "..b\\weakref.py:328 KeyedRef.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..\\lines.py:730 Line2D.set_transform 38 0.000000 0.000000 0.000000\r\n", + "..s.py:1709 IdentityTransform.__eq__ 9/8 0.000000 0.000000 0.000000\r\n", + "..\\cbook\\__init__.py:1737 74 0.000000 0.000000 0.000000\r\n", + "..\\spines.py:226 Spine.register_axis 4 0.000000 0.000000 0.000000\r\n", + "..ng\\__init__.py:772 Logger.__init__ 3 0.000000 0.000000 0.000000\r\n", + "..Figure.set_constrained_layout_pads 1 0.000000 0.000000 0.000000\r\n", + "..nal>:849 SourceFileLoader.get_code 9 0.000000 0.000000 0.000000\r\n", + "...py:235 SubplotParams._update_this 12 0.000000 0.000000 0.000000\r\n", + "..y\\log.py:221 echo_property.__set__ 1 0.000000 0.000000 0.000000\r\n", + "..s\\matplotlib\\axis.py:342 70 0.000000 0.000000 0.000000\r\n", + "..:136 Affine2D._invalidate_internal 90/76 0.000000 0.000000 0.000000\r\n", + "..n.py:500 SessionTransaction.commit 1 0.000000 0.000000 0.000000\r\n", + "..b\\transforms.py:914 Bbox.intervaly 1 0.000000 0.000000 0.000000\r\n", + "...py:311 RangeCaster._create_ranges 6 0.000000 0.000000 0.000000\r\n", + "...py:1689 TransformWrapper. 6 0.000000 0.000000 0.000000\r\n", + "..ents.py:942 BindParameter.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..ib\\artist.py:800 XAxis.get_visible 2 0.000000 0.000000 0.000000\r\n", + "..ib\\threading.py:1095 Thread.daemon 1 0.000000 0.000000 0.000000\r\n", + "..e._process_projection_requirements 1 0.000000 0.000000 0.000000\r\n", + "..b._bootstrap>:549 module_from_spec 10/9 0.000000 0.000000 0.000000\r\n", + ".. Rectangle._update_patch_transform 18 0.000000 0.000000 0.000000\r\n", + "..\\cbook\\__init__.py:1742 74 0.000000 0.000000 0.000000\r\n", + "..book\\__init__.py:1296 is_math_text 30 0.000000 0.000000 0.000000\r\n", + "..ray_function__ internals>:2 copyto 4 0.000000 0.000000 0.000000\r\n", + "..is.py:1048 XAxis._set_artist_props 4 0.000000 0.000000 0.000000\r\n", + "..59 WeakValueDictionary.__setitem__ 1 0.000000 0.000000 0.000000\r\n", + "..hes.py:402 Rectangle.set_linestyle 7 0.000000 0.000000 0.000000\r\n", + "..y\\pool\\base.py:667 _finalize_fairy 1 0.000000 0.000000 0.000000\r\n", + ".._bootstrap>:477 _init_module_attrs 10 0.000000 0.000000 0.000000\r\n", + ".._bootstrap_external>:80 _path_stat 40 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\dates.py:1893 axisinfo 2 0.000000 0.000000 0.000000\r\n", + "..tbox.py:739 DrawingArea.add_artist 8 0.000000 0.000000 0.000000\r\n", + "..lib\\lines.py:1047 Line2D.set_color 30 0.000000 0.000000 0.000000\r\n", + "..py:2606 BboxTransformFrom.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..\\offsetbox.py:489 HPacker.__init__ 5 0.000000 0.000000 0.000000\r\n", + "..bootstrap_external>:68 _path_split 18 0.000000 0.000000 0.000000\r\n", + "..teGenericTransform.contains_branch 4 0.000000 0.000000 0.000000\r\n", + "..elements.py:4056 Column._get_table 20 0.000000 0.000000 0.000000\r\n", + "..y\\core\\multiarray.py:77 empty_like 4 0.000000 0.000000 0.000000\r\n", + "..offsetbox.py:175 TextArea.__init__ 16 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:529 YTick.apply_tickdir 3 0.000000 0.000000 0.000000\r\n", + "..nsforms.py:126 Affine2D.invalidate 76 0.000000 0.000000 0.000000\r\n", + "...py:792 FontProperties.set_stretch 23 0.000000 0.000000 0.000000\r\n", + "..ib\\__init__.py:1285 is_interactive 2 0.000000 0.000000 0.000000\r\n", + "..it__.py:1323 Manager._fixupParents 3 0.000000 0.000000 0.000000\r\n", + "..sycopg2\\_range.py:457 NumericRange 1 0.000000 0.000000 0.000000\r\n", + "..ib\\artist.py:1037 Spine.set_zorder 18 0.000000 0.000000 0.000000\r\n", + "...py:399 _ListenerCollection.append 3 0.000000 0.000000 0.000000\r\n", + "..lements.py:4145 Column._bind_param 4 0.000000 0.000000 0.000000\r\n", + ".._axes.py:147 AxesSubplot.set_title 4 0.000000 0.000000 0.000000\r\n", + "..tlib\\transforms.py:400 Bbox.height 1 0.000000 0.000000 0.000000\r\n", + "..ler.py:161 HandlerLine2D.get_xdata 4 0.000000 0.000000 0.000000\r\n", + "..e.py:3867 AxesSubplot.set_navigate 1 0.000000 0.000000 0.000000\r\n", + "..bootstrap_external>:36 _relax_case 17 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\axis.py:361 14 0.000000 0.000000 0.000000\r\n", + "..\\axis.py:884 XAxis.set_tick_params 8 0.000000 0.000000 0.000000\r\n", + "..800 AxesSubplot._update_transScale 2 0.000000 0.000000 0.000000\r\n", + "..b\\patches.py:42 Rectangle.__init__ 7 0.000000 0.000000 0.000000\r\n", + "..ib\\path.py:188 Path._update_values 14 0.000000 0.000000 0.000000\r\n", + "..ages\\cycler.py:225 Cycler.__iter__ 12 0.000000 0.000000 0.000000\r\n", + "..er.py:512 ScalarFormatter.__init__ 16 0.000000 0.000000 0.000000\r\n", + "..:220 Spine._ensure_position_is_set 28/24 0.000000 0.000000 0.000000\r\n", + "..function__ internals>:2 empty_like 4 0.000000 0.000000 0.000000\r\n", + "..lib\\legend.py:918 Legend.get_frame 1 0.000000 0.000000 0.000000\r\n", + "..ide_tricks.py:185 _broadcast_shape 10 0.000000 0.000000 0.000000\r\n", + "..tlib\\artist.py:1201 Text.mouseover 7 0.000000 0.000000 0.000000\r\n", + "..y:202 _broadcast_arrays_dispatcher 10 0.000000 0.000000 0.000000\r\n", + "..lib\\shape_base.py:597 column_stack 12 0.000000 0.000000 0.000000\r\n", + "..init__.py:882 Grouper.get_siblings 6 0.000000 0.000000 0.000000\r\n", + "..045 AxesSubplot._process_unit_info 6 0.000000 0.000000 0.000000\r\n", + "..ap_external>:578 _compile_bytecode 9 0.000000 0.000000 0.000000\r\n", + "..y:542 PGDialect_psycopg2.do_commit 1 0.000000 0.000000 0.000000\r\n", + "..ile.py:432 _generate_overlap_table 2 0.000000 0.000000 0.000000\r\n", + "<__array_function__ internals>:2 all 9 0.000000 0.000000 0.000000\r\n", + "..alchemy\\event\\api.py:23 _event_key 3 0.000000 0.000000 0.000000\r\n", + "..._bootstrap>:376 ModuleSpec.cached 19 0.000000 0.000000 0.000000\r\n", + "...py:1247 BboxTransformFrom.__add__ 78 0.000000 0.000000 0.000000\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..plotlib\\gridspec.py:204 _normalize 1 0.000000 0.000000 0.000000\r\n", + "..figure.py:199 SubplotParams.update 2 0.000000 0.000000 0.000000\r\n", + ".._json.py:133 register_default_json 1 0.000000 0.000000 0.000000\r\n", + "..p>:143 _ModuleLockManager.__init__ 10 0.000000 0.000000 0.000000\r\n", + "..:513 Figure.set_constrained_layout 1 0.000000 0.000000 0.000000\r\n", + ".. FontProperties.get_size_in_points 1 0.000000 0.000000 0.000000\r\n", + "..60 ScalarFormatter.set_useMathText 16 0.000000 0.000000 0.000000\r\n", + "..er.py:755 FontProperties.set_style 23 0.000000 0.000000 0.000000\r\n", + "...py:900 AutoDateFormatter.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..ok\\__init__.py:2125 _check_getitem 4 0.000000 0.000000 0.000000\r\n", + "..py:1210 Line2D.set_markeredgecolor 30 0.000000 0.000000 0.000000\r\n", + "..psycopg2\\extras.py:261 RealDictRow 1 0.000000 0.000000 0.000000\r\n", + "...py:978 Rectangle._update_property 42 0.000000 0.000000 0.000000\r\n", + "..rm\\session.py:655 Session.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..per._iter_break_from_left_to_right 8 0.000000 0.000000 0.000000\r\n", + "..stgresql\\psycopg2.py:711 4 0.000000 0.000000 0.000000\r\n", + "..lotlib\\spines.py:36 Spine.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..b\\asyncio\\futures.py:269 _get_loop 8 0.000000 0.000000 0.000000\r\n", + "..dates.py:1496 YearLocator.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..\\type_api.py:64 Comparator.operate 4 0.000000 0.000000 0.000000\r\n", + "..b\\figure.py:66 _AxesStack.__init__ 1 0.000000 0.000000 0.000000\r\n", + "...py:299 NullFormatter._set_locator 31 0.000000 0.000000 0.000000\r\n", + "..\\axis.py:501 XTick.update_position 3 0.000000 0.000000 0.000000\r\n", + "..re\\numerictypes.py:293 issubclass_ 8 0.000000 0.000000 0.000000\r\n", + "..init__.py:791 RcParams.__getitem__ 1343 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\axis.py:383 14 0.000000 0.000000 0.000000\r\n", + "..b\\transforms.py:909 Bbox.intervalx 3 0.000000 0.000000 0.000000\r\n", + "..ase.py:1731 RootTransaction.commit 1 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:1579 XAxis.set_units 12 0.000000 0.000000 0.000000\r\n", + "..sql\\elements.py:740 Column.operate 4 0.000000 0.000000 0.000000\r\n", + "..se.py:593 _column_stack_dispatcher 12 0.000000 0.000000 0.000000\r\n", + "..tlib\\axis.py:864 XAxis.reset_ticks 16 0.000000 0.000000 0.000000\r\n", + "..bootstrap_external>:1334 find_spec 10 0.000000 0.000000 0.000000\r\n", + "..\\gridspec.py:246 GridSpec.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..is.py:197 XTick._set_labelrotation 6 0.000000 0.000000 0.000000\r\n", + "..__.py:138 CallbackRegistry.connect 33 0.000000 0.000000 0.000000\r\n", + "..ib\\figure.py:70 _AxesStack.as_list 2 0.000000 0.000000 0.000000\r\n", + "..b\\artist.py:819 Line2D.get_clip_on 3 0.000000 0.000000 0.000000\r\n", + "..\\rcsetup.py:163 validate_axisbelow 1 0.000000 0.000000 0.000000\r\n", + "..ession.py:1333 Session._close_impl 1 0.000000 0.000000 0.000000\r\n", + "..ib\\figure.py:778 Figure.set_canvas 2 0.000000 0.000000 0.000000\r\n", + "...py:1623 TransformWrapper.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..otlib\\lines.py:645 Line2D.set_data 30 0.000000 0.000000 0.000000\r\n", + "..er.py:1712 AutoLocator.nonsingular 2 0.000000 0.000000 0.000000\r\n", + "..is.py:1654 XAxis.set_major_locator 17 0.000000 0.000000 0.000000\r\n", + "..y\\dialects\\__init__.py:24 _auto_fn 1 0.000000 0.000000 0.000000\r\n", + "..240 QueuePool._should_wrap_creator 1 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\text.py:1115 Text.set_y 6 0.000000 0.000000 0.000000\r\n", + "..plotlib\\scale.py:718 scale_factory 16 0.000000 0.000000 0.000000\r\n", + "..\\__init__.py:1837 _str_lower_equal 4 0.000000 0.000000 0.000000\r\n", + "..se.py:392 Future.add_done_callback 6 0.000000 0.000000 0.000000\r\n", + "..hemy\\util\\queue.py:195 Queue._full 1 0.000000 0.000000 0.000000\r\n", + "..on\\database.py:107 from_sql_result 4 0.000000 0.000000 0.000000\r\n", + ".. _GeneratorContextManager.__init__ 141 0.000000 0.000000 0.000000\r\n", + "..\\lib\\function_base.py:257 iterable 97 0.000000 0.000000 0.000000\r\n", + "..tion-68gteq6k\\lib\\re.py:268 escape 1 0.000000 0.000000 0.000000\r\n", + "..ger.py:619 FontProperties.__init__ 23 0.000000 0.000000 0.000000\r\n", + "..ments.py:4065 Column._from_objects 10 0.000000 0.000000 0.000000\r\n", + "..xis.py:325 XTick._set_artist_props 30 0.000000 0.000000 0.000000\r\n", + "..xternal>:1426 FileFinder._get_spec 10 0.000000 0.000000 0.000000\r\n", + "..py:1137 Text.set_verticalalignment 33 0.000000 0.000000 0.000000\r\n", + ".._bootstrap_external>:64 82 0.000000 0.000000 0.000000\r\n", + "..hes.py:475 Rectangle.set_joinstyle 7 0.000000 0.000000 0.000000\r\n", + "..py:843 TextArea.set_minimumdescent 1 0.000000 0.000000 0.000000\r\n", + "..s.py:1059 AutoDateLocator.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..ges\\psycopg2\\extras.py:157 DictRow 1 0.000000 0.000000 0.000000\r\n", + "..til.py:368 surface_column_elements 54 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\pyplot.py:612 get_fignums 1 0.000000 0.000000 0.000000\r\n", + "..teq6k\\lib\\copyreg.py:90 __newobj__ 1 0.000000 0.000000 0.000000\r\n", + ".. LinearScale.limit_range_for_scale 2 0.000000 0.000000 0.000000\r\n", + "..b\\scale.py:43 LinearScale.__init__ 16 0.000000 0.000000 0.000000\r\n", + "..umpy\\core\\getlimits.py:365 __new__ 2 0.000000 0.000000 0.000000\r\n", + "..psycopg2\\_json.py:94 register_json 2 0.000000 0.000000 0.000000\r\n", + "..hes.py:348 Rectangle.set_facecolor 12 0.000000 0.000000 0.000000\r\n", + ".. Line2D._split_drawstyle_linestyle 64 0.000000 0.000000 0.000000\r\n", + "..\\orm\\session.py:1554 Session.query 6 0.000000 0.000000 0.000000\r\n", + "..\\__init__.py:1640 normalize_kwargs 74 0.000000 0.000000 0.000000\r\n", + "..\\core\\getlimits.py:398 finfo._init 1 0.000000 0.000000 0.000000\r\n", + "..lib\\sre_parse.py:295 _class_escape 30 0.000000 0.000000 0.000000\r\n", + "..xesSubplot._set_lim_and_transforms 1 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\figure.py:97 1 0.000000 0.000000 0.000000\r\n", + "..q6k\\lib\\functools.py:486 lru_cache 1 0.000000 0.000000 0.000000\r\n", + "..y:4564 _literal_as_label_reference 3 0.000000 0.000000 0.000000\r\n", + "..\\figure.py:152 _AxesStack.__call__ 2 0.000000 0.000000 0.000000\r\n", + "..\\core\\getipython.py:17 get_ipython 2 0.000000 0.000000 0.000000\r\n", + "..on__ internals>:2 broadcast_arrays 10 0.000000 0.000000 0.000000\r\n", + "..:779 PGDialect_psycopg2.on_connect 1 0.000000 0.000000 0.000000\r\n", + "..ec.py:549 SubplotSpec.get_gridspec 1 0.000000 0.000000 0.000000\r\n", + "..ages\\psycopg2\\compat.py:1 1 0.000000 0.000000 0.000000\r\n", + "..s.py:129 AxesSubplot.update_params 1 0.000000 0.000000 0.000000\r\n", + "..tableColumnCollection.__contains__ 10 0.000000 0.000000 0.000000\r\n", + "..chemy\\orm\\query.py:4634 27 0.000000 0.000000 0.000000\r\n", + "..lib\\legend.py:938 Legend.set_title 1 0.000000 0.000000 0.000000\r\n", + "..essionTransaction._remove_snapshot 1 0.000000 0.000000 0.000000\r\n", + "..\\asyncio\\futures.py:351 _set_state 6 0.000000 0.000000 0.000000\r\n", + "..units.py:58 _is_natively_supported 12 0.000000 0.000000 0.000000\r\n", + "..my\\orm\\query.py:164 Query.__init__ 6 0.000000 0.000000 0.000000\r\n", + "..ray_function__ internals>:2 hstack 16 0.000000 0.000000 0.000000\r\n", + "..b\\gridspec.py:31 GridSpec.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..ython38\\Lib\\inspect.py:80 ismethod 2 0.000000 0.000000 0.000000\r\n", + "..tist.py:804 Rectangle.get_animated 1714 0.000000 0.000000 0.000000\r\n", + "..ericTransform._invalidate_internal 4/3 0.000000 0.000000 0.000000\r\n", + "..plotlib\\axis.py:653 Ticker.locator 33 0.000000 0.000000 0.000000\r\n", + "..query.py:88 get_data_by_deployment 1 0.000000 0.000000 0.000000\r\n", + "..otlib\\__init__.py:1267 get_backend 1 0.000000 0.000000 0.000000\r\n", + "...py:407 XTick._get_text1_transform 3 0.000000 0.000000 0.000000\r\n", + "..bootstrap>:58 _ModuleLock.__init__ 10 0.000000 0.000000 0.000000\r\n", + "...py:635 Legend._approx_text_height 2 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:1812 XAxis.axis_date 4 0.000000 0.000000 0.000000\r\n", + "..on.py:579 SessionTransaction.close 2 0.000000 0.000000 0.000000\r\n", + "..ures\\_base.py:443 Future.exception 6 0.000000 0.000000 0.000000\r\n", + "..ompat.py:61 inspect_getfullargspec 2 0.000000 0.000000 0.000000\r\n", + "..aggregation\\query.py:82 4 0.000000 0.000000 0.000000\r\n", + "..patches.py:491 Rectangle.set_hatch 7 0.000000 0.000000 0.000000\r\n", + "...py:410 XTick._get_text2_transform 3 0.000000 0.000000 0.000000\r\n", + "..zipimport>:63 zipimporter.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..__init__.py:1632 sanitize_sequence 8 0.000000 0.000000 0.000000\r\n", + "..es.py:768 Rectangle._convert_units 18 0.000000 0.000000 0.000000\r\n", + "..numpy\\core\\fromnumeric.py:2189 any 76 0.000000 0.000000 0.000000\r\n", + "..base.py:321 _inspect_mapped_object 4 0.000000 0.000000 0.000000\r\n", + "..re\\multiarray.py:990 unravel_index 1 0.000000 0.000000 0.000000\r\n", + "<__array_function__ internals>:2 any 76 0.000000 0.000000 0.000000\r\n", + "..registry.py:154 _EventKey.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..ist.py:605 FancyBboxPatch.set_snap 1 0.000000 0.000000 0.000000\r\n", + "..s.py:697 _GatheringFuture.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..38\\Lib\\asyncio\\tasks.py:717 gather 1 0.000000 0.000000 0.000000\r\n", + "..elpers.py:1381 parse_user_argument 2 0.000000 0.000000 0.000000\r\n", + "..kers.py:289 MarkerStyle.set_marker 42 0.000000 0.000000 0.000000\r\n", + "..s.py:424 Spine.get_spine_transform 28/24 0.000000 0.000000 0.000000\r\n", + "..chemy\\orm\\query.py:4642 27 0.000000 0.000000 0.000000\r\n", + "..ib\\lines.py:1196 Line2D.set_marker 4 0.000000 0.000000 0.000000\r\n", + "..sSubplot.get_yaxis_text1_transform 3 0.000000 0.000000 0.000000\r\n", + "..portlib._bootstrap>:890 _find_spec 10 0.000000 0.000000 0.000000\r\n", + "..__init__.py:51 _StrongRef.__init__ 3 0.000000 0.000000 0.000000\r\n", + "..b\\legend.py:701 get_legend_handler 8 0.000000 0.000000 0.000000\r\n", + "..py:155 HandlerLine2D.get_numpoints 4 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\axis.py:372 14 0.000000 0.000000 0.000000\r\n", + "..orms.py:1652 TransformWrapper._set 4 0.000000 0.000000 0.000000\r\n", + "..opg2\\extensions.py:133 NoneAdapter 1 0.000000 0.000000 0.000000\r\n", + "..kers.py:286 MarkerStyle.get_marker 8 0.000000 0.000000 0.000000\r\n", + ".._bootstrap>:78 _ModuleLock.acquire 18 0.000000 0.000000 0.000000\r\n", + "..nsforms.py:1972 Affine2D.translate 36 0.000000 0.000000 0.000000\r\n", + "..hape_base.py:1151 _tile_dispatcher 1 0.000000 0.000000 0.000000\r\n", + "..r.py:63 HandlerLine2D._update_prop 8 0.000000 0.000000 0.000000\r\n", + "..arkers.py:244 MarkerStyle._recache 80 0.000000 0.000000 0.000000\r\n", + "..y:163 TransformedBbox.set_children 149 0.000000 0.000000 0.000000\r\n", + "..EventLoop._asyncgen_firstiter_hook 18 0.000000 0.000000 0.000000\r\n", + "..packages\\psycopg2\\tz.py:1 1 0.000000 0.000000 0.000000\r\n", + "..b\\function_base.py:2144 4 0.000000 0.000000 0.000000\r\n", + "..b\\cbook\\__init__.py:886 6 0.000000 0.000000 0.000000\r\n", + "..syncio\\tasks.py:751 _done_callback 1 0.000000 0.000000 0.000000\r\n", + "...py:2680 AxesSubplot.set_axisbelow 1 0.000000 0.000000 0.000000\r\n", + "..plotlib\\patches.py:1832 2 0.000000 0.000000 0.000000\r\n", + "..ib\\figure.py:104 _AxesStack.bubble 1 0.000000 0.000000 0.000000\r\n", + "..lotlib\\axes\\_base.py:321 12 0.000000 0.000000 0.000000\r\n", + "..Subplot._validate_converted_limits 4 0.000000 0.000000 0.000000\r\n", + "..romnumeric.py:2273 _all_dispatcher 9 0.000000 0.000000 0.000000\r\n", + "..ates.py:593 DateFormatter.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..CompositeGenericTransform. 3 0.000000 0.000000 0.000000\r\n", + "..hemy\\orm\\query.py:537 Query._clone 5 0.000000 0.000000 0.000000\r\n", + "..ase.py:3227 AxesSubplot.get_xscale 4 0.000000 0.000000 0.000000\r\n", + "...py:735 MarkerStyle._set_tickright 3 0.000000 0.000000 0.000000\r\n", + "..is.py:1670 XAxis.set_minor_locator 16 0.000000 0.000000 0.000000\r\n", + "..>:863 _ImportLockContext.__enter__ 30 0.000000 0.000000 0.000000\r\n", + "..etbox.py:303 TextArea.get_children 33 0.000000 0.000000 0.000000\r\n", + "...py:113 GridSpec.set_height_ratios 1 0.000000 0.000000 0.000000\r\n", + "..ry.py:267 _EventKey.append_to_list 3 0.000000 0.000000 0.000000\r\n", + "..umpy\\core\\numeric.py:341 full_like 4 0.000000 0.000000 0.000000\r\n", + "..alect_psycopg2.create_connect_args 1 0.000000 0.000000 0.000000\r\n", + "..lib\\lines.py:1282 Line2D.set_xdata 39 0.000000 0.000000 0.000000\r\n", + "..atplotlib\\artist.py:192 Spine.axes 831 0.000000 0.000000 0.000000\r\n", + "..py:275 SelectSelector._key_from_fd 6 0.000000 0.000000 0.000000\r\n", + "..lotlib\\figure.py:78 _AxesStack.get 2 0.000000 0.000000 0.000000\r\n", + "..._bootstrap>:389 ModuleSpec.parent 14 0.000000 0.000000 0.000000\r\n", + "..sion.py:3236 sessionmaker.__call__ 1 0.000000 0.000000 0.000000\r\n", + "..util\\langhelpers.py:1500 only_once 1 0.000000 0.000000 0.000000\r\n", + "..book\\__init__.py:833 Grouper.clean 8 0.000000 0.000000 0.000000\r\n", + "..ib\\cbook\\__init__.py:1575 10 0.000000 0.000000 0.000000\r\n", + "..s\\numpy\\core\\multiarray.py:707 dot 67 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:819 XAxis.get_transform 4 0.000000 0.000000 0.000000\r\n", + "..g\\__init__.py:1392 Logger.__init__ 3 0.000000 0.000000 0.000000\r\n", + "..5 CompositeGenericTransform.__eq__ 12/8 0.000000 0.000000 0.000000\r\n", + "..otlib\\text.py:1227 Text.set_usetex 24 0.000000 0.000000 0.000000\r\n", + "..ents.py:180 _run_until_complete_cb 1 0.000000 0.000000 0.000000\r\n", + "..\\lines.py:547 Line2D.set_markevery 30 0.000000 0.000000 0.000000\r\n", + ".. _ClsLevelDispatch._adjust_fn_spec 4 0.000000 0.000000 0.000000\r\n", + "..se.py:2873 AxesSubplot.tick_params 2 0.000000 0.000000 0.000000\r\n", + "..b\\function_base.py:2164 4 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:427 XTick._get_text1 3 0.000000 0.000000 0.000000\r\n", + "..ist.py:358 Rectangle.set_transform 85 0.000000 0.000000 0.000000\r\n", + "..core\\multiarray.py:145 concatenate 29 0.000000 0.000000 0.000000\r\n", + "..re_parse.py:267 Tokenizer.getuntil 7 0.000000 0.000000 0.000000\r\n", + "..ms.py:1639 TransformWrapper.__eq__ 4 0.000000 0.000000 0.000000\r\n", + "..tableColumnCollection.__contains__ 10 0.000000 0.000000 0.000000\r\n", + "..b\\function_base.py:2115 4 0.000000 0.000000 0.000000\r\n", + "..ide_tricks.py:206 broadcast_arrays 10 0.000000 0.000000 0.000000\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + ":176 cb 10 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\artist.py:1095 Line2D.set 70 0.000000 0.000000 0.000000\r\n", + "..ogging\\__init__.py:189 _checkLevel 3 0.000000 0.000000 0.000000\r\n", + "..k\\__init__.py:827 Grouper.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..tlib\\axis.py:2166 XAxis.get_minpos 1 0.000000 0.000000 0.000000\r\n", + "..lalchemy\\orm\\query.py:4148 __new__ 32 0.000000 0.000000 0.000000\r\n", + "..abc.py:816 WeakKeyDictionary.clear 1 0.000000 0.000000 0.000000\r\n", + "..lections.py:316 OrderedDict.values 5 0.000000 0.000000 0.000000\r\n", + "..lements.py:365 Column.get_children 27 0.000000 0.000000 0.000000\r\n", + ".. ExtensionFileLoader.create_module 1 0.000000 0.000000 0.000000\r\n", + "..d_inline.py:59 draw_if_interactive 1 0.000000 0.000000 0.000000\r\n", + "..157 CallbackRegistry._remove_proxy 2 0.000000 0.000000 0.000000\r\n", + "..768 IdentityTransform.is_separable 8 0.000000 0.000000 0.000000\r\n", + "..hon38\\Lib\\contextlib.py:238 helper 141 0.000000 0.000000 0.000000\r\n", + "..29 _process_plot_var_args.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..ession.py:1339 Session.expunge_all 1 0.000000 0.000000 0.000000\r\n", + "..ent\\registry.py:165 _EventKey._key 3 0.000000 0.000000 0.000000\r\n", + "..lib\\stride_tricks.py:266 30 0.000000 0.000000 0.000000\r\n", + "..ib\\transforms.py:969 Bbox.mutatedx 2 0.000000 0.000000 0.000000\r\n", + "..ist.py:371 Rectangle.get_transform 31 0.000000 0.000000 0.000000\r\n", + "..end.py:666 get_default_handler_map 2 0.000000 0.000000 0.000000\r\n", + "..tlib\\axis.py:2238 YAxis._get_label 1 0.000000 0.000000 0.000000\r\n", + "..Python38\\Lib\\inspect.py:260 iscode 2 0.000000 0.000000 0.000000\r\n", + "..egation-68gteq6k\\lib\\re.py:201 sub 4 0.000000 0.000000 0.000000\r\n", + "..ers.py:743 MarkerStyle._set_tickup 3 0.000000 0.000000 0.000000\r\n", + ".._bootstrap_external>:62 _path_join 82 0.000000 0.000000 0.000000\r\n", + "..teq6k\\lib\\copyreg.py:99 _slotnames 1 0.000000 0.000000 0.000000\r\n", + "..py:663 PGDialect_psycopg2.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\text.py:554 Text.set_wrap 24 0.000000 0.000000 0.000000\r\n", + "..onfig\\configurable.py:381 instance 2 0.000000 0.000000 0.000000\r\n", + "..ctions_abc.py:367 __subclasshook__ 4 0.000000 0.000000 0.000000\r\n", + "..ansforms.py:1831 Affine2D.__init__ 49 0.000000 0.000000 0.000000\r\n", + "..ycopg2\\extras.py:456 LoggingCursor 1 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\figure.py:1959 Figure.sca 1 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\patches.py:1818 __new__ 2 0.000000 0.000000 0.000000\r\n", + "..ImmutableColumnCollection.__iter__ 5 0.000000 0.000000 0.000000\r\n", + "..ckages\\psycopg2\\extras.py:698 Inet 1 0.000000 0.000000 0.000000\r\n", + "..py:1367 Line2D.set_solid_joinstyle 30 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:413 XTick.apply_tickdir 3 0.000000 0.000000 0.000000\r\n", + "..offsetbox.py:783 TextArea.__init__ 5 0.000000 0.000000 0.000000\r\n", + "..orm\\session.py:1002 Session.commit 1 0.000000 0.000000 0.000000\r\n", + "..ker.py:2004 _Edge_integer.__init__ 2 0.000000 0.000000 0.000000\r\n", + ".._range.py:297 RangeCaster.__init__ 6 0.000000 0.000000 0.000000\r\n", + "..urceFileLoader._check_name_wrapper 9 0.000000 0.000000 0.000000\r\n", + ".._base.py:3484 AxesSubplot.set_ylim 1 0.000000 0.000000 0.000000\r\n", + "..p>:867 _ImportLockContext.__exit__ 30 0.000000 0.000000 0.000000\r\n", + "..es.py:315 Rectangle._set_edgecolor 20 0.000000 0.000000 0.000000\r\n", + "..8 SessionTransaction._prepare_impl 1 0.000000 0.000000 0.000000\r\n", + ".. SessionTransaction._take_snapshot 3 0.000000 0.000000 0.000000\r\n", + "..pool\\base.py:63 QueuePool.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..b\\cbook\\__init__.py:2088 188 0.000000 0.000000 0.000000\r\n", + "..y:886 AxesSubplot.set_axes_locator 1 0.000000 0.000000 0.000000\r\n", + "..ckages\\cycler.py:349 Cycler.by_key 10 0.000000 0.000000 0.000000\r\n", + "..kages\\numpy\\ma\\core.py:666 getdata 8 0.000000 0.000000 0.000000\r\n", + "..rl.py:152 URL._instantiate_plugins 1 0.000000 0.000000 0.000000\r\n", + "..es.py:2396 FancyBboxPatch.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..utableColumnCollection.__getattr__ 9 0.000000 0.000000 0.000000\r\n", + "..plotlib\\patches.py:1833 2 0.000000 0.000000 0.000000\r\n", + "..y\\orm\\query.py:1856 Query.order_by 1 0.000000 0.000000 0.000000\r\n", + "..ngine\\base.py:1869 Engine.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..\\psycopg2\\_ipaddress.py:1 1 0.000000 0.000000 0.000000\r\n", + "..\\psycopg2\\extras.py:132 DictCursor 1 0.000000 0.000000 0.000000\r\n", + "..p>:151 _ModuleLockManager.__exit__ 10 0.000000 0.000000 0.000000\r\n", + ":1 Deployment.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..is.py:1412 XAxis.get_major_locator 2 0.000000 0.000000 0.000000\r\n", + "..axis.py:215 XTick.get_tick_padding 6 0.000000 0.000000 0.000000\r\n", + "..b\\axis.py:574 YTick._get_tick1line 3 0.000000 0.000000 0.000000\r\n", + "..bootstrap>:194 _lock_unlock_module 8 0.000000 0.000000 0.000000\r\n", + "..lib\\transforms.py:931 Bbox.minposx 1 0.000000 0.000000 0.000000\r\n", + "..setbox.py:661 DrawingArea.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..ootstrap_external>:424 _get_cached 10 0.000000 0.000000 0.000000\r\n", + "..\\core\\getlimits.py:239 _get_machar 1 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:1504 XAxis.update_units 14 0.000000 0.000000 0.000000\r\n", + "..elpers.py:1079 _importlater.module 1 0.000000 0.000000 0.000000\r\n", + "..gine\\default.py:295 get_pool_class 1 0.000000 0.000000 0.000000\r\n", + "..xt.py:1214 Text.set_fontproperties 1 0.000000 0.000000 0.000000\r\n", + "..ec.py:586 SubplotSpec.get_position 1 0.000000 0.000000 0.000000\r\n", + "..\\numpy\\core\\_asarray.py:16 asarray 176 0.000000 0.000000 0.000000\r\n", + "..ndowsSelectorEventLoop.create_task 2 0.000000 0.000000 0.000000\r\n", + ".._init__.py:573 _AxesStack.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..lib\\figure.py:453 Figure._get_axes 1 0.000000 0.000000 0.000000\r\n", + "..s\\_base.py:31 _process_plot_format 4 0.000000 0.000000 0.000000\r\n", + "..packages\\cycler.py:138 Cycler.keys 12 0.000000 0.000000 0.000000\r\n", + "..numeric.py:2354 _cumsum_dispatcher 3 0.000000 0.000000 0.000000\r\n", + "..atplotlib\\lines.py:632 Line2D.axes 42 0.000000 0.000000 0.000000\r\n", + "..logging\\__init__.py:2003 getLogger 4 0.000000 0.000000 0.000000\r\n", + "..\\_internal.py:830 npy_ctypes_check 4 0.000000 0.000000 0.000000\r\n", + "..ckages\\psycopg2\\_range.py:36 Range 1 0.000000 0.000000 0.000000\r\n", + "..:687 Legend.get_legend_handler_map 1 0.000000 0.000000 0.000000\r\n", + "..ger.py:810 FontProperties.set_size 27 0.000000 0.000000 0.000000\r\n", + "..lib\\transforms.py:2779 nonsingular 2 0.000000 0.000000 0.000000\r\n", + "..unction__ internals>:2 concatenate 29 0.000000 0.000000 0.000000\r\n", + "..b\\_pylab_helpers.py:115 1 0.000000 0.000000 0.000000\r\n", + "..m\\state.py:328 type._detach_states 2 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\lines.py:59 _scale_dashes 83 0.000000 0.000000 0.000000\r\n", + "..\\futures.py:357 _call_check_cancel 6 0.000000 0.000000 0.000000\r\n", + "..b\\cbook\\__init__.py:2090 type_name 94 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\path.py:211 Path.codes 4 0.000000 0.000000 0.000000\r\n", + "..py:1765 RootTransaction._do_commit 1 0.000000 0.000000 0.000000\r\n", + "..s.py:749 MarkerStyle._set_tickdown 3 0.000000 0.000000 0.000000\r\n", + "..ffsetbox.py:187 VPacker.set_figure 16/1 0.000000 0.000000 0.000000\r\n", + "..pes.py:2997 _resolve_value_to_type 4 0.000000 0.000000 0.000000\r\n", + "..cbook\\__init__.py:1868 Text.method 5 0.000000 0.000000 0.000000\r\n", + "..rtist.py:937 Rectangle.set_visible 69 0.000000 0.000000 0.000000\r\n", + "..artist.py:1052 Line2D.sticky_edges 32 0.000000 0.000000 0.000000\r\n", + "..xesSubplot._request_autoscale_view 8 0.000000 0.000000 0.000000\r\n", + "..b\\axis.py:470 XTick._get_tick2line 3 0.000000 0.000000 0.000000\r\n", + "..e-packages\\cycler.py:371 20 0.000000 0.000000 0.000000\r\n", + "..ore\\numerictypes.py:239 obj2sctype 1 0.000000 0.000000 0.000000\r\n", + "..t\\futures\\_base.py:381 Future.done 6 0.000000 0.000000 0.000000\r\n", + "..ase.py:3618 AxesSubplot.get_yscale 1 0.000000 0.000000 0.000000\r\n", + "..bootstrap_external>:1400 8 0.000000 0.000000 0.000000\r\n", + "..elpers.py:355 get_callable_argspec 1 0.000000 0.000000 0.000000\r\n", + "..nit__.py:1220 PlaceHolder.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..lotlib\\colors.py:123 _is_nth_color 51 0.000000 0.000000 0.000000\r\n", + "..rms.py:1284 TransformWrapper.depth 24 0.000000 0.000000 0.000000\r\n", + "..py\\core\\fromnumeric.py:2358 cumsum 3 0.000000 0.000000 0.000000\r\n", + "..xis.py:2258 YAxis._get_offset_text 1 0.000000 0.000000 0.000000\r\n", + "..uery.py:505 Query._no_limit_offset 5 0.000000 0.000000 0.000000\r\n", + "..strap>:397 ModuleSpec.has_location 10 0.000000 0.000000 0.000000\r\n", + "..py:2644 ScaledTranslation.__init__ 17 0.000000 0.000000 0.000000\r\n", + "..sycopg2\\extras.py:643 UUID_adapter 1 0.000000 0.000000 0.000000\r\n", + "..hon38\\Lib\\inspect.py:285 isbuiltin 1 0.000000 0.000000 0.000000\r\n", + "..b\\cbook\\__init__.py:828 2 0.000000 0.000000 0.000000\r\n", + "..ycopg2.py:741 _psycopg2_extensions 1 0.000000 0.000000 0.000000\r\n", + "..s.py:1096 _importlater.__getattr__ 1 0.000000 0.000000 0.000000\r\n", + "..lib\\artist.py:923 Line2D.set_alpha 7 0.000000 0.000000 0.000000\r\n", + "..654 _WindowsSelectorEventLoop.time 17 0.000000 0.000000 0.000000\r\n", + "...py:3168 BinaryExpression.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..e.py:1907 Figure._set_artist_props 1 0.000000 0.000000 0.000000\r\n", + "..9 PoolEventsDispatch._for_instance 2 0.000000 0.000000 0.000000\r\n", + "..packages\\psycopg2\\_json.py:47 Json 1 0.000000 0.000000 0.000000\r\n", + "..py:117 AxesSubplot.get_subplotspec 1 0.000000 0.000000 0.000000\r\n", + ":1 Query.order_by 1 0.000000 0.000000 0.000000\r\n", + "..tlib\\lines.py:31 _get_dash_pattern 41 0.000000 0.000000 0.000000\r\n", + "..b\\text.py:1059 Text.set_fontweight 4 0.000000 0.000000 0.000000\r\n", + "<__array_function__ internals>:2 dot 67 0.000000 0.000000 0.000000\r\n", + "..se.py:2960 AxesSubplot.set_axis_on 1 0.000000 0.000000 0.000000\r\n", + "..py:1960 Affine2D.rotate_deg_around 18 0.000000 0.000000 0.000000\r\n", + ".._base.py:2048 _process_single_axis 12 0.000000 0.000000 0.000000\r\n", + "..pg2\\extras.py:303 NamedTupleCursor 1 0.000000 0.000000 0.000000\r\n", + ":1 Query.filter 4 0.000000 0.000000 0.000000\r\n", + "..m\\query.py:193 Query._set_entities 6 0.000000 0.000000 0.000000\r\n", + "..nd.py:558 Legend._set_artist_props 9 0.000000 0.000000 0.000000\r\n", + "..hemy\\util\\queue.py:183 Queue._init 1 0.000000 0.000000 0.000000\r\n", + "..idspec.py:508 SubplotSpec.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:666 Ticker.formatter 33 0.000000 0.000000 0.000000\r\n", + "...py:112 PoolEventsDispatch._listen 3 0.000000 0.000000 0.000000\r\n", + "..\\patches.py:704 Rectangle.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..s.py:266 MarkerStyle.set_fillstyle 38 0.000000 0.000000 0.000000\r\n", + ".._init__.py:44 get_projection_class 1 0.000000 0.000000 0.000000\r\n", + "...py:101 State.checklookbehindgroup 1 0.000000 0.000000 0.000000\r\n", + "..llections_abc.py:72 _check_methods 14 0.000000 0.000000 0.000000\r\n", + "..\\futures.py:315 _copy_future_state 6 0.000000 0.000000 0.000000\r\n", + "..nes.py:1035 Line2D.set_antialiased 30 0.000000 0.000000 0.000000\r\n", + "..kref.py:436 WeakKeyDictionary.keys 1 0.000000 0.000000 0.000000\r\n", + "..elements.py:4099 Column._gen_label 10 0.000000 0.000000 0.000000\r\n", + "..atplotlib\\path.py:96 Path.__init__ 14 0.000000 0.000000 0.000000\r\n", + "..b\\artist.py:336 Rectangle.pchanged 373 0.000000 0.000000 0.000000\r\n", + "..y\\core\\fromnumeric.py:55 _wrapfunc 3 0.000000 0.000000 0.000000\r\n", + "..5 Rectangle._stale_figure_callback 134 0.000000 0.000000 0.000000\r\n", + "..process_plot_var_args._getdefaults 4 0.000000 0.000000 0.000000\r\n", + "..ansaction._is_transaction_boundary 4 0.000000 0.000000 0.000000\r\n", + "..gure.py:168 SubplotParams.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..ure.py:155 _AxesStack.__contains__ 1 0.000000 0.000000 0.000000\r\n", + "..ib\\widgets.py:34 LockDraw.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..atplotlib\\legend.py:813 1 0.000000 0.000000 0.000000\r\n", + "..ansforms.py:1701 Affine2D.__init__ 165 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:1944 XAxis._get_tick 3 0.000000 0.000000 0.000000\r\n", + "...py:1626 XAxis.set_major_formatter 17 0.000000 0.000000 0.000000\r\n", + "..plots.py:214 subplot_class_factory 1 0.000000 0.000000 0.000000\r\n", + "..xes\\_base.py:2716 AxesSubplot.grid 2 0.000000 0.000000 0.000000\r\n", + "..:903 AxesSubplot._set_artist_props 7 0.000000 0.000000 0.000000\r\n", + "..8gteq6k\\lib\\weakref.py:323 __new__ 1 0.000000 0.000000 0.000000\r\n", + "...py:1412 Line2D.set_solid_capstyle 30 0.000000 0.000000 0.000000\r\n", + "..gistry.py:263 _EventKey._listen_fn 16 0.000000 0.000000 0.000000\r\n", + "..es\\numpy\\core\\_methods.py:32 _amin 2 0.000000 0.000000 0.000000\r\n", + "..xternal>:1431 FileFinder.find_spec 17 0.000000 0.000000 0.000000\r\n", + "..s\\matplotlib\\colors.py:157 to_rgba 51 0.000000 0.000000 0.000000\r\n", + "..lotlib\\axes\\_base.py:588 4 0.000000 0.000000 0.000000\r\n", + "..otlib\\figure.py:111 _AxesStack.add 1 0.000000 0.000000 0.000000\r\n", + "..2\\_range.py:486 NumberRangeAdapter 1 0.000000 0.000000 0.000000\r\n", + "..:505 Figure.get_constrained_layout 2 0.000000 0.000000 0.000000\r\n", + "..my\\util\\queue.py:43 Queue.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..on.py:159 _create_json_typecasters 2 0.000000 0.000000 0.000000\r\n", + "..bootstrap>:342 ModuleSpec.__init__ 10 0.000000 0.000000 0.000000\r\n", + "..tlib\\axis.py:1559 XAxis.have_units 2 0.000000 0.000000 0.000000\r\n", + "..ctions_abc.py:302 __subclasshook__ 6 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\figure.py:1651 Figure.clf 1 0.000000 0.000000 0.000000\r\n", + "..array_function__ internals>:2 diff 16 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\transforms.py:763 unit 19 0.000000 0.000000 0.000000\r\n", + "..schema.py:1640 Column.get_children 27 0.000000 0.000000 0.000000\r\n", + "..ib\\artist.py:719 Text.set_clip_box 23 0.000000 0.000000 0.000000\r\n", + "..umpy\\core\\shape_base.py:285 hstack 16 0.000000 0.000000 0.000000\r\n", + "..pg2\\extras.py:1007 CompositeCaster 1 0.000000 0.000000 0.000000\r\n", + "..on38\\Lib\\inspect.py:158 isfunction 3 0.000000 0.000000 0.000000\r\n", + "..rs.py:330 MarkerStyle._set_nothing 30 0.000000 0.000000 0.000000\r\n", + "..y\\orm\\base.py:353 _is_mapped_class 7 0.000000 0.000000 0.000000\r\n", + "..et.py:20 _IterationGuard.__enter__ 1 0.000000 0.000000 0.000000\r\n", + "..f.py:463 WeakKeyDictionary.popitem 1 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\axis.py:153 6 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\spines.py:238 Spine.cla 4 0.000000 0.000000 0.000000\r\n", + "..ray_function__ internals>:2 cumsum 3 0.000000 0.000000 0.000000\r\n", + "...py:1006 Legend.set_bbox_to_anchor 1 0.000000 0.000000 0.000000\r\n", + "..lotlib\\axes\\_base.py:945 5 0.000000 0.000000 0.000000\r\n", + "...py:96 _AxesStack._entry_from_axes 1 0.000000 0.000000 0.000000\r\n", + "..tstrap_external>:51 _unpack_uint32 27 0.000000 0.000000 0.000000\r\n", + "..ernal>:526 _validate_timestamp_pyc 9 0.000000 0.000000 0.000000\r\n", + "..\\cbook\\__init__.py:1938 140 0.000000 0.000000 0.000000\r\n", + "..g2\\extras.py:405 LoggingConnection 1 0.000000 0.000000 0.000000\r\n", + "..__init__.py:1272 Manager.getLogger 4 0.000000 0.000000 0.000000\r\n", + "..bootstrap_external>:1302 _get_spec 10 0.000000 0.000000 0.000000\r\n", + ".._.py:118 CallbackRegistry.__init__ 19 0.000000 0.000000 0.000000\r\n", + "..numpy\\core\\fromnumeric.py:2277 all 9 0.000000 0.000000 0.000000\r\n", + "..CompositeGenericTransform. 16/8 0.000000 0.000000 0.000000\r\n", + "..lines.py:1092 Line2D.set_linewidth 30 0.000000 0.000000 0.000000\r\n", + "..ib\\_pylab_helpers.py:99 get_active 1 0.000000 0.000000 0.000000\r\n", + "..38\\Lib\\urllib\\parse.py:624 unquote 1 0.000000 0.000000 0.000000\r\n", + "..ty.py:17 WeakInstanceDict.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..tist.py:1017 AxesSubplot.set_label 5 0.000000 0.000000 0.000000\r\n", + "..ansform.contains_branch_seperately 4 0.000000 0.000000 0.000000\r\n", + "..\\patches.py:436 Rectangle.set_fill 7 0.000000 0.000000 0.000000\r\n", + "..ticker.py:224 AutoLocator.set_axis 67 0.000000 0.000000 0.000000\r\n", + "..sycopg2\\_range.py:242 RangeAdapter 1 0.000000 0.000000 0.000000\r\n", + "..s.py:729 MarkerStyle._set_tickleft 3 0.000000 0.000000 0.000000\r\n", + "..s.py:1642 _fix_ipython_backend2gui 2 0.000000 0.000000 0.000000\r\n", + "..b\\gridspec.py:528 SubplotSpec.num2 1 0.000000 0.000000 0.000000\r\n", + "..py:1225 Line2D.set_markeredgewidth 30 0.000000 0.000000 0.000000\r\n", + "..ager.py:936 _normalize_font_family 46 0.000000 0.000000 0.000000\r\n", + "..oop._set_coroutine_origin_tracking 2 0.000000 0.000000 0.000000\r\n", + "..arkers.py:222 MarkerStyle.__init__ 38 0.000000 0.000000 0.000000\r\n", + "..ylab_helpers.py:29 get_fig_manager 1 0.000000 0.000000 0.000000\r\n", + "..alchemy\\events.py:328 _accept_with 3 0.000000 0.000000 0.000000\r\n", + "..:2053 IdentityTransform.get_matrix 23 0.000000 0.000000 0.000000\r\n", + "..n\\query.py:76 get_deployment_by_id 4 0.000000 0.000000 0.000000\r\n", + "..query.py:329 Query._adapt_col_list 1 0.000000 0.000000 0.000000\r\n", + "..py:2408 CompositeAffine2D.__init__ 9 0.000000 0.000000 0.000000\r\n", + "..meric.py:337 _full_like_dispatcher 4 0.000000 0.000000 0.000000\r\n", + "..ine\\url.py:161 URL._get_entrypoint 1 0.000000 0.000000 0.000000\r\n", + "..d_bases.py:2556 notify_axes_change 1 0.000000 0.000000 0.000000\r\n", + "..ctions_abc.py:392 __subclasshook__ 40 0.000000 0.000000 0.000000\r\n", + "..otstrap_external>:1252 _path_hooks 1 0.000000 0.000000 0.000000\r\n", + "...py:180 AxesSubplot.convert_yunits 48 0.000000 0.000000 0.000000\r\n", + "..g2\\extras.py:538 ReplicationCursor 1 0.000000 0.000000 0.000000\r\n", + "..sql\\elements.py:4451 _as_truncated 10 0.000000 0.000000 0.000000\r\n", + "..y:4590 _expression_literal_as_text 4 0.000000 0.000000 0.000000\r\n", + "..idspec.py:67 GridSpec.get_geometry 3 0.000000 0.000000 0.000000\r\n", + "..y:949 Text.set_horizontalalignment 28 0.000000 0.000000 0.000000\r\n", + "..ernal>:1479 FileFinder._fill_cache 1 0.000000 0.000000 0.000000\r\n", + "..ootstrap_external>:104 _path_isdir 1 0.000000 0.000000 0.000000\r\n", + "..:964 SourceFileLoader.get_filename 9 0.000000 0.000000 0.000000\r\n", + "..py:366 GridSpec.get_subplot_params 1 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\ticker.py:2118 _staircase 16 0.000000 0.000000 0.000000\r\n", + "..forms.py:817 Bbox.update_from_path 4 0.000000 0.000000 0.000000\r\n", + "..lines.py:1143 Line2D.set_linestyle 34 0.000000 0.000000 0.000000\r\n", + "..ctionRegistry.get_projection_class 1 0.000000 0.000000 0.000000\r\n", + "..b\\gridspec.py:532 SubplotSpec.num2 1 0.000000 0.000000 0.000000\r\n", + "..:2165 FigureCanvasBase.mpl_connect 7 0.000000 0.000000 0.000000\r\n", + "..e.py:516 _ConnectionRecord.checkin 1 0.000000 0.000000 0.000000\r\n", + "..rms.py:2093 BlendedAffine2D.__eq__ 4 0.000000 0.000000 0.000000\r\n", + "..artist.py:695 Rectangle.set_figure 95 0.000000 0.000000 0.000000\r\n", + "..:493 Query._no_statement_condition 5 0.000000 0.000000 0.000000\r\n", + "..y:208 _arrays_for_stack_dispatcher 28 0.000000 0.000000 0.000000\r\n", + "..lib\\ticker.py:2103 _validate_steps 16 0.000000 0.000000 0.000000\r\n", + "..WindowsSelectorEventLoop.call_soon 17 0.000000 0.000000 0.000000\r\n", + "..tors.py:313 SelectSelector._select 17 0.000000 0.000000 0.000000\r\n", + "..ase.py:1009 _ConnectionFairy.close 1 0.000000 0.000000 0.000000\r\n", + "..range.py:449 RangeCaster._register 6 0.000000 0.000000 0.000000\r\n", + "..3883 AxesSubplot.set_navigate_mode 1 0.000000 0.000000 0.000000\r\n", + "..ib\\figure.py:1070 Figure._make_key 1 0.000000 0.000000 0.000000\r\n", + "..\\artist.py:1074 Line2D.update_from 8 0.000000 0.000000 0.000000\r\n", + "...py:193 URL.translate_connect_args 1 0.000000 0.000000 0.000000\r\n", + "..chemy\\orm\\query.py:4625 27 0.000000 0.000000 0.000000\r\n", + "..r.py:234 _EmptyListener.for_modify 2 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\figure.py:1089 fixlist 1 0.000000 0.000000 0.000000\r\n", + "..teq6k\\lib\\codecs.py:952 getencoder 1 0.000000 0.000000 0.000000\r\n", + "..plotlib\\text.py:1151 Text.set_text 46 0.000000 0.000000 0.000000\r\n", + "..ib\\artist.py:1013 Line2D.get_label 8 0.000000 0.000000 0.000000\r\n", + "..transforms.py:1924 Affine2D.rotate 18 0.000000 0.000000 0.000000\r\n", + "..py:220 SessionTransaction.__init__ 3 0.000000 0.000000 0.000000\r\n", + "..hes.py:382 Rectangle.set_linewidth 12 0.000000 0.000000 0.000000\r\n", + "..208 _EmptyListener._adjust_fn_spec 4 0.000000 0.000000 0.000000\r\n", + "..tlib\\text.py:535 Text.set_clip_box 15 0.000000 0.000000 0.000000\r\n", + "..y:2444 PGDialect_psycopg2.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..lib\\text.py:1042 Text.set_fontsize 4 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\text.py:1104 Text.set_x 6 0.000000 0.000000 0.000000\r\n", + "..ec.py:93 GridSpec.set_width_ratios 1 0.000000 0.000000 0.000000\r\n", + "..\\transforms.py:1986 Affine2D.scale 13 0.000000 0.000000 0.000000\r\n", + "..sSelectorEventLoop._read_from_self 6 0.000000 0.000000 0.000000\r\n", + "..ctions_abc.py:349 __subclasshook__ 5 0.000000 0.000000 0.000000\r\n", + "..ery.py:4539 _ColumnEntity.__init__ 32/7 0.000000 0.000000 0.000000\r\n", + "..\\lib\\sre_compile.py:413 5 0.000000 0.000000 0.000000\r\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACdsAAAUsCAYAAADFYdzDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdeZhkVX0//vcZhhmQRVDBDRQV0a8YURGMkQhGTdyCRBOXaCIuWYxmMcZoXNFo8jOJ+s3XJXvcSUjcFZfEfUHAFTdQZFdAZWeG2fv8/rjVTnd1VdfaXTU1r9fz9NNd5957zumqe6qYmTefU2qtAQAAAAAAAAAAALpbM+kJAAAAAAAAAAAAwLQTtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAACYMaWUU0opdeHX7jQ+AAAAAMBKELYDAAAAAAAAAACAHoTtAAAAgF1GaVzcXjWtlLK9lHL7Sc8PAAAAAIDZJWwHAAAA7EoemuSOHdr3SHLy6k4FxqOUckKHAOkJE5zPW9vmcvGk5gKzwJoCAACA2SFsBwAAAOxKnrHMsaeXUsqqzQQAAAAAgN2KsB0AAACwSyil3CLJScuccuckJ6zObAAAAAAA2N0I2wEAAAC7iqckWd/WVtseL1f5jlVSaz2l1loWfk16TgAAAAAAoxK2AwAAAHYVT297fH6S97a1PbaUcvNVmg8AAAAAALsRYTsAAABg6pVS7pfkqLbmtyd5W1vb3kl+c1UmBQAAAADAbkXYDgAAANgVtG8PW5O8I8lHk/ykx7kAAAAAADCytZOeAAAAAMBySil7J3lSW/Pnaq2XtI6fmuRPFhw7upRyVK31nBWe155Jjk1yjyS3bDX/OMnXBhm7lLJ/kmOS3C3JAUk2JrkyyRdrrT8c66SXjn3LJPdPcpck+ye5PsnlSc6ptV6wkmMPo5RySJoKhwe1vmqSnya5IsmZtdYbVmEOd01ydJLbJ1mf5Oo0z9kXaq3XrvT4s6iUcs8khyc5OM1auinN63pxki/XWret8PjW8vDjTsuaPCrJIUn2TbI1yRW11nf0ef3tk9w9yWFJbp6mQuoNSa5Jcmmae3Dz+Gc+20op65LcL816uFWa98sbkpxVaz1rgH4OT7M25++xLUmuSvLDNPfYpjFPHQAAAJYlbAcAAABMu19PE4BY6G1tP/9J2/GnJ/njYQYrpZyQ5NNtzQ+utX6mdfx2SV6c5LeS7Nelj+8nedVyYY9Syr2SvCTJiWlCCJ3O+VKS59davzjYb7G8UsrxSV6U5CFJ9uhyzteS/EOSf6u11gH7PyXJyxe21VrLkHM9OMlzk/xqkiOXOXV7KeWsJG9KclqtdW7Acdp/x1fUWk9pHVuT5KlJ/jTJPbt0saOU8pkkL6m1ntnHeKek7Tlq8+lSej5lb6u1ntzrpH6UUi5Ocscuh+/Y4fnp5GfrpI/x7pVm3f5Kktstc+qGUsonkrymn+e1bYwTsouv5V5raaXXcpf+pmFN7pPkD5P8TpI7d+mi42tWSrlVkl9L8tAkxye5dY+pbC2lnJnkjUne0+/vsVJrqtd9PYgOc+z5nlJKOTnJW9qa71Rrvbh1/Mgkf57kcUn26dDF25IsG7YrpdwpzfvtI9P99U2SzaWUzyd5fa31o8v1CQAAAONiG1kAAABg2rVvC3tTknfPP6i1fiPJN9vOeUoppWPoZRSllMcm+W6SP0iXcE7LEUneXkr5r/Z5lMbLknwtyW+kSzin5QFJPl9KedFoM//Z2HuUUt6Y5DNJfjldwjkt903yL0k+1wo+rKpSyrpSyiuTXJjkhVk+1JM0/1PpA5OcmuScVgBqHPM4JMkXkvx7ugftkua5fEiSL5VSXj2OsWdRKeW2pZR3JflGkqdl+aBd0lQqOynN8/r+UsotxjQPa3nwMadlTd4/zWv311k+iNXp2lPTVN375ySPT++gXZKsS/KgJP+V5NutMBkdlFJekmZt/3Y6B+16Xb9/677+XpLnpPfru1eShyX5SCnl86WUOww6JgAAAAxK2A4AAACYWq3t4x7U1vz+WuuNbW1va3t8izQBnXHO5SlpQn7tVfaW8xtpQlrzfZQ0oZdXZPlwzKKhk7y6lPKcAcZd2kkz9juTPHvAS49L8tlSykChllG0AlX/k+SlGSKwkSYU98VSyq+OOI87JzkzTVBqEC8qpbxqlLFnUSnlqCRnJ/nNNPf1oB6T5MxSyhEjzsNaHnzMaVmTD0oTMBw2VPULGW23l/+T5h586Ah9zKRWSO4vM+TzW0q5Y5Ivprmv9xyii+OSnF1K+flhxgcAAIB+2UYWAAAAmGZPz9JQTnuwLkneleRvsjj08owkp41pHvdL8lcL5nJdko+kCWL9JMneaUIYj09yWNu1v1lKeX+t9b/TbPe4sFLfJUk+nOTbSa5OckCSY1v97N/Wz2tKKR+e36pvCM9L8sQFj29M8oEkX07y49bYd0+z9d+hbdcemuRTpZR711qvG3L8vpRSDkgTuLh7h8PfTvLZJN9J8xokycFpwnCPzOIKZfsm+e9SygNrrV8dYir7Jfloktu3HtckZyT5RJJLk2xIclCayl2/lqbC0kJ/UUr5UK2123aJVyY5Z8Fc79J2/ILWGMu5tMfxQXw3O5/TOyQ5cMGxba3jvXSdbynlfmm2vty37dBcks+neW4vas1h7ySHpNnis3171LumqWJ1dK31+j7m1M5aHnAtT9GavE2S92bxWjs7TQjwkjTPw22T3CNNOLKXHWmqEn4nyXlpXrcb0twb+6e5134+zRpf+D+t75vkP0sp96m1XrZM/yu6pqbM72Rx+HNDkv9Nc9/8OM3zd0iSB6d53hdpBe3OSudKg2e3+vlekmvTVBq8bZrg5COyuKLkrZOcXkq5b631ktF+JQAAAOis1FonPQcAAACAJUope6QJEy3cZvLyJIfWWuc6nH96mnDHvLkkdx70H9xLKSekCQUttCU7/0H/DUle1imo0tpm8rVZWnHqe2m21ftSmtDBTWkCM/9Sa+0UPLhNkvekCRMs9M+11t/r43c4JcnL25o3Z2dI5S1J/rTL77AmyXOTvCpLA2RvrbU+bZjxa619VTIrpbwvS6sSntGab7fg2nwg6KVp5r5wrIuT3KtDNcT269v/kmzh83VWkj+otX6ty7WHpXm97tt26OO11ocvN27r+hOy9J57cK31M72uXQmllLcmeeqCpktqrYeN0N+BaUJN7X28JckptdauocFSyl2SvCnJr7Qdem+t9XE9xj0h1vJIa7nVz7SsyR3ZGbz8ZpLfr7V+qcu1e9VaN3do/36Sb6WpDPipfgKbrSDYXyd5Utuh02utj+51fauPt2ZMa2qc7xellIuT3HFB09tqrSf3uObkNPfdQgtfm39M8pJa69Vdrl/02pRS1qXZqvuYtlM/nOTPa63nLjOX2yT52yRPaTv05SQP6LQmAQAAYFS2kQUAAACm1SOyOGiXJO/sFLRraa94tybJyWOay3w4549rrX/UrSJUrXVLrfU5ST7eduhuST7UmtOGJL9Ua/3HbkGAWuuVSR6d5Kdth55YStl7yN9hPmzz/9Van77M7zBXa31tmspQ29sOn9zaxnFFlFJ+N0tDPW9OctxyoZ4kqbVeV2t9XhZXG0uagNcfDDGd+efrw0lO6Ba0a419cZKHpangtNDDSinDbnc5S96UxUG7HUme0roPl63OV2u9IM17QXu457GllPsPMRdrudHXWp6yNTkf5vpikl/sFrRrjb0kaNdyTK31cbXW9/VbGbHWekmt9TeTnNJ26JGllE7V/nZH86/N82qtz+oWtEs6vjanZGnQ7oW11l9dLmjX6uvKWutvpdnOeaFjkvx672kDAADA4ITtAAAAgGnVHtBIkrcvc/4HsnPLvnlPa1V3GodTa63/r89zX9qh7eDW9z/uFVJJklrrtWkqay20f5ZWyBrEZ2qtf9HPibXWD6epiNXuj0YYv6tSyto0W3Mu9LFa67PrAFsz1FrfkuRf25qf26pUNqiL04TCugV3Fo57TZYGPtakCeHttkopd0vyhLbmF9da39VvH63X//eStAdvXjjktKzlxrJreUrX5PVJnlBrvWGIazPk1sPzXpmmYtq8kmarcxrvqbW+bpALWlUv/7Ct+R9rra8ZpJ9a6ylptq1daNj3BwAAAFiWsB0AAAAwdUopByd5VFvz12qt3+l2Ta11S5LT2prvmOQhY5jSjiwNnXRVa/1ymi1w230vSyt0LefdHdratyodxKBBudck+WFb22NKKbcdYQ7dPDGLtzOsWRrC6NcrW9fPu3WSBwzRzysGDOf8Z5p7ZaGjhxh3ljw/i/8O8qIkfzdoJ7XWbUn+qq35EaWU9u1Re7GWd+q1lqdxTb6u1vqjIecwklbA8B1tzcdNYi5TaC7Jnw1x3bOT7Lvg8YYkLxhyDq9se3zv1hbfAAAAMFbCdgAAAMA0emqSPdva2reJ7aRT5btOFfIG9Yla6yUDXvONDm1vGbAi1AVJ2is43W3Aecw7s9b6rUEuaFV0aw+XrE3y0CHnsJz2Lf8+U2v9wTAd1VovS9L+ux4/YDcbk5w64LjXJjm/rXnY12uXV0opSR7b1vzWbluu9uEjbY/XJxl0K1lreadea3na1mRN8u/DjD9G7ev7vqWU9s+q3dGnWttpD6r9HvvvYasWJjkjS6vbDnqPAQAAQE/CdgAAAMA0at+ab3uS/+h1Ua31jCwNQ5xUSrnFiPP53BDXdAr0fH4M/RwwRB9J8v4hr3tvh7afH7KvjlqhrF9saz5jxG4vant8nwGvP7PWunWIcS9oe3zzIfqYFfdKcmBb29Cva2ur3vZKg4O+rtbyYh3X8pSuyR/UWtur842klLJvKeWRpZQXllLeXko5vZTy+VLK10op32j/SvLGti7Wp6nSt7v79KAXtLaQ/bm25lHeH+aydI0Neo8BAABAT2snPQEAAACAhUopD0xy97bmj9Zaf9pnF29P8pcLHq9P8uQkbxhhWsNUc7pxhfoZNrz11SGv+1aSbVlcaXDcW6P+nyTtgcinllIePUKfd2h7fKsBr28PbfarPQy2O4ftHtih7Q2llC0j9HmztseDvq7Wcn9reRrX5NdGGHuRUsrRabY4PjHJ3iN2d0CWbtG7uxnmtXlAlhYD+ItSynNGmMfhbY8HvccAAACgJ2E7AAAAYNp02va1ny1k570jySuTlLY+RwnbXTvENdtWqJ9htyz83jAX1Vq3lFIuTnLXBc0HDzmHbg7p0tapfVi3HPD8a4YcZ1yv1yzo9Pq1B2lHNejrai33t5ancU3+ZNQBW1u+vj7JszK+XV9250DtvGFem0730p1HnUibQe8xAAAA6Mk2sgAAAMDUKKXsm+Txbc3XJvlwv33UWi9J8pm25qNalYyG1SlsM7Ba61j6GVJ7xbVRrh12+8tuViMQMWj1qkm+VrNiZl/X3WAtT+Nrd8Mog7WCdv+d5NkZ79+L786B2nnDvDbTeI8BAABAT8J2AAAAwDR5YpJ92tpOq7UOuu1kp0p4nSrm7U42jvHa/UaZSAcHjrk/poPXdWWsxlqextdu+4jXvyDJYzq0/yjJm5M8Jc3WpoemCSHuVWstC7+SPHjEOcyqYV6babzHAAAAoCfbyAIAAADTpFMg7vdLKb8/hr6fVEp5Xq110xj62hXtk+ErQ7UHIG8ccS7tOr0mJ9VaPzDmcVhdnV7XA2ut1636TGbLaqzlmVqTpZSDk/xFW/P2JM9P8sZaa79hMZXSxqfTPXbvWus5qz4TAAAAGIDKdgAAAMBUKKXcI8nPr+AQByR57Ar2P+1uPsZrxx2WuqpD253GPAarr9PrethqT2IGrcZanrU1eWKSm7W1vaDW+n8HCNolyS3GOKdpMMktcGftHgMAAGA3IWwHAAAATIvV2OZ1d95K9ohhLiqlrMvSgNRPRp7NYj/u0HavMY/B6vO6rozVWMuz9to9rO3xtUneOEQ/dx7DXEa1rUPbsKG5SYYHZ+0eAwAAYDdhG1kAAABg4kopeyb5rbbmrUnOHbHrQ7M4THBCKeXOtdYLR+x3V3R0kk8Ocd29sjTI8dXRp7PIN5NsTrLXgraHj3kMVt/ZHdoekeTtqz2RGbMaa3nW1uShbY/PqrVuHaKfB4xjMiPqtIXw/oN2Uko5JItf39V2Voe2RyR55WpPBAAAAAahsh0AAAAwDU5MclBb2/tqrfce5SvJS9r6LEmetiq/0fQ5acjrOm29e+YoE2lXa92c5AttzbctpTxknONMsU7bWO6x6rPYqX0+w87ljCQb29oeVUo5cMj+aKz4Wp7BNXmrtsfXDNpBKeVWSR485PjjWlNJ561/h6m4d/wIcxhZrfWSJD9oaz62lDJU5UYAAABYLcJ2AAAAwDTotL3rO8fQ72lpKuQtdHIpZXf8O5EHlFKOHOSCUsr6LK04uD3JJ8Y2q50+0KHtlBUYZxrd2KFt31WfxU7t8xlqLq3KYR9ra94vyfOG6Y+fWa21PEtrsj302R6+68ezM3wluLGsqZYfJdnQ1nbsEP387ghzGJf2e2xNkpdNYiIAAADQr93xL5YBAACAKVJKuX2SX25r/mmWhnQGVmu9JslH25oPSfIro/a9i/r7Ac//8zTP10IfqLVeMab5LPRvSa5sazuulPKCFRhr2lzboW2YSlXj0j6fA0aoRvfqDm1/Xko5bsj+aKzGWp6lNdn+e/5CKWWffi9uhRv/YoTxx7amaq1zSb7R1vyoUsrN++2jlHJikgcNM/6YvTbNdsULPbmU8oRJTAYAAAD6IWwHAAAATNrTsnRLvdNqrZ221hxGpwp5nSrp7Q4eUkp5VT8nllIekeSlHQ79v/FOqVFr3ZTOway/KqU8Z9h+SykPL6W8efiZrYrLklzf1vbISUyk5Vsd2oaaT63160ne09a8Z5L3lVKGCvuUUtaXUn63lPLcYa6fESu+lmdsTX6+7fG+SV7ez4WllMOSfDDJ+hHGH9uaamkPke+dpN/74V5J3jLC2GPTCnu+qcOhfy+lPG6YPkspe5RSnlBK6XTvAgAAwMiE7QAAAICJKaWUNGG7duPYQnbeh7I0yHRiKeWgMY6xK5ivHvTiUsq/dKuCVEpZU0r5kyTvTROKWuittdbPreAc35TO2wq+oZTyvlLKUf10Ukq5UynlBaWUb6YJpUxDBaeuaq01yZfamh9aSvnrUsrBE5jSmUnm2tpeW0p5TCml/Z7ox+8luait7VZJPllK+dtSym366aSUcv9SymuTXJzkn5LcZYi5zILVXMuzsibfk6X39PNLKX9ZSlnb7aJSypPSrM35SpM3DDn+uNfUW5PsaGt7TinlFd1+n1YI7RlJvpDkFklqlm6zPgkvSXJ2W9vNkry7lPKvpZS+1nkp5Z6llFcm+X6S/0zS170JAAAAg+r6FwkAAAAAq+DBWbpd5vm11rPGNUCtdUsp5b+TPHNB855JnpLk9eMaZxfwsiR/0/r5mUkeX0p5f5IvJ/lJkgOS3D3J45LcocP1lyRZ0UpitdZaSnlKmjBIe1DipCQnlVLOSfKZJOcnubp17IA04a17JTk6k92CdVj/nuThbW0vTPLCUsoVSa5J0l7t8YO11peNeyK11itKKR/L4spbt07y/iRbSymXJdmYJqyz0DNrrV/p0N/VrW0rv5BkYTBsbZI/S/JHpZQvJflckh+m2XJzfZrX9bZJ7pPkfkl2t4BsN6u2lmdlTdZav19KeWeS32479JIkJ5dS3p3km0k2pAmi3S3JiVkc6LwpyQuS/MMQ4497TV1eSnlDkj9pO/SyNNuwvifJua053zLJzyV5VBbfD69J8qQkdxz09xmnWuvmUsqvpQkkHtp2+BlpXp+vJPlsmqDtNWmq4R6Q5OAk907z/nD71ZozAAAAuzdhOwAAAGCSOm3nOs6qdgv7fGZb2zOye4Xt/i5NIOHxrcf7pwmetIdPOvlhkl+qtV63QnP7mVrrhlLKL6bZ5rDTNoJHZTYrFr0nySeTPKTDsdu2vtp9YwXn8/wkxyfZp619XbpXlNu3W2e11m+XUo5JU2Xtnh36PL71RW+rupZnaE3+UZJj0wQRFzokS0Nr7bYl+Y004bVhjXVNJXlxkodm6Xq6S5I/7zGX01rXP6nHeauiFR48Ns282qse7pHk/q0vAAAAmDjbyAIAAAATUUo5IMljOxx61woM97kkl7a1HVlK2W3+8b61VemTk/zjgJd+McnxtdYLxz+rzmqtN9Zafz3Js5L8aMTuLk0TEppqtda5JL+e5NRJzyVJaq3fTfKwJD8YY5/npwnMvC5NFa9RfCXJR0ae1C5oEmt5FtZkrfX6NOG0Mwe89PIkD621jnS/jXtN1VpvSnJClm7BuuxlacKav9l6z5katdYr04SNX5Kmet0ozk3yXyNPCgAAADoQtgMAAAAm5clJ9mpr+1Kt9YJxD9QKp3QK8XWqrDezaq3ba63PShM4+VSS5cIWX0/yO0l+cTWDdgvVWv8xzfaTv5PkE+mvqtRcmrn/bZptig+rtb52xSY5RrXW62qtT05TeeuUJB9OckGabVW3TWA+X2rN5ZFJ3pxmK9HL02y1OVRQp9Z6U631eUkOS/M7fiXJjj4u3Zzmnn1RkiNrrceMGn7alU1qLe/qa7LW+qM0ldOek6TXc3FJkpcmuXut9XNjGn+sa6rWenWSB6YJQS732bkjyUeTPLDW+vxpC9rNa93Xr06zte3z0jw/W/u4dHuSM5K8MsmxtdZ71FrfvnIzBQAAYHdWmr9rBgAAAGB3U0q5VZKfT7Pt4L5JbkhyRZKvr0TocVSllHVJjk6z7eOtkhyYJmRxY5Krknw/yfdrrZsmNkkGVkq5eZJjkhyc5JZJbp5kU5rX9fIk30tyYa21n1DeTCmlnJLk5Qvbaq2lw3kTWcu7+pospRyRZmvZg9Js77oxzVa736y1fm+ScxtG6/c5Os1a2i/N63BBkjNqraNWi5uIUsrN0mybfLs07w8HJNmS5nf7SZr3hx/UWvsJ5QEAAMDIhO0AAAAAAKZQv2E7AAAAAFaHbWQBAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAeSq110nMAAAAAAAAAAACAqaayHQAAAAAAAAAAAPQgbAcAAAAAAAAAAAA9CNsBAAAAAAAAAABAD8J2AAAAAAAAAAAA0IOwHQAAAAAAAAAAAPQgbAcAAAAAAAAAAAA9CNsBAAAAAAAAAABAD8J2AAAAAAAAAAAA0IOwHQAAAAAAAAAAAPQgbAcAAAAAAAAAAAA9CNsBAAAAAAAAAABAD2snPQHoppRy8yTHL2i6LMnWCU0HAAAAAAAAAACYvHVJDl3w+LO11utXY2BhO6bZ8Uk+MOlJAAAAAAAAAAAAU+sxST64GgPZRhYAAAAAAAAAAAB6ELYDAAAAAAAAAACAHmwjyzS7bOGD97///Tn88MMnNRcAAAAAAAAAAGDCfvCDH+Skk05a2HRZt3PHTdiOabZ14YPDDz88Rx555KTmAgAAAAAAAAAATJ+tvU8ZD9vIAgAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAbDbqFs2pZ7zhdSf/mjSUwEAAAAAAAAAdjHCdgDsFuoXT0991G1Tn/OQ1MfeOXOvenrq9u2TnhYAAAAAAAAAsIsQtgNg5tVrf5r6kickWzbtbPz4u5J3v2FykwIAAAAAAAAAdinCdgDMvk+elmzftqS5nv62CUwGAAAAAAAAANgVCdsBMPPqf/595wMXn7u6EwEAAAAAAAAAdlnCdgDMvg5V7QAAAAAAAAAABiFsB8Ds27510jMAAAAAAAAAAHZxwnYAzL5twnYAAAAAAAAAwGiE7QCYfbaRBWiT9noAACAASURBVAAAAAAAAABGJGwHwOzbIWwHwGIf/VbNmt/d8bOvr15SJz0lAAAAAAAAppywHQCzb8eOSc8AgCny6fNqHvWGuUVtx7x6Lt+7UuAOAAAAAACA7oTtAACA3cpj3jTXsf05p3ZuBwAAAAAAgETYDgAA2M1s2NK5/ZPnre48AAAAAAAA2LWsnfQEAAAAuvnxDTXv/VrNpdckv3T3kofdo0x6SgAAAAAAAOymhO0AAICpdPFVNb/02rlcfHXz+DUfq3nRI0teddLKFejesq1m/Z4CfQAAAAAAACxlG1kAAGAqvebj9WdBu3l/9ZGaS6+uKzbmh7+5Yl0DAAAAAACwixO2AwAAptI/fbZzqO5fv7ByYbtPf2/l+gYAAAAAAGDXJmwHAABM3I65mq9cXPOhc2qu3bh84O0T565cIO6GTSvWNQAAAAAAALu4tZOeAAAAsHu7ekPNr/zfuXzt0ubx2jXJqb8zmf8v6MKrVLYDAAAAAACgM5XtAACAifrT/6o/C9olyfa55PH/NDeRuZxxwUSGBQAAAAAAYBcgbAcAAEzUh765etXkrumxRW2SbN2uuh0AAAAAAABLCdsBAAATs31HzXU3rd54V2/ofc6GLSs/DwAAAAAAAHY9wnYAAMDEbNq2uuNt29H7nE1bV34eAAAAAAAA7HqE7QAAgIm5aYhg25kXDj9eP2G7y64dvn8AAAAAAABml7AdAAAwMd+4bHXH2z7X+5z/+W5d+YkAAAAAAACwyxG2AwAAJmbjlsGvucMthh+vn8p2ZfjuAQAAAAAAmGHCdgDMtFpVJwKYZpu2Df4+vaOP6nTd9BO2e/kHa07/ps8PAAAAAAAAFhO2A2C27egjVQHAxGzaOsQ124Yfb3ufHwu/+sa5fPw7AncAAAAAAADsJGwHwGybE7YDmGbDBOeGCejN66ey3bxXfGiEEnoAAAAAAADMHGE7AGZbFZQAmGbDVrYbdpvwrQOE7c68cKghAAAAAAAAmFHCdgDMNtvIAky1YbeE3bJ9yPFGqIoHAAAAAADA7k3YDoDZZhtZgKl205Dht2FDczdtHa4iHgAAAAAAAAjbATDbhO0Aptqwle1W67pht6sFAAAAAABg9gjbATDbbCMLMNU2DxuaG7Ky3aDjbR1yu1oAAAAAAABmj7AdALNNZTuAqbZtyDDbsJXtBg3PDTsOAAAAAAAAs0fYDoDZJmwHMNW2Dfk2PWwIbsugYbshK+gBAAAAAAAwe4TtAJhtwnYAU23r9jrUdcOG4LYO+LGgsh0AAAAAAADzhO0AmG07hO0Aptmwle0220YWAAAAAACAVbZ20hMAgBVV5yY9AwCWMWiluXnDhuAGDtttTS66qmbbjmRNSQ67ZbJ2j5IbNtVctSG5062SUspwkwEAAAAAAGCXImwHwGxT2Q5gqg1b2W7T1ppk8JDboOG+Y/+qc2h7jzXJjrnk0AOTdzxjTR50hMAdAAAAAADArLONLACzbU7YDmCaDVppbt5qVbbrZkcrg3fZtckj/n4uV15fx9MxAAAAAAAAU0vYDoDZNmcbWYBpNnRluyHDdsOOt5xN25LTvyVsBwAAAAAAMOuE7QCYbSrbAUy1Qbd1nbdp65DjjamyXbtPnrsy/QIAAAAAADA9hO0AmG07hO0AptlqV7Y788KVqUD3kxtVtgMAAAAAAJh1wnYAzDaV7QCm2rCV5s4aIjR30VU1F1893Hi9fOq8pFaBOwAAAAAAgFkmbAfAbBO2A5hqw1a2+/h3Br/m37+4smG4z5+/ot0DAAAAAAAwYcJ2AMy2ubnux9b4GASYtGEr2x1/xODXvPr0lQ3bffp7KtsBAAAAAADMMikDAGbbcpXt1uyxevMAoKNhK9vtWCZLPSmXrNAWtQAAAAAAAEwHYTsAZttyYbtSVm8eAHS0dciw3bAhvW6OuPXofVxxvcp2AAAAAAAAs0zYDoDZtmPMaQwAxmrY0Nz2MVe2WzuGPxldes3ofQAAAAAAADC9hO0AmG3LVbarKhABTNrW7cNdN+6w3eOOHr3a6UVXJdVnCwAAAAAAwMwStgNgtgnbAUy1oSvbDXHdfe/Q/dhjjho9bLd5W3Ll9SN3s8S1G2ve/dWav/7oXN7yxblcdo3PLwAAAAAAgElYO+kJAMCKWnYbWWEFgEnaMVczN+Rb8XlXDn7NjZs7t5/8CyX3WSaIN4gLr0pue8B4+kqS866oecjr5nLFghDfurU17/79NXn0vUYPCAIAAAAAANA/le0AmG3LVbYDYKJ6VbW7y0HJSx7VOVC2ZYjtZ8//SfdxShlPcO2iq8Yb5H7OfywO2iXN1ru/9W9z2bZdaBwAAAAAAGA1CdsBMNuW2yrWNrIAE7V1mcDc2S9ak/NfvUduv0yVuO07xvM+Ps5PgwuvGl9fm7fVfO77nY9dvyn58iXjGwsAAAAAAIDehO0AmG1zc92PCdsBTNTmbd2P7b2u+b7P+u7n3LR1sPH23KNz+3yVvF+7z2D9dfKuM2uuunE8ny83bEq2L/MxdvWGsQwDAAAAAABAn4TtANh9CdsBTNSm5cJ2ezbf73OH7tu7Lnd9ux1zteu2tScc0Yzx3IeO/sej83+SHPy8uTz2zTuyaetonzMnvnGZpF2STdt8jgEAAAAAAKwmYTsAZptAHcDU2rRMZbr5sN3890Gvb/ftH3U/tt9ezffj7lpy1ovG80ek938j+bN3D/8Z9F9fmcvZFy9/zpd7HAcAAAAAAGC8hO0AmHHLBx2qMB7AxCxb2a61jexyYbvltqFt94Fzur/fLxzjmMO6V9Ib1Pu+NvxnzB/+R+9rz7vCZxgAAAAAAMBqErYDYLb1CtMJ2wFMTD/byM6H7ga9vt11N3U/dueDFj9+3H3773c5V96QbNs+3OfMT2/sfc6htxhfMBAAAAAAAIDehO0AmG3CdABTq9s2sKUk69Y2P++13DayA4Ttljt3n/WLQ2tP/YU1KWPKsQ0yx0Ft3bFyfQMAAAAAALCUsB0AuzdhPICJueL6zu/Be++ZlFbabf3adA2+dQvrdfJPn+081hOPWdr5o+9V8q5nlNzn0GYuD75b/+O0W8mw3bbtK9c3AAAAAAAAS62d9AQAYEXZRhZgan3qvM7tC6vZlVKy19rOobVxBNn226tz+xOPXZMnHpvUWlNKyTGv3pGvXjJ4/4MEAued/+P+Ppu2CtsBAAAAAACsKpXtAJhxvQILwnYAk3L7Azu3X7Nx8eO913U+r98gWxOY63xs45blr52vsPfY+w63r+zmIQKB37m8v/O27vAZBgAAAAAAsJqE7QCYbSrbAUyt7Tv6O2/vPTu3b9rW33v4lu3d3+6Pu2t/czjxqNI1sLecbX3+jsNcs2UFt6gFAAAAAABgKWE7AGabsB3A1PrWDzu/Bz/k7osfj1rZbrnz7n+n/hJ0R96u5J3PKNlnfX9jzts6RNiu34p1w/QNAAAAAADA8ITtAACAifjItzu3f7ttG9Xule36G+dH13U/1q3vTp507Jpc/fo1OetFa3LF363J0x7YO6i3dXv//c/rt7LdMH0DAAAAAAAwvLWTngAArCiV7QB2OT++YfHjUcN2F/60+7Fb7NNfH/PWrS055rDm5xs2zfU8fyW3kVXZDgAAAAAAYHWpbAfAbOsZphO2A5h2o24ju1x47eD9+9tGtpN+8trDVJ/r9xqV7QAAAAAAAFaXsB0AM05lO4BpdNWN/b//jlrZbtO2lXmv76fXYarP2UYWAAAAAABgOgnbATDbbCMLMJX+7n8HCNuNWNmuWyjvLgf1PYWO+vkIsY0sAAAAAADA7BC2A2D3JmwHMBGfPHeQynadt3rtt7LdTV1Ced0q5vXrqEN7b0G7ktvIblHZDgAAAAAAYFWtnfQEAGBF9QzTCdsBTMK1G7sfe/0TFofY9upS2W5zv9vIdgvbdem3X888ruQVH1r+c2TrjpqkdyhvoX4r2/Vb2W/jlpqvX5psn0v2XZ/ss37x93VrB5sfAAAAAADA7krYDoDZpnIdwFS68Krux57+wMXhr24V6DZt7e89vlsFvFEr293+wJJnnVDyD5/pPo9hKtv1HbbrI2z4z5+by7NPrdkx1/2cPffYGbxbFMZbl+y7V8k+65c/vm+X40J8AAAAAADArBG2A2DG9QhiCOMBrLovX9z9vfffnlqy3159hu36rGz3li92Hm/UynZJ8sYnldz/TsnJb+k8Rr/BuWGu6VXZ7uyLan7/nb0/57btSK67qflaavgKsWvXJPvutTCYtzikd7Mlba3v61shvy7H161NShHkAwAAAAAAVp+wHQCzrVeYTtgOYNW96L3dy6zdZv+lIapuobh+t1HtFl7bawx/Giql5LcfUPI3H9uR716x9PiWISrbbe0zbLd9Ltm2vWbPLhXkPvzNyX7GbZ9b2RDfzmDezp/3Wd9U4lvueHubEB8AAAAAANAvYTsAdm/CdgCr7pPndT/2c4csbRu1st0Rt05+fMPS9rMu6u/6fqzv8ierzX3OcaFBquFt2pbs2WXsy68ffOxdwUqG+Dpth7swxLfc8e7b6QrxAQAAAADArBC2A2C29QzTCdsBTJNDDhx/Zbtu5z38nuMLQHWb46Bhu+07av7hM/1/Nm3aluy/d+djO4bYwnZ3tn0uuX5T87XU8P89sceabgG9ZN+2EF+3452uF+IDAAAAAIDVJ2wHwGyzjSzAVLl24+Dvu6NWtusWeLv3oQNPpatR5zjvj08b7Pn5+qXJw+/Z+dggFfJYOTtWOMTXOYy3M8S33PFO168X4gMAAAAAgK6E7QCYccJ2ANPk499Z/bBdt/P26tLvMEatvpck27bXnHrWYM/PO86sXSv0bZ/rfM1T7l/y0keXbNiSbNySbGh9bdxSF/y883vzc207d+f3QQOFjMdqhfj2WZfsu9fCn0tutqRt/ueSfffqdI0QHwAAAAAAs0HYDoDZJkwHMFXOu3Lwa/ZeV9IpHNRvkG3r9s7tYw3b7dlljgME0c67sltwqrv/OLvmXc/sfGzbjs6fgQfsk9z11p1CT8MFoXbM1QWhvKVhvA2tEF/78Y3dAn5bkw2bhfgmZfkQX7J8kG/5EN988G6fda1qeot+3hniW3p8cYhv4XEhPgAAAAAAVpOwHQCzzTayu50zLqg57jU7yzm99Wklv/2ANROcEbDQ1mW2Nn3xozoHZrpVtrtxc39jdttOdc89+ru+H90q23XbwraTbpXohrW9y++9dsxviXusKdl/72T/vbudMXyI76ZW8G5hCG/jz9rqgp93tjfX1EVtQnyTt2MuuWFz89XZcCG+NWVpcG/x1ritLXM7Ht+5nW778b32FOIDAAAAAGApYTsAdm/CdjPl7IsWB+2S5OS31GzaOpffO17gDqZBtypzSfLKE7uE7boE2bbPJbXWnoGYbmG7tWvGF6TpViXvE+f2/zlzydVjmkzL/57buX2cIcOVtMeakv32Svbbq9sZo4f4Nm5tVdvbvDDMVxe3bVkc4ltyzRYhvkmaqysb4vvZdrqLAnw7g3qdj5e2c3d+F+IDAAAAANi1CdsBMNt6humE7WbJs0/tXBbqWe+q+b3jV3kyQEfdKtuddO/uAZRule2S5LtXJEfebvkxV6WyXZc5Xn5d/3386+fHW9quW1W9cVe229WsdIhvXNvpzv98U5/bJTNeKxniWxrcW1xt72Zdj5cuwT8hPgAAAACA1SJsB8CMs43s7uSrl3Q/tmVbzfo9/SM0TFq3ynbr1nZfn7fat3t/X7+05sjbDVfZbpxhu+s3dW6/zf799zHubWQPuFly3U1L239843jHobFSIb65+Up8XcJ4G7bUrgG/jV0CfhuE+CZmrjZbYHffBnv0EF/nMF9Zcnyfdc32ufuuLwt+Xnx873VCfAAAAAAACwnbATDbeoXpVihsV2vNJ85NPn9+zRG3Tk48qmT/vf1D5SR97DvJY+496Vkk126s+eA5NRf8NDn+iJJfurt/xGY4l19X84Fv1FyzMfmVI0vud9iucR91DdstE3w7/ODux7pVb1toNcJ2B+032NidnHfleOYyr9suube7+XjHYWWtWVOaENQKhvg6h/U6V9u7aZmAnxDf5KxUiK+U9mDezp+b763tdDseb22nu9fS40J8AAAAAMCuSthuQkopeyQ5PMk9ktwuyc2TbElybZILknyl1rpxzGPumeSBSe6Q5LZJNiS5PMnXa60Xj3MsgKkxgbBdrTV/fFrNGz+1s++jDqn5n+euyUH7+UfFSfm1N8/lxY8q+cvHTG7/xCuvr3no6+by3Suax686veZ5v1zyt7/uvmAw515R8+C/m8tPWhXKXvbBmn94csnvPmj69wftGnxb5k8mywUyru1QuW2hWmvXinHjDNsdd3jJ33586WfK1X3+F/0ZF9Rces1wY++Yq9mjQ7Ku23N99B2957DyIb6NW5MNm1thvIU/z1fbazu+cfPiEN+S41uG/lUZQV0Y4ruh4xnLXd31SCmtAN7CMN76xSG+m3U93rad7oLjQnwAAAAAwEoTtltFpZQ7JHlskocm+cUky20qtaOU8r9J3lhrPX3EcQ9K8ookT0hyiy7nnJHkdbXW94wyFgDJOT/MoqDdfNubPl1zyon+8W+SXn16zTOPq7njLSfzOrz+E/VnQbt5r/2fZk53u417g/696L07g3ZJE4b4k9NqnnL/mputn+57acu2zuGL9T3+ZHL0HTtvFX3qWTXP///Zu/Mwuaoyf+DfU11dXdWdfSUJkJAQVtmRHVlF0BHBDUVRQUZHBweH8aeijsLM6LggboMO4AKKouiALLIkskPYCQGSACEhCQnZ916qqqvr/f1RXd236p5z7rlVt5bu/n6ep59U33PvubfWdN361vu+y7xdzlJZLsqwXarVPCYigeGPE75XeQ/Znqw+MGW67lFeb6Jy3hDfVO073mhCfF3F1rrFy+nSEF9xvCsNdGXFF/zr8lT1o/oTGayGWKsQn2s73cHLSrsNQ3xERERERERERETkxbBdnSil/gDgoyE2aQFwJoAzlVJ3AbhYRDZUsN+zANwAwNJ8CwBwHIDjlFK/B/DZqKvqERE1TGDluugr213zoH7O/7hLcMXZke+OQrp/qeCiExrzYamu6hUA/O/Dgh+dxw9wyd3ti/zL0r3Azc8IPt2gx7errCEAlgh4Z5I3ZNGmj7NvZ2vjGmXorM0StnttA7Dvbubxnmx1/xf19OrDdqbrHm/+AohEPrUM8fX0lgX3vK1x0+Jf5mmnq92GIb6GKQnx6dewbW0cKYb4TGG8YohPP24O+LUzxEdERERERERERDTkMGxXP/sYlq8FsAzABhTuj9kADgHg/QjsHwA8opQ6SUTWu+5QKXUygL8CSHgWC4DnAawAMA7AYQAmecY/BmCMUuocEam8vAYRUdOofxvZPz9rnnNnj+DZVcCWTmDRGsGtzwtaYsBPPxLDyfvywzZXmV7BkysK4ZYjZwLxFvfbbUdPtMciIli+CVj0JnDw7sDeU8Lfj9c+IvjRedEeF41MC5YDnz6h0Udhl83plycCgm8L39Qvb0/olxeZWsgC0Ybt9reE6Xal7dtWG8pZtwOYPLp0Wb3a5xINdbHYYEiqViG+rowujCclwbziv12Z0na6uu2p/rwhPv23IKMJ8emq7bVbAn6mCn4M8REREREREREREdUOw3aNsRDArwHcIyLLyweVUjMAfBPAZzyL9wHwZ6XUO0SCkyFKqd0B3IrSoN3jAP5RRJZ61msD8FkAVwEo1uN4L4D/AvC1MFeKiKgpBb1k1iBs12eZctyl+uTDaVcXlu/6WQwdTd4CstGeWyU488d5bOmvwbrXJGD+v8Ywe7Lb7dbTG92xZHoFH/tlHrcuHFx29iHAHz8TQ7LV/X5M9wKX35rHd85V/GCUqvKbxwVXni3YfXzzPo4qrWz3kbcr/PEZ/wvs8k327WyV7eIRhs7Gpsxjmzvt26YNAUQv0/UHgEP/I48bLlT4xLGD39fps4QMo7zeRKTnDfHpVRfiM4fxRBvQ67IE/IrtdWvwZzEFqGWIr73YTjdRqAhZenkwxOcfLw3xecdTrYXHNhERERERERER0UjGsF39CIC/AbhCRJ61riiyFsBnlVKLAFzjGToBwHkA/uiwvysBjPf8vgDA6SJSUldDRDIAfqqUWg3gNs/QZUqpa0VklcO+iIiaVwPCdtVUKDrpB3k8+w2mIEzyecE51wwG7QDgjc3Ax3+Vx6NfduuLGGXY7qp5UhK0A4A7FgHfvUdwxdnhPoj83r2CY2crnH1odMdHI9Onb8jjvn9t3tcRY2W7gHcme03SL3/BUPGuqF5tZG0Bto9en8e2n5hX2N5tn/sv/xTDKfvCGLYDgAtvEJywtwwEj+tV0Y+I6ssb4puiXaOyIJSIoCdrrqZnqrbXnS202tW10WWIr3FEBislGtawbW2duzyE19Ef6itcVuhImsaVNvjXkSgEAxniIyIiIiIiIiKioYJhu/r5kIisDLOBiPxcKXUqgA94Fl+AgLCdUmougE96FmUBfKo8aFe2r78qpW70bNcG4FsALgpzzEREQ09zffr3/OpGH0FzW/gmsHa7f/mTK4C3NMt1erLRHc9dL+ofP3e9KLji7PDz/e0lwdmH8oNGqs4DrxaqFzVrlUxT2C4oAJZsNY91ZwTthutbr7CdrSplUPvq51eb/y86Zjbw/sMVMr32/69EgD89K7j8rMJxWCv6uWWTiWgEUapQ6ay9hiG+rizQmS4P48ngMs94McRXsk3ZZYb4GqOWIb5iME/XTrcjaRpXnrCfv50uQ3xERERERERERBQ1hu3qJGzQzuMalIbtTnHY5nwA3o8ObxWRZQ7bfQ+lIb0PK6U+bwvpERE1PcuncAJga5eCoVhSxca3A9sCqhRRZV5aa74/12xzm6M7wrDdU2/ol+tCkw5d4HH9o4JrL6jyoGjE68sDW7tsrQsbyxQCSwQE30YnzWNbuwsBkTD7A5qnwpstBnDZOwvJuDaH1tRX3CG4/KzC5bSliqctuEhEFCVviM+wRkXzFkN8XcVqfOnBMF5hmXguDy4vaaerGe/MMMTXKMUQ38ZdutHKQ3zFdrolrXEHwnqD7XT948oQ/GOIj4iIiIiIiIhopGPYrvmVNadDSik1TkRs9XvOLfv9Ny47EpGlSqmnABzdv6gDwBkA7nA6UiKiZqT5tEwAfHfi/8PPJnweG787FXMm9+H7H4zh3MOi+cBkzmTgWTbhrgnbPRTUhrHIFkCppYyhmhdRWC7BzShDpVEzhd+Cgm/vOUjhslv0191WsXIohO1s99e7DnSfx3tduzdtBTBOu16KYTsiGuK8Ib7Jo7VrVDSviCDd62+H6w3xadvlekJ8unGG+BqnO1v4qVWITxfG62hTvmCfN+Cn36ZQmY8hPiIiIiIiIiKi5sewXfPTfTSfMK2slNoNwCFl2z8eYn8PYTBsBwBngWE7IhrS/B+SXDfuYvz7lCsHfl++CfjwtXk8/pUYjtqr+g83bMEOp+1zgtY4P2TRWbnFPHbFnXmnOaJsI2sjIiVtJeu1Xxr+XD6s72lQqNRFzvBUjQcE38a3m8ds17dZwna5PkG8Rf/abjr+yaOB0cnBbT51nMINC9zSGl3fvQTATdqxlPHdBBHRyKaUQipReJ2sVYhPH8aTkuBecbw7Yw74FS/nGeJriGKIDzUI8WnDeAlgVLIQ1NOPK4xK6gOADPEREREREREREUWLYbvmt3fZ7zkAmy3rv63s9xdFpCvE/haU/R6ilgYRURPSpFJ+P/YjvmV9eeBPz0okYTtTkMRVTy/Qyv+htZ5+w/zh1DMr3ebo6a3PJ5KL1gCH7uHdb112SyOAyyO4mcOdlVa2swXEhkJluzc2A3On6sdMrw97TSz93aX965ptghndK9CzYjkwW78OK9sREdVXrUN85jCevtpelyXgV7zMEF9jFEN8myIO8aVaMRjGS5RfVoVKfdrxQojPvw1DfEREREREREQ0cvGj/Ob3wbLfnxURW4zjgLLfXw+5v+UB8xERDXkL2o/TLv/N44Iffqj6+autbNfTC4xJVX8cw9FekxTcokZmUYWQcn3243h9Y2nYjm1kKSp5h0BvM4c7jZXtYvbtbAGxZqlsZ6s8t36nJWxneF0qDxjOmRx8DMs3AtMfvhE9saRxnXZWtiMiGha8Ib5JNQzxdWULrXQ7PUG9kja6/eMl7XS923guM8TXGD29hZ9ahfg6+tvqei8PtNPVjnva6ZaNtyeAFob4iIiIiIiIiKiJMWzXxJRSowB8umzxbQGblVfCWx1yt6vKfp+olBovIttCzkNE1Bxc+i32294dzS5zVYbtpn2pNIkyZzLwrgMVvvVehcmjR/aHDt0RBOWimGPjTsGX/8/+2PrwtXnMmgh851yFjxwVQ9YhbHfUrOqPjYa/kVrZLhZTSMShfS7Zrq+t2mhQwC+sfz7FHLZLWwKBprBgecDwfYcqfOOvYg3vdmcB5PN4PVH+tqBAKSDBd4FERGRRyxBfJtcfzMv2V9NLe8N4Mhjc84x3Z4HOdGmIzzvOEF/jDIT4tKPVhfh07XK9IT79+GCIz9dOt40hPiIiIiIiIiKKBj9maW7/DWA3z+/bAfwyYJtxZb9vDLNDEelUSqUBeEthjAVQVdhOKTUFgEMtjhJzqtknERGAUGG7qFRb2a7c8k3Azx8SPPSq4MnLYxiVHLkfENjCKq4eL6/hGtKutOCUH+axdF3wuiu3AOf/UtCZyeNohxbFT6+s7thoZHD5MLmpK9sZXiNdgm+pVkPYzlbZzhJMi7qy3REzzc/zLZ0CUzjBtbLd3lMU7rwkhs/elMcbm/Xb3LBAcGS+AxdNv14/Z6tAqZH7/wgRETWOUgrJ1kJb9En6NSqaVxfiG2iNmwa6slIa7PO2002LP/jn2b7PoaIwRa8Y4tvcqRuNJsTnUFNSuAAAIABJREFUD+uVhvjKA376bRjiIyIiIiIiIhqJGLZrUkqpcwFcUrb46yKyNWDTUWW/91Sw+x6Uhu2032MO6fMAvhXBPEREVVmc2L/m+4g6bFe0ZB0wfylw7mG1mX8o6M42vmTFvS/DKWjn9eO/C268iB/AUDRcMsQ9WXOwq9HMle2CjzfVCuzQ/HXb02u+vqb9xVShWl7UJo3SfzB872LgI0fptzFXtvMf3+kHKCz/Tgtin9FfsT8/J3jXXub/62zteImIiIaiWof4BoJ73ta5una6mbIgn2GcIb7GqVWIL9lqCvAVQnztloBfeXBvFEN8RERERERERE2PYbsmpJQ6BMBvyxbPA/ALh83Lw3bpCg6hB8B4y5xERENHWSrlheQhxlWjOo+drVHYDgAee11w7mEj94R7VK0x+/JS8QcXz64KH/hbss6tTTGLTZGLIV/ZzvDhctyhylx5pbci22tDpW1rK6X/8BaYNta8jalqZ9JwfQFgTBLYqflLXyng31a/07hdqrXxoWUiIqKhwBvim6g9M1Z5iC+bMwX4+tvpGgJ+XZZxhvgaJ91b+Kl1iK8jAYxKlrbT1Y+rsnUHxzvagLjDl1yIiIiIiIiIyIxhuyajlNoTwN9QGnBbBeDjIhX1QqzXNkRETeumMR/FIx0nog8tuHHcBcb1Zk2sfl9vbhVs7ap+HpNMEwdo6qE7orBdNmcO7dTqGHTVuMqJVBcEpJFhKIftnlgu2GX4KohL+M1Ulc3aRrbOYbuwxwEUKxH62arQHbw78Njr/uUiwI6+pH+gXzvDdkRERA2llEJbK9BWwxCfPqwn2oBe18CPf7wrC+xKM8TXKLUM8RXDeB2J/mp6xcvJ/na62nFVtu7gOEN8RERERERENJIwbNdElFJTAMwHMMOzeD2Ad4rIJsdpyk+/pCo4lPJtDPU5Qvk5gD+H3GYOgNsj2DcRjWQieKz9ePx63KcCV622/esr6wQHfKu2n0K8sXlkhySiChBVE7Z7/PXK7oMHXnHbLt1b+KCCyMTl6xdXzxNcelrtjyWMXz+Wxz/+znzw8VjwHKbn7WsbzNvUO2x3xgHAvCX+5U+/Yb7uphCvLWz3X+fEcPJV4f/PScVH9v8jREREw1WtQ3xdWaAzPRjC60wX/5WSZd7L3QHjporHVFvFEN8W7RcFKw/xtcXLgnve1rhJhfbyYJ+hnS5DfERERERERNTsGLZrEkqpCQD+DmAfz+LNAE4XkWUhpmrKsJ2IbASwMcw2ir30iCgKImiBW4qu2vavX7ut9p8U3PNyzXfR1CIL21VxX7/wZmXb/fwht4BLT5ZhO7JzqWz35rbaH0cYuT7Bl/4i1qCgUxtZQ/jsmgcFP/uofqy3T7/TWoXtJo9W0H0QqatCV2R6bbOFgidpP0QPlnd5ABERERH184b4JnRo16h47myuv5peMbiXKQ3x+ZZlSkN8pnGG+Bojkyv81CrENxDG87bG1bXTHVhPGbYp/MsQHxEREREREVWKYbsmoJQaC2AegIM8i7ehUNFuccjpdpT9PjnksYyCP2y3PeQxEBE1EUGLOIbtctXt6a8vVLe9i5kRtLodyqJsI9usorqONHy5VLYDgOUbBXOmNMcHSC+uAbZ329dxCb+ZqtTZ2oDXu7JdJVVS06awnaWy3dhKvlID4KUNlkmJiIiI6igRV5gQr12IL6p2ugzxNVYtQ3zmMF5/O13LuC4A2JEAWuPN8R6MiIiIiIiIaodhuwZTSo0GcC+AIzyLdwI4U0QqiW2UV8GbGXL78vW3ikiT1UYhIgqhjpXt6iGqcIiI4NX1wEtrgaP3AvacqCAiWPwW8Mp64Lg5wPRx9hPExfWfWSmYOkbhxLnA6GT0J5XzecFLa4HnVglWbYlmzkyFYbucoUJWlKKq3jecpXsFNy4QPP46cNkZCofuMbI+zHAtTLZxFzBnSm2PxdWOnuB1XNrIbjbUW7a9NprCby6V9CoxKmnYn+X6mQLACcu7tenj3I+JiIiIaCSpZYhPF+Dzhvj0AT/z+C6G+BqmGOLbGjrEZx9PxP0BPW9Ir10T4CsJ+SUK7ylKAn4M8RERERERETUVhu0aSCnVAeBuAMd4FncCOEtEnq5w2qVlv+8dcvvZZb8vqfA4iIiaRqxOle3Cmj4OeCtk7dCeCKqe9eUFn71J8OvHBk8Of+u9CovXCv7y/OB615yv8LmT9emQbE7w8V/mPesLxrUD914aw1F7RXcCON0rOO/aPO58MbIpAVR+X3dmoj0OHYbt7F7fKNjnG4OfRt30lODY2cBjX4mNmBb0rpXtmqlZ6HWPBB+NS5j4n09RuOwW/1zLNpq3MX14WavKdh8+QpW8vnqPI9cn2nZVlVTfU0rhohP0+yIiIiKi6CXiCok4ML6GIT5/WE98wb3ieHf/uCkAWEnFZapeNgdsrWGIrySM13+5I6HQkbSPj2orXi4dZ4iPiIiIiIgoPIbtGkQplQJwF4ATPIu7AbxHRBZUMfXLZb8frJRqF5GAxl0Djg+Yj4hoaAlR2a63r1CtrZLATp9DqakrzlZYvRWY2AGceaDC9h7gA78I9xX2KFqM3vy0+MIZV97pP/5//oPg9P0Fc6f6b4//fbg0mAcUWkR++No83vjv6EJPP71fIg/aAZVXMbzmwdqHWlZvAQ7do+a7GbK8QbuiJ1YA85cAZxzYgANqANfKdvkmqZDx1nbBn54NPmiXSnMzximYPoDasLNQZbNcvdvI6j98LXh0GXDKfv7llR7jhwzBPiIiIiIaOmod4uvKFtrglobxPAE/73gW6Erbx+v9RUUqqGWIryOB0jBeW2mIzzZeUqHPM84QHxERERERDWcM2zWAUioJ4A4AJ3sWpwGcLSKPVDO3iKxTSr0I4OD+RXEUAn3zHKc4uez3e6o5HiKihhNBi2NlO6AQeLC17TNxqTh32ekKozxtVu9bHD4gEUXVs1+FCGbc9JTgyrP9J0jveVk/x+qtwNJ1wAHTKz68Ene/VJsQSaUfDvz77bUPtSxeJzj7UJ6U1tnZY779L7oxjzXfr1F6qsm4hu2apTW262udSxvZ9oR5bN5iwQXHNj5sZzvGexcLTtnP/RgTAceYag1xYP1aY3kAI+O5QkRERDSS1SvEVxrGk5Jg3sB4phDis40zxNcY2VzhZ5v2q/rRhPi07XKTAeOGdrsM8RERERERUTNg2K7OlFIJALcCON2zOAPgHBG5P6Ld3IbBsB0AXAiHsJ1Saj8AR3sWdblsR0TU3AQtcC/vlM1VGLZzCMF5g3YAcPiegFLuLSEBIN1befW9oodfc1/3P+8SXPFewdrtwPSxQCymsGGn4L7F5m027gIOqPjoSi1dH9FEZTJNfBK/kvDMSLGjxzwWtiVzJUQEq7YUnoeNtKnTbb0o2k5HYeMut/WSDo/9w/cMv596h+3mTjGPmaqTVnqMlfx/9ZOTVwOYE35DIiIiIiLULsTXm5OB4J03xFdYJqXBPU07XdM4Q3yNUasQX2uLKaBXCOm1awJ63vEOw3iCIT4iIiIiIgqBYbs6UkrFAdwC4CzP4l4AHxSR+yLc1e8BfAODJSver5SaKyLLArb7Stnvt4hIOsLjIiKqOxFBLEzYrsJKUJWEWiaPVvjksQo3LAhXLS3dC6QslZOi1vLZcL0oowj4bNwpOO+6PDY5hnTCquRke961nFiVoqheOFzV6S7Q+utCwSU35+sS6otKszyWXG8zl6DptHHmD0BM17feYTvbhzSvrdc/iE3/9wQdYyXX4QOzNoFhOyIiIiJqNq1xhXFxYFy7bjSaEN9Aa1xNO93y8a6A8Wb+Et9w1ttXCPDVOsRXGsbzh/TKx8uDfcV/GeIjIiIiIhqeGLarE6VUCwohuPd5FucAnCcid0W5LxFZppS6EcBF/YsSAG5QSp1mCs8ppd4H4FOeRVkAV0Z5XEREjRKmjWyl33gOCrXEDOfWrv+Ewr67AX97UfDY62776s5WHraTMGX0KvTqBsFZB1V3MvGcn+fx5IqIDkijklDlD+bVKWzXJNXImlEdHr5ai94UfOjaPPrC5U4bricrqOZDqaj87AG3O86lsh0AnLSPvkLnnYsE33iPf3m9w3YAcOHxCr953H+95y/VVyc1H6P9/nNpves1O7sCk3Kbwm1ERERERDSE1TrEZwrjdWbEV2Wva+BHDNswxNcotQzxDQTwEsCopPdyIcRnGx9lGGeIj4iIiIiosRi2q59fA/hw2bKvAViolJoVcq71DhXnvgXgXADj+38/DsDflVIXi8grxZWUUm0APgPgh2Xb/1BEVoU8LiKi5iOCFrgnqyo9qRkUtpugba8CtMQUvnKmwlfOLPye/8HngTt+hdcSe+OAOS9WtC+bF96sfFtX1YbkVm2RmgbtACBTwW14yzOsbNdojapsd+tCGXJBO8DcsrSeNu1yv9NcWyiPatMvX27IkDUibNduCUS/8CZwWFk7XNMxBrWJDXsd5mSXQ15+EuqE94bbkIiIiIiISthDfEClQb5cn7manq0aX3cW6EzrA34M8TVObx+wvbvw41d5iC8eKw/m9f/bVgjptfuCe6Xj/mBf4d9EHL4vhxERERERkR/DdvXzCc2y7/f/hHUKgIdsK4jIGqXU+wHch0JlOwA4HsASpdRzAFYAGAvgcACTyza/C8C/V3BcRETNRyRUZbt0hUGnoPDW+w93PFF1x68AAKl8j3GVaiqfrahDQaPp46rbvh7HmM6Fr/i1YnNtjqUcK9uZNSpst7JO933UmiG4uXKL+7quFTsXGkLDh+yuX24KsoWtChfGPlPNYys2uYftgsJ08ZBhuy9v+SHU2LPCbURERERERHUTb1EY2w6MrWGIrysLdKbLwnxZGVzmGS+G+Eq28VxmiK8xcvnahvgGg3mDlwfa6ZYs07TT1YwzxEdEREREww3DdsOYiDyklDoXwA0YDNQpAEf2/+jcDOAfRUIkU4iImlq4ynaVhlNyAVWvPvr2cCeU2sUStqsiQNPTW/u0UrUBn3oEhCoJtNmOa9IoYHNn6bKT9wEWrwM27YpuPyOdLWxnqnZWjb684D/vEvzuyQal/KrUDI+lMM811xPvR84E7tjuX761y7+sNyf4wX36+6+Wle3ed4jCpX/U77fwOuzaRta+n7DX4fjuJ4DMKeE2IiIiIiKiIa/WIb6ubH81vfRgGK+wTDyXB5eXtNPVjFf6ZViqTi1DfKXBPO+/pe10deP+YB9DfERERETUWAzbDXMicrdS6m0ArgRwHgbbypZ7EsBVIvJ/dTs4IqJ6CFnZbldQk24DU1ACAP5wscJJ+4Y78WOrbFdNa0hTm8UopauszLZ2e7hg07SxwIadwFF7ubewDRtC6ssLsoZvax+9F/Dol2P44p8ENz8tyOSA9xyk8MtPKqzfAbzjB3ls2Om+L55QNhPLQyNshS8X/3ST4FePDc2gHQDctUhweYOLmJWHUE3OPNB9znfso3DHIv/9smiNf91P3WC+/2oZtttzovk1v7xKZl9ejI/twMp2IarzXbblR0igF/LyExV+jEZERERERFSqliG+7qy/Ha43xGdqt1sM8enGec6lMXJ5YEdP4cev8hBfS8wfwDOF+Ezjuu0Z4iMiIiKiIAzb1YmINOwvcxHZCOBzSqlLUWglOxPAbgC6AKwFsFBE3mjU8RER1VqYynYPvCI4cW74l+ycYRcxBXzkKLc0hKx5feByUsypv2rajN6pCahErZowIADc/aL7Mf7tCzGc+bbCydJUQiH2Gbf7OuxtaDsZ+5OPxBBvUfif8xV+8hFBXx5IxAuPodFJYN1VLehMF070JlsLp5njLcBXbxVc86D/uvZkh264q9Zsle2CWjmHtbNH8Nsn7PfFhccrfPucxp98/cSv8/j7Uv/yJxzDp7V072K3x3NHiMqEqVbz2OsbBXtPKdwnm3YJ/viMLWxX2/vuwOnA4rf8y//2ouCb/zD4uynIC0Rb2e6AzCuFC0/Nc9+IiIiIiIioAeItCmNSwJiUaY3K3s/15aUkmOcL82X0490Zc8CPIb7G6atxiE9bbS8BjEpaqvElFEYl9du3McRHRERENGwwbDeCiEgWwIONPg4ioroSwdTcRufVwwQ+vCptAVhi2aKBizEI2vJpZGJJ32rVtIY8aIbC86trG+aqtlXtrEkKwSfECqaNK5ykSiUKv196msJP7g/eNuxtaDtpmvQEf1piCi2abOWoZOFEm1eq1dRiMtyxjSTWsJ0lsFSJJevsFSuBwjeddxvb+JOkWwzV42ZPqu9x6Ewd47beOYe5347TxppfI55fPRi2e3GNvRpiLSvbAeZKogdOd2shCxQeYzZjjR88+U3NbShcOPh4942IiIiIiIiGkZZYbUN8pjCeqdpelyXg15XhOaJGsYf4APt5S3uIrxDW8wb3SkN87cbxwrlF3fYM8RERERHVH8N2REQ0vIng1K6HEJde5JSlHFK/Sr+JGknYbmNpD8SU9CADf9iuO50DEHxddHb01L5qWjWV9zK9gp8+4HaMe4wHDtm9dNlFx9cmbGerPNVW4V9TxYBguWpuv+HOFpzKC/Dde/JYthE4YibwiWMURiUrP9H45Irgx9EB0yqePlJ7TQIWvulfHlRlcuNOwW+fFPz33YJt3cC5hwHnHqZw/lEKsVg0J2ldH89nHui+v9P2d9tf0PWvddjO9P/J5s7Sx5YtbBd0jKmE++12UvejhQvZCvulExERERERkVa9Qnxd2UIr3U5PUK9TM+5tp6sbZ4ivMfrywM504Uev+hBfR6K/ml7J5cEQn3/c0063bJwhPiIiIiIzhu2IiGh4E8HUvo24Zc3H8NEZv9VWivN6Y3Nlu8nl9cvjjmEO2b4Z8j9fLlnWnu/B9pbxvnW7u3pRSdgumxP89YXQm4VWaRvZbE5wzs/z1kBV0eTRwO2XxHwnfA7aXeG6CxQ+9/tCO1eTsIG2bBWVp0xMrTB5wtPMVtkOAL52W2GF3zwO/PFpwbx/jSHZGv6k4EOvCi67JfiBeNCM5jjh+JGjYrh1of8Bv34nICLaE6PrtgtOvqoQTiy6bSFw20LBA68Av/pkNCdUXR7PN31aYeIo932NtoQor54v+ORxhcvbu+33oevrc6U+d7LCLx7yH8NdLwK70jJwPaoJ2wHA+Ucp/OFp+3X9r43fRLv0fyX/leeCJyUiIiIiIqKGq2WIr9sb3CuG9AaWSemyTOFyYRvxb5NhiK+RahXiiylzO93CZXM7XW+Ir3w82coQHxEREQ19DNsREdEwVzhhcHbnXdj02gwsSB2DpKTx7UlfxfxR7/St/ZvHBb/6ZPi99PbpT0y4Vk6SX13pW5YSfa+Cnp4sgHbXQxvw4KuhN6lIpSfWHngFuG+x27pvfi+GRFx/UubiE2P48JGCZ1YCV9yRx+PLqz9GW2W7RIWBHVa2Cy8obOf12OvArc8Lzj86/Mm7K++0JDU9TIHJerMdx4trgEP28C+//jEpCdp53bBA8KUzFA6YXv2x2R7P/3O+wiePVehoC38fHbx74bqVe2kt0JsTtMYV7lhkf8DUurLdKEtb8tsWCj5xbDRhu1kO7YLP7JxX8rvkclBxvhUkIiIiIiIaiVpiCqOTwGjjd5KrD/EVQ3gDrXHTQFdWPJfL2ummpSS45x2v9Iu9VJ281CfE5w/rlYb4ygN+5cG+4r8M8REREVE98RMWIiIa3jxl0tqlB6d3PwgA6DW0lD16r8p2Y6ps5xzm+Ot1vkWpvD5sl+6xJL8sbnk22hayx8wGnlzhX15pWGz+UrfjO+ttMAbtisakFE7bH7hxgcLjy/3zNnNlu3Rld++IkHfLwA14dhVw/tFh9yF4+DW3dU2ByXobZ8nePrJMcMge/ufLn56xP98eWSY4YHr1JyhNrVQvPlHh8yfHKp7XFmR7aS1w+ExgQoeC7eRurSvb2e8X4BPHFi5XG+a17adobH5H6YI3FgNzDwnekIiIiIiIiMhRrUN8A8E9b2tcTTtdb4hP2063/1+G+BqjliE+c4CvEOJrtwT8TAFAhviIiIhIh2E7IiIakVa37qldHqvwfbOpMlG88iwJkqI/49BTYRrrnpeiDdu95yCFJ1f456z0RNX2brf13nuI+53UavhLx1ZJSqcmle1MbWR5os8o7CPYdr+ZhHlsNEtluyNnmsfe3KpfvnSdfc7OTOXH49Wd1d9r1d52p+6nsEATpAUGjz3oPGitK9uduq857NfleXmvtrLdafvZQ4UzetdiVu+q0oXdu4InJiIiIiIiImoCtQrx5YuV+AxhvM6MaAN+3ZaAH0N8jZMXYFe68KMXXYivIwGMSpa209WPq7J1B8dTCYb4iIiIhjKG7YiIaHgT/RvlT27/Hb415Vu+5ZW2QDWFJaoJc7Tn9emz7p6QSbEauPJshb2n6McqvQ0Nd1WJU/cDLjjG/SSEqepc2BCWNWxXaWW7hD4gU+ntNxKEaSMLhA/nAfYqhuXam6SyXVur+Tlx1TzBBccIDto93Mm7dTuC13FhCo9WWxXw0tMU/utv+nt4xWbBO/ZRxqp6RbUO2719lnnspbWDx15t2O7QPYAvnKrwswf0t8e16z7v/9gho6+cSkRERERERDRSxGKqEIKqYYhPX43PX23PG+LTbcMQX+PUKsSnlCa413+58G9/O13vsrbiZeW5XDrOEB8REVF9MGxHRETDmyHBNSG/Tbu80qpiuRqE7VKmynbbdwCYUfnEAa67QGHlFuCt7cCYFLClE9jZI9hzosLEDuD0/RVOmKtw5yJBlGGxTEAA7oS9gTsvifWH1Ny0GcN24WJYtWgjm2Rlu9DCtpGtRJggZrO0kQUK7ZXveVk/dvFv83jqa+FejH40X/DDD1V/XKbXg2or200cpaCU/iX+0j8KPnVc8HOp1mG7WEzhS2coXDXPf5BLPJUFqw3bKaXw4/OAsw9RuOdlwZ/uXoO1rTPwye2/w1e2/AD7ZF/3b8SwHREREREREVFN1DrE15UFOtP9Ybz+y4V/pWRZ8XJXGujKim+bgfGIuhtQOOIN8e3UrmHb2jiiVHkwr6w1blKh3TiuytZliI+IiMiEYTsiIhrmDC0M8/qgQdSV7VzayIohEGg8xu2drodVIuZwLBM7gItPdOt9awrLdGcL1ynsm+8eQ7vJovOPVqGCdoC5xWuY6mWAOYAVU4VWFpUwtpHtrez2GwmibYSsF6aNbLNUtgMKJ75MnlkJbO0STOgoPKZcwqbVtMD2qlXYDgDGtwNbu/zLi9807um1X8+orqONLYyb7hUkW5X1Meca5lVK4bT9gVNnZ/D9n84N3oBhOyIiIiIiIqIhxRvimzpGt0blIb6e3v4KesXgXqY0xOdblikN8WnHGeJrCJHBaoi1CvENhPG8rXE17XS9IT7dNgzxERHRUMawHRERDW+mIJtEG7bLGSpuOVVO6tWXXzIeo2pzPKpSc6cUqtXZhAkzmap6iRTCaW0hwzRBFcUqCefUuo1spVXtJJ9Hcu0rAPbVjmdy5sp3I1noNrIVpPNcHxuzJgJJS/vWejt6tsJfnjdf4a1dwISOwuXFbwXPN3l0NMdlqi4XRVDRFoIVkcDKdsfNqf39N77dPLYrXXie28K/oavvde9yWk2WPgvMPQSItQAt8f6f/sveZQOXW3jik4iIiIiIiGgYisX625W21S7EF2U7XYb4GqMkxKdfw7a1caQY4tMH+AaDeqaAny7A19FWOPfIc1lERFRLDNsREdGIlMobWrRW0MIznxd86c/6N4xOQQlDhaF2Q2W7LZnKUlhRv7VMPXs3gDO1Yz294cN2QRXF2kNWtQMsYbuwle0M65sq59nIgrshXzkXybZDgNlPaNfpyTJsV5TpFby0FnhulWD+ktrWttvRLTjlh269ar9zbnOdrDn/KIUr7xTjCa/uLLBsg+Ccn+exdJ1+nfL1o2CaJ4oWvJe/W+Hrt/kfE3kpvJ7YwtPHzwHe4VAArlrvPkjh//1F/7jd0VMINdpe+1rCVt/LOlasu+WnkFt+GmpqicXMYbx48XJZYC/WUhgrC+65hfxajOPKO1eL5nh8x1W+X12gsGxd3XFptlMuZWOJiIiIiIiIRhhviE+vuhCfOYwn2oBeV1mIT7c91Z83xLdBv4Zta+OIUhhsl2uottduqLbXUd5O13OZIT4iIipi2I6IiIY3Q2mrZISV7X58v/lNXdwljLXhTe1iU2W7O7bpq6EFqbRqn44seQbJX14OzNaH7bqzwDhLRSedoLBdJeEcYxvZkJXtMoa2m2Er28n6VZCvnAvAfP8ChftqfLiph4V0r+DFNcDzqwXPrQKeXyV4+a1wrV29wkbzLv5tHm9sDl7vb1+I4ayDmuukyrRxCs98PYb9v6kPC27YCXz2d3ms3OI2X1Rhu1q2kT3jAH3YDgBufd5c2a6jDbj70hja6lCZcGzKPPalP+fx139uMT6+W1sqOHn3zP3h1g8jnwfyET0wqlSPltKuBLCG8QqXYw4hP0Nw0Bf4M4Qe43GoksBhzOG4HPZrDCwa5mU1RCIiIiIiIqohb4hvinaNaEJ8/jCelFXm8wb5/FX6Bv7NVtZ9g6ojMhiyrFWIryNRaOtcenkwxOcfV4ZtCudKYzGeRyEiGkoYtiMiouHN1EbWUDWuLw/05gStcfc3Nv/3nPnNl1Nlu6fnaRdvbplo3KQvL2gJ+eYr0rDdI7cj1ddt3lcFeYzAsF2EbWQzjWoju+DugYumxyBQ2e031PRkC8G65zzBusVvmVsy11q6V/C3l4LX++hRqumCdkVz9WcYAQC/eMg9aAcUno9hXwt1TI/lVAWVKn1zWF4T/vycGF/zvvcBhdHJ+tyHtmO888XCv7awXVjieY2hOurLFX4arNnO3Ys38GcM8VkqCIYO+ZkrFwZWQwwTLgyqhuhbzmqIREREREREza5WIT6RwhdCTWG8kmp7WaAz3d8jHaF4AAAgAElEQVRONwt0psUX3CuOM8TXGN4Qn2EN29bWuTuKAby2Qgiv9LJCh29Z8fJgiK98vD3BEB8RUa0wbEdERMOcIWwn+jayAJDOAa0h/od8YoV5bIlDu0bk9ImQv3ecatxka1eh/WAYLgEu57ddzz+IpJhr64dt0woEh+322y38nFFVtksbQjttYSvbPXHvwGXbYzDKYGQz6MkKFq0ptIJ9blWhct3itwrh1mbx6nrz/exVSevgerGdOHl+dfj5urPA2CrfLdSyst0scx4Zu9KWFrZ1bNFsq2zX0n93mV77Qod5gUI1M6JmUayG2Nv4BHkzff4gSjm0NNZUJgzRallbDVHT4lmVBwOdWi0H7DeuWddxXlZDJCIiIiKi4UapQqWz9hqG+IohvNIwnpQE84rjXZlCiK88uDewfYYhvkYphvg27tKNRhPi07XT9Yb4dO10R2nGGeIjImLYjoiIhruQle2AQihtdDKa3b/7bcFvOCSjPxZbmK2StprLNgavY33Lls1AfnE58PhdwLpVSMTGGdcNG2YD7NfpnfsDM8a7vXkTEchX3w8suBuJcRcC067xH1/I288Uwgod2ukdvE+D2sgOVd2ZwWDd86sL/y5Z15hgXZgTQ04tn1FhAKoJrN4afpvuLDA2ZDtor1yfGJ/X7RW0hfbN0WZ+TXjgFSBpeH7WM2wXiykcNwdYsNw/lssXbyP9A7WSynbo6apgIyKqKxFWQzQIrIboDQRaqx06VEMMCBeqksBgQDXEMPt1qbJYFlJkNUQiIiIiIirnDfEZ1qho3mKIrxi884b4CsukJJinbaerGWeIr3FqFeJrNwb4ytrpagJ+3uXecYb4iGgoGaIfFxIREVUnGVFVMQl4h/jOAxwmef5h7eIo24yu3Vb9O1n5z08BD9068HurmG+oqCvb/eVz7h8yyhUfH2jXmhD9DRU2DPjiWv1yU5jH6LkHBy4Ohzay3RnBC8Vg3arCv0vX1y9YN74duORUhVfWFdqGViPu+BBr9rDdyfsAD70WzVymynCubK+lqQjCdgDw7XMVvn6b/77Pi6WyXQQtbMP44YdiOPa7+ifFMyvNVQcrCts9Pb+CjYiImgSrIWqVVkM0VRXUVEMM0Wo5sBpi/3bmaoghqjBqqiyaqyHa52U1RCIiIiKiaHlDfPrOOpWH+NK9bu10vcu7+8fKg3ve7fPN9AZuBOnO9p9/rXGIr7zaXvlyb8BPF/wrVvZjiI+IotbkHxcSERFVyVTZzhK2e+FNYKalPaHX4rfs406hjpef0G8bYeWz2xZW945Ttm0CHr6tZJkpyAZUVnnPtM015yuMTjpWtcvngQf+MvB7VGG7+UsMj6MqKmTF0Ye49CKn/JM0Y2W7rozghTdLK9YtXVe/kxmpVuDQPYDDZyocMRM4Yk+F/acB8RaFj16nDzKF+bak6/VYv6O5z95EFWIDIgjbWbaPqrrcmAqqkNazsh1QOKFj8qvHBQ+9Ek1lO8mZX9jUZ/4T+PC/AH29hWpauRyQ7ytcLv7blyskZYuXvcsHLnuXedbt08xVsk3hsvSZ9tvnn8M3rtlvvq/0ugxs1xd8XPkm6mNNRGTDaohGYqp2qKuGaG1p7NLy2B4uVKZwYYStlgOrIfYvZzVEIiIiImo2SimkEoVzl7UK8enDeOJb5g3xmQJ8nQzxNUwtQ3wDAbxEoT3u4OVCUE8/rgYvl40zxEc0sjFsR0REw5shbTOhz9xTsTsrcH1z9/Ja+x/wTqGOtx0DvPykb/GXt/wQH59xo3YTU1tTk5cDQoFF3/wHw/VeucR3W7bCUtkuwjayoQIna0t7NbYZwnbpkMf39pnAqi3+5a9uCDcPdp8DrBk8xlS+B7ta/A+S7p4+NPLPtM50f7Bu9WDFulfW1+8EQ3vCE6zbEzhipsJ+uxWCdTpRFDVxDYi+ur76fdVSRdXQDGpa2S6iwNvu4xXCfvQ/Y3w0+3Y1bax5bN12wb67ASs2+8d0rzlWW9aZx1paoNqSACLqkV6hZjr1JCJlIT7HkF8x4OcQLtSPe0OA+dIQonHePv2xVrTfvuDjIiIaKoqva6yGWMJYDbGkqmBANcSSdWwhQIdqiKFaPDvstySk6NJamtUQiYiIiIarWof4zGE8fbW9LkvAjyG+xiqG+DZFHOJLtZYH9/r/bSuE+Np9wb7iuBq8XDbengBaGOIjanoM2xER0TCn/0M4KRnjFmGCbEGhLVugRDJpyC+/pQ3aAcCZnfOM24atHOeyfiIOfPAIwx/wGX+VPQUYK7M1LGxX9kFb0tCqNWyb1kdf1y9vCVs0oq/0SqakB7swxrdaT08W9fozTUTw+6cE37m7EKgDCuG1MFXhqtGeAA7zVqzrD9bV+81kzvE51dfkJ0P23U0Bi6I5yJpWtouoAt9p+4Xf5oBp0ezb1cRR5sfy6xuB3Q3hv9CvL5rX6QFHnhZysuFPKVWoLhRv/FviZjp1JiL9rTzLgnvaCoIu1RD94UJ/kLE8JGiohhgqXBhQDdG3X9125dUWWQ2RiIYIVkM0ElO1w8BqiCFCfkHVEIsVCOvQahnx8sAhqyESERERufCG+CZFHOLL5IDOdH8AL+u5XKy2l/WPe0N8unGG+Bqnp7fwU6sQ32Bwb/DyQDtd7binnW7ZOEN8RNFq/CcLREREtWRJDE3JbcDG+FTf8jABk6DQlilQIrleyKePBla9Ytx29NEnAtv1Y2HDdkFBotFJ4OZ/jGH6OFPYTt92t9UQtouyjWyosF3ZB+GmVryZHJDPi1OJ7wdeEWzYqR+76PiQb0zKbsdUXn+79tSxj+z/+4vg6vmlz5NaBe062jzBuv6KdfvWMFgX5mq4PmZdQ3mN8i+nKvzgvuYI2+mqtRW1RxS2G+XYYtqrERVNPneywi8e8t8vyzYWfnT+3VRp1OStFeax3fYMNxeNWEqpwVaFrRH2pa70eBp9AB7GaohhWi0HhAuDqywWKhNKYAtnh1bKzvt1aPFMRDRUsBqilijl0NK4JWDcUDFRF16MG1pA66ohOrVa7t+vU7gw5lYNsX9dVkMkIiKiKCmlkGwFkq21C/F1Zfur6aW9YbzBEJ93vDtb6HLj2ybDEF+jDYT4tKPVhfgGwnje1rhtg0E9/bjyLSte7mhjiI9GJobtiIhoxJqRW6cN24XJOQWta6xst+gxa9AOAFo6OhDb1oe88qfNoqps98HDgS+fGcMhuwOtccsfw4aKSQnJogftvuXZSMN2If5IX/Fyya+mMBsAbOsGJo4KnvLrt5kr2YQODGVLb0dTGDAdts9thbZ0Cn7899q8Wx7VBhy2J3D4noMV6/aZWps3XVF8/pFzLFjU7CcXbC1Lw6o2bHfdI+YbNao2smEdOL0x+917cvhtRreFW19uv9482JYKfwBEVILVEPV81RC9FQSrbbVc0vbYFnR0qYboqcSoG/ceb1A1xJJ1LMfFaohENFSIALleAPX70pfxUBp9AGWM1RAHQnoO1RCdQ34O1RBr3Gq5JLBoCTqyGiIREVFzKQnx6deoaN5iiE/XDrcQzDO30/WG+HTb9/Etc0MUQ3ybO3WjlYf4kq3+gJ43xNeuCfB5Q3ymACBDfNTMGn+WmIiIqJYsJbpS+W7t8jABk6CWs+M7DAMvPh48uVJolV5kNGG7sG1ac4bel5PHKBw5y+GPVUvYTqe3TxD2DVwkle06S0sBjssbSgMCWLIOOHFu8JRPvWEeM96/JpnysJ2psl19wna/e1IiCY+NTpa1gt2zEKxzqRxYS2Eq9Lk+p857e3O/uYvyNu/Khn8el2xv7taNRIPeheywdFqtpQlhXytQKPgRSrf2DElBIhn+AIiIHLAaopkMhBAdw4VB1RA14cLgKouGaoiVtFJ23q9Di2cioqGC1RC1/NUQQ7RSDqqG6AsBllVDLJtDhW7xbKiGaAwXxgLGWQ2RiIiGL2+IT1+4IJoQnz+MVxri6yoP8mVEHwBkiK9h0r2Fn1qF+EzV9josAb+ORKF9rm6cIT6KAsN2REQ0vFnDdvrURVBrWC9bhbn9dgN2H6//g012mUNgRWrOQWhd1YsM/CGJbMgwW9VBtow+mNgq+g/LwoYBgdq0kd0nu8y4aiaCL+2/c3/3+0A0J+iTpsdguj69SpeuC7/N6CRw+J6lrWDnTql/sE5WLgWefQCycyuw/GwAb6tqPteKlhceN3LehFVb2c4W5IzyA4j3HQLcvsht3TXbItttKKftrxD247FjZ4e8jSz/3/EDHyKi+lOxWOED+niDyrl6j6XRB+BhrYYYUatlf5DR3GpZrPPmzfvNlR1j4H41YUpWQySioYrVEI2kPNynq4ZoHQ8T8rO3WvZVQ4y01XJ/ANIYWCwNOrIaIhERedUyxJfNmavpeUN62mp8hnGG+BqnliG+kjBeSTCvv51uovB52LGzFU7dD2hrbaazK9QMGLYjIqJhzvwHVbuhhWeYNrK2sN21F+hPJEm6G/jzz4InnzzDWDkum80DcD9RZTrOuOsUnTu1i43H16CwnWxaW/K77U9fl06t+YCyb3OnhvjjWlMd0NRGdtW2+pyEdKlqd8q+wGGeVrB7T26CinV3/BJy1SWD4aLps4Gx/rCdhCht5xIs+/a5CnOmjJw3VNWG7V5co1/+iWOjvQ1/c2EME77odrbj40c35v7bfbzC9HHAW8E56wGzJobcyYrF+uVnXhByIiIiotphNUQzXzXEUOHCoGqItvChNzzoUA3RtZWyUzVET6jRVv2RiGioKL72NYFmCiJaqyE6tlL2V0w0VRhscauGGCZcGFgN0Rsu1AUlzVUW+eU4IqLoKKXQ1gq01SHE15UttNItLBNfsK843mUZ35VmiK9RiiG+LV260fK/ogQnzgXu+kIMo5P8f5sGMWxHRETDWwWV7cIETEwBsQOnAyfONfzRdeev3CZvH4VW6BNhvb19CPPfeM7wB7trkE3u+o1+e9EnE20hRO38IlUfIwDgDz/0LZqQ24KtcX9qxaWCoemYKtLtDyym8vo2sr9eMhm/jHDXJvMW20+9PvP1GI6Y2VxvHmTnVsjV/+LWI3bTWgB7Os07f4l9vjMOAC4/a/h9E/s/Nl6Bb065QjtWbdhO/0YVOHj36uYtN65d4WvvVvjO3cGPid3GRrvvML7+boV//oP7xx2hXvsAYMdm7WI19+CQExEREVEjsBqinnM1xDAhv7JwobWFc1A1xJLLmmqI3uMNqoZYst+A1tKshkhEQwmrIRr5qiH6qhUGjduqIZaH/Oytlq3VEKtuteyphhhU3ZHVEImoydQ6xFcS3CuG9LJAZ1r8yzKFy90B45F+tkV4dBnw84cEXzmzmd4tU6MxbEdERCNWSvRBp56Me9U4U6jMVpFInrnfaW50jDFXjtu0EcAebvPAUtnONcwxYSqwYbVvsfH4Qobtcpb1QwVORo0DOktLRxnv597gVrxhQ4NWy1/yLWqBfgetsTyAsEmb8Eb7OxSXaG98sRG/5x/2fUtcmU6VblkP17BdUDXGt+81dN5EnbA38NjrwetdtP0GfG3L9/FI+wn4+6jTfePVhO1sVQVrURhx8mi39VINfEyPagu3vvPrc5Bc4z/MICIiIqoUqyGaWash+toxV9ZqObiVcuF3Cayy6NBK2aUKY1CLZ1ZDJKKhhtUQtZyrIbqG/FyqIRpCgNpqiGHChUHVEL3H6FBlkdUQiYYPb4hvQod2jYrnzuZkIHhXDOENtMZNS0kwzzveZRkf6SG+eYsFXzmz0UdBzYRhOyIiGt5MgY9YDO35bu1QT9q9apxr61NZ/Rrw0gLglA8Cu7YFTzz3UGCfw9AqG/T7TWecji/scRqN0peDShi+kRo2pGZbP1zYbqwmbKevYJh2yJ/YQoD7TwtxXADQ608ubW7RpzLHtfYCqH1Fi8P2VFiyznwqLdn4ohp+O7c6ryo5937GY9vt46lmvC0M3neowmOvB58iPa77CQBAh+hfC6sJ29meX+3xPOSVhcCY8VDTZ1e+E4/j5ii4nBaO8n6UTA/w6kJg8nSoabMC13c9xqLQle1MUtozNUREREQ0xLEaot5ANURTC+ZqWy1rg4zmVsvWaoi5Pn1g0Fe90aEaoktraZcK8UREzYDVEI3s1RDjQIumPXIlLY8dWi2rmrZaNlRD1AUdWQ2RyCcRV5gQr12IbyC4522Nq2mX6w3xadvpZgrtdIdCiG/TrkYfATUbhu2IiGh4M70bnnMQkjv0Iaw1W93fQptCYol44Y9V2bUN8u7dBge++9ngSVtaoD55OdA+Gq2yRr/frPuJhk27xFjlyiXMISLAM3/XjsUNbWSDqoSV+8kD5ts8VOBk/SrfIlO74B6Hm9AWAgxdLjrjr7D3qe2/w4L243zLe/rqc3KgM21/rDdlwCzrvz+Nle1CCAqINuVtYfDxYxSufUTw+kbzOgenX8Q5u+4AAGPwuJqwne35deTVZ0C2PQ4AkP2PhPreX6HGT658ZwCOcCtgGFm1Rrn9eshP/w3IFoLPcuDRUN+7DWqsuazpnCnhXjPiIV4GbJUEMWv/UPslIiIiIhrKSqohNoGmCiK6VkOsotVycCvl8mqIpqCjQytll/0GtXhmNUQiGmpYDVFroBqiteqgvX2xr9KgKTyoq4bouRxcDTFEuDCoGmJQlUVWQ6SI1TLEpw/wAZ0Zc8CvO2A8yu5Vho+UaQRj2I6IiIY3UwChrd3YXvTpNe6pmqCKcXLR0c5zAQDecyHUu86HOuwdAIAE9Km13oz7X4gX/sb8lRCnMMejdxiHomgj+9gywddviyhsp9Em+iqAdy4SXHqafVvbH+JHzQr3xkHm3+xbtntOH6bs6avPhwK3L7KPN2PATBbc7b5uiHltVQyBQin3oWLqGIWHvxTDtY8InlslOHh3hfEdwMLVwLYuwXETN+Ofrj8L4/I7AADtpkBqNWE7y7btXZ6KnUufhXz7Iqir7qx8ZwBiMYWj9wKeesO+XhRtZGXxU5CrLilduPgpyH//I9R3b7Vuu/80YOm64H3EVOE6OXvlOcsgT6gRERERERGrIZoEVkMME/ILrIYYHC4Ua5XFPv1yXTXEwCqMDq2lWQ2RiIaKYjXEHKshlnOuhhgm5BdUDdEQAlS6cGFkrZZdqiEObscQYnNJxBUScWB8DUN8/jCePuD3yjrB/KX+uRi2o3IM2xER0TBneGuTTBmrOQGFcsYdbcF/wJkCOq0tgPRmtZXWTNTl10O9+xOl8yj9Dnodv46xKy24+2XnQ9CSx+4yjrUaKtuF+bbI7Yvsbz9dw3bSuUO73FTZbuPO4DltpatDhwBXvepbZDq2PomhNydojTf2DV8UwaTIbfG3VlYRnPwNesxG1tKzTqaNU7jibP3jR+67H5IfbGfdbmgj25Wp/Ha1VbbzPe6ffQDSvQuqfXTF+wOAMcngdaIIkIopgPz0fEi6Gypp7knc4ficiod8vMkjt4fbgIiIiIiIiACwGqLNYDXESsOFQa2WLS2cc6Xraqshhm2l7GnxHFjt0BZ6bJKqYkRETlgNUUtfDTFcK+WSkF9gK2Vzi2cVusWza7gwoBqi93iHaTXESkJ8f18imL/U/+HgzjTQlxe0hPmSPA1rDNsREdHwZgrhJDswOt9p3GzTLqCjLXh6U0An3gKgc3vwBF5z3uZbZArbZR1Lxy15yz6+3Zw3HLTxTeNQIoI2sg++Ek3YDlv9ISwAeLTjRO3yuVODp7QFsMKEYUQEmDwDWFPaz7ddzF+F6ekFWmv8l9qEDmBrl3k80eCwn9aM2cAKxwRpiHfvQZXtjpzZhLdFpcreLKdq0EY2Y3kNSJZXm+zLAds2AlWG7d62u8L8pfY7/aAZEdyPix7TL+/NAju2AJawnWuANeg1VHK9hf/fiv/H/fU688rD6OQIERERERER1Q+rIeqFqoboGvJzqYZYEnTUVEPUBiEN1RB9QUeX/Tq0lmY1RCIaKlgN0Ui0LYkDqiGGCfmFaLWsrYYYWavlsuX9643NtwHQf1axKw2MM5/+pxGGYTsiIhrejGG7dpzVeS8uxdXaYVtVJq9sTj9/awuATMiawvsc5p9H6UuruVa2C/ojPebSRva5B41DUVS2ywccpHPYzvDtrBO6H8Nj7Sf4lrsEAqutbCddOyFXXwo8cQ+wa5tv3FTZDigEncakgvdRqZfXijVo9+1zm+k0pkeI51WYN6k3PWVe+4iZwKF7hJisycmyF0p+N4U+Kw3bdaYF519vfvJo209n9G29w/j40Qo/mm+/1w/everdFE4eG8gXTgd+fA/U9Nna8c+8Q+HRZcGPzNmTDPM//FfIr//TPXBKRERERERERJFiNUSzwGqIYcKFQdUQja2U+6shRtFK2aUKY3k1RF3osUmqihERORmohpgJXLXWGhFEHNM6B9j7Je3Yjh6G7WgQw3ZERDS8mcJ28VZMgLmPaI9jyMQUKmttARCmrd/7/0lbmrk1pg+sZLZscpo2ExAaDKrmJXf/1jquDc0AmLc4uj+B3cN2+it7fPcTFYftbKFBp7Dd5R8EFj5sHE8FVLarlQ07BQdfaQ5DHTUL+OqZzXSqzuPp+b5Fqsq3XDc9aUlVApj3xeFTOl12bAH++OOSZaaW2pWG7T7wizxeWmse175urHkdmH1gZTvsd9ie9vtozwmI5n5c+qx5bN1KyCWnAzct0rbFPeMABZdTBF883X+c8tyDkG9+tHCiN4xh8tglIiIiIiIioubGaoh6JdUQa9RqObjK4mC4UFsNcWDesv0Z53XZb0Br6SaoKEZEVG5s3vzZ8Y6QNVZoeGPYjoiIhjlTqEEh1Wp+y+0adLKF7eTOG9wmAaAmzdAuTxjCdr3r1znN+9Qb9lBHUAbDGrbbcx8kcvo0zhK3w3PiHrbTp+fayltW9rO1uSyyhRHjAVUB5a03rEE7AEjlzdW8XAOflbhzkf1xcfV5wyNc5hrBu2GBec0vnKowvmPo3xYDnrjHt6jdUGGxkrDd2m2C+Uvt6+jCdvLI7VDveF/4HZZ55/4w7n/6uKqnL3xDO8imtcAz9wMnneMbSjmea27XtJuVe38fPmhHREREREREREQNVVoNsa3Rh9NcQcQw1RC91QhDtFo2zttXuq4YxwOqIYbZb1A1RG9QkYgaYmx+h3GMYTvyYtiOiIiGN1NlO6WQaGuBkjxE+VNTkVS2C2OKvrdha9dWoEOz3/HTnKbVBTa83rl/wFvrRY+ax8ZMxLLOudqho2bZp/WKBRyC822Z06fnTNX3sg7vV6upbCf33hQ4f6Mq233hZnsMbY/xtdt31RJJIFsaUqy2st0Dr1h2N8z+WpY3lviWdYi+n3AlYbsFy+3jLZJDCzSBsWQ0tddtz5uN5i+kudux2W29lUu1Ybug1+SilG69lf77zskwCM4SEREREREREdHww2qIeuZqiNG1Wg6e11sN0VZlMajFsm2/QdUQy/bLaohUB22SRVs+jUws6Rtj2I68htnHh0RERGVMYbtYDKothZT0oFv502xRVLZDJsRfXUefYZ5Ht1+HqmyAPSwGAMfvPXhZFj8FuesGYPlLcKoJNmY89tr2Bp5PHeYbSjseHwCkA27ratvIGsN2VbaRjZ0xFvli1bxYDNj38MLlyTOgTnwf0Lk9cP6UoaIYUF1lu7XbBD+5X/D0G4J9dlO4+ASFo/YaPF0QVNVvjwnNdGqhjKGaYq24ViJrdrJyKeS2a4Fbf+Ebi7KNbF/e/tphej5i1zbIb78HWfgQoBTUEacCH/oCVCLct31P21/hsdf1x3DM7Age146v65Lp0Z6gi8UU4jEgF1CgTlt5tXuX076JiIiIiIiIiIho6GI1RLPSaohBrZb7HEKAusqFAdUQ+9c1VkP0hgdDtHgOrHaY01VJZDXEWhib34GNmrDdti5Bcz0jqJEYtiMiouFNTIkGBbQl0Z7vRndMF7Zz+4PJGrZbu8LpENWX/gdq3CTtWGLaDGCbZr/r1zrNHRToSMQL11EWPgz50tm+imFWYybi1K6H8H9j3u8benGN+zRBwcZq28hWE7az3X6t4jnwfB5Y+mzh8tJnIY/cHjw5gFb0IiZ9yCv/ldwZ4q7w2rBTcNIP8ljRX4DrkWWC3z8puPeLMZw4N/gx/efPBvTHbSDp6wvVRrO6encF2gpjQ4y8sRTyhdOAHVu046bQZyVhu9YWBdstbwzbPfAXyAN/GfhVnrkfeOER4Pu3h2pp/J6DFK68U7//Dx1Zv7Cdbb1rL1D49I32R2f5405EgNWvue3bh2/+iYiIiIiIiIiIaOhjNUQ9ESkN7kUR8itrtRw8r6Eaoq/Koq0aYoj9BlVDLP5UYGzfTmyMT/Ut37m9G8CoKu8tGi4YtiMiouHN0kYWiRRSok80uYZMjGG7MHklQ1U7AGht0U+UVW5vJIIq2xXJH38cLmgHAKPHISVbjcM9WUEqEfx2I6iCW7zqsJ0+zRdU3Q0IqGyna4UZkkKhlWyX8v9xPm+J4N0HhX+7dvPTMhC0K+rpBX7y9zxOnBt8Y86ZEnqX9WOoalfNm9qebEDoqfHv2asmd1xvDNoBQLvoK9ulewuV6lqCej17BOXijGE7nSfvA15bOFg1skqRnPzIOL5OWl5PJ3bYA4mA5nG3ytLrOAjbyBIRERERERERERENW0opIB5HIf7DaohexmqI2lbLfcC2Dfje17+OXhXH2L4dGJvfibH5HRjbtxMTZt0F4JBGXyVqEgzbERHR8GYM2wHo3IZUSl99yLWFpzFs1xPcQrRwHAoYPd44nDCEATMtKafpbZXZLjnV8+fu4qed5isxaizG9b1hHF60BjhmdvA0tsp27Qm4V7XK6SdqK7Z6LZN1CCLmTPevZCN7s9AV038LZrS/QrWTm5/WP+ZvXei2/UR/ocfm0Ruu1JpI8L306gb7+KTh8CWlxU9Zh9sD2hmPCvFYzAW0kW0LE7YDgJefDBW227Yof1sAACAASURBVHOCeeyA6eF2reVc2c4StnN4TPme/5W8RhMRERERERERERERjWBhqyHKnvvg7J73aAt8qM2rwLAdFTVvnzAiIqIo2CrbQRkr2wW1Ni0yhu369AEvnwOPgeoYYxxOjdKH6tJoK5SFDmCrzPae1ucKbTkBIN0VOFc5tc+hOLn7YeN4l+NNYLut3/02/zLZuRVy3x+Qv+6bkEduhxRDLTVoI2u8fw3V8kLb/0jjkCnoF+SZlcHr2IJ8e0xopu8clTGE7VQVDWMzAXfl6fs38e3hqsf+/DZVtgPCt5INetyGqmwHAOluyKsLITf9AHLb/0LWr7KuPmWMwtF7+ZcfMA3Ye0pztJE9albw5geWBwMreI0ewMp2RERERERERERERESBVEsLMGWGfnDDm/U9GGpqDNsREdEwZw7bqY98EUlDRadqK9vFXQIlE6ZCffnn1lXaJ+qr3v294xRjJTcvW9jutB+fCPn2pyG5nHuAxGv0eIzJ7zIOb3XIhvTlxRp6u/q80j9VZMObkM+eAPmvC4HffQ/y9Q9DvnIOpKerUOJZwxTuWbcj+PhMlQHj4pDUC7LXAVCnfABH9egrVr3lWByxEmMNhRE/d3KTh3IMbWSrYXuO/M/5CruNbfLbxMXKpdbh9nx0Ybug1tVhw3Zyy88gFx8DufYbkKsvhXzqSMhLT1i3ue6CGKaMHvx9fDvwmwsjetvj+lqZNa/XGlc4aR/75ol46eNO1q82rzxtltsxERERERERERERERGR3dSZ2sXCsB15sI0sERENb8bqbwoYMwEpMYTtqq1slzcHStTFVwCz9gcOPwnK0kIWAFJt+oBIV2wUkOkEWhPW7U1Vps7qvBcxCDD/ZuDQE61zGCXbgVgME3JbsDU+0Td844I8PnRki3WKtOV2vv+yGHYfXxY4+e1/A2uWl6743IPAvD8Y2/EmLFXoMr2CtlZzmKomle0OPxnq/MuAt78TuP16zOxdjadTR/lW+92Tghsvqnw3Or05QWtcGa/XCXtHu7/IhW0j6zKlJRz2uZOGftBOHEK5tjayoSvbWVpXAxVUttu6vvT3rp2Qn1wG9Utz4O6g3RWW/kcMD74K9PYJTttPYdLoiO7LrLk9bImAUN4HDld4+LUQFRn/+CPjkLrhOWDhQ5CvfsCwwtB/HBMRERERERERERER1cVh7wDGTgCm7AE1dQ9gt5nA1D2AGbMbfWTURBi2IyKi4c0UtovFgESyhm1kDYGMWAz4xFehHMMPK3a1G8fe2pTBjFEVHp8nLCY/+LzTsfiMmWAddrkNbUGeSbrr9uid2nXl0Tug3vUx7VjKUrXrmZXACXPNx5Dr0z9+4qiwxyuA2E/uG7gsbYYScwBmT6p4F0aL1wGH7mFuodva0uShHENlu2rayGYNd2UiDufnaVN77YXAVTrEXIYy6sp2KUuwz9mrz0N2bbOGlcd3KLz/cACI+D5Mm19PSmTsoTxbK2et8VOAbRv9yw86Dqp9FESxYDkRERERERERERERUbViF/17ow+BhgCG7YiIaHgTQ5klpYC2FFL5ndrhatvItuYz+oG2VKgAz5pOc+W6dVuymLGXffuatUGduS/UtFmQfF5b1Q4A2u1F9wDYb+eUbntd2AQAnpoHnPZh7dBR6WeN+9gekPupSWU7r3grlrfO0Q51tFU25R7jgTe36cc6+/M/xuvVvRXy2AIgH1CerFE2WFppahgLW3oYbwt7UcahozO4H7EtABe6sl1A2O6EnsfDTWjStdNYzbKmXNvIBqx34lyFoNqLIlJoAbz8JfNrX3nlP61hEBolIiIiIiIiIiIiIiJqEgzbERHR8GZrI9uWQko2aEd7MnkAwZWCzJXtTGE7c6U6nWTC0uI0Exz4qlVYTF18ZeFC+2i8Z9fd+Nvod/vWcalsZ1sn1RryoPr0AcIx+V3GTTrTAlsQxXT7VRxWPPPjZRO14rydt+D51GG+Vd/YXNkubFnOYnDKeL2+/SlI17zKdtxAVVW2M9yViWEStpP7/xy4Thx9SOQzyMb8Cc8oK9vt2bsan9t2XbgJTVxDb1Fz3e+GN63DsycrfOYdCtc94n/sPvhvMcj2zZAvvRd49XnrPOqcz7odDxEREREREREREREREUWC/YaIiGh4M4Xt+ivbtRsqOvVk3NqEmoIliVUv6wcsbUN1Um3mxM/WTZ2B25uqTMVRRWW7Uz8EdfK5hcuHn4Sjep7RruZSHdAatiurbCdBZcpy5slm9K7VLr96vn1OU2VAX1hxt5nWeYrUgUeXLmiJY0rfJu26nYa8ZhDbbVocM7VOjaxiX5MQh4pevYZWwcOhsp1sWQ/cfaPTuu2ib4/67KpwQUbTcwYAHl55Gmb1hqtOaJRuTNhOHrndbcXt+ue11y8+pvC7Tysk+4PFo5PAU1+L4aR9FeSqSwKDdgCA6QHlTQF7ApeIiIiIiIiIiIiIiIhCYdiOiIiGN1vYLtmOlOgDG93p6sJ28R36inlIhOsN2p40/1f90qvB7SFNYbvWKtrIqqNOH/wlkTLehk6V7WxtZMsr2/UGpPcMle0AIClp7fIVAdXjjPdvWVhRnX+ZfaKiUWPLJopbW3h2ZcJXbLPdpj1ZQV9ejE+LhIQsYzYMGCvbDYf6z0+5VylM5fXPkWWGlzIT03Pm6O6nsEdOH3qtSKMq23WbK2WWk6w9MauUwseOjqH7mhbkr2vBjp+24O2zFCTXCzx1n9tO2pLOx0NERERERERERERERETVY9iOiIiGNNmxpdBur/izbRMk503P2CrbJZE0VrZzCzkZ27S2G9rFvrnMad6iNktlu9FtwcdYkzayR5wyePm1hUgZgmzVVrZLloft0l32ybL64wCA5Yk52uXTxmoXD+7ScHxt5aG0A44CZu5rnwwAjj2r9PeWODry5uu1NeAqlxMRa9vPnl57m89WDM3Kdiqo6qGF8TkyDCrbYct651XXtU7TLp80OtwujdUgyx9b73hfuInLZRsUtnOsYgkA6AwORGt17QTS+kqDPnMOrmwfREREREREREREREREVBGG7YiIaEiT898Gee+MwZ+zd4ec0oH8xw+GZNKWynax/qps+oBWt0PYri8vyBtWa33mHv3A1D0D53WVyVr6NfbLGQ4wXmllu0QSyhs2Oe7dxspsb+0Ins4UDEu1Fqo+AYD09SH/0y9B3qMPAxXJzT8yjn1w5/9ply9dZz8+UxjQF9Lc5zCoc//JPlnHGKiOMaXL4q04KLM49P5NevtgfEwW5zNVcgOAxHBrI+uQwTO21B0GYTtxqcIWK7wdaDNUtnMJzRbduCCPK+5we81R/3IVMNH+nLZqVGW7MPu1BIAj2cdJ50BNquI2JCIiIiIiIiIiIiIiotAYtiMiouFp1auQfz0LyBsCaUoBbSljUOyJtanAXVgrhJlCS8eeGTivq4dWVX6MLhXM1P9n776jJbnKc/8/+3Q4fc7MmZyzRqNRlkYRJZRFkJAsIcAiWbbwxTY22NjGXF/jCzZOF9YPJ0zwta9tAbYMNhhMEkgIAUIBhAIKKI3izGjyzMmhu+v3R/fp06H2rl1d3X3CfD9rsaa6au+q3dXVrfGax+/7yx+q3bFsjczXa3tKmo3HWdvIDnjkTGxBnp7s1HbwqT+QvvC30Sc7uMd66OqBr4XuLwbSeN6eyPr2Y+HHat7z0tUyxshc/y6Z930i/EQbj5X5akiyL5W23j8pXtDJZ/zIeBPP7fxFM/d/J50r8/5PyazbHO9GVbHdj+wcCNvpsx+xH9t4nPSW35H58C2SpDcMfDF0mK26Y72v/zTQL/2z/btU82yl0jIrN8h8/Dbp0jf4XaBO8OAPmpqXWJwAXbOBwL0e7XZveK/M/765ufMDAAAAAAAAAACgaenpXgAAAIm4Wov+9IfStgvDj02G7SyV7aRSS87J6mph3KElS/mw7uiAXDX71aUfj0ZXybOtMeVT2e7t71fXjb/vHpPNqcdSEUuSntkT6OgV9ncxMmEJs5VbyAbFovStf4tcahRXoO17T0qXnxB+7IEXLOerfs9LVlQ2zTXvkLnmHf4LS2XUW7S3i4xb2e7Z/e7jUZXt6sN25sO3yFx8XbxFTIfbvxO626e5rO1+zPbKdoEtaCxJF12nrj8pheyC+++QJPXaWmp7Bj7/9V733U6r6sdo5XpJklm3ReaPPif90ecU7N2h4PUxQpP33ir9+l/4j2+VOAG6seYq2wV3WyqjVumajvcOAAAAAAAAAAAAKtsBAGa58TH38d3PWw4YKZPVSJc9/OYK00nSmCMIlQ0sCZWYYbtfv8QeVDut+8XI+WOWIJFPu1DT5fHXBGO0aeI56+End1sPSfKobDc8IB14OXodEY4af8567Mk99pDQ2UeF73+s+/ipF0891OSqJK3aoJwj8Glrs2tzwJE9laIr2zU8t6s3xVvANHGFUqNYK9vN9v+XlMFD9mNBVRCv/JtkC6QOj/tEFqV/vc897pHuE6de7Hy2cUDM38ZWtuSOJU7Ybqi/uWu4gpKSdPVN8c7nCI0DAAAAAAAAAAAgntn+z4gAALiNWoIRxsgYo3PyD1qnjoy7AzeuKmK2amUmZqDk1HX2Y8PF6P+M28JsrmpqkqRM1n180vFn6OSxR+zXj8j02Y5PVrZrug1jnW1j9kCcq3KX7dgx409NvZi/qMlVSWbFOhlJueKIRkOCn3HbyEYFREcmYrSRXXe0tHVbvAXMQuOW+5F+ebuKN71NWrtZ5qobZc5pXQvodgqGBxXc/BfSt/7VOsa88pqpF+XfpJytsl3M6oo2R41XBeyWrGocEDdsF6edq0XwtX9RcMd/SLuekxavKH3GN7xXJu34bR2N+O2sNnCwuYVF/O6ZS66Pd77ALzAJAAAAAAAAAACAaFS2AwDMbbbKQuVKP0vT9lCDq6rYwaFAr/gze/Uha3vabM5+0hDGGP3yyvCg2J3FUyPnW8NsjraqkmT+792R5y6daL6zqtjOQ+6QR2TYbsczfuuIYCStndgReuz2x+1rvHt7+P4rhm6fenHVjQlWJqm3z/p5PLE7XkjmyYjxIxP2cJkkZVQuhXjs6TIf+7qzjfKMYllm4FHzzlrZbt/z0lMPSt/9ooL3X6fge19OsMDOCPJ5Bb/zOulzH5X2hj/vkqTTLpra7i79Jtl+s257vDVre+3grZVt88bfaBwQ87cxaRA3+MxHFPzFO6V7vyW98KT00A8UfPoDCv4sog10nNawzYbt7vhP6yHzvr+TOevy5s4LAAAAAAAAAACAxAjbAQBmt20Xuo/bqh+VQ0SVUFeIp/faj335IXeoyRpmi1u9SdLxC+ytCPMF9zpsgUFrGHBS7/yoZZXkeiVJm8fDU2lfibhP1sp75cJ6wddv9luHzY2/X9k8dvyJ0CHffDR86kTevvaa+9fEZ1pj+Vr1FMM/j5vvjhe2+6e7ou+3TxvZrn+4W2aWtJCVHG1kPSp6jVtaLWeCqgPFooLP/23sdXXcI3eX/hel+pmdbCNrqWznI/C4zzW/id2NwbrYwc4EYbugUFDw738dfvDbtyhwBRXHY1y3/0C8hU2yXf+KN8tc88vNnRMAAAAAAAAAAAAtQdgOADCrmbf8dpMTS/8JXJKxh8522zNu+pcfRoTtbMGVJoJZuaz9P9fPOAKBUoI2sguWRKyqLFt6P7vSIW0hJW1e7g7QWMOAk11sBw/7rcPC9C2ubB9ILQ0dsyl8t57aYz9vzeebcI3KZLUzsyb00PrFobutHnzRfXx0wh4uk+rayM4BiSrbBXUP50Pfb8GK2uzxH/mN6+2b2u4rfdeHu3qbvuyegegxY6Z76sX4WNPXmjphgsp2u56VDu+zH3/8xy25btDfZGU7W5W/0SH7nNlShRIAAAAAAAAAAGCWI2wHAJjdmm2nVw4mLOi2t4Idd1Q2u/NJ9+lztspxTYTtLlltr45ka8MadTyqipWZtyBqWSXZbskYjViCOq5gl2RfX27PdhX/7v3SnV/yW4dNVWhwWT48mThoyf242ghfPHxnZdus3tjU0ioyWeshVxW6ZuQLgVdlu9nGKF4FwGqHLLnTWRk8HI0I0ZaZ7FTwzZSrWJ4wZu8X66ryKLm/K5NOGqsqIXnUCdETosRp51pvNCIwZ6mIGhQK0kSM78hA/Mp2QRBIE5YfpQ1bY58PAAAAAAAAAAAArUXYDgAwq5l0RuYvv97ExHIVIEf4LSrIZpMrjqjLFv4JaZ8YZeNieyDQVrmuctwWtotqI+vJGCNlc3rz4VtCjz++q7k2sj1P3Svd8ldJlyctmCoNd9Ohfwkdsm9QGp1oXKcrQLR2YufUiy2nNr08SVI6q/fuD3+vd4d35w01FvIe6uWL7ipkmWBCuvad/hed5fpHAv2zpUrlbAweBk8/HDnG3PSHofs3TTxvnTMaFZr1uFXrJqpao67cED0hSpLKdoOHIo5bqlXa2pLbNFPZbmLc2v7YnHdV/PMBAAAAAAAAAACgpQjbAQBmPXPmZfEn9ZcrDnX36HhLRSefAEkYa1W78vXi6u7pth77yQv2gFUQBNb3kAscQZW4Vae6e7SssD/00L3PuqeOWivvtSYMONkiU5LmFwetw74aklG6Z3v4vU0HE8qoKn2Ua779piQpk9XyQnhLy4EYt+ErD0WPmShIf/+98PCmCYpKqSizdLX/RWeM8BaaUfHDm++2jwirbBdYQlAzxve+HD1mw7GN+zaf5Kx2edDRvVSSntwdfdme6t+cXPzfwQZxg29VgoiKmcEd/xl+IG7Arz9+ZTvnNZr47wcAAAAAAAAAAABai7AdAODI9PVylbNszhrsslWFi6ogdii12H6wibCEcQRT9tvzYxrPS0XLUnuLjnaT2ZjV97p7lFc69NCiiBzayHj4AntcYcA4lq6sbC4o9luH3fFE4zr6LVmevMnU7sjNa2ppFemMii34K9mdT3pUtivYn5nAlNfQNfv+ethsG9kvPeAI2ymknFvRXmVyRsjag7kVPSHPayGvvqK95OFju9ynfOFA9P2vqabZ2xc5PtJ4gt+IwxEhuIVLw/fHDdsNRFTQi3uNJiqjAgAAAAAAAAAAoLXC/2UcAIC5bnys9Geu11rlzRa2GxxLcN1mKhM55pQCQdnQY642uM42snHX2J3TaCE8BNId8TeNIVvlPUeVrVjWbK5snjn6E+uw/pDLZVKe19h0fMxF1V8oq0UFS9tKSYVioFRXeOW2akMez+VEQerORAxK+n6mg7FVtnPftzuesB8LrfT28F0Kdr8QZ2WdsXqTdMLZUjo79dsWJpWSTj6vcf+u57Q+b/9NyEdkDD0ez5r7aRaviJ4QpVBQkJ+QSUc90CFSET9MGUtoMW7YrplWt64QYbOV7WZ6RUYAAAAAAAAAAIBZhLAdAODI1t1jbZ84aMmeuEJskbLNhe3mFwY0mGqsBjU4bA/bvWzPbzlbRsaunpTt0av3fkv/tOjGhkO77cXkNDQW6LbwDr7qbVFlO2OMgoXLpMP7lAvsIaTP3RvoM++o3bfHUuhreX5P7TXSCf86lc7q9NEHrIdHxqX5Hh/JeCF6zERBuuuZ8GPX93+xtHHC2dEnmmGarWznEhbCDd5zRcuv0zIr1kvD9up0kmRu+qBM36LGAzf8lszNf2GdNzQWyNaqV/L7TXRW05z02l+QvnFz9LhJYyNSM2G7w+Ftm2vOGyZu69pmWt2OOeYkbVkNAAAAAAAAAACAxGZfnzAAAFqpO2et8vbxO8IDPCOWamy+12tmzvkjd4ce+uRd9qDJez9vL0flbNMat3pSrlfzi45+thZ/8jV7QMoZBpSkVRujL7ByQ+nPV7yqsuu9+//KOvyJl2vX88nvhq/v3JF7p170OVoG+8pk1RvYg0jPRuSCJk3kowNntqCdJF0wfFdpYy4FehJU9LK1l56x9rxoP3bs6TIf+5rML7w/9LBZe7Qkae3EjtDj/3SX+z76hO0yKg/aeJx90Mr10Seq1kzlOEm6+xvNnTd2ZbsmnqG94Z+BpOYr2wEAAAAAAAAAAKBlCNsBAI5s3T3qtlQ8W2TJNUQFSzKBI43XTFgi16ucJRDY12Wv1nbnk/ZT9rrCbHGr72W6reuTpB0Hw4M6X33YEbZzhQHXbpa59p3R65oMNmanAo6u9/2NR/yCWTXPi63dZBzprLPq1+0/81uXT2U7l+7J5zbbRCB02jXXRtbF+QzOMuZ3Py5z1uX2AdnSc2z7Ldx5yH1+nwBy5ZNw/AaaqPau9ZoN20WxVaSLez1XS1ibpx+2H2umMioAAAAAAAAAAABairAdAOCIZD58S2kj26P7c6eHjtmwJHzucESw5F0HPmU/2EzYbvk6/Th3Ruih9fPsYQ5XUa/lhb32g3HX+ND3tXHiBethWzvWR3faT2mrNihJ2rFdOu2i6HUdW75nY1NBtjMc7Vrr17nAkjnbk1o+9eLAy9HriNLd7bx/43m/00wkDNsdO/6EJMlkWxAg7DB7G9nmK9udMfqTpufOOJuOdx/vLbWo3p7dHHp45QL39LGIZ/TCoe9NvXBUTgwO7rEeC79wk2G7hUubO2/ssF0Tle0c37/ELasBAAAAAAAAAACQGGE7AMCR6ZxXS5JMd4+uHfhy6BBbBTtXFaf5hQH90uGb7QOaCNuZri5dZ1nj4bFU6P5iMbAGYF438DV3va+4YasLrtbqvD105tNisp6zjezqTdJxZ0y1iQ2T7Za59n9Iksxlb6zsvnzoduuUQ3XF5Wzrfkv/v0+9aEVbx2yPUrK3/PW9f76hPJtzRu5LdoLpZHmghwL3s7x6of3YRUPfT7CgmcVEtQbefKIk6fLB20IPDw65E8auZ68rKOjdBz85tcPRStucdZnzOg2aadMqSYf3R5zXFraLeb3xMQVF+3e7JdeYZJqv4ggAAAAAAAAAAAB/lEcAABxxzFdemgqfdOe0dfzp0HHWsJ0j/HTbC6/VSWOPhR/s6pLSmRgrnXJsbl/o/kf7w9NC/Y68xv/c9xH3xWIGyMyxp6v7B/9tPe7TYrKes7LdWZfJdHVJNz+g4ENvk+7+Ru3xi66VecNvyJxyfun1ivWVQ73BiC4e+q6+O+/ihtN+6s5An3hrabtQDKyV4rZUPy8XXO3xbiKU7/flg7fptvmNrT4/9u1AH/S4TNLKdtlgXLryxmQnmSa2mNGtoyc75+UtOahP7Hq3svJIOWZz0qLl0eNarZCX9u/yG7v1tOgx5WfwiqHbQ5/Be1/MKggCGUugy9XC+D9fukFXD36t4VqhFljKido0UdkuOLC7+fM+93js62moX+pb5D08uO/b4QdOvSD+tQEAAAAAAAAAANByhO0AAEeW86+SWVwVjsn1qicID1bYQmK2/YsKB3Wmq/Vkd481rBKlN2VPsxSKgVJdtef95iP29pm9lvdbEbdaW3dORlJvcUjDXfMaDoeFE3f3u9t79hSH7QfL6zO982U+8l9e66u2fuIl69CJfKBM2jgDgj3FqiBgCyrbme4eBbJ/LgOeha5cgSevdUjOqmOz1fBYoN5uS0jMUpFtZd6vnan56k6ZnsZnvt2CPS8puP5ov8E+6ys/x86Q67OPVSrg1Zuw3Me3H/psbdBOkrKO70zc79N4E21kHcHgCkt1ueDRe+Nf78e3S5dc7z/eFujLzr3vJgAAAAAAAAAAwGxEG1kAwJFloi5FNTZibVk6Mh4eCBuZCN9fE8IK4wqZRAj229u0Hg5Z/of+2x5mc7ZoVSn8FctkUMdy3uGQ+/jCAfcpjx7fbj8Y9z4uX1fzMi17Km3fYOlPV/XCmnDmi0/FW0uYcsBtR3pt6OFVC/xOk7SynSRpnqOv6gzWa+zpyJ2H7fNsYbtM4FmOMao960zg84yWv1NDxv5+Jv7jk9ZjtqBnNgj5Ij1nqfwpSas2liqA+mqmst3uF5s/7+qNsa+nQ+FVSa22nBK+/8kH418bAAAAAAAAAAAALUfYDgBwRDEXXVe74+TzlLNUczowHF4NyxbEslXIq0hQBe3s4k+tx8KqsE2GxsI4q1dJ8aubRVTFClufq3LcttGHdMzEM9bjccOA9ZXHruu3V8Ob/Gzdle2qPucTzoq1llDl93Pp0Heca4piC475WFeu9mfiVOCaQa6Z97D1mO2zLBYD673Neobtmq1U2VHbXhk5xKTTUiqtc0fusY4Zyaesx8bz4eHe0Pt47Bn2dSxcKp39KvtC61kq0DmNe8wZm6qsGXzlH1X8jctVfP1m6Uufjn+9uIHA8bHw/UefFP/aAAAAAAAAAAAAaDnCdgCAI8vpF9W+nr/QWektCBpDJLbwTq+r9amUqEVn38WvsR7bGxKsOzBkP1fLQ4ERle3uCsnNPb3HXnnv6y9cE3G9Ju5jb19l84zRB6zDdveX/nRXtpsK65hjtsVfS73y/btw+Aehh33Ddkkq231g35+XNjYd3/xJptHJ2Z3WY7b79+5b7M+gV9juihuix8wA5oKr/QZ292hR0V4GcKTgCtuF7w+rEGhOPNu5DPOhz0gX/pyU7S7tmO+otthEZTs9FP49qzFa+i0PbvlLBR99l/TQ96W9O+zjX3eTtcVu8Mwj8db34PdCd5uzLo93HgAAAAAAAAAAALQFYTsAwJGlPkjW3eMMnz30UuO+YUsOx1Yhz3rtGHpyaeuxrzxkDw2FniuijayyMcNs5fG2+/jZexrX92/3ha+5r9CvFYW97us1cx8XLqlsuj7vLz1QWtePn/dswxv3XoWpVAYMX9d4XioUoz/jJJXteovDkjFSJtv8SaZRT5c9kRgWjh0aC/TJ7yYM2/XO91lae8SpqOf7fcn1On8bnhpfZj1mbyMbch8j1mPmLVDXn35e5uu7Zf7jKZmv7pLWbQkf3EzY7vEfew0LBg8r+MLf+Z2zOyctWh5+7Af/7bmwCJPhQwAAAAAAAAAAAEwrwnYAgCNL3+La1909WpXfbR3+dhpawwAAIABJREFU05dCKtvZ2shGhdgShO0W9NjDNWMh61m5wH6ulocCy5XmdqTXhB4+ZW3jvhULwt/PQMqx8Mr1mriPualWsvOK9rJ/k5k2V3Ctrzgw9SJlr/blzZT+OtbreH5GParbJals1x2MSUEwO9qihkiZQNliePvNsO/rNyOKjWXlccMPRoRCZ4rFK/zGZXNaXthnPbw3P896zPZ9Cb2Pnt9f090js3KDTCpln9NM2O6YU/3GPXqPtOdFv7G5Xmn3C+HHTnqF3zkUXkm1YjSicioAAAAAAAAAAAA6grAdAOCIYnK9tTu6e7R54jnr+NGQEImtjWxPGyvbdffYqxqFrfHE8NybJKlLEVXSYle2K72vvmJIP1tJYyHrG52IV42vRjP3sSpwlFLROmwy1OYKt2VU9Ya2nBJ/LfW2llrRuiru2aopVrNVF/ORDhJMngmM/f6F3buDw+7nLxN4hO2WOb5kM8nxZ/mNy2S1oDpIWmes2Bgs3XUo0Me+XdQdT4TPCa1s10yFNtt3fjw8YOk0HvE7Pan/oPcpTXePVLR8h+Ks0bW2o0/2P0+DBL+3AAAAAAAAAAAAqEHYDgBw5Dj29MZ95RCHCcIDWB+9NUZlO0dYSlKylqO5Hp03/MPQQ997snGN3/lZ+GnefcCjLWLsynal8b914G9CD4e14rUFFn/l4P/1vl4sS1fVvLx88LbQYZ8pt7z92cvhp1mVrzvQ2xd/LfXmL5Tkroxou1/VklS2SynfmuDgNLKFXV862Pj9KNjzlpL82siaba/0Wtd0M2l7C+oaES2EDxRqg8ov7A90wUeK+t0vxGzH28z31/LbGdiqybk8b0kG1p/76Yf9z5nNyVz5i+HHfvJd//O4KvWtWOd/HgAAAAAAAAAAALQNYTsAwJFj7dENu0w6I6XSOmP0gdApT+9prMI2HW1kle3RUZYKfPc/73+a9RMebRGbDNvZKttJ0kTe7x4uy9vbWE5dr4nQYl0rzQ35kASgpIHRUivHv/1OeIBo43jdzU4SoJxUvn+uyogvehTZcrW+jZIKCg2BxNnG9v371J2Nn+Xd293n8gnbteSzb5Zvu99ykNNLuhS2O3YsPIz2hZHaCnl/e0egZyO+ruGV7Zr4HbR95//7H+Ofy9e//n/+Y7t7pFyC3/dJB+wtzZv63QMAAAAAAAAAAEDLEbYDABw58pYATXePFhQPW6fVh9lGLafpbWdlO0kTyniNCwJ7pam88ahyFXed5UDPfEfY7uEdta/trXgj7qHUVFjHLFtd89rVJvTFA9LmZeHHxrrq7k2SAOWk8vtZUOy3Dnl2X3QbyGSV7QrNteScKYzRmAlvT7o8pPjggoiPLevTRrYVn327pTyr2kmVyna2+7imqzbxGVZRs17ofWzmvtmeTd8WuWXBIY8wbzOKBalg/wK6fpNrvPCk/di8GMFJAAAAAAAAAAAAtA1hOwDAkcPW8rO7R5cM3WmdNlBXcGx4PDw4EVnZLk7wpd7azVpesAdFisWpNY06ckJrJ3ZGXysbHraxKrc3vHD4B9Yh/XW3punqgFJzYZ2zX1Xz8qyRH1uHDoxJKcvfkPq7ap8hk0rFX0sdk05LqbSzMqBPVmc8QdguHeSll55u/gQzwM7MmtD9qZAicAsi8qQ5R5XBqUG90WOmW5zfnHJlu+eym8JPFdQ+YPW/i2FyxZBBzVRosz2bcX9ThwfiX9vHqo3SsvDnT5J/kNUR2DOzvPIkAAAAAAAAAADAXEHYDgBwxDCXvTH8QHeP3nnI3o6wPlTywoHwcbmoqmxdCf6zu3qjru//ovVwdcDOFmSTpBPHHou+Vtqvgt4kU25p6QoD1q/ppzvCx7laqVY0EbYzR59U8/qaga9ax/aPSE/tCT/2Gwc+EfvaXiLe00uH3NMLxcArkGeTUkG68sbmTzDdjNGvH/hk6KG7nmncly+6T9e20GfLeLaRjfNdzpTGXtf/X6GHf1aoDZO5Qr2TQitVNnPfrvrF8P1jHp9TkvG+1h8jHXWC/fi453WTrM+3tTAAAAAAAAAAAAASIWwHADhy9C0O39+d09LCAc2zVBb7f3fVJnN+8kL4aXrCqjhV60pQBS3bo4WONqPVYbZhS4tWSeoNhqOvVW4nGcvKDZKkxYXwJOI92/2SYF4VxZqpjCVJ2y6sbLpatn7qTvta1+R3Tb04+bzm1hGmHEDaPL499PAffMl9/8bzyS6fCgoyi5YmO8k0s927sPa6US132/ocdlKcyovlynYbJ54PPXx/YUvNa1eod1JoeLaZsOxCy7MZN5y215LyTao7534e7rvN7zy2UN7azfHXBAAAAAAAAAAAgLYgbAcAOHLYQh7lkMlSS1Bsn727Z41s4Ei5SfbepD66e8KrRJVVB19GHMvwqtiVbiJsVw6aZIPwBM6uw1PbQ2P24FjkPZSaryiWmarylVZBJggvb3bX0671Vb2/VoatygHH7dnmQjVR4bEo6SCfLAw6A+QCe6vO5/fXfqZR96tLHuHQaa1s5ylOm9XyM+j6Do5NTN0X1+/MpFzY700z9802J27Y7rnH41/bR7ZHys2zHg4esLcpr2F7P7PhWQMAAAAAAAAAADhCELYDABw5Nh4Xvv+Zn0qSXshsCD28pLf2dcaSSRrqsoctJCULM3X3OINy1cEXV8Wp3qhWt1Jzle3KYZDd6ZWhhxdV3cODjuJ6y/L2VrQVme44K5uyq7ZiV2DC/xo06qgStzZfVRmrlQGYPS8lmu5TZcwlpWLz93VGMDp+zB6kqg/M5hOGEyXNjvvV0+c/tvy9X1AcsA6ZbKmdLwTq9yj+17I2stawncciqjXz2+aju0davtZ+vOj5wNneT9LfmiQ9pgEAAAAAAAAAAFCDsB0A4IhhbEGLk86VJL1q8Nuhhx+t6hxaKAbWqliXDt0RsYAE/9nNZNXraG3p20bWq7JdU2G7UppuSX5/6OGaMKBjfceNPxl9rXQmekwIc9Uv1rx+xfC9oeN2HrKfY+NEVQ/hVobtTr84ckjgCMz4VBlzSakgbd2W7CTT7JyR+6zH6u9P0kqAktoX3PJhjN+4vkX+5yxXtLxq8BvWIZO/M4c8ulFLIa21UymZZr6/tu/agZfjnSduOM9Xrlemy/H77tm+NrBVtstS2Q4AAAAAAAAAAGCmIGwHADgyLFxqP3bi2ZLsYbmdh6RisRR0coWa+ooR/WZTzVe2M8aox5Ht+a8Hp4JYLx20j8s5AnsVCdrIvnooPLD499+bWp+rsp2rVW5FsyGnTbWVDW/o/3zsU/QWqxbfwgCMOePSyDHjjop7SSvbpYO8lGouxDhTZGW/CT+oaw38zz9sQaWv2XC/+hb7jy1/r5YU7D8gT+8p/bl/yO+UDd/nZr8zLWrZHNwX/vuUSFfXVAD4ul8JH3PPrX7nsraRbWHLagAAAAAAAAAAACRC2A4AcGQ4HF5xTVKlalKPI4j2k3JBM1eoKTIolqSNrKRc1l7N6puPTIWH7tkeHiTKFUfUJY+QUYI2srlgLPRwvji1bVuf5Fl5r9mQU111LNfnbVMTVmxlACYb3ZL0qT32Y4kr2wUFKZVOdpLpVK70Nr8Q3gL1zidrn7lCMXRYPE1WWOyoOGG78vtxfQdvfax0Hw/4hu3qz9VsNUjHvODgXv/zvPR0c9d36e6Rmaw06FrnIY8W2dawHZXtAAAAAAAAAAAAZgrCdgCAI54pBxmOHXvCOua5clbPFWqKDIolaSMrqeuwPawxvyqrtbg3fMxol2dgo5nQ1ZMPSpKeyB4TeviE1VPbWcfpIwOLxjRfIXDD1pqXayZ2xpreXRytDSu2MAATDJdCYn+36z3WMfschROTVrZLqZCo8uJMMZjqC92/dF5tUHXbevs5fm/fR/0uNp1hO982sju3+5+zHPhcVLT3Ue4qX9Y7bFcfaPUIlYZastJ+zLNFqyRp0/HNXd+lqlqfWbrKPm7PS9HnsrW5Tfpb4/u8AAAAAAAAAAAAIBJhOwAAsqUKZRcO/8A6ZGS83EbWWdkuolJaC8JM3cXwawxVFZRLFLzKZKeqNMVRbsV7wfBdoYcPVWXoXIHFyCunM82tT5JZuaHm9SXDd8aa3xAEbGHYzpx6gSTp5/u/YB3jum9JK9ulg/zsqNRmE/FM/PCZ2sp2EwX72Df1/2f09VIpma6Z/9don/bEFd2llK6r+uXkc3ZgyK8Nb0MAudnqias22Y/ZqsElHeur+nfgouvs48Y9KmmOt6myXdCCtskAAAAAAAAAAACQRNgOAHCk2Hyi/ViuFDLJakKZIDy1NBlgc4btoirbJWwjq0vfoA/t/XDooburCljZ1vjawW9GXyPdRAtZSebk8yRJJ489Gnp8Z1WxLNv6zhz5cfSFmlxfxcKllc1czDayPXVBR9PK1o4LlkiSFhUPW4c8+JI9MPOpO5P1RS1VtpvFbWTLfnv/X4buf26/9NTuqfuXt4Ttfm7gK9o29nD0hZI+h52yPrzSZJjq5/m6/v8KHfPtyTayw37nbPiONfuMuSrixQnQ/eS7obvNOz4ovfV98dY0KVf1O7Bqo31c/4Hoc1nbyLawZTUAAAAAAAAAAAASIWwHAEBVyOTYsSdDh4xOhu1cbWSjWqAmDdtle5zXGJ0oBWGGLWvsLXokZDJNhojK99BV3W/XIXd1wPlFR5/USUmrrx3eX9k0kub5XLOs4d432xIzTFWYZlX+5dAhn/+RPWz3xQeSXT4VFGZ3Zbuy+kBktVuq7l/ekk187eCtfheaLfcqTkiraqztu/jYrtKf+z2/Ng1huybvmzHGXt2tFdXqcj3q+tU/aa6CXNUcY0ylUmq94P47os9ley/ZFgZ7AQAAAAAAAAAAkAhhOwDAEcG8+XfsB4tTyZtcMBY6xKeyXWSltKRtJ4f71ecIhz2zt/TnqCVsF1l5T2q+Ytey1ZKk1RO7rEMe3lH60xYGjGzDKzUfBrQY6prvPbbh/rWyst3ilZXNl9OrQodsWGKfnk1YlC6tWR62K7eRXZO3P38PvRgdtksHeb/rTXdlO99WynGe0aqxL2TWhw45dV3pzyHPtsUNLWmTVE+0vRef9qySAlcr1ZGh0p/NBPdefsFrPaaqqqbVmOW9tPK3BgAAAAAAAAAAAIkQtgMAzH3Zbun8K+3Hjz2tspmzVI6brGg3agnb5Yojioq/mISV7cwJZ+uyIXt1pMk12gKBXmG2ZtsVnn6JJOnM0futQyrrSxQGnL5AWMP9a2EAxvQtihxje/YKxUDjnhkxm1RQmBOBHler5Or7N2FpI5sJHGnaarMlmNhk2G5dfkfokMnfFlsb3khJ7lu53XcD34DceHiQWpK09TT7sShLVngNC3xCgZb30tKW1QAAAAAAAAAAAEiEsB0AYM4zf/6fMn2L7QPmL6xs2gJff/zVcgtUa1U2j8BH0jayp11kbTEqTVWMGxkPr+DktUZboCWC6S1ViEvJUjJM0oGh0rpsoTGv9SWpjBXissHbvcc2BDHbFID5n/s+Err/24+Hj7fdzzhSKljbX84OpajrhvxLOm7sZ6EjqkOotrBYWr6V7eZ22O6SoTtDhzy5u1QhzlYZMFKS76/t+Tyw22/+uOP3Zfna0p+nXxxrSZJkrv/12h3bLgwfePNfRJ/s8R+F7/cKQXtWOwQAAAAAAAAAAEAihO0AAHOeOfsK94CqkImr+tt4PtDIhCXIVvSoWpS0jWyuV2kVlAnCE3+TYSJrm1afynFJAmSbT5QkbRp/LvTwlx6ICCz63MMWt5FdUjzoPba3/v61Opy27mhJ0qLCoVjTbPczjnQmJZP0+Zwh3nL4ltD91aHExG1kM7MkbJft9h9b9d13tcR+eo9UaDZslySkaPltCm7/gt98VwW8yTDbAkevZpueulbUtnaxQaDAVV3Phcp2AAAAAAAAAAAAM8bc+FdVAACSqAoy7E7ZWwJ+6zFXi1afynYJ/7NbbjVqC80NR7aRbXPYrjx3sGte6OGVC0uVl6yBRZ/1Ja0odvTJNS9NEL6WMA3ra3UAZnhIkjRu4gUKh1oQtktlWxti7LiBqYCi7Tka8Wgjmw48+6Ompjts51nFLM4zWlV1zhX4vOuZaapsNzwQvn/9MZ7zB+3HJit6erRzbtC3sPb1vAX2sU89ZD0UuMKARY/ncvVG+7Hla6LnAwAAAAAAAAAAwAthOwAAslOBFFcbyef3B9YqYjmvynbJ2siacqtDW/W9yfax9spxHmG2JNXayvdxX3q5c5j9HvqE7ZKFwswNv1XzetuYPfxSr+H+tTpsd6DUInh9/iXrkIl8YzjwwFDyS8/6sN341HciF4RXD6t+7qzPoE/gU2p5hcW2ifOMbjq+snn+yN3WYSPjUrHpynYJwna7nmt+rlQTyGxQbjNuzrws/nlPfWXNS3OW4xyjji/riOPY+q2RyzAbjpXWbWk8sPkkmZUbIucDAAAAAAAAAADAD2E7AMARz6TTUqoUhHtT/39axwWBq2qcR9gulSxsN6m3OBy6/0fPlf584MXweV5rnKzw1IxyK8bXDXwt9PCjO8phQMs97O1EZbtTzqt5+fOHPVtQKuT+tTpsd9G1kqTjx35mHRLWIni/o2CXr3R3ghDUDGAuuLqybQuVPrG79Ge+YK/MZvtuNUj6HHZKnGe0qqpbX9H+UO0blPKeBQAbJKls9+q3hu9/8gG/+f37w/en0lOtYF95TeV76MvMr6tsd9F19sGH9tmPuSrbrVzvt5bf+2Ttb3hvn8zvftxrLgAAAAAAAAAAAPzM7n9ZBQCgVbI90sigsoG9J+ePnpOOWhZ+zKsilmlBxn3VRmubzL++PdBf/rx9qldluyQBsnLIY8NEeNrv3mdLf1oDiz7rS1pRLFfb4nZB0dKaMkTbK9utWBd+nSpfeSjQ28+tbSF6YNi/Fa5Nqrs78TmmVc/U55pzhEr3DgTKOXJyXoFUKXGFxcSMZxvZbIxn1HPsn3490OtP87x+vSQhxaWrwve/+JTf/P6D4fsXLJEp30+TyUof+px0/3cU/PRuaXxUZsESBZ/+gPcyTSaroGe+NNIYWAw+91GZy94YPtEVtvP8rTGnXSh95kHp7m+W2paf8xoZz6AeAAAAAAAAAAAA/BC2AwBAqlRcWp3fZR0yNBZoZCI8ZOIVFGtFZbtUSpnA3up2T789eJWSRzmqJG1ky/fQ1Yq3ULS34vWrDpjwry51YbvewLOSmUIClbkWh+3K722+o6rYD56W3n5u7b6DLWgj2zXbw3ZV7UnnOarT3f54oMuOtwfFXEG92uvNgsp2qXSpaqevrN8zMJ6XCh5tZLeNhrRoTvL9dbThDsZGZKICaQO2sN3impcmnZZe8SqZV7xq6vy2sF25tXeDbC40bKfDlup6Uk0r5AYxgr1m1Ubpul/xHg8AAAAAAAAAAIB4aCMLAIAkDR6SJF0xdLt1yFHLTbI2so6wiLcd27Umv9N6+EVLnkSSVuT3RJ8/Tjin3jM/leRuxTkyLo1bMn/dwVj0NRKGnEzv/LprjmtlfrfX3J5i3We8alOitTQ4uFeStCFv6QMsaSLk3oW1lpWkBYXDXpdNBXmZOBXQZqLVR1U2zx75kXXY/qHwezjJVdmyRmYWhO1iVl40vtXyJOWL0dUUP7j3Txp3ppq/b2aRpayoJA17VKi0VY7rmR++v/rav/4X4ft/9U/DJxy2tIudt8B+kRZUtgMAAAAAAAAAAED7EbYDAECSFiyRVApf2ew4KHtVNp/Kdq1oI3vMNv3m/r+1Hj7sWMaW8Weiz59gjebyUg/bawa+ah0zMlGqjBXGK+iUtI1siD/a+8de4+rb95qu1v41ypz72tKfjjEHhhpDTrYA6KaJ572umwoKUneCioYzwbLVlc2VBXuodGTCXZUtFXhUf5QShcY6po0BrXzEbTp75D5dHhZcTlLZrqrSXANXUK0ssI3xuU9XvFlac1Ttvi2nSOdfFT7+yhvD9z/7mP0arveQpOIoAAAAAAAAAAAAWoqwHQAAknTmpZXNNx++JXTILT8KNJqksl0r2siecJa2jT1sPbzb0UbWq3JckgBZuaXiksIB65Dn9ktjScJ2rWjfufW0mpdvsXze9WoClSvWJ19Hvb5Flc3fOPCJ0CFfCenM+YUfh3/miwqHvC6bVl7K9XqNnbHqAlPnDN8TOuzLDwTKu8J2Pq2WpelvI+tTha6ZsN2WU7yG7Xe0Lv7Q3j/WrS+8Lvw3Mcl9m7/QfmwoQWU7jyCbWbpK5uO3S299n3TOq6Vf/AOZv75VxlKpzpx+sfVcwT3fjL2+Vgd7AQAAAAAAAAAA0LwE5SUAAJhDqtpo9jqq1O0dCA82eVW2a0Ub2WzOea0fPO2YGliSgtWSVN8rh3t6A/v6vvVokKyyXSsqitWFa3I+QUnVBSrbUQmuKvDW42jFWywG6uqaClsdsASfeoMRdRdHNdblXmupst0sb1NZ95nOK4bflJf73ZXt0r6V7aY7bOejmWc00+017IeWIpm/t++j+sC+8JarkpJVtnM9oz+7Xzr6JPf8JJXtJJnla2V+NaQ1bsxzBnd+Weac1zQeGE22PgAAAAAAAAAAAHQGZRIAAJCk7Y9UNhcW7RXBntsfvj/nCJhVtCJst3O7egN7EMvFK8yWpIJSORSyMr/bOiRflMYteaaMTxiwFW1kjzq+5mWX7NUAq42YqvBSOwIwVeecMPYwV33b2ONXh4/7fu/5kUE7qVzNzTNkNVOZukpvd/eeEzpu68qINrKzpbKdj2Y+08d/VNm8vv+Lsaen5Li5kpROELabv8h+zKdq6JglVNuO73Ldb0yNPS+G708YBgQAAAAAAAAAAEBnELYDAECSzriksnlD/xesw2xVxLzayLagFaA54xK5Gkj2OzJ/XmG7JJXtsqVwjytwc3BYCSvbJS/Ka1791qbmnTty79SLdgRgqqorvm7w69ZhI3W3acKSD7t46Htel00H+da0OJ5BXjl8V+j+wTG528j6VrZL8j1pBZ82ss0EAk85v7L5vv0fiz09HVi+3JMSBI7rA5U1bEE1nzHt+C5vONZ+7ODe8P3jtvW1oYomAAAAAAAAAAAAmkbYDgAASWbTVCWirWNPWcftGwzf37E2sis3SJLOGPlJ6OG7nrZXaetUZTtJumogPCz2N7cH1nCYX9gu+T00p14gveZtNfveefAfIufVtJttS2W7qVDN2omd1mH1le1s4bEzR+/XJUN3RF42peLsqNQW5bSLKpsXWMJ2338qqo1sRFhs0mwIJ6abqAJ5wtmVzTNHw39jnJeMun9J79vmE0N3B/fcGj23g2E2Y4z0tt8LP/jUg+H7qWwHAAAAAAAAAAAwKxC2AwBAqgk09Pi0hK3jNacVYbvyOnssrWRtbW5NUFRaHkGiRJXtpu7hvKKlBKBreocq20mSufj1Na8HuuZHzqlZX7YN1aZqnkF7pcQH67pQ2sKL6SCvrEdr3lRQaNl9nVZVoSnX93FozH4K7zayrfgut1szAcq64JktNGsTef+S3rfu3vD9P/xa9NwOh9nM0pXWY8GLIYHuTra5BQAAAAAAAAAAQNMI2wEAIEkr1lU2XW1QbXqKnWkjqxXrJUlPZLeGHs5aMlPZYNzZfrYiSeWpZasqmy9k1see3t3BsJ165tW8fC6zMXJKpjq4Nn9ha9ZRbcGSyuaywj7rsJGJ2uqFeUu+KRNMeAUY08rPjcp2+3ZVNuc7wp7P7LVXf5w1bWR9pON/V0xdiHRpwZLetV0yqrJd0vv28vPh+4/ZFj133JKybFeYbYXjN/DZxxp2BbYwYJawHQAAAAAAAAAAwEwyC/6lEACADqhqnyhJS/P2sFMYv8p2LfjP7qbjJEkLi/2hh8ctWRevqnFSsjBMVbhk29jDsad3srKdNp8Ue0r1+uor47WCyUy1/cwF9vJrI3W3yVrZTnmvezpnKtttObWyecXgbdZhA45crFf1R0lKTfNfoY1HdLaZAGW2u+bl6wf+K9b0yPuX9Ddw7ebw/bagmscY064w25mXxluL7T3kCNsBAAAAAAAAAADMJITtAACQZOoquv3N7t+ONb+n2Jk2ssYYaeOxesvhW2LN8w7bJQjDmKoA0HnDd8ee39GwXc7SjtIhU12164KrW7OOeqdeUNlcnt8TOmTn4drXtrBdJvAM26kwJyrbmQuvqWyvLITfO0n6lx+2oLLdrGgjm40eU6+ust1Vg9+INT3y/iW8b+bKG8MPPPd49ORH7w3fXxcwbBXT22c9Ftx/R+PODre5BQAAAAAAAAAAQHMI2wEAMGn52srm4sLBWFNzgUcb2SQtWqsddaJfuK9KtroFqkvSNo8LlzU9taNhu7pQkdeUyfWlMw3hzJZZsrKyuTr/cuiQz/+oro2spetxOsh7fe7pIC8zFyrbVYWSuoMxmSD8xtz3nP0UKfmG7WbBX6GbCVBmaoNnRlKvoyVvwyWj7l/S740jeBYE9hBls+dMbONx4fu/9s+N+8Ys/w0hbAcAAAAAAAAAADCjzIJ/KQQAoEMGpgJ2SwsHYk31Cr8lDbJNGjwUe32dqGwnSRos3cOTxh6NPdUrENiiUJipe59v6P9i5JyMyuvLewYXm1EVrDmYWhw65PjVtS1Eba2DM8FEjDays7+ynRYurWwaSUHM75sJiuqSZ2BrVlS2a+IzXXd0w67hrnne0yMr2yX9DXS1zz1kb/0d5B3tbX1a0DZrxBJUnL+ocd+4ZR3tanMLAAAAAAAAAACAphC2AwBg0uhwZXPb6EOxpvYEHoGNVlVDGxvV5UO3x5ritT5JJmkYplAK25w89kjsqT5rbFcFtjf3fz5yTMa3OmASVWG7FzPrQ4cU6gq2jViW1ROM+LeRbVelvk7acmrNyxNH4wU+vavaSTMgbOcInU1qpo3syefFn1Ml6jtikt63zSfZj406KvDlHd+DDVubX0+URZZKn8WQZ63qvz81uuMrzsapAAAgAElEQVRX4QQAAAAAAAAAAED7ELYDAGDSua+tbKZk6c1pkQvGoge1KKBjLn+TNuRfijWn17ftbNLKdlffJKkUBTp19OFYU72qA7YybPf6X6tsrijsjRxeCRJddG3r1lCvKmz3joP/FDrkid211ddGLDminmBUGY+wXTooNFcFbYapb+37l7t/N9b8yKps1eZoG1mTztR8LyTpzJH7/S8pRwU5KXmos6p6YQNXhbqCY11LVzW/ngjmbe8LPzA80Nj21rZ+2sgCAAAAAAAAAADMKLPgXwoBAOiQ5WtqXl7b/2XvqR1tI9vbJ0k6evwZ7yk5z8p2SddoVm6obN9w+N9jzc0Fo9GDWliBzWw8tub17+z/mH1sUJwKYK5tbLXZMlXBmmWF8LaYD9flLG2V7XJFv8p2XSq0NsQ4nTafWNk8dvypWFMjg2LVpr2ynYd0c5+pueT6mtdHTTzrf8kg4h4mvW+u4NnLz9uPucJ27WyhvGi5/dgzP619PWb5/SNsBwAAAAAAAAAAMKMQtgMAYFJd0MwosAxs1NE2suXASqz1daqyXdU9zMi/7Wp3cVRdPu+nlaGwus87V7RXJwyqxxqPFp7Nqgoj+Xy+xWKgCUtBtlIb2ejPIDVHKtuVTH0284uDsWbGq2w3zWE7n2ew2c+0LtwVGaCrEnkPk353cr32Yy86wpXOsF0bg6a98+3H7vt27evx8LCdIWwHAAAAAAAAAAAwoxC2AwBg0rwFNS+HuxzBjjo+oaaWBXRWrJMkPZ3d4j2lx6dqnJQ8DFMVKDxu7Anvab3BsN/AJqt1haprSXn26I/85llCMa1gVm+sbE+Y8Pfam53aLji6HaeDvFe1wLTyc6ey3fZHKpsLi/2xpqY019rIZqPHhJm/sOblxokX/C/Z5jayJuN4T65nOO/4fW5htcwGm0+yHgqG68KgeUsVStd7BgAAAAAAAAAAQMfNgn8pBACgM8yFP1fz+hcOf9Z7bqaTYbvVmyRJ/+PgP3pP8aq8JyUPEZ18XmXzFSOe4TVJPUXPAFsrQ2FVLUcl6YrB272mmTMva90a6p1xSWXz0qHvhg4ZHpeCoFT1ruAofpcKCl4VDedUZbvzr6p5eenQd7ynxqngNu2V7Xw0+5kuWFLz8q2H/83/klGV7dp434Jdz9kPuirbtfHZd4YDf/Ld2tcTlrDdXPluAgAAAAAAAAAAzBGE7QAAmNS3uObl6old3lOzgSUoUa1V1bDKbQVPHX3Ye4p3G1mTcI1VbR69A35xxrYybFfXnjHr2/a2t691a6jXM9V20tUGtb98u4qOynZdCrwqGs6pynabjq95+dbDt3hPTclxM+uYuRy2m7+o5uWq/G7vqamoynatuG8nnRu+/5a/ss+ZrjaykvTKa8L3//SHCsaqvp+26nuE7QAAAAAAAAAAAGYUwnYAAEyqC195t15VhyvbldcZL8zm+V6SBgK7c1ObwZj3NO8wYBvDdm2f5yM7df9cn9l3yh16nZXtVFBvMbo971yqbGfqv8O+z5XK98HXdLeR9Wj37Kyq5pqXStW0ko3zOxNZHbAV9y3bbT0UDFlaBzvbyLY5bOf6vXjwzqlta9iONrIAAAAAAAAAAAAzCWE7AAAmLVtT8/K48Se8p3qF7ZoMvzQoV487ZfSn/lN8Q0dJwzCrj6psRseBpnT7VAaUWhuMWbS8uXkbj23dGupVVQY8duxJ67CDQ6WUnbOyXVD0CkqlVJwzle2CA7VV2FoaFKs2GyrbJflMBw9XNnMxQrPRYbsW3Le6Nrc1Du4J3z/ueA+O8F4rmKNPth/cV1U9lcp2AAAAAAAAAAAAswJhOwAAykyqNgjS52jjWS/j04K0RRXRjDFSOqNtYw95z/GubJewjaxpMriSmYawnWkyWGja2EbWVFUsmxfYq9KNlB+3qMp2OZ82skFeSs+NsJ056/Ka13FaLac0iyrb+WhhSMs3rJvuQBtZc/VN9oNjlud9zLH+dlaqlKRL32A9FHzqAwqC8pd4wvIb2KqQNgAAAAAAAAAAAFpiFvxLIQAAHbTmqJqX/7jznZFTUkHer4pbC0Md5sb/JSPpssHbvcZ7t9NsRYhoyarK5q8d+LTXFK/KgFLrK7BtPC7e+C2ntPb6YV791srmKZaw2P/5ZnRlu1RQ8PrcUyrMmcp2Wri05mVvjMp2c62NbKKQVl1A7Pf3fcRrWmRlu1QLKtudfJ792P3fCd/vCttVtW5uB7PmKPvzcmiv9NmPlrYLVLYDAAAAAAAAAACYDQjbAQBQrS4Q11cciJziHRRrZQWlXOlcqwq7IwaW9AQj0vpjogcmrGxXuthUK9ScZ9gpOx1tZKWatq1e2ljVrqJ7Kvwz31Jd8aWDpT9dle265NlGNijMnUBP3XfMO2Qqj6ps1WZDG9kkn2m27j56fo/TUYHFVvy+OH5Hg9s+H37AFrbr7qmpJtk2J7zCeij4xs2lDVtlu7ny3QQAAAAAAAAAAJgjCNsBAOaGay0V6N72e/HO88KTNS83TrwQOcUrKLZgidQzP95aHILhUgjrmcxmr/G5YEza+Wz0wFZU7NqxvbK5vLDPa0rWpw2v1JrKWNUO74833uceJvXy1DN3MLU4dEhPOX/jrGynglbnX468XDrIz53KdivX17z0DYlJMSvbtfo5bIckn+nO7TUvN0087zWtI21kXb9RPfPC99vay7a7heykwUP2Yy8+paBYlPJUtgMAAAAAAAAAAJgNCNsBAOYEc8UNja0VUymZy94Y70Qbtta8PG30wcgpXpXtLrxWpoUBHXPi2ZKkE8Z/5jU+G4xLm0/yOHFr/2pwXf+XvcZNWxvZ0y6KN37rttZeP0xVq9rLhu4IHTIyIQVB4K5sFxS9wqKlNrJzI9BjFq+oed2lQD3FYa+5acUI27X4e9IWST7To46veXn5kKU9a52OtJF1GW8M1QWH9yv4698OH9+psN1Zl7mPj49KBcu9I2wHAAAAAAAAAAAwo8yCfykEACCaOeV8mfd/WuorVwJbuEzmg5+RqQoueZ2nrkJelxxpprJMWDWnbLkVaFeXdNF1Mr/1sVjriLSoFCo6b/hur+GZYELmmndEh11a0R7zdTdVNrdMPOM1ZbrayJorfyHe+Mve1NLrh15j62mV7Tf1f8E6bjwfXdnOnHRO5PVSQWHuVLaTpOVra15+4uX3eE2rrmxn/uqb0tU32QdPextZj9an6eY/U3P82TWvF3i005bKwU3niVvzf3qYd344/MAj99S8DIYHFLznVdL+XeHjq1o2t5O57OfdA1yV79LZ1i4GAAAAAAAAAAAAicyhf1kFABzpzFU3Sq95m7T7BWnVRne7QZvu3oZdG8ef1/PZjdYpYVXZzDf2SC88UVrH/IXx1xElV6rI1OtZtSsbjEu53lKoquAIxLSijWxuqlqUkTS/MKDBVJ9zyrRVtss1ft5OnaiEVRUAygVj1mF7BhRZ2U59i7V4/wEdTC2xjkurMLeqZ61cL+3dUXm5qOAIMlXpmgyKGSOdfrF0z632wbOhjWySQGDIc755fLu2Z91tqyMr27Xi90WS5i+wHgryEzKTz/Pd35S2P2I/T7ZDle2ifjd+7KgcOJe+mwAAAAAAAAAAAHMAle0AAHOKSaVk1hzVXNBOkoLGUmHzgiHnlIag2Dmvlsl2y2w5pT1BO0lasFSStLSw32t4JpgoBT6iwmqtqDw1UBtuWuaxxux0he0WLq15eamlXeYvHfqX0kYnKmFVBXOW5fdZhz21Ryo4K9sVpQVLNGrca55zle0O7K552e0ILFarBMWCQMYYd0BqVrSRTfCZ1rfkll+wNzps16KQYm6e/djzT1Q2g09/wH2eTrWRXbTUeTh44Un7wQyV7QAAAAAAAAAAAGaSWfAvhQAAdFBI29krBm9zTqkP25nzrmzpksKYxcslSeeP+LWRzfqG7VpReWrRspqXrxpy3z9p+irbmdWbal6/ZvBboeOuGfjv0kZHKttNXWND/iXrsLEJqeiqbKeitGCxRrrc1ftSKiRqOTrj7NtZ8/KUUUdlsyr1LVCN67Oe9jayHpJU39tycsOuS4fuiJyWDmupXa1Vle1Ov9h+bLQqFLjrOfd5OhS2M8vWSJtPtA8YdQS6qWwHAAAAAAAAAAAwoxC2AwCgWl1QTJL+974/c07JBuNTLy66VnrdTa1eVbiFy5QLxrQkH105Lt3BsJ055fya13+8948i59TcQ5c2V2B718FP68qBb9Ts+9WDf6+rBsv7OtF20jMA9MzewF3ZLijILFiq6/u/6DxPOsjPrcp2r39Xzcu+4oDXtFRQDtttOr70p6uK4XS3kQ2pPNcgyWfat7hh1x/u+/PIaenA0aJaat19W77WfuzZR/3P04lKlWXmD/6f/eAXPm4/RtgOAAAAAAAAAABgRiFsBwBAtZCg08Jiv1KO9oiZyWPrtsj80b/KdKrt3/FnSpLeOOAOU0nlMFun2sjW3cNlhf1aXDjgnJKerjayklQVDswFY/rSS2/U3c++Un+/89f04PYz9bcv/5a6VC4hl3NXiWuJuvu3Kv9y6LA//XrgVdnu6PFnnJcrVbabO4Ge+tbNPcGI17xKC9TJaodHchvZkPe+uHgoZGCtyDayLbpvpqvL2l41+PQf+p+oU21kJZmt26STzo0/cQ59NwEAAAAAAAAAAOaCOVTGBACAFuiZH7o7FRRUMOH/2UyrHBQ79QKZTla8CkplzbqLo5FDM5qQcvM600Y22914/YgwnX9luzbc32JtebiUijpr9H6dNXp/49je8OejpXr7al4WZa9iFlXZTguWaknhOefluoLC3KpsV/d5VoKSEVIqzyt/r5zV4/Ke4dDplChsFx4q7QoKKhr7dzCyjezS1c2vqV7R8vAPHfY/h+V9ts2KdfHnELYDAAAAAAAAAACYUWZBWQ4AADrHWCqXjXc1BsgmVYJkHWxJKEmaKAXUQkNhdbLBuHTUCZ2pbDfZhrPKnvRK55RMVEhnUlcbwnZxAnSrNrb++vXqWmTa7l1PRl6V7eYFw87LpZWfW4GekLCnj0pVtud/VvrTFYwqeD6v7eLTRjbBd8Wkw38nXEE7KaKy3Yr10tZtTa+pQWAJ202MK7AF8ep1sLKdJJltF8SflO5QpVQAAAAAAAAAAAB4IWwHAEC9485o2HXR0J3W4ZWwXbbDwY2rflGSdPXA1yLHZoJ8qepeVOW6VlS261vcsOuMkZ84p3hXtvMJGcVkXv+r/mPbcP3Qa6w/pvL6D/b+eei45/ZHVLZTQVqwRD1FdxvV1FyrbHfC2Q27Lh+8LXJapSrba95e+nPdllauqvOSfqanXdSwa2l+n3PKZNjOvPujtdfv6pL5tT9r6ffHvOND1mPBL5+j4PD+6JN0OiB9+Q3x58ylICwAAAAAAAAAAMAcQNgOAIA65vzXNew7Z+Q+6/gxU66k1eEqSVpSqng2LxiKHJrtLa8tsrJd8jCMSWca2r2eOvawc05Um9mpk7ch7LZyg9+4Fetbf20Lc/27KtvbHPfOWdkuKFW26wkiwnYqzq1AT0h1yp8b/GrktFRQkCSZ8vdKmVleUSxh2M684lUN+84fuds5pxJYvOIGmU98V3rL70g3vFfm49+RufxNidbT4ORz7ceeekjBx94TfY5OV7brWySdcUm8SbP9OQQAAAAAAAAAAJhj5lAZEwAAWiSkDWVv0d6K8+7eUujDZDtcJakcFDGSeotDGu6aZx2ayZbDb1EBnFZUtpOkbE4amQoBuu6fFKOyXavWV3Nxz8+tk1WwqtbUXRy1Dts3YD9FSgWpb4l6HPOlcjWyuVTZLiRAFfX8SVVBsUz5++9q39m3qJmVdZalFay3kPvoVSWxPNeccJbMCWclW4NLVFDuO/+R/BztsMTdUrvBXArCAgAAAAAAAAAAzAFUtgMAoF5IGOK00QcjpwWDh9qxGrvNJ1Y2XUE7ScpmyhXhIivbteivBiO11faWFdztJ70r26kNle3WHOU3rpPBnHVHVzZXFPZah73cby9t15XJSPMXKhdZ2a4wtwI9a49u2OXz/Z1sgVqpJLZkpbR6Y+PAbLd0zmuSrDA5nwqPSQOUIc/7ttGH3JdUuTpgb1+ya/vYdHziU5hpCNuZrdv8B3d1za0gLAAAAAAAAAAAwBxA2A4AgHpnXtaw65LhOyOnmbMa57WTmbegsn3joc84x2YzHa5sV2fL+DPO41nfsF0b1md8g2adDOaceE5lc/P4s9ZhQ2P2U6SyWRlj/KqRzaFAjwmpQHjy2COR8yphu+POKJ3HGJnXv6tx4JU3yvS4w60zQhvCdj/f/wXnlC45+hq3mOmdn7zFaierVU669I3+Y7t7ZNrROhsAAAAAAAAAAABNI2wHAEC9qhDbpJ7A3YqzNG9hGxYTYeNxkqS3Hf6cc1imuxwo61RluwuurnkZFbarVLarqtYXql3Bk2Vrosd0MmxXFSLqcVSm++Yjjsp23aV2qD3rNjgvlTbFuRfo6Vtc89JIes3grc4pKRVLG1Wfs7nht2Te93fSqRdIx50h8z/+WOa9f93q1bZHKpVsfsjzviH/UvS8clixE8z7P53sBNlpqGy3Yl2c0W1bBwAAAAAAAAAAAJozd8qYAADQKs2GqqahJaF650tSZPWybLbDle3q7sUx4087h2eDcen0i2Vu+kMFv+GoENiqMGC9nMdnl+1cFSxjjIKeedLIkHKOoOfXLQXbTFCsVHjryUqTObIwKdO5amQdk+uVBg7W7FqWd7cyrlS2q3t2zTW/LHPNL7d0ecl5hLC6kobtmnzeO/k7mLTCYNLKeM1aulravyt63Mhg+9cCAAAAAAAAAACAWKhsBwBAHdNs4CxWxaIW6T8gSTpq4nnnsEx3OWQXFS5pVZjt0N6alwuL/c7h3cFYKaQTdf02tbn1qnDV6TDlyJAkd6zKVpAupUIpcCZpfbf73meMI4k3W+3d0bDrQGqJc0pa5bDd/EXtWFHnJW0ju/bo5ub97P5k141jzeZk89cf05p1xLWuyXsLAAAAAAAAAACAaUfYDgCAFjF90xDSOfe1kqSVhT3OYdnJNrJR1apaFGYzZzZWpztr5EfW8blgtBy2i6jY1a52pz5BuumoXBghsBSl6wqKlfUuiPjIe8x4i1c1Ayxc2rDr8qHbnVMmK9uZ9Bwp/JwwbGeaDaKtOSrRdWM5+iRp0/HNzV29STr+rJYux5e57I3Tcl0AAAAAAAAAAAAkR9gOAIAwJ50bb3y2uz3riGAue1Nl+5TRh63jMt3linZRgbFWVbY76ZyGXX+094+twythu6iwX7vayHqF7TrXRlaSdN6Vlc0/3fOHsaamVJiq1tfdo5t3/JJ1bE9XvqnlzWTmTe9p2HfmqLviWirIT1+ls3ZIWtlOktKZ+HMu/Lnk1/VkjJH52NfiTzzhbJm/vlUmlbDVbrOu/ZXpuS4AAAAAAAAAAAASI2wHAECYnnnxxi9a0Z51RKkKia3I26vbdU0GxaLapbaqTWtIeC0b2CuopYJCKcwWFaZrW2U7jyBdpyvbldvAStL84lCsqV0qTr2n7l4tK+yzjp2Tle2yjZ9nT3HUOSWlwuxpIevzPWhF2G7VxthTjE9L5hYyy9dKb32f/4TTLlLXp78vs3pT29YUxRgjvfHd03Z9AAAAAAAAAAAANI+wHQAAYQ7vb9h1+sgDoUPfc+Djna96Nmnx8srmGwa+FDpkeX6PtOfF0ouDu93n62pRpacljeHDdRM7rMPX5XdIB/dOX2W7xSujx4Q8E50yZrKxxpfCi5OV7XLqKY5Yx6bn4t8GxxuDdVGtltNBfka2Cm5aK8J2+3Y27PrN/X8TOvSVQ98vbUxDlU8T8ntjH9ymwG5MZonHb86lb2j/QgAAAAAAAAAAABDLXPznVQAAklu2umHXrx38dOjQXzx0c2glrU4wy9ZUtq8a/IZMUGwY89rBW6XF5TDKvIXuE7aosp1ZuaFh39ET27V17MmG/VvGn9Yx40+XAnpRQZg2BWXMOa+OHrRiXVuubWNOOb+yfcroT2PNrQmOdfcoF4zZB7eqmuFMsvnEhl1r8rucU9IqTF9oth1a0SI1CBp2XTX4jdChlf3TEVj0+f5OWrO5feuIw2PN5twrI8cAAAAAAAAAAACgs+bgv64CAJCcufLGhn2/cPizuvHQZ2r2/eXLv6NTxh6Z3opYJ5wtSVqdf1n/svMdSgX5yqHTRx7QR/f8vsxpF0qSzHkR4Y1WVo6ruydG0r/teLuW5fdW9i3L79UtL71NRpI5/ZLo67crGHbJ9ZFDzImvaM+1bS78ucpmVFCsXlq1YTujxtDUpLCA5qwXEvaUpLcc/jfrFCrbNTI3/q+GfZcM36kP7P2zmn3X9n9Z7znwd6UX03APzYZj/cde8vo2rsSf2XKKzLs/ah/wupukV725cwsCAAAAAAAAAACAlxb0lwIAYA7K9TbsSqmof9j1K/r9ff9Hj3afqFeM3KdVhXJb1ukM6WzdJj12nyTpLf3/rlcN3aYf9J6vtRM7dProA0qpKKUzfutsZZjtuDOkh35Qs+vUsZ9q+9PH6a7ecyVJ5w/frd6g3OK0OzdtbWRNV5eCo06Qnn3MPijkmWirqs+qJ7C3gQ2TDqaqtJmIzzw4uC/+2mY6S4W600Yf1L8uDA8w1bTenel8Kjy2oo3s/MZKmEbSh/b9id5x6J90T88rdOLYYzp+/GeqrGi67uFr3iZ987PR4zr9PXYwb3qPdOkbpYfvkoYHpInx0v075Txp7dEyM6TlLQAAAAAAAAAAAKYQtgMAIEy2O3S3kbRlYru2TGyvPTCd7SfrKpMtK+zXtQNfqR0zGbyJWmcrw2zzFoTu7g1GdMXQdxoPpDPR129n+CSkZWaNToeIcvMqmwuKA7GmZoIJKVtab/DS01qZ320du37ixebWN5NZ2iWngoJ1ysvpVdLEU+1aUed1taCNrOOZX5/fofUDX2w8MF0BMcvvTYMZFqg0y1ZLl75hupcBAAAAAAAAAAAAT7SRBQAgzKYT4o2fxgCHWbY2etA0VLabbF3rbdMJ0UGddrWRlaS1m93HO/wZm6rA59LCgVhz08pPBUYP79f6/A6dOPpow7j1Ey9q29hDidY5E5mlq0L3nzb6oHXOuMlKB/daj88qXV0yrfiunHJe/Dkbtia/bhPMaRf5DczOrLAdAAAAAAAAAAAAZhfCdgAAhOlbFG98dhor2513ZfSYSmW7iBaKraxsd+WN8cYvWOJx/fZVzTI3vNc9YJpDOpvHt0cPKksHeZl0tvSiHBL8yJ7fV644UjVmQh/b/XttvKMzz9bxp63HjAKZS6/v4GoSiAqltqKFrCStiQighlmysjXXjuvc1/qNm84qpAAAAAAAAAAAAJj1CNsBABDCpDNSKkYbxukMYs3rix5TCdt1sLLdgiVS32L/Cd09Utc0VrZbvcl9fDpCOsefWdl83cDXvKelg7yUqQ3bvXroNt377AX68J4P6oN7P6x7nn2lrhv4ckuXO6OEVCpMyd5G1iiI97zOZC0K25muLmtLbatcRKC3TUy2W+aDn4keOMPayAIAAAAAAAAAAGB2aVHZCwAA5qBMt1QY9hybae9aXKKq1UlSuvyf/FznwnaSpEXLpIGD0eMyWZmuLgVRFbtaWXmvXlRIaDpCRJmpoFN3MOY9La1CpXWw2bBVQXn/ieOP68T9j7dyhTNXpjEk1hUUrcONgrkTxOqKERSOkumWxv2fvWkNHvctjB4zTWFAAAAAAAAAAAAAzA1UtgMAwGbUM2gnSTuead86oixdFT1mMgCz9mj3uHVbkq+n2p6X/MZNBqOiwnRRYbwkFiyxV7dbsV5avKJ917YZ6q9s7sis9Z5WU9nuyl9o9apmh+caQ4WRle3mSovRVoZmq57BSKm0THoa/395tp7m/o1Yf4zMvAWdWw8AAAAAAAAAAADmHMJ2AADYrFjvPdSc/7o2LiTi2sZ4tEAthe1M2l2BL+p4bNe/y2/c5HWjQkJtbCNrjJF583vDj93wm6X73GHm2ndWtl8z+C3veSlNhe3MsjXuwRdM37PbVpe+oWFXKogI22VnS9gu6lls4bO6Yav/2GmuDGgWr5Be83b78Z//zQ6uBgCA/5+9Ow+z9KrrBP49VdV7d/ZOOk12spBASAiLgbAm7MhiDMIICo4OoojKICMgIIoo4jrOiKKjgDqgoiCLgmwyLBKWsCRsIfva2ZdOr9VV9c4f1Z2u6rrvvbdu3aXq1ufzPPepW+d33vf8qrq6q5L7rXMAAAAAgGEkbAcAdZ50YftzDz+6d320obz4Nc0nDCgEU855YnsT94XtWh4T29vAW/mRl6e86T3JuU9Pjnlgcu7TUt7wrpTnv7Kn69Y69WH3Pz1s8q62LxurJpKxlfsHmu3Kd/zpnXS26JWHnjdnrOnOdlU12CNQu6mbodTHP6/9uYvgGN7yq3+e8vK3Jg89b/rv8DEPTB79jJRf/9uU5/63QbcHAAAAAADAEjfAc54AYJGbT3Bk0MdPtgoJDaq/dj+H+4JhrXaP6+HOdvuUp7ww5Skv7Pk6bZmx09qaamfbl806RjZJ1qxL7q6Z3IfP6UA0+NprubPdIgiLdUUXd2Esq9akanfyIvj8ldHR5EW/kvKiXxl0KwAAAAAAAAyhIX11FQC6oOUuazMMOmRy7CnN66vX3v+0vOqPG8+58OVdbGivY05ub97Y3vx/q+DXfP5MhsGMkOQp41e1fdlYDtjZ7uZr6iePjHbS2eLX4O/ESKaaX7NyZfP6YtEyTNfFHSBb/dsy06BDxwAAAAAAANBjy+wVawBoX3n009ufPOiw3emPaF6f2d9jn52sWT+7PjKScsELut5WOaLN43XbPUa2izt2LQkz/tw2T2xp+7KxanJ2cOy4U+snD+vOdg8+d85Qs2NkRzK1/+twqevmn+kPPbX9uavWtp4DAJMLjsUAACAASURBVAAAAAAAS9iQvroKAF1w5DHtzx1w2K6MjDQPCs04ZrYceUzKH30sOeWs6fDaMSenvPn/pjz0Mb1prp3P4/1hu8EfI7uoHPB1tWnilrYuG6tm72xXnvXS2rllSHcLLGNjybqDZo81m58qGR2SsF03j5Fdf/D0McTtGHToGAAAAAAAAHpsOF9dBYBuWD2PXZpWLoLjE486tr62ctWsd8uDH5WRv/5Kyifvycj7vpPypAt719dhR7Wesy8Y1iL4VZbxznZJsmni1rYuG8tEsmLGznbNvpaHOcDYbEe/A5RUw7OzXTePkU2SU89pb55jZAEAAAAAABhyQ/zqKgAs0JoN7c9dDCGTJ13UePywTbUhtdKPvm+7qfWcfSGnYQ5+deKAEOcNYw9o67IDd7bL+K7audXkREetLQk3Xd321Ofc95GlE7br9w6Q7f47sRhCxwAAAAAAANBDXtEGgBplbKz9yStWtZ7TY+W8ZzUunPfM/jZyoEM3tp5z/zGyfjSZqRwQmjps8u62rhurJmbvinfqw+on7xnvpLWlYee2OUM/ffe75owdNXFrHrfji0snbNdKt3eAbPd42Jm7KQIAAAAAAMAQ8oo2ADTz7P/a3rxFEDIpDzk35RfePjtoc9ZjU17xu4NrKkm58OdaT7o/bLfMjoltx/Nfef/TX7z7T9u6ZCwTs3cjO7TJUb4TQxy2a/C193u3vTaP3fGF+98/fOKOfPiGCzOaKWG7Ou2G7UaH5PMHAAAAAAAANeaxZQ8ALD/lyGNTtTNxbPBhuyQpL/il5Bk/kXzny8nmE5PjTqs9QrZv1qxrPccxsrXKxs33fw2un5q7U1sjc3a2W9Vk58Xx3Z03t9itXjtn6KCp+/If1z01P1h5Su4YPTyP3HlJVmbPdHFYwmLd3iHSznYAAAAAAACQRNgOAJobGW1v3iIKmZSDDkse/YxBt7HfuoNaz3GMbL2JiXlfMpbJZOWMne3WHVw7t2w+sZOulojGQdOS5LTxK3JarphdGG3z7/ugtQrQdjtg2+7nZVh2BgQAAAAAAIAaXtEGgGZOe1h780bl12ud9djWc+xsV++Io+9/etruH7R1yVg1MSsAWg4+PDn5oY0nn/u0BbW3mJW6j7mRsRWD3wWyW7r8YZQHPaK9iWP+HQQAAAAAAGC4eUUbAJo57ZzWc1asHJ6QTg+Uee1s5/M4xwmn3//06IktbV2yotozZ5ex8kt/mKxZP3vii16THHfagltctB78qPbnDtOubN3eIfJxz2lv3iI5ThsAAAAAAAB6xfYTANDMqjWt5wiYtHbokcndt9XX930OHSM714yvwTXVrrYuGa0mktEDwnZnPy5591eT//xYqnvvTDnnicnZjxvuoOjqte3PXUJhu1JKquYTurvg2g3tzVtCn0MAAAAAAADohLAdADTTTthuhbBdSytWNa87RrbejMDY6qn2wnZjmWgYfCqbT0ouekW3TxldvFbNI2w3TEdBdzts1+6/cYLHAAAAAAAADDmvaANAE6Wd8JeASWvHtziqdGxf0GnZxMDat+n4+5+ur7a3dclYNSG4mKSsbBHynGl0iHZl6/IOkW3vfmhnOwAAAAAAAIacV2EBYKEETFoqL35N8wl2tqvVVuDzAGOlGu7jYefj2FPamzdMf4978Wd/0GGtl7XLJwAAAAAAAEPOK9oA0Mo5T2xeXzFEIZ1eOfvxzev7dgfs8o5cw+jNt/9myzljI1UfOlkayjN+sr2JY46Rber8i1rPGabAIgAAAAAAADTgFW0AaGXl6uZ1x8i2VEZGkmZHetrZrm1rpna2nDNWhO3ut6rF3999hiko1ovQ6qo1reeMDlFgEQAAAAAAABrwijYAtHLCg5rXm4XI2G98d31tX9DJ0aeNPe459z990PjlLafb2W6GE05vb95Qhe26//eoHHpk60mOkQUAAAAAAGDICdsBQAvlyS9oPmHV2v40stRtPrG2VPbuDliE7RoqT3/x/c/P3/7ZlvPtbDdDqyOM9xldYmG7Zn9XevH36Ek/2nrOMAUWAQAAAAAAoAFhOwBooZx2TvMJ7R5TucyVH391fVFIp6ny+Ocme3cWW1Ptajnfznb7lZWr2jueeJi+BntxjOym41vPcaQ2AAAAAAAAQ07YDgAWatWaQXewNDT7PI2O9q+PpeqZL2l7qrDdAY45ufWcoQrb9eAY2ZGR1kdmD9PnEAAAAAAAABoQtgOAdpxydn1t4+b+9bGUTU3Vlqqd2/vYyBJ15y33P/2hHV9uOnVMdnG2yYnWc4YpKNar45jHdzevr7CzHQAAAAAAAMNN2A4A2lBe+fb62mOf3cdOlrBmx/FOTfavjyWqnPCg+5+/4Y7faTp3rEdZqyXrEee3njM21vs+uqlZoK4Xx8gmybGnNK8PU2ARAAAAAAAAGhC2A4A2lIc9IXnWS+eO/+xvpZz79P43tBStP6i+Nils19KJZ9z/9BnbP9F0qmNkZysvfFXrSaNDFBTr0c525ZW/13zC6BILLAIAAAAAAMA8eUUMANo08tp3pvrF308++ffJxgckZz8uZe2GQbe1dKxcXV+zs11rB3z+ztj93Xx31RkNpzpG9gCr17WeM0y7svXqGNkNhzavO0YWAAAAAACAISdsNyCllJOSPDLJI/a+PSfJzMTGdVVVndDhvRe6nc2JVVVdu8B7AAylsnZD8tz/Nug2lqYmwcRy6tl9bGSJWjM7MLZ1pH6nwLER58jOsq7Jror7DFXYrkebVx/UImw3TJ9DAAAAAAAAaEDYro9KKU9M8rpMB+wOG2w3ANBfZdWaVGc/Pvnm52YXRkaSRz1lME0tJSc+eNa7N644pnaqne1mK2vWpeVvIiy1oFiz3et6tbPdsac2r69a05t1AQAAAAAAYJHo0bYX1Dg7yVMjaAfAMlV+6Q+TQzbOHnv1/0o5yLfGllavnfXui+59b+1UYbsGfvTnm9dHh+h3UHoUtiulJI98cv2EVWvrawAAAAAAADAEhuhVxSVtd5IbkzywB/f+cpIXzvOaG3vQBwCknHxm8jdfT778yeS+u5JHXJBy4hmDbmtJKCMjs3Zn2zRxS+3cMb9OMUd58A+l+ud31E9YajvbNdOrY2STlEdekOqrn2pcXLW6Z+sCAAAAAADAYiBs1397knwnydeSfHXv28uSnJfkP3qw3q6qqq7twX0BoCPl0COTp79o0G0seaPVZG1tbLRHx4guZWvWNa/fc3t/+uiaARwjmySHbaqvtfocAwAAAAAAwBInbNdf70ny51VV7TqwUHr5oigAMHS2jWyorY2N+blijgf/UPP6zu396aMfevlz5aOeMn3/qpo9fvTxyeFH925dAAAAAAAAWAQcMtZHVVXd3ShoBwDQlp96w/1Pn7z9M7XT7Gw3Vzn0yOT8i+onTNbvFLjk9PIY2UM3Jhe94oDBkvJTb/TLIwAAAAAAAAw9O9sBACwR5REXpHrXbyVJ1lQ76ueNjvarpSWlvOFdqT7zT42LkxP9baaXehx6K6/8/eSUs1Nd/PFkzfqU8y9KedRTeromAAAAAAAALAbCdgAAS8WqNfc/XT1Vv1luNbKiH90sOWXFylR1xakltrNds0Bdr8N2pSTP+ImUZ/xET9cBAAAAAACAxcYxsgAAS8WxJ9//9KG7v52xas+cKaPVRM5au6WfXQ0HO9sBAAAAAAAALQjbDb/jSinvKqV8p5RydyllvJRy6973/66U8rJSymGDbhIAaK2s3ZAcMx24O3hqa16w9f1z5ly09QM5eOUS26VtMRC2AwAAAAAAAFpwjOzwO3HvY6Yj9z7OSPKiJH9YSvnLJG+sqmpbL5oopRyZZOM8L3tgL3oBgKWsvPHdqX72sUmSv7z553LExB350IbnpErJc7d9JG+79deSsZ8bcJdLkGNkAQAAAAAAgBaE7UiSdUl+OckzSykXVlX1nR6s8fNJfr0H9wWA5WXdhvufrsye/MFtr80f3Pba2XPGVvS5qSFgZzsAAAAAAACgBcfIDq+JJJ9N8oYkz0lyTpJTkjwsyXOT/H6S2w645tQknyqlHN+/NgFgtvKytzQuPP3F/W1ksTr86NZzhO3qPfS8hsPlZ36jz430UPEjPgAAAAAAAPSCV+KG0xuSPKCqqidVVfXWqqo+UlXVN6qqurKqqm9WVfXhqqpek+T4JG9LUs24dlOSD5RiSxQABuSJP5KMzt18tzzxwgE0s/iU9Qe3niNsV6s8+QVzB9esTx7+pP430yt+jAMAAAAAAICeELYbQnsDdgfuWtdo3q6qql6X5JUHlM5J8l+63NY7kjxkno/ndrkHAJaAcuwpKW95X7Lh0OmB1WtTXvG2lPOeNdjGFpOTHtK8PipsV+t5L0te+Kr9u/8dfnTKH3w0ZcMhg+1rvpoF6oTtAAAAAAAAoCfmbhvDslNV1Z+WUp6a6eNm9/n5JO/t4hq3Ze6xtU3ZXA9g+SqPe07ymGclN16RHH1iyspVg25pcTnyAcnV366vj/kRr04pJeUVb0v1029KbrsxOfaU4fuZwzGyAAAAAAAA0BNeiWOf3zng/XNLKUtsixcAhkkZHU05/kGCdo0cfETzumNkWyqr16Ycd+rwBe0SO9sBAAAAAABAjwjbsc9Xktw94/3RJGcMqBcAoInyyCc3nyBst7wJ2wEAAAAAAEBPCNuRJKmqairJ9QcMbxxELwBACxc8v3l91DGyw69JoM4xsgAAAAAAANATXoljpp0HvL9mIF0AAE2VsRXJC3+5foKd7ZY3O9sBAAAAAABATwjbMdMRB7x/x0C6AABaW72uvjYqbDf0mgXqhO0AAAAAAACgJ4TtSJKUUo5IctIBwzcPohcAoLWyem19cZXNaYdes90LHSMLAAAAAAAAPeGVOPZ5YWZ/Pdya5HsD6gUAaGXV6s5qDIexlfU1O9sBAAAAAABATwjbkVLKUUnecMDwR6qqqgbRDwDQhpXNwnZ2tht6K4TtAAAAAAAAoN+E7YZIKeW0Usqz53nNpiQfTXLUjOHxJL/Tzd4AgC5rtrOZsN3wW9HsGFlhOwAAAAAAAOiFsUE3sNyUUo5J48/7pgPeHyulnFBzm21VVd3RYPzoJB8upVyW5O+SfLCqqitq+tiQ5CWZ3tHuqAPKv1VV1dU1awMAi8Hpj2g8PrYiOfGM/vZC/zULW476ER8AAAAAAAB6wStx/feFJMe3Me8BSa6pqb0nyUubXHtmkt9N8rullHuTfDvJHUnuS7I+ybFJzkrjP/+/qKrqLW30BwAM0gmnJ2c/Pvnm52aPP+1FKesOGkxP9E+zY2RHm+x6BwAAAAAAAHRM2G74HZzkvDbmbU/yqqqq/rLH/QAAXVBKSX73g6ne+YbkK59IVq5OHvfclJf+2qBbox9WrKqvjY72rw8AAAAAAABYRoTthsv3kvx2kickOSfJmjau+UGSdyf5y5qjaQGARaqsXZ/yqj8edBsMwrZ76muXf71/fQAAAAAAAMAyImzXZ1VVndDDe9+a5NeSpJQykuSUJA/M9JG0hyRZnWRnkruTbEny1aqqbu9VPwAA9MhNV9fXrry0f30AAAAAAADAMiJsN6SqqppKcvneBwAAAAAAAAAAAAswMugGAAAAAAAAAAAAYLETtgMAAAAAAAAAAIAWhO0AAGCpueDH6muPfkb/+gAAAAAAAIBlRNgOAACWmPLEC+trL39rHzsBAAAAAACA5UPYDgAAlprHPzd55AVzx897VspJD+5/PwAAAAAAALAMjA26AQAAYH7KyEjyB/+aXHlpqrf9bLJzW8pb/j7lgQ8ZdGsAAAAAAAAwtITtAABgCSqlJKeclfJXFw+6FQAAAAAAAFgWHCMLAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALYwNugGArtt9Z7LjxmRqT7LhlGTlwYPuCAAAAAAAAACAJU7YDhgeu+9MPn9RcttnZ4+v2Zw8+4pkbO1A2gIAAAAAAAAAYOlzjCwwPL7wgrlBuyTZeXPyxRf2vR0AAAAAAAAAAIaHsB0wHHbdkdz6mfr6TR+ZPlYWAAAAAAAAAAA6IGwHDIcdNySpWsy5sS+tAAAAAAAAAAAwfITtgOEwuXPQHQAAAAAAAAAAMMSE7YDhsPX7redMjfe+DwAAAAAAAAAAhpKwHTAcrvuH1nPu/Frv+wAAAAAAAAAAYCgJ2wHDYfXG1nOqyd73AQAAAAAAAADAUBK2A4bDTR9tPefilyS3/2fvewEAAAAAAAAAYOgI2wFL35X/J9lzb3tzP3lecvPHe9sPAAAAAAAAAABDR9gOWNqqqeTSN87vms8+oze9AAAAAAAAAAAwtITtgKVt29XJrlvmf1011f1eAAAAAAAAAAAYWsJ2wNK2577OrttxY3f7AAAAAAAAAABgqAnbAUvblo93dt11f9/dPgAAAAAAAAAAGGrCdsDSVVXJt17f2bXf/NXu9gIAAAAAAAAAwFATtgOWrq2XL+z6nbd2pw8AAAAAAAAAAIbe2KAbAGhq27XJHf+ZrD0mSdk/PjWeXPkXC7v3+F3JmqMWdg8AAAAAAAAAAJYFYTtgcdqzLXn/hs6vf9jvJZe9OZnYXj9nYlvn9wcAAAAAAAAAYFlxjCywOH1w08KuP/1XkqdenJz4k/VzLvuNha0BAAAAAAAAAMCyIWwHLD7VVPMd6VpZdfj020Mekpz77sw6fnamWz/T+RoAAAAAAAAAACwrwnbA4rNn68KuP/jB+5+XkqRqPG/FAo6pBQAAAAAAAABgWRG2AzpXVcn3/yj56BnJBzcnF//0wnak23fP775tYfc46b/Ofv/IJzSet+u25J+PTLZ8YmHrAQAAAAAAAAAw9ITtgM5d/ifJ1/97svV7yc4tydV/nXzuwgXe838m3/3dzq5dcVDyqHcmJ71k9vgZr6u/ZvftyX88Lbnjy52tCQAAAAAAAADAsiBsB3Tu6r+aO3bLJ5Lt13V+z6v+T+fXPvuK5OSXzR0fW9P62mv/rvN1AQAAAAAAAAAYesJ2QOfuuazx+JV/0dn9qiq59zud97PikMbja49tfe2tn+18XQAAAAAAAAAAhp6wHdB9u+/o7LrJXa3nPPxPGo8f+fhkdGXj2voTk0POWvjaAAAAAAAAAAAsW8J2QPdtu6az6675m+b18z+ZnPoLydFPm1t7/IebX/uEDzWvb7uyeR0AAAAAAAAAgGVtbNANAEPolk92dt2lb6ivPet7ycEPmn7+pI8ne7YmN/1rsvG8ZN1xre+97vhk3QnJ9mvr50yO1++OBwAAAAAAAADAsmZnO6AzU5P1tZWHzv9+E9ubHz+76vDZ7684KDnhv7QXtNtn87Oa1+/9Tvv3AgAAAAAAAABgWbGzHdCZqd31tTI6//vt2VZfG1mRrN44/3se6AHPTq740/r6xPaFrwEALA+7bktu/niy9XvT7x90WnL0M5I1Rw22LwAAAAAAAHpG2A7ozOSu7t2rmkr+9fT6+mP+b3fWOfopyckvT67888b1yZ3dWQcAGG73fjf59PnJrltnj6/amFzw6eSQMwfTFwAAAAAAAD3lGFmgM90M2932+WT87vr6xsd2Z50ykjzyHfX1yR3dWQcAGG6XvGpu0C5Jdt+efO0X+98PAAAAAAAAfSFsB3RmqlnYrprfva55T/P62Lr53a+ZUqZ3nWlkws52AEALU5PJ7Z+rr9/xxWRyvH/9AAAAAAAA0DfCdkBn7vhKfa2aZ9ju6nfV18Y2JCsOmt/9Whld03jcMbIAQCvVRPMdfqf2JFO7+9cPAAAAAAAAfSNsB3Tme79bXxu/q3vrPKzJOp0aE7YDADpUTbUxZ7L3fQAAAAAAANB3wnZAZ5rt6DIfu+9sXj/+x7uzzkx2tgMAOiZsBwAAAAAAsFwJ2wGdWXV48/rE9vbuc8unmtdHV7V3n/kQtgMAOtXWznZtzAEAAAAAAGDJEbYDOnPQg5rXd9/R3n12bmleH13d3n3mQ9iOxWZqcvoBwOBNTSYTO5LJ3cmercme+2bXHSMLAAAAAACwbI0NugFgSE20GVzbc2997YzXdqeXA42ubTx+3xW9WQ/qTOxMvvYLyY0fnA5mPODZySP/PFmxftCdASw/E9uTf6z593f9Sclpr0pO+4U4RhYAAAAAAGD5ErYDOjOysnm93V3iLntzfe3s32m7nXkZq9nZ7vr3J1N7kpEVvVkXDnTxS6a/7va59v8mu+9MnvSxwfUEsFzVBe2SZNvVySWvnA5DP+DZre9173eTtQ/oXm8AAAAAAAAsCo6RBTrzyHckL2gSqGsnbLfrtu71Mx/Njn+7/Qv964Plbfze5IYPzh3f8vFk5y397wdgOWv3Z5Kr39PeMbLX/f3C+gEAAAAAAGBRErYDOjeyKklpXGsnbHfvd7raTttu+VR97Y4v968Plrf7rkiqica1u77e314Alrsb/6W9eVu/194Rsde8e0HtAAAAAAAAsDgJ2wGdKyUZXd24Nrmr9fXbru1qO23bcHJ9bWq8f310w84tySX/PXlvmf349lsH3RmtTO2ur7UT5ACge/Zsa2/erluTfzuz9bxqKvn3RycTbfzyAQAAAAAAAEuGsB2wMKNrGo+3s7Pd9mu72krbDj27vrb9uv71sVC770w+9YTk8j+aW7v0Dcmlb+p/T7Rv+/VNatf2rQ0Aknzj1e3P3X1He/PuvDj5x7XtHTsLAAAAAADAkiBsByzMUgzbNXP9+wfdQftu+Ofpo0jrfPst/euF+bvyz+trV7+rf30ALHe72gzPderOr/T2/gAAAAAAAPSNsB2wMCvWNx7fdWvra5vtInfkEzrrpx2bf7i+tvExvVu329p58b7dY/Hov7qgapKs3tS/PgCWu7su6e39v/v23t4fAAAAAACAvhG2AxZm3QmNx5vtuLbP1u/V105+WUfttGXzM+prO27s3brddvO/tZ7zyfOS95bpx1denmy/ofd90Z77rqyvVXv61wfActfOLwgshJ3tAAAAAAAAhoawHbAwG05pPN4qbDd+T7Lrtsa1VYcnx71gYX01M7oqOfxRjWv3fie576rerd0tl/56snNL63n3XLr/+ZXvTD50XHL3N3vXF+2Z2Jlsa/J11s4xzAAs3K47kotf0ts1dt6UTO7q7RoAAAAAAAD0hbAdsDCdhu2++7v1tfM/k4yMdt5TO5qF+b79lt6uvVDbr0++/ZudX//N13evFzpz1f9pXp8QtgPoiyv+rHn9se9PzvuH5Jw/Tk55Refr3Pihzq8FAAAAAABg0RgbdAPAElcXtttxYzKxIxlb27jeLIy3/oQFt9XSioPqa7d+uvfrL8St/7Gw67d8LKmqpJTu9MP8bbumeX1yR3/6AFjubvpI8/pxF+1/vvOW5Io/7WydWz6dHN/DXXsBAAAAAADoC2E7YGHqwnbJ9DGZh5zZuLbnvvrrmgXhuuXIx9fXxu/t/frt2LMtue59ycT25KDTk/G7p8evfOfC7z01Pn2cLoOxp8XXmGNkAfpj25Xtz12zafrnnla79zZy3XuTR74jGfGfXwAAAAAAAEuZV3uAhVl3QlLGkmpibm3rD+rDdrd8ovH4EY/pWmtNHXRqsu74ZPt1c2sT9w1+57cbP5x87rm9u//kTmG7Qbr7683rjb4uAeiu8bv3B9kbWfOAuWNnvy35wgsa/9zTzMT25O9XJD/8g+SgJr+oAAAAAAAAwKI2MugGgCVuZCxZf2LjWt3OL7d/qf5+xzxn4T2169z31Ndu/GD/+jjQ+D29DdolyS2f6u39ae7ubw66AwC21AT/91l/0tyxYy9MnvLF5IxfTY69aPpxxuuSp301ecGu1mv+64M66xUAAAAAAIBFYaA725VSSpLXJFk9Y/hvqqq6doH3PTHJT8wY2lFV1e8v5J5AE3VHqtWF7W7+aP29Rtd0p6d2jK2rr93wL9MvqA/CTR/p/RpbPpEcd1Hv12Gudnet23V7snpjb3sBWM46OQ42SY541PSjkTN/M7nsTfXXVlPJ9huSdcd2tjYAAAAAAAADNehjZH88yduSVHvf/8BCg3ZJUlXVNaWUM5Pcn5QppVxdVdUHFnpvoIENpyb5t7njdS9i79xSf6/DHt6Vltpy8On1tWbHyvXSrtuTb76us2uPe35y/fvbm1vt6WwNFm7nLe3N23Z1suqIwR5nDDDMJnZ0/56HndN6zl1fFbYDAAAAAABYogZ2jGwpZSTJb+57N8kVSV7SxSVemuSqvfcuSd7axXsDM204pfF4Xdjuhia518PPXXg/7Wq2s92O6/vXR5Jc/e7kvSX5wJHJzpvmf/2Kg5Mzf6P9+RM7578G3THZZrjjE+cmHzouueKdve0HYLnac0/373nU+cnBZzSfs6OD7/MAAAAAAAAsCgML2yV5cpITM72rXZXkdVVVdW17iaqqtid57YyhU0sp53fr/sAMdWG7Xbcke7bOHrvnsmTPvY3nn/iTychod3tr5cw3Nx6/59L+9XDb55KLf2p+16w+Mll9VLL2mOTYi5ILPjO9U98Ldidrj2t9/fX/0FmvLNxlv9l6zj47bky++vLpY40B6K4r/qz79xxbk1zw2eZzLvnF6eNkAQAAAAAAWHIGGbZ78Yznl1RV9cFuL7D32NhLZgy9qNtrAKkPc8IFfwAAIABJREFU2yXJfVfOfv/6f6qfu3pTd/qZj2a72239QX96uPrd85s/ujq58NbkwluS592QPO79+4+tG12ZPO+65Mer6ccZv9r1dlmg2z47/2uEIwG6a3K8d/devTE58onN59x1SfM6AAAAAAAAi9Igw3ZPn/H8r3q4zr57lyTP7OE6sHytPTYZWdm4duBRsnVHyybJhgd2r6d2rW+y5oFBwV65+l3zm9+s5wPt3NJ4fPWR81uT7hldM/9rrvv77vcBsJzturW39z/mec3r/foZAwAAAAAAgK4aSNiulHJ8kiNmDH20h8vNvPeRpZRje7gWLE8jo/UBsAPDdduvrb/P5h/uWktt2/SU+trk9t6vP7l7/tcc/8L25x7x6Mbj43fPf10WrqqSyZ2D7gKAdv4tLqXz+x/z3Ob1+exYOrkr+davJR9/RPKhE/c/PvzA5PMXTR9HDwAAAAAAQF8Mame7s/a+rZJcVVXVTb1aqKqqG5PM3Dri7F6tBcta3VGyl75x//M9W5M7vtR43sbHJms3d7+vVlasr6994cd6v/7nL5rf/NNelTz49e3PX39S4/GpPfNbl+4QtANYHLZ+v7f3X39Ccv6n6+s3fii5/v2t71NVyecuTL7z29NHz26/dv9j29XJDf+cfOapAncAAAAAAAB9MjagdTfOeH5zH9a7OcnJe587OxF6oS5sN9PNH6+vHXVB93qZr1Ubk923N65N7kpGV/dm3a1XJDe32Njz6ZckZTQZW5esOz4ZWTG/NZodWXrvd5ODz5jf/ViY2z4/6A4ASJKr/qr3a2w6Pzn0Ycnd32hcv/xPkuOe3/weWy9Ptnys+Zyp3ckVf5Yc+fjO+gQAAAAAAKBtg9rZ7tAZz2/pw3oz1zikD+vB8tMs1DU1Of32rq/Vz1k9wBxsXdAumQ6k9cpdl7Sec9g5yaFnJRtOnn/QLklWH9Vk/ZoX/+mdbVe2ngNAH1Stp5zwEwtfptnPN3d+tfX1zX52mu+9AAAAAAAAWLBBhe1W9rmHmWus6sN6sPwc8ej62tSu6bc7mpwYvfnp3e2nWyZ39e7e93yreX3zMxe+RrMdB6d6+LHRWC+/ngBo39R48/rIita7zrXj6Gc06WF3sv265tff3uaOqNuuar8nAAAAAAAAOjaosN2OGc831s7qnplr7KidBXRu3bH1tW3XJrtuT657b/2c9Sd1vaW2Hf6o+tonz+vNmndcnHz3bc3nnPvuha9TSpMevrTw+zM/l75p0B0AkCSTO+trIyuSx/5TsvLgha9z6s8na4+rr3/ohOTe7zeuXf/PyZV/0f5a3/jVebUGAAAAAADA/A0qbDfzWNfj+7DezDVu7cN6sPw0O0b28j9OrvrL+voDf6b7/czH6Orm9Z09OO36W29oXn/hnmR1l7LIhz288fhVf9Wd+9Oe8XuSSXlvgEVhoiZst/G85MLbkmOe0511RlYkT/hQ8zn/+aK5Y1WVfOPV81vre29Ppibndw0AAAAAAADzMqiw3b5zjkqS40spJ/dqoVLKA5Oc0GBtoJtWHFRfu+ey5NbPdnZtPxx1fvP65X/c3fWqqeS2/1dfP/KJychY99ab2tO9e9G527846A4A2Gdye+PxY5+frDyku2utaLFD3t1fnzu2/brWR8w2cttn538NAAAAAAAAbRtU2O5bScaTVHvf79LWEQ09b8bzPUm+2cO1YPlafWR9rZpM9mytrx/1pO73Mx8P/Onm9S3/3t31Jncl1UR9vdufj7owY+lioI/Wmv0dAKC/xu9uPL7y0O6vte6E5kfJNtLp94yr/trudgAAAAAAAD00kLBdVVXjSf5fpne2K0n+RyllXbfX2XvP12Q61Fcl+dzetYFe2PzMxuN3fS2588v11216am/6adfaY+qPWk2S3Xd1d72JFkeJnvLy7q532i83Hq8m7HrXT5f9+qA7ACCZPqJ1952Na6sO6/56pSQP/5/N5xz4s8FkzTG3rVz33uRfNid77uvsegAAAAAAAJoa1M52SfK+vW+rJBuTvL0Ha7wtyZGZDvQlyXt7sAawzzE/Mv9rHv6/ktGV3e9lvp7w0frajuu7u9bNTdZ62lea7xLYibXH1teu+ZvurkVjd38zue+KxrW1xw5+d0eA5WRyRzJV8/s3Kw/vzZrHPq95/Yo/n/3+fT+on/uw32t+r123Jd9+S3t9AQAAAAAAMC+DDNu9N8mWvc9LkpeXUl7frZuXUl6b5BXZf1TtrRG2g94aXTP/a1Ye3P0+OjHSx8DfrZ+tr63Z3P31xtbW127+ePfXY66r/qq+trIHuygBUK9uV7ukNzvbteO6981+f+v3G88rY8mGU1rf73stAnkAAAAAAAB0ZGBhu73Hub4u00G7au/bt5RS/r6Ucmin9y2lHFJKeW+St864b5Xk9Y6QhR5rdhRr7TWP7H4fnWj14vpdlyTj93ZnrWqyvtaLsN2GU+trE9u7vx5z/eB/19fu+Vb2b8AKQM+NNzkevpcB6Ic0OU78vitnvz+2rvG8aiLZ9NTu9QQAAAAAAMC8DHJnu1RV9TdJPpTZgbvnJ7milPL2Ukob2zZMK6WcXEp5e5Irkrwg+5MLVZKPVFX17m72DjRw8IPmf81Bp3W/j06taLLL3scfkfzTIcmnnpCM37Owda79u/pa6UHoqtkxvXd8qfvrMT8n/dSgOwBYXnY3C9t1/Ds/rZ38M/W1Pfck3/md6edVlVz2G/Vzx9Ykh5zV3d4AAAAAAABoy0DDdnv9RJKvZXbg7rAkr07y/VLKjaWUD5RS3lpKeU0p5b/tffxKKeW3Sin/XEq5Icnle685/IB7fT3JiwfwcQGtbP7h3oTLOvXIP2s957bPJV98YedrXPu++tppr+r8vq2c9dbG43vuSfbc17t1aW3jeQsPcALQvjv+s/H4ioOTkbHerbv2mOSCz9bXv/X65OaPJdf9QzJVsyH30U+ffvuMbySbn9V8vakmO+kCAAAAAADQkR6+mtSeqqq2lVIuSPLuJD+S6ZBcsn9nus1Jnrv3UWdmWmfm9R9K8pKqqrZ1rWGge1YeMugOZhtd0968Lf8+vStOq6NnG7n+H+prY22u34nRtfW1LZ9IjvvR3q1Nc6Nrkru/PuguAJaPu2r+zV11eO/XPvJx0//uT+5sXL/+H5OdW+qv3/ezSinJEz6SvK/J707defF0oBsAAAAAAICuWQw726WqqvuqqvrRTO9MtzP7d6bb98jesUaPHDC3JNmV5H9UVfUjVVVt7dfHAczThlMH3cFsB82jnx3Xd7bGtqvra738fDS7d7Oe6L31Jw26A4DlZdURjcf78f2wjDQ/Anbb1ck9l9bXZ/6sUsr0bnx1tl83//4AAAAAAABoalGE7fapquqPkhyf5K1J7snsUF1V85g555691x5fVdXv97t/IMkZr21/7nEX9a6PThx0evtzP/aw5NPnJ9e/f35r3HNZfW3zM+d3r/k46kn1tbrddei5Las35C93/7+87syn5jVnPT1vOeNJ+cADzsiesqi+PQMMl7suaTzebBfYbjr5ZfW127/YfGe7435s9vunv6Z+rmPiAQAAAAAAum7RvZpfVdWdVVW9McmmJI9P8sYkH0/y7SQ3J9m997Fl79i/J3lTkickObqqqjdWVXXHIHoHkpz9O0kZbW/uwfMIt/VDKcnpv9L+/Fv/I/nCjyXX/WN78y//3/W1016VrN7Y/trzNbYmWXdC49r3fq9361LrzpVr8oennZdvbPtS7l25JtvHVmXLmoPyqU2n5K9PfMSg2wMYTtuvqz+6+6SX9KeHk16arD22ca2arL/u4f8zOeyc2WMPfn39/K++fN6tAQAAAAAA0NzYoBuoU1XVniRf2PsAlpInfSL5zAWD7qIza4+f/zVXvCM5/sfamNckbLfxMfNfd74OOTPZfu3c8YltvV+bOS459AHZPraqYe1bhx6de1asziF7dvW5K4Ah1ywg36+d7UpJHvKG5Cs/O49rxpJTfr7xvQ57eP1ufTu3JGuO7qxPAAAAAAAA5lh0O9sBQ6CdF3XPfnvv++hEJy9I3/2N1nMmdyVbL6+vr940/3Xna3J3k5pQV7/dsPbgpvUb1xzUp04AlpFm37PX9OF78T6r5/nzRjWRjNT8nlSze91Vs4sfAAAAAAAAHRG2A7rvoAcl609qPuekn+pPL/O16cnJSOPdxmrt2Zrc8MGkqurnTOxofo8jzp3fmp3Y+Nj62uTO3q+/nB0+9893fKT5cctVKb3qBmD5avb9bvOz+tfHpvPnN3/9A+trD/jh+tp9V85vHQAAAAAAAJoStgO6r5Tk8R+q363tEf87WX1Ef3tq18qDk8f/y/yPkvv8hcmlb6ivT2yvr537nvrdarrpuOfX1yaE7XqqQbBuvMWfeRVhO4CuqwvbrdqYHHx6//oYW5cc8tD25z+kyc8YD/yZ+tp3f7v9NQAAAAAAAGipD+kOYFk65CHJ865P7vxactclyR1fSg59aHLKK5IV6wfdXXObn5786B3TPU/cl3zuee1d9923JQ/678mqw+fWbvts/XVHPbGTLudvbE19bcoxsj3VYGfDVjvbTfWqF4DlrC5sd8rP9bePZHonvXsubW/uygY/W+wzMpqc/LLkyr+YW9t12/TOu3ZLBQAAAAAA6AphO6B3RlYkGx89/TjtFwbdzfyMrZk+4m1yHiG0aiq5/T+TY549t3bfFfXXrTh4/v11YmR1fc3Odr01ftfcIcfIAvRf3fe70SaB9F5Zecg85rb4WWH1UfW1nVuStZvbXwsAAAAAAIBajpEFaGZ0dbJmHi9QT9zXeLyarL+m1Qvo3WJnu8GY3JVsv37OcMuwXa/6AVjO6na2G0TY7qjz25s3ti45/FHN52x8XH1tYlv7PQEAAAAAANCUsB1AK0/4cPtzG4SqktTvpLNiHrvaLFSzIMH43f3rY7nZdnUaRefGR5pvLmtnO4AeuPfbjcebBdJ75bCHJ6e22Pm3jCSP+NPp8H/Te51TX7v9C/PvDQAAAAAAgIYcIwvQymEPT553Q/KN1yQ3/1uy6anJDf/UeO63Xpc8+LVzx+t20tn05O712UoZm37RvpqaW/v+H/e3l+Wk5gjh1jvbCdsB9M0gdrYrJXn4nyTHPC+59bNzd8ddvSnZ/PTk0LNb36tZ/1/+6eSB/3VBrQIAAAAAADBN2A6gHWuPSc573/73/+2s5J5L279+MRxbV0pSViTV7rm1bVf3r4/lZvt1DYfHRx0jC9BXe2qOek+mA+mDUEqy6YLpx0K02vlux43TP8sAAAAAAACwII6RBejEnq2Nx8fWNx6f3FEzf213+mnXVIOgXVLfNws3sW3O0GRKJkvzb8FTjpEF6K7xe+pra47uXx+9UEaSDafU13ff2b9eAAAAAAAAhpiwHUAnTvulxuMT25Lxu+eO1+2m0+9j6zY/s/H4tqv628dyMjF3V8NWR8gmjpEF6Lq64HuSbDi5f330ypm/UV+baPKxAwAAAAAA0DZhO4BOHPaI+toX/8vcsS0fbzy332G7Y57beHz8rv72sZxc+7dzhtoK28naAXTX5X9SX+v39+NeOP6F9bVr/qZ/fQAAAAAAAAwxYTuATow1eVF+y78ne+YeHdpQv1/cb7be9hv618dy0uDoPjvbAQzAzR+rrw1D2K6UZHR149pt/9HfXgAAAAAAAIaUsB1AJ9a3OG5u1y2z3x9b13je7tu600+7mvW94/r+9bGcHHLmnKHdo2MtL6t60QvAcja6skltCMJ2STK5q/H4ikP72wcAAAAAAMCQErYD6MTKg5Ojzq+vT+zY/7yqkontjecd9aTu9tXKET9UX5vc2b8+lpM9984dausY2QN2tqumutURwPK09fLG4+uOn94VbhisO7Hx+J0X+z4CAAAAAADQBcJ2AJ167Pvra9//g/3Pp8br560+qnv9tKM0+Wd/QtiuJ+797pyhdo6RnTrwGNm63YoAaG3nlvraWb/Tvz567Yz/UV/7RpMaAAAAAAAAbRm6sF0p5eGllItKKc8upbQ45xFgAVYeUl+75m/2P9/e5HjWQRxbt+rwxuN2tuu+8XsaDu9ua2e7Awa2XdWFhgCWqRv/pb5Wd9T7UtTs54or/0KwHgAAAAAAYIEWbdiulLK6lHLSjEfTZEIp5TmllGuTfCXJPyT5lySXl1K+UEo5ow8tA8tNs13iZtp5U31tzdHd6WU+6l6It3Na9937vYbD7exsVx24s92OJl9HADR3zd/W10ZW9q+PXlt7TH1t4r7kviv61wsAAAAAAMAQGht0A028Oslv7n1+Y5IT6iaWUn4syXuTlL2PmR6T5MullCdWVXVJD/oEaOy9JTn83GRqd/2cxRS2237N9Nvxu5Mr/iy565Lk0IclJ788WX1E//obJlONA4x7Rlp/+50Tthu/qxsdASxP93y7vtb8d3qWlo2PTVYclOzZ2rh++R8l576rvz0BAAAAAAAMkUW7s12S52V/cO6vqqqqGk0qpRya5J3Z/7HMnFftfaxL8oFSyuoe9QrQ2J0XJ3d/Y9BdzDZa80/hZW9Otl6efPr85Fu/ltzwgeTSNyafflKyW9CrIzVhh46Okb33O11oCGAZ2rN1ele3Ou3uVLsUjK5Kzv9Uff3qd08/AAAAAAAA6MiifGWplLImydnZH5z7aJPpr0xy8N65JcnNSf5Xkj9Kcn32B/aOSfKLvegXoCOD2NUuqd/ZLkk+9yPJ3d+cPXbvt5Pr/7G3PQ2rLZ9oODy+Yn3LS+fsbHe1nYgAOnLDB1tMODDdvMQd/shk05Pr6xf/VP96AQAAAAAAGDKLMmyX5Mwko5l+5Wt7VVVfbzL3xdkftLs8yUOqqvqlqqpevfc+X907ryR5ac86BpanQ87s/NqVh3avj3mte1h9bev3Go9//dW96WXYrdjQcHi8Gm956dSB2Y9DzupCQwDL0O1fHHQH/bfh1Ob13Xf2pw8AAAAAAIAhMzboBmqcuPdtleS7dZNKKQ9KcnL2Hxf7pqqq7t1Xr6pqWynllUku3jt0Winl2KqqbuhN28Cy84h3JJ96XGfXbnpKd3tpe90nJ1s+Pr9rJnf0ppdhV001HB5v5xjZA3damtzVjY4Alp+7vtp6zrA55nnJFe+or3/r15K1xyalJBlp8bbsPWq3nbcNrq+bW3efbq5d10u792t37Vm9AwAAAAAAw2yxhu2OmvF8S5N5+xIuJcl9SeacEVVV1VdKKTdm+hjZJHloEmE7oDs2ntf5tQ9+fff6mI+Tfzb5xq8MZu3lZuvlDYfH125ueemcsN2Bx/sC0No1f7s8//3cdEHz+pXv7E8fy1Kr4N8ggoMLCBA2DEEu5TBkN8KlbXwM7X4svfja6PjPZ99bAAAAAACaWaxhu7Uznt/XZN6+lEuV5NNVVU3UzPt29oftjltgbwD7lZKc+ebksjfP77ojHp2sPrIXHbW2Yn1y1lund7Wht276cMPh8ZUHJZlseml14Gude+7pTk8Ay8XURPKlnxx0F4NRRgbdwTJWJVWVZGr6v1JhqVmMQcyFBhIXtMPmIglDzvfPpR9/PvMN/fb8a0NYFAAAAID+WKxhu5n/h2xFk3mPmfH8803m3Tnj+UEddQRQZ+0xreccaPVRref00uja1nPomfE2Xgeas7NdMn0srQAFQHvu+NKgOwBYeqqpvW+b/2IILE49DmJ2uitl13fYnMfHNNAwZJc/lnmFS7v8sfTq8zlrPgAAALBULNaw3czd7BomUkopm5KcPGPoP5vcb+bH6f9eAN21+Znzv2Yhx892w+iawa6/HFRVUkYbvlA5XlpvdTNnZ7skmdyVjAlKArRl2zWD7mCwNpya3PeDQXcBAH1U7f/vL7uLsuS0Cv51KUA43+BguztsDnIH1Hl9TB18LIsxKNvTHWXne799bwEAAJaPxRq2u2nv25LkzJo5M9Mtu5N8vcn9DpnxfPsC+gKYa83RyYkvSa55T3vz15+cnPDi3vbUyuGPGuz6y8HUntodQcbXHJVMbml+eaNs+MQOYTuAdu24YdAdDNZj35987KxBdwEAQFscRc8StxiDmI6ib39uP/98OgqX9vJrQ1gUAID5W6xhu0tnPD+slPK0qqr+/YA5P7X3bZXkK1VV7Wlyv5NmPL+lGw0CzHLuu5JDH5Z8/Zdnjx/28GRs/fTzkZXJEY9OTnl5smZT/3ucqZOd7e79XnLw6d3vZVjtqv92M15GWl7e8BjZq/4iefDrF9IVwPJx6RsG3cFgHfrQ5Bnfmh24G12bHHZOpl/Mndr7gu7e5+28nXVd3dt53K/VfQAAgKXBUfQsaT0OYna6K+Vi3mGzb2HIJR6U7dXnc9Z8AGAQFmXYrqqqq0opV2T6mNiS5B2llCdXVXVNkpRSXp1k5hmMH6q7VyllfWYfN3tVD1oGlrtSkgf90vRjKRjrIGx300eE7eZjyydqS+P5/+zdd5xkVZn/8e+pzmF6ch4mAkPOSJYM4ioIKiAmzO4aWVdXXVcU/RlWMaBiREURQQyYkBwEhjggzMBEYHLOMz2d6/z+qO7p6up7Tt1bdau7wuftq19ddc655zxdXV09Uk8/T/b/8BjYRnbNX0m2A4AwOraFX1vO/2Fy9BHSFSWctGYDEv2yJe/FmjgYJYEw4LpsZ2d+jvPsuJIhoz6eeX8tEb6mqM+NbN+XuL8/AAAAAEqEFa3oUbqyJf7FlAwZNXGwIBU2SzEZssgSZWlFDwCxKcpku14/k/R1pf5pO0vSYmPMc5ImSNqvd9xIapd0k2efM3rXSVK3pBcKFC8AlI6GqdGvqfR2fFF173ZOdSqZ9fLAynb8dTAAhNO2Lvxay39JL1rGSKZquKMAcrMvGW8YkyFDJQzGlAwZNXkx1wqbsT+eMXwtxZgom+1ryroPAAAAgNKQ/v8BhjsWIAexJGLGnTiY575DVmGzgMmQsSbKxvS15JRcGvPjaKp61wPFnWz3XaVaxc5V6p8HNZKOlfZlH/T+10F9y1q72bPPxWnrn7PWdhQmXAAoIYlqqWWutGtJ+GuWfl/a+pR05FekSWcVLrZy0b3XOdXp7XyeYoP+oqenNZ+IAKBybLh3uCMAUOn2/Qc9SSJpFCVmQLJokSRDDnlyaYivIVKFzQhnh/oahisRM+LXEulriuu5xrvMAAAAQMno+4Mvik2gFJz+d2nqa4c7ChSJok22s9Z2GmPOl3SnpL6+hUap/2LS+1+t9QdJV7v26G0h+0b1/1eW+woWMACUmmO/Jz1wXrRrtj4hPfha6fwnpNFHFiaucvH854LHx5+mzhB534H1JHa+mFdIAFARdi6Wnrkq/HraFQAAMNCAZFGgBJV6MuSQVdiMkigbcb+oiZhD+bVEfW6E/Zri+v4AAAAAKE68l4A0RZtsJ0nW2tXGmKMkvVvShZJm9E4tlnSztfaPWba4UlJL2v2/xx4kAJSq6qbcrkt2SCtvIdnOx9OS0NaMUGeyPfsWrne2kj1SguooAOC06tbhjgAAAADDiVb0KGWDkvGKIBmSVvTh9i2HRNm8vz8AAADljBay6FfUyXaSZK3tkvTj3o+obpD067S9dsYVFwCUvKbpuV/74teko74aXyzlpsfdQranp0NJ1WTdwrr+OKJzq1Q/IcfAAKACRK0COvqYwsQBAAAAAFHtqy7KG3koQbSiD/c1Ra2wWRaJmDl+LaG+Lzk+N2hFDwCIisp2SFP0yXb5sNa2SWob7jgAoCg1ThvuCMpXt/tXT+eU8yTNy7qFs7JdD7/WAMBr3R3h105+jVQ7snCxAAAAAABQKWhFj1JXrq3oIyWXxpzYGenxzCERM7ZE2bi/lghfk/e5FeFrAVB4/EEM0pR1sh0AAMOie5dzqnPy2dLGEMl2rr+O8CTyAUDFW/MXqXtPuLUTXi2d/JvCxgMAAAAAAIDSQCt6lLJcWtEXOhmykFUp86qwGXMiZlm2oh/q70+p4C8K0I9kOwAA4rb+HudUZ8i/enD+HRKV7QDA7cWvu+dmXymd8HOpfaMkKzVMHqqoAAAAAAAAAKBwaEWPUjagFX2RJEMGzY06bGgfFxS1kky2M8ZMkzRb0hhJIyQZa+2vhjcqAChBM66QVt483FGUn/aNzqnO6rpQWyRdfx3RvimXiACg/FkrbX3cPT/muNR/dGqYNHQxAQAAAAAAAAAAtwGt6KkwitJQMsl2xpgZkq6SdKGkGQFLBiXbGWNOk3Rm793t1trvFS5CAChB09+Ue7Ld9uek0UfGG0+5SHYNGuoyCb3QMkH3bw3XstC6KhHvWS7p/NxjA4Bylezwl5yfdN7QxQIAAAAAAAAAAICyVPTJdsaYhKQvSfqkUmmsQekHrm57WyR9oW/eGHOHtfalAoQJAKVp6oW5X/uPo6RTbpFmXBZfPOVi1+IBdzsSVfrRnBO0pGW81PZCqC2sq7Ld8h9LB34o3wgBoPzsecU9N/NtUssBQxcLAAAAAAAAAAAAylJRN+02xtRIulPSpxWcGOhKsktNWrtI0gPqT9C7ItYAAaDUJaqkA/JI3Hryg4FV3Cre6t8PuPvUmGmpRLsIrHEk2+1YkGtUAFDeFnzBPXfoZ4csDAAAAAAAAAAAAJSvok62k3SDpHN6b1ulkuYelnSNpM8puMpdpj+k3aZ3FABkGnV47td27ZC2PRtfLOXCVA24u3hEtEQ7KUs2+d61kfcDgLK39Un3XHXz0MUBAAAAAAAAAACAslW0yXbGmLMlvU39SXYvSXqVtfZ0a+0XJP0m5FZ/79tS0vHGmPq4YwWAkjbjskHJYZF07YgvlnKRkdSxt7om8hbONrKS1MljDgCSpGSPtPVpaccL/kqrjdOGLiYAAAAAAAAAAACUraJNtpN0de9nI2mlpJOttU9H3cRau1JSX1ZCjaSD4gkPAMpE7aj82uv98yKppzO+eMpB184BdzsT0ZMZk642spK0/q7I+wG0xh1nAAAgAElEQVRA2dm9XPrrHOmu46U7DpPaHFU/p10s+V5TAQAAAAAAAAAAgJCKMtnOGDNG0slKVbWzkj5mrd2Sx5Yvpt0+MJ/YAKAsHf5F6bQ/SdPfLFU1RLu2p11a/M3CxFWKkj2DhnJJtvO2kX32E6nHHQAq2cNvlFpXZl83592FjwUAAAAAAAAAAAAVoSiT7SSdqlRsRtJma+1f8twvPVFvQp57AUD5MUba7w3Sqb+TLtsb/fo1f40/plK1e+mgoc5EdeDSyyd+UKeMPDdwzmarwrTpn5FDA4Cysfslacfz4dZGTSIHAAAAAAAAAAAAHIo12W5y72crKXLr2AC70243x7AfAJS3w6+Jtn7X4sLEUYo6tg4aclW2qzV1Mo5fxd7KdpLUtj5iYBH0tEtde6TutsBKfQAw7KIkHI86onBxAAAAAAAAAAAAoKIUa7LdmLTb22PYL72cRVcM+wFAeZv5FqlmVPj1XTukvx0krf5T4WIqFT2DKwN2uZLtEnUyjgp2Vlkq2wWck7e2jdLNRrq1QbpthPS7RumWaumJ90vJ7vjPA4ChUD9+uCMAAAAAAAAAAABAmSjWZLtdabdHxLDfxLTb22LYDwDK24j9pXMekKZdLDXNkiZfIE06x3/NriXSI2+WNj82NDEWqz0vDxpyV7arVcJV2S5bG9mFX44cmpe10p8mBc+99FPp2U/Gex4A5CPba2Sfo68tbBwAAAAAAAAAAACoKMWabLc57fYB+WxkjKmSdHTaUAH77gFAGRl9lPTqP0oXvSydeYd01j3SGXf6r7E90srfDk18xWrTQwPuJpWlsp2jgl2y78bYE4PPaVuXW3wuO1/0zy//ES1lARSRkMl2NS2FDQMAAAAAAAAAAAAVpViT7Rb0fjaS5hpjpuWx1wWSGntvW0mP5xMYAFS05tnZ1+xaUvg4ilnjwF9ZrkQ7Sao1njayfeOdjoKsibqcwnNa/hP/fE+71L4x3jMBoNCaZw13BAAAAAAAAAAAACgj1cMdQBBr7SJjzFpJU5VKuPuEpKui7mOMSUj6bN+2kp6z1u6ILVAAqDQtIYqN9rQVPg6fjQ9Kj18pta7sH5vyWmnmW6WZVxT+/K49A+66WshKfZXtHG1k+25MPl/avXTwgmSHZJOSySNvvnNHqh3tpoekbU9nX7/9WalxSu7nlbuND0gPvEZKdvaPjTpcmniWtPWpVLLqgR+SxjmqFQKI3/jThjsCAAAAAAAAAAAAlJFirWwnSb/p/WwkfdgYc24Oe3xFUvo72j/NOyoAqHSHftY/v/nhoYkjyIZ7pfvOHJhoJ0nr7pDmvVVacl3hY1j+owF3vcl2xt1G1vaNz3iL+6z2ze65bHo6pPvPkRZfGy7RTpIeep20Z0XuZ5azDfdK9501MNFOknYskJZ8V9oyT1pxk3Tf2dIWiuwC+QvRRnbaG6Sq2sKHAgAAAAAAAAAAgIpRzMl2/ydpl1LFfaok/dkY8/4wFxpjxhljfinpk+ovDrRB0s8LECcAVJbmOdnXJLsLH0eQbMl0i76RqgZXKG2D26z6ku1qEp5ku742stUN7vPW/DFSeANsfEDaNj/6df/6VO5nlrPF3w23rmevtOyHhY0FQMroo4c7AgAAAAAAAAAAAJSZok22s9Zuk/RRpcpWWEn1kn5ojFlmjPmqpAvT1xtjXmWMebsx5teSXpL09t5rjaQeSe+y1maUmwEARFY/IfuaPS8VPo4g6+/yz+9dI7WtK9z5K349aKgrS2W7hKMN7L42snWex3vXkgjBZdj6ZG7Xrbot9zPL2aYHw6995VcFCwOoGCZEZbv68YWPAwAAAAAAAAAAABWlergD8LHW/soYs7+kzymVd2AkzZGUWVbHSHos475Nu+Yz1tq7Cx8xAFSACWdIiTop2eFe091amLO3PJ5qCVs7JtUesHnmwPnMFp5BOrZJjdMKEp5aVw8a8raRTdQ6K9sl+xJJGqe4z+vxfA+y6dmb+7UYrHvPcEcAVJgQyXaTzy98GAAAAAAAAAAAAKgoRVvZro+19vOS3iWpvW+o93N6Ql1fUp1JW2MkdUp6p7X2m0MWMACUu5pm6dRb/WvmvS3+dq3LfyLdfZK08EvSM1dJdx4jbXs2bf5n4fbZ8Xy8cWXhSrarUrWqTLWM41exTU8kGX1U8Oab/5l7YLm0kO3TviX3a8tR24bhjgBAkObZwx0BAAAAAAAAAAAAykzRJ9tJkrX2RkkHS7peqaS7vgwEo4FJdn1jSUm/knSwtXZwTz8AQH6mXSRdstk9v2uRtO2Z+M7raZfmf2zgWOd26bnP9s53SE9/ONxez38uvrhC6EgEF5GtTdRKkoyjFaJNvzP2hODNd76Ye2Ab7nXPjTjAf+1LP8393HK0+NvDHQGATA2ThzsCAAAAAAAAAAAAlKGibiObzlq7StKHjTGfknRq78d+ksZKqpW0RdJGSfMk3Wet3TFcsQJARagfJ9WMlLp2Bs9vfEAae1w8Z63+YyrhLtP6O1Oftz3tb2ubztTEE1OQgMQ6V2W7WlOXCsfRCtEaI1U3997xVAm0ScnEmDu/35uk026Tbva0aNz4gHToZ+I7s9RtenC4IwCQyfYMdwQAAAAAAAAAAAAoQyWTbNfHWrtX0t29HwCA4TThdGntX4Ln/vUpac3t0kFXSdMulhxJZ6HsWOCf79oVfq/2jbnHkU3duEFDXa5ku0Qq2S7hbCMr6djvpu7UT3Sf2dMhVTdEiTIlURecoFhVn/o8533uCnauBMtK1d0a/ZotT0pjj5cclQ0BZJPlZyfg9RgAAAAAAAAAAADIV0m0kQUAFKnDr/bPb5knPfJm6ZZqqX1L4eLwtUTN1L1bWv6TwsTRvWfQkKuyXU1fZTtXG9makdL0S1N3pl3oPrOnLVqMUqoanqsS4Iy3pD4f9VX39VuflHo6o59bjnrapZ0vRL/u7hOk34+Wkl3xxwRAOuzzwx0BAAAAAAAAAAAAyhDJdgCA3I05Rhp1ZLi1f55emBiS3dLib0W75skPSLuWxB/Lsh8NGnK2kU3428gmRx4i1fS2ka1pcZ/Z10o3ii2Pu+fqxvR+Hisd9TX3uqXfj35uOVr0zdyv7dqZ3/VAJctWFXLUEUMTBwAAAAAAAAAAACoKyXYAgPyMOizculwqsO3jSarY+kRuW677R27X+dSMGDSUPdnO0UY2PZGkqtF95ob7wsfXZ90d7rmqtJa0DVNz26OS5Ps4PPfZeOIAKk6W/xtTlUN7bQAAAAAAAAAAACCL6uEOIApjTI2kkySdJmmOpDGSRkiStfbsYQwNACrXmGOlFb8JtzbZIyWqUq0ze9oDk9MC+SoYtW0It0emvWtyu86ncZrUunLAkDPZzvgr21nZtH09SW+2O1qMktS1yz3XMrf/9phj3et2vRj93OHUtUvqCGhlnOySqkdIjVNy2zfX51+6vWtSiY3ZKnUB6FdV556rGy817jd0sQAAAAAAAAAAAKBilESynTGmSdJVkj4saXzmtJSekTDgurdI+n+9d7dJOt5aG7gWAJCj6ZdKz/xnuLWbHpRW/0l65cZUpbsJp0sn3yw1TMz9/Mff5Z5rmCy1rQ+eW3yt1L1HOu77UiKmX4cBSWzuyna1kiRjHJXtbLL/jmONJGnnC+Hj69O9xz1XVd9/u+Ug97q29dLNRjr/KWnscdFjGCptG6V5b5U2PSClP6ZBzn5Qmnh6+L3X/FlqfSWv8CRJt++XStQ8+pvSjMvy3w+oBJseds/N/WgqsRsAAAAAAAAAAACIWdG3kTXGHCFpvqQvSpogby/BQf4qaaykmZKOlnRu3PEBQMXzVV3LdP850rIfpJK9bI+08X7poX/L7/zu3e65i1b5r13+Y+lfn87v/HQ7Fgwa6nQk8vVVtkuEqWwnSXM/HnzmtvlSMmJ1u5d/ETw++8qB942RXvUT/153HS+1B1SMKxYPXyxtvC97op0k3XeG1JrlOdNn+7+kh9/knj/5t9JJvw63l5SqbjfvCmnL4+GvASrV3rXSkm+75w/9n6GLBQAAAAAAAAAAABWlqJPtjDGHSHpI0gEaWMHOKETSnbV2j6Tb0obeGHeMAIA8bZsv7X4p/n1bDk5VrJv1Tv+6lbdIcRQ9dSRzdTmqK9UksrWRzdivutF99uZHs8cXRlXT4LHaMdmvW3dHPOfHbeciactj0a5Z85dw61b9wd/Ct3akNOtt0nE/CH+2TUorfxd+PVCp1v7VPVc3npbMAAAAAAAAAAAAKJiiTbYzxtRL+pukkWnDCyS9R9JsSQcrXJW7P6fdPju2AAEA/ea8J7/rX/5lLGEM0Lkt9XnE/v51bWulZEf+5wW0kJU8bWR7K9u52sgmMxMAmz1fx54IyYrJLvdcT+vgsWyPnyQ9+4nw5w+lHc9Hv2ZtyGS7Pcv9833fr5YDo50f5XsJVKrdnp+/5jlDFwcAAAAAAAAAAAAqTtEm20n6qFLtX/uyDa6TdIy19hfW2hWS2kPu80DvHkbSLGPMhJjjBAAckmcrVtuTZUEOVYqmvDb1eb8QRU07d0bfP1NPW/DWrmS7rJXtMpLtpnra7ToS/QI54pQkTQk4Y9QR2ffsKNI2shvuzeGae6T2zdnXbX3KPTfmOKnlgNTtCadLjdPCn+/7/gBI2bXYPTfj8qGLAwAAAAAAAAAAABWnmJPtPqL+RLvbrbUft9bRo8+jt5XsirShg2OIreQYY2qMMWcYY95hjPlvY8yHjDEXG2NmDndsAMrAiP2lU24p4AE5JNvt/4HU55EHS+NP9a99+OLo+2eKmmxnIraRrffkij9zVfb4+qy6zT3XEvAr0hjpjBBtYvesCB/DUGjfJL30s9yuve8MqXuve37Py/4KdGf8vf92okY65yFp7Inhzt5wT7h1QKVq3yyt+7t7fu5Hhy4WAAAAAAAAAAAAVJyiTLYzxhwiaar6sys+meeW6e+Iz85zr1gYY2YbYy4zxnzDGPOgMWaXMcamfayI6ZzxxpjrJW1QqsrfjZK+Jun7kv4o6RVjzKPGmBClnwDAY8Zl0hVWuniddNHK8MlFUiqhK241aV3Ip17oX7vlMWnvmvzO2/Zs4HDWynaONrKDKttJ0riT3Oe3rffH12fRN91z1Q3B480hfnWu/G2484fK6j+652rH+K/d+aK04T73/LIfuecOu3pwYmTzbOn8x/xnAghnzZ/dc3PeW5jfJwAAAAAAAAAAAECvoky2k3RU72craaG19uU899uRdnukc1WB9VaWu8sYs1WpBMBbJP2XpNMljSjAeRdIWijp3yX5MgtOlvR7Y8xNxpimuOMAUGEaJktN0/2JYUMSx8S025Oyr9/2TH7n9QRXQstW2S7hqmxnA5Lt6j1fhyPZb5D2Te65unGO8fHZ9902P9z5Q8X3/TzgP7Jfv91z/aJvuOdcj6EkHfW17Oc6ki8B9PL9bPpeIwEAAAAAAAAAAIAYFOs7uunv6i+LYb+OtNuNMeyXq6MknSd/4lssjDFnSLpdUnp5HStpvqTbJN0jaUvGZW+V9FvjKrMEAFFM/bfwa1/4ihSUXJarCWdItaP77086TzLBSW/75J1s1x443JWtsp3jV/GgNrKSNPV1nvOD29gOXhccpySppiV4vG6MNO5k/76r/yBtuDdcDEPBkfwoSZr7sRDXh3w8M/m+R3Pem/16m5SSXbmdDfTp3CktvV6a93bpkcukRy5Pvc7uyffvV4qAr8XzlNcOXRwAAAAAAAAAAACoSMWaVFWfdrvDuSq89Gp2u2PYL24dGtjqNi/GmGlKtYitTRt+VNKh1trjrLWXWmvPkzRN0sckpb+r/3pJX44rFgAVbOJZ0dbfdXw855pq6cRfDBxrmCidcov/uoVflDbPy/3ctg2Bw52J6sDxvsp2xtHyMBnURnbWO93nPxui47q17iS0E27wX3vyTdn3v/9cacl12dcNhRW/CR6vGyfVj5NetzjL9Tm2xW2e6Z6rGysd853se3TuzO1sQJI6t0v3nSU9/SFpxU3Sqt9Jq26Vnvsf6a4TpB0LhjvC/Lxyo3tu/DBXVAUAAAAAAAAAAEDZK9Zku/SKa55+bKHNTru9NYb98tEl6V+SfibpA5KOVaqFbIhyN6F9UVJaSSfNk3SOtXZR+iJrbYe19jpJl2Zc/5/GmBkxxgOgEhkjNe8ffv22+c6EtVDmflw69xHpsrbghKfpb5LetGPweLoFV+d+fkACiJWnjey+ynauNrIBle0SVVLz7MHjktT6itSeWbA0g6/aW8tc/7XNs6TLO6VJ5/rXzf+Y1BNHnnwefM+jvoTFlrnSZR1S7/dhkL2r4q222Oegj0lv2iZNv8y9Zu2f4z8XleOVm9ytVju2SC98dWjjiVPQ62KfMBUrAQAAAAAAAAAAgDwVa7Jd37vkRtLR+WxkjBkr6eC0oeX57JenGyW1WGuPtta+z1r7E2vtM9ba2PrFGWMOkJRe+qhT0pXWWmffQGvt7b2x9amTlEfGCQD0ap4Vbf3SHwSPO6q/7TP2BOnYb0vjT5EcleQkSbUjU2tdNj2Ue4JVQLJajzFKOmLfV9nO2UbWEUfNyOBxSdryqD/GHQvdc9XN/mslKVEjTbso+7r1d2ZfU0ibH3bPpT9+VbXSrHe417aujC+mdLWjpWOudc/n29IYlW3TQ1nm/zk0cRTCbs8/4xO17jkAAAAAAAAAAAAgJsWabDdPUl/pirHGmIi9CAd4t7SvbFCrpKfzCSwf1trtvqS3mFwhKb2M0h+ttctCXPf1jPuXGmPqA1cCQFhT/i3a+vV3OSayJNtVNYQ/Y+KZ7rlkl5TsDL/XAIN/pbqq2kkhKtu5ku188Xdl6ZTe0+aeG3mo/9ow5/fZtSTcXoXiexwmZfyTYuyr3Gv3BCT2JHtyiylT41T3nO2O5wxUpvaN+c0Xs27Pz/b4U4cuDgAAAAAAAAAAAFSsoky2s9Zul/RU2tCXjMlW1mgwY8xUSZ9WqpOflXSPDezLV1Yuzrj/izAX9baYfSJtqEnSeXEFBaBCzb5SGndS+PXbnpK6Pa1OXaIk22VrNdi1K/r5ktS6YtBQp6fKXl+yXcLx68356+qgT7hj2LvKPSf5H1tfRcB0LQdnfwz3rg23V6FsuNc9l/l8nPV299plPxo81rHJvf7k3/rjylQ/MXh819Jo+wB99rwibX7Ev8Z2S61ZXiuKle+1ZTL/bAUAAAAAAAAAAEDhFWWyXa/vpt0+UVLAO95uxpiJkv4iabT6SyJ9K57QipMxZpKkI9OGuiVl6Sk4wIMZ9y/INyYAFa52pHTm3dLJv5FGHRHumkWe9pou1RGS7RomSefOc88v/X708yVp5+AWrb7KdjUm1fIwchvZxilSw5Tguef+xx/jlsccwYzyX5fOGOmYb/vXLL0u/H5xs1Za6Uh6G3WkZDIe76o6aczxwetX/0FKZlSZ8z3GIw8JH6ckTcvMj++16cFo+wB9nvr3cOue/VRh4yiUf/23Y8JIVRRkBgAAAAAAAAAAQOEVbbKdtfYWSf/qvWskvdcY87Ax5jTfdcaYJmPMB3uvPUr9Ve3uttZGSTwrRYdl3H/eWtsa4frM7JOQPQUBwKOmWZp5hfTa56QrrHRJlhaGrkQpn90vRVvva+EZY6JTPm1kk65kO0mqn5RbQG3rgseraqPtE6bYrPXEX0gBSY/7VDcGj/uS5LY+OfD+xvuj7++S8DzucbWrReXo6ZA2PhBu7apbpZ5cW2YPoz2O13oS7QAAAAAAAAAAADBEQvaMGzZvkvS4pLG990+R9KAxZoOk5ekLjTE/lHSgpJMk1SmVoGd7P6+V5OkTVzYyswWWB65yy3wHM2KJHgAIoX6Cf37Xouh77ngu2vrGae45m0OSk7WpimkZrV+7fMl2pjfZLrPSWt+W8nQ9d7W6zZZwUuuoYNfuaY2aq2TH8CTAtG92z409IXh8/KnSKzcGz3VsGXi/p8O9f9Msf2yZfEmOPW1Sojnafqg83W2pJNqaEZKMlIyQQLfsemm/N6ZeF2pGFCzEWFU3S53bB4/3tOW1rbVWm7s2qCMZvE9jVZPGVE+QCZNoDAAAAAAAAAAAgLJW1Ml21tqXjTGvk/QnSZPVnzw3WVJ6WR8j6f1pt5W2do2k11lrM94tL0v7Z9xfFfH6lRn3xxpjRltrA97VBIA8zLhCWnmze/7pj0jHfEfal6yWJcGheXa0800i1Yo1qNLb5hyKoCa7BiXaSWHbyAZ/bdZXGW7uR6X5Hx083tPem/jneLxcCSl149xnuZz8G2neW93zHVv8SY2F4ku62f99weMzLpeedMx1ZxSIde0/9sS052tI0y6RFn0zeK6nLVUVEpXLJqW2DdLe1dLeVVJr78feVamx1lVShye5NJtnrkp9SNL0N0sn/ar4K8QFJdpJ0gEfynnLJXsX6Mb139GO7q3edeNqJuo9Uz6pGfWZ/9wGAAAAAAAAAABAJSnqZDtJstY+aYw5RtLPJV3QN5zxecAlSmVlGEn3SHqntXZDwQMtDpkliyKVKrLW7jHGtEtKf6d1pKS8k+2MMRMkjY942Zx8zwVQpI77nj/Zbun3U8lwh34mdT9bNaGmGdFjOOQz0vyPBM+1bZAaIrRq7QxO0thc1xQ4Xmvq9lVIcibb+SrbjTnOPbf+TmnKBcFzy34YPD7Zsd5n5hXSriXSwmuC5x97p3T2fdH3zdeS69xzrnaxNc1SVaPUs3fw3ItflWa+pf++K9nu8M+Hj7FPvefXYts6/zxKX9fuwclzffdbV0lta1KJvENh1W1S7WjpVT8emvNy0bbePTf9jTltuaNrq65f8yV12ewVAbd0bdR3V39eX5lzg+oTDTmdBwAAAAAAAAAAgNJX9Ml2kmSt3Sjp34wxx0r6mKSzlapuF2SnpPskfc9a+9AQhVgsMkvg5NJTq00Dk+3i6iv2H5KujmkvAKUuTPWkVbf1J9tlUz8x3hjW/V2a857we62/J3B4ZWNw29baRN2+2wlnG1lPZTtf7CtvcSfbuVTnmDgy573uZLuN96cShRI1ue2dq82PBI83TPFf17RfKnkw044F/beTPe42nVWN4eIbcI3ncV9/tzT6yOh7ojgku1MJk+nJc3tXSa1pVeq6dgx3lAOt/oN0/A9TlT+L0Zo/u+d8P0seC1qfDpVo16c9uVeLWp/V0SNOzuk8AAAAAAAAAAAAlL6SSLbrY62dL+kdkmSMmS1pP0ljJdVK2iJpo6QXrA3o5VcZMpPt2nPYo03SaM+eAJC/MIkRrSvC73fwJ6PH0HKQe25PhLMlZ9JMc3dwEseenl37bufURtbXNrfD0zW9ZW5wQlnQWBjZqv91bJMackiEzEfDFGnP8sHjQS2D07U6Oq83pOX2+1rU5pLs40sStd3R98PQsDbVzjQzeS79c9u6wNbSRa1jq9S1M1Xhrhj5foabc2vturUrUhFoSdKWHK4BAAAAAAAAAABA+SjKZDtjzAhJs9KGXrLWtqavsda+LOnlIQ2s9HgyNWK9BgCiMUY67H+lhV9yr+mM0MF69NHRYxh3kntuxW+kIz2xZXIkYXUlsleIciXbJX1tZGtHuud8j5srqW7C6e5rfBI10uTzpfV3Bc8HtWUtpKc+HJxoJ0kTz/ZfO+3i4NbG6a0rfcl2uVQHTHj+Gda9J/p+KKyVt0pLvydte8b/XCg2Iw5MJW/uCfHP5t+PkSaeKR3/I6nlwMLHFkXbBvdc/bictuxMdkS+piuHawAAAAAAAAAAAFA+irRPlN4i6dnejycl1fmXo1fmO/O59NTKvCaud/uvl3RYxI+LYjobQDE6/AvS/h/wr1n+sxAbmVTyXlSJKnfCXesr0tq/hd9r1W2Bw52NwR3Pj0lrQWhyaSMrSYd+Nnh8y2PB475ElZaD/Wf5nOD5Hi25Lvd9o3r2U9KyH7jnD/ig//pZb3PPdfcmVnV62n7m2MZSk84JHn/hK7nth8JYdZv06OXS5kdLK9FOko7+pnT2/dkTTvtsfEC69zSpbWNh44rCJqWXfho8N/n8nLftstET5zpsLoWjAQAAAAAAAAAAUC6KNdlunCTT+/GUtXbbMMdTKoo22c5au8la+0KUD0kvxXE2gCJlEtKrfiSdO8+9Zsl3su/TPCv7GpcRB7jnljsSO4Jsmx843FVVHzheY/pzyHNqIytJtWPcc60rB4+t+ZN7vSPOUGpa3HNLhzDZbtE3/PPZkuF88xvuTX1e/4/c93ep9nRr79qd256I37IfD+/5VQ2pNtCTzpXmvCda62yTkJpmSGffG/6a9k3Smtujx1ko255xz9XlVtVOcle2O37E6Tqs6bhI1wAAAAAAAAAAAKAyFGUbWUk7ez9bSWuGM5ASszPj/vgoFxtjmjU42c5TxgcAYtA41T23r+2pp3JdmNaILg1T3HM7ngu/T9OMwAS3rmS7pKZB47VpyXYJR9679bWRlfyxb38+FdOAsX/ltlc2VYO/vn2sTX3kUnkwbtm+Rt/8zgXStNdL3a3uNb7kR5+6se65XUukscEJPxhiUV4PIjOp51/TdKlxv97P0wd+rh0z8OeofUv2BNM+Y9KeQ2NfJW19Mtx1Bf2aIyrQ61eno7JdY1WT82WrI0llOwAAAAAAAAAAgEpWrMl269Nu1w5bFKVnWcb9GYGr3DLXb7PWbs8jHgDIrmm6e852S8keeZPt8jH1QunFrwXPRakqFlRJTlJnzQgpIGmuJtH/q81Z2S5bG9nJ57nnevYGBJOZj51mzLH+s3wSVamEoL2rAiatlOySqgr8qzzZ5Z9v3E8afaR/ja/KYV8bWV/70OocK9tNu1h66YbguVJrV1rOugN+psKqHpFKft2XPLffwGS6xqlSoibano7204EaJvbfPuQz0sMXh7uumJ5/vlimXpjztl3JzsDxGlOrHtMTONdJG1kAAAAAAAAAAICKVqzJdgvTbufRH7DiLMq4v3/E63EHdDMAACAASURBVGdn3H8xj1gAILyTb5bmXRE8t/UJ/7Wz3pH7ueNPkiaeJW28f/Bc5zbJJrMntbQGJZmldDVMlJLrB43XmLRkO0f5JCsra61z3lsR7Yn3STMu67+f7JJW3Rq8duyJqYS5fJx4g3T/ucFzW5+QJpyW3/7ZZKvUdfrfsn8fjZGaZwdXStzdW2Hxha8EXzv6mOwxukz9N/fczoWFf+yQnbXBCax9mmZkVKLLSKarHRl/TGGT7U769cD70y6S9nujtPoP2a99+ZfSib+IHFpBvORp6z3h1Jy3dVW2q03UOauLdtBGFgAAAAAAAAAAoKJFKIsxdKy1SyU9r1QpoyOMMZ4eg0izMOP+EcaYxgjXn5JlPwAojFGHu+cWftl/bVWOFcX6HPLf7rmtT2W/fvmPnVOdJrg6Xe2AynbuX8VZq9u1zA0e794t7V3Xf3/Tw+49xp/sPyOMBs+v6YVfyn//bLI9R0YfEW6f0UcHj6+6TerplGxwpatBLXujqh4RPL7o2vz2RTy6PFUhz3lYumiFdO4/pZNvko76inTAv6eSKEcdXphEOyl8sl3jfhnXGem030uXbJaODtGGtm1j9NjiZq20Y0Hw3PjcE+0kqdOROFdr6lSbqAuc66SNLAAAAAAAAAAAQEUrymS7Xt/r/WwkXTOcgZQKa+16pZIU+1RLivIu5BkZ9/+Rb0wAEErtaPfcjuelak/ecMtBhTt7sydJbd+aR5xTXY7KSLWmP4nD1UZWCpFsV+OL/ZHg24P2GOU/IwzfY7jzhfz3z8aViCNJs94Zfh8b/P3S6KOknZ4zqpvDnxGke0/weKLA7XcRzk5PoV/fc7+gQv4T3tWmu36cdPB/SZMcFSn7bHk0WliFsHeNe87kV5XTV9mu1tQHznU4rgEAAAAAAAAAAEBlKNpkO2vtDZL+rlSy3ZXGmE8Nc0il4k8Z998V5iJjzEGSTkgbapV0d1xBAYBXo6cyWk+bP6Fl2kX5ne2qZiZJXY4kqHTdrc6pzkRwt/aBbWR9le0cyV99Jp3tiSst9u7dnj3O8Z8RRsMk95yvKlhckp3uucOvDr9Pu6OKV0+H1OV5DCefF/6MQI6kSlclPQytnjb33MiDhy6OdGEr2zXP8s9ne/3sHIKf32xcyaiSNO6kvLZ2VrZLUNkOAAAAAAAAAAAAwYo22a7XW5RKHjOSvmqMucsYc+Ywx1TsfiMp/d35S4wxB4S4LrOP4u+stbybCGDoHPjR4PHObf5Ep2zJJNk4EuIkSetDFPjcNj94fMLp6rLBSWA1aRXLEr7KdjZLZbuDrnLPbXm8//bqP7rXjTvBPRfFXEcs3a1S24Z4znDp2Oyei/L8mPPu4PFdi/xnTH9z+DOCHPb54PHdS6VkV357I3++52/YpLe4hTn3lFuzr5l9pTTxLPf8E+8e/uegL9nxwA/ltXWn4zW61tSpLhFc2c6VoAcAAAAAAAAAAIDKULTJdsaYn0u6TtIuSbuVSrg7R9K9xpgdxpiHjDG3GWN+HuHjhuH8moaCtXaZpBvThmol/dIYRy8sScaYiyRdmTbUKemLBQkQAFymXOCee+mnweNNeSba9XFVd9r6pORLePNVfZr5NmeyXWxtZOvGSiMODJ7re8yS3dKel4PXzLgivmShyee7557/XDxnBPFUFtSZd0Xbq95Toe+5/wker26SqoIrYIXWMtc9t+Lm/PZG/hY6/klUO2Zo4xjA/bqxz4xLs6+pbpLOuMO/Zrifg+s9hZbrxue1dZevsp2zjSx/iwIAAAAAAAAAAFDJPOV8ht2VGthXzar/ncUWSadG3M/07vGevCPLgzFmmoIf98x3+KuNMTMd2+yx1m7xHHO1pIsl9fVdPFmpJMX3WmsXp8VSJ+n9kq7NuP5aa+1Kz/4AEL/qJvfczheCx02IhJMwqhrcc7sWSSMPCZ7b+ID7uuomdXYGJ3KkV7bztZFNZmsjK/lb7HZsk3Yvd8/7HvOofHv5kmXytemf7rmoX58veWr3suDxKmcue3i+ODfcI81+Z/5nIHed24PHfVUxCy1bkmyU535VXaod65bHgufX3z28z8HdS91zaa+lUVlrnZXtakytTCL49wuV7QAAAAAAAAAAACpbMSfbBclS4qckPCJpRoh1UyW94pi7UQMr0Q1grV1jjLlE0l1KVbaTpFMkvWiMmS/pZUkjJR0jKbMkyN8k/W+I+AAgXqOPzuGimJLtxp4grbwleK5jq/u6TvecHXuiutb9LnAudGW7bG1kJalpprT1ieC5ji3eGDX+5Oz7hzXG8/3r3BbfOYP2diRCSdGfU6OPjH6+7/kR1lhPK9849kd+qkekfpYytW8a+lj2yZJsN/ZV0bbzJdv5XkOGQsJTOTKPhOtu2y3rSGiuNXVKmKrAuS7bqaTtcc4DAAAAAAAAAACgvBVtG9leJsaPimKtfVCp6nab04aNpOMkXSrpfA1OtPutpMuttT1DESMADFDTLI05LuJFMb28z3yre65tnXtu7xrnVHfTNGcb2JpE2DayISrbzf2oe+5vc6VnPuGen/aG7PuHVd3kTvDpbpV6CtB60VrpMU/FrerGaPtFXS9Js98d/ZpMDZ72tevvlLr25H8Gctfq+NuHAz8ytHGky1bZ7lBH22OX/T/gntuxINpecds2P3jcV9UzhC7rrlBXm6hTnXEn+bkq4gEAAAAAAAAAAKD8FXOy3awCfMwe0q9gmFlr75B0mKQfSfKU/tHjkt5krb3CWts6JMEBQJBTHNXlXOJqI1ufmXuc5tHL3XMLvhA8PvoofyKHSWsj6/lV7ErWG2DU4f75XYuCxxM1Uu2o7PtHcXRmV/I0vqS/XL38c8l2B8+1HJTbnqOOiLZ+4lm5nZPpyP/nnnv6Q/GcgeisJ+F14hlDFsYg2V77Jp0dbb+WA92Jo23rUomtwyHZI217Knhu+pvz2trXDrY2UafahLtFNK1kAQAAAAAAAAAAKlfRtpG11q4c7hgKwVo7c4jP2yTp340xH1OqlewMSZMktUpaK+lZa62rXS0ADK2m6ZKpkkIX2IyxcGndeKljc/Bc997BVc981caqm7yVj2rSku0SnqSZUG1kqxqyrwnSMC2363x8leFW3Sod/4N4z1txs3su18cl6nXVOZ4z6Nwm99yav6SSjhK0rRxy2591z+X6HCtWvkTTnQuzJ/YWgivRTsr78e/0JETXmFpVG3eiZWeyAJU6AQAAAAAAAAAAUBKKNtkO8bLWdkp6YLjjAACvRI006khp+zPh1u9eGt/Z1c3uZLv2TVLzzIyxDe69akapy1P5qCYRtrJdiDayiWqpZa60a0n2tekaC5BsN2J/91zH1lR1rLiqEUrSxvvdc2mPcSQjD5W2PhFtfRxGefbp2iH17JUSI+I5C+G1rnLPxfW9Lxa+52Dr6uFJttu72j038rC8ts5W2c6X7NxhSbYDAAAAAAAAAACoVMXcRhYAUIkOjNAys8pTSS3yuf/hntv86OCxnjb3+jnv9VZNqjV1+24bT3W+ZJg2sr3nRRblcQ6rpkVqmuWeH8rWi/u/L7frZr0j2vqWubmdk2n8q/3zoas9IhatK6WbjfTwJe41TdOHLp6h4HsOtm8cujjS7XjBPTf19Xlt3eWpPlpr6lRHG1kAAAAAAAAAAAAEINkOAFBc5rxbqp8Ubu2My2M815Ow9tjbpD0ZHbef/1/3+knnqCvpaSObXtnO10Y2bLLdQZ8Ity7d9EujXxPGKb91z218KL5z2rIk/0x5XW77TjxdGndyuLVTL8ztjCBVtdIZd7jnN9wb31nw62mX/jzTv6Zu/JCEkpMxx+d2XZWnGuQT785tz3x07pQWftE93zAxv+191UdN7YB235k6aCMLAAAAAAAAAABQsUi2AwAUn4OuCreuqiG+M7PttfoP/betldb82btXp7dqUsg2sjZEG1kp1Zp19FHh1kpSdVO87VzT1Yx0z730s/jOWf4T/3x1Hs+NsImI9fkl+wzSuJ977uVfxHsW3NbdmX2NqSp8HLmqac792ubZ7rmorarztd7zfYihpa2r+miNqZUxRsaYAVVIw1wLAAAAAAAAAACA8keyHQCg+PiSjtLlk1CVKVEr1U9wz+9Y2H/b10JWkhJVzhaF1aZaibREnYSnjWzoynaSNPHs8GvDPr65aJjsnuvcGt85Cz7vn69qyn3vppCPT9yPoy+Ba52n6h3iFaaKW/uGwseRTfP+weOz35X7nr7n9E5PS9dCSH/NzRTDz56rsl1toi7tdnArWSrbAQAAAAAAAAAAVK7q4Q7AxRjzjhi3s5J2S9opaYOkxdbaCBkMAIAhNfn8cOvirGxnjDTtDe6Kaa/cKB1xjdQ0Xere695n/KmS3Ikcma0J/W1kQ1a2k6T9LpYWXxtu7bSLw+8bVa2nst2OBYU7N93Mt0mJPCqPTTonVf2vu9WzyEjTYmwjKxV3tbRS0NMp/evT0pJv94+d85A04dXR9uncHm9chTLtQmnxtwaOJeqkyRfksefF0iZHu+fuLEnGcbJWeuHL7vn9Lsn7CFd1uvRqdnWJOu3pCbjW04IWAAAAAAAAAAAA5a1ok+0k/VKKUtInklZjzFOSbpR0q7X0ggKAolI3Rpr6emntX/3r4ky2k6Rjvu1vT3rPqdK5j0qbHnSvOe4HkuSsbFeT0ZbQ30Y2wq/B8adIx31fevrDnkVGmnG5dPgXwu+bi0P+W3rx64PHO7ZIu5ZKLQcW9vzjr8/v+poW6cy7Ut9vl5N+JY0+Mr9zMmVLtmtb768cWMlsUrr31dLWJwaO33u6dPb90sQz4z2v5aB498vFkV+RWlf1tri2Uu0Y6dTbpPpxue859yPSMx8PnhvKynbz3uqfnx2i+mAWoSrbGUdlO0tlOwAAAAAAAAAAgEpVzMl2fdwlf3LXLOmM3o+vGmPeZa29uwDnAAByNfk1Q59sV90oHfJp6cWvBc/vXS29/EvplV+596gbI0nqSjqS7RIZle08v+aSUXPOD/yQNOe90vq7pZ0LpXEnal/HeGOkkYdKdWOj7ZmLxunuuWU/ko79lns+jLYsLTxrRuS3v5RKXvSZ9bb8z8iULdnulZukQz4Z/7nlYMfzgxPt+tx3lnRFzH+/UdUY7345xVAnnXab1L5FalsrjTwsv4qOkmQS0shDpJ0vDp5b9kPpqK/kt38YHduklb91z898a+r1LE+uhOjMynZBOmkjCwAAAAAAAAAAULGKPdku/Z006xjPlPluatBamzY3WdI/jDEftdb+IHqIAICCCJMUVohWftnO3TJPalvjnq9JtVEN06JQkozxVLaL0ka2T1WdNO31qY/hUjvGPbdlXv77b3k8/z3CmHyBtP4fg8fHnVSY8zzPBUnxPHblaqieE31mvX1oz/OpH5dfNbtMrja6ha5I2Wfrk/553+tLBKEq2yUcle1oIwsAAAAAAAAAAFCxijnZ7l29n0dI+ryksUolxyUlPS7pKUmrJO2SVCtpjKTDJZ0maVLvtVbSrZLulNQgaZSkQ3rXzNDApLtvG2MWWWvvL+hXBQAIZ+JZ2dcUopXjpPMkeaqHrb/Tf31vVbU4KttFaiNbTCZ5vnfdrfntba2/4uGYY/PbP92BHw5Otpv7sfjOGCDL9zvfx66cJbvi26uqQepp86+Z/c74zis2rudZ+6bhPb/PpHNjOabT2eq7/zU6Mzm6T5cjmRoAAAAAAAAAAADlL0sJleFjrb1R0jxJH1Iq0U6SfipplrX2FGvtx62137LW/sxae7219svW2sskTZP0RkmvKJVE92ZJM6y1P7LWfs1a+w5r7SxJr5P0cu8aq1Ti4bVD+kUCANzqx2df0zQr/nNHHS4ddnVu1x5//b6b7sp2A5PtEr5ku6htZItF/QR30tvOhamEuVxYKz39Yenln7vXnHlXbnsHmfKaVFvedDOukPZ7Y3xnpMv2uGy4pzDnlgObpQrk1qfD75Ut0e7gT0q1o8PvV2oO+XTweOsKac/LhT3bWumZq/xrprw2lqPCVLarc1a2o40sAAAAAAAAAABApSraZDtjTKOk2yXNldQt6S3W2g9Ya1f7rrPWJq21f5J0hKRHlPoarzbGXJmx7g5Jx0h6Nm34CGNMPOUyAACFV9UQ/57GSEd8QZrznujXjjl+301nIkdmG1nPr+Kc2sgWC1/1t03/zG3PHc9Ly653zzfvH679cFgmIb3qx9J5j0vHfV869xHppF9JiUIVBi7h7/ewy5Ko+PRHwm2T7HHPmUTquXD0/4UPqxTVT3DPPfe5wp69c6G01/NP/REHSomqWI5yVadLf41OT7xL53p9BwAAAAAAAAAAQPkr2mQ7SddIOlipd0+/bq39XZSLrbWtki6RtE2p6nXfN8aMz1izW9KblErm63uX9rw84wYAxCVbK9nqpsKdPe6U6NdUN++72eVqUZjZRta4K9slS7WNrDTgsRhkzZ9z23P5j/3zYaohRmUS0rgTpAM/JI0/JbZEn0BVIZ7Pe9cW7vySluVnZevjUtfu7NvsWuSeO+eR1HOh3Pl+djfcW9izs+0//tTYjnIlzKW/RtcZR2U7S2U7AAAAAAAAAACASlWUyXbGmGpJ7+i92yHp67nsY63dIqnvnfkGSVcErHlF0m3Svj5+OWRXAAAK4rDP++cbJhfu7FySOkYcsO+mM9kuo42s8baRLeFKZ+NOds/tXprbnst+6J+PMRFnWDRMlEYe6l/TuX1oYik12drISlLXrvzWjMryvSkX4z3/FO7YXNizsz2/fRUzox4VqrJdcLIdle0AAAAAAAAAAAAqV1Em20k6VdI4pcqUPNlbpS5Xd6fdfoNjzV29n42kaXmcBQCIky/p44QbUi1fC6XlAGn2leHX108cUPWsKxmcbJfZltDfRraEK9s1THTPrfu7tHNx+L16OqS7Tsq+7oB/D79nsTriGv/8poeGJo6SE+JnZd0/sq/p9vyTs3pE+HBKWeM0aeRh7vn5/ykVqurm+rvcc6OOkEYdHttRYV6j6xxtZDuSVLYDAAAAAAAAAACoVMWabDc97fa6PPdan3Z7hmNNes+w0XmeBwCIS6JauqxDmvGWgeNn3CHNeXfhzz/hhvBrD7pqwF1X1aRBle08CYMlnWwnSafc4p77+8Hh91n45VQb0GyaZ4Xfs1jtd4l0jieh7ukPSz3BSUIVLUzy15Pvy95Kdsl3g8erGgqb3FtsfK99S74trfxt/Gd2t0pbn3TPv2Z+rN+DUJXtTHCynetaAAAAAAAAAAAAlL9iTbZL7wvYlOdejb2fjaRJjjXpPauC31UDAAyPqlrplJulK2z/x5QLhuZsE+HXZEa7QVfVpMxku4Svsl2Y1pjFbMT+/vk9K8Lts/R7eYdSUia8WkrUuOe3PDp0sZSMkD8rG+71z29/Nni8KridaNmqbvTPr/lz/GduuN89N+OKVPJ1jFytYNNfo91tZKlsBwAAAAAAAAAAUKmKNdluV9rtQ/Lc69C023sca9LfSWvL8zwAQCUafeSAu502bBvZMq5s13KQf37jA+H26dqZfU1TGVS1SzfqSPfc3nyL/pahsG1N27I8dnVjg8c7twePl6sR+0tVnoS7bI9jLtrWuudGe34ecuSsbJfIXtmuw5GoBwAAAAAAAAAAgPJXrMl2a3o/G0mzjTEn5LHX23s/27R9M01KW7M5j7MAAOXm2JBV1cafMuBumBaFkr+NbLLUk+2qmyRPMqG2P+O/fvdy6eaQbSOP/0HosErCAR90z/XwdwGDhfxZefHr/vkdC4LHJ5wRKZqSV1Uvzb7SPb/5kfAJjmH5ntfTL433LLkr26Un29W5KttZKtsBAAAAAAAAAABUqmJNtntIUpdS75waSdcbY7L0sxrMGHOZpPPU/w7sPY6lx6TdXhH1HABAGZv7YX+FJ0k65+FBbT+dbWQTA9vImnJuIytJx1zrnlv6fWmvo5pV1x7prweEO+PEG4eutfBQmfMe99ya24cujlIR9mdl72rppZ8Hzy35vvu62e+KHlOpO/Y6qXa0e37JdfGet+Ca4PGqeql5ZrxnyVN9NC0hOrMSaZ+OZIds3MmGAAAAAAAAAAAAKAlFmWxnrd0l6W9KJdpZSUdJussYs1/YPYwx75V0o/oT9qykmxzLz0+7/VwuMQMAytiRX/bP148fNNTlqGxXYzKT7cq4jawkmWr//Nq/BI9vcOXHB5j9jvBrS8mYY4PHozw2FSPCz8orNwaPz/+I+5qq4ApnZS1RJR39Dff8y46kxVx17QgeH5tPgWvPcWEq25ng77tVUt22qyBxAQAAAAAAAAAAoLgVZbJdr/+SlN6j6RRJLxpjfmiMOcsY05J5gTHmQGPMB4wxT0n6saRa9Sfa3WCtHdQbrDeB7wz1v0v7cLxfBgCg5E272D/fNGvQUKejsl1mpSR/sl0ZVLab9gb//M7FweO7HOOZjvxqtHhKye7lweMjDxvaOEpBlCpjYZ9b6ZpmRL+mHDTNdM/tWhRfK1nfPl274zljwHE2r8p2krtVOAAAAAAAAAAAAMpblnIzw8da+4ox5t2Sfq1UUqCV1CTp/b0fMsbskrRbqaS6kb2fJe3LXOiraveEpP90HPVp9ScdtsvdahYAUKl8LQyb95eqagcNh65sZ4yMTGAVu7JoU9iUpShtx5aB9/e8Ii3+VqrFbBjTLsotrlIw6nBp8yODx7t2DX0sRS9CYmr7pujbjz0++jXlYPxp7rlkl9T6itQ8O/9zHFXmJEmTz3fPebT17NXd2/6gl9sWa2LtNJ05+nVqrhqhu7f9SUv2Pu9MZq5Jr2yXcFc0vHbVZ1RlqjWqeqyOaj5RJ488Ry+0ztfjux7Qxs7+9tjVpkaz6ufqnDEXaUzN4CqoAAAAAAAAAAAAKC1Fm2wnSdbaW4wxSUk/kdSi/upzfcl0I3s/Bl2atu4uSZdba1sdx/xa0u96b+/xrAMAVLI3rJZuD0gcu+DZwOVtyb2B47VmcGKeM9muHNrIStIb1ki3TwueW3mzdNIvpUSN1Lpauuc0qW1t8NpMp/1BGnlwbGEWndlXBifb7VmeqgRm3FURK07UxNR1d0pTXtN//5Wb/OtNMReDLqCqWum0P0oPXxI8f8cRqZ/v2lH5nbPuDvfcjEsjb9eV7NR1a67WyvZlkqRlbS9o3s57ZHv/55P+Gl3rSbbb0LlGkrS2Y4VeaJ2vu7f9QVu6Ngbuv7J9mZ7f84Q+OePrGlk9JvLXAwAAAAAAAAAAgOJR9O8cWmt/J+kwpRLiejSwal3mRx8jaYWk91prL7DW7vTs/7i19qHej/kF+BIAAOWgcZp0hZUufFk6/a/SG7ek7tc0D1ra6anSVBPQltA4fh0ny6GNrCQ1TpUO+A/3fF9C2YqbwiXaJWqlt/RI+zkSgMpFVYN7bteSoYujJERMtlv4pYH3F/1ffKGUG191u+5Wae3f8j/jBU876KrGyNst2fv8vkS7PkklQyUwp7eOrTPuNrKZNndt8O6/rXuz5u8KSJ4FAAAAAAAAAABASSn6ZDtJstausdZeLmmGpI9JulXSEklblUrA2ytpraRHJV0r6QJJ+1trfz48EQMAylbzLGnq66S6sc4l6S0EM9UHVEoyjgplZVPZTpLqxrnntjyR+rz1yXB7Hf2Nyqg05nvMtj4xdHGUhIg/K1vm9d/ubpN2LHCvbSnj6olh1I6SqtwV3mJ5Lrau9JwfvRLcHVt/l32RQ1NixL7bdYn6Qa2/87EiIwEQAAAAAAAAAAAApaeo28hmstaul/S93g8AAIqSr7Ld5NoZg8aMHMl2tkwq20nS5NdIC68JnnvuM1L7JmnN7eH2mnF5fHEVM19FsZ7gNsUVK5+fle49/vnjr89973KQqE79/Lp+Pjt35L735sekVb+TOja719R7kk4dVrQvzSmc6fX7q7m6Zd/9hKnSQY1HakHrUzntl6kj2R7LPgAAAAAAAAAAABg+FVAWBgCAodVp3cl21WZwnnvC8eu4rCrbjTvRP7/k2+H2OfEXUv2E/OMpBdWeNrLr/jF0cZSEHH5Wts2Xkj3SP452r6kbK004PfewysWx33HPrbhJ6skhiWzxt6V7TpaWePY++pvR981RS9UovWPSRwaNXzrxfRpfMymWM3y/GwAAAAAAAAAAAFAaSqqyHQAApcBV2a4+0RDYMtYYE5grVFbJdsZI0y6W1vwp9z0mny/NvjK2kErC2BOC23Su/evQx1LMbA4/K/M/Lh1xjdTmbvus1zybeu5WuqYZ0ux3Sy//PHh+zV+kGZeG369zu/TsJ7OvG3Nc+D1zlFCV3j/1v3VAw2FqqGocND+2ZoL+Z+Z3tbztRW3oXCNJunfb7drRvTXyWb6qpwAAAAAAAAAAACgNJNsBABAzV/WiWlMXOO5qI5sspzayklTTkn2NT8sh8cRRSkyVe65ja6ryGiTl8LOy+RFpdZbWxTUjcgunHNVPdM9tvC9ast2K30q2J/u6qvrwe+bo/LFv1BHNr/KuqU3U6ZCmo3VIU6oK4oI9T+aUbNdFZTsAAAAAAAAAAICSV3JtZI0xNcaYU4wx7zDGfNwY87/GmM8Pd1wAAPRxVS+qSbiS7SqgjawkTXh1ftdPrMB2niMPds917fRfm+yRtj0jrf1bqpJYOculsp0kLb3OP187Krd9y5Hv57czy3Mx08YHwq1rOTDavjlwJUH7NFeNzOmszmRnTtcBAAAAAAAAAACgeJRMZTtjzKmS/kvSeZKC3hW7JuCa10jqK7OxzVr7X4WLEACAlMiV7RxtKssu2W76m6XlP5W2Ph792knnptrIVpoDPyq9dEPwnC/BqW2j9MC50o4FqfsmIb3qJ9Kc98QfY1Eos5+VYjTxLPfcqlsl+9twLXc7t0urfx/uTFMTbl0eah1J0D7NVblV6XT9bgAAAAAAAAAAAEDpKPrKdsaYJmPMbyQ9JOn1kuolmYwPlxckfoLv6gAAIABJREFUvV3SOyVdZYw5ssDhAgCgLkf1IldSh7OyXdm1kR0hnXV39OsO/Ih0+l+GpKVk0Wme6Z5b+CX33FMf7E+0kySblJ54r7RzcWyhFZVy+1kpRlW10tyr3PNr/xZun2c+Ef7MMMl7eaoxtZGvGZFzZTuS7QAAAAAAAAAAAEpdUSfbGWNaJM2T/j97dx4na17Xh/7zVG9nnX3fGBgGGIYd2RQVQQORmGjQRG80JuqNV3LRJGoSREWNJt5cgyt6oy+D0ShGRWMStgEuhEVWQZB1gGGYfeYwyzlzzszpperJH30O02dO/Z6up6q6uqr7/X69zut017P9urrrqZlXf87nm29P/1BdY41JXdc3J3nDhmO/fawLBIA+ys12/UMdnUJufMc12yXrgbtHfne7Yx7zst0ZtEuSub3lbXe/v//jvdXk9jf133bb60df01Taga+VadQ0VnfQn61BQ3lJmv9NzXgM02y3f+7gUNfSbAcAAAAAADD7pn2M7J8keWIe+g3qSpI/SvL2JL0kvzPAOf4s6414SfINSV4+3iUCwKlK7UXlZrtS2G6HtnU99oeSL/znwfZdOKu53W2n6zSM0SwFEFePJN3j/bfd8ZbkmoZmsd5qcvzOwdc3LVaPbPcKdodznlbedvyOzY9fOZwsH2pxwQmE7QrjvZscnB+u2W6tXk2v7qZTzQ11PAAAAAAAANtvasN2VVV9a5Kvz0NBu/cm+ft1Xd9yYvsjBjzVyWqXKsmTq6o6UNf10bEuFgA2KDfbFcJ2Vf+i2V69Q9u6zn5Kcv5XJ4fetfm+j3lpc+BsN7jga5K73nn640dv6L//J/5t+VzLd/d/vLucfPAHkpv+KFk71n6N7A4XvqC87ZY/T+54W3JRn33u+Ujy/u9J7v2rdtcr3BvHaZhmuwNzZwx9vdV6NUvCdgAAAAAAADNrmsfI/tiGjz+e5BtOBu3aqOv6jiR3nfi0k+SaMawNAIpKzXYLrZvtdmjYrqqS571hveGuZPGc5GmvSp70s5Nb17R6zMvK29YeOPXzG343+fSryvvf86H+j3/wpckNrxG0o9n83uTql5a3v+PFyZHrT31s+e7kbc9vH7RLMplmu/7jvZscmBuu2S4pvz8AAAAAAAAwG6ay2a6qqouTPGXDQy+r6/qB0v4D+HSSC058fHWSD45wLgBo1LrZbreNkU2ShQPJ039p/Q/N5vaWt93xtuSyb3ro8y/+webnO3pDcuBRD33eXUlu+uPh18fusv+K8rbecnLz65JrX/7QY7e9MVm9b7hrVe3Ddt2622r/STfbld4fAAAAAAAAmA3T2mz3nBN/10luruu6z+y0Vu7Z8PG5I54LABqVmotKoY7SGNkd22xHOweuKm87+rlTP7/9zZuf78bXnvr58l3J2v3t18Xu1PTzmCT3P+xn8iM/PMLF2oft2jbHLRRC0E32zx1sfcxJmu0AAAAAAABm27SG7S7a8PFHx3C+oxs+PjCG8wFA0WrLZrtOqdmuFrYjyRmPLW/78L9I2v6cHL/z1M8fPop2pyiEWBnRxX8jWTy7vP2G//TQz9QX/kty/K4RLjZE2K4+3mr/YZrt5qq57O8MF7grvT8AAAAAAAAwG6b1t5Bnbvj4yBjOtzFg1+43cADQ0kpvpe/ji53Fvo9XhbfjHT1GlsFVVXLG48rb3/Hi9b+v//XBznf9r66Pjj3p8789/Nqm1d5Lk+f83navYmdaOCN5wdub9/mj/es/j+/9rtGuNcQY2bbNcaUQ9GYOzA83SlazHQAAAAAAwGyb3+4FFNy74eMzi3sN7pINH99T3AsAxmClZbNdVQiU9IyR5aT9j0yOfLr/ttvfmKw9mHz6VYOf79C7kotesP7xp/59eb+/+dFkft/g550GncVk3+XrQa2/+Af997ns7yTP+I31VsD/cXXS3aHtflvl7Ccn1/xo8qn/t7zPh/7pGC7UPmy33HaMbCEEvZkDc2fkztza+riVun8YGwAAAAAAgNkwrWG7Qxs+vnaUE1VVtZTkKRseumWU8wHAZkrNRaVxhVVxjKxmO05YONC8/eY/SY5+fvDz3fCa9bDdZiNoz3rCzh3HuvfiEx8ItQ5lz4Vbf41hmu3ajpGthg/bDUOzHQAAAAAAwGyb1t+efvjE31WSK6uqapidtqmXJDn5W7S1JO8bZWEAsJlSs91CqdmuOEZWCIgTLn5R8/YHbm53vht/PznymaQp+LPvsp0btGN0l3zjeM6zdO54znNCmzDbfLWQTjU31HWGDtsV3h8AAAAAAACYDVP5G9S6rr+Q5HMbHnr5MOc50Wr3ipOnTfLBuq6Pjbg8AGg0tmY7YTtOeuQ/bN5+0+van/NNz0iuf3V5+7N+u/052T3OvCZ5wk+Odo4rvys5/7njWc8JbcJspdHegzgwd+ZQx2m2AwAAAAAAmG1TGbY74TUn/q6SfGdVVd/d5uCqqjpJfivJNRsebviNMgCMx2oh7FEK23UKoxKNkeXLOvPN2+/9cPP2ftbuTz7yI+Xt+x/R/pzsLtf88GjHP+EVm+/T0nJv8DGypXvyIDTbAQAAAAAA7E7THLb75SR3Zb2Rrkry21VV/duqqvZtdmBVVY9Pcl2Sf3Di+DrrTXl/uHXLBYCkW3ezVq/13bZkjCyzZGG4MBG7yNze0Y5fPHs869igTXPcaM12Q4btNNsBAAAAAADMtKkN29V1/UCS707Sy3pYrpPkXyW5vaqq1yZ56cb9q6r6+1VV/URVVe9K8rEkX5f1kF6VZDnJd9R1LbUAwJZarVeK29qOke0J27HRec+Z7PX2XjzZ622b/q8/BtBZGP7Ys5+a7LlgfGs5Yblu02y3OPR1Ds4PN0a21HwKAAAAAADAbJjasF2S1HX95qyH6k4G7pLkYJK/l2Tj3LMqyR8k+akkX5lTv661JN9b1/UQ89UAoJ2m1qKFUrNdVWi2M0aWjZ75m5O71tUv3XwfSJLnvbH9MXN7k6f+wvjXknbNcaV78iA02wEAAAAAAOxOUx22S5K6rn8ryQuzPlK2Sk6p+ak3/Kke9niV5EtJXljX9Wsns1oAdrumIEXbZjtjZDnFWU9I/uZfTeZal79kMtdh9l3youRFLf5NyxN/OnnRXyYXPX9LltNqjGzhnjyI4cN25fZTAAAAAAAApt/Uh+2SpK7r/z/Jo5P8yyQ356HxsBv/ZMPHdyf5mSRX1XX99okvGIBda6VhROBiqdmuGLbTbMfDnPHYyVxnft9krjMVhFpHds5TB9/32lckZ16zZUtZaTFGdqEafozs0GE7Y2QBAAAAAABm2vx2L2BQdV0fS/ILSX6hqqrHJHluksuTnJtkMestdncm+YskH67r2m9OAZi4YZrtOqUxskJAPNzcnslc58wnTOY67CAPL6Au7ba1/9ZnuTd42G6UZrvFzlKWqj1ZbhHuS4yRBQAAAAAAmHUzE7bbqK7r65Ncv93rAICHa2otKrUoFZvt5MbZDnN7k4UD270KZs1X/2nyrm/ZfL+q//1uXNqMaS21jQ7qwPwZWV5tGbbTbAcAAAAAADDTZmKMLADMitVCa9FCtVhssCuF7XrGyNLPgau29vzP+P+29vzTQJB1/C7/5uSSb9zuVbQaIztKs12SHJg7s/Uxmu0AAAAAAABmm7AdAIxRqbWoqUGpMkaWNhbP3trzz+/d2vNPna1tWttVrvmXQxw03ue/1RjZUZvt5g62PmZVsx0AAAAAAMBME7YDgDEqtRYtdPqPkE2MkaWlJ75yuOMKoc7THHzMcOeHM69NqrltXUKb5jjNdgAAAAAAALQ1v90LaFKtV/08IcmTk1yR5Pwke5PUSR5McleSm5J8NMknaqkEALbZSr3S9/HGZrtS2M4YWfq58PnDHbfnwmTfFcnd7y/vc/Dq5KwnDXd+2HNecvnfTW76421bQqldtJ/Rm+3OaH1Mm/UBAAAAAAAwfaYybFdV1dck+f4kfzPJoJUR91ZV9fokv1XX9bu3bHEA0KDUWtTUoNQpFM0aI0tf8/uSv/WZ5H8+tt1xdZ08/7rkuuckhz95+vYDj06+/l1JZawqI3j2a1qG7cZ7n2vTHNfUODqIg0M12/UPZAMAAAAAADAbpipsV1XV45O8OsnXnHyoxeHnJPnOJN9ZVdXbk7y0ruvrx7xEAGhUai1qbLYrhJt6tWY7Cs4YctTrwhnJiz+RdFeS3vH1x+o66Swm83vHt76ZItQ6VvP7k0u+MbntDdty+eX6+MD7jtpst3/uYOtjNNsBAAAAAADMtv5VOtugqqq/l+QDWQ/aVSf+1H3+nNRv28njnp/kL6uqesmk1g8AyXDNdpVmOybhmh956OO5xfXg3cIZyeKZOzhoV/h3G4/8zskug4lZ6bUI243abDc/TLOdsB0AAAAAAMAsm4qwXVVV35bkD5Lsy6khu5PhuSQ5lOT6JO/Leijvs0m+tGGfjcclyf4kr62q6lsm81UAQLJSaFVqDtv1DwQJ29HojMcNvm81nzzi27duLdNqY8DwpPkDySV/a8MDxuZur/E+/23GtC6M2Gx3YO6M1sf00k23XhvpugAAAAAAAGyfbQ/bVVX12CSvObGWjSG7I0l+KcmLk5xX1/VFdV1fU9f1V9Z1/ey6rh9X1/WFSc5P8k1JfiXJ/Tk1dDef5D9XVXX1pL8uAHanYrPdEGNk6xgjS4MXfnCw/TpLyXP/a7Lv0q1dzzR64k+vjzQ9aeGM5Hmv38FNfrtbt15LN4MH2ZpC0IM4MNe+2S7RbgcAAAAAADDL5rd7AUl+LeuNdidDdr0kP5PkP9R1fXSzg+u6vjvJ65O8vqqqn0jyI0lekYdqMg4k+dUkLxr/0gHgVKVWpYWGcYXFMbK1ZjsaLBxIrvyu5MbfK+/zvDckF3xNMr9/cuuaJvN718N1R29IHrglOfdZydxoASsGsE33ruUWI2ST5hD0IA7MHRzquJV6OXuzS1+TAAAAAAAAM25bm+2qqvqqJC/IQ0G7+5O8sK7rnx4kaPdwdV3fX9f1K7MerDuWh0bKfkNVVV85pmUDQNFK3b7ZrmOMLMNaPKu8rbOYXPzC3Ru02+jAo9ZDh/2Cdpd98+TXs9Nd+LzB9z3/uWO7bNvGuFGb7fZ2hnttabYDAAAAAACYXds9RvalJ/4+Ofr1++u6ftuoJ63r+q1Jvn/DeZPkB0Y9LwBsZrU0RrYh1FEaI9szRpbNXPj8hm0vSKrt/k+9GXDND/d//En/ZrLr2Eke9T1JvxDxVd/bZ99/3H/fR373QJc6unYkHzry7rz1nv+Wd9z3hlbLHLXZrnTv3szb7v3vuX35Zu2lAAAAAAAAM2jbfgNbVdVSkm/KehiuTvK6uq7/cFznr+v6tUlel/Xf3lVJ/nZVVeUZfgAwBsM02xkjy9AufXFy+bee/vjS+clTfn7y65lFZz81eewPnfrYOV+RPOb/3p717AR7zkue9h9OfezAo5In/OTp+y6dkzz9l059bP+VyRN/atPLfP7BT+cnbvgn+U+3/0L+9NDv5Lp7XtdqmaM22w3rnfe9Mf/mxpflv3/p993nAQAAAAAAZsz8Nl772UkOnPi4TvKqLbjGf0jykhMfH0jynCT/awuuAwBJyuMBG5vtimNkNduxic5C8lWvTW7/R8mhdyfdB5MzH59c8uJk36XbvbrZUFXJ034xuezvJHe9Kznjcckl35gsHNj8WMoe98+T874qufOtyd7L1oOhS+f23/exP5ic95zkjrckey9d//ndc17j6eu6zn+67ReyXB8feomjNtuN6s33/EmesP/puWrfNdu6DgAAAAAAAAa3nWG755z4u07yqbqu3zfuC9R1/b6qqj6Z5PEbrilsB8CWKTXbLTSUqxab7aLxiAF05teDTJe+eLtXMruqKrnw69b/MD7nPXP9zyDOfcb6nwEdWr0j9659aciFrRtHs12Vqu+9+uz583Kse3/xPeGkzzzwMWE7AAAAAACAGbJtY2STXLvh4/ds4XXeXbgmAIxdt17r+/h8tVA8pqoKzXbGCwL09UD36EjHX7p05VjCdt92wff1ffyF57wkj9z7mE2Pf6B3bOQ1AAAAAAAAMDnbGba7asPH79/C62w891XFvQBgDLp1t+/jc9Vc8ZiOMbIAE1Olyt845++O5VxfcfCrc/7CRac8dsHCJXnawa/K15/zLZnb1iJxAAAAAAAAxm07f/tz4YaPv7iF19l47ouKewHAGJSa7eaq8ltuaYxszxhZgILy/fGypStTpZOLl67IZUtX5q6V23LT8g2p614uXLw0zzrjebn2wNPHsooD82fkh6/4+bzlnj/NLctfyBV7Hp2vO/ubcmD+jFw7/7T84OU/nfcefmved+Ttrb8OAAAAAAAAps92hu3O3fDxfVt4nZPnrpKcs4XXAYB0U2i2S7nZzhhZgHaa7o4/csX/M5YRsYM6Y/6svOSC7+m77ep91+bqfdfmgd6xfOzoB07bXgvbAQAAAAAAzJTtHCO78TdgWxm2O7zh4z1beB0AGLLZzhhZgHZ2RkhNphoAAAAAAGC2TEvYbnULr7Mx9bCwhdcBgHTrQrNd1dBsV3g71ngE0N+s3R9LoeqdEhoEAAAAAADYLbYzbAcAO045bNfQbFcaI6vZDqCvpohaOdi2nUr3eWE7AAAAAACAWSJsBwBjUtd1uimMkU252a5TarYzXxCgv8b74/SF7aZvRQAAAAAAAAxD2A4AxqTX0ETXPEa2fwyjp/EIoLVCWei2ms62PQAAAAAAANoqz7SbjJMpgmdXVXXlFl3joi06LwCcolv3b7VLjJEFGKem8auzFGwzRhYAAAAAAGC2bHfYLlmfqvTaLb5GHdObANhi3bpb3NbcbGeMLEA7szVGtrQmYTsAAAAAAIDZMg1hu0kE4fwWC4At10252a7T8JZbamESwgDob+aidqVFuc0DAAAAAADMlGkI2yV+zQTADjB8s50xsgBtzF4YWagaAAAAAABgJ9jOsN1NEbIDYAfp1uVmu7mq/JbbqYyRBWhntrrtSqFq/zsEAAAAAAAwW7YtbFfX9ZXbdW0A2Aq9MTfb9TTbAfTVHLWbnbCdZjsAAAAAAIDZ0r9KBwBorZumsF05314V3o6FMADaq6rpC9sBAAAAAACwMwjbAcCYNI6RTUOzXSEYImwHUGDMNgAAAAAAANtA2A4AxqQ75jGydW2MLEA/pTDyNI6QTYyRBQAAAAAA2CmE7QBgTBqb7RrGyHaMkQUYk+kM25XW5T4PAAAAAAAwW4TtAGBM1hrDdsbIAoxLudluOhVu83GbBwAAAAAAmC3CdgAwJt00jJFNudmuNF6wZ4wsQF+zF0YWqgYAAAAAANgJhO0AYExKY2Q7mSu21yVJZYwswJhMZ7ddKVQNAAAAAADAbBG2A4Ax6db9m+2aRsgm5RCGsB1AO7MXanOfBwAAAAAAmCXCdgAwJqVmu7mqPEI2Saqq0GxnjCxAX6UwckOJ6LYqLUvUDgAAAAAAYLYI2wHAmPQyXLNdR7MdQDt16f44pWk793kAAAAAAIAdQdgOAMak2GyXTZrtiiEMzXYA/RSb7aY0bFdel7AdAAAAAADALBG2A4Ax6dbDNduVxsj2is1NALvbzN0dC1k7t3kAAAAAAIDZImwHAGMydNjOeEGAlmbr/qjZDgAAAAAAYGcQtgOAMSmOka2MkQWYhNkbIwsAAAAAAMAsEbYDgDHpptBsl+HGyGq2A+ivdH+ctVCb+zwAAAAAAMBsEbYDgDEZttmuU2q2q4UwAAAAAAAAAGBaCNsBwJh060KzXbVJs13h7dgYWYD+SmHkqprOZrvyuHChagAAAAAAgFkibAcAYzJss10pHNITwgDoqxxSm86wXWldwnYAAAAAAACzRdgOAMakm/7Ndp1s1mxXGiOr2Q6gjemN2pVWJmwHAAAAAAAwS4TtAGBMxj9GVggDoJ+Za7YrLKswDRcAAAAAAIApJWwHAGMy9BhZ4wUBdrRysx0AAAAAAACzRNgOAMZk2Ga7TmWMLEA7/cPIsxdqE6oGAAAAAACYJcJ2ADAm3RSa7bJZs50xsgBtlIfITmfYToMpAAAAAADAziBsBwBj0huy2a4UwugJYQAUFO6P05m1Kxr2Lr/aWx3rOgAAAAAAABhMc9UOADCwtbrQbFdt0mxX9c++H+0ezqeO/VWu2f+UkdcGsFP06l7+/NDv9d02a812Hz36vhxeuzdnzp890Hned/jtecPdf5i7Vw/lEXsene+86J/mkqVHjHOpAAAAAAAANNBsBwBj0i2G7YZrtkuS37j153Lb8hdHWhfATvKmu/84h1bvKGydzrBd07p+5eZXpq4377j7xNG/zO/e8cv50uqdqdPLjcevzy/e/ON5oHt0nAsFAAAAAACggbAdAIxJtzRGdpMi2aaw3Vq9mo/c/96R1gWwk7z/yDuK26Y2atewsNtXbsrNyzdseo4PHPlfpz12rHt/PnHsw6MsDQAAAAAAgBaE7QBgTLoZrtnu3IULGrfftXLb0GsC2El6dS+HVm8vbj9nk/vpdjlnfvT7/Afvf2ffx//bod8dak0AAAAAAAC0J2wHAGNSbLbbJGx36dKVOX/h4vJ5CyE+gN1mtV5p3P7UA8+Z0EraecKBp2e+WihuX6mXhz73se79Qx8LAAAAAABAO8J2ADAm3brUbFcOWCRJp+rkBy//qYbz9g/xAew2K71yKO2afU/J15/zzRNczeAuXLw033/py4vbm74uAAAAAAAApoewHQCMybDNdkly7sKFef7Zf7vVeQF2m6YGuO+48P9Kp5re/725dv/TcsWeR/fdNkrYrk499LEAAAAAAAC0M72/jQKAGdNLIWyXzcN2STmUV2rMA9htmkJpC52lCa5kOEtV/zWOMkYWAAAAAACAyRG2A4AxKY+RnR/o+Ln0369bCPEB7Dar9Upx22IhyDZNSoHAzZrt6lp7HQAAAAAAwDQQtgOAMRlljGzTfprtANY1hdIWO4sTXMlwFqv+a2wKESbJWr26FcsBAAAAAACgJWE7ABiTkZvtimE7zXYASXnc6lzmB77XbqfFIZvtmsbMVqlGWhMAAAAAAACDE7YDgDEpjXudy6DNdoUxsprtAJKUQ2kLM9Bql5RH3TaF6ZLNw3gAAAAAAABMhrAdAIzJyM12hVCeZjuAdauFUFopxDZttqLZDgAAAAAAgMkRtgOAMSmF4krjYU/fr9BsV2jMA9htVnorfR9fnJFmuwXNdgAAAAAAADNN2A4AxmSrwnY9Y2QBkpRDaTu/2a5/yBAAAAAAAIDJErYDgDHpZsQxsoVQnjGyAOtWi812MxK2K4QCS+Nxv7y9IYzX034KAAAAAAAwMcJ2ADAmpVBcJyOOkdVsB5Ck3GxXGs86bcrNds3Ndcu948Vta/VaekLZAAAAAAAAEyFsBwBjUgrFDdxsVwjldbUWASQpj1udnWa7xb6Pl0KEg283ZhYAAAAAAGAShO0AYExKzXal8bCn76fZDqBJKXRWCrFNm3Kz3SZhuk22N42ZBQAAAAAAYHyE7QBgDOq6Tq/QQDdws10hlFcK8QHsNqXQ2cLMNNsVwnYjN9sJ2wEAAAAAAEyCsB0AjEE35fa50njY0/YrNtsJ2wEkTc12sxG2K4UC1+rV9Bru9au95jGxK5tsBwAAAAAAYDyE7QBgDJoCcQM32xVCed2spa7rodYFsJOUQmel8azTpikUuFKXA3Oa7QAAAAAAAKaDsB0AjEG3bmi2K4yHbbNfL73WawLYaWa92a4pFNjUXlcanzvodgAAAAAAAMZD2A4AxqC52W60MbLr5y+H+QB2i1KobLGzOOGVDKe52a4cmNu02a53fOg1AQAAAAAAMDhhOwAYg24awnYZcIxsQyivKcwHsFusFkJnCzPSbLfQEApsaqfbtNnOGFkAAAAAAICJELYDgDEYxxjZTkMorxvNdgArhVGrTeNZp0lTs10pSJgM0mwnbAcAAAAAADAJwnYAMAbNY2Q12wGMQyl0tljNyBjZLWu26x9CBAAAAAAAYLyE7QBgDMbRbNcUyms6P8BusTrjzXZz1XxxtHhTYK6p9S7RbAcAAAAAADApwnYAMAaNzXYN42FP2a+x2U7YDqDcbDcbYbuk3G7XFJhb3rTZTtgOAAAAAABgEoTtAGAMemlqths0bNfUbGeMLLC79epeVgvtbwsz0myXlIOBTYG5TcfIarYDAAAAAACYCGE7ABiDxma7QcfIpqHZriHMB7AblIJ2SbJY9W+Lm0alkbdNgbnNxshuth0AAAAAAIDxELYDgDFoGvM6eLNd0xhZzXbA7tYURisF2KbRgmY7AAAAAACAmSVsBwBj0BSG6wz4dmuMLEBZUxitNJp1Gg3TbNf0tQ+yHQAAAAAAgPEQtgOAMeimfxhuLvOpqmqgc8w3hu2MkQV2t6Yw2sIMNduVwnZNo2BXeuURuuvbhe0AAAAAAAAmQdgOAMagFIZrGg37cJ00jJEthPkAdovVuhw4m6lmu9IY2UJgrluvpZvmwPVKw3MDAAAAAADA+AjbAcAYlMa8tgnbVVVVDNxptgN2u6b2tsXO4gRXMprSWkvtdZu12q3vo9kOAAAAAABgEoTtAGAMys125dGw/fcvhe002wG720phzOpc5lvfa7dTsdmu8PWVHm+7DwAAAAAAAKMTtgOAMSiNeZ1rGA3bd/9CYESzHbDbldrbFmao1S5JFjrtxsiuDtBaN8g+AAAAAAAAjE7YDgDGYKub7XqFMB/AbrFaaG8rNcVNK812AAAAAAAAs0vYDgDGoDTmtRSeK5mLZjuAflZ6K30fX5yxZrvFls12pcc3WtZsBwAAAAAAMBHCdgAwBqUwXGdMzXalMB/AblFqb5u1ZruFqn84sNTctzxAa50xsgAAAAAAAJMhbAcAY1AcI5uWzXbCdgB9rRab7WYrbLcVzXYr9XLquh5pXQAAAAAAAGwQFdyCAAAgAElEQVSuXd0OAHCKL63cmfceeVveePcf9d3eeoxsoQnv9+98df762AfzqD2Py3PP+hvZN3eg9Vp3sy88eH0+dP87c+fKbUmSSxavyDPP+NpctueRI597pbecdx++Ljc+eH0uXroiX3XmN2Tf3P6857635PMPfioXLV6W55z5gpy9cN7I14Ldqlf38r/ue0PfbQsz1mxXauI7tHpHfu2Wnznt8SNr9256zjp1fu2Wn05Vlf8t1TMOfnWedebXDb5QAAAAAAAATiNsBwBDunPl1vziTa/Ike59xX1K4bni/g1NeB87+oF87OgH8qH735l/dvnPCtwN6K+Pfii/eevPp5uH2gc/eezDedd9b8o/vewn8+h9jx/63Ku9lbz6lp/JZx/8xPoD9yfvPfzW7O3sz83LN3x5v784/Nb88yt+LucuXDD0tWA3+/07X517177Ud9tip/9Y1mlVarZbrVfyyWMfHvq8n3rgrxq3X7nn6qHPDQAAAAAAwDpjZAFgSO+49/WNQbtkfM12G92yfGM+fP97Wp13N3vD3f/1lKDdScv18bz5nteNdO5PPfBXDwXtTvjS6p2nBO2S5J61Q3n3fdeNdC3Yre5auS3vPfy24vZSU9y0mrX1AgAAAAAA8BBhOwAY0ucf/OSm++zp7Gt1zkHDeZ8b4Nqsj3j94vHPFrd/7oFPFLcN4o13//HA+775nj8Z6VqwW33+wU81bp+1ls99c/u3ewkAAAAAAAAMSdgOAIZ0vPfgpvs8dt8TW51z0LGzy73jrc67W630lhu3L9fHU9f10OdvCvIB47HZvfax+548oZWMxyP3PDZL1Z7tXgYAAAAAAABDELYDgCGt9FYatz967+Pz3LNe2OqcnQzWbLdZiIx1K/Xmz9NavTqBlQDDWm241z75wLPzlIPPmuBqRrfQWcx3XPQD6fhfMQAAAAAAgJkzWH0OAHCaUpDr4sXL83fO/648bt+Ts9hZanXOQcfIDhIiY7BQ4kq9nIUsTmA1wDCa7nffd8mPDnzfnCbPPONrc/nSo/LJYx/Jke69Ax/XSSdX7Hl0Llq8LJ9/8JM5tHrHwMc+au/jhlkqAAAAAAAAGwjbAcCQSkGul1zwPXn8/qcOdc5Bx8hqthvMIKHEld5y9s8dnMBqgGGU7nfX7n/aTAbtTrp46fJcvHT5SMcDAAAAAAAwWWYXAcAQuvVaeun23bZU7Rn6vIM32zWPsGXdoM12wPQqvUYXKo2UAAAAAAAATJawHQAMoSnE1XZ07EZzA5bOrmq2G8igzXaT0qt7E7sW7BSl1+go91oAAAAAAAAYhrAdAAyhKcQ1SgBkftAxstrYBjJYs93kWgLX6tWJXQt2itL9brEStgMAAAAAAGCyhO0AYAjLDSGuUUYbDjpGdrVnjOwgVgcIJU6yJXCSLXqwU2i2AwAAAAAAYFoI2wHAELZsjGyLZru6roe+zm6xMkAocZItgRoJob1SaHZBsx0AAAAAAAATJmwHAENoakwbZbRhZ8Bmuzq1kaQDGCTcNsm2udUJjqyFnaIUmtVsBwAAAAAAwKQJ2wHAEJoCWiONkc1gzXaJlrRBDBKkm2iznTGy0Fop3DxKsBkAAAAAAACGIWwHAEMoBbQWq6VUVTX0eecGbLZLBLcGMUiQbnWAUbP9dOu11sf4nkF7mu0AAAAAAACYFsJ2ADCEUmhq1PDHXKXZbpy2stmuFADaimvBblZ63YzSIgoAAAAAAADDELYDgCE0NduNQrPdeA0Sbhv2eRwmOOd7Bu1tVbgZAAAAAAAA2hK2A4AhlMIfC6M226VF2K4ebvzpbrK6hc12g5x7XNeC3awcbtZsBwAAAAAAwGQJ2wHAEErhj6WRm+0GHyM7TNhrt1keJGw3wWa7VQFJaKVXd7NWr/bdptkOAAAAAACASRO2A4AhbNVYw1ZjZLWkbWqgMbJDPo/DhPSMkYV2mho8Rx3bDQAAAAAAAG0J2wHAEMpjDSfXbCe4tblBnqPV3nBtc8OM8fU9g3aaGjw12wEAAAAAADBpwnYAMIRSaGph1Ga7aLYbp9UtbLYbZoyv7xm0o9kOAAAAAACAaSJsBwBD0Gw3GwZ5joZ9HocJzvmeQTtNr5mFzuIEVwIAAAAAAADCdgAwlNLo0cURwx9zVYtmO8GtTQ0SiFsdYhxsMtzzP+y1YLdqaqfUbAcAAAAAAMCkCdsBwBCKzXajjpFtE7YzknRTK4VQ5Kn7DNts1z44JyAJ7TS9Zka93wIAAAAAAEBbwnYAMIRSAMQY2ekySCBx2NCiZjvYeqVQaydzre6XAAAAAAAAMA7CdgAwhGLYbsSmpU4Gb7YT3NrcIIG44Zvt2h+njRDa2ap7LQAAAAAAAAxD2A4AhrBSH+/7uGa76dGt19JLd9P9Jtls53sG7RRHdo94rwUAAAAAAIBhCNsBwBBWev1b5RZGbFuaqwZvttOS1mzQYNuwAbjVYZrthO2glXKz3eKEVwIAAAAAAADCdgAwlK1qW5rXbDc2g4YRV+uV9Ope+/MP02wnIAmtlMZla7YDAAAAAABgOwjbAcAQSkGrpVGb7dIibCe41ahNGG6tXm1/fs12sOVKr5lRW0QBAAAAAABgGMJ2O1BVVT9VVVU9wp/f2e6vAWDabVWzXasxsoJbjdqE4YZqqdNsB1uufK81RhYAAAAAAIDJE7YDgJZ6dbfYhDZq29JcizGyq4JbjVZ6/cdP9t13mJa6wnjLJqWRmEB/pVDromY7AAAAAAAAtoGwHQC01BSymmyzneBWkzYBumFCcJNqw4PdbKtaRAEAAAAAAGAYg9fnMMu+I8n7Wux/dKsWArATrDYEpkZtW2rTbGckabM2wbZJjYRdrVfSq3vpVP69AwyidL8dtUUUAAAAAAAAhiFstzvcUdf1jdu9CICdYrkpbDdqs13aNNsJ2zVpM2Z3mOeyKXTZZK1e1coFA9JsBwAAAAAAwDRRqwIALTU1mo3abNdpM0ZWs12j5d7xgfcd5rlsGifceJyQJAysNC571HstAAAAAAAADEPYDgBaagpLTXKM7Fq9ml7dHel6O9lWj5EdttlOSBIGV3q9LFSLE14JAAAAAAAACNsBQGtNYalRAyBzLZrt1tcyXLvabtDmuRmu2W640Nyq7xkMbFWzHQAAAAAAAFNE2A4AWio1ms1X863Dcg83l8Gb7ZrWQrvnpm2zXV3XQ4+DNUYWBlcKtS5WwnYAAAAAAABMnrAdALRUHms4evijfbOd4FZJm+em7fPYzVp66bVd0vq1hO1gYKXXi2Y7AAAAAAAAtkO7+hxm1fdXVfXjSa5Jcm6S1SR3J/likncneVNd1+/axvUBzJRS+GOps2fkc89V7d6aP3z/e3PW/DlJkipVLll6RC5evDxVVQ10/JdW7sgXj38uvfRy/sJFuWLPVemM2M43Le7vHh5439KoypLl3vG2y/myjx/7UO5ZO/Tlz3fa8z5r7lk9lBuPfzbdei3nzJ+fK/de3fp1yPj06m5uOv75HFq9I0lyrHt/3/0WRxzZDQAAAAAAAMPwm8Td4dsf9vlSkgNJHpHka5L8WFVVH0ry8rqu3zrpxQHMmpW6fzBrHGMNOy1LZ//s0O+c9tij916bl17249nT2Vs8rluv5Xdv/5V88P53nvL4BQuX5Acv/+mcs3B+q3VMm08f+2jee/htA+/fptnuge7R/Lsb/8Uwy0qSvPme15322IWLl+UHL/upnL1w3tDnpZ1e3c0f3vkf8+7D153y+Nnz5+WHLv+ZXLB4yTatbPe6Z/VQfuXmV+au1ds23VezHQAAAAAAANvBGFlO+ook11VV9XPVoHVILVRVdUFVVde2+ZPkqnGvA2AcymMNR29aGsct+HMPfiL/7dDvNu7zzvvedFrQLknuWr0tv3fHr468hu200lvOf7z137U+ZlCvu+s1pzTTjcOdK7fkv9zxa2M9J83ed+TtpwXtkuTetS/lt2/7hW1YEf/ljl8bKGiXjCfcDAAAAAAAAG1pttvZbk3yhiQfSPKpJPck6WV9lOzTkvytJC/csH+V5MeyHsJ8+ZjX8tIkrxzzOQG2RakFbWGKwh+fPPbhxu1/ffSDxW2ffeATOd57sLEZb5p99oGPZ7luN+Z1tdBW2M/Hj32o7ZIGcv0DH89y7/hYxhGzub8+Wv4+3rx8Qw6v3ZMzT4xoZust947n+gc+PvD+C2MINwMAAAAAAEBbwnY70weyHqJ7S13XdWGfv0jya1VVfUWSP0hy9YZt/7qqqvfVdf3nW7xOgJnUrdf6Pj5Xjedt9aq91+TzD35qpHMc7R5p3H5k7b7itl66Oda9f2bDdoe797Y+ZtBmu17dzf3dw63PP4hu1nKse7+w3YQcWWv+OTmydp+w3QQd696fXroD7dtJJ5cuXbm1CwIAAAAAAIA+jJHdgeq6fkNd19c1BO027vuhJM9Ocv3DNv18VVVzW7JAgBnXq3t9H5+rxvO2+rVnvThVRhsnu9lbwGqhne+kNmNVp81yr12rXVJuKzx9v8Eb8IYxy8/7rNn0NbDF32tO1eZn/5lnPC/75w5u4WoAAAAAAACgP812pK7re6qq+o4kH0q+nO54XJKvS/LWMV3m15P8cctjrkqiXQ+YOr30D9tVY8qwf8UZz81c1cm777su93cP5/H7n5oXn/sd+djR9+c9h9+S25Zv+vK+q/VKHuwda32NzYItmwWRplnT1/bUA8/JR46+t9UxG6027HfuwoW5cPHS3Hr8C6mTnLtwQfbN7U+VTm5evmFDALLOkW7/ZsFBQ3+MbqXXHKZr+l4zfk0/+wfnzkyVTs6cPztPOvDMvOjcb5vgygAAAAAAAOAhwnYkSeq6/nBVVddlffzsSS/KmMJ2dV3fleSuNsdU1WitTgBbpVf3H3XYGWMh6FMPfmWeevArT3ns6Wc8N08/47mnPPbXRz+Y37j151qff7NQ1yw3rK3U/Zvtrt57bS5YvLRwzKDNduX9fuiyn8l5ixdueo5uvZaXXf+t/c8/RCsfw9n0NSD4OFFN95x/e9Vvj21MNwAAAAAAAIzCGFk2etPDPn/StqwCYMqVmu062/K22j+YXKd5jOxmrV6zPEKzFNpZ7OzJYmex1TGn71d+XhY7SwOdY66az1zh3zssC3hNzGbf81kOnM6iUrhxLvOCdgAAAAAAAEwNYTs2uvFhn5+/HYsAmHa9uhC2q6bnbbUpbNet19LNWuPxsxw0Wi6sfamzlMWqfyBu0LG5TfsNGrZr2neWn/dZo9luupRDsv0DsgAAAAAAALAdpicVwDR48GGf792WVQBMuXqKmu2GGbg9SKBrloNGpTGyi9VSFooht8Ga/Jqeu4Vq8FDQUmdP4fzGyE5Cr+5mrV5t3EfwcbJK95xSQBYAAAAAAAC2g7AdG533sM+/tC2rAJhy3brb9/HtaLarhhgjO0iQbnXA8Nk0KjXbLXb2FIM7g4YLS+N156v5zFVzgy0w5QCRMbKTMciYZGG7ySo32wnbAQAAAAAAMD2E7djoWQ/7/LZtWQXAlCs32w0ethqbqtRt1xC22+nNdoV2uMVqqRjcGTRcWHruFlq2b5XXMbvP+ywZ5Hme5dfALCo9321fWwAAAAAAALCVhO1IklRVtSfJ333Yw+/YhqUATL1eXQjbTVOzXTlrN1CIaJZbvUpf31JnTxYLo14Hb7YrjbocfITsybX0s2yM7ETs9NfALNJsBwAAAAAAwCwQtuOkf5Xk0g2fd5O8fpvWAjDVuimMkZ2it9XGMbIDtLjNcqtXObSzp9woV68UQ5SDnbtdIGhhxNAfoxnkNbA6wKhZxme1FGQVtgMAAAAAAGCKTE8qgLGoquq7qqq6sOUx/2eSVz7s4d+p6/qL41sZwM5RF5vtJj9GttRs1zhGdoe3epXa4ZaqpSw2jKQcJFw1rlGXmu22105/DcyiYpDVGFkAAAAAAACmiLDdzvO9Sb5QVdV/rqrqxVVV7S/tWFXVV1RV9adJfjM5Ja1xa5If3+J1AsysXgphu214Wy2OkW04ZpAQ0Sw3rBVHvXaWGluyBnpextRst1j1D9vN8vM+S1Z3+GtgFpXaBhc77UY0AwAAAAAAwFaa3+4FsCX2JvmHJ/70qqr6bJIbkxzO+njYc5M8OUm/Brx7kryorus7JrNUgNlTGjdaVdOUYS/H7UrjGk/ZZ4ZbvUrtcIudPY0tWYOEq8Y16rIUINKmNhkrg7QY+l5MVDEkq9kOAAAAAACAKSJst/N1kjz2xJ/NvC3JP6rr+patXRLAbOul2/fxuUzTGNmynd5sVwrELVVLWdiqZjtjZGfKTn8NzKLS96TpNQsAAAAAAACTJmy38/xy1sfAflWSRwyw/7Ek1yV5dV3Xb9vKhQHsFKVmu852NNtVpTGy5Wa7wUJlmzd/TaNu3c1avdZ323qzXXkk5SCNf6VGtLajLktjZAdZA6MbJEin2W6yNNsBAAAAAAAwC4Ttdpi6rv8syZ8lSVVVZyW5NsnlWR8Zuy/rTXf3Jbk3yaeSfKyu6/4VTQD01UthjGwmH7Zr32s3YNBoRkNfKw3NcEudpcZxr4OEq0rjddsGgkrrWBbwmoiBvtcz+hqYVcXWSM12AAAAAAAATBFhux2sruv7krxnu9cBsNP0ChnlbWm2a1DXdao+zXejjEuddssNAanFak/mqvl0Mtd3FHCpte7UfcYz6rIUIGoKCzI+gzXbzWa746wqhRs12wEAAAAAADBNpisVAAAzoNRs18nchFeSNHXblUbJDhQqm9GwXVNY7WTArRx0Gz6A1TSetp+lwhjZWW0UnDUDfa99LyZKsx0AAAAAAACzQNgOAFrq1YWw3TY021WNg2QLYbsB2tNmdYTm8iBhu0JT1iBfcymA1TYQNErgj9EN9L32vZioUiulZjsAAAAAAACmibAdALTUbwRpknS24W21fdRu0BGasxk0amrtO9kmt9jp30I3yNjQ0vOy0DIQVAoQNYUFGR/NdtNntdhs1641EgAAAAAAALaSsB0AtFRutpuuMbLlZrtBgkabB8+mUam1r0on89VCknLQbZQQYttmu6VOaYzsSuq6FJNkXAYJVq7Vq+nV/YO1jF+xNbIwchkAAAAAAAC2g7AdALRUpxC225Zmu3LYri6F7QYIle20MbJLnaVU1fpzNcoI19Lz0nbUZWkNdXpZq1dbnYv2Bm2tm9XQ6ayp63psQVYAAAAAAADYSsJ2ANBSt9B21am24W21agjbFQrSBgmVrdVrxa9zmg3SjlUa+TrJZrumcN5ybZTsVht0THJptCnj1c1aeoUQc9sgKwAAAAAAAGwlYTsAaKncbDf5MbJNQ2RLY2RXB2zrGnS/aVIaI7vYWdzw8fDNduUwX9tmu/JozEGDYAxv8GY734tJaPqZ12wHAAAAAADANBG2A4CWenUhbLcNzXZDjZEdMMw1i6GvYvPchma7xWqx7z6DNdv1DyC2DQQtNew/i8/7rBn8NTB7gdNZ1DSuV9gOAAAAAACAaSJsBwAtlcYddrblbbW5266fgVu9ZjD0tVz42pY2NMktFMI7m40M7dbddLPWd1spwFfS1IS3YozsllvVbDdVmu41Cy1fWwAAAAAAALCVhO0AoKVys920jZHtb+BWrxkMGpXHyD4UbisF3ZratZLmsbqlAF9J0xjZ5RkMOc6andzuOIuMkQUAAAAAAGBWCNsBQEu9dPs+Pm3NdsUxsju52a6w5o3NdqXwzmZfb2MgqKGprp+5ai7z1Xz/68xgyHHWDPwa8L2YiKamwbavLQAAAAAAANhKwnYA0FK52W663laLYbud3GxXGMG6MbBTCu9sNlq0uX2r/ajLxap/u12pnY/xWek1txg+tN/svQZmkTGyAAAAAAAAzIrpSgUAwAzopX/YrtqGt9WqajdItlf3GsehbrQ6g0GjUmjnlDGyhWDcZgGspvDhMO1bpYY9Y2S33k5ud5xFpe/HYrXU+h4HAAAAAAAAW0nYDgBaKjXbzW1Ds11TDKWuT2+2W6tXBz73bDbblUI7G8bIFoJxm329je1bheBck2HXwegGDdFt1nbIeAwSkgUAAAAAAIBpIGwHAC2Vm+3mJryS9auWnR62W24xonQWW71KX9/SKc12hZDbJl9vc7Nd+1GXSx1jZLdDt15LL92B9p3F18Asamq2AwAAAAAAgGkibAcALfXq/kGdzrY025XDdnWfsF2b1rSVAcfNTpNyQ9ZDwbaFIRvlSmN156uFdKr2QcthQ3+Mps3zq2VwMkrfk2EaIwEAAAAAAGArCdsBQEulZrvODLyttgoazWDoq9hsV21ds92w7VvGyG6PVoHT3uwFTmdR+bXVvjESAAAAAAAAttL0pwIAYMrUdSFsNwPNdqutmu1mL/RV+vo2NtuVAjybPTfl1rwhw3aFMbJtRv3Snma76TPu1xYAAAAAAABsFWE7AGhpuprtWo6RbRE0Wp3BVq/lAUI7pdGUa/VacURwUh6ruzBk+1ax2W4GGwVnSbtmO9+LSRh3ayQAAAAAAABsFWE7AGipWwhkdaq5Ca8kqcpZu/TJ2hUDY/3MYqvXSt2/FW5jaKcpwNP0/KyOuX1rqXDccuFrYDzahEhn8TUwizTbAQAAAAAAMCuE7QCgpXqKmu2axsj202qE5oy1etV1XWy2W9o4RrYhwFMK1CXjb98qjZGdted91rQJ0DX9PDA+5ddW/9cIAAAAAAAAbJf57V4AAMySXt3rO541STrVdI2R/def/8epUuW8xQvzjINfkxee+6153aHXDHzm9xy+Lu89/LZUVZXLlx6VbzjnW/KUg88ex6LH6t7VL+VP7vrtfPLYR4pByI3BtqZw3Ms//73FAGNpfPBiZ7xjZD9+7EN52We+NVWVXLL4iHzt2d+Y55z5gk3P96773px33/fm3LZ805cfW+gs5qq9j8s3n/8Pc+nSlUOtc9o80D2aN9/zuvzlkXdnqbMnzz/7b+crz/z6VBtqHj997KN50z1/ki88+Jn06lO/b92sDXytjxx9b172mW/98ufz1XwesffqvOT8f5zL9zxq9C+GHF07kvceflvfbcO+tgAAAAAAAGCrCNsBQAulMFcyfc12vayPu71z5db8z7tfm/9592tbnbtOvR5MqpMvHP9Mfuu2f5+XXvbjuXb/00Za8zgt947nVTe/Inev3tm439LGMbINzXYnn7M2FoZutisfd/J5v2n58/m9O341VTp59plfV9z/3fe9Oa+98zdOP09vLZ849uHcePyzefkjXpVzFs4faq3T4vDavfmVm1+Z21ceChT+/p2vzmq9kued/eIkyRcevD6/fuvPZq1eHcs1N4bzuvVarn/gr/PLN/9kfvzKX85ZC+eO5Rq7Va/u5pdu/onidmNkAQAAAAAAmDbGyAJACw9vydqoU81NcCWTV6eXv7jvLdu9jFN8+thHNw3aJQ9rthtzgGfY8y0Vxsj2857D1zVuf/fh5u/Lse79+ejR9w98vWl03+rd+cWbXnFK0O6kt93756nr9cbJDxx5x9iCdiUP9Nbb9RjNFx68PretfLG4fdgRzQAAAAAAALBVhO0AoIXSKNFke5rtDs6f2dhuN263LpeDMdvh1uUbN92nk7kcnDvzy58vVkvZ29k/tjWcNT9cu1mb4zZ73m8b4PsyyD7T6p7VQ/nFm1+Ru1Zv67v97tW7cqR7X5Lk9pWbJ7Kmvzj81hztHpnItXaqWxuCdsnwry0AAAAAAADYKsJ2ANBCry6PGe1Uk39bPTB3Rh6193ETu95KvTyxaw1ipV7ZdJ/H7XtS9s7t+/LnnaqTJx54xtjW8OQDzxrquMfte/LAzV2rveavs9vwc9lmn2n0pZU78qqbfiyHVu9o3O/OlVuSJHVD++Q4rdYreee9b5zItXaq1V75ftJJJ0848PQJrgYAAAAAAAA2J2wHAC00N9ttzxjZ773kR3PJ4iOGPv6rzvyGfN8lPzpQ8Guz0NekrTSEdZLkiqWr8t0X/9Bpj//9C/5JHrPviSNdey7z+bYLvi9X77t2qOP3zu3LSy/7iezvHNx0327W0q3X+m7r1b3UDT+XXz7HDIbt7ly5Na+6+RW5Z+3QpvvesXwibDfC9fZ29m2+0wbvuO8Nm/4MUtYU3v2+S/5lzl24cIKrAQAAAAAAgM3Nb/cCAGCW9Bpas7aj2S5Jzpo/J6+48pdy1+ptuXv1rvTqbn791p8d+Pj/48KXpqqqPHH/M3PT8uez3HswXzz+ufyPL/3+aftOW7PdamE9+zsH86OP+Pc5f+GiVNXpY3b3zu3LP7v83+Se1UO540QjWhsL1WKu2HNVljp7Wh+70WP2PSE//+jfyc3Hb8gDvaM5tHJ7/utdv9l335XeSvbOnf6fboOG6LrpH9abVrcv35xfvvknc6R770D737Fy64mPhovbPX7fU/MDl73ixPfi2CnbPn70Q3nHfa8/7Zij3cP5wJF35LlnvXCoa+52paDio/dem6ccfPaEVwMAAAAAAACbE7YDgBZ6KQebqm0sjK2qKhcuXpoLFy9NXdfppNPYwnfSUrXny2G0hc5Crjoxkna+6v+fCKv1Snp1b9uChQ9XCus86eAzc8HixZsef87C+Tln4fxxL6uVuWouV+69Okly+/x5xf1W6uXszenNa4OG6Gap2e6W4zfmV255ZY52Dw98zB0rNydJ6iHDdgudpcxV87ly72NO23bl/2bv3sOjqu99j3/WTGZyIVdIIFwLiIpQFVG2iEEBRa1atdXaum3dtR63Vdt6OdrqtijWVmttS9sj3V6OVrp1e9zd3ahUi4qCilRBvFZECwoB5RIMhEtCZjKzzh9KzJD1m6w1t6zJvF/P4/O4Zt1+ycwQ43z4fEsO1N9anlW7vbfbvkXNj2lK1UzfvCfyiSm8Wxbsl+OVAAAAAAAAAAAAAO7wqSAAAB4ka7YLWr0zRnZ/lmUpHOh5JKwk43HJRlWNPk4AACAASURBVMpGbf+Mko0Y1uJmJK4fJXveooZgYdxts51hDK3fNO5dq99umOUpaCcppYbCroqTfO/LguU6tnqm476t0Y/11u7lad27UJnCsiErnOOVAAAAAAAAAAAAAO4QtgMAwINkbXEBH/1YdRs2M4btkgSPTAGZ3mAKoLkNG/pNsufNqVVNch+icxvK600ftr2v326YpT3xXcZjKoM1jo/v6PhEe+Ntsu3Umu3CVvKRwNNrvmx8jy9qfjSlexa6SLxvhWUBAAAAAAAAAADQ9/knFQAAQB6wkzTbWT4aIxly22xnCLUkC7uYRj/2BtNa8jWskzzk6BxMcjse1u242d6ypnWVfrfhRrXFW43HHFj6Rf1g+Gzj/i2Rj1IeI9tTQHNAaKAmVhzruO+Dvau1tm11SvctZMb3b56GZQEAAAAAAAAAAND3+ScVAABAHojJHGwKyh9jZCX3YTNTKC9ZWM9PzXZ9bQxlsnWbgkluQ3RuQ3m94b09b+nOjTcb2/skaWzZ4bp82CzVh4cbv0+b21MfJZtsjOw+M/t/xbiPdjvvTM2U+fr+BQAAAAAAAAAAQN9H2A4AAA/iedJs5yY4JKXWbBfNh2a7PG3GClgBY9DIFCx03Wzn07Ddqj2v6/cf/TRpY+L4fkfq0qE3KBwoVsAKaFB4iONxmyOph+16GiMrScNLRuvgssMc9721+xVtiXyU8v0LUV97/wIAAAAAAAAAAKDv808qAACAPGDLHLYL+OjHashls50plBcOJGlYy4Nmu3wO65iCjqaQo/uwnf/GyL69e4Xu+uhnitrOI3Il6fDyo3XJ0OsU6vKarA8Pdzx2S2Rj1sbI7mNqt7Nl67nmBSndu1AZ3795OgYaAAAAAAAAAAAAfZ9/UgEAAOSBZMGmgI+a7dwGh0yhlqBVpKCKHPdFkgSjcs0U0srnsE7IEHQ0N9u5HCObZARyb3h91990z0e3qyPJ+idWHKv/NeRaFVmhhMcHhYc6Hv9ps12KYTuXr5lDyiZoSPgLjvte3vmcdnXsSOn+hcj4/s3jsCwAAAAAAAAAAAD6Nv+kAgAAyAPJm+2COVxJcm6DQ6EkoRZTux3Ndtlleu6MYTuXITo/Ndu9uvNF3ffxHYrJvKZ/qjxeFw6+WkGre+izPjzM8ZymyOaUx+UWB3oeIytJlmXpxP5nOe6L2hE9v+OvKd2/EDFGFgAAAAAAAAAAAPmGsB0AAB7E7SRhuz7UbJdsnykgk2u2bRtb9vK52c703Jm+766b7VIMoWXayy2L9YdNcxRPElw9puoEXVD/AwUt5wDrIEPYLqYONUU3p7QuLwGvoyobVF00wHHf8zue9FUg1c8YIwsAAAAAAAAAAIB8459UAAAAeSCWtNnOPz9W3YZVkgWMjKEvnwSJOuwOY9NgssY+v/PcbOcyROeHZruXdjyj/9j8u6QNkVOrT9H5gy5XwBC0k6RB4SGyZDnu2xtvTWltXgJeRVZI02tOd9y3J7ZLf2t5NqU1FJq+2EwJAAAAAAAAAACAvs0/qQAAAPKAnSTYlCwclGumEbD7K04Sagn5vNkummQdYcvd1+9H5mY75xY/1812LsfNZsvz25/UQ1vmypZtPGZGzZf1jYGX9NgSGQqENSA0MKPrcztGdp+GqpNUEih13Pfc9scV90mToF/11WZKAAAAAAAAAAAA9G2E7QAA8CDZ6EtfNdu5bIYyBeqSXcMvzXbJ1pHPzVhev+9uQ3S9OUb22ebH9cjWe5Iec1L/r+rsuu/Ispwb6/ZXHx6eiaV1SvZecFIa7KeGqpMd9zVFN+uN3a9kYll9Vl9tpgQAAAAAAAAAAEDf5p9UAAAAeSBuO4dDLFmuQ0K5ELbctXSlMkY2WaNcLiVr2Avlc7OdIfRl+r67brbrpTGyCz/5b/256f6kx5w64Os6s/Zbnt5Dg8JD011agmQtjybTa05XQM6Nloua58u2zS1+ha6vNlMCAAAAAAAAAACgbyNsBwCAB6ZmO1Pgpre4bXZLNq7RtM8/zXbOIyil/G62CxlGABub7Vw21uV6rKlt2/rLtof1+LYHkx53Ru35Or32PM9h1frwsHSW103Y4xhZSaoJ1eqoyqmO+9bt/YfWtq1Kd1l9Vl9tpgQAAAAAAAAAAEDfRtgOAAAPTIGlgOWvH6nJQnQJxyVttjOFvswht1xK3oyVv2EdY8jR2GzncoysctdsZ9u2Htv2oJ785JGkx3217ts6ZcDXUrpHfXFmx8im+po5seYs475nmh9NdTl9XrJmynx+/wIAAAAAAAAAAKBv81cyAAAAnzM32/nrR6opKNftuFSa7fwyRjZJM1Zej5E1BCDNzXZux8jmptnOtm39uekPerr5z0mPO3fgxTqxvzmo1pN6H4yRlaRhJSM1ruwIx31v71mhTe0b0llWn0WzHQAAAAAAAAAAAPKRv5IBAAD4XNw2hO181mwXykCzXchj6CvXTKG/kBX2PJLUT7yGHONyF6KzZWd9lGzcjuuRrffoue2PG4+xZOmfB12qaTWnpXWvfsEKVQSr0rrGPkVWSAEr9VHQyUKDyb4XhYxmOwAAAAAAAAAAAOQjfyUDAADwOXOzXepBnWxw2wzVF5vt8r0VK1vNdp8em72wXdyO6+Et/64XdvzVeIylgL5V/301VJ+ckXsOCg/LyHXSDXcdXHaYhhWPctz3ys7FaunYntb1+yLT69mSpSIrlOPVAAAAAAAAAAAAAO4QtgMAwANTs53ls2Y7t+GhZME0r6GvXDOF/vK9Fcsccow4Pu4lQBdz2YLnVcyO6Y+bf6eXWp4xHhNQQN8efKUmV83I2H3rMxW2SzOgaVmWZhra7TrsDi3Z/kRa1++L+mozJQAAAAAAAAAAAPo2fyUDAADwOdPIzoDPfqQWB0pcHZdKs13UJ8120bhz+KyvNttFM9Js5/5YL9d8YNMcLd+5xHhMQEFdNOQaTao8LqP3rg8Pzch13L5fkplYcaz6F9U57ntxx0LtjbelfY++JNJH378AAAAAAAAAAADo2/yVDAAAwOdMzXYBvzXbuR0jS7Od73gd3+ulrS7TY2Q77Kj+78e/1MpdS43HFFlF+tehP9IRFVMyem9Jqi8enpHrZOI1E7SKNL3my477WuO79beWZ9O+R19iCu3m+/sXAAAAAAAAAAAAfVtRby8AAIB8YssQtvNZfj1khV0dlzRs5zH0lWum0F++N2N5DTn2VrNdNB7RvR//Qn/f86rxmJAV1r8OvU7j+03M2H27GpShZrtMvWaOrZ6pJz/5f2qLt3bb99z2x3Vc9ZcUtIIZuVe+M72eQ3n+/gUAAAAAAACAbLJtW/F4XLZt9/ZSAKAby7IUCARkWVZvLyWrCNsBAOCBqRksb5vtko2RDTgH9kzjH3MtYjuvw23Q0K+ShRxt2+72H6de2uoy1WwXibfr7o9u07utbxiPCVvF+u7Qf9PYfodn5J5OaopqFbaK0w6AFlvpj5GVpJJAqaZWf0lPN/+5275Polv1+q5lOqpyakbule9M799wnr9/AQAAAAAAACDTotGoWlpa1NLSomg0StAOgK9ZlqVQKKSqqipVVVUpFAr19pIyzl/JAAAAfC5ubLbzV1uV21GMyYJpIWPoa29Ka8q0Qmu2k6SoQ0Ap7mWMrNJvttsbb9PvP/pp0qBdsVWi7w27MatBO+nTkGsm2u0y2aY2reY0BQ1/n+WZ5vn8T5DPRPvo+xcAAAAAAAAAMqW9vV2NjY1as2aNmpqaFIlE+H/MAHzPtm1FIhE1NTVpzZo1amxsVHu7PyanZQphOwAAPLBtQ9jOZ812btrdwlZx0grfZONM/fDLXNTQZuY2aOhXppCj5DzCN5fNdm2xVs3d+BO93/q28ZiSQJm+P3y2xpSNT+tebtWHh6V9jeIMBryqi/rrnyqPd9y3of0Dvd/294zdK5+Z2gjz/f0LAAAAAAAAAJkQjUbV2NioPXv29PZSACAte/bsUWNjo6LRaG8vJWP8lQwAAMDnzM12/vqRallWj6GVcCD56EzT+XHFM9KQli5Ts13IMP42XyRr9nL6mmO2++fCy7H7a43t1v/ZOFtr2941HlMWKNcVw3+i0aVjU76PV5lotgtnaIzsPif0P9O4b1Hz/IzeK1/11WZKAAAAAAAAAEhXLBbThg0b1NHR+5/FAEAmdHR0aMOGDYrF0isG8QvnGVcAAMBR3NAMFrD8NUZW+jRMF4mZK3nDPbTf9RT6KgqGUl5bJkQcRqpK+d+M5XWMbC6a7XbHdur/bJitDe0fGI8pD1bqB8Nu1rCSUSndI1X1xcNdHWfJki3nRsZMB7yGFI/Q+H5H6p09K7vte2fPa/q4fb2GFH8ho/fMNzTbAQAAAAAAAICzTZs2dRu5GAgEVFlZqcrKSoVCIQUC/iqBAABJisfjikaj2rlzp3bu3Kl4/PMim/b2dm3atEnDhqU/taq3EbYDAMCDfGm2k9IL0316frJxphGVpbSqzIn20WasZM+bc7Odh7CdvIftdnXs0G833KSPI+uNx1QGq/WD4T/RkOIRnq+frnqXzXZhq1jt9l7HfZkcI7vPzP5nOYbtJGlR82O6YPAPMn7PfEKzHQAAAAAAAAB0F4vFtGvXroTHwuGwvvCFL6ioiHgHAP8Lh8Pq16+f6urqtH79ekUin5eJ7Nq1S7FYTMGg/4psvPBfMgAAAB+L24awneW/H6nphOl6Ot8UlMmlvtqM5XmMrIeRvl7HyLZ0NGvOhh8nDdpVFfXXVSN+1itBO0mqCw2R5eI/aYuTjE3O9BhZSTqw9IsaUTLGcd+KnS9oR/STjN8zn5jev6E8f/8CAAAAAAAAQDr27NmTsG1ZloYPH07QDkDeKSoq0vDhw2VZVsLj+/85l4/8lwwAAMDH4oZmMDdhn1xLJ0zX0/m+CNsZ1hDqodHP74IqMjYlOgWUvDTbmcYgO9ke3aY5jT/W5shG4zH9i+p09fCfaZDLdrlsCAVCqgvV93hcstd7NtrULMvSzJqzHPfF1KHFO/6S8XvmE5rtAAAAAAAAAKC7/VvtysrKFA7n9+ceAApXOBxWWVnivLTdu3f30moyx3/JAAAAfMzUbBe0/Fd122OYLknTV0/nRw2tVLlkbLbL87COZVnGr8F5jGzmm+0+iW7RrzfcoK3Rj43H1IYG6aoRP1NdeLDr+2eLm7Bfsva6bLUhTqg4RgNCAx33vbjjKbXFWrNy33wQtSOOj/c0/hoAAAAAAAAA+rL9G58qKip6aSUAkBnl5eUJ24TtAAAoMHE5h+3ystmuh1BLkRUy7vNzs12+h+0k83MXsfd2e8xLs13M0MzY1dbIJs1p/LE+iW4xHjMwNERXDf+ZMUiWa/XFw3o8JtkY2WT70hG0gppRc4bjvr3xVi1reSYr980Hffn9CwAAAAAAAACpsG1bsVji/8cvLS3tpdUAQGbs32wXi8Vk23YvrSYz/JcMAADAx0xjOAOW/36khnpstku+P2AFjCNZTa1yuWRuxsr/sI7puYvEu3/NMWWu2W5z+0bN2XCDmjuajMcMDg/XVSN+qppQrev7Zlt9uOewXa7HyO4zpepElQXKHfc9t32Bp2bCvsTYTNkH3r8AAAAAAAAAkIp4vHvhQzDov8lKAOCF059jTn/e5RP/JQMAAPAxU7NdUP77ZafnZrueQy1expnmWl9uxjI32zmNkfXQbJfk2I/b1+s3G36slo5m4zFDi0fqyuE/VVVRf9f3zAU3YTtTcFTKbsCrOFCi46q/5Lhve8c2rdz1Utbu7Wd9+f0LAAAAAAAAAKlwanqyLKsXVgIAmeP051i+N9sV9fYCAADIJ3HbMEbWh812xWk220mfhpD2aFe3x5/f8Ve92/qGwlaxDig9RBMqJitoZf8/K+J2XG/tXq41be+o3WGkqtQ3mrFMz83ync/ro/Z1CY+9s2el6+v+cfNvtbr1Tcd9b+1ert2xncZzhxeP1veHz1Z5sNL1/XJlUHhoj8cka5/M1hjZfabVnKZF2x9Vhx3ttm9R83xNqjgurf9hYtu23tmzUu+1vq22+B7P55cFyjWu3xEa2+/wlNfglbGZkrAdAAAAAAAAAAAAfIywHQAAHtiGZruAD8tiewqthK2eA0ama6xpe0dr2t6RJC3Z8YQO33W0LhpyjYqskPeFuhS343pw8516eedzSY9L1mCWL8KGr2H93n9o/d5/pHzdDrtDy1oWeT5vZMlB+t6wG1UWdB6H2tvKguWqDNZoZ2x7SudnOyhaWVStoyun6aWWZ7rt29i+Tqtb39Qh/SakdG3btvWnrfdpyY6/pLXGRdsf1ZcGnKsv1/5zWtdxy9RsF+oDYVkAAAAAAAAAAAD0Xf5LBgAA4GOmMZwBy39jZHsKrYQDPYfS3LbEvbn7Fb27x7kxLVPW7/1Hj0E7qW80Y/npazig9BD9YPjNvg3a7eOm3c7EUvZr+E/sf5Zx3zPN81O+7ubIxrSDdvv89ZP/0o4kY4QzxbZtx5HIkjloCgAAAAAAAAAAAPgBYTsAADyI51GzXWmgLOn+kh72f3pMqev7vd/6tutjU/Gey+t7WbNfuXlucuHgskP1vWE35cX3tL54WNL9ycJ4/YIVmV6O4/0PK/8nx32rW9/Uxr0fpnTdf7T+PZ1lZf16TkwjZCUp5CIEDAAAAAAAAAAAAPQW/yUDAADwMds2hO0s//1IPbDsi0n3H1R2aI/XcHPMPnvjra6PTYWb69cU1ao2VJ/VdeRCT89dLowrO0KXDv2xigM9jxv2g/H9JibdP73my6oq6t/t8cHhEeofqsvWshKcWGNut1u0/dGUrtmW4ffd3nhbRq/nxNQQKklFWR7pCwAAAAAAAAAAAKTDf8kAAAB8LCbDGFn5b4zsF0rG6J8qj3fcd2zVTA0OD+/xGg3VJ6s+nLwxbJ9I3HksZKb0dP2AAvpq3bdlWdkfCZptkyqmamTJQb12/8PLj9YlQ6/31Tjbnnyx35EaV3aE476T+5+j6qL+OrvuwoQWyiIrpK/UXZCrJeqA0kM0quRgx32v7lyq5miT52uaxrGmKtvvY0mKqcO4LyDCdgAAAAAAAAAAAPAvPs0CAMCDfGq2C1gBXVD/Ax3ab5Leb/u79sbaVBbsp4PKDtWE8smuQmlVRTW6esStWrlzqdbv/YdidlyN7Wu0JfJRt2MzHfrxcv1T+n9Nh1ccrS+UjMnqGnKlNNhPPxh+s1buXKoP9q5WRzwxnLQrtkOrW99M+fpBFWlixbHdHi8JlOqgsi9qYsWxeRdaDFhBXTrsx1q+c4k+aFutSDyi8qIKjSs7QuM+a707qnKqakOD9Obu5QpaQU0on6xhJaNytkbLsnRi/zN178e/6LYvrpgWb/+Lzh54oadrmsJxVUX9dVCpuZny3dY3tDvW0v16WX4fS8mb7YKW/4LLAAAAAAAAAAAAwD6E7QAA8CAuQ9jOp2WxASuoIysbdGRlQ8rXKA9W6viaUzu35zfN0zPN87sd11vNdsdWzdQZdedn9d69oSRQqmOrZ+pYzey274O21VrdmHrYrjxYoQuHXJXO8nwpaAV1TNUJOqbqBOMxI0sP0sjS3m0NrAsNVlN0U7d9L7U8rVMHnKvSYD/X1zOF40aXHJz0Of7thhv1Xutb3a+Xi2Y729xsF2SMLAAAAAAAAAAAAHzMn8kAAAB8Kp5HzXbZEracR4v2VrNdyLCevixslaR3fh6Nh+1rAlZQJ9Sc4bhvb7xNL+54ytP1ooZwXKiH59j0Po7aEU/3T0WcZjsAAAAAAAAAAADkqcJJBgAAkAFxOYdEAiqcgIgpqNVbzXaFGBwrTvNrLsSAop9Mrpqh8mCl477FO/6iDjvq+lqmEKopTLdPKBB2vl4umu0Mf45KNNsBAAAAAAAAAODWyJEjZVlW5z9Llizp7SUBBYGwHQAAHtBsl6zZLruNWKbGrbDlHBrqy8IBmu3yWThQrOOqv+S4r6WjWa/ufNH1tSJxw/vCEKbr3N9LDZVSD2NkCyi4DAAAAAAAAAAAgPxTOMkAAAAyIC7nsJ1VQD9STUEt0zjLTKHZ7nM9tZb1eH4Bfs/85vjqUxUyBEUXNT8q27ZdXSea4njl3nofS1KMMbIAAAAAAAAAAADIU4WTDAAAIANMzXbBAmq2M4V4st2Ileq4zL4o3TGyhfg985uKoipNrprhuO/jSKNW7XnN1XXMzXY9hO382mzHGFkAAAAAAAAAAAD4WOEkAwAAyACa7czjKU3Nc5lCs93nAlZQRVYo5fN7GjGK3Dih5gxZshz3Ldr+qKtrpBpCDRnfx9kdBy3RbAcAAAAAAAAAAID8VTjJAAAAMiBuCIkECiggkqwRy+3oy1QYQ0UFGLaTpGKrJOVzabbzh4HhITq8/GjHfe+1vq3GvWt7vEaqIVTTa8A0ljaTYkrSbCea7QAAAAAAAAAAAOBfhO0AAPDA1GxXSGNkk4V4onb2WrFMoSLTWNu+ztRM5u7cwvye+dHM/l8x7lvU3HO7nbnZLvnrw/Q+znZDpWRutgsoIMtybvoDAAAAAAAAAAAA/IDqCAAAPIjbjJFN1ooWsdsVVuaDXHE7bgzyFWyzXYBmu75gVOnBOqD0EK1te7fbvtd2vaQzo9/UgNAg4/lRw9jXngKVyRoqsy1mOzfbBS1+NQEAAAAAAAAAwG9s29Zrr72m1atXa+vWrWpvb1ddXZ2GDh2qhoYGlZeX9/YSU7ZhwwatWLFCGzduVFtbm2pra3XooYfqqKOOUiCQ3ue/W7du1YsvvqiPP/5YbW1tGjJkiEaPHq3JkyenfW0nq1at0ttvv62mpibt3LlT/fv31+DBg9XQ0KABAwZk/H6FjE+0AADwwDY02wUKKWyXJMQTibdLWZio22FHzesp0OBYOl93oQYU/erEmrMcw3ZxxfXc9gX62sD/ZTw39WY75/2m8F4mmZrtggU0jhsAAAAAAAAAAL/btm2bbr31Vj344INqampyPCYcDmvGjBmaPXu2jj76aFfX/fa3v6158+Z1bn/44YcaOXKkq3OXLFmi6dOnd27fdNNNmj17tvH4rhN1jj/+eC1ZskSStGzZMt1000167rnnFI93//x30KBBuuGGG3T55Zd7Dsa9/vrruvbaa7V48WLHaw8bNkyXXHKJrrvuOhUVFWn27Nm6+eabO/cvXrxY06ZNc3WvTz75RHfccYcefPBBffTRR47HBAIBTZkyRTfddJNOPPFET18LnBVOMgAAgAwwjj8soJBIspBXtsbIJhttaQoN9XU02/Udh5ZP0qDwUMd9y3YsUmtst+O+uB0zBlF7ClSaxi/npNlOhrAdfw8IAAAAAAAAAABfePTRRzV69GjNmTPHGLSTpEgkooULF2ry5Mm65JJL1NHhPN3GT2699VYdd9xxWrRokWMYTpK2bNmiH/zgBzrnnHMUibj//PPXv/61Jk2apGeffdZ47Y0bN2rWrFk6/vjjtWXLlpS+Bkn64x//qNGjR+v22283Bu0kKR6Pa+nSpZo5c6a+9a1vefp64IxPtAAA8CBOs13PzXZZkCwAVKjBMZrt+o6AFdAJNWfqP7f8vtu+dnuvXtjxV50y4Gvd9kWShFt7en2YXgORnDTbmcbIFk5oGQAAAAAAAAAyze7okJo29vYy+r66YbKK+nbU5v7779fFF1/cLSx2wAEHaNy4cSorK1NjY6OWL1+uWOzzv2B/zz33qLGxUQsWLFCRT79Hv/zlL3XDDTd0bh988ME6+OCD1a9fP23atEkvv/yy9u7d27l//vz5mjVrlm6//fYer/2rX/1K11xzTbfHx40bpwMPPFDFxcVqbGzUihUrFIvFtGzZMp177rk67rjjPH8dN954o2655ZaExyzL0sEHH6wDDzxQFRUV2r59u1599dWEsOSDDz6oTZs2aeHChb59jvIB3zkAADywbUPYziqcsJ2pEUvKYtguabNdYQbH0vm6CzWg6GdHV07Tgm0PaVespdu+Jduf0Ak1Zyq0X4tjNI33hWnMbEwditkdClrZ+zWBhlAAAAAAAAAAyIKmjbLPPbi3V9HnWf/1njR4ZG8vI2veeOMNXXrppQlBuwkTJmju3LmaMmVKwrFNTU2aNWuW7r777s7HFi5cqBtvvFG33nprztbs1ttvv60XX3xRknTWWWfptttu09ixYxOO2b59u66++mo98MADnY/96le/0qWXXpp01O3KlSt13XXXJTw2bdo03XnnnRo/fnzC401NTbrxxht111136YUXXtCqVas8fR3z5s1LCNoFAgFdfvnluuaaazRixIiEY23b1mOPPaYrrrhCjY2NkqRnn31Ws2bN0m233ebpvvhc4SQDAADIAGNIpIB+pBZZRbIMX2+2RlDSbNddOJ0xsgU6etfPQoGwptWc5rhvZ2yHlu98vtvj2Wi2k7LfbmdutuPvAQEAAAAAAAAA0JsuuuiihDGjDQ0Neumll7oF7SSprq5Od911l+64446Ex2+//Xa9/fbbWV+rV83NzYrH4/rhD3+o+fPndwvaSVJNTY3+8Ic/6Mwzz+x8LBaL6b777kt67csvvzxhhO5Xv/pVPfPMM92CdtKn37d///d/1y9+8QtJ0rZt21x/DevXr9ell17auV1cXKwnnnhCv/vd77oF7aRP2+7OOussrVixQmPGjOl8/I477tCHH37o+r5IVDjJAAAAMsA2jZEtoEYmy7KMrVg02+VOsZV62C5ZOyF6z9TqU4whuUXbH1N8v2bNZO+L/Vvwuu1P8hqIJgnxZUJMzqHloArnz1EAAAAAAAAAAPxm8eLFeu211zq3Kysr9cgjj6isrCzpeddcc41OP/30zu14PK45c+ZkbZ3paGhocNXo9rOf/Sxh+7nnnjMeu2LFCr3yyiud24MHD9b999/f45jWa6+9VieddFKPa+nqjjvuUFtbW+f2nDlzdMopp/R43sCBA/Wf//mfnduxWMy3z1E+IGwHpzTaMAAAIABJREFUAIAHcVPYrsB+pJoCbrlutgsoWLBtWOm00xVqQNHvyoOVOqbqBMd9WyIb9fc9ryY8Fk2j8THZ6ydbodl9aLYDAAAAAAAAAMB/5s2bl7B9+eWXa8iQIa7O/fnPf56w/fDDD6u9PbufN6TihhtuUCDQ8+e648ePTxgb+8YbbxiPffjhhxO2v/e976mqqsrVembNmuXqOEnas2eP7r///s7t0aNH65JLLnF9/qRJkzR16tTO7ccff9z1uUhUWMkAAADSFDeNkbUK60eqMWyX42a7Qg6NpTVGlmY73zqh5kzjmOZFzY8lbKfT+JjsNZCt0Ow+pj9HgwXUEAoAAAAAAAAAgN8sXbo0Yfub3/ym63PHjx+viRMndm7v3btXK1euzNjaMqG0tFQzZsxwffwhhxzS+e+tra3avXu343HLli1L2D733HNd36OhocF1oHHp0qUJrXbnnHOOq+BgV9OnT+/89/Xr16uxsdHT+fgU9REAAHhgbLYrsJCIKaiTrZCOqcGrkENj6YyRLeSQot/VhgfpiIpj9Nqul7rtW9P2jta1va+RpQdJkiKGca9uGh9DSV4D2W+2M4Xt+NUEAAAAAAAAAIDesH37dq1du7Zzu7q6OiFs5saUKVMSxtCuWLFCU6ZMydga03XAAQcoHHY/OaqmpiZhu6WlReXl5d2Oe/PNNzv/vbq6WmPGjPG0rqOOOspVy9z+YcghQ4Zo3bp1nu61/9f/wQcfaMSIEZ6uAcJ2AAB4ErcZIyuZgzrRuHP4J10Rw3XTGaWa70LpjJEt4JBiPpjZ/yuOYTtJeqb5UV089IeS0mt8DFvm10/UEOLLlJgMY2RVWKFlAAAAAAAAAMioumGy/uu93l5F31c3rLdXkBVNTU0J2wceeKAsy/J0jbFjxyZsb926Ne11ZdL+4bmehEKhhO1oNNrtmD179mjv3r2d26kE19yes2HDhoTtK6+8UldeeaXn+3XV3Nyc1vmFirAdAAAemJrtTGMf+6pcN9uZrlvIobHidMbI0mzna18oGaMDS8frH23vdNv3xu6X1RTZpLrw4CSNjz0HMQNWUEVWkTrs7sG3bI+RNTfbEbYDAAAAAAAAgFRZRUXS4JG9vQzkqe3btydsV1VVeb7G/uf4LcjldeSqGzt27EjYrqio8HyNyspKV8d98sknnq/dk127dmX8moWgsJIBAACkKU5IRJI5rJWt8ZPpNHj1VeF0xsgWcEgxX5zY/yuOj9uK67ntCySZGx+TjYhNOM4Ums36GFlDsx1jZAEAAAAAAAAA6BW2bSdse221c5KJa/hdcXHiZy2RiPfpQW7PSeXaPdn/eYc7hO0AAPDA1GwXsArrR6qpOSvXzXamsFAhKE4jaFjIIcV8Mb7fRA0OD3fct6xlkXZ37Ey78THXodl9aLYDAAAAAAAAAMBf+vfvn7Dd0tLi+Rr7n+N1bKsbsZjzZwy9Zf+vcf+GQDfcNgDW1tYmbC9btky2baf1z7e//W3P6wVhOwAAPInbjJGVaLbzg3Ta6YqsUAZXgmwIWAGd0P9Mx31RO6IXdvw17feF6TUUtTP/N6O6iolmOwAAAAAAAAAA/KSuri5h+/333/d8jffeey9he+DAgY7HFRUlfh7Q0eH8uYGTVMJs2RQMBjV06NDO7Q8++ECtra2ervH222+7Om7QoEEJ26k8R8iMwkoGAACQJtMY2UCB/Ug1hXRy3WxXyONQw4HUxsiGrHDBNTHmq0kVx6sq6Py3vpbseFJ7Yrsc95maJ7sdZwrNZul9vI+x2U402wEAAAAAAAAA0Btqamp0wAEHdG7v2LFD7777rqdrLFu2LGF70qRJjsdVVlYmbO/YscP1Pd555x1Pa8qFyZMnd/57PB7X888/7/rc5uZmvfnmm66OnTJlSsL2008/7fo+yCw+aQUAwAPzGNnCConkutkuSrNdN6mOkS3k71m+CQVCmlZzuuO+3bEWvbJzseM+t89xyDQOOutjZGm2AwAAAAAAAADAbxoaGhK2H3roIdfnvvvuu1q5cmXndklJiY488kjHY/dvvFu1apXr+zz55JOuj82VE088MWH73nvvdX3uvHnzFIm4mzh0wgknKBj8/DPpxx9/XFu3bnV9L2QOYTsAADywjWG7wvqRGjKOn8xOSKfdFLYr5GY7K/VmO+SPqdUnq9jwXO+KtTg+7vY5NoXysvU+3sfUbFdooWUAAAAAAAAAAPzkggsuSNi+8847tXnzZlfnXn/99Qnb3/jGN1Rc7Pw5xMSJExO2FyxY4OoeTz31lJYvX+7q2Fw6//zzVVFR0bk9f/58PfXUUz2e99FHH+knP/mJ6/vU1NTo/PPP79zevXu3rrnmGm+LRUYUVjIAAIA0xWxD2K7AfqSam+3c/c0Lr4xjZAOFGxxLtaGO9rD8UhYs17HVMz2d4/a1YRwHnfVmO8MYWcJ2AAAAAAAAAAD0mhkzZmjChAmd2y0tLTrvvPPU1taW9Lw5c+boscce69y2LEtXXXWV8fhjjjlGZWVlndvz58/Xq6++mvQe//jHP/Qv//IvPX0JvaKiokJXXHFFwmPnnnuuFi92nlAkSevWrdPMmTM9jdCVpNmzZyeEGP/jP/5DP/rRjxSLOX/2YrJq1Sq98MILns7B5worGQAAQBps207SbFdYIRFjSCdLjVim8E8hj0RNOWynwnqt9gXTa77sKdDrtvHRFFaN2NkJze4Tk2GMrAiCAgAAAAAAAACQqs2bN2vdunUp/bPPfffdp3D4888PlixZoqlTp+qVV17pdr9t27bp8ssv19VXX53w+A9/+EMddthhxnVWVFTo61//eud2LBbTaaedpqeffrrbsZFIRPfee68mT56sLVu2qKamxsu3JGdmzZqlQw89tHN7586dOuGEE3Tuuefqv//7v/XWW29p9erVevrpp3XllVdq/Pjxevfdd1VSUqIzzzzT9X1GjRqle+65J+GxX/ziF2poaNCCBQvU0eH8GYz0acBv7ty5mjFjhsaPH6/nnnvO+xcKSeITLQAA3DIF7SSa7fbJViOWaaylaZxtIUh1hC7NdvlnQGigjqxo0Ipd7v6GkdsgpnEcNM12AAAAAAAAAADknfPOOy/lc23blvTpiNc777xT3/3udxWPf/rZ6MqVKzV58mSNGTNG48ePV0lJiTZs2KDly5d3C3fNnDlTt9xyS4/3u+WWWzR//vzOZretW7fq5JNP1pgxY3TYYYepuLhYW7Zs0SuvvKI9e/ZIkurr63X77bf7suEuHA7riSee0IwZM7RmzRpJn35P//SnP+lPf/qT4zmWZWnu3LlqbGzs1gyYzAUXXKDNmzfr+uuv73yOXn75ZZ1xxhkqKyvTEUccoUGDBqm0tFS7du3Stm3btGrVKs8tejDj01YAAFyKE7brFLZMjVg02+VKwErtNUegKT+d2P8s12E7tyHUXDdU7hOzDc12vDYBAAAAAAAAAOh1F198sWpqanThhRdq9+7dnY+vWbOmM0jm5Dvf+Y7uuusuhUKhHu8xdOhQ/fnPf9ZZZ52lXbt29XiPUaNG6YknntCWLVs8fjW5M3z4cL344ou67LLLNH/+/KTHDhgwQPPmzdNpp52mH/3oRwn7KioqerzXvvbACy+8UJs3b+58vLW1VS+99JKr9fq1JTAfFFYyAACANMTtJGG7AguJ5LrZzhT+SbXdrZDRbJefhpeM1sFl5sr1rtyGUI1jZOPZHSMbNzTbBRhxDAAAAAAAAACAL5xzzjlau3atrrjiCtXW1hqPC4VCOumkk/TSSy/pvvvucxW022fGjBlavny5zjzzTGObW11dna699lq98cYbOuSQQzx/HblWX1+v//mf/+kM3Y0bN07V1dUqKSnR6NGjdeKJJ+ruu+/W2rVrddppp0lSt8a5qqoqV/c65ZRT9OGHH2ru3LmaMGFCj414oVBIU6ZM0ezZs/X+++/riiuuSO2LBM12AAC4lbTZLsWWsXxlCrmZxr2myxT+KeRmu1QFCTTlrZn9v6L3Wt/q8ThT82S34wzvn2y9j/eJydRsx68mAAAAAAAAAAC4tW7duqxef+DAgfrNb36jX//611q5cqVWr16tpqYmtbe3q7a2VsOGDVNDQ4OrJjaTsWPH6tFHH9W2bdv0/PPPa+PGjWptbdWgQYM0atQoTZ06VUVFn39+MG3atM6Rt254OXZ/DzzwgB544IGUzm1oaFBDQ4OrY1etWtX575ZlaeDAga7vU1JSossuu0yXXXaZmpub9fLLL2vTpk1qbm5WNBpVeXm5Bg4cqIMOOkhjx45VWVmZ568F3fGJFgAALpnamKTCGyMbMoR0OuwOxexYxsdB0myXOYzqzF+HlE3QkPAX9HFkfdLjTO/PbseZxshmudkuZvizlNcmAAAAAAAAAAD+EwgENGnSJE2aNClr96itrdXZZ5+dtev71Z49e/Taa691bh900EEphxf79++vU089NVNLQxKFlQwAACANycfIFtaP1GQht6id+aCOaTwtzXbe0R6WvyzL0on9z+rxOLchVFMDnincminmsB2vTQAAAAAAAAAAUDjmzZun1tbWzu1jjjmmF1cDt/hECwAAg9bYbn3cvl52l22TQIGN5kwWcntvz1sqC5Z3bg8KD1VlUbWkT6uam6Kb1NKxXUVWSMOKRykUCCW9V8zuUFzO4Ry34zLxOdrD8ttRlQ16fNuD2tHxifEYtyFU03Efta/T1sjHqgsNlmVZKa0zmZhtGCNbYH+OAgAAAAAAAACAwrVx40bNmjUr4bELLrigl1YDLwjbAQCwn5gd00Ob5+qVnUtky9xm1xXNdp+7++Pbuj32xX5H6Yzab+q+TXdoS+SjzsdDVlhfrfu2jq9xrjS2bVsPb7nLvA6a7TyjPSy/FVkhTa/5suY3PWA8xm0I1TRGVpJmf3iZBoWH6rKhP1ZdeLDXZSZlCs/y2gQAAAAAAAAAAPnqz3/+s1auXKmrrrpKdXV1SY99/fXXdfbZZ6u5ubnzscMPP1zTp0/P9jKRAXyiBQDAfp765L/18s7nPJ1jFdhkdq8ht7/veVV/3/Nqt8ejdkSPbL1H9cXDdXDZod32v9TytJa1LDJeN1lYCM5oD8t/DVUz9ddPHtHeeJvj/nSb7fbZEvlIczfeoptGzc1ow515jCyvTQAAAAAAAAAAkJ927dql2267Tb/85S91yimn6IQTTtDhhx+ugQMHqqioSM3NzXr77bf1l7/8RQsWLJBt253nhsNhzZs3rxdXDy8I2wEAsJ83dr/s+ZwAYbu0vLX7Fcew3Ru7kj8XNNt5V/HZSF/kr9JgPzVUnaxF2x913O82hOqmAW9r9GNtjmzU4OLhntaYjDlsx68mAAAAAAAAAAAgv0WjUS1YsEALFixwdXxpaan++Mc/6vDDD8/yypAphZUMAADAhe0d2zwdXxIoVU1oQJZW40/FVon6FyWvP/ZiR7TZ8fFkz0VpoJ+qi/pnbA356Ct1/+L4+OkDztPA0BDHfRMrjs3mkpAj02tOV8ChpTCgoAaFnZ/7/Q0uHuHquJYO5/dnqmLqcHycZjsAAAAAAAAAAJCvqqurFQx6+6zj2GOP1QsvvKBzzjknS6tCNhC2AwBgP5F4u6fj/6lyWsE1MlmWpSlVJ2bseqbwTcQ2PxeTq6YX3Pd9f0eUT1FJoCzhsWKrRBMrjnV8fgaFh+qA0kNytTxkUU2oVqcM6P6L18SKKSoLlru6Rv9QncaW5f5vSRmb7RhxDAAAAAAAAAAA8tRZZ52lLVu26MEHH9Sll16qhoYGDR8+XP369VMwGFR5eblGjBihqVOn6t/+7d+0dOlSLV26VEcddVRvLx0eFfYn1AAA7CduxxW1I66O7V9UpyMrG3Rm7TezvCp/+tKAc2VZAb3Sslhbox+ndS1T+MYUfBwQGqiz6y5M6559QW14kK4cfov+p+kBNe5dq+HFo3RG7TdVXzxMg8JDJUl/2/msdnZs19iyw/X1QZfQHtaHnDrg6woooL/tfFaS9MV+R+nsgd7eF/869Dr9acv/1d/3vKpdsRbHY2zZaa+1q5htarbjVxMAAAAAAAAAAJC/BgwYoPPPP1/nn39+by8FWcQnWgAAdNFhR437/veIn2tUyUGd25YsWZaVi2X5kmVZ+tKAr+lLA76muB3vfHxnx3b92wcXebqWKXxjCtudU3eRAoTGJEkjSg7QlcNvkW3bCa9Hy7J00oCv6qQBX+22D31DwAro1Nqv69Tar6d8jZJAqb41+PuybVvfe/9s2Yp3OybzYTtDsx3vaQAAAAAAAAAAAPgcYTsAALpINkK22CpRwGICu5Ou35fiQInn853CdrZtK2JoGQwHij3fo69LFqYjaIeeWJalgAKKOYTtMo1mOwAAAAAAAAAAAOQrEgMAAHQRsc1hOwJe7qTyfXJquuqwOxxbtiQpbPFcAJlmymRmvNlOhmY70WwHAAAAAAAAAAAAfyNsBwBAF0mb7QjbuRK0ihTwGJpxCt9ECT4COWZK2+VqjCzNdgAAAAAAAAAAAPA3wnYAAHSRtNmONjXXvIbhnMZKJgs+ErYDMs8yhO0y2WwXt+PGxsqARbMdAAAAAAAAAAAA/I2wHQAAXRDwygyvwUSnpqtkwceQFfa8JgC9z9RqJ9FsBwAAAAAAAAAAAP8jbAcAQBemgFdAQYIgHoQD3sJwNNsB/pXJIbIxdX+v7xP0OH4aAAAAAAAAAAAAyDXCdgAAdGEKeBHu8sZzs528Ndsx0hfIPNMY2UzG7eJJm+0I2wEAAAAAAAAAAMDfCNsBANBF1BDwItzljddwotdmO8bIAplnCtvZGQzbOb3X96E9FAAAAAAAAAAAAH5H2A4AgC4i8Yjj417Hoha6kMdwolPblanZLmwVy7JMDVwA/CxGsx0AAAAAAAAAAADyGGE7AAC6SBbwgnvem+0cwnbG4CPPBZANphCrbWew2U5Jmu1Esx0AAAAAAAAAAAD8jbAdAABdmEaXEvDyxms40SmAw0hfINdyMUaWZjsAAAAAAAAAAADkL8J2AAB0YWq28zoWtdBlptnO8FwQfASyIhfDmZOH7Wi2AwAAAAAAAAAAgL8RtgMAoAua7TLDe9iue7OdeaRvOKU1AehJ9uN2Tu/1fWi2AwAAAAAAAAAAgN8RtgMAoAtj2I5mO0+8fr/iisu2E0dVEnwE/CGjY2RFsx0AAAAAAAAAAADyF2E7AAC6MLapEfDyJJXvV0yJjVfmZjueCyAbLGOzXQbDdsma7USzHQAAAAAAAAAAAPyNsB0AAF3QbJcZqXy/YnZi4xXNdkBumcJ2mYvadX+fd8UYWQAAAAAAAAAAAPgdYTsAALowN9uFc7yS/JZSs51Nsx3Qq0zFdjlotrNkKUDYDgAAAAAAAAAAAD5H2A4AgC5oU8uMTDTbReMR52vzXABZYWy2szMYtpNzsx2tdgAAAAAAAAAAAMgHhO0AAOgiamhTC9Gm5kkqTYD7h3BMzXY8F0C25GKMrHOzXVBFGbwLAAAAAAAAAAAAkB2E7QAA6IJmu8xIJRDXbYwszwWQU8Ypshm0f4PlPoyQBQAAAAAAAACgMDU2NurHP/6xpk6dqkGDBikcDsuyrM5/Hnjggd5eIpCACgkAALowtamlMha1kKUSiOs2RtY2jJG1vLfmAeiZaYxsJrvtTGE7xsgCAAAAAAAAAODNyJEjtX79+s7txYsXa9q0ab23oBTce++9+v73v6/2dufPaAE/otkOAIAuInFDwIs2NU9SCSfSbAf4k53RsJ1pjCxhOwAAAAAAAAAACsmTTz6pSy65xHXQbsmSJQmNd7Nnz87uAgEDmu0AAOiCZrvMyESzHc8FkGvZb7aLy9Rsx68lAAAAAAAAAAAUkuuvv162/flnEP/8z/+siy66SMOHD1coFOp8vLa2tjeWBxjxqRYAAF3QppYZqQTi4qLZDuhN2Y/aJWm2Y4wsAAAAAAAAAAAF47333tNbb73VuX3qqafqoYce6sUVAe4xRhYAgM/E7A5j61LYCud4Nfktq812hO2A7LCc43Zd/1ZZuvZ/n+8ToNkOAAAAAAAAAICC8eqrryZsn3POOb20EsA7wnYAAHzG1KQmEfDyKpXvV4ftrtkuxBhZICusHHTbGZvtRLMdAAAAAAAAAACFYsuWLQnbw4YN66WVAN4RtgMA4DOmJjWJgJdXqYyR7RrCidtxRe2I87UJPgJ5K2ZoD2WMLAAAAAAAAAAAhWP37t0J26FQqJdWAnjHvCYAAD5Ds13mhFIYu9s1hNNhR43HpRLkA9AzU7Nd5nrtkjTbMUYWAAAAAAAAAABfsm1br732mlavXq2tW7eqvb1ddXV1Gjp0qBoaGlReXu75mvF4PAsrBXKDT7UAAPhMsmY7Al7eWJalsFWc9Hu6v64hnOTBR+9BPgA9y80YWZrtAAAAAAAAAADIB9u2bdOtt96qBx98UE1NTY7HhMNhzZgxQ7Nnz9bRRx9tvNa6des0atQo4/7p06c7Pv6HP/xBF154oeO+m2++WTfffLPxmosXL9a0adOM+4FUMUYWAIDPROLOY0slmu1S4fV71jWEQ/AR8A87J2E7/g4QAAAAAAAAAAB+8eijj2r06NGaM2eOMWgnSZFIRAsXLtTkyZN1ySWXqKPDecIN0JfwqRYAAJ9JFvBKZSxqofMaiksI2zHSF+iTYjKMkRXNdgAAAAAAAACQlniH1Lqxt1fR95UNkwJ9O2pz//336+KLL+426vWAAw7QuHHjVFZWpsbGRi1fvlyx2Oef791zzz1qbGzUggULVFTUt79HKGy8ugEA+Iwp4BWywgpYlMF6FfLcbNdljCzNdkDOWZbzGFma7QAAAAAAAAAgD7RulB43j+lEhpzxoVQ+srdXkTVvvPGGLr300oSg3YQJEzR37lxNmTIl4dimpibNmjVLd999d+djCxcu1I033qhbb7014dhhw4bpww8/7Nz+zW9+o9/+9red2w8//LAmT57cbT21tbWdo2BffvllnXfeeZ37rrjiCl155ZXGr6W+vr6HrxZIDZ9qAQDwmagh4EWTWmrCHtsA46LZDuhdhrCdncmwnaHZzqLZDgAAAAAAAACA3nbRRRcpEol0bjc0NOipp55SWVlZt2Pr6up01113acyYMbr22ms7H7/99tt13nnn6dBDD+18rKioSCNHjuzcrq6uTrhWfX19wv6uysvLJUnr1q1LeLy6utp4DpBN1PQAAPAZU8CLJrXUeA3FuWm2CyhIAxaQJc5Ru8wyN9sRtgMAAAAAAAAAoDctXrxYr732Wud2ZWWlHnnkEcegXVfXXHONTj/99M7teDyuOXPmZG2dQG8jbAcAwGeMYTua1FLiNaTYNYTDcwHknpWDuF1MhmY7CrcBAAAAAAAAAOhV8+bNS9i+/PLLNWTIEFfn/vznP0/Yfvjhh9Xebp5kBeQzPtUCABSMJ7c9omUti4z798bbHB+n2S41qTTbrWl9R4u3/0Wv7/6b8zV5LoAscg7bPdr0R/31k/9KemZ9eJiOrpqmSZXHG4+JxNv1t5ZnHffRbAcAAAAAAAAAQO9aunRpwvY3v/lN1+eOHz9eEydO7GzG27t3r1auXKkpU6ZkdI2AHxC2AwAUjNb4bjV3NHk+jza11IStEk/Hv9/2dz267T/UYUfN1wyE010WAANTs92e+C7tie9Kem5zR5NWtb6u9vheNVSf3G2/bdv6949+Zjyf8dAAAAAAAAAAAPSe7du3a+3atZ3b1dXVOuSQQzxdY8qUKQljaFesWEHYDn0Sn2oBANCDkEXAKxVeg3Fv7V7e8zVptgN87bntCxzDdh+1r9d7rW8ZzwvQbAcAAAAAAAAA6SkbJp3xYW+vou8rG9bbK8iKpqbEwpIDDzxQluX8l/RNxo4dm7C9devWtNcF+BFhOwAAelARrO7tJeSlyqLMf98qiqoyfk0An+oXrJDMxZKubI5sVCTe3q0RtLF9TdLzKoK8twEAAAAAAAAgLYEiqXxkb68CeWr79u0J21VV3v+//f7nNDc3p7UmwK8Cvb0AAAD87ovlE3t7CXlpfL8j8+KaAD51SL8JGblOXPFuj0Xi7UnPGdfviIzcGwAAAAAAAAAAeGfbdsK211Y7J5m4BuBHhO0AAEhiavUpOrJiam8vIy+NLh2rM2u/lbHrHVE+RdNqTsvY9QAkOrn/2RrfL/1wcdyOdXssWdjuzNpvaXTpWON+AAAAAAAAAACQXf3790/Ybmlp8XyN/c+pqalJa02AXzFGFgBQMI6qmKqhxSNdHVtkFWlUycGqDddnd1F93MkDztbRVdO1tnWVIna7yoNVeqZ5vta0veP6GkdWNOi0Ad/QoPBQ/gYMkEWhQFiXDZ2lTZENaty7VrZDQ90+OzqatWDbQ477Yk5hO9s5bFcXGqyTB5yd2oIBAAAAAAAAAEBG1NXVJWy///77nq/x3nvvJWwPHDgwrTUBfkXYDgBQMEaWHqSRpQf19jIKTnVRfx1Z2dC5vaxlkafzG6pPVn3xsEwvC4ADy7I0pHiEhhSPSHrcpvYNxrCdlzGydeHB3hcJAAAAAAAAAAAyqqamRgcccIDWrl0rSdqxY4feffddHXLIIa6vsWzZsoTtSZMmZXSNlHLALxgjCwAAcipoBT0dH7aKs7QSAKlK9j52GiMbtSOOx4atcMbWBAAAAAAAAAAAUtfQ0JCw/dBDzn/p3sm7776rlStXdm6XlJToyCOPzNjaJKm4OPEzw/Z257/oD2QbYTsAAJBTQY/FuuEAYRzAbwJKErbz0GwXDhCmBQAAAAAAAADADy644IKE7TvvvFObN292de7111+fsP2Nb3yjWzguXdXV1QnbmzZtyuj1AbcI2wEAgJyi2Q7IfwHL/GuEU7NdxDaE7Xh/AwAAAAAAAADgCzNmzNCECRM6t1taWnTeeeepra0t6Xlz5szRY4891rltWZauuuqqjK9v9OhI9A+jAAAgAElEQVTRCoc/L+lYvHixotFoxu8D9MRbtQwAAECaPIftaL4CfCeQbIwszXYAAAAAAAAAAOTc5s2btW7dupTOHTlypCTpvvvu0zHHHKNIJCJJWrJkiaZOnaq5c+fq6KOPTjhn27Ztuummm/T73/8+4fEf/vCHOuyww1JaRzLhcFjHHnusFi9eLElqbGzUGWecoe9+97s68MADVVZWlnB8fX29SkpKMr4OgLAdAADIqaDlcYwszVeA7wSSFGTHbYewnb3X8dgQ728AAAAAAAAAADLivPPOS/lc27YlSRMnTtSdd96p7373u4rHP/3//StXrtTkyZM1ZswYjR8/XiUlJdqwYYOWL1+ujo6OhOvMnDlTt9xyS+pfRA+uvvrqzrCdJC1cuFALFy50PHbx4sWaNm1a1taCwkXYDgAA5BTNdkD+SzZGNuY0RjYecTyW9zcAAAAAAAAAAP5y8cUXq6amRhdeeKF2797d+fiaNWu0Zs0a43nf+c53dNdddykUCmVtbaeffrp++tOf6qabblIs1v3zCCAXzJ+SAQAAZEHQQ9Y/oKDnJjwA2ReUOTRrO42RtQ1jZGm2AwAAAAAAAADAd8455xytXbtWV1xxhWpra43HhUIhnXTSSXrppZd03333ZTVot88NN9ygt956S9ddd52OO+441dfXq7S0NOv3Bfbh02sAAJBTXprtaL0C/Mny3GxnCNvxHgcAAAAAAAAAICXr1q3L6vUHDhyo3/zmN/r1r3+tlStXavXq1WpqalJ7e7tqa2s1bNgwNTQ0qKKiwvO1Z8+erdmzZ6e8tnHjxum2225L+XwgHYTtAABATnlpqqP1CvCnZM12cTmE7YzNduGMrQkAAAAAAAAAAGReIBDQpEmTNGnSpN5eCuALjJEFAAA55a3ZjiAO4EeBJM12cdthjCzNdgAAAAAAAAAAAOgDCNsBAICcCnoo1qXZDvAnK8mvEU7NdlFjsx3vcQAAAAAAAAAAAOQPwnYAACCnvDTbhWi9AnwpYAWMgbv9m+1idkwddofjsbzHAQAAAAAAAAAAkE8I2wEAgJwKeBkjazFGFvCrgClsp8SwXdSOGK9Bsx0AAAAAAAAAAADyCWE7AACQU0HLwxhZWq8A3wpYzr9KxOzEMbKRuPMIWYn3OAAAAAAAAAAAAPILYTsAAJBTQXlptiOIA/iVaSS0vV+zXdKwHe9xAAAAAAAAAAAA5BHCdgAAIKe8NNuFaL0CfMsy/CrRrdnOptkOAAAAAAAAAAAAfQNhOwAAkFOmNiwntF4B/mV6L8cZIwsAAAAAAAAAAIA+irAdAADIKS/NdgRxAP8KGH6ViO8/RjZJs13ICmd0TQAAAAAAAAAAAEA2EbYDAAA5FRTNdkBfEHDZbBc1NNsVWUWemi4BAAAAAAAAAACA3kbYDgAA5JSnMbIBWq8Av0q32S5EmBYAAAAAAAAAAAB5hrAdAADIKU9jZAnjAL4VsAxhO3u/sJ2h2a44UJLxNQEAAAAAAAAAAADZRNgOAADklLdmO8J2gF8FDCOhY0ocIxuxI47HEaYFAAAAAAAAAABAvnFfLYM+wbKsUZImSBoiqVzSJknrJS2zbTvam2sDABSGoBVyfSxjJgH/MjXb2S6b7RgTDQAAAAAAAAAAgHxD2K5AWJZ1jqSrJR1jOKTZsqxHJN1o2/a23K0MAFBogoY2LCc02wH+5b7ZzjlsR5gWAAAAAAAA/5+9O4+yqyzzxf/dVUkqhCRkDkiIAUOahEHARAQZG5qppaUBZXIp2K1eUZRuEBsnRllwwV4dQbuV9gavP1RaQKZWWxxCiwjcgDSQoCTKEKYYQkIGyFj790dCmVOp6VSdqkpVPh/WXuR9z36Hvc85u2qf89TzAgD0NZaR7eeKohhaFMX3kvwgrQfaJcmoJB9P8kRRFMf0yOQA2CZZRhb6h9bey41ls2C7VjPbeX8DAAAAAADQtwi268eKoqhPcnOS05o9tDjJT7MxAO+RJOVmj41PckdRFAf3yCQB2ObUFx1PrDtI5ivYahWtLCPb2GwZ2XWtZLbz/gYAAAAAAKCvEWzXv12V5PjNyuuSnJtkQlmWx5Rl+f6yLN+RZK8kv9lsv4YktxdFsVPPTRWAbYXMdtA/tLYkdGPzZWRltgMAAAAAAKCfEGzXTxVFsVuSTzerfl9ZlteXZbl288qyLOclOTKVAXejk1zcvbMEYFtUH5ntoD+o62Bmu7Uy2wEAAAAAANBPCLbrvy5OMnCz8o1lWd7R2s5lWb6R5Kwkmwfi/d2moD0AqJnqMtsN6saZAF1R18qtRGOaBdvJbAcAAAAAAEA/IdiuHyqKYrskpzSrvrq9dmVZPpXk9s2qBiQ5o4ZTA4DUFzLbQX9Q10rg7Iay2TKylUmVmwwsBNMCAAAAAADQtwi265+OSTJks/JvyrL8XQfbzmpWPqk2UwKAjarJbDdQ5ivYarWW2a6U2Q4AAAAAAIB+SrBd/3Rss/LsKtr+Ksn6zcr7FUUxvsszAoBNqstsJ/MVbK06ntmulWA7mSsBAAAAAADoYwTb9U97NSv/pqMNy7JcleTxZtV7dnlGALBJfTqW2W5AMbDVYB6g97WWpbJ5Zrt1MtsBAAAAAADQTwi265+mNisvqLL9H5qVp3VhLgBQoaPLyMp6BVu3opVbiQ5nthNsBwAAAAAAQB8j2K6fKYpiVJJRzaqfq7Kb5vvv3vkZAUCluqI+RYp29xOIA1u3+qLlW4nG8s+Z7dY0rs6SdX9qcT8BtQAAAAAAAPQ1gu36nxHNyq9vWhq2Gs2/Ed2hC/MBgC10JLudQBzYutW1siR0YzZmtlu5YXn++bnPtdpeQC0AAAAAAAB9zYDengA1N7RZ+Y1O9NG8zbBOzqVJURTjkoytstnbujouAFun+gzI+qxvc59BdYN6aDZAZ9S1k9nuv5bcmoVr/thqewG1AAAAAAAA9DWC7fqf5sF2qzvRR/Ngu+Z9dsY5SS6uQT8A9AMD6wZlzYa2f0QNKgb30GyAzmg9s93GYLunXn+8zfYNdd7jAAAAAADQXV5//fU88sgjmT9/fl555ZWsXr062223XcaPH58pU6Zkv/32y6BBkl901uGHH5577723qVyWZbeMM3v27BxxxBFN5YsvvjiXXHJJt4xFxwi26/86827unisAAGyy6+C/yOOr/l+b+7xtyNQemg3QGa1nttu4jOzrjatabTuoaMiEhl27ZV4AAAAAALCt2rBhQ/7jP/4js2bNyi9/+cusX9/6SlODBw/OMccck7//+7/Pe97znh6cJfRtLX9DRl+2sll5u0700bxN8z4BoEuOHnVSGtrIXLfDgFE5eIeje3BGQLVay2y3IRuD7TaUrd/AHzP6lAy0VDQAAAAAANTML37xi0ybNi1nnHFG7rnnnjYD7ZJk9erVueOOO3LCCSdkxowZeeSRR3poptWZNGlSiqJIURSZNGlSb08HZLbrh7bWYLuvJ/lBlW3eluSOGowNwFbmbUOm5h8nXpkHl/8yz695pimtcn1Rn7cOnpx373B0xgwa38uzBNrSWma7sty4jOybGe6a23fou3Lc6Pd127wAAAAAAGBbc+mll+bSSy/dYinToigyderUTJgwIaNHj87ixYvz3HPP5amnnqrYb86cOTnwwANz/fXX5yMf+UhPTh36HMF2/c9rzcpDiqLYvizL1tfx2tK4ZuVlXZxTyrL8U5I/VdOmKIquDgvAVmyXwbtll8G79fY0gE5qP7Ndy8F204cf2m1zAgAAAACAbc15552XmTNnVtQNGzYsF110Uc4888xMnDhxizYLFizIjTfemGuvvTZr1qxJkqxduzYf/ehHs2rVqpx33nk9Mnfoiywj28+UZbkkydJm1VteOdv21mbl+Z2fEQAA/VF9K5ntGjdlttuQltPT17cSpAcAAAAAAFTn29/+9haBdgcffHDmzZuXiy66qMVAuySZPHlyrrjiijz22GPZa6+9Kh47//zzM3v27O6acr8xe/bslGXZtLHtEGzXPz3ZrDy5yvbN0ww17w8AgG1c0cqtRGM2Bdu1ktmuvhBsBwAAAAAAXfXUU0/lk5/8ZEXdQQcdlB//+MeZMGFCh/qYMmVKfv7zn2fq1KlNdY2NjfnABz6QV155pabzhf5CsF3/9ESz8oEdbVgUxfZJ9mmnPwAAtnGtBc01lm8uI9tKZrtiQLfNCQAAAAAAthUXXHBBVq5c2VQeMWJEbr311gwdOrSqfsaNG5dbbrklgwYNaqp74YUXcvnll9dsrtCf+Karf/pJko9uVj68iraHpPJ18duyLBfVYlIAAPQfda0F26UxZVk2ZbhrTmY7AAAAAADomt/97ne5++67K+quuuqq7Ljjjp3qb9q0abngggty5ZVXNtV961vfyiWXXJKRI0d2aa5bmwULFuSxxx7LCy+8kBUrVqQoigwZMiTjx4/Prrvumr333jtDhgzp9nmsWbMm9957b55++um8+uqrGTduXCZMmJBDDjmkW8Z/6aWX8uCDD+ZPf/pTlixZkqFDh2bcuHGZMWNGdtut+QKYtEWwXf/0X0neSLLdpvKBRVHsUZbl7zrQ9qxm5R/WcmIAAPQPda0tI1tuyIa0nNUuSerdggAAAAAAQJfMnDkzZVk2lceMGZOzzz67S32ed955ueaaa7Ju3bokyapVq3LDDTfkwgsv3GLfs846K9/+9rebyk8//XQmTZrUoXFmz56dI444oql88cUX55JLLmmz/zc9++yzKYqi1b4/9KEP5cYbb9yifs2aNfnqV7+aG264IfPnz29zfvX19dl3331z4okn5h//8R9bDXw7/PDDc++99zaVN38+2vLaa6/lS1/6Um688cYsX758i8eHDRuWU089NZdeemne8pa3dKjP1qxbty7f+ta38vWvfz2PP/54q/vtvvvuueCCC/LhD384Awb4Hqc9lpHth8qyfD3JLc2qP9teu6IopiT5282q1if5bg2nBgBAP9FaZrsN5YZs2LSUbEtktgMAAAAAgK75yU9+UlH+4Ac/WLEMbGeMHTs2J5xwQpvj9EULFy7MfvvtlwsvvLDdQLsk2bBhQx5++OF88YtfzIsvvljTufzP//xPpk2blq9+9astBtolyYoVK/Lv//7v2XvvvfPrX/+602M9/PDD2WOPPfLxj3+8zUC7JJk/f34+9rGPZcaMGXnhhRc6Pea2Qjhi/3VJktOSDNxUPqsoih+WZXlnSzsXRTE4yawkm199v1WW5R+6dZYAAPRJrWW2K9OYDWUbme0KtyAAAAAAALW2odyQZetf6e1p9HsjBozp9T8qf/755/PMM89U1B199NE16fvoo4/Obbfd1lR+4IEHsm7dugwcOLCNVluvtWvX5thjj82TTz5ZUT9q1KjsvffeGT9+fAYOHJgVK1bkpZdeyrx587Jq1apumcu8efNy5JFHZsmSJRX148ePz3777ZcRI0Zk0aJFeeCBB/LGG2/k1VdfzXve855cc801VY91991359RTT83rr79eUb/TTjvl7W9/e0aNGpVVq1Zl3rx5FQGIjz76aA444IA88MADmTBhQucOdBvgm65+qizLPxZFMTPJBZtV31IUxT8m+WZZlmvfrCyKYmqSf09y0Gb7LklyaY9MFgCAPkdmOwAAAACArcey9a/ki3/8WG9Po9+7fLdvZPTA8b06h5aynU2fPr0mfb/jHe+oKL/xxht59NFHM2PGjJr031HXXntt09KyBx98cFO2tZ133jn33Xdfq+2GDh1aUZ41a1bmzZvXVJ40aVK+9rWv5dhjj01d3ZZJBcqyzMMPP5y777473/rWt2pwJButW7cuZ555ZkWg3U477ZSZM2fm5JNPrpjLypUr85WvfCVf/vKXs2zZshaX8W3LvHnzctppp1UE2h177LG59NJL8853vnOL/X/729/m05/+dH71q18lSV544YWcfvrpmT17durrfafTEsF2/ds/JdkzyXGbygOTXJfki0VRPJJkRZLdkuyfZPNFrdcm+duyLF/qwbkCANCH1LeV2S5tBdu5BQEAAAAAgM56/vnnK8rjx4/P6NGja9L3Xnvt1eJ4PR1sN2bMmIwZMyZJMmDAn79XGDBgQCZNmtThfu64446Ktvfcc08mT57c6v5FUWT69OmZPn16vvjFL6axsbH6ybfguuuuy6OPPtpU3mmnnXLfffdlt91222LfoUOH5uKLL85ee+2V97///Vm6dGmHx2lsbMypp55akZ3vkksuycUXX9xqm/322y+/+MUvcuqppzZlNbzvvvty00035YMf/GCHx96WtPwNGf1CWZYbkrw/yc3NHhqX5Ngk70vyjlQG2v0pyXvLsvxVj0wSAIA+qShavpXYULazjGz8FRQAAAAAAHTWq6++WlEeOXJkzfoePHhwGhoa2hyvL3n22Web/v32t7+9zUC75urr62uyfG5jY2Ouu+66irpvfvObLQbabe7kk0/OOeecU9VYt912W5544omm8vvf//42A+3eNGDAgHz729/OuHHjmuquvfbaqsbelgi26+fKslxZluVp2RhY90Abu76a5F+T7FWW5U96ZHIAAPRZrQXNNabtZWRbW34WAAAAAABoX/PgtxEjRtS0/+b9bb70aV/2pz/9qVfG/e///u8888wzTeUZM2bkPe95T4fafulLX6oq4O+rX/1q07+LoshVV13V4bZDhw7Nxz7256WoH3/88Yp582eC7bYRZVneUpblgdm4bOwpST6V5KIkZyf5yyQ7lWV5TlmWi3txmgAA9BF1rWS2a2wvs51lZAEAAAAAYKtVFEX7O/URe+yxR9O/Fy5c2CvZ2u67776K8umnn97htmPHjs3RRx/doX1XrVqVBx74cw6uGTNmZNddd+3wWElyxBFHVJR/9SuLYrbEN13bmLIsn07ydG/PAwCAvq21DHXtZbarl9kOAAAAAAA6bdSoURXl1157rab9L1u2rM3x+pIzzjgjt912W1P5M5/5TG6//facffbZOf7447PTTjt1+xzmzJlTUT7ggAOqan/AAQfkP//zP9vd74EHHsi6deuayrvttlvVmekaGxsryn/4wx+qar+tEGwHAABUra61ZWTLxjSmjcx2bkEAAAAAAGpuxIAxuXy3b/T2NPq9EQPG9PYUtgh+W7p0ac36Xr16dVavXl1RN3r06Jr139NOOumknHTSSRUBd7/+9a/z61//OkkyefLkHHTQQXn3u9+dQw45JFOnTq35HBYtWlRR3n333atqP2XKlA7tt3Dhwory97///Xz/+9+vaqzmmi9ZzEa+6QIAAKrW+jKyMtsBAAAAAPS0+qI+oweO7+1p0AN23nnnivLLL7+cJUuW1CQobu7cue2O15cURZGbb745F198cf75n/95i0DCBQsWZMGCBfm///f/JtkYfPeBD3wg5557bs0y+jUPhhw+fHhV7XfYYYcO7bdkyZKq+u2IFStW1LzP/qDlb8gAAADa0Fpmuw1pzIayjcx2hb/3AQAAAACAzjrooIO2qGu+VGlnNe9nu+22y7777luTvnvLgAED8uUvfznPPPNMrr322hxyyCFpaGhocd8FCxbkkksuyW677Zabb765h2faNWvXrq15n2VZ1rzP/kCwHQAAULXWMtuVZWObme3q3IIAAAAAAECnTZw4MRMnTqyo++lPf1qTvu+5556K8gEHHJBBgwbVpO83bdjQ+ncI3Wn8+PE5//zz89///d957bXXcv/99+faa6/Ne9/73gwdOrRi39deey2nn356br/99i6PO3LkyIry8uXLq2r/2muvdWi/MWMqlzi+8sorU5Zll7Ybb7yxqrluK3zTBQAAVK21oLkNm/5rSX0GpCiK7pwWAAAAAAD0e8cee2xF+Tvf+U7WrVvXpT4XL16cO++8s81x3jRgQOUqNuvXt77iTXPNl1XtDQ0NDTnwwANz/vnn5/bbb8+SJUvy/e9/P1OmTGnapyzLfOpTn0pjY2OXxho/vnJ55/nz51fV/qmnnurUOB1tR/UE2wEAAFWrL1peRrax3NDqMrKttQEAAAAAADru05/+dMUfty9evDizZs3qUp8zZ86sCNjbfvvt85GPfKTFfYcPH15RXrZsWYfHmTt3blXz6ok/4h80aFBOPfXUPPjgg9l5552b6hcuXJiHH364S31Pnz69ovzAAw9U1f7BBx/s0H4HHnhgxbm65557LAPbTQTbAQAAVWsts11jWl9GVrAdAAAAAAB03bRp03LcccdV1H32s5/NokWLOtXfvHnzcs0111TUnX322Rk1alSL+48bN26L9h31ox/9qKq5NTQ0NP17zZo1VbWt1ogRI3LSSSdV1D399NNd6vPggw+uKH/ve9/rcNvFixd3eIngsWPHZr/99msqv/DCC/nxj3/c4bHoOMF2AABA1eo6ldluQIv1AAAAAABAdb7yla9kyJAhTeVly5blpJNOysqVK6vqZ/HixTnllFOydu3aprqddtopX/rSl1pts//++1eU77rrrg6N9V//9V956KGHqprfiBEjmv79yiuvdHm53PY0XyJ382C/zjj00EMzadKkpvKcOXNy9913d6jtZZddVtXxfvKTn6woX3DBBVW/HmifYDsAAKBqrQbbpTEb0kpmu8hsBwAAAAAAtbDHHnvkuuuuq6i7//77c9xxx+X555/vUB/z58/PkUcemSeffLKprq6uLt/5zncyduzYVtsdeOCBFYF+P/zhDzNnzpx2x/rQhz7UoXltburUqU3/Xr9+fX75y192qN3rr7+e6667LitWrOjwWCtXrsxtt93W6vidUVdXt0UQ3Mc+9rF2M+bddttt+frXv17VWB/84Aezxx57NJWffPLJ/O3f/m2WLl1aVT+LFy/e4jzwZ4LtAACAqrW2jGySrGtc22K9zHYAAAAAAFA7H/7wh/OJT3yiou6+++7LtGnTctVVV2XhwoUttluwYEG+8IUvZO+9987jjz9e8djVV1+dI488ss1xhw0bllNPPbWpvGHDhvz1X/91i0uerl27NjfccEPe9a53ZdGiRRk5cmRHDy9JcsQRR1SUzz777Hz961/Pww8/nD/+8Y955plnmrZXXnmlYtxPfepTmTBhQj784Q/nrrvuajPw7qGHHsqRRx6ZZ599tqnuXe96V6ZMmVLVfFvyqU99Km9/+9ubyi+++GLe/e5355ZbbkljY2PFvqtWrcpll12W0047LY2NjVWdr/r6+txyyy0ZPnx4U93Pfvaz7LPPPvnXf/3XNo//1Vdfzc0335zTTz89u+yyS7761a9WcYTbFt92AQAAVWsts12SrC9bTmle30YbAAAAAACgetdff31GjhyZL3/5yynLMkmyYsWKXHTRRfnc5z6XadOmZZdddsnIkSOzZMmSPPvss/n973+/RT8DBw7MzJkz8/GPf7xD415++eX54Q9/mGXLliVJ/vSnP+WYY47J5MmTs88++6ShoSGLFi3Kgw8+mFWrViVJdtxxx1x99dVVZbh73/vel89//vNN2fpefPHFLQIM3/ShD30oN954Y0Xd8uXLM2vWrMyaNStFUWTy5MnZbbfdMmLEiAwYMCBLlizJE088sUU2wCFDhuSb3/xmh+fZloEDB+amm27KYYcdliVLliRJXnrppbzvfe/L+PHj8453vCM77LBDFi1alN/85jd54403kiQ77LBDrr766nz0ox/t8Fh77rlnbr311pxyyil57bXXkiTPP/98zjnnnJx77rnZe++9M3HixAwfPjyvv/56li1blqeeeqrD2RARbAcAAHRCW5nt1pYtZ7ark9kOAAAAAABq7vLLL89hhx2Wc845J/Pnz2+qL8syc+fOzdy5c9tsv//+++cb3/hGpk+f3uExd95559x666058cQTKzKmLViwIAsWLNhi/1133TX/+Z//mUWLFnV4jCTZbrvt8sMf/jAnnnhiXnjhharaNleWZebPn19xjlqy884757bbbsvee+/dpfE2t+eee+ZnP/tZjj/++Lz00ktN9YsWLcqPfvSjLfYfMWJE7rzzzmzYsKHqsY466qjMmTMnp59+esXyvhs2bMijjz6aRx99tN0+qs1AuC2xjCwAAFC1+qL1W4n1rQTb1UdmOwAAAAAA6A5HHXVU5s2bl5tuuilHHnlkBgxo+w/gGxoacsIJJ+SOO+7InDlzqgq0e9Nf/uVf5qGHHsp73/veFEXR4j5jx47NZz7zmTz66KOZOnVq1WMkyfTp0zNv3rz827/9W0488cRMnjw5w4cPT31969877LDDDrn33ntz4YUX5h3veEe75yNJ/uIv/iJXXnllnnrqqbzzne/s1Fzbsu++++bJJ5/Mueeem2HDhrW4z9ChQ3PWWWflscceyyGHHNLpsSZPnpyHHnood911V4466qg0NDS022bq1Kk599xz86tf/Sq33XZbp8fu74o3U0jC1qYoij2TPPFm+Yknnsiee+7ZizMCAOBNz69+Olc++w8tPnbMqFPyX6/eskX9Lg275aJJ/9zdUwMAAAAA6HPWr1+/Rbat3XffvUMBQtCSVatW5eGHH86CBQuyePHirF27Ng0NDRk/fnymTJmS/fffv0MBWB31yiuv5N57783zzz+f119/PePHj8+uu+6aQw45ZKt4Hb/xxhuZO3du/vCHP+Tll1/OqlWrUhRFhg8fnokTJ2afffbJW9/61h6bz5o1azJ79uw8/fTTWbp0acaOHZsJEybkkEMOyfbbb1/z8VavXp0HH3wwzz77bJYsWZJVq1Zl++23z8iRIzN58uRMnTo1o0ePrvm43XVtmzt3bvbaa6/Nq/Yqy7LtFI410vuvZgAAoM+payOz3brWMttZRhYAAAAAAHrE9ttvn0MPPTSHHnpoj4w3ZsyYnHzyyT0yVmdst912mT59eqcy+HWHhoaGHHPMMT023uDBg3PYYYf12Hj9mWVkAQCAqtW1sSRs69rj1N4AACAASURBVMF2lpEFAAAAAACg7xJsBwAAVK3NzHaNMtsBAAAAAADQ/wi2AwAAqtapzHZttAEAAAAAAICtnWA7AACgam1mtmt1GVmZ7QAAAAAAAOi7BNsBAABVqyvayGzX6jKyMtsBAAAAAADQdwm2AwAAqlbfxq3EunJdy20E2wEAAAAAANCHCbYDAACq1mZmu9aWkY1lZAEAAAAAAOi7BNsBAABVq2srs13jmhbrZbYDAAAAAACgLxNsBwAAVK3tzHatLSMrsx0AAAAAAAB9l2A7AACgam1mtmtlGdm2AvQAAAAAAABgayfYDgAAqFrbme1aDrarj8x2AAAAAAAA9F2C7QAAgKq1mdmusZVgO5ntAAAAAAAA6MME2wEAAFUriiJFK7cTrWa2K2S2AwAAAAAAoO8SbAcAAHRKfdHy7USZspX9ZbYDAAAAAACg7xJsBwAAdEprme1aUx/BdgAAAAAAAPRdgu0AAIBOqTZTnWVkAQAAAAAA6MsE2wEAAJ1SV2WmOsvIAgAAAAAA0JcJtgMAADqlrqhyGVmZ7QAAAAAAAOjDBNsBAACdUnVmuyr3BwAAAAAAgK2JYDsAAKBTZLYDAAAAAABgWyLYDgAA6JS6Km8n6guZ7QAAAAAAAOi7BNsBAACdUm3wnGA7AAAAAAAA+jLBdgAAQKcUVWe2s4wsAAAAAAAAfZdgOwAAoFOqzVRXF5ntAAAAAAAA6LsE2wEAAJ1SV/UysjLbAQAAAAAA0HcJtgMAADqlruplZGW2AwAAAAAAoO8SbAcAAHSKzHYAAAAAAABsSwTbAQAAnVJ1ZrvIbAcAAAAAAEDfJbUEAADQKXVFtcvIuv0AAAAAAICe8Prrr+eRRx7J/Pnz88orr2T16tXZbrvtMn78+EyZMiX77bdfBg0aVJOxnnvuuXzzm9/Mvffem6eeeipLly7NunXrmh6fNWtWzjrrrBbbPvTQQ5k1a1buv//+LFy4MK+99loaGxubHn/66aczadKkJMnhhx+ee++9t+mxsixrMn+ohm+7AACATqmrMlNdfZXLzgIAAAAAAB23YcOG/Md//EdmzZqVX/7yl1m/fn2r+w4ePDjHHHNM/v7v/z7vec97Oj3mDTfckHPPPTdr1qypqt369etzzjnn5IYbbuj02NAbLCMLAAB0SvWZ7QTbAQAAAABAd/jFL36RadOm5Ywzzsg999zTZqBdkqxevTp33HFHTjjhhMyYMSOPPPJI1WP+6Ec/ysc+9rGqA+2S5POf/7xAO/okme0AAIBOqa82s53bDwAAAAAAqLlLL700l1566RbLqhZFkalTp2bChAkZPXp0Fi9enOeeey5PPfVUxX5z5szJgQcemOuvvz4f+chHOjzuRRddVDHmGWeckb/7u7/LLrvskoEDBzbVjxkzpqLdokWL8i//8i9N5UGDBuWf/umfcvzxx2fs2LGpq/vzH/tPmDChw/OBnuDbLgAAoFMKme0AAAAAAKBXnXfeeZk5c2ZF3bBhw3LRRRflzDPPzMSJE7dos2DBgtx444259tprm7LSrV27Nh/96EezatWqnHfeee2O+/vf/z6PPfZYU/n444/PTTfd1KE533777Vm7dm1T+YorrshnPvOZDrWF3mYZWQAAoFOqDZ6rL/ytDwAAAAAA1Mq3v/3tLQLtDj744MybNy8XXXRRi4F2STJ58uRcccUVeeyxx7LXXntVPHb++edn9uzZ7Y49Z86civIpp5zS4Xl3tu3s2bNTlmXTBr1BsB0AANApdVXeTshsBwAAAAAAtfHUU0/lk5/8ZEXdQQcdlB//+McdXnp1ypQp+fnPf56pU6c21TU2NuYDH/hAXnnllTbbLlq0qKJczXKvXWkLvU2wHQAA0Cl11S4jG5ntAAAAAACgFi644IKsXLmyqTxixIjceuutGTp0aFX9jBs3LrfccksGDRrUVPfCCy/k8ssvb7Pd5mMnycCBAzs8ZlfaQm/zbRcAANApdal2GVmZ7QAAAAAAoKt+97vf5e67766ou+qqq7Ljjjt2qr9p06blggsuyJVXXtlU961vfSuXXHJJRo4c2WKbxsbGTo3V1ba1MG/evDz++ONZsmRJli5dmsGDB2fs2LGZOnVq9tlnnzQ0NHSq3/Xr1+ehhx7KH//4xyxevDhr1qzJ2LFjM2nSpLz73e/O4MGDa3wk9AbBdgAAQKdUndmucPsBAAAAAABdNXPmzJRl2VQeM2ZMzj777C71ed555+Waa67JunXrkiSrVq3KDTfckAsvvDBJ8swzz2TXXXdttf0RRxzRYv2sWbOSpM35FUXRYv3TTz+dSZMmNZUPP/zw3HvvvU3lzc9BexYuXJj//b//d37wgx9ssYzt5rbbbrscccQR+dCHPpSTTz459fXtJxJ48sknc8UVV+Tuu+/O8uXLW+33b/7mb3LZZZdlypQpHZ43Wx/LyAIAAJ0isx0AAAAAAPS8n/zkJxXlD37wgxXLwHbG2LFjc8IJJ7Q5Tl9UlmWuuOKKTJ48Oddff32bgXZJ8sYbb+RHP/pRTj311CxcuLDNfTds2JB/+Id/yF577ZXvfve7rQbavdnvzTffnD333DMzZ87s1LGwdZBaAgAA6JRqg+eqDc4DAAAAAKBj1m8o8/zS3p5F/zdhZDKgvuUsbD3l+eefzzPPPFNRd/TRR9ek76OPPjq33XZbU/mBBx7IunXrMnDgwJr039PWr1+f0047LbfeeusWj+24447Ze++9M2bMmKxZsyaLFi3K//zP/2TlypUd6vuNN97IiSeemJ/+9KcV9QMHDsy+++6bCRMmpKGhIS+//HIeeuihvP76601zOu+887J06dJccsklXT5Gep5gOwAAoFOKKhJl16W+1TTwAAAAAAB0zfNLk90+19jb0+j3/nhlXSaN6d05/PrXv96ibvr06TXp+x3veEdF+Y033sijjz6aGTNmZMKECXn66aebHvuXf/mXigxt3/ve9/Kud71riz7HjNl4wg4//PCmutNOOy0PPvhgU3nzfjc3YcKETh3Hm84///wtAu2OP/74XHLJJZkxY8YW+zc2NuaBBx7I97///dx4441t9v2JT3yiItBuhx12yCWXXJK/+7u/y7Bhwyr2feONN/L1r389X/jCF7J69eokyWWXXZYDDjggxx13XCePjt4i2A4AAOiUajLbWUIWAAAAAAC67vnnn68ojx8/PqNHj65J33vttVeL482YMSMDBgzIpEmTmupHjBhRsd+OO+5Y8XhzQ4cObfr34MGDKx5rq11n/fSnP81Xv/rVirqrrroqn/3sZ1ttU1dXl4MOOigHHXRQLrvssi3m+aYf/OAHmTVrVlP5rW99a2bPnt3qcWy33XY5//zzc+CBB+bII4/M6tWrU5ZlPvWpT+X3v/996uo6ntyA3ufZAgAAOqWu6PjtRH3h73wAAAAAAKCrXn311YryyJEja9b34MGD09DQ0OZ4fcVll11WUf5f/+t/tRlo19yIESNaDLYry7Ki7wEDBuTOO+/sUMDgm0F8b1qwYEFuv/32Ds+JrYNgOwAAoFPqqridkNkOAAAAAAC6rnnwW/MMc13VvL8lS5bUtP+e8Nhjj1Ustzts2LBcffXVNen7l7/8ZZ544omm8plnnpl99tmnw+0/8YlPVATx3XnnnTWZFz1HsB0AANApddUsIxuZ7QAAAAAAYGtXFEVvT6HLfv7zn1eUzzjjjAwfPrwmfd9zzz0V5VNPPbWq9kOGDMk73/nOpvKvfvWrmsyLnuMbLwAAoFNktgMAAAAAgJ41atSoivJrr71W0/6XLVvW5nh9wf33319RPvzww2vW93333VdRHjVqVJ555pmq+tg88O+ZZ55JY2Nj6urkS+srBNsBAACdUlVmO8F2AAAAAADdZsLI5I9XCtbpbhNG9vYMtgx+W7p0ac36Xr16dVavXl1RN3r06Jr131NeeumlivKee+5Zs74XLlxYUX7Xu97Vpf4aGxuzbNmyPhnUuK0SbAcAAHRKfaoJtnPrAQAAAADQXQbUF5k0prdnQU/YeeedK8ovv/xylixZUpOguLlz57Y7Xl+wZMmSivLIkbWLkmzedy2sWLFCsF0fIqwZAADolKKoYhnZKgLzAAAAAACAlh100EFb1M2ZM6cmfTfvZ7vttsu+++5bk757U1EUNetr7dq1NevrTWVZ1rxPuo9gOwAAoFNktgMAAAAAgJ41ceLETJw4saLupz/9aU36vueeeyrKBxxwQAYNGlSTvnvSmDGVaR5fffXVbul78ODBaWxsTFmWXdomTZpUs/nR/QTbAQAAnVJVZrtCZjsAAAAAAKiFY489tqL8ne98J+vWretSn4sXL86dd97Z5jh9xU477VRRnjdvXs36Hj9+fNO/V69eneeee65mfdM3CLYDAAA6pb6K2wmZ7QAAAAAAoDY+/elPVyyNunjx4syaNatLfc6cObMiYG/77bfPRz7ykS712Vve/e53V5Rnz55ds76bL+Nbq6yC9B2C7QAAgE7Zrn77ju9b1/F9AQAAAACA1k2bNi3HHXdcRd1nP/vZLFq0qFP9zZs3L9dcc01F3dlnn51Ro0Z1eo696aijjqoof/e7382KFStq0vcxxxxTUf73f//3mvRL3yHYDgAA6JS/GLJPh/fdo4p9AQAAAACAtn3lK1/JkCFDmsrLli3LSSedlJUrV1bVz+LFi3PKKadk7dq1TXU77bRTvvSlL9Vsrj1tzz33zGGHHdZUXr58eS666KKa9H3cccflbW97W1P5oYceyv/5P/+nJn3TNwi2AwAAOmXUwLF537i/b3e/aUP2y8Ejjml3PwAAAAAAoGP22GOPXHfddRV1999/f4477rg8//zzHepj/vz5OfLII/Pkk0821dXV1eU73/lOxo4dW9P59rTmwYJf+9rX8pWvfKXD7V977bWsXr16i/oBAwbksssuq6j7+Mc/nttuu63qOf7sZz/LH//4x6rb0bsE2wEAAJ12xMj35EuTrs+p4z6aE8acWbGdOOaDOW+Xy/PxCZ/PoLqG3p4qAAAAAAD0Kx/+8IfziU98oqLuvvvuy7Rp03LVVVdl4cKFLbZbsGBBvvCFL2TvvffO448/XvHY1VdfnSOPPLLb5txT/vIv/zLnn39+Rd0FF1yQv/mbv8nDDz/cYpvGxsb85je/yac//enssssuefnll1vc74wzzsiHP/zhpvLatWtz8skn58wzz2y17yTZsGFDfvvb3+bSSy/NtGnT8ld/9Vd57rnnOnF09KYBvT0BAACgb9uxYUJ2bJjQ29MAAAAAAIBtzvXXX5+RI0fmy1/+csqyTJKsWLEiF110UT73uc9l2rRp2WWXXTJy5MgsWbIkzz77bH7/+99v0c/AgQMzc+bMfPzjH+/pQ+g2V199dZ577rn84Ac/aKq76667ctddd+Utb3lL9t5774wePTpr1qzJyy+/nMceeywrVqzoUN//9m//lqVLl+aHP/xhU913v/vdfPe7383YsWPz9re/PaNHj05dXV2WL1+eF198MU8++WSL2fLoWwTbAQAAAAAAAABAH3X55ZfnsMMOyznnnJP58+c31Zdlmblz52bu3Llttt9///3zjW98I9OnT+/uqfao+vr63Hzzzdlzzz3z5S9/OevWrWt67MUXX8yLL77Y6b4HDhyYW2+9Nddcc00uvvjiiiC6xYsX52c/+1mH+th+++07PQd6h2VkAQAAAAAAAACgDzvqqKMyb9683HTTTTnyyCMzYEDb+bcaGhpywgkn5I477sicOXP6XaDdm4qiyMUXX5zf//73+chHPpJRo0a1uf/QoUNz4okn5vbbb8/EiRPb7fvCCy/M008/nX/6p3/KW9/61nbnM2zYsBx//PH52te+lpdeeikzZsyo6njofcWbKSRha1MUxZ5Jnniz/MQTT2TPPffsxRkBAAAAAAAAQO2tX7++IiNZkuy+++7tBkxBa1atWpWHH344CxYsyOLFi7N27do0NDRk/PjxmTJlSvbff/80NDT09jR7XGNjYx555JH87ne/yyuvvJKVK1dm++23z7hx47LHHntkn332ycCBAzvd/9NPP51HHnkkixcvztKlS1NXV5dhw4blLW95S/bYY4/svvvuqa+vr+ERbd2669o2d+7c7LXXXptX7VWWZdspHGvEVRkAAAAAAAAAAPqR7bffPoceemgOPfTQ3p7KVqWuri7Tp0/vtkx+u+66a3bddddu6Zutg2VkAQAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAHpRURRb1JVl2QszAaidxsbGLepaut71JYLtAAAAAAAAAAB6UV3dluEb69at64WZANTO+vXrt6hr6XrXl/Tt2QMAAAAAAAAA9HFFUWTQoEEVdStXruyl2QDURvPr2KBBg2S2AwAAAAAAAACga4YNG1ZRXr58uaVkgT6rLMssX768oq75da4vEmwHAAAAAAAAANDLmgehrFu3Li+88IKAO6DPKcsyL7zwwhbLYQ8fPryXZlQ7A3p7AgAAAAAAAAAA27rBgwdn4MCBFcEpK1asyB/+8IcMHz48Q4cOzYABA1JXJ68SsPVpbGzM+vXrs3LlyixfvnyLQLuBAwemoaGhl2ZXO4LtAAAAAAAAAAB6WVEUectb3pLnnnuuIpvdunXrsmTJkixZsqQXZwfQeW9e34qi6O2pdJlwZwAAAAAAAACArcCQIUMyceLEfhGQApBsDLSbOHFihgwZ0ttTqQnBdgAAAAAAAAAAW4k3A+4GDhzY21MB6JKBAwf2q0C7xDKyAAAAAAAAAABblSFDhuRtb3tb1qxZk+XLl2fFihVZu3Ztb08LoF2DBg3KsGHDMnz48DQ0NPS7TJ2C7QAAAAAAAAAAtjJFUWTw4MEZPHhwxo0bl7Is09jYmLIse3tqAFsoiiJ1dXX9LriuOcF2AAAAAAAAAABbuaIoUl9f39vTANim1fX2BAAAAAAAAAAAAGBrJ9gOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoxoLcnAG0YtHlhwYIFvTUPAAAAAAAAAABgK9BCDNGglvbrDkVZlj01FlSlKIq/SXJHb88DAAAAAAAAAADYar23LMs7e2Igy8gCAAAAAAAAAABAOwTbAQAAAAAAAAAAQDssI8tWqyiKHZIctlnVwiRre2k60Be8LZVLL783yR96aS5A/+Q6A3Q31xkAusrPEqC7uc4A3c11BuhurjNAfzAoyS6ble8ty/K1nhh4QE8MAp2x6U3QI+spQ39QFEXzqj+UZTm3N+YC9E+uM0B3c50BoKv8LAG6m+sM0N1cZ4Du5joD9CO/7Y1BLSMLAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0QbAcAAAAAAAAAAADtEGwHAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0QbAcAAAAAAAAAAADtEGwHAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0QbAcAAAAAAAAAAADtEGwHAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0Y0NsTAKBmFie5tFkZoJZcZ4Du5joDQFf5WQJ0N9cZoLu5zgDdzXUGoAuKsix7ew4AAAAAAAAAAACwVbOMLAAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtEOwHQAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtEOwHQAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtEOwHQAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtGNAb08A2HoURVGfZHKSaUnekmSHJGuSLE3yhyRzyrJcVeMxByZ5d5KJSXZKsjLJi0l+W5blM7Ucq6cURbFnkn2TjE3SkOTlJM8n+XVZlqt7c249qSiKkUn2TLJ7klFJBidZlmRxkofLsvxDL05vC0VR7JqNz9tbkgxN8lKSZ5PcX5bluhqO89Yk78jG1/sOSdZl43mZn43nZUWtxtoauc7UhuvMRn3tOkPPcJ2pDdeZjfrCdaYnX/N94XxALfTHnyX98ZhqpafuBfsK56Nn9Mf3ZH88plrxvqrkM7ie0R/fk/3xmGrFdYbe0B/fk/3xmGrFdcZncEAzZVnabLZteMvGX97OS3J3kteSlG1s65P8OMlf12DcsUm+nmRJG+P9OsnJXRxntySnJrkmyewky5uN8UyNzuOwJJ9P8kIbx7M8yXeSvK0Xn+9uOx9JBiY5Jsn1SZ5o57VUbjpXlyXZsZffA6ckub+NeS7Z9Fod04UxhiS5MMlT7ZyTDUn+M8nRvXlOuuEcu87U5jy6zvTB60x3vz46cA7a2yb11rmp8Xl2nanNeXSd6SPXmZ56zfeV82Gz1WLrjz9L+uMx1fg574l7we2THJzkH5LclI33hI3Nxjmrt1//zkePneN+957sj8dU4+fc+6rnz4fP4PrZe7I/HlONn3PXmT/P02dwPXOe+917sj8eU42f8236OtNTr4/4DM5m63Nbr0/AZrP13pbku124MbgryfhOjntckkVVjPX/Jdm+iv4PT/Jf7fyCWpMbrE3jHZCNf2XS0eNZleTjPfg8d/v52HQOXu3ka2lpkg/0wut/aJLvVTHPl5Mc04lxDkzyx06cl+8mGdLT56UbzrPrjOvMNned6cnXRxfeX29uk3rqvHTj+XadcZ3Zpq4zPfWa7yvnw2arxdZT76sWxu22nyX98Zhq+Hx3+71gNn7Z9Hg2ftnSXv9n9fLr3/nomfPc796T/fGYvK/67vnYNI7P4PrZe7I/HlNfel/1hetMfAbX0+e7370n++Mx1fD53uavMz31+ojP4Gy2PrlZRha2bVNaqX8hG9PpL8rG5aZ3S/L2JHWb7fOeJP9dFMVhZVm+3NEBi6I4PMntSQZtVl0meSQbPwwZkWS/JGM2e/zMJMOLojixLMvGDgyzb5KjOzqnriiK4qhs/GuGhmYPPZvksWz8InpCNv6iNHDTY0OSfL0oirqyLL/WA9PsifMxNsnIFurXZuMvyi9n4198jE4yfdP/3zQiyXeKohhXluU/d/M8kzSler45yfHNHlqc5Leb5vq2bHwtFpseG5/kjqIojirL8r4OjnNgkp9m403J5lYk+X/Z+B5ryMa003ul8j12epJxRVEcX5bl2g4e2tbIdaaLXGea9KXrTI+9PkjiOtNlrjNN+sp1pqde833lfEAt9MefJf3xmLqsp+4Fk5yRjUsKbdWcjx7VH9+T/fGYusz7qpLP4HpUf3xP9sdj6jLXmQo+g+tZ/fE92R+PqctcZ5r4DA5oXW9H+9lstt7bkszJnyPfH0nyybSyJFiSnZN8I1tGzP8qSdHB8SZky8j8+5JMbbZfQ5JPZeMvEZvve2UHxzmvhXmWSVYnWdCs7pkunL9J2fIvphYk+asW9h2Z5Lpm+25oad9ueJ67/Xxk4y+Nb/axIsm3khyZZLsW9i2S/G02foHffE7dfj42zeGaZuOu3fT6H9Rsv2nZMj32K0l26sAYg1s4v69vem0PbmH/tyW5s4VzclFPnJNuPNeuM64z29x1pqdeH5vG2ryvBza9ZqrZBnT3+eiB8+064zqzTV1neuo131fOh81Wi60//izpj8dUo+e62+8FN7Vf1sL5LJM838JjZ/Xia9/56Llz3e/ek/3xmGr0XHtf9fD5iM/g3jyufvee7I/HVKPn2nXmz3P0GVzPnu9+957sj8dUo+fadaYHXx/xGZzN1ie3Xp+AzWbrvS0b/6rv7iTTq2hzTgs/vE/rYNtvNWv367Twgcdm+5/YbP/VSd7agXHO2/SL32+T3JDko0n2z8ZMLIc36/OZLpy/5umT5ycZ106bC5u1mZukvpuf524/H5t+EVyU5Px0PD336CTzmo3/ZHu/dNbgfOyWLW9Q3tvG/ttly5uFf+vAOGc1a9OYdlJob/ol+Qf/f3v3HjVJUd5x/PfICstNFkFYQGFZXbyhBKIJKEkWAwT0eAGJGhKzK94SjEeNehK8nKgxahIkehKDGhVJvESjYsBFMCiLBC8ILsrNW2RRiCC7LIRF9gZP/uh52Z56Z6a7Z3q6u2q+n3P6j+q3q7uqpurp6Xq7e4J8dyu4gIlpIc4QZ2Y0zjTSP3rHyu9r9TTr1dWFOEOcmbU401Sfj6U9WFjqWFI8l6RYpxo+50auBXt571L29oFVkt7ei6n79v62Otjnypb6Pe3RbHsnNyZTrFMNnzPjqoX2EHNwc3VKbkymWKcaPmfiTH8ZmYNrtr2TG5Mp1qmGz5k403D/EHNwLCxRLq0XgIWFpb1F0pIx830uOHmvKpFnmaRtuTybJS0rke/jwbE+ViLPnsO+nKq+f8YuVfYml/y+ji6Z92tBvtOm/Dk30R6PKPsFMMh32IB2fOqU2+Pc4HjnlMhzSK/PzuXZKmlpQZ7PB8c5r2T5Fmv+hcyx02yTKbf3kjHzEWeIM+F+YoozU2+P3P7y+1o9zXp1dSHOEGdmLc401edjaQ8WljqWFM8lKdaphs+5kWvBXr6hjyZEhAAAGD9JREFUb3JQB/5pRHu00t5LxszX2TGZYp1q+JwZVy20h5iDm6vPkjHzdXZMplinGj5n4kx/OZiDa7a9l4yZr7NjMsU61fA5E2ca7h9iDo6FJcol/7vRAGaMu68dM+sHgvQxJfKcKmmHXPoL7v7jEvn+Nki/wMwWjsrg7hvcfVOJfU/iWVJfDP2Wu/93ybxnBumX1FOkwZpoD3e/w93vHSPf95S9IjuvTH8ai5ntLOmUYHXYx+Zx9x9J+mJu1QJlfXqUpUH6gsICZse6TdKVweplZfJ2EXFmIsSZ/mNEEWd6x2yif6CHODMR4kz/MaKIM031+VjaA6hDiueSFOs0iYavBeXuv6hUwIbRHs1LcUymWKdJMK76MQfXvBTHZIp1mgRxZj7m4JqV4phMsU6TIM70Yw4OwCjcbAdgHGuC9M5mtqggz0lB+pwyB3L3GyV9O7dqV0nHl8k7Zb8dpC+ukPeryp6anPM0M9tv8iJFK+xP+0/xWL8naZdc+pvu/oOSecM+e3LB9rsG6VtKHkeSfh6k96yQNxXEGeJMnZqMM4gHcYY4U6cY4sw4fb6uY3WxPYA6pHguSbFOUrPXgjGgPeKR4phMsU4S4yrEHFw8UhyTKdZJIs4gXimOyRTrJBFn6sIcHDADuNkOwDi2DVi347CNzWyxslfZ5vNfUeF4q4P0iRXyTssjg/R1ZTO6+2ZJP8mteoi6Uae2hP1paF+qwQlBenWFvJerv6yHm9m+I7a/LUhXedIo3PbOCnlTQZwhztSpyTiDeBBniDN1iiHOVOrzNR+ri+0B1CHFc0mKdZKavRaMAe0RjxTHZIp1khhXIebg4pHimEyxThJxBvFKcUymWCeJOFMX5uCAGcDNdgDG8ZggvU3SuhHbHxqkv1/xdbjfCNJPrJB3Wh4epO+qmD/c/kkTlCV2YX+a5mujw774zbIZe3322mD1qL54eZA+ouyxBmz7nQp5U0GcIc7Uqck4g3gQZ4gzdYohzlTt83Ueq4vtAdQhxXNJinWSmr0WjAHtEY8Ux2SKdZIYVyHm4OKR4phMsU4ScQbxSnFMplgniThTF+bggBnAzXYAxnFKkL7K3R8Ysf0TgvRPBm413P8U7K8NW4L0ThXzh9t3oU6NM7OHSTouWH3lFA/5+CA9zb74EfX3k9PMbOeiA5jZSZIOzK263t2vLl/EZBBniDO1aCHOtOlAMzvHzK43sw1mtsXMbu+lP2FmrzCz8OaqWUacIc7UIqI4U7XPjyWi9gDqkOK5JMU6Sc1eC8aA9ohHimMyxTpJjKsQc3DxSHFMplgniTjTJczBVZPimEyxThJxpi7MwQEzgJvtAFRiZrtJemmw+ryCbOFd9T+reNibg/ReZrZnxX3UbX2Q3q9i/nD7x05Qlpi9UtIuufTdki6dxoF6F7fhBW7Vvhhuv2zYhu5+k6QzcqseJenTZrbLkCwys6cqmyCc84CkV1csY/SIMw8iztSjsTjTAQdLWqlsEmORpIdK2qeX/kNJH5L0MzP7h944m1nEmQcRZ+rR+TgzZp8fV+fbA6hDiueSFOskNX8t2HW0RzxSHJMp1kliXIWYg4tHimMyxTpJxJkOYg6upBTHZIp1kogzdWEODpgd3GwHoKp3S1qcS9+l/omJQRYF6V9WOaC7b5S0KVi9R5V9TMGNQfrIshnN7EBJ+wer265P48xsiaS3Bqvf7+7hW3bqEvbDX1V8Tbc0v++O/Nzc/SxJb5S0tbfquZJuMLO/NLOjzWyZmT3RzJ5nZudIukLbL2a2SjrN3WfxizFxJkOcmVALcSYGu0p6raSrzWxWX+MvEWfmEGcmFFGcGafPVxZRewB1SPFckmKdpBauBTuO9ohHimMyxTpJjKsQc3DxSHFMplgniTgTI+bgMimOyRTrJBFn6sIcHDAjuNkOQGm9V+v/WbD6ze5+Z0HW8Mmd+8Y4fJhn9zH2UafLgvTzRz0tGfjjAevark+jzGxHSZ9Rf73XSvq7KR62lX7o7mdKOkzSxyRtkHSQsi/bl0v6kaTrlD3VslLZE3CSdImkI9393DHKGDXiTB/izARaijNt2SZptaS3SHqOpCOUPTV4uLJ/MJyp+RMdh0i6xMwOaq6Y3UCc6UOcmUAscWaCPl/1OFG0B1CHFM8lKdYpJ4YyNon2iECKYzLFOuXEUMYmMQcXgRTHZIp1yomhjLOAObgKUhyTKdYpJ4YydhpzcMBs4WY7AKWY2WGS/jVY/RVJZ5fIHn5BC5++KCP8gtb2q7dXKXsaYc4iSW8rymRmj5L0hgF/2sHMdq6naFH4iKTfyKXvl7RijKdkqmizHy5Q9nMUW4s2lHSupNe5+3erFCwFxJl5iDOTaSPOtOEtkg5w92Pc/W/c/QJ3X+PuP3H3a9z9fHd/o7J/MrxHkufyLpb0BTOzNgreBuLMPMSZyXQ+zkzY56vqfHsAdUjxXJJinQr218UyNon26LgUx2SKdSrYXxfL2CTm4DouxTGZYp0K9tfFMqaOObgKUhyTKdapYH9dLGNnMQcHzB5utgNQqPczYavU/6XoZkl/5O4+ONdITeWZGne/R9L7g9VvMLPXDMtjZo+UdJGGvza5U3WcFjP7a0kvDlaf4e5fb7goU++HZraTmf2jpO9JepmkfUpkWyHpWjM7v9dnZgJxZj7izPg6FGemrje5V/izA+6+yd3PkPTq4E9HSPqDqRSuY4gz8xFnxhdDnJlCnx91rM63B1CHFM8lKdZpSsdL+fxGe3RIimMyxTpN6Xgpjyvm4DokxTGZYp2mdLyU48zUMQdXXopjMsU6Tel4MxlnmIMDZtOCtgsAoNvMbB9J/yXpgNzq2yQd5+53lNzNxiA9zhtPwjzhPtvwLkknavvTAybpfWZ2iqSPSrpG2VMc+/e2+1Nt/6J1i6T8JM4md5/3lIiZLSlbGHdfW6n0LTCz1yp7AizvLHf/+5L5l5Q91oD2aLQfmtkCSV+UdEK+WMp+ruJcSVdJWidpJ0kHSnqGsgvwZb1tny3pKDM7zt2vGaOs0SDOjEScqajlONN57v4BMzte2U9dzDld0qdaKlIjiDMjEWcqiiHO1NTnyx5rovYAYpHiuSSmOsV0LdgE2iNNMY3JsmKqE+OqX0ztwRxceTGNybJiqlNM46oJqc0VhJiD6/6YLCumOhFn+jEHB2CauNkOwFBm9nBJl0g6JLd6naRj3f3HFXaV3Bc0SXL3LWZ2sqQLJT0596eje8sw6yW9VNLFuXV3Ddn2pgpF6vQryM3s5ZLOClaf7e6vr7CbSdqj6X74VvVP8t0n6RR3vzDYbouk6yVdb2YflvTPkk7r/W1vSV8ys8Pcff0Y5e084sxoxJlqOhBnYvFu9U/0HWlmi9x9WB+JGnFmNOJMNTHEmRr7fJlj1dEeQOeleC6JsE4xXQs2gfZITIRjslCEdWJc9YupPZiDKyHCMVkowjrFNK6akMxcwQjMwXV7TBaKsE7EmX7MwQGYGn5GFsBAZraHst+Sf1Ju9QZld+JfX3F3dwfpR1Qsy26a/wWtExcj7n6rpKdJ+pCkrSWyXCrpKZLuDdbfVnPROsXMXizpg+r/snqOpFc1WIywH+5iZrtW3Ef4ExQD+2HvC3b4Bff0AZN8fdx9s6SXS7ost/oASW+qWM4oEGfKIc6U05E4E4srlY21OTtIekJLZZkq4kw5xJlyYogzNff5omN1vj2AOqR4LkmxTgUauxaMBO3RMSmOyRTrVIBx1Y85uI5JcUymWKcCxJk4MQcX8ZhMsU4FiDMVMAcHgJvtAMxjZrtLukjSr+dW/5+kE8Z8lX549/5BFfOH29/p7hsGbtkCd7/X3f9E0mMlvVnZP6BvUfYU5T2SblT2kwXHSfrd3quIHx/s5qrGCtwwM3uRsi99+XPOJyW9zN29qXL0nkoN+82BFXcT9sVhT6Y8U1L+IuQmZX2gkLs/IOkdweoVZhbr03sDEWeqIc6M1pU4E4tenPlZsLrSBE8MiDPVEGdGiyHOTKHPjzpW59sDqEOK55IU61Sk4WvBzqM9uiXFMZlinYowrvoxB9ctKY7JFOtUhDgTJ+bg4h2TKdapCHGmPObgAEj8jCyAQO8phQslHZlbvVHSie5+5Zi7vTFIP6Zi/qVB+oYxyzFV7n6TpHf1liJHBelvD9ln1JM7ZvZ8Sf+m7ImtOf8haUXvQrOSGtrjRmVv7pnzGM3vn6OEfXFY3sOC9KUVv/R+XdlPW+zYS++lrKxJXJgQZ8ZHnJmvg3EmFvcF6XF+FqCziDPjI87MF0OcmVKfH3asWtsD6KoUzyUx1ymia8FG0B5piHlMDhNznRhX/SJqD+bgRoh5TA4Tc50iGleNiH2uoALm4KojzsxHnBkDc3AApok32wF4kJntLOlLko7Orf6VpGe5+zcm2PV1QfrJZrZLhfxPL9hfVHpPRz4jWH3ZoG1jZmbPkfRp9d/Y/UVJp7r7/e2Ual7fCW8SGKr3BfrJBfubsyhIV/pZPXffJml9sHrvKvvoKuJMM4gzrcaZWIQxZV0rpZgC4kwziDPdiTNT7PODjtX59gDqkOK5JMU6VdTUtWAsaI+WpTgmU6xTRYyrfszBtSzFMZlinSoizsSJObjqiDPzEWc6gDk4AHncbAdAkmRmCyWdL2l5bvUmSc9x969Psm93/4Wk7+dWLVD/F5Eiy4P0lycpTwc8Q9KSXPoyd0/iack5ZvZMZU9XPDS3epWkF/YmsdpyUZBeXiHvb6n/S+0ad799yLZ3BeldB2412m5BeuMY++gU4kyjiDMYysz21vynDP+3jbLUjTjTKOJMB0yzzw84VufbA6hDiueSFOs0hqauBWNBe7QoxTGZYp3GwLjqxxxci1IckynWaQzEmcgwBzce4sxAy4M0caZhzMEBCHGzHQCZ2Y6SviDp2NzqzZKe5+5frekw5wXpl5Qs2+Mk/WZu1b2SvlJTmdryF0H6Q62UYkrM7DhJn9f2n1+Qss/s+e6+pZ1SPehi9b+2/aheHytjZZAO+3ReeMF8eMljSJLMbJmk3YPVlZ7M7RriTOOIMxjlReq/DrhdCfz0F3GmccSZljXU5+eO1fn2AOqQ4rkkxTqNqalrwVjQHi1JcUymWKcxMa76MQfXkhTHZIp1GhNxJj7MwY2POLO9bMSZljEHB2AQbrYDZpyZLZD0WUkn5lZvlXSKu19c46E+KSn/WtuTe5MZRcJ/5H7W3TfVV6xmmdkKScflVl2j7OmEJJjZ70j6T0kLc6u/puwL5+Z2SrWdu/9K0ueC1WEfm8fMDpF0Um7VNkmfGpFldZB+upk9oUwZe14ZpH/o7ndUyN8pxJlmEWcwipntK+ktweoL3N3bKE9diDPNIs60r8E+H0V7AHVI8VySYp3G1eC1YBRoj3akOCZTrNO4GFf9mINrR4pjMsU6jYs4Exfm4CZGnNmOONMi5uAADOXuLCwsM7pI2kHSZyR5btkq6aQpHe+jwbGukLRwxPbPDbbfLOmgCcuwPNjn2gn3t6DCtidL2hK09eEt94Ha2kPSUZLuCfZ3maRd2qzjgHIuDT4HV/aa52HbL+z11fz2Hyw4hkn6YZDnakm7lyjfCQPK9862222C9ibOEGdmLs400R6SHivp2RXzLJb0nQF9fmnb7TJhmxJniDMzFWea7PMxtAcLSx1LiueSFOtUQxmnfi1Yshyrg32unGa9aY9uLCmOyRTrVEMZGVcNt4eYg8vXJ7kxmWKdaigjcaZ8GZcHZVw75n6Yg9ter+TGZIp1qqGMxJkW+oeYg2NhiW7J/242gNnzMUkvCNa9SdIaM1tScV+3efGTFH+l7MmGPXvpp0m6xMxe5u4/mNvIzHaS9ApJ7w3yv9fdby5TGDN7pDQwxi0O0gtG1HWju68rONS1ZrZK2St9v+3uDwwoy6GSzpB0avCnN7n7moL912La7WFmh0v6sqTdcqt/KOlVkvYxsyrF3eTuU/u5Bnf/qZm9X9Ibcqs/Z2Z/LunDnnsNs5k9XtJHlPXVOeslvb3gGG5mZyjrF3OOkHR17zir3N3zecxsL0mvUdZX8p/Veklnlq1fBxFniDMzF2ekRvrHfpLON7NrJX1C0nnu/uMhZdld0gplT9PuG/z5ne7+0yHHiAVxhjgza3GmkT4fUXsAdUjxXJJinSbSxLVgLv9ukvYe8ueFQXrvEZ/JLe6+rcwxq6I9GpfimEyxThNhXPVjDq5xKY7JFOs0EeLMfMzBNSrFMZlinSZCnOnDHByAoSy4zgAwQ8yszgBwjLuvLnHM5ZIuVv9vzc89cfhTSXsomxB5RJD1S8pek3u/SjCztZIOKrPtCOe6+8qC46yTtFcvuVHStZJ+IWmTsjocMqQc73T3t05YvtKm3R5m9jZlFwl1uMzdl9e0r4HMbAdJF6j/tc+S9EtJ31X29MhSZX0x/y12i6Rj3f3yksc5S9LrBvxpvbI+v07ZWFgi6dc0f1Jgs6RnuvvXyhyvi4gzhYgz/VKKM2s13fZYLunSYPXdkq5TFlvuUXZx/ihJh2nwpOOH3T38yZzoEGcKEWf6RR9nmurzsbQHUIcUzyUp1qkODV4LrpR0zqTllXSwu6+tYT8D0R7NSXFMplinOjCu+jEH15wUx2SKdaoDcaYfc3DNSXFMplinOhBnMszBARiFN9sBaJS7rzazkyR9XNu/KJqkp/SWQT4t6eVNfIGc0G7KXvM7ygZJp7v7vzdQHgzh7veb2QuUPXHzwtyf9lH2ExKD/FLSirIXCT2v7+V7u/ovnPaSdHxB3puVvRZ7dYXjQcQZEWdm2R6Snl5iu3slvc7d/2XK5UkWcYY4AwCTSvFcEkOdGrwWjALtkbYYxmRVMdSJcdWPObi0xTAmq4qhTsSZTmAOriExjMmqYqgTcQYAij2k7QIAmD3ufqGkQyV9UNk/a4f5lqRT3P1Ud7+3kcJV9z5JayTN+7m1wM8lvUPSo/nHdDe4+0Z3f5Gk31fW14a5U9LZkg5194sqHsPd/T2SniTpnzS6v8+5QdkE4aFM8o2POEOcmQE3SnqXpCsk3Vcyz4+UveZ+CZN8kyPOEGcAYFKJnUskxVGnJq4FY0J7pC2GMVlVDHViXPVjDi5tMYzJqmKoE3GmUczBtSyGMVlVDHUizgDAaPyMLIBWmdmOyp4AOkjSYmVP+twqaY2739Rm2aows4dJOlzSwcqeRFmo7MLrVknfc/cbWiweSjCzg5W98np/SbtKuk3Zk61XuPuWmo5hkh6n7HXye0t6mKRtku5S1leucvfb6zgWtiPOIHVm9hBJyyQ9WtIBkhZpe//YoOznQL/j7ne0VsjEEWcAAJNK5VySF0udmrgWjAntka5YxmQVsdSJcdWPObh0xTImq4ilTsSZZjAH175YxmQVsdSJOAMA/bjZDgAAAAAAAAAAAAAAAACAAvyMLAAAAAAAAAAAAAAAAAAABbjZDgAAAAAAAAAAAAAAAACAAtxsBwAAAAAAAAAAAAAAAABAAW62AwAAAAAAAAAAAAAAAACgADfbAQAAAAAAAAAAAAAAAABQgJvtAAAAAAAAAAAAAAAAAAAowM12AAAAAAAAAAAAAAAAAAAU4GY7AAAAAAAAAAAAAAAAAAAKcLMdAAAAAAAAAAAAAAAAAAAFuNkOAAAAAAAAAAAAAAAAAIAC3GwHAAAAAAAAAAAAAAAAAEABbrYDAAAAAAAAAAAAAAAAAKAAN9sBAAAAAAAAAAAAAAAAAFCAm+0AAAAAAAAAAAAAAAAAACjAzXYAAAAAAAAAAAAAAAAAABTgZjsAAAAAAAAAAAAAAAAAAApwsx0AAAAAAAAAAAAAAAAAAAW42Q4AAAAAAAAAAAAAAAAAgALcbAcAAAAAAAAAAAAAAAAAQAFutgMAAAAAAAAAAAAAAAAAoAA32wEAAAAAAAAAAAAAAAAAUICb7QAAAAAAAAAAAAAAAAAAKMDNdgAAAAAAAAAAAAAAAAAAFOBmOwAAAAAAAAAAAAAAAAAACnCzHQAAAAAAAAAAAAAAAAAABbjZDgAAAAAAAAAAAAAAAACAAtxsBwAAAAAAAAAAAAAAAABAAW62AwAAAAAAAAAAAAAAAACgADfbAQAAAAAAAAAAAAAAAABQgJvtAAAAAAAAAAAAAAAAAAAowM12AAAAAAAAAAAAAAAAAAAU4GY7AAAAAAAAAAAAAAAAAAAKcLMdAAAAAAAAAAAAAAAAAAAFuNkOAAAAAAAAAAAAAAAAAIAC3GwHAAAAAAAAAAAAAAAAAEABbrYDAAAAAAAAAAAAAAAAAKAAN9sBAAAAAAAAAAAAAAAAAFDg/wFRlxEKZVemhQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import yappi\n", + "\n", + "from apd.aggregation.analysis import interactable_plot_multiple_charts, Config, clean_temperature_fluctuations, get_data_by_deployment\n", + "from apd.aggregation.utils import profile_with_yappi\n", + "\n", + "async def filter_and_clean_temperature_fluctuations(datapoints):\n", + " filtered = (item async for item in datapoints if item.sensor_name==\"Temperature\")\n", + " cleaned = clean_temperature_fluctuations(filtered)\n", + " async for item in cleaned:\n", + " yield item\n", + "\n", + "filter_in_python = Config(\n", + " clean=filter_and_clean_temperature_fluctuations,\n", + " title=\"Ambient temperature\",\n", + " ylabel=\"Degrees C\",\n", + " get_data=get_data_by_deployment,\n", + ")\n", + "\n", + "with profile_with_yappi():\n", + " plot = interactable_plot_multiple_charts(configs=[filter_in_python])\n", + " plot()\n", + "\n", + "yappi.get_func_stats().print_all()" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from apd.aggregation.utils import yappi_package_matches\n", + "import yappi\n", + "\n", + "yappi.get_func_stats().save(\"callgrind.filter_in_python\", \"callgrind\") " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "apd.aggregation", + "language": "python", + "name": "apd.aggregation" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Ch12/apd.aggregation-chapter12-ex01/pyproject.toml b/Ch12/apd.aggregation-chapter12-ex01/pyproject.toml new file mode 100644 index 0000000..4d3bb67 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/pyproject.toml @@ -0,0 +1,5 @@ +[build-system] +requires = [ + "setuptools", +] +build-backend = "setuptools.build_meta" diff --git a/Ch12/apd.aggregation-chapter12-ex01/pytest.ini b/Ch12/apd.aggregation-chapter12-ex01/pytest.ini new file mode 100644 index 0000000..8c26fbc --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/pytest.ini @@ -0,0 +1,4 @@ +[pytest] +markers = + functional: these tests are significantly slower as they start a HTTP server + performance: very slow tests that provide performance guarantees \ No newline at end of file diff --git a/Ch12/apd.aggregation-chapter12-ex01/setup.cfg b/Ch12/apd.aggregation-chapter12-ex01/setup.cfg new file mode 100644 index 0000000..704c6bf --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/setup.cfg @@ -0,0 +1,89 @@ +[mypy] +namespace_packages = True +mypy_path = src +plugins = sqlmypy + +[mypy-alembic] +ignore_missing_imports = True + +[mypy-alembic.config] +ignore_missing_imports = True + +[mypy-alembic.script] +ignore_missing_imports = True + +[mypy-alembic.runtime.environment] +ignore_missing_imports = True + +[mypy-matplotlib] +ignore_missing_imports = True + +[mypy-matplotlib.axes._base] +ignore_missing_imports = True + +[mypy-matplotlib.figure] +ignore_missing_imports = True + +[mypy-matplotlib.pyplot] +ignore_missing_imports = True + +[mypy-IPython.core] +ignore_missing_imports = True + +[mypy-yappi] +ignore_missing_imports = True + +[mypy-pint] +ignore_missing_imports = True + +[mypy-pytest] +ignore_missing_imports = True + +[mypy-setuptools] +ignore_missing_imports = True + +[flake8] +max-line-length = 120 +ignore = E501,E712 + +[metadata] +name = apd.aggregation +version = attr: apd.aggregation.VERSION +description = A programme that queries apd.sensor endpoints and aggregates their results. +long_description = file: README.md, CHANGES.md, LICENCE +long_description_content_type = text/markdown +keywords = +license = BSD +classifiers = + Programming Language :: Python :: 3 + Programming Language :: Python :: 3.7 + +[options] +zip_safe = False +include_package_data = True +package_dir = + =src +packages = find_namespace: +install_requires = + sqlalchemy + aiohttp + pint + psycopg2 + alembic + click + +[options.package_data] +apd.aggregation = py.typed + +[options.extras_require] +jupyter = ipywidgets +yappi = yappi + +[options.packages.find] +where = src + +[options.entry_points] +console_scripts = + collect_sensor_data = apd.aggregation.cli:collect_sensor_data + sensor_deployments = apd.aggregation.cli:deployments + run_apd_actions = apd.aggregation.cli:run_actions \ No newline at end of file diff --git a/Ch12/apd.aggregation-chapter12-ex01/setup.py b/Ch12/apd.aggregation-chapter12-ex01/setup.py new file mode 100644 index 0000000..6068493 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/setup.py @@ -0,0 +1,3 @@ +from setuptools import setup + +setup() diff --git a/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/__init__.py b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/__init__.py new file mode 100644 index 0000000..3277f64 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/__init__.py @@ -0,0 +1 @@ +VERSION = "1.0.0" diff --git a/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/actions/__init__.py b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/actions/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/actions/action.py b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/actions/action.py new file mode 100644 index 0000000..d192b19 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/actions/action.py @@ -0,0 +1,74 @@ +import asyncio +import dataclasses +import datetime +import logging + +from ..database import DataPoint +from ..collect import handle_result +from ..query import db_session_var +from .base import Action + +logger = logging.getLogger(__name__) + + +@dataclasses.dataclass +class OnlyOnChangeActionWrapper(Action): + """An action that requires another action as a parameter. + The `wrapped` action will be delegated to so long as the previous + invocation's `data` attribute is different to the current one. + The first invocation will always be delegated.""" + + wrapped: Action + + async def start(self) -> None: + self.last_value = None + return await self.wrapped.start() + + async def handle(self, datapoint: DataPoint) -> bool: + if datapoint.data == self.last_value: + return False + else: + self.last_value = datapoint.data + return await self.wrapped.handle(datapoint) + + +@dataclasses.dataclass +class OnlyAfterDateActionWrapper(Action): + """An action that requires another action and a date + as parameters. The `wrapped` action will be delegated to + for all data points with a date strictly after `date_threshold`.""" + + wrapped: Action + date_threshold: datetime.datetime + + async def start(self) -> None: + return await self.wrapped.start() + + async def handle(self, datapoint: DataPoint) -> bool: + if datapoint.collected_at <= self.date_threshold: + return False + return await self.wrapped.handle(datapoint) + + +class SaveToDatabaseAction(Action): + """An action that stores any generated data points back to the DB""" + + async def start(self) -> None: + return + + async def handle(self, datapoint: DataPoint) -> bool: + loop = asyncio.get_running_loop() + session = db_session_var.get() + await loop.run_in_executor(None, handle_result, [datapoint], session) + return True + + +class LoggingAction(Action): + """An action that stores any generated data points back to the DB""" + + async def start(self) -> None: + return + + async def handle(self, datapoint: DataPoint) -> bool: + logger.warn(datapoint) + return True diff --git a/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/actions/base.py b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/actions/base.py new file mode 100644 index 0000000..0589ba4 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/actions/base.py @@ -0,0 +1,62 @@ +import typing as t + +from ..typing import T_value +from ..database import DataPoint +from ..exceptions import NoDataForTrigger + + +class Trigger(t.Generic[T_value]): + name: str + + async def start(self) -> None: + """ Coroutine to do any initial setup """ + return + + async def match(self, datapoint: DataPoint) -> bool: + """ Return True if the datapoint is of interest to this + trigger. + This is an optional method, called by the default implementation + of handle(...).""" + raise NotImplementedError + + async def extract(self, datapoint: DataPoint) -> T_value: + """ Return the value that this datapoint implies for this trigger, + or raise NoDataForTrigger if no value is appropriate. + Can also raise IncompatibleTriggerError if the value is not readable. + + This is an optional method, called by the default implementation + of handle(...). + """ + raise NotImplementedError + + async def handle(self, datapoint: DataPoint) -> t.Optional[DataPoint]: + """Given a data point, optionally return a datapoint that + represents the value of this trigger. Will delegate to the + match(...) and extract(...) functions.""" + if not await self.match(datapoint): + # This data point isn't relevant + return None + + try: + value = await self.extract(datapoint) + except NoDataForTrigger: + # There was no value for this point + return None + + return DataPoint( + sensor_name=self.name, + data=value, + deployment_id=datapoint.deployment_id, + collected_at=datapoint.collected_at, + ) + + +class Action: + async def start(self) -> None: + """ Coroutine to do any initial setup """ + return + + async def handle(self, datapoint: DataPoint) -> bool: + """ Apply this datapoint to the action, returning + a boolean to indicate success. """ + raise NotImplementedError diff --git a/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/actions/runner.py b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/actions/runner.py new file mode 100644 index 0000000..b544c21 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/actions/runner.py @@ -0,0 +1,75 @@ +from __future__ import annotations + +import asyncio +import collections +import dataclasses +import time +import typing as t + +from ..database import DataPoint +from .base import Action, Trigger + +Decorated_Type = t.TypeVar("Decorated_Type", bound=t.Callable[..., t.Any]) + + +@dataclasses.dataclass(unsafe_hash=True) +class DataProcessor: + name: str + action: Action + trigger: Trigger[t.Any] + + def __post_init__(self): + self._input: t.Optional[asyncio.Queue[DataPoint]] = None + self._sub_tasks: t.Set = set() + self.last_times = collections.deque(maxlen=10) + self.total_in = 0 + self.total_out = 0 + + async def start(self) -> None: + self._input = asyncio.Queue(64) + self._task = asyncio.create_task(self.process(), name=f"{self.name}_process") + await asyncio.gather(self.action.start(), self.trigger.start()) + + @property + def input(self) -> asyncio.Queue[DataPoint]: + if self._input is None: + raise RuntimeError(f"{self}.start() was not awaited") + if self._task.done(): + raise RuntimeError("Processing has stopped") from self._task.exception() + return self._input + + async def idle(self) -> None: + await self.input.join() + + async def end(self) -> None: + self._task.cancel() + + async def push(self, obj: DataPoint) -> None: + coro = self.input.put(obj) + return await asyncio.wait_for(coro, timeout=30) + + async def process(self) -> None: + while True: + data = await self.input.get() + start = time.time() + self.total_in += 1 + try: + action_taken = False + processed = await self.trigger.handle(data) + if processed: + action_taken =await self.action.handle(processed) + if action_taken: + elapsed = time.time() - start + self.total_out += 1 + self.last_times.append(elapsed) + finally: + self.input.task_done() + + def stats(self) -> str: + if self.last_times: + avr_time = sum(self.last_times) / len(self.last_times) + elif self.total_in: + avr_time = 0 + else: + return "Not yet started" + return f"{avr_time:0.3f} seconds per item. {self.total_in} in, {self.total_out} out, {self.input.qsize()} waiting." diff --git a/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/actions/source.py b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/actions/source.py new file mode 100644 index 0000000..d044d4d --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/actions/source.py @@ -0,0 +1,80 @@ +import asyncio + +from apd.aggregation.query import db_session_var, get_data + + +async def get_newest_record_id(): + from apd.aggregation.database import datapoint_table + from sqlalchemy import func + + loop = asyncio.get_running_loop() + db_session = db_session_var.get() + max_id_query = db_session.query(func.max(datapoint_table.c.id)) + return await loop.run_in_executor(None, max_id_query.scalar) + + +async def get_data_ongoing(*args, historical=False, **kwargs): + last_id = 0 + if not historical: + kwargs["inserted_after_record_id"] = last_id = await get_newest_record_id() + db_session = db_session_var.get() + while True: + # Run a timer for 300 seconds concurrently with our work + minimum_loop_timer = asyncio.create_task(asyncio.sleep(300)) + async for datapoint in get_data(*args, **kwargs): + if datapoint.id > last_id: + # This is the newest datapoint we have handled so far + last_id = datapoint.id + yield datapoint + # Next time, find only data points later than the latest we've seen + kwargs["inserted_after_record_id"] = last_id + # Commit the DB to store any work that was done in this loop and + # ensure that any isolation level issues do not prevent loading more + # data + db_session.commit() + # Wait for that timer to complete. If our loop took over 5 minutes + # this will complete immediately, otherwise it will block + await minimum_loop_timer + + +async def wait_for_notify(loop, raw_connection): + waiting = True + while waiting: + # SQLAlchemy isn't asynchronous, poll in a new thread + # to make sure we've received any notifications + await loop.run_in_executor(None, raw_connection.poll) + while raw_connection.notifies: + # End the loop after clearing out all pending + # notifications + waiting = False + raw_connection.notifies.pop() + if waiting: + # If we had no notifications wait 15 seconds then + # re-check + await asyncio.sleep(15) + + +async def get_data_ongoing_psql_pubsub(*args, historical=False, **kwargs): + last_id = 0 + if not historical: + kwargs["inserted_after_record_id"] = last_id = await get_newest_record_id() + db_session = db_session_var.get() + db_session.execute("LISTEN apd_aggregation;") + loop = asyncio.get_running_loop() + while True: + async for datapoint in get_data(*args, order=False, **kwargs): + if datapoint.id > last_id: + # This is the newest datapoint we have handled so far + last_id = datapoint.id + yield datapoint + # Next time, find only data points later than the latest we've seen + kwargs["inserted_after_record_id"] = last_id + # Commit the DB to store any work that was done in this loop and + # ensure that any isolation level issues do not prevent loading more + # data + db_session.commit() + + connection = db_session.connection() + raw_connection = connection.connection + await wait_for_notify(loop, raw_connection) + # Always yield new records from this point on diff --git a/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/actions/trigger.py b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/actions/trigger.py new file mode 100644 index 0000000..c0df3ca --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/actions/trigger.py @@ -0,0 +1,34 @@ +import dataclasses +import typing as t +import uuid + +from ..database import DataPoint +from ..exceptions import IncompatibleTriggerError +from .base import Trigger + + +@dataclasses.dataclass(frozen=True) +class ValueThresholdTrigger(Trigger[bool]): + name: str + threshold: float + comparator: t.Callable[[float, float], bool] + sensor_name: str + deployment_id: t.Optional[uuid.UUID] = dataclasses.field(default=None) + + async def match(self, datapoint: DataPoint) -> bool: + if datapoint.sensor_name != self.sensor_name: + return False + elif self.deployment_id and datapoint.deployment_id != self.deployment_id: + return False + return True + + async def extract(self, datapoint: DataPoint) -> bool: + if datapoint.data is None: + raise IncompatibleTriggerError("Datapoint does not contain data") + elif isinstance(datapoint.data, float): + value = datapoint.data + elif isinstance(datapoint.data, dict) and "magnitude" in datapoint.data: + value = datapoint.data["magnitude"] + else: + raise IncompatibleTriggerError("Unrecognised data format") + return self.comparator(value, self.threshold) # type: ignore diff --git a/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/alembic/README b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/alembic/README new file mode 100644 index 0000000..7d90be0 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/alembic/README @@ -0,0 +1,12 @@ +Generic single-database configuration. + + +# Database setup + +To generate the required database tables you must create an alembic.ini file, as follows: + + [alembic] + script_location = apd.aggregation:alembic + sqlalchemy.url = postgresql+psycopg2://apd@localhost/apd + +and run `alembic upgrade head`. This should also be done after every upgrade of the software. diff --git a/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/alembic/env.py b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/alembic/env.py new file mode 100644 index 0000000..4c8a2c2 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/alembic/env.py @@ -0,0 +1,80 @@ +from logging.config import fileConfig + +from sqlalchemy import engine_from_config +from sqlalchemy import pool +from alembic import context + +from apd.aggregation.database import metadata + + +# this is the Alembic Config object, which provides +# access to the values within the .ini file in use. +config = context.config + +# Interpret the config file for Python logging. +# This line sets up loggers basically. +if config.config_file_name: + fileConfig(config.config_file_name) + +target_metadata = metadata + + +def include_object(object, name, type_, reflected, compare_to): + if object.info.get("is_view", False): + return False + return True + + +def run_migrations_offline(): + """Run migrations in 'offline' mode. + + This configures the context with just a URL + and not an Engine, though an Engine is acceptable + here as well. By skipping the Engine creation + we don't even need a DBAPI to be available. + + Calls to context.execute() here emit the given string to the + script output. + + """ + url = config.get_main_option("sqlalchemy.url") + context.configure( + url=url, + include_object=include_object, + target_metadata=target_metadata, + literal_binds=True, + dialect_opts={"paramstyle": "named"}, + ) + + with context.begin_transaction(): + context.run_migrations() + + +def run_migrations_online(): + """Run migrations in 'online' mode. + + In this scenario we need to create an Engine + and associate a connection with the context. + + """ + connectable = engine_from_config( + config.get_section(config.config_ini_section), + prefix="sqlalchemy.", + poolclass=pool.NullPool, + ) + + with connectable.connect() as connection: + context.configure( + connection=connection, + target_metadata=target_metadata, + include_object=include_object, + ) + + with context.begin_transaction(): + context.run_migrations() + + +if context.is_offline_mode(): + run_migrations_offline() +else: + run_migrations_online() diff --git a/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/alembic/script.py.mako b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/alembic/script.py.mako new file mode 100644 index 0000000..2c01563 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/alembic/script.py.mako @@ -0,0 +1,24 @@ +"""${message} + +Revision ID: ${up_revision} +Revises: ${down_revision | comma,n} +Create Date: ${create_date} + +""" +from alembic import op +import sqlalchemy as sa +${imports if imports else ""} + +# revision identifiers, used by Alembic. +revision = ${repr(up_revision)} +down_revision = ${repr(down_revision)} +branch_labels = ${repr(branch_labels)} +depends_on = ${repr(depends_on)} + + +def upgrade(): + ${upgrades if upgrades else "pass"} + + +def downgrade(): + ${downgrades if downgrades else "pass"} diff --git a/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py new file mode 100644 index 0000000..ef671bd --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py @@ -0,0 +1,32 @@ +"""Add indexes to datapoints + +Revision ID: 4b2df8a6e1ce +Revises: 6d2eacd5da3f +Create Date: 2019-12-02 16:07:41.123116 + +""" +from alembic import op + + +# revision identifiers, used by Alembic. +revision = "4b2df8a6e1ce" +down_revision = "6d2eacd5da3f" +branch_labels = None +depends_on = None + + +def upgrade(): + op.create_index( + op.f("ix_datapoints_collected_at"), + "datapoints", + ["collected_at"], + unique=False, + ) + op.create_index( + op.f("ix_datapoints_sensor_name"), "datapoints", ["sensor_name"], unique=False, + ) + + +def downgrade(): + op.drop_index(op.f("ix_datapoints_sensor_name"), table_name="datapoints") + op.drop_index(op.f("ix_datapoints_collected_at"), table_name="datapoints") diff --git a/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py new file mode 100644 index 0000000..eb02455 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py @@ -0,0 +1,38 @@ +"""Add daily summary view + +Revision ID: 6962f8455a6d +Revises: 4b2df8a6e1ce +Create Date: 2019-12-03 11:50:24.403402 + +""" +from alembic import op + + +# revision identifiers, used by Alembic. +revision = "6962f8455a6d" +down_revision = "4b2df8a6e1ce" +branch_labels = None +depends_on = None + + +def upgrade(): + create_view = """ + CREATE VIEW daily_summary AS + SELECT + datapoints.sensor_name AS sensor_name, + datapoints.data AS data, + count(datapoints.id) AS count + FROM datapoints + WHERE + datapoints.collected_at >= CAST(CURRENT_DATE AS DATE) + AND + datapoints.collected_at < CAST(CURRENT_DATE AS DATE) + 1 + GROUP BY + datapoints.sensor_name, + datapoints.data; + """ + op.execute(create_view) + + +def downgrade(): + op.execute("""DROP VIEW daily_summary""") diff --git a/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py new file mode 100644 index 0000000..b4a3545 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py @@ -0,0 +1,31 @@ +"""Create datapoints table + +Revision ID: 6d2eacd5da3f +Revises: N/A +Create Date: 2019-09-29 13:43:21.242706 + +""" +from alembic import op +import sqlalchemy as sa +from sqlalchemy.dialects import postgresql + +# revision identifiers, used by Alembic. +revision = "6d2eacd5da3f" +down_revision = None +branch_labels = None +depends_on = None + + +def upgrade(): + op.create_table( + "datapoints", + sa.Column("id", sa.Integer(), nullable=False), + sa.Column("sensor_name", sa.String(), nullable=True), + sa.Column("collected_at", postgresql.TIMESTAMP(), nullable=True), + sa.Column("data", postgresql.JSONB(astext_type=sa.Text()), nullable=True), + sa.PrimaryKeyConstraint("id"), + ) + + +def downgrade(): + op.drop_table("datapoints") diff --git a/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/alembic/versions/d8cdc709086b_add_deployment_table.py b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/alembic/versions/d8cdc709086b_add_deployment_table.py new file mode 100644 index 0000000..204e096 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/alembic/versions/d8cdc709086b_add_deployment_table.py @@ -0,0 +1,32 @@ +"""Add deployment table + +Revision ID: d8cdc709086b +Revises: d8d4cf6a178f +Create Date: 2019-12-17 16:28:58.585616 + +""" +from alembic import op +import sqlalchemy as sa +from sqlalchemy.dialects import postgresql + +# revision identifiers, used by Alembic. +revision = "d8cdc709086b" +down_revision = "d8d4cf6a178f" +branch_labels = None +depends_on = None + + +def upgrade(): + op.create_table( + "deployments", + sa.Column("id", postgresql.UUID(as_uuid=True), nullable=False), + sa.Column("uri", sa.String(), nullable=True), + sa.Column("name", sa.String(), nullable=True), + sa.Column("colour", sa.String(), nullable=True), + sa.Column("api_key", sa.String(), nullable=True), + sa.PrimaryKeyConstraint("id"), + ) + + +def downgrade(): + op.drop_table("deployments") diff --git a/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py new file mode 100644 index 0000000..88d5219 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py @@ -0,0 +1,34 @@ +"""Add deployment id to DataPoint + +Revision ID: d8d4cf6a178f +Revises: 6962f8455a6d +Create Date: 2019-12-03 20:58:11.285509 + +""" +from alembic import op +import sqlalchemy as sa +from sqlalchemy.dialects import postgresql + +# revision identifiers, used by Alembic. +revision = "d8d4cf6a178f" +down_revision = "6962f8455a6d" +branch_labels = None +depends_on = None + + +def upgrade(): + op.add_column( + "datapoints", + sa.Column("deployment_id", postgresql.UUID(as_uuid=True), nullable=True), + ) + op.create_index( + op.f("ix_datapoints_deployment_id"), + "datapoints", + ["deployment_id"], + unique=False, + ) + + +def downgrade(): + op.drop_index(op.f("ix_datapoints_deployment_id"), table_name="datapoints") + op.drop_column("datapoints", "deployment_id") diff --git a/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/analysis.py b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/analysis.py new file mode 100644 index 0000000..eeb4ab2 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/analysis.py @@ -0,0 +1,401 @@ +from __future__ import annotations + +import asyncio +import collections +from concurrent.futures import ThreadPoolExecutor +import dataclasses +import datetime +import functools +import math +import typing as t +from uuid import UUID +import warnings + +import matplotlib.pyplot as plt +from matplotlib.axes._base import _AxesBase +from matplotlib.figure import Figure +from pint import _DEFAULT_REGISTRY as ureg + +from apd.aggregation.query import ( + get_data, + get_data_by_deployment, + with_database, + get_deployment_by_id, +) +from apd.aggregation.database import DataPoint, deployment_table +from .utils import merc_x, merc_y, convert_temperature +from .typing import IntermediateMapData, T_key, T_value, CleanerFunc, Cleaned +from .typing import ( + CLEANED_COORD_FLOAT, + CLEANED_DT_FLOAT, + COORD_FLOAT_CLEANER, + DT_FLOAT_CLEANER, +) + +# Static UUID to represent aggregation of other deployments +GLOBAL = UUID("bd02526e-7619-4a59-b04b-1fafd1c262d1") + + +@dataclasses.dataclass +class Config(t.Generic[T_key, T_value]): + title: str + clean: CleanerFunc[Cleaned[T_key, T_value]] + draw: t.Optional[ + t.Callable[ + [t.Any, t.Iterable[T_key], t.Iterable[T_value], t.Optional[str]], None + ] + ] = None + get_data: t.Optional[ + t.Callable[..., t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]] + ] = None + ylabel: t.Optional[str] = None + sensor_name: dataclasses.InitVar[str] = None + + def __post_init__(self, sensor_name: t.Optional[str] = None) -> None: + if self.draw is None: + self.draw = draw_date # type: ignore + if sensor_name is not None: + warnings.warn( + DeprecationWarning( + f"The sensor_name parameter is deprecated. Please pass " + f"get_data=get_one_sensor_by_deployment('{sensor_name}') " + f"to ensure the same behaviour. The sensor_name= parameter " + f"will be removed in apd.aggregation 3.0." + ), + stacklevel=3, + ) + if self.get_data is None: + self.get_data = get_one_sensor_by_deployment(sensor_name) + if self.get_data is None: + raise ValueError("You must specify a get_data function") + + +def draw_date( + plot: _AxesBase, + x: t.Iterable[datetime.datetime], + y: t.Iterable[float], + colour: t.Optional[str], +) -> None: + plot.plot_date(x, y, color=colour, linestyle="-", marker="", xdate=True) + + +def draw_map( + plot: _AxesBase, + x: t.Iterable[t.Tuple[float, float]], + y: t.Iterable[float], + colour: t.Optional[str], +) -> None: + lon = [merc_y(coord[0]) for coord in x] + lat = [merc_x(coord[1]) for coord in x] + + for axis in "x", "y": + plt.tick_params( + axis=axis, + which="both", + bottom=False, + top=False, + left=False, + right=False, + labelbottom=False, + labelleft=False, + ) + + plot.tricontourf(lat, lon, y) + plot.plot(lat, lon, "wo", ms=3) + plot.set_aspect(1.0) + + +def get_map_cleaner_for(sensor_name: str,) -> COORD_FLOAT_CLEANER: + """Given a sensor_name that represents a float, return a coroutine that acts as a cleaner + extracting that sensor's data keyed by the value of a Location sensor.""" + + async def clean_latest_coord_and_value( + datapoints: t.AsyncIterator[DataPoint], + ) -> CLEANED_COORD_FLOAT: + + # We will iterate over data points and build an entry in cleaned_data + # for each deployment. This lets newer data replace older data, as + # datapoints is assumed to be in date order + # IntermediateMapData is a typing hint for a dictionary with specific key/values + cleaned_data: t.Dict[UUID, IntermediateMapData] = {} + async for datapoint in datapoints: + # Get the existing data for this deployment, if we've seen it before + row_data = cleaned_data.get(datapoint.deployment_id, None) + if row_data is None: + # This is the first time we've seen this deployment + row_data = {"coord": None, "value": None} + if datapoint.sensor_name == "Location": + # Coord is a 2-tuple of floats + row_data["coord"] = ( + float(datapoint.data[0]), + float(datapoint.data[1]), + ) + elif datapoint.sensor_name == sensor_name: + # Value is a single float + row_data["value"] = float(datapoint.data) + # Store the info about this deployment back into the cleaned_data set + cleaned_data[datapoint.deployment_id] = row_data + + for data in cleaned_data.values(): + if data["coord"] is None or data["value"] is None: + # We only got a partial record, don't plot this + continue + yield data["coord"], data["value"] + + # Return the set up cleaner coroutine + return clean_latest_coord_and_value + + +async def clean_watthours_to_watts( + datapoints: t.AsyncIterator[DataPoint], +) -> CLEANED_DT_FLOAT: + last_watthours = None + last_time = None + async for datapoint in datapoints: + if datapoint.data is None: + continue + time = datapoint.collected_at + if datapoint.data["unit"] == "watt_hour": + watt_hours = datapoint.data["magnitude"] + else: + watt_hours = ( + ureg.Quantity(datapoint.data["magnitude"], datapoint.data["unit"]) + .to(ureg.watt_hour) + .magnitude + ) + if last_watthours: + seconds_elapsed = (time - last_time).total_seconds() + hours_elapsed = seconds_elapsed / (60.0 * 60.0) + additional_power = watt_hours - last_watthours + power = additional_power / hours_elapsed + yield time, power + last_watthours = watt_hours + last_time = datapoint.collected_at + + +async def clean_magnitude(datapoints: t.AsyncIterator[DataPoint],) -> CLEANED_DT_FLOAT: + async for datapoint in datapoints: + if datapoint.data is None: + continue + yield datapoint.collected_at, datapoint.data["magnitude"] + + +def convert_temperature_system( + cleaner: DT_FLOAT_CLEANER, temperature_unit: str, +) -> DT_FLOAT_CLEANER: + async def converter(datapoints: t.AsyncIterator[DataPoint],) -> CLEANED_DT_FLOAT: + results = cleaner(datapoints) + async for date, temp_c in results: + yield date, convert_temperature(temp_c, "degC", temperature_unit) + + return converter + + +async def clean_temperature_fluctuations( + datapoints: t.AsyncIterator[DataPoint], +) -> CLEANED_DT_FLOAT: + allowed_jitter = 2.5 + allowed_range = (-40, 80) + window_datapoints: t.Deque[DataPoint] = collections.deque(maxlen=3) + + def datapoint_ok(datapoint: DataPoint) -> bool: + """Return False if this data point does not contain a valid temperature""" + if datapoint.data is None: + return False + elif datapoint.data["unit"] != "degC": + # This point is in a different temperature system. While it could be converted + # this cleaner is not yet doing that. + return False + elif not allowed_range[0] < datapoint.data["magnitude"] < allowed_range[1]: + return False + return True + + async for datapoint in datapoints: + if not datapoint_ok(datapoint): + # If the datapoint is invalid then skip directly to the next item + continue + + window_datapoints.append(datapoint) + if len(window_datapoints) == 3: + # Find the temperatures of the datapoints in the window, then average + # the first and last and compare that to the middle point. + window_temperatures = [dp.data["magnitude"] for dp in window_datapoints] + avr_first_last = (window_temperatures[0] + window_temperatures[2]) / 2 + diff_middle_avr = abs(window_temperatures[1] - avr_first_last) + if diff_middle_avr > allowed_jitter: + pass + else: + yield window_datapoints[1].collected_at, window_temperatures[1] + elif len(window_datapoints) == 1: + # The item in the iterator can't be compared to both neighbours + # so should be yielded + yield datapoint.collected_at, datapoint.data["magnitude"] + else: + # Otherwise, let the window fill up, it will be yieleded later + pass + # When the iterator ends the final item is not yet in the middle + # of the window, so the last item must be explicitly yielded. + if len(window_datapoints) > 1 and datapoint_ok(datapoint): + yield datapoint.collected_at, datapoint.data["magnitude"] + + +async def clean_passthrough( + datapoints: t.AsyncIterator[DataPoint], +) -> CLEANED_DT_FLOAT: + async for datapoint in datapoints: + if datapoint.data is None: + continue + else: + yield datapoint.collected_at, datapoint.data + + +def get_one_sensor_by_deployment( + sensor_name: str, +) -> t.Callable[..., t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]]: + return functools.partial(get_data_by_deployment, sensor_name=sensor_name) + + +def get_all_data() -> t.Callable[ + ..., t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]] +]: + async def get_all_data_inner( + *args: t.Any, **kwargs: t.Any + ) -> t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]: + yield GLOBAL, get_data(*args, **kwargs) + + return get_all_data_inner + + +configs = ( + Config( + sensor_name="SolarCumulativeOutput", + clean=clean_watthours_to_watts, + title="Solar generation", + ylabel="Watts", + ), + Config( + sensor_name="RAMAvailable", + clean=clean_passthrough, + title="RAM available", + ylabel="Bytes", + ), + Config( + sensor_name="RelativeHumidity", + clean=clean_passthrough, + title="Relative humidity", + ylabel="Percent", + ), + Config( + sensor_name="Temperature", + clean=clean_temperature_fluctuations, + title="Ambient temperature", + ylabel="Degrees C", + ), +) + + +def get_known_configs() -> t.Dict[str, Config[t.Any, t.Any]]: + return {config.title: config for config in configs} + + +async def plot_sensor( + config: Config[t.Any, t.Any], + plot: _AxesBase, + location_names: t.Dict[UUID, str], + **kwargs: t.Any, +) -> _AxesBase: + locations = [] + if config.get_data is None: + raise ValueError("You must provide a get_data function") + async for deployment_id, query_results in config.get_data(**kwargs): + if deployment_id == GLOBAL: + name = "Global" + else: + try: + deployment = await get_deployment_by_id(deployment_id) + except IndexError: + name = str(deployment_id) + colour = None + else: + name = deployment.name or str(deployment_id) + colour = deployment.colour + # Mypy currently doesn't understand callable fields on datatypes: https://github.com/python/mypy/issues/5485 + points = [dp async for dp in config.clean(query_results)] # type: ignore + if not points: + continue + locations.append(name) + x, y = zip(*points) + plot.set_title(config.title) + plot.set_ylabel(config.ylabel) + if config.draw is None: + raise ValueError("You must provide a get_data function") + config.draw(plot, x, y, colour) + plot.legend(locations) + return plot + + +async def plot_multiple_charts(*args: t.Any, **kwargs: t.Any) -> Figure: + # These parameters are pulled from kwargs to avoid confusing function + # introspection code in IPython widgets + location_names = kwargs.pop("location_names", None) + configs = kwargs.pop("configs", None) + dimensions = kwargs.pop("dimensions", None) + db_uri = kwargs.pop("db_uri", "postgresql+psycopg2://apd@localhost/apd") + + with with_database(db_uri) as session: + loop = asyncio.get_running_loop() + coros = [] + if configs is None: + # If no configs are supplied, use all known configs + configs = get_known_configs().values() + if dimensions is None: + # If no dimensions are supplied, get the square root of the number + # of configs and round it to find a number of columns. This will + # keep the arrangement approximately square. Find rows by multiplying + # out rows. + total_configs = len(configs) + columns = round(math.sqrt(total_configs)) + rows = math.ceil(total_configs / columns) + if location_names is None: + location_query = session.query( + deployment_table.c.id, deployment_table.c.name + ) + location_data = await loop.run_in_executor(None, location_query.all) + location_names = dict(location_data) + + figure = plt.figure(figsize=(10 * columns, 5 * rows), dpi=300) + for i, config in enumerate(configs, start=1): + plot = figure.add_subplot(columns, rows, i) + coros.append(plot_sensor(config, plot, location_names, *args, **kwargs)) + await asyncio.gather(*coros) + return figure + + +_Coroutine_Result = t.TypeVar("_Coroutine_Result") + + +def wrap_coroutine( + f: t.Callable[..., t.Coroutine[t.Any, t.Any, _Coroutine_Result]] +) -> t.Callable[..., _Coroutine_Result]: + """Given a coroutine, return a function that runs that coroutine + in a new event loop in an isolated thread""" + + @functools.wraps(f) + def run_in_thread(*args: t.Any, **kwargs: t.Any) -> _Coroutine_Result: + loop = asyncio.new_event_loop() + wrapped = f(*args, **kwargs) + with ThreadPoolExecutor(max_workers=1) as pool: + task = pool.submit(loop.run_until_complete, wrapped) + # Mypy can get confused when nesting generic functions, like we do here + # The fact that Task is generic means we lose the association with + # _CoroutineResult. Adding an explicit cast restores this. + return t.cast(_Coroutine_Result, task.result()) + + return run_in_thread + + +def interactable_plot_multiple_charts( + *args: t.Any, **kwargs: t.Any +) -> t.Callable[..., Figure]: + with_config = functools.partial(plot_multiple_charts, *args, **kwargs) + return wrap_coroutine(with_config) diff --git a/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/cli.py b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/cli.py new file mode 100644 index 0000000..a27e96f --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/cli.py @@ -0,0 +1,287 @@ +import asyncio +import functools +import importlib.util +import logging +import signal +import typing as t +import uuid + +import aiohttp +import click +from sqlalchemy import create_engine +from sqlalchemy.orm import sessionmaker + +from . import collect +from .actions.runner import DataProcessor +from .actions.source import get_data_ongoing +from .database import Deployment, deployment_table +from .query import with_database + +logger = logging.getLogger(__name__) + + +@click.command() +@click.argument("server", nargs=-1) +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +@click.option("--api-key", metavar="", envvar="APD_API_KEY") +@click.option( + "--tolerate-failures", + "-f", + help="If provided, failure to retrieve some sensors' data will not abort the collection process", + is_flag=True, +) +@click.option("-v", "--verbose", is_flag=True, help="Enables verbose mode") +def collect_sensor_data( + db: str, server: t.Tuple[str], api_key: str, tolerate_failures: bool, verbose: bool +) -> t.Optional[int]: + """This loads data from one or more sensors into the specified database. + + Only PostgreSQL databases are supported, as the column definitions use + multiple pg specific features. The database must already exist and be + populated with the required tables. + + The --api-key option is used to specify the access token for the sensors + being queried. + + You may specify any number of servers, the variable should be the full URL + to the sensor's HTTP interface, not including the /v/2.0 portion. Multiple + URLs should be separated with a space. + """ + if tolerate_failures: + attempts = [(s,) for s in server] + else: + attempts = [server] + success = True + for attempt in attempts: + try: + collect.standalone(db, attempt, api_key, echo=verbose) + except ValueError as e: + click.secho(str(e), err=True, fg="red") + success = False + return success + + +def load_handler_config(path: str) -> t.List[DataProcessor]: + # Create a module called user_config backed by the file specified, and load it + # This uses Python's import internals to fake a module in a known location + # Based on an SO answer by Sebastian Rittau and sample code from Brett Cannon + module_spec = importlib.util.spec_from_file_location("user_config", path) + module = importlib.util.module_from_spec(module_spec) + loader = module_spec.loader + if isinstance(loader, importlib.abc.Loader): + loader.exec_module(module) + try: + return module.handlers # type: ignore + except AttributeError as err: + raise ValueError(f"Could not load config file from {path}") from err + else: + # No valid loader could be found + raise ValueError(f"Could not load config file from {path}") + + +def stats_signal_handler(sig, frame, original_sigint_handler=None, handlers=None): + for handler in handlers: + click.echo( + click.style(handler.name, bold=True, fg="red") + " " + handler.stats() + ) + if sig == signal.SIGINT: + click.secho("Press Ctrl+C again to end the process", bold=True) + handler = signal.getsignal(signal.SIGINT) + signal.signal(signal.SIGINT, original_sigint_handler) + asyncio.get_running_loop().call_later(5, install_ctrl_c_signal_handler, handler) + return + + +def install_ctrl_c_signal_handler(signal_handler): + click.secho("Press Ctrl+C to view statistics", bold=True) + signal.signal(signal.SIGINT, signal_handler) + + +@click.command() +@click.argument("config", nargs=1) +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +@click.option( + "--historical", + is_flag=True, + help="Also trigger actions for data points that were already present in the database", +) +@click.option("-v", "--verbose", is_flag=True, help="Enables verbose mode") +def run_actions( + config: str, db: str, verbose: bool, historical: bool +) -> t.Optional[int]: + """This runs the long-running action processors defined in a config file. + + The configuration file specified should be a Python file that defines a + list of DataProcessor objects called processors.n + """ + logging.basicConfig(level=logging.DEBUG if verbose else logging.WARN) + + async def main_loop(): + with with_database(db): + logger.info("Loading configuration") + handlers = load_handler_config(config) + + logger.info(f"Configured {len(handlers)} handlers") + starters = [handler.start() for handler in handlers] + await asyncio.gather(*starters) + + logger.info(f"Ingesting data") + data = get_data_ongoing(historical=historical) + + original_sigint_handler = signal.getsignal(signal.SIGINT) + signal_handler = functools.partial( + stats_signal_handler, + handlers=handlers, + original_sigint_handler=original_sigint_handler, + ) + + for signal_name in "SIGINFO", "SIGUSR1", "SIGINT": + try: + signal.signal(signal.signals[signal_name], signal_handler) + except AttributeError: + pass + + async for datapoint in data: + for handler in handlers: + await handler.push(datapoint) + + asyncio.run(main_loop()) + return True + + +@click.group() +def deployments(): + pass + + +@deployments.command() +@click.argument("uri") +@click.argument("name") +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +@click.option("--api-key", metavar="", envvar="APD_API_KEY") +@click.option("--colour") +def add( + db: str, uri: str, name: str, api_key: t.Optional[str], colour: t.Optional[str], +): + """This creates a record of a new deployment in the database. + """ + deployment = Deployment(id=None, uri=uri, name=name, api_key=api_key, colour=colour) + + async def http_get_deployment_id(): + async with aiohttp.ClientSession() as http: + collect.http_session_var.set(http) + return await collect.get_deployment_id(uri) + + deployment.id = asyncio.run(http_get_deployment_id()) + insert = deployment_table.insert().values(**deployment._asdict()) + + engine = create_engine(db) + sm = sessionmaker(engine) + Session = sm() + Session.execute(insert) + Session.commit() + return True + + +@deployments.command() +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +def list(db: str): + """This creates a record of a new deployment in the database. + """ + engine = create_engine(db) + sm = sessionmaker(engine) + Session = sm() + deployments = Session.query(deployment_table).all() + for deployment in deployments: + click.secho(deployment.name, bold=True) + click.echo(click.style("ID ", bold=True) + deployment.id.hex) + click.echo(click.style("URI ", bold=True) + deployment.uri) + click.echo(click.style("API key ", bold=True) + deployment.api_key) + click.echo(click.style("Colour ", bold=True) + str(deployment.colour)) + click.echo() + Session.rollback() + return True + + +@deployments.command() +@click.argument("id") +@click.option("--uri") +@click.option("--name") +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +@click.option("--api-key", metavar="", envvar="APD_API_KEY") +@click.option("--colour") +def edit( + db: str, + id, + uri: t.Optional[str], + name: t.Optional[str], + api_key: t.Optional[str], + colour: t.Optional[str], +): + """This creates a record of a new deployment in the database. + """ + update = {} + if uri is not None: + update["uri"] = uri + if name is not None: + update["name"] = name + if api_key is not None: + update["api_key"] = api_key + if colour is not None: + update["colour"] = colour + deployment_id = uuid.UUID(id) + + update_stmt = ( + deployment_table.update() + .where(deployment_table.c.id == deployment_id) + .values(**update) + ) + + engine = create_engine(db) + sm = sessionmaker(engine) + Session = sm() + Session.execute(update_stmt) + deployments = Session.query(deployment_table).filter( + deployment_table.c.id == deployment_id + ) + Session.commit() + + for deployment in deployments: + click.secho(deployment.name, bold=True) + click.echo(click.style("ID ", bold=True) + deployment.id.hex) + click.echo(click.style("URI ", bold=True) + deployment.uri) + click.echo(click.style("API key ", bold=True) + deployment.api_key) + click.echo(click.style("Colour ", bold=True) + str(deployment.colour)) + click.echo() + + return True diff --git a/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/collect.py b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/collect.py new file mode 100644 index 0000000..2ec7c01 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/collect.py @@ -0,0 +1,118 @@ +import asyncio +from contextvars import ContextVar +import datetime +import typing as t +import uuid + +import aiohttp +from sqlalchemy import create_engine +from sqlalchemy.orm import sessionmaker +from sqlalchemy.orm.session import Session + +from .database import DataPoint, datapoint_table, Deployment, deployment_table + +http_session_var: ContextVar[aiohttp.ClientSession] = ContextVar("http_session") + + +async def get_deployment_id(server): + http = http_session_var.get() + if not server.endswith("/"): + server += "/" + url = server + "v/2.1/deployment_id" + async with http.get(url) as request: + if request.status != 200: + raise ValueError(f"Error loading deployment id from {server}") + result = await request.json() + return uuid.UUID(result["deployment_id"]) + + +async def get_data_points(server: str, api_key: t.Optional[str],) -> t.List[DataPoint]: + if not server.endswith("/"): + server += "/" + url = server + "v/2.1/sensors/" + headers = {} + if api_key: + headers["X-API-KEY"] = api_key + http = http_session_var.get() + + # Get the deployment ID in parallel to the sensor data + deployment_id = asyncio.create_task(get_deployment_id(server)) + + async with http.get(url, headers=headers) as request: + result = await request.json() + ok = request.status == 200 + now = datetime.datetime.now() + if ok: + points = [] + for value in result["sensors"]: + points.append( + DataPoint( + sensor_name=value["id"], + collected_at=now, + data=value["value"], + deployment_id=await deployment_id, + ) + ) + return points + else: + raise ValueError( + f"Error loading data from {server}: " + result.get("error", "Unknown") + ) + + +def handle_result(result: t.List[DataPoint], session: Session) -> t.List[DataPoint]: + for point in result: + insert = datapoint_table.insert().values(**point._asdict()) + sql_result = session.execute(insert) + point.id = sql_result.inserted_primary_key[0] + return result + + +async def add_data_from_sensors( + session: Session, servers: t.Iterable[Deployment] +) -> t.List[DataPoint]: + tasks: t.List[t.Awaitable[t.List[DataPoint]]] = [] + points: t.List[DataPoint] = [] + async with aiohttp.ClientSession() as http: + http_session_var.set(http) + tasks = [get_data_points(server.uri, server.api_key) for server in servers] + for results in await asyncio.gather(*tasks): + points += results + loop = asyncio.get_running_loop() + await loop.run_in_executor(None, handle_result, points, session) + return points + + +def standalone( + db_uri: str, servers: t.Tuple[str], api_key: t.Optional[str], echo: bool = False +) -> None: + engine = create_engine(db_uri, echo=echo) + sm = sessionmaker(engine) + Session = sm() + deployments: t.Iterable[Deployment] + if servers: + deployments = tuple( + Deployment(id=None, name=None, colour=None, api_key=api_key, uri=server) + for server in servers + ) + else: + deployment_data = Session.query(deployment_table).all() + deployments = tuple( + Deployment.from_sql_result(deployment) for deployment in deployment_data + ) + asyncio.run(add_data_from_sensors(Session, deployments)) + + if "postgresql" in db_uri: + # On Postgres sent a pubsub notification, in case other processes are waiting + # for this data + Session.execute("NOTIFY apd_aggregation;") + + Session.commit() + + +if __name__ == "__main__": + standalone( + db_uri="postgresql+psycopg2://apd@localhost/apd", + servers=("http://pvoutput:8080/",), + api_key="h3hdfjksfhwkjehnwekj", + ) diff --git a/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/database.py b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/database.py new file mode 100644 index 0000000..f28b469 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/database.py @@ -0,0 +1,129 @@ +from __future__ import annotations + +from dataclasses import dataclass, field, asdict +import datetime +import typing as t +import uuid + +import sqlalchemy +from sqlalchemy.dialects.postgresql import JSONB, DATE, TIMESTAMP, UUID +from sqlalchemy.ext.hybrid import ExprComparator, hybrid_property +from sqlalchemy.orm import sessionmaker +from sqlalchemy.schema import Table + + +metadata = sqlalchemy.MetaData() + +deployment_table = Table( + "deployments", + metadata, + sqlalchemy.Column("id", UUID(as_uuid=True), primary_key=True), + sqlalchemy.Column("uri", sqlalchemy.String, index=False), + sqlalchemy.Column("name", sqlalchemy.String, index=False, nullable=True), + sqlalchemy.Column("colour", sqlalchemy.String, index=False, nullable=True), + sqlalchemy.Column("api_key", sqlalchemy.String, index=False), +) + +datapoint_table = Table( + "datapoints", + metadata, + sqlalchemy.Column("id", sqlalchemy.Integer, primary_key=True), + sqlalchemy.Column("sensor_name", sqlalchemy.String, index=True), + sqlalchemy.Column("collected_at", TIMESTAMP, index=True), + sqlalchemy.Column("deployment_id", UUID(as_uuid=True), index=True), + sqlalchemy.Column("data", JSONB), +) + +daily_summary_view = Table( + "daily_summary", + metadata, + sqlalchemy.Column("sensor_name", sqlalchemy.String), + sqlalchemy.Column("data", JSONB), + sqlalchemy.Column("count", sqlalchemy.Integer), + info={"is_view": True}, +) + + +class DateEqualComparator(ExprComparator): + def __init__(self, fallback_expression, raw_expression): + # Do not try and find update expression from parent + super().__init__(None, fallback_expression, None) + self.raw_expression = raw_expression + + def __eq__(self, other): + """ Returns True iff on the same day as other """ + other_date = sqlalchemy.cast(other, DATE) + return sqlalchemy.and_( + self.raw_expression >= other_date, self.raw_expression < other_date + 1, + ) + + def operate(self, op, *other, **kwargs): + other = [sqlalchemy.cast(date, DATE) for date in other] + return op(self.expression, *other, **kwargs) + + def reverse_operate(self, op, other, **kwargs): + other = [sqlalchemy.cast(date, DATE) for date in other] + return op(other, self.expression, **kwargs) + + +@dataclass +class DataPoint: + sensor_name: str + data: t.Any + deployment_id: uuid.UUID + id: t.Optional[int] = None + collected_at: datetime.datetime = field(default_factory=datetime.datetime.now) + + @classmethod + def from_sql_result(cls, result) -> DataPoint: + return cls(**result._asdict()) + + def _asdict(self) -> t.Dict[str, t.Any]: + data = asdict(self) + if data["id"] is None: + del data["id"] + return data + + @hybrid_property + def collected_on_date(self): + return self.collected_at.date() + + @collected_on_date.comparator # type: ignore + def collected_on_date(cls): + return DateEqualComparator( + fallback_expression=sqlalchemy.cast(datapoint_table.c.collected_at, DATE), + raw_expression=datapoint_table.c.collected_at, + ) + + +@dataclass +class Deployment: + id: t.Optional[uuid.UUID] + uri: str + name: t.Optional[str] + colour: t.Optional[str] + api_key: t.Optional[str] + + @classmethod + def from_sql_result(cls, result) -> Deployment: + return cls(**result._asdict()) + + def _asdict(self) -> t.Dict[str, t.Any]: + data = asdict(self) + return data + + +def main() -> None: + engine = sqlalchemy.create_engine( + "postgresql+psycopg2://apd@localhost/apd", echo=True + ) + sm = sessionmaker(engine) + Session = sm() + if False: + metadata.create_all(engine) + print(Session.query(DataPoint).all()) + pass + + +if __name__ == "__main__": + main() diff --git a/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/exceptions.py b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/exceptions.py new file mode 100644 index 0000000..6200e90 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/exceptions.py @@ -0,0 +1,14 @@ +class NoDataForTrigger(ValueError): + """An error that's raised when a trigger is passed + a data point that cannot be handled due to an incompatible + value being stored""" + + pass + + +class IncompatibleTriggerError(NoDataForTrigger): + """An error that's raised when a trigger is passed + a data point that cannot be handled due to an incompatible + value being stored""" + + pass diff --git a/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/query.py b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/query.py new file mode 100644 index 0000000..14144ff --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/query.py @@ -0,0 +1,154 @@ +import asyncio +import contextlib +from contextvars import ContextVar +import datetime +import typing as t +from uuid import UUID + +from sqlalchemy import create_engine +from sqlalchemy.orm import sessionmaker +from sqlalchemy.orm.session import Session + + +from apd.aggregation.database import ( + datapoint_table, + DataPoint, + deployment_table, + Deployment, +) + + +db_session_var: ContextVar[Session] = ContextVar("db_session") + + +@contextlib.contextmanager +def with_database(uri: t.Optional[str] = None) -> t.Iterator[Session]: + """Given a URI, set up a DB connection, and return a Session as a context manager """ + if uri is None: + uri = "postgresql+psycopg2://localhost/apd" + engine = create_engine(uri) + sm = sessionmaker(engine) + Session = sm() + token = db_session_var.set(Session) + try: + yield Session + Session.commit() + finally: + db_session_var.reset(token) + Session.close() + + +async def get_data( + sensor_name: t.Optional[str] = None, + deployment_id: t.Optional[UUID] = None, + collected_before: t.Optional[datetime.datetime] = None, + collected_after: t.Optional[datetime.datetime] = None, + inserted_after_record_id: t.Optional[int] = None, + order: bool = True, +) -> t.AsyncIterator[DataPoint]: + db_session = db_session_var.get() + loop = asyncio.get_running_loop() + query = db_session.query(datapoint_table) + if sensor_name: + query = query.filter(datapoint_table.c.sensor_name == sensor_name) + if deployment_id: + query = query.filter(datapoint_table.c.deployment_id == deployment_id) + if collected_before: + query = query.filter(datapoint_table.c.collected_at < collected_before) + if collected_after: + query = query.filter(datapoint_table.c.collected_at > collected_after) + if inserted_after_record_id: + query = query.filter(datapoint_table.c.id > inserted_after_record_id) + + if order: + query = query.order_by( + datapoint_table.c.deployment_id, + datapoint_table.c.sensor_name, + datapoint_table.c.collected_at, + ) + + rows = await loop.run_in_executor(None, query.all) + for row in rows: + yield DataPoint.from_sql_result(row) + + +async def get_deployment_ids() -> t.List[UUID]: + db_session = db_session_var.get() + loop = asyncio.get_running_loop() + query = db_session.query(datapoint_table.c.deployment_id).distinct() + return [row.deployment_id for row in await loop.run_in_executor(None, query.all)] + + +async def get_deployment_by_id(deployment_id: UUID) -> Deployment: + db_session = db_session_var.get() + loop = asyncio.get_running_loop() + query = db_session.query(deployment_table).filter( + deployment_table.c.id == deployment_id + ) + return [ + Deployment.from_sql_result(row) + for row in await loop.run_in_executor(None, query.all) + ][0] + + +async def get_data_by_deployment( + *args: t.Any, **kwargs: t.Any +) -> t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]: + """Return an Async Iterator that contains two-item pairs. + These pairs are a string (deployment_id), and an async iterator that contains + the datapoints with that deployment_id. + + Usage example: + + async for deployment_id, datapoints in get_data_by_deployment(): + print(deployment_id) + async for datapoint in datapoints: + print(datapoint) + print() + """ + # Get the data, using the arguments to this function as filters + data = get_data(*args, **kwargs) + + # The two levels of iterator share the item variable, initialise it with the + # first item from the iterator. Also set last_deployment_id to None, so the + # outer iterator knows to start a new group. + last_deployment_id: t.Optional[UUID] = None + try: + item = await data.__anext__() + except StopAsyncIteration: + # There were no items in the underlying query, return immediately + return + + async def subiterator(group_id: UUID) -> t.AsyncIterator[DataPoint]: + """Using a closure, create an iterator that yields the current + item, then yields all items from data while the deployment_id matches + group_id, leaving the first that doesn't match as item in the enclosing + scope.""" + # item is from the enclosing scope + nonlocal item + while item.deployment_id == group_id: + # yield items from data while they match the group_id this iterator represents + yield item + try: + # Advance the underlying iterator + item = await data.__anext__() + except StopAsyncIteration: + # The underlying iterator came to an end, so end the subiterator too + return + + while True: + while item.deployment_id == last_deployment_id: + # We are trying to advance the outer iterator while the underlying iterator + # is still part-way through a group. Speed through the underlying until we + # hit an item where the deployment_id is different to the last one (or, is not + # None, in the case of the start of the iterator) + try: + item = await data.__anext__() + except StopAsyncIteration: + # We hit the end of the underlying iterator: end this iterator too + return + last_deployment_id = item.deployment_id + # Don't yield an iterator for unclassified deployments + if last_deployment_id is not None: + # Instantiate a subiterator for this group + yield last_deployment_id, subiterator(last_deployment_id) diff --git a/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/typing.py b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/typing.py new file mode 100644 index 0000000..5db1337 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/typing.py @@ -0,0 +1,48 @@ +import datetime +import typing as t +from typing_extensions import Protocol + +from apd.aggregation.database import DataPoint + + +# Aliases for common types +# These type variables allow for generic functions. T_key represents the place +# in a chart that an item will be placed, and T_value the kind of data that is plotted. +T_key = t.TypeVar("T_key") +T_value = t.TypeVar("T_value") + +# Cleaned is a placeholder type, representing an async iterator of key and value functions +# Cleaned[float, float] is equivalent to typing.AsyncIterator[Tuple[builtins.float, builtins.float]] +Cleaned = t.AsyncIterator[t.Tuple[T_key, T_value]] + +# T_cleaned represents a placeholder for the result of a cleaner function, and is *covariant* +# because it can accept compatible types (such as ints where floats were declared). +# It is bound to Cleaned, so only items that match the specification for Cleaned (for any values +# of T_key or T_value) are valid +T_cleaned = t.TypeVar("T_cleaned", covariant=True, bound=Cleaned) + + +# CleanerFunc is a generic protocol, it matches any Callable that converts an async iterator +# of datapoints to its type. So, CleanerFunc[float] would be equivalent to t.Callable[[t.AsyncIterator[DataPoint]], float] +class CleanerFunc(Protocol[T_cleaned]): + def __call__(self, datapoints: t.AsyncIterator[DataPoint]) -> T_cleaned: + ... + + +# CLEANED_DT_FLOAT is a Cleaned represents datetime/float pairs, for simple charts +CLEANED_DT_FLOAT = Cleaned[datetime.datetime, float] +# and CLEANED_COORD_FLOAT represents (lat/lon), float pairs +CLEANED_COORD_FLOAT = Cleaned[t.Tuple[float, float], float] + +# The _CLEANER variants are functions that return their matching iterators from above +DT_FLOAT_CLEANER = CleanerFunc[CLEANED_DT_FLOAT] +COORD_FLOAT_CLEANER = CleanerFunc[CLEANED_COORD_FLOAT] + + +# When drawing a map we will be building a dictionary of UUID to dictionary +# That inner dictionary should contain coord (float, float) +# and value (float) only. Either or both can be None. +# This class is abstract, it's just for type checking. +class IntermediateMapData(t.TypedDict): + coord: t.Optional[t.Tuple[float, float]] + value: t.Optional[float] diff --git a/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/utils.py b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/utils.py new file mode 100644 index 0000000..75bf6b3 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/src/apd/aggregation/utils.py @@ -0,0 +1,100 @@ +from __future__ import annotations + +import contextlib +import functools +import importlib +import io +import logging +import math +import os +import typing as t + +from pint import _DEFAULT_REGISTRY as ureg + + +# Set up mercator transform from https://wiki.openstreetmap.org/wiki/Mercator#Python +# Thanks to Paulo Silva and the OSM contributors +def merc_x(lon: float) -> float: + r_major = 6378137.000 + return r_major * math.radians(lon) + + +def merc_y(lat: float) -> float: + if lat > 89.5: + lat = 89.5 + if lat < -89.5: + lat = -89.5 + r_major = 6378137.000 + r_minor = 6356752.3142 + temp = r_minor / r_major + eccent = math.sqrt(1 - temp ** 2) + phi = math.radians(lat) + sinphi = math.sin(phi) + con = eccent * sinphi + com = eccent / 2 + con = ((1.0 - con) / (1.0 + con)) ** com + ts = math.tan((math.pi / 2 - phi) / 2) / con + y = 0 - r_major * math.log(ts) + return y + + +@functools.lru_cache +def convert_temperature(magnitude: float, origin_unit: str, target_unit: str) -> float: + # if origin_unit == "degC" and target_unit == "degF": + # return (magnitude * 1.8) + 32 + temp = ureg.Quantity(magnitude, origin_unit) + return temp.to(target_unit).magnitude + + +@contextlib.contextmanager +def jupyter_page_file() -> t.Iterator[io.StringIO]: + from IPython.core import page + + output = io.StringIO() + yield output + output.seek(0) + page.page(output.read()) + + +@contextlib.contextmanager +def profile_with_yappi() -> t.Iterator[None]: + import yappi + + yappi.clear_stats() + yappi.start() + try: + yield None + finally: + yappi.stop() + + +@functools.lru_cache +def get_package_prefix(package: str) -> str: + mod = importlib.import_module(package) + prefix = mod.__file__ + if prefix.endswith("__init__.py"): + prefix = os.path.dirname(prefix) + return prefix + + +def yappi_package_matches(stat, packages: t.List[str]): + """ This object can be passed to yappi's filter_callback to limit + by Python package.""" + for package in packages: + prefix = get_package_prefix(package) + if stat.full_name.startswith(prefix): + return True + return False + + +class AddSensorNameDefault(logging.Filter): + def filter(self, record): + if not hasattr(record, "sensorname"): + record.sensorname = "none" + return True + + +class SensorNameStreamHandler(logging.StreamHandler): + def __init__(self, *args, **kwargs): + super().__init__() + self.addFilter(AddSensorNameDefault()) diff --git a/Ch12/apd.aggregation-chapter12-ex01/tests/__init__.py b/Ch12/apd.aggregation-chapter12-ex01/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/Ch12/apd.aggregation-chapter12-ex01/tests/conftest.py b/Ch12/apd.aggregation-chapter12-ex01/tests/conftest.py new file mode 100644 index 0000000..309a30c --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/tests/conftest.py @@ -0,0 +1,127 @@ +import datetime +from uuid import UUID + +from apd.aggregation.database import datapoint_table +from apd.aggregation.query import db_session_var + +from alembic.config import Config +from alembic.script import ScriptDirectory +from alembic.runtime.environment import EnvironmentContext +import pytest + + +@pytest.fixture +def db_uri(): + return "postgresql+psycopg2://apd@localhost/apd-test" + + +@pytest.fixture +def db_session(db_uri): + from sqlalchemy import create_engine + from sqlalchemy.orm import sessionmaker + + engine = create_engine(db_uri, echo=False) + sm = sessionmaker(engine) + Session = sm() + reset = db_session_var.set(Session) + yield Session + db_session_var.reset(reset) + Session.close() + + +@pytest.fixture +def migrated_db(db_uri, db_session): + config = Config() + config.set_main_option("script_location", "apd.aggregation:alembic") + config.set_main_option("sqlalchemy.url", db_uri) + script = ScriptDirectory.from_config(config) + + def upgrade(rev, context): + return script._upgrade_revs(script.get_current_head(), rev) + + def downgrade(rev, context): + return script._downgrade_revs(None, rev) + + with EnvironmentContext(config, script, fn=upgrade): + script.run_env() + + try: + yield db_session + finally: + # Clear any pending work from the db_session connection + db_session.rollback() + + with EnvironmentContext(config, script, fn=downgrade): + script.run_env() + + +@pytest.fixture +def populated_db(migrated_db, db_session): + datas = [ + { + "id": 1, + "sensor_name": "Test", + "data": "1", + "collected_at": datetime.datetime(2020, 4, 1, 12, 0, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 2, + "sensor_name": "Test", + "data": "2", + "collected_at": datetime.datetime(2020, 4, 1, 12, 1, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 3, + "sensor_name": "Test", + "data": "3", + "collected_at": datetime.datetime(2020, 4, 1, 12, 2, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 4, + "sensor_name": "Test", + "data": "4", + "collected_at": datetime.datetime(2020, 4, 1, 12, 3, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 5, + "sensor_name": "OtherTest", + "data": "5", + "collected_at": datetime.datetime(2020, 4, 1, 12, 4, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 6, + "sensor_name": "Test", + "data": "1", + "collected_at": datetime.datetime(2020, 4, 1, 12, 0, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + { + "id": 7, + "sensor_name": "Test", + "data": "1", + "collected_at": datetime.datetime(2020, 4, 1, 12, 1, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + { + "id": 8, + "sensor_name": "Test", + "data": "2", + "collected_at": datetime.datetime(2020, 4, 1, 12, 2, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + { + "id": 9, + "sensor_name": "OtherTest", + "data": "3", + "collected_at": datetime.datetime(2020, 4, 1, 12, 3, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + ] + for data in datas: + insert = datapoint_table.insert().values(**data) + db_session.execute(insert) diff --git a/Ch12/apd.aggregation-chapter12-ex01/tests/test_actions_actions.py b/Ch12/apd.aggregation-chapter12-ex01/tests/test_actions_actions.py new file mode 100644 index 0000000..1429fb3 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/tests/test_actions_actions.py @@ -0,0 +1,118 @@ +import datetime +import unittest.mock + +import pytest + +from apd.aggregation.actions.base import Action +from apd.aggregation.actions.action import ( + OnlyOnChangeActionWrapper, + OnlyAfterDateActionWrapper, + SaveToDatabaseAction, +) +from apd.aggregation.query import db_session_var, get_data + +from .test_analysis import generate_datapoints + + +class TestOnlyAfterDateActionWrapper: + @pytest.fixture + def subject(self): + return OnlyAfterDateActionWrapper + + @pytest.mark.asyncio + async def test_minimum_date_before_passing(self, subject): + wrapped = unittest.mock.Mock(spec=Action) + wrapper = subject( + wrapped, date_threshold=datetime.datetime(2020, 4, 1, 14, 0, 0) + ) + await wrapper.start() + + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 13, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 14, 0, 0), 22.0), + (datetime.datetime(2020, 4, 1, 15, 0, 0), 22.0), + (datetime.datetime(2020, 4, 1, 16, 0, 0), 21.0), + ] + datapoints = generate_datapoints(data) + all_datapoints = [] + async for datapoint in datapoints: + all_datapoints.append(datapoint) + await wrapper.handle(datapoint) + + assert len(wrapped.handle.mock_calls) == 2 + passed = [call.args[0] for call in wrapped.handle.mock_calls] + assert passed == [all_datapoints[3], all_datapoints[4]] + + +class TestOnlyOnChangeActionWrapper: + @pytest.fixture + def subject(self): + return OnlyOnChangeActionWrapper + + @pytest.mark.asyncio + async def test_initial_value_always_passed(self, subject): + wrapped = unittest.mock.Mock(spec=Action) + wrapper = subject(wrapped) + await wrapper.start() + + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + ] + datapoints = generate_datapoints(data) + first = await datapoints.asend(None) + await wrapper.handle(first) + assert len(wrapped.handle.mock_calls) == 1 + assert wrapped.handle.mock_calls[0].args[0] == first + + @pytest.mark.asyncio + async def test_subsequent_values_only_passed_when_differing(self, subject): + wrapped = unittest.mock.Mock(spec=Action) + wrapper = subject(wrapped) + await wrapper.start() + + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 13, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 14, 0, 0), 22.0), + (datetime.datetime(2020, 4, 1, 15, 0, 0), 22.0), + (datetime.datetime(2020, 4, 1, 16, 0, 0), 21.0), + ] + datapoints = generate_datapoints(data) + all_datapoints = [] + async for datapoint in datapoints: + all_datapoints.append(datapoint) + await wrapper.handle(datapoint) + + assert len(wrapped.handle.mock_calls) == 3 + passed = [call.args[0] for call in wrapped.handle.mock_calls] + assert passed == [all_datapoints[0], all_datapoints[2], all_datapoints[4]] + + +class TestSaveToDatabaseAction: + @pytest.fixture + def subject(self): + return SaveToDatabaseAction + + @pytest.mark.asyncio + async def test_datapoints_are_persisted(self, subject, migrated_db): + db_session_var.set(migrated_db) + + wrapper = subject() + await wrapper.start() + + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + ] + generated_datapoints = [] + async for datapoint in generate_datapoints(data): + generated_datapoints.append(datapoint) + await wrapper.handle(datapoint) + + stored_datapoints = [ + point async for point in get_data(sensor_name="TestSensor") + ] + assert stored_datapoints[0].data == generated_datapoints[0].data + assert ( + stored_datapoints[0].deployment_id == generated_datapoints[0].deployment_id + ) diff --git a/Ch12/apd.aggregation-chapter12-ex01/tests/test_actions_runner.py b/Ch12/apd.aggregation-chapter12-ex01/tests/test_actions_runner.py new file mode 100644 index 0000000..f263420 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/tests/test_actions_runner.py @@ -0,0 +1,110 @@ +import asyncio +import datetime +import operator + +import pytest + +from apd.aggregation.actions.runner import DataProcessor +from apd.aggregation.actions.base import Trigger +from apd.aggregation.actions.action import ( + OnlyOnChangeActionWrapper, + SaveToDatabaseAction, +) +from apd.aggregation.actions.trigger import ValueThresholdTrigger +from apd.aggregation.database import DataPoint +from apd.aggregation.query import get_data +from .test_analysis import generate_datapoints + + +class AlwaysTrueTrigger(Trigger[bool]): + name = "AlwaysTrue" + + async def start(self): + pass + + async def match(self, datapoint: DataPoint) -> bool: + return True + + async def extract(self, datapoint: DataPoint) -> bool: + return True + + +class StoreAction(Trigger[bool]): + async def start(self): + self.data = asyncio.Queue() + + async def handle(self, datapoint: DataPoint) -> None: + await self.data.put(datapoint) + + +class TestRunner: + @pytest.fixture + @pytest.mark.asyncio + async def runner(self, event_loop): + processor = DataProcessor( + name="Test data runner", action=StoreAction(), trigger=AlwaysTrueTrigger(), + ) + await processor.start() + yield processor + await processor.end() + + @pytest.mark.asyncio + async def test_simple_flow(self, runner, event_loop): + data = [(datetime.datetime(2020, 4, 1, 12, 0, 0), 65.0)] + datapoints = generate_datapoints(data) + async for datapoint in datapoints: + await runner.push(datapoint) + + output = await runner.action.data.get() + assert output.sensor_name == runner.trigger.name + assert output.collected_at == data[0][0] + assert output.data == True + + +class TestRealWorldRunner: + @pytest.fixture + @pytest.mark.asyncio + async def runner(self, migrated_db, event_loop): + processor = DataProcessor( + name="TemperatureAbove20", + action=OnlyOnChangeActionWrapper(SaveToDatabaseAction()), + trigger=ValueThresholdTrigger( + name="TemperatureAbove20", + threshold=20, + comparator=operator.gt, + sensor_name="Temperature", + ), + ) + await processor.start() + yield processor + await processor.end() + + @pytest.mark.asyncio + async def test_real_usecase(self, runner, event_loop): + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 19.0), + (datetime.datetime(2020, 4, 1, 13, 0, 0), 18.0), + (datetime.datetime(2020, 4, 1, 14, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 15, 0, 0), 22.0), + (datetime.datetime(2020, 4, 1, 16, 0, 0), 21.0), + ] + + async for datapoint in generate_datapoints(data, sensor_name="Temperature"): + await runner.push(datapoint) + + # Wait up to 10 seconds for the runner to be idle + await asyncio.wait_for(runner.idle(), timeout=10) + + stored_datapoints = [ + point async for point in get_data(sensor_name="TemperatureAbove20") + ] + + assert len(stored_datapoints) == 2 + assert stored_datapoints[0].data == False + assert stored_datapoints[0].collected_at == datetime.datetime( + 2020, 4, 1, 12, 0, 0 + ) + assert stored_datapoints[1].data == True + assert stored_datapoints[1].collected_at == datetime.datetime( + 2020, 4, 1, 14, 0, 0 + ) diff --git a/Ch12/apd.aggregation-chapter12-ex01/tests/test_actions_triggers.py b/Ch12/apd.aggregation-chapter12-ex01/tests/test_actions_triggers.py new file mode 100644 index 0000000..275c8e8 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/tests/test_actions_triggers.py @@ -0,0 +1,127 @@ +import datetime +import operator + +import pytest + +from apd.aggregation.actions.trigger import ValueThresholdTrigger + +from .test_analysis import generate_datapoints + + +class TestValueThresholdTrigger: + @pytest.fixture + def subject(self): + return ValueThresholdTrigger + + @pytest.mark.asyncio + @pytest.mark.parametrize( + "comparison,expected", + [ + (operator.gt, [False, False, False, True]), + (operator.eq, [False, False, True, False]), + (operator.le, [True, True, True, False]), + ], + ) + async def test_simple_value(self, subject, comparison, expected): + trigger = subject( + name=f"TestSensor{comparison.__name__}21", + threshold=21, + comparator=comparison, + sensor_name="TestSensor", + ) + + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 19.0), + (datetime.datetime(2020, 4, 1, 12, 0, 0), 20.0), + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 0), 22.0), + ] + datapoints = generate_datapoints(data) + + outputs = [] + async for datapoint in datapoints: + assert await trigger.match(datapoint) + outputs.append(await trigger.extract(datapoint)) + + assert outputs == expected + + @pytest.mark.asyncio + @pytest.mark.parametrize( + "comparison,expected", + [ + (operator.gt, [False, False, False, True]), + (operator.eq, [False, False, True, False]), + (operator.le, [True, True, True, False]), + ], + ) + async def test_magnitude_value(self, subject, comparison, expected): + trigger = subject( + name=f"TestSensor{comparison.__name__}21", + threshold=21, + comparator=comparison, + sensor_name="TestSensor", + ) + + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 19.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 20.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 22.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + + outputs = [] + async for datapoint in datapoints: + assert await trigger.match(datapoint) + outputs.append(await trigger.extract(datapoint)) + + assert outputs == expected + + @pytest.mark.asyncio + async def test_different_data_format_fails_to_extract(self, subject): + trigger = subject( + name="TestSensorAbove21", + threshold=21, + comparator=operator.eq, + sensor_name="TestSensor", + ) + + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), "21.0"), + ] + datapoints = generate_datapoints(data) + + async for datapoint in datapoints: + assert await trigger.match(datapoint) + with pytest.raises(ValueError): + await trigger.extract(datapoint) + assert await trigger.handle(datapoint) is None + + @pytest.mark.asyncio + async def test_different_sensors_are_not_matched(self, subject): + trigger = subject( + name="TestSensorAbove21", + threshold=21, + comparator=operator.eq, + sensor_name="OtherSensor", + ) + + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + ] + datapoints = generate_datapoints(data) + + async for datapoint in datapoints: + assert not await trigger.match(datapoint) diff --git a/Ch12/apd.aggregation-chapter12-ex01/tests/test_analysis.py b/Ch12/apd.aggregation-chapter12-ex01/tests/test_analysis.py new file mode 100644 index 0000000..053272e --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/tests/test_analysis.py @@ -0,0 +1,525 @@ +import collections.abc +import datetime +import functools +import uuid +import warnings + +import pytest + +from apd.aggregation import analysis +from apd.aggregation.database import DataPoint, datapoint_table +from apd.aggregation.query import db_session_var + + +async def generate_datapoints(datas, sensor_name="TestSensor"): + deployment_id = uuid.uuid4() + for i, (time, data) in enumerate(datas, start=1): + yield DataPoint( + id=i, + collected_at=time, + sensor_name=sensor_name, + data=data, + deployment_id=deployment_id, + ) + + +@functools.singledispatch +def consume(input_iterator): + items = [item for item in input_iterator] + + def inner_iterator(): + for item in items: + yield item + + return inner_iterator() + + +@consume.register +async def consume_async(input_iterator: collections.abc.AsyncIterator): + items = [item async for item in input_iterator] + + async def inner_iterator(): + for item in items: + yield item + + return inner_iterator() + + +class TestPassThroughCleaner: + @pytest.fixture + def cleaner(self): + return analysis.clean_passthrough + + @pytest.mark.asyncio + async def test_float_passthrough(self, cleaner): + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 65.0), + (datetime.datetime(2020, 4, 1, 13, 0, 0), 65.5), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == data + + @pytest.mark.asyncio + async def test_Nones_are_skipped(self, cleaner): + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), None), + (datetime.datetime(2020, 4, 1, 13, 0, 0), 65.5), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 13, 0, 0), 65.5), + ] + + +class TestTemperatureCleaner: + @pytest.fixture + def cleaner(self): + return analysis.clean_temperature_fluctuations + + @pytest.mark.asyncio + async def test_window_not_full(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [(datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0)] + + @pytest.mark.asyncio + async def test_window_exactly_full(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 1), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 21.0), + ] + + @pytest.mark.asyncio + async def test_window_overfilled(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 3), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 4), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 1), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 3), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 4), 21.0), + ] + + @pytest.mark.asyncio + async def test_outlier_dropped(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 61.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 21.0), + ] + + @pytest.mark.asyncio + async def test_limited_to_DHT22_range(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 91.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 91.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 91.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [] + + @pytest.mark.asyncio + async def test_Nones_dropped(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 31.0, "unit": "degC"}, + ), + (datetime.datetime(2020, 4, 1, 12, 0, 1), None,), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 32.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 31.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 32.0), + ] + + +class TestWattHourCleaner: + @pytest.fixture + def cleaner(self): + return analysis.clean_watthours_to_watts + + @pytest.fixture(scope="class") + def huge_data_set(self): + date = datetime.datetime(2020, 4, 1, 12, 0, 0) + power = 500 + data = [] + for i in range(50_000): + date += datetime.timedelta(hours=1) + power += i + data.append((date, {"magnitude": power, "unit": "watt_hour"},)) + return data + + @pytest.mark.asyncio + async def test_one_entry_insufficient_to_find_diff(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [] + + @pytest.mark.asyncio + async def test_two_entries_provides_diff_with_second_time(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 13, 0, 0), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 1 + assert output[0][0] == datetime.datetime(2020, 4, 1, 13, 0, 0) + assert output[0][1] == pytest.approx(9.0, 0.0001) + + @pytest.mark.asyncio + async def test_nonstandard_units_can_be_used(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 13, 0, 0), + {"magnitude": 10000.0, "unit": "joule"}, + ), + ( + datetime.datetime(2020, 4, 1, 14, 0, 0), + {"magnitude": 3.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 2 + assert output[0][0] == datetime.datetime(2020, 4, 1, 13, 0, 0) + assert output[0][1] == pytest.approx(1.7777, 0.001) + assert output[1][0] == datetime.datetime(2020, 4, 1, 14, 0, 0) + assert output[1][1] == pytest.approx(0.22222, 0.001) + + @pytest.mark.asyncio + async def test_fractional_hour(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 23, 42), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 1 + assert output[0][0] == datetime.datetime(2020, 4, 1, 12, 23, 42) + assert output[0][1] == pytest.approx(22.7848, 0.001) + + @pytest.mark.asyncio + async def test_diff_happens_pairwise(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 23, 42), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 13, 23, 42), + {"magnitude": 13.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 2 + assert output[0][0] == datetime.datetime(2020, 4, 1, 12, 23, 42) + assert output[0][1] == pytest.approx(22.7848, 0.001) + assert output[1][0] == datetime.datetime(2020, 4, 1, 13, 23, 42) + assert output[1][1] == pytest.approx(3, 0.001) + + @pytest.mark.asyncio + async def test_None_ignored(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + (datetime.datetime(2020, 4, 1, 12, 58, 0), None,), + ( + datetime.datetime(2020, 4, 1, 13, 0, 0), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 1 + assert output[0][0] == datetime.datetime(2020, 4, 1, 13, 0, 0) + assert output[0][1] == pytest.approx(9.0, 0.0001) + + @pytest.mark.asyncio + @pytest.mark.performance + async def test_performance_of_cleaner(self, cleaner, huge_data_set): + import cProfile + + # Generate data point objects before profiling starts + datapoints = await consume(generate_datapoints(huge_data_set)) + profiler = cProfile.Profile() + profiler.enable() + + # Run the cleaner to completion + await consume(cleaner(datapoints)) + + profiler.disable() + cleaner_stat = [ + stat for stat in profiler.getstats() if stat.code == cleaner.__code__ + ][0] + # Assert that the cleaner may take no more than 0.5 seconds to process + # these 50k data points + assert cleaner_stat.totaltime < 0.5 + + +class TestTemperatureMap: + @pytest.fixture + def temperature_data(self): + return { + (53.8667, -1.3333): -1, + (53.35, -2.2833): 1, + (52.45, -1.7333): 3, + (51.5, -0.1333): 6, + (51.55, -2.5667): 5, + (54.9667, -1.6167): -1, + (55.9667, -3.2167): -1, + (54.7667, -1.5833): 0, + (53.7667, -0.3): 1, + (53.7667, -3.0167): 0, + (51.4833, -3.1833): 4, + (53.2667, -3.5167): 2, + (52.0833, -2.8): 2, + (52.0167, -0.6): 2, + (52.6667, 1.2667): 5, + (50.4333, -4.9833): 9, + (50.35, -4.1167): 10, + (50.5167, -2.45): 9, + (50.8333, -1.1667): 9, + (56.45, -5.4333): 4, + (57.5333, -4.05): -2, + (54.5167, -3.6167): 3, + (53.0833, 0.2667): 4, + (51.35, 1.3333): 7, + (50.8833, 0.3167): 8, + (58.45, -3.1): 3, + (50.1, -5.6667): 9, + (58.2167, -6.3333): 4, + (55.6833, -6.25): 7, + } + + @pytest.fixture + def temperature_datapoints(self, migrated_db, db_session, temperature_data): + datas = [] + now = datetime.datetime.now() + for (coord, temp) in temperature_data.items(): + deployment_id = uuid.uuid4() + datas.append( + DataPoint( + sensor_name="Location", + deployment_id=deployment_id, + collected_at=now, + data=coord, + ) + ) + datas.append( + DataPoint( + sensor_name="Temperature", + deployment_id=deployment_id, + collected_at=now, + data=temp, + ) + ) + return datas + + @pytest.fixture + def populated_db(self, migrated_db, db_session, temperature_datapoints): + for data in temperature_datapoints: + insert = datapoint_table.insert().values(**data._asdict()) + db_session.execute(insert) + + @pytest.fixture + def cleaner(self): + return analysis.get_map_cleaner_for("Temperature") + + @pytest.fixture + def get_data(self, db_session): + db_session_var.set(db_session) + return analysis.get_all_data() + + @pytest.mark.asyncio + async def test_latest_coord_temp_cleaner( + self, temperature_data, populated_db, get_data, cleaner + ): + data = get_data() + deployments = 0 + async for deployment, data_points in data: + deployments += 1 + cleaned = {a async for a in cleaner(data_points)} + # There should only be one deployment + assert deployments == 1 + expected = set(temperature_data.items()) + assert cleaned == expected + + @pytest.mark.asyncio + async def test_newer_items_superceed_older( + self, db_session, temperature_datapoints, populated_db, get_data, cleaner + ): + # Pick any of the deployment ids and find the pair of DataPoints in that deployment id + deployment_1 = temperature_datapoints[0].deployment_id + existing = [ + datapoint + for datapoint in temperature_datapoints + if datapoint.deployment_id == deployment_1 + ] + old_location = [ + datapoint for datapoint in existing if datapoint.sensor_name == "Location" + ][0] + old_temperature = [ + datapoint + for datapoint in existing + if datapoint.sensor_name == "Temperature" + ][0] + + new_location = DataPoint( + sensor_name="Location", + deployment_id=deployment_1, + collected_at=datetime.datetime(2031, 4, 1, 12, 0, 0), + data=(-10.5, 150.1), + ) + new_temperature = DataPoint( + sensor_name="Temperature", + deployment_id=deployment_1, + collected_at=datetime.datetime(2031, 4, 1, 12, 0, 0), + data=21, + ) + for data in [new_location, new_temperature]: + insert = datapoint_table.insert().values(**data._asdict()) + db_session.execute(insert) + + data = get_data() + deployments = 0 + async for deployment, data_points in data: + deployments += 1 + cleaned = {a async for a in cleaner(data_points)} + # There should only be one deployment + assert deployments == 1 + + # We expect the newer one, not the older + assert (new_location.data, new_temperature.data) in cleaned + assert (old_location.data, old_temperature.data) not in cleaned + # The cleaner converts two data points to one plottable + assert len(cleaned) == len(temperature_datapoints) / 2 + + +def test_deprecation_warning_raised_by_config_with_no_getdata(): + with warnings.catch_warnings(record=True) as captured_warnings: + warnings.simplefilter("always", DeprecationWarning) + analysis.Config( + sensor_name="Temperature", + clean=analysis.clean_passthrough, + title="Temperaure", + ylabel="Deg C", + ) + assert len(captured_warnings) == 1 + deprecation_warning = captured_warnings[0] + assert deprecation_warning.filename == __file__ + assert deprecation_warning.category == DeprecationWarning + assert str(deprecation_warning.message) == ( + "The sensor_name parameter is deprecated. Please pass " + "get_data=get_one_sensor_by_deployment('Temperature') " + "to ensure the same behaviour. The sensor_name= parameter " + "will be removed in apd.aggregation 3.0." + ) diff --git a/Ch12/apd.aggregation-chapter12-ex01/tests/test_cli.py b/Ch12/apd.aggregation-chapter12-ex01/tests/test_cli.py new file mode 100644 index 0000000..5cab441 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/tests/test_cli.py @@ -0,0 +1,155 @@ +from unittest import mock +import uuid + +from click.testing import CliRunner +import pytest + +import apd.aggregation.cli +from apd.aggregation.database import Deployment, deployment_table + + +@pytest.mark.functional +def test_sensors_are_passed_to_get_data_points(db_uri): + runner = CliRunner() + with mock.patch("apd.aggregation.collect.get_data_points") as get_data_points: + runner.invoke( + apd.aggregation.cli.collect_sensor_data, + [ + "http://localhost", + "http://otherhost", + "--db", + db_uri, + "--api-key", + "key", + ], + ) + calls = get_data_points.call_args_list + assert len(calls) == 2 + details = {call[0] for call in get_data_points.call_args_list} + assert details == { + ("http://localhost", "key"), + ("http://otherhost", "key"), + } + + +@pytest.mark.functional +def test_add_deployment_to_db(db_uri, db_session, migrated_db): + runner = CliRunner() + deployment_id = uuid.UUID("76587cdd42dc489ea1d220e9b0bc62ca") + with mock.patch("apd.aggregation.collect.get_deployment_id") as get_deployment_id: + get_deployment_id.return_value = deployment_id + runner.invoke( + apd.aggregation.cli.deployments, + ["add", "http://otherhost", "Other", "--db", db_uri, "--api-key", "key"], + ) + deployments = db_session.query(deployment_table).all() + assert len(deployments) == 1 + deployment = Deployment.from_sql_result(deployments[0]) + assert deployment.uri == "http://otherhost" + assert deployment.api_key == "key" + assert deployment.id == deployment_id + + +@pytest.mark.functional +def test_use_stored_deployments(db_uri, migrated_db): + runner = CliRunner() + + deployment_id = uuid.UUID("76587cdd42dc489ea1d220e9b0bc62ca") + with mock.patch("apd.aggregation.collect.get_deployment_id") as get_deployment_id: + get_deployment_id.return_value = deployment_id + runner.invoke( + apd.aggregation.cli.deployments, + [ + "add", + "http://specifiedhost", + "Specified", + "--db", + db_uri, + "--api-key", + "an_api_key", + ], + ) + + with mock.patch("apd.aggregation.collect.get_data_points") as get_data_points: + runner.invoke( + apd.aggregation.cli.collect_sensor_data, ["--db", db_uri], + ) + calls = get_data_points.call_args_list + assert len(calls) == 1 + details = {call[0] for call in get_data_points.call_args_list} + assert details == { + ("http://specifiedhost", "an_api_key"), + } + + +@pytest.mark.functional +def test_list_deployments(db_uri, migrated_db): + runner = CliRunner() + + deployment_id = uuid.UUID("76587cdd42dc489ea1d220e9b0bc62ca") + with mock.patch("apd.aggregation.collect.get_deployment_id") as get_deployment_id: + get_deployment_id.return_value = deployment_id + runner.invoke( + apd.aggregation.cli.deployments, + [ + "add", + "http://specifiedhost", + "Specified", + "--db", + db_uri, + "--api-key", + "an_api_key", + ], + ) + + result = runner.invoke(apd.aggregation.cli.deployments, ["list", "--db", db_uri],) + expected = """Specified +ID 76587cdd42dc489ea1d220e9b0bc62ca +URI http://specifiedhost +API key an_api_key +Colour None + +""" + assert result.output == expected + + +@pytest.mark.functional +def test_edit_deployment(db_uri, migrated_db): + runner = CliRunner() + return + deployment_id = uuid.UUID("76587cdd42dc489ea1d220e9b0bc62ca") + with mock.patch("apd.aggregation.collect.get_deployment_id") as get_deployment_id: + get_deployment_id.return_value = deployment_id + runner.invoke( + apd.aggregation.cli.deployments, + [ + "add", + "http://specifiedhost", + "Specified", + "--db", + db_uri, + "--api-key", + "an_api_key", + ], + ) + + result = runner.invoke( + apd.aggregation.cli.deployments, + [ + "edit", + "--db", + db_uri, + deployment_id.hex(), + "--colour", + "red" "--name", + "New name", + ], + ) + expected = """New name +ID 76587cdd42dc489ea1d220e9b0bc62ca +URI http://specifiedhost +API key an_api_key +Colour red + +""" + assert result.output == expected diff --git a/Ch12/apd.aggregation-chapter12-ex01/tests/test_http_get.py b/Ch12/apd.aggregation-chapter12-ex01/tests/test_http_get.py new file mode 100644 index 0000000..df575c6 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/tests/test_http_get.py @@ -0,0 +1,188 @@ +from concurrent.futures import ThreadPoolExecutor +import datetime +import typing as t +from unittest.mock import patch, MagicMock +import wsgiref.simple_server + +import aiohttp +from apd.sensors.base import Sensor +from apd.sensors.sensors import PythonVersion, ACStatus +from apd.sensors.wsgi import set_up_config +import flask +import pytest + +from apd.sensors.wsgi import v21 + +from apd.aggregation import collect +from apd.aggregation.database import Deployment + +pytestmark = [pytest.mark.functional] + + +@pytest.fixture +def sensors() -> t.Iterator[t.List[Sensor[t.Any]]]: + """ Patch the get_sensors method to return a known pair of sensors only """ + data: t.List[Sensor[t.Any]] = [PythonVersion(), ACStatus()] + with patch("apd.sensors.cli.get_sensors") as get_sensors: + get_sensors.return_value = data + yield data + + +def get_independent_flask_app(name: str) -> flask.Flask: + """ Create a new flask app with the v20 API blueprint loaded, so multiple copies + of the app can be run in parallel without conflicting configuration """ + app = flask.Flask(name) + app.register_blueprint(v21.version, url_prefix="/v/2.1") + return app + + +def run_server_in_thread( + name: str, config: t.Dict[str, t.Any], port: int +) -> t.Iterator[str]: + # Create a new flask app and load in required code, to prevent config conflicts + app = get_independent_flask_app(name) + flask_app = set_up_config(config, app) + server = wsgiref.simple_server.make_server("localhost", port, flask_app) + + with ThreadPoolExecutor() as pool: + pool.submit(server.serve_forever) + yield f"http://localhost:{port}/" + server.shutdown() + + +@pytest.fixture(scope="module") +def http_server(): + yield from run_server_in_thread( + "standard", + { + "APD_SENSORS_API_KEY": "testing", + "APD_SENSORS_DEPLOYMENT_ID": "a46b1d1207fd4cdcad39bbdf706dfe29", + }, + 12081, + ) + + +@pytest.fixture(scope="module") +def bad_api_key_http_server(): + yield from run_server_in_thread( + "alternate", + { + "APD_SENSORS_API_KEY": "penny", + "APD_SENSORS_DEPLOYMENT_ID": "38cf2bae9adb445fad946c82e290487a", + }, + 12082, + ) + + +class TestGetDataPoints: + @pytest.fixture + def mut(self): + return collect.get_data_points + + @pytest.mark.asyncio + async def test_get_data_points( + self, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + # Get the data from the server, storing the time before and after + # as bounds for the collected_at value + async with aiohttp.ClientSession() as http: + collect.http_session_var.set(http) + time_before = datetime.datetime.now() + results = await mut(http_server, "testing") + time_after = datetime.datetime.now() + + assert len(results) == len(sensors) == 2 + + for (sensor, result) in zip(sensors, results): + assert sensor.from_json_compatible(result.data) == sensor.value() + assert result.sensor_name == sensor.name + assert time_before <= result.collected_at <= time_after + + @pytest.mark.asyncio + async def test_get_data_points_fails_with_bad_api_key( + self, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + with pytest.raises( + ValueError, + match=f"Error loading data from {http_server}: Supply API key in X-API-Key header", + ): + async with aiohttp.ClientSession() as http: + collect.http_session_var.set(http) + await mut(http_server, "incorrect") + + +class TestAddDataFromSensors: + @pytest.fixture + def mut(self): + return collect.add_data_from_sensors + + @pytest.fixture + def mock_db_session(self): + return MagicMock() + + @pytest.mark.asyncio + async def test_get_get_data_from_sensors( + self, mock_db_session, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + results = await mut( + mock_db_session, + [ + Deployment( + id=None, colour=None, name=None, uri=http_server, api_key="testing" + ) + ], + ) + assert mock_db_session.execute.call_count == len(sensors) + assert len(results) == len(sensors) + + @pytest.mark.asyncio + async def test_get_get_data_from_sensors_with_multiple_servers( + self, mock_db_session, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + results = await mut( + mock_db_session, + [ + Deployment( + id=None, colour=None, name=None, uri=http_server, api_key="testing" + ), + Deployment( + id=None, colour=None, name=None, uri=http_server, api_key="testing" + ), + ], + ) + assert mock_db_session.execute.call_count == len(sensors) * 2 + assert len(results) == len(sensors) * 2 + + @pytest.mark.asyncio + async def test_data_points_not_added_if_only_partial_success( + self, + mock_db_session, + sensors: t.List[Sensor[t.Any]], + mut, + http_server: str, + bad_api_key_http_server: str, + ) -> None: + with pytest.raises( + ValueError, + match=f"Error loading data from {bad_api_key_http_server}: Supply API key in X-API-Key header", + ): + await mut( + mock_db_session, + [ + Deployment( + id=None, + colour=None, + name=None, + uri=http_server, + api_key="testing", + ), + Deployment( + id=None, + colour=None, + name=None, + uri=bad_api_key_http_server, + api_key="testing", + ), + ], + ) + assert mock_db_session.execute.call_count == 0 diff --git a/Ch12/apd.aggregation-chapter12-ex01/tests/test_query.py b/Ch12/apd.aggregation-chapter12-ex01/tests/test_query.py new file mode 100644 index 0000000..9b6e0aa --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/tests/test_query.py @@ -0,0 +1,111 @@ +import datetime +from uuid import UUID + +import pytest + +from apd.aggregation.query import ( + get_data, + get_deployment_ids, + get_data_by_deployment, + db_session_var, +) + + +class TestGetData: + @pytest.fixture + def mut(self): + return get_data + + @pytest.mark.asyncio + @pytest.mark.parametrize( + "filter,num_items_expected", + [ + ({}, 9), + ({"sensor_name": "Test"}, 7), + ({"deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd")}, 5), + ({"collected_after": datetime.datetime(2020, 4, 1, 12, 2, 1)}, 3), + ({"collected_before": datetime.datetime(2020, 4, 1, 12, 2, 1)}, 4), + ( + { + "collected_after": datetime.datetime(2020, 4, 1, 12, 2, 1), + "collected_before": datetime.datetime(2020, 4, 1, 12, 3, 5), + }, + 2, + ), + ], + ) + async def test_iterate_over_items( + self, mut, db_session, populated_db, filter, num_items_expected + ): + db_session_var.set(db_session) + points = [dp async for dp in mut(**filter)] + assert len(points) == num_items_expected + + @pytest.mark.asyncio + async def test_empty_db(self, mut, db_session, migrated_db): + db_session_var.set(db_session) + points = [dp async for dp in mut()] + assert len(points) == 0 + + +class TestGetDeployments: + @pytest.fixture + def mut(self): + return get_deployment_ids + + @pytest.mark.asyncio + async def test_get_all_deployments(self, mut, db_session, populated_db): + db_session_var.set(db_session) + deployment_ids = await mut() + assert set(deployment_ids) == { + UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + } + + @pytest.mark.asyncio + async def test_empty_db(self, mut, db_session, migrated_db): + db_session_var.set(db_session) + deployment_ids = await mut() + assert deployment_ids == [] + + +@pytest.mark.usefixtures("populated_db") +class TestGetDataByDeployment: + @pytest.fixture + def mut(self): + return get_data_by_deployment + + @pytest.mark.asyncio + @pytest.mark.parametrize( + "filter,num_items_expected", [({}, 9), ({"sensor_name": "Test"}, 7)] + ) + async def test_iterate_over_all_items( + self, mut, db_session, filter, num_items_expected + ): + db_session_var.set(db_session) + num_items = 0 + num_deployments = 0 + async for deployment_id, items in mut(**filter): + num_deployments += 1 + async for item in items: + num_items += 1 + assert num_deployments == 2 + assert num_items == num_items_expected + + @pytest.mark.asyncio + @pytest.mark.parametrize( + "filter,num_items_expected", [({}, 5), ({"sensor_name": "Test"}, 4)] + ) + async def test_skip_first_deployment( + self, mut, db_session, filter, num_items_expected + ): + db_session_var.set(db_session) + num_items = 0 + num_deployments = 0 + async for deployment_id, items in mut(**filter): + num_deployments += 1 + if num_deployments == 2: + async for item in items: + num_items += 1 + assert num_deployments == 2 + assert num_items == num_items_expected diff --git a/Ch12/apd.aggregation-chapter12-ex01/tests/test_sensor_aggregation.py b/Ch12/apd.aggregation-chapter12-ex01/tests/test_sensor_aggregation.py new file mode 100644 index 0000000..655521d --- /dev/null +++ b/Ch12/apd.aggregation-chapter12-ex01/tests/test_sensor_aggregation.py @@ -0,0 +1,199 @@ +from __future__ import annotations + +import contextlib +from dataclasses import dataclass +import json +import typing as t +from unittest.mock import patch, Mock + +import pytest +import sqlalchemy + +import apd.aggregation.collect +from apd.aggregation.database import Deployment + + +@pytest.fixture +def data() -> t.Any: + return { + "sensors": [ + { + "human_readable": "3.7", + "id": "PythonVersion", + "title": "Python Version", + "value": [3, 7, 2, "final", 0], + }, + { + "human_readable": "Not connected", + "id": "ACStatus", + "title": "AC Connected", + "value": False, + }, + ] + } + + +@dataclass +class FakeAIOHttpClient: + responses: t.Dict[str, str] + + @contextlib.asynccontextmanager + async def get( + self, url: str, headers: t.Optional[t.Dict[str, str]] = None + ) -> t.AsyncIterator[FakeAIOHttpResponse]: + if url in self.responses: + yield FakeAIOHttpResponse(body=self.responses[url]) + else: + yield FakeAIOHttpResponse(body="", status=404) + + +@dataclass +class FakeAIOHttpResponse: + body: str + status: int = 200 + + async def json(self) -> t.Any: + return json.loads(self.body) + + +@pytest.fixture +def mockclient(data) -> FakeAIOHttpClient: + return FakeAIOHttpClient( + { + "http://localhost/v/2.1/sensors/": json.dumps(data), + "http://localhost/v/2.1/deployment_id": json.dumps( + {"deployment_id": "b29ba0ee10f14552b6b21327bb96d3fb"} + ), + } + ) + + +class TestGetDataPoints: + @pytest.fixture + def mut(self): + return apd.aggregation.collect.get_data_points + + @pytest.mark.asyncio + async def test_get_data_points(self, mut, mockclient, data) -> None: + # Mark the mock client as the same type as the one it's mocking + # So we can set it into the context variable without warnings + token = apd.aggregation.collect.http_session_var.set(mockclient) + try: + datapoints = await mut("http://localhost", "") + finally: + apd.aggregation.collect.http_session_var.reset(token) + + assert len(datapoints) == len(data["sensors"]) + for sensor in data["sensors"]: + assert sensor["value"] in (datapoint.data for datapoint in datapoints) + assert sensor["id"] in (datapoint.sensor_name for datapoint in datapoints) + + +class TestAddDataFromSensors: + @pytest.fixture + def mut(self): + return apd.aggregation.collect.add_data_from_sensors + + @pytest.fixture(autouse=True) + def patch_aiohttp(self, mockclient): + with patch("aiohttp.ClientSession") as ClientSession: + ClientSession.return_value.__aenter__.return_value = mockclient + yield ClientSession + + @pytest.fixture + def db_session(self): + session = Mock() + sql_result = session.execute.return_value + sql_result.inserted_primary_key = [1] + return session + + @pytest.mark.asyncio + async def test_datapoints_are_added_to_the_session(self, mut, db_session) -> None: + assert db_session.execute.call_count == 0 + datapoints = await mut( + db_session, + [ + Deployment( + id=None, colour=None, name=None, uri="http://localhost", api_key="" + ) + ], + ) + assert db_session.execute.call_count == len(datapoints) + + +@pytest.mark.usefixtures("migrated_db") +class TestDatabaseConnection: + @pytest.fixture(autouse=True) + def patch_aiohttp(self, mockclient): + with patch("aiohttp.ClientSession") as ClientSession: + ClientSession.return_value.__aenter__.return_value = mockclient + yield ClientSession + + @pytest.fixture + def table(self): + return apd.aggregation.database.datapoint_table + + @pytest.fixture + def daily_summary_view(self): + return apd.aggregation.database.daily_summary_view + + @pytest.fixture + def model(self): + return apd.aggregation.database.DataPoint + + @pytest.fixture + def mut(self): + return apd.aggregation.collect.add_data_from_sensors + + @pytest.mark.asyncio + async def test_datapoints_are_added_to_the_session(self, db_session, table) -> None: + datapoints = await apd.aggregation.collect.add_data_from_sensors( + db_session, + [ + Deployment( + id=None, colour=None, name=None, uri="http://localhost", api_key="" + ) + ], + ) + num_points = db_session.query(table).count() + assert num_points == len(datapoints) == 2 + + @pytest.mark.asyncio + async def test_datapoints_can_be_mapped_back_to_DataPoints( + self, mut, db_session, table, model + ) -> None: + datapoints = await mut( + db_session, + [ + Deployment( + id=None, colour=None, name=None, uri="http://localhost", api_key="" + ) + ], + ) + db_points = [ + model.from_sql_result(result) for result in db_session.query(table) + ] + assert db_points == datapoints + + @pytest.mark.asyncio + async def test_daily_summary_view_matches_query( + self, db_session, model, table, daily_summary_view + ) -> None: + await apd.aggregation.collect.add_data_from_sensors( + db_session, + [ + Deployment( + id=None, colour=None, name=None, uri="http://localhost", api_key="" + ) + ], + ) + + headers = table.c.sensor_name, table.c.data + value_counts = ( + db_session.query(*headers, sqlalchemy.func.count(table.c.id)) + .filter(model.collected_on_date == sqlalchemy.func.current_date()) + .group_by(*headers) + ) + + daily_summary_view = db_session.query(daily_summary_view) + assert value_counts.all() == daily_summary_view.all() diff --git a/Ch12/apd.aggregation-chapter12/.coveragerc b/Ch12/apd.aggregation-chapter12/.coveragerc new file mode 100644 index 0000000..e766c69 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/.coveragerc @@ -0,0 +1,3 @@ +[run] +branch = True +omit = tests/* diff --git a/Ch12/apd.aggregation-chapter12/.pre-commit-config.yaml b/Ch12/apd.aggregation-chapter12/.pre-commit-config.yaml new file mode 100644 index 0000000..995b49f --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/.pre-commit-config.yaml @@ -0,0 +1,25 @@ +repos: + +- repo: local + hooks: + - id: black + name: black + entry: pipenv run black + args: [--quiet] + language: system + types: [python] + + - id: mypy + name: mypy + exclude: (?x)^( + (.*)/setup.py + )$ + entry: pipenv run mypy + language: system + types: [python] + + - id: flake8 + name: flake8 + entry: pipenv run flake8 + language: system + types: [python] diff --git a/Ch12/apd.aggregation-chapter12/CHANGES.md b/Ch12/apd.aggregation-chapter12/CHANGES.md new file mode 100644 index 0000000..bd0d9b6 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/CHANGES.md @@ -0,0 +1,8 @@ +## Changes + +### 1.0.0 (2020-01-27) + +* Added management of known sensor endpoints +* Added CLI script to collate data +* Added analysis tools for Jupyter +* Added long-running data synthesis and actions system diff --git a/Ch12/apd.aggregation-chapter12/Connect to database.ipynb b/Ch12/apd.aggregation-chapter12/Connect to database.ipynb new file mode 100644 index 0000000..98a74f0 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/Connect to database.ipynb @@ -0,0 +1,577 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "53635\n" + ] + } + ], + "source": [ + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.database import datapoint_table\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " print(session.query(datapoint_table).count())" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "53635\n" + ] + } + ], + "source": [ + "from apd.aggregation.query import with_database, get_data\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " count = 0\n", + " async for datapoint in get_data():\n", + " count += 1\n", + " print(count)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nO2df5RV5Xnvv88czuAZIhnGAMWJk1FK8cYMMOmk4KXXaiwlkahHIyFW1vKu5uptb1dbSjvtULnFZEEgkhC6bu+695L+olcWRQ0dTTASitqueoUuzIDERIpGRUcKNDhRYYRheO4fZ+9hz56999m/z95zvp+1Zp05++wfz373u9/nfd/neZ9HVBWEEEKIGw21FoAQQki2oaIghBDiCRUFIYQQT6goCCGEeEJFQQghxJMJtRYAAD7ykY9oe3t7rcUghJBc8cILL/y7qk5N+jqZUBTt7e04cOBArcUghJBcISJvpHEdTj0RQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+qej2JyF8B+ByAk6r6CWNbC4AdANoBvA7gC6r6jvHbKgBfAjAM4HdVdXcikhOSIr19/XjwiZcwMDgU6TxNxUrf7OzQRQDAlKYi1tx6HcqdrSPX2bj7CN4eGMSVzSV0L5498htJjiDlbq8LU5qKWDJnBp55+RTeHhjEh0tFnL8wPPKM/WCvB1lDqkWPFZEbALwP4G8tiuIhAKdVdYOI9ACYoqp/LCIfB7AdwC8BuBLAPwD4BVUd9rpGV1eX0j2WZJXevn50P3oIQxeTibRcLAg23jUXALBq52EMDl16XUrFAtbf2ZHZBmQ80NvX77vck6wLZj0I8qxF5AVV7YpdGBtVp55U9Z8AnLZtvh3AVuP/rQDKlu1/p6rnVPU1AK+gojQIyS0bdx9JTEkAwNCwYuPuI9i4+8ioxgoABoeGsXH3kcSuTRCo3JOsC2Y9yCJhF9xNV9XjAKCqx0VkmrG9FcA+y35vGdvGICL3A7gfANra2kKKQUjyvD0wWNNrpHH9esatfJ22J/0ssvqs4zZmi8M2R/WrqltUtUtVu6ZOTXwFOiGhubK5lMo13K6TxvXrmSDlnvSzyOqzDqsoTojIDAAwPk8a298CcJVlv48CeDu8eITUnu7Fs1FscOoDxUOxIOhePBvdi2ejVCyM+q1ULKB78ezErk0QqNyTrAtmPcgiYRXFEwDuNf6/F8Djlu1fFJGJInI1gFkA/iWaiITUlnJnKzYunYvmUjHyuZqKDSOeT0DF28U0YJY7W7H+zg60NpcgAFqbSzRkp0CQcneqC1Oaili+oG3k+OZScdQz9oO1HmQRP15P2wHcCOAjAE4AWAOgF8AjANoAHAOwVFVPG/s/AOA3AFwAsEJVv1dNCHo9EUJIcNLyeqpqzFbVu11+utll/3UA1kURihBCSHbgymxCCCGeUFEQQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhCRUEIIcQTKgpCCCGeUFEQQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhSNR8FIWHp7evHg0+8hIHBoTG/TWosYN0d/rO39fb1Y+PuI3h7YBBXNpfQvXh2bNnAvOQ0mdJUxJpbr0O5szWwLOb+/QODKIhgWBXNpSLOXxjG2aGLsdwDUElYXywIzg9fSkY2pamIJXNm4JmXT43I235FCft+8g6GVVEQwd3zr8LackdscvjFXu7WMq4FTvXA/tyr1RMrbveTZF1OiqoZ7tKAGe7GH719/eh+9BCGLrrXr0KD4BtLq6d/7O3rx6qdhzE4NDyyrVQsxJIm1I+cJsWCYNmnrsK3X+j3LYuT7Flk+YK2VJWFW7kXC1KTlKBe9cB87jv+5U1f9cR+rPV+4q7LaWW449QTSYSNu49UfamGLyo27j7i61z2hnZwaNjXsX7O7fflHxpWbN//ZiBZnGTPItv3v5nq9dzKfWjYX51ISx7g0nMPqiTMY633k2RdThIqCpIIbw8Mxraf2z5+rxH1+laGXUbgScqYBm73lRRe5VKLMqt2zSjlYz13XusJFQVJhCubS7Ht57aP32tEvb6Vgkig88QhYxq43VdSeJVLLcqs2jWjlI/13HmtJ1QUJBG6F89GscH75So0CLoXz/Z1rlKxMGpbqVjwdayfc1eT06RYqBh+g8jiJHsWuXv+Valez63ciwV/dSIteYBLz91vPbEfa72fJOtyklBRkEQod7Zi49K5aC4VHX+f1FjwZcg2z7X+zg60NpcgAFqbS7EYsv3IaTKlqYiNd83F2nJHIFmssgOXeqbNpSKaivG+fgKgsTC6MZvSVMTyBW2j5F04s2VEjoJI6oZswLnczTKuhQeQWz2wPnc/9cTpWOv9JFmXk4ReT4QQklPo9UQIISQTUFEQQgjxJJKiEJHfE5EfishLIrLC2NYiIntE5KjxOSUeUQkhhNSC0IpCRD4B4D4AvwRgLoDPicgsAD0A9qrqLAB7je+EEEJySpQRxX8AsE9Vz6rqBQD/COAOALcD2GrssxVAOZqIhBBCakkURfFDADeIyBUi0gTgFgBXAZiuqscBwPic5nSwiNwvIgdE5MCpU6ciiEEIISRJQisKVf0xgK8B2APgKQCHAFwIcPwWVe1S1a6pU6eGFYMQQkjCRDJmq+pfquonVfUGAKcBHAVwQkRmAIDxeTK6mIQQQmpFVK+nacZnG4A7AWwH8ASAe41d7gXweJRrEEIIqS1RExd9W0SuADAE4LdV9R0R2QDgERH5EoBjAJZGFZLUH1lLakNIPRNJUajqf3LY9lMAN0c5L6lvnJLIvHN2CN2PHQIAKgtCUoYrs0nmyFpSG0LqHebMJqlizR8tAOzqwGmblf6BQXz8v38vUK7pKU1FfHzG5Xju1dO+9rVOccU1Bba69zC2739zTJ5qr/zJ1t8+XCpCBBg4O+S436qdL2LQKJMGAa6/pgUvvf3emPzPZv5st/JvEODX56cfTdYtX/WSOTPw3UPHazIFubr3MLbtO+ZYH1tzkus6Lhg9lqRGXvJHm3mOAcSS13l172E8vO/YmO0LZ7bgB8d+5pg/GYBnWVn3W7njIPyrTX+kGXo8SN5yIJ282m7PzEpcedujkFb0WCoKkhoLNzyN/oynfDQx80e4ydvaXMJzPZ/2da6Zq54MlEqz2rWD7heGggheXX9L7Od1Iky9CFL+YfD7zJKWoxppKQpOPZFYqPQKD8JpRmhSYwHr7ujIfF5gK9VkDXIvQfMtx5lvPCxp5tAOcx9J1yW/95+nOh0FGrNJZHr7+rFih7OSAIAz54fxB48eQnOT/+xgtebK5lJseZ2D5luudu2g+4UhzRzaYe4h6RzTfu8/67mu44KKgkTGjyfS8EWFKnKRP9rMcxxXXme3fNQLZ7a45k+ulmvbul8SL3GaObSD5C0H0smr7ef+85DrOi6oKEhk/A6/fzY4NCp/tFPTYM/73FRsGJVb2v7dD1Oailg4s8X3vqahNK68zmvLHVi+oG1Mnupt913vmj/Znlu5uVTElKai436bls1DyVImDVJRQk75n8382YBz+TdIuoZswDtf9fIFbTXJq20+Mzf1lZdc13FBYzaJjF9jZK0Nf4SMN5gzm+QGP8PvQkPy0wWEkGSgoiCRKXe2YvOyeXCbEZrUWMA3liY/XUAISQa6x5JYMOfLCSHjD44oCCGEeEJFQQghxBMqCkIIIZ5QURBCCPGEioIQQognVBSEEEI8oXssyQT2JDFmxFm63BJSe6goSM1xShJjRpwFmCObkFrDqSdSc7bvf9Nx+/BF5sgmJAtwREFSx54L2itJjDUyrT3v9IJrpozKC91UbMDEYmEkr/RN104dlW8ZSDfncpbwys1t/h5HbvCgctifkVOebDNasD1Per0+y1rA6LEkVYLmzTYjzvrJYeyXNHIuZwmnMrfme3bLWR13OSWRM73enqUdRo8l45KNu4/4biisEWfdpqfCMDRcX1NaTmU+ODQ8UgYbdx8ZoySA+MspyLP3S709y1oRSVGIyO+LyEsi8kMR2S4il4lIi4jsEZGjxueUuIQl+cdvkiN7xNm4czjXS65jwP1eze1eZRFnOSVV5vX0LGtFaEUhIq0AfhdAl6p+AkABwBcB9ADYq6qzAOw1vhMCwF+O4dbmEl76ymdGTSfEncO5XnIdA+73am6PKzd4WDmyel5yiahTTxMAlERkAoAmAG8DuB3AVuP3rQDKEa9BxhF+c0HbiTOHcxo5l7OEU5lbyzmu3OBh5IhKvT3LWhFaUahqP4CvAzgG4DiAn6nq9wFMV9Xjxj7HAUyLQ1AyPvCbC9qOU95pe17opmLDqHPZ8y0D6eVczhL2MreXc1y5wcPI4ZQT277NLU96PT7LWhHa68mwPXwbwDIAAwAeBfAYgD9X1WbLfu+o6hg7hYjcD+B+AGhra/vFN954I5QchBBSr+TB6+lXAbymqqdUdQjATgD/EcAJEZkBAMbnSaeDVXWLqnapatfUqVMjiEEIISRJoiiKYwAWiEiTiAiAmwH8GMATAO419rkXwOPRRCSEEFJLQq/MVtX9IvIYgB8AuACgD8AWAB8C8IiIfAkVZbI0DkEJIYTUhkghPFR1DYA1ts3nUBldEEIIGQdwZTYhhBBPqCgIIYR4QkVBCCHEEyoKQgghnlBREEII8YSKghBCiCdUFIQQQjyhoiCEEOIJc2YTUidUy5udNfIm73iGioKQOsCer7p/YBCrdh4GgEw2vnmTd7zDqSdC6oBqebOzRt7kHe9QURBSB1TLm5018ibveIeKgpA6oFre7KyRN3nHO1QUhNQB1fJmZ428yTveoTGbkDrANADnxYsob/KOd0LnzI6Trq4uPXDgQK3FIISQXJGHnNmEEELqACoKQgghntBGYeGebz2P5149PfJ94cwWbLvv+hpKRAghtYcjCgO7kgCA5149jUWbnq2NQIQQkhHqZkRxdc8uWM32AuC1DUtGvtuVhMnRk2fQ29dPbwtCSN1SFyOKdpuSAAA1tvth1c4XY5eJEELywrhXFPd863nP3+ev21P1HINDF+MShxBCcse4VhS9ff2uU0omJ947n5I0hBCST8a1ovjjb/ubMpqz5qmEJSGEkPwSWlGIyGwROWj5e1dEVohIi4jsEZGjxueUOAUOwrkL/qaM3j03XH0nQgipU0IrClU9oqrzVHUegF8EcBbA3wPoAbBXVWcB2Gt8J4QQklPimnq6GcCrqvoGgNsBbDW2bwVQjukaNaW3r7/WItQVvX39WLjhaVzdswsLNzzN8iekhsSlKL4IYLvx/3RVPQ4Axuc0pwNE5H4ROSAiB06dOhWTGKOZNW1SbOdiZq30WLTpWazYcRD9A4NQVNJgrthxkMqCkBoRecGdiDQCuA3AqiDHqeoWAFuASvTYqHI4cfZ8fG6tWcisVQ/J5u/51vM4evKM428rHzmYi/uth+dEorO69zC2738Tw6ooiODu+Vdhbbmj1mI5EsfK7M8C+IGqnjC+nxCRGap6XERmADgZwzVCEWfj/uFSMbZzhWHOmqdGGd3Ha7J5L3fmi7WPiF+VRZueHaXozNEQML6eE4mGvZ4Mq+LhfccAIJPKIo6pp7txadoJAJ4AcK/x/70AHo/hGqFonBCf9++7g0OxnSso89ftcfTMGm/J5q994MlaixAJr9HQih0Hcc2qXZw+I1jde9i1npjKImtEGlGISBOARQD+q2XzBgCPiMiXABwDsDTKNcLS29fv2z3WD0mvzXaKXLu0qw0bdx/xXBTYn4EpsThY3XsYHwznYMjgQbXFnRcVHF2QzCoDLyIpClU9C+AK27afouIFVVO6Hz1YaxEccZq/fvTAMcfItdUaHqAS3DCvWMsi3yoiGH/02CEqijplde/hWosQinEbPbZaeKZJjQWcOZ/uQrvevn78/o6DI41i/8DgqO9hyGsD29vXj1U7D2NwqP4WO57P+ciJBKe3r39kNOlFVjt+uVYUUbxL1t3RMaahKhULng1Xe8+uSN4Jf/TYIccotvXIxt1HAiuJgmT1NQrO6t7DmTRaEm/CeCr5VRIAcM+CtjjEjJ3cKorevn50P3oIQ4YrTP/AILofPQQAOPCG95RNqdgwolDsiqbaA3XyTvCrsNiTvEQY28qwjp/ye3jfMSqKnBHWU+nBJ17yfY2s1oncKooHn3hpREmYDF1UPPjESxio4qG0/s45ACoGRXuD7lfzbzNedHtvge6Q/hAEH021NpeSEIWQqlTzVPJq4Ku1RyaTJxZCyZYGuVUUboXv56F4NeClYoOv/BNmI+emWFbsGL04jG6RowkzNmi/Il5FYe8hzpo2CXtW3hjqXEk8X7sn3MQJDfja5yudHC7oS5ft+98MdVy1fDhWXvzyZ0JdIw1yqyiSYv2dc3yPKqphTaGa5HqHepnvfu7V07GlpbUrCaCS9nbRpmerKguneeowLo/tPbuwfEGb47NzyuF+7sLFMXXTHMH+ae/hTDc0Tlz7wJNjXKInTyxk8j6qTXs6vYNOdcyNUjHbGR9EMzDv29XVpQcOHAh0jN80pnYmNAhe+eotnvvMXv09X2swFs5s8eXCmgavW/J/54Gwz880Z1frSVezG3ld36ssV/ceTsQP3q4wwpTPZQXBy+u863ZWcFISVtKsz15u2hMEeGX9Esxc9WRVZWGVOYgBGwA2L5sXqgMkIi+oalfgAwOSbTWWAF9fOrfqPubwvhppKYnNy+alcp08oMafGcLEacrHdL21BhX8/R0HY/FhT2qx1MP7jkWW74NhzY2ffrXFlVeH7EgExV5X7FzQitJecE2wtDpf/o5/A/bCmS2ZnzqsK0WxfEGbrweSlYfW2lwK3dPIMkHmbb1wC2Hi5HqrqDTGfmwJ7T27atLgxqGE8rjq1wlF+FFnEPy6afvpFFqV2ztn/Rmwly9ow7b7rve1by3JraJoLAT3qc/TPP5lBcFzPZ8eURILZ7bUWKJ4WN17uOpL1xDg0Tq52XoFg/TrqhhHDz8M7T27Umkg80LSSjvOwKGK4Cuv89Im5VZRTJoYzA4fdPomzlwWYbDPNVfrdeQl0Y+fHu+mLwR7VvZ79YoF6ddVEYindz5r2iQsz+giqlpyWYCOXpJK+8qYXa7NOtPsI9q0n32yQm4Vhd+hnUnQ6Zs9K2+sibKYPLEQypC38pHRiX7c5u+TIG4lFfRZ2UcJ1bybg8j386su9e4XbXo2iFgAKvVobbmDdiYbG+6qbiu08vC+Y7i6J/7ou92LZ8d6PqAyCvLTIXnwtutiv3ZS5NY9tiCS+ErdPStvxMINTyceoTUODw97rgZz/j5p+0aQBYdJ9QqDjBKAimJpbS75eq4XtGJTeeXk+55RfJ2YfnnjyP9mWcTlep13wriLKyrl94ePHsLXl87Nte1u1rRJuZI/tyOKtMI5JNHjsBIkflFTQF9r+/xrEtNTKz0WHNrZ5mMqx2xcJ8aYS8TOwOBQoOf63KunAysJANj/wKJR38udramMLPLg+RTFNnDhomLFjoNo79mF2au/F6ke1yKfS5SFnbUit4oiCFHmiMudrYnOMd89/yrf+371Tn9uuybWrHxOLqNxTE95zfK0WxRSb19/1dXY0y9vHGlc/booO+FnyjDpnr3bKLHc2Zr4GoGwtpVrH3hyxJje3rMr0URScdkGzl24iJWPhM+nXot8LnlTEkCdKIqongXmHHPcsYYWzmwJJFvQoap1sOLkBjg4NDzSM3P6i6Nnak5FVWuYly9oG9UDjzIs//f3g/f+42LWtEmZWPw4f92eQPtf3bNrzNqGD4Y1MWVx07VTYzvXRQ0/MhhPEYmTJLeKIu0HXO5sxXM9n8brG5Zg+YK2Mdf3WoK/edm8EUUjuLQ+Imn/aavBP0zPKU0X0ajK3JRzde/hwI4OcbF52TzfvcVJjcEDwF1WkJH6V40T750fZYj3YnXvYdfRXlJZB595+ZTj9rChLMJOZXlNYdMB4RK5NWb7ja+TxLTR2nKHY8O2uvcwtu07NvLSTWosYN0dHSO947SNV0HWI7hRLTLm9MsbQ83f24kaw+nhfcfQ9bGWmi04a7KErvfDujs6Ak9/mS7Ta8sdvu7zglZGCq9VGeHUoszcGvYPfATkdCLsVJabU0Nrc2kkuvScNU855qw3FUk9OCjkVlGsLXfgtVPvV128leaCFjcFUivsnlBh8WrEJxTiCY0ch4dWrV5YQXD7URAvKKvtxqSp2ICzPqMcz1+3Z+R4p4CGteBKlwb6yuYSbrp2amDlFdbppHvxbMcEZtbzVQtSeOCN0+NmRbwbuVUUQGURGlexJs+qnS+6NuJxrWx1Ok+YnBVpM6WpiDW3XhdKyZk91jCZGr8aIMqxOeL7+VW7cMFSoNbEO2nj1UCb924qND+E7WS4JTALcj6zc+inLPM6nZVrRQEAxQb3BVb1viI2rsjFg0MXMWfNU449K7eeYVCcpg7uWdCWekM2QTCqMfVi8sQC+v701yJf0ymBlp9j/vDRQ7jgc9gYtkOVVMNWrYE2R+dpdATDlL+dteUOPPPyKdd3oTXneUNya8w22bjUuSIH9SjKC1Oa/C/7H7oYX0Kdd88NY86ap8Zs7148G6VitOkn+1DfZG25I1VlP3liAa+sX+I7wX2t8yZ8fencWOxQXiTZsJkOIq9tWDIqrpkVPz4rWekQOr0LpWIBm5fNc72/vJB7RWEuYkrbo6hWrLn1OhQDxMl58ImXsHDD07Fc+91zw2MUT7mzFXoxuAFyQoOMPK/1d3a4vkRryx2hAkAGZfrljSMN/2sbloxaVW0nbJiVuCl3tmLTF+J3284S98yvrgSy0iEsd7Zi/Z0do9oir7qdJ3KbuKie6e3r95UbPAlam0t4rufTgbJ3AZWeVdiX5uqeXZFtFW6Z5LywZ5lbOLMl0x2QuKdpzGdda7ySHGU1I15apJW4iIoixzilywzLpMYCzpyvHpcf8O8S29pciiWvc9R4W+Mxp4cTQbOqVSNL5TZ/3Z4xda7elQSQE0UhIs0A/gLAJ1BxUPkNAEcA7ADQDuB1AF9Q1Xe8zkNFEZ6oqTmtaz06v/L9WBerxTU909vXj+5HD2EohL+vmcqyXohrVJH10ROpkJdUqH8G4ClVvRbAXAA/BtADYK+qzgKw1/hOEiLq/GxzU+NIr3HNrdclbhwNQ7mzFR+6LJyDXj0piTihkiBWQisKEZkM4AYAfwkAqnpeVQcA3A5gq7HbVgDlqEISb6I07tb1C6ZxNA4mT4xnIZ7JQIiRTpDkOOOFOAzbWfEiItkhyojiGgCnAPy1iPSJyF+IyCQA01X1OAAYn9OcDhaR+0XkgIgcOHXKOe4L8UeUFdj29QtxhcKOe+74wwGzgV1WkDFZAuuB7sWzfbv3OiHIjhcRyQ5RFtxNAPBJAL+jqvtF5M8QYJpJVbcA2AJUbBQR5Kh7/CbhccJp/UK5szWSUTQJ19GhYW8X3Cy4q2aBcmdr6JAS9apcSXWiKIq3ALylqvuN74+hoihOiMgMVT0uIjMAnIwqJPGme/Hs0A173F4tSTXYfj2ySGVE0PWxFnQ/etA1akHeVwrXgjChVsYLoRWFqv6biLwpIrNV9QiAmwH8yPi7F8AG4/PxWCQlrmQlzWaW4tg4Bb+rpymVOMJSkEuYib/M2FRm4i8g/ajQtSCq19PvANgmIi8CmAfgq6goiEUichTAIuM7SZhyZ6uvcAdW4ooFBSTvc98cwEZhugybAeXM4Hd5SBFKsolb4q9apFKtBZGaClU9qKpdqjpHVcuq+o6q/lRVb1bVWcZnPCvCSFX8hDuw4hYnKyiTJxYS71U9eNt1rr/ZkwBt3/+m435u2wmphluU5FqkUq0FuY/1RC6xttzhK180UHGB9Grcg3iWprE61ktWu/3CLTS135DVhNhp9gjGGVfgzSxDRTHO2LPyRixf0DbKRbKxIJjSVBwVNLHafP03fK6nSNPn3k131d9qCZI2Xn2Meph+yn0+CjKWODLtmT14a/DBYgMwrJV1G7UwELu9q2HHCfbAhrOmTfKd85rUFz/zCMBZD9NPVBTEFb+eM1nzMCqIOE4zWUceTtFvj548g0WbnqWyIGPwStBVCOpFkkM49UQikUUPIzdbhOLSfLJbiPQgodNJ/eCVk7sebF9UFCQS21xWALttTwOveEf1MJ9M4qfc2eoaU40jCkKqELfdICxWzxOv3p+bmyMh1XCLqcYRBSEJ0tvXj4UbnsbVPbuwcMPTVd0MvaLkWkcK5c5W19zi9iCIhJDq0JhNakJvXz9WPnJwpJfWPzCIlY9UQpC4GdC9ouTaDY1L5sxwDIx307VTfckWdgFh3tKnEuIHjihIYniNEP5k54tjGv6LWtnuhpftwT7YeOZl59D15na3EQdQcQkOg1Nq2udePY17vvV8qPMRkhU4oiCRcHNFBSrTQW4987MuYU3dtgPeUXLtEri5Mprb19x6neu5Bjx85r1wy18eNq951tyOawnLorZQUZBI3D3/KtfcB2EXIkWZ+jFpEOepKtNDJWrOjaAEvSd7LnTT7RgAuj7WUlfhrr3KIk1lIXB20nAznY0n5capJxKJteUOzxAafozUdpymn8wwz37o7etP1ENlde9hzFz1JNp7dmHmqid9rRkJ6pbrpnwf3ncMq3YeRv/AIBSXwl2P53hDXmWRJkE8/LK4vigKVBQkMl5Nr1tDZo/4asVp+skpzLMbXo1ykHDlToRtAOIM81DP4a7zwniLYExFQSJTrfF1asjW3RFsCB5k/YPXvlHXRnk1ACWPBB9JL8mqh3hDeWK8RTCmoiCROX+hek/f2pDNWfNUVfuAvYfuZ/3Dok3PVt134GzFUB12qsarAfjAwxCfRvMwnqef8obXau08PicqChIZL08lK6t7D6O9ZxfePVddsdhDgHQvno1S0X26CqjEabrnW8979q4/bIx+kpiqiWsxX9h57LBuvVlngstKS7ftWeDu+Ve5/pbHaUJ6PZHUCGJ8VADtPbtGvi+c2YL1d3ZUHYlUc0U1O3pJhPLwct8NQlgjbVi33jQJ4wl0wcUzwW17Flhb7nB9jnkMI0NFQXKBqQAmNRbGZLQLwjGz98wAAA/USURBVDvG1JNX2Og06e3rH+PqOl7JiptrEji5PzeXio7K+8MRHSpqAaeeSG547tXTgY3gdsy542oNcnvPrsBTQEGnFHr7+rFyx8FRrq4rU1zbkTZJeAKlOd8fdDW/m5liYHAolNt4LaGiIJFIu7JHndoxjdF+FqgF9XsPOqWwaueLsFt3/Fl78omXI0B7zy7MX7fH8fckwq2EYc2t17n+5jRyMEevTuRt/QsVBYlE3gxzQc2fQewFQY3Zgz6dAIJijco778vfR+dXvu87Qm8tOfHeeUdlEbSBToqgq9+r5akYHBrOjQMCbRQkMFaDZN6IKrFXmlU/xuw5a57y5fUVFqsDADC6Ie0fGET3o4cABG/00uLEe+fHbEs73EoUrDYnP3VtYHAolpA1SUNFQQLhFCE1r7jFg7Jz7QNP4orLL/N8+f00CkkrCT8MXVSs2vliphsmJwO/27PKkoesGWbGbwQBkxU7DuLAG6czbdCPNPUkIq+LyGEROSgiB4xtLSKyR0SOGp9T4hGV1Jrevv5xoyQA4Nfnt/na74NhHTE4e1FtGqHWSsJkcOhipqegVtgM/Ct2HHRV6HF5yAZNouVEkDAzdrIeByoOG8VNqjpPVbuM7z0A9qrqLAB7je9kHJCX4b9f4u7B5WEdg8kfPJL+s5w4IX6TaBz5qs2RQNRAi1HdrbMcByoJY/btALYa/28FUE7gGiRlstwDDYo1kdDyBf5GFX7x8tDJEsM1MC997fNzYp8qisNO5jQSCBNoMeq9ZdnmF9VGoQC+LyIK4P+o6hYA01X1OACo6nERmRZVSFJ78ubd5IU5fbZo07M4evJMrOf2conMGnbDt5VJjQWsu6MjVluGea6Nu4/EttgxajRgoHqSK79keKF4ZKKOKBaq6icBfBbAb4vIDX4PFJH7ReSAiBw4dco5bSXJDmmHHZg80TuuU1Tae3bFriTGE2fOD2PFjoOZH0nGMPMUCK/w+HGQ1fKOpChU9W3j8ySAvwfwSwBOiMgMADA+T7ocu0VVu1S1a+rU6gnvSW2JK+BdNVqbS3h9wxK8+OXPpHI94k2cdimrLSAukh7B2RvuqJEBqpHVdRWhFYWITBKRy83/AfwagB8CeALAvcZu9wJ4PKqQpPakEYOoVCyMuk7c9gNSW6J4BbkRhzHbi1WWbIs/v2pX4g4dWXWIiDKimA7gn0XkEIB/AbBLVZ8CsAHAIhE5CmCR8Z3knHJnKxbObIntfJuXzcPmZfPQ2lyCoDKSWH/n6DnxLPuVk+AkMX2ZtAHYXD3f3rMLF8axDaIaoY3ZqvoTAHMdtv8UwM1RhCLZZNt918eyKnvhzJYRhVDNWOqW0J7kj8YJDTh3If6wJUmvbM7y+oa0YKwnEoi15Q68uv4WvL5hSajjZ02bhG33Xe97/3sCTj8tX9CG1zcswfTLG4OKVhM2L5tXaxE8mRDjzE4SSgJIfk1I2PwgYfBKp1tLsikVyQVBlYUA2LPyxkDH+J1+EkMec/9F1/1coOvUiiyH0sgLUdaEZM3L6LIqWRxrBRUFSY3XQo5CqjF5YmHMudPsBY5n8jIvH7bBz5qX0UBG1+FQUZDQBHk5Gwvh5zCqhX5I2pV28sRCrIZ8k1nTJgHI/vRTHvjyd8I1+FnzMspq9jsqChKaIKu1H7prjN+Db772+TmuvyXtQrtwZgte/PJnsO2+62NVFtMvbxyZhit3tkZSpOMJQfCcIUC+VsR7kfYCQr9QUZDQ+HV3XL6gLdJcfLmzFZuXzRtl6GuQynnDuNCWig2jXHObS0XHF2H5grZRhvcwysLJDXjzsnnY/8CiUfs9dNdc11hB5jFhlGJrc2lk5JIHrmwu4Zt1PMLK6tQT81GQ0FzZXPJcZdtq5BKIw2Bb7mz1fZ5qU2Lr75wT6HxWtt13vWeMJDt+3YCtcZCseRisx5U7W0cUox8ZrM4GQWS2Eue02PIFbZ62I3PBZZiYUHHEfMoCaUVACAoVBQnNTddO9Xzxn+v5dIrSXKLalFhankZBG9kgymtSYwFnzruvcraPfESAoEtfNi+bF2tZmUrOXIcjAJoaCzh7fniMYjTLwm+irAdvc0+Xmiduujab4YyoKEhonnnZPZhjaw17RmkHMLQzpamINbdel6hCWndHh2c4CftalXvme/fmnUhC/rXljkDThX5GcFEUmt8sh2mxff+xTEYkoI2ChMarQa5lz8hr+J50bCAA6PvTX0t81OJ1fqc7XFvuCGTjSDp6b5xEKessKQmgNnlC/EBFQULj1SB7jTaSxiuAYdKxgdI0HLuN2tyey9pyh6/psMkTC3UTvbeWI988QUVBQuM1aqj19I8bcTQMXpnMgq48j0L34tko2Vby2iPw2jE9yOxeWK9vWDLyVy9KAog3KvKUpuK4jXhMGwUJjdeooZbeG27GbEE8DUNWpiv8eEq5HcfQIRXKna2xhA4vFmTELrVt/7HAjgMmWXVlpqIgofFyXUwjf4UbbqMZxfiLrVTvjX4aUyJOMc16+/pdFXQYxwFg9CLMrEFFQUJTEHGd869l4+W2viOu+Wi30OcZXVSbe7zq2aaEF+e5TSV5Kei15Y5AimJCg+DrS+dmWuFTUZDQeBmGk84R4EX34tlYtfPwqGxq1ebug+B21xmZkRp33D3/KseG15rXJCnCuqq6LS4MG02g1tCYTULj1UMPEgcqbsqdrVh/Z4dn9rwouLnYpuF6W4+Yrr1m+RZExoRXyRpuMudRSQAcUZAIdC+e7WoI9Bt6ISmSnLt3G0kl7XpbzwRdqBeEhTNbHFd/Rw0CmaTMacMRBQlNludUk8RtJEWf/HziFOxx4cyWTI9Y0oYjCkICkrQNhKQPlYI3VBQkEvXoARR2/QIheYWKgkSicUIDzl246Lh9PFPv6xdIdbzWWuQNKgoSCScl4bWdkHqgt69/1PRk/8AgVu08DCCftr3x3e0jhJAasHH3kVE2LAAYHBquqdt4FKgoSCTcMouNl4xjhITBLYxMVoNlViOyohCRgoj0ich3je8tIrJHRI4an1Oii0myyoO3XYeiLZxqsUHGTcYxQsLgFhQzq6lOqxHHiOL3APzY8r0HwF5VnQVgr/GdjFPKna3YuHTuqFXQGzMet4aQpAkTAj7LRDJmi8hHASwBsA7ASmPz7QBuNP7fCuBZAH8c5Tok29ADiJDRjDcX6qheT5sB/BGAyy3bpqvqcQBQ1eMiMs3pQBG5H8D9ANDWNj6TfRBC6pfx1IEKPfUkIp8DcFJVXwhzvKpuUdUuVe2aOrV2+ZUJIYR4E2VEsRDAbSJyC4DLAEwWkYcBnBCRGcZoYgaAk3EISgghpDaEHlGo6ipV/aiqtgP4IoCnVXU5gCcA3Gvsdi+AxyNLSQghpGYksY5iA4BFInIUwCLjOyGEkJwSSwgPVX0WFe8mqOpPAdwcx3kJIYTUHtEMJFsRkVMA3jC+fgTAv9dQnLBQ7nSh3OlCudPFr9wfU9XEvYEyoSisiMgBVe2qtRxBodzpQrnThXKnS9bkZqwnQgghnlBREEII8SSLimJLrQUICeVOF8qdLpQ7XTIld+ZsFIQQQrJFFkcUhBBCMgQVBSGEEG9U1fMPwFUAnkEl58RLAH7P2N4CYA+Ao8bnFGP7Fcb+7wP4c9u5lgF40TjPQx7XXAfgTQDv27avBPAj4xx7UfEhdjp+IiqhRM4CGATwrxa5hwG8B+AcKnGoMi83gJsAHLbIPQzgnqzLbfz2Z4Zs54zzZKm8bzDK9SKAtzC6fu8FMATgDLJXvx3lBvAxAAct9eTHeZA7B++lW3ln/b28AcAPAFwAcJftt68B+KHxt8xNhpH9q+4AzADwSeP/y1FpBD4O4CEAPcb2HgBfM/6fBOCXAfymtYCMgjsGYKrxfSuAm12uucC4rr2AbgLQZPz/WwB2uBz/3wD8LYBPohKH6tsWuc/nVO6HDHlbUGmQv5EDuX8TwOsA/sSQ8y0A38yQ3O0APg3guwDuwuj6/XcA/sb4LWv1xE3uuQC+Ycj7IQDvAPifOZA76++ll9xZfi/bAcxB5d28y7J9CSqdnwmGnAcATHY6h/lXdepJVY+r6g+M/99DpZfSikqCoq3GblsBlI19zqjqPwP4wHaqawD8q6qeMr7/A4DPu1xznxo5LWzbn1HVs8bXfQA+6iL27QD+lyH3YwB+xSL3hJzKbZb3XQC+B+BzOZD7k6hUxL9W1TMA/gmV3lQm5FbV11X1aRgrYG31uxOVURKQsXriIfc0VOrFVlRGeWcALM6B3Jl+L6vIndn30pD7RVRGQlY+DuAfVfWC8V4eAvAZp3OYBLJRiEg7Ki/QftgSFKFSSb14BcC1ItIuIhNQqQhXBbm+jS+h8mCcaEVlyAZVvYDKC/OLhtwC4Dsisg/A/BzJbZb3FwH8dU7kfhLAFAA/E5GPoNJDas6Q3KOw128Ap4FM1u9R2OT+OQC7UXke61HpwXqRFbmz/F6OwqUdzOJ76cYhAJ8VkSbjvbypmgy+gwKKyIdQmVJYoarvikggyVT1HRH5LQA7UNFw/w8V7RoYEVkOoAuVnqvjLja5fw7AfYbc76pql4hcA+BpVFGWGZIbRn6PDlQaAk8yIneviAwZ1z4F4HkAd2RIbiuXIT/124pdblXVOSJyJYBeWJ5NxuXO8nvpJXeW30s3Gb4vIp/C6PfygtcxvkYUIlJEpXC2qepOY/MJo4DMgqqaoEhVv6Oq81X1egBHABwVkYKIHDT+vuJDll8F8ACA21T1nLFtnXkOY7e3AFxlyL0TFaPk/zV++zcjsdJPUOkRvJ8TuU8A+C8A/h6VgGF5Ke9jAD6rqosAlGD00jMi98juAP4QtvqNyrxzFuu3p9xG/X4bwE9QGd3lQe4sv5decmf5vfSSYZ2qzjPeS0HFKcnzAM8/4yR/C2CzbftGjDY+PWT7/T9jrLV/mvE5BRXvjF+ocm27EacTwKsAZlU57rcB/G9D7icBPGK57iZDXjM6419mXW5LeR9DZZiYl/IuAPgfhrxzAPwbgI1ZkdtSv18B8F2H+r0Fl4zZmSlvN7lRmav+piHvFFR6i3+VA7kz/V76qCeZfC8t+/8NRhuzCwCuMP6fg4rn0wTPc/i4yC8DUFRcsQ4af7egMve5FxVNtBdAi+WY11HpOb6PSm/z48b27ai4df0IwBc9rvmQcZzpjvagsf0fUNHgphxPuBx/GSrDV0XFE+FHxv5/YPxvurP9KCdy3wJgHiqGsTyV9+2o9JjOoOI2uz9jcn8KlR6gojL0HrSU9/OoeOJcNMr9rhzI/QAqLpdW99g8lHfW30uvepLl9/JTxnFnAPwUwEuW99W8/j4A87x0gKoyhAchhBBvuDKbEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhCRUEIIcQTKgpCCCGe/H9DmsqiQBIg1AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from apd.aggregation.query import with_database, get_data\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "async def plot():\n", + " points = [(dp.collected_at, dp.data) async for dp in get_data() if dp.sensor_name==\"RelativeHumidity\"]\n", + " x, y = zip(*points)\n", + " plt.plot_date(x, y, \"o\", xdate=True)\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " await plot()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nO2df5RV5Xnvv88czuAZIhnGAMWJk1FK8cYMMOmk4KXXaiwlkahHIyFW1vKu5uptb1dbSjvtULnFZEEgkhC6bu+695L+olcWRQ0dTTASitqueoUuzIDERIpGRUcKNDhRYYRheO4fZ+9hz56999m/z95zvp+1Zp05++wfz373u9/nfd/neZ9HVBWEEEKIGw21FoAQQki2oaIghBDiCRUFIYQQT6goCCGEeEJFQQghxJMJtRYAAD7ykY9oe3t7rcUghJBc8cILL/y7qk5N+jqZUBTt7e04cOBArcUghJBcISJvpHEdTj0RQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+qej2JyF8B+ByAk6r6CWNbC4AdANoBvA7gC6r6jvHbKgBfAjAM4HdVdXcikhOSIr19/XjwiZcwMDgU6TxNxUrf7OzQRQDAlKYi1tx6HcqdrSPX2bj7CN4eGMSVzSV0L5498htJjiDlbq8LU5qKWDJnBp55+RTeHhjEh0tFnL8wPPKM/WCvB1lDqkWPFZEbALwP4G8tiuIhAKdVdYOI9ACYoqp/LCIfB7AdwC8BuBLAPwD4BVUd9rpGV1eX0j2WZJXevn50P3oIQxeTibRcLAg23jUXALBq52EMDl16XUrFAtbf2ZHZBmQ80NvX77vck6wLZj0I8qxF5AVV7YpdGBtVp55U9Z8AnLZtvh3AVuP/rQDKlu1/p6rnVPU1AK+gojQIyS0bdx9JTEkAwNCwYuPuI9i4+8ioxgoABoeGsXH3kcSuTRCo3JOsC2Y9yCJhF9xNV9XjAKCqx0VkmrG9FcA+y35vGdvGICL3A7gfANra2kKKQUjyvD0wWNNrpHH9esatfJ22J/0ssvqs4zZmi8M2R/WrqltUtUtVu6ZOTXwFOiGhubK5lMo13K6TxvXrmSDlnvSzyOqzDqsoTojIDAAwPk8a298CcJVlv48CeDu8eITUnu7Fs1FscOoDxUOxIOhePBvdi2ejVCyM+q1ULKB78ezErk0QqNyTrAtmPcgiYRXFEwDuNf6/F8Djlu1fFJGJInI1gFkA/iWaiITUlnJnKzYunYvmUjHyuZqKDSOeT0DF28U0YJY7W7H+zg60NpcgAFqbSzRkp0CQcneqC1Oaili+oG3k+OZScdQz9oO1HmQRP15P2wHcCOAjAE4AWAOgF8AjANoAHAOwVFVPG/s/AOA3AFwAsEJVv1dNCHo9EUJIcNLyeqpqzFbVu11+utll/3UA1kURihBCSHbgymxCCCGeUFEQQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhCRUEIIcQTKgpCCCGeUFEQQgjxhIqCEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhSNR8FIWHp7evHg0+8hIHBoTG/TWosYN0d/rO39fb1Y+PuI3h7YBBXNpfQvXh2bNnAvOQ0mdJUxJpbr0O5szWwLOb+/QODKIhgWBXNpSLOXxjG2aGLsdwDUElYXywIzg9fSkY2pamIJXNm4JmXT43I235FCft+8g6GVVEQwd3zr8LackdscvjFXu7WMq4FTvXA/tyr1RMrbveTZF1OiqoZ7tKAGe7GH719/eh+9BCGLrrXr0KD4BtLq6d/7O3rx6qdhzE4NDyyrVQsxJIm1I+cJsWCYNmnrsK3X+j3LYuT7Flk+YK2VJWFW7kXC1KTlKBe9cB87jv+5U1f9cR+rPV+4q7LaWW449QTSYSNu49UfamGLyo27j7i61z2hnZwaNjXsX7O7fflHxpWbN//ZiBZnGTPItv3v5nq9dzKfWjYX51ISx7g0nMPqiTMY633k2RdThIqCpIIbw8Mxraf2z5+rxH1+laGXUbgScqYBm73lRRe5VKLMqt2zSjlYz13XusJFQVJhCubS7Ht57aP32tEvb6Vgkig88QhYxq43VdSeJVLLcqs2jWjlI/13HmtJ1QUJBG6F89GscH75So0CLoXz/Z1rlKxMGpbqVjwdayfc1eT06RYqBh+g8jiJHsWuXv+Valez63ciwV/dSIteYBLz91vPbEfa72fJOtyklBRkEQod7Zi49K5aC4VHX+f1FjwZcg2z7X+zg60NpcgAFqbS7EYsv3IaTKlqYiNd83F2nJHIFmssgOXeqbNpSKaivG+fgKgsTC6MZvSVMTyBW2j5F04s2VEjoJI6oZswLnczTKuhQeQWz2wPnc/9cTpWOv9JFmXk4ReT4QQklPo9UQIISQTUFEQQgjxJJKiEJHfE5EfishLIrLC2NYiIntE5KjxOSUeUQkhhNSC0IpCRD4B4D4AvwRgLoDPicgsAD0A9qrqLAB7je+EEEJySpQRxX8AsE9Vz6rqBQD/COAOALcD2GrssxVAOZqIhBBCakkURfFDADeIyBUi0gTgFgBXAZiuqscBwPic5nSwiNwvIgdE5MCpU6ciiEEIISRJQisKVf0xgK8B2APgKQCHAFwIcPwWVe1S1a6pU6eGFYMQQkjCRDJmq+pfquonVfUGAKcBHAVwQkRmAIDxeTK6mIQQQmpFVK+nacZnG4A7AWwH8ASAe41d7gXweJRrEEIIqS1RExd9W0SuADAE4LdV9R0R2QDgERH5EoBjAJZGFZLUH1lLakNIPRNJUajqf3LY9lMAN0c5L6lvnJLIvHN2CN2PHQIAKgtCUoYrs0nmyFpSG0LqHebMJqlizR8tAOzqwGmblf6BQXz8v38vUK7pKU1FfHzG5Xju1dO+9rVOccU1Bba69zC2739zTJ5qr/zJ1t8+XCpCBBg4O+S436qdL2LQKJMGAa6/pgUvvf3emPzPZv5st/JvEODX56cfTdYtX/WSOTPw3UPHazIFubr3MLbtO+ZYH1tzkus6Lhg9lqRGXvJHm3mOAcSS13l172E8vO/YmO0LZ7bgB8d+5pg/GYBnWVn3W7njIPyrTX+kGXo8SN5yIJ282m7PzEpcedujkFb0WCoKkhoLNzyN/oynfDQx80e4ydvaXMJzPZ/2da6Zq54MlEqz2rWD7heGggheXX9L7Od1Iky9CFL+YfD7zJKWoxppKQpOPZFYqPQKD8JpRmhSYwHr7ujIfF5gK9VkDXIvQfMtx5lvPCxp5tAOcx9J1yW/95+nOh0FGrNJZHr7+rFih7OSAIAz54fxB48eQnOT/+xgtebK5lJseZ2D5luudu2g+4UhzRzaYe4h6RzTfu8/67mu44KKgkTGjyfS8EWFKnKRP9rMcxxXXme3fNQLZ7a45k+ulmvbul8SL3GaObSD5C0H0smr7ef+85DrOi6oKEhk/A6/fzY4NCp/tFPTYM/73FRsGJVb2v7dD1Oailg4s8X3vqahNK68zmvLHVi+oG1Mnupt913vmj/Znlu5uVTElKai436bls1DyVImDVJRQk75n8382YBz+TdIuoZswDtf9fIFbTXJq20+Mzf1lZdc13FBYzaJjF9jZK0Nf4SMN5gzm+QGP8PvQkPy0wWEkGSgoiCRKXe2YvOyeXCbEZrUWMA3liY/XUAISQa6x5JYMOfLCSHjD44oCCGEeEJFQQghxBMqCkIIIZ5QURBCCPGEioIQQognVBSEEEI8oXssyQT2JDFmxFm63BJSe6goSM1xShJjRpwFmCObkFrDqSdSc7bvf9Nx+/BF5sgmJAtwREFSx54L2itJjDUyrT3v9IJrpozKC91UbMDEYmEkr/RN104dlW8ZSDfncpbwys1t/h5HbvCgctifkVOebDNasD1Per0+y1rA6LEkVYLmzTYjzvrJYeyXNHIuZwmnMrfme3bLWR13OSWRM73enqUdRo8l45KNu4/4biisEWfdpqfCMDRcX1NaTmU+ODQ8UgYbdx8ZoySA+MspyLP3S709y1oRSVGIyO+LyEsi8kMR2S4il4lIi4jsEZGjxueUuIQl+cdvkiN7xNm4czjXS65jwP1eze1eZRFnOSVV5vX0LGtFaEUhIq0AfhdAl6p+AkABwBcB9ADYq6qzAOw1vhMCwF+O4dbmEl76ymdGTSfEncO5XnIdA+73am6PKzd4WDmyel5yiahTTxMAlERkAoAmAG8DuB3AVuP3rQDKEa9BxhF+c0HbiTOHcxo5l7OEU5lbyzmu3OBh5IhKvT3LWhFaUahqP4CvAzgG4DiAn6nq9wFMV9Xjxj7HAUyLQ1AyPvCbC9qOU95pe17opmLDqHPZ8y0D6eVczhL2MreXc1y5wcPI4ZQT277NLU96PT7LWhHa68mwPXwbwDIAAwAeBfAYgD9X1WbLfu+o6hg7hYjcD+B+AGhra/vFN954I5QchBBSr+TB6+lXAbymqqdUdQjATgD/EcAJEZkBAMbnSaeDVXWLqnapatfUqVMjiEEIISRJoiiKYwAWiEiTiAiAmwH8GMATAO419rkXwOPRRCSEEFJLQq/MVtX9IvIYgB8AuACgD8AWAB8C8IiIfAkVZbI0DkEJIYTUhkghPFR1DYA1ts3nUBldEEIIGQdwZTYhhBBPqCgIIYR4QkVBCCHEEyoKQgghnlBREEII8YSKghBCiCdUFIQQQjyhoiCEEOIJc2YTUidUy5udNfIm73iGioKQOsCer7p/YBCrdh4GgEw2vnmTd7zDqSdC6oBqebOzRt7kHe9QURBSB1TLm5018ibveIeKgpA6oFre7KyRN3nHO1QUhNQB1fJmZ428yTveoTGbkDrANADnxYsob/KOd0LnzI6Trq4uPXDgQK3FIISQXJGHnNmEEELqACoKQgghntBGYeGebz2P5149PfJ94cwWbLvv+hpKRAghtYcjCgO7kgCA5149jUWbnq2NQIQQkhHqZkRxdc8uWM32AuC1DUtGvtuVhMnRk2fQ29dPbwtCSN1SFyOKdpuSAAA1tvth1c4XY5eJEELywrhXFPd863nP3+ev21P1HINDF+MShxBCcse4VhS9ff2uU0omJ947n5I0hBCST8a1ovjjb/ubMpqz5qmEJSGEkPwSWlGIyGwROWj5e1dEVohIi4jsEZGjxueUOAUOwrkL/qaM3j03XH0nQgipU0IrClU9oqrzVHUegF8EcBbA3wPoAbBXVWcB2Gt8J4QQklPimnq6GcCrqvoGgNsBbDW2bwVQjukaNaW3r7/WItQVvX39WLjhaVzdswsLNzzN8iekhsSlKL4IYLvx/3RVPQ4Axuc0pwNE5H4ROSAiB06dOhWTGKOZNW1SbOdiZq30WLTpWazYcRD9A4NQVNJgrthxkMqCkBoRecGdiDQCuA3AqiDHqeoWAFuASvTYqHI4cfZ8fG6tWcisVQ/J5u/51vM4evKM428rHzmYi/uth+dEorO69zC2738Tw6ooiODu+Vdhbbmj1mI5EsfK7M8C+IGqnjC+nxCRGap6XERmADgZwzVCEWfj/uFSMbZzhWHOmqdGGd3Ha7J5L3fmi7WPiF+VRZueHaXozNEQML6eE4mGvZ4Mq+LhfccAIJPKIo6pp7txadoJAJ4AcK/x/70AHo/hGqFonBCf9++7g0OxnSso89ftcfTMGm/J5q994MlaixAJr9HQih0Hcc2qXZw+I1jde9i1npjKImtEGlGISBOARQD+q2XzBgCPiMiXABwDsDTKNcLS29fv2z3WD0mvzXaKXLu0qw0bdx/xXBTYn4EpsThY3XsYHwznYMjgQbXFnRcVHF2QzCoDLyIpClU9C+AK27afouIFVVO6Hz1YaxEccZq/fvTAMcfItdUaHqAS3DCvWMsi3yoiGH/02CEqijplde/hWosQinEbPbZaeKZJjQWcOZ/uQrvevn78/o6DI41i/8DgqO9hyGsD29vXj1U7D2NwqP4WO57P+ciJBKe3r39kNOlFVjt+uVYUUbxL1t3RMaahKhULng1Xe8+uSN4Jf/TYIccotvXIxt1HAiuJgmT1NQrO6t7DmTRaEm/CeCr5VRIAcM+CtjjEjJ3cKorevn50P3oIQ4YrTP/AILofPQQAOPCG95RNqdgwolDsiqbaA3XyTvCrsNiTvEQY28qwjp/ye3jfMSqKnBHWU+nBJ17yfY2s1oncKooHn3hpREmYDF1UPPjESxio4qG0/s45ACoGRXuD7lfzbzNedHtvge6Q/hAEH021NpeSEIWQqlTzVPJq4Ku1RyaTJxZCyZYGuVUUboXv56F4NeClYoOv/BNmI+emWFbsGL04jG6RowkzNmi/Il5FYe8hzpo2CXtW3hjqXEk8X7sn3MQJDfja5yudHC7oS5ft+98MdVy1fDhWXvzyZ0JdIw1yqyiSYv2dc3yPKqphTaGa5HqHepnvfu7V07GlpbUrCaCS9nbRpmerKguneeowLo/tPbuwfEGb47NzyuF+7sLFMXXTHMH+ae/hTDc0Tlz7wJNjXKInTyxk8j6qTXs6vYNOdcyNUjHbGR9EMzDv29XVpQcOHAh0jN80pnYmNAhe+eotnvvMXv09X2swFs5s8eXCmgavW/J/54Gwz880Z1frSVezG3ld36ssV/ceTsQP3q4wwpTPZQXBy+u863ZWcFISVtKsz15u2hMEeGX9Esxc9WRVZWGVOYgBGwA2L5sXqgMkIi+oalfgAwOSbTWWAF9fOrfqPubwvhppKYnNy+alcp08oMafGcLEacrHdL21BhX8/R0HY/FhT2qx1MP7jkWW74NhzY2ffrXFlVeH7EgExV5X7FzQitJecE2wtDpf/o5/A/bCmS2ZnzqsK0WxfEGbrweSlYfW2lwK3dPIMkHmbb1wC2Hi5HqrqDTGfmwJ7T27atLgxqGE8rjq1wlF+FFnEPy6afvpFFqV2ztn/Rmwly9ow7b7rve1by3JraJoLAT3qc/TPP5lBcFzPZ8eURILZ7bUWKJ4WN17uOpL1xDg0Tq52XoFg/TrqhhHDz8M7T27Umkg80LSSjvOwKGK4Cuv89Im5VZRTJoYzA4fdPomzlwWYbDPNVfrdeQl0Y+fHu+mLwR7VvZ79YoF6ddVEYindz5r2iQsz+giqlpyWYCOXpJK+8qYXa7NOtPsI9q0n32yQm4Vhd+hnUnQ6Zs9K2+sibKYPLEQypC38pHRiX7c5u+TIG4lFfRZ2UcJ1bybg8j386su9e4XbXo2iFgAKvVobbmDdiYbG+6qbiu08vC+Y7i6J/7ou92LZ8d6PqAyCvLTIXnwtutiv3ZS5NY9tiCS+ErdPStvxMINTyceoTUODw97rgZz/j5p+0aQBYdJ9QqDjBKAimJpbS75eq4XtGJTeeXk+55RfJ2YfnnjyP9mWcTlep13wriLKyrl94ePHsLXl87Nte1u1rRJuZI/tyOKtMI5JNHjsBIkflFTQF9r+/xrEtNTKz0WHNrZ5mMqx2xcJ8aYS8TOwOBQoOf63KunAysJANj/wKJR38udramMLPLg+RTFNnDhomLFjoNo79mF2au/F6ke1yKfS5SFnbUit4oiCFHmiMudrYnOMd89/yrf+371Tn9uuybWrHxOLqNxTE95zfK0WxRSb19/1dXY0y9vHGlc/booO+FnyjDpnr3bKLHc2Zr4GoGwtpVrH3hyxJje3rMr0URScdkGzl24iJWPhM+nXot8LnlTEkCdKIqongXmHHPcsYYWzmwJJFvQoap1sOLkBjg4NDzSM3P6i6Nnak5FVWuYly9oG9UDjzIs//f3g/f+42LWtEmZWPw4f92eQPtf3bNrzNqGD4Y1MWVx07VTYzvXRQ0/MhhPEYmTJLeKIu0HXO5sxXM9n8brG5Zg+YK2Mdf3WoK/edm8EUUjuLQ+Imn/aavBP0zPKU0X0ajK3JRzde/hwI4OcbF52TzfvcVJjcEDwF1WkJH6V40T750fZYj3YnXvYdfRXlJZB595+ZTj9rChLMJOZXlNYdMB4RK5NWb7ja+TxLTR2nKHY8O2uvcwtu07NvLSTWosYN0dHSO947SNV0HWI7hRLTLm9MsbQ83f24kaw+nhfcfQ9bGWmi04a7KErvfDujs6Ak9/mS7Ta8sdvu7zglZGCq9VGeHUoszcGvYPfATkdCLsVJabU0Nrc2kkuvScNU855qw3FUk9OCjkVlGsLXfgtVPvV128leaCFjcFUivsnlBh8WrEJxTiCY0ch4dWrV5YQXD7URAvKKvtxqSp2ICzPqMcz1+3Z+R4p4CGteBKlwb6yuYSbrp2amDlFdbppHvxbMcEZtbzVQtSeOCN0+NmRbwbuVUUQGURGlexJs+qnS+6NuJxrWx1Ok+YnBVpM6WpiDW3XhdKyZk91jCZGr8aIMqxOeL7+VW7cMFSoNbEO2nj1UCb924qND+E7WS4JTALcj6zc+inLPM6nZVrRQEAxQb3BVb1viI2rsjFg0MXMWfNU449K7eeYVCcpg7uWdCWekM2QTCqMfVi8sQC+v701yJf0ymBlp9j/vDRQ7jgc9gYtkOVVMNWrYE2R+dpdATDlL+dteUOPPPyKdd3oTXneUNya8w22bjUuSIH9SjKC1Oa/C/7H7oYX0Kdd88NY86ap8Zs7148G6VitOkn+1DfZG25I1VlP3liAa+sX+I7wX2t8yZ8fencWOxQXiTZsJkOIq9tWDIqrpkVPz4rWekQOr0LpWIBm5fNc72/vJB7RWEuYkrbo6hWrLn1OhQDxMl58ImXsHDD07Fc+91zw2MUT7mzFXoxuAFyQoOMPK/1d3a4vkRryx2hAkAGZfrljSMN/2sbloxaVW0nbJiVuCl3tmLTF+J3284S98yvrgSy0iEsd7Zi/Z0do9oir7qdJ3KbuKie6e3r95UbPAlam0t4rufTgbJ3AZWeVdiX5uqeXZFtFW6Z5LywZ5lbOLMl0x2QuKdpzGdda7ySHGU1I15apJW4iIoixzilywzLpMYCzpyvHpcf8O8S29pciiWvc9R4W+Mxp4cTQbOqVSNL5TZ/3Z4xda7elQSQE0UhIs0A/gLAJ1BxUPkNAEcA7ADQDuB1AF9Q1Xe8zkNFEZ6oqTmtaz06v/L9WBerxTU909vXj+5HD2EohL+vmcqyXohrVJH10ROpkJdUqH8G4ClVvRbAXAA/BtADYK+qzgKw1/hOEiLq/GxzU+NIr3HNrdclbhwNQ7mzFR+6LJyDXj0piTihkiBWQisKEZkM4AYAfwkAqnpeVQcA3A5gq7HbVgDlqEISb6I07tb1C6ZxNA4mT4xnIZ7JQIiRTpDkOOOFOAzbWfEiItkhyojiGgCnAPy1iPSJyF+IyCQA01X1OAAYn9OcDhaR+0XkgIgcOHXKOe4L8UeUFdj29QtxhcKOe+74wwGzgV1WkDFZAuuB7sWzfbv3OiHIjhcRyQ5RFtxNAPBJAL+jqvtF5M8QYJpJVbcA2AJUbBQR5Kh7/CbhccJp/UK5szWSUTQJ19GhYW8X3Cy4q2aBcmdr6JAS9apcSXWiKIq3ALylqvuN74+hoihOiMgMVT0uIjMAnIwqJPGme/Hs0A173F4tSTXYfj2ySGVE0PWxFnQ/etA1akHeVwrXgjChVsYLoRWFqv6biLwpIrNV9QiAmwH8yPi7F8AG4/PxWCQlrmQlzWaW4tg4Bb+rpymVOMJSkEuYib/M2FRm4i8g/ajQtSCq19PvANgmIi8CmAfgq6goiEUichTAIuM7SZhyZ6uvcAdW4ooFBSTvc98cwEZhugybAeXM4Hd5SBFKsolb4q9apFKtBZGaClU9qKpdqjpHVcuq+o6q/lRVb1bVWcZnPCvCSFX8hDuw4hYnKyiTJxYS71U9eNt1rr/ZkwBt3/+m435u2wmphluU5FqkUq0FuY/1RC6xttzhK180UHGB9Grcg3iWprE61ktWu/3CLTS135DVhNhp9gjGGVfgzSxDRTHO2LPyRixf0DbKRbKxIJjSVBwVNLHafP03fK6nSNPn3k131d9qCZI2Xn2Meph+yn0+CjKWODLtmT14a/DBYgMwrJV1G7UwELu9q2HHCfbAhrOmTfKd85rUFz/zCMBZD9NPVBTEFb+eM1nzMCqIOE4zWUceTtFvj548g0WbnqWyIGPwStBVCOpFkkM49UQikUUPIzdbhOLSfLJbiPQgodNJ/eCVk7sebF9UFCQS21xWALttTwOveEf1MJ9M4qfc2eoaU40jCkKqELfdICxWzxOv3p+bmyMh1XCLqcYRBSEJ0tvXj4UbnsbVPbuwcMPTVd0MvaLkWkcK5c5W19zi9iCIhJDq0JhNakJvXz9WPnJwpJfWPzCIlY9UQpC4GdC9ouTaDY1L5sxwDIx307VTfckWdgFh3tKnEuIHjihIYniNEP5k54tjGv6LWtnuhpftwT7YeOZl59D15na3EQdQcQkOg1Nq2udePY17vvV8qPMRkhU4oiCRcHNFBSrTQW4987MuYU3dtgPeUXLtEri5Mprb19x6neu5Bjx85r1wy18eNq951tyOawnLorZQUZBI3D3/KtfcB2EXIkWZ+jFpEOepKtNDJWrOjaAEvSd7LnTT7RgAuj7WUlfhrr3KIk1lIXB20nAznY0n5capJxKJteUOzxAafozUdpymn8wwz37o7etP1ENlde9hzFz1JNp7dmHmqid9rRkJ6pbrpnwf3ncMq3YeRv/AIBSXwl2P53hDXmWRJkE8/LK4vigKVBQkMl5Nr1tDZo/4asVp+skpzLMbXo1ykHDlToRtAOIM81DP4a7zwniLYExFQSJTrfF1asjW3RFsCB5k/YPXvlHXRnk1ACWPBB9JL8mqh3hDeWK8RTCmoiCROX+hek/f2pDNWfNUVfuAvYfuZ/3Dok3PVt134GzFUB12qsarAfjAwxCfRvMwnqef8obXau08PicqChIZL08lK6t7D6O9ZxfePVddsdhDgHQvno1S0X26CqjEabrnW8979q4/bIx+kpiqiWsxX9h57LBuvVlngstKS7ftWeDu+Ve5/pbHaUJ6PZHUCGJ8VADtPbtGvi+c2YL1d3ZUHYlUc0U1O3pJhPLwct8NQlgjbVi33jQJ4wl0wcUzwW17Flhb7nB9jnkMI0NFQXKBqQAmNRbGZLQLwjGz98wAAA/USURBVDvG1JNX2Og06e3rH+PqOl7JiptrEji5PzeXio7K+8MRHSpqAaeeSG547tXTgY3gdsy542oNcnvPrsBTQEGnFHr7+rFyx8FRrq4rU1zbkTZJeAKlOd8fdDW/m5liYHAolNt4LaGiIJFIu7JHndoxjdF+FqgF9XsPOqWwaueLsFt3/Fl78omXI0B7zy7MX7fH8fckwq2EYc2t17n+5jRyMEevTuRt/QsVBYlE3gxzQc2fQewFQY3Zgz6dAIJijco778vfR+dXvu87Qm8tOfHeeUdlEbSBToqgq9+r5akYHBrOjQMCbRQkMFaDZN6IKrFXmlU/xuw5a57y5fUVFqsDADC6Ie0fGET3o4cABG/00uLEe+fHbEs73EoUrDYnP3VtYHAolpA1SUNFQQLhFCE1r7jFg7Jz7QNP4orLL/N8+f00CkkrCT8MXVSs2vliphsmJwO/27PKkoesGWbGbwQBkxU7DuLAG6czbdCPNPUkIq+LyGEROSgiB4xtLSKyR0SOGp9T4hGV1Jrevv5xoyQA4Nfnt/na74NhHTE4e1FtGqHWSsJkcOhipqegVtgM/Ct2HHRV6HF5yAZNouVEkDAzdrIeByoOG8VNqjpPVbuM7z0A9qrqLAB7je9kHJCX4b9f4u7B5WEdg8kfPJL+s5w4IX6TaBz5qs2RQNRAi1HdrbMcByoJY/btALYa/28FUE7gGiRlstwDDYo1kdDyBf5GFX7x8tDJEsM1MC997fNzYp8qisNO5jQSCBNoMeq9ZdnmF9VGoQC+LyIK4P+o6hYA01X1OACo6nERmRZVSFJ78ubd5IU5fbZo07M4evJMrOf2conMGnbDt5VJjQWsu6MjVluGea6Nu4/EttgxajRgoHqSK79keKF4ZKKOKBaq6icBfBbAb4vIDX4PFJH7ReSAiBw4dco5bSXJDmmHHZg80TuuU1Tae3bFriTGE2fOD2PFjoOZH0nGMPMUCK/w+HGQ1fKOpChU9W3j8ySAvwfwSwBOiMgMADA+T7ocu0VVu1S1a+rU6gnvSW2JK+BdNVqbS3h9wxK8+OXPpHI94k2cdimrLSAukh7B2RvuqJEBqpHVdRWhFYWITBKRy83/AfwagB8CeALAvcZu9wJ4PKqQpPakEYOoVCyMuk7c9gNSW6J4BbkRhzHbi1WWbIs/v2pX4g4dWXWIiDKimA7gn0XkEIB/AbBLVZ8CsAHAIhE5CmCR8Z3knHJnKxbObIntfJuXzcPmZfPQ2lyCoDKSWH/n6DnxLPuVk+AkMX2ZtAHYXD3f3rMLF8axDaIaoY3ZqvoTAHMdtv8UwM1RhCLZZNt918eyKnvhzJYRhVDNWOqW0J7kj8YJDTh3If6wJUmvbM7y+oa0YKwnEoi15Q68uv4WvL5hSajjZ02bhG33Xe97/3sCTj8tX9CG1zcswfTLG4OKVhM2L5tXaxE8mRDjzE4SSgJIfk1I2PwgYfBKp1tLsikVyQVBlYUA2LPyxkDH+J1+EkMec/9F1/1coOvUiiyH0sgLUdaEZM3L6LIqWRxrBRUFSY3XQo5CqjF5YmHMudPsBY5n8jIvH7bBz5qX0UBG1+FQUZDQBHk5Gwvh5zCqhX5I2pV28sRCrIZ8k1nTJgHI/vRTHvjyd8I1+FnzMspq9jsqChKaIKu1H7prjN+Db772+TmuvyXtQrtwZgte/PJnsO2+62NVFtMvbxyZhit3tkZSpOMJQfCcIUC+VsR7kfYCQr9QUZDQ+HV3XL6gLdJcfLmzFZuXzRtl6GuQynnDuNCWig2jXHObS0XHF2H5grZRhvcwysLJDXjzsnnY/8CiUfs9dNdc11hB5jFhlGJrc2lk5JIHrmwu4Zt1PMLK6tQT81GQ0FzZXPJcZdtq5BKIw2Bb7mz1fZ5qU2Lr75wT6HxWtt13vWeMJDt+3YCtcZCseRisx5U7W0cUox8ZrM4GQWS2Eue02PIFbZ62I3PBZZiYUHHEfMoCaUVACAoVBQnNTddO9Xzxn+v5dIrSXKLalFhankZBG9kgymtSYwFnzruvcraPfESAoEtfNi+bF2tZmUrOXIcjAJoaCzh7fniMYjTLwm+irAdvc0+Xmiduujab4YyoKEhonnnZPZhjaw17RmkHMLQzpamINbdel6hCWndHh2c4CftalXvme/fmnUhC/rXljkDThX5GcFEUmt8sh2mxff+xTEYkoI2ChMarQa5lz8hr+J50bCAA6PvTX0t81OJ1fqc7XFvuCGTjSDp6b5xEKessKQmgNnlC/EBFQULj1SB7jTaSxiuAYdKxgdI0HLuN2tyey9pyh6/psMkTC3UTvbeWI988QUVBQuM1aqj19I8bcTQMXpnMgq48j0L34tko2Vby2iPw2jE9yOxeWK9vWDLyVy9KAog3KvKUpuK4jXhMGwUJjdeooZbeG27GbEE8DUNWpiv8eEq5HcfQIRXKna2xhA4vFmTELrVt/7HAjgMmWXVlpqIgofFyXUwjf4UbbqMZxfiLrVTvjX4aUyJOMc16+/pdFXQYxwFg9CLMrEFFQUJTEHGd869l4+W2viOu+Wi30OcZXVSbe7zq2aaEF+e5TSV5Kei15Y5AimJCg+DrS+dmWuFTUZDQeBmGk84R4EX34tlYtfPwqGxq1ebug+B21xmZkRp33D3/KseG15rXJCnCuqq6LS4MG02g1tCYTULj1UMPEgcqbsqdrVh/Z4dn9rwouLnYpuF6W4+Yrr1m+RZExoRXyRpuMudRSQAcUZAIdC+e7WoI9Bt6ISmSnLt3G0kl7XpbzwRdqBeEhTNbHFd/Rw0CmaTMacMRBQlNludUk8RtJEWf/HziFOxx4cyWTI9Y0oYjCkICkrQNhKQPlYI3VBQkEvXoARR2/QIheYWKgkSicUIDzl246Lh9PFPv6xdIdbzWWuQNKgoSCScl4bWdkHqgt69/1PRk/8AgVu08DCCftr3x3e0jhJAasHH3kVE2LAAYHBquqdt4FKgoSCTcMouNl4xjhITBLYxMVoNlViOyohCRgoj0ich3je8tIrJHRI4an1Oii0myyoO3XYeiLZxqsUHGTcYxQsLgFhQzq6lOqxHHiOL3APzY8r0HwF5VnQVgr/GdjFPKna3YuHTuqFXQGzMet4aQpAkTAj7LRDJmi8hHASwBsA7ASmPz7QBuNP7fCuBZAH8c5Tok29ADiJDRjDcX6qheT5sB/BGAyy3bpqvqcQBQ1eMiMs3pQBG5H8D9ANDWNj6TfRBC6pfx1IEKPfUkIp8DcFJVXwhzvKpuUdUuVe2aOrV2+ZUJIYR4E2VEsRDAbSJyC4DLAEwWkYcBnBCRGcZoYgaAk3EISgghpDaEHlGo6ipV/aiqtgP4IoCnVXU5gCcA3Gvsdi+AxyNLSQghpGYksY5iA4BFInIUwCLjOyGEkJwSSwgPVX0WFe8mqOpPAdwcx3kJIYTUHtEMJFsRkVMA3jC+fgTAv9dQnLBQ7nSh3OlCudPFr9wfU9XEvYEyoSisiMgBVe2qtRxBodzpQrnThXKnS9bkZqwnQgghnlBREEII8SSLimJLrQUICeVOF8qdLpQ7XTIld+ZsFIQQQrJFFkcUhBBCMgQVBSGEEG9U1fMPwFUAnkEl58RLAH7P2N4CYA+Ao8bnFGP7Fcb+7wP4c9u5lgF40TjPQx7XXAfgTQDv27avBPAj4xx7UfEhdjp+IiqhRM4CGATwrxa5hwG8B+AcKnGoMi83gJsAHLbIPQzgnqzLbfz2Z4Zs54zzZKm8bzDK9SKAtzC6fu8FMATgDLJXvx3lBvAxAAct9eTHeZA7B++lW3ln/b28AcAPAFwAcJftt68B+KHxt8xNhpH9q+4AzADwSeP/y1FpBD4O4CEAPcb2HgBfM/6fBOCXAfymtYCMgjsGYKrxfSuAm12uucC4rr2AbgLQZPz/WwB2uBz/3wD8LYBPohKH6tsWuc/nVO6HDHlbUGmQv5EDuX8TwOsA/sSQ8y0A38yQ3O0APg3guwDuwuj6/XcA/sb4LWv1xE3uuQC+Ycj7IQDvAPifOZA76++ll9xZfi/bAcxB5d28y7J9CSqdnwmGnAcATHY6h/lXdepJVY+r6g+M/99DpZfSikqCoq3GblsBlI19zqjqPwP4wHaqawD8q6qeMr7/A4DPu1xznxo5LWzbn1HVs8bXfQA+6iL27QD+lyH3YwB+xSL3hJzKbZb3XQC+B+BzOZD7k6hUxL9W1TMA/gmV3lQm5FbV11X1aRgrYG31uxOVURKQsXriIfc0VOrFVlRGeWcALM6B3Jl+L6vIndn30pD7RVRGQlY+DuAfVfWC8V4eAvAZp3OYBLJRiEg7Ki/QftgSFKFSSb14BcC1ItIuIhNQqQhXBbm+jS+h8mCcaEVlyAZVvYDKC/OLhtwC4Dsisg/A/BzJbZb3FwH8dU7kfhLAFAA/E5GPoNJDas6Q3KOw128Ap4FM1u9R2OT+OQC7UXke61HpwXqRFbmz/F6OwqUdzOJ76cYhAJ8VkSbjvbypmgy+gwKKyIdQmVJYoarvikggyVT1HRH5LQA7UNFw/w8V7RoYEVkOoAuVnqvjLja5fw7AfYbc76pql4hcA+BpVFGWGZIbRn6PDlQaAk8yIneviAwZ1z4F4HkAd2RIbiuXIT/124pdblXVOSJyJYBeWJ5NxuXO8nvpJXeW30s3Gb4vIp/C6PfygtcxvkYUIlJEpXC2qepOY/MJo4DMgqqaoEhVv6Oq81X1egBHABwVkYKIHDT+vuJDll8F8ACA21T1nLFtnXkOY7e3AFxlyL0TFaPk/zV++zcjsdJPUOkRvJ8TuU8A+C8A/h6VgGF5Ke9jAD6rqosAlGD00jMi98juAP4QtvqNyrxzFuu3p9xG/X4bwE9QGd3lQe4sv5decmf5vfSSYZ2qzjPeS0HFKcnzAM8/4yR/C2CzbftGjDY+PWT7/T9jrLV/mvE5BRXvjF+ocm27EacTwKsAZlU57rcB/G9D7icBPGK57iZDXjM6419mXW5LeR9DZZiYl/IuAPgfhrxzAPwbgI1ZkdtSv18B8F2H+r0Fl4zZmSlvN7lRmav+piHvFFR6i3+VA7kz/V76qCeZfC8t+/8NRhuzCwCuMP6fg4rn0wTPc/i4yC8DUFRcsQ4af7egMve5FxVNtBdAi+WY11HpOb6PSm/z48b27ai4df0IwBc9rvmQcZzpjvagsf0fUNHgphxPuBx/GSrDV0XFE+FHxv5/YPxvurP9KCdy3wJgHiqGsTyV9+2o9JjOoOI2uz9jcn8KlR6gojL0HrSU9/OoeOJcNMr9rhzI/QAqLpdW99g8lHfW30uvepLl9/JTxnFnAPwUwEuW99W8/j4A87x0gKoyhAchhBBvuDKbEEKIJ1QUhBBCPKGiIIQQ4gkVBSGEEE+oKAghhHhCRUEIIcQTKgpCCCGe/H9DmsqiQBIg1AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from apd.aggregation.query import with_database, get_data\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "async def plot():\n", + " points = [(dp.collected_at, dp.data) async for dp in get_data(sensor_name=\"RelativeHumidity\")]\n", + " x, y = zip(*points)\n", + " plt.plot_date(x, y, \"o\", xdate=True)\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " await plot()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nO2de5wU1ZX4v3eaAQbUGZHXgOBoQsQX8pgoRFeTEDUKyMQH6C/+Vo0/XROzwbg+cEUZIsTnGtk1a1Y3UbLJqmgMChOTuGRN1kTMAhpMJEZFfM3wiDqjwgDzuL8/qmqmu6equp7dVdPn+/n0p7tv1+P0rap77j333HOU1hpBEARBcKKi1AIIgiAIyUYUhSAIguCKKApBEATBFVEUgiAIgiuiKARBEARXBpRaAIDhw4frurq6UoshCIKQKjZs2PBXrfWIuM+TCEVRV1fH+vXrSy2GIAhCqlBKvVmM84jpSRAEQXBFFIUgCILgiigKQRAEwRVRFIIgCIIroigEQRAEVwp6PSmlfgDMBnZorY82y4YBjwB1wFZgntb6A/O364FLgC7gG1rrX8QiuSAUkaYtTdzy/C207WsLdZyqTBUA7V3tANQMqmHhcQuZddisnvMs37icbbu2MXroaBZMXdDzmxAffuo9/16oGVTDaXWn8Zt3fsO2Xds4YOAB7Ova13ONvZB/HyQNVSh6rFLqJOBj4IdZiuJ24H2t9a1KqYXAgVrr65RSRwIPAccBY4D/Aj6lte5yO0d9fb0W91ghqTRtaWLRs4vo1J2xHL+yopKbT7gZgMbfNbKna0/Pb4Mzg2n8TGNiG5D+QNOWJs/1Hue9YN0Hfq61UmqD1ro+cmHyKGh60lr/Bng/r3gusML8vAJoyCp/WGu9V2v9BvAahtIQhNSyfOPy2JQEQEd3B8s3Lmf5xuU5jRXAnq49LN+4PLZzC/iq9zjvBes+SCJBF9yN0lq3AGitW5RSI83yscC6rO3eMcv6oJS6DLgMYPz48QHFEIT42bZrW0nPUYzzlzNO9WtXHve1SOq1jnoyW9mU2dq2tNb3aa3rtdb1I0bEvgJdEAIzeujoopzD6TzFOH8546fe474WSb3WQRXFdqVULYD5vsMsfwcYl7XdwUBzcPEEofQsmLqAASq+aDeVFZUsmLqABVMXMDgzOOe3wZnBLJi6ILZzC/iq9zjvBes+SCJB//GTwIXAreb7E1nl/6mUugtjMnsC8PuwQgpCKbEmF4vh9QSI11ORserXS73b3Qvi9QQopR4CPgsMB7YDi4FVwEpgPPAWcK7W+n1z+xuArwCdwJVa66cKCSFeT4IgCP4pltdTwRGF1vp8h59mOmy/DFgWRihBEAQhOcjKbEEQBMEVURSCIAiCK6IoBEEQBFdEUQiCIAiuiKIQBEEQXBFFIQiCILgiikIQBEFwRRSFIAiC4IooCkEQBMEVURSCIAiCK6IoBEEQBFdEUQiCIAiuiKIQBEEQXBFFIQiCILgiikIQBEFwJb78jkLZ07SlyTEr3JABQ7hpxk2eM3o1bWmKLfObm5wW2RnI/Mpibd+yq4UKVUG37qZ6YLXvLGheqFSVdOiOHLmzs6+NHjqaQ/Y/hN9v/z3dupsKVcG5nzqXRdMXRSqHF/LrvdRZ3uzug/zr7ifLodP/ifNejouCGe6KgWS46380bWli0bOL6NSdjttkVIZlJy4r+JA0bWmi8XeN7Ona01M2ODOYxs80hn7AvMhpUVlRyVkTzuKJ157wLIud7Elk/uHzi6osnOq9sqKSm0+4uegNp9t9YF33n/zlJ57uk/x9s/9P1PdysTLciaIQYuHUx06lZVdLwe1qh9byy3N+GehYXvYthFc5LawRgVdZ/B6/VFSoCv7wt38o2vnc6iWK6xqlPOB83b2Q/X+ivpeLpShkjkKIhW27tkW2ndM2Xs8R9vzZODUWccpYDII2gkFxq5dS1Fmhc4apn+xjp/U+EUUhxMLooaMj285pG6/nCHv+bCqU/SMTp4zFwOl/xYVbvZSizgqdM0z9ZB87rfeJKAohFhZMXcAA5e4rkVEZFkxd4OlYgzODc8oGZwZ72tfLsQvJaVFZUcm5nzrXlyx2sieRcz91blHP51TvlRWVkVzXqOSB3uvu9T7J3zf7/8R5L8eJeD0JsWBNzEXh9WRtE4enSCE5LbI9WKaMnOJZlmzZxeupF7t6L6XXk9N9kH/dw3o9xXkvx4lMZguCIKQUmcwWBEEQEoEoCkEQBMGVUIpCKbVAKfVHpdSflFJXmmXDlFJPK6VeNd8PjEZUQRAEoRQEVhRKqaOBS4HjgGOB2UqpCcBCYK3WegKw1vwuCIIgpJQwI4ojgHVa691a607g18CXgLnACnObFUBDOBEFQRCEUhJGUfwROEkpdZBSaghwBjAOGKW1bgEw30fa7ayUukwptV4ptX7nzp0hxBAEQRDiJLCi0FpvBm4DngZ+DvwB8BwxS2t9n9a6XmtdP2LEiKBiCIIgCDETajJba/19rfVUrfVJwPvAq8B2pVQtgPm+I7yYgiAIQqkI6/U00nwfD5wFPAQ8CVxobnIh8ESYcwiCIAilJWwIj58opQ4COoArtNYfKKVuBVYqpS4B3gKKG0RG6BckLamNIJQzoRSF1vpvbMreA2aGOa5Q3tglkWnd28qNv70RQJSFIBQZWZktJI7lG5fbZhLr6O5g+cblJZBIEMobiR4rFJXs/NFBaNnVwnE/Os5X1NWaQTVMPHAi67at87RttokrKhPY0nVLefQvj/aJ2OqWPzn7twMGHoBSira9bbbbLfndkp46USiOH308m9/f3CcSqhVJ1qn+FYp5h88rejRZp3zVp9Wdxs/f+HlJTJBL1y3lkVcesf2tdmhtKqK+RoVEjxWKRlryR1t5joFI8jo7NTjTR0/nxZ0v2uZPBlzrKnu76//nejTRPsfFzKHtJ285FCevtpuSsIgqb3sYJGe20O9IS/5oMHqMQCR5nY/94bG+UmkWOrff7YJQzBzaQe6LuPNqe71mpcjvnU2xFIWYnoRIaNrSxI3P3piTNMfCSlKU9LzA2RSS1c9/8ZtvOcp840EpZg7tIP8j7nvJ6/9P0z0dBpnMFkLTtKWJhf+z0FZJAOzu3M0Nz95A9aDqIksWnNFDR0eW19lvvuVC5/a7XRCKmUM7yH+IO8e01/+f9FzXUSGKQgiNF0+kLt2F1joV+aOtPMdR5XV2ykc9ffR0x/zJhXJtZ2+nUJ5l8Uoxc2j7yVsOxcmr7eX/pyHXdVSIohBC43X4/eG+D2n8TGOPbd2JSlXZ87kqU0VVpsrxuxdqBtUwffR0z9taE6WzDpvF0hOXUj2w2vZ3ryyavoj5h8/v6aVWqArmHz6f+0+7v6c+FIraobU9k6OzDpuV81v1wGpqBtXYbnfL39ySUycKxfTR03PktmSff/h81/pXqKJOZAO29Qy98oat/yBY18yJ7GtQDshkthAar5ORpZ74E4T+huTMFlKDl+F3RmXKZpguCP0NURRCaGYdNotb/+bWHJNRNkMGDGHZicvKZpguCP0NcY8VIsGylwuC0P+QEYUgCILgiigKQRAEwRVRFIIgCIIroigEQRAEV0RRCIIgCK6IohAEQRBcEfdYIRHkx/+3Is6Ky60glB4ZUQglxy5JjBVxtmlLU4mkEgTBQhSFUHIe/cujtuVduktyZAtCAhDTk1B08nNBuyWJyY5Mm593+rhRx+Xkha7KVDFowKCevNInHXxSTr5lKG7O5SThlpvb+j2K3OB+5ci/RnZ5sq3IuPl50sv1WpYCiR4rFBW/ebOtiLNechh7pRg5l5OEXZ1n53t2ylkddT3FkTO93K5lPhI9VuiXLN+43HNDkR1x1sk8FYSO7o6yMmnZ1fmerj09dbB84/I+SgKiryc/194r5XYtS0UoRaGU+qZS6k9KqT8qpR5SSg1WSg1TSj2tlHrVfD8wKmGF9OM1yVF+xNmocziXS65jcP6vVrlbXURZT3HVeTldy1IRWFEopcYC3wDqtdZHAxngPGAhsFZrPQFYa34XBMBbjuHaobU8/+Xnc8wJUedwLpdcx+D8X63yqHKDB5UjqccVegn79A0AqpRSA4AhQDMwF1hh/r4CaAh5DqEf4TUXdD5R5nAuRs7lJGFX59n1HFVu8CByhKXcrmWpCKwotNbvAncCbwEtQJvW+pfAKK11i7lNCzAyCkGF/oHXXND52OWdzs8LXZWpyjlWfr5lKF7O5SSRX+f59RxVbvAgctjlxM4vc8qTXo7XslQE9noy5x5+AswHWoFHgceAe7TWNVnbfaC17jNPoZS6DLgMYPz48dPefPPNQHIIgiCUK2nwevoC8IbWeqfWugN4HPgMsF0pVQtgvu+w21lrfZ/Wul5rXT9ixIgQYgiCIAhxEkZRvAVMV0oNUUopYCawGXgSuNDc5kLgiXAiCoIgCKUk8MpsrfXzSqnHgI1AJ/ACcB+wH7BSKXUJhjKJbhZSEARBKDqhQnhorRcDi/OK92KMLgRBEIR+gKzMFgRBEFwRRSEIgiC4IopCEARBcEUUhSAIguCKKApBEATBFVEUgiAIgiuiKARBEARXRFEIgiAIroiiEIQyoWlLE6c+diqTVkzi1MdOpWlLU6lFciVt8vZnQq3MFgQhHeTnq27Z1ULj7xoBEhmmO23y9ndkRCEIZUChvNlJI23y9ndEUQhCGVAob3bSSJu8/R1RFIJQBhTKm5000iZvf0cUhSCUAYXyZieNtMnb35HJbEEoA6wJ4OUbl7Nt1zZGDx3NgqkLEjsxnDZ5+zuBc2ZHSX19vV6/fn2pxRAEQUgVaciZLQiCIJQBoigEQRAEV2SOIpsVZ8Ibv+79fujJcOGTpZNHEAQhAciIwiJfSYDx/Z7jSyOPIAhCQiifEUXjgUB3VkEFNH7Q+zVfSVj89c+waSVMmhendIIgCImlPEYUjdXkKgmM743V3vZffWXUEgmCIKSG/q8oVpzp/vudEwsfo2NXNLIIgiCkkP6tKDatdDYpWXzcUhxZBEEQUkr/VhRPfN3bdreMj1cOQRCEFBNYUSilDldKvZj1+lApdaVSaphS6mml1Kvm+4FRCuyLrr3ettvbFq8cgiAIKSawotBav6K1nqy1ngxMA3YDPwUWAmu11hOAteZ3QRAEIaVEZXqaCbyutX4TmAusMMtXAA0RnaO0bFpZagnKi00r4TtHQ2ON8S71LwglIypFcR7wkPl5lNa6BcB8H2m3g1LqMqXUeqXU+p07d0YkRh7DPXg0eWXtt6I7luDOPcfD45dC29uANt4fv1SUhSCUiNCKQik1EDgTeNTPflrr+7TW9Vrr+hEjRoQVw54o3Vrb3onuWEEph172ijONRY52/PTviitLUMrhOgnhWXMVLBlmrOdaMsz4nlCiWJl9OrBRa73d/L5dKVWrtW5RStUCOyI4RzCibNyrSjcnDxieWdmT7m1vw+pvGJ/706pxN3dmnb9oMoHcc3yuorNGQ9C/rpMQjvz7RHfB+u8bn2ffVRqZXIjC9HQ+vWYngCeBC83PFwJPRHCOYGQGRnes9hJ6Rt050d4zq6O9f5nEbk55mku30dDjl8KSA2V0IRgjB6f7xFIWCSPUiEIpNQQ4Bci2CdwKrFRKXQK8BZwb5hyB2bTSu3usJ7oiPJYNdpFrp1xgKAK3RYFtb8crV7FYcxV0tZdainAUWtypu2V0ISRWGbgRSlForXcDB+WVvYfhBVVaVl1Ragns2bTSaPzb3oHqg2HmTfDCj+wj1xZqeABQsYhZFLLrgtJnWiwaT1whiqJcSfA8hBv9N3ps9z733wcOhX1FjuG0aSU8fhk9jWLb27nfA5HSBnbTSmOOpSPlo4ggdBW4N4X+R/6z70gyO37pDuERxrtk9t1QWZVblv89n7DeCU9cQd8bJaUNfVjWfsu/klCZeGQpBSntWZY9QTyVNq00TY4envX6r4QWMQ7Sqyg2rYRVX8v1tV/1NaO80MWrHGoM/ef8M1SPA5TxPuefC5/X8k7IPodXhSU9yV6CzK3omOeJikkK7dRlzz3HG9fNug/t2gI7nrrO+zkS6PEEaTY9PXUddHfklnV3GOXt77vvO+du433SvL62YmuysRDrf2Bc1J7egom4Q3pE4Xs0VT0uFkkEoSCFPJXcGvhC7ZHFII/5cUpAehWFU+V7uShuDXjlUI8L9cxGzkmxPH5p7nnELTKPACa3YYdFK0K+L/vwifD154MdK47rm+8JlxkEc+8xPuc7REinJF42PBhsv0L5cLK5/q1g5ygC6TU9xYU12oiC7MYjzvUO5WLvfuPX0TXI+UoCjO9ecqTb2am9jkSzaax2vnZ2Ody79hrnsQtvksZQ+TePNuog+5XU/1HI7Gl3He853qPnIkYHNcEorUs/mVpfX6/Xr1/vbyevaUzzqRgAN73nvs3NI72twTj0ZO83Qtw0pixUetDrZ3mFFOpJ27khZ2/rdn63ulxzVTzzC/WX5JovgtRPpgpu3BadTHFy82j3dTPFvJ/d3LRVJSz+q9EhKKQssmXON0kX4qz7A40KlVIbtNb1vnf0SfmNKBruLbyNNbwvRLGUxFn3F+c8qUDT05Ne/Q37EYblepvT674smpFXXJPQXiZFC9HVnp7RZaHFlY1FCpmTf6/kozsMpV13or/j+pnAPvTkxJsOy0tR1F/i7YIk5aJVjwvc00g0fuy2bjiFMLF1vdVGY+zFdOVmEoqTKJRQv/Gm6g4x6vSBVzdtL53CbOXmdQK7/hK48Elv25aQ9CqKIHGcEup6ZkumCr75x14lcejJpZUnKtZcVfih87News7N1i0YpNeeXhQ9/CBYtnrBIG6lHWlU6G7/sqakTUqvohi4n7/t/ZpvosxlEYR8W3OhXkdaQlt76fF+6Xv+jpn/Xysqnbf12tODaHrnwycavUYhl0yBxa3ZxKm0qw+O9njWPVM1rPC2XrZJCOlVFH4eePBvvvn686VRFoOqg03k/fTvcm3yTvb7OIhaSfm9VvmjhELhW/zIt2R472cvHlH5fP15o9co80y5zPWwuDWb9d837q+o7+mZN0V7PDBGQV7ap9Nvi/7cMZHedRQqE/9K3a8/bzR8cUdojcLDIz9Xg2W/j3t+w8+Cw7h6hX47DU9dZ8z/eLmuusOYU9n5F/covnbsV9v72aqLIG60/ZFA7uLaqL9VXzWcUtI8dzd8YqrkT++IoljhHOLocWTjxx7v19c63/4ah3nq8csdym0axPU/KHw8q3HNDAouUyHa3/d3Xd/4tX8lAXB13jqNSfOKM7JIg+dTmLmB7k7j/mqsNlzZw9zHpcjnEmZhZ4lIr6LwQxgb8aR58dqYp13kfVu/iwGzs/LZuYxGYp5yUdiN1b0KadNKCq7G3q+2t3H16qJshxeTYdw9e6dR4qR58a8RCDq3kr8ALs5EUlHNDXTtNcyuQe/jUuRzSZmSgHJRFGE9Cywbc9Sxhg492Z9sYYaqdm6AHe29PTO7VxQ9U8sUVahhrr8ktwce5r/uKl32XYZPTMbixzt9zq81Hth3bUNXe3zKYsKp0R1LdwcfGfSniMQxkl5FUewLPGme4a7a2GY0avnndzMLnXV/lqJRvesj4vafzrbdB+k5FdNFNKwyt+Rcc5X/OYuoOOt+773FgQFCNmSqeu+/QnzckjsR78aaqwCHfORxZR189Zf25UFDWQQ1ZbmZsMUBoYf0TmZPu8jbEDsOs9Hsu+wbtjVXmXZ408QycKiR98LqHRd78kpF0A8oFBlzv9pg9vt8Nq0sWD9tW6vYsWl/OndnGDCki5GTPqK6rr1XzvHTS7fgzApd75XZd/s3f1ku07Pv8vY/dYcxUmj8wH27UtSZU8PesTvY8YKaspycGqrH9UaXvmW8fc56S5GUgYNCehXF7LvgvdcKL94q5oIWJwVSKvI9oYLi1ohnIrqFCnhotW2touX3NehuI9ZT5+4BtPy+BqBXWZTsgVX+54/8eEFlz91YeI5y3G2Yoaz911xlRELVXcao2M8cWZRUH+zQQB9smKX8Kq+gTiczb+qbabGyKvd4haK6vrWuH62Itye9pidIxdL3fsHqK51/i2plq+1xetNCbt94QI+SsNDdiu0bD4jm/EGpGgZn3RdstGhNbNuZJRvbel/5SgL8KSZrxLdkuH3inVIw8yb7DJMzbzI6W3bmXTeCjtadEpj5Gh3e5d1ykVJzVnpHFBYVA50XWJX7itiKAGFO7OjYZQy/7XpWTj1Dv9iZDuq/0tOQde2z79M4lQdGVRomGy8Mqobr3gh/TrsEWl72WfVVw1XUC0HDgsTVsFn/1ynCrzU6L0Y4kyD1n8/su4x5F6dnoXpcqvOGpHtEAdDwXWwTkvv1KEoLfpb9d++LbiXr3jb7XAF2PUO/5A/1Lfz01KJgULURUtrrY1HqRDMN90YzD+VGnA1bj4NIa25cs2y8/L+kdAidRkln3e/8/1JC+hXFpHnG0L/YHkWl4vTb/AVEfOo6Yy1DFOxt66t4Js1zdJhxpWIAnob6s++CzEBUpf1JnMp9s19tb8Pf+EHuqup8goZZiZpJ8+BL/9a/U8ROu7jwNknpEEZhxkoo6U1cVM5sWuktN3gcVI8zekd2GeLcqKwK/tA01tC2dTDNz1eDzurbqG7GHN/WO5ntRn5iIC/kZ5k79ORkd0CiNtNY17rUuCU5GlRd+pFdCSlW4iJRFGnGLl1mUAYOhX1evGjw7hJbPS6avM5mvK2W/z2A1i1DDe9jBTWH7aL20x8W3r8/5vSww29WtUIkqd7unNj3nitzJQEpURRKqRrg34GjMR7frwCvAI8AdcBWYJ7W2tWRWxRFCMKm5sxe63HbodGOUqIyz2xaSdvyf6Bl3RB0V7a1VFPziQLKwkplWS5ENapI+uhJANKTCnU58HOt9UTgWGAzsBBYq7WeAKw1vwtxEdY+WzWst9d4+m3JDGkwaR47XhmbpyQAFK2vD6Vtq8tkejkpiSgRJSFkEVhRKKUOAE4Cvg+gtd6ntW4F5gIrzM1WAA1hhRQKEMbzJXv9wqR5/pMGOTEoWnt553tOowZFywaHtRR+kuP0F6KY2E6KF5GQGMKMKA4DdgIPKKVeUEr9u1JqKDBKa90CYL6PtNtZKXWZUmq9Umr9zp07Q4ghhFqBnb9+IapQ2BHbjlW1s+LRHTa3caaqb5bAcmDmTdi6i3umIjleREJiCLPgbgAwFfh7rfXzSqnl+DAzaa3vA+4DY44ihByC1yQ8dtitX5g0L9ykaByuo/vcstapZLirJoFJ84KHlChX5SoUJMyI4h3gHa21FS7zMQzFsV0pVQtgvpcw5nOZECa5UtReLTE12Hp3wGBx5YgVFt9tZb5dqBBREq60rV7Nq5+fyeYjjuTVz8+kbfXqUotUNAKPKLTW25RSbyulDtdavwLMBF42XxcCt5rvT0QiqeBMUtJsJiiOTcuSJbSufBS6uiCToWbeudQuXlxqsYpHFGEphB7aVq+m5cab0Hv2ANDZ3EzLjUYHrXrOnFKKVhTCej39PfBjpdQmYDLwbQwFcYpS6lXgFPO7EDeT5vmf1I4qFhTE7nOvamo8b9uyZAmtDz1sKAmAri5aH3qYliVLYpJO6O/s+M7dPUrCQu/Zw47v+IwanFJCKQqt9Yta63qt9SStdYPW+gOt9Xta65la6wnme4myyJQhXsIdZNPw3WjOO6g69t5r7Q3/6PibGjIk53vrykdtt3MqF4RCdLbYLzDtbG4usiSlIf2xnoReZt/lLV80GC6Qbo27n/UURVgd6za87zN/YY0k8nEqF4QCZFy87sphrkIURX/j68+bfvBZLpKZgWbU2aygiYVcIL2upyimz71ycPt0KheEiHBzQC8H81P681EIfYki05412sgOPlgxEHSnsW7Dyo5WTJ97p3AzAcPQvDZ7Nh2vvd7zvfKTn+CTa9YEOpbQv9Ftzt585WB+EkUhOOPRcyZxHkaZjL2ZKWvkka8kADpee53XZs8WZSH0YUBtrbNCyCQw7E3EiOlJCEUiPYyc5iK07rEn5ysJC6dyobwZ+U2XdMBlMPclikIIRevDj/gqLwYDxoxx/K0c7MlC9FTPmeM8FyYjCkEoQMTzBkHJ9jxx6/05uTkKQkGc7mkZUQhCfPgOieDi3ZQ9UqieM4eMwwK9AbUuKU4FQbBFFIVQEtpWr6b5uoXGBKHWdDY303zdQndl4TJKyZ9o3P/0L9put9/JJ3mSLShbL76YzROP6HltvdjnIkhBSCCiKITYcGtwW25aDN153und3Ua5A25zD/mjjY9//RvbzaxypxEHQMuybzufx4WtF19M+3Prcsran1snykJIPaIohHC4TOS5TRzr9nZf5VDA8yRvtOHkymiVj3IJCaJbW53P40K+kihUXoiWJUvYfNTRxujkqKPLOlaV1EVpEUUhhKJm3rmOvwVZiKSJKCRCAQ+VYkf89Puf3NyOyy3cdWJcsH1GBuhPyk0UhRCK2sWLXSeZ/TZkCnhryc19yq0wz15oW706Vg+VIA2AX7fc1ocedixvufGmnLmdlhtv6tfKwq0uiooPD7/EKLeIEEUhhKfAJLNdQ5Yf8TWbzMcf9SmzC/PshFuj7CdcuR1BG4AowzyUc7jrtNDfIhiLohBCU6jxtWvIapc04melhZ/1D27bhr3hXRuAqirnHWMOXFgO8YZSRT+LYCyKQgjP3r0FN8luyDZ/+jiar7nWdftFq17K+e5l/cNrs2cX3LbLDO4W2FTj1gC4jXiKsACxP5ufUoeLk0car5MoCiE0bp5K2bQsWcLmiUfAR4ZpyamPrYEfr8vNcTHym1eiBg92PX7Ha6+z9eKLXXvXyswrEIepJqrFfEHt2EHdehPPAIfYpU7lCcDNySONZkJRFELR8Dr5qDCURd3Cpp7X17YNp/bmbxXct5ArqnXDxxHKw9V91wdBJ2mDuvUWk0CeQJ2d/soTgFv05DSGkRFFISSSplVX8+AvlvLZtzcA8NvX3+dr24a7ToJ7octsTJMSyqOcXF37mydQNnbXzWnuTrlky0sqoiiExKEwbsxR7a1cu+EhfrbqappWXU3lM09Tu6Qx3MFN23Gh3v/miUf4bsD8mhTaVq+m+drrchv9cwIAABT/SURBVMOYXHudr2OkiTg8gYqpWP2u5ndqXHVra+o6BaIohFDEfbMrehXHtRseKjgJXhCzN+tlwZ3f3q5fk0LzTYv7TnIXOepuUXFxBNg88QheOelk25/jCLcSBL+r+btcTIFpW/8iikIIRTEn5iJxMPXppupnvsC3OcujE4Bfss1Zf54+g79Mn5EK01b3jh22yiKOcCtB8L2av0CeCr1nT2ocEJLrNiAklkWrXuKh59+mS2uampvT1dsI22N3SbM68ptXFhzxbP70cT1eX3GweeIROd91ayuWtJ3NzTRfbzS6xQ5h4pXuHTv6lFXPmRN+JFkk2lavZsd37jZGlx7uNd3aStvq1Ym9HhaiKARffPn+5/jt6+/3fN9ZVcOo9uR729iilKeHefOxkxlw0EHuD7+X48SsJDzR2UnzTYsT3TBlN7YDamuN+SSnaxXzQkY/WGFmvEYQsGi+5lp2b9xY2jzzBQjVGVRKbVVKvaSUelEptd4sG6aUelop9ar5fmA0ogqlZtUL7+YoCYAHjzydPZlK1/20+YqSKI5Xc958b+fau7dnwtmNgmaEUisJi/b2RJug3r3m2pwJ/reuvT72TIqrXniXE279FYcubOKEW3/Fqhfe9X0MP2Fm8km691cUVoPPaa0na63rze8LgbVa6wnAWvO70A+48pEX+5Q9M24ayyef49hwa+CMhjtpzwyMVBYFdONfYWRv77UH57XPmoZ1DBbN1xX/sVQDvd0D+fU9QHc5X+cI8lWveuFdrn/8Jd5tbUcD77a2c/3jL/lWFmHDqCQ5DlQc5uW5wArz8wqgIYZzCEXG7aH5wpv/W3D/f5l8duSjigrgw8oq3wrj/sX/2vO55vzzIpNH4+6hkyjyk0YVgdplS6EiWJPjqKwjiJ10xy9eob0j9zjtHV3c8YtX/B0orBkswXGgwioKDfxSKbVBKXWZWTZKa90CYL6PDHkOIQE4PTRLn/0eU//6WsFe9zPjpvk6n1dz1QEd7cxquNPzcRUw4cn/AODbV93FK6t+3qNowioyDXQWaVQRhdLNTtma//rz1GmRm6eq58xhzG23umcq9EnYaMBgjCD8lDvSj12bwyqKE7TWU4HTgSuUUoUTEpsopS5TSq1XSq3fuXNnSDGEuGl2eGjclIQGNg7/ZM53N3TWq+PAg7h92vmBzEuFGNneyssTj6DhZ/czqr2VCnrDhoQ5l7XmIw0UvBa7d9N8zbWJnsuA4vv3h40MUIik1neoetZaN5vvO4CfAscB25VStQDme19/N2Of+7TW9Vrr+hEjRoQRQygCY2pcQmjbYCmJRSde3lO2pm6G61zGh5lBXHrRdznyz5s59rlneWbcNM+jhR2D9vfcyCvsG/WwjU4QJRFUMRU6V6HjepU1SrdUyyso25YfthPgtqgtCvJNrqEjAxQgqesqAj8bSqmhSqn9rc/AqcAfgSeBC83NLgSeCCukUHquOe1w3/tkKwmAeyefzeq6GXQplTN6sJTKxWfdmnOeC6aP93yui05f3KMssl9+icNDy+1caTpuWOy8gqyRXGAimMx24/rHN/V83nzU0bGv50iqQ0SYdRSjgJ8qYwJnAPCfWuufK6X+F1iplLoEeAtwjrcrpIaGKWN5dP1bfdxj39hvJId+vCOnh6rNcjvunXw2904+m7vnTwaMuY/m1nbG1FRxy2mH0zBlbM+2SxuO4Ud54cbzyW5kLjo914vpZ6uuLvi/8tlZVcODR57ONRseSpUpKZ8uIEOy5HcKcWJdw0CyxjwB3N5hTPrnL2QsNwIrCq31FuBYm/L3gJlhhBKSyY8vnZGzKhtgaNe+Pg+4MsudOOETw3oUQrZisENhr4zAaGDW1M3w9R/c0BjrQp4ZN41nxk3rmai35IgSaxT1yQ+bqd63u+C2fs7/YWUV5826mTWrru6Zf0kCrfsNo+aj9/qU76yqYf89H1GljUbfr7xxr2xO8vqGYpGq6AtC6VnacAyv33IGW2+dBcAIh1XZTuUTRg7lx5d6b9y/PH08V3zhWt7Yb2Qfs9LquhncO/nsnO0vmD6erbfOYtT+/tdtaHK9sxadeDln+PCo8suiEy/niGWNBWXyQzfwvUmGR/rskLJriNS082+fOrXP4sw9mUoePPJ0zp57W+C6jntNSND8IIFwS6dbQiSEhxCYrbfO4plfLLUN4bGzqq/bogKevuqzvs5hmZ+u+IK7bVgBb5jKC+CUo0azY9D+jNz7kaceqgbumHa+L9miwEsco43DP1nQBVkDnaqCu6bOz1F2Hw4cUnDE4sacM2/jtcB752LJddHLTzGivbXHzJctr0ah/KrHEGtCVr3wLp99e4OjTEuf/V7gYwchM2hQUc/nFRlRCKGwC+Fh9RLzyW7Io+SAQZk+x/7RurccJ7jzmyFrdOK01mPj8E9GOjHuNodjx6ITL3edZLeOd+bc2/v8h+8dMzfwZHG3UnRGPDP+zLhpXHTaImY13MlFpy3qI++auumBVtsHdSv9zb/+BwtefKzHTXpUeyvXmDlQfrbq6h7TY7GwcronDVEUQmBWvfBuTwiP7VU1dAPbq2pYPvmcPg3AwExwS/mgAe636aYlX3T87aLTF3NGw505r9unnZ8j7+3Tzu9jwsrm9plXMGTG9ECyf5gZ1EdJvbHfSK74wrVMGDkUgDF33F7wOLMa7rRdU2K5FTuNuPwudMw+btMhwf5zGO6dfLbvOQoFvHlbMLPVmeufYHBXR06ZNa9TyJkhDg+5pGa/E9OTEBhrtbY1+evG7ef08XvwzG1nT7KNMwX+XGgtvMhrccInhplzKl9k68UXs/u5db4asvPmLLMtH7X/wB4zXPWcOTT/4w3Q0dFnu/as0drshjv56os/Ydab66jQmm6laDpkuquSC0Ncx3VDgeeovtkM+Kvtcq2COM2lecUyb4K/SXgnB4Wk9tyTKpeQApxWa+dzwfTxBb2b3GiYMpa750+mqrL3dq1QxnGXNhzj+3hVlRXcPX8yY2uqUEBNVaXtg3DB9PE5E+91DzzAkBn+TCN3z5+cc66xNVXcPX8yz99wSs52Y769rE8cpE4U90w+p2efC6aP597JZzN77h2c0XAns+feUbAxH1tTxa6jpzqawJLGmJoqxtx+m+/9dtjMiXnho8rgk8ea3hGr3/2cSKrpSUYUQmDG1FS5xsMZW1PFNXlrI4LSMGWs5+MUivp5y1mTfB0vm7oHHuBlDz71GvjroP09uwFb7p3ZeRjGfPNKHshy+2yYMrZHMdYtbCoow9aeeZvP86MT5+TY2/dVDGBgd2fBY1jrXaLggunjXdfFVFVmuOa0w6k262rHd+5mX3NzQRNQF4on6+fy2SBCBQzkl++a7XUS3jI9Du3aZ+sE4jtLYpEQRSEE5nMTR7g++L9d+PkiStNLoaifUSguJ6ymYseg/Wl98Ke+9q2eM8fzeoChAzPs2ue82OyETwzL+X7j31zex5pTaEHi3fMnR1pXlpKz1uEoYMjADLv3dTEmr1Nh1cWX73+Oa/7pEgai+yzqBEPh3T3lXBq+9n8DybR/CI+w7NHcmrrpzNn6nCfz0xVfuJbPvr2BBS8+ljM/sidTyftfupAJgSWKD1EUQmD++8/OwRzH+owNFSVeTWJx8eX/s5zFc46KVSEt+9IxjvM2QJ+1Kl8+vm9v3sl92PICuy4G+Zc2HOPLXPjjS2dQ9/odrnMzYRSaqqjw7V6rMeoum3snn82crc952hecXYX/p/kgXvclTXEQRSEExq1B/tzE0gV6dDOJZSJIndmtFBmHyVYFvHDTqaHPUYiGKWMdFYXdP7Qa52xlcdHpi3nwqSU9k7EWq+tm8OPj53FdZNKGxwr9YkcYhawKKAm7q7xj0P59wsVY2xbykspeq2PrVJHEiSNEUQghcGuQ3UYbcXPNaYc7NqJdEeQMaDrE3syggYGf/ETo43tlrEP9O0X6XdpwDPWHDMupG7sG74BBGVeX4/7EgDFjCmam8zpZvaZuhqP5qdBanaQjikIIjNscRanNP05EYRL7tylGz3Z2XqPwxn4jmbVmTejje+Wa0w7n+sdfysnOZk0IO2H1vrODMUblcJBGRn7zysgiwj78mfP42xmH8N7Dj1CR1SHZYbMCPW2IohAC4zZq8Ju/IkqcJrMVwcKl59OtnU0h8aw9tydoox/U46s/4iWEihcqM4rFc46idsqpfGZPfeBkd9YizKQhikIIjJtrbBQNclCcRjOaeD2eSkG5N/pxLwRTZLsZ97LqhXcdFbSd44AXshdhJg1RFEJgMko52vxL2Xg5zZ1E5YnllGwnKeG8+xtu99ldEa7zsKPm/PNsy90UtJc8KtkMqFDcee6xiVb4oiiEwLhNDK964d2S3fhBbPd+cAvOJ0TP+cePs214s/OaxEXt4r6T/V5wWlwYNJpAqZEQHkJg3HrohRa9xUnDlLHcctYxOWEzbjnrmMgaFScX2yhcb4W+LG04hgumj++p34xSfcKrJA0nmdOoJACUjsBdMCz19fV6/fr1pRZD8MmqF951XfRlZ9vtD7iFz+iv/7k/s/Xii2l/bl2f8qoZ06l74IESSOQdpdQGrXV93OeREYUQmCTbVOPEaSRVytXoQnDqHniAqrww8mlQEsVE5igEwSdxz4EIxUeUgjuiKIRQlKMHkCxaE8oNURRCKAYOqGBvZ994OQMLZKVLO+W+fkEojNtai7QhikIIhZ2ScCsXhHJg1Qvv5pgn321t5/rHXwLSObfXv7t9giAIJeCOX7ySM4cF0N7RVVK38TCIohBCUVNV6atcEMoBpzAySQ2WWYjQikIplVFKvaCUWmN+H6aUelop9ar5fmB4MYWk0njmUVRW5E5dV1YoGs88qkQSCULpcQqKWcpgmWGIYkSxANic9X0hsFZrPQFYa34X+ikNU8Zyx7nH5qyCviPhcWsEIW6uOe1wqiozOWVpdqEONZmtlDoYI7LyMuAqs3gu9OQ5XwE8A4lKliVEjHgACUIu/c2FOqzX093AtUB2AtlRWusWAK11i1JqpN2OSqnLgMsAxo8fH1IMQRCEZNGfOlCBTU9KqdnADq31hiD7a63v01rXa63rR4woXX5lQRAEwZ0wI4oTgDOVUmcAg4EDlFI/ArYrpWrN0UQtsCMKQQVBEITSEHhEobW+Xmt9sNa6DjgP+JXW+gLgSeBCc7MLgSdCSykIgiCUjDjWUdwKnKKUehU4xfwuCIIgpJRIQnhorZ/B8G5Ca/0eMDOK4wqCIAilJxGJi5RSO4E3za/Dgb+WUJygiNzFReQuLiJ3cfEq9yFa69i9gRKhKLJRSq0vRsamqBG5i4vIXVxE7uKSNLkl1pMgCILgiigKQRAEwZUkKor7Si1AQETu4iJyFxeRu7gkSu7EzVEIgiAIySKJIwpBEAQhQYiiEARBENzRWru+gHHAf2PknPgTsMAsHwY8Dbxqvh9olh9kbv8xcE/eseYDm8zj3O5yzmXA28DHeeVXAS+bx1iL4UNst/8gjFAiu4F24C9ZcncBHwF7MeJQJV5u4HPAS1lydwFfTrrc5m/LTdn2msdJUn2fZNZrN/AOuff3WqAD2EXy7m9buYFDgBez7pPNaZA7Bc+lU30n/bk8CdgIdALn5P12G/BH8zXfSYae7QtuALXAVPPz/hiNwJHA7cBCs3whcJv5eShwInB5dgWZFfcWMML8vgKY6XDO6eZ58yvoc8AQ8/NXgUcc9v8a8ENgKkYcqp9kyb0vpXLfbso7DKNB/qcUyH05sBX4R1POd4DvJEjuOuDzwBrgHHLv74eBB83fknafOMl9LPBPprz7AR8A302B3El/Lt3kTvJzWQdMwng2z8kqn4XR+RlgyrkeOMDuGNaroOlJa92itd5ofv4Io5cyFiNB0QpzsxVAg7nNLq31s8CevEMdBvxFa73T/P5fwNkO51ynzZwWeeX/rbXebX5dBxzsIPZc4F5T7seAk7PkHpBSua36Pgd4CpidArmnYtyID2itdwG/wehNJUJurfVWrfWvMFfA5t3fUzBGSZCw+8RF7pEY98UKjFHeLuC0FMid6OeygNyJfS5NuTdhjISyORL4tda603wu/wB80e4YFr7mKJRSdRgP0PPkJSjCuEndeA2YqJSqU0oNwLgRxvk5fx6XYFwYO8ZiDNnQWndiPDDTTLkVsFoptQ44PkVyW/V9HvBASuT+GXAg0KaUGo7RQ6pJkNw55N/fwPuQyPs7hzy5RwO/wLget2D0YN1IitxJfi5zcGgHk/hcOvEH4HSl1BDzufxcIRk8BwVUSu2HYVK4Umv9oVLKl2Ra6w+UUl8FHsHQcL/D0K6+UUpdANRj9FxtN8mTezRwqSn3h1rreqXUYcCvKKAsEyQ3Zn6PYzAaAlcSIvcqpVSHee6dwHPAlxIkdzaDSc/9nU2+3FprPUkpNQZYRda1SbjcSX4u3eRO8nPpJMMvlVKfJve57HTbx9OIQilViVE5P9ZaP24WbzcryKqoggmKtNartdbHa61nAK8AryqlMkqpF83XtzzI8gXgBuBMrfVes2yZdQxzs3eAcabcj2NMSv6H+ds2M7HSFowewccpkXs78P+An2IEDEtLfb8FnK61PgWowuylJ0Tuns2Bq8m7vzHszkm8v13lNu/vZmALxuguDXIn+bl0kzvJz6WbDMu01pPN51JhOCW57uD6Mg/yQ+DuvPI7yJ18uj3v94voO9s/0nw/EMM741MFzp0/iTMFeB2YUGC/K4DvmXL/DFiZdd67THmt6IzfT7rcWfX9FsYwMS31nQH+xZR3ErANuCMpcmfd368Ba2zu7/voncxOTH07yY1hq/6OKe+BGL3FH6RA7kQ/lx7uk0Q+l1nbP0juZHYGOMj8PAnD82mA6zE8nOREQGO4Yr1ovs7AsH2uxdBEa4FhWftsxeg5fozR2zzSLH8Iw63rZeA8l3Pebu5nuaM1muX/haHBLTmedNh/MMbwVWN4Irxsbv8P5mfLne3llMh9BjAZY2IsTfU9F6PHtAvDbfb5hMn9aYweoMYYerdn1fdzGJ443Wa9n5MCuW/AcLnMdo9NQ30n/bl0u0+S/Fx+2txvF/Ae8Kes59U6/zpgspsO0FpLCA9BEATBHVmZLQiCILgiikIQBEFwRRSFIAiC4IooCkEQBMEVURSCIAiCK6IoBEEQBFdEUQiCIAiu/H8KgxuCBe2ajgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import collections\n", + "\n", + "from apd.aggregation.query import with_database, get_data\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "async def plot():\n", + " legends = collections.defaultdict(list)\n", + " async for dp in get_data(sensor_name=\"RelativeHumidity\"):\n", + " legends[dp.deployment_id].append((dp.collected_at, dp.data))\n", + "\n", + " for deployment_id, points in legends.items():\n", + " x, y = zip(*points)\n", + " plt.plot_date(x, y, \"o\", xdate=True)\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " await plot()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nO2de5hU1ZXof6u7C+juIA3ysJuHRHQQFVDTRtQEJ2HUSQAlGRW8yTfEyeBkXtHkXhJUFFBUlEnUezPf3Gsmk5A7+QxqDLEhGXVIJsmMaXPxBWpLUIOK3QpRQYVG+rHvH+dUU1V9zqnzrDrVtX7f11917TqPVfucOmvvtdZeS4wxKIqiKIobNeUWQFEURUk3qigURVEUT1RRKIqiKJ6oolAURVE8UUWhKIqieFJXbgEAxo4da6ZOnVpuMRRFUSqKJ5544g/GmHFJnycVimLq1Kls27at3GIoiqJUFCLySinOo6YnRVEUxRNVFIqiKIonqigURVEUT1RRKIqiKJ6oolAURVE8KRr1JCL/AiwA9hpjTrPbxgAbganAbuByY8w79mfXAl8E+oAvG2MeTkRyRSkhm556ndUPPcf+7p5Ix2nIWGOzQz39AIxuyLBq4aksOmPiwHnWP7yTzv3dtDTVs/yi6QOfKckRpN8L74XRDRnmz2rmFy/so3N/N6PqMxzp7Ru4xn4ovA/ShhTLHisic4H3ge/nKIo7gLeNMetEZAUw2hjzdRE5BbgX+CjQAvw78EfGmD6vc7S2thoNj1XSyqanXmf5/c/Q059MpuVMrbD+0tkAXPvgDrp7jv5c6jO13PbZmal9gAwFNj31uu9+T/JeyN4HQa61iDxhjGmNXZgCipqejDG/At4uaL4E2GD/vwFYlNP+Q2PMB8aY3wMvYikNRalY1j+8MzElAdDTZ1j/8E7WP7wz72EF0N3Tx/qHdyZ2boVA/Z7kvZC9D9JI2AV3E4wxXQDGmC4RGW+3TwTac7bbY7cNQkSuAq4CmDJlSkgxFCV5Ovd3l/UcpTh/NePWv07tSV+LtF7ruJ3Z4tDmqH6NMfcYY1qNMa3jxiW+Al1RQtPSVF+Sc7idpxTnr2aC9HvS1yKt1zqsonhTRJoB7Ne9dvseYHLOdpOAzvDiKUr5WX7RdDI1TmOgeMjUCssvms7yi6ZTn6nN+6w+U8vyi6Yndm6FQP2e5L2QvQ/SSFhF8RCw1P5/KfCTnPYlIjJcRD4MnAT8NpqIilJeFp0xkfWXzaapPhP5WA2ZmoHIJ7CiXbIOzEVnTOS2z85kYlM9AkxsqldHdgkI0u9O98LohgyfnzNlYP+m+kzeNfZD7n2QRvxEPd0L/DEwFngTWAVsAu4DpgCvApcZY962t78e+AugF7jGGPOzYkJo1JOiKEpwShX1VNSZbYy5wuWjeS7b3wLcEkUoRVEUJT3oymxFURTFE1UUiqIoiieqKBRFURRPVFEoiqIonqiiUBRFUTxRRaEoiqJ4oopCURRF8UQVhaIoiuKJKgpFURTFE1UUiqIoiieqKBRFURRPVFEoiqIonqiiUBRFUTxRRaEoiqJ4oopCURRF8aRoPQpFCcump15n9UPPsb+7Z9BnjcNqueUz/qu3bXrqddY/vJPO/d20NNWz/KLpsVUD85Izy+iGDKsWnsqiMyYGliW7/ev7u6kVoc8YmuozHOnt41BPfyzfAayC9Zla4Ujf0WJkoxsyzJ/VzC9e2Dcg79Rj62l/+R36jKFWhCvOnszaRTNjk8Mvhf2e28flwOk+KLzuxe6TXNy+T5L3clIUrXBXCrTC3dBj01Ovs/z+Z+jpd7+/amuEb1xWvPzjpqde59oHd9Dd0zfQVp+pjaVMqB85s2RqhcVnTeZHT7zuWxYn2dPI5+dMKamycOv3TK2UpSSo132Qve4bf/uar/ukcN/c7xP3vVyqCndqelISYf3DO4v+qPr6Desf3unrWIUP2u6ePl/7+jm23x9/T5/h3sdfCySLk+xp5N7HXyvp+dz6vafP3z1RKnng6HUPqiSy++Z+nyTv5SRRRaEkQuf+7ti2c9vG7zminj+XPpcZeJIylgK375UUXv1Sjj4rds4o/ZN77Eq9T1RRKInQ0lQf23Zu2/g9R9Tz51IrEug4cchYCty+V1J49Us5+qzYOaP0T+6xK/U+UUWhJMLyi6aTqfH+cdXWCMsvmu7rWPWZ2ry2+kytr339HLuYnFkytZbjN4gsTrKnkSvOnlzS87n1e6bW3z1RKnng6HX3e58U7pv7fZK8l5NEFYWSCIvOmMj6y2bTVJ9x/LxxWK0vR3b2WLd9diYTm+oRYGJTfSyObD9yZhndkGH9pbNZu2hmIFlyZYejI9Om+gwNmXh/fgIMq81/mI1uyPD5OVPy5D1v2pgBOWpFSu7IBud+z/ZxOSKA3O6D3Ovu5z5x2jf3+yR5LyeJRj0piqJUKBr1pCiKoqQCVRSKoiiKJ5EUhYhcLSLPishzInKN3TZGRB4VkV326+h4RFUURVHKQWhFISKnAcuAjwKzgQUichKwAthqjDkJ2Gq/VxRFUSqUKDOKGUC7MeaQMaYX+CXwGeASYIO9zQZgUTQRFUVRlHISRVE8C8wVkWNFpAH4NDAZmGCM6QKwX8c77SwiV4nINhHZtm/fvghiKIqiKEkSWlEYYzqA24FHgX8DngF6A+x/jzGm1RjTOm7cuLBiKIqiKAkTyZltjPmOMeZMY8xc4G1gF/CmiDQD2K97o4upKIqilIuoUU/j7dcpwGeBe4GHgKX2JkuBn0Q5h6IoilJeohYu+pGIHAv0AH9rjHlHRNYB94nIF4FXgcuiCqlUH2kraqMo1UwkRWGM+bhD21vAvCjHVaobpyIy7xzqYfkDzwCoslCUEqMrs5XUkbaiNopS7WjNbKWk5NaPFqBQHTi15fL6/m5OueFngWpNj27IcErzSP7rpbd9bZtr4orLBLZy0w7uffy1QXWqveon5342qj6DCOw/1OO43bUPbqfb7pMagXNOGMNzne8Nqv+crZ/t1v81Av/t7NJnk3WrVz1/VjObn+kqiwly5aYd/KD9Vcf7cWKF1LqOC80eq5SMSqkfna1zDMRS13nlph38a/urg9rPmzaGJ1894Fg/GfDsq9ztvrrxafyrTX+UMvV4kLrlUJq62m7XLJe46rZHoVTZY1VRKCXjvHU/5/WUl3zMkq0f4SbvxKZ6/mvFJ30da9q1Pw1USrPYuYNuF4ZaEV667dOxH9eJMPdFkP4Pg99rlrQcxSiVolDTkxIL1qjwaZwsQo3DarnlMzNTXxc4l2KyBvkuQestx1lvPCylrKEd5nskfS/5/f6VdE9HQZ3ZSmQ2PfU612x0VhIAB4/08d/vf4amBv/VwcpNS1N9bHWdg9ZbLnbuoNuFoZQ1tMN8h6RrTPv9/mmvdR0XqiiUyPiJROrrNxhDRdSPztY5jquus1s96vOmjXGtn1ys1nbudkn8iEtZQztI3XIoTV1tP9+/Empdx4UqCiUyfqffB7p78upHOz0aCus+N2Rq8mpLF773w+iGDOdNG+N726yjNK66zmsXzeTzc6YMqlP9g2XnuNZPLqyt3FSfYXRDxnG7by4+nfqcPqkRSwk51X/O1s8G5/6vkdI6ssG7XvXn50wpS13t7DVzU1+VUus6LtSZrUTGrzOy3I4/RRlqaM1spWLwM/2urUneXKAoSjKoolAis+iMidy1+HTcLEKNw2r5xmXJmwsURUkGDY9VYiFrL1cUZeihMwpFURTFE1UUiqIoiieqKBRFURRPVFEoiqIonqiiUBRFUTxRRaEoiqJ4ouGxSiooLBKTzTirIbeKUn5UUShlx6lITDbjLGiNbEUpN2p6UsrOvY+/5tje1681shUlDeiMQik5hbWgvYrE5GamLaw7PeeE0Xl1oRsyNQzP1A7Ulf7EyePy6i1DaWsupwmv2tzZz+OoDR5UjsJr5FQnO5stuLBOerVey3Kg2WOVkhK0bnY246yfGsZ+KUXN5TTh1Oe59Z7dalbH3U9J1EyvtmtZiGaPVYYk6x/e6ftBkZtx1s08FYaevuoyaTn1eXdP30AfrH945yAlAfH3U5Br75dqu5blIpKiEJGviMhzIvKsiNwrIiNEZIyIPCoiu+zX0XEJq1Q+foscFWacjbuGc7XUOgb375pt9+qLOPspqT6vpmtZLkIrChGZCHwZaDXGnAbUAkuAFcBWY8xJwFb7vaIA/moMT2yq57mb/jTPnBB3DedqqXUM7t812x5XbfCwcqT1uMpRopqe6oB6EakDGoBO4BJgg/35BmBRxHMoQwi/taALibOGcylqLqcJpz7P7ee4aoOHkSMq1XYty0VoRWGMeR34B+BVoAs4YIx5BJhgjOmyt+kCxschqDI08FsLuhCnutOFdaEbMjV5xyqstwylq7mcJgr7vLCf46oNHkYOp5rYhW1uddKr8VqWi9BRT7bv4UfAYmA/cD/wAPAtY0xTznbvGGMG+SlE5CrgKoApU6Z85JVXXgklh6IoSrVSCVFPfwL83hizzxjTAzwInAu8KSLNAPbrXqedjTH3GGNajTGt48aNiyCGoiiKkiRRFMWrwBwRaRARAeYBHcBDwFJ7m6XAT6KJqCiKopST0CuzjTGPi8gDwJNAL/AUcA/wIeA+EfkiljK5LA5BFUVRlPIQKYWHMWYVsKqg+QOs2YWiKIoyBNCV2YqiKIonqigURVEUT1RRKIqiKJ6oolAURVE8UUWhKIqieKKKQlEURfFEFYWiKIriiSoKRVEUxROtma0oVUKxutlpo9LkHcqoolCUKqCwXvXr+7u59sEdAKl8+FaavEMdNT0pShVQrG522qg0eYc6qigUpQooVjc7bVSavEMdVRSKUgUUq5udNipN3qGOKgpFqQKK1c1OG5Um71BHndmKUgVkHcCVEkVUafIOdULXzI6T1tZWs23btnKLoSiKUlFUQs1sRVEUpQpQRaEoiqJ4oj6KHHZfeSXdv2kfeF9/zhymfve7ZZRIURSl/OiMwqZQSQB0/6adFxcsKJNEiqIo6aBqZhQdM06BXMe9CDM6nh94W6gksvS8+BIH2toYtXBh0iIqiqKkkqqYUXScPCNfSQAYY7X7oPPGVQlIpSiKUhkMeUWx+8orPT/fOff84gfp1rQBiqJUL0NaURxoa3M1KWXp37u3RNIoiqJUJkNaUXRdv9LXdh1nfTRhSRRFUSqX0IpCRKaLyNM5f++KyDUiMkZEHhWRXfbr6DgFDoI5csTfhu+9l6wgiqIoFUxoRWGM2WmMOd0YczrwEeAQ8GNgBbDVGHMSsNV+ryiKolQocZme5gEvGWNeAS4BNtjtG4BFMZ2jrBxoayu3CFXFgbY2dn1yHh0zTmHXJ+dp/ytKGYlLUSwB7rX/n2CM6QKwX8c77SAiV4nINhHZtm/fvpjEyCdz4rTYjrX3zrtiO5bizYsLFtC5/Gv0dnaCMfR2dtK5/GuqLBSlTERWFCIyDLgYuD/IfsaYe4wxrcaY1nHjxkUVw/kch+ILa+3t6ortWGGphlH27iuvpOfFlxw/6/x6ZVgxq+E6KdHpWrOGjlNPo+PkGXScehpda9aUWyRX4liZ/SngSWPMm/b7N0Wk2RjTJSLNQNniT+N8uMuoUbEdKwwdZ300z+ne29lJ1w03AgypVeOe4cz9/aUTJCQvLliQp+iysyEYWtdJiUbhfUJfH/vv/SEAzavSt8A3DtPTFRw1OwE8BCy1/18K/CSGc4RCMpnYjmXefTe2YwVl59zzHSOzzOHDQ8ok1jH79HKLEAnP2dDyr9Fxyqk6u1DoWrPG9T7JKou0EWlGISINwAXAX+U0rwPuE5EvAq8Cl0U5R1gOtLX5D4/1Q8KjWafMtaM/+1n23nmX56LA3s7OROUqFV1r1sAHH5RbjEgUW9xJf7/OLpTUKgMvIikKY8wh4NiCtrewoqDKSud115dbBEcOtLWx98676O3qoq65mfFfuYZ3HnzQMXNt0QcPgEhCkiZPbl8MysU1hOm87npVFFVKmv0QXgzd7LE9PZ4fS0MD5tChEgljcaCtjc6vfX3godjb2Zn3PhQV+oA90NZG1w03Yg4fLrcopafIvakMPQ60tQ3MJj1J6cCvolN4RIkuaV6zGhkxIq+t8H0hUaMTOq+73jGLbTWy9867giuJ2tpkhCkDlTqyrHbCRCr5VhJA05LFUUVMhIpVFAfa2ui89rr8WPtrr7NGqsUuXn09oxYupPnmm6hraQER6lpaaL75puIntqMTcs/hW2HpSHKAUL6Vvr74BSkTlWinrnZeXLDAum7Z+9DhWeBE1y23+j5HGiOeoIIVRdctt0Jvb35jby9dt9xa9EfYcpN1YUctXMhJP9/KjI7nOennWwPZjff/cCNwdLSgi8MCEmKKXdfSkoAgilKcKJFKZv9+fycZOTKoWCWjYn0Ubp3v56J4KoT6en/1J2yTkduUsnP51/LOo4qjgBAmt8zxU2IVoTCWPXPiNE7cvDnUsZK4voWRcDJsGM23rAUYFBChzvFk2X9foPXEAxSrh5PLjP/321DnKAUVO6NIiuxsIw5yHx5JrneoFnt392/aY3sgD1rwhFX21k+NdCc7tV8bdC4dJ89wvXZONdzNkSN0Lv+a4wy2ElPld8w+3erD3L+0fo8iZk+n6/jiggX+IhfBGqCmGDEpcKa2traabdu2BdrHbxnTQdTVMePZHZ6bvDBrtq81GPXnzPF/IyTMjBc6yi1CIEJfP9tkVWwk7RSGnLut1/m9+rJrzZpE/AtNVyzJs0+H6p/hw5nxzNMxSpUcHbNP91w3U8r72TNMu7aWGc89S8eppxVVFrkyB3FgA7SsvyPUrFBEnjDGtAbeMSBVN6Noua24Yyk7vS9GqZREy/o7SnKeisCYgZF01w03Os4wsqG3haPuOGZeSTmh/ThFi/LBB5UzuyyyuLJjxiklEaPwXhlEXx8dJ8+g/qNnBTrumwEc2PXnzEm96bCqFEXTFUt8XZC0XLS6lpbQI400E8Ru64VbChO30Nv99/7Ql+nKyySUJHEooSETTWVM+FlnAPyGafsZFOYqtz6fDuymK5Yw9bvf9bVtOalcRREij1NaQ88cGT48LxKr/pw5ZRYoHrrWrCn+o6vxf1s6hdl6JYP0G6oYywg/BFlbvWKRtNKONSu0MYFlrZRnUsUqitrGxkDbBzXfxFnLIgyFtuZio45KSW3tZ8Tbcvu6QMcc9F3r3IP5fIcqEs/oPHPiNJquWBL5OEOO4cN9b5qk0q5rbo71eNl7Rpqaim7rZ5u0ULGKwu/ULktQ882JmzeXR1mMHBnKkdf59RV5Nnk3+30SxK2kgl6rQbOEIgsbg8jXceppA//7iYgq5MTNm2letUr9TAW0rL050Pb77/0hHTNOif2eHv+Va2I9HlizID8Dkubrr4v93ElRsYqiFOkcTty8uSSLvGa80HH0L2wsdUF221KlIA+y4DCpUWGQWQJYisX3de3rY/eVV7Jz7vmuC67cqBl/tLjjqIULVVnkEOreNMYKBT5tZmpnzH7JnDitonyPlasoSpTOIYkRRx4BFJ4EjLUutL8mYZ5yqzrnFBqYXc3uRfbhKsOGRRPMA7N/f6Dr2v2bds9U725M/9Uv896XSllUQuRTJN9Ab6+lME6ewQuzZke6j8tRzyXKws5yUbmKIgBRbMSjFi5M1MbcdLn/ch3NARcD5lblcwoZjcU85VGno+PkGQMK6UBbW9HV2DXjxw88XP2GKDvhx2QYZoFcENzMh6MWLkx8jUBY38qgBXAJFpKKyzdgjhyh8+srQt/H5ajnUmlKAqpEUUSNLMjamOM2Q9WfMyeQbEGnqrkX1ykM0Bw+PDAyc/qLY2SaNUUVezA3XbEkbwQeZVre/4e3Qu8blcyJ01Kx+HHn3PMDbd8x45TBaxs++CAxZfGh8+fGd7D+/vAzgyGUkThJKldRlPgCDyQQfKHDmmEUnt/DLNSy/o6jisbOVNuy/o7E46dzHf5hRk6lDBGNqsyzcnatWRM40CEuWtbf4Xu0KA0NwU8wfPjR+68I/Xv35jnivehas8Z9tpdQ1cH3f/kr5w9CprIIbcryMGGrT+koFaso/JpskjAbNa9axYznns13Qj/1pHWunKyo0tAwsGAuSqba0MRQBKWYGSPXYRuFqCaw7GK6ci04Ezt1vV+a16wOfI5syLRvpdrX52uFczn6zPXBHrKQVVhTlpuVoK6l5aiZ0CWra3YAWA1UbPbY5lWr+GD37qKLt0q5oKV51ap0LaCJKY/XgbY214dgTV0dcVQT33vnXZGVZ9J+B1dEAvuPst/Vj8y5vpuBU9bXY3xmOd459/yB/bvWrLEyofb1QW1tIB9ZnNQ1NzvOcuuam/nQ+XMDK6+wQSfjv3LNoEqLMmJE3vGKRSIeevLJobMi3oWKnVFA8UVoSjx03uiu/OJa2ep4nJSWhcyltqmJljtuD6XksiNWJ7Nk7my1UElAsMCGbMRWx6mnORbeKQfjv3KNY4XJ8V+5huZVq5zNux6EHWS4FTALNDvMyuuDSp2BVGz22CwdM2e5LrAqzMg5FAiU3iGTYcaO7cH3c2LkSMeR1a5PzoslcqSupYWTfr41ry2pTK2e1Nb6D7126ZNS0XHazMHFu2ImyVxjxTL8gv/7Ng0BBF6/hbqWlkTqhmj2WJ+03HqLY3vQiKJKoTbIsv+envgWJr33nmOtAKeRYVAKp/pZgozUYmHkSGY896zvmUy5C8203HZroLxYYUjSl+bLb+fjWqQlRYrbLKll/R2l80smRMUriuwiplJHFJWLCddfhwRIiNh1y63s+uS8eE7+3nuDFM+ohQsJNSutq/M11W9etSpUAsig1IwfP/Dgn9HxvLeTPmSalbgZtXAhLbevG9IlYpuWLC66TVoGhHGYsdJKxZueqpEDbW103XJr4NQVcZA1ETlViPNCRowI/aPpmHFKZMd8GDNkYZW5+nPmpHoAEnfWWSdzYDnwLHJUZvNfuSmV6UkVRQXjVC4zLNLQgDl0yNe2NePH+0ppUdfSEktd56h+kKFY08OJoFXVipGmfts59/zB91yVKwmoEEUhIk3APwOnAQb4C2AnsBGYCuwGLjfGvON1HFUU4Ynq8JWGBprXrGbUwoX8bs45sS5Wi8s8c6Ctja7rr8ccyQ1aMIAPX4JdyrJaiGtWkfbZk2JRKc7su4F/M8acDMwGOoAVwFZjzEnAVvu9khBR7bO1TU0Do8YJ11+XuHM0DKMWLqT5Y73UNfQCZuDV+vOmmpREnKiSUHIJveBORI4B5gJfADDGHAGOiMglwB/bm20A/gP4ehQhlSKIhLbh565fCLIIrCguq1nDMmp8J6Muzv+OHT88zv7PZWYRoDjOUKGupSVyuHJaooiU9BBl+HgCsA/4rog8JSL/LCKNwARjTBeA/eoYPiIiV4nINhHZtm/fvghiKFEcvYWpD+JKhR277bh+9OBzLHmDpmkHcZxZDB8+qEpgNRA5Lb5IaqKIlPQQRVHUAWcC/2SMOQM4SAAzkzHmHmNMqzGmddy4cRHEUKKERzo9WKI6MBMJHe1zjnppPutdZizpys+79UJHVSoJiJgWf/hwZnQ8H69AypAgiqLYA+wxxjxuv38AS3G8KSLNAPZr8IovSiCijCLjjmpJbH3BkYPJHHcIMlB61WP9iVOqkGpVrr7Zfh/ceRqsbrJet99XbolKRmgfhTHmDRF5TUSmG2N2AvOA5+2/pcA6+/UnsUiquBKrbyECqcpjs/mr8MT3wPSB1MJHvgALvlluqUpGNmOxEhPb74O2L0OPnYjxwGvWe4BZl5dPrhIRNcTl74EfiMh24HTgViwFcYGI7AIusN8rCTNq4cLgSfRiXPGceMx9/Rj/227+Kmz7jqUkwHrd9h2rXVHCsPWmo0oiS0+31V4FRFIUxpinbT/DLGPMImPMO8aYt4wx84wxJ9mvb8clrOKNn3QHubjlyQrMyJHJj14/dbv7Z8Ma898/8T3n7dzaFaUYB/a4tL9WWjnKRPqC5pXQNK9a5ateNFghkJ4P9wApnkuyOtZrel/ovzAu2V/d2hWlGA5RdwNUga9CFcUQ48TNmwdV2iOTsbLO5iRNLBYC2bLuNl/nK23MvZtpLf11K5QhTBWYnyq2wp3iThyV9rKzjbzkg5mMVf/AmIHqaKWNuXdbLxJyHcm3zoY/vHD0/diT4e8ed99eqV66PbIQVYH5SRWF4orvyJm0RRhJrYuZKWfmUagkwHr/rbNVWSiDGTXJXSGIfzNtpaKmJyUaaYwwcvVFmKP25EIlkcWtXalu5t3o/lkV+L5UUSjR2PYvwdpLwajJ7p9VgT1ZSYBZl4O4PC51RqEoxYjZbxCW3MgTr9GfW5ijohTD9Lu064xCUZIjaEoEtxEd5M8UZl3uvkBv1KTgcipKlaOKQikP2++DH3/JdhAa6/XHX/JWFm4jOhjsaDz1M87bnXShP9nCsuFiWD3q6N+Gi8MfS1FSgioKJTm8Hrht1wyesps+q90NL99D4VqKXY84b5Zt90oJ8rOQ5VM2XAy//2V+2+9/qcpCqXhUUSjR8HLkeTmOe1yywbq1g7fvodAn4hbKmG33SgnSHTLrTKGSKNZejM1fhTVjrJnJmjHVnatK+6KsqKJQovGRL7h/5mMh0pbGBi6c1MKsqZO5cFILWxob4kmJUCxCpdQZP4N+J6+w42pLd52aEOyAmQGGkHJTRaFEY8E38Uyh4fEg29LYwLXjjqUrU4cRoStTx7XjjmXLL64fvHE2zbMftt+XbIRKmAdA0LDcbd9xb2/7cr5vp+3LQ1tZePVFSQkQ4Zca5RYPqiiUGPAIhXV7kA1r5IaxYzAFqdGNCDccM2zwcZzSPLvh9VAOkq7cibAPgDjTPFRxuuuKYYhlMFZFoUSn2MPX6UG24C56XOpnOLYHWf+Q5FoJrwdAptH5MyDxxIVVkG+oohhiGYxVUSjR6XWuZ51H7oPstinw4DLPzde2r81v8LP+4VtnF982m9wtrKnG6wHQc8hrx3DnC8JQNj9VGl5BHhV4nVRRKNHxilTKZfNXLbv+Bwe8txNh486N+W3zboRMvfd+f3jBCkX1Gl1n6wokYaqJazFfWDt22HXEKREAABUoSURBVLDetFPjkrvUrT0NeAV5VKCZUBWFUjoCOh9nbpg58Les61FY+D+L7+Q3FDUJ85Rn+G4Awjppw4b1lpIwgQD9vcHa04BX9uQKTCOjikJJJybfVNP+RrulLArLngYl+zBNSyqPagp1HWKRQHk4XTc3351XtbyUoopCSScODu32N9phwV0Rj2vbjouN/lePCv4AC2pS2H4fPPhX+aGuD/5VsGNUEklEApVSsca1mr/77YobFKiiUKIR4GY/d3ILM6dOHvgLjDFFneDFj2GPZv0suAs62g1qUmi7Bihc7+GRz6rS8QoEWD0K/uFk58+TSLcShqCr+b1MgRW2/kUVhRINn6Pocye38F5trTVTyP0LyOnHO5uMHFd4OxLwnEH8BUHNWX6DAIKSa866/cPWXyWYtt7vclYWSaRbCUPQ1fzF6lT0dFdMAIIqCiUwa9vXMvv7s5m5YSazR8PaMU1F9xlQElEQoU+ERS0T8pq3NDawomCF94pxxzJz6mSWTRhbcJCIYaquP37x58y+bcrRzLJJsHqUNevKmrO637YfprZpa9PfpF9ZFFLqdCtRyFXSftZMdL+d7uthk+L4MiWNLHt4meUrsOkXYeMxI/lpYwOPvdbpuI/76D4EIrw0LH/l9oqxYwYrIft9e3098yY1s3WPwwNIarxTl2e5+Tj40FjbtBShUNNtU4qHBidNf49l8krzw3f7fdZM9cAea5Y270b3a+VVo6TUZNPM+M0gkOXBZfBqe3nrzBchUi+LyG4R2SEiT4vINrttjIg8KiK77NfKc/Erjmx5eUuekhhAhPdqaweN9LOsGHds9NlEoSy5ysfr2CLsratznvV85Epf51o7ajizR8PMqZOYPXWy+wyqmBkhR0kU+muyf26mtVjpOZjqUeyi9pXMtPt75mhY1H6DR+6ueHw6W17ewoUPXMisDbO48IEL2fLyluAHCZJmppCUR3/FoY4/YYw53RjTar9fAWw1xpwEbLXfK0OAFb/2uJQOI32AeZOaY1cSiLBi3LFcOKnFl9kLe9Yz6CHvYwS3dkwTG48ZSb/tU8nOoOZNah68sQ97+bxJzcycOtnZX2Ob1maWQln8+EvJn6OQ2uFFN5l5/CTrPsrpk5eGZVwHIXHUq97y8hZWP7aaroNdGAxdB7tY/djq4MoiahqVFOeBSmLedgmwwf5/A7AogXMoJcbvj+bs4yflOZT31kWwbhoPc47ti9h4zEh/iijnIb928xeOtrd+0XM3x+Pbs5R5k5qZbc8EBpSQR4TOzOMnWf3h5ci3P0tcWZQj59Al3/I0Fc08fpJz37gMQoBYvsfdT97N4b7DeW2H+w5z95N3BztQVDNYivNARfVRGOARETHA/zHG3ANMMMZ0ARhjukRkfFQhlfLj60cjwiH7R551KIfGS0kUnDMQImz8wzZWAsseWEj7+7+HnFDdpv5+Vrz1DvMPHnJwhOcfZ+ChjxXUuvGYkcB7rHSwPpw7ucV/pJe9zazjJ7H9FeeQ27Vjmrj/mJH0Y432Lnv3PVa+vX/QdssmjKW9Pj/1ybQjR9jU+aa3Q31Yo7VmJU5fRvZYW28aNPp2VRI5bGlsYP7BgnxaUbMBA10HHfxXHu2uxGQGSyNRZxTnGWPOBD4F/K2IzPW7o4hcJSLbRGTbvn37IoqhJM0bB98IvlOYEFhjaO7pZd17ffGbrHKY988nW0qiwPSzv7aW68cdy8zjJ1kP2CL+j8L3G48ZyZbGBs48flKe7yFw1JcIRsRRWbmZwwrNcOdObjn6HfJMOcPcTTlZjhy0nKwJ+zK2NDb4UhKIcMPY6EohMlEzAxQjpb6jSIrCGNNpv+4Ffgx8FHhTRJoB7Ne9LvveY4xpNca0jhs3LooYSgk4rvG4eA/oMmNo/lALj/xlB/P/viPe8+VSMBsopC/COg+wnPc9NTWR14wgQnt9PWvHNOWZuNzMYdaMxmLZhLHuysnLlFNI1AWOuWSjguzZRDasmWxfFcEx/XzC6ygGmVyjZgYoRkrXVYRWFCLSKCIjs/8DFwLPAg8BS+3NlgI/iSqkUn6uPvPqeA9oDCP686fqI2pH5J1n8fTF8Z4zl2IPpiizmZhnQoWzh2K0TplYfDZEzGHLfiiICoolGi4GZ7YXax5bk/NmrKfiXNQyIW8WWXTW5kRKEztGmVFMAP5TRJ4BfgtsMcb8G7AOuEBEdgEX2O+VCmf+CfOZc9yc2I637vw7WH3+HTQ3NiMIzY3NrD53NfNPmD+wzco5K2M7X8Xi4tx1Y+bxk/jAzwhdhBVjx0R/sAXhwB6WTRgbPoULDivzE3YAd/fZim31KDA9rtvNm9TsEK3lw8RXIYR2ZhtjXgZmO7S/BcyLIpSSTr590bdZ276W+393P/0RHHdzjpszoBByFYMTgmBKUfQnLkL4ZELv63Z+v8cp2PalYcMGHuAj+/pcF1CGZdnESbRnCP89RejDGrlv6nzzaPv2+5JdQFhkfcNAdF+QaK0KI0XLGpVKYOWclTzz58+wY+kOq8FvdJLNtGOm8e2Lvu17+8unB3sALJ6+mB1LdzB+xHhLtoDylZodZ97Ijt0xlTEN6gtxmqnYf+/V1tpO5kw8sgHtw8L7fQawH755+bySXhNSJN9XMRNaIBOfZznd8qGKQgnNgLLwiSBs+symQPv4NT8Jwo6lOwa2/8Txn7A/iMlfkJTSsUfC6/a9lS6lZiuM06eWoW5Hsb7Oyee1bMLYSOanUCuwcyi63sVeHJo1t3mGXAPUFV+UWA5UUSjRCPAg3r50eyIijKwbOejYG3dujNWpXGsMtYnNUIT5Bw8xsq8vdcqijzIsAguwhqa9vt56+IYMK727/baisjitws86rn3N4nJmagPyupGt6Z4yVFEooQkyGstEMGEMq/G28z72ucdCH9sPI+tG8nTNNJ5+ZU/wB7nH9tOOmWb989l7ACyfQAWYy5Jmxyt7GN7f768f7Ifvll+Hq0PddWTwIsXC4++tq2PW8ZPY0tjAbHt9TJ7jOgi2vK6ktPqdKgolNEFSHNz8sZtDn+em89wfAomG0GI53h/73GOw9CH48Pms+8PbwR7kLg+S8SPGHzXDzbocai1luCOrjOJUFhWkfAQBhG2vvh5gJ+Hu4eFmPr4e8/bixxXjjqU/d31MBD5SkOom7aiiUELjd7X24umLi0Y3eTH/hPms+/g66muPjsQEYfH0xaFCaOtr61n38XUDobmjho2ixuGnsHj64nzH+9KHmD/+LBr8PnSNYd3H1+Wdq7mxmXUfX8fWxVvzt73kHwfWBOx4ZQ/r9r1Fc28vAgP7hFGKzY3NrJPKWdB6XONxAzOsOd3dvhXcG3Xh1lP4Vp8xKIfcYx2pqRmonbJ67JijyiKlpietR6GE5rjG4zzz4TQ3NnP1mVdHUhJZ5p8w3/dxipnEVp27KtDx8lj6EIe+d5qvTTMG32HA+XmQ9jC/7ljmn3VjXtjn/BPmDyjGmRtmFj1/brDBCh/bO7Hu4/Etg1o8fbHlO3JhYMGl3Vff3noTMz2sNLkcN8xHFuGUcrimhuvsvGjz6yLkR0sQVRRKaOZOmuv5w3/k0kdKKM1RipnE4lBcxagxhpvP9yjh6cSsy32vB2ioa+BQ7yHXzwsXRwZej2IM6+beHmtfZZVc7jqchroGunu7Oa7xuPxBhd0Xcx5eRnvXb4qO5q+ec20omZr6+9lfG+PqbmNCzTz6bdMWUz9D8ndncNT0pITmV3t+5fpZc6NDvYYSESqBYRzYvoCm4U3cGvNDtpAbz/Euu1q4ViXoehREEpE/dx3OjqU7ePxzj7N96XYeufQRx/N9+6JvF33wrvv4utCyrnj7AJm4/DdRjyPCda88FI8sMaOKQgmN1wN57iTfiYRjxyuBYU3CpTN37H6NXy/5deKzFq/ji4OLduWclYF8HCPrRhbfKCVE8n+9/z4373uL5p5exBjwG22VEP2kM1W5KgolNF4PZK/ZRtJ4JTCMknpkAK8R7tiTox/fJ26zNrfrsnLOSl8+h5F1IxMPOU4NoyYz/+AhHtnTyfbdr7HjlT1MO3IkXKSYCIvffa9iIsyCoIpCCY3XrKFs5p8ixGEScxqxD7T/3eORj++Xq8+8mhG1I/LaCjPwFpKNICuMwsqagnYs3VE9SgJg3mAT3qbON9mx+zXG9/YGeug3DW9i5Ql/Fqd0qUGd2UpovGYNsdevCICXMzuOdOluTmGTXJ0lR7Iml7ufvJs3Dr4x2CHssV8pHPoVwazLXVOHb93TxaKWCbw0vHhajUxNhhUfXQEnzEc2zAqdyHJgEWbKUEWhhMYrNDb2+hUB8JrNDLUHZLU/9J3Wv8SJVTL2wKD2LS9vcVXQl0+/3DMa0I28RZgpQxWFEpoaqXG1+Zfz4eW2vqOckVhKeLzus1s/fmuyJ2/9omOzl4JeOWdlIEVRJ3Ws/djaVCt89VEoofFyDEfNyhmFMLZ7Jb1c9keXObbn1jVJjAXfDLWbW4RZNg1+7t9Tf/5UqpUEqKJQIuA1Qg+SBypu5p8wn9XnrvasnhcFtxDbpENvq5VsaG+2f2ukZnB6lZThJnOlVm0Uk4JQrtbWVrNt27Zyi6EEZMvLW1jx6xWunwetV1EpeKXPGKrfeUiz4WL4/S8Ht3/4fCsZZIoRkSeMMa1Jn0eHQEpo0j5dTgq3mZT6QCoUOzNwHhWgJEqJOrMVJSBXn3k1qx9bzeG+wwNt6gOpcFQpeKKKQlECEnb9gqJUKqoolEgMqxnGkf4jju1DmWpfv6AUx2utRaWhikKJhJOS8GpXlGpgy8tb8syTXQe7WP3YaqAyfXvqzFYURYmZu5+8O8+HBXC473BZw8ajoIpCicSoYaMCtStKNeCWRiatyTKLEVlRiEitiDwlIpvt92NE5FER2WW/jo4uppJWrj37Wuok34JZJ3Vce3a4imOKMhRwS4pZzmSZUYhjRnE10JHzfgWw1RhzErDVfq8MUeafMJ+1H1ubtwo67XlrFCVphloamUjObBGZBMwHbgG+ajdfAvyx/f8G4D+Ar0c5j5JuNAJIUfIZaiHUUaOe7gK+BuTWTZxgjOkCMMZ0ich4px1F5CrgKoApU6ZEFENRFCVdDKUBVGjTk4gsAPYaY54Is78x5h5jTKsxpnXcuHFhxVAURVESJsqM4jzgYhH5NDACOEZE/hV4U0Sa7dlEM7A3DkEVRVGU8hB6RmGMudYYM8kYMxVYAvzcGPN54CFgqb3ZUuAnkaVUFEVRykYS6yjWAReIyC7gAvu9oiiKUqHEksLDGPMfWNFNGGPeAubFcVxFURSl/KSicJGI7ANesd+OBf5QRnHConKXFpW7tKjcpcWv3McbYxKPBkqFoshFRLaVomJT3KjcpUXlLi0qd2lJm9ya60lRFEXxRBWFoiiK4kkaFcU95RYgJCp3aVG5S4vKXVpSJXfqfBSKoihKukjjjEJRFEVJEaooFEVRFG+MMZ5/wGTgF1g1J54DrrbbxwCPArvs19F2+7H29u8D3yo41mJgu32cOzzOeQvwGvB+QftXgeftY2zFiiF22n84ViqRQ0A38LscufuA94APsPJQpV5u4BPAjhy5+4DPpV1u+7O7bdk+sI+Tpv6ea/drP7CH/Pt7K9ADHCR997ej3MDxwNM590lHJchdAb9Lt/5O++9yLvAk0AtcWvDZ7cCz9t9iNxkGti+6ATQDZ9r/j8R6CJwC3AGssNtXALfb/zcCHwO+lNtBdse9Coyz328A5rmcc4593sIO+gTQYP//18BGl/3/Bvg+cCZWHqof5ch9pELlvsOWdwzWA/kbFSD3l4DdwHW2nHuAO1Mk91Tgk8Bm4FLy7+8fAt+zP0vbfeIm92zgG7a8HwLeAf6xAuRO++/SS+40/y6nArOwfpuX5rTPxxr81NlybgOOcTpG9q+o6ckY02WMedL+/z2sUcpErAJFG+zNNgCL7G0OGmP+EzhccKgTgN8ZY/bZ7/8d+DOXc7Ybu6ZFQfsvjDGH7LftwCQXsS8B/smW+wHg/By56ypU7mx/Xwr8DFhQAXKfiXUjftcYcxD4FdZoKhVyG2N2G2N+jr0CtuD+PgNrlgQpu0885B6PdV9swJrlHQQuqgC5U/27LCJ3an+XttzbsWZCuZwC/NIY02v/Lp8B/tTpGFkC+ShEZCrWD+hxCgoUYd2kXrwInCwiU0WkDutGmBzk/AV8EevCODERa8qGMaYX6wfzEVtuAdpEpB04u4Lkzvb3EuC7FSL3T4HRwAERGYs1QmpKkdx5FN7fwNuQyvs7jwK5jwMexroet2GNYL1Ii9xp/l3m4fIcTOPv0o1ngE+JSIP9u/xEMRl8JwUUkQ9hmRSuMca8KyKBJDPGvCMifw1sxNJwj2Fp18CIyOeBVqyRq+MmBXIfByyz5X7XGNMqIicAP6eIskyR3Nj1PWZiPQg8SYncm0Skxz73PuA3wGdSJHcuI6ic+zuXQrmNMWaWiLQAm8i5NimXO82/Sy+50/y7dJPhERE5i/zfZa/XPr5mFCKSweqcHxhjHrSb37Q7KNtRRQsUGWPajDFnG2POAXYCu0SkVkSetv9u8iHLnwDXAxcbYz6w227JHsPebA8w2Zb7QSyn5P+1P3vDLqz0MtaI4P0KkftN4C+BH2MlDKuU/n4V+JQx5gKgHnuUnhK5BzYH/gcF9zeW3TmN97en3Pb93Qm8jDW7qwS50/y79JI7zb9LLxluMcacbv8uBSsoyXMHzz/7IN8H7ipoX0++8+mOgs+/wGBv/3j7dTRWdMYfFTl3oRPnDOAl4KQi+/0t8L9tuX8K3Jdz3m/a8mazM34n7XLn9PerWNPESunvWuB/2fLOAt4A1qdF7pz7+0Vgs8P9fQ9Hndmp6W83ubFs1Xfa8o7GGi3+SwXInerfpY/7JJW/y5ztv0e+M7sWONb+fxZW5FOd5zF8nORjgMEKxXra/vs0lu1zK5Ym2gqMydlnN9bI8X2s0eYpdvu9WGFdzwNLPM55h71fNhxttd3+71gaPCvHQy77j8CavhqsSITn7e3/u/1/Npzt+QqR+9PA6ViOsUrq70uwRkwHscJmH0+Z3GdhjQAN1tS7O6e/f4MVidNv9/ulFSD39Vghl7nhsZXQ32n/XXrdJ2n+XZ5l73cQeAt4Luf3mj1/O3C6lw4wxmgKD0VRFMUbXZmtKIqieKKKQlEURfFEFYWiKIriiSoKRVEUxRNVFIqiKIonqigURVEUT1RRKIqiKJ78f6S57F/6hNcgAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import collections\n", + "\n", + "from apd.aggregation.query import with_database, get_data, get_deployment_ids\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "async def plot(deployment_id):\n", + " points = []\n", + " async for dp in get_data(sensor_name=\"RelativeHumidity\", deployment_id=deployment_id):\n", + " points.append((dp.collected_at, dp.data))\n", + "\n", + " if points:\n", + " x, y = zip(*points)\n", + " plt.plot_date(x, y, \"o\", xdate=True)\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " deployment_ids = await get_deployment_ids()\n", + " for deployment in deployment_ids:\n", + " await plot(deployment)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAE0YAAAUsCAYAAAC9bUPVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdd7x0Z1Uv8N9KBwIJEAJSQ+9NihSBBJAqIL2HkCCCXq5cURD13ovYr6BwQakGCKFKByHIRQOitCAogjSBCKEESEIPIWTdP/a8Zt79zilzzpwzb/l+P5/5kL32fp5nzZk5w+eds/Z6qrsDAAAAAAAAAAAAAAAAAAAAAAAAsEz7LTsBAAAAAAAAAAAAAAAAAAAAAAAAAI3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAAAAAAAAAAAAAAAAAAAAgKXTGA0AAAAAAAAAAAAAAAAAAAAAAABYOo3RAAAAAEaq6qiq6tHjuGXntZ2q6tTR8z912Tntjfyc92xV9bTxZ8WesL73HQAAAAAAAAAAwO5jE7VgS61hm9ey63OXvT4AAACwfhqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMRoAAAAw0wq7oq32OLeqzqyqz1bVKVX1R1V1n6o6aNnPBQAAAAAAAAAAANiYPaWesKruuEI+pyxwjaPXeO5HL2idY9dY56hFrAMAAAAAuyON0QAAAIBFOTjJZZJcI8ldk/xmkjclOaOq/qSqDl1mcnu7qnrpqOjpi8vOCdi7VNUXR58zL112TgAAAAAAAAAA7JaWVU94wgrxn6uqK2/RmmPH72bzAAAAAMAeR2M0AAAAYKsdkeTJSf6tqm697GQAAAAAAAAAAACApdiyesKqOjzJ/VY4vV+S4xa53iruX1WX2MwEVXW1JLdfUD4AAAAAsMc5YNkJAAAAAHuU7yf53ArnLprkUkkuvcL5qyQ5paru0N0f24rkAAAAAAAAAAAAgG2xu9UTPjzJIaucf3RV/V5394LWW8lFkzw4yYs2McfxSWox6QAAAADAnkdjNAAAAGAep3X30atdUFVXTHKvJE9KcvXR6UskeV1VXbe7f7w1KbIIa73OQNLdT0vytCWnMTe/3wAAAAAAAAAALMDuVk94wui4s3NzsaOS3CnJ/1vAWmNnJ7nk1PHx2WBjtKraL8mjRuGzMjSaYy+1p9aiAQAAAGyV/ZadAAAAALB36e4vd/fzktw4yRtmXHL1JL+0vVkBAAAAAAAAAAAA22m76gmr6iZJbjoK/3mS80ax4ze71gpeneQnU8e3qqrrbnCuuya54tTxOUnesdHEAAAAAGBPpDEaAAAAsCW6+/tJHp7k32ecfuQ2pwMAAAAAAAAAAAAswTbUEz5mvGSSZyd52yh+v6q65ALWG/tKkr8dxTbahG087pVJzt3gXAAAAACwR9IYDQAAANgy3X1ukj+acermVXWp7c4HAAAAAAAAAAAA2H5bVU9YVYckedgofGp3/2eSl43iB2do0LYVThwdP7KqDphngqq6dJJ7rzEvAAAAAOz15vpiDQAAAGADTpkR2y/JtZO8f6OTVtV+SW6a5Kgkl0lyqSTfSfKNJJ9L8tHuvmCj8y9SVV0hyXUy5HpYkotkyPWsJP+Z5MOToi+2QFVdJMktk/xUkiOTHJrkWxneK//S3f+xxPTWpaouk+RWSa6WIf9vJzkzyQe7+/Rl5rbVquqwDM/9mhl+f85NckaS98/z3Kvq8klukeH38NAMv39fTvKe7v7OgtPekKo6OMltk1w5yeWS/CTJ15N8PMnHuruXmB4AAAAAAAAAAGzWVtQT3i/JJUexkyb/+/YMdWKXmTp3QpLnbnCt1bwlyTeTHDE5vmySe0zi6/WIJAdNHf9rd3+kqhaT4QJU1f4Z6tiuk+QKSS6RZP8kZ08en0ry8d2lfnMR9pUa0Ko6KMk1MjzXy2V4bZPheZ6V4XX99DblckCSmye5fobfqQuSfDXJF5J8oLt/sh15rNfeUKcKAAAAuxuN0QAAAIAt1d3fqKrv5MICiR2OmHX9Wqrqdkl+JcnPZWiGtpKzqurtSf6ouz+5kbU2qqqOSHLfJHdOcocMBU6rOa+qPpCh2Or16y0IqqovJrnKCqevUlXraaJ0THefOmPuUzPkvsN7uvvoFfL4eJIbTIW+keQK3f3jdaw/U1U9NMkrR+Ff6e6/XOf4/TLs7PmIJLdPcsgq134hyWuTPKO7v7mxjLdGVR2d5LeS3ClDAeCsaz6Z5A+TvHKexllVdVySl4zCV+3uL24gz/G6v9vdT1tjzNOS/O/pWHfX1PlbJPmdDMWBM7/HrKr3JPnN7v7AKuvcK8lTktwmyawKwfOq6o1JnjzZJXbd1noOc8xzVJKnZfjcGH9W7vC1qnp+kmd29/fmXWO03qlZx+/3JK8vrDLVo6rqUWutt+NnUlWXyNDU7tCp06d29zFrJr2Kqnp2kv8+Ct+ku/9lM/MCAAAAAAAAALBYi64nnDhhdPyDJK+brHd+Vb0yya9Onb9JVd20uz+6iTV30d3nVdUrRmsdn/kaox0/Oj5x04ktQFVdM0MDujtm2PjxYmsM+XZVvStDTd4H51hnt6hF3K4a0NGaT8sCatE2sO5NkvxCkmOS/EySg9e4/htJ3pbhtV14bW5VXTbJbyY5LsnhK1x2ZlW9NsnTu/sbi85hvfaWOlUAAADYXc28mRIAAABgwWY18Vmp+c9MVXWtSaOz9yZ5cFZvipbJ+Uck+XhVvbiqViw4WKRJEdVXk7wwyYOydkFMMuzwePsMRQ//VlXX37oMt8S4udZlktxzk3MeNzr+UZJXrWdgVd0tyccz7Pp5l6xSbDJx1QyNsz5fVb+6xrXboqoOrqoXJfn7DE0AV/se73pJTk5ySlWtVXC226vB7yX5QJJ7Z/XNHe6Q5J+q6tdnzHNYVb0+Q2HhbTO7KVoy/P49OMknq+rOm0p+AybvuU8keVRW/1y8XIbmaZ+oqpttQ2oL193fyfBenXZ0VV13o3NOdto8dhR+v6ZoAAAAAAAAAAC7rU3XE+5QVVfN0NBp2htGGw++bMbQcTO1Rfmr0fE9q+rI9QysqpsnudFU6LzsWmuzrarq0lX1z0k+k+SPM9TjradG7bAkD0jygap6c1Wt1OBqbOm1iPtKDWhVXaeqPp3koxkast0+azRFm7hMkkdneJ4vqqr1jFlvTvdI8skkT8zKTdGS5Mgk/y3Jv1fVQxa1/jz2hjpVAAAA2N1pjAYAAABsh1kFCt9Z7+CqulOSDya5+wbW3i9DEdN7JjvJbbXbZPVGTmu5boZioG1v0LQJJycZ78j46I1OVlVXzLDT4rQ3dffZ6xj760n+JkOzsHldPMmzJo30NvMabsqkid87kjxmzqF3SfL2qtp/8Vltq+cn+Z2s/7vLSvKnVfXY/woMhXTvzrBL6XpdLMlbquoWc4zZlKr6gyTPSnLROYZdOcPn2R7ZHC3Drqhjj9vEfA/Nrv8f87xNzAcAAAAAAAAAwNbaVD3hyPHZdcPEk6YPuvujGRoYTXv4Vmy22t0fT/KRqdABSR65zuHHj47f0t3fWkhiG3fxJDfd5Bz3TvKhSV3gWnaHWsR9pQb0ckmutYnxlaHG8b1VtaHGhjtNVnWvJG/O2psmT7t0kldO1w5uh72hThUAAAD2BP7hDAAAAGypqrp6Zjf9+fw6x98ryeuTHDg6dV6Sv8vQMO1LSb6d5NAkRyW5Y5Lbja6/ZZI3VdXtu3tcOLNVfpLkn5N8IsmnknwrQwFXZdjh8ppJbpXkttm5CdShSV5dVTft7i+tMv8nk5wz+e8rJ7nk1LkfT86vZdbum3Pp7jOr6u1J7jMVvkdVHdndZ25gymOza1OsE9caVFV/nGFHvbGzkrwrQ8HZmUl+kKG47vpJ7pbk2qPrT8jwc/31ubJenBOz8y6mn87QKO1TGZ7LYRmKze6fXXejvH2S/5HkGVuf5uJNdkKcLlI6Pclbk/xbhud+eJKfSfLA7LpL7LOq6p0ZPg9enWS6cdhHkpyS5AtJvpvh53bHDEV30++1iyR5UVXdvLvPX9DTmqmqfi3Jb8049aNJru9N8pUMDduumuH36waTay6W5E1JXreVOWb4nP2XqePrZefP4rOT/Oc8E3b3J6rq1CRHT4WPraqndvcPNpDj40fH30ry1xuYBwAAAAAAAACALbbZesLRXPslOW4UPiPDhopjJyX506njwzNsuvjKedddhxOzc+3S8UmeudqASZO2h86YZ3fzvSQfTvLvST6boW7zu0kOylC/eL0MtW/XHY27ZpLXVNUdVqvL2l1qEadsdQ3o7uTsXPja/keG5/m9DDV1R2Sot7xLhlrVabdM8uIkD9rE2ldN8pxceL9zJ/mnJG9P8uXJ8ZUybK582+zcDLGSPL+qvtXdr99EDuuyF9WpAgAAwG5PYzQAAABgq91/RuzsDMUTq6qqq2YoSJpuxHN+kj9P8qfd/Y0Vhj6tqm6SodhiusDoVkn+OMmT1pH3Rp2X5A0Zdi78u+7+9loDquoqSf4oOxc2XTrJ85L8/ErjuvseU3O8NMmjpk5/pbtvMlfmm3Nidi5GOiDJI5L82QbmOm50/OUk/2+1AVV13+xabHJ2kt9MclJ3n7vCuEryC0men+TIqVNPqqr3dvdb5sh7EX4myY6dSL+W5AndPbP5VVU9JclfZCjemvbbVfUX3f3DrUtzy/zJ5H9/kOH39EXd/ZPRNS+qqt/O0DDxtlPxi2RoNPbpJHedxD6f5LHdPavY8TlVdfMMOzdOv/Y3ztB47VWbeSKrqaprJ/mDGafekSHfL8849zuT9/nzMjR2u2KSX9qqHJOku7+S5L8+R6rqi0muMnXJW7r7uA1M/dzs3Bjt8CQPyZzFnFV1syQ3H4VfstLvOwAAAAAAAAAAS7fhesIZ7pqhhmbayd19wYxrT85QO7j/VOyEbE1jtFdmaIS2ow7selX1M939wVXG3C9DDc0OZyT52y3IbSPOyfDze12Sf1rPxrRVdZskz87OtT23SfLErL3p51JrEbONNaC7ga8leWmSNyY5bYXfnf8yqbe8e5JnZWgKt8MDq+oBK9U6rsOTc+Hvy6eSHLfC78sfVtUtJzlPN9+rJM+rqvd09zc3mMOa9qI6VQAAANgjjLvdAwAAACxMVf1UZu9m9qq1CigmXpGdi31+kOSu3f3kVZqiJUm6+2MZCmneNTr1hKq60jrW3qhbdPf9u/uN6ymISZLuPr27H5bkaaNT96iq6yw8w63x9iRfH8WOm3eSqrptdi6YSZKXrfZ+qaojk7xkFP5skht19wtXa5LUgzdmKMAaN6P6o0lBynbaUdzz+SS3Wq1QqLu/l+Fn/M7RqcMzu4BwT3Bwht/zO3f382c0RUuSdPfXMxSMjXcBfUSSp0/++xNJbr1CU7Qd85yW2T+rR8+b+Jyelwtf6x1em+TnV2iKliSZvFfvkAuf90W2Jr0t96bs+vv2+A3MMx7TSV6woYwAAAAAAAAAANhSC6gnHDthRuykWRd299eya6OxYyabty5Ud5+TodHUtLXqkcbP5WUr1U5ts68kuXx3P6G737OepmhJ0t3/lOR2SU4ZnfrvVXXAGsOXVos4sa/UgH4oyZW6+6nd/aH1/A5O6i3fnmED2I+OTv/aJnLZUUv3iSQ/u1oTwe7+UIb31idGpy6TCzdmXbi9rE4VAAAA9ggaowEAAABboqqunqGo5TKjUz/IsDPeWuN/LsmtR+Hju/vv1ptDd5+X5IFJpneAOzCbK8BYa811FcKs4OlJPjx1XEmO31xG26O7z8+wQ+K0G1bVzeacalYB2LiYZOxXkxw2dfyDJHdbrcHUWHd/KclDRuHrJbn3eudYoB8neVB3n77Whd3dmf1+vuvCs9o+T+zu96910aSAcLx76EWTXCzJuRl+huPGabPmeV92LcA7pqrGjcsWoqpumOSYUfhzSY5dZ3HZp5McuxW5bZdJ0ea4gdnNq+rms66fpaoOy847rCbJu7r7c5vNDwAAAAAAAACAxdpsPeGM+Y5Icq9R+LTu/uQqw142niZbt4HiiaPjh1TVzE0Qq+qo7FpPtFbN3Lbo7vO6+4cbHHtukkdleI13uFKSu6wxbpm1iPtMDWh3/2Dys97I2LOzaw3bravqeptI6bwk9+vub61j/W8lud9kzLSHTz4btsLeVqcKAAAAuz2N0QAAAICFqKpDquoKVXXPqnphkn9NcqMZl/7iOgsBnjI6/ofufs28eU2KVJ49Ct933nm2w6TJ1ctH4Z9dRi4bNC7mSubYqbGqLprkQaPwe7v7P1YZc2iSXx6Fn9ndn1/vujt09z8mefcovIz3yiu7+yPrvXhSzPfPo/C8RWC7i88kefEc179+hfjL1yhyHHvd6PiAJDecY/w8Hjcj9qTu/tF6J+judyZ56+JSWooXZtfCtMfPMf5RGRrhTXv+pjICAAAAAAAAAGAhtqCecOzYJAeNYietMebNScZNr46rqq24x/LdSaY3xjwsyf1XuPbRGRpo7fDevWVzwMnGluNNK9dTE7nttYiLsBfUgK5bd/9bdq1b3MxzfU53f2aO9T+T5Dmj8MGZ432yXntpnSoAAADs9jRGAwAAAOZxh6rqWY8kP0zy5SRvS/KL2bVhzQ+SPLy7X7nWIlV1qSR3HIXnaZY09jej46tU1VU2Md9W+uzo+Ker6sClZDKnSSOqD43CD6uqg9c5xf2TXHwUW2uHxjsnOXwU+6t1rjfL+L1yh03MtVEv2sCY8c/9WotIZAleMikOW5dJYdGsHTrnfQ98dEbs2nPOsV53Hx1/Nbu+79bjBQvIZWkmRY9/PQo/pKrGv88r+aXR8RnZ85vFAQAAAAB7kUkTgDtV1QlV9ZSq+tWqemBV3XjZuQEAACzIttQTruD40fGPk7xqtQHdfW6S147CV0pylw3msNpaneSlo/A450yasj1qFJ7VFGxPNq6JvNVaA5ZUi7goe2wN6AbM/dquYiN1ky+cERvX5y3C3linCgAAALu9A5adAAAAALDX+26S1yR5end/aZ1jbpedd0BMkn/aRA5fmBG7aXbekXFLTHaKu32G3S6vl+TSSS6R5GKZ3bT+0NHxwUkum6FIbE/wkiS3nDq+VJJ7Z9cGSLM8enT8vXWMGxeEnNHdm3ldx++Vo6rq8O4+ZxNzzuOH2bWgaz3GO1nuX1WHdvf3FpDTdnrvBsb8Z5IbTh3/IMlH5pzjizNi623QtW5VdWSSq47Cb+7un2xguncm+X6Gz5I91XOTPHzq+KIZdvP9v6sNqqo7ZPg8nfai7j5/sekBAAAAANulqq6W5BZJbj7535/Ozjcwn97dRy0htblV1Q2S/K8k90pyyArXfDbD31Se2d3nbWN6AAAAy7aResKdVNWtklx/FH57d39zHcNflqFR27Tjk5yykVzW8JIM/z7cUQt5dFVdtbuna9TunGR6k9fvJnndFuSyMFV1hSS3yVATea0kh2WoibxIdq37TJLLjY6vvM6ltrsWcaZ9qQa0qq6eobnZjZJcPcPzvESG5zDrtR2/lut9bcc+1d2fnndQd3+mqj6RnT8PblFV+3X3BRvMZZa9rU4VAAAA9ggaowEAAABb7bQkz5mziOm2M2Kvn+wkuShHLHCuXVTVzZL8RoZCnItscrrDswcUxUy8KsmfZefnfFzWKCqqqqskOXoUfm13f3+N9cbvlUtW1cfWTnNF46KkZHivbFfByend/eMNjPv2jNhhGQq69iSf28CY746OT99Ag6zxHMnw81u0m82IzdvELUnS3edX1b8mufXmUlqe7v5AVX0kO/9cHpc1GqMlefzo+PwkL15kbgAAAADA1quqo5M8NUMztEstN5vNq6pK8j+TPC2zbxaeds0kf5jkoVX1sO7+ty1ODwAAYHexkXrCsRNmxE5az8Du/seq+lySa0yF71NVR6yzsdq6dffpVfV3Se40CVWGWrr/PXXZ8aNhr1lHzdxSVNUDkvxyhiZRsxqCrdd6N6zc7lrE8Tz7RA1oVe2X4XfqFzM0q9+MjW5GuqEauol/zs6N0S6eoWHfpzYx59jeVqcKAAAAewSN0QAAAIB5fD+zGxcdmOSSSX5qxrljkny4qo7r7letc50rzojdaJ1j1+vSC54vSVJVByb58wyNezZT/DNtKxo0bYnu/nZVvTHJw6bCd62qn+rur64y9LjsepPQS9ax5Pi9ctEkN17HuHlcOhtr2LURZ21w3KxmagduJpElOXsDY8bPfe45uvvHw/1qO9mKn9+RM2Jz73Q55VPZgxujTTw3O/+uX7eqju7uU2ddXFVHJrnvKPyW7j5ji/IDAAAAALbOTZLcZdlJLNCLsuvN+RdkuOn/i0kOSnK9DDfn7nDDJO+uqlt39+e3I0kAAIAF2q56wv9SVRdL8uBR+Kwkb5tjmpOSPH3q+KAkj0jyrHnzWYcTc2FjtCQ5rqp+t7svqKpLJvmFGdfvVqrq8klenuSOC5pyXfWQS6hFTLJv1YBW1XWTvCLJTRc05Uaf52Zr6MaOXCG+UXtbnSoAAADsERb1xQwAAACwbzitu28y43H97r58hj/MH5ddCwoOSvLyqrrXOtfZkqZlI5vdwW8Xk4KYv07yK1ns9y57WoOrcRHR/kkeudLFNXSkOnYU/mx3v28da11qztw2YuHvlVXManC2z+juRTz/3flnOGtHzG9vYr7NjN1dvDrJt0axx61y/QkZ/j9l2vMWmhEAAAAAsGw/SvIfy05iHlX1hOzaFO3VSa7c3T/T3Q/u7vt297WT3DLJR6euOzLJO6rqkG1KFwAAYFG2q55w2oOSXHwUe3V3nzfHHCcl6VFs/G+6RXlDknOmjq+cCxulPTzJwVPnPtXd79+iPDakqq6Q5NQsrilakhwwx7XbWYu4T9WAVtUNkrwni2uKlmz8eS66hm5Wnd5m7G11qgAAALBH0BgNAAAAWJjuPqu7X5bkJhlu9pi2f5KTq+qodUx1yQWntl2ekuQ+M+JnJPnLDLtK3jrJlTIUXhzS3TX9yLAj5p7u3UlOH8Uevcr1d0hytVFszR0aq+qi2bkwDHZ346LMZNg5d6M2M3a30N3nJvmrUfh+VXXZ8bVVtV+Sx47Cn83wmQMAAAAA7Jl+nORjSV6c5JeS3CzDd6mPWWZS86iqSyf5w1H4Od390O4+Y3x9d384ye2TfGgqfK0kT9y6LAEAALbfAusJp81qYHbSnHmdnqEh1LQbVNUt58xlPWudm+RVo/COWrrjR/ETF73+Arw0yTVnxD+W5I+S3DfJTye5XJJLJDloRk3k725i/W2pRZyyT9SAThrAvTbJZWac/sckT0vy80lunKGh+8WTHDDjub5sQSktuoZuVp3ehqhTBQAAgOWZp7s+AAAAwLp094+q6pFJLpudizwukaEBzp1mDrzQD0fH53T3bt0sraqOTPLUUfj8JL+R5Lndff46p9rjd33r7q6qlyX5X1Ph61TVrbr7AzOGjAuVfpL1Faudm+SC7Nz8/03dfd+5Eobt890ZsYttYr7NjN2d/GWSX8+Fv8sHZihiHd9IePckR41iL+ju8Q6+AAAAAMCe4WVJnj+5SXwnVbWEdDbsCUkOnTr+9yRPWm1Ad3+vqh6e5JMZvhNNkqdW1Qu6++ytSRMAAGA5FlBPmCSpqmsnue2MUx9Y0L8jj8/OTawX5SVJHj91fN+qOibJTadi5yd5+RasvWFVdc8kdx6Fz0xybHe/c46pNlwTuY21iPtaDehjk1x3FPuPJA/p7tPmmGdRz3XRNXSz6vQ2Sp0qAAAALMl+a18CAAAAML9JEcixSb4zOnXHqnrwGsO/OTo+vKoOX1hyW+PeSS46ij2lu581R0FMklxqgTkt00uTjJsVHTe+qKoOTXL/Ufhvu/uMtRbo7guSnDMKX3X9KbIIk90jWZ/x+zVJDtvEfJsZu9uY7ML7tlH4sVU1/v768aPjczN81gAAAAAAe6DuPntWU7Q90L1Gx8/u7h+vNai7P5fkTVOhSyS53yITAwAA2F1ssp5whxMWm9UuHlpV4xrATevuDyf5+FTokCQnjy57e3d/bdFrb9JDR8c/SXKvOZuiJZuviXxptrgWcWJfqgEdv7bfTXLnOZuiJYt7rouuoZtVp7ch6lQBAABgeTRGAwAAALZMd385O+/Ut8MfrtFM6eszYjdaTFZb5udGx2cnee4G5rnaAnJZuu7+QpJTR+GHVNUho9iDsuuOfS+ZY6nxe+VaVXXwHOP3ZbNuytpIk7NLbzaRfciZM2LX3sR819nE2N3N+PPyKknuvuOgqnY6nnhtd39rqxMDAAAAAPY+VXVoVd21qh5dVU+uqidV1SOr6uYzNm1YbZ6LJ2JdggYAACAASURBVLnJKDzPDeKnjI4fMMdYAACAPcom6glTVQdkaKy2lS6Rrft32bgm7vKj4xO3aN3NGNdEntLdH9rAPJuqidzGWsR9ogZ00kDu1qPwSd39xQ1Mt6jneq1NjJ1VfzerTm8z1KkCAADAEmiMBgAAAGy15yX5/Ch2tay+e+Os4plxQ5zdzZVGxx/s7vM2MM+44GRPNi4qOizJfUex40bHZyV5yxxrjN8rF0ly9Bzj92Xj3VeTobhvXtfYbCL7kI/MiN1sIxNNij1394aR8/h/ST49ij1+6r8fm12/z37elmYEAAAAAOx1Js3Q/i7D3yNOyXDj+Z8keUaSk5J8OMnXq+qPq+qS65jy8tn5u8vvz3kj8cdHx3dyYy0AALCX20g9YZL8fJLLjmJfS/Ivm3yMrZXHRr08yUr1hGcm+ZstWndDquqgJEeOwv+wgXn2T3LLBaS0HbWI+0oN6Pi7jGRjr+2RWVxjtA3V0K0w9rtJPrOJ+WZRpwoAAABLoDEaAAAAsKUmhSFPn3Hqt1e5seNdM2IPnjQC2l0dMTo+a94JquqIJMdscP3zR8f7b3CeRXp9dm2+9egd/1FVV09yu9H5V3T3j+ZYY9Z75RFzjN+XnTMjtpFCpTtsNpF9RXefmeQLo/C9q2oj39PeNbvucLrVtuxzprs7yV+OwnevqqtMdgQeF51+rLs/sKj1AQAAAIC9W1UdUVXvytAM7ZgkB65y+RFJnpLks1V1+zWmvtToeNZ376sZX39gkuvMOQcAAMAeY4P1hMnshmWP7u6bbOaRXRse3b6qFr5RZHd/M8nbVjj98u4e1+Us27geMtlATWSSeyQ5dJO5JNtTi7jsGtDtsqjX9sGbTWTKdavq2vMOqqprJbn+KPzh7r5gMWn9F3WqAAAAsAQaowEAAADb4eTsugPbFZP84qyLu/uMJB8Zha+aXXf02518f3Q8q3hkLb+S5JANrv/d0fEiiok2pbt/kOQ1o/CdqmrHzorHzRg23tlxLe9Mcu4o9tCNFMnsgz49IzbX7pyTHT2PX0w6+4x3jI4vn+SeG5hn5ufnFtvqz5mXJvne1PF+SR6bYXfX8Y6/z1vw2gAAAADAXmpyQ/sHk9x5dOq7SU7N8LeM1yU5Lcn0jbOXTvKuqrrrKtOfNzpe7Sb+WWZdf7055wAAANjTzFVPWFU/leTuo/DXM7tZ0UZyGduqeqgT54wv07geMtlYTeSvbTaRZNtqEZddA7pdNv3aTja6fMJi0vkvj9nAmFmfGeP6vEVQpwoAAABLoDEaAAAAsOW6+ydJfm/GqadW1UpFIH8wI/aMyQ5vu6Ovjo5vU1UXW+/gqrp+kqduYv2zR8eHV9UlNzHfooyLi/ZLcmxV7Zfk2NG5f+nuj84z+WQnzReOwvsneWVVXWSuTPcx3X1mki+Pwg+aNDtbr19JcrXFZbVPeP6M2DOq6qD1TlBVd05yn8WltG7jz5mFvvbd/Z0kLx+FT8iuRXTfSfLKRa4NAAAAAOydquqiSd6Ynb/P/HSSByS5ZHcf090P6e4HdvctMtyI/6Kpaw9KcnJVXWGFJb41Or7kKn/7muWnZsTcVAsAAOzVNlBPeFyGmrBpr5rMs1mvTnL+KPaoOWuo1uvtGf4dOP24bHd/cgvW2pTu/naSH4zCd5lnjqp6TJKjF5VTtrgWMcuvAd0u4+eZzPnaJvnfSa65gFymPWHS3H5dJteO68p+lGFzzoVSpwoAAADLoTEaAAAAsF1emeRTo9jlkzxu1sXd/cYkp43ChyV5x6SAZG5VdfGq+o2qesRGxq/hH0bHh2Yo/lhTVR2V5C1JDt7E+h+fEbvHJuZbiO5+f3Z93Y9LcqckVx7FN7rz5R9l110MfzrJGzfaHK6qrlJVz6mqG2wwpz3FeHfEKyd54noGVtWdkvyfhWe0l+vujyf5+1H4WkleMinSW1VVXTO7Ng/bLuPPmRtM7bq6KM8dHV82yc+OYid39/cWvC4AAAAAsHf60yTT3/W/I8lNu/v1s26g7+6vdvdjkzxpKnxEZt+wnwwbkEx/X7l/kpvPkd+tZ8QOm2M8AADAnmqeesJHz4idvIgkuvsbSd45I4+7L2L+0Vrd3V8bPc5c9DoL9L7R8dFVta6axKq6W5L/u8hktqEWcdk1oNti8p77zCj88Kq68XrGV9WjszUN4A5O8ob11HxOrnlDdv15v3LSxGwrqFMFAACAbaYxGgAAALAtuvuCJL8749RvVtVFVxj20CRnjWJXS/LBqvrtqlrzxpCq2q+qjqmq5yf5zwyNnC43R+rr9fokF4xiv1FVv1dVB6yS30OTvD/D80qS72xw/Q/MWP+ZVXWfqjpwg3MuyninxmskefYodl6SV2xk8u7+WpJHJenRqbsm+UhVPWK112CHqrpYVT24qt6Q5HNJ/luSWTuQ7k1ePCP2J1X1S1VVswZU1SFV9ZQMN48dnOTcrUxwL/XL2fXn9rAkb6mqK6w0qKp+Icl7c+Fn2A+3Jr0V/dPoeL8kf11V89zkt6rJDrjjxnFjz1/UegAAAADA3quqLp/kMVOhLyZ5QHev+d1qd/9ZkrdPhR5eVbv8fam7z0/yj6PwI9eZXyWZtZnPxdczHgAAYE+23nrCqrpDkmuOrvlUd39kgenMarJ2wgLn31O9dkbsNVX1gJUGTGrL/leSNye5yCS80ZrIWbayFnHZNaDbafzaHpjklKo6eqUBVXV4VT07yV/lwvuSF/Vcd9TS3TDJ+6rqlqvkcYsMTexuODr1jSRPWVA+u1CnCgAAANtvzX9oAwAAACzQa5P8TpLrT8Uum6FJ0DPGF3f356rqQRluPDlo6tTFkvx+kqdW1fsy3HDy1STnJLloksOTXCnDbmw/PTneUt39mao6Ocmxo1O/k+S4qnpdkn9N8r0kl0py7ST3TnL1qWt/kKEw43kbWP+rVXVKkukdGS+b5E1JzquqL2XYrW5clPGY7j5t3vXm9PIkf5hk/6nYdUfXvLW7v7XRBbr79ZOCqt8bnbrqZP1nVNWpSU7LUADz/SSXyPDeuEaSmye5UfaAHRsXqbs/VFVvTnKfqfD+GRpP/UpVvTFD8c15SS6T5GYZ3mNHTl3/xGhUNZfu/lRV/XaSZ45O3TPJ56rqHRmKt76aoUDwahleo+lirjOS/HWGn/92eXOGZpWXmor9TJIPV9V3k3wlMxrldfdN5lznL5Ics8K593X3x+ecDwAAAADYNz0uO/996Xe7+wdzjH9mLvy7y0FJ7pbkpTOuOznDTbA7PLqqntfdH1tj/idk15v7E43RAACAfcd66glnNSh7+YLzeHOGBk+XmIrds6qO7O4zF7zWnuSkJE/NzjWOh2bYSPGfk7w1Q23ZjzPUk90syc8nufTU9Z+cXLeohlVbVou47BrQbfbnGRpyTdfWXi7J31fVe5O8M0OD+Qsm8dskuXuG13+Hd2eoYRv/vDbi/yT5tcn810vygUlt8DuSfGlyzZUyfDdzuyTjTV87yeO7+xsLyGVF6lQBAABge2mMBgAAAGyb7r6gqn43u+429+TJDSLfnzHm3VV1uySvy1DYMO1iGW40uet43JL89yS3THKdUfyKWbt50Y+TPDBDYcxG/UaSO2T4uUw7KDsX30w7dIX4wkw1bbvnKpeduIB1fr+qvpKhqdJ4B73LJnnw5MHOHpfkFkkuP4rfMLvuqjj2p939gqrSGG1O3f1nVXVEhuLBaYckue/ksZLvJ/mFDIWE26a7z62q/5HkZTNOXzxDsd8ivClDQdv4Mz/Z/YsGAQAAAIDdx89N/fdPMvytaR7vS3J+Lqy1vV1mN0Z7dZKn5cK/xRyY5K1Vdbfu/sSsiavqwZmxadDEBXPmCQAAsEdaq54wQ/Or+4+HJXnFgvP4YVW9IclxU+EDMzR8Wunfbnu97v5xVT0ww7+PLzo6vWPT2tWckaFm8LgF5rTVtYjLrgHdFt19VlU9PMlbsnOTuSS5/eSxmn/L8Fz/fEEpfSHJw5O8YZJPZfge5nbrGNtJHtfdr19QLqsvpk4VAAAAts1+y04AAAAA2Ofs2DVv2mWSPGGlAd39oQxFNC/JUDyyUZ3k1CT/sIk5Vp68+9tJ7pzkA3MO/UqSO3f32ze5/icz3OTzuc3Ms0VWKzb6aoYdBjetu09Mcuskf7fJqc7NcCPTf246qd1cd38tyc9mvvfNeUl+vbufvDVZ7Ru6+7eS/I/MVwz35STHdPdpW5PV6rr7pCSPSfLdLVzjJ0leMOPUN5JsSwEbAAAAALBnq6pDktxsKvSlJEdU1VHrfWTYUOScqTlmbkLT3ednuHn3vKnwFZP8c1X9ZVXdtaquU1U3rKoHV9XbMvwN4sDJtV8eTXlOAAAA9h2r1RM+LLs25Hpfd5++BXmcPCN2whass0fp7o9m2Lj2q3MO/UCSW3X3Fxee1BbWIi67BnQ7TXJ9YJLvzDn0bUlu191nLzift2TYLHSe70XOSvLw7n7hInNZizpVAAAA2B4aowEAAADbqrs7ydNmnPr1qrr4KuO+2d3HJ7lGhl0YP5Gh0dlavpvkbzI0H7pqdx/T3R+cO/F16u4zMuyW99+SfH6Ny09P8j+TXKe737ug9d+fYbfCeyT5ywy7NX4lyfeSXLCINTborUm+ucK5kyaNkBaiuz/W3XdKcqskJ2XXG4pW8tUMBW6PSnK57n5od5+5qLx2Z939hSQ3SvJbWb2I7bwkr0ly0+5+5nbktrfr7mcluX6Sl2X1IrMzk/x+kut394e3I7eVdPdfJblCkkcneXmSj2bI74cLXGZW47cTu/tHC1wDAAAAANh7XS4XNh5LkqOSfGEDjyOm5rjUSotN/vb0iAw3tO5wUJLHJzklyb9nuNH/1UnuOXXNm5K8dDSdxmgAAMA+Y7V6wiS/NCM+q4HZIvx9kjNGsetU1W22aL09Rne/L8mNk/yfrP1v1tMy1N/dtrvXW7c3ry2tRVx2Deh26u43ZqgbfEFWr/26IMOmxPfp7nt195Z8d9Hdb0tyvSR/kdVr6b6R5LkZfu6v2opc1qJOFQAAALZeDd8dAgAAAOx5quoySW6WYYfISyc5NMn3MzRD+3KSTyU5vZf4BUhVXSvJLSc5XmyS35eT/Gt3f3pZee1rquoaGQpmLj15HJShWdy3M9zY9CnFJReqqhtlKGY7IsOuq99O8ukk7+/u7y0zt71ZVR2c5GeTXDnDTXsXJPl6hpvlPtbdy2xuuK2q6pVJHjoV6iTX6O61ig0BAAAAgL1AVR2d4ab0HU7v7qPmGH+zzN6AYTO+2N1XXWPdm2fYuOYWa8z14yR/mOQPJtc/ZurcE7v72ZtJFAAAALZCVe2f5OYZNoI8IskBGeo1v5DktO7+2hLT2xL7Sg3opHbtZ5JcO0ON5X4ZGuH9R5IPd/dZ25zPgRm+X7n+JJ8LMjQV+0KGOsaFbca7KOpUAQAAYLE0RgMAAAAAYLcxaXr5pSQHT4VP6e67LyklAAAAAGCbLaAx2q2T/NOC01p3DlX1c0nuneR2SS6f5PAkZyU5PcnfJHl5d39hcu37ktx2avjPdvc/LjBvAAAAAAAAAIA9ygHLTgAAAAAAAKb8YnZuipYkf7GMRAAAAACAPdY3R8d/29133a7Fu/tdSd611nVVdWCSm02Fzk/yz1uVFwAAAAAAAADAnmC/ZScAAAAAAABJUlUXS/Kro/Dnkrx9CekAAAAAAHuur4+Or7WULNZ22ySHTB1/sLt/uKxkAAAAAAAAAAB2BxqjAQAAAACwu3h6kiNHsWd19wXLSAYAAAAA2DN193eSfGIqdFRVXXNZ+azihNHxi5eSBQAAAAAAAADAbkRjNAAAAAAAlqqqLlVVz0jya6NTpyd50RJSAgAAAAD2fO8cHf/iUrJYQVVdPckDpkLnJHnNktIBAAAAAAAAANhtaIwGAAAAAMC2qqoXV9XHJo8vJ/lmkifNuPQ3uvu8bU4PAAAAANg7PC/J+VPHT6iq6y8rmWlVtX+S5yc5ZCr8+939wyWlBAAAAAAAAACw29AYDQAAAACA7XaNJDeePK6QpGZcc1J3//W2ZgUAAAAA7DW6+3NJXjIVOiTJ26vqevPMU1UHV9Vxa1xzwBzzHZjk5UnuPBX+UJJnzZMXAAAAAAAAAMDeSmM0AAAAAAB2NycnecyykwAAAAAAtlZVXbGqjho/klxudOkBs66bPI5YZYlfS/KvU8dXTnJaVf1BVV1plbwuUlV3rqr/m+RL2bnB2ix3q6rTquqXV5p30mDtvpN8Hjp16uwkx3b3T9ZYAwAAAAAAAABgn1DdvewcAAAAAADYh1TVqUnuMBX6YZIzkrw/yYndfeoS0gIAAAAAtllVfTHJVTY5zcu6+7hV1rhSkr9Ncp0Zpz+f5FNJzklyQJLDkhyV5BpJ9p++sLtrlTV+Pslbp0JfTvLJJGclOTDJZZPcNMnFRkO/leSe3f3BleYGAAAAAAAAANjXHLDsBAAAAAAA2Ld099HLzgEAAAAA2Dd095eq6hZJnp/k4aPTV5s81nLOnMtecfJYzT8mOba7Pz/n3AAAAAAAAAAAe7X9lp0AAAAAAAAAAAAAAGyV7v5edz8iyY2TnJzk7HUM+0qSVyR5YJLLrXHtJ5K8LMnX1kolyXsnc95OUzQAAAAAAAAAgF1Vdy87BwAAAAAAAAAAAADYFlW1X5IbJblekkslOTzJuUm+k+SLSf69u7+0wbmPSnLDJFdKcliGTYy/k+Q/knywu7+1uewBAAAAAAAAAPZuGqMBAAAAAAAAAAAAAAAAAAAAAAAAS7ffshMAAAAAAAAAAAAAAAAAAAAAAAAA0BgNAAAAAAAAAAAAAAAAAAAAAAAAWDqN0QAAAAAAAAAAAAAAAAAAAAAAAICl0xgNAAAAAAAAAAAAAAAAAAAAAAAAWDqN0QAAAAAAAAAAAAAAAAAAAAAAAICl0xgNAAAAAAAAAAAAAAAAAAAAAAAAWDqN0QAAAAAAAAAAAAAAAPj/7N15fFT1vf/x93cykw0SCJCwIzsoihtUQVzAurfWqkWtrbWLWpeuV722FtFqtdaqvfdqa7Uu1K3WqiAu2F8VFMUFQZQWUVH2NZAEsicz8/39cSBkJufMQiaZYfJ6Ph55JN/v+S6fcxLwjMx5BwAAAAAAAAAAAEg7gtEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApJ0/3QUA6WaM6SHp+FZd6yU1pakcAAAAAAAAAAAAAACA9siVNLhV+3Vr7c50FQMAAO/RAwAAAAAAAAAAAAAAWYL353USgtEA5w1Xc9JdBAAAAAAAAAAAAAAAQAf4mqTn010EAKBL4z16AAAAAAAAAAAAAAAgG/H+vA7iS3cBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAwGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIC086e7ACADrG/dmD17tkaOHJmuWgAAAAAAAAAAAAAAAPbZqlWrdNZZZ7XuWu81FgCATsJ79AAAAAAAAAAAAAAAwH6P9+d1HoLRAKmpdWPkyJEaN25cumoBAAAAAAAAAAAAAABIpab4QwAA6FC8Rw8AAAAAAAAAAAAAAGQj3p/XQXzpLgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACEYDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkHYEowEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIO4LRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKQdwWgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0o5gNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABpRzAaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgLQjGA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA2hGMBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACDtCEYDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkHYEowEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIO4LRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKQdwWgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0o5gNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABp5093AUBXZK1VOByWtTbdpQBAG8YY+Xw+GWPSXQoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACALoRgNKATWGvV0NCg6upqVVdXq6mpKd0lAUBcubm5KioqUlFRkfLz8wlKAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANChCEYDOlhdXZ02bdqk5ubmdJcCAElpamrSjh07tGPHDgUCAQ0YMECFhYXpLgsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAlvKluwAgm9XV1WndunWEogHY7zU3N2vdunWqq6tLdykAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAshTBaEAH2ROKZq1NdykAkBLWWsLRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHQYf7oLALKRtVabNm1qE4oWCARUXFys7t27KxAIyBiTpgoBwJu1Vs3NzaqpqdGuXbvU3NwccWzTpk0aMWIEf4cBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASCmC0YAO0NDQEBEkJElFRUUaOHAgQUIA9guBQECFhYUqLS3Vxo0bVV1d3XKsublZjY2Nys/PT2OFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALKNL90FANmodYCQ5AQMEYoGYH9kjNHAgQMVCAQi+nft2pWmigAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkK4LRgA4QHYxWXFxMKBqA/ZYxRsXFxRF90X/PAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEB7EYwGpJi1Vk1NTRF93bt3T1M1AJAa0X+PNTU1yVqbpmoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZCOC0YAUC4fDbfoCgUAaKgGA1PH7/W363P6+AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB9RTAakGLW2jZ9xpg0VAIAqePztb1lcPv7DgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2FcFoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANKOYDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaUcwGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIC0IxgNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQNoRjAYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg7QhGAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJB2/nQXgM5hjAlIOkbSEEn9JdVI2iTpA2vtmhTvNUzSYZIGSOouabOktZIWWWubU7kXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsgPBaGlijBkuaaKkCbs/HyGpqNWQtdbaoSnYp1TSTZLOk9TLY8wiSXdZa59p517nSvq5pEkeQyqMMU9JusFau709ewEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACC7EIzWiYwxJ0j6hZwwNNeQshTvd5qkRySVxRk6WdJkY8zjki6z1tYmuU93SQ9IOj/O0F6SLpd0tjHmO9baV5LZBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANnLl+4CupjDJJ2szglFO0HSbEWGollJSyQ9Len/SdoeNe1CSU8aYxL+uTDG5Eh6Sm1D0col/XP3Xkt3771HX0lzjDFTEt0HyGZDhw6VMablY8GCBekuCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACATkcwWmZolPR5qhYzxgyS9Kyk3Fbdb0kaZ62dYK2dbq09WdIgST+R1Nxq3Fcl3ZLEdr+VdHqrdrOkH0kaZK09ZfdeR0o6WNLbrcblSZptjOmfxF4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIUgSjdb5mScsk/UXSZZKOlFQk6Qcp3OMmSSWt2oskfdla+3HrQdbaRmvt/0qaHjX/58aYA+JtYowZLidYrbVvWGvvsdY2Re21QtKJigxH6y1pZrx9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkP0IRutcsyQVW2sPt9ZeYq2931q71FrbnKoNjDGjJH2nVVeTpIuttQ1ec6y1s3fXtkeeEgssmykp0Kr9iLV2Tox96iVdvLumPb6/O2ANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXRjBaJ3IWlsZK6AsRb4pKadV+1lr7WcJzLs9qj3dGJPvNdgYUyDp3DhrtGGt/VTS7FZdfjk1AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoAsjGC37fD2q/XAik6y1H0t6t1VXN0knx5hyiqTCVu23rbUrE6qwbU1nJzgPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWYpgtCxijOkn6dBWXUFJbyWxxIKo9mkxxp4aZ24sC+XUtsfhxpi+ScwHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAlvGnuwCk1MFR7Y+stbVJzF8U1R6XxF5vJ7qJtbbWGLNc0uFRe21NdA0AybPWaunSpVq5cqW2bdumxsZGlZaWauDAgZoyZYq6d++e7hL32fr167V48WJt2LBB9fX16tOnjw455BBNmDBBPl/7MkC3bdumhQsXatOmTaqvr9eAAQM0fPhwHX300e1e282KFSu0fPlylZeXa9euXerVq5f69++vKVOmqHfv3infDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyBcFo01ZDSQAAIABJREFU2eWgqPaqJOd/Hme91g5MwV6tg9EOkvRakmsASMD27dt166236rHHHlN5ebnrmNzcXE2bNk033nijjjrqqITWvfjiizVr1qyW9urVqzV06NCE5i5YsEBTp05tac+cOVM33nij53hjTMvXxx9/vBYsWCBJWrRokWbOnKnXXntN4XC4zby+ffvq+uuv15VXXpl0iNkHH3yga665RvPnz3dde9CgQbrssst03XXXye/368Ybb9RNN93Ucnz+/Pk64YQTEtprx44duuOOO/TYY49p48aNrmN8Pp8mT56smTNn6stf/nJS5wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+wOC0bLLyKj2uiTnr41q9zbGlFhrK1t3GmN6SerVzr2ix49Kcj6ABMyePVsXXXSRqqurY45ramrSvHnzNG/ePF166aW699575fdn9n8ibr31Vt1www0KhUKeY7Zu3aof//jHmj9/vv72t78pNzc3obXvuusuXXvttTHX3rBhg2bMmKGXX35Zzz77bNL17/HXv/5VP/rRj7Rr166Y48LhsN58802ddNJJ+ta3vqUHH3ww4fMBAAAAkN3qQ3Va3fCJmsKNSc3rE+inAXlD5DOxg6RDNqT1DZ+rKljRnjKzRq4vT8PyR6sgp1vK164J7dLa+s/UbJvbHMvz5WtYwRjl+wpSvm+qNIebtbbhM5UEeqt3oG+6ywEAANgv1IR2aUvjevXLG6zuOcXpLicjVTSXa0PjaoVt219kU5TTQwcUjJTfBFK+785gpbY2bdSQ/BHtug9vCNdrTf2nagjXp7C6jtM3d6D65Q6K+MVFbpz7/09VE4r975CFOd01uvDgVJYIAACAfRUOSrtWSsFaqfdEKc6/DwAAAAAAAAAAAAAAAKRLZqfeIFk9o9rbkplsra0xxjRIym/V3UNSZdTQ6H3qrLW1yezlUluPJOcDiOOhhx7SJZdconA48iGRESNG6KCDDlJhYaHWrVun9957LyIA7P7779e6des0d+7cjA1H+/3vf6/rr7++pT1mzBiNGTNG3bp10+bNm/XOO++ooaGh5fhzzz2nGTNm6Pbbb4+79p133qmrr766Tf9BBx2kUaNGKS8vT+vWrdPixYsVCoW0aNEiTZ8+Xccdd1zS53HDDTfo5ptvjugzxmjMmDEaNWqUioqKVFlZqffff1/l5eUtYx577DFt3rxZ8+bNy9jvEQAAAIDO8XrlS3p6218UVtuAgEQMyB2iqwbfqJ7+6Ax8x+bG9fq/DTeqKrijHVVmH598ml52iY4rOS0l61lr9fKOv+vFHX+TlY2xb44u7HeFJvU4MSX7ptKndct138bb1BCukySN7/4lfb//1Qr4CPUGAADw8tL2pzSv4mkFbVBGRueWfV9TS76S7rIyRsgG9fDmu7W0+q2Y47r5inTFoF9pWMGYlOwbtmE9te1+LayaJ0nKkV8X9f+xJhYn/29B7+5coMe23KOQgimprbMckD9KVw6a4RnW90ndcv15460Jhb0NzR+law+4I9UlAgAAIBnBOum9S6U1j7sfP/Q30kHXEZQGAAAAAAAAAAAAAAAyBmkq2aV7VHtffuV0vSKD0Yo6cJ/W3PZJmjGmTFJpktNGpGLvVLHBoFS+Id1lZL/SQTJZHCi1bNkyXX755RGhaIcddpjuvfdeTZ48OWJseXm5ZsyYoT//+c8tffPmzdMNN9ygW2+9tdNqTtTy5cu1cOFCSdJZZ52l2267TWPHjo0YU1lZqZ///Od65JFHWvruvPNOXX755Ro6dKjn2kuWLNF1110X0XfCCSfonnvu0bhx4yL6y8vLdcMNN+i+++7TG2+8oRUrViR1HrNmzYoIRfP5fLryyit19dVXa8iQIRFjrbWaM2eOfvKTn2jdunWSpFdffVUzZszQbbfdltS+AAAAALLHuoZVemrb/e1aY1PTOj26+X/1o8E3tjlmrdWfN95GKJqLsML627Y/a1jBGA3OH97u9VbUfaAXdjyZwL4hPbrl/zQ0f7T65w1u976p0hRu1J82/EaNdm9I+Uc17+nlHU/rzNIL01gZAABA5lpeszjiHtDK6ultf9HQ/FEpC/ja3/2z4tm4oWiSVBuu1h833qLfjnhYOab9//739s5XW0LRJCmkoB7ZfLeG5Y9Rn9y+Ca+zrWmTZm35Q7vrSYe1DZ/pqa336/sD2v4yocZwg+6Luv8HAABABmuqlF47Wap433vMh9dLDdulI+/qvLoAAAAAAAAAAAAAAABiyN5UoK4pOrBsX96JXC+pJMaaqdwn1pr76gpJM1O0VnqUb5CdzsMOHc38/ROp/9B0l9Fhvv/976upqamlPWXKFL3yyisqLCxsM7a0tFT33XefRo4cqWuuuaal//bbb9cFF1ygQw45pFNqTlRFRYUk6dprr9Xtt9/uOqakpEQPP/ywKisrNWfOHElSKBTSgw8+GBFGFu3KK69UMBhsaZ999tl66qmn5HcJ0SstLdWf/vQnDR8+XNdee622b9+e8DmsXbtWl19+eUs7Ly9Ps2fP1qmnnuo63hijs846S5MnT9YxxxyjVatWSZLuuOMOXXrppRo2bFjCewMAAADIHv+uWZKSdT6pW66GcL3yfQUR/duaN2lb86aU7JGtPqp5LyXBaB9Vv5fU+OU1izMqGO2TuuWuoQgf1bxLMBoAAICHl3c87dq/rOYdgtF2S+Y1T22oWp/Xr9TowoPbve/y2sVt+qysltcu1tTcryS+Tk3bdfYn/655XyEbUo7Jiej/1OP+HwAAABnIWmnRRbFD0fZY9Wdp/K+lQKreygkAAAAAAAAAAAAAALDvfOkuAB3KZtkcAAmYP3++li5d2tIuLi7WU0895RqK1trVV1+tr3xl78Mc4XBYd999d4fV2R5TpkzRbbfdFnfcb37zm4j2a6+95jl28eLFevfdd1va/fv310MPPeQaitbaNddco5NPPjluLa3dcccdqq/fmw959913e4aitVZWVqYnnniipR0KhTL2ewQAAACg4+0MVqZknbBCqgnuatNf1bwjJetns53BipSsUxVM7lrvDKVm31TZ6VF/qn5GAQAAss26hlVa0/Cp67Gq5sy610un6lBVUuNTdn/u8Voo2fvbZO/zM02jbVBjOPr3nUlVKbrOAAAA6ARrnpA2vZDY2FCdtHNFx9YDAAAAAAAAAAAAAACQIILRsktNVLtgH9aInhO9ZmfuA2AfzJo1K6J95ZVXasCAAQnN/e1vfxvRfvLJJ9XY2Jiy2lLl+uuvl88X/z9h48aN09ChQ1vay5Yt8xz75JNPRrSvuuoq9ejRI6F6ZsyYkdA4SaqtrdVDDz3U0h4+fLguu+yyhOdPnDhRxx57bEv7+eefT3guAAAAgOwStM0pW6vRtn3YvcHlAXhEStU1arQNadk3VRrD7vW7/VwBAABAer3qZc9j3EPtlexv2vK6L02W1/25W0hYLJl2374v3M4h2esAAACANKnfKi35cXJzPr6jbZ8NSxVLndA0G05NbQAAAAAAAAAAAAAAAHH4010AUopgNOmPkp5Ocs4ISXNStD+Qdm+++WZE+1vf+lbCc8eNG6cjjjhCS5culSQ1NDRoyZIlmjx5ckprbI+CggJNmzYt4fEHHnig1qxZI0mqq6tTTU2Nunfv3mbcokWLItrTp09PeI8pU6ZowIAB2rRpU9yxb775purr9z4wcu655yYU8tba1KlTtXDhQknS2rVrtW7dOg0ZMiSpNQAAAADs/7yC0XLkV64vt02/ldQQrnOd0+ASIBArrKvAV5hYkVmi2TYpaINt+lMWvJDkOqnaN1W86gnaoIK2WX4T6OSKAAAAMldtqFrv71roeTzT7vXSK7lotFQFdnkFmqUqGM3rNVu6WNkY59z259FrrE8+5fny2/S79QEAAKAT7NqHILP1/5Cq/i31PHj3Gp9Kb3xN2rXSaZceKx3zpFQ4MLW1AgAAAAAAAAAAAAAARCEYLbvsjGqXJjPZGNNdbQPLqhLYp9AY081aW5vEdmUJ7JM0a+02SduSmWOMScXWQEaorKzU559/3tLu2bOnDjzwwKTWmDx5ckswmiQtXrw4o4LRRowYodzcxB8WKSkpiWjv3LnTNRjtww8/bPm6Z8+eGjlyZFJ1TZgwQc8//3zccdHBdQMGDGgJbktU9Pl/8cUXBKMBAAAAXZBbUJckTe75ZV3Q94dt+q21+tGn5yistg9CuT3g7/Wwe2mgv24a/qckq92/PV/+uOZVtM3i97pGyfIKWPAbf4cGsqVKrOvQGG6QP4dgNAAAgD3e3vmqmm2T5/FUhXtlA2uTDUbr2ODiZNf3CqY+oeR0nVP2vaTr6igN4Xr9/LMLXI+5/Tx6XYcDux2mKwfdkNLaAAAA0A59p0pfWSEtvkLaMDvxeS8d4nzuNkyqXR15rHyhNHuQNPa/pG5DpZ6HSH0mSbLSJ3+Qts6XcntLPcdJRWMkhSVfrlT+llS/WSo5TBp6oVTQz1nPWon3bwIAAAAAAAAAAAAAABcEo2WXz6LaByQ5P3p8hbW2MnqQtXaHMaZSUuu0oSGSPm7HXtG1A9gH5eXlEe1Ro0YlHf43duzYiPa2bUllDXa46KCzeAKByIevm5ub24ypra1VQ8Pehzj2JWQs0Tnr16+PaP/0pz/VT3/606T3a62ioqJd8wEAAADsn4K27esbSQoY9xAqY4zyfAWqD7fNtk/mYfd8X3SufvbzOudGm5rgBa9gseKcElUEy9v0Z1pYRqyAiMZwg7rlFHViNQAAAJkrbMNaWDUv5phMC8Hdn6QiuNham8JgNPd68jLsNVWuyZORkVXbIDq3c/Z6PZJp5wUAAABJBf2lY5+V1j0tvX+V1FguHTxTskHpP7+JPTc6FK21lXfGnrvWo3/NY9IHV7sf8+VJg8+RAt2ljXOdIDVJ6n+qNPhsKbdE6neSlNvD6d/+rrTxBcnkSMMvds5110opv0wyfim/VKr8SFr9V0nWCWTrdUTsuqPVbZCaq6XiMZLxeY+zVqr+VNr8T8mGnPPoNji5vQAAAAAAAAAAAAAAQASC0bJLdDDZyCTnD49qr4iz1+SovZIJRoveK5m52a10kMzfP0l3FdmvdFC6K+gQlZWRWYY9evRIeo3oOZkWuuXzxXiT2T6qqqqKaBcVJf/AdnFxcULjduzYkfTa8VRXV6d8TQAAAACZzysYLcd4/y+/PF++RzBaMg+75ydYYfbwOudUBZR5BSz08PfyCEbLrLCMRut9HTKtVgAAgHT6uPYDlTdviTmG+6e93IK6YknFtWu2TbIKux5LNnjNa3yBrzDpujqSz/iUa/Jcg5/dzsHrOnfF14oAAAD7BWOkA6ZLfadJK38vjfultGtF/GC0zhZulNY+0bZ/8zznI5Z/3xR//ZV3OZ8Hny2FGpwws8IB0ohLpD5HSTYsrX1KWnadVLfOfY0BX5E2vRB/r6U/k3IKpeHfkXIKpKYKKdBDGvZtqaFcqt8obX/bOdZ9pFQ2xelv3imVHSfteN/5uvQYqfuw+PsBAAAAAAAAAAAAAJCFCEbLLv+Oao83xhRaa+sSnH9MnPWij7UORpskaW4imxhjukkan8ReXYrx+6X+Q9NdBvZT1kY+IGKMafeaqVgj0+Xl5UW0m5qakl4j0Tn7snY80d93AAAAAF2DVzCa3wQ85+T5Clz7kwtGc18jmyVz3ZJlrfVcp9hf4tqfbCBDR4t1HTKtVgAAgHR6verluGMIRtvLKxjNJ5/CLuFlsQJ7ExUr/NgtOCwWr3vhTHxNlecrUGPI5XWhyzl7XYc8k3nnBQAAgFby+0iH/db5uuQwaeCZ0sbn01tTOqx/NrL9xcPS5CekiqXSx7+LPTeRULQ9QnXSZ3+K7PvkfxKfv0fJ4dLYn0sDv+q0a1ZJ9ZulDXOkHYudALXaNXvH9zhIKj1WChRLvlyp21Cp71SpaETyewMAAAAAAAAAAAAAkEYEo2URa+1mY8xH2hs65pc0RdI/E1zihKh2rHfmz5N0aYy5sRyryJ+9D6y1W5OYD8BDr169Ito7d+5Meo3oOSUl7g9ht0coFEr5mu0RfY6VlZVJr1FRUZHQuD59+kS0Fy1apEmTJiW9HwAAAAAEbdC1P1YwWr7HA/huD+x7P8Sfn0B12cXrnFMR+hW0QYXl/jq52N/TtT/TwjJi1RMrWAIAAKAr2d60Vf+pXRJ3XCrCvbJdnq9A9eHaNv2puE9O5b1tQ9j995fl+wqTWqcz5PsKtCvU9t/Hknmt6PV6EwAAABlq8qPS0z3SXUX62bD01vnprsJb5QfS299OfPzOFc6Hm27DpCPulAZ/PTW1AQAAAAAAAAAAAADQgXzpLgAp91xU+7uJTDLGjJV0VKuuWsUOVHtFUut3PE/avUYiLo5qR9cMYB+VlpZGtD/99NOk1/jkk08i2mVlZa7j/P7IbM1g0P2BfDf7EjzWkXJycjRw4MCW9hdffKG6OveHVbwsX748oXF9+/aNaO/L9wgAAAAAJClom137YwWjeQV8uT387xUI0BUfdvc658Zwg6y17Vo7VvBFjxz3sPJMCxuLFRCXaSFuAAAA6fJG1cuyin/vGLRBz3v9rsbreiUT+JysWGs0JHlv63Xfnp+BYdOpeK3YFUO0AQAA9muBYumbVjr2WalodLqrQWeoXS0tPFvaMDfdlQAAAAAAAAAAAAAAEBfBaNnncUmhVu2zjTGjEpj331Htv1trPd/Zba2tk/SPOGu0YYwZLan1r5sLSnoigfoAJKCkpEQjRoxoaVdVVenjjz9Oao1FixZFtCdOnOg6rri4OKJdVVWV8B7/+c9/kqqpMxx99NEtX4fDYb3++usJz62oqNCHH36Y0NjJkydHtP/5z1gZlAAAAADgLWjdA6r9xu/aLyUXIOAVCNAVH3b3OmersJptU7vWjhVy1sPfy32ObVDYhtu1byrFCj9LRTgFAADA/q4p3Ki3d76a8HjCZXfzCCGOFVzcXrHWSCaguDnc7PmaLd9XmHRdHc07GK3tOXtdh674WhEAACArDP669NVPpNOWSQPPlHwByd8t3VWhI33yh3RXAAAAAAAAAAAAAABAXN5PSWK/ZK39zBgzS9L3dnflSnrEGHOiV9CZMeZrki5u1dUk6aYEtrtR0vmSArvbFxtjnrPWPu+xT76kh3fXtMeD1trPE9gLQIKmTJmizz/f+8fq8ccf1y233JLQ3I8//lhLlixpaefn5+vII490HVtWVhbRXrFihSZMmJDQPi+99FJC4zrTl7/8ZT3zzDMt7QceeECnnXZaQnNnzZqlpqbEHoQ/8cQTlZOTo1DIybB8/vnntW3btjbXEwAAAADiCXkGowVc+yUpz3g87G7dHnZ3DwTwCiHIZrHOuSFcr1xf3j6vHSt4odjf0/NYk21UvsmM70WsgIhG79+9AAAA0GUsrX5LteHqhMc3hhvULaeoAyvaP7jHonkHi6UkGC3G/WuzbVLYhuQzOfHXiXGPnImvqfI8w+YSD9HOxPMCAABAEkoOlY6fE9lnw1K4WcrJk2rXS3OGxF6j/ylSbolUu06yIWnIuVLP8dL8UzqubiRv62vSwnOl5l1SToFU0E/K7S11Gyw1bJdkpQGnS4Fi5+uCAc7nQHGchQEAAAAAAAAAAAAASB1fugvoaowxg4wxQ6M/JPWLGup3G7f7o0+cbWZKqmzVnizpX8aYsVG15BljfiTp6aj5d1pr18Y7F2vtF5L+J6r7H8aYq4wxrcPPZIw5UNKru2vZY4cSC2ADkISLLrooon3PPfdoy5YtCc39xS9+EdE+//zzlZfn/nD3EUccEdGeO3duQnu88soreu+99xIa25kuvPBCFRXtfcjoueee0yuvvBJ33saNG/XrX/864X1KSkp04YUXtrRramp09dVXJ1csAAAAAEgK2mbXfr/x/l0IeT6PYDSXAAGvB/nzMiSMqzN5XTcpduBBImKFN/Twl3TYvqkUKzwiFeEUAAAA+7vXq15Oajz3UA6rsGu/9+ua9t8je4V+7d0jse9NrHW8gt3SKbnXiu7XINbrJgAAAOynjM8JRZOc0Cwv3YZJ37TS1HnSMU9KJ78lnfKOdODVUv+TY+/xTa9I5ASUneB9zN9NGnzOvq+d7dY/I235f9LG56VV90srbpMWXyEtv0FaPlN6ZaL0whjphbHS08XS0z2kJ4zzsegi6dUT97bfvlja+IIU3v0LfUKNUuMOKdQg1a6Vdn4shWL80tEQr4EBAAAAAAAAAAAAAG15PyWJjvKmpAMSGDdQ0mqPY7MkXew10Vq7wRhztqRXJO0JKDtG0gpjzBJJX0jqIekISaVR01+QNCOB+va4TtI4Saftbgck/Z+kGcaYpZKqJQ3fvZdpNa9J0tettZuT2AtAAqZNm6bDDjtMy5YtkyTt3LlTF1xwgV566SUVFHg/vH733Xdrzpy9v/XTGKOf/exnnuMnTZqkwsJC1dXVSXKCxN5//31NmDDBc85nn32m73znO8meUqcoKirST37yE91yyy0tfdOnT9fs2bM1depU1zlr1qzR6aefrqqqqqT2uvHGG/XUU0+psbFRkvToo4+qf//+uvXWW5WTk5PwOitWrND27dt13HHHJbU/AAAAgOzgHYwW8JyT53N/XegWIOAVdtUVH3b3um5S/OCEeLxCBYyMuuf0SHpeOsSqJZMC3AAAANJhTf1nWtvwWVJz2nuPmS284hHyPV/XtP8eOd79a2O4QQU53eKu0xCu8zzmVX86JRqMZq31DtHOwPMCAABAipVOkcrfbNs/7rrY83ofLe14p23/2J+3r55jnpSe6+9+7KS3pJJDpeZq6fO/OHXnlUr5/aR/t/P3+V4Qkj78pbTidvfjx78g9TxYKhwsrXpA2jBbatwulRwmjbhEUlj68FfS1lfbV0e6rHk0sr16lvMRS6Cnc/6VyyRfQCo7Xlr/j8gxg8+RRv3QGRusltY/J1UskYyRhl4ojbzMCetrzVop3LQ3wC8clHy8NR4AAAAAAAAAAAAAsgH/+pulrLULjDFfl/SI9oafGUkTdn+4eVLSJdbaUBL7hIwx0yX9RdJ5rQ6VSTrVY9o2Sd+x1i5MdB+gK9myZYvWrFmzT3OHDh0qSXrwwQc1adIkNTU5v2lxwYIFOvbYY3XvvffqqKOOipizfft2zZw5U3/84x8j+q+99lqNHz/ec6+ioiKdd955evjhhyVJoVBIZ5xxhh599FGdfHLkb/psamrSrFmzdN1116miokIlJSWqrKzcp3PsSDNmzNCcOXO0fPlySdKuXbt04okn6txzz9X06dM1evRo5ebmat26dXrppZf0wAMPqK6uTvn5+TrllFMiguViGTZsmO6///6IkLjf/e53euONN/TLX/5Sp512mvx+9/9Er1mzRi+++KKeeeYZzZ8/XzNnziQYDQAAAOiimj2D0bz/l1+iD7tL3mEMXfFh9zzjfc7tDV/wvs75MQMTMiUsI2SDniF9EsFoAAAAb1S9lPQc7qH2cI9Gy/cVuvY32vZft3j32V4B0smsk4mvqbxee0SfR9A2K6yw69hMPC8AAACk2OBz2gajGb806Oux5w35hnsw2gEXxJ6XUygN+5a06v62x0b+UCroJ/WaKFUsjjzW7QCp5yHO14EiaezPnA9Jql3bvmC0HuOccK6BX3UPRsvvKw08Y2971GXOR7TRV3kHo522zDmHf5R41zHkPGndU+7Heh8lfel+qXCg9Ewf7zU6U3OVtG3B3nZ0KJokrX/G+XBT/pa0+IrE9ys7Xhr/a+f7tXW+1LBVsmGp15FSQX/n5za/zAlUa65xAtv8hVK3oVJuiRPGVr5IWvJTyeQ434+Rl0h9pznHWmuscMYEitse26Opyvl5zsl1Pw4AAAAAAAAAAAAAaINgtCxmrX3JGHOwpJvkhJZ5vUviHUm/t9Z6vKMg7j41ks43xvxD0n9JOtpjaIWkpyTNtNaW78teQFdwwQVx3vAVg7XOAyJHHHGE7rnnHv3whz9UOOw8nLBkyRIdffTRGjlypMaNG6f8/HytX79e7733noLBYMQ6J510km6++ea4+91888167rnnVFVVJUnatm2bTjnlFI0cOVLjx49XXl6etm7dqnfffVe1tbWSpH79+un222+PCAXLFLm5uXrxxRc1bdo0rVq1SpJzTZ9++mk9/fTTrnOMMbr33nu1bt26iGA04/Ump90uuugibdmyRb/4xS9avkfvvPOOzjzzTBUWFurwww9X3759VVBQoOrqam3fvl0rVqxoudYAAAAAELJB136/CXjOSfRhd8k78CtWWFe2CvgCypFfIbW95u0NrfCan+cr8Ayyc+a1L5AtVeLVkSl1AgAApENNcJfer37T9djYwkO1uv4T16At7qEcNslgtODu0N5Yr4niiX9/m9j9f0O4zrXfb/wK+Pa9vo7iFQYd/fMZ6/rkGe/XLwAAAMgSo6+UKpZKax512jkF0uQnpPzS2PNG/kDa+Ly07fW9fWN+4oRUSdJBv5BW3NZ23vibpR4HuQejDTnH+Xzk3dKCrzjBW5KUky9NuMcJL3PT7QD3MLVEHXC+87nPJCdEq3ZN5PGh30psndLJTo02Kng4p0AqGuWEdBUOkuo2tJ2bWyId9YATIub2b0VT/i51G+J8PeIH0ud/SaymbLLtdelfx6duvR3veAfRtTb0207gmr9Qat4lrX9WqlsfOabvNOfntP9p0ojvSatnSQ3bpb5TpdJjnHC1UINU/ZnzvS4YIMl4h64BAAAAAAAAAAAAQJYiGK2TWWuHdvJ+2yRdboz5iaRjJB0gqZ+kWkkbJX1grV2dor3+Iekfxphhko6QNEBSN0lbJK2V9Ja1tikVewGI75JLLlFJSYm++93vqqampqV/1apVLaFfbr73ve/pvvvuUyAQ/6GMgQMH6plnntFZZ52l6urquHsMGzZML76U+kb1AAAgAElEQVT4orZu3Zrk2XSewYMHa+HChbriiiv03HPPxRzbu3dvzZo1S2eccYb++7//O+JYUVFR3L2uvfZajR8/Xt/97ne1ZcuWlv66ujq99dZbCdVbUhLjN4MCAAAAyGpB2+zaHysEIM8j1Cz64XZrrecD77HCurJZvq9AteHqNv1uQRbJ8LzOJl85xi+/Cbh+r93C7NIhXh2EegAAgK5s0c5/ed63H9fzNG1qXKfGkEswWjvvMbOGey5azLDmxnCD/DkdF4yW6H14g+frqcwMmva6ptHXI9b5d8UQbQAAgC7HF5Am/1U69DdS7Won2MzfLf68QLE09RVpy7+kXSudULHSyXuPD/u29On/SsHavX25JdLQC6T8ftKB10gf37H32EHXSX1PdL4uPUY6/SNp04tSuMkJmyoeFbueCf8nvfE1qSHOe9iOnyu99U0puPvfBgafK439L+dr45NOeMlZp/ozp2/IeU6YWyLyy6T+p0ubXojsP+A8J1RLkkZfJS27ru3cA6+RAkXSwDOkDXMij5UeszcUbc/YjXPjnytSY09oYCxbX3M+b3pJWvKjvf3L48zrNVE67llp+7tS5QdS4WAnNC1Q7PxZDHR3xlUslWq+kHp/KfJnAQAAAAAAAAAAAAD2MwSjdRG7A8nmd9JeqyWlJGwNQPuce+65Ou6443Trrbfq8ccf1/bt213HBQIBTZ06VTNnztTkyZNdx3iZNm2a3nvvPV133XV6/vnnZW3bp1RKS0t18cUX61e/+pWKi4szOhhNkvr166dnn31Wb775pp588kktWLBAmzZtUkNDgwYMGKDhw4frG9/4hs477zz16NFDklRVVRWxxp7+eE499VStXr1aDz30kB544AF9+OGHrtdwj0AgoIkTJ+rkk0/WN7/5TY0aFeeNfAAAAACyUtiGFFbY9VjsYDT3ULPoh92bbZOsx/pd9WH3PF++azBaewPKvEIv9nyv8n0Fqgm1DdPIlMCxVAVHAAAAZJuwDWnhznmux0r8fXRI94l6rnyWFGp7PFPu9dLNeiSjxQtG65YT/5fXeM9PTfBvQ7jOtT/fV5h0TZ3B67Vi9P18o/W+Pl01RBsAAKBL6jbY+UhGTp4T5DXwjLbHehwoTfuX9OGvpKoPnZCnI+6SCvo7xw//nTTqcqlymVRyqNR9eNt6Rv0w8Vr6HCWdtkx653vS5pfdxxSPlQZ+RTpnm7Tj/d3nfEDbur/yiVS9SsrrLeX1SrwGSZr8mPTOxU6om3zS4HOkCX/ce3zot6WP75Qay/f25fWRhl/sfP2lB6T6rdKOd5x2z0OkyU9Encdo6ZTF0vtXSRufT64+ZJaKxdLsJP/cSc7PUW5P589P+cK2x7uPdAL56jdKhQc4P8s9D94dtla8d5y1kg1Ltlmq3+z8+cxp9Tow1CD58iRjkq8RAAAAAAAAAAAAAFwQjAYAabZmzZoOXb+srEx/+MMfdNddd2nJkiVauXKlysvL1djYqD59+mjQoEGaMmWKior2/SGRsWPHavbs2dq+fbtef/11bdiwQXV1derbt6+GDRumY489Vn7/3v/knHDCCTHDv6IlMzbaI488okceeWSf5k6ZMkVTpkxJaOyKFStavjbGqKysLOF98vPzdcUVV+iKK65QRUWF3nnnHW3evFkVFRVqbm5W9+7dVVZWptGjR2vs2LEqLMzMh2YAAAAAdJ6gDXoe8xvv/+XnFSAQ/fB/rDCrrvqwe57ntWtfaIXX/D375fnyVRPa5TIvMwLH4p2/V/AbAABAtvtP7VLtaN7memxKz1OUY3ISDqPqqvY1GK094t7fJri+1/16pgZNe4doRwWjxTj/rvpaEQAAACnS52jpxH95H+8+zPlIlYJ+0uRHpWf6uB/P3R1ylpMvlcV4/5gxUvE+/mLL3B7Scc9JwTrJ+CJDpiSpcIB08iLpo5lS1TKp56HS+Jv3Bsbll0qnvC3VrJbCzVLRKPdQqm6DpePnOMFWf/M74VboOtY8Gvt4zSrpP7+JPab7SKn2i7Y/O7m9nJ/DXZ/sbpdIQ86Txv1Cyu8r7fyPVP6mFKqXBn5VKj5QsiHJl+TjC6EGKRyUAt2TmwcAAAAAAAAAAABgv0YwGgB0ET6fTxMnTtTEiRM7bI8+ffronHPO6bD1M1Vtba2WLl3a0h49evQ+B8316tVLp59+eqpKAwAAAJClgrbZ85jfBDyP5RmPh91tg8I2LJ/xOe2YwWiZ+SB/R+uo0Aqva71nvzyTWJhdusSro73BFAAAAPur16tedu3PkV/H9DhJUuLBxV2XezBarNck7b4/t7HnJ7p+fbjOtT9zg9ESC4L2On+ffAqY3JTXBQAAAHSoPeFnbnoc1Hl1+GP8ksyikdIxj8een2hgnDHSuOulf9+ceG3tMeQ8qe/xUvMuadl1nbMnOkbNKvf+pgrno6VdKa26z/mI5vYz0PdEJzQtv0ySdUL+6tY763jp/SVp0NelwoFS+VtSU5VU+YHU6wgnmK3yQ+fP9shLpV6HS43bpZovpK0LpGC1tOU1qfcEadjF0sAznD2DtVLxWCmH17UAAAAAAAAAAABAJiEYDQCAdpo1a5bq6vY+4DJp0qQ0VgMAAACgKwjaoOexmMFoMR7Cb7KNyt8dwhXrYX+vgLBs5x1a0b7gL69rvWc/r+vdaDMjcCxeHe0NpgAAANgflTdt1orapa7HjiiarGJ/T0kx7vUIl5XkFYvmXDcjI+syor2hcg1xrn2i3xuvOjI3GM3rZ7Fe1loZY3a33c8/z5ffMgYAAADYbxgj9ZooVSxue2zYtzu/ns4w8Ez3YLS83lLjjtTtU3KYNOVve9sjL5PW/k3auULqfZR0wPmSL0cKNUn/uUXa+KITVlU2Veo5TnppfOpqQeba+mryc3a853xEq/40sr3pBe816tZJ65+Ns5GRDrpWql7lhPvZkFR2nBQOOu1ug6URP3BC1XJ7OWvuXOEEuxUOkvpMkkyOZPxSTn7sAEQAAAAAAAAAAAAArghGAwCgHTZs2KAZM2ZE9F100UVpqgYAAABAVxG0zZ7Hcoz3//KLFWrWGK5veUg/1sP+mfogf0eLFRTQHrGCBWLtmymBY/HOv73XBwAAYH/0RtU8z2PHlZze8jXBaPG4R6MZGeX58l3vidt77VJ1f+sdgJyZD0J7hWiHFVbQNitgciXFev3SNV8nAgAAIAuM/IH0XlQwWvGBUumU9NTT0XodKQ3/nvTFQ3v7ig+Ujn5E+ufRcn0dNvbn0sq72vb3Ptr5vOOdtsfG/DSyndtTGvXDtuNycqXxv3Y+Itb+knv4VY+DpTOWS5XLpHXPSKE6acg3pD5HS6+fKW2c23aOJA38qjThXql8obToQvcx8XQfKdWs2re52A9ZacXtkV1bX4tsf3DNvi/vy5XCTVJ+mTTgDCmnUPL5ndC1vic6IWzGSPVbnIC1hi1SyRFS7Rpp10qpaLQTQGiDzkduyb7XAgAAAAAAAAAAAGQogtEAAGjlmWee0ZIlS/Szn/1MpaWlMcd+8MEHOuecc1RRUdHSd+ihh2rq1KkdXSYAAACALi5WMJp/n4PRGlp97f4Qf4788ptAAhVmH68H/Ts6GM0riC5TwjLi1ZEpdQIAAHSWpnCj3t75quuxQXnDNDx/TEs7z2T2vV66WesRjGaM8ky+GtT2Xry9AcLxrn2i63sHo2VmgFh+nNeKAd+eYDT38yIYDQAAAPutEZdIwVpp5R+kxnKp71TpqAcl40t3ZR3DGOmov0iDviaVvykVjZSGTN8bXPbZnyLHFwyUxt8irf2bVL8p8tiI7znXLjoYzZcnDTqzfXUO/ZZ7MNqYHzufSw5zPiJq7e+93uirpG6DpYJveAejTfyT9O9fS/Wb2x47+mFp+MXO1407pGCNlN9Pyslz+p4wMU/H1Zf+LIWbpfevSn4u9n/hJudzwzbpi4cjj0W3E+XLlWSlkiOlgn7ShtlOf06B1Hea1HO8ZJulpkopWO8EvTVskfqfJo28ROp/irR1vlS7VtrxrtTjIKnHOGnA6W3/TmyqlIxfChTtW60AAAAAAAAAAABAAghGAwCglerqat122236/e9/r1NPPVUnnniiDj30UJWVlcnv96uiokLLly/XCy+8oLlz50Y8lJObm6tZs2alsXoAAAAAXUXQBj2PBWIEl8V6CL/1g/uN1j0MIFMf4u8MXqFy7Q5e8LjWe0IyvAIG2rtvqsSrozHcIGutjNmHh4IAAAD2Q+9XL1RduMb12PE9T4+4L/IM37WZca+XyfJ8BVKosk2/1/11ouIFHye6/v4WjOYV0ic559JdxZLiBzsDAAAA+x1jpLE/k8b8VLIhydcF3lZtjBNcFh1eduT/OEFnax53rkX34dJxcyR/gfTl16VFu8PKckukA6+WRvxAskFp57+lzx901ggUS8f83RnTHkO/KX32R2nXyr19PQ6WDrjAe06fY6RV97sfKz7Q+ewLSH0mSdvfjjxucqSBZ0qVH0qr7os65neCo/bI6+18RKw/NrLWPcbf7JxHdNjaAedLIy91vo4VjHZB2Kn1oxukyqVSqEE6/PfS+1d6z0HXtSdsLTqsMFQvbXrR+XCz+WXnI5Z+Jzl/rk2OtPbJvf09xjmhgf1Pcf6MGiOFQ87Pa7BG+vwhqWGrVDRKOvC/nL9XJCkcdNbi3w8BAAAAAAAAAAAQQxf4F3wAAJLX3NysuXPnau7cuQmNLygo0F//+lcdeuihHVwZAAAAAEhB2+x5zB8jGM0reEGKfMDd6yH+rvywu1eAgVcwQKLiXeuO2jdV4tURVkhB26yAye2kigAAANLHWqvXK19yPVbgK9TE4uMi+rzur+OFc3UVYYVd+41MjGvX3mC02PMTXb8hXOfaH+s1WTrFeq3XOqjP8/WL6bqvFQEAAJAljHECsLoyX0D6/+zdd3wc5YH/8c9s0aoXq1hWsS33btwwNrYxxWBMTSCUQAIJBFIuR5IjdwdJCKRwyd3lF3IJKZBASMhBOpcQSiAB23SI6QkYjLtxl9ykXWm18/vjsZBWO88WWbJW0vf9es1rd59nnjKzK2lmV/PdBXfB7G9DWxMUNHSGFhWNg9OegbYDECgAx2fKnSDM/zHMvBkOboCyY8DfC58HhMrhlNUmVKzxJdPvpM9AsNDepv598I9vwr6/x5dXnwoF9Z2Pp34BVp1rQt06jP8E5NfA1Oth5+PxIWez/gvyhiefb/158PrXE8tHXgCVi2DVOdC235SVTodjvtG5Ts0Z3oFVkz5n9n/lQjj50fi6wjHw+OmJbQCmfRleu8m7rvw4WLbKPFfrfgzh7dCy3QTRlU6Hoglm+1eeZd/WslnQ+GLn41AlRHbZ15fBYfsj3uX7XocXP2+WVO3f+n7qcQIFJmhw5IVwcB3sfcEEshVNhBGngi8H8kbAgbehYJRZcGDnY9C6D8rnmt8XAM1bYcdj4A+Z3wM5Jd5jxtqg6VXzO7Bkaufvt65cd+iEZ4qIiIiIiIiIiIiIiGQRfTojIiLSRWlpKX6/n/b29rTbHH/88dxyyy3MnTu3D2cmIiIiIiLSKVkwmj/JhTt+x0/QyaHNbU2o63qBu+1i/2y9iP9osF3obwsGSJdtX3cEomV7WEY6wRCRWJigT8FoIiIiMvhtCK9lc+Qdz7oFJSeT4wvFlfVVuNfg51jPTY70ODl1MFp6/dvWy/PlZzyno8EWyAzx+6RrSFq67UVEREREZIAJDTOLl2CRd3lulVl6U24FTL8h/fWDRXDKKvjbZ2DrHyHWCjWnw/w74terPQNO/iu8cye0NkLNChh7pakrqIfTnoVtD0LLNhh+YmfIUjITr4FtD8QHhk29HoonmOWcjbBzJQRLoWI++Lu8H1B3rncwWv159vFyyux1hWNMwFPM47PEmV8zdcXjYdY3vdtXLbX3DXD6GnPb3mqCojq25R6PMCmRTEUPwd6/maWr7Y/CW7ceWd8l06BiAQQKYc8zsPvpxHVC5VBzJpROg2izCf1b+73O+rpzYe53ze+XgtEmRC3aYgIFw7tgxDIT3JZM2wE48JYJnAwWH9k2iYiIiIiIiIiIiIiIDHIKRhMREeni3HPPZceOHTz00EM8+eSTvPrqq2zcuJG9e/cSDofJy8tj2LBhjBo1isWLF7NixQqOP/74/p62iIiIiIgMMcmC0QJOMGnbkC+XtvbEYLSuF7vbwr5swQ1Dge1C/yMNrbAFJnTsa3vgQ3aEZaQVjOa2UIj+sV9EREQGv5VND1jrlpSenlCmYLTkXFzPch9OnwQIx9wYETdVMFp6z02L9Tg/OwPEAk4QHz5ixBLq0gvRHrrniiIiIiIikkVC5bDw5xCLghsDv+VLW6oWm8VLsBhGXZjZuLmVsGy1CVQ7+A5ULobKBZ31OaVQd45324ZLTZDb1j90lk38jAlwsgmW2Ovy62DE6fH9AYQqoHJR6m0JFpoAt7amxLqyWZ33bfu2u7FXQKgK/v4f3vVnHQ6I+l/H3scHXdixEv6y1Lt+8e+h/lxzv+VdE1K390UonmRCqtpbTIBVfp3Zd2/fZgKvgsWwczWUTIUtv09ve2Tg2veaWZKJ7IH1d9nrt9xnlmQqFpqgxncfTm9e026AwrFQs9wETLZHYMv/Qds+GH6SCWHDgZJJ4Lrw7p/Na9xtN+GN9e8zr2+xa3kX9rwApdNNmONL/wbrf2bqSqbAsqcgJ8nvVRERERERERERERER6TcKRhMREemmvLycSy65hEsuuaS/pyIiIiIiIuIp6kY9y3348aX4x+eQL5eD7fsTyiNpXOxuCwcbCqwBZW7PgxcgdbBAXwQ+9KZ0tt8WtCciIiIymByINrHmwJOedZPzj6Eqpyah3HZ8reOnDt7BaDjJgtF6HirX6kZSrpNu/7bj9Ww9p3IO79OWWHNCnUK0RURERERkwPH1w7/HBwpg5PmZt/PnwuLfwq4nYd/rUH4slM9N3qZovAlQCu/sNociqDgO8muh8UVo3mzKfSGY90Pwh9KbU+0ZsOEXieWjk/w/5egPwYafJ5Y3XGa2yyZvhLmtXAS7nvDuF0x4EQ6e7xVUzI/vb+wVMNY+JPNu9S53XRMIt/o82PGY9zonPQJls+HBWdC8yXudJfdBtNmEL3U8B12N/AD4crz3sQx8u5/KbP3XvtLzsd46/FquXmYC1JpegdZGUzbmcvM7Ia/G/F7w50L0IOx/E8K7gJgJcYtF4NBmKBgJtWeaELEdj0GgEIonwLqfwObfmfJjf2h+Jve/AXueMeGC1ctM+GM22v8WvHwdbP6tfZ19f4fflMKKV0xwmoiIiIiIiIiIiIiIZBUFo4mIiIiIiIiIiAwwUbfNszzoBFO2DTmWgK+4YDRd7N6dNRjtCIIXXNdNEoxmxgs53vs8W8Iy0pnHkewjERERkYHiyX2PWgOMTyhb4VneF8eYg4lry0XD6ZNQuXTCh9PtP+wRMAbZG4wG5vXoHYymEG0REREREZE+5QvA8BPMktb6fph4Dbz8hfjyCZ+EQD4UT4QVL8O7f4a2/VB9MhSOSX8+026Anavjg7/GfMSMaTPpGtjyO4ge6iyrOsEEnhWOgec/SUKoWdEEEygHMPJC72C0hkvNbW6l2Y7tj8bXDz+pM1ztSDkO5JTBmCu8g9EKx0H1KeZ++bH2YLSaM8xzOvpiaA+b7coZBiXTwJ/Tud6Cn0PTyyYUz58L/nzAgUAehKqgZRs4Ptj9DLz7sAmpKptl9ltbkwnA2vaACZ7rGpLnFZrXXd4IE3Qlg8P2RxLL3vlp74/zzEfM0t38O6D+/RA9APv+AWXHmJ/ZTLQ2waGNUDw5/uekJ8K7TeDcWz8Ay/u1CVaeBedsOLJxRURERERERERERESk1ykYTUREREREREREZICxBS74ndRv99nCzSJu5wXu9mC0oXuxu22/HUnwQtRtI0a7ZTyzr20BA12fr/6UTmiHgj1ERERksIu57TzR9LBn3bBAJdMK5njWWY/NdfwEgNv9guku+mLfpRf6m3qdtlib9ZwtmwPE0gnqSxXsLCIiIiIiIkfJlOtM2NaG/wViUH9+fHBZThmMurBnfRdPgOUvwNb7IbzdhIGVz0veZtgcOGU1rP0eHFoPlUtg6r+bsLH8Wqg/Dzb/Jr5N1/mO+TBsuteEhHUYeQEMP7nz8XE/hZVnQuNL5nHpDDjuzp5tYzK1Z5igsvZu58Bd92fDhxO3B0x4mq/L57X+3M4wte4cxwRIlR2TfD7174NZ3/Sum3ytuW3eCsEiCBabx02vwwPTvNvM/DpMvR7cGLz2Vdj0K2g7CJXHmyC7muWw6v0mtE0kHc9+1Cw2TiA+oMyfBxULoGQKHNwA2+6PXz9UDgWjoe0AlM+H9hY4tAGKxsG4q6DieHDbYPtfIbIbgoWw/S+w7zXY8xzEvL9kLqlDG6FlB+QNz7ytiIiIiIiIiIiIiIj0GQWjiYiIiIiIiIiIDDBR1/ufeQNOMGVb24X4XUMAbIEAtvCBocC236JuG+1uNK1Quu6ShTaEHLOv7YEPPQ9k603pBE8cSXiciIiIyEDw2qG/sTe6y7NucelyfI7fs67jmK+7dqJE3ba0ju8HN+9gNAeHkNP7AcJphf6m0X+yY/VcX35Gczqa0gmbs4doD91zRRERERERkX7hODD+42bpC7mVMPYjmbUZNguO+4l33cK74ZXRsPWPECyFsVfAuI911geL4cRHYMv/wb7XoXwu1J4Fjq9znfxaWL4G9r9hyosmmP3Q23JKYcHd8NQlEIuYsuplMOVfO9cZscxsR1tTfNtRF/T+fNKRX5v8cVdlhwP8HR9M/7JZulvxUuf9/Wvh6Q+ZwKlgqQljm3o9vPh5eONb9nFGXQzbH4WI93tmMoR0/wKB9hbY8VezeInsMQvAgbWd5XtfgI339s0cAVq2KBhNRERERERERERERCTLKBhNRERERERERERkgGnv/s/DhwXSCOdK72J374v9beFgQ0GyC/0jsTD5/sKM+4y4yQITcg/f2gLZsiMsI63wiDTWERERERnIVjY+4FkecAIsLDnF2i7VMWbAP7SD0bxj0UwwWjqBz5lK79g2df/J5pDN51Tp7FPbPgpl8XaJiIiIiIhIFvCHYNZ/mcUmkAejL0rej+NAyeTenZuXkefB8KWw6ynIr4PSGeDrEnzvz4UT/gCrzoXWvaas7n0w9Yt9P7d05JTCsLkmSKqrYCkMPyGzvoonwGnPQtt+CBR2htXlVdvbzPpvmPwvnY9dF5o3wY7HTWhb5SKzDwHeuQueudy7n1NWQ9lMaN4Mr9wAm39rykPlMOV68AXBnwfEYOv9sO8fcPDtzLZPpEPLu/09AxERERERERERERER6UbBaCIiIiIiIiIiIgNMm9vmWZ5OSJbtgvWuF7jbLuQPOfbghsEuWYBBONbSs2C0JMELHSEZyQIGWmORfg/LSCcYIp11RERERAaqHa1b+UfzS551s4sWURQosbZNdYxZ4C864vkNbLZotPQCnzOVTqhaOgHF4ViztS7Xl9+juR0NtvO9roHOOlcUERERERGRISNUDnVn2eurFsP7t8PeNZBXAwX1R29u6Zj5dVh1DrSH48v8PTyHDxbHP85Psr1lM+MfOw4UjIIxlyWuO2yOvZ+icRAsgpIpsPg30NpkgtD8ocR1x12VWLb3RXhotnff026AGTfBr8ugrcl7nfMb4Tdl9vmN/hA0roF9r9vXkYHjiQvgQvv7eiIiIiIiIiIiIiIicvQpGE1ERERERERERGSAiVqD0VK/3WcLX+h6gbstTCBZcMNgZwtegJ6HLyQPRstLOW5PA9l6UzrbfiThFCIiIiLZbnXTQ9a6E0pXJG2bLARXx1DgWoLRHJwkwWg9D+VNd5+nCihOFrCW7Dnvb7bzva77xbZ/h/K5ooiIiIiIiAxhviBUzO/vWXgbcSqc+ixs+hVEm6HubBi+tPf6r15mtj/W7XPr8uOg6sT0+ymZAgUNcGh9fPmweZBXHV+WU5rZHLu3j6sbcbjPEnswWrLxpl5vguZcF+7xea/jC8FFYWjeCut+AgfXmSC40ZdAeAf8aaq9/1AlRHbZ66X3tbdA20EI9u/n7yIiIiIiIiIiIiIi0snyKYyIiIiIiIiIiIhkq3Y36lkecOwX53dIJ0Ag4npf7J7NF/H3teShFT0LX7AFJjj4CDo5aYzb/2EZttdKpuuIiIiIDESRWJin9/3Fs64+NIbRueOTtu+L8N0hwXGsx8lHFoyWXttkwWemvtmzPOAECPpSn7P1F9vrsWN7Y26MVjeSUVsRERERERER6UdlM2Dm12DO/+vdUDSA0DCY/xNwulyOMmweLP4N+Pzp9+P4YN73wZ/fWZZTBnNu6YU5VkGo3LtuxHJzO+la7/qqpfHrdTfqInPrOPbxqxab2/xamH4DLLgLJv6zmVPJFHu7QAHMv91ef8pKWPaEvb5gNHzQ+wsH3rPileT1ACMvSL3OYNP0an/PQEREREREREREREREulAwmoiIiIiIiIiIyAATdds8y9MLRrMFCIQ976fTdijIcULWulTBCDb2/ZyLc/if6JMFDPR03N4SdduIWkL6ulKoh4iIiAxWz+9fRYslBOuEshXvHdPZBJ0cHLzXOZKAr8HAde0XbzokC3wOJ22bTLr7PNXxbXiAnk8l26cArW4EF+99m+3bJiIiIiIiIiJ9oOFDcPYGOO6ncOKfYdlqEwKWqZrlcMZrMPdWOPZ2E9pVufDI5+fzw+gPJZYPPwkKR5v79efGh7t1GHWhuZ38L9A96L7mTCid3mXdi7zHH/+J5PMbfYl3+fSboGy2pZEDJVMhL8l+Lhpnbid9zrt++Mlm/uOutvcRqkgezlZ+rJlHtprwaXj/DsgbkVm79kN9Mx8REREREREREREREekRBaOJiIiIiIiIiIgMMNZgtO7/lO3BfrF7ZwiALXArWUjXYDn/xKEAACAASURBVOdzfIQc7+3veTBa6v2c44SyNiyjNRZJaz0Fo4mIiMhg5Louq5oe8KzL9xUyt2hxyj58js8awNvfIbj9zRbAZTjWIK4YMev5UioRN73j1lTH4bb6XF9+xnM6mlKFaCc7rs9VMJqIiIiIiIjI0FRQD2MugxHLwG//oqmUChtgwidh3JWQX9d785v1nyagLFAEvhyoPRsW/6azPr8OFt4Dvi5zH/sxGHuluV99Cpz4CIy8ACoXm9Cyxb+NH2Pcx8Hxd9ueMSZALZmGDyeW+XJg1MVmvw6bl1g/4lQIlUPBKCgc591v+bHmttYy/qgLzG1ejX1uBaPMPrMpGt85jpeL2uCCZnj/Lvs6ODD7Fnv1pM/BnP8xz0cyoy6CqqVQdgwc+yM4ZxPM/R/IrYLxn/QYNsklVFEFo4mIiIiIiIiIiIiIZJNAf09AREREREREREREMtMWswSjpfF2ny3cqyMEoN2NWoMEhvrF7iFfHpH2xDCAngZ/2dp1fY46wjK8Qhr6Oywj3fH7e54iIiIifeGdljfYEtngWbeg5GRyfOldCJrby8eYg0WyYDQfDrlJQpvDsRaCvpyMx0x3n6c6vg3Hmj3Ls/18yh6M1nL41r5/hnKItoiIiIiIiIhkMV8Q5n0f5nwH3Hbwe7yHMeoCqD0D9rwAReMgvza+fvgJZrEZfgKccD/8/T/gwDqoPB7m3AL+FO9PjTjVBHm9fD1E9kD+SFhwF+QfDixbeDc8dhoc2mAel0yBeT809x0HZnwVnr7UbFeHYDE0XG7uV51gAt7W/bizvvpUGH3p4fGXw6tf9p5bzZlmjNIZ0PRKYv3YK8GNwjt3JtaVTANfwCyBJO+Hjb4EiifZ66dcB7kVsOFeWHe79zqnrIaqRfY+pn7BPOfv/BTaW6D2HJhxI/y6xHt9BaOJiIiIiIiIiIiIiGQVBaOJiIiIiIiIiIgMMO1EPcsDvmDKtraL8cO62D2lXF8e+9sbE8ojPQz+8go7g8T9nK1hGemO39/zFBEREekLq5oe9Cx3cFhSujztfkK+PPA6xrQcKw4d9mA0cAg59osqI7EwRVgubkwi3UDfVMe3tn6yPxjNEqJ9eHuTnfcM9XNFEREREREREclyviCQ5LP0QEHy8LNUapabJVPjrjIhY+FdkDc8vq54Apz1Fux9AXw5JqTM1+Xyn9EXmRC3f/yXCS8rnQHTb4Ti8abe8cGxt5kgtL3PQ/FkGHFaZx/l82DM5SY0rKthc2Hip839hg/Bi5+Pry8cB1VLwI1Bfj00b46vH3NZ/OOJ18Cb30nc9rFXmDn486G92xcNlM6AUPnh/TAxsW2HgpH2OjDhbpOvNUtXeTXQsi1x/Ve+BMPmQdFYs/96gxvrvb66a9kO+16Hg+9A234TSld2jKl75yemvvoUs5+aXjP7snwetOyAyE4oGA3BosR+Y20mrC+nDPyHvwCk7QDseBxatoAThOhBs7SHoWAUFI4xQXfdgwVFRERERERERERERI6AgtFEREREREREREQGmGjMEozmpH67L9XF7snCALL9Qv6+Zt13PQytSDcwIVvDMtINhOtpcJyIiIhIttofbWLNgac866YUzKIyZ0TafaU6Ph+q3CTBaA5O0iCuiNvD4OJ0g39THIeHY82e5dl+PmWbX+S9EG0Fo4mIiIiIiIiI9DrHlxiK1sEXgIrj7G2rFpvF2rdjAt+8Qt8cB+bfAbXnwD/+0wRrTfosjLoYAvlmnUn/ApG98Nb3IXoAKhbAwl+YOTs+OOkv8OSF0PiiCTib8CmY9Ln4ccZ/CjbeC+EdnWXVp5hwNccH074AL3+hy7wCJuDNcczjspmQVwstW+P7LZ1ugtl6ImeYdzDawXfg/gmdcxx5oQn/Wv8z2P8G1J5p9lfN6bDhbnjjFvDnmHalx0DJZBMq1vIu7Hw8vu+RH4C8Oqg9A4afmF5YmhuDt38EW/4Ptj9iHo+7Gvx58OYt6W3r2u+mtx5A7dmw9Q+J5cPmwN6/pd9PXg2MWA5T/s0E/LVHYNuDsP8f0NoEB9aaELXqU6B0JjS9DIUNsOcFE/SWVw117zc/F+2t5uegr8LlRERERERERERERCSrKRhNRERERERERERkgIm6bZ7lASfJt1wfZrvYPeq20e5Gk4YBDPWL3UOWfZcsTC4Z277uPo49LKN/A8fSDo4Y4qEeIiIiMvg8ue8R2vEOK15SuiKjvrL1WK+/ufZcNHCcpCFj4R4ef6Z7XJ9qPVu97XwiW4Qc79di+L1gNO/9GnACaZ2LioiIiIiIiIhIlnEcqD/XLLb6Y26GGV+B9jAEC+Pri8fD6WsgvBtySsDn8R5R8Xg49Wl4+3YTiFV5vAlL6wi6mnq9Ccna/HsIFsHoS8w6783BB3O+DU9+ENzD78n68+CY/+oMT8tUoCD1OtsfNUtXm35tFi97nzeLTUe7N79tbstmQ+UiGHEaVC2CYHFimxf+Cd76QXzZ2z9KPfee8gpFg8xC0cCEzr1zh1mS+fs37HXPfzL+ccEoOPFhaG+Bkqner7Wu2iNwaBP4/JA/EnBN6F5PXzMiIiIiIiIiIiIi0i8UjCYiIiIiIiIiIjLA2ILR/E7qt/uSXYwfiYWTBjBk+4X8fc0WvtDT4C/bvu4ejmHb7/0dOBZx0xu/p8FxIiIiItmo3W1nddNDnnXlweFMLZiVUX/2Y72hfgxlT0ZzMKHQPnzEiCXU93Tfpdsu1XG47fg3z5ef8ZyOJltIX6sbIebG7IFvztA+TxQRERERERERGfR8AfAV2utzK5K3L2wwAWs29e83i83ID0DReNjyB/DlQN05UDI5+ZjJBJJsy9HSuMYsa/+nv2cyMBzaCPdP6nxcPBH2v9n52J8HbjvEWlP3lVsF4Z3J1ymbBSXTTFBf8QTY9zps/KW5bXwRChpMYF/NitQhbSIiIiIiIiIiIiLSYwpGExERERERERERGWCiHd+E3E3ASf0Pl7aL3cFcwJ8sxCrHCaWe3CBm23c9D17wDlRIDEbzHre/A8fSHT/dADURERGRgeDVg8/TFN3jWbekdDk+x59Rf/ZjzKF9DOUmDUZzcByHkC+XllhzQn3Pg4vTa5fq+N8aIJblQdO2IGgXlza31Xpcn+wcU0REREREREREpFeUHWOW3pA3onf6kf7TNRQNoD2D/51IFYoGJvys8UXY8HPv+kPrYdW5nY8X3A1lMyBYDE4QcsrgnTth2wPQsg0mfRaqToCCkenPU0REREREREREREQUjCYiIiIiIiIiIjLQRN02z/JgWsFo9ovxI7GwPazLycXn+NKb4CBlCwro7eCF7sEC9nH7Nxgt/eCIoR3qISIiIoPLyqYHPMsDTpAFJSdn3J+C0XrCAcy5Te8Go6UZ/Jui/7DHnMB+XJ8tkp0rJgvRzvbANxERERERERERkTijLoQNd/f3LGQwefrSFPUf7rxfOh1CFRA9BIEiCL8L+CBYBKUzoO59MOJUcJz0xj60GZo3mwC2QxuheBLUrDDtY+3gtoH/8OcQrfsgUAA+XUooIiIiIiIiIiIiA4PezRQRERERERERERlgbMFofif123224AUwQQC62N3Otu9s+ywVW7vugQnZGpaRSXCE67o46f7jroiIiEiW2h7ZwpvNr3jWzS1aRKG/OOM+Q44lBNcd2sFoLq61ruOo0naO0tMA4XT3ear+bfXZH4yW7FwxSYh2knYiIiIiIiIiIiJZp+YMmPBPsPZ7/T0TGYqaXrXX7X4a3v6Rue/PhfbD78nm15vwMwBfEEJVMGw2bP1j5uMHCqByCdScDi1bIX8kFI6F4olQONqEqfn8qftxXdj/pumvoD7zeYiIiIiIiIiIiIikQcFoIiIiIiIiIiIiA4wtGC3gBFO2zXFCODieQQORWNgaBpDtF/EfDUcreKF7OIZt3/c0kK23pBvM5hKjzW0lxwn18YxERERE+taqpgetdUtKV/Soz94O3x0skgWjdUSj9XaAcLrtUq3XYg1Gy894TkdTsnO+SKzFut06VxQRERERERERkQHFcWDud6FiAWz+vQmH2v10f88qfTnDIFQBgXwoPxbevi2z9mWzoXiC6UPhcNmrvcv7sR2haACxNvOa3bq1Z/1GD8G7D5ollfyRMGwOVC6C3U+BP88sW/8I4e3x6467Gnb81cw1VGmC1/LqoGAUDJsF4Z0Q3gFFE0zZwXfg4DoIlpoQuGGzzLZFdpvAtZxh5n7Ty2ZflEyFkilQdowJhxMREREREREREZEhQcFoIiIiIiIiIiIiA0zUjXqWpxOM5nN85Dghz1CucKzFGvJlCx0YSkJO74ZW2IIFuu/r3g586C2ZjB+JtZDjUzCaiIiIDFzhWAvP7H/Ms25U7nhG543vUb+2UKn+PtbLZo5zOBjNcnwecXt2fJ7ucb0t4Pi9emswWnYHiCU754voXFFERERERERERAab0R80C0DLDvh9tfd6+XUw6Vpw26HxRWjeBDtXmZCm6tPgzW97tysYBedsgFgUNv4Snv0oxFp7Pt+8WtOfr9tlYMmC0U5/CUpnQNt+EyYV6PblDXO/C64LTa/Cuh9D9CDUrIB37oJt93v3Oe+H8PzHvesuOAS/KrDP58y1sP5n8Nat0NoIReOhcCyEymHDL+ztpH80bzLLlt+nXvftH3VptznzwL6eqFgIs79tXkst20xoWm4V4Jjb6AETvLbjL3BwPQyba15zzVuAGOQOh8heyBsOweLOft0YOL6+n7+IiIiIiIiIiIikpGA0ERERERERERGRASbqtnmWpxOMBhDy5RFpT7yYP+KGk4R1ZfdF/EdDb4dWpBssEHJs4/Ys8KG3ZBIIF461UERpH85GREREpG89t38l4VizZ90Jpaf3uF97CG7/Huv1N9d1rXXO4Vvb8XlPgovb3aj1PCvT/m2vk2wPRvM7AQJO0HM/RGLhJOcv2b1dIiIiIiIiIiIiKeVW2utqz4JJ19jrbcFo+fXm1heAhkvMEovCX5fBzsczm1/1Mljw88RQNICp18PrNyeW170Pymaa+zkl9r4dB8pmwNz/iS/3CkarXgYjTvPuZ+SFicFrXQVLoHg8zPwqzPjK4dCqLmFUde+DJ863txfpbvdT8Of5vdtnoACih8z9ykWQVwP7/m7Ky2aCEzBhiWXHQMk0EwIX3mley4ECwAF/jglr84XAHzLhg3k1JojN5+8cy3Wh5V0TWrj/H6a+eGLvbUtrE7Rsh6Jx3r87REREREREREREBgC9syUiIiIiIiIiIjLARN2oZ3nASe/tvlxfHvvbGxPKw7EW60X+tsCGoaS3QyvSDaGzjuv2LJCtt2QSCNfT8DgRERGRbOC6LqsaH/SsK/AXMadoUY/7th9jDvXjJ3swWkc0Wm/uu946to26bdbztWwPRgOzT6PticFo4VhLkvMXnSuKiIiIiIiIiMgA5/igbBY0vphYN+qi5G2rlsDOVYnlEz3C1HwBWPQruK8WYim+qOHi2OG5OcnXq3ufdzBa/XnJ2yVTe6YJaQrviC8fdzUUjoYJ/wxruwSphcpNQBtA+bGw57nEPqff2HnfceJD0QCGLzUBUd33S/5IOGc93OMnYyc9Cn89JfN2oUqI7Mq8nQx8HaFoALueiK/b8+zRmUPVEhM02NoIhzZCy1bw55twtWAh5NVC8SSIRWDz700428R/horjoHUfvHw9bLynsz9fCKbfAFOu6/x94rqw7U+w+bfQvAVqzjB9OD7zM7hztSkvm2FC4LpqbQTHb36GY+1AzPzsioiIiIiIiIiI9AEFo4mISK/YtGkTt912GytXrmTt2rU0NjbS1tb5weSdd97J5Zdf3n8TFBERERERGUSirvc/yAac9P7RLFmAgC3kayBcxN/XugeWdehJQJnrutZ93f35sY1rC7E7WiJu+uMr2ENEREQGsnUtf2db60bPuoUlpxD05fS4b+sx5hA/fnKTBKM5fRCMlsmxdbJg5GT95PryM5pTfwg5uRziQEJ5xA3bQ7QdBaOJiIiIiIiIiMggMPZKeOFT8WVF46EyxRdjjL40MRgtpwxqVnivn1sJx94Oz14Jli9ZACd1IFqHYXNgxtfglS92lo35CIy6IL32Xvy5cMpqePajsPtpE8Q07Qsw8nDY2pxbTHjT9j+buoYPQWGDqas71yMYzYH69yUfM1QODZfDutvjyyd9zoQ1+UImCCpdEz4NxRPTX78rpwchbEsfhIPrTJhU44sQKITqk+HVGyG8s2fzkKFp5yrvsMVk3n3IXheLwMtfMIvN9kdhzWfN767WxC/aTClQCBM/A9O+BP4caDtofg7y66DpFdj6J/NzPP6TUFBvgtdClVA+14SquW7877zuj0VEREREREREZMhSMJqISD8bPXo0Gzd2Xkzz2GOPsXTp0v6bUA/cfvvtfPrTnyYSyeDDRhEREREREemxdss/xwac9N7uswcItFhDBGxthhJbOFwkFsZ1XZwM/ikv6rYRI+ZZ1z0cI9m4/SmT8XsSHiciIiKSLVY2PehZ7uCwuGT5EfVtO84Ox1oyPsYcTNIJRrMdJ/ckQDiTY9tk/YfbkwWjZX/YdLJzD9s+GgjbJSIiIiIiIiIiktL4T0DbPnjzOxDZY4K/FtxlwnySGXulCcN641sQPWTCuI7/JQSSfFHCmMtMaNYfxkKsNbF+5s3pz9txTGjZ6Etg7/NQMhWKJx95qFDxeFi2GtpbTdBR9zFHntcZlNbVhE/Djsdg+yMdK8Oc70DBqNRjzvuBWW/LfWb/NXwYxl5h6qZ9EV75UmKbmjNMKJTbHl/e8GHIHW4Cm6IHE9vl15nnrbv680wY3prPpp5vh8pFUGP5rKDpdXjr1vT7EulPPQlFA/Mz9vrXzJLM2z9K3VegCIJFULHA/D5t3moCJX05Zn7tERPe2HAZVBxr76e10fTV+BJED0DJNNOPiIiIiIiIiIgMKApGExGRI/LAAw9w9dVX47r2C1S6evzxxznxxBPfe/zlL3+ZG2+8sY9mJyIiIiIiMjhF3TbP8oATTKt99+CtDpFYi/Uif13sbt9vLi6tboSQk354XLLghe792IPsMg9k6029FR4hIiIiks32Rffy4oGnPeumFsyhImf4EfWf63gfY8ZoJ+pGCaZ5jD/YJAtG43Awmv28JvNQ3oxCf5Osm+y4N9eX5ELILGHbp+Ek54q2NiIiIiIiIiIiIgOK48DU62DKv0PscPBOuu1m3GSCuyJ7IK86vXb5dbDk/+Dx07v154fRF2c2d4DC0Wbpbd1D0VIJFsLSB2DP83BwHVQuhMIx6bX1+U3I27QvJNY1fAhe/w9ob+6yfg7M+k8YdxU8/3FoeRdyq2DOd6F8rlmn/jxYf1d8X/l1cMpqeGgOtO6Nrxt7JRRP8A5Gm/pF2PQrOLA2vnzc1fZtKpthrwuWQltTYnnNGbD4N3BwPYTKzTZ1aHzFbE97BEZdBFWLOutcF8I7IVRh5vinKd7jTv0izPwq7H8TGl+G3c+YAMBD62Hz7+zzFTkaogfMsvm3ydd76/sw4nTzM/Duw7BzFebzoySfL+UMg1n/DcNPhO2Pwr7XoOk1aNkG+/9h6qtPgeplUDrd/B3Iq4Xcit7cQhERERERERERyYCC0URE5Ihcd911caFoH/zgB7niiiuor68nGOy8WKeiQh8GiIiIiIiI9JY2azBaem/3JQvailgvdk8/9GuwSrYPwrGWjPZRxE0WmJBeMJpLjDa3lRwnlPa4vcn2WjnSdUVERESyyZNNjxCj3bPuhLIVR9x/smPIiNtCkKEZjJbsupWOXGD7eU3mx56ZHdvaA4rDsWaPFsZACBBLeq7oegfC6VxRREREREREREQGFcdJPxStK18w/VC0DjXLYc534OUvQPSgCbRa8DMoGJX5+NnEF4DKBWbpLQWj4OTH4G//DI0vmdCiWf8NJVPMUnuWCQXLrep8Exlg3q0mfGzLHwAXyo+D439hQuSWrYZnr4Q9z5n+p99onhOAmf8BL1/X2U/5cTDpszDhk/DsVbDjr5BfC5M+Bw2X2uddcyaeYU3D5sGI0+D1ryW2GXe1eQ2WTE6sK5sBZd/yHstxIO/wl7nk19nnNHypuS2eaJZRF3TWRZvh7dth52OQOwImX2uC7e6rM+FRXurfb9rl15twurzhUNAA5cfCc1ebwDWRvvDug2Z5T7Iv3cEEIT770eT1m35lllTKZpvfAfkjTUhjyxbYvxaCxeZn5uA6KDvG/K6qOgECRbDtftjzgqkrbIDKxSb00fEl9u+6cGij+bnOr/deR0RERERERERkCFAwmoiI9Nibb77JK6+88t7jFStW8Itf/KIfZyQiIiIiIjI0tLtRz/KAk15oQq7lgvxwrIVIzHKxu5P9F/H3Ndt+A6z7rSfrdw9MSD5uCzm+/gpGS3+bM90/IiIiItmg3Y2yet/DnnWVwWom5x9zxGMkDUaLhSn0Fx/xGAORm+TiFQdzUZstaKwnx5620C8vMdqJum0EnRyPsb0D1vwECPqyP+TOvk/t54rJzldEREREREREREQkhYn/DOM/Ac1bTDiXwm/sKo6F054BN5a4n7qGgnUVKIAl95nQNBwTPtcRnFYyBU59Ctpbwd/t/d6p/w41K2DnKhNyNPxECBx+L3TpH73n4CW/BsZcDu/c2WWuPpjyr1A+H9b/DJo3ddZVLoKa01P3m0qwCCqPh11PxpeHys0YNoF8mHSNWbqqXGQPi1r8W3t/x/wHPHmRd90FB83zAxBrh1ir2cfrfwFPW8LmVrwCudXw4udh/V2mLFgKE/4Jqk+G7Y/C2u9B277ONgUNJrytcIwZr3weRA/Bw8fa5y2SSuMas3jZtfrw7RP29juAdT+BZy5Pb7z682HYHDjwJuAzr+WcUvP3I2+EWWfnE7DzcROMWHs2hIaZ8i1/MIGSuVUw6iLTrruOn8FDG2D3UxAsMeGNwaL05iciIiIiIiIi0kcUjCYiIj32wgsvxD0+//zz+2kmIiIiIiIiQ0vUbfMsTzcYzRa+EImFCVsu5E8W2DBUJA+t8N5vNrb97DVOsnHDsRaK8PiHtaMgk8CJZNsrIiIikq1ePvgc+6J7PesWly7H1wsXqNmCqCDzY8zBxR6MRkcwmmM7r8l8v2XaJhILE/QlBqO1WPrJ9Q+M8DD7uWKLdR/pXFFEREREREREROQI+YJQ2NDfsxg4evLefG6Vva57KFqHshlmOdI5HHu7CWHb+icTTDb2is7ws1Ofgrd/BPv+ARXzTcCXr5cu9Zv5DVh5BrTtPzxnP8z6Fvh78OV7Yz7iHYxWfUrydiNOBV8IYpH48vJjO0PRAHx+6Pi8pPJ47758QRNyFiyEBT81S3fDl8L0L0PLdrOvA/lJJueQ/LOIo2T0pbDh7sTyQIEJcBMB2Pwbs3T32lcz6+f5T2Q+dv355vfHvteheAJE9prgyNY9EG2GfX83v+NireDPM7e5VRCq7Lxta4I9z0P0IFQtgRHLzXoH10PpNGhtAlyzbkd4pYiIiIiIiIgICkYTEZEjsGPHjrjHdXV1/TQTERERERGRoSPmthMj5lmXdjCa431RfsQNE3G9w65ykwQ2DBW9GYxmCxVz8BF04v/pNnlYRvrhZL0t4qa/zf05TxEREZGeWtn4gGd50MlhQcnJvTJGsuPsoXwMlTwW7XAwmi3Ey3JOk0w4w30dcVsopDix3BaMNkDOp2z7tDl2iDa3NaM2IiIiIiIiIiIiIoIJ/Zp8rVm6y6+FGV/pm3GrFsHyNbDlPhOwVXsGDJvTs76qTzahZIfWx5ePuzp5u5wys92vf72zzBeEaV+ytykcDcPmwt4X4strVphQtFR8QSioT73e1Ovg9ZsTy3OrILwzdft0lEw1YVI252yEgpGw8OfmcdsBaN4CeSMgpxTW3QHPXuHd1uv56HDMN6F0Jjy+3D72yAth0y/t9Sf80Yy/5ff2dWRo6BrItu81c7vz8fh1dvwl/f7e/I69LlAE0QPmfv5IqFgAw2YDDrjtEGszgWrRQ3DwbTjwlglZG3UxVBwLbQdNefMWaNkGG+81ZXtfMKGU9edBjeXnwnUPh7tlEB4Zi/ZemKWIiIiIiIiIeNKZt4iI9NjBgwfjHgeD6V2ALyIiIiIiIj0XdaPWuoCT3tt9tovyw7EW64X8ycK5hoqAEyTgBDyfg3AvBaOFfLk43b750hZk15Nxe0vUbUv6WuxuKId6iIiIyMC0LbKJt1pe86ybW7yYAn9Rr4wTdHJwcHA9osCG8jGU1/7oznZeE4mFcV034bg6mUyDjm3H4eFYs2d5ri8/o/77i22fHojuy7iNiIiIiIiIiIiIiPSzorEw+V+OvB9fEJatgueuhh2PmzCvyZ+Hkeenbjvjq1AyDbb+EXJKYPSHoHJB8jbH3wuPn25Cj8AEpc370RFvRpzas7yD0cb/E2y4Gw6sTawLlkJbU/pjjLwQNt0L+/7uUemYALS4/ougZHLn48Kx9r6X/A4ePtYERcV1G4CxV0LLu/a2s75lgvJswWjjroLaM03g1L2Wa4TGfRxm3ASvfsWEp0X2QNE4qDwe9rwAjWvs44vYdISiATRvgk2bkgf4Aex/A968JXXf635sllRyq81teHt8efUy8zM57ipYfxds+AVEdpu6k/4CFfPNz+PB9eA4sHMVtIehaglUHJd6XBERERERERHxpGA0EZEhwnVd1qxZwxtvvMHOnTuJRCJUVlZSW1vLokWLKCxM49tzuonFYn0wUxEREREREUkm6rZZ6wJOeoHVIV+uZ3kk1mINX9DF7kbIl0e0/UBCeaahFfYAusTnJugL4idAO4lBZBG3f8Iyemt7RURERLLV6qaHrHUnlK7otXEcxyHky/UM2uqvENzsYA9GczCBZ7bwZheXVjdCyPE+7/GS+fGt9/q252ygnE/Z9tm+6F57mwGybSIiIiIiIiIiIiJyBPLrYOmf2bgopgAAIABJREFUwI2B40u/nePA6IvMkq6isXDmG9D0GvhDUDTB9NObyudDw2Um4KhD6QwY/3Fz/9Ub4tcvGAXH3QWPLzdhRx1qz4a8anj7tsQxRn8QfAF4+frEusrjTeBcMhXzvcPYChrMXOvPg433xtfVnQuhYcn7HTYbcofb632hw7cBKJ0OTa8mrjPqQsitgnnfM4uXlneheYvpw58L/5vkORx3NbxtCb+rOgF2rrS3FelN3QPROmx/BHgE3v5hYt1fT07db+ViyK+H4klQNvPwz7/PBEYWTYCcMmjZZoLV/LnmZzyyG1obIb8G2iMmPHHbA4f7W2TCFWNR87N6aBPgQttB2Pu8uR15vvn9JCIiIiIiIjKAKRhNRGSQ2717NzfffDN33303u3bt8lwnJyeHk046iRtvvJH58+db+9qwYQMNDQ3W+hNPPNGz/M477+QjH/mIZ91NN93ETTfdZO3zscceY+nSpdZ6ERERERGRoSbqJoZjdUg/GM37wvUD0X24lgACW5jaUBNycjlEYjBapqEVmQbQhXy5NMcOevTTP2EZGQdHuEM51ENEREQGmnCshWf3P+ZZ15A7kZG5Y3t1vJCTS5jE46VMj7kGE3ssmgmTg+TnKJFYOKNzmN46ng/Hmj3LB0wwmmWe+9sb7W0yCKATERERERERERERkQEuk1C0Ix2nbEYf9u/AcXeYcLHdT5lgopHnm+ChqddBeAes+zHEIlA6Exb9GorHw8mPw1s/gJatMPwkmHwtHNpowoqat3T2P/EaE/A2/uOw7UHYtbqzzpcDU7+Yeo7+XJh6Pbz0r10nDtNvMPvn2NvBdWHL701V3Tkw/w5zPzQMhs2FvS/E9xmqNKFsTgCCJdC2L3HckR/ovD/mCljzmfj6wnFQtST1/PNGmKVD5eL4/dBh+k0mZM1m3g/hT5NTj9fdol+b53TnE/DCJ03AW6jChFMNmwsH3oSK46G92Tx3oXLzOBYx+/fZKzMfU8TG67Xf1/72afN7pOEywDGv//J50NpkAtOiB83vgmFzTfhaV64bH0gZPQSO3/QnIiIiIiIichQpGE1EZBC77777+PCHP8yBA4kXbHfV2trKQw89xEMPPcRVV13FrbfeSiCgPxEiIiIiIiLZKOq2WesCTnrncraAAK/grc42A+NC/r5mCzSIuJmFVtiCF2yhAvZgtP4Jy8g4GG0Ih3qIiIjIwPPsvsesx2tLSk/v9fFCvjzwCJ7qrxDcrOAmi0YzkgWfhWMtFFOa9nCZHq/aXh/W4/wBcj5lO99JFtA9ULZNRERERERERERERCSO44O6s8zSlS8A874Hs/8bWvdB3vDOuor5ZumqaByc+ixs+pUJSRt+ItQe7jOnDE56BN65E3auMmFkYy6DiuPSm+OUz0NhA2z+nQlUG3Ux1Jxm6oKFsOheaA+bz1UC3d6vP+YbsPJsE/zVsb2z/hN8h794s+5cWH9XfJu8EVCxoPPxxH+G1kZY+10TolZ5PCz4ec8C8mrP8g6HGnkBuO3ebXw5ZvtrzoRt9yfWVy2B3c9ArDW+3PGZIDaAqkWw4hWIHR7D509vvhUL4I1bzPbXnA6jLzX77h7Ltte9D5b8zozz9o9gz3OQO9wEseWNgMaX4PWvpTe2SG9pD5vXY28ac7l5ne9/w/xeyBthAtZ2PWF+VvJHmqA1X44JWswph433mt83FcdBw+VQMikxfM11TQBboCC+XERERERERIY0pd6IZJtYNP5bQqRv5NeZDysGsTvuuIOPfexjxGKxuPKxY8cyZcoU8vPz2bRpE8899xzt7Z0fItx2221s2rSJP/7xjwpHExERERERyULJgtH8RxiM1tttBiPbRf+ZhlbYgtRs+9kWUGALXuhrGW+vgtFERERkgHBdl1VND3rWFfpLmF10fK+PaTsGzDR8dzBxsQejOZh/hLcdI0PfH6/a1rcdn+f58jPqv7/07Fwx1AczERERERERERERERHpZ/5cyEvzffP8Gpj0GUs/IRj/cbP0xMjzzWLjt8yx+mRY/gJs+g3EwiaYrGsg26z/gn2vw94XzOOcMlj06/hrrRwHZtwI028wAUuBI/i8Y/wn4N2HYcdfOstmfLUzIKl4kgla6qr+/Wb/jfyAdzDaxM9A3m9g4//Gl49YHh9oB+kHonUomQLzb0ssL5sNjWsSy8d+tHOcCZ8EPhlfP/I8eOv70Lo3s3l4Of0l+Ns1sHNlZ1mwBGpWwMZ7Mu/P8ZtwupKp5rb789ATBQ0Q2Q3RA0fel2SXd34a//jA2s77W+6Lr1vzufjHO1fC37/Zs3Fzh0N4Bww/CUZdCIFCE4pY0AD5taa+PWJec74cwIG86p4FOYqIiIiIiEjWUOKNSLZp3gJ/aOjvWQx+Z6+HwtH9PYs+89JLL/GJT3wiLhTtmGOO4dZbb2XhwoVx6+7atYsvfelL/OhHnd8A8dBDD3HDDTdw8803x61bV1fH+vXr33t8yy238J3vfOe9x/fccw/HHZf4zTUVFRUsXboUgGeeeYaLL774vbprrrmGz3zG8gEQUF1dnWJrRUREREREhpaoG7XWBZ1gWn0kCxDozTaDkS0oINOAMluQgi14zRqW0U/BaJlub38FuImIiIhk6q2W13i3dbNn3fElpxD0pXfMnQl7+K6C0bx0BKMlC/HKOOjMzfR43nt923Gv7TnONpkGowWdHHxOhhcSiYiIiIiIiIiIiIjI0VEyGaZ/ybsutxJOfQaaXoLWRig/DoKF3us6viMLRQPT94kPwq4nTZBSxQIonX64fwcW/xYeWw7Nhz+nK58Ps28x90d+ADb8Arb/ubO/unOg9kyoXmaC37b8H+BC9Wmw8O4jm2syDR9ODEbLq4ERp6VuO+ZyeOP/Hdn4/lwomwmnPG4etzZCsNTsQ4BNvzLhZl4+aP/8LUHbAfh1sb2+ZKoJ1vNyfiPklJr70RYTkObPhUABrH6/CcjriWFz4cDb0NbUs/YysIV3mNsdfzVLJsZeATNvhtyq3p+XiIiIiIiI9CkFo4mIDEJXXHEFra2t7z1etGgRDz/8MPn5iR9EVFZW8sMf/pBx48bx+c9//r3yb37zm1x88cVMnz79vbJAIMDo0aPfe1xaWhrXV3V1dVx9V4WF5gOSDRs2xJWXlpZa24iIiIiIiEiiqNtmrQukGYyW6cXuPW0zGPVWaIUtSMEWQJdtYRmZb+/QDfUQERGRgWVl44Oe5Q4+FpWmcUFDD2RbCG626whGCzhB/ARoJzE8OtN9l/n63se3mR7nZ5tMA9wGynaJiIiIiIiIiIiIiIgHnx+GzTmK4wVh+FKzdFcyBc5+B/augWARFE80gWwAgTw44Q+w7QFofAnKZkHtWWb+vqAJVYseglgUckr6dhsmftoENK39HzNm6Qw4/pdmHqlM+BRsvAda3u0sG34i1KyAFz9vb9fV9JviH+eUxT+e9iV49cbEdmM+ml7/HYJF5jnZ93fv+pxS73KAYJfnIJAHgfrOxyNOtwejTbsBXvuKd92pT0PFcfFl79wFL3waogc6yyZfC2M+YuYe3mnGanwZdj4Oe//WuZ4vxwTIdQ+Ry683z2+sFRlE1v0Edq42gYJ5I/p7NiIiIiIiIpIBBaOJiAwyjz32GGvWdH77SHFxMb/85S89Q9G6uvbaa1m5ciX3338/ALFYjG9/+9vccccdfTpfERERERERyUxvBKNlevF6wAmk3fdgZ9t34V4KUrCFYtjKMx23t0RcBaOJiIjI4NPUtoeXDz7jWTe9cC7lwb75BulsO9bLBi6xJLXOe/dyfXkcih1IWKOvj1cjrvdzE441e5YPlACx3AwDsRWgLSIiIiIiIiIiIiIivcYXgIpjvev8Iah/n1m8BAr6bl5dOT445maYcRO07oPcivTbFo4xAV9v3wYH3oKKBTD+UybY652fwr7XO9f150N7t8+d/Pkw+oPJxxh1sQkXc7t91tbw4fTn2WHyv8IzlyeWVyw08971ZGJdyTRwnMTyDjWnw5rPJJbn10PJVHu7glGJZWMuM9t7aKOp9+fE1+dWQcOHzGLjutC8CXDMHBwH2iPwS8tnYKFyOOF+eOajsP8f9n4l+xxYC2/fDtNv6O+ZiIiIiIiISAYUjCYiMsjcddddcY8/9alPUVNTk1bbb3zjG+8FowHcc889/OAHPyAUCvXqHEVERERERKTnkgWj+Z303u4LOZldlJ/p+oOZ7cL/TIMUbCEXtv5tQQr9FTiWcXDEEA71EBERkYHjiX1/JmYJ5FpSenqfjZttx3rZwHXtdV2vpQj5cr2D0Xrp+NzG1r+tn1xf8i8wyhahDAPcBkrgm4iIiIiIiIiIiIiISK/yBTMLRetQMApmfj2+zF8Oy1bDujth32swbC6M/ShsfxRe+jfY/waUzoR5P4T8uuT9F0+Axb+HZ6+EyC4IFsOsb8HwEzKfa93Z4M+F9m6fi428AGpWgC8EsUh8Xf15qedXdQLsXBlfPu4qGH4iOH5w2+Pr8usht9q7P38OFI9PvS02jpMYuuYPQV4NtGxLXH/u96HiOCieaA9Guzhm+o3sgT3PwY7HIVQBvhzIKYNDGyBQCLEwvPyFxPb158Pm30DZbGhc0/Ntk0Q7HlMwmoiIiIiIyACjYDQRkUHmiSeeiHt86aWXpt126tSpzJ49mzVrzBun4XCYv/3tbyxcuLBX5ygiIiIiIiI9F3WjnuU+/PgcX1p92MK3emv9wcweWtE7QQq2fW0Lp+uvwLGMt9cNE3Njab9GRURERI62qNvGE01/9qyrCtYwKX9mn43dW+G7g0uSZDQ6k9Fs+663gs5sbP3bg9EGRoBYpsFoma4vIiIiIiIiIiIiIiIiHnLKYPLn4stqzzRLrM0EsaWr7myo3Q7NmyGvDnz+ns9pyR/giQ9A2z5TNu5qmPBPps9Fv4YnL+gMTqs5E6b8a+p+l9wHz10N2x4wwW1jPwZTrwfHB6MvgfU/i19/0mfjvznpaKg7B976QXyZPw9GnGbuj70CttyX2K5sdudcQ+VQc7pZbKZcB1vvh0PrTSBeZbfr9/43yXZ/0E1ef2GLeW62PwprPmdeDx1GXwIb700MoRvsWhv7ewYiIiIiIiKSIQWjiYgMIo2Njaxbt+69x6WlpUyePDmjPhYuXPheMBrA888/r2A0ERERERGRLBJ12zzLg076//wUcIL48BMjvX9s0cXunWz7ItMghYhrCUazBKBlW1iGLfAh4AStr9FWN0KuZftERERE+tvLB55lf7v3P0IvKV3epwGv1hBcyzHjUOAmCUZz4oLR+ja4uMBXxKHYgbTXtx0nD5RzqpCTYYh2huuLiIiIiIiIiIiIiIhIhjIJRevg+KBg1JGPPWIZnLcLml6B/FGQW9FZV3cWvH8n7H4GCkZC0YT0AsxySmHRLyHWbubZtc38n0D+SBM6FiyChstg/NVHvh2ZmnYD7H4aGl8yj31BOPY2yCkxj6uXQagCIrvj2zVcmtk4jmP2o03DZbD+rsTyydea27FXwLqfJNZXnwr+XLOMPB9qz4bILhPW5j/8+d6Mr8IfxniPO/ULMOMr8Ms8iLV6r3Pac7BzlQkbe/3r9m1IV+5wCO848n6SaWvq2/5FRERERESk1ykYTSTb5NfB2ev7exaDX35df8+gT+zatSvu8fjx43Ey/FaMSZMmxT3euXPnEc9LREREREREek/UjXqW+5303+pzHIeQL5eW2KG01s8dIBfxHw22gDJbAIKNLUjB1r/tOeivsAzb/EsCZexp834vIRIL67UkIiIiWWtl04Oe5TlOiONKTurTsbMtBDcb2GPR4vXGvnNd13o8Xxwo5VBresFoUbfNGhKcN0COg0O+UIbrD4ztEhERERERERERERERkR7yBWHYHO+6YJEJT+tRv36PsgDM/KpZ+lNeNSx7CnathpbtULUECkd31vtDcNJf4Inz4cBb4MuB8Z+Cidf07jxGnu8djDbyAnNbc6Z3MNqYy+Mf+3Mgvza+LK/GPm71ySa0bs534PlPJNZXHg/l88ziuvZgtJIpZj8+dxVs+pX3OufvhZyyzsdt+8GfB4c2mr4LG8zrItYOe56Dtd+FPc9C82aItZlrRCd+1gTVOQ7seQHW/9T0013rPvs2i4iIiIiISFZSMJpItvEF4t8oE8lAY2Nj3OOSkpKM++jeZu/evUc0JxEREREREeldtgvtA05m3wyZ68tLOxjNFjYwFFkDyjIORvNe3xYs0FuBbL3FFjRR7E8WjNYClHnWiYiIiPSnrZENvN3yumfdvOIl5PsL+3T8bDvWyw72aDSHzi8F6o1gtKgbJUa7Z11xoIx3Wzd79J/43CR7vgZKgJjP8ZPjhGh1I2mtr3NFERERERERERERERERGZQCeTDiVHt92Qw4ay0c2mxCuQJ98HlgzRkw9Yvw+tfMY8cHs79tAsmA/8/encfHUR72H//O7C3r9CFfMsjGF+bwgc0NxpyOCwRCEiAHOZq7JKGE8kubNnZ+ISRpaBNISEgoDTQl9JcmpKQOkNJgm9MhmBsbbIMNvvAtWedqj/n9MdjSaueZ3ZVWK630eb9e85LmeeZ55pnZtfyMtPMdTf4LNyStZ+jY5EukKe/L3XcgIk1cKu16OLM8MkYae4b7fcN7pWf/SnLSmdtM+UD395Ylo4bLpHCNNP2z3sFo4dFSqDazLFTtfq2anlluB6Rxp7mLn6kflSZfLK3yeO0Sze6xWLZ/HwAAAACAIYMrOAAYRhwn8yYRy++Xi3kqRh8AAAAAgOJJOUnP8qBV2DMQCrmBvVxu4i+FiNX/4AV3e1Mwmnf/pteg0EC2YjEGowVrPcv92gAAAAy2xw4+bKxbXLtswPdfrPDd4cTJMxjNdO4KCZXzO881Qe9gX6/+O1PmfmJ2Rd7jGWyFXSsSjAYAAAAAAAAAAIARbNSUgQlFk9zQsbnflN63RzrvUemKfdKsL3XX2yHp9F9KS/4gzfuOtPj30lm/dUPP8jHvu1J0QmZ/C38sBcLuemyidPp9kh3u3qbxo9KMz2f2M+2T3v03ftT9Wn+WFBmXXX/UB/2D1foqbPoMoyO9tFzavabvfae6pMShvrcHAAAAABSksLslAQBD2ujRozPWm5ubC+6jd5u6Ou8bPgAAAAAAgyPhJDzLg1aooH4KCTvjZvduxtAKJ//gBcdxjCFh5mA07/LOQQobMx1vtSE4QhrZwR4AAGDo6ki16ZlDqz3rjokdq4bo1AEfg2muR7CsQY8Px0csU6hc/ufOby5fHfCe33r17xfGVk5h01E7ppZUfn9jNF0fAQAAAAAAAAAAACiS6DgpusS7zg5IEy90l0LVnSi95wVp10Nu2NfEi6TqWZnbHP1BadJ7pP3PSFXTpVFHZ/dz7FeknSulzj3dZdM+KdXMfneMIems+6U1l0iJJrds3FnS3G8VPuZ8hMwPd9WrN7lLxvY10ugFkh11g+5qTpAsW5pwgRQZLXXulcJ10ssrpC13S6m4G/Z22r+5561lszTmZKlicu6xpbqk9relQ6+721fNcvfVsVMa1ej+Lbz5NSnVJlVOl0JVbj0AAAAAjFAEowHAMDJuXObTEzZu3FhwH6+//nrGen19fb/GBAAAAAAorqQxGK2wX/VFCwg7Ixitm+lcJJ2kkk4ir4C6pJNQWmlD/97BAuawjMEJGzPtt8KuVNAKeb5P/YIiAAAABsvaQ6sUd7xDtM6uXVqSMZjmgPF0pxzHkTUQT8ke4hzHMdb1PBvGebLhNfXc1idErcYQ/OvVf2e63dhP1K7IezyDrZDrP64VAQAAAAAAAAAAgDIWGy9N+7j/NqEqacJ55vqaOdKFa6Utv3BDv+qXSI0fytym/kzp8p3S/rVSZJzbZqACv8I1hW2faJZ2ryqszZ7HpAcazfUVDVKqQ4rvdwPOWjcX1n9P486S5nzVfQ3ssJTukgIRKdEqBSskWZKTlKyg5KSk1jek2EQ3qK51izT6JDfgzUuixW0fqsx/PJ173Nc61SE1XC7VHtf3YwMAAACAHAhGA4BhpK6uTsccc4zeeOMNSVJTU5M2bNigY489Nu8+nnrqqYz1RYsWFXWMI/HmHQAAAAAopmTaFIyWO5CrJ1P4gpdoAdsOd37nLZ7uVDCQ+3XwC14wBdaZXoOE06WUk1LACuTcbzGZjiFiRxWxo0qmst+nfscNAAAwGBzH0WNND3vWVQVqNK/y9JKMI2J5zwHTSinpJBSywiUZx1DiyC8YrfsD8qZ5ciEBwn4BvtWmYDSPNqZ9BhRUyC7sem0wFXKtWMi2AAAAAAAAAAAAAIapyqnSCV/33yYYk8YvGfixhAoMRhsI7du7v+9PKJok7X1cWvN4//robfwSqe0td3FSbtnML0pdTVK03g0/2/oLqW6eNOkvpMkXSzv+W3r15sx+XvoHaeaXpOpZUstGKZ2UGi5120XrJceRvO4ldRwp1S5ZASnAw7gAAAAAmBGMBgDDzJlnnnkkGE2S7r33Xt100015td2wYYPWrVt3ZD0ajeqkk04q6vgikUjGejweL2r/AAAAADDcpZT0LC84GM0q4GZ3Q1DDSOR3439nukOjAlU5+4g75uAF0+vit9+udKdigVE591tMfsFoUTumtlRLdhuHYDQAADC0vN7+knZ3bfesO6PmwpKFWeUK3w3ZIy8YzU/Pj01HDMHChQSjmea2lmxVBqqNbRzHyXggUIdhn9FAeYWHEaINAAAAAAAAAAAAoGwFIlLFUVL724M9kqFr96rsso0/zC47+IK7vPotc18bb8tc33R7YWMZc7I0+VLJDrqBaWMWSvWLpTJ6+BgAAACAgUMwGgAMM9dcc43uueeeI+s/+tGPdO2112rChAk52/7t3/5txvpVV12VFWTWX7W1tRnru3btKmr/AAAAADDcJZ2EZ3mwwA8BmAIEvHCzeze/c2EKVOit0yekwfS65NrvUAlGi9oxY5Ce33EDAAAMhjVND3mWW7J1Zu2FJRtH1GduHnc6VCnvcK7hzJHjU9sdRmYORss/lDdX6K9pfAmnS2Gr++9opjC2crueKiQYu5DrSgAAAAAAAAAAAAAoiakfkV69ebBHgXzsf8Zdept8qRSulWqOk0LV0oFn3UC39m3SpL+QImOlQExqeK9Uf45kWZJll3z4AAAAAAYWwWgAMMyce+65mjdvnl544QVJUnNzs66++mo9+OCDisXMN158//vf1wMPPHBk3bIs/fVf/3XRxzdt2jSFw2F1dXVJklatWqVEIqFQiBR/AAAAAMhHIm0IRivwV32F3MAeKbMb+QeS33kzBSFkb2cOaTD17xdOMBiBY6Z9Ruyo8f1SSDgFAADAQDuY2KeXWj0+XCvpxMqTNTo0rmRj8Z9jjtQ5lDkYzcojGK2QObJp26gd870W6kx3KGxHMta9+6nIeyxDQUHXigWEqAEAAAAAAAAAAABASZzwf6VEq7TxtsEeCfpqx+/Mddv/q/v7jT/s/j5UK4XrpMho92vG0rusx3qo2g1WAwAAADDkEIwGAEPMO++8o61bt/apbWNjoyTprrvu0mmnnXYkfGz16tU666yzdPvtt+uUU07JaLNv3z4tX75cP/7xjzPKb7zxRp144ol9GoefcDisM844Q6tWrZIkvf3227r00kv1uc99TjNmzFBFRebNIRMmTFA0yk0VAAAAAHBYSknP8qBdWOB0tICwM4LRuoWtiCxZcjyCGvINrTBtZ8lWyAp71vm9BnGn9GEZpmOI2DFjkMLIDfUAAABD0RPNf5CjtGfd4tr3lHQsvnO9ETqHSjvmYLQeuWhFCeU1BRy7ob+5gpFrj6x3pts9tyvk2mso4FoRAAAAAAAAAAAAQFmzA9LCW6UFt0g7Vkr7nnbDtFo2DfbIMJASTe7StqWwdpb9bqiaR6BaVshar/VgJaFqAAAAwAAiGA0Ahpirr766z22dd28SWbBggX70ox/pc5/7nNJp96aedevW6dRTT9X06dN13HHHKRqNatu2bXrmmWeUTGbeVH/BBRfom9/8Zt8PIofrr7/+SDCaJD388MN6+OGHPbddtWqVzjnnnAEbCwAAAACUm2TaEIxmFfarPr8b/Puz7XBnWZYidlSdHuEJXmVeTCENUTsqy/ABiYgdMfaX736LJekkjAF9ESvqE05R2nECAACYJJ2Enmx6xLNufLhBsyqK/+AYPyErLEu2Z1Bbqed6Q4c5GM3qkYxmmnt2OXGlnZRsK5BzT8bQXytXMFpmO9NrVW7BaFwrAgAAAAAAAAAAABgW7JA05XJ3OeZT0spZ3tud9ENp+mek302TOnZ4bzN+idS6RWrbOmDDxSBx0lLXAXcplBXMDlPLK2CtTgpUEKoGAAAA5EAwGgAMU5/+9KdVV1enT3ziE2ptbT1SvnnzZm3evNnY7pOf/KTuuOMOhUKhARvbxRdfrJtuuknLly9XKpUasP0AAAAAwHCUdBKe5UGrsOu4Qm7OL7cb+QdaxI55hh7kG/xl2s4U6iBJthVQyAor4XT1eb/FYgqOkNxgBFM4AsFoAABgqHi+5WkdSjV51p1du9QYVjtQusN327Pq/OZew5mTbzCa5RdcFlcsUJFzX3HHPD/3uxbqfU3g9fod7qecFBaMVl7HBgAAAAAAAAAAAGCEGnWUZEekdDy7bsJ5UiAszfyC9OLXvNuf96jkONILX5U23ialOqW6+dIp/yKNXtC93S8NnzeITZQu39m9vv4fpRf+j/e2l213A7feus/dX88xh+uksadJHTul8BgpEJV2/t7d3unxwNvq2W5Z8yvZ/QdiUorPcxaFk5Tie92lUHY4d6CaKWQtwEPMAAAAMDIQjAYAw9j73/9+nX322br55pt17733at++fZ7bhUIhLVmyRMuXL9fpp59ekrF97Wtf0+WXX65f/OIXeuqpp7Rx40Y1Nzero4NfqgEAAACAH1MwWsAq7Fd9hd3szh+o44m2AAAgAElEQVTQezKFL3iFpRWyXa7zHLVjSqSGejBazCcYbWSGegAAgKHnsaaHPMsjVlSnVi8p8Wje3bcxGI2/m/jxCy6LO52KKY9gNMM8NWJHFbRCCiiolJJZ9XEns52pn5idewxDSSFhZ4RoAwAAAAAAAAAAACgLgag05X1u2FhPdfPcEDFJmnSxdzDajM+7Xy1Lmv9d6YSvS+kuKVQjWXbmtpGxUtzjHs5jPpO5PuECSR7BaMEqN0TNsqXZ17lLPtIp96sdyK7r3CPteUyqminVHi81b5AePN67n+rZ0qHXvOtq5kjLXpGeu156/Qf5jQtm6S6pc7e7FCoQLTBQrcd6IFz8YwEAAAAGCMFoADDItm7dOqD919fX6wc/+IH++Z//WevWrdNrr72mvXv3Kh6Pa+zYsWpoaNCZZ56pqqqqgvtesWKFVqxY0eexzZkzR9/+9rf73B4AAAAARqKkk31DviQFrVBB/XCze9+Zzke+wV/G4AVD4NqRejuqllRzn/dbLH4BcBE72u/zAwAAMJC2d27RGx0bPOtOrj5HscCoEo/IZZoLjtQ5lCPHWGep+wnbfuHC+YbKmc7x4XltxI6qPd2as12HR7Cd2768rqcKuf4jRBsAAAAAAAAAAABA2Vj4I6ljp7RnjbtePUs68z/dwDNJqjtRmvYJ6c2fd7eJTZZmfyWzn+AoSYbPFjR+xDs0rPHqzPW6eVLVDKllU2b50Vdlh63lwysQ7bBovXTU+7vXYxPM2055n/Tqzd51jR91z9VJ33eD3faskZykNOtL0qijpWc+L22+w9z3pW9KO/5bWvdl7/rj/s4Nldv8M3MfcKU6pY5d7lKoQIUbkBbpFZ4W8ijLCFirlezCPqsOAAAA9BfBaAAwQti2rUWLFmnRokWDPRQAAAAAQD8knYRneWgAg9G42T2T6XzEnTyDFxxDMFqO12SoBI757S9qx4yhHn6BagAAAKWypulBY93ZdUtLOJJM5jnmyAxGk08wmoocjGaapx7uO2rHDMFoHb7rh5Vb0HS+14qWLIWtyACPBgAAAAAAAAAAAACKJDJaOn+11LpVSnVI1bO7Q9EOO+UuaeJF0u7VUmWjGwZWMSn/fcy+XtqxUmrd3F026zo3hK0ny5LO/p205mKp9Q23bOJSacEthR9XocJ1UqhGSmQ/qFdT3iftXiXtezq7rme42uRl7tLT1I/4B6ONapQmnO9dV3GUNPdb7vdjT5fWftx7u6kfk7bc41034QJ3jPEDUtfBXkuPMq/jHklS7VJHu9Sxo/C2wcpeYWl5BqyFav3D+wAAAAADgtEAAAAAAACAMmIKRgsWGoxmCK/y3LbMbuQfaKbzkW9AmWm7XAF0pv2WOnDMFPhgyVLICpvPz4gN9QAAAENFe6pVfz70mGfd9NgcTY40lnZAPZjCs0ZquKxvLJrVMxjNfK3S2e/5eezdr/kF/3am2z23K79gtPyuFSN2NOO1AAAAAAAAAAAAAICyUNlorrMs6egr3aUvRk2RLlorbfuN1LpFql/sBq15qZktXbJJOrTBDSqrmNy3fRbKst0AsTfuyiyvminVLZBmf0V64gPK+Mv9lCukqun+/Y49XQpWScmW7Lrx57nntmaONO4sae/jmfUzr+3+flSjeR+1J5jrZn9FmmQ41z2lU1KiyT887fDSO2TN69hGkmSru7S/XXjbUE1mWFrvgDWvkLXwaClU7b5nAQAAMCIRjAYAAAAAAACUEVMwWsAq7Fd9hdycH7YiBfU93PU3tMIULJbrNelvIFuxmPYXtiKyLdt4HKbjBgAAKJW1zY+qy4l71p1du8yzvFSGylxvqHAcv2i0bgEroJAVVsLpyqrLP7jYf35uCgrr3b/peqDsgtHyDNEuJGwbAAAAAAAAAAAAAEaMyBhp+mfy2/ZwWFipLfi+1LZNeud/3PXKadLZD7jjOeoK9/vNP5Xie6WJS6Xj/z53n5YlvXeL9JuxmeV2SDr2b7rXF/9O+vPnpR2/d4Owpn9WOvaG7vqxp7ghWonmzH4qjpKqZpj3H6rKPUZJsgPuaxQZk9/2PaUTUlfvUDWPQLXeZfEDUsr7YWsjRqLZXdq2FtjQksK1PoFqPgFrwSr3fQkAAICyRTAaAAAAAAAAUEaSTtKzPGiFCurHdHN/1nZWVDZP2sqQbzCCiWm7XK+JKXgg30C2Yok7pvEXFhwBAABQSmknrceaHvasqw7UaV7VKSUeUSbzHGqkhsuag9FsZV6fROyoEimvYLT8zp1pPn34NTGH1mW2MwejVeQ1jqEi3yA303kBAAAAAAAAAAAAAAxxoSrp3D+44WiJQ1LNsVLPzwo3XOIuhYqMka5KSK/9k7TrD1J0ohsSN35x9zbhWumM+yQnnbnPwwJRac6N0otfyyw//mvSmJO992sFpJrjCh9voeyQFB3nLoVKdeUIVPMJWEuN5M/fOt3no1BWwH2/hXqEpfkFqvUsC44iVA0AAGAIIBgNAAAAAAAAKCNJJ+FZPmDBaNzsnsV0TvINKMsVvGDe79AIHMsdHDE0AtwAAAB6er39Je1J7PSsO7P2woLn08U2VOZ6Q4U5Fi1bxI6pNXUoq7zfwcWW//y2dzvzPLm8rqnyv1bMbzsAAAAAAAAAAAAAwBA1akrx+7SD0pz/4y5+/B7afNzfSaMapbd/LQUi0tFXSw2XunXjzpL2Pp65/cSLpHBNv4Y94AJhKTbeXQqV6nSDweI+4WmmsnT2g+ZGDCclxfe7S2uBbe2QFKp1A9VCdVLNbGn656WxhnC+QqTi0r6npMhYN9CPB5gDAAAYEYwGAAAAAAAAlJGkk/QsD1qF/aov35vzo2V2E38pmM5JPM/gL2PwQo5zbdyvU9rAMdP4D4/PFJCQcLqUdlKyrcCAjQ0AAMBkTdODnuW2bJ1Zc2GJR5ONcNnezNFoljKfyHs4wKy3vOfnjv/8PGKZ5v/d7ZJOwhhiHSuza6p8rxXLLfANAAAAAAAAAAAAAFBGGj/kLr2d8Utp9TKp6WV3ffQi6ZR/Le3YSi0QlWIT3aUQjiOlOrzD07JC1jy2MXxmfURIJ6T4XneRpP1rpTfvdt9v486QxpwiVc+UAjEpOEoKVrpf7bBkWeZ+3/qV9Nx1Useu7rKTbpUmXCDVHJvf2BIt0p7H3PC2qunS3qeldFxqfUOKTpQmLXXLAQAAhgGC0QAAAAAAAIAyYrrZPmiFCuonYAUUssJKOP5PAjMFNIxkpnNiCgzL2s4UvGAIdMi931IHo3nv7/D4/ML04um4YoGKARkXAACAyYHEXr3c+qxn3dzKU1UbGlPiEWUzh+/mN8ccbhyfYDT1DkbrZ6hcX+e3Pfv321e5BYjlG45NiDYAAAAAAAAAAAAAoOQqGqT3vCgdet0Nhqqc5h9ENZJZlhSscJeKhsLaOo6UbM0OS+sdoNY7YC1xOFQtPTDHNNgO/NldTKxgZlDaka+jpP3PuOevt3VfNvcXGSPFGqT4HindJcX35x7jOkkTzpfmfls6sE5q3ybVnihN/gt3HJL7+qbj0rb/csPfxp4qjVmU2U/63XsW7MLuUQAAACgmgtEAAAAAAACAMpIyPH0raBX+q76IHVMilSsYjZvdezOdk/yDFwzBaDlC6Ez7LXVYRq7x+71n4ukOgtEAAEDJPd70sBx5f+Bycd17SjwabxHLMNczhOoOd45jDkbr/XlmY6hcHufOcRzj/PZwv8aA4h79d6bM1wIxu7zmvyErLEtWjnA6QrQBAAAAAAAAAAAAAIPEsqSa2YM9iuHNsqRQlbuMOqqwtk5aSrSYw9RMZfEDUqJZyvF5hSHNSbrHkGguTn/x/fmFofX2zv+6S2+BmBQZJ7W/7d3uwrXS/j9Lr39fan3TLas5Tjr2b6SjPuAGEsqRaua43zdvkNKdUuUxbvjaroelZJtUv1iqOqbwcQMAAPRCMBoAAAAAAABQRpJOwrM8aBX+NKaIHVVryv8Pr9zsni1iGYIR8gwoixsC1HKF0Jlei3wD2YrFPP53g9EM50caucEeAABg8CTSCT3Z7PFBP0kTw1M0I3Z8iUfkzRi+VeIQ3KHCL5TLUmYyWn/OXcLpMu4rkisYrce82G9OXm5h05ZlKWJHc15ncK0IAAAAAAAAAAAAAACyWLYUrnEXNRbW1km7oWKHg9JyBqr1WE8cGoijGV5SHeZQNEn6n1Ozy5pfldZ+3F0KMXqhVDFZsoLue6JqphSuk2Z8QerYKb34Nent/+duG6yUjvs7KTrBfS2j46TJl0qpTskKSJExUvN6qe0tafQCKdUubf6Z+5pH6qX6s6Sxp0nBCslxsp+6CAAAyhbBaAAAAAAAAEAZSRiD0Qr/VZ9fgNVh0TK7ib8UTOfEFBiW73a5ggXM+y1tWIZpf93BEeb3TL7nCAAAoFiea3nSGAZ8du17ZA2RD8LlE741svg9/bd3MJr3/DOfAGH/QDP3Ncln/u/3OkXtipzjGGoidizn+eNaEQAAAAAAAAAAAAAAFJVlu+FZ4TqpclphbdNJN1Std6Bawitkrdd6snVgjmckO/Csu/T2/A3ZZclW6cW/K96+Q7Xueygy+t33U6+vkdHeZYEKQtUAABhiCEYDAAAAAAAAykjSGIwWKrivfG5kzxXWNRIZgxGcTqWdtGzLNrZ1HMcYLJbr9ehP4EMxxR1DMJp1OBgtYmxb6rECAAA81vSQZ3nEiurk6nNKOxgfBKNlyj8Wze/c5Q4Q9ju/h/vNp//OdLvnNgEFFbILv1YbbPmEaHOtCAAAAAAAAAAAAAAAhgw7KEXGuEuh0olewWkHpd2rpA3fK/44MfASTe7StqWwdnaoV2Da6DwD1mrdtgAAoOgIRgMAAAAAAADKSMpJepb3JRgtnxvZ8wlPG2n8zluXE1fUMp+zpJNQWumC+/Wrj6c75TiOrBI9ocoUHnF4fLYVUMgKK+F0ebTNHU4BAABQLG93vqEtna971p1Ss0SxQEWJR2RmCsEt9VxvqHAKiEYzBhfnESrnNz893G9+wWje+4oGyvN6Kp9rxYjPdQ8AAAAAAAAAAAAAAEDZsENStN5dDpv0HqnhMmndddKBPw/e2FA66YTUudtdChWsMoeo+QWrBaukEfa5MAAACkEwGgAAAAAAAFAm0k7KGKrVl2C0fELP8rkhfqQxhVZIbviC33n1C17Ida5NgWtppZR0EgpZYd/2xWI6hp7jj9oxJVIEowEAgMG1pulBY93Zte8p4UhyM80x00qXdK43dJiD0axewWj5BJeZmALNevbrF1qXq59yDZrmWhEAAAAAAAAAAAAAAIx4406Xlj4jtWyW9r/71Q5LkbFSxRSp7kQp2SYlW92viVYp1eZdlmiVNt8x2EeEgZJscZf2twtrZwXMoWm5AtYCkYE5luEgnZT2PSUdeF6qmSONPVUKVkrxvVKoJvvcOWnJst1/px27pIpJUnCUuW/73ZiedEpS2g1XBAAMCILRAAAAAAAAgDKRdJLGuqBV+K/68rmRPWII4xrJ/M5bZ7pDNT5tfYMXcpxrv/3G050K2aUJyzAdQ8/xReyoWlLNWdsQjAYAAEqlPdWqZw897lk3I3a8JkWOKvGI/EWsoTHXGyrMsWiS1espqaZzF/eZex/ZxvGenwYUPBI+bQxGczqVdtKyLds8Ry7T6ym/MOhCtgEAAAAAAAAAAAAAACh7VdPdpb+6Dkpv/7/s8tN/KbVskl5e7t1u4e3SqKPcMKxHzvTeZuJF0mm/kLY/ID3z6ez6iilS7Vxp58q+jx/F56Sk+D53KVSgwiNEzSdY7XB5qMYNARuuWt6QnvigdPA573orIMUmSe3b/PupniUd8xk3IK1jl/TO/0iHXpe6DnhvHxkjTVwqVU6T9j/rBihOeZ/UcGn3+U51Sa98Q9rzuBSulWZ8Xpr07gNe0ynJSbj76Njlth+9wG3rOFLbFrcuFZcOrXdfz4bLpNjEvp0nACgTBKMBAAAAAAAAZSLpJIx1h2/aL0R+N7vnDk8baaI+5y1X8Ffc8QlGy3GufffrdKhS1b7ti8V0jD3HZ3pv+QXDAQAAFNPTzX9UwunyrFtct6zEo8ktmiN8t1RzvSHD8Y5Gs2RllfkFl+ViCk/LmNv6hNZ1OXFFrZg60+2e9bFARc4xDEV+1x6FbAMAAAAAAAAAAAAAAIB3Tf+MtO0/JSfdXRabLE25XNq92txu2selYIXbLjbRDU3qrfZEKTpOmv4p6ZhPukFrbW9LdXOlaH33do4jHXjWDeSqOV4KVUrxA9LeJ92wpdp50thTpa33SnvWuPvc9uvMfY09TQpWuWFxiWZp1x+kZJuU4nPiJZVqlzrapY4dBTa03FAur9C0XAFrgZhkZX9+a8hItEqrlkqtm83bOKncoWiSG0L2/Ffy33d8v/vvpqetv3C/BiulUFX2v90d/52739gkqWOnd91LX5fOfkByklKyQxp3hiTH3ZfjSJ17pJaNUvVs9+dDvnY+JL349264XN0CaeFt7/YtN3iu/W0pOkGKTXDfFyZdze5YTEF8Tto9z21vuT9XwjX5jxHAiEEwGgAAAAAAAFAmkk7SWDdQwWjc7J7N77zlCv7yC07Lda79gtNKGThmOoZIHuERpuAJAACAYko7aT3W9JBnXU1wtOZWnlziEeXmN8f0C9cdrhx5B6OpkGC0HKHFftv0nHv7ByN3KGrHjPPxfK65hqJ8ArIJ0QYAAAAAAAAAAAAAACjAhHOls34rvfotqWWzGzS08EdSICrVL3bDxpItmW3GneWGokluuNCiO6THL88MV7PD0tSPda9btlQ9y116syxpzKLMsshoqeESSZd0l838grscluqS7KA54OiwfWul3Y9KrVul2uOlUVOldFx64gPmNstelg6+KMX3SVv+zQ1j6qtQrXTsV6TIOKnrgNR1sPtrvOf6ATfMbURy3j0PBwtvakd6BKb1Ck3zC1gL17rvn4H29q/8Q9EGS7LVXfrCFIomuf9mHjnDu86yM39OTL7E/fkRqpLsd+89CkSldEra+4S072k38Gzbb6XOd7rbHXxOeuTMvo29p+pjpeh4ac9q8zbRCdLs66TwGCkQkYKjpPadUmSMNP5cN4Rx/5/c91X92W7g3Fv3Sa1bpNEnSXP+xm0DYFghGA0AAAAAAAAoE0knYawLWoX/qi+/m93L80b+gRSwAgpZYSWcrqy6XOELpnpbds5wO9+wjDxCH4qlP+ERcad04wQAACPXhvYXtDfxjmfdWTUXKdCHufNA85ubl3KuN9R5PW/UdO7yCQ82B5pFPb/3al8jqTPd7llfrkHTBKMBAAAAAAAAAAAAAAAMgIZL3aW3YEya/13pzz3CyIKV0tybstsv+YP07JekQ6+54WPzvifVHjew4w6E89tu7Knukq/Ri9xjqD3eXZ/9ZTcIqWWjG6QUGy/9Z62UaM5uO+YU6aK17ved+6R0l1QxKf99p7q6A8Jyhaj1rvN54P2wlo67oVmd3p/N8xWqNoSo+QWr1bn/DiyvT415OPh84eMarnqGoknSjv92l8FyaIO7+Ol8R3rhq/n192qv9Z0rpTf/VTr3Ee9QSABla+h94hsAAAAAAACAJ79gtL6EO+RzI3u53sg/0CJ2VImUVzCaf/iCX6iYleMPdiErLEu2HKWz6vIJfSiGpJNQSt5/yI1YucMjSjVOAAAwsq05+KBnua2Azqi9oMSjyY/fXG8kBqM5cgw12XNm0zVL0kko5SR9r5VM8/eeocT5hNaZXqNyvZ7KJyC7XI8NAAAAAAAAAAAAAABgSJrxeanmeDe8KFQtHfUB74CfCedLF6+X0knJLpO4kPHnSrsfzS6f9cXssopJmQFnM6+VXv1W9nYzPt/9fXRs4WMKhN3gtdj4wto5jpRsywxMix/IL2AtcajwcQ4XiUPu0ra1sHZWMDsszRSm1vTSgAwdZaJ9m7RytjT1Y1JwlBsON+4MafRJUrhWik7IP2QPwJBRJjMdAAAAAAAAAEmfJwuFrFDB/eVzI3s+4WkjUcSOqTWV/YfJXKEVpmCwfIIHLMtSxI6qM91e8H6LxS/YrOd7xfS+GYmhHgAAoLT2de3Wq23rPOvmVZ2qmuDoEo8oP0NhrjeUmILRLI9gtFzBZRWBSt96L5lzW/Nc/XD7Do/XTZKidoWx7VDWM/TYuA3XigAAAAAAAAAAAAAAAMVVf5a75KNcQtEkN6iodzBaqEZquDx322M+Jb1xp9S5p7usepYbHDcYLEsKVbrLqKMKa5tOSl1NPiFqPgFr6fjAHM9Q5yTd177n6w/42XJP9/eb78isO+dBaeJSAtKAMlJGsx0AAAAAAABgZEs6CWNdsA/BaPnd7J47sGskMp07v+AwSYr3IxhNcsPsvMMy/PdbLH6hHD2D9kzHMxJDPQAAQGk93vywMVRrce2yEo+mMKZgtFxzzJHE6/NIfgFdnemOfgejBayAQlZYCafLs3+3H+/XKJ8w6qEon9CziFWexwYAAAAAAAAAAAAAAIASm/pRqWO7tP67UuKQG2x2+i/dcLFcKhulC56UNtwiNb8qjV4kHf/3UrAMH1hoB6XoWHcpVLIjMzAt7hOidmT9gBvEZvg8HTDirF4mHfOX0sIfS4HwYI8GQB4IRgMAAAAAAADKRLGD0fK5ST+fG+JHItO5yxVQlk/wgh/TdqUKHPPbTySvYDRCPQAAwMBJpLv0VPP/etZNCh+l6bE5JR5RYaJ2TM0e5SNxDuU4aUNNdjKa33VNrnmyKXSud58RO6pEKjsY7XD/XoF2ucY2lOV3rViexwYAAAAAAAAAAAAAAIASsyzpuL+Tjr3RDe2KjiusfdV06eQ7BmZs5SIYk4KTpYrJhbVz0lKi2SM0LY+AtZT3Z6LKzqKfSH/+vHdd9SzpL9ZLlu2upxPSyyuk12+VUh1S/RJp3nekPyzybj/3ZmnOV6WWTdKh16Snr3HPd19M/ZjUcJm0c6W080E3RDDZJgWiUt0CKVwrJVqkvY/3rX+43rjLfV2nfniwRwIgDwSjAQAAAAAAAGXCLxgtYBX+q758wrjK9Ub+gWY6d6ZghcPijiEYzco3GM0UODYUgtGint/n2x4AAKC/1rU8obZUi2fd2XXLZFnZoVpDiWlOOBLnUI7hKaWWRzCaX0BXrnNnDC62egejxdSaOuTR3p3/5xuwVi5yhZ7ZCijYh2tQAAAAAAAAAAAAAAAAjGB2sPBQNPSPZUvhOnepnFZY21Q8OyzNFKLWu8xJDczx9MXEC6VgpZRsza6bfEl3KJok2SFp7rekE2+SUp1uIJ0k1S+W9qzJbj/l/W7wX/VMdxmzSHrH++GuOuUu6U9/6V13ZYcbgCZJUy7zP57OPdJz10tb73XXq2dLoVp37O3bpcar3fJEq7TxNv++vDRcLm3/rbl+yvukjl3SvqcL7/sw0/ksle33E4wGlAk+qQoAAAAAAACUiaST9Cy3FZDd848xecp1s7u7TX6BXSONKeDAFHx2pN4QmJDveTaFZeQKZCsW0/gtWQpbkSPr5mC00owTAACMTI81PeRZHrUrdHL14hKPpnDGOVSOOeZw5B2L5q3nPLS3XPNPY3Bxr9fCHFp3OBjNu5+oXeG7/6Eq1/VJxI4O+aBBAAAAAAAAAAAAAAAAAP0QiEixCe5SCMeRki3mMDW/gLWk94NR+2z8uW4g3NSPSpt+klkXqJBm/JV3O8vqDkWTpGNvkPY+kRn4NuX9UvWMzHaTLzUHo02+WLIC2aFx9Wd3h6LlI1ovnf7v7uI47lhN5n9X2ni7G2LWsVMK1UgtG6XWN723P365dOIK6eGF0oF13tuc9Rsp2SH9yuezcSfdJq37kmH8E6TzVkn3+dwDFaqREs3edXULpOmfkbb9RnrnEXMffkzHD2DIIRgNAAAAAAAAKBNJJ+FZHrJCfeovVzBa0Aoq2Me+h7u+Bn/FjYEJuUPqfPfrlCZwzBTA1jsYoa/BcQAAAH31Vudmbe3c5Fl3avWSvOdbg8k0Px+Z4bLe0WiWsj/EZVu2IlbUc67Z1+Di3u+XXKF1nel2z/p8wqiHolz/Xsrh3xMAAAAAAAAAAAAAAACAQWBZUqjaXUYdXVjbdELqasoMSzOFqGWUHXDb9jT2dOn0e93vF/xActLS1n+X0klp3BnSop9IlY35jWvyxdKSh6VNP5U6d0sTL5Lm3Ji9XcNl0rovK+vzb0d/yA00m329tOF73eWBqBtG1le5Hm4ZiErHfiWzrH2n9F+TvbcfNcX9OvNaae0nsusnLnW/Bn0+Pzbjr6RZXzQHox31fv9xW7Z00q3S2o9715+zUopNdI+tr8Fo8X19aweg5AhGAwAAAAAAAMpE0kl6lvc1vMx0c/+Reoub3U3MoRW5ghe863O9FoeZAghMgWXFZhy/FfVdP6xU4wQAACPPmoMPGuvOrn1PCUfSd8Zw2RxzzOHIKSAYTXLn0/GURzBazuBic/BvT36vTdJJGEOsY2UaIJbzWjHP6xcAAAAAAAAAAAAAAAAAyJsdkqLj3KUQjiOl2rtD02ITM/sIhKWT75BOuk2yg274VqEmnO8ufkZNcYPINtzSXRatl477qvv9vO9KdfOlnb+XIuOkqddIo+cXPpb+iI6XImOk+P7susPH13CZFLxWSrZl1k/9WPf345dIu1dl9zH1o+7XY/5SeuMuj/pr/McXHi1NOE+SpayAuegEd/yHtzM5+U7pmU+b63uH6AEYsvrw0xoAAAAAAADAYDDdbB+w+vb8A9PN/Ydxs7uZKRgtV/CXqd7UX/Z23q9JqcIy4o4p2C3Wa31wxwkAAEaW1tQhrWt5wrNuVsWJmhBpKPGI+oY5VN+Zzl1nn4OL85vfdqY7fK8B8p3nDzW5g9HK87gAAAAAAAAAAAAAAAAADEOWJQVHSRUNUt2J5mC1QLhvoWiFmPeP0tkPSDOvleZ+W7roGan2hO5xNl4tnf7v0knfL30omkVmrdIAACAASURBVCTZgcyAs8PGnyuNOtr9PlwrnfuoVDndXQ9Vu8d19JXd28+8NruPMadKY052v591XXZ42eRLpdEL3e8b3us9vhO/6b6Oky/Orpvxue7XL1jh3V5yg/GqZ5vru5rMdQCGlL7dMQkAAAAAAACg5FJO0rM82MdgtJAVliVLTu+nqLyLm93Non0MrTAHL+QXQmcKs4vnCGQrlnzHbxpn0kko5ST7HOYHAADg5enmPyrhdHnWLa5dVuLR9J1f+NZI4zje1yiW4UNp5lC5vgYXR3utm+bhnb77yBVGPVTluhY0XQ8BAAAAAAAAAAAAAAAAwIhmWVLDpe4yVM37rpTukrb8m5SKS5PeI53688xtxp4sXbpJ6tgtRca6gWo9TXmfdOavpNdvk9p3SBPOlxbc4h6/JNUeL134tPTGnVLrFql+sTTj8931R10pbX8gs087JDVc5n5/xn9I677kbhOqlqZ+XDr+a93bBqvMxxetl475tPT8V7zr03GpdavU9LK0f60UHiNNvUaKjpWctOQ42ccLYFBw9xkAAAAAAABQJhJOwrM8aIX61J9t2QpbEcUd77Crcr2JvxTMwQj+wQum+oiVX7CAXyBDKRjHn2dwhNtHpyoClUUdFwAAGLnSTkqPNT3sWVcbHKMTKheVeER9Zw73Ks1cbygxhTdbhu37Ok/ub/BvPN2hjpRfMJrPUymHsIjlfy1IiDYAAAAAAAAAAAAAAAAAlCk7KC38obTgB5KTlAIR87ax8ea6oz7gLibVM6X53/OuO/oqqWWT9OrNblBZZKx0xn1SbIJbH6yQTvkX6eQ7u8PUeqqb6wamJQ5llodHS7VzpYoGczCaJP1uauZ6723Do6WKKVL92e6+Nv5Yan7FDZSb9WVpwffdcXXuk+L7pMho6dBGN5Qt1S4l26TRC/3PLYCcCEYDAAAAAAAAykTSGIzW91/zRe2Y4qn8wgDQzRyMkCN4wRBCl++5HuywDHMwWqzXuvl4OtMdBKMBAICiebXtee1P7PasO6v2IgWs8nlqnymMKlf47sjiHY1mCurq9Dl3aSelLifuWdd7vm+a33amO3xfn3INmw5aQdkKKK2UZ32+wc4AAAAAAAAAAAAAAAAAgCHKDkgapM9YWpZ0wtelOTdKbW9JVTMky/bezksgIs34grT+O5nlM6+VAmEpNlE69xHp0Qv6Nr6uA+7S9GJ23eu3uku+Kqa4gWqxiVKkXho1RWr8iNS6xQ2Fa3ivW1eIdEJ69ovSsX8jVR1TWFugjBCMBgBDXHt7u5577jlt2rRJ+/btU2dnp2KxmMaPH6+ZM2dq/vz5CofDgz3MsnXOOedozZo1R9YdxxmQ/axevVpLliw5sr58+XKtWLFiQPYFAAAAYPhKpk3BaKE+9xmxY1LqoLkOnvyCEfyYAszyDUzoS+BDMZnG3/t8+L13ShXiBgAARobHmh70LA8oqDNqLizxaPrHGIJrCNcdzhx5/73GMgWjGYK6/Oae8bR3KJqUf/BvPN2pznS7Z11AwX5dqw0my7IUtWNqT7d61nOtCAAAAAAAAAAAAAAAAADot0BUqp7Vt7Zzb5Yi46S3/kOyQ9LRV0ozv9hdP/a04oyxv9q3uV87ezwE+I27ur//8+f73vfmn0on3SbN/CvvYDmgzBGMBgBDUCqV0q9+9Sv9/Oc/16pVq5RMJo3bRqNRXXTRRfrUpz6liy++uISjBAAAAACUWkre14f9C0bzvsE/V91I5xdQ5jiOLMNTaeKGALN8gwX6EvhQTPkHo5nfOwSjAQCAYtnbtUvr2573rJtfdZqqg7UlHlH/mOaEI3P+VFgwmilo2DcYzSdwrve8228ebgopjtox43VBOYjYUZ9gNK4VAQAAAAAAAAAAAAAAAACDyLKkY693Fy+BCqlymtT6ZmnHVWrrviRt+4106r+6xwsMI8T9AcAQ8+ijj2rOnDn60Ic+pEceecQ3FE2SOjs79cADD+iSSy7RokWL9Nxzz5VopIVpbGyUZVmyLEuNjY2DPRwAAAAAKEtJJ+FZHrT7E4xmDuQyhQvAHIyQVkpJx/ta3nGcvIPFTMyBD95hDMVmCo+IWJnjClsRcx8lGisAABj+Hm/6gxxDgNbi2mUlHk3/meaEI3H+5P2qSoZcNPO5c8znzu+89p53G0PrnA5zMFqgvK+n/K4HuVYEAAAAAAAAAAAAAAAAAAxpliU1fmSwR1Eae9ZIvz9B2vHgYI8EKCqC0QBgCPnGN76h888/Xxs3bswotyxLc+bM0YUXXqirr75a559/vmbOnJnV/tlnn9Vpp52mO++8s1RDBgAAAACUUCJtCEZTsM99+gVy5RvWNRL5BQGYAhYSTpfSSnvW5XuuzYEPnUo73n0Xkyn0ofe4bMs2hseZwtUAAAAK0ZWO6+nmP3rWNUQaNS02u8Qj6j/TXK8z3SnHMUaFDVPex2sZktH6EirnV9e7P2MwWrrTPEe2yjs8jGtFAAAAAAAAAAAAAAAAAEBZm3OjVLdgsEdRGoGINHr+YI8CKKq+3zEJACiq6667TrfeemtGWVVVlf72b/9WH/7wh3XUUUdltdm8ebPuvvtu3XLLLYrH45Kkrq4ufeYzn1FbW5uuu+66kowdAAAAAFAaSSfpWR60Q33u0y/gy69upPMLAog7HapUdXZ52hwIlm+wgN9r0uXEFR3g8AXTMXiNK2LHFE9lb+8XQAEAAJCvdS1PqC3d4ll3du0yWZZ3gNZQZprrOUor4XQpbEVKPKLBkzYGwZmC0czBZSadPnXhrGA0U/BapzrT7Z51sUCFsf9y4B+MxrUiAAAAAAAAAAAAAAAAAGCIC46SzntUWv9tac/jUmySVL9YClVL8X1S1wGp9U0pXCvtXi2lu6TWNwZ71H1z0g+l2MTBHgVQVASjAcAQcM8992SFop155pm677771NDQYGw3ffp03XTTTbrmmmt0xRVX6JVXXjlS95WvfEXz5s3TOeecM1DDHhZWr1492EMAAAAAgLylTMFoVt9/zed7s7uVX1jXSOQXUNZpCP7yC2XIN4TOL4Agnu4Y8DA7U6iZ1/soYkelVPa2fgEUAAAA+XAcR2sOPuhZF7MrtKj67BKPqDh8w3fTnQrbIycYTfIORjPF3ZnOnWluLpnn5yErrIAVyCgzzbMTTpfa062GMZV3eJjf+KN5BjsDAAAAAAAAAAAAAAAAADCowjXSvO8U3s5xpPZt0tpPSodekyJjpOh46Z1Hij/G/mp4r9T4ocEeBVB09mAPAABGuo0bN+raa6/NKDv99NP10EMP+Yai9TRz5kz98Y9/1LHHHnukLJ1O6yMf+Yj27dtX1PECAAAAAAZP0kl4lgetUJ/79AvSKvcb+QeSf0CZd8BC3DGHMkSsfIPR/MMyBpppH8ZgNM8+zOcBAAAgH1s7N+ntuPcT+U6rOc93zjSU+c0JSzHXG0ocYzCadzSa6brG77yZQ3+z+/J7TzUnDxY0pnLh937kWhEAAAAAAAAAAAAAAAAAMKxZljTqKOm8/5Uu3y4te1E669d96+uiP0tzvy1V9MgPmfVl6dxHpOP+XrIjUqg6u11kTO6+Ry+STvlXd7zAMBMc7AEAwEh3ww03qLW1+0nytbW1+s1vfqPKysqC+qmvr9evf/1rzZ8/X11dXZKkHTt26Jvf/KZuvfXWoo4ZAAAAADA4TMFoAavvv+bzu8Gfm93NQlZYlmw5SmfVdRoCFvxCGfIN7/ALVzDtt5jMwWjZ4+pLOAUAAEA+1jQ9aKw7q3ZpCUdSXL4huD4hu8OTdzCaDMFopmsX/2C0/of+SlJz8oBnedkHo/ldK1rlGT4IAAAAAAAAAAAAAAAAAECfBavMdWNPl/Y9lV1eO1cas9Bdjvtqdv2E86W53zT3+0ufwLPFv5cmnCcFIuZtgDJGMBoADKLXXntNK1euzCj7zne+owkTJvSpvzlz5uiGG27QzTfffKTsrrvu0ooVK1RXV9evsQ41mzdv1ksvvaQdO3aopaVFlmWpoqJC48eP19SpU3XCCSeooqJiwMcRj8e1Zs0abdmyRQcOHFB9fb0aGhp01llnDcj+d+3apT/96U/as2eP9u/fr8rKStXX12vRokWaNm1a0fcHAAAAYGgxBaMFrVCf+4xY5pv1o3mGdY1ElmUpakfVkW7PqjMFLJiCy2zZeb+GvmEZAxw45jiO8RgKCY8oRYAbAAAYvlqSzXqu5QnPutkVczU+PLnEIyoev7le5wgLlzXGohmeaOg393Qcx7Nd3DAv9Qo08ws5MwejDfzfqQaS3zETog0AAAAAAAAAAAAAAAAAGHEsSxp/nrT7j9l1J/9MWnWh1LEzs3zaJ/q3z/Boqcvjc4oTl0qTl/Wvb2CIIxgNAAbRrbfeKsfpvrVj7Nix+sQn+jexue666/S9731PiYR7s3xbW5vuvPNO3XjjjVnbfvzjH9c999xzZH3Lli1qbGzMaz+rV6/WkiVLjqwvX75cK1as8O3/sLfeest444okfexjH9Pdd9+dVR6Px3Xbbbfpzjvv1KZNm3zHFwgENG/ePF122WW6/vrrjSFl55xzjtasWXNkvefr4ae5uVlf//rXdffdd+vQoUNZ9VVVVbryyiv1jW98Q5MmTcqrT5NEIqG77rpLP/7xj/Xyyy8bt5sxY4ZuuOEGffKTn1QwyH/xAAAAwHCUdJKe5aH+BKP5hC9ws7u/iB0zBKN5ByyYgssidsz3OrmngBVU0Ap5huQNdOBY0kkqrZRnXdQjYM/03hroADcAADC8PdX8v8Z58eLa8v6AR8gKy5attNJZdaY55nBl+nuNJUMwmuU990wrpaST9LxmMob+evTld23UnDzoWe4XLFYO/K8VCdEGAAAAAAAAAAAAAAAAAIxAs6+X9qyWnB731zRcLtUeJ537R+nJq6SmF6VAhTTrS9KsL/Zzf38tvfQP2eXTP9O/foEyQGoKAAyihx9+OGP9mmuuUTgc7lef48aN0yWXXKL7778/Yz9ewWjlZNu2bbrooou0YcOGvLZPpVJat26d1q1bp6uuukrTp08v2lhefPFFLVu2TDt37jRu09LSon/5l3/R/fffr9/97nd93te6dev0wQ9+UG+++WbObTdt2qTPfvaz+slPfqKVK1dq8uTJfd4vAADlpjl5UK+2rdM78e0Dup+QHda02GzNrpirgBUY0H2NVK3JQ3q1bZ0OpZo1Z9Q8TY40DvaQMEy0JJv0Sts67YpvG+yhZAhYQTVGZ2jOqPkK2bmvB73CsCQp2K9gNPPN+uV+I/9AM507U/CXORitsFCBiB1VMpX9Xniy+X+0qf0VSZJlWZoUPkrHVZ6kykC1sS/HcfR6+0t6o2NDzsAy0/vv8Jiyy7zPzxsd63X/nruPrNcER2vOqPmaGJniu//dXTv0aus6NSU9nnQj9/06veI4zYgd5xs0V6p5Q6HCduTIPMO27D71sb1zqza0P6+WZHPebYJWSFNjszRn1DwFrOL+yeBgYp/Wtz2vuNOp40ctVH14YlH73xHfqvVtLyiRjmt6xRzNiB2fd8gggNxy/R8RtEKaFpulWRVzFbL7PhcBCpF2Unq86WHPutHBcTqhcmGJR1RclmUpYkc9w3cfb3pYr7W96NvetmxNjhyt40ctVCwwaqCG2S97unbp1bZ1OpjY57vdrq7Crt38rl1+u/duz2umzR3rPbf3mtuGrYix/4TTZeinvK+nCEYDAAAAAAAAAAAAAAAAAKCXycukJQ9Lm34qdb4jTbhQOu6rbl3NbGnZC1LnXilcJ9lFuEfjmL+U3vy51Nojb2Ls6dKk8n6YMJAPgtGAISblpNSU9L8RAP1XGxw76EEW27dv19atWzPKLrzwwqL0feGFF2YEo61du1aJREKhUHnenNbV1aWlS5dmhaKNHj1aJ5xwgsaPH69QKKSWlhbt2rVL69evV1tb24CMZf369TrvvPO0f//+jPLx48dr/vz5qq2t1e7du7V27Vp1dHTowIEDuvjii/W9732v4H2tXLlSV155pdrbM2+AmjhxoubOnavRo0erra1N69ev16ZNm47Uv/DCCzrllFO0du1aNTQ09O1AAQAoIzvjb+m2bct1KNVUsn0uqDpdn5h4fdHDQ0a6PV07ddu25TqQ3CtJ+q+9lj484a90es35gzwylLt34tt12/blakruz73xIJlVcYI+N/lrOW8uNwVT9efnkV+AADe7+zOdn850h2d53FBeaGBC1I6pLdWSVf5S6zNZZaOD4/TlKf9X4zwCqdJOWr/c/WM91fy/Be3fi2cwmuV9XLu6tmUFXfx2b0CfnHS9FlSd4dnmhZa1umvnLUop6T+Q/dKSuov1/nF/6RmQNRjzhkItqlqsayZ+qeDfXT3Z9Ih+ufvHcuT0ab/Hj1qoT0+6Ma+Qxnxs7dio27d/U21p9736X9Y9+sykr+r4IgXWPN38R/37O7fLUdot2C8trl2mD9Z/mnA0oAgcx9F9u+/QE81/yLntnFEL9NlJXy3azw/Azytt645cM/Z2Zu1FsodBiHnEjnkGo73Y+qe8+5gQbtCXGr6h2tCYYg6t315pfVZ37vxHY5BYPix5/z/vd+2yuun3Be3D6xrJtmxFrKjijn+YcE+xMg9G87tWJEQbAAAAAAAAAAAAAAAAADBiTTjfXUyi44q3r9hE6YKnpM0/lZpflcacLM34ghQwP/AVGC64gxsYYpqS+/QPb352sIcx7H1z2k81JjR+UMfw5JNPZpUtXFicG0NPOumkjPWOjg698MILWrRoUVH6z9ctt9yiFStWSJLOPPNM7dixQ5I0efJkPfHEE8Z2lZWVGes///nPtX79+iPrjY2Nuv3227V06VLZtp3V3nEcrVu3TitXrtRdd91VhCNxJRIJffjDH84IRZs4caJuvfVWXXHFFRljaW1t1T/90z/pW9/6lpqamnTjjTcWtK/169frqquuyghFW7p0qb7xjW/o5JNPztr++eef15e//GU9/vjjkqQdO3bo6quv1urVqxUIlP+NYAAA+Pnt3ntKHm7yXMtTWlh1tuZVnVrS/Q53K/fdl3GDuyNH/7H7Di2oOoMbbtEvv9v370M6FE2SXm9/WX9qXqWz697ju13S8Q6FClp9D8L2CxAoNLBrpDH9bIqnvcMSTOWFBtBFrPy3P5Dcq5X7/kOfmPTXWXWbO9YXJRRN8n6vFHJcaaV03zt3aG7lqVmBYGknpV/u/knuULR3rTq4UqdWn6sp0WlZdb/d+29DOhRNkv7cskYn1yzWcaMW5N2mM92hX+25s8+haJL0StuzWtfypE6tWdLnPnr6zd6fHwlFk9yfX/e+c7tuPuZf+x1c1pWO6z92/7Q7FO1da5oe1CnVS9QYm9Gv/gFIWzpfzysUTZLWtz2nZw6t0Rm1FwzwqADpsYMPeZYHraDOqBke78FihBO/07Vdjxz8rT5Q/6kijKg4HMfRL3f/pF+haJJfMFrxrl1Mr0HEjiqeyj8Yrdyvp/yvFQnRBgAAAAAAAAAAAAAAAACgJGLjpRO+PtijAEouO00GAFAS27dvz1gfP368xowZU5S+jz/++Jz7K4WxY8eqsbFRjY2NCga7sziDweCRcq9l7NixGf088MADGW0feeQRLVu2zDMUTZIsy9LChQu1YsUKbd26VUcffXRRjueHP/yhXnjhhSPrEydO1BNPPKEPfOADWWOprKzU8uXLdd9998m2bR08eDDv/aTTaV155ZVqa2s7UrZixQo99NBDnqFokjR//nw9+uijet/73nek7IknntC9996b934BAChHaSel19tfGpR9b2h7IfdGKMiG9uxzmnSSerPjtUEYDYaTcvn3ur79+ZzbJJ2EZ3l/gtFidoWxjlBCf6aAss50h2d53PEuLyToTJJigVEFbe/181WSXmt7saB+/Hi9V/zeW17a0i16u/ONrPId8bfUmmouqK/1bdn/ntx5Q/GOeSBt8Bi/nzc6NvQ7ZKQv+zXpTHfojY4NWeXNqYPa3bWj3/37He+GPH6WAsjt5dZnC9p+U8crAzQSoNuerp3GOfOCqjNUFawp8YgGRqFzKJNXCvx3PNDe6dpelMDqgOX97LdiXrtEDa+BqdykWK/lYIna3tcdIStsfB0AAAAAAAAAAAAAAAAAAACAYiAYDQAGyYEDBzLW6+rqitZ3NBpVJBLx3V85eeutt458P3fuXE2fPj3vtoFAQKFQ3wMCDkun0/rhD3+YUfazn/1M06ZN8213xRVX6Atf+EJB+7r//vv1yivdNxJ+8IMf1PLly3O2CwaDuueee1RfX3+k7JZbbilo3wDw/9m79zA56/r+/6/PHHZmctzNgUAJMWCMBAQRQQUMAaFgUBRRi1C/IlrlVxWlFbXW1hNopdJ+C/qzVdofWmurVRBPUMEDQUSI0SIIKIST4RSSzW4OuzOzc/j8/lg22Z293/fe95x39/m4Lq4rc99z3/dnDvchS+7nAtNNsVpU2Zc7su2h6q6ObHemqvqKhiq7A+cVqsNtHg1mklJ1REVf6PQwIrH2gfGsY16qgZvSD8wcHBgRWJF5rjKJeMGu2cYKIxSNMFq+Ejw9l4wXTFiVOyzW84cqu+W9nzQ9bmzMsiK7Sj2JzKTpq+bEG6ckDVUmn1/3BEybej2T96ditdCx64a49kQ4Hkx4frk5n2U973WQoM9xTL4J5/Ww726zXgMw2+0obYv1/GK12KKRAPvcOvg/5rx1vWe0cSSt9dyY13qWgfJ2VX21KetqhrDrgzgOyR0aOL0nkdFzss9ryjZWzTncmB79s0koaY51ujgk93wlAv5JyfPmTP4FTQAAAAAAAAAAAAAAAAAAAEAzEUYDgA6pDZX19vY2df216+vv72/q+jvlmWee6ch2b731Vj366KN7Hx977LF69atfHWnZj370o7HibFddddXePzvn9JnPfCbysvPmzdOFF1649/E999wzYdwAAMw0VnimHfIVYl3NVKza4apStdTGkWCmmU5hvSjHlbIP3h9Srv4gdDqR1qsWv6lmfSm9asm5da9ztsgmJwflJPt7V6gOBa/HCKxZXt57uhallkZ+vldVI35ysKbQhPNoyqUmfX/GrMyu1pHzXhJrfUHRrHpCWvmA97oZQa52iXvsasZnKTXvPRquBH/XJfs4Fkc+5PUWjAAhgHgGyvHCaNLkACfQTCPVon6x88eB8w7KHKKV2dVtHlHrrOtdr97U4obXU/blpsXImiHs/B3V3OR8nbroteb8Vy0+p6FotCQ9N7dGL5j74sB5r+h7jeYlF0Raz2mLztac5LyGxtJpc5Pz9ceLXjdhWsZl9cpFr+/QiAAAAAAAAAAAAAAAAAAAADBbNPavggEAXcs51+khNM2hhx6q++67T5K0ZcsWXXHFFbrkkkvaOobbbrttwuNzz40eCFi6dKlOO+00/eAHP5jyuUNDQ7rjjjv2Pj722GN18MEHRx+opJNPPlmXXnrp3sc/+9nPtHLlyljrAABguih6O6b1/DlHNBQKGrNt5Gk9U3py0vRmBUgwKizE0oyACmavsO/W6jlHKN2E40Rcg+UdeqL46KTpUUJIFV8OnN7ozf+nLHqt9us5UHfvuVOZRFYvnr9WB+dmTlyiVXJG0Mz63lkxCGs9lsXp/fT+FX+nX+z8sR4rbFZVFUlSsVrU5vy9gcsUqsPKJLI14wmOVy1OL9P+PQdOOY5lPQeGflcSLqF3/NEHdfvOH+uB4XsmfMc3D98XeB4POr9a+0ba9WhecoEGytsbWo8kPX/OkQ3vR/V4ZuQpbSs9NWl63ACr9VnmEnN1SO75k6bvKG3XUyN/iLyeuMKOvSU/0vD6CyHvT7NeAzDbBR1bJckpIa/qpOmeMBpa7Je7bjWP8ev6zphR/09kSc/+umTFZ3THzp/o0cKDgfvceBVf0e+GfxM4b6Dcr/mp5v5innpZ12Ipl9Lz5xwZuqxTQgdlD9FLFqzTspDr1BfMO0Z/edCntWn3bdo68nis8fW4jJ6bW6MTek9TTyIT+Jw/yqzQJSsu1527fqothYcDP5v5yV69YN4xetG842Jtv1u9ZsmbdVD2EN2759eam5yvlyw4ScuzKzs9LAAAAAAAAAAAAAAAAAAAAMxwhNEAoEMWLVo04fHOnTubuv7BwcHQ7U0n5513nq677rq9jz/wgQ/o+uuv1wUXXKAzzjhDBxxwQMvHsGnTpgmPX/rSl8Za/qUvfWmkMNodd9yhUmlf+OOQQw7Ro48+Gmtb1erEG3EeeuihWMsDADCdFEPiZO/8o79SLjm34W38dOD7+uYz/zppepSAEaILi5gQRkMjwvbVd/7RhzQnOa+Noxn1692361+f/PtJ08NCQmOs/aEZIcgj5h2jI+Yd0/B6ZpNMIhc43YpnFoxjXTZmGE2S+tJLdMaScyZMGyzv0F8/9DZzTAsjjvO4Ba+YtO56JV1Ka3tP19re0ydM/7tH/1Jbig9Pen6+Mvk9siJYS9MHaM3cF+rHA9+dvEzA/mSF6STpzw/8iBnAaKWbd3xb3972lUnT415nWJ/lc7Kr9O7lH500/c6dP9VXnr5y0vS4QTZL0Oc4phnn9bDjJfFaoHFVX9FgaUfgvL7UYu0ob2vziDDbee+1YfCGwHlzEvN0zPy1bR5R6y1KL418PVb1Vb3vgT9RRZMjygOl7VqRfW6zh1cX6/zdl1oaeL1Sr5W51VrZwsjzfj0H6Mwl57Vs/d3GOaej55+go+ef0OmhAAAAAAAAAAAAAAAAAAAAYBYhjAZ0md7UEl16yBc7PYwZrze1pNNDmBQqGxgYaNq6C4WCCoXChGmLFy9u2vrb7eyzz9bZZ589IY7285//XD//+c8lSatWrdLxxx+vE044QWvXrtWaNWuaPoatW7dOePy85z0v1vKrV0e7CWfLli0THn/961/X17/+9VjbqrVjR/BNjAAAzARh4YtMItuUbeSMWE2U/1AGSQAAIABJREFUgBGiK1Tsz5IwGhoRFvnJGlGrVrO2W6jm5b2Xc85cttTCMBrisz/L4O+dFeayzjXNGo8UHKqy4lXt2DesGFzQud063+eSc2KuJ/hzSSiptOuxhtpS9vjjXWdYxzrrs7TisWGh0ljjCRl/2U+OtsQV9v5wjQY0bldlZ2BgSRqNNRFGQ7s9XPi9Hi8+EjjvuIWv6EjctJskXEK96UXqLz0zad5gub8DIwpmxW479fcyAAAAAAAAAAAAAAAAAAAAAN2LMBrQZZIuqcXpZZ0eBtrgwAMPnPD46aefVn9/f1MCZvfee++U25tOnHP6xje+oY997GP6x3/8x0nRt82bN2vz5s3693//d0mjobQ3v/nNuuiiiyYF6OpVG65bsGBBrOUXLlwY6Xn9/c2/SWn37t1NXycAAN2iWC0ETk+7HiVcsinbaFawBOHCQiwlP9LGkWCmsQI5GZdt2nEirlwiOEjkVVXRF5R1dhjACgWmHD/m6wQraGaFvFodg8i4rJycvHykMdnBseDvaDPlktHPr9Y5IpvImefp4BBc8PufS8wJDRK2kvXZWxE9i3VdYh1vrOklP6KyLzUcWww7rzcjeBoWP+MaDWjcQGm7OW9ReqkUcIjyfvK5B2iWWwduMOet7V3fxpF0r97U4sAw2kA3hdGM6xvreg4AAAAAAAAAAAAAAAAAAADA7JXo9AAAYLY6/vjjJ03btGlTU9Zdu55cLqejjjqqKevulFQqpU996lN69NFHdcUVV2jt2rXKZDKBz928ebM+/vGP65BDDtE3vvGNNo+0MSMjzY9+cFMiAGAms2+qbU5gRgqP3lR9pWnbme3CAidlX27jSDDTWIGcrBFlaoewY5QVzhpTMfaHRiNGqI8dzzTCaFa8qknfR+dcSGgrXnCs1cygWcA4zYBbYm5IYC0oBNd9xwP7OsMOiwWxzqPZZPBnaYXRJDsgF2s8AWG6Mc0Io4XFz5oxfmC2GyhvC5yedj2al4z3CyOARu0qD+rXu28PnHfY3KO1X88BbR5Rd+pLLQmcHhY6bLdWXwsDAAAAAAAAAAAAAAAAAAAAmDkIowFAh6xYsUIrVqyYMO2mm25qyrpvvvnmCY9f+tKXqqenpynrHlOpdCYCsmzZMr3//e/Xrbfeqp07d+r222/XFVdcode+9rWaN2/ehOfu3LlT5557rq6//vqGt9vX1zfh8a5du2Itv3PnzkjPW7Jk4s1Ln/70p+W9b+i/L3/5y7HGCgDAdFKsFgKnZxLZpm0jLJZibR/xWdEbqTkBFcxeVizIihG1Qy4ZEiQKif1UfUVVVQPnEUbrDCsgVqzmVfWTPyszXtXE76Mda5u4be99aHCs1ewgWFDAzXrfcjEDa9bxoPUhOIs1/rIvq1SNfv6zX1vwZxkWILGCeXGEraNUbTwKHxY/C4umAYjGCimNhpdc4DwvfjkDWuP2nTerouA48Lre9W0eTffqTS0OnD5Y7v4wWjuivAAAADOVcy7lnHuJc+4C59wHnXN/45y72Dn3RufcC51zqU6PEQAAAAAAAAAAAAAAAKgHYTQA6KBXvvKVEx5/9atfVanUWPRh27Zt+u53vxu6nTGp1MR//1guB99cFGRgYCD+4Josk8nouOOO0/vf/35df/316u/v19e//nWtXr1673O893rve9+rajU4HhDVsmXLJjx+8MEHYy3/wAMP1LWdqMsBADBbFY2gS6aJN9WGxZPCAkaIJ18JCaj4xgMqmL3sm+87GEYL2XZY0Kfs7b+zpbi/rSOs75GX14gvTphW9iXzeNbMUJ8dRpt4ziz6ghmxaUecIlbQzIhgZRNzzLEWqnl5P/H1tSNMF1dYoKwQI1AWFo8LMickfteM65vhkLGHHcuiCjtWjviiKk3YBjCbDRghpb70YiOLBrRGxVf0s8EfBs5bnN5Ph889us0j6l596SWB0639uRPyxs9wOnktBgAAEMQ5d4hz7hzn3Gedc7c453Y55/y4/x7tgjE+zzn3JUn9ku6U9P9JulzSpZL+r6T/lnSXpF3OuZucc6/r2GABAAAAAAAAAAAAAACAOhBGA4AOet/73ifn9t1Ktm3bNl1zzTUNrfPKK6+cEFebO3eu3vGOdwQ+d8GCBRMeDw4ORt7OvffeG2tc419nq/T09Oicc87RnXfeqQMPPHDv9C1btuhXv/pVQ+s+5phjJjy+4447Yi1/5513RnrecccdN+G9uvnmmyfdyA0AAPYpVguB05sZdAm7QTcsyoF4aoM945WrxE1Qv7wRVGpmiCquHpdRwvixXFiQqOztkHbKpRseF+ILO9/UxrwKFfs418wYhB0Kqx2P/V3LJe1oVrNY+2DQuMKiXzkj8OVVVdFPvE7oxlBi2LateEjgc43AqPX+ZBI5OSNvFBYrjSrs+xV2LIu8/imuwcKuKwBMbUdpW+D0vtRSiTQa2uiePb80w15rF75SCZds84i6V18qOIw2WO7vmv/HYEVfO/l3MwAAgDHOuZOccz90zvVLekjS1yVdImmdpPkdHdw4zrmUc+6Tku6T9A5JC6ZYJCfpjyWd0+qxAQAAAAAAAAAAAAAAAM1EGA0AOuiwww7T+vXrJ0z70Ic+pK1bt9a1vvvuu0+f/exnJ0y74IILtGjRosDn77fffpOWj+qGG26INbZMJrP3z8ViMdaycfX29urss8+eMO2RRx5paJ0vf/nLJzz+r//6r8jLbtu2TTfddFOk5y5dulQvetGL9j5+4okndOONN0beFgAAs40Vvci4bNO2ERa9iRMsQbi8cYO01JyACmavbgwhOefM7YfFfsrejgQSRuuMbDIsalUTIgv5bHMh64nLiprVRgLDInzNDIya2zBec9C4rPN9Ljk3PE5Xs5wVp+tkjCNs23ECrNZ7ZL0/CZdQxpgXdk6OarjF5/WprsGsKCaAaAbK/YHT+9LB4SVJ8uqO8BJmllsHg382nnJpHb/w1DaPprv1phYHTi/7svZUdrV5NMGs83cn/24GAAAwzlGSTpMU/A9suoBzLifpO5L+VlJq3Cwv6beSbpD0n5K+++xjfusMAAAAAAAAAAAAAAAApi3CaADQYf/wD/+gOXP23fQxODios88+W3v27Im1nm3btukNb3iDRkZG9k474IAD9NGPftRc5uijj57w+Hvf+16kbf3whz/Uxo0bY42vt7d375+3b9+uUqm1cYtUKjXh8fgwWz1OPPFErVy5cu/jTZs26fvf/36kZT/5yU/Ger3vec97Jjy+5JJLYn8fAACYLYrVQuB0K/RRj7TrUVKpwHlxgiUIFxboKfkRcx4wFTuo1Nmb761YUVjMJywmlHLBxym0VpwoV3iIrHnfR2tMtees0FBbIjiu1ky5iOO0pkmjrzU0LDYpBhcc6+pkjCM8wBrtOsN7b75HVihPkuYYn/NwpfEwWtjYmxFGK0wRb+MaDWjMQGl74PRFqaVycsZShNHQXFtHntDvhn8TOO+Y+S/XvNSCNo+ou4WFCwfKwft0u9Vem41pR5QXAACgAUVJD3V6EM45J+nrks4YN7kg6ZOSDvLeH+G9f5X3/k+996/13h8haaGks55drrW/wRAAAAAAAAAAAAAAAABoMsJoANBhhx56qD73uc9NmHb77bdr/fr1evzxxyOt48EHH9Qpp5yi+++/f++0RCKhr371q1q6dKm53HHHHTchyvbtb39bmzZtmnJb559/fqRxjbdmzZq9fy6Xy/rpT38aabnh4WF97nOf0+7duyNva8+ePbruuuvM7dcjkUhMCpZdeOGFeuSRR0KXu+666/SFL3wh1rbe8pa36NBDD937+P7779frXvc6DQwMxFrPtm3bJr0PAADMNFbwKJPINm0bzjllk/EDRognLGDSjIAKZq9uDCFJdqzIGq8Uvi8kCaN1RMZlzUBMsUNhNCsUFjXUllBCadfTtPFYrNccdG63xppNzFE2JHJYu5x13WCd59sh4ZLKuODrFiseUmvEF1VVNXBeWDjO/gwav77Jh8TVSg2e10vVksq+HL59wmhA3UrVknZVgn8OGRZeApptw8CN5rwTe9e3cSTTw/zkQjPqPljub/NogpnXYh3+uxkAAMA4JUl3SfpXSRdKerGk+ZL+rJODeta7JL1m3OOnJB3tvf+Y9/6JoAW898Pe++9478+V9PZ2DBIAAAAAAAAAAAAAAABoFsJoANAF3va2t+nd7373hGm33XabDjvsMH3mM5/Rli1bApfbvHmz/uZv/kZHHHGE7rnnngnzLr/8cp1yyimh250/f77OOeecvY8rlYpe9apX6aabbpr03JGREV199dV62ctepq1bt6qvry/qy5MknXzyyRMeX3DBBfrCF76gX/3qV3r44Yf16KOP7v1v+/btE7b73ve+V8uXL9fb3vY2fe973wuNpG3cuFGnnHKKHnvssb3TXvayl2n16tWxxhvkve99r174whfuffzkk0/qhBNO0Le+9S1VqxNvQB4aGtInP/lJvelNb1K1Wo31fiWTSX3rW9/SggUL9k770Y9+pCOPPFL//M//HPr6d+zYoW984xs699xzddBBB+mqq66K8QoBAJh+it66qba5gZNWhkMwKiwyN1X8BAhj3XwfFgtqB+s4ZY1XCg+jpV264TEhPuec+VlOjnIFH+d6XEZJl2zamBodTy4xV84Fx96aydoHS35kwne96quTInPj1xEWp6t9jfZr7vDxwIi7Rb3OqDe6N8cMNDYhjNbC4GmU94VrNKB+O0MCSn0pO4zmWzEYzFqFal537PpJ4LwV2VVamWv85/0zTcIl1JteFDhvoLQ9cHq7mddiIaFbAACANvqKpAXe+xd579/hvf+S9/7X3nf+N7c451ZI+sy4SQVJp3rv7zcWmcR7/kcLAAAAAAAAAAAAAAAAppfgXxsNAGi7z3/+8+rr69OnPvUpeT96G9nu3bv14Q9/WH/913+tww47TAcddJD6+vrU39+vxx57TL///e8nrSedTuvKK6/Un//5n0fa7qWXXqpvf/vbGhwclCQ988wzOv3007Vq1SodeeSRymQy2rp1q+68804NDQ1Jkvbff39dfvnlOv/88yO/vje+8Y36yEc+oscff1zSaFSsNgY35vzzz9eXv/zlCdN27dqla665Rtdcc42cc1q1apUOOeQQ9fb2KpVKqb+/X7/97W/3rn/MnDlz9KUvfSnyOMOk02l97Wtf07p169TfP3qD4FNPPaU3vvGNWrZsmV784hdr4cKF2rp1q37xi18onx+9cXvhwoW6/PLL9c53vjPytg4//HBde+21esMb3qCdO3dKkh5//HG9613v0kUXXaQjjjhCK1as0IIFCzQ8PKzBwUE98MADk14/AAAznRVKySSyTd2OFUxpRjgEo8ICJo0GVDC75StDgdPDYkHtkEtYQaLg8UrhkcAUYbSOySbmBJ4Pao9rVgCy2VGuqDFPazzZZHPjopawfbBQyWteavQ7PeKL8kZuJ5uYszdOF+kzMM41nT4eZBNztFM7Jk2Pep1RCImLhn2/rNc9bBw3o/Lem8deqfHzepT3hWs0oH47ytvMeX3pJXY805NGQ/P8ctet5t8R1/Wub/Nopo/e1GL1l56ZNH0gJHjYLhVf1ogvBs7r9LUYAACAJHnvBzo9hhAfkTRv3ONPee/v69RgAAAAAAAAAAAAAAAAgHYgjAYAXeTSSy/VunXr9K53vUsPPvjg3unee91777269957Q5c/+uij9cUvflHHHHNM5G0eeOCBuvbaa3XWWWdp9+7de6dv3rxZmzdvnvT8gw8+WD/4wQ+0devWyNuQpFwup29/+9s666yz9MQTT8Ratpb3Xg8++OCE9yjIgQceqOuuu05HHHFEQ9sb7/DDD9ePfvQjnXHGGXrqqaf2Tt+6datuuOGGSc/v7e3Vd7/7XVUqldjbOvXUU7Vp0yade+652rRp097plUpFd911l+66664p19HX1xd7uwAATCfFaiFweibR3KhL1MgM6hf2Xpb8SBtHgpmmYAQUc8lOh9GM40oleLxSeEyIMFrnZI1zTu13zzrOZZv8XbTPWdHG0+xQmyVsH8xXhzRPC0b/HBLYGluHFaernWYFxDod48iZ36Fo1xlhEbCw75cVaCyEBBqjKPkRVWSHHBsNo0V5X8JicQDCDZS2B07PJeYqm8jJyQijAU3ivdeGgck/a5ekuYn5evH8l7d5RNNHX2pJ4PTBcvB+3U7W38uk9l1/AgAATEfOufmSzhs3aUjSlR0aDgAAAAAAAAAAAAAAANA2iU4PAAAw0amnnqr77rtPX/va13TKKacolQpvWGYyGZ155pn6zne+o02bNsWKoo15xSteoY0bN+q1r32tnAu+sW3p0qX6wAc+oLvuuktr1qyJvQ1JOuaYY3TffffpX/7lX3TWWWdp1apVWrBggZLJpLnMwoULtWHDBn3wgx/Ui1/84infD0l6/vOfr09/+tN64IEH9JKXvKSusYY56qijdP/99+uiiy7S/PnzA58zb948vfWtb9Xdd9+ttWvX1r2tVatWaePGjfre976nU089VZlMZspl1qxZo4suukg/+9nPdN1119W9bQAApgPrxtpMItvU7djRG6IbzRIWdSl7O64CTCVvBH46HUKytm+NVwqPCSUdv/+gU6LGM63jXLNDEFHPWdZ42rVvhG1n/Pk9LKIx9lrt0GBNGM0KJXbt8SDadYZ1PeLklHH2NdGcZHAYbbjBMFrYcUySStXGwmhR3peo7x2AyQaMgNKi9NLQ5bx8K4aDWeih/P16cuSxwHnHLTxFPYmpf0Y+W/WmFgdOt4KH7RT28xPr+hUAAACSpHMkzRv3+Frv/W7ryQAAAAAAAAAAAAAAAMBMwR2TANCFUqmUzjvvPJ133nkaGhrSr371K23evFnbtm3TyMiIMpmMli1bptWrV+voo4+OFMuayqGHHqrrr79e27dv14YNG/T4449reHhYy5Yt08EHH6y1a9dOiJKddNJJ8j7+zW4LFizQhRdeqAsvvDDS851zOvHEE3XiiSdKkvL5vO6991499NBDevrppzU0NCTnnBYsWKAVK1boyCOP1HOe85zI47nllltivwZpNNh21VVX6bOf/axuueUWPfLIIxoYGNDSpUu1fPlyrV27VnPn7rvBuN73Sxp9D1796lfr1a9+tQqFgu6880499thj6u/v19DQkObOnau+vj6tWrVKa9as0eLFwTc/AQAwExWrhcDpzb6pNpcIDofkK0Q3miXsJumwGBQQxnvftSGkXNKKadkRKCsSmFBSCcfvP+gU65xTe46wPttmh8hyRuxq8ni6N4w2PmoVdn4YOz/bcbp973nFV1T0xnWDsT+2ix12s48H49mRu5wZwB+dbwTZGry+Ga6Eh9EaPa/XBu8Cn0MYDajbDiOg1Jda8uyfgo8rhNHQLLcO3hg43cnpxN71bR7N9NKXXhI4fbDc3+aRTJYPua7pdLQaAACgy51c8/jmjowCAAAAAAAAAAAAAAAAaDPCaADQ5ebOnTshDNZqS5Ys0etf//q2bKseuVxOxxxzjI455phOD0WSlMlkdPrpp7dte9lsVuvWrWvb9gAA6HZWZCbT5DBaNhm8PqIbzVGqjpjBp7H5QD2KvmBGOjp9870Z06ojEph26aaMCfWxvku18c58NTgW1eyYp7W+QnVY3vu9oSwrftWuaGDSJdXjMhrxxUnzxp9frX0ioYTSrkeSHTYbv2wxJDqYa/JnEJc1/qjXGdbzrLDrmDlGRK/R65uplm80jBZ2nIzzHADBBsrhYTQ7twg0bmd5QP+7+xeB8w6f+2It6VnW5hFNL72p4F+aMlDun3Ad2Alh1wed/rsZAABAl3tJzeNfSJJzLifpdZLeJOlwSX8kqShpu6T/1WhA7b+897vbN1QAAAAAAAAAAAAAAACgeRKdHgAAAAAAAPXw3k+KzoxpdmTGCotYYTbEM1W8pNGACmavghF+ktoXf7K3Hz9IZAUEU4TROipqPLNQCT5nTBWvisv6bldVVcnvC01a3zUr0tUKVgRjfLTNHGdizt64h/WaowTWRtfV3M8gLmv8UeNeVuRuqusha7vDRsQvqqmWb/S8HiXcRrwWqN9AaVvg9L70kjaPBLPRzwdvUkXB17zrete3eTTTz1jAsFbZl7SnsqvNo5nIOjenXErpBH+fAQAACOKc65W0atykEUkPO+fWSbpX0tcknSnpEElZSQslPVfSGyR9UdIjzrn3tnXQAAAAAAAAAAAAAAAAQJMQRgMAAAAATEtlX1ZVlcB5GZdt6rassEjUYAnCTRUvsWJQwFRCQ0htjD8Fbj9CEKqWFRNKulRTxoT6RI1a5Y1YlBVWq5f13aodk7V/tDMamDP2wwlBM2OfGL9slPN02Lkm1+SgalzWZxY17mU9L5cMD76ZgcaQ41AU+cpUYbTGzutRrr/CjqUAwg2UtwdO3xdccoHzvXyLRoTZouIrum3nTYHzlqSXac3cF7V5RNNPX3qxOW+w3N/GkUxmnb87HagFAADocvvXPH5S0tmSfiLp4AjLL5Z0pXPuq87xQ2QAAAAAAAAAAAAAAABML/yDFwAAAADAtFSs5s15mSYHTqxITNRgCcJNFTgp+ZE2jQQzTXgIqbNhNCsIZcWzJKlixIRS3NPWUdY5p1Bznqp9PMaKU9XLioSNjmFYC9W398/By7dv3zADgROCZsHv2/hl7bDYvmXDQlntfM1Bosb1LHZoJPx6yAqn5atD8t7LueD4Ub3jGdPoeT3K9RfxWqA++cqwuf/0pUfDaM4IowGNunvPnWa8a23veiUcv+9rKvOTvUooGRiRHyhv10E6pAOjGmVfC3c2UAsAANDlemsez5P0H9r3y3Afk/T/SrpNUr+kRZJeLundklaOW+7NkrZKuqRZA3PO7SdpaczFntus7QMAAAAAAAAAAAAAAGDm465JAAAAAMC0VPR2GC2byDZ1W2ZwJSSygujyFTsEJUllX2rTSDDTWGGPhBLqcZk2j2Yi67hS8iOq+LKSAbGzkrEvpFy6qWNDPHaUa7jmcfCxbqp4VbPGMzqGcaEwY/9oZzQwSnjUigWOf9/MsNi484sV00q5lNKJninH2kpRv0MW63lTRfes962qqoq+oKyr77vZ6vN6WORuDPFaoD4D5e3mvEWpqe53980dDGadDYM3Bk5Pux4dv/CUNo9mekq4hHpTi7SjvG3SvIGSvX+3QzdEeQEAAKah2jDaknF//qak872f9D/L7nDOfV7Sv0t647jp73fOfcd7/7Mmje1dkj7WpHUBAAAAAAAAAAAAAAAAk/CrtQEAAAAA09L4uEutTJMjM7mkEVwhutEUYZ+lJJV9Wd4TWkB8YTffO+faPJqJwuJT1rHFigkRRuusnHHOqf3+5Y1j3VTxqrgyIXHQ8UFPK+7ZzjiFFYUbvw9Y54jx71vWOE+PX9ZaTzfEOKz3oVAJPz+OsUJhU0X3wr57U8XNQsdjxOzGNBpGixI94xoNqI8VRnNy6k0vGv2zcQnF1Toa8VRxix4Yvidw3jHz12pucn6bRzR99aWXBE4fKPe3eSQT2X83a+7PbwAAAGYY6992/lLSeQFRNEmS974g6bxnnzfe3zRxbAAAAAAAAAAAAAAAAEBLEUYDAAAAAExLxWrBnBcWhamHdaPuiC+q4itN3dZsNFVAxauqqnifEV+9saB2CAujWTGkctUKo6WaMibUxwprFWrOU+2KQSRcIlJwzApHWTHQVjDfu8r4oNnU75u1PxUivN6uOB4kgwNl+epQpDCodR6dKvoW9lk3EhYbnjKMVq573dLUQdXR5xBGA+oxUNoWOH1BsndciLWzcVnMTLcO3mjOW9e3vo0jmf76UsFhtEEjfNgueePvON0QqQUAAOhie4zpl3gf/gOWZ+f/Zc3k05xz+zVlZAAAAAAAAAAAAAAAAECLcdckAAAAAGBasqIYTgmlXU9Tt5VLBAdLRscxrLnJ+U3d3mwTJXBS8iUliT8hJiuMY0WI2iksAGBFjioKvtdtX6gEnWCFtcZ//7z3ZqivFd/HbGJO4LF1bEwVX9GIL5rLtosV5hq/D9iBwzmBfx5v/GdgHg9CzvHtYn2Hqqqq5EfU4zKhy1vn0am+W2GvvZEwWsH4zMaUfXDkMaqpgqrS6PfGey/nCDgBcQwY4aS+dHBoabwoIUcgSKGa1527fho4b2V2tVZkV7V5RNNbb2px4PSBUn+bRzKRHbsljAYAABAiKIz2mPf+1igLe+9vc849LOmQcZPXSfpmE8b2hTrW81xJ32nCtgEAAAAAAAAAAAAAADALcEcxAAAAAGBaKlYLgdOziWzTIxhWsEQijNYM+crUgZPRiIr9OQBBrLBP2D7dLlYQSrIjR1ZMKJUgjNZJVsyh7EsqVUtKJ9Iq+RFVVTGWb/73MZeYo0FNjl+M7RNWmGJs2Xaxg2b5cX+eej+2xlyo5lX1VSVcItJ6OiU8UDaknkR4GK3eY13a9SipVGB0MV8Juu82muEpwmWl6kjd65aiBVWrqkSKygGYaKBkhNFS+8JoTtbftQijoT4bd95iHtvX9a5v82imPytkOGiED9vFul4J+3sRAAAANBgw7Y6Y67hTE8Noa+ofzj7e+2ckPRNnGQL2AAAAAAAAAAAAAAAAiCPR6QEAAAAAAFCPonHjdKYlgZmQYEll6jgHwlk3SI9XrgYHoYAwVggpbJ9ul6RLKe16AufljahQydgPUo4wWieFxafGzlVhx7lWfB+nCo51SxjNDpoNjftz8Hk2l9z3vlmfgZfXiC9KkvIVKx7W+RhHeIB16uuMeo91zrkJ7+N4Uc7NlqmCp2U/OcTWzPXvfV4DrwGYrXYY4aS+9NI2jwSzhfdeGwZvDJw3L7lAR88/oc0jmv56U4sDpw+U++V95wKGdqS289diAAAAXewxScWaaU/FXMeTNY+DLxgBAAAAAADVtCxFAAAgAElEQVQAAAAAAACALkMYDQAAAAAwLRWrhcDprQijha2zYASMEF1YoGdM2RNGQ3x2CKn5x4l6WFEoa9xWTCjlUk0bE+ILizmMHd/CjnOt+D5a6xwbh/UdG122fXEKa1v5cTEwO6KRG/fnkM+gEv4ZdEOMI2wMYZ/VmEIDxzr7OFT/9c1UQbKKyqr6at3rjxKLG30eYTQgroGSEUZLLZly2c7lljCdPZi/V0+N/CFw3vEL/1jpRHBIGLY+I4xW9iXtqexq82j2sc7f3fJ3MwAAgG7kva9I+n3N5NpQ2lRqn5+tf0QAAAAAAAAAAAAAAABA+xBGAwAAAABMS9ZNtZlE8+/pSCfSSrl04Lx8xDgHbFMFVCSpRBgNdbCiOLnE3DaPJJgVQ7LGXSGM1pWyybB45ug5IixulUs2//tofrcqz44nLNQW8nqazYpyjd8HrLGOXzaXDAmLjcXgjPN12LLtkklk5eQC500V96r6ioo+OBYb5btlhtEaiIrlI0RjrePZVLz3kYNnUaJyAPbx3mugHBxGW5TeF0azjlek0VCPWwdvCJzulNDa3tPbPJqZoS9thwwHy/1tHMlE9t/NOn8tBgAA0OXurnncG3P52ud37qIQAAAAAAAAAAAAAAAAiIEwGgAAAABgWipWgyMg2URrgi5R4i2oTyFCuKRMGA11sMI+7Qw/hckaQSZr3NZ+YIUb0R5h552xc4R1rnBy6nGZ5o/J+I6PBaus8aRdT1u/T+Y+UBmW96OBHWus4+NvVghu/PIFI9YVtmy7JFxCGeN7NFWgzArFSlIuwjWRFU+LEjez5CtTL1vyI3Wte8QXVVU10nO5RgPi2VPZaV5r9KWihNGAeAbLO3TX7jsD5x0x7xgtTu/X5hHNDPOTC5VQMnCeFT9sB+vv/a36GQ4AAMAMUlsTPjzm8i+oefx4A2MBAAAAAAAAAAAAAAAA2oYwGgAAAABgWrJCIBmXbcn2rHDKVMESTC3Ke0gYDfWwojhW6LDd7OBi8PHN2g+SLtW0MSG+lEsr7XoC5+Wf/Syt41wmkVPCNf9HtFN9t6zxtHvfsM6tVVVU8iOq+qq5P4wfa4/LKGH8qHvsteaN9XRLjKPeAGvYOTSbCI6eRdluPkK0NEjFV1T0wfHa8cq+XNf641x3cY0GxBMWTOpLLzHnjfHyzRwOZoHbBn+oqiqB807sXd/m0cwcCZdUb2pR4LyBUgfDaNY1nRFpBQAAwF7fl1Qc9/hY51zwBV8N51yfpJfUTP5ZswYGAAAAAAAAAAAAAAAAtBJhNAAAAADAtFT07Q2cWOst1BkOwT5TRV8kqUQYDXWwojhWjKnd7ODiUOB0K4yWcummjQn1Mc8Rz34H2x3ps75be8djnLvavW+Evf58dVhFI6AhSdnkvmWdcyGveXQd1mvullBivQHWsIBZLsI1kRUjsY5DU4m6XL3B0zjXXVGuLwDss8MIJiWV0vxkb5tHg5mu4sv6+eBNgfOWpg/QoXNe2OYRzSxWzHCw3N/mkYwKC6d2S6QWAACgW3nvd0v61rhJGUnvibj4eySN/21Cj0n6bZOGBgAAAAAAAAAAAAAAALQUYTQAAAAAwLRkxVIyiWzg9EbZ4RCiG42K8h7WG1DB7NbtISRrHIVK8PGt7MuB09OE0TrODqONfpbtjvSZ361nx2GOJ9nefSMshFGoDoeeH2qXtdaVrww9uz4rqNodx4N6A6xh8a9sIvjaZbyc8Zx6w2hRw2X1ntfjXHdxjQbEM1AODqP1phcr4fb970TnXLuGhBnsrt13aGdlIHDeib3rJ3znEF9vanHg9IEOhdFCY7ddci0GAADQLs45X/PfSREW+1tJI+Me/7Vz7rgptnOcpL+pmfx33nsfb8QAAAAAAAAAAAAAAABAZ6Q6PQAAAAAAAOpRrBYCp2dCIiuNsKM3RDcaFeU9JIyGerQ7RhVXzohQWUEiaz9IEUbrOOs7NXZ8a3ekzxpP/tkohXXczbXoHGqxolzSaMis4iqRl7U/g7E4XfB+Ze2H7VZvgNWan3IppRNTHxvmWGG0iIGzWsMRg2r1ntfjXHdFjbQBGDVQCg6jLUotibQ899Yjjg2DNwZOT7seHbfwFW0ezczTZ+y31n7eauGx2+64FgMAAJAk59xyBf97yv1rHqeccyuN1ezx3jf1wst7/4hz7u+1L3SWkXSTc+6Dkv7V+30/aHHOpSS9XdIVknrGrWajpGuaOS4AAAAAAAAAAAAAAACglQijAQAAAACmpbHQSa1MItuS7VnxFmsciKbqK5HeQ8JoiKviKxrxxcB53RJCmiqmVcvaD5KOH/F1mh3PHItyGZG+Fn0Xp4p52tFAO1TWCplEVk5OXpNjOvnKkCqJsrls7Wu09utCdVgVX1bJjxjr6ZbjQX0BVmt+1M/S+g5aIbmpTBVyG1Oq87wedf1xnwtA2lHeFji9L10bWHKBzws6lgNBniw+ps35ewPnvWTBOs1JzmvziGae3vTiwOmD5f42j2RU2PVMu8O8AAAAU7hN0nMiPO9ASY8Y874i6a3NGtA4H5X0fElvfPbxPElfkPRp59wdknZIWiTpZZJ6a5Z9QtLrvTd+QAYAAAAAAAAAAAAAAAB0Ie6aBAAAAABMS8VqIXC6FRZplLXeesMhGGV9jrVKVcJoiCfs5vtuCSHlYofRgiNRKZdu2phQn6kid9Znan0HGh6PFQmr5OW9DxlPe8MUCZdQJpELHE+hmldFleDllFTa9UyYZn0G+epwaICzVZ9BXPbxIDweasW/on6W1nbrjYrlK9Gui8p1ntenCsXV+1wA0kBpe+D0vlRtGA1ozIbBG815J/aub+NIZq6+lB1G897LueDAYasUKvb1TLf83QwAAKDbee+9c+7/aDSAduG4Wb2SXhmy6EZJr/PeP9nK8QEAAAAAAAAAAAAAAADNRhhtFnHOzZf0cknLJS2RtFvSk5J+671/oInbSUs6QdIKSQdI2vPsdv7Xe/9os7YDAAAAYHazglqZloXR6guWIFzU8ErZE0ZDPGFBnG4JIYWFnIJY+wFhtM4zzxHPRiCsz7R1Mc/g8VRUVsmPKF+xxjO3JeMJkzXCaPnqkCpGDDCXnDMp6BEWGrRe79j2u0Hc48GYgvlZRjvO5YzPPGrgbNJyEYOx9Z7XrdcbPBbCaEAcA2UjjJZeOuFxe3NKmGnylWFt3HlL4LxDsofqoOwh7R3QDGUFDUt+REOV3ZqXWtDW8VjXBymXUjrREzgPAAAAk3nvi5L+H+fcNyV9SNIrJCWNp/9W0hWS/sN7H/zbBwAAAAAAAAAAAAAAAIAuRhhtFnDOnSDpbyWdIuMzd879RtK/SPqi997XuZ2lkj4h6RxJi4zn3C7pH73319azDQAAAAAYUzSCZNlEtiXbM4MrMQIdmKzVARXMXuEhpO4Io9nHleDjW9mIRKUcP+LrtGwyOK41FvyyIppWlKpRuZDYV6GaN8OBOeN1tFIuMUeD6p80vVDNq+qqgcsE7cN2wHR4ilBi+2NwQeq9zrDiX7lktNdlPa/oC6r4ipLOurfWGE/EoFq95/U4sTPitUB0FV/RzvJA4LzJgaXgNJpXXf9rCbPMnbt+qqIPjpyv61vf5tHMXL3p4DCaNBpBbHcYzTond8vfywAAAMZ471e2YRsN96a99z+W9ONn/63eyzT6i0vHfknqVkm3e+8fb3Q7AAAAAAAAAAAAAAAAQCdx1+QM5pxLS/qcpAsjPP2Fkv5Z0rnOuTd777fE3NZ6SV+WtN8UTz1e0vHOua9JutB7H+1OOQAAAACoUawG30ydCYnBNCKbDL5hN06gA5NZAahahNEQV1gIqVtuwLePK0Py3su5iffIWftByqWbPjbEkzXOPWPnCCtuZS3X+Hjs73ihOmyeu7IdiIRZY81XhlRJBMcAg8Jv5mdQCQ+jteq6Ia56rzOs1xb1uzUn5DMvVIc1Nzk/0nrGDEcMnpbqPK+HfZa1okbaAEg7yzvkFRyjXBQSWALi8N7r1sEbA+fNTy7UUfOOb/OIZq4FyYVKKKmqKpPmDZS36yAd0tbxNHq9AgAAgGDe+22SvtfpcQAAAAAAAAAAAAAAAACtQBhthnLOpTT6D59Or5lVknSnpMclzdVoEG3FuPknSrrZOXeC974/4rZOknS9pJ5xk72kX0t6WFKvpBdp9DdTjvlTSQucc2d574PvtgEAAAAAQ9VXVfTtDaMFRVikeIEOTJaPHFAZafFIMNNYMaGUSyud6I6QWM4IQlVVVcmPqMdlJkyv+OBIVMrxI75Os+Jehepo/NH6PuaSrQmRWd+t0THZobCw5VrF2mahmlfViPQEBdxyRlisUM1P6+PBVNcZ5ncrYuQu7DPPV4Zih9GiXhfVGzyNE6Qd2/8ATG1HaZs5ry81MYzm5Ixn+iaOCDPRA8P36OmRxwPnHb/wj7vmnDwTJFxSvalF2lGevG8PliL979+myhvn5G4JVgMAAAAAAAAAAAAAAAAAAADoPolODwAtc7kmR9GukrTMe7/We3+u9/413vvnPPu8h8c97/mSrnPOWXe37OWcWy7pOk2Mov1c0uHe+2O893/ivT9N0nJJ79NomG3MmZIui/vCAAAAAGDEF815GZdtyTaDIiwS0Y1GRX3/ykYQCrB0U/jJEhYuCooGWiGhlCMi0WlZI55ZfPYYZ30freUalUnY58J8SCisE3GKrBk0swNuQe+bHafrrhCcJWz8YRr9boXF+eJEyMYMV6IFT+sNo8UJ0kaNrwKQBsrbA6dnXHbS9YoVRiOLhqlsGLwhcLpTQmt7a/+XJhrVm1ocON3a31vJvl7pnmsxAAAAAAAAAAAAAAAAAAAAAN2FMNoM5JxbI+nimsnv996/z3s/UPt87/1Nkk7QxDjaiZLOibC5T0jqG/f4dkmneu/vr9lG0Xt/laQ/qVn+L51zz4mwHQAAAADYKyymFRaDaUTOCIyU/EjdcQ9Ej67wHiOufKX7b74PCxcFjb9EGK1rWYGtsWOcdawLi+M1IuGSZig0XxlSoRJ8Hs0ZkbJWCnvvrP04aJnQ9RjXDd10PLDGX6jmVfVVczn7PYr23Qp7D4brCIu1+rxuvd4gxGuB6AZKwaGkRemlivA7dIApDZS26+49GwPnHTnvWC1KL23ziGa+vvSSwOkD5f42j6T9kWAAAAAAAAAAAAAAAAAAAAAA0x9htJnpQ5r42f7Ie/+PYQt475+W9LaayZ92ziWtZZxzz5N0/rhJI5Le6r0vhGzneklfGTcpI+ljYWMDAAAAgFrFkNBFq26szYYERqzADKaWr0SLrhBGQ1xWEMeKD3VCLhlyXAmIB1j7QcqlmjYm1MeKS41FrazzVitjEFkjcranslMVlY3xtH//sN6DQnU4JKIxeZz2ZzCsghlK7J4YhzUWL68RXzSXazQ0kpwiohdXPmJMzQo9TiVO7Kw4RVQOwD4D5eAwWl8qOKwUxMs3aziYgW7b+UNVFXxMXtd7RptHMzv0phYHTh/sQBit0ZArAAAAAAAAAAAAAAAAAAAAgNmHMNoM45xzkl5VM/mKKMt67zdI+uW4SQdLOilkkfMkjQ+nXee9fzDCpi6vefwnzhl33wEAAABAgLAwWibRmr9e5JJ2YCRqBASTRQ2clKqE0RCPtV9asahO6HEZObnAefmA2FHFB8esUi7d1HEhPitCVazmVazmzVhMK0Nk1rqt+I3UmXCgFcTIV4YD9wNJygXsx3ZgLa9h63gwTUKJYYEyK4wWtr6oz63n+qbVwdM4Y/LyKlbN3+EBYBwzjJaeHEYb/d9QATxhNAQr+5J+Pnhz4LxlPQfq+XOObPOIZoc+I4w2ULKvBVvFDLmG/JwFAAAAAAAAAAAAAAAAAAAAwOxGGG3mOUzS+DtVRiTdEmP5/6l5/IaQ576u5vE1UTbgvb9f0p3jJs2VdFqUZQEAAABAkgohkYuMEUZpVFg8JWrcC5NFDZzUG1DB7GXtl50IP1kSLhESc5oYD6j6iqqqBj6XMFrnWZ+jl9dgeYe5XFDgq1lyxpjCYhjW62ilsH3A2o+DlgkLge00PoNWvv9xhb33YdcZVjwuzmdpHRetdYdp9Xk97jUX8Vogmh2lbYHT+1KTw2hAXHftvkO7KoOB807sXW/H9tCQoLChJA2W++XbHDKcDn83AwAAAAAAAAAAAAAAAAAAANBdUp0eAJpuec3jB733xRjL31Pz+FVBT3LO7S/pheMmlSX9PMZ2bpH00nGP10v6bozlgVljeHhYv/71r/Xggw9q+/btKhQKyuVyWrZsmVavXq0XvehF6unpacq2/vCHP+hLX/qSNmzYoAceeEADAwMqlfbdqHrNNdforW99a+CyGzdu1DXXXKPbb79dW7Zs0c6dO1Wt7rtp/5FHHtHKlSslSSeddJI2bNiwd167b8IBAADTX9G4qTbtepR0yZZsMyyMVk84BKOivneE0RCXFcMJ25c7IZeYG7gf1E4r+7K5DsJonRf2vRos99e1XKOsdQ+EjCeXsONirWIFzQrVvCpGDDDotYWFwAbKwTG4bjoehAdY7XOlNS9OaMT63AuVOsJoEZep97yer8QLnRGvBaKxjpPBYaXgiJUXP+NFsA2DNwROz7isXrbg5DaPZvboNcKGJT+iocpuzUstaNtYrOuVTkR5AQAAAAAAAAAAAAAAAAAAAEwPhNFmnkU1j4N/Bbut9vkHOecWeu931kx/Qc3ju733ce5Ku73m8eExlgVmvEqlov/+7//WNddco5/+9Kcql+0b4LPZrE4//XT92Z/9mV796lfXvc2rr75aF110kYrFOC1FqVwu613vepeuvvrqurcNAAAQV7FaCJyeaeFNtUmXVI/LaCSgPR0WLEG4qO9dyY+0eCSYaawYTpxYUDtYMYDaIFFYRCjl+BFfp2WT9YXRWvl9tNY9UAqO3zg5ZRLZlo3HYu0D+eqQKqoEzgt6bWFhMes1d9PxoMdllFBC1YAYnBURLVVHzGhinOhbzvj+DhuBSYv33oxS1ipV44fRqr6iog++BrQQrwWmNlItaqiyO3DeotTSSdOCs2hAsMcLj+qh/P2B845dsM4MpKJxwWHDUQPl7W0No+WNv5t1U6QWAAAAAAAAAAAAAAAAAAAAQHdJdHoAaLraO8UzMZcPev5hEaZtjrmdhyJsA5iVfvKTn+iwww7Teeedp5tvvjk0iiZJhUJB3/nOd3TmmWfq2GOP1a9//evY27zhhht04YUXxo6iSdJHPvIRomgAAKDtrOBRq4Mu1k27+QrRjXpFfe+s8AtgyVeC4zzddvO9FYOojfmE7QMpl27qmBCfFfeS7ChXQkmlXU+rhmR+1wfKwePJJHJKuPb/uDiXCN4HCtX8pEDgmKDXFhY5s+J03XQ8cM6Z47EiomFxUSt2Fvhc4zOIGjkbU/SFwLBbkHrO61YYNwzxWmBq1nlBCg8rAVHcOniDOe/E3vVtHMnssyC5UAnjnwKEhXtbwTofd1OkFgAAAAAAAAAAAAAAAAAAAEB3SXV6AGi62n/JfkDM5YOe/3xJv6iZtqrm8R9ibuexmseLnXN93vuBmOsBZpRPfOIT+sQnPiHv/YTpzjmtWbNGy5cv1+LFi7Vt2zb94Q9/0AMPPDDheZs2bdJxxx2nz3/+83rHO94Rebsf/vCHJ2zzvPPO09vf/nYddNBBSqf33WC/ZMnEG+G2bt2qf/qnf9r7uKenR3/1V3+lM844Q0uXLlUise+mm+XLl0ceDwAAwFSsMEZYmKYZcsk52lWZ/NcWohv1i/relX2pxSPBTGMFFOPEgtrBOm7V7hth+0DK8SO+Tsu4rJycvPykeVZwJpecI+dcy8aUTQZ/t0q+9vcqPPv8Fp9DLdZ2vbyK3jjfB+zHadejhJKqqjJpnvWauy3GkUvO0XB1z6TpVkS0NqA4XpzomxlGMwKTFitkF6RsfCZhwl6vuQzxWmBKVsBTknpTiydNcwo+dwWdAzG7DVf2aOOuDYHznptbo+XZle0d0CyTcEktTC0KvBYN2+9bIU7sFgAAAAAAAAAAAAAAAAAAAAAkwmgz0e9qHh/onFvuvX884vLHBUxbGDCtt+bxMxHXL0ny3u9xzhUkZWu201AYzTm3n6SlMRd7biPbBJrl4osv1pVXXjlh2vz58/XhD39Yf/qnf6oVK1ZMWmbz5s368pe/rCuuuELFYlGSNDIyone+850aGhrSxRdfPOV2f//73+vuu+/e+/iMM87Q1772tUhjvv766zUysu9G1ssuu0wf+MAHIi0LAADQiKIRPMq4bOD0ZrFu2q0n1IFRUcNoVtQGsOSrwUGfbrv53gwSxQqjpc15aA/nnLKJXOD5YKBc+3sMRrX6uxh3/dZ3sdXqeR9yATE155xyiTkaqu6Ose3OxOAs1nthnSvDrj/iRN+sYGTc65th47gbpJ7gadg1Q4/LaMQXA5aJF3cDZqMd5W2B0+clF6onkQmY07qoJ2aWO3b9NPDYLEnres9o82hmp77UkuAwmnF92gpVX4kVuwUAAAAAAAAAAAAAAAAAAAAASUp0egBoLu/905J+XzP5/0RZ1jk3V9LZAbPmB0ybV/M4uEoQrnaZoO3E9S5Jv43533easF2gIV/5ylcmRdFe/vKX67777tOHP/zhwCiaJK1atUqXXXaZ7r77br3gBS+YMO/973+/brnllim3vWnTpgmP3/CGN0Qed73L3nLLLfLe7/0PAAAgroIRRmt14MRavzUeTC1qdKXsyy0eCWYaa7+MEwtqB+u4kq/ECaPxuw+6Qcb4LAdLk2MUUuu/i3GDY52KhFlRrjBZI+IWN65Rz7ZbyTweGOfKQsU+h8b5PM1AYyVeVCzO8+s5r9ceF8frSwf/row812jAlAaM81RfanHMNfFzXuxT9VXdOnBj4LwFyV4dNf9lbR7R7NSbDt6Pg2JprRL285Kg2C0AAAAAAAAAAAAAAAAAAAAASITRZqr/qHn8QefcgRGWu1TSwoDpUcJowb/qO1ztv4SvXScwKzzwwAN6z3veM2Ha8ccfrxtvvFHLly+PtI7Vq1frxz/+sdasWbN3WrVa1Zvf/GZt3x5+g8vWrVsnPI66zUaXBQAAaESxGvxXkEwi29LtWhGbfDVeOAT7FCKH0ewoFFDLe28GdDoVf7JY8arafSMsIpRy6aaOCfWxzhED5f7A6XHDZXHFDU3kksFxrFar532wXlvc19zqzyAuK1BmnSutYFrGZZVwyRjbta5vop2j9z0/+vVQqY7zuvU+JJXS/GTQj7WlAtdowJSsQNIiIzjojPWQRcN4vx++W8+Ungycd0LvaVy/tklfakng9EHj+rQVwsJo3XYtBgAAAAAAAAAAAAAAAAAAAKB7EEabmT4vaee4x72SbgyLoznn/lLSxcbsaoRt1nPPC/fJAJIuueQS7dmzZ+/j3t5eXXvttZo3L14rcL/99tO3vvUt9fT07J32xBNP6NJLLw1dbvy2JSmdjn5DUiPLAgAANKLog2+szbQ4eGQGjCr2jb6wlaojobGn2ucCUZV9SRUFf7es8FCnWDGq2iBRWByQsER3sM4RVizKilE1S9zQRKeigT0uo0TMH1Nbry3+a+6uGIf1GViBMisUFjdyF/U4NJU4YbR6gqfWeLLJnB134xoNmNKO0rbA6VZQSc5KowH73Dp4Y+D0hBJau/D0No9m9upLLQ6cPlhqZxjNvp7otmsxAAAAAAAAAAAAAAAAAAAAAN0j1ekBoPm894POubdJunbc5CMk3e+c+xdJN0p6UlJO0lGS3i7p5eOe+7ik5eMeDwZsZk/N43runKxdpnad9fiCpG/GXOa5kr7ThG0Dsf3ud7/T97///QnTPvOZz2j//feva32HHXaYLrnkEn3605/eO+3f/u3f9PGPf1x9fX2By1SrUdqHwRpZthnuu+8+3XPPPerv79fAwICy2ayWLl2qNWvW6Mgjj1Qmk6lrveVyWRs3btTDDz+sbdu2qVgsaunSpVq5cqVOOOEEZbPZJr8SAAAQV7FaCJyeSbT2PJ1LGmG0mOEQjIoTXKknoILZK+y7lU12Jv5ksUJItceVsH0g6fgRXzeIGxZrdQgibnit1aE2i3NO2cQcDVej/Wgw5VJKJ3oC58V9Tzv1mi1WuLFQCT6mmaGwmN9FOyo2JO+9XMQIUt4YZ5Cyjx88NUNwiTkh12jRY23AbDVQDg4k9aWNMJrBe34XDkbtKG3T3Xt+GTjvhfNeqt50cKwLzddr7McD5e2xzvGNCLs+6LZrMQAAAAAAAAAAAAAAAAAAAADdg7smZyjv/XXOufdJ+r+SEs9Oni/pA8/+Z7lK0kJJ54+bNm3CaN77ZyQ9E2eZdvyjf8By5ZVXTrhhbMmSJbrgggsaWufFF1+sz372syqVRm+aHxoa0tVXX60PfvCDkqRHH31UBx98sLn8ySefHDj9mmuukaTQ8Vn70yOPPKKVK1fufXzSSSdpw4YNex/HuWluy5Yt+vu//3t985vf1NatW83n5XI5nXzyyTr//PP1+te/Xslkcsp133///brsssv0/e9/X7t27TLX+5rXvEaf/OQntXr16sjjBgAAzVWo5gOnxw2BxGUFV+IEvrBPnKBc2ZdbOBLMNGHfLSs81CnWeGqPK9Y+kFBSCZcInIf2ih3lMkJOzRJ3PK0OtYXJJaOH0cLGGTeu0cnXHMQKN1rXGXYoLN5xLpecFzi9orJKfkQ9Llp4fjhGhKye87odgpsTco0WfM0IYJT3XgOlbYHz+lJLA6c7Wf9PhTAaRv1s8IfyCv6lKif2ndHm0cxufangMFrJj2ioulvzkgtaPgbreiWplFIu3fLtAwAAAAAAAAAAAAAAAAAAAJieuGtyBvPeXyVpvaTfR3j6HknvlnSxpANr5j0d8PydNY+D75AxOOfmaXIYLSjABsxo//M//zPh8Vve8hb19PQ0tM6lS5fqzDPPDN3OdOS915tUPcUAACAASURBVGWXXaZVq1bp85//fGgUTZLy+bxuuOEGnXPOOdqyZUvocyuViv7iL/5CL3jBC/Sf//mfZhRtbL3f+MY3dPjhh+vKK6+s67UAAIDGFauFwOmZRLal27WiG3ECX9gnTlCu7EstHAlmmrDvVqsDinFZ4ylUasNowftAmphA17CiVubzWxzlijueuFGxZorzXoTtw7FjcDHfo1azrzOC4175ihUKa95nn48RO4tzPVSq47xuh+DmmK+hEGP8wGw0XN2jEV8MnNeXDg4qAWFK1ZJ+vvPmwHkH9Byk1bkXtHlEs1tfarE5b7DU35YxWJHSbDLHL68CAAAAAAAAAAAAAAAAAAAAYEp1egBoLe/9Tc65wyW9VtIZko6XtEzSfEnPSHpE0vWSvua9f1qSnHOH1qxmU8CqH6x5/JyYQ6t9/g7v/UDMdQDT2uOPP65HH310wrTTTjutKes+7bTTdN111+19fMcdd6hUKimdnp43zJfLZb3pTW/StddeO2ne/vvvryOOOEJLlixRsVjU1q1b9Zvf/EZ79uyJtO58Pq+zzjpLN91004Tp6XRaRx11lJYvX65MJqOnn35aGzdu1PDw8N4xXXzxxRoYGNDHP/7xhl8jAACIp2jcWJtpcfDIjm4QRqtHbfgpTMmPtHAkmGnCvlvdFkbLJecGTi/6gqq+ooRLSpLKvhz4vBRhtK4R97vV6u9i/EhYJ8No0d+LXCJ4n5GkXMzX0MkYXBBrPFbs0QyFNfF9yFeGtTC1KNJ6hivRI2Tlavwwmh2Cm2N+360YC4BRA6Xt5rxFqXhhNN/oYDAj/O+e27WnUvu7lUad2LueEFabLUj1KqGEqqpOmjdQ3q7lOrjlY7CuV1odCQYAAAAAAAAAAAAAAAAAAAAwvRFGmwW89xX9/+zdfZQkdX34+09VVz/OzM70zC4Py7LsCioBAYVFYIHFCIjL+cXEh9zk4rm/E0n8/WLIifeGXP3pzxuQHHz4eTw3JOolud5o4g1Jfh4fovcnETHyrCgPigIiyOOygLOzPTtP3T3dXd/7xzLLTPf3U13VD9XVM+/XORy3q7qrvtVdXVUza71X5Ksv/xfIcZzjRWTbqknPG2Oetzz10abHJ0Uc1quaHj8S8fXrVr1hZB+JuL7bVhTxUoO9Aefuu+9umbZr166eLPuss85a87hcLsuPf/xjOfvss2Xbtm3y1FNPHZn3l3/5l3LDDTccefxP//RPcu6557Ysc/PmwzfCvelNbzoy7Xd/93fl3nvvPfJ49XJX27Ztm3V6WFdffXVLFO3yyy+Xa6+9Vs4+++yW5/u+Lz/4wQ/kn//5n+WLX/xi4LKvuuqqNVG08fFxufbaa+X3f//3ZWxsbM1zy+WyfO5zn5OPfOQjUqlURETkuuuuk3POOUf27t3b4dYBAIBOVP2KdfqgIjNasATBorxvWhQKsNH2rayTOxIaS4p8wHGr4pelkBoVEZG6sUeEUg6/3kuKqHGHfke5oi5/kJGwoNhZs6BzfZTrgLSTSdz3R9uHtKCIdqyLvC8qgcagddifGyGMphzTggSF4NR4bYQIK7ARHaxPW6e74sq4V7TOc0T7vTppNIjcXvqWdXrWyckbN70p3sFAXCcl496klOqtEcRSfSaWMajn74QFqwEAAAAAAAAAAAAAAAAAAAAkS7Lu/EISXNz0+DbleT9reny64zgFY0zYO83Ob7O8DWtfSeRVH279l9vRW09+zJUdmwc7hn379q15fPTRR8vU1FRPlv26173Our6zzz5bPM+THTt2HJk+MTGx5nnHHHPMmvnNRkdHj/w5l8utmRf0uk7dcsst8ld/9Vdrpn3iE5+QD37wg+prXNeV3bt3y+7du+W6665rGeeKL3/5y/KFL3zhyOMTTjhBbrvtNnU78vm8XH311XLeeefJxRdfLJVKRYwx8id/8ify2GOPieu60TcQAAB0pOKXrdOzrv283yvajbuVRlmMMeI4g43vDpsoARUjvjRMQ1IJi1ohmfR4Tvj4UlxyAUGosr/UNozmJSzstJFFjVFFfX5U2YixiX6PJ3jd4ccaNM4o2zDIEJwmatxLD41E27askxNXXPGl9XeSUc7V0YKn0cNoZeX6L+cWJJeKFpUDcFip1hpLEhEZ9ybVmKweRsNG91zlSXmq8ph13hvH3yR55ViN/prwpuxhNOX732va728Gee0JAAAAAAAAAAAAAAAAAAAAIPkouKDZ7zc9/rztScaYF0TkoVWTPBG5IMJ63tT0+OYIrwXWhYMHD655XCwWe7bsXC4n2Ww2cH3D4rrrrlvz+A//8A8Do2jNJiYmrGE0Y8yaZXueJ9/4xjdCxd1WgmsrnnjiCfn6178eekwAAKB7Vb9inR41AhNVTokqNaTeUeBjo9NukNbUzHKfRoL1RovzRIkvxSUoYFReFUOqm7r1OZ6T7vmY0Bktnqk+v89xkJSTkoyTbf/Elw0yFJYPCAQ2C4poRNmGJMY4tLhX1VTEN42W6WUlmBZ12xzHUT+DciNCGC3Cczu5bqookba8W1A/+yixNmAjssWSREQm01siL8uI6XY4GHK3z35LnXfRxOUxjgSrFdP2fyVotj4Ty/q1yGoSr8UAAAAAAAAAAAAAAAAAAAAAJAdhNBzhOM4FsjZu9pgx5raAl3yt6fF7Qq7nZBE5Z9WkRRG5JcxrgfWkOVQ2MTHR0+U3L29mJp6bXHrpoYcekrvvvvvI47GxMfnkJz/Zk2V/73vfk5/97GdHHr/73e+W008/PfTrr7rqqjXBtW984xs9GRcAAGiv5tekIfZAUNZpDaL2UlD0hvBGdFECKiKdRVSwMVWU72OU+FJcgoIAq7dD2/8JoyVH1LhDHDGIYQmF5VLho3JBQbko26BFyAYp6DrDFhPVj3XRt017P7SYSbfPrXVwTi8rQdWcW1A/+5pZ5voBCFCq2cNoRc8eUgpCFm1jW2osyI/m7rDOe3X+VNma3R7ziLCi6E1Zp88qYcReqzTs5+9BRnkBAAAAAAAAAAAAAAAAAAAAJB9hNIiIiOM4BRG5sWnyf23zsn8Ukcaqx+9wHOfVIVb3wabH/90YUwnxOgAROI4z6CF07bvf/e6ax1dccYVs2rSpJ8v+zne+s+bx7/zO70R6faFQkDe+8Y1HHt955509GRcAAGivauw31YqI5AKCIr0QNmCEcKLG5OrGHsQDmpUb9n2r38eITqTdtBo3W/0dqftaGM3ry7gQXdT9K44YRJT4V1BwrN8iBc0CnhtpexN4PMgFxBtt50ztPNpJ9K2grDvKuTpK8LSTWFkl4Nge9H3SgiwAREpKGKmY1sNojgz/753Re98/9F2pmWXrvIuKl8c8Gqw2oYQOS7V4/jEd7Xclg4zyAgAAAAAAAAAAAAAAAAAAAEg+7pxcpxzH8YwJd8e44zijIvJNETl11eSvGGO+EvQ6Y8zjjuP8vYhc+fKkjIh80XGci7XQmeM4vykiv7dq0rKIfDTMOIH1ZnJycs3jQ4cO9XT5s7OzgesbBvfcc8+ax29605t6tuy77rprzePJyUl5+umnIy1jdaTt6aefFt/3xXVpjgIA0G9VX49bZN1cX9cdFN2IGvlC9Jhc3bffaA800/atQYafguTcgiw0Wn8mXL0dDbH/mkeLqiF+iQyj9Sg41m9R3oug9zlK7CyJMY6g8duOa9q1Ryf7lvZ+LEWInS350cJoxphIYX/92D7SNl47Kr0J7QPrzcHatHV6UQkpBTPdDQZDyze+3DH7b9Z5496knDF6Tswjwmpa6LBUPxD5XNwJPeSavEgtAAAAAAAAAAAAAAAAAAAAgOQgjLZ+/WfHcd4pIv8gIv/DGNNyd8vLQbR3isj1InLcqllPi8gfhVzPNSLydhEpvvx4t4jc6jjOHxhjfr5qXVkR+U8i8umm13/aGPNMyHUB60pzqKxUKvVs2ZVKRSqVtX3Cqampni0/Li+88MKax6eeeqryzOiee+65NY/PPffcrpbn+77Mzs4OZYAOAIBhU/WtHWYRiR6liSoovFZpEEaLKmpMrmZqfRoJ1puKElBMYghJ5HDEyBZGW/0dqSv7v+cSRkuKqPtXLoZQX5TzYhyhNk2U9y5onDl3pCfLGZSg8Vcaa49rvvHVWGw+wvtw5DXK/hg2Ylo3NamZ8AFTI0Z8aUgqwl9RqGEVNx8YviReC9j5piGz9YPWeYFhNCWiZAxhtI3q50s/kenaC9Z5F4y/RVIOfx09SEXP/ndDNbMsi/68jKb6Gw8dtp/NAAAAAAAAAAAAAAAAAAAAACQD/0/09csRkV9/+T/jOM5TIvKYiJREpCAix4jImSKSaXrdUyLyFmPMr8KsxBizz3Gcd4jIt1ct63wRecRxnPtF5EkRGX95XVuaXv7/icj/EXG71r1tRZEnP+YOehjr3rZi++f023HHHbfm8YsvvigzMzM9CZg9/PDDbdc3DGZmZtY8LhZ798E1L7sX5ufnCaMBABAD7aZaEZFsn8NorpOSnJu3joHoRnRBn6WNFoYCmpX9Rev0JIaQRPR41ergYs1XwmgOYbSkiBp3iGN/DDsmV1KSdpp/TRifKO9F0DblI1wHJDHGkXbT4jme1E29ZV7zca3qV8SIPULUSSi2oMTUtONpy/M6CMTWTC10LCcovJZ3RwK3mWs0wG6ucUh8aVjnTaab/zrnFY7Yw2jYuG4vfcs63ZWUXDDxlphHg2YTShhNRGS2NhNDGM1+Hk7qz2YAAAAAAAAAAAAAAAAAAAAAkoEw2sbgiMirXv4vyDdE5A+MMdNRFm6Muc1xnLeLyBfllfiZIyK7Xv7P5p9E5L3GGPtdNxuYl3Jkx+ZBjwJx2L17d8u0++67Ty677LKul33fffeteZzP5+X1r39918sdNMfp3U13y8v2m2m7YYz9hmQAANBbVb9ine6IG0vUJecWrEEv7WZf6MqNcLGVFYTREJYW3UtiCElEJJ/SgkSvHFdsoSQRES9kVAj9l0uFj1GlnUzoIFQ3wobC8qlCT3/mjiqXCv/dzAc8N8p3PKnHg5xbkIXGXMv05uNa0HWHdkwJXq/9NUshz9WdxMcOn9fD7aOVhh5Tzbl5STmeZJysLJtq62u5RgOsSjX9r4KKHn9JgXBmai/Jzxbvs857/di5Mu7xD4kM2rhXFFdc8cVvmVeqz8g22dnX9WvXCEm9FgMAAAAAAAAAAAAAAAAAAACQDO6gB4C+uUtEviwipTbPq4vIzSJyqTHmN6NG0VYYY74lIq8TkRvbrPMHIvIuY8wVxphod8AD68z27dtl+/bta6bdcsstPVn2d77znTWPzznnHMlk+h8J6bXNm9fegHfw4MG+LDuXy4nv+2KM6eq/HTt29Gx8AABApwWPsm4ulqhLTonMdBIE2eiihkpqhNEQkhbdyyf05nttXKu/Iw3CaImnnR9s4toXwwYnBh2miPJ+BL3PaTcT+jsRFFgbJO29aL7OCLruiLIvrigoMbWw5+qyH/1XvVrwMeo48i9H3bT9uNzgGg2wKdUPWKennYyMpMbU12k/cRnhH43YiO6c/bb62V80cXnMo4GN66Rkk1e0ztOOA71UUc7DnVyvAAAAAAAAAAAAAAAAAAAAANg4CKOtU8aYHxtj/icRmRKRk0XkHSLyJyLyERH5ryJylYhcKiKTxpjLjTG39mCdvzLGvE9EjhGRN4vIe0TkQy+v950i8ipjzHnGmK90uy5gvXjrW9+65vGXvvQlqdW6iz1MT0/LN77xjcD1DItjjz12zeNHHnmkZ8s++uijj/y5UqnIs88+27NlAwCA/qr6Fev0uG6qXYlvNNOCbdBFjcnVCaMhJO37mEtoCEmN+az6jmj7v+ek+zImROc5aUk74aLkcYXIwsa/Bh0NjPJ+aOfhqMsadAxOo42rOQwWJhQWhbYPLCmhyWZakDJI3V8O/dzAEFzq8DWgtr9HDbECG8XBmv3fySl6m9sEp/sfo8ZwqPnLcveh71jnHZvZLiflT4l5RNAUvc3W6bO1mb6u1zcNqRr773AGff0JAAAAAAAAAAAAAAAAAAAAINkIo61z5rDHjDFfM8b8tTHmemPMx4wxnzPG3GqMme/DOpeNMd8zxnzRGPOJl9f7VWPMU71eFzDs3v/+96+5yWx6elq+8IUvdLXMG264YU1cbWRkRN773vd2tcxBOf/889c8vu2223q27N27d695fMstt/Rs2QAAoL+qSvAo6+ZiWb8WYOskCLLRRQ2VEEZDWGXf/n1M6s332rgqhNGGTjZkpDOuSN+wRMLyEeKm7UKoYUOpcQVVo9LG1XzO1EJhrrihA31r19tdVEw77gapRTivB4XRVo6hYSKTAF5Rqh+wTi+m7QGl9kzng8FQun/+blls2P+a8aKJvW0Ce4hTMT1lna4dB3pFC9uLJDdaDQAAAAAAAAAAAAAAAAAAACAZCKMBwACdcsopsnfv3jXTPvjBD8pLL73U0fIeeeQR+dSnPrVm2nve8x6ZnJzseIyDdMkll6x5fNNNN8n8fG96jpdddtmax5///Od7slwAANB/2o21YWM03corN+9WlGAb7HzTiPyeEUZDGMYYdd8adPxJo8Z8Gu3DaCnH68uY0Jmwga8oIbBuhN3nBx0NzLkjEZ4bPNZ8yGUNeps1+ZR9/KuPByIilYY99pV3RzoK0RSU9S6FDJ4tKYHYoM8rynldC7SlncyR42CYyCSAV5Rq9iDSpLcl8HWO2I8xhjDahnPH7Les03NuXt44/qZ4B4NAE549eDjb5zBaUJw0qZFaAAAAAAAAAAAAAAAAAAAAAMlAGA0ABuzTn/60FAqv3Lg5Ozsr73jHO2RhYSHScqanp+Vd73qXLC8vH5l27LHHyp//+Z/3bKxxO/XUU+Wiiy468nhubk4+9KEP9WTZe/fulRNPPPHI4x/+8Ifyd3/3dz1ZNgAA6K+qsQePsk4ulvVrgQ+iG9FogbsgNZ8wGtqrmooa5khuCKn9caVu6tbnpJ10X8aEzoQNkUUJgXUjbHBi0NHAtJsWL2Tkr91Yh2WbNdr4m68ztNBILtVZZEQLylX9svjGb/t67TpoLDWuvkY7rtk0h+FWrB639t4FRVmAjeygEkQqpu0BJWC1ZypPyNOVx63zztn060SvEqaohNFKtZm+rjfo9yRhY7YAAAAAAAAAAAAAAAAAAAAANibCaAAwYCeffLL89V//9Zpp99xzj+zdu1f27dsXahmPP/64XHzxxfLoo48emea6rnzpS1+SLVu29HS8cWsOu332s5+VT3/606Fff+jQIalUWqMbnufJddddt2ba+973PvnqV78aeYy33nqrPPnkk5FfBwAAOlPx7WG0uG681kIqRDei6eT9qhvCaGivosRzRJIbQtKCbWV/8ciftf3fI4yWKGHPRfkBn7OaaXG+OIWJxXlOWtJu8D4fPk43+G220SIhzedNLTTSaQAyn7Kv14iRqnLttdrSquPVapu8CfU1NbOszmumbe/q75z23gWdF4CNbLamhNGUgFI79iwt1qs7Sjer8/ZM7I1xJAijmJ6yTi/VD4gx/fv2lgOuIYjnAQAAAAAAAAAAAAAAAAAAAAhCGA0AEuDKK6+Uq666as20u+66S0455RT5xCc+Ic8995z1dU888YR85CMfkdNOO01++tOfrpn3yU9+Ui6++OK+jTkub37zm+Xqq69eM+3P/uzP5G1ve5vcf//91tf4vi/f//735f3vf78cf/zx8uKLL1qfd8UVV8iVV1555PHy8rK8853vlHe/+93qskVEGo2GPPjgg/LRj35UTjnlFLn00kvl2Wef7WDrAABAJ6p+a/RURCTr5mJZvxYc0YIdsAt6v0bcMet0wmgIIyi6l4T4k40WaFodgiSMNhzCR7naR8B6IWyALQmRsDBjDTPOsN/z5B4P7O9D83lTO9Z1+lkGBdW06Nma8SjxsYI7Kq7y1xBRzuva9q4OuuVS9veOeC3QqubXZK4xa51XTAeH0RzHUeaQRtsoFhpzct/8ndZ5ry2cJsdmj495RGhHCx7WzLIs+Qt9W6/2c78rKUk7mb6tFwAAAAAAAAAAAAAAAAAAAMDw8wY9AADAYZ/5zGekWCzK9ddfL8Ycvolsfn5ePvShD8mHP/xhOeWUU+T444+XYrEoMzMz8swzz8hjjz3Wspx0Oi033HCDvO9974t7E/rmk5/8pDz77LPy5S9/+ci0b37zm/LNb35Ttm7dKqeddppMTU1JtVqVF198UR566CGZn58Ptewbb7xRSqWSfO1rXzsy7aabbpKbbrpJtmzZImeccYZMTU2J67oyNzcn+/fvl0cffVQqFXuQBQAA9N/qUNBqWkik17TgiBYEgV3Q+zXqjcvicuv1HGE0hBEU3UtC/MlGCxKVG0tijBHHcaRu6tbnpBx+vZckYfexvBJw6rXQ40nAdyNU9CzEc4Zpm23U64ym6x/tWNd5GE2P9ZUbSyJtGoxlJZ6WT41I2slI1bT+HiXKeT3M9Z+2DcRrgVaz9QPqPC2gtMIRLYyGjeL7h/5dambZOm/PxOUxjwZhTHhT6rxS7YCMpOxx8m5VlJ/7824hILIIAAAAAAAAAAAAAAAAAAAAAITRACBR/uIv/kIuuugi+aM/+iN5/PHHj0w3xsjDDz8sDz/8cODrzzzzTPmbv/kb2bVrV7+HGqtUKiX/8i//Iqeeeqpcf/31Uqu9cuPs/v37Zf/+/R0vO51Oy1e+8hX51Kc+Jddcc82a4Nn09LTceuutoZYxMqLfQAwAAHqr6tsDpVk3F8v6tQAb0Y1otIBKSjw1VlMjjIYQysp30RVXMk425tGEo4WMGlKXuqlJ2smoASHPaVMrQqzCRjpzARGqXgobyYorLho8hjDRs/bjDLvN2QRss412DmwOi2iB0U6Db/mU/jrtnB3mOXm3IJ6TVsJo9uBjlOWv/ry5RgPCKwWF0dLBYTTNyj/2gfXNN77cOXuzdd6ENyWnj74x5hEhjE1eURxxxYjfMq9Un5FtsrMv61XDpjFFggEAAAAAAAAAAAAAAAAAAAAML3fQAwAArHXJJZfII488Iv/4j/8oF198sXhecMMym83Kb/zGb8i//uu/yn333bfuomgrHMeRa665Rh577DF573vfK5OTk4HPHx0dld/6rd+Sr3/967J9+/a2y/7ABz4gTz31lPyX//Jf5IQTTmg7nrGxMbn88svls5/9rLzwwgty9tlnR9oeAADQuapyY21cgZN8yh6z0W74hZ32fuVTBUkroSctDAWspgVwcm5BHMeJeTThBAeJDm+PFhDyHP7dgyQJG3nIx3bOChfJ0s5tcQoz1jDRszBhsKyTk5STCjWuuOWU96H52KYe60J+5s08Jy1pJ2OdFyqM1rA/p5AaUY9TUc7rlYZy3bDq884rwUEtmAlsZAdr9jBawR1NRCwTyfXI4gNyoPaSdd6FE5cl9vy60aWclIx7Reu82fpM39Yb9LMZAAAAAAAAAAAAAAAAAAAAAAThzkkASCDP8+SKK66QK664QhYXF+X++++XJ554Qqanp2V5eVmy2awcffTR8prXvEbOPPNMyWazHa/r2muvlWuvvbaj1952222xvk5EZOfOnfK3f/u3cuONN8oDDzwgP//5z+XAgQOysLAgIyMjctRRR8nJJ58sp59+uqTT9qCG5phjjpGPf/zj8vGPf1yeeuopeeCBB2R6elpKpZK4ritjY2OydetWOfnkk+XVr361pFLc5AUAwCBU/Yp1elxhNC0UUPGXxBiT2PBS0miRkrxbEI8wGrpQbij7VoexoDgEhQEq/pJskgl1/9e+LxiMsJGHnBJw6rWwcZskRHBCRc9CxdPab0sStlejhd2az5tB59HO1z0itcZy67qV6Nna8difk3dHxHPTIo3WeTW/dV1Rl796v1Gv0ZSoGrCRler2MNpkenPb1zrCzzsb2e2zN1unp8ST3eOXxjwaRFH0NlsjaCUllNgL/bheAQAAAAAAAAAAAAAAAAAAALAxEEYDgIQbGRmRPXv2yJ49ewY9lERxXVd27dolu3bt6svyd+7cKTt37uzLsgEAQHcqvj1ukXVzsaw/r8RsfPFl2VQl68QzjmGnRVZyhNHQpYpy833YYNUgBIUBVmICehiNX+8lSdjgVj6mMFfK8STtZKRmggNU2rktTmECGWG+x6GeM4ShxJpZloapS+rl77wWGunmWJdPFWSuUWqZrq0rzHPy7oh4TsY6L8p5Xbv+Wx3Ly6fs+3HZXyReCzQp1aat0ye89mE0jRHT8WsxHA4svyiPLD5gnfeGsfNk3CvGPCJEMeFNWafPKqHEXhjGn80AAAAAAAAAAAAAAAAAAAAAJIM76AEAAAAAABBF1a9Yp4eN0XQraD3aTb9opQVOgsJoNZ8wGtrT4zzJvfk+G3RcaRzenoapW+dr3xcMRtj9LKcEnPohXHAsnnNo8BjajzPMtuRDRM+SHOMI+ixWH99Wjg3NujnWaYG8MGG0JSV4mk+NSFoJONaV45pNxdeDqq/82f7ercRrAbyipISQiukwYTR7ZJAw2vp3x+y/qZ/znom9MY8GUWnfb+140At6yHXw154AAAAAAAAAAAAAAAAAAAAAko0wGgAAAABgqFSVoFbWycWy/qDgSFmJlKBVWQmc5FMFSbv20FPdEEZDe1qgMMkhJNdx1TjASkygpuz/hNGSJex+lo8xBhEuOBZfqE0fQ28Cbr0KrA1K0GexOobWj2Od9r6UlejZCt/4avA0HxA8jXJeLwcs/5U/B7x3xGuBNUo1ewhp0tvS9rX2LBrWu2W/Kt8/9F3rvOOyO+TE/K/FPCJEVfSmrNNLtZm+rbPS0IPoAAAAAAAAAAAAAAAAAAAAABCEMBoAAAAAYGj4xpeqqVjnhYml9EIupd/AS3QjPC2gkutRQAUblxYoTHIISUSPA6xEBLX933O8vo0J0YU9F8UZgwgVE0vFvHdLFwAAIABJREFUF2pTxxBinGECbr0KrA1K0GdRXnWdUVauOfIB1ynt5FP291eLma6o+hUx4tuX6Y705LxeUY7tq79LQZ8r8VpgrYN1exitmN4c80gwLO6fv0sW/XnrvIsm9orjkMxLOu37PVufEWNMX9aph1yTey0GAAAAAAAAAAAAAAAAAAAAIBkIowEAAAAAhsayqarzsm4uljFknZw4Yr/pW4uUoJUWWckTRkOX9Jvvkx1G02JOKxHBuqlb52vfFwxG2MhDnKG+oKDniiSEA8MEvUJF3kI9Z/Dbqwn6LFaOBw1Tl5pZtj6nm23T1t0ujBY0P5/Sz+u1kOd1Y0yoEJwWdhMhXgusVm4sqd+JohcmjGb/WchIf8JKSIbbZ2+2Ts+7BTl700UxjwadmPCmrNOXTVWW/IW+rFMLogedswEAAAAAAAAAAAAAAAAAAABAhDAaAAAAAGCIVJWbakVEsiFjNN1yHEeNrhDdCK/cUAIn7oikuwyoYGMLE89JIi1mVG4sim8aYsS3zieMlixho1RxxTxF2kfP0k5GUo4X02h0Yd67cJG39qGNJB8PUo4naSdjnbcSIAsKsXYTudPeO+2c3Twum4I70nXwtGaWxZeGdd7q/SbjZInXAiGU6gfUeZPp9mE0x7F/z7B+PV3+hTxbecI679zxN8d6XYPOaWE0EZFSbaYv69SuEcLGhAEAAAAAAAAAAAAAAAAAAABsXIO/4w0AAAAAgJAqgWG0OCMzI9bARtD41osfzd0h3z/0XTWoMJraJKePvlHeXHybpJyUuhwtIpdz82J8ewAqbEAFG1vQvpVkWsyo4pelburq6wijJUuYcFfOzYsbcHzstXbBsTAhsTiECXqF+R6HCaWGDdgNSt4tSK2x3DJ95TqjEhAq6yqMllLCaAHhM5HDAUdNLiB4Gva8HjYE5zqu5Ny8co1GGA1YUapNW6c74gSGk9oypvPXItFun71ZnbdnYm+MI0E3xr1JccS1Bpdn6wdkm+zo+Tq135F0c70CAAAAAAAAAAAAAAAAAAAAYGMgjAYAAAAAGBpVv6LOizN6pK0rKAyyHtxRuln++Vd/E/icl+R5+WX5UfnV8n559zFXqc/TAiX51IjUTGsMRoQwGsLRAjpJiT9ptKBW2V8M3Pc9h1/vJUmYc1HcUa52Y0pKNDDM+xLme5x20+I56cDvTdLDaDm3IHON2ZbpK9cZQaGwMHE+jRYpCVpf0Py0kznyediEPa8HRc2a99+cW7COp902ABuJFjje5BUlFeK6wlGmk0Vbnxbqc3L//F3WeScXzpCjM8fFPCJ0KuWkZNwrymx9pmVeyTKtF/RodbKvxQAAAAAAAAAAAAAAAAAAAAAMnjvoAQAAAAAAEFbFL6vzsrGG0ew38QaNb9jV/Jp888BNoZ9/96HvyEvLz6vztUBJzs1L2snYx0AYDSFUGvq+lWRakKjil6Vu6urrtOAQBiPr5MRRkzGHaZ91v7QLT+RTyYgG5kMEvcJ+j9u9x3F/BlFpcbOV64ygyFc326aF58rKcXXFkhKGXVmedpyq+eHO60Hrb95e9VjaZhuAjeRgzR5GK3qbQy4h+DyH9eWeQ7eqIcs9E3tjHg26pX3PZ5VgYjd846u/I0n6z2YAAAAAAAAAAAAAAAAAAAAABo8wGgAAAABgaFT9inV62slIyknFNg4t3hIUKhl2jyw+IIv+fKTX3D93lzqvorxXebcgnuNZ52k35AOrad/DpMSfNFq8quwvBe772vcFg+E4TttQZ7tQWa+1C2UlJUwR5n0JG/1qt6y4P4Oo9FDi0pr/bXb4eqjzY4J+fWMPn7Wbv7I8z7WH0cKe17XtFWkN4wYdSwEcVlICSOHDaBrT5euRNL5pyB2zN1vnFb3Nctro2TGPCN2a8Kas00tKMLEb2u9vRJJ/LQYAAAAAAAAAAAAAAAAAAABg8AijAQAAAACGhnZjbdbNxToO7SbeoHDHsPvR/B2RX3P/vD2MVvOXpW7q1nl5d0Q8p7uACjauhmnIsqla5yUl/qTRQkjlxmKbMJr9+4LBabevhY179UrSxqMJ8x3NKeGuqMvKJ/x40C7uVW7ocdFuFFx7QLJmlqXm68chNUj58vLSXZ7XteXn3Ly4ztq/4tDibuv5Gg2ISgujTabDhdEccazTDWG0dedni/fLwfq0dd6FE5fFGidHbxTTShitPtPzdQWFVbXzNQAAAAAAAAAAAAAAAAAAAACsIIwGAAAAABgaVb9snZ6NOXCiBozWaXSj4pflpws/ivy6F5afk/3VZyzL09+nXCovaTdjnVfzlyOPARtL0L6VV4I/SaEFnyp+uU0YzevXkNChdnGqXCrec1a7mJgW4YpbyvEk42QDnxM2cJhPBX/fc23mD5oWbls5xmnHum4/y1zAcbISEDcpN+zzVkJr3QZPo2xvu6gcAJFSzR66KnrhwmiihNGw/txRutk63XM8OX/80phHg17QvuezfQijVZTf34gk5/oTAAAAAAAAAAAAAAAAAAAAQHIRRgMAAAAADA01jObkYh2HdhNvpbE+oxs/mb9XasYeJbts8p3y20f9gThKIOG+ubtapgXFSfLuiBp6qpt6iNFiIwuM7sUcUIxKDy4uBu77WnAIg9Mu9BB3pK9dqC3fJpwWp6D3Lu1kQu/v7b7vWngsKbRAWfnl6wztPNougtdO0L4QdO4uK9G0lfF0G0bT1m3bt7X9Pej8AGwkvvGlpASQiuktXS3bdPVqJM2vlvfLI0sPWue9YfR8GfMmYh4RemHCm7JOL9UOiDG9/RYHR6uTc/0JAAAAAAAAAAAAAAAAAAAAIJkIowEAAAAAhkZFCaPFHTzS1hcUDRlm983faZ2+KTUhv7H5Cvn14n+QE/OnWJ9z//xdLTdYB4fRCl0HVLBxlQPihHHHqKJSg4t+OXDfJ4yWPO3OSfGfs4LDE+3mxykozBXlfRumbbbJp+zbuhIY0UIj3UZGCgHHyaWGPX4moofRVpanBU9rIc/rWnjW9jlqn23Q+QHYSBYac+p1RdHbHGoZ9hyyCGm09eXO2X9T511U3BvjSNBLE2n793zZVNXzeae039+44krayfR0XQAAAAAAAAAAAAAAAAAAAADWH8JoAAAAAIChUTUV6/Ssm4t1HPmUPRyi3fg7zObrh+TRxQet884cu0BcJyUiIrvGLrA+Z7r2gjxXfXLNNC1wInL4s9RCTzWzHGbI2MC0WJCISE4JDSWFFjSq+mWp+fq+n1KCQxicdtGtuCN97YJi3ca0einovYvyvrXbpiRts01QKFFED4x2u11ZNy+OkjwKOr5q0bGV7dDiJ2GDp1G2V4vrrcdrNKATpfoBdV5RCSZh41n2q3LPoe9a5x2ffZXszL025hGhV4relDrvYE0/PnRCu3bIuQVxHD2xCAAAAAAAAAAAAAAAAAAAAAAihNEAAAAAAENEi1rEHUbTIjNlfzHWccThwfl7xBffOu/sTXuO/PkNY+eJo/ya4f75u9Y81gInOTcvrpMKCKjUwwwZG5i2b6WdjBrcSwotuGjEyKI/b53nSkpch1/vJU27EFm7+b3WLpbVLuQWp6CxRnnf2m1T3NcNUWnvw8p1hhYY7fazdB23o2scbV7h5eOadvwNG0ZTwyqWCJr2HqzHazSgEyUlfOQ5noylxkMtQwsaGTEdjwvJ8qO5O9Tj5p6JvUSthti4N6n+3D4bEE7shB5OTXawGgAAAAAAAAAAAAAAAAAAAEAycOck0GO2G0KM4YYgAMPN91tjKNwABwAYhKpfsU6P+8ZaLbqhhduG2X3zd1qnb04fLTtyrz7yeMybkNcWTrM+9/65u9b8XKTdZL/yvnqOZ51vxJeGaYQaNzYmNZ4zBDffB41xvn7IOj2d8NjbRpVLtQmjWWJO/dQultUunBanoO9BlPctaJuyTk5cJxVpXHFrd52hRSDzPdi38q490rjU0MNi2ryVZXUfRrNfX9k+Z+2zX4/XaEAnDtanrdMnvKkIsVXld4L8Nci6YIyRO2Zvts7LuyNr4tgYPiknJeNe0Tpvtj7T03VpP5tpQWgAAAAAAAAAAAAAAAAAAAAAWI0wGtBjrtv6tarVwt3kBwBJVa/XW6bZjncAAPRbVYlaZGOOHmnRjapfFt+0BkWH1cHatDxRfsQ6b9fYnpZQ6lljF9iXU5+Wpyu/OPK4XeBEC6iIhI+oYGMqN5Sb75XQT5IEjXGhMWedHvRdweAkLUTW7hwZd6gtSNB7F+V961VgbVC0bS03lsQYExCB7EEYTYmVaOsMmreyLC14Wjetv2uw0UJwtu3V3oNyQNgN2EhKtQPW6UVvS8wjQVI9VXlMnqs+aZ133vjFknGzMY8IvTbhTVmnl+r240On9PN38qPVAAAAAAAAAAAAAAAAAAAAAAaPognQY47jSCaTWTNtYWFhQKMBgN5oPo5lMpmWEAoAAHGo+hXr9LjDaFp0w4hRxziM7p+/S523a9OFLdNeP3auuJJquywtTpI7EkbLWOeLiNTMsjoP0KJ7w3DzfdAY5xuHrNO12BAGq12cqhfxqijSbjowohd3qC1IPiBaFuV9C1pOkrZXo21rQ+pSNzU9RNaLMJqyjCVfD4tp81aCj9r+F/acXlGjl61jVeO1piK+aYRaH7CeaeGjYnpz6GVovxE0YjoYEZLm9tLN6rw9E2+NcSTol6IWRqvN9HQ9+s9myb8WAwAAAAAAAAAAAAAAAAAAADB4hNGAPhgbG1vzeG5uTozhpiAAw8kYI3Nzc2umNR/nAACIi3ZjbdbNxTqOoOCKFisZRj+au8M6/bjsDtma3d4yfSQ1Jr828nrrax6Yv0d844uI/jmuxEzSrh7wqZt64JixsZW1OE/AdzYp0k5GUmIPnS0oYbQUYbREyrcJ8Q0izBW0ziTFKYLGEiVwGLyc5GyvJpfSt7XiL0lZudboxbZpyygrcbKavyx1U7POe+W8bg+e1n3761rWrW2v5dhum7ZCu/4ANpJSTQmjeeHDaFoajTDa8Juvz8qDC3db551SeIMcldka84jQD1oIUQsndqqfIVcAAAAAAAAAAAAAAAAAAAAA6x9hNKAPmoNBtVpNnn/+eeJoAIaOMUaef/55qdXW3qy8adOmAY0IALDRVf2KdXqUWEovBIVH1kt044Xqc7Kv+pR13tlje9TXnTV2gXX6bH1Gniw/KiJ6vGolZuIFxJ7CRlSwMWnfv2EIITmOowbc5utz1umeo0cEMTjt9rdB7I9B60xSnCJoLHl3JPRyehVYG5SgbS37S1JpBAdGu1FI2dddUc7dWrRs9bK0Y1XY2GmUsErQe7BertGAbmjho8n0lphHgiS6+9B31GPznuLemEeDfpnwpqzTZ+szPV2Pdv4ehmsxAAAAAAAAAAAAAAAAAAAAAIOn32kMoGO5XE7S6fSakND8/Lz88pe/lE2bNsno6Kh4nieuS5sQQPL4vi/1el0WFhZkbm6uJYqWTqclm80OaHQAgI2uqgQtsm4u1nEERTe06NewuW/+TnXeWZvs8TMRkTNG3yie41lvqL9//m45qXCqGlFZeV89J6Muv2aW1XmA9v1LUvgpSM7Ny0KjNYJmmyZCGC2psm1iD1oAr5+CAhR5JYQ1CL0KmvUqsDYoQdta9pfaBka7ob0/S2oYTb/uybnBwdOG1MU3vrhO8O9ItesG2/sUtA8dHivxJ2xcDVOXQ/WD1nlFJZRk44ijzOEfhhlmDdOQO2e/bZ036W2R142cFfOI0C9Fb7N1+mxtRowx4jjadzwaLeQ6DNFqAAAAAAAAAAAAAAAAAAAAAINHGA3oA8dxZOvWrfLss8+KMa/cDFSr1WRmZkZmZnr7r64DQFxWjm+9ujkKAICoqn7FOj1KLKUX0k5GXEmJL42WeRUl3jZMjDFy39wd1nkn5n9NptJHqa/Np0bklJEz5aGFH7bMe2D+bnnXUb+vvkcrN0inA2JPdVNT5wHt9q2k04JE841D1ulabAiDlW9zThrE/qit0xFHMk5ywteBYbQI0a/g5cR7zdCJoOuaufqs+OJb5/UiAqkdh8oNe5ys3NDDaIXUqIgERxzrpha4D/rGV8O4trEGvQdaoAXYKGbrB8Uo8bLJdPfRQLJow+1nC/dJqX7AOm/PxF5xnVTMI0K/TKTtYbSqqUjZXzxy/u6WGkQfQCQYAAAAAAAAAAAAAAAAAAAAwPDh7kmgTwqFgmzfvr0ljgYAw8pxHNm+fbsUCty4BAAYHC16lHVysY7DcRzJuwVZ9Odb5gUFQkREDtUPyrOVJ8VYoiY5Ny87cq+RjNs+UjNbPyjPVZ6UozPHyZb0MR2HS33TkH3Vp2S2fvDItFLtgEzXXrQ+f9fYhW2XuWvsQmsYbb5xSP699E05WPuV9XUrMZPggEq97fpFDsfdpmsvyIvL+0I9f8Wm1IQcnztRUiFu/F/2q/J05ReRYniuuLI9d5Js8ibaPrfmL8vTlcel7AfvU82Oy+4IjNd1quKX5enyL2TZVHu+7F45sPySdfqw3HyvxZAWG63HGpHg7woGp134bBAhMu07kHPz4jpuzKPRBX1X2wXnVguKn/UiHtZvrpOSrJOTqmkNwj6y+ID6ul5E97TPoFSftp7b91Wesj7fEffI9Vnayajrq5uaZET/TlT9ihpysh0z025GPMezXi88uvRj67VbGCnHkxNyJ8loalNHrweSoFSzR69ERIqePZTUSw3TkOcqv5S5xmyk123NnCCbM0f3fDzGGHlh+Vk5ULNfPx6V3ipHZ47bMP9AxO2z37JO95y07B6/JObRoJ+K3pQ670dzd0hRCadFdWjV7xhWG5ZoNQAAAAAAAAAAAAAAAAAAAIDBIowG9NFKHG3//v1Sq9UGPRwA6Fg6nZatW7cSRQMADFTd1KQh9ihWNkIspVdyqbw1rqFFshqmITe99Dn5/qHvBi437WTkPcf+qbx+7Fx9OS9+Tr4/98pyXls4Tf7zcR9Wo0qal5afl8/s+6jMKKGyZq64cubY7rbPe93oLkk7GamZ5ZZ5X5v+ovq6fGpEREQ8R/91hW2ZzcqNRbnx+Y/J4+WH2z7XZjxVlKu2XSPbcjvU5zw4f4988YW/DDUemwsn3iq/c9R/UoNEDy/cL5/f/ylrFCeMM0bPkSuPvVrSrh6jieIHh/5d/vHFz6nfwaQblpvvV74DzWwhRRERzyWMlkTt9rdBBFa080PSvhtB48m59u+HTVD8LGnbrMmlClKtt54DtHCNSG+ib3nlfT5Qe0lufP5jEZZTOLKvdxM8rfhL+jqUY2bOLchCY65l+rdm/iVwXWG8dfK35Tc2X7FhQklYX0r1aev0nJtXv082jmj7v/4PxOyrPCWf2XedzDVKodez2qkjZ8ofbP2AZN3eBLEP1Q/KXz/3Udm//Ezg87ZnT5Q/3naNjHrrO4r40vLz8vOln1jnnTV2wbrf/o1m3CuKI671Z4x/+dXf9n39UX9vAQAAAAAAAAAAAAAAAAAAAGBjst99C6BnCoWCnHjiibJz506ZmpqSTKY3N6UDQL9lMhmZmpqSnTt3yoknnkgUDQAwcFpwTER6doN8FFp8RAt43DF7c9somsjh8Nfn9/83OVQ/qC9nbu1yHlv6qXz1V19su+xm//fz/y10FE1E5OSR18uYN9H2eTk3L6eN7oo8npUbpF0nJa6krM+pm/bR6a9Of7HjKJqIyKFGSW58/noxxh53OFiblv9n/6c7jqKJiNw5+29yz6FbrfOWGgvyN/s/3nEUTUTkJwv3ys0zX+749au9WN0n//DiXw1tFE2kN7GgOESNBATFhjA4uVTyYg9aDCxp342g8eQjfD9Sjidpx/47uKRts6aTcfYi+tar92d1ZCkoeNruvF4OCKNpx8x+fsb/dvDL8pOFe/u2fKCfSrUZ6/SityXScqKGAX3jy//1/PUdR9FERB5efEC+eeCmjl/f7O9fuKFtFE1E5NnqL+X/fekzPVtvUt0xe7M676KJvTGOBHFIOZ5sCvFzfb8MS6QWAAAAAAAAAAAAAAAAAAAAwGDpdyQB6BnHcSSXy0kul5OjjjpKjDHi+756kz0ADJLjOOK6buSbHAEA6Leqr0eiosaEekG7mVcLeDwUIaLhiy8/W7hfzp+4tGWeFuN4aOFeuULeF3od08svhIoBrLZr7MLQzz1r7AJ5YP6eSMvPu69EVNJOWqqm0fKcMGG0XgRLDtanZV/1KTk+96qWeY8u/lh8aR1bVA8t/FAumHhLy/SHFx+Quuk+QvaThXvlbVve3fVyHlr4YdfLGLRhufl+9XcgjKDYEAYn6Jw0qCiX9h1I2ncj6L2LOta8W5BaozVgmbRt1kQdpyNOT0Kxq4NmXS1n1fiDIo7tzutacFZkcPv1Qws/lNePndvXdQD9cLA+bZ1eTG/uyfK1v+/YV31SSvUDXS//Jws/kHcddWXXy6n4ZfnF0s9CP//niz+RhqlLap1ed1X9ivzg0L9b523PnSQ78q+JeUSIQ9GbUmPs/TYskVoAAAAAAAAAAAAAAAAAAAAAg7U+/1/8QMI5jiOpVGrQwwAAAACGSlAYLZugMJoW8CjVZiItX4sH/GLpp9bpc41ZqZtaYHwkzPI1aScjZ4yeE/r5p46cJTk3LxW/HPo127I7j/zZc9JSNa2febuASs2vyUJjLvQ6g8zWZ+R4aQ2jzTVme7R8+2cwW4+2r0RdfvTl9GY8g7R630qyqOMclu3aaDwnLcdmjpcXlp9rmXd6hONoL2n7yrZcsvahCW9SRlPjstA4tGZ62snIUZmtkZa1LbtTHll6sHV6wrZZsy27U56u/CLS813H7Xq9x2V3iCOOGOnuH3RoPqdraqY1Xrdmvq/PzzhZdd3PVZ9sM8LOrYfzIjamUs1+bTjp9SaMpq+3N9+ZUm1GjDFd/2MOi435SJHjZVOVql+RQmq0q/Um1Y/mblfj3hdN7I15NIjL9txJ8nTl8djX64gjW7MnxL5eAAAAAAAAAAAAAAAAAAAAAMOn+zulAAAAAACIQTUgsJUbQBgtr4TRyg37TeVRAmGHn29fThBt3TaLjYVIy7508u2ST9m32SbjZuWyyXeFfv4pI2fK5szRRx57rj2iUvODw2gVfzH0OtvRAgHSZSym3fKjfI5BKn5ZfOP3YDm9Gc+gvLZwmhyT3TboYYRyxug5Mu5Nhnpuzi3IrrEL+zwidGqPJSSSEk/OH79kAKMRed3oWTKVPmrNtLSTkfPGLx7IeDSuk5ILJy5rmb57/BLJuPYIlubCibeKI2vjOTtyr5Ht2RO7GmNcdo9fHDp2KmLf5zox7hXl9aPndbUMz/Hk/PFLjzxOuxn1uXVTD1yWFkT1HE+NI+2euFQ8p3//JsywnxexcWlh5GI6Whit+djaTq++M740ZNlUu15Ou9CyTbexyKQyxsjtszdb5424Y3LW2AUxjwhxuWD8LZJ29PNzv7xhbLds8iZiXy8AAAAAAAAAAAAAAAAAAACA4dO/u4MAAAAAAOihql+xTnfEHcgNvTklElZWwlzadE0ncayyvyhjMh7quUtKGM0RR7Ju7sjjordFzh3/dbm4+LbI47l08u2SdtJyz6HvysH6r6zPGUuNy6kju+S3tvwva6ZrMZh2IYNyQIAu6+SsEZWqX7HGDirKZ2CMPYzgiCtZS7inYRpSM8utY1WWr+0rrrjWMJBvfGskwoiRql+JFLSzj8c+zpR4klYCdkkwmtokp46cJb+15T8OeiihjXqb5OrjPyZfm/4H+WX5EevnmnI8eVXuZLl88+8MTfBtI7qoeLmknJTcc+i78qvl/bI9d6JcOvl2Oalw6kDGk3Pz8qfHf0y+Nv338mT553JM9nh56+Q75YTcSQMZT5D/MPU/S87Ny31zd0rd1OXMsd2yd+q3Iy/njLFz5A+2/u9yW+l/SKl+QF5bOF3eseU9akwraXbkXyN/vO0auWXmK/J05XHxpWF93rGZ7XLBxFt6Grl7z9b/Taamj5KHFn4oc41S6Nc54soJuZPkLZPvkBMLv3ZkelCkrN4meFpTw2j6td+J+ZPlquP+XL598CvyTOUJMdJZJLRu6tbrDj2cCiRbqaaE0bxoYTSNFg/TvjPNP3ccWY4xUjX2n/3K/pL1NVG0Cy3brNcw2i/Lj8rz1aet884bvzhylBTDY1tup/zJto/KzTP/XZ6pPCENCQ6Vdmvcm5TTRs6Wt215d1/XAwAAAAAAAAAAAAAAAAAAAGD9IIwGAAAAABgKFSV4lXXtsat+y7v22JRtnA1Tt4axRESOyWyTF5f3WZbTGhBoFwVbaoSPry359jDacdkd8uEd/2fo5QRxHVfePPk2efNk9Khap2E02/u24voTPy+F1GjL9E8882fybOWJlulaxEELI5yYP1n+dPvHWqY/svigfGbfR61jNca07L/avr5r0x75vWP/15bpLy0/Lx996irrayr+UtdhNO09vWTyN+U3m4J26N7mzDHy3uM+MOhhoAcumLhMLpi4bNDDOKKY3ixXbr160MNoy3EcuXTy7XLp5Nu7XtYbxnbLG8Z292BUg/GawuvkNYXXxb5ez0nLO476PXnHUb/Xk+WlAv4aot15vW7soRbtOmHFa0dOl9eOnN5+cAHuPfQ9+fsXb2iZroVTgSSr+hVZ9Oet84rpLRGXZv/ZS7tG1q4lT8idJB844VMt02frB+XDv7zS+ppyY1EmvMmQ47Rrd9yx0cLIw+6O2Zut0x1xZM/EW2MeDeJ2YuHX5I8L1wx6GAAAAAAAAAAAAAAAAAAAAABg5Q56AAAAAAAAhFENCKMNQk4Jo9liWlpgS0Sk6G0OvZxKw/4evPKa8GG0xYY9jDZiCYcNQrrDMFrQe51z89bpWuQuahhNi0Roy/fFl2VTtazX/jlqy9H2xcPL6j7eUlYCMHl3pOtlAwDWP8dxOg6e1pWwrOf0/998yafs57lenFuBuJVqB9R52s+qBbXHAAAgAElEQVQjmqhJai36q13Date8ItF+3tF0EkYT9fp/eB2ql+TB+e9b550ycqZszhwT84gAAAAAAAAAAAAAAAAAAAAAAHgFYTQAAAAAwFDQbqjPOoMJo6kxrUbrzfpBQbNiOnwYrV0IYEmJndmfO2+dXnCTEUbTAiq1NiGDihLxyjo5cZ2UdZ4WZahEDJ84SiYiargsaogsOB7RfbxFj1nYQ3MAADTTgqftzutawEhbXi9p57llU5WGafR9/UAvlepBYbSpvq5bv7a1X8NmnKy4Yr9ut/2sFVUnYbT1l0UTuefQd6Qhdeu8iyb2xjwaAAAAAAAAAAAAAAAAAAAAAADWIowGAAAAABgKVb9inT6oOJMe02qNSAUFtoqePYxme40WqFrRLpy22pJvj6gVUskOo7ULGWghsFxKj4fpkTv7soz41umOYw+jBYbLbCE9bRuUfT3tZNR4RNS4m422X+UD3lMAAFbr9LyuhdO05fVSUNi02uaaDEgaLYw2lhqXtJuJtCwtBmyUfJh+bWv/jjmOo15n9iL62y7IaKNt27BqmIbcOftt67zN6aPllJEzYx4RAAAAAAAAAAAAAAAAAAAAAABrEUYDAAAAAAyFqrEHKLJuLuaRHKbfrN8akQq6gb+YtofRbFGuduGzJUtkS7PYsIfRRlJjoZfRT+kOAypRwwtB87RlGaWLYE9EBEfZooT08qkR+3qD4hFK3C0KLcgX9J4CALBap2G0uqlHWl4vBYZNI8RogSQ4WJu2TtcizYGUGLBG+1koKLJbcO3XvUs9+O61O+7YrLcw2kMLP5TZ+ox13oUTe8V1+OtjAAAAAAAAAAAAAAAAAAAAAMBg8f9sBwAAAAAMhapfsU7PuvmYR3JYXrlZv2aWpdEU8dBCV2knI6OpTdZ5ttdogaoVUSIdS0oYreCOhl5GP3UaUFHDCwFxEz1yp4TRlDCCo/yaJevk1HlRQnqB26DG3bqLR9RNTWpm2TqPMBoAIKzOw2j2c1AcYbSg81y5EXxNBiRNqX7AOr2Y3tLDtdivkXsaLu5B9Fc7rgTSyshD6o7Zb1mnp52MnDf+5phHAwAAAAAAAAAAAAAAAAAAAABAK8JoAAAAAIChoEXBcgMKowWttzlspcUA8m5BXc6yqbYE1sqN4MjVUpQwmq+E0VLJDqPV2gRU9PCC/nnpUbFoYTSN4zjq+pvXYYyRshJ8CNoGLR5RbhPTa6cSEH4JCrUBALBap+d1LZw26DBat+FRIG6lmhJG8zZHXpYjjnW61g7r5Pq8kLJHqKP8vKOpN/2MFUbU6/8ke6H6nDy29FPrvLPGLlDD3QAAAAAAAAAAAAAAAAAAAAAAxIkwGgAAAABgKFT9inV61s3FPJLD8q79Zn0RkUpT2EoPXRUCl9McWGt+3PL8NuG01RYbyQ6jpV178KTuBwdUtPc66H3Wo2La+20PI2iRiMPrV9bRNN66qUlD7LGGoG3Q427dxSO0kIVIcDAGAIDV0krITAufragp531teb2UdtNqgK3b8CgQt1JdCaOlo4fRotK+L8HX5/Z55R6E0bQgoxvwV6brKYx2x+zN6ryLipfHOBIAAAAAAAAAAAAAAAAAAAAAAHSE0QAAAAAAQ6Gi3FCfdfMxj+SwfEqPQjUHtbSx59y85ALGX2msfV1QpEpEZClkKKBhGuqyRtxkhNG0EEm7gIq2XbmU/j7rUTH7snzjW6c7jv5rlnzKHndoXkdQ/C5on9OWr4Xiwup0PAAArNbpeb1u7LFQTwmo9poWAW13TQYkiTFGSjV7GG3S610YTYuHNUejVwT9HFTQwmgRQtAa7biTdjLqa9ZLGK3il+Xeue9Z5+3IvVpOyJ0U84gAAAAAAAAAAAAAAAAAAAAAALAjjAYAAAAAGApVv2KdHnRDfT8Frbc5JlVWgmX5VEHyyk3/ttcFRapEwocCgp5XSA13GE17j4Le55wS+Co3lsSY8BEEJ2Cetr+E3VcOL0MPkWnL7zbcErTPDeq7BwAYPlrIrH0YzT5fu07oNS2e2u6aDEiSRX9elk3VOq+Yjh5Gc9Sr3tbrZmOM+n3RrsFF9ABvL757dV8Jo7l6GM22bcPoh4duU6PdeyYuj3k0AAAAAAAAAAAAAAAAAAAAAADoCKMBAAAAAIZCVbmBO+vmYh7JYSnHk4yTtc5rjlFpN5/n3ILkUuEDa5WGfTkrlgKiWqst+vPqvKSH0WptAipaCCwo4qVFT3xpSM0st0w3ahhBT6NpYbaw+8rhZQTEI5TldxuP0N7PtJORlON1tWwAwMahnteVQNGKuuU8HLS8XlPDow3CaBgepdoBdd6ktyXy8vQwWquaWRZfGtZ5HV3bhgxBB+kkuBihlZxYxhi5Y/Zm67zR1CY5a+z8mEcEAAAAAAAAAAAAAAAAAAAAAICOO1gBAAAAAJH9wws3yHTtxVjX+eLyPuv0bEDwqt/ybkGWG9WW6eWmWIYWp8q5BfGctKSdjDXA1RylKrcJn4UNBSwFPG8kNRZqGf2WVsIEWshgRfN7vyIovJALmFf2lyTjrg3gaWG0oEiEtv6WfUX5bBxxAvd1bRu6DaPp76c9VgEAgI2nxDTbndfrpm6drl0n9Fo+pYVNg2O1QJKU6vYwmisp2eRN9Gw9tivkoGvRoGtw9dq5y2tbET20rEWvDxv+MtoT5Udk//Kz1nm7xy+RtJuJeUQAAAAAAAAAAAAAAAAAAAAAAOgIowEAAAAAIttXfUr2VZ8e9DBERCTr5Aa27lyqIIcapZbpzUGz5scrVm74z7sFqTVaw2jNUap2EY524bQVS41563RXUgN9P1fzOgyjae91J+GFleWNS7FpavQwmh4uW2x6bB9/1s2L67jq8rVtqChhs7D093NwQUIAwPBJO/bgTrvzuhYw0q4Tek0734W95gKSoFSzh9EmvElxnVQP19R6jaxdS4oEX09qUcJefPe0405QGMxfB2G022e/ZZ3uiCMXTlwW82gAAAAAAAAAAAAAAAAAAAAAAAim31ELAAAAAMAQGGSgSYtRtcSulDjVSixLi2Y1hwTahQBqZllqfmtgrdmSv2CdXkiNiuPoca84dR5Gs8fj8ik9fhYUTbN9dkYLowW8d9r6m8fbaYgspyxfC62Fpb1ei1UAAGDT6Xldmx9fGC3c+RtIslLdHkYrpjd3tLygGHCzoO9K3tWvJ7V55UYfw2iBx5XhDqMdqh+UH8//wDrvdSO7ZCp9dMwjAgAAAAAAAAAAAAAAAAAAAAAgGGE0AAAAAMBQG0mNDWzdYWMZWuxqJZYVNmoVJsKx1CaeJiKy2LCH0UZSo21fGxctTFALCKgYYwLCYnr8LOvm1MCDbXnGKGG0gEiEtv7mz1gNkQWEIw7P708YTdvnBhkkBAAMH8/xrNPrph74ukGH0cJGcIEkO1ibtk4vep2F0TS2eHBQyCzr5tR5WoS3airSMI3og1tFP65k1NdoYeRhcdfsLeKL/X27qHh5zKMBAAAAAAAAAAAAAAAAAAAAAKA9wmgAAAAAgKGVdwuyM/+aga7fptxoDpoFx7q05TS/LigsEOU5S0oYreAmJ4ymBU+0kIGIyLKpii++dZ72HouIuI6rhr5sYTE9jKCH0fR9Ze3nVWloYTR9/CJBkb7uwmha+KXdeAAAWE07rwcFT0X0874WUO21sBFcIMlK9QPW6ZPpLZ0t0NGveZsFRXZdR/8ryqBrzW6vb7XjTiYgjDbMGqYud81+2zpvS/pYOblwRswjAgAAAAAAAAAAAAAAAAAAAACgPcJoAAAAAICh5Dme/Mdj3i8pxxvYGHIpJXbVFJMqBwQBRAKiWX5zYK19hEMLWa225CthtFSCwmhu9DCaLWK2QgubtJsfJbwQlIgIG1bRtkHb11Zo+1Dd1KTmB0dnglQa2r5LGA0AEF5aCQ7VzXLg67SAkRZa6zU1XquETIEkKtXsYbSit7mj5YXPorUPRGsK7og6rzlCHZUaXHT1MJpv7PHlYfCThXvlUKNknbdn4q2BgToAAAAAAAAAAAAAAAAAAAAAAAZlcHePAwAAAACG1p6Jy2W+MTuw9W9KFeXkkTNkKn3UwMYgEhDLaIpdVZRY2crr1WjWqpv+jTGhIl1LIcJoiw17GG0kQWG0tBI8CYp8BUVKtM9q9XxbLsAWKvPFHkZwAvrz+ZARPe0zbjv+gHBaxV+UtDsR+Hr9tZ3FLAAAWE0LmQUFT0VE6sp534spjKtHcAmjYTj4piGz9RnrvGK6szBaEGOMOM4r6TTtu9Lu2jYoChwmBB1EDaMpAcdhd3vpW9bpaScj541fHPNoAAAAAAAAAAAAAAAAAAAAAAAIhzAaAAAAACCyCybeMughJIIWh1p9s37Nr0nd1ANfr0ezXgkJLJuqGuRa85pG+1DAkhJGK7jJCaN1ElAJipQExRVEwsXpjjD2ZaxqQIRefs0sS8PUJfVy4EULPbSNRwTML/tlGZPOwmhqzKLN+wkAwGpayEy7RnplvhJGc+MJGOXdvHV6mFgtkARz9Vn1Z4ii12kYTb/oNWLEWTW/08hu3h1R53UdRlODi/afP0QOb9cw2l99Rh4vP2ydd/amPVJIUBgbAAAAAAAAAAAAAAAAAAAAAIDV3EEPAAAAAACAYaXdsP//s3evQZKlaWHfn5OXqszq7umunu7dZXeBXeEFA+Ky2l2WhWUGDCzM2FgXK5AEtqyLwxC6IFsKhxwmwjYKO8L2B4fsT3bYDiFHOPzFJqQIxw7Cus0uC5JASIAkECIwIUBcZnaqZ3q6srrzcvyhJ6ezqt/n5MlLZVX3/H5ftuu855aXOufNGvLPyWy08O88nDGPS+X7ebRtU/Rr0XGLUMDxLAmjXaIvxq8TRsue6yo6sV8NGo+Xx+kefz7zMEIeiWgKmy2+tifTUXGd5fGIfPxkg3jEujELAFiU3dfHDff1iPy+328IGG3TIJmjtZ2XwUV7bfJKOnbYXy+MVjXMec8alSLDsTz626266fz9uEUIukl23ek3BhefzDDay3deSseev/HiDs8EAAAAAAAAAAAAAABWI4wGAAAAaxp0hsXlo4Uv6zeFM+ZxqXQ/p4JZ7QIcoxahgHvTu8XlV7rXWh1jF/pVOUzQFFDJnutBZxhV1RxwyEJfi5G7uTpmxXU7DX9myeJ3Eadf2+wxZOG2uew9FJEHKdpIz0cYDYAV9DpJ8HT2oHG7LIzWq3obn1Mbw+T+OqnHMZ41R93gMjgav1pcvlftx5XOecz9TwfE0shuN5+7zg27y+PR68iuK3vJ54+IiFn95IXRRtPj+Aev/93i2AcHXxZfOPhduz0hAAAAAAAAAAAAAABYgTAaAAAArCn7sv6poFnDF/fncaksmrW4bVNgbdHx7M3l6yTxtIOGeNeuZcGTOmYxrafFsey5bhPxytYZzZaH5tpoij+MTr3O5eNl4ba5TtWN/WqwdP+rSmMWwmgArCALnk7qSeN2WRC1V5VDa9s2aJgb3S/EU+GyOZqUw2iH/VtLw8GZpq3O5sNKkeGIdnPJbH5+vOH8PA8u5mG0xx/Z5fcP3vi7cb8+KY49f/jijs8GAAAAAAAAAAAAAABWI4wGAAAAa8q+rH8yG0VdP/zyfFOUatAZnvrfs0bTdoG109s0hwLquo7j2d3i2EH3Wqtj7EJT8CSLGSw+X4vahBeydU6mj8cc6iSMUDVkIpribKdDeuV4RKu4WxLqa/veOauu6/Q5HXaF0QBoLwueZvf0ZePNAaPtGTaGTbcTT4Xz9No4CaP1bm2w1/ZBteyzUJu5bT4/Xz/6G5FfV/Y6+XUlm/9fVnVdx8t3Pl0cu9q9Hh+++g07PiMAAAAAAAAAAAAAAFiNMBoAAACsKfuyfh2zuF+fRET+xf39ahCdqhsRzUGrNoG1RcdLIh0P6vsxqSfFsYPu1VbH2IWmMNq4flBcngXA2kS8snVKz/v8NTmrqvJIRLfqxV61XxxbPO8sbNcm7pYFJtq+d84a1w9iFtO1zwcA5rL7elMYra7rdM7Sb5gnbFPT/S6LmcJlcjRJwmj9TcJoTU7Pk7P5eZu55EHyGWnZ551lLjq4uAu/NPon8VsPfr049o3Xvz36nd1cQwEAAAAAAAAAAAAAYF3CaAAAALCmLEQV8SiIlscAhkv3M4tZPKjvR0QezDpr2XrH0zfTsSudyxNG63fyMEEWSckCYG3CC9k6pdevjnIYLSIPozUdY/6azerp20G9s7J4Xpv9Z+/BZZqCL8OF9y8ALJOF0cYNYbRZTKOOWbK/3lbOa5mmOcRowzgT7EIaRuutH0arGua8Z+fJoyQS3fQ56tE65fnvpr972XVnryGMll2LLqvPHH26uLyKTnzTje/Y8dkAAAAAAAAAAAAAAMDqhNEAAABgTcNuUyzj+NT/njVYCF01RzfmgbU8UnV6/eZQwL2mMFr38oTRmoInk1k5ZpAFwNqFF5JoWXGf5TBaUyQiIn+/tHmN24TI0seQBCmWaXovtYnNAcBcPwmjTRrCaE3RtCy0tm3dqht71X5xrO3cDC7S0fiV4vKb/dvr77RqnvMuSiPRDZ+j5tIwWstgdCa77jRdV7Is8mV0NH41fvbNv18c+6qrH93stQcAAAAAAAAAAAAAgB0RRgMAAIA1NcWhTt6OXWWxruHCvxvCaG998X9Z8GzueEko4HiWh9EOLlUYLQ8TjOsHxeVpeKFFVCx7LUv7nK0bRltyjCyi9/D8ymGIU+uk4bX14hHNoTZhNADay+7rk3ocdV2+rzZF03YVRovI5wjrhkdhV8azB3F3+npx7LB361yOefbXOY1EtwkXL4kKryu7tux19tJtsuvUZfTjr/9YzGJWHHv+xos7PhsAAAAAAAAAAAAAAFiPMBoAAACsaa/aj07y0Xr0dhitHJdajAFkQavF7ZsiVYuOl0SwjqflMNp+NYhu1Wt1jF3oV3mYIIsZZIGSVuGFNFo2ilk9PbN0vTBaGlaZh9EaAittQmRNj2Edo4bI3n6L2BwAzGUhszrqmMXZ++xDk3qS7q/fEDDatizOlAVZ4bI4mnw+HdskjNY84300T67rOp2HtpvblsPATXPUNrLPEr2Gzx/Z/P+ymdTj+NydHyuOvav/3viyg6/e8RkBAAAAAAAAAAAAAMB6hNEAAABgTVVVpV/YP1kSu1qMAexXg6jSwNq9U/+7zGh6L+o6/+L+vend4vKD7tVW+9+VLKASkYdS0vBCQ3iuzTpn95s+vc2ViDQAMX+PnDS8xm3ibsvCa6vKo37D6FT+pARAe0339XESKZrMHjTsb3cx123fX2FXjiavpmOH/U3CaEsmvW+5X59EHbPi2Cbh4k1+92b1LP0ssdcQRqufkDDaP7779+KN6Z3i2HOHL5jDAwAAAAAAAAAAAADwxPB/AQ8AAAAbGHSHxeWPYlflL+4vxgCqqopBp7yf+fYn03Kk6qxpTGJc5yGR4yS+deXShdHy4MkkCahk8bhNomIRhTBaEnjoLPkzyyCJr70d0UtCZL2qH/1OHpSZy8Nr7aJ6j223wfMJAIuag6fl+3oWTFu2v23L7q/ZHA8ui6NxOYx2pXMt9juDcznmYkAsi+xGRPrZZ9GwWw5Qtw1Gl0yTKFpERK/z5IfRPnPnpeLyvWo/vv6Zb9nx2QAAAAAAAAAAAAAAwPqE0QAAAGADaYzqrS/sj5JoxvBMJCuPWs2jWe0DAFn8LCLieHq3uPyge631/nehU3WjE93iWBZ+y+IL2XPbdp1N4gunj5HFHeYRvfJx2px/RFN4rV1Ur+12bc8HAOaaAp+TWTmAlgXTInYbRssCTtkcDy6Lo8krxeWH/Vsb7rlqtdbJNP8dyaJnp9Zp+HxU1+uFypquK3tVUxjt8vuN+78avzz6Z8Wxr3vm+Ti4ZCFsAAAAAAAAAAAAAABoIowGAAAAGxgkX9ifR6VOkmjG2e3y/cyjWe3jVqNpHvK6N32zuPwgiXZdpH4SPcmCBtnjzp7btuucTE8/93WSRqiW/JklC6vMX+NREo/IgmqPr9cc6VtV2/cuACzTFDLL7uuTepJu028IGG1bOkebrhcehV05Gr9aXH7Y2yyM1i6L1hwPzObFi4ZJyGsakzSUvMzawcU1Q2y79PLRS+nYczde3OGZAAAAAAAAAAAAAADA5oTRAAAAYANZLGMeo8rjUqdjAMNutp/jU//bxnFDCOt4Vg6jXelea73/XcniBKVQyqyexv36pLh+Fgxb1O/sRa/qFcfOhsXqmBXXq5ZkIrLA2TyIlsXv2oQjmvafvQeXyUNtwmgArKYpODROw2hNAaPyPfs85HO09cKjsCuvTZIwWn+zMFqTxYBwNgetohP71WDpvprmnOv+/mXXm4iIvc5+OpbN/y+L0fRe/NQbLxfHvmT45fH+wQd2e0IAAAAAAAAAAAAAALAhYTQAAADYQBqjmj6MXGVBs7PbLYtarRK3Op6W42dNYwfdq633vyu9TjmiMp49eGxZFhWLyIMmZ2WRu7P7ruviarGki5aex8nb8bty4KH9+ZcDaiezUczq1WMOadSv2y7UBgBz/YYwWhZAG9eP3+8jIjrRiU7V3cp5tdF2fgCXzdG4HEa72bu94Z7zSW+bMNqgM4yqWjJxjoiD5PNRRMTxdL0wWnNwMb9OZdP/y+LvvfF30kj08zde3PHZAAAAAAAAAAAAAADA5oTRAAAAYANZJGoeuZoH0h7b7kzEKotajaZvhdGm7cNoWWAroiGM1rmEYbQkTlAKGjTFSbKgyVnDZL3H43blNEJnyZ9ZsvOYv15ZRG/QEIVYNOzm691fI97SNuoHAMs0BYeyUFG2vGlf5yGbH6wSrYWLcDQph9EO+89utN82UbOIprlky+hvQxx43d+/pjDaXrWXjtWXOI1W13V85s5LxbFnujfia699/Y7PCAAAAAAAAAAAAAAANieMBgAAABvIIlGj2XHUdZ1Gys5GrLL9nMyOY1ZP43590vqcRtM8jHZvVg6jXek+2WG0phhc6/hCy/DJbM0wQh5WGUVd12ngYZhE89ruPyIPUzTJzieL+AFApilmNk7DaJOV93Ue8rCpMBqX12h6L53LHfZu7eQcsrBz27nkfjVIw8PHDXP/Jk1htF5DGC0LI18G//z45+K3H/xGcewbb3z7zq+ZAAAAAAAAAAAAAACwDcJoAAAAsIGm2NW4fhCzmBXHzwYBht08unEyG610Tk2hgOPp3eLyg0sYRutXveLyUtDgZJo/R1nQpO16o8eiDuUwQhVV4/6z90odddyvTwrHmZ9XOZr3+Hr548zCGE2y913b5xMA5jpVJzrRLY5loaJsef+ShNHWubfCrhxNXk3HDvu3N9p304y3rh/Nk7O55NlAdHqcqsoj1Mm8eZnxrCmMll9bFh/XZfPynU8Xl3eiE5+8/h07PhsAAAAAAAAAAAAAANgOYTQAAADYwNnA2dxoei9GDcGMs5GNdD+z48b9ZMcumdXTdF8HncsXRutVe8Xl41IYLXlcvaoX/U55P2flcbrTz2edhdGq5jBaU1Cs6f2Snddj6zXuf/V4RPY+ajoOAGSyoFkWQBvPHhSX9zq7DaOl84Pp8aWOJfHO9tr4leLyKqq40bu54d6b57xzZ+fQc9nnnpK28/O2sutNxMPPDVnoOJv/X7TXxq/Ez735U8Wxr776dXHYv7XjMwIAAAAAAAAAAAAAgO0QRgMAAIANDLtXistPZsdprCvi8bjUsJPvZ9WoVRYKOG4ICFzpXlvpGLvQWyGgkkXFmmJkbdc9mY1O/ZxFULKQwlxT4OxkNkrfL20fQ7+zF72qVxxbJx5x9nG/fT4tQ20AsCi/r0+S5eWAUbaf85Ldh2cxjXFdjrfBRTuafL64/HrvZnST+eJ2PJonp3PJFebn2WekLOC7TNN15WHkuF307bL48Ts/FnXMimPP33hxx2cDAAAAAAAAAAAAAADbI4wGAAAAGzgbOJsbLQmanQ0CDDrD8n6mzYG1kuPpmystj4g4SAJvFymLfJWCBtlzlL0+q6x7NipWRzmMtiykkIUd5sfI4m6rPIa2cbc2spjaKucDAHO9TjloNp6V42JZMG3XYbSm+94691fYhaPxq8Xlh71bG++7KQa8OE/extw2i1CvE/2NiBgvCS5mjy2f/1+c8Wwcn3v9x4pj79l7f3zpwVft+IwAAAAAAAAAAAAAAGB7hNEAAABgA1mIalw/iHuzu8WxKqrY7wxOLcu+9H8yO06jApnjJBTQGEbrXFvpGLvQr/aKy0thtOw5yl6fVdZtGz1pikREPHw8neRPMaPZcZwkIb3txN1Wew/VdZ0+7lWeUwCYy4Jmpft60/Jdh9GyeG3E+nEmOG+vTV4pLj/sP7uzc8jmtqvMJbc1t51bdl15ksJo//jNn4i709eLY8/deCGqqvmzCQAAAAAAAAAAAAAAXGbCaAAAALCBpmjV0fjV4vL9zjA61emP5Fkg4EF9P+5Ny4G1zGhajnTcm5XDaJ3oNEY/LkoWPhkXggYnWwijpeGFM89nHbPiesvCaFVVxbBTDuCNpnkAb9DdPO6WvScy9+uTNACxSqgNAOa2FUbr7ziM1nTfaxtPhV3LPocc9m7v7BzycHH7zx353Hm9KOGy60rWEruMYbSXj14qLt+vBvHxZ75lx2cDAAAAAAAAAAAAAADbJYwGAAAAGxg2RKuOJuUgQSkG0BhYS/aTGc3KoYDjaTmMdtC9GlVWAbhAqwRURtNyeKHp9TkrC5CdjZ5skkXIjnF3eidmMS2OrRIiy8Joq4ZbTpLns+kYANCkX/WKyyf1pLi8FEKNyOcH52W/IeK0bpwJztud5PPDYf/WxvtuigEvBsSy+eewW46dlddNor9JdG2ZLIz26LqSldEuVxjt105+JX7l5BeLY193/ZtX+gwEAAAAAAAAAAAAAACXkTAaAAAAbKApEnU0LgcJhp3HYwCNYbRkP5njVcNonasr7X9X+jPjmQsAACAASURBVJ0kjDZ7PGhwksQRShG6TPYaPBZeSMIInWr5n1mGyfm8Nn6lYZttxCNWC7c0xSayuBsANFkleNq0fNdhtE7VSecTq4ZHYRdm9SwNK9/s3d7ZeWTzz9Xm5+V58Kpz27llwcUs+lZvlEbevs/ceSkde/7GCzs8EwAAAAAAAAAAAAAAOB/CaAAAALCBxjDapBy7KsUAmmJTWdggM5rei7oQ77o3vVtc/6B7OcNoqwRUspDXKlGx7LU8G12bxSzZQzmkcPoY5fNpeo23E4/IQ2clWWju4TGE0QBYXa/aKy4f1w+Ky/MwWm9r59RW2zkCXAZvTt+IST0pjh32b23hCPmcdzEgloUDmz4/nZXObafrhdGWXVeehDDa8fTN+AdvvFwc+9eGXxnv3f/iHZ8RAAAAAAAAAAAAAABsnzAaAAAAbKBbdWOv2i+OHY0/X1xeCks1xaaOxuVo1vXuYXH5LGZxvz55bPnxrBwQuPKEhdHGhaBBFiZZLSpWfg0m9TjGs3JEYdHyLFp+jOw1jogYdleJu5Uf76rhliyk1olO+n4HgCZZ0CwLOGUBo34SWDtP2f171fAo7MJr43KcOSLisLd5GK1qmvS+1Q+b1bO4n4TRVonsHiTz4HV/95ZdV56EMNpPvv6306Dk8zde2PHZAAAAAAAAAAAAAADA+RBGAwAAgA2lsatJOXY16D6+frfqpaGPbD+H/dvpOR1P3ywsu1tc96BzLd3PReonYbRS0GA0LccRhp1VomJ5pOFkISqXhRGqFn9myY6RvcZVVLFfDZbudy57vNnzk8lDcwdRNdYwAKAsC55moaJsebaf85Tdv1cNj8IuZPPKXtWPq91ndnIO92cn6Zy5ac7ddt1REnxeJr2udHZ/XVnHrJ7FZ+68VBy73j2Mr7329Ts+IwAAAAAAAAAAAAAAOB/CaAAAALChQbccoxrXD4rLs5BaGrVKvvh/syGMVtrmXiGWFhFxkJz/RVsloHIyGxXXHXSGrY83LATr5kYL+0/DaC16YdkxXp+8Vlw+6AxXCpFl+1813JKF1FZ5PgFg0SrB04iI8ezyhNGyuduq4VHYhTSq3Hs2OtXm/1mwinxuOp8nN809m+bcZx0kn49OZqOY1dPW+5lbdl2pkuenrsvz/137xeOfjVfGv1kc+8Ybn4pu1dvxGQEAAAAAAAAAAAAAwPkQRgMAAIANDVeMRQ2SuMaq0ambvYYw2vTxMNrxrBxGu9K9ttJxd2WVMFoWj1slvJBFTyIiThb2n4cRlgfMsmNksbUslpfJ3lurhtHy0Fz75xMAFvWqveLyLCSbBdN6nd2Hfwbd8hxt1fsr7MLR+JXi8sOGqPJqmua88zBaeS4Zsdp8smku33SMTHpdeSsolj2ybK6+a5+581JxeSe68ckb37HjswEAAAAAAAAAAAAAgPMjjAYAAAAbWjUWlcWxht3VIljXetejn0RGjguhsONpOYx20L260nF3JQujjQtBg22EvJrCdKOF/WdhhKpFGG3V98q23lujFcMt2wjNAcCiLGg2mU3Ky9OAUXl+cJ7y8OjqYSY4b0eTV4vLD3u3dnYO2VwyojlG/Pi6+eejpmNksuvKo89U5fn8ZQijfX78O/Hzb/50cexrr308bvRu7viMAAAAAAAAAAAAAADg/AijAQAAwIaavrBfkgW4VokEPNzPQRwkxx5NVwijdS5nGK2fhE/OBg0m9TjG9YPiuqs8p52qG/vVoDh2+vlcP4y26mu8aogsDaNNj6Ou2wcdthGaA4BFWdAsCxUtDxjtTh4eXT3MBOfttfH5htGa5rzz2WY2l+xEZ6Xf4abPWceFzzvLLAsu5o/t4sNon73zN6KOWXHsuRsv7vhsAAAAAAAAAAAAAADgfAmjAQAAwIYG3XLoLDPslr/gnwXT0v10DtJ9HZ8JddR1Hfdm5TDale7lDKP1Ou0CKifTcnghYvWQ1yAJkS3GHepNwmgrhs5WPv9k/WlM0hBESRZ6WTXsBgBzbYOnc+M0YNTb2jm1ld1fs/gTXKSjSTmMdrO/nTBaGyez4+LyYedKVNXyOfPb6zfMnUfJMZosu65k53bRWbTx7EH8xOv/b3HsC/a+KD40/ModnxEAAAAAAAAAAAAAAJwvYTQAAADY0LBTjpNlsgDaOvvJthlNT4etxvWDNDxy0LmkYbQkoDKenQmjNUQRVg2RZeGvxVBYXSdhtBaRh1VDZ6uGyLYVj8hic6uePwDMZff1bH6SLc/2c57S+cG0HBKFizKtJ/HG5Kg4dtg7/zDaPCA8mpbnnasGpbtVL/aq/eLYOr9/y64rWei4rmcrH2ubfubu5+LN6RvFsedufOdKsTkAAAAAAAAAAAAAAHgSCKMBAADAhlaNV2VxqdUjXlfioFsOox3PTocCjqdvpvs56F7OMFq/ZUClKfi1asgrW/9k9igUNg8+PG55kGDl0NnKsbymMFr7eES27qrvUQCYS4OnT0AYbZDc/xbnB3AZ3Jl8Pp2rHvZvb+UYWTzsoYfHzsLF60R2h8nnnVWiv3PZdaVf7b31rySMtvKRtuvlOy8Vlw86w/j49W/Z8dkAAAAAAAAAAAAAAMD5E0YDAACADa36Bf8sjrVyxKs7TMNZo+npsNW92d10P1e611Y67q5k4ZPzDKNlr83Z57NkeRYtYrBq6Kw7XGn9pvDaKvGWbN11YhYAENH+vr5s+aOA0e5k9791wkxwno7Gr6Zjh71bWzlGVS2f9Wa/G6tGgpu2WSX6O7csuNhJZ/QXl0b7lye/HL968kvFsY8/8y0x6Kz2eQEAAAAAAAAAAAAAAJ4EwmgAAACwoWF3xaBZ8uX+VUMBw86VGHbLoa3jM6GA44aw10Gyj4vWNqBykoQX9qr96FbdlY6ZvTaLx6hjVlynavFnluEWQ2cl+51hVEnQoU3cbS57ToUXAFhXf+Uw2qS4vFf1tnZObWX345PZKOr64oJJcNbRpBxGG3QOVv7Mso75b0M+l1wnjNYuBN3GeJaF0ebXlfI8ur7AMNrLRy+lY8/deGGHZwIAAAAAAAAAAAAAALsjjAYAAAAbWjlolkQJVg0FDDrDOOhcLY6NzoTR7k3vFtfbrwZpgOyiZQGVWcxiWk/f/nk0LYcXVn1dIvLX5mQ2evvfWRYhC5KdPqfVInSrrt+pOrGfxMtGSaBilXVXPR8AmGsbPJ0b1w9W2s95yuZodczifn2y47OB3GvjchjtZu/Wbk7grVBgNpdcJ7KbhaDPft5pI7vezK8r2Wz+osJob07fiJ+++9ni2JcefFV8wf4X7viMAAAAAAAAAAAAAABgN4TRAAAAYEOrB83K62dRrnw/wzjIQgHT06GA49mbyTEvb+iqKXyyGDU4ycILKz6fEXlMbTG8sEkYYdUYxDrxiGyb7HkqrpvE5tY5HwCIWD2MNpk1B4x2qSm2uhhPhYt2NCmH0Q772wujtYkBn0zLvxfrRHbz+Xn7ue1cdr3pd/Ye/qMqP7a6vpgw2t97/W+nkcjnb7yw47MBAAAAAAAAAAAAAIDdEUYDAACADTXFMs7qRCf2qv3i2CqBtf1qEJ2qm8YFzobQjqflMNqV7rXWx9y1tmG0LIqwyusyl70Gi9GTup4V16mq5X9m6VTd2K8Grc9nnXBd9p5oG4+Y1dO4X59s7XwAICK/r4+zMFo9Ke+ns/swWlNs9WyMFi7Sa+NXissPe7d3cvx5QHgxKrxo0F09spvObdf43UuvK29dn/Lo2+7DaLN6Fp+986PFsRu9Z+Orr358x2cEAAAAAAAAAAAAAAC7I4wGAAAAG1olaDboHERVlb9wv0rIax6oOkhCVcdnQgH3kjDaQedq62PuWr+zl44tRlROkuDXKq/LXPYatAkvZBmFs5riKo+tu8XHcDJtF0ZbjMA9vu/VYxYAEBHRT4Jmk0IYbVbPYhrlgFG/IZx6XgYN97+m+ybs2p3Jq8Xlh/1bWzxKPuudh9Gy34t1wsXDZO7cNvq7aFw/KC7vVb2IyMNou8+iRfzCvX8Ur4x/qzj2yeufim7V3fEZAQAAAAAAAAAAAADA7gijAQAAwIayL+uXNIU1VgusPdzPsFMOo53MjmNWz97++TgLo3UvbxhtHigomcweRVSyKELTc53JomWLcYc6SSNkIYWzVgrgrRGPyB5D23hE03qD5P0GAMv0kqDZ4j397WWFWNqy/Zyn/WoQVfKfU0az5fFU2JWj8eeLyw972wujtZnx5vPzdaK/SQh6jd+97Noyv67kYbRZcfl5evnOS8XlnejGN9741I7PBgAAAAAAAAAAAAAAdksYDQAAADaUfVm/uG43X7dpLDtmduw66ri/EPM6npXDaFcudRgtD58sRg1OpuXwwiqvy6NtsqjYo/DCpmG0VYIQ64TRsm1OWobRmtYbrhGbA4CIhjBaPSksu1xhtKqq0uDqYjwVLtL92Uncm90tjt3sby+M1kY2n1wvjJbMbZPPAE2ya0u/2lt5X+fp1Qe/Hf/03j8sjn342ifieu9wx2cEAAAAAAAAAAAAAAC7JYwGAAAAG+pXe9Fp+RE7i2osG8vWPWgImx0vxLzuTcuRhIPOkxlGG9cP3v73KAsvdFePeGWxhpPZKOr6YRBt/r+PqdqF0VaJnQ2624tHLMbdmpxM88DLOjELAIjI7+vTmMSsnp1aVoqlLdvPeds0PArn7Wj8ajp22NteGK0pBjwPCOfh4tXnkgdJPPq45dx2UXZt6VW9iIioqvJnuiyMfF4+c+el9JjP33hhp+cCAAAAAAAAAAAAAAAXQRgNAAAANlRVVQw75S/sn9UUltqvBq0Da8O3glkHDccdTR/FArJwQFNY7aL1q710bDFqcDIrh7zaviantym/PnXUcb8+efunkqZIxKljrBA7WycekcbdGoJni7KAWq/qRb+TvyYA0KTfEDSb1OPGn9vu5zxl99dREoCCXXtt8ko6dmOLYbRYMued1dOFefNp60R/B8mc/mR2Lw8WF9R1fSquvGgeXMwe2SrH2dSD2f34ydf/VnHsvXtfHF8y/IqdnQsAAAAAAAAAAAAAAFwUYTQAAADYgrZf8m8KXVVV1RhOO3W8t9Zrimwdz9589O/p3eI6V7rXWh3vIvSqXjq2GEw5SUJeg85w5WM2Pf/z0Fy9YRit7Wvcr/ai2/AcZLL3xGjWLtyShebanjcAlPS2FEZr2s95yu6vJy3vr3DejsavFpc/070R/c6ufm/qdC4ZETFcY36ehaAn9SQNnZVMY5KOzYPM2Xw+m/+fh39498fj3qz82e35wxejqtp95gAAAAAAAAAAAAAAgCeZMBoAAABsQdsv+S+LS7WNec0Da92qF/vVoLjO8fRRMOze9M3iOllo4DLoVN3oJH+6WIwgjJL4wnCNx9YUmptHHjYNozXF8U6vt95rk73HRklA7vH1yoGXtucNACXNYbTTwaKm2NFFhdHy+6swGpfD0aQcRrvRv7XV4zR1ueo6j+xGRAy2PD9f5ffv7HVmUe/tcFz24HYXRnv5zkvF5YPOQXzsmed2dh4AAAAAAAAAAAAAAHCRhNEAAABgC9p+yX9Z+GzYbbufR4GAbJt5CGtWT+MkiQZc6V5rdbyL0q/2issn9fjtf59My4+tbWTu9DZN4YWHz+emWYS2wbN1zv/h/suPoSlScXq97PkURgNgff3GMNr4zM8NAaMLCqPl91dhNC6Ho3E5jHazt90wWh4Pe6gpxts2Jn16m3zuPJq2C/9GRExm43SsV/UiIg8d7yqL9qujfxH/8uSXi2Nf/8y/sfbnAwAAAAAAAAAAAAAAeNIIowEAAMAWZLGMx9ZbEj5rvZ/FMFoSC5iHAkaz46iTr/MfdK+2Ot5FyeIn82BKXdcxSoIkbSNzi/aq/egkfy6Zh8XqelYcr6p2f2YZdLfzXkn3n7yH2oYj8jCaEAMA62sKmo3rB6d+bg4YXUwYLbsPCqNxWRxNymG0w/62w2hN6jiZ5jHedUK7TXPi7HNAydnrzKL5daWqsjDabtJon7nz6XTs+cMXdnIOAAAAAAAAAAAAAABwGQijAQAAwBa0/ZL/srhU6/0sxLUOkljA8exhCOve9M10Pwedyx5G6xWXT+qHwZRx/SBmMS2us07Iq6qqpaG5dNsohxTOWid+t4osHnG/PolZXX6uFo2m2wvNAcBcU9Bsfl/Pfj69n/Lc4Lzl4VFhNC6H18avFJcf9rYbRmua89ZRp7HAXtWLfmdv5ePtV4Ookv+cOZq1C/9GNF9X+tX8vJIwWhJG3qY3J2/ET9/98eLYv37wNfHuvfed+zkAAAAAAAAAAAAAAMBlIYwGAAAAWzDsto1dNcel1olmpSGvt0IBxw1htCvdSx5GS+IJ49mDiIgYJeGFiOXPdWbQLQfVTmajiHgYfChpl0XbXkQvM2zYbv4YmmQxi3XPBwAiInqdpjDa5NTP4/pBeR9VP6qq7R13u7K5Xpt7K5y3uq7jaPJqcexm//ZOzyWbn7edA5/1MFychQlXCaNN0rF5uPFiri4P/cTrfzONtz1344Udnw0AAAAAAAAAAAAAAFwsYTQAAADYgrZBs2VxqbbBgMXo10G3HAA7fisUcDwrh9E60Vk7ULAr80jBWfNoQBbxitgkLJaEF94KzdUxK45XLf/M0j5+t2bYrWG7ppDcsnXWPR8AiIjoVb10bDI7HQPKAkbZvGAXsjnTfH4AF+ne7G4aFDzs3drZedRxPpHdYfJ5Z5Xfvyw6FvHo+pTN57Mw8rbM6ml89vUfLY4d9m7FV1392LkeHwAAAAAAAAAAAAAALhthNAAAANiC9kGz5vWG3dUDa1mwah4KOJ6Ww2jD7pWoqqrV8S5KP4mozIMpo2ke+soCCstkr+XJbBQRsXEWofV7peV74bHtGvbf9HzNnUfMAgC60YsqyvOOs8GiLGB0kWG07P46nx/ARToav5qOHfZvb/VY2e/xQ3WMkt+JTSK7ebh4+dx2LgvHRTy6tmSP7LzDaP/03s/E58e/Uxz75I3viG7VPdfjAwAAAAAAAAAAAADAZSOMBgAAAFuwLHj29npLYlfto1mPwgIHSQDsePowjHZverc4fqVzrdWxLlKv2isun4cNsohXFVXsVftrHTN7DeahuSyN1qna/ZmlffxuvTBa03bZ87Uoi6dtErMAgKqq0rDZ2WBRHkYrB1N3IQ+ntg8zwXk5mpTDaJ3oxjPd61s9VnMYLeLk7TnzaZtEdrN56PzzThvZdSViMbpYfmznHUZ7+c5LxeXd6MU3Xv/2cz02AAAAAAAAAAAAAABcRsJoAAAAsAWDLcWu2gbWFsMCWShgHvI6nr1ZHM+CapdJFlCZhw1GSYxk0Bm2DpWdlb0G82BYXW8WRmgbGGv7Xjir3+mnz1v2fC06mY2KyzeJWQBARB42m9STMz+XA0b9JJi6C9l9+WQ2ilk93fHZwGlH43IY7UbvZnSq7s7Oo446RtNsLrne3DYiDwuvEiY8e52Z60bv7c8NVZVE3zac/zf5nQe/Gf/s3s8Ux37PtW+IZ3o3zu3YAAAAAAAAAAAAAABwWQmjAQAAwBa0jVgtW69tMGAxrpWG0aZvhdGmWRjtWqtjXaRlAZUshrBJeCGL3M2PVUc5jFBFElI4u/+WgbGN4hFpvOXe0m3T57Rl/A8AMsuCp3PjJIyWbb8LTffB+7OTHZ4JPO61ySvF5Tf7t7d/sCwe9pZsLpnFzdo4WBKCbmM8e1Bcvvh5I5vPn18WLeKzd15Kx547fPEcjwwAAAAAAAAAAAAAAJeXMBoAAABsQdsw2rLYVZtgQCc60a/23v75oHu1uN7xW6GAe0kY7UqnvN1lkgdUHoYNRucQRstey9GWwmj9ai+6UQ6+nTqPbjkA0Ub2+Eez0dJts+e07XscADJtw2hnf360/fL753lpug9m907YlaPxq8Xlh71bWz/WshnveczPB0kY7XjaPoyWXlc6j65LeRht1vo4q3gwux8/+frfLo69f/+D8bsGX3YuxwUAAAAAAAAAAAAAgMtOGA0AAAC2oM0X/bvRS4Mgq+xn2LkSVfXoS/sHSSjgZHYcs3oax7NyGC0Lql0miwG4ReO3wgYn0+1HvLLX4OStqFgWRlueiXhrrapqFcAbdIat9leSPf7s+Zqb1OMYvxWde/x8hNEA2Myy+/pcHkZrnkedp6b74IkwGhfsaJKE0fq3d3oedV2nvw+bzCUPkmDwKr972XUluy4tymb/m/rpu59NP6s9f+PFU5/5AAAAAAAAAAAAAADgnUQYDQAAALagTehq2D1Y+uX2NkGvQfd0MGuYhAIiIkaz4ziePrlhtCyAMg8bjLLwQovXI5O9BqPpvYf/qMtphFXCBW2iZ8MkeNdq/8njH83uNW53Mh01nI8wGgCb6VW94vKzwaI0YNRZHjA6L0337tEsv3/CLhyNkzBa79lzOFo+562jfjsmfNYmc8ls2+Np89x20aSeFJcvXpeq9LFtP41W13W8fPTp4tiwcyU+9sxzWz8mAAAAAAAAAAAAAAA8KYTRAAAAYAvaRKy2FcM6GwY4aNhmNL0X95Iw2pXOExBG6yQBldnDYMpJEkbbJLwwSLadRx6yLEIeUnjcOq/zKrJts1DFo/Hy8xmRPy8A0Nay4OnceFYOo2Xb70K/2otulOclJyvEmWDbZvU07kw+Xxw77N/a+vGWzXlHye9Dm89CmSwE3TR3PWtcPyguX7yuVFX5P5vWSRh5E7968kvxa/d/pTj2ievfGnud/a0fEwAAAAAAAAAAAAAAnhTCaAAAALAF+y2+6N8mLDXorr6fLBQQEXE8uxfHs3IY7aB7+cNo/WqvuHweUBklMYTNwgvl12k0exh5qGNWHF8ljNbuvbD9MNr8MWSy5zMif14AoK22YbSzPz/avhwm24WqqtJ52mhJeBTO0+uTo5gl89Obvds7Pps8xLtJZDeb2x4vmdsuyq8rC2G0ZNs6TSOv7+U7n07HnrvxnVs/HgAAAAAAAAAAAAAAPEmE0QAAAGALulU39qtB4zrZF/pXXeexMFrDNqPpvTiePrlhtCygMn4rbJCFF4adPBa3TBZtGNcPYlpPGrII7cNobSJjbd4LmewxjKZ5+CyiOYy2SWwOACIi+p1Nw2jl7XcluzefNNw/4bwdTV5Nxw77t7Z+vKYZbx11+vuwSWQ3m9vfn41iVpejcGdl15XTIebyo9t2GO3u5E78zN3PFce+/OBr4117793q8QAAAAAAAAAAAAAA4EkjjAYAAABbMljyZf8sVrWoW/Vir9pvXOdslKNTddN9/+hr/1eM6wfFsYPOkxtGm4cNRtN7xfFNIl6NobnZcUQSRuhU7cNoy94LnegsfR80ycITy8It2Xi/2otu1Vv7fAAgoiF4OnsywmhpeFQYjQv02rgcRtuvBuc038/nvNN6Eg/q+8WxNp+FMsNuOYzWFGI7a1JPist7C3PcKn1s2w2jfe71v5mez/OHL271WAAAAAAAAAAAAAAA8CQSRgMAAIAtWfZl/yxWtep+SgG2g045FvDPj38u3c+V7rVW53OR+kvCaCezUXE8iye00RRGO5keR11nYYT2YbSmY0Q8fA9UK4TWHt++/PiXhVtG0/L4MNkfAKxiWfD00c/lYFA2L9iVbI7WNswE5+FoUg6j3ejf2mg+uY5sbh6xfP7bpGku2jZMmMWiF69LWRhtm1m0WT2NH7/zN4pjN3u343df+cgWjwYAAAAAAAAAAAAAAE8mYTQAAADYkjaxq1b7WRJQKx1nnRDYQffqytvs2rKAymh2rzg+6AzXPmYpPDc3mh1HnaQRVslObCuil26fPP5l4Ygs7LLJ8wkAc23DaG0CRhchm+tlYVHYhaNxOYx22Hv2XI6XxcMi8rl5xKZhtIb5+TQ/5qKz15m5U2G0JCRX17NWx2jj59/86Xht8kpx7JtufGd0qu7WjgUAAAAAAAAAAAAAAE8qYTQAAADYkq2F0dbYz5XutVb7nquiioPOkx9GO5mNiuPDzuqhuEfbrhtGa/9nlmWv8SbhiIiIQfL4s/DZXBZOWye8BwBntQ2jtQkYXYRsLrfs/grn6SiJbN3s3z6fAzbUgJsigW0/C5U0RYOXhX/nJrNJcXm/s9vryst3Pl1c3qt68Q3Xv22n5wIAAAAAAAAAAAAAAJeVMBoAAABsybIv+7eNXa2zny87+OpW+577kuFX7DwCsI5+EkAZ1+OY1bO4n4TRBp3h2sfsVr3oV3vFsZOGMNoqloXGNglHPNx/efvR9DjqOj//LDS3yfMJAHPZfX1ST878fDnDaNn9VRiNi3Q0frW4/LB3a8dn0vy7MOiuP5/sVf10fj6a3Wu1jzbXlSqpvm1j/h8R8dsPfiN+8fhni2O/59on41rv+laOAwAAAAAAAAAAAAAATzphNAAAANiSLJYx1zYutSygVopmffL6t8cX7H1Rq/3vV4P4rlvf02rdi9ZL4m2Tehz3ZydppGBZeGyZ7DUYTY8jkmNmIYWSZe+FTcNo2fazmMa4fpBul8UsNj0fAIjIw2Zn701nQ2lzWVhtV7L74UgYjQv02qQcRrvZv30ux2ua82aRsn61t3HYcNgpz+9H03ZhtGwOvMsw2mfv/Gg69vyNF7dyDAAAAAAAAAAAAAAAeBr0LvoEAAAA4GmxLB7VNi61bL1SgO1a70b8+S/6r+MfvvHj8asnvxTTelbc9j3774sPX/2GeM/++1udy0XLAgqT2TiNeEW0j9Dl2x/EG9M7jy0/mR1HXSdhtKp9GG1Z/C4LP2xj/6PZcex19stj0/Jzuux8AaCN9L5ej0/9PD7z87LtdyWbX5zMRjs+E3hoPHsQb05fL44d9m6dyzGbw2hZZHezuXnEw/DxG9Ojx5YfJzG2s85eZ+ZOX1fOL4x2f3YSP/n63yqOfdH+l8QHBh/a+BgAAAAAAAAAAAAAAPC0EEYDAACALVkauyoEzdZZLwunXeleorFgUAAAIABJREFUi+cOX4jn4oVWx3kSZAGUcT1OwwsRm4fFBt2DiEI7YTQ7TsMITZGIs5ad36C7WTyi6b14MjuO63GYjhXPRxgNgC1oG0abzB6Ut+9cbBgtu7+Opu3CTLBtR5PPp2OH/fMJozXJIrvbmEtmv39NseRFk3pSXN5fuC7loePNw2g/9cZn0s8vzx++uFJkGQAAAAAAAAAAAAAAnnadiz4BAAAAeFosC6O1DQIsW2/ZcZ4m/YaASlMEYdA5n7DYSUMYLVYIoy0Ln20cdmt4jzTFW7JYQ9uoHwA06Sdhs7PBoixglIXVdiW7v57MRjs+E3joaPxKOnbY230YLZufb+Pzy0EyPz5uGSY8G2CcW7yupFm0DbtodV3HZ+58ujh20LkaH7n2yc0OAAAAAAAAAAAAAAAATxlhNAAAANiSwZJ4VNsgwLL13klhtCyAMqnHacSrG73oV3sbHTd7jkcNYbTOCmG0ZeGzTV/j/c4gquR8muItWcyibdQPAJpk9/XxmWBRFjDKgqm7koVCm2KtcJ6OJq8Wl1/pXou9zv65HDObY0ZEjGblSNmyz0ltZPto+/s3rh8Ul58Oo5X/s2keRm7nV0a/GL9+/1eLY5+4/q3n9loBAAAAAAAAAAAAAMCTShgNAAAAtmRbQbNlEap3UqQqC6jMYhbH07vFsUF3GFXVPlJW3EfyHJ9MjyOyMMIKxzzv+F2n6sSgMyyOZcGKh2PlsMQ7KcYHwPlJg6ez08GiLIyWbb8r2fzgQX0/pvVkx2cDeRjtZu/2js/kodE0i+yW56WrOEjCwsfTfG67aJL8jra5rmwaRnv5zqeLy6uo4rkb37nRvgEAAAAAAAAAAAAA4GkkjAYAAABbMky+rD/XNmg27C7ZT3fzsMCTot8QKrg7faO4fBvhuGG3vI/R7DjqrIsW7cNo+51B4/ggOf4qsuchi59FRJwkY++kGB8A5ycNo50JFo3rB8X1LjqM1hQKPZmNdngm8NBr41eKyw/7t87xqPmcN4/sNn++aSOf27YNo5WDi4ufN/L5/PphtDcmd+If3f3J4thXXPlw3N77grX3DQAAAAAAAAAAAAAATythNAAAANiSQac5WNY2aNa0n361d+FRkF1qeqx3J68XlzdFS9rKwgsns+OoY1YcWyWM1qm6ja/zNh5Dto+TaTlYUdd1nEzLUZfhkvc2ALTRq3rF5WeDRWdDaY+2v7xhtFFyf4XzdDT5fHH5Ye/8wmhV1RRGK0fKln1OauMgiUc3RX8XZWG0XoswWr1BGO1zr/9YTKN8TXvuxotr7xcAAAAAAAAAAAAAAJ5mwmgAAACwJcPky/oRqwXNhp18P9sIZj1Jmp6zN6flMFoWNVtFGhWbHadZhFXCaBHN57mVMNqK8Yhx/SCNNgwa3tsA0Fa/2isuXwwW1XWdBoz6FxxGa7p3n7SMM8E2HY1fKS4/zzBak+z3oOnzTVvZPkbTcoztrPHsQXF5r7MQRkuib3W9XhhtWk/js3f+RnHs2f674yuvfHit/QIAAAAAAAAAAAAAwNNOGA0AAAC2ZFuhq6Z1txH9epL0O3kA5W4SRttGVCx7nh9GxdYLI5x13q/zoDMsLs/CaCezUbqvYbIvAFhFFjwd14+CRbOYRp3ca9tGZs/LoJvfD4XRuAhHk1eLyw/7FxVGK88ns3npKvLob7sw2qQuB4BPX1eSMNqa8/+ff/On4s7k88Wx5258Z3Sq7lr7BQAAAAAAAAAAAACAp50wGgAAAGzJtkJXg27DfhrGnkZNAZS7k3IYbRtRsey1PJmO0jBCVa32Z5bGkN4WXudhpxyPyMItTVGJd1qQD4Dz0at6xeWLwaJxPW7Y/mLDaL2qH/1qrziWhUfhvIym99IQ2WHvYsJomW18hsnm521/9ybJtaW/cF2pkjDaumHkl+98OjnmXnzi+reutU8AAAAAAAAAAAAAAHgnEEYDAACALelXe9GJbnFs0Bm23k9TYK1p7GnUFEB5c1oOo20jKpbFG5riYVlGITPslsNlEXnUbBVZzGw0LccjsrDGw/N5Z73vADgf2X19Uo+jrh+GhyazyxtGi8jndFl4FM7La5NX0rGb/dvndtw8Hpbbxlwymx9P6nGMZw+Wbj+uy+u0ua6sk0X7rfu/Hv/8+OeKYx+59sm42n1mjb0CAAAAAAAAAAAAAMA7Q++iTwAAAACeFlVVxbB7EPemdx8bWyXWtVftRyc6MYvZY2NZ7Opp1a/20rE3JneKy7fxHGXxhtJr8shqkYimWN7+CiG9Vfd/b3a3+B69M/58w/kMNj4fAMgCRHXUMYtpdKMXkzoPo/U7Fx9GG3auxN1CnPX1yVHx/grn5bfu/3pxeRWduN67eW7HXSeMtpX5ecPnqdcmr7wdGht0htGtHv/Pn5N6Utx28brUqcr//6TGswcr/37/nTv/Tzr23I0XVtoXAAAAAAAAAAAAAAC80wijAQAAwBYNOuUw2ioxgKqqYtA5iOPZm4+NZcGup1WvEDWYu1+fFJdv4zkadq6svE1nxUhEdp771SC6VXfl4z+2/275MfzS8c/Hf/LL/17r/Qw6w+hs4XwAoN/Jg6fjehzdqjmM1jQv2JUsPPojr/xw/MgrP7zbk4GC673Drcwlt2m4hehv0/z8h/6/P/32v/erQXzFlQ/H977nT8dB92pEREzradRJ4DgLNi767Os/Gp99/UdXPOOyLx58KD4w/NBW9gUAAAAAAAAAAAAAAE+r8v/rcwAAAGAtWexqlTBaRMSwu539POk6VTc6K/75IguWnP8+Vg2jleMOg+S1X9W2InrvtPccAOenKWw2mT0Moo0bw2h5WG1XtnWfhvNy2Lt10afwmMEa0eGz2oaL79cn8Y/e/Mn4n3/jv3l7WVNwsb8QRqtWnM+v4/kbL5z7MQAAAAAAAAAAAAAA4EknjAYAAABblEWkVo1Upft5B8Y4eguxgjaG3S2EF9bYx6ohhSy+tq0Q2bb2s63AGgA03dPn4aK2AaOL4r7IZXfYP98w2jrxsGF383DxfmcQ1Qr/WfNfjP5JfH78OxERMa4fpOudvi6dbxjtSvdafOTaJ8/1GAAAAAAAAAAAAAAA8DQQRgMAAIAtut1/T3H5s/13r7SfW8l+bq24n6fBqs/dquuX7FeDuNq9vtI2N/u3V1r/9t75vsbZe3FV23g+ASAiYq/aT8fu1ycR0RxGWzWWeh7eiXMxnizv2Xv/ue6/V/Xj2grz5H61F9e6NzY+bqfqrPz799sPfiMiIib1JF1n8bry7Irz+VV9w/Vvi35n71yPAQAAAAAAAAAAAAAATwNhNAAAANiijzzzyceW9apefO21j6+2n2uP72ev2o/ffeWja5/bk+rD1z7Ret2bvdvxwcGXbnzMqqriI9e+sfX6Hxh8KA77t1Y6xlde+UjsV4PHlpde+3V8cPilcbO3edzho8980xbOBgAiBp2DdGw0PY6IiHFjGK239XNa1e+59o1RRXXRpwFFVXTiY888d77HqKr42qvt5+dfc/XjsdfJo4irWHWefDJ7eF2ZzNoFF7/m6tef2+/3oHMQ33Lj3zqXfQMAAAAAAAAAAAAAwNNGGO0dpKqqYVVVn6iq6k9UVfUXqqr6waqq/mxVVX+oqqoPVVW1lW97VFXVr6rqm6uq+qNVVf3Fqqr+dFVVv7+qqg9sY/8AAACX2Vdc+XD84Xd9Xww7VyIi4nr3ML7/fT8Yz/bfvdJ+PvrMJ+P33fqjMegMI+Jh8OvPvv+/jGu961s/58vuxWe/O77pxneeihaUvG//A/EDX/iXolNt588df+D2H4+PXXs+OtFtXO9Lhl8e3/++H1x5/wfdq/EDX/iX3n5v7FeD+K5b3xMff+ab1zndx3SqbvzAF/5QvG//A2ttv18N4t++9b3xsWvnG9cA4J1jvzNIo0NvB4ySMFonOtGpmu/Ju/DB4ZfFH33Pn4sr3WsXfSpwytXu9fi+9/2n8e699537sf7gu/5kfPTaN0U38lhhFZ346qtfF9/znj+1teP+m7f+cHzy+qdaRxLnwcXsuhIR0e88+ozxoYOvjH/3PX8mrnaf2exEz7jRezb+w/f+xbjRf3ar+wUAAAAAAAAAAAAAgKdVu28O8ESrquoTEfEfRcTvi4i9hlV/o6qq/y0i/oe6rl9b4zi3I+KHIuIPRcTNZJ2fiIj/vq7r/3vV/QMAADwpnjt8IT5541NxZ/JaHPZuxbod6k89+wfiW2/+3nhjchQ3es+uvZ8nXafqxh959/fHv3P7j8cr49+Mun58nau9Z+JGr/hRdG39Tj/++Hv/4/gjs++PVx/8dnGd673DjWJ1Hxx+afylD/5PcWfy+XimdyO6LSMPbb1r773xgx/4y3Fn8lq8OXmj9XadqhPv3nvv1s8HgHe2TtWJ/c7w7QjaotGSMFq/avrT9m59/Po3x8eeeS5eGf9mjGd5cAl2Za+zF7f7X7Czzwv9Tj/+xHv/QpzMRuk8+dn+7Rh2r2z1uN2qG9/znj8Vf/Bdf/LU54L/9V/9d/E743/12Prza824fpDu82x8+RPXvzU+/sy3bO33e7+zH8/23721eDMAAAAAAAAAAAAAALwT+HbrU6yqql5E/OWI+FMR0ebbMO+LiP88Ir6vqqo/Vtf1j65wrBci4ocj4l1LVv2GiPiGqqr+j4j4vrqu77U9BgAAwJOkU3XjZv/2xvvpVt047N/awhk9+fY6+/G+/Q/s/LiDzjDePzi/41ZVde6v8Y3eza2H4wBgHcPOQTGMdrIkjHY2XnTRHkZE33fRpwEX6rznyZmznwuu9a4Xw2iPgouTdF+la4vfbwAAAAAAAAAAAAAAuFjCaE+pqqqqiPg/I+IPFoZ/MSJ+ISJGEXE7Ij4aEYcL4++OiL9eVdXvbRNHq6rqmyPir0XE3sLiOiJ+JiJ+JSJuRMSHI2LxW97fGxHPVFX1++q6nrV8WAAAAAAAPMEGnYPi8nnAaDzLwmj+cwZQNuxcKS5fFlyMuHzRRQAAAAAAAAAAAAAAIKJz0SfAufkP4vEo2mci4qvquv7yuq7/QF3X31vX9aci4l0R8Sci4vWFdfci4q9WVXW96SBVVb0/In4kTkfRPhcRX1nX9Ufruv7ut47x/oj4cxGx+O2T74qI/2qNxwYAAAAAwBNomITRTqbNAaNeR7wIKBt0hsXloyVhtE50olt1z+28AAAAAAAAAAAAAACA9QijPb3+szM/fyYivq2u639ydsW6rid1Xf+ViPi2iLi/MPSuiPj+Jcf5oYg4XPj5J946zi+cOcb9uq7/x4j47jPb//mqqr54yTEAAAAAAHgKDLrlMNqygFGv2isuBxh2rhSXz4OL4/pBcbxXCS4CAAAAAAAAAAAAAMBlJIz2FKqq6qsi4gNnFv9AXSffKHtLXdc/HRH/y5nF39VwnA9FxL+/sOhBRPyxuq5PGo7x1yLiry4s2o+I/6LpvAAAAAAAeDoMO+Uw2snbYbRJcbxf9c7tnIAn26A7LC4fLbmuCKMBAAAAAAAAAAAAAMDlJIz2dPpdZ37+tbquf7bltn/9zM8falj3eyKiu/Dzj9R1/S9aHOO/PfPzd1dVNWhzcgAAAAAAPLkGneaA0bh+UBwXMAIyeXBxFBERk+T/b1DfdQUAAAAAAAAAAAAAAC4lYbSn05UzP//6Ctv+2pmfDxvW/f1nfv4rbQ5Q1/UvRMTfX1h0JSI+1WZbAAAAAACeXMPO2T9fP7QsYCSMBmQGSRhtHlxMrysd1xUAAAAAAAAAAAAAALiMhNGeTr915ufBCtueXfe10kpVVb0nIr5mYdEkIj63wnH+7pmfX1hhWwAAAAAAnkCDzrC4fDS9FxERk3pSHBdGAzJZGO3krTDaePagOO66AgAAAAAAAAAAAAAAl5Mw2tPppyLi/sLPX15VVfnbZo/7SGFfJb/7zM8/V9f1vZbHiIj4iTM/f+UK2wIAAAAA8AQadq8Ul5/MRhERManHxXEBIyAzzMJo04dhNMFFAAAAAAAAAAAAAAB4sgijPYXqur4bEf/7wqJBRPzJZdtVVdWNiD/z/7N370G2ZXV9wL+/3af7njN3YAaZGWAQGRkUmBJ5WoIgD8dIElO+5ZEyajQ+sICglq8KAYZoKkS0EsoiRKPySAoJQQQJhDg8FA1ItBBmBJIBh3dgiscwj3vvzNzbK390X+6hp0/3OX37nN2n7+dT1XX2Xnvtdb63qFpVQ+/+7i3DL58w/Yot5x+eOuCGj+yyHgAAAAAAh8yw2/4dHsfXN967cUe7fdvrqwqMgAmGK9sXo93WTmS9nZpYuGhfAQAAAAAAAAAAAACAg0kx2uH1y0k+Onb+b6vq2ydNrqrVJL+d5GFjw29L8toJt9x/y/nHZ8z3sS3nd6+qu824BgAAAAAAS2TUHd12/MT68SSZWGA0UGAETDDqti9GSzb2FvsKAAAAAAAAAAAAAAAsF8Voh1Rr7QtJnpjkvZtDoyRvqapXV9UPVtWDq+r+VfWoqvrZJNck+bGxJd6T5Adaa23CV1y45fyGGfPdkuTEluELZlkDAAAAAIDlMuxG247ftn486209J9dPbntdgREwyXCHYrTj68dyh2I0AABgBlV1v6p6SlX9elW9o6puqqo29vPRvjNuVVXnVdVHtuRsVfWyvrMBAAAAAAAAAMBeDPoOwPy01j5aVd+c5EeT/GSSRyR58ubPJJ9P8ptJfr21CX8psuH8LefH9xDxeJLh2Pld9rDGV6iqS5JcPONtl5/t9wIAAAAAsLvRytFtx1tabls/kZOTCow6BUbA9kY7FKOdWD82eV9RjAYAAGyqqick+ZUkj0zyVf2m2ZNfS3K/vkMAAAAAAAAAAMB+UYx2+K1s/tyWpCWpHeZ+Islzk/zBLqVoyZ2L0U7sIdvxJHfbYc29+Jkkz9uHdQAAAAAA2GfDbjTx2vH1WycWGK0qMAImGO5QjHb81ORiNPsKAAAw5qFJvqPvEHtRVY9K8qy+cwAAAAAAAAAAwH7q+g7A/FTVY5J8MMl/SPKY7P6/932S/H6Sj1fVP5vx69rsCfd0DwAAAAAAS2rUHZ147cT68dzRbt/22kCBETDBarc6cY84sX7MvgIAAJyN25J8pO8Qk1TVWpLfzZnnAm/uMQ4AAAAAAAAAAOwbxWiHVFVdmeTqJJeNDX8qyS8neViSC5OsJblnkr+f5OVJTm7OuzjJ71TVb1dVTfiKW7acj/YQc+s9W9cEAAAAAOAQGXaT/6/k4+vHcrKd3PaaAiNgJ8PuvG3Hj68fy8l1+woAADCVO5L8TZL/lOSnkjwiyV2SzPqC0UV6bpIrNo8/luQ/9pgFAAAAAAAAAAD2zaDvAOy/qro4yauSDMeG/zjJD7XWbtoy/bNJ3pLkLVX10iRvTHL3zWs/kY03Xr5wm685qMVoL0nymhnvuTzJ6/fhuwEAAAAA2MFqrWUlg5zKnYuKTqwfy8l2x7b3DcqvM4DJRt0ot5z60p3GT6wf32FfUYwGAAB82cuTvLS1dmLrhcnvFe1XVT0kyS+NDT09yTf3FAcAAAAAAAAAAPaVvyQ6nH4uycVj5x9K8uTtHtwa11p7d1U9JcnVY8PPq6rfb63dsGX61r8uuTgzqKrzc+ditBtnWWM7mzm3Zt0ty9l+LQAAAAAAU6iqDFdGufXUzXe6dvzU5GK01VqbdzRgiQ2787YdP37q1sn7SqcYDQAA2NBa+2LfGWZRVYMkv5czz3++qrX25qpSjAYAAAAAAAAAwKHQ9R2AufjBLecv3K0U7bTW2luTvHNsaJTkqdtMvW7L+X2nj7ft/C8s2wNmAAAAAADMbjShwOjE+rHcMaHAaFAKjIDJJhWjnVg/njva7dtes68AAABL7BeSPHzz+AtJnt1jFgAAAAAAAAAA2HeK0Q6Zqjqa5PItw2+dcZmrt5xv9ybJD245v/+M33G/LecfmPF+AAAAAACW0KQCo+Prx3JSMRqwB6OVyYWLJ9vJba/ZVwAAgGVUVQ9I8ryxoZ9vrd3QVx4AAAAAAAAAAJgHxWiHz4XbjH1mxjW2zr9omznXbjn/xqra/q9OtveYXdYDAAAAAOAQGk0oRjuxYzHaYJ6RgCW3t8JF+woAALBcqqpL8rtJjmwOva219rL+EgEAAAAAAAAAwHwoRjt8btxm7OiMa5y/5fyWrRNaa/8vyfvHhgZJHjvDdzxhy/mbZ7gXAAAAAIAlNbHA6NTkAqPVbm2ekYAlt5fCxdWyrwAAAEvnGTnzQtLjSX6qxywAAAAAAAAAADA3itEOmdbarUlu2jL8sBmXecSW889MmPe6Lef/dJrFq+qBSb55bOjWJP9zumgAAAAAACyz0coOBUbr2xcYDWp1npGAJTexcHH9WO6YUIxmXwEAAJZJVV2W5F+PDV3VWvtwP2kAAAAAAAAAAGC+Bn0HYC7ekeS7xs5/Msnbp7mxqu655d4keeeE6f8lyXOSrGyef19VfV1r7bpdvuaXtpz/19baiWnyAQAAAACw3BQYAfttNGFfOXHqWE7aVwAAgMPhd5Ic3Tx+X5Lf6CtIVV2S5OIZb7t8HlkAAAAAAAAAADicFKMdTq/OV5abPaWq/ntr7T/vdFNVHUnyyiTnjw3fkuQt281vrV1XVS9P8mObQ2tJXlZVV04qOquq707yo2NDtye5aqdcAAAAAAAcHpMKjI6v35r1nNr22qD8OgOYbLgyuXBxcjGafQUAAFgOVfXjSb5983Q9yU+01k72GOlnkjyvx+8HAAAAAAAAAOCQ6/oOwFz8QTbeCnlaJXlFVf37qrrXdjdU1ROTvDtnHqA67YWttS/u8F3PSzJ+/VuSXF1VD9yy/pGqemaS12y5/zdaax/bYX0AAAAAAA6R4YRitFtOfmniPYNanVcc4BAYdaNtx0/sUIy22q3NMxIAAMC+qKpLk7xobOjFrbX/3VceAAAAAAAAAABYBK9CP4Raa+tV9QNJ/iLJJZvDleRZSZ5RVe9P8ndJjif5qiQPS3LPbZZ6U5IX7vJdn6yq70vyliSn/4LkMUk+UFV/vfk9FyR5eJKLt9z+xiT/crZ/HQAAAAAAy2w0oRjt5lOTi9FWS4ERMNmwO7rt+In14+kmvCdK4SIAALAkXpLkws3jjyV5To9ZAAAAAAAAAABgIRSjHVKttQ9X1eOTvDLJI8cudUkeuvkz8fYkv5Pk2a21O6b4rndU1fcmeVnOlJ/V5vc+csJtr0ryE621U7utDwAAAADA4TFc2b4Y7ZZTN0+8R4ERsJNRN9p2/I52eyq17TX7CgAAcNBV1VOTfPfY0NNba7f2lWfMS5K8ZsZ7Lk/y+jlkAQAAAAAAAADgEFKMdoi11j5UVY9O8o+T/HSSRyUT/vpjw/Ekf5jkt1pr757xu95UVd+Q5KokT0lytwlT353kRa21186yPgAAAAAAh8Oo274YrWV94j2D8usMYLJhd3TitZa27bh9BQAAOMiq6qIkLx4belVr7c195RnXWrshyQ2z3FO102OLAAAAAAAAAADwlTzxf8i11k4meUWSV1TVBUkemeRrk1yY5EiSm5N8Mcm1Sa7ZnL/X77ohydOr6p8neUyS+ya5Z5Jbk3wqyXtba9efxT8HAAAAAIAlN5xQjLaTQa3OIQlwWIxWRjPfs1prc0gCAACwb16c5OLN4y8keXaPWQAAAAAAAAAAYKEUo51DWmtfSvLWBXzP7UnePu/vAQAAAABg+YwUowH7bNQdnfke+woAAHBQVdUDkjxtbOjfJTmvqi7b5dYLt5yfv+We9dbax882HwAAAAAAAAAAzJtiNAAAAAAAYGGGeyhGW+3W5pAEOCyOdKOZ71GMBgAAHGBb/yPnBZs/s/r+zZ/TvpQ7l6cBAAAAAAAAAMCB0/UdAAAAAAAAOHeMVmYvRhuU97wAk63UStbqyEz32FcAAAAAAAAAAAAAAOBgUowGAAAAAAAszLAbzXzPShQYATsbdbOVLq7W2pySAAAAAAAAAAAAAAAAZ0MxGgAAAAAAsDArNchaHZl6/qBWU1VzTAQcBsOV2YrRBrU6pyQAAABnp7X2N621mvUnyVVblnr5ljkX9vHvAQAAAAAAAACAWSlGAwAAAAAAFmrYTV9gtKq8CJjCaIZ9JUkGnb0FAAAAAAAAAAAAAAAOIsVoAAAAAADAQo1Wpi8wGihGA6YwS+FikgxqMKckAAAA26uqtuXnCX1nAgAAAAAAAACAg8gT/wAAAAAAwELNUmCkGA2YxmiGfaVSWfFrUgAAYExVfXW2f57ynlvOB1V12YRlbmmtfW4/cwEAAAAAAAAAwLnIE/8AAAAAAMBCzVJgpBgNmMashYtVNcc0AADAEvrzJPedYt69k1w/4drLk/zofgUCAAAAAAAAAIBzVdd3AAAAAAAA4Nwy7EZTz1WMBkxjtDJLMZp3RwEAAAAAAAAAAAAAwEGlGA0AAAAAAFioUXd06rmritGAKQy7WYrR7CsAAAAAAAAAAAAAAHBQeR06AAAAAACwUMOV0dRzFRgB0xh20+8rq7U2xyQAAMAyaq1dtoDvqDmv//wkz5/ndwAAAAAAAAAAwCJ0fQcAAAAAAADOLaPu6NRzB51iNGB3M+0rChcBAAAAAAAAAAAAAODAUowGAAAAAAAs1LAbTT1XgREwjdn2lcEckwAAAAAAAAAAAAAAAGdDMRoAAAAAALBQo+7o1HNXFaMBUxitTL+vKFwEAAAAAAAAAAAAAICDSzEaAAAAAACwUMNuNPVcBUbANGbZV1a7tTkmAQAAAAAAAAAAAAAAzoZiNAAAAAAAYKFGK0ennqsYDZjGqJtlXxnMMQkAAAAAAAAAAAAAAHA2FKMBAAAAAAALNexGU89VYARMY7Z9ReEiAAAAAAAAAAAAAAAcVIrRAAAAAACAhRp1R6eeq8AImMawO2/qufYVAAAAAAAAAAAAAAA4uBSjAQAAAAAACzXsRlPPXa21OSYBDosYiZDCAAAgAElEQVQj3TCVmmqufQUAAAAAAAAAAAAAAA4uxWgAAAAAAMBCjVaOTj13UKtzTAIcFl11OTJl6eKgBnNOAwAAAAAAAAAAAAAA7JViNAAAAAAAYKHW6kgqNdVcBUbAtEbdeVPNU7gIAAAAAAAAAAAAAAAHl2I0AAAAAABgobrqMuxGU81VYARMazh1MdranJMAAAAAAAAAAAAAAAB7pRgNAAAAAABYuGkLjFY7BUbAdEZTF6MN5pwEAAAAAAAAAAAAAADYK8VoAAAAAADAwk1bjDao1TknAQ6L4cq0hYv2FQAAAAAAAAAAAAAAOKgUowEAAAAAAAs3mroYbTDnJMBhMf2+ohgNAAAAAAAAAAAAAAAOKsVoAAAAAADAwg1XFBgB+2vYjaaaN6i1OScBAAAAAAAAAAAAAAD2SjEaAAAAAACwcKNOMRqwv4ZT7yuDOScBAAAAAAAAAAAAAAD2SjEaAAAAAACwcMNuNNW8VcVowJSmLVy0rwAAAAAAAAAAAAAAwMGlGA0AAAAAAFi4UXd0qnkDBUbAlIYr0xWj2VcAAAAAAAAAAAAAAODgUowGAAAAAAAs3LAbTTVPgREwrVE3bTHa2pyTAAAAAAAAAAAAAAAAe6UYDQAAAAAAWLjRytGp5ilGA6Y1nLoYbTDnJAAAAAAAAAAAAAAAwF4pRgMAAAAAABZu2I2mmqcYDZjWaMpitFX7CgAAAAAAAAAAAAAAHFiK0QAAAAAAgIUbdUenmrfaKTACpjOcshhN4SIAAAAAAAAAAAAAABxcitEAAAAAAICFG3ajqeYpMAKmNVqZshitW5tzEgAAAAAAAAAAAAAAYK8UowEAAAAAAAs3Wjk61TzFaMC0ht10xWirNZhzEgAAAAAAAAAAAAAAYK8UowEAAAAAAAs37EZTzVtVjAZMaTRlMZrCRQAAAAAAAAAAAAAAOLgUowEAAAAAAAs36o5ONU+BETCt1VpLl5Vd59lXAAAAAAAAAAAAAADg4FKMBgAAAAAALNywG001T4ERMK2qyqg7b9d59hUAAAAAAAAAAAAAADi4FKMBAAAAAAALt1prWclgxzldVtKVX2UA0xuu7F6MtqoYDQAAAAAAAAAAAAAADix/TQQAAAAAACxcVWW4MtpxjvIiYFajbud9JUkG9hYAAAAAAAAAAAAAADiwFKMBAAAAAAC9GHXn7XhdeREwq2F3dNc59hYAAAAAAAAAAAAAADi4FKMBAAAAAAC9GO5WjNYpLwJmM+xGu85RjAYAAAAAAAAAAAAAAAeXYjQAAAAAAKAXo92K0ZQXATPafV8ZpKoWlAYAAAAAAAAAAAAAAJiVYjQAAAAAAKAXQ8VowD4brthXAAAAAAAAAAAAAABgmSlGAwAAAAAAejHapcBotQYLSgIcFiOFiwAAAAAAAAAAAAAAsNQUowEAAAAAAL0Y7lpgtLagJMBhsfu+ohgNAAAAAAAAAAAAAAAOMsVoAAAAAABAL0YKjIB9ttu+smpfAQAAAAAAAAAAAACAA00xGgAAAAAA0IvhrsVogwUlAQ6L3fcVxWgAAAAAAAAAAAAAAHCQKUYDAAAAAAB6MVJgBOyz0Yp9BQAAAAAAAAAAAAAAlpliNAAAAAAAoBfDXQqMVhUYATMaKlwEAAAAAAAAAAAAAIClphgNAAAAAADoxWjXAqO1BSUBDovd9xXFaAAAAAAAAAAAAAAAcJApRgMAAAAAAHox3K3AqBssKAlwWAy70Y7XVxWjAQAAAAAAAAAAAADAgaYYDQAAAAAA6MVot2I0BUbAjEbd0R2vDzr7CgAAAAAAAAAAAAAAHGSK0QAAAAAAgF4MdylGW1WMBsxouDLa8brCRQAAAAAAAAAAAAAAONgUowEAAAAAAL0YrexcjDaotQUlAQ6LQa1mdYe9QzEaAAAAAAAAAAAAAAAcbIrRAAAAAACAXgy70Y7XBzVYUBLgMNlpb1lVjAYAAAAAAAAAAAAAAAeaYjQAAAAAAKAXKzXIWh2ZeH2gwAjYg1F3dOI1+woAAAAAAAAAAAAAABxsitEAAAAAAIDeDLvzJl5bVWAE7MGwG028phgNAAAAAAAAAAAAAAAONsVoAAAAAABAb0Yrk4vRFBgBe2FfAQAAAAAAAAAAAACA5aUYDQAAAAAA6M2wU2AE7K+d9pVV+woAAAAAAAAAAAAAABxoitEAAAAAAIDejBSjAftM4SIAAAAAAAAAAAAAACwvxWgAAAAAAEBvht1o4rXVToERMLsdCxftKwAAAAAAAAAAAAAAcKApRgMAAAAAAHoz6o5OvDYoBUbA7IY7FaPZVwAAAAAAAAAAAAAA4EBTjAYAAAAAAPRmuDKaeE2BEbAXo5XJxWir9hUAAAAAAAAAAAAAADjQFKMBAAAAAAC9GXVHJ15TjAbsxbCbXIxmXwEAAAAAAAAAAAAAgINNMRoAAAAAANCbYTeaeG1VgRGwByPFaAAAAAAAAAAAAAAAsLQUowEAAAAAAL0ZdUcnXlNgBOzFToWL9hUAAAAAAAAAAAAAADjYFKMBAAAAAAC9UWAE7Ldhd97Ea6v2FQAAAAAAAAAAAAAAONAUowEAAAAAAL0ZrRydeE2BEbAXo5XJxWgKFwEAAAAAAAAAAAAA4GBTjAYAAAAAAPRm2I0mXlNgBOzFsFOMBgAAAAAAAAAAAAAAy0oxGgAAAAAA0JsLBnfbdrxLl+HK5HIjgEnOX7lrugm/Bj1/5a4LTgMAAAAAAAAAAAAAAMxCMRoAAAAAANCbu6/eI/dau8+dxi8fPSjDbtRDImDZHemG+frzHnyn8UtWL81Fa/foIREAAAAAAAAAAAAAADAtxWgAAAAAAECvfuRez875Kxd8+fxug4vyQ/d8Ro+JgGX31Hv8dO6+esmXz8/rzs+PXfrzPSYCAAAAAAAAAAAAAACmMeg7AAAAAAAAcG77muHlueprX5KPHP9gulrJ/UdXZK070ncsYIldsnavPOeyF+f64/8nt7fb8vXnPTjDbtR3LAAAAAAAAAAAAAAAYBeK0QAAAAAAgN6NVo7mG85/ZN8xgEPkSDfMA48+pO8YAAAAAAAAAAAAAADADLq+AwAAAAAAAAAAAAAAAAAAAAAAAAAM+g4wi6p62+ZhS/K01toNe1znHkledXqt1tqV+5EPAAAAAAAAAAAAAAAAAAAAAAAA2JulKkZL8oRslKIlyfAs1hlurpWx9QAAAAAAAAAAAAAAAAAAAAAAAICedH0H2IPqOwAAAAAAAAAAAAAAAAAAAAAAAACwv5axGA0AAAAAAAAAAAAAAAAAAAAAAAA4ZM7VYrTB2PHJ3lIAAAAAAAAAAAAAAAAAAAAAAAAASc7dYrSLxo5v7S0FAAAAAAAAAAAAAAAAAAAAAAAAkOTcLUZ73OZnS/LpPoMAAAAAAAAAAAAAAAAAAAAAAAAAyaDvAGehzTK5qlaT3CvJdyT5F2OXrtnPUAAAAAAAAAAAAAAAAAAAAAAAAMDsDlwxWlWdmmZako9W1Z6/Zuz4DXtdBAAAAAAAAAAAAAAAAAAAAAAAANgfB64YLV9ZWrYf87bTNu//UJL/dhbrAAAAAAAAAAAAAAAAAAAAAAAAAPug6zvABG3O61eSv0ryj1prd8z5uwAAAAAAAAAAAAAAAAAAAAAAAIBdDPoOsI0/y+RitMdvfrYk70lyYso1W5LbktyY5INJ3t5ae+fZhAQAAAAAAAAAAAAAAAAAAAAAAAD2z4ErRmutPWHStapaz5nStKe01j6+kFAAAAAAAAAAAAAAAAAAAAAAAADAXHV9B9iD6jsAAAAAAAAAAAAAAAAAAAAAAAAAsL8GfQeY0VVjxzf2lgIAAAAAAAAAAAAAAAAAAAAAAADYV0tVjNZau2r3WQAAAAAAAAAAAAAAAAAAAAAAAMCy6foOAAAAAAAAAAAAAAAAAAAAAAAAAKAYDQAAAAAAAAAAAAAAAAAAAAAAAOidYjQAAAAAAAAAAAAAAAAAAAAAAACgd4O+A5yNqnpikm9L8rAklyS5IMnqjMu01trl+50NAAAAAAAAAAAAAAAAAAAAAAAAmN5SFqNV1ZOSvDjJ/ceH97hcO/tEAAAAAAAAAAAAwLSq6qIkt7XWbu47CwAAAAAAAAAAcHB0fQeYVVX9QpI3ZaMUbbwMre3hBwAAAAAAAAAAAFiAqrpvVb2iqm5M8tkkN1bVJ6vqV6tq1Hc+AAAAAAAAAACgf4O+A8yiqp6U5IWbp6fLzU6Xox1LcmOSO3qIBgAAAAAAAAAAAOeUqvqRJP9q8/TmJA9vrd02Ye43Jrk6yd3zlS9FvTTJryT5nqp6Qmvtc3OMDAAAAAAAAAAAHHBLVYyW5N9sfp4uRPtENorS3tha+3hvqQAAAAAAAAAAAODc87QkX52NZ/peukMp2iDJq5NctDnUtk5JckWS1yZ5/HyiAgAAAAAAAAAAy2BpitGq6vIkD8mZB6L+Msl3tNZu7i8VAAAAAAAAAAAAnHuqqkvy2LGh1+0w/YeTPCBfWYh2bZKT2XguMNkoR3tsVT2ltfbq/cwKAAAAAAAAAAAsj67vADN49OZnZePhqB9WigYAAAAAAAAAAAC9uCLJeZvHdyT50x3m/vjmZyX5UpJHt9Ye0lp7RJKHJ/lszpSmPX0OWQEAAAAAAAAAgCWxTMVol2x+tiTvba1d12cYAAAAAAAAAAAAOIddvvnZklzXWrtju0lVdc8kj9qc15L8amvtPaevt9ben+RZ2ShNqySPraq7zTM4AAAAAAAAAABwcC1TMVqNHX+4txQAAAAAAAAAAADAvceOr99h3uNypvTsZJLf22bO65J8afO4kjx0PwICAAAAAAAAAADLZ5mK0T41drzSWwoAAAAAAAAAAADg/LHjm3aY99jNz5bkXa21G7dOaK2dSvLesaH7n308AAAAAAAAAABgGS1TMdrfjh3fp7cUAAAAAAAAAAAAwOqU8x49dvyOHeZ9Zuz4rjOnAQAAAAAAAAAADoWlKUZrrV2T5NokleQRVXW3niMBAAAAAAAAAADAueqWseNtn+erqqNJHjo29Bc7rHdq7PjIWeQCAAAAAAAAAACW2NIUo236jc3PlSQ/32cQAAAAAAAAAAAAOId9buz4QRPmfHs2nvdLkpbkL3dY78Kx42NnkQsAAAAAAAAAAFhiS1WM1lp7eZLXJqkkv1hV/6DnSAAAAAAAAAAAAHAuunbzs5Lct6q+YZs5T938bEmuba3dtMN69x47/vw+5AMAAAAAAAAAAJbQUhWjbfqRJG9IMkjy+qp6QVVduMs9AAAAAAAAAAAAwP65NhsFZm3z/DeravX0xap6bJIfGLv+5kkLVdUgyRVjQ9fvb1QAAAAAAAAAAGBZDPoOMIuqeu7m4fuSfEuSi5L8iyQ/V1XvSvKBJF9Msj7Luq21F+xnTgAAAAAAAAAAADjMWmunqupVSZ6RjfKzK5O8v6r+OMkl2ShF65LU5vVX7rDcNyVZGzv/27mEBgAAAAAAAAAADrylKkZL8vyceXtkNo8ryXlJvm3zZy8UowEAAAAAAAAAAMBsfjXJP0ly183zByT5+s3j04VoLclrW2sf2GGd79n8bEk+3Fr74hyyAgAAAAAAAAAAS6DrO8A+OP3g1F7UfgYBAAAAAAAAAACAc0Vr7YYk35/kRM4UoX358ubYR5I8fdIaVdUlefLYve+YR1YAAAAAAAAAAGA5LGMxWu3jDwAAAAAAAAAAALBHrbW3JXlIklcnOZYzz+d9PslvJXlUa+3zOyzxXUnumzPP9L1pfmkBAAAAAAAAAICDbtB3gBk9se8AAAAAAAAAAAAAwBmttQ8neVqSVNVFm2Ofm/L265N879j5W/Y3HQAAAAAAAAAAsEyWqhittfanfWcAAAAAAAAAAAAAtjdDIdrp+e9L8r45xQEAAAAAAAAAAJbMUhWjAXCI3XhN8n9/Kzl1IvmaH0wu/c6kqu9UAAAAAAAAAAAAAAAAAAAAAAAsiGI0APr3mauTtz8paesb59e/InnwVcmDn9tvLgAAAAAAAAAAAAAAAAAAAAAAFqbrOwAA57jWkr965plStNP+9teSY5/sJxMAAAAAAAAAAPuiqi6sqvtU1df0nQUAAAAAAAAAADj4FKMB0K8b35fc9KE7j6/fnnziDxefBwAAAAAAAACAPauq76mq36uq66rqjiSfT/LRJH83Yf5lVfW4zZ9HLDIrAAAAAAAAAABw8Az6DnC2qmo1yaOTfGuSy5N8VZK7JElr7coeowEwjU//j8nXPv6a5AHPWlwWAAAAAAAAAAD2pKqelOTFSe5/emjKWy9P8idJWpLbq+rS1toX5xARAAAAAAAAAABYAktbjFZVR5P8bJJnJLl46+VsPCS13X1PS/Jrm6dfSPJNrbVt5wKwADdeM/na596V3Pb55MjdF5cHAAAAAAAAAICZVNVzkzw3G8/ubX1+r2WHkrTW2lur6oNJHpRkLclTkrx0fmkBAAAAAAAAAICDrOs7wF5U1Tcm+eskVyW5JNO/WTJJ/jjJ3ZNcluRhSf7efucDYAY3fWjytXYq+dQbF5cFAAAAAAAAAICZVNWzkjw/X/k84m1J/izJGzPd832vHjv+zn0LBwAAAAAAAAAALJ2lK0arqiuS/GmSr8tXvlny9Jsmd9RauyXJa8aGvn+/MwIwpba+czFaknzyjxaTBQAAAAAAAACAmVTV1yV5UTae42vZKET7xSR3b609Ickzp1zqDaeXTPKtVTXLy1IBAAAAAAAAAIBDZKmK0apqmI03SF4wNnxNkh9Pcr8kD8p0b5d8/djxlfsWEIDZHP9McurYznM+978WkwUAAAAAAAAAgFm9IMkgG8/tnUhyZWvtRa214zOu8/7N+5PkLtl4cSoAAAAAAAAAAHAOWqpitCTPSnJZNt4smSQvTvLw1trvt9Y+mjMPRu3m7ZtrVJKvrapL9jknwN7d+onkz5+cvO7eydWPTz7ztr4Tzc/xT+0+58QNye03zj8LAAAAAAAAAABTq6ojSb4rG8/itSTPaa29ay9rtdbWk3xwbOiBZ58QAAAAAAAAAABYRstWjPbMnClF+6PW2rM3H4iaSWvtliQfHRt60D5kAzh7J48lf/LY5OOvSY5/Ornhz5K3XZlc/8qktd3vXzbHpihGS5Kbr5tvDgAAAAAAAAAAZvWYJKNsvKD0WJKXnOV6nx47vvQs1wIAAAAAAAAAAJbU0hSjVdUVSe6djYeokuQXznLJj4wd3+8s1wLYH598Q3Ls43cef9cPJ3/01ckN71x8pnk6PmUx2o3XzDcHAAAAAAAAAACzumzzsyV5T2vttrNc76ax47uc5VoAAAAAAAAAAMCSWppitCQP3fxsSa5trf3dWa5349jxBWe5FsD++NirJl87/unk6scl17wg+ezbk7a+uFzzcmzKYrRPvXG+OQAAAAAAAAAAmNXFY8ef2Yf1ugnHAAAAAAAAAADAOWTQd4AZjD9Edd0+rDf+dsrz9mE9gLP3mT/Zfc41z9v4vPQfJt/6umRlbb6Z5un4/2fvvsPsLOv8j7/vaUlIIYUSCL1X6cIKCAKCggIWUHRXEVzLFt1V17KuhdV1159tXde2gmVVRBGkCdKb9F4iUhISkgAJ6ckkmUz5/v44MztnJqefM+fMmbxf13Wu8zz3/b3v5zuUk0nyzOd5sbS6xbdABKQ0sv1IkiRJkiRJkiRJkiSpVNn34I2rwX4zso5X1GA/SZIkSZIkSZIkSZIkSU2omZ6qOD7ruCtvVem2zDpeU4P9JKl67VNKr33xWnjuhyPXSz30lPjx270K1r80sr1IkiRJkiRJkiRJkiSpHK9kHe9Qg/0OyrO3JEmSJEmSJEmSJEmSpM1IMwWjLc063qoG++2WdbysBvtJUvVaxxevyTb3JyPTR730rC+9dvWfR64PSZIkSZIkSZIkSZIklWtu/3sCDk4pTax0o5TSocDWWUMPV9OYJEmSJEmSJEmSJEmSpObVTMFoL/e/J+CQajZKKc0A9s0aeq6a/SSpJiKga2nxumwrHoEVj41MP/XQazCaJEmSJEmSJEmSJElSk7ofWA0E0A6cV8VeH8s6nh8R86tpTJIkSZIkSZIkSZIkSVLzaqZgtLuBvv7jGSmlE6rY6zwyAWsAncCD1TQmSTXRtQx6Ostfd93BmVC1ZtS7ofRag9EkSZIkSZIkSZIkSZJGjYjoBX5P5l68BFyQUtqx3H1SSm8B3kUmYC2AX9WyT0mSJEmSJEmSJEmSJEnNpWmC0SJiBfBA1tCXUkopX30+KaVZwKcZvInqxojoK7xKkupgzTOVr33igtr1UU+960uvfeY7I9eHJEmSJEmSJEmSJEmSKvElMg88DWAqcFtKaf9SF6eUzgUu7l+fgA3At2vfpiRJkiRJkiRJkiRJkqRm0TTBaP2yb3g6CvhBOYtTStsCVwHTyNxEBfDN2rQmSVVa82zla5+8ALpX166XeiknGA1g2YMj04ckSZIkSZIkSZIkSZLKFhF/Br5D5n68AHYFHk4pXZRSOgXYZvialNKOKaXzU0r3ABcB47LWfyEiltTtC5AkSZIkSZIkSZIkSZI06jRVMFpEXAI82n+agPenlO5MKR1baF1KaWJK6UP9aw8mcwNVADdExF0j2bMklWzNM9Wtf+Gy2vRRT+UGoz39nyPThyRJkiRJkiRJkiRJkir1ceBGBsPN2oFzgWuBe/vHAEgpdQLzgP8BXp21BuB3EfH1ejUtSZIkSZIkSZIkSZIkaXRqa3QDFXg7mZulZvSfHw3cllJ6GXguuzCl9H1gL+AvGPpUyQQsAv6qTj1L0qZWPwPP/y9sWALbnZw5z2XaIdC9CtbOLbzffefDLu+C1nG173WklBuMtuj30NcNLe0j048kSZIkSZIkSZIkSZLKEhF9KaUzgO+RCUQbCDpLAyVZYxOyl2bV/Rj40Mh2KkmSJEmSJEmSJEmSJKkZtDS6gXJFxFzgTcDLDA062w44Jqs0AR8AjgfGD6tdCJwWEUvr1rgkZVv2IFz/apj9bzDnR/DHs2DBb3PXznozvOlpeP1dRTYNuOl46Oupdbcjp9xgtO6VsOSOkelFkiRJkiRJkiRJkiRJFYmIDRFxHvAOYDaDoWiblDI0EG0O8O6IeH9ENNFNL5IkSZIkSZIkSZIkSZJGStMFowFExP3AocB1DH2q5MB79s1T2XMJuBF4dUQ8XodWJSm3J78E3atKq528F7S0wdavgTc/W7h22b3w/M+r769eejfkHj/6kvxrFl09Mr1IkiRJkiRJkiRJkiSpKhFxaUS8CjgR+A/gj8ALQCfQDbwEPAp8Fzgd2CciftWgdiVJkiRJkiRJkiRJkiSNQm2NbqBSEbEYOC2ldBjwUTI3Um2Xp3wVcDPwnYi4vU4tSlJu0QeLriq9fvKeWcd7wHFXw+1vzl8//xLY/X2V91cvfd0QvbnnJsyCnc6GF36z6dyq2SPblyRJkiRJkiRJkiRJkqoSEbcCtza6D0mSJEmSJEmSJEmSJEnNp2mD0QZExEPAewBSSrsBOwIzgA5gKbAYmB0RfQ1rUpKydb5Qeu24rWD6IUPHtjkO2iZBz9rcaxbfAhtXQsfUynush971+efaJsC0Q3IHo21cMXI9SZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIapumD0bJFxFxgbqP7kKSCFt9Seu0+H4eW9qFj7ZPh0G/A/R/MvSZ64MXrYJdzKu+xHnoKBKO1jM8f7LZx5cj0I0mSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJElqqDEVjKbRIaXUDhwN7ARsB6wFXgQeiYh5DWxNarzVz8B955dWu+V+sM/Hcs/t8QGYfhj84fDc8y/fNPqD0XoLBKO1TYD2PMFo3QajSZIkSZIkSZIkSZIkjQYppYEnBAZwTkQsqXCfbYFfDewVESfWoj9JkiRJkiRJkiRJkiRJzcdgtDEopfRT4L012m5+ROxS4nW3Bi4A3gFMz1NzN/DNiLisRv1JzeX+D5Ree/j3oLUj//z0w2DPD8Oz3990bu6PoXs1zHoz7PJuaGktv9daWf8yPPc/MOciWPcCzDodDv0m9G3Mv6Z1AnTkCUbbuBIiIKWR6VeSJEmSJEmSJEmSJEmlOp5MKBrA+Cr2Gd+/F1n7SZIkSZIkSZIkSZIkSdoMGYymYtaXUpRSeiPwU2CbIqWvAV6TUvol8MGI6KyuPamJdK+BV+4srXbGq2Hb44rXTTsk/9yC32Zei66CYy5tTJDY2nlww5GwIethwIuuyrwO/Vb+da0ToGNa7rnohZ5OaJ9U01YlSZIkSZIkSZIkSZJUkYRhZpIkSZIkSZIkSZIkSZJqpKXRDZQjpXRASumW/tfNKaViIVy59ti2f+3APnuNRK9jyGXFClJKxwNXMDQULYCHgEuBG4Glw5a9G/hVSqmp/huUqtK1DKKvtNoZR5ZWN2Wf4jULLoOl95S2X6098cWhoWjZHv7H/OvaJkHH1Pzz6xZW1ZYkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkafRptlCqDwLHA8cBGyMiT9pOfhGxGOjO2ueva9jfaPEJYNcKXmcN2yeAHxe6UEppB+ByoCNr+C5g/4g4PCLOjoiTgR2Aj5L5Zz/gzcCXK/j6pObUs6b02hlHlFY3ucRsx+d/Xvq1a6W3KxPKVq62ydDSBu0FgtFuOArCBw1LkiRJkiRJkiRJkiSNEW1Zxz0N60KSJEmSJEmSJEmSJElSwzVbMNoZWcc/q2KfgbUJeEsV+4xKEbE0IuaV+wJOGrbVrRExt8jlLgCmZZ3fDZwUEU8N66krIv4LOHvY+o+llHau4MuUmk93GcFo00sMRuuYVrwGYG7BjMORsfgW6Flb/rqO/kC0ji3z13SvghWPVNaXJEmSJEmSJEmSJEmSRputso47G9aFJEmSJEmSJEmSJEmSpIZrmmC0lNJuwA79p33ANVVsdxzVuxAAACAASURBVDXQ23+8a0ppp2p6GwtSShOAdw4bvqjImj2B92YNbQTOjYgN+dZExBUMDbUbB3yhvG6lJlVqMFr7FJiyV2m1Le1kMh6LKaWmxhZeUdm6gWC01vEwbqv8dcsfrmx/SZIkSZIkSZIkSZIkjTav7X8P4MVGNiJJkiRJkiRJkiRJkiSpsZomGA04oP89gKcjYm2lG/WvfTpr6MBqGhsj3g5smXW+Ari8yJp3Aa1Z55dHxLMlXOurw87PTimNL2Gd1Nx6SgxG2/VcSCV+PKeUCRArpq+rtP1qJfpg4VWVre2YNng86/T8dT0+HFiSJEmSJEmSJEmSJGkUiXKKU0rtKaWdUkrvBz6bNfVEbduSJEmSJEmSJEmSJEmS1EyaKRht56zjOTXYL3uPnWqwX7M7f9j5LyNiQ5E1bxl2/pNSLhQRTwH3ZQ1NBE4uZa3U1LpLCEbb9gQ48PPl7VtKMBrAytnl7VuNZffDhpcrW9s+dfD40K/nr+upOB9TkiRJkiRJkiRJkiRJJUop9eZ7ZZcB8wrV5li7AXge+CEwJWuvCp/GJ0mSJEmSJEmSJEmSJGksaKZgtMlZx6tqsN/qrOMpeas2Ayml3YHXDhu+qMiamcBBWUM9wF1lXPa2YedvLGOt1Jx68gSjTdwVTrgJTn0cXncDjJtR3r6lBqMtvKK8favxSjkfB8Ok1sHjjmmZsLhcejorv4YkSZIkSZIkSZIkSZJKlQq8Sq0r9or+Pf4M/HbkvhRJkiRJkiRJkiRJkiRJo10zBaOtzzquRZBZdtBab96qzcN5DL1J7eGIeLTImgOGnT8eEeWkFN097Hz/MtZKzak7TzDa+G1g5okw9UBoac1dU0hLicFonfPK37tSa57JPb7tiXDmosJrezcMPW+fnLuuZ235fUmSJEmSJEmSJEmSJKkSUbykKgl4EHhTRHSP8LUkSZIkSZIkSZIkSZIkjWJtjW6gDEuzjneuwX47ZR0vq8F+TSml1Aq8d9jwRSUs3W/Y+XNlXnpOkf2ksacnTzBavuCvUrWWGIy2rkggWS2tfjr3+Jb7ZYLgCtnqL4aet07MXddTThajJEmSJEmSJEmSJEmSKnQH+YPRjut/D+B+YEOeuuEC6AJWAk8Bt0bEndU0KUmSJEmSJEmSJEmSJGlsaKZgtBf63xNwYEppRkRUFGiWUpoBvCprqI5pQaPOG4BZWefrgYtLWLfHsPMXclblN3/Y+YyU0rSIWFHmPlLz6M4TjNZWp2C0l66r7jqlWng1LLk999zkvaClyC89s04det4+KXddz9rye5MkSZIkSZIkSZIkSVJZIuL4fHMppT4GQ9PeERHl3kcmSZIkSZIkSZIkSZIkSUM0UzDavWSeENlBJhztb4F/rXCvvwFa+o97gLuq7q55nTfs/LKIWFnCuqnDzpeUc9GIWJtS2gBkJzptCVQVjJZS2gbYusxlu1dzTalk+YLR2qsMRmsZV3rt6mdgyl7VXa+QlbPhjtPzz0/ZO/M+9VWw8vEcBQmmHTp0qHVi7r16OitqUZIkSZIkSZIkSZIkSTWVGAxHkyRJkiRJkiRJkiRJkqSqNE0wWkR0pZTuBE7qH/pESul3EfFEOfuklA4A/onBG7HuiojNMl0npbQ18OZhwxeVuHzSsPP1FbSwnqHBaFWmQwGZ0Lsv1GAfqfZ68gSjtVX5n370ll57zd5wTh+kVN0185l/cf65lnaY8erM8azTcwejvX3Zpr21D/+46deztrIeJUmSJEmSJEmSJEmSVCsXZB2X8kBOSZIkSZIkSZIkSZIkSSqopdENlOnr/e9BJpjrupTSUaUuTim9GrgWmEjmKZXZe26O3gO0Z53PAW4vce3wpKINFVx/eJhanvQjaYzozhOM1l5lMFpfmf/73XQcbFhS3TXzWfFo/rltjoeOLTPH+38GtnvD4FzrFnDsZdAxbdN1bRNz72cwmiRJkiRJkiRJkiRJUkNFxAVZr9WN7keSJEmSJEmSJEmSJElS82uqYLSIuAG4jUyoWQDbA3eklC5KKb06pZSGr0kZR6SULgTuBHYY2A64MyKurU/3o9L7hp3/OCKiwr0qWVfptaTm1DNCwWi9ZQajvXInXH8kdM6v7rrDda+BFwt8pO73ycHjti3g+Gvh1CfhddfDmQtgx7fmXteWJzNx+UNQ8UeWJEmSJEmSJEmSJEmSqpVSaqp7ECVJkiRJkiRJkiRJkiSNfm2NbqAC7wQeBrYjE6zVBpzb/+pMKT0NrOifmw7sBQyk6gwEqiVgAXB2HfseVVJKRwH7Zw31Aj8tY4u1w84nVNDG8DXD96zE94BLy1yzO3BlDa4tFdadJxitrc7BaACd8+COt8AbH67u2tk9XL5t/vnpR8DMk4aOpQRT98+8CmmbmH9u1ZMw9cDS+5QkSZIkSZIkSZIkSVItvZBS+hFwYUQsanQzkiRJkiRJkiRJkiRJkppf0wWjRcSSlNIbgKuAXcgEnUEm7GwScNiwsf9bymAo2nPAGRGxpB49j1LnDzu/LiJeLGP9qAxG6/93Wta/15RS8SKpFnryBKO1NyAYDWDFI/DyLTDzhNzzfb0QPbBxOfT1wLitgIDoha5lmZqWdpiwPdx+OvSuz3+tAz9fWY8A7VPzzy2+zWA0SZKkRupeDa0ToaW10Z1IkiRJkiRJkqTG2B74PPDZlNI1wA8i4oYG9yRJkiRJkiRJkiRJkiSpiTVdMBpARDyZUjoM+C5wNtDCYBjakNKs4wT0Ar8EPhoRq0a80VEqpTQReMew4YvK3Gb4P7+ty+xhEpsGo60sswepuXTnCUZra1AwGsAtJ8Lu74fD/xtaxw2OL7gC7nxLdX1lm7B95Wu3OTb/XE/VeYqSJEmqxJo5cPe7YNkD0DEN9v4oHPA5MHhakiRJkiRJkqTNVRtwBnBGSul54IfATyJiaWPbkiRJkiRJkiRJkiRJktRsWhrdQKUiYkVEvAvYD/gW8ET/VBr2AngM+Dqwd0ScuzmHovU7C8hOYloMXFPmHs8OO9+5zPXD65dHxIoy95CaRwT05AlGa68yGK2vimA0gDkXwsP/OHi+6s+1DUUDmFjuR0SWcTPyz1UTCidJkqTK9HXDzcfDsvuBgI3L4YkvwLPfb3RnkiRJkiRJkiSp/jaSuU9v4CGmCdgN+A9gQUrpFymlYxrVnCRJkiRJkiRJkiRJkqTm07TBaAMi4pmI+HhEHAxsCewJHNX/2gOYEhGHRsQnI2JuI3sdRc4fdv6/EdFT5h5PDTvfo8z1uw07/1OZ66Xm0rseoi/3XFuVwWgd0/LPvelp2Oms4ns8+31Y8Vjm+KmvVdfPcFP2LRxuVoqZJ+ce7+uqbl9JkiSVb8kdsG7hpuPzL65/L5IkSZIkSZIkqdG2Bz4JPMfgg0yj/3gccA5we0rpiZTS36SUqrxRRpIkSZIkSZIkSZIkSdJY1zTBaCmlmSml07Ne04fXRMTaiJgTEff3v+ZGRGcj+h2tUkp7AcOfwHlRBVs9Oez8VSmlLcpYf3SR/aSxpXtN/rn2Ku/3POgrucd3+SuYshcc8xuYelDxfa47GC5OMPfH1fUz3LGXV79H6/jc470bqt9bkiRJ5Xnq67nHX7mrvn1IkiRJkiRJkqSGi4jlEfH1iNgbeD1wOdA7MN3/noD9ge8AL6aUfphSOrT+3UqSJEmSJEmSJEmSJElqBk0TjAa8Ffhd/+uXQFdj22la5w07/2NEPF3uJhHxEvB41lAbmwauFXL8sPPryu1Baio9IxiMtv2p0JZjj13ePXi8199Wd41K7fMx2HKf6vfJG4zmLwWSJEl1t3F5ozuQJEmSJEmSJEmjUETcHBFvB3YEPg8sIBOKBpmQtARMBN4PPJBSui+ldG5KKc+NIZIkSZIkSZIkSZIkSZI2R80UjDaVzI1RCXggIjob3E/TSSm1Au8ZNnxRFVv+btj5+0rsYx/gyKyhTuCGKvqQRr+edfnnWidWt/eE7eCEG2DL/QfPj7wItj9lsGa38+Cgr1R3nXJtc3ztrtkyLvd434ba7C9JkqTC+nrgyS/D9X8By+7PXxdRv54kSZIkSZIkSdKoFBGLI+LLwK7A6cC1ZILRyHpPwBFk7l97MaX0rf77yiRJkiRJkiRJkiRJkiRt5popGG15/3sALzWykSZ2KrBd1vka4NIq9vsl0Jt1/taU0p4lrPvUsPPfRITpRhrbetfnn2ubUP3+Wx0Fpz0Jb18BZy6C3c8bOt/SCvt/Bt4VsM1x1V+vmJmvh5NuhdY8gWblas3zYOBePzokSZLq4t73weOfg2X3Fq4r9H2vJEmSJEmSJEnarETGNRHxJjIhaV8BXiYTigaZewETmYemfgSYnVK6NaV0VkqprSFNS5IkSZIkSZIkSZIkSWq4ZgpGyw5Dm9iwLprb+cPOL4mIzko3i4hngZ9lDXUAP00p5UkwgpTSGcC5WUMbgQsq7UFqGoUCIlprEIw2oGMqpFS4Zud31u56+Rx3VW33yxew1ttV2+tIkiRpU53zYd4vS6vtqfi3mJIkSZIkSZIkaQyLiAUR8S/ATsDZwM3DSlL/67XAJcCClNKXU0o717dTSZIkSZIkSZIkSZIkSY3WTMFoj5B5QiTAXo1spBmllLYFThs2fGENtv4CsCLr/DXATSmlfYZdf1xK6e+BS4et/0ZEzK9BH9Loli8YraUDUp0/ind9D0x9Ven1bWVkUU7aDc5cAK158xErk2+/3g21vY4kSZKGWjsPHvkUg78dL8JgNEmSJEmSJEmSVEBE9EbEbyPi9WTuA/wGsIzMX0YEgwFp2wKfAZ5LKV2eUjqmUT1LkiRJkiRJkiRJkiRJqq+mCUaLiBeAe8nc9LR3SslwtPK8F2jLOn8yIu6vdtOIWAi8FdiYNXw08KeU0gMppV+nlP4ALAD+C2jPqrsG+Fy1PUhNIV8wWuuE+vYB0LYFnPIAHPqfhet2OhuO+gmcMPwBvVm23A+Ovw72/Sc45Bvwxkdgix1q2y9Ay7jc431dtb+WJEmSIAKe+BJcvTu88OvS1xmMJkmSJEmSJEmSSjcF2BLIfmJeZL0AWoEzgNtTStellHavb4uSJEmSJEmSJEmSJEmS6q2teMmo8jXg8qzjMxrYS7N537Dzi2q1cUTcllJ6C/BTYOv+4QQc3v/K5VfAX0dEb636kEa1nlEUjAbQ2gH7fBR2OgtuPBo65w2df+2VsMPpmeOVs/PvEwHbvyHzGkmt43OP924Y2etKqo3u1TD/N7DmGdj6WJh1GqSmyeeVpM3T0nvgic+Xv65nbe17kSRJkiRJkiRJY0ZKaQJwDvBBct9bloDu/tcWDAakJeAU4LGU0jsi4vd1aFeSJEmSJEmSJEmSJElSAzRVIkVEXAH8mMxNTm9KKX03pdRs4W51l1I6Gtgna2gj8ItaXiMirgUOAH4ArChQei/w9oh4V0R01rIHaVTrHWXBaAO22B7e/ByccDPs9xk4+tfwtmWDoWgAbYV6jAJzNWQwmtS8NiyBG4+B+/8anvoa3HE63Pd+iL5GdyZJKmTexZWt6/G3eZIkSZIkSZIkaVMppf1SSv8FvAj8iEwoWhqY7n+9BHwR2BnYHvg7YHb/XPS/tgB+k1LavZ79S5IkSZIkSZIkSZIkSaqfZgwV+yCwBvgo8CHguJTSN4CrImJZQzsbpSLiLgZvIhvJ6ywBPpxS+ihwNJkb1GYCncAi4JGIeH6k+5BGpXzBaAVDx+qkpRVmnpB55VIwvK1OwWgt43KP93XV5/qSKvfsD2HlE0PH5v4E9vgAbHVUY3qSJBX34rWVrTMYTZIkSZIkSSseh9lfga6lMP0QOPCL0Dax0V1JkhogpdQBnEXmPr/XDAz3v0fW+W3A94DfRURv1hbfA76XUnoj8DVgv/7x8cA/kglOkyRJkiRJkiRJkiRJkjTGNFUwWkrplqzTNcBkMjc7Xdg/vxBY0j9XqoiIE2vWpIiIjcCtje5DGlXyBaMVDB0bJUZDj63jc4/3bqhvH5LK98Tnc4+/8FuD0SRpNOusMNPaYDRJo0FfL0QPtOYJ2ZYkSZIkjZzVz8INRw7+Pd7im2HxrXDK/ZBaGtubJKluUkp7knkA6nuB6QPDZMLQov94LfBz4LsR8VSh/SLiupTSrcAfgUP7179+ZLqXJEmSJEmSJEmSJEmS1GhNFYwGHM/gkyJh8CapgadI7tj/CkozcLOVJI2ssRqMFnX6CG3J88PsfV31ub6k2ptzERz69UZ3IUkaLgKe/3nl63sNRpPUQH3d8PAn4PmfZn4Af7tT4KifwLgZje5MkiRJkjYfj35q04cbLX8IXroetn9jY3qSJNVFSqkVeAvwIeB1A8P975F1Phv4PvC/EbG21P0jYkNK6d+BS/uHdqy6aUmSJEmSJEmSJEmSJEmjUrMFo+VisJmk0a+Zg9FaOgpM1ukjuHV87vF1C+tzfUmVib78cx1T69eHJKl0L90A97638vXdJf/8kiTVRgSsnQOrn4FHPwmrZg/OLboa7nwbnHRbw9qTJEmSpM3KxlWw8He55xbfZjCaJI1RKaWdgQ8A5wHbDAyTualk4MGnvcAVwHcj4vYqLvenrOM8T9mTJEmSJEmSJEmSJEmS1OyaMRgtFS+RpFGmp4mD0VKBj91CoUe1lC8YDeCJL8EB/1K4T0mN8dz/5J8zGE2SRqdnvlPd+t7O2vQhSaXo7YL73g/zfpG/ZsntmdC0KXvVry9JkiRJ2lw9/vn8cwsuh0O+Wr9eJEn1NIfMPX0DN24MPGUvAS8B/wP8T0S8VINrrRt2DUmSJEmSJEmSJEmSJEljUFMFo0VES6N7kKSK9DZxMFpBdbrPdNzW+eee+Dxs93rY6qj69CKpNF3L4YEP559v37J+vUiSCls5GxZeARuWwIu/L23N9MNg+UObjvcYjCapjuZcWDgUbcBLNxiMJkmSJEkjbc1z8Ox/Fyio0wOXJEmN0ELmBpJgMCDtDuC7wO8iomcErpkwHE2SJEmSJEmSJEmSJEkas5oqGE2SmtacH+Ueb9uivn3UWtTpHtPph0DbxPxBG8//wmA0abRZeGXh+baJ9elDklTYgivgrrOhr7v0Ncf/AZ79LmAwmqQGm3dxaXWd80a0DUmSJEkSmd+jRYHws8550NsFrePq1pIkqa4SsBb4OfC9iJg9EheJiPlkgtgkSZIkSZIkSZIkSZIkjWHeJCRJI617bf651gn162NE1CkYrXU8bH1s/vlnv1ufPiSV7tnvFZ7v3VCfPiRJ+UUfPPT3ZYSiJTji+7D9KfkDLg1Gk1RPS+8urW79opHtQ5IkSZJU/IEp0Qdrnq1PL5KkensK+HtgVkT87UiFokmSJEmSJEmSJEmSJEnafLQ1ugFJGvNeuTP/XPvk+vUxEmaeVL9rTZhZv2tJqs7838DyBwvXGJwjSY23+mlYt7C02ld9Gfb/DKT+fPW2SbnregqEAktSLXUtK7121VP55/p6YeOKzHH7pEwwtyRJkiSpPJ0LYMXDxetWPwVTDxj5fiRJdRUR+ze6B0mSJEmSJEmSJEmSJEljS0ujG5CkMW/xLfnntn5t/fqoxt4fzTP+kfr10DGj8HznC/XpQ1Jxs79SvMZgNElqvGX3lV67/z8PhqIBtE3MXefnu6R6Wf1M6bUrH4NLp8Kjn4bejZmx3o1w/4fhsulw+daZ16VT4OYTMz/QL0mSJEkq3cIr88+1tMOs02HfT8LkPevXkyRJkiRJkiRJkiRJkiRJkppWW6MbkKQxLfrgqa/nn595Uv16qcbeH4UFv4N1WeFju50LW9bxie7jtio8f/2R8NaX6tOLpPw2rsgETxTTu27ke5EkbaqvN/M53dcN976veH3HdDjhJkhp6LjBaJIabf2i8uq7V8GfvpoJRDvsm/DwP8BzPxha09edCTe//nA480XoWQPLH4It94cJM2vXuyRJkiSNNYvyBKNN2Rve9Of69iJJkiRJkiRJkiRJkiRJkqSm1/TBaCmlg4HTgWOB3YHpwGQgImKTry+lNBWY0n/aFRGL69WrpM3Q0nvzz+3+19DaUb9eqjFpVzj5Hpj/K1jzHGxzHOx89qYBGSMpX/jGgA0vw7qFsMUO9elHUm6rny6tzuAcSaq/zvlw22mwanZp9ft8DPb6W5i026ZzbZNyr/HzXVK9dC2rbN3T34Ldz4e5P8tfs2EJXNKe+T1v9GXG9vk4HPK1+v4+WJIkSZKawcaVsPi23HM7nV3XViRJo1tKaQZwFnAksC2wHlgI3ARcHxEbG9ieJEmSJEmSJEmSJEmSpFGkaYPRUkoHAt8CXpc9XMLS1wG/7T/uTCnNjIh1te5PkoiAP38r//yMI+rXSy1ssT3s+/EGNlDCR/yL18Eefz3yrUjK78U/lFZncI4k1d99Hyg9FG2398Gh38g/ny+0tmdt+X1JUiU2VhiMBnDtASUUReb39QP+/A3Y6kjY6azKrytJkiRJY82qp+CPZ0P05J7f4cz69iNJqpuU0lbAq4CtgS5gLvBkxMCTBobUJuAzwD8DE3Js93fA/JTS30REiX/hLEmSJEmSJEmSJEmSJGksa2l0A5VIKZ0L3Esm5Gx4Uk5ssmCoK4EX+tdNBN5W6/4kiQi473xY8Nv8NT4hvTwTti1e0+fDg6WGWngVPHlBabU9nUODJiRJI6trObx8Y+n1+/5T4fm8wWgGX0qqk64qgtEqtfDK+l9TkiRJkkarZ38Iv98fVj2Ze36LHWHaIfXtSZI04lJKB6eUbgReAm4ELgYuAx4BFqWUPpVSas2qT8DPgC8BW5C5Zy/7fr+B812Aq1NK767H1yFJkiRJkiRJkiRJkiRpdGu6YLSU0tuAixj69MgELAAeZdOgtCH6n0r566yh02vdoySx9B6Y+5P88y3t0LFl/foZC2aelPnnVkjrFvXpRaq13g3w+Bfg5hPg3vfB8oca3VH5etbBHWeUsSCge9WItSNJGmbVnyieI55ly30Lz7cajCapwTYur/815/2y/teUJEmSpNFo/cvwyCco+OdNs06HVPD2DUlSk0kpvRO4HzgBaGUw1GzgtS3wFeCqlNLAfYkfBf6y/zgY/MVjYE1kvVqBH6eU9hvxL0aSJEmSJEmSJEmSJEnSqNZUwWgppe3IPEESBm+S+h6we0TsAry1xK2uHNgSOK5mDUrSgBevKzy/3Rvr08dY0jENdn1P4ZpiwWnSaBQBt54CT/4rLL4V5v4UbjoOlj3Y6M7Kc80+5a/pWlb7PiRJuW14qfTaPT5YvKZ9Uu7xnjWlX0eSquH3kpIkSZLUOAsuh561hWt2KOdhKpKk0S6ldATwc6CNoYFmAwbOE/AG4OMppcnAFxkahvYScA1wMfAHYAVDH4TaDnx7pL4OSZIkSZIkSZIkSZIkSc2hqYLRgM8DW5C5GaoPODsi/i4inu+fL/A44iEeALr7j2eklHatbZuSNnuzv1x4vmNqffoYa474QeH5znl1aUOqqSW3w5I7ho71dMIz/92YfiqxZg6sW1D+OsMsJKl+1j5fvGbA9qcVr2nfMvd47wbo7Sr9WpJUKb+XlCRJkqTGmf2VwvPtU2Abn1EnSWPM94FWhgagrSRzH96D/ccpa+4fgXOAKf3rlwFnRMQOEXF6RPxlRJwKbAN8ENjA4L1/J6SUdq/LVyVJkiRJkiRJkiRJkiRpVGqaYLSUUiuZm6UGbq76akRcVsleEdED/DlraJ/qO5SkLK3jC8+3G4xWkZa2wvOPfw6i1IxMaZR45ju5x5//WX37GNC7AZbeDyufKPz/U/TB8kdg+cPwxBcru1bX0srWSZLKV06A7HYnF68pFPTbvar0a0lSpbpXNua6i65pzHUlSZIkabToXgvrFxWu2f5UaO2oTz+SpBGXUjoSOJTB0LOlwFuBrSLiyIh4NbAV8BZgSX/dtsDH+rfoBk6KiKuH7x0RfRHxIzL3BQ4EqwGcNXJfkSRJkiRJkiRJkiRJkqTRrmmC0YCjyDxBMpG5Wer/VbnfwqzjHavcS5KGaptceL5QkISqs+yBRncglWfB5Y3uYNArd8E1+8INR8K1r4JbT4aNKzatW7coM/+HQ+EPh8G8X1R2vY3LqutXklS6tfNKqzt9DrSOK17XMS3/XK5fOySp1no6i9cc+K+1v+4z36v9npIkSZLUTB75p+I1O5w58n1Ikurpbf3vA/ftnRwRV0QMPmkrMq4ETgF6+of3IhN09ouIeLzQBSLiKuDW/msAHF7D/iVJkiRJkiRJkiRJkiQ1mWYKRtuj/z2AByJidZX7Za+fUuVekjRUX3fh+egpPK/8Dvr3wvNzLqxPH1ItrH6m8Hz0jXwP616EZ38A938YbjwGOucNzr18Ezz6z5uuuee9sGp2afuPm5F/rstgNEmqi1fugpeuK153+H/DpN1K27O9QNDvxpWl7SFJ1ehZV7zmwM/Bdm+o7XVL+TyVJEmSpLGkrxfm/wae+kbm/bkfFK5vaa/978UkSY12aP97AL+JiMfyFfYHoF3CYMAZwGUlXie7bv+yOpQkSZIkSZIkSZIkSZI0pjRTMNrWWccLarBfdtJIWw32k6SM7rXQXSQMYtIeheeV345vLTy//sX69CHVwqJrCs8//ImRvf7yR+C6g+GBD+f/Qaa5P4buNYPnG1fCkltL2//Af4U3PQ3bvDb3fNfS8vqVJJXviQsywZfFpDbY629L37dtIqTW3HMGo0mqh57O0urGbVX7a/s5J0mSJGlz0bsx82dLd70DHvlE5r2Y3c6Dji1HvjdJUj3tlXVc5C+5Abh22PnjJV5nIHAtAQWewCVJkiRJkiRJkiRJkiRprGumYLTIOs7z09dlmZ517E8zSqqdNc8Ur5lx+Mj3MVZN2avwfPTUpw81r+7V8Nhn4eYT4YG/gzXPNa6X9YsKzz/9LVhXpGa46IOnvwPX7AMXp8zr0U/DxlWb1j72z9D1SuH9+jbCpVMyU3VtCgAAIABJREFU+9z3flh4VeYaxUzeCw74Fxg3Azry3LPetaz4PpKkys25CJ74Ymm1O59T3t4pQcfU3HMbV5S3lySVK/qgd11ptTNeXfvrryz15zglSZIkqck9/Z+w7N7S63d8Oxz81ZHrR5LUKNmJl0+XUD+8ptS/GM5+staUEtdIkiRJkiRJkiRJkiRJGoPaGt1AGbJTO7avwX4HZB2byiGpdlYXuQd062Nh6oH16WWsmn44LH8w91xfd317UXPp7YKbjocVj2TOF98CL/wGTr4HJu9e/3561havWXQN7PGBTADNgL5eaMmTE3v/h2DOj4aO/emr8MKlcNpsaB0PfT2ZIImXri+v3zkXZV6lOPCLgz2P2yp3zUa/BZOkvCKGfvaX6/lfZAItS5HaYM8Pln+N9mm5Qy67zR6XNMJ615deu/M5mZDIjcsL142fCa/5BdxyUvE9bzoOzumr7nNakiRJkkar7L+DmPuT0te9bRmMm168TpLUjCZlHed4ItcmVmefRMSGEq+TXdde4prNSkppArAvsA+wNZl/N2uB5cCTwBMRPlFQkiRJkiRJkiRJkiRJza+ZgtFe6H9PwCEppfaIqCj9JqW0FzAra+jxapuTpP+z+s/55/b8Gzjka/XrZazq68o/t2p2/fpQ83nx2sFQtAFdr8BzP4RD/l/9++npLF7zwIcyL4CdzoJlD8KGxTDzRDjyQhi/TWau8wW47dT8/w+snQu/nlCbvov5i1/ALucMno+bkbuua2nucUnanEUfPP65zK9NvRth1pvhsP+E8VuXsUdkQjFLsc3xcNCXYeujy++1Y2ru8Y0Go0kaYaV8Hz1g/Fbwhofg3vfCkjvy1237usz32G94EB77bPEQ4aV3V/bZKUmSJEmj1ZI74eGPwcrHYOrBsNffFf57z2w7vMVQNEka27KfENBbQn0pNaNWSmk34Ajg8P73Q4HJWSXzI2KXOvZzKHAmcALwagqHxnWmlH4NfDsivCdSkiRJkiRJkiRJkiRJTaul0Q2U4R5gPRDABOCcwuUFfSTreHFEPF1NY5I0ROe83OM7vg2O+C60bVHXdsak3gLBaBsWwyv3ZEJFpOGe+2Hu8acaFFhYTqADwAuXQufz0LsOFl0NNx6bCb/p64HrDh4dwYDH/BZ2fffQsbzBaMtGvh9JajZPXACzv5L5jOxZA/Mvhnvek/m8L9XGFbDqydJqT7q18mCf9im5x7tXV7afJJWqZ1159ZN2gZNuhzc8DLu/H1qHBQZ3TIP9Pp05nn4YvO4PcMJNhfec+9PyepAkSZKk0ahnHbx8Czz1TbjptbD8QejrhuUPZAKmS7Xl/iPXoyRJdZBSOj6ldH1KaRkwB7gE+ARwHEND0erZ0/iU0hzgIeBzwNEUDkUDmAicBzycUvqPlFKxekmSJEmSJEmSJEmSJGlUamt0A6WKiK6U0s3Am/qH/i2ldFVErCxnn5TS0cAHyQSsAVxewzYlCdYtyj0+cef69jGW9RUIRgO48TUwZW847vcweff69KTm8NL1je5gqJ611a1f80wmPGfFw5kQnEYbvy1s/4ZNx8dtlbveYDRJGioC5v540/GX/pD5odQZR5S2T9fS2vaVT8u43OPRXZ/rS9p8lRswPGD6IXDkj+CQr8H8X8GyBzPfw+72Ppiy59DamSfChO1h/Yu595pzYWYvSZIkSWpWz/8S7vnL2uw1Ybva7CNJUuMcDJzc6CaGaQN2yzEewNPAC8BSYBJwwLDaVuBTwJ4ppXdERM8I9ypJkiRJkiRJkiRJkiTVVEujGyjTv/W/BzALuCGltE2pi1NKrwOuIvN1J6AX+Hqtm5S0mVtyW+7xCdvXtY0xrbdIMBrA6qfLe5K9FH31v2algQ7ZHv8XWDBKcl6PvBDaJm463jEjd33X0kwIkCQpo3cDrFuYe272v+Uez6VewWitHbnHezfW5/qSNl/Vfh/dMRX2/DAcdREc/JVNQ9EGTD2o8D6r/lRdH5IkSZLUKGueq10oGsDkPL+vkiSp+XUBcxrdBJn7HK8D3glsExH7RsQpEfHuiDgjInYHDgfuGLburcAX69uqJEmSJEmSJEmSJEmSVL2mCkaLiPuAS8iEmgWZm3n+nFL6XEppb3J8PSml1pTSiSmlS4CbgGlZ678dEfPq1b+kzcDCqyF6c89NmFXfXsayUn+44pW7YO28EW1FY0jXsvpfsxbBaLW23SmVrdvmeJj1ptxz4/IEo/V15Q8AkqTNUc/a/HMLryx9n1KD0aYfUfqeubTkCUbrMxhN0gjrrdP30X1FQrl/vz/0ddenF0mSJEmqpQW/q91e42fCtq+r3X6SJDVON/AocCHwQeAwYDLw/gb21AV8F9glIk6NiF9HRM6/CIqIh4ATgF8Nm/qnlNLOI9ynJEmSJEmSJEmSJEmSVFNtjW6gAucDewOHkAk3m0rmqYZfBIb89HVK6SlgV6B9YKh/TQLuBj5dj4YlbSb6euG+8/LPb7F9/XoZ6/b7JNx+Z2m1y+6HSbuMaDtqEp3zC8+vXwTjt65PLwMKBeA0wgFfgAO/AE9/Gx7+x/LWzjot/9ykXfPPvXgN7Pnh8q4lSWNVscDMNXNg8u7F9yk1GG3vj5RWl0++YLQwJEjSCOtZV5/r9G4oXvPUN2B//4hRkiRJ0ii28EqY9yugD3Z8O0w/DB79ZG32Hr8tnHATtDTjrSeSpDJF//tRKaVditTOzD5JKR1L5n69YmYWLxkxPwN+EBGb/KFgSqW0PiI2AHtERMlPG4uI3pTS+cAxwI79wx3A2cDXat+iJEmSJEmSJEmSJEmSNDKa7u7UiFifUjoFuITMEw4HbrpKwDgGg88SmQC1/1uaNXcDcHZE9Narb0mbgVf+WDiEYoLBaDWz7QkweU9Y82zx2rveATufPfI9aXRb/xJce1DhmnULYdrB9elnQLEAnHra6+/hVV/MHO/6VzD7y9C1rLS1HdNh53fmn5+wHUw9EFY+sencikfLblWSxqxivy4svBL2/VjxfbpeKV4zYRbscGZpfeXT0p57vHdj7nFJqpXeOgWjbXcyLL27cM2T/wq7vAsm7lSfniRJkiSpHM/+EB740OD5C5fWbu8dzoRjL4fGhcVIkuovAb+qYM1tZdQP3N9XVxGxot7XLCYieoCSQ9Gy1q1PKf0E+HzW8OswGE2SJEmSJEmSJEmSJElNpKXRDVQiIpYCrwc+BSxl8GaoyHrPftFfswr4LHBaRKyuW8OSxr71L8PNxxeu6ZhWl1Y2C21bwIm3wc7nlFa/fvGItqMmMPen0L2qcM3tb4Ybj4XlD9elJQB61tbvWvlM2RsOvAAO/ebg2LgZ8Pp7YNbpxddv90Z4/Z2wxQ6F62YcmXt848rSe5Wksa7YrwsLryhhj3Xw6Kfzz0+YBTu+DU6+B9onldffcC0ducf7DEaTNMJ6N9TnOju9o3hN73p4+r9GvhdJkiRpLFnxGFx/FFw6DW54DSy+tdEdjU0RMPvfRmbvg/4djvmtoWiStPnJfmBpsVf2vXulrvEXltp5ZNi5T3OUJEmSJEmSJEmSJElSU2lrdAOViogAvpZS+g5wDpmgtGPI3MSTHfi2ArgbuB74eUQUSUWRpDJFH9xyYvG61i1GvpfNyRbbw9EXwy7vygRaFTL/Ytj7H/zhjM3ZsgdKq3vlj3DzCXDqEzBxx5HtKSITXjNS9vs0HPzvla+fsiccdyVcsTOse2HT+SMvhN3PL32/9im5x7vXVNafJI1FPZ2F51+5EzYsgfHb5J5fOxduOy3/+l3eDa/5ReX9DWcwmqRG6e2qz3W23Ad2OzcTtFzIgsvgkK/5e05JkiSpFOsWwQ1/kQkZBlh6T+bveU59Eibt0tDWxpw1z8K6BbXf99BvwT7/UPt9JUnNIoqX1GSNqtMz7DzPX+pIkiRJkiRJkiRJkiRJo1PTBqMNiIgNwE/6X6SUEjCNzM08yyKiu4HtSdocLLkdVv2peF3r+JHvZXM08ySYMAvWL8pf8/DHYMHlcNzV0DG1fr1p9Fj4u9Jru1dl6vf+yMj1A/0/9JXn/u9tjoONK2HlY5XtvddHqgtFy7bjW+Dpbw8da2mHHc4sb5+2ybnHe1ZX1pckjUU9a4vXXL4tnLkQtpg1ONa7Ae7+K1jw28Jrpx9eXX/DGYwmqVH66hSMBnDkRZnvz1++GeblCZfsnAcrH4dpB9WvL0mSJKlZzfvlYCjagJ5OmP3lzAM5VDul/FlTJWYcMTL7SpJGsxcw3KzZ7DHs/KWGdCFJkiRJkiRJkiRJkiRVaNQHo6WUDgJOBvYDtuofXgo8BdwYEY9k10dEAMvr2qSk8kXAK3dlwqzWLcw8HX59/+uw78D0QxrdYemWPVhaXUoj28fmqnU8HPkj+OPZhX/A45U/wqOfhlf/oPieq/4EL/4h84M5Wx8D27zWf3/Nrn0KdJcRwFVK2GG1etblnzvsv2DKPnDZ9MwPhJVr/09X3tcme30WltwJKx7OnKdWOOL7/H/27js8ivNe+/h3dlWQRG+miI7pxQ2DjSvYuANuiUuKE6cnTk+cN8mJneqT3k5OihM7iePesA1umGLjgjumY3rvIARqSLvz/jHmSEgzszO7M7O70v25Ll1in/pDoN3ZlZ57Ke7mb53Cjvbt9Yczq09EpDXxep//1pfgnCahn8t/nDoUDaB8enp1OYkV2rcnlU8uIiFLRBiMZsRg8E3Wx6m/h8d6gploOW7r4wpGExERERHx4uAS+/b1/4AJf4VYPNp6WjO75y6ZKu4O3SYFv66IiOQ00zQHZrsG8e2aZrffyEoVIiIiIiIiIiIiIiIiIiIiIiJpytlgNMMwTgF+C5zlMuwOwzBeAb5umqbHZCIRyRkLprV8R3iAI+vzKxhtybezXYH0uQQuXwXPnAR1+53HbboXJvyvdbDdyYZ/w+s3g9nQ2Db0M1YQlNs8yW0lff0Fo6UTRuZX0iXMIV4M8SIovwo23eN/7Xa90q+rxVo9YNorsPtFqNkGPc+FDs3fXNqDwg727QpGExFptPNZb+O2zbKChUv7WuFAa/7obV7ZoPRrsxMrsm9PHg12HxGR5tyupcNU3NW6Ht49v2XfnoWRlyMiIiIikpc23+/cd3gtdBoRXS2tXRg/6xjxDYXXiYiI5DjDMCYAk5s1P243VkREREREREREREREREREREQkV+VkMJphGDOA+4B2gNGkyzw2pEnbWcBLhmHcYJrmrIhKFJFMGYYVVHRkXcu+6u3R15Ou5T/NdgVyTGm5FV728oecxzQcgaot0H6gfX/tPlj88Zbt6/4GA26AE84NpNRImSZsvAe2PwmFHWHQR+GE87NdVfSaBt150XAknDqacg1Ga2d9nvAnOLofdjztb23DSD3Gj3g76HNRZmsUOASjNSgYTUTk/2z8t/exs8qtYDI/IWRBPz4oGE1EsiWRpWA0gL6X2wejVa6KvhYRERERkXxTtcW9v3aXgtGCFPTPOnqeByO+HuyaIiIiEijDMAqBvzZrXmSa5hsB79MT6OFz2pAgaxARERERERERERERERERERGR1i3ngtEMwxgB3I8VigbHh6HZhaTxwdj7DMM41TRNnUIUyRelDsFoNXkSjLbhX7D0+9muQprqOz31mMrVzsFoj7n8zubO5/IzGO2978HKOxpvb/w3TH4Q+l+dvZqyoaHK5/iQg9FM0z3MIVZsfS7sAOfNgdq9VpDavtfh5Wvc1x5wQ3B1BqnQIRitXsFoIiIAVO/wP8dPAFn5TP/rp6JgNBHJFreQ4WM6DAtn787j7Ntr90DdASjuGs6+IiIiIiL5rmYnzD3bfUzdvmhqaSv8/mzETdcJcMGC4NYTERGRsPwSOLnJ7XrgyyHs8wXgthDWFREREREREREREREREREREREBIJbtAmz8BSvozPzgwwAagNeAh4CHP/hzPY1BaeYHc5q/26GI5LLScvv26jwIRtu9EBbflO0qpLl4MczY7D7m0Ar79n0p3hy3bm96NWXT0QpY/Zvj28wErPhJdurJpoZqf+N3vQCvfgzqK4OtY92dMGc0PNIVXrzceVy8+Pjb7XpY95ll/VPv0fuizGoMi1MwWrIOEgrQERGheku46/f/UPBrxgrt25P1we8lItKUW8jwMeN/Fs7eHUc49x1aGc6eIiIiIiKtwfq7Ur/+4fQzHElPUG8CU9QVLlgYzFoiIiISGsMwPgl8pVnz7aZpLslGPSIiIiIiIiIiIiIiIiIiIiIimcipYDTDMMYA59AYiAbwa6CXaZqTTdO8zjTND5umORnohfUOh01NNgxjXHQVi0hGSvrat9fkeDDaoVUw7/xsVyFOyvpDpzHO/bvm2bdvech93aMV6deULTuft0Knmju4BOoPR19PNiWq/M/ZdA8svCy4Gjb+B974jBWWUF8BRzY4j40V27e7hTAAdBwJA65Lv8YwFXZ07tu7KLo6RERyVc2OcNfvd1Xwa8aK7NuTCrwUkZDZPc9pqsdk6HNJOHuX9IECh9Dfnc+Fs6eIiIiISGtw4O3UY5bdDqYZeiltRn1AwWgXvgIFpcGsJSIiIqEwDONirDekbWo2cEcWyhERERERERERERERERERERERyVhOBaMBV3/w2cAKR/uyaZrfMk3zYPOBpmlWmKZ5K/DFJuMBQjjtLSKhKHUIRqvaHG0dfphJmDMq21VIKm7BH7vnQ0OzkCzThG2z3Nesz8NgtEPLnfvCDl/JJcl66yMde1+GtX8Npo71//A+1ikYrdAhgOGYS96BuENITbY5hUcArP97dHWIiOSq6hDDgftOh7jDY0smFIwmItniFox28q/gvGfCO7RvGND9DPu+VM8rRURERETasm2Pexu358Vw62grTBPe+Wrm63QeC51SvGmLiIiIZJVhGJOBR4HCJs0vAx82zdBSZ/8XGOPzY0ZItYiIiIiIiIiIiIiIiIiIiIhIK5RrwWgTPvhsAotN0/xTqgmmaf4FeAUrHA3g9JBqE5Gglfa3b6/aBDW7Ii3Fs5euzHYF4sXwr4Dh8BCXrINdLxzfdmgFHFnvvubRFhmduc/t91sPvBNdHdnWPAjPrzc/B/WHM69jz0Jv44wCiMWd+/tcZt9+0n9DvJ3vsiJT0su5b9/i6OoQEclVNSEGo/WaGs66TsFoiZpw9hMROSbhEMA4+CYY+Y3UgcKZKnc4v3doORxeF+7eIiIiIiL5ql1Pb+O2PRFuHW3FlocyXyNeAhP+kvk6IiIiEhrDME4F5gBN3yniDeAy0zSrw9rXNM09pmmu8PMBpPjFHBERERERERERERERERERERGRRrkWjDayyZ//5WPev5v8WW9XLJIvuk1w7tu7KLo6vHrzi7D9yWxXIV4Ud4VrXYKs9r12/O09L6Ve88DbkExkVlfUjh5w7nv1BtjxXHS1ZFNDAL/rOzvDyws/b8IcL3bvH/zxlm1GHAbc4K+mqBWUOfdVbYL1d0dWiohITqreYd/u9dCwEyMO/T+U2RpOYoX27TU7INkQzp4iImAFXtuJpbiWDkr5dOc+hTiIiIiIiNjrPM7buM0P+HtNXextfTz1mME3WW825GT6BuhxZmAliYiISLAMwxgHPA90atL8LnCRaZqV2alKRERERERERERERERERERERCQYuRaM1rnJn9/xMe/YWKPZGiKSy0r7Qvsh9n07no62llTW/A+s/d/U44bdYt9+yu+CrUdSKyiFftfY99XtP/521WZva27PswPuO59173/jM5CojaaWbGqoynyNmh1w8L305/v5OqcKc+h3DYy9HYwC63ZhJzj7USjrl3Z5kRnzX859b34e6l0CDUVEWru6vfbtncamv2ZRFzh3NpT0Sn8NN7Ei575ts8LZU0TapqrN8M434MUZsPIXUH/IflxUwWil5dDVIez93W9GU4OIiIiISL4xPb75TO0uOLQi3Fragj0LUo8Zcxuc+AX7vs7jw3tNSURERDJmGMYo4AWga5Pm5cA00zQrslOViIiIiIiIiIiIiIiIiIiIiEhwci0Yrem7F+53HNXSwSZ/7hBQLSIShZ7n2rdvvAcOrYq2FidbHoa3HQLPmjrxC9ZHQdnx7UVdod9V4dQm7oo62bc3D8qq2eFtvc0PZFZPlPYthiMb3MdUb4Fd86KpJ5sS1cGss+k/6c91Cm6wE08R5mAYMPY2uLYCLl0GV++D8hnp1xal0v7Ofck62PZkdLWIiOSaun327Z1G+V9r7A9hxma4ajf0uTizuty4BqPpPl1EAnJ4PTw7AVb/BrY/CUtuhZ3P2Y9NdS0dpH4znfvW/CG6OkRERERE8oXXYDSwrv0lM7V73Pv7XAbtB0LHYXDClJb9J342lLJEREQkc4ZhDAfmAT2aNK8GLjBN0+EHTiIiIiIiIiIiIiIiIiIiIiIi+SXXgtGa1uPjN6OPG5trfycRcdN7mn27mYBN90Vbi51EHbz8IW9jT/kNdBoBU16AE6ZCcTfofRFMXQBl/cKtU+zFy+zbN98PidrG2zuf9bbeloczrykqS2/zNm777HDryAWJmmDWWfUreOFcOPC2/7l+gtFi7byNKyiDzmMgVuC/nmwp7Ojev2NONHWIiOQip2C0zmOg/VB/a5WWQ1l/iBVmXpcbt2C0TfeEu7eItB1rfg91e72NjUUYjFbuEoy29DYwzehqERERERHJB76C0drAzy7CVuDyfnKFneCsJj/zOucJGHIzlPSBzmPhtD/BiZ8Pv0YRERHxzTCMocB8oFeT5rXAFNM0d2enKhERERERERERERERERERERGR4OVRkoaItErlM6G4h/0h5/1vRF9Pc2/dknqMUQDnzIL4Bwewu0+CqS+EW5d4U+AQjAbw2sfhrAehdp9zEImdZEPuB1GZJux/3dvYw++HW0suaBqC19zMrTDLR3Dhnpfg2dOsA0MdhkGn0RCLp55X6zHIARrvS1qjQpeDWCIibZ3T9UhxDxj3Q3j1I4DHkB23a6AguQWjiYgE5f0/eh8b5bV0x5FQNhCqNrXsq6+Amh1Q2je6ekREREREcl2ywfvY/W+AmQRD74mWNrfA/JlboaCk8XZhe5j49/BrEhERkYwYhjEIKxStT5PmDVihaDuzU5WIiIiIiIiIiIiIiIiIiIiISDj0m8Qikl3xYuh7mX1f8mi0tTR39CCsv9N9TL+r4eI3nf8Okl1uoSBbH4GanbD2T/7WPLIhs5qiULsb6g95G7t7PiQT4daTbYka+/ZYMZSWQ8fh/td8+Vp4ZjzMKoe9r7mP3XgPvHC297VjrTgYrUDBaCIithK10HDEvq+4Gwy8AabMhUEfs9pSHQqOLBjN5YCtiEgQ/AQnQLTX0oZhvSbgpC2EUIuIiIiI+GH6+FmEmYBVvwqvltbONKG+0r7vzPv1JiYiIiJ5yDCM/lihaE3f+W0zVijatuxUJSIiIiIiIiIiIiIiIiIiIiISHgWjiUj2lQ106EhGWUVL2+e490/6F5z9CHQ5KZp6xD+3UBAzCQfehTW/97dm7Z7MaopC5Sp/49f+OZw6ckWi1r493s76PPFuiJc2tvsJ76rdBS9eDg0O4WsVy+C1j3lfD6zAyNYq5WErI5IyRERyTt1+577i7tbnXlPhjH/BDSZcn4Bzn3KeU9A+2PqcOIWPiogEpWKpv/FRX0uP+5Fz37wpsPVxSGQ59D0f1eyG9f+A9XfB6t/Cxnvh8LpsVyUiIiIimfITjAaw5FZdB4IVcLblYVh6O7z9det5Rv1h9znJOjAdgqbL+tm3i4iISM4yDKMPMA8Y2KR5O1Yo2uasFCUiIiIiIiIiIiIiIiIiIiIiErKCbBdgw/zg8yTDMAZ6nNOr6Q3DMM7GR7KGaZoveR0rImFwyGjck+VvzT0LnfsKOsBgn2FHEj23YDSAd74KRw/6W7PhSPr1RMXvQaGtD8PwL4VTSy5wCm05FozW4wyYsQm2zYJYEfS+CJ6bCNVbvK1/9ADsfAb6XdWyb8vD/uuNteFgtM33weR7o6lFRCSX1O1z7jsWjNaCS855ZI8lLk+7DeWwi0iGDq2GZ0/1Nyfqa+mCUuh2Oux/w75/0VXQ9TSYMheKOkdbW77a+yosuKjlc+94iRUQ2v/a7NQlIiIiIpnzG4wGsOleGHtb8LXki6rNMG8qHFnf2Lbmt9BpFJw7G9oPcpjn8vONwo7B1igiIiK+GIZhNms63zTNhS7je2KFog1t0rzzg3kbgq9QRERERERERERERERERERERCQ35GIwGlinq+/PYO5CH+NNcvfrINI2xOLOfQffgy7jo6vlGNOE9f9w7h/00ehqkfSlCkY7vNb/mg2H06slSvWV/sZnO4QwbIla+/Z4SeOf2/WAoZ9uvN3zHNj0H+97LLoaupwEB5ekV+NxdbXLfI1cVZAiGA2gaiuU9Qu/FhGRXNJQ5dyXzmFVw3NOeGa6T3LuM5NQ+T50HBZNLdK6HdlgPT/b/6Z1kL5sIAy4DnpfmO3KJExL/8v/nE6jg68jla6nOgejARx4Cx7pAsNugZHfhLL+0dWWj16/2T6QPFEDb34e+s6AeFFj+5GNsOrXUF8BJ5wPg25yf50pSGYS1t0Ju+dDSW8YcjN0HhvN3iIiIiL5KJ1gtD2Lgq8jnyz57vGhaMccWgnLfwKTHH6WufLnzmt6eZ1eRESkjTIMoxz73yPs1ex2gcsbvh4xTdPlHXF81dMZmAuMaNJcBdwM1Pt401kATNPcFERdIiIiIiIiIiIiIiIiIiIiIiJRyNVAMBMr4MzvnGMiOgUuIoFINjj3bX0sO8FoS2517x/2xWjqkMykCkZz0uVkqNsP1Vta9tXnQTBasi7bFeQWx2A0lwCy4V/2F4wGwYSiAcdf0rQyXsJ9nugP19VDLFcvU0VEQuD0WAUQK7Zvb9fDeU5h58zq8aowxUHauWfC1IXQeUwk5UgrVbkWXjgHancd377hbph0Fwy+KStlSci9gnImAAAgAElEQVQStbDtcX9zOo1yD2wMy5BPwbq/pQ55eP+PVsDfpe9Bh6HR1JZvqrdD5Wrn/rr9sPdl6DXFun1oFTxzcuNz4E33wu6FcOY9oZcKwOJPwMZ/N95efxdMeQG6nx7N/iIiIiL5xumauXwmbJtl37d7HtQfgcL24dWVy3Y+49y3/Unnvg13OfelE8IvIiLSdrwMDPAwri+w0aHvX8BNAdVzEjCuWVsZ8HSa6+l3KkVEREREREREREREREREREQkb8SyXYAL0+dHOnNFJBeYSee+Qyuiq+OYimWw6pfO/ePvsA5cS+5LNxit/4ecgz7yIRjNLVzFSUN18HXkikSNfXu8xHlOtwkwZV449aRS2Ck7+0Yh7hDu09zeV8KtQ0Qk17iFeBoOZ1S6nALterZsL+0PHYcHV1sqZ97n3Fe3H9b8IbpapHVa+78tQ9EAMGHpDyCZIoxK/Nn7Ksy7AGb1h/kXQuX72amjck3qoLFjjALofy1MXZCdcN2up8CEv3gbm6iGp06E+wvgiYHw7rchWR9qeXmlelvqMUfWwXvfh/sMmDOqZTD4pv9YffOmBBhebePQquND0QAaDru/niQiIiLS1jld4/e+GPpd4zxv0VXh1JPrErVw9KBzf90+++fEqZ4npwq6FxERERERERERERERERERERERERERyQFZOC3oagsKLBNpe0r7OPfV7IyuDgDThKebv9lqM4M/EU0tEoA08z+HfQm2zbLvaziSfjlRSdSlHtNc3T4o6B98LbnALWzGTa8pcIMJtfvgsR7B1+WkqHN0e2VD/w/Blofcx2y6B044N5p6RERyQdLhsSrm8lgVi8OYH8BbXzq+fewPnMPUwlDUxb1//Z0w8W/R1CKtk1tgavVWOLIeOg6Lrp7WrGoLLLio8TlP9VZ49jSYvh7aRXg9DLBvceoxZz0C/a+2nsdHeb9nZ+inoL4C3v2Wt/FmAqo2WyFa1Vth8v3h1pcv3ILzj3njs97W2r0A5p4Fl62Csn6Z1WVn07327VsfgcRRiBcFv6eISNSObICa3VDSC8oGZv/xVkTyX7LBvt2Iw+jvWtdSdnbNtUJvu5wUXm25qG5/6jENlS1fm6na5D4nVph2SSIiIiIiIiIiIiIiIiIiIiIiIiIiIlHJqWA00zQHZrsGEcmCXhc490UdQrVrrnt/9zOg5IRoapHMJev9zzlhKhS2h8IO9v0NhzOrKQrJNIPRylprMFqNfXu8xNv8dt2hx2T3UI4gnTA1mn2yZeS3Ugejrf8HjL8j+gAOEZFsSTfEc9gXobQfbHnECkrrdy30vTT4+twUlEa7n7Q9Ttdyx1SuVjBaUJb/pOVz8IbDsOk/MOJr0dRgJq1wsdW/cR939uPQb6b151wJaRn5Teg8HhZM8zdv8wNQ0AFO/wsYaYZ7txZBvwbUUAUb7oKxtwW7LsDWR537HiqF0++EIQrWF5E8VbML5p4NR9Y1tpUNhClzocPQrJUlIq2AmbBvjxVAl/Huc9f+xbpmbku8BKMdPdQyGK1ytfP4XhdmVpOIiEgrF8XvLpqm6fkFTdM0FwI58gKoiIiIiIiIiIiIiIiIiIiIiEi02vhpOxHJCe0HQ8eR9n01O6KtZeN/3PtP+V00dUgwup6K798R7THZ+lzgEIxWnwfBaIk0gtG2zwHTDL6WXJBu2ExTp/wWirsHUw9AcTe45gAM/Ojx7f2vhf7XBLdPLup2Goz+bupxb381/FpERHJFJo9V5dPhzH/DpLujD0UDiHsIRks2hF+HtF7Jo+79bge+xbtkAtbfad934O3o6lh3Z+pQtFP/0BiKlmt6XwhXrEs9rrn1d8KSW4OvJ980VAW/pluAWSbcXhswE/D6J+HlD8O2J9N7ji4ikk2vXHd8KBpA1SZ46kRYcAm8ciOs+Bls+CfU7MxGhSKSr5yC0Yy4FRJ8+l+d5+5/M5yaclndvtRj6g+1bKva7Dy+rYXLiYiIiIiIiIiIiIiIiIiIiIiIiIhI3lIwmojkhtP+YN9ety+6A6TV22DTPc79Az8C3U+PphYJRrvu0OMsf3MG3mh9LszjYLSkQ7iKm2U/gLe+CGYy+HqyzTFspsT7Gt0mwKXLrNCZCX/OvKaZ26GoC5zxT5i6EE7+NUydD2feB7HCzNfPdeN/Ct0muY/Z8gDU7o2mHhGRbAvisSpbCjwEox09GH4d0nolUzwfVDBaMA6/79y36d7o6th8n3t//2th+C3R1JKuDkPgqjSuY1f9yvpoy8IIRqtYBttnB7+ul1q3PAQvzYC5k6HuQPA1iIiEoe4A7HnRuX/ns9bj9Xvfg8WfgNmjYLfLeBGRptyC0QCGfsZ57uE1rffNXZx4CUY7WtGyrWa7/djOY603qxIREREREREREREREREREREREREREckDCkYTkdxQ0se5r3ZXNDW8+QX3/vKZ0dQhwZr8AJQN8Db2jHug4zDrzwXt7cdsugcWXg6vfwpeuQGenQD3GfDC+fD+nyDZEEzdmUg3THDtn2H3wkBLyQmJGvv2eDt/65T0gsE3wYmfg37XpF/PkE9DvNj6sxGDE86FkV+HE86HWEH66+abY99rTsxkOAEGIiK5yDEYzedjVTbEPQSjeTnIK+IkedS9f8PdUBPRc8bWrGaHc19pv+jq2POSe/+A66OpI1PtusM1FVA+w9+8d78Fc8bAyl9Ag8PzmNas4Ug46y6+Kfivp59A8gNvw4qfBbu/iEhYanb6G19fAW98GpIOYUciIk2lCkYDOOsR+zENVdYbHLUlXl5Pafoz1K2zYPEnna89O44Kpi4REREREREREREREREREREREREREZEIKBhNRHKDWzBaze5oajjwlnNfURf/B5olN5T2gekbU4+7fDUM+kjj7cIOzmN3zIH1/4DN9zf+v9mzEN76Eiy6Ckwzo5IzlkwzGA1g+1PB1ZErwgibOfHzgOF/nlEAI7+Z/r6tSddTU4/Z92r4dYiI5AKncJV8CEYr8BCMtuOZ8OuQ1itVMBrA02Ogcm34tbRmRw8499UfiqaGnc+nHtNpdPh1BKWoE5z9OMzcBuc/B+c/D6XlqecdWgFLboV550PCw///1qShKpx16/bD7nnBrddQ7fw808mme6zwZxGRXGfW+59zeC3sfz34WkSk9fESjNZrqvP8vYuCrSfXHVqeeswr11lvlrPiDlh0pRUe7qS0b3C1iYiIiIiIiIiIiIiIiIiIiIiIiIiIhEzBaCKSGwo7OvclQjoY21QyAbUuAWyXLoVYQfh1SDgMA3qe69zfbSJ0HH58W3HP9Pba/hTsmpve3KA4HdAe8fXUc9f8LthacsGWh+zb4yXpr9lrCpz9KLQfat8/6ONw9mPQ5SQwYtbBri6nwJQXoOOw9PdtTfpdlXpM5Zrw6xARyQVhhHhGpahb6jFLvx9+HdJ6eQmGqtsPq38Tfi2tWd1+5776Sqg/En4Ni1JcH5b0hvZDwq8jSIZhhQ/0nga9L4STfu597v7XYdkPGm8nG2D17+Cp4fDkEFj6g/CCxLIlzL9PkCGddfv8z6ndAweXBFeDiEhYkmkEowHMnQwPlsAzJ8OmB4KtSaQ1OloBi2+Gx8vhuYmw8V5/87c8as17sBQeaAcPd4b5F0KFhyCtbPISjFbUGcoG2Y979Uao3Rt8Xblqx7Pexr3xWXjvu6nHlSgYTURERERERERERERERERERERERERE8odSfkQkNxgxK6QoUdOyr6E6/P3rK8BM2vdN/DuUlodfg4Rr1Hdg36stD/cZMTjtjy3Hl2ZwQOSdr8FlK9Kfn6lEnX17rBj6ToftT7rPP7weOgQcONBQBZWrrQNOnUZDrDD1HNOEqs0QK4K6Pdbfy4hDxxFQ2N7bvrsXgNlg31fgcQ0n/a60Pkzzg3o/uA8xYlYAwrExyQbAgFjcdpk2y8v9auXq8OsQEckFTsFosTwIRvPy+FbYIbz9kwk4sg7KBkK8OLx98k3VFuvrXtQl25VkLulwbdvcTo8HxsWeWzAaWEFQXq/B01H5fupQrGG35P81df9rYcUdcMhjYMXKn8Pwr0BBB1h8E2x9tLFv+Y+tsK3T/xJKqVnREGIAX5ChZOkEowEcWgVdTwmuDhGRMCQ9hNI6SdRa97evXm+FPPebGVxdIq2JacLCS2Hfa9btmu3w2kes174HXpd6/rYn4eVrjm9L1sGuF6yQwivWQrs03/glbE6v1RvNrvP7Xgbv/4/92HnnwSVL8/+5QSrJBqja6G3sxn95G6efdYqIiIiIiIiIiIiIiIiIiIiIiIiISB6JZbsAEZH/U1Bq357qcHQQ3A619poW/v4Svj4Xw9QFMOTmxrZBH4dLlkC3CS3Hl2QQjHZoJay/O/35mXIKj4i38xZMsum+4GoxTVj2I3i4Ezx7GjxzMjzSBTakOKhzeD08PQ6eHASz+lrznp8Ez02ARzrBe99zDjM8JlEL86Y493ce5//vY8cwrI9Y3Po4Fop2TKyg9R/SStcpv3Pvr9sLdQeiqUVEJJucgtHieRCMBlbAsZuwgo63z4bHesDsEfBIV1j163D2ySdVm+Hpk+CJAfBIN1h0DTTYhE/nC9P0Hs5RtSm//67ZlioYLRFyYPnO5937O46EEd8It4YoxArhotdhzH95n/N4H3i4w/GhaMes+ysc2RBcfdkW5us/h9cEt1aq7xcnr30EEhkEDomIRKH5m0qka9GVUB9i4KVIPju0vDEUram1/5t67rYn4KUZzv31lbDG5o1gcoWZsG83mr2XW7lLsOKhlbBjTnA15SqnELlMdDst+DVFRERERERERERERERERERERERERERCUpB6iIhIROKlgM3h0rAPYIN7MFpxt/D3l2j0mGx9TPx76rGl5Znt9fonYdfz0OFEqN4KBe1h0Meg62ktg7OClnAKRiuGAg/BaLueh7E+Durbqa+0wg1W/Qr2v358X0MVLL4JijpDuc0hLtOEl2ZaB8TsmElY8TOoWA5nP2YfOnb0oBXE5sQogD6XeP7rSEi8fC9UroEeZ4Rfi4hINuV7MNqoW2HZ7c79DVXW43uQ10BHNlrXC8cOVSeq4d1vQodhUH5FcPvkE9OEhZc3uYYyrSCldj1hgocD9rnI70Hwg0t03ZCuoymCnsIKrDJN2D0flnzbfdzZj0G8KJwaolZQCuN+BKO+Aw+VZb7egovh7Eeh89jM18q2hMP/s4Efsf4Pbnu8Zd+wL0O3063nmG73GXX7Ye9rwdxHuL2GlMrKn2f+fFtEJExuobSxQn/BaQ93gEl3Q68LMn+tVaQ12XiPffveRdbnhmrYvQCqt4ERs15rNxNQtQXW/in1+it+Ah2GQlEX6D0tt15bcAxGa/Yaf89zoLAz1FfYj3/rFqjZCV1OtsK+jFb4XnDJgIPROo2B9oODXVNERERERERERERERERERERERERERCRErfC3hEUkbxWU2rc3RBCMtvcV+/Z4iXNd0rqV9Ml8jc0PwPIfw4Z/wvv/A8+dDm98FpIOh3+CknQIV4kVQ2HH1PP3vgzb56S//+F18PRJ8PK1LUPRmnppJmx9rGX7wXecQ9Ga2v4kzCq3Drg3VbEMnhoORzY4z+15thXMJtnldBCuqcNrwq9DRCTb8j0YbeCNKQaYzn/HdG191P5xZJvNtUVbcXit/TXUlkes8Kl85BT462TumVC1OZxaWrtUQU9hPC9vqIYXr4D5F0Cixnnc+J9BpxHB759tBaXBBLEfXgtPj4cVd2S+VrY5BfAVlMGQT7ZsjxXDsC/CoBvh0qVwyu/gpP92Xn/umbD2r5nXmUkw2sZ/Zb6/iEiYnILP4iVw2Uo49Q/+1lv8CZg9ErY/nXltIq2F27XEkU3w/CR48XJ483PwxmesEPAlt3oLRTtm8U3w0gzrZxJHNmVYcICcXg9u/uYnsUIY+hnndaq3WF+f5yda9zNBh4jlAr9B4amM+Fqw64mIiIiIiIiIiIiIiIiIiIiIiIiIiIRMwWgikjviDgFkiQiC0Zbcat9e3D38vSU3xYuCOaTe3Po7Yeczwa/blFOARLwYDI8P/S9/CKq2+tt36yxYfDM8dSJUbfQ2Z9HVUF95fNuOZ73vWbsLFl5+fNsbn4O6ve7zJj/ofQ8Jj5cDa5Wrw69DRCTbnEJN8yUYrcNQOOMe9zFOYTfpevdb9u0b/hnsPvlky8P27XV7gw+mi0ryqP85Cy4Jvo624Mh69/5558GCi+HQysz2aaiGlb+E+wx4qAx2eAhkHvGNzPbMZT3OCWghE5Z+Hyo8BEznMseg0BLocymMvR2MD0IzirrC6X+BjsOs251GwoivwMhvQ0F75z3e/Bwsvd3//WLVVlj2Q3j1I7D61/7mNnVkffCPiSIiQXIKRosVWtf9w2+BGVug6wTvazYcgRcvgwaXIFSRtsTtzUve/or1xh9BqVgGK34S3HqZME0wk/Z9Rrxl25jve1t3479h2xPp15WrnO6P0zX4pmDXExERERERERERERERERERERERERERCZmC0UQkdxSU2bc3hByM5ra+gtHatqIQgtEA1v0tnHWPSToEo8XaQf1hb2skqp0DR+ws+zEsuhI23OV9zjGP9z3+9lKPB56O2b+4MUztaAXse819/Cm/hXY9/O0h4Sjrn3rMkQ3h1yEikm1O4SyxPAlGAxj0Ebh0qXN/QiEwWZWvITzpBKNVrmqdh+LDlGyAwymC0QB2PgdzRsPuF9PbJ1EL8y+EJd/2Pue8Z6zQ6tZq+C3BrWUmYWOKkMpclyrke+xtcOUOuOQ9mLHRPtzBMKDjcPd9lv8QXrzCe9jEkY0w90xYdjtsuheqNnub56Ty/czmi4iEyen6K1bY+OeyfnDRYrhspfVYPejj3tZ+fmLm9Ym0BoWdnPu2Pxn8fpvudw4ki5JbDXbBaIUd4FqPP8/Y8XR6NeUy08Obinh1yRLvb5ojIiIiIiIiIiIiIiIiIiIiIiIiIiKSI/QbsCKSO+Kl9u2JkIPRKtc497UfEu7ekttiBeGsu/0peOOz3kPKjknUwrvfhgdL4D7D+nhxOhx4p+U4O/FiaPCx55YHoWZ36nH1lbDip97Xba7hCDzaEyrXetvPzsJLrINVdfsB033s8K+kt4cEr89lEEsRdHH0YDS1iIhEYetj8PxkmDUAXvs41B2w2hM19uPjeRSMBlDsEjxasSK6Otoqu4Pkx7z1Je8BQLkknWA0gDc+F2wdrV3VJn+H7t/5Wnr7bJ8N+171Pj5WCN0mpLdXvjjhfDjnCSvIK9V1sRerfpEboRfpcgz5Lm78c7ue0GUcFHZ0XqfDsNR77XoBHiiCF86HJd+BuWfB7JHwyo1Qu/f4se//Caq3pV7Tq8rVwa0lIhI0p2vG5o9TRgw6jYQ+F8Oku72tXbEs83BJkdbA7TomDIlquD9u/TzhqeEwfxrsez3aGgDMhHOf0/PZwvbQeVzqtTfcBfVH0qsrVyUDDEbrMj64tURERERERERERERERERERERERERERCKiYDQRyR0FDsFoDSEHo70007lv7A/C3VvarnV/gxcvB9MlxKuhCmp2QaLOChOZMxpW/fL44LPtT8H8C44PFEu4HCbvc5m/Or0EF+xb7HyA3au6vTB7GGx/Mv013v5K6uC3S5eDYaS/hwSrsD2MSBGscbQimlpERMK27SlYdI312Fq9BTb+G+adbwXYNA9gOSZeEm2NmSooc+578TL/obDij1sw2pYHYfHN0dUSFKfrWoBupzv31e6CyveDr6e1qtnhb/zBd/1/fU0T1v7F35yBN0JxN39z8lH5dLh8NVxXBx+uzTwg7dUbg6krG5zCEP1+TToO9z52z0JY+XPY+4oVWLb5Ppg7GZJNgjtW/9rf/qnUbA92PRGRIDndFxuFznMMA6avh4IOqdd/73vW65xBBv6IiHeH34ddc2H+1OiDCt3CmA2XN6mZ4PF5xCvX+asn1/kJr3bT5/Jg1hEREREREREREREREREREREREREREYmYgtFEJHfEHYLREiEGozXUWMEUdow4dB4b3t4ie16CimX2fWv+CLP6w+O94cF28PQYOLLBfuzRg7DiZ423nULK4u2g9zT3Q0bNpQpJ2PsKLLjI+3qpvPGZ9Oeu+yvU7XPuv2QJdB6d/voSjvF3wMS7nPsVjCYircXaPwHNAlErlsKuF+DwGvs57QeGXVWwnK7nj9l8fzR1tFVuwWhgff2dQvhylVMwB8DZj7vP3fFMsLW0Zsl6/3N2Pu997KGV8FhP2D3P3x4n/cLf+NYgXgxX7XIf0/0M6Hqqc/+Wh8MPmA+LUxhivNjfOt0mZlbH4bWZhXan0lAT3toiIpkyHa4LUoVUth8Ml7wLQz7tPm7TvdbrnI92g033pVejSL5L5/r7mLKBx//cqvsZ6a3TUAXLbk+/jnSYCec+t+ezPTz+HXfMgQPv+KsplwUVIHni54JZR0REREREREREREREREREREREREREJGIKRhOR3FHgEKQQ5oHeytXOfX31LuoSgbdvafw/3lBjBQwsuhre/jIcPeB9nff/AKYJdQcg4XDIuqA9FHWG0/7gfd3qrdbn+iNWuMTGe6Dmg4P6Rytg/jTva2Wq9yXW38FJsh62PWXfFyuGLuPDqUsyYxgw5BNwpsNh2PpD0dYjIhKGhirY+Zx934KLIFFr39dxZHg1hSEWt4JYnWz4Z2SltEmG4d5vNsDWR6KpJShuwWgFpXC1SyjuoeXB19NapRPM8O43YOfc4++/qrbAhn/Bqt/Ae/8FS38Ai66FOaPdA4ztDP4ktOvhv67WoKgLTN8Ipf2bNBpw8q/hBhOmvQoXvwXdJtnPNxOwe0EkpQbO6Xs+VRhPcyec7/7c0Yt9r0HFcnj32+nNL+7m3Of0nF1EJBc4XRfEClPP7TAEJv4Nrk+mHltfCa/eCK9/yrp2WPtXqFjhr1aRfJVuMFpxd5i+AS5dal0X3mDCBS9CvCS99Tb8M7jwLS/SDUYD6HWBtz1W3OG9nlxnBvBv0/9a6H1x5uuIiIiIiIiIiIiIiIiIiIiIiIiIiIhkQUG2CxAR+T9xh2C0RIjBaIffd+4bdFN4+0p+KBsEh1aGu8eel+C502HS3dZBwIql6a/1/p+sQBInHYZan0/8PHQ/A1b+EjY7hFEds/LnMOB6eOW6xiDBWBGc/TjU7fX+/dn7Ihj6OTi8BpZ8x9ucpkp6w/lPW8ELz57q/O+y/Un79sIO/veUaBV1tm+vr7BC/1KFvYiI5KojG2G+xwO8zXUcEWwtUYiXOAe97XstmD0aFChjyy1E7JgjG8KvI0huf6dYkRWONuRTsP7vLfvdQrDleOkEMySPwoJp0HUCnDcbdr0Ar308mMP7RgyGfSnzdfJZ+4Fw6RLY+pgVSN3zHOg24fgxJ34e9i+2n//i5XB9wvpa5pNknX17rNjfOvFi6+uz6pfp17Lql5nNv/hd67lr3d6WfQpGE5FcFkRIpWFYwU1Pj0s9dv0/mk6E8T+B0d/1vpdIPjLTDEYbcEPL10hjhdbr9xvuSm/Nfa9Bz7PTm+tXJsFoA2+0nnOksvURWPVrGPkNf7XlonSeW53yWyjqar3hTZeToc8lel1dRERERERERERERERERERERERERETyVp6djhORVq3AIRitIcxgtLXOfeXTw9tX8kNUh/EPrbDC0TIJRQN4+xZ48wv2fQUdoKRP4+0uJ8G4H3lb95mTjg+WSB6FV2+AQ8u91zbx79BvJoy6Fdr18j7vmP7XWZ/j7eCS95zHVW2yby/s6H9PiVahQzBasl7BASKS3+ZNSS+MqmwQFLYPvp6wHT3o3m+ame/RcCTzNVojL4FxtTYBPbnMKSQJGoOSup5i37/3Zag7APWHYdWv4OUPwRufg13zYevjsPhmeOUGWPsXSLjs0xZkEmZ24E1477uw+BPBhKIBnPJ76HpyMGvls6IuMORmK9SheSgawKCPuM/f8nA4dYXJ6Xsx7jMYDWDsbZnVkq54KZz1EJT1g57n2o9J9VgpIpJNToGpsUJ/63QaA+2H+tzchPe+DwczfI1UJNelE0zc+yIY/2P7vpN/kX4tL5wDb38VDryT/hpeZRSM9lHvP69595tQ4eNnF7kqmcbzqxFfhcEfgzHfg76XKhRNRERERERERERERERERERERERERETymoLRRCR3FJTZtzdUhbfn3pft28tngqG7yDbvhClQNiDbVQSj44iWh2Ccvue8qD8EWx/zNrbTKCgtb7w9/qf+9yvp3fjnWAGM/La/+QUd/O8p0SpyCEYDeCuikEIRkaBtvNc5tDOVPpcEWkpkOpzo3h9EGEyi1r0/ncPDrUEyxdcFoHZP+HUEKXnUvt2IQeyDg/MdRzjPf7QbzBkF737LCola91eYPxUWXQUb7oLN98Obn4cXp0PCYa+2IJ1ghqbW/8P538qvS5fDcF37eWLE4Mz7nPvX3xVdLUFx+n8UK/K/VkEZnPY/mdXjV69pcOUO6H+tdTteYj9u478UyCgiucvxvthnMJphwOjvpFGAad1PirRmfq+/p6+H855xfvOP4m4w+nvp17Pm9/D8JNjxTPpreJFJMFosDqf9ES72GOD29Fgwk95ry0V+g6ebvjGOiIiIiIiIiIiIiIiIiIiIiIiIiIhIK6DUHxHJHfFS+/ZEdTj7NVTB7vn2fZ3HhbOn5Jd4EVzwknW4Od/1PKdlW7sToP2Q9Nc8ssHbuH7XHn+79zT/wYM9zjr+dmlff/MLFYyW89yC0TbcHUyQjohI1N79evpzB3w4uDqi1ONs9/66fZnvkahx72+rQQoNKb4uAHV7w68jSE5hZU1DkjqPAwz7cQDV21Lvs+t55+eGbUGmwWhBOWEKdB6d7SryS5+Lnfv2LICjh6KrJQhJh7CwWHF660UdMtp9IhR1arxd4BCMBrBrXvj1iIikw+m6IJ2QysGfhFN+AyU+X8db/Ru4z0BjXxoAACAASURBVGj8mD0SNj/kf3+RXOXn+nvoZ6H94JZvetLcwBsyr2nhpZB0CS/LlFuIeapgtGO6nARlA72N3b3A27hc5Tf0fcwPwqlDREREREREREREREREREREREREREQkSxSMJiK5o8AhGK0hpGC0ihXOB1D6Xh7OnpJ/yvrDlOfguobUQR+5bNgXW7YZBoz+f+HuW1oOI7/Rsm3Ip7yvccIU6D7p+Da/ByoLO/obL9ErdAlGA9j9YjR1iIgEpXob1O5Jf36+XncM+5L7gebqrZnvkSoY7fVPtc3ghGRt6jH5FjSadAhGMwob/1zcreW1Yjp2Pp/5GvnKzIFgNCMOJ/8q21Xkn6Iu0PcK+75kPex8Ntp6MuX0PR9PMxit/WAYcH369fgVb9fstksw2prfh1uLiEi6nO6LY4X27W4MA0Z8Da7cBtcehlFpvg5ZuRpe+TBs+Gd680VyjZ/r7+Ff9jau0ygovzK9epp6+RrnvoZqqN6e/tqmS+harMDbGoYBo7/nbeyuud7G5SrTJRittP/xt9sPhf4u/3YiIiIiIiIiIiIiIiIiIiIiIiIiIiJ5SMFoIpI74g7BaImQgtH2OLxbfEEZdD01nD0lf8XicOLns11FegZ/EtoPsu8bcjOcMwv6XR38vn0uh4vfhsIOLfsm/BlO/SP0vhgG3ADDv2Id3OpycuPHCefDuB/DeXOsA09NlfTxV0uBTQ2SWwpKoKirc3/VpshKERHJiGnCsh/BrH7przF9fcvHvnzR9WTr8d/J/Avgve9bX6d0pQpGA1j7p/TXz1cNHr4uTsHQucrpIHjzYI5BH818rzW/haW3g5nMfK18k3Q5cB+WE6ZCt0nQ5zLr+cDF71j3H+LfOU84921z6ctFiTr79lhR+mue8W/ockr68/2I+QhG29WGwxhFJLc5XS9mcl8MUNgexv8UzviP9Zphl5OtN0/wY5VCVKWV8Pq8bPBNVuCZV2c9CCf9HHpdaM2d9hrM3A7DbrGuvb3YNguObGxWbwO89WV4pDPMKofZI6Fiufe6jnELRnMLWG9u6Kfg7Meh31WAy2snK3/ufc1c5Pb/ZNprMPxr1s9QRn4TLlxkhYaLiIiIiIiIiIiIiIiIiIiIiIiIiIi0Ih7ffllEJAIFDsFoDSEFoy35jn17hxPBUG6k2Oh3FfS9ArY/lb0aSvpCzXZ/c4bf4t5fPsP6qN6WWYhLU6NuhZP+27nfiMHwL1kf6Sjr7298Uef09pFoDfmk8yHXRG20tYiIpGvzA7DstvTnn/wraD84uHqyoct4K+Sgept9/4qfQtlA6zBzOrwEox14N72181nSw2Nl9RY4vB46DAm/niA4BXbFmr2cNeRT8OYXMt9v+Q+tQOHBH898rXxiRhyYd119y39DSZ9hWCHea//csm/HHEgchXiGYTZujlbA7gVQvRWMAivoptvpVri4H2bSJQyxOP36YgVw5r0wZ2T6a3gVbx6M1s5+nIhILnMMRiu0b/fDMGDQjdbHMXPPgb2LvM0/tALW3Wm9jtmuZ+b1iGSLl2C0bqfDKb/1t26sEEZ92/po6rQ/WJ9X3AHvfTf1Ok8OhusaGq/nVv8a3v9jY3/lanh6LFx31N99Q1DBaAD9ZlofAI/1gtrd9uMOr4MOQ/2tnSucro2NAijtA6f+Jtp6REREREREREREREREREREREREREREIqbkHxHJHXGHYLRECMFoK3/h3NdhWPD7SesQL4azHoFzn4KR33YY4/D/OCiT7/c3vvsZ0Hm8t7Gl5TB9o/+amps63z0ULQglfaxAFa/0fZ0fhn7Wua9uX3R1iIhkYrWHg8sT74IPHYFzZ8MJU63HqbG3w7TFMPIboZcYieLu7v1bHkp/7QYPwWgNh60woLbEy9cFYPZwWP7TcGsJitPBeaNZqFasEKavD2bPxTdB3YFg1soXXoIZgqRQtOCVz7Rvr6+EA2+Ht+/BJTBnNCy6Ct7+Crz1RZh7Jrw003/IfdLlPjuWYbBbx+HRPCdsEYxW4jw2iIAhEZEwON0fGyHdb534eX/j3/gMzB4Bu+aHU49IFJyuv0v6wtgfwuQHrNfYg36zj0Efh4IO3sZu/Ffjnzf8037Mwsv97R9kMFpTbgFyT50Ippn+2tnkNShcRERERERERERERERERERERERERESklVIwmojkjgKnYLRaMJPB7ZOogyW3Ovd3OTm4vaT1iRdB38vh5J/D1AVQ2LGxr/xKuOYA9PF5IMir8XdAj7P8zZn4DzAM7+NL+/pbvykjBhe/Ayecn/4anvcynA//2+k4IrxaJDgdhjr3KRhNRPLBrhfgwJvuYwZ/EoZ8AgrKoO9lMPUFuGINjL0Nuk+Mps4opApG2zU3/bUTHgPAju5Pf498lKz1Ns5MwLIfwP63wq0nCKbDQfDmwWhgheYW9whm30VXBrNOvogyGK3XtOj2akt6nmc9rtipXBXOnqYJr38Gana07NsxGx7vA5Xve18vUefcFy/2X19ThgHnPG6FjYTJTzCaW5+ISDaZDtcFmYZUOhnwYRj2ZX9zjh6E+VPbXhCytB5O32fl02HsD6zvC6dru0yU9oFJd0Fxt9RjX78ZXpwBCy6FytX2Y3Y9DxUrvO8fVjBaqp/p3R+DRVfDax+HdX+HpEsducTx+bACdkVEREREREREREREREREREREREREpG1QMJqI5I64QzAaeA8/8GL3Avf+QR8Lbi9p3U44D67aAxe+DDM2wTmPWQe2h9xsP37KPJixBU78vLf1J90NF78N5z0DV++D0d/xF3I2czt0Gul9PECsEAo6+JsDUNofPlwLXSMMFvQTjOb36yDZ43QYVsFoIpLr9r0O8y9MPa7PxeHXkguCCqiy4/W5QV0bC0ZLeAxGAyt4ev3fw6slKI4HwW0OzRsxOPFzwey75yXY83Iwa+UDp69zGIZ+Krq92pJ4EXQcZd/3usPz00wdWuEeBlp/CJ473XsIY9Il3CaWYTAaQKdRMGMzTFsMA67LfD07zYPRXMcqGE1EcpRT2FgspCAeIwan/d56zfTc2f7ecOHFK8KpSSRsTsHEUQRe9b8GrlgH0163fu7gZvuTsDPFmKfHeH9jo7CC0Tp5eFOUrY/Bxn/DG5+Gl6+xQn5zndPztJhNULiIiIiIiIiIiIiIiIiIiIiIiIiIiEgrpGA0EckdBWXOfQ3Vwe1zaKV7f2mf4PaS1i9eDD0mQ9mAxrZ+M2HiXdB+CBgF0PNcuPx96DUFyvpZt70YfBN0PcUKUCnu5r2mrqdagWrp/l8u7up/zoUvh3dA0kmPydDuhNTjSvsd/+8jua24u317lMFo22fD/GkwewS8+QWor4xubxHJX8t+mHpMQXvo3UaC0coGhre2gtHsuYUK2Vn3V+8H2LMl6fMg+JjbYNStwez9zteDWScfOAUzZOqcWdDzPOt5QtkgOP2v0P/acPYS6OgSCFGxIti99r8FT49NPa7+EKz4qX3fkU2w6Gp4ehwsugYOvOO8TqworTJbrhOH7hPhzHth9Pes55MFZdDvauf7jo7Drf/HntZvFozmFlipYDQRyVWmw3VBUPfFTsr6Qd/L4JTfeZ+z63l4ajhseyK8ukTC4HT9HdXr60Wdofvp1s8dTr8z8/Xuj0Pl2tTjjh5w7sskGA3gCg/7H7NtFtwfg/kXeQ/xzQan58OGgtFERERERERERERERERERERERERERKRt0G/OikjuKCh17ksEGIx29KBz36j/F9w+0rYN+YT1kaxveaDJS0hXpzHOfQM/Cpvuse+b9hp0n+S9TjtFXaBqs/fx3SZahxejFiuA8T+D1292Hzfm+2AoCzZvtHMIRqveGs3+O56Fl2aCmbBuV66Bg0us8D/9PxIRN3tfTj1m3I+hsEP4teSCbqeFt7Zb0ExTR9taMJrDoWk3+9+yDsTnKtPnQfBYHE76bxh/BzQchlhx43PJwk7WY/nq38E7X0u994E3oaHKPcC7tQgjGK3PZdB3OpTPsH9OJMHr5BKMtuUh6OwhwNOLw+vguQnex2+b1bKt7gA8OajxdsUy2Pqo8xrxYu/7eWHEYPxPrMdlM2E9t6w7ABv+CbW7G8e1HwoXvwsFJdbfe+5Zx/c3V9jx+NvJOuexCkYTkVzlFLYb1WN5l3HWNcT2J72NP/y+9TrOuU9B38vDrU0kKNkORmtq6Kfg0HJY8/vM1pk9DGZsafw5Qd0B6+9T2AFME6q3wLwpzvOdwq+96jDUCqLf+az3Obuehz0L4JKl7tfS2eL0fDjTr5WIiIiIiIiIiIiIiIiIiIiIiIiIiEieULqDiOSOuEswWkNVcPtsf8K5r//Vwe0jAvaHmbqeBiW93ecNcQn7Gvpp+/aBH808FA2gqKu/8Z1dQtzCNuST7v2TH4Chn4mmFglG2SD79podsOO58Pdf95fGULRj9r0GB98Nf28RyW9uQb5lA+Dsx2D4V6KrJ9u6eghGW/yJ9AKZEjXextW1sWA0M42v5fMToXp78LUEpflj8jGpDoIbhhVQFC+2Qn+LujQGnLoFcjf3UHvY8C/v4/NVkMFoPc+BcT+x7vMMw2pTKFo0+riEwSz/UXD/zsvSCFjb8Uzjn2v3wqPd/M2PFfnf0wvDaLw/Ke4Kly6FoZ+zQjVGfAOmvWqFooEVtnHhK1Babr9WQRl0axYY5xQuBApGE5HclXAKRgs4pNLN2Y9aQbcdh3ufs+z20MoRCZzTc7dsXTeP/n7LgNd0bLgLanbDvKnW9d4jXeDRHvBod3hioPtcI575/ufN8T8nWQ8rfpb53mFwCj93CgoXERERERERERERERERERERERERERFpZRSMJiK5w+2AeoNL0IQf9YehYplzf9dTg9lHxE2sAE7+tfOBwm6T3AO/ekyGwTcd39b9DDjtD8HU5zcYreOIYPZN16S77ds7joQBH462Fsmc2/+nhRdD7b5w99/mEJ658hfh7isi+c00nQOcup8BMzZBvysbQ4LagtJ+qcds+Ce8e6v/tb0Go9VX+l87nzkdmk5l0VXB1hGkMA6CuwVy21l8Exx4O/39ckn1dtj6OOxeYN1vHWM6fJ27nAQF7b2tXX4lXJ+EC16EMd+DeEhBVuKsy7jGAEA7b34x8z2SDbD9Kf/zFl5qBaIBvHK9//nxiMJ42vWE0/8M5z8Dp/wK2vU4vr/DEJixBfpfe3y7EYPT/tSyzvIrnfdy+7cSEcmmZJ19e5SP7bECGP0duHw13GBa1xipHHgbqrfZ9x1aaV0DHXgn2DpF0uUUWGtkKRitXXcYlcZz8+b2vgqzymH3fOu2mYC6fXD0QOq5QQThGjGY8oIVWOvHpntg6W3w5hdg84OQqM28FgAzCQffg3V3wvbZ1s8nfc1XMJqIiIiIiIiIiIiIiIiIiIiIiIiIiLRt+s1ZEckd8RLnvoaqYPZ49jTnvvF3BLOHiBcDr4fOY61DQsmjUNwTDq+FjsOh/zUQb+c814jBxH9A/w/Bvteg4ygov8L/gR8nRV38je9xTjD7pqt8JsS/0DIkZeAN2alHMlPW3/r/73QAbddc6/snajU7o99TRPKHUygawEltNFjRMKxriqMH3cdteQhO/Y2/tb0GoyWP+ls33zkdrk9l/xtQsRw6jwm2niA4HgSPp79mOtfMK38OZz2U/p65YP3d8NYXG79/ekyG856FwvbO/3dK+8HU+fCITXByn0thwA1QvQU6jYK+09tW+GOumr4Jnuhv37fzuczXr1gK9YfSm7vlYeh7Geye53+uU6h4NhgGTH4QBlxvPR8v6mx9P3Q5qeXYLuOd13EKHhIRyTan+6ds3hcbBly2CuaMdB839xyYseH4tiXf+SDs/oNQ2ME3wcS7dN0i2eV0/R3LUjAawPCvwrLbnWsrv9K69ncLjd71fHp7d5sUXGhsr6lwyXuw9TGr3kQtrP976nnLf2R9Xvtn6/MVa6HD0PTrSDbAqx+BLQ82tpUNgHPnQOfR3tZwej4c0693iIiIiIiIiIiIiIiIiIiIiIiIiIhI26DfnBWR3BErsMLR7IIO6isyX79yDRx+37m/k8fDCCJB6Twm/QAKIwZ9LrE+glZsE3zgpKQvdHMJHIxCUWeY/AC8cj0kqq228pkw4mvZrUvSY8SgXW+o2mjfX7EUyEIwmg7MiliqtsKm/0D1Vuh5HvS/Vt8f4B5I1ZYPrI74Biz9vvuYmu2w7QnYOReKu8HAG6HjMPc5DR6D0dwObLdGToemvdj8YJ4Fo2XwfeUWyO1ky8PweDmc8msrnDif7veSCVj6X7CyWRD43lfgtY/COY+7BzMUdYHLV8P8C637foDO4+D0O6G0T7i1i39l/aBdL6jd1bKvegscPQRFnVr2JROw6V44+C6U9IITv2iF5jV3aGX6tVWuscL20pHO922YDAP6XWl9uI6LwdDPwLq/texLKBhNRHJUwiFcOJ7lkMpOI+D0v8FbX3IOQK7aCAeXQpdx1u3dC6yA26b+P3v3HSdXXe9//DWzfdN7L6SSBEJCIPTeI12QoldRwAJX9HcB9VqxYMGuV7nqtcBVUBSkd6T3ngBJCCSk9142m+zM/P445GY3O2f6zM7uvp6Pxzyy862f3cycPWfgvDP/T8Fjn68Hx+j6IcWsWkquHIPRKuvhgF/DC5e27qsdAEfcGpwDLX8QHj2psHsPO7uw63UbDROv3v181EXw5DnJz5HD3DU2uPYbdVFu/w3mqXOCzzqa27oQ7t0HJn0FJn4p+fl2c/EiXA9LkiRJkiRJkiRJkiRJkiRJ7UiB/vllSSqQmj7J2xvX5r/2on+k7h9U4Js5pPaqOotgtH2/Edzs3daGng5nr4BjH4HT5sERt0Fll7auSrkafm5437YlpaujhXYUgCIVy6a58MB0eP3LMO96ePo8ePHTbV1VeVh6V3hfZ75hdWyGr48nzoR5v4I3vgUPHAhrnks9Pr49s3UX3wrLHshsbEeQTzDa1oWFq6OQwm4EzytwMJHbtIal8PT58OxH89i7xOIx+NdxrUPRdllyexCQlggJZoi8H8zQfTycPh9OfBZOeR1OfsVQtHI24arwvs3zWrclEvDkWfDcx2Duz+C1L8E9k2BHkoD6TXNyr6thCWyem/28cVe0rzDCPfU5OHl73GA0SWUq7PgUrS5tHcmMuRTOXAK9poaPmf/H3V/P+034uDe+BffuC+teKVx9UqbCzr/bMhgNghCwZOcuYz69+3xs0InQZa/C7VndKwgpLKZ+h8Hp78Bxj2U3b9Et8NgMmPXt7ObNvKZ1KFpzb14Ltw9Nfr7dXGiAXif+nEmSJEmSJEmSJEmSJEmSJEmdShkkmUhSM9VFDEZLFVhx2F+hogxu7pLKQXWvzMbt9z0YfXFxa8lGVTcYeCx0G9O+b5xX6mC02v6lq6MFX1MSs38E21e0bHvnt7BxdtvUUy4S8dQBcW19Y3NbqukTnGdnY+cmmHVN6jHxHZmvN/Mr2e3fnoXdNJ2JxjWFq6OQErHk7fkEDoaFrWXqvT/DqifyW6NUlt4Jqx5PPeb5SzILoItWQt+DoddkiFYUrkYV3vjPh/dtej+YrGkbvHIl3BSBm6OtPy/Ztgj+0ev9/gq4uTL4+s1rw9c++eXUdS2+DV69OrPvobn9f5z9nHJSUZO8PWYwmqQyFRqMFnI8K7XafjD9t+H9c38WXKPFm2DR31KvtWM9vPGd4OsVj8Ajx8J9+8PL/wGN6wpXs7Sn0MCrNv78IFoJR98NQ88KwhBr+sDE/4R9vtZy3OFp3luZqu4Nxz4E1T0Ks14qlV1gwFFw6M3Zz5319eD4sH1V+rHb16Q+Z95l58bgfHvJneFjwsLPO3MAvyRJkiRJkiRJkiRJkiRJkjoVg9EklZeakGC0HXkGozWuhbXPh/ePOC+/9aWOpLp3+jEnvQiTvgQRTyVUBH0OCO9r2rb76+2rgkcsi4CcVBKJ8D7D9iRYGHLj63t/Lm0d5WbVk8EN9WE6+w2rA47Jfs7yB1KHfGUTALbu5cxuXu4Iwm6azkTj6sLVUUhh31M0j/dV15HhfWMvy2yNhVkG/rWVpSlust9l0xzY8m7yvrYOZlBuohXQY5/kfSsfga0L4d59Yc5PMlsvEQ8PKdxln69B7/3hlNezqzWdvf8jv/d7OQgLEoo3Bp9VFepaRpIKJey4FBb02BZSfW4E8MSZsHleZmst+WcQ+P2v42Hlo7D+VZj7U3jyrNSfE0n5CLumjZTB+XdNHzjyNjh3M5y9GqZ8t3Uwcvfxua9f1QM+tBUuTMA5a6H3tPzqzdbwc6HX/tnPW/koPHoKxNOcF69+Irtr8yfOgCUh/6iTwWiSJEmSJEmSJEmSJEmSJEnq5EwzkVRewoLRGvMMRpv7y/C+g36f39pSR1OTJhitblBw07tUTCPOT97etBXWz4Sbq+C2AcHjbzXw6tVBaEM+UgY+eNqsTi6RgKbNyfvm31DaWsrNsrtT93f2YKGKutzmbZkf3hfPMgBs09u51dDeZBMYt6fGNYWro5DC/q4jFcnbM9FjH+gyonV7z33hgP+CYR9Mv8a863Pfv1Te/T3M/1NmY1c9nry9HIIZlJs+05O3z/8j3DEy9TE2n/16TYbJ3y7cuiMvLNxabSUsSGjHeri1L9zWD2Z90/AdSeUj3pi8PSzosa2ctTy8b+ld8NwnMl/rhU+1blv1BCxNc60n5Srs2q2cPj+oqA7/hyKquucWgg5B8G1lfe515StaAcc/CntfCb0PzG7u+ldgUcg/GrDLtiXZ1/TE6clDKcOuh8vpdSJJkiRJkiRJkiRJkiRJkiQVkQkPkspLdRGC0RJxeOOb4f29puS+ttQR1Q1N3T/tlxDxFEJFVt0reXvjGnj4CEjscWPY7B/BnJ/mt2eqQJmwGwGlzmLH+vC+sMC0zmLjnNT90crS1FGuKmpzm7cpxc81kWUAWKq1OpJsA+OaK9dgtD1/3+8SyeN9FYkE57PR6t1tFfWw/0+CvoP/2LIvzM4yPfZtWwKvfQmevyT/tTr78as9G3JaafdrHowx9IzCrDn+/0HvaYVZqy2lCxLauQlmXROEGUpSOQgNRsvg/KiU6gZC/6PC+9c+l/8eS25r+TyRgA1vwsJbYOvC/NdX5xXbmry93AIIU8klDLf73jDh6sLXkq2q7rD/j+DkF+C87dBrauZzF9+Wur9hWW41vXBp67aw62Gv0yRJkiRJkiRJkiRJkiRJktRJmGoiqbzU9E7enuuN+k0NcM8+qcdkc9OD1Bl0GwPdJyTvO/DXMPyDpa1HnVNFffL25fcF4QHJLPjf/PaM78hvvtSRNSwP79u5KQii7ay2zEvdH6kqTR3lKprj97/2pfC+VEGWyXSWYLRsA+Oaa9oCse2Fq6VQwsLe8r0RfOhpcMqrsN/3YOoP4ZRXYODxQV9VNxj54fRrbH47vxqKYcH/wp1j4K0fFGa9zn78as/6HlS6vQYeD5Vddj/vkeYzmGQmfhEmfAH2+mgQsnHswzDtJ4WrsS1lGhC68K/FrUOSMhUL+WykogwDm8Z8qrjrL7hx99fxpiB49t594Onz4I6R8Ma1xd1fHVM8Bo3rkvfV9i1tLfnodxicsSi8P1IJXUYGj65j4MDrYcZMqKwrVYWZqaiBk54PArIzsfjW1NfO23IMRlt2XxC+2FzY9XA+QeGSJEmSJEmSJEmSJEmSJElSO+L/OSupvNQOTN6+5d3c1nvkaNg0O7z/yNshEsltbamjikTg8Fvg0ZOgodmNPPt9D8Z+pu3qUufSPFwhUxteD24gy/W4njIYzTxhdXINaW7sXPM89DukNLWUk/hO2JzmPDXfAKfOaumdsN+3k/cZjJZc2E3TmWpcA/VDC1NLoSRiydsLcSN4j4nBI5kp34dNc2HNM+HzN86B3tPyr6NQGtfCC5+CeGPh1sw12FBtr3YgVHYNQg+LbcgZLZ9HIjDhKpj9o8zmV/UMrjU76mcz0QyDhFY+Utw6JClTYecSmR7PSmnE+fDMhcVbPxEPAqxqegcBlvP/0LJ/5ldh4AnQd3rxalDHs2MdkEjeV9OOgtEAugyDczbAk2fDyn8FbbUD4OAbYPBJbVtbNqJVMOoiGHBc8L2sSxHUDnD3BOgyArqOglgjJJpg0S3BP/QR25ZbDY2rYfsKqBu0uy1hMJokSZIkSZIkSZIkSZIkSZI6NxMeJJWXbuOStzcsg52bs1vrxctg7Qvh/T0mwtAzwvulzqznPnD6Ajj+ySBA8OxVMOlLbV2VOpPK+tzm7Vif+56pgtE6alCDlKntK1P3L72zNHWUm60Lw29U3cUbVnOzYSZsmZ+8L93PfE+dIRgtHiP05vpMNa4pSCkFFXojeEVx963tD8c/DienuCF+9VPFrSFbi2+DWENh1zQYrf2KRKDb2OLvUz80CJHY0/DzMl9j0Akd+1y7ogyDhCQpldBgtOrS1pGJSAROnVvcPe4eHwQz7xmKtsvSO4q7vzqeVNdd7S0YDaC6Bxz7MJz8cnANddq89hWK1lyXYXDS88F/E0ll63uw6nGY/0dYeFMQiga5h6LtsmmP41nYZ9XFvh6WJEmSJEmSJEmSJEmSJEmSyoR3aEsqL93Hh/dtnge9psDmd2Ddy8Fj/StBCE6XkTD5O9BzUjB20zyYd33qvUZcWLCypQ6pohr6H97WVaizqsgxGK1hKdT0zm1uqmA0OnBYg5SJdGE7S+6AKd8rTS3lZPvq9GMMFoJBJ8Py+7Oft/RuGH9F6/b4zuzW2boAYtuhojb7GtqLTMPijnsMHjk6ed99U2HkR2C/7wY3hJeD0GC0EnycFa2E3tNgr4/Cghtb97/z38H7e/8fl8f7fPFt6cd0GwfHPAB37pXZmgY7tm/9DoP1r+Y+P1IZvAe7joa6wbDupZbnA30PgQN+BVVdW8/tMQmqesLODen3GfbB3GtsD2r7Zz72latg4hehtl/x6pGkipK2bwAAIABJREFUVOIxSMST95Vr0GP3cTD6Ynj398VZv3ENLH8AVj6avP/N78J+1xZnbxVXIg6xxiAMcNef8R2t25L1terfkXxOsrk7UpwfVfcp3fdfSJEI9N6/rasojEg0+G8ip86Bu/cu/PoH/xGe+3jyvkeOgRkzoee+wfOwfwCkukfh65IkSZIkSZIkSZIkSZIkSZLKkHc4Siov9cMgWhPcILKnZy6EhuWwc1PrvvWvwfIH4dTZ0GU4LLs39T7RKhj374WpWZJUeJU5BqNtW7b75rFspQraiURzW1PqKGJJzs2a2zQ7CKbtPrY09ZSLxjXpxxgsBOM/Dysezjy8a5cNbyRvzzYYLRGHrYs79usz05/JgKOgujfsWJe8/70/w8pH4ANvQnWvwtWXq3jIayZawvfV4A8kD0YDePuX0LQ5uLm9LcUaMwsfPPnlIMRqxiy4N4Pzpcq6/GtT2xl7efDaTfYZCsDoS+Dd/wmff+6m4LOZ6p7Z711ZBxOuhJlfSz2u11QYdk7267cntQMzHzvnx7D6aTjhKYhWFK8mSQqT7DP5XaJlGowGQbhvJsFoIy6EQ/8cXB/sWAuvfgEW3JB+3tv/lX+NuzSuDc6zO9vnTPGm9IFh+fZlG1KW7fVpsVV28fy7nHQfD4f/A54q8LlqtDoIMF79dPL+eyfDic8G55ANy5KPqelb2JokSZIkSZIkSZIkSZIkSZKkMuUd2pLKS7QCuo2FjUlCEDbNTT03tg3e+A4c9FtY82zqsacv8F9Vl6RyVtElt3kNS3PfM74jvG/9q7mvK3UEqW6Q32XpHdD9quLXUk4yCUaLVhW/jnI3+CQ45j741wnZzduxPnl7tsFoEAQf0IGD0bK5qb+mb3gwGgRh1Av+DOM/m39d+UrEkreXMnBw8ClQ2RWatiTvn/8nIAIH/U/bBVwsuT39mIEnBqFoAD0mQddRsGV+6jndJ+Zfm9pOj73hhKfhretg3Uu7jxN1Q2DE+TDmk6mD0SrrgDzCOSZ9JQh0WPhX2L4CmrZCVbcgiKSyC/Q/Cva9puMHgEUi2Y1f+xws+juMPL849UhSKimD0apLV0e2Mg0JGnlhcFyOVEBtfxj7mcyC0ZY/kF99AOtegWc+EoSKV/WESV+GCVdl/3sinUQiuF5KGhjWCLEdSdqKGVL2fn8iXtjvsyMy7Kr8DDqp8GtGq6D39PBgNIAHD0m9hq8VSZIkSZIkSZIkSZIkSZIkdRIGo0kqP93HJw9Gy8TSOyDx3xDfHj5m6o+hfkhu60uSSqOyPrd5Dcty3zNVMFrDctixAap75r5+udqyIAh+630AdBne1tWoXKV6f+zy3l+CG7s7ungTrHocYtth4c3px5cywKmcDTweqnunDuTa084NyduzCQHbZfvq7Oe0J5mExQ09M/izth9sfjv12AU3lEkwWsjfdbSE76uqbjDhapj1jfAx8/8I/Q6D0ReXrq7mVj+Tfszkb+3+OhIJXg9zfhI+PloTvG/VvvXcBw69Mbx//Odh7s9at4/6RP57RyIw5pLg0dmNuCCzc4Zd3v6FwWiS2kYsxXVfRU3p6shWJiFBwz4Ig2e0bOt7EOz1sczC0fKxfTXcP233850b4LUvwOJbYdjZ4WFiuYaUqX2qH9rWFWhPVV1h7ythzo8Lt2akCoaeDnN/mvsaBqNJkiRJkiRJkiRJkiRJkiSpk/AObUnlp/v43OduXwXLH4Ald4SPGfnh3NeXJJVGuQWjASy5E0Z9NPf1y00iEdyIO/tHu9smfQUmfzsIspCaizWmH7P+NVh2Hww+pfj1tJUt8+Hx02Hjm5nPiVYUr572Jlqd3fgdIcFomYSA7alxTfZz2pNMwuJ2BR1lchP1upfzq6dQ4iHfV6TE76uJXwxCjTbNCR/z/CUw5AyobYOb1FMF3Y35NOz7dagb1LI9XTDaXv8WBAGoYxt+TvJgtKFnlL6Wjmz0J7ILRlvzbPFqkaRU4imu+6LlHIzWJ3X/gdfDmE8m/6zj4D8G50VPnpXb3pFo6v5Nb8PdIf+9Y+3zwUOC4FpC5WfqD4MQs0S8MOtFq6Df4dB9AmyandsaBqNJkiRJkiRJkiRJkiRJkiSpkzAYTVL56bV/fvMfmxHe1+9wqBuQ3/qSpOKr6JLbvG1Lc98zXTDaq1d1rGC0Zfe2DEUDePNa6H8UDDqhbWpS+Up1g3xzj82AC+IdM1wvth3uHN3WVbRvFVmGKax7KXl7wmC0VsICxHaZ8AUYcmrwdXWa4IhdXroChp0FA47Jva5Nb8N7N8Ha54KwtX6HQd3QYM1hZ6c/VoQFvkVK/HFWRQ0cfR/cuVfqcY+dAie/WJqamgsLRht4Iky/Pnlf30Ohph80rk7SGYH9vluw8lTG+h4Kk78DM7+6u23CVTDktLarqSMacFz2c9a+BH0OKHwtKr1ty2DBDbBpLpBo62qk1HZuDu/L9ly+lKJVqfvHfCr8vDMSgWFnwr7XwKxrctg7TfjzC5dmv6Y6n2EfhPFXtHUVSiYSgVNeC0Lyt76X/3rRKohWwiE3wKMnwY712a9hMJokSZIkSZIkSZIkSZIkSZI6CYPRJJWfoadD/VDYtiR8TCSa27/Q7s0lktQ+VNbnNq9hWe57xtME7SQNDmnH5oUEpcz/k8Foai1dcGBz8/8Eoz9etFLaRKwR7hjR1lW0f9EcwhTe/jWMu6xlW7rjdTIdPRgtVVjcCU9Dv0N3P8/05/f2L4PH1B8GQUnZWvUEPHoKxLbtbltyR/DnvF/B6EvhoN+mXiMs8K3UwWgAXUfCmUvh9iHhY9a9BCv+BQOPLVlZxJvCb9Df873TXLQC9vk6vPzZ1n3n7wz61fFFIrDPV2DURbD+Veg5GboMb+uqOp5IBOoGQcPyzOc8cCAcejOMPL94dan4Ns6Bh4/o+Och6hzSBYC1tV5Tg99le+qyV3GDu1P9XLavDs6J1b5FKoJr2YqaJH9WJ++L1kBFdbOvQ+ZW1EGfA6HbuI4ZMN9R9NwXPvAmPHoirH66df+hf4G3fgAbZqZfa1eQY58D4YxF8PCRyY9dqdRkGHYuSZIkSZIkSZIkSZIkSZIktXMGo0kqP9EqOPZhePYiWPcCEIEeE6HX/tB7WvDotR/cfyBsmp3d2n2mF6NiSVKhVbRFMFoWwU8dwbJ7krcvvAkO+0tpa1H5izVmPvb5T2QXjBZvCm4gXfFQEHY04UoYfEr2NRbTO7+F7avauor2L5cwhde+AMPPgdr+u9vCwrJS6eiBJKl+Jl32CPXbsS67tV+9GrqNh6Gntd5zwY3w5rWwZX7QVjcEGpZmtu67vwseu+qr6gEDjoPJ34KqrkFbIpZ8brSNPs6qHxwEzT10WPiY5y6CMxeVrCR2rA8PDa9PE3A19jPQuArm/CwIsBtwDBz0B0PROqP6IcFDxZPL767XvxT8DmyrY56yl4jDnJ/A4tuCa9OtC9u6Iqlwcgk5LqV9vgpPfrB1e78U522FkOr47jEge/8XNJYiVCxaHRI0lkVfxgFn1Z4bK1BZD8c9Bq9eBe/+AZo2Q1VP2PfrMOICGHoWvHolzP8jxLaHrxOp2v11Vdfg+vLVK8P/AYtWdXSD7nvn9a1IkiRJkiRJkiRJkiRJkiRJ7YV3VUkqT93Hw0nPBjcUxpuCG2H2VNM3uzWHn9c6FECSVJ4qcwxG274SEgmIRLKf29mC0TqCxnXQtAWqe+2+cVbFEc8iGA1g6yLokiaQZ5dnPwoLb979fOUjcNRdMOTU7PYspoV/besKOoaKHMIUmrbCkjtgzKW72xI7s19n+8rs57Qn8RQ/k2hVy+fDPhgejhnmidPh+Meh/5HB79n4Tph9Hcz8WstxmYaiNdc8MGLDTFj3UrBXJAKJkKCJSBt+nNXvUDjyzuBnksy2xbBxNlR2CR6x7VDTBypqC1dDvCm4Vq6ohsa14eNq+qReJ1oRBNHt87XgZ5rL+ZOkzAw9MwiDzMbWhcFxsduYIAQRgjCNyvogTNL3bPl5+fPw9i/bugqp8CJRqKhr6ypSG3pWEPK68tHdbdEaGPfZzOb3PiC3fWPbIB5LHp6VT3h/0UVSB4MVIogsVeBY0j2r/d2m8hathGk/g6k/CsLz6wYGx0eAyjo48Ncw7efwwidh/p9C1tjj+rz5vPumwMa3Utcw7t8Le20pSZIkSZIkSZIkSZIkSZIklTGD0SSVt0g0POQk22C0Q/83/3okSaVR2SW3eYlYEHCWS/iOwWjtx7pX4LmLYMOslu3jPwdTf5z8hmTlJ9v3x5I7YHwGN6AvubNlKNouj58GR94BQ0OCh0pp+xpY82xbV9ExRHM4NgMsub1lMFqqELAwZR1KUABhAWLQOkRs0Am57THz67D/T+DFz8DaF3JbIxOrn4TlD8Dgk1MEo7XxcX7oaVA/LAhBS+aeia3b9vooHPBfUNUt931jjfD6l4PQnfhOGHwqjLwgfHy6YLRd9rw5X1LhDZ6RfTAawP3TgAiQaN037edB4I8hMuVhw5uGoqnj6nto+QeRRyJwxK0w5+ew/H6oGwz7fh16Tcls/sDjoKo77NyU/d5NW6C6R+v2Wdekn1vVE3pMTB04lk/YWFifobhS7qKVUD84pK8quFYMnRty7RWtghOfh1evhHd+m3zMtF/CuMuzq1WSJEmSJEmSJEmSJEmSJElqxwxGk9R+ZROMdvyT3uwtSe1JRX3uc5u25haMFjMY7f8suRP6HZZ5oEo+Eokg4KxhGVT3hqZN0HVU8NjT5ndh/Svw1IeSrzX358FNxZOvKWrJnVKsMbvxyYLRdmyA1U9B47rgtdVrCjxxRvgaT5wBp86B7uOzr3f9a7DyseA1NeBo6DI8s3k7N8Ga56BhRXCja+0AmPsLkoaRKHu5no8vuxe2LYH6ocHzXILR1r8KO9ZDda/caih3qX4me/7c64fCxP+Et76X3R6rHn8/oKcEFv09CEaLhwSjRcvg46wTn4Pbh2Q+fsGNUFEL03+T+55v/QDm/GT382V3B49kojX5nU9JKqzBM2DgibDiwRwmh5yHvPw5qBsCwz+YV2kqkHv3aesKpOKo7AZTvt/WVWSmulfweUAunwlU1MKU6+DFT2c/N1kw2tJ7g2uQVPa7FiZ9Ofv9JJW5FKGDqT4XqeoaXC/22AdevmJ3e2WX4L9x9p5auBIlSZIkSZIkSZIkSZIkSZKkdqAM7iSVpBxlGoxW2RX6HlLcWiRJhRWtgkgFJGLZz23aCjW9s5+XyCBoJ5GASIqb2zqKJ84AInD432D4ucXbp2krPHcxLPpby/ZIZXBz8ORvBs8TcXj9q5mF+Cy40WC0YohnGYy26nGIbQ9uLocgKO2JM7Pf9+694YIYRKKZjY83wdPnw+JbW7ZP/RFMuDL13DXPw5NnQcPyzOsbcQH0PgBeTbO23pciYK6iNnjNhLl9WHCD8JhPQiIkLCudW/vCEbfB0BSBfO1Vqp9JJMlHP/tdC/2PgqV3wrxfF6+uXM3/Q/A7YPWTyfuTfU+lVj8YJlwNs3+Y+Zx3fw/7fTe34NGmBph9Xebja/p0jnMWqb2oqIaj74X3/gLPfaxw68673mC0crBhVnbjR11UlDKkguu+Nww9C7qPa+tKSmPsp6DnvvDQYdnNa9rauu3d/0k958Rnoe/B2e0jqf2LZBAYP/6zwX/TXPJPiNbCmEuhbmDxa5MkSZIkSZIkSZIkSZIkSZLKTBncSSpJOartl9m44R+CaEVxa5EkFVYkApVdYOem7OcmuyF1l3gMlj8AK/8F9UNg9MVQ1T39vF0STZndwNYhJODZj8HA46G6V2GX3jIf3rsZZn41ZOsmeONbsHNzEIi16O+wbVFma29dAPGdQbieCie+I3n7gGNg5aOt2xNNQQDQuMuD9/HT5+e+980V0H1C8HXfg6HLSBh2VnDD+i5bF8GsbwZhSsm8ehW8dxP0mtKsMQ6rn4Eek2DQiUG4UTahaOOugAN+/v76BqNlpMe+sOqJ1u3R6iAY4L6pqee/8KngmBTPIMgymUQcnjoPzl4J1T1yW6PcrHkBltwOy+4OH5PseBiJwOCTgkfD8uCG63Jz+7DwvmiZfJw16uPZBaMlYvDSv8NhN2e/18pHMjtX2SWX8DVJxRWtgFEfDQIp1z5fmDVXPhL8fss0RFbFsf71zMd+aEtwrSupPPU7FMZ9Ft7+ZeZzYttat6U6vx7//wxFkzqrTD+v7HNA8JAkSZIkSZIkSZIkSZIkSZI6sTK5k1SSclA3JLNxE79Q3DokScVRUZ9bMFosJDQkkYCXLod3frO7bc5P4KQXoW5gEMKVTnxH5wrcijXAkjth1McKt+bqZ+DRk6BpS/qxc3+a2x4Lb4G9PpzbXCUXa0ze3nsarHoyCELb00v/HoT4dBkJse357b9pdss/3/wuHH4LDD0dVj4Ojxydfo31rwSPPW1+O4dQqAiMuSTLOWLEh4IwGBIt24efF4TWfWgr3JImKGTRreHBaEfeEbzmnrkwfH68EVY8CMPPzar0sjT/T/D8xUEgTiqRNCHRmQZO52P674LwtiV3FGa9dN9zqXTfG7qNhc3zMp+z8K/Qa2r216lLbs9ufLXBaFLZGnFB4YLRADa/C93HFm49ZW/b4szGHfeooWhSe1A7ILvxe4bXNiUJSmuu+/js1pfUzkTCuzrT58qSJEmSJEmSJEmSJEmSJElSnqJtXYAk5axucPoxR/zTG40kqb2qqMtt3v0HwFPnw4ZZLdtf+0LLUDSAbUtg1jeCrxfelH7tsDCejmzjW/mvEdsB8/4bHjoCHjoss1C0fLxgYFXBxXckb6/sCt1Gh8977Yvw9HlFqKcRXr0K1r+eWShaoY29DHruW/p927v+R8Ih/wv1Q4Pn0eogHGb69cHzyvogaCqVNc/SKlhtl+qeMOJ86DYu9RrblmRVdllqXAvPfTyDULRKiKS4KRugpn/h6kpm/OeCIMEDfhXUUwgNywuzTr4iERh2TvbzZl0D21elH7f6GXjsVPhHb3j399nt0efA7OuSVBrjr4B9vla49e6fCg8dGfxe2LqwcOsqMzs2wutfTj2mpl8QEjrg6JKUJClPVd2zG79nMNrmt1OP7zEhu/UldRwGo0mSJEmSJEmSJEmSJEmSJEkZMxhNUvtVPyS8b9RFcH4TDDuzZOVIkgqsojr3uYv+Bg8cBFsWBM/n/gJm/yj52Hd+C/NvaB2klkxnDEbL5Oeyp9j2lj+r1/8TXvwMrH6qcHWl279hZWn26izijcnbozXpg6yKZfM8uG9K6fftsQ/sd23p9+0o9vownLEIzlwC526Ew26Cyi67+7uMSD1/e4r39q4QsAlXpl6jYUXm9ZaT2PYgEC3eBLf2zWxONIMgstoiB6PVvX/dVj8E9vpoYdbsMakw6xTCxKuDwJtsxBpg4V+Dv0sIAu4ScUgkIB4LfoeteiIIE112D+xYn31doz6R/RxJpRGJwORvBZ9bjb44//WatsLqJ2H+n+D+A3M7Zig38SZ45NjUY87dDGctC0JCJbUPVd2yG79nMNrGOanHt9U1tKTSSBVOHjEYTZIkSZIkSZIkSZIkSZIkScpUBnfISlKZqhuUuj9aUZo6JEnFEcnzVDXWAHeOgklfhXd+k3rscxdltmZnDEZbfj9sXwO1GYTw7NwCz18MS+6ASBSGnwsjPwJzflL8Ovf0xjfhwF+Xft+OKhYWjFYNg04O/s47g0EnwaF/geoebV1J+xaJhIccpwtGq6gL74u+f4PxmE9CZVd45sPJx82+DhbeHBwjhpyavt62tmM9PPcJWHJ79nMzuem6JsOQtVwNOnH319N/C93Hw7J7g+fjPwfrXoY3swwb7Htw4erLV3UvOOk5mPkNeO/Pmc97+XPwyn9AIhac8ySaClfT6Iuhh4EbUtmLVkC3sYVds3E13DsFzlxY2HWV3Mp/wfpXwvvHfAqqupauHkmFUZltMNq2ls+X/DN8bO9p2YfqSuo4ogajSZIkSZIkSZIkSZIkSZIkSZmKtnUBkpSzilqoqE/eN/z80tYiSSq8Qt0o9uZ3goCAQojvKMw6bS2eTfhKAmZ+LbOhz30MFt0C8cYgmG7BjfDoiennFcO862HNC22zd0cU9tqvqAnC7/oclP8e9cPg4D9BpEzDbSd9BY65H2r6tHUlHVu6YLRUx/PmvzdGXghjPh0+dttiePw02PBGdvW1hacvzC0UDTJ7vVaGXFMVwqiPQ6/9dj+PVsDEL8DxjwWPYWfBuM9mt+aYT0HPyYWsMn9dR8Gh/wsXJlo+zgsJldwlEXv/zwKGovWeBgf8qnDrSSquwTNS99cPg3PWw/FPZr7mtkWw8rG8ylKGFt+aur/HPqWpQ1JhVWUZjBbb2uzr7cHnImGmfD8IipbUORmMJkmSJEmSJEmSJEmSJEmSJGXMYDRJ7duoj7duq+wKA44qfS2SpMKq7NrWFbQW39nWFRRGbHt24xfcAE3bUo9pXAdL7si9pmKY86O2rqDjiIeE+0RroKorHPcoTLgq9/WHngGnvAajPganvJ77Osn0PyoIb9v1qKjLfO7Ij8C4K+Coe2C/7xS2LiXXZWTq/g0zw/silS2f1/RNv9+8X6cf05a2LoTl9+c+f9BJ6cdUZhn8kE7X0TD2cjj873DQ79OPrxsQhP6kUzsQjrwjCP1qL2ESFdVw8svFW3/az2H/n8Koi2DUJ+DAX8MJTwehlZLahx77QI9Jyfv2/wl84C2o7gn9D4dpv8h83Xd+V5j6FG7rQnjnt6nH1A8uTS2SCivb8+OmZsFoS+8KHzfsbBh4fG41SWo/9vxsojmD0SRJkiRJkiRJkiRJkiRJkqSMpfg/cyWpHdj3Glj/Cqx5NnheURvcgF9R26ZlSZIKoNBBLYWQ6CjBaA3Zj3/7lzDxi+Fj1r8GiVh+dWWjsmsQ+LP41vAxi/4OjWuhpk/p6uqoYmHBaNXBn5V1MPWH0GUveOny7Nbe5xsw+Zrdz3tOgt4HwroXcyoVCMLQjvsXRJJkgSduhBcvg3f+O/UaZy6G+qGZ7Tf9d/DCpa3bR12U2Xzt1mVEVsMXNIzkjjWns6GpJ6ct68q0ns06MwpGuz4IkypXKx7Ob/6U76cf0+fA4L0c35HfXgDjPw/7/zj5ey+V6p5wwlPwxFnQuHqPvt7BNd7AY/Ovry303j8IWXzvz4Vfe8QFUNuv8OtKKp1IBA7+IzxxBjQsD9q6jAzOY7ru1XLs0NPh5SsyW3fhTTDiPBhyWvsJk2xvXrws/Zi6IcWvQ1LhVWX5eVTjut1fr3s1fNyIC3OrR1L7MvLDMPOrrdvrh6YOTZMkSZIkSZIkSZIkSZIkSZLUgv/3raT2rbYvHP94cMPR9uXQ/0io7tXWVUmSCqGqa3jfgdfDi58pXS27FCI0phxkG4wG8NqXoOtoGH5O8v7Z1+VXU7ZGnAdDz04djAZwa184aznUDSxNXR1V2Gt/VzDaLuMuC8I3MgmKABh9cctQtF2yDVVqrtdUOP6x8P5IBKZfH7yGHjkm+ZizV0Jt/8z3HDwDKrtA09aW7cPOzXwNBbIIRntu40HMmHU3G5qC8/9v/zzBHy+K89FD3n/9ZBKMBjDr27Dv17KttPi2vAfPX5L7/LNXBoFj6VR1g6FnwqJbct8L4NS50H1c7vP7HQanzYXVT0PDiqCttj/0OxxqeudXW1ub+kNYeifs3FS4NcdeZiia1FH0ORBOnQNrng/OgfodDhU1rcfVD4OKuszP5Z84A0ZfCgf9trD1Cja/C8vuTT+ubnDxa5FUeNkGo735HZj0peCacNOc8HFDTs2vLkntQ9eR0Gc6rH2hZfvw8wyslSRJkiRJkiRJkiRJkiRJkrKQx93mklQmolXQdzoMPcNQNEnqSCpTBKMN+yCMu6J0tewS31n6PYth41u5zXv1CxCPtWzbuQlevByWP5BfTZXdoH54+nHRahj5YZj2SxgyIwjJS+e1L+VXm8Jf+xXVrdvGfgb2/xlU9Ui95t5XwvSQoI5cg9H2+igc90hmYwccDcc/AV1H7doU+hwEZ7yXXSgaQP1gOOZB6PZ+KFTtAJj+m+A1quzUDsp46FcWfOf/QtEAEokIn705wc6mRNDQ54DMFpr1ddgyP5sqi6thBTz/Sbhzr/zWyeZ1fNDvg9+t0argMfRMGHF+5vMHnZJfKNou1b2CwIgxlwSPoae3/1A0CMI5J3+ngAtGYMr3CriepDZX1R0GnQADj0seigbB+VHfQ7Jb993fwd/qYf4NkEjkX6cCS+/KbJzhzFL7VJllMBrAg4fATRFY8s/k/cPPCz++S+p4jroLBhwbnL9V1AdhtVO+39ZVSZIkSZIkSZIkSZIkSZIkSe1KZVsXIEmSJCWV6kbUaDWMvhjm/wGatpSupo4SjDb3Z7nN27oA1r+6O2wokYAnzoKV/8ptvaoecNrbEKmEqm4Qb4Jb6sPHz5gZhFhVdtndNvbTMOaT8OgpsOLB5PMW3RIEqFXW5VanIBHy2o9UJW/f+3NBQFp8R3Dzd3wHNK4N/u4iFVBRl+am8EjmtfXaH054Aohm/3fc/wg47R1oWA4VtfkFMPU7FE6bC9vXQE0fiGTxPWi3aEVGwxrj1Ty64ZhW7Zu3w2NvwwkTge7jM9934S0wqQxCFHduhvsPgIal+a3T+8Dsxld1hSP+AU3bIBEPnq97FRb+Nf3cSAWMb4Ow0vZm7Kfh9a9A0+b81uk6Gk6dHQTYSep89r4SVj0WHKszFWuA5y6C7atg4tXFqqxz2fhG+jG1AzxWS+1VVQ7BaBtmpe4f/sHcapHUPtX2D4L7d2wMPm8yGFGSJEmSJEmSJEmSJEmSJEnKWrStC5AkSZKSquoa3hetgl6T4diHS1cPdIxgtMZ1sOKh3Oc/cCDM+WkQirb0rtxC0bqMhGEfhJNeDG4UrOkd/J2mC7WqG9IyFG2XSBTGXBI+L9YAKx/Jvk7tFm87yJnlAAAgAElEQVRK3h5NkbVdUR28j6NVwd9bl+FBYFh1z/Q3hKYKFZv+W+h/JPTYByZ+EU54Klg/1+C7SATqB+cXitZcbV9D0fI19jNph2xs6hHaN2dFYveTkf+W2Z5Lbs9sXDHt2Ah/755dKFq/w5O3Dz0jtxoq63f//u09FU58Drrvvbt/4Akw4w0Y//ngPTjoFDjqHhh8cm77dSbRKtjrI9nNqR8a/J6sHQC9pwVBoCc8bdCO1JkNmQFH3gWDToK6wVA3KPO5r30Bti4uXm2dybu/Tz9m8AeKX4ek4ohWQb8jCrtmtyxCmyV1HNU9DEWTJEmSJEmSJEmSJEmSJEmScpTiLnZJkiSpDQ06Cd78bvK+itrgz74HwYSrYfYPS1NTfEdp9imm9a9AIp7fGq/8B2xfCeteyW7ePl+Dyd9KPSZaHf5zruoePm/QyRCpgEQsef+S22HIqZnVqdYSIaGARQvnSREsNvIjMObSIu2rsrD3f8CSO1MGhG1qCj8edG1+z3HdwMz2XPs8vP3rIFCsfkiGhRbYMx/Ofs6oTwTBgMsf2N3WfQKM+VRhaup7EJw6u3X7tJ8WZv3OZvJ3YP6fgsDO5iKVcNjNMPycNilLUjszZEbw2GXVU/DYDGjanH7u3XvDeVuLV1sxNTXAhplAAvoc1HZBtOtfTz+mbhBMuLL4tUgqnv2uhYePLNx63cYWbi1JkiRJkiRJkiRJkiRJkiRJkjqBaFsXIEmSJCXV73CoH9q6feiZEGl2GlvKsKt4SDhUe1Ko7+GtH8CKhzIbO/YyOOru9KFoEITDhImm6KvqBnt9NLx/xSPp91ZyiXh4mF6qv6+8pAi62BWMqI6r2xg46YWUr6+NsR6hfV2aB6NV98x835cuh9uHwutfhUQi83mFsG0JLLsn+3lV3YLj60F/gDGfhv1/Bic+A7V9C1+j8lfTG85eAZO+GhzLolVBwOtJzxmKJil3/Q+Hk1+ECVelHxvbBhuTBF6Wu3WvwH37wYMHw4OHwAPTYVt4gGpRzfpm6v6uY+CU16DHxNLUI6k4+h8BtRmGLKdT1RMq6wqzliRJkiRJkiRJkiRJkiRJkiRJnYTBaJIkSSpPkSgcenNwA+ku3cbBAb9qOa7fETDpyy3bRl9SnJoSHSEYral0e03+NlyYgAN/BUM+kNmcVOFn6Uy5Lrxv63ulDzrqKBKx8L5iBaNFUlyqRlKEpqnjqB8M+3w1tHtjU3gwWn11s9dIVRbBaLu8eS2seDj7efnY8EaOEyPBcXP0x2H69bD357ILg1PpVXWH/b4N5zXA+Ttg6nXQe1pbVyWpves+Hqb+EI66JzjOpDLz66WpqVASCXj+Utg8b3fbupfgpc+WvpblD8KSf6Yec9rbUNu/NPVIKq6+hxRmnQHHFGYdSZIkSZIkSZIkSZIkSZIkSZI6EYPRJEmSVL76Hw5nzIej7oLjHoUZs4KwnOYiEdjvWjjtnSBI7ZTXYfpvi1NPfEdx1i2lVCFXhTT4AylDjUL1PiD3PWv7wonPhvcvfyD3tTuzeIpAwGhVcfbsOro466p9iVaHdm1IEYzWIgMxVcheKgtvym1erhqW5zbPEDRJUnNDZsBp82Cfr4WPWfwPmP3j0tWUr3Uvw/pXWrcv+SdsXVy6OmZ9Gx49KfWYg35viK/UkRTqXHvcZYVZR5IkSZIkSZIkSZIkSZIkSZKkTsRgNEmSJJW36l4w5FQYcDRUhIfk0G00jDwfek0Obkaf+KXC15IqIKq9SDSVZp9cf/4TrkrevtfHMptf2z+874VLs69HqV8z0cri7Dnu35O3D55RnP1UnqI1oV0bUwSjNcWbPUnEQ8eltOjW3OblatuS7OdUdoG+hxa+FklS+1bbHyZ/C3pNDR/z6lWw+Z3S1ZSPtc+H9y27uzQ1LPgLzPp6+nFV3Ypfi6TSqSpAMNr038CA4/JfR5IkSZIkSZIkSZIkSZIkSZKkTsZgNEmSJHVMoy4q/JodIRgtnkEw2oBj8tujz8HQ77Dc5g48HnpMatkWrYExn8xsfk3f8L5tS2Dn5tzq6sxSve4jVcXZs9cU6HfEHntFYexnirOfylNFbsFoseZZaN3H57Z30+bSBsZkErayp9GfhMq6wtciSeoYDvtr6v67xpamjnytezm8b/1rxd9/8e3w7EcyG1tpMJrUoVTnGYw2+NTgs4xIpDD1SJIkSZIkSZIkSZIkSZIkSZLUiRiMJkmSpI4p1zCcVDpCMFoilrq/y0g45iGY8gOo6p79+v2PgmMfzP3G32gVHP84jL4k+Dsc/AE45n7od2hm89OFEWyel1tdnVmqML1oZXH2jETg6Hth3Gehx0QYeCIceQcMObU4+6k8RatDuzbGwoPRmmKJ3U/6HQFVOQYa3DUWEon04/K14Y3U/X2mw4QvwJTrguDJ3gfAlO/D/j8qfm2SpPar+7j058ZrXypNLflY+2J4X+Oa4u0ba4QXPgVPnpX5nCqD0aQOJd9gtNEXF6YOSZIkSZIkSZIkSZIkSZIkSZI6oSLdxS5JkiR1QPEdbV1B/hIpQq4ilbDf9yBaARO/AGM+Cf/old36R9yWfyBATR846He5zU0XyLb4Vti5CbqOhi7Dctujs0mkCASMVBVv36qucMAvire+yl+0JrRra6xLaF/zXDQqqmHK9+DFz7Rct/f+sObZ9DXMux7GXZZBsXlY9I/wvn2/Cft+fffziVcXtxZJUscy7jJ46wfh/cvvhz4HlK6eTDWshK0LoKYfbHorfFwxg9Fe+iy8m+U1SWXX4tQiqW3UDsx97oBjYfCMwtUiSZIkSZIkSZIkSZIkSZIkSVInYzCaJEmSlKl4ioCo9iIRC+874Unoe/Du51U9sl+/OssgtVJ787vBA2D0JXDgfwdBcAoXTxGmF/WSUkVUER6MFk9EQ/ua9jzMjf00dN8bltwBlfUw/FzoNQWW3Q+vfQk2vB5ew0uXQ91gGHZmlsVnYcVD4X1Di7ivJKnjG/Xx1MFoM78W/I4cfk7pakolkYC3fwWv/L/Ugc67FCsYbecWeO9/s58X8dxY6lAGnRC8r/c8HtUNgpEfgZ0b4Z3ftp4XqYSj7w1CmiVJkiRJkiRJkiRJkiRJkiRJUk7C7ySWJEmS2rsJVxd2vQ0zC7teWwgLGOg6pmUoGkAkAt3HZ7d+JJJbXYWUaZDQu/8ThC689QOY+wvYurC4dbVXqUIpDH9QMUXDgwRiVT3D++JJGgccDdN+CvtdG4SiAQw+GWa8Bqe8lrqOJ8+ChpXp683VlvnJ22v6Qa/JxdtXktTxdR8P036ResxT58JLV8DG2aWpKZUFN8DLn80sFA2KF4y2aQ7Etmc3p6IOuo4qTj2S2kZ1LzjkxpbXvX0PhQ/MhqnXwfTfwGF/g2izQOfeB8CZS1KGPEuSJEmSJEmSJEmSJEmSJEmSpPQMRpMkSVLHNewcoIBBXfP/AItvL9x6bSERS94eDQm4GnFh8WoplhEXZD727V/Ca1+Clz8H906B1U8Xr672Kr4zvC9aVbo61PlEw8MEYtGuoX1NyYLRUum1Hww/L/WY5fdnuWiG4jthe0jo2iE3FmdPSVLnMv6zMO6K1GPe/iXcNxUW/7M0NSUz/0Z47uPZzWlcC4lsf/FnYNOc7OcMOR0q6wpfi6S2NfICOGMhHPZXOOFpOP4xqO6xu3/Eh+D0d+HQm+G4R+GEp6BuQJuVK0mSJEmSJEmSJEmSJEmSJElSR2EwmiRJkjquvtPh0L9ATd+W7ZVdcg90eumy4tx8XyrxpuTtkZBgtElfgbGX7Q4o6rlf0JbM2Mvzr68QRnwIBhyb/bydG+DVqwtfT3uXCHnNQPjrRiqEivBgtHi0S2hfLJdD9MF/SN3fsCyHRVPY8h48fjr8tRpIJB9TP6Swe0qSOq8RaQJAAeKN8OTZEGssfj172rkpCCrOViIGT5wJa1/Mv4Y1z8EzH4F/nQTP/lv28w/6n/xrkFSe6gcHx9F+hyb/LKl+CIw8HwYcnfIaRpIkSZIkSZIkSZIkSZIkSZIkZc5gNEmSJHVsIy+As1fCmYvhgljw5zkbYcabUFHXcmzdEDjldeh/ZPh6DcthwxvFrbmYwkKuIhXJ26MVcOCv4NwNcNZymPEaTPrP4GfVXEUdjLm0sLXm4/Bbcpu35tkgsKi59hyEVwjxneF9uQYMSpmIVod2xaJ14X25vGUr6+Ho+8L7m7bksGiIhuVw1xhYelfqcXseZyVJylXfQ4JHJh4+qri1JLP0niCkOKe5dwU1r3429/2X3QcPHwnv/QVWPJj9/HFXQFXX3PeXJEmSJEmSJEmSJEmSJEmSJEmS1ILBaJIkSer4IlGoH7r7z2gFdB8LJz4Dg06GLnvBiAvg+Meg1+TWgWl7um8/eORY2PxuScovqEQseXu0MvW8ilqoGxh8XdkFTnoeRpwf/OwGfwCOfQR67VfYWvNR0yf3uXfuBbd0gyfPhbsnwl+r4b5psOKRwtXXnsRDwvQg/etGyke0JrQrFqkN7WvKNctw8MlAJHlfId//s74ZfizepaIWqnsVbk9JUucWicAxD2Q2du3zsHNTcevZ07J785sfa4C5P819/pyfpA4DTqeqW+5zJUmSJEmSJEmSJEmSJEmSJEmSJLViMJokSZI6r15T4Jj74Iz5cNhN0G1M0J4ijOf/rHwUHj4KmrYVt8ZCCwu5ilRkt079EDjs5uBnd/Td0O+Q/GsrtOHn5T63aQss/gdsmh0EGK1/BR4/HTbOKVx97UUiRUhEpKp0dajzqUgVjJaiL9dgNAgCH5NZ+zw0rs1j4ffFm+C9P6cfVzswCLGRJKlQqrrB6EsyG7vulcLvn0jAlgWw+mmIbW/Zt/nt/Ndf9Pfc61r1RH571/bPb74kSZIkSZIkSZIkSZIkSZIkSZKkFgxGkyRJkvZU0yezcQ1LYcUjxa2l0BKx5O2RytLWUQqjPlbY9WLbgrC0ziYsTA8g2gFfNyof0erQrkSKYLSmfILRKruG9839eR4Lv2/WNdC0Nf24vmUYNilJav8qu2U2blOBw4CbtsKTZ8Odo+Chw+G2gbDi4d39jWsKs08uIaZNWyC+I/24ab+Eqh7J+wadkv2+kiRJkiRJkiRJkiRJkiRJkiRJkkIZjCZJkiTtKdNgNIA3v1u8OoohERJy1REDrgadDL2mFnbNjW8Wdr32IOw1QwQiXlKqiKJVoV0xwoPRYnkFo3UJ73vj27DuVXjz+/DKlTD3v2DrwszX3rkF3rw2s7Ejzs98XUmSMlWVaTDa3MLu+9Z1sOT23c93boR/nQDLHgieFyoY7ZUrs5+T6d6jPgqH3AgVtS3b9/8pdB+b/b6SJEmSJEmSJEmSJEmSJEmSJEmSQnXA9ANJkiQpTzV9Mx+7Y23x6iiGRCx5e6SitHWUQiQCh94E90wo3JqL/g6H3Vy49dqD+M7k7SlCq6Rii0XrQ/ua8gpG65q6//79Wz6f+VU46m7of3j6te/dJ7Maeu4Lg0/JbKwkSdnINBht87zC7vveX5K3P3Yy7PUx2LmpMPssuAEO+VN2czIJRqvsBlXdYejpcPp8WPkoxLZD/6Og2+icSpUkSZIkSZIkSZIkSZIkSZIkSZIUzmA0SZIkaU/ZBKO1t3CoeFPy9kgHvTSo7lHY9RIxSCSC0LXOItHJXjMqH11HBcfjPQNLKuqJ1w4MnRbLKxitS3bjd26Eh4+A0+ZBtzHh4zbNha0L069XOxAOvbn9/W6RJLUPVd0zG7f+FXjuYpj/h+B5RT0c/ncYMiP5+KYGeOsHsOpxaNoctFV2gwFHw9jLYcu74XstuCHj8jPSuBZq+gTn7Av/Cgvf/7069jIYeFyS8RkEozUPlKsbBCMvLFy9kiRJkiRJkiRJkiRJkiRJkiRJklqJtnUBkiRJUtmp7p352Eg7C68JDbmqKG0dpVLVs/Brzvxq4dcsZ/GdydsNblKxRaIw5tOt20d/glgiPJivKZbHnpX1uc27ayxsfie8f/FtqefPeAPOWg5nLYOek3KrQZKkdKI1mY1rWL47FA0gtg0e/wAs+EvrsYkEPHoSvPFNWPUYrHs5eKx6DGZdA3eOKkDhWXjr+0FNs66BZy6EpXcFv4f/dTy8d3Pr8Y1r06/ZPBhNkiRJkiRJkiRJkiRJkiRJkiRJUtEZjCZJkiTtKRHPfGy0unh1FEMiJDEoEh4y1K5V1kHvA5L3jb08tzXn/ASaGnKvqb0JC9OLdtDXjMrL5G/BlOug5+Tgse83YdrPicUToVNi4V3pxUNe75m4ayw8cixsmd+6b9m94fNGXBCEodUNhEgk9/0lSUpn5+b85r/5ndZtS++G1U+Gz2nKc8/m6galHzP7R/C3GnjjW637nrkQmra1bGtck37NSoPRJEmSJEmSJEmSJEmSJEmSJEmSpFIyGE2SJEnaU++pmY+taGfBaGGhPx055Gryt1sH2E35ARz4X7mtF9sOKx/Nv672Yvvq5O2RqtLWoc4pEoGJV8OM14PHvl+HSJQUuWg0heQ/ZiSWZ+jhykfhocMh1tiyfcf68DlDz8xvT0mSMtVnen7zN81pGSy2fRXM/Gp+a2ZjwPGZjYvvDO+7b0rL51sXpl+vymA0SZIkSZIkSZIkSZIkSZIkSZIkqZQMRpMkSZL21GUv6D4hs7HtLRwqEZIYFKkobR2lNPhkOOFpGHcFjP0MHHUPTPxCfms2rilMbeUskYC3roOXLk/e35HD9FT2YvHc+tKKFOBjkoblsPjW3c8TCdi2OHz84Bn57ylJUiZ67w81ffJbY1cw2qxvwe1DYcPM/OvKVEU1jL44vzU2z4N1L+9+vmlu+jlh11CSJEmSJEmSJEmSJEmSJEmSJEmSisJgNEmSJGlPkQgc/MfMxkbbWzBaU/L2SAcPuepzABzwczjw1zCkWQjRpC/ntl5Vt8LUVc5WPQ6vfTG8v72FAqpDSRV+1pRPMNrQM/KY3MwzH4YXL4d7JsF9+8HOTcnHjb0cqroWZk9JktKJVsKhN0G0Jvc1Yg2w/EGY9Q2I7yxcbZmIVsO+10DPffNb5/4DYO2Lwdeb5qQfv3NzfvtJkiRJkiRJkiRJkiRJkiRJkiRJyorBaJIkSVIyfQ+Cg29IP669BYolYsnbIxWlraNcDD8XiGQ/L58wifbivb+k7o+2s9e+OpR4IrwvVWhaWt0nQI+JeSzQzLxfw8a3YMOs8DGTv1mYvSRJytSgE+HMRXDIjTD+89nPjzXAnJ8Uvq5MRKuhfiic+BwcfV9+az0wHWZ9C7a+l35sWMCpJEmSJEmSJEmSJEmSJEmSJEmSpKIwGE2SJEkK031c+jGJncWvo7mdW2D2j+DxM+DFy2DbkuzmJ5qSt3fWkKteU+DQm6CqR3bz4juKU085efd/Uve3t1BAdSipws+a8glGi0Tg6HuDY0Ox1fSDmj7F30eSpD3V9oe9/g2Gn5P93LvHw/IHCl9TJqJVwZ+V9TD4ZOi+d37rzfoGkCJtdZemLfntI0mSJEn/n737jo/sru+F/zmSthfvet3WvdtUY7BxsE1wgiFwSR5aKAkhIaSQkEuAkHvTHi6hPJc0SCMJISEO3HATjAOEJJRQQzHFlBgwLtjGhV23NdtXqzbn+UO7rHZ2yhlpRpqR3u/XSy/p/OpXs6NBZ/DvIwAAAAAAAAAAAKAjTrIDAEAzK45pP2Zqf+/rOKisJf/5o8n9/3mo7c53J0+5Lll7ZrU1ak2C0ZZyyNXpz09OfU7yzdcn33xttTmLPRitrBAQcTCYAhbAVIunaKvQtErWnJY89WvJ3ruT5Ucly9YnYw8me++cDpIZWp6MrEtu+N/JDW+Y/T5zDXMBgLkaXr3QFXRmaPnh16tOTHbd1Pt9T3567/cAAAAAAAAAAAAAAAAAvm8Jpx8sbUVRnJ/kgiQnJ1mVZH+S+5PcmuT6siz3zmHtZUkuS3Jqks1J9iTZmuRrZVneMbfKAQDmUb8Fo9159eGhaEky/r3klr9IHv2mamuUU43bi+G51TbohoaTs168OIPRtnww+fqrk313Jkc9LHns3ybrz2k959a/br/uUg7TY8G1Cj+bczDaQWtOOfT1ik3THzNd8Ppk5fHJV142u/VPeOLsawOAbhgZ8GC0NafNz76n/9T87AMAAAAAAAAAAAAAAAAkEYy2pBRFsSHJy5O8ONOhZc1MFUXxX0muKcvy9zpY/9gkr03yvCRHNxlzbZI3l2X5z5ULBwBYKMuOmj583yoEaz6D0W76o8bt932i+hrlZOP2IbcGWXNqcvYvJbe+tf3YQQlG23FD8plnJLWJ6ev7P5185LHJ0+9Ilh/VeM5d1yTX/XL7tZdv7FqZ0Kla2byva8FoVZz335PxB5Nv/G7nc89+SdfLAYCODC9wMNrQiung0dGtFccvO/z6tJ9Ibr+q+3XNdOLTkmMu7e0eAAAAAAAAAAAAAAAAwGGkHywRRVE8J8lfJdlUYfhwksckOTlJpWC0oiiemuTvkxzXZuilSS4tiuJdSV5SluXeKusDACyIokiOvijZdm3zMfMVjFaWyfe+0rhv+391sM5U4/ZiuPOaFqOL/zI59tLk1rclD3y2+bhBCUb7xv86FIp20MSO5O5rkrN+7vD22kTyhRcnd/xDtbVPeGJ3aoRZaBV+NtnkZa5nHvGaZMMjky0fSEbvTfbekey6qfWci96SrDphXsoDgKZGFjAY7bxXJme8INl4YXL7O5L7Pp6sPnX6d/AHPtN4ztDyw6+PvyJZd26y+5bu13faTyTHPT458+eSIfdKAAAAAAAAAAAAAAAAMJ8Eoy0BRVG8JsnvNui6K8ktSR5IsjLJ5iSPSLKmw/WvSPL+JDNPppVJvprk9iQbklyY5JgZ/S9Isr4oimeUZdniSDsAwAI78amtg9Fq8xSMNrGrdf/4zmT5Ue3XqU02bi/cGiSZDsM744XJKc9OrtlwZKjYQYMQjDa5L7n7vY37vvjzyfE/lKw9M9lze7L1w8mXf6X62sc/MTnv5d2pE2ahVTDaVK2cv0IOOuWZ0x8H3fKXyVdf0fg15PQXJOe8dP5qA4BmhhcoGO2kH0se8+ZD12f97PRHknzpl5sHoxXLDr8eWpZc8vbkY4/vbn2P+r3kob/R3TUBAAAAAAAAAAAAAACAyqQfLHJFUbwqR4ai/WOSN5Zl+Y0G44eSPC7Js5P8SIX1T07y3hweiva5JL9QluWNM8atSPKSJH+U5OAJth9L8oYkv13x2wEAmH8rT2jdPzUPwWhTY8kn2/xqtvfOZPkj269VNglGG3JrcJiR1cnmpyZbPtC4fxCC0T799Nb9HzgrOfNFyZ1XJ1P7qq/7xE8lx146HUQBC6RV9tnUAuSiHeHclyabn5w8cG0ytTcZWj4dcHn0Rcmxl0+HMALAQhteuTD7nvEzzfuGV7ToW35k23GXJz++I7n9quSrr5x7bUmy6sTurAMAAAAAAAAAAAAAAADMivSDRawoiguS/N6MpokkP1mW5TXN5pRlWct0sNnniqKo8vx4bZKNM66vTXJlWZaHJYSUZTmW5M+KorgryftmdP1aURR/XZblnRX2AgCYfyOrW/ePbUsm9iTL1vauhruuTh78Yusxe+9INlYJRptq3F4Md1zWovcDVyX/vKlx33wE4s3F/geSez/Wftztf9/Zuhe/NTn+CbMqCbppqta8b7LJy9y8W3f29AcA9KuiSDY8ItlxxN/PSIqhpGzxP7j1hpYnx12R3Psf7cee8szW63Tat/yo5PxXJJsuST56afv921m1ee5rAAAAAAAAAAAAAAAAALM2tNAF0BsHQs3+LoeH372kVShavbIsJ9vscU6Sn5nRNJ7kRfWhaHVrvj/JO2Y0rUjymqo1AQDMu+E2wWhJ8h+XJJOjSVn2poab/qT9mL0Vc2ZrTX7Fq5SJu8SsODo5rkkI2NdfPb+1dKpKKFqnVhybnPHC7q8Ls9AqGK1VHwBQ56xfPLJt81Or3QfN9OM7kkf8r/bjHvI/p0PXmhle2byvWNZ67WMuSTY+qn0N7aw6ae5rAAAAAAAAAAAAAAAAALMmGG3xek6SR8+4/nhZlld1eY+fTDI84/q9ZVl+u8K836+7fm5RFC1OvAEALKCRCoEAO7+VXL06uWZD8pnnJPvv724N27/afsyDX2w/Zu9dyX0fb9xXDDduX+qGljfv6/a/czftv7e76534o8lTrqv28wDzoNYih3JSMBoAVHfef08uekuy4YJk9anJ2b+UPP6aZHJP9TVWn5qMrEo2Xth+7KrNbfpPbN7X6nfzZDpw7Yc/lpz+wmTlCcnRFyWX/mPyzK3Jyc9IVh7fvr7Vpybrzm0/DgAAAAAAAAAAAAAAAOiZkYUugJ55Sd31/+7BHs+su64UvFaW5Y1FUXwxySUHmtYkeXKSD3SxNgCA7hheVX3sxK7k7muSB7+UPP070wfz56o2UW3cHe9KfuAdyVCTgLOpseSjlzWfX7g1aKhV+MKd707Oe1nr+VNjyc4bkvXnz2+o2Ni2ua9x/quSR//R3NeBHphqEX7Wqg8AaODcX5n+mKuR1cmKY5OxB5qPaReMtv785n2Tu9vXsGJTcuk7j2z/wfcd2faddyWf/6kZDUXyiP/V/J4KAAAAAAAAAAAAAAAAmBddSGqg3xRFcXaSJ8xouiPJJ7u8xwlJLpjRNJnkcx0s8am666fOtSYAgJ6YTZjVvruS9x6XTI3Pff89d1Qf+8Bnmvdt+UCy77vN+x3+b6Js3rX71tZTb39ncs2G5MOPSa7ZmNz4pu6W1spcg9Eu/b/JhX/YnVqgB1qFn00KRgOAhfO4BqFkM7UNRjuved/UaOf1tHLGC5InfyE582eTc34leeInkrN+rrt7AAAAAAAAAAAAAAAAAB0bWegC6Ikfqrv+eFmWLRIdZuXhdddfL8tybwfzr627ftgc6wEA6I3hWQSjJcnYg8k3X59c8Pq57T92fz91sfoAACAASURBVPWxD3wuOf6Kxn0PXtd67u7bqu+zlLQKX2gVmrf9+uQLP3PoujaefO3Xkw2PSDY/uXv1zbTzW8k9H03Gv5fc+rbZr/OI1yWn/0T36oIemGpxh9sqNA0AqOiclybf/svO522of9u4ztqzWvevPCFZtiGZ2HFk37GXd15PO8dcMv0BAAAAAAAAAAAAAAAA9I2hhS6Annhs3fXnk6SYdmVRFFcVRfGtoih2FkWxtyiKO4ui+FhRFL9ZFMXpFfd4aN31rR3WWJ+8Ub8eAEB/aBV+1c7d75n7/hO7q4/9+v+b7Pr2ke1lmdz4h63nHuXXsYYm9zXvG17VvO+772/cfvf75lZPM7f+bfLBRyZffUXyzdfNYaEiOeOnulYW9EqtRfjZxNT81QEAi9bJz6g+dt3Zh75efXJy/A83Hnfs45PVJ7VeqyiSs3/+yPY1pyUbH1W9JgAAAAAAAAAAAAAAAGBgCUZbnC6qu77xQODZx5J8NMmLkjwkyfokq5OcmuSJSd6Y5JaiKP6iKIp2CSBn113f1WGNd9ZdbyqKYmOHawAA9N7wHILR9twxHUrWiS3/nnz+RckXXpxs/Ugysauz+f92bvLZ5yYfvzL52v9Mdt+WbPtC+3nrz+9sn6ViapbBaN/43cbtt751TuU0tG9r8qVfSMoupEFdfnWy9oy5rwM9NtXipXX/xPzVAQCL1uYnJY9+c7X7oYf8+uHXj3tncvTFh7cd/Zjksn+qtvfDX5Oc+pxD1+vOSa74cFL4vzMAAAAAAAAAAAAAAABgKRhZ6ALoic1116uTXJfkmApzlyV5aZLHFUXxtLIs72kybkPd9f2dFFiW5Z6iKPYnWTmj+agk2ztZp15RFMclObbDaWfNZU8AYJEbmUMwWm0smdybLFtbbfy335pc98uHrm+/Kjn2ss73ves905/v+3jynXckx/5g6/HrzkmOe0Ln+ywFky2C0YaWzV8drbz/pO6s89y9c3u+wzyaqjXv2zs+f3UAwKJ2/iuTs38p2XNbsuvm5LM/fuSYtWclxz/x8LbVJyVP+dJ0UPS+u5PVpyRrT6++77K104G9Yw8mY9uSdecmRTGX7wQAAAAAAAAAAAAAAAAYIILRFqf60LKrcigUbW+Styb5UJLvJlmT5IIkL05y+Yw5Fyb556IonlCW5USDPerTPUZnUedoDg9GWzeLNeq9NMlrurAOAMC04VVzmz/+YLVgtLKWfOO1R7Y/8Lm57b///uTua5r3H/v45HF/Xz28bamZahGMdvOfJee/osGc/b2rp96DX57dvGIkSS0ZWZcc/0PJRW8RisZAqZXN+27tKLYbAGhpZFWy4eHTH497Z/L5nz7Ud8KVyQ+8Ixle3nju2tM7C0Srt2LT9AcAAAAAAAAAAAAAAACwpAhGW2SKoliRZEVd88kHPn8ryVPKsry7rv+rSa4qiuJVSf5oRvvjkvxGkjc02Ko+OWM26Q+jSTa2WBMAYOEVQ3ObP7YtWXNa+3EPfjnZf+/c9pqNJ316/vccJJMtgtH2fie57e+Ss158ePu1L+xtTTPd94nOxj/rvmTlcb2pBebRVK11/7uvq+V5F8/x9RsAONwZL5z+AAAAAAAAAAAAAAAAAOghp4QXn+Em7TvTOBTt+8qyfFOSP65rfmVRFFUCy8qK9c11DgDAYNm/rdq4sft7W0cjF75p/vccNGWb9KXb/vbw6/3bku++t/WcqfG51TTTDW+sPnb5xmTFsd3bGxZQu2C0t3/W7SYAAAAAAAAAAAAAAAAAAAwiwWiLTFmW+5I0OiL+5lahaDO8OtMhagcdneSpDcbtqbteVa3ClnPq15yNv0zy8A4/nt6FfQGAxWz9ebOfu++uauPKBQjxWX3S/O85aC78g9b92z5/+PWuG9uHqX38h5LRe+ZWV5LsvTuZ2FF9/KrNSVHMfV/oA7U2L5kfu3F+6gAAAAAAAAAAAAAAAAAAALpLMNritLdB2zurTCzLcm+S99Y1X9FgaF8Go5VleX9Zljd08pHktrnuCwAscqc+/8i25Ucnz96WXPL25NJ3JcvWN577pV9Mtn+9/R7l1NxqnI1VgtHaOrFRRnALE7vbj9l2bfLhxyQPXDu7mg667e2djT/uirntB31kqk3+IAAAAAAAAAAAAAAAAAAAMJhGFroAemJHknUzru8ry/KODuZ/IcnPzrh+SIMxO+uuj+1g/RRFsTZHBqPt6GQNAIB58/DfSfbcntzxD0nKZNWJyRM+kKzYlJz14ukxt7wl2fb5xvO/+PPJeS9Ptv57suKY5IyfTjZddPiYhQhGW3vm/O85aNaclgyvTKb2Nx9TlklRTH89WSEYLUlG70k+fkVy7suSYjjZe2dy/BXJWb+YDA1XW+Obr6027qCzfq6z8dDHBKMBAAAAAAAAAAAAAAAAAMDiJBhtcbolySkzru/pcP7WuutNDcZ8u+76tA73qB//vbIst3e4BgDA/Bhallz6zuQxfzwdaHXUQ5Ni6PAxI+saz02S712XfP6nDl3f9jfJE/41OeHKQ21To92tuZ2jHp6sPnF+9xxUpzw7ueNdzfvLyaRYNv31RMVgtCSpTSQ3vfnQ9V1XJ/d9Mrns3YeC1pr5+muq75Mkpz43OfrRnc2BPlYr24/5yA1lfuRhbX6WAAAAAAAAAAAAAAAAAACAvjLUfggD6Ia667EO59ePX9lgzI1112d3uMeZddff6nA+AMD8W7Ep2fDwI0PRkmRZi2C0elP7k088KXnfycmXXzZ9Pbm3e3VWsfnJ87vfIBta0bq/Nn7o68kOgtEaues9yc5vNu67+/3JBx+V/N8i+ebrmq/x1P9KHvNnydqzkpXHJee9Irn4r+ZWF/SZqVr7Ma9+f4VBAAAAAAAAAAAAAAAAAABAXxlZ6ALoia/XXW/ocH79+AcbjKlPa3hkURSry7LcV3GPy9qsBwAwWDoJRjtodEtyy1uSXTdPh1h14gfekdz8p8n2r3a+b5Ic9bDZzVuKhpa37p8aS0bWTH89sWvu+9329uQxf3J42z0fTT777KRsE/S04YJk44GP814291qgT1UJRvvynUmtVmZoqOh9QQAAAAAAAAAAAAAAAAAAQFcMLXQB9MSHkpQzrs8simJlB/MfXnf93foBZVnek8MD2EaSXN7BHlfUXX+og7kAAP1nZBbBaAfd+9Hk1rd2NmfFMclZL579nuvPm/3cpaacaN1fGzv09cTuue9370ePbLv1be1D0ZLkjJ+e+/4wAKbK9mOSZNue3tYBAAAAAAAAAAAAAAAAAAB0l2C0Ragsy61JPj+jaVmSJ3awxFPqrj/TZNz76q5/tsriRVGcn+SSGU17k/xHtdIAAPrUsjkEo83GimOSM180y8lFsv4h3axmcZscbd0/NSMYbbILwWg7v5WUdalPd19Tbe65L537/tDnyrI84kekmXt29rYWAAAAAAAAAAAAAAAAAACguwSjLV5X1V3/WpVJRVE8PsljZzTVknywyfB3JZmacf2soijOqbDNb9RdX12W5f4q9QEA9K1l6+d3v5XHJCNrkif8W+dzT3xasuLo7te0WE21CUarzQhGm2gTjHb0Y5Infbb9nl/8+aQ21X7cTFd+Jhle2dkcGEC1iqFoSbJ1R+/qAAAAAAAAAAAAAAAAAAAAuk8w2uJ1VZIbZ1z/cFEULcPRiqI4LkcGql1dluVtjcaXZfntJO+Y0bQ8yd8XRdE0jaEoiqcnedGMpvEkr21VFwDAQBhZN7/7Ld904POGzude8rbu1rLYtQtGm6oYjLb+/OTyq5NjL0tWbW695u1/l9z+9uTrr0k+/az2NT76T5LjLm8/DhaBqVr1sffs7CBFDQAAAAAAAAAAAAAAAAAAWHCC0Rapsiynkrw8ycwj428qiuJPi6LYWD++KIork3wuyVkzmrcn+e02W73mwLiDLk3ysaIozq9bf0VRFC9L8p66+W8qy/LONnsAAPS/opjf/Zatn/48vKqzeatPbh/KxeHaBaPVxg99Pf5g4zGnPjd52reStWdOXxfL2u/7pZck33xd8t33tR535ouT81/efj1YJGodZJ1t3dm7OgAAAAAAAAAAAAAAAAAAgO4bWegC6J2yLD9aFMXLk/z5jOZfTfLLRVF8IcmWJKuSPCrJaXXTx5P8RFmW32mzx3eLonhWko8kWX6g+bIk3yqK4itJbk9yVJJHJzm2bvq/JXl1x98YAEA/GmsSiNUrB4PYhld3Nq9dyBdHahuMNpbc9KfJ7X+X7Ph64zHH//Dh4XlDyxuPm43jfrB7a8EAmKq1H3PQPYLRAAAAAAAAAAAAAAAAAABgoAhGW+TKsnxLURRTSf4oycHUjGVJHt9i2n1JnlWW5bUV9/hUURTPTPL3ORR+ViS56MBHI/+Y5BfKspyqsgcAQN9bqHCqkQ6D0c791d7UsZid8uPJg19q3n/DG5Ot/956jfXnH3599i8k//Ubc68tSTb/SHfWgQHRSTDavTvL3hUCAAAAAAAAAAAAAAAAAAB03dBCF0DvlWX5V0kemeQfkuxuMfTeJL+b5LyqoWgz9vhgkocneWuS7S2GfiHJj5dl+ZNlWe7tZA8AgL626ZJkZN387LVs/aGvVx7X2dxTntXdWpaC057Xur9dKFqSrD+vbs3nz76emTY/NVl1QnfWggFR6yDrbOuO3tUBAAAAAAAAAAAAAAAAAAB038hCF8D8KMvytiQvLIpiVZLLkpyc5IQk40keSHJ9WZZfn+Me9yf55aIoXn5gj9MO7LE3yZYkXyvL8jtz2QMAoG8Nr0gu+Zvk2hck5VRv97rwTTP2XVl93kP+R3LUw7pfz2K35tTkgjcm1//W7OYv25CsPL7Bmv9fcv3vzK22i98yt/kwgKZq1cfes7N3dQAAAAAAAAAAAAAAAAAAAN0nGG2JKctyNMnHerzHeJJP9nIPAIC+dNrzko2PSr70S8n9n+rNHsOrk1OfXX384/852f3t5NjLk2MuTYqiN3Utdg/7zdkHox3/hMaP+8N+OznhSdPPl+1f7XzdTY9N1p45u5pggHUajFaWZQqvfQAAAAAAAAAAAAAAAAAAMBCGFroAAABYVNafl1zwht6svWx9cvl7kuUbq8855VnJQ38jOfYyoWhztfrk2c3b/NTmfZsuTp706WRoeefrPnSWQW0w4Gpl9bETU8n4ZO9qAQAAAAAAAAAAAAAAAAAAumtkoQsAAIBFZ/mmuc0fXp1c8W/JxguT5RuS0XuTfXcnRz08GVl15PgVxyZjDxzZvvqUudXB4WoTs5u37qzW/SNrkrVnJbturL7mpkuSk35sdvXAgCs7CEZLktGJZMWy3tQCAAAAAAAAAAAAAAAAAAB019BCFwAAAIvOimPaj9lwQfO+/3Z9cvwPTYeiJcmqE5JNFzcORUuSR76+cftDfr19HVQ3tm1281ad2H7MU75ScbEiOe0nk8vfnQwNz64eGHC1ToPRxntTBwAAAAAAAAAAAAAAAAAA0H2C0QAAoNuWb2w/5ke+lGx+yuFtw6un29ed3dl+pz03WXfO4W1rz0xOe35n69DapsfObt6qk9qPGVmVnPHTrccMrUh+Yiq57F3JmtNmVwssAh3momV0oidlAAAAAAAAAAAAAAAAAAAAPSAYDQAAum1oODnxv7UeM7w8+cF/SS54Y3Li05IzX5Q86TPJpos732/5xuRJ1yYP+R/JCVdOf77yM8nK42ZVPk0c/8Ozm7dsfbVxJz+jdf+KTUlRzK4GWERqtc7GC0YDAAAAAAAAAAAAAAAAAIDBMbLQBQAAwKL0qN9Ltn6wcd9RD5/+PLw8edhvdme/lcckF/5Bd9aisfNfOf1vuv1r1edseGT1MLPNT05SJCkb9y/fWH1fWMRqTX5Emhkd700dAAAAAAAAAAAAAAAAAABA9w0tdAEAALAobXhE8v/c1rjvlGfNby10x4pNyZX/2dmc03+q+tiRNcnGC5v3Lzuqs71hkeowFy2jEz0pAwAAAAAAAAAAAAAAAAAA6AHBaAAA0Ctrz0ye+KnDA61OeXbysN9asJKYo2Xrqo8982eTc3+ls/Wf8IHmfa1C02AJqdU6G79fMBoAAAD0jU/cVOZX/6mWX39PLV+8vdP4cwAAAAAAAAAAAABgKRhZ6AIAAGBRO/4JybPuT773lWT1ycmaUxa6IuZqeHUyta9x3+YfSR7x2mTVCcma0zpfe/VJybkvS27588Pbi+HkjJ/ufD1YhDo9Mj063pMyAAAAgA79zWdqecn/OXRn/+efKPPuXxzKMy4sFrAqAAAAAAAAAAAAAKDfDC10AQAAsOgNL0+OfZxQtMXiob/ZuH3FpuTyq5NjLpldKNpBj35Tct4rptdLkg2PSH7w/ckxj539mrCI1DpMRhud6DRKDQAAAOi2qVqZ33nf4ffoE1PJq/+ltkAVAQAAAAAAAAAAAAD9amShCwAAABgoZ/5McutfJaP3HGpb/5DkKdclI2vmvv7QsuQxf5w8+s3J1Ggysnrua8IiUuvwvPToRG/q6Gej42W270uOW5eMDBcLXQ4AAADkc7cm2/Yc2X7D1mTrjjInbnD/CgAAAAAAAAAAAABME4wGAADQiTWnJk/6XHLTHyc7vpFsujh56G92JxRtpqIQigYNlB2OHx3vSRl9648/Wsvr/q3MztFk81HJX79wKD/6SIfLAQAAWFh3Ptj8jn7XaHLihnksBgAAAAAAAAAAAADoa4LRAAAAOrX2jOSiP1voKmBJqnWYjDY60Zs6+tG/Xl/mVe859ADdszN53l/XcuPrhnLqJuFoAAAA9KepTlPQAQAAAAAAAAAAAIBFbWihCwAAAACoquw0GG28N3X0o2u+cuSDMzqR/OV/OmEOAADAwmp1Z7pvCd27AwAAAAAAAAAAAADtCUYDAAAABkat02C0id7U0Y+uu6Pxg/MHHxaMBgAAwMJqFXS+d2z+6gAAAAAAAAAAAAAA+p9gNAAAAGBgdBqMtm+8N3X0o5vubd63e79wNAAAABbO/hbB5YLRAAAAAAAAAAAAAICZBKMBAAAAA6PsMN9r+97e1NGP1qxo3reUHgcAAAD6z54W4WdLKdQcAAAAAAAAAAAAAGhPMBoAAAAwMGodBqNt29PhhAG2alnzvt0tDqADAABAr+1tEX62d3zp3LsDAAAAAAAAAAAAAO0JRgMAAAAGRtlxMFpv6uhHy0ea9+0anb86AAAAoN7eFoHdrfoAAAAAAAAAAAAAgKVHMBoAAAAwMGqC0ZoaLpr37d4/f3UAAABAvVbhZ/vG568OAAAAAAAAAAAAAKD/CUYDAAAABoZgtObGJpv37RKMBgAAwAJqFYzWqg8AAAAAAAAAAAAAWHoEowEAAAADo+wwGG3naDI+2eGkAdUqGG33/qXxGAAAANCf9o41vy/dOz6PhQAAAAAAAAAAAAAAfU8wGgAAADAwarPI93pwT/fr6Eetg9Hmrw4AAACot69F+FmrPgAAAAAAAAAAAABg6RGMBgAAAAyMchbBaDtGu19HvynLsmUw2i7BaAAAACygyVrzvomp+asDAAAAAAAAAAAAAOh/gtEAAACAgVGbTTDavu7X0W8mp1qHxu0WjAYAAMACanXPOikYDQAAAAAAAAAAAACYQTAaAAAAMDBaBaONNHmXYykEo41Ntu7fJRgNAACAPjVVW+gKAAAAAAAAAAAAAIB+IhgNAAAAGBhli2C0jWsat+8YbTFpkWgXjLZXMBoAAAALqNWd+aRgNAAAAAAAAAAAAABgBsFoAAAAwMCoNTlJXRTJhlWN+3bs6109/aJdMFq7fgAAAOilVkHnk1PzVwcAAAAAAAAAAAAA0P8EowEAAAADo9lB6qEi2bC6cd+O0d7V0y/aBZ/tn2hxAh0AAAB6rNVd6WSzFHQAAAAAAAAAAAAAYEkSjAYAAAAMjGZnpYskG1Y17tuxr2fl9I3xtsFo81MHAAAANNIs6DxJJqfmrw4AAAAAAAAAAAAAoP8JRgMAAAAGRrNgtKGhZMPqomHfUghGG2sXjNamHwAAAHqpVTDaLffNXx0AAAAAAAAAAAAAQP8TjAYAAAAMjGYHqYeK5KjVjft2jvaunn7RNhhtYn7qAAAAgE7dfF+ydUeL5DQAAAAAAAAAAAAAYEkRjAYAAAAMjFqTc9JFknUrG/ft3r/4D1ePtQk+E4wGAADAQmp3Z37NVxb/vTsAAAAAAAAAAAAAUI1gNAAAAGBgNDsmPTSUrG8ajNazcvrG+FTrfsFoAAAALKSyTe7ZK94tGA0AAAAAAAAAAAAAmCYYDQAAABgYtVrj9iLJuibBaLuWQDBas8flIMFoAAAALCSxZwAAAAAAAAAAAABAVYLRAAAAgIFRa3KSeqhoHoy2ewkEo021OWE+KhgNAACABVRKRgMAAAAAAAAAAAAAKhKMBgAAAAyMZueoh4aS9Us4GK1Wa92/XzAaAAAAC0gwGgAAAAAAAAAAAABQ1chCFwAAAABQVbMAsCLJupVFGkWn7VoCwWhTbQ6YD3ow2te/W+aNHyzzlbvKDBfJRacXef3Ti5x+TLHQpQEAAFCBXDQAAAAAAAAAAAAAoCrBaAAAAMDAaHaQeqhI1q1s3Dc+mYxPllk+snhDtJoFxh00WUsmp8qMDA/eY3DjPWUu//1a9owdarv5vjIfuaHMja8byqa1g/c9AQAAAAAAAAAAAAAAAADQ2NBCFwAAAABQVa1sHI1WFMn6JsFoSbJ7f48K6hNTzRLjZhib7H0dvfAXnywPC0U7aNue5E8/XuEbBwAAYME1uZ0HAAAAAAAAAAAAADiCYDQAAABgYNRqjduHimRdi2C0XYs9GK3J4zLT/one19EL197W/PT8e7/qZD0AAMAgcPcGAAAAAAAAAAAAAFQlGA0AAAAYGM0OUrcNRhvtSTl9o1a2P2I+iMFotVqZm+9t3v+te5Jv3+d4PQAAQL+rcNsKAAAAAAAAAAAAAJBEMBoAAAAVPbC7zJs/WsvvvK+WD33DaVYWRq3JU68okg2rms+7b1dv6ukXU7X2YwYxGO3u7clom7r/5XqvRwAAAP1OMBoAAAAAAAAAAAAAUNXIQhcAAABA/7vzwTKX/34tW3YcbCnziiuLvPm58raZX80OUg8VybKRIsetS+7ffWT/1p1lkqKntS2kZoFxM7ULGOtHtz/Qfsxnbinz60/ufS0AAADMXpVctInJMstGFu+9OwAAAAAAAAAAAABQjRPsAAAAtPWGfy9nhKJN+9OPl7n+7irHWqF7mgWAFQfOTZ+4oXH/lu29qadfTNXajxmf7H0d3bZvvP2Ym+7tfR0AAAD03iAGegMAAAAAAAAAAAAA3ScYDQAAgLY+d+uRaVRlmbzxQ4LRmF/NgtGGDgSjndQsGG1H4/bFotnjMtP4VO/r6LbJCoFvt29Lxie9FgEAAPSzssJtW5VwbAAAAAAAAAAAAABg8ROMBgAAQFs33du4/eovCyNifjU7SH0wGO3EDUXD/q07FvdzdapCgNj4ZO/r6LaJCmFuU7Xktgd6XwsAAACzV+WufHSi52UAAAAAAAAAAAAAAANAMBoAAAAwMGpNTlIXB/LQNh/VuH/bnt7U0y8WbzBatUC7Ox/scSEAAADMSbOg85l27+99HQAAAAAAAAAAAABA/xOMBgAAwJzs3l8tuAi6odlB6qEDwWhHrWrcv2esN/X0i2aBcTONT/W+jm6bqFjzlh1ehwAAAPqZYDQAAAAAAAAAAAAAoCrBaAAAALRUtjm5es/OeSoE0jwArDgQjLZ2ZeP+xX64eqrWfsz4ZO/r6LbJisFoW3f0tg4AAADmpkqc9a7RnpcBAAAAAAAAAAAAAAwAwWgAAAC0NNYmTOkegUTMo2Y5fUMHgtHWrWjcv9iD0ZoFxs00NlnlGHp/magYjLbF6xAAAEBfa5O7nyTZOTp4960AAAAAAAAAAAAAQPcJRgMAAKCl0fHW/ffsdGiV+dMsAOz7wWgri4b9e8Z6VFCfmKq1HzPeJuSwH1UNRrtnh9chAACAQbdrkYeaAwAAAAAAAAAAAADVCEYDAACgpdGJ1v337Z6fOiBpHoxWHMhDW7uicf/+iWRyavGGZ1UKRqsYMtZPqgajbdnR2zoAAACYmyp35ILRAAAAAAAAAAAAAIBEMBoAAABtjI637t81Oj91QJKUTU5SDx0IRlu3svnc3Yv4gHWzwLiZxid7X0e3TVYIfEuSrYLRAAAA+lqz+/mZvMcEAAAAAAAAAAAAACSC0QAAAGhjf5swpV2LOGyK/tMsAOxALlrLYLQ9Y10vp29MVQgQG5/qfR3dNlGx5vt2JxOTFU7ZAwAAsCAqBaN5jwkAAAAAAAAAAAAAiGA0AAAA2hgdb92/a3R+6oAkaXaOeujAOxxrVzSfu31f18vpG80C42YabxNy2I+qBqOV5XQ4GgAAAP2pSpS195gAAAAAAAAAAAAAgEQwGgAAAG2MTrTu371/fuqAJKnVGrcPFdOf161sPvcPP1LlGPZgmmryuMw0iMFokxW+r4O2bO9dHQAAAMxNWeGWfNfo4r1vBwAAAAAAAAAAAACqE4wGAABAS6PjrfsdWmU+1Zo83Q7komXNiqQoGo/5/G2L97na7HGZaWwAg9EmpqqP3bqzd3UAAAAwN1XuyHcJ3wcAAAAAAAAAAAAAIhgNAACANkYnWvc7tMp8anaQeujAOxxFUaRsMmjZcE9K6gtTtfZjxjsIGesXnQSjbduzeIPvAAAAloJdowtdAQAAAAAAAAAAAADQDwSjAQAA0NLoeOuwIcFozKdakwCwYsbXTzy/8Zgdi/iAdaVgtMne19FtnQWj9a4OAAAA5qZZiPlM3mMCAAAAAAAAAAAAABLBaAAAALSxv02Y0q5FHDZF/2l2jnpoRjLaK65s/HbHjn3dr6df1CocMB/EYLRJwWgAAACLQpVgtJ3eYwIAAAAAAAAAAAAAkowsdAEAAAD05I0k1wAAIABJREFUt7GJ1v279s9PHZA0DwAbmpGFtmF14zFjk8n+iTIrlxWNBwywqVr7MeMdhIz1i4kOan5QMBoAAEDfqpCL5j0mAIAOFEXx6CTnJDnpQNOWJLeUZfm1hasKAAAAAAAAAAC6QzAaAAAALTULojpo12hSlmWKYvGFTdF/ak0CwGY++5oFoyXJ9r3J5g1dLakvtPs5TZKJyd7X0W2THQWjVTlmDwAAwEIoK9yy7R1Lpmplhoe8xwQALJyiKM5McnGSiw58fnSSdTOG3FmW5ekLUFqKoliW5FVJfj7JWU3G3Jrkb5O8uSzLNn/+CAAAAAAAAAAA+pNgNAAAAFpqF7g0WUv2TySrls9PPSxtzZ6OM89Mb1jVfP6O0cUZjDbVJDBuprEBDEab6CAYbdue3tUBAADA3FSNst69v3XgOQBALxRFcUWS38p0GNrRC1tNY0VRnJPknzId1NbK2Ul+L8lziqJ4flmWt/a8OAAAAAAAAAAA6DLBaAAAALTULhgtSXaOCkZjfjR7PhYzg9FaHKDesa+79fSLKj+n45NVj6H3j8kKgW8HCUYDAAAYfLtGBaMBAAviUUmevNBFNFMUxQlJPprktLquW5PckKRI8rAkZ83oe0yS/yiK4gfKsrx/XgoFAAAAAAAAAIAuEYwGAABAS1MVgol27U9OOKr3tSx27/piLVdfV2aoSJ7/2CLPu3hooUvqO2WTbK+hGcFoq5cnI0ONQ7UWazBalZ/T8ane19FtE1PVw9wEowEAAPSvZvfz9XaO9rYOAIAOjSX5bg4PHJtXRVEMJXl/Dg9FuyfJi8qy/I+6sU9JclWSEw40nZHkfUVRXF6WVX8jAwAAAAAAAACAhScYDQAAgJZqFY5J7HJodc5+/8O1/NZ7Dz3Y/3J9ma07annlk4SjzdTs+TgzGK0oimxY3Tgo695dZZLiyI4BVyU/bP9E7+votokOwtx2jiYTk2WWjSy+f18AAIBBVzWGY9f+3tYBANDCRJIbknw5yXUHPn8jyWVJPrmAdb0gySUzrr+X5NKyLO+oH1iW5YeLorg0yVeSbDzQfGmS5yX5px7XCQAAAAAAAAAAXeN0NQAAAC1VCkZzaHVO9k+U+YMPH/lAv/FDZcYnK54cXiKaPR+Luiys0zc1Hnfzfd2tp1/Uau3H7BzAAMNOgtGS5Hv7elMHAAAAc1P13Q3h+wDAAnlHkvVlWV5YluUvlGX5trIsv1qW5YL+yZGiKIaTvLau+dcahaIdVJbld5L8Wl3zG4qi8N+KAgAAAAAAAAAwMPzHLgAAALRUJXDJodW5+dpdyfYGgU7b9iTf3DL/9fSzsslJ6qG6YLTzTygajrv5nsUZNDdV4dvaMYChYZMdBqNt29ObOuhvd2wrc/3dZXbsW5w/3wAAsBg0u5+vt2u/3+sBgPlXluX2siz78c8AXZ7kjBnXW5L8Q4V5/+fA2IPOSnJpF+sCAAAAAAAAAICeEowGAABAS7UK51EdWp2bm+9r/vjd0qJvKWr2fCzqctDOPaHxuJvu7W49/aJKgOGOAQwwnOg0GG13b+qgP9VqZX7pH2o5+3dqufD1tZz527X881e8ZgIAQD+q+pv6rn6MIwEAWDjPrLt+Z1mWbd85PzCmPkDtWV2rCgAAAAAAAAAAekwwGgAAAC1VCkYbwMClfnLr/c37bmnRtxSVTZ6PQ/XBaMc3Hnf39qRstsgAq/JzumPf4H3vHQej7elNHfSnq64t87ZPl99//u/Ylzznr2vZtnuwnucAALAUVL0d3ek9JgCAmZ5Sd/2pDubWj33qnCoBAAAAAAAAAIB5JBgNAACAlqoELjm0Oje3tQg/u/ne+atjEDR7PtYHo52ysWg4bt/44ny+1mrtx0xMJaPjva+lmzoPRhOItZT8ycca/3sf96rawIUAAgAA04TvAwBMK4piRZKz65q/0MES19Zdn1MUxfK5VQUAAAAAAAAAAPNDMBoAAAAtVQlG2ztgYUv9Zu948wf5pnuE+8zU7PlY1OWgnbih+RpbdnSvnn4xVfFpsmPADphPVgh8m2n7vt7UQf+588EyN2xt3v+l78xfLQAAQHtVs4t37e9tHQAAA+S8JMMzru8vy3JX1ckHxm6b0TSc5Nwu1QYAAAAAAAAAAD0lGA0AAICWahWCifaM9b6OxWxyqnnfzfcltSrpdEtEs4PUQ3XBaJuPar7Glu3dq6dfTFUMENsxYMFhEy1+NhoRjLZ0fHNL6/73/ZfXTQAA6CdVf0PfNWCB3gAAPXR23fVds1ijfs45s6wFAAAAAAAAAADm1chCFwAAAEB/m6pwcnWvYLQ5aRX+tG88uXt7ctqm+aunnzXLiCvqgtGWjxQ5bl1y/+4jx27ZUSYpjuwYYFXD83YO2AFzwWg0s2+8df/HvlUmz5qfWgAAgPaaBZ3X271fyDEAwAEb6q7vn8Ua9XNa/FmZ6oqiOC7JsR1OO6sbewMAAAAAAAAAsDQIRgMAAKClWq39GMFoczPZ5jG+Y5tgtIOaHaQeapBzdtKGxsFotz3Q3Zr6QZUAwyTZtb+3dXRbs2C04aFkqsHPzY69DtAvFeNtnvSjE/NUCAAAUEnVu7VBC/QGAOihtXXXs/lNqX7OulnWUu+lSV7TpbUAAAAAAAAAAOAIQwtdAAAAAP2tVuHk6t4xYURzMdkk/OmgLTs8vgc1ez42CkY75/gGjUluumfxPZ5VAgyTZGzAwqKa/WwcW38c7IAdDtAvGeOTrfvbva4CAADzq1nQeT3BaAAA31f/Tvhs/vRJ/W9XTd5dBwAAAAAAAACA/jKy0AUAAADQ36oFo/W+jsVsom0w2vzUMQiaPR+LBhlo55/QeOxN93avnn4xVfGA+f7JMknjwLh+1Oxn47j1yb27jmzfvq+39dA/xtoEo23ZkZRlmaLRiwMAwCzcen+Zj9xQZvlI8rRHFDlxg98zoBce2L3QFQAA9K3Z/NWXxfeXYgAAAAAAAAAAWBIEowEAANBSlWC0PYLR5mSy1rp/q2C07yubPB+HGmQSPGRz47Hfvj+ZnCozMrx4ggxqbZ5DB41N9LaObmsajLaucfv2vb2rhf4y3iYYbd/4dFDe0Wvmpx4AYHH71+vLPO9ttew/8Pv0xtVlPvKKoVx0+uK5p/j/2bvzODnqOv/j7+qZyT2TmyQT7isBRBQvZFlF8b5W8WQFj3VX/Hlf6wEKKKIoiAouIMqxIIeCgghyiBwLBJCbJCSTkJPMlbmnp+fsru/vj84wPTP1ra7q6e6p7n49Hw8e6a5vVfWn6/h2VZHvO0Ch2e7nJ2ruIeQYAABgj74J72fnsI6Jy0xcZ64ulnRjyGUOkvSXPH0+AAAAAAAAAAAAAAAAyhzBaAAAAAAAX0GC0RLDha+jnBGMFpztePQaLn3YCkfS5AVGUtKWNmnV8ryWNq1SAQeYD2UJk4oa27mxtNZ733b1F7YeRMewJTQv06ZW6ZgDC18LCuOxrUYX3WtkJL3jCOnkYxzCMQAA08J1jb5w3VgompS+7nztj125l1VNX2FAiQl426qhJCHHAAAAe0Q2GM0Ys1vS7jDL8GwPAAAAAAAAAAAAAAAAYcSmuwAAAAAAQLS5WUK7JKlvsPB1lLORLAE/Td1Bhw+XP9uWiMUmD6g5dJnkMVmStKE5fzVFQSrAeSppXJhDKbCdG0vmeU/vHkgHV6D8DQU4lhtaOBZK1V3rjV5/rqvr/ml0/T+NPnml0Xf+zP4EAEyPR7dJu7q8235yR8ALcQAyIS7nCIgHAACQJPVMeL80h3XsNeE9V1oAAAAAAAAAAAAAAAAoCQSjAQAAAAB8BckYSgwXvo5ylswSjNaRKE4dpcAW1OcVgDarxtEBS7zn31BmgUlBs8CGkoWtI99swWh71XpPN0bqJaixIgxn6TclaWNL4etA/hlj9KXrJ3f2F91r1B4vr74bAFAaHttq//05/WajFMG8QCBhzhSC0QAAACRJmye83y+HdUxcZuI6AQAAAAAAAAAAAAAAgEgiGA0AAAAA4CtlCaLK1DdU+DrKWTLLNm7vK04dpcCWOeB4BKNJ0mErvKfv7MxPPVER5DyVpMGRwtaRT8YYezBanX25rv7C1INoGQ4Q8tfYVfg6kH9P7ZRe2D15+uCI9PCW4tcDAEB/liDwtY3FqQModSZEMlpTD4GDo7a2GTW0EMIIAECFapCU+ZR8L8dxLP9syGSO49RJyvznY1IiGA0AAAAAAAAAAAAAAAAlgmA0AAAAAICvIOMuh5NSMsUAzVzZwp9GdSbEANg9bFshZglGW1bn3dBZZmFzQQ+PoQBhUlHh952WzrPscEndBKNVhOEs/aYkxQfpN0vRX56x77e1jexTAEDxZQsCb48Xpw6g1IUKRusuXB2lIj5o9JYLUjr4dFeHneHq8DNcPd/E9TAAAJXEGDMkaeI/FfD6EKs4dsL7zXvWCQAAAAAAAAAAAAAAAEQewWgAAAAAAF9BA5cSDKXIWTJLwI9rpK7mTpm7rpO56dcyL24uTmER5Lre020xWYvneU/vSJTXYOKUZbtMVErBaH6Bgbb9KkldBKNVhKGR7PPE+V0qSbc+a++ft7YVsRAAAPZoyxKqXErX2ECpaO6Z7gqm3xevM7p349j7zbulj13myoRJmAMAAOXgzgnvjw+x7MR575hSJQAAAAAAAAAAAAAAAEAREYwGAAAAAPAVNBitjwCanCUDhFq1f/WjMj/6tMyvviFzylEy/7ix8IWVkJjlCcfiud7TO7KEG5SaoOfpYIAwqajwC0abXSPVzvJu60oUph5Ey3CWQElJ6h0ofB3Ir94Bo+d22dsf304IBACg+Fq6/X9/yi10GSiUMGdKc5bzrtwZY3T72snbYF2T9OjWaSgIAABMp5snvD/FcZyqbAvtmefkLOsCAAAAAAAAAAAAAAAAIotgNAAAAACAr6CBS4nhwtZRzvwCoEa192Rs4FRK5rzPywxXXhqd7Xh0LPPbgtEaWvNSTmSkAoTrSdJQsrB15JPfeVFTJS2c493W1V/ZA+grxUiAYzk+WPg6kF8vdvm3r2+SGlqicY4/vt3o89e6+vClKf32QVfGRKMuAED+9We51y230GWgUMJcLjX1FK6OUjCSkjotod9XP8p1JwAAFeZBSdsy3u+tyYFnXk6WtDLj/RZJD+exLgAAAAAAAAAAAAAAAKCgCEYDAAAAAPhyAwYu9RFAk7NkgG3cVrXX+AmJXmn9Y4UpKMJsx6NjSUZbPM+7YXBE6imjAK2gAYbDJRSMlvQJRqv2DUYrTD2IluEAgZLxysuOLHmNWYLRJOmwMwJemBTQAw1GbzzP1aUPGP3pKenUa4w+f135/KYAAMbLdt3RYQkvAjBemKulHR0FK6Mk+IXIbdnNdScAAKXMcRwz4b/j/eY3xqQknTlh8gWO4+zv8xn7S/rFhMnfM8ZM/4M1AAAAAAAAAAAAAAAAICCC0QAAAAAAvvwGY2ZKDBe2jnLmFwA1qqlmxeSJax/JfzERZzscY5YnHIvm2td17p3lM5g4aIDh4Ehh68inEZ/zoqbKvm8JpqgMQyPZz984gZ0lp6knWL/81I7p7b9/dpc7qT+97P+MmrvL53cFADAmW7gw159AMEGfL0lSc4/UO1C511Z+4eebdxevDgAAKo3jOHs7jrP/xP8kLZ8wa7XXfHv+W1KA0q6VlPkv5SyStMZxnLd5fIe3S3pE0sKMyWsk/aEAdQEAAAAAAAAAAAAAAAAFQzAaAAAAAMCX32DMTImhwtZRzvwCoEY1VtdPnjhrdv6LiTjb8RhzvKevmG9f11+eKZ9B1qmAX2UoWTrfOVsw2mJbMFpfYeqpBMYYbWw2aukxMmFSC6bBcIB+Mz4ouUF/xBAJjV3B5rt/0/Tu1zvWTZ5mjHTZgxxvAFCOsl13dBOMBgQS9hajobUwdZQCv9uYlp7i1QEAQAV6SNI2j/+unzDfSst82ySdn++ijDGupA9I2pkxeYWkuxzH2eQ4zs2O49ziOM5mSXdqfJDbdkknmqg/8AUAAAAAAAAAAAAAAAAmIBgNAAAAAOAraKZMH8FoOXFdE2gbN1WvmDwx0Zv/giIu5XpPtwWjHbTUvq6NLVJjV3mMBXIt22WioZHC1pFP2YLRFs3z3uldifLYp8W2qdXo2HNdHX6mq/r/dvW+X7uR3pbDyWDzJYYLWwfyq7E72HwbWwpbR66eb5ruCgAAhZDtuiM+GN1rJiBKwp4pDS2Ve275xZYMBbwXAgAA5cUY0yzprZKentB0iKT3S/o3SQdPaHtK0luNMRUcOQsAAAAAAAAAAAAAAIBSRTAaAAAAAMCXLYhqosRQ+AGrfYNGtzxtdNG9rtbuqswBr0G3b2N1/aRpprstz9VEn2tJkbMFozmOo+v+09IoaUdnPqqafkEDDAdLaAB10ufcqI5Ji+d6t3UkClNPOXNdo89c5eqxbWPTbl8rfePG6PbLQYPR4oOFrQP5tWV3sGNuU0RDMoaT0awLADA1foG9khQnJBwoiLb4dFcwfYLe4wMAgMpijNkk6XWSvitpq8+sW/bMc4wx5oVi1AYAAAAAAAAAAAAAAADkW/V0FwAAAAAAiLaggzH7Qg4Gb+01escvXT27a3SK0S8+6ugrJ1RWhne2QfajmmtWTJ7Y3ZHfYkqA7Xi0BaNJ0kdf4+jff+e9YHuZDLQOep4OjRS2jnzyOzdqqqTF87zbOvoKU085e2Sr9PCWydNvetLo0pONZlT7nGDTZChgMFrvgFS/oLC1IH8aWoPNtyngfIVgC+iUgh+XAIDSki2QtY8gViAQEzLsKzFcmDpKQdhtBQAA8sMYs38RPmNKD1uNMSOSzpV0ruM4r5J0qKTRf1mnSdImY8yTU6sSAAAAAAAAAAAAAAAAmH4EowEAAAAAfPkFgGRKhAxG++mdJiMULe0bfzT66KuNls+PXghPoSTdYPN1xzySfXra81tMCbAdjlU+eXqO42jvhdKurslt7X1GUukfb4GD0UootCdrMNpc77aORGHqKWcX/sP7AOobktr7ohksNhwwVLKlV1rtkSuJ6EkMGe3sDDZva1waSRrVTENon1/fFPS4BACUlmz9ezzkvTBQqcJmfYV9zlROgt7jAwCAyrYnAI0QNAAAAAAAAAAAAAAAAJQln2HDAAAAAAAEH4zZF3LA6m8emLxi10i3PFNZoz/9AlYyxWPzJk/sastvMSXAdjzGsmTjLPHYfFI69KkcBD1PB0cKW0c+ZQ1Gm+e909v7JGMqqx+Zqq3t9u3VEdFzZDhgyF9TN8dCqdi8O/i8xqRD76aDXzjOUAn1sQCA4LJdd8QHi1MHUOpst2nVlr+xEPY5UzkhGA0AAAAAAAAAAAAAAAAAAACVjmA0AAAAAICvoIMxE8Ph1jtgCQ+56uHKGv2ZdIPNF6+qk6sJQVAdzfkvKOKswWhZnnAstQSjbQoRxBNlbsDjyHbeRVHSJ3yoOibtVevdNpKSOhOFqalc1VTZ26IaHjgUMBitsbuwdSB/NjaH+/2frn3rF47jF5oGAChd2fp3gtGAYGzBaPNmeU9PVHAwWras72Sqsp6dAQAAAAAAAAAAAAAAAAAAoPIQjAYAAAAA8BU0GK1nIPg6E0P2lWYLuCo3fuFPEyVic8dP6OmQGa6skcK2ALCY4z191JJa7xmueMjIZBtxXAKCnqf9IQMMp9OIXzBalbRivr29uSf/9ZSzlE+wXkdEQ+b8wqkyNRGMVjIaWsPNP1371q9vCnpcAgBKi1/fL6WvsVNBL8iBCmY7S+bN9J5eSvev+ZatS6nk0DgAAAAAAAAAAAAAAAAAAABUhgobbg4AAAAACCvo+O7OvuADwVt77W1VWQKuyk22QfaZemN1kye2N+WvmBJgOx6zBaMtnmdve3Bz7vVERdDztJQGT9vOjeqY5DiOlnmcDqMIRgtnwCdwoD1E315MwwH7ToLRSsemkMFojd3Tc2z6hZ8NEYwGAGXHGBMo+LKUrrOBqKmd5T29bzCa9yLFkO2bV3JoHAAAAAAAAAAAAAAAAAAAACoDwWgAAAAAAF+uG2y+tnjwdfoGo1XYnWoy4PaVpHjMI92rvTl/xZSAXIPRDlhsbzvr1hA7IaKCBqOV0uBp27lRXZX+c0a1oyWWwLvmnsodQJ+LQZ+wj/a+4tURRpCAEklqi3MslIqOkCF8nYkCFZKFXygfwWgAUH6SAcNY44OFrQMoB8ZyuTdvpvf0RAndv+ZbtmdxlbxtAAAAAAAAAAAAAAAAAAAAUBkqbLg5AAAAACCsoIFLYcJzdvuEqFVaqEjQgfaSFI/VTp64e1f+iikBuQajfeCV9hnu3ySdWeLhaEHP06QrjSRLIyhqxHJu1FSNvV4x33ue5p7811POBnwG1XdENBgt6G9FxzSFZyG8sL//0xVAY+ubpOCBfQCA0uEXiJmJYDQgO9udqDUYbahgpURetnv8St42AAAAAAAAAAAAAAAAAAAAqAwEowEAAAAAfKUC5kW1hQjPae21j/CstBAbv4CViXq9gtEat+SvmBJgDUbL8oRj/yWO3neUvf3s24ye3lkagWFe3BC5bv0+IVhRYut7qjP29fI673nCBDVCGhyxt0U1GC1oAFWl/aaUMr/j0Mt0BdD4HXuN3dLQSOn+lgAAJgt6zVEq19jAdDKWyyRbMFpfBYd/ZbuiTNDnAAAAAAAAAAAAAAAAAAAAoMwRjAYAAAAA8GULopqoq19KpoLN3Nprb9veLnX3V06oSDJEoFWfRzCaeXFzHquJPlsAWMzJvuxZ7/N/DPK/j5TucRf0PJVKJ7TB9p2cjH29pNZ7x0c1zCuqBn0CPzoS0TsvjDEaDhgq2dGXnh/RNxQweGbUtAWjZTn2TrzE5ZgDgDISNMh6IGTAJ1CJrMFos7zv6xIVHIyWLfy8krcNAAAAAAAAAAAAAAAAAAAAKgPBaAAAAAAAX0EDl4xJh6MFsTtub0u60h3rSj9Q5KkdRm8+P6W6L6W077dT+uofXA0MT/5eYYLReqsmB6Op0oLRLIdGkGC0Q/fyb7/k/tI97lIhjqPSCUbz3h+Z+3rxPO9l2/tKd18WmzFGAz7HRHsEQ+ZSrj1UYaKhZOkc85XOFoxWU+U9PT44Ped5toCcO9ZJtzxTnFoAAIUXNIyV6w0gO9vV29yZ3tMTFXxeZbvS9buHAwAAAAAAAAAAAAAAAAAAAMoBwWgAAAAAAF9Bg9EkqTMRbL7dvf7tv7zHyARNvYmghhajV5/j6v5NUt+QtKtLuvAfRp+9ZvJ3yhawkqmjatHkic3bc66zFE0lGG3OTEf7Lba3j6SkxFBpHndhztNSCW2wdQGZ+3qJJRitI4JhXlGVTPkfP1EMRrMFaNlwPJSGoRHv6Us9MkElKT5YuFr8DAc4/s66NURaJQAg0oL0+xIhRUAQtnu82lne03sGpFSYm90yku1r93sE7wMAAAAAAAAAAAAAAAAAAADlhGA0AAAAAICvMGNQE0PB5rvxSf+VPr5detlZrja3ltZAT9c1+tZNrg47wzsQ5drHjLbsHv+dkiGC0Zqrl0+e2N0mkwyZElTCphKMJkn/9gr/GZ/cEbKgiCjHYLQg+9oWjBbFMK+oGrCEUY2KYqhY0ICSUS1ZwjgRDbbAO9t5HuVgtLWNKumAVwDAmKDXHYQUAblbMd97esqV2uLFrSUq3Cw5u6VyXw8AAAAAAAAAAAAAAAAAAADkimA0AAAAAICvbIMxMyWyDMw0xui6x4KtcEOztOr7rjY0l84A8yseNjr/bv96b3lmQjBaiO3bXL1i8kRjpK7W4CspcSnL9ooFfMLxrbc7OsxjM456z0UhdkiEVFQwWsa+XjzXex6C0YIbzBKM1jsoDSej1Q8PhwiUlKT7GqJVP8Zbu8vo8odcNXZ7t1uD0QKGsebbSMDjL4qhggCA8IJed2QLmwUg2a7K915gX6bJco1Y7rLdwZTKfT0AAAAAAAAAAAAAAAAAAACQK4LRAAAAAAC+wgQuJXxCSgaGjT7yG1cnXx4uoOaIM11dfH9phFVd/Uj273bfxvHzBA1YkaQmr2A0SWpvDr6SEmcNy3KCLV+/wNGj37U/DukbkoZGSi9EqSyD0WwheBn7esk87x3f1R+9MK+oyhaMJkmdicLXEcZwMtz8D23mWIiqs29zddQPXf3X1fZ9tNRynvcOFKoqf0EDcpp6ClsHAKA4gt6vlco1NjCdjOWSb2mto2rLbbotPLfcZbvHp88BAAAAAAAAAAAAAAAAAABAuSMYDQAAAADgK0zg0ieucPWPDd4L/PEJoz89lVsNX7zOTAoUixpjjNY2Zp9vQ8v498lQwWj13g0dBKMFDUaTpNpZjt59pL39hbZwNRWKMUa/f9TVKZe7+u+bXD3fZD8HbCFiXkplAHWQfb1ivn35LRHZj1E3ECAYrb2v8HWEMRQyGK0tXpg6MDVP7zT6wV+z/7Yvnuc9PT6Y54ICChq62NhV4EIAAEURNJA1yDUVAG9VMfu9XVN3tJ8FFYotRG4UfQ4AAAAAAAAAAAAAAAAAAADKHcFoAAAAAABfqRCBS+190tt+6eqKhyYvdNOTUxvMesIFrh7fHt0Bsa29Us9A9vm2d0iDI2PfIxli+zZVr/Bu6Gjxnl6GbAFgYYLRJOnrb7U/EtkQkZy5L11v9IkrjK59zOjndxsd8xNXj271PgfCBBgmhqN7HmUKEox20FL7vt9YOafFlAyWYDBa0ICSUfGhwtSBqblyjQnUdy2t9Z4+MCL1DhS/PxsJGGjaWKEhHgBQboJed5RK+DAwXUyWpK+VC72nN/cUoJgSkO06mT4HAAAAAAAAAAAAAAAAAAAA5Y5gNAAAAACArzCBS5JkjHTGrUbJ1PgFb1879Vq+9ocQKWJ50Dtg9L1bXB10WkqvPSflGfg2KmgIkzHSptax90EDViSpr6pW8di8yetsj0iSVxEECcsK4k2r7Qtc7rN+Ln3tAAAgAElEQVSfi+XFTqOL7x//ZfuGpGPPdT0HlIc5T+ODU62uOGzfycnYdTNrHB241Hu+jS2EEgUxECAYrSNqwWgh+k2pdI75SvO7B4Odo4cus7c9uytPxYQQNCCnqUJDPACg3AS9zh4gpAjw5ZeL5khaOvlRhySpO0AAfTkiGA0AAAAAAAAAAAAAAAAAAACVjmA0AAAAAICvsMFoktTULW0ImdV1w2ezJ1ut2ZIOjCqWL11v9OO/GW1rl57YIf3n1Ub/c593aNa29uB1vdg59npigFw2TdUrJk/sIBitKocnHO9/hff0u9ZLm1unN1Tr7uftn//zv1d2MNrEELxVltCkrW35radcDQUIRmvvi1bIXJCaM/VWaJhClCWGjAYD7sdDlzlaMMe77amdxT82gwbzbaMPAoCyEPQ6m5AiwJ/fqeQ40oI53s+EevoLU0/U+QXJSfQ5AAAAAAAAAAAAAAAAAAAAKH8EowEAAAAAfOUSjCZJG1rGFhwY9l/J8jrpA69w9LbDs693v++42t1b+CCUZ180uubRyZ9z8f3en93YHXzdPQNj60h656xZNVbXT57YTjDaxLCsIFavsC+06vuu3FwP/jy453l722l/NjITRkmHKbW3VILRLOfGxH2972Lv/djcHa0wr6gKcux0JApfRxhBg6lG9Q1p0jmD6dUU4jdzdo109L7ebU/vzE89YYwEPP4apjlgEwCQH0EvIQZCBrcCGOM4Ut1s77bu/sq8psp2nzZAMBoAAAAAAAAAAAAAAAAAAADKHMFoAAAAAABftnCibDZkZHWdfbv/iM6LToqpptrRrz4W01612dd9xJljoVWPbTW67jFX/9yW38Gyv7jHe30bmqX+ocltYUJeegbGXgcNWBnVXL1i8sSOlnArKWHWYLQcnnActty//bIHp28A9rxZ9rakK8Uzws2MMYEDG6Txy0aZ7StNDEZbucB7vjBhhZUsSDBae1/h6whjOBluftdI/QQHREqY38yZ1dIr9/UOQHxqR/H76aDHX0MLgXwAiqO7P30/dMvTRh199Dv5FnSLElIE+PO7LHIkLZjj3dY94D293GW7jMz2DxAAAAAAAAAAAAAAAAAAAAAApa56ugsAAAAAAERbkNAcL5tax17f9qx9JU+cHtPR+6UDT1Ytd7T5nJhe/SNXm3fb192RkI7+kasj6h1d/8/RdRt95jhHl53iyHG8A1TCuHu9veaOhDRn5vhpTd3BN1TmwN5kyOC5Jq9gtKatMsmknOryv823BfVNDMsK4rAVjvyiDq591Ohzbwy/3nzoyxJe1pmQ6manX4fN3YmXyMDyoCF4tmC0pp781lOughw/HSUejCalAwHnzsw+H4qjqSd4xzWzRjp6X++2DS3ScNJoRvXUf/eDGg4YaNrVL7XFpb3qClsPgMr2xHajEy5w9wTfGtUvkG79wtj9FaYu6P1wPyFFgC/fYDRHWjDbu627vzD1RF22vofgZwAAAAAAAAAAAAAAAAAAAJS7WPZZAAAAAACVLNdgtBc7xxYc9AmxmThov3aWo3VnxfThV/kP5n9ulzJC0dIuf8io6lRXH/+dq9884CqVa/GShnxqbvcICWrqDr7unoxgqpGAASujmms8gtH6eqS1a8KtaAqM68rc9ye5554q99LvyXS0FO2zrWFZOWQ/HL5CmuGTJffwFsmETR3Lk2yhQV0Zg8PDHubxwdIIbQgagle/wHvnt8WloZHS+K7TKcjx0zMQre3o1z/b9GYJG0RxNYb4zZxZLR250vs8T7lSS5FDEFMhAk0bWrPPAwBTccrlo6FoaU3d0lduCJm8DF9BbwfiXGsAvrKdSgvmeE/vLpFg73wjGA0AAAAAAAAAAAAAAAAAAACVjmA0AAAAAICvXLPFMkNPeiwDWV9W7z29ptrRH06N6Ten5JB2pXRg2v+71ujDl7o5B1v5BZ94BaPt7Ay+7sztkQwZjNY0Y2/P6WbN7eFWNAXmZ/9P5ox/l26/Srr2PJlPHi2zY2NRPjufwWhzZjr6/PH+C976bPj15kO242lKwWhD4euZDkH39coF9nW09OavnnIV5PjpjVgYwXDKu+hqnyedhJVES5gw0ZnV/ud5c5GD0cL0uRtbohUqCKC8NHUbzwDGh7dIW3bT/+RL0H6/uz/7PEAl83s04zjSgtne9+aVem5le5RFMBoAAAAAAAAAAAAAAAAAAADKHcFoAAAAAABftoHgPznR0YeOti/X1K2XQslswWg/PtH/tvS//jWm1+wfoEiLW56Rqk51dcjpKX3rJleDI8FGtSdTRr0+ITodfePX05Uw2h0PXldmyFDSJ4DNy721J3g3PPTXnEPgwjD3/CEdiJapp0Pm+l8U/LOl/AajSdK5Jzr6zHH2hT9wsavz73bl5poQmIP+IZM9GC0x9tovxM9L1EKubILu63qfwKTGEOFLlSpQMFrEQsVsx/yCOfZlSuW4rxTNIc7NWTXpfTurxru9qdjBaCH63IaWwtUBAH7XOY9uIxgtX4LeYnVzrQH48juVHNmv5XsHVdT78ajI9pUJRgMAAAAAAAAAAAAAAAAAAEC5IxgNAAAAAODLFkCzZJ70x89V6eFve99aDiWljj5pcMRoOOm9jgWzs3/+3V+d+q3rljbp/LuN/uVcV+ubjJ7bZfR8k1Ey5T3StDPhOfkl7X3j3ze0hqunp3/sc0dS4ZbtNLVqq1oyuWHXFmlnQ7iVBWTiXTKbnpF59iGZH3zCe6ZH7izIZ09kDcvK8TCZUe3ot5+IaWmtfZ5v3WR09u3FG4i9eXf2AIaujGMo7BjxeMRCrmyCBqPNny3NmeE9bxPBaFmVYjCareYZ1dK8md5t/9xeeWEKUdbYHXx/1FRJjuOofr53e1OIdeVDmE97MUvIJQBMxWxLYKQkbQ55fwK7oNfa3f2FrQMoZ45jD0YzJvszmnKU7ZnAwEhx6gAAAAAAAAAAAAAAAAAAAACmC8FoAAAAAABf2cKJ9l1kX7axW+oZsLfPDxCMNn+Oo+bz83P7+vSL0pFnuXrFD1297CxXS77m6ppHJie/7Y77r6dtQjDac7vChbJ0Z2yTZMhgNEm6cNEXvBseuzv8ynyYRK/cM0+Weddymc+8TuaLJ9hn7myRiRc+hcq1BPVNDMsK6/hD/Vfwg78avbC7OOE7G1uyf05XRvBC2GC0qIVc2di+l+NMfO+ofoH3vGHClyqV7ZzK1OvTj08HW81VjnTU3t5td6zlWIiSoKGFc2emz3FJWmEJRmvuyVNRAYXpc+ODHHcACsevP3phd/HqKHfZwolGdfVLJujMQAXyOz0cScvr7O1NRb7ei4Js15z9w8WpAwAAAAAAAAAAAAAAAAAAAJguBKMBAAAAAHxlC6JaVmcPpcoWjLZgTrAaltU5evr7+b+F7R2UPnml0X9c5eo7f3Z18u9c/eQOVy//gX9S0I6O8e//FjJwpy0jeC1p+aiFqU7r8n9ecpLndLN1fag6bIwxMs88KPOOpdK9NwZfcOemvHy+n2xBfbk694PZV/CqHwVIkMqDiceXl87E2OsgwVaZSiW0IUwI3kpLMFrQ8KVKFiTkKWphetZ+ICa99yjvc3ltY2kc94XSO2B04xNGtz5j1JmY3u1gjAkcbjF3xtjr+gXe+7bY53mYPjcesXMHQHnx+w1v6a3c37x8CxqImXKlxFBhawFKmW8wmuP/bKkS7+sIRgMAAAAAAAAAAAAAAAAAAEClIxgNAAAAAODLNhizas8dZXWVo+XzvefZ1WV8Q57mzw5ex1H7ONrww8Lcxl61xuhndxpd90+j02/OPvK9oWVsHmOM7m/wnm+/xd7TG7vHAnpGUt7zvGLwWfvna1+1VC2b3LDDUkgIZmRY5jsnynzpLeEX3rFxyp+fTaGC0Q5Y4ui0d/mvJD4obWwufMhEY4BB3139Y6+DhjWMGhwpjdCGMPs6KoFJpSjI4TM4Ig0noxOwkvIJzTvmQO9joatfau8rYFER9vROowO+6+qjl7l6/8Xp8M+ndkzf/uxMpI+pIObNHHu9whKA2NxT3O8Sps+NWqgggPJi+z2UxofoYmrC/Mp0+4SCA5Uu27lUXeVoWZ13W2N3dO5FiiVbpnP/cGUHPwMAAAAAAAAAAAAAAAAAAKD8EYwGAAAAAPAVJJxob0tYSWO3dPrN3iP2HWd84EkQq5Y7uuurMS2eG265fGtoHRuAmhiyB5985jjvgJ7+Yal3z6D5pCXQoMYk9bed77XW0FhTP3nijo2hB8Y+ttXoC9e5+tZlzXr2Z+fLvLlWWvO3UOsYZXZOPZgtG79ApKn6/rsdffx1/is6/ExXL+wOt40f2mz0lRtcffkGVw9uzr5sU4BB391TCEaTpLYSCIiyfa2Yx9OseksfdO1jhsHiWbg+oSqZeiMU9OH3u7R6uX25jS2FqSfqPnmFOy5Msalb+vINAXd8AWxqDT7v3IzrhHpLCGtzz9TqCStMnxsnGA1AAfn1R5n9PqYm6LWSNP4aHcB4frdlzp7bcNt9XSUGXge55gwaNgwAAAAAAAAAAAAAAAAAAACUIoLRAAAAAAC+ggSjrVzoPU9jt7SlzbutbpYUyyHN6q2HO9p+bkz3fzOmWz4f07qzYhq+JKa1Z6Xf//zDeUjIyqK7X2qLp1+3+wRMHXOAvZbGPQN7kynv9mqT1FsS91qXb6taMnlivEvavsFe0AS/fdDV6891dcn9Ruc/sZeO2fT/dNu8dwZefpIdG3NfNiDr8ZiHJxwzaxxd/R+Obv+S/8pe9SNXT+8Mloxz7WOujj/f1UX3Gv36XqM3ne/q6kf80xUaAwz67kqMfX4uwWi7e8MvU2y2EAqvbmOlZQC9JH3rTwSj+Ql6/NgCIKeDreaqmLS0Vlowx7t9S1vlHQvN3UbrmiZPX7NF2tY+PdujoTX452ae7ysswWjFDsogGA1AVPgFdnUlildHuQvza9nJdges/M6l0Us+231dU5GDcKMgSL73AMFoAAAAAAAAAAAAAAAAAAAAKGMEowEAAAAAfAUJoqpf4B0A1tRl5FiywXoGcq9p7kxHbzjU0fte4ejwekfVVY6OqE+//9pbY7r1izGtWpb7+oNoaE3/6ReMduTe9rbRIJcRWzCakorJaK9kq2d7e81S7wUfus3+oRkau4xOvWb8zh2KzdKZS88MNfh/nBChbLmyB/XlJxDPcRy980hHbz3MPk98MB2O1hb331LJlNFpfzbjanaNdPrNRsmU97LGGD26NXudXf3j1xlWm89xGxVBQhlH1fsEo/38bqMlX0vpw5emtL5p/Ep39xp94TpXR5yZ0nE/TenOdZUXnOUGGXGv0ghGiznpc3gfS1hnJYbE7Oy0tz26dXqO940twedNZoT+2K412vuk4WTxvkuoYLShwtUBAJbLSUnp320T8Dce/sJsxuYetjlg43cujd7Or/B5tlRpglxz9g8Xvg4AAAAAAAAAAAAAAAAAAABguhCMBgAAAADw5bre0zODqFZaQole7Bof4JTpW+/IT5CVl/e83NGGs6vkXlalR79bmFvfhpb0KFVbMFpVTFo6T1pa692+rSO9fNKyfWvMiCRpabLds71t79d4TjcNT1kqHm+fb3t/8LOzXq7m6hXeCzmOnGuekfOd32jAmaX1Mw7TgDNrrH3XFpmmbYE+P1dhwrKm4n8+nv24WfYNV/FB+2jlDc3pc2Cixm5pfZP3Mv95dbAB350ZAU+2c9RPtlC3KAizr1daBtCP6kxIf3pKetP5rjr60it2XaMPXOzqkvuNNjRLa7ZI77rQ1QMN0d82+RQ05Kl3CmGW+Zbt2Fg4x7vd9ntUzvz274s+oWmFtN37Z81Talwwmn2+HR251xNWmD53OCkNjVRWnwKgeLL1R1MJosaYoCGyUvo6H0B4o3dztmdLTT1FKyUyCEYDAAAAAAAAAAAAAAAAAABApSMYDQAAAADgK0g4kW3w6vomyTaO/KOvLlwwWqbXHuDoye/F9KGjx0+vnSUdtbf/sm89zN7W0Jr+0xYwtWSeFIs5Omip9/Kb9yyfTHm3V5tkej0p7wSZ9mUv815wZ4P39Az/c59/ikLDjEMmT3z3p+X8YaOSe6/W5xpP1OJDm3XUQU9q4apWfWuvc5RUVXq+h2/L+vlTYQ/qy+/nHLyXo6oAT03mf9nVbx/0Lmp9k30k8zqPtmTK6MYnggUvZAY8+Q2YnjvTe3pbPNDHTKswwWh+gUmZ2vukn92VXvHX/mj0yNbJ87zp564GKyjIKHAw2mBh6wgjlaUfWGAJRuuuwICYxJC9bXsRw8QyNfcEP78yw0P3Xyw5lr5+9De5GML2DvEInTsAyku23/Bv3GhkQoR6wVuYTUgwGmDndy6NXuPVz/dub/QIHC93QfoegtEAAAAAAAAAAAAAAAAAAABQzghGAwAAAAD4yhZAI0krF4ZPpVoyL8eCcvDKfR398XNVci8b+6/nwio9fUaVei+M6Yj68fN/9g2O3MuqdNfXqnTKMd7fbVdn+s/2Pu/PHP1+h+zlvfzm1vQo1xFbMJpGg9G8k2vaZ9Z7Tte252WSSe82SfFBoy9d7z/CdtOMQ8e9d367RrHvXCpnxf764e1Gv31iroZj6cStpFOjCxZ/TbMOi+v3dSep78G/+657qsKEZU1V0FWeeo3R2be5Gk6OL25Lm32ZrR5tW9qkPp8Qo0zdA5K7Z2P4hWIsq/We3mY5bqPE9r28gpFsA+i9nHeXUWuv0UX32jfct/5UOSEitrDBiXoHorNNrP3AniedC+Z4n73diQIVFGF+YQmbWqdnnzb3BJ83Mzx09gxH+y3ynm9jS/G+S9AwwVHxgP06AISVrT+68mGjm58uTi3lLEy/30wwGmDldyq9FIy2wPs6vjWeDhKvJEH6nqkEo7mu0VM7jK59zNXWtsratgAAAAAAAAAAAAAAAAAAACgNBKMBAAAAAHwFCaJauSD8ehfPza2efJs3y9FT34vpik85+smJju7+akyXnjx2u1xv+W5NPekNszvu3f5SMNoy7/bNu9N/2oLnakw63Gxpqt2zfVtqqfeCknTNudam6399t325PRpmHDL25u0fl7P6VS+9/f2j9gGzn1p5ueYP3qzH14dIvQnJdjxWFeAJxxsPzT7PqDNvNXrDz1x19I0VOLqPvTyxffIX2dAc/POMkXoH0699g9HqvKe3W47bKLEFdnmF4M2scTRnRvB1/+QO/4Hf1z9mKmbgfdBv2TNQ0DJCsR0bVXuOjQVzvNu7IxTuViyJYft33thSxEL2MMaoKURoTHLCvl613Hu+hiJ+l6BhgqOidO4AKC+2+4hM594RstPCJGGuHhq7K+9aAwjKBDg9bM+WjAkXrlsOgvQm/TkG8A4njU76rdGrz3F1yuVGB5/u8nsBAAAAAAAAAAAAAAAAAACAyCEYDQAAAADgyzbgPjOIKmww2pwZ0pyZHulG06Sm2tGnjo3p2++I6S2Hj69rxXzvZUYH5W7Z7T1cdXldej37L/ZeviOR/nNi6Muo6j3BaPuO7PRsf7BxrnpqFnm2mSvOlhmanMRitqzTrU8lvT8wwyWLTk2/eP075Xz9Vy9N7+k32tGRdXH911UjSvmldU1BkKC+fPnE68Ot9J/bpaVfd18KPWuL27fB3zdI/UPj2ze2hNtmXf3pP3MJRvOrLSrC7usz3hN8f134D//v35GQ1mwJvLqSFvRUHQ3iiwLrsbHnd2nBbO/2rkRh6omyhE9YQlO31FvksLj4oNQ/HHz+idcgB+/lfZ43dhXve4T9edvaVpg6ACBIf/TEDqmJsK4pCROIWYnXGkBQfj3R6BXePt6POCT5B4+XoyB9z8BIbuu+8mGjG58cv0dOu9nomRf5vQAAAAAAAAAAAAAAAAAAAEB0EIwGAAAAAPBlDe6qGns9b5aj+ZYgGi9L5k2tpmJasfUBz+nN3UbGGG1s8V5u1fL0n/O7t3u298TTyTAjSe+Bp9VKB5idkLjPs30k5eifh3/SUrWkJ+6dNMn96xVaM/t19mVG1+3M0IVf2i7npzfLmVP7Up37fzdYKsBzPQv16NZAs4aWLRApnz54tJPTsfraH7u6+Wmj7n77PIMj0lMTMu8aLMeSTeee4AVbeKEk7VXnHSLU1hfus6ZD2H196hvym453yzOVMSg8aNhH7+SsxWljO+ZHQ/MWzvVu747QdyiWRJYQsi1FDu1a1xRu/tfsP/69LYi1qSencnISNhgtbOglAAQVtD+6fS390FSE2XpdPtf/QKUzPieTs+c6fsEcR0trvec59ZoQKYVlIEgfnxjKrX//n/u8l/v9o/xeAAAAAAAAAAAAAAAAAAAAIDoIRgMAAAAA+LIF0FRPuKO0hZV4KZVgNDMyrOV3XejZlhh21BVPatNu72VX7wlGq7vvas/2QTNDg2v+bg2eqzEjkqSjB5/W0qT3hzx1wAfsxW/fMO6teeE5td5yk7qrFtqXyfDd+/dS31D6dWLIaM4XXfWECBX6+h/Hf7G71xu9+fyU6r+Z0ht+ltK1j+U2qNkW4hTLbyaWJGnOTEf/998xvf7A8Mt+8BJXj2QJh5sYlnPD4+EGIXftCUbzGzC9rM57+u54qI+aFraB87Z9PX+Oox+9P38Hwi/vMXLDJiCVoKBfsXewsHWEYQ3NGw1UsAR1VmJYSX+WYLS2IvcFd6wLd0599S3jLzbqLdcajV25VhRe2G5hU2th6gAAv3DcTH97rvyvZwopTL9fiSGsQD5k3sWNPkuZaEub1BavnP4syDcN8oxmzRajt/8i/Sxm2TdSOvrslDWs+IK/V872BQAAAAAAAAAAAAAAAAAAQPQRjAYAAAAAsHJdYx0IXgnBaNqyVvWd663ND/z0NxpOeretWu7IGKP56++1Lt992qc1kvTewFUmvWJH0uFDGzznOb3h1TJKD5iNx+Zp0Jn5UpvZ0TD2unm7zKdfo4/tfY21lomGktI1jxo932R05Flu4OCFUY9vTw/ANf1x3ft0n97xK1f3b5JaeqWHXpBOudzoqjXple7uNdrVFWwAbrZApHxbvcLRw9+p0uDFMX3lhPx+yMaWsdebWo2GLMeSzWjIky0sTpKWW4LRih2GlItc9vXHXpPfffSBi3ML8CslQcM+4iUQjFa153dp0Vzv42B3r6x9brlKDPm3t/cVd3us2+X9eXsvlOpmjZ927EHScQePn7Zygfe+7UhIQyPF+S5hg9F2dFTWMQegeIL2R0/uDL/uzoTRhmajrW1GxpZWWyHCfP3EUOVdawBB+Z1LTsYl3qHL7Pd0f322cs4vv/v8UdmCn5950eiN57n6+4b0s5i2uPTMi/mpDwAAAAAAAAAAAAAAAAAAACg0gtEAAAAAAFZ+YVhVE4PRFgYPJFo8r0ApVvm2o0F7jzSq2ox4Nt+62Z7wdugySR3Nmp9oss7TE6vTyBbv0LNqM5aStXp4k3UdFx57lQ4+aIMWrtqt/Q/epIsXnppu2LJWkmSM0baPv1Wv3/8BPTTnOOt6vHzxOqOXneVqe0eoxV5y3E9dDb1rb73lktme7Z/7vdGrzk5p+Tdd7fttVwefltKjW/0HOhc7GG3UjGpHF3zE0UUnOZpZnZ91NrSMfZmL7g0/wLurP72MXyjGsjrvDdM/LPUPRXtQeS77er/F+a3hr89JPf3R3k5TFTRUpXcgOtsh27Gxv+U4SLrSthz7s1K0vd3ox3/z32/tfUUqZo/Gbu/pnznO0f3/HdOn/8XRvx4infYuR3d+JabqqvEnfL1PCOuNTxYpGC1kXmJHkbcxgMoRtD/a1SX1DQbrIxu7jI4/L6UlX3N1xJmuDj7d1fJvuvpTkfrYKAobiNkzUJg6gFLndyplBqO95+X2G74711VOXxTkm3Zn6W/OuT18yD0AAAAAAAAAAAAAAAAAAAAQFXkaygsAAAAAKEdJnwGU1VXj3/uFlUy02J4nFilmZ4NqlNTBw1u0cebqSe1/qX2P53L7LpLmznRk1jVovttrXX9P1Xwl21ukuYdPaqvRWDDaEUPPW9fxja6PSDPSr9url+rLy3+h1UMb9eZND8jc/r9yXVdv3/d2bZlxkHUdhTT3kHZr23BSevrFsfdb26W3XOBq509jWjR38mBoY+xDgwsdjCZJjuPoC29y9IU3Sade4+q3D05tUPbGlozXzfZ17b9YnuF0Xf3pP/2D0extbX3SfjOzFDmNcglGq4o5elm9tM6eRxja3zdIH3pV/tYXNYGD0QYLW0cYtsH9o8fGIcvS4QpeXcbG5j3BlWXOGKN3X5Q9BaHYwWhNPd7TVy6QXrGPo8s/6d+Z77MwHczqdQycfZvRx19n5DiF/UHw+Sny1JEoTB0AECaw6+s3Gh29r/8CxkhfuG7yPG1x6cO/cfXsGTEduXeJBFznUdh+v3tAWlJbmFqAUhb0XHr3kfa2zbvzU0spCNLHd/fb2wZHjO5YF+4zi/FcBQAAAAAAAAAAAAAAAAAAAAgqNt0FAAAAAACiyxY+I0nVE+4oV4YIRltSIsFo2tEgSVo1vMmzubtqoef0VfPSYWjmzI+rzu2VY7w3ZE+sTiOq8WyrNmPBaCf23hK4ZEn68ZJvpz//3M/qtCt3T1somiQZJ9yjh/5h6eanvUcA+w0MjhX5CcdvTonpzq/E9I235T5yeFt7erCyZA8LkqSDlnpP79wTtpNzMFo8S4HTzBqMlmVff+y1+R3Nfe/GqQXgRZ2bPTtLktQ7UNg6wsgWmjerxtEBi73naWgt7/056vRbjDY0Z5+vmMFoKdeoxRqMFuy8nTfL0VsO827bvFt6YkeOxYVgO4Js1zadCf9gTwDIld+92kS/e9Do89f6/+cVipbpqkcqsy8LE0An+QcVAZXM71TKvBKsrrKH5frdN5ebIPdpfv3N49vTz1fCqOJvjgAAAAAAAAAAAAAAAAAAACBC+OutAAAAAACrpF8wWtX490FDTaPm5OkAACAASURBVKQSCkbbmQ5GO3xoQ6jF9t9xn8yWdVJPh2IyqnW9E6h6q+Yr6VR7ttWYkZdeL0+1hvr8++cer46qRdo441Cdt+SbWef/9b/nHiT12cX/1LWNn8h5eS8bW7yn+w0MjuU3CyuQtx3h6LwPxeReVpVTQJprpBd2p183WwZ4n/MBRwvneLd19Y+tx2bRXPvg5sgHo1n2d7Yt/dUTHJ34yvzV8djW8g4BCfrtekogGC3zWD/QEijY2pv/eqKmd8Do3DuC7dmOIgajtfba9119iHDVs95rf6T93K7Cn6+2vmlprff0oWT4UAoACCJsYNdUPbipvK+JbMJmWxKMBnjzO5ecCTd5+yz0vutri0tDI5XRFwX5lt399rnWN4XfTpnPVZ550ej7f3H17T+5WrOlMrY5AAAAAAAAAAAAAAAAAAAAooVgNAAAAACAVTJlb6uecEe5cmHw9ZZCMJpJpaRdL0iS3py4L9SydZ1bZK4656X3813vJJ6u2AKNODWebdVKjnv/kZeFSyVaM/sYfX75hVnn++dpMZ38uvChXld+ytH2n8R0yVf31msHHg+9vJ+mbu/pKZ+xuNMRjJbpvA/F9Kljwxfx0AtGA8PGGqDw+gMdLZjrvd6uRHqD+AXGVcfs51tbX7QHN9vCPrLt6zkzHd34uZgazo7pxlNj+peDgn3em1Z5T3/6xbFtXY6Chqr0Dha2jjBsx3zmsbFknveB0pkoQEER88qzfTqFCXIJTMiVrW+XwgWjve5AR4ev8G5rsARr5pPtnFnqc21TzAA6AJXDDZvYNUVP7JA6In79WAhhv3F3hMJkgSjxDUab8N7v+VJLBQQdS8H6eL8gRlvgvJ/RfwDhjrVGx/zE1Tm3G513l9Ebfubq948Gv8cAAAAAAAAAAAAAAAAAAAAA8oFgNAAAAACAVdJn3GPVhDvKvUMEo61cMM0pVkG0bJdGhiVJx/Wv0Uw3eCpQrdsn3f/nl94vTbZ7f0T1MiVicz3b5rrjR7gurg13C/+BfW7S/819g+88f/hsTK/e31HdbEcXfCT7PnEc6V8Okjb8MKZPHhvTvosdOcv2Uf3b3h6qtmwau7wHAPsFgE13MJokXXqyo2+8zVHtrODL3PqMUXOPvX3FfHuw2WjQjl+wVcyxh/XsjgercbpYg9EC7GzHcXTIMkcffJWjTwYMrPvSm+3n2PHnl+8gcL/zKlNvhEI+7MfG2OtF3l1r2Qa67Ogw+vffuop9NqVt3j85np5vlra2FWeb2ILRaqqkxZb9ZfPq/b3P64aWwn8X2/HnF/ra6RNaMd2MMfrD466O+2lKrzknpXPvcDU4Em47/v5RV286P738mbe6SvolmQLIm6Dhpvn0q39U3vkddjv3DVXeNgKmyplwaVc/3z6vX9huOQmSfdnlc42Zy3Vx1Z798J0/uxrOyOp3jfTfNxm50/HDAwAAAAAAAAAAAAAAAAAAgIpVPd0FAAAAAACiyy8YrXpChtDSeelwk5FU9vWuXj61uopiR8NLL2uU1MHDW7R+1hGBFq1L9Y57vzzZ4jlfS/Vy9cbqvNfhjl/H4vn5u4V3ZDR0SZWqq8ZGH3/lBEd/W2t0z4bJ81/wEUcnvdbRvJnS3JmTw2hmfeGHWvqVNrVVL81LfY2Wgc6+AWARiH6fUe3ovA85+umJRv+3WXrzz7MnTt3bIK1ttLf7BaO1Bw1Gq/VuayvVYLSQIXjvOtKR5D+A+/PHO3rVfvb2tY3SI1uMXn9QBBL48izo2PaBEWkkaVRTPf3bIGU5tTKPjcWW86Yzkf96pltPv9ExP3HV2pt9Xi9P7DA6cGnh92tjt/fBVr8gWOBhpkOXeU9vaA1bVXi2c2bRPEeOYzxDLBq7pFfsU9i6ghoYNoo56fNlJCX98Umj/7hqrOgndxhtaZN+/mGpdlY6aNLP7x509dlrxi+/rU26+jPT31cA5c72e1hID22uvFCcIOFEmRJDhakDKHV+p9LEy4262dLcmd7n0/aO8rwvmyjIfVq3T3j1hubwn1kVk1p6jOczitZeac0W6bhDwq8XAAAAAAAAAAAAAAAAAAAAyAXBaAAAAAAAK7/B9tVV49/HYo5WzJd2dvqvc2mttHheCQxi3dkw7u0hwy8EDkardfvGvV9hCUZrrl6u3ph3alVdanxq1eK6amULdwqq7SubVF11+LhpjuPoL1+I6Zy/Gd3zvFHPgHTQUunUN8b03qP895dTu1Bvn3GXfu++JS/1NXZ7BzBlCwCLiljM0fGrpGfOiOmc212tf3yLulJz1FyzYtK8w0npl/d4n2hLa6W62Y6WzPP+4oGC0WLS0lrvYLCoB6PZQijC7uv6BY5WLfMPTLropPRK62ZJvYPe83z/L67u+XqVd2MJCxqMJknxIWlRBJ4m2mquyghIXDzXe56OMgxG+5/7Tc6haJLU4P0TlXdNPd7T6+eHX9fq5d792pY2aThpNKOAAX6u5QCsqZL2Weh9HdTQavRuTe8PlTFG5/zN6Iy/ZD/pL3/I6PKHjF69n3TRSTG97kB77Rf+Y/L6rvun0U8/aLRiQYR+nIEyZPs93KtWOvWNjv7+vFFXDr97RtImy3XT5t3h11fqwlwrSVIfwWiAJ7+QwYlXDI7j6MAl3iHitv6p3AQJZezuT1/jTQyyTQyZrM/mvFTFpB6fsLUdnUbHTfM1LQAAAAAAAAAAAAAAAAAAACpHBIYyAgAAAACiKpmyt1XHJk9buSB7MNrq5VOrqVjM1ufHvT90eFPgZWvd8YlTyy3BaI019YpX1VnWkZFyM2uO9lnkHQITxkx3UE8ffokWHfFNz/bZMxz96P2OfvT+8Os+7bMH6/eXTqm8lwyOSA++IL159fjppRKMNurlezu64aQemd8fKVeO9j94s5pq6ifN94Dl0Bo9V5bM89737X3pQdDZtsuSed5t7X35CdorFNv3ymVff+JYR6ff7L3Cx06LvTSQ/LJPOPrYZd7z3btRuuVpo9kzpDev0qTgvlIVJuyjd0BaZAkcK6Ygx8Ziy3Ef1WC0jj6j53ZJ65uMDljiaN9FUmdC2rzbqG62dOxBjvZeOPmY60wYfe+WYDvxA6+Ubn568vRiBaM1dnlPr18Qfl2rLNcSKVfa2iatnpxDmTd+x9/q5d7XQRuLtI39/PzvwULRMj2xQ/rwb1ytOyumutmTj7+RpNG6psnLuUb645NGXzmhPPpJIKps/dHsGdIP3hfTD96X+7q//kdXv7xn8gc0dkt9g0bzZlXO+R0knChTgmA0wFPYu89Dl3kHo20ukWC0+KDRA5ukBbOl1+wvzawJ128GuU8bSUn9w9LcmeOn5xoe194n3fSk/YNdn388AQAAAAAAAAAAAAAAAAAAAMg3j2HsAAAAAACkJX0GPVZZgtGy+ddDoj+I3vR0SHdcPW7acf1rAi8/MRhthSUYbdOMQ6zrqMtcx8w5euvhgT/e6qup67T6696haFO1+uiDtGvV2frB7h/kZX1/f37yYNxSC0aTJLWlE2NiMnpv3+2hFl21PP2lbMFmSTcdVOU3ODnmSEtrLaXFvadHhS2EIpbD06xPHONo3szJ0z9znKPX7D928Hzk1THtZdleknTiJa7e+StXq89w9XxTtIPlggoVjDZYuDrCCBSMNte7U+hMSG6YL10EDzQYHXGmqxMucPXlG4ze+2tXR/3Q1Zt+7uqz1xh97DKjg093ddWa8Sf7/Q1GS74WLJ3gxZ/GdOgy723S0Fqc7dHc4/059QvCd+AHL7X3+w0FDsvwO/4OXe5d1KaW6T3mrnzY1bduyq2GXV3SlWu8l437hP/kGsgBILiU5ScgH9fFX3yTfSXPeQQVlbOwlw2J4cLUAZQ6v5BBx6PLOcRy7bqpSNeuU/HwC0b7fMvV+37t6g3nuXrtj101dYerO2jf090/eVrDFK49v+8TpBux2ygAAAAAAAAAAAAAAAAAAACUOYLRkFeO49Q4jnO84zifcBzn247jfMFxnA84jrP/dNcGAAAAlCvT0yFz9blyf/k1ud85Ue7F35W581qZVGrK6/YLRqv2uKOsX5h9FP67j4xqglWacV2ZEw+cNP3N/fdrjpsItI6JwWgrk97pAd1VC63rqHN7x97MmqPaWY5OfePUtt0pb5w9peWzWfHl03T6ERt1Us8NU17XhmaPYLQsAWCR1N700sv3xf8aatEDnXSgni3YTJIeekH6xBX2DVMVkzXoK+rBaEHCr4JaudDRZac4mp9xCrzvKOnXJ01e2VPfz/64bFu79F9XuzJ+o/tLRJiv0DNQuDrCCBIEYztvUq7U3pf/mnLlukafvsrV7izn43BS+o+rjGKfTekVP0zp33/r6s0/zx6KNmeGdO1/Olq50NHq5d7zNLSoKMdyh2W7L6sLv66ZNY72WeTd1tpb2O/i1zfZtvFG73zUvNnYbPTD21x9+kpX59/tqisxVuTd640+879T2yY//Kv38n0+YYnxiPQXQDnL57XSRPstlmbXeLfdsa70r3/CCPsT6dc3ApXMNxjNY9qhy7znbWgtzrVrrlzX6MOXuuNCpdc2St+8MVzNQb9it8c1V6HudwhGAwAAAAAAAAAAAAAAAAAAQDFVT3cByD/Hcc6SdOYUVvG/xphPhfzMpZJ+IOmjkjyHJTqOs0bSBcaYP02hNgAAAAAZTNM2mf98vRTvGpv48O0yknTPDdJ5t8pxch8ZbwufkaTqqsnTVi7Ivs5D9sq5nIIzxsiccZI0PHk0+ywzpLf13aNb6v4t63pq3fGjUFcPNYSupS6VkZIzK53mdNHHHP3mgdxGoh46tEmrD7OMLM4Tp2aGnHP+qO88sknXXzm1dXmFyPgNwo1FNfo9Ixjt+P7/U22qV/GqYClAC2/6icwB79CSV73LOs97f+0fjOQ4zp6AqMkbry1C4VBe/ILwcvGx18b0lsOM1jZKC+dKr9jHu2+sX+Do7UdId633X98jW6VnXpReuW9+6yy2MIPbu/sLV0cYQYJg6ufbl2/slvbKIYyrEB7bJm3vCLfMc7uk53Zl33G3fjGmYw6QltSmN8yq5Y68+oK+IampW1ppz+rMiy7L8bNwTm7rWzpP2uGx7QodfGcLqYjFpFXLvLfx7rjUlTBaODf/KZ73Nxi999euEkNj0359r9Gj342poUV6x6+m3pl29aevkSZeU8aHLAtI6h0kOQMoNNu1UlUerourYo6OXyXdsW5y25oXKuv8DhsE1D9cmDqAUud3Knk9tjrUcl0VH5Rae6XlPtf70+npF6WW3snTb3jc6PefMYoFTK8M2vd0eeT39xYooJFgNAAAUIqMMXLd8vhHTgCUFsdxFIvFpvR3NQAAAAAAAAAAAACg0hGMhilzHOedkq6SlC3e4FhJxzqOc62kU40xHn9VGwAAAEAY5uLvjg9Fy/TY3dK9N0knfDjn9SdT9rZqjwH32YLRZlRLi+flXE5BmVRK5vwvSg/cYp3nfTMe1y0KEowWH/f+gJHtqjHDGnFmBK6nzs0YSTsznRpTXeXols/H9P6Lw4ecfHDgr3Je9rnQy+XiyNcfqptmGn3o0tzDWDa1Sv1DRnNmjv1lcb9BuFVR/TvlbWPBaDPNsE5I3BcoXE+SFg63yVxymuZe/U4tq0sP/g5jdLz1Uss5Fx+UBkeMZtVEc+NZw6+mEPaxpNbRm1Znn+9lKx3dtT77QKmbnjR65b7R3H5BhRnc3txjJE3/97XVXJURMrBXXToYxivgs6k7OoF2Da2FGZB35nsdvefl4/fVKp9szI0tpReMtsTStxU6GM0vmG/1cvtyDa3SMQfmv57Tbx4fiiZJOzul4893tak1f5/T1S8tmjt+Wp9P6EbvQP4+G4C3IEGhU/GWwxzdsW7yh9zXIPUOGNXNLu41wTWPuLpqjdHgiPSeoxx9++1O4IChqQj7S91HMCQQmmcwms//dd7UGt1gNK9+c1RnQlpSG2w9QXM7uj2uuQhGAwAAlcwYo8HBQcXjccXjcQ0Pk14NYHrNmDFDtbW1qq2t1axZswhKAwAAAAAAAAAAAIAQ8vDvxqOSOY5zvKRbND4UzUh6UtKNkv4uqX3CYh+XdL3jOBx/AAAAwBSYvh7p4dv857n7uil9RtIn16rK44p+74X+f5G3fr6i+5d9b7xQuu0K31neffK/BgoaqHXHp7JUK6VDhl8IVc5s8//Zu+/wKKr9DeDvmU0DQgoJhA7Su14EVEQFARuKyvXaC9ixYa8/FRuK2JVrV7Bju4IdUVAQEZEi0ovUhISE9J6d7++PJZBk58zObDbJAu/nefIkO6fM2dnZKZucN1Vmt8bsT40ZfYTCBYOsBxHfCNj4mIE4T/WElJYVu3DbcSVQTeJcjaE2xvRX8L5qoPy0t7BrfTvkr22GMXn/c9VH34eq74B2k3BrE5ZVlyQztdrj3qWrHbeNN3OBrWuhdm3ByZ3dZ4vvC0azmXidVccBQrVR12EfduzCjapyEp4W7kwX+YWpOXU3Djd0Y656HPAYCq00YQk7c8LnddtTB/82oEVT4KYT/d8oiU0UWmiOB3UV0FbJNAU5umC0JsG9qZNjrdvVxTatyu7Y1DoBiI22Lt+8O7TbuMIryMgT/LbZujyUoWgAkJbrvyzfJnQjI983EXVPoUCcJnsQkStW4Z9A6K6V+rTRd9TiNhOFpfX33n7lZxOXvS2Yuw74bTNw3/8E49+vn/W7uVYCgELOuSeyZHc5YHW0SW6q/EJZK62v42vX2oi2+bd0u13cfzsNIcsp8q+YW0cBtU6Ph6Xlgp3ZvAYkIiKi+ldUVIRNmzZhy5YtyMrKYigaEYWFsrIyZGVlYcuWLdi0aROKijS/LCEiIiIiIiIiIiIiIiIiIj9hOm2YQuwCAIe5+LrdSadKqbYAPgcQVWXxrwB6i8gAETlXRE4C0BbABADlVeqdAeDRWjwnIiIiIiJa/ANQUW5fZ+E3kKL8oFdhF4wWYXFH2beN/UT8NglBD6VOybZ1kKl321dKaoXmJ52Gw9vaVzPEiwSvf3rQgOI/XY2p2maMblStbNpYhYfPVGhZJefs9H7AmocNdGqusOLRRhjbYTOGGH9jrPE9Fp74IxJvuN/V+kNBKQWjzWFI9mahkZRgdL59kF9N/2QC/2Tun0hrG4wWpnl7qBGM1qNsneOmCV5fCo2c1xNnfHml61VXhkTFN9LXsQu1aWgNGYx2cm9lGf5Y09JtwC/rD+zJ3k4n3APAzjAJRvM63Dd055xweR6AddhUbaTEAX/cZ2jDxnShf2t3hXYcNeWX6Pe1xMbWywNJirVenplfxyFvmu6V8p332jezLg/Va71ul+CYx72IGm+i5e0u03pqIc3ifVNQ6r+s0uo0oM0dJpJvMdHhbhNf/XVgHyuJwpHueOTkGsYJu6DYsgqg6Y0mLnjNREFJ3b+/n5vjv45pCwVZBXW/brdrsDs2Eh3Kgnm3dkuxXh7qANhQionUl2XkOe/H6X1atsV8+nxNMNqxnZ2v34ruPqxSSbngsrdMNLvZRLu7TLS/y8QHv9ff9SoREREd2oqKirBt2zaUlwf4vSkRUQMqLy/Htm3bGI5GREREREREREREREREROQQg9EODbtEZIuLr0yH/T4EILHK44UARojImqqVRKRURF4AcG6N9rcqpToE/7SIiIiIiA4NYpqQVYshi76rFnImCxyGTM35OOh1V3j1ZREe/2WJTRSO76pv0zYx/NKrRARyUb+A9dQrPwMAerayfw7NvHvggf/Ez9EFXzseU8/SNdUXxFRPjYmMUPi/UQZSn/LAfM33NesGD1rG+8bWIUnhrfu64pdXDsdbr5yGjhdfCqUaaNu3777vx3PzPsXgooWumn+xrEowms182nAMRhMR4I851Zb1KHUTjLY/hWZkwRxEm+5SzCq3SZxNMFpeGAejSQMGo7VNVLjnVGcrGvqUCa+bdLEgFJcJvlkpmLdOUFYR2nW5GXpqTngEG+mOBTX3jbaJ1vW2OP3kqx7sCnEwWuoUA+2a6ffdbi2ty9bvqtvX1iqwoVKwwWjJmmC0P7cF159Tgfa/lvHW5YGC0QpLBT+sFrz/u4nVqdavR0m5oOcDJn7/x+FgXYj0AEfafFKblus/pvwAYUi79oZ/7MgGzpqqf15EFJy6DpFtkwA0jbGvM2OJ4Nr36va9XVAiliFI5V7gf8vq/rji9jKvkMFoRJZ093eAL2DWSrcUzbVrevheU5RV6Mt2Fzjvx257VevT4n8h5Gmu0Y7sqHDT8OBPEqUBMkZu+FDw7iJB8d56O3OAS94SzN8Qvq8XERERHRwqQ9HE6UUUEVEDEhGGoxERERERERERERERERERORTR0AOgA5NSqiuAy6osKgMwVkS0U6pF5Aul1PQq7aIBPAjg8jobKBERERHRAU6yd0MmXgwsnedbEJ8E3PsG1ODTgGU/O+tjynVAcitfG5e8QQRRnfUvhXnrrScfHNPZ9RDqnLz5UMA66pbnoFr60kK6tbSvm+zNslw+smAOYjxelHgtEuVqOKXg++oLYoJMjQkHLdoCjZoAxYWIQjnmbj0J0+MvwaTku5DricO4nOloYhbhkeb3WTafs0Zwy0jfz3ahBOEWjCalJZDHrwLKqicj9CldhQRvNnI8msSmKhLM/Sk6sVKIC/I+xrSESx2PoXKbNInS18kP42A0UzOJqb5e64fPNDDoMMHol2wOhHtd977g1UvqZmB/bBGc8py5L1iqT2tg5g0GDksOzfrchH3szAlcpz7o5rd5avwLiE7NFQD/yuEUpLB5d+jG8s/jRsAQzB6ac9iy7YBpCow6eoPVRTBakiYYLT0PeOYHE7eOrJv/CRIoiKhVvPV+ZxeCt2K74MypJrbtqVwiuOo4hVcuVvte04w8QcvbAx+PnDi6E3DUYQptEn3nAQXgkqMVOrdQMK62TsXdbBEoWOAi/McU4O2FginnhNkJm+gAprtXC9Wh3DAUzh2g8OYC+3PVJ38KXrpQkNC4bt7fhWX6sg0ZdbLKatzOq3dzbCQ6lNgGo2mWd21hvXz5dt9E8gYLgLdhd4+dkS/QP9vqnN6npVpcY+YVW9eNbwRMPEPhpF4Kp7/o/rqy1Cb0rbxC8OkS/0GLADP+EBzXNfxeKyIiIjo4iAhSU1P9QtEiIyMRFxeH2NhYREZGhuW1IxEd3EQE5eXlKCgoQF5eHsrLy6uVpaamonPnzjw+ERERERERERERERERERHZYDAaBetCAFVn838uIhsctJuM6oFq5yqlrrMLVCMiIiIiOpTJczfvD0UDgNwsyF1nA7e/BGSmOu/nrrOBb9Khmia4Wn+FZp5khAHtH+meeYTCzTOsZ3CeeUR4/WGvbFgBTH88cMUBJ+77sXcr68CTSkmaYLQm/x6HER4PvvrLflXHFv2Kibsfrb4w+sANRlNKQdp3B9YtBQB4YOLy3Om4PHd6tXq6YLTVaft/PpCC0fDNdODHj/0WR6ICpxTMxkfx5wXsIt5bfYbzYxkPYFV0T/zRaKCjIVRuE8NQaBpjPUE7L4zvxrXhQ3WTdWTp9H4KP99h4JxXTOzO19d7fb7g0bMEzZuGdkcUEfznFbNaqNTfqcBNH5r48sbAIYvO1uG87p7CkKyy1nT7Rs3TUrcU63rr0sMjSCG7UPDbZvs6bROBj642MHO54OnZYvncYyKBVy5W6JAU+Pn00pzDducDi7f4ArPqgl0wWkKQp7iWcfrz8e2fCIZ2E/TvEPrXOFAwWst46/K03OoNswsFb/4q2J0PTPnev9PX5wteny+4daTCfacpPDArdCF6C+/WHz9O7wfLa5XZqwQPnlF9mdtwzadnC6ac464NEenVx7XSo2cFDkYr9wLHPG7i9MMVTu6lMKJXaI+9RTbBaHl5pQAahXR9NbkNRrMbL9GhzO6tpLss76m5dt22B1iVCvRpE5KhhVS+TTii3T1lTU4PPWk5/jVzNcFocTG+z2hO6wv89yKF6953d4ArKdeXZRboP1/4cU34BFMTERHRwaekpKRa2BAANG3aFG3atGnwz3+JiCIjI9G4cWM0b94cO3fuRH7+/hvD8vJylJaWIiYmpgFHSEREREREREREREREREQU3upxKikdZM6u8fhtJ41EZA2A36ssagLgpFANioiIiIjoYCJ//Qr89Kl12VM3uO9vzGGu21R4rZd7bO4mOyQpXHaM/2SDS49xFtpSX2Ttn5DLBwWuePgQqPbd9z0c2t3++SdHWcyCHTUWxoRncKSDgJZ5W0eiidRIkIk+wP8gukOPgFVmbh9juXxrFlBY6ptEaxuMFmafcIhFKFql/iXLArZvbBYiCtUn86R4M/DLluGYv2Uo3k69Em+fss22j6phcU01u1B+SfhOUDY1wYz1HYJ3XFeF9Y8YeONS+xWn3KYZcC2sTvNN+q/p65XA9j2hee3s3lc15diEW9WnQMFUlbqlWL9mOUXAxowQDyoIgybp95mXLlSYfbOBtQ8bGNxZYfK/Dax52MDsm33ff7vbwPRxCp+PN7B5koFLj3F2EBzSBYjW/KuMmcvr7niQrQnVaxoDRHiCe1N3b2lfPuAxE+UVoX9Ogfa/VppgtB3Z+3/emCE44mETd34qlqFoVT3zgyDpFhOv/RKa55ISZ19+Qjfr12PRP0BmfvUxFNgEfxBR3dMdj4I8rFpKiVMomhr4HLMu3Rd+eNJzJh75KrTXRIU2x5rcn2dDMtP0FULAzbUSABQzGI3INV1ehd3nL7NWhOe9bJ4mlAwAMlwEo+nuh2tKzbEYgyagLK5KjmRCEJmSpRX6MrtQyEIeF4mIiKgOVQ0ZAnwhRAxFI6Jwo5RCmzZtEBkZWW15Xl5eA42IiIiIiIiIiIiIiIiIiOjAEGbThulAoJRqCeDwKosqAPzqoot5NR6fWtsxEREREREdjGTK9aHtsKQIsmWNqyYVmomYER77ds+cqzB2sIJSvgmuYwcreNMYbgAAIABJREFUPHNueExCkIwdMB8ZB7lqcODKR50E9chH1RYlxSoc31XfJPmoQcCxo3wPIqOA8yZA3foCAKB7iv3qLsz9EJZbKTI68FjDmOrQPWCdHqXrtGXr033fbYPRwmP32m/FAm1Rd2NnwObNKzItl0eiAscUL8YluR/gkj3TcctI/ROvGhYXpw1GCziUBuM0/Ko+xDdWuHyIgfFD7Vd+3fsmREI3Qd9qknslJ0EAO7IF49420ftBLwY/4cXTs014a2xYN2EfBaVAhbfhAwi8DkPzerfW9/HGgvp9HhVeweTvTLS90wvjat/Xpt3WddslAuNPUBjRS6Fx9P4n1TXFt6zbznkYOPUMXPTucJy5cjJSom3SF2qIjVEYrsmqrNNgtCLrvhMbB99n5+aB68xaEXz/Otpj095jbvtm1seJfzL3v3+mfC/Ynm1Zrc5dfqz9cWxUX+tyEeD71dWffHG5ZVVb4RzISXSgCXQ8CpWYSIUNjxoY0sVZ/Ue+EqTnhe69bhuMVhYBefeJkK3LittnUmITHER0KLO7TdJdnTRronBsZ+uyb1aG5zVFgc099ortzsfs9D4tLdd/mS6cLb5KGFpiE/c31iU21352wWghvEUmIiIi8lMzGC0uLo6haEQUlpRSiIur/p9Lah7DiIiIiIiIiIiIiIiIiIioOgajUTD61Hj8l4gUumi/sMbj3rUcDxERERHRQUcKcgGXIWaOLPreVXVd+ExEgLvJxCYKb401UDLV9/XWWAPNgph0GWqSkwkZNxCY/UHAuurrNBhPfQmV6J+8cuYR+ufSvEVTGE98DjW3AGp2NowbnoSK8gWb9WgVIIyk4FvrAk+AJLpw1z5wMFrH8q2INq1nEK/d5ZtFq9sfgfAKRpO5n9mW9xxxdMA+WlekBl7R/FloHqsvNqtsr6aaYLS8AzAYrSHnNL1wvv3KX/lZcM//JGThaHaTy5dssW+bWyToO9HE9N8Ea9KARZuBOz4V3PJx8MFoQHjsM7oxe2qcm5o1URjU0bruc3MEa9Lqb4b++PcF93wutmF3lU7rp7ST92TxD5CbTwEW/wCsXAh5/UHIY1f41zNNSJFvQo2U+3YkKS2GpG/HGZ2sB7F2F7A+vW62SY4mnKE2wWhREQpdW9jX+ebv0D8f3du78jzUTROCWmECW7J8P3/pINiwLiQ2DhyM1r0l0CnZuuzPrdUf24Vj6Pyy3n0bIrLmNCg0FDq3UPjlTg/O6Be4boUJ/LgmdMc5u+uhHCMe+OkziGlzo1BLbrsuq4BfEC2RU1JRASl1Hnp7IAn2XXHG4dYHtZWB88YbhF0I7MJNQIHDkFin2ysjHyiv2F9bRJCr2YXiYvZvy4RG1nXslNoEP9oGo7lfFREREZEjIoKysuoXIrGxNr80ISJqYDWPUWVlZSH9h0tERERERERERERERERERAcbBqMdGq5RSs1RSu1USpUopfKVUluUUj8rpR5TSh3nsr9eNR5vdNl+U4D+iIiIiIhoW92kRsjX01zVrwgyGK1SZIRCZEQYJVbNegPI2xOwmnr6K6i4ZtryMf0VoiKsy0b09D1fFREJFVG9Up/WQNtE63bx0V6cUjDbutCjWdmBoueRAat4YKJb2QbLsrW7fN/t8gXCKhjt+dv0hWPvw2HX3oDkAHNz2jgJRtu8Cn2LlmuLqwZYxWmC0fLDIORKR/d6N+Rr7TEUfrnD/gD45HeChAkmXvm59gEddpPq1/6+BrLbPw1gd77g6EleJN5sWk6If+knwZIt+/t1G/aRU+Sufl0wNTuH1b4xpr/1DlPuBW74wKzzCSemKbj6XRNvLnC+nvMG+I9ZigthPnYF5LbT/RvM+xwy83VfPRHI+09BRreFnJwM87hoyIlNfd9HJEDO6YLTn+6vXffM5XWzPbI1/1KhNsFoADDaJqgUAN7+NfTPJ9CxqYt/nuo+G9KBvGLBrryQDwsAEBsNtNNcZ1w4SOGXOw10bmG/zZRSOL6bdZ1Xfq7+5IMJRvt+NSd5EYWK06DQUBrWw9mF2MVvSrWgntootAnbSY9IAXJ2Axv018S1pXsWjaP0bYI5PtKhTbxemC/cBjmjNeSU5jBvOx2Sk9nQwwopu8tuu/Dr/u2tC/NLgApv+F1X5Jfal78419mY3dynVb22LCnXf5YXVyUMLSGI63C7Y5tdMJpdyD0RERFRbZgWF02RkZENMBIiImciIvx/5291LCMiIiIiIiIiIiIiIiIiIh8Gox0azgcwHEBrANEAYgF0AHA8gHsB/KKU+kMpNcJhf11qPN7mcjxbazxOUkpppuwRERERER2itq0Lrl3zNsCJ/9GXb1kDyc5w3J1ukmldTravS7J8fuBKY66FGjTStkrbRIWJZ/hPzv13f+CEbvp2ER6FJ/+t/ILllAImn5iJeFOTlHKAB6OplPZAl34B63Uvsw4EnL3Ktx/a/V14uASjSWYqkJVmXdg0Eery++HxGDi9n/2AW5dXCUaLTdDWG/b8UEfjaqoJRsuzCM4KF+EYjAYAQ7oqJDWxr5NfAlz3vmDc2yZScwJPfDdNwapUwYeLTSzavD9IpMBmUv268hSYF/XzC/b6zysmFm+xX9+gSfsDwewCB62ERTCabt+wODddc7xCSpx1/bnrgA8X122YwtsLBW/Md7eOod2r7+RSXAi54ijgu/e0beSpGyDFhcA370BeuQ/IzdLWbVWxC4OKF1uWBbM9TFMwf4Ng4SZBYal1+2zNfpMY4L0UyM3DFTol29epGgQYCrr9rzLQo3G00oagrs8QbHB+GebKqL5A7gsGtk72wHzN/+u9Kw30bu3sANo1xXp5STmwLUuqPXZrQ3r4BZgQHah018Z1ea10Wl/nnR92r4lXfzaxOrV273vduQUAUiNa+YLLNv1dq3XY0R33m0Tr2xTbBAQRWZE3JgKfvAQU5AIV5cDiHyB3j2noYYWUbTCaTTu7AK+8MAz6tgqnrurzpc6OiW6OnKk5+3+22yZVA9ObN3Wxgr3KKvRldsFoPCYSERFRXbH6pxfKLnWXiKiBGRa/yKrrf+BDRERERERERERERERERHQgO0CnslMdGABgtlLqMRX4L4Rqzsh2NZ1PRAoA1Pyz7Hg3fRARERERHexk/fLgGsY1g5r4LtB/qL7OrDcdd1ehmWwf4XE3rLDxxxz78q6HQ938nKOu7j7VwA+3GLh5hML4oQofXKnw0dUGPAGSCM4fZGDh3QbuPU3h0mMUbj9JYf6dBq4aqE8bUgd4MBoA4LjRAat0L7UORvv9H+Dhr0zbACerQKSGIA+P1RcOHL5vUs5ZR9jvJ21HDgcuvA1qwjNQX2wFeg60rBcjNslZVcQ1sl5ffhhOJK/UEGEfTm2a5GyHm/6boO2dJl6ep0/1KywVjHnZRN+JJi56QzD4CRNDnjSRliO2r0+OJxH/VCRDzuoIKfSFKm5IF/yywdlzWLI3tt51MFoYhOl5Xewb8Y0Vppyj32lu/0SQW1Q3k05yigRXveOu751PVt+3ZNkvkLM7AtsdvLA/fAj56i1H6xmd/5Xl8uXbgW9XOh/z1ixB/0dNnDDFxJDJJo542MTSrf7tdYF6CY1r94Zuk6iw7AEDZ9hkb776S4iD0Rzsf900wWIb0oGNGaEdzzUnKEwfp/DF9UbIJn52a6Hv56W5VYPR3D+XqsEdRFQ7mgzrOr1W6pai0Eaf2VtNag4w/n1Bn4kmrnzHDHqSZ2HGbm1ZidEIuUY8JNhgcQd0w24cpW9THERwJB3ifpzhv2zV75AdG+t/LHXE7ghgdwljF4wWDqHNNe0ptC//c6vvPiEQN/dpqbn7f7YLZotvtP/nZk0UurRwvg4AKLa59rMLRiss40R/IiIiIiIiIiIiIiIiIiIiIiIiIiJyL0ymDVMd2QngdQBXARgCoBeAHgCOBXAjgO9r1FcA7gUwKUC/sTUeBzMltmabIP4vtT+lVAulVG83XwA6h2LdREREREShIiLAr9aBJQE1bw2lFNSVE/X9L/jScXfaYLQD8G5SSgMnQKl7XncVKjK8p8Iz5xqYeqGB8wcFDkWrNKCjwqNnGZg2zsCT5xgY3FkBkTYz6w+CYDTlIBjt8NK/tGUTZwlW7NBPpI0Jg00kqZuBZT9ry9XNz+77eWQv+zCFHoP7wBg/Ceqc66GiY6COP1Nb992dYy2XD+q4/2fdZPKM/PCdnKwbWTgEo8U1UvjqRucHwus/EPSd6EXENV6cMMWLXzfuf3Yv/iSYtaJ6/T+2AG3uNHHXZ/avz5exo4A9u4DPXgYArNjheEhYvt3Xt9v56eEQPqALCdDtGxcdpXBCN+uyXXnAA7Pq5n1w68fO+20UCbx72lakfPYIzGcnQN5/CuYbEyE3jQT2Bt8FIlOuB/5e5KiuLhgNAEa9aMLrMIlhxDMm/qqy323aDVzznn/4TbYm/CHRJujCqaYxCm9epn8/rkoNcTCag/2viyZYbEO6IN3Zy+lI0VQDL19k4JJjnF+DOHF4O33ZrBVVg9Hc952WG7gOETnTUCGy/xngfgVvLRBMnev8eCy/z4Y59S6U3n42XpyRals3NaIVsM06YDkUdMd9BqNRqIjXC6RttS777r16Hk3dsbvvsA1Ga6QvC4d7k5qyHYxpp4OgWN0x3kpqzv6Nm2fzW/u4mOqPzwwQ2F5Tgc3HakVl+hfYawKlFa5WRURERERERERERERERERERERERERExGC0g9RiACcDaCciV4vIGyLyq4isEZF1IrJQRF4SkVMADASwoUb7u5VS+hnX/sFogdMF/NX8s+yafQbrOgB/u/yaGaJ1ExERERGFxuZVQOo/QTVV/Yf6fuhztL7S2j8hu3c66s97MAWjPXKZfYUjhwFd+tXPYKxERuvLjANwg9fUpR/QsoNtlVMKZiPRu0dbPn2h9UTbRpFA4+iGT8uSr6frC4eOgUpsse9hoyiF64Zaj7llHHBSrxoLTx+n7XpM/hfo2sh/ZvV5A/f33zreuu3ObP2QG5o2fChM3g6n9VX4doLzwaxK9T2n+RuA45408fBXvgPsjD+CD22a33gIAEC+9e17O3Oc97V2l++7w/yrfXI0AVf1STdmj+blUEph6oWG9tw1da5g2bbQP68fVjvr85NrDGwc+QUueK4PMO0x4PNXIK/cB0x/PORjqtSzbC26lG3Uli/cFLiPV342sWm3//I/t/r296qyC637CEUwGgAkN9WfA9btgl9QW204CUbrlmJdZ+NuIEuzLSrFRgPbJwc+tvx+r4GYyLo59+mC3QBgfTqwNs23EYIJRsssAErLG/44QnQwcHs+DJWbhwd37LnpI0FGXuD3v/nyvZDbz0DpjP/imIz7sSLG/h5te2RbYNu6oMbkhO4UYhuMVlY3Y6GDVIXNCbXg0EgUtTuqxNkFowXzr7vqUFmFoLA0cL3M/MB13FwtpVb5OCDP5rf2sTWC0W4YphDtImTebnsXBTjuOdkuREREREREREREREREREREREREREREVYXJVFIKJRH5RkRmi4MZfyKyBMDRANbXKHpCKeVxukq3YwyyDRERERHRoWH+rODbHjcagC8ERr0wW1/v168ddVfhtV4e4fRuIUzInI+Bn7/QV+g/FOr/3oZSDRiu5bGZjWpXdoBQSgHHnWFbp7EU49GMidryv3ZYL09WuTDHD4X5wIWQZT/XYpS19NU0fVnzNn6LHhqtcOVxCpFV3k//agfMvd1AVET1fVElJAP/ucGy62gpwyfld2JQR9/j2GjgrlMUbh6xv482idbD2plWAPPifjDvPAvyS3jlhpuaYEaj4TPw9jm5t8L7VyokBxH3PnGWwLjaixWa/dqJddHdfD/s2IT8vBLcMsP5xy3r9gYbuQ1GKwiDCe1Ogqlq6tVa4daTrCuYArz4U2g+qsotEtz1mYn+j3ix0z+vsJpLjlbYPcXE2cseRsrTFwJezUm3DigAZ+Xp3/OzVthvDxHB9R/o6/y9s3pZdpF1vcQmtqtx5csbrD/qzi4CdjsIn3DKyf53WLL1vpaaA2QV6PvulAzMusFAm0SF2TfrP7p/41KFgR3r9mC4cqJ+/ZX7R3EQwWgAsCsvuHZEVF0w58NQaJ+k8PWNwf16seXtJvJL/AcuInhzgYkTb9+EfosuQKcua9GkRw6WxxwesM9NUZ2Bresge8OlKryC+2eaMK72wrjaixa3evHVX8Gf53Xb2TYYLcjjIx2ivDY7TEmYJX/Vgt270O6jGI+h0DTGuixHc43ZUHTXvDXttrkerOTmPi2tSn5enmaXaRrj25ZVdUhS+N91Btrt/bwg0PnDbnszGI2IiIiIiIiIiIiIiIiIiIiIiIiIiEKNwWgEEdkD4AJU/5v0HgCGaZrU/HNtm//VrVWzjYM/ASciIiIiOjRIsMFox42Gattl30P1rxOAw3pZr2PBl/ZjKPHNdqzQBBN5griblNJiOMhvDjlZ8iPkoUv0FfoPhfH891DJrepvUFaiNDN9AaB9t/obRx1Se4P77FyZ85a2LKvQenly3j/A378Bcz+D3HY65M+5wQ4xKFJcCEn9B9izS1tH9TjSb1mjKIXXLjGQ94KBDY8a2P2MgT/v96B7S+vZyOr6J7X991n1AX4bn4WCFw2kP23g8TFGtaC/1vHWfWZLLIq3bQV++xZy37mQ7z/QrqO+NVTYh1sXDPJt8yfG1P/ANkZ1RjkiYELhpIkZrtpu2u37fiAGo3mDDM27f5TaN+m/pp/W1v78ZJqCk58zMeV7wfLt+nrPnqdQNNXA9MsNJD53BTB9Uq3XHYxb9ryoLVuyxX57bMkC7E7p62vsjtpgtMa2q3FlYEd92ebM0K1He2yqcm3UJsG6TmkFsDHDuoNT+wAbJ3kwtLtvRx7RS+HGE/136hcvULh8SN1/rN+7tcLgztZllftHSZDBP6kBQgOJyJlgz4ehcGpfhfJXDBS8aCD7OQN/3Of8uDTiGRNZBdWPhY9/K7jqHcG8vI5YHd0L2yLbO+5vY9Teg9WnLwEA/vOKice+3t9/ZgEw+iUT0xeaKC5zf77Xne9sg9ECBAQRVVNus8OUhlnyVy3U5uOgBM1vonOKwuv/cO3RfGZR07hpmgN4FW62V1ru/sq5xdYN4zQfOZ3SR2HLEwZ2PGkg61n7Y3mOTU5foGC0cLiPJCIiIiIiIiIiIiIiIiIiIiIiIiKiAwuD0QgAICJLAcyusfgUTfVwDkb7L4A+Lr/ODNG6iYiIiIhqTdK3AeuXBdVWTXjaf+GQM6wrL50HKcr3X/8Xr8E8+zDISc1gXns8KnanWzaPcHE3KTs3wbxuGOTkJMiYTpAZzztvHALy+kTbcjX6yvoZSACqUROg91H+BU0TgYEj6n9AdaHvsUCLtrZVPDBxccHHrrpNqqiSeFNeBvl0ajCjc03StsC8YTjk1OaQ83rYV7Z5DaMjFTq3UEiKtU+xUB4P1FRN6JtpQp67BY2jFRpF+ffTRhMGBQCpEftDAeXdybZjqE+68CEVZsFoAKCUwp2nGJj87/odXLmKwj9RHfFjk2H4vaCNq7Y79wYTuQ1GKwyDCe3BhuY1iVZ46EzrSrvyUOvwzts/FSzeErjejcMUYiIVZNPfwJwZtVpnbaR4M3DjHuvj5bo0+7CGtWn2fa9O3f+ziNgEo4XuPdO8KRATaV2Wlhuy1cB0EETUWhOMBgArd1ov79Xaf1tMOUfh2fMUBnUEju0MvH+lwvgT6u84M6yH9bo+Xer7rgtGu2KIwn+O1I8zlK8H0aFMdz4MJsQ6GB5DoXG0QnxjhSM7KPx6l4GTewdu98cWoPmtJtre6cWXKwQv/mTi/74I/hy8PqorAECmTcK6XYKZK6zrjZsmSJhg4rTnvcjIc74+XU2PAqIjrMuKgwyOpENUhc0OU3JoBKMFurpJ0ITpfrkivILRdNe8NRWWwi8gsiY392lVQ2fzSqzrxNn8Nl8phdYJvuO5nZwi/T1ToGC0QgZGEhERERERERERERERERERERERERGRSwxGo6q+q/G4n6Zezalrzd2sRCkVC/9gtByrum6JSIaIrHLzBWBTKNZNRERERBQS6duBVh1dN1N3vwaV0t5/uS4YrbwM+L16NrLM/Rzy9I1AZqpvxuqq31Hxv9ctmzsNRpOyUsiNI4GVCwGvF8hMhbx0J+S795x1EAQpKYIsnw9ZswTy9yJg9WL7BsP+XWdjcUtd8wgQU2XGr1JQ4ydBRWiSXg4wKiICasIzgEeTILBXi1JNaoxGsjer+oIFX7odmiuSuhky9zPIud2BFQt8+7ady+6FSnR166zX9xigbRfrsp8+haRutixqHa/vMj2ixf4HW9dCcrP0letRsOFXDemOkw08NLp+B7guqjt+bTTYdbuCUiC/RLQhTzoNPaG9wiv4/R/rMidBMD1bWr8+ZRVAbnHw40rNETw3J3B6Qf/2gGEoiAjk9QeCX2HbzsG1O+ZUqE837ns4Kv8by2q78g3kFOmfz9pd9s/1h9WCCq+vTkEp4NXsZ4makItgKKXQSnOsS8sNXWiGrqeqx6aWcfoQR10oWLMm/suiIhQmDDew6F4P5t/lwQWDDBj1eBDsnqIve/VnUxuAcdRhwIxrDHTWnPpSc8IrxIToQBVu10rHdFb4doIH301wdrOYmgOcOdXEhI9qd0zYF/JbUoQF6yts65Z7ge9WAWe85PwCyC6st1GUdVkxA4DIDbtgtNJaXKCGGbt3eqDw6+RY6+UzVwAfLzFRVhEe1xZ7Cp3XXbLVvjzoYDTNLhMX47w/nXKv/vgWKBgt5+DJ+CMiIiIiIiIiIiIiIiIiIiIiIiIionrCYDSqakuNx7pZ2xtqPO7gcj016+8RkWyXfRARERERHZRUv2OhZqyFmvYn1BUPAt3+FbhRoyZQoy6zLutxJJDUyrJI/vyp+uNvpvnVeTZmnGXbCE/gYQEA/loA7PYPuZIfPnLYgTuyfD7kwj6QG0dArj4WMv4E2/rqvRVQRvjcGqt/nQD12q9Qlz8AXHgb1Es/Qp1xeUMPK6TU8WdCvboAuOh24PgzLeskeDWpMRp+wWh1yJx6N+S8npAHLnTcxrjywZCtXykFHDdaWy7n9YSI/wzqJtFAjCZfL8uTXH3BtvW1GWLIhFvYh1P3n27gp9sMDNj76UenZPv6tbU2qhvWRXcLqu3ObF8OphsFpUGtKiR2ZAsGPGYiv8S63Mm+kRKnL0vPC25cADDjD2cb8tguCpKbBblxBPDr1+5XNHA41B1ToaYthZrwtKum6ooHoZ74HCqlHdTVjwAAupfp3+/rdun7Wr7dfl3ZRcD8vZ8gZtsERCRahIHVhi4Ybdby0IVl2AXkVIrwKKQ0dddvUoi3RSh0baF/U41/X7BFc/qtPN/oXo9Ud6d5ItLQXis18O3NSb0V1j9af4PI8iT5fvBWYPVGZyfzP7YAf+90dm7QXSsZCmikub4uLg+PkCY6QFTYJEr9Maf+xlHH7O47AgWjHdlBX+H81wTd7zfx++aGf9/tKXQ+hnd+s6/r5j4tqxAoLvM10IU9x9f8l2VBSs+3Xh4oGC2roOFfHyIiIiIiIiIiIiIiIiIiIiIiIiIiOrCEz+xvCgc1/1Ra9yfSa2o87uJyPZ1qPF7tsj0RERER0UFNKQXVuQ/U2HthvLkI6pbn7Ou/tVhfZhjA0adYF37/AczXHoD50p2Qn78AFn1frXhJTH+kRra2bOpxeDcpbz5sXbD4B2cduCAlRZDHrrAMYrOibn0eqkOPkI+jttRhvaDG3Qdj/CSofsc29HDqhOr+LxjXPgbjsY+Bwaf5lSeaOa76a12R6rdMvN6gx6djvnwv8NGz7hqdeE7Ix6E0gXL7fPmmfxulkBxrXT2zMkxiL1n4TbBDCynTtF4e7sFoADC0u8Li+zwwX/Ng4yQPXruk7ga9Lro71kXpg9GePU+/7tRcwO309MKCUsjnL8Mc0wnmdcMgv31rGcZXFyZ8ZOKvHfpyJ0EwLWzCqmoTjLYqzVm90W13QU5vDaxY4Hod6p7XYTzzDdToK6GiY4Ax1zlve+vzUGPv3R8GesGtwPBz0aYiFU3MAss2a6dMhnn5UTCfuh7y9qOQDSsAAF5T8M3KwK/5zBW+OtlF+jqJjR0/BUd0QVyzVwOmLkHIJafHpraJ7vptkxB+B7ceLYFIp2G4VcRE+p5La81zSnN3miciDW8YXyt1aaHw5mX1M5BMT9K+65nSHOcn8zlrnJ0X7AIx9cFojodBBFTY7zBSHiBx6iAQ6Ghxej/7GluzgLFvmyiraNjwLbvr3po+XCy216duL103Z/q+52lCpONinPUzcbT9tn70a+uBFQfYTTOtbzmIiIiIiIiIiIiIiIiIiIiIiIiIiIi0GIxGVSXXeJypqfd3jcf9lFJupjHWnNlfsz8iIiIiIqpq9FVAp97WZWdeCdXWPqtYtdOUlxQB704GZjwP+b/z/Iq/iz1J22eE07vJEhezQmvrt2+BXVud1R15PtTZ19bteMiZlh38FsV7c111MazwZ/+FxaGddSsfPQd88LTrdmrU2JCOAwDQ+yjbYplyPSQ7w2+502A0vPck5Nevgx1dyOgmgodD2IdbVx5nYNtkAy9fpHDTcIW7T9U/iZcuVPhugoHnz1d4bUw+Xkm7HlPS70JKRbpl/b+je2FjVGfLssfPNDFhuIFmTazXtW2PaEOedAp+nw959mZfCOXKhZA7z4JMvLjOw9EKSwWzVtjXcbJvNI5WiI22LsvIdz+uSqnZgZ9/35KVOOGemv8vwBn16Qao0y6tvswwoKb9Gbjx6Cv8znkqIgLqwXfgmfA0upVttGy2Nh3AhuXAzDcgbz0CueoYyPcfYH06kFUYeLULNgQORkvQ/VuGIKXE6XeCJQ4vEQJxemzq3tL5wSrCAI51+68n6kF8Y4WOSYHr1VQZFKQLqkvLbdjQEqKDhe545AmTi6XzBii0jAt23je8AAAgAElEQVRdf31LVlouLzViULT3V1Rp6c7vP52e93WXOIYCYnTBaAd/jhWFUkWFffkyi/vdA5Dd2V8FOGwNcXCdtC4d+KGB/xXXHgfXyFXZXZ+6vb1at8v3PV8TjNa0kbNzwzn97et9skQs7/0KS+0HzGA0IiIiImpoHTt29P1zsr1f8+bNa+ghERERERERERERERERERERUQAMRqOqas6sTrWqJCJpAP6qsigCwBAX6xla4/G3LtoSERERER1yVEQE1CMfAq06Vi849VKoCc8G7qB5m6DWm+FpoS37V3uHk+1tZnLKb6G9FZCnb3JcV51zQ0jXTcFTCTUzuoFSpUkt0hhQYhEMVBQ46UBS/4H5yDiYx0X7vq44GuZlR8KccDLMe86BrPrdV++XmZCpd7kaE2IToG5/CWrQSHftHFBKQb29xLaOjG4HqbENdMFouyP8XwP5790Qt4lZIaY7ehgH6KdZbRMVrjnBwHPnGZh0toGvbjTQOmF/eaNI4NGzFK49XuGk3go3nmjgip67cGXO27hlz4t4JGOiZb9LGg1AkWGdfDY4bgcAoEMz6zGtT9eHqugUVnj8F/70KfDrV+46cmlDBuANsEt6HO4bKZqQlvS84MOaUgPkOTYyi/Bm2jUwbCMhLBxxvC8ULaW9ZbHq3AfqwXeAFu20XajzJlgvVwo4+1p0F+tEhvVRXasv8Hohj47D9uXrHA196TbgkjdNjHnZ+oWLjQYiI0Ib3jOwo77snd9CE8blNBitW4rzPgcdBiQ0Do8go5oW3eP+oFsZFKR7r4VDMMY/mYLL3jJx7BNe3DzDRGoOw9rowKO7VAuTXDQ0jlb4+qbaXbhFG17cVvAyStY0xYydF2vrVQb9pu0pd9x3WYAsqkq6475SQBPNbUsRg9HIjYoAO8zWtfUzjjpWmxxlw1CYd3vg40morveCZRcIbGX7Hn2Z2/u0dem+BrlF1g3jYpz106u1wpc36Ld1QanvPrKmQMe9cLj+IyIiIiIiIiIiIiIiIiIiIiIiIiKiA8sBOpWUQk0pFQNgTI3F82ya/K/G43EO19MD1QPYCgHMdtKWiIiIiOhQptp3h/HxOqjvdkN9uhHqxzwY974OFRkVuHFyq6DWWab0fY8d7DQYTZ9iI3ePgcz9zO2wrPta8CWQm+ms8jGnQvUaGJL1UgjEJ/kt6la23nHzm7JehOXeGCAYTVL/gYwbCMz+YP/C9cuAzX8DS+cBC76EXHs85N0nIfed62gs6s6Xod7/C2rGGqiv06DOvMrx83BLdekLHDvKto7cMBzi9e57nBxr/b7N8vgHo2HbemCbs/CjuuIm7EPKSrX92JU1pNP6KmyfbGDL4wbWPWIg53kD955mwKj6BPdk7PvxyJKlrteR+M9iAECPVtav/bpd4nrCfYFhnbAn377rriOXrn03cFCf0yCYFk2tl6fnuRhQDf/YnII8UoE3U69B/5LlgTs65WKoX0qgPlkP9XUajBd/0IaiVVIjzoP6aDXU3a/5Fx59ClT77vq2Hg+6tbYIuwOwLrqb5fK0qZNtx1PV+78LcjQBEYmNHXfj2Jj++p3gv/MEi/+pfViGNiCnRuhdj5bOk4k6JoVJipGFxCYKL5zvbnyVwWhJmkDOrMJaDipI+SWCknLB3zsFRzxs4t1Fgt82Ay/8KBj+tIkcTZBIICIC0+3BlCgEvA6DGhvSv9orrJzo7leRL+y6BasHvI21jxjIfSkST753HSJnrELyhwu1bbIiklCqorBSDnO8nrQAoaaVdGFOCkATzS1zQXheflK4qrAP9JPtG+ppIHXLLhjNyWHr+G4K/9JnAQMAfl7fsOfkbJfXOFmF+rG6fRrrd/m+55VYl8c3ct7XqH4KD43WvyrLtvkPrjBAMFoWg9GIiIiIiIiIiIiIiIiIiIiIiIiIiMglBqNRpbsAtKny2Avga5v67++tU2mMUqqrw/VU9bGIaP5Em4iIiIiIalJN4qBS2kFFRTtvlNw6qHWVqUjL5d1SfBPcHdElG+0tkxnPBzGy/aSoAObk8ZB7znHW4D83QD3yYa3WSSEW7x/KNcBFANSjuydaFxQGCEb7dGrA8DQAkNfudzaQgcOhzrgcqn13qNadoIy6/8hFTfrUvsKGFZDXH9j3UBdQs9sqGG1v+4akmwheNexDvp4G89xukJEJMMefANmyZn/Z3M98ZSPiYV41GLL2zzoesXtKKbRPUuiaohAZ4X9clZfv3fdz79LVaGRqEqY0EpZ+BQDonmJdvnaX+wn3RYYmzeqXmZAAoQ7B2pUrWLwlcD2nQTApcdbLgwlGy8gTnPKcF/maT7c8UoGftwzHufnOgkDVeROglIJq2QEqrpnjcajIKKhRl0E98hFw5DCgUx/g/FugHp0RsG2P/tYhMhsjO6MC/qFpaREtHY/LTpcWIemmmqYxCsfbfEL54KzAAXuBaI9NU8bDPL0NzFfvh3i9GNDReZ9tEms9rDp1/TCFNy51nrQUHeH7ntREE8hZz8EYizYL+k30Iv4mE42vN9HvIdPvPbsuHZi53H2Qyp9bBcOeMhE13kS7O72Y8Uft9zEip9yEyDak3q0VFl6fi5YVu/zKUirS930NLlqIdzKvw/XjeqP7VVegW4pCVISCMgyo1ochMbmp9rllepLwW6OjUKgJcLWSmuPsPW93TRobY11WyGA0ciPQNfTBEoxmU6YcHreG97SvmJEPR/cNdSXbJujMil1YrF2QnJV16b4GumC0OBfBaABw/+n6zzR25vgvC3TcyyxgiCwREREREREREREREREREREREREREbkT0dADoNBSSl0CYLaIpLtocxWAB2ssniYiW3VtRGSDUmo6gMv3LooCME0pNVwXdKaUOhPA2CqLygA85HScREREREQUpBZtg2pWpqIslx/X1cVMewkQDrHqdxcjqtKtCLB9PeS6YUBuVuAGHg/UA+9AnegwQI3qT3yS36JoKcNxhfMxv8lxtk07lm1BYym2Lty5Ceg9yG+x7EkH1i0FPnkxqOFaatfVUfhQqCnDAJ74DHL3v/WV3n8K8p8boZJaonlT6yrbI62PEfLwZVAjzw/BSIOjC6FQq3+HRGUA2RmQp27YX/D3IshNJwEfrvKFwj1w4f6ytX9CbjkVeO8vqKTQhDqFgmTt8u2Ppf4fpcjiH4A1f+x7HAEvjihZgd8aH+O4/8SlsyAFueiasRKAf7ud2YLerazbRkcApRX+ywvsAke2bwQO6+l4fE61v8tZ0JDjYLR4Batohm173E3WFxFc8LqJuev0dVZu7o9uZRuddXjW1VBd+rkaQ01q6NlQQ8921ab7MX2AH/2fe5kRjS2RHdClfHO15btCFIw2oGPdJPcM7a7wywbr1/L7VUBOkSChcfDr1gYRmeVAbibw3pMQpXDY1Q+jVytgdVrgPtskBD2ceqGUwuVDFI7rKjh2sonMAMFmSXmbIX/tQrPNAHC0X3lBKVBaLoiOrLv0psJSwYodwKpUwTXvOntv/7EFuGyw83XkFgnOnGoidW84yM4c4ILXBS2aCob1UNhTKFi6FejeEmjXLMySquigoAvN8YTZv0SSjX9h0Cs3YseGRfYVz70Jxo2vaos9hkJiY+sgoT2eZihW7lJ/duU6q6c7giil0CTKukYBg9HIjfIy+/LtDq8lw5xd0JfTYLQeDi5DZy4XHN2pYc67e9zlWGOPTTCa2wDr9Xv/MiBP8xFJnCbI0c6InsCcNf7LV6UCc1YL+rYFUuJ827oowG6c7XLbEBERERERERERERERERERERERERERMRjt4HMFgFeVUp8A+BjAPBGx/LNqpdQAAPcCqDlbcieA/3Owrgf3tk3c+3gwgDlKqStFZG2V9UQDuBrA0zXaP20XvkZERERERKGhYhpDOvcFNq101a5cRVouj/S46MRu5mtlFa8XyuO8UykrhUy6EvjxY2cNzr8Zatg5UL0GOl4H1aOE5paL78l6MmAw2jl5n2nL5JGxQGEe1NnX7F/2+cuQF+8AKsqDGakldd3jwJlXQTXWpI7VMXXs6ZA+RwN/2wRNLPoeGHUZulhvaqyP6govDHjgn/YjmWlQyZrkrDrm1YQPqTkfQT55xbowOwNYPAfyyxf+ZQW5wK9fAaOvDN0ga0E+fgHy33sAr0X6mMbAkj8dB6NFmyVoJCWQSVcieVssYNEuv0RQYVqHBsQ1Anbn+y8vVI31K926NuTBaDuzBRXOctEcB8F01rwX1u1y1r7Skq2wDUVLqshE57LN+gpVqIfeB4bZhBzWoe4p1kFxALAuuptfMFpaqILROtRNYMV/Big8/JX++uOSN018eaObi5nqdD0bVcNgv30XcuVE/Ku9wuq0wNdCbRIOjNCsrikKy+438OavgrVpwEd/+D+3LmUb0f76fhAAzaJ7AZ2WWPaVVQi0rqNAuDmrBZe+ZWJXnrt2ny0VvHRh4HqVXpsv+0LRqpo618SGDIXrP5B957LxQxWeP08hwnNgvNZ0YNCGyIbJbiZFBZA7zwJWzA9ceeBwqBueDFgtKdY6GC3T4x+2HIhVP1a0gZgKaKIJGgoUEERUjTfA/Wn6NkhpMVS0u/C/cGN3ReT0sNW9pf66tdKsFYLHxzgdVWhlOzyuVMqyCZvVfZzWJBootAhf3FMIZOYLcjXBaPGN3J8cWidYb+9pCwXTFvqW3zdK4eHRCoUBjnvFofsYhoiIiIiIiIiIiIiIiIiIiIiIiIiIDhEMRjs4NQJw6d4vUym1AcAWALkAvACSABwOIMWi7R4Ap4hIwKmgIrJDKTUGwPcAovYuPhbAaqXUnwA2A4gH0B9AzSmnXwG4393TIiIiIiKioA053XUwWpmKslwe5eZO0vQGrlNRBnicT/CVaY85DkVTX+6ESkh23Dc1gOatLRfHee3TTI4t+hV37HnWto48cxNw5FCo9t0hG/+CPHtz0MP0k9QK6vPNUIbDJKY6pCZ9AhndTlsuOzZCAeihmUReasRga2R7dCrf4t9400qgnoLRSssFny8TLNnqmwS+Os26XqxpP9tcPnoWWL3Yuuy796EaOBhNVv8BefcJYMFXrtseWbzUcd1Ec29az/xZSIj5F3CYxVhgICe7GL6PkqqLjbYORisyAgSjhdjUeYFDpSoZDuf6d2th/V7YugcoLhM0inLW0RfL7Md2esG3loGD1StdDnXnf6EaMMWmcbRC+2bAtj3+ZeuiumEUvqu2LMOjSZZzaWDHkHTjp3drhUlnK9z7P+vX5+uVwLYsQfuk4La5Noio6j6VmQoU5qJVfLyjPusqIKwutElUeOB037a7b5TgjEfSscXr2ycSvNl4f+dl+8JNkiuytP1kFQR+3hl5gpkrfOFjJ/VSOKZz4Ncsv0Qwdpr7UDQA6G71abmNh7603hk+XwZ8XuP48PI8Qf/2wBVDwiSxivYxTV+AnVd8AVhe8YWzVvsKsMx03Ub827rswxRgyVbrfTAMLk8BADL5GmehaADUk7McnQuTY4H16f7LszxJiJESV+PbU+h7LTwBLiB0Z3ulgCbWt8woLHV+/ULkKLh7xyagc5+6H0sDcXop3Ls1EGHANjh5TRqwPl3QLaX+z7m68K/YaKDAMsxMf6zQXXP2bOkLaLayLh3I0xwK44LI1Wvl4FL2sa8FRx+mAgZCMjCSiIiIiIiIiIiIiIiIiIiIiIiIiIjcYjDawc8A0H3vVyA/AhgrIjucdi4i85RSZwOYhv3hZwrAgL1fVj4EcJWIOEhIICIiIiKiUFBnXgWZ/rirNtpgNI+LTswAgTCAbxJwtLMZmrJzE/DuZEd11d2vMRTtAKDikyCdegObV1VbHiv68Kv7B6Xi3umnIhIVAfuX2R8BY++DjBtY67FWpS6+PSxC0QBAJbYA5uRCRmhmLYvvfdjNJvBlfVRX62C07RuAo06q/SADKCgRnPaCiQUbA9ftUhagUobNxxqb/3Y3sBCTz/4Lef5WX/JbEHqWOQ8eS/Rm7/s5wZujrZedkQurYDRd0Eex0RgCwCpmQP7+zXJ5sMa/b+LVn0MfjNa9pfVyEWDTbqBPG2f9zFyuH5uC4KY9L9m2V09+AXXMqc5WVsd6tNQEo8X28/0bhSoyPbU/tyY1ATok1bobrbtPNTB/gxffat7y7y4S3DcqyGA0zaWNUTMELycTbRKdBaM1bxrUUBpcr1bAii1HYR6OQJmKxkkFP6CJFO0rb+a12Kn2yrLPuMSGdMHIZ819++VDXwqmnKNw20n2597PlvqC1Opaep64Dvi46h3BOf0F8Y3d7XsiYhm8VZtALb8yyzZiH/7lcL124/QfiyDgWB0sq9YuQP2DkScM8vdk1e/AT586qqum/QkV4ezXlUlNrJdneZKqXfs4YQqQUwQkxQauZ8VQQJNo6zKrACQirYrA97XYsfGAD0azuwVyethKaKwwpr/Cx0vs7xFmLhfccXL9Hwx155UWTa2PCxkWQdSVdMeeVvFA0xgg3yIAbdk20Y6haYx+XTptHIb3TltoojDAcY/BaERERER0qBARLF26FGvXrkVGRgZKS0vRvHlztGnTBkOGDEFsbIAPIsLY9u3b8ccff2DHjh0oLi5GcnIy+vbtiwEDBsCo5e9MMzIyMH/+fKSmpqK4uBitW7dGp06dcPTRR9e6byurV6/GypUrsXv3buTl5aFZs2Zo1aoVhgwZgqSkOvzlBRERERERERERERERERERucJgtIPP8wB2AjgWQAcH9QsBzAYwVUR+DGaFIvKNUqoPgIcAnAcgUVN1EYCnROSzYNZDRERERETBU83bQEaNA75+23GbMhVpuTzKzZ2kOEgbKA88O1IyUyHvTgY+f8XRatXlDwCnXuKoLoWBY071C0brVroB8d4c5Hqqz8RtGgPc0XO9o1A0AMCKBcB374ZqpD5HnwKcdW1o+6wlFR0Dad8N2Lbev9DryyWPjVFoFQ+k5fpX2RnpnwQlAF7/qxm+Tfe1v/FEA8N7Wk8uX7RZ8NT3JgrLgFP6KIw/QSEqwlf3l/WC134R/J0qEAG6tgCuH2ZgWI/9fb27SByFogFAjzKL51hVZqq+LEmTiBVi4vUC370HeeLq/QsTWwDZGbXqt1vpBsd14737X+gE0+JF32tPESyTCHRBHwBQqqIRIxYz3xd9DynKh2pc+5Snjxa7C0UDAKdzYzolAx7DOrhg3S5nwWjr0wWr0/Tl73SeicPXrLQubN4G6p7XoAaOcDbgetCtpcLs1f7be32/84H8e6vtu7sjah+MNqw7oFTdhlXcfpKBb/+2vg75coXgvlHO+yqvEEz/TfDJEsGuPOs6Rs1rntwstIrv7Kh/XdBPuJLtGyCTxwMr5qMJgFH4zrJeFMrR1JuHfE+cX1lmgf06HvtG/ML67v5cMHawIClWv+98tDi44EkAyC12Xvfrv4JbT+LNJjoluwv+0gWjEOk0dHavpG6GXHu8o7rq/96GchH25Hv/+78psjzNEGV1bRJAZkHgYDRdmJNSQKzmeilQQBBRNQ4+E8HunXU/jjoWZDa0n1cvViguE3y9Un+OvOszwR0nh2Z9bujG064ZsDnTf/mGdH1fuu1lKKB7CrBkq3/ZcpuMcN3xys6AjtbH3Jo+Wxq4LwajEREREdHBLjMzE5MmTcJ7772H3bt3W9aJiorCiSeeiIkTJ+Koo45y1O/YsWMxffr0fY//+ecfdOzY0VHbefPmYdiwYfseP/jgg5g4caK2ftXP7E844QTMmzcPALBw4UI8+OCD+Omnn2Ba/OeQlJQU3Hfffbj++utdh5gtW7YMd9xxB+bOnWvZd9u2bXHNNdfg7rvvRkREBCZOnIiHHnpoX/ncuXMxdOhQR+vKysrClClT8N5772HnTuv7bMMwMHjwYDz44IMYMSJ8fodDRERERERERERERERERHSoauDpERRqIvI/EblIRDrCF1A2BMAFAG4GcC+A/wNwA4CLAPQHEC8iY4INRauy3gwRGQ+gJYATAYwDcA+AmwD8G0AnETmGoWhERERERA1H3TEV6DnAcf3yUASjOUlyqLCfHSm5WZBrjnMeivbpRqhx90E1dCIAOaY6+YchRKEcV2e/4bd8/FCFJmU5zjvfsgYy+8PaDK+6Y06FMWUmVEQYZs2362q93PTu+7FNgnWVnRGt4YWBArU/nee2FpMxfte5mLUCmLUCGPmsiWkLTZRVCPKKBbJ3pvbXfwkGP2Hi82XA96uAW2YIrnrHV/bDasHIZ018sFjw1w5g5U7g82XAiGdNfLty//HhK4cBM80qspDszXJU11JC8+DbuiCv3V89FA2odSgaAMRKIdo1KnRUN9Hc/z6pGpJW0x6xTgOxC0YrVo20ZXLjyMCDC2BPoeDCN9wnJxiarKTKfVUqygEAkREKnRpZb5N16eLXzsrM5fqybZMNXBDzq3Vhp95Qn20Kq1A0AOihyQxcm2FAzVi777EJhSxPkmXdRzMegAdey7KqlALuOa3uz9FDu+vLFm8BduU638du+1Rw9buCH9bo6xioGYyWiXaJgcPfPAYQr39LhR1J2wK5sA+wYr6j+knePZbLswrst/87v/mXe03gC5v3XnGZYF6A7Ew7boLRZq0IPt1lcyawNQvYkQ2k5gDpeb5wpuwiIK/EF6hUUg6UexmKRsGJacDLVMnPgZzX01FdddNTUCdf6Kp/XYhZlqcZio3GlmWDOur7y3JwWWUXTqS7XipgMBq5sfca1Y7YhT8fIOxOaW7ycuMbK8y8wYPMZw3ceYq+4Ys/OQjqDzGr4GUA6NHKepxZhUBmvvWW0V0DKAV0b2nd35pU/VaOsf6Iz9ZRh7lvo1NUZn9/RURERER0IPviiy/QqVMnPPvss9pQNAAoKyvDd999h6OPPhrXXHMNKioc/hOoBjRp0iQcf/zxmDNnjmVwGQCkp6fjpptuwjnnnIOyMuepyM888wwGDhyIH3/8Udv3jh07cP/99+OEE05AerpNunQA77zzDjp16oTJkydrQ9EAwDRNLFiwACNHjsQll1zi6vkQEREREREREREREREREVHocZb4QUxEckTkVxH5SESeF5HHReQxEZkqIh+IyDIRCTxb0d06y0RkrohME5EnRORFEflcRP4J5XqIiIiIiMg95fFATf4COOtqoFMf4IjjoZ79FjjJejJ6mYqyXB7lcbFSJ5MeywP8QfG37wAZOwL3c+woqPdWQKW0czY2Ch/tu1kunrT7ATwR+yGOaAcM7Ag8eY7C42croEAf8uTHMByHtwAA+g8FDj/Of3mH7sBFt0M98pHzvuqb0nzMI/snE+iC0R5u/n+I7lmAhB670aHLBrwTfxFeTbzKr97l0wQx15lImGDCc83/s3ff8U3V+x/HX9+ke9CWtoyydwGZiiKCIkNRZAiK4p4o4h7g1qu/K6I4roqgXlCc14kILtyKqCiKomyQPbso3W3y/f0ROtKeb3LSpgP8PB8PHuSc70yanJyc9vuOG8ckF6OeqbpY4ZUfNSu2ah5b4qbY4sqD1nDX++Xt1ttcy9C34Dd7FU3y7YWK1YTeux1ef6x6jUPDIC6x/F9YhFexuu9lurSNNjT2luDKLLsdgosY10HLerkO64SRKOu3AADyHT5SnNb/hrZzzPbhuIeqF2LgrPAS0Hu3475nIu5B4egTIzz/nxyDe1A47ufvpfMe6+Cy9Zuy+Gy1xjHJVfYcd0xy8eVa7/czUzDace2gZYKP41THXqhAkh/qSJem1nPafxDSSqLghJEAZDoTcCnrxJ1huV/yqftGhqRCjxaefa0SyoMuHAqGpMKyaQ76tK79x0ApxYq7zZe/7QYyrt2tmfWV/7pVgtGy0jm6DcT4CBkESIwGhynVrwHSL9wfUH1jMJqPw7HbRxrY56vN7T5fA0U1WEtoNxituETzmY95CFHfTuhY+8cU/cf3uK8ahHtoHO7zjkL/8gU6cx/69Ka22qvbn4Ozrg143CRTMFpIErnKOhgttbki0hAIlGZ9euTF9JFWKfMxPleC0UQgXP6D0UjbXfvzqGW+Lg9V5/Q4PkpxUX9zw0c+qfsQLlMwWrfm5jZr91jvN83eoaCNdU4xm8z5C9UKzVRKccmA4LynaA2FDT/zQQghhBBCiIDNmzeP8ePHc/Cg90WGDh06MGrUKM455xyOP/54nE7vX7A///zzjBo1qkGHo82cOZO77roLl8vzi74uXbowevRoJk6cyODBg4mI8P4d1oIFC7jnnnts9f3YY49xyy23lPVdqlu3bowZM4YJEybQv3//ssdt2bJlTJgwoUp9O+69914uvvhisrOzy/YppUhNTWXUqFGcd955nHbaaSQne3+50quvvsrpp5/eoH9GQgghhBBCCCGEEEIIIYQQQghxpKvH740XQgghhBBCCFHXVEIy6panvXcefTK6uBC+etdrd7EhGC00oGA0G+E2Jb4XAeuV/kOt1H9/QHXpa3dWoqExBKMp4Nb9M5n6+AVe+3VuAMFoGTYTt0JCUR/uRkXF2u+7oXEaXpwVFgmkJCjMS6w9doa24LKUF2o8nXsXulniIzhm5XbYvF/TMgG2pNvr8/ScT2o2qZysmrW347uF1Wqmbn0GNaZqGF1lqWluPl/jf5F/gsv7vsa7D5DjtP/8jg4zP1cKlJ+kp+8+gPHX2B6rom/WaZ8L+n0pzZbSbjf6XxfBqmXWFV+ZQecmD/Ehp1cp+uS3Al5eVfW9a9jjblb/y0Fqc8XebM0Pm627HtP70CRMwWgxcf7uRr1IbWYuu/JlNwsGjUZ//yFpTkMKA5Bcsp9jNs7n5BdmNZjwtz6tFanNrAMnFv+hucIiB7Oy+T9oWzmvjsqvlwNphIUoZoxXTHnd3IEp5Kch0kWF8NkbAbVp7LI+wPsKRsvyEVAWYQg3Aljwm/lxdjpg8XUOTu2u+PQvzWn/qfo6zy4ArbXf5++OLMi3kWEjRH04uQuM7FG7Y+iMvXqme70AACAASURBVOgpQ8p3bN+Avqnqe6qJ+t9qVIsO1Ro70ZAPm+5sTJ7DOhgtKgwSY2BHZtWytByN51OHma9womhDkGyOBKOJQPgLiwfYv7P251HLfJ1OVffMsWtzaN0YtlnksO7Mgqw8TXxU3Z2XmrJdU+IUjSI02QVVy7ZmaAZaPAKmkDWlzIHn+3yEPfo6h/Kli4/PCYGa9ZXmllMaxucEIYQQQghdUgL7a/YFH8Km5JaokCPzz5RXrlzJ5MmTcbvLT+B79+7NrFmzGDBggFfd/fv3c8899/Dcc8+V7fvkk0+49957eeihh+psznatWrWK777z/I5+7NixTJ8+ndTUVK86mZmZ3Hzzzbz00ktl+x577DEmT55M27ZtjX2vWLGC22+/3Wvf4MGDeeaZZ+jevbvX/v3793PvvfcyZ84cvv32W1avDuwbK+bPn8+DDz5Ytu1wOJgyZQq33norrVu39qqrtWbhwoXccMMNbNu2DYAvvviCe+65h+nTpwc0rhBCCCGEEEIIIYQQQgghhBBCiOA4Mv/iQAghhBBCCCGEbUopuP9VdKVgtCKsV02GBfJJ0l3zYDS2rfdd3newhKId5lRUrHmR9JY16LyDXoFlOt1m2FkgBo87vEPRAJTDen+FgELTAura8PGf/uss+kMzorsyLvquKNKdx9kH36vZpExhVUGiC/LQ/7klsEb9hqIumIrqO9hW9S5N7XUbXykYLc51gB2hLW1PK8pH9lm+ivTZVq/6AVXNYLRHPrXxZDDIK82U+OULcyjaIV2KNlju3xdifoBnfa15eqLiizXmoKyx/oLRYuvwRRiAlHiICbcOcvngdyg5fwzOmGnsdyUZ+0h2pYEugW8Xwklja3G2gRnVS7F2T9Uf2GerIb9IExnmO5zhrV9spKIBjkphsDorDQVMHuzgh01uXv3Jup/EwykYbd4DAbdJMgSjpf29C7A+Jq3Zbe4v3BDqsStL89Iy88/ql7sc9Grl+VnHGQ5hLrfnNRAbYR4fIC3Hd7kQpZyOQ/9UhduH/jmUuczXPoehLDpccWJnOP845fe4VlN6TGv/lawMHoe66UlUY5snMxYSY6yDW9OcieQ6rFPTosM9IZTWwWj+x/T1kTY63Ho+uRKMJgLh75oIwM7NtsI7GzJfQbPVvVtKKUb1Usz6yrrzL9bA+KOr13d1mD7XOh3QqjH8tatq2U6LY5PvvhQt4v0HnldW3WC0lCDmOs/5RnPLKcHrTwghhBCiRvbvQE/oUt+z+EdQb62D5m3rexq14vLLL6eoqDzseuDAgXz66adERVUNb09OTmbOnDl07NiR2267rWz/jBkzmDhxIj161HLSfYAyMjwJ1FOnTmXGjBmWdRISEnjxxRfJzMxk4ULPlwa5XC7mzp3rFUZW2ZQpUygpKSnbHjduHG+++SYhFgF6ycnJzJ49m/bt2zN16lTS0tJs34etW7cyefLksu3w8HDef/99RowYYVlfKcXYsWMZMGAAJ5xwAhs3bgTg0UcfZdKkSbRr18722EIIIYQQQgghhBBCCCGEEEIIIYJDgtGEEEIIIYQQQqAcDvSQs+HLt8v2Fakwy7phzgA61jYCboqLjEX6YBZstw6vKaXOuzmACYmGSj3wOvre8yzL9BM3oe76b/mO5UuCO3j77qir/x3cPuuDw/DidLvKbtZlMJodN72paTPZ/yr4MHchz+y5keYle2o2YO4BtNuNchhC5GpA79uBPu8o+w0cDtSUGagJ1wc0Tmoze4vgE9zeK+wbuzICGifaVzCaw3cwGvnVSw06WKD5Ym21mgKw6e8DuGc/Cq8/5rduJ0Mwmi9LN3ged6tAA4BOTSC1eWkwWpZlHRUTxGSBIFJK0bMlLNtkXf793nhOmjqbtCfetSyPcucSpfMB0HefA1/noZyBnDDUnlE9FY9+WvU1k18MS1bDmN7BGUdVfl3u+rvs5sPjlTEYrUPy4RFwovNy4LWZAbdLNBx70n9bic6JtXxNTHndfP4YaQj1GDvL3ObdyeWhaOAJSDLZkgY9/GRIph30XX44Ucp/MFeVIK4AgrwclmXKO+grgPAvf/u82inzmJbzrEZIma/Hx+E4PF7bgdK/fFmtdurfb6FOHFPj8U2v3zxHNOnOxpZlUWHmdum5/sc0nXU5HJ5QUSv5xeBya5xH6PNABJmdYLS922DLGmjXrfbnUw9q8kqZMc4cjHb2c27cz9fdOanbcMBwOjyfxa0+R+wy5Cn7CllrmRD43KobjNYiIfAQNpNN+4PSjRBCCCGEEA3CV199xa+//lq23ahRI958803LULSKbr31Vr755hsWL14MgNvt5oknnmDevHm1Ot/qGDhwINOnT/db79///ndZMBrAl19+aQxG+/nnn/npp5/Ktps3b868efMsQ9Equu222/j8889ZssT+74gfffRR8vPzy7afeOIJYyhaRU2aNOH111/n2GOPBTxhb0888QRPPfWU7bGFEEIIIYQQQgghhBBCCCGEEEIEhwSjCSGEEEIIIYTwqBRgUqysV02GBfJJUttYPPnr19C5aiqJPpCOPiPFd9sufeGYYQFMSDRYx59mLvv1q7KbOjcbNv9V8/Hik1GX3AktO0DvE1HhfoKeDgemsC93+YrqlLjgLGgOpnGzzWE2T+y5hXj3AQblLaVt8baaD+Z2ewKrGlkHZ1SXXv0z+paRUJjvu+KZV6Fad4bIWOhxvOd2gFKb2asX7/JeYZ9SsjugcaKsszEByFcRvhunVy/AbslfUFRSraYANFv0CKQ/bqtul8LAg9F+3wFaa9btsX4dHdO2QqRDjiHhIKaBpRNWcN5ximWbrO/bwpWaweeMY3/eSbCwanlySZrXtn7oCtQ9L9bGNAN2fAdIjLYOvznzWTdFsx2EOM1xHBk2QnMAFJWOZdvWld1MiVdMOEbx1i9VH9+Jxx4moTnfWvzgbTCFMqY7G8M3C2DkJV773W7NHzvM/Vk9QwuKNb8b2kSEwimVMmTaNIZQJxS7qtZfu8dGMFpOYO+lY3t7jg/xUf6Cv5StUC5z+FfgIWVKHSbPP9Eg6MIC9E0+ztlNjhkSlFA08BzPTXaEWr94o1Z+RlLz4VgdQdJsZLmago4UvoNk84og1s8pkxCAvWA0gJXfHtbBaHYuD1VHVLjiqBT40xBePOcbN1efFPxgbCu+wsxS4q0DxnZlWj8wxr4UtAgwGE0pz7lPdaQ0zFxnIYQQQggh6t38+fO9tqdMmUJKip/fax/y8MMPlwWjAbzxxhvMnj2b8HAfFxrqwV133YXDxhcNde/enbZt27JlyxYAVq5caaz7xhtveG1fe+21xMXZ++Bxzz332A5Gy83N9Qqba9++PVdddZWttgD9+vVj0KBBfPfddwB88MEHEowmhBBCCCGEEEIIIYQQQgghhBD1QILRhBBCCCGEEEJ4OLxXSRYp61ScysFoWmtY9iF60TwIj0INPbt84bvbHHhU1n7WNNS5N3puf78Y/fGrkHcQfv7cd8Ou/VB3z0U5q7m6UzQoKiIKHRYBRQVVC/ftQBcVosLCIXNfcMa7aBpq/DVB6avBcBheCxVehy0auYDD4zUzPOczrsucHfyOl38Gw86pcTfa5YJ3Z6F/+Bh++dJvffWv11BDzqrxuCnxEBMOOYW+6yW4sry2mwcYjBYe4lnAb7UgP9/hJ0hw23q01gEH7iz6w39aQqsE2J5pXXZqzme2x2rq2kuboq1sDWtjuw3AvoOwxpD71uVQaJ3WGg4aJhndcJMFrj5Rce3r1j+DRb9rnjgH0kjAKtAh2eUdjMaS19FDxqNOOKMWZmpNp+1CP30bfPmOZ8ewc1DXP4YzIZmRPRUv/2B938ImuxnZA07prmgUAQt+0+w7CEe3Udw+QnHAT95hKYeu9GLZsRHtcpWdpzwzUZFToPnoT09xowiYPk4xvFvDDqbSBzPRL/4fvP1MtdqbgtEOOOPQSxejKgWjWQXYVZRrcezbsNc65Azg6NYQHe79GIeGKDoke0LQKlu3V+OJOzLzN8eKXrtCMfHYugljEaLWLZhTrWbq3peDNoWkGHPZnhDr9NioXz6i8elHA1WThNJtBB2awpyU8pyTmeQWSjCasEfv2Wqv3vYNft6hGjZfr7aa5nQe117x5y7rEa55TXPZCZqwkNp/9ExBig7l+RxnZZchT9l07HE6IDkG4iKxfZ4aEVL9MNRAQ9iEEEIIIYT4p1i6dKnX9gUXXGC7bffu3enbty+//vorAAUFBaxYsYIBAwYEdY41ERkZyZAhQ2zX79q1a1kwWl5eHjk5OcTEVL2Qs2zZMq/tCRMm2B5j4MCBpKSksGuXIRm7gqVLl5KfX/6h6ayzzrIV8lbRySefXBaMtnXrVrZt20br1q0D6kMIIYQQQgghhBBCCCGEEEIIIUTNSDCaEEIIIYQQQggP5f3HwEUq1LJamLPSYsr3n0c/fn3Zpv7ybbh+Jurs68BtSKmoRGfugx8+QU+/0t5cux2LmvNttRd2igZqwvXw6iPWZe/NhnNv9ITeBMMp5wWnn4bE9Af9FYPRYko4XILROhdtrJV+9b8ugl4DUcktatbPvy+Dz/5nq6669pGghKKBZ0F7ajP4xU9+QrzbO5irRYn/hSJe42hNZKh1AFuB8hOMlp8D6bshKSWgMZdtsl79f8UgxayJit0HoFVjWLgSxs32DqEakLeMHoV/2h5LAddkzmFa0+kBzfH1nzRrDBlzqaV5LKt/htxs60qxhkSEBsDhULx4ieLSl6r+HDanQdpBzf4c67aJrvQq+/Tt4+GpJag+JwV7qt7jFBdB+m702Z29Cz5/E/3jp/DmGkb1TDAGowF8uAo+XOVd/uNmzXPf+A/MKeWgUjBacRHs2QItOgCQFKtYfL2T9BzN3mxPkJ7T0bDPY3ReDvrSY2HvtsAaxiV5zgEPZhLvsk77yHLGe14rlezMsqhcQV5R1X3r9prrP3q29XtjajPrYLTN+32PD5BmeB1U1iYRzuzTsH/GQgRCfzQ/sAYxcaj3t6HCg5cO1jg68DbR7lwS9/wBVH0/svN69hV0FO0jGM1fiK0QcOhayMIX7FXevqF2J1PLTEFfUPNgtCknK+YuNQ/wzXoY3q1mY9hhFSoNnjAzUzDaHkMwmqkvh8Nz3n5qd8Vbv9g7V42wvrxnS2xEcM9lqhOgLYQQQgghREOTmZnJpk2byrbj4+Pp2rVrQH0MGDCgLBgN4Oeff25QwWgdOnQgLMz6S9SsJCR4pyofOHDAMhjt999/L7sdHx9Px44dA5rXMcccwwcffOC3XuXgupSUlLLgNrsq3//NmzdLMJoQQgghhBBCCCGEEEIIIYQQQtSxwL4CSwghhBBCCCHEkcvpHZZUpKz/2Dm0QjWdm42ec1eVOvq1x9AlJaANKzkry0pHvzLD9lTVuMmykPIIpC6921imZ01D5+XAso9qPs6tz6DiEmvcT4PjMASeVQgobBRWQozrYNCGjIuEHi3gkbMU718T3MtMvQt+91+puj55rdpN9bZ1uM9oYTsUDUCdc0O1x7PSp7X/419SiXdQVUqJIc3LQL0xk8gS6+dKvsNGwMnfqwMa72CBZuM+67JTuylCQxStExVKKcb2USy4xsGgTtA+CSYn/8wH28fjwH6IFUPO5hb9BvGuTP91K7jlbfMYR7dWaK3RVw+yrqAUdDgqoPHq2vBu5udWk1vczDMETiSXWKdJ6etPQW/8Iyhzq9L3ljW4rx2KHp5QNRStVE4WLPwvp3Sv3hglNk9jwCIYDWDruiq7EmMU3VJUgw9FA+DjlwMPRQPU+MmoZ76AgaOIi7M+nzzgaAQZe9A53mkgu/wEo+UWVn0Ort1jfl32b2/9OKfEW+/PyPV/HPEVpNQuCVrEw8RjFcumOYgIPQx+zkL4obdvwH1u18De29t3R72yMqihaAAhTkV8VGBtotx5JG1bbllmJxjNFOakFET7WB+cK8Fowo4lb9ivu2197c2jDvgMRqth371bKUb2MJef+3wAJ3U26MUv4j67M+7TmuK+eST60PmSy0eQYmPDsetAvvV+U1/OQx+7B3exP9+aBKMFW7G9708QQgghhBCiQdu/3/t6eKdOnQL+vXVqaqrX9r59hl+Q1JPKQWf+hIZ6f/AoLi6uUic3N5eCgoKy7eqEjNlts337dq/tG2+8kXbt2gX07+67vX9vnZGREfB8hRBCCCGEEEIIIYQQQgghhBBC1ExIfU9ACCGEEEIIIUQD4fAONTIFo4VV/CT57ULIswjOSd8NOzb4Xvla0YE02LHRXt0OPWDYOfbqisOKCgtHt+oE2zdYlutz/Xzb+plXwYLnfNcZPA415spqzrCBU4ZgMneFReCuEtoU7+AvZ2ApQZdlvcTzu69BTXoQkltAi/bQqRcqwnt19xc3Oxj6eM0XnSvt5vScT2rcj4l+/h5o3w2at4O2XVEOc6ibLimGdb9B1n7ISkM/PMn+QDHxqDnfBGHG3kb1Urzwne/ja6LLe4FGSvGugMZwFOQSWZAJobFVyvJVpN/2+qclqH7DbI+3aqe5rI/FOpfRqfmMDvkDMveh7zzb9jg4Q1D3vYI6eRxaa1YNaUuHDmsocoTb78NC1+bQoYlCvzbTXKnfMFRCkxqNU9uax0GjCMgusC7PMYS8JLnSjH3qS/vBR3tRsfEBz0cX5sPqn2HvdgiPhLDyn5O+fZy9Pj59ldgLpzJ5sGL21wGE5wXIYRUGu209DDi91sasCV1cBDs2eUJs23WrsnBPFxag33oq8I5btIdRl6OSmqOmv0PjDRoerfrY5DuiKFRhuDZt5PfovnRuCsmxip1Zvn9GVs/B9Xus647pZe4nMcZ6f0auz+EBSM+xnuMVgxTPXyjfRSOOHLqkBNb9ag78NGnSCvXSiloLsm4SC1l59utH6TwS9/4JLaqWpdsIRnMbPtM6FMT4yH3LLbI5QfGPpt/8j/3Ku/5G52ajohvV3oRqQV6h5uct8P0m83t8MA4Xb1zpoNH11p9FM/PgnoVupp6qiI2o2WB62UfoGVeX7/j5c/R1w9GvrzZeAnM6IC5SgUWQc3YBaK2rHDNdho/VpcFoLROs+7NS02C0/u3hx80166NUQXGl64pCCCGEEPUluSXqrapfaiBqQXLL+p5B0GVmen/hSlxcXMB9VG7T0EK3HD5+b1ZdWVne34oRG1v190/+NGpk7zNxenq6/0oBOngweF88JYQQQgghhBBCCCGEEEIIIYQQwh75s1MhhBBCCCGEEB4Op9dmsbJeORlWoZr+frG5v7RdkJtta2j946e26gGoF5ahnE7/FcXh6fjTjMFoZPr+tnQ1cBTaRzCauu1ZGHlJDSbXwDlNwWiu8tuuEkblfMhfEdbBaO2T4IyCz/h7tyd5Js51gGG5X3J+9hvAoUCxip74CHXM0LLNQZ2gQzJs2l+1767N4bUrHPR90H9w2mk5n9LU5fvnXVP69vGeGx17wsPvoZq2qlpn9c/oO86CDEPqji9xiaj//oBq1qaGM61qaCpEh0OuIaQKINHlvegjpWR3QGM4cBPpzrcsK1A+UkBKLf8soPFW7bBe1B8bAW0Tvffpbxei/+9SyLeRYFTqpDOhSUvUkLNQR/UHQClF8zHjuGLpizzb+Go/Hfg2upcnyEB//LKxzuEQyqiUIrUZLN8SWLtkH8FoACyeBxNvDqhP/e1C9F0TApuIla3rcD9+PU9f/wSzv655dyYOqh7b9LZ11E4sUM3ov1ej778QNv/p2dFrEPzrVVRiM0/5+pXoy4+z1Zea+xP89SN6zQpUmy4w4oKyfgDifOQoPh9/ObfP7kHhoQDP64cq4v3kLlod99busT5+dGlufvQbR1vvT7cVjGa9P8kQtibE4Ujv3uI5Bm/4PfDGp11Qa6FoAP3aKtbvtR90Ge3OJUSXWJYdyLcOJKrIFHSkgPAQT0Ca26LO5v2aAR0a4ruAaFD2+0gHtrLhd+gdYFhhPXrrFzcXz9MUWr8EywTjmBEToZh9vmLya9Yv2n9/qHnqC828ix2MP7r64+kX7qu6c/cW3Ms+AqwDcR0KGhnOcYpdUFhSNbzMZXVgAZyHpt4igMzhyBoGo13QX/Hj5uAEDBcUmx8LIYQQQoi6pEJCoHnb+p6GOEzpShcLgvGZpjavpTQU4eHeX1BTVBR4qrzdNtXp25/KP3chhBBCCCGEEEIIIYQQQgghhBC1L/hf6yWEEEIIIYQQ4vBUIWzMhQOXss7SDju0WxcXwS9fGrvTH79qf+zXHrVVTb2zARUaZr9fcdhRF99R/cbHDIVxFuFGkdGo6e+gRl9+ZIfqKcNlHl0hrKekmFvSn+SEvO+rVOuYUMSnNzp44p6+LNgxgQU7JvDS7iu5IPsNY7CPvul03LPvRKd7gsNCnIoXhm8lIaTAq975od/wx5Zj6fXLc6y4aCPNwwypMoc8vvc2n+Xqtlk4viuEo473Wc+WjX+gH72mym5dUoK++5zqhaIB6v1ttRKKBhAZphhhnW0HQKMICD3tPK99KaeeGtAYDtxE6gLLsnyHjWC03VsCWiSyLcN6/1Ep4HCUPwN15n70/RcEForWYwCO//sfjutnloWilVIXTOXhfXdxXN5PZftCdDGXZJkDzqyMPrgYvXc7bF1nXSEkFAaMDKjP+tKjZeALsJIHneizXD97B9rl8lnHq376nuCEopVa8Byc15Wvx6wKXp+VWAWjsW19rY1XHbqwAP3Jq+iL+pSHogH8/h16bBvcs25HvzbTdigaSkGbVNSZV+O48wXU+bd6haIBPoPObmr2GIXu8vflp77QPLDY93GjcjCa1pp1e63rdmlq7ifRFIzm++0JgDQJRhP/AHrmtdULRet5AirAIMxAndEzsPpR7nzi3Acsy0rckO9nnazpqORweBYtR4dbl180TxbLilqw/rf6noFtW9M1E1/wH4oWTOf0U4T4+OuHgwVw9nNulv9dvdene+fffL0rjocSp/JW7HjyVPmJjmut+WfjdHg+o5kcsMijdhnyxEvz0FMCCEarHLoWqEsHBC+goaA4aF0JIYQQQghRbxo3buy1feCA9XUHXyq3SUhIqNGcrLgCuCZfFyrfx8zMzID7yMgw/DKpkqSkJK/tZcuWobWu0b9LLrkk4PkKIYQQQgghhBBCCCGEEEIIIYSoGetV7kIIIYQQQggh/nkc5cEUxcq8arI0GI3Nf0Jutrm/Ja8HaWIe6p2NqKatgtqnaHhUo8Zw83/Qj98QeFuHA258Es64DNb8jN6zDZV6NHQ9BpXcohZm28CYQt8qLnxwlZDgzuKzrafzQ9RxrAzvhVs56Fy0gZPueJJGTdoBTdAXToNXZtgb9/XH0K8/BrO+gl1/c+LDk/iLBL6MHky6M5G+Bb/SP385CtCP30Av4A9HPGe0WsBPUVXDd3avb02yK808XngknDweAHXezeg7z7Y3T1+Wf4bOSkPFV1go8ft3sH9ntbpTc39ChdTuZbfRvRTv/mq9oD+7ABx3voAeOwl2/Q0tOxCdejQJN7rIzLPXv0IT4bZYoQ/kVwgAICwcigqrVirIg7yDEN3I1ni7DeuGWiZUWoT/zQIo9pNgUom6wBy0p5KaE33N/Xw3awhfRJ9MujORPgUraVW8g/lxF6BNgYMVNCvZQ7//TkD/10fAwugrav05ESyXDFDMXRpYWESToadC+A3w5n+MdfSkE+C5pbYeBz22FkIFd29l4MPHcd6AZbye2Tvo3Sur6JwGFIym03ahbzkDNv9lrvS/J4wBQJaatUGF+w5KjI8KpEP/DlY63OzN9oScWEltZg7xSIxWWMUdZeR6wtaUMrc1BaOZwtaEONzoXZth+We26qr7XoHIKM/5Rtuu0Gdwrb/f9W1t/fo1ida5ON3mhcBZ+RBlCDcDcBvCiUqPEqZjEEBeoSYqPHiBQuLIok1PLl9t1v1mDK1uaBau1ASQkxwU8VGKAR3g2w2+6/Wf7mbpNAcDOgT2aN40L4un23xatn10/q98tH00ia4MXCu+Ae6ybOdQEOcjLDY7H5pW+tjkLxgtOQZCnVBsI+egpsFokWGKt69ycPZzgT9nKyuow6A8IYQQQgghaktycrLX9vr1gV8HXrfO+0tWmjRpYlkvpNJ1lpIS+yfV1Qkeq01Op5MWLVqwc6fnd2+bN28mLy+PqCj7F5FXrbL35SdNm3p/a8b69es5/vggfNmSEEIIIYQQQgghhBBCCCGEEEKIOuV/ZZ8QQgghhBBCiH+GCuEvRSrMWC3k67dx3zYafUUd/vFwn5MkFO2fZOxV1W6qlEJ16oUafQWOSQ+gThzzzwhFA6/XsBddYfGyy7NgIoxiTspbyg2Zs7gp42lG5nxCbFR5sJoadk7Aw+spJ6P/fRm4Smji2s+52W8zJXMOxx8KRasowZ3F11uHc23Gszi1Z069Cv7gx78H+g5FA9TMRajYQ98qP3BUwPO0nryG377B/eRNuO8Yj/u5e9DvzAq8n6hY1J3/RXUOfuhSZSN7+l/Er7r1Qw2b4AkIBFrE2+8/0ZVBlLZOUct1VEj/adLS3EnaLtvj7T5gnZrQvMKcdV4O+rHrbPdZSg043XeFCdfjQDM890vOzX6bLkUbiNL5dCraaKv/Mw5+hMNPQIu69hG70613J3RUPH+hCihAITkW1OTp4OuxXv8bfPwyOn0P7gcuwT0o3PNvxmT0gfSyavrHT2owe/+e+fFUzuqY7r9igNxWl9oz9+G+9zz0ht+DPl6g9FtP+w5Fq45ux/qtEhPuCQMJln3ZnuCyUjuzzHU7JJvLEmOs95e4fYccaa2NwWhJMYdLVI0QZlpr9N3n2m/QuTfqhDNQZ1+H6jesTkJA2yaWBwPZEeXOI95tSGDFE8765OduRj/j4sqX3fyd5v2ebnqHt3NsMx0vhAAgc1/gbdb/Fvx51JKtGfUz7oJr7B0gBs5w45jkYshMJflFWQAAIABJREFUF2t3+09w+22b5untPb32rYjsy7MJnusX7gLrUGnwHLMa+QhGO2DR1F8wmsOhaJXgc8plahqMBhBlvkwYkILi4PQjhBBCCCFEfUpISKBDhw5l21lZWaxZsyagPpYtW+a13a9fP8t6jRp5pyhnZfm4IFrJX38F+XpwEPTv37/sttvt5ptvvrHdNiMjg99/t3etfcCAAV7bS5YssT2OEEIIIYQQQgghhBBCCCGEEEKIhkOC0YQQQgghhBBCeDjLQ5GKlXnVZOjrD8OPn9bFjMqoSQ/U6XiifimloN+wwBod1d9/nSOdw2m93+0qv+3y8U3yzvIgC9W+O5w0NkgTsxZKCU/uvZW961uxbUMHlv89gGMKfjU3aNYG9U0+qveg8nkqhXr9z6DMR997Hrz7LCxdDK8+AksX2W6r3l6Pmv8r6sPdqNMuDMp8/GkcrWjayLpsZA/r/SkBBKN1KVxHjDvXsizPEVW+0cRHaGX6Htvj7TKs5UmJ8/yvi4vQkwZYV/JBvfiL/zoOB+rWZ6rsn5I5x9YYo3IW+67QujMqNEhJAnXkikEOsp9y0NtmJmlSDCinE/Xwe9C4qbGefuNx9Pj28Nkb5TsXz0Of3wNd4Ani0x+9XL1JN24KJ53pt1oj90H+t6gV+2fC8ts1v0wtpmcQ8jOj3IYwjK/eRU8Zgl7j/7lYG3RxEbq4CL54K7gdO0NQ46/xW83hUMT5CAIJVH4xZFd4qE3HjlCn53lp0jjaXLbbnJ/EwQJPeJoVX+MJcbjQ/70fAglzTGlXa3MxCQ1RtEuyXz/anUe8y7xoeOhjLm5+S7P4D5i7VNPrX25W7yoPSXIb8pKUjWC0Ah+n3kLw10+Bt9m2Dl1UGPy51IJ0m8GA4UHOU0yIVsy92H5Y6dfrodt9bn7Zoskv8v7nqnAAeHuF9cHgg1hPWLdr51bjGE4HxEaY55BtEcrqMhx7KgZDdm1u7rOiiCA8xmFB+jlJMJoQQgghhDhSDBw40Gv7tddes912zZo1rFixomw7IiKCo48+2rJukyZNvLZXr15te5yPPvrIdt26MmyY9+9/X3jhBdtt58+fT1FRka26Q4cOxVnhbx8++OAD9u2rRkC5EEIIIYQQQgghhBBCCCGEEEKIeiXBaEIIIYQQQgghPCqEKhUpc4BLmLb3B8fBomYuQkno1T9P5z4BVVejLq+liRxGHIbLPO4KCS4ul3Ud8ApGA1B3vwhnTQnCxHyLdx8gpWQ3TgxJMwAjLkQ9vxRlcR9Vq06o57+vxRn6cfZ1qGZtUO27o0LMoZK14f/GWi/4H97Nen9KvP2AgC5FG4g2BKPlOCqk/0REQaPG1p3s22l7PFMQUfNDwWh88TZsXWe7PwB1+X2ojoaUuMpOOKPKLjvBaIklaQzN/cp3pXbd7M2hgQlxKm4cZu85kxzr+V8pBb7CAbdvsD4OHUhHD09AvzMLvno38MmOuQL1vzWoB99AXfeorSYJI6Poe3E0vS+NY9nSFG6JWEjbhOol2IS5C+lZuMpcIT8H/fbT1eq7uvSKr3Bfcgx6SCx6SCzs2xG8zvuchJr5AarH8baqm0IcqyvhRjd3LnCTX6TZmWWdGtI8zhPKZtIi3hxqtNHH+rg0HyEvEowm6ov+43vcU4bgPq0J7sv7o1f/XL1+CvLgf0/ab3DMkDo/9ynVt7X9c5oonUeELiDU8Dk2u8C7r5xCmLmk/NiiDeFEPg4xZfLq9qOzOMzoHz4JvJHbDTs3B38ytSA9x/DiqeT49sEf+5IBnnC0+Cj/dUsd+5Cb6Gu9/8Vd7yZ6iovkm1w8/LH1/fktojcacBWbE78cCpwORUy4dXm2Rb6uy/Dx2Fnh2NOlmb1jYUQQDtWhhhz2QOXLcVEIIYQQQhwhLrroIq/tZ555hj177H1ZzB133OG1fe655xIebv2BoW/fvl7bixbZ+1KfTz/9lOXLl9uqW5fOP/98YmNjy7YXLFjAp5/6/0K2nTt38sAD9r9ILSEhgfPPP79sOycnh1tvvTWwyQohhBBCCCGEEEIIIYQQQgghhKh3EowmhBBCCCGEEMKjYjAa5lWTdRmMpp5bijrulDobTzQcamDVkCKfThpbOxM5nDgMK5XdFUKIXD5CfyoFW6iIKBw3PI56dKE5dK2OqDtfQCU0MZd3PQbOv60OZ3RIYnPUpXfV/biHXDJAcUIH732pzeC8Y03BaPb6beQ6QJIrjWh3nmV5rqqQMOAMgaQUy3r696W2xssp0MawoZR4hS7MR7883VZfXkbbD0xUSc1Rkx6ssv/XzccS68o2tnt4391E6ELffQ8aY3seDU3X5v7DFsJCIC6yfFtNvLna4+n/BNhWKdRd83DcOgsVGY1SCjXherhwWkDdRBRkMeO3iWzc1ofHzvJd96zeLpzKOxjjX/sfIFIX+G74e90FOOrNf6FvHAGbfIS1VUf341Bf5+F4agnqmKG2m9k99gTi4Y81932g2bzfuryFnzEjwxSt4q0TR9bvNQe5bMsw9ynBaKI+6P070VPHwh/fQ84BWP8b+qqB6F3VCE7atAqK/BzLSkVGoy69O/AxguSMnvbrRrnzUEC8K8t2my/Xlh8H3IZDQmm44oju5n7yimBftmbVDk1Grr2QKPEPsmGlsUjd8Lj5M9j29bU0oZorLNYs/1vz7XrN32n+60eEwr2jgv9ZUynFpSc4yHjSya2n2A9SrCyvCPKLId06L7rMzpAWuH382YXzUFGjSOvyA/lVjw/GYLQKw3Rt7ntepSJCq/8YlOpo/jgekILq5RALIYQQQgjR4AwZMoTevXuXbR84cICJEyeSn2+RfFzBE088wcKFC8u2lVLcdNNNxvrHH388UVHlv5NZsGABv/zyi88xNmzYwMUXX+zvLtSL2NhYbrjhBq99EyZM4KuvzF9As2XLFoYPH05Wlv1rOwD333+/V+DcK6+8wrRp03D5+hIpC6tXr+bbb78NqI0QQgghhBBCCCGEEEIIIYQQQojgkGA0IYQQQgghhBAezvJQpQhdyLkH3mRc9gLOcPzIqd3h5Mh1nJD3vTEoJ+g69oTUo+tmLNHwdDvWdlX15Ceo6Ea1OJnDhGnhvLvCimpfwWjOEMvdqv8I1LyfYcwVNZhczSjlfyG3uqAOg9E69IBL7kK98hsqNqHuxq3E6VB8drOD2ecrLhmgeGCM4qc7HSTFWj9e/oKCSrUt3ooCot3WaWW5jugKkwiBrsdYd/TLF7bGW7/XXNZ+57foce1h+wZbfZXpNRDVuGlATdSFU1GPLYbWncv29Sz8k5//HsDN6U9w+sGPOS3nE07L+YQrM+fy2dYRXHrgZd+dxsTDCSMDm3sD0sXGQ9i1mfdrVMUlohbvqp0Jjb4cddm9MGg0jLkC9Z8lqBHnV6mmRlxQJezRlh2buOG3a2kUYV0c5i7k2cXdWd7paa7JmMPFWa+wcPs4bs14wn/fGXvQuvZDcfS639AX9w1+x6MuQz31GcppCOH0oUV8zcM4rMxcopm5xPox9RXGprVGv/hvOm23XmznKxht7R7rssRoiIuqnfsphC/6tZmQWzXAU5/TNfBjjq9QtA49UPe9AiMuhIk3o+Z8h+p5QoCzDZ5Bney93iLc+TjxnAvHuw7Y7n9bBqQd9Dx+poexdAYje5rncvu7btre4abXA25aT3Mzd6kh6Uj842itYds668LhE1FnTYHmba3LtzXMYLSlGzTt73TTf7qbwTPdrN5trjs0FW49RfH9NAeDu9Tu++eM8YrTjqrVIVgb1hmXMp8jOQ7dxThDMFq2xeHXTjBa68b2HruocP91/EmJVxzbtub9FBTXvA8hhBBCCCGCYc+ePWzZsqVa/0rNnTuXsLCwsu2vv/6aQYMG8dNPP1UZLy0tjSlTpnDzzd5fDjJ16lR69jQnwMfGxnLOOeeUbbtcLkaOHMmSJUuq1C0qKuKFF16gf//+7N27l4SE+vv9lS/33HMPPXr0KNvOzs5m6NChTJgwgXfeeYc//viDtWvXsmTJEm688Ua6d+/OmjVriIiIYMwY+19E065dO55//nmvfY888ggDBw5k0aJFlJSYf2e6ZcsWZs2axZAhQ+jevTtffvll4HdUCCGEEEIIIYQQQgghhBBCCCFEjVmveBVCCCGEEEII8c/jKF/E2dS1j1d3XerZSBqE44bPcT81D359us6mo6bNQZmCnsQRTzkc6IvvhPkP+a/cd3Ctz+ew4DAsxHZX+OZzH3/kbwpGA1AdjkLdOgtunYUuKUafHFPNSdYeFROHbtYG9mytvTEmP4Q675Za6786IkIVV52kuOok/3VT4hXgPyRl/q7LAYjW1kGYOZWC0VT/EegPX6pace82dEkxyk9AlSmEKDxE0/LxiXAww++cvSQ2R13/WGBtDlHHDke9tgoAveA59OPX07F4M4/su6t6/U2bg4qJq1bbhqBRpKJJLOw7aK7Tp3XVQAYVl4iecD289VRQ56POnIzq2AN/ERCqdWeY/BD62Tt8B0JaWTyPn09N4qitd1KswryKXtp1BY0PbqPxwtsJ+J6VFMOBdIhPCrSlTzptN/zwsSfQ6LhT0Ff0D2r/ADRvg2Pq7Oo3txnKGEytE308S75fjJ73AB2aPYVVfOOe7elAE8um6/ZYd9klIR/95lxIbAaDxqDCDel6QgSR1hrefdZc4aOXYeTF9jssLjIWqdueRXU/FjVsQgAzrD2tEiAyFPL9BOxEVQj1TnBnBjTG5fPdLLzWidtw6lT6UfWKgYrr3rCutHRj+e28Ipj0imZQJ03nphKk+I+3fyfk51oWqfGTPTdadYadm6uU623r/Z4L1bX8Is3EF9zstpE/+MaVinP61d21HqUUH1zr4NQn3Xy5tnbGWBfehR6FfxnLS8PMTOG72flV95mC0RwVfvh2g69jghCMBjDnQs/juP/QZ4OEKFhyk4NeLWHsLDcf/em/j4JiDQ3uGSyEEEIIIf6JJk6cWO22pWH0ffv25ZlnnuHqq6/GfehLilasWEH//v3p2LEj3bt3JyIigu3bt7N8+fIqQVzDhw/nwQcf9Dvegw8+yIIFC8jKygJg3759nHrqqXTs2JGePXsSHh7O3r17+emnn8jN9XzWbNasGTNmzODiiwO4NlRHwsLC+PDDDxkyZAgbN3ounmitefvtt3n77bct2yilmDVrFtu2bWPhwoVe+3256KKL2LNnD3fccUfZz+jHH39k9OjRREVF0adPH5o2bUpkZCQHDx4kLS2N1atXlz3WQgghhBBCCCGEEEIIIYQQQggh6pcEowkhhBBCCCGEAEAph3Vcjj60GjM7wGCamjjqeFTq0XU3nmiQ1BmXoP0Fo/Ub6veP3v8xTEGC7gorqn0FBPkIRqtIhYTCiz+jL+3nu96jCyEvBz3zWjhoCKJo1sYTNJafg559p63xfRpxAbz075r3Y2Xc1Q0uFC1QdhbOR7tzyhb1R7utwxpyKwWj0aqTdWdaQ8ZeaNLS55gb91vv7xiRifNgut85lwmPRN39IvQ5ERWXaL+dybBzYNY0KLRIKrBBTX8HNXBUzedRz/wFo/Vtbb1fjZ2EfvfZwIPJTNp2hQ5H2a6uJlwP/UfAqh/QD08KaKgOnz5CpvoPC2LH8F7sWAbk/8CE7HdpUbIr0Fl7S98T1GA0vfI79N3neALXapGa93ON2tsN7QimEzuZzw30d4sASHKlWZan787EFIy2wRDk2OXPt9CfTfVsdOoFj7yPSkqxP2EhqmPvNp/F+uFJcOJoVGyCvf58BaN1PzaQmdU6h0PRpRms3O67XsWQ15Ti3RBpf4zSUDNtCEYrPcqEhyoSoyHd+rTJi9Yw73vNw+Pk88s/3vYN5rLWncv///ETi7bra2dONbDoD81Om2vGk2Lq/vnvdCg+u8lBj/vdrN4d/P7Xh3XCpQxB5ZSHmZmC0Q5YBaMZjj3OCh/77Z5jRQcpGK13K8Xqfzn4eh2UuDXDuioSD/08F13n4Kt1sGm/pn87xRlPu9lucRmgwE+gpRBCCCGEEIebK6+8koSEBC699FJycnLK9m/cuLEs9MvKZZddxpw5cwgN9f3FMgAtWrTg3XffZezYsRw8WH6x3jRGu3bt+PDDD9m7d2+A96butGrViu+++45rrrmGBQsW+KybmJjI/PnzGTlyJNOmTfMqi42N9TvW1KlT6dmzJ5deeil79pR/80VeXh7ff/+9rfkmJNi8viaEEEIIIYQQQgghhBBCCCGEECKo6u7rmIUQQgghhBBCNGxOwyJOt8vzf3otrB41iYyqu7FEw9Wklf86ccELmDnsOUyv4QrBaKaAMl/tLaiOPVF3/te6sEV71H9/QPUfgRpyFmrRTnM/F92OOvOqoAWOqQunwekXQ2lYnum4Vp2+r388aH3Vly7Nyhflm/Qu+L3sdozdYLRkH+E/+/0HSWUYgkRa7QksjEn951PU4DODE4oGqNh41MxF/isOGg09BpRvh0eibnv2iAhFA0iK8V3et431k0q16oS6dz7ExNV8Eu2PQs1YEHAQpmrdGTXyYjjlvICHjNCFTMx+i7d3nsdNGU/bD0Xz9fwL4rmU1hp93bCghaKp+16Bxk29dzZuhnr6c1QNf4atG9d9AMrwrj4K164AIKnEEIyWZ/61iSn0pX3R5vKNDb+j35nlb4pC1Ny+Hf7rvPOs/f5MQZYx9ZBuaEOXpv6PLVHO8vuUUhLYMTgzD3ILNW5DOFHFc6pYQ9iRlc9XGzoU/yyZhmTgmPiyMENVGpBW2bb1aFNiXz355E/7dRP9nFvWFqUUS6c5GNUz+H2vDeuM28efXZSGmcUZwhmzC6ruc7mr7qvYF0CjSIgK8z+/mCAFowEkxijGH604p5+jLBQNPI/vkFTFlYMc9GipiDBkO0gwmhBCCCGEOBKdddZZbNq0iRtuuIGkJPPvLUNDQznllFP4/vvvmTt3rq1QtFJDhgxh+fLljBkzxnidPDk5mdtuu42VK1fStauvC6QNQ7NmzXjvvffKAtK6detGfHw8ERERtG/fnmHDhvHcc8+xadMmRo4cCUBWlvcF2rg4e9euR4wYwd9//82sWbPo3bu33981hIaGMmDAAO6//37Wr1/PDTfcUL07KYQQQgghhBBCCCGEEEIIIYQQokZC6nsCQgghhBBCCCEaCFMokutQMJqdhffBkrGv7sYSDZZyONAde8LGP8yVghSAdCRQyoHl8njtWVGtiwrRt4+zbuxwoByB5eer0y6EIWd5gn4y9wMKGiVAy45eCwqU0wlzvkNfPci7gzapMOKCgMb0O6ewcNQdz6OvexR2bITWndGjW0Fhfs36ffEXz/04zMVGKLqnwCpzVh2phevLbkfbDUaLTYCwCCiyWNGf5j9MKivPen+Cy0eQX2Vd+kK3Y+3Xt0n1HgTPfIG+dqi5zhmXogacjk7bDZn7oE0qKiyI6QP1zFcwmlLQs4WP8iFnwYljYMvaqq/DkFD0Z2/Am//xOb6a+xOqc+8AZmzRxyV3ope8XqM+bI1z+X1w/q3oIbHWFYJwLqVdLtAa/WSQF2INHuf5eW1bB7kHIToWWncJ+L3BSpem/usE05heEBXuY2HboeN5kss6VC5NN0Jrbbk4zhSM1rKk0oH1m/fh6n/bmq8Q1Za+x28V/eXbqEvvstdfcZH1/lAbqTv1oEsz/3WiW7eGnXGQc4AUuwGXFazfi/X5NeU5vGAvmKjUr9sCnoY4Eh2wDuckvsICelMwWnYG/L0a2ncP/ryq6fft9oPa/IXu1qb4KMXCa53szdbsyoIQB+RVOvS5NAycYUglM1gf3hmXjWC02EiF1VEl2+Ljqp1gNKUULeJhg59LaMEMRrPLGIxmyOAUQgghhBCitm3ZsqVW+2/SpAlPPvkkjz/+OCtWrGDt2rXs37+fwsJCkpKSaNmyJQMHDiQ21nDt2IbU1FTef/990tLS+Oabb9ixYwd5eXk0bdqUdu3aMWjQIEJCyv8kfPDgwQEFa9ckhPull17ipZdeqlbbgQMHMnDgQFt1V69eXXZbKUWTJk1sjxMREcE111zDNddcQ0ZGBj/++CO7d+8mIyOD4uJiYmJiaNKkCZ07dyY1NZWoKPkiNyGEEEIIIYQQQgghhBBCCCGEqG8SjCaEEEIIIYQQwsMUfOF2oUtKYNff5rbtu0OPAbDwheDMpcA6jEf886hL70bfNcFcHmf+5vV/HFNwV2m44YovfbSt3iUiFR4JKe09/3zV634szFyEnvsAZO2H7sehrnoQVUtBGyomDlKPBkD7+dZ3n47qj5r0AKpjjyDNrP4tv9NB5BTzQv8uRevKbhuD0VSFxSBOB0opdHIK7NxctfJ+Hylsh2TlWS+2iXcd8NsWgBEXoK5/zDLEKBhUr4HwwBvoeydWLYxLhKOHeOolNYek5rUyh/rUOMY6wAGgSSzERPh+3FVIKJheQ517Q/uj0NOvtG577SM1DkUDUK06wayv0LeOgvycGvdn1G8oKjQM3fUYWPNLlWL98+eoMy4NqEtdmI9+ZQbMn16zuTVrA8cMhcXzqpb1OQlVumCubdeajWOhfbInxMMU8BFs5/TzcywoKQYg0RCMlu5IwJ2+D2eSd6JbYbEmzfD0aV6823vHjo3GcLV/Iq2153zEXeGfy3Dba9t96F+AbUpva3fAbXTZuAGMU7FMuw1z9XM/vOZq6sNi258ta+z/oA6zYLRUG8FoyXFO1PPfo5++jZTN2QGP8dcujdtw7HJUeHmbAoCsKAW5hZpoXwGO4siXnWG9v2IwWseenus0Vk/C7z9sUMFoWQHkUCdG+69T25o2UjRtZC7fPdPBTXMz+XJVAQcccQC0Ld5K85LdfB09uEr97aGtyHaaOyw9XsRFWpdn51c91zYGo1U6dLRL8h+MFt2QgtGK63YeQgghhBBC1DWHw0G/fv3o169frY2RlJTE+PHja63/hio3N5dff/21bLtz587VDppr3Lgxp59+erCmJoQQQgghhBBCCCGEEEIIIYQQopZIMJoQQgghhBBCCA+HIVTJ7YK9W8tCJCpTL/6C6tgD7Xajv/sAMvbWeCpq7FU17kMcIQaN9l2eaCMR4Z9CGcINtRutNfq1mea21QxGC4Q67hTUcafU+jhVxj3/NvTcfwXebtKDqAun1sKM6ld4qOKSAYqXllkHXXUpWl922xSMluOIKd8ofe4kWQej6S2r8Rf7kZVnvT/ObQ5GUzMWoAbU3aIVdfI4uP159MOTvPdf+wgqPKLO5lEfkmLMZfGGcAe7lFJw+kXQbyj6oj6QU+FnPuB0mHB9zQaoOFbPAaglVYOw3E/fBm89FZxB2qR6/m/Z0TIYjS/fQd85N6DnjH7hPnjzP9WfU7djUbO/QR0KwHXHNYaK7wdhEaiL76h+/zaEhSg6JMP6mp8i2jLhGD9HnTxPulmSIRjNrZxkbdxMYqVgtN0+shpblOyqunP1cnTnPrDhd8jJsgj8MgRgGQOxyutqY/hWxW1TuJeP/f7m4TWujbmXbovDQ4khGC0kgNSvOpTa3BzcWSolXqFadUI98j5t1mp4PLCExs9Wm0eomHvo6/hQmdaefsf2CWgq4gijs9KsC+ISy26q2AR0jxPg9++qtl//m99z7Lp0sMBevagwiAxrSDP3pnOzYeMfNCkq4NX3RlYp3xzals4dV1u2XRfW2div89BH9UaGU8Bsi8fPGIxW6WN/p6aKJat9Hwtj6iGIUYLRhBBCCCGEEME2f/588vLKf6F0/PHH1+NshBBCCCGEEEIIIYQQQgghhBBC1AUJRhNCCCGEEEII4eE0BKO5XLBjo7ldyw4AKIcDfdqF3mEb1VUP4UmiYVJKwXub0ePaW1fof2rdTqghcxiC0bZvQJ93lO/XsSlU7Ugw4HSwCkYbNxnem21u161f7c2pnl18vHUwWrzKZcilI1HR49APTyJaWwejFToiKMFJCK7yYLT4ZOvBFv4X3aQVXDjN83quRO/dTtbag+DoUnU+rizLLtW85ahOvQz3rvaokRdDq07oj+YDCjXyYlSPI3/hjc9gtKjgjKGSW8Brq9D/exKy0lDd+sEZl1k+Z4JNXfsIeuMf8OvXNesooQkqJs7TZ6tO5qieL97yhMHZoDP3wTvP1Gha6unPy0LRANRV/wedeqN/+BgaNUadej6qS+2n86Q2q5tgtDUPOHA4/Dxv9m4DINEQjAawf/N2Evt7v753Wh+SAEgp2V1ln776RN/zEKKhKTYEo4WG1e08bOrW3H+dlPjy2yd0DHyMD1dpUg05zI5qBqMBfPynZmyfhhsOJerAAcN7UFyS93bvQZbBaHz9HnrvdlTTVsGfWzXkFNqrlxhdu/OoCf3us+hnphq/FACgTfE2wt0FFDqqJpytDu9qbFd6vGhkCBU+kF91n8twMlk5GK1LU+t6FUXXw2E8wvBXKBKMJoQQQgghhKiOHTt2cM8993jtu+gie9fZhRBCCCGEEEIIIYQQQgghhBBCHL6O4FWvQgghhBBCCCECYgpG0m5I22NdltgcFVGeiqIumApdj6nZNC67F9WuW436EEcWldwCdeszUCkgR133KKpJy3qaVQNkCkbLzvAdigaQnxP8+QTqkrus94+/pmb9duoFF0z13tdvqCccqEtf6zYx8dBrYM3GbcBO6qK4Yaj36yksBGZfEUP0hEkQFg5AI9dBYx9ZzkNJI2XBaInGuvqF++Dnz6vu37IGfVZHskrCLdvFu6umjKhP0+slFK1s/J4DcNz+HI7b5/wjQtEAkmPNZcEKRgNQjZviuGY6jjtfQI2dhAqpm+/0UEqhHv8IBp5RtTA2AfX05zBotP+OOvYov92uu7Ga/u4D23PTbz/jCaitjvZHoRZuQ4V5v76UUqihZ+O4ex6O62fWSSgaQOem1Q8AWrexO2dmv++33kNnKro08z2OXrqo7HaTkv3Gepu3VD3+bN5vnVAS7c6hkTvn4DNdAAAgAElEQVTb7/yEqC963W9oO8eSEkMwmjM0uBMKkrAQxYRjfL/mkyuEe4aFKO44LbBjUUYuLNtkXVaT7M6/dhnjM8U/xYE06/1x3ufUqk3V8OBS+v4LgjmjaitxadthV74Cd+uT/vNH9JM3+QxFA3DipkPxZsuynSEtzO0OfVSPMwSjZRdU3edy++6rVNfm/g9GMVVz3GpdpCGMTYLRhBBCCCGEEADvvvsud955J/v3m6/Rlvrtt9848cQTycjIKNvXq1cvTj755NqcohBCCCGEEEIIIYQQQgghhBBCiAagblaXCSGEEEIIIYRo+JxO6/1uF2SnW5fFJ3ltqpg4mPUVLF8CW9ZC01awYxN67r8sm6tpc+CU82Dlt7BzM/Q8AdXhqJrcC3GEUmOuhD4nwa9fe8L6+pyEatu1vqfVsDgMr+HDhDpxDHr+Q6C9gyLUSWNr1q9SqKseRJ88Hv76EVp2hD6DPaFLs75ED4uv2mbCdaiQhhkCEixPnOPg3H6aHzZrosNhWFdFu6RDi+oPJX0kuQyBDcA+ZzJJrvTyYLS4JGNdAP3BXNSxw8u3P3oZPf1KALKccZZt4l1ZXtvqmumoqAaapnAES4lTgHWAS/gRcnVZOZ3w0Duw4ivYsBKKiyE5BY4djkpsBgW5fgPN1KkVwkmOH2GuuPJbtNYoP4k6+qOX4ZUZgdwNjxEXoAaNhuNOQYUb0jfqQWqz6rftUPw3/9t5AW8fHM8FLeZXKe/ZEl6+zEHPlv6DQfQrj5TdjtL5tCjeyc7QqkEm67YVcHqlfRv2WffZqWgTNchHEqLW6Sv6Q1Qs+qj+qF4DoecJ0LUfKrxSUk6xIRgt1JBu0wDcPFzx1i/mkLG2id6vzv8bq/jfz5q/K53ixLmyKFah5DmibY9dsedOTczHCCtrdmPrvUAcwTKsnzCqUjAarc3BaPz5I3rfjnoPC88ptF83sQGeyuviIvTkk2zXTy7ZDxa5zvtCko1tHIde6o0irM+rD+RXbWM3GK1/e885eWGJcXii6+EwHhFqfV8LfMxTCCGEEEII8c9x8OBBpk+fzsyZMxkxYgRDhw6lV69eNGnShJCQEDIyMli1ahWLFy9m0aJF6Aq/OwwLC2P+/KrXiYUQQgghhBBCCCGEEEIIIYQQQhx5jpCla0IIIYT4f/buOzyqKv/j+OfMTHoggSSU0HuVJoiAIIK42FgLKthWdC3outZ117ViXV3Xsquua8Gy9rVXXAvqCvpDsaBrwUWaSi+hhbQ5vz8Gkgxz78ydSSb1/XoeHnLP+Z5zv0kmk5lJ7icAANSYW6hSRYVs0UbnuT0v2pVkUlKlMYeF/kmy3y6UnILROvaQDj0ldDF4tbAcwI3p3Fvq3Lu+22i4fL7YNQ2Y6TVYuvxB2Vt+IxVvkzKyZGbeKDPU+0XqUffvPUTqPSR8LC1D+scHsjf8Wlr+bSgQbPJJ0gm/q5VzNnQjuxuN7O4QyGFCt6WCKMFo6wL5Uqkqg9FMy9Yu0Vm7vPe8Xp/1Nz2de5xKUlvo1y88ovGSgjIq8jkHo+UEi8IHeuwV7QxIksLI7MBKO1wydBojY4w0fELo355G/kJm5g2y910llZeFz/n90vEXS5OmVe2VliGddb3sPZdF7rWtSNqwWspv79qL3bC6Mjgwrvfh0vtkDjk57nV1oU8794C9aJ5beawkya+gpm35lzKDxZpReK+K/LkK2DJd0f0TXf6HMZ7Chezm9dLXC8L7Kv3OMRht8cZU2c3rZaqFAC/+qVRSZGhmz9L/xfleAfVgx1ZpwZuyC94MHaekyvYdLg0aLTNojLTX6Mj7t90acDDaPt2M7phmdN6TkfcvxkhDOu05ZvTmBT6d8mBQH+z60j1062u6b9VMndX+Tr3U4nDP506vdncwY4zRH5/3fh+3aYe0dqvUtqXnJWhCbDAo/bTEeTJvj8cHXfqEvgbdggt/XirVczDa1p3eawtzG04YoK2okF68V/a28+Nal1/h/IcD1vrdg9F2h5m1ynSeLyqWyiusAv6qj49rMNoeH8KsNKMJfaXXv3I9vbLT3eeSJd0lZ7zE5VsNAAAAgOaprKxML7/8sl5++WVP9RkZGXrkkUc0ePDgJHcGAAAAAAAAAAAAAGgICEYDAAAAAIS4BaMFK6Qtzhd+qmXrmNuavnvLDhojLZoXPn7WDZ5CLAB45PY13IiYg6ZLE6ZKK7+XOvYMBS0m+5z9R0gPLZTWrpTSMmTy2iX9nA3erpC9dFuiFhVbtNUfmdqx3r8rLGhXMJpy8iNqqvt7qzN07k9nSz+Fjp/s8oZm/3y6Jm/7t6xxDvXLrdgjGK1rP+/vA2pNtGC07SV110d9MsZIx18kHXGGtHmdlFcobd0orflR6tZfJjM7ctGhp0hOwWiStOK76MFoR3SJv8fTr2mwoWiS1DfBu9b9d7wfdjxl2ytas7iTvkvtrW5ly5RZeJiM2c/bZt9+EtlXyWK9kxUZhvdDoEsoRG30IZVjy5YXSYq8r+tZ6hJug7rh94ceA/n8oe9fvmrH1ef80eb8oVDQsPE9j/d4O2KdL3qdzy9Tfc6Y2HtHvO0Lfx+r1dh/XCF99aH3j1tZqfTlfOnL+bKP3RLqJ8slpSvQcIPRJOncCT6VlAd1yTPhwWRTBkmd8yKfb3YvMHrvdz4t3yD5X39QHe6dKUkaWPLfuILRstKq3j6m/zb98fmsuPp+9zur40bwfLhZWrtSKil2nuvSJ+zQpGfKHjVTeuoO5/oNq2u5ufhti+PxYO+2yesjHtbaUDj2vx/3vqh9V5l/fq78+7dKX0ROrw20cV3q2/Wlnt/CrZ9QYGJBtXnXYDSHp06HDzZ6/Sv3cMbsNNeppElz+S2UnQSjAQAAAJCUm5srv9+viooKz2vGjBmj22+/XcOHD09iZwAAAAAAAAAAAACAhoRgNAAAAABAiGswWlDastF5rmUrT1ubm56XvfP30hfvS4FUmRMulsb9MsFGATjyOYdLNTYmkCJ161/H5wxIhd3q9JwNWrWgsoKK9Y7BaOv8BaHSXcFoL2/po8u7LdCaQBtN2P6url13tbqXLZMklZhUXZ//h4g9Ti28L2obnctWVh106iUVdIj3PUEtaJHuHtqyo7QOG2kATGYLKXNXYkVaoZRf6F6bmy+bkycVOYTLLvtGGjbecZ39vzfib+zQU6STLol/XR3KyzbKy5I2bPe+Zu/iT5UT3BIxHlCFBpR+EzpY/7P3DZd/FzHUsfxHx9IN/nxpxQdhwWg/r90ppUTWdi1b7r0HKXQb2jPEq3rwVayArLAAL5cwLsc99gjVclljItZEOY/jHj6XXj2u8e1a5yE0zDSRxz614ubnZQ+pQbirtdK2Iue5FIcbfgNz4YFGmanSX9+2MpIOGmB009Hu37+MMeqaL9kTZ8gu/0B64zH1Lvk+rnNmVcuL6/7xP3V8UY4ez5nuef30+6xOebBCfl8o6Ciw5/9+yW/C3w74w2sc11XOmbB1Ps/rInvYfd7IHkz0PV3Xxeil2vvu8zXB8DiH70eVOveOGDIzb5R1C0ZbsbiWmkrc1p3ea/u0rd/Pp138uewdF0YE90fVopU0bH+Z826VSctQfsc06YvIELI1UYLRdoeZ5Ttk6e62flt4MFrQJefM94/LZEuGyxxwdOXYYYOMzn7MPRitnUvuZTKlu3zr2Fnm3icAAACA5uOII47QmjVrNGfOHM2bN09ffvmlli9fro0bN2rnzp3KyMhQ69at1aVLF40dO1aHHHKIxowZU99tAwAAAAAAAAAAAADqGMFoAAAAAIAQt2CBYIVU5BaMludpa5OdI/OHexJsDIAnbuGGXvQaUnt9oPEzVYEF+RXr9YO6R5SsC+SH3vD59ebXVke8NVRKDw09lXOsvk7rpwVLxyhF5foqbYBWB+ILa2lVsVFtKtbuOodP5tdXy5gmGIzRSKQFpJLyyPEzxvE5iapzH+nL+RHD9uO3ZI6aGTleXiZ78ZT4znHUWfJd4BKW0sD0bSfNWxI53raldMxwozvfqQrKSLGlumL99bE3jSMYza6MDI/JL3cIrpO0PpAnu+I7lZRZfb5Syv3qTa0K7O9Y2758lXTkmdLz/4jZgzn9GpmTf++5Z8CzjBaxaxIVSI1dU898PqOzxxudPT6+dcYYmctnKyip/3v/jWttdlrV90D7zjM6oSgzrmA0yfl7a+2pi/Ch5J/DmERC4eIJd5MCPlNZ66tRGF2085qqt/8r+bImKC1YoiEli9QyuDX0zrZuJ5MVmWBl/H7ZoftLn70XMWdnXyMz47Ja/7gX7bD6abPUvUBKT4n+eG9bifd9+7WvYWM1YDeslj1tpPcF086X75ybIobdws12+LJct/LZoCS/8txLtH5b+HFF0LnOv36l7JW3Sre+KjPiQElSx1ZGQztJn62MrD9uuKmXgEH3YLS67QMAAABAw5WXl6cTTjhBJ5xwQn23AgAAAAAAAAAAAABooAhGAwAAAACEuIUqBYPSFufQCJPTOokNAYiLcQk39GKYc9gLmqlqAWQF5esdS9b5C0Jv+P26463Iq/a/TN9LT+Qcp5OLHtN3qb3jbqFPyWIZSTrkVzKTT5QZOi7uPVB7Lphk9KfXI8NPDhtEMFpUA/d1DEbTJ+/IlpfLBPZ4ef6dZ2JuaS57QPabT6QtG2XG/VLa/8haajb5jhpmNG9J5O3o1mONpo0wGt1devmNpWq56E2dWPSYRhUviL3p+p9lrY0ZnGhLiqUX748Yz69wCUbz5+nB/3XSuecHdwV4TJRcTtFh5kUyh4+VBu0ne/2pUnmUxI/0jKh9AokygUDyIqoCLuk2TYj54/0a2vsu6S3va7LSqh18OV99UjrXel+QrJXKrVTuEhJVS2dJ5uYO55godZ4oSQrYMv124526ae1l0V9fyXdPFLNLvpLpMbBWugwGrW56w+qKF6yCVmqfI912nNGxw92fa27Y5joVZlDHeg5GO7pHXPVOoWiSooabue41/xVp4i+VkWqUlSZtdwiTiwhGc7lZ+m2FJMnOvq4yGE2STt3P6NwnIhedul/9PF53C0YrJhgNAAAAAAAAAAAAAAAAAAAAHtXgilkAAAAAQJPidwtGq5A2rnWey8lPXj8A4uP2NRxLarrMry6t3V7QuPmqXjJ0Cw3a5M8NveEP6O1vnbc5tfA+HdHxX7ox/5K4WxhY8rXMqVfKd+m9hKI1ABceaDSia/jYLccYdWpNMFo0ZsyhzhM7d0hrlkcM2/dfiL7h8RfJTD5Rvgtul++qR2QOOFrG13he4v/1WKMJfcPHLpkcCkUzxmjaPj49ut/numv1ed5C0SSptETauil23bN3Ow63drmP2+HL0un6/a5QtOgKR4+UMUbmwGPlm7tN5t0dUka2c/FQgkiRRB17us/1GiLtO1nKzol/39ZtE++pkTA+n/zHnqvZLf7ueU32rmA0uysMsXPZSrWsKEpGe2jCyk2Kbs27QA/lnCylR0nc6uAe6mUfubHW+nl5kXTZ86FQNElaVSRNu9dq6Xr38Li3vokdLJefLd1+nC9mkGlts+Vlsm89reCMEVJFubdFuQUy9zkE2+5S0CL+98H3zxsq33YLVlu/LfzjWOESBuhXKBhNX30ou3FN5fiZ44x+MSC8duZ4o0n9G1YwmpfHVgAAAAAAAAAAAAAAAAAAAIAkBeq7AQAAAABAA+FzCVUqKZa2b3Gey2+fvH4AxMckFo5jXl0lk55Zy82gUasWWJBb4Rw4tMnfSpL0xY62KomSMfBKC5dgqBhOLHpMyvhlQmtR+/JbGL17sU/vfCstXW81vo/RwA6EosXUe6j73IrFYSEntmSn9F6UYLQDj5Nv5g3u841Ai3Sj13/r01vfSN+vtRrT02hYZ4WHpKSkxr/xsm+kQWOiltgnb3ccdwt/9Mpvy9WmdXjPxu+XPWia9OL94cVd+kg9B9XofEBU+x8pPfbnyPGMbJm/vyeTli5bUSEt/a/0xQeyi+ZJX8yTNqyKuq0Ze3iSGm54fjWxpc57dou2+lvGrM3aFYymNSskST5Z7b/jP3q5xWFJ7BBN1YstDteMjBWu82bCVNmHrneefOcZ2X4jZKadX+M+/vmhcxpXjz8GVfGPyGCzYNDqlUXOwWi/HCxNGWKUGpAm9jVql1PHoWib18uec0DoMZdH5re3SAceJ9OqjWtNYQL5kr4liyrfzs+WVmyMrFm/LfzYNRjNVpuY96p0+KmSpIDf6LXf+vTvr6WVG60GFBqN6lF/j9fTXX4LhWA0AAAAAAAAAAAAAAAAAAAAeEUwGgAAAAAgxC0YzS0UTZLyOySnFwDxc/sajubwUwlFQ6RqIXu5wSLHks2+UCLAtEWTav30bcrXaL/iD6X042t9byQuI9Xo0EGSRCCaVyYjS7ZNJ2ntysjJld/L7jtZev2fsnMelT57L/peR56VpC7rVkrA6OC9pIPdbkcpac7jUdj5r8lECUaz81+TNq11nKtpMFq77Ar5fJHvi5l5o+zan6QPXw8NdOolc+OzEYEyQG0yp10p+/MP0txnw8dveUkmLT30tt8fCujrOUjm6LNlrZVWLZW+mCf7xTxp0QfSyu9DC9MyZGZcLjPyF3X9rtSfUQfrzAfu1y15F8Yszd59d7Wt6vnyIz+fqlZ9nO9vOpWt1MqUTrXRJZqgn1I6SBlZrvOmW3/ZXkOk7z93nLd3/V4aNVmmS9+w8Y3brW75t9VD86xWb5H26Sp1yzc6clgooOrVRdL6baFgs06tjZ77zL1H/5lBnTLaaHwf6aR9jYwxWrhCWuX8dEEn7OvT1L3r5/ueLS2RPTy+16vMba/LDJ8Qs65Dq/j78Skoa62MMcrPdq7xGozmU9WEnfeKzK5gNCkUNvuLAVJDeLyenuI8TjAaAAAAAAAAAAAAAAAAAAAAvCIYDQAAAAAQ4vPFrtlTfvva7wNAYuL9Gs7IlvnVpcnpBY1btdtSq4pNjiVF/hztMBlauqNFrZ46PVisL3/YO3QQcLmaHmhMOvdyDEazKxZLd1woPXt37D16DZb2GpWE5hqg1PiD0fTV/7lO2X8/IXvtKa7zrSo2yRjJ2vhPK0mFrZ1DSU1WS5mbX5DdsFratlnq3IdQNCSdSUmVueZx2XU/ST/9ILVuK7XrIhPl68oYIxV2lwq7yxx8kiTJblorbV4v5bWTadm6rtpvEEyrAk1ps1y3VMSuzdr9YS0prhxrEdymx388Scd3/GdY7eCdi7Rg6WitDbTR9yk9VDH5JAUnn6KKoFQeDAUglVdIFdZWe3vX/9VqwuqDUeb2WB8M28s61tbWectdwpwQXbFJl9Ldg9EkyVz9iOwJg1zn7YmDpfd3Vn6/KdphNXhWUD9trqpZsExasMzqqU8cd4jZ50PzrR6aL/3fUumu441e+sJ5TWpAuwK66p61Vva8+AIdzT3vywwY6am2VaaUFpBKyj3ubYOhmLIdW6WslsrPNnL6WG/wHIxW7Q7q47dli7fLRAnVqy+uwWgeP24AAAAAAAAAAAAAAAAAAAAAwWgAAAAAgJB4Q5XSM6XsnOT0AiB+PudwFkeDx8qcMUumbefk9YPGq1p4T25FkWPJJn8rvZs5TmU2jttdFOnBYo0sXqA71lykvIqNtbIn0CB06iV98k7k+Iv3ed7C3D6n+YRqpabHv2blYsdhW14ue3f0AFD/6MnqkyZ9uzr+00pSu9bRf8Ri8tpJee0S2xxIkCnoIBV0SHx9qzZSqza12FHjMmpCX3V6baVWpnSKWpeVuuuN0uKw8WO2PqvinzN0U97FWhfI10Hb3tJf1vxefgXVvny12pevlp6fJz1/VmLh5I1AUEYV8qvC+FWuwB7/h8Yr5Fe5CVT9b3wRtVU1vsraisr/q/aqXLd7Tn6VG+fzO+0VeY7IfsP3ruo3GNGvw/smf2V9iUlTqS8yrLDYZEgZ2dE/sJ16S936S0u/dq95/C/SCRdLkm543YaFotWme9+3uuQXVi997hyMNqGP1CK99h+72OLtsg/Mkt57QZJkDj1FOvkPMtW+luzsa6WvPvS2YadeMr+52XMomhQKlCzMlZau91bv3x1kVrRBymqpPJdP84Zt4R/LCpecOr+tFoxWulP6+C1p3C+9NVOHXIPRyuq2DwAAAAAAAAAAAAAAAAAAADReBKMBAAAAAELiCVWSpNZtm09IB9AYeAxWMKddJXPKH5PcDBo1U3Vbygk6B6Nt9uXo8/TBCZ/ijtUX6pxN90gTj5XefjrhfYCGznTuLZdcC2/rr3tKpmXrWuunwUuJDIuJaeMa2a2bZFq0Ch//cr60YVXUpebkS3Xw10bfrk7ss1SYy2NhoKnxTfm1bn5whqZ3fDRqXdbuu6uS8GA0I+lXRY/qV0XR10uSgsHEmmzgfJJ8qpBLLlKz9mTLY3Rih4cjxot96VJGZtS1xhhp5g2ylxzhWmPvuUw6bIY+29xaf36jJo9AoqsISne/a/XlT87zhw9OzvdHe+0p0n9eqjp+YJZUViJz+izZYFD6eoH00PWe9jJXPCRz0PSE+ugQTzCarRaMVthN+S7BaOu3hR9XuNw9VAat7WLnvSrTIIPRjOTwKJhgNAAAAAAAAAAAAAAAAAAAAHjVNP8UOQAAAAAgfv44g9GyWianDwCJ8RpuOHRccvtA41ctZC+3YrNjyU5fhhal75XQ9nsXf6qzNt0rc+XDMmdck9AeQKPRqXfN1o84sHb6aCwSCUaTpBWLI4bsBy9HX3PA0TID9tE+XRM7pSQV5iS+FkDDZNLSdezlJ+nN5ZOj1gX8u4KfSnbWQVdoKjKCzreXYpMhpWfFXG9GHSxzzROu8xXy6eJbF2v49ckP3YsWvFbbwWg2GFTw8mlhoWiVXnpAdslXsoe0lZ25v6f9zG9vSTgUTZJ6tvH+/vm063OxeoUk1TwYzYYHo2n+a7IVFc7F9Sjd5c/zEYwGAAAAAAAAAAAAAAAAAAAArwhGAwAAAACE+F2uWnSTlpmcPgAkxufxZZ4ufZPbB5qAqgv9c4NFrlULMkY4jh+zt3tQQPfSH/TUT8cr8M9PZSZNkwo6SOku30+aWyAUmqYufRJfO/oQmUyX9IymKjU1sXXLv5Mk2fIy2bnPyr75pPT0X93r+wyTueAOSVKH3MTDW3oUJLwUQANmRh+iA3a8r72LP3Wc7+lfU3VQUlxHXaEpSLfOt5diX4ZMhrfv+eaAo6R9I4P7PksbrPFd3tRtq/apUY81Nayz1LFV7QWj2fJy2cuPk9573rlg8zrZU/aWtm/xtuGMy2WOObdGPfVu6712d5CZveE0SVJ+tvPHpnowWjDoHjrn1x4haJvXSf/9yHtDdSQ9xXm8pFyy1v39AwAAAAAAAAAAAAAAAAAAAHaL86p3AAAAAECTFYgziCI9Izl9AEiMl2C0nDyZ3Pzk94LGrdptqVXFZteyFSmdHcd/MUB68BSfZt/1np7+1Khr6XJ1LVuugSX/1YHb31GrZz6TKeggSTIpqbKjD5HeeSZ8kz7DZNp2qvn7AtS3tp2ldl2k1cvjXmqO/W0SGmrgUtISWmZXLJY2rpGdub/089LoxWOnyFz5sMyuUMbC3IROKUk6bFDtBb8AaFjMSz/q6Bm3amHGsIi5X256RrbsLJmUVILREJeMoPPtpdykqFw+uWRJRTA3/Et2QovK42vzL9WsgitqocOaO3xwLYaiFW2Q/c1Eadk3tbKf+dtbMkPG1nifvu2MJG/hXj4FQ2/s3CEbDLoGoxUVSzvLrNJTjF7/yn2/3UFrYT57Xxo0xlM/dcUtGE0KhaNFmwcAAAAAAAAAAAAAAAAAAAAkycMVswAAAACAZiEl3mC0zOT0ASAxxsPLPN0GJL8PNH7Vbkt5FRviXt63vVFmmtE5543Vu0Of0UOrz9DV66/TVL2rVrc+VRmKVnm6i++SBlcLKOjaT+a6JxNuH2hIjDHS6IPjX3jQ8TJ7H1D7DTV0qemJrVv+rexfL44diibJXPjXylA0SWqfk9gp92mxWi0zCEYDmirTqkAXHlChUzY/EjZ+9JbndM3Pl0mfvRcacAtG67GXzNPfSQNHJblTNCbptsR1bsfa9Z73MSmpMjf8S5J0R6tzaiUU7aXf+DR5gGRq+K3tl0OqNrClJbLP3KngVScoeP8s2TUrQuOb1yt45yUKjk0L/bvnMtnvv1Dw7ksVvOoE2RfulS0vk73vytoLRbvn/VoJRZOkoc750I78qhZktmVj1McdS9ZJO0qsTn046G2/Xey/7vTeUB3JiPIS486yuusDAAAAAAAAAAAAAAAAAAAAjVegvhsAAAAAADQQgTiD0dIIRgMaFL8/ZokZeVAdNIJGr1oaQobdqdblG7QxkOd5eZ+2u7bx+2Uu+pvsGddIq5ZL3QfKBCJfjjQtcmXufCsUlFCyU+rUKxQmBTQRZvShss/dE9+a8/6SpG4auNS0xNZ9+JpUERkUEsHvl1q3DRvKSDVqnWm1cUd89ztn9FkhqUPMOgCNV8rZ1+n+l/J109o/6su0AepX8p3aVqwNTf5vkbTPJKnUJegqLUOmfVfp7rnSysWhupKdUvG2OusfDU/m+nTpOee5km6D49rLjJ2iO3pfr4v8F3iq/2Dp/rqr9Uw9kTMtYi7bFOvQvbJ02CC/Nm63WvRj6DH94wusfveM9dzTwQOlIZ1C309tebnsH46SPn6rct6+/oh0w79kLzlS2ri6auFjt8g+dktV3TvPSB++Ln36rudzu0rPlHl9rUwgpeZ77dIlz2hiX+ntb2PX+my1kLMNq9W9S578PqnCIfvs21XS92ukdVvd9/Nbh4VF62VfekBmymmxG6ojXfOkJ88wSg8Ypaco7F92gg/3AAAAAAAAAAAAAAAAAAAA0LwQjAYAAAAACEmJMxgtnWA0oEExvtg1e41Kfh9o/Hzht6UO5T97DkbLz5byssPDhUyLVlKLVjHXmqpv4mMAACAASURBVLadvfcINCZD94+vvms/T18zTVJK9KQMc9pVsg/MipzwEoomSS3zZHyR3y+HdTF66xtvW+w2rhcBjkBTZ1JSZfuNUN4XH2j8jv+Ezdm//1EadbBsSbHz4rSM0B7GSJ37JLtVNBKZa630nEOwlaTiAePi2mtLsdWVqedIHr4FFn/TUikqlzbKMRjtwKJ/S990kvqPUOsso/G7brLnTQz97yUc7djhRv84sdr3xi/+ExaKJkla+6Ps2QdIpTtjNz3/tdg1HphTr6jVULTdbp7q097XOX8uq/NX/wRtWKWU/Pbq7ivR98G2EbXH/CPO/aqx914pHTbD8XFOfcjNNDp2OI+VAAAAAAAAAAAAAAAAAAAAkLiG8ZuxAAAAAID6F++Forsu9AbQQPj9sWuycpLfBxq/PUL2CstXeV7at11tNwM0fiY1TTrp997rf/XHUJBOcxTt8Wh2rjTt/Jo9Bs1xDnm84rD4flRyyuZH1KNH68T7ANB4+N3/xpQ9+wDpx/85T6alJ6khNGYZUb7N7cwpjGuv17+y2lYRO+D++ZXHhELRJO2782OdtPnRsPnM4HZdsuEv0oI3I9YG/EYXHeTTwsujf5+cOd7oyTN8ysmsevxin7zdudhLKFpt6dBdOurspGw9tLNRew9Pr32qFiq3YbXstaeo96aFCZ/Xb12S8IrWSz//kPC+AAAAAAAAAAAAAAAAAAAAQENDMBoAAAAAICQl9gW1YdIzk9MHgMQYDy/zZLVIfh9o/Hzht6UO5T97Xtq7XTMNcwJi8J1xjac6c9trMgcem+RuGi5jjLTvZOe555fKpGdK/fdJ/AQ5+Y7DY3sZjUv52nFu9I75mrV2liZte1OHb31Fd646T/euminlxxdgA6CRihY+vG2z9PbTznMEicNBRpSXXYrLvO9TEbSafp+NWde/5Gsdvu3VsLF7V52t+34+S0dseVG/3jRbnywdpX12fiL7wCzXfYZ2NjpqqPt57jre4bnoR3Ni9pdUx5wrc/9HMkkMKezXPnZN9SAz+84z0v/9W13KViR8Tr9cgtEkaevmhPcFAAAAAAAAAAAAAAAAAAAAGhr3P3MOAAAAAGhe4gxGMwSjAQ2LL0pow26ZBKPBi/Bws8Iy78FofdvVdi9A02Hu/1D216Pc5295WWb4xDrsqGEy594su/hzaePq0EBKqswfH6h67Nm5l/TZe4ltnpvnOvWvAa9o4kdBfZU+sHKsXflq3b36txpY8rW0oVpxVkuZzOzEegDQuHh5jO0klWA0RMpIcZ8rLvW2x6fLrU6eHfRUO2fF4RFjKSrXjKJHNKPokYg5u/J7mU69HPeafYpPyzcGtXB51Vh+tvTqbxvW32EzVzwkc9D0OjlX77ZG73wbPaAuLMhsV1hc+/JVCZ+zetBahO1FCe8LAAAAAAAAAAAAAAAAAAAANDQEowEAAAAAQgLxBaMpjQu9gQbF5+GCdILR4MUet6WCivWel/Zpa2IXAc2U6TNMUaMz8gvrqpUGzXTuIz28MBQesmOrtPcBMl36Vs136h394xhNjnswWn73TvrwyXF6scXh+jqtn7qWLtfh2151vg/Mb59oBwAaG3+CP0rl+TIcpEcLRiuLvf4PzwV18xxv3wUf+PkMFcYZwGWPHyi9v1PGRD6mb5lhNO/3Pr3wudVXP0mdWkuHDzJql9PAHv+PnVJnp+rdNnaNz0aG2HUo9x48vaewoLU9bduS8L4AAAAAAAAAAAAAAAAAAABAQ0MwGgAAAAAgJCXOYLT0zOT0ASAxJkYwWmqaTLxf52ie9ghGy48jGG0AuU5AdDl5UtEG5znuoyuZ3Hxp8onOk90HJL5vt/7uk90GKMPu1LQt/4q9UbfEewDQyCQcjJZeu32gSTDGKD1F2ukQglZcGn3th0us51A0Y4OatP3tBDqU7Lh02YnHygzbXzp0hozfXzmXGjA6drjRscMT2jrpzNk3ymRk1dn5QqHQ0T8nTkFm7eMMrKvOKkoQ3fai8Nr1P8v+/TLp34+HBg4/VWbyiTKDxiR+/s/el333WSkYlBl/lMzeByS8FwAAAAAAAAAAAAAAAAAAABBNjCtmAQAAAADNRiDOMI40gtGABqXaBeuOMlrUTR9oAsIvts8v9xaM1rut1C0/Gf0ATYgvyn01wWje7DVaSstIbO34o9zneg6Scgs8bWMOPzWx8wNofKLdb0eTSjAanGWkOI8XO4SlVffwh95C0STpsG2vqbAG4Vt6+2nZP58je9UJie9RHyafVKen6902do3PBiPGOpT9nPA5U2yUG8q2qmA0+/NS2SO7VYWiSdLLs2XPPVD2nWcSOrd980nZ838hPXeP9MK9shccLPvqwwntBQAAAAAAAAAAAAAAAAAAAMRCMBoAAAAAICTgcnWum3SC0YAGxcR4mSczu276QOPnC78t5Vds8LTsoAFGxpjYhUBzRjBajZn0TGn0IfGv+9NzMvmF7vN+v7T/EbE3atNRZp9JcZ8fQCPlDyS2jmA0uMh0+Xa/vcQ9+CwYtLr3/djBaC3TpVO6LdOj5jr3ouxcmQc/ibmXJOm95xUcmyb74HWy5eUxy+1n7yn4mwMVnN7f2/61KZAi5eTV6Sm75oc+5tH4VREx1r1sqVKDJXGfr035GnUrW+Y6bzdXBVrbv//RuSgYlL3qBNnS+M5vrZW97yopGKw+KHv/1bLWe2gfAAAAAAAAAAAAAAAAAAAA4BXBaAAAAAAASbvCIPxRwjr2lMaF3kCDEuvrN7NF3fSBxs8kFow20D1vCMBu0QJ2AgSjeWVmXBH/olEHx9735D9I2bnuBbkFMrMXxH9uAI1XPM+RqzGEXcJFdprz+PZS9zWH3xl0n5QU8ElvXuDTxtt9mn1pD7V4/GOZd7bKnH1jRK054xqZnntJIw703LOdfa3sPS5BW7trfviv7AWHSF/8R/pxiee941LQwX0ur72Mr25/9cHvMzooRgZcuo0MIEu3JZq4Y27Udf3bR45dtv4m+RQlhOzRmyVJdsdW6T8vRd3fHtNLdueOqDVhVn4vrVoWOb7+Z2nxZ973AQAAAAAAAAAAAAAAAAAAADwiGA0AAAAAUCWeQI60jOT1ASB+JsbLPFkt66YPNH7GhB3mV6z3tKxfexO7CGju/FHuq1NdklIQwXTrJ/Pwp94XTJrmKSzFtOko8+AC6YgzpIGjpH0mST0HSWOnSEefLfPgxzI5eTXoHECjEy3QMppASu32gSYjy+Xb/badzuNl5VbvLXbf74gh0vuX+DSxn5HPV/V43KSkStMukLn5BWn/I6T9j5S55SWZI88Mzd/ycnyNP3u37JaNrtP2vqukivL49oxHZgupZWv3+XyHJLE6MHV49OdAA3d+5Tg+ZesrUde9fZFPz870aZpvro7c8oL+9eN0nbPpnpj92PU/Sx/Oif252LhGdlIrBe/6g2wwevCeJCnK516b1sZeDwAAAKBWrFixQpdffrnGjh2rtm3bKjU1VcaYyn8PPfRQfbcIAAAAAAAAAAAAAECtSfC3+QEAAAAATVJKqlRS7K02NT25vQCIT6zQhszsuukDjd8e4UFptlStyzdoYyB6GFD/+skiABoXn999Lp6AWsh0HyCdfo3sfVdGL2zXReaUy7zv266LzEV/q2F3AJqMRIPRUrhPh7Nsl2C07aXO4ys3STtc5kZ2k5472/2xhTFGGnWwzKiDI+d8PumON2QvnSrt2Bqrbam8TPbP54RC1vqPkCnsXjllt26WPogzaK26vQ+QFs6NXpPfPnqIbOu2iZ+/Bo4aajSoo9WiH53nD9v2muv4TJc9jx1u1Lal0ZFDpV/6rpd+mu+9oS8/lH3/Re/1T94mW7xVGrK/VNhNpv8I5zpr3fcwBGQDAACg4evatauWL19eeTx37lyNHz++/hpKwH333adzzz1XJSUl9d0KAAAAAAAAAAAAAAB1whe7BAAAAADQbMQTyEEwGtCwBGIFo7Womz7Q+Dlc2D66+KOoSwYWSnnZXBAPxBQ1GC2l7vpoKk66ROrQPXK8dTuZs66XuewBmfs/lOncu+57A9A0+BL8UWpKlAAnNGtZbsFoLte1rypy3+vs8TV7/G2GjZd5eKHMebdKLVrFXvDuc7KzTpY9YZDsc3+XJNlNa2UPqVkomRn3S6lNx+hF+YXRv66ycmrUQ6ICfqO7jvfJ5/Cp6NiiTIedNNZxXfvy1Tqu6OmIcaOgHj2t2mYV5XH1Y688Xnr32bjW6MX7ZWedJHvmfgpePk02GIxvPQAAAICke+2113TmmWd6DkV79913ZYyp/Hf11Vcnt0EAAAAAAAAAAAAAAJKAYDQAAAAAQJUUgtGARivW129my7rpA42fQzDakVtfjLrkiKGEogGeRAlGM4mG7zRjxhiZ2+dI/fepGuw3XObud2ROuFhm8okyOXn11yCAxs8fI3zYTTzPrdGsZLncNLYlEIx24r41fwxu2nWRmXqOzF/f9L6ovEz2tvMVHJsmO6VTjXtQQQeZPz0XvabHQCk1SjBaZnbN+0jQmJ5Gj59ulF4t47Z9jvTEzDRlTj9H5qUfpaH7R6z7y5rfa9z29yuPB+z8rxam/UYBf+LBaJKkmgSbvfe89MrsyPGoffBcEAAAAEi2Sy+9VNbayuPjjz9eb7/9thYvXqylS5dW/ps6dWo9dgkAAAAAAAAAAAAAQO1K8Lf5AQAAAABNUiAlds1u0S5IBVD3/DG+fuvxQnE0MiYynOmwba/Jb8tVYZxfTjySYDTAm0QDduDKtOsi3fO+tOQrKTVVKuwuE89jWgCIJkqgZVQBgtHgLDvdSLIR4ztcg9EiayWpR0EoILS2mJ57yQ4eK33xn1rb07P8Qpleg6W3imR/O0n6ekH4vD8gM/kk2fuvdt8js0VSW4zl2OE+HT7I6uNlUmpAGtJJSk8JfX5MqwLp9jnSj99Lq5ZL3fpLc59Vuzsv0dsrJuvr1H4qMykaWPJfBTr3CN/YLZDM56tZAFoU9um/yUz5dfhgmcsNVEosvA0AAACAZ999950WLVpUeXzIIYfoscceq8eOAAAAAAAAAAAAAACoG5FXOQIAAAAAmq+UOC7eTk1PXh8A4hcrBKaeLxRHI+KLfMkwr2KjJm6f61jes03own8AHvgTDNhBVMYYmZ57yXTuQygagNqVaKBlPM+t0axkutw0tpc6B6CtLnKub59TSw1VY254WjrwOCknv/Y3j6agMHT+tHSZO96QjjxTys6VjJF6DZa5+QWZ3kOiBvSbBvB8NyPVaFxvo327m8pQtN2Mzxd6nDLyIJk2HaWCDqFxSQNKv9GQkkUKqEJasTh8U7fQsb0nJOE92GX5t7KrloWPle50ry+NEpoGAAAAoMY++eSTsOOpU6fWUycAAAAAAAAAAAAAANQtgtEAAAAAAFUCBKMBjVaM8AWTmV1HjaDRM8Zx+Jp1s5QaLIkovelon4zLGgB78BGMBgCNCsFoqGXZLi+lbHPJnVrlEozWrmXt9FOdadlavqseke+Vn2Se+rb2T+DEH5Bata3qIT1Tvgv/KvPqKpk3N8s3e4HMPpNCk6kZ7vs0tue7+e1dp+xn71cduASjmf0Ocwy0rjXffRZ+HC38rMx5zlZUyG5aK7t9Sy02BgAAADQ/a9asCTvu2LFjPXUCAAAAAAAAAAAAAEDdIhgNAAAAAFAlnou30whGAxqUQEr0+awkXDmPpsk4v2Q4fOenmr9sf524+TEN3/mpjtnb6N/n+3TkUELRAM8IRgOAxsWf4P12rMfmaLayXF522V7qPL66yDqOt8tN7mNwU9hNatOpdjbrOUgaMNJ5buRBMg5fZ8bnk9nzdadWBe7naGzPd/MLXafs3y+tOnAJRlNKmszjX9VyU9Us3yMYr8QluU+SSiPn7DefyJ42UnZKJ9nDChW88xLZiopabhIAAABoHrZt2xZ2nJLCaw4AAAAAAAAAAAAAgOYhwT9zDgAAAABoklLSvNemEowGNCj+GBdCZLaomz7Q+Pnc/5bCkJJFemjV6VJOnnxn/lyHTQFNgznmN7LX/CpyolOvum8GABCbP8EfpcYTOo5mJdvlZZdtJc7jq4qcx9vn1E4/0ZirHpY9Z0LNNsnOkTnnT1KPQbLnTpSWf1c117qtzOnXeO+noFDOMXFqfM938wul1DSp1OET/8N/ZXfukEnPlNzCxPwBqV3XUHhjEgLH7PLvFBa95xB+VjVXIrt1s/TxW1JmtjRgpOwZY6rmy8ukp+6Q/eBlaeo5MlN/U+v9AgAAAA2FtVaffvqpvv32W61du1YlJSUqKChQhw4dtN9++yk7OzvuPYPBYBI6BQAAAAAAAAAAAACg4SMYDQAAAABQxevF2z5f4heIA0iOQIxgtIz4L7ZAM2Xcg9EqpWclvw+gKRpzqJSWIZUUhw2bSdPrqSEAQFQ+f2Lr4gkdR7OS5RaM5pA7VV5h9cWPzvV1Eow2aIzsxGOlt5+Ob93jX0nzXpXS0qXRh8i07RyauO9D6Z1nZJd9I9OpV2guv733jfOi1GY2rue7JjVNtnMf6X+LIidLiqVvPpGGjpMqyp038Adk/H7ZvPbSWpcbSU2sXBx+HCUYzf7nJeneK6Vtm6Pv+dMPsndcRDAaAAAAmqT169frhhtu0KOPPqp169Y51qSmpmrChAm6+uqrNXLkSNe9li1bpm7durnOH3DAAY7jDz74oGbMmOE4N2vWLM2aNct1z7lz52r8+PGu8wAAAAAAAAAAAAAA1AeuYgcAAAAAVIkVrLRbarqMMcntBUBcjN8vG60gs0VdtYLGzsv9ewbBaEAiTGYL6abnZf94jLRja2jwgKOlE39Xv40BABwZfyD6Y2w3XkPH0ezkZDiPb9oROfb8Z+77tGtZN6/JmEv+Llu8TZr/mrcF+0wKhZ5NOz9yr4ws6dBfKeHOs6OkwXkJd25gzJ9fkj2yq/PkhlWh/6MEo0mSug9ITjBa0fqwQzvvFffaj9+q/fMDAAAAjcgLL7ygk08+WVu3bo1aV1paqjlz5mjOnDk644wzdNdddykQ4Fe4AQAAAAAAAAAAAABww0/VAQAAAABVvF68nZqe3D4A1D6C0eCVz0OoAMFoQMLM3gdIL/8kffep1KajTNtO9d0SAMCNP8EfpQYIRoOz/GwjOcTtbdohlVdYBfxVsWFPfRx03ad9lIyw2mQys2Vuel526TfSzu2hIK6iDdJn78teN2OPYiMz4/LkNZNf6D6X1TJ5500Sk99etmNP6cf/RU4WbQj9HyMYzRx2quxHb0Q/0fQLpSduja+5rUWVb9oHr5M+eSe+9W68PNcEAACoC8FyaUcSAmYRKbOj5Gu6v6Y8e/ZsnX766QoGw5+/9ejRQ/3791dmZqZWrFihBQsWqKKionL+3nvv1YoVK/Tyyy8TjgYAAAAAAAAAAAAAgAt+og4AAAAAqEIwGtB0ZWTWdwdoLIyXYLTs5PcBNGEmNU3aa1R9twEAiCXREB+vz63R7ORHeRi9cbvUplq+13Ofudf2bVd7PXlhuvWrOmjTUfrF8VLXvrK3Xyh9/7nUuq3MWdfLDNw3eU10HyjltZc2rAofb9FK6jk4eedNppw8x2A0u/ZHGSlKMJpfkmT2P0L2qLOk5+5xPYXJzZftPlD64SvvfW3brOCvR4WCfAEAAJqiHT9KL3Wr7y6ahylLpeyu9d1FUnz++eeaOXNmWCjakCFDdNddd2n06NFhtevWrdMVV1yhf/zjH5Vjc+bM0ZVXXqkbbrghrLZjx45aunRp5fHtt9+uO+64o/L4iSee0L77Rj73ys/P1/jx4yVJH330kaZPn145d9555+n88893fV/atavjJ5kAAAAAAAAAAAAAAHhAMBoAAAAAoErAazBaWnL7AFD70jLquwM0FsbErkknaA8AADQD/gR/lBpIqd0+0GREC0Zbv60qGO2zFda1rn97KS3Fw2P2JDN9hsn8/d26O5/fL514sewdF4WPH3+RTKCR/tpDy9bO44//Rfbgk6RtRc7z1e6bzIwrZKMEoykjW+bE38lee4pk3W9XEQhFAwAAAKI67bTTVFpaWnm833776Y033lBmZuTPTwoKCnTPPfeoZ8+e+t3vflc5ftNNN2n69Onaa6+9KscCgYC6du1aeZybmxu2V7t27cLmq8vODj3pXLZsWdh4bm6u6xoAAAAAAAAAAAAAABqqRvobwgAAAACApEjxGoyWntw+ANS+VILR4JHxxa7JiJLoAAAA0FT4/Ymt8/rcGs1OXoxgtN0ufS7oWvfQDA+P15soM/U3Uqu2su/8SyorlZlwjMzkE+q7rcTl5LlO2ZOGuK+rHgSXkxe6zykrda7NyJKZNE3Kain72sPSey8k2GwNtG4rtWoj+ZrvbRcAAABNy9y5c/Xpp1Vhwi1bttRTTz3lGIpW3cUXX6z33ntPr7zyiiQpGAzqtttu0+zZs5PaLwAAAAAAAAAAAAAAjRG/eQoAAAAAqBIgGA1ostIIRoNHXi5WzyQYDQAANAP+BP/GFMFocJGeYpSd5jy3OxittNzqwx+ca3xG6tMuOb01FmbiMfJd/7R8N7/QuEPRJGlbUWLrqoVZG2Ok/PbutbtCrc3oQ+S77imZ659O7JyJOnSGfC+ukO+hT+SbvaBuzw0AAAAkycMPPxx2fM4556iwsNDT2j/96U9hx0888YRKSkpqrTcAAAAAAAAAAAAAAJoKgtEAAAAAAFVSUrzVEYwGND4Eo8ErY2LX5BYkvw8AAID6lnAwmkvyFSAp3yVjeN1WK0n6z/fS1p3ONT0KpBbpHh6vo1EwvYcmttDnDz/O7+Bem54Zfpzo/VqCzCV31+n5AAAAgLrwwQcfhB2feOKJntcOGDBAw4YNqzzeuXOnFi5cWGu9AQAAAAAAAAAAAADQVBCMBgAAAACoEkj1VpfisQ5Ag2H8/thFgCSZ2C8Zmtz8OmgEAACgnu0ZPuQVz5kRRZ5LMNrm4tD/ryyyrmvfOJ8f7zcpPfdKbJ1vj9tB6zbutRl73OD6DfcWhl1T7bvKPPixzJ69AgAAAI3cpk2btGTJksrj3Nxc9evXL649Ro8eHXb88ccf10pvAAAAAAAAAAAAAAA0JXX754ABAAAAAA2b14u3AzydBIAmy8uF67kFye8DAACgvvkTfO7rNXQczVJuhvP45h2h/z9c4hyMdvQwqWt+HQRaoe7sOzmxdXuGWecXutdmZIUvbd1WduRB0kdvJHbuaG3NekzauUPq1EvqPVQmLb3WzwEAAFArMjtKU5bWdxfNQ2bH+u6g1q1bty7suFevXjJxhg/37ds37Hjt2rU17gsAAAAAAAAAAAAAgKaGK9kBAAAAAFW8BqP5U5LbBwCg/ni5gCc3P/l9AAAA1DefP7F1AZ4zw12OWzBasWSt1WKX6+En9ScUrakxKanSdU/JXn5cfAv3CLM2bTrKOU5PUmpa5HmvflT25rOlea9IJcXxndtJ594yt74q07ZzzfcCAACoC76AlN21vrtAI7Vp06aw45ycnLj32HPNxo0ba9QTAAAAAAAAAAAAAABNEcFoAAAAAIBKJpDqfiFldQGeTgJAk2V8sWtatUl+HwAAAPUtwee+xufh8RSarZxMIzm8+lK0Q1q/Tdq8w3ld//YEozVFZv8jZPedLH00J45Fe9wWBo5yr82JDLU2WS1lZj0qW1YqPf1X2Xsui33O7gPle3ihbHmZVLpTKi2RMrJl0tK99w0AAAA0AdaGP58zXv7YTAy1sQcAAAAAAAAAAAAAAE0Nv5UPAAAAAKiSkuqtzp+S3D4AAPXHS5BHbuTF9QAAAE2OP4FgtBETa78PNCm5mc7jm3dYLV7jvq532+T0g/pnbnwmzgV7PGcbMFJq3yWyrvsAmSjP3UxKqjRhqhSI/TqfmXJa6P9AikxmC5ncfELRAAAA0Cy1bt067LioqCjuPfZc06pVqxr1BAAAAAAAAAAAAABAU0QwGgAAAACgiocLIeOqAwA0QiZ2SQ7BaAAAoBnw+eNeYs65OQmNoCnJzXAeLyqWFq+xjnM5GVJBiyQ2hXplAikyLyyXuvbztmCPMGvj98v85s9SalrVYGq6zG//Evvc7bvKnHpl9KLeQ6WDT/LWGwAAANDEFRQUhB0vXrw47j2+++67sOM2bdrUqCcAAAAAAAAAAAAAAJqiBP7MOQAAAACgyUpJ9VZHMBoANF2+GH9LISdfpvoF9wAAAE2VP85gtBETZXoMTE4vaDJyM53HNxdLi9c4z/VuKxnjIcAYjZbJayfd/6Hs5AKpvCxGceRzNjPul9L9H0kfvi4Fg9L+R8h06uXt3CddIg0aLfvRG9Ibj0nrfgpNtOkk8+urpInH8hwQAAAA2KVVq1bq0aOHlixZIknavHmzvvnmG/Xr5zHoWNL8+fPDjkeMGFGrPfL8EQAAAAAAAAAAAADQFBCMBgAAAACoEvAYjObn6SQANFkOF9mHyW9fN30AAADUN198wWjmpN8nqRE0JbkZzuObd0jfr7GOc73bclF7c2DSMmRP+r304HXRC13CrE23/lK3/omde/B+MoP3k868NqH1AAAAQHOy3377VQajSdJjjz2m666L8Th+l2+++UYLFy6sPE5PT9fee+9dq/2lpYUHG5eUlNTq/gAAAAAAAAAAAAAA1IUYVzkCAAAAAJqVFI/BaAGC0QCgyTIxQhcKCuumDwAAgPoWTyh4597S4LHJ6wVNRm6m8+PtdVuleUscp9SrbRIbQoNicvI8FPFrHgAAAEB9Ovnkk8OO77zzTq1evdrT2ksvvTTseNq0aRFBZjWVm5sbdrxq1apa3R8AAAAAAAAAAAAAgLrAb8wCAAAAAKp4DkZLSW4fAID644vxkmEewWgAAKCZiBWMlpMfqhk2Xua212ViPY4CJBXmOo+XB6U1W5zn9uoQI7wYTUdOfuwa7msAAACAejVhwgQNGTKk8rioqEjTp09XFVSUYwAAIABJREFUcXFx1HW33XabXnzxxcpjY4wuuOCCWu+ve/fuSk2t+rn/3LlzVVZWVuvnAQAAtcdaq29XWd3xdlB/fiNY3+0AAAAAAAAAANAgxPFnzgEAAAAATV7AYzBarIvDAdSPbv2lpV9HjnfoXve9oNEyxshGK8hvX1etAAAA1K/UNPe5fSbJ/PklqaxUJi297npCo9enbXz1qQFpYt/k9IIGKKd17BpDMBoAAABQE6tXr9ayZcsSWtu1a1dJ0gMPPKBRo0aptLRUkvTuu+9q7NixuuuuuzRy5MiwNevXr9dVV12lu+++O2z8kksu0aBBgxLqI5rU1FSNGTNGc+fOlSStWLFCU6ZM0VlnnaVevXopMzMzrL5du3ZKT+e1DQAA6tqWYqs3v5be+Nrq3/+1WrExNJ6XJV04ycrv4w9mAAAAAAAAAACaN65kBwAAAABUSUnxVuf3WAegTpkTL5G99pTI8V9fXcedoNHz+aSg818hNtkt67gZAACAetK5j/tcRpaMzycRioY4ZacbdWwl/bjJW/3EvlLLDC6AazZy8mPX+AhGAwAAAGpi+vTpCa+1NvSnZYYNG6Y777xTZ511loK7fp6ycOFC7bvvvurZs6cGDBig9PR0rVy5UgsWLFB5eXnYPpMmTdK1116b+DsRw4UXXlgZjCZJc+bM0Zw5cxxr586dq/HjxyetFwAA4Gz+EumYf0T+XsaG7dKnK6QRXeu+JwAAAAAAAAAAGhJ+YxYAAAAAUCWQ6rGOYDSgQdr/SGnEgeFjIw6Uxk6pn37QeJkowQtpmXXXBwAAQD0yuflSx57Oc/1G1HE3aEr6tvNeO2UwoWjNSkGH6M/HpNjzAAAAAOrE6aefrqeeekrZ2dlh4//73//04osv6qmnntL8+fMjQtFOPfVUvfrqq0rx+kfLEnDYYYfpuuuuk9/vT9o5AABAzYzrJaUFnOfOeMT5D9kBAAAAAAAAANCcEIwGAAAAAKiS4jEYze/yW1kA6pVJS5e58VmZWY9Jx18kc/WjMn96TiYto75bQ2NjorxsmE4wGgAAaD7Mib9znhh5UN02gialTzvvwVajehCC1ZyYVgXSsPExirhNAAAAAA3F1KlTtWTJEp133nnKz893rUtJSdFBBx2kefPm6YEHHkhqKNpul112mRYtWqQ//OEPGjdunNq1a6eMDH5mCABAQ5GZZjSul/PcFz9KvjMqNPKGCp37RFAfLrGy1tZtgwAAAAAAAAAA1DOuZAcAAAAAVEnzFnZjAsn/RW0AiTFp6dKEqTITptZ3K2jMfASjAQAASJImnyQtmi+99nDo2B+Q+c1NMj0H1W9faNT6tvNe27MgeX2gYTIX/U32+IHuBdGerwEAAACIsGzZsqTu36ZNG91+++269dZbtXDhQn377bdat26dSkpKlJ+fr44dO2q//fZTixYt4t776quv1tVXX51wb/3799eNN96Y8HoAAJBcBw0wevMb98Czj5dJHy+z/8/enUfLddV32n92zXcepCvJlmTLxgg8QGyMwRiS2C95ISFkaKATArwMTQIhhMQdIAkdXmKMkyYJazUm6SyGJoZOdwhTAoSX0A6TAYMbTAPG4NmWZE1X0p2nqlvDfv/YV7rz1ZV0Bw3PZ61aVWefffb5nVOnbg23zrf4r1+NvP0XAzf/ij+aIEmSJEmSJEk6dxiMJkmSJEma1tG9vH4Go0nSWW6JL9MWm9auDEmSpHUWslnC2z5I/I3/CAd2wZOvJnRtWu+ydIZ78pYALH6y21Hbu6C56Ilu55qw/YlLHx3BYDRJkiTpdJTJZLjmmmu45ppr1rsUSZJ0hvj5KwJv/dTxPysGuOX/i7zqWZEnbPIzY0mSJEmSJEnSucFvzEqSJEmSpnVsWF6/bHZ165Aknb5KzetdgSRJ0poLOy4lPOsXDEXTinjaBRCWce7azs2rX4vOQBm/5iFJkiRJkiSdDS4/P/DkLcvv/7UHlxeiJkmSJEmSJEnS2cBvzEqSJEmSprV0LO/kylx+9WuRJK2f2uTi84oGo0mSJEmnoqslcOPPHT8Z7Ymbl5GepnNP8GsekiRJkiRJ0tnia29Z/ud9R0ZXsRBJkiRJkiRJkk4zfmNWkiRJknRMyGSgrev4HQ1Gk6SzW6Ox+LySwWiSJEnSqXrPS44ferZz8xoUojPPcn7UQJIkSZIkSdIZYVN74P53ZXhCz/H7Dk2sfj2SJEmSJEmSJJ0u/MasJEmSJGm29u7j98kajCZJ56xS03pXIEmSJJ3xQgg8//Kl++zcfPzwNJ2Dgl/zkCRJkiRJks4mOzcHfvLODN/9kwyf+93FP/8zGE2SJEmSJEmSdC7xG7OSJEmSpNk6Nhy/Tza3+nVIkk5Pxeb1rkCSJEk6K5zXsXjwWSbAtRevYTE6c2T8mockSZIkSZJ0tsnnAldfGHjhUwOvvm7hz46HDUaTJEmSJEmSJJ1D/MasJEmSJGm25rbj98nlV78OSdLpqWQwmiRJkrQSLtq4+LxrdkB3y+LBaTqHBb/mIUmSJEmSJJ3N2psWbh+aiGtbiCRJkiRJkiRJ68hvzEqSJEmSZisUj9/HYDRJOncZjCZJkiStiOdeunjw2b+7ylA0LSJ4bEiSJEmSJElns45Fg9HWtg5JkiRJkiRJktaTwWiSJEmSpNnyywhGy+ZWvw5J0mkpGI4pSZIkrYhrL4KtnQvP++WfMvxKi8j4NQ9JkiRJkiTpbGYwmiRJkiRJkiRJBqNJkiRJkuZaTjBazmA0SZIkSZKkU5HJBP7yJfMD0P7DcwJPPs9gNC0i+DUPSZIkSZIk6Wy2WDDa4Pja1iFJkiRJkiRJ0nryTHZJkiRJ0mzLCkbLr34dkiRJkiRJZ7mXXhNoLgRu/VKDcg1e9LTAm24wFE1LyBiMJkmSJEmSJJ3NOpoCEOe1949BjJEQ/AxZkiRJkiRJknT2MxhNkiRJkjRboXD8PlnfTkqSJEmSJJ2qEAK/ciX8ypXZ9S5FZ4pgMJokSZIkSZJ0NtvSvnD7aAUOj8CmReZLkiRJkiRJknQ28RuzkiRJkqTZ8sXj98nlV78OSZIkSZIkSbNl/JqHJEmSJEmSdDbbuXnxeQ/0rl0dkiRJkiRJkiStJ78xK0mSJEmaLV84fp+swWiSJEmSJEnSmgt+zUOSJEmSJEk6m/W0QWfzwvMe7I1rW4wkSZIkSZIkSevEb8xKkiRJkmbLF4/fJ5tb/TokSaeflvb1rkCSJEmSzm0Zv+YhSZIkSZIknc1CCOzctPC8Pf1rW4skSZIkSZIkSevFb8xKkiRJkmYJywlGy+VXvxBJ0umnvWu9K5AkSZKkc1vwax6SJEmSJEnS2a6jaeH2an1t65AkSZIkSZIkab34jVlJkiRJ0myFwvH7GIwmSeema35uvSuQJEmSpHNbxq95SJIkSZIkSWe7XHbh9prBaJIkSZIkSZKkc4TfmJUkSZIkzZYvHr9PLrf6dUiS1s8v/YcFm8PL3rzGhUiSJEmSZglhvSuQJEmSJEmStMpyi5ztVWusbR2SJEmSJEmSJK0Xg9EkSZIkSbMtJxgtazCaJJ3NwiveCj1bZze++HcIW5+wPgVJkiRJkpLg1zwkSZIkSZKks10uu3C7wWiSJEmSJEmSpHOFZ7JLkiRJkmYrLCMYLZdf/TokSesmnH8xfOAb8OVPEHsfJ1z1s/DTv7zeZUmSJEmSMgajSZIkSZIkSWe7XCYAcV57rb72tUiSJEmSJEmStB4MRpMkSZIkzZY3GE2SBKFnK7z0PxLWuxBJkiRJ0jEh+C5NkiRJkiRJOtvlsgu31xprW4ckSZIkSZIkSevFYDRJkiRJ0mz5wvH7ZH07KUmSJEmSJEmSpLNXCOEi4ErgfKAVOADsBr4VY6yuY13dwNOBi4BOIABDwF7guzHGg+tVmyRJkqSVkV3k9xFq9bWtQ5IkSZIkSZKk9eKZ7JIkSZKk2ZYTjJbLr34dkiRJkiRJkiRJ0hoLIbwE+APgWYt06Q8hfBx4R4zxyBrVFIBfB94IPOc4fb8PvB/4uxhjbQ3KkyRJkrTCctmF2+uNta1DkiRJkiRJkqT1klnvAiRJkiRJp5l88fh9sgajSZIkSZIkSZIk6ewRQmgNIXwM+CSLh6IBdANvAO4NITx/DeraAnwZ+BjHCUWbchXwAeCuEMIlq1mbJEmSpNWRXeRsr5rBaJIkSZIkSZKkc0RuvQuQJEmSJJ1mCssJRvPtpCRJkiRJkiRJks4OIYQs8HHgBXNmHQa+DwwBTyCFjoWpeZuBz4YQfi7G+M1VqqsH+Crw5DmzqlN17QYawDbgaqA0o8/VwFdDCM+JMe5ejfokSZIkrY5cduH2usFokiRJkiRJkqRzxCK/ISJJkiRJOmc1tx+/Ty6/+nVIkiRJkiRJkiRJa+PdzA5FqwJvArbFGJ8fY/y1GOPVwBXAt2f0KwKfCSGct0p1vZf5oWjvn6rrmVN1vTTG+BzgvKntmBmVsA34wCrVJkmSJGmV5BY526tWj2tbiCRJkiRJkiRJ68RgNEmSJEnSbBfshKaWxeeHQMgu8pOUkiRJkiRJkiRJ0hkkhHAx8Ptzmv99jPFvYoyTMxtjjD8BnsvscLQNwJ+uQl07gJfNaf7PMcY3xBgPze0fYxyMMb6N+dvy/BDCM1e6PkmSJEmrZ9FgtMbC7ZIkSZIkSZIknW0MRpMkSZIkzRIKRbjyZxbvkMuvXTGSJEmSJEmSJEnS6vpTYOY/wD4SY/zsYp1jjBPAq4GZoWmvnQpYW0m/NGe6F3jnMpb7r8A9xxlLkiRJ0mkst8jvltbqa1uHJEmSJEmSJEnrxWA0SZIkSdJ87d2Lz8vm1q4OSZIkSZIkSZIkaZWEEJqAl8xp/ovjLRdjfBD4zIymHPCyFSwNYG7Q2u0xxsrxFooxRuBf5jQ/ccWqkiRJkrTqcouc7fWFe+H7eyKTtbi2BUmSJEmSJEmStMY8m12SJEmSNF++uPi8XH7t6pAkSZIkSZIkSZJWz/OB5hnT344x3r/MZW8Dfm3G9IuAW1aqMKBlzvTeE1j28TnTXadYi3TWGh8f5//8n//DQw89xJEjRyiXyzQ1NbF582Z27tzJVVddRaFQWJF17dmzhw9+8IPccccdPPjggwwMDFCtVo/Nv+2223j1q1+94LLf+c53uO222/jWt77F448/ztDQEI1G49j8xx57jB07dgBw/fXXc8cddxybl/ISJUnSmSSXXXze1bc0aC3C+34j8OrrFklQkyRJkiRJkiTpDGcwmiRJkiRpvqW+2J01GE2SJEmSJEmSJElnhZ+fM/21E1j2G0CN6e9hXhVC2Bxj7F2JwoCDc6ZLJ7Ds3L79p1iLdFap1+t84hOf4LbbbuOrX/0qtVpt0b6lUonnP//5/OZv/iYvfOELT3qdH/rQh3jTm95EpVI5oeVqtRq/8zu/w4c+9KGTXrckSTrzZMPS80cr8NqPRn5qW+SqC47TWZIkSZIkSZKkM5DBaJIkSZKk+XJLBaP5VlKSJEmSJEmSJElnhSvmTH97uQvGGMdCCD8CrprRfDmwUsFo35gz/bQTWPbqOdPfPcVapLPGV77yFd7whjfw4IMPLqt/uVzms5/9LJ/97Gd5+tOfzgc+8AGe9rQTeTjCF77wBV7/+tcTYzzhev/kT/7EUDRJks5Btcbx+8QIV9/S4JZfDRRz0NUMEcgEKOagszkQIxwcjtQbsL0r0D+ebk/WoJBLbddeDE0Fw9UkSZIkSZIkSacXz2aXJEmSJM2XLy4+L5dfuzokSZIkSZIkSZKk1XPpnOmHT3D5R5gdjHYZ8JVTqmjal4EHgCdNTf90COGpMcZ7lloohLAVePGMpirwsRWqSTqjvfOd7+Sd73znvICyEAKXXnop27ZtY8OGDRw+fJg9e/bMC0+7++67edaznsXf/M3f8Fu/9VvLXu/b3va2Wet82ctexmtf+1q2b99OPj/9//eNGzfOWq63t5f3vve9x6YLhQJ//Md/zAte8AJ6enrIZDLH5m3btm3Z9UiSpNPfPXuXH6j69s8s1ndu+0L9Ils74V/elOHK7YajSZIkSZIkSZJOHwajSZIkSZLmyxcWn5fzraQkSZIkSZIkSZLObCGEbqB7TvOeExxmbv8nnnxFs8UYGyGE/0AKWisCGeBTIYTnxRh3LbRMCGEz8BmgeUbzLTHG/StVl3SmuvHGG7n11ltntbW1tfG2t72Nl7/85VxwwQXzlnn44Yf5yEc+wnve8x4qlQoAk5OTvO51r2NsbIwbb7zxuOt94IEHuOee6TzDF7zgBfzP//k/l1XzZz7zGSYnJ49N33LLLbz1rW9d1rKSJOnMdtUFgc/fs/xwtFOxbxBe9XcNfvCODCEYjiZJktZHoxEJAV+PSJIkSZKO8Wx2SZIkSdI8IV9c8PchAcj6VlKSJEmSJEmSJElnvM450+MxxrETHOPQnOmOU6hnnhjjt0IILwT+AeghBa/dE0L4MPBFYDcQgW3Ac4HXARtmDPEB4F0rWVMIYdNULSfiCStZg3SiPvrRj84LRXvOc57Dxz72MbZt27bocpdccgm33HILr3zlK3nxi1/Mvffee2zem9/8Zq688kquv/76Jdd99913z5p+yUtesuy6T3bZr33ta8tehyRJOj096+IAi3+Db8X9aB9c+58b/PwVgQDs6Yf//u1II8LPXw5HRqGrGbpaAs0FyGQgTpXXXoLmAkxUodaAfBZKORguw8GhyCWbApkAlRq0N8HeARiZgJ1b0vJjFSjkoKUAoxUo5uDaiwPPv9xgFEnS4sYrkb+/K/IvP4zs6YfJOjQi1BvpuqMJrtoeeO6lUMwFclnIBMhmYKwSOTAEh0dgfBLqESpVGByHliIcHonUG9BahHwuPTcCNBVgSwf0tKZxchkIIT1PDo6n9Y5PQu9w5JkXBTIZ6G6G7d2BzmZoNKB/DA4MRXb3Ty/fPPUcmMvA/sE0VqmQnhsv3AAHh2BgPG1bSzE93w6OwWQ98r3dabt+7rJwrKamPAxOpOfY0XJk7wA8eiQ9V+/YkPpM1tPz9fmdacx6A3b1wcRk2sZGAx45DDs3wyWbAyMTUK2n/ZL2RWCkHDk0AvsGoJSHC7rTfm/E9DqhMXUZKad1V2pQrUMg1ZfLpNcAlWqaPzSRXlc8ZSu0lVLb3oG0f7e0w9hk2qYQ0n4EuOJ8uPz8wK9cCT+1PTA8AZ3N0+NO1tN6K1Prz4R0P5anphsNGC5H7juQXv/0jUbK1VTno0fSvu5qTnU9chgOjaTbF26A8zrgkk2B8ztTrfsGoFaHwYnIdx5L+2THhvSaqDH1uqlWnz6W6o10HI2W0zFwxda0T/vH0vHQ1Qyb2gOXbErb31pM6+tpg/sPpnEu6UmvvfYPpX0yPhmPratcTcdOrQH3H0jHy2Xnh2P3TT6baizmUl2tpbRtMcKOjYHLz0/HY0dT6lPKw4GhtP8na+n20ERa57auwAXdaTvy2VT/WCWtZ3N76jtSTvf9ldtTv/sPphqbCulYyGamH1czr7OZtD0HprYFOPaYDGH6diaTbmdCas+E2bfnXs9qm7P8QmMZ2idJkiStD89mlyRJkiTNVygsPi+XX7s6JEmSJEmSJEmSpNXROmd64iTGmLtM20nWsqgY45dCCJcCNwIvBy6aun3jEovdD7wjxvjJla4H+B3gT1dhXGlVPPjgg/zu7/7urLbrrruOf/3Xf6W1de6fgYXt3LmTL3/5y1x//fXcd999ADQaDV7xilfwgx/8gI0bNy66bG9v76zppYLYVnJZSZJ0ZvvZnSno4979a7fO7+6C7+6aH8b2xR/PnDqZsLaTW6a9BC97ZqBcTSEzh0ciE1XY1AYXbgiMT6bwksMjKTylEVMISimXgk4KuRTusq070FZKAR6TdXjscDwW9HI0rCUToG8sBeRctDEF0mQzKXwjE1IQSXMBeochl03LDE2koI8t7bChJYW1DIxPh+7EqXCeo0EihVwad6Kawkc6m6dDP0r5dD1amQ4O6WhKASl/9ZLA1i5DOCRppsla5Pr3NLh799L97tkb+ei34dTCRk9u2X/+/szlVj/s9L99Y3nreHD2Rw0LvtZ4aMZPQRwchq8/tNDY89t29S2rhCUNl+HOR+a3Dy3yye29++He/ZGP371wTSth/+Ds6eFyCpX90T64/SdLr3NP//LX8/3Hl7OfT20bZx+XSznR9axdoO96WzBsjRSmdiIha4sGty0x1moFvmVCWHLMcFJjrmR9J7uvlt6uZdUyZ8yhien3JfksdDUHWoopZLE+9fr/aEDn9O04r32yDud3BJ53OZTygUYjjZnLQDGfXvvHGBmtpHUXsun4OzQV6NmIqR5I8za2pvcUY5XU1tEcODwSuXffVOhkU3ovUmtEelrT+6NsZvq9S72R3qd0NsElm9J7o3v3pfU8/cIUkD1TvRHZP5jq7WiCfYPpr8CevvQ3MpuBkXIkn4XWYmC4HGkrBdpLs0NMq3X40b5ItZ7e041Pwq4jaTuO1relI91+5BBUaik88pkXp/DGGFPAYrmW3vsdvR1jGq+9lLa9rRjS9ay2FAiZzfheS5Kk053BaJIkSZKk+XIGo0mSJEmSJEmSJOmsNjcRqXwSY8w9JW95KUsn7uh3PSvL6Pst4CbgS6tUi3RGectb3sLo6Oix6c7OTj796U8vOxTtqE2bNvGpT32Kq666isnJSQD27dvHu971Lm699dZFl5u5boB8fvn/bz+VZSVJ0pmtqRD419/P8I7PRb5yf2R7F7z9FzP83Z2RT9x9bgRPDJfh/Xcstq0nsg8W7vvI4YV7HxlduH0hI2V4+NDx+52MxwdS0MsdD0buvSkzL4xAks5l/+VL8bihaJK0GhoRiFBf70JW1Nn6/mIttmvlgzfbSymgeXzyFIY+ifUuJZ9NIWalPDTlUyD0ia9v5e6PhQM7l1PDfC3FqbC00lRw2lRoWntTCpCb3QbtpbBAWxonBN+zSZK0GgxGkyRJkiTNVyguPi/rW0lJkiRJkiRJkiSddU7mrIxVP7MmhPBbwH8BWpa5yHXA7cC9IYTfjjHeuWrFSae5+++/n89//vOz2t797nezZcuWkxrvsssu4y1veQt//ud/fqztwx/+MDfddBNdXV0LLtNoNE5qXae67Er4yU9+wo9+9CP6+voYGBigVCrR09PDpZdeylOf+lSKxSW+V7CEWq3Gd77zHR599FEOHz5MpVKhp6eHHTt28OxnP5tSqbTCWyJJ0plpa1fgw6+afWL1cy+FG54En/lB5Mf7oTZ1cvrYJLQWU1DD4ZF0En0+CyHAZG2dNkAr4sAQ/N2dkd+9AfrG0kn3gxOwuQ3yucBkLXJgKB0LG1vTm9QHDqa+h0ciTQV48pbAkdEUZpDLQDGXjpn+schoJbXHqWPnyChcfSF0NAXqDWjESLmajqULuwOVWjq+6g0Ymojcsy8da8MT8Hh/ZGAculugqzlQKkDfSCQCm9oDuQxkM9DRlLZttAIXbYRrLwp8b0/k8X44PAqDY+mt9iOHoVKD518eaMQURHdeBzQVIJDmPXYkHeMb21INh4bTNm1shV+5MvArVwYOjUD/1L5rRHiwFwo5ODIaGZqAickUZJDPpkC+GNM21hpQyqWxmgppfZO12dfDZegfhSduTmMf3TdHL0f75rKwbyBtVyEH3S2B8UqkuzVtW62e+hVyUMxDcyHtpyOjabsyIe3vah02tAQ2tMJEFXqHIk2FQDaT7sdyNVLMBc7vTPs6E9L9PVqByTp0N8P/fVng2ZcY2nCmiDEeC9mo1SMTVdh1JB1z5WoK6wikY3F8Mh2HMU5fl6spsGNwPIWYhJDaW4vp+Mpm0jFeb6TH10g5PQ7z2dSn3kiPhVo9HWMHhqBSi/S0pcd0vZHGmKimxxikdUCq6+h0tQ5jlVRPT1tapphLj830tyb9/ao30vPa8AR0Nqf2C7pTzRHYsSHV9uFvnq0hPpKkc93wyfyEzyqrTiUBlqvpcjYZq6TLgaG5c04spDuEFJR2NDTtWNBaCdpKgbZ5bSlkrb1pbtvU+x1D1iRJOsaz2SVJkiRJ8+WX+AJzzl+hliRJkiRJkiRJ0hlvdM5000mMMXeZuWOekhDCnwC3zGm+G/hb4BvAfqABbAGuBV4H3DDV7wrgjhDCa2OMH13Bsv4W+OQJLvME4LMrWIO0LLfeeisxTp+otHHjRl7zmtec0pg33ngjf/VXf0W1ms4AGxsb40Mf+hB/+Id/CMCuXbu46KKLFl3+hhtuWLD9tttuA1iyvsVOhnrsscfYsWPHsenrr7+eO+6449j0zH1wPI8//jh/+Zd/ySc/+Ul6e3sX7dfU1MQNN9zAq171Kl784heTzWaPO/Z9993HLbfcwuc//3mGh4cXHfeXf/mXufnmm9m5c+ey65Yk6WTFx34CBMJFl653KcuSzQRe/7OB1//s0v2qtUg+N/u1w8RkCtT54r2RV3zYQJkzyVs/FXnrp+bfZz1tKezoaFDB4lYqB/xExpnbd6lllx73/oMnd7z+yz2R3/zvp+uxHudcn8yyy52e7ebPp/ndLSkEAqZD00pToWwT1RSy1VKA5zwxheS1FNO8o8v0j8VjYVn7BlOIVXdLCngbraS2egMKWajH6bC4Yg62dEyHdzUiNBrTt+uNFM5VjynYraNpOpwL0nQuk8InxiqpfbSctnqylsYYLqfbT9qcQr8mqtPLj0/CoeEUONFegs3tsKktzZuoptoHxuD8Tnji5sBl58GmtsBIJdI7PB0Qdng07a9aPQXfNeXTOsu1FBgyOXU9PpkC+OpT69/cDtmQgg3HKpHzOgMTkzBaTqF+I2XYPwR9U2GGldM23PJ0fWxJkiStvTj1GnS4nF4Hz5m72FILtmYz88PS2pumgteawry2FK4WFmhLr70NWZMknekMRpMkSZIkzZcvLD4vazCaJEmSJEmSJEnrOTk3AAAgAElEQVSSznindTBaCOH/At41p/km4OY4P+Vo19TlH0MIrwPeDwQgC3w4hPBwjPHOlagrxngIOHQiy3jShdbLF7/4xVnTr3zlKykUlvhf+DL09PTwS7/0S/zTP/3TrPUcDUY7U8UY+bM/+zPe9a53MTk5edz+ExMTfOELX+ALX/jCvGC2uer1Om95y1t43/veR6PROO64H//4x/n0pz/Ne97zHn7/93//RDdFkqTjiof2wpc+TvzwzTBZhpZ2+MxuQql5vUtbMXND0QCaCoGmAvza0+F9X458Z9fa16WVdXhkvSvQmax/bPZ039jCfT72nZUPwNrVt/y+ewdOfj0P9KbLQobL0DsMDy3yCce9++H2n5xKgN3xrObYkiRJOlPVGykAe3B8obknFrKWz84IWJsRmtZeCrTOazsaxBam+88IaCss8DmDJElrwWA0SZIkSdJ8+eLi83K+lZQkSZIkSZIkSdIZb2jOdHMIoSXGuMCpwIvaNGd63u/An4I/I4WbHfXRGOM7j7dQjPGDIYTtwNunmrLArcDTV7C2M1atHk/ppGot37YuyGXX70SZvXv3smvXrlltz3ve81Zk7Oc973mzgtHuuusuqtUq+fyZ+SNjtVqNl770pXz605+eN2/Lli085SlPYePGjVQqFXp7e/nhD3/I6OjyciAnJib41V/9VW6//fZZ7fl8niuvvJJt27ZRLBY5ePAg3/nOdxgfHz9W04033sjAwAA33XTTKW+jJEkA8ftfJ952C/zg6zAza3hsmPjaZ8LffIXQ1bN+Ba6yODoEfQfIdm3iK2/u5NZ/a3DXrsDYZDpZenwSJmtQqcEPHp+97JM2w4ZW2NQGzYX0Gi8EKFcjvcNQyEEpBxNVKFehlIf9g2nMXDZNdzfD/qEU5rW9G2p1aCmm60aEnxxYh50iSTqrvP8VgU99L/Kl+2a3ZzPQWkxP//WYAkfyWbigO1329EPfaHpeuuw8uGBDIJ+FoQkYLUPvcKRSg7FKGqvemB6n3kiBIT1taf6djyyv1p426GlNz5sT1fS8el4HDIzBo0dm1z00kaafug22tKfn2KGJFIFSzKXn51oDmvLQVIBGAzqaoL05bUcpB90tabyxCoxW4J69keYC7NwcqMdUx8GhSC4DI2XIBOgdgc1tsKE1BaQU85AN6Xl7oppCUoq59FyeyaTXEZCWzYS0TZmQXge0ldIHnYdG0jYV89NhLYUcFHOB/rHInv70WqGtlO6P5gK0FKBcg919cGg4tT9yOPKNh07teAkBcplU4xN6YOdmaC0GNrWnfdtSSLX2jaX901RI+68RU11DE/B4f6RvNL3e2daZQmN29UWyGdjSHjivM61rU1va/7lM6lupputHDsMPH49pPzbggu5AMZ/uw/sOpM8x+8fS/p5bO8x+SduUT6/jGnF6+gk9qdbeEajW0/HT2QwTkzA4AcMT0NWc7oOBcXjsyIntw6OPB0nS6alaT89j80OQlwrnXXheMbdIkFpToHVeuBq0lcICbemynv87kiSdeTybXZIkSZI0X26JL2xnfSspSZIkSZIkSZKkM1uMsS+EMAB0zWi+ALhvkUUWcuGc6VM8HS8JIWwFrp3TfNxQtBneDbwZaJqavjqE8NQY4z0rUd+ZbO8AXPyfPFtvLTz65xl2bFy/9d95553z2p7+9JXJB7z66qtnTU9MTPCDH/yAa665hm3btvHYY48dm/fe976XW2+99dj0xz72Ma69du7DGzZuTDvr+uuvP9b20pe+lP/9v//3semZ4860bdu2k9qOo9785jfPC0V7wQtewE033cQ111wzr3+j0eCuu+7iH//xH/nIRz6y5NhvfOMbZ4WidXR0cNNNN/Ha176Wtra2WX0nJib427/9W97+9rdTLpcBuPnmm3nmM5/JL/zCL5zk1kmSNEO1At+/Y+F5ex4k/vI24q++DiYrMNwH9To0tcLAoZQ+0bWJ8LP/jnDDi1aspBgj3P89uPfbxEN74fB+woVPJpbHoNhEyOag1AytnTAyAK0d0LUJJkZhZBAGj0BXT0rFaGpJP4gaGzA6BCODxN7dcHAPPHYfHJpOOysBfwTQvQWe91LCb91MKCzxY6prZHdf5K/+V+SbD6cgkPM7UkjJ4AR88+EU0Lap7WhQSqC5yLHAl3ItBXMEUkjH4/2RpnxqbzRS4Ee9AQeGUrjIBd3Q1ZxO1K41oG80hbFsboNrLgqEkMJpKlMhL22lFDLTWkwBL8PlFCoyPpmCRNpKKVgEUttENQWq5LJToTeTKXTnyGhk55bAhpa03rEKHJkK47ntzki5uujukSQt4ZOvz/DiqwOv+5n0/HpgKD1HbGyFENY2fCPGeGydk7X0t/1oWFg2MxWQdZxAkEYjEoFs5lwKDjnxbe0djjzUm56HxyZT2FyY2s/F3OxLLguD4ynQbEsHlPJnzr6NMfJg7/Rrjgu60/F0eGR6W3vaTv1YjzHyo31w775IPhtoKqQgm3w2vY7a3D79+uVJW1LoTaMR2TeYgvFqjbSPJ6pw0cbUb/8gnNcJl/TAwWF49HAK6qnU0njbuqZCCxtp+ZnXR2/X6inQrbtlOgwuMuN2TNONmG7PvF6oLZJeH868PXf5BZc7qTHjiY85p6aF6lup5ZfalrjAWMeWm/obtS77fIWXnzvWyZj5933m7WxIwZFH/+QfHD658c9UIaR9Wsilx/3R/Xs0OPPofVLMpfDsXCb1a8rDvftT32IuhZbuH4Le4enlN7SkfqWpy8zbMcJIJQV9Dk+k924j5engSJ2cSi097xwemTtnsR27+A5vLswOS2svTYWulcKx8LTpNmifap/dlt6fZ86p10qSdG7ybHZJkiRJ0nxLfclpqdA0SZIkSZIkSZIk6cxxH3DdjOlLOLFgtIsXGG8lXDln+tEY42PLXTjGOBZCuAu4YUbzM4FzPhhN5469e/fOmt68eTMbNmxYkbGvuOKKBdd3zTXXkMvl2LFjx7H2zs7OWf22bNkya/5cra2tx26XSqVZ85Za7mTdfvvtvO9975vV9u53v5s/+qM/WnSZTCbDddddx3XXXcfNN988r86jPvnJT3Lbbbcdm77wwgv52te+tuh2NDU18eY3v5lnPetZPPe5z6VcLhNj5Pd+7/d44IEHyGQyJ76BkiTN9LQbUhBY/8HF+3zmg0sOEb/8CXj9LYRXvPWUy4nVSeI7Xwl3/PPs9kVur4r+g/CP7yX2HyL8v7cdv/8MsV6HRj19n3DwcApqO/9iGOmfDm4b7odiE2zeDhvOB6bSBvoPpvnjIzAxli7DfVzQd5C/zmThsrZ0f1102ZqH2aynZ17U4NW3eba+JJ2oi7O9vOAbt9L43L4UbprJsqXUDLkCcXyYODYCLe0wNgy1agoTLRThwG5o64Tx0XR99Lktm4Mj+4EI2TxUJ6HUlAJTi1MpmF09afrwXii1pOe7fAE6U/B5HBsm9Gwlf9kzyG/YAn0HoFKGoT4Y7p/9fD86lFJe6jVCezexPA7jI4Rsjgakeob70nNnow5NbSnwdbg/BaI2tabrfY/CxvOgrzfVkc1CrQZbnwAP/xAKpbR8rZqCVtu709gToylcNV+E8WHY+0ja9tzU9ux/DHbfn7bvBa9Mz+UT43B4H9RrKbi1tSPt4wO7UnBrvZa2iZCuj14KpdQvNqBjYwqALTal+6AynvZv34F0X1UraazKRKq5Vk1hsY36VOppkZ62LnrqNSiWpu+/Rn327UYd6g1iSxsdnT10bN4OIUPj6GuMRj3V25j6MYWRgVRnvQb33gXdm+Dya9P+nrr/UqpPBtq6p7ZzSiaT9sXYcNpf+WLax7XJdN1oTK+vfvS6loJsx4Zgw5a0b4+Oc8GTCBddBlsuYGf35rS/hmqwvwa1KheWJ2B0EM7bARvPIx7ck+prNGbs90xa/8Ah4lB6fFCZSP36DsL2S9J2VCZg4BBXVCa4oqkVymPp2C41pWVCSPfHwKH0+q86SWPqvt5ar6Vw4WolbUeukI7LEHjyxGjaHx0b2N7cyvZIegxOltNjIpOZPk4yIa1r41YolgjXvwg6NqT7vjqZjpsYob+XeGgvYdO2tM+6NqVxZqZaHbsdZ0/PvV5O37m3T3acuMAr/VOp61jKFBDmtGVOcp3H7bNAfae6nccbbznrnNEnHq/PQvt4xvWxQDgCjRiIMdIgEDM5stlAMZ+l0dSajslalWwum/7eZnPpsZHNTV9mTWfJ/v0vzt/uKR961j10jB+g0dJJpWUDBWpsyo/TnJmkQoFGtQqZDDtaxskXcsRaDRp1+icL9B4uM1ZpkG9ro5Zvolxop1TI8JSWw5yfH2GYZpoH99EysIdKI0ulPEnjyEHquSKN5g4aA0fIDRzksZYn0t9opVQe4MLKboY6L+CBrmugtYPYtZl97U+iXM9Ao0FbY4Se7AitXe3Q1Eq2VqaVca7oGCJfK1MsD5KrjlOu5yiWB2mQIVz0ZEJlgpDJQHsX5PLEzs3EiTEyI33pPjq8P/1tqlVhdJD4wPfTc9BkBZ74U4TLnwlbL05/b6qTMDZC3DX1r7lMBqoVQltX+tswI3Azxsh4PcdILcdwLc9wNc/IsescI7UCw7X81PwCI9Xc1PRUv1nXhUXvRy3P+FTIeO+8sMATD1lrzU7Snp2kLTtJey5dt2UnyYbIUK3IcL1AyOXpLlXZ1p3h4s4qV5b2siE7znjrFvbX2jk8UOWi2m66myOPNzYyXoXNrQ1am3I82lvl4GQrFErkMpFaI1Cv16k1MtTzTdQi1Kt1apk89RhoCxM0F+BArZ09IwU68jV+6RnNvOTqsO6fb8RGIz1PZ7LQ3JZei4wPp+fgkQHo2EhoaSdWJ9PrgnoNHn8ovSaA9JlPeze0tK/ptsRGI4X9T4ylv6f5ArR2Eto6j7+wpLOCwWiSJEmSpPnySwSjFZsWnydJkiRJkiRJkiSdOe5ldjDas4B/Wc6CIYQW4KkLjLcS5n6Te4nkhkXNXWbjSdYinZH6+/tnTXd1da3Y2KVSiWKxSKVSWXR9Z4qbb7551vRv//ZvLxmKNtfc4LejYoyzxs7lcnzuc59bVrjb0cC1P/zDPwTg4Ycf5jOf+QwvetGLll2XJEkLCbkc8bn/Hj7516c0TvzA24n9vYTOHigUoLk9BXlUJ1Nww8bz0wmmPefDob2pPZNNoSOH9hJ7H08nbH/lU7D34RXaulN0+z/QuP0fYMuFKVhi68WEHZcSa1VCNkccOpJqHTicTlQfPDQdHrJcISwcgHAc8eIr4NF7ob2b8Kq3QaNOHB8lNE+F0wz1pZNis7l00m6tmgJAzrsQrvxpQs/WE17nvBqG++HIAThvB6GpZeE+MaZ15/KzThCOjUYK/qhOpoCTo4b60v4MwKZthOY2uppPudQl5bORan3+ycuZAI0Zd01TPlLKQ4ZIvQFj1UCtDpFAJkSa85FcJjJYzh5bZmtnpCnXYFtH5NKtWcargdHhcfpG4fAIPLF1hGypyGQo8OhQkR8fzM6rA2BDC/S0waGhOhtKNTaWakyUazRqNbL1KiOhmdFajiJVag0gZNhSnGBLW51iU4GvP97Mkcnlf8d1e3uVbIBGJksx06CzNUuDQFMe7j8II2XY2AqFHBRz6bqQTbfzWegfh4ExqNRgSwec3wG5LGQDZDOQywYKWegfi0xUodZID51sBs7rCNQbMfXJpUOhfzxSyKZ91jeW9kc+CxtbA81FGC3DaCUei3hobwrks9P3X60OtUbkwBBU69BWgskafPM0+VOjs0Muk47llZTPQr0x+2/Rcm2u9XLbrt+geO9dK1vUCjiZqMtTjsd87Cfz275/x6mOmlQn4bP/bWXGOlnjI7OnD+5e/XWODMDuB1Z/PQCjQ7OnH75n9YNyv/ullR9zsjL/vhrqS5fl2PcoAPE7/7ZkN+NktRqmIh1Z6icaZs47kePwxk3/mfdu+P157ZdW7uM1f3ftCYw07Xxg/s94zHb0n0MRKExdFtK9QNtTTqqq6fUdPTNt0X2WyRAajeXtx4d+QPzCR5e13oU0T102L2ddS2gQGMu0MJxpZyTTynCmneFMG6PZNoYzbYxk0vVwpo3RTBvD2em2kaPLZNP1WKb1+CvUkkbrBUbrywyrO3D0xkKfE+xYmYLm/Ys3z//4QQQiT2I3bYzTzjhtjFNikjIF2sIEO3mcPHXy5WGuOng7143fRZ5aCmtt7YShIxwLrs0Xpl8zZDLTn8+EkM75bOuCXC71naykz6NGB2d/jpPLp88w5ohHx1nq85t8gdi1eToouDIBHd0paO2H30yfgeQL6fOxo0Gw2akQyfYNad7R0Nujl0Y9fUYyMZrW0dqRPp+arMCRfWmchWp92vWE17ydcOVPL+vekXRmMhhNkiRJkjRffokPBZvb1q4OSZIkSZIkSZIkafV8EXjdjOnrT2DZn2b2dzC/H2PsXYmigME50wufeb+0uWdTjJ5kLdIZaW5Q2WIBXiers7OT3t7ph3xf3zJP7DyN3HPPPdx5553Hptva2viLv/iLFRn7q1/9KvfeO50V+fKXv5ynPnVuluTi3vjGN/KOd7yDcrkMwOc+9zmD0SRJKyI87zeIpxiMBsAn//rsDGI4uDtd7vvuse1bse08iVA0IIWiAQz3E//6rdPDLXe1MB2clsunE3O7p06Fr9emw9TqtXQy78RYCrIbH0lBKAuNB+lE4YsuTyf8jgxMB320dhCLzVAemw5Em2mxk487e+huPBm2/q9Ft+WLu38RgH35reRjGiMQGcp0sLl+iAaBQpzkssp9bK/uJRCphjyD2U5aGmN0NIYhm6XcyBGIFPKBsdhES32Y0GikE65rkwuG3kWgRo4cNWZGqw1l2mlvDDM/bu349uXOZ3d+O531IXZUd9McJ9JJ3JWJkxhtWo0s95SewlCmndZslc1Pv4ruOExvpUh9cpLOyX56hh8h7HtkwfuCfCHti+zUieRtnel+e84LCa0dUK8T9z8Kux6E3j1pmUwG9k+d6J3NpeM9l0/HQK6QThZvbk3XE6NpvYeK6Vgrj0N/L4wMwuDhdCxCGmvTNqiU0zEbYzrxPGQgTiWsNRrpNgE2bEnL1Krp+JysQF85Hcu9u3hspMi3mp7FUOtWWijTUumnVBvhcNsT2M8Gzht5hCx1vld6Gn/f8TI21PvJ0CBPnQsyhxjPt1PMNBgPTWRqFY40WtnQGODi7GGqjUA15OkplOmoHKZ54ggtjXFaKaddUhkjW6+SaW7mUKabMiUyIZIZGyTT1UP2p64jU2oiMzpIGB2gqTIAITARC9TLZTK1KvlGhTFK9MZOamQphiq5WCOWJzhSbaapMU42l6VYyHA3TybbqLGxvI/O8YN05yboLNQglyOTzdCaq1PMRfZmtnB/ZTMxBFor/TTFCfLUOBK6uCt3JY9mtlOJOVoKkVIOMtlAUy6SpUFXrkxrZpKxWpZ8pkExGylm6hRr45RyDYotzZSydUpU6Qhj5GsTlAcGuH34idxduXDWIdccKjw99yjPiPfSGifozFdoClWKpRwjjRIj9QKhMk5LuZ8L9n+b3p4riG3dDOa72XzhZrqf/TNsKZVpG+slOzZAKBQI+QIBGKtliUB26DDnVQ/Qn+0m09YB+Tzn9TRRHR5i93gro9lW6mTY1Ohj71CGA+NFtrdN8qS2YXLNLeRCg3y9QmFigGyIVIutxI4ectsuZiQ0U29AcyEdepAO16N/9iu1yOBYpFgdZWOhTN+BAeoxUGnupqm7ky1dOTKZQLUW6RtLYY2lPNRrDe49GBgvR0Ym6jy4r8Zgvcjw0AQtP/w3Cnsf4JLJR3jJyD/R1vBjL0nS6e8vD/2nBYPRXjt42zpUc5o40cDt00CGSFtjdEVef9TIMpppPRawNh2aNiNgbSpEbWTRILbUVs4sPyBa6+MBLlx4xswPOIrAhW8B4Nnjd3J55T5GMy1szB2hFMucVzvIwdwWHuq4hEoo0tYYoRryfLo9/f/kZ8a+zrbaPrKxTrE6SQyBkdZWNjb10dYYmfp8YJRqKNCX7SYfa+RijR3VXWyop/+r1UKOC6p7yMUak6HIWKaZ/mw3dTKUMyWOZDcwmO2iMZyhZXCMWshR6J+kQYbHNr2BQKS1MUopVviZyjfYk99Oo5Gh0cgwOtBCjhqbaoe5oPo4hVilszFAV32QOu1Mlgo8WriIkUwb2ZE6IUa6mgeZCCVGM60MZDupkSOGQFt9hI5Hhhl/5z9x5AUXMNC2nVw2hVv2DsMjhyPDEzA+CQeGoLMZJiahuwU2t8P+wbTrWwop6HxrZyCbSWHNh4YjD/RCSxGa8ikcvZibfs/TiLC7D34yFbaXz8KmNtjWBWMVqE+9H2oupLDyYh62d6WQ6UMjsG8QJqrQVoQjoyk8/TXPDrQWU9h6/xgcnAo839ye+sYIwxPQNHXK7/gkPPdS2NAS2DcYeegQHBqGf3zdUtGe0pnJYDRJkiRJ0nz54uLzmv1FCkmSJEmSJEmSJJ0V/hcwARw9W+BZIYQnxxjvX8ayr54z/c8rWNf+OdNPCiE0xxjHT2CMp82ZPniKNUmaIYSTiX44vXz5y1+eNf2yl72M9vb2FRn73/7t32ZN//qv//oJLd/c3MwznvEMvv71rwPwjW98Y0XqkiSJJz0Nrr4BvvfV9a5Ea6k6OR1QNjoEu+479TFjnA5tm2l0KF0Ws1AQF8DgYc7LL34i+7PH7+Tnxk/8uM3HGs21GUFj9Tol6un2JLRSmZ43WV50nADkqc1r72gMn3BNR22t7Wdrbc7b31MMRQPIUedp5R9MN3z128D89PBFzTxeAPqn3k4/8qO1DUSs1+HA7qkaTj2H/SLgoupumHuXzTlcXzX0P3hf7x+c8vqW7RDwwNqt7kTUSSeUZ1m5wI6bp8b9cfEy+rNdPHHykfmPg+MZ/dfp298D/mn5i86NDC8Cl89pu+Q4Y0Rmn5TcDtDZkyYmy9PBfTFCbFBq1Omo14/13zyvqB4am7aRrUywqVpJy1cqMNDLs082VFOSpNNQhsijD+3kVed/mDubr6O9Mcwb+9/P7/X/1/UuTeskR53OxhCdjSFg3ymNVSWXwtSyM0LVMu2MHgtbmxGqNjV/5Fi42uwgtmoorMwG6pTc2fxs7mx+9gkt8/WWn1mlak7ORzv/n7VZ0XfheBH6vVPvhYfLsGvObx090Hv85ZdSraews31zf/pshu/tXnqMv/jiia//E3fD3Lo/8IpIR/OZ/z9MaSaD0SRJkiRJ8y0VjNZkMJokSZIkSZIkSZLOfDHG8RDCp4CZ38r+I+A1Sy0XQtgJ/LsZTTXgH1awtHuAAaBraro0VeMHlrNwCOGFwNY5zd9cseqkM0B3d/es6aGhJcIpTsLg4OyzG+au70zwrW99a9b09ddfv2Jjf/Obs//kdHd3s2vXrhMaY2ZI265du2g0GmQy/tK9JOnUhBDg7bcRX//TcOjx9S5HmmVHdQ9PLd/DPaWnzpu3c/LhdahIOretZCDa3HGfWlkgWPFMNnj41JY9leUlSTqDXFDby1f3PJ+x0ExTnCCzttG7OovlqdHdGKC7MXDKY1VCgeHMdJjayLFwtekAtWPX2dn9RqbC1Y621YNxNtJaeugQPH3HelchrSyfSSRJkiRJ8+Xzi84KzW1rWIgkSZIkSZIkSZK0qm4CXgoc/QfZq0MI/xxj/NxCnUMIJeA2YObPpX84xvjIUisJIcw9u+WGGOPXFuobY6xPBbb91ozmd4cQ7owxLnnmbAjhAuD9c5rvjDEeWGq5c8W2Lnj0zw1WWgvbuo7fZzXNDSobGDj1k4GOKpfLlMvlWW0bNmxYsfHXyoEDs/8sXH755Ss29uOPzw6aufbaa09pvEajweDg4BkZQCdJOv2EjecRPv0w8ch+4if/Bnofh0Z9ukO1ArsfgO7N8MN1yBfeeRXECBOjMDYM5fFUU74AxWYYHYRadbp/vgDVyXS71AzN7ZDNQjYHLe2w8yrCRZfCjkthw3lwz53EW/9g7bdLy/LHR/6Kl237+3ntLxn+9DpUI0mSJGk1tMTx9S5BWlQxTtJTP0JP/cgpjROBcigxnGmfClGbDlVLwWrToWujU0Fqaf5CbW3E4P/3pON5+FDk6TvCepchrSiD0SRJkiRJ8+ULi89ralm7OiRJkiRJkiRJkqRVFGN8NIRwK/CWGc2fCiH8AfDBGOPk0cYQwqXAfwOum9G3D3jnKpR2M/AKoGlquhP4VgjhPwF/F+Pss2ZCCAXgN4D3ABvnjPW2VajvjJTLBnbM3Ts6K23dunXW9MGDB+nr61uRALMf//jHx13fmaCvr2/WdFfXyqXZzR17JYyMjBiMJklaUWHj+YQ3/PmSfWJ1kvjqq2HPg2tT0++9h/Dv33TcfrFWhWyOENKJjnFkAAiEts7jr2TnlVCZIH7oT6FeO8WKV0A2l76TWGqBI/vXu5p192sjn6b/QDc3bnkPtZAnE+vcdPhdPG/sS+tdmiSd/i6+HPJF2HpxChONEWIjPdeUmiBXILR2EIf6YGwEQkjhqI06dPZMPy+2dqTn1EYDcvkUNFqZgLERYnkstQ8cgslyGhugUITxUTi8H+77bpo3UwiQyabrrk0pgDWTTfMq49B3MLXHmPr0bE31TIxCUyu0dUJ7d1rf+Ggav3tzClAd7oORIRgbSsvmCjB0JN3e9+hUfaXpmi57Blx2DQwPpPVVxtO8GKGlIwWstnWlgNbxEfjG59K6N22DzdvTvh0fhpHB1DY09RlAsQk6NqRlW9oJLe1AnLof0iX296Z9P3QkjX20tuZWGDyStrm9Gy6+nJArQPcmqNeIvY+n/Z4vpNdApea0bL2e2mpVyGTSPs1m0/XM20cOEI/uJ6Z+vyJOXTcaMHh4uv6WdqhNwoHdcHhfuk+fcAWcf3H68fkDu9Jx0dYNXT1puaPK42m/1ibTsh0b0kyITZMAACAASURBVDE5MpD2VS6f7sPMVIjtVH0hk0mv55paCe3d0NRCPLgH7r8bHvg+DPfPPp6y2VR/ozH/cVBqhtbO6f3OVL9MFto60ryBQ6nWYgk2X5iOs0IpLVsopuX6DqZjqrkdOrrT/Z7NQlMbtLan4N6Bw/8/e3ceZ9ld1wn/86u1u6v39JI0WToJwZAQNuMy4AMqKEYeZH1kBpwRQVScBR/hUXFhURllEJ8HBQcHWRwEZHBhGR1FeAgOZJAJwQlZYJIQkgnZOp2kt3R39fKbP051ddWt6u6quvfWrbr1fr9e59V9zj3n9/vdc3/3c6tOnfpWsnFLytk7m1N6163Na79xS7JlR/OaDI8277GHdyXjh1MPH0yOjKeMrErWb2rm3IkxHjua+oG3NOd4Nus3N18zpiZloJm3hx6Z/n6b+Pp48t9p/y/d3Wfqvp3a54x9Tmlu0cY1y/gWsk+n25vTPpm5fqp2pu5z8EDzfjh4oHlfP/xA817ZsKWZ30ePNPl1Yjl6pMmnaestj8/FwMDs7/NTWb22eT/PZt2mic+WI01+H9jbfLat3ZisWdfk1Oq1yWVXNu/3kVXJHV9LbvrS3PvvhpHRZPzwzO3DI02+DI80Yx1dlaQkd38j2Xx2k9cznKJQUOv8ON32U+27VNqeT3+nanu+bZym7ZLmh5yrk2yf3Hf/xDLlD7fMoe2a5EBdnX1lLHuzJnszln1ZM7nszdiMbUeO1mw5dE8GjhzMAwObc8Po5bl+1eNPMd4ze+Kh/5GRejhD9WgG67EM5cS/x1JSs2twS/YMbMhQjubm0ccuuB9oxy3393oE0HkKowEAADA/m7b3egQAAAAAAADQSb+U5PIkV02sDyf5/SS/Vkq5Lsm+JBcleXKm/5bAeJLn11qn3L3fGbXWu0opL03y0SQTvyWZdRPj+nellC8nuTvJ8SRnJ7kyydpZmvqVWut/7fT4YKl7ylOeMmPbtddem2c961ltt33ttddOW1+9enWe+MQntt1ur5VT/gLT/I2Pj595p3mqJ35hGQAWURkeSd7196nv+83kxi81v8S+Zl3zy+lHx5tfJN+zO9m/p/ll7D0PLLyvn3xj8vyfmdu+Q9N/ybusm1+B0/LS1ybf94Lk5i+n3vSllHMfnaQmD+9OPfxIcvO1yT23N4VLtpzTFPLYuC1lx87meW7ZkWx7VFPQ48h4UzxjYKI4xcatTdGKo0eaogHHjzeFNR6892RhjPWbm1/KX7MuZWR02tjqF/4q9Qv/ObnvfzV93fSlpqjAngeac3/2BU3BkgN7ThbBGBxufiF+aLh5LR5+INn/8LzOyVLyMw+/Oy/d++HcMHpZHnv469l4fE+vh9R7o6ub13j/nmaObd3RvPcOHmiKOAAr22XfmfIHV6cMDp5535yyvEhHj60HDzRFyY4fa4p7bdjSfF2xwi303HfiikXnrnp0R+v4pq7Xwweb/wwOTSuOmyT1wN5k9z3JkSPJ5m0pm7Z1faynMpdzfKZ9ynNe3lwD2r+nKZ47ONR8bTe2fsbXjbBc1WPHknu/2RQrW702ueV/NN9PXfS45nPjvjuT9WelbNqa+si+5PCh5v0wurr53mpgIGXz9tSjR5vvi8bWT36PWMcPJ1/7clNQ7MLLJnosKaOrFjbWWpMbvph867bm+7nVY82YR0ab7wUHBpvvk4eGJ4tXZmAwWbsh2bil+V5u9Vhy/11NQcXR1c2+j+xrCrQ9eF9TnG3jlpPFFA8fbL7OP/v8lA3NHzqpD9yTfPWa5nvJx313ytSilKwY6yeWhfyZmhPvl/27bsuRkbUZ2rw1I8cPZfTYoTxy4HDuGl+XgbF1Gd+zN2vGH865Zw2l1GMZGD+Ysmlrc/1h7DHNfB9Zlex7sCnat2pNM6dPFEfdd19zvePwzfnmdV/Pn9y0IffWTdkxciAbBg9n37Hh7Ds2kvvH1+Ta/dvz1QNbU5f8VyksJ7ft6vUIoPMURgMAAGCmrec2f3XqoZYy8SOjyXc+szdjAgAAAAAAgC6otR4rpfxokj9K8uIpD21L8kOnOOz+JD/ezaJjtda/LKU8N8l7MvHH1CesTvI9Zzj8QJJfqrW+o1vjg6Xs/PPPz/nnn58777xzctunPvWpjhRG+7u/+7tp69/1Xd+VkZHl98vNW7Zsmbb+4IMP5lGPWsivFM3e9t13350kWbVqVR555JGOFl4DgMVU1m1K+Tdvm9O+9fjx5hfZ9+9piqHU48l5lzS/rP7IgWTHhSlr1qbee0fyxb9tfoH2in+S8qiLu/wsZio7Lkp2XJTyjP9r+vZudLZpa5Ir5rRreeqzU5767La7rPffldx9e1Og7djRZnloV+rtNzav0eq1TfGAiQIjGRpullVjzes2uropxnbsWHLsaOo3v5Zy7qNTDx2YLIhXLrys+YX/E0XgNpyVPHBPUkpTxG10dfML08MjzS/873uoKRQ3PJqctb0pOHf0aFMU4f5vNfufe3FyYG/WHxnPU8YPNX0NDjW/WL1hSzK2bqLgwEThgYHBpnDCoUeacSRN20fGmzGMH0oOHZwoXHe4KVB38ECz35q1zfEDA0lKcnB/MydH1zRtD48mIyPJ0Ehz7+iJIgV7H0q+dm2yZ3fqoUeaQj/nPSZZt7E5H+OHmuWBe5rCBY9+fPLQrua81tqcgxNFD46ON30myV23Jvv3Jhs2N8dt3JKUgaYQ2qo1KQMDp3699+9p2l491jyXq/889SufS47Xpo/hkeb8jq5uiiisWpNsO68psLZmfVNI78jhk3Pl2LHk4IHUv/9Y89o9sr8Z84nzVQaStetTrnhqsv28Zk4dO3ry34OPpD50f8rGrc25O3igKWpxcH9z/k+0c2BP8vDu5jW74NLknjua12jz9qbAxYYtyeBQ6pHDzfMbP3Ty2InxlDKQ+sje5nU5fqyZZ+s2J2vXN/NvZFXK6rHmvA8ONoUskmbfgcFm3h/cn+zfk/rVa5JHXZxy0eMmCg0+3BTaSW2KbBx+pNn3kf1NkZodO1PO3pkMjzSFefbvaR7b9qiU9Zua99PAYPMaHDvWjCc19b9/JvnMf5r+Ig4OJWdNFGLctLUplHFw/8TrurbZtv28iRd8omjy+KFmXp91dsrY+tQ9u5tjJopFlo0T3/McGU/GD6c+eG8zF1KasRzc37x3Vq1O2X5+6u57k6/+t+Tm/z6/wJl4XkmasR4Zb4p9JM28WzXWzM39Dzf9DQ6dfD3H1ic7H9sUobzthuY9tPOxzRw7fqzZ98H7ki/+zcT7dt3Jtudr89nNa3hg78KOX4oGB5MnPi3l1z8056Joi6WsHksePbfPPjiT0xUAKmPrmyzpI6WU5uuKEzZt7d1goAvK4GAy9XvAy75j+g4XXHpy3zXrms//E7acc/KxoaHme5CpbY+MJo+f+UdDFjzWUpIr/kmztOPE13EnzLOIY9lyTvJ9L2xvDKxoJ94v66a9Z4aTrMvYpuTbTmzavjHJxhnHzzC6Y/r6+s3N9zJTXHjx4/JrZ2jm0JGakcFkYKDkjt01f/blmr+7qebevcna0eSsseT+fcmBw8ldDzfrG9ckj9lesnFN8tW7aj5/68n2HrM9+fYLSr56V80Nd0/v6zt3JoMDyQP7k90HktXDyc6zktHh5KEDyb7DybHjyaEjTZ8DJVk13Cyb1jT/JsnYSNPGbbuSi7YmOzYkR48nDz/S7HPdyR/LpZTk3I3Nv0eONf2OH03GRpM1I8neg8nho9PHOTyYnL85+ebuZjwnnLMh2bH2SEZuuTY1JfsG1mXf4LoczVBG6+FsOfZABurxjNUD2XZ0Vw4MjOXhgQ3ZeeSOlNQMpObSw19LTcn9Q1tTUrPu+P7sHViXvQMbcqQMZSA1ZWI5UNbkWBnMjiN3Z8ux3TlcRrNvYG2OlaEcK4O5ZvV3Z9vR+3PloetysKzKhuN7M1SPZuz4gQznaPYOrMv9g1tTy0BGjx/K/omxHi8D2Xx0d/YNrs8fbnrl5PMbrEez5djubBg4mNF6OAP1eIaPH87WI/fn9qHzc7CsTi0l/2vo3Kyqh3K4jGZ1PZiakk3HHs6jx2/NJUduy9Mf/WNpbiWA/qEwGgAAADOUgYHU57w8+Y+/Pf2BH3hJ88MzAAAAAAAA6CO11v1J/mkp5c+SvCbJd59i1weTfCTJG2qtXf+by7XWvyqlXJbkp5O8IsmZKibcl+QDSd5Ra72j2+ODpeyHfuiH8h/+w3+YXP/ABz6Q3/7t387w8PCC29y1a1c+8YlPzOhnOTrnnHOmrd9000254orO/NL29u3bJwujHTp0KHfeeWcuuOCCjrQNAEtZOVGsaOOWZjmh9ZfVz74ged5PLfLoVpay7dwZv5ScLLzwW2n5t6Muflx7x194WWfGMVfbzp0s9jPn8zHLazHDzscueEhl7YbpG5754pRnvnj2nefT7rNesvBjz7DeTlvzfbwT/XRyDOXZL0ve+IHUR/YnI6NNkcIOaHeMUx+v44eTe25vCrolTbGzA3tOFiYZP5xs3ZFyzs4Z7dRam0KFQ8MzCkTXWlNKafYZP9w8/wUUka4P3JNc89fJ+MHmj2FvP695nw0MNsXChkdPFpBLmrEMNwW967FjTVG4h+5vCjgceqQpvjY41LQzNlHg8PDBZp99DyUXXZ6sWZ8yONgcf/3nU//mg815WbU6Zdt5E8eub/ovAyeLCKY2+20+uykcNzTUFIzb+2DT7923p+76VlP4adO25jmU0hSTGxqeKCK4rykId9bZTZHILec0Bfe27GgKxgAAwDK0avjk9wIXnFXymh8sec0Pdqbtg+NNcbR1o8m3nZ1F/eM1d+6uTVG0TTP7PXqsZnCg2X7seM2ufU2xtGM12bwmWbsqGRxojnnoQM0D+5tCaaPDJfXo8dTve8aiPY9ue+e9r87+MpZDA6ty1rHdc/6++sR3erPtX7ZdmeRJnRkgLBEKowEAADCr8pNvTEbXpH7qg81finvac1N+8k29HhYAAAAAAAB0Ta31z5L8WSnlwiRPTrIjyViSe5PckeQLtdbxBbS74LvNa60PJvmtJL9VSjk3ybcnOSfNnywvSfYk2ZXkK7XWW0/ZEKwwr371q/Pud7+7+YXzNEXN3ve+9+WnfmrhRUje/va358iRI5PrY2NjeeUrX3maI5aupz71qfnoRz86uX711VfnxS9uv3hEkjzlKU/JV77ylcn1T33qU8v2PAEAAN1R1qzt9RBOqYyMJhdcurBjS0kmipDN+tiJf0dXLXx8W85JfuQVCzt2cDBZu6FZkqZ45/bzpu80tDZZszbZtHX245/09JQnPX1B/U+aUjBx8Uo0AADAyrB6pOQ7dvam7/PPOvVX+EODJx8bHCg5e8Mpd82msZJNYyfXy9Bw6tqNyf6HOzHMJWFtPZC1xw7M65jTfv/0zZuTb1MYjf4y0OsBAAAAsDSVUlL+xS9m4E+uz8CHbsjAz7w5ZUh9bQAAAADoqme/bPbtq8dm3w4AdEWt9fZa65/XWn+/1vrbtdb311o/u5CiaB0e11211o/XWt81Ma7fqrX+Qa31o4qiwXSXXXZZrrrqqmnbfvEXfzH33Xffgtq76aab8ta3vnXatp/4iZ/I5s2bFzzGXnrmM585bf1DH/pQ9u3b15G2n/WsZ01b/6M/+qOOtAsAAAAAAMAKtXNhBaxXinr7Tb0eAnScwmgAAAAAAAAAAEtEecGrZt/+8tcv8kgAAGD5e9vb3pY1a9ZMrj/88MN5wQtekP3798+rnV27duVFL3pRxsdP1kY855xz8vrXL9+v0y+//PI8/elPn1zfu3dvXve613Wk7auuuioXX3zx5PqXvvSlvPe97+1I2wAAAAAAAKw85ap/3ushLG133NzrEUDHDfV6AAAAAAAAAAAANMpjnpj6E7+avO83T278zh9Inv/TvRsUAAAsU5deeml+//d/P694xSsmt11zzTW56qqr8uEPfzjnnnvuGdu45ZZb8sIXvjA333zylwkGBgbygQ98IFu3bu3KuBfL61//+jzjGc+YXH/nO9+ZCy+8MK95zWvmdPyePXsyOjqaVatWTds+NDSUX//1X89LX/rSyW2vetWrsnHjxrzgBS+Y1xg//elP56KLLspFF100r+MAAAAAAADoI895Rcq+h1P/0+8lD96XlJJsPz85+4Lk7m8kA4PJhrOSoeHkyHjz+DdvTradm5z/mGTtxmTN2uSBe5KH7k+OH09WjyXrNycH9iaP7E/2PJAcPtg8tn5zctb25K7bknu+2YzhrHOafY4emT62gYHmmNkMDjaP1dq5czE0nIytb577zsem7Hxs8tgrO9c+LBEKowEAAAAAAAAALCEDL/+11Kc9L/nqNcnOxyZX/JOUoeFeDwsAAJall7/85bnuuuvyzne+c3Lb5z//+Vx22WX55V/+5bz0pS/NeeedN+O4W2+9Ne9///vzO7/zOzl8+PC0x97ylrdMKyi2XH3/939/XvOa1+Rtb3vb5LbXvva1+dznPpc3vOEN+fZv//YZxxw/fjz/8A//kD/90z/N+973vlx//fXZuXPnjP1e8pKX5DOf+Uze+973JknGx8fzwhe+MC95yUvy8z//87O2nSTHjh3L9ddfn0984hP5yEc+kptvvjmf/exnFUYDAAAAAABYwUopyUtfm7zkNcme3cn6zSkDA13vt9aa1DprX/X48eT4saYo25HDTYG1gcGmGNrAYDI8mjIymnr4ULLvwWTjtpShptRT3b8n+fwnm0JtQ8PJ8EgyPJqMjCZDI8mq1U3xsxNF1dZvbgq/bdqWMjLa9ecNS4HCaAAAAAAAAAAAS0x59BXJo6/o9TAAAKAvvOMd78imTZvy5je/ufnlhST79u3L6173uvzyL/9yLrvsspx33nnZtGlTdu/enTvuuCNf//rXZ7QzPDyct7/97XnVq1612E+ha97ylrfkzjvvzEc/+tHJbZ/85CfzyU9+Mjt27MgVV1yRs846K4cPH869996b66+/Pvv27ZtT2+9617vy0EMP5S//8i8nt33oQx/Khz70oWzdujVPeMITctZZZ2VgYCB79+7N3XffnZtvvjmHDh3q+PMEAAAAAABg+SulJBu3LG5/pcz+2MBAcqJg2ujqZpltv9FVyeiO6dvWbkh+6Mc6OlboNwqjAQAAAAAAAAAAAAB97Td+4zfy9Kc/PT/7sz+bW265ZXJ7rTU33nhjbrzxxtMe/+QnPzl/+Id/mCuvvLLbQ11Ug4OD+chHPpLLL788b37zm3PkyJHJx+6+++7cfffdC257eHg4f/7nf563vvWtecMb3jCt4NmuXbvy6U9/ek5tjI2NLXgMAAAAAAAAACw/A70eAAAAAAAAAAAAAABAtz3zmc/MTTfdlA9+8IN5xjOekaGh0/+N6dHR0TznOc/Jxz/+8Vx77bV9VxTthFJK3vCGN+TrX/96XvnKV2bz5s2n3X/t2rV53vOel4997GM5//zzz9j2L/zCL+T222/PL/3SL+WCCy4443jWrVuXH/7hH8473/nO3HPPPfmO7/iOeT0fAAAAAAAAAJa3Umvt9Rigp0oplye54cT6DTfckMsvv7yHIwIAAAAAAAAAWJgbb7wxj3vc46Zuelyt9cZejQcAOn2P3tGjR3PLLbdM23bJJZecscAVzObAgQP58pe/nFtvvTW7du3K+Ph4RkdHs3379jzmMY/Jk5/85IyOjvZ6mIvu+PHjue666/K1r30tDzzwQPbv35+xsbFs27Ytl156aR7/+MdneHh4we3ffvvtue6667Jr16489NBDGRgYyLp167Jjx45ceumlueSSSzI4ONjBZ9RbcgsAAAAAAAD6g/vzFo+fptJRpZThJE9Ncn6Sc5LsT3J3kq/UWr/Zw6EBAAAAAAAAAAAAwKSxsbE87WlPy9Oe9rReD2VJGRgYyJVXXpkrr7yyK+1feOGFufDCC7vSNgAAAAAAAADLn8JoK1gp5U+TvLhl8x211p0LaGtrkjdNtLf5FPtck+R3a61/Pt/2AQAAAAAAAAAAAAAAAAAAAAAA6G8DvR4AvVFK+ZHMLIq20LauSnJDklflFEXRJjwlyZ+VUv6klDLWib4BAAAAAAAAAAAAAAAAAAAAAADoD0O9HgCLr5SyMcm/71Bb35vkY0lGpmyuSa5L8o0kG5M8KcmWKY+/NMn6Usrzaq3HOzEOAAAAAAAAAAAAAAAAAAAAAAAAlreBXg+Annhbkh0T/9+30EZKKecm+YtML4r2hSSX11qvrLX+aK31B5Ocm+TVSY5M2e85SX5zoX0DAAAAAAAAAAAAAAAAAAAAAADQXxRGW2FKKc9M8vKJ1aNJXt9Gc29KsmnK+jVJnllrvXnqTrXWw7XW30vyoy3H/3wp5YI2+gcAAAAAAAAAAAAAAAAAAAAAAKBPKIy2gpRSxpK8e8qm303yjwts65IkPz5l03iSl9VaD53qmFrrx5L88ZRNo0nesJD+AQAAAAAAAAAAAAAAAAAAAAAA6C8Ko60sv5Vk58T/v5HkjW209ZIkg1PW/6LWesscjntLy/qPllJWtTEOAAAAAAAAAAAAAAAAAAAAAAAA+oDCaCtEKeUpSf7llE0/XWs92EaTz29Zf99cDqq13pzkH6ZsGkvyg22MAwAAAAAAAAAAAAAAAAAAAAAAgD6gMNoKUEoZTfLenHy9/7jW+uk22js7yROmbDqa5AvzaOLqlvWrFjoWAAAAAAAAAAAAAAAAAAAAAAAA+oPCaCvDG5N828T/dyV5TZvtPa5l/fpa64F5HH9Ny/rlbY4HAAAAAAAAAAAAAAAAAAAAAACAZU5htD5XSnlyktdO2fRztdbdbTZ7Wcv6rfM8/rYztAcAAAAAAAAAAAAAAAAAAAAAAMAKozBaHyulDCV5b5KhiU1/U2v9UAeafnTL+p3zPP6OlvWzSimb2hgPAAAAAAAAAAAAAAAAAAAAAAAAy9zQmXdhGfulJE+Y+P+BJK/qULsbW9bvn8/Btdb9pZRDSVZN2bwhyUPtDqyUsi3J1nkednG7/QIAAAAAAAAAAAAAAAAAAAAAANAehdH6VCnlsiS/OmXTr9Vav9mh5te2rB9cQBsHM70w2rqFD2ean03yhg61BQAAAAAAAAAAAAAAAAAAAAAAwCIZ6PUA6LxSykCS9yQZndj05SS/18EuWgujHVpAG63F1FrbBAAAAAAAAAAAAJimlDJjW621ByMBmJvjx4/P2DZblgEAAAAAAADQUBitP706yXdP/P9okp+stR7rYn8LuaPIXUgAAAAAAAAAAADAvAwMzLz19ciRIz0YCcDcHD16dMa22bIMAAAAAAAAgMZQrwdAZ5VSLkrym1M2/W6t9R873M3+lvXVC2ij9ZjWNhfqD5J8dJ7HXJzk4x3qHwAAAAAAAAAAAOiSUkpGRkYyPj4+uW3//v1Zs2ZND0cFcGr790+/TXpkZCSllB6NBgAAAAAAAGDpUxitj5TmJ+TvTnLi7p5vJHljF7pasoXRaq33J7l/Pse4sQAAAAAAAAAAAACWj3Xr1mX37t2T63v37s3WrVvdDwgsObXW7N27d9q2devW9Wg0AAAAAAAAAMvDQK8HQEe9Msn3T1n/6VrrwS70s6dlfet8Di6lrM3MwmgPtzUiAAAAAAAAAAAAYEVoLSp05MiRfOtb30qttUcjApip1ppvfetbOXLkyLTt69ev79GIAAAAAAAAAJaHoV4PgI5605T//3WSW0spO89wzNkt60OzHHN3rXV8yvotLY9fMMfxnWr/B2utD82zDQAAAAAAAAAAAGAFWrVqVYaHh6cVG9q3b19uu+22rF+/PmvXrs3Q0FAGBvz9YGBxHT9+PEePHs3+/fuzd+/eGUXRhoeHMzo62qPRAQAAAAAAACwPCqP1l9VT/v/DSW5fQBuPmuW4JyX5xynrN7c8/uh59nFRy/pN8zweAAAAAAAAAAAAWKFKKdmxY0fuvPPO1Fontx85ciS7d+/O7t27ezg6gNmdyK5SSq+HAgAAAAAAALCk+VN4LMQNLeuPL6WsmcfxTz1DewAAAAAAAAAAAACntGbNmpx//vkKDAHLQikl559/ftasmc8t1wAAAAAAAAArk8JozFut9Z4k10/ZNJTke+bRxPe2rP+XdscEAAAAAAAAAAAArCwniqMNDw/3eigApzQ8PKwoGgAAAAAAAMA8DPV6AHROrXXjfI8ppXxvks9O2XRHrXXnHA79yySPn7L+E0k+NYf+Lk3yXVM2HZjLcQAAAAAAAAAAAACt1qxZk4svvjiHDx/O3r17s2/fvoyPj/d6WMAKNzIyknXr1mX9+vUZHR1NKaXXQwIAAAAAAABYNhRGY6E+mORXkwxOrL+glHJJrfWWMxz3iy3r/6nWeqjjowMAAAAAAAAAAABWhFJKVq1alVWrVmXbtm2pteb48eOptfZ6aMAKU0rJwMCAQmgAAAAAAAAAbVAYjQWptd5SSvnjJC+f2DSS5P2llGecqtBZKeW5SV42ZdN4kjd1daAAAAAAAAAAAADAilJKyeDg4Jl3BAAAAAAAAABgyRno9QBY1t6Q5KEp609J8ulSyqVTdyqljJZS/nWSj7Yc/7Za6x1dHiMAAAAAAAAAAAAAAAAAAAAAAADLwFCvB8DyVWu9q5TygiR/m2RkYvNTk9xUSvlykm8k2ZDkyUm2thz+n5P82mKNFQAAAAAAAAAAAAAAAAAAAAAAgKVNYTTaUmu9upTy/CTvz8niZyXJlRPLbD6c5JW11mPdHyEAAAAAAAAAAAAAAAAAAAAAAADLwUCvB8DyV2v96ySPS/KuJA+dZtcvJnlRrfUltdYDizI4AAAAAAAAAAAAAAAAAAAAAAAAloWhXg+A3qq1Xp2kdKCd+5O8qpTy6iRPTXJBkrOTHEjyrSRfqbXe3m4/AAAAAAAAAAAAAAAAAAAAAAAA9CeF0eioWut4ks/2ehwAAAAANQ/O7gAAIABJREFUAAAAAAAAAAAAAAAAAAAsLwO9HgAAAAAAAAAAAAAAAAAAAAAAAACAwmgAAAAAAAAAAAAAAAAAAAAAAABAzymMBgAAAAAAAAAAAAAAAAAAAAAAAPScwmgAAAAAAAAAAAAAAAAAAAAAAABAzymMBgAAAAAAAAAAAAAAAAAAAAAAAPScwmgAAAAAAAAAAAAAAAAAAAAAAABAzymMBgAAAAAAAAAAAAAAAAAAAAAAAPScwmgAAAAAAAAAAAAAAAAAAAAAAABAzymMBgAAAAAAAAAAAAAAAAAAAAAAAPTcUK8HAEvAyNSVW2+9tVfjAAAAAAAAAABoyyz3PYzMth8ALCL36AEAAAAAAAAAy5778xZPqbX2egzQU6WUH0ny8V6PAwAAAAAAAACgC55ba/1ErwcBwMrlHj0AAAAAAAAAoE+5P69LBno9AAAAAAAAAAAAAAAAAAAAAAAAAACF0QAAAAAAAAAAAAAAAAAAAAAAAICeK7XWXo8BeqqUsiHJ06ds+l9Jxtto8uIkH5+y/twkt7XRHsB8ySFgKZBFQK/JIaDX5BDQa3IIWApkEdBrKzWHRpKcN2X9c7XWPb0aDAC4Rw/oQ3II6DU5BPSaHAJ6TQ4BS4EsAnpNDgG9tlJzyP15i2So1wOAXpsIl090qr1SSuum22qtN3aqfYAzkUPAUiCLgF6TQ0CvySGg1+QQsBTIIqDXVngOfaXXAwCAE9yjB/QbOQT0mhwCek0OAb0mh4ClQBYBvSaHgF5b4Tnk/rxFMNDrAQAAAAAAAAAAAAAAAAAAAAAAAAAojAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8pjAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8pjAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8pjAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8pjAYAAAAAAAAAAAAAAAAAAAAAAAD0nMJoAAAAAAAAAAAAAAAAAAAAAAAAQM8N9XoA0Id2JXlTyzrAYpJDwFIgi4Bek0NAr8khoNfkELAUyCKg1+QQAPQnn/FAr8khoNfkENBrcgjoNTkELAWyCOg1OQT0mhyiq0qttddjAAAAAAAAAAAAAAAAAAAAAAAAAFa4gV4PAAAAAAAAAAAAAAAAAAAAAAAAAEBhNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnFEYDAAAAAAAAAAAAAAAAAAAAAAAAek5hNAAAAAAAAAAAAAAAAAAAAAAAAKDnhno9AGYqpQwmeXSSy5LsSLIhyeEkDyW5Lcm1tdYDHe5zOMlTk5yf5Jwk+5PcneQrtdZvdrKvxVJKuTzJE5NsTTKa5N4kdyX5Qq31UC/HtphKKZuSXJ7kkiSbk6xK8nCSXUm+XGu9rYfDm6GUcmGa121HkrVJ7klyR5Jraq1Hejm2lUQOdYYcasghFkoWdYYsasiiU/ZjfpyGHOoM86yx3HKIpUEOdYYcasih6Uop56U5F+cm2ZJkdZLxJHuS3JnmnOzq3QiXBjnUGXKoIYdYKFnUGbKoIYtYCDnUGXKoIYdmZ34AveAzvjNkeGO5fca7N2ZpkEOdIYcacoiFkEOdIYcacuiU/ZgfpyGHOsM8ayy3HGJpkEOdIYcacmg69+fNnSzqDFnUkEUshBzqDDnUkEMshBzqDDnUkEOzW9bzo9ZqWQJLmsD8uST/Oc039/U0y9Ek/yXJszvQ79Ykf5Bk92n6+0KSF7bZz0VJXpzkrUmuTrK3pY9vdug8rkvyK0m+dZrnszfJB5Jc3MPXu2vnI8lwkmcleUeSG84wl+rEufr1JGf3+D3woiTXnGacuyfm6pYFtH2mc3CmZWcvz80ivgZyqDPnUQ7Joalt7uxABk1dXtbLc7RIr4Ms6sx5lEWyaNnPjx6+BnKoM+dxWcwzOdSz+TGW5HuS/N9JPpjkfyY53tLXy3p1Hnq9yCE5JIe6dj4uSfJvk3w2zQ81znQ+apLrkvzLJKO9Oic9eh3kUGfOoxySQ7O1P5fsOd2ys1fnpgevhSzqzHmURbJoars7O5BDU5eX9eocLdLrIIc6cx7lkBxa9vPDYrH01+IzfmVluM/4WcftHr0eL3JIDskh9+j1epFDckgOuT+v14sckkMrOYcWcX64P+/050cOdeY8yiE51Nq2+/Pmd75kUWfOoyySRbO1P5f8Od2ys1fnZpFfBznUmfMoh+TQ1HZ3diCDpi4v69U5WqTXQQ515jzKITm07OfHGZ9HrwdgqUnyoTY+0D6ZZPsC+70qyX3z6OtPkozNo/3vTfK3Z/hQ6NgbM8l3panCOdfncyDJqxbxde76+Zg4Bw8ucC49lOTHejD/1yb58DzGeW+SZ82zj4W+v04sOxf7vPTgdZBDckgOdSGH0vlvZF+82OdnkV8LWSSLZFEXsmg5zY9eL3JIDq3EHFrM+ZHmwvFX01yQPlNfL1usc7CUFjkkh+RQ9+ZHkp9s4/319STftVjnpJeLHJJDcqi786ON99eJZedinZdeLrJIFsmirp2PnR3IoalL316vjhySQ3Joxc8Pi8XSn4vP+JWR4T7jTzlm9+gtgUUOySE55B69Xi+RQ3JIDrk/r8eLHJJDKzGHFnN+xP15czlHckgOyaEuzY+4P28+50oWySJZ1MX50cb768Syc7HOS68WOSSH5FDXzsfODmTQ1MW1ajk0l/egHJJDy3J+zGcZCkvBY06x/VtJbkkTrkNpqv49IcnAlH3+zyR/X0p5eq313rl2WEr53iQfSzIyZXNNU2X9G0k2JnlSki1THn9pkvWllOfVWo/PoZsnJvnBuY6pHaWUZ6apBjra8tAdSa5P8yY8N82bd3jisTVJ/qCUMlBrfeciDHMxzsfWJJtm2T6e5uL2vWkqpp6V5MqJf0/YmOQDpZRttdbf7fI4kySllMEkH0nywy0P7UrylYmxXpxmLpaJx7Yn+Xgp5Zm11s8vxjhXCDnUJjk0SQ51zyNpKlr3M1nUJlk0SRbN3s9ymB+9JofatEzmmRyabtHmR5KXJNmwSH0tV3KoTXJokhw6s5rmIv+taX6w8Eiav5h7YZLLc3J+JM178zOllGfXWj+32ANdZHKoTXJokhyiHbKoTbJokizqnn6/Xi2H2iSHJsmhWSyT+QH0J5/xbVomGe4zvsUyuzem38mhNsmhSXKoe1zzkEOnJYcmyaHZ+1kO86PX5FCblsk8k0PTuT9vaZFDbZJDk+TQmbk/79RkUZtk0SRZxELJoTbJoUlyqHtcq5ZDpyWHJsmhWSyT+TF3va7MZqlJcm1OVtG7Lsm/SnLxKfZ9VJI/zMzqe/81SZljf+dmZtXDzyd5bMt+o0n+TZo3/dR9/+0c+/m5WcZZkxxKc0GjIxUL01RPba2KeGuSH5hl301Jfr9l32Oz7duF17nr5yPNB/mJNvYleU+SZyRZPcu+Jcnz04RX65i6fj4mxvDWln7HJ+b/SMt+lyW5pmXfB5KcM8d+ph73xYk5M59laDHORy+XyCE5JIe6kkNpvvE6U8acavl8S3/vX4xz0sslskgWyaKufU20XOZHrxc5JIdWYg4t1vyY6OvhU/R11yyPvazbz30pLnJIDsmhrs6PVyT5WpqvvZ6dZNNp9t2Y5OfT/ABkav/fSrKh2+ekl4sckkNyqOtfD01ty7XqU58nWSSLZFF3zofr1XM/V3JIDsmhFT4/LBZLfy4+41dGhvuMn3W87tFbIkvkkBySQ13JobjmMZ/XQg7JITnUpa+Hlsv86PUih+TQSsyhxZofE325P+/M50gOySE51L354f68uZ8rWSSLZFF3vyaa2pZr1bOfIzkkh+RQd86Ha9VzP1dySA7JoRU+P+b1nHo9AEtNkv+eptrelfM45mdnmfD/dI7HvqfluC8kWXWa/Z83yxvrgjn083MTof+VJO9O8lNJnpymYuD3dvCN+eGWtm5Jsu0Mx/xCyzE3Jhns8uvc9fMxEdz3JXlNkrE5HnNWkpta+r85c/xCoI3zcVFmflHw3NPsvzozf9D4rjn2NfWYq7v5vJbrIofkkBzqbg4tYGyPSnK0pa//o5vnYyksskgWyaLuZdFymR+9XuSQHFqhObQo82Oir4fT/KWFv0ryponztH3isatb+npZN5/3Ul3kkBySQ12dH8MLOOaJSfa3jOEXu3k+er3IITkkh7r+9dDUtq7u5vNazosskkWyqLtZtICxrbjr1XJIDskh88NisfTn4jN+ZWS4z/gZ/bpHbwktckgOyaHu5tACxuaax9yOkUMn+5FDJ/uQQ8t0fvR6kUNyaIXmkPvzltAih+SQHHJ/3lJYZJEskkXu0ev1IofkkBxyf16vFzkkh+SQ+TGv59TrAVhqkuxc4HF/1jK5/moOx1zS8sF4OMklczju/S19vXcOx2w61QdCB4PqojQVB6e29T1zPPb/bznu5V1+nRfjfGyda2C3HPeEWc7jd3T5fPxxS3/vm8Mxj5mYsyeOOZLkojkcN7Wfq7v5vJbrIofkkBzqbg4tYGy/0jK2/9nNc7FUFlkki2RRd7JoOc2PXi9ySA6t0Bzq+vmY0t4p/4Ju3Hh14jzsXOBxckgOtbYjhzo3vl9vGcMXF3sMi/x8dy7wODkkh1rbkUOztze1rau7+byW8yKLZJEs6s75aGNsK+56tRySQ3LI/LBYLP25+IxfGRnuM35Gn+7RW0KLHJJDcqi7ObSAsbnmMffj5JAcam1HDi3T+dHrRQ7JoRWaQ+7PW0KLHJJDcqg756PN8a2o+/MmnvPOBR4ni2RRazuyaPb2prZ1dTef13Jd5JAckkPdOR9tjM216rkfJ4fkUGs7cmiZzo/5LAOh52qt31zgoe9sWf++ORzzkiSDU9b/otZ6yxyOe0vL+o+WUlad7oBa60O11kNzaLsdz06mzeMv1lo/P8djf6dl/Sc6M6TZLcb5qLXuqrUeWMBx/yNJ63mby3xakFLK6iQvatncOsdmqLX+zyQfm7JpKM2cpk1yqC1yaHofcqhNpZSSmXPhPZ3sY6mSRW2RRdP7kEXTLZv50WtyqC3LZp7JoRl9Lsb8ONHXPYvRz3Imh9oih6b3IYc6569b1h/dk1EsEjnUFjk0vQ85xILJorbIoul9yKI2rdTr1XKoLXJoeh9yaLplMz+A/uQzvi3LJsN9xp+0lO+NWankUFvk0PQ+5FCbXPOYNzkkh1r7kEPTLZv50WtyqC3LZp7JoRl9uj9vCZFDbZFD0/uQQ52zou7PS2RRm2TR9D5kEQsih9oih6b3IYfa5Fr1vMkhOdTahxyabtnMj/lQGG15+0rL+upSysYzHPP8lvX3zaWjWuvNSf5hyqaxJD84l2O77Gkt6387j2M/k2R8yvpTSinntD+kZat1Pu3oYl/PSrJmyvp/q7V+bY7Hts7ZF3RmSCyQHJJDnSSHGk9PcvGU9aNp/mIdpyaLZFEn9WMWmR/dJ4fMs05azByif8ghOdRJcmi6B1vW1/VkFEufHJJDnSSHWChZJIs6SRY1XK+eHzkkhzqpH3PI/ACWK5/xMryT+vHn0XSfHJJDnSSHGq55zI8ckkOd1I85ZH50nxwyzzqpH6+90n1ySA51khyazv15cyeLZFEnySIWQg7JoU6SQw3XqudHDsmhTurHHOrL+aEw2vJ2dJZtI6fauZRydpIntBz/hXn0d3XL+lXzOLZbzm1Zv2GuB9ZaDye5dcqmgSyN59QrrfPplHOpA36oZf3qeRz7XzN9rE8qpWxve0QslBySQ50khxqvaFn/q1rrvR1svx/JIlnUSf2YReZH98kh86yTFjOH6B9ySA51khya7oKW9bt7MoqlTw7JoU6SQyyULJJFnSSLGq5Xz48ckkOd1I85ZH4Ay5XPeBneSf3482i6Tw7JoU6SQw3XPOZHDsmhTurHHDI/uk8OmWed1I/XXuk+OSSHOkkOTef+vLmTRbKok2QRCyGH5FAnyaGGa9XzI4fkUCf1Yw715fxQGG15e3TL+tEkD5xm/8e1rF9faz0wj/6uaVm/fB7HdsvmlvWH53l86/5XtDGW5a51Pt3Txb5a5+J/m+uBE3P2qy2bl8JcXKnkkBzqpBWfQ6WUDUle2LL5PZ1ou8/JIlnUSf2YReZH98kh86yTFjOH6B9ySA51khya7l+0rH+2J6NY+uSQHOokOcRCySJZ1EkrPotcr14QOSSHOqkfc8j8AJYrn/EyvJP68efRdJ8ckkOdtOJzyDWPBZFDcqiT+jGHzI/uk0PmWSf147VXuk8OyaFOkkPTuT9v7mSRLOokWcRCyCE51EkrPodcq14QOSSHOqkfc6gv54fCaMvbi1rWr621Hj/N/pe1rN86616ndtsZ2uuF8Zb10Xke37r/UnhOi66Usj7JD7Rs/lIXu3xsy/pizsXzSynvK6XcWEp5qJQyXkq5b2L9T0opP1VKaQ18Tk0OyaGOWGE5dDr/LMnqKev3JPkvHWq7n8kiWdQRfZxF5kf3ySHzrCN6kEP0DzkkhzpCDk1XSvmXSX5syqajSf6/Hg1nqZNDcqgjVlgOuVbdebJIFnXECsui03G9ev7kkBzqiD7OIfMDWK58xsvwjujjn0fPxnWPzpJDcqgjVlgOnY5rHvMnh+RQR/RxDpkf3SeHzLOO6ONrr3SfHJJDHSGHpnN/3rzJIlnUESssi1yr7iw5JIc6YoXl0Om4Vj1/ckgOdUQf51Bfzg+F0ZapUsraJK9o2fyXZzistWLhnfPs9o6W9bNKKZvm2Uan7W5ZP2eex7fu/21tjGU5++kka6as70mXqutPfJPY+o3ifOdi6/6XzOPYC5O8LE0Ib0wynGTbxPpLk/xhkjtLKf/vxPuMU5BDk+RQZ6ykHDqd1vfUH9daj3ao7b4kiybJos7o1ywyP7pIDk0yzzpj0XKI/iGHJsmhzljROVRKGSulfFsp5cdLKZ9L8o6WXV5Xa72+F2NbyuTQJDnUGSsph1yr7iBZNEkWdcZKyqLTcb16HuTQJDnUGf2aQ+YHsOz4jJ8kwzujX38ePRvXPTpEDk2SQ52xknLodFzzmAc5NEkOdUa/5pD50UVyaJJ51hn9eu2VLpJDk+RQZ6zoHHJ/3sLJokmyqDNWUha5Vt0hcmiSHOqMlZRDp+Na9TzIoUlyqDP6NYf6cn4ojLZ8/VaSs6esP5zkj85wzMaW9fvn02GtdX+SQy2bN8ynjS64uWX9u+d6YCnl/CQ7Wjb3+vksulLKziS/1rL57bXW1mqQndI6Dx+ptR6YZxutc7fTr9tYkp9L8uVSyuUdbrufyKGGHGqTHGqUUq5IcmXL5ve02+4KIIsasqhNfZ5F5kd3yaGGedamHuQQ/UMONeRQm1ZaDpVSNpZS6tQlyf4kX0vy/iRPm7L7/iQ/VWv9nR4MdTmQQw051KaVlkNz5Fr13MmihixqkyxquF69IHKoIYfa1Oc5ZH4Ay5HP+IYMb1Of/zx6oVz3mBs51JBDbZJDDdc8FkQONeRQm/o8h8yP7pJDDfOsTX1+7ZXukkMNOdSmlZZD7s/rOFnUkEVtWmlZNEeuVc+NHGrIoTbJoYZr1QsihxpyqE19nkN9OT8URluGSinPT/KvWjb/Sq31wTMc2lqt+OACum89Zt0C2uikz7Wsv7CUsmbWPWf6F7Ns6/XzWVSllJEkH8n05/3NJP+ui932ah4eTXJ1kl9N8iNJnpzmrzY9Kclzk/xOZn4x85gkny6lXLCAMfY1OTSNHGrDCsuhM2mtVP25WuutHWi3b8miaWRRG1ZAFpkfXSKHpjHP2tCjHKIPyKFp5FAb5NAp3ZfkV5JcWGt9d68HsxTJoWnkUBtWWA65Vt1hsmgaWdSGFZZFZ+J69TzIoWnkUBtWQA6ZH8Cy4jN+GhnehhXw8+ipXPfoIDk0jRxqwwrLoTNxzWMe5NA0cqgNKyCHzI8ukUPTmGdtWAHXXukSOTSNHGqDHDol9+fNgSyaRha1YYVlkWvVHSSHppFDbVhhOXQmrlXPgxyaRg61YQXkUF/OD4XRlplSyhOS/MeWzZ9K8u/ncHhrcLdWp5yL1uBubXOx/VWaap4nbEzyxjMdVEo5L8lrZ3losJSyujNDWxb+KMl3Tlk/luTHF/DXkOajF/PwV5M8qtb6fbXWN9daP1lr/Uqt9dZa6z/WWj9Ra/1/klyQ5LeT1CnHnp3kL0opZQHj7EtyaAY51J6VkkOnNfGF9I+1bFbd+zRk0QyyqD39nkXmRxfIoRnMs/b0IodY5uTQDHKoPXJodtuT/EySV5VS1vd6MEuNHJpBDrVnpeSQa9UdJotmkEXtWSlZdFquV8+PHJpBDrWn33PI/ACWDZ/xM8jw9vT7z6NPcN2jg+TQDHKoPSslh07LNY/5kUMzyKH29HsOmR9dIIdmMM/a0+/XXukCOTSDHGqPHJqd+/POQBbNIIvas1KyyLXqDpJDM8ih9qyUHDot16rnRw7NIIfa0+851JfzQ2G0ZaSUcn6aiTg1LO9I8mO11jr7Uae1WMd0Ta11X5K3t2x+bSnl1ac6ppRybpK/SbLhVM12aHhLWinlN5L885bNr6u1/v0iD6Xr83Dim9fW6t2z7Xeo1vq6JP+65aEnJ/ln8+mzX8mhmeTQwq2kHJqD5yY5a8r6nv/d3v3HWpMX9B3/fJctIIJSi0AVdSn+wlBSFFMBTTcUDNSAsqAQmoYVtLbYJrVt0pSadGsbTNNo7R+NUotiKdBSBEREQMSVVuOvZlGoW0oqawVd5JdF9vey3/5x7tN77px75sycHzNzzrxeyflj5p4zZ57zfJ/33Od7J9+b5A17fo+ToUWrtGh7c2iR8bF/OrTKONvehDrEEdGhVTq0vRl36NNJHr30eEwWc0DXJfnXST529rwvSfIDSd5XSvn6Ec5zknRolQ5tb04dMle9X1q0Sou2N6cWdWC+uiMdWqVD25tDh4wP4Fi4xq/S8O1N6BrvHr0jokOrdGh7c+pQB+Y8OtKhVTq0vTl0yPjYPx1aZZxtb0Id4ojo0Cod2t6MO+T+vB1p0Sot2t6cWmSuen90aJUObW9OHerAXHVHOrRKh7Y3hw6d6vi4euwToJtSysOT/EKSL17afWuSp9daP3b5q1Z8prG9zcp8zdc0jzmGlyd5Zs5XZixJfqSU8rwsVkd9bxYrcX7R2fP+ds4vfh9O8qilY91Za11Z6bOUck3Xk6m13tLr7EdQSvl7Wax6veyHa63/quPrr+n6Xpd8HpMfh7XWf1tK+eYkz17a/dIkr93n+xwbHWqlQz3p0IqXNLZfW2ttriJNtGgDLeppZi06+PiYCx1qpUM9jdwhjpQOtdKhnubcoVrrfUluueRLNyV5Uynl+5P8yyR/52z/lyZ5VynlKbXW9w9zltOkQ610qKc5d6gLc9XraVErLepJi1aYr+5Ah1rpUE8z65C5amDSXONbucb3NLOfR/dm3uNyOtRKh3rSoRXmPDrQoVY61NPMOmTOY090qJUO9TSzuVf2RIda6VBPc+6Q+/N2o0WttKinObeoC3PVl9OhVjrUkw6tMFfdgQ610qGeZtahk5urtjDaESilfEGSdyX5yqXdH0/ytFrrB3sc6iTDXWu9u5RyXZK3JXn80pe+8eyxziey+MbhHUv7/mTNcz/U45RKj+cOrpTy3Ul+uLH7R2ut/6DHYXb5PI5lHP5gLv5H9htKKQ+tta4bIydNh9rpUD86dFEp5UuSPL2x+5XbHu+UaVE7Lepnbi0aaHycPB1qp0P9TKBDHCEdaqdD/ehQu1rr7Un+binlniTfd7b785L8h1LK1235G4aOng6106F+dKgzc9UNWtROi/rRoovMV3ejQ+10qJ+5dchcNTBlrvHtXOP7mcA1/ljGoXmPJTrUTof60aGLzHl0o0PtdKifuXXInMd+6FA7HepnAh3iCOlQOx3qR4fauT9vPS1qp0X9aFFn5qqX6FA7HepHhy4yV92NDrXToX7m1qFTnKu+auwToF0p5fOTvDPJX1za/aksVrL8Hz0P938b21/Y81wenNVwT2Ig11o/kuTJSV6R5J4OL/mlJE9Mcltj/617PrVJKaX8jSQ/losx/ckk3zvgaTTH4YNKKZ/b8xgPb2wfYhz+Rhb/1q64X5KvOcD7TJ4OdaND3ejQpa7Pxe/JfrvW+t93ON5J0qJutKibubbI+NiNDnVjnHUzkQ5xZHSoGx3qRod6+SdJ/nBp+wlJnjbSuYxKh7rRoW50qBdz1Uu0qBst6kaLLnV9zFe30qFudKibuXbI+ACmyDW+Gw3vZiLX+KndG7OOeY8zOtSNDnWjQ5e6PuY8WulQNzrUzVw7ZHzsRoe6Mc66mUiHODI61I0OdaNDvbg/b4kWdaNF3WhRL+aqz+hQNzrUjQ5d6vqYq26lQ93oUDdz7dCpjQ8Lo01YKeUhSd6e5OuWdn86yTNqre/d4pDN1S+/rOfrm8//ZK31U5c+cwS11ttqrX8ryVdlMSHyS0k+nOSOJH+a5OYkP5XFKqp/tdZ6S5LHNg7zW4Od8MBKKS/IItLL/+5fk+S7hlxBv9b6iVz8D2KSfGnPwzTHYp+VXTuptd6X5P80dvf6ZucU6FA/OtROh1aVUkqS72zstrp3gxb1o0Xt5t4i42M7OtSPcdY3m3gKAAARjElEQVRuKh3iuOhQPzrUTof6qbXekeTNjd3PGONcxqRD/ehQOx3qx1z1OS3qR4vaadEq89Wb6VA/OtRu7h0yPoApcY3vR8PbTeUaP6V7Y9qY91jQoX50qJ0OrTLnsZkO9aND7ebeIeNjOzrUj3HWbiod4rjoUD861E6H+nF/3jkt6keL2mlRP+aqF3SoHx1qp0OrzFVvpkP96FC7uXfolMbH1WOfAJc7+200b0vyDUu7P5PkmbXW39jysDc3tr+85+v/QmP7d7c8j4OqtX4oycvPHps8qbH962uOWS7bfyxKKc9N8uosVqm+4r8kedHZf9h62cPncXMWK0xe8eVZHZ9tmmOxz2v7uKOx3VzR9aTp0PZ0aJUOrfXUJI9e2r4ri2+qOaNF29OiVVp07hDj41Tp0PZ0aNUEO8QR0KHt6dAqHdraBxrbff/NHDUd2p4OrdKhrc16rjrRol1o0SotWst8dQsd2p4OrdKhc+aqgbG5xm/PNX7VBK/xU7k3ZpNZz3vo0PZ0aJUOrWXOo4UObU+HVunQOXMe3enQ9nRo1QQ7xBHQoe3p0Cod2tqs789LtGgXWrRKi7ZmrlqHtqJDq3RoLXPVLXRoezq0SofOncJc9VWbn8LQSimfk+StSb5xafftSb6l1vqrOxz6/Y3tx5dSHtTj9U/ZcLyjcraq6lMbu395jHM5pFLKs5O8LhcXQnxzkhfWWj87zlmtjJ1mINc6+6bm8RuOty8Pa2x//EDvMzk6NAwd0qEkL25sv7HW+sktj3VytGgYWqRFG95nFuNjHR0axlzG2UQ7xMTp0DB0SIc6uKex/YBRzmIEOjQMHdKhDmY7V51o0VC0SItivnotHRqGDulQm7mMD2BYrvHDmEvDJ3qNn/zPo8/Mdt5Dh4ahQzoUcx5r6dAwdEiHNrzPLMbHOjo0jLmMs4l2iInToWHokA51MNv78xItGooWaVEH5qp16KB0SIdirnotHRqGDulQmymPDwujTUwp5YFJ3pLk2qXddyZ5dq31Pbscu9b6R0l+Z2nX1bl4cdjk2sb2z+9yPhPw1CTXLG3/cq31gyOdy0GUUv5aFitX/pml3T+X5Pm11nvHOaskydsb29f2eO035eJF6KZa60d3PqOGUsrDsrqK6x/u+32mSIcGpUPjGb1DpZSHJrmusfuVfY9zqrRoUFo0ntFb1MHJj491dGhQJz/OJtwhJkyHBqVDbPKoxvYhvu+aHB0alA6x1pznqhMtGpgWzZj56vV0aFA6RJuTHx/AsFzjB3XyDZ/wNX7yP4+e87yHDg1Kh8YzeofMeaynQ4PSofGM3qEOTn58rKNDgzr5cTbhDjFhOjQoHWKTWd6fl2jRwLSItcxV69BAdGjGzFWvp0OD0iHaTHZ8WBhtQkop90/yxiRPW9p9V5Jvq7X+4p7e5k2N7e/seG5fneQvL+26Lck793ROY/lHje1XjHIWB1JKeXqSn05y/6Xd70zy3Frr3eOc1f/3jiR3LG0/6WyMdXF9Y7s5pvflBbnYyI8muflA7zUZOjQ4HRrPFDr015M8cGn7liTv3vJYJ0WLBqdF45lCizY56fGxjg4N7qTH2cQ7xETp0OB0iE2+ubE9icn9Q9KhwekQbWY5V51o0Qi0aN7MV19ChwanQ7Q56fEBDMs1fnAn3fCJX+OP4efRs5z30KHB6dB4ptAhcx6X0KHB6dB4ptChTU56fKyjQ4M76XE28Q4xUTo0OB1ik9ndn5do0Qi0iDbmqs/p0OHo0LyZq76EDg1Oh2gz2fFhYbSJKKVcneT1SZ65tPueJM+rtb5jj2/1miSfXdq+rpTyFR1e1xzEr6+13rm/0xpWKeVFSZ6+tOu9Waz8eBJKKX8lyc/k4jdI787im4C7xjmrc7XW25O8obG7OcZWlFK+Mslzlnbdm+S1ezy1K+/ziCTf39j9s7XWuu/3mhIdGpYOjWsiHXpxY/snTr0zXWjRsLRoXBNpUdv7nPT4WEeHhnXq42zqHWKadGhYOsQmpZRvSfLExu6fGeNchqJDw9Ih2sx1rjrRoqFpETFfvUKHhqVDtDn18QEMyzV+WKfe8Klf44/g59GznPfQoWHp0Lgm0iFzHg06NCwdGtdEOtT2Pic9PtbRoWGd+jibeoeYJh0alg6xyRzvz0u0aGhaRBtz1To0BB0i5qpX6NCwdIg2Ux8fFkabgFLK/bII6rcu7b43yfNrrW/d53vVWj+Y5KeWdt0/yatKKQ9c85KUUr41F3/jzd1J/tk+z2tXZxe+rs+9LsmPL+26N8mLa6337v3ERlBKeVKStyb5nKXd70nyrFrrHZe/ahQ3ZPHNyRXXl1Keve7JZ2P0J3Nxhc5X1lr/d8trvqqU8qw+J1VKeWQWn98jlnbfneQH+xzn2OjQ7nTonA5tVkr5S0m+dmnXfUle1fc4p0aLdqdF57To0tcaHxvo0O6Ms3NH1CEmRId2p0PndOhcKeWJpZTnbH7myuu+PsmrG7vfU2t9337ObHp0aHc6dE6Hzpmr7keLdqdF57RoM/PVq3Rodzp0TodWGR/AWFzjd6fh547oGn9D3KM3GTq0Ox06p0ObmfNYpUO706FzOnTpa42PDXRod8bZuSPqEBOiQ7vToXM6dM79ef1o0e606JwWnTNX3Z0O7U6HzunQZuaqV+nQ7nTonA6tOrXx0fkPw0H9RJLvaOx7WZKbSinX9DzWrR1WmvynWfwGmz97tv3kJO8qpXxXrfV/XnlSKeUBSf5mkh9qvP6Haq2/3+VkSimPyuXj7JGN7atb/qyfqbV+fMNbva+U8nNJfjrJr9da77vkXB6X5B8neWHjSy+rtd604fh7cejPo5TyhCQ/n+TBS7s/kOR7kzy8lNLndO+std7a5wV91Fp/r5Tyb5L8w6Xdbyil/P0k/67WeveVnaWUxyb591mM1Ss+kc3fQPz5JG8ppbwvyX9M8qazb15WlFIekuRFWazs/YjGl/9FrfX3OvyxjpkO6ZAOLey7Q+u8pLH9jlrrH2x5rFOiRVqkRQuHatFRjI+R6ZAOza5DyXDjo5Ty4CQPW/Pl5oTyw1re68NTmlzbMx3SIR26aF/j41FJ3lhKeX8WP0B7c5IP1Hr5b1kqpXxNku9J8tLGed15tu+U6ZAO6dBF+xof5qr70SIt0qKL9j0+msxXr9IhHdKhi2Y5PoCT5Bo/k4a7xp9zj97k6JAO6dCCe/TGo0M6pEML7s8bjw7p0Ow6lLg/b2J0SId06CL3541Di7RIiy5yj97wdEiHdOgi9+cNT4d0SIcumuX46KzW6jHyI0nd4+Paju95bZK7Gq+9L8lvJvnPSd6e5I8vOf7PJrlfjz/bLXv4M72qw/t8fOn5f5rkV7P4R/qaJO9sOY9/PvDf9UE/jyx+o9G+xtKNA3we90vytkve+6NZXIBen+S3zsbm8tfvSvJNHcd589h/kuS/ZTHB9uokbzp7j3vWfA6vGLsRA41NHdIhHTpAh9a85wOyuFFi+XjPHbMBU3nscexokRbdsMexdOMAn8cgLTqW8THmY4/jRocmPs4O/Xnk+Do01Pi4fk+fyTVj9+KAfxc6pEM6dJjP49suef6nz8bHW7K4AeL1Sd6V5NY1x789ydPG7sQAfxc6pEM6dJjP49pLnm+uev3npUVapEUHHB+N9zRfffnnokM6pEPGh4eHxwk+9thk1/iJN/zQn0eO7xrvHr2JPPY4bnRIh27Y41i6cYDPwz16E3nscdzokA7dsMexdOMAn4f78yby2OO40aGJj7NDfx45vg4NNT6u39Nncs3YvTjg34UO6ZAOHebzcH9ev78PLdIiLTrM53HtJc83V335Z6VDOqRDBxwfjfc0V33556JDOqRDxkfnx2UryTEDtdYbSynPSfKqJF94trskeeLZ4zKvS/LdtdbPHv4Md/LgJE/a8JxPJXlprfU/DXA+rFFr/Wwp5Tuy+M1Kz1/60sOTPGPNy/44yYtqrf91y7f9/CRP6fC825J8X631x7d8HzbQIR2agpE69JwkX7C0/bEsJvoZgRZp0RSM1CLjYyJ0yDiDsemQDs3YQ7J5fFzxa0m+p9b6Owc8n9nSIR2aMXPVE6JFWjRj5qsnQod0aMaMD+CkucZr+BS4R2/edEiHpsA9evOmQzo0Be7PmzcdMs5gbDqkQzPm/rwJ0SItmjFz1ROhQzo0Y+aqJ0KHdGjGjn58XDX2CTCeWuvbkjwuyY9lMVDX+bUkz6u1vrDWetsgJ9ffjyS5KYtVOdv8QZIfSPKYqf6jnJta62dqrS9I8u1ZjLV1PpnkR5M8rtb69o6HvznJy5P8SpI7Or7mfyV5WRa/4cR/Yg9Mh3RoCg7cocu8pLH96lrrPTscjx1pkRZNwUAtMj4mSoeMMxibDunQDLw7i9+K+7okH+74mtuTvCHJs5I82U1Xh6VDOjQD5qqPgBZp0UyZr54QHdKhGTE+gFlxjdfwKXCP3rzpkA5NgXv05k2HdGgK3J83bzpknMHYdEiHZsD9eUdAi7RoBsxVT5wO6dBMmaueEB3SoRk5qfFRaq1jnwMTUEq5fxarHn9ZkkdmsbrxR5LcVGv90Jjn1kcp5fOSPCHJo7NYqfOBWfwH5iNJfrvW+rsjnh4dlFIeneRrk3xRks9NcmuS30/yK7XWu3c47lVJviLJY5J8cZKH5nx8fCrJHyX5zVrrx3b6A7A1HWIqDtUhjoMWMRWHbJHxMW06BIxNh5iDUsojkjw2i3H+55I8KMk9ST6d5BNJ3p/kA0fwm31Okg5x6sxVHwctAsamQ8yB8QHMkWs8U+EevfnSIabCPXrzpUNMhfvz5kuHgLHpEHPg/rzp0yJOnbnq6dMhYGw6xBycyviwMBoAAAAAAAAAAAAAAAAAAAAAAAAwuqvGPgEAAAAAAAAAAAAAAAAAAAAAAAAAC6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADA6C6MBAAAAAAAAAAAAAAAAAAAAAAAAo7MwGgAAAAAAAAAAAAAAAAAAAAAAADC6/wfh0VgquWOTFwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 5), dpi=300)\n", + " configs = get_known_configs()\n", + " to_display = configs[\"Relative humidity\"], configs[\"RAM available\"]\n", + " for i, config in enumerate(to_display, start=1):\n", + " plot = figure.add_subplot(1, 2, i)\n", + " coros.append(plot_sensor(config, plot, {}))\n", + " await asyncio.gather(*coros)\n", + "\n", + "display(figure)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAE0YAAAUsCAYAAAC9bUPVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdd5h1Z1kv/u8dAqEEEnoRSIBIVUA6AiYRPDSlKr0EIgiCla6IAVEPR1DPQQRF6aKIQEDqT8HQu1IUBUKJEECQloSSEHL//lj7lXnX7Cl7z57Z8877+VzXXGQ9az1l773WzsXMN/dT3R0AAAAAAAAAAAAAAAAAAAAAAACAZTpk2QsAAAAAAAAAAAAAAAAAAAAAAAAAUBgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAYKSqjq6qHv2csOx17aSqOmX0+k9Z9pr2Iu/zga2qThp/VxwI87vvAAAAAAAAAAAObgdq7gUAAAAAODgojAYAAAAAAAAAAAAAAAAAAAAAAAAs3aHLXgAAAACwO1XV0Uk+M0OXs5OckeSbST6V5F+SvCfJG7r7nEWvDwAAAAAAAAAAAFaqqsqQeztqdOr7SY7q7tN3flUAAAAAAMzikGUvAAAAANgzDkty6STHJLltkscnOTnJ6VX1tKo6fJmL2+uq6gVV1St+PrvsNQF7S1V9dvQ984JlrwkAAAAAAAAAYOQ2WV0ULUnOl+SEnV0KLEZVHTfK7XRVHbfE9cgrwgJ5pgAAAGA1hdEAAACA7XapJI9N8q9VdfNlLwYAAAAAAAAAAIA968R1zj24qmrHVgIAAAAAwFwOXfYCAAAAgAPKt5Kcusa5Cye5RJJLrnH+qCRvrKpju/tD27E4AAAAAAAAAAAADk5VdYkkd1nnkqsmOS7JP+3IggAAAAAAmIvCaAAAAMAsPtDdx613QVVdMcnPJHlUkquNTl8syd9V1bW6+3vbs0QWYaPPGUi6+6QkJy15GTPzfAMAAAAAAAAAe9T9khw2auskteL4xCiMtnQHau4GAAAAANgZhyx7AQAAAMDe0t2f7+5nJ7lekldOueRqSX5hZ1cFAAAAAAAAAADAHvfg0fEnszrDdreqOmKH1gMAAAAAwBwURgMAAAC2RXd/K8l9k/z7lNP33+HlAAAAAAAAAAAAsEdV1Y0ybOa50ouSvHDUdqEk99mRRQEAAAAAMBeF0QAAAIBt093fTfL7U07dqKousdPrAQAAAAAAAAAAYE86cXTcSV6c5A1JvrzBtQAAAAAA7CKHLnsBAAAAwJ73xilthyS5RpJ3zztoVR2S5MeSHJ3k0kkukeSMJF9JcmqSf+nu8+Ydf5Gq6oeSXDPDWo/IsOvoGUm+luQ/k7x/UkSObVBVF0pykySXT3KZJIcn+WqGe+XD3f2pJS5vU6rq0kluluSqGdb/zQyBzfd292nLXNt2q6ojMrz2H87w/Hw3yelJ3j3La6+qKyS5cYbn8PAMz9/nk7y1u89Y8LLnUlWHJblFkisnuVyS7yf5ryQfTfKh7u4lLg8AAAAAAAAAYFea5IPuPWp+275sSVW9NMmvrjh3w6q6Xnd/eJvXdf4MuaVrJ7nkpPm/kvzzLHNX1cUy5F6ukeTIJN9K8qUk7+zuzy900avnvmSSmya5WpKLZcgtfSG7NHdVVVdMcr0MmcJLZyiQ95UkX0zynp3ICVXVDye5YZIfSnJYhqzaF5K8o7u/vt3z70VV9SNJjsmQ/7tkkm9n+Fw/myF/+b1tnt+zPP+8u+WZvF6SK2bIDp6T5Ivd/eJN9pcB3gZVdYEkN8rwPFwqw/flGRlyse+dYZxjMjyb++6xs5P8d4Z86Hu6+zsLXjoAAAA7RGE0AAAAYFt191eq6owMQYqVLjXPeFV1qySPSPJTGYqhreVrVfX6JL/f3R+bZ655VdWlktw1yW2SHJvksht0Oaeq3pPkT5K8YrMF3arqs0mOWuP0UVW1mSJKx3f3KVPGPiXD2vd5a3cft8Y6PprkR1Y0fSXJD20lbFRV907y0lHzI7r7TzfZ/5Ak901yvyQ/keSC61z7mSR/m+Tp3f3f8614e1TVcUl+I8mtMxQUnHbNx5L8XpKXzlI4q6pOSPL8UfNVuvuzc6xzPO+Tu/ukDfqclOS3V7Z1d604f+MkT0xyh6zxe8yqemuSx3f3e9aZ52eSPC7JjyepKZecU1WvSvLY7v7P9dY862uYYZyjk5yU4Xtj/F25z5eq6jlJntHdZ806x2i+U7KJ53uyrs+sM9QDq+qBG8237z2ZBPtOzxAu2+eU7j5+w0Wvo6r+b5JfHjVff7vDywAAAAAAAADArvGzGYrVrPTC0T//6uj8g5P8yjyTTTI9/zRq/p8c1mQDv99Mcv8kF11jjE8keep6hXmq6roZ8jN3ylAwZto1707ymO5+52yvYn1VdWx+kFs63xrX/HOSZyf5y1k3/FtU7mYy1mWS/FqSn0lynXUuPbeq3pvkWUleNuvGq+tlpCZ5tQcm+fXsn6Vb6fuT3M4T18s7rZjvpIzeo5F/qtrwLXthd5+w0UWbsZ15xTXmu26G5/a2Sa6wzqVnVdU/JnnaZt7X0RzH5QB/ljeRw9vWZ3mN8XbDM3mRJL+U5CEZNqSdZupndqBngDe6r2cxZY0bfqdslE2tquskeWySuye5yJQhXphk3cJoVXWVDN+3d8jan2+SfLeq3p7kj7r7DeuNCQAAwO4z9T+mBAAAAFiwaUV81ir+M1VVXX1S6OxtSe6Z9YuiZXL+fkk+WlV/UVVrFsZapMnuol9M8udJ7pGNAxFJcoEMxbv+Nsm/Tv7ofyAZBxguneSOWxzzhNHx2Un+ejMdq+p2ST6a5EVJ/lfWKYo2cZUMhbM+XVVzhR0XraoOq6rnZgin/FTW/z3etZO8JMkbJ2GeA1oNfifJezIEwdbb3OHYJO+qqkdPGeeIqnpFktckuUWmF0VLhufvnkk+VlW32dLi5zC55/4tQzByve/Fy2UonvZvVXXDHVjawk1293zJqPm4qrrWvGNOdnx+wKj53YqiAQAAAAAAAMBB5cTR8beT/N2+g+7+UJKPjK65X1VNLVC0FVV1tyQfS/KLWaOQ0sTVk7yoqv52vI5JfuZJSf45yc9ljUJKEzdP8vaq+o2trfx/5j5fVf1JklMyZK+mFlKauEGS5yZ526RIzY6qqgtU1VOSfDrJ47N+AaZkyCHdIsOGnR+eFKtaxDqumOQdSZ6XtYuiJcN7eesk766q313E3HtRVV2+qv4qyYeSPCjrF0VLhk0a75LhfT25qjbKlm52HZ7l2efcLc/kTTN8dr+f9YtmTet7MGaAd0xVPTHDs/2ATC+KtlH/i03u648neWQ2/nwvmCGD+/qqentVXXnWOQEAAFgehdEAAACAnXDklLYzNtu5qm6dYfev288x9yEZgm9vrarNBBS26sezfiGnjVwryXuWUaBpC16S5HujtgfNO9gkKDZ+/Sd399c30ffRSV6XoVjYrC6a5I8nhfS28hluyaSI3xuS/PyMXf9XhvDGegGmA8FzMuyOudnfXVaSP6iqh/5PQ9WRSd6c5G4zzHuRJK+pqhvP0GdLJgHHP05y4Rm6XTnD99kBWRwtw66YYw/bwnj3zup/xzx7C+MBAAAAAAAAAAeQqjomQ0GalU7u7jNHbS8cHV8iQzGlRa7lfhkKsh0xQ7efy1BQa98YlaFA0ZOzfiGj/aZO8rtV9cgZ5l09yDD3S5I8Ysaut8yQZ5mpANFWTIpf/X9JfitzFNfJUMDsnVX1M1tcx1UzbAB58xm7/kZVPXUrc+9FVXW9JO9Lcp+svRHmeu6cIX959S2uw7M8+5y75Zn8iQzF4OYtgHUwZoB3xKSg2e9kzve3qo5K8s4M9/X55xjilkneV1U3m2d+AAAAdt7S/gNPAAAA4OBQVVfL9KI/n95k/59J8oqs/iP2OUnekqFg2ueSfDPDzn9HJ/nJJLcaXX+TJCdX1U9097iI13b5foad/v4tyX8k+WqGgnCV5GJJfjjJzTLseLeyCNThSf6mqn6suz+3zvgfS/KNyT9fOcnFV5z73uT8Rs7axDXr6u4vV9XrM4SK9rlDVV2mu788x5APyOqiWM+bduFKVfW/kzxuyqmvJfmHJB9M8uUMO8IemWE3wtslucbo+hMzvK+PnmnVi/O8JMevOP54hkJp/5HhtRyR5MeS3D2rdyP8iSS/luTp27/MxauqX0ny0BVNpyX5+yT/muG1H5nkphlCZBcbdf/jqnpThu+Dv0mysnDYB5O8MclnkpyZ4X37ySR3yv732oWSPLeqbtTd5y7oZU1VVb+eZNrunmdP1vq2JF/IEBK7Sobna9+OshdJcnJW7Gy8Tc5J8uEVx9fO/t/FX0/yn7MM2N3/VlWnJDluRfMDquoJ3f3tOdb48NHxV5O8fI5xAAAAAAAAAIAD04OzuoDSuAhakvxVkv+T/QsUnZjkZQtax42S/N6KtXwjyeszFM36coZcyrWS3CNDxm2l+1TVyd398gx5khNXnDstyWsz5Ge+miE/c5PJOOP8zNOq6rXd/dk5X8OjktxrxfGZSV6d5P1J/msy9zUz5JauNOp7pSRvqarrd/c3so0mmya+c7KWsX9N8tYMmb1967hMhsJld8iweeY+hyd5eVXdors/OMdSLpoh1/VDk+NO8q4k/5ghU3NWkktnyAfeNckFR/2fUFV/393vXWP8L+UH2Z3Dk1xtdP5T2Tj/N1O2ZwPbmlesqhsl+acMr3Wl85K8PcN7+5nJGi6U5IpJjk1y6+z/XP9whg1Gb9jd39zEmsY8yzM+y7vombxckldm/2ftfRkKtp2W4X24fIYc3M9tYryDIgO8Qx6S/Qv1nZUh1/vODPfkIRme6eMzvO/7mRRFe29WZ2aT4TN+Z4as7deTXCDD5/zjGTbkPmzFtZdN8rqqukF3n7a1lwQAAMB2q+5e9hoAAACAXaiqjs4QIlnprd193IzjPDbJ00bNX09yqe4+b4O+V8kQKjhyRfO5Sf4oyR9091fW6Xv9JH+R/YsjJckfdvejNpj36Kx+7Q/q7hes12/S9xNJPppht723bCZYM/mD/e8nuffo1Ou6+6c36j8Z4wVJHrii6bTuPnozfdcY75QMoaF91v3sq+pOGYIzKz2qu/9wjrk/kSEwss/nkxy13v1SVXfNEGhZ6etJHp/kRd393TX6VYadX5+TIWyz0p27+zUzLn8mU97n7+YHoZwvJfml7p5a/KqqDk/yrAyF5Fb6RpIrdPd3Npj7hCTPHzVfZZ4wVVWNf8n45O4+aYM+JyX57VHz2RlCKN/OEM56bndPC7lcNkPBxFuMTv15hnDLMybHn07y0O5+8xpruFGS12X1Z3+f7v7r9da/1mvo7g13Kq2qayT5UFaHHd8wWe/n1+h31yTPzg/CPd/JELSbdf5TMsPzvaLfZ5MctaLphd19wkb9poxz96wu6nZid29YAHE0zg2TfGDU/PTufsysawIAAAAAAAAADjxVdb4MhZ+usKL5C0muNC1rVFWvy1CIZ5/zklx11uIoVXVchgJOK+3LvSTJM5M8aVpRoao6LEO25RGjUx/PkAN6d4YCMRvlZy6XIT/z46NTf97dv7CJ13BSVmd3VmaXnp/k19d4DYdk2LzxqVmdf3lBdz9onvk3k3uZ9H1VhszXSu+arHetImP7ijf9Voa1r5zrs0mu291nbjDvOCO18v16b5Jf7O5/XqPv0Rk+rxuMTr2pu2+33ryT/sdl9T13fHefslHf7bANecWLZ8iKjsd4fpKTunvNAm+TzXufleS2o1Ov7O67bzDvcfEsb+lZnoyzW57J7+cHRfI+kuRh3f3uNfpecFqudC9kgBf5fTFPZnCNbOrKz+Y5SZ7Y3V9do/9+n01VXSDJO5LceHTpa5M8trv/fZ21XC7JHyS53+jU+5PcfNozCQAAwO5xyMaXAAAAAMynqi6f5NFTTv31RkXRJv4q+xdF+3aS23b3Y9cripYk3f2hDEGRfxid+qWqGu9wt0g37u67d/erNrvbYHef1t33SXLS6NQdqmraDnq70esz7Nq20gmzDlJVt8j+RdGSIUixXlG0y2R1iOKTGYIxf75WUbQk6cGrMuzyOC5G9fuTwmk7aV+46NNJbrZWUbQk6e6zMrzHbxqdOjLDTo4Hon1F0W7T3c9ZK3TS3f+V5Kcz7MC50v2SPGXyz/+WIbgytSjaZJwPZPp7talA1xY8O6uDZH+b5KfXKoqWJJN79dj84HVfaK1rd7mTs/p5e/gc44z7dJI/m2tFAAAAAAAAAMCB6PbZvyhakrxknazRC0fHh2SOjNMa9hVS+pXu/uVpRYiSpLvP7u5HZnXm5xpJ/n6yprOS/OQG+ZkvZcjPjHN096qqeTMl+/Is/7u7H7zOazivu5+R5OcybHS60glV9RNzzr+hqnpoVhdg+tMkt1yvAFOSdPc3Jpuqnjg6dXSSX5xjOfver9cmOW6tomiTuT+b5KeyOmP3U1V15Tnm3muelf2Lon0/yf0m9+GaRdGSpLs/leG7YJwhvFtV3XSOtXiWB5t6lnfZM7mv8NY7k9xqraJok7nXypUerBng7bbvs3lUdz98raJoydTP5qSsLor2+O7+mfWKok3G+lJ33z/Jk0enbpzkZzdeNgAAAMukMBoAAACwLSa78L0xyaVHp76dYWe0jfr/VJKbj5of3N1v2ewauvucDIGN/17RfP4kv77ZMWa12SDEGp6SYReyfSrJg7e2op3R3edm2CFvpR+tqhvOONS0glTjwNLYryQ5YsXxt5Pcbr0CU2Pd/bkk9xo1XzvJnTY7xgJ9L8k9NrMTbXd3pt/P490vDyS/ul4gaZ9JWOvpo+YLJ7lIhh0v79Hd48Jp08Z5R4bvqpWOr6px4bKFqKofTXL8qPnUJA/YTMHI7t63o+gBaxLyGxcwu1FV3WizY1TVEVm9w+Y/dPepW10fAAAAAAAAAHDAGBfTSZIXrXP9q5OMCwQ9qKoW9d/YvbS7/98mr/2tKW2Xmfzvr2xUUChJuvvrSZ4xar5Yhg1F53VKdz9hMxd292uTPHXKqV/ewvxrqqpDk/zGqPmN3f2ISY5qU7r7+Un+YtT8a1V12LTrN/DZDAW81ty8c8W8X8vq4jyHZCiYdtCqqmskueeo+Te7+682O8bk8/+FJOMiSY+fc1me5cG6z/IufSa/meSe3X3GHH0P2gzwDnlFd//hLB2q6uJJfmnU/Jzuftos43T3SVm90fa83w8AAADsEIXRAAAAgIWoqgtW1Q9V1R2r6s+TfCTJdadc+pBNFqx63Oj47d39slnXNQkp/N9R811nHWcnTIIgLx4133IZa5nT86a0nbDZzlV14ST3GDW/bbKj41p9Ds/qnQGf0d2f3uy8+3T3O5O8edS8jHvlpd39wc1e3N0fSzLebXTWgnS7xSeyOuC0nles0f7iyfuyWX83Oj40yY/O0H8WD5vS9qjuPnuzA3T3mzLsKnog+/Mk54zaHj5D/wdmKIS30nO2tCIAAAAAAAAA4IBRVZdJcsdR8z9397+t1WeSzxhn0I5KcusFLOn7WV0gaE3d/f4k/znl1Mez8UaSK41zL0lygxn6j81a1OxpScZ5wDtX1eW3sIa13CvD57VPZ3XBnM16yqT/PpfN6o1cN+PJMxZS+psM98pKB2rWa1Eek/3/O9fPZPWGmRvq7u8l+b1R8+3n2CDTs/wDGz3Lu/GZ/MPuPn3ONWzJHsgAb6fzkjx6jn6PSHL4iuOzsjpfvllPGR1fv6qOnnMsAAAAdoDCaAAAAMAsjq2qnvaT5DsZQhGvTfKQrC5Y8+0k9+3ul240SVVdIslPjppnKZY09rrR8VFVddTUK5fvk6PjG1TV+ZeykhlNClG9b9R8nxl27bt7kouO2jYKBt0myZGjtr/c5HzTjO+VY7cw1ryeO0ef8ft+9UUsZAmeP+NOkZ/OsMPj2Kz3wL9MabvGjGNs1u1Hx1/M6vtuM/5sAWtZmu7+cpKXj5rvVVXj53ktvzA6Pj0HfrE4AAAAAAAAAGDzHphknKt64Sb6vWhK24lbX07+sbtPm7HPh6a0zZqf+VSSM0bN8+Ze3tPdH52lQ3d/N6sLAR2aIde1aD87Oj6lu0+dZ6Du/lyS8WudNSv2rSQb5iFH8349qzOC25VT2vWqqpLcbdT8gu4eF4/brNePjg9LctMZx/As/8BGz/JueyY70zf43UkHbAZ4m72luz87R7/xPfby7h4/J5v1riTfGLUtIyMMAADAJimMBgAAAGy3MzMUNbvmZoqiTdwqSY3a3rWFNXxmStuPbWG8Tauqw6vqDlX1+Kp6UVW9rqreXlX/XFUfGv8k+ZPREIdl2PnuQDEuZHaJJHfaZN8HjY7PyurCSWPjUMLpc4SSVhrfK0fPUKhpEb6T1UXONuNTo+PzVdXhU6/c3d42R5/xbpvfTvLBGcf47JS2hX/uk52KrzJqfvWcQb43ZQhXHsjG33cXTvKAjTpV1bFJrj1qfm53n7uohQEAAAAAAAAAu96DR8fnJvnrjTp197uyunDNXSabeW7FPLmXaTmnty9gnHlzLyfP2e+VU9puNudYU00KaN1q1LyVTGGyOis2a6bwPd19zhzzjrNeR8wxxl5x3SQXH7XN/bl299eyeqPNWT9Xz/L+pj7Lu/SZPLW7P7/FNeznIMwAb5d/mrVDVV08yY+Omrfy/XBeVj9jO5IlBwAAYD6HLnsBAAAAwJ73gSTPnOzmtlm3mNL2iqra9O55m3CpBY61SlXdMMljMhQFu9AWhzsyyULDGtvor5P8YfZ/zSdkgwJnVXVUkuNGzX/b3RsVfhrfKxefhEvmNa2Y2KWyepe47XJad39vjn7jMFcyBObO2uJ6dto8u0WeOTo+bY4CWeMxku0JHN5wStusRdySJN19blV9JMnNt7ak5enu91TVB7P/+/KwJP9vg64PHx2fm6EAJwAAAAAAAABwEKiqWyS55qj5Dd39lU0O8aIkv7Pi+LAk903yzC0saxG5l0WNM2/uZa4cS5KPJvlekvOvaJuWk9mKa2XYpHOlB1bVT29hzCuPjmfNFI4L7G3WOOt1MBdGm5YVfWZVnb2FMS88Op71c/Usb+5Z3o3P5D9vYe79HMQZ4O0yz2dz8ySHjNqeUFWP3MI6jhkdb2uWHAAAgK1RGA0AAACYxbcyPaxx/gy79l1+yrnjk7y/qk7o7g135Jy44pS2626y72ZdcsHjJUmq6vxJ/ihD4Z7xH+TndcAEn7r7m1X1qiT3WdF826q6fHd/cZ2uJySpUdvzNzHl+F65cJLrbaLfLC6Z+UJK8/janP2mFVM7/5S23e7rc/QZv/aZx+ju7w0bWO5nO96/y0xp+/gWxvuPHMCF0Sb+JPs/69eqquO6+5RpF1fVZZLcddT8mu4+fZvWBwAAAAAAAADsPidOaXvhDP1fnOQp2T+vdGK2VhhtEbmXRY0zb+5lrhxLd59dVZ9N8sMrmqflZLZiWqbwimu0z2vWTOGisl4HYs5rUaZ9fuOih1s16+fqWd7cs7wbn8kvb3XCgz0DvI3m+Wym3UtX3epCRrYlSw4AAMBiLOr/mAMAAAAHhw909/Wn/Fynu6+Q4Q/EJ2Qo1rPSBZK8uKp+ZpPz7MQfmre6g9sqk0DEy5M8Iov9vcuBFnwaFzQ7X5L7r3VxDRWpHjBq/mR3v2MTc413HNwOC79X1jEtIHXQ6O5FvP7d/B4eOaVtvAPsLLbSd7f4myRfHbU9bJ3rT8zw75SVnr3QFQEAAAAAAAAAu1ZVHZ7kHqPmryd57WbH6O7Tkpwyar5eVd1wC0tbSGZlQfmZeS0yxzItJ7MVuzFTuJtzSgeKPfu5HgTP8m787M7YymQywNtqns9mN95jAAAA7CCF0QAAAICF6e6vdfcLk1w/Q7Gblc6X5CVVdfQmhrr4gpe2Ux6X5M5T2k9P8qdJ7pfk5kmulCEscsHurpU/SY7fsdVunzcnOW3U9qB1rj82q3dxGxdXW6WqLpzksNmWBkt10Slt39rCeFvpuyt093eT/OWo+W5VddnxtVV1SJKHjpo/meE7BwAAAAAAAAA4ONwryUVGbS/r7rNnHOeFU9pOnG9Je8YicyzTcjJbcaBmClmfz3V77MSzvBs/u3O32F8GePvM89nsxnsMAACAHXToshcAAAAA7D3dfXZV3T/JZbP/H/kvlqEAzq03GOI7o+NvdPeu/gN3VV0myRNGzecmeUySP+nuzf5R/4Dffay7u6pemORJK5qvWVU36+73TOkyLpr2/SQv2sRU301yXvYv/ioagZ8AACAASURBVH9yd991pgXDzjlzSts4qDuLrfTdTf40yaPzg2f5/BmCxr83uu72SY4etf1Zd/e2rg4AAAAAAAAA2E2mFS97WFU9bAFj37uqHtXd4/zaweIiSc7YQt+VpuVktmLaZ3KX7n71gudhZ037XC/e3d/Y8ZXsLTvxLO+pZ1IGeFeado9dv7s/vOMrAQAAYCkO2fgSAAAAgNlNQgAPyOpwxU9W1T036P7fo+Mjq+rIhS1ue9wpyYVHbY/r7j+eIRCRJJdY4JqW6QVJxsWKThhfVFWHJ7n7qPn/6+7TN5qgu89LMg5AXWXzS2QRqur8y17DAWRaYO+ILYy3lb67RnefluS1o+aHVtX499cPHx1/N8N3DQAAAAAAAABwEKiqaye52TZOcWSSu23j+LvdInMsiy5sNc4UJrJie8G0z/XonV7EHrQTz/JeeyZlgKdbZj50r91jAAAAzEhhNAAAAGDbdPfnkzxpyqnf26CY0n9NabvuYla1bX5qdPz1JH8yxzhXXcBalq67P5PklFHzvarqgqO2e2T1DoPPn2Gq8b1y9ao6bIb+B7PvTWmbJ8Ryya0u5CDy5Slt19jCeNfcQt/dZvx9eVSS2+87qKr9jif+tru/ut0LAwAAAAAAAAB2jRP3yBy71dXn6VRVF8jqYlbTcjJbcSBmCtmYz3V77MSzvNc+u72UAV5UNjRZbqG3vXaPAQAAMCOF0QAAAIDt9uwknx61XTXrB8jeN6VtXBBnt7nS6Pi93X3OHOPcfBGL2SXGBc6OSHLXUdsJo+OvJXnNDHOM75ULJTluhv4HszOmtF1sjnGO2epCDiIfnNJ2w3kGqqpDs7dCPv+Y5OOjtoev+OeHZvXvs5+9rSsCAAAAAAAAAHaNyUac9x81n5Pkw1v8+dpozOOqajcUtlmGuXIsGTIs46I703IyW/GRJN8dtd1uwXOw8w7ErOiBYCee5b32TO6lDPBCsqFVdcUk482Qd9J7p7T5fgAAADiIKIwGAAAAbKtJMOApU079ZlUdtka3f5jSds9JIaDd6lKj43FgbkNVdakkx885/7mj4/PNOc4ivSKrAxYP2vcPVXW1JLcanf+r7j57hjmm3Sv3m6H/wewbU9rmCXUeu9WFHCy6+8tJPjNqvlNVzfN72tsmucjWVzWTbfue6e5O8qej5ttX1VGTYPO4mOaHuvs9i5ofAAAAAAAAANj17pTk0qO2V3X39bfyk+SJozErKzJOB5m7zNnvblPaFprr6O7vJnnHqPnyVXXrRc6zi41zO8lyM4KLyhG9K8m3Rm13rKqLzzkeg21/lvfgM7mXMsB7Ihva3aclOXXUfJOquvoy1gMAAMDOUxgNAAAA2AkvSfKJUdsVkzxk2sXdfXpW7zJ3lSQnLHxlizMO54xDEpvxiMy/u9qZo+PD5xxnYbr720leNmq+dVXt21nvhCndnj/jNG/K6l0H711V15hxnIPRx6e03WSWAarqfEkevJjlHDTeMDq+QpI7zjHO1O/Pbbbd3zMvSHLWiuNDkjw0yV2TXHZ07bMXPDcAAAAAAAAAsLuNN1VLhlzaVr0syTmjthPm3OjuQHfzqrrOLB0mm6Pef9R8bpJ/XNiqfuDVU9pO2oZ5dqNxbidZbkZwITmiyca7bxw1XzTJo+YZj/+xU8/yXnom91IG+PTsn8NLZsyGTjx0C2tYlPE9dkiSJy1jIQAAAOy8g/EXtAAAAMAO6+7vJ/mdKaeeUFVrhQB+d0rb03fxTl9fHB3/eFVdZLOdJyGUJ2xh/q+Pjo/cJbsmjgudHZLkAZPg4ANG5z7c3f8yy+Dd/d9J/nzUfL4kL62qC8200oNMd385yedHzfeYFDvbrEdkvp0ED2bPmdL29Kq6wGYHqKrbJLnz4pa0aePvmYV+9t19RpIXj5pPTPJLo7Yzkrx0kXMDAAAAAAAAALtXVf1Qkv81av5KVhdUmll3fy2rN7q7YpLbbnXsA9T/nfH6x2Z4v1Z6dXeP83SL8JdJvjRqu2VVPW4b5tptxrmdZLm5rUXmFadlRR9bVbecczwGO/Es76Vncs9kgLv7vCQfGjXfsaqO2OwYVXWnJD8xz/wL9oys3jz5vlV1z2UsBgAAgJ2lMBoAAACwU16a5D9GbVdI8rBpF3f3q5J8YNR8RJI3zLqT3T5VddGqekxV3W+e/ht4++j48CS/vZmOVXV0ktckOWwL8390StsdtjDeQnT3u7P6cz8hya2TXHnU/rw5p/n9rN6t7wZJXjVvMKSqjqqqZ1bVj8y5pgPFONR55SS/upmOVXXrJP9n4Sva47r7o0n+adR89STP38xOw1X1w1ldPGynjL9nfqSqrrTgOf5kdHzZJOOQ40u6e7yjJQAAAAAAAACwdz0ow2aJK72su89d0PgvmdJ24oLGPtDcuqqeupkLq+r2SX5ryqn/t9glDbr7O5leROv3quqR845bVberqj+df2U74nNJvjlqW2Y+cGF5xclmqq8YNZ8/Q/5vrsJMVXVYVT20qn5tnv57xLY/y3vsmdxrGeBxNvRCSTZ7P1w3qzdFXopJYb5nTTn1vKq6+zxjVtX5quqeVTXt3gUAAGAXURgNAAAA2BGTHciePOXU46vqwmt0u3eSr43arprkvVX1m5vZvayqDqmq46vqOUn+M0Mhp8vNsPTNekWS80Ztj6mq36mqQ9dZ372TvDs/2L3xjDnnf8+U+Z9RVXeuqvPPOeaijAMSx2T1boTnJPmreQbv7i8leWCSHp26bZIPVtX91vsM9qmqi0zCDq9McmqSRya54DxrOoD8xZS2p1XVL1RVTetQVRec7Oj4hgxBnvFufGzsF7P6fbtPktdMdjieqqrukuRt+cF32He2Z3lretfo+JAkL6+qGy1qgu7+WFYXjht7zqLmAwAAAAAAAAB2t0mG5UFTTk0rZjavv8/qolN3qqpLL3COA8G+PMtvVtVz18rnTTJ5v5rklRkKWK30gu5+2zau8VlJXj1qOyTJM6vqVVV1vc0MUlVXqarHVdVHMuSg5irAtVO6uzPkDFe6TVX9flVdZglLWnRe8ReSfGbUdqkkb66qP6iqTWU+q+qmVfWMJJ9N8mdJrjbHWvaCnXyW98ozudcywC9I8v1R2yOr6slrvZ5JwbATk7wjySUyZHLPmWPuRXtikveN2i6c5O+q6i+qalPPeVX9SFU9JcknkvxNkk3dmwAAACzPhv9BKAAAAMAC/W2GP1BfZ0XbZTMUCXr6+OLuPrWq7pHk9UkusOLURTLsXPaEqnpHkncm+WKSb2T4Y/eRSa6U5AaTnyMX/kpWr/UTVfWSJA8YnXpikhOq6u+SfCTJWRkCA9dIcqfsH7z5dpLHJXn2HPN/saremP13iLtskpOTnFNVn0vyrawuHvbz3f2BWeeb0YuT/F7237X1WqNr/r67vzrvBN39iqp6UpLfGZ26ymT+p1fVKUk+kOQrGd6Li2W4N45JcqMk183Wduw74HT3+6rq1UnuvKL5fBkKTz2iql6VoUjcOUkuneSGGe6xlWG6X41CVTPp7v+oqt9M8ozRqTsmObWq3pBhB8ovZtip8aoZPqMfXXHt6UlenuH93ymvzlCs8hIr2m6a5P1VdWaSL2RKobzuvv6M8zwryfFrnHtHd0/bHRMAAAAAAAAA2JuOzw8Kzuzzye5+76Im6O6zq+rlSX5+RfP5k9wvyR8tap4DwJMybDyaDO/FParq5CTvT/LlDFmraya5e5IrT+l/WpJf284FdndX1f0yFO4ZF7W5S5K7VNWHk5yS5JNJ9mXSjsxQaOu6GTJQ43vqQPC8JLcbtT0+w+a0X8yQ6zl3dP413f2kRS9k0XnF7v5qVd0pw+e6sojXoUkeneSXq+rdGTaV/HySr2fI+h2Z5PJJfixDBvBgK2a4lh17lvfKM7nXMsDd/YWqemZW5wuflOS+VfWKJP8+WfMlM2QT75j974enZdjg+qhZX88idfd3q+quGYrHXWl0+sQMn88Hkrw1Q1HEr2XIwR6ZIet6/QzfD2tuWgsAAMDupDAaAAAAsGO6+7yqenKGAmkrPbaqnt3d35rS581Vdaskf5fVf9C+SJLbTn52g19OcpMMgZGVrpiNixd9L8nPZQgZzOsxSY7N8L6sdIGsvfPh4VuYb1NWBDbuuM5lz1vAPE+tqi9kKKp0wdHpyya55+SH/T0syY2TXGHU/qPZvxDXNH/Q3X9WVQqjzai7/7CqLpXkCaNTF0xy18nPWr6VITT209u0vKkmAaNfS/LCKacvmiHstQgnJ/lcVn/nJ3OExgAAAAAAAACAA9qJU9pesg3zvCT7F0bbN/fBVBjt6RmKx9xjcnyxDEWCxoWCpvl8kp/s7m9s09r+R3efNckUPj9DYaex62V1gaa94BVJ3pzk1lPOXX7yM/ahbVzPQvOK3f2vVXXjJK9M8iNTxjx28sPGdvRZ3kPP5F7LAP9mkttk9fN0tSSP3WAtL5v0v/cG1+2ISaG3m2RY10+MTp8vwwavN93xhQEAALCtDln2AgAAAICDzr5d01a6dJJfWqtDd78vyQ0yhCa+t4W5O8Ouc2/fwhhrD979zQwhgvfM2PULSW7T3a/f4vwfS/JTSU7dyjjbZL3CZ19M8qZFTNLdz0ty8yRv2eJQ303yN0n+c8uL2uW6+0tJbpnZ7ptzkjy6uzcKx7CO7v6NDDtrzhKG+nyS46ft8rgTuvtFGULAZ27jHN9P8mdTTn0lQ8ATAAAAAAAAADgIVNWRSe425dRfbcN0b8vqrNB1quqgKbTS3Z3kvklm3STxnUmO7e5PL35V03X3md39s0kenuT0LQ73nxmyibtad5+X5GeTvHTZa0m2J6/Y3Z/MUNzoDzNsHrkVH0iypUzmgWoZz/JeeCb3Wga4u7+d5Lgk75ulW4bCeveZfOfsGpOs662TPDHJ17Y43L9n9SbfAAAA7DIKowEAAAA7ahK4OGnKqUdX1UXX6fff3f3gJMdk+KP7v2X4A/xGzkzyugzFh67S3cd393tnXvgmdffpGXYje2SSjcIhpyX5rSTX7O63LWj+d2fYre4OSf40yTsyhC7OSrLMkMLfJ/nvNc69aFIIaSG6+0PdfeskN0vyogyFpDbjixl2fn1gkst19727+8uLWtdu1t2fSXLdJL+R4X1YyzkZdtz7se5+xk6sba/r7j9Ocp0kL0xyxjqXfjnJU5Ncp7vfvxNrW0t3/2WSH0ryoCQvTvIvGdb3nQVOM63w2/O6++wFzgEAAAAAAAAA7G73TXLBUdu7u/tTi55okmubVnDtxEXPtZt197nd/fAMxYHekvUzZ/+S5CFJbrWTRdFW6u7nJLnqZB3/mM1tUHhehrX/QZLjkxx9oGShuvsb3X3fDBnBk5K8Nsmnknw9W9t0dt71LDyv2N3f7u5HJTk6w2v8QJLN5Au/m+Ge/Y0MGasbb7VQ1YFsWc/ygf5M7rUMcHd/NcktMhSsW+/fnd9P8oYkt+jux+y2omj7TO7r301yVJJHZXh/ztlE13OTvCvJU5LcpLuvPdkkFgAAgF2sht/ZAgAAABx4qurSSW6Y5NJJLpnk8Ay7BJ6ZoRjWfyQ5rZf4C5CqunqSm0zWeJHJ+j6f5CPd/fFlretgU1XHJLl2hvvkkkkukCEo8s0kn0nyHwdLEbTNqKrrJrlekksluXCG9+njGYKlZy1zbXtZVR2W5JZJrpzkchmCTP+V5CNJPrRbw0bboapemuTeK5o6yTHLCtECAAAAAAAAAByMqupSGTaovFqGfN4ZGTZe/JftKFC3VVV1gQyZwitmyD5dPENBnDMzbOz5iSSf6O5FbgDINquqI5LcOMllMuT/jsiwieOZGYpGfTzJpxe5QeuBoqpOSvLbK9u6u6Zct5Rn+UB/JvdaBnjyem6Y4Vm6aIbP4VNJ3tXdX1vm2uZVVRdOcqMkV8jw/XBkkrMzvLYvZ/h+OLW7N1NADQAAgF1EYTQAAAAAAHaNSdHLzyU5bEXzG7v79ktaEgAAAAAAAAAAwK6z2cJoAAAAAAeaQ5a9AAAAAAAAWOEh2b8oWpI8axkLAQAAAAAAAAAAAAAAAGBnKYwGAAAAAMCuUFUXSfIro+ZTk7x+CcsBAAAAAAAAAAAAAAAAYIcpjAYAAAAAwG7xlCSXGbX9cXeft4zFAAAAAAAAAAAAAAAAALCzFEYDAAAAAGCpquoSVfX0JL8+OnVakucuYUkAAAAAAAAAAAAAAAAALMGhy14AAAAAAAAHl6r6iyQ3mhxeKskVktSUSx/T3efs2MIAAAAAAAAAAAAAAAAAWCqF0QAAAAAA2GnHJLneBte8qLtfvhOLAQAAAAAAAAAAAAAAAGB3OGTZCwAAAAAAgJGXJPn5ZS8CAAAAAAAAAAAAAAAAgJ116LIXAAAAAADAQe87SU5P8u4kz+vuU5a7HAAAAAAAAAAAAAAAAACWobp72WsAAAAAAAAAAAAAAAAAAAAAAAAADnKHLHsBAAAAAAAAAAAAAAAAAAAAAAAAAAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdIcuewGwbFV1RJJjVzR9Lsk5S1oOAAAAAAAAAMBWXCDJlVYcv7W7v7msxQCAjB4AAAAAAAAAsEfI5+0QhdFgCFy9etmLAAAAAAAAAADYBndO8pplLwKAg5qMHgAAAAAAAACwF8nnbZNDlr0AAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgKU7dNkLgF3gcysPTj755BxzzDHLWgsAAAAAAAAAwNxOPfXU3OUud1nZ9Lm1ruX/Z+/Owyyr6nvh//bpmrrpEehmVJtJQKIiyhtoGkRARcwbjfGS+JKHaHzVKDF4fRH1GgbjjUOccm/kxuGiYDSGoIISofFGmVFB0NgJIIJAM3dDz0ONZ71/dHdRw9nn7FN1qs6pU5/P8/RD77X3GvbuemBteq3vBmCaWKMHAAAAAAAAAMx41udNH8FoENE/8uDQQw+No446qlljAQAAAAAAAABopP7alwDAlLJGDwAAAAAAAABoR9bnTZFSswcAAAAAAAAAAAAAAAAAAAAAAAAAIBgNAAAAAAAAAAAAAAAAAAAAAAAAaDrBaAAAAAAAAAAAAAAAAAAAAAAAAEDTCUYDAAAAAAAAAAAAAAAAAAAAAAAAmk4wGgAAAAAAAAAAAAAAAAAAAAAAANB0gtEAAAAAAAAAAAAAAAAAAAAAAACAphOMBgAAAAAAAAAAAAAAAAAAAAAAADSdYDQAAAAAAAAAAAAAAAAAAAAAAACg6QSjAQAAAAAAAAAAAAAAAAAAAAAAAE0nGA0AAAAAAAAAAAAAAAAAAAAAAABoOsFoAAAAAAAAAAAAAAAAAAAAAAAAQNMJRgMAAAAAAAAAAAAAAAAAAAAAAACaTjAaAAAAAAAAAAAAAAAAAAAAAAAA0HSC0QAAAAAAAAAAAAAAAAAAAAAAAICm62j2AGA2SilFuVyOlFKzhwIwTpZlUSqVIsuyZg8FAAAAAAAAAADqZo0e0KqszwMAAAAAAACoTTAaTIOUUvT29saWLVtiy5Yt0d/f3+whAdTU1dUVCxYsiAULFkRPT4+FWAAAAAAAAAAAtCRr9ICZxvo8AAAAAAAAgHyC0WCKbd++PZ544okYGBho9lAA6tLf3x/PPvtsPPvss9HZ2Rn7779/zJs3r9nDAgAAAAAAAACAYdboATOR9XkAAAAAAAAA+UrNHgC0s+3bt8eaNWssuAJmvIGBgVizZk1s37692UMBAAAAAAAAAICIsEYPaA/W5wEAAAAAAACMJhgNpsjuBVcppWYPBaAhUkoWXwEAAAAAAAAA0BKs0QPaifV5AAAAAAAAAM/paPYAoB2llOKJJ54Yt+Cqs7MzFi5cGPPnz4/Ozs7IsqxJIwTIl1KKgYGB2Lp1a2zevHnUF3V3//vtkEMO8e8wAAAAAAAAAACawho9YKayPg8AAAAAAACgNsFoMAV6e3tHLVSIiFiwYEEccMABFioAM0JnZ2fMmzcvli5dGo8//nhs2bJl+NzAwED09fVFT09PE0cIAAAAAAAAAMBsZY0eMJNZnwcAAAAAAABQXanZA4B2NHKBQsTOBQwWXAEzUZZlccABB0RnZ+eo8s2bNzdpRAAAAAAAAAAAzHbW6AHtwPo8AAAAAAAAgMoEo8EUGLvoauHChRZcATNWlmWxcOHCUWVj/z0HAAAAAAAAAADTxRo9oF1YnwcAAAAAAAAwnmA0aLCUUvT3948qmz9/fpNGA9AYY/891t/fHymlJo0GAAAAAAAAAIDZyho9oN1YnwcAAAAAAAAwmmA0aLByuTyurLOzswkjAWicjo6OcWWV/n0HAAAAAAAAAABTyRo9oN1YnwcAAAAAAAAwmmA0aLBKX2jLsqwJIwFonFJp/JTBFykBAAAAAAAAAJhu1ugB7cb6PAAAAAAAAIDRBKMBAAAAAAAAAAAAAAAAAAAAAAAATScYDQAAAAAAAAAAAAAAAAAAAAAAAGg6wWgAAAAAAAAAAAAAAAAAAAAAAABA0wlGAwAAAAAAAAAAAAAAAAAAAAAAAJpOMBoAAAAAAAAAAAAAAAAAAAAAAADQdILRAAAAAAAAAAAAAAAAAAAAAAAAgKbraPYAmB5ZlnVGxAkR8fyI2C8itkbEExHxi5TSww3u66CIODoi9o+I+RHxZEQ8EhG3p5QGGtkXAAAAAAAAAAAAAAAAAAAAAAAA7UEwWpNkWXZwRBwbEa/Y9c9jImLBiEseSSktb0A/SyPioxHxRxGxZ841t0fE51JK35lkX2+OiPdHxPE5l6zPsuyKiLgwpfTMZPoCAAAAAAAAAAAAAAAAAAAAAACgvQhGm0ZZlp0cER+OnWFoFUPKGtzf6yLisohYVuPSFRGxIsuyb0bEu1JK2+rsZ35EfCUi/rjGpXtGxLsj4k1Zlv1pSun6evoBAAAAAAAAAAAAAAAAAAAAAACgfZWaPYBZ5uiIeE1MTyjayRFxdYwORUsRcVdEXBkR/ycinhlT7ayI+FaWZYV/LrIsmxMRV8T4ULR1EfHDXX3dvavv3faJiO9lWbayaD/QzpYvXx5Zlg3/uvHGG5s9JAAAAAAAAAAAAJjxrM8DAAAAAAAAgJlHMFpr6IuIBxvVWJZlB0bEdyOia0TxbRFxVErpFSmlM1NKr4mIAyPi3IgYGHHd/x0R/72O7j4ZEWeMOB6IiPdGxIEppdfu6uvlEfE7EfGTEdd1R8TVWZbtV0dfAAAAAAAAAAAAAAAAAAAAAAAAtCnBaNNvICJ+GRH/OyLeFREvj4gFEfH/NrCPj0bEkhHHt0fEaSmle0delFLqSyn9z4g4c0z992dZ9oJanWRZdnDsDFYb6b+klL6QUuof09c9EXFqjA5H2ysiLqrVDwAAAAAAAAAAAAAAAAAAAAAAAO1PMNr0ujwiFqaUXpZSekdK6csppbtTSgON6iDLssMi4k9HFPVHxFtTSr15dVJKV+8a227dUSyw7KKI6BxxfFlK6XtV+tkREW/dNabd3r4rYA0AAAAAAAAAAAAAAAAAAAAAAIBZTDDaNEopbagWUNYg/09EzBlx/N2U0m8K1PvUmOMzsyzrybs4y7K5EfHmGm2Mk1K6PyKuHlHUETvHDAAAAAAAAAAAAAAAAAAAAAAAwCwmGK39/MGY468VqZRSujcifjaiaI+IeE2VKq+NiHkjjn+SUrqv0AjHj+lNBesBAAAAAAAAAAAAAAAAAAAAAADQpgSjtZEsy/aNiJeOKBqMiNvqaOLGMcevq3Lt6TXqVnNL7Bzbbi/LsmyfOuoDAAAAAAAAAAAAAAAAAAAAAADQZjqaPQAa6nfGHP8qpbStjvq3jzk+qo6+flK0k5TStizLVkfEy8b09XTRNoD6pZTi7rvvjvvuuy/Wrl0bfX19sXTp0jjggANi5cqVMX/+/GYPccIeffTRuPPOO+Oxxx6LHTt2xN577x0vfvGL4xWveEWUSpPLAF27dm3ccsst8cQTT8SOHTti//33j4MPPjiOO+64SbddyT333BOrV6+OdevWxebNm2PPPfeM/fbbL1auXBl77bVXw/sDAAAAAAAAAABgcqzPmxjr8wAAAAAAAACoRDBae3nRmOMH6qz/YI32RjqyAX2NDEZ7UUT8uM42gAKeeeaZ+PjHPx7f+MY3Yt26dRWv6erqilNOOSUuvvji+N3f/d1C7b71rW+Nyy+/fPj4oYceiuXLlxeqe+ONN8arXvWq4eOLLrooLr744tzrsywb/v0rX/nKuPHGGyMi4vbbb4+LLroofvzjH0e5XB5Xb5999omPfOQjcc4559S9SOoXv/hFfOADH4gbbrihYtsHHnhgvOtd74oPfehD0dHRERdffHF89KMfHT5/ww03xMknn1yor2effTY+/elPxze+8Y14/PHHK15TKpVixYoVcdFFF8Vpp51W170AAAAAAAAAAADQeNbnWZ8HAAAAAAAAQOMJRmsvh445XlNn/UfGHO+VZdmSlNKGkYVZlu0ZEXtOsq+x1x9WZ32ggKuvvjrOPvvs2LJlS9Xr+vv7Y9WqVbFq1ap45zvfGZdcckl0dLT2fyI+/vGPx4UXXhhDQ0O51zz99NPxl3/5l3HDDTfEP//zP0dXV1ehtj/3uc/F+eefX7Xtxx57LC644IK47rrr4rvf/W7d49/t61//erz3ve+NzZs3V72uXv0wVQAAIABJREFUXC7HrbfeGq9+9avjT/7kT+LSSy8tfD8AAEB72zG0PR7q/XX0l/vqqrd3576xf/fzo5RV36gylIbi0d4HY+Pg+skMs210lbrjoJ4Xxtw5ezS87a1Dm+ORHb+JgTQw7lx3qScOmnt49JTmNrzfRhkoD8Qjvb+JJZ17xV6d+zR7OAAAM8LWoc3xVN+jsW/382L+nIXNHk5LWj+wLh7reyjKafxG+QVzFsUL5h4aHVlnw/vdNLghnu5/PJ7fc8ik5uG95R3x8I77o7e8o4Gjmzr7dB0Q+3YdOCoYoZKd8//7Y+tQ9b+HnDdnfrxw3u80cogAANAyrM+zPg8AAAAAAICJGxxKcfeaiMXzIg5bFjXXrQGzS2v/rTr1WjzmeG09lVNKW7Ms642InhHFiyJiw5hLx/azPaW0rZ6+KoxtUZ31gRq++tWvxjve8Y5xX1M85JBD4kUvelHMmzcv1qxZE3fccceoBUZf/vKXY82aNXHNNde07OKrz3zmM/GRj3xk+Pjwww+Pww8/PPbYY4948skn46c//Wn09vYOn7/qqqviggsuiE996lM12/7sZz8b55133rjyF73oRXHYYYdFd3d3rFmzJu68884YGhqK22+/Pc4888w46aST6r6PCy+8MD72sY+NKsuyLA4//PA47LDDYsGCBbFhw4b4+c9/Puprot/4xjfiySefjFWrVrXsnxEAADA9btpwbVy59n9HOcYHBBSxf9fz4y+ed3Es7hibgb/Tk32Pxt8/dnFsHHx2EqNsP6UoxZnL3hEnLXldQ9pLKcV1z/5L/ODZf44UqUq/c+Ksfd8Txy86tSH9NtL921fHFx//RPSWt0dExEvm/1/x9v3Oi86STUMAAHmufeaKWLX+yhhMg5FFFm9e9vZ41ZLfa/awWsZQGoyvPfn5uHvLbVWv26O0IN5z4F/FQXMPb0i/5VSOK9Z+OW7ZuCoiIuZER5y931/GsQvr/7ugn226Mb7x1BdiKAYbMrbp8oKew+KcAy/IDev79fbV8aXHP14o7G15z2Fx/gs+3eghAgBA01mfZ30eAAAAAAAAE/cfj6d47d+V48lNO49XHhpxzV+UYtE84WjATv62tr3MH3M8kU9O74jRwWgLprCfkSr1U7csy5ZFxNI6qx3SiL4bJQ0ORqx7rNnDaH9LD4ysjRes/PKXv4x3v/vdoxZdHX300XHJJZfEihUrRl27bt26uOCCC+JLX/rScNmqVaviwgsvjI9//OPTNuaiVq9eHbfccktERLzxjW+MT3ziE3HEEUeMumbDhg3x/ve/Py677LLhss9+9rPx7ne/O5YvX57b9l133RUf+tCHRpWdfPLJ8YUvfCGOOuqoUeXr1q2LCy+8ML74xS/GzTffHPfcc09d93H55ZePWnRVKpXinHPOifPOOy+e//znj7o2pRTf+9734txzz401a9ZERMSPfvSjuOCCC+ITn/hEXf0CAADtY03vA3HF2i9Pqo0n+tfEPz75P+O9z7t43LmUUnzp8U8IRaugHOX457VfioPmHh7P6zl40u3ds/0X8a/PfqtAv0Pxj0/9fSzveWHs1/28SffbKP3lvviHx/4m+tJzm6B+tfWOuO7ZK+P3l57VxJEBALSu1VvvHDUHTJHiyrX/O5b3HNawgK+Z7ofrv1szFC0iYlt5S/yvx/97fPKQr8WcbPJ///eTTT8aDkWLiBiKwbjsyc/HQT2Hx95d+xRuZ23/E3H5U3836fE0wyO9v4krnv5yvH3/8WEFfeXe+OKY+T8AwExifd40auM1etbnWZ8HAAAAAADAxKWU4vf+/rlQtIiIWx+IOPeKFJe9TTAasFN7rjiYvcYGlk1kJfKOiFhSpc1G9lOtzYl6T0Rc1KC2mmPdY5HOtNlhqmX/8uuI/ZY3exhT5u1vf3v09/cPH69cuTKuv/76mDdv3rhrly5dGl/84hfj0EMPjQ984APD5Z/61KfiLW95S7z4xS+eljEXtX79+oiIOP/883O/MLlkyZL42te+Fhs2bIjvfe97ERExNDQUl1566bgvQI50zjnnxODg4PDxm970prjiiisqfvVx6dKl8Q//8A9x8MEHx/nnnx/PPPNM4Xt45JFH4t3vfvfwcXd3d1x99dVx+umnV7w+y7J44xvfGCtWrIgTTjghHnjggYiI+PSnPx3vfOc746CDDircNwAA0D7+Y+tdDWnn19tXR295R/SU5o4qXzvwRKwdeKIhfbSrX229oyHBaL/ackdd16/eemdLBaP9evvqiqEIv9r6M8FoAAA5rnv2yorlv9z6U8Fou9TzzrNtaEs8uOO+eOG835l0v6u33TmuLEWK1dvujFd1/V7xdraOb2cm+Y+tP4+hNBRzsjmjyu/Pmf8DAMwY1udNm3Zeo2d9nvV5AAAAAAAATNydD0esWT++/Os/SXHZ26Z9OECLKjV7AEyp1GZ1gAJuuOGGuPvuu4ePFy5cGFdccUXFRVcjnXfeefF7v/fcZo5yuRyf//znp2yck7Fy5cpCX2L8m7/5m1HHP/7xj3OvvfPOO+NnP/vZ8PF+++0XX/3qVysuuhrpAx/4QLzmNa+pOZaRPv3pT8eOHc/lQ37+85/PXXQ10rJly+Kf/umfho+HhoZa9s8IAACYepsGNzSknXIMxdbBzePKNw4825D229mmwQp/CzMBGwfre9abhhrTb6Nsyhl/o35GAQDazZreB+Lh3vsrnts40FpzvWbaMrSxrusbNj/PeReqd35b7zy/1fSl3ugrj/3eWcTGBj1nAACYqazPe471eQAwC6QUUR5o9igAAAAAaDM/WC1yBqhNMFp72TrmeO4E2hhbZ2yb09kPMAGXX375qONzzjkn9t9//0J1P/nJT446/ta3vhV9fX0NG1ujfOQjH4lSqfZ/wo466qhYvnz58PEvf/nL3Gu/9a1vjTr+i7/4i1i0aFGh8VxwwQWFrouI2LZtW3z1q18dPj744IPjXe96V+H6xx57bJx44onDx9///vcL1wUAANrLYGrcwtO+NH6ze2+FDfCM1qhn1Jd6m9Jvo/SVK4+/0s8VAAARN228LvecOdRz6l32lDcvrVfe/LxSSFg1rTZvn4hK91DvcwAAgHZjfd5zrM8DgDZ33/+I+P5BEf+yIOLHr43Y/lizRwQAAAAAwCxS/TNbzDSC0SL+V0RcWWedQyLiew3qH5ru1ltvHXX8J3/yJ4XrHnXUUXHMMccMf9Gyt7c37rrrrlixYkVDxzgZc+fOjVNOOaXw9UceeWQ8/PDDERGxffv22Lp1a8yfP3/cdbfffvuo4zPPPLNwHytXroz9998/nnjiiZrX3nrrraO+RvnmN7+50CKykV71qlfFLbfcEhERjzzySKxZsyae//zn19UGAAAw8+UFo82JjugqdY0rTxHRW95esU5vhQCBamFdc0vzig2yTQyk/hhMg+PKGxa8UGc7jeq3UfLGM5gGYzANREfWOc0jAgBoXduGtsTPN9+Se77V5nrNVV80WqMCu/ICzRoVjJb3ztYsKVKVex7/85h3bSlK0V3qGVdeqQwAAGYy6/NGsz4PANrUg1+LuPt9zx0/9cOIf3tVxO/dG1GyFQ0AAAAAgKnn/0a3l01jjpfWUznLsvkxPrBsY4F+5mVZtkdKaVsd3S0r0E/dUkprI2JtPXWyLGtE19ASNmzYEA8++ODw8eLFi+PII4+sq40VK1YML7yKiLjzzjtbauHVIYccEl1dxTeLLFmyZNTxpk2bKi68+vd///fh3y9evDgOPfTQusb1ile8otDXIccujNt///2HF4YVNfb+f/vb31p4BQAAs1CloK6IiBWLT4u37PPn48pTSvHe+/8wylEed67SBv+8ze5LO/eLjx78D3WOdmb7/rpvxqr147P4855RvfICFjqyjikNZGuUas+hr9wbHXMEowEA7PaTTT+KgdSfe75R4V7tIKV6g9GmNri43vbzgqlPXnJG/OGyP6t7XFOlt7wj3v+bt1Q8V+nnMe85HLnH0XHOgRc2dGwAANBqrM8bz/o8AGhTD39zfNnWByKevTNi6fHTPx4AAAAAAGYdwWjt5Tdjjl9QZ/2x169PKW0Ye1FK6dksyzZExMjVDM+PiHsn0dfYsQMTsG7dulHHhx12WN3hf0ccccSo47Vr68oanHJjF1LV0tk5evP1wMDAuGu2bdsWvb3PbeKYyCKmonUeffTRUcfve9/74n3ve1/O1cWsX79+UvUBAICZaTCNf7+JiOjMKodQZVkW3aW5saM8Ptu+ns3uPaWxufrtL++e+1JjghfygsUWzlkS6wfXjStvtbCMagERfeXe2GPOgmkcDQBA6yqnctyycVXVa1otBHcmaURwcUqpgcFolcfT3WLvVF1Zd2SRRYrxQXSV7jnvfaTV7gsAAKaC9XnjWZ8HAG3q6R9VLl99ccQp10/rUAAAAAAAmJ0Eo7WXscFk9X1OLeLgMcf31Ohr5CfqDq3Qfz191VO3vS09MLJ/+XWzR9H+lh7Y7BFMiQ0bRmcZLlq0qO42xtZptUU9pVKp4W1u3Lhx1PGCBfVv2F64cGGh65599tm6265ly5YtDW8TAABofXnBaHOy/P/l113qyQlGq2eze0/BEbaPvHtuVEBZXsDCoo49c4LRWissoy/lP4dWGysAQDPdu+0XsW7gqarXmD89p1JQVzWNeHYDqT9SlCueqzd4Le/6uaV5dY9rKpWyUnRl3RWDnyvdQ95zno3vigDADGV93vRpwzV61udNjPV5ANBG0mCzRwAAAAAAwCwhGK29/MeY45dkWTYvpbS9YP0TarQ39tzIYLTjI+KaIp1kWbZHRLykjr5mlayjI2K/5c0eBjNUSqM3iNT7NcpKGtFGq+vu7h513N/fX3cbRetMpO1axv65AwAAs0NeMFpH1plbp7s0t2J5fcFoldtoZ/U8t3qllHLbWdixpGJ5vYEMU63ac2i1sQIANNNNG6+reY1gtOfkBaOVohTlCuFl1QJ7i6oWflwpOKyavLlwK75TdZfmRt9QhffCCvec9xy6s9a7LwCASqzPYzKsz5sY6/MAAAAAAAAAqJdgtDaSUnoyy7JfxXOhYx0RsTIifliwiZPHHFdbmb8qIt5ZpW41J8bon71fpJSerqM+kGPPPfccdbxp06a62xhbZ8mSypuwJ2NoaKjhbU7G2Hsc+2XPIop+uXPvvfcedXz77bfH8ccfX3d/AAAAgzlf4a0WjNaTswG/0ob9/E38PQVG117y7rkRoV+DaTDKUfk9eWHH4orlrRaWUW081YIlAABmk2f6n47/3HZXzesaEe7V7rpLc2NHedu48kbMkxs5t+0tV/5+WU9pXl3tTIee0tzYPDT+78fqeVfMe98EAIB2Yn3exFifBwAAAAAAQFEppVnxcSGgtlKzB0DDXTXm+G1FKmVZdkRE/O6Iom1RPVDt+ogYueL5+F1tFPHWMcdjxwxM0NKlS0cd33///XW38etf/3rU8bJlyype19ExOltzcLDyhvxKJrKwaSrNmTMnDjjggOHj3/72t7F9e+XNKnlWr15d6Lp99tln1PFE/owAAAAiIgbTQMXyasFoeQFflTb/5wUCzMbN7nn33FfujZTSpNquFnyxaE7lzVCtFjZWLSCu1ULcAACa5eaN10WK2nPHwTSYO9efbfKeVz2Bz/Wq1kZvnXPbvHl7TwuGTTfiXXE2hmgDADD7WJ83MdbnAQAAAAAAAFAvwWjt55sRMfJTb2/KsuywAvU+OOb4X1JKuSu7U0rbI+LbNdoYJ8uyF0bEH4woGoyIfyowPqCAJUuWxCGHHDJ8vHHjxrj33nvrauP2228fdXzsscdWvG7hwoWjjjdu3Fi4j//8z/+sa0zT4bjjjhv+fblcjptuuqlw3fXr18e///u/F7p2xYoVo45/+MNqGZQAAAD5BlPlDTAdWUfF8oj6AgTyAgFm42b3vHtOUY6B1D+ptquFnC3q2LNyndQb5VSeVL+NVC38rBHhFAAAM11/uS9+sulHha8XLrtLTghxteDiyarWRj0BxQPlgdx3tp7SvLrHNdXyg9HG33Pec5iN74oAAMw+1udNnPV5AAAAAAAAANRDMFqbSSn9JiIuH1HUFRGXZVmWuwo5y7I3RMRbRxT1R8RHC3R3cUSM/Fz5W7Ms+/0q/fRExNd2jWm3S1NKDxboCyho5cqVo46/+c1vFq577733xl133TV83NPTEy9/+csrXjv2S5X33HNP4X6uvfbawtdOl9NOO23U8Ve+8pXCdS+//PLo7y+2Ef7UU0+NOXPmDB9///vfj7Vr1xbuCwAAYLeh3GC0ztw63Tn/i6gvVdrsXjkQIC+EoJ1Vu+fJBn9VC15Y2LE491x/6ptUv41ULSCiL//bCwAAs8bdW26LbeUtha8XjLZT5Vi0/GCxhgSjVZm/DqT+KKeh3POjx5I/R27Fd6ru3LC54iHarXhfAAAwFazPmxjr8wAAAAAAAACoh2C0aZZl2YFZli0f+ysi9h1zaUel63b92rtGNxdFxIYRxysi4t+yLDtizFi6syx7b0RcOab+Z1NKj9S6l5TSbyPif4wp/naWZX+RZdnI8LPIsuzIiPjRrrHs9mwUC2AD6nD22WePOv7CF74QTz31VKG6H/7wh0cd//Ef/3F0d3dXvPaYY44ZdXzNNdcU6uP666+PO+64o9C10+mss86KBQsWDB9fddVVcf3119es9/jjj8df//VfF+5nyZIlcdZZZw0fb926Nc4777z6BgsAABARg2mgYnlH1pFbp7uUE4xWIUAgbyN/dzb7NrvnPbeI6oEHRVQLb1jUsWTK+m2kauERQj0AACJu2nhdXdebQ+2UolyxPP+9ZvJz5FrBx0X/bKq1kxfs1kz1vStWfgbV3psAAKCdWJ83MdbnAQAAAAAAAFAPwWjT79aIeKjCr2+Nue6AnOseiojPVOsgpfRYRLwpIkZ+Hu2EiLgny7I7syy7IsuyVRHxaET8z4joHHHdv0bEBXXcz4ciYuRK/s6I+PuIeDTLsuuyLPuXLMt+HhH/GaND0foj4g9SSk/W0RdQwCmnnBJHH3308PGmTZviLW95S+zYUX0jx+c///n43ve+N3ycZVn81//6X3OvP/7442PevOc2blx11VXx85//vGofv/nNb+JP//RPa91CUyxYsCDOPffcUWVnnnlm3HDDDbl1Hn744Xj1q18dGzdurKuviy++eNSCtn/8x3+MD37wgzE0NFRXO/fcc0/cfPPNddUBAADaR34wWmfF8oiI7lLlULNKAQJ5YVezcbN73nOLqB2cUEteqEAWWcyfs6jues1QbSytFOAGANAMD+/4TTzS+5u66kx2jtkuUk55T+57zeTnyLXmr8WD0bbnnssbfzMVDUZLKeWHaLfgfQEAwFSwPm9irM8DAAAAAAAAoB6C0dpUSunGiPiDiFg3ojiLiFdExJkR8dqIWDqm2rci4o9TSoX/5n/XtWdGxBVjTi2LiNMj4r9ExMt39b3b2oh4Q0rplqL9wGzy1FNPxcMPPzyhX7tdeuml0dXVNXx84403xoknnhg/+9nPxvX3zDPPxDnnnBPvf//7R5Wff/758ZKXvCR3nAsWLIg/+qM/Gj4eGhqK17/+9fHDH/5w3LX9/f3xla98JY477rh4+umnY8mSJfU8kmlzwQUXxItf/OLh482bN8epp54aZ555Znz729+OX/3qV3HffffFD3/4w3jf+94XRx11VNx7773R09MTb3jDGwr3c9BBB8WXv/zlUWV/+7d/GytXroxrrrkmBgcHc+s+/PDDcckll8Qpp5wSRx11VPz4xz+u/0YBAIC2MJAbjNaRW6foZveI/DCG2bjZvTvLv+fJhi/kP+eeqoEJrRKWMZQGc0P6IgSjAQDcvPHauuuYQ+1WORqtpzSvYnlfmvxzqzXPzguQrqedVnynynv3GHsfg2kgylGueG0r3hcAAFRifV7zWJ8HAAAAAAAAQFH5uySZ8VJK12ZZ9jsR8dGI+KOIyFvp8NOI+ExK6TsT7GdrRPxxlmXfjoj/LyKOy7l0fewMULsopbQu5xqY9d7ylrdMuG5KOzeIHHPMMfGFL3wh/vzP/zzK5Z2bE+6666447rjj4tBDD42jjjoqenp64tFHH4077rhj3EKfV7/61fGxj32sZn8f+9jH4qqrrhr+IuPatWvjta99bRx66KHxkpe8JLq7u+Ppp5+On/3sZ7Ft27aIiNh3333jU5/6VEt+mbKrqyt+8IMfxCmnnBIPPPBAROx8pldeeWVceeWVFetkWRaXXHJJrFmzZtwXPas5++yz46mnnooPf/jDw39GP/3pT+P3f//3Y968efGyl70s9tlnn5g7d25s2bIlnnnmmbjnnnvq/volAADQvoZS5U0bHVlnbp2im90j8gO/qoV1tavOUmfMiY4YivHPfLKhFXn1u0tzc4PsdtabXCBbo9QaR6uMEwCgGbYObo6fb7m14rkj5r00Htrx64pBW+ZQO6U6g9EGd4X2VnsnqqX2/LbY/L+3vL1ieUfWEZ2liY9vquSFQY/9+az2fLqz/PcXAABoJdbnNY/1eQAAAAAAAAAUJRhtmqWUlk9zf2sj4t1Zlp0bESdExAsiYt+I2BYRj0fEL1JKDzWor29HxLezLDsoIo6JiP0jYo+IeCoiHomI21JK/Y3oC6jtHe94RyxZsiTe9ra3xdatW4fLH3jggeFFRZX82Z/9WXzxi1+Mzs7amzIOOOCA+M53vhNvfOMbY8uWLTX7OOigg+IHP/hBPP3003XezfR53vOeF7fccku85z3viauuuqrqtXvttVdcfvnl8frXvz4++MEPjjq3YMGCmn3t/urn2972tnjqqaeGy7dv3x633XZbofG26tc9AQCAqTeYBiqWVwsB6M4JNRu7uT2llLvhvVpYVzvrKc2NbeUt48orBVnUI/c5Zz0xJ+uIjqyz4p91pTC7Zqg1DqEeAMBsdvumf8udt5+0+HXxRN+a6BuqEIw2yTlm26ici1Y1rLmv3Bsdc6YuGK3oPLw3932qNYOm857p2OdR7f5nY4g2AACzm/V5E2N9HgAAAAAAANWkFFHjGznALFFq9gCYHiml/pTSDSmly1JKn0wp/X1K6buNCkUb09dDKaXv7Orjk7v6vEEoGky/N7/5zfHggw/GueeeG3vvvXfudZ2dnfGa17wmbrvttrj00ksLLbra7ZRTTok77rgj3vCGN+R+hXHp0qXxgQ98IH75y1/GkUceWfd9TLd99903vvvd7w4vwHrRi14Uixcvjp6enjj44IPjtNNOiy996Uvx4IMPxutf//qIiHFfily0aFGhvk4//fR46KGH4pJLLomjjz665pcsOzs7Y8WKFXHxxRfH/fffH+eee+7EbhIAAJjRymkoylGueK56MFrlULOxm90HUn+knPZn62b3vGc32YCyvNCL3f0VDSholkYFRwAAtJtyGopbNq2qeG5Jx97x4vnHFp6fz1YpJxmtVjDaZPQ1KPi3t7y9YnlPaV7dY5oORd93+lL+85mtIdoAAMxu1udNjPV5AAAAAAAAANTS0ewBAMx2Dz/88JS2v2zZsvi7v/u7+NznPhd33XVX3HfffbFu3bro6+uLvffeOw488MBYuXJloS8o5jniiCPi6quvjmeeeSZuuummeOyxx2L79u2xzz77xEEHHRQnnnhidHQ895+ck08+OVKqvJmlknquHeuyyy6Lyy67bEJ1V65cGStXrix07T333DP8+yzLYtmyZYX76enpife85z3xnve8J9avXx8//elP48knn4z169fHwMBAzJ8/P5YtWxYvfOEL44gjjoh581pz0wwAADB9BtNg7rmOLP9/+eWHbI3e3F4tzGq2bnbvnqKAsrz6u/vrLvXE1qHNFeq1RuBYrfvPC34DAGh3/7nt7nh2YG3FcysXvzbmZHOmLHy3XTQnGK3G/LZg+3nz9VYNms4P6RsTjFbl/mfruyIAAK3P+rzarM+zPg8AAAAAAACg1QhGA5glSqVSHHvssXHsscdOWR977713/OEf/uGUtd+qtm3bFnfffffw8Qtf+MIJL2Tbc88944wzzmjU0AAAgDY1mAZyz3VknbnnurOcze6pN8qpHKWstPO4ajBaa27kn2pTFVqR96x399edFQuza5Za45hsMAUAwEx108brKpbPiY44YdGrI6J4cPHsVXljfrV3kknPz1P1+kXb31HeXrG8dYPRigVB591/KUrRmXU1fFwAADCTWJ83dazPAwAAAAAAAJh9Ss0eAADMdJdffnls3/7cBpfjjz++iaMBAABmg8E0mHuuajBalU34/alv+PfVNvvnBYS1u/zQiskFf+U969395T3vvtQagWO1xjHZYAoAgJloXf+Tcc+2uyueO2bBiljYsTgiqsz1hMtGRF4s2s7nlkVW8dxkQ+V6azz7on82eeNo3WC0vJ/FHZFSGnFc+f67Sz2RZZX/TAAAACbL+jwAAAAAAACA2UcwGgBMwmOPPRYXXHDBqLKzzz67SaMBAABmi8E0kHtuTtaRe65aqNnIjfvVNvu36kb+qVYtKGAyqgULVOu3VQLHat3/ZJ8PAMBMdPPGVbnnTlpyxvDvBaPVUjkaLYtsyp5do+a3+QHI8+oe03TIC9EuR3nU+2f++8vsfE8EAACmnvV5AAAAAAAAALOTYDQAGOE73/lO/Lf/9t9i3bp1Na/9xS9+ESeddFKsX79+uOylL31pvOpVr5rKIQIAAFQNRuuYcDBa74jfV97EPyc6oiPrLDDC9pO30X+qg9HyguhaJSyj1jhaZZwAANOlv9wXP9n0o4rnDuw+KA7uOXz4uDtr7bles6WUE4yWZdGdTU2AcK1nX7T9/GC01gwQ65nku6JgNAAAoCjr8wAAAAAAAAAoIn+XJADMQlu2bIlPfOIT8ZnPfCZOP/30OPXUU+OlL31pLFu2LDolexdaAAAgAElEQVQ6OmL9+vWxevXq+Nd//de45pprRm3K6erqissvv7yJowcAAGaLwTSYe66zSnBZtU34Izfu96XKYQCtuol/OuSFyk06eCHnWe8OycgLGJhsv41Saxx95d5IKUWWZdM0IgCA5vr5lltie3lrxXOvXHzGqHlRbvhuao25XivrLs2NGNowrjxvfl1UreDjou3PtGC0vJC+iJ33Mj8WRkTtYGcAAIBarM8DAAAAAACgmsqfVAVmI8FoAFDBwMBAXHPNNXHNNdcUun7u3Lnx9a9/PV760pdO8cgAAAAiBtNA7rmOKsFoecELEaM3uOdt4p/Nm93zAgzyggGKqvWsp6rfRqk1jnIMxWAaiM6sa5pGBADQPCmluGnDtRXPzS3Ni2MXnjSqLG9+XSuca7YoR7lieRZZlWc32WC06vWLtt9b3l6xvNo7WTNVe9cbGdSX+/6Szd53RQAAYGKszwMAAAAAAACgmlKzBwAArWTx4sUxZ86cuuqccMIJcfPNN8eb3/zmKRoVAADAaNWC0eZk+d9CmJPNyQ2oGrnBPW+zf6tu4p8OeRv984IBisp71rsD0Vo9LKNIMESrhLgBAEy1h3vvj0f7flvx3PGLTo2uUveosqkK92p/We67yWTnybWD0Yq1n3fd3NK8usc0HfICmSNGP5ORIWlF6wMAAIxkfR4AAAAAAAAAReTvkgSAWeiNb3xjPP3007Fq1aq47bbbYvXq1fHII4/E+vXro7e3N+bOnRt77rlnvOAFL4gTTzwxzjjjjDjhhBOaPWwAAGCWqRaM1pF1Vq3bXeqJgaH+ceUjN7vnhX3lBTfMBnkb/ScbWpEXmLD7WecHPrRGWEahYLS0I+bHwmkYDQBAc9208drccyctft24MsFo1aVIFctLkU1JgHA5laMv1QpGK/ZnsyN3nt+aAWIdWWeUohTlKI87VyxEe/a+KwIAAPWxPg8AAAAAAACAIgSjAcAYe+21V5x11llx1llnNXsoAAAAFQ2mwYrlpZgTpaxUtW53qSe2Dm0eV95XYLN7XjjYbJAbUJYmHrwQUTtYYCoCHxqpyP3nBe0BALSTLYMb4+4tt1U8d+S8o2NZ1/7jyvPm1+ZPu1UORousWjDaxEPl+lNfzWuKtp83X2/Vd6ps1zPdUd4+7pwQbQAAoNGszwMAAAAAAACgluq7JAEAAACAljOYBiqWd2adNet2ZzkBX6OC0Wx2Hys3GG0SwQsppSrBaDv7684qP/NWCcsoMo7JPCMAgJnitk3/lhtg/MolZ1Qsn4o5ZjtJeblokU1JqFyR8OGi7fdWCBiLaN1gtIhqP49CtAEAAAAAAAAAAACYXoLRAAAAAGCGyQtcmJN11KybF27Wl57b4J4fjDZ7N7vnPbfJBC8MpoEox1BOfzufdV7AwMg/r2YqEtoh2AMAaHflNBS3bry+4rk9O5bG7+zx8orncufm5k8REZEiJxktpubZFQv9rX3NQHkg952tlQPEigT11Qp2BgAAAAAAAAAAAIBGEIwGAAAAADPMYBqoWN6Rddasm7cRf2QIQF4gQF74wGyQ99wG00AM5YQe1FIttKE72/ms8wMfJh7I1khFgicmEx4HADAT/Me2u2L94LqK505cfHqUsjkVz+2e8401FIO5c/7ZpXIwWhZZdGeNDxAuFPpboP1qc/We0ry6xjSdioTN5Ydoz953RQAAAAAAAAAAAAAaTzAaAAAAAMwweUFcHVlHzbrFNrtX3uyfFw42G1Tb6F8kQKFivVQtMKFn1z/zAtlaIyyjUHjEBJ8PAMBMcdOGayuWd2QdsWLRabn1pmKO2U4qx6LtDEYrEvhcr2Jz29rtVxtDK79TFXmmec+ou4XvCwAAAAAAAAAAgJkj5S0eBGYdwWgAAAAAMMMM5ARidWSdNevmbVgfucE9byN/d5Yf3NDuqgUYTDR8oVrwwu6QjGoBA/3lvgn120hFgiGKXAMAMFM93f943Lv9lxXPHbNgZSzoWJRbdyrmmO0lf3VTkcDnehV55kUCinvL23PP9ZTm1T2u6ZL3vjcy0Nm7IgAAAAAAAAAAAADTQTAaAAAAAMwweRvxO7KOmnXzwhdGbnDPCxOoFtzQ7vKCFyImHr5QPRhtbs1+WyEso8i9TyacAgCg1d2ycVXuuVcuPqNq3WohuOZQESknGC2LrEow2sTnyEWfea2A4mrz9Gp/5s2W97438rnkPd/Z/K4IAAAAAAAAAAAAQOMJRgMAAACAGWYoDVYs78g6a9YtEiDQlypvdm/lTfxTrXpoxcTCF/ICE7IoRWfWVaDf5odl5P2s1HsNAMBM1FfujZ9s+lHFc8/rPjiW9xxWtf5UhO/OClmWO0+eXDBasbq1Aop7y9srlndkHdFZqv3O1ix5P4+777ecytGfKofCVftZBgAAAAAAAAAAAIB6CUYDAAAAgBlmMA1ULC8WjJYXINBb8fdF6s4GXVl37rlawQh58p9zT2RZNvz7RvfbKINpIAZzQvpGEuoBALSrOzffHDtyQrBeueSM4Tldns6sK7KofM1kAr7aQUop91wW1QKfe6vWraboM681v+2doe9T1Z5pRER/6osUlZ9tq98bAAAAAAAAAAAAADOLYDQAAAAAmGFyg9FKRYLR8ja7PxcCkBe4VS2kq92VslJ0Z5Xvf+LBaLWfc1fW3bJhGf3lvkLXCUYDANpRSilu3nhtxXPzSvPjFQtOrNlGKSvlBvA2OwS32fICuHbKcoO4ylHOfV+qpS8Vm7fWmofnne8pzat7TNOpVoh2tXl9j2A0AAAAAAAAAAAAABpIMBoAAAAAzDAD5ZxgtOioWTcv3Gt3CMBQGswNEpjtm91rBQXUK6/eyD+jVg7LKNp/s8cJADAVfrvjvnis7+GK545fdGp0lSrP4cbKm2PP9nDZasFopciip0po88SDi4s981rt95a3Vyxv9fep/PedHbv+mf98ZnOINgAAAAAAAAAAAACNJxgNAAAAAGaYoRisWN5R6qxZN28zfq/N7jXlh1ZMMHgh5QSjjXnOrRqWUbT/Zo8TAGAq3LzxuorlWWRx0uLTC7eTG0aVM1ecPfKD0SKy6M7yQ8YmOv8sGqhWq/28dlo/GC0nRHvX/VZ775nt74oAAAAAAAAAAAA0Rqq2fBCYVQSjAQAAAMAMM1jOCUbLOmrWrbXZvVoYQKtv5J9quc9ugqEVRQMTWjUso2gg3ESD4wAAWtXmwY1x95bbK5570R4vi6Vd+xVuq9b8fLZKVYLRssiqBnH1pQkGFxcN/q0xD+8tb69Y3urvU7WCoAWjAQAAAAAAAAAAADBdBKMBAAAAwAwzmAYqlndknTXr5m12H0wDMZQGq4YBzPbN7nkBZdXC5KrJe9Zj+8kPy2hu4Fjh4IhZHuoBALSf2zb9nxiKymHFJy0+o662WnWu12xVv/iYZVVDxnonOP8sOq+vdV3e+bz3iVbRnVX+WewdDkar/Fw7so5C76IAAAAAAAAAAAAAUJRgNAAAAACYYfKC0eZkHTXrVtuM31furRrA0Oob+adaXvjCRIO/8p712HCMvOfe7MCxvlSs/4kGxwEAtKKhNBS3bFxV8dxenfvEUXu8rK728ud6s30OlZ+MlsXOUOhSznKHiT67ovVqzcPz5r9zS/PqHtN0ygvp6099UU7l/MC3bHa/JwIAAAAAAAAAAADQeILRAAAAAGCGGUyDFcs7ss6adfM2u0fs3MBfLcSqK+uuPbg2lvfsJh68UDlQYXwwWuV+mx04VrT/ogFqAAAzweqtd8bGwWcrnjtp8elRyubU1V7+HHN2z6FS1WC0LLIsa/izK1qv1vw/N0CsxYOm84KgU6QYSP258/pq75gAAAAAAAAAAAAAMBGC0QAAAABghhlMAxXLOwsFo+Vvxu8r9+aHdWU9Ucpm9/9OzAsKaHTwwthggfx+mxuMVjw4YnaHegAA7eWmjddWLO/IOuP4RafW3Z5gtInIIiL/3Wbi8/OCwb812u8tb69YnjevbxXV3hWrhWi3euAbAAAAAAAAAAAAADPP7N7JCAAAAAAzUF4w2pyso2bdvOCFiJ1BADa758t7dnnPrJa8emMDE1o1LKOe4IiU0hSPBgBg6j3V91j8evuvKp57xYKVMX/Owrrb7M5ywr3S7A5GS5E/f8x2/TM/GG1i8/Oiz7xW+3nnWz8Yrdq7YpUQ7Sr1AAAAAAAAAAAAAGAiBKMBAAAAwAyTF4zWkXXWrNuVdUc2HCUwWl+5NzcMoNU38U+H6QpeGBuOkffsJxrI1ihFg9lSlGMg9U/xaAAApt7NG6/LPXfS4jMm1Gajw3fbRbVgtN3RaI0OEC5ar9Z1O3KD0ebVPabpVO2dr6+8I/e+vSsCAAAAAAAAAAAA0GiC0QAAAABghhlMgxXLiwSjlbJSdGXdFc/1lnfkhnzlhQ7MJt1ZY0Mr8oIFxj7rRgc+NEo9/U80PA4AoFX0lnfETzffUPHcC3oOi+VzD5tQu3mhUs2e67WyLNsVjJYzP+9LE5t7Fp3X5wUcD5/PDUZr7QCxau98fd4VAQAAAAAAAAAAmAbVPqsKzC6C0QAAAABghhlMAxXLiwSjRUR054UvpN4qYV2tvYl/OjQ6tKJosEB3ltdvc8PG6gmEm2h4HABAq7hj803RW95e8dwrF79uwu3mh+DO7vlTSvlLm7Jd/8ybn09k7jmUBnPfs+ptP+/npNWD0eZkHbnvlH3l3irvL619XwAAAAAAAAAAAADMPILRAAAAAGCGGUyDFcs7so5C9asFCORt8s8LbJhNGh1aUTSELrffNLFAtkapJxBuouFxAACtIKUUN2+4ruK5PeYsiJcvWDnhtvPnmLN9/lTtm487o9Ea+ewaNbcdTAO572utHowWkf9Me8s7qry/eFcEAAAAAAAAAAAAoLEEowHQEGvWrIm/+qu/ihNPPDH22Wef6OrqiizLhn9ddtllzR4iAABA2xhMAxXLO7LOQvWrBQjkhXzNhE38U21sYNluEwkoSynlPuuxfz55/eaF2E2XvlS8f8EeAMBM9uCOe+KJ/kcqnlux6LToLHVNuO3cOeYsnz+lKsFo2RQEo9Uzt64WjFytnZ7SvLrG1AzdWX4oc26Idk4dAACgsazPAwAAAAAAAGA26Wj2AABmu+XLl8cjjzy3meaGG26Ik08+uXkDmoCvfOUr8d73vjf6+vqaPRQAAIBZYSgNVizvyIr97778AIEduSECeXVmk7xwuL5yb6SUIsuywm0NpoEoR7niubHhGNX6baZ6+p9IeBwAQKu4aeN1FcuzyOLERadPqu28eXZveUfdc8x2UiQYLW+ePJEA4XrmttXa7x2qFozW+mHT1d498p7RTLgvAABmN+vzAAAAAAAAAGDmKTV7AADMbNdee228613vKrzo6sYbbxz1pcqLL754agcIAADQhgbTQMXyjqyzUP2xwVu79ZV35G7yt9k9/7mlSNGf6tuMVC14oTsbHY6RH2S3M5CtWRoVHgEA0Mo2Da6PX2z5ScVzR+3x8ti7a59Jtd+TVZ5jlmMoBnMCkWeDasFosSsYLf+9pv5Q3rpCf6tcW23e21OaV9eYmiHvmfZWeVfMqwMAADSG9XkAAP8/e3ceJldx2Hv/V71M94xG0khoAwQIIbFjFiMQIDYvAhTsxEsMxH68hmAnuRdCiK95c21JFwfj1yQ2tnFsEwK8jzEh18bGwSDHxpJAYMAIsACJ1QgQCC1IM0gz0z291PuHNKPpnlOnz+npvb+f5+FBp+qcqurTrVGdmarfAAAAAAAAAADaUazeAwAANLerr766YBP2X/zFX+hzn/ucDjroIMXj+zbkT5s2rR7DAwAAAICWlHEGowX7dp9f0Fbaudnd+5p24ncPUvnBUPcobf0CE4IFo1nllbFD6jCJwP1WkuuzMt5zAQAAGslDvb9WXjnPurOnLBl3+35zyLQdVFzBwo9bjk8umtmTi+bzXBN+7hlubrsnoNgMD2SUVH7AeV0zBIj5Pita70A4nhUBAACA6mJ9HgAAAAAAAAAAAACgHRGMBgAo2/PPP69169aNHC9ZskS33357HUcEAAAAAO0hZ7Oe5TETLDQh6diQn8oPKp13bHY3jb+Jv9pc902S876Vc35xYIJ/v4PqiNQrGC34aw57fwAAABpBzmb1YN+vPOumx2fpqK4Txt2HbzBaPqXu6KRx99GMrE8ymtGeQDJX0Fg5c09X6JeXvHLK2ozipsOjb++AtahiikcaP+TOfU/dz4p+zysAAAAAxof1eQAAAAAAAAAAAACAdhWp9wAAAM3r8ccfLzj+6Ec/WqeRAAAAAEB7ydqMZ3nQYDRX+EI6n1LKsZHfL7ChXfiHVnjfNxfXffbqx69fv3aqLUzgRD3HCQAAUK4/7H5MfdkdnnVn9pyviBn/j9tdQVRS+Dlma3EHo2k4GM24nmvC37ew17jmwoOOdpLR5ggPcz8rDjrvEc+KAAAAQPWwPg8AAAAAAAAAAADtxvotHwTQVghGAwCUbcuWLQXHs2fPrtNIAAAAAKB95G1OeeU96wIHoxnvTflpm1Laem/wT/oENrSLSgajuYIUjCKKm46ifv3CMoKHk1Va2gZ/zfUcJwAAQLlW77zXszxuOnTa5PdWpA+/eXY7z6H8Y9H2BqO5QrwczzR+UiHvtWsu7HouaJbnKdc9Hcj3K2OHQl0DAAAAYPxYnwcAAAAAAAAAAAAAaFcEowEAyrZ79+6C43g82AZ8AAAAAED5sjbrrIuZWKA2XJvyU/lB50Z+v3CudhEzcec9TlUoGC0RScoYU1jmCLIrp99KydqM72exWDuHegAAgOb0Zvo1vTj4jGfdyZPO1IToxIr0EzcdI0Ffxdp5DmV9o9H2cD3XpPMp2ZC/MjJs0LFrHp7KD3iWJyNdodqvF9c93ZXtC30NAAAAgPFjfR4AAAAAAAAAAAAAoF0F2ykJAGh61lo98cQTeu6557R161al02lNnz5dBx54oBYtWqTu7u7Qbebz+SqMFAAAAADgJ2szzrqYCbYhJhFJepan84PO8AU2u++RiHQqm9s1pjxsaIU7gG7sexOPxBVVTDmNDSJL2/qEZVTq9QIAADSqB3tXOOvO7llSsX6MMUpEkp5BW/UKwW0M7mCz4SA5V3izldWQTSthvJ97vISf33qf73rPmuV5ynXP+rI73Nc0yWsDAAAAqo31eQAAAAAAAAAAAAAAVA7BaADQ4rZv365rr71WP/rRj7Rt2zbPczo6OvSe97xHy5Yt06mnnupsa+PGjTr00EOd9eeee65n+S233KLPfOYznnXLly/X8uXLnW2uXLlS55xzjrMeAAAAANpN1o4NxxoWPBjNe+P6rmyfrCOAwBWm1m4SJql+jQ1GCxtaETaALhFJaiC/26Od+oRlhA6OsO0c6gEAAJpNKj+oR99Z6Vl3aPIIHZw8rKL9JUxSKY2dL4Wdc7USdyzanjA5yf8ZJZ1PhXqGqdR8PpUf8CxvmmA0xzjfye10XxMigA4AAABoRazPAwAAAAAAAAAAAACg8iL1HgAAoHp+/vOfa+7cufrmN7/pXHQlSUNDQ1qxYoUWLlyoyy67TNmse5M9AAAAAKC+sjbjrIuZYL8HwRUQ4BW8te+a5tjIX22uQIO0DRda4QpecIUKuN6zeoVlhA5Ga+NQDwAA0Hwe7VvpnK+d1XNBxftzzbXrFYLbEKxfNNoefsFnlQo6C9u+c57fJM9Trucdv4DuZnltAAAAQDWwPg8AAAAAAAAAAAAAgOoItlMSQO3ks9LApnqPovV1zZYirf0l8N///d916aWXKp/PF5QfdthhOvroo9XV1aXXXntNjz32mHK53Ej9D3/4Q7322mv6r//6L8VirX2PAAAAAKAZ+QWjRccZjFbpa1pRpUIrXEFqrvvsCigIG/hQKaFfL8FoAACgSVhr9UDvfZ513dHJOmniGRXv0xmCGzJ8t5VYuYPRjIwk9xxZqv581XW+a37eGekK1X69lPesmKjCSAAAAKqI9Xm10+Jr9FifBwAAAAAAAAAAAABA9fATdaDRDGySfnFovUfR+j74itQ9p96jqJqnnnpKX/jCFwoWXZ1wwgm68cYbdfrppxecu23bNn35y1/WD37wg5GyFStW6Ctf+YquvfbagnNnz56tV155ZeT4W9/6lm644YaR4zvuuEMLFy4cM55p06bpnHPOkSQ98sgjuuSSS0bqLr/8cl1xxRXO1zJr1qwSrxYAAAAA2kvWZp11cRMP1IZfgEAlr2lFrqCAsAFlriAFV/CaMyyjTsFoYV9vvQLcAAAAwnpx8BltHnrds+6Mye9TPBJszh2GO3yXYDQvw8FofiFeoYPObNj5vPf5rnmv6z1uNGGD0eKmQxETrdJoAAAAqoT1ebXTwmv0WJ8HAAAAAAAAAAAAVId79SCAdkMwGgC0oM997nMaGhoaOV60aJF+9atfqatr7G+jnz59ur7//e9r3rx5+od/+IeR8q9//eu65JJLdNxxx42UxWIxzZkzZ+S4p6enoK1Zs2YV1I/W3d0tSdq4cWNBeU9Pj/MaAAAAAMBYWZtx1sUCBqOF3exe7jWtqFKhFa4gBVcAXaOFZYR/ve0b6gEAAJrL6p33eZYbRbSo57yq9NloIbiNbjgYLWbiiiqmnMaGR4e9d+HP957fhp3nN5qwAW7N8roAAACASmN9HgAAAAAAAAAAAAAA1RWp9wAAAJW1cuVKPfHEEyPHkyZN0p133um56Gq0q666ShdeeOHIcT6f1ze/+c2qjRMAAAAAUJ5KBKOF3bweM7HAbbc6171LVShIwRWK4SoP22+lpC3BaAAAoPX0Zt7WH3Y/4ll3XPfJ2i8+oyr9NtpcrxFY5X1qzcifXPPzas9X09b7vUnlBzzLmyVALBkyEJsAbQAAALQj1ucBAAAAAAAAAAAAAFB9BKMBQIu57bbbCo7/5m/+RgcccECga6+77rqC4zvuuEPpdLpiYwMAAAAAjJ9fMFrUxAK1kTDhNuWHPb+VuTb+hw1ScIVcuNp3Bj7UKXAsdHBEG4d6AACA5rGm77+VdwRyndVzQdX6bbS5XiOw1l1n9uWiVX1+7uJq39VOMuIfkNAoEiED3Jol8A0AAACoJNbnAQAAAAAAAAAAAABQfQSjAUCLWbNmTcHxJz7xicDXHnPMMTrppJNGjlOplNauXVuxsQEAAAAAxi9rs57lEUUVMcG+3ecKD6jU+a3MHVpRmSAF1712hdPVK3As9Ou1KeWtd8gIAABAI8jajNb0/rdn3Yz4ATqy6/iq9V2pcK/W4pOMpn3JaK57V6mgMxdX++5gtOYIEAsbjBb2fAAAAKAVsD4PAAAAAAAAAAAAAIDqIxgNAFrIzp079fLLL48c9/T06KijjgrVxumnn15w/Pvf/74iYwMAAAAAVEbWZjzL4yYeuI2YiSuiaODz2ey+j+tehA1SSFtHMJojAK3RwjJcgQ8xn8/hkE1XazgAAADj9oddj+qd3E7PurN6zg8cQlwOZwiuY87YDqxPMJopCEarbnDxhMjEUOe75snN8kyVMCFDtEOeDwAAADQ71ucBAAAAAAAAAAAAAFAbsXoPAECRrtnSB1+p9yhaX9fseo+gKrZt21ZwPH/+fBljHGd7O/LIIwuOt27dOu5xAQAAAAAqJ2uznuVRE/xbfcYYJSJJDeb7A52fbJJN/LXgCihzBSC4uIIUXO273oN6hWW4xj85NkVvZ7y/l5DOp/gsAQCAhrW69z7P8g6T0MLJ76lq340WgtsI3LFohSpx76y1zvn8pFiP+od2BWo/azPOIOvOJpkHJyKJkOc3x+sCAAAowPq82mnBNXqszwMAAAAAAAAAAAAAoDYIRgMaTSQmdc+p9yjQpHbu3FlwPHny5NBtFF+zY8eOcY0JAAAAAFBZro32MRMP1U4y0hk4GM0VNtCOnAFloYPRvM93BQtUKpCtUlxBE5OifsFog5KmVHFUAAAA5XkjvVEvDT7rWbdg0lnqinZXtf9Gm+s1Bnc0mtG+0IFKBKNlbVZ55TzrJsWmaPPQ6x7tj31v/N6vZgkQi5ioOkxCQzYd6HyeFQEAQFNifR7GgfV5AAAAAAAAAAAAAADURqTeAwAAVI61hZtEwv42Si+VaAMAAAAAUDk5m/Usj5lwvwMhzAb2ZtnEXwsJM/7ghT3nu4LRvNt3vQdhA9kqxRmMFusJfQ0AAEC9PbBzhbPu7J4lVe+/UuG7rcQGDEZz3bswoXJ+93lyzDvY16v9VM7dTmekK/B46i3csyLBaAAAAGgvrM8DAAAAAAAAAAAAqsu6lw8CaDMEowFAC5k6dWrBcV9fX+g2iq+ZMsV7wwcAAAAAoD4yNuNZHjPxUO2ECTtjs/s+ztAKGzx4wVrrDAlzB6N5l6fqFDbmer2THMERUnsHewAAgMY1mOvXY++s8qw7rPMozU4eWvUxuOZ6BMs6jAoNSBhXqFzwe+c3l58U9Z7ferXvF8bWTGHTrmee8Z4LAAAAtALW5wEAAAAAAAAAAAAAUBsEowFAC5k+fXrB8QsvvBC6jeeff77geMaMGeMaEwAAAACgsrLOYLRYqHaSIcLOCEbbx3UvsjbrfG/GnptRXnlH+97BAu6wjPqEjbn67Yp0O0P6/IIiAAAA6uWRd1Yqbb1DtM7qOb8mY3DNAdP5lGyb/upDv9dtRv3ZOU92vKee5/qEqE12BP96tZ/KDzjbSUa6Ao+n3sI8//GsCAAAgHbD+jwAAAAAAAAAAAAAAGqDYDQAaCFTpkzRYYcdNnLc29urDRs2hGrj4YcfLjhesGBBRcY2zBhT+iQAAAAAgFM27wpG8w6jcnGFL3hJhji31fndN79AhaDnuQLrXO9Bxg4pZ3OB+q0k12tIRJI+IW7BwykAAABqwVqrB3pXeNZNjE7WCd2n12QcCeM9f8orFzh8t9VY+QWj7Vvm4JonhwkQ9gvwneQKRvO4xtVnVDHFI65Z5bAAACAASURBVOGe1+opzLNimHMBAACAVsD6PAAAAAAAAAAAAAAAaoNgNABoMYsWLSo4vv322wNfu2HDBq1du3bkOJlM6t3vfnfFxiZJiUSi4DidTle0fQAAAABodTllPctDB6OZEJvdHUEN7chv479foMJoaes+z/W++PU7VIfAMb9gNGc4hSUYDQAANJbnB9Zpy9Amz7ozJi+uWZhVJcJ328noLf7uUN7gwWiue2wUUXd0kvMaawvD2wYdfSajzRUeRog2AAAA4I/1eQAAAAAAAAAAAAAAVB/BaADQYj75yU8WHH/3u9/VW2+9Fejaq6++uuD44osvHrNQarx6enoKjjdv3lzR9gEAAACg1WVtxrM8FjK0wRUg4IXN7vv43YugoRV+AWqu96US/VaSq89kpNMZpBc0OA4AAKBWVvfe51luFNGinsU1G0fSZ27uF6rbyqysT+2+aDR3MFrwOXI5ob9WVhk7VNSOIxityZ6nwgRjh3muBAAAAFoF6/MAAAAAAAAAAAAAAKg+gtEAoMW85z3v0QknnDBy3NfXp0suuUSDg/4bZ775zW/q7rvvHjk2xujv/u7vKj6+uXPnqqOjY+R45cqVymS8N/UDAAAAAMbK5B3BaIqFaifMBvZEk23krya/++YKQhh7njukwdW+XzhBPQLHXH0mIknn56UeAW4AAAAuOzPbtW73Y5517+o+RVPj02s2Fv85ZrvOodzBaCZAMFqYObLr3GSk0/dZqPg6dztdgcfSCEI9K4YIUQMAAABaBevzAAAAAAAAAAAAAACovnC7JQEAVffWW29p48aNZV07Z84cSdLNN9+s0047TUNDe35T/apVq3TmmWfqxhtv1Kmnnlpwzfbt27V06VJ973vfKyj/4he/qHe9611ljcNPR0eHzjjjDK1cuVKS9Nprr+mDH/ygPv/5z2v+/Pnq6ircHDJr1iwlk2yqAAAAAIBhOWU9y2OReKh2kiHCzghG26fDJGRkZD2CGoKGVrjOM4oobjo86/zeg7StfViG6zUkIp3OIIX2DfUAAACNaE3fr2SV96w7u+eCmo7Fd67XpnOovHUHo43KRatIKK8r4HhP6G+pYOSekeNUfsDzvDDPXo2AZ0UAAAC0OtbnsT4PAAAAAAAAAAAAAND4CEYDgAZzySWXlH2t3btJ5KSTTtJ3v/tdff7zn1c+v2dTz9q1a7Vw4ULNmzdPxxxzjJLJpF5//XU99thjymYLN9W///3v1zXXXFP+iyjhyiuvHFl4JUkrVqzQihUrPM9duXKlzjnnnKqNBQAAAACaTTbvCEYz4b7V57fBfzzntjpjjBKRpFIe4QleZV5cIQ3JSFLGGM+6RCThbC9ov5WStRlnQF/CJH3CKWo7TgAAAJeszeih3l971s3smK0juiq/Md1P3HTIKOIZ1FbruV7jcAejmVHJaK6555BNK29ziphoyZ6cob+mVDBa4XWu96rZgtF4VgQAAECrY31eIdbnAQAAAAAAAAAAoJH4/V5VAO0lUu8BAACq49JLL9Wdd96p7u7ugvKXXnpJd999t+688049/PDDYxZdffazn9Uvf/lLxePxqo3twgsv1Fe/+lVFo6U3owAAAAAACmVtxrM8ZsI9x4XZnN9sG/mrbbzBX67zXO1KUsREFTcd4+q3UlzBEdKeYARXOALBaAAAoFE8uet3eifX61l3Vs/5zrDaahkO3/XiN/dqZTZoMJrxCy5LB+orbd3zc79noeIgtFR+wNlOMwkXjNZcrw0AAACoJNbnAQAAAAAAAAAAAABQPQSjAUAL++hHP6qXX35Zl19+uaZNm+Y8Lx6Pa/HixXrooYd08803V3XR1bB//Md/1Lp16/SlL31JZ511lmbNmqXOTjZPAAAAAEAprmC0qImFaifcZvfg57YDV/hCcTCCi+u8UvfZFcrQWMFonYR6AACAhvdA732e5QmT1MJJ59Z4NHv7Jly2LH7BZWkbbP7pmqcmIknFTFxReT9rFbfvaqcz0hVoHI0iTNgZIdoAAABod6zPAwAAAAAAAAAAAACgOsLtlgQAVNzGjRur2v6MGTP0rW99S//yL/+itWvX6rnnntO2bduUTqc1bdo0zZ49W4sWLdLEiRNDt71s2TItW7as7LEdffTR+trXvlb29QAAAADQjrI261keM+E20bDZvXzugLJxBi84AtdG6iNJ7cr1ld1vpfgFwCUiyXHfHwAAgGralHpFLw9u8Kw7ZdI56oxOqPGI9nDNBdt1DmVlnXVGZuTPfuHCQUPlXPd4eF6biCQ1kN9d8rrB/IBnO2GevRpBmOc/QrQBAADQDFifx/o8AAAAAAAAAAAAAEDzIRgNANpEJBLRggULtGDBgnoPBQAAAAAwDlmb8SyPVzEYjc3uhVz3I20DBi9YRzBaifekUQLH/PpLRjqdoR5+gWoAAAC1srr3XmfdWVPOr+FICrnnmO0ZjCafYDRVOBjNNU8dbjsZ6XQEow36Hg9rtqDpoM+KRkYdJlHl0QAA0FyMMYdKOkHSAZK6JW2W9Kqkh611fGO3vH7iks6QdLCk/SXtlvSmpCettRsr1Q+AcFifBwAAAAAAAAAAAABA5RCMBgAAAAAAADQRVzBaLGwwmiO8yvPcJtvIX22u+xE0oMx1XqkAOle/tQ4ccwU+GBnFTYf7/rRtqAcAAGgUA7nd+v07D3jWzes8Wgcm5tR2QKO4wrPaNVzWNxbNjA5Gcz+rpMY9P+/c+/9gwb+p/IDnec0XjBbsWTERSRa8FwAABGWMmStpgaST9/7/JEkTR53yqrV2Tplt+00jgji0nGAxY8xHJV0p6TTHKTuMMXdK+oq1dnu5gzPGTJe0XNJFkqY6znlY0r9Ya39abj8AAAAAAAAAAAAAAABAvRGMBgAAAAAAADQRVzBa1IT7Vl+YzfkdJhGq7VY33tAKV7BYqfdkvIFsleLqr8MkFDER5+twvW4AAIBaeaTvtxqyac+6s3qW1Hg0hRplrtcorA2WaRI1UcVNhzJ2aExd8OBi//m5KyisuH3X80DTBaMFDNEOE7YNAIAx5hxJV2tPGJpnoFczMsZ0S7pJ0sUlTp0q6QuSPmyM+ZS19ldl9HWBpFslzShx6umSTjfG3C7pMmttf9i+AAAAAAAAAAAAAAAAgHojGA0AAAAAAABoIlmb9SyPmXiodlyb+8ecZ5KKmEiotltd0GAEF9d5pd4TV/BA0EC2Sklb1/jDBUcAAADUUt7m9UDvCs+6SdEpOmHiqTUeUSH3HKpdw2XdwWgRFT6fJCJJZXJewWjB7p1rPj38nrhD6wqvcwejdQUaR6MIGuTmui8AADicIGlxvQdRScaYqKQ7JRUn7G6T9KSkPkmHSTpRktlbN1PS3caY91lr14To6xxJP5fUMarYSnpC0h8l9eztZ9qo+o9LmmSM+TNrbT5oXwAAAAAAAAAAAAAA1FOwX6sKoB0QjAYAAAAAAAA0kazNeJZXLRiNze5juO5J0ICyUsEL7n4bI3CsdHBEYwS4AQAAjPb8wDptzbzpWbeoZ3Ho+XSlNcpcr1GEWdiUiHRqd+6dMeXjDi42/vPb4uvc8+TmeqYK/qwY7DwAAEpIS9qkPQFilfaopItDXrMpxLnXqTAULSPpSkk/tNaOpLYaY46W9G+STttblJD0c2PMcdbazaU6McbMlnSXCkPRHpJ0qbV2w6jzEpIuk3S9pOHJ7QckfVXS/xPidQEAAAAAAAAAAAAAAAB1RzAaAAAAAAAA0ESyNutZHjPhvtUXdHN+ssk28deC656kAwZ/OYMXStxrZ7+2toFjrvEPj88VkJCxQ8rbnCImWrWxAQAAuKzuvdezPKKIFk1eXOPRjEW4bDF3NJqRKTgeDjArFnh+bv3n5wnjmv/vuy5rM84Q684me6YK+qzYbIFvAICGkJH0rKTHJf1+7/+flnSGpJVV6C9lrd1YhXZljJkr6fKi4j+31t5dfK61dr0x5r2S7te+cLT9JC2V9PkA3S2XNGXU8cOS3mdt4STGWpuW9G1jzGuSfjaq6kpjzA+sta8G6AsAAAAAAAAAAAAAAABoCJF6DwAAAAAAAABAcK7N9jETD9VO1EQVNx0lz3MFNLQz1z1xBYaNOc8VvOAIdCjdb62D0bz7Gx6fX5heOp+uypgAAAD87Mhs09O7H/esO757oXri+9V4RGO5w3eDzTFbjfUJRlNxMNo4Q+XKnd+Obt+vr2YLEAsajk2INgAgpNskTbLWnmitvdRa+0Nr7RPWOr7Z2fiWShr9DdlbvULRhllrByV9WtLQqOLP7Q1YczLGzJf0qVFFQ5I+XRyKVtTXz7Xnfg9L7B0vAAAAAAAAAAAAAAAA0DQIRgMAAAAAAACaSM5mPctjJha6rSAb9JttE38tuO5J8OAFRzBaiRA6V7+1DssoNX6/z0ytQ9wAAAAk6cHeFbLKe9adPeWCGo/GW8I45nruzIuWZq07GM0U5qK5Q+UC3DtrrXN+O9yuM6B4VPupnHue2xnpKjmORhI3HTJF4XNeCNEGAIRhrd3pF+bVTIwxnZI+WlT89VLXWWtfkPTzUUUxSX9R4rK/kBQddXyXtfbFAMMsHs/HjCnxWxkAAAAAAAAAAAAAAACABkIwGgAAAAAAANBEsjbjWR4z8dBtBdnIzmb3sRKOPYRBA8pc4WClQuhc70XQQLZKcY9/bzCazx7Ldg32AAAA9ZPJZ/RQ32886/bvOEjzO4+t8Yi8OcO3ahyC2yisfILRikK7xnPvMnbI2VeiVDDaqHmx35y82cKmjTE8KwIA4O88SaOTT39nrX0u4LW3FB1/uMT5HypxvSdr7QZJj44qmiBpcZBrAQAAAAAAAAAAAAAAgEZAMBoAAAAAAADQRDLOYLRY6Lb8AqyGJZtsE38tuO6JKzAs6HmlggXc/dY2LMPV377gCPdnJug9AgAAqJQndj2k3bk+z7qzei6QMcazrtaChG+1F3cwmsYEo3nPP4MECPsHmu15T4LM//3ep2Sky1nXqIKEufGsCABoY+cXHa8Kce2DkrKjjk80xsz0OtEYM0vS8aOKspIeCtFX8bguCHEtAAAAAAAAAAAAAAAAUFcEowEAAAAAAABNJOsMRouHbivIRvZSYV3tyBmMYFPK27zvtdZaZ7BYqfdjPIEPlZS2jmA0MxyMlnBeW+uxAgAAPNB7n2d5wiR1yqRzajsYHwSjFQoei+Z370oHCPvd3+F2g7Sfyg94nhNVTPFI+Ge1egsSos2zIgCgjR1bdPy7oBdaa/slPV1UfEzAftbtvT6ohwP2AwAAAAAhNMYvGwEAAAAAAAAAtD6C0QAAAAAAAIAmkrNZz/JygtGCbGQPEp7Wbvzu25BN+16btRnl5R2eVur98AtksNYvOqKyXOERw+OLmKjipsNxbelwCgAAgEp5LfWyXkk971l36uRz1RntqvGI3FwhuLWe6zUKGyIazRlcHCBUzm9+OtxusGA0776S0eZ8ngryrDgcjAwAQAM72BhzizHmWWPMTmPMkDFmy97jHxlj/soYM7WMdo8qOn4p5PUvFx0f7TivuLxa/QAAAABACO33/WoAAAAAAADUVhsumQTgQDAaAAAAAAAA0CTyNucM1SonGC1I6FmQDfHtxhVaIZUOX/ALXih1r5OO4IG8csrajO+1leR6DaPH7w6nIBgNAADUzuree511Z/VcUMORlOaaY+aVr+lcr3G4VzaZomC0IMFlLq5As9Ht+oXWlWqnWYOmeVYEALSIQyV9WnsCwXokxSXN2Hv8cUk/kPSaMeabxpjuIA3uDVIrDlN7LeS4is+f7zhv3jj7ebXoeD9jzJSQbQAAAAAAAAAAAAAAAAB1Eav3AAAAAAAAAAAEk7VZZ13MhP9WX5CN7AlHGFc787tvqfygJvtc6xu8UOJe+/WbzqcUj3T4Xl8prtcwenyJSFK7cn1jziEYDQAA1MpAbrcef+dBz7r5ncfqgMTBNR6Rv4RpjLleo/D7hY/GFAWjOe5dqdBiSUpb7/lpVLGR8GlnMJpNKW/zipiIe47cpM9TfmHQYc4BAKAJTJB0haQlxpgPW2ufLXF+T9HxgLW2P2SfW4uOXd9OLO6r+Dpf1trdxpiUpNGTpcmSdoZpx4sxZoak6SEvO2y8/QIAAAAAAAAAAAAAAKB9EIwGAAAAAAAANImszTjrhjfthxFss3vp8LR2k/S5b6WCv9LWJxitxL327dcOqluTfK+vFNdrHD0+12fLLxgOAACgkn7Xd78ydsiz7uwpS2o8mtKSJcJ3azXXaxjWOxrNyIwp8wsuK8UVnlYwt/UJrRuyaSVNp1L5Ac/6zmhXyTE0Ir9njzDnAABQJ1lJayT9RtI6SZsk7ZLULelgSWdK+qSkGaOuOVzSb4wxC621r/q03V10XM43u4qvmVjlvkZPZlx9hfXXkpZWqC0AAAAAAAAAAAAAAABgDILRAAAAAAAAgCaRtVlnXbWC0djsPpbffSsV/OUXnFbqXvsFp9UycMz1GhIBwiNcwRMAAACVlLd5PdB7n2fd5NhUHd99So1HVJrfHNMvXLdVWXkHoylMMFqJ0GK/c0bPvf2DkQeVjHQ65+NBnrkaUZCAbEK0AQAN6n9Luslau9VR/5SkXxhjvqw9wV7/S/smGLMk3WWMOdlaR0rr2LCy0hOOsYonDsVtVrqvKQH6AgAAAAAAAAAAAAAAABpKpN4DAAAAAAAAABBM1macdTET/ncgBNvs3pwb+aspaqKKmw7PulLhC676iCIlw+18wzIChD5UynjCI9K2duMEAADta8PAU9qWecuz7szJ5ylaxty52vzm5rWc6zW6sbFo7nsXJDzYHWiW9Pyz6/pUfsCzvlmDpglGAwA0K2vtP/mEoo0+L2WtvVrS/yiqOknSJWG6DDO+cVxT674AAAAAAAAAAAAAAACAumq8Fd8AAAAAAAAAPPkFo5UT7hBkI3uzbuSvtkQkqUxuaEx5ukT4gl+omDFeMQ/7xE2HjCKyyo+pCxL6UAlZm1FOWc+6hCkdHlGrcQIAgPa2eue9nuURRXVGz/trPJpg/OZ67RiMZp0ZHmPnzK5nlqzNKGezvs9Krvn76FDiIKF1rveoWZ+nggRkN+trAwBgNGvtjcaYxZI+OKr4ryX92HHJ7qLjcv5BLL6muM169BXW9yT935DXHCbp7gr1DwAAAKBu/Nc1AAAAAAAAAABQKQSjAQAAAAAAAE0ia70DqSQpbuKh2wuykT1IeFo7SkQ6tTv3zpjyUqEVrmCwIMEDxhglIkml8gOh+60Uv2Cz0Z8V1+emHUM9AABAbW0f2qJn+9d61p0wcaEmx6bWeETBNMJcr5G4gtGMx6a7UsFlXdFu33ovhXNb91x9+PpBj/dNkpKRLue1jWx06LHzHJ4VAQCt42sqDEZbaIzpsdb2epxLMJoka+1WSVvDXFPql0IAAAAAaBauX2oBAAAAAAAAAEBlReo9AAAAAAAAAADBZG3GWRcrIxgt2Gb3cvbbtT7XvfMLDpOk9DiC0SR3mJ2r3UrzC+UYPTbX62nHUA8AAFBbD/atcIZqnd2zpMajCccVNFVqjtlOvPI0/AK6Ss/PSwejRU1UcdPh275rPh4kjLoRBQk9S5jmfG0AAHh4TNLOUcdRSUc7zu0rOu4yxkwI2d+MomOvADavvqaH6cQY062xwWiuvgAAAAAAAAAAAAAAaAhE8wMYRjAaAAAAAAAA0CQqHYwWZJN+kA3x7ajcgLIgwQt+XOfVKnDMr59EoGA0Qj0AAED1ZPJDerjvN551B3QcrHmdrnyLxlDvENxGYm3eUTM2Gc3vuabUPNkVnFbcZql5eCo/EKidZhHsWbE5XxsAAMXsnonHa0XFniFk1tq3VRiiJkkHh+zykKLjFx3nFZcXXxe2nx3W2uKxAwAAAAAAAAAAAAAAAA2JYDQAAAAAAACgSfgFo0VNLHR7QcK4mnUjf7W57p0rWGFY2jqC0UzQYDRXWEYjBKMlPf8c9HoAAIDxWrtrjfpzuzzrzpqyRMaMDdVqJK45YTvOoazjdz4aj2A0v4CuUvfOGVxsioPR/EPrggasNYtSoWcRRRUr4xkUAIAGVvyPud8/hhuKjueF7Gtuifaq1c/6kNcDAAAAAAAAAAAAAAAAdUMwGgAAAAAAANAksjbrWR5RVBET/lt9pTa77zknWGBXu3EFHLiCz0bqHYEJQe+zKyyjVCBbpbjGb2TUYRIjx+5gtNqMEwAAtKcHeu/zLE9GunTKpLNrPJrwnHOoEnPMVuQdi+Zt9Dy0WKn5pzO4uOi9cIfWDQejebeTjHT59t+oSj2fJCLJhg8aBAAgpGlFx9t9zn2m6Pi0oJ0YYyZIeleJ9lzl7zLGhJlcnBGwHwAAAAAAAAAAAAAAAKDhEIwGAAAAAAAANImszXiWx028rPZKBaPFTEyxMttudeUGf6WdgQmlQ+p8+7W1CRxzBbAVByOUGxwHAABQrldTL2lj6kXPuoWTzg0836on1/y8PcNlvaPRjMaGcUVMxB1cVmZwcfHnpVRoXSo/4FkfJIy6EZX6+9IMf58AAAjKGDNN0tyi4jd9LllRdHxOiO7OlBQbdfyktXaL14nW2s2S1o0qiklaFKKv4nF5pwgDAAAAAAAAAAAAAAAADYhgNAAAAAAAAKBJZG3Ws7zc8DLX5v6ResNmdxd3aEWp4AXv+lLvxTBXAIErsKzSnOMvCqJwBVPUapwAAKD9rN55r7PurJ4LajiS8jnDZUvMMVuRDRGMJo0nuNgd/Dua33uTtRlniHVnkwaIlXxWDPj8AgBAk7hYhesot0ja4HP+rySNnkScZow5MmBfny46/lmJ84vrPxOkk73jOXVUUb+k/w5yLQAAAAAAAAAAAAAAANAICEYDAAAAAAAAmoRrs33UxMpqz7W5fxib3d1cwWilgr9c9a72xp7nCnyoTVhG2rqC3TqLjus7TgAA0F52597R2l1rPOuO6HqXZiVm13hE5WEOVT7XvUuVHVwcbH6byg/6PgMEnec3mtLBaM35ugAAKGaMmSnpfxcV/5e11julVZK1dkDST4qK/1eAvg6X9KFRRVlJPy5x2e2ScqOOP2yMmV+qL4/x/Ke1jm/sAQAAAAAAAAAAAAAAAA2IYDQAAAAAAACgSeRs1rM8VmYwWtx0yMg469ns7pYsM7TCHbwQLITOFWaXLhHIVilBx+8aZ9ZmnJ9jAACAcv2u735l7JBn3dk9S2o8mvL5hW+1G1cWiTHeSxzcoXLlBhcni45d8/CUbx+lwqgbValnQdfzEAAA9WKMOcIY84GQ18ySdI+kmaOKhyR9LcDlyySN/i0WnzbGfNCnr6SkWyR1jCq+2Vr7sl8n1toXJd02qqhD0q1723P19aeSPj2qaEjScr9+AAAAAAAAAAAAAABoFO5fZQag3RCMBgAAAAAAADSJjM14lsdMvKz2IiaiDpNw1jfrJv5acAcj+AcvuOoT7r2MAfv1D2SrFOf4AwZH7GmjNmMFAADtIW9zeqB3hWddT2w/Hde9oMYjKp873Kv95k9WjmA0x/nlzpPHG/ybzg9qMOcXjNbl23+jShj/Z0FCtAEA5TDGzDbGzCn+T9KsolNjXuft/W+ao/n9Jf3CGLPOGPNFY8x8n3FMNMb8raSnJJ1cVP1Va+0fS72WvefcUFT8E2PM3xpjRoefyRhzlKT7JZ0+qvhtBQ8rWypp56jj0yX9xhhzZFE/CWPM/5D0f4uu/2dr7asB+wIAAAAAAAAAAAAAAAAaQqzeAwAAAAAAAAAQTNYZjFb+t/mSkU6lc8HCALCPOxihRPCCHd+9rndYhjsYrbPo2P16UvlBdUW7KzouAADQvp7tf1JvZ7Z41p3Zc56iJlrjEZXPFUZVKny3vXhHo7mCulI+9y5vcxqyac+64vm+a36byg/6vj/NGjYdMzFFFFVeOc/6oMHOAAAUWSPpkADnHSjpFUfdbZI+7XPtcZK+Lunrxpg+Sc9I2i5pl6RuSQdJOl7e6yZ/aK29JsD4hn1J0jGSLth7HJf0HUlfNsY8sbfPuZJOUuEkZkjSh6y1m4N0Yq3dZIz5sKRfSRoOXTtD0npjzFpJf5Q0eW8/04suv0fSl0O8JgAAAAAAAAAAAAAAAKAhEIwGAA1uYGBATzzxhF588UVt375dqVRKnZ2dmjlzpg4//HCdeOKJ6ujoKN0QPJ1zzjlavXr1yLG1tir9rFq1Sueee+7I8dKlS7Vs2bKq9AUAAACgdWXzrmC0eNltJiKdUm6nuw6e/IIR/LgCzIIGJpQT+FBJrvEX3w+/z06tQtwAAEB7eKD3Xs/yqGI6Y/LiGo9mfJwhuI5w3VZm5f3zGuMKRnMEdfnNPdN571A0KXjwbzqfUio/4FkXVWxcz2r1ZIxRMtKpgfxuz3qeFQEATWKy9gSIldIv6e+stTeFadxamzPGfEzSv0m6aFTVDEnnOy7bKulT1toHQ/a1yhjzIUm3al/4mZF08t7/vNwh6VJrrXfSKYARrM+rLtbnAQAAAAAAAAAAAADKQTAaADSgXC6n//zP/9Qtt9yilStXKpvNOs9NJpM677zz9Jd/+Ze68MILazhKAAAAAECt5eT9fDi+YDTvDf6l6tqdX0CZtVbGeAc2pB0BZkGDBcoJfKik4MFo7s8OwWgAAKBStg1t1vr+Jz3rTpx4mibFemo8ovFxzQnbc/4ULhjNFTTsG4zmEzhXPO/2m4e7QoqTkU7nc0EzSESSPsFoPCsCABrOBknXSjpb0kmSgnyz7QXtCRq7yVq7vZxOrbW7JV1sjPmJpL+XtNBx6g5Jd0paaq3dVmZf9xpjjpW0XHuC2KY4Tn1E0vXW2p+W0w/QLlifBwAAAAAAAAAAAABAYyMYDQAazG9/+1t94Qtf0AsvvBDo/FQqpbvvvlt33323Tj75ZP3gBz/QSSedVOVRhjdnzhy9+uqrkqRDDjlEGzdurO+AAAAAAKAJZW3GWIaAlgAAIABJREFUszwWGU8wmnuPoCtcAO5ghLxyytqs4h5hddbawMFiLu7AB+8whkpzhUckTOG4OkzC3UaNxgoAAFrfg72/knUEaJ3ds6TGoxk/15ywHedP3u+q5MhFc9876753fve1eN7tDK2zg+5gtGhzP0/5PQ/yrAgAKIe1dk4V294i6R8lyRgTkTRf0mGSDpTUIykpaVDSTkmbJf2+3IAyR/8/kfQTY8yh2hPMdoCkCZLekvSqpIestUMV6GerpC8YYy6XdIakQyTNktQv6Q1JT1prXxlvP0CrY30eAAAAAAAAAAAAAACNj2A0AGggy5cv1/Lly2Vt4XYPY4yOOuoozZ49W/vtt5+2bdum1157bczirMcff1ynnXaavvvd7+rSSy+t5dABAAAAADWQyTuC0cbxbT6/QK6gYV3tyC8IIJ0fVNwjrC5jh5RX3vOaoPfaHfiQUt7mFTGRQO2UyxX6UDyuiIkoYZKeQWqucDUAAIAwhvJp/a7vfs+62Yk5mtt5ZI1HNH6uuV4qn5K1VsY4UsFaknc0mnEko5UTKudXV9yeMxgtn3LPkU1zh4fxrAgAaFbW2ryk5/f+V+u+X5FU9WCyvSFrK6vdD9CKWJ8HAAAAAAAAAAAAAEBzIBgNABrEFVdcoRtuuKGgbOLEibr66qv18Y9/XAcffPCYa1566SXdeuutuv7665VOpyVJQ0ND+qu/+iv19/friiuuqMnYAQAAAAC1kbVZz/KYRwhXUH4BX3517c4vCCBtB9WtSWPL8+5AsKDBAn7vyZBNK1nl8AXXa/AaVyLSqXTOIxjNJ4ACAAAgqLW71qg/v8uz7qyeJU0ZIuaa61nllbFD6jCJGo+ofvLWOxhNzmA0d3CZS8qnrmNMMJoreC2lVH7As64z2uVsvxn4B6PxrAgAAIDmw/o8AAAAAAAAAAAAAACaR6TeAwAASLfddtuYRVeLFi3S+vXrdfXVV3suupKkefPm6atf/arWrVunY489tqDu7//+77Vq1apqDbllrFq1Stbakf8AAAAAoJHlXMFopvzff+C72d0EC+tqR34BZSlH8JdfKEPQEDq/AIJaBI65+vD6HLk+W34BFAAAAEFYa7V6572edZ2RLi2YdFaNR1QZvuG7bTeH8v6ZjSvuzj33dM+RXfc0bjoUNdGCMtd8PWOHNJDf7RhTc4eH+Y0/GTDYGQAAAGgUrM+rH9bnAQAAAAAAAAAAIAx+pARgGMFoAFBnL7zwgv72b/+2oOz000/Xfffdp9mzZwdq4/DDD9f999+vo446aqQsn8/rE5/4hLZv317R8QIAAAAA6idrM57lMRMvu02/QK5m38hfTf4BZd4BC2nrDmVImKDBaPUNy3D1ESYYrRYBbgAAoLVtTL2o19Ive9adNvm9vnOmRuY3J2y3YDTrDEbzjkZzPdf43Td36O/Ytvw+U33ZnaHG1Cz8Po88KwIAAKCZsD4PAAAAAAAAAAAAAIDmQzAaANTZVVddpd279/0m+Z6eHv30pz9Vd3d3qHZmzJihn/zkJ+ro6Bgpe+ONN3TNNddUbKwAAAAAgPpyBaNFTazsNv02+LPZ3S1uOmQc315NOQIW/EIZgoZ3+IUruPqtJHcw2thxlRNOAQAAEMTq3nuddWf2nF/DkVSWbwiuT8hua3L9ykfvYDTXs4t/MNr4Q38lqS+7w7O86YPR/J4VTXOGDwIAAKA9sT4PAAAAAAAAAAAAAIDmU/6OSQDAuD333HO65557Csquu+46zZo1q6z2jj76aF111VW69tprR8puvvlmLVu2TFOmTBnXWBvNSy+9pHXr1umNN97Qrl27ZIxRV1eXZs6cqUMPPVTHHXecurq6qj6OdDqt1atX65VXXtGOHTs0Y8YMzZ49W2eeeWZV+t+8ebMeffRRbd26VW+//ba6u7s1Y8YMLViwQHPnzq14fwAAAAAaiysYLWbiZbeZMO7N+smAYV3tyBijZCSpwfzAmDpXwIIruCyiSOD30Dcso8qBY9Za52sIEx5RiwA3AADQunZl+/TErjWedUd2Ha+ZHQfWeESV4zfXS7VZuKwzFs24gtHcc09rred1ace81CvQzC/kzB2MVv2fU1WT32smRBsAAADNgvV55WN9HuvzAAAAAAAAAAAAAKCeCEYDgDq64YYbZO2+rR3Tpk3TZz7zmXG1ecUVV+gb3/iGMpk9m+X7+/t100036Ytf/OKYcz/96U/rtttuGzl+5ZVXNGfOnED9rFq1Sueee+7I8dKlS7Vs2TLf9oe9+uqrzo0rkvSpT31Kt95665jydDqtb3/727rpppv04osv+o4vGo3qhBNO0J/92Z/pyiuvdC6COuecc7R69eqR49Hvh5++vj595Stf0a233qp33nlnTP3EiRN10UUXafny5TrggAMCtemSyWR0880363vf+56efvpp53nz58/XVVddpc9+9rOKxfgnHgAAAGhFWZv1LI+PJxjNJ3yBze7+EpFORzCad8CCK7gsEen0fU4eLWpiipm4Z0hetQPHsjarvHKedUmPgD3XZ6vaAW4AAKC1Pdz3G+e8+OyeJTUeTWXFTYciiiiv/Jg61xyzVbl+XmPkCEYz3nPPvHLK2qznM5Mz9NejLb9no77sTs9yv2CxZuD/rEiINgAAAJoD6/O8sT6vEOvzAAAAAAAAAAAAAKDx8FNZAKijFStWFBx/8pOfVEdHx7janD59uj7wgQ/orrvuKujHa+FVM3n99dd13nnnacOGDYHOz+VyWrt2rdauXauLL75Y8+bNq9hY/vCHP2jJkiV68803nefs2rVL//Zv/6a77rpLv/jFL8rua+3atfrYxz6mP/7xjyXPffHFF3XZZZfpX//1X3XPPffowAMPLLtfAACaTV92p57tX6u30puq2k880qG5nUfqyK7jFTXRqvbVrnZn39Gz/Wv1Tq5PR084QQcm5tR7SGgRu7K9eqZ/rTanX6/3UApETUxzkvN19IQTFY+Ufh70CsOSpNi4gtHcm/WbfSN/tbnunSv4yx2MFi5UIBFJKpsb+1l4qO+/9eLAM5IkY4wO6DhYx3S/W93RSc62rLV6fmCdXh7cUDKwzPX5Gx7T2DLv+/Py4HrdtfXWkePJsak6esKJ2j9xkG//W4be0LO716o3u8OzPhnp1LyuYzS/8xjfDV+1mjeE1RFJjMwzIiZSVhubUhu1YeBJ7cr2Bb4mZuI6tPMIHT3hBEVNZX9ksDOzXev7n1TapnTshJM1o2P/irb/Rnqj1vc/pUw+rXldR2t+57GBQwYBlFbq34iYiWtu5xE6out4xSPlz0WAMPI2pwd7V3jWTY1N13HdJ9d4RJVljFEikvQM332wd4We6/+D7/URE9GBiUN07IST1RmdUK1hjsvWoc16tn+tdma2+563eSjcs5vfs8vPtt3q+cz00uB6z/O95rYdJuFsP2OHHO009/MUwWgAAABoBazPC471eazPAwAgGH4eCwAAAAAAAACoDYLRgAaTszn1Zv03AmD8emLT6h5ksWnTJm3cuLGgbPHixRVpe/HixQULrx555BFlMhnF4825OW1oaEjnn3/+mEVXU6dO1XHHHaeZM2cqHo9r165d2rx5s9avX6/+/v6qjGX9+vV673vfq7fffrugfObMmTrxxBPV09OjLVu26JFHHtHg4KB27NihCy+8UN/4xjdC93XPPffooosu0sBA4Qao/fffX8cff7ymTp2q/v5+rV+/vuA3dD711FM69dRT9cgjj2j27NnlvVAAAJrIm+lX9e3Xl+qdXG/N+jxp4un6zP5XVjw8pN1tHXpT3359qXZkt0mSfr7N6OOz/kanT35fnUeGZvdWepO+vWmperNvlz65To7oOk6fP/AfS24udwVTjefrkV+AAJvd/bnuTyo/6FmedpSHDUxIRjrVn9s1pnzd7sfGlE2NTdflB/0fTfcIpMrbvH685Xt6uO83ofr34hmMZrxf1+ah18cEXfxsW1SfPeBKnTTxDM9rntr1iG5+83rllPUfyNvSuVMu1Eenf84zIKse84awFkw8W5/c/3+G/t7VQ72/1o+3fE9Wtqx+j51wsi494IuBQhqD2Dj4gm7cdI3683s+qz83t+mvDviSjq1QYM3v+u7Xj966UVb5PQVvS2f3LNHHZlxKOBpQAdZa3bHl+1rT96uS5x494SRddsCXKvb1A/DzTP/akWfGYot6zlOkBULME5FOz2C0P+x+NHAbszpm63/OXq6e+H6VHNq4PbP7cd305v/rDBILwjg23fk9u6zq/WWoPryekSImooRJKm39w4RH62zyYDS/Z0VCtAEAQDNjfV7t1HuNHuvzgmN9HuvzAAAIrryfRwMAAAAAAAAAEBY7uIEG05vdri//8bJ6D6PlXTP3B9ovPrOuY3jooYfGlJ18cmU2hr773e8uOB4cHNRTTz2lBQsWVKT9oK6//notW7ZMkrRo0SK98cYbkqQDDzxQa9ascV7X3d1dcHzLLbdo/fr1I8dz5szRjTfeqPPPP1+RSGTM9dZarV27Vvfcc49uvvnmCrySPTKZjD7+8Y8XLLraf//9dcMNN+gjH/lIwVh2796tf/7nf9Y//dM/qbe3N/RvBF2/fr0uvvjigkVX559/vpYvX65TTjllzPlPPvmkLr/8cj344IOSpDfeeEOXXHKJVq1apWi0+TeCAQDg52fbbqt5uMkTux7WyRPP0gkTF9a031Z3z/Y7Cja4W1n9x5bv66SJZ7DhFuPyi+0/auhQNEl6fuBpPdq3UmdNucD3vKz1DoWKmfI32vgFCIQN7Go3rq9N6bx3WIKrPGwAXcIEP39Hdpvu2f4f+swBfzem7qXB9RUJRZO8PythXldeOd3x1vd1fPfCMRvl8janH2/519KhaHut3HmPFk56jw5Kzh1T97Nt/19Dh6JJ0u93rdYpk8/WMRNOCnxNKj+o/9x6U9mhaJL0TP/jWrvrIS2cfG7ZbYz20223jISiSXu+ft3+1o269rB/H3dw2VA+rf/Y8oN9oWh7re69V6dOOldzOuePq30A0iup5wOFoknS+v4n9Ng7q3VGz/urPCpAemDnfZ7lMRPTGZNb4zNYiXDit4Y26dc7f6Y/n/GXFRhRZVhr9eMt/zquUDTJLxitcs8urvcgEUkqnQsejNbsz1P+z4qEaAMAgObF+rzaqfcaPdbnsT7PD+vzAAAAAAAAAAAAGhPR/ACGjf1pNQCgJjZt2lRwPHPmTO23334VafvYY48t2V8tTJs2TXPmzNGcOXMUi+3L4ozFYiPlXv9NmzatoJ2777674Npf//rXWrJkieeiK0kyxujkk0/WsmXLtHHjRh1yyCEVeT3f+c539NRTT40c77///lqzZo3+/M//fMxYuru7tXTpUt1xxx2KRCLauXNn4H7y+bwuuuiigt+quWzZMt13332ei64k6cQTT9Rvf/tbffjDHx4pW7NmjW6//fbA/QIA0IzyNqfnB9bVpe8N/U+VPgmhbBgYe0+zNqs/Dj5Xh9GglTTL39f1A0+WPCdrM57l4wlG64x0OesIJfTnCihL5Qc9y9PWuzxM0JkkdUYnhDrf6+urJD3X/4dQ7fjx+qz4fba89Od36bXUy2PK30i/qt25vlBtre8f+/dpz7yhcq+5mjZ4jN/Py4Mbxh0yUk6/Lqn8oF4e3DCmvC+3U1uG3hh3+36vd0OAr6UASnt69+Ohzn9x8JkqjQTYZ+vQm84580kTz9DE2OQaj6g6ws6hXJ4J+fe42t4a2lSRwOqo8f7db5V8dkk63gNXuUul3st6SUa8nzvipsP5PgAAAACNhPV5rM9zYX0eAAAAAAAAAAAAADQ+gtEAoE527NhRcDxlypSKtZ1MJpVIJHz7ayavvvrqyJ+PP/54zZs3L/C10WhU8Xj5AQHD8vm8vvOd7xSU/fCHP9TcuXN9r/vIRz6iv/7rvw7V11133aVnntm3kfBjH/uYli5dWvK6WCym2267TTNmzBgpu/7660P1DQBAs0nn08rabF367s+/U5d+W1Xe5tSf2+VZl8oPeJYDQWTyQ0rbVL2HEYjr78Borq95sXFsSj8wcahniMDBicOUiIQL7Go3rmCEtCMYbTDnXd4ZDReYMK/z6FDn9+d2ydqxvzMnbNiYy8HJeeqIJMaUz+sKN05J6s+N/fd1t0dZ6XbG/n1K51N1mzeEtTvA14OC87OVeS/LuddevN7HYYMV+Hfd77NbqdcAtLsdmW2hzk/n01UaCbDPA70rnHVn9yyp4Uiq67CQcz2Xndntytt8RdqqBL/5QRhzO4/0LO+IJHRIcn5F+pjXdYyjPPh7E1HUOdZmMbfzCEU8lpTM7xobAAEAAAA0ItbnBcf6PNbnAQAAAAAAAAAAAECjIRgNAOqkeCFUT09PRdsvbu/tt9+uaPv1snXr1rr0+8ADD2jjxo0jxwsWLNCFF14Y6NqvfOUroRZ/ffvb3x75szFG1113XeBru7u7ddlll40cP/300wXjBgCg1biCZ2phMEdYVyWl8+7gqkw+U8ORoNU0U7BekK8rWev99yFmyt9wEo/E9Sf7XVzUXkx/Mu2SsttsF8no2EA5yf25S+X7vdtxBKy5LOo5T1Nj0wOfb5XXkB0bWJOqwL+jMRMb8/kZNid5uN7VfUqo9rxCs8oJ0hr0uNeVCOSqlbBfuyrxXkqVu0cDOe/PuuT+OhbGoM/rTTkCCAGEszMbLhhNGhvACVTSUD6t3/Xd71l3UGKu5iQPr/GIqufsngvUE9tv3O1kbbZiYWSV4Pfvd1ATohP1vql/6qz/k/0uGldotCQd1nmUjp3wbs+690z5oLqjkwK1s3jqh9UV7R7XWOptQnSi3j/1QwVlCZPU+VM/UqcRAQAAAOGwPq88rM/zx/o8AAAAAAAAAAAAAKiN8a0KBgA0LGNMvYdQMUceeaTWr18vSXr99dd1/fXX66qrrqrpGNasWVNwfMklwQMCpk+frsWLF+uXv/xlyXP7+/v1yCOPjBwvWLBAhx56aPCBSjr33HN1zTXXjBw/+OCDmjNnTqg2AABoFmnrDtM6ouu4cQUFDds29Ja2Zt4cU16pABLs4RfEUokAFbQvv8/W4V3HKV6BrxNh9WZ36I30xjHlQYKQcjbrWT7ezf/vnfqnmtFxoNbtflSJSFLvnnimDu1snXCJaul0BJq5PneuMAhXOy77xWfo7w/+mn7Xd79eTb2kvHKSpHQ+rZcGn/W8JpUfUCKSLBqPd3jVfvGZmtVxYMlxzOw40PezEjERXXrAF/Vw3/16YeDpgs/4SwPrPf8d9/r31fV3I2461B2dpJ3Z7eNqR5KO6HrXuP8elWPr0GZty2weUx42gNX1XnZGJmhu5xFjyndktmvz0GuB2wnL72tvxg6Nu/2Uz/2p1GsA2p3X11ZJMorIKj+m3BKMhir7/TsPOL/Gnz1lSUv9TGRaxyxddfB1eqTvt9qYetHz79xoOZvTcwN/8KzbmX1bE2OV3fhfLtdcLGZiOqLrXb7XGkV0UHKuTpl0tmb6zFOP7T5ZVx50rR7ftUZbhjaFGl+HSeiwzqN0Rs9idUQSnucckDhYVx38df3/7N17mCRlfff/z92H6e49zuzBhbAgkg1hQVAR5LiAwUeyRCNBExT9RdFEEg1KHjzEmCdBRH8STX6BeBkTkwtMHhONgogGImhgUQiQ1RAUEFg5CArr7uzMsrvTPdOH+/fH7MxO99zf6qqePs3M+3VdXBdd1VV197FqZqvec+/zt+vp0uPB12Z5elAvXnaCXrbslETb71e/vuYtOjR/hB7c+30tTS/XK1acpfX5w3s9LAAAAKAvLKSfRTk/j/PzAAAAAAAAAAAAAKDfEEYDgB5ZtWpV3e3du3e3df2jo6OR25tPLrzwQt1www3Tt9///vfrxhtv1EUXXaRzzz1XBx98cMfHsHXr1rrbJ510UqLlTzrppFgnXt1zzz0qlw+EP4444ojEf1GyVqu/EOfHP/5xouUBAJhPxiPiZO/8hT9SIb10ztu4feQb+vLP/37W9DgBI8QXFTEhjIa5iPqsvvMXPqgl6WVdHM2k7++5W3//sz+fNT0qJDTF+jy0IwR57LITdOyyE+a8nsUklyoEp1vxzJLxXZdPGEaTpKHsGp275oK6aaOVXfrjH7/dHNPKmOM8ZcWvzFp3q9Iuo02D52jT4Dl10//fJ/+3nh5/fNb9i9XZz5EVwVqbPVgbl75E3x65afYygc+TFaaTpN8/5MNmAKOTbtv1VX11x+dnTU96nGG9li/Mb9C71//prOn37r5dn3/u6lnTkwbZLKHXcUo79utR35fEa4G5q/mqRsu7gvOGMqu1q7KjyyPCYue915bRm4PzlqSW6YTlm7o8os5blV0b+3is5mt676O/papmR5RHyjt1WP4X2z28llj776HM2uDxSqsOLxypwzsYeX7BwMF67ZoLO7b+fuOc0/HLT9Pxy0/r9VAAAACAxDg/Lz7Oz3sy0bY4Pw8AsLgtnDgsAAAAAAAAAKC/EUYD+sxgZo0+esTf9noYC95gZk2vhzDrRKiRkZG2rbtUKqlUKtVNW716ddvW323nn3++zj///LqTr+666y7dddddkqQNGzbo1FNP1WmnnaZNmzZp48aNbR/D9u3b627/0i/9UqLljzwy3kU4Tz/9dN3tL37xi/riF7+YaFuNdu0KX8QIAMBCEBW+yKXybdlGwYjVxAkYIb5S1X4tCaNhLqIiP3kjatVp1nZLtaK893LOPom03MEwGpKzX8vw+84Kc1n7mnaNRwqHqqx4VTc+G1YMLrRvt/b3hfSShOsJvy4ppZV1A9ZQO8oef7LjDOu7znotrXhsVKg00Xgixl/xs6MtSUU9PxyjAXP3fHV3MLAkTcaaCKOh2x4vPaJnxp8Izjtl5a/0JG7aT1IupcHsKg2Xfz5r3mhluAcjCrNit736uQwAAACLF+fndU+vz9Hj/Lz4OD+P8/MAAIjP93oAAAAAAAAAAIBFgjAa0GfSLq3V2XW9Hga64JBDDqm7/dxzz2l4eLgtJ0g9+OCDTbc3nzjn9KUvfUl/9md/pr/8y7+cdVLZtm3btG3bNv3jP/6jpMkTsd7ylrfokksuadtf4mw8MW7FihWJll+5cmWs+w0Pt/8ipT179rR9nQAA9IvxWik4PesGlHLptmyjXcESRIsKsZT9RBdHgoXGCuTkXL5t3xNJFVLhIJFXTeO+pLyzwwBWKDDj+DVfL1hBMyvk1ekYRM7l5eTkAyciJwuOhd+j7VRIx9+/WvuIfKpg7qfDIbjw819ILYkMEnaS9dpbET2LdVxifd9Y08t+QhVfnnNsMWq/3o7gaVT8jGM0YO5GyjvNeauya6XAV5T3XASDzrlz5GZz3qbBzV0cSf8azKwOhtFG+imMZhzfWMdzAAAAQKdwft7iwfl58XF+3txwfh4AAAAAAAAAAAAAtF+q1wMAgMXq1FNPnTVt69atbVl343oKhYJe+tKXtmXdvZLJZPSxj31MTz75pD71qU9p06ZNyuVywftu27ZNl19+uY444gh96Utf6vJI52Ziov3RDy5KBAAsZPZFte0JzEjR0Zuar7ZtO4tdVOCk4itdHAkWGiuQkzeiTN0Q9R1lhbOmVI3Pw1wjRmiNHc80wmhWvKpN70fnXERoK1lwrNPMoFlgnGbALbU0IrAWCsH13/eBfZxhh8VCrP1oPh1+La0wmmQH5BKNJxCmm9KOMFpU/Kwd4wcWu5HKjuD0rBvQsnSyC1KBuXq+Mqrv77k7OO/opcfrBQMHd3lE/WkosyY4PSp02G2dPhYGAAAAgEacn5cM5+e1jvPzAAAAAAAAAAAA2od/egEwhTAaAPTIYYcdpsMOO6xu2q233tqWdd922211t0866SQNDAy0Zd1TqtXeREDWrVunyy67THfeead2796tu+++W5/61Kf0ute9TsuWLau77+7du/WmN71JN95445y3OzQ0VHf7+eefT7T87t27Y91vzZr6i5c+/vGPy3s/p/+uu+66RGMFAGA+Ga+VgtNzqXzbthEVS7G2j+Ss6I3UnoAKFi8rFmTFiLqhkI4IEkXEfmq+qppqwXmE0XrDCoiN14qq+dmvlRmvauP70Y611W/bex8ZHOs0OwgWCrhZz1shYWDN+j7ofAjOYo2/4isq1+Lv/+zHFn4towIkVjAviah1lGtzv+gsKn4WFU0DEI8VUpoML7ngPC/OQEBn3L37NlUVjgOfObi5y6PpX4OZ1cHpo5X+D6N1I8oLAAAAYHHi/LzWcH4e5+cBAAAAAAAAAAAAQD8gjAYAPfSrv/qrdbf/6Z/+SeXy3KIPO3bs0E033RS5nSmZTKbudqUSvrgoZGRkJPng2iyXy+mUU07RZZddphtvvFHDw8P64he/qCOPPHL6Pt57vec971GtFo4HxLVu3bq624899lii5R999NGWthN3OQAAFqtxI+iSa+NFtVHxpKiAEZIpViMCKr79f7Ubi4d98X0Pw2gR244K+lS8/TNbxmXMeegc633k5TXhx+umVXzZ/D5rZ6jPDqPV7zPHfcmM2HQjTpEoaGZEsPKpJeZYS7WifMOfCepGmC6pqEBZKUGgLCoeF7IkIn7XjuObsYixR32XxRX1XTnhx1VtwzaAxWzECCkNZVcbWTSgM6q+qu+MfjM4b3X2BTpm6fFdHlH/GsquCU63Ps+9UDR+h9PLYzEAAAAACx/n580N5+cBAAAAAAAAAAAAAHqFMBoA9NB73/teOXfgUrIdO3bo2muvndM6r7766rqTt5YuXarf/d3fDd53xYoVdbdHR0djb+fBBx9MNK6Zj7NTBgYGdMEFF+jee+/VIYccMj396aef1ve+9705rfuEE06ou33PPfckWv7ee++Ndb9TTjml7rm67bbbZl3IDQAADhivlYLT2xl0ibpANyrKgWQagz0zVWrETdC6ohFUameIKqkBl1PK+LXBplxvAAAgAElEQVRcVJCo4u0LdTIuO+dxIbmo/U1jzKtUtb/n2hmDsENhjeOx32uFtB3NahfrMxgaV1T0q2AEvrxqGvf1xwn9GEqM2rYVDwne1wiMWs9PLlWQM/JGUbHSuKLeX1HfZbHX3+QYLOq4AkBzu8o7gtOHMmsl0mjooh/s/S8z7LVp5a8q5dJdHlH/GsqEw2ijleG++TcGK/ray5/NAAAAACx8nJ/XXpyfBwAAAAAAAAAAAADoFsJoANBDRx99tDZv3lw37YMf/KC2b9/e0voeeughffKTn6ybdtFFF2nVqlXB+7/gBS+YtXxcN998c6Kx5XK56f8fHx9PtGxSg4ODOv/88+umPfHEE3Na5+mnn153+1/+5V9iL7tjxw7deuutse67du1avexlL5u+/dOf/lS33HJL7G0BALDYWNGLnMu3bRtR0ZskwRJEKxoXSEvtCahg8erHEJJzztx+VOyn4u1IIGG03sino6JWDSGyiNe2ELGepKyoWWMkMCrC187AqLkN4zGHxmXt7wvppdFxuoblrDhdL2McUdtOEmC1niPr+Um5lHLGvKh9clxjHd6vNzsGs6KYAOIZqQwHpw9lw+ElSfLi4lG0352j4d+NZ1xWp658VZdH098GM6uD0yu+or3V57s8mjBr/93Ln80AAAAALHycn9cZnJ8HAMBixh/RAQAAAAAAAAB0B2E0AOixv/iLv9CSJQcu+hgdHdX555+vvXv3JlrPjh079IY3vEETExPT0w4++GD96Z/+qbnM8ccfX3f761//eqxtffOb39R9992XaHyDg4PT/79z5866v5rZCZlMpu72zBO/WnHGGWfo8MMPn769detWfeMb34i17BVXXJHo8f7BH/xB3e33ve99id8PAAAsFuO1UnC6FfpoRdYNKK1McF6SYAmiRQV6yn7CnAc0YweVenvxvRUrior5RMWEMi78PYXOShLlig6Rte/9aI2pcZ8VGWpLheNq7VSIOU5rmjT5WCPDYrNicOFYVy9jHNEB1njHGd578zmyQnmStMR4nceqcw+jRY29HWG0UpN4G8dowNyMlHcGp6/KrJUzL3YhjIb22j7xU/1o7H+C805YfrqWZVZ0eUT9LSpcOFIJf6a7rfHYbEo3orwAAAAAFjfOz+sMzs8DAGCx4t+EAAAAAAAAAADdQRgNAHrsqKOO0l//9V/XTbv77ru1efNmPfPMM7HW8dhjj+nss8/Www8/PD0tlUrpn/7pn7R27VpzuVNOOaXupK+vfvWr2rp1a9NtvfWtb401rpk2btw4/f+VSkW33357rOXGxsb013/919qzZ0/sbe3du1c33HCDuf1WpFKpWSdEXXzxxU3/0uUNN9ygz3zmM4m29du//ds66qijpm8//PDD+o3f+A2NjIwkWs+OHTtmPQ8AACw0VvAol8q3bRvOOeXTyQNGSCYqYNKOgAoWr34MIUl2rMgarxT9WUgTRuuJnMubgZjxHoXRrFBY3FBbSill3UDbxmOxHnNo326NNZ9aonxE5LBxOeu4wdrPd0PKpZVz4eMWKx7SaMKPq6ZacF5UOM5+DeZ+fFOMiKuV57hfL9fKqvhK9PYJowEtK9fKer4a/j1kVHgJaLctI7eY884Y3NzFkcwPy9Mrzaj7aGW4y6MJM4/FevyzGQAAAICFj/PzonF+HufnAQAAAAAAAAAAAEA/IowGAH3g7W9/u9797nfXTfvud7+ro48+Wp/4xCf09NNPB5fbtm2b/uRP/kTHHnusfvCDH9TNu+qqq3T22WdHbnf58uW64IILpm9Xq1X92q/9mm699dZZ952YmNDnPvc5nXzyydq+fbuGhobiPjxJ0itf+cq62xdddJE+85nP6Hvf+54ef/xxPfnkk9P/7dy5s26773nPe7R+/Xq9/e1v19e//vXIk7Duu+8+nX322Xrqqaemp5188sk68sgjE4035D3veY9e8pKXTN/+2c9+ptNOO01f+cpXVKvVX4C8b98+XXHFFXrjG9+oWq2W6PlKp9P6yle+ohUrVkxP+9a3vqXjjjtOf/M3fxP5+Hft2qUvfelLetOb3qRDDz1U11xzTYJHCADA/DPurYtq2xs46WQ4BJOiInPN4idAFOvi+6hYUDdY31PWeKXoMFrWZec8JiTnnDNfy9lRrvD33IDLKe3SbRvTXMdTSC2Vc+HYWztZn8Gyn6h7r9d8bVZkbuY6ouJ0jY/Rfsw9/j4w4m5xjzNaje4tMQONbQijdTB4Gud54RgNaN3uiIDSUMYOo/lODAaLVqlW1D3P/0dw3mH5DTq8MPff9y80KZfSYHZVcN5IeWdwereZx2IRoVsAAAAAaBfOz+P8vJk4Pw8AAAAAAAAAAAAA+l/4z0YDALru05/+tIaGhvSxj31M3k9eRrZnzx596EMf0h//8R/r6KOP1qGHHqqhoSENDw/rqaee0iOPPDJrPdlsVldffbV+//d/P9Z2P/rRj+qrX/2qRkdHJUk///nPdc4552jDhg067rjjlMvltH37dt17773at2+fJOmggw7SVVddlegvU/7mb/6mPvzhD0//lc2f/exns042m/LWt75V1113Xd20559/Xtdee62uvfZaOee0YcMGHXHEERocHFQmk9Hw8LB++MMfzvornkuWLNHf/d3fxR5nlGw2qy984Qs688wzNTw8eYHgs88+q9/8zd/UunXr9PKXv1wrV67U9u3b9Z//+Z8qFicv3F65cqWuuuoqvfOd74y9rWOOOUbXX3+93vCGN2j37t2SpGeeeUbvete7dMkll+jYY4/VYYcdphUrVmhsbEyjo6N69NFHY/8VUwAAFgorlJJL5du6HSuY0o5wCCZFBUzmGlDB4las7gtOj4oFdUMhZQWJwuOVoiOBGcJoPZNPLQnuDxq/16wAZLujXHFjntZ48un2xkUtUZ/BUrWoZZnJ9/SEH5c3cjv51JLpOF2s18DY1/T6+yCfWqLd2jVretzjjFJEXDTq/WU97jHjezMu77353SvNfb8e53nhGA1o3a7KDnPeUHaNHc/0pNHQPv/1/J3mz4hnDm7u8mjmj8HMag2Xfz5r+khE8LBbqr6iCT8enNfrYzEAAAAAiwfn5x3A+XmcnwcAAAAAAAAAANCvOCsZwBTCaADQRz760Y/qzDPP1Lve9S499thj09O993rwwQf14IMPRi5//PHH62//9m91wgknxN7mIYccouuvv17nnXde3V863LZtm7Zt2zbr/i960Yv0b//2b9q+fXvsbUhSoVDQV7/6VZ133nn66U9/mmjZRt57PfbYY3XPUcghhxyiG264Qccee+yctjfTMccco29961s699xz9eyzz05P3759u26++eZZ9x8cHNRNN92karWaeFuvetWrtHXrVr3pTW/S1q1bp6dXq1Xdf//9uv/++5uuI+lfDgUAYL4Zr5WC03Op9kZd4kZm0Lqo57LsJ7o4Eiw0JSOgWEj3OoxmfK9Uw+OVomNChNF6J2/scxrfe9b3XL7N70V7nxVvPO0OtVmiPoPF2j4t04rJ/48IbE2tw4rTNU6zAmK9jnEUzPdQvOOMqAhY1PvLCjSWIgKNcZT9hKqyQ45zDaPFeV6iYnEAoo2UdwanF1JLlU8V5GSE0YA28d5ry8js37VL0tLUcr18+eldHtH8MZRZE5w+Wgl/rrvJ+rlM6t7xJwAAAABInJ8XF+fncX4eAAAAAAAAAAAAAPRaqtcDAADUe9WrXqWHHnpIX/jCF3T22Wcrk4luWOZyOb32ta/V1772NW3dujXRSVdTfuVXfkX33XefXve618m58IVta9eu1fvf/37df//92rhxY+JtSNIJJ5yghx56SJ/97Gd13nnnacOGDVqxYoXS6bS5zMqVK7VlyxZ94AMf0Mtf/vKmz4ck/fIv/7I+/vGP69FHH9UrXvGKlsYa5aUvfakefvhhXXLJJVq+fHnwPsuWLdPb3vY2PfDAA9q0aVPL29qwYYPuu+8+ff3rX9erXvUq5XK5psts3LhRl1xyib7zne/ohhtuaHnbAADMB9aFtblUvq3bsaM3RDfaJSrqUvF2XAVopmgEfnodQrK2b41Xio4JpR1//6BX4sYzre+5docg4u6zrPF067MRtZ2Z+/eoiMbUY7VDgw1hNCuU2LffB/GOM6zjESennLOPiZakw2G0sTmG0aK+xySpXJtbGC3O8xL3uQMw24gRUFqVXRu5nOdvs6FNflx8WD+beCo475SVZ2sg1fx35IvVYGZ1cLoVPOymqN+fWMevAAAAANApnJ9Xj/PzOD8PAAAAAAAAAAAAAPoRV0wCQB/KZDK68MILdeGFF2rfvn363ve+p23btmnHjh2amJhQLpfTunXrdOSRR+r444+PdTJOM0cddZRuvPFG7dy5U1u2bNEzzzyjsbExrVu3Ti960Yu0adOmupOezjrrLHmf/GK3FStW6OKLL9bFF18c6/7OOZ1xxhk644wzJEnFYlEPPvigfvzjH+u5557Tvn375JzTihUrdNhhh+m4447TC1/4wtjjueOOOxI/BmnyhLBrrrlGn/zkJ3XHHXfoiSee0MjIiNauXav169dr06ZNWrr0wAXGrT5f0uRz8JrXvEavec1rVCqVdO+99+qpp57S8PCw9u3bp6VLl2poaEgbNmzQxo0btXp1+OInAAAWovFaKTi93RfVFlLhcEixSnSjXaIuko6KQQFRvPd9G0IqpK2Ylh2BsiKBKaWVcvz9g16x9jmN+wjrtW13iKxgxK5mj6d/w2gzo1ZR+4ep/bMdpzvwnFd9VePeOG4wPo/dYofd7O+DmezIXcG8wG5yvhFkm+PxzVg1Oow21/16Y/AueB/CaEDLdhkBpaHMmv3/F/5eIYyGdrlz9JbgdCenMwY3d3k088tQdk1w+mhluMsjma0YcVzT62g1AAAAgMWJ8/MO4Pw8zs8DACAZ+9+gAQAAAAAAAABoJ8JoANDnli5dWnfiUaetWbNGr3/967uyrVYUCgWdcMIJLf3lzU7I5XI655xzura9fD6vM888s2vbAwCg31mRmVybw2j5dHh9RDfao1ybMINPU/OBVoz7khnp6PXF92ZMq4VIYNZl2zImtMZ6LzXGO4u1cCyq3TFPa32l2pi899OhLCt+1a1oYNqlNeBymvDjs+bN3L9an4mUUsq6AUl22GzmsuMR0cFCm1+DpKzxxz3OsO5nhV2nLDEienM9vmm2/FzDaFHfk0nuAyBspBIdRuNSF3TS7sqI/nvPfwbnHbP05VozsK7LI5pfBjPhi7JHKsN1x4G9EHV80OufzQAAAACA8/PqcX4e5+cBABCNP5YDAAAAAAAAAOiOVK8HAAAAAABAK7z3s6IzU9odmbHCIlaYDck0i5fMNaCCxatkhJ+k7sWf7O0nDxJZAcEMYbSeihvPLFXD+4xm8aqkrPd2TTWV/YHQpPVesyJdnWBFMGZG28xxppZMxz2sxxwnsDa5rva+BklZ448b97Iid82Oh6ztjhkRv7iaLT/X/XqccBvxWqB1I+UdwelD2TVdHgkWo7tGb1VV4WPeMwc3d3k0889UwLBRxZe1t/p8l0dTz9o3Z1xG2RQ/zwAAAAAAAAAAAAAAAAAAAACoRxgNAAAAADAvVXxFNVWD83Iu39ZtWWGRuMESRGsWL7FiUEAzkSGkLsafgtuPEYRqZMWE0i7TljGhNXGjVkUjFmWF1Vplvbcax2R9ProZDSwYn8O6oJnxmZi5bJz9dNS+ptDmoGpS1msWN+5l3a+Qjg6+mYHGiO+hOIrVZmG0ue3X4xx/RX2XAog2UtkZnH4guOSC8718h0aExaLqq/ru7luD89Zk12nj0pd1eUTzz1B2tTlvtDLcxZHMZu2/ex2oBQAAAAAAAAAAAAAAAAAAANCfCKMBAAAAAOal8VrRnJdrc+DEisTEDZYgWrPASdlPdGkkWGiiQ0i9DaNZQSgrniVJVSMmlCGM1lPWPqfUsJ9qvD3FilO1yoqETY6heSgsKqzWbmYgsG6c4edt5rJ2WOzAslGhrG4+5pC4cT2LHRqJPh6ywmnF2j5533rgqNP79TjHX8RrgdYUq2Pm52coOxlGc0YYDZirB/bea8a7Ng1uVsrxz9rNLE8PKqV0cJ4VPewW+1i4t4FaAAAAAAAAAAAAAAAAAADQX+ZwOQOABYYzyAEAAAAA89K4t8No+VS+rdsygysRkRXEV6zaIShJqvhyl0aChcYKe6SU0oDLdXk09azvlbKfMANoZeOzkHHZto0LydlRrrGG2+HvumbxqnaNZ3IMM0Jhxuejm9HAOOFRKxY483kzw2Iz9i9WTCvjMsqmBpqOtZPivocs1v2aRfes562mmsZ9Kda2Qzq9X4+K3E0hXgu0JiqctCqztsnSnIGAudkyektwetYN6NSVZ3d5NPNTyqU0mFkVnDdS7nUYrfdRXgAAAAAAAAAAAAAAAAAAAADzB2E0AAAAAMC8NDPu0ijX5shMIW0EV4hutEXUaylJFV+R5089oAVRF98757o8mnpR8Snru8WKCRFG662Csc9pfP8Vje+6ZvGqpHIRcdCZQU8r7tnNOIUVhZv5GbD2ETOft7yxn565rLWefohxWM9DqRq9f5xihcKaRfei3nvN4maR4zFidlPmGkaLEz3jGA1ojRVGc3IazE7GlqxDKI7WMRfPjj+tR8d+EJx3wvJNWppe3uURzV9D2TXB6SOV4S6PpJ79s1l7f38DAAAAAAAAAAAAAAAAAAAAYGEgjAYAAAAAmJfGayVzXlQUphXWhboTflxVX23rthajZgEVr5pq4nlGcq3GgrohKoxmxZAqNSuMlmnLmNAaK6xVathPdSsGkXKpWMExKxxlxUA7wXzuqjODZs2fN+vzVIrxePvi+yAdDpQVa/tihUGt/Wiz6FvUaz2XsNhY0zBapeV1S82DqpP3IYwGtGKkvCM4fUV6cEaItbdxWSxMd47eYs47c2hzF0cy/w1lwmG0USN82C1F42ecfojUAgAAAAAAAACS4N+KAAAAAAAAAADdQRgNAAAAADAvWVEMp5SybqCt2yqkwsGSyXEQ3pirOIGTsg8HoYAo1ufTihB1U1QAwIocVRWOCR0IlaAXrLDWzPef994M9XXi/WjH2ibHUPVVTfjxRMt2ghXmmvkZsAOHS4L/P9PM18D8PojYx3eL9R6qqaayn2i6vLUfbfbeinrscwmjlYzXbEpljvv0ZkFVafJ9EycqB6DeiBFOGsqGQ0sz8ZlDq0q1ou59/vbgvMPzR+qw/IYuj2h+G8ysDk4fKQ93eST17NgtYTQAAAAAAAAAAAAAAAAAAAAAsxFGAwAAAADMS+O1UnB6PpWXc+39y5RWsEQijNYOxWrzwMlcIypYnKywT9RnulusIJRkR46sz0EmRRitl6yYQ8WXVa5NvmZlP6Gaqsby7X8/FowxTX0movZd1rKdYAfNijP+v/nn2BpzqVZUzddir6dXogNlMSJgLT62rBtQWpnwOqt7m27XMtZkzOVa89hblDhB1ZqqsaJyAOqNlI0wWuZAGM3J+lmLMBpac9/uO8zv9jMHN3d5NPOfFTIcNcKH3WIdr0T9XAQAAAAAAAAA6Ef8mxAAAAAAAAAAoDsIowEAAAAA5qVx48LpXEcCMxHBkmrzOAeiWRdIz1SpEUZDclYIKeoz3S1pl1HWDQTnWSGksvE5yDjCaL0UFZ+a2ldFfc914v3YLDjWL2E0O2i2b8b/h/ezhfSB5816Dby8Jvy4JKlYteJhvY9xRAdYmx9ntPpd55yrex5nirNvtjQLnlZ8peV1x1n/9P2I1wKJ7TLCSUPZtV0eCRYL7722jN4SnLcsvULHLz+tyyOa/wYzq4PTRyrD8r53F6vZkdreH4sBAAAAAAAAAAAAAAAAAAAA6D+E0QAAAAAA89J4rRSc3okwWtQ6S0bACPFFBXqmVDxhNCRnh5Da/z3RCisKZY3bigllXKZtY0JyUTGHqe+3qO+5TrwfrXVOjcN6j00u2704hbWt4owYmB3RKMz4/4jXoBr9GvRDjCNqDFGv1ZTSHL7r7O+h1o9vmgXJqqqo5mstrz9OLG7yfoTRgKRGykYYLbOm6bK9yy1hPnus+KCenfhJcN6pK/+XsqlwSBi2ISOMVvFl7a0+3+XRHGDtv/vlZzMAAAAAAAAAAAAAAAAAAAAA/YUwGgAAAABgXrIuqs2l8m3fVjaVVcZlg/OKMeMcsDULqEhSmTAaWmBFcQqppV0eSZgVQ7LGXSWM1pfy6ah45uQ+IipuVUi3//1ovreq+8cTFWqLeDztZkW5Zn4GrLHOXLaQjgiLTcXgjP111LLdkkvl5eSC85rFvWq+qnEfjsXGeW+ZYbQ5RMWKMaKx1vdZM9772MGzOFE5AAd47zVSCYfRVmUPhNGs7yvSaGjFnaM3B6c7pbRp8Jwuj2ZhGMraIcPRynAXR1LP/tms98diAAAAAAAAAAAAAAAAAACgf3hOSwawH2E0AAAAAMC8NF4LR0Dyqc4EXeLEW9CaUoxwSYUwGlpghX26GX6KkjeCTNa4rc+BFW5Ed0Ttd6b2Eda+wslpwOXaPybjPT4VrLLGk3UDXX0/mZ+B6pj8/n/JssY6M/5mheBmLl8yYl1Ry3ZLyqWUM95HzQJlVihWkgoxjomseFqcuJmlWG2+bNlPtLTuCT+ummqx7ssxGpDM3upu81hjKBMnjAYkM1rZpfv33Bucd+yyE7Q6+4Iuj2hhWJ5eqZTSwXlW/LAbrJ/7O/U7HAAAAAAAAAAAAAAAAAAAAADzG2E0AAAAAMC8ZIVAci7fke1Z4ZRmwRI0F+c5JIyGVlhRHCt02G12cDH8/WZ9DtIu07YxIbmMyyrrBoLzivtfS+t7LpcqKOXa/yvaZu8tazzd/mxY+9aaqir7CdV8zfw8zBzrgMspZfyqe+qxFo319EuMo9UAa9Q+NJ8KR8/ibLcYI1oaUvVVjftwvHamiq+0tP4kx10cowHJRAWThrJrzHlTvPjTbEjmu6PfVE3V4LwzBjd3eTQLR8qlNZhZFZw3Uu5hGM06pjMirQAAAAAAAAAAAAAAAAAAAAAWN8JoAAAAAIB5adx3N3BirbfUYjgEBzSLvkhSmTAaWmBFcawYU7fZwcV9welWGC3jsm0bE1pj7iP2vwe7Hemz3lvT4zH2Xd3+bEQ9/mJtTONGQEOS8ukDyzrnIh7z5Dqsx9wvocRWA6xRAbNCjGMiK0ZifQ81E3e5VoOnSY674hxfADhglxFMSiuj5enBLo8GC13VV3TX6K3BeWuzB+uoJS/p8ogWFitmOFoZ7vJIJkWFU/slUgsAAAAAAAAAiMv1egAAAAAAAAAAgEWCMBoAAAAAYF6yYim5VL4j27PDIUQ35irOc9hqQAWLW7+HkKxxlKrh77eKrwSnZwmj9ZwdRpt8Lbsd6TPfW/vHYY4n3d3PRlQIo1Qbi9w/NC5rratY3bd/fVZQtT++D1oNsEbFv/Kp8LHLTAXjPq2G0eKGy1rdryc57uIYDUhmpBIOow1mVyvlDvxzonNc7IK5u3/PPdpdHQnOO2Nwc917DskNZlYHp4/0KIwWGbvtk2MxAAAAAAAAAEBcvtcDAAAAAAAAAAAsEpleDwAAAAAAgFaM10rB6bmIyMpc2NEbohtzFec5JIyGVnQ7RpVUwYhQWUEi63OQIYzWc9Z7aur7rduRPms8xf1RCut7t9ChfajFinJJkyGzqqvGXtZ+DabidOHPlfU57LZWA6zW/IzLKJtq/t2wxAqjxQycNRqLGVRrdb+e5LgrbqQNwKSRcjiMtiqzJtby3nMRDOLbMnpLcHrWDeiUlb/S5dEsPEPG59b6nHdadOy2P47FAAAAAAAAAAAAAAAAAAAAAPQXwmgAAAAAgHlpKnTSKJfKd2R7VrzFGgfiqflqrOeQMBqSqvqqJvx4cF6/hJCaxbQaWZ+DtONXfL1mxzOnolxGpK9D78VmMU87GmiHyjohl8rLyckH/qJ0sbpP1VTFXLbxMVqf61JtTFVfUdlPGOvpl++D1gKs1vy4r6X1HrRCcs00C7lNKbe4X4+7/qT3BSDtquwITh/KNgaWXPB+oe9yIORn409pW/HB4LxXrDhTS9LLujyihWcwuzo4fbQy3OWRTIo6nul2mBcAAAAAAAAAAAAAAAAAAADA/JDq9QAAAAAAAGjFeK0UnG6FRebKWm+r4RBMsl7HRuUaYTQkE3Xxfb+EkAqJw2jhSFTGZds2JrSmWeTOek2t98Ccx2NFwqpFee8jxtPdMEXKpZSLiMpZYauU0sq6gbpp1mtQrI1FBjg79RokZX8fRMdDreco7mtpbbfVqFixGu+4qNLifr1ZKK7V+wKQRso7g9OHMo1hNGButozeYs47Y3BzF0eycA1l7DCa992PGJaq9vFMv/xsBgAAAAAAAAAAAAAAAAAAAKC/ZHo9AHSPc265pNMlrZe0RtIeST+T9EPv/aNt3E5W0mmSDpN0sKS9+7fz3977J9u1HQAAAACLmxXUsgIrc2VHb6KDJYgWN7xS8YTRkExUEKdfQkhRIacQ63NAGK33zH3E/giE9Zp2LuYZHk9VFZX9hIpVazxLOzKeKPlUIfh5Ldb2qWrEAAvpJXLO1U+LiNNZj3dq+/0g6ffBlJL5Wsb7nisYr3ncwNms5WIGY1vdr1uPNzwWwmhAEiMVI4yWXVt32wXvBcRTrI7pvt13BOcdkT9Kh+aP6O6AFigraFj2E9pX3aNlmRVdHY91fJBxGWVTA8F5AAAAAAAAAAAAAAAAAABgcer+n4AF0K8Ioy0CzrnTJP0fSWfLeM2dc/8j6bOS/ta3+KfCnXNrJX1E0gWSVhn3uVvSX3rvr29lGwAAAAAwZdwIkuVT+Y5szwyuJAh0YLZOB1SweEWHkPojjGZ/r4S/3ypGJCrj+BVfr+XT4bjWVPDLimhaUaq5KkTEvkq1ohkOLBiPo5MKqUEmqwYAACAASURBVCUa1fCs6aVaUTVXCy4T+gzbAdOxJqHE7sfgQlo9zrDiX4V0vMdl3W/cl1T1VaVdOtZ6pscTM6jW6n49SeyMeC0QX9VXtbsyEpw3O7AUTqN5TkFADPc+f7vGfThyfubQ5i6PZuEazIbDaNJkBLHbYTRrn9wvP5cBAAAAAAAAAAAAAAAAAAAA6D+pXg8AneOcyzrnPivpu5LOUXQI7yWS/kbSHc65Q1vY1mZJP5T0+zKiaPudKukrzrn/65zrj6sOAQAAAMxL47XwxdS5iBjMXOTT4Qt2kwQ6MJsVgGpEGA1JRYWQ+uUCfPt7ZZ9C3Xrrc5Bx2baOC8nljX3P1D7CiltZy819PPZ7vFQbM/dd+R5EwqyxFqv7zHhmKPxmvgbV6DBap44bkmr1OMN6bHHfW0siXvOo580yFjN4Wm5xv55kTHEjbQCk3ZVd8grHKFdFBJaAJLz3unP0luC85emVeumyU7s8ooVrRXqlUgrHTUcqO7s8mrkfrwAAAAAAAAAA+kn4j+gAAAAAAAAAANBuUaEszGPOuYykr2syiDZTWdK9kp6RtFSTQbTDZsw/Q9JtzrnTvPfDMbd1lqQbJQ3MmOwlfV/S45IGJb1M0syrZ94saYVz7jzvffhqGwAAAAAw1HxN4767YbRQhEVqLRqCA6zoTaOyn+jwSLDQWDGhjMsqm+qPkFjBCELVVFPZT2jA5eqmV30leP+M41d8vWbFvUq1yfij9X4spDsTIrPeW5NjskNhUct1irXNUq2omhHpCQXcCkZYrFQrzuvvg2bHGeZ7K2bkLuo1L1b3aWl6eaz1TIl7XNRq8DRJkHbq8weguV3lHea8oUx9GM2ZF7vMjroCMz069gM9N/FMcN6pK/9X3+yTF4KUS2sws0q7KrM/26PlWP/821ZFY5/cL8FqAAAAAAAAAEAS/JsQAAAAAAAAAKA7Ur0eADrmKs2Ool0jaZ33fpP3/k3e+1/33r9w//0en3G/X5Z0g3Ou6Z9ycc6tl3SD6qNod0k6xnt/gvf+t7z3r5a0XtJ7NRlmm/JaSVcmfWAAAAAAMOHHzXk5l+/INkMRFonoxlzFff4qRhAKsPRT+MkSFS4KRQOtkFDGEZHotbwRzxzf/x1nvR+t5eYql7L3hcWIUFgv4hR5M2hmB9xCz5sdp+uvEJwlavxR5vreiorzJYmQTRmrxguethpGSxKkjRtfBSCNVHYGp+dcftbxihVG4xIYNLNl9ObgdKeUNg02/pMm5mowszo43fq8d5J9vNI/x2IAAAAAAAAAAAAAAAAAAAAA+gthtAXIObdR0qUNky/z3r/Xez/SeH/v/a2STlN9HO0MSRfE2NxHJA3NuH23pFd57x9u2Ma49/4aSb/VsPz/ds69MMZ2AAAAAGBaVEwrKgYzFwUjMFL2Ey3HPRA/usJzjKSK1f6/+D4qXBQaf5kwWt+yAltT33HWd11UHG8uUi5thkKL1X0qVcP70YIRKeukqOfO+hyHlolcj3Hc0E/fB9b4S7Wiar5mLmc/R/HeW1HPwVgLYbFO79etxxtCvBaIb6QcDiWtyq5VjL+hAzQ1Ut6pB/beF5x33LITtSq7tssjWviGsmuC00cqw10eSfcjwQAAAAAAAAAAAAAAAAAAAADmP8JoC9MHVf/afst7/5dRC3jvn5P09obJH3fOpa1lnHO/JOmtMyZNSHqb974UsZ0bJX1+xqScpD+LGhsAAAAANBqPCF106sLafERgxArMoLliNV50hTAakrKCOFZ8qBcK6YjvlUA8wPocZFymbWNCa6y41FTUytpvdTIGkTciZ3uru1VVxRhP9z8f1nNQqo1FRDRmj9N+DcZUMkOJ/RPjsMbi5TXhx83l5hoaSTeJ6CVVjBlTs0KPzSSJnY03icoBOGCkEg6jDWXCYaUQL9+u4WAB+u7ub6qm8HfymYPndnk0i8NgZnVw+mgPwmhzDbkCAAAAAAAAAAAAAAAAAAAAWHwIoy0wzjkn6dcaJn8qzrLe+y2S/mvGpBdJOitikQslzQyn3eC9fyzGpq5quP1bzhlX3wEAAABAQFQYLZfqzI8XhbQdGIkbAcFscQMn5RphNCRjfS6tWFQvDLicnFxwXjEQO6r6cMwq47JtHReSsyJU47WixmtFMxbTyRCZtW4rfiP1JhxoBTGK1bHg50CSCoHPsR1YK2rM+j6YJ6HEqECZFUaLWl/c+7ZyfNPp4GmSMXl5jdfMv+EBYAYzjJadHUab/GeoAE8YDWEVX9Zdo7cF560bOES/vOS4Lo9ocRgywmgjZftYsFPMkGvE71kAAAAAAAAAAAAAAAAAAMDixGnJAKYQRlt4jpY080qVCUl3JFj+3xtuvyHivr/RcPvaOBvw3j8s6d4Zk5ZKenWcZQEAAABAkkoRkYucEUaZq6h4Sty4F2aLGzhpNaCCxcv6XPYi/GRJuVREzKk+HlDzVdVUC96XMFrvWa+jl9doZZe5XCjw1S4FY0xRMQzrcXRS1GfA+hyHlokKge02XoNOPv9JRT33UccZVjwuyWtpfS9a647S6f160mMu4rVAPLvKO4LThzKzw2hAUvfvuUfPV0eD884Y3GzH9jAnobChJI1WhuW7fMbQfPjZDAAAAAAAAAAAAAAAAAAAAEB/yfR6AGi79Q23H/PejydY/gcNt38tdCfn3EGSXjJjUkXSXQm2c4ekk2bc3izppgTLA4vG2NiYvv/97+uxxx7Tzp07VSqVVCgUtG7dOh155JF62ctepoGBgbZs6yc/+Yn+7u/+Tlu2bNGjjz6qkZERlcsHLlS99tpr9ba3vS247H333adrr71Wd999t55++mnt3r1btdqBi/afeOIJHX744ZKks846S1u2bJme1+2LcAAAwPw3blxUm3UDSrt0R7YZFUZrJRyCSXGfO8JoSMqK4UR9lnuhkFoa/Bw0Tqv4irkOwmi9F/W+Gq0Mt7TcXFnrHokYTyFlx8U6xQqalWpFVY0YYOixRYXARirhGFw/fR9EB1jtfaU1L0loxHrdS9UWwmgxl2l1v16sJgudEa8F4rG+J8NhpXDEyovf8SJsy+jNwek5l9fJK17Z5dEsHoNG2LDsJ7SvukfLMiu6NhbreKUXUV4AAAAACOH8PAAAgCT4gycAAAAAAAAAgO4gjLbwrGq4Hf4T7LbG+x/qnFvpvd/dMP3FDbcf8N4nuSrt7obbxyRYFljwqtWq/vVf/1XXXnutbr/9dlUq9gXw+Xxe55xzjn7nd35Hr3nNa1re5uc+9zldcsklGh9P0lKUKpWK3vWud+lzn/tcy9sGAABIarxWCk7PdfCi2rRLa8DlNBFoT0cFSxAt7nNX9hMdHgkWGiuGkyQW1A1WDKAxSBQVEco4fsXXa/l0a2G0Tr4frXWPlMPxGyenXCrfsfFYrM9AsbZPVVWD80KPLSosZj3mfvo+GHA5pZRSLRCDsyKi5dqEGU1MEn0rGO/fMSMwafHem1HKRuVa8jBazVc17sPHgBbitUBzE7Vx7avuCc5blVk7axqXuiCJZ0pP6sfFh4PzTlxxphlIxdyFw4aTRio7uxpGKxo/m/VTpBYAAADA4sP5eQAAAK0iuAoAAAAAAAAA6I5UrweAtmu8UjyXcPnQ/Y+OMW1bwu38OMY2gEXpP/7jP3T00Ufrwgsv1G233RZ50pUklUolfe1rX9NrX/tanXjiifr+97+feJs333yzLr744sQnXUnShz/8YU66AgAAXWcFjzoddLEu2i1WiW60Ku5zZ4VfAEuxGo7z9NvF91YMojHmE/UZyLhsW8eE5Ky4l2RHuVJKK+sGOjUk870+UgmPJ5cqKOW6/+viQir8GSjVirMCgVNCjy0qcmbF6frp+8A5Z47HiohGxUWt2FnwvsZrEDdyNmXcl4Jht5BW9utWGDcK8VqgOWu/IEWHlYA47hy92Zx3xuDmLo5k8VmRXqmUcSpAVLi3E6z9cT9FagEAAAAsLpyfBwAAAAAAAAAAAABA/8v0egBou8Yz2Q9OuHzo/r8s6T8bpm1ouP2ThNt5quH2aufckPd+JOF6gAXlIx/5iD7ykY/I+/q/pOSc08aNG7V+/XqtXr1aO3bs0E9+8hM9+uijdffbunWrTjnlFH3605/W7/7u78be7oc+9KG6bV544YV6xzveoUMPPVTZ7IEL7Nesqb8Qbvv27fqrv/qr6dsDAwP6oz/6I5177rlau3atUqkDF92sX78+9ngAAACascIYUWGadiikl+j56uwfW4hutC7uc1fx5Q6PBAuNFVBMEgvqBut7q/GzEfUZyDh+xddrOZeXk5MP/GVkKzhTSC+Rc65jY8qnw++tsm/8uwr779/hfajF2q6X17g39veBz3HWDSiltGqqzppnPeZ+i3EU0ks0Vts7a7oVEW0MKM6UJPpmhtGMwKTFCtmFVIzXJErU4zWXIV4LNGUFPCVpMLN61jSn8L4rtA/E4jZW3av7nt8SnPeLhY1anz+8uwNaZFIurZWZVcFj0ajPfSckid0CAAAAQKdxfh4AAAAAAAAAAAAAAPMDV00uPD9quH2Ic2699/6ZmMufEpi2MjBtsOH2z2OuX5Lkvd/rnCtJyjdsZ05hNOfcCyStTbjYL85lm0C7XHrppbr66qvrpi1fvlwf+tCH9OY3v1mHHXbYrGW2bdum6667Tp/61Kem/5rkxMSE3vnOd2rfvn269NJLm273kUce0QMPPDB9+9xzz9UXvvCFWGO+8cYbNTFx4ELWK6+8Uu9///tjLQsAADAX40bwKOfywentYl2020qoA5PihtGsqA1gKdbCQZ9+u/jeDBIlCqNlzXnoDuec8qlCcH8wUmn8OwaTOv1eTLp+673Yaa08D4VATM05p0JqifbV9iTYdm9icBbrubD2lVHHH0mib1YwMunxzZjxvRvSSvA06phhwOU04ccDyySLuwGL0a7KjuD0ZemVGkjlAnM6F/XEwnLP87cHv5sl6czBc7s8msVpKLMmHEYzjk87oeariWK3AAAAANBJnJ8HAAAAAAAAAAAAAMD8kWp+F8wn3vvnJD3SMPn/ibOsc26ppPMDs5YHpi1ruB2uEkRrXCa0naTeJemHCf/7Whu2C8zJ5z//+VknXZ1++ul66KGH9KEPfSh40pUkbdiwQVdeeaUeeOABvfjFL66bd9lll+mOO+5ouu2tW7fW3X7DG94Qe9ytLnvHHXfIez/9HwAAQFIlI4zW6cCJtX5rPGgubnSl4isdHgkWGutzmSQW1A3W90qxmiSMxt8+6Ac547UcLc+OUUidfy8mDY71KhJmRbmi5I2IW9K4Rivb7iTz+8DYV5aq9j40yetpBhqryaJiSe7fyn698XtxpqFs+G9lFDlGA5oaMfZTQ5nVCdfE73lxQM3XdOfILcF5K9KDeunyk7s8osVpMBv+HIdiaZ0S9fuSUOwWAAAAADqF8/MAAAAAAAAAAAAAAJhfCKMtTP+34fYHnHOHxFjuo5JWBqbHCaOF/9R3tMYz4RvXCSwKjz76qP7gD/6gbtqpp56qW265RevXr4+1jiOPPFLf/va3tXHjxulptVpNb3nLW7RzZ/QFLtu3b6+7HXebc10WAABgLsZr4R9Bcql8R7drRWyKtWThEBxQih1Gs6NQQCPvvRnQ6VX8yWLFqxo/G1ERoYzLtnVMaI21jxipDAenJw2XJZU0NFFIh+NYndbK82A9tqSPudOvQVJWoMzaV1rBtJzLK+XSCbZrHd/E20cfuH/846FyC/t163lIK6Pl6dCvtaUSx2hAU1YgaZURHHTGeri8FjM9MvaAfl7+WXDeaYOv5vi1S4Yya4LTR43j006ICqP127EYAAAAgIWL8/MAAAAAAAAAAACA+YPzkgFMIYy2MH1a0u4Ztwcl3RIVR3PO/W9JlxqzazG22cq+hf0RIOl973uf9u7dO317cHBQ119/vZYtS9YKfMELXqCvfOUrGhgYmJ7205/+VB/96Ecjl5u5bUnKZuNfkDSXZQEAAOZi3IcvrM11OHhkBoyq9oW+sJVrE5Gxp8b7AnFVfFlVhd9bVnioV6wYVWOQKCoOSFiiP1j7CCsWZcWo2iVpaKJX0cABl1Mq4a+prceW/DH3V4zDeg2sQJkVCksauYv7PdRMkjBaK8FTazz5dMGOu3GMBjS1q7wjON0KKslZaTTggDtHbwlOTymlTSvP6fJoFq+hzOrg9NFyN8No9vFEvx2LAQAAAFi4OD8PAACgnfi3IgAAAAAAAABAd2R6PQC0n/d+1Dn3dknXz5h8rKSHnXOflXSLpJ9JKkh6qaR3SDp9xn2fkTTzz8qNBjazt+F2K1dONi7TuM5WfEbSlxMu84uSvtaGbQOJ/ehHP9I3vvGNummf+MQndNBBB7W0vqOPPlrve9/79PGPf3x62j/8wz/o8ssv19DQUHCZWi1O+zBsLsu2w0MPPaQf/OAHGh4e1sjIiPL5vNauXauNGzfquOOOUy6Xa2m9lUpF9913nx5//HHt2LFD4+PjWrt2rQ4//HCddtppyufzbX4kAAAgqfFaKTg9l+rsfrqQNsJoCcMhmJQkuNJKQAWLV9R7K5/uTfzJYoWQGr9Xoj4Dacev+PpB0rBYp0MQScNrnQ61WZxzyqeWaKwW71eDGZdRNjUQnJf0Oe3VY7ZY4cZSNfydZobCEr4X7ajYPnnv5WJGkIrGOEMqPnnw1AzBpZZEHKPFj7UBi9VIJRxIGsoaYTSD9/wtHEzaVd6hB/b+V3DeS5adpMFsONaF9hs0PscjlZ2J9vFzEXV80G/HYgAAAAAWJs7PmxvOzwMAAAAAAAAAAAAA9ApXTS5Q3vsbnHPvlfT/SUrtn7xc0vv3/2e5RtJKSW+dMW3ehNG89z+X9PMky3TjpH/AcvXVV9ddMLZmzRpddNFFc1rnpZdeqk9+8pMqlycvmt+3b58+97nP6QMf+IAk6cknn9SLXvQic/lXvvKVwenXXnutJEWOz/o8PfHEEzr88MOnb5911lnasmXL9O0kF809/fTT+vM//3N9+ctf1vbt2837FQoFvfKVr9Rb3/pWvf71r1c6nW667ocfflhXXnmlvvGNb+j555831/vrv/7ruuKKK3TkkUfGHjcAAGivUq0YnJ40BJKUFVxJEvjCAUmCchVf6eBIsNBEvbes8FCvWONp/F6xPgMppZVyqeA8dFfiKJcRcmqXpOPpdKgtSiEdP4wWNc6kcY1ePuYQK9xoHWfYobBk33OF9LLg9KoqKvsJDbh4F7aNJYiQtbJft0NwSyKO0cLHjAAmee81Ut4RnDeUWRuc7mT9mwphNEz6zug35RW+aPuMoXO7PJrFbSgTDqOV/YT21fZoWXpFx8dgHa+klVHGZTu+fQAAAADg/LxJnJ8HAADah38TAgAAAAAAAAB0B1dNLmDe+2skbZb0SIy775X0bkmXSjqkYd5zgfvvbrgdvkLG4JxbptlhtFCADVjQ/v3f/73u9m//9m9rYGBgTutcu3atXvva10ZuZz7y3uvKK6/Uhg0b9OlPfzrypCtJKhaLuvnmm3XBBRfo6aefjrxvtVrVH/7hH+rFL36x/vmf/9k86WpqvV/60pd0zDHH6Oqrr27psQAAgLkbr5WC03Opzv7laCu6kSTwhQOSBOUqvtzBkWChiXpvdTqgmJQ1nlK1MYwW/gxkiQn0DStqZd6/w1GupONJGhVrpyTPRdRnOHEMLuFz1Gn2cUY47lWsWqGw9r32xQSxsyTHQ+UW9ut2CG6J+RhKCcYPLEZjtb2a8OPBeUPZcFAJiFKulXXX7tuC8w4eOFRHFl7c5REtbkOZ1ea80fJwV8ZgRUrz6QJ/vAoAAABAV3B+XnycnwcAAAAAAAAAAAAA6CeZXg8AneW9v9U5d4yk10k6V9KpktZJWi7p55KekHSjpC9475+TJOfcUQ2r2RpY9WMNt1+YcGiN99/lvR9JuA5gXnvmmWf05JNP1k179atf3ZZ1v/rVr9YNN9wwffuee+5RuVxWNjs/L5ivVCp64xvfqOuvv37WvIMOOkjHHnus1qxZo/HxcW3fvl3/8z//o71798Zad7FY1Hnnnadbb721bno2m9VLX/pSrV+/XrlcTs8995zuu+8+jY2NTY/p0ksv1cjIiC6//PI5P0YAAJDMuHFhba7DwSM7ukEYrRWN4acoZT/RwZFgoYl6b/VbGK2QXhqcPu5LqvmqUi4tSar4SvB+GcJofSPpe6vT78XkkbBehtHiPxeFVPgzI0mFhI+hlzG4EGs8VuzRDIW18XkoVse0MrMq1nrGqvEjZJVa8jCaHYJbYr7frRgLgEkj5Z3mvFWZZGE0P9fBYEH47713a2+18W8rTTpjcDMhrC5bkRlUSinVVJs1b6SyU+v1oo6PwTpe6XQkGAAAAAAkzs9LgvPzAAAAAAAAAAAAAAD9hjDaIuC9r0q6Yf9/kZxzh0paP2PST733Pw3c9eGG2xsSDuuIhtsPJVx+wapUvZ4hEddx64ekTLq3F+Dcdddds6adcMIJbVn3y1/+8rrbxWJR999/v0488UStX79eTzzxxPS8v/qrv6r7y4r/8i//opNPPnnWOtesmbwQ7qyzzpqe9sY3vlH33nvv9O2Z651p/fr1welxXXbZZbNOujr33HN1+eWX68QTT5x1/1qtpnvuuUdf/OIXdd1110Wu+93vfnfdSVcrV67U5Zdfrne84x1avnx53X2LxaI+85nP6E/+5E9UKpUkSVdccYVOOukkbd68ucVHBwAAWjFeKwWn9yoyYwVLEC3J82ZFoYAQ672Vc/np0Fi/KER8b5VqRS1JL5MkVXw4IpR2/HqvXySNO3Q6ypV0/b2MhEXFzhpF7euTHAdk3UDffX6s95AVFLG+6xK/F41AY9Q2wvdNEEYzvtOiRIXgzHhtgggrsBjtquwITk8ppZWZoeA8J+v36qTRIG0ZuTk4PefyesWKs7o7GCjl0lqZWaWRyuwI4khluCtjMPfffRasBgAAwOLC+Xnd0+tz9Dg/Lz7OzwMAAAAAAAAAAAAA9Jv+uvIL/eDshtt3GPf7YcPt45xzS7z3ca80O63J+hatZ0akI/549l9uR3s9/vGUDl/T2zE888wzdbfXrVun1atXt2XdL37xi4PbO/HEE5XJZHT44YdPTx8cHKy730EHHVQ3v9GyZcum/z+fz9fNi1quVbfeequuueaaummf+MQn9MEPftBcJpVK6dRTT9Wpp56qK664YtY4p3z5y1/WtddeO337hS98oe644w7zcRQKBV122WU65ZRTdPbZZ6tUKsl7r/e85z165JFHlEqlkj9AAADQklKtGJyeS4X3++1iXbhbqhblvZdzvY3vzjdJAipeNVV9Vek+i1qhP9nxnPjxpW7JRwShirWxpmG0TJ+FnRazpDGqpPdPKpcwNtHp8URvO/5Yo8aZ5DH0MgRnSRr3skMjyR5bzuWVUko1zf6dZJJ9dbLgafIwWtE4/sunliifThaVAzBppDw7liRJKzOrzJisHUbDYvd06XE9UXokOO8VK89SwfiuRmcNZlaHw2jG57/drN/f9PLYEwAAAOD8vO7p9Tl6nJ8XD+fnAQAAAAAAAAAAAAD6Ef9CjEbvaLj996E7ee+flfTAjEkZSacn2M5ZDbdvSbAssCDs2rWr7vbQ0FDb1p3P55XL5SK3N19cccUVdbd/7/d+L/Kkq0aDg4PBE6+893XrzmQyuummm2KdPDZ1QteUbdu26cYbb4w9JgAAMHfjtVJwetIITFJ5I6pUVaWlwMdiZ10gbSn7iQ6NBAuNFedJEl/qlqiAUXFGDKniK8H7ZFy27WNCa6x4pnn/DsdB0i6tAZdrfsf9ehkKK0QEAhtFRTSSPIZ+jHFYca9xX1LNV2dNLxrBtKSPzTlnvgbFaoIwWoL7tnLcVDIibYXUEvO1TxJrAxajUCxJklZl1yZel5ef63Awz20Zvdmcd+bguV0cCWYayoYLBKOV4a5s34qs9uOxGAAAAICFh/Pz4uH8PAAAkAx/RAcAAAAAAACd5TktGcB+hNEwzTl3uurjZo947++IWOSrDbcvirmdoySdNGPSPkm3xlkWWEgaT4Rq/MuQc9W4vuHh7lzk0k4PPPCA7rrrrunby5cv11VXXdWWdd9+++364Q9/OH37zW9+s4477rjYy7/73e+uO6Hrpptuasu4AABAc+VaWVWFA0E5F/5L1O0SFb0hvJFckoCK1FpEBYtTyfg8JokvdUtUEGDm47De/4TR+kfSuEM3YhDzJRSWT8ePykUF5ZI8BitC1ktRxxmhmKj9XZf8sVnPhxUzmet9yy3s04tGUDWfWmK+9mU/wfEDEGGkHA6jDWXCIaUonH+wuI1V9+q/nr8zOO+XCsfoF3KHdXlEmDKUWR2cPmqEEdutVA3vv3sZ5QUAAACweHB+XnOcnwcAAAAAAAAAAAAA6FeE0SBJcs4tkfTZhskfbrLYFyRVZ9w+3zn3SzE21/in5P7Ve1+KsRyABJyb/3+N6dvf/nbd7QsvvFArVqxoy7pvu+22utsXXHBBouWXLFmiV7ziFdO3v/Od77RlXAAAoLlxH76oVpLyEUGRdogbMEI8SWNyFR8O4gGNitXwe6vT3xGtyKayZtxs5mekUrPCaJmOjAvJJX1/dSMGkST+FRUc67REQbOI+yZ6vH34fZCPiDeG9pnWfrSV6NsSY9tJ9tVJgqetxMpKEd/tUZ8nK8gCQBoxwkhDWTuM5jT/f++M9vvP3d9W2U8E5505dG6XR4OZBo3Q4Ui5OxfrW78r6WWUFwAAAADahfPzonF+HgAACxV/LgcAAAAAAAAA0B1cOblAOecy3se7Ytw5t0zS1yUdM2Py9d7766OW894/5pz7vKS37580IOk659zZVujMOfc6SW+bMWlC0kfijBNYaFatWlV3e/fu3W1d/+joaOT25oO777677vZZZ53VtnV/97vfrbu9atUqPfnkCQR+aQAAIABJREFUk4nWMfMksCeffFK1Wk2pFM1RAAA6bbxmxy1yqbw5rx2iohtJI19IHpOr1MIX2gONrPdWL8NPUfKpJdpbnf0z4czHUVX41zxWVA3d15dhtDYFxzotyXMR9TwniZ31Y4wjavyh7zXr2KOV95b1fIwliJ2N1ZKF0bz3iS4ctL/blzaN1y5Tey7kAxaaXeUdwelDRkgpGhfBLFY1X9Odo/8enLcys0ovWXZSl0eEmazQ4UhlZ+J9cSvskGv/RWoBAAAALDycn9cc5+cBAAAAAAAAAAAAAPoVYbSF62Ln3Osl/aOkf/Pez7q6ZX8Q7fWSPibpkBmznpT0rpjb+TNJvyFpaP/tUyV9yzn3O977H83YVk7SOyX9RcPyf+G9fyrmtoAFpfFEqJGRkbatu1QqqVSq7xOuXr26bevvlmeffbbu9jHHHGPcM7mnn3667vbJJ588p/XVajWNjo7OyxPcAACYb8ZrwQ6zpORRmqSiwmulKmG0pJLG5Mq+3KGRYKEpGQHFfgwhSZMRo1AYbeZnpGK8/zMpwmj9Iun7K9+FUF+S/WI3Qm2WJM9d1DjzqaVtWU+vRI2/VK3/Xqv5mhmLLSR4HqaXMd6PcSOmFV9W2ccPmHp51VRVOsE/UZhhlVQhMnxJvBYIq/mqRiu7gvMiw2hGRMl7wmiL1Y/G/kc7ys8G552+8tVKO/45upeGMuF/Gyr7Ce2r7dGydGfjofPtZzMAAAAACwvn5zXH+XkAAAAAAAAAAAAAgH7FmegLl5P0yv3/eefcE5IekTQiaYmkgyQdL2mgYbknJL3ae//zOBvx3j/jnDtf0jdnrOs0SQ85574n6XFJK/dva23D4t+Q9H8SPq4Fb/2Q9PjH+Yt2nbZ+qPl9Ou2QQw6pu/3cc89peHi4LSdIPfjgg023Nx8MDw/X3R4aat8L17judtizZw8nXgEA0AXWRbWSlOtwGC3l0sqnCsExEN1ILuq1DLHCUECjYm1fcHo/hpAkO141M7hYrhlhNEcYrV8kjTt04/0Yd0wppZV1jb8m7J4kz0XUYyokOA7oxxhHNpVVxmVU8ZVZ8xq/18ZrJXmFI0T/P3t3HibJXd95/vOLzKzKrOrqrupDRyO1JCRAlhCHEAaE1LKRhGg9BnN5PBaPx4Y16wfjGWaN1zasxwJ7AWMW7zDGDHgZG5tBuwwPYJtdZAO2dSFA6DBgJIMEultHH1Xd1VWZWZkZv/2jVa2srN83MvKKzKx6v55HjzojMiN+eUZkVcS7ugnFThkxNevzdN31ugjE1nwtdSwnKbxWiqYT7zP7aEDY0cYRxWoE520vtP4652lO4TAaNq8b578cnB4pp0tmX5nxaNBq1gijSdJC7VAGYbTwdnhUv5sBAABgc+D4vOwM+xg9js9rj+PzAAAAAAAAAAAAAACjijDa5uAkPfOp/5L8raRf8d4f6GTh3vsbnHOvk/QpPR0/c5Iueuq/kP9b0lu99+GzbjaxfM7pzJ3DHgWycPHFF6+bdvvtt+uqq67qedm33377msulUkkveMELel7usDnXv5PuVlbCJ9P2wvvwCckAAKC/qnElON0pyiTqUoymgkEv62Rf2MqNdLGVVYTRkJYV3RvFEJIklXJWkOjpz5VQKEmS8imjQhi8Yi59jKrgJlIHoXqRNhRWyk319Tt3p4q59O/NUsJ1O3mPj+rnQTGa0rHG0XXTWz/XkvY7rM+U5PWGb7OcclvdTXzs+HY93Wu00rBjqsWopJzLa8JNasVX19+WfTQgaL5m/ypoLs8vKZDOodoT+pel24PzXjDzUm3Lc6LysG3LzylSpFjxunnz9UM6TWcNdP3WPsKo7osBAABgc+D4vM2D4/M6x/F5AAAAAAAAAAAAAIBRwZ+927hukfQ5SfNtrleXdL2kK733P9tpFG2V9/7Lkp4r6eNt1vlNSW/03l/jve/sDHhgg9mzZ4/27NmzZtpXvvKVviz7q1/96prLL3nJSzQxMfhISL/t3Ln2KMTDhw8PZNnFYlFxHMt739N/Z555Zt/GBwAAbFbwaDIqZhJ1KRqRmW6CIJtdp6GSGmE0pGRF90ojevK9Na7m90iDMNrIs7YPIVm9FtMGJ4Ydpujk8Uh6nAvRROr3RFJgbZisx6J1PyNpv6OT1+KqKSOmlnZbXY47/1GvFXzsdBylp6Ju1uu43GAfDQiZrx8MTi+4CU3nZszbWd+4vDgpdTO6eeHvzef+stmrMx4NQiKX09b8XHCe9TnQTxVjO9zN/goAAAAAdIrj89rj+DwAANC54f3RNQAAAAAAAGwO/K0cAKsIo21Q3vt/9t7/G0k7JJ0r6fWS/oOk35X0v0l6u6QrJW333l/tvf9aH9b5pPf+bZJOkfQKSW+W9K6n1vsGSc/03r/Me//5XtcFbBSvetWr1lz+9Kc/rVqtt9jDgQMH9Ld/+7eJ6xkXp5566prLd999d9+WffLJJ5/4d6VS0UMPPdS3ZQMAgMGqxpXg9KxOql2Nb7Sygm2wdRqTqxNGQ0rW+7E4oiEkM+bT9B6xXv95VxjImNC5vCuo4NKd9JRViCxt/GvY0cBOHg9rO9zpsoYdg7NY42oNg6UJhXXCeg0sG6HJVlaQMkk9Xkl93cQQXO74PqD1eu80xApsFodr4b+TM5ff2SY4zckuOK4Wr+jrR74anHfqxB6dUzov4xHBMpffGZy+UDs00PXGvqGqD/8MZ9j7nwAAAAA2D47PS8bxeQAAAAAAAAAAAACAUUUYbYPzx/3Ae/9F7/2feO/f571/v/f+Y977r3nvFwewzhXv/T957z/lvf/Dp9b7Be/9/f1eFzDu3vGOd6w5yezAgQP6i7/4i56W+ZGPfGTNwVvT09N661vf2tMyh+XlL3/5mss33HBD35Z98cUXr7ncr78GCgAABq9qBI8mo2Im67cCbN0EQTa7TkMlhNGQVjkOvx9H9eR7a1wVwmhjZzJlpDOrSN+4RMJKHcRN24VQ04ZSswqqdsoaV+s20wqFRYpSB/rWrre3qJj1uZuk1sF2PSmMtvoZmiYyCeBp8/WDwelzhXBAqT3+NNtmc8fi17XUCP+a8bLZfW0Ce8jSXGFHcLr1OdAvVtheGt1oNQAAAICNh+PzknF8HgAA6By/EwIAAAAAAAAAZIMwGgAM0Xnnnad9+/atmfbbv/3beuKJJ7pa3t13360PfehDa6a9+c1v1vbt27se4zBdccUVay5fd911WlzsT8/xqquuWnP5k5/8ZF+WCwAABs86sTZtjKZXJePk3YoRbENY7BsdP2aE0ZCG9958bQ07/mQxYz6N9mG0nMsPZEzoTtrAVychsF6kfc0POxpYjKY7uG7yWEsplzXs+2wp5cLjb/48kKRKIxz7KkXTXYVopoz1LqcMni0bgdik56uT7boVaCu4iROfg2kikwCeNl8LB5G253cl3s4p/BnjOQlm07lp4cvB6cWopJ/c9lPZDgaJZvPh4OHCgMNoSXHSUY3UAgAAANh4OD4vGcfnAQAAAAAAAAAAAABGFWE0ABiyD3/4w5qaevrEzYWFBb3+9a/XsWPHOlrOgQMH9MY3vlErKysnpp166qn6vd/7vb6NNWvnn3++LrvsshOXjx49qne96119Wfa+fft09tlnn7h822236c///M/7smwAADBYVR8OHk26YibrtwIfRDc6YwXuktRiwmhor+orZphjdENI7T9X6r4evE7BFQYyJnQnbYiskxBYL9IGJ4YdDSxEBeVTRv7ajXVc7rPFGn/rfoYVGinmuouMWEG5alxW7OO2t7f2g2Zy28zbWJ9rIa1huFXN47Yeu6QoC7CZHTaCSHOFcEAJaPZg5T49ULk3OO8lW3+a6NWImTPCaPO1QwNdb9LPSdLGbAEAAACgHzg+z8bxeQAAAAAAAAAAAACAUUUYDQCG7Nxzz9Wf/MmfrJl26623at++fXrkkUdSLePee+/V5ZdfrnvuuefEtCiK9OlPf1q7du3q63iz1nrg2J/+6Z/qwx/+cOrbHzlyRJXK+uhGPp/X7//+76+Z9ra3vU1f+MIXOh7j1772Nf34xz/u+HYAAKA7lTgcRsvqxGsrpEJ0ozPdPF51TxgN7VWMeI40uiEkK9hWjpdO/Nt6/ecJo42UtNui0pC3Wa2sOF+W0sTi8q6gQpT8mk8fpxv+fQ6xIiGt200rNNJtALKUC6/Xy6tq7Hs1W276vGq2NT9r3qbmV8x5raz72/yesx67pO0CsJkt1IwwmhFQaiecpcVGddP89ea8vbP7MhwJ0pgr7AhOn68flPeDe/eWE/YhiOcBAAAAyBLH5yXj+DwAAAAAAAAAAAAAwCgijAYAI+Atb3mL3v72t6+Zdsstt+i8887TH/7hH+rhhx8O3u6+++7T7/7u7+qCCy7Q9773vTXzPvjBD+ryyy8f2Jiz8opXvELvfOc710z7zd/8Tb3mNa/RHXfcEbxNHMf6xje+oXe84x06/fTT9fjjjwevd8011+gtb3nLicsrKyt6wxveoDe96U3msiWp0Wjorrvu0nvf+16dd955uvLKK/XQQw91ce8AAEA3qvH6g6olaTIqZrJ+KzhiBTsQlvR4TUczwemE0ZBGUnRvFOJPIVagqTkESRhtPKSPcrWPgPVD2gDbKETC0ow1zTjTvs9H9/Mg/Di0bjetz7pun8ukoJoVPVszHiM+NhVtUWT8GqKT7bp1f5uDbsVc+LEjXgusV4trOtpYCM6bKySH0ZxzxhzSaJvFscZR3b54c3Dec6Yu0KmTp2c8IrRjBQ9rfkXL8bGBrdf63h8pp4KbGNh6AQAAACCE4/NsHJ8HAAAAAAAAAAAAABhF+WEPAABw3Ec/+lHNzc3pfe97n7w/fhLZ4uKi3vWud+nd7363zjvvPJ1++umam5vToUOH9OCDD+oHP/jBuuUUCgV95CMf0dve9ras78LAfPCDH9RDDz2kz33ucyemfelLX9KXvvQl7d69WxdccIF27NiharWqxx9/XN/97ne1uLiYatkf//jHNT8/ry9+8Ysnpl133XW67rrrtGvXLj3/+c/Xjh07FEWRjh49qv379+uee+4J/pVLAACQjeZQUDMrJNJvVnDECoIgLOnx2pLfpqWV9ftzhNGQRlJ0bxTiTyFWkKjcWJb3Xs451X09eJ2c48d7oyTta6xkBJz6LfV4RuC9kSp6luI643SfQ8z9jJb9H+uzrvswmh3rKzeWpTYNxrIRTyvlplVwE6r69T9H6WS7nmb/z7oPxGuB9RbqB815VkBplZMVRsNm8Y0j/6iaXwnO2zt7dcajQRqz+R3mvPnaQU3nwnHyXlWM7/2laCohsggAAAAAg8PxeTaOzwMAAAAAAAAAAAAAjBrOnASAEfIHf/AHuuyyy/Rrv/Zruvfee09M997r+9//vr7//e8n3v7CCy/UJz7xCV100UWDHmqmcrmcPvvZz+r888/X+973PtVqT584u3//fu3fv7/rZRcKBX3+85/Xhz70IV177bVrDqg6cOCAvva1r6VaxvS0fQIxAADor2ocPgB6Mipmsn4rwEZ0ozNWQCWnvBmrqRFGQwpl470YKdKEm8x4NOlYIaOG6qr7mgpuwgwI5V2bWhEylTbSWUyIUPVT2khWVnHR5DGkiZ61H2fa+zw5Avc5xNoGtoZFrMBot8G3Us6+nbXNTnOdUjSlvCsYYbRw8LGT5Tc/3+yjAenNJ4XRCslhNMvqycTY2GIf6+aF64PzZvM79LwtP5nxiJDG1vycnCJ5xevmzdcP6TSdNZD1mmHTjCLBAAAAABDC8XlhHJ8HAADS4w9fAAAAAAAAYLA4KhnAqmjYAwAArHXFFVfo7rvv1mc+8xldfvnlyueTG5aTk5N69atfrb/5m7/R7bffvuEOulrlnNO1116rH/zgB3rrW9+q7du3J15/y5Yteu1rX6u//uu/1p49e9ou+7d+67d0//3363d+53d0xhlntB3PzMyMrr76av3pn/6pHnvsMb34xS/u6P4AAIDuVY0Ta7MKnJRy4QOurRN+EWY9XqXclApG6MkKQwHNrABOMZqSc6N5cGZykOj4/bECQnnH3z0YJWkjD6XMtlnpIlnWti1LacaaJnqWJgw26YrKuVyqcWWtaDwOrZ9t5mddyue8Vd4VVHATwXmpwmiN8HWmctPm51Qn2/VKw9hvaHq+S0Zw0ApmApvZ4Vo4jDYVbRmJWCZG191Ld+pg7YngvEtnrxrZ7etml3M5bcvPBect1A8NbL1J380AAAAAYJg4Pi+M4/MAAEA6nJYKAAAAAAAAAMgGZ04CwAjK5/O65pprdM0112hpaUl33HGH7rvvPh04cEArKyuanJzUySefrGc/+9m68MILNTk52fW63vOe9+g973lPV7e94YYbMr2dJJ111ln6sz/7M3384x/XnXfeqX/913/VwYMHdezYMU1PT+ukk07Sueeeq+c973kqFMJBDcspp5yiD3zgA/rABz6g+++/X3feeacOHDig+fl5RVGkmZkZ7d69W+eee66e9axnKZfjJC8AAIahGleC07MKo1mhgEq8LO/9yIaXRo0VKSlFU8oTRkMPyg3jtdVlLCgLSWGASrysrZo1X//W+wXDkTbyUDQCTv2WNm4zChGcVNGzVPG09vdlFO6vxQq7tW43k7aj3a97WrXGyvp1G9GzteMJX6cUTSsfFaTG+nm1eP26Ol1+8+vG3EczomrAZjZfD4fRthd2tr2tE993NrMbF64PTs8pr4u3XZnxaNCJufzOYARt3ggl9sMg9lcAAAAAoF84Ps/G8XkAAAAAAAAAAAAAgFFAGA0ARtz09LT27t2rvXv3DnsoIyWKIl100UUD+wucZ511ls4666yBLBsAAPSmEofjFpNRMZP1l4yYTaxYK76qSZfNOMadFVkpEkZDjyrGyfdpg1XDkBQGWI0J2GE0frw3StIGt0oZhblyLq+Cm1DNJweorG1bltIEMtK8j1NdZwxDiTW/ooavK/fUe94KjfTyWVfKTeloY37ddGtdaa5TiqaVdxPBeZ1s1639v+ZYXikXfh2X4yXitUCL+dqB4PTZfPswmsXLd31bjIeDK4/r7qU7g/NeOPMybcvPZTwidGI2vyM4fcEIJfbDOH43AwAAALA5cXxeGMfnAQAAAAAAAAAAAACGKRr2AAAAAAAA6EQ1rgSnp43R9CppPdZJv1jPCpwkhdFqMWE0tGfHeUb35PvJpM+VxvH70/D14Hzr/YLhSPs6KxoBp0FIFxzLZhuaPIb240xzX0opomejHONIei6aP99WPxta9fJZZwXy0oTRlo3gaSk3rYIRcKwbn2shldgOqj797/BjtxqvBfC0eSOENFdIE0YLRwYJo218Ny38nfk8753dl/Fo0Cnr/W19HvSDHXId/r4nAAAAAAAAAAAAAAAAAAAAgNFGGA0AAAAAMFaqRlBr0hUzWX9ScKRsREqwXtkInJRyUypE4dBT3RNGQ3tWoHCUQ0iRi8w4wGpMoGa8/gmjjZa0r7NShjGIdMGx7EJt9hj6E3DrV2BtWJKei+YY2iA+66zHpWxEz1bFPjaDp6WE4Gkn2/VywvKf/nfCY0e8FlhjvhYOIW3P72p723AWDRvdSlzVN478Q3DeMybP1Nmln8h4ROjUXH5HcPp87dDA1llp2EF0AAAAAAAAAAAAAAAAAAAAAEhCGA0AAAAAMDZiH6vqK8F5aWIp/VDM2SfwEt1IzwqoFPsUUMHmZQUKRzmEJNlxgNWIoPX6z7v8wMaEzqXdFmUZg0gVE8tlF2ozx5BinGkCbv0KrA1L0nNRbtrPKBv7HKWE/ZR2Srnw42vFTFdV44q84vAyo+m+bNcrxmd783sp6XklXgusdbgeDqPNFXZmPBKMizsWb9FSvBicd9nsPjlHMm/UWe/vhfohee8Hsk475Dq6+2IAAAAAAAAAAAAAAAAAAAAARgNhNAAAAADA2FjxVXPeZFTMZAyTriin8EnfVqQE61mRlRJhNPTIPvl+tMNoVsxpNSJY9/XgfOv9guFIG3nIMtSXFPRcNQrhwDRBr1SRt1TXGf79tSQ9F6ufBw1fV82vBK/Ty32z1t0ujJY0v5Szt+u1lNt1732qEJwVdpOI1wLNyo1l8z0xl08TRgt/F/IaTFgJo+HGheuD00vRlF689bKMR4NuzOZ3BKev+KqW42MDWacVRE/aZgMAAAAAAAAARh1/LAUAAAAAAACDNaC/9wpgDBFGAwAAAACMjapxUq0kTaaM0fTKOWdGV4hupFduGIGTaFqFHgMq2NzSxHNGkRUzKjeWFPuGvOLgfMJooyVtlCqrmKfUPnpWcBPKuXxGo7GleezSRd7ahzZG+fMg5/IquIngvNUAWVKItZfInfXYWdvs1nGFTEXTPQdPa35FsRrBec2vmwk3SbwWSGG+ftCct73QPozmHCe7bDYPlH+ohyr3Bee9dNsrMt2vQfesMJokzdcODWSd1j5C2pgwAAAAAAAAAAAAAAAAAAAAgM1r+Ge8AQAAAACQUiUxjJZlZGY6GNhIGt9G8e2jN+kbR/7BDCpsyW3V87b8pF4x9xrlXM5cjhWRK0Yl+TgcgEobUMHmlvTaGmVWzKgSl1X3dfN2hNFGS5pwVzEqKUr4fOy3dsGxNCGxLKQJeqV5H6cJpaYN2A1LKZpSrbGybvrqfkYlIVTWUxgtZ4TREsJn0vGAo6WYEDxNu11PG4KLXKRiVDL20QijAavmaweC051cYjipLf4024Z148L15ry9s/syHAl6sS2/XU5RMLi8UD+o03Rm39dp/Yykl/0VAAAAAAAAAMCw8TshAAAAAAAAAEA2CKMBAAAAAMZGNa6Y87KMHlnrSgqDbAQ3zV+v/+fJTyRe5wk9qh+V79GTK/v1plPebl7PCpSUctOq+fUxGIkwGtKxAjqjEn+yWEGtcryU+NrPO368N0rSbIuyjnK1G9OoRAPTPC5p3seFqKC8KyS+b0Y9jFaMpnS0sbBu+up+RlIoLE2cz2JFSpLWlzS/4CZOPB8habfrSVGz1tdvMZoKjqfdfQA2EytwvDU/p1yK/QpnTOcUmI3pWP2o7li8JTjv3Knn6+SJZ2Q8InQr53Lalp/TQv3QunnzgWn9YEerR3tfDAAAAAAAAAAAAAAAAAAAAMDwRcMeAAAAAAAAaVXisjlvMtMwWvgk3qTxjbtaXNOXDl6X+vpfP/JVPbHyqDnfCpQUo5IKbiI8BsJoSKHSsF9bo8wKElXisuq+bt7OCg5hOCZdUc5MxhxnPdeD0i48UcqNRjSwlCLolfZ93O4xzvo56JQVN1vdz0iKfPVy36zwXNn4XF21bIRhV5dnfU7V4nTb9aT1t95f87O0zX0ANpPDtXAYbS6/M+USkrdz2FhuPfI1M2S5d3ZfxqNBr6z3+YIRTOxF7GPzZySj/t0MAAAAAAAAAAAAAAAAAAAAwPARRgMAAAAAjI1qXAlOL7gJ5Vwus3FY8ZakUMm4u3vpTi3Fix3d5o6jt5jzKsZjVYqmlHf54DzrhHygmfU+HJX4k8WKV5Xj5cTXvvV+wXA459qGOtuFyvqtXShrVMIUaR6XtNGvdsvK+jnolB1KXF7z/1bH94e6/0yw92/C4bN281eXl4/CYbS023Xr/krrw7hJn6UAjps3Akjpw2gW3+PtMWpi39BNC9cH583ld+qCLS/OeETo1Wx+R3D6vBFM7IX18xtp9PfFAAAAAAAAAAAAAAAAAAAAAAwfYTQAAAAAwNiwTqydjIqZjsM6iTcp3DHuvr14U8e3uWMxHEarxSuq+3pwXimaVt71FlDB5tXwDa34anDeqMSfLFYIqdxYahNGC79fMDztXmtp4179MmrjsaR5jxaNcFenyyqN+OdBu7hXuWHHRXsxFYUDkjW/olpsfw6ZQcqnllfocbtuLb8YlRS5tb/isOJuG3kfDeiUFUbbXkgXRnNywemeMNqG8y9Ld+hw/UBw3qWzV2UaJ0d/zBWMMFr9UN/XlRRWtbbXAAAAAAAAAAAAAAAAAAAAALCKMBoAAAAAYGxU43Jw+mTGgRMzYLRBoxuVuKzvHft2x7d7bOVh7a8+GFie/TgVcyUVoongvFq80vEYsLkkvbZKRvBnVFjBp0pcbhNGyw9qSOhSuzhVMZftNqtdTMyKcGUt5/KacJOJ10kbOCzlkt/vxTbzh80Kt61+xlmfdb0+l8WEz8lKQtyk3AjPWw2t9Ro87eT+tovKAZDma+HQ1Vw+XRhNRhgNG89N89cHp+ddXi/fdmXGo0E/WO/zhQGE0SrGz2+k0dn/BAAAAAAAAAB0g98VAQAAAAAAAACyQRgNAAAAADA2zDCaK2Y6Dusk3kpjY0Y3vrP4LdV8OEp21fY36OdO+hU546C324/esm5aUpykFE2boae6r6cYLTazxOhexgHFTtnBxaXE174VHMLwtAs9ZB3paxdqK7UJp2Up6bEruInUr/d273crPDYqrEBZ+an9DGs72i6C107SayFp2102ommr4+k1jGatO/Tatl7vSdsHYDOJfax5I4A0V9jV07J9T7fGqHlyZb/uXr4rOO+FW16umfxsxiNCP8zmdwSnz9cOyvv+vouTo9Wjs/8JAAAAAAAAAAAAAAAAAABGC8clA1hFGA0AAAAAMDYqRhgt6+CRtb6kaMg4u33x5uD0rblZvXrnNfrpuZ/R2aXzgte5Y/GWdSdYJ4fRpnoOqGDzKifECbOOUXXKDC7G5cTXPmG00dNum5T9Nis5PNFufpaSwlydPG7jdJ9DSrnwfV0NjFihkV4jI1MJn5PLjXD8TLLDaKvLs4KntZTbdSs8G3oerec2afsAbCbHGkfN/Yq5/M5UywjnkCUOQdhYbl74O3PeZXP7MhwJ+mm2EH6fr/iquT3vlvXzm0iRCm6ir+sCAAAAAAAAAGSJ3wkBAAAAAAAAALJBGA0AAAAAMDaqvhKcPhkVMx1HKRcOh1g5YW0NAAAgAElEQVQn/o6zxfoR3bN0V3DehTOXKHI5SdJFM5cEr3Og9pgerv54zTQrcCIdfy6t0FPNr6QZMjYxKxYkSUUjNDQqrKBRNS6rFtuv/ZwRHMLwtItuZR3paxcU6zWm1U9Jj10nj1u7+zRK9zkkKZQo2YHRXu/XZFSSM5JHSZ+vVnRs9X5Y8ZO0wdNO7q8V19uI+2hAN+brB815c0YwCZvPSlzVrUf+ITjv9Mln6qziczIeEfplLr/DnHe4Zn8+dMPadyhGU3LOTiwCAAAAAAAAAAAAAAAAAAAAgEQYDQAAAAAwRqyoRdZhNCsyU46XMh1HFu5avFWx4uC8F2/de+LfL5x5mZzxY4Y7Fm9Zc9kKnBSjkiKXSwio1NMMGZuY9doquAkzuDcqrOCil9dSvBicFymnyPHjvVHTLkTWbn6/tYtltQu5ZSlprJ08bu3uU9b7DZ2yHofV/QwrMNrrcxm5qKt9HGve1FOfa9bnb9owmhlWCUTQrMdgI+6jAd2YN8JHeZfXTG5bqmVYQSMv3/W4MFq+ffQm83Nz7+w+olZjbFt+u/m9fSEhnNgNO5w62sFqAAAAAAAAAAAAAAAAAAAAAKOBMyeBPgudEOI9JwQBGG9xvD6GwglwAIBhqMaV4PSsT6y1ohtWuG2c3b54c3D6zsLJOrP4rBOXZ/Kzes7UBcHr3nH0ljXfi6yT7Fcf17zLB+d7xWr4RqpxY3My4zljcPJ90hgX60eC0wsjHnvbrIq5NmG0QMxpkNrFstqF07KU9D7o5HFLuk+TrqjI5ToaV9ba7WdYEchSH15bpSgcaVxu2GExa97qsnoPo4X3r0LPs/Xcb8R9NKAbh+sHgtNn8zs6iK0aPxPk1yAbgvdeNy1cH5xXiqbXxLExfnIup235ueC8hfqhvq7L+m5mBaEBAACATnGMHoCNhuPzAAAAAAAAAAAAAGAtwmhAn0XR+rdVrZbuJD8AGFX1en3dtNDnHQAAg1Y1ohaTGUePrOhGNS4r9usPWB5Xh2sHdF/57uC8i2b2rjsQ+0Uzl4SXUz+gByo/PHG5XeDECqhI6SMq2JzKDePkeyP0M0qSxniscTQ4Pem9guEZtRBZu21k1qG2JEmPXSePW78Ca8Ni3ddyY1ne+4QIZB/CaEasxFpn0rzVZVnB07pf/7OGECsEF7q/1mNQTgi7AZvJfO1gcPpcflfGI8Gour/yAz1c/XFw3su2Xa6JaDLjEaHfZvM7gtPn6+HPh27Z2+/Rj1YDAABgPHCMHoCNhuPzAAAAAAAAAAAAAGAtfmMK9JlzThMTE2umHTt2bEijAYD+aP0cm5iY4C9SAgCGohpXgtOzDqNZ0Q0vb45xHN2xeIs576Ktl66b9oKZlypSru2yrDhJ8UQYbSI4X5JqfsWcB1jRvXE4+T5pjIuNI8HpVmwIw9UuTtWPeFUnClEhMaKXdagtSSkhWtbJ45a0nFG6vxbrvjZUV93X7BBZP8JoxjKWYzssZs1bDT5ar7+02/SKGb1cP1YzXusrin0j1fqAjcwKH80VdqZehvUTQS/fxYgwam6cv96ct3f2VRmOBIMyZ4XRaof6uh77u9no74sBAABgPHCMHoCNhuPzAADjg+0TAAAAAAAAACAbhNGAAZiZmVlz+ejRo/Kek4IAjCfvvY4ePbpmWuvnHAAAWbFOrJ2MipmOIym4YsVKxtG3j94UnP6MyTO1e3LPuunTuRn9xPQLgre5c/FWxT6WZD+PqzGTQmQHfOp+/V/KBlaVrThPwnt2VBTchHIKh86OGWG0HGG0kVRqE+IbRpgraZ2jFKdIGksngcPk5YzO/bUUc/Z9rcTLKhv7Gv24b9YyykacrBavqO5rwXlPb9fDwdN6HL7dunVb9zfw2R6atsra/wA2k/maEUbLpw+jWSe7EEYbf4v1Bd117OvBeedNvVAnTezOeEQYBCuEaIUTuzXIkCsAAACwimP0AGwUHJ8HAAAAAAAAAAAAAOsRRgMGoPWAhFqtpkcffZQDrwCMHe+9Hn30UdVqa09W3rp165BGBADY7KpxJTi9k1hKPySFRzZKdOOx6sN6pHp/cN6LZ/aat3vRzCXB6Qv1Q/px+R5JdrxqNWaST4g9pY2oYHOy3n/jEEJyzpkBt8X60eD0vLMjghiedq+3Ybwek9Y5SnGKpLGUounUy+lXYG1Yku5rOV5WpZEcGO3FVC687oqx7baiZc3Lsj6r0sZOOwmrJD0GG2UfDeiFFT7aXtiV8Ugwir5+5KvmZ/PeuX0ZjwaDMpvfEZy+UD/U1/VY2+9x2BcDAADA+OAYPQAbAcfnAQDGD/vbAAAAAAAAGCx+5QtglX2mMYCuFYtFFQqFNQcqLC4u6kc/+pG2bt2qLVu2KJ/PK4poEwIYPXEcq16v69ixYzp69Oi6g64KhYImJyeHNDoAwGZXNYIWk1Ex03EkRTes6Ne4uX3xZnPei7aG42eS9PwtP6m8ywdPqL9j8es6Z+p8M6Ky+rjm3YS5/JpfMecB1vtvlMJPSYpRScca6yNooWkSYbRRNdkm9mAF8AYpKUBRMkJYw9CvoFm/AmvDknRfy/Fy28BoL6zHZ9kMo9n7PcUoOXjaUF2xjxW55J+RWvsNoccp6TV0fKzEn7B5NXxdR+qHg/PmjFBSiJMz5nAEwjhr+IZuXvj74Lzt+V167vSLMh4RBmUuvzM4faF2SN57OWe9xztjhVzHIVoNAACA8cExegDGFcfnAQAAAAAAAAAAAEB7hNGAAXDOaffu3XrooYfW/AXKWq2mQ4cO6dCh/v7VdQDIyurnW79OjgIAoFPVuBKc3kkspR8KbkKRcorVWDevYsTbxon3XrcfvSk47+zST2hH4STztqXctM6bvlDfPXbbunl3Ln5dbzzpfzIfo9UTpAsJsae6r5nzgHavrVFnBYkWG0eC063YEIar1GabNIzXo7VOJ6cJNzon1iSG0TqIfiUvJ9t9hm4k7dccrS8oVhyc148IpPU5VG6E42Tlhh1Gm8ptkZQccaz7WuJrMPaxGcYNjTXpMbACLcBmsVA/LG/Ey7YXeo8GkkUbb/9y7HbN1w8G5+2d3afI5TIeEQZlthAOo1V9ReV46cT2u1dmEH0IkWAAAABsXByjB2Aj4vg8AAAAAAAAAAAAADiOsyeBAZmamtKePXvWHXgFAOPKOac9e/ZoaooTlwAAw2NFjyZdMdNxOOdUiqa0FC+um5cUCJGkI/XDeqjyY/lA1KQYlXRm8dmaiNpHahbqh/Vw5cc6eeIZ2lU4pesDo2Pf0CPV+7VQP3xi2nztoA7UHg9e/6KZS9su86KZS4NhtMXGEf3j/Jd0uPZk8HarMZPkgEq97fql43G3A7XH9PjKI6muv2prblanF89WLsWJ/ytxVQ9UfthRDC9SpD3Fc7Q1P9v2urV4RQ9U7lU5Tn5NtXrG5JmJ8bpuVeKyHij/UCu+2vdl98vBlSeC08fl5HsrhrTUWP9ZIyW/VzA87cJnwwiRWe+BYlRS5KKMR2NLeq+2C841S4qf9SMeNmiRy2nSFVX164Owdy/dad6uH9E96zmYrx8IbtsfqdwfvL5TdGL/rOAmzPXVfU0Tst8T1bhihpxCn5mFaEJ5lw/uL9yz/M/Bfbc0ci6vM4rnaEtua1e3B0bBfC0cvZKkuXw4lNRPDd/Qw5Uf6WhjoaPb7Z44QzsnTu77eLz3emzlIR2shfcfTyrs1skTz9g0J6DeuPDl4PS8K+jibVdkPBoM0lx+hznv20dv0pwRTuvUkaafMTQbl2g1AAAAxgfH6AHYSDg+DwAAAAAAAAAAAACeRhgNGKDVA6/279+vWq027OEAQNcKhYJ2797NQVcAgKGq+5oaCkexJjuIpfRLMVcKxjWsSFbDN3TdEx/TN478Q+JyC25Cbz71N/SCmZfay3n8Y/rG0aeX85ypC/Srz3i3GVWyPLHyqD76yHt1yAiVtYoU6cKZi9te77lbLlLBTajmV9bN++KBT5m3K+WmJUl5Z/+4IrTMVuXGkj7+6Pt1b/n7ba8bsi03p7efdq1OK55pXueuxVv1qcf+c6rxhFw6+yr9/En/sxkk+v6xO/TJ/R8KRnHSeP6Wl+gtp75ThciO0XTim0f+UZ95/GPme3DUjcvJ96vvgVahkKIk5SPCaKOo3ettGIEVa/swau+NpPEUo/D7IyQpfjZq99lSzE2pWl+/DbDCNVJ/om8l43E+WHtCH3/0/R0sZ+rEa72X4GklXrbXYXxmFqMpHWscXTf9y4c+m7iuNF61/ef06p3XbJpQEjaW+fqB4PRiVDLfTyFO1uvfPvn8kcr9+ugjv6+jjfnU62l2/vSF+pXdv6XJqD9B7CP1w/qTh9+r/SsPJl5vz+TZ+vXTrtWW/MaOIj6x8qj+dfk7wXkvmrlkw9//zWZbfk5OUfA7xmef/LOBr7/Tn1sAAAAAaXCMHoCNgOPzAAAjhegwAAAAAAAAAGAEhM++BdA3U1NTOvvss3XWWWdpx44dmpjoz0npADBoExMT2rFjh8466yydffbZHHQFABg6KzgmqW8nyHfCio9YAY+bFq5vG0WTjoe/Prn/j3SkftheztG1y/nB8vf0hSc/1XbZrf6vR/8odRRNks6dfoFm8rNtr1eMSrpgy0Udj2f1BOnI5RQpF7xO3bc/oeULBz7VdRRNko405vXxR98nbxzkd7h2QP9t/4e7jqJJ0s0Lf6dbj3wtOG+5cUyf2P+BrqNokvSdY9/S9Yc+1/Xtmz1efUR/9fh/GdsomtSfWFAWOo0EJMWGMDzF3OjFHqwY2Ki9N5LGU+rg/ZFzeRVc+Gdwo3afLd2Msx/Rt349Ps2RpaTgabvtejkhjGZ9Zg7yOf67w5/Td459a2DLBwZpvnYoOH0uv6uj5XQaBox9rP/66Pu6jqJJ0veX7tSXDl7X9e1b/eVjH2kbRZOkh6o/0n9/4qN9W++oumnhenPeZbP7MhwJspBzeW1N8b1+UMYlUgsAAIDxwzF6AMYRx+cBAMYTf0QKAAAAAAAAAJAN+4wkAH3jnFOxWFSxWNRJJ50k773iODZPsgeAYXLOKYqijk9yBABg0KqxHYnqNCbUD9bJvFbA47sdRDRixfqXY3fo5bNXrptnxTi+e+xbukZvS72OAyuPpYoBNLto5tLU133RzCW6c/HWjpZfip6OqBRcQVXfWHedNGG0fgRLDtcP6JHq/Tq9+Mx18+5Z+mfFWj+2Tn332G26ZPaV66Z/f+lO1X3vEbLvHPuWXrPrTT0v57vHbut5GcM2LiffN78H0kiKDWF4krZJw4pyWe+BUXtvJD12nY61FE2p1lgfsBy1+2zpdJxOri+h2OagWU/LaRp/UsSx3XbdCs5Kw3tdf/fYbXrBzEsHug5gEA7XDwSnzxV29mX51u87Hqn+WPP1gz0v/zvHvqk3nvSWnpdTicv64fK/pL7+vy59Rw1fV26D7ndV44q+eeQfg/P2FM/RmaVnZzwiZGEuv8OMsQ/auERqAQAAMJ44Rg/AuOD4PAAAAAAAAAAAAABob2MexQ+MOOeccrncsIcBAAAAjJWkMNrkCIXRrIDHfO1QR8u34gE/XP5ecPrRxoLqvpYYH0mzfEvBTej5W16S+vrnT79IxaikSlxOfZvTJs868e+8K6jq1z/n7QIqtbimY42jqdeZZKF+SKdrfRjtaGOhT8sPPwcL9c5eK50uv/Pl9Gc8w9T82hplnY5zXO7XZpN3BZ06cboeW3l43bzndfA52k/Wa+W04mi9hmbz27Ult03HGkfWTC+4CZ00sbujZZ02eZbuXr5r/fQRu8+W0ybP0gOVH3Z0/chFPa/3GZNnysnJq7eTRVu36ZaaXx+vWzM/tudPuElz3Q9Xf9xmhN3bCNtFbE7ztfC+4fZ8f8Jo9nr7856Zrx2S977nk0WXGosdRY5XfFXVuKKp3Jae1juqvn30RjPufdnsvoxHg6zsKZ6jByr3Zr5eJ6fdk2dkvl4AAABsXhyjBwAAAAwC4WEAAAAAAAAMFn/7CsCq3s+UAgAAAAAgA9WEwFZxCGG0khFGKzfCJ5V3Egg7fv3wcpJY6w5ZahzraNlXbn+dSrnwfQ6ZiCZ11fY3pr7+edMXaufEyScu56NwRKUWJ4fRKvFS6nW2YwUC+nWAn7X8Tp7HJJW4rNjHfVhOf8YzLM+ZukCnTJ427GGk8vwtL9G2/PZU1y1GU7po5tIBjwjd2hsIieSU18u3XTGE0UjP3fIi7SictGZawU3oZdsuH8p4LJHL6dLZq9ZNv3jbFZqIwhEsy6Wzr5LT2njOmcVna8/k2T2NMSsXb7s8dexUCr/murEtP6cXbHlZT8vIu7xevu3KE5cL0YR53bqvJy7LCqLmXd6MI108e6XybnB/E2bct4vYvKww8lyhszBa62drO/16z8RqaMVXe15Ou9BySK+xyFHlvdeNC9cH501HM3rRzCUZjwhZuWTbK1Vw9vZ5UF44c7G25mczXy8AAAAAAAAAAAAAAAAAAACA8TO4s4MAAAAAAOijalwJTneKhnJCb9GIhJWNMJc13dJNHKscL2lG21Jdd9kIozk5TUbFE5fn8rv00m0/rcvnXtPxeK7c/joVXEG3HvkHHa4/GbzOTG6bzp++SK/d9YtrplsxmHYhg3JCgG7SFYMRlWpcCcYOKsZz4I0/O+EUaTIQ7mn4hmp+Zf1YjeVbr5VIUTAMFPs4GInw8qrGlY6CduHxhMeZU14FI2A3Crbktur86Rfptbv+3bCHktqW/Fa98/T364sH/ko/Kt8dfF5zLq9nFs/V1Tt/fmyCb5vRZXNXK+dyuvXIP+jJlf3aUzxbV25/nc6ZOn8o4ylGJf3G6e/XFw/8pX5c/ledMnm6XrX9DTqjeM5QxpPkZ3b8gopRSbcfvVl1X9eFMxdr346f63g5z595iX5l9/+qG+b/P83XD+o5U8/T63e92YxpjZozS8/Wr592rb5y6PN6oHKvYjWC1zt1Yo8umX1lXyN3b979v2jHgZP03WO36WhjPvXtnCKdUTxHr9z+ep099RMnpidFyuptgqc1M4xm7/udXTpXb3/G7+nvD39eD1buk1d3kdC6rwf3O+xwKjDa5mtGGC3fWRjNYsXDrPdM6/eOE8vxXlUf/u5XjpeDt+lEu9ByyEYNo/2ofI8erT4QnPeybZd3HCXF+DiteJb+w2nv1fWH/ocerNynhpJDpb3alt+uC6ZfrNfsetNA1wMAAAAAAAAAAAAAAAAAAABg4yCMBgAAAAAYCxUjeDUZhWNXg1aKwrGp0Dgbvh4MY0nSKROn6fGVRwLLWR8QaBcFW26kj68tx+Ew2jMmz9S7z/w/Uy8nSeQivWL7a/SK7Z1H1boNo4Uet1XvO/uTmsptWTf9Dx/8TT1UuW/ddCviYIURzi6dq9/Y8/510+9euksffeS9wbF679e9fq3X+kVb9+qXT/2P66Y/sfKo3nv/24O3qcTLPYfRrMf0iu0/q59tCdqhdzsnTtFbn/Fbwx4G+uCS2at0yexVwx7GCXOFnXrL7ncOexhtOed05fbX6crtr+t5WS+cuVgvnLm4D6MajmdPPVfPnnpu5uvNu4Jef9Iv6/Un/XJflpdL+DVEu+163YdDLdZ+wqrnTD9Pz5l+XvvBJfjWkX/SXz7+kXXTrXAqMMqqcUVL8WJw3lxhV4dLC3/3svaRrX3JM4rn6LfO+NC66Qv1w3r3j94SvE25saTZ/PaU4wxr97kTYoWRx91NC9cHpzs57Z19VcajQdbOnvoJ/frUtcMeBgAAAAAAAAAAAAAAAAAAAAAERcMeAAAAAAAAaVQTwmjDUDTCaKGYlhXYkqS5/M7Uy6k0wo/B07dJH0ZbaoTDaNOBcNgwFLoMoyU91sWoFJxuRe46DaNZkQhr+bFirfhqYL3h59FajvVaPL6s3uMtZSMAU4qme142AGDjc851HTytG2HZvBv833wp5cLbuX5sW4GszdcOmvOs7yOWTpPUVvTX2oe19nmlzr7vWLoJo8nc/x9fR+rzumvxG8F5501fqJ0Tp2Q8IgAAAAAAAAAAMDo23u9GAAAAAAAAAADjZ/BnDwEAAAAA0AfWCfWTbjhhNDOm1Vh/sn5S0GyukD6M1i4EsGzEzsLXXQxOn4pGI4xmBVRqbUIGFSPiNemKilwuOM+KMlQ6DJ84IxPRLlzWGvfrNESWHI/oPd5ixyzCoTkAAFoVXCEYI2q3XbcCRlZAtZ+s7dyKr6rhG8oZ+xXAKJqvJ4XRdgx03fa+bXgfdsJNKlJOsRqBZQ0njLYRT/259chX1VA9OO+y2X0ZjwYAAAAYDOfcnKTzJT1L0nZJRUkLkg5IusN7/6MhDq8nzrmCpJdL2iPpVEnHJO2XdJf3/oEhDg0AAADAhtfpn9EBAAAAAAAAAKA7hNEAAAAAAGOhGleC04cVZ7JjWusjUkmBrbl8OIwWuo0VqFrVLpzWbDkOR9SmcqMdRmsXMrBCYMWcHQ+zI3fhZXnFwenOhQ/8SwyXNZY0m9++Zpr1erFe6wU3YcYjOo27BcdovK5KCY8pAADNut2uW+E0a3n9lBQ2rcblkdlnAtKwwmgzuW0qRBMdLcuKAXsjH2bv24bfY845lXJTWgqEnPsR/W0XZAyx7tu4aviGbl74++C8nYWTdd70hRmPCAAAAJuNc+6Zkl4s6aKn/n+hpJmmqzzovT+zi+UWJL1C0qsl/ZSOR9GSrr9f0n+T9DHv/eMdrus9kq7tdIxN/tJ7/8ud3sg5t0vSeyX9vI7H3kLXuVXSH3vvP9/D+AAAAAAAAAAAAAAAAIChIowGAAAAABgLVR+Ogk1GxYxHcpwVhQpFpJJO4J8rhMNooShXu/DZciN9GG2pEQ6jTedmgtOzVugyoNJpeCFpnrUsb3QRrL+HmhRl6ySkV8pNh9ebFI8w4m6dsIJ8SY8pAADNug2j1X29o+X1U2LYNF4ijIaxcrh2IDjdijQnMmLAFuu7UFJkdyqaDu7bLncQgra0+9wJ2WhhtO8eu00L9UPBeZfO7lPkooxHBAAAgM3AOfdTkt6l4zG0YNCrx+W/RNL1kuY6uNluSf9J0r93zv177/1/7/e4+sk5t0/SpySd1OaqF0u62Dn3GUm/6r3v/csUAAAAAAAAAAAAAAAAkDHCaAAAAACAsVCNK8Hpk1Ep45EcV4rCkaqaX1HD15VzT3/ltkJXBTehLbmtwXmh21iBqlXtwmnNlo0w2lQ0GpGPbgMqZnghIW5iR+6MMJoRRnAKBwQmXVFOkbziwDrSh/QS70MUDqNVeoxH1H1NNb8SnEcYDQCQVvdhtPA2KIswWtJ2rtwoS4MfAtA38/WDwelzhV19XEt4H7mv4eI+RH+tz5VEVhl5TN208OXg9IKb0Mu2vSLj0QAAAGATeYGkVw5w+bsUjqKtSPqepMclHZG0Q8fjbDuarjMr6dPOuZO89388wDF27amw3F9Lmmia7CXdKenHOn4fXiipuYD9JklbnXOv9d6v/wUFAAAAAHRlY/3eBAAAAAAAAKOHn0ABWEUYDQAAAAAwFqwoWHFIYbSk9Zbj5TXBMysGUIqmzOWs+Oq6wFq5kRy5Wu4kjBYbYbTcaIfRam0CKnZ4wX6+rOCYtSwrjGZxzqkYlYIRtNZ1eO9VNoIPSffBikeU28T02qk07NsnhdoAAGjW7XbdCqcNO4zWa3gUyNp8zQij5XcGpydxcsHpVjusm/3zqVw4Qt3J9x1L3dc7vk2n+/+j7LHqw/rB8veC8140c4kZ7gYAAAAGqCrpEUln93GZxyT9D0nXSbrVe7/mB93OOSfptZL+s6Q9TbM+7Jz7nvf+q12s8xckfbPDMabinDtN0he0Nor2dUlv9d7f03S9SUm/Kun/0NNJ91dL+t8lvbuDsQEAAAAAAAAAAAAAAABDRxgNAAAAADAWqnElOH0yKmY8kuNKUfhkfUmqNNaG0ezQ1VTicloDa2UjKvD0etKHApYaox1GK0Th4Ek9Tg6oWI910uNsR8WsxzscRrAiEcfXPxUMo7WOt+5raigca0i6D3bcrbd4hBWykJKDMQAANCsYITMrfLaqZmz3reX1UyEqKO8KwTH2Gh4FsjZfN8Johc7DaJ2y3i/J++fheaH96U5ZQcZIkWLFwXkbKYx208L15rzL5q7OcCQAAADYpGqSvi/pdknffur/35P0ckn/1IflPynpjyR93HtvfoHw3ntJX3TO3STpZkk/0TT7vzjnznvqOp143Hv/QKcDTum9kuaaLt8q6Qrv/ZpfnHnvqzo+/ockfbFp1m845z7hvX9wQOMDAAAAAAAAAAAAAAAA+i4a9gAAAAAAAEijYpxQPxmVMh7JcaWcHYVqDWpZYy9GJRUTxl9prL1dUqRKkpZThgIavmEuazoajTBavsuAinW/ijn7cbajYuFlxT4cTHDO/jFLKReOO7SuIyl+l/Sas5ZvheLS6nY8AAA063a7XvfhWGjeCKj2mxUBbbdPBowS773ma+Ew2vZ8/8JoVjysYkai7f3zKSuM1kEI2mJ97hTchHmbjRJGq8RlfetouDVxZvFZOqN4TsYjAgAAwCbzl5K2eu9f6L1/q/f+z7z3d3rf5ocD6X1L0jO99x9OiqI1894fkvQL0ppK8rmSLurTmHrmnHuWpF9qmrQi6Zdbo2jNvPd/reOP96pJSdcOZoQAAAAANqSOW9EAAAAAAAAAAPQfYTQAAAAAwFioxuFzPJJOqB+kpPW2xqTKRrCslJtSyTjpP3S7pEiVlD4UkHS9qdx4h9GsxyjpcS4aga9yY1m+gwP9XMI86/WS9rVyfBl2iMxafq/hlqTX3LDeewCA8WOFzNqH0cLzrf2EfrPiqe32yYBRshQvasVXg/PmCp2H0Zy517t+v9l7b75frH1wyQ7w9uO9V4+NMFpkh9FC920c3XbkBjPavXf26oxHAwAAgM3Gez+fFPPqw/IPpA2itdzuO5JuadWc6psAACAASURBVJn80/0ZVV9cIynXdPkL3vt7U9zugy2X/41zrti/YQEAAADYvJKOkAIAAAAAAAAAoH8IowEAAAAAxkLVOIF7MhrOeRw5l9eEmwzOa41RWSefF6MpFXPpA2uVRng5q5YTolrNluJFc96oh9FqbQIqVggsKeJlRU9iNVTzK+umezOMYB/4Z4XZ0r5Wji8jIR5hLL/XeIT1eBbchHIu39OyAQCbh7ldNwJFq+qB7XDS8vrNDI82CKNhfMzXDprztud3dbw8O4y2Xs2vKFYjOK+rfduUIegk3QQXO2gljyzvvW5auD44b0tuq1408/KMRwQAAACMlLtaLu8eyijCXtdy+S/S3Mh7f4+kbzVNmpb0yn4NCgAAAAAAAAAAAAAAABg0zmAFAAAAAHTsrx77iA7UHs90nY+vPBKcPpkQvBq0UjSllUZ13fRySyzDilMVoynlXUEFNxEMcLVGqcptwmdpQwHLCdebzs2kWsagFYwwgRUyWNX62K9KCi8UE+aV42VNRGsDeFYYLSkSYa1/3WvFeG6cXOJr3boPvYbR7MczHKsAACAkb8Q0223X674enG7tJ/RbKWeFTZNjtcAoma+Hw2iRctqan+3bekJ7yEn7okn74Oa+c4/7tpIdWrai18eNfxntvvLd2r/yUHDexduuUCGayHhEAAAAwEhp/QHESOwgO+dOkfT8pkl1SV/vYBE3SHpJ0+V9kv6295EBAAAAAAAAAAAAAAAAg0cYDQAAAADQsUeq9+uR6gPDHoYkadIVh7buYm5KRxrz66a3Bs1aL69aPeG/FE2p1lgfRmuNUrWLcLQLp61abiwGp0fKDfXxbJbvMoxmPdbdhBdWl7dNcy1TOw+j2eGypZbL4fFPRiVFLjKXb92HihE2S8t+PIcXJAQAjJ+CC59P3G67bgWMrP2EfrO2d2n3uYBRMF8Lh9Fm89sVuVwf17R+H9nal5SS9yetKGE/3nvW505SGCzeAGG0Gxe+HJzu5HTp7FUZjwYAAAAYOee0XH5sKKNY77ktl7/rve/ki9GtLZfP73E8AAAAAKCN8AdlAAAAAAAAAADjwT6jFgAAAACAMTDMQJMVo1oXuzLiVKuxLCua1RoSaBcCqPkV1eL1gbVWy/Gx4PSp3BY5Z8e9stR9GC0cjyvl7PhZUjQt9Nx5K4yW8NhZ628db7chsqKxfCu0lpZ1eytWAQBASLfbdWt+dmG0dNtvYJTN18NhtLnCzq6WlxQDbpX0XilF9v6kNa/cGGAYLfFzZbxP8DlSP6x/XvxmcN5zpy/SjsLJGY8IAAAAGB3Oua2SrmyZfFsXi/pV59zXnHOPOucqzrlF59wDzrkbnXPvc85d2sUyz2u5fF+Ht/9Rm+UBAAAAAAAAAAAAADBy/HgfugugjwijAQAAAADG2nRuZmjrThvLsGJXq7GstFGrNBGO5TbxNElaaoTDaNO5LW1vmxUrTFBLCKh47xPCYnb8bDIqmoGH0PK88dPVpEiEtf7W59gMkSWEI47PH0wYzXrNDTNICAAYP3mXD06v+3ri7YYdRksbwQVG2eHageD0uXx3YTRLKB6cFDKbjIrmPCvCW/UVNXyj88E1sT9XJszbWGHkcXHLwlcUK/y4XTZ3dcajAQAAAEbOr0pq/gHAEUn/1MVy/q2kyyXtljQpaYukMyTtlfRuSTc5577tnLuig2We03L5oQ7H9GDL5R3OubkOlwEAAAAAAAAAAAAAAAAMBWE0AAAAAMDYKkVTOqv07KGuP6TcaA2aJce6rOW03i4pLNDJdZaNMNpUNDphNCt4YoUMJGnFVxUrDs6zHmNJilxkhr5CYTE7jGCH0ezXytrnq9Kwwmj2+KWkSF9vYTQr/NJuPAAANLO260nBU8ne7lsB1X5LG8EFRtl8/WBw+vbCru4W6Ox93lZJkd3I2b+iTNrX7HX/1vrcmUgIo42zhq/rloW/D87bVThV5049P+MRAQAAAKPDOXempP/UMvkj3vuVAa3yIklfcc69z7lUX65mWy4/2cnKvPfHJFVaJm/rZBkAAAAAAAAAAAAAAADAsOSHPQAAAAAAALqRd3n9u1PeoZwb3lfbYs6IXbXEpMoJQQApIZoVtwbW2kc4rJBVs+XYCKPlRiiMFnUeRgtFzFZZYZPm+aHbdxJeSDqLKW1YxboP1mttlfUaqvuaanFNBePxbKfSsF67hNEAAOkVjOBQvc15xlbAyAqt9ZsZrzVCpsAomq+Fw2hz+Z1dLS99Fq19INoyFU2b88qNZU3nZjoYxVpmcDGyw2ixD8eXx8F3jn1LRxrzwXl7Z1+VGKgDAAAANjLn3ISkz0pq/oLxgKQ/6nBRj0r6sqTbJN0j6bCkWNIOSRdK+hlJVzWvWtK7dfwP2r6rzbJbf2nTTam9LKnYdLn7L1RNnHMnSeq0uH12P9YNAAAAIAvWH40EAAAAAAAAACA7hNEAAAAAAB3bO3u1FhsLQ1v/1tyczp1+vnYUThraGKSEWEZL7KpixMpWb29Gs5qiG977VJGu5RRhtKVGOIw2PUJhtIIRPKnFdhgtKVJiPVfN80O5gFCoLFY4jOBkRwVKKSN61nPcdvwJ4bRKvKRCNJt4e/u23cUsAABoZoXMkoKnklQ3tvv5jMK4dgSXMBrGQ+wbWqgfCs6bK3QXRkvivZdzT6fTrPdKu33bpChwmhB0EjOMZgQcx92N818OTi+4Cb1s2+UZjwYAAAAYKZ+U9JNNlxuSfsl7n/ZLx206Hjz7qvfeKgbcKumjzrmLJF0n6VlN837HOfdN7/3fJKyj9Zc2lZRja1aWNJewzG79mqRr+7QsAAAAAGOlkz+jAwAAAAAAAABA9wijAQAAAAA6dsnsK4c9hJFgxaGaT9avxTXVfT3x9nY06+mQwIqvmkGuNbdptD9nZ9kIo01FoxNG6yagkhQpSYorSOnidCcYpzi5hOP+rOXX/Ioavq7cU4EXK/TQNh6RML8clzWj7sJoZsyizeMJAEAzK2Rm7SM9Pd8Io0XZBIxKUSk4PU2sFhgFR+sL5neIuXy3YTR7p9fLyzXN7zayW4qmzXk9h9HM4GL4+4d0/H6No/3VB3Vv+fvBeS/euldTIxTGBgAAALLknPsDSb/YMvld3vub0i7Dex+uEIeve7tz7qWSviHp2U2z/tA59/967xtpF5V2nT3eBgAAAAAAAAAAAAAAABi6aNgDAAAAAABgXFkn7FfictO/7XDGalzKXs7Tt02KfjVbThEKWI6NMNoInRjfTRjNeqydIk26YuL67Djd+sfTDiPYkYiksFnzc1tplIPXaR+PsOdXeohHdBuzAACgmbVdryVs1yV7u19ICBj1U9HYR0u7XwYM2+H6AXPeXKG7MJpL2OdtVQ5FhtU++ptzOXP/fTlFCDqJ9blTSAwujmdH4MaF6815l81eneFIAAAAgNHhnPuPkn63ZfIfe+8/NMj1eu8PS/oFrf2Cca6kn064Wesvc8IF92Sttwn/gggAAAAAUhvP35sAAAAAAAAAAMZPftgDAAAAAABgXBWj8Dko5aaT9ZPCGatxKXM5a4JZ6QIc5RShgKXGYnD6dG4m1TqyUHDhMEFSQMV6rItRSc4lBxys0Fdz5G6VVxy8bpTQn7fid9Lx53ZLbqsk+z5Y4bZV1mtIsoMUaZjjIYwGAOhAPjKCp/FK4u2sMFreZfOrjZKxfa37mmpxTQXjfgGjYr52MDh9wk1qOhrEvv/aE2HMyG6u/bn8pdy0qvXKuulJ4ek0rM+VCeP7hyTFfvxO8Ck3lnXbkRuC884qPkenF5+Z7YAAAACAEeCce6ukP26Z/F+99+/MYv3e+zudc1+RdFXT5FdJ+ppxk1EOo31M0uc6vM3Zkv6mT+sHAAAAAAAAAAAAAGxQ43fkLoBBIYwGAAAAAECXSrlw7GpN0CzhxP3VuJQVzWq+bVJgrdly3P6clmUjnjaVEO/KmhU88YrV8A3lXG7dPOuxThPxsq5TjtuH5tJIij+U1zzP4fVZ4bZVkctp0hVV9evjEWlfOyFmzIIwGgCgA1bwtO7ribezgqh5l02QrJiwb1SNy4TRMPLm6+Ew2lxhZ9twsCXpVq0HIYQiw1K6fclSNKUFHVo3fbnH/XM7uGiH0cbx8Irbjt4Q/G4gSZfNXZ3xaAAAAIDhc879oqSPa+3Xmr+Q9PaMh/J3WhtGe17CdY+0XN7VyYqcc1u0Poy20MkyLN77JyU92eF4+rFqAAAAAAAAAAAAAAAAbBLRsAcAAAAAAMC4smJalbgs74+fPJ8UpSpGpTX/b1VupAusrb1NcijAe6/leDE4byo3k2odWUgKnlgxg+bHq1ma8IJ1nUpjfczBG2EEl5CJSIqzrQ3pheMRqeJuRqgv7WunlffefExLOcJoAID0rOCptU1vNz85YNQ/pcSwaX/iqcAgHa4ZYbT8zh6Wmv5Eduu7UJp9W3v/vPvor2R/rkxE9ueKtf8/qrz3unHhy8F5W3Lb9MItF2c8IgAAAGC4nHP/VscjaM3HSn5G0q/41V/mZOeBlstJsbN7Wy6f0eG6Wq9/2Hs/3+EyAAAAAAAAAAAAAAAAgKEgjAYAAAAAQJesk/W9YlV9RZJ94v6kKypyOUnJQas0gbVmy20iHSu+qrqvB+dN5bakWkcWksJoNb8SnG4FwNJEvKzrhB536zwp5+xIRM7lNeEmg/Oax22F7dLE3azARNrXTquaX1GsRtfjAQBglbVdTwqjee/NfZZCwn5CPyVt76yYKTBK5utGGK3QSxgtydr9ZGv/PM2+5JTxHand9512hh1czMIPy/+ix1ceCc57+bYrVYiy+QwFAAAARoFz7g2SPi0p1zT5c5J+yXsfD2FIrT9QsKvs0j0tl8/pcF3PbLl8d4e3B/D/s3enQZLmeWHff08eVZnV09NdPd27y+4Ci/CCYLmWXViWXWbAwMKsjThEIAksDEISWEjIlsIhh7EtobAjbEfIIfmVFLZD4AhZEZKFpAhpZ8ESYvYAZC4BkjiNkGDFMbNTPdPdldWdx+MX1dmdnf38nnzyrOruzydiYjqfO68n/1lV+U0AgCfWo/WlMQAAAAAAPJ6E0QAAAGBFWYgq4n4QLY8B3P+sS7adSUziTnk7IvJg1rxFyx2Pb6bzLrTOTxit28rDBFkkJQuANQkvZMtU3X9l+sd/eRitbh/T+2xSju8F9eZl8bwm288eg4vUBV/6rbrPagHAg7Iw2rAmjDaJcZRR/fnkTtHZyHEtUjeGGKwZZ4JdSMNondXDaEXNmHd+nDxIItF176PuL1M9/l33uZedd/ZqwmjZuei8+tDRByqnF9GKL7n8VTs+GgAAODtFUfyBiPjbETH7g4R/EBHfXJZl9beCbN/8G7LqN26n/uXc5c8pimKZby15z4LtAQAArKD+76MAAAAAAGBThNEAAABgRf12XSzj+IH/z+vNhK7qoxvTwFoeqXpw+fpQwK26MFr7/ITR6oIno0l1zCALgDULLyTRssptVofR6iIREfnjpcl93CREll6HJEixSN1jqUlsDgCmukkYbVQTRquLpmWhtU1rF+3YK/Yr5zUdm8FZOhq+VDn9Svfa6hstmn/YJY1E17yPmkrDaA2D0ZnsvFN3XsmyyOfR0fDl+Lmb/7xy3mc/9c717nsAAHiEFEXx/oj4uxExO9j/xxHxh8oy+faV3XjX3OV/ny1YluVvR8TPz0zqRMR7l9jXl85dfmGJdQEAAAAAAAAA4EwJowEAAMCK6uJQJ/diV1msqz/z75ow2t0P/i8Knk0dLwgFHE/yMNrBuQqj5WGCYXmncnoaXmgQFcvuy6ptTlYNoy3YRxbROz2+6jDEA8uk4bXV4hH1oTZhNACay17XR+UwyrL6dbUumrarMFpEPkZYNTwKuzKc3Ikb41cr5x12rm5ln/NP5zQS3SRcvCAqvKrs3LLX2kvXyc5T59FHXv3hmMSkct5zl9+/46MBAICzURTFV0bE34uI2YH+D0fEHyzL5BcMO1AURS8ivmFu8o8uWO3vz13+9ob7+v3xYITtVpzeBgAAAGt6dH5vAgAAAADAo00YDQAAAFa0V+xHK3lrPbgXRquOS83GALKg1ez6dZGqWccLIljH4+ow2n7Ri3bRabSPXegWeZggixlkgZJG4YU0WjaISTmem7paGC0Nq0zDaDWBlSYhsrrrsIpBTWRvv0FsDgCmspBZGWVMYv519tSoHKXb69YEjDYtizNlQVY4L45GH0/nrRNGqx/x3h8nl2WZjkObjW2rw8B1Y9QmsvcSnZr3H4/KB3xG5TA+er26c/C67hvj0w8+Z8dHBAAAu1cUxXMR8Q8jojcz+Uci4uvKsrx9Nkd1z1+IiDfNXB5HxD9esM7furvc1DcURfHWhvua9XfKsjxpsB4AAAAAAAAAAJwLwmgAAACwoqIo0g/snyyIXc3GAPaLXhRpYO3WA/9fZDC+FWWZf3D/1vhG5fSD9lONtr8rWUAlIg+lpOGFmvBck2Xmt5vevPWViDQAMX2MnNTcx03ibovCa8vKo379aBV+pARAc3Wv68MkUjSa3KnZ3u5irpt+fYVdORq9nM477K4TRlsw6L3rdnkSZUwq560TLl7nuTcpJ+l7ib2aMFr5iITR/sWNn4jXxtcr5z17+LwxPAAAj72iKN4dEf8oIma/2eNDEfE1ZVmu9g0i1fv5o0VRvH7Jdf5ERPzFucnfX5blv61bryzLX42IH5iZtBcR318URS9ZJYqi+NqI+LaZSXci4vuWOV4AAAAAAAAAOCs1H40EnjC7+/QQAAAAPIZ67X7cmjwcG7sfu6r+4P5sDKAoiui1+pXxs+n6J+Nmn9kZxyiG5Z3YK/Yr5x8n8a0L5y6Mlv/IYpQEVLJ43DpRsYjTQNhsOC4LPLQW9Od7SXztXkQvCZF1im50W3lQZioPrzWL6j203hq3JwDMqg+eDuPBzyufyoJpi7a3adnrazbGg/PiaFgdRrvQuhj7rfTz82uZDYhlkd2I09DuIv12dYC6aTC6yjiJokVEdFqPfhjtQ9dfqJy+V+zHFz39ZTs+GgAAeFhRFG+O6r9XfMPc5U5RFG9JNnOzLMuH3vAURfH2iHghImZ/2fHLEfHdEfG6omgWeb7rpCzL36mZ/x0R8TeKovi7EfF3IuJHy7KsfLNSFMU7I+K/joivn5v1sYj4bxoez1+8u/7h3ctfHBH/pCiKP16W5S/N7Gs/Iv5kRPyVufX/yqIAGwAAAAAAAAAAnDfCaAAAALCGNEZ19wP7gySa0Z+LZPVbB5Uf8p8G1pYJABxPbsVeKwmjjR+OuEVEHLQvNt7+LrSKdrSiHZMYPzRvWN6pXCeLL2T3UdNlTm/7awu3sXgfWdxhGtGrvo+bHH9EXXitWVSv6XpNjwcApuoCn6PJMKJdMf2chNGygFM2xoPz4mj0UuX0w+7VNbfcLCZwMs6fI1n07IFl0ujvcZRlGUtGDSKi/ryyV9SF0c6/j93+jfi1wb+unPeFTz/3QOgZAADO0Eci4pMbLPemiPg3ybwfiIhvq5j+tRFxaW7ap0fELzQ9uBkvRsSXLlimHxHfeve/SVEUvxoRvxERr0bEOCKeiYjPjYjXV6z7SkR89YL42j1lWf5WURTfEBE/FBHTNy/viYh/XRTFT0fEr8fpdf/8ePiXGf8oIv7bJvsBAAC4p3wUfjsCAAAAAMDjThgNAAAA1tBLPrA/jUqdJNGM+fXy7UyjWc3jVoPxrbjcuVI579b4ZuX0gyTadZa6RTdulw+H0bKgwWBcHRbLbtumy5yMH7ztyySNUERrwT6qwyrT+3iQxCOyoNrDy9VH+pbV9LELAIvUhcyy1/VROUrX6dYEjDYtHaONVwuPwq4cDV+unH7YWS+M1jRHVhcPzMbFs/pJyGscoxiWd2KvqA5B11k5uPgIfPjnxaMX0nnPXn7/Do8EAACeSK04jbB9eoNl/2lEfFtZlr+1zA7KsvzRoii+PiK+P+7Hz4qIeOfd/6r87Yj4E2VZ8YsWAACAlS3/5TUAAAAAALCK+k/sAgAAALWyWMY0RpXHpR6MAfTb2XaOH/h/E8c1IazjSXUY7UL7YuPt70oWJ6gKpUzKcdwuTyqXz4Jhs7qtvegU1f34+bBYGZPK5YoFf/iXBc6mQbQsftckHFG3/ewxuEgeahNGA2A5dcGhYRpGqwsY7e47X/Ix2mrhUdiVV0ZJGK27XhitzmxAOBuDFtGK/aK3cFt1Y85Vn3/Z+SYiYq+Vh9ay8f95MRjfip987cXKeZ/a/4x4c+8tuz0gAAB4/P21iPi/IuLfNlz+VkT8/Yj4irIsv2LZKNpUWZYfiIjPioi/HhFHNYv+RER8Y1mW31yWpR9gAAAAAAAAAADwSNrdp4cAAADgMZTGqMankassaDa/3qKo1TJxq+Nxdfysbt5B+6nG29+VTqsbVQ2C4eTOQ9OyqFhEHjSZ12sdxM3xawu3XZYPLXJqwReiZsdxci9+V/35pObHXx1QO5kMYlJOolUs18dPo37tZqE2AJjq1oTRsgDasHz49T4iohWtaBXtjRxXE1kEt27sAefB0bA6jHalc23NLeeD3iZhtF6rH0WxYOAcEQfJ+6OIiOPxrbjUubJwG/Pqg4v5eSob/p8XP/HaP0sj0c9dfv+OjwYAAHJlWb5li9v+SxHxl7a1/bl9/f04DZ1FURSXI+JtEfGJEfH6iDiI0y+rvR6n8bJfjIifL8tyvKF9/15E/GdFUfzZiHhPRHxyRLwhTuNrH4uIny3L8t9sYl8AAAAAAAAAAHCWhNEAAABgDVkkahq5mgbSHlpvLmKVRa0G47thtHHzMFoW2IqoCaO1zmEYLYkTVAUN6uIkWdBkXj8Joz0ct6tOI7SiPjyWHcf0/soier2aKMSsfjtf7vZkUDu/+riaRf0AYJG64FAWKsqm121rG/ppGK352AzOwtGoOox22H1mre02iZpF1I0lG0Z/a+LAqz7/6sJoe8VeOq88x2m0sizjQ9dfqJz3dPtyfN7FL9rxEQEAwJOlLMvrEfHRM9jvnYj4Z7veLwAAwPn/ShkAAAAAAB4X9Z/YBQAAAGplkajB5DjKskwjZfORqmw7J5PjmJTjuF2eND6mwTgPo92aVIfRLrQf7TBaXQyucXyhYfhksuIf+OVhlUGUZZkGHvpJNK/p9iPyMEWd7HiyiB8AZOpiZsM0jDZaelvbkIdNhdE4vwbjW+lY7rBzdSfHkIWdm44l94teGh4+rhn716kLo3Vqwmjn+QM+v3z88/G7dz5WOe89l79y5+dMAAAAAAAAAAAAAFikPL9/ngucI8JoAAAAsIa62NWwvBOTmFTOnw8C9Nt5dONkMljqmOpCAcfjG5XTD85hGK1bdCqnVwUNTsb5bZQFTZouN3go6lD9k9ciitrtZ4+VMsq4XZ5U7Gd6XNXRvIeXy69nFsaokz3umt6eADDVKlrRinblvCxUlE3vnpMw2iqvrbArR6OX03mH3WtrbbtuxFvO/IVCNpacD0Sn+ymKPEKdjJsXGU7qwmj5uaU8x3958eL1D1ROb0Ur3nvpq3Z8NAAAAAAAAAAAAACwnnP8p7vAjgmjAQAAwBrmA2dTg/GtGNQEM+YjG+l2Jse128n2XWVSjtNtHbTOXxitU+xVTh9WhdGS69UpOtFtVW9nXh6ne/D2LLMwWlEfRqsLitU9XrLjemi52u0vH4/IHkd1+wGATBY0ywJow8mdyumd1m7DaOn4YHx8rmNJPNleGb5UOb2IIi53rqy59fox79T8GHoqe99Tpen4vKnsfBNx+r4hCx1n4/+z9srwpfj5mz9ZOe9znvrCOOxe3fERAQAAAAAAj4fz+bsRAAAAAB4fCz6GBxARwmgAAACwln77QuX0k8lxGuuKeDgu1W/l21k2apWFAo5rAgIX2heX2scudJYIqGRRsboYWdNlTyaDBy5nEZQspDBVFzg7mQzSx0vT69Bt7UWn6FTOWyUeMX+97x1Pw1AbAMzKX9dHyfTqgFG2nW3JXocnMY5hWR1vg7N2NPp45fRLnSvRTsaLm3F/nJyOJZcYn2fvkbKA7yJ155XTyPGj9RcWH7n+w1HGpHLec5ffv+OjAQAAAAAAngyP1u9TAAAAAAB4dAmjAQAAwBrmA2dTgwVBs/kgQK/Vr97OuD6wVuV4fHOp6RERB0ng7Sxlka+qoEF2G2X3zzLLzkfFyvRbUReE0ZKww3QfWdxtmevQNO7WRBZTW+Z4AGCq06oOmg0n1XGxLJi26zBa3eveKq+vsAtHw5crpx92rq697boY8Ow4eRNj2yxCvUr0NyJiuCC4mF23fPx/doaTYXz01R+unPeGvTfHpx189o6PCAAAAAAAAAAAAAAANkcYDQAAANaQhaiG5Z24NblROa+IIvZbvQemZR/6P5kcp1GBzHESCqgNo7UuLrWPXegWe5XTq8Jo2W2U3T/LLNs0elIXiYg4vT6t5Ecxg8lxnCQhvc3E3ZZ7DJVlmV7vZW5TAJjKgmZVr+t103cdRsvitRGrx5lg214ZvVQ5/bD7zM6OIRvbLjOW3NTYdmrReeVRCqP9i5s/FjfGr1bOe/by81EU9e9NAAAAAAAAAAAAAADgPBNGAwAAgDXURauOhi9XTt9v9aNVPPiWPAsE3Clvx61xdWAtMxhXRzpuTarDaK1o1UY/zkoWPhlWBA1ONhBGS8MLc7dnGZPK5RaF0YqiiH6rOoA3GOcBvF57/bhb9pjI3C5P0gDEMqE2AJjaVBitu+MwWt3rXtN4Kuxa9j7ksHNtZ8eQh4ubv+/Ix86rRQkXnVeylth5DKO9ePRC5fT9ohfvevrLdnw0AAAAAADAk+P8/d4EAAAAAIDHkzAaAAAArKFfE606GlUHCapiALWBtWQ7mcGkOhRwPK4Oox20n4oiqwCcoWUCKoNxdXih7v6ZlwXI5qMn6/x5X7aPG+PrMYlx5bxlQmRZGG3Z+5MAfQAAIABJREFUcMtJcnvW7QMA6nSLTuX0UTmqnF4VQo3Ixwfbsl8TcVo1zgTbdj15/3DYvbr2tutiwLMBsWz82W9Xx86ql02iv0l0bZEsjHb/vJKV0c7XB3x+8+TX49dPfqly3hde+tKl3gMBAAAAAAAAAAAAAMB5JIwGAAAAa6iLRB0Nq4ME/dbDMYDaMFqynczxsmG01lNLbX9Xuq0kjDZ5OGhwksQRqiJ0mew+eCi8kIQRWsXiH7P0k+N5ZfhSzTqbiEcsF26pi01kcTcAqLNM8LRu+q7DaK2ilY4nlg2Pwi5MykkaVr7Subaz48jGn8uNz6vHwcuObacWBRez6Fu5Vhp58z50/YV03nOXn9/hkQAAAAAAAAAAAADAZp2vv9wFzpIwGgAAAKyhNow2qo5dVcUA6mJTWdggMxjfirIi3nVrfKNy+YP2+QyjLRNQyUJey0TFsvtyPro2iUmyheqQwoP7qD6euvt4M/GIPHRWJQvNne5DGA2A5XWKvcrpw/JO5fQ8jNbZ2DE11XSMAOfBzfFrMSpHlfMOu1c3sId8zDsbEMvCgXXvn+alY9vxamG0ReeVRyGMdjy+Gf/vay9WzvsP+m+LN+5/8o6PCAAAAAAAePycn9+NAAAAAADw5BJGAwAAgDW0i3bsFfuV846GH6+cXhWWqotNHQ2ro1mX2oeV0ycxidvlyUPTjyfVAYELj1gYbVgRNMjCJMtFxarvg1E5jOGkOqIwa3EWLd9Hdh9HRPTby8Tdqq/vsuGWLKTWilb6eAeAOlnQLAs4ZQGjbhJY26bs9XvZ8CjswivD6jhzRMRhZ/0wWlE36L37GZlJOYnbSRhtmcjuQTIOXvW5t+i88iiE0X781R9Jg5LPXX5+x0cDAAAAAAA8eZr8hRQAAAAAAKxPGA0AAADWlMauRtWxq1774eXbRScNfWTbOexeS4/peHyzYtqNymUPWhfT7ZylbhJGqwoaDMbVcYR+a5moWB5pOJmJymVhhKLBj1myfWT3cRFF7Be9hdudyq5vdvtk8tDcQRS1NQwAqJYFT7NQUTY92842Za/fy4ZHYReycWWn6MZT7ad3cgy3JyfpmLluzN102UESfF4kPa+0dn9eWcWknMSHrr9QOe9S+zA+7+IX7fiIAAAAAAAAAAAAAABgO4TRAAAAYE29dnWMaljeqZyehdTSqFXywf8rNWG0qnVuVcTSIiIOkuM/a8sEVE4mg8ple61+4/31K4J1U4OZ7adhtAa9sGwfr45eqZzea/WXCpFl21823JKF1Ja5PQFg1jLB04iI4eT8hNGysduy4VHYhTSq3HkmWsX6vxYsIh+bTsfJdWPPujH3vIPk/dHJZBCTctx4O1OLzitFcvuUZfX4f9d+6fjn4qXhb1fOe8/l90W76Oz4iAAAAAAAAAAAAAAAYDuE0QAAAGBN/SVjUb0krrFsdOpKpyaMNn44jHY8qQ6jXWhfXGq/u7JMGC2Lxy0TXsiiJxERJzPbz8MIiwNm2T6y2FoWy8tkj61lw2h5aK757QkAszrFXuX0LCSbBdM6rd2Hf3rt6jHasq+vsAtHw5cqpx/WRJWXUzfmnYbRqseSEcuNJ+vG8nX7yKTnlbtBseyaZWP1XfvQ9Rcqp7eiHe+9/FU7PhoAAAAAAODJdD5+bwIAAAAAwONPGA0AAADWtGwsKotj9dvLRbAudi5FN4mMHFeEwo7H1WG0g/ZTS+13V7Iw2rAiaLCJkFddmG4ws/0sjFA0CKMt+1jZ1GNrsGS4ZROhOQCYlQXNRpNR9fQ0YFQ9PtimPDy6fJgJtu1o9HLl9MPO1Z0dQzaWjKiPET+8bP7+qG4fmey8cv89VfV4/jyE0T4+/L34hZs/VTnv8y6+Ky53ruz4iAAAAAAAAAAAAAAAYHuE0QAAAGBNdR/Yr5IFuJaJBJxu5yAOkn0PxkuE0VrnM4zWTcIn80GDUTmMYXmnctllbtNW0Y79olc578Hbc/Uw2rL38bIhsjSMNj6OsmwedNhEaA4AZmVBsyxUtDhgtDt5eHT5MBNs2yvD7YbR6sa809FmNpZsRWup53Dd+6zjivc7iywKLubX7ezDaB++/kNRxqRy3rOX37/jowEAAAAAAAAAAAAAgO0SRgMAAIA19drVobNMv139Af8smJZup3WQbut4LtRRlmXcmlSH0S60z2cYrdNqFlA5GVeHFyKWD3n1khDZbNyhXCeMtmTobOnjT5YfxygNQVTJQi/Lht0AYKpp8HRqmAaMOhs7pqay19cs/gRn6WhUHUa70t1MGK2Jk8lx5fR+60IUxeIx873la8bOg2QfdRadV7JjO+ss2nByJ37s1f+nct4n7H1SvLX/th0fEQAAAAAA8Fhb4ssXAQAAAGDT/HgKmBJGAwAAgDX1W9VxskwWQFtlO9k6g/GDYatheScNjxy0zmkYLQmoDCdzYbSaKMKyIbIs/DUbCiuTn642iTwsGzpbNkS2qXhEFptb9vgBYCp7Xc/GJ9n0bDvblI4PxtUhUTgr43IUr42OKucddrYfRpsGhAfj6nHnskHpdtGJvWK/ct4qz79F55UsdFyWk6X3tUk/c+OjcXP8WuW8Zy9/9VKxOQAAAAAAgPX4vQQAAAAAALshjAYAAABrWjZelcWllo94XYiDdnUY7XjyYCjgeHwz3c5B+3yG0boNAyp1wa9lQ17Z8ieT+6GwafDhYYv/8G/p0NnSsby6MFrzeES27LKPUQCYSoOnj0AYrZe8/s2OD+A8uD76eDpWPexe28g+snjYqdN9Z+HiVSK7/eT9zjLR36nsvNIt9u7+KwmjLb2nzXrx+guV03utfrzr0pft+GgAAAAAAAAAAAAAAGD7hNEAAABgTct+wD+LYy0d8Wr303DWYPxg2OrW5Ea6nQvti0vtd1ey8Mk2w2jZfTN/e1Zp8n2ovWVDZ+3+UsvXhdeWibdky64SswCAiOav64um3w8Y7U72+rdKmAm26Wj4cjrvsHN1I/soisWj3uy5sWwkuG6dZaK/U4uCi610RH92abR/d/Jr8Rsnv1I5711Pf1n0Wsu9XwAAAAAAAAAAAAAAgEeBMBoAAACsqd9eMmiWfLh/2VBAv3Uh+u3q0NbxXCjguCbsdZBs46w1DaicJOGFvWI/2kV7qX1m983sPsqYVC5TNPgxS3+DobMq+61+FEnQoUncbSq7TYUXAFhVd+kw2qhyeqfobOyYmspej08mgyjLswsmwbyjUXUYrdc6WPo9yyqmz4Z8LLlKGK1ZCLqJ4SQLo03PK9Xj6PIMw2gvHr2Qznv28vM7PBIAAAAAAICIs/xCGQAAAAAAnizCaAAAALCmpYNmSZRg2VBAr9WPg9ZTlfMGc2G0W+MblcvtF700QHbWsoDKJCYxLsf3Lg/G1eGFZe+XiPy+OZkM7v07+/O+LEj24DEtF6FbdvlW0Yr9JF42SAIVyyy77PEAwFTT4OnUsLyz1Ha2KRujlTGJ2+XJjo8Gcq8Mq8NoVzpXd3MAd0OB2VhylchuFoKef7/TRHa+mZ5XstH8WYXRbo5fi5+68eHKeZ928NnxCfufuOMjAgAAAAAAAAAAAACA3RBGAwAAgDUtHzSrXj6LcuXb6cdBFgoYPxgKOJ7cTPZ5fkNXdeGT2ajBSRZeWPL2jMhjarPhhXXCCMvGIFaJR2TrZLdT5bJJbG6V4wGAiOXDaKNJfcBol+piq7PxVDhrR6PqMNphd3NhtCYx4JNx9fNilchuPj5vPradys433dbe6T+K6utWlmcTRvuJV38kjUQ+d/n5HR8NAAAAAAAAAAAAAADsjjAaAAAArKkuljGvFa3YK/Yr5y0TWNsvetEq2mlcYD6EdjyuDqNdaF9svM9daxpGy6IIy9wvU9l9MBs9KctJ5TJFsfjHLK2iHftFr/HxrBKuyx4TTeMRk3Ict8uTjR0PAETkr+vDLIxWjqq309p9GK0utjofo4Wz9Mrwpcrph51rO9n/NCA8GxWe1WsvH9lNx7YrPPfS88rd81Mefdt9GG1STuLD1z9YOe9y55n4nKfeteMjAgAAAAAAnhxn86UxAAAAABDhp1PAfcJoAAAAsKZlgma91kEURfUH7pcJeU0DVQdJqOp4LhRwKwmjHbSearzPXeu29tJ5sxGVkyT4tcz9MpXdB03CC1lGYV5dXOWhZTd4HU7GzcJosxG4h7e9fMwCACIiuknQbFQRRpuUkxhHdcCoWxNO3ZZezetf3esm7Nr10cuV0w+7Vze4l3zUOw2jZc+LVcLF/WTs3DT6O2tY3qmc3ik6EZGH0c7ijyt+8dbPxkvD36mc995L74t20d7xEQEAAAAAAEQ0/wspAAAAAABYjzAaAAAArCn7sH6VurDGcoG10+30W9VhtJPJcUzKyb3Lx1kYrX1+w2jTQEGV0eR+RCWLItTd1pksWjYbdyiTNEIWUpi3VABvhXhEdh2axiPqlusljzcAWKSTBM1mX9PvTauIpS3azjbtF70okl+nDCaL46mwK0fDj1dOP+xsLozWZMSbj89Xif4mIegVnnvZuWV6XsnDaJPK6dv04vUXKqe3oh3vufy+HR8NAAAAAAAAAAAAAADsljAaAAAArCn7sH7lsu182bp52T6zfZdRxu2ZmNfxpDqMduFch9Hy8Mls1OBkXB1eWOZ+ub9OFhW7H15YN4y2TBBilTBats5JwzBa3XL9FWJzABBRE0YrRxXTzlcYrSiKNLg6G0+Fs3R7chK3Jjcq513pbi6M1kQ2nlwtjJaMbZP3AHWyc0u32Ft6W9v08p3fjX9166cr57394rvjUudwx0cEAAAAAAAAAAAAAAC7JYwGAAAAa+oWe9Fq+BY7i2osmpcte1ATNjueiXndGldHEg5aj2YYbVjeuffvQRZeaC8f8cpiDSeTQZTlaRBt+v+HFM3CaMvEznrtzcUjZuNudU7GeeBllZgFAETkr+vjGMWknDwwrSqWtmg727ZueBS27Wj4cjrvsLO5MFpdDHgaEM7DxcuPJQ+SePRxw7HtrOzc0ik6ERFRFNXv6bIw8rZ86PoL6T6fu/z8To8FAAAAAAAAAAAAAADOgjAaAAAArKkoiui3qj+wP68uLLVf9BoH1vp3g1kHNfsdjO/HArJwQF1Y7ax1i7103mzU4GRSHfJqep88uE71/VNGGbfLk3uXqtRFIh7YxxKxs1XiEWncrSZ4NisLqHWKTnRb+X0CAHW6NUGzUTmsvdx0O9uUvb4OkgAU7Noro5fSeZc3GEaLBWPeSTmeGTc/aJXoby8Z059MbuXB4gplWT4QV541DS5m12yZ/azrzuR2/Pir/7Ry3hv3Pjk+tf+ZOzsWAAAAAACAh+32C2UAAAAAAHhyCaMBAADABjT9kH9d6Kooitpw2gP7u7tcXWTreHLz/r/HNyqXudC+2Gh/Z6FTdNJ5s8GUkyTk1Wv1l95n3e0/Dc2Va4bRmt7H3WIv2jW3QSZ7TAwmzcItWWiu6XEDQJXOhsJoddvZpuz19aTh6yts29Hw5crpT7cvR7e1q+dNmY4lIyL6K4zPsxD0qBylobMq4xil86ZB5mw8n43/t+Gnb3wkbk2q37s9d/j+KIpm7zkAAAAAAAAAAAAAAOBRJowGAAAAG9D0Q/6L4lJNY17TwFq76MR+0atc5nh8Pxh2a3yzcpksNHAetIp2tJIfXcxGEAZJfKG/wnWrC81NIw/rhtHq4ngPLrfafZM9xgZJQO7h5aoDL02PGwCq1IfRHgwW1cWOziqMlr++CqNxPhyNqsNol7tXN7qfui5XWeaR3YiI3obH58s8/+bPM7M698Jx2ZXbXRjtxesvVE7vtQ7iC55+dmfHAQAAAAAAAAAAAAAAZ0kYDQAAADag6Yf8F4XP+u2m27kfCMjWmYawJuU4TpJowIX2xUb7OyvdYq9y+qgc3vv3ybj6ujWNzD24Tl144fT2XDeL0DR4tsrxn26/+jrURSoeXC67PYXRAFhdtzaMNpy7XBMwOqMwWv76KozG+XA0rA6jXelsNoyWx8NO1cV4m8akH1wnHzsPxs3CvxERo8kwndcpOhGRh453lUX7jcGvxr87+bXKeV/09H+48vsDAAAAAACA5ezuS2MAAAAAYF7px1PAXcJoAAAAsAFZLOOh5RaEzxpvZzaMlsQCpqGAweQ4yuQP1g7aTzXa31nJ4ifTYEpZljFIgiRNI3Oz9or9aCU/LpmGxcpyUjm/KJr9mKXX3sxjJd1+8hhqGo7Iw2hCDACsri5oNizvPHC5PmB0NmG07HVQGI3z4mhUHUY77G46jFanjJNxHuNdJbRbNybO3gdUmT/PzJqeV4oiC6Pt5q8rPnT9A+m85w6f38kxAAAAAAAA1Kv/Eh0AAAAAANgUYTQAAADYgKYf8l8Ul2q8nZm41kESCzienIawbo1vpts5aJ33MFqncvqoPA2mDMs7MYlx5TKrhLyKolgYmkvXbfiHf6vE75aRxSNulycxKatvq1mD8eZCcwAwVRc0m76uZ5cf3E712GDb8vCoMBrnwyvDlyqnH3Y2G0arG/OWUaaxwE7RiW5rb+n97Re9KJJfZw4mzcK/EfXnlW4xPa4kjJaEkTfp5ui1+KkbH6mc9/sPPjdev/emrR8DAAAAAAAAAAAAAACcF8JoAAAAsAH9dtPYVX1capVoVhryuhsKOK4Jo11on/MwWhJPGE7uRETEIAkvRCy+rTO9dnVQ7WQyiIjT4EOVpt+HuqmIXqZfs970OtTJYharHg8ARER0WnVhtNEDl4flneptFN0oirP5BvJsrNfktRW2rSzLOBq9XDnvSvfaTo8lG583HQPPOw0XZ2HCZcJoo3TeNNx4NmeXUz/26j9J423PXn5+x0cDAAAAAAAAAAAAAABnSxgNAAAANqBp0GxRXKppMGA2+nXQrg6AHd8NBRxPqsNorWitHCjYlWmkYN40GpBFvCLWCYsl4YW7obkyJpXzi4Y/Zmkev1sx7FazXl1IbtEyqx4PAEREdIpOOm80eTAGlAWMsnHBLmRjpun4AM7SrcmNNCh42Lm6s+MoYzuR3X7yfmeZ518WHYu4f37KxvNZGHlTJuU4PvzqByvnHXauxmc/9QVb3T8AAAAAAEBz2/29CQAAAAAATAmjAQAAwAY0D5rVL9dvLx9Yy4JV01DA8bg6jNZvX4iiKBrt76x0k4jKNJgyGOehryygsEh2X55MBhGx/p/3NX6sNHwsPLRezfbrbq+pbcQsAKAdnSiietwxHyzKAkZnGUbLXl+n4wM4S0fDl9N5h91rG91X9jw+VcYgeU6sE9nNw8WLx7ZTWTgu4v65Jbtm2w6j/atbPxMfH/5e5bz3Xv6qaBftre4fAAAAAAAAAAAAAADOG2E0AAAA2IBFwbN7yy2IXTWPZt0PCxwkAbDj8WkY7db4RuX8C62LjfZ1ljrFXuX0adggi3gVUcResb/SPrP7YBqay9JoraLZj1max+9WC6PVrZfdXrOyeNo6MQsAKIoiDZvNB4vyMFp1MHUX8nBq8zATbMvRqDqM1op2PN2+tNF91YfRIk7ujZkftE5kNxuHTt/vNJGdVyJmo4vV123bYbQXr79QOb0dnXjPpa/c6r4BAAAAAAAAAAAAAOA8EkYDAACADehtKHbVNLA2GxbIQgHTkNfx5Gbl/Cyodp5kAZVp2GCQxEh6rX7jUNm87D6YBsPKcr0wQtPAWNPHwrxuq5vebtntNetkMqicvk7MAgAi8rDZqBzNXa4OGHWTYOouZK/LJ5NBTMrxjo8GHnQ0rA6jXe5ciVbR3tlxlFHGYJyNJVcb20bkYeFlwoTz55mpdnTuvW8oiiT6tub4v87v3fnt+Ne3fqZy3udf/OJ4unN5a/sGAAAAAACotMXfjQAAAAAAQFPCaAAAALABTSNWi5ZrGgyYjWulYbTx3TDaOAujXWy0r7O0KKCSxRDWCS9kkbvpvsqo/uO/IpKQwvz2GwbG1opHpPGWWwvXTW/ThvE/AMgsCp5ODZMwWrb+LtS9Dt6enOzwSOBhr4xeqpx+pXtt8zvL4mF3ZWPJLG7WxMGCEHQTw8mdyumz7zey8fw2P/rz4esvpPOePXz/FvcMAAAAAACwimZ/HwUAAAAAq9LtB6aE0QAAAGADmobRFsWumgQDWtGKbrF37/JB+6nK5Y7vhgJuJWG0C63q9c6TPKByGjYYbCGMlt2Xgw2F0brFXrSjOvj2wHG0qwMQTWTXfzAZLFw3u02bPsYBINM0jDZ/+f76i18/t6XudTB77YRdORq+XDn9sHN14/taNOLdxvi8l4TRjsfNw2jpeaV1/7yUh9EmjfezjDuT2/Hjr/5I5bw3739K/L7ep29lvwAAAAAAAAAAAAAAcN4JowEAAMAGNPmgfzs6aRBkme30WxeiKO5/aP8gCQWcTI5jUo7jeFIdRsuCaufJbABu1vBu2OBkvPmIV3YfnNyNimVhtKbfiFoURaMAXq/Vb7S9Ktn1z26vqVE5jOHd6NzDxyOMBsB6Fr2uT+VhtPpx1DbVvQ6eCKNxxo5GSRite22nx1GWZfp8WGcseZAEg5d57mXnley8NGtbXzr3Uzc+nL5Xe+7y+x94zwcAAAAAAAAAAAAAAE8SYTQAAADYgCahq377YOGH25sEvXrtB4NZ/SQUEBExmBzH8fjRDaNlAZRp2GCQhRca3B+Z7D4YjG+d/qOsTiMsEy5oEj3rJ8G7RttPrv9gcqt2vZPxoOZ4hNEAWE+n6FROnw8WpQGj1uKA0bbUvXYPJvnrJ+zC0TAJo3We2cLe8jFvGeW9mPC8dcaS2brH4/qx7axROaqcPnteKtLrtvk0WlmW8eLRByrn9VsX4guefnbj+wQAAAAAAFjftr5SBgAAAAAAHiSMBgAAABvQJGK1qRjWfBjgoGadwfhW3ErCaBdaj0AYrZUEVCanwZSTJIy2Tnihl6w7jTxkf96XhxQetsr9vIxs3SxUcX9+9e0Zkd8uANDUouDp1HBSHUbL1t+FbrEX7agel5wsEWeCTZuU47g++njlvMPu1Y3vb9GYd5A8H5q8F8pkIei6seu8YXmncvrseaUoqn9tWiZh5HX8xsmvxG/e/vXKee++9OWx19rf+D4BAAAAAAAAAAAAAOBRIYwGAAAAG7Df4IP+TcJSvfby28lCARERx5NbcTypDqMdtM9/GK1b7FVOnwZUBkkMYb3wQvX9NJicRh7KmFTOXyaM1uyxsPkw2vQ6ZLLbMyK/XQCgqaZhtPnL99evDpPtQlEU6ThtsCA8Ctv06ugoJsn49Ern2o6PJg/xrhPZzca2xwvGtrPy88pMGC1Zt0zTyKt78foH0nnPXv7qje8PAAAAAAAAAAAAAAAeJcJoAAAAsAHtoh37Ra92mewD/csu81AYrWadwfhWHI8f3TBaFlAZ3g0bZOGFfiuPxS2SRRuG5Z0Yl6OaLELzMFqTyFiTx0Imuw6DcR4+i6gPo60TmwOAiIhua90wWvX6u5K9Np/UvH7Cth2NXk7nHXavbnx/dSPeMsr0+bBOZDcb29+eDGJSVkfh5mXnlQdDzNXXbtNhtBuj6/EzNz5aOe8zDj4vXrf3xo3uDwAAAAAAYDmb/9IYAAAAAABYljAaAAAAbEhvwYf9s1jVrHbRib1iv3aZ+ShHq2in2/7gK/93DMs7lfMOWo9uGG0aNhiMb1XOXyfiVRuamxxH9sd/raJ5GG3RY6EVrYWPgzpZeGJRuCWb3y32ol10Vj4eAIioCZ5OHo0wWhoeFUbjDL0yrA6j7Re9LY338zHvuBzFnfJ25bwm74Uy/XZ1GK0uxDZvVI4qp3dmxrhFet02++Gfj776T9Ljee7w/RvdFwAAAAAAwGY1//soAAAAAFiFbD8wJYwGAAAAG7Low/5ZrGrZ7VQF2A5a1bGAXz7++XQ7F9oXGx3PWeouCKOdTAaV87N4QhN1YbST8XGUZfbj1eZ/+Fe3j4jTx0CxRGjt4fWrr/+icMtgXD2/n2wPAJaxKHh6/3J1MCgbF+xKNkZrGmaCbTgaVYfRLnevrjWeXEU2No9YPP6tUzcWbRomzGLRs+elLIy2yT+umJTj+Mj1H6qcd6VzLT7rwjs2uDcAAAAAAAAAAAAAAHg0CaMBAADAhjSJXTXazoKAWtV+VgmBHbSfWnqdXVsUUBlMblXO77X6K++zKjw3NZgcR5mkEZbJTmwqopeun1z/ReGILOyyzu0JAFNNw2hNAkZnIRvrZWFR2IWjYXUY7bDzzFb2l8XDIvKxecS6YbSa8fk43+es+fPM1ANhtCQkV5aTRvto4hdu/lS8Mnqpct6XXP7qaBXtje0LAAAAAAAAAAAAAAAeVcJoAAAAsCEbC6OtsJ0L7YuNtj1VRBEHrUc/jHYyGVTO77eWD8XdX3fVMFrzH7Msuo/XCUdERPSS65+Fz6aycNoq4T0AmNc0jNYkYHQWsrHcotdX2KajJLJ1pXttOzusqQHXRQKbvheqUhcNXhT+nRpNRpXTu63dnldevP6ByumdohNffOkrdnosAAAAAAAAy6v+uykAAAAAANg0YTQAAADYkEUf9m8au1plO59+8DmNtj31qf3P3HkEYBXdJIAyLIcxKSdxOwmj9Vr9lffZLjrRLfYq553UhNGWsSg0tk444nT71esPxsdRlvnxZ6G5dW5PAJjKXtdH5Wju8vkMo2Wvr8JonKWj4cuV0w87V3d8JPXPhV579fFkp+im4/PB5FajbTQ5rxRJ9W0T4/+IiN+987H4peOfq5z3+RffGxc7lzayHwAAAAAAAAAAAAAAeNQJowEAAMCGZLGMqaZxqUUBtapo1nsvfWV8wt4nNdr+ftGLr7n6zY2WPWudJN42Kodxe3KSRgoWhccWye6Dwfg4sm8+zUIKVRY9FtYNo2XrT2Icw/JOul4Ws1j3eAAgIg+bzb82zYfSprKw2q5kr4cDYTTO0Cuj6jDale61reyvbsybRcq6xd7aYcN+q3p8Pxj094j4AAAgAElEQVQ3C6NlY+BdhtE+fP2D6bznLr9/I/sAAAAAAAAAAAAAAIDHQeesDwAAAAAeF4viUU3jUouWqwqwXexcjj/3Sf9D/PRrH4nfOPmVGJeTynXfsP+mePtTXxxv2H9zo2M5a1lAYTQZphGviOYRunz9g3htfP2h6SeT4yjLJIxWNA+jLYrfZeGHTWx/MDmOvdZ+9bxx9W266HgBoIn0db0cPnB5OHd50fq7ko0vTiaDHR8JnBpO7sTN8auV8w47V7eyz/owWhbZXW9sHnEaPn5tfPTQ9OMkxjZv/jwz9eB5ZXthtNuTk/jxV/9p5bxP2v/UeEvvrWvvAwAAAAAAYDM286UxAAAAAACwDmE0AAAA2JCFsauKoNkqy2XhtAvti/Hs4fPxbDzfaD+PgiyAMiyHaXghYv2wWK99EFHRThhMjtMwQl0kYt6i4+u114tH1D0WTybHcSkO03mVxyOMBsAGNA2jjSZ3qtdvnW0YLXt9HYybhZlg045GH0/nHXa3E0ark0V2NzGWzJ5/dbHkWaNyVDm9O3NeykPH63/45ydf+1D6/uW5w/cvFVkGAAAAAAA4O36nAQAAAADAbrTO+gAAAADgcbEojNY0CLBouUX7eZx0awIqdRGEXms7YbGTmjDaMn/4tyh8tnbYreYxUhdvyWINTaN+AFCnm4TN5oNFWcAoC6vtSvb6ejIZ7PhI4NTR8KV03mFn92G0bHy+ifcvB8n4+LhhmHA+wDg1e15Js2hrdtHKsowPXf9A5byD1lPxjovvXW8HAAAAAAAAAAAAAPCYWPdvd4HHhzAaAAAAbEhvQTyqaRBg0XJPUhgtC6CMymEa8WpHJ7rF3lr7zW7jQU0YrbVEGG1R+Gzd+3i/1YsiOZ66eEsWs2ga9QOAOtnr+nAuWJQFjLJg6q5kodC6WCts09Ho5crpF9oXY6+1v5V9ZmPMiIjBpDpStuh9UhPZNpo+/4blncrpD4bRqn9tmoeRm/n1wS/Fb93+jcp577705Vu7rwAAAAAAAAAAAAAA4FEljAYAAAAbsqmg2aII1ZMUqcoCKpOYxPH4RuW8XrsfRdE8Ula5jeQ2PhkfR2RhhCX2ue34XatoRa/Vr5yXBStO51WHJZ6kGB8A25MGTycPBouyMFq2/q5k44M75e0Yl6MdHw3kYbQrnWs7PpJTg3EW2a0ely7jIAkLH4/zse2sUfIcbXJeWTeM9uL1D1ROL6KIZy9/9VrbBgAAAAAAAAAAAACAx5EwGgAAAGxIP/mw/lTToFm/vWA77fXDAo+Kbk2o4Mb4tcrpmwjH9dvV2xhMjqPMumjRPIy23+rVzu8l+19Gdjtk8bOIiJNk3pMU4wNge9Iw2lywaFjeqVzurMNodaHQk8lgh0cCp14ZvlQ5/bB7dYt7zce8eWS3/v1NE/nYtmkYrTq4OPt+Ix/Prx5Ge210PX72xo9XzvvMC2+Pa3ufsPK2AQAAAAAAdm+9L5QBAAAAAICmhNEAAABgQ3qt+mBZ06BZ3Xa6xd6ZR0F2qe663hi9Wjm9LlrSVBZeOJkcRxmTynnLhNFaRbv2ft7Edci2cTKuDlaUZRkn4+qoS3/BYxsAmugUncrp88Gi+VDa/fXPbxhtkLy+wjYdjT5eOf2ws70wWlHUhdGqI2WL3ic1cZDEo+uiv7OyMFqnQRitXOMDPh999YdjHNXntGcvv3/l7QIAAAAAAAAAAAAAwONMGA0AAAA2pJ98WD9iuaBZv5VvZxPBrEdJ3W12c1wdRsuiZstIo2KT4zSLsEwYLaL+ODcSRlsyHjEs76TRhl7NYxsAmuoWe5XTZ4NFZVmmAaPuGYfR6l67TxrGmWCTjoYvVU7fZhitTvY8qHt/01S2jcG4OsY2bzi5Uzm905oJoyXRt7JcLYw2Lsfx4es/VDnvme7r420X3r7SdgEAAAAAALZqxd+NAAAAAADAJgmjAQAAwIZsKnRVt+wmol+Pkm4rD6DcSMJom4iKZbfzaVRsM3/8t+37udfqV07Pwmgnk0G6rX6yLQBYRhY8HZb3g0WTGEeZvNY2jcxuS6+dvx4Ko3EWjkYvV04/7J5VGK16PJmNS5eRR3+bhdFGZXUA+MHzShJGW3H8/ws3fzKujz5eOe/Zy18draK90nYBAAAAAADOznJfHAkAAAAAAKsSRgMAAIAN2VToqteu2U7NvMdRXQDlxqg6jLaJqFh2X56MB2kYoSiW+zFLbUhvA/dzv1Udj8jCLXVRiSctyAfAdnSKTuX02WDRsBzWrH+2YbRO0Y1usVc5LwuPwrYMxrfSENlh52zCaJlNvIfJxudNn3uj5NzSnTmvFOkHeVYLo714/QPJPvfi3Ze+fKVtAgAAAAAAAAAAAADAk0AYDQAAADakW+xFK9qV83qtfuPt1AXW6uY9juoCKDfH1WG0TUTFsnhDXTxs2e9D7berw2URedRsGVnMbDCujkdkYY3T43myHncAbEf2uj4qh1GWp+Gh0eT8htEi8jFdFh6FbXll9FI670r32tb2m8fDcpsYS2bj41E5jOHkzsL1h2X1Mk3OK6tk0X7n9m/FLx//fOW8d1x8bzzVfnqFrQIAAAAAAAAAAADA4221rzQGHkedsz4AAAAAeFwURRH99kHcGt94aN4ysa69Yj9a0YpJTB6al8WuHlfdYi+d99roeuX0TdxGWbyh6j65b7lIRF0sb3+JkN6y2781uVH5GL0+/HjN8fTWPh4AyAJEZZQxiXG0oxOjMg+jdVtnH0brty7EjYo466ujo8rXV9iW37n9W5XTi2jFpc6Vre13lTDaRsbnNe+nXhm9dC801mv1o108/OvPUTmqXHf2vNQqqr9Paji5s/Tz+59d/0fpvGcvP7/UtgAAAAAAAAAAAAAA4EkjjAYAAAAb1GtVh9GWiQEURRG91kEcT24+NC8Ldj2uOhVRg6nb5Unl9E3cRv3WhaXXaS0ZiciOc7/oRbtoL73/h7bfrr4Ov3L8C/Ff/tofbbydXqsfrQ0cDwB0W3nwdFgOo13Uh9HqxgW7koVHf/Cl748ffOn7d3swUOFS53AjY8lN6m8g+ls3Pv++f/Pd9/69X/TiMy+8Pb7lDd8dB+2nIiJiXI6jTALHWbBx1odf/WB8+NUPLnnE1T6599Z4S/+tG9kWAAAAAADA7pVnfQAAAAAAADwhqr/6HAAAAFhJFrtaJowWEdFvb2Y7j7pW0Y7Wkj++yIIl29/GsmG06rhDL7nvl7WpiN6T9pgDYHvqwmajyWkQbVgbRsvDaruyqddp2JbDztWzPoSH9FaIDs9rGi6+XZ7Ez9788fgbH/sf702rCy52Z8JoxZLj+VU8d/n5re8DAAAAAAAAAAAAAAAedcJoAAAAsEFZRGrZSFW6nScwxtGZiRU00W9vILywwjaWDSlk8bVNhcg2tZ1NBdYAoO41fRouahowOiteFznvDrvbDaOtEg/rt9cPF++3elEs8WvNXx38y/j48PciImJY3kmXe/C8tN0w2oX2xXjHxfdudR8AAAAAAADrK8/6AAAAAAAAQBgNAAAANula9w2V05/pvn6p7VxNtnN1ye08Dpa97ZZdvsp+0Yun2peWWudK99pSy1/b2+59nD0Wl7WJ2xMAIiL2iv103u3yJCLqw2jLxlK34Ukci/FoecPem7e6/U7RjYtLjJO7xV5cbF9ee7+torX08+9373wsIiJG5ShdZva88syS4/llffGlr4hua2+r+wAAAAAAANiu7X7RDAAAAAAATAmjAQAAwAa94+n3PjStU3Ti8y6+a7ntXHx4O3vFfnzWhXeufGyPqrdffHfjZa90rsWn9D5t7X0WRRHvuPiexsu/pffWOOxeXWofb7vwjtgveg9Nr7rvV/Ep/U+LK5314w7vfPpLNnA0ABDRax2k8wbj44iIGNaG0TobP6Zlff7F90Thj/05p4poxRc8/ex291EU8XlPNR+ff+5T74q9Vh5FXMay4+STyel5ZTRpFlz83Ke+aGvP717rIL7s8n+8lW0DAAAAAAAAAAAAAMDjRhjtCVIURb8oincXRfHHiqL480VRfG9RFH+mKIo/VBTFW4ui2MinPYqi6BZF8aVFUXxrURR/oSiK7y6K4uuLonjLJrYPAABwnn3mhbfHH37dd0a/dSEiIi61D+O73vS98Uz39Utt551Pvze+7uq3Rq/Vj4jT4NefefNfioudSxs/5vPu/c98U3zJ5a9+IFpQ5U37b4nv+cS/HK1iMz/u+IZr3x5fcPG5aEW7drlP7X9GfNebvnfp7R+0n4rv+cS/fO+xsV/04muufnO86+kvXeVwH9Iq2vE9n/h98ab9t6y0/n7Riz9w9VviCy5uN64BwJNjv9VLo0P3AkZJGK0VrWgV9a/Ju/Ap/U+Pb33Dn40L7YtnfSjwgKfal+I73/Rfxev33rT1fX3j674j3nnxS6IdeaywiFZ8zlNfGN/8hj+1sf3+R1f/cLz30vsaRxKnwcXsvBIR0W3df4/x1oO3xX/yhj8dT7WfXu9A51zuPBN/8o1/IS53n9nodgEAAAAAAAAAAADgcVOWZ30EwHnR7JMDPNKKonh3RPznEfF1EbFXs+jHiqL4PyLir5Vl+coK+7kWEd8XEX8oIq4ky/xYRPwvZVn+vWW3DwAA8Kh49vD5eO/l98X10Stx2Lkaq3ao3/fMN8SXX/naeG10FJc7z6y8nUddq2jHH3n9d8UfvPbt8dLwtyt/uPlU5+m43Kl8K7qybqsb3/7G/yL+yOS74uU7v1u5zKXO4Vqxuk/pf1r85U/563F99PF4unM52g0jD029bu+N8b1v+atxffRK3By91ni9VtGK1++9cePHA8CTrVW0Yr/VvxdBmzVYEEbrFnU/2t6td1360viCp5+Nl4a/HcNJHlyCXdlr7cW17ifs7P1Ct9WNP/bGPx8nk0E6Tn6mey367Qsb3W+7aMc3v+FPxTe+7jseeF/wv//7/zl+b/jvH1p+eq4ZlnfSbc7Hl9996cvjXU9/2cae3/ut/Xim+/qNxZsBAAAAAAAAAAAAAOBJ4NOtj7GiKDoR8Vcj4k9FRJNPw7wpIv67iPjOoii+rSzLDy6xr+cj4vsj4nULFv3iiPjioij+VkR8Z1mWt5ruAwAA4FHSKtpxpXtt7e20i3Ycdq9u4IgefXut/XjT/lt2vt9eqx9v7m1vv0VRbP0+vty5svFwHACsot86qAyjnSwIo83Hi87aaUT0TWd9GHCmtj1Ozsy/L7jYuVQZRrsfXByl26o6t3h+AwAAAAAAZCq+0RIAAAAAALZAGO0xVRRFERF/OyK+sWL2L0XEL0bEICKuRcQ7I+JwZv7rI+IfFkXxtU3iaEVRfGlE/IOI2JuZXEbEz0TEr0fE5Yh4e0TMfsr7WyLi6aIovq4sy0nDqwUAAAAAwCOs1zqonD4NGA0nWRjNrzOAav3Whcrpi4KLEecvuggAAAAAAAAAAAAAAES0zvoA2Jo/Hg9H0T4UEZ9dluVnlGX5DWVZfktZlu+LiNdFxB+LiFdnlt2LiB8oiuJS3U6KonhzRPxgPBhF+2hEvK0sy3eWZflNd/fx5oj4sxEx++mTr4mI/36F6wYAAAAAwCOon4TRTsb1AaNOS7wIqNZr9SunDxaE0VrRinbR3tpxAQAAAAAAPJrKsz4AAAAAAAAQRnuM/ddzlz8UEV9RluW/nF+wLMtRWZZ/MyK+IiJuz8x6XUR814L9fF9EHM5c/rG7+/nFuX3cLsvyf42Ib5pb/88VRfHJC/YBAAAAAMBjoNeuDqMtChh1ir3K6QD91oXK6dPg4rC8Uzm/UwguAgAAAAAALKc46wMAAAAAAOAJIYz2GCqK4rMj4i1zk7+nLJNPlN1VluVPRcT/Njf5a2r289aI+E9nJt2JiG8ry/KkZh//ICJ+YGbSfkT8xbrjAgAAAADg8dBvVYfRTu6F0UaV87tFZ2vHBDzaeu1+5fTBgvOKMBoAAAAAAAAAAAAAAJxPwmiPp983d/k3y7L8uYbr/sO5y2+tWfabI6I9c/kHy7L81Qb7+J/mLn9TURS9JgcHAAAAAMCjq9eqDxgNyzuV8wWMgEweXBxERMQo+d6grvMKAAAAAAAAAAAAAACcS8Joj6cLc5d/a4l1f3Pu8mHNsl8/d/lvNtlBWZa/GBH/fGbShYh4X5N1AQAAAAB4dPVb8z++PrUoYCSMBmR6SRhtGlxMzyst5xUAAAAAAAAAAAAAOE/K8qyPADgvhNEeT78zd7m3xLrzy75StVBRFG+IiM+dmTSKiI8usZ8fnbv8/BLrAgAAAADwCOq1+pXTB+NbERExKkeV84XRgEwWRju5G0YbTu5UzndeAQAAAAAAWJZPpQIAAAAAsBvCaI+nn4yI2zOXP6MoiupPmz3sHRXbqvJZc5d/vizLWw33ERHxY3OX37bEugAAAAAAPIL67QuV008mg4iIGJXDyvkCRkCmn4XRxqdhNMFFAAAAAAAAAAAAAAB4tAijPYbKsrwREf/nzKReRHzHovWKomhHxJ+em/wDyeKfOXf51xof4Kn/b8H2AAAAAAB4zPRa1d/hMZicfu/GsLxTOf//Z+/uo2W/6/rQvz+z9z6ZyQnkgSQECoaQgFBBwdDLIqlXEBaoqxcFEbiUXmJv1dorpVeWFttqROtawq3epe2yVsviwStoxSAtRdMFQos8yC1QkCb0hgBBeTAKCSYn5yTn4Xv/2HM8k8mevWf2mZnf7L1fr7Vmze/h+/t+Pr/FWt9wZs+8fxsCjIAJ+mtbB6Pd247lVDs5MXDRugIAAAAAAAAAAAAAAKtJMNr+9aoknxvZf21VPWvS4KraSPKrSZ48cvgPkvzOhEuuGtv//Iz93Ta2/5CqunDGOQAAAAAA2EMGvcNbHj926miSTAwwWhdgBEww6G0djJZsri3WFQAAAAAAgBm01nUHAAAAAACQ9a4bYDFaa1+tqmckuSGbYWeDJDdW1VuTvDXJp5IcTXJxkqcl+cEkXz8yxYeTvKC1iX/RuGBs//YZ+7u7qo4l6Y8cPj/JHbPMAwAAAADA3tHvDbY8fu+poznVTuXEqRNbnhdgBEzS3yYY7eipe3JcMBoAAAAAAMCcVNcNAAAAAABwQAhG28daa5+rqqcmuS7JDyS5OskLh69JvpLkF5L8X61N+KXIpvPG9o/uosWjuX8w2oN2Mcf9VNWlSS6Z8bIrz7YuAAAAAAA7G6wd3vJ4S8u9p47lxKQAo54AI2Brg22C0Y6dumfyuiIYDQAAAAAAAAAAAAAAVpJgtP1vbfi6N0nL9o9n+ZMkP5nkN3cIRUseGIx2bBe9HU1y4TZz7sY/SHL9HOYBAAAAAGDO+r3BxHNHTx2ZGGC0IcAImKC/TTDa0ZOTg9GsKwAAAAAAAAAAAACwWlrXDQAro9d1AyxOVV2b5OYk/zrJtdn5f+9HJnl9ks9X1d+bsdxu/tviv0cAAAAAAAfIoHd44rljp47meLtvy3PrAoyACTZ6GxPXiGOn7rGuAAAAAAAAAAAAAADAHiMYbZ+qqmcmeVeSR40c/kKSVyV5cpILkhxKclmSb0/yxiQnhuMuSfJrVfWrVVUTStw9tj/YRZvj14zPCQAAAADAPtLvTf4o+eipe3KindjynAAjYDv93rlbHj966p6cOGVdAQAAAAAAmI/WdQMAAAAAABwQ6103wPxV1SVJ3pKkP3L4PyR5aWvtL8eG/1mSG5PcWFW/kuQdSR4yPPf9SW5N8potyqxqMNovJ/ntGa+5Msnb51AbAAAAAIBtbNShrGU9J/PAoKJjp+7JiXZ8y+vWy58zgMkGvUHuPvm1Bxw/duroNuuKYDQAAAAAAAAAAAAAAFhFfkm0P/1IkktG9j+V5IWttWPbXdRa+1BVvSjJu0YOX19Vr2+t3T42fPzXJZdkBlV1Xh4YjHbnLHNsZdjneK879XK2ZQEAAAAAmEJVpb82yJGTdz3g3NGTk4PRNurQolsD9rB+79wtjx89eWTyutITjAYAAAAAAPBAresGAAAAAAAgva4bYCG+d2z/NTuFop3WWnt3kveNHBokefEWQ28Z2798+va2HP/V1todM84BAAAAAMAeM5gQYHTs1D05PiHAaL0EGAGTTQpGO3bqaI63+7Y8Z10BAAAAAACYVXXdAAAAAAAAB4RgtH2mqg4nuXLs8LtnnOZdY/tP3WLMzWP7V81Y49Fj+zfNeD0AAAAAAHvQpACjo6fuyQnBaMAuDNYmBy6eaCe2PGddAQAAAAAAAAAAAACA1SQYbf+5YItjX55xjvHxF28x5pNj+99YVVv/6mRr1+4wHwAAAAAA+9BgQjDasW2D0dYX2RKwx+0ucNG6AgAAAAAAAAAAAAAAq0gw2v5z5xbHDs84x3lj+3ePD2itfSnJJ0YOrSf5mzPUePrY/u/NcC0AAAAAAHvUxACjk5MDjDZ6hxbZErDH7SZwcaOsKwAAAAAAAAAAAACwSlrrugNgVQhG22daa0eS/OXY4SfPOM3VY/tfnjDubWP73zfN5FX1uCRPHTl0JMl/mq41AAAAAAD2ssHaNgFGp7YOMFqvjUW2BOxxEwMXT92T4xOC0awrAAAAAAAAs/KrVAAAAAAAlkMw2v703rH9H5j2wqq6LMlzxw6/b8Lw30hycmT/+VX1mCnK/OOx/X/XWjs2ZYsAAAAAAOxhAoyAeRtMWFeOnbwnJ6wrAAAAAAAAAAAAAACwpwhG259+a2z/RVX10p0uqqpzkvx6kvNGDt+d5MatxrfWbknyxpFDh5K8oar629T4riTXjRy6L8mrd+oNAAAAAID9YVKA0dFTR3Lqfs/iOGO91hfZErDH9dcmBy5ODkazrgAAAAAAADxAa113AAAAAAAAgtH2qd9M8vGR/Urypqr6xap62FYXVNUzknwoybPGTr2mtXbHNrWuTzJ6/pok76qqx43Nf05VvTzJb49d//Ottdu2mR8AAAAAgH2kPyEY7e4TX5t4zXptLKodYB8Y9AZbHj+2TTDaRu/QIlsCAAAAAADYh6rrBgAAAAAAOCA8Cn0faq2dqqoXJHl/kkuHhyvJP0zyw1X1iSSfSXI0yUVJnpzksi2memeS1+xQ60+r6vlJbkxy+hck1ya5qao+MqxzfpJvTnLJ2OXvSPITs90dAAAAAAB72WBCMNpdJycHo22UACNgsn7v8JbHj506mt6E50QJXAQAAAAAAAAAAAAAgNUkGG2faq19uqq+NcmvJ3nKyKlekicNXxMvT/JrSf5Ra+34FLXeW1XPS/KGnAk/q2Hdp0y47C1Jvr+1dnKn+QEAAAAA2D/6a1sHo9198q6J1wgwArYz6A22PH683ZdKbXnOugIAAAAAAAAAAAAAAKtp60eksy+01j6V5GlJXpbkg9kMPNvO0SS/keSa1toPttaOzlDrnUmekORXktyxzdAPJXlBa+0lrbUj084PAAAAAMD+MOhtHYzWcmriNevlOS/AZP3e4Ynn2oQ/j1lXAAAAAAAAAAAAAABgNfnG/z7XWjuR5E1J3lRV5yd5SpIrklyQ5Jwkd2UzyOyTSf54OH63tW5P8kNV9Yok1ya5PMllSY4k+UKSj7XWPnsWtwMAAAAAwB7XnxCMtp312lhAJ8B+MVgbzHzNRh1aQCcAAAAAAAD72dYPpAEAAACAefEJFHCaYLQDpLX2tSTvXkKd+5K8Z9F1AAAAAADYewaC0YA5G/QOz3yNdQUAAAAAAAAAAAAAAFZTr+sGAAAAAACAg6O/i2C0jd6hBXQC7Bfn9AYzXyMYDQAAAAAAYCut6wYAAAAAAEAwGgAAAAAAsDyDtdmD0dZrfQGdAPvFWq3lUJ0z0zXWFQAAAAAAgFlV1w0AAAAAAHBACEYDAAAAAACWpt8bzHzNWgQYAdsb9GYLXdyoQwvqBAAAAAAAAAAAAAAAOBuC0QAAAAAAgKVZq/UcqnOmHr9eG6ny5HFge/212YLR1mtjQZ0AAAAAAAAAAAAAAABnQzAaAAAAAACwVP3e9AFGG8KLgCkMZlhXkmS9Z20BAAAAAAAAAAAAAIBVJBgNAAAAAABYqsHa9AFG64LRgCnMEriYJOu1vqBOAAAAAAAA9qvWdQMAAAAA7HPNR1DAkGA0AAAAAABgqWYJMBKMBkxjMMO6UqmsRTAaAAAAAAAAAAAAAACsIsFoAAAAAADAUs0SYCQYDZjGrIGLVbXAbgAAAAAAAPaq1nUDAAAAAAAgGA0AAAAAAFiufm8w9VjBaMA0BmuzBKOtL7ATAAAAAACA/cqDZwAAAAAAWA7BaAAAAAAAwFINeoenHrshGA2YQr83SzCadQUAAAAAAAAAAAAAAFaVYDQAAAAAAGCp+muDqccKMAKm0e9Nv65s1KEFdgIAAAAAAAAAAAAAAJwNwWgAAAAAAMBSDXqHpx673hOMBuxspnVF4CIAAAAAAAAAAAAAAKwswWgAAAAAAMBS9XuDqccKMAKmMdu6sr7ATgAAAAAAAAAAAAAAgLMhGA0AAAAAAFiqQe/w1GM3BKMBUxisTb+uCFwEAAAAAADYjdZ1AwAAAADsc81HUMCQYDQAAAAAAGCp+r3B1GMFGAHTmGVd2egdWmAnAAAAAAAAe5hfngIAAAAAsAIEowEAAAAAAEs1WDs89VjBaMA0Br1Z1pX1BXYCAAAAAACwX1XXDQAAAAAAcEAIRgMAAAAAAJaq3xtMPVaAETCN2dYVgYsAAAAAAAAAAAAAALCqBKMBAAAAAABLNegdnnqsACNgGv3euVOPta4AAAAAAAAAAAAAAMDqEowGAAAAAAAsVb83mHrsRh1aYCfAfnFOr59KTTXWugIAAAAAAAAAAAAAAKtrvesGAAAAAACAg2Wwdnjqseu1scBOgP2iV72c0xvk2Kl7dhy7Xv5ECgAAB0VVbSS5NsnXJXlYkruTfDHJx1prn5tzrSuSPCnJw5Ocl+RLSW5L8oHW2vE51lnaPQEAAAAAAAAAQBd86yO3vQAAACAASURBVB8AAAAAAFiqQ3VOKpWWtuNYAUbAtAa9c6cMRhO4CAAAXamqRyf5G0meMnz/5iQPGhlyW2vtUXOoc0mSVyd5UZKLJoz5QJJfaK39zlnWekGSH0nytAlDvlpVv5XkJ1trf3EWdZZ2TwAAAFvb+e+7AAAAAAAwD35NBAAAAAAALFWveun3BjkqwAiYo37v3KnGrdehBXcCAACMqqqnJ/nxbIahbRnoNed635HkDUku3WHoNUmuqarfSPKDrbUjM9Y5L8mvJXnxDkMvSvJDSZ5fVS9rrd04S51hraXcEwAAgPAzAAAAALrk0yngNMFoAAAAAADA0vV7504VjLbRE2AETGcwdTCaP5ECAMCSPSnJs5dRaBjC9rtJRj9QaEk+muQzSS5I8uQkF4+c/9tJHlxV391aOzVlnbUkv5XkO8dO/XmSjyX5WpIrh7VqeO6hSd5eVc9qrf3hqt0TAADAzmrnIQAAAAAAMAe9rhsAAAAAAAAOnv7UAUYbC+4E2C/6a9OtKxs96woAAKyIe5PcOq/JquoRSW7I/QPE3p/kG1prT2mtvbC19uwkj0jyiiTHR8b9L0n++Qzlfi73D0U7nuTlSR7RWnvOsNbVSZ6Q5IMj485J8rtV9bAVvCcAAAAAAAAAAFgJgtEAAAAAAIClG0wdjLa+4E6A/WL6dUUwGgAAdOB4kv+W5N8m+cEkVyd5UJK/N8car05y4cj+B5I8q7V28+ig1tq9rbVfSvLCset/pKou36lIVT06myFko763tfavWmv3jdW6Kckzc/9wtIckuX6nOkNLuScAAAAAAAAAAFglgtEAAAAAAICl668JMALmq98bTDVuvQ4tuBMAAGDMG5M8uLX25Nba97fWfrW19tHW2vF5FaiqxyR52cih+5Jc11o7Numa1trvDns77ZxMF1h2fZLRDyze0Fp7+zZ1jia5btjTaf/7MGBtoiXfEwAAAAAAAAAArAzBaAAAAAAAwNINeoLRgPnqT72urC+4EwAAYFRr7Y7twrzm5CVJ1kb2b2it3TLFda8Z239hVfUnDa6qQZIX7DDHA7TW/r8kvztyaD2bPW9nKfcEAAAAAAAAAACrRjAaAAAAAACwdP3eYKpxG4LRgClNG7hoXQEAgH3peWP7r5/motbazUn+aOTQ4STP3uaS5yQZ/cfHB1trn5qqwwf29Pwdxi/rngAAAKbUum4AAAAAAIADQjAaAAAAAACwdIPe4anGrQswAqbUX5suGM26AgAA+0tVXZbkm0YOnUjy/hmmeO/Y/ndsM/bbd7h2O+/LZm+nPbmqHrrVwCXfEwAAAAAAAACshCabHxgSjAYAAAAAACxdvzeYapwAI2Bag960wWiHFtwJAACwZE8Y2/9Ea+3IDNd/YGz/G2ao9cFpiwx7+uMpay3zngAAAEb45SkAAAAAAN0TjAYAAAAAACzdYO3wVOMEowHT6k8djLa+4E4AAIAl++tj+5+e8fpbd5hv1OOXVGuZ9wQAADCl6roBAAAAAAAOCMFoAAAAAADA0vV7g6nGCUYDpjWYMhhtw7oCAAD7zVVj+5+f8frbxvYfUlUXjg+qqouSXHSWtcbHP2bCuKXcEwAAAAAAAAAArCKPQwcAAAAAAJZu0Ds81biNngAjYDr9KYPRBC4CAMC+c8HY/u2zXNxau7uqjiXpjxw+P8kdO9S5p7V2ZJZaW/R2/oRxy7qnmVXVpUkumfGyK8+2LgAAAAAAAAAAB4dgNAAAAAAAYOn6vcFU4wQYAdMarE0ZjNY7tOBOAACAJTtvbP/oLuY4mvuHiD1ogXVGbVVnnrV2uqfd+AdJrp/TXAAAAAAAAAAA8AC9rhsAAAAAAAAOnsHa4anGCUYDptXvTReMtlGeHQUAAPvMeIjYsV3MMR48Nj7nMussuxYAAMCUWtcNAAAAAABwQAhGAwAAAAAAlq7fG0w1bkMwGjClwZTBaAIXAQBg39vNL/VX+Zpl1wIAAAAAAAAAgE55HDoAAAAAALB0g97hqcYJMAKmtVGH0staTuXktuOsKwAAsO/cPbY/XRr79teMz7nMOsuuNatfTvLbM15zZZK3z6k+AACwSE3GMgAAAADd8ekUcJpgNAAAAAAAYOn6vel+zyvACJhWVWXQOzdHTt217TjrCgAA7DuC0c6u1kxaa7cnuX2Wa6pqHqUBAIDO+f/2AAAAAAAsR6/rBgAAAAAAgINnow5lbYfnt/Syll75UwYwvf7auTuO2RCMBgAA+83XxvYvmeXiqjovDwwRu3OKOudW1eFZaiW5dIo6W9Va1D0BAAAAAAAAAMDK8WsiAAAAAABg6aoq/bXx3+fen/AiYFaD3vbrSpKsW1sAAGC/uWVs//IZrx8f/9XW2h3jg1prX0kyfvzrzrLWeO+Tji/kngAAAAAAAAAAYBUJRgMAAAAAADox6J277XnhRcCs+r3DO46xtgAAwL5z89j+VTNe/+ix/ZuWWGt8vkXV2e6eAAAAAAAAAABgpQhGAwAAAAAAOtHfKRitJ7wImE2/N9hxjGA0AADYdz45tv+NVbX9hw73d+0O82137mnTFqmqw0m+ccpay7wnAAAAAAAAAABYKetdNwAAAAAAABxMg52C0YQXATPaeV1ZT1UtqRsAANhabf6f0h9N0h85/KbW2ufOct4rkvydkUP3tNb+xdnMuRe01r5UVZ/ImdCx9SR/M8l/mnKKp4/t/942Y38/yQ9sc+12viX3/87mx1prf7bVwCXfEwAAwJRa1w0AAAAAAHBACEYDAAAAAAA60ReMBsxZf826AgDAnvCSJD+XM78ov+FsQ9GSpLX22ap6YpLnnz5WVZ9prd1wtnPvAW/LmRCxJPm+TBEiVlWPS/LUkUNHdrjuxiRHkwyG+0+rqse11j41RY/Xje2/bYfxy7onAACAEcLPAAAAAADoXq/rBgAAAAAAgINpsEOA0UZ5vgswm4HARQAAVlxV9ZL89OndJLckedkcS1yX5Nbh3JXkZ+c49yr7jSQnR/afX1WPmeK6fzy2/+9aa8cmDW6t3ZPkrTvM8QBV9dgkzxs5dCLJm3e4bCn3BAAAML3qugEAAAAA9rkmtx8YEowGAAAAAAB0or9jgNGhJXUC7Bc7ryuC0QAA6NyzklyRpA1fPz4M25qL1tqRJK8aOfTYqvq2ec2/qlprtyR548ihQ0neUFX9SddU1XdlM0jutPuSvHqKcj+V5PjI/nVV9dxt6vSTvH7Y02mva63dul2RJd8TAAAAAAAAAACsDMFoAAAAAABAJwYCjIA522ld2bCuAADQvZeObH+ktfa2eRdord2Q5CMjh/72vGvMqqoeUVWPGn8luWxs6PpW44avi3coc32SO0b2r0nyrqp63Fgv51TVy5P89tj1P99au22ne2mtfSbJL44dfmtV/XDV/VPeq+rxSd497OW0r2T6sLKl3BMAAAAAAAAAAKyS9a4bAAAAAAAADqb+jsFo/owBzGbndUUwGgAAnfv2ke3XLbDO65JcnaSSfOcC60zrD5NcPsW4v5bksxPOvTHJdZMubK39aVU9P8mNSU4HlF2b5Kaq+kiSzyQ5P8k3J7lk7PJ3JPmJKfo77VVJviHJdwz3N5L8yyQ/UVUfTXJXkkcPa9XIdfcleV5r7UvTFFnyPQEAAAAAAAAAwErodd0AAAAAAABwMA0EGAFzNlizrgAAsLqq6vIkF48cescCy43OfWlVPXKBtVZGa+29SZ6X5M9HDleSpyR5YZLn5IEBYm9J8uLW2skZ6pwczvdbY6cuzWb43ffmTDDdabcn+a7W2vumrTOs9d4s4Z4AAAAAAAAAAGBVCEYDAAAAAAA60d8hwGhDgBEwo77ARQAAVts3Dd9bkltba19YVKHW2p8m+fTIoSctqtaqaa29M8kTkvxKkju2GfqhJC9orb2ktXZkF3Xubq29OJshaB/aZuhXk/zrJE9orf3+rHWGtZZyTwAAANtrXTcAAAAAAMABsd51AwAAAAAAwME02DHA6NCSOgH2i53XFcFoAAB06pKR7S8uod4Xk1w13L50CfUmaq09asn1bk/yQ1X1iiTXJrk8yWVJjiT5QpKPtdY+O6dab03y1qq6Isk3J3l4ksNJvpzktiTvb63dN4c6S7snAADgIBN+BgAAAABA9wSjAQAAAAAAnejvFGDU82cMYDb93mDb8xuC0QAA6NaFI9tfXkK90RoXLKHeyhkGkr1nSbU+m2ThwWTLvCcAAID7q64bAAAAAGCfa3L7gaFe1w0AAAAAAAAH02CnYDQBRsCMBr3D255f71lXAADo1KGR7WV8d2+0xjlLqAcAAAAAAAAAAHDWBKMBAAAAAACd6O8QjLYhGA2YUX9tsO15gYsAAHTsnpHtS5ZQb7TGPRNHAQAAAAAAAAAArBDBaAAAAAAAQCcGa9sHo63XoSV1AuwX67WRjW3WDsFoAAB07Msj25cvod5ojT9bQj0AAAAAAAAAAICzJhgNAAAAAADoRL832Pb8eq0vqRNgP9lubdkQjAYAQLduHb5Xksur6qpFFaqqK5M8aovaAAAAAAAAAAAAK00wGgAAAAAA0Im1Ws+hOmfi+XUBRsAuDHqHJ56zrgAA0LGPJ7kvSRvuP3eBtb57ZPt4kv+2wFoAAAAcCG3nIQAAAAAAMAeC0QAAAAAAgM70e+dOPLchwAjYhX5vMPGcYDQAALrUWrsvyX9OUsPXj1XV5GTfXRrO+aPZ/MV6S/JfhrUBAABge034GQAAAAAA3ROMBgAAAAAAdGawNjkYTYARsBvWFQAAVtxbhu8tySVJXruAGj+X5NJshq8lyZsXUAMAAIADp3YeAgAAAAAAcyAYDQAAAAAA6Ey/J8AImK/t1pUN6woAAN17c5IvDbcryd+vqn8yr8mr6lVJ/o9sBq8lyZ9FMBoAAAAAAAAAsAe0nYcAB4RgNAAAAAAAoDMDwWjAnAlcBABglbXW7kvy49kMRWvD95+pqt+sqgt3O29VXVBVb07ysyPztiT/ZFgTAAAAAAAAAABgTxCMBgAAAAAAdKbfG0w8t9ETYATMbtvAResKAAAroLX2piRvz/3D0b43yS1V9dqqesy0c1XVVVX12iS3JHnRcK4M5/0PrbU3zLN3AAAAAAAAAACARVvvugEAAAAAAODgGvQOTzy3XgKMgNn1twtGs64AALA6/k6SP0jylJwJR7soySuTvLKqvpTkw0luTnLn8JUk5ye5IMnjk/xPSR4+PD4aiFZJPpLkpQu/CwAAAAAAAAAAgDkTjAYAAAAAAHSmvzaYeE6AEbAbg7XJwWgb1hUAAFZEa+3uqnpmkjckeV42A82SMwFnD0/yXcPXJDWyPXr925O8rLV299waBgAAgL/6pycAAAAAACxWr+sGAAAAAACAg2vQOzzxnGA0YDf6vcnBaNYVAABWSWvtrtba9yR5ZZKj2Qw1ayOvDI9t9crY2EpyLMmPtdae11r7y2XdBwAAAPuJ8DMAAAAAALonGA0AAAAAAOhMvzeYeG5DgBGwCwPBaAAA7DGttf87yeVJfjbJnbl/AFqb8Bodc+fw2stba/9i2f0DAABwUNTOQwAAAAAAYA7Wu24AAAAAAAA4uAa9wxPPCTACdmO7wEXrCgAAq6q19pUkP1FVP53kqUm+Ncm1Sf5akouSPGQ49KtJvpLki0nen+Q/J/mj1tp9S28aAAAAAAAAAGCOWuu6A2BVCEYDAAAAAAA6I8AImLd+79yJ5zasKwAArLjW2vEkfzh8AQAAAAAAAAAAHDi9rhsAAAAAAAAOrsHa4YnnBBgBuzFYmxyMJnARAAAAAAAAAAAAAABWm2A0AAAAAACgM/3eYOI5AUbAbvR7gtEAAAAAAAAAAAAAAGCvEowGAAAAAAB05vz1C7c83ksv/bXJ4UYAk5y39uD0JvwZ9Ly1By+5GwAAAAAAAAAAAAAAYBaC0QAAAAAAgM48ZOOhedihRz7g+JWDx6ffG3TQEbDXndPr57HnPvEBxy/deHguPvTQDjoCAAAAAADYK1rXDQAAAAAAgGA0AAAAAACgWy972D/KeWvn/9X+hesX56WX/XCHHQF73Ysf+vfzkI1L/2r/3N55+bsPf2WHHQEAAAAAAAAAAAAAANNY77oBAAAAAADgYPu6/pV59RW/nFuP3pxereWqwV/Pod45XbcF7GGXHnpY/tmjfimfPfo/cl+7N48994np9wZdtwUAAAAAAAAAAAAAAOxAMBoAAAAAANC5wdrhPOG8p3TdBrCPnNPr53GHv6nrNgAAAAAAAAAAAACAKbSuGwBWRq/rBgAAAAAAAAAAAAAAAAAAAAAAAADWu25gFlX1B8PNluR/ba3dvst5HprkLafnaq09cx79AQAAAAAAAAAAAAAAAAAAAAAAALuzp4LRkjw9m6FoSdI/i3n6w7kyMh8AAAAAAAAAAAAAAAAAAAAAAADQkV7XDexCdd0AAAAAAAAAAAAAAAAAwMHRum4AAAAAAIADYi8GowEAAAAAAAAAAAAAAAAwT034GQAAAAAA3TuowWjrI9snOusCAAAAAAAAAAAAAAAAYOVV1w0AAAAAAHBAHNRgtItHto901gUAAAAAAAAAAAAAAAAAAAAAAACQ5OAGo/3Pw/eW5ItdNgIAAAAAAAAAAAAAAAAAAAAAAAdZa113AKyK9a4bOAszLWVVtZHkYUmeneSfjpz643k2BQAAAAAAAAAAAAAAAAAAAAAAAMxu5YLRqurkNMOSfK6qdl1mZPvf73YSAAAAAAAAAAAA6FpVXZ3kiiT3Jrm5tfbpjlsCAAAAAAAAAADYlZULRsv9Q8vmMW4rbXj9p5K89SzmAQAAAAAAAAAAgLmoqn6Sh48cuq21NvFho1X13CS/lOSRY8c/mOQHWms3LaRRAAAADqDWdQMAAAAAABwQva4bmGDRn5RXkv+a5G+11o4vuBYAAAAAAAAAAABM45VJbhm+3pPk1KSBVfXCJDdkMxStxl7XJPmjqrp60Q0DAACwnwg/AwAAAACge+tdN7CF/5LJn6J/6/C9JflwkmNTztmS3JvkziQ3J3lPa+19Z9MkAAAAAAAAAAAAzNl3ZzPYrCV5XWtty+/SVdWFSf5NNh+O2oavGp4+fc3hJDdU1de31qb9rh0AAABMUDsPAQAAAACAOVi5YLTW2tMnnauqUznzpa0XtdY+v5SmAAAAAAAAAAAAYIGqapDkSTnzHbl3bDP85UnOz5lAtC8kuSHJiSTPT3L5cNwjkvzDJK9dQMsAAAAAAAAAAABz1+u6gV3weBEAAAAAAAAAAAD2mycmWcvmd+SOtNY+us3Yl+ZMKNr/SPKE1torWmuvHM7z/w7HVZLrFtYxAAAAAAAAAMCctLbzGOBgWO+6gRm9emT7zs66AAAAAAAAAAAAgPm6Yvjektw0aVBVPS7JVcNxLclPtta+dvp8a+3uqnp5kg8ND319VT2ytfYni2kbAAAAAAAAAABgfvZUMFpr7dU7jwIAAAAAAAAAAIA956Ej21/aZty3DN8ryV1J3jY+oLX24ar60ySPGB76xiSC0QAAAAAAAAAAgJXX67oBAAAAAAAAAAAAIOeObN+1zbhrh+8tybtbaycmjPvkyPbXnU1jAAAAsPnPUAAAAAAAWDzBaAAAAAAAAAAAANC9Gtne2GbcNSPb79tm3FdGth+8q44AAAA4YISfAQAAAADQPcFoAAAAAAAAAAAA0L27RrYfutWAqrosyVUjhz6wzXzro5eeRV8AAAAQ/7QEAAAAAGBZ1ncesrqq6hlJvi3Jk5NcmuT8bP+kzK201tqV8+4NAAAAAAAAAAAAZvCF4XsleeKEMd85sn1vko9uM98FI9tHzqIvAAAAAAAAAACApdmTwWhV9Zwkv5T7P/lyt48daWffEQAAAAAAAAAAAJyVT4xsX1RVz2mt3Tg25vuG7y3Jh1trx7eZ79Ej21+eR4MAAAAAAAAAAACL1uu6gVlV1Y8meWc2Q9FGw9DaLl4AAAAAAAAAAADQudbarUluyeZ32yrJL1fVFafPV9Urk1w7csnbJ81VVefl/g8evXW+3QIAAAAAAAAAzJcwIOC09a4bmEVVPSfJa4a7p8PNToej3ZPkziTbPQETAAAAAAAAAAAAVtW/zeZ35FqSK5J8qqo+nuTSJI/Mme/MHUvy/2wzz9Nz5rt1J5L89wX1CwAAAAAAAAAAMFd7Khgtyc8N309/uetPsvklsHe01j7fWVcAAAAAAAAAAABw9n4xyfcl+fpsfk9uI8nVORNydvqBor/QWvvzbeZ53sj4j7fW7l1MuwAAAAAAAAAAAPO1Z4LRqurKJN+UzS9qJckfJXl2a+2u7roCAAAAAAAAAACA+Wit3VdVz0ny+0kePzxcOfMw0UryO0munzRHVZ2X5Hty5rt2715YwwAAAOwvre08BgAAAAAAFmzPBKMledrwvZKcSvK/CUUDAAAAAAAAAABgP2mt/UlVPSnJ303y3CSXD099KsmbW2s37DDFdUkePLL/H+feJAAAAAAAAAAAwILspWC0S4fvLcnHWmu3dNkMAAAAAAAAAAAALEJr7XiSfzN8zep1SX59ZK6vzasvAAAAAAAAAACARdtLwWg1sv3pzroAAAAAAAAAAACAFdVaO5rkaNd9AAAAAAAAAAAA7Eav6wZm8IWR7bXOugAAAAAAAAAAAAAAAAAAAAAAAADmbi8Fo/33ke1HdtYFAAAAAAAAAAAAAAAAAAAAAAAwN6113QGwKta7bmBarbU/rqpPJnlCkqur6sLW2h1d9wUAAAAAAAAAAACLVlWPSPLoJBcleVCSaq29qduuAAAAAAAAAAAA5mvPBKMN/XyS1ydZS/LKJP+s23YAAAAAAAAAAABgMarq8iT/Z5LnJrl8iyEPCEarqm9J8ozh7h2ttX+5uA4BAADYX1rXDQAAAAAAwN4KRmutvbGq/laS70nyY1X1/tba73XdFwAAAAAAAAAAAMxLVfWS/EySH83mg0Rri2GTfq3+F0l+6vT5qnpna+3WBbQJAAAAAAAAAAAwd72uG9iFlyX599kMdXt7Vf10VV3QcU8AAAAAAAAAAABw1qpqI8nvJ3lVtn746aRAtM2Trd2c5D05E6b2krk2CAAAAAAAAAAAsEBbfWlqZVXVTw43P57kmiQXJ/mnSX6kqj6Y5KYkdyQ5Ncu8rbWfnmefAAAAAAAAAAAAsEuvS/KsbAagtWwGnL0vm2Fn9yX551PM8TtJnjHcfnaSn5l/mwAAAAAAAAAAAPO3p4LRkvxU7v+0y9Nf+jo3ybcNX7shGA0AAAAAAAAAAIBOVdUzk7w0Z74b9+kkL2mt/dfh+cszXTDaf0zyr4Zz/I2q6rfWji2mawAAAAAAAAAAgPnpdd3AHJx+KuZu1DwbAQAAAAAAAAAAgLNw/fC9ktyW5JrToWizaK3dluTO4e5GksfNpz0AAAAAAAAAgMVou00QAvadvRiMVnN8AQAAAAAAAAAAQOeq6qIk1+TMw0Jf0Vr7i7OY8qaR7ceeTW8AAAAAAADA/8/enYfZWdd3H39/ZyYLBAgh7Ci7yC7ghkUKCIorWhdcerkA1qV1aa1a21oRa/WxdXnaurUa3K2KIiAF2UFEWWSRgAghEEgCSci+LzPzff44Z545OZlz5pw525zJ+3Vd93Xu33p/x+BJZuY+n1uSJEnt0tfpAup0WqcLkCRJkiRJkiRJkiRJkiSpBV7I8MNOl2TmZQ3uVxqqtmeDe0mSJEmStgeZna5AkiRJkiRJkqTuCkbLzJs6XYMkSZIkSZIkSZIkSZIkSS2wT/E1gd81Yb81Jec7NWE/SZIkSZIkSZIkSZIkSWq5rgpGkyRNYCtnw0NfhoGNsP8bYN9XQESnq5IkSZIkSZIkSZIkSWqX3UrOVzRhvx1Kzrc0YT9JkiRJkiRJkiRJkiRJajmD0SRJnbfoWrjhTMjBQvvR78IxF8Axn+hsXZIkSZIkSZIkSZIkSe2zuuR85ybst1fJ+fIm7CdJkiRJkiRJkiRJkiRJLdfT6QIkSdu5TPjd+4dD0Ybc/y+wfkFnapIkSZIkSZIkSZIkSWq/p0rOn9HIRhHRCxxf0vVkI/tJkiRJkiRJkiRJkiRJUrsYjCZJ6qyVv4fVf9y2f3AzzL+4/fVIkiRJkiRJkiRJkiR1xuziawDPjIinNbDXy4Adi+cJ3NpIYZIkSZIkSZIkSZIkSZLULl0fjBYRkyLiTyPiHyPiwoi4JCKui4jrOl2bJKkGT/yy8tjjF7WvDkmSJEmSJEmSJEmSpA7KzAeAhcVmAH87ln0iogf4h6Ftgd9n5srGK5QkSZIkSZIkSZIkSWqd7HQBksaNvk4XMFYRMQ34G+B9wB7lw1R4r4uINwP/UmwuB56bmb4vSlKnrJxdeWzpb2HTMpgys331SJIkSZIkSZIkSZIkdc4PgI9SuAfufRFxRWZeU+cenwFOLGl/o1nFSZIkSZK2Z378SpIkSZIkSZLUHj2dLmAsIuJY4E7gAmBPCjeB1eoXwEzgQOB44MXNrk+SVIfVf6w8lgOw8PL21SJJkiRJkiRJkiRJktRZ/wqspvBp817g0oh4Vy0LI2L3iPg28BGGP62+CLiwBXVKkiRJkiYkw88kSZIkSZIkSZ3XdcFoEXEkcBPwDAqBaEM/cQ9qCEjLzLXARSVdr2t2jZKkGuVg9WA0gAWXtKcWSZIkSZIkSZIkSZKkDsvM5cAHGL43birwtYiYExGfBc4qnR8Rz4uIt0bE94C5wFsZvpduADgnMze382uQJEmSJE1Uo35sS5IkSZIkSZKkpujrdAH1iIipwOXAdIYD0WYD/w7cAEwBHqhhq0uBc4vnpze5TElSrTYsgoH11ecs/U17apEkSZIkSZIkSZIkSRoHMvO7EXEo8HEK98kFcAjw0bKpAfy2rJ0la/4+M69ufcWSJEmSJEmSJEmSJEmS1Dw9nS6gTh8ADmQ4FO0/gBMy81uZOQ/Yipk/qAAAIABJREFUWOM+NzB889dBEbFnk+uUpLFbNx9+fTb8fD+49hRYdH2nK2qdDQtHn7NxCWxe2fpaJEmSJEmSJEmSJEmSxonM/ARwDsP3xA3dM1cafjZ0D1yUzAlgM/D2zPx82wqWJEmSJEmSJEmSJEmSpCbptmC09zN8g9clmfnXmTlY7yaZuRaYV9J1RBNqk6TG9a+Ha14Ij18EG56AJb+C60+HR78HmaOv7zbrawhGA1gzp7V1SJIkSZIkSZIkSZIkjTOZ+R0K97Z9lUJA2lAAWrB1INpQ3yDwXeCIzPxeG0uVJEmSJEmSJEmSJEmSpKbp63QBtYqII4H9is0EPtLglnOBg4rnBwM3NbifJDVuwWWw/vFt+3/7NrjnY3DSj2DPk9tfV6tsqDEYbeVsmPnc1tYiSZIkSZIkSZIkSZI0zmTm48D7IuKjwAuLx9OBmcBkYCmwGPgNcF1mruxUrZIkSZIkSZIkSZIkSaPJ7HQFkrpB1wSjAccVXxO4LzMfaXC/0hvApje4lyQ1x2P/U3lswxNw7Z/CMRcUwtH2PAWip321tcL6GoPRFl4Oh5zb2lokSZIkSZIkSZIkSZLGqcxcD1xdPCRJkiRJkiRJkiRJkiYcQ9MkDemmYLQ9Ss7nNGG/TSXnOzZhP0lq3KJrRp8z+/zC674vh5N/Dr2TW1tTK214orZ5i68v/As2orX1SJIkSZIkSZIkSZIkSZIkSZK03fKTp5IkSZIkSZKkzuvpdAF1mFpyvqnirNpNLzlf04T9JKlxk3apfe4TV8DD/9W6Wtqhv8a33y2rYMOTra1FkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJktRR3RSMtrTkfPcm7HdwyfmyJuwnSY3rnTr6nFKPfKs1dbRL/4ba567+Y+vqkCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiR1XF+nC6jDouJrAMc3slFEzASOKOl6uJH9JKkpMmHT0tHnlVpxN6z4Pcx4VmtqarWBOoPR9n5R62qRJEmSJEmSJEmSJEkahyJiEvAC4GTgEGA3YGeAzDy9g6VJkiRJkiRJkiRJkiRJUtN1UzDab4BBoAeYGREvyszrx7jXuRQC1gDWAb9rQn2S1JhNy6B/Xf3rrjwO3jwIEaPPHW8GNtY+d/UfW1eHJEmSJEmSJEmSJEnSOBMR04C/Ad4H7FE+DGSFdW8G/qXYXA48NzNHnCtJkiRJkiRJkiRJkiRJ401PpwuoVWauAO4o6frniPpTgCJiP+BjFG4KS+CazBxsTpWS1IA1D4197ewLmldHOw1sqH3uQ//ZujokSZIkSZIkSZIkSZLGkYg4FrgTuADYk+EHgdbiF8BM4EDgeODFza5PkiRJkiRJkiRJkiRJklqla4LRiv695PxE4Ov1LI6IvYDLgBkM3yj2xeaUJkkNWjNn7GvvuwC2rG5eLe1STzAawLLftaYOSZIkSZIkSZIkSZKkcSIijgRuAp5B4T63HBqihoC0zFwLXFTS9bpm1yhJkiRJksaBNQ/DrefBlcfDbX8Bax/tdEWSJEmSJEmjyjGOSdq+dFUwWmb+CLin2AzgnRFxc0ScXG1dREyLiPcU1x5H4X0wgasz85ZW1ixJNVvzUGPrH/9Zc+pop3qD0R78v62pQ5IkSZIkSZIkSZIkaRyIiKnA5cD0ku7ZwHnAwcAR1BCOBlxacn560wqUJEmSJI0sE+7/LFzxLPjfo2H2pyAHO11V/dKPnnaN9Qvh2lPhkQthxT0w95tw7Smw4clOVyZJ0taW3Aw3v67w76TffQA2ryz0b1wCt78X/vcY+PUbYdkdna1TkiRJkjSu9HW6gDF4PXArMLPYPgm4MSIWAQ+XToyIrwGHAS8ApjD89MwAFgJvbVPNkrSt1Q/Bo98t/ABvn5cU2iOZcTxsWQVrH6m+323nwYFvgd4pza+1VeoNRlv4vzC4BXomtaYeSZIkSZIkSZIkSZKkzvoAcCDDD0H+D+BDmYVP00fEATXucwPD98odFBF7ZuaSJtcqSZIkSRry+3+EP3x2uD37fNi8Ap79pc7VpInt8Ytgw8Kt+9bPh/k/h8P+sjM1SZJUbumtcMOZw58jXHkvLP0tnHYVXHcarPpDoX/VffDElfDiX8OMYztXryRJkjSerX0E7v4IPPUb2PVoOOofYa9TO12V1DI9nS6gXpn5CPBKYBFbB53tA7ywZGoA7wJOBaaWzV0AvCIzl7atcEkqtex3cNXz4P5/gbnfgF+/Aeb/dOS5+70KXvkgvPiWUTbNwtN+BvubXW3r1BuMtmUlLPlVa2qRJEmSJEmSJEmSJEnqvPczHIp2SWb+9VAoWj0ycy0wr6TriCbUJkmSJEkaSQ7C3P/etn/urMKDwaVWuOtvRu7/3V+1tw5Jkqp5+BvbfoZw+e/gvk8Ph6IN6V8Dj36nfbVJkiRJ3WTT8kKeyPyLYeMiWHQt3PhyWH5npyuTWqbrgtEAMvN24ATgSgpBZzB8M1iWHJSNBXAN8LzMvLcNpUrSyO77Z9iyqra5Ox8GPX2wx5/Aq+ZUn7vsVnj0e43X1y4DG0fuP+lHldcs/EVrapEkSZIkSZIkSZIkSeqgiDgS2I/he+I+0uCWc0vOD25wL0mSJElSJSt+D5uWbdvfv8YHg0uSpO3bIxeO3P/gl0bu/+MXW1eLJEmS1M2evArWz9+6b2ADPPqDztQjtUFXBqMBZObizHwF8Fzg+8AiCjeEjXSsBi4GTsvMMzNzUWeqliQKT4NaeFnt83d+Rsn5oXDKKMFgj1UJFRtPBrdADow8tsN+sP/ZI4+tur91NUmSJEmSJEmSJEmSJHXOccXXBO7LzEca3G9lyfn0BveSJEmSJFUyuHlsY5IkSZIkSZJUi9veOXJ/pdBhaQLo63QBjcrMO4G3AUTEwcDTgZnAZGApsBi4PzMHO1akJJVa93jtc6fsDrsdv3XfnqdA307Qv3bkNYuvh80rYfKuY6+xHQY2VB7r2wFmHA+P/2Tbsc0rWleTJEmSJEmSJEmSJElS5+xRcj6nCfttKjnfsQn7SZIkSZIkSZIkSZIkqd0G1ne6Aqntuj4YrVTxCZmNPiVTklpr8fW1zz38b6Fn0tZ9k3aGE74At7975DXZD09cCQe+eew1tkN/lWC0nqmVg902rxy5X5IkSZIkSZIkSZIkqbtNLTnfVHFW7aaXnK9pwn6SJEmSJEmSJEmSJEmS1HITKhhN40NETAJOAvYH9gHWAk8Ad2fmvA6WJnXe6ofgtvNqmzv9SDj8QyOPHfou2O3Z8MvnjDy+6NrxH4w2UCUYrW8HmFQhGG2LwWiSJEmSJEmSJEmSJGlCWlpyvnsT9ju45HxZE/aTJEmSJE142ekCJEmSJEmSNMFllR9BVRuTtH0xGG0CiohvA29v0naPZeaBNV53D+AC4I3AbhXm/Ab4Ymb+rEn1Sd3l9nfVPvc5X4XeyZXHd3s2POO9MOdr2449ciFsWQ37vQoO/HPo6a2/1mbZsAge/m+YOwvWPw77nQUnfBEGN1de07sDTK4QjLZ5ZeFfsxGtqVeSJEmSJEmSJEmSJKkzFhVfAzi+kY0iYiZwREnXw43sJ0mSJEmSJEmSJEmSJEnt0tPpAjTubahlUkS8DLgPeC8VQtGK/gT4aUR8PyKmNaE+qXtsWQNP3Vzb3JnPg71OGX3ejCr3wM7/Kdz6drjljZ2LxV07D658Fsw+vxCKBrDwMvjFofDkVZXX9e4Ak2eMPJYD0L+u6aVKkiRJkiRJkiRJkiR12G+AweL5zIh4UQN7nUshYA1gHfC7RgqTJEmSJEmSJEmSJEmSpHbpqmC0iDg6Iq4vHtdFxJ5j2GOv4tqhfQ5rRa0TyM9GmxARpwKXAKV/HgncCVwEXAMsLVv258D/RERX/TcoNWTTMsjB0ecBzHx+bfN2OXz0OfN/Bkt/W9t+zTb7k7Bxychjd/1N5XV9O8HkXSuPr1/QUFmSJEmSJEmSJEmSJEnjTWauAO4o6frniIhK8yuJiP2Aj1G4hyuBazJrvWlFkiRJkiRJkiRJkiRJkjqr20Kp3g2cCpwCbM7MCmk7lWXmYmBLyT5/0cT6xosPAweN4XhD2T4JXFjtQhHxNOBiYHJJ9y3AUZn5nMw8OzNfAjwN+CCF/+2HvAr49Bi+Pqk79a+pfe7M59Y2b+casx0f/V7t126WgU2FULZ69e0MPX0wqUow2tUnQubYa5MkSZIkSZIkSZIkSRqf/r3k/ETg6/Usjoi9gMuAGcBQqNoXm1OaJEmSJEmSJEmSJEmSJLVetwWjvbrk/DsN7DO0NoA/a2CfcSkzl2bmvHoP4IyyrW7IzEdGudwFFG6iG/Ib4IzMfKCspk2Z+R/A2WXrPxQRB4zhy5S6z5Y6gtF2qzEYbfKM0ecAPFI147A1Fl8P/WvrXze5GIg2eXrlOVtWwYq7x1aXJEmSJEmSJEmSJEnSOJWZPwLuKTYDeGdE3BwRJ1dbFxHTIuI9xbXHUXgoZgJXZ+YtraxZkiRJkiRJkiRJkiRJkpqpa4LRIuJg4GnF5iBweQPb/QIYKJ4fFBH7N1LbRBAROwBvKuueNcqaZwBvL+naDLwjMzdWWpOZl7B1qN0U4Pz6qpW6VK3BaJN2gV0Oq21uzySGH+5bTS1zmmzBJWNbNxSM1jsVpuxeed7yu8a2vyRJkiRJkiRJkiRJ0vj2emAZhWAzgJOAGyNiIfDd0okR8bWIuA54CvgKsNfQEPAE8Na2VCxJkiRJ27UcfYokSZIkSZIkSapZ1wSjAUcXXxN4MDPXjnWj4toHS7qOaaSwCeL1wPSS9grg4lHWvAXoLWlfnJlzarjW58raZ0fE1BrWSd2tv8ZgtIPeAVHj23NEIUBsNIObatuvWXIQFlw2trWTZwyf73dW5Xn968a2vyRJkiRJkiRJkiRJ0jiWmY8ArwQWUQg4y+LrPsALS6YG8C7gVGBq2dwFwCsyc2nbCpckSZIkTQCGvEmSJEmSJKm1ssqPoKqNSdq+dFMw2gEl53ObsF/pHvs3Yb9ud15Z+weZuXGUNX9W1v5WLRfKzAeA20q6pgEvqWWt1NW21BCMtteL4JhP1LdvLcFoACvvr2/fRiy7HTYuGtvaSbsOn5/w+crz+secjylJkiRJkiRJkiRJkjSuZebtwAnAlRSCzmD40+lZclA2FsA1wPMy8942lCpJkiRJ+v/ftkmSJEmSJEmSpGbopmC0nUvOVzVhv9Ul57s0Yb+uFRGHAH9a1j1rlDV7A88q6eoHbqnjsjeWtV9Wx1qpO/VXCEabdhC86Fp4+b1w2tUwZWZ9+9YajLbgkvr2bcRT9bwdlIne4fPJMwphcSPpXzf2a0iSJEmSJEmSJEmSJI1zmbk4M18BPBf4PrCIwqftRzpWAxcDp2XmmZk5xifaSZIkSZIkSZIkSZIkSVJn9XW6gDpsKDlvRpBZadDaQBP262bnsvXjae7KzHtGWXN0WfvezKwnpeg3Ze2j6lgrdactFYLRpu4Je58+9n17agxGWzdv7Neo15qHRu7f63R4wXfhkv0qrx3YuHV70s4jz+tfO7baJEmSJEmSJEmSJEmSukhm3gm8DSAiDgaeDswEJgNLgcXA/Zk52LEiJUmSJEmSJEmSJEmSJKlJuikYbWnJ+QFN2G//kvNlTdivK0VEL/D2su5ZNSw9sqz9cJ2XnjvKftLE018hGK1S8FetemsMRlu/sLHr1GP1gyP3Tz+yEARXze4v2LrdO23kef31ZDFKkiRJkiRJkiRJkiSNbxGxM3BQSdfc8odVZuYjwCNtLUySJEmSJEmSJEmSJEmS2qin0wXU4fHiawDHRMTMsW5UXHtsSVcb04LGnZcC+5W0NwA/rGHdoWXtx0ecVdljZe2ZETGjzj2k7rKlQjBaX5uC0Z68srHr1GrBL2DJTSOP7XwY9IySybnfy7duT9pp5Hn9a+uvTZIkSZIkSZIkSZIkafx6M3B38bgdmNLZciRJkiRJkiRJkiRJkiSp/UZJpxlXbgU2AZMphKP9FfCpMe71lwyHwvUDtzRcXfc6t6z9s8xcWcO6XcvaS+q5aGaujYiNQGmi03RgRT37lIuIPYE96lx2SCPXlGpWKRhtUoPBaD113AO7+iHY5bDGrlfNyvvhV2dVHt/lmYXXXY+FlfeOMCFgxglbd/VOG3mv/nUj90uSJEmSJEmSJEmSJHWn3SncGwdwR2Yu72QxkiRJkiRJkiRJkiRJktQJXROMlpmbIuJm4Ixi14cj4ueZObuefSLiaOAjQBa7bsnM7TJdJyL2AF5V1j2rxuU7lbU3jKGEDWwdjNZgOhRQCL07vwn7SM3XXyEYra/B//RzoPa5lz8T3jwIEaPPHYvHflh5rGcSzHxe4Xy/s0YORnv9sm1rm1T+dlPUv3ZsNUqSJEmSJEmSJEmSJI1Pq4qvCSzoZCGSJEmSpO1U5uhzJEmSJEmSJElqsZ5OF1Cnzxdfk0Iw15URcWKtiyPiecAVwDSGn6z5+corJry3AZNK2nOBm2pcW55UtHEM1y8PU6uQfiRNEFsqBKNNajAYbbDO//tdewpsXNLYNStZcU/lsT1PhcnTC+dH/T3s89Lhsd4d4eSfweQZ267rmzbyfgajSZIkSZIkSZIkSZKkieXJkvPJHatCkiRJkiRJkiRJkiSpRapF8xvbL2lIVwWjZebVwI0UQs0S2Bf4VUTMiojnRUSUr4mC50bEN4GbgacNbQfcnJlXtKf6cemcsvaFmWN+tMtY1vn3kbYv/S0KRhuoMxjtqZvhqufDuscau265LWvgiSpvqUd+dPi8b0c49Qp4+X1w2lXwmvnw9NeOvK6vQmbi8jt9GpUkSZIkSZIkSZIkSZpI7is5P6hjVUiSJEmSJEmSJEmSJElSB/V1uoAxeBNwF7APhWCtPuAdxWNdRDwIrCiO7QYcBgyl6gwFqgUwHzi7jXWPKxFxInBUSdcA8O06tlhb1t5hDGWUrynfcyy+ClxU55pDgEubcG2pui0VgtH62hyMBrBuHvzqz+BldzV27dIaLt6r8vhuz4W9z9i6LwJ2PapwVNM3rfLYqvtg12Nqr1OSJEmSJEmSJEmSJGmcysyHIuJe4Fjg2IjYLzMXdrouSZIkSdJofOC3JEmSJEmSJEnN1HXBaJm5JCJeClwGHMjwbw+CQgDas8v6/v9ShkPRHgZenZlL2lHzOHVeWfvKzHyijvXjMhit+Gda159rRIw+SWqG/grBaJM6EIwGsOJuWHQ97P2ikccHByD7YfNyGOyHKbsDCTkAm5YV5vRMgh32hZvOgoENla91zCfGViPApF0rjy2+0WA0SZKkTtqyGnqnQU9vpyuRJEmSJEmSJGmi+E/gGxTuc/sU297nJUmSJEmSJEmSJEmSJEkTWtcFowFk5n0R8WzgK8DZQA8jP16ltC+AAeAHwAczc1XLCx2nImIa8May7ll1blP+v98eddawE9sGo62sswapu2ypEIzW16FgNIDrT4dD3gnP+TL0Thnun38J3PxnjdVVaod9x752z5Mrj/U3nKcoSZKksVgzF37zFlh2B0yeAc/8IBz9T2DwtCRJkiRJkiRJDcnMWRHxGuAVwDsi4sHM/NdO1yVJkiRJqsb7piRJkiRJkiRJaqaeThcwVpm5IjPfAhwJfAmYXRyKsgPg98DngWdm5ju251C0ojcApUlMi4HL69xjTln7gDrXl89fnpkr6txD6h6Z0F8hGG1Sg8Fogw0EowHM/Sbc9TfD7VV/bG4oGsC0et8iSkyZWXmskVA4SZIkjc3gFrjuVFh2O5CweTnMPh/mfK3TlUmSJEmSJEmSNFG8Gfg5hfvfPhsRV0XEaR2uSZIkSZIkSZIkSZIkSZLaoq/TBTQqMx8C/hYgInYC9gKGUnSWAoszc12Hyhuvzitrfzcz++vc44Gy9qF1rj+4rP2HOtdL3WVgA+TgyGN9DQajTZ4BG5eMPPbKB+Hej8PjF1XfY87X4NB3w4xnwQP/1lg95XY5onq4WS32fgksunrb/sFNje0rSZKk+i35FaxfsG3/Yz+Ew/6y/fVIkiRJkiRJkjSBRMSFxdPVwBoKD8A8AzgjItZQeEjokuJYrTIzy+8ZkyRJkiRpBNnpAiRJkiRJkiRJ6p5gtIjYG3heSdevM3N56ZzMXAusBea2s7ZuEhGHAS8s6541hq3uK2sfGxE7Zub6GtefNMp+0sSypcq9qJMaDEZ71mfgtndu23/gW2GXw+CFP4ErjoOVv6++z5XHNVZHJSdf3PgevVNH7h/Y2PjekiRJqs8Dnx+5/6lb2luHJEmSJEmSJEkT0zvY+lPoCUTxfBe2vfdrNFHcw2A0SZIkSZIkSZIkSZIkSV2hp9MF1OG1wM+Lxw+ATZ0tp2udW9b+dWY+WO8mmfkkcG9JVx/13XR3aln7ynprkLpKfwuD0fZ9OfSNsMeBfz58fthfNXaNsTr8QzD98Mb3qRiM5l8FkiRJbbd5+ehzJEmSJEmSJElSM2XJIUmSJEmSJEmSJEmS1LWyyt0P1cYkbV+6KRhtVwpPrwzgjsxc1+F6uk5E9AJvK+ue1cCWPy9rn1NjHYcDzy/pWgdc3UAd0vjXv77yWO+0xvbeYR940dUw/ajh9vNnwb5nDs85+Fx41mcau0699jy1edfsmTJy/+DG5uwvSZKk6gb74b5Pw1UvgGW3V57nTx0lSZIkSZIkSWqGaOIhSZIkSWo575uSJEmSJEmSJKmZ+jpdQB2WF18TeLKThXSxlwP7lLTXABc1sN8PgI8DvcX2ayPiGZk5Z5R1f1fW/klmmm6kiW1gQ+Wxvh0a33/3E+EV98HmlTBpOkTZfa09vXDU3xeOa0+FJTc1fs1q9n5xIaytWXqnjtw/4FuHJElSW9x6Dsz7/ujzBjZA346tr0eSJEmSJEmSpInroE4XIEmSJEmSJEmSJEmSJEmd1E3BaKVhaNM6VkV3O6+s/aPMXDfWzTJzTkR8Bzi32DUZ+HZEnF4p6CwiXg28o6RrM3DBWGuQuka1YLTeJgSjDZm86+hzDnhT64PRTrmsufv1Thm5f2BTc68jSZKkba17DOb9oLa5/esMRpMkSZIkSZIkqQGZ+Vina5AkSZIk1StGnyJJkiRJkiRJkmrW0+kC6nA3kMXzwzpZSDeKiL2AV5R1f7MJW58PrChp/wlwbUQcXnb9KRHxfuCisvVf8GY+bRcqBaP1TIZo81vxQW+DXY+tfX5fHVmUOx0Mr5kPvVPrr6uaSvsNjJjBKEmSpGZZOw/u/juGvx0fRf+Ys7clSZIkSZIkSZIkSZIkSZIkSZIkSZIkib5OF1CrzHw8Im4FXgA8MyIOy8yHOl1XF3k7W/9535eZtze6aWYuiIjXAlcBk4vdJwF/iIg7gUeA6cAJwB5lyy8H/qnRGqSuUCkYrXeH9tYB0LcjnHkHzPka3PXXleftfzbs+zLY5Qi4+sSR50w/Eo7/Aiy+HqbuDYe+Eybt0vyae6aM3D+4qfnXkiRJEmTCfZ+G+z4JOVj7OoPRJEmSJEmSJEmSJEmSJG13anzwpCRJkiRJkiRJqknXBKMV/Rtwccn5qztYS7c5p6w9q1kbZ+aNEfFnwLcZDj8L4DnFYyT/A/xFZg40qw5pXOsfR8FoAL2T4fAPwv5vgGtOgnXzth7/00vhaWcVzlfeX3mfTNj3pYWjlXqnjtw/sLG115XUHFtWw2M/gTUPwR4nw36vgOjpdFWSpGqW/hZmf6L+df1rm1+LJEmSJEmSJEmSJEmSJKlNDHmTJEmSJEmSJHVeVwWjZeYlEXEhcC7wyoj4CvDBzOzvcGnjWkScBBxe0rUZ+H4zr5GZV0TE0cAFwBuBGRWm3gp8PjN/1szrS+PewDgLRhuy477wqodhyU2w6FqYcRzsfQZM2W14Tl+1Gtv0S0+D0aTutXEJXH8GrJxdaD/wb3DwOfD8bxqOJknj2bwfjm1d/7rm1iFJkiRJkiRJkqStRMRBwHHAvsBOwJPAY8BvMnNLJ2uTJEmStl/R6QIkSZIkSZKkrlEtpcLYfklDuioYrejdwBrgg8B7gFMi4gvAZZm5rKOVjVOZeQtt+C1LZi4B3hsRHwROAg4A9gbWAQuBuzPz0VbXIY1LlYLRqoaOtUlPL+z9osIxkqrhbW36Z2XPlJH7Bze15/qSxm7Ofw2Hog155Ftw6Ltg9xM7U5MkaXRPXDG2dQajSZIkSZIkacW9cP9nYNNS2O14OOaT0Det01VJkia4iPg28PYmbfdYZh5Y5VqN3jBzUGbOq3dRRLwe+BDwggpTlkfEj4FPZObSBuqTJEmSJEmSJEmSJEmSOqqrgtEi4vqS5hpgZ+BI4JvF8QXAkuJYrTIzT29akSIzNwM3dLoOaVypFIxWNXRsnBgPNfZOHbl/YGN765BUv9mfGLn/8Z8ajCZJ49m6MWZaG4wmaTwYHIDsh94KIduSJEmSpNZZPQeufv7w7/EWXweLb4Azb4fo6WxtktQlIuJtTdwuKdxLtwpYBPwxM3248ugq3OjTGRGxE/AN4E2jTN0NeC/w2oh4e2Ze1fLiJEmSJEmSJEmSJEmSpBboqmA04FQKN2sNSSCKB8DTi0etN29FHXMlaewmajBau+6V7anwYfbBTe25vqTmmzsLTvh8p6uQJJXLhEe/N/b1AwajSeqgwS1w14fh0W8XPoC/z5lw4rdgysxOVyZJkiRJ2497/m7bhxstvxOevAr2fVlnapKk7vNtWndP27qIuAP4DvDjzPTGi5H9rNMFDImIXuDHwMvLhp4C7qYQencIcDzD91HuBVwaEWdk5q/bVaskSZIkSZIkSZIkSZLULN0WjDYSg80kjX/dHIzWM7nKYJvegnunjty/fkF7ri9pbHKw8tjkXdtXhySpdk9eDbe+fezrt6xtXi2SVItMWDsXVj8E93wUVt0/PLbwF3Dz6+CMGztWniRJkiRtVzavggU/H3ls8Y0Go0lS/WL5V3KCAAAgAElEQVT0KXXbicLDSU8FPhsR52Tm1S24Tid8GPjkGNY9B7iopJ3AhXWsvw14U53XrOeGl//D1qFoW4APAf+dmZuHOiPiSOCbwAuKXVOASyLimMx8ss76JEmSJEmSJEmSJEmSpI7qxmC0VtzwJUmt1d/FwWhR5W23WuhRM1UKRgOY/c9w9Mer1ympMx7+78pjBqNJ0vj00H82tn5gXXPqkKRaDGyC294J875fec6Smwqhabsc1r66JEmSJGl7de8nKo/NvxiO/1z7apGk7ld6E0RW6C9X/nS7keZmydg+wJUR8YHM/Er9JY4vmbkUWFrvuoj4WFnXDZn5SB1bbMzMefVetxYRcTDwwbLuN2TmpeVzM/MPEXE6cB3D4WgzgfOB97SiPkmSJEml2vTAcUmSJEmSJEmSthNdFYyWmT2drkGSxmSgi4PRqmrTL3Cn7FF5bPYnYJ8Xw+4ntqcWSbXZtBzueG/l8UnT21eLJKm6lffDgktg4xJ44n9rW7Pbs2H5ndv29xuMJqmN5n6zeijakCevNhhNkiRJklptzcMw58tVJrTpgUuSNDGcU3zdGfgEhXCroPBmeitwB/A4sBqYDOwGHAOcDOxdXJvAj4FfAjsAuwJHFuccwNYBaV+KiAcy8/qWflXjUETsALyprHtWJ2qp4HxgUkn72yOFog3JzA0R8Q5gNoX/NgDOi4h/rTPsTZIkSdL2LA15kyRJkiRJkiR1XlcFo0lS15r7jZH7+3Zsbx3N1q5feu52PPRNqxy08ej3DUaTxpsFFe/FLuib1p46JEnVzb8EbjkbBrfUvubUX8KcrwAGo0nqsHk/rG3eunktLUOSJEmSROF7tKwSfrZuHgxsgt4pbStJkrpVZn4nIp4BXEYhFA3gG8CnM3N+pXUR0QO8Gvg8cBDwBuCBzPxU2byXA/8OHEIhIK0P+AJwfJO/lG7weqD0qV4rgIs7VMtWiqFtry/r/txo6zLzoYi4BDi72NUHvAX4dHMrlCRJkrS16HQBkiRJkiRJkiRNKD2dLkCSJrwtayuP9e7Qvjpaok3BaL1TYY+TK4/P+Up76pBUuzlfrT4+sLE9dUiSKstBuPP9dYSiBTz3a7DvmZUDLg1Gk9ROS39T27wNC1tbhyRJkiRp9Aem5CCsmdOeWiSpy0XEjsAlwDOBfuDNmfnuaqFoAJk5mJk/B44Ffk3h3sDzI+IdZfOuAE4A7i7pPjYiXty8r6JrnFfW/kFmjpdfZp8JlD5x8beZ+cca136rrP3a5pQkSZIkSZIkSZIkSVLjskpMRbUxSdsXg9EkqdWeurny2KSd21dHK+x9RvuutcPe7buWpMY89hNY/rvqcwzOkaTOW/0grF9Q29xjPw1v7odnvKfQ7ttp5Hn9VUKBJamZNi2rfe6qByqPDQ7AxqWFw/BeSZIkSRqbdfNhxV2jz1td5fszSVKpTwFHUHha3ecy8yf1LM7MdRSCsJYDAXw5IvYom7MGeD2F4LWhW4pf0mDdXSUiDgH+tKx7VidqqeClZe0b61h7M4U/2yHHR8ReDVckSZIkSZIkSZIkSZIktYnBaJLUaouvrzy2R/n9lePUMz9Yof8D7ath8szq4+seb08dkkZ3/2dGn2MwmiR13rLbap971D9AlPwIoW/ayPN8f5fULqsfqn3uyt/DRbvCPR+Dgc2FvoHNcPt74We7wcV7FI6LdoHrTi98oF+SJEmSVLsFl1Ye65kE+50FR3wUdn5G+2qSpC4VEX3A24rNTcDnxrJPZi4F/qvY3AF4ywhzHgUuohCeBnDSWK7Vxc5l+GsHuCsz7+lUMSM4uqz921oXFsPxZpd1H9VwRZIkSZIkSZIkSZIkSVKbGIwmSa2Ug/DA5yuP731G+2ppxDM/CDvuv3Xfwe+A6eX3YLbQlN2rj1/1/PbUIam6zSsKwROjGVjf+lokSdsaHIDld8HS2+DWc0afP3k3eOldELF1v8Fokjptw8L65m9ZBX/4XCEcDeCuv4aHvw5bVg/PGdxSCDe/6jmF98vNK2HRdbBhUfPqliRJkqSJaGGFYLRdnglv2gynXArHfw5mHNfeuiSpO70Q2B1I4PZiwNVYXV1y/poKc64qvgbwtAau1VUiohd4e1n3rDFut39EfCsi7o+IFRGxOSIWF9vfj4h3RcRuY9j3iLL2w3Wun1vWPnIMNUiSJEmSJEmSJEmSJEkd0dfpAhoVEccBZwEnA4cAuwE7A5mZ23x9EbErsEuxuSkzF7erVknboaW3Vh475C+gd3L7amnETgfBS34Lj/0PrHkY9jwFDjh724CMVqoUvjFk4yJYvwB23G7u05XGp9UP1jbP4BxJar91j8GNr4BV99c2//APwWF/BTsdvO1Y304jr/H9XVK7bFo2tnUPfgkOOQ8e+U7lORuXwI8mFb7nzcFC3+F/C8f/W3u/D5YkSZKkbrB5JSy+ceSx/c9uaymSNEGUPrXuiQb3erLk/IAKcx4oOZ/R4PW6yUuB/UraG4AfjnGvg4pHqT2Lx5HAnwNfjIhvAP+UmWtH27AYpFYepvZ4nXWVz39GneslSZIk1SU7XYAkSZIkSZIkSRNK1wajRcQxwJeA00q7a1h6GvDT4vm6iNg7M9c3uz5JIhP++KXK4zOf275ammHHfeGIv+1gATW8xT9xJRz6F60vRVJlT/yytnkG50hS+932rtpD0Q4+B074QuXxSqG1/aN+lkeSmmPzGIPRAK44uoZJWfi+fsgfvwC7Px/2f8PYrytJkiRJE82qB+DXZ0P2jzz+tNe0tx5Jmhj2KTkf5Qlyo9qx+BrA3hXmrCg5n9Lg9brJuWXtn2XmyhZebxrw18DLI+K1mTnaL2x2LWuvz8x6f8m+pKw9vc71FUXEnsAedS47pFnXlyRJktRqhrxJkiRJkiRJkjqvK4PRIuIdwFeAqRRu3Cr9qXtSPT3nUgpPQzyAwg1HrwO+15JCJW2/MuG282D+TyvP8Qnp9dlhr9HnDG5ufR2SKltwGdx3QW1z+9cV3iujllxbSVLDNi2HRdfUPv+Ij1QfrxiMZvClpDbZ1EAw2lgtuNRgNEmSJEkaMue/4I73UvFDkjs+HWYc39aSJGmCWF1yfmSDex1Vcl7pySZTS843NHi9rhARewCvKuueNYat+oFfA9cC9wILgDXATsD+wMnA24A9S9YcBlwbESdm5mNV9t6prD2WP5vyNTuPYY9K/hI4v4n7SZIkSROA98NKkiRJkiRJktRMPZ0uoF4R8ToKNyLtUNoNzAfuYZTfJmTmIPDjkq6zml2jJLH0t/DItyqP90yCyU17EOv2Ye8zCv+7VdO7Y/Vxabwa2Aj3ng/XvQhuPQeW39npiurXvx5+9eo6FiRsWdWyciRJZVb9gbqe5Dn9iOrjvQajSeqwzcvbf815P2j/NSVJkiRpPNqwCO7+MFV/3rTfWT4cRZLGZkHxNYCDI+L5Dez11uJrluxbbu+SOU81cK1u8jag9AaUucBNde7xcWC/zDwtM/8lM3+RmXdn5sOZeU9mXpaZH6Hw8Nb/w9Z/ae4NXBxR9S/K8mC0jXXWB9sGo5XvKUmSJEmSJEmSJEmSJI1bXRWMFhH7AN8pNoduFvoqcEhmHgi8tsatLh3aEjilaQVK0pAnrqw+vs/L2lPHRDJ5Bhz0tupzRgtOk8ajTLjhTLjvU7D4Bnjk23DtKbDsd52urD6XH17/mk3Lml+HJGlkG5+sfe6h7x59zqQKn53pX1P7dSSpEf5bUpIkSZI6Z/7F0L+2+pyn1fMwFUlSiZuALRTujQvgqxFR91PiIuKNwEsYvsfumgpTTyg5n1fvdbrUOWXtCzOzjqfLQDEMbUkN8zZm5t8D7y8bOgF4cz2XrKe+BtZIkiRJGjP/CS5JkiRJkiTVqtpv6ev7Db6kiayrgtGATwA7UrjpaxA4OzPfl5mPFsdrfXu7g8INZAAzI+Kg5pYpabt3/6erj0/etT11TDTP/Xr18XXz2lKG1FRLboIlv9q6r38dPPTlztQzFmvmwvr59a8zzEKS2mfto6PPGbLvK0afM2n6yP0DG2FgU+3XkqSx8t+SkiRJktQ593+m+vikXWBPn1EnSWORmauByyncH5fAccBVEfH0WveIiHdSePjoULhaAt+vMP3MkvPfj6XmbhIRJwJHlXQNAN9u9XUz8yvAZWXdf1llSXkC6Q5juGz5mlFSTevyVeDoOg9TUyVJkiRJkiRJkiRJklSzrglGi4heCk9JzOLxucz82Vj2ysx+4I8lXYc3XqEkleidWn18ksFoY9LTV3383n8yAljd56H/HLn/0e+0t44hAxth6e2wcvYocduDsPxuWH4XzP7k2K61aenY1kmS6ldPgOw+Lxl9TrWg3y2rar+WJI3VlpWdue7CyztzXUmSJEkaL7ashQ0Lq8/Z9+XQO7k99UjSxPRhYGNJ+yTgDxHxtYh4UUTsUr4gIg6LiHdHxB3AfwGTGQ5Fm5WZs0dY83TgVIYfRnpzc7+Mcem8svaVmflEm6792bL2iRFR6Rcu4zoYLTOXZOb99RzA3GZdX5IkSRqfotMFSJIkSZIkSZI0oXRNMBpwIrALhd8WbAH+tcH9FpSc1/xETUmqSd/O1cerBUmoMcvu6HQFUn3mX9zpCoY9dQtcfgRc/Xy44li44SWwecW289YvLIz/8gT45bNhXqWHi49i87LG6pUk1W7tvNrmnTUXeqeMPm/yjMpjI/3dIUnN1r9u9DnHfKr5133oq83fU5IkSZK6yd0fGX3O017T+jokaQLLzEeBc4HBoS5gGvAu4BpgRUSsiIjHI2JRRGwAHgC+Cjyb4UA0gNuAD1W41Mco3D8YwKbi3hNWREwD3ljWPauNJdwOlP4SpRc4ssLc8qfQ7Fisvx57lrU79LQJSZIkSZIkSZIkSZIkqX7dFIx2aPE1gTsyc3WD+5Wu3+YpmpLUkMEt1cezvz11TETPKn+Abpm532xPHVIzrH6o+ngOVh9vhvVPwJyvw+3vhWteCOvmDY8tuhbu+Ydt1/z27bDq/tr2nzKz8tgmg9EkqS2eugWevHL0ec/5Mux0cG17TqoS9LvZz9VIaoP+9aPPOeafYJ+XNve6tbyfSpIkSdJEMjgAj/0EHvhC4fXhr1ef3zOp+d+LSdJ2KDN/BPw5sIatg86ieEwHnkYh/GpKSX8WjwCuAl6WmZWeMvA94LTicXKVeRPFG4DSJx0uBi5v18UzcxB4vKx7jwpzl7F1iBrA/nVe8oCy9pw610uSJEnabuXoUyRJkiRJkiRJarFuCkYrvQlofhP2K00a6WvCfpJUsGUtbBklDGKnQ6uPq7Knv7b6+IYn2lOH1AwLR7nH+q4Pt/b6y++GK4+DO95b+YNMj1wIW9YMtzevhCU31Lb/MZ+CVz4Ie/7pyOObltZXrySpfrMvKARfjib64LC/qn3fvmkQvSOPGYwmqR36a/yM5pTdm39t3+ckSZIkbS8GNhd+tnTLG+HuDxdeR3PwuTB5eutrk6TtQGb+BDga+AkwQCHsDIbDz0qPIQHMA96ZmS/LzFVV9r81M28qHne24EsYb84ra383s+1PNtxQ1t6hytwHytr13mxU/jSc8v0kSZIkSZIkSZIkSZKkcaubgtFKb+Cq8OnruuxWcu6nGSU1z5qHRp8z8zmtr2Oi2uWw6uNtv2dVXWfLavj9P8J1p8Md74M1D3eulg0Lq48/+CVYP8qccjkID/4nXH44/DAKxz0fg80j3O/++3+ATU9V329wM1y0S2Gf294JCy4rXGM0Ox8GR38cpsyEyTNHnrNp2ej7SJLGbu4smP3J2uYe8Ob69o6AybuOPLZ5RX17SVK9chAG1tc2d+bzmn/9lfc2f09JkiRJGo8e/L+w7Nba5z/99XDc51pXjyRthzJzQWa+CTgA+CDwY+BBYBmFsLT1wELgFuALwMuAQzPzws5UPD5FxGFA+ZNkZnWglPInOVR7mth9Ze0X1HqRiJgGHDvKfpIkSZIkSZIkSZIkSdK41U3BaKWpHfs2Yb+jS85N5ZDUPKsfrD6+x8mw6zHtqWWi2q1KsNzglvbVoe4zsAmuPRXu/wwsvh7mfAWu/hNYM7cz9fSvHX3Owsshc+u+wYHK829/D9z5ga3fi/7wOfjlCTCwsbi+vxAQ9+RV9dU7dxb8P/buOzyO8l77+PdRtST33jEYXDBgmunV9N4J7QQSckIaSU4K5KSQHt4USM9JQghJCL33YmxjbIPpxtjYYNx7r2qWtM/7x1jRSp6Znd2dmS26P9elS7tP/UkYbZu5Z9a1wcYe+AMnNAegsuOx3bvt0lMwERFPHf/2p2vJv51AyyBMGex3Q/p7lPdyb29S9riIRKylPvjYva6Eit6px3UZCBNfCrbmSydm/3daREREREQkXyV/BrH4ruDzLtkExz8EFT3Cr0lERLDWrrHW/t5ae6W1dn9rbX9rbYW1tpu1dri19nhr7TettS9YqzevXHy6w/0Z1toUB/iEyxjTF9inQ/NqnynPd7h/UhrbHQ+UJd1/11q7Lo35IiIiIiKSNr0UExERERERERERCcrv3TS90yYirQopGG357u8GOMQYU57pQruvADkkqWlONoWJiLSzfYF3335fgJM7HrcoaUs0evdtmxdfHVJ4Vj8LW95t39a4AT7+S27qaa5NPebNz8F9JXCvgRmXwxP7wEPdYdr50LC+bVztcnjmAFh0h/s6OxfDA1XOOveXw0M9iOyl4dH/hhFXtt2v7OM+rtHv4tciIp2UTcB734FH+8GD3WHm1dCwIfW8dmtYJxQziP4nwakvQ79j060UKnq6t+9SMJqIRCzI8+hWXfrCmW9D/xP8xw04GQaeAme+BYPOSL3uxleD1yAiIiIiIlII1k+H5yfAg1Xw/BGw+F/+n3smG3oRVAYIpRYREckBY0wp8MkOzXfmoJQraH+85jpgvs/4F4Dkq0QcbYwZE3Cv6zrcfyzgPBERERERERERERERERERERGRvFBIwWiv4RzoY4Eq4Er/4b6+nHR7XdxXfxSRIle71L192CUw4Y9QVh1rOUWpxScYrWEdbHjNCRUR6cgrAG3+L+Oto1U6gQ4Ayx+C2iXQUgernoJJxzvhN4lmeO7g/AgGPO5h2Pvq9m2ewWiboq9HRKTQvP9DmPcz529k8w5Ydi+89knn731Qu7bAtrnBxp46NbNQNIDy7u7tTdszW09EJKjmuvTGdx0Bp06DM9+BkZ+B0qr2/RW9YP9vObd7H+YEmk98yX/Nxf9IrwYREREREZF81FwHa6fA/NvhpRNg81uQaILNb8Ksa4Ov02NcdDWKiIhk72xgUNL9HcBDcRZgjBkAfLdD81PWen8AZK2tAx7u0HxzgL1GARclNTUD9wYsVUREREREMmZyXYCIiIiIiIiIiIiISFEpmGA0a20jMBnn0wID/NQY0zPddYwxxwI34ASsWeDRMOsUEaFulXt7zV7x1lHMEj7BaACTjoFn9ocdi+KpRwrHmhdyXUF7zTuzm7/jIyc8Z+YnnBCcXOsyAAafuWd7ZV/38QpGExFpz1pY/Pc929c875yUGlTjxvBq8lNS6d5um+LZX0Q6r3QDhlv1PgSOvAMuWg0T/gT7fBr2/184/XXodVD7sQNPgarB3mst+ltmNYiIiIiIiOSLJffAgzUw5RR49+vZrVU1KPUYERGR3Lm+w/37rbUZvclojBltjDkvzTkDgaeBAUnNu4BbA0z/AZD8wct1xpjzffbqAtwFVCQ132mt1QE0IiIiIiIiIiIiIiIiIiIiIlJQCiYYbbef7v5ugSHAi8aY/kEnG2NOBp7E+bkN0AL8KuwiRaSTW/+ye7vfCdWSnpYUwWgA2z9M70r2IjYR/56ZBjokm/NdWJEnOa9H/g3KavZsr+jjPr5xoxMCJCIijpYGqFvp3jfvp+7tbuIKRiutcG9v2RXP/iLSeWX7PLqiJ+z3eTjqTjj4Z9B9P/dxPcf7r7Ptg+zqEBERERERyZUdH8Nr14S3XjeP11UiIhIqY0y5MeZYY8wnjTFfNcZ8zxhzS67rymfGmAHAOR2as7nqwSDgSWPMHGPMTcYYzwdBY0w3Y8yXgNnA4R26f2KtXZxqs91jftuh+WFjzJeMMe0+qDHGjMW58OwxSc2bgB+m2kdERERERMJQRMfD6theEREREREREREREckDZbkuIB3W2teNMfcDV+B8anA4sMAY82vgQZwrKbZjjCkFTgL+G7gMJxCN3fN/a61dGn3lItJprHwKbIt7X9WQeGspZt32g4a1qcdtmAk7l0LXEVFXJMWgcRN06RfvnmEEo4Vt0Bmw5oX05/U/CYac695X6RGMlmh0AoBqhqW/n4hIMWre6d238ong6wQNRus9Ifiabko8gtESCkYTkYi1xPQ8OpEilPuZcXDFLigpj6ceERERERGRsKx4LLy1ugyEASeHt56IiOzBGHMc8A3gdKDSZciPXOacCVy+++5ma+03oqswr11L+2Mk51pr3whh3QOBnwM/N8ZsA+YCG4EdQFdgGDAe9+Mz/2qt/XEae30LGAectft+OfB74HvGmHd277kPcChtx0aCcyzlRdbaNWnsJSIiIiIiIiIiIiIiIiIiIiKSF0pyXUAGrgfexTmIxwI9gR8AH+z++g9jzHygFniRtlC01kuXvIpz0JCISDgSLfD6p737qwfHV0ux2/+m4GM3hXE8qxSF2mX+/fWr4qkjmV8ATi4c8H046Tk49Nfpzx3S8SLbSbru7d23+un09xIRKVapAjN3LAq2TtBgtNFfDjbOi1cwmm3Kbl0RkVSa6+LZp6Uh9Zj5t0Vfh4iIiIiISDZWPgEzroAZl8OyB533mGan8Vmbny4DYOJLUFJQ1+QTESkYxpgaY8w9wDTgPKALzvFvyV9e5gH/hRMM9j/GmPERl5uvPtXh/p0R7NEDOBa4ALgGuBA4jD1D0WqBz1prb0hncWttC07I3QMduvoDZ+IcF3kY7f89rAcusNZOT2cvERERERHJht9LNBERERERERERERERSVfBBaNZa+uBM4AptA86MzhXxEy+PxqooO0TBrv79ovAObsPGhIRCceGGf4hFFUKRgvNgInQbb9gY2d+ItpapDDUr4FnUxznXbcynlqSpQrAidOoG+GgH4AxsPd/QWWf4HMresNeV3j3Vw2Cnge6922ZnVaZIiJFLdXjwsongq3TuCH1mKohMPTCYOt5KSl3b2/Zld26IiKptMQUjDbo9NRj5v4IapdHX4uIiIiIiEgmFv4FXrkQlj8Ayx9yPjd7at9w1h56IVy0BnqOC2c9ERFpxxjTHefCn1fgfna9dWlr67R2BfBs0lyfD3SLkzHmWGBMUtMu4N9ZLjsf+BkwE6gPOOcj4NvACGvtHZlsaq3daa29AicEbZbP0M3A/wEHWGufz2QvERERERHJlO/LNBERERERERERERERSVPBBaMBWGs3AqcBNwMbaR981vo9+YvdY7YB38EJRdseW8EiUvzq18Lkk/zHVPSKpZROoawaTnkZ9roy2Pj6dZGWIwVg8T+gaZv/mGnnwaTjYfM7sZQEQPPO+Pby0n00HPhDOPT2trbKPnDaazDk/NTzB50Fp02H6qH+4/oc6d6+a2vwWkVEil2qx4WVjwdYow5mf8u7v2oIDLsETn8NyrumV19HJRXu7QkFo4lIxFoa4tlneICg7ZZ6+PB30dciIiIiIlJMtrwHLxwFD/WCF4+BdVNzXVFxshbm/TSatcffCsc97FxsRUREovIwkHz1qV3A3cCngetwD0vr6LGk26eFVlmBsNbOtNaapK/K3ccdZrPmOmvtd6y1xwFdcYLXzgE+C9wE3AJ8E/jM7vb+1trR1tpbs9179/4PW2uPBvYBLgW+DPwv8ClgIjDIWvsFa22Aq+iIiIiIiIiIiIiIiIiIiIjkhvW5zoBfn4h0LmW5LiBT1loL/NIY83vgSpyDt44DBtM+8G0LztUzXwDuttamSEUREUmTTcCUU1KPK62OvpbOpHowHHsvjLjKCbTys+xeGP1VnZzRmW16M9i4DTNg8kQ4+32oGRZtTdY64TVR2f9bcPCtmc/vvh+c+AQ8vhfULd+z/8i/wcjrg69X3t29vWlHZvWJiBSj5lr//g3ToWE9dOnv3r9zMbx8jvf8EVfDMf/OvL6OFIwmIrnS0hjPPj3GwD7XOUHLflY8Aof8Uq85RURERESCqFsFLx7thAwDbHzN+Zzn7LnQdUROSys6OxZC3Yrw1z301zDmq+GvKyIi/2GMuRQ4lbYLgr4GfMJau3J3/14Bl3q+dUlgvDGmq7U2D67eVRystQngw91fce+9BFgS974iIiIiIuJHxwyIiIiIiIiIiIiIiISpJPWQ/GatbbDW3mWtvcpaOxwoB/riBKRVWmv7WGvPs9b+QaFoIhKJ9dNg2wepx5V2ib6WzmjgqVA1xH/MO1+Dl06AXVvjqUnyz8rHUo9p1bQtvfGZaqmn7Tj2DvqfCD3HZ772qC9nF4qWbNhFe7aVlMPQC9Nbp6ybe3vz9vRrEhEpVs0BzkV6dIBzAnGylgaYfhk8ORK2L/Ce2/vw7OrrSMFoIpIriZiC0QCOvBOOugtGXOM9pnYpbJ0TW0kiIiIiIgVt6T1toWitmmth3k9yU08xC/JeUyb6TIhmXRERSfbtpNtzgdNaQ9HSYa1dC6zffbcEGBtCbSIiIiIiIiIiIiIiIiIiIiIiIpHL+2A0Y8x4Y8w3jTF3GWOe2v11lzHmJmPMIR3HW8dma+1aa21TLmoWkQCshfUzYNkDMP82ePtrMOMTMOk42PxurqtLz6a3go0zugpUJEq7wJF3QFlX/3EbZsDsbwVbc9sHMP92mPtTWDfN+fcqha28e3rjg4QdZqu5zrvvsN/BGW9AWU1ma48L+G890FrfgV6Htt03pTDh/6CyT3rreP03aNqReW0iIsWmuTbYuLe+1P7+3KxeMQcAACAASURBVB/DiodTzxt6fvo1+Skpd29P6KW4iESsJcZgNFMC+1wHx9wNl2xyng+7WRFDuLKIiIiISDHYMtu9fdGdkGiJt5ZiZyP4fVb2hT5Hhb+uiIj8hzFmEHBwUtON1lqfD5dTSr6iyn5ZrCMiIiIiIiK+iul482L6WURERERERERERESkUJXlugAvxphDgV8Dx/kMu9UYMxP4mrU2YDKRiOSNqafveUV4gJ2LoPceuYf5a/ZNua5ABp8F586H5w6Gxk3e45beAxP+5JzY7mXxv+D168E2t7Xt+1knCMpvnuS3qiHQtD34+KDBNNlI+IQ5lFZCaQUMvRiW3p3+2l0GZl7XHmv1g9NnOiGB9Suh/4nQbd/01ynv5t6uYDQRkTZrng82buXjULcKqoc44UAf/j7YvJq9M6/NTUmFe3tiV7j7iIh05PdcOkqVvZ3nw+um7Nm3/uXYyxERERERKUjL7vPu27EQeoyJr5ZiF8VnHWO+DiUegdEiIhKWo3d/t8AKa+0rWa63Oel2mle/EhERERERERERERERERERERERyY28THgxxlwATMcJRTNJX/8ZkvR1HPCKMebCuOsUkSwY4wQVualbFW8t2Zj701xXIK2qhzrhZX6ad0Ltcu/+ho0w69r2oWgAH/8V1k/PvsZcsNYJe5t+Kcz6NKybmuuKcqPjf9NUmndGU0cy32C0Ls73CX+EwWenv7Yxqceko7QLDD4DRl6fWSgaQJlHMFqzgtFERP5jyb+Cj318KNxfCQ90Cf63NOzHBwWjiUiutOQoGA1gyLnu7dvnx1uHiIiIiEgh8vuMBqBhbTx1dBZhf9bR/yQY87Vw1xQRETfJV8F6L4T1kh8QuoawnoiIiIiIiLgK+dgsEREREREREREREZFOLu+C0YwxY4D7gCqcTwbs7i9oH5Bmk766APcaY8bGW62IZKXaIxitvkCC0Rb/E+Z8N9dVSLIh56ces32Bd9+j/bz71ryQfj354L3vOGFvKx6BxXfBlNNg+SO5rip+zbVpjo84GM1a/zCHkkrne3k3OOkZuHg9XLgCjns49dp7XRVOjWEr9whGa1IwmogIAHWr05+TTgDZ0AiyxBWMJiK54hcy3KrbqGj27nmQe3vDemjcHM2eIiIiIiLFoH4NTDref0zjxnhq6SzS/WzET+8JcOpUKPV4P0hERMLUI+n29hDWSw5DawhhPRERERERERERERERERERERERkcjlXTAa8GecoLPW0DMDNAOvAQ8CD+2+3UT7kLQuwF/iLlZEslA91L29rgCC0da9DLOuy3UV0lFpJVywzH/Mtnnu7Rvf8J/XuCGzmnJp11ZYcHv7NtsC836Sm3pyqbkuvfFrX4JXPwlNYRxnnuTjO+CZcfBwb5h2rve40sr297v0c/5m1gxPvcegM7KrMSpewWiJRmhRgI6ICHXLo11/+OXhr1lS7t6eaAp/LxGRZH4hw63G/yyavbuP8e7b9kE0e4qIiIiIFINFf0/9/ofXZziSmbAuAlPRG059OZy1REQkiC1Jt3t4jgpucNJtJfuLiIiIiIhExua6ABERERERERERkYKhd9NEJIi8CkYzxhwAnEBbIBrAbcBAa+2x1torrLWfsNYeCwwEftlhiWONMQfFV7GIZKVqiHt7fZ4Ho22bD5NPznUV4qVmOPQ4wLt/7WT39uUP+q+7a2vmNeXKmhed0KmOtsyGph3x15NLLbXpz1l6N7x8Tng1LPk3vPFZJyyhaSvsXOw9tqTSvd0vhAGg+1jY64rMa4xSeXfvvg3T46tDRCRf1a+Odv1hF4e/ZkmFe3tCgZciEjG31znJ+h0Lg8+KZu+qwVDmEfq75oVo9hQRERERKQab30495v0fgNXhTqFpCikY7bSZUFYdzloiIhJE8lXbxmWzkDGmEjg4qWllNuuJiIiIiIiIiIiIiIiIiIiIRE1HEYpIq7wKRgMu2f3d4Pyt+rK19pvW2i0dB1prt1prbwa+mDQeIIKzvUUkEtUewWi1y+KtIx02Ac/sn+sqJBW/4I91U6C5Q0iWtbDycf81mwowGG3bXO++qMNX8kmiyfnKxIYZsPAv4dSx6M7gY72C0co9AhhanfUOlHqE1OSaV3gEwKK/xVeHiEi+qoswHHjI+VDq8diSDQWjiUiu+AWjHfIrOOm56E7aNwb6Hu3el+p1pYiIiIhIZ7bysWDj1k+Lto7Owlp456vZr9PzQOiR4qItIiIStnd2fzfACGNMNn+ILwFa38xvBmZlU5iIiIiIiIj4MbkuQERERERERERERESkqORbMNqE3d8tMMta+8dUE6y1fwZm0vYpwhER1SYiYase7t5euxTq18ZaSmCvXJTrCiSI0V8B4/EQl2iEtS+1b9s2D3Yu8l9z1x4ZnfnP+uQhb37Hu6/YdAzCS9ebn4OmHdnXsf7lYONMGZSUevcPPse9/eD/B6Vd0i4rNlUDvfs26vh7ERHqIwxGG3hKNOt6BaO11Eezn4hIqxaPAMZ9roOxX08dKJytoRe4t2+bCzs+jnZvEREREZFC1aV/sHErn4i2js5i+YPZr1FaBRP+nP06IiKSFmvtEiD5Tab/zWQdY0wl8J3WZYE3rbVZfnguIiIiIiIi3nyO2y44xfSziIiIiIiIiIiIiEihyrdgtLFJt/+Zxrx/Jd3W5YpFCkWfCd59G6bHV0dQb34RVj2Z6yokiMrecJlPkNXG19rfX/9K6jU3vw2Jluzqituuzd59r14Fq1+Ir5Zcaq7Lfo2ns3x64RdS11FppX//Ptfu2WZKYa+r0qspbmU13n21S2HRXbGVIiKSl+pWu7cHPWnYiymF4Zdnt4aXknL39vrVkGiOZk8REXACr92UpHguHZah53v3KcRBRERERMRdz4OCjVt2f3rvqYu7FY+lHrPPdc7Fhrycvxj6HRNaSSIikpbWD08NcI0xxuVDYm/GmBLgDtofi5fyAqUiIiIiIiIiIiIiIiIiIiIiIiL5It+C0Xom3X4njXmtY02HNUQkn1UPga4j3ftWPxtvLal8+AdY+KfU40bd6N5+6G/CrUdSK6uGYZe69zVuan+/dlmwNVcV2Anua57373/js9DSEE8tudQcwkWv61fDlvcyn5/O7zlVmMOwS+HAH4Apc+6X94DjH4GaYRmXF5sDvufd9+bnockn0FBEpNg1bnBv73Fg5mtW9IITn4aqgZmv4aekwrtv5ePR7CkinVPtMnjn6zDtAvjgF9C0zX1cXMFo1UOht0fY+7vfiKcGEREREZFCYwNefKZhLWybF20tncH6qanHHPB92O8L7n09x0f3npKIiATxW2A9YHGOh7vTGPMzY0x1qonGmP2BF4Grd8+3wMfA/dGVKyIiIiIiIs7LNxERERERERERERERCUu+BaP1SLq9yXPUnrYk3e4WUi0iEof+J7q3L7kbts2PtxYvyx+Ctz0Cz5Lt9wXnq6ymfXtFbxh2cTS1ib+KHu7tHYOy6lcHW29ZAR0nvHEW7FzsP6ZuOaydHE89udRSF846S/+d+Vyv4AY3pSnCHIyBA78Pl22Fs9+HSzbC0Asyry1O1cO9+xKNsPLJ+GoREck3jRvd23vsn/5aB/4QLlgGF6+DwWdmV5cf32A0/U0XkZDsWATPT4AFt8OqJ2H2zbDmBfexqZ5Lh2nYhd59H/4uvjpERERERApF0GA0cJ77S3Ya1vv3Dz4Huo6A7qNgwMQ9+/e7IZKyREQkGGttHXAtkMAJNisBbgbWGGPuA9olWxpjPmGM+Z4xZjowBzgZ54x8AzQCV1prbYw/goiIiIiIiIiIiIiIiIiIiIiISFbyLRgtuZ40joxuNzbffiYR8TPodPd22wJL7423FjctjTDj8mBjD70deoyBiS/BgFOgsg8MOgNOmQo1w6KtU9yV1ri3L7sPWhra7q95Pth6yx/Kvqa4zPl+sHGrno62jnzQUh/OOvN/BS+dCJvfTn9uOsFoJV2CjSurgZ4HQElZ+vXkSnl3//7Vz8RTh4hIPvIKRut5AHTdN721qodCzXAoKc++Lj9+wWhL7452bxHpPD78LTRuCDa2JMZgtKE+wWhzvg86z1REREREpL20gtE6wWcXUSvzuZ5ceQ84LukzrxOegJHXQ9Vg6HkgHP5H2O/z0dcoIiK+rLUv4ASgtYajgXPB0MuBbyQNNcC9wA+AY2h/7FwzcL219p2o6xUREREREREdJyAiIiIiIiIiIiIiEqYCStIQkaI09EKo7Od+kvOmN+Kvp6O3bkw9xpTBCY9D6e4TsPseBae8FG1dEkyZRzAawGvXwnEPQMNG7yASN4nm/A+ishY2vR5s7I6Poq0lHySH4HV04Qp4PI3gwvWvwPOHOycMdRsFPcZBSWnqeQ0Bgxyg7W9JMSr3ORFLRKSz83o+UtkPDvohvHoNgQ+e83sOFCa/YDQRkbB89PvgY+N8Lt19LNSMgNqle/Y1bYX61VA9JL56RERERETyXaI5+NhNb4BNgNE10TLmF5h/4Qooq2q7X94Vjvxb9DWJiEjarLV3GGMWAfcAA2j/QUHybZN03+6+vxH4hLV2ahy1ioiIiIiIiIiIiIiIiIiIiARlfU6V9OsTkc5FRxKLSG6VVsKQc9z7ErviraWjXVtg0R3+Y4ZdAme+6f0zSG75hYKseBjq18DCP6a35s7F2dUUh4Z10LQt2Nh1UyDREm09udZS795eUgnVQ6H76PTXnHEZPDceHh8KG17zH7vkbnjp+OBrlxRxMFqZgtFERFy1NEDzTve+yj4w4iqYOAn2/qTTluqk4NiC0XxOsBURCUM6wQkQ73NpY5z3BLx0hhBqEREREZF02DQ+i7AtMP9X0dVS7KyFpu3ufcfcp4uYiIgUGGvtFGBf4CZgBU7oWccvkm5vAn4EjFQomoiIiIiISJxM6iEiIiIiIiIiIiIiIhJYWa4LEBGhZoRHRyLOKva06hn//qP+Cft8Mp5aJDN+oSA2AZvfhQ9/m96aDeuh+6js6ora9vnpjV/4fzD6S9HUkg9aGtzbS7s434+8C6acCi11zv2ybtC8I9jaDWth2rlw4Uooq9qzf+v78FqafydKizgYLeXJVjooREQ6qcZN3n2VfZ3vA09xvo7+p3N/1dMw7Tz3OWVdw63Pi1f4qIhIWLbOSW983M+lD/oRLLjNvW/yRDj+URh8DpRWxFtXoatfB6ufBowT+l3ZH/oeCd32zXVlIiIiIpKNdILRAGbfDMMu1vPApu2w5gXYOs+53f94GHiq//vtiUawHkHTNcOiqVNERCJlra0FfgX8yhgzCjgOGAb0ASqAjcA64FXgHWt17WQREREREZH46aWYiIiIiIiIiIiIiEiY8jEYrfXTgKOMMSMCzhmYfMcYczxpJGtYa18JOlZEolDi3rw+x/9rrn/Zu6+sm0LRCoFfMBrAO1+FXVvSW7N5Z+b1xGXHx+mNX/FQkQejeYS2tAaj9TsaLlgKKx+HkgoYdAa8cCTULQ+2/q7NsOY55wStjpY/lH69JZ04GG3ZvXDsPfHUIiKSTxo3eve1BqPtweM5NMT4WOLzstv41CciEsS2BfD8YenNifu5dFk19DkCNr3h3j/9Yuh9OEycBBU9462tUG14Faaesedr79IqJxx0+GW5qUtEREREspduMBrA0nvgwO+HX0uhqF0Gk0+BnYva2j78NfTYH058Grru7THP5/ON8u7h1igiIrGz1n4EfJTrOkRERERERCQdBXbhYOVti4iIiIiIiIiIiEgeyMdgNHDe9b8vi7kvpzHekr+/B5HOoaTUu2/Le9BrfHy1tLIWFt3p3b/3f8VXi2QuVTDajoXpr9m8I7Na4tS0Pb3xuQ4hjFpLg3t7aVXb7S79YN//brvf/wRY+u/ge0y/BHodDFtmZ1Zju7q6ZL9GvipLEYwGULsCaoZFX4uISD5prvXuy+RkVRPTgXR9j/LuswnY/hF0HxVPLVLcdi52Xp9tetM5kb5mBOx1BQw6LdeVSZTmfC/9OT3GhV9HKr0P8w5GA9j8FjzcC0bdCGO/ATXD46utEL1+vXsgeUs9vPl5GHIBlFa0te9cAvNvg6atMOBk2Ps6//eZwmQT8PEdsG4KVA2CkddDzwPj2VtERESkEGUSjLZ+evh1FJLZ324fitZq2wcw9ydwlMdnmR/83HvNIO/Ti4iIiIiIiIiISMgUNCYiIiIiIiIiIiIikq6SXBfgweIEnKXzZZO+0p0rIrmUaPbuW/FofHUkm32zf/+oL8ZTh2QnVTCal16HQLXHyepNBRCMlmjMdQX5xTMYzSeAbPSX098njFA0oKgPfggS7vPEcP/HBRGRYuT1WAVQUune3qWf95zyntnVE1R5ihNpJx0DW+fGU4sUr+0L4cVjYd7PYO0kJ4Bo8d9h6hmw+B+5rk6i0tIAKx9Lb06P/f0DG6My8jNgAgRxffR7eHos7Pg4+poKVd0q2L7Au79xE2yY0XZ/23znd7rwj7D0Hnj9MzDrusjL/I9Zn4I3PwfLH4QPf+v8rdroE5InIiIi0tl5BaMNvdB7zrrJ0OQSnNtZrHnOu2/Vk959i//u3ZdJCL+IiIiIiIiIiIgEoFOTRERERERERERERETClK/BaNA+6CzIVyZzRSQf2IR337Z58dXRauv7MP+X3v3jb3VOuJb8l2kw2vDLvYM+CiEYzS9cxUtzXfh15IuWevf20irvOX0mwMTJ0dSTSnmP3Owbh1KPcJ+ONsyMtg4RkXzjF+JpPA6Y63UodOm/Z3v1cOg+OrzaUjnmXu++xk3w4e/iq0WK08I/QcNalw4Lc26BhMeJ9ZKZDa/C5FPh8eEw5TTY/lFu6tj+oXdoQkemDIZfBqdMhZKyaOty0/tQmPDnYGNb6uCp/eC+MnhiBLx7EySaIi2voNStTD1m58fw3nfhXgPP7L9nMPjSfzt9kyeGGF7tYtt8WPKv9m3NO/zfTxIRERHp7Lye4w86E4Zd6j1v+sXR1JPvWhpg1xbv/saN7q+JU71OThV0LyIiIiIiIiIiIhnSKUoiIiIiIiIiIiIiImHKwdmCvpajTwNEOp/qwd599WviqwPAWnj2IP8x+3wqnlokBBnmf476Eqx83L2veWfm5cSlpTH1mI4aN0LZ8PBryQd+YTN+Bk6Eqyw0bIRH+4Vfl5eKnvHtlQvDL4flD/qPWXo3DDgxnnpERPJBwuOxqsTnsaqkFA64Bd76Uvv2A2/xDlOLQkUv//5Fd8CRf42nFilOfoGpdStg5yLoPiq+eopZ7XKYekbba566FfD84XD+IugS4/NhgI2zUo857mEYfonzOj7Ov3tu9v0MNG2Fd78ZbLxtgdplTohW3Qo49r5o6ysUfsH5rd64Idha66bCpOPgnPlQMyy7utwsvce9fcXD0LILSivC31NEJG47F0P9OqgaCDUjcv94KyKFL9Hs3m5KYdy3nedSbtZOckJvex0cXW35qHFT6jHN2/d8b6Z2qf+ckvKMSxIRkXgZY0qAA4DxwHCgH1CFc2xdPbAe51i794B51lodcyciIiIiIiIiIiIiIiIiIiIiIkUjr4LRrLUjcl2DiOTAwFO9++IOoVo7yb+/79FQNSCeWiR7iab05ww4Bcq7Qnk39/7mHdnVFIdEhsFoNcUajFbv3l5aFWx+l77Q71j/UI4wDTglnn1yZew3UwejLboTxt8afwCHiEiuZBriOeqLUD0Mlj/sBKUNuwyGnB1+fX7KquPdTzofr+dyrbYvUDBaWOb+ZM/X4M07YOm/Ycz/xFODTTjhYgtu9x93/GMw7ELndr6EtIz9BvQcD1NPT2/esvuhrBsc8WcwGYZ7F4uw3wNqroXFf4cDvx/uugArHvHue7AajrgDRipYX0QKVP1amHQ87Py4ra1mBEycBN32zVlZIlIEbIt7e0kZ9BrvP3fhn53nzJ1JkGC0Xdv2DEbbvsB7/MDTsqtJRERiYYw5AbgBOAvoEXDaFmPMM8Ad1toZkRUnIiIiIiIiPvLk+AUREREREREREZEC4Hf5N10aTkRadfKz7UQkL3TdB7qPde+rXx1vLUv+7d9/6G/iqUPC0fsw0v6Qud+xzvcyj2C0pgIIRmvJIBht1TPF+yoh07CZZIf+Gir7hlMPQGUfuHQzjPiv9u3DL4Phl4a3Tz7qcziM+3bqcW9/NfpaRETyRTaPVUPPh2P+BUfdFX8oGkBpgGC0RHP0dUjxSuzy7/c74VuCS7TAojvc+za/HV8dH9+ROhTtsN+1haLlm0GnwXkfpx7X0aI7YPbN4ddTaJprw1/TL8AsG37vDdgWeP3TMOMTsPLJzF6ji4jk0swr2oeiAdQuhaf2g6lnwcyrYd7PYPE/oH5NLioUkULlFYxmSp2Q4CP+4j1305vR1JTPGjemHtO0bc+22mXe4ztbuJyISIExxuxvjJkKTAWuAHriHPAQ5Ks3cA0wzRjzkjFGV5MQEREREREREREREREREREREZGCpmA0EckPh//Ovb1xY3wnkNathKV3e/ePuAb6HhFPLRKOLn2h33HpzRlxtfO9vICD0RIe4Sp+3r8F3voi2ET49eSaZ9hMVfA1+kyAs993Qmcm/F/2NV24Cip6wdH/gFNehkNug1OmwDH3Qkl59uvnu/E/hT5H+Y9Zfj80bIinHhGRXAvjsSpXygIEo+3aEn0dUrwSKV4PKhgtHDs+8u5bek98dSy7179/+GUw+sZ4aslUt5FwcQbPY+f/yvnqzKIIRtv6Pqx6Ovx1g9S6/EF45QKYdCw0bg6/BhGRKDRuhvXTvPvXPO88Xr/3HZj1KXh6f1jnM15EJJlfMBrAvp/1nrvjw+K9uIuXIMFou7bu2Va/yn1szwOdi1WJiEheMsZcDrwBnEBb2Jl1+Wrl1tc6byLwtjHmkrjqFxEREREREWj/sq3QFdPPIiIiIiIiIiIiIiKFSsFoIpIfqgZ79zWsjaeGN7/g3z/0wnjqkHAdez/U7BVs7NF3Q/fdF04u6+o+Zund8PK58PpnYOZV8PwEuNfASyfDR3+ERHM4dWcj0zDBhf8H614OtZS80FLv3l7aJb11qgbCPtfBfp+DYZdmXs/I/4bSSue2KYEBJ8LYr8GAk6GkLPN1C033FBcpt4loAgxERPKRZzBamo9VuVAaIBgtyIm8Il4Su/z7F98F9TG9Zixm9au9+6qHxVfH+lf8+/e6Mp46stWlL1y6FYZekN68d78JzxwAH/wCmj1exxSz5p3RrDvruvB/n+kEkm9+G+b9LNz9RUSiUr8mvfFNW+GN/4aER9iRiEiyVMFoAMc97D6muda5wFFnEuT9lOTPUFc8DrM+7f3cs/v+4dQlIiKhM8ZcBtwLVNM+EK016AxgA/ARMAsnQG0hsDFpTPI8gBrgPmPMRfH8FCIiIiIiIiIiIiIiIiIiIiIiIuFSMJqI5Ae/YLT6dfHUsPkt776KXumf0Cz5oXownL8k9bhzF8De17TdL+/mPXb1M7DoTlh2X9u/m/Uvw1tfgukXg83xVbISGQajAax6Krw68kUUYTP7fZ62Y9DTYMpg7Dcy37eY9D4s9ZiNr0Zfh4hIPvAKVymEYLSyAMFoq5+Lvg4pXqmC0QCePQC2L4y+lmK2a7N3X9O2eGpY82LqMT3GRV9HWCp6wPGPwYUr4eQX4OQXoXpo6nnb5sHsm2HyydAS4N9/MWmujWbdxk2wbnJ46zXXeb/O9LL0bif8WUQk39mm9OfsWAibXg+/FhEpPkGC0Qae4j1/w/Rw68l32+amHjPzCudiOfNuhekXOeHhXqqHhFebiIiExhgzGrgL5xi+5EC07cBvgHOAvtbagdbasdbaY6y1R1lrx1hrBwD9gPOA3wE7aB+QVgb80xizX9w/l4iIiIiISOeUwXHFIiIiIiIiIiIiIiLiScFoIpIfyrt797VEdGJsskQLNPgEsJ09B0rKoq9DomEM9D/Ru7/PkdB9dPu2yv6Z7bXqKVg7KbO5YfE6QXvM11LP/fA34daSD5Y/6N5eWpX5mgMnwvGPQNd93fv3vhaOfxR6HQymxDmxq9ehMPEl6D4q832LybCLU4/Z/mH0dYiI5IMoQjzjUtEn9Zg5342+DileQYKhGjfBgtujr6WYNW7y7mvaDk07o69heornh1WDoOvI6OsIkzFO+MCg02HQaXDwz4PP3fQ6vH9L2/1EMyz4DTw1Gp4cCXNuiS5ILFei/HnCDOls3Jj+nIb1sGV2eDWIiEQlkUEwGsCkY+GBKnjuEFh6f7g1iRSjXVth1vXw2FB44UhYck9685c/4sx7oBru7wIP9YQpp8HWAEFauRQkGK2iJ9Ts7T7u1auhYUP4deWr1c8HG/fGDfDet1OPq1IwmohInvoDUE1bIJoFfggMs9Z+zVr7nLV2i9dka+0ma+0z1tqvAsOAH+9eo1VX4PeRVS8iIiIiIiJJcnxhbRERERERERERERGRIqOUHxHJD6bECSlqqd+zr7ku+v2btoJNuPcd+TeoHhp9DRKt/b8FG1/d8+Q+UwKHuxwHXJ3FCSLv/A+cMy/z+dlqaXRvL6mEIefDqif95+9YBN1CDhxoroXtC5wTnHqMg5Ly1HOshdplUFIBjeudn8uUQvcxUN412L7rpoJtdu8rC7iGl2EXOV9294EMrX9DTIkTgNA6JtEMGCgpdV2m0wryd3X7gujrEBHJB17BaCUFEIwW5PGtvFt0+ydaYOfHUDMCSiuj26fQ1C53fu8VvXJdSfYSHs9tO1oT8IRxcecXjAZOEFTQ5+CZ2P5R6lCsUTcW/nPq4ZfBvFthW8DAig9+DqO/AmXdYNZ1sOKRtr65P3bCto74cySl5kRzhAF8YYaSZRKMBrBtPvQ+NLw6RESikAgQSuulpcH5e/vqlU7I87ALw6tLpJhYCy+fDRtfc+7Xr4LXrnHe+x5xRer5K5+EGZe2b0s0wtqXnJDC8xZClwwv/BI1r/fqTYfn+UPOgY/+iyAqkQAAIABJREFU4D528klw1pzCf22QSqIZapcEG7vkn8HG6bNOEZG8Y4w5FjiFtlC0HcDF1trJmaxnrd0BfN8YMx14FKjZve5pxphjrLWvhlO5iIiIiIiIpM/kugARERERERERERERkYJTkusCRET+o6zavT3VydFh8DupdeDp0e8v0Rt8JpwyFUZe39a297Vw1mzoM2HP8VVZBKNt+wAW3ZX5/Gx5hUeUdgkWTLL03vBqsRbe/xE81AOePxyeOwQe7gWLU5yos2MRPHsQPLk3PD7EmffiUfDCBHi4B7z3He8ww1YtDTB5ond/z4PS/3ncGON8lZQ6X6bDwQslZcV/klamDv2Nf3/jBmjcHE8tIiK55BWMVloAwWjgBBz7iSroeNXT8Gg/eHoMPNwb5t8WzT6FpHYZPHswPLEXPNwHpl8KzS7h04XC2uDhHLVLC/tnzbVUwWgtEQeWr3nRv7/7WBjz9WhriENJOZzxOhzwveBzHhsMD3VrH4rW6uO/wM7F4dWXa1G+/7Pjw/DWSvX/i5fXroGWLAKHRETi0PGiEpmafhE0RRh4KVLIts1tC0VLtvBPqeeufAJeucC7v2k7fOhyIZh8YVvc202Ha7kN9QlW3PYBrH4mvJrylVeIXDb6HB7+miIikq0v7P5ucMLRbsg0FC2ZtfYl4IakdQE+n+26IiIiIiIikg2beoiIiIiIiIiIiEgn4veOmd5NE5FWCkYTkfxR6hGMFvUJ2OAfjFbZJ/r9JR79joUj/wZXWefr6H9AzwPdx1YPzW6v1z8NM6+EObfArE/BWzfCpjedcIeotXgFo1VCWYBgtLUpQgmCaNoOyx+GF4+G97/f/oSn5lqYdZ1zEpcba+GVC50TxFz7EzDvZ/DKRZDwOJFq1xZ4Zpx3faYMBp8V6EeRCHUMkXOzPcQAAxGRfFXowWj73+zf31wb/nOgnUuc5wu7tjj3W+rg3W/AyqfC3aeQWAsvnwtb32ttcIKU3i3gMKl0TwTfMjuaOjqDXSmCnqIKrLIW1k6G2Tf5jzv+USitiKaGuJVVw0E/gstD+p1OPRO2vh/OWrnW4vE7GXENDL3IvW/Ul+Hof+8ZptFR4ybY4BJAkgm/95BS+eDn4dQgIhIVv1DakvL01nqoGyz+B9StzKokkaKz5G739g3Tne/NdbDqGVj4F/j4DicE/INfwJtfcl4HpzLvJ86FSVY+6f1+Q654BqN1uLBI/xOgvKf3Om/d6Px+Nr6R+gIqhSoRcjBajwOg6z7hrikiIlkxxlQC5+Ecy2uBR6y194e1vrX2PuARnHA0A5xvjCmSN9hERERERETyVYBjYkVEREREREREREREJDAFo4lI/ijzCEZrjiEYbcNM9/bSKu+6pLhVDc5+jWX3w9wfOycAfvQHeOEIeOMG7zCvsCQ8TnYqqYTy7qnnb5jhnHiVqR0fw7MHw4zLYNPr3uNeuRBWPLpn+5Z3vEPRkq16Eh4f6pzgnmzr+/DUaNi52Htu/+OhwufEKomH14lwyXYoGE1EOoFCD0YbcXWKATb8k7FXPOL+OLLS5blFZ7FjoftzqOUPxxPOGwWvwF8vk46B2mXR1FLsUgU9RfG6vLkOpp0HU06FlnrvceN/Bj3GhL9/rpVVhxPEvmMhPDse5t2a/Vq55hXAV1YDIz+9Z3tJJYz6Iux9NZw9Bw79DRz8/7zXn3SME6CRrWyC0Zb8M/v9RUSilGhyby+tgnM+gMN+l956sz4FT4+FVc9mX5tIsfB7LrFzKbx4FEw7F978HLzxWScEfPbNsPCPwfeYdR28coHzmcTOpVkWHCKv94NLOgSjlZTDvp/1XqduufP7efFI5+9M2CFi+SDdoPBUxvxPuOuJiEgYjgK60nbW/O0R7HFb0u2uwNER7CEiIiIiIiL/UaDH57gp1GONRERERERERERERKSoKBhNRPJHqUcAWUsMwWizb3Zvr+wb/d6Sn0orwjlJvaNFd8Ca58JfN5lXgERpJZiAD/0zLofaFentu+JxmHU9PLUf1C4JNmf6JdC0vX3b6ueD79mwFl4+t33bG5+Dxg3+8459IPgeEp0gJ6xtXxB9HSIiueYValoowWjd9oWj7/Yf4xV2k6l3v+nevvgf4e5TSJY/5N7euCH8YLq4JHalP2fqWeHX0RnsXOTfP/kkmHombPsgu32a6+CDX8K9Bh6sgdUBApnHfD27PfNZvxNCWsjCnO/C1gAB0/nMMyi0CgafDQf+AMzu0IyK3nDEn6H7KOd+j7Ew5isw9iYo6+q9x5ufgzk/SP/vYu0KeP+H8Oo1sOC21OO97FwU/mOiiEiYvILRSsqd5/2jb4QLlkPvCcHXbN4J086BZp8gVJHOxO/iJW9/xbnwR1i2vg/zfhLeetmwFmzCvc+U7tl2wHeDrbvkX7Dyiczryldef48ztc914a4nIiJhaA0ps8B8a+2ssDfYvWbyG3oKRhMRERERERERERERERERERERkYKhYDQRyR9lNe7tzREHo/mtr2C0zq0igmA0gI//Gs26rRIewWglXaBpR7A1Wuq8A0fcvP9jmH4RLP578DmtHhvS/v6cgCc8tdo0qy1MbddW2Pia//hDfw1d+qW3h0SjZnjqMTsXR1+HiEiueYWzlBRIMBrA3tfA2XO8+1sUApNThRrCk0kw2vb5xXlSfJQSzbAjRTAawJoX4JlxsG5aZvu0NMCU02D2TcHnnPScE1pdrEbfGN5aNgFLUoRU5rtUId8Hfh8uWg1nvQcXLHEPdzAGuo/232fuD2HaecHDJnYugUnHwPs/gKX3QO2yYPO8bP8ou/kiIlHyev5VUt52u2YYnDELzvnAeaze+9pga794ZPb1iRSD8h7efaueDH+/pfd5B5LFya8Gt2C08m5wWcDPM1Y/m1lN+cwGuKhIUGfNDn7RHBERidO4pNszI9xnhseeIiIiIiIiEjqT6wJERERERERERERERIqKjoAVkfxRWu3e3hJxMNr2D737uo6Mdm/JbyVl0ay76il444bgIWWtWhrg3ZvggSq41zhf086Hze/sOc5NaSU0p7Hn8gegfl3qcU3bYd5Pg6/bUfNOeKQ/bF8YbD83L5/lnFjVuAnnoto+Rn8lsz0kfIPPgZIUQRe7tsRTi4hIHFY8Ci8eC4/vBa9dC42bnfaWevfxpQUUjAZQ6RM8unVefHV0Vm4nkrd660vBA4DySSbBaABvfC7cOopd7dL0Trp/538y22fV07Dx1eDjS8qhz4TM9ioUA06GE55wgrxSPS8OYv4v8iP0IlOeId+Vbbe79IdeB0F5d+91uo1Kvdfal+D+CnjpZJj9LZh0HDw9FmZeDQ0b2o/96I9QtzL1mkFtXxDeWiIiYfN6ztjxccqUQI+xMPhMOOquYGtvfT/7cEmRYuD3PCYKLXVwX6nzecJTo2HK6bDx9XhrALAt3n1er2fLu0LPg1Kvvfjv0LQzs7ryVSLEYLRe48NbS0REwpR8MEqUD87Ja+sAGBERERERkUilOH5ZRERERERERERERETSomA0EckfZR7BaM0RB6O9cqF334G3RLu3dF4f/xWmnQvW50Pw5lqoXwstjU6YyDPjYP4v2wefrXoKppzaPlCsxedk8sHnpFdnkOCCjbO8T2APqnEDPD0KVj2Z+RpvfyV18NvZc8Hoimx5o7wrjEkRrLFrazy1iIhEbeVTMP1S57G1bjks+RdMPtkJsOkYwNKqtCreGrNVVuPdN+2c9ENhJT1+wWjLH4BZ18dXS1i8ntcC9DnCu69hLWz/KPx6ilX96vTGb3k3/d+vtbDwz+nNGXE1VPZJb04hGno+nLsArmiETzRkH5D26tXh1JULXmGI6f5Ouo8OPnb9y/DBz2HDTCewbNm9MOlYSCQFdyy4Lb39U6lfFe56IiJh8vpbbMq95xgD5y+Csm6p13/vO877nGEG/ohIcDs+grWTYMop8QcV+oUxG5+L1EwI+Dpi5hXp1ZPv0gmv9jP43HDWERGRKAxIuh3lA3Py2gMj3EdERERERER86dhlEREREREREREREZF0KRhNRPJHqUcwWkuEwWjN9U4whRtTCj0PjG5vkfWvwNb33fs+/D08PhweGwQPdIFnD4Cdi93H7toC837Wdt8rpKy0Cww63f8ko45ShSRsmAlTzwi+XipvfDbzuR//BRo3evefNRt6jst8fYnG+FvhyL979ysYTUSKxcI/ssdVQbfOgbUvwY4P3ed0HRF1VeHyej7fatl98dTRWfkFo4Hz+/cK4ctXXsEcAMc/5j939XPh1lLMEk3pz1nzYvCx2z6AR/vDusnp7XHwL9IbXwxKK+Hitf5j+h4NvQ/z7l/+UPQB81HxCkMsrUxvnT5HZlfHjoXZhXan0lwf3doiItmyHs8LUoVUdt0HznoXRv63/7il9zjvcz7SB5bem1mNIoUuk+ffrWpGtP/cqu/Rma3TXAvv/yDzOjJhW7z7/F7P9gv4M65+Bja/k15N+SysAMn9PhfOOiIiEoXkKwJE+YFo69oG6B3hPiIiIiIiIuLL50LaIiIiIiIiIiIiIiLiSsFoIpI/yjyCFKI8oXf7Au++IbqKusTg7Rvb/o031zsBA9Mvgbe/DLs2B1/no9+BtdC4GVo8TrIu6woVPeHw3wVft26F871ppxMuseRuqN99ov6urTDl9OBrZWvQWc7P4CXRBCufcu8rqYRe46OpS7JjDIz8FBzjcTJs07Z46xERiUJzLax5wb1v6hnQ0uDe131sdDVFoaTUCWL1svgfsZXSKZkUV5a1zbDi4XhqCYtfMFpZNVziE4q7bW749RSrTIIZ3v06rJnU/u9X7XJY/E+Yfzu89z2YcwtMvwyeGecfYOxmn09Dl37p11UMKnrB+UugenhSo4FDboOrLJz+Kpz5FvQ5yn2+bYF1U2MpNXRe/8+nCuPpaMDJ/q8dg9j4GmydC+/elNn8yj7efV6v2UVE8oHX84KS8tRzu42EI/8KVyZSj23aDq9eDa9/xnnusPAvsHVeerWKFKpMg9Eq+8L5i+HsOc7zwqssnDoNSqsyW2/xP8IL3woi02A0gIGnBttj3q3B68l3NoT/NsMvg0FnZr+OiIhEJTkJPspgtOQPW33ewBcRERERERERERERERERERGJj/W5loBfn4h0LmW5LkBE5D9KPYLRWiIMRtvxkXff3tdFt68Uhpq9YdsH0e6x/hV44Qg46i7nRMCtczJf66M/OoEkXrrt63zf7/PQ92j44JewzCOMqtUHP4e9roSZV7QFCZZUwPGPQeOG4P9/DjoD9v0c7PgQZn8r2JxkVYPg5Ged4IXnD/P+77LqSff28m7p7ynxqujp3t601XkFmyrsRUQkX+1cAlMCnsDbUfcx4dYSh9Iq76C3ja+Fs0ezAmVc+YWItdq5OPo6wuT3M5VUOOFoIz8Di/62Z79fCLa0l0kwQ2IXTD0dek+Ak56GtS/Ba9eGc/K+KYFRX8p+nULWdQScPRtWPOoEUvc/AfpMaD9mv8/Dplnu86edC1e2OL/LQpJodG8vqXRv91Ja6fx+5v8y81rm/zK7+We+67x2bdywZ5+C0UQkn4URUmmME9z07EGpxy66M3kijP8JjPt28L1ECpHNMBhtr6v2fI+0pNx5/37x3zNbc+Nr0P/4zOamK5tgtBFXO685UlnxMMy/DcZ+Pb3a8lEmr60O/TVU9HYueNPrEBh8lt5XFxHJb8lveGT4BCGQ5AeVAInHIiIiIiIikrGiOluzmH4WERERERERERERESlUBXZ2nIgUtTKPYLTmKIPRFnr3DT0/un2lMMR1Mv62eU44WjahaABv3whvfsG9r6wbVA1uu9/rYDjoR8HWfe7g9sESiV3w6lWwbW7w2o78Gwy7EPa/GboMDD6v1fArnO+lXeCs97zH1S51by/vnv6eEq9yj2C0RJOCA0SksE2emFkYVc3eUN41/HqitmuLf38YBwA278x+jWIUJDCuwSWgJ595hSRBW1BS70Pd+zfMgMbN0LQD5v8KZlwOb3wO1k6BFY/BrOth5lWw8M/Q4rNPZ5BNmNnmN+G9b8OsT4UTigZw6G+h9yHhrFXIKnrByOudUIeOoWgAe1/jP3/5Q9HUFSWv/xdL0wxGAzjw+9nVkqnSajjuQagZBv1PdB+T6rFSRCSXvAJTS9LMT+hxAHTdN83NLbz3XdiS5XukIvkuk2DiQWfA+B+79x3yi8xreekEePursPmdzNcIKqtgtP8K/nnNu9+ArWl8dpGvEhm8vhrzVdjnk3DAd2DI2QpFExERERERERERySt6v05EREREREREREREJF0KRhOR/FFW497eXBvdnhtmuLcPvRCM/kR2egMmQs1eua4iHN3H7HkSjNf/c0E0bYMVjwYb22N/qB7adn/8T9Pfr2pQ2+2SMhh7U3rzy7qlv6fEq8IjGA3grZhCCkVEwrbkHu/QzlQGnxVqKbHptp9/fxhhMC0N/v2ZnDxcDBIpfi8ADeujryNMiV3u7aYESnafON99jPf8R/rAM/vDu990QqI+/gtMOQWmXwyL/w7L7oM3Pw/TzocWj706g0yCGZItutP7v1W6zp4Lo/XcLxBTAsfc692/6O/x1RIWr39HJRXpr1VWA4f/Ibt60jXwdLhoNQy/zLlfWuU+bsk/FcgoIvnL829xmsFoxsC4b2VQgHX+TooUs3Sff5+/CE56zvviH5V9YNx3Mq/nw9/Ci0fB6ucyXyOIbILRSkrh8N/DmQED3J49EGwieG35KN3g6eQL44iIiIiIiIiIiEgeCuFikiIiIiIiIiIiIiIinYxSf0Qkf5RWu7e31EWzX3MtrJvi3tfzoGj2lMJSWgGnvuKc3Fzo+p+wZ1uXAdB1ZOZr7lwcbNywy9rfH3R6+sGD/Y5rf796SHrzyxWMlvf8gtEW3xVOkI6ISNze/Vrmc/f6RHh1xKnf8f79jRuz36Ol3r+/swYpNKf4vQA0boi+jjB5hZUlhyT1PAjfq+rWrUy9z9oXvV8bdgbZBqOFZcBE6Dku11UUlsFnevetnwq7tsVXSxgSHmFhJZWZrRd3yGjfI6GiR9v9Mo9gNIC1k6OvR0QkE17PCzIJqdzn03Do7VCV5vt4C26He03b19NjYdmD6e8vkq/Sef697w3QdZ89L3rS0Yirsq/p5bMh4RNeli2/EPNUwWiteh0MNSOCjV03Ndi4fJVu6PsBt0RTh4iIiIiIiIiIiIiIiIiIiIiIiIiISI4oGE1E8keZRzBac0TBaFvneZ+AMuTcaPaUwlMzHCa+AFc0pw76yGejvrhnmzEw7n+j3bd6KIz9+p5tIz8TfI0BE6HvUe3b0j2hsrx7euMlfuU+wWgA66bFU4eISFjqVkLD+sznF+rzjlFf8j+huW5F9nukCkZ7/TOdMzgh0ZB6TKEFjSY8gtFMedvtyj57PlfMxJoXs1+jUNk8CEYzpXDIr3JdReGp6AVDznPvSzTBmufjrSdbXv/Pl2YYjNZ1H9jryszrSVdplw73fYLRPvxttLWIiGTK629xSfn/Z+++49uq7/2PvyR5z9jZibP3TsgCwl6BkJCEUUZ7KWW1hZb2Fkq5LaW0QCfQ9Wtp6aXQCaVlBMIegbASRgIJIZNMZyfO9oot/f744uulc3SOdDT9fj4eesQ63/WxI8lHsr5vhT9ux+eD4f8NcyvhokMwMsrXIQ+ugrcuhvUPRTdeJNW4Of8edoOzfqUjoWJudPW09OaF1m0N1VC9Nfq5Qzaha/4sZ3P4fDDqe8767njJWb9UFbIJRivo2/p60WDoa/N/JyIiqSz02b/H+ny+k+JxAaYm8xsUERERERHpWEKRu4iIiIiIiIiIiIiIiGMO32UsIpIAAYtgtMY4BaPtsvi0+KxCKJ8YnzUlffkDMOSrsPuNZFfi3sAroWhA+LZBV0FuF9jwN9jymLfr9poJxz4A2cXt2ybfB6VjYNszkFMOeV3hyGY4srG5T04nE4o24iaz4aml/F7uaskKU4Oklqx8c1uorwrf3vK2ISKSykIh+PgOWP6D6Oc479P2v/vSRfkEOPsDeG58+PZXzzCbmMfeEf33GCkYDWDt76Df56KbP101OPi5WAVDpyqrjeBtgzkG/BfseSe2tVb/0oTpjrkNfB3scwSCNhvu46X76dBwxATbZZfCyO9A2djE15EJTpoHD1vcZivnQb+LE1tPLBrrwh/350Q/53F/hYOrYd+S6Odwyu8iGG1HBw5jFJHUZnW+GMtjMUB2EYy7C0pHwaZHoGYr1O02gdJOrbwbBl4RWx0iqcDp87KBV5jAM6dO+Bes+iXseBkKesPgL5sArU9+Cnvfg72LIs9R+SQc3tD67wnBBljyLVj3B1N7yXA44d/QabTz2sA+GM0uYL2twVebv2ls/BtseQLLjYaf/AzG/9RViSnF7nZy1jvmMXH/h+bvmcNvNM+tREQkXfmAh+O8RuizdURERERERERERERERERERERERNKGgtFEJHVkWQSjNcQpGO3DW8IfLx7S8TbCizN9zofes2Dr08mrIb+32TjoxrCv27dXzDaX6kp4sk/0tbU08jv2m458fhj2NXOJRmFfd/1zOkW3jiTWoCvNhq5wGmsTW4uISLQ2PRJbKNqEu6FooHf1JEPZOCiosA45WHEXFPY3m5mj4SQYrWppdHOns6CD35XVm+HQp1A8KP71eMEqsMvf5uWsQVfDe9fFvt7HPzQBAAO/GPtc6SSU4MC8S462/z+U6Pl8JsR77X3t27Y9A431EIgxzMZO/X7YuQCqt4AvC8omQOcpJlzcjVDQJgwxN/r6/Flw/D/gmRHRz+FUoG0wWl74fiIiqcwyGC07/HE3fD4Y8HlzafLSSc4/iOLAClj3J/M6Zl632OsRSRYnwWidp8Axv3Q3rz8bRt5sLi1N+o35d8VP4KPvRp7nqYFwSUPz+dyqe2DNb5vbD66CZ8fAJfXuHhu8CkYD6DPHXAAe7wG1O8P3O7QOige7mztVWJ0b+7KgoBdMvDex9YiISDwlIrTMIklUREREREREREREREREREREREQkdSn5R0RSR8AiGK0xDsFon/zcuq14qPfrSWYI5MIJ/4GTn4YRN1v0sbgde2Wayw+L7nIcdBrnrG9BBZy3wX1NbZ3+qn0omhfye5lAFad0v04Pg79s3Va3J3F1iIjEYpWDjctT/wyfOwwnz4fup5vfU2Nuh7MWwYgb415iQuR2sW/f/Gj0czc4CEZrOGTCgDoSJz8XgPnD4OO74luLV6w2zvvahGr5s+G8T71Zc9EVUFflzVzpwkkwg5cUiua9ijnhjx89CFUfxG/dfR/CM6PgjfPhg2/A+9fDS8fDwjnuQ+6DNo/Z/hiD3UqGJeY5YbtgtHzrvl4EDImIxIPV47EvTo9bQ77qrv+718L84bDj1fjUI5IIVuff+b1hzA9h2iPmNXavP+xjwBchq9hZ3w1/af56/UPh+7w20936XgajtWQXIPf0EAilaQ6M06BwERHJFKE4X0RERERERCQhMukpWCZ9LyIiIiIiIiIikorsXoHSq1Mi0kTvnBWR1JFlFYxWC6Eg+DzKcmysgw+/Y91eNsGbdSQzBXKg90xz6XUOLJxtNpsDVMw1wWVvXAjb5nu/9rifQNcT3I2Z+gD4XHzAdEFvd/O35PPD9PehPAH3IZ/PbP5f/Stn/UuGx7ce8UbxYOs2BaOJSDrY8TJUvWffZ+CVMOhL5uve55pLJooUjLbjpejnbnQYAFa/F/J7Rr9OugnWOusXaoTlt0HP6dB5UnxrilXIYiN422A0MKG5uV2hbnfs674xF854PfZ50kUig9F6nJW4tTqSbqdAViE0HGnfdnAldD3O+zVDIVh8LdRsa9+2bT480QumvwslDgPJGuus2wK50dXYxOeDk56AV8+Cmq2xzWXHTTCaXZuISDKFLM4LYg2ptNLvYtizCNb8xvmY+n3w6ulwcZ15rVYk3VjdzyrOgzG3xW/dgl5w7J/hva9A3V77vouvgsp55rnCwVXh++x4EfavgE6jnK0fr2C0SH/Te9gPfc6HrCLoeiIM/BL4Y1gvUSyfDytgV0Qkg2xG7+MVERERERHpQFy8lzvVuXlfuoiIiIiIiIiIiIhIDBSMJiKpI2ARjAYm/CCr0Jt1di6wbx9wuTfrSObrfgqcvwuq3oeCCijsZ44Puip8MNppr0DxEPjkJ7D2vsjzH/sgdBoLtbug82TI7eyuvjlbzWYnN/zZkFUMDYfcjSvoC+etM+MTxU0wWumI+NYi3hl6Q/jNsApGE5FUt2cxvHpm5H69zo5/Lakgt2v85nYajFbXwYLRGh0Go4EJnv70f9M4GC3MJnafH4Z8BT6+I/Z1dy2EXW9CN5ehxOnK6uccD4OvTtxaHUkgB0pGhg/nXHwVDLrS+zUPrLAPAz16AF6YAqe97OyxJlhv3eaPMRgNoHQkzN5knr+v/hVseiT2OdtqG4xm21fBaCKSohotHo/j9Zqfzw+Tfg0jboL9y2DVPZFfv2/y+iw47YX41CUST1bBxIkIvOp7IfQ4Aw6ugfoqeO0c675bn4o837Oj4dJGZx9sFK9gtFIHH4qy5XHz74a/wrZn4MTHU3/jntXzNL/e3iEikilCoVD/ZNcgIiIiIiIiiZRB2dihDPpeRERERERERERERCSlOXiXsohIgtgFnzVUe7fOgU/s290GSUnHFsiFrtOaQ9EA+syBqX+GokHgy4JuJ8PMNdDjNCjsY647MfAKKD/GBKi4CUUrnwhnfxD9bTm33P2YM99MbCgamJ97XvfI/Qr6tP7/kdSW2yX88UQGo22dD6+eBfOHw3vXwdGDiVtbRNLX8h9G7pNVBD07SDBaYf/4ze0mGK0jsQsVCmfdH01AWioLutwIPvoHMPI73qy95FvezJMOrIIZYnXSk9DtFPM8oXAATPkj9L0oPmsJlNgEQuxf4e1ae9+HZ8dE7ndnMFE6AAAgAElEQVT0AKy4K3zb4Y3wxgXw7Fh440KoWmI9jz8nqjLbzxOALlPh+H/AqO+Z55NZhdDnAuvHjpJh5nbsaP42wWh2gZUKRhORVBWyOC/w6rHYSmEf6H0uHOPwQxAAdrwITw+Dynnxq0skHqzOvxP1+npOJ+gyxfzdYcqfYp/v4QAcXBu5X32VdVsswWgAsxys36TySXjYD69ON+e1qcrq+bBPwWgiIiIiIiIiIiIiIiIiIiIiIiIiItIx6J2zIpI6sgqs2xo9DEar32fdNvJ/vFtHOrZBXzKX4NH2G5qchHSVjrZu6/9fsPFv4dvOege6HOu8znByyuDIJuf9O081mxcTzZ8F434Mi6+y7zf6VvApCzZt5FkEo1VvScz6256HhXMg1GiuH1wN+z404X+6HYmInd1vRu4z9g7ILo5/Lamg86T4zW0XNNNSfUcLRrPYNG1n7/tmQ3yqCrncCO4PwPifwrifQMMh8Oc2P5fMLjW/y1f9Cpb8d+S1q96DhiP2Ad6ZIh7BaL3Ohd7nQcXs8M+JxHulNsFomx+FTg4CPJ04tA5emOy8f+WT7Y/VVcFTA5qv718OWx6zniOQ63w9J3x+GHen+b0cajTPLeuqYP1DULuzuV/RYDh7KWTlm+/7pRNat7eVXdL6erDOuq+C0UQkVVmF7Sbqd3nZWHMOsfUpZ/0PrTGv45z8NPSeGd/aRLyS7GC0lgZfDQc+htW/jm2e+UNh9ubmvxPUVZnvJ7sYQiGo3gyvnGY93ir82qniwSaIfvvzzsfseBF2LYBzltmfSyeL1fPhWH9WIiIiIiIiIiIiEj+hULIrEBERERERERERERHJKEp3EJHUEbAJRms44t06W+dZt/W9wLt1RCD8ZqbySZDf037cIJuwr8HXhD/e/79iD0UDyCl317+TTYhbvA260r592iMw+NrE1CLeKBwQ/njNNtj2QvzXX/eH5lC0JnvegX1L47+2iKQ3uyDfwn5w4uMw7BuJqyfZyh0Eoy36UnSBTI01zvrVdbBgtFAUP8sXp0L1Vu9r8Urb38lNIm0E9/lMQFEg14T+5pQ1B5zaBXK39WgRrP+L8/7pystgtG4nwdg7zWOez2eOKRQtMXrZhMF8/CPv/p+XRxGwtu255q9rd8Njnd2N9+e4X9MJn6/58SS3HGYsg8FfMaEaw2+Es942oWhgwjbOfAsKKsLPlVUIndsExlmFC4GC0UQkdTVaBaN5HFJp58THTNBtyTDnY5bfHrdyRDxn9dwtWefNo25tH/AajfV/hpqd8Mrp5nzvP2XwWFd4rAvM628/1heIff1TnnE/JngUVvw49rXjwSr83CooXERERERERERERFKcL9kFiIiIiIiIiIiIiIikHQWjiUjqsNug3mATNOHG0UOwf7l1e/lEb9YRsePPggn3WG8o7HysfeBX12kw8IrWx7ocB5N+4019boPRSoZ7s260jn0w/PGSEdDv4sTWIrGzuz29djbU7onv+pUW4Zmf/Dy+64pIeguFrAOcuhwHszdCn7nNIUEdQUGfyH3WPwRLv+N+bqfBaEcPup87nVltmo7kjfO9rcNL8dgIbhfIHc6iK6Dqg+jXSyXVW2HLE7BzQetPKQ5Z/JzLxkNWkbO5K+bCpUE443UY/T0IxCnISqyVjW0OAAznvetjXyPYAFufdj/utRkmEA3grUvdjw8kKIwnrxtMuQ9OfQ6OuRvyurZuLx4EszdD34taH/f5YdLv2tdZMdd6Lbv/KxGRZArWhT+eyN/t/iwYdQvMXAWXhcw5RiRVH0B1Zfi2A5+Yc6CqJd7WKRItq8BaX5KC0fK6wMgonpu3tftteLICdr5qrocaoW4P1FdFHutFEK7PD6e9bAJr3dj4N1j2A3jvOtj0L2isjb0WgFAQ9n0E6/4EW+ebv0+6Gq9gNBERERERERERkcwSitxFRERERERERERERERa0TtnRSR1BPKt2xqOeLPG85Os28b9xJs1RJzofyl0GmM2CQXrIbcbHFoLJcOg74UQyLMe6/PD1Aeg7+dgzztQMhIqZrnf8GMlp8xd/64nebNutCrmQOC69iEp/S9LTj0Sm8K+5vZvtQFtx0vm/pNoNdsTv6aIpA+rUDSA8R00WNHnM+cU9fvs+21+FCbe625up8FowXp386Y7q831kex9F/Z/DJ1Ge1uPFyw3ggeinzOac+ZPfgYnPBr9mqng0wfh/eub7z9dp8Epz0N2kfVtp6APnP4q/CdMcHKvGdDvMqjeDKUjofd5HSv8MVWdtxHm9Q3ftv2F2OffvwyOHohu7OZ/Q+9zYecr7sdahYong88H0/4F/S41z8dzOpn7Q9n49n3LxlnPYxU8JCKSbFaPT8l8LPb54NyV8MwI+34vnQSz17c+9uEtn4Xdf7bZaOAVMPXPOm+R5LI6//YnKRgNYNg3Yfnt1rVVzDXn/nah0TtejG7tzsd6Fxrb43Q45yPY8ript7EWPv3fyOM+/pH5d+195t9Za6F4cPR1BBvg7S/A5n81HyvsByc/A51GOZvD6vmwX2/vEBERERERERERSV0ZFH4WyqDvRUREREREREREUpLdS1B6eUpEmuidsyKSOvxZJhwtXNDB0f2xz39wNRxaY91e6nAzgohXOo2OPoDC54de55iL13LDBB9Yye8NnW0CBxMhpxNMewTeuhQaq82xijkw/L+TW5dEx+eHvJ5wZEP49v3LgCQEo2nDrIhxZAts/DtUb4Fup0Dfi3T/APtAqo68YXX4jbDsVvs+NVuhch5sfwlyO0P/z0PJUPsxDQ6D0ew2bGciq03TTmz6V5oFo8Vwv7IL5Lay+d/wRAUcc48JJ06nx71gIyz7PnzSJgh891vwzn/BSU/YBzPklMHMVfDqmeaxH6DTWJjyJyjoFd/axb3CPpDXA2p3tG+r3gz1ByCntH1bsBE2/gP2LYX8HjDkehOa19aBT6Kv7eBqE7YXjWjut/Hk80GfueZi288Pg6+Fdfe3b2tUMJqIpKhGi3DhQJJDKkuHw5T74f2vWQcgH9kA+5ZB2VhzfecCE3Db0vqHzGX0beYxuqB3PKsWCS8Vg9GyCmDS7+Hda9q35XWHEx8z50DbX4QF071du8/53s5XPAhGfrv5+sAr4I0Lw58jW3l6iHnuN/CK6P4G8+aF5rWOlo5sgmdHw6jvwchbwp9vtxSMw/NhERERERERERERSaI0eq9JJOn0vhkRERERERERERERSWseffyyiIhHcjuHP163N/a5N//Hvr2nx5s5RNJVjotgtDE/MJu9k63iPDh/B5z2CsxaCyc+DlmFya5KotX3Iuu26srE1dGK3sghwsHV8MIU+Oi7sPY+eOtieO8rya4qNWx92rqtI29YHeLw9rFwDqz9HXz8I3hhMuxZZN8/WOts3i2PwbYXnPXNBLEEox3Z5F0dXrLaCB5T4GCUHxlSsxXeugTeuTyGtRMs2Aivnt4+FK1J5ZMmIC1kEczg+yyYoWQYnLceznoHzvkIzl6iULRUNuIm67ZDa9sfC4Xgjbmw6Iuw+lfw4S3wzCioDxNQf3BV9HXVVMKh1e7HDb0hvd9U3fnY8MeDCkYTkRRl9fjkz0lsHeEMvgbmVELZBOs+6x9s/nrtH637ffwjeHYMVC3xrj4Rp6zOv5MZjAYmBCzcucvgrzSfj/U8CwoHeLdmTpkJKYynrtPgvHVw+mvuxm1+FF6bAcvvcDdu2e3tQ9FaWnEXPFkR/ny7JcsAvQ78OpOIiIiIiIiIiEhai/L9KqkolEHfi4iIiIiIiIiIiIiktBRIMhERaSEnjsFodoEV0x6BQAps7hJJBTllzvqN+wkMuiq+tbiRXQw9ToPiwem9cV7sg9HyuiWujlZ0mxJh5d1Qu6P1sXX3w4GVyaknVYSC9gFxyd7YnEy5nc15thtHD8Ly2+37BOudz7fse+7WT2dWm6adqNvjXR1eCjWGPx5L4KBV2JpTG/8OuxbGNkeibH0Kdr1u32fx1c4C6PxZ0OVYKBsL/oB3NYr3hn3Tuu3gZ8FkDdWw5Eb4pw8e9rd/vaR6M/yn7LP2ADycZb5ecZf13Gd/YF/Xlsdh6bedfQ8tHXOP+zGpJJAb/nijgtFEJEVZBqNZPJ4lWl5XmHK/dfvqX5nnaMEG2Pwv+7nq98HHd5qvd7wCr5wGzx0DH3wL6qq8q1mkLcvAqyS/fuDPglPmQ8VcE4aY2xlG/g+M/n7rfidEuG85lVMOp70EOaXezGcnqxC6nwzHP+x+7PLbzOND7a7IfWv32J8zNzl6wJxvVz5l3ccq/LwjB/CLiIiIiIiIiIiIiIiIiIiIiIiIiEiHomA0EUktuRbBaPUxBqPV7YW9i63b+10c2/wimSSnPHKf6e/BqFvAp1MJiYPOk6zbGqqbv67dZS6NLgJy7Nh9ip3C9kRgk8XG141/T2wdqWbXG2ZDvZWOvmG1+6nux2x/wT7ky00AWNUHzjYvZwKrTdNO1O32rg4vWX1P/hjuV0X9rduGXOdsjk0uA/+SZavNJvsmB1fB4U/DtyU7mEGi4w9A6ejwbTtfgSOb4NkxsOpeZ/OFgtYhhU1Gfx/Kj4FzPnJXayTDvxXb/T0VWAUJBevMa1VePZcREfGK1eOSVdBjMti9bgSwcA4cWutsrsonTOD3q2fAzgWwbyms/iW8Mdf+dSKRWFg9p/WlwPl3bmc46XG46BCcvxvG/7h9MHLJsOjnzy6Fzx2By0Jw4V4onxhbvW71vQjKjnE/bucCWHAOBCOcF+9e6O65+cLZUGnxoU4KRhMREREREREREUlD+tuCiIiIiIiIiIiIiIiXlGYiIqnFKhitLsZgtNW/tW6b+kBsc4tkmtwIwWj5Pc2md5F46ndJ+OMNR2DfMng4Gx7vbi7/yoWl3zahDbGwDXzQabN0cKEQNBwK37b+L4mtJdVsm2/f3tGDhQL50Y07vN66LegyAOzgmuhqSDduAuPaqtvjXR1esvq/9gXCH3eidDQU9mt/vNMYmPT/oM8FkedYe1/06yfKpw/A+oec9d31evjjqRDMINHpPCX88fUPwrz+9o+xsaxXNhbG3uHdvP0v826uZLEKEqrfB491gce7wvIfKnxHRFJHsC78caugx2SZu926bevTsOhK53O9++X2x3YthK0RnuuJRMvquVsqvX4QyLH+oIjskuhC0MEE32YVRF9XrPwBOGMBDL8Ryie7G7tvCWy2+NCAJtWV7mtaeF74UEqr58OpdDsRERERERERERERF/ThvCIiIiIiIiIiIiIibinhQURSS04cgtFCQfj4h9btZeOjn1skE+VX2LdP/C34dAohcZZTFv543R54+UQItdkYtvJuWPXL2Na0C5Sx2ggo0lHU77NuswpM6ygOrLJv92clpo5UFciLbtxBm59ryGUAmN1cmcRtYFxLqRqM1vb3fRNfDPcrn8+cz/pzmo8FCuCYe03bsQ+2brNyNEUf+6or4cNbYPHVsc/V0R+/0lnvWYldr2UwRsVsb+Yc9t9QPtGbuZIpUpDQ0YOw/HYTZigikgosg9EcnB8lUn4P6HaydfveRbGvUfl46+uhEOxfAZsehSObYp9fOq7GI+GPp1oAoZ1ownBLhsOIb3tfi1vZJXDM3XD2u3BxLZRNcD52y+P27TXboqvp3WvaH7N6PqznaSIiIiIiIiIiImlKH5YlIiIiIiIiIiIiIuKWUk1EJLXkloc/Hu1G/YYaeGa0fR83mx5EOoLiwVAyInzb5N9D3wsSW490TIGC8Me3P2fCA8LZ8LfY1gzWxzZeJJPVbLduO3rQBNF2VIfX2rf7shNTR6ryR/n9733fus0uyDKcjhKM5jYwrqWGw9BY610tXrEKe4t1I3jFLDhnKYz7CUz4BZyzBHqcYdqyi6H/5yPPcWhNbDXEw4a/wVOD4ZOfeTNfR3/8SmddpiZurR5nQFZh8/XSCK/BhDPyOzDiZhhwuQnZOO1lmHivdzUmk9OA0E2PxLcOERGnGi1eGwmkYGDT4C/Hd/4Nf23+OthggmefHQ1vXQzz+sPHd8V3fclMwUaoqwrfltclsbXEous0mL3Zut2XBYX9zaVoMEy+D2Ysg6z8RFXoTCAXpi82AdlObHnM/rlzdZTBaNueM+GLLVk9H44lKFxERERERERERETEMQW5iYiIiIiIiIiIiEjy6Z2zIpJa8nqEP3740+jme+UUOLjSuv2kJ8Hni25ukUzl88EJj8KC6VDTYiPPuJ/AkK8mry7pWFqGKzi1/yOzgSzax3XbYDTlCUsHVxNhY+eexdD1uMTUkkqCR+FQhPPUWAOcOqqtT8G4O8K3KRgtPKtN007V7YGCCm9q8UqoMfxxLzaCl440l3DG/xQOroY9b1uPP7AKyifGXodX6vbCu1+GYJ13c0YbbCjJl9cDsopM6GG89Z7d+rrPByNugpV3Oxuf3ck818zU12b8DoOEdr4S3zpERJyyOpdw+niWSP0ugbcvi9/8oaAJsMotNwGW6//cun3ZrdDjTOgyJX41SOapr8JyM1luGgWjART2gQv3wxvnw85XzbG87nDsX6DX9OTW5oY/GwZeAd1PN99LlU1QO8D8EVDYD4oGQmMdhBpg86Pmgz4aq6OroW431O6A/J7Nx0IKRhMREREREREREUk7bT8AIVNl6t/3RUREREREREQkoexeTusoL7WJSGRKeBCR1FI8NPzxmm1w9JC7ud67Dva+a91eOhIqZlu3i3RknUbDeRvgjDdMgOD5u2DULcmuSjqSrILoxtXvi35Nu2A0vZFDOrranfbtW59KTB2p5sgm642qTbRhNTr7l8Hh9eHbIv3M2+oIwWjBRmL+pNa6PZ6U4inLjeCB+K6b1w3OeB3OttkQv/vN+Nbg1pbHobHG2zkVjJa+fD4oHhL/dQoqTIhEW30vdj5HzzMz+1w7kIJBQiIidiyD0XISW4cTPh/MXB3fNeYPM8HMbUPRmmydF9/1JfPYPe9Kt2A0gJxSOO1lOPsD8xxq1tr0CkVrqbAPTF9s/iZi58hG2PU6rH8QNv3ThKJB9KFoTQ62eTyzeq063s+HRUREREREREREJE4y6O/i2pUqIiIiIiIiIiIiIgmiHdoiklpKhlm3HVoLZePh0Dqo+sBc9i0xITiF/WHsndBplOl7cC2svc9+rX6XeVa2SEYK5EC3E5JdhXRUgSiD0Wq2Qm55dGPtgtEy6U0pItGIFLZTOQ/G/yQxtaSS2t2R+yhYCHqeDdufdz9u63wYdkP748Gj7uY5sgEaayGQ576GdOE0LO701+CVU8K3PTcB+n8Bxv3YbAhPBZbBaAl4OcufBeUTYcDlsOGv7dvX/cHcv4+5JzXu51sej9yneCic+gI8NcDZnAp2TG9dp8G+pdGP92WZ+2DRIMjvBVXvtz4f6HIcTPodZBe1H1s6CrI7wdH9kdfpc0H0NaaDvG7O+y65CUZ+B/K6xq8eERE7wUYIBcO3pWrQY8lQGHQVfPpAfOav2wPbX4CdC8K3r/gxjLsrPmtLfIWC0FhnwgCb/g3Wtz8Wrq1de334MeHG1tucH+V0Ttz37yWfD8qPSXYV3vD5zd9EZq6C+cO9n//YB2HRl8K3vXIqzFgGncaY61YfAJJT6n1dIiIiIiIiIiIikgAKExMRERERERERERERcUs7HEUktRT0AX+u2SDS1tuXQc12OHqwfdu+D2H7izBzJRT2hW3P2q/jz4ahX/OmZhER8V5WlMFo1duaN4+5ZRe04/NHN6dIpmgMc27W0sGVJpi2ZEhi6kkVdXsi91GwEAz7Jux42Xl4V5P9H4c/7jYYLRSEI1sy+/bp9GfS/WTIKYf6qvDtG/8OO1+Bc1dATpl39UUraHGb8SfwftXr3PDBaABrfgsNh8zm9mRqrHMWPnj2BybEasZyeNbB+VJWfuy1SfIMud7cdsO9hgIw6Gr49H+tx1900Lw2k9PJ/dpZ+TDiRlj2fft+ZROgz4Xu508neT2c9111D+x+C858E/yB+NUkImIl3GvyTfwpGowGJtzXSTBav8vg+L+b5wf1e2HpzbDhL5HHrfl/sdfYpG6vOc/uaK8zBRsiB4bF2uY2pMzt89N4yyrU+XcqKRkGJ/wH3vT4XNWfYwKMd78Vvv3ZsXDWO+YcsmZb+D65XbytSURERERERERERDyk8DMRERERERERERERES9ph7aIpBZ/AIqHwIEwIQgHV9uPbayGj++EqffDnnfs+563QZ+qLiKSygKF0Y2r2Rr9msF667Z9S6OfVyQT2G2Qb7J1HpTcFP9aUomTYDR/dvzrSHW9psOpz8GrZ7obV78v/HG3wWhggg/I4GA0N5v6c7tYB6OBCaPe8HcY9vXY64pVqDH88UQGDvY6B7KKoOFw+Pb1DwE+mPq/yQu4qHwycp8eZ5lQNIDSUVA0EA6vtx9TMjL22iR5SofDmW/BJz+HqvebHyfye0O/S2DwtfbBaFn5QAzhHKO+ZwIdNj0CtTug4QhkF5sgkqxC6HYyjLk98wPAfD53/fcugs3/hv6XxKceERE7tsFoOYmrwy2nIUH9LzOPy74A5HWDIV91Foy2/YXY6gOoWgJvf8GEimd3glHfhRE3uf89EUkoZJ4vhQ0Mq4PG+jDH4hlS9ll7KOjt95mJFHaVenpO935OfzaUT7EORgN48Tj7OXRbERERERERERERSVMe/01ARERERERERERERKQDUDCaiKSekmHhg9Gc2DoPQn+AYK11nwn3QEHv6OYXEZHEyCqIblzNtujXtAtGq9kO9fshp1P086eqwxtM8Fv5JCjsm+xqJFXZ3T+abPyH2did6YINsOt1aKyFTQ9H7p/IAKdU1uMMyCm3D+Rq6+j+8MfdhIA1qd3tfkw6cRIWVzHH/JvXFQ6tse+74S8pEoxm8X/tT+D9KrsYRnwblv/Aus/6B6HrNBh0VeLqamn325H7jP1R89c+n7k9rLrXur8/19xvJb11Gg3H/9W6fdg3YfWv2h8feGXsa/t8MPhqc+no+l3q7JyhyZrfKBhNRJKj0eZ5XyA3cXW45SQkqM8F0GtG62NdpsKALzoLR4tF7W54fmLz9aP74cObYctj0Od86zCxaEPKJD0VVCS7AmkruwiG3wir7vFuTl82VJwHq38Z/RwKRhMREREREREREUlToWQXICIiIiIiIiIiIiKSdrRDW0RST8mw6MfW7oLtL0DlPOs+/T8f/fwiIpIYqRaMBlD5FAy8PPr5U00oZDbirry7+dio78HYO0yQhUhLjXWR++z7ELY9B73OiX89yXJ4Pbx+HhxY4XyMPxC/etKNP8dd/3qLYDQnIWBt1e1xPyadOAmLawo6crKJuuqD2OrxStDi+/Il+H418jsm1OjgKus+i6+G3rMhLwmb1O2C7gZ/BcbcBvk9Wx+PFIw24L9MEIBktr4Xhg9Gq5id+Foy2aAr3QWj7XknfrWIiNgJ2jzv86dyMFpn+/bJ98Hga8O/1nHsg+a86I250a3t89u3H1wD8y3+3rF3sbmIgHkuIalnwi9MiFko6M18/mzoegKUjICDK6ObQ8FoIiIiIiIiIiIiIiIiIiIiIiIiIiLSQSgYTURST9kxsY1/bYZ1W9cTIL97bPOLiEj8BQqjG1e9Nfo1IwWjLb0ps4LRtj3bOhQNYMVd0O1k6HlmcmqS1GW3Qb6l12bApcHMDNdrrIWnBiW7ivQWcBmmUPV++OMhBaO1YxUg1mTEzdB7pvk6J0JwRJP3b4A+c6H7qdHXdXANbPwn7F1kwta6ToP8CjNnn/MjP1ZYBb75EvxyViAXTnkOnhpg3++1c+Ds9xJTU0tWwWg9zoIp94Vv63I85HaFut1hGn0w7seelScprMvxMPZOWHZr87ERN0HvWcmrKRN1P939mL3vQ+dJ3tciiVe9DTb8BQ6uRp8CLynv6CHrNrfn8onkz7ZvH/xl6/NOnw/6zIExt8Py26NYO0L487vXuJ9TOp4+F8CwG5JdhYTj88E5H5qQ/CMbY5/Pnw3+LDjuL7BgOtTvcz+HgtFERERERERERERSWCb9PTCTvhcRERERERERERERSVcKRhOR1FNxHhRUQHWldR+fP7pPaNfmEhGR9JBVEN24mm3RrxmMELQTNjgkja21CEpZ/5CC0aS9SMGBLa1/CAZ9KW6lJEVjHczrl+wq0p8/ijCFNb+Hode1Phbp8TqcTA9GswuLO/Mt6Hp883WnP781vzWXCb8wQUlu7VoIC86BxurmY5XzzL9rfweDroGp99vPYRX4luhgNICi/jBnKzzZ27pP1fuw41XocVrCyiLYYL1Bv+19pyV/AEbfBh98vX3bJUdNu2Q+nw9Gfw8GXgH7lkKnsVDYN9lVZR6fD/J7Qs1252NemAzHPwz9L4lfXRJ/B1bByydm/nmIdAyRAsCSrWyC+V3WVuGA+AZ32/1canebc2JJb76AeS4byA3zb074Nn8uBHJafG0xNpAPnSdD8dDMDJjPFJ3GwLkrYMFZsPut9u3H/wM++RnsXxZ5rqYgx86TYfZmePmk8I9ddnIdhp2LiIiIiIiIiIiIiIiIiIiIiIiIpDC7aH7F9otIEwWjiUjq8WfDaS/DO1dA1buAD0pHQtkxUD7RXMrGwfOT4eBKd3N3nhKPikVExGuBZASjuQh+ygTbngl/fNM/Ydo/EluLpL7GOud9F1/pLhgt2GA2kO54yYQdjbgRep3jvsZ4Wnc/1O5KdhXpL5owhQ9vhr4XQl635mNWYVl2Mj2QxO5nUtgm1K++yt3cS78NxcOgYlb7NTf8FVbcBYfXm2P5vaFmq7N5P/2TuTTVl10K3U+HsT+C7CJzLNQYfqw/SS9nFfQyQXMvTbPus+gKmLM5YSVRv886NLwgQsDVkK9C3S5Y9SsTYNf9VJj6Z4WidUQFvc1F4iea310f3WJ+BybrMU/cCwVh1b2w5XHz3PTIpmRXJOKdaEKOE2n0rfDGBYn/YfoAACAASURBVO2Pd7U5b/OC3eO7HgPc+7+gMZtQMX+ORdCYizbHAWc5OjcWI6sATn8Nlt4En/4ZGg5BdicYcxv0uxQq5sLSG2H9g9BYaz2PL7v56+wi8/xy6Y3WH2DRro5iKBke07ciIiIiIiIiIiIiSRLSVk4REREREREREREREbe0q0pEUlPJMJj+jtlQGGwwG2Hayu3ibs6+F7cPBRARkdSUFWUwWu1O8wYSn8/92I4WjJYJ6qqg4TDklDVvnJX4CLoIRgM4shkKIwTyNHnnctj0cPP1na/AyU9D75nu1oynTY8ku4LMEIgiTKHhCFTOg8HXNB8LHXU/T+1O92PSSdDmZ+LPbn29zwXW4ZhWFp4HZ7wO3U4yv2eDR2Hlz2HZ91v3cxqK1lLLwIj9y6DqfbOWzwchi6AJXxJfzup6PJz0lPmZhFO9BQ6shKxCc2mshdzOEMjzroZgg3muHMiBur3W/XI728/jD5ggutHfNz/TaM6fRMSZijkmDNKNI5vM42LxYBOCCCZMI6vAhEnqPpt6PvgmrPltsqsQ8Z7PD4H8ZFdhr2KuCXnduaD5mD8Xhn7d2fjySdGt21gNwcbw4VmxhPfHnc8+GMyLIDK7wLGwa+bod5ukNn8WTPwVTLjbhOfn9zCPjwBZ+TD59zDx1/DutbD+IYs52jw/bznuufFw4BP7GoZ+zdvnliIiIiIiIiIiIuIthZ+JiIiIiIiIiIiIiHhKwWgiktp8fuuQE7fBaMf/LfZ6REQkMbIKoxsXajQBZ9GE7ygYLX1ULYFFV8D+5a2PD/sGTLgn/IZkiY3b+0flPBjmYAN65VOtQ9GavD4LTpoHFRbBQ4lUuwf2vJPsKjKDP4rHZoDKJ1sHo9mFgFlJ6VACD1gFiEH7ELGeZ0a3xrLb4Jh74b2vwt53o5vDid1vwPYXoNfZNsFoSX6cr5gFBX1MCFo4z4xsf2zA5TDp/0F2cfTrNtbBR981oTvBo9BrJvS/1Lp/pGC0Jm0354uI93rNcB+MBvD8RMAHhHkD/cRfm8Afhcikhv0rFIommavL8akfRO7zwYmPwapfw/bnIb8XjLkNysY7G9/jdMgugaMH3a/dcBhyStsfX3575LHZnaB0pH3gWCxhY1ZtCsUViZ4/Cwp6WbRlm+eKlmMtnnv5s+GsxbD0Rlh3f/g+E38LQ693V6uIiIiIiIiIiIiIiIiIiIiIiIiIiEgaUzCaiKQvN8FoZ7yhzd4iIukkUBD92IYj0QWjNSoY7f9UPgVdpzkPVIlFKGQCzmq2QU45NByEooHm0tahT2HfEnjzc+HnWv1rs6l47O1xLblDaqxz1z9cMFr9ftj9JtRVmdtW2XhYONt6joWzYeYqKBnmvt59H8LO18xtqvspUNjX2bijB2HPIqjZYTa65nWH1b8hbBiJuBft+fi2Z6G6EgoqzPVogtH2LYX6fZBTFl0Nqc7uZ9L2515QASP/Bz75ibs1dr3+WUBPAmz+twlGC1oEo/lT4OWssxbBk72d99/wVwjkwZQ/Rr/mJz+DVfc2X98231zC8efGdj4lIt7qNQN6nAU7XoxisMV5yAffgPze0PeCmEoTjzw7OtkViMRHVjGM/2myq3Amp8y8HhDNawKBPBj/c3jvK+7HhgtG2/qseQ5iZ9xdMOq77tcTkRRnEzpo97pIdpF5vlg6Gj64ofl4VqH5G2f5BO9KFBERERERERERERERERERERERERERSQMpsJNURCRKToPRsoqgy3HxrUVERLzlzwZfAEKN7sc2HIHccvfjQg6CdkIh8NlsbssUC2cDPjjhX9D3ovit03AEFl0Fm//V+rgvy2wOHvtDcz0UhI9udRbis+GvCkaLh6DLYLRdr0NjrdlcDiYobeEc9+vOHw6XNoLP76x/sAHeugS2PNb6+IS7YcSN9mP3LIY35kLNduf19bsUyifB0ghzy2dsAuYCeeY2Y+XJPmaD8OBrIWQRlhXJY13gxMehwiaQL13Z/Ux8YV76GXcXdDsZtj4Fa38fv7qitf7P5nfA7jfCt4f7nhKtoBeM+Das/IXzMZ8+AON+HF3waEMNrPy58/65nTvGOYtIugjkwCnPwsZ/wKIvejfv2vsUjJYK9i9313/gFXEpQ8RzJcOhYi6UDE12JYkx5MvQaQy8NM3duIYj7Y99+r/2Y856B7oc624dEUl/PgeB8cO+bv6mWfkE+PNg8DWQ3yP+tYmIiIiIiIiIiEic6YM5RURERERERERERETcSoGdpCIiUcrr6qxf38+BPxDfWkRExFs+H2QVwtGD7seG25DaJNgI21+Ana9CQW8YdBVkl0Qe1yTU4GwDW0YIwTtfhB5nQE6Zt1MfXg8bH4Zlt1os3QAf/wiOHjKBWJv/DdWbnc19ZAMEj5pwPfFOsD788e6nws4F7Y+HGkwA0NDrzf34rUuiX/vhAJSMMF93ORYK+0OfuWbDepMjm2H5D02YUjhLb4KN/4Sy8S0OBmH321A6CnqeZcKN3ISiDb0BJv36s/kVjOZI6RjYtbD9cX+OCQZ4boL9+He/bB6Tgg6CLMMJBeHNi+H8nZBTGt0cqWbPu1D5JGybb90n3OOhzwe9pptLzXaz4TrVPNnHus2fIi9nDfySu2C0UCO8/zWY9rD7tXa+4uxcpUk04WsiEl/+AAy83ARS7l3szZw7XzG/35yGyEp87PvIed/PHTbPdUUkNXU9HoZ+Hdb81vmYxur2x+zOr4f9t0LRRDoqp69Xdp5kLiIiIiIiIiIiIpJmMij8LJRB34uIiIiIiIiIiIiIpK0U2UkqIhKF/N7O+o28Ob51iIhIfAQKogtGa7QIDQmF4P3rYd0fm4+tuhemvwf5PUwIVyTB+o4VuNVYA5VPwcAvejfn7rdhwXRoOBy57+pfRrfGpkdhwOejGyvhNdaFP14+EXa9YYLQ2nr/aybEp7A/NNbGtv7Bla3/XfFjOOFRqDgPdr4Or5wSeY59S8ylrUNrogiF8sHgq12OEfp9zoTBtH0TYN+LTWjd547AoxGCQjY/Zh2MdtI8c5t7+zLr8cE62PEi9L3IVekpaf1DsPgqE4hjxxchJNpp4HQspvzJhLdVzvNmvkjfc6KUDIfiIXBorfMxmx6Bsgnun6dWPumuf46C0URSVr9LvQtGAzj0KZQM8W4+ca96i7N+py9QKJpIOsjr7q5/2/DahjBBaS2VDHM3v4ikGZ91U0d6XVlEREREREREREQyl8/mdVARERERERERERGH7LL5ldsvIk38yS5ARCRq+b0i9znxCW00EhFJV4H86MY9PwnevAT2L299/MObW4eiAVRXwvIfmK83/TPy3FZhPJnswCexz9FYD2v/AC+dCC9NcxaKFot3FVjluWB9+ONZRVA8yHrch9+Bty6OQz11sPQm2PeRs1A0rw25DjqNSfy66a7bSXDc36Cgwlz355hwmCn3metZBSZoys6ed7D8dNWcTtDvEigeaj9HdaWrslNS3V5Y9CUHoWhZkd+MmNvNu7rCGfYNEyQ46XemHi/UbPdmnlj5fNDnQvfjlt8Otbsi99v9Nrw2E/5TDp8+4G6NzpPd1yUiiTHsBhj9fe/me34CvHSS+b1wZJN384oz9Qfgo+/a98ntakJCu5+SkJJEJEbZJe76tw1GO7TGvn/pCHfzi0jmUDCaiIiIiIiIiIhIB5ZBOzm1K1VEREREREREREREEkTBaCKSvgp6W7cNvAIuaYA+cxJWjoiIeCyQE/3Yzf+CF6bC4Q3m+urfwMq7w/dddz+s/0v7ILVwOmIwmpOfS1uNta1/Vh/9D7z3Vdj9pnd1RVq/Zmdi1uoognXhj/tzIwdZxcuhtfDc+MSvWzoaxt2V+HUzxYDPw+zNMKcSLjoA0/4JWYXN7YX97MfX2ty3m0LARtxoP0fNDuf1ppLGWhOIFmyAx7o4G+N3EESWF+dgtPzPnrcV9IYBl3szZ+kob+bxwshvm8AbNxprYNMj5v8STMBdKGjeOBpsNL/Ddi00YaLbnoH6fe7rGnil+zEikhg+H4z9kXndatBVsc/XcAR2vwHrH4LnJ0f3mCHRCTbAK6fZ97noEMzdZkJCRSQ9ZBe76982GO3AKvv+yXoOLSKJYRdO7lMwmoiIiIiIiIiIiIiIiIiIiIiIiIiIiFMOdsiKiKSo/J727f5AYuoQEZH48MV4qtpYA08NhFG3wro/2vdddIWzOTtiMNr256F2D+Q5COE5ehgWXwWV88Dnh74XQf8vwKp7419nWx//ECb/PvHrZqpGq2C0HOh5tvk/7wh6Tofj/wE5pcmuJL35fNYhx5GC0QL51m3+zzYYD74Wsorg7c+H77fy57DpYfMY0Xtm5HqTrX4fLLoSKp90P9bJputchyFr0ep5VvPXU+6HkmGw7Vlzfdg3oOoDWOEybLDLsd7VF6ucMpi+CJb9ADb+3fm4D74BS74FoUZzzhNq8K6mQVdBqQI3RFKePwDFQ7yds243PDse5mzydl4Jb+ersG+JdfvgL0N2UeLqERFvZLkNRqtufb3yCeu+5RPdh+qKSObwKxhNREREREREREQks4WSXYCIiIiIiIiIiIiISEbxJ7sAEZGoBfIgUBC+re8lia1FRES859VGsRV3moAALwTrvZkn2YJuwldCsOz7zrou+iJsfhSCdSaYbsNfYcFZkcfFw9r7YM+7yVk7E1nd9gO5Jvyu89TY1yjoA8c+BL4UDbcd9T049XnI7ZzsSjJbpGA0u8fzlr83+l8Gg79i3bd6C7w+C/Z/7K6+ZHjrsuhC0cDZ7TXL4jmVFwZ+CcrGNV/3B2DkzXDGa+bSZy4M/bq7OQd/GTqN9bLK2BUNhOP/BpeFWl8utgiVbBJq/OxfD0PRyifCpN95N5+IxFevGfbtBX3gwn1wxhvO56zeDDtfi6kscWjLY/btpaMTU4eIeCvbZTBa45EWX9ea10WsjP+pCYoWkY5JwWgiIiIiIiIiIiIiIiIiIiIiIiIiIiKOKRhNRNLbwC+1P5ZVBN1PTnwtIiLirayiZFfQXvBosivwRmOtu/4b/gIN1fZ96qqgcl70NcXDqruTXUHmCFqE+/hzIbsITl8AI26Kfv6K2XDOhzDwi3DOR9HPE063k014W9MlkO98bP8vwNAb4ORnYNyd3tYl4RX2t2/fv8y6zZfV+npul8jrrf195D7JdGQTbH8++vE9p0fuk+Uy+CGSokEw5Ho44d8w9YHI/fO7m9CfSPJ6wEnzTOhXuoRJBHLg7A/iN//EX8Mxv4SBV8DAK2Hy7+HMt0xopYikh9LRUDoqfNsx98K5n0BOJ+h2Akz8jfN51/3Jm/rE2pFNsO5++z4FvRJTi4h4y+35cUOLYLStT1v363M+9DgjuppEJH20fW2iJQWjiYiIiIiIiIiIdFyhULIrEBERERERERERERFJOzbvzBURSQNjbod9S2DPO+Z6IM9swA/kJbUsERHxgNdBLV4IZUowWo37/mt+CyO/Y91n34cQaoytLjeyikzgz5bHrPts/jfU7YXczomrK1M1WgWj5Zh/s/Jhwi+gcAC8f727uUf/AMbe3ny90ygonwxV70VVKmDC0E5/FXxhssBDf4X3roN1f7CfY84WKKhwtt6UP8G717Q/PvAKZ+OlWWE/V9031PRn3p7z2N/QiVnbipjYqUWjo2C0+0yYVKra8XJs48f/NHKfzpPNfTlYH9taAMO+CcfcE/6+ZyenE5z5JiycC3W727SVm+d4PU6Lvb5kKD/GhCxu/Lv3c/e7FPK6ej+viCSOzwfHPggLZ0PNdnOssL85jyka0LpvxXnwwQ3O5t30T+h3MfSelT5hkunmvesi98nvHf86RMR72S5fj6qrav66aql1v36XRVePiKSX/p+HZbe2P15QYR+aJiIiIiIiIiIiIukvo8LPMul7EREREREREREREZF0pXffikh6y+sCZ7xuNhzVboduJ0FOWbKrEhERL2QXWbdNvg/e+2riamniRWhMKnAbjAbw4S1QNAj6Xhi+feXPY6vJrX4XQ8X59sFoAI91gbnbIb9HYurKVFa3/aZgtCZDrzPhG06CIgAGXdU6FK2J21CllsomwBmvWbf7fDDlPnMbeuXU8H3O3wl53Zyv2WsGZBVCw5HWx/tc5HwOMVwEoy06MJUZy+ezv8Gc/9/x6xAPXhHk8uM+u/04CUYDWH4HjPm+20rj7/BGWHx19OPP32kCxyLJLoaKObD50ejXApi5GkqGRj++6zSYtRp2vwU1O8yxvG7Q9QTILY+ttmSb8AvY+hQcPejdnEOuUyiaSKboPBlmroI9i805UNcTIJDbvl9BHwjkOz+XXzgbBl0DU+/3tl6BQ5/Ctmcj98vvFf9aRMR7boPRVtwJo24xzwkPrrLu13tmbHWJSHoo6g+dp8Ded1sf73uxAmtFREREREREREQkM+i1ThERERERERERERFJkBh2m4uIpAh/NnSZAhWzFYomIpJJsmyC0fpcAENvSFwtTYJHE79mPBz4JLpxS2+GYGPrY0cPwnvXw/YXYqspqxgK+kbu58+B/p+Hib+F3jNMSF4kH94SW21ifdsP5LQ/NuSrcMyvILvUfs7hN8IUi6COaIPRBlwOp7/irG/3U+CMhVA0sGlR6DwVZm90F4oGUNALTn0Rij8LhcrrDlP+aG6j4k5eT8ddv7fhzv8LRQMIhXx8/eEQRxs++8TSzpOcTbT8Nji83k2V8VWzAxZfC08NiG0eN7fjqQ+Y363+bHOpmAP9LnE+vuc5sYWiNckpM4ERg682l4rz0j8UDUw459g7PZzQB+N/4uF8IpJ02SXQ80zocXr4UDQw50ddjnM376d/gn8VwPq/ZNinkyfZ1qed9VM4s0h6ynIZjAbw4nHwTx9UPhG+ve/F1o/vIpJ5Tn4aup9mzt8CBSasdvxPk12ViIiIiIiIiIiIiDf0t2cREREREREREfGA3atMIdtWEelIspJdgIiIiIhIWHYbUf05MOgqWP9naDicuJoyJRht9a+iG3dkA+xb2hw2FArBwrmw89Xo5ssuhVlrwJcF2cUQbIBHC6z7z1hmQqyyCpuPDfkKDL4WFpwDO14MP27zoyZALSs/ujoFQha3fV92+OPDv2EC0oL1ZvN3sB7q9pr/O18AAvkRNoW7+FTJsmPgzIWA3/3/cbcTYdY6qNkOgbzYApi6Hg+zVkPtHsjtrE/GjJY/4KhbXTCHBftPbXf8UC28tgbOHAmUDHO+7qZHYVQKhCgePQTPT4KarbHNUz7ZXf/sIjjxP9BQDaGguV61FDY9EnmsLwDDkhBWmm6GfAU++h40HIptnqJBMHOlCbATkY5n+I2w6zXzWO1UYw0sugJqd8HIb8erso7lwMeR++R112O1SLrKjiIYbf9y+/a+F0RXi4ikp7xuJri//oB5vUnBiCIiIiIiIiIiIqKNnCIiIiIiIiIiIiIirvmTXYCIiIiISFjZRdZt/mwoGwunvZy4eiAzgtHqqmDHS9GPf2EyrPqlCUXb+nR0oWiF/aHPBTD9PbNRMLfc/J9GCrXK7906FK2Jzw+Dr7Ye11gDO19xX6c0CzaEP+63ydoO5Jj7sT/b/L8V9jWBYTmdIm8ItQsVm3I/dDsJSkfDyO/AmW+a+aMNvvP5oKBXbKFoLeV1USharIZ8NWKXAw2llm2rdrR4I2H//3K2ZuWTzvrFU/0B+HeJu1C0rieEP14xO7oasgqaf/+WT4CzFkHJ8Ob2HmfCjI9h2DfNfbDnOXDyM9Dr7OjW60j82TDgC+7GFFSY35N53aF8ogkCPfMtBe2IdGS9Z8BJT0PP6ZDfC/J7Oh/74c1wZEv8autIPn0gcp9e58a/DhGJD382dD3R2zmLXYQ2i0jmyClVKJqIiIiIiIiIiEiHovAzEREREREREREREREv2exiFxERERFJop7TYcWPw7cF8sy/XabCiG/Dyl8kpqZgfWLWiad9SyAUjG2OJd+C2p1QtcTduNHfh7E/su/jz7H+OWeXWI/reTb4AhBqDN9e+ST0numsTmkvZBEKGLdwHptgsf5fgMHXxGldSQnDvwWVT9kGhB1ssH48KGq55zi/h7M19y6GNb83gWIFvR0W6rG3P+9+zMArTTDg9heaj5WMgMFf9qamLlNh5sr2xyf+0pv5O5qxd8L6h0xgZ0u+LJj2MPS9MClliUia6T3DXJrsehNemwENhyKPnT8cLj4Sv9riqaEG9i8DQtB5avKCaPd9FLlPfk8YcWP8axGR+Bl3F7x8knfzFQ/xbi4RERERERERERERERERERERERERERERkQ7An+wCRERERETC6noCFFS0P14xB3wtTmMTGXYVtAiHSidefQ+f/Ax2vOSs75Dr4OT5kUPRwITDWPHbtGUXw4DLrdt3vBJ5bQkvFLQO07P7/4qJTdBFUzCiZK7iwTD9Xdvb14HGUsu2wpbBaDmdnK/7/vXwZAV8dCuEEvwJrtWVsO0Z9+Oyi83j69Q/w+CvwDG/grPehrwu3tcoscsth/N3wKhbzWOZP9sEvE5fpFA0EYletxPg7PdgxE2R+zZWw4EwgZeprmoJPDcOXjwWXjwOXpgC1dYBqnG1/If27UWD4ZwPoXRkYuoRkfjodiLkOQxZjiS7E2TlezOXiIiIiIiIiIiIiIikqQS/F0lEREREREREREREJAMoGE1EREREUpPPD8c/bDaQNikeCpN+17pf1xNh1HdbHxt0dXxqCmVCMFpD4tYaewdcFoLJv4Pe5zobYxd+Fsn4n1u3HdmY+KCjTBFqtG6LVzCaz+apqs8mNE0yR0EvGH2rZfOBButgtIKcFreRbBfBaE1W3AU7XnY/Lhb7P45yoM88bg76Eky5D4Z/w10YnCRedgmMuwMuroFL6mHCz6F8YrKrEpF0VzIMJvwCTn7GPM7YWXZbYmrySigEi6+BQ2ubj1W9D+9/PfG1bH8RKp+w7zNrDeR1S0w9IhJfXY7zZp7up3ozj4iIiIiIiIiIiIiIpLaMen9iJn0vIiIiIiIiIiIiIpKuFIwmIiIiIqmr2wkwez2c/DScvgBmLDdhOS35fDDuLpi1zgSpnfMRTLk/PvUE6+MzbyLZhVx5qde5tqFGlsonRb9mXhc46x3r9u0vRD93Rxa0CQT0Z8dnzaJB8ZlX0os/x7Jpv00wWqv3GNqF7NnZ9M/oxkWrZnt04xSCJiIiLfWeAbPWwujvW/fZ8h9YeU/iaopV1Qewb0n745VPwJEtiatj+R2wYLp9n6kPKMRXJJN4da499Dpv5hEREREREREREREREUkF+puoiIiIiIiIiIiIiCSIgtFEREREJLXllEHvmdD9FAhYh+RQPAj6XwJlY80bL0be4n0tdgFR6SLUkJh1ov35j7gp/PEBX3Q2Pq+bddu717ivR+xvM/6s+Kw59Gvhj/eaEZ/1JDX5cy2bDtgEozUEW1wJBS372dr8WHTjolVd6X5MViF0Od77WkREJL3ldYOxP4KyCdZ9lt4Eh9YlrqZY7F1s3bZtfmJq2PAPWH5b5H7ZxfGvRUQSJ9uDYLQpf4Tup8c+j4iIiIiIiIiIiIiISKpo9amVIiIiIiIiIiIi0bF7mUkvQYlIEwWjiYiIiEhmGniF93NmQjBa0EEwWvdTY1uj87HQdVp0Y3ucAaWjWh/z58Lga52Nz+1i3VZdCUcPRVdXR2Z3u/dlx2fNsvHQ9cQ2a/lhyFfjs56kpkB0wWiNLbPQSoZFt3bDocQGxjgJW2lr0LWQle99LSIikhmmPWLf/vSQxNQRq6oPrNv2fRj/9bc8Ce98wVnfLAWjiWSUnBiD0XrNNK9l+Hze1CMiIiIiIiIiIv+fvfuOl7Os8///uk5NTnovhAQSQu9VAghSpLgrRVDBhthx7bvquiqiu2v5Ka5lbasifBcLIGADpCiKFKlK7ySUBEJCek6Sc2au3x+TbOZMZu65p50y5/V8POaRXP2TcHKYOXPP+5Ykaejyk5ySJEmSJEmSJFXMYDRJkiQ1p2rDcJI0QzBazCSPj9oBXnU97PtlaB9b+f5Tj4Sjr6v+g78t7XDsn2DeO3P/DWe+Bl51LUxZkG59uTCCNY9XV9dwlhSm19LWmDNDgKOuhp0/AON2h+mvhlf+Crb7h8acp8GppaPk0KpM6WC03kzehYRTjoD2KgMNfjO/fy5KXPlA8vikg2G3j8O+X8kFT048EPb9Euz/1cbXJkkausbuXP658fK7+qeWWiy/s/TYxmWNOzezEe54D9x8avo17QajSU2l1mC0ee+oTx2SJEmSJEmSJGmIMPxMkiRJkiRJkqR6atCn2CVJkqQmlN000BXULiaEXIU22OeL0NIKu38cdno3XD6hsv2PuKL2QIDOSXDI/1S3tlwg27O/hJ7VMHoejNq+ujOGm5gQCBjaG3du+2g48JuN21+DX0tnyaF1mVElx/Jz0WjtgH2/CHe+r+++E/eHZbeVr+Hx78LO56YotgbPXF56bK/zYa/Pbm3v/i+NrUWS1Fx2Phce+nLp8SXXwqQD+6+etLpfhHVPQ+cUWP1Q6XmNDEa76wPwZIWvSdpGN6YWSQNjxPTq1047GmaeVL9aJEmSJEmSJEmSJEmSJEmSJEkaZgxGkyRJktLKJgREDRUxU3rsuJth8iu2ttvHVb5/R4VBav3twf/MPQDmvRMO+l4uCE6lZRPC9Fp8SakGai0djJaNLSXHegu/zc1/L4zdFZ77FbR1wewzYMK+sPha+NsnYeXfS9dw1/th5EzY/pQKi6/AC9eXHpvVwHMlSc1v7tuTg9Hu+0zu/5GzT++/mpLECI/9N9zzkeRA5y0aFYzWsxYW/r/K1wWfG0tNZcZxuX/Xhd+PRs6AHd4MPavgiR9suy60wVFX50KaJUmSJEmSJEmSAIjlp0iSJEmSJEmSpD5Kf5JYkiRJGup2+5f67rfyvvruNxBKBQyM3qlvKBpACDB2l8r2D6G6uuophHMn4gAAIABJREFUbZDQkz/MhS489GV49JuwblFj6xqqkkIpDH9QI7WUDhLItI8vPZYt0jntKDjg67DPf+RC0QBmngAn/Q1O/FtyHTefCt0vlq+3WmufKt7fOQUm7N24cyVJzW/sLnDAN5Pn/OUMuOuDsOrh/qkpydMXwd0fSBeKBo0LRlv9CGQ2VLamdSSMntuYeiQNjI4JcOjFfV/3Tl4Ar3kY9vsKHPx9OOwX0JIX6DzxQDjlucSQZ0mSJEmSJEmSpEEvGuQmSZIkSZIkSRp4BqNJkiSpeW1/OlDHoK6nfgzPXlW//QZCzBTvbykRcDXnrMbV0ihzzkw/97Fvwd8+CXd/CK7eF166pXF1DVXZntJjLe39V4eGn5bSYQKZltElx3qLBaMlmbAPzH5D8pwl11a4aUrZHthQInTt0Isbc6YkaXjZ5QOw8weT5zz2LbhmP3j2yv6pqZinLobb317Zmo3LIVb6P/4UVj9S+ZrtXgttI+tfi6SBtcOZcPIiOOzncNwtcOxN0DFu6/ic18Nrn4QFP4Nj/gjH/QVGThuwciVJkiRJkiRJ0kAaJmFig+HmuZIkSZIkSZKkYcFgNEmSJDWvyQfDgkugc3Lf/rZR1Qc63XVuYz5831+yvcX7Q4lgtD3+DeafuzWgaPw+ub5i5r+/9vrqYc7rYdrRla/rWQn3/kv96xnqYomvGSj9dSPVQ2vpYLRsy6iSY5lqvkW/4sfJ492Lq9g0wdqF8KfXws87KHlRZNd29T1TkjR8zSkTAAqQ3Qg3nwaZjY2vp1DP6lxQcaViBv58Ciy/s/Yalt0Ot74Z/nA83PaWytcf8sPaa5A0OHXNzH0fnbKg+M+SuraDHd4I045KfA0jSZIkSZIkSZLUFOIwCYCTJEmSJEmSJA04g9EkSZLU3HY4E057EU55Fs7M5H49fRWc9CC0juw7d+R2cOLfYeorS+/XvQRWPtDYmhupVMhVaC3e39IKB/03nLESTl0CJ/0N9vjX3N9VvtaRsNO76ltrLQ6/tLp1y27LBRblG8pBePWQ7Sk9Vm3AoJRGS0fJoUzLyNJj1fyTbeuCo64pPd67topNS+heAr/ZCZ7/TfK8wu+zkiRVa/KhuUcaNxzZ2FqKef53uZDiqtb+JlfzS7dVf/7ia+CGV8LCS+CF6ypfv/MHoX109edLkiRJkiRJkiRJanKGiUmSJEmSJEn5kvL3zeaXtIXBaJIkSWp+oQW6Zm39taUVxs6HV98KM06AUTvCnDPh2Jtgwt7bBqYVumYfuPFoWPNkv5RfVzFTvL+lLXld6wgYOT33+7ZRcPxfYc4bc393M18DR98IE/apb6216JxU/dpf7wiXjoGbz4Df7g4/74BrDoAXbqxffUNJtkSYHpT/upFq0dJZcigTRpQc6602y3DmCUAoPlbPf//3n1/6e/EWrSOgY0L9zpQkDW8hwKt+n27u8r9Cz+rG1lNo8dW1rc90w6Nfr379IxckhwGX0z6m+rWSJEmSJEmSJEmSmoOf1pQkSZIkSZIkqa4MRpMkSdLwNWFfeNU1cPJTcNhPYcxOuf6EMJ7/8+If4YYjoXd9Y2ust1IhV6G1sn26toPDfpb7uzvqtzDl0Nprq7fZb6h+be9aePZyWP1wLsBoxT3wp9fCqkfqV99QERNCIkJ7/9Wh4ac1KRgtYazaYDTIBT4Ws/yvsHF5DRtvlu2Fhf9bft6I6bkQG0mS6qV9DMx7Z7q5L99T//NjhLVPw0u3QGZD37E1j9W+/zOXVV/X0j/XdvaIqbWtlyRJkiRJkiRJkiRJkiRJkiRJktSHwWiSJElSoc5J6eZ1Pw8v3NjYWuotZor3h7b+raM/zH1bfffLrM+FpQ03pcL0AFqa8OtGg0dLR8mhmBCM1ltLMFrb6NJjj36jho03u/9z0Luu/LzJgzBsUpI09LWNSTdvdZ3DgHvXwc2nwa/nwvWHwxXT4YUbto5vXFafc6oJMe1dC9lN5ecd8C1oH1d8bMaJlZ8rSZIkSZIkSZIkSZIkSZIkSZIkqSSD0SRJkqRCaYPRAB78z8bV0QixRMhVMwZczTgBJuxX3z1XPVjf/YaCUl8zBAi+pFQDtbSXHMpQOhgtU1Mw2qjSYw98AV6+Fx78EtzzMXj027BuUfq9e9bCg/+Rbu6cN6bfV5KktNrTBqM9Wt9zH/oKPHfV1nbPKvjDcbD497l2vYLR7vlY5WvSnj33rXDoxdA6om///l+HsfMrP1eSJEmSJEmSJEnS8BHjQFdQoaFWryRJkiRJkiSpGTVh+oEkSZJUo87J6eduWt64OhohZor3h9b+raM/hAALfgq/261+ez5zGRz2s/rtNxRke4r3J4RWSY2WaekqOdZbUzDa6OTxa/fv277v03Dkb2Hq4eX3vnrPdDWM3wtmnphuriRJlUgbjLbm8fqeu/CS4v03nQA7vg16VtfnnKcvgkN/UtmaNMFobWOgfSzMei289il48Y+Q2QBTj4Qx86oqVZIkSZIkSZIkSVKzGSZhYiEMdAWSJEmSJEmSpGHCYDRJkiSpUCXBaEMtHCrbW7w/NOlLg45x9d0vZnJ3bxxOF/fEYfY1o8Fj9Nzc9+PCwJLWLrIjppdclqkpGG1UZfN7VsENR8A/Pg5jdio9b/WjsG5R+f1GTIcFPxt6/2+RJA0N7WPTzVtxD9z+Dnjqx7l2axccfhlsd1Lx+b3d8NCXYemfoHdNrq9tDEw7Cua/H9Y+Wfqspy9KXX4qG5dD56Tcc/ZFP4dFm/+/Ov9cmH5MkfkpgtHyA+VGzoAdzqpfvZIkSZIkSZIkSZIkSZIkSZIkSZK20TLQBUiSJEmDTsfE9HPDEAuvKRly1dq/dfSX9vH13/O+T9d/z8Es21O83+AmNVpogZ3eu23/vHPIxNLBfL2ZGs5s66pu3W/mw5onSo8/e0Xy+pMegFOXwKmLYfwe1dUgSVI5LZ3p5nUv2RqKBpBZD396DTx9ybZzY4Q/Hg8PnA9Lb4KX7849lt4E938Ofj23DoVX4KEv5Wq6/3Nw61nw/G9y/x/+w7Gw8Gfbzt+4vPye+cFokiRJkiRJkiRJklSxONAF1E9soj+LJEmSJEmSJGlQMxhNkiRJKhSz6ee2dDSujkaIJRKDQumQoSGtbSRMPLD42Pz3V7fnIxdAb3f1NQ01pcL0Wpr0a0aDy96fh32/AuP3zj32Oh8O+AaZbOkL7DK1XHuXLfH1nsZv5sONR8Pap7YdW3x16XVzzsyFoY2cDiFUf74kSeX0rKlt/YP/vm3f87+Fl24uvaa3xjPzjZxRfs7DX4VfdMIDn9927NazoHd9376Ny8rv2WYwmiRJkiRJkiRJkqRyDAyTJEmSJEmS0kr6aZo/aZO0hcFokiRJUqGJ+6Wf2zrEgtFKhf40c8jV3l/YNsBu3y/DQd+ubr/MBnjxj7XXNVRseKl4f2jv3zo0PIUAu/8LnPT33GOvz0JoISEXjd4S+Y+pZGoMPXzxj3D94ZDZ2Ld/04rSa2adUtuZkiSlNeng2tavfqRvsNiGpXDfp2vbsxLTjk03L9tTeuyaffu21y0qv1+7wWiSJEmSJEmSJEmSJEmSJEmSJElSfzIYTZIkSSo0akcYu1u6uUMtHCqWSAwKrf1bR3+aeQIcdwvs/EGY/z448new+8dr23PjsvrUNpjFCA99Be56f/HxZg7T06CXyVY3Vlaow49JupfAs7/c2o4R1j9bev7Mk2o/U5KkNCbuD52TattjSzDa/Z+Hq2bByvtqryut1g6Y947a9ljzOLx899b26kfLryn1GkqSJEmSJEmSJEmSJEmSJEmSJElSQxiMJkmSJBUKAV5xYbq5LUMtGK23eH9o8pCrSQfCgd+Ag74D2+WFEO3xqer2ax9Tn7oGs6V/gr99ovT4UAsFVFNJCj/rrSUYbdbJNSzOc+ub4M73w+/2gGv2gZ7VxefNfz+0j67PmZIkldPSBgt+Ci2d1e+R6YYl18H950G2p361pdHSAXt9DsbvVds+1x4Iy+/M/X71I+Xn96yp7TxJkiRJkiRJkiRJw1wc6AIqNNTqlSRJkiRJkiQ1I4PRJEmSpGImHwKvuKj8vKEWKBYzxftDa//WMVjMPgMIla+rJUxiqFh4SfJ4yxD72ldTySZce5cUmlbW2N1g3O41bJDn8e/Aqodg5f2l5+x9fn3OkiQprRmvhlOegUMvhl0+XPn6TDc8ckH960qjpQO6ZsGrb4ejrqltr98fDPd/HtYtLD+3VMCpJEmSJEmSJEmSJG0RDROTJEmSJEmSJKmeDEaTJEmSShm7c/k5safxdeTrWQsPfxX+dDLceS6sf66y9bG3eP9wDbmasC8s+Cm0j6tsXXZTY+oZTJ78YfL4UAsFVFNJCj/rrSUYLQQ46urc94ZG65wCnZMaf44kSYVGTIUd3wKzT6987W93gSW/r39NabS0535t64KZJ8DYXWvb7/7zSHWn8961tZ0jSZIkSZIkSZIkSZIkSZIkSZIkqSJ+kl2SJEkqpXNy+TmZDY2vY4uYhT/9Ayz909a+Rb+AE+6E0XPT7ZEtEYw2nEOudngjzD4DHvgCPHB+ujXNHoyW5u6VW4IppAGQSfgSTQpNS2XUHDjxXlj3LHSMg/axsHE5rFuUC5Jp6YC2MfDgf8KD/179ObWGuUiSVKvWroGuoDItHX3bI2fC6kcaf+6skxt/hiRJkiRJkiRJkiQNCSmuLZQkSZIkSZIkqQ6GcfrB8BZC2BXYB5gFjAQ2AEuBJ4C/xxjX1bB3O3AYMBuYAawFFgP3xhgX1la5JElSPxpswWiLLu0bigaw6WV47L9h/6+l2yNmiveH1tpqG+paWmHeOc0ZjPb81XDfZ2D9Ihi3Bxz8Qxg7P3nNE98vv+9wDtPTgEsKP6s5GG2LUdtv/X3npNwj3z5fgBHT4O4PVLf/9GOqr02SpHpoG+LBaKPm9M+5O7y5f86RJEmSJEmSJEmS1JzS3KhUkiSpGfk8SJIkSSUkPVX0aaSkLfwk+zASQhgPfAg4h1xoWSmZEMLfgMtjjF+qYP8pwPnAG4CJJebcClwQY/xl6sIlSZIGSvu43Ifvk0Kw+jMY7ZGvFu9/8Q/p94i9xftbfGnAqNmw03vhie+VnztUgtFWPgg3nwLZnlx76Z/h9wfDyQuhY1zxNc9cDne+r/zeHRPqVqZUqWzCDzfrFoyWxi7/BJuWw/2fq3ztTu+pezmSJFWkdYCD0Vo6c8Gj3YtTzm/v255zJjx1Yf3ryjfzNTB5QWPPkCRJkiRJkiRJktQE/LSmJEmSJEmSJEn1ZPrBMBFCOAP4LjApxfRW4ABgFpAqGC2EcCLwE2BqmakLgAUhhEuA98QY16XZX5IkaUCEABMPhGW3lp7TX8FoMcLLdxcfW/G3CvbJFO8PrZXX1IwO+g5MWQBP/ABe+kvpeUMlGO3+z24NRduiZyU8eznMe0ff/mwP3H4OLPzfdHtPP6Y+NUpVSAo/6y3xba5h9joPxu8Nz/8aul+AdQth9SPJaw78Noyc3i/lSZJUUtsABqPt8hHY8U0wYT946iJ48Ubomp17Dv7SzcXXtHT0bU87CsbsDGseq399c86EqUfA3HdAi6+VJEmSJEmSJEmSJEmSJEmSJEmSpP5kMNowEEI4D/hckaFngMeAl4ARwAxgL2BUhfsfBVwF5H8yLQL3AE8B44H9gMl5428CxoYQTokxJnykXZIkaYDNPDE5GC3bT8FoPauTxzetgo5x5ffJ9hbvD740AHJheDu+BbZ/HVw+fttQsS2GQjBa73p49oriY399J0x7FYyeC2ufgsXXwl3vT7/3tGNglw/Vp06pCknBaJnsANx9dftTc48tHvsO3PPh4t9DdngTzD+3/2qTJKmU1gEKRtvuH+GAC7a257099wC4432lg9FCe992Szsc8iO44Yj61rfvl2D3T9R3T0mSJEmSJEmSJEnD2ABczyRJkjQo+DxIkiRJklQ90w+aXAjhY2wbivYz4IsxxvuLzG8BDgVeBxyfYv9ZwBX0DUW7BXhXjPHhvHmdwHuArwJbPsH2j8C/A59K+ceRJEnqfyOmJ49n+iEYLbMR/ljmqdm6RdCxd/m9YolgtBZfGvTR1gUzToTnf118fCgEo/355OTxX8+DuWfDokshsz79vsfcBFMW5IIopAGSlH2WGQzvn+98Lsx4Nbx0K2TWQUtHLuBy4oEw5fBcCKMkSQOtdcTAnLvj20qPtXYmjHVs2zf1cDh9JTx1IdzzkdprAxg5sz77SJIkSZIkSZIkSRpGBsNFS3USm+jPIkmSJEmSJEkaskw/aGIhhH2AL+V19QBnxRgvL7UmxpglF2x2SwghzdfH+cCEvPatwLExxj4JITHGjcA3QwjPAFfmDX00hPD9GOOiFGdJkiT1v7au5PGNy6BnLbSPblwNz1wKy/+aPGfdQpiQJhgtU7w/tFZcVtN7xYXwy0nFx/ojEK8WG16CF24oP++pn1S270Hfg2lHVlWSVE+ZbOmx3hLf5vrdmJ1yD0mSBqsQYPxesHKb+2dAaIGY8D/cQi0dMPUoeOG68nO3PzV5n0rHOsbBrh+GSYfA9QvKn1/OyBm17yFJkiRJkiRJkiRJkiRJkiRJkiSpai0DXYAaY3Oo2Y/pG373nqRQtEIxxt4yZ8wH3pbXtQk4uzAUrWDPq4CL8ro6gfPS1iRJktTvWssEowFcdwj0djfuLnmP/Ff5OetS5sxmSzzFS5WJO8x0ToSpJULA7vtM/9ZSqTShaJXqnAI7vqX++0pVSApGSxqTJEkF5r17274ZJ6Z7HZTv9JWw12fLz9vt47nQtVJaR5QeC+3Je08+BCbsW76GckZuV/sekiRJkiRJkiRJktSUGnSdrCRJkiRJkiRJBQxGa15nAPvntW+MMV5Y5zPOAlrz2lfEGB9Pse7LBe3XhxASPvEmSZI0gNpSBAKseggu7YLLx8PNZ8CGpfWtYcU95ecs/2v5OeuegRdvLD4WWov3D3ctHaXH6v3fuZ42vFDf/Wb+A5xwZ7p/D1I/yCZcX9drMJokSent8k9w4Ldh/D7QNRt2ei8ccTn0rk2/R9dsaBsJE/YrP3fkjDLjM0uPJT03h1zg2tE3wA5vgRHTYeKBsOBncOpimHUKjJhWvr6u2TBm5/LzJEmSJEmSJEmSJCmtRt10V5IkabDzeZAkSZIkqQZtA12AGuY9Be3/bMAZpxa0UwWvxRgfDiH8FThkc9co4NXAr+tYmyRJUn20jkw/t2c1PHs5LL8DTn4698H8WmV70s1beAm84iJoKRFwltkI1x9Wen3wpUFRSeELi34Bu3wgeX1mI6x6EMbu2r+hYhuX1b7Hrh+D/b9a+z5SA2QSws+SxiRJUhE7vz/3qFVbF3ROgY0vlZ5TLhht7K6lx3rXlK+hcxIsuHjb/ldeuW3f05fAbW/O6wiw12dLv6aSJEmSJEmSJEmSpFIM/ZAkSZIkSZJSS/ppmj9pk7SF6QdNKISwE3BkXtdC4I91PmM6sE9eVy9wSwVb3MTWYDSAEzEYTZIkDUbVhFmtfwaumAqnLIbWhGCtNNYuTD/3pZth2lHFx57/Nax/rvRaP/xfQsKPUNY8kbz0qYvhzvdAZkMuYG2f/4TdPlbf8kqpNRhtwU9hzhvrU4vUAEnhZ70Go0mSNHAOvRhuOrH0eNlgtF1Kj2W6q6uplB3fBGN2gie+D61dMPv00q+nJEmSJEmSygghtAOHAbOBGcBaYDFwb4xxYZ3P2hHYF5gJjAaWAIuAW2OMKe+8JUmSJEmSJEmSJEmSJA1eBqM1p1cVtG+Mse63n9mzoH1fjHFdBetvLWjvUWM9kiRJjdFaRTAawMbl8MAXYJ8v1Hb+xqXp5750S+kP8i+/M3ntmifTnzOcJIUvJIXmrfg73P62re3sJrj3n2H8XjDj1fWrL9+qh2DJ9bDpZXjiB9Xvs9fnYYcz61eX1ACZhFe4SaFpkiQppfnnwuPfqXzd+MIfGxcYPS95fMR0aB8PPSu3HZtyeOX1lDP5kNxDkiRJkiQ1hRDC54Dzatjiohjj2RWeOQU4H3gDMLHEnFuBC2KMv6yhNkIIpwMfBQ4tMeXlEMIvgM/GGGu8k5IkSZIkSZIkSZIkSZI0cFoGugA1xMEF7dsAQs6xIYQLQwgPhRBWhRDWhRAWhRBuCCF8MoSwQ8ozdi9oP1FhjYXJG4X7SZIkDQ5J4VflPHtZ7ef3rEk/975Pw+rHt+2PER7+/5LXjvPpWFG960uPtY4sPfbcVcX7n72ytnpKeeKHcPXecM+H4YHP17BRgB3fXLeypEbJJoSf9WT6rw5JkprWrFPSzx2z09bfd82CaUcXnzflCOjaLnmvEGCnd27bP2oOTNg3fU2SJEmSJEn9IIRwIvAA8D5KhKJttgC4PITwvyGEUVWcMzqE8DPgMkqHorG5hvcBD4QQjq/0HEmSJEm1SLjTY+LYYDTU6pUkSYOXzyskSZIkSdUzGK05HVjQfnhz4NkNwPXA2cBuwFigC5gNHAN8EXgshPDfIYRyCSA7FbSfqbDGRQXtSSGECRXuIUmS1HitNQSjrV2YCyWrxPO/g9vOhtvPgcW/h57Vla3/7c7wl9fDjcfCvR+HNU/CstvLrxu7a2XnDBeZKoPR7v9c8f4nvldTOUWtXwx3vAtiHdKgDr8URu9Y+z5Sg2USvrVu6Om/OiRJalozjoP9L0j3emi3f+7bPvRimHhQ376JB8BhP0939p7nwewztrbHzIejroXg2xmSJEmSJGnwCCEcBVwFTM3rjsDd5ALMrgeWFSx7E/CzENL/oCOE0Ar8AnhjwdBLwHWbz7qHvp8wnAb8KoRweNpzJEmSJEmSJEmSJEmSpMGkbaALUEPMKGh3AXcCk1OsbQfOBQ4NIbwmxrikxLzxBe2llRQYY1wbQtgAjMjrHgesqGSfQiGEqcCUCpfNq+VMSZLU5NpqCEbLboTeddA+Ot38x78Hd75va/upC2HKYZWf+8xluV9fvBGevgimvDJ5/pj5MPXIys8ZDnoTgtFa2vuvjiRXbVeffV6/rravd6kfZbKlx9Zt6r86JElqart+BHZ6L6x9ElY/Cn85fds5o+fBtGP69nVtByfckQuKXv8sdG0Po3dIf2776Fxg78blsHEZjNkZQqjlTyJJkiRJkoavM4EUd5H6P2vTTAohzAKuADryum8B3hVjfDhvXifwHuCr5K7LA/hH4N+BT6Ws6UvASXntHuCjwA9ijP/3rkgIYXfgh8Chm7s6gatCCHslXAMoSZIkSZWp9GbBkiRJkiRJkiRVyWC05lQYWnYhW0PR1gHfA64BngNGAfsA5wD5d4jcD/hlCOHIGGNPkTMK0z26q6izm77BaGOq2KPQucB5ddhHkiQpp3Vkbes3LU8XjBazcP/52/a/dEtt529YCs9eXnp8yhFw6E/Sh7cNN5mEYLRHvwm7frjImg2Nq6fQ8ruqWxfagCy0jYFpr4IDv20omoaUbML1dU9UFNstSZIStY2E8XvmHodeDLe9devY9GPhFRdBa0fxtaN3qCwQrVDnpNxDkiRJkiSpei/EGBc2YN/zgQl57VuBY2OMfd4ojDFuBL4ZQngGuDJv6KMhhO/HGBclHRJCmAt8qKD7jBjjrwrnxhgfCiEcA9zI1nC0SeSupXtvij+TJEmSpIYxTEySJA1XPg+SJEmSJFXPYLQms/kuk50F3bM2//oQcEKM8dmC8XuAC0MIHyN3d8otDgU+Qe4OlYUKkzOqSX/opu8FYqZxSJKkwSe01LZ+4zIYNaf8vOV3wYYXajurGsf9uf/PHEp6E4LR1j0NT/4Y5p3Tt//WtzS2pnwv/qGy+ae9CCOmNqYWqR9lssnjv7gzyxsOqvH7tyRJ6mvHt+QekiRJkiRJw1gIYT7wtryuTcDZhaFo+WKMV4UQLspb10kusOycUms2Ow9oz2v/pFgoWt453SGEs4H7gS1p9u8IIXwlxvhUmbMkSZIk1cTQD0mSJEmSJEmS6slPCTef1hL9qygeivZ/YoxfA75e0P2REEKawLJq3sXxnR9JktT8NixLN2/j0sbWUcx+X+v/M4eaWCZ96ckf9m1vWAbPXZG8JrOptpryPfjF9HM7JkDnlPqdLQ2gcsFoP/qLLzclSZIkSZIkSVJDnEXfa/SuiDE+nmLdlwvarw8hjCg1OYQwEji9zB7biDE+BlyV19VGrmZJkiRJkiRJkiRJkgaFmPDxv6QxScOLwWhNJsa4Hij2EfELkkLR8nyGXIjaFhOBE4vMW1vQHpmuwsQ1hXtW4zvAnhU+Tq7DuZIkqZmN3aX6teufSTdvIF6pd23X/2cONft9JXl82W1926sfLh+mduOroHtJbXUBrHsWelamnz9yBoRQ+7nSIJAt8y3zhof7pw5JkiRJkiRJkjTsnFrQvjDNohjjw8Bf87pGAa9OWHI80JXXvi3G+EiqCret6bSU6yRJkiRJkiRJkiRJkqRBwWC05rSuSN/FaRbGGNcBVxR0H1Vk6qAMRosxLo0xPljJA3iy1nMlSVKTm/3Gbfs6JsLrlsEhP4IFl0D72OJr73g3rLiv/BkxU1uN1RhpMFpZM4tlBCfoWVN+zrJb4doD4KVbq6tpiyd/VNn8qUfVdp40iGTK5A9KkiRJkiRJkiTVWwhhOrBPXlcvcEsFW9xU0E56M/KEMmuT3Eyuti32CyFMq2C9JEmSpHoaiBvn1mSo1StJkgatIfc8SJIkSZI0mBiM1pxWFrRfjDEurGD97QXt3YrMWVXQnlLB/oQQRrNtMFph3ZIkSYPDnv8GO7wFCLn2yJlw9HXQOQnmnQM7nAXj9ii9/q/vhKcvgVvOgrs+CMvv2nbOQASjjZ7b/2cONaPmQOuI5Dn5b9b1pghGA+heAjceBfd8DO79OPzlDfD4dyFbwdfBA+ennwsw7x2VzZcGMYPRJEmSJEmSJEnSANizoH3f5huRplV456Sk2cPnAAAgAElEQVSEN5m3Oeu2tIdsrun+Cs6SJEmSVCtDPyRJkiRJkiRJqqu2gS5ADfEYsH1ee0mF6xcXtCcVmfN4QXtOhWcUzn85xriiwj0kSZL6R0s7LLgYDvh6LtBq3O4QCjKG28aUXv/ynXDbm7e2n/wfOPI3MP3YrX2Z7vrWXM64PaFrZv+eOVRt/zpYeEnp8dgLoT33+56UwWgA2R545IKt7WcuhRf/CIf9AkJIXnvfeenPAZj9epi4f2VrpEEsm+I6wt8/GDl+jzL/liRJkiRJkiRJUjN7Twjh0+RuDDoJ6AGWA4uAvwDXxhhvrmC/3QvaT1RYz5Nl9stXeDPTas7ar+CsP1S4hyRJkiRJkiRJkiRJkjQgWspP0RD0YEF7Y4XrC+ePKDLn4YL2ThWeMbeg/VCF6yVJkvpf5yQYv+e2oWgA7QnBaIUyG+APx8GVs+CuD+TavZXcSLwOZry6f88bylo6k8ezm7b+vreCYLRinrkMVj1QfOzZq+DqfeGnAR74fOk9TvwbHPBNGD0PRkyFXT4MB323trqkQSaTLT/nM1elmCRJkiRJkiRJkprZG4FjgJlAJzCa3A09Xwl8CvhzCOHOEMKxpbfoo/AauWcqrGdRQXtSCGFC4aQQwkRgYo1nFc6fX+F6SZIkSSoixR0tJUmSJEmSJEmqg7aBLkANcV9Be3yF6wvnLy8ypzCtYe8QQleMcX3KMw4rs58kSdLQUkkw2hbdz8Nj34bVj+ZCrCrxiovg0W/AinsqPxdg3B7VrRuOWjqSxzMboW1U7vc9q2s/78kfwQH/1bdvyfXwl9dBLBP0NH4fmLD5scsHaq9FGqTSBKPdtQiy2UhLS2h8QZIkSZIkSZIkaag6ELguhPBF4NMxxqRP+RdeV7e0koNijGtDCBvoe6PSccCKMuesjzFWeqetwtrGVbi+pBDCVGBKhcsqfENckiRJGmqSXkoYJiZJkoYrnwdJkiRJkqpnMFpzuobcTwy2fPp7bghhRIxxQ8r1exa0nyucEGNcEkK4D9h7c1cbcDhwXcozjipoX5NynSRJ0uDUVkUw2hYvXA9cX9mazskw7xy4q8pgtLG7VLduOIo9yePZjVt/37Om9vNeKPK18MQPyoeiAez41trPl4aATMr3yJethaljG1uLJEmSJEmSJEkadJ4HrgbuAB4GXgaywCRgf+AfgOPz5gfgU0AL8K8J+44uaHdXUVs3fYPRir3RXK9z8tXwhvY2zgXOq+N+kiRJkiRJkiRJkqRhJOmWZYm3M5M0rLQMdAGqvxjjYuC2vK524JgKtjihoH1ziXlXFrTfnmbzEMKuwCF5XetIH6gmSZI0OLXX8zryFDonw9yzq1wcYOxu9aymufWW+ZxBJi8YrbcOwWirHtr2JzfPXp5u7c7n1n6+NMjFGFP/cHPJqsbWIkmSJEmSJEmSBpU7yAWebR9jfHeM8YcxxltijA/HGB+NMd4aY/x2jPEE4CDg8YL1nwwhnJywf2FgWdobleYrfPOxcM/+PEeSJEmSJEmSJEmSJEkalAxGa14XFrQ/mmZRCOEI4OC8riy5u2cWcwmQyWufFkKYn+KYTxS0L40xVnPxliRJ0uDRPrZ/zxsxGdpGwZG/rXztzNdA58T619SsMmWC0bJ5wWg9ZYLRJh4Ax/2l/Jl/fSdkM+Xn5Tv2ZmgdUX6eNMRlK7jjw+KVjatDkiRJkiRJkiQNLjHGq2OM18VY/hYrMca7gFcAjxUMfSmE0Jr2yEprHORrJEmSJDXEEHt6nvaulZIkSWX5vEKSJEmSVL22gS5ADXMhuTC03Ta3jw4hfDTGeEGpBSGEqWwbqHZpjPHJYvNjjI+HEC4Cztnc1QH8JIRwTKmgs8131Dw7r2sTcH65P4wkSdKg1zamf8/rmLT51/GVrz3kB/WtpdmVC0bLpAxGG7srHH4pjJ4LI2dA95LSc5/6MUw+BNY/DyvvL1/j/v8FUw8vP09qApls+rlLVkUgNKwWSZIkSZIkSZI0dMUYXw4hnAncxdY3FHYFXgXcUGTJ2oL2yCqOLVxTuGd/nlOt7wCXVbhmHvCrOtYgSZIkDTKGfkiSJEmSJEmSVE8GozWpGGMmhPAh4FqgZXP310IIc4DPxRhX5M8PIRwLfJfcBUhbrAA+Veao84BTgQmb2wuAG0II74wxPpK3fyfwbuBrBeu/FmNclP5PJkmSNEiFfg7eaR+b+7W1wmvgu2blQrmUXrlgtOymrb/ftLz4nNmvh8N+vvXrJLSXP/eO96Srb+45sOuH0s2VmkC2gmsIF69qXB2SJEmSJEmSJGnoizHeE0K4Djg+r/sEDEYrKca4FFhayZrQ3++nS5IkSZIkSZIkSZIkaUgzGK2JxRiv3xyO9q287g8C7wsh3A48T+4CqH2BOQXLNwFnxhifLnPGcyGE04DfAx2buw8DHgoh3A08BYwD9gemFCz/LfCZiv9gkiRJg9HGEoFYjbLlwvHWrsrWlQv50rbKBqNthEe+AU/9GFbeV3zOtKP7hue1dBSfV42pr6zfXtIQkMmmn7vEYDRJkiRJkiRJklTetfQNRtu7xLzCdx4Kr4dLFEIYzbaBZStTnNMVQhgVY1xXwXFTU5wjSZIkSRWq4K6WkiRJkiRJkiTVwGC0Jhdj/HYIIQN8FdiSmtEOHJGw7EXgtBjjrSnPuCmEcCrwE7Ze7BWAAzc/ivkZ8K4YYybNGZIkSYPeQIVTtVUYjLbzBxtTRzPb/nRYfkfp8Qe/CIt/l7zH2F37tnd6F/ztE7XXBjDj+PJzpCZSSTDaC6u8EE+SJEmSJEmSJJW1sKBdKvDs8YJ24c1Iyymc/3KMcUXhpBjj8hDCCmBCXvds4OEaziqsXZIkSVI9xYTrlJLGJEmSmpnPgyRJkiRJNWgZ6ALUeDHG75K7i+X/AmsSpr4AfA7YJW0oWt4ZVwN7At8DtrlYK8/twOkxxrMqvIOlJEnS4DbpEGgb0z9ntY/d+vsRhTf6LmP70+pby3Aw5w3J4+VC0QDG7lKw5xurryffjBNh5PT67CUNEdkK3h9fvLJxdUiSJEmSJEmSpKbRXdAeWWJeYTDZThWeM7eg/VDC3HqfVUmomiRJkiRJkiRJkiRJkjSg2ga6APWPGOOTwFtCCCOBw4BZwHRgE/AS8PcY4301nrEUeF8I4UObz5iz+Yx1wPPAvTHGp2s5Q5IkadBq7YRD/gdufRPETGPP2u9reeeOSL9ut3+BcXvUv55mN2o27PNF+Pu/Vre+fTyMmFZkz/+Av/9bbbUd9O3a1ktDUCabfu6SVY2rQ5IkSZIkSZIkNY3JBe1lJeY9UNDeO4TQFWNcn/Kcw8rsVzi2IK99KPCbNIeEEEaRu5Fq2rMkSZIkSZIkSZIkSRoU4kAXIGnQMBhtmIkxdgM3NPiMTcAfG3mGJEnSoDTnDTBhX7jjvbD0psac0doFs1+Xfv4Rv4Q1j8OUw2HyAgihMXU1uz0+WX0w2rQji/+97/EpmH5c7utlxT2V7zvpYBhdeKN3qflVGowWYyT4vU+SJEmSJEmSJJV2SEF7cbFJMcYlIYT72Bo61gYcDlyX8pyjCtrXJMy9Fnh3wtokR9D32tB7Y4wvVrBekiRJ0rDmR08lSVK9+LxCkiRJklS9loEuQJIkSWoqY3eBff69MXu3j4XDL4OOCenXbH8a7P4JmHKYoWi16ppV3boZJ5Yem3QQHPdnaOmofN/dqwxqk4a4bAXvj/dkYFNv42qRJEmSJEmSJElDWwhhBHBaQfdNCUuuLGi/PeU5u9I3gG0dyYFqvwe689qHbt4jjbML2oU1S5IkSaq7pIuaDASRJEmSJEmSJKlSBqNJkiRJ9dYxqbb1rV1wzB/g9BVwVoRTl8Dxd8CpL8B2J207v3NK8X26tq+tDvWV7alu3Zh5yeNto2B0mTmFJh0C2/1jdfVIQ1ys8DrB7ir/6UqSJEmSJEmSpGHhE8B2ee0M8LuE+ZdsnrPFaSGE+SnPyXdpjHFDqckxxvXA5WX22EYIYWfg1LyuXuCnKeqTJEmSJEmSJEmSJEmSBg2D0SRJkqR665xcfs74fUqPnfR3mPYq6Bifa4+cDpMOgraRxefv/YXi/bv9c/k6lN7GZdWtGzmz/JwT7k65WYA5Z8Hhv4CW1urqkYa4bKXBaJsaU4ckSZIkSZIkSRo8QghvCSFMq3DNu4DzCrp/EmNcVGpNjPFx4KK8rg7gJyGEEQnnnAycnde1CTg/RYmfA/JvAXN2COG1CeeMAC7cXNMWP4oxPpniLEmSJEkqr9K7WkqSJEmSJEmSVCWD0SRJkqR665hQfs7xd8CME/r2tXbl+sfsVNl5c14PYwpuQj56Lsx5Y2X7KNmkg6tbN3K78nPaRsKOb02e09IJZ2bgsEtg1JzqapGaQKWX1nX3lJ8jSZIkSZIkSZKGvHcAT4cQLgohvCaEMKrUxBDCgSGEK4AfACFv6Hng0ynOOg9YkddeANwQQti14JzOEMIHgMsK1n8tKXxtixjjU8A3CrovDyH8UwghP/yMEMJuwI2ba9liOekC2CRJkiQ1lGFikiRpuPJ5kCRJkiSpem0DXYAkSZLUdFpaYeZJsPjq0nNaO+CVv4JHLoCX/gIjpsDOH4CJ+1d+XscEOO5WePgrsOJemLAf7PJhGDG1+j+DtjXtaFh2W+Xr2semmzfrFHj64tLjnZMghNLj0jCRzVY232A0SZIkSZIkSZKGjZHAWzc/siGEx4GFwCogA0wC9gGmFVn7MnBCjPGFcofEGJ8LIZwG/B7YElB2GPBQCOFu4ClgHLA/MKVg+W+Bz1TwZ/oksAdw4uZ2O/At4DMhhHuANcDczWflv5m4CTg1xrikgrMkSZIkVSsa+iFJkiRJkiRJUj0ZjCZJkiQ1wr5fKh2MNm7P3K+tHbDHJ+tz3ojJsN9X6rOXitv1I7n/pivuTb9m/N7pw8xmvJrcZxVKXCDVMSH9uVITy1Z4DWH3psbUIUmSJEmSJEmSBrUWYJfNj3JuBM6OMT6XdvMY400hhFOBn7A1/CwAB25+FPMz4F0xxkwF52RCCK8Hfgi8IW9oKnBCiWVLgbfFGG9Oe44kSZIkSZIkSZIkSZI0mLQMdAGSJElSUxq/F7z2yeJj25/Wv7WoPjonwbF/qmzNDm9OP7dtFEzYr/R4+7jKzpaaVKX3Vu3uaUgZkiRJkiRJkiRpcPkG8FNgUcr564ArgWNjjMdWEoq2RYzxamBP4HvAioSptwOnxxjPijGuq+KctTHGNwJnbN6rlJeB7wJ7xhivrfQcSZIkSQIgVnqFliRJkiRJklSZpB9B+eMpSVu0DXQBkiRJUtMaPReOuQn+fDL0rMr1bf862ONfB7Qs1aB9TPq5c98OO7+/sv2P/DVcNav4WFJomjSMZLOVzd9gMJokSZIkSYPGHx6JXPW3SEcrnHFA4JC5YaBLkiRJTSLGeCW5oDNCCOOBPYDtgWlAF7mbyK4kF2D2MHBfjDFTh3OXAu8LIXwIOAyYA0wnF7z2PHBvjPHpWs/ZfNblwOUhhB2B/YGZwCjgBXKBcLfEGDfV4yxJkiRJlfKTnJIkSdvweZAkSZIkqQYGo0mSJEmNNO1IOG0pvHw3dM2CUdsPdEWqVWsXZNYXH5txPOx1PoycDqPmVL5313aw8wfgsW/17Q+tsONbK99PakKVvj3e7cd/JEmSJEkaFP7n5izv+X9bX9l/6w+RX7y7hVP2MxxNkiTVV4xxJXBLP5+5CfhjP531NFCXsDVJkiRJkiRJkiRJkiRpMGoZ6AIkSZKkptfaAVMONRStWez+yeL9nZPg8Eth8iHVhaJtsf/XYJcP5/YDGL8XvPIqmHxw9XtKTSRbYTJad493GpMkSZIkaaBlspF/u7Lva/SeDHzmV9kBqkiSJEmSJEmSVDmvxZIkSZIkSZIk9Y+2gS5AkiRJkoaUuW+DJ74L3Uu29o3dDU64E9pG1b5/Szsc8HXY/wLIdENbV+17Sk0kW+Hnpbt7GlPHYNa9KbJiPUwdA22tYaDLkSRJkiSJW56AZWu37X9wMSxeGZk53tevkiRJkiRJkiRJktRcDFWVJEmSJFXPYDRJkiRJqsSo2XDcLfDI12Hl/TDpINj9k/UJRcsXgqFoUhGVvj3evakhZQxaX78+y+d/G1nVDTPGwfff0sI/7O2HyyVJkiRJA2vR8tKv6Fd3w8zx/ViMJEmSJEmSJNVd0lVNBoJIkiRJkiRJklQpg9EkSZIkqVKjd4QDvznQVUjDUrbC6wS7expTx2D0m79HPnbZ1r+gJavgDd/P8vDnW5g9yXA0SZIkSdLglPEzgZIkSZIkSZIkSZIkSZIkSZLytAx0AZIkSZIkSWnFSoPRNjWmjsHo8ru3/cvp7oHv/MlPmEuSJEmSBlbSK9P1w+i1uyRJkiRJkiQNfl5rJEmSJEmSpMZK+gmUP52StIXBaJIkSZIkacjIVhqM1tOYOgajOxcW/8v5yrX+OFiSJEmSNLCSgs7Xbey/OiRJkiRJkiSpIRLv9ui1O5IkabjyeZAkSZIkqXoGo0mSJEmSpCGj0mC09ZsaU8dg9MgLpcfWbPDCAkmSJEnSwNmQEFxuMJokSZIkSZIkSZIkSZIkSZKkfAajSZIkSZKkISPx5qpFrFjXmDoGo1GdpceG09+DJEmSJGnwWZsQfjacQs0lSZIkSZIkSZIkSZIkSZIklWcwmiRJkiRJGjKyFQajLVtb4YIhbGR76bE1CR9AlyRJkiSp0dYlhJ+t2zR8XrtLkiRJkiRJ0tDmz3MlSZIkSZIkSf3DYDRJkiRJkjRkxIqD0RpTx2DU0VZ6bHV3/9UhSZIkSVKhdQmB3UljkiRJkiRJkjQ0JFzUVOkFT5IkSc3C50GSJEmSpBoYjCZJkiRJkoaMrMFoJbWG0mNrNvRfHZIkSZIkFUoKP1u/qf/qkCRJkiRJkiRJkiRJkiRJkjT4GYwmSZIkSZKGDIPRStvYW3pstcFokiRJkqQBlBSMljQmSZIkSZIkSZIkSZIkSZIkafgxGE2SJEmSJA0ZscJgtFXdsKm3wkVDVFIw2poNw+PvQJIkSZI0OK3bWPp16bpN/ViIJEmSJEmSJKkMrzOSJEn14vMKSZIkFZf0GcFKPz8oqXkZjCZJkiRJkoaMbBU/2Fy+tv51DEbJwWj9V4ckSZIkSYXWJ4SfJY1JkiRJkiRJ0tCQdFGTn+SUJEmSJEmSJKlSBqNJkiRJkqQho5o7Pqzsrn8dg02MMTEYbbXBaJIkSZKkAdSbLT3Wk+m/OiRJkiRJkiRJkiRJkiRJkiQNfgajSZIkSZKkISNbTTDa+vrXMdj0ZpJD49YYjCZJkiRJGkBJr1l7DUaTJEmSJEmSpKGhmrtaSpIkSZIkSZJUBYPRJEmSJEnSkJEUjNZW4qccwyEYbWNv8vhqg9EkSZIkSYNUJjvQFUiSJEmSJElSjRIDwwwTkyRJw5XPgyRJkiRJ1TMYTZIkSZIkDRlJ1xBOGFW8f2V387+pXi4YbZ3BaJIkSZKkAZT0yrzXYDRJkiRJkiRJkiRJkiRJkiRJeQxGkyRJkiRJQ0a2xCepQ4DxI4uPrVzfuHoGi3LBaOXGJUmSJElqpKSg895M/9UhSZIkSZIkSZIkSRrkkt5gliRJkqT/n707j5MkrevE/42q6pmenu6Zhjm7BxFW5VLExWN11/VC3V113RWXdf0puL91d3FFXFAXDxRQVA7RVTxAEGRBhlNADmFGLndgmIFhDmaG6Z6h566qvrvuMytj/6iu6equiMiIqsysyMz3+/Wa11THE5n5zbgy4sl4PsnAEIwGAAAA9Iy877mHkoi9u7LbJuY7V09dtAo+W1h2gwAAAADbp+iqtJGXgg4AAAAAQPcJIgEAAACgw4q6oHRPAWsEowEAAAA9I2+sdBIRey/IbpuY61g5tbHUMhitO3UAAABAlqIblRor3asDAAAAAKAzjOQEANjAeRAAAABbIBgNAAAA6Bl5wWhDQxF7dyWZbYMQjLbYKhitRTsAAAB0UtH97ncf6V4dAAAAAAAAAAAAAED9CUYDAAAAekbeQOqhJOLiXdltk/Odq6cuWgajLXenDgAAAKjq4JGIsQm/FA4AAAAAUH/6cgGAbnDOAQAAgGA0AAAAoIc0c77nTiJiz87stumF/v9yfLFF8JlgNAAAALZTqyvz936x/6/dAQAAAIB+po8TAGAj50gAAGxNs5nGTfen8abPNOOO0TTS1DkmDJKR7S4AAAAAoKy8rsuhoYiLcoPROlZObSytFLcLRgMAAGA7tboX6QXvSuMXn9GdWgAAAAAAustgTQAAAAB6S/rRt0X6sb+JmJuO5F/8SMSzfzWS4eGu1rDSTONn3pzG1Z9f619L41d+MIlX/XhEkiRdrQXYHoLRAAAAgJ7RbGZPTyJiT04w2tQABKPlLZc1gtEAAADYTob9AQAAAAAAAFBKmq7eHA4AwLZIP/CGSP/w+Wf+feCLEUcfiuRFr+tqHVffuD4UbdVrrk3jh56axPc8saulANtkaLsLAAAAACirmTOSeijJD0abHoBgtJUWI8znBaMBAACwjVLJaAAAAAAAPUKHLgAAAMAgS9/75xsn/v1bI52b7modr/hodj/V//6HZlfrALaPYDQAAACgZ+Tddjc0FHHRAAejNVv05y4IRgMAAGAbCUYDAAAAAPpaYSeoDlIAYED5ohgAoOekczMRDxzY2LDSiPjke9v3OiXaDhzObv/Ql9pWBlBzI9tdAAAAAEBZeQFgSUTs2ZlEVrfo1AAEo620uG+g14PRvvRwGq/4+zS++GAaw0nEtzwuiZf/uyQed2my3aUBAABQgtvdAQAAAAAAAABggKTNiEgiEuM+oKc0V/LbZqe6VwdACEYDAAAAekjeQOqhJGLPzuy2pUbEUiON80b698uUvMC4NY1mRGMljZHh3lsGd42n8Z2vasbM4plpB4+kcc2dadz1O0Nxye7ee08AAAAAAAAAANBzUj+DAQB0g3MOgJ7WmIu46XkRD38wYmRXxOOfE/GNL49Ihra7MgCgxzh7AAAAAHpGM+fmuiSJuCgnGC0iYnqhQwXVxEqJ7/8XG52voxP+/FPpWaFoa47PRPzJJ9z4AAAA0AuMlQMAAAAAAAAAgAHw2Z+MuPctEUsnI+Yejrjz9yO+9NLtrgoA6EGC0QAAAICe0WxmTx9KIvYUBKNN9XswWs5yWW9hufN1dML1h/JHz7/vZiPrAQAAeoGrNwAAAACgvxX0gvrlCABgYDkPAhg4iyciRj+0cfp9b3V9DABUJhgNAAAA6Bl5X4O0DEab70g5tdEs8QVRLwajNZtpHDyc3/7l8Yh7jvhyDAAAoO7c1wgAAAAAAAAAAH3ugXdF5sifuQcjlie6Xg7AwHCTJn1KMBoAAAClHJtO44/+oRkvfn8zPnq7jhK2RzNn00uSiL0X5D/uyFRn6qmLlWbreXoxGO2hUxHzLer+u9scjwAAAOrOPTcAAAAAAL1Chy4AsN2cjwD0rGbBABA3EAEAFY1sdwEAAADU3wMn0vjOVzVj9JEf50jjBd+fxB/9R3nbdFfe9yBDScSOkSQu3xNxdHpj+9hkGhFJR2vbTnmBceu1Chiro3uPtZ7nurvT+JUf7HwtAAAAbF6Z2xqXG2nsGOnfa3cAAAAAoJ8Z3A0AsJFzJAAAADbPCHYAAABa+t2PpOtC0Vb9ySfSuO0hX1bSXXkBYMnpcdP792a3j57qTD11sdJsPc9So/N1tNvcUut5DhzufB0AAAB0Xi8GegMAAAAAtOYeOwAAAHhk4A9ARKQFXWZFbeSx0OhPgtEAAABo6bNf2dgxkqYRr/ioDhO6Ky8Ybej09yNX5QWjTWRP7xd5y2W9pZXO19FujRKBb/cej1hqOBYBAADUWZkblcqEYwMAAAAAAADQ5yRhAAAAEILRAAAAKOHA4ezp777Jl450V9733GvBaPv3Zv+CzNhEf2+rKyUCxJYana+j3ZZLhLmtNCMOHet8LQAAAGxemavy+eWOlwEAAAAAwJb09z1YAAAAAADUh2A0AAAAoGc0c+6tS07noe27OLv9+Exn6qmL/g1GK3cz5QMnOlwIAAAAW1LmB72nFzpfBwAAAABARxR1gpbpIAUA6EfOgwAAANgCwWgAAABsyfSCLyzpnrzvx4dOB6NdfEF2+8xiZ+qpi7zAuPWWVjpfR7stl6x5dMJxCAAAoM4EowEAAAAAAAAAAAB0gFBi+pRgNAAAAAqlLTpFxie7VAhEfgBYcjoYbffO7PZ+H1y90mw9z1Kj83W0W6NkMNrYRGfrAAAAYGvK3HIzNd/xMgAAAAAAaMUgSgBg2zkfAQAAQDAaAAAALSy2CFMaF0hEF+Xddzd0Ohhtz/nZ7f0ejJYXGLfeYqP3bhJYLhmMNuo4BAAAUGtlxtFNzvfedSsAAAAAwCr9mwAAAAD0AaH5QI0IRgMAAKDQ/FJx+/ikzi66Jy8A7JFgtJ1JZvvMYocKqomVZut5llqEHNZR2WC08QnHIQAAgF431eeh5gAAAADAoHJfCwAwqJwHAbCOsCVgnaIjgqPFZlhq9CfBaAAAABSaXy5uPzLdnTogIj8YLTmdh7b7/Oz2heWIxkr/dvCVCkYrGTJWJ2WD0UYnOlsHAAAAW1PmilwwGgAAAAAAAABCHQAAtpNzMaA+BKMBAABQaH6puH1qvjt1QET+D8QMnQ5G27Mz/7HTfTzAOi8wbr2lRufraLdGicC3iIgxwWgAAAC1VuYHX/UxAQAAAADUnYGxAAAAAAB0h2A0AAAACi20CFOa6uOwKeonLwDsdC5aYTDazGLby6mNlRIBYksrna+j3ZZL1nxkOmK54cZLAACAuioVjKaPCQAAAADoWUWdoO5pAQAGlfMgAICeU+ZmP4AuEYwGAABAofml4vap+e7UARH5X48Pne7h2H1+/mNPzbW9nNrIC4xbb6lFyGEdlQ1GS9PVcL8/ECEAACAASURBVDQAAADqqcytUvqYAAAAAAAAAAAAAKoSaEd/EowGAABAofnl4vbphe7UARERzWb29KFk9f97duY/9g+u6d8OvpWc5bJeLwajNUq8rzWjpzpXBwAAAFtT5kckp+b797odAAAAAKB36KsFALZZmS+YAQDoDOdiQI0IRgMAAKDQ/FJxu0GrdFMzZ3M7nYsWF54fkSTZ83zuUP9uq3nLZb3FHgxGW14pP+/YZOfqAAAAYGvKXJFPCd8HAAAAAAAAAACA7SMYDagRwWgAAAAUml8ubjdolW7K61odOt3DkSRJbv/rjuGOlFQLK83W8yxVCBmriyrBaMdndLwDAAD0sqn57a4AAAAAAGCTigaMGkwKAAwq50EAAABsgWA0AAAACs0vFX8hKRiNbmrmBIAl6/5+xpOy55no4wHWpYLRGp2vo92qBaN1rg4AAAC2psz97vqYAAAAAAAAAACgXwnMhJ7QpXBbvzPQZhYafUowGgAAAIUWWoQpTfVx2BT1k9dFN7QuGe0F35/d3TEx1/566qJZou+yF4PRGoLRAAAA+kKZe24m9TEBAAAAANSbAZYAQFc45wDoWUmS3+aaEgCoSDAaAAAAhRaXi9unFrpTB0TkB4ANrevh2Lsre57FRsTCcn9+kbLSbD3PUoWQsbpYrlDzCcFoAAAAtVXmalwfEwAAAADQu/rzniQAAAAABo1+LqA+BKMBAABQKC+Ias3UfETqVzvokmZOANj635TJC0aLiDg129ZyaqPVfhoRsdzofB3t1qgUjOY4BAAAUFdluo5mFyNWylzgAgAAAAD0FP2eAMCgch4EwHo+FwA6xzGW/iQYDQAAgEKtxqM2mhELy92pBfI2x6F1yWh7L8h//MR8W8upjZWcwLj1FnswGG25QjDa8ZnO1QEAAMDWlL3lZnqho2UAAAAAAAAAUHtCHQAAtk2ZX0EF6BLBaAAAABRqFYwWETHZp2FT1E/e9pisD0bblf/4ibn21lMXZfbTpUbvdUw3SgS+rRGMBgAA0Pum9DEBAAAAAGyz3rvHCAAAgF7gehMAqGZkuwsAAACg3lZKBBNNLURceXHna+l3b7+xGe/+QhpDScR/+rYkfuJb5ZmfK+9HJ4bWBaPtOi9iZCg7VKtfg9HK7KdLK52vo92WV8p/8SUYDQAAoL7K/oik8H0AAAAAoDcVdYIa+A0ADCrnQQAAPafszX4AXSAYDQAAgELNEn1ZUwatbtmrPtaMX3/fmYX9d7elMTbRjBf+gHC09fK2x/XBaEmSxN5d2UFZh6fSiEg2NvS4MvlhC8udr6PdliuEuU3ORyw30tgx0n/rFwAAoNeVvVdqaqGzdQAAAAAAAAAAANtA2BJABznG0p+MrgYAAKBQqWA0g1a3ZGE5jVd/bOOCfsVH01hq6JRaL297TM7JwnrcJdnzHTzS3nrqotlsPc9kDwYYVglGi4g4OdeZOgAAANiasr0bwvcBAAAAAOrMvWwAQBcIzgEA2D5dOhcrehmng8AawWgAAAAUKhO4ZNDq1tzyYMSpjECn4zMRd4x2v546y+vYHDonGO1JVyaZ8x0c78+e0ZUSb2uiB0PDGhWD0Y7PdKYO6u3+42nc9lAaE3P9uX8DAEA/KHuj0tSC83oAAAAAoAcZrQkAAAAtuHaG3mBfBepjZLsLAAAAoN6aJfqyVgetZgdR0drBI/kL+e4jaTz9qy3bNXnbY3LOInrCldnzHTjc3nrqokyA4UQPBhguVw1Gm+5MHdRTs5nGz1+dxl9dl0Yzjdi7K+KNzx6KH/9mx0wAAKibsrdKTS10tAwAAAAAgO4TmgYADCrnQQCcxecCQMc496ZPDW13AQAAANRbqWC0HgxcqpOvHM1vu7ugbRDl9dENnRuMdkX2fA+dikj7sKOvzH46Mdd7771yMNpMZ+qgnv76+jTe8H/TR7b/ibmIZ/1lM45P99Z2DgAAg6Ds5eikPiYAAAAAAAAAAADYHj029gzob4LRAAAAKFQmcMmg1a05VBB+dvBw9+roBXnb47nBaF/1qCRzvrml/txem83W8yyvRMwvdb6WdqoejKbzfZD88cez1/flv9zsuRBAAABglfB9AAAAAIBt5p4LAGDbOR8B6EuuNwGAigSjAQAAUKhMMNpsj4Ut1c3sUv5CPjCu43+9vO0xOScHbf/e/OcYnWhfPXWxUnIzmeixAeaNEoFv652a60wd1M8DJ9K4cyy//fP3da8WAACgtbL3NU4tdLYOAAAAAIDOcI8XAAAAAH1AiCFQI4LRAAAAKNQsEUw0s9j5OvpZYyW/7eCRiGaZdLoBkde3OnROMNq+i/OfY/RU++qpi5WSAWITPRYctlywb2QRjDY47hgtbn//rY6bAABQJ2XP0Kd6LNAbAAAAAKA19zAAAIPKeRAA6/lcAOgcx1j6k2A0AAAACq2U6BOZFYy2JUXhT3NLEQ/1YZDXZuVlxCXnBKOdN5LE5Xuy5x2d6L+OvrLheZM9NsBcMBp55paK2z/+5f7bzwEAoJeV/RHJ6QXn8gAAAAAAAACDzffGAADbpuzNflt9mU22AYNFMBoAAACFms3W8whG25pGi2V8//Hu1NEL8vpWh5KN067amz3voWPtq6cuygQYRkRMLXS2jnbLC0YbzunRmpjV9T0ollps9PPLXSoEAAAopezVWq8FegMAAAAADBb35gAAALBZrikBgGoEowEAAFCoWaLfeXZR5/RWNHLCn9aMTli+a/K2x6xgtK+7ImNiRBwY77/lWSbAMCJiscfCovL2jct2Z0+fMIB+YCw1ittbHVcBAIDuKvsjkoLRAAAAAICeVNgJ2n/3KgEAlOM8CACg9ziHA+pjZLsLAAAAoN7KBaN1vo5+ttwyGK07dfSCvO0xychAe9KV2fMeONy+eupipWSf80IjjYjswLg6yts3Lr8o4vDUxumn5jpbD/Wx2CIYbXQiIk3TSLIODgAAm/CVo2lcc2ca541E/PBTk9i/13kGdMKx6e2uAAAAAAAAAAAAaLuyv6wIbC/7ao+y3uhPgtEAAAAoVCYYbUYw2pY0msXtY4LRHpHXtzqUkUnw5H3Z895zNKKxksbIcP8EGTRbbENrFpc7W0e75Qaj7cmefmq2c7VQL0stgtHmllaD8h59YXfqAQD624duS+Mn3tCMhdPn04/alcY1LxiKb3lc/1xTQKeVvVdqfFLIMQAAAADA9jKIEgDYZsI4APqU4zsAUM3QdhcAAABAvZUJRptd6nwd/UwwWnl522PWcOkn78seRL28EnHoWPtqqoOVkt8PLbYIk6qbvH3jsj3Z6/bUXAeLoVaWckLz1rv7SOfroHNuvDeNn/6rZvzUXzXjbZ9rRupGJwC2SbOZxvOuPhOKFrF63vltv18ynRiIiPK3NS42XNsBAAAAAL3Id9oAAAAA9AFjN4AaEYwGAABAoWaJsd4zC52vo58ttwj4GZvQobgmb0kMDW0MynrCFREZkyMi4q7x9tVUByslMxnWhzn0grx949Ld2dMn5leDK+h/iyW25YOHbQu96po70/iOVzbj6s+n8Y7Pp/Ezf53Gr73P+gRge9xwX8TDp7LbXvFR4WhQVpV7pQTEAwAAAAB9xWBSAGBQOQ8C4Cw+FwA6xrk3fUowGgAAAIXKZAzNLnW+jn7WaBGMdmK2O3X0grygvqwAtJ07knj8pdnz39VngUlls8AWG52to93ygtEu35M9PU0jpgQ1DoSlFsfNiIgDhztfB+2Xpmk8/x0bD/Z/+sk0jk/317EbgN5w4735nz8vfn8aK4J5oZQqe4pgNAAAAAAAAIBB5l4MAIBtI2ALqBHBaAAAABRayQmiWm9msfN19LNGi2V8fKY7dfSCvMyBJCMYLSLiyfuypz94sj311EWZ/TQiYmG5s3W0U5qm+cFoF+U/7tRcZ+qhXpZKhPyNnup8HbTfzQ9GfOXoxukLyxGfPdT9egBgrkUQ+O2j3akDel2Ve6XGJt1YtebeY2kcPCyEEQAAAACoCQNjAQAA2CzXlMA6RYcEhwtgjWA0AAAACpUZd7nUiGis6HHarLzwpzUnZ8MA2NPylsJQTjDaFRdlN5zss7C5spvHYokwqbooek+X7c5Z4RExIRhtICy1OG5GREwvOG72or+7NX+93T5qnQLQfa2CwI9Pd6cO6HWVgtEmOldHr5heSOP7/2glvvbFzXjyS5rxlJc048tjzocBAAAAoL703wEAbOQcCQCg9ziHA+pDMBoAAACFygYuzbYYLE6+RouAn2YacWr8ZKTXXB3pe/8s0ofu6U5hNdRsZk/Pi8m6ZHf29BOz/dVJu5KzXM7VS8FoRYGBees1IuKUYLSBsLjcep5pn0s96YO35R+f7z3WxUIA4LRjLUKVe+kcG3rF+OR2V7D9fuHqND554My/7zka8Z/e0IzUT2ECAAAAQA/SrwcAAACujwE6yTGW/jSy3QUAAABQb2WD0WYWIy7e1dla+lWjRKjV8Rf8RDz68HWr/xh+UcRv/Z9InvGszhbWQ4Zyot8vuTB7+okW4Qa9pux+ulAiTKouioLRLtgRsWdnxPTCxrZTs52rifpYahEoGRExNd/5Omivqfk0vvRwfvsX7vdFDQDdd3ii+PNnNXQ5L6oZWFPlTG68xX7X79I0jY/cvnEZ3DEWccO9Ed/xNdtQFAAAAAAwQAa7jxYAqAPnIwAA28aPdwI1kjNsGAAAAFaVDVyaXepsHf2sKABqzfHJdQt4ZSXSP/j5SJcWO1dUTeVtj3kxBHnBaAePtKWc2lgpEa4XEbHY6Gwd7VS0X+wYjnhUThDjqTkd8INgucS2nBWcR709dKq4/c6xiIOH67GPf+H+NH7+7c141utX4o3XNSP15R9A35prca3bb6HL0ClVTpfGJjtXRy9YXok4mRP6/dYbnHcCAAAAQC35zhgAAABacO0MPUE/F1AjgtEAAAAo1CwZuDQjgGbTGiWW8bHhy8+eMDsVceeNnSmoxvK2xyQnGe2S3dkNC8sRk30UoFU2wHCph4LRGgXBaCOFwWidqYd6WSoRKDk9eNmRPW+0RTBaRMSTX1LyxKSD/vFgGt/9B814/T+m8bc3Rzz3bWn8/NX985kCwNlanXecyAkvAs5W5WzpgRMdK6MnFN1Xduio804AAAAA6D369QCAQeU8CGDw5AzuiRC2BNBRjrH0J8FoAAAAFCrb7zy71Nk6+llRANSasR37Nk68/XPtL6bm8jbHoZwejkdfmP9cr/xY/3T4lQ0wXFjubB3ttFywX+wYzl+3gikGw+Jy6/13WmBnzxmbLHdcvvmB7T1+v/qa5obj6Rv+bxrjE/3zuQLAGa3ChZ1/QjlV7mscn4yYmh/cc6ui8PN7jnavDgAAAAAAAAAAAAaMEEOgRgSjAQAAUKhoMOZ6s4udraOfFQVArRkd2b9x4s4L2l9MzeVtj0M5Pyqz7+L85/q7W/uno3al5FtZbPTOe24VjHZJXjDaTGfqGQRpmsaB8TQOT6aR1vyLjKUSx83phYhm2Q8xamH0VLn5Pn339q7Xj96xcVqaRrzhOtsbQD9qdd4xIRgNSql6iXHwSGfq6AVFlzGHJ7tXBwAAAADARr4XBwC6oOb3sAKwWY7vwBl1H7cE1INgNAAAAAqVzZSZEYy2Kc1mWmoZj43s2zhxdqr9BdXcSjN7el4w2tdclv9cBw5HjJ7qj07UZs5yOdficmfraKdWwWiP3p290k/N9sc67ba7j6Txz1/ZjKe8tBn7/1czfvTPmrVelkuNcvPNLnW2DtprdKLcfAcOd7aOzfry2HZXAEAntDrvmF6o7zkT1EnVPeXg4cHdt4ru91oseS0EAAAAAHTb4PZpAgAAANBHahBYtv0VAHUhGA0AAIBCeUFU55pdrN7lNLOQxgduSeNPP9mM2x8ezC6rsst3dGT/hmnpxLE2V1N/zZwUubxgtCRJ4ur/mtMYEQ+cbEdV269sgOFCDw2gbhTsGyNDEZdcmN12YrYz9fSzZjONn31LM26878y0j9we8cvvqe9xuWww2vRCZ+ugvQ4dLbfN3V3TkIylRj3rAmBrigJ7IyKmhYRDRxyb3u4Ktk/Za3wAAAAAoEfUYDApAMC2cB4EwHo+FwA6xzGWPiUYDQAAgEJlB2POVBwMfmQqjX/56mY883XN+J/vTONpv9OMP/lEyZSwPtJqkP2a8R37Nk6cONHeYnpA3vaYF4wWEfET35rfeLxPBlqX3U8XlztbRzsV7Rs7hiMu2Z3ddmKmM/X0s8/dG/HZQxunv/eLaW2DnhZLBqNNzXe2Dtrr4JFy891dcr5OyAvojCi/XQLQW1oFss4IYoVSqt5zM7vUmTp6gfuTAAAAAIBtpZMSANh2zkcAALaPczGgPgSjAQAAUKgoAGS92YrBaK/6WBq3PXz2tF9+dxqHJwer86xRMgtuYmjvxomTx9tbTA/I2xyHC3o4kiSJxzwqu+34TH9sb6WD0XootKdlMNqF2W0nZjtTTz977SeyN6CZxYjjNQ2aWyoZKnl4qrN10D6zi2k8eLLcvEemI5a3KbSv6NhUdrsEoLe0Or5PV7wWhkFV9eytaj9TPyl7jQ8AAAAAAAAAAL3DTTEAQDWC0QAAAChUdjDmTMUBq3/5jxufuJlGfODWweroLgpYWW96aPfGiaeOtbeYHpC3PQ4lxY+7NGPxRdQ39KmqsvvpwnJn62inlsFou7NX+vGZiNQv11Zy7/H85XWipvvIUsmQv7EJ20KvuOdo+XnTdPtC74rCcRZ76BgLQHmtzjumF7pTB/S6vMu0kZw7Fqr2M/UTwWgAAAAA0It07AEAbOQcCWDwOPZDzzMmC6gRwWgAAAAUKjsYc3ap2vPO54SHvOWzg9V51miWm296+KJoxjlBUCfG219QzeUGo7Xo4bgsJxjt7gpBPHXWLLkd5e13ddQoCB8aGYq4fE922/JKxMnZztTUr3YM57fVNTxwsWQw2uhEZ+ugfQ6MV/v83651WxSOUxSaBkDvanV8F4wG5eTdK7V7Z/b02QEORmt1X1ljZbD6zgAAAACg9+nTAwAAANfHAJ3kGEt/EowGAABAobLBaJPz5Z9zdjH/SVsFXPWbovCnc80OXXj2hMkTkS4N1kjhvACwoSR7+ppL92TP8ObPpJH2wS9ZlN1P5yoGGG6n5aJgtOGIfRfnt49Ptr+efrZSEKx3oqYhc0XhVOuNCUbrGQePVJt/u9Zt0bGp7HYJQG8pOvZHrJ5jr5Q9IYcBlreX7D4/e3ovXb+2W6tDyiCHxgEAAAAA2813IgBAF/TBvd0Ag6tgcI/jO/QG+ypQIwM23BwAAICqyo7vPjlTvtPryFR+23CLgKt+02qQ/XpTQxdtnHh8rH3F9IC87bFVMNolu/Pbrrtn8/XURdn9tJcGT+ftGyNDEUmSxBUZu8MawWjVzBcEDhyvcGzvpqWSx07BaL3j7orBaKMT27NtFoWfLQpGA+g7aZqWCr7spfNsqJs9O7OnzyzU81qkG1q980EOjQMAAACA2jJgFAAAAIB+0KVurqKX0dUGrBGMBgAAQKFms9x8x6bLP2dhMNqAXak2Si7fiIjpoYx0r+Pj7SumB2w2GO3xl+S3veyDFVZCTZUNRuulwdN5+8bI8Or/zxtJ4tKcwLvxST3gVSwUhH0cn+leHVWUCSiJiDg2bVvoFScqhvCdnO1QIS0UhfIJRgPoP42SYazTC52tA/pB3o1Ku8/Pnj7bQ9ev7daqL26Qlw0AAAAA9Cb3LgAAA0qiBQBn8bkA0DmOsfSnARtuDgAAQFVlA5eqhOccLQhRG7RQkbID7SMipof2bJx49OH2FdMDNhuM9mP/NH+GT98d8dIeD0cru582mhHLjd7o6FzO2Td2DJ/5e9/F2fOMT7a/nn42XzCo/kRNg9HKflac2KbwLKqr+vm/XQE0ecemiPKBfQD0jqJAzPUEo0FreVeiucFoix0rpfZaXeMP8rIBAAAAALqhN+4tAgAAAKAT9A0B9SEYDQAAgEIrJfOijlUIzzkyld9BNmghNkUBK+eaygpGGz3UvmJ6QG4wWosejsddmsSPPi2//eUfTuOWB3u347ZZIddtriAEq07yjj0j69b1lRdlz1MlqJGIheX8troGo5UNoBq0z5ReVrQdZtmuAJqibW90ImJxuXc/SwDYqOw5R6+cY8N2yvsh8LxgtJkBDv9qdUY565gDAAAAAAAA9DX34QH0J8d3AKAawWgAAAAUyguiOtepuYjGSrmZj0zlt91/PGJibnA6uxsVAq1mMoLR0ofuaWM19ZcXADaUtH7sy360uBvk/3yud7e7svtpRO+ENuS9p2Tdur50T/aKr2uYV10tFAR+nJit336RpmkslQyVPDGzOj/1t1gyeGbNtgWjtdj2nvm6pm0OoI+UDbKerxjwCYMoNxhtZ/Z13ewAB6O1Cj8f5GUDAAAAAPXle2IAAAAA+oDxEECNCEYDAACgUNnApTRdDUcr4+h0flujGfHRO3q/A+3mB9L4vtesxEXPX4nH/upKvOBdzZhf2vi+qgSjTQ1vDEaLQQtGy9k0ygSjPeHy4vbXfbp3t7uVCttR7wSjZa+P9ev6kt3Zjz0+07vrstvSNI35gm3ieA1D5laa5b9nWWz0zjY/6PKC0XYMZ0+fXtie/bxVQM5H74j4wK3dqQWAzisbxup8A1rLO3u78Pzs6bMDvF+1OtMtuoYDAAAAAGrIYFIAYGA5DwJgHdfHAJ3jGEufEowGAABAobLBaBERJ2fLzXd0qrj9jz+eRtrDnTEHD6fxLb/XjE/fHTGzGPHwqYjXfiKN//62je+pVcDKeieGH71x4vj9m66zF20lGG3X+Ul89SX57csrEbOLvbndVdlPeyW0Ie8QsH5dX5oTjHaihmFeddVYKd5+6hiMlheglcf20BsWl7OnX5aRCRoRMb3QuVqKLJXY/l72wQpplQDUWpnjfoSQIigj7xpvz87s6ZPzEStVLnb7SKu3PZcRvA8AAAAAAADQP3wnCgCwbXp4TCfQfwSjAQAAUKjKGNTZxXLzveeLxU/6hfsjvuFlzbjnSG91pDWbabzovc148kuyA1HefmMah46e/Z4aFYLRxkeu3Dhx4likjYopQT1sK8FoERH/7puKZ/ziAxULqol+DEYrs67zgtHqGOZVV/M5YVRr6hgqVjagZM3hFmGc1ENe4F3efl7nYLTbR6OnA14BOKPseYeQIti8fRdnT19pRhyb7m4tddFskbPbK9f1AAAAADBYBuS7At+FAwAAsGmuKQGAagSjAQAAUKjVYMz1ZlsMzEzTNK6+sdwT3jUe8cTfasZd473T8f3mz6bxmmuL6/3ArecEo1VYvuMj+zZOTNOIU0fKP0mPW8lZXkMlezhe9K+SeHLGYlzzI39aYYXUyEAFo61b15dcmD2PYLTyFloEo00tRCw16nUcXqoQKBkR8amD9aqfs93+cBpv+kwzRiey23OD0UqGsbbbcsntr46hggBUV/a8o1XYLJB/W+Nj9uY/ZiznHLHftbqC6ZXregAAAAAAAGDQuX8TgPV8LkBP6FIwftHLyObfDAuN/iQYDQAAgEJVApdmC0JK5pfS+I9/2YyfflO1Tpavf2kz/uLTvRFW9dbPtX5vnzpw9jxlA1YiIsaygtEiIo6Pl3+SHpcblpWUe/z+vUnc8Ov53SEzixGLy73XEdiXwWh5IXjr1vWlu7NX/Km5+oV51VWrYLSIiJOzna+jiqVGtfk/c49toa5e/uFmPO13mvHf3pq/ji7L2c+n5jtVVbGyATljk52tA4DuKHu91ivn2LCd8m5UumxPEiM5l+l54bn9rtU1vmMOAAAAAPSaXrtvodfqBQAAAKB99A0B9SEYDQAAgEJVApee8+ZmfOKu7Ae8+6Y0/vbmzdXwC1enGwLF6iZN07h9tPV8dx0++9+NSsFo+7MbTghGKxuMFhGxZ2cSP/zU/PavHKtWU6ekaRp/c0Mznv2mZvyv9zbjy2P5+0BeiFiWXhlAXWZd77s4//GHarIe626+RDDa8ZnO11HFYsVgtGPTnamDrbnlwTR++0OtP9sv2Z09fXqhzQWVVDZ0cfRUhwsBoCvKBrKWOacCsg0P5V/bjU3Uuy+oU1r92qVjDgAAAAAAANDXWn1pCkBvcnwHACoSjAYAAEChlQqBS8dnIn7wj5vx5s9sfNB7v7i1Duxn/FEzvnB/fTvBj0xFTM63nu/+ExELy2feR6PC8h0b2ZfdcOJw9vQ+lBcAViUYLSLil34gv0vkrprkzD3/HWk8581pvP3GNP7w2jS+/RXNuOHe7H2gSoDh7FJ996P1ygSjfc1l+ev+wODsFluy0IPBaGUDStZML3amDrbmr69PSx27LtuTPX1+OWJqvvvHs+WSgaajAxriAdBvyp539Er4MGyXtMVNjVc9Knv6+GQHiukBrc6THXMAAAAAoIYM7gYAAACgH+jnAmpEMBoAAACFqgQuRaz2fb3kg2k0Vs5+4Edu33otL3xXhRSxNpiaT+M3P9CMr/mNlfi231vJDHxbUzaEKU0j7j5y5t9lA1YiImaG98T00O6Nz3m8JkleXVAmLKuM731S/gPeVLCeu+Whk2n8xafPfrMzixH//JXNzAHlVfbT6YWtVtcdee8pWbfqzt+RxD+5LHu+A4d1xJcxXyIY7UTdgtEqHDcjemebHzR/dV25ffQJV+S33fZwm4qpoGxAztiAhngA9Juy59nzQoqgUNF9UklEXLaxqyMiIiZKBND3I8FoAAAAANBnDCYFAAaV8yAAzuJzAaBjnHvTpwSjAQAAUKhqMFpExNhExF0Vs7re+d9bJ1tdf2g1MKpbnv+ONH7/79O473jETQ9E/Ne3pvHnn8oOzbrvePm6Hjp55u9zA+RaGRvZt3HiCcFow5vo4fj335Q9/Zo7I+45sr2dgdd+Of/1//AfBjsY7dwQvCfmhCbde6y99fSrxRLBlfGueQAAIABJREFUaMdn6tU5Xqbm9aYGNEyhzmYX01gouR6fcEUSe3dlt938YPe3zbLBfPc5BgH0hbLn2UKKoFjRrpQkEXt3ZfcJTc51pp66a3V/kmMOAAAAAAAA0N/qdd8qAMBAEbAF1IhgNAAAAAptJhgtIuKuw2ceOL9U/CRXXhTxY9+UxA8+pfXzfvWvNePoVOc72G57KI233bDxdf7i09mvPTpR/rkn5888RyM7Zy3X6Mj+jROPC0Y7NyyrjCfty3/QE3+rGc3Nbvxt8PEv57f9xvvSSM/pZK5S6lSvBKPl7BvnruvHXpK9HscndMSXUWbbOTHb+TqqKBtMtWZmMTbsM2yvsQqfmRfsiHj6Y7PbbnmwPfVUsVxy+zu4zQGbALRH2VOI+YrBrcAZSRJx0QXZbRNzg3lO1eo6bV4wGgAAAACwbQaz3xYAAIB2cE0JAFQjGA0AAIBCeeFErdy1Lqvr5R8p7rz+058cih0jSfzJfxqKy/e0fu6vf+mZ0Kob703j6hub8fn72ttB/r8/nv18d41HzC1ubKsS8jI5f+bvsgEra8ZH9m2ceOJwtSfpYbnBaJvo4XjylcXtb7hu+7502b0zv63RjJheF26WpmmlH+OY7pFgtLy3dG4w2lV7s+erElY4yMoEox2f6XwdVSw1qs3fTCPmBAfUSpXPzPNHIv7pY7MDEG9+oPvH6bLb38HDAvmA7piYW70e+sAtaZyYcdxpt7JLVEgRFCs6LUoiYu+u7LaJ+ezp/a7VaWSrHyAAAAAAALaDfjsAAAAA+kCXxkEUvYqeNmDNyHYXAAAAQL2VCc3JcveRM39/+Lb8J7npxUPx9K9eDTx54pVJ3PN7Q/Etv9uMe47mP/eJ2Yin/24zvn5/Eu/4/Npzp/Gz35nEG56dRJJkB6hUce2d+TWfmI3Ydf7Z08Ymyi+o9QN7GxWD58aygtHG7o200YhkpP8v8/OC+s4NyyrjyfuSKOoqffsNafzcd1d/3naYaRFednI24qILVv+u2t883SMDy8uG4OUFo41NtreeflVm+znR48FoEauBgBee33o+umNssvyB6/wdEU9/bHbbXYcjlhppnDey9c/9spZKBpqemos4Nh1x+UWdrQcYbDfdn8Yz/qh5Ovg2jf17Iz74vDPXV2xd2evhOSFFUKgwGC2J2HtBdtvEXGfqqbtWxx7BzwAAAADQa3yPAAAMKudBAKzjR6cBOsgxlv401HoWAAAABtlmg9EeOnnmgQsFITbnDtrfszOJO142FM/65uLB/F96ONaFoq1602fSGH5uM37qr5rxl//YjJXNFh8RiwU1H88ICRqbKP/ck+uCqZZLBqysGd+REYw2Mxlx+/XVnmgL0mYz0k/9bTRf+dxovv43Iz1xuGuvnRuWtYnsh6fsizivIEvus4ci0m364qVVaNCpdYPDq27m0wu90dFZNgRv/97slX9sOmJxuTfe63Yqs/1MztdrORYdn/NMtQgbpLtGK3xmnj8S8dSrsvfzlWbE4S6HIK5UCDQ9eKT1PABb8ew3rYWirRqbiPif76yYvEyhspcD0841oFCrXWnvruzpEz0S7N1ugtEAAAAAgG1loDoAsO2cjwD0rqLBPY7v0Bvsq0B9CEYDAACg0GazxdaHnkzmDGT9hv3Z03eMJPGu5w7FXz57E2lXsRqY9j/ensazXt/cdLBVUfBJVjDagyfLP/f65dGoGIw2dt5jMqen13+k2hNtQfrq/xHpS/6/iI+8JeLtfxDpzzw90gcOdOW12xmMtuv8JH7+e4of+MHbqj9vO7TanrYUjLZYvZ7tUHZdX7U3/zkOT7Wvnn5VZvuZqlkYwdJKdtEjBT2dwkrqpUqY6Pkjxfv5eJeD0aoccw8c9oUg0DljE2lmAONnD0UcOur40y5lj/sTc63ngUFW1DWTJBF7L8i+Nh/UfatVV5ZgNAAAAACoI9/PAAAAANAHhOYDNSIYDQAAgEJ5A8Ff8cwk/sPT8x83NhGPhJLlBaP9/jOLL0v/278cim99XIkic3zg1ojh5zbj6168Ei96bzMWlst1zDVW0pgqCNE5MXP285yaTePodPm61ocMNQoC2LJ8cs8zshs+86FNh8BVkX78XauBaOtNnoj0Hf+7468d0d5gtIiIVz4ziZ/9zvwH/9hfNOM11zajudmEwE2YW0xbB6PNnvm7KMQvS91CrvKUXdf7CwKTRiuELw2qUsFoNQsVy9vm9+7Kf0yvbPeDYrzCvrlzx+q63bkju32s28FoFY65Bw93rg6AovOcG+5zQ0K7lL3EmnCuAYWKdqUk8s/lpxaiq9fjddHqLQtGAwAAAAAAAHrD4H3fC0ARnwsAneMYS38SjAYAAEChvACaS3dHvPvnhuOzv5p9abnYiDgxE7GwnMZSI/s59l7Q+vWvfcHWL10PHYt4zbVp/ItXNuPOsTS+9HAaXx5Lo7GS3eFzcjZz8iOOz5z974NHqtUzOXfmdZdXqj32ZLonjg1furHh4UMRDx6s9mQlpdOnIr371khv+0ykv/2c7Jk+97GOvPa5csOyNrmZnDeSxBufMxSX7cmf50XvTePlH+le5+A9R1sHMJxatw1VHSM+XbOQqzxlg9EuviBi13nZ844JRmupF4PR8mo+byRi9/nZbZ+/Xwd/nYxOlF8fO4YjkiSJ/Rdnt49VeK52qPJqD7UIuQTYigtyAiMjIu6peH1CvrLn2hNzna0D+lmS5AejpWnrPpp+1KpPYH65O3UAAAAAAO3ingUAAAAAekTZXxUG6ALBaAAAABRqFU702EfnP3Z0ImJyPr/94hLBaBfvSmL8Ne25fL3loYinvqwZ3/Q7zfiGlzXj0hc2422f25j8dnS6+HmOnROM9qWHq3X4TaxbJo2KwWgREa999POyG268tvqTFUhnp6L50p+O9IeujPRn/1mkv/CM/JlPHo50uvMpVM2coL5zw7Kq+p4nFD/Bb38oja8c7U7H7oHDrV/n1LrgharBaHULucqT976S5Nx/J7F/b/a8VcKXBlXePrXeVMFxfDvk1TycRDztMdltH73dtlAnZUMLLzx/dR+PiNiXE4w2PtmmokqqcsydXrDdAZ1TdDz6ytHu1dHvyt7bcWouInUjCOQq2j2SiLjyovz2sS6f79VBq3POuaXu1AEAAAAAsJHvQwCALnAPBkB/cnwHACoSjAYAAEChVkFUV1yUH0rVKhht765yNVxxURK3/Fb7L2GnFiJ+5q/T+C9vacavva8ZP/1XzXjFR5vxjb9dnBT0wImz//33FQN3jq0LXmvkvNSjVk7mPv59l/5k5vT03jsr1ZEnTdNIb70u0n99WcQn31P+gQ/e3ZbXL9IqqG+zXvnjrZ/gm3+3RIJUG5y7fWU5OXvm7zLBVuv1SmhDlRC8q3KC0cqGLw2yMiFPdQvTyz0ODEX826dl78u3j/bGdt8pU/NpvOemND54axonZ7d3OaRpWjrc4sLzzvy9f2/2uu32fl7lmDtds30H6C9Fn+GHpwb3M6/dygZirjQjZhc7Wwv0ssJgtKS4b2kQr+sEowEAAABADxrgexIAAADgDNfH0PP0cwE1IhgNAACAQnmDMYdPX1GODCdx5cXZ8zx8Ki0Mebr4gvJ1PO2rkrjrdzpzGfuW69N49cfSuPrzabz4/a077w4ePjNPmqbx6YPZ8331JdnTRyfOBPQsr2TP800Lt+W/fjw2Dg9fsbHhgZxCKkiXlyL9tWdG+vzvr/7gBw5s+fVb6VQw2uMvTeI3fqj4SaYXIg6Md75zd7TEoO9Tc2f+LhvWsGZhuTdCG6qs67oEJvWiMpvPwnLEUqM+X2ysFITmffs/yd4WTs1FHJ/pYFE1dsuDaTz+15vxE29oxr//i9Xwz5sf2L71eXJ2dZsqY/f5Z/7elxOAOD7Z3fdS5Zhbt1BBoL/kfR5GnB2iy9ZU+ZSZKAgFh0HXal8aGU7iiouy20Yn6nMt0i2t7iubWxrs4GcAAAAA6Dn68+gE2xUAvcDnFQBn8bkAnFF0qug0chMsNPqUYDQAAAAKlQknekxOWMnoRMSL3589Yj9Jzg48KeOJVyZxzQuG4pILqz2u3Q4eOTMAdXYxP/jkZ78zO6Bnbili6vSg+UZOoMGOtBF//+C/za1hdMf+jRMfOFB5YOyN96bxvKub8aI3jMdtr35NpN+3J+L6v6/0HGvSB7cezNZKUSDSVv3WDyfxU/+s+Ime8tJmfOVotWX8mXvS+J/vbMYvvrMZ193T+rFjJQZ9T2whGC0i4lgPBETlva2hjN6s/TnHoLffmBos3kKzIFRlvakaBX0UfS496cr8xx043Jl66u5n3tw8K0xxbCLiF99ZcsV3wN1Hys974brzhP05Iazjk1urp6oqx9xpwWhABxUdj9Yf99masudKEWefowNnK7osS05fhudd1w1i4HWZc86yYcMAAAAAANW51wYA2G7ORwAAto1xWECNCEYDAACgUJlgtKselT3P6ETEoWPZbRftjBjaRJrVDzwliftfORSf/pWh+MDPD8UdLxuKpdcNxe0vW/33Hz6rDQlZLUzMRRybXv37eEHA1Lc/Pr+W0dMDexsr2e0jaSO+f/aTuY8/NnzpxonTpyLuvyu/oHO88bpmfMcrm/G6T6fxmpsuj2+/+3/Eh3f/m9KP3+CBA5t/bEm522MbejjO35HEW/9LEh95fvGTffPvNuOWB8t18r79xmZ8z2ua8aefTOPPPpnG976mGW/9XHG6wmiJQd+nZs+8/maC0Y5OVX9Mt+WFUGQdNq7KGUAfEfGiv9UhX6Ts9pMXALkd8moeHoq4bE/E3l3Z7YeODd62MD6Rxh1jG6dffyjivuPbszwOHin/uuv39305wWjdDsoQjAbURVFg16nZ7tXR76p8Wp603CFX0b60dsqXd1031uUg3Dooc1/ZvGA0AAAAAKiZwbsnAQAAACoRtgQAVCQYDQAAgEJlgqj2780OABs7lUaSkw02Ob/5mi48P4nvekISP/pNSTxlfxIjw0l8/f7Vf7/wB4big78wFE+8YvPPX8bBI6v/LwpGe+pj8tvWglyW84LRohFDkcbljSOZ7cd3XJb9wM98OP9F1xk9lcZz33b2yl0c2hkvveylm79Nr0Io22blB/W1JxAvSZL4N09N4geenD/P9MJqONqx6eIl1VhJ4zfel55VczONePH702isZD82TdO44d7WdZ6aO/s5qzpWsN3WRZlQxjX7C4LR/vDaNC594Uo86/UrcefY2U96dCqN513djK9/6Up856tW4mN3DN4Xbc2SXy72QjDaULK6D39VTljnIIbEPHgyv+2Ge7dnez9wuPy8jXWhP3nnGsdnIpYa3XsvlYLRFjtXB0DO6WRErH5up24gaosqi3F80jKHPEX70trl/L6CvqVBU+acc26p83UAAAAAAAAAAEA1RWN7Bu8+IOhN9tXeZL3RnwSjAQAAUKjZzJ6+PojqqpxQoodOnR3gtN6L/nV7gqyy/Mg3JnHXy4ej+YbhuOHXO3Ppe/DwamdRXjDa8FDEZbsjLtuT3X7fidXHN3KW7450OSIiLmscz2w/9phvzZyeHrw5p+KzfdWvZr/wbTu/McZH9mU/KEkiedutkfzaX8Z8sjPuPO/JMZ/sPNP+8KFIx+4r9fqbVSUsayv+/KdabzdX/HIzphfyOw3vGl/dB841OhFx51j2Y/7rW8t1Qp5cF/CUt48WaRXqVgdV1vVVOQPo15ycjfjbmyO+9zXNODGz+sTNZho/9hfNeN2n07hrPOL6QxE/9Npm/OPB+i+bdiob8jS1hTDLdmu1bTxqV3Z73udRPytavw8VhKZ10v3ZH2uZVs4KRsuf74ETm6+nqirH3KVGxOLyYB1TgO5pdTzaShA1Z5QNkY1YPc8Hqlu7msvrWxqb7FoptSEYDQAAAAD6je+N6QTbFQC9wOcVAAAAmycYDQAAgEJlwonyBq/eORaRN478J76lc8Fo633b45P44m8OxX94+tnT9+yMeNpjih/7A0/Obzt4ZPX/eQFTl+6OGBpK4msuy378Pacf31jJbh9JG6vPs5KdIHP8im/IfuCDB7Onr/PnnypOUTh43tdtnPjD/38k7zoQjcc8KX5u9JlxyRPG42lf88V41BOPxIsu/71oxPDqfJ/9cMvX34r8oL72vs7XXp7EcIlek4t/sRlvvC67qDvH8r/MvyOjrbGSxntuKncDwPqAp6IB0xeenz392HSpl9lWVYLRigKT1js+E/Hqa1af+IXvTuNz926c53v/sBkLAxRkVDoYbaGzdVSx0uI4sDcnGG1iAANiZhfz2+7vYpjYeuOT5fev9eGhj7skIsk51q99JndD1aPDdI32HaC/tPoM/+X3pJFWCPUiW5VFKBgN8hXtS2vnePsvzm4fzQgc73dljj2C0QAAAACAbeH7JwCgK5xzAPQnx3foCfp/gBoRjAYAAEChVgE0ERFXPap6KtWluzdZ0Cb808cm8e6fG47mG878N/na4bjlJcMx9dqh+Pr9Z8//378rieYbhuOaFw7Hs789+709fHL1/8dnsl9z7f193eXZj7/nyGon4XJeMFqsBaNlJ9ccP39/5vS478uRNhrZbRExvZDG899R3EF593lPOOvfyRuvj6Ffe30k+x4Xv/ORNN5404WxNLSauNVIdsQfXfLC2Pnk6fibi34yZq77h8Ln3qoqYVlbVfYpn/u2NF7+4WYsNc4u7tCx/Mfcm9F26FjETEGI0XoT8xHN0wujKBTjij3Z04/lbLd1kve+soKR8gbQZ/mDa9I4MpXGn34yf8G96G8HpxM/L2zwXFPz9VkmuceB0z2de3dl770Tsx0qqMaKwhLuPrI963R8svy868NDLzgvia9+dPZ8Bw53772UDRNcM13yuA5QVavj0V9/No3339KdWvpZleP+uGA0yFW0Kz0SjLY3+zz+yPRqkPggKXPs2UowWrOZxs0PpPH2G5tx77HBWrYAAAAA0Dn62gAAAADoA4LRgBoRjAYAAEChMkFUV+2t/ryXXLi5etpt984kbv7NoXjzf07iFc9M4toXDMXrf/rM5fL+nPc2Nrm6YI5OZ7c/Eox2RXb7PUdX/58XPLcjXQ03u2zleGb7fSuXZT8wIuJtr8xtesefXZv/uNMOnvd1Z/7xr34qkid98yP//Jsb8js3//NVb4qLF94fX7izQupNRXnb43AHeji++wmt51nz0g+m8V2vbsaJmTMFrq3jLDfdv/GN3DVe/vXSNGJqYfXvwmC0i7KnH8/ZbuskL7ArKwTv/B1J7Dqv/HO/4qPFnfTvuDEdmIH3Zd/l5HxHy6gkb9sYPr1t7N2V3T5Ro3C3bpldyn/PBw53sZDT0jSNsQqhMY1z1vUTr8ye72AX30vZMME1ddp3gP6Sdx2x3is/WvGgxQZVzh5GJwbvXAPKKnOfVF7fUppWC9ftB2WOJnObDOBdaqTxk29M41t+rxnPflMaX/vips8LAAAAAIBeZJAyAD3B5xUA67iOAeggx1j6k2A0AAAACuUNuF8fRFU1GG3XeRG7zs9IN9omO0aS+M//fCh+9V8Pxfc/5ey69l2c/Zi1QbmHjmZ3Gl150erzPO6S7MefmF39/7mhL2tGTgejPXb5wcz260YvjMkdj85sS9/88kgXNyaxpIfuiA/e3Mh+wXVe9+jnrv7xHf8mkl/6k0emT86l8cCJlg+P//aW5VgpSuvagjJBfe3ynO+o9qSfvz/isl9qPhJ6dmw6fxn8w10Rc4tntx84XG2ZnZpb/f9mgtGKaquLquv6JT9Sfn299hPF7//EbMT1h0o/XU8ru6uuBfHVQe62cfpzae8F2e2nZjtTT53NFoQljE1ETHU5LG56IWJuqfz8556DfO3l2fv56KnuvY+qH2/3HutMHQBljkc3PRAxJqxrS6oEYg7iuQaUVXQkWjvD+6rsLo6IKA4e70dljj3zy5t77r/+bBrv+eLZa+Q33p/GrQ/5vAAAAACAzumx/jcD1fuD9QgAAABsRpf6FIpeRq8GsEYwGgAAAIVyg7uGz/y9e2cSF+cE0WS5dPfWauqmfff+Y+b08Yk00jSNA4ezH/fEK1f/f/HE/Zntk9OryTDLjeyuupFYDTB7xuynMtuXV5L4/FN+JqfqiLjpkxsmNT/05rj+gn+W/5i1507Oi9c+//5IXvX+SHbteaTOx/16uVSAL00+Km64t9SslbUKRGqnH396sqlt9dt+vxnvvyWNibn8eRaWI24+J/PuYM62lOfk6eCFvPDCiIjLL8oOETo2U+21tkPVdf3c72pvOt4Hbh2MbvSyYR9TG7MWt03eNr8WmveoC7PbJ2r0HrpltkUI2aEuh3bdMVZt/m993Nn/zgtiHZvcVDmbUjUYrWroJUBZZY9HH7ndcWgrqiy9UwXn/zDoim5gSk6fx+/dlcRle7Lnee7bKqQU9oEyx/jZxc0d3//8U9mP+5sbfF4A0H+SJBlOkuSJSZL8WJIkz0uS5DeSJPnlJEn+S5Ik350kSU5PYm9IkuTx697bryZJ8pzT72vHdtcGAAAAALAlAj4B+pTjOwBQjWA0AAAACuUF0Iycc0WZF1aSpVeC0dLlpbjymtdmts0uJXFquhF3H81+7JNOB6Nd9Km3ZrYvpOfFwvX/kBs8tyNdjoiIpy/cEpc1sl/k5sf/WH7x99911j/Tr3wpjnzgvTEx/Kj8x6zz65++PGYWV/+eXUxj1y80Y7JCqNAvvfvsN3btnWl832tWYv+vrMR3vXol3n7j5gY154U4DbU3EysiInadn8T//V9D8R3/pPpjf/x1zfhci3C4c8Ny3vmFal/ynDodjFY0YPqKi7KnH52u9FLbIu+ehrx1ffGuJH7337dvQ/jjj6fRrJqA9P/Yu+/wKKr9DeDvmU2DkEAgkFAEpEvRaxdFRcEuqFy71+5Pr+1i16tXxYINe+/itVwLKmJBEQuCqKACSgu9hkAI6SFt5/v7YwnZ7M6ZndnsbjbJ+3keHjIzZ86cnZ2+e95thpy+xJLK6LbDDW1oXl2ggiaoszWGlVSECEbLj/GxYPpid/vUdaMbXmx001xrbC4Mt0XuuT0srNganXYQEdmF4/r78s+Wfz0TTW6O+60xhJUoEvzv4uqepQRanQ/kl7ae45mTV+rkGc3c1YLjnvA9i8m60Yv97vNqw4of/6b1rF8iImrZlFI9lVLXKaU+B7ADwHIAHwN4FsBEAI8CeA3ADwCKlVLTlVInhbksaeS/3mEu93Sl1FwAa/xe20MA3tz1uvKUUs8rpTLDqZ+IiIiIiMLE8A4iIiIiIiIiImoR+JyLiOIHg9GIiIiIiIhIyzRF2xG8NQSjYfVf6LZjiXbyrIdfQnWt9bSB2QoigvZLvtPOX3T7xaiptV7BHvFVrAAMrlpmWeaOnAMg8D1uLDXaoVIl754m63Pq/96yDnLxgTi7x1vatgSqqgXe+kWwNFcwbILpOHihzvx1vg64UlGK7xaU4finTPywAsgrAeasAs5/TTB5rq/SbSWCTYXOHpqGCkSKtEFdFX66zYPK5w2MHxXZhSzPq/97xVZBlWZb0qkLedKFxQFAtiYYLdZhSOEI570++8DIvkenPR9egF9z4jTso7QZBKN5dp2XOqZabwfbSqA95rZU5VX207eXxXZ9LN5kvbweGUB6SsNxh/YFRvRrOK57B+v3tqAcqKqJzWtxG4y2vqB1bXNEFDtOj0e/b3Bf945ywbItgjX5AmnlnXjcvPzyqtZ3rUHklN2+pPwu8QZk6e/pPlvUevYvu/v8OqGCnxduFBw5ycQ3y3zPYvJLgYUbI9M+IiKieKWUehfAegBPADgJgOYJ+W4eAMcD+Fwp9ZlSKivKTWwUpVQ7pdT/AHwIYLhN0Y4ArgSwWCl1XEwaR0RERERE9lr55y0ULdyuiIioGeB1EBERNcDzAhFR1PDam1ooBqMRERERERGRll0YlicwGC3DeSBRp3ZRSrGKtPU56FGzGQlSYzl52kp9wtuALAAFW9C+PFdbpthIR81q69CzBKlPyRpUvUJbx9OHTka/vsuQMXAbevdbgeczrvBNWP0XAEBEsPa8YzC89yzMaTtCW4+Va94VDJ1gYl2Bq9l2G/GwiaoTe2D0C20sp//zbcH+93mRfZOJnrea6He7F7+ssX8IF+tgtDpJCQqPn6nwzDkKyQmRqTMnr/7FPPOd+4ePhRW+eexCMbLSrVdMRTVQURXfDzzDea97dYpsGz77EyiuiO/11FhOQ1VKdsbPegi1bfTWbAe1JrA2zONZc7Ruu+CBL+3ft+1lMWrMLpuLrMdfOkLhh5sNXHyYwuH9gdtPVPhqvIEET8MdvptNCOuHv8coGM1lXmJBjNcxEbUeTo9HmwqBskpnx8jNhYKRk7zIvN7EkLtN9LvDRPZNJj6K0TE2HrkNxCzeGZ12EDV3druSfzDayXvrb/i+Wtx6jkVOXmlRiOPNxC/ch9wTERG1AAM04zcD+AHA+wA+ArAAQOCZ8mQAPyqlsqPWukZQSnnga//ZAZPyAcyALyztDzS8lMgC8KlSyt2HQ0RERERERNRCtJ7n6kRE1BLxPEZE1CIxtIeoeeC+SkRxJEJdeYmIiIiIiKglqrXpQJngaThsF1YSqJM+TyyuyIYcJKIW/apXY3nyoKDpn6adbDlfz45AarKCLM5Be7NEW3+xpz1qt+cBqYODpiWiPhhtSNVSbR03Fp4JJPn+3p7QGf/KfgKDqpbj6BWzIF+8CdM0cVzPL7A6qa+2jmhK7b9dO626FliwsX54zXZg9OMmNjxsoGNqcGdosXmwGu1gNABQSuHqoxSuPgq44i0Tr8xu3IPe5Xl+f2/R19W7EyzD6QorfP/bB6Ppp+WXAb2SQzSyCYUTjOYxFIZ2Axbr8whd+2YZcPr+kasv3jgORquMbjvc0HXur9s2+mf5whWsDhnLt+wKrmzhRAQnPRM6BSHh++xxAAAgAElEQVTWwWi5xdbju3cA/raHwmsX2h/M98jwBbNabQP3fS4472CBUtE9Ibj9jK+gPDrtICJyE9h1w4eC/XrazyACXP1ucJn8UuCMl0wsusvAsB7NJOA6gtwe94t2Aplp0WkLUXPmdF86aZh+2sptkWlLc+DkGF9UoZ9WWSOYvtjdMmPxXIWIiCjGFgB4HcB0EVkdOFEp1R3AXQAu9xs9AMCHSqkjxO4DCWu/Iji0LJRNLso+BOBEv+EaADcAeFlEqutGKqUGA3gVwPBdo5IBTFVKDRORLS7bR0RERERErrSWDqOt5XUSERERERERERERUVNjMBoRERERERFp6cJnACDBaDjc3UUwWmYzCUbD+hwAwMDqFZbBaEWeDMvZBrYrAZABufs8pJslUGJClBFUrthIRw0SLetIkPpgtHElU/Gv7CccN/uBzFtx9IZZkIcux+2d78XqzKYJRQNg+brtVFQDnywQXDoiuEeuXcdgw91iGu2l8w38fT/BN8sEj80I7wt/a7f7OiunJCptWBAA9O1sHYy2Y1fYTtjBaKVAr07O2toUtMFoId7rsw9S+M/UyH0J87vlgtP3b7k9xM3Q2VkAgJKd0W2HG6FC81ISFfbs5AtbDJSzVQC03Pezzh1TBcscdHOMZTCa1xTkaYPRnL0n7VIURu8FfL0keNrKbcBv64EDe4ffRid0R5fMdtbrc0e5L6gu2oFtRNT62N2rBXq1kYG+ADD5Z8FjZ7S+Y5mbADrAPqiIqDWz25X8jywJHl9Y7qVvBs9hd9/c0ji5T7M73sxf53u+4oYnxs9ViIiIokQAfAFggoj8ZltQZDOAK5RSiwA85zdpBICzALznctmVIrLO5TyOKKX6ABgfMPoMEfk0sKyILFVKjQLwLerD0ToBuBvAP6PRPiIiIiIiImoqDKkjIiIiIqLmhvcxRM2C698Ro/jA941aJn69lYiIiIiIiLRq7YLRPA2HnYaaAM0oGG2DLxhtcNUyV7P1Xv89ZPVioLgABgRpZqlluRJPe9Qq68zyRKnZ/Xe2d6ur5f+QOhIFno5YnjQAkzJvCln+2XPDDzi4vNM8vLP5grDnt7I8z3q8XcdgowkyGo4dojDpdAPmyx7ceKz7BpgCrNrm+3uLpoP3xNMUMtpaTyusqK9Hp2OqvnNzvvVmGTd073eoNX3dKIVx+0auHb+uadkPhp2+uuJmEIzmv6336WxdZmtJ5NsTb0p2Ch6a7uydLYhhMNrWEv17181FuOqEMfpH2n9uiv7+qjs2dU6zHl9V6z6UgojICbeBXY01e0XLvibScfvdDgajEVmz25cC82P3yLC+68svBapqWsexyMmrLKrQl1qS6349+T9XWbhRcOenJm79yMTc1a1jnRMRUYtxhoicHCoUzZ+IPA/go4DR50e2WY12N9DgV3YmW4Wi1RGRnQAuAuD/VOrSXQFrRERERETUJJrbc7bm1l6yxE7MREQUF3g+IiIiImp2YvRMwW4pfKxBRHUYjEZERERERERatV79tISAO8ruGc7rbQ7BaOL1AptWAQCOLv/e1bzpO1ZDJk/cPdzetE7iKTQ6oEYlWk5LQG2D4TOHukslmtvmEFyV/XTIcvNuN/CPg92Her1xkcK6Bw28cF0PHLRzvuv57eQWWY/32jzUbIpgNH+TTjdw0aHuGzFnlWBntWgDFIb3UeiQal1vYblvhdgFxiUY+v0tvyy+nxLrwj5CvddtkxU+/KeBnPsMfHiFgcP6OlveUQOtxy/YWL+uWyKnoSolldFthxu6bd5/28hsZ72h7CiPQoPizL732RwUAoQTmBAu3bEdcBeMdnAfhcFdraflaII1I0m3z3S2ubaJZQAdEbUeZow/8f9tPVAQ59eP0eD2FRfFUZgsUTyxDUYLGLZ7vpTXCoKOAWfHeLsgRl3gvJ26H0CY/pfgkAdNTPxCMOlrwRGPmHj7F+f3GERERE1JRNaFOetzAcNHNbIpEaOUagPg9IDRD4eaT0RWAJjqNyoBwLkRbBoRERERERERERFRFLW+76gQEbUOPL4TERGROwxGIyIiIiIiIq1am36PnoA7yh4ugtG6d2jiFCsn8tYBNdUAgBEVc5FsOk8FSjPLgB8+3j3cuXa79SISslBupFpOSzUb9nDtlObuFv60Pabgx9QjbMu8f7mBA3orpLdRePzM0O+JUsBhfYFl9xq48FADPTspqKw90O3Y41y1LZTNhdYfdtgFgDV1MBoAvPgPhRuPVUhLcT7PtIWCLcX66V3b64PN6oJ27IKtDKUP69lW6qyNTUUbjObgzVZKoX+Wwt/3V7jQYWDdtUfr97GRj7bcTuB2+5W/kjgK+dBvG/V/d7Q+tLbYQJf1BYJzXzFhXO7FWutTjqWlW4A1+bFZJ7pgtEQP0Enzfukc0Nt6v87Ji/5r0W1/dqGvO2xCK5qaiOD9+SZGPOzFgRO9eGi6icoad+vx7V9MHPWob/67p5motUsyJaKIcRpuGklPfdv69m+367msqvWtI6LGUgGXdt3a68vahe22JE6yLwttrjHDuS727HofbvvYRLVfVr8pwM1TBGZTnHiIiIhiZ0HAcBullIso/6g6DkBbv+GfRWS5w3nfCBgeF5kmERERERGRpRj/qA0REREREREREVF08DkXEcWPhKZuABEREREREcUvu2C0hIAMoc7tfOEmNd7Q9Q7Kbly7YmJ9zu4/E1GLftWrsSRliKNZ070lDYaza/Msy+UlZKPESLeuw2xYR6f2kbuFVxBUveBBgqe+9/H4UQpf/iWYuSy4/ONnKpxzkEK7ZCA1OTiMJuXqe9F5fD7yEzpHpH2bNR2dbQPA4iD6PSlBYdLpCg+PE/y4Ejj6sdCJU9/lAH9t1k+3C0bb7jQYLc16Wn5zDUZzGYJ34jCFUA/lrxqpsH8v/fS/NgM/rxYM7xsHCXwR5rRv+84aoKZWkJjQ9OvAq9m1/LeNTpr9Zkd55NvT1IorBIc8aGJrSeiyVn5bL+jTOfrv6+Yi642tWwdngYf+BmRZj8/Z6rZV7un2mY7tFJQSy++6by4E/rZHdNvl1M5qgaF8+0uNF/jgd8Elk+sb/ft6wep84LEzgLQUX9CknVdnm7j8rYbzr80H/ntp0x8riFo63fkwmuasbH1fdHDbh6m8KjrtIGru7HalwMuN9DZAarL1/rSuoGXelwVycp9WZBNevWyL+2V6DCCvWCyfUWwtAeauBkb0d18vERFRM1FrMS4p5q2wdnzA8A8u5p0N32ur+4BpX6VUlojE4CkaERERERERRR3D+IiIqFng+YqIiPzwPoaIKIp4jKWWicFoREREREREpGXX2T7B03DYMBS6tgc27LCvs3Ma0KldM+jEuiGnwWD/6lWOg9HSzLIGw101wWhbErJRYlinVqV7G6ZWdUpPQKQeUOWPX4EEz+AG45RS+PRqAxO/FMxcKijeCfTtDFxxpIEx+9i/XyotA8clfY23zdERad/mIusAplABYPHCMBRGDgQW3mVg4hcmlsxfjUJvW2xJ7BpUtroWeHKm9Y7WOQ1Ib6OQ2c76hTsKRjOAzmnWwWDxHoym+8zL7XvdrYPCwCz7wKRnzvFVmp4ClFRal7nzUxMzb/BYT2zGnAajAUBpFdAxDp4m6trs8QtI7JRqXaagBQajPfeDhB2KBgA51qeoiMstth7frb37ugZlWx/XVucD1bWCpCgG+JmaDTDRA+yRYX0dlLNVcBKa9kQlIpj4peCuT0Pv9K/NEbw2R3BAL+CZcwwc3Eff9qe/Da7v3XmCh/8u6Nohjk7ORC2Q7nzYJQ244kiFb5YKCsM47wmAFZrrppXb3NfX3Lm5VgKAMgajEVmy+05j4BWDUgp9Mq1DxHXHp5bGyXdAiyp813iBQbblVRLy2ZwVjwEU24Strd8hGNHE17RERERR1C9guBbA9qZoiIWhAcM/O51RRMqVUn8B2Ndv9BAAreSqioiIiIgonrBTIjUFbndERNSMMTiHiIiIqOnYXYvxOo2IYiwOujISERERERFRvKr16qclGMHjuncIHYw2KLtxbYoVWbO0wfCA6hWO500zGyZOZWuC0TYndkOpJ11Th1/KTUpb7NHROgTGjWSzEgsGv4COQ26ynN4mSeH+UxXuP9V93bdf3g9vv9io5u1WWQPMXgUcPajh+OYSjFZn7x4K751TDHl7GEwo9O63ErmJ3YLKzdJsWnX7SmY76/d+e5mvE3So9ZLZznra9rL4fhite13hvNcXHKpwxyfWFf56u7G7I/nLFyic/bJ1ue+WA1MXCNokAUcPRFBwX3PlJuyjZCfQURM4FktOto1Omu0+XoPRCsoEf24CluQK9sxU6NkR2FEOrNwmSG8DHNpXoUdG8Da3o1zwn6nO3sTT9gU+WRA8PlbBaJsLrcd36+C+roGaawmvCazJBwYF51BGjN32Nyjb+jpoeYzWsZ3HvnEWiubvt/XAGS+ZWDzBQHqb4O2vplawODd4PlOAD34XjB/VMo6TRPFKdzxqkwTcM9bAPWPDr/uGD0w8OTN4AZuLgLJKQbuU1rN/u/3+RjmD0Ygsub37HJBlHYy2splEeJRWCmatADq0AQ7sDSQnujtuOrlPq/ECFdVAanLD8eGGx20vA6b8rl+wafPjCURERC3A6QHDv4mI27NfT6XUGwAOAtANQCqAQvgC1hYA+BHAFBFxG2G6V8DwKpfzr0bDYLTBAL5zWQcRERERETkS39/DiZzW8jqJiIiIiIgo8nhPSURERO5YdGMnIiIiIiIi8qm16fbh0QSjhXJ4//jvRC/FBcD0/zYYN6JiruP5A4PRumqC0VYk9dfWke5fR3JbHDPY8eK1rvO+i0E3WIeiNdag/fpi08D7cM+2eyJS3zdLgz/waG7BaACAfF9ijAHBmLIvXM06MNv3onTBZrWmL6jKrnOyoYDOaZqmlVqPjxe6EAojjKdZFxyi0C45ePylIxQO7F2/8Zx5gIEumvUFAONeMHHCUyYG3WViaW7L+FDOVTBaZfTa4YajYLRU64PCjnLAdPOiY2BWjmDI3SZGPW7iX+8JxjxrYp97TRz1mInL3xKc/bKg3x0mJs9tuLP/kCPIvN5Z/8yNDxsYkGW9TnK2xmZ9bCm2Xk63Du4P4P0664/7OVEOy7Db/gZkWzdqRV7TbnNv/GTilinhtWFTIfDGXOt5S23Cf8IN5CAi57yaU0AkrouvOUpfyZ8WQUUtmdvLhvLq6LSDqLmzCxlUFoec/ppr1xUxunZtjJ9WCfa4xcTYZ00cMcnEQQ+YyC1y126nx56iiuBxOY249rzTJkg3zm6jiIiIIkYp1Q7ApQGjPwmjqj0BXARf8FgHAIkAuuwaPg/ASwA2KKWe2LVMJ23rCKBjwOgNLtsVWF7/wRQRERERERERERERERFRVPELKETNgu2vCnM/jltufw2aqJlgMBpFlFIqUSk1Uil1gVLqVqXU1Uqp05RSvZu6bURERERELZUUF0D++xDMJ6+Heds4mM//G/LVOxCvt9F12wWjJVjcUXbLCN0L/6Rh8Zpg5SOmCRnXJ2j80RU/oK1Z7qiOwGC07rXW6QFFngxtHelmSf1ASlukpShccWTj1t35R7Zp1PyhdP3X7bhjyHKcU/xeo+tatsUiGC1EAFhc2p67+8+xpZ+5mrWP8gXq6YLNAGDOKuCC1/UrxmNAG/QV78FoTsKvnOqeofDy+Qrt/XaBsfsAz54TXNkfd4Z+XLZ2O/B//zUhLeChsZuXULwzeu1ww0kQjG6/8ZrA9rLItylcpim4eLKJbSH2x+pa4JLJAuNyL/52rxfnvmLi6MdCh6K1TQLeuUyhe4bCoGzrMjl5iMm2XKBZ71np7utKTlTYI7BL6C5bS6L7WuyOTbp1vNw6HzVilm8R3Pu5iYvfMPHoDBOF5fWNnLFEcOmbjVsn935mPX+ZTVhiaZwcL4haskheKwXq1Qlok2g9bfri5n/944bbU6TdsZGoNbMNRrMYNyDLumzO1thcu4bLNAVnvGg2CJX+azNw04fu2uz0JRZZXHNF636HwWhERNSCPQjA/6lOEYBXo7SsVADXAfhdKTXEQfnAnyOqEBFnH1TV2xYw3N7l/EREREREFAlx/FzTWnNrb2sV6n3i+0hERHGg2V0HERERERERUTxJaOoGUOQppSYAuLsRVbwpIhe5XGZnAPcAOAvBv1RZV2YugMdF5KNGtI2IiIiIiPxI7lrIZcOB0sL6kT994ftKy8z3gEnToFT4PeN14TMAkOAJHtc9sIuGhf5dwm5O1IkI5K5zgOrg3uwpUoVjy2ZiavopIetJMxv2Qh1UleO6Lelev5ScFF+a0zNnK7w0K7wPiAdUrcCgvTQ9iyNEJSZBTfwAt/28Av97o3F1WYXI2HXCNeI1+t0vGG1kxY9I85ag1OMsBShjyoOQPY9H5v4nasuMedY+GEkptSsgKnjl5cdROJQVuyC8cJx9kIHRewn+2gxkpAJ/28P62Nitg8JxQ4Cvl9jX9/MaYOFGYN+ekW1nrLnp3F5UEb12uOEkCKabTfe+zUVAlzDCuKLh17XAugJ38/y5CfhzU+g3bto1Bg7ZE8hM862YgdkKVseCsiogtwjors/qjIhCzfaT0Ta8+jq3A9ZbrLtoB9/pvqdlGMDALOt1vK0UKCwXZKRGPsXzhxzBmGdNlFfVj3v2O8Ev/zaQkwcc/1TjD6aFFb5rpMBrytIqzQwASir5hTaiaNNdK3kicF3sMRRGDgSmLw6eNndV69q/3QYBVVRHpx1EzZ3drmT12GqA5rqqtBLYWgJkx2mcx4KNQF5J8Pj35gvevlRgOEyvdHrsKbSIRSmJUkAjg9GIiKglUkqdBuCagNF3iMgOF9XUApgDYCaAPwFsAlAKoB2AngAOB3ABAP9PxwYAmKmUOkRE1tvU3S5gOJwo+sB5bH6KxTmlVBcAnV3O1jcSyyYiIiIiIiIiIqLWgB9QEhE1XzbHcAZmEjUPdvtqBPfjGC2GiJq5eO02TM2IUuoEAIsBXAlNKNouhwKYopR6WymVGpPGERERERG1cPL8vxuGovn7dQbw3ZRG1V/r1U9LsLijDBWMlpQAdArsxhEnxOuFPHIVMGuqtszYpPmO6kozSxsM71mzDonirod8uunXkzbZlxqT4FGYelV4t/J/3/kZ1NCDw5rXrWHDB2DKPxv3yGHFVqCiquFTTLtOuJ7IZ81ERn59MFqyVGNU+feOZ82ozoe8cDtSkwRZYYQ41fW37qzZ50orgcqa+H1SrA2/asSmlZmmcNQgpQ1FqzO0u7MNasrv8bv+nHLTuX1LcXy8Xl2bPX4hA13S9cEwuUVRaFSYcrZGZ53ePUbh5L3V7lA0ABhok41pFUYZaZEORsvUHNuiHYxmF8w3KFs/X87W6LTnjk8ahqIBwIYdwMhHTRz1WOQSJq3evzKb0I2ScLrpEpErToJCG2P0XtYVfZ8DlOyM/TXBWz+bGPWYF4c95MWD002YMUrocbuUMgZDErlmGYxmE6q/IkrXVZEwfbH+GLDDIsRMx+mXuoosrrkYjEZEROSMUmofAP8NGD0DwAsuqvkPgO4icpSITBSRz0RkgYisEpGFIjJNRG4G0AvAQ2h4i5EN4GNl/+tGgU/AwjnTB14xROpTuqvg+76gm3+fRmjZRERERERxig/RiIiIiIiIiHh/TNQSMLGMiOIHg9GoUZRSIwFMRcNftRQAvwP4EMA3ALYHzHYegP8ppbj9ERERERE1gpQVAz99bl9mxruNWkatTZ6GVeBMjwz7Xvjd2gP2fTya0IdPA5+/blvkpH8c7ihoIM1smMqSAC/6V69y1Zw24tdXJaU+NWbs3xTOOci6Ee3bAKsmGkj3NExIya7Nw42HV0KlhpGuFaZx+yl4XzJQc+LryFuxB0qXd8S4kk9c1THsnoYboF0n3MaEZUWTbM9tMDykaqnjedubxcD65VB563BcXxc9qHfZHYyWpi9TEOUAocaIdtiHHbtwI39fL2n+D/RNF7lJ8RIopmuz/3HAYyh0bW9dbnNR/LxvbsIRnOqSBvzr6OAdJSNVoYvmeBCtgLY6piko0gWjpYa3U2e2s54vGuvUn92xqVsHoF2y9fQ1+ZFdx7VewbYSwc9rrKdHOjBkS3HwuFKbrrjbSgERwY5ygfDDT6Ko8OrOhxG6VrILiu1yo4nyqtjt2y/OMnHhG4Lvc4Cf1wB3fCK48p3YLN/NtRIAlLvLwyZqNewuB6yONplpCh01P7O1IsrXro2RnKCflu/i/ttpCFlRRXDB4igF1Do9HlbVCDYX8hqQiIjim1KqJ4Av0DAkbD2Af4iLk9iuMLRtDspVisi/AVwbMGk/AOc4XR7C60XCkzIREREREVGLxVs+IiIiIiJqbngfQ0QUPTzGUssUp92GKcLOAbCni383OalUKdUDwMcAkvxG/wRgiIgcICJnisixAHoAGA+gxq/cGAD3N+I1ERERERHRvG+A2hr7MnO/hFSUhr0Iu2C0BIs7ymHd7Tvid+8QdlOiSjbkQJ67zb5Qp67ofOyJ2KeHfTFDvOjgDU4POmDn767a1GA1JrdpMG3yRQr3nqKQ7ZdzdvLewLJ7DfTprLDo/ja4qNcajDAW4yLja8w9+ltkXHOnq+VHglIKRvc9kektQBupxNhS+yC/QGu3A2u31z+Usw1Gi9O8PQQEow2qznE8awevL4VGztoLYz67zPWi60Ki2rfRl7ELtWlqTRmMdtwQZRn+GOiPDcCPK5r3g2OnHe4BYHOcBKN5HW4bunNOvLwOwDpsqjGy0oH5dxjasDFd6N/yvMi2I1BppX5by2hrPT6UTu2sx28vjXLIm6Z6pXznvZ4dradH6r3OyRMMf9CLpCtNZN/kMq2nEbZY7DdlVcHj6izdAnS/2UTm9SZ63Wbi8z+b97GSKB7pjkdOrmGcsAuKra4F0q41cc7LJsoqo79/PzkzeBmT5woKyqK/bLdLsDs2ErVm4eytA7Ksx0c6ADaSUhL107aVOK/H6X1aoUX4cKkmGO2wvs6Xb0V3H1anskZw4esmOl5nYo9bTfS81cS7v8buepWIiMgppVQX+H7os7vf6DwAx4hIfjSXLSLPAZgWMPoqm1kCo1VtnvZrBc4Txz+XQkRERETUkvHzUmoC/AELIiKKCzwfERG1OrwXIWr+7PZj7uNEFGMMRmsd8kRknYt/2x3Wew+ADL/huQBGi8gy/0IiUiUiTwM4M2D+G5RSvcJ/WURERERErYOYJmTJPMgvXzUIOZM5DkOmZn4Q9rJrvfppCZ7gcRmpCkf018/TIyP+0qtEBHLe3iHLqRdnAQD26mr/Gjp6d8CD4I6fY8u+cNymvaqWNRyR0jA1JjFB4T8nGch91APzZd+/add4kN3e17ZenRRev6M/fnxxH7z+4ono/Y8LoFQTrfueA3f/eWbJFBxaMdfV7FMX+AWj2fSnjcdgNBEB5s9sMG5QlZtgtPoUmmPKZiLZdJdiVrdO0m26SpXEcTCa7ll5LN7rHhkK/z7B2YJGPmrC6yZdLAw7qwVf/iX4IUdQXRvZZblpem5RfHyAoTsWBG4bPTKsy61z+uQrBvIiHIyWO8nAHh312+6AbOtpK/Ki+95aBTbUCTcYLVMTjPb7hvDqcyrU9pfd3np6qGC08irBN0sF7/xqYmmu9ftRWSPY6y4Tv6512FgXEj3A/jZParcUB7epNEQYUt6u8I9NhcCpz+lfFxGFJ9ohst07AGkp9mXe/03wz7eju2+XVYplCFKNF/hkQfSPK24v88oZjEZkye67ULrHFQOyNNeuW+P3mqK6Vj8t30UEidPvjuVb/BZCieYabf/eCv8aFf5JoirEbzNc8z/BW78Idu4qt7kIOP91weyV8ft+ERFR66OU6ghgJoABfqO3w/d9t5UxasaDAcOHKKV0PysUz8FozwMY6vLfKRFaNhERERERNSV2fiUiIqKY4DUHEVHLxOM7ERERucNgNAqLUqo/gAv9RlUDuEhEtF2qRWQqgDf9RiUDuDs6LSQiIiIiahmkMB9y/QmQfx4OufkUyJkDIXO/9E1cMMtZHZOuqp/HJW8YQVSn7qvvZDm8b1jNiCp57Z6QZdT1T0Jl+9JCBmTbl830FliOP6ZsJlI8Nklzfo4v+7rhiJQwU2PiQZceQJtUAEASavD9+mPxcu6V6F29DhneHbih4AncmT9RO/vMZX7BaDafgcRbMJpUVULuuQCobpiMMLRqCTp4Cx3V0cGsT9FpJ+U4p8RdyGHdOklN0pcpjeNgNFPzRcpYvdf3nmJg2jXOHp1d9U70PqCbv07Q4xYTJz9j4ujHTBxwv4m12yO3PDdhH5uLQpeJBd13bD0Bb1efzvEfpLAmP3JtWfugETIEc5DmHLZgI2BGMeAvGsFonTTBaFtLgMe/sbmAaaRQQURd21u/B3YheIs2CobcbeK4J02c/5pg6AQTV7xl+gI2d9lWImh7dWRe1yF9gPGjFB45XeHOkxXuOllh6T0G5t9hkXq7yxqLQMEyF+E/pgBvzI2ffY+oJdDdq0XqWskwFM48IHRlH/4uKKqI3v5dXq2ftnJb1Ba7m9u+PW6OjUStiW0wmmZ8/y7W4xduRIPrpHhid4+9rdR5m51emudaXGOW7LQu274N8MSZCp9fG95XRKpsQt9qagVTfgtutAjw/vz4fK+IiKj1UUq1BzADwDC/0YUAjhGRJTFsyrxdy63jATBYUzbwbN9WKZXqcnmBV1URecorIttEZImbfwBWR2LZRERERERxK06fWxIRERERERHFFu+PiZo9PuciojjCYDQK17nwfTGrzscOfznz4YDhM5VSKZFrFhERERFRyyJPXgf88UP9iOICyK2nQT59Bdie67yeW0+DlLrv61Cr6WyfYEAbvnLK3/Sd5+2mNQVZuQh488HQBQ84evefQ7rav4ZOmmC01L9fjNFD9IEjdfrzLNQAACAASURBVA6r+AkT8u9vODK5+QajKaWAngN3D3tg4pLiN7Fq9WDkr+iBR7bdgbu364PRlm6p/7s5BaPhyzeBb4ODzBJRi+PLZjiqor23YZ+nidvuwoE75ztuQt06MQyFNM2dd0lcB6NZjzdi+DTr5L0VZt1soHOafblXZgvyXXRyd0pEcMaLZoNQqcW5wL/+F7nQJzefV+woj9hiG0W3bQSelgZkWZfL2RofQQqF5YKf19iX6ZEBzLnVwM3HKe1xLiURmHyxQq9OoQ+EgzXnsPxSYN66kLOHzS4YrUOYp7jsdP3rvelDwR/ro/MehwpGy25vPX1LccMZC8sFj84wcetHJva9z8SGHQ3LvzJb4LnCxE0fmigsF9w1LXKvZ+5tHjxxloGbjjVwz1gDE8Ya6NvF9wJO3tt6nhlLgpfvNlzzsRlNv98RtSSxuFa6/9TQ55YaLzD8QRM3TzExc2nk9/MKm2C0kpLop5C5vWSway9Ra2a3K+myfffSXLtu2AEscf5ILKZKbQ5L+aXO63F66NlSFFyyWBOMlp7ie0Zz4jCF589z/xClskY/bXuZ/vnCt8t4DUhERE1PKZUG4CsA+/uNLgFwvIgsjGVbRMQEsCFgdGdN2QI0DFEDgJ4uF9krYNjJ9/uIiIiIiKi1i4PvVJADId8nvo9ERBQPeD4iIiI/vN8kIooiHmOpZWIwGoXrtIDhN5zMJCLLAPzqNyoVwLGRahQRERERUUsif/4EfDfFetqj17ivb9yeruep9VqP99jcTfbqpHDh8OAOlhcMdxbaEiuy/HfIJQeFLrjPCCi/YK+RA+1ff2aSRS/Yky6CMf5x7N8r9Ov/Yf0xSJWABJnkZp4n3WtQyCKfbhxnOX59AVBe5XswZxuMFmdPOMQiFK3OfpULQs7f1ixHEhr2Os7ybsOP60Zh9rqReCP3MrxxfGDfqYb8Q5R0wWillfH70NPUZH/FOgTv8P4KK+4z8OoF9gvOujFyYWV1lm5BUFgSAHzxF7BxR2TeO7v9KlCRTbhVLIUKpqozIMv6PSuqAFZti3CjwnDQA/pt5tlzFWZcZ2D5vQYO7avw8N8NLLvXwIzrfP//fJuBNy9W+PhKA2seMHDBcGcHwRH9gOQE62mfLoze8aBQE6qXlgIkeMLbqQdm208/YKKJmtrIv6ZQ219XTTDaJr8urKu2Cf52r4lbpggmfW3fxse/EXS63sTLP0bmtWSl208/coD1+/HLWmB7QABkWfTziIjIhu54FOZh1VJWukLFc6HPMTlbfeGHxz5p4r7PI3tNVG5zrCmeNQOyfYu+QAS4uVYCgJ0MRiNyTReMZvf8Zdqi+LyXLdGEkgHANhfBaLr74UC5Fr+BoAsoS29T/3eHNtZl7FTV6qfZhUKW87hIRERNTCmVCuBLAIf4jS4DcIKIzGuaViHwqsHu7LwsYLify2X1CVEfERERERHFRHw+0yQiIiKKWwzOISJqxuyO4Ty+EzULdtdivE4johiLs27D1BwopbIB7OM3qhbATy6q+CFg+ITGtomIiIiIqCWSSVdHtsLKCsg6d/0dajUdMRM89vM9fqbCRYcqKOXr4HrRoQqPnxkfoWiybRPM+y6G/N+hoQsffCzUfe81GNWpncIR/fWzZB58EHDYSb6BxCTgrPFQNzwNABiYZb+4c4v/B8u1lJgcuq1xTPUaGLLMoKoc7bQVW33/2wajxcfmVW/RHO2kgcbmkLN3rt1uOT4RtRi+cx7OL34X5+94E9cfo3/h/mFx6dpgtJBNaTJOw69ioX1bhUtGGLhypP3Cr3rHhETwIb9VJ/c6ToIANhUKLn7DxJC7vTj0IS8em2HCG7Bi3YR9lFUBtd6m/xDD6zA0b0g3fR2vzont66j1Ch7+ykSPW7wwLvf9W51vXXaPDODKIxVGD1Zom1z/ovpn+cYN2PwDDnxuDM57axRO+ethZCXbpC8EaJeiMEqTVRnVYLQK67oz2oZfZ9/OoctMWxR+/TraY9OuY27PjtbHibXb6/efSV8LNhZaFou6Sw6zP46dNMx6ugjw9dKGL35njWVRW/EcyEnU3IQ6HkVKSqLCyvsNjHDY9f6+zwVbSyK3r9sGo1UnQN56KGLLsuL2lVTaBAcRtWZ2t0m6q5OOqQqH9bWe9uVf8XlNUWZzj71oo/M2O71P21IcPE4XztbeL24lI9X9jXWlzbWfXTAavwdHRERNSSnVBsDnAEb4ja4AcJKIzG2aVgEAMgOGrT8Q8FkcMDzc6UJ2hcLtHaI+IiIiIiKKGD4MIyIiIiIiIiIicooxikTkBIPRKBxDA4b/FJFyF/MHfrFsSCPbQ0RERETU4khZMeAyxMyRX752VVwXPpMQ4m4yI1Xh9YsMVD7n+/f6RQY6htHpMtKkaDvk4gOBGe+GLKu+2ALj0c+gMoKTV075m/61dO6SBuOhj6G+L4OaUQjjmkegknzBZoO6hggjKZtuPcETIoku3vUMHYzWu2Y9kk3rHsTL83yPM3XbIxBfwWjy/Ue20/cafUjIOrrV5oZe0Oxp6NxOP9n0W19pmmC0kmYYjKaa8L1++mz7hb84S/DvTyRi4Wh2nct/W2c/b3GFYNgEE2/+LFi2BfhlDXDzFMH1H4QfjAbExzaja7Mn4NzUMVXhoN7WZZ+cKVi2JXYflVz5juDfH4tt2F2dE/dWUJoNXeZ9A7nueGDeN8BfcyGv3A2ZeGlwOdOEVJT6/q7xbUhStROydSPG9LFuxPI8YMXW6KyTIk04Q2OC0ZISFPp3sS/z5eLIvx7d7l13HhqgCUGtNYF1Bb6/P3MQbBgNGW1DB6MNzAb6BHbN3eX39Q2H7cIxdH5c4X4eIrLmNCg0Evp2UfjxFg/GBHant1BrAt8ui9xxzu56qMhoD3z3EcS0uVFoJLdVV9ciKIiWyCmprYVUOQ+9bU7C3SvG7GN9UPsrdN54k7ALgZ27GihzGBLrdH1tKwVqautLiwiKNZtQekr9uuzQxrqMnSqb4EfbYDT3iyIiIooIpVQKgGkARvqNrgQwVkR+bJJGAVBKZQLoEzDa7gOBrwKGR7pY3OEAEvyGF4jIVhfzExERERERUVzjE1giIiIiIopDdn0p+At7RM0E9+Nmie8NtVAMRmsdrlBKzVRKbVZKVSqlSpVS65RSs5RSE5VSh7usb3DA8CqX868OUR8REREREW2ITmqEfDHZVfnaMIPR6iQmKCQmxFFi1bRXgZIdIYupxz6HSu+onT5uP4WkBOtpo/fyvV6VkAiV0LDQ0G5Ajwzr+done3F82QzriR7NwpqLvfYPWcQDEwOqV1pOW57n+98uXyCugtGeulE/8aI7sOc/r0GmTaAZAHR3Eoy2ZgmGVSzUTvYPsErXBKOVxkHIlY7u/W7K99pjKPx4s/0B8JGvBB3Gm3hxVuMDOuw61S//dRkkPzgNIL9UcMgDXmRcZ1p2iH/2O8Fv6+rrdRv2UVThrnw0mJqNw2rbGLef9QZT4wWuedeMWIidjmkKLn/LxGtznC/nrAOC2yw7y2FOvBRy48nBM/zwMeTTV3zlRCDvPAoZ2wNyXCbMw5MhR6f5/h/dAXJ6P5z82H7aZX+6MDrro1DzkwqNCUYDgLE2QaUA8MZPkX89oY5N/YLzVHdbuRUo2SnIK4l4swAA7ZKBPTTXGecepPDjLQb6drFfZ0opHDHAusyLsxq++HCC0b5eyg/biCLFaVBoJB01yNmF2D9ekwZBPY1RbhO2szUhCyjKB1bqr4kbS/cq2ibp5wnn+Eitm3i9MJ++ETKmG+T4zjBvPBlStL2pmxVRdpfdduHX+/W0nlhaCdR64++6orTKfvoz3ztrs5v7NP9ry8oa/bO8dL8wtA5hXIfbHdvsgtHsQu6JiIiiRSmVBOBjAKP9RlcBOFVEvm2aVu12Nhp+Z3MrALtfSvoagP+T3uFKqUEOl3VRwPAnDucjIiIiIqJIY6dEahLc7oiIKA7wOoiIiIiIiIgagcForcPZAEYB6AYgGUA7AL0AHAHgdgA/KqXmK6VG66tooF/A8AaX7VkfMNxJKaXpskdERERE1EptyAlvvs7dgaPP0E9ftwxSuM1xdbpOptHsbB9NsnB26ELj/gl10DG2RXpkKEwYE9w59+/7AUcO0M+X4FF45O8qKFhOKeDho7ejvalJSmnmwWgqqyfQb++Q5QZWWwcCzlji2w7tOgbHSzCabM8FCrZYT0zLgLrkTng8Bk7e277B3Wr8gtHaddCWO+qpkY7alaYJRiuxCM6KF/EYjAYAI/ordEq1L1NaCVz1juDiN0zkFoX+UodpCpbkCv43z8Qva+qDRMpsOtXn1GTBPG/voGCvM140MW+d/fIOeqA+EMwucNBKXASj6bYNi3PTFUcoZKVbl/8+B/jfvOh+6eaNuYJXZ7tbxsiBDTdy2VkOufRg4Ku3tfPIo9dAdpYDX/4X8uIdQHGBtmzX2jwctHOe5bRw1odpCmavFMxdLSivsp6/ULPdZITYl0K5bpRCn0z7Mv5BgJGg2/7qAj3aJittCOqKbYKVzi/DXDlpGFD8tIH1D3tgvhz87+3LDAzp5uwA2j/LenxlDbChQBoMu7VyK7/oRhQpumvjaF4rnTjMeeV73m7ipVkmluY2br/XnVsAIDehq687x+rFjVqGHd1xPzVZP89Om4AgIivy6gTgw2eBsmKgtgaY9w3ktnFN3ayIsg1Gs5nPLsCrJA6Dvq3Cqf19/IezY6KbI2duUf3fduvEPzC9c5qLBexSXaufZheMxmMiERHFmlIqAcAHAE7wG10D4HQR+bppWuWjlMoC8J+A0Z+Jza83iEgFgCkBo291sKwBAE7zG1UL4F2HTSUiIiIiIrLBz3yJiIgoFnjNQUTUfNkdw3l8J2oW7L7wx+BbIoqxZtqVnaLgAAAzlFITlbL7XW4AQGCPbFfd+USkDEDg17Lbu6mDiIiIiKilkxULw5sxvSPUhLeA/Ubqy0x7zXF1tZrO9gked82KG/Nn2k/vvw/UdU86quq2Ewx8c72B60YrXDlS4d3LFN673IAnRBLB2QcZmHubgdtPVLhguMJNxyrMvsXA/x2oTxtSzTwYDQBw+NiQRQZWWQej/boWuPdz0zbAySoQqSnIvRfpJx44CnW33Kf+zX476XHMKODcG6HGPw41dT2w14GW5VLEJjnLT3ob6+WVxmFH8jpNEfbh1OoHnG1wb/4s6HGLiRd+0Kf6lVcJxr1gYtgEE+e9Kjj0IRMjHjGxpUhs358iTwbW1mZCTu0NKfeFKq7cKvhxpbPX8Nuu2HrXwWhxEKbndbFttG+rMOl0/UZz04eC4orofDBTVCH4v/+6q3vzIw23LVnwI+S03sBGB2/sN/+DfP66o+WMLf3ccvzCjcD0v5y3eX2BYL/7TRw5ycSIh0387V4Tf6wPnl8XqNehbeN26O4ZCgvuMjDGJnvzpR8jHIzmYPsboAkWW7kVWLUtsu254kiFNy9WmHq1gdCPdZ0Z0EVfz7Pf+wejuX8t/sEdRNQ4mgzrqF4rDchS6K7P7G0gtwi48h3B0AkmLvuvGRTm6lT5tnzttEqjDYqN9pBwg8Ud0DW7bZJ+np1hBEdSK/ft+8HjlvwK2bQq9m2JErsjgN0ljF0wWjyENgfaUW4//ff1vvuEUNzcp+UW1/9tF8zWvk393x1TFfp1cb4MANhpc+1nF4xWXo2wzwFERERuKaU8AN4BcIrf6FoAZ4mI9QOx8JYzUCk1xuU82QA+B+D/5KgawIMOZp8AX7hbnYuUUtoPXZRSKQDeAOB/5/KaiKx23GAiIiIiIgoDn4MREREREREREVELYPt9Lz4DI6LYipNuwxQlmwG8AuD/AIwAMBjAIACHAbgWQOCvYCoAtwN4IES97QKGw+kSGzhPGL9LHUwp1UUpNcTNPwB9I7FsIiIiIqJIERHgpzD7Z3TuBqUU1GUT9PXP+cxxddpgtGZ4NylVoROg1L9fcRUqMmovhcfPNPDcuQbOPih0KFqdA3or3H+qgckXG3jkdAOH9lVAok3P+hYQjKYcBKPtU/WndtqEaYJFm/QPT1PiYBVJ7hpgwSztdHXdE7v/PmawfZjCoEOHwrjyAajTr4ZKToE64hRt2bc2X2Q5/qDe9X/rOpNvK43fB9K6lsVDMFp6G4XPr3V+ILz6XcGwCV4kXOHFkZO8+GlV/at75jvBtEUNy89fB3S/xcStH9m/P5+1OwnYkQd89AIAYNEmx03Cwo2+ut32T4+H8AFdSIBu2zjvYIUjB1hPyysB7poWnf3ghg+c19smEXjrxPXI+ug+mE+Mh7zzKMxXJ0D+dQywK/guFJl0NbD4F0dldcFoAHDSMya8DpMYRj9u4k+/7W51PnDF28HhN4Wa8IcMm6ALp9JSFF67UL8/LsmNcDCag+2vnyZYbOVWwVZnb6cjFc8ZeOE8A+cPd34N4sQ+e+inTVvkH4zmvu4txaHLEJEzTRUie8YB7hfw+hzBc987Px7LrzNgPncrqm46Dc+8n2tbNjehK7DBOmA5EnTHfQajUaSI1wtsWW897au3Y9ya6LG777ANRmujnxYP9yaBCh20abODoFjdMd5KblH9yi2x+dQ+PaXh8CkhAtsDldk8Vquo1r/BXhOoqnW1KCIiosZ4HcCZAeNuB7BAKdXb5b8Ui/rrdAUwTSn1p1LqFqVUf11BpVSaUuoaAAvh++FSf/eLyJpQL2pXmacCRk9RSl2jlGpwd6KU2gvAtwAO9RtdAOCeUMshIiIiIiKqF7/fJyJ/Id4n/mgFERHFBZ6PiIhaHwYqERE1DR5jqWVqhl3ZyYF5AI4DsIeIXC4ir4rITyKyTERyRGSuiDwrIscDOBDAyoD5b1NK6XtcBwejhU4XCBb4tezAOsN1FYDFLv99GqFlExERERFFxpolQO7asGZV+430/TH0EH2h5b9D8jc7qs/bkoLR7rvQvsD+RwH99o5NY6wkJuunGc1whQfqtzeQ3cu2yPFlM5Dh3aGd/uZc6wd0bRKBtslNn5YlX7ypnzhyHFRGl92DbZIUrhpp3ebsdODYwQEjT75YW/W40qno3ya4Z/VZB9bX36299bybC/VNbmra8KE42R1OHKYwfbzzxizJ9b2m2SuBwx8xce/nvgPs+/PDf/A8u+0IAIBM9217m4uc17U8z/e/w/yr3Yo0AVexpGuzR/N2KKXw3LmG9tz13PeCBRsi/7q+Weqszg+vMLDqmKk458mhwOSJwMcvQl68A3jzwYi3qc5e1cvRr3qVdvrc1aHreHGWidX5weN/X+/b3v0VllvXEYlgNADITNOfA3LyEBTU1hhOgtEGZFmXWZUPFGjWRZ12ycDGh0MfW3693UBKYnTOfbpgNwBYsRVYvsW3EsIJRtteBlTVNP1xhKglcHs+jJTrRoV37PnXe4JtJaH3f/OF2yE3jUHV+89j+LY7sSjF/h5tY2IPYENOWG1yQncKsQ1Gq45OW6iFqrU5oZa1jkRRu6NKul0wWjg/3RVF1bWC8qrQ5baXhi7j5mop1+9xQInNp/btAqJdrjlKIdlFyLzd+q4Icdxzsl6IiIgi5AKLcY8AWBvGP5sP2nYbBuBhACuUUkVKqTlKqalKqbeUUp8opX4DsAPAMwACnxi9LCL3uXhttwGY7jecuKvejUqp6UqpD3YtbwkahqJVAzhNRLa4WBYREREREUUcPyMlIiIiIiIiIqJmwq7/BYPYiSjG4qQrKUWSiHwpIjPEQY8/EfkNvi9yrQiY9JBSyuN0kW7bGOY8REREREStw+xp4c97+FgAvhAY9fQMfbmfvnBUXa3XenyC07uFOCEzPwBmTdUX2G8k1H/egFJNGK7lsemNajetmVBKAYePsS3TVnbi/m0TtNP/3GQ9PlMVw7xyJMy7zoUsmNWIVjbS55P10zp3Dxp1z1iFyw5XSPTbn/bdA/j+JgNJCQ23RdUhEzjjGsuqk6UaH9bcgoN6+4bbJQO3Hq9w3ej6OrpnWDdr85YymP/YG+Ytp0J+jK/ccFMTzGg0fQbebscNUXjnMoXMMOLeJ0wTGJd7sUizXTuRkzzA98em1SgtqcT17zt/3JKzK9jIbTBaWRx0aHcSTBVocDeFG461LmAK8Mx3kXlUVVwhuPUjE/vd58Xm4LzCBs4/RCF/konTFtyLrMfOBbyak24UKACnluj3+WmL7NeHiODqd/VlFm9uOK2wwrpcRqrtYlz57BrrR92FFUC+g/AJp5xsf3tmWm9ruUVAQZm+7j6ZwLRrDHTPUJhxnf7R/asXKBzYO7oHw78m6Jdft33sDCMYDQDySsKbj4gaCud8GAk9Oyl8cW14Hy9m32SitDK44SKC1+aYOPqm1dj7l3PQp99ypA4qwsKUfULWuTqpL7A+B7IrXKrWK7jzUxPG5V4Yl3vR5QYvPv8z/PO8bj3bBqOFeXykVsprs8FUxlnyVyPY7YV2j2I8hkJaivW0Is01ZlPRXfMGyre5Hqzj5j5ti19+Xolmk0lL8a1Lf706KXxylYE9dj0vCHX+sFvfDEYjIiICALQHcBiAUwD8A8CpAPYHEPgBTzmAy0XkCjeVi4gXwJkA3g+Y1AXA8QDO2LU8/7P6NgCniMhsN8siIiIiIqIwsVMoERERUeTw2oqIqPlioBIROcTDBRE5wWA0gojsAHAOGn4nfRCAozSzBH5d2+a3urUC53HwFXAiIiIiotZBwg1GO3wsVI9+uwfVvkcCew62Xsacz+zbUOnr7VirCSbyhHE3KVU74SC/OeLkt28h95yvL7DfSBhPfQ2V2TV2jbKSpOnpCwA9B8SuHVGkdgX32bms6HXttIJy6/GZJWuBxT8D338EufFkyO/fh9vEsMjOckjuWmBHnraMGrR/0Lg2SQovn2+g5GkDK+83kP+4gd/v9GBgtnVvZHX1I9r6hy55Fz9fWYCyZwxsfczAg+OMBkF/3dpb11ko7bBzw3rg5+mQO86EfP2udhmx1lRhH26dc5BvnT80LvYNW5XUFzVIgAmFYydsczXv6nzf/80xGM0bZmjenSep3Z3+A323vPHnJ9MUHPekiUlfCxZu1Jd74iyFiucMvHmJgYwnLwXefKDRyw7H9Tue0U77bZ39+lhXYP9B04qAzVEbjNbWdjGuHNhbP23N9sgtR3ts8rs26t7BukxVLbBqm3UFJwwFVj3gwciBvg159GCFa48O3qifOUfhkhHRf6w/pJvCoX2tp9VtH5VhBv/khggNJCJnwj0fRsIJwxRqXjRQ9oyBwicNzL/D+XFp9OMmCsoaHgsfnC74v/8KfijpjaXJg7Ehsafj+lYl7TpYTXkWAHDGiyYmflFf//YyYOyzJt6ca2Jntfvzve58ZxuMFiIgiKiBGpsNpirOkr8aoTGPgzpoPokuqoivbz7t0DyzCHTxZM0B3I+b9bWluL5w8U7rGdM1j5yOH6qw7iEDmx4xUPCE/bG8yCanL1QwWjzcRxIREUXYMgAPAPgJgNM02xUAbgfQW0ReCWehIlImImfDF4L2i03RHQBeADBURL4KZ1lERERERETUDIR8mBxfz9GJiIiIiIh4n0LUTDCxrJnie0MtE4PRCAAgIn8AmBEw+nhN8XgORnsewFCX/06J0LKJiIiIiBpNtm4AViwIa141/rHgkSPGWBf+4wdIRWnw8qe+DPO0PSHHdoT5zyNQm7/VcvYEF3eTsnk1zKuOghzXCTKuD+T9p5zPHAHyygTb6WrsZbFpSAiqTSow5ODgCWkZwIGjY9+gaBh2GNClh20RD0z8o+wDV9V2qvVLvKmphkx5LpzWuSZb1sG8ZhTkhM6QswbZF7Z5D5MTFfp2UejUzj7FQnk8UM9pQt9ME/Lk9WibrNAmKbie7powKADITagPBZS3HrZtQyzpwodUnAWjAYBSCrccb+Dhv8e2cTUqCWuTeuPb1KPwa1l3V/Nu3hVM5DYYrTwOOrSHG5qXmqxwzynWhfJK0OjwzpumCOatC13u2qMUUhIVZPViYOb7jVpmY2R5t+HaHdbHy5wt9mENy7fY1700t/5vEbEJRovcPtM5DUhJtJ62pThii4HpIIiomyYYDQD+2mw9fnC34HUx6XSFJ85SOKg3cFhf4J3LFK48MnbHmaMGWS9ryh++/3XBaJeOUDhjf307I/l+ELVmuvNhOCHW4fAYCm2TFdq3Vdi/l8JPtxo4bkjo+eavAzrfYKLHLV58tkjwzHcm/jM1/HPwiqT+AACZ/ABy8gSfLrIud/FkQYfxJk58yottJc6XpyvpUUBygvW0nWEGR1IrVWuzwVS2jmC0UFc3HTRhup8tiq8v8eiueQOVVyEoIDKQm/s0/9DZkkrrMuk2n+YrpdCtg+94bqeoQn/PFCoYrZyBkUREFCMioiL47web5WwVkTtEZASAdvD9AOlJAC4HcAuAuwDcDOCyXeO7iMhAEXlQRBod4S8iU0RkOIA+AE4H8C8A/wZwMYCjAXQVkatEJL+xyyIiIiIiokiJr+eZRERERDHD4AwiolaIx34iIiKKHAajkb/AX4jcW1MusOtaZzcLUUq1Q3AwWpFVWbdEZJuILHHzD8DqSCybiIiIiCgitm4EuvZ2PZu67WWorJ7B43XBaDXVwK8Ns5Hl+48hj10LbM/1fQi55FfUfmL9o/VOg9Gkugpy7THAX3MBrxfYngt59hbIV287qyAMUlkBWTgbsuw3yOJfgKXz7Gc46u9Ra4tb6or7gBS/Hr9KQV35AFSCJumlmVEJCVDjHwc8mgSBXbpUaVJjNDK9BQ1HzPnMbdNckdw1kO8/gpw5EFg0x7dt27nwdqgMV7fOesOGAz36WU/7bgokd43lpG7t9VVuTehSP7B+OaS4QF84hsINv2pKNx9n4J6xsW1gTtJA/NTmUNfzlVUBpZWiDXnSaeoO7bVewa9rrac5CYLZK9v6/amuBYp3ht+u3CLBkzNDf4i7X0/AMBREBPLKXeEvsEffri6bOgAAIABJREFU8OYbfgLUlFW7B08q/dKyWF6pgaIK/etZnmf/Wr9ZKqj1+sqUVQFezXaWoQm5CIdSCl01x7otxZH7gF1Xk/+xKTtdH+KoCwXrmBo8LilBYfwoA7/c7sHsWz045yADRgwPggOz9NNemmVqAzAO3hN4/woDfTWnvtwifuGBKBLi7VppeF+F6eM9+Gq8s5vF3CLglOdMjH+vcceE3SG/lRWYs6LWtmyNF/hqCTDmWecXQHZhvW2SrKftZAAQuWEXjFbViAvUOGO3p4cKv85sZz3+00XAB7+ZqK6Nj2uLHeXOy/623n562MFomk0mPcV5fTo1Xv3xLVQwWlHLyfgjIiIKIiKmiOSIyJci8oqITBKR+0TkURF5bdf4qASUichaEflIRJ4RkYdEZLKIfC8ivCshIiIiIiIiIiKiZi4+PgcmIqJI4/GdqHmw2VcZfEtEMcZgNPK3LmBY12t7ZcBwL5fLCSy/Q0QKXdZBRERERNQiqb0Pg3p/OdTk36EuvRsYsG/omdqkQp10ofW0QfsDnbpaTpLfv2s4/OXkoDJPpFxsOW+CJ3SzAAB/zgHyg0Ou5Jv3HFbgjiycDTl3KOTa0ZDLD4NceaRtefX2Iigjfm6N1b5HQr38E9QldwHn3gj17LdQYy5p6mZFlDriFKiX5gDn3QQccYplmQ5eTWqMRlAwWhSZz90GOWsvyF3nOp7HuOzuiC1fKQUcPlY7Xc7aC2LxkDk1GUjR5OsVeDIbjtiwojFNjJh4C/tw6s6TDXx3o4EDdj396JNpX76xlicNQE7ygLDm3Vzo/jOJsqqwFhURmwoFB0w0UVppPd3JtpGVrp+2tSS8dgHA+/OdrcjD+ilIcQHk2tHAT1+4X9CBo6Bufg5q8h9Q4x9zNau69G6ohz6GytoD6vL7AAADq/X7e06evq6FG+2XVVgBzN71BLHQJiAiwyIMrDF0wWjTFkbuwze7gJw6CR6FrDR39XaK8LqIhP5d9DvVle8I1mlOv3XnG937kevuNE9EGtprpSa+vTl2iMKK+2PXiAJPJ98f3losXeXsZD5/HbB4s7Nzg+5ayVBAG8319c4afumDXKi1yayYPzN27Ygyu/uOUMFo+/fSFzj7ZcHAO038uqbp97sd5c7b8N+f7cu6uU8rKAd2Vvtm0IU9tw/8ybIwbS21Hh8qGK2grOnfHyIiIiIiIiIiouhrLc/BWsvrJIoR0wvUlDV1K4iIiIiIIoj3jURERBQ58dP7m+JB4FeldV+RXhYw3M/lcvoEDC91OT8RERERUYumlILqOxTqotthvPYL1PVP2pd/fZ5+mmEAhxxvPfHrd2G+fBfMZ2+BzJoK/PJ1g8m/peyH3MRulrN6HN5Nymv3Wk+Y942zClyQygrIxEstg9isqBueguo1KOLtaCy152Coi++AceUDUHsf1tTNiQo1cF8Y/5wIY+IHwKEnBk3PMItc1detNjdonHi9YbdPx3zhduC9J9zNdPTpEW+H0gTK7fbZa8HzKIXMdtbFt9eFSewic78Mt2kRZZrW4+M9GA0ARg5UmHeHB+bLHqx6wIOXz49eo3OSByInSR+M9sRZ+mXnFrv/2LG8rAry8Qswx/WBedVRkJ+nW4bxRcP4/2fvvqOjqP42gD93Nj2BJIQapAjSBQTBgqIodqzYey9YsPdeXhV7w94rVn4o2LuIiCi9hd7SSEIS0pOd7/vHElJ27uzMZjdswvM5h0N25rYtc3dmd+bZKSYWbtKvdxIE09EmrKopwWhLspyVO363bMix6cCCma77ULe/BuOpr6GOvwQqNg4Yf6Xzujc8C3XBHXVhoGfeAIw9DV1rMpFoWp9cufzxSTAv2hfmE1dB3noIsnIBAMBrCr5eFPg5n7bAV2Zrmb5MaoLju+CILojr+6WAqUsQcsnp3LRbqrt2u6ZE3uTWvzMQ7TQMt564aN99Sdfcpyx3b/NEpOGN4H2lPToqvHF+8wwkz5O2Y3+mstD5m/mPy5y9L9gFYuqD0RwPgwiosX/BSHWAxKlWINBscewQ+xLr84EL3jJRVbNzT6q02+9t7KM5Yrt/6nbXdU2e7/9iTYh02zhn7dx3vP1j/dAM64GVB3iZ5vF6LiIiIiIiIiIiIqIwCPRhMsMImkVlATB3IvDNMODPM4E8/fm8DYgA824FPm8PfJYC/DgGKPM/D5KItsv+EfjlKN82893+wKpXd/aIiIiIKBjNdN0BETWR7bbK7ThicY6lVorBaFRf+0a38zTlFje6PUQp5eYyxsZX9jduj4iIiIiI6jv+UqDXIOt1J1wCtZt9VrHqpllfUQa8Nwn4+FnIXaf7rf426Qhtm1FOjyYrXFwV2lR/fQNkr3dW9vAzoE66IrzjIWc69/BblOwtctXEIaW/+S8sD+1VtzLlGeDDJ13XU+MuCOk4AACD9rVdLY9fBdma67fcaTAa3n8M8ueMYEcXMroLwSMh7MOtS0Yb2DDJwEtnK0wcq3Db0fo78cJZCt9ea+DZMxReHb8NL2ddhcdzbkWnmhzL8otjB2JVTG/LdY+cYOLasQbaJVr3taFAtCFPOiV//wF5+jpfCOWiWZBbToTcd07Yw9FKKwVfLrAv4+S1kRCrkBRrvS53m/tx1crcGvj+D65YhINvb/x7Ac6oz1ZCHXNew2WGAfX2v4ErH3+x33ueioqCuvddeK59En2rVllWW54DYOV8YNrrkDcfhFy6P+S7D5GRA+SXBu525srAwWgpup9lCFKntvoXwVyHuwiBOJ2b+nV2PllFGcABbn96ohkkJyj0TAtcrrHaoCBdUF1WEb9wIwoF3XzkiZCdpdNHKHRuG7r2BlcsslxeacShbPtXVFk5zo8/nb7v63ZxDAXE6YLRWn+OFYVSTY39+nkWx7stkN27vwowbR3oYD9pRQ7ww07+Ka4CB/vI9dntn7o9vFqR7ft/myYYrU28s/eGU4bbl/t0rlge+5VW2g+YwWhERERERERERLTLa3EXJba08RLtJDXlwM9jgYznga3zgfVTfLe3zg9cd+kkYNljQHUhIF4g9zfg58Na4HxB1AxyZwK/jgOyvgMq84H82cCcy4GMyTt7ZOQI5zUiol0O92mJWj6b7Tjc1w4RETXGYDSqr/GV1ZY/NSEiWQAW1lsUBeBAF/2MaXT7Gxd1iYiIiIh2OSoqCurBj4AuPRuuOPo8qGufDtxAh65B9Zvr6ahdN6y7w4vt7T4I+yu0hwLy5ETHZdUpV4e0bwqeSmmc0Q1UKk1qkcaICotgoLLASQeSuRbmgxfCHB3r+3fxfjDP3xvmtUfCvP0UyJK/feV+nwaZfKurMSEpBeqmF6D2OdxdPQeUUlBvzbUtI8d3gzR6DHTBaFui/J8DefE2iNvErBDTzR5GC/00a7dUhcsPNvDM6QYePsnA9GsMpKfUrY+PBh46UeGKgxSOGKRwzaEGLh6QjUsK38L1Bc/jwdz7LNudGz8CZYZ18tmotpsAAD3aWY8pI0cfqqJTWuPxX/jzZ8Cf09015NLKXMAb4CXpcfja6KQJackpDv4LmswAeY7xZhneyLochtuTfPY6yBeK1qm75WrVe0+oe98FOnbTNqFOv9Z6uVLASVegn1gnMmTE9Gm4wOuFPHQhNs5f4Wjo/20Azn3DxPiXrJ+4pFggOiq04T0je+rXvftXaL6AcxqM1reT8zb32R1ISYiMIKPGZt/uftKtDQrSbWuREIyxNk9w/psmDnjUi+s+NpFZyC9oqeXR7apFSC4aEmIVZkxs2o5brOHFjSUvoWJZG3y8+Rxtudqg36yCasdtVwXIoqqlm/eVAhI1hy1lDEYjN2oCvGDWL2+ecYRZU86FMgyFX28KPJ+Ean8vWHaBwFY2FujXuT1OW5Hjq1BUZl2xbZyzdgamK3x1tf6xLqn0HUc2Fmjei4T9PyIiIiIiIiIiIiKikMv9zT8EraYEWP1m4LobPvZfVrwMKFocmrERtSZr3gJMiy+kVr7c/GOhZsTzuYiIWifO70REROROC72UlEJNKRUHYHyjxb/aVJna6PaFDvvpj4YBbKUAvndSl4iIiIhoV6a694PxyQqob7dAfbYK6qdiGHe8BhUdE7hy+y5B9Vml9G1fMMppMJo+xUZuGw/55XO3w7Jua+ZXQFGes8L7Hw01cGRI+qUQSE7zW9S3KsNx9Yn5z8Py1RggGE0y10IuHAl8/2Hdwox5wJrFwH+/AjO/glxxEOS9xyB3nuZoLOqWl6A+WAj18TKoGVlQJ1zq+H64pfYYDBwwzraMXD0W4vXuuN0+yXq7zff4B6NhQwawwVn4Ubi4CfuQqkptO3brdqZjBitsnGRg3SMGVjxooPBZA3ccY8CofwcLcnf8uXfFf677SF07BwDQv4v1c78iW1xfcF9iWCfsyTfvuWvIpSveCxzU5zQIpmMb6+U5xS4G1Mham7cgj9TgjczLMbzCwa/BHnUO1O8VUJ9mQM3IgvH8D9pQtFrqsNOhpiyFuu1V/5X7HQXVvZ++rseDvukWYXcAVsT2tVyeNXmS7Xjq++BvQaEmICI1wXEzjo0frn8RvPirYM7apn+Zrg3IafRFff/OzpOJeqZFSIqRhdREhefOcDe+2mC0NE0gZ35pEwcVpG0VgopqweLNgr0eMPHebMFfa4DnfhKMfdJEoSZIJBARgel2MiUKAa/DoMadaVh3hUX3ufsq8rns67F0xFtY/qCBohei8dj7VyL64yVo/9EsbZ38qDRUqhgskt0d95MVINS0li7MSQFI1Bwyl0Tm7idFqhr7QD/ZuLKZBhJedsFoTqatg/oqDNNnAQMAfsvYue/JW13u4+SX6sfq9m5kZPv+L66wXp8c77ytcUMU7j9e/6zM2+A/uNIAwWj5DEYjIiIiIiIiIqJdAr8zpOYW4DXXlF8tIWfm3Wy9POP5wHUbB6rVWv5M8OMhaq3WT7FeXrTY9jx1IiIi2ll4LELU4tl9phDCzxtsuwlZL0TU0jEYjWrdCqBrvdteADNsyn+wvUyt8UqpPg77qe8TEdGcok1ERERERI2pxLZQnbpBxcQ6r9Q+Pai+qlS05fK+nXwXuDuiSzbavk4+fjaIkdWRshKYkyZAbj/FWYVTr4Z68KMm9UkhluwfyjXCRQDUQ1vus15RGiAY7bPJAcPTAEBevdvZQEaOhTruIqju/aDSe0EZ4f/IRT38mX2BlQsgr92z46YuoGaLVTDa9vo7k+5C8PphHzLjbZin9YUcngJzwsGQdcvq1v3yuW/dYckwLx0FWf5vmEfsnlIK3dMU+nRSiI7yn1flpTt2/D2ociniTU3ClEbKf9MBAP06Wa9fnu3+gvsyQ5Nm9fs0SIBQh2BlFwnmrAtczmkQTKe21suDCUbLLRYc9YwX2zSfbnmkBr+tG4vTtjkLAlWnXwulFFTnHlBt2zkeh4qOgRp3PtSDU4C9DwF67QmccT3UQxa/LttI/+HWITKronujBv6haVlRnR2Py84eHUPSTANt4hQOsvmE8t4vm34inHZuenwCzGO7wnzlbojXixE9nbfZNbXJwwqrqw5ReP0850lLsVG+/9MSNYGczRyMMXuNYMh9XiRPNJFwlYkh95t+2+yKHGDafPdfn/67XnDIEyZiJpjodosXH//Dky2p+bgJkd2ZBqUrzLqqCJ1rsv3WdarJ2fFvVNksvJt3Ja66cBD6XXox+nZSiIlSUIYBlb47Utu30d63PE8a/orfF6WaAFcrmYXOtnm7fdKkOOt1pQxGIzcC7UO3lmA0m3XK4bw1doB9wdxtcHTcEC5bbYLOrNiFxbo9d2xFjq+CLhitrYtgNAC4+1j9ZxqbC/2XBZr38kp4mhoRERERERERERERtUIla3b2CIh2DV6b8yYZAtkC8DkiIqL6+L5ARBQ+nGOpdYra2QOg0FJKnQvgexHJcVHnUgD3Nlr8tois19URkZVKqXcAXLR9UQyAt5VSY3VBZ0qpEwBcUG9RFYD7nY6TiIiIiIiC1HG3oKpVqRjL5aP7uLjSPtAvcS3528WI6jUrAmzMgFx5CFCUH7iCxwN1z7tQhzoMUKPmk5zmtyhWqjC69A/8kTjatmrPqnVIkHLrlZtXA4P28VssBTnAiv+ATx38KqNT3fo4Ch8KNWUYwKOfQ247WV/ogycgp14DldYZHdpYF9kYbT1HyAPnQx1+RghGGhxdCIVa+jckJhfYmgt54uq6FYtnQyYeAXy0xBcKd89ZdeuW/wu5/mjg/YVQaaEJdQoFyc/2vR4r/T9KkTk/AMv+2XE7Cl7sVbEAfyXs77j91P++hJQUoU/uIgD+9TZvFQzqYl03NgqorPFfXmIXOLJxFbD7AMfjc6r7rc6ChhwHoyUrWH3gv6HA3ZcAIoIzXzPxywp9mUVrhqNv1SpnDZ54GdQeQ1yNoTE15iSoMSe5qtNv/z2Bn/zve5URi3XRPbBHdcOTOLNDFIw2omd4knvG9FP4faX1c/ndEqCwTJCSEHzf2iAisxooygPefwyiFHa/7AEM7AIszQrcZteUoIfTLJRSuOhAhdF9BAdMMpEXINgsrXgNZGE22q0BgP381pdUApXVgtjo8KU3lVYKFmwClmQKLn/P2bb9zzrg/FHO+ygqE5ww2UTm9nCQzYXAma8JOrYRHNJfoaBU8N96oF9noFu7CEuqolZBd26vJ8J+EklWLcQ+L1+DTStn2xc8bSKMa17RrvYYCqkJ1kFCBZ52KFfuUn+yi5yV080gSikkxliXKGEwGrlRXWW/fqPDfckIZ3c9gtNgtP4OdkOnzRfs12vnvO8WuMuxRoFNMJrbAOuM7WcGFGs+ImmrCXK0c9gA4Mdl/suXZAI/LhUM3g3o1Nb3WJcFeBlvdfnYEBERERERERERtT68KJGIiCg8TMDixz+pFWDoHRFRC2Yzh3N+J2r5uB0TUTNjMFrrczGAV5RSnwL4BMCvImJ5WrVSagSAOwA0vlpyM4C7HPR17/a6qdtvjwLwo1LqEhFZXq+fWACXAXiyUf0n7cLXiIiIiIgoNFRcAqT3YGD1Ilf1qlW05fJoN98fO/iwS7xeKI/zRqWqEvLwJcBPnzircMZ1UIecAjVwpOM+qBmldLBcfHv+YwGD0U4p/ly7Th68ACgthjrp8rplX7wEef5moKY6mJFaUlc+ApxwKVSCJnUszNQBx0L23A9YbBM0Mfs7YNz52MP6oUZGTB94YcAD/7QfycuCaq9JzgozryZ8SP04BfLpy9Yrt+YCc36E/P4//3UlRcCf04HjLwndIJtAPnkO8uLtgNcifUxjZMW/joPRYs0KxEsF5OFL0H5DEmBRb1uFoMa0Dg1oGw9s2ea/vFQl6DtdvzzkwWibtwpqnOWiOQ6C6a3ZFlZkO6tfa+562IaipdXkoXeVs1+GVfd/ABxiE3IYRv06WQfFAcCK2L5+wWhZoQpG6xGewIpTRyg8MF2//3HuGya+uib4k+F0LRv1w2C/eQ9yyX0Y1l1haVbgfaGuKS0jNKtPJ4V5dxt440/B8ixgyj/+922PqlXoftUQCIB2sQOBXnMt28ovBdLDFAj341LBeW+ayC52V+/z/wQvnBW4XK1X/5AdoWj1Tf7FxMpchas+lB3vZRPGKDx7ukKUp2U819QyaENkI+RlJmUlkFtOBBb8EbjwyLFQVz8WsFhaknUwWp7HP2w5EKt2rGgDMRWQqAkaChQQRNSAN8Dxac4GSGU5VKy78L9IY7dH5HTa6tdZv99a68sFgkfGOx1VaG11OK/UyrcJm9V9nJYYC5RahC8WlAJ52wRFmmC05Hj3bw7pKdaP99uzBG/P8i2/c5zCA8crlAaY98pD9zEMERERERERERFR5NpVLgrdVe4nERG1DHxfIiIiijx8fyYiIqIQYjBa6xQP4Lzt/0yl1EoA6wAUAfACSAMwFEAni7oFAI4SkYCXgorIJqXUeADfAYjZvvgAAEuVUv8CWAMgGcBwAI0vOZ0O4G53d4uIiIiIiIJ24LGug9GqVIzl8hg3R5KmN3CZmirA4/wCX3n7/xyHoqmvNkOltHfcNu0EHdItF7f12qeZHFD2J24ueNq2jDw1Edh7DFT3fpBVCyFPXxf0MP2kdYH6Yg2U4TCJKYzUw59Cju+mXS+bVkEB6K+5iLzSiMP66O7oVb3Ov/LqRUAzBaNVVgu+mCeYu973XdjSLOtySab91eYy5Wlg6Rzrdd9+ALWTg9Fk6T+Q9x4FZk53XXfv8v8cl001t6f1/PElUuKGAbtbjAUGCreWw/dRUkNJsdbBaGVGgGC0EJv8q/MvRg2H1/r37Wi9LawvAMqrBPExzhr63zz7sR1b8o1l4GDDQhdB3fIi1E5MsUmIVejeDthQ4L9uRUxfjMO3DZblejTJci6N7BmSZvwMSld4+CSFO6ZaPz8zFgEb8gXd04J7zLVBRPVfU3mZQGkRuiQnO2ozXAFh4dA1VeGeY32P3Z3jBMc9mIN1Xt9rIsW7FR9sPn9HuEn7mnxtO/klge93brFg2gJf+NgRAxX27x34OdtWIbjgbfehaADQz+rTchv3f2X9YvhiHvBFo/nhpV8Fw7sDFx8YIYlVtINp+gLsvOILwPKKL5y1wb8Ay0zXdcS/rss2TAHmrrd+DUbA7ikAQCZd7iwUDYB67EtH74Xtk4CMHP/l+Z40xEmFq/EVlPqeC0+AHQjdu71SQKL1ITNKK3liF7ngJLh702qg957hH8tO4nRXeFA6EGXANjh5WRaQkSPo26n533N14V9JsUCJZZiZfq7Q7XMO6OwLaLayIgco1kyFbYPI1eviYFf2/2YI9ttdBQyEZGAkERERERERERERURgEDBvgd1ZEtCvgXEdERNSy8L2bqEWw/cyB23HEYjAltVIMRmv9DAD9tv8L5CcAF4jIJqeNi8ivSqmTALyNuvAzBWDE9n9WPgJwqYg4SEggIiIiIqJQUCdcCnnnEVd1tMFoHheNmAECYQDfRcCxzq7QlM2rgfcmOSqrbnuVoWgtgEpOg/QaBKxZ0mB5kujDr+7eJxN3vHM0olETsH35fgpwwZ2QC0c2eaz1qXNuiohQNABQqR2BH4sgh2muWhbfdtjXJvAlI6aPdTDaxpXAvkc0fZABlFQIjnnOxMxVgcvuURWgUK7NxxprFrsbWIjJ5y9Cnr0h6A+bB1Q5Dx5L9W7d8XeKt1BbbmtuEayC0XRBH+VGAgSAVcyALP7LcnmwJnxg4pXfQh+M1q+z9XIRYPUWYM+uztqZNl8/NgXBxIIXbOurx/4Htf/RzjoLs/6dNcFoSUN8P6NQT56n6e+taYlAj7QmN6N129EG/ljpxTeaTf692YI7xwUZjKbZtTEah+AV5qFrqrNgtA5tghrKTjewC7Bg3b74FXuhSsXiiJIfkChlO9a381q8qLbLt8+4xMocweFPmztel/d/JXj8FIUbj7B/7/38P1+QWrjlFIvrgI9L3xWcMlyQnODutScilsFbTQnU8ltnWUfsw78c9ms3Tv+xCAKO1cGyBvUClG+NPBGQvydL/gZ+/sxRWfX2v1BRzr6uTEu0Xp7vSWuw7+OEKUBhGZCWFLicFUMBibHW66wCkIi0agIf12LTqhYfjGZ3COR02kpJUBg/XOGTufbHCNPmC24+svknQ937Ssc21vNCrkUQdS3d3NMlGWgTB2yzCECbt0G0Y2gTp+9Lp6vD8N63Z5koDTDvMRiNiIiIiIiIiIh2eS3tosSWNl4iItqF8T0r4nG/gohoF8S5n4iIiEKHwWitz7MANgM4AEAPB+VLAXwPYLKI/BRMhyLytVJqTwD3AzgdQKqm6GwAT4jI58H0Q0REREREwVMdukLGXQjMeMtxnSoVbbk8xs2RpDhIG6gOfHWk5GVC3psEfPGyo27VRfcAR5/rqCxFgP2P9gtG61u5EsneQhR5Gl6J2yYOuHlAhqNQNADAgpnAt++FaqQ++x0FnHhFaNtsIhUbB+neF9iQ4b/S68slT4pT6JIMZBX5F9kc7Z8EJQBeW9gO3+T46l9zqIGxA6wvLp+9RvDEdyZKq4Cj9lSYcLBCTJSv7O8Zgld/FyzOFIgAfToCVx1i4JD+dW29N1schaIBQP8qi/tYX16mfl2aJhErxMTrBb59H/LoZXULUzsCW3Ob1G7fypWOyyZ7657oFNPiSd+uoAyWSQS6oA8AqFSxiBOLK99nfwcp2waV0PSUpylz3IWiAYDTrMJe7QGPYR1csCLbWTBaRo5gaZZ+/bu9p2HoskXWKzt0hbr9VaiRhzkbcDPo21nh+6X+j3fGkDOAbXc0eO1uiWp6MNoh/QClwhtWcdMRBr5ZbL0f8tUCwZ3jnLdVXSN45y/Bp3MF2cXWZYzG+zxF+eiS3NtR+7qgn0glG1dCJk0AFvyBRADj8K1luRhUo423GNs8bf3W5ZXY9/F/X4tfWN9tXwguGCVIS9K/dqbMCf5kiqJy52VnLAyun9TrTPRq7y74SxeMQqSzs7N7JXMN5IqDHJVVd70F5SLsybf9+28U+Z52iLHaNwkgryRwMJru/FylgCTN/lKggCCiBhx8JoItm8M/jjAL1bnur5yjUF4lmLFI/x556+eCm48MTX9u6MbTrR2wJs9/+cocfVu6x8tQQL9OwNz1/uvm22SE6+YrOyN6Ws+5jX3+X+C2GIxGREREREREREREREREYcHQrVaMzy0RUevE+Z2oRbDbz+Y+OBE1MwajtTIiMhXAVABQSqUAGASgG4BOABIAGAAKAWwFsAzAQhHxhqDfXAATlFLXoi6UrTN8wWubAcwTkbVN7YeIiIiIiIKnbp4MWbMIWDbXUfnqUASjOUlyqLG/OlKK8iGXjwZyba7wrEd9tgqqUzdHZSkyqF57+n29EYNqXLb1dTze/qYGyyeMUUisKnT+dci6ZZDvPwrFMH32PxrGY/8LXXuh1K2PdTCaWXfY3zVFE4wWlQ4vDJSreCRJKQDgxo6T8Fz2aUDBxMzBAAAgAElEQVS2r8yXC0y8eYHCWfsoVFT7QuqUUpixUHDcC3WBQN8tEfy3HnjnIoUflgqOfd5Edb1PHhZtBqbONzH9agNHD/aF20x3GDDTriYf7b35jspaSukQfF0X5NW7gQ+fbLiwiaFoAJAkpegWX4qN5YFTlFLNwh1/1w9Ja6xAklwHo5WreOtgNAByzeFQb8wOOD47BaWCs153/2WJoclKEhEopSA11VBR0YiOUugVX4SVpcl+ZVfkCGofkNp6VqbN149vwyQD6e/+ab2y1yCot/8NeyiYW/01mYHLcw2oj5dDjmgHADChkO9Jsyz7UO49uLfjvfDCY9uXUsDtx4Q/tWdMP/26OeuA7CJB52Rnz8ONnwle+Nn+NWmgcTBaHrp1Dhwm4TGA5HhHw4gIkrUOcpaLECNvgWUwWn5J3bZm5d2//B83rwn8b77g4gOt65VXCX4NkJ1px00w2pcLgv9C1yoYhSiU4nbiN3+yrRBy+gBHZdXEJ6COPMtV+7oQs3xPO20Q7D49ffO+Zb3SwH3ahRPp9pdKGIxGbtRUBywieZk275otg907p5td4+QEhWlXe1BYJnj0W8Fj31q3/PzPJq45tHmTIq2ClwGgfxeF3zIsQh1LgbxtgvZt/B8A3cdpSgH9OivMXe9fYFmm/lGOs/6Iz9a+u7uvo1NWZX98RURERERERERE1DrwolCKNHxNEtGugHMdERFRxGFoElHL10zBaJwtiMiJnfy78RROIlIoIn+KyBQReVZEHhGR/xORySLyoYjMC0UoWqM+q0TkFxF5W0QeFZHnReQLhqIREREREe18yuOBmvQ/4MTLgF57AnsdBPX0N8AR1hejV6kYy+Ux9nknDTn5sKvaPhgN37zrLBTtgHFQ7y9gKFpL1L2v5eKHt9yDR5M+wl7dgJE9gcdOUXjkJAWU6EOe/BgGsOAP5+WHjwGGjvZf3qMfcPZNUA9Ocd5Wc1Oaj3mk7ursrinWRR7ocBdiB5Qgpf8W9NhjJd5NPhuvpF7qV+6itwVxV5pIudaE53ITxmXeBqFotd6bLfh3veDJ7xuGou0YkgB3/q+uXkaO/V2rNbxinrOCOuUO0i+aSHI2+oeiORUdAySn1f2LiWuwWt37Lvr1DByKBgCp3q07/o6CF0nebZblSg3rhJEE67cAAEC5YZPilDEP4jDIUmffhzWJAgF46m0CkrMR5t1nwhwdCzkozvf/IUkwR8fCfPUe9M22Di7LWF2IH5YKjMu8O17jxmVe/Ly84fuZLhht392B3VJt5qk9hkZkGEC/TtZj2rINyKtJAA4YBwDY6kmFV1kn7hxW+jO+M6/Dof2BwV19y7ql1gVdGAo4tD8w61YDw7qH/zFQSuHfu/QffzsNZFyeJZj8S+CyfsFohfnYuweQZBMyCABpiYChS/WLQPLafa7Kp3kLLJfbhRGZNsG6Py7V1/txGVBV43Rk/pwGo1XXCH6wGQfRznbAHuGfU2ThnzAvHw1zbDLMs/aEzP0JsjUXckwnR/XVba8Ap1ztut/2umC0qPYoVQmW6/p3UYjXBALlWe8eNaA7pFVKP8eXMhiN3PAGDkZDXlb4xxFmdh8PBbN7nJKgcN5++oq6wLRw0gWjDeyir7M823q5bvSGAnpY5xRj9RZ9P8GEZiqlcMGo0LyniACVTdhPIyIiIiIiIiIiIiIrvHy4deLzSuQOtxkiIqIWhaFpROQQp4tg8EGj1mkn/m48ERERERERNTeV2gHqxucbLtz7EEh1JfDL5w0WV2uC0aJdBaM5CLepsb8IWOYHDrVSr/8F1W+401FRpNEEoykAN215Arc8dU6D5VLqIhitwGHiVlQ01IwsqIQ2ztuONB7NxumtSyZLT1UI9EHn5uiuuCj9tSYP555pJr63CY6ZvxFYs0WwWyqwLt9Zm8eUfNu0QZUUNq2+E39MC6qauukFqBP8w+ga659n4sdlgT+sTvU2vK8pZhFKPM5f34kx+tdKhQqQ9PTHl8DJVzruq77fVojtBf12arOlxDQh958HLJplXfC9Sejb8WHMwDF+q76dV4F3F/m/dx32lIml9xvo30Uhp1jw1xrrpk/Ya/sgdMFoScmB7sZO0b+zft2l75qYOvp4yJ8zkOfRpDAA6FCzBSNWvYNDXpscMeFvw7or9O9sHTgxfaHgEosczMbe+UscfalmNN5eivIQE6Uw6WSFqz7UN6AL+YlEUlUJ/PCRqzrtvNYTvF0wWqFNQFmcJtwIAKbO0z/OHgOYfo2BIwcpfLdEcPSz/tt5cQUgIgFfv5sKgXIHGTZEO8Mh/YBxg8PbhxTkQK46tG7BxpWQ6/3fU3XUlKVQXXsH1XeaJh8239MOZYZ1MFpCDJCWBGza6r8ur0TgO+rQswsnStQEyZYwGI3cCBQWDwBbNod/HGFmtzsV7J7jgC5A93bABosc1s2FQGGZICWh+fZLddmu6ckKbeMExRX+69YXCA60eAR0IWtK6QPPc23CHu32oez0szlOcGvyL4Ibj4iM4wQiIiIiIiIiIqLmx4sSiVonbttEOx3TEloAPkdERLsezv1ELZ/Ndsx9cCJqZgxGIyIiIiIi2sUppYD73oc0CkargvVVkzFujiTNpgejYUOG/frhYxiK1sKphDb6j0zXLYOUbWsQWCb5DsPO3BgzvmWHogGAMqyX1wso1F1AHQ7fLA5c5quFgqMGKe1F3/XFm2U4ddsXTRuULqwqRKSiDPLsje4qjRwLdc4tUMPHOCrer5OzZlMaBaMle4uwKXo3x8NKsMk+K1fxtnVl0V9QQQajPfadgxeDRlltpsTcn/ShaNv1q1ppuTw3Sv8AT/5V8PyZCj8t0wdlnRgoGK1NM26ELqSnAEmx1kEuXy4Aas4+AZ6kW7HF217bRgdvHiA1wO/TgINPDONo3TluqMLybP8n7IelQHmVID7GPpzhk7nOvrgzGoXBSmEeFIAJYwz8tdrE+39bt5PWkoLR3nzAdZ32mmC0vLWZAKznpGVZ+vZiNaEemYWCt2fpn6u5dxoY2s33XCdrpjCv6dsG2sTp+weAvBL79US1PMb2f6re39v/GUq/zm6ZoVmXGKtwUF/g7H1VwHmtqeSE7sFVHDMe6vpnoNo53JmxkJZkHdya50lDqWGdmpYY6wuhtA5GC9yn3SFtYqz1eEoZjEZuBPpMBAA2r3EU3hnJ7M6FCvZuKaVw3FCFyb9YN/7TMuDkvYNrOxi641qPAXRrByzJ9F+32WJusm9LoWtK4MDzxoINRksPYa7zy78JbjwidO0RERERERERERFFnl3lotBd5X4S7Swt9/sgop2D70utF59bIqLWifM7ERERucNgNCIiIiIiIoIyDMihpwI/f7pjWZWKsSwb43HRsDgIuKmu0q6SbYXARuvwmlrqrBtcDIgilXrgQ8g9Z1muk6evh7rz9boFc74Pbee9BkFd8X+hbXNnMDQbp+nd8WdzBqM5cf3Hgh4TAp/MFWNW4oXs69ClJrtpHZYWQUwTytCEyDWB5G6CnLWn8wqGAXXVJKjTJrrqp39nZxfBp5oNr7Bv5y1w1U+iXTCaYR+MhvLgUoO2VQh+Wh5UVQDA6rVFMF96HPjwyYBl+2iC0ezMXOl73K0CDQCgT0egf5faYLRCyzIqKYTJAiGklMKQ3YBZq63X/5mTgoNveQl5T39uuT7BLEWClAMA5K7TgV/LoDxudhjC57ghCo9/57/NlFcD3y8FTtgrNP2oxttl5todfz56stIGo/Xu0DJOaJWyEuCDJ1zXS9PMPfnz5kNK2lhuE1d9qN9/jNeEepw4WV/n8wl1oWiALyBJZ10eMDhAhmTeNvv1LYlSgYO5/IK4XAR5GZbrVMOgLxfhX4GWNain9H1ajjOIkDK7x8cwWsa27ZbM/Tmoeur/PoE66IQm96/bfsuMROR72lmuS4jR18svDdynbq/LMHyholbKqwGvKfC00tcBhZiTYLScDcC6ZcDuA8M/np2gKVvKpPH6YLRTXzFhvtp8+6SmZsLwGL5jcavjiExNnrJdyNpuqe7HFmwwWtdU9yFsOqu3hKQZIiIiIiIiIiIiItohwOe3dr9aQiHC7wOJdjon56kTERFRM7M7FuFxClGLYPeZAj9viGB8bqh1YjAaERERERER+TQKMKlW1ldNxrg5knTyYdd/vwJ9/VNJpCgfcmy6fd1+w4ERh7kYEEWs/Y/Wr/vvlx1/SmkxsGZJ0/tL6QB1wR3Abr2BvQ6Cig0Q9NQS6MK+zLoTP9KTI+9DzvEv6U9MeTr7RqSYRRhdNhM9qzc0vTPT9AVWtbUOzgiWLP0HcuM4oLLcvuBJl0N17wvEtwEG7+/726X+nZ2VS/E2vMI+vSbLVT8J1tmYAIByFWdfOT+4ALvvlwBVNUFVBQB0/uoxIP8pR2X7VboPRluwCRARrMi23o5G9Kx3smOJJuEgKcLSCes5a1+FWaut79u0+YIxp4/HlrKDgWn+6zvU5DW4LQ9fAnX3W+EYpmv79wbSEq3Db0560UTVSwaiPPoTVQschOYAgEKjuWzDih1/pqconDZC4ZO5/o/vmfu0kJNkf7d44h3QhTLme9oBv00Fxl3QYLlpChZu0rdn9QqtqBYs0NSJiwaOaJQh06MdEO0Bqr3+5ZdnOwhGK3H3XnriXr75ISUhUPCXchTKpQ//ch9SplQLef1RRJDKCsj1NvvsOiMODUkoGuCbz3U2RVtvvAnzf0D7LofDagbJc5Dlqgs6UrAPki2rAtoE2GUiAuAsGA0A5v/eooPRwnUuVEKswp7pwGJNePHLv5m44uDQB2NbsQszS0+xDhjL3Gr9wGjbUkBXl8FoSvn2fYKRHpm5zkRERERERERERBR2kXd+ERERkTW+Z0U+PkdEREREREQUPAajERERERERkY/R8CrJKmWditM4GE1EgFkzIF+9CcQmQI09te7CdzPwL3HJ5FuhzrjO9/ef0yHfvA+UbQP++dG+4oCRUHe9AeUJ8upOiigqLgESEwdUVfivzN0EqaqEiokFtuaGpr/zboU6+cqQtBUxDM22UG877NrWC6BlbDOHl/yAa7a+FPqG5/wAHHZ6k5sRrxf4fDLkr2+AuT8HLK/u/wDq0FOa3G96CpAUC5RU2pdL9RY2uN3FZTBabJTvAn6rC/LLjQBBghsyICKuA3e+Whj4BJhuqcDGrdbrjiz5wXFfnbw56FG1HutjejiuAwC524Blmty3fttD60QE2KYZZGLkJgtccZDC1R9aPwdfLRA8fTqQh1RYnajUwdswGA3ffwg59GSoA44Nw0itSV4m5PmbgZ8/8y047HSoiU/Ck9oB44YovPuX9X2LmWBi3GDgiEEKbeOAqfMEuduAvXso3HaUQlGAvMNaRuNfH920CuL17thPeeFMhZIKwdeLfavbxgGPjFc4fGBkB1PJtq2Qtx4CPn0hqPq6YLQiTzJk5nSoRsFoVgF29ZVazH0rc6xDzgBg7+5AYmzDxzg6SqF3B18IWmMrcgSBftE50Bjr++AShTP3aZ4wFqKwm/pyUNXUPe+GbAjtk/TrsqOs02MT5n6NdsfsDcA/SSjfQdChLsxJKd8+mU5pJYPRyBnJXu+s3MaVAd6hIpvd1tbUnM59eykszrTu4coPBBcdIIiJCv+jpwtSNJTvOM5KpiZPWTf3eAygQxKQHA/H+6lxUcGHoboNYSMiIiIiIiIiIiIdBoIQUT3h+kUZol0St6dWi3MlEVHLZTeHc34nahlst1Vux0TUvHhFDhEREREREfmohoeIVSrasliMp9HFlP97FXLbycCfM4CfP4XceRrk0+d960xNSkUjsjUX8vW7vnZ+mxo4FG3gPlCv/AHVvZ+j9qmFOG2ift0XvoAsef7m0PR1xFmhaSeSGJqPeeoHoyXVNNNgmq5v1aqwtCv3nwfZsrnp7fzfRb7Xo5NQtKsfC0koGuC7oL2/de5HAylmw2CurjWZ7voRQbz12wAqVIBgtPISIN9dEBsAzFpt/QXJJaMVKl80sO4RA+seNfDFBP/X+qiyWRhcudhxXwrAlVvdB7x8+Ldgmeau7Xhelv4DlBZbF2qjSUSIAIah8NYF1oEJa/KAvG2CLSXWddO8+X7L5LaTIfN+C+UQLUl1FSR7PeSk3etC0QDgx48hZ+0JKS7AcUPsgyBmLAKunSK48G3BlwuA2WuAyb8Idr89cMBrLQONylZXAdnrdtxs30Zh+kQPtjxlYPF9BvKfMTBhTGR/PC9lJZAL93EfipbcHmjjS9FI8VqnfRR6UnzbSiObCy0K11NW5b9sRY6+/OOnWj/Gunl0zRb7/gEgT7MdNNYjDThpWEuOsCFqSL5+x12FpGSoH4ugUjuEbAztEt3XSTRLkZa90HKdk+3ZLugo0SYYLVCILRHg+ywE015zVnjjyvAOJszszpNqajDaVYfYN/BbRtPad8oqVBrwhZnpgtGyNcFourYMw7fffuQg5w9anOa4zok2caHdlxGe3EpERERERERERK0ZP/+iiMPXZOTic0MUMnz/JSIiIiIiImrVIvvKKyIiIiIiImo+Hk+Dm1UqxrJYdL1iUloMeflOvzLywZOQmhpAHAaKFOZD3pvkeKhq/ASopl45SxFHXXiXdp1MvhVSVgLM+rrp/dz0AlRyWpPbiTiGx3p5vYDCtjE1SPJuC1mXyfHA4K7AY6co/O/K0H7MtFfFgpC218C3HwRdVTasgHlsV+CHKY7rqNOvDbo/K8O6B57/2tc0DKpKr3EXVKY+egLxNdavlXIjLnADa5e66m9bhWBVrvW6IwcqREcpdE9TUErhxGEKU680MLoP0Ks9MKHDP/hy48kw3Jw0eOipuFE+Qop3a+Cy9dz4qb6PvbsriAjkitHWBZQCeu/pqr/mdvhA/Wur440m3pxpff871FinScnEIyCrrMNomkrWLYN59VjI4amQU/taFyopBKa9jiMGBddHjfNcNP9gNABYv8JvUVqSwsB0BY/RAvZjvnkXyNngupo6eQLUCz8BBx6H5GTr/ckioy1QkA0paZgGkhkgGK200v81uDxbv13u18v6cU5PsV5eUBp4HrELUtq9PdA1BThzH4VZtxqIi24BzzNRALJxJcwzBrh7b+81COq9+VCxDvYZXIjyKKQkuKuTYJah/YY5luucBKPpzqFWCki0nuIAAKUMRiMnvv/IedkNzZTuFSa2wWhNbHuvbgrjBuvXn/Gqi506B2T6WzBP7Qvz6E4wbxgH2b6/5LUJUmynmbuKyq2X69rybD/sHuPidwKaEowWatXOfj+BiIiIiIiIiIiIiJxgGFDLxeeOKIS4PREREUUeu/dnvncTtQh2x60hPKZtpm52HXzQqJWK2tkDICIiIiIioghhNAw10gWjxdQ/kvx9GlBmEZyTnwVsWun8A5WiPGDTKmdlew8GDjvdWVlqUVRMLKRbH2DjSsv1csYA+wZOuhyY+op9mTHjoU64NMgRRjilCSYz610E7q1Bj+pNWOJxlxJ0UeHbeDXrSqjLHgQ6dAW69gL6DIWKa3h19083GBj7VNMvOldi4piSb5vcjo68ejfQayDQZXeg5wAoQx/qJjXVwIp5QOEWoDAP8uhlzjtKSoF6+bcQjLih44YqvPaH/fya5i1ocDu9OtNVH0ZFKeIrtgLRbfzWlav4gPXl7++hRh7muL9Fm/XrhnX3X3Z8/3IcH7UQ2JoLueNUx/3AEwV173tQh4yHiGDRoT3Ru/cyVBmxztuwMKAL0LujgnzwhL7QyMOgUjs2qZ9w65IMtI0Diius15doQl7ae/O0bcqFI4Gvc6DapLgej1SWA0v/AXI2ArHxQEzd8yS3jXfWxnfvo825t2DCGIWXfg3fFz2GVRjshgxg1DFh67MppLoK2LTaF2K7+0C/wFmprIB88pz7hrv2Ao67GKp9F6hHPkO7lQI87v/YlBsJqFQx8K5ehQWJw9G3E9ChjcLmQvvnyOo1mJFtXfaEofp20pKslxeU2nYPAMgvsR7jJaMVXj2Xv0VDrYfU1AAr/tMHfup07Ab19r9hC7Lu2AYoLHNePkHKkJazGOjqvy7fQTCaqTmmNRSQZJP7VlrlcIC0S5OPn3VeOHMtpLQYKrFt+AYUBmWVgn/WAX+u1r/Hh2K6+OhSA20nWh+Lbi0D7p5m4pYjFdrENa0zmfU1ZNIVdQv++RFyzeGQD5dqPwLzGEByvILViZ3FFYCI+M2ZXs1hdW0w2m6p1u1ZaWow2n69gNlrmtZGrYrqRp8rEhERERERERER7Sp4USIRNcA5gShk+B4b+fgcERERERERURPwtFMiIiIiIiLyMTwNblYr6ysnY+oVkz+n69vLywRKix11LbO/c1QOANRrs6A8nsAFqWXa/2htMBq25tpWVQceB7EJRlM3vwiMu6AJg4twHl0wmrfub28NjiuZgSVx1sFovdoDx1b8gLVZvuSZZG8RDiv9GWcXfwRge6BYfU9/DTVi7I6bo/sAvTsAq7f4tz2gC/DBJQaGPxg4OO3oku/QyWv/fDeV3Hay7489hgCPfgHVqZt/maX/QG4/BSjQpO7YSU6Dev0vqM49mjhSf2P7A4mxQKkmpAoA0rz5DW6n12S56sOAiXiz3HJdhbJJAak15wdX/S3aZH3yS5s4oGdaw2Xy+zTIQxcC5Q4SjGodfBLQcTeoQ0+B2nM/AIBSCl1OGI9LZr6FF9tdEaABe8cP9QUZyDfvasu0hFBGpRT6dwbmrHNXr4NNMBoAYPqbwJk3uGpTfp8GufM0dwOxsn4FzKcm4vmJT+OlX5venI4B/7lNNqxAeGKBmkbWLoXcdy6wZrFvwdDRwP3vQ6V19q3PmA+5eF9Hbak3/gaWzIYs+xeqRz/gqHN2tAMAyTY5iq+mXIzbXhqMyu0BnhPHKqQEyF20mveWZ1vPH/266B/9donWy/MdBaNZL2+vCVsjaokka51vDl65wH3lo88JWygaAIzsqZCR4/yk2USzFFFSY7muqNw6kKg+3fm5CkBslC8gzbQos2aLYFTvSHwXoIiyxSYd2MrKBcBeLsMKd6JP5po4/01BpfUmuEMo5oykOIWXzlaY8IH1Rvt/MwTP/SR483wDJ+8dfH/y2r3+C7PWwZz1NQDrQFxDAW01+zjVXqCyxj+8zGs1sQDwbB96VxeZw/FNDEY7Zz+F2WtCc7FCRbX+sSAiIiIiIiIiIqIWguEmRPUEuz3Y1eM2RuQOt5nWi88tEVHLZTOH85iSqIXgdkxEkUNzxSwRERERERHtcuqFjXlhwKuss7Rjti+W6ipg7s/a5uSb9533/cHjjoqpz1ZCRcc4b5daHHX+7cFXHjEWGG8RbhSfCPXIZ1DHX9y6Q/WU5mMeqRfWU1ONG/OfwQFlf/oV2yO1Ct9dZ+Dpu4dj6qbTMHXTaXg761KcU/yRNthHrj8G5kt3QPJ9wWFRHoXXDl+P1KiKBuXOjv4NC9ftg6FzX8G/561ClxhNqsx2T+XcbLte3TwZxh+VwJ7725ZzZNVCyONX+i2WmhrIXacHF4oGQP1vQ1hC0QAgPkbhKOtsOwBA2zgg+uizGixLP/JIV30YMBEvFZbryg0HwWhZ6yAuvvDYUGC9fM90wDDqXoGydQvkvnPchaINHgXjoSkwJj6xIxStljrnFjyaeyf2Lft7x7IoqcYFhfqAMyvHb5sOydkIrF9hXSAqGhg1zlWbO8vg3dwHRXQYfZDtennxdojXa1umQfn87NCEotWa+gpw1gD8esKi0LXZiFUwGjZkhK2/YEhlBeTb9yHnDasLRQOABX9ATuwBc/JtkA+ecByKBqWAHv2hTroCxh2vQZ19U4NQNAC2QWfXd34SlWbd+/JzPwkemG4/bzQORhMRrMixLtuvk76dNF0wmv3bEwAgj8FotAuQJ64OLhRtyAFQLoMw3Tp2iLvyCWY5ks0iy3U1JlBeZV9fNysZhi/MKTHWev15b/LEDwqDjHk7ewSOrc8XnPla4FC0UDp9pEKUzdkP2yqAU18xMWdtcNunuXktfs1MxsNpt+CTNiejTNXt6HiX658bj+E7RtMpssij9mryxGvz0NNdBKM1Dl1z68JRoQt5rKgOWVNEREREREREREQRiN8NUHML9JrjazJi8SJyohDi9kREREREFHJ2x608piWiZmZ9lTsRERERERHteoy6YIpqpb9qsjYYDWsWA6XF+va+/zBEA/NRn62C6tQtpG1S5FFt2wE3PAt56lr3dQ0DuO4Z4NiLgGX/QLI3QPXfGxgwAqpD1zCMNsLoQt/qhxF5a5BqFuKH9cfgr4R9MT92KExloG/VShx8+zNo23F3AB0h594KvDfJWb8fPgn58Elg8i9A5loc9OhlWIJU/Jw4BvmeNAyv+A/7lc+BAiBPXYuhABYaKTi221T8neAfvpOV0R0dvHn6/mLjgUNOBgCos26A3HGqs3HamfMDpDAPKqV93bIFfwBbNgfVnHrjb6io8H7sdvxQhc//s/5CobgCMO54DXLiZUDmWmC33kjsvzdSr/Nia5mz9hUEcabFFfoAyusFACAmFqiq9C9UUQaUbQMS2zrqL8s6rwS7pTa6CP+3qUB1gASTRtQ5+qA91b4LEq+8D39MPhQ/JR6CfE8ahlXMR7fqTXgn+RyILnCwns412Rj5+mmQ122+4Dn+krC/JkLlglEKb8x092VVx7FHArHXAh8/qy0jlx0AvDLT0eMgJ4YhVDBrPQ58dF+cNWoWPty6V8ibV1Yn2UVQMJrkZUJuPBZYs0RfaMrT7k4V7NwDKtY+KDElwU2DgW1rNN3kFPtCTqz076wP8UhLVLA6MbKg1Be2ppS+ri4YTRe2RtTSSOYaYM4Pjsqqe98D4hN8+xs9BwDDxoT9/W54d+vtVydRSuEx9eGcheVAgibcDABMTThR7Syhm4MAoKxSkBAbukAhal1E9+Kyq7Ninja0OtJMmy/Nfv5TSoLCqN7A7yvtyze4V0AAACAASURBVO33iImZtxoY1dvdo3n9m4V4vsd3O27vXf4fvt54PNK8BfD++xuAOy3rGQpItgmLLS4HOjU6bAoUjNYhCYj2ANUOsoebGowWH6Pw6eUGTn3F/Wu2sYpmDMojIiIiIiIiIiKipuAFrkThZfeZe0v5NogoQjCUgYiIKPLYvj/zvZuIKHw4x1Lr1DKuxiMiIiIiIqLwqxf+UqVitMWifv0U5kvvA7O/05YJuWEHMxRtV3Li5UAQwWgAfEEmfYYCfYbueqcI6QKcpN6JVF7fVcgxqMbBZTNxcNnMuuoJdcFq6rDTIU6D0Wq7ueqQHX93xBacUfyptmyqWYhf1x+Omzs9ipdSL4NXRWFoxUK8knWlfSgaAPXEV1BtUn03DjzO1Ri1RIB5v8FcMBPI2QD0HAisW+a+nYQ2UNc9DdU39KFLjY0bEjgURA0cCQwcueN21xQ4DkZL8xYgQawLlxr10n867gZsWm3dSF6mi2A06/vSJaXubykrgTx5jaP26lOjjrEvcNpEGJNvxeGlPzdY3KdqFTJi+wZs/9htX8MI9Fxc/VjAdiLFAXsovHquwsQpgopqZ3U6tAHUhEcgG1cCs762LpQxD/jmXcioYyCTbwN++Mi3/NiLoK54CCo5DQAgs78Nwb3Qe2H2kagatxSfrUoLabsmLObgrbkw7zkL6txbofoMDWl/bsknz9uHogVj4D4BiyTF+sJAzBB9x5Zb3DC4bHOhvmzvDvp1aUnWy2tMX8hRW014iYhog9HaJ+1yex7UCokI5K4znFfouxdU98DvlaHUM80XDKQLDWoswSxDvOjTy7KKgE/mmvh5uaBTW4U7jlHYvX3d9qybvgwHm3xeCdDdJnSNdnFbc93XyZgX+nGEyfqCndPv1CsNpF0feII4cJKvzJi+wItnG+jfxX6jnrdB8PzGIQ2W/Rs/HC+mXo678x6BWVEOaLZ3j6HftwCAIos86kDBaIah0C0VWGN/+Ayg6cFoAJCg/5jQFafHF0RERERERERERK0PL0okap2CPE+AQU5EIdT0H/ehcOOcR0RE9fF9gahFYMAhEUUQzRWzREREREREtMvx1IUiVSv9VZPRHz7avKFoANRlDzRrf7RzKaWAkYe5q7TnfuEZTEtieKyXm966v7cHo1ny1OXnq16DgINPDNHArEWjBs/k3IScjG7YsLI35qwdhREV/+krdO4B9Vs51F6j68apFNSHi0MyHrnnLODzF4GZ04H3HwNmfuW4rvo0A+qd/6BmZEEdfW5IxhNIu0SFTprMsXGDrZenp1gvt9KvcgWSzFLLdWVGQt2NjjahlfnZjvvL1IQbpSf7/pfqKshloxy3V0u9NTdwGcOAuukFv+VXbX3ZUR/HlUy3L9C9L1R0iJIEmsklow0UP2dgL4eZpO2TAOXxQD36BdCuk7acfPQU5ORedaFoADD9TcjZgyEVviA++frd4AbdrhNw8EkBi7U1t2HKV92w5Qlgzm2CubdUY0jX4LqsL8G0SLQAgF8+h1x1KGRZ4NdiOEh1FaS6Cvjpk9A27ImCOvnKgMUMQyHZJgjErfJqoLjeQ62bO6I9vtelTrtE/bqsIv26bRW+8DQrdv0RtRTy+n3AygXOK6TvHrax6ERHKeze3nn5RLMMKV59iuLYJ7244RPB9IXAGzMFQ+83sTSz7qQNXbCjcnCNQ4XNrjcRlvztvs6GFZCqytCPJQzyNUGijcWG+GfcUhMV3jjf+UVIv2YAA+81MXedoLyq4T9vvQng03+tJ4Mv2/jCur2b12v78BhAmzj9GIotshu9mrnHU+/sjgFd9G3WFxeCxzgmRM8Tg9GIiIiIiIiIiKh140WhFGEYvhXB+NwQhQznulaMzy0RUcvFOZyIiIhCh8FoRERERERE5FMvVKlK6QNcYqSqOUazg3riKyiGXu16+g5zVVwdd3GYBtKCGJqPecx6CS5er3UZoEEwGgCou94CTrkqBAOzl2IWIb0mCx67X+476lyoV2dCWdxH1a0P1Kt/hnGEAZx6DVTnHlC9BkFF6UMlw+GhE60v+D98oPXy9BTnAQH9qlYiUROMVmLUS/+JSwDatrNuJHez4/50QURdtgej4adPgfUrHLcHAOrie6H20KTENXbAsX6LnASjpdXkYWzpL/aFdh/obAwRJsqjcN1hzl4zHdr4/ldKAXbhgBtXWs9DRfmQw1Mhn00Gfvnc/WBPuARqyjKoBz+CuuZxR1VSxyVg+PmJ2OvCZMyamY4b46ahZ2pwCTYxZiWGVC7SFygvgXz6fFBtB0v+/QXmBSMgh7aBHNoGyN0UusaHHQz1xJdQg/d3VFwX4his1OtM3DHVRHmVYHOh9ckTXZJ9oWw6XVP0oUarcvV959mEvDAYjXYWWfgnzKsOhXl0R5gX7wdZ+k9w7VSUAVOecV5hxKHNvu9Ta3h35/s0CVKGOKlAtOY4triiYVsllcAT39fNLbpzqG2mmB3KmvfQmVoY+etb95VME9i8JvSDCYP8EmcnOO7fK/R9XzDKF46WkhC4bK19HjaReHXDf8kTTSRe5UWH67149Bvr+zMvbi8IAG+1PvHLUIDHUEiKtV5fbJGv69UcHnvqzT39OjubC+NCMFVHa3LY3SrnvEhEREREREREREQUOgwDasH43BGFDrcnIiKiFoXHMUQtg922yu04gvG5odaJwWhERERERETkUz8YDfqrJpszGE29MhNq3yOarT+KHOpA/5AiWwefGJ6BtCSG5kpls14Ikdcm9KdRsIWKS4Bx7VNQj0/Th641E3XHa1CpHfXrB4wAzr65GUe0XVoXqAvvbP5+t7tglMIBvRsu698ZOGsfXTCas3bbeovQ3puHRLPMcn2pqpcw4IkC2qdblpMFMx31V1Ih2rCh9BQFqSyHvPuIo7YaON55YKJq3wXqsgf9lv+3Zh+08RZr6z2aexfipNK+7dEnOB5HpBnQJXDYQkwUkBxfd1udeUPQ/cmzLusqBXXnmzBumgwVnwilFNRpE4Fzb3XVTFxFISbNOxOrNgzDk6fYlz1lLy88quEXRvdveQDxUmFfcUHzBTjKmiWQ644CVtuEtQVj0L5Qv5bBeO57qBFjHVdzOve48eg3gnu/FKzZYr2+a4A+42MUuqVYJ45k5Oi/ENxQoG+TwWi0M8iWzZBbTgQW/gmUFAEZ8yCXHwjJDCI4afUioCrAXFYrPhHqwrvc9xEixw5xXjbBLIMCkOItdFzn5+V184CpmRJqwxWPGqRvp6wKyC0WLNokKCjlyQbUyMr52lXq2qf0x2AbM8I0oKarrBbMWSv4PUOwNi9w+bho4J7jQn+sqZTChQcYKHjGg5uOcB6k2FhZFVBeDeRb50XvsDmqK0yb0y4821e1jbdeX1TuPz9og9HqdTOgi/24asVFB/8Y1NpDfzjuSkVwOcRERERERERERERERK0LLyInCiFuT5GPzxER0a6Hcz8ROWM3W3AmIaJaUTt7AERERERERBQhPHWhSnFSiTOKPkaVikFVShdUD9gPVWtWoCpfH5QTcnsMAfrv3Tx9UeQZuI/jouqZb6ES24ZxMC2E7sJ5s94V1XbBaB7rj4nUfkcBb/4DmfoSMO31JgwweEoFvpBbnXMz5IPHm2E0AHoPBkYfD3XaNVBtUpunTwseQ+GHGwy8M0vw91qgVwfg2rEKbeKsH69AQUG1elavhwKQaFqnlZUaifUGEQUMGAGsWexfcO5PjvrLyNGv67X5d8hNZwDFNmlEVoYeCNWuk6sq6txbgH7DfOFcG3yBE0MqF+OftaPwaurFWB7TH7L9tbhb9WacVvwpDin73b7RpBTggHHuxh5B+jl4CAd0briNquQ0YHom5FjrwLwmOf5iqPZdISvnA+06Qo09HWrYQX7F1FHnQD56Cqipdtf+ptW4dt7VuD/uBRRbZAPFmJV4cfpQ3H7olXhjdgxKjUSM3zYVx5R8G7jtgmyIiKP5rClkxTzIJfuFvuHjLoK67hkojyaE00bXFIVwfDX5xPf6Nu3C2EQEePth9Nk4EhuS/APe7ILRlmdbr0tLBJITwvvcElmRD54ASv0DPOX0AcDvFe7mHLtQtN6Doc65BfL390BqB6ijzoHqZZMIFmaj+zibV+LMcnjg2xdO8RZhS5SzZJ8NBUDeNkH7Nkp7TULtIztuiMK3S6wL3fa5ibnrgYpqICEGePYMhYsP5G9W0fb3og0rrFcefibUKVdBPnsB2GwRcrghMoPRZq4UnP6qiayiwGXH9geGdVc4cx+FYd3D+/456WSFJZmCbywOV0JleUxfDK3UB9Ia2+9icjyQaZHRaLXf6SQYrXs7Z3NhQmzAIgGlpyjs0xOYs65p7VS43D0nIiIiIiIiIiJqPXgpJxHVxzmBKGQYNNh68bklImqlOL8TtQh2+2LcTyOiZsZgNCIiIiIiIvIx6oIuOnlz8X7mhb4b7UfDuPZHmM+9Cfz3fLMNR936MpQu6IlaPWUYkPPvAN55OHDh4WPCPp4WwdCE1Zjeur9r3AejAYDqvSfUTZOBmyZDaqohhyQFOcjwUUnJkM49gOz14etjwsNQZ90YtvaDERetcPnBCpcfHLhsusNwoncyLwYAJIp1EGZJo2A0td9RkBlv+xfM2QCpqYaKirbtTxdCFBsl2O2pM4FtLkPR0rpATXzSXZ3t1D6HQ33gCzWQqa9AnpqIParX4LHcO4Nr79aXoZKSg6obCdrGq/9n777Do6jzP4C/P7ObnpCEJAQCoZPQixQFBRQsqKBiwQYKnqJYz3L208N6ep5n1xPFdnbsXRF7+WEFESlKlR4ggZC6u9/fH5u22ZnZmc3uZnfzfj0PD9n5lvkkszM7u5l5Bx0ygO17jfvohVlIZg7UtIuBl+4LaT0ydQ6k9yAEis+QrkXAnNugHrrGPBBSz9vz8d0RuRi4/lrUSqJP05Obz0b7vRvQ/o2rYfs7c9UCZTuBrFy7I02pki3AN+95A432Pzw8oWidukG78uHgh1sMZQylrjkmz5Kv3oaafxN6dbwPevGNWzfuBKAfnrRyq/6UxdmVUC8+DuR0BMYeC0lKtl0zkV1KKeCVh4w7vPs0cPSZ1iesrTFskr89BBkwCnLoNBsVhk9hNpCSAFQGCNhJbRLqne3ZbWsdf3nKgzcudMBjcOpU/1b17IMEFz2v3+nL3xu/rqgBZj+jMLaPQlE+gxTbvB2bgMp9uk1ywhzvF4VFusFoasOqgOdCkVZZo3DqPGuhaM+fIzh5ZOQ+6xERvHmhhiPu8WDRivCsY2VSMQZV/2rYXh9m1s7g9GBPpf8yo2A0rcnGtxp8nR6CYDQAeGSG9+e4o+69QXYq8OGlGoZ0AY570IN3LYTPVdUqIOqewURERERERERERCHSZm4KbSvfZywItC24rcIv2J+x2ThuNyJ7uM8QERFFnTbz/piIiIgigXeYExEREREREQBAxOAtoqq7G3OPzWCalhg4GtJ3eOTWR1FJJs8M3GnkRIjwploAjekMzXma3FFtFhBkEozWlDgTIE98F7jfv96AzH0WyMg27tSxG+Sy+yBzLATgWTFpemjm0XP8eVEXimaXlRvn0zzlDTf1p3n0wxr2NQtGQ2Ef/cmUAnZtC7jO33foL++dvBuOvTsDjm+QlAK5+QXIUz9AioZaH2fk0JOBpJSgh8vtCyAHT215Ha2sQ4Z5+35d9ZfLcbMtH1cs6d4P6DXQcneZdjHk6Z8gVz9qe1W9PrgTu1fm45lNMzF1z+v417arsH51b0zb+4rtuXzsNEjVCpL6+QuomcOh7pwDdc+lUKcOCOn89WR+4GO+GauhHaE0ro/xuYH64i0AQK67RLd95xbj8KTVBkGOxctegnrgSqi5Z0DNGQdVstlGtURB2rbBtFn9czbUXhthYGbBaANGWZ8nAjRNUNwxcL+mIa8FtVtsraM+1MzoGq36o0xSgiAnTb9Pc0oB87/iRV8EYONq47auRb7/+41dFfp6WuitpQqbSq31zU2P/Pt3hyb46FIN/TuFZ/5ViX3gFoOgcjSGmRkFo5XpBaMZHCocTd72Wz3HSgtRMNrQQsHyuRpePlfD8+cIVt2iYXg3gdMheOsiDQsv0/DfGYIlN2goNPgYoCpAoCURERERERERERFFCd7EThRe3MeIQoj7ExERUWzhazdRbDDZVyP4nlbx/bM9/HlRnGIwGhEREREREXk5DG7i9Li9/++0dyN5i6SkRm5dFL06FAbuk5kb/jpihWa0DzcJRjMLxzAar0N6D4Zc+5h+Y+eekMe+gRwwCTLhRMhbm4znOeNqyNRzQxY4JjOuAo46E6gPyzM6rgUz98V3h2yu1lLcsfGmfCNDq5Y0fJ1uNRgtr8B4wh2Bw4F26a8GhVvthTHJvR9ADp4KycyxNc5wvowsyF1vBe449hhg0JjGx0kpkL89BDloSkjqaG256ebt+3XTf1JJYR/IDU8B6ZktL6LnQMgdr9kOwpSuRZCjzwQOP832KpNVNU7d8xJe3nQaLt11Pzq7LAZdmT3/QngupZSCuuhQoMxGeKAJufEZoH2+78L2HSH3L4S0cBt2bR/5AJTD+pk0rvgBAJDrMghGqzD+tYlR6EvPmjWND1YvgVrwYKASiVpu+5+B+yx4yPp8RgG66a2QbmhBcX7gY0uqo/F7KnDZOwbvrgD2VSt4DK4RaHpOlWEQdqRn4XJedEAAdhskA6dnQeqCpcUoGG3Dqqi72Of9Zdb75gQ4twwXEcGXV2mYMjj0c69ILILH5LKL+jCzTIPM5T1V/svcHv9lTecCgHYpQGpi4PrSQxSMBgA56YIThgtOHqkhp0nInYhgQl/BOWM1DOoiSE7QH89gNCIiIiIiIiIiarOi7HNdImptPCYQhQxfY6MftxERURvEYz9RzDM9h+M+TkSR5WztAoiIiIiIiChKGIUiueuC0azceB8qu7ZHbl0UtUTToHoPBn5fatwpRAFI8UBE0/94WXnvqFY11VBXH68/WNMgmr38fDlyBjDhRG/Qz+4dAARolw106e0TXiQOB/DIF1DnjfWdoFtfYNJ0W+sMWFNiEuSaR6Eu+hfw5+9A1yKoYwqB6sqWzfvE997vI8ZlJAsGFAC/GGfVoW/1qoav06wGo2VkA4nJQI3OHf0lgcOkSiv0l2e7TYL8miveD+g/ynp/i2ToWOCBj6EunGjcZ/IsyJijoEq2ALu3A936QhJDmD7QysyC0USAwZ1N2iecCIw7Fli3wn8/dCZAffQ88OK9puuXx/8PUjTURsU6c8y8FurD51o0h6X1/OVG4PQroCZk6HcIwbmUcrsBpaDuuaTFc/k4+Hjv9tqwEti3F0jLALoW235t0FOcH7hPKB07BEhNMglMqjue57r1Q+VKVDsopXSD+IyC0bq4mh1YP3sdOO9WS/USBW3n1oBd1KKXIbOuszZfbY3+8gQLqTutoLhj4D5pXbsCmzKB8jIUWA24bGLVNuPLN5oeIqwEE9X7cYPtMigelemHcyKrSfC3UTDanl3A2uVAzwGhrytISzZav9ApUOhuOGWlCt640IFtexQ2lwJODahoduhzK+CgOwxSyQysSiqC20IwWkaKQO+oskfn7aqVYDQRQecsYHWAj9BCGYxmlWEwmkEGJxERERERERERUXzgTaEUZRhEEwFB/qE4Zfa7iMj/8Tmi2Gbvd3sUS/g6RkQUu0yO4XyfQkQ28JBBRACD0YiIiIiIiKieUfCFxw3lcgGb1xqP7TkAGDQGeGNeaGqp0g/jobZHZl0Pdd004/bMXMO2NscouKs+3PCHRSZjg/uISJJSgIKe3n9m/QaMAu56C+rxm4DSHcCA/SHn3gwJU9CGpGcCfYcDAJROsI1lAw+AzL4J0ntQiCprfYuv1ZBygfHFQMU1Kxu+NgxGk9TGBw4NIgKVVwBsWuPfeYdJClud0gr931ZkucsCjgUATJoOufjfuiFGoSBDDgJueh7qhlP9GzNzgOETvP1yOwG5ncJSQ2tqn64f4AAAHTKA9GTzn7s4EwCjfahoKNBzINTt5+iPvfDOFoeiAYAU9gEe/ATqiilAZXmL5zM0ciIkIRGq3wjgt+/9mtV3CyGTZ9maUlVXQj1zB/DU7S2rrWM3YMRE4O35/m3DxkOcda8D3fu1bD06euZ5QzyMAj5C7eSRAY4FrloAQI5BMNpOLRuendvhyPVNdKuuVSgxePp0qt3iu+DP3w3D1doipZT3fMTT5J/b4Gufx566fzbH1H+tPLbHqIb12lhP0zblMag1wPfhU6vRHDqPA1n3m/UNFWPBaH0tBKPlZTogj34Fdf/fULBmj+11/LpZwWNw7NKa7N5GAUB6RIB91QppZgGOFP/27NJf3jQYrfdg7+c0ek/Cr96JqmC0Uhs51DlpgfuEW347QX474/Ytd2m49PHdWPRLFcq0TABA99r16OTagk/TDvbrvzGhEHscxhPWHy8yU/Tb91T6n2sbBqM1O3T0yA0cjJYWTcFotZGtg4iIiIiIiIiIiCi+8e7g2MVtRxQyTEogIiKKMXztJooJZufZETwH5xHDLv7EKD4xGI2IiIiIiIi8NINQJY8b2La+IUSiOXnie0jvQVAeD9QXbwK7trW4FDnu3BbPQXFi7DHm7TkWEhHaCjEIN1QeKKWgnr3LeGyQwWh2yP6HQ/Y/POzr8Vvv6X+Denyu/XGzb4bMuDIMFbWupATBzDGCJ7/W/8C7uGZVw9dGwWjlWnrjg/rnTq5+MJpatzzg3zEtrdBfnukxDkaTO16DjDkqwMyhI4ccD1z9KNQ/Z/suv/BOSFJyxOpoDbnpxm1ZBuEOVokIcNQZwMiJUGcMA8qbbPMxRwHTLm7ZCpqua/AYyIf+QVie+/8GvHRfaFbSra/3/y69dYPRsGgB1LWP23rOqHk3Ai/eG3xN/UdBHv4MUheA68lsDzR9PUhMhpx5TfDzW5DoFPTKA1a1/BTRkmkjAhx1KrzpZrkGwWgecaD09zXIaRaMtsUkq7Gza7P/wuWLoYqGAauXAOWlOoFfBgFYhoFYjX2VYfhW08dG4V4mywPV4bNeC7XXP6bY4DIIRnPaSP2KoL6djIM76xVkCaSwD+TO19FthQLutpfQ+NFy4zU0zT00Oz40p5R33uOG2SqF4owqLdFvyMxp+FIysqEGHQgs+cJ//KqfAp5jR9LeKmv9UhOBlMRoqtyX2rcH+H0pOtRU4X+vHu3XviahO4p6L9cduzKxyHBeR91b9XYGp4B7dH5+hsFozd7298kXfLjc/FiY3gpBjAxGIyIiIiIiIiIiIiIywSAnohDi/kRERBR1eL5LRBZFSf4aEUU5BqMRERERERGRl8MgGM3tBv783Xhcl14AANE0qCNn+IZtBKsVwpMoOokI8OoaqON76nc44IjIFhTNNINgtI2roU4baL4fG4WqxYMxRwF6wWjHzwFefdh4XP+R4auplZ05Wj8YLUv2YcKsoyFpx0P9czbSlH4wWrWWDBcccMLdGIyWlae/sjceg+pQCMy4yrs/N6O2bUTpir2AVuxfj7tUd0qZvxjSZ4jBdxc+cvSZQGEfqHefAiCQo8+EDBod8ToizTQYLTU065C8zsCzv0C9cA9QWgLpPxKYfJbucybU5MI7oX5fCvz4acsmyu4ASc/0zlnYx/iSu49f8obBWaB2bwcWPNCisuT+hQ2haAAg594C9BkK9c17QLv2kCNOhxSHP52nb8fIBKP9dpMGTQvwvNm2AQCQYxCMBgA71mxEzgG++/cm/UMSAKDAtcVvmTpvnHkdRNGm1iAYLSExsnVY1L9T4D4FWY1fH9jb/jre+UWhr0EOsxZkMBoAvLdM4bhh0RsORRFQZvAalJnr+3joWN1gNHz6KtS2jZD8wtDXFoTyamv9ctLCW0dLqFcegnrgSsM/CgAA3Wo3IMlThWrNP+FseVI/w3H1x4t2BqHCZZX+y9wGJ5PNg9GK8/X7NZXWCofxZIOrUBiMRkREREREREREbRfv5KTWwOdd9OK2IQoZpiXEgGC3EbctEVF84vGdKCZESWIZT/eJCADi+K5XIiIiIiIissUoGEl5gJKt+m05nSDJjakoMv1KoN+IlpVx1g2QHv1bNAfFF8nrDLniAaBZQI5c9C9Ihy6tVFUUMgpG27PLPBQNACrLQ1+PXTOv019+wvktm7fPEGD6lb7LRk70hgMV76c/Jj0LGHJQy9YbxcYXCy6Z6Ls/JTqBh89OR9q02UBiEgCgnXuv4RyljrqkkYZgtBzDvmrejcB3C/2Xr/sN6sTeKHUl6Y7L8vinjMgHO1slFK1h/YPHQLv6v9CufqRNhKIBQF6GcVuogtEAQNrnQzv/dmjXzoMcNxvijMzf9BARyN3vAgdN9m/MyIbcvxAYe0zgiXoPavy6xwDDbuqLNy3Xpl5+wBtQG4yeAyFvbIAk+u5fIgKZeBK06+dDu/iuiISiAUBRfvABQCt/H4Cpe14P2O+2qYLijubrUV++1fB1B9cOw35r1vkff9bs0P/NapqnHO08ewLWR9Ra1MqfoKwcS1wGwWiOhNAWFCKJTsG0Eeb7fF6TcM9Ep+CaI+0di3btA77+Q7+tJdmdv27mlRptXlmJ/vJM33Nq6eYfHlxP/WN6KCsKmsutLIddmQXutia17Fuoey41DUUDAAc86FW7Rrdtk7Oz8bi6t+qZBsFoe6r8l7k95nPV69cp8MEo3T/HLexSDMLYGIxGRERERERERERxrc3cqdlWvs8Y0Gaec/GI244odLg/ERERRR++PhMREVHoRObuMiIiIiIiIop+Dof+co8b2LNTvy0r1+ehpGcCD34CLP4QWLcCyC8E/vwD6vG5usPlqkeAw08Dfv4c2LQGGHwgpNfAlnwXFKfk2HOAYeOBHz/1hvUNGw/p3q+1y4oumsE+HCNk3LFQT93md9GejD+uZfOKQM69GeqQE4BfvwW69AaGHewNXXpwEdShHzoXrAAAIABJREFUWf5jpl0EcUZnCEio/OdkDaeMVPhmjUJaEnBoP0GP3Lqb6uuSPnLdBoENALY78pDr3tkYjJaZa9gXANSbj0NGHdb4+N2noW4/BwBQ6sjUHZPlLvV5LOffDkmN0jSFOFaQKTD6BXVSnHy6LA4HcNsC4IdPgNU/A7W1QF4BMOowSE5HoGpfwEAzOaJJOMnoScYdf/4cSilIgEQd9e7TwDN32Pk2vCZNh4w9Btj/cEiSQfpGK+jbMfixvWrX4oVN0/Hy3hMwvfNTfu2DuwBPn6VhcJfAwSDqmTsbvk5VlehcuwmbEvyDTFZuqMJRzZat3q4/Z5+aP9CCfCSisFNnHwCkZkANPAAy5CBg8IFAv5GQpGZJObUGwWgJBuk2UeCywwQvfW98EVX3HN+985bjBC98p7C22SlOprsUtZKACi3N8rqbztyng/ExQs9vW2DptYDi2C79J4w0C0ZDV+NgNCz7Fmr7n60eFl5ebb1vThSeyqvaGqg54y33z3PtAHRynbc78wzHaHW7ertk/fPqskr/MVaD0Q7o6T0nr3YZrh5prXAYT07Q/16rTOokIiIiIiIiIiKiaMKb2ImsCXJfYagdUQhxfyIiIoopPBcmihEm+2oE92MeMuziD4ziU5zcukZEREREREQtZhSq5HZDle3Sb2t+0y4ASUgEDpzs/QdArfgB0AtG69ILOHqm92bwJmE5REakaxHQtai1y4hemha4TxSTPkOA65+AuutCoLIcSEmDzLkdMsz6Teqm8xcNBYqG+i5LSgH++yXUbWcD61d4A8EmzQBO/1tI1hnt9u8p2L+nTiCHeJ9LeSbBaDucuUANGoLRpF1784/QP3sN7829Hy9lnYzqxAyc/frTOBiAB4IyTT8YLdNT5rug1yCzNVCYFPhnBzaoMMjQiUUiAoyY4P3X3P5HQObcBjXvRsBV69vmcACnXQEcdkrjXEkpwHm3Qj1ynf9c5WXAzq1AbifDWtTOrQ3Bgba+h2vmQY46w/a4SCjuaBywZ+bVjdMAAA54cMqel5HqqcSsgkdR5siCU9Xi7z2/x/VXH2gpXEiVlgDLF/vWVbNSNxht1a5EqNISSJMQ4FWbagD4h2b2rvnd5ndF1Aoq9gKLP4Ja/JH3cUIiVN8RwOAxkMEHAoPG+B/f6kVxMNqoHoJ7TxFc8oL/8UUEGFrYfJngo0s1zHzCgy/rdt2j976LeVvm4LxOD+DNjCmW153c5HAw60DBta9ZP8btrgC27wXy21keQnFEeTzApj/0G3OanR90K/bug0bBhZvXAq0cjLa3ynrfgqzoCQNUbjfwxqNQ//mrrXG5bv0/HLDdYRyMVh9mlp2q315WCbjcCk5H48/HMBit2Y8wLUkwoS/w3jLD1SM92bgtXJINcsarDV5qiIiIiIiIiIiIiIjaFrPfLfImZiJbmJQQA7iNiIjaHh77iYiIKHQYjEZEREREREReRsFoHjewR//GT7RrH3Ba6TscavCBwNKvfJefd5ulEAsisshoH44hcvipwIQTgY2rgS69vUGL4V5n/5HAkz8A2zcCSSmQnI5hX2fUqwvZS1bVyHDvwV6Hf2pHiaMuLKguGA2ZuX59mno4ezYu2nQ+sMn7+IVuH2D+5nMwqfxDKNEP9ctyNwtG697P+vdAIWMWjLavOnJ1tCYRAU67HDhuNlC6A8gpAPbuArb9CfToD0lN9x909ExALxgNADasNA9GO66b/RrPuSlqQ9EAoG+Qh9bxFZ/7PD6m/G1sW1WIlYlF6FG7DqkFkyFykLXJVnzvX1f1KixK8w/DW+Ps5g1RG3NUw7J168sA+B/retcYhNtQZDgc3nMgzeF9/dKaPG7a5jBrc3hDQX2WN3/c7Gu/cZp5P80BadomEnhuv6813++xSR/1378Dy76x/nOrrQF++Rr45WuoZ+/y1pNmkNLljN5gNAC4aIKGapcHVy7wvZjqmMFA1xz/95s98wSf/U3D+p2A470n0PnROQCAgdW/2gpGS0tq/Pqk/uW49rU0W3V/ulLh5JF8P9wmbd8IVFfqt3Ur9nkoyalQx88BXrxXv//OrSEuzr5yG+eDRfnhq8MOpZQ3HPvD56wP6tQd8szPyH1sL7DEv3m7s4PhUK1uV8/NMKrHG5iY16TdMBhN563TlCGC95YZX1CanmTYFDZJBlehVDEYjYiIiIiIiIiI4hqDjija8HkXvbhtiEKH+1PcYugdEVGc4vGdKCaYnotFbj/mEYOIAAajERERERERUT3DYDQPsGeXflu7bEtTyx2vQT1wFbDkc8CZCDn9CmDcsUEWSkS6NP1wqVgjzgSgR/8Ir9MJFPSI6DqjWpOgsjx3iW4w2g5HnrdrXTDaW3uKcX2Pxdjm7IAJ+z7FzTv+gZ616wAA1ZKIW3Ov9pvjrIJ5pmV0rd3Y+KCwD5DX2e53QiGQkWwc2lJRE8FCooCkZgCpdYkVSQVAboFx36xcqMwcoEwnXHbdb8B+B+uOU//3gf3Cjp4JzLjS/rgIykkX5KQBO/dZHzO88kdkevb4LXfCjQE1v3kflGy2PuH6lX6Lurj+1O2605ELbPjSJxht8/YqIMG/b/fa9dZrALzPoeYhXk2DrwIFZPkEeBmEcenO0SxUy2CM+I0xWY/uHJpBrRbHaHXjLISGSZyc+4TEna9BHdWCcFelgPIy/bYEnSd+lLnsUEFqInDfxwoC4PABgjtOMH79EhF0zwXU9FlQ678EPngWRdWrba0zrUleXM/vnsFpZZl4LvNUy+NPnacw8wk3HJo36MjZ/H8H4BDfr50O3z664xraxGecZnmcfw316/WvQcznNBwXoJYm37umxWF4nM7rUYOuRX6LZM7tUEbBaBtWhaio4O2tst63OL91t6da9TPUvZf5BfebysgG9hsPueRuSFIKcrskAUv8L7faZhKMVh9mlquTpVuvpNw3GM1jcEWX9t/roKpHQA45oWHZ5MGC8581vgSso0HuZTglG7x0VNXyUjUiIiIiIiIiIiKi0OFnrq0vyN99MOyHKIS4PxEREUUdnu8SxT7ux0QURRiMRkRERERERF5GwQIeN1BmFIyWY2lqSc+EXP1IkIURkSVG4YZW9Bkaujoo9knjRXu57hKsQU+/Ljucud4vNAc+Wq5w3MJhQLJ30YuZ07A8qR8Wrz0QCXBhWdIAbHXaC2vJdu9CB/f2unVokLP/AZE4DMaIEUlOoNrlv3z2OG4TU12LgV++9lusvlsIOX6O/3JXLdQVx9hbx/HnQbvUICwlyvTtCHz1h//y/HbASSMEDyxq/AVqgqrB30tuDTypjWA0tdE/PCbXpRNcB6DEmQO1YSWqaxV+3ghkLfsIW5zjdft2cm0Bpp4LvPbfgDXIOTdBzrjKcs1ElqVkBO4TLGdi4D6tTNME5x8sOP9ge+NEBHL9fHgA9P/sV1tj05MaXwPVogU4vSzVVjAaoP/aGjqRuCgl/OsQCSYUzk64G+DUpKGv1qIwOrP1SuPXvwJa2gQkeaoxtHop2nn2er/Z9h0haf4JVuJwQA0bD/z0mV+bmn8TZNZ1If+5l1UobCoFeuYByQnm53vl1dbn7dephYW1gNq5Feov+1sfcMpfoV1wh99io3CzCi3NcCpNeQA4kGPcBSXlvo/dHv1+jpKNUDfcDdz9DmTkoQCALtmCYYXATxv9+588QlolYNA4GC2ydRARERERERERERERRSez37PxWhwiW5TBL9aIiIgoSjFsiSjmRTA0jflsNvEHRnGKwWhERERERETkZRSq5PEAe/RDIySzfRgLIiJbxCDc0Ir99MNeqI1qEkCW5yrR7bLDkef9wuHAvQv9Ly76JXkQns88GWeUPYuViUW2SyiuXuW9zO+oMyGTpkOGjbM9B4XOpYcJ/vme/y9JJg/mxZimBh6gG4yG7xdBuVwQZ7OP5xctCDilXPc41G/fA3t2QcYdC4yfGqJiw+/4/QRf/eH/PLp7muCUkYIxPYG3PliLdks/wvSyZzG6cnHgSUs2QykVMDhRVVcCbzzmtzzXbRCM5sjBE78X4qK/euoCPCYaXnvcec7lkCljgcEHQd16FuAySfxITjGtkyhY4nSG73Ihp0G6TRyRax/DsKIHgYXWx6QlNXnwy9coTuga8rrIe42GSwGusF7LHukQuYlA14kAAKeqxcW7HsAd268z/3wl1zhRTP2xDNJrYEiq9HgU7vhA4e+vK3gU0CkT+M/JgmkjjN9r7iw3bPIxuEsrB6Od0MtWf71QNACm4WaGc339NjDxWKQkCtKSgH06YXJ+wWgGT0uHcgMA1PxbGoLRAOCsgwQXPe8/6KyDWud83SgYrZLBaERERERERERE1FbxpkRqDXzeRS8GORGFEI91UY+vR0REbZDJsZ+vC0SxwWxfDeF+bLqakK2FiGJdC+6YJSIiIiIiorjiMApGcwO7tuu3ZeaGrx4issdoHw4kMRly5jWhrYVim9b4kaFRaNBuR5b3C4cTH6/Qn+asgnk4rsvLuD33StslDKxeDjnrBmjXPMpQtChw2aGCkd19l911kqCwPYPRzMiBR+s3VFUA29b7LVafv24+4WmXQyZNh3bpPdBufBpyyAkQLXY+4j97rGBCX99lV07yhqKJCE4ZpeF/B/2MB7deYi0UDQBqqoG9uwP3e+Uh3cXtDY5xFVoazsFVdaFo5grG7A8RgRw6Ddon5ZBPK4CUdP3OwxhESmHUpbdxW5+hwAGTgPRM+/O2zw++phghmgbHtIswP+Nhy2PS64LRVF0YYtfajWjnLgtHeRTHXJKAu3MuxZOZZwDJJolbnY1DvdTTt4esnreWAte95g1FA4AtZcApjyqsLTG+xGjhb4EvP8pNB+45WQsYZBpqylULtfAleGaNBNwua4Oy8iDzdIJt6+Rl2P8etGdua/jaKFitpNz35+g2uB/KAW8wGpZ9A7VrW8Pyc8cJjhjg23fOwYLD+kdXMJqVcysiIiIiIiIiIqLY1UZu1+RN7FGE2yJ2cdsRhQxfl+IYty0RERFRW8czQiICAGdrF0BERERERERRQjMIVaquBPbt0W/L7RS+eojIHgkuHEfe2QJJTg1xMRTTmgQWZLn1A4d2O7IBAEsq8lFtkjHwdoZBMFQA08ueBVKODWoshV5uhuDTKzQsWgGsLVE4uFgwsDND0QIqGmbctmGVT8iJqq4CPjMJRjv0ZGhzbjNujwEZyYL3Ltaw8Ddg9XaFA3sL9usK35CUhET7E6/7DRh8oGkX9cI9usuNwh+tcigXOrT3rVkcDqjDTwHeeMy3c7dioPfgFq2PyNT4qcCz//JfnpIOefgzSFIylNsNrP0VWPIl1NKvgCVfATu3mE4rY6eEqeDoc+bEdrjklT3Y62gXsG9aXTAatm0AAGhQGF/xBd7KmBzGCilevZExBbNSNhi2y4QToZ68Vb9x0QKofiMhp/y1xXU8841+Glevaz1w/9c/2MzjUXh7qf6lR8cOAY4ZKkh0AhP7CjpmRjgUrbQE6oJDvOdcFsnFdwGHngzJ7mDYpyCIfEntj6UNX+emAxt2+fcpKfd9bBiMppo0fPUOMOUsAIDTIXj3Yg0fLgc27lIYUCAY3av1zteTDa5CYTAaERERERERERFRrOBtp0ThxX2MKHS4PxEREUUd0+BSvnYTxQaTfZXhxFGM24biE4PRiIiIiIiIyMsoGM0oFA0AcjuHpxYiss9oHzYz5SyGopG/JiF7WZ4y3S6lmjcR4JSlh4V89R1c23BQ5TdA8mkhn5uCl5IoOHowADAQzSpJSYPqUAhs3+jfuHE11AGTgPeegXr/f8BPn5nPNfW8MFUZWQlOwZGDgCONnkcJSfrLTaiv34WYBKOpr98Fdm/XbWtpMFrHdDc0zf97kTm3Q23fBHzznndBYR/I7a/4BcoQhZL85QaozWuAT17xXX7Xm5CkZO/XDoc3oK/3YMgJ50MpBWxZCyz5CmrJV8DSL4GNq70Dk1Igs66H7H9EpL+V1jP6SJz7+GO4K+eygF3T6w9X5Y3vl5/efBayi/WPN4W1G7ExoTAUVVIc2pTQGUhJM2yXHv2h+gwFVv+s264evAoYPQnSra/P8l37FO76UOHJrxS27gFGdQd65Aqm7ucNqHpnKVBS7r0QprC94NWfjGt0nOvBzDGCg4uBGQcIRAQ/bAC26L9dwOkHaDhxeOu87qmaaqgp9j6vkv+8BxkxIWC/ztn269HggVIKIoLcdP0+VoPRNDQ2qK/ehtQFowHesNkjBgDRcL6enKC/nMFoRERERERERERERBRfgrzhmDeRE4UQ9yciIiIionjFt89EBDAYjYiIiIiIiOppWuA+zeV2Cn0dRBQcu/twSjrkzGvCUwvFtibPpWz3bt0uZY5MVEgK1lZkhHTVyZ5K/LJmuPeB0+BueqJY0rWPbjCa2rAKuPcy4JWHAs/RZwgwaHQYiotCifaD0bDs/wyb1IfPQ90807A9270bIsH/0rSgvX4oqaS1g9z5OtTOrUB5KdC1mKFoFHaSkAi56TmoHZuATWuA9vlAx24Qk/1KRICCnkBBT8iRMwAAavd2oLQEyOkIadc+UuVHBcnOwzEd1uMud+C+afU/1urKhmUZnnI89+cMnNblGZ++Q6qWYvHaMdju7IDVCb3gnjQDnkkz4fYALo83AMnlBtxKNfm67v8mfXz6e0zamo33+MyldPuGar0ugzAnMlcpyUCycTAaAMg/noY6fbBhu5o+BPi8quH1pqxCYchcDzaVNvZZvA5YvE7hxe91ZwhY55NfKzz5NfB/a4EHTxO8uUR/TKITdQFdkaeUgrrEXqCjPPI5ZMD+lvpmpwJJTqDaZXFu5fHGlFXsBdLaITddoPez3mk5GK3JAeq7j6Eq90FMQvVai2EwmsWfGxERERERERERUfzhXZzUGvi8i17cNkQhw6SEGBDsNuK2JSKKXWbHcB7fiWKC6Xk292MiiiwGoxEREREREZGX3VCl5FQgPTM8tRCRfZp+OIuuIWMhs+dC8ruGrx6KXU3Ce7LcZbpddjuy8WnqONQqG887E8meSuxfuRj3brscOe5dIZmTKCoU9gG+X+S//I15lqeQe95vO6Faicn2x2xcpbtYuVxQD5kHgDrGTEJxErBiq/3VAkDH9ua/YpGcjkBOx+AmJwqS5HUG8joHPz67A5DdIYQVxZbRE/qi8N2N2JhQaNovLbHui5pKn+Un7X0FlZtTcEfOFdjhzMXh5Qvx721XwQEPOrm2opNrK/DaV8Br5wUXTh4DPBC44YBbHHDB2ex/73I3HHCJs/F/0fz6NvbRGvq6G/5vnKthXH0bHHCJ/vr15vJfh3+9vnM31uvxq1fne4OjoX+1JKFG8w8rrJQUICXd/AdbWAT06A+sXW7c57l/A6dfAQC47T3lE4oWSo9+rnDlEQpv/qx/gdOEYiAjOfTnLqpyH9Tjc4HPXgcAyNEzgTOuhjTZl9T8m4Fl31ibsLAP5MI7LYeiAd5AyYIsYG2Jtf6O+iCzsp1AWjvkGGzmneW+P0u3wbVjDtUkGK2mCvhuITDuWGvFRJBhMFptZOsgIiIiIiIiIiKKKAazUKTxORfDeIM5UehwnyEiIiIiilf86IOIAAajERERERERUT07oUoA0D6/7YR0EMUCi8EK8pcbITOvDXMxFNOk8bmU6dEPRivVMvFz8pCgV3Hv1stwwe5HgInTgI9fCnoeomgnXYtadPmd3PIipF37kNUT9RL8w2IC2rUNau9uSEa27/JfvgZ2bjEdKmdcgyOXC1ZsDW4rFWTxXJgo3mjHnI07n5iFU7v8z7RfWv3hqto3GE0AnFn2P5xZZj4eAODxBFdklNMAaHDDIBepTXuh3UmY3vkpv+WVWjKQkmo6VkSAObdBXXmcYR/1yHXA5Fn4qbQ9/vVB+K4IcnuAhz5V+GWTfvuUIeF5fVQ3zwS+eLPx8eNzgdpqyDlzoTweYPli4MlbLc0lf38ScvipQdXR2U4wmmoSjFbQA7kGwWgl5b6P3QaHh4agtTrqq3cgURmMJtC7CYXBaERERERERERERERE4J3dRCHF/YmIiCj6mLw+81yYKDaY7avcj6MYtw3Fp/j8U+RERERERERkn8NmMFpau/DUQUTBsRpuOGxceOug2NckZC/LXarbpUpLwdLkQUFNP7zyR5y3+1HIDU9BZt8U1BxEMaOwqGXjRx4amjpiRTDBaACwYZXfIvXlW+ZjDjkBMmAURnUPbpUAUJAZ/Fgiik6SlIxp18/AR+snmfZzOuqCn6qrIlAVxYsUj/7zpVJSgOS0gONl9JGQm543bHdDwxV3r8KIW8MfumcWvBbqYDTl8cBz/Sk+oWgN3nwc6o9lUEflQ80Zb2k+ufiuoEPRAKB3B+vfn4a6bbF1AwC0PBhN+Qaj4et3odxu/c6tKNngz/MxGI2IiIiIiIiIiIgokngzbPgF+zsRbhuikGEoQwzgNiIiIiKi4PBMkogABqMRERERERFRPYfBXYtGklLDUwcRBUez+DFPt77hrYPiQONFe1meMsNei1NG6i4/abjxRX89a9bgxU2nwfnMj5DDTgHyOgPJBq8nbS0QiuJTt+Lgx445CpJqkJ4RrxITgxu3fiUAQLlqoT55BeqjF4CX7jPuX7wf5NJ7AQCds4IPb+mVF/RQIopiMuYoHFLxOYZX/qjb3tuxrfFBdWWEqqJ4kKz0ny+VWgokxdprvhxyPHCAf3DfT0lDcHC3j/CfLaNaVGNL7dcV6JIdumA05XJBXX8y8Nlr+h1Kd0DNHA7s22NtwlnXQ066qEU1FeVb71sfZKZu+wsAIDdd/2fTNBjN4zG+nMuBZiFopTuAX7+1XlCEJCfoL692AYo3pxARERERERERUdwy++wrnj4Xi6fvhaiVmH5WHto/QEMU91T4/2gUtRL+XpGIKHaZHsN5fCeKCWb7cQjP00yPFjxcEFEdm3e9ExERERERUdxy2gyiSE4JTx1EFBwrwWiZOZCs3PDXQrGtyXMp211q2G1DQlfd5UcMAJ6YqWH+g5/hpR8F3WvWo3vtegys/hWH7luE7AU/QfI6AwAkIRFqzFHAogW+kxTvB8kvbPn3QtTa8rsCHbsBW9fbHirTLg5DQVEuISmoYWrDKmDXNqg544HNa807jz0GcsNTkLpQxoKsoFYJAJg8mBckE8UrefNPnDDrbvyQsp9f27G7F0DVngdJSGQwGtmS4tF/vrgkAS5oMMiS8iO3vQw1IaPh8c2512Bu3t9DUGHLTRkSwlC0sp1QF04E1v0Wkvnk/oWQoWNbPE/fjgKrF2lqqLsRo6oCyuMxDEYrqwSqahWSEwTvLTOerz5ozcdPnwODD7RUT6QYBaMB3nA0s3YiIiIiIiIiIiIisop3CMcuBjkRhQ6PhURERLGFr91EscEsGC2CVfCQYQ9/YBSnLNwxS0RERERERG1Cgt1gtNTw1EFEwRELH/P0GBD+Oij2NXku5bh32h7et5MgNUlwwSVj8emwBXhy62z8o+QWnIhPkX33iw2haA2ru+JBYEiTgILu/SC3vBB0+UTRRESAMUfaH3j4aZDhh4S+oGiXmBzcuPUroO67InAoGgC57L6GUDQA6JQZ3CpHZWxFuxQGoxHFK8nOw2WHuDGz9Gmf5SfseRU3bb4O+Okz7wKjYLRegyAvrQQGjg5zpRRLklW1YVvF9hLL80hCIuS2lwEA92ZfEJJQtDcv1DBpACAtfGk7dmjjBKqmGmrBA/DceDo8j82F2rbBu7y0BJ4HroRnbJL33yPXQa1eAs9D18Bz4+lQrz8K5aqFmndD6ELRHvk8JKFoADBMPx9alwNNgsz27DI97/hjB1BRrXDWU8Y3Q/nMV0e9/ID1giIkxeQjxqrayNVBREREREREREREQeJNlEThxX2MKIS4PxEREUUfvj4TERFR6DhbuwAiIiIiIiKKEk6bwWhJDEYjiioOR8Ausv/hESiEYl6TNIQUVYX2rp3Y5cyxPLw4v24ahwNy+f1Qs28CtqwHeg6EOP0/jpSMLMgDC71BCdVVQGEfb5gUUZyQMUdDvfqIvTGX/DtM1US5xKTgxn3zLuD2Dwrx43AA7fN9FqUkCtqnKuyqsHfcmV28AUDngP2IKHYlnH8LHnszF3dsvxa/JA1Av+qVyHdv9zb+vhQYdRhQYxB0lZQC6dQdeOgTYOMqb7/qKqCyPGL1U/RJLUkGXtVvq+4xxNZcMvYY3Ft0Ky53XGqp/5drx+PB9nPwfOYpfm3pUomjB6Vh8mAHdu1TWPqn95z+ucUKf1tg/ULFIwcCQwu9r6fK5YK6+njgu4UN7eq9p4HbXoa6ciqwa2vjwGfvgnr2rsZ+ixYA37wH/Pip5XUbSk6FvLcd4kxo+Vx1uuUIJvYFPl4RuK+mmoSc7dyKnt1y4NAAt0722YotwOptwI69xvM5lM7AshKoNx+HHPOXwAVFSPcc4IXZgmSnIDkBPv/SgzzdIyIiIiIiIiIiimkMQaLWwOddBAT7M+a2IQoZHuuiH7cRERE1xdcFothgtq9GcD/mEYOIAAajERERERERUb0Em8FoyQxGI4oqogXuM2h0+Oug2Kf5Ppc6uzZbDkbLTQdy0n3DhSQjG8jIDjhW8rtar5Eolgwbb69/936W9pm4lGCelCF/uRHq8bn+DVZC0QCgXQ5E83+93K+bYOFv1qaoN64PAxyJ4p0kJEL1G4mcJV/i4IovfNrUw9cCo4+Eqq7UH5yU4p1DBOhaHO5SKUakblfAqzrBVgAqB4yzNdeeSoUbEi8ALLwEVv7WDglwAbugG4x2aNmHwG+FQP+RaJ8mOLjuKXvJRO//VsLRpo0Q/Hd6k9fGJV/4hKIBALb/CXX+IUBNVeCiv343cB8L5Ky/hzQUrd6dJ2oYfov+tmzK0XQD7dyChNxO6KlVY7Un36/vSf+1OV8T6tEbgMmzdM9zWkNWqmDaCJ4rERERERGML+8QAAAgAElEQVQRERFRW8NbNSnS+JyLXdx2RJYFDF3g/hS/uG2JiGIXj+FEFBrMUiQiAIiOK2OJiIiIiIio9dm9UbTuRm8iihIOR+A+aZnhr4NiX7OQvQLXFstD+3YMdTFEsU8Sk4AZV1nvf+a13iCdtsjsfDQ9Czjlry07B83UD3n8+2R7vyqZWfo0evVqH3wdRBQ7HMZ/Y0qdfwjw5+/6jUnJYSqIYlmKyctcVWaBrbneW6ZQ7g4ccP/axpO8oWgADqj6DjNK/+fTnurZhyt3/htY/JHfWKdDcPnhGn643vx1cs7Bghdma8hMbTx/US/co9/ZSihaqHTuCRx/flimHtZV0MnC22ut6YWeO7dC3TwTRbt/CHq9DmWQhFdWAmxeE/S8REREREREREREREQUQaZ3dvOubyJfDEYjIiKKL3ztJooJfN8ao7htKD4xGI2IiIiIiIi8EgLfUOsjOTU8dRBRcMTCxzxpGeGvg2Kf5vtc6uzabHloUcc2GuZEFIA2+yZL/eQ/70IOnRbmaqKXiAAHTNJve20tJDkV6D8q+BVk5uouHttHMC5huW7bmIqvMXf7XBxW/hGm7H0bD2y5BI9umQPk2guwIaIYZRY+XF4KfPySfhuDxElHisnHLpW11udxexROnRf4Apb+1csxpfwdn2WPbjkf8zafh+P2vIGzd8/H92tHY1TV91CPzzWcZ1hXwfHDjNfz4Gk670W/fT9gfWF10kWQx76FhDGksF+nwH2aBpmpRQuA//sQ3Wo3BL1OBwyC0QBgb2nQ8xIRERERERERERFRPOLNsK2KN5EThYbpvmShnYiIiCKPr89EFCI8nBARABj/mXMiIiIiIiJqW2wGowmD0Yiii2YS2lAvlcFoZIVvuFlBrfVgtL4dQ10LUfyQx76BOnu0cftdb0FGTIxgRdFJLroTatXPwK6t3gUJiZBrH2889+zaB/jps+Amz8oxbHp5wNuY+K0Hy5IHNizr6NqKh7ZejIHVy4GdTTqntYOkpgdXAxHFFivn2HoSGYxG/lISjNsqa6zN8eN6hTPmeyz1fX/DFL9lCXBhVtnTmFX2tF+b2rgaUthHd675MzWs3+XBD+sbl+WmA+9cHF1/h03+/iTk8FMjsq6ifMGiFeZXXvkEmdWFxXVybQl6nU2D1vzsKwt6XiIiIiIiIiIiIgoBhiARtUFmf0BSmbTzmEBkXaD9hftT9AtyGzEFg4gohpkcw3l8J4oNZvtqCPfjCK2GiGIcg9GIiIiIiIjIy2kvGA1JvNGbKKpoFm5IZzAaWdHsuZTnLrE8tDjf7II/orZNivczv8wrtyBSpUQ16VoMPPWDNzykYi8w/BBIt76N7YVFwV/SmGkcjJbbsxDfvDAOb2RMwfKkfuhesx5Tyt/RPwbmdgq2AiKKNY4gf5XK98ukI9ksGK028PirX/XgzvetvQo+vnk2CmwGcKnTBgKfV0HE/5y+XYrgq6s0vP6zwrJNQGF7YMpgQcfMKDv/H3tMxFZVlB+4j6b8Q+w6u6wHTzfnE7TWXPmeoOclIiIiIiIiIiIiso53pUYN3iEc3ZQyyUXjtiOyLsD+ovP7OCIiIiIiig9890xEAIPRiIiIiIiIqF6CzWC05NTw1EFEwZEAwWiJSRC7+zm1Tc2C0XJtBKMNYK4TkbnMHKBsp34bj9ENJCsXmDRdv7HngODn7dHfuLHHAKSoKpyy5+XAE/UIvgYiijFBB6Mlh7YOigsiguQEoEonBK2yxnzsN38oy6Foojw4bN/HQVQIqHHJUBOnQfYbDxw9C+JwNLQlOgXTRgimjQhq6rCT82+HpKRFbH3eUGjzbaIXZNbJZmBdU8rwDioA+8p8+5Zshnr4OuDD57wLppwFmTQdMvjA4Nf/0+dQn74CeDyQg4+HDD8k6LmIiIiIiIiIiIhiidqyDvjqHaC2Ghh9JKR7v1auKNx42ylRy5ntR2ZtUfZHaYhaW8DgM75mERERRZ9gz4WJKHqY7KsM+45i3DYUnxiMRkRERERERF5Om2EcSQxGI4oqTW5Y15WSEZk6KA74XmCX67IWjFaUD/TIDUc9RHFEMzlWMxjNmkFjgKQUoLrS/tiDjzdu6z0YyMoDSncEnEamnGV/3UQUm8yO22YSGYxG+lKMgtF0ljX11DfWL1iZXP4uCloQvoWPX4L6+CVg8ULILS8EP0+kTZoR0dUV5Qfuo+ncqNG5dnPQ60xQJk+U8sZgNLV5LdTJfX3b35oP9c6TwI3PQCacaHvd6qMXoG6ZBXi835N6Yx5w1X8hR59pey4iIiIiIiIiIqJYopZ9C3X5ZKBir3fBozcAt7wAOXBy6xZGFBBvhm1dZjeRBwp6IqJGgY5lPNZFPQZnxL23lii8uUQhMwU4dZRgeDeGfBKRGb4uEMUEs3O4CJ7f8VSSiABAa+0CiIiIiIiIKEo4E+z1T2YwGlFUkQAf86SmR6YOin2a73Mp173T0rDDBwhEeEEDkSkGo7WYJKcCY46yP+6fr0JyC4zbHQ5g/HGBJ+rQBTLqMNvrJ6IY5Qjyb0wxGI0MpBq83O+rNr6Cx+NRePTzwFf4tEsGZvZYh//JLcad0rMgT3wfcC4AwGevwTM2CeqJW6BcroDd1U+fwXPhofCc2t/a/KHkTAAycyK6yu653p+5GQfcfst61q5Foqfa9vo6uLahR+06w3ZV2hhorR6+Vr+TxwN14+lQNfbWr5SCmndjQyha3UKox/4BxavPiIiIiIiIiIgozqn7rmgMRQMAVy3UXRfpfDZm9lkZP0ejcODzqvUFe6M4tx2RZYF+F8XfVcUxbttYcMf7Hhz7oAePf6lw90cKB93hwcLl3HZEbR5fn4mIiCiEGIxGREREREREAOrCIBwmYR3NJfFGb6KoEmj/Tc2ITB0U+yS4YLSBxnlDRFTPLGDHyWA0q2TW3+0PGn1k4HnPuBpIzzLukJUHmb/Y/rqJKHbZeY/chDDskgykJ+kv31djPGbKAx7jRgBODfjoUg277tEw/5peyHjuO8iivZDzb/frK7NvgvQeBIw81HLNav7NUI8YBG3V91nzK9SlRwFLvgD+/MPy3LbkdTZuy+kE0SJ76YNDExweIAMuWfkHkCWrakys+MR0XP9O/suuK7kDmtnF//+7EwCgKvYCX7xpOr86qQ9UVYVpHx8bVwNb1vkvL9kMrPrJ+jxEREREREREREQxRu3ZBfz2nX9DyWbg1/+LfEFEFEMYjEYUGoH2F+5PRK2lskZh7lu++2C1C5j7lvk1DkTUxjE0jSg2REnYN48YNvEYS3GKwWhERERERETUyE4gR1JK+OogIvskwMc8ae0iUwfFPhGfh7nuEkvD+nWSwJ2I2jqHybE60SAphfxIj36Qp360PuCwUyyFpUiHLpAnFgPHzQYGjgZGHQb0HgyMPQY44XzIE99BMnNaUDkRxRyzQEszzoTQ1kFxI83g5b68Sn95rUvhs1XG8x03FPj8Sg0T+wk0rfF8XBISgVMuhdz5OjD+OGD8VMhdb0Kmnuttv+ste4W/8pD3BkADat6NgNtlb047UjOAdu2N23N1ksQi4MQR5u+BBlYt011+zN63Tcd9fLmGV+ZoOEX7BFP3vI6X/zwVF+x+JGA9qmQz8M37gbfFrm1Qh2XD8+DVUB4LF6WbbHvs3h54PBERERERERERUazau9u47c/fG7/2uICa0vDXQ2QHb4ZtZSY/f24bIhsYjEYUrV77SaGq1n/5V38ALjf3TaK2jccAIiIiCp0gr+YnIiIiIiKiuJSQCFRXWuubmBzeWojInkChDanpkamDYl+z8KAkVYP2rp3Y5TQPA+rfOlkERLFFcxi32QmoJUjPAcA5N0HNu8G8Y8dukJnXWZ+3YzfI5fe3sDoiihvBBqMl8JhO+tINgtH21egv37gbqDBo278H8Or5xucWIgKMPhIy+kj/Nk0D7v0A6poTgYq9gcoGXLVQ/7rAG7LWfySkoGdDk9pbCnxpM2itqeGHAD98Yt4nt5N5iGz7/ODX3wLHDxMM7qKw9E/99snl7xoun2Mw57QRgvx2gqnDgGO1W4FNX1sv6JdvoD5/w3r/F/4DVbkXGDoeKOgB6T9Sv5/ZDVrCgGwiIiIiIiIiImqrxPvZ2ZLrgNUPAbVlxl0ZgkTU9pju98G2EbVBgV5DW/s1tnYvsOVDYN86IH8C0H5Y69YTlYLdRjweRru1Jn9z2cPNR0SGeIAgiglm59kRPAdv7dN9IooOWuAuRERERERE1GbYCeRgMBpRdHEGCkbLiEwdFPt0bmwfU/mt6ZCBBUBOOm+IJwrINBgtIXJ1xIsZVwKde/ovb98Rct6tkOsehzz2DaRrUeRrI6L4oAX5q9QEkwAnatPSjILRqvWXbzG5j+78g1t2/i37HQx56gfIJXcDGdmBB3z6KtTcM6BOHwz16sMAALV7O9RRLQslk3HHAh26mHfKLTDfr9IyW1RDsJwOwYOnadB0NkWXjFpMnjFWd1wn11acXPaS33KBB//7S5PJ3C5b9agbTgM+fcXWGLzxGNTcGVDnHgTP9adAeTz2xhMREREREREREbVlK+8Blt9uHooWb3hHahThtohuJp+3cz8isiHQ/tKK+1PVduDD0cCXJwI/XQG8vx+w4j+tVw9RFOFLHVFbx4MAEVnD2HAisoLBaERERERERNQogcFoRDEr0P6b2i4ydVDs0wlGm7r3DdMhxw1jKBqRJSbBaBJs+E4bJiKQe94H+o9qXNhvBOShRZDTr4BMmg7JzGm9Aoko9jkChA8bsfPemtqUNIOnRnkQwWjTD2j5Obh07AY58QLIfR9ZH+SqhfrPX+EZmwR1TGGLa0BeZ8g/XzXv02sgkGgSjJaa3vI6gnRgb8Fz5wiSm2TcdsoEnp+ThNRTL4C8+ScwbLzfuH9vuwrj9n3e8HhA1a/4IelCOB3BB6MBAFoSbPbZa8Db8/2Xm9bB94JERERERERERNSGrff/Awjxgbeexgdux/Az+YzcNBGG24bIugD7S2umLy27FSj71XfZj5cBFZtbpx6iKOLhSx0RGeIBgigmmJ1nR/AcnGGrdvEHRvEpyKv5iYiIiIiIKC45EwL3qWd2QyoRRZ4jwP7bijeKU4wR/3CmyeXvwqFccIv+x4lTGYxGZE2wATtkSDp2Ax75HPhjGZCYCBT0hNg5pyUiMmMSaGnKyWA00peeLNC7+KTCMBhN/0KVXnnegNBQkd6DoIaMBZZ8EbI5LcstgPQZAiwsg7r4MGD5Yt92hxMyaQbUY/8wniM1I6wlBjJthIYpgxW+WwckOoGhhUBygnf7SHYecM/7wJ+rgS3rgR79gU9eQccHrsTHGyZheWI/1EoCBlb/CmfXXr4TGwWSaVrLAtBMqJfuhxxztu/CWoMnKBBceBsREREREREREVFcUMDOb1u7CCKKWsEGo/EaLCIfAZMQwvM7M0tW3ae//I/HgEE3RLYWoijjbsVdk4iiAJOMiIiIKIT873IkIiIiIiKitivBxs3bicnhq4OI7AsUAtPKN4pTDNH8PzLMce/CxH2f6Hbv3cF74z8RWeAIMmCHTIkIpPcgSNdihqIRUWgFG2hp5701tSmpBk+NfTX6FwRuLdPv3ykzRAU1Ibe9BBx6MpCZG/rJzeQVeNeflAy59wNg6rlAehYgAvQZArnzdUjRUNOAfomC97spiYJxRYIDekpDKFo90TTvecr+h0M6dAHyOnuXAxhQ8xuGVi+FE25gwyrfSY1Cx4ZPCMN3UGf9Cqgt63yX1VQZ968xCU0jIiIiIiIiIiKKdSH7AxW8KZzCgGEDUSDI8DNuOyIbAuwv0bg/bX6vtSuIMkFuo2jctmSZh5uPiIzw+E4UI6LjPS2PGEQEMBiNiIiIiIiImnIyGI0oZgUIX5DU9AgVQjHP4MLem3bMRaKn2q/rHSdokJBdDEwU5zQGoxERxRQGo1GIpRt8lFJukDu1xSAYrWO70NTTlLRrD+3Gp6G9vQny4orQr0CPwwlk5zfWkJwK7bL7IO9sgXxUCm3+Ysiow7yNiSnG88Ta+93cToZN6qfPGx8YBKPJQZN1A61DZuVPvo/Nws9q9duU2w21ezvUvj0hLIyIiIiIiIiIiIiIKEaY3ijOW7uJrAu0v0Tj/hSNNRFFFoPRiNo6ngsTxTyGGEanQNuF243iFIPRiIiIiIiIqJGdm7eTGIxGFFWcCebtaWG4c57ik+h/ZDii6kd8vW48ppc+ixFVP+Kk4YIP/6ph6jCGohFZxmA0IqLY4gjyuB3o3JzarDSDj1321egv31qmf6FKx6zwnoNLQQ+gQ2FoJus9GBiwv37b/odDdPYz0TRI88+dsvOM1xFr73dzCwyb1MPXND4wCEZDQhLkuWUhLqqJ9c2C8aoNkvsAoMa/Tf32PdRf9oc6phBqcgE8D1wJ5XaHuEgiIiIiIiIiIqII4M2EFNP4/G1dJj9/5YlcGUSxLuBrMY91RNGIwWhERETxLHIv9PxojogABqMRERERERFRUwlJ1vsmMhiNKKo4AoQvpGZEpg6KfZrxR4ZDq5fiyS3n4Ntdx+LFczVM7MdQNCI75KQL9RsK+0S2ECIissbhDG6cndBxalPSDT52Ka/WX76lTH95p8zQ1GNGbnyq5ZOkZ0Iu+Cfk9leAbsW+be3zIefcZL2ePOMwsZh7v5tbACQaPBnW/ApVVeH92ihMzOEEOnYPPrwxALV+pe8CnfCzxrZqqL2lUIsWQH37PtTe3VCzDwT++MXb7qoFXrwX6vSBUAseCEu9REREREREREREYeNheBERBcvs7m3e2U1kXYD9JSqTEnhNpY+o3EYUCmZb1s3TaKI2jufCRDHP7ByO53dEFGFBXs1PREREREREccnqzduaFvwN4kQUHs4AwWgp6ZGpg2KfWPhbCslp4a+DKB4deDSQlAJUV/oslsNObaWCiIjIlBZk6JCd0HFqU9KMgtF0cqdcboUlf+r3j0gw2uADoSZOAz5+yd6455YBX70DJCUDY46C5Hf1Nsz7Bli0AGrdb5DCPt623E7WJ84x6ZsaW+93JTEJqmsx8PtS/8bqSuC374Fh4wC3S38ChxPicEDldAK2GzxJWmLjKt/HJsFo6os3gUdvAMpLzefctAbq3sshJxoEBRMREREREREREUUjFapEh3i6YTSevpdYx20R1UxvFOe2I7IsYOgC96f4xW0byzzcfERERBQCPKUgIoDBaERERERERNRUoGCleonJEOFftCKKJuJwmH/om5oRqVIo1lk5vqcwGI3o/9m78zhZ9oK++99fbb3NPnPOnDnn7vdyd9Z4lYsQhAsRCUFF8EV4IAoxL01iXPCRPElMhMgrbnGL0fgQn4fogxrQKK5IAsqDyEXhEZDlwt3XM2ebfaanl6r6PX9Uz9Jzuqt7eqaX6f68X68+3V31q6rfdFX9qqpP/b7dCZMfl37y92T/9Ruk4kYy8GXfJr35h/tbMQBAQ8b1Oruxot3QcYycyVzj4SvFq4f93mebz+fMRG++kzHv+C+y25vSJ/+kvQm+9pVJ6Nkbf+DqeeUK0t//js5/H30sJQ2unXDnAWN++g9kv/WGxiOXFpPnlGA0SdJNd3UnGG3tSt1b+5d/1Lzspz9y/MsHAAAAAAAABkV8XMFoJ0zLEBqcCKzHPkv5/AlNAw6BYDRgUKX93/+onkYDqEk73+U6BTgZerQf01wcFtdHGE0EowEAAAAA9rTbeTvIdrceAI4fwWhol9NGqADBaEDHzN95mfSHz0hf/Rvp9DUy89f2u0oAgGbcDv8r1SMYDY3NjRk1uvlkpSiFkZXn7t06/P5PN79TeCElI+w4mfyYzE/+nuxjD0ilrSSIa21J+uzHZd/91gOFjcxbf6R7lZk723xcYaJ7y+0SM7cge80t0tMPXz1ybSl5bhGMZl7zNtlPfTh9Qf/w7dJv/ezhKrextvvSvvfd0mf+7HDTN9POtSYAAAAAAAAwSOiBCSBVSiSMTUuEoW0B2tdif+FYDQykmF0TAAAcg1an+9ZaGdObH5kF0D/ceQoAAAAA2EMwGjC8cvl+1wAnhWknGG2s+/UAhpgJMjLPvpdQNAAYdJ2G+LR7bY2RM5dyGr28Vf/+dz/bvOztZ46nPu0yN94hc8fXyGRyMqevkfnGN8n86v3S3fdKmZy0cIPMO98nc/cLu1eJm+6WZheuHj4+Ld3y3O4tt5smZxsOtpeeTl40DUZzJUnmpd8ive57UhdhpuaSz+4wNlcVf9e9il+Skf2/f+xw0wIAAAAAAADDJE4LNjoEQlvQFWxXgy1t/XQ6DhhBLY+h7DODr9N1xLo9yQhGA0Yd57vAUOvh91x8pQZAIhgNAAAAALCf124wWqa79QBw/DK5ftcAJ0U7v5iSJWgPAACMANfrbDrPP956YGikBaNd2dx7/dknm9/Rc+eClPH7/yuH5rYXyPkvH5PzkVU5H/iqzMtf393lua7Mm//3q4e/6YdkvA731X6bmGk8/Dd/RvbxB6TNtcbj97VN5q3/Nn0ZuTGZN/9we9d5+331bw5XHgAAAAAAABhGNiUYjZ6ZANJCHdLaiE7HASOpRUhp2rEaQFelHbEidk0AANADXEIDo+GE3iEMAAAAAOgKv91gtGx36wHg+AUEo6FNpo3fUsilJDoAAAAMC9ftbLp2r60xcmbbDEb7V7/b/C7h//bW0f3tM/P675Wm52X/7LelakXm5W+QedX/1u9qdW5ytuko+5bnNZ9ufxDc5GzS5lQrjcvmCjKvfKNUmJD9k1+T/t8PdljZI5iZl6ZPS87obrsAAAAAAAA4oWISHXCS0Tu4v9I+/07HASOoZdIB+wwwiGJ2TWDEcb4LnHip5+G9249pMQ7g+ggjimA0AAAAAMAej2A0YGhlCEZDm9rprJ4nGA0AAIwAt8P/SiUYDU1kfaOxjLRZvnrcTjBaJbS6/9HG0ztGuu1M9+p3Epj73iBz3xv6XY3jsbnW2XT7wqyNMbJzC9LiE43L1kKtzYteLfOiV8t+/Pdl/823d7bcTvz9t8r5P36ld8sDAAAAAAAAjlMcNR/XsiMigNHWYSdy2hbgADr+n3yso2FlUsYRjAagKc53ARwjWhRgNPCTvAAAAACAPb7fXjmC0YCTh2A0tMuk3a5QM3Wq+/UAAADot46D0TLHWw8MlbkmGcOXN5LbdP7iIWmj1LjMzaek8Wwb5+s4Ecytz+9sQsetfz93rnnZbL7+faftWofMO365p8sDAAAAAAAAjlUcp4w8TNfLYeqmOUx/ywlHoMBgS1s/9rjaFmAUtNgnaAuHF+v2RCMYDRhxtOHAyZd6Tdu7fZzmBIBEMBoAAAAAYD8vaK+c32Y5AAPDuG7rQoAkmdZfGZqpuR5UBAAAoM8Ohg+1i2tmpJhtEoy2up08/9HfNr+b58M/wH/vD5Vbnt3ZdM6B7WDmdPOyuQMb3B1f014Y9lEt3CDz3k/LHKwrAAAAAAAAcJKkhheljTvp6HU6HFiP/dVpJ3LWG1CnZRIC+wwwiFLzhQGMOI7dwInQo2C01MUccfrhRHA0RlNvfw4YAAAAADDY2u287XE5CQBDq52O61Onul8PAACAfnM7vPZtN3QcI2kq13j4ajF5vv+RxjenfNsLpBvmehBohd554as6m+5gmPXc2eZlc4X6SWfmZb/u70mf+nBny06r1rt+QyoVpWufJd36fJlM9tiXAQAAAAAAAPRUaqIDaQ8A0nQYfkYnZuAAOv4Dgypt74vYNYERRyMA4HjQmgCQJH6eFwAAAACwp91gNNfvbj0AAP1j2ghbmJrrfj0AAAD6zXE7m87jmhnNTTYLRtuWrLV68FLj8a+8k1C0YWP8QObd7z/8hAfCrM3pa5qXDTJXL/ed75Ne/gYp02RjPKzrbpX5nYdkXv56mVf/I5ln30soGgAAAAAAAIaDTQs/o2sm+o1tsP9S/u+m4/aD9QrUa7VPsM8MPMLrRlJqvjCA4Zfa9nNcAE6GkxHoPUBVAdBFHf7MOQAAAABgGBkvaO9rZo/LSQAYWqaN31KYPt39egAAAPRbh9e+xuG3qdDcZN6o0Y1Da0Xpyqa0Wmw83Z0LBKMNI/PSb5F94aukT/3pISY6sC3cfW/zspNXh1qbwoTMu94nW61IH/hPsr/yb1ov86a75fza/ycbVqVKSaqUpdwYAWgAAAAAAAAYbqmJDofoeUkvTWAEddiJPDVQDRhBLY+hHGOHF+t20KXdwRCz+gAAwDFodTnAKQcwGrgrHwAAAACwxw/aK+f63a0HAKB/2gnymLq6cz0AAMDQcTsIRrvnvuOvB4bKVL7x8NWi1YMXm09363x36oP+Mz/+O4ec4MA1211fJy1cf3W5m+6SSbl2M34gvfz1ktf6ez7z2n+cPHu+TH5cZmqOUDQAAAAAAAAMv7SAIsKLMOgI5OuBDsPPUrtus96Aeq2SEPp0PKaNBVIRjAaMuk7PkwEMjI6vadFdBEdjNBGMBgAAAADY00ZHyEOVAwCcQGm/41YzSTAaAAAYAY576EnMP/+pLlQEw2Qq13j42rb04MXGN6ZM5qRT412sFPrKeL7MB5+QbrijvQkOhFkb15X53p+WgszewCAr830/03rZCzfIvO3fpRe69fnSN72lvboBAAAAAAAAwyROC0aLelcPACcQwWjA8RjUjv/sq0AagtEAAMBxaJWlSNYiMBo6+JlzAAAAAMDQ8oP2yhGMBgDDy2nxWwqTczL7O9wDAAAMK/eQwWj33Cdz893dqQuGxlS+8fDVbenBi43H3TovGdNGgDFOLDN7RvrV+2VfdUoKqy0KX33NZv7uN0u/+inp/g8lnTVf+i0y1z6rvWW/5R3Sc14k+6kPSx/+DenyM8mI09fKfNePSvd9O9eAAAAAAAAAGE1xSvhZHB5iRvTSRBfQ+3fApayftHXHegXqDWoSgk0JT8UBna4j2sNBl7aGInYRYMQRBHO2JPEAACAASURBVAyceFy3AhggBKMBAAAAAPZ4bQajuVxOAsDQatDJvs7cQm/qAQAA0G/O4YLRzFv+ZZcqgmEylWs8fLUoPXSx8U1Dt84TijYKTCYn+5Z/Kb333ekFm4RZmxvvlG68s7NlP/fFMs99sfTdP9bR9AAAAAAAAMBQilMSHWxKaNqJR+fX4cC66qvUfYWgCKB9rfYJgtGAQRRzOAPQDNeUAA5hQK8G+qdlGzpynwhGRItejgAAAACAkeK3GYzmEYwGAEPLtAhdOHW2N/UAAADot8OEgl93q/Tcl3SvLhgaU/nG59uXN6S/fKTxNM+a72KFMFDM5GwbhbjNAwAAAAAAAOiJtNCTeJiD0QAcXVrAYFqgEp2YgToD2/GfYDQg7U5jgtGAEUf4GXDype3Hx7iPp8aG05QAqOGOWQAAAADAnraD0fzu1gMA0D9Oi68MZwlGAwAAI6JVMNrkXFLmBd8g83Mfkml1HgVIOjvVeHgYSxfXG4979rkW4cUYHpNzrcvQ1gAAAAAAAAC9EacFo4W9qweAkye1B3dvOpgDw6HFPtGvfcYSkNo+2rVRlHYaDWDUcVwATobBuG5ttSguoYHRcIifOQcAAAAADD2vzWC0Vp3DAfTHjXdKj3356uHnbup9XXBiGWPS/8txbqFXVQEAAOivINN83Ne+Uuan/0CqVmQy2d7VCSfebfOHKx940n23d6cuGECTM63LGILRAAAAAAAAgJ6wacFohwlEoZcmuoHtarClJcJ0GJoGjKRW+0S/gtFIfeo6Ui5OtJjVB4w4GgEAAHB8uGMWAAAAALDH99sr57ZZDkBPmTe/o/Hw73pnT+uBIeA0/9rQjE30sCIAAAB9dN1tzcflCjKOQygaDm0sa3TNdPvl77tdmsiZ7lUIg2VyrnWZlOs1AAAAAAAAAMcoTgk9sWHv6gF0gkCZHkj5/5u0zz91HGFLQJ2WbdkABqMZ/m8XoyFt74s4nAFoiusU4CSwqefhvduPW14NjFyT0uIPHr0PBCOCO2YBAAAAAHu8oM1yBKMBA+ml3yrd84r6Yfe8QnrJa/tTH5xcaTfnZPK9qwcAAEAfmak56ZpbGo+7454e1wbD5PYz7Zd97XO5cX6knDrXurMEnSkAAAAAAACA3kjrTBhHvasHgAHVaUfxwehgDpwMg9rxn9QnIE47VeZwBow4GgEAvUFrA4wGgtEAAAAAAHv8NoPRXK+79QDQEZPJyvz4/5B5129Ib/ohmXe+T+Ynflcmk+t31XDSmJSvDbMEowEAgNFh3vzDjUd83d/rbUUwVG47036w1b03E4I1Ssz0KekF39CiENsEAAAAAAAA0BNRSviZJRAF/Ub338HWYfhZ30KegEHVap/o0/GY84D2ddyu0R4OujhlNyAYDUBTnO8CJ0PavtrD/ZgmA4BEMBoAAAAAYL9Me2E3xvO7XBEAnTKZrMzLXy/nn/4HmfveIBNk+l0lnEQOwWgAAACSpFe9RXr1d+y9dz2Z7/8ZmVue07864cS7/Uz7ZW851b16YDCZH/rF9AJp12sAAAAAAAAAjk9a6EkcHmI+J6wXZ2p9T9jf0ivbF6Snflda+/IAre9BqceI6rgTOesNqNMqgKxfbW5avQbmOAB0V1r4GcFowIjjWAigR2hugNHg9bsCAAAAAIABMjnTXjmC0QBgyJnmozK53lUDAACgz4zryvyr98j+wx+UFh+Xbv87MtOn+10tnHC3nzFqp2PLtdNSPpNybo6hZK59VvrWYQhGAwAAAAAAAHoiTgs9iVJvrcAIefg90l9/9977a18vff1vSg73WI62TsPP6NUN1Gu1TwxgMBowIqK0DGF2EQBNcb6LPrIx9121q+Ow7+NdDMFnBw3o9RHQZbTcAAAAAIA9k7PtlXPd7tYDADC4svl+1wAAAKDnzA13yNz7TYSi4Vi84DrJtNFh7tb57tcFJ5DDbR4AAAAAAABAT6SFnpD2AEnaeLg+FE2Snvod6cFf7k99MEA67EROr2+gXst9ol/7DOcBQJyy+0UczoARRxAwBsz5D0t/eo/0gYL0kZdKK5/vd43QpkG9GgDQW9wxCwAAAADYU5hsr3Olx68ZAsBQCyvNx2UIRgMAAACOYrpg9AOvaJ2M9qz5NtLTMHr45VIAAAAAAACgN9LCz2x0iBnRTXNoPfprjYd/9ee7v2wCtAZb6vohKAJoX4t9ol9tYVp4Kg7odB3RHg66tGA0MoQBAANj6TPSx18rLX9GikrSpY9LH32ZVDzf75oNOAK9AQwO7pgFAAAAAOwyjiONT7cuSDAaAAy3tLsSsgSjAQAAAEf1H1/fOvTs1vkeVAQnTzs/agAAAAAAAADg6NJCTw4VjIah9dWfazx86/GeVqMxOir3V1on8rS0GNYbUK/VPkEwGtAvqcFoHM6AEUegEgbIE/9diiv1wyor0vk/6k99TooB2VdbVWNAqtk7Lf/gUftAMCq4YxYAAAAAUG9ipnUZl2A0ABhZ2Vy/awAAAACceMYYfeNd6WVunW8dnoYRZLjNAwAAAAAAAOiJlB+VszHBaABS/h+n0/CzkevVDbQwqEkIBKQCBKMBAE6Gr/xM4+F//d29rccw4boVQI9xxywAAAAAoN7kbOsyrtf9egAABlMm3+8aAAAAAENhYbJ5hxnHSC+8qYeVwcnhcJsHAAAAAAAA0BNpwUYEoqDv6Ijcf2nroNNxaYFqwChq1db1qy1kX20fx6thFaXsBmnjAIyA1NAkjgvAiTAg+3HLqwGaFGAkcMcsAAAAAKBefrx1Gc/vfj0AAIMpSzAaAAAAcBxunGs+7p4bpJlC8+A0jDDDbR4AAAAAAABAT0Qp4WeHCkYbpl6aw/S3DDl6B/dZyueftm5Yb8ABAxqMlhaeavg/3mNBezjw4pRVFLP+AAAAABwT7pgFAAAAANQLMq3LEIwGAKOLYDQAAADgWNx3R/Ob4r/1+dwwjyboTAEAAAAAAAD0RlroSXyYYLSThiAL4MhSA2E6HQeMoFbhSmnH6m7q13KBARKnnSpzOANGHOe7wIk3IIHeLS8HelONAdLqAxm9TwSjgWA0AAAAAEA9v41gNNfrfj0AAAPJEI4JAAAAHIsX3iidm2o87rXPJfwKTTjc5gEAAAAAAAD0RFragx3mYDQAR0cwGnA8Wu0TfdpnCEYDUsPPCEYDAADtOOrVMTlgwGjgjlkAAAAAQL12gtE8gtEAAAAAAACOwnGMfur1Vwegve3FRrcvEIyGJgy3eQAAAAAAAAA9kRZ6cphAFHppoisGNCwIibT9vtNxwChqtU/0bZ8hGK1tHa8j2sNBlxqMxi4CjDjOd4ETb0CuW2kyAEgSPdkBAAAAAPXaCkbzu18PAAAAAACAIffGe4zygdEvfCRWKZRe9wKjf/EyQtGQwiEYDQAAAAAAAOiJtEQHG/WuHgBOoLTe252OA0bRgIZAHiYgFRhSUcpuEHE4A9AUDQSA4zN6LcqAXh8BXUYwGgAAAACgXhC0LuNyOQkAAAAAAHBUxhh98/Okb36e2++q4KQwBKMBAAAAAAAAPZEWekIwGoBUBKMBx2NAO/6nniOwH2M0xCmbelq+MIARwLEQGAIp+3EP93FaEwCSxB2zAAAAAIB6fqZ1Gc/vfj0AAAAAAAAA1HO4zQMAAAAAAADoibREh7RAFKAXCBsYAKb5qNTQJAKVgLa12if6ts9wHgCk7X5poWkARgFBwAB6g0toYDRwxywAAAAAoJ4ftC7jEowGAAAAAAAA9JzhNg8AAAAAAACgJ1LDi6LDzOjIVRkY9Dg9QVhX3ddp4ANBEUD7Wu0TfdpnCEg9hE7XEe3hoEsLPyMYDQCAEy71+5/eHej5GgqARDAaAAAAAOAgP9O6jOt1vx4AgMFTmOh3DQAAAABgtDnc5gEAAAAAAAD0RJQSfjbMgSj0Om0fnxWaSds2UscNcdsCdGRQg9EOE5AKDKc45ZBFMBow6jo8FwYwODq9pu2xAapKb7T8g0ftA8Go4I5ZAAAAAEAd004wmud3vyIAgMEzMd3vGgAAAADAaDPc5gEAAAAAAAD0RGonUAJR0MLI9c5FvbT13+k4YAS1akv7FSZIiCGgKGX3jNhFAADAMeAKGYBEMBoAAAAA4KAgaF2GYDQAGE33vKLfNQAAAACA0eZwmwcAAAAAAADQE3FKogOBKJAkY5qP6/o20iosiO7D/dVh+BnrDTigVVvap32G84BDoF0bVmmnyjGrHRhtqee0NBDAiZD6YwHHtx8fdTG0KMBo4I5ZAAAAAEA9P9O6jOd1vx4AgP75B29rONi86Yd6XBEAAAAAQJ20jnYAAAAAAAAAjk9a6ImNDjOjI1cFJ5Ct9rsG6KeOe3fTXgB1WqUh9C1MMOUcgf/LOx4ERQ68tPAzgtEAAMBxGNjLAQA9RTAaAAAAAKBeO8FoLsFoADDMzJt/WDp1rn7gt/0zmXM396dCAAAAAICE4TYPAAAAAAAAoCfitGC0lHGAJMVhv2uAvuo0/Ixe3UC9VvtEn/YZzgMAxSlJJGmn0QBGAee7wMnXadg3uoukOIwmerIDAAAAAOoFbQSjeX736wEA6Btz9ibp//wL6aMfkL34lMzzXyq95LX9rhYAAAAAwCEYDQAAAAAAAOgFmxZ6QiAKpPQOp7bbwWh0du2/DgMfUrcb1itQb0A7/nMeAChK2Q1iDmcAmuF8F8AhtGoyaFGA0UAwGgAAAACgnk8wGgBAMqfOSW/8QZl+VwQAAAAAsMsYrtIAAAAAAACAnoiPKRiNjt+jKa72uQJsd13XccBZp+OAEdTyGNqvfSbtHIH9uE7Hnwef46BLCz9LC00DMAI4FgInH/sxgAHCTwkDAAAAAOr5QesyLjnbAAAAAAAAAAAAAAAAAIAhFUdpI3tWjd4jtOlY2LDfNUDXpe0PaW0E+xjQvgENRksNSB3mcwRgT1owWto4AKOOBgI9RLjXidfyamDkVvGAXh8BXUYwGgAAAACgXjvBaJ7f/XoAAAAAAAAAAAAAAAAAANAPcUqwiU0LTQMkxdV+1wDdlhaMlNY7O3U6ApWAei069vcrCYH9GEg9VSYYDRh1NAIYEASWdy71mrZ3+/joBZ8BaIRgNAAAAABAPT/TuoxLMBoAAAAAAAAAAAAAAAAAYEgReoKj6HYH7Ja9g+k93H1pn3E3xgEjaFDbOs4RgNTwM4LRADRFyhF6icDyzvUoGC11MUecHsDw8PpdAQAAAADAgAnaCUbjchIAAAAAAAAAAAAAAAAAMKTi4wo9ad5L05aK0sUnpZXL0ulz0vz1Mq57iHljYNEBewR02FG8Rx3MgeHQYp/oWwhZ2jlC1LtqnAgdtmu0hwMvStkNCEYDRh2NAAZEtwPL0XW0Ju2pxL6WqzNaupTXLbNWGd/0u0rAsaInOwAAAACgXn6idRnP7349AAAAAAAAAAAAAAAAAADoh9SwlaMFsdj7PyT7mz+rX3v8euWiol6z+SfK223pOV8vvfv9MtOnjjR/HI21VltlKfCkwOuwM2m81wHb1sJdjKFj6lBJDe3pxjjgZKqEVhfWpLGsVKpK41lpLFPfJpaqVuXqTrsruU5tXMtwrD7tM6nhZ/0KaxtO1loVK1LW37ddYCCkhZ+lhaYBGHWc76J3SuWq3NiT7xCQdngnI9B7cGrSuTCyurwhXdmUKpEURlIYJ+dTxYpU3rf5bhddPf3k2/VM5Zy+tHWXHtm+SVeqc9qIan2B75e++E7pzrN9+VOAriEYDQAAAABQ77pbpVxB2t5qPN4YfpUSAAAAAAAAAAAA6CNjzI2SnifprKQxSYuSnpD0SWtttZ91AwAAAIZCnJLokBqIkjJZHMv+zPdKf/B/KZKjH7nlvVr0FzQWbej5pc9pZnlF629/UCunjIwx8kwsV1aeiZVxIq1WfW2Fniqxo63IUyUymvCqunlsU+cKZc1kQ02PuZo/ldWZ+YLmZ7MaGws0kXN0ekLK+sMbKBLFVo9clr50XrqyaRXHUmST1RhbqRpJz6xKTy9bXd6U1rYl3036807nJWOSzqYX16Unl5POpzuMkRwjGVk5+1/b8zKyyjolZZ2SYusosq5iOYo+NaVYFYWx0VbFyGrvszeyMkYykhyz93qnlDF7rzNurNlMVVk32p1Wkow9LYWfrpWz9eOMlf4qK8WPSrXxxiYfhjFWMo528ohM7R+z7++c87Z17VhJ1+S3lR0f15lzE7r92oxuvWFM3vikHG847x+11uriurRZrh++XUm2ncsbSThPKZQ2S9Lywz8lx8SKraOVcEqr4bSsNXJNJPfSs2Xyse5/xKoUSi+7zShwpfWSldl8jdy165JyJpJnQmWdbW1HeYX+nKpPRAojq82SVdaXpnLJOt3te24lu6/7985wa+1ur3Bb+7d+GklxLBvV2i/XlY1jqVqRjW0SBmltMj6sJK9lJOPImuRZjpss29pkGlkpilSNjbZjX55j5TpJoODpSUc3zvu64ZqCnnU20JnJJNhoLCPlg+EOCiyWrRbXpNVtyXWStmbn8ZVF6W+fScY7RvIcyXOlTC0QbG1burwhrWwl6891kjAo10nKViOpWLGKk9UgqwPPbQxb207auiubSfu4U7esJ03lkzZxZ9NxjbS0lXTK99ykDq4j5fykztVap/1qlOw7lTApu9P+RnGs1W3nqs8o64SaDqqqxkbFyFMxqu/mPOaHOjse6WzhOTpb/nUtZBZ1Njivs5nzOhss1p7PK9e3YLS0c4TOEqGstXrokvTAorRatJodM6pG0nbFqlRN1teF9WTdrW8n20AYS3EYKYqlami1WZYiaxRb7W4jyevkCLEzfLtqtFxMxvuuFLhJYJ0knV8z8t3kc61GyX5ayEinx7V7DHSM5Dg7x7Fk2/3sU3vt0b03WnkmSgaUv17a+vPDfyBfuUXr4boeXs1oK/RkZDXnb2vGL6tiHW2EgULryDOxPMfKN7Gm/IrmM9tayG7rTLakhWlXZ07ndfrMhKbnp3V60tGp8SOEng65OLZaLyXrNR9IfovPKS0YLW1cM6Wq1fp20obEtv65EknLW8n52cFxca29ObjIRpkt9kCphmUaTtdZuZM0/7brMILzv7AufWXRqrhZlmtDZZ2qZr2STmUr8p1kq0qOs6b+GCxz4Bi8N16SrjuT1Rvum9P1c8N1bm2t1Xo5p+3yfHJdZF1F1lXFBnq6fI0WH3q+VtZizRSk2TEj1ySf0TOrybn40mYyn4mcNJFNjjPFSnIcvLKZfH7ezrmLn5TNeNJ2VVotJsfQAcpsQp9cWJc+84Rk7ZSkkiTJVSjHxHJNJEexPBNq8vORpgvJuW0+kM5MGmX95Jw38JLzI99Nzn8dU/9cCKRckGx/Gc+okEkCrXaCrWztemynHdg9f985T4utbFRVXKnIGkdPr3mKjaNrZoyscevP5WOruLwtWyrKRnHyPo5l41iVSqzl9arCyKrgx5rKxnpiK6/xnKOiNyZXkbxCQUE20KlxozOT0sKk0ZkJaWFSGssO9nlRq/35uPb3jZLVlc3kmsiY2jVN7bomiqX1benSRnJNX6pKG6XauflqrMvrsaphrCiKFYeR4p3zcRmVYk/lSqTxwGo6b3fPnSuR0VLR1cNLrhY3rr5eai4r6adSS1xZqUhnM0f6PIBBQzAaAAAAAKCOCTKyz/u70v0falzA83tbIQAAAAAAAAAAAACSJGPM6yW9XdK9TYosG2PeL+nfWWuv9K5mAAAAwMlgP/J+2Z9/e5Lo4bi1ZA+n9mz23j/9cPOZPPx56do2l/eF+2X/4LVSpSz9zcd2h/95/qVa9BckSZvuuP6i8JK9iVbb/3tWwqyeKI1LqWf/SUjLtNnUvL+lqUykuVxVp8akXD6QF/jyAk9e4CtXep7yV35IgVNRYCqa8NY1460o65QUZAvKPmFVCJLOwTshObkgCTvy3aOFHVlrtVpMQqieWZWeWbG7r8+vWi1v7XV6fexK0glVkm6blx5fSoLNusHapDOstP9vM0oyqqXNaPzqiVLiqndCEqQkwCbNZigtlYMmY0+lTnsk6/tef7Z+1HR8RePaVsZEKrhVzQYljfuR8hlH4zlH2SAJ4ZsaczU5ESiTDRTkA40VAs1MeMoVssoErrK+NDuWbDueIznO8XXILletLqzvbDvJ9nNxXdoqRVqrhSWslR0VK0bVMNbWdqSHrxitlA7T1fIHm4+6Iu2P2fjAZ/b31r6l9mjiGWknKq838t2Z7dOSvrTzpj4oylWkCaekca+qvG81HVQ1nalqMhNrvOArN5ZVNp/R9JiryQlP2cBVLpBmC0YTub0gp7FMEojh7wvH8Nzj+dyKZavza9IzK9L5Nbu7LW2UpHJV2qokQXnhvmCwpU1pcU1aLx1LFfbpbrpHJUweW+UkBO14Ne7kX4o9Labsb5tVTw8ue3pw+bSkNzUtV/jLonyzuRuONeaFyrp2d5vIebFybrR3nHONfE8az+yE0RnlMo7GxgJlMt7uuJmCUeDtBV+4+wLhJnPSVNFVWDkl31RVcLcUOHuNvo1jXVhN2qArm9KFteT10pZUqiZhi8tbVmtFq+1yrPVS8tlf3jLaKO//vNpd70cL1CmHyWNjXyjkTiDajq2y9NiB0Mg09z9mtNd1faH2OKS1+rdWRpereV2uNm+znipJX9hIm2nSFnkKNe6UNReUNeZHKvixxrJSNnCUDRzNTbo6NZ1RYTwj33eVqQWjFIIk9GQnJCXwktCemcLgBD5GcXK8u7QhLa4mYULFShLS+dhiRV96sqIrG1aKQimKJMfRetnR4nZGq9VA8b599oy7plsyS7p9cktnphzNz2Z05kxBC2cnNTOTT23rDuYLP7Fk9cdfsPrbp6wuX95UtL2tqFxRqRSqUol0sVrQQ9VTsk3aDGAwZGqPY/Il6R0flZ43u6pX3mmUy3rKZhwVcp6yWXc3jNRzpHxgNDuWBDFlakGzOX/vemznPOg426HNktXfPiM9uWT11EpyHuQ60qnx5PpocU26sCZd2tgLj96uSg9dki5vvL/F3O2BZ6D7InmKrFTdt9mtr0hPrewv1ek22el0fu3RzvxytcdRXL3vFZyKFrLbmshKhZyjsaxRoXhZk1++Q9Onfkw5W1LWljQeb6oQbykfF1WIr1fuAaup2mnZwe+IxrPJ46ht0lPL0m/9dfpn++MfsnrBdVanJ8zuddrimnR+Odb5K2UtrsRa3HAURlYZJ1beDZUzFYXVWNU4CShbrI5rLe70szVKzsfTzsl7G+m09JlPS3e9uKfLBLqNYDQAAAAAwNUmZpqPc7mUBAAAAAAAAAAAAHrJGDMm6b9KemOLojOS/qmk1xljvsNa++GuVw4AAAA4Scrb0toRM4QP07dzeVH61NWn5b812erU/vit2DGtVMakiqQNSZcalXpR7dHEX8XNx0nyTaSCFynrxfKcvY764zmjwDPyHFsbbjUWJK+LVaP1kvSli65Wyof/4davXjz0JDiCFWdaK5pO3sSSSrVHahjNQVdvR44iZVTVuCkpMJECJ1beqSrvhrvbjO9IWd8q7yfbl2uSzteB76gUSl9cyuvJ7YKuhIUmy20UuOI0GY5uieRqJS5opaKkPWoZxtV+eEbWCZVxIuWcUGNeKN/dCbUycl2jjCflfemjTyWBhm9+7paymSQksxK7euDJsh5a8rRabRZIiEGyFR8IyaocZW62yetGXiVpcfddxpSUd4sadzdUjMd05Q/Tj5WJnRAF9FooTyuxp5VSITl+pWp/uyg4FY25FQWuVeBYTWYiTWcjZfzkHCif8zSWkTImVN63Gg9iZTKOctNTGit4ygdGWV+azu8Fz07lkuOcWzvmuU7yvhDsBYo+sWT1p18I9Rsf39Zfnc+pGjc7pjULX2nsQjSpC8VJfaKo/Zt7W378Q1alxx+Uokh/fvGUPrc2vW/smHbCZQFIn1sa1+f+4uDQg+1N63Mg18TKuLECV8q4tTbGk3zPKBcYGSNN5aWxrCPPd+W7Ru6BoFlrpYcuShfXrT71aKxKxDkyMOy24kAPFwOpuH/omDR9Y/OJQkk/l36+65pYGScJL/aMVeBZjde+A/JcyfMcea7Rp59ufm7y6/e3bvt++WPNrhWNpGzL6YfRUgffqwGDjt7sAAAAAICr+Sm/ZOLxBQkAAAAAAAAAAADQK8YYV9L7Jb36wKjLkj4raU3SzZKer72IhnlJv2+MeYW19hO9qiuAAWZrHUPMYZJcAAAYQlHU7xpo22T1u+Pf3O9qdEXVulqtulL1wIjVvlQHJ0gsV9tytW2zSZ/mdnKFgANKsadS7GlNmbZCst73+YMhevmG5YA0ZZtVOcxqJUz5YXIMva040FYc7J0DFVOLH2DVTvDRDkeRxkxZZeurLF9JwGezUND++LkHbu53FYCREllHxdBRMUzeX2zZBrVqcwhFA9C5yDoqRo608xVcRbpwqHMjdGq5Qsg3hg/BaAAAAACAqwUpX4K4BKMBAAAAAAAAAAAAPfQTqg9Fq0p6u6T3WGt3u/kaY+6U9KuS7q0Nykj6oDHm2dbaxV5VFgNi6dPSY7++995aKSpKlVXJ8SR/UsrOS8G05GQkx5ecIHm4gWT8vdc7w/eXaTTMeNrtyGlt+6/3D4tKycPGko0k1Z5tLMWhFG4kzzaqHx+HUrgpxVVp7UvJ3xluSPlrJK+wN4+d6cJiEhAWVa6el42TR7SdPJIPsP6zbDps//AW0+y8bjhtq/H75x1J4VZ93RXvvd75u6Ni7e+sMY6SLEVTC0tzas9mb5xxJS+fvN75nGwkVVb25pO/LtkOjJs8HE/yxpLtYXc+Kc/GlTKzUvZ0Ml1cldys5I1LXi4Zr1q5nfJuNlmvO9ueV5DiSm3YvroYtzZ+rMHfWwuIIyju6OIwWW/7t5GdbS4q7dvX4/rng8PCrdr6tlJUrs38KPtRl/fRqLzXTpSXOjCgMwAAIABJREFUpNx80nZ2zErVjaRd9sdVv62afdvqwe34wDa98964yT7hZmvteXZv33S82j7q1fYZ9gOMGHsMaUtH7CP+R2Ov1oY7cfR6AAAAYOTEcrVuCXIEAABAvaUywWgYPgSjAQAAAACu5qUFo3EpCQAAAAAAAAAAAPSCMeYmSd9/YPAbrLW/f7CstfbLxpj7JH1Ue+Fos5J+VNL3dLWiGDzrD0oP/ud+1wKDbH8ojG1eTNW19PkUnzyW6vRfs6CpfQFqTpCEZNkwvbxxrh5XulS/uMINtWBBPwmBqwt085JlSUk4nBxdFeaVFvR1VchXs+HtlI2TILzS5b1wvf1Bg3FVisvCCeb4kltIQtT8CcnNJAFvXiEJLXQytSC1fdunP5YM391ePcnNJduD4+9tG9lTSYDcbmDjvgBHW5VKV6TylSSEM5jZW5YTSMGUlDmVhF5KybD9wZhxJQml8ydrgW8H9sVGYYh1w9zk7zDeXpm68QeCHB0/Caxzs5KbT/aHuFoLmHP36i1Hctxer8XREEfH99nGjYLRrORqr+lv9HBrD0kmn3bwPMCRlLG7mZCy0h3VB/Q9K+/Rb4+/TkveXMd/CgAAAAAAAIDh49mqcvG2zL7/0zkzdkELwQXdlHtEdxW+rOsyT2rOX9Ksv6Tpj61p7s6flnRX/yoNdAG92QEAAAAAV/Mzzcd5R/l1WwAAAAAAAAAAAACH8KOS9v8H3X9rFIq2w1q7bYz5TklfkLTza0j/2BjzU9baR7tXTQA46Wx92FijvJuodHyL23r8+OYFHEVcleJVqboqbT/T79oMB8fX1aGJOvB+X+hiXdkD5dys5GT3jWvBWinaSgLb3FwtqHF/yNtOcGPt2c0mgXOytWEHyu9M43i1ADp338NJnt1sEqQnSdsXpa1HpYk7pLEbDyzvwLydIAmZk62F59l9IXq196XL0pd/ItlObZgs48wrk2C8uJqE45UuSXFp7+/fbc93Hqp/b60UVWX+SXXvc9ufh9cF5gYr87Zq3bDn6PP6peif6ef0dv2v9VfpE6sv0lJlWjlTVN4pata9Is9ECq2r0PoqxVmV4qymnFVNOJvKmJKypqzACXW+sqDHSjfoSjij1XBSy+GMLoTzWgwXVFHKfYBDylGka92nlFFFjonlmlCOsXJMLM+t6obs43pW/mFNByuq2EBGVivhtBzFyjhlTXprujbzlBYy57XpZLTh5rTuZrXlZrTpBdp0s9p0M9p0M9pyM9pyMqpGGUWRJ+PEMrLJs4lljJUxsTyvLMdJAvmsTTa45LSj/nUyTpI1srX3YTWjcmlcsXX2NmkZyRpNV4q6c+2y5subu9Na7T3vvm4wbrfMgXHlOKPzlQU9Xb5W58sL2o5zerJ0nSK6IGrGLGnWWVbWKSnnbmsmvyxrjYyxmnTXNO0vyzdVRdZVJFer1WktVha0Fk4o55b0rNxDmvRWJUmRdRXLUWRdVeKMtuOcCu6WfFORZ0J5JlTWKasUZ7QRje92gt7fGdqYBsMavN4pVzfsYDkrGbsX4JgchkzyemeafcHKe/NJyjk2VsHZUhR5qlpPxSirJ6vX6vHKjXq0eqO27NgRP/3hci5+WneWH1BGZYXyFBpPRZNXxQQajzc0Fy9pzl6RZyNFxlUoV5FxVZWvkslqLl5SoFJtL689HCtjrYxN1vnucLPv2bEysVXObmtel3TKXlJgqqoaT1Xjq+jltWqmtGKmku3GSOvOhObskqbMqiK5Co2n0PG05RQUGXd3e/XcUDmnqJy7LVdRrf2N5CqSZ0L9TeUFqiijyPX0TZMf1mo8qY14TBm3oqzZ1nSwrLxXVNV4KjtZXaqe0vnyWZ0vn9ViZUHnK2d1vrygxcqC1qPJfq/Cvrjb/aLOOItacC5oxluW71blulHyMJFcJ9KYtynfrcpYK8fdOxY5iuXsvDaxfKeq2WBFgVNRJQ5UijPajMa0Gk7p+x/+haZ1ePP8+/TiyU/Iyii2jmI5+hcP/WLT8v/2+h+Ta6KO/2bHxrou84RuzD6urbigi9XT2ogmlHVKKrhbCkxFUewpjD2Vo4yuVE7rQnlei9UFXajM60J1XovhGa3FUx3XAYPFtaFcm7QtjmI5NparSEZWjr06/Hj/8a7ZsMZlrtawnO10/kcYZrs3/07/xiPN/xiXeaR12aIeRlZnwgvJcTpa0mV3TkverGI59cfj/Y/aedT+x1PeNfpc9rkNajU6Jpw1FapbqhpfK2Z6d3heRZ3TeU1rWTmVtKgFhcaTr6oyKmtaKzqly/JVVdX4qhpfm2ZMrkJVTKCcU9K4u6EZd1m+qo0X3uZXK313Eup5EuooyQ0i3Tr9oG7JPbJ7nRZZV7F1VLG+lp+a0Xo8qbLJaNWd1OXsKVUqvqoVX2Wb0ZYd25tOyXSRXIXytBkXVLYZlW1yPVeM8wpMRb6pyjXJcWr//u+Y+Ko2oRjntRQ3Dsufcy5r1l3am17xzjcIe++NlatIU86qPlJ6Repn8WL/E7oYz+tCPK8NO9GFT3v4OTbSdLSinC0pF29rLrqiM+FFzUeXlIuLchTLtZEc2dpzLN9WFdiK1t0JLbszsjIK5Sljy8rHW5qM13R3+cu6PnxCp8PLKtgteUrOdzwTykkuyvdkJOcfNWnjJMUFV8Zsdf/DAHqMbyUBAAAAAFfzg+bjPC4lAQAAAAAAAAAAgG4zxuQkvf7A4J9sNZ219kFjzAclfXttkCfpTZLefbw1BAAAwFXi5p3TRsblv+zevC/8ryPPwkgD0ZvKuFJGJb1m+oN6zfQHj33+1kqb0ZiKcV4r1WldqJzRYuWMLldPaSWc1uXKnJaqc6paX5F1FVpPVetrKyqoFGdUsYFKcVYr4bTWwklVbco9hV1gFOu0f0nnMs/oXOa8zmae0Zngot71+I82neZnb367vvvse5RzW4eZWkkrflZPFqZ1PjeuVT+nNT+jNT+nz/oZfdyfVbyblhdJKtYeiVzt0bgLc+9sSprfXNJrn3lAt24udWUZ5TjQA1t36JnKOVViXxUbaDvKqRRntRZNark6o2Kc01Y0ps1oTOU4o2KU13I4rY1oXNU4CfdbDadUttmu1DFNzinqXOYZnQ0WNeWtKu8mHZYnvVVNeBu7ndfng4u6Nf+Qbsw+Jkf14SpZp6RZf6ntnErsiayji5V5bcfJNrMeTmg9mtBaOKFilNdmNKalcFYr1SmtR5N129BSOKONcFxluxPaNN16gV0w5a3obHBe5zLnNesvKeuUlHW2NeZuyTdVeSaUb6oquFtaCBZ1NrOohWBRc/6VpOO79VSuBeDN+kua9Zf78nf00zfrD49tXpthQYuVBT1TPqfNaExV6ym0nio20EY4rooNVLW+qrGvrbig7SiXBFjUjnXlOKutqKBKHKhsk21tK8qran2V44zWokmtVKd3gzOsjpacOudf1kKwqNP+ZeXdojJOWVPeiqa9VRXcLY27Gyq4W/qeB3+l6Tz+53O+Ua+Y+eiR6tEuI6vve/g/NRz36pk/0RvnP1A3LOds67u++qtXlb0z/yW968Z3daWOhxXGrlbCaV2qntZydUZbUUFr0UTt+JXXRjietD020FZU0OXKaV2pzqlifVXiQNtxTuvRhLajnLbikxv0+Lyxz+o2/6u6LfOgAqeinZQNR5HOTTyj08FlzXpLUuxpKZzVI9s364ubd+h8ZUFL1RktVs5osbqgbZvvvA7B5/Q1wWfkmVCBEynvVRSMbSjrlHRz9nHd5l+W70ZyHCvXsbXnWK4Ta9pbVd4tSYolVZScn+0LnG52kG4QstXcYcoe1iDUo0t1ONRnfBiD8Jntm7cxkuPuvm68xbWux+VNV//PxTfrgeLtKsdZFaO8NqJxleOMSnFWG9GYqtZXaD1F1lXV+loPJ1SMC8f1Bx1KwdnUddkndW3maVkZXaqckiSdCS5qIbOo+eDibrBccoxb1d2FL+lscD4JSlUtwNNEmvTWNOmt9+XvABo61e8KSD/xxDv0rx/7D3XDfuT6d+vf3/jOQ83n3Cef1GLlbMNxB88lt6J88h1ROQmTvVQ9ra2ooM1oTBvRuLaivFbD6eQavnYdsx6Oqxgn12/FKN+Xa/v9vmHsY6paX8U4p0fLNymUp8BUFJiKTnuXteCd11lvUWe98zrrnlfO3VY5Ts7lKllPvlcLJS8GmgrPJwH52QuqWl/OTBLy7IRGrvHkulY5r6wZf1WOo9p5R60ipvaPkSQrlUtSaas+zGzntetK2bwUb8vs/ADEMXNeFsleV2xdEDhhBuCrfAAAAADAoDF+pvlX8i6XkgAAAAAAAAAAAEAPfKOk/T3N7rfWfqXNad+rvWA0SXqdCEYDAAAARoYx0ri3qXFtaj64pNsLXz3S/KxV0uk0yms7zimsBdFUra/NaEylOKtKnISpbUaF3c781VqoyEY0vjtsJyRoMyoosq62ojFl3W09u/BFPafwBd2Ue1QLwaJ85+qOon+9fo8+tPzqhnW86Zq/0eMT45LGG44vO66ezk/qyfyUnihMacPvb0fe4/LI2Kx+/rYXa7KyLefAnZ/GSjOVoq4vrur6rVVdV1zVqfJWXR9dK2nLDbQaZLXpBbINYh6yk+f1nPAxTVVLKoSVjmOCynGgShzsBhgthbMqxVlV42TbSALWCrsBRUlQX7Zue9uK8irbzG5YRGS9ZB7W143Zx3R34Yu6LvuUzgbndTZzXhPuOoFmfeSaWGczi8cyr8g6u21NOc5oI6qFYMX+brBjMc6rHCfhRltxobaNJIFYv/D09+nJ8vUN5z3urus1s3+sWf+KnlP4gp6Vf3h3Gyq4dCzvp5LjadXPat3PKNoNrFzTvNY0X3vnx5GmqiVNVkvybdxsVh2xVrvb0FZc0Fo4qZVwWhlTVmg9bUTj2ojGtRpO6lLltPJuUbfkHtFdhS9pxltueCxr5Oef/n59pXhHw3G+c3zBu7GkTS+jNT+rbdfTWFjRVLWkXFSVkTTlrTaddtrfG2clbbu+vvbcn8t/qKxqnKkr++2nf/vY6nxUnhPpVHBFp4IrR57XTju0P/RzJZyuBayNaTvO7YXLVqe1Fk3W2qxAxbiwex61Ewy5E8a2Ewq5FRU6Dhp5TuHzGnO39Mn1F9UNv2f807r/BS+SY44eHGWttB5N6Ep1To9s36xLlVM6Xzmr+9fulTFW096yilFh9zMoxVmdDc7r6yb+Sv9g7o90ffbJo1XgeHdv4PCio8/iVCC9/dqfP/R05Xhvv9oJAj14vZWcZ/vajnPajMbqzrslaaUWcpScR9dCRWvTVa2vxcoZXanO6ebso3rFzEf0mtk/1j3jnz6W9gNAY++47qd1Jrig/7r4T2Rl9NYz79XbFt576Pm4pnkDlQSi7im4Rd2ce1Q35x499HJ2FKOcyrXzv51r9qpNrstWwymthlO16/jkPDoJmC3sXsfvfC+0HM5oK8pruTqrDy2/Sp4J9ZLJT+gPll7bdNmPvfCmo59TdMoqPQPTUf3/7NeJpGjj2Kt0kMl0HmILDCp6swMAAAAArhak/Lqj5/euHgAAAAAAAAAAAMDoetWB9x87xLR/ISnU3n2izzfGzFtrLx5HxQAAAACMFmOkwFQVOGua0lpPlrnqZ/X5qTN6rDCjlSCnNT+rBx4/LS03Lv8/br9FhbHZntRtEK0FuYbDlzN5PTw+t/s+F1Z0zfaaQuNqrRY2FDpu28tx41iTtQCiiWMJISrXHpK0F7rjSpqJYy2UNvT1V56QF3e2nKqSv821sdzUHsytxZJC0/iz2nY9rflZrQVZrflZrfrJc7nJjxF7cayJsKyJ2uc4US1rslrSeFiWFx89fMLIHntAVL+5JlbBLe4GlZ3R4b7iyDol/fOHfqnhuD9/3n16wfhnj1zHYWclVY0jNQhQbKbqOFr3M1r3kvZm3c9qrfYcN0gtjGW06QVarbX7zfahZgphRZPVkqYq28lztaTJSklT1e3d17movbAySbt/qqNQ41rTeLCma9ReEIOVVFF77WujUMrdKjihKrW2xxqp7Hi7n+H+z3PL9WUbfKZV42jdz2q11j7F5up4Sz8ONVUp6TH3JqnJzzJ8/Loz+tLZr0/auCCrqpOsm5fm/rP+7E+/T3GU9DG4+fq/lvPyv9J7dI+8LrdD+bCqid1jUnn3+JSNQx1Hjo+jWJ7dm9FOO5Ss1jWdyRz/V63FKKfIurWwtXFFcndDHiPrqmp9LYcz2o6yCpyqCu6W7sg/oNPBZUnS/1x+pf794/9Wq+GkXjT1l/rRG9+l0Gkv0rTVsdIYadJb16S3fqQwFWBQ7M+32WmHrdn3WtLOgcDIyrPxIY6Ax6NqHFkZGTdSzt1STluaziwdej4H27M0SXCyr3U/q6/4c3XHkC2vcV8zY+1u2ObkvmPvRLUst83ldi5ZY461MrXX5CLjpHCM1Xcu/Lq+c+HXjzQfk3L8Dkyl6bhO5d1t5d3tY5/vju/56i/pPYvf3XDcmeBC15Y7iNK+h9jPs1HHIfbAoCMYDQAAAABwtSZfVifjCEYDAAAAAAAAAAAAeuDuA+/vb3dCa+2WMeYLkp6/b/Bd0iF7DePkKlwrXfu6+mFORgqmJRtK5SWpdFEKN6W4IkUVyVaT1/vfR2Wl//x5Hzi+ZFxJTvJsXKm62nIyLbxKcoKkvJuRbCy52b1hxtk3XycZ7uWT91LS+3PXvte7wxuMbzhNo2lbjW+xbK+QrF/j7NV/5yEnKefmkr9JVrK1bn823vc+3hu+M86GUriVLNO40iffpKae++OSPy7F1WS7slGT+cf1y4/LUulSsj1GpWTdhMVkHlG5Vj7am5+NkjpF3et0gwFgXPVkP2q2X6eNNyZpQ9OM3Zw+fr/NR5qP88Zqn8W+/VY68L7JOBvtGwYAJ4OVdCE7rs9PndHnpxb0RGH6qjKNQnR2ZDJbXazd8Nj2Aj00fqrj6SPH0XImr+VM/hhrle73rrnryPNIwhrKu8FIO+E5hbByVXCClVRy/STcrBYCsRMi1yhQaFDlwqqmqrVwqNrfPB6W5RxDOIXRXgDVzvwDGx290l1078Snmo67Ift47yrSIyXH2wvpC7Iquoe7/zsyjtb8jFaD3G7Q3/4wrEG15QXa8gKdz030uyqHcvHzY1Kx8bhfvPPr9N/nO2+321F1PF3OjulSvtC0zEPTU1rZF7S545bbP6lz131BlxZv1djEZc3MPaXzJq/z6t1xopsahe2NVSupASTHJ649qpIkz8b6/9m783jJ8ro++J9f3bpLr/d2T3fP9Cw9PdMzMMzgDMIExhlAlE0kiqABxW0QlxA1atBgngSRPGqSx0fNo9FHY1BMFMWgAhoVFyQoIxhZwi7MwGzAMFsv0/tdTv6o27fr1l36LlV17vJ+v16nb51T5/zOt06d+lTd6qrv3Tl+OteN3znTVPNcI7MjgyO5Z+tYTl96X1721Nfk3m1jOdEcyk/mlmXtcc+ZE7ni5NFcPj1dcepoRsdPpySZTMnRweEcHdySo0MjOdYcXvS1Wa+ca1ZVlY75ZHpZafsNuX29tmZX082vZjXFKud+y25fr8xtnlU69tm23sw+Z/bRUU/Hesl8jbgy0+Sw6lhv1j47jsF86y12DOZb78LHYP7btvgxmHvbltKM7EK3rX29C92uObd/Fedtc2oyA1WVZjWZ5lTr50BVpTk1mWZ1bn4qg1NTGaim0qym0pya/llNZaDtcvvyUs1ukfmJnXvzkbH9KVW1qnrbbZs4m9Gzp2aal42Nn87g1OT069zWa4Zjg8M5OjiyrMbJa1GZbpLWqDqaplVpWz7dRK2q0phzXfvyKq22sK11zi2bO98xdtt1jY7xZq/bXu+5/XTUNM/2i92mxWqYtd/FrutcPt/tXaimWTV01j+930Vuby+b202mzJznR4a21PZc1k0lydlFHrNDje43Ruu1b7r4zfM2Rrti+N4Mr8Pbs5gqyUPD23Lv1rE8PLx1+ne41mutI8t4H+J1H/2LXHzG+2JsTGv7XQgAAADqMTS88HXL/MtbAAAAAAAAwIo8oWP+zmVuf1dmN0a7Psk7V1UR68e+Z7ambpiaPN80bXK6cVo1fv7y1NlWM6xqPDn3lZVS5l6eb9msy2k192pua2tU1sispmUDW6abfXW4+3eSO75p8dvx5X+YrPEvcK95izVGu+a7k+Hd/avlXOOnyVOtRmoDQ62f1URr+dRk6/LUmVYjtfYmUue2n9NUquO6zuUTJ843zVto+87LD70n+dTPz38bDrw02XNrWyO5tulcQ7qpM20bdDbrKt1dvtB6ze3JyN5kcDQzzQjbp8HtSZluWNhoW94YaTUXbG/Qd+5naX2dcOZnSqtRYTXV2ufAIn/Qby04fnfy9qsWvv5rl/GU/dYrkpP3z3/d8+5Ixr5kWaXNqKpk8uT57J48Of1YOPfYmGxdN/HYdDPCx5Lx4+fzfvxYqwFcNZFMTZw/N6fOTjfVnGgba7w1dqPZug8nT08/Xkpbprc3tJz+OTSWDO9pbX/2yPS+p5tynnm4NTW3thpiVpPT2zbPjzcw3Npu6szcx965xoztj8v2ZVPj083jYG061mx9SbcuE9PNcI52NMM50RyaaTDQC6cGBvPI8MINWZIkZeEKmoP1fjm2JNmW4TTan9/aX/eeW6ltvlEGsiPDGX34AzMNpkbHT2fH+JkMVFXrefa230mSTFYTee+xd+bDx/+u3zdtQ6hKyWODI3lscCT3bYxePRd0qjmYU83BfKFPDaK2TJzN6PiZNHv8HDs4NTXT0GP07OmZ5m9bJ8bnbXJ3ojmUo4MjefTiU9nzyc/n4ROXzlrnyv0fzi/feOPM/NaJ8Vx+6miuPHEkV548kr1nTnSlMcN4aeTo4EhOLbNB2Xij0dbg7Hwun1jgD12PNwZydHAkp5e5H9auRqN/r1svueyT89cwMJ7RXQ8suN2WrY/lykPv71VZtVrLzfZKVWXbxNk0UuVYl147Pjy8LQ8Pb8sHd53Pyu3jZ9JIlceaw11r0ATr1URjIBNJzvSpRUc3H3MzeZbRro25VrUa8JVMiax1aznN7ea/bnbjtiQ50RzOscGN+Vx2ornw++lvPHRT/vSiC7+OGZmcyL4zJ/LMhz672FsvfXFg+KO5ePgL+eKZ/bOWf9Wlb8/9W3Zmz5mTGZmaqKm6CztbBnJkaCRn5vk/ySrJ4aEtuXvbrtyzbSz3bh3LyUXuP0BjNAAAAOYzuEhjtAX+Ix0AAAAAAADojlLK7iSdHYbuXeYwnetfu/KK2NQaA0kGWk2L1up/F1/ynAuvoylabzUv0MSk20ppNUhq7EgGd7SWDe3qbw1LcelXJ3f951ajqHaNoeSpv9JqDMX6M9CnZkWreVyda0qWPj8214uqajV5a2+YNt/PqkoylRz+UPJXz59/rC//o2T4ounH+bmma0tovjjrusxdt7253XKMH281k2sMtWpvvx0zP6enieOtBnNl4Pyymds+dX7dmSaTU9MN8dp+ThxL7n/bwvXsvrljzOp8A72p05ndOLExu3FiabTWO/6Z1lgH/kkyvLeVnWWw9Vgc2ddq4HjBBqznLmeB6xqtx0xjsK2hY1uj1jRa1zW3JZ3tccpAq4nf+GOt+YGRVnPBieOzj2P75clTycSpuefC9DH6u/GP5PfP/q/l3febxA03/lnu/czNc5bvHF24WctqNdLIzuaujDZ3Z7S5KzsHdmWsuXvWstHm7uwY2JlGGVj+Do7fnbxvgYabQ2eT7edv75N23JK7T30qf/jwm/KJkx9a2Q2CHjnVHMqpNf6F7qc+/w35s7f/SCYmWq/nRrYczc3P/m+5f+vs1+Wf2rl35vKWibOtBmmnT6SxjPaQZ6cblJ1raLZYswJItXCDjkajf00ftm47kv2XfyxfuP+GWcsPXPWBDA6eWWAr6lKVkuOLfe+jS/qxDwBop7ld9zy8bUsmti7t/yHu3LEnd+y5sscVLc0z9v10/vSt/yrHH2v9bnbVte9N9YL35KcGvyKNaipXH3801x97MDcc/WIuP3WsK82sO1VJHh3akvu2juX+LTsX/J3u9EAzR8/9YYHBLTnlu7fQVf6HHwAAgLkGF/nPd39BDAAAAAAAAHqt8xPqJ6uqOrHMMR7smB9dRT2wto3sSR7/Q8k//FzdlWxeDV/yn9fg9uTgtyZ3/ers5Vd+k6Zo69nAli4OtshXtgY0NeuZUloNwZbqkucmY1+SHPnI7OX7nplc9sLu1rYevWmR8/irNlFzr+bW85eHVvnS+9Gp5KFNdOyW4bIDH8ng4KmMj8/O4quued+Kx9w7uD/7h69oNTkbmN3sbLS5O9sHdqys4dlSNbcva/WDWx6X77/ix3PnyY/l7Q+/KXee+liPCoON58BVH8rLXvGDue/umzIwMJ4rDn4oW7cdXXSbU82hfHLnvnxyZ5+KhA6Ngf41RkuS57zwZ/Onb/1XeeiL1yRJ9l/28Tzreb/U1xoAAOiOfr+W7JY9++7JN3/Xq3L4kcszsuWxbN12ZOa6qdLInTv25M4de/L2y67PaIZzfS7KNRlLM6XtDxBUrT/4UBrJPW9eeGe7n5zsvC6ZOpvx8SP5fDmV+4YGc3/jTE5lvPc3thu+8i+S5t5kZO+F14V1RmM0AAAA5lrsr/o0/SoJAAAAAAAAPdb5zfhTKxijc5sdK6xlRillX5LlfqL60Gr3C0vy5J/RGK1OZZGmOJvdzf+p1YDpnt9JUiUHXpo82bm6rvWrMdrg8hrl0EOlJE/9L8m7vyY5Pd17dusVyc2/WG9dsAk1B8/meV/7/+Qdb/+XmZhujnb5gQ/nqbe+JY0s3ryspGS0uSsHRg7lypFrc+XINTkwcihbB2rO2xXm/TVbb8gPXfETeXj8gdxz+s5MVHO/7Hxy6njuO/2Z3HP60/ni2ftTLWHcRjWVlIEkjZllVaZSLWlrWPt27HygV20BAAAgAElEQVQo19/4F3WXwQrMn/NVpjLV91q6riycsQON/jaz2Lb9SL7+W16TY0f3ptGYzPYdj/Z1/wAAdE+jz68lu6mUKrv33HfB9Y7mTP42n8/f5vPTG+b8z3NvbVx98wVG+VRr3ZmvzZ5Zbrn12nZFMnRZ3VVAT/g2OwAAAHM1Bxe+bsCvkgAAAAAAANBjnd+MP72CMTobo3Xj2/7/LMnrujAOdJ/GXKxVA0PJzb+QPOXnk1RJaVxwE9a4xiKfq+mmrjZgY9X2PDX5x/+QPPjXSaOZ7H16MrjqvrPAElw6dGWesO2m7B7cl9Hm7owe2J3mrSfy8XuGcmD3YK7f/6SU8qa6y1y5xiJ/yHaxBppJSinZO7Q/e4f2X3A3pz//R7nv72/PPVvHcnhoS4anJjI6fjpjZ0+3fo6fzo7xMxlIldz628nBb5zZdqqazGOTx3J04tEcmXgkRycO58jEIzk+cSxVDxoSHZl4NB898fddH7cfGmlkZ3NXxpoXZbS5O9sHdqR03I9VqpyeOpVjE4dzdOJwjk0eyempkzVVDP2ztbE9O5tj2dncldGBXRlujMxeoaqS05/PyNkTGdv2uIzuvDGjzd3Tj6ddGWwMzTvu6alT0/n0aI6MPzJz+ejEI9M/W/NTmezDrey+xsD8zSxKGtkxMDpzTHcOjKZZ5v6uUtLIjubo9LHcPXNMtzS25bHJI+eP3UTr2J08+0hy+gvJnmay5ZKknP/uwNaB7TPjnMu5HQNjOfnR1+XoXb+UI0MjOTK4JUcHR3J8cChVSrL/q5JtB1Z3EO78z3MWTZaSx5rDOXbxbTk6eTiPTRzZGE3yANaYHQOt55DR5q7sGBhLs8z9Ttl4NZ5jE4dnnndPTh2voVJgPgMLvJYEWC98mx0AAIC5hhb5oM1iTdMAAAAAAACAXqj6tA0AvVJKLtTchHWim40YFxtLE721Z2gsufxr6q4CNrySkqu3XJebtj8tN25/WvYt0PTryif2ubBe6VOD35HmWK49/kiuPf7IhVdubp012ygDGW3uymhzVw7kUI8qnOvI+CM5MrGEei+gSnJq6kSOTjdqONfY7ejEozkzdWbebQbL4HQDiPONhEabu7JtnkZnSTJQmtON0HamsYLn8LNTZ3Js4nCOTz6Wbvw6f7Y6k6MTh9saRLWaHp2cPLHqsZNksprQ0G0d2dbYke3N0TSy9HOzJNneHJ3VAGuseVF2DoxloAwsfZzSyPaBndk5MLZgY7PVGmlsycjQZbl46LIF15mqpnJ8usHjZLWE5hBVlZy4Jzn7SDJ6QzIwcuFtVuHPB/flyALX/eCB12Zs2/mGXwOlmZ3NXdk+sHNZ98V8djf2Zvfg3lWNkSSjAzsyeupoDpw6OvfKa38uufgrVreDd37vwtc97b1JWvfxicljOTpxJBPV2cXHmziV/OWz5r9uZF/y5X+YJDkzdXomQ49OPpoj460sPT3V+fco+qHKqamTOTZxZNEmfxcN7suVI9fkyk/8aq44eSQjk/Oc789/3zyjJ0cnHs39Zz6b+898Nved/kwOTzy84H6a08+TQ2WxBq+LqKaSk/cmE23Nk4Z2J1v2ZynvnZTpf0sp5y+3XUopHUvaLpW29dqvWWCs8+MtbayZf0v7CB3rzbqubdwyd+kFryvz3JZzl0qZ97r2/c+ppMyz/jzXzRq3LDDWYvdFxzYL3xeN1rXz1HXB++GCdS10P8weKUmmMpWJajwT1Xgmq4npy7N/zl2+0HUTmWy7PFGNZ6qav7HjlsbWHNr6hHzp9i+b9/qlas+z9teGE9V4djbHZl7rjg6cf9072tydnc2xDMzTCO1Czk6dydGJR3Ni8rFV1b0UVVr3T1VNpUo163KVKlPVZNvlqVSZXq+aXntm3am2dapU1VRrrOnL58euZi0/f/nc8qk5l+fse7rGqentWkumZi7PqqOjxql51pl7m8/vq1XL5OwaZ7abezvbb8+5ujaqVT+XrQVHP5qJC/z+uVCTXdaWkpKLhy7LRYMXz2pmvFDD9U67mnv6VCn0n8ZoAAAAzDW4yJt6w/4aLQAAAAAAAPTY8Y75lfwnXec2nWMCAADMqzk1mdHx0xk7ezqjO56QsV1Py86BXSv6UvxyjDZ35/Fbn5gdzbGe7mdT6mh2tvi623pXxzKMDV6UscGL6i6jL4Yaw9kzdEn25JK6S1mW01Oncqyt0dxjk8dSVb3s017lZFuTuyMP/VWODo7k+GKfe06yY2B0TqO7LY2t6Wy+M5XJfOHMvbnn9J154Oz9qdZIz/nBMtTWnGz3TKOSRuY2xWqURnYMjE03NNudnc1dGWqs42YPXdIojexsjmXncp5ftj6+dwV1aC7S6Oqa7YeyfWSNN9lerCHHQH+eUxqlkR3NsaW9hqimkpMLtaLbnmx5XFdr66apaionJ4/n2OThHJ04nGMTh3OmOpOLmntzYOSa7GiOtlZ812sWHmSR2/ekHbfMXD4+eSz3n/5sHhp/IANlIGPNi2YyaGtj+0wzqpXfmPHkgXcmxz6e7P5Hyd7b+tYwFuitocZw9g7tz97M3+Sa9WVu87bOBmtzG8bNadDWNn++udu5y53N3dqbwc1u2DZfk7jFmtu1jz3c2DL9PHZRxgZ3Z1tjx+qfy+r2plb9bzx7asH/BH7J5/93Rpqnky/96WSe93Q+d+buvPfYO1PSSLWBG+GtNRcNXtxqZjtyba4cuSYHRg5lpOE7uzAfjdEAAACYa3CRv8i1dUf/6gAAAAAAAIDNaa02RvulJP99mdscSvK2LuwbADagdf7lO0iS0ScmRz86d/nup/S/lg3iy8demNtGn9vfnR75WPLntyVpJdPw1MT5hHrKS5N9r+xvPXTfwDIaoy1nXTa1kcaWjAxtyb6hS+sp4O6PJ/e+OROlZLy0NQm76KnJV/5ZkmSwMZRmGVz20KenTuW+05/JvafvzOfO3J0zU6eXtX0pjewc2DXTROjczx3N0TSySBOpecYZLiPrv2kDKza03r8FvpzGnMs1OLqy7RZr5LbGNUoj25s7s725M5cOX9nTfW0f2Jnrtt2U63JTb3bQGEwufX5rAmDNKqWkZKDVlNdL0rVl3zOTB9+96CrPf/gf0mxMJhe9ZMF1vm3/P8/41NlMVOPdrrDrHhl/KB8/8YF87MQHctepT2RqkQbD3bR3cH8uGbo8zXmayw2UZnY2d2X0+GRGf/EnM3rkTEaPnM7242dTzvXafvZL0/jh/zSzvubVsHTr/VdiAAAAemGxv5y2dXv/6gAAAAAAAIDN6WjH/NZSyraqqk4sY4x9HfNHVllTqqp6MMmDy9nGF3dhAynNpJqouwrYWK78xuTj/77uKmB1nvAjyXu/fe7y6364/7VsEIONwQxm+U18VmV4TzLleX7NOfAN3RtrOY1petnEBrrp0CuTe9+cZlWl2f67yqHvSQa2rWrokcaWXLv1hly79YZVFgmrMzhw4XVqV1ULX9dc3WMxSXLTv0v+97+au/xJ/2H1YwMArFfX/fAFG6MNlMlUD2+5YE+7wcZQBjPUvdp65PKBbbl85GCed9FLcmryZP7h5IfzsRPvz12nPpGTk4v8N/rpLyaZmv+6kf0zF0uSnc1duXz4qlw+clWuGL46lw0fzJYlNJCvpu5J9XffN/+VE400Vvk7KmxWGqMBAAAw12KN0bZojAYAAAAAAAC9VFXVI6WUw0l2tS0+kOQTyxjmyo75T6+6MGBzu/kXkv/1qrnLH/8D/a8FNopDr5y/Mdr1P9r/WmClDnx98plfTx581/llFz87ufxFtZXECgxsqbuCze2G/yv52E/NXX7tPK+9VmoJX+Jd0bpQp4u/Mjn0Xcldv3p+2eUvTq58WX01QZet+z860I3GaAdfnvzDf5xuaDFt25XJFS9Z/dhzrPPjfc7Wy5OT99ddBQDQS/uf13oPbjFTSfXpXRvlFc4sWwa25kk7bsmTdtxy4ZXf/XXJ/W+b/7qXL9Lkdzmaa7+xHKxHjboLAAAAYA0aXPivTZatO/pYCAAAAAAAAGxanU3Qrlnm9ldfYDyA5bn8RcnQrtnLGoPJwW+upx7YCHZckzzxtbOXjd2YXPdD9dQDK9Hcljzrj5NbfqPVLPPL/mvyrD9KmhptrSuDowtft/vJ/atjs3rc9yc7nzB72TXfnYzd1L19NJfR7Kwx0L39Qi81BpKn/kry3L9JnvxzybPfmTz9d5OBRf5ANNB9izU/60azzW0Hkuf8dXL1K5JdX9pqiPicv05G9q5+7E6X/ePuj1mHm/7d/Ms14QaAjWNguPUe3NDuBVep/qiZfHF7H4tao677F/MvP/TK7u1jyO+h0AvNugsAAABgDRpcpEP9li781SYAAAAAAADgQj6a5Na2+S9L8odL2bCUsi3JjfOMB7ByW/Ynz/6r5O+/P3nk75KxJyY3/kRy0T+quzJY3278t8n+r0oe/J/J9kPJpS9IBv3hQtaZ5pbk6m9L8m11V8JKNbcmF39l8sV3zl4+ckmy58vqqWkz2XJJq7HTfb+fPPapZO8zWo1ZSunePgZGlr7u0EXd2y/0WinJ3ttaE1CPK74+ef8/n7t86+WLN01bjp3XJrf8WnfGSpLrXp188mfmLr/2Vd3bR50u+5pk21XJic+eXzY4mlzl9ToAbCgDI0lzcOHrP99I9lf9q2et2nNbsufW5OE7zi9rbu/ua7/mIt/HBVZMYzQAAACWZ9fFdVcAAAAAAAAAm8GfJvnutvlnLWPbZ2T2Z0Q/WFXVF7tRFKxpo09Mjs7TA3DfM/tfy0a166bkue9OqqmkNOquBuqz43GtxjWdDn7Lysbbe2trAqjTU/5j8s7nJKcfbM03hpOnvcFzfr8M706u+c7ejV8aySXPTR7488XX2/uMZGi0d3UAsPFsvTS55DnJA38xe/lV39bdJp/d9PgfSO5/a3L8rvPLDn1n672ljWBoNHnuXycffm3yyPtat+v6H01Gn1B3ZQAA/dcYSL7iHcnHfip56N3J9muSx39/svsp3dvHoMZo0AsaowEAADDX3suTXfuSww/OXj40nDz1OfXUBAAAAAAAAJvLO5KcSrJlev7LSinXVVX1ySVse3vH/B90szBYs65/TfK33zp3+XWv7n8tG50GKWx2T3h18nffM3f5tf+0/7UAdMvYlyRf/ZHkC+9IJk4k+5+XbL+67qropht/Innk75Lxo/NfP7w3ufkX+lsTABvDM34ved93JZ//46S5Nbnq9uTG/7vuqha27YrkeXck9/xucvzOVlP9y1+8dhu5rcTWy5Jbfq3uKgAA1obB7cmTfqp34zcHezc2bGIaowEAADBHaTRSfc13JP/138++4rkvT9m2s56iAAAAAAAAYBOpqupkKeUtSdq7PL0mySsW266U8rgkL25bNJHkTd2vENagA/8kufd3k8/9YduylyWXvqC+moCN6apvTz73P5LPvf38suteney5tb6aALphZF9y1TyNZtkY9jw1+ar3J/f9fnL2cHLZC5OtB5IH/ixpjLSa4Y3srbtKANajwZ3J09+cTE0kZWB9NBgb2Zc8/vvqrgIAoLequgvYHEopixzqdfDaGNYojdEAAACYV/nOH0+Gt6b6s99KpqaSZ74o5TtfX3dZAAAAAAAAsJn8eJJvTHLuT0zfXkr5g6qq3j7fyqWUkSS/nmSobfEbqqq6q6dVwloxMJw84/eSL/x5cviDye6bk0uenTR8ZBrosnN58/AdyZGPJHtuSXY9eX18+R+AzW3HoeT6H5m97NAr66kFgI3HezAAAAB0SaPuAgAAAFibSikp3/aaNH7zw2m86aNp/NOfTGn6j0oAAAAA6KkX3j7/8i3b+loGALA2VFX1mST/X8fit5RSvq+U0t78LKWUJyT5yyS3ti1+JIm/fsTm0hhMLvvq5In/Orn0+b6QC/ROo5nse2byuO9Ndj9FUzQAAGBFXnHb/L9LjAzOuxgAAGZ8yy2Lvy9dvvVf9qkScsmV8y4uX/MdfS4ENg6N0QAAAAAAAAAA1ojyklfNv/w7fqzPlQAAa8iPJvmTtvnBJL+Q5L5Syp+UUn63lPL3ST6W2U3RziZ5cVVVX+hfqQAAAADAcnzrLWXePss/8nzNlwEAWNwrnz7/a8bXPvSTyeBQ8oyv7XNFm9izXzp32Z5Lkxue1v9aYIPQGA0AAAAAAAAAYI0oj3tS8op/M3vhU5+bvPh76ikIAKhdVVWTSV6a5M0dV+1L8lVJ/kmSpyRp/9T7g0leVFXVX/elSAAAAABgRfaPlfzat89ujvbs65LXaIwGAMAFXL235Ke/YfbrxltP3pEfOvlfUn7yd1N27aupss2nvPLHkud+U9KYbuV06VUpP/vHKQMD9RYG61iz7gIAAAAAAAAAADiv8R2vTfXMr0s+ckdy8AnJl3xZSnOw7rIAgBpVVXU8yTeWUt6S5NVJbllg1UfTaqD2uqqqHupXfQAAAADAyn37rY089/oq7/5UlUP7Sp58IBloaIwGAMCFvfp5jbzgiVXe/ekqh7YczTOGhjJ8/adThobrLm1TKYNDKT/2xlQ/9HPJkYeTy69JKV7Tw2pojAYAAAAAAAAAsMaUa74kueZL6i4DAFhjqqp6S5K3lFKuSvLkJJcm2ZbkgST3JHlPVVVnaywRAAAAAFiBS8dKvvGpGicAALB8119acv2lJcmuJE+ru5xNrezYlezYVXcZsCFojAYAAAAAAAAAAACwjlRV9dkkn627DgAAAAAAAAAA6LZG3QUAAAAAAAAAAAAAAAAAAAAAAAAAaIwGAAAAAAAAAAAAAAAAAAAAAAAA1K5ZdwFsLKWUwSS3JTmQZH+S40k+n+SDVVXdXWNpAAAAAAAAAAAAAAAAAAAAAAAArGEao21ipZTfSfKyjsX3VFV1cAVj7U3y+unxdi+wzh1Jfraqqt9b7vgAAAAAAAAAAAAAAAAAAAAAAABsbI26C6AepZSvzdymaCsd6wVJPprkVVmgKdq0W5O8pZTym6WUbd3YNwAAAAAAAAAAAAAAAAAAAAAAABtDs+4C6L9SyliS/79LYz0ryVuTDLUtrpJ8IMlnkowl+dIke9qu/+YkO0spX1dV1VQ36gAAAAAAAAAAAAAAAAAAAAAAAGB9a9RdALX4mSSXTl9+bKWDlFIuT/L7md0U7T1Jbqiq6uaqql5aVdXzklye5AeSjLet9zVJfmKl+wYAAAAAAAAAAAAAAAAAAAAAAGBj0RhtkymlPCfJd0zPTiT5sVUM9/oku9rm70jynKqqPtG+UlVVZ6qq+vkkL+3Y/l+UUq5cxf4BAAAAAAAAAAAAAAAAAAAAAADYIDRG20RKKduS/Grbop9N8qEVjnVtkm9vW3Q2ye1VVZ1eaJuqqt6a5DfaFg0ned1K9g8AAAAAAAAAAAAAAAAAAAAAAMDGojHa5vLvkhycvvyZJD++irFenmSgbf73q6r69BK2+w8d8y8tpYysog4AAAAAAAAAAAAAAAAAAAAAAAA2AI3RNolSyq1Jvrdt0fdUVXVqFUO+uGP+15eyUVVVn0jyvrZF25I8bxV1AAAAAAAAAAAAAAAAAAAAAAAAsAFojLYJlFKGk/xazt/fv1FV1V+sYrxLktzUtmgiyXuWMcS7OuZfsNJaAAAAAAAAAAAAAAAAAAAAAAAA2Bg0RtscfjzJ46cvP5Tk1asc74kd8x+uqurEMra/o2P+hlXWAwAAAAAAAAAAAAAAAAAAAAAAwDqnMdoGV0p5cpIfblv0g1VVPbLKYa/vmL9zmdvfdYHxAAAAAAAAAAAAAAAAAAAAAAAA2GQ0RtvASinNJL+WpDm96E+rqnpTF4a+pmP+3mVuf0/H/EWllF2rqAcAAAAAAAAAAAAAAAAAAAAAAIB1rnnhVVjHfjTJTdOXTyR5VZfGHeuYf3A5G1dVdbyUcjrJSNvi0SSHV1tYKWVfkr3L3OzQavcLAAAAAAAAAAAAAAAAAAAAAADA6miMtkGVUq5P8m/aFr22qqq7uzT89o75UysY41RmN0bbsfJyZvlnSV7XpbEAAAAAAAAAAAAAAAAAAAAAAADok0bdBdB9pZRGkjckGZ5e9P4kP9/FXXQ2Rju9gjE6m6l1jgkAAAAAAAAAAAAAAAAAAAAAAMAmojHaxvQDSW6ZvjyR5Durqprs4f6qPm0DAAAAAAAAAAAAAAAAAAAAAADABtWsuwC6q5RydZKfaFv0s1VVfajLuzneMb9lBWN0btM55kr9UpL/vsxtDiV5W5f2DwAAAAAAAAAAAAAAAAAAAAAAwApojLaBlFJKkl9NsnV60WeS/HgPdrVmG6NVVfVgkgeXs03rsAEAAAAAAAAAAAAAAAAAAAAAAFCnRt0F0FXfleQr2+a/p6qqUz3Yz9GO+b3L2biUsj1zG6MdWVVFAAAAAAAAAAAAAAAAAAAAAAAArGvNugugq17fdvmPk9xZSjl4gW0u6ZhvzrPN56uqOts2/+mO669cYn0Lrf9oVVWHlzkGAAAAAAAAAAAAAAAAAAAAAAAAG4jGaBvLlrbLX53ksysY47J5tvvSJB9qm/9Ex/XXLHMfV3fMf3yZ2wMAAAAAAAAAAAAAAAAAAAAAALDBNOougHXpox3zN5ZSti5j+9suMB4AAAAAAAAAAAAAAAAAAAAAAACbjMZoLFtVVV9I8uG2Rc0kT1/GEM/qmP+T1dYEAAAAAAAAAAAAAAAAAAAAAADA+qYx2gZSVdVYVVVlOVOSr+gY5p551vvQPLv7g475VyylxlLKdUme1rboRJI/W/KNBAAAAAAAAAAAAAAAAAAAAAAAYEPSGI2V+q0kk23zLymlXLuE7V7TMf+7VVWd7l5ZAAAAAAAAAAAAAAAAAAAAAAAArEcao7EiVVV9OslvtC0aSvLGUsrIQtuUUl6U5Pa2RWeTvL4nBQIAAAAAAAAAAAAAAAAAAAAAALCuaIzGarwuyeG2+VuT/EUp5br2lUopw6WU70/y3zu2/5mqqu7pcY0AAAAAAAAAAAAAAAAAAAAAAACsA826C2D9qqrq/lLKS5K8I8nQ9OLbkny8lPL+JJ9JMprkyUn2dmz+R0le269aAQAAAAAAAAAAAAAAAAAAAAAAWNs0RmNVqqp6VynlxUnemPPNz0qSm6en+fx2ku+qqmqy9xUCAAAAAAAAAAAAAAAAAAAAAACwHjTqLoD1r6qqP07yxCS/nOTwIqu+N8k3VFX18qqqTvSlOAAAAAAAAAAAAAAAAAAAAAAAANaFZt0FUK+qqt6VpHRhnAeTvKqU8gNJbktyZZJLkpxI8rkkH6yq6rOr3Q8AAAAAAAAAAAAAAAAAAAAAAAAbk8ZodFVVVWeT/FXddQAAAAAAAAAAAAAAAAAAAAAAALC+NOouAAAAAAAAAAAAAAAAAAAAAAAAAEBjNAAAAAAAAAAAAAAAAAAAAAAAAKB2GqMBAAAAAAAAAAAAAAAAAAAAAAAAtdMYDQAAAAAAAAAAAAAAAAAAAAAAAKidxmgAAAAAAAAAAAAAAAAAAAAAAABA7TRGAwAAAAAAAAAAAAAAAAAAAAAAAGqnMRoAAAAAAAAAAAAAAAAAAAAAAABQO43RAAAAAAAAAAAAAAAAAAAAAAAAgNppjAYAAAAAAAAAAAAAAAAAAAAAAADUrll3AbAGDLXP3HnnnXXVAQAAAAAAAACwKvN87mFovvUAoI98Rg8AAAAAAAAAWPd8Pq9/SlVVddcAtSqlfG2St9VdBwAAAAAAAABAD7yoqqq3110EAJuXz+gBAAAAAAAAABuUz+f1SKPuAgAAAAAAAAAAAAAAAAAAAAAAAAA0RgMAAAAAAAAAAAAAAAAAAAAAAABqV6qqqrsGqFUpZTTJl7ctui/J2VUMeSjJ29rmX5TkrlWMB7BccghYC2QRUDc5BNRNDgF1k0PAWiCLgLpt1hwaSnJF2/z/rKrqaF3FAIDP6AEbkBwC6iaHgLrJIaBucghYC2QRUDc5BNRts+aQz+f1SbPuAqBu0+Hy9m6NV0rpXHRXVVUf69b4ABcih4C1QBYBdZNDQN3kEFA3OQSsBbIIqNsmz6EP1l0AAJzjM3rARiOHgLrJIaBucgiomxwC1gJZBNRNDgF12+Q55PN5fdCouwAAAAAAAAAAAAAAAAAAAAAAAAAAjdEAAAAAAAAAAAAAAAAAAAAAAACA2mmMBgAAAAAAAAAAAAAAAAAAAAAAANROYzQAAAAAAAAAAAAAAAAAAAAAAACgdhqjAQAAAAAAAAAAAAAAAAAAAAAAALXTGA0AAAAAAAAAAAAAAAAAAAAAAAConcZoAAAAAAAAAAAAAAAAAAAAAAAAQO00RgMAAAAAAAAAAAAAAAAAAAAAAABqpzEaAAAAAAAAAAAAAAAAAAAAAAAAUDuN0QAAAAAAAAAAAAAAAAAAAAAAAIDaaYwGAAAAAAAAAAAAAAAAAAAAAAAA1K5ZdwGwAT2U5PUd8wD9JIeAtUAWAXWTQ0Dd5BBQNzkErAWyCKibHAKAjclzPFA3OQTUTQ4BdZNDQN3kELAWyCKgbnIIqJscoqdKVVV11wAAAAAAAAAAAAAAAAAAAAAAAABsco26CwAAAAAAAAAAAAAAAAAAAAAAAADQGA0AAAAAAAAAAAAAAAAAAAAAAAConcZoAAAAAAAAAAAAAAAAAAAAAAAAQO00RgMAAAAAAAAAAAAAAAAAAAAAAABqpzEaAAAAAAAAAAAAAAAAAAAAAAAAUDuN0QAAAAAAAAAAAAAAAAAAAAAAAIDaaYwGAAAAAAAAAAAAAAAAAAAAAAAA1E5jNAAAAAAAAAAAAAAAAAAAAAAAAKB2GqMBAAAAAAAAAAAAAAAAAAAAAAAAtdMYDQAAAAAAAAAAAAAAAAAAAAAAAKidxmgAAAAAAAAAAAAAAAAAAAAAAABA7TRGAwAAAAAAAAAAAAAAAAAAAAAAAGrXrLsA5iqlDCS5Jsn1SS5NMprkTHZQCE0AACAASURBVJLDSe5K8vdVVZ3o8j4Hk9yW5ECS/UmOJ/l8kg9WVXV3N/fVL6WUG5I8KcneJMNJHkhyf5L3VFV1us7a+qmUsivJDUmuTbI7yUiSI0keSvL+qqruqrG8OUopV6V1v12aZHuSLyS5J8kdVVWN11nbZiKHukMOtcghVkoWdYcsapFFC+7H+bEIOdQdzrOW9ZZDrA1yqDvkUIscmq2UckVax+LyJHuSbElyNsnRJPemdUweqq/CtUEOdYccapFDrJQs6g5Z1CKLWAk51B1yqEUOzc/5AdTBc3x3yPCW9fYc77Mxa4Mc6g451CKHWAk51B1yqEUOLbgf58ci5FB3OM9a1lsOsTbIoe6QQy1yaDafz1s6WdQdsqhFFrEScqg75FCLHGIl5FB3yKEWOTS/dX1+VFVlWgNTWoH5g0n+KK1f7qtFpokkf5LkhV3Y794kv5TkkUX2954kX7/K/Vyd5GVJfjrJu5Ic69jH3V06jjuS/Oskn1vk9hxL8t+SHKrx/u7Z8UgymOT5Sf5Tko9e4Fyqpo/Vv01ySc2PgW9IcscidT4yfa7uWcHYFzoGF5oO1nls+ngfyKHuHEc5JIfaxzzYhQxqn26v8xj16X6QRd05jrJIFq3786PG+0AOdec4rovzTA7Vdn5sS/L0JD+U5LeSfCrJVMe+bq/rONQ9ySE5JId6djyuTfJTSf4qrf/UuNDxqJJ8IMn3Jhmu65jUdD/Ioe4cRzkkh+YbfynZs9h0sK5jU8N9IYu6cxxlkSxqH/dgF3Kofbq9rmPUp/tBDnXnOMohObTuzw+TybSxJs/xmyvDPcfPW7fP6NU8ySE5JId8Rq/uSQ7JITnk83l1T3JIDm3mHOrj+eHzeYsfHznUneMoh+RQ59g+n7e84yWLunMcZZEsmm/8peTPYtPBuo5Nn+8HOdSd4yiH5FD7uAe7kEHt0+11HaM+3Q9yqDvHUQ7JoXV/flzwdtRdgKlKkjet4gntD5NcvML9viDJF5exr99Msm0Z4z8ryTsu8KTQtQdmkqel1YVzqbfnRJJX9fF+7vnxmD4Gj67wXDqc5FtqOP+3J/ntZdT5QJLnL3MfK318nZsO9vu41HA/yCE5JId6kEPp/i+yL+v38enzfSGLZJEs6kEWrafzo+5JDsmhzZhD/Tw/0nrj+CNpvSF9oX3d3q9jsJYmOSSH5FDvzo8k37mKx9c/JHlav45JnZMckkNyqLfnxyoeX+emg/06LnVOskgWyaKeHY+DXcih9mnDvl8dOSSH5NCmPz9MJtPGnDzHb44M9xy/YM0+o7cGJjkkh+SQz+jVPUUOySE55PN5NU9ySA5txhzq5/kRn89byjGSQ3JIDvXo/IjP5y3nWMkiWSSLenh+rOLxdW462K/jUtckh+SQHOrZ8TjYhQxqn7xXLYeW8hiUQ3JoXZ4fy5maYS143ALLP5fk02mFazOtrn83JWm0rfOPk7y7lPLlVVU9sNQdllKeleStSYbaFldpdVn/TJKxJF+aZE/b9d+cZGcp5euqqppawm6elOR5S61pNUopz0mrG+hwx1X3JPlwWg/Cy9N68A5OX7c1yS+VUhpVVf1iH8rsx/HYm2TXPMvPpvXm9gNpdUy9KMnN0z/PGUvy30op+6qq+tke15kkKaUMJHlzkq/uuOqhJB+crvVQWudimb7u4iRvK6U8p6qqv+lHnZuEHFolOTRDDvXOybQ6Wm9ksmiVZNEMWTT/ftbD+VE3ObRK6+Q8k0Oz9e38SPLyJKN92td6JYdWSQ7NkEMXVqX1Jv+daf3Hwsm0/mLuVUluyPnzI2k9Nv+ylPLCqqr+Z78L7TM5tEpyaIYcYjVk0SrJohmyqHc2+vvVcmiV5NAMOTSPdXJ+ABuT5/hVWicZ7jm+wzr7bMxGJ4dWSQ7NkEO94z0PObQoOTRDDs2/n/VwftRNDq3SOjnP5NBsPp+3tsihVZJDM+TQhfl83sJk0SrJohmyiJWSQ6skh2bIod7xXrUcWpQcmiGH5rFOzo+lq7szm6lKkr/P+S56H0jyfUkOLbDuZUl+JXO77/11krLE/V2euV0P/ybJEzrWG07yz9N60Lev+1NL3M8PzlNnleR0Wm9odKVjYVrdUzu7It6Z5LnzrLsryS90rDs537o9uJ97fjzSeiI/N8ZjSd6Q5NlJtsyzbkny4rTCq7Omnh+P6Rp+umO/Z6fP/6GO9a5PckfHug8n2b/E/bRv997pc2Y5U7Mfx6POKXJIDsmhnuRQWr94XShjFpr+pmN/b+zHMalziiySRbKoZ6+J1sv5Ufckh+TQZsyhfp0f0/s6ssC+7p/nutt7fdvX4iSH5JAc6un58cokn0zrtdcLk+xaZN2xJP8irf8Aad//55KM9vqY1DnJITkkh3r+eqh9LO9VL3ycZJEskkW9OR7er176sZJDckgObfLzw2QybczJc/zmyHDP8fPW6zN6a2SKHJJDcqgnORTveSznvpBDckgO9ej10Ho5P+qe5JAc2ow51K/zY3pfPp934WMkh+SQHOrd+eHzeUs/VrJIFsmi3r4mah/Le9XzHyM5JIfkUG+Oh/eql36s5JAckkOb/PxY1m2quwBTlST/K61uezcvY5t/Ns8J/41L3PYNHdu9J8nIIut/3TwPrCuXsJ8fnA79Dyb51STfneTJaXUMfFYXH5i/3THWp5Psu8A2/7Jjm48lGejx/dzz4zEd3F9M8uok25a4zUVJPt6x/09kiS8EVnE8rs7cFwUvWmT9LZn7H42/vMR9tW/zrl7ervU6ySE5JId6m0MrqO2yJBMd+3pGL4/HWphkkSySRb3LovVyftQ9ySE5tElzqC/nx/S+jqT1lxb+R5LXTx+ni6eve1fHvm7v5e1eq5MckkNyqKfnx+AKtnlSkuMdNbyml8ej7kkOySE51PPXQ+1jvauXt2s9T7JIFsmi3mbRCmrbdO9XyyE5JIecHyaTaWNOnuM3R4Z7jp+zX5/RW0OTHJJDcqi3ObSC2rznsbRt5ND5/cih8/uQQ+v0/Kh7kkNyaJPmkM/nraFJDskhOeTzeWthkkWySBb5jF7dkxySQ3LI5/PqnuSQHJJDzo9l3aa6CzBVSXJwhdu9pePk+h9L2ObajifGM0muXcJ2b+zY168tYZtdCz0hdDGork6r42D7WE9f4rbv7NjuO3p8P/fjeOxdamB3bHfTPMfxH/X4ePxGx/5+fQnbPG76nD23zXiSq5ewXft+3tXL27VeJzkkh+RQb3NoBbX9647aPtXLY7FWJlkki2RRb7JoPZ0fdU9ySA5t0hzq+fFoG2/Bv6AbH7w6dxwOrnA7OSSHOseRQ92r79921PDeftfQ59t7cIXbySE51DmOHJp/vPax3tXL27WeJ1kki2RRb47HKmrbdO9XyyE5JIecHyaTaWNOnuM3R4Z7jp+zT5/RW0OTHJJDcqi3ObSC2rznsfTt5JAc6hxHDq3T86PuSQ7JoU2aQz6ft4YmOSSH5FBvjscq69tUn8+bvs0HV7idLJJFnePIovnHax/rXb28Xet1kkNySA715nisojbvVS99OzkkhzrHkUPr9PxYztQItauq6u4VbvqLHfNfsYRtXp5koG3+96uq+vQStvsPHfMvLaWMLLZBVVWHq6o6vYSxV+OFyazz+L1VVf3NErf9fzvmX9GdkubXj+NRVdVDVVWdWMF2/ztJ53Fbyvm0IqWULUm+oWNx5zk2R1VVn0ry1rZFzbTOaVZJDq2KHJq9Dzm0SqWUkrnnwhu6uY+1ShatiiyavQ9ZNNu6OT/qJodWZd2cZ3Jozj77cX6c29cX+rGf9UwOrYocmr0POdQ9f9wxf00tVfSJHFoVOTR7H3KIFZNFqyKLZu9DFq3SZn2/Wg6tihyavQ85NNu6OT+Ajclz/Kqsmwz3HH/eWv5szGYlh1ZFDs3ehxxaJe95LJsckkOd+5BDs62b86NucmhV1s15Jofm7NPn89YQObQqcmj2PuRQ92yqz+clsmiVZNHsfcgiVkQOrYocmr0PObRK3qteNjkkhzr3IYdmWzfnx3JojLa+fbBjfkspZewC27y4Y/7Xl7Kjqqo+keR9bYu2JXneUrbtsWd2zL9jGdv+ZZKzbfO3llL2r76kdavzfLq0h/t6fpKtbfN/+3/au/dgafK6vuOfHyD3y6oIiAhLUAmKGhAT8RI3BiyIJcgl3pVVvF8qmphKoaRCNGIuXquSUqIoipdIEBQFgRBdMBqvtQgoElFBUZY74i677C788secfc6cnjNzpmd6unu6X6+q80f3M9PT5zzf5z3n+Z2uPrXWP9nyuc2ZfXw3p8SOdEiHuqRDC5+Z5AFL2zdn8RvrWE+LtKhLU2yR+Tg8HTJnXeqzQ0yHDulQl3TorHc2tu8yyFmMnw7pUJd0iF1pkRZ1SYsWrFe3o0M61KUpdsh8AMfKe7yGd2mKP4/m8HRIh7qkQwvWPNrRIR3q0hQ7ZD4OT4fMWZemuPbK4emQDnVJh85yfd72tEiLuqRF7EKHdKhLOrRgrbodHdKhLk2xQ5OcDzdGO243n7PvtuseXEq5V5JPbDz/N1u83lWN7Ue3eO6h3Kex/Zptn1hrfV+S1y/tulXG8TkNpTlPa2epA49qbF/V4rm/kbPn+pBSyj33PiN2pUM61CUdWnhyY/uFtdZrOjz+FGmRFnVpii0yH4enQ+asS312iOnQIR3qkg6ddb/G9t8Mchbjp0M61CUdYldapEVd0qIF69Xt6JAOdWmKHTIfwLHyHq/hXZriz6M5PB3SoS7p0II1j3Z0SIe6NMUOmY/D0yFz1qUprr1yeDqkQ13SobNcn7c9LdKiLmkRu9AhHeqSDi1Yq25Hh3SoS1Ps0CTnw43RjttHNbZvTvL2DY9/cGP7VbXW61q83m81tj+uxXMP5UMa2+9u+fzm4z9+j3M5ds15evMBX6s5i/932yeezOyrG7vHMItzpUM61KXZd6iUcrckT2jsfmYXx544LdKiLk2xRebj8HTInHWpzw4xHTqkQ13SobO+vLH964OcxfjpkA51SYfYlRZpUZdm3yLr1TvRIR3q0hQ7ZD6AY+U9XsO7NMWfR3N4OqRDXZp9h6x57ESHdKhLU+yQ+Tg8HTJnXZri2iuHp0M61CUdOsv1edvTIi3qkhaxCx3SoS7NvkPWqneiQzrUpSl2aJLz4cZox+2Jje3fr7V+YMPjP7ax/fpzH7Xen11wvCHc2Ni+XcvnNx8/hs+pd6WUuyZ5ZGP37x7wJR/U2O5zFu9bSvmJUsoflVLeVUq5sZTylpPtny6lfE0ppRl81tMhHerEzDq0yRclucPS9puT/GpHx54yLdKiTky4Rebj8HTInHVigA4xHTqkQ53QobNKKd+Y5EuXdt2c5AcHOp2x0yEd6sTMOmStuntapEWdmFmLNrFe3Z4O6VAnJtwh8wEcK+/xGt6JCf88+jzWPbqlQzrUiZl1aBNrHu3pkA51YsIdMh+Hp0PmrBMTXnvl8HRIhzqhQ2e5Pq81LdKiTsysRdaqu6VDOtSJmXVoE2vV7emQDnViwh2a5Hy4MdqRKqXcOcmTG7uff8HTmncs/MuWL/vGxvaHllI+uOUxuvaOxvaHt3x+8/EP3ONcjtnXJrnj0vbf5kB31z/5T2LzP4ptZ7H5+I9u8dz7J7kyiwhfluSDktzjZPtLkjwjyV+WUn7g5N8Za+jQJTrUjTl1aJPmv6mfrLXe3NGxJ0mLLtGibky1RebjgHToEnPWjd46xHTo0CU61I1Zd6iUcqdSygNLKU8qpbw8yX9tPOQptdZXDXFuY6ZDl+hQN+bUIWvVHdKiS7SoG3Nq0SbWq1vQoUt0qBtT7ZD5AI6O9/hLNLwbU/159Hmse3REhy7RoW7MqUObWPNoQYcu0aFuTLVD5uOAdOgSc9aNqa69ckA6dIkOdWPWHXJ93u606BIt6sacWmStuiM6dIkOdWNOHdrEWnULOnSJDnVjqh2a5Hy4Mdrx+p4k91rafneSH7vgOZc1tt/a5gVrrdcmuaGx+25tjnEAr21sf8q2Tyyl3DfJvRu7h/58eldKuTzJv23s/qFaa/NukF1pzuF7a63XtTxGc3a7/nu7U5JvSfIHpZSP6/jYU6JDCzq0Jx1aKKV8fJKHNXY/c9/jzoAWLWjRnibeIvNxWDq0YM72NECHmA4dWtChPc2tQ6WUy0opdfkjybVJ/iTJs5L846WHX5vka2qt3zvAqR4DHVrQoT3NrUNbsla9PS1a0KI9adGC9eqd6NCCDu1p4h0yH8Ax8h6/oOF7mvjPo3dl3WM7OrSgQ3vSoQVrHjvRoQUd2tPEO2Q+DkuHFszZnia+9sph6dCCDu1pbh1yfV7ntGhBi/Y0txZtyVr1dnRoQYf2pEML1qp3okMLOrSniXdokvPhxmhHqJTyuCTf1Nj9HbXWd17w1Obdiq/f4eWbz7nLDsfo0ssb208opdzx3Eeu+vJz9g39+fSqlHLbJD+fs5/3G5L85wO+7FBzeHOSq5I8Ncljkjw0i9/a9JAkj03yvVn9ZuZjkryslHK/Hc5x0nToDB3aw8w6dJHmnapfXmt9fQfHnSwtOkOL9jCDFpmPA9GhM8zZHgbqEBOgQ2fo0B50aK23JPmOJPevtf7o0CczRjp0hg7tYWYdslbdMS06Q4v2MLMWXcR6dQs6dIYO7WEGHTIfwFHxHn+Ghu9hBj+PXmbdo0M6dIYO7WFmHbqINY8WdOgMHdrDDDpkPg5Eh84wZ3uYwdorB6JDZ+jQHnRoLdfnbUGLztCiPcysRdaqO6RDZ+jQHmbWoYtYq25Bh87QoT3MoEOTnA83RjsypZRPTPJTjd0vTfLDWzy9Ge7m3Sm30Qx385h9e2EWd/O8xWVJnnbRk0opH5nk2875o1uXUu7QzakdhR9L8g+Xtt+f5Ek7/DakNoaYw6cm+Yha6z+ptX53rfWXa61X11pfX2t9Za31BbXWf53kfkn+Y5K69Nx7JXleKaXscJ6TpEMrdGg/c+nQRiffSH9pY7e7e2+gRSu0aD9Tb5H5OAAdWmHO9jNEhzhyOrRCh/ajQ+e7Z5KvS/L1pZS7Dn0yY6NDK3RoP3PpkLXqjmnRCi3az1xatJH16nZ0aIUO7WfqHTIfwNHwHr9Cw/cz9Z9H38K6R4d0aIUO7WcuHdrImkc7OrRCh/Yz9Q6ZjwPQoRXmbD9TX3vlAHRohQ7tR4fO5/q8C2jRCi3az1xaZK26Qzq0Qof2M5cObWStuh0dWqFD+5l6hyY5H26MdkRKKffNYhCXY/nGJF9aa63nP2ujvp5zMLXWv0vyQ43d31ZK+RfrnlNKuU+SFye527rDdnR6o1ZK+a4kX9bY/ZRa6yt6PpWDz+HJf16bd+8+73E31FqfkuSbG3/00CRf1OY1p0qHVunQ7ubUoS08NsmHLm3/bZLndvwak6FFq7Rod3Nokfnong6tMme7G1GHOCI6tEqHdjfjDr0nyf2XPh6QxRrQ45P8QJK3nTzuI5N8Z5JXl1I+eYDzHCUdWqVDu5tTh6xVd0uLVmnR7ubUoi1Yr96SDq3Sod3NoUPmAzgW3uNXafjuRvQe7xq9I6JDq3Rod3Pq0BaseWxJh1bp0O7m0CHz0T0dWmXOdjeiDnFEdGiVDu1uxh1yfd6etGiVFu1uTi2yVt0dHVqlQ7ubU4e2YK16Szq0Sod2N4cOTXU+bjP0CbCdUso9kvyvJB+xtPuaJI+stb7t/GetuLaxvcud+ZrPaR5zCE9P8uic3pmxJPnBUsoTs7g76iuzuBPnvU8e9/U5ffN7U5L7LB3rhlrryp0+SymXb3sytdY3tDr7AZRSviWLu14v+/5a63/Z8vmXb/ta53w9Rj+Htdb/Vkr57CSPWdr9DUl+tsvXOTY6tJEOtaRDK57c2P7ZWmvzLtJEiy6gRS3NrEUHn4+50KGNdKilgTvEkdKhjXSopTl3qNb6gSRvOOePrk7y/FLKU5P8pyTfdLL/vkleVkr5tFrra/o5y3HSoY10qKU5d2gb1qrX06KNtKglLVphvXoLOrSRDrU0sw5ZqwZGzXv8Rt7jW5rZz6Nbs+5xPh3aSIda0qEV1jy2oEMb6VBLM+uQNY+O6NBGOtTSzNZe6YgObaRDLc25Q67P248WbaRFLc25RduwVn0+HdpIh1rSoRXWqregQxvpUEsz69Dk1qrdGO0IlFI+JMnLknzM0u63J3lErfVPWxxqkuGutd5YSnl8khcl+YSlP/r0k4913pHFNw4vWdr37jWP/YsWp1RaPLZ3pZSvTvL9jd0/XGv9Vy0Os8/X41jm8Hty9j+yn1JKuazWum5GJk2HNtOhdnTorFLKRyZ5ZGP3M3c93pRp0WZa1M7cWtTTfEyeDm2mQ+2MoEMcIR3aTIfa0aHNaq3vTfLNpZSbknzrye67JvmpUson7fgbho6eDm2mQ+3o0NasVTdo0WZa1I4WnWW9ejs6tJkOtTO3DlmrBsbMe/xm3uPbGcF7/LHMoXWPJTq0mQ61o0NnWfPYjg5tpkPtzK1D1jy6oUOb6VA7I+gQR0iHNtOhdnRoM9fnradFm2lRO1q0NWvVS3RoMx1qR4fOsla9HR3aTIfamVuHprhWfauhT4DNSil3S/LSJB+/tPtdWdzJ8o9aHu5vG9sf1vJc7pzVcI9ikGutf53kU5M8I8lNWzzl15M8LMl1jf3XdHxqo1JK+bIkP5KzMf2JJN/Y42k05/COpZQ7tTzGPRrbh5jD383i39otbp3kYw/wOqOnQ9vRoe3o0LmuzNnvyf6w1voHexxvkrRoO1q0nbm2yHzsR4e2Y862M5IOcWR0aDs6tB0dauU7kvzN0vZDkjxioHMZlA5tR4e2o0OtWKteokXb0aLtaNG5roz16o10aDs6tJ25dsh8AGPkPX47Gr6dkbzHj+3amHWse5zQoe3o0HZ06FxXxprHRjq0HR3azlw7ZD72o0PbMWfbGUmHODI6tB0d2o4OteL6vCVatB0t2o4WtWKt+oQObUeHtqND57oy1qo30qHt6NB25tqhqc2HG6ONWCnlLklenOSTlna/J8mjaq2v3OGQzbtf3q/l85uPf2et9V3nPnIAtdbraq1fl+SBWSyI/HqSNyW5PsnfJXltkp/M4i6q/7TW+oYkD2oc5vd7O+GelVK+MItIL/+7/5kkX9XnHfRrre/I2f8gJsl9Wx6mOYtt7uy6lVrrB5L8ZWN3q292pkCH2tGhzXRoVSmlJPmKxm53927Qona0aLO5t8h87EaH2jFnm42lQxwXHWpHhzbToXZqrdcn+cXG7kcNcS5D0qF2dGgzHWrHWvUpLWpHizbTolXWqy+mQ+3o0GZz75D5AMbEe3w7Gr7ZWN7jx3RtzCbWPRZ0qB0d2kyHVlnzuJgOtaNDm829Q+ZjNzrUjjnbbCwd4rjoUDs6tJkOteP6vFNa1I4WbaZF7VirXtChdnRoMx1aZa36YjrUjg5tNvcOTWk+bjP0CXC+k99G86Ikn7K0+9okj661/u6Oh31tY/ujWj7/7zW2/3jH8zioWutfJHn6ycdFHt7Y/p01xyzn7T8WpZQnJHl2FnepvsX/TPKkk/+wtdLB1+O1Wdxh8hYfldX53KQ5i22e28b1je3mHV0nTYd2p0OrdGitz0py/6Xt92XxTTUntGh3WrRKi04dYj6mSod2p0OrRtghjoAO7U6HVunQzl7X2G77b+ao6dDudGiVDu1s1mvViRbtQ4tWadFa1qs30KHd6dAqHTplrRoYmvf43XmPXzXC9/ixXBtzkVmve+jQ7nRolQ6tZc1jAx3anQ6t0qFT1jy2p0O706FVI+wQR0CHdqdDq3RoZ7O+Pi/Ron1o0Sot2pm1ah3aiQ6t0qG1rFVvoEO706FVOnRqCmvVt7r4IfStlHKHJL+S5NOXdr83yefUWn9rj0O/prH9CaWUO7Z4/qddcLyjcnJX1c9q7H75EOdySKWUxyT5uZy9EeIvJvniWuv7hzmrldlpBnKtk29qPuGC43Xl7o3ttx/odUZHh/qhQzqU5Csb28+rtb5zx2NNjhb1Q4u06ILXmcV8rKND/ZjLnI20Q4ycDvVDh3RoCzc1tm83yFkMQIf6oUM6tIXZrlUnWtQXLdKiWK9eS4f6oUM6tMlc5gPol/f4fsyl4SN9jx/9z6NPzHbdQ4f6oUM6FGsea+lQP3RIhy54nVnMxzo61I+5zNlIO8TI6VA/dEiHtjDb6/MSLeqLFmnRFqxV69BB6ZAOxVr1WjrUDx3SoU3GPB9ujDYypZTbJ3lBkiuWdt+Q5DG11lfsc+xa65uTvGpp121y9s3hIlc0tn91n/MZgc9KcvnS9strrX860LkcRCnln2Vx58oPWtr9wiRfUGu9eZizSpK8uLF9RYvnfkbOvgldXWt9y95n1FBKuXtW7+L6N12/zhjpUK90aDiDd6iUclmSxzd2P7PtcaZKi3qlRcMZvEVbmPx8rKNDvZr8nI24Q4yYDvVKh7jIfRrbh/i+a3R0qFc6xFpzXqtOtKhnWjRj1qvX06Fe6RCbTH4+gH55j+/V5Bs+4vf40f88es7rHjrUKx0azuAdsuaxng71SoeGM3iHtjD5+VhHh3o1+TkbcYcYMR3qlQ5xkVlen5doUc+0iLWsVetQT3RoxqxVr6dDvdIhNhntfLgx2oiUUm6b5HlJHrG0+31JPq/W+r87epnnN7a/Ystz+/tJ/tHSruuSvLSjcxrKv2lsP2OQsziQUsojk/xCktsu7X5pkifUWm8c5qwueUmS65e2H34yY9u4srHdnOmufGHONvItSV57oNcaDR3qnQ4NZwwd+pIkt1/afkOSX9vxWJOiRb3TouGMoUUXmfR8rKNDvZv0nI28Q4yUDvVOh7jIZze2R7G4f0g61DsdYpNZrlUnWjQALZo369Xn0KHe6RCbTHo+gH55j+/dpBs+8vf4Y/h59CzXPXSodzo0nDF0yJrHOXSoxYhGTgAADKBJREFUdzo0nDF06CKTno91dKh3k56zkXeIkdKh3ukQF5nd9XmJFg1Ai9jEWvUpHTocHZo3a9Xn0KHe6RCbjHY+3BhtJEopt0nynCSPXtp9U5In1lpf0uFL/UyS9y9tP76U8tFbPK85xM+ptd7Q3Wn1q5TypCSPXNr1yizu/DgJpZTPTPJLOfsN0q9l8U3A+4Y5q1O11vcmeW5jd3PGVpRSPibJ45Z23ZzkZzs8tVte555JntrY/cu11tr1a42JDvVLh4Y1kg59ZWP7x6femW1oUb+0aFgjadGm15n0fKyjQ/2a+pyNvUOMkw71S4e4SCnlc5I8rLH7l4Y4l77oUL90iE3muladaFHftIhYr16hQ/3SITaZ+nwA/fIe36+pN3zs7/FH8PPoWa576FC/dGhYI+mQNY8GHeqXDg1rJB3a9DqTno91dKhfU5+zsXeIcdKhfukQF5nj9XmJFvVNi9jEWrUO9UGHiLXqFTrULx1ik7HPhxujjUAp5dZZBPWxS7tvTvIFtdZf6fK1aq1/muQnl3bdNsmzSim3X/OUlFIem7O/8ebGJP++y/Pa18kb37aPfXySH13adXOSr6y13tz5iQ2glPLwJL+S5A5Lu1+R5HNrrdef/6xBPC2Lb05ucWUp5THrHnwyoz+Rs3fofGat9c82POeBpZTPbXNSpZR7ZfH1u+fS7huTfE+b4xwbHdqfDp3SoYuVUv5Bkocu7fpAkme1Pc7UaNH+tOiUFp37XPNxAR3anzk7dUQdYkR0aH86dEqHTpVSHlZKedzFj1x53icneXZj9ytqra/u5szGR4f2p0OndOiUtep2tGh/WnRKiy5mvXqVDu1Ph07p0CrzAQzFe/z+NPzUEb3HPy2u0RsNHdqfDp3SoYtZ81ilQ/vToVM6dO5zzccFdGh/5uzUEXWIEdGh/enQKR065fq8drRof1p0SotOWaveng7tT4dO6dDFrFWv0qH96dApHVo1tfnY+pPhoH48yec39n17kqtLKZe3PNY1W9xp8t9l8RtsPvhk+1OTvKyU8lW11j+55UGllNsl+Zok39d4/vfVWt+4zcmUUu6T8+fsXo3t22z4XK+ttb79gpd6dSnlhUl+Icnv1Fo/cM65PDjJU5J8ceOPvr3WevUFx+/Eob8epZSHJPnVJHde2v26JN+Y5B6llDane0Ot9Zo2T2ij1vrnpZQfSvJtS7ufW0r5l0n+e631xlt2llIelOTHspjVW7wjF38D8eFJXlBKeXWSn07y/JNvXlaUUu6S5ElZ3Nn7no0//g+11j/f4tM6ZjqkQzq00HWH1nlyY/sltda/2vFYU6JFWqRFC4dq0VHMx8B0SIdm16Gkv/kopdw5yd3X/HFzQfnuG17rTWNaXOuYDumQDp3V1XzcJ8nzSimvyeIHaL+Y5HW1nv9blkopH5vka5N8Q+O8bjjZN2U6pEM6dFZX82Gtuh0t0iItOqvr+WiyXr1Kh3RIh86a5XwAk+Q9fiYN9x5/yjV6o6NDOqRDC67RG44O6ZAOLbg+bzg6pEOz61Di+ryR0SEd0qGzXJ83DC3SIi06yzV6/dMhHdKhs1yf1z8d0iEdOmuW87G1WquPgT+S1A4/rtjyNa9I8r7Gcz+Q5PeS/HySFyd56znH/+Ukt27xub2hg8/pWVu8ztuXHv93SX4ri3+kP5PkpRvO47t6/rs+6Ncji99o1NUsXdXD1+PWSV50zmu/JYs3oOck+f2T2Vz+8/cl+Ywt57x57Hcn+T9ZLLA9O8nzT17jpjVfh2cM3YieZlOHdEiHDtChNa95uywulFg+3hOGbMBYPjqcHS3Soqd1OEtX9fD16KVFxzIfQ350ODc6NPI5O/TXI8fXob7m48qOviaXD92LA/5d6JAO6dBhvh6fd87j33MyHy/I4gKI5yR5WZJr1hz/vUkeMXQnevi70CEd0qHDfD2uOOfx1qrXf720SIu06IDz0XhN69Xnf110SId0yHz48OFjgh8dNtl7/MgbfuivR47vPd41eiP56HBudEiHntbhLF3Vw9fDNXoj+ehwbnRIh57W4Sxd1cPXw/V5I/nocG50aORzduivR46vQ33Nx5UdfU0uH7oXB/y70CEd0qHDfD1cn9fu70OLtEiLDvP1uOKcx1urPv9rpUM6pEMHnI/Ga1qrPv/rokM6pEPmY+uP8+4kxwzUWq8qpTwuybOSfNjJ7pLkYScf5/m5JF9da33/4c9wL3dO8vALHvOuJN9Qa/0fPZwPa9Ra319K+fwsfrPSFyz90T2SPGrN096a5Em11t/Y8WXvluTTtnjcdUm+tdb6ozu+DhfQIR0ag4E69LgkH7K0/bYsFvoZgBZp0RgM1CLzMRI6ZM5gaDqkQzN2l1w8H7f47SRfW2t91QHPZ7Z0SIdmzFr1iGiRFs2Y9eqR0CEdmjHzAUya93gNHwPX6M2bDunQGLhGb950SIfGwPV586ZD5gyGpkM6NGOuzxsRLdKiGbNWPRI6pEMzZq16JHRIh2bs6OfjVkOfAMOptb4oyYOT/EgWg7rObyd5Yq31i2ut1/Vycu39YJKrs7gr5yZ/leQ7kzxgrP8o56bWem2t9QuT/PMsZm2ddyb54SQPrrW+eMvDvzbJ05P8ZpLrt3zO/0vy7Vn8hhP/iT0wHdKhMThwh87z5Mb2s2utN+1xPPakRVo0Bj21yHyMlA6ZMxiaDunQDPxaFr8V9+eSvGnL57w3yXOTfG6ST3XR1WHpkA7NgLXqI6BFWjRT1qtHRId0aEbMBzAr3uM1fAxcozdvOqRDY+AavXnTIR0aA9fnzZsOmTMYmg7p0Ay4Pu8IaJEWzYC16pHTIR2aKWvVI6JDOjQjk5qPUmsd+hwYgVLKbbO46/H9ktwri7sb/3WSq2utfzHkubVRSrlrkockuX8Wd+q8fRb/gfnrJH9Ya/3jAU+PLZRS7p/koUnuneROSa5J8sYkv1lrvXGP494qyUcneUCSj0hyWU7n411J3pzk92qtb9vrE2BnOsRYHKpDHActYiwO2SLzMW46BAxNh5iDUso9kzwoizn/0CR3THJTkvckeUeS1yR53RH8Zp9J0iGmzlr1cdAiYGg6xByYD2COvMczFq7Rmy8dYixcozdfOsRYuD5vvnQIGJoOMQeuzxs/LWLqrFWPnw4BQ9Mh5mAq8+HGaAAAAAAAAAAAAAAAAAAAAAAAAMDgbjX0CQAAAAAAAAAAAAAAAAAAAAAAAAC4MRoAAAAAAAAAAAAAAAAAAAAAAAAwODdGAwAAAAAAAAAAAAAAAAAAAAAAAAbnxmgAAAAAAAAAAAAAAAAAAAAAAADA4NwYDQAAAAAAAAAAAAAAAAAAAAAAABicG6MBAAAAAAAAAAAAAAAAAAAAAAAAg3NjNAAAAAAAAAAAAAAAAAAAAAAAAGBwbowGAAAAAAAAAAAAAAAAAAAAAAAADM6N0QAAAAAAAAAAAAAAAAAAAAAAAIDBuTEaAAAAAAAAAAAAAAAAAAAAAAAAMDg3RgMAAAAAAAAAAAAAAAAAAAAAAAAG58ZoAAAAAAAAAAAAAAAAAAAAAAAAwODcGA0AAAAAAAAAAAAAAAAAAAAAAAAYnBujAQAAAAAAAAAAAAAAAAAAAAAAAINzYzQAAAAAAAAAAAAAAAAAAAAAAABgcG6MBgAAAAAAAAAAAAAAAAAAAAAAAAzOjdEAAAAAAAAAAAAAAAAAAAAAAACAwbkxGgAAAAAAAAAAAAAAAAAAAAAAADA4N0YDAAAAAAAAAAAAAAAAAAAAAAAABufGaAAAAAAAAAAAAAAAAAAAAAAAAMDg3BgNAAAAAAAAAAAAAAAAAAAAAAAAGJwbowEAAAAAAAAAAAAAAAAAAAAAAACDc2M0AAAAAAAAAAAAAAAAAAAAAAAAYHBujAYAAAAAAAAAAAAAAAAAAAAAAAAMzo3RAAAAAAAAAAAAAAAAAAAAAAAAgMG5MRoAAAAAAAAAAAAAAAAAAAAAAAAwODdGAwAAAAAAAAAAAAAAAAAAAAAAAAbnxmgAAAAAAAAAAAAAAAAAAAAAAADA4NwYDQAAAAAAAAAAAAAAAAAAAAAAABicG6MBAAAAAAAAAAAAAAAAAAAAAAAAg3NjNAAAAAAAAAAAAAAAAAAAAAAAAGBwbowGAAAAAAAAAAAAAAAAAAAAAAAADM6N0QAAAAAAAAAAAAAAAAAAAAAAAIDBuTEaAAAAAAAAAAAAAAAAAAAAAAAAMDg3RgMAAAAAAAAAAAAAAAAAAAAAAAAG58ZoAAAAAAAAAAAAAAAAAAAAAAAAwODcGA0AAAAAAAAAAAAAAAAAAAAAAAAY3P8H9Ry3/pQ2KlkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor, Config\n", + "\n", + "async def clean_magnitude(datapoints):\n", + " async for datapoint in datapoints:\n", + " if datapoint.data is None:\n", + " continue\n", + " yield datapoint.collected_at, datapoint.data[\"magnitude\"]\n", + "\n", + "TemperatureConfig = Config(\n", + " sensor_name=\"Temperature\",\n", + " clean=clean_magnitude,\n", + " title=\"Ambient temperature\",\n", + " ylabel=\"Degrees C\",\n", + ")\n", + " \n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 5), dpi=300)\n", + " configs = get_known_configs()\n", + " to_display = configs[\"Relative humidity\"], TemperatureConfig\n", + " for i, config in enumerate(to_display, start=1):\n", + " plot = figure.add_subplot(1, 2, i)\n", + " coros.append(plot_sensor(config, plot, {}))\n", + " await asyncio.gather(*coros)\n", + "\n", + "display(figure)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAE0YAAAUsCAYAAAC9bUPVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdd5h1Z1kv/u8dAqEEEnoRSIBIVUA6AiYRPDSlKr0EIgiCla6IAVEPR1DPQQRF6aKIQEDqT8HQu1IUBUKJEECQloSSEHL//lj7lXnX7Cl7z57Z8877+VzXXGQ9az1l773WzsXMN/dT3R0AAAAAAAAAAAAAAAAAAAAAAACAZTpk2QsAAAAAAAAAAAAAAAAAAAAAAAAAUBgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAAAAAAAAAAAAAAAAAAAAAWDqF0QAAAAAAAAAAAAAAAAAAAAAAAIClUxgNAAAAYKSqjq6qHv2csOx17aSqOmX0+k9Z9pr2Iu/zga2qThp/VxwI87vvAAAAAAAAAAAObgdq7gUAAAAAODgojAYAAAAAAAAAAAAAAAAAAAAAAAAs3aHLXgAAAACwO1XV0Uk+M0OXs5OckeSbST6V5F+SvCfJG7r7nEWvDwAAAAAAAAAAAFaqqsqQeztqdOr7SY7q7tN3flUAAAAAAMzikGUvAAAAANgzDkty6STHJLltkscnOTnJ6VX1tKo6fJmL2+uq6gVV1St+PrvsNQF7S1V9dvQ984JlrwkAAAAAAAAAYOQ2WV0ULUnOl+SEnV0KLEZVHTfK7XRVHbfE9cgrwgJ5pgAAAGA1hdEAAACA7XapJI9N8q9VdfNlLwYAAAAAAAAAAIA968R1zj24qmrHVgIAAAAAwFwOXfYCAAAAgAPKt5Kcusa5Cye5RJJLrnH+qCRvrKpju/tD27E4AAAAAAAAAAAADk5VdYkkd1nnkqsmOS7JP+3IggAAAAAAmIvCaAAAAMAsPtDdx613QVVdMcnPJHlUkquNTl8syd9V1bW6+3vbs0QWYaPPGUi6+6QkJy15GTPzfAMAAAAAAAAAe9T9khw2auskteL4xCiMtnQHau4GAAAAANgZhyx7AQAAAMDe0t2f7+5nJ7lekldOueRqSX5hZ1cFAAAAAAAAAADAHvfg0fEnszrDdreqOmKH1gMAAAAAwBwURgMAAAC2RXd/K8l9k/z7lNP33+HlAAAAAAAAAAAAsEdV1Y0ybOa50ouSvHDUdqEk99mRRQEAAAAAMBeF0QAAAIBt093fTfL7U07dqKousdPrAQAAAAAAAAAAYE86cXTcSV6c5A1JvrzBtQAAAAAA7CKHLnsBAAAAwJ73xilthyS5RpJ3zztoVR2S5MeSHJ3k0kkukeSMJF9JcmqSf+nu8+Ydf5Gq6oeSXDPDWo/IsOvoGUm+luQ/k7x/UkSObVBVF0pykySXT3KZJIcn+WqGe+XD3f2pJS5vU6rq0kluluSqGdb/zQyBzfd292nLXNt2q6ojMrz2H87w/Hw3yelJ3j3La6+qKyS5cYbn8PAMz9/nk7y1u89Y8LLnUlWHJblFkisnuVyS7yf5ryQfTfKh7u4lLg8AAAAAAAAAYFea5IPuPWp+275sSVW9NMmvrjh3w6q6Xnd/eJvXdf4MuaVrJ7nkpPm/kvzzLHNX1cUy5F6ukeTIJN9K8qUk7+zuzy900avnvmSSmya5WpKLZcgtfSG7NHdVVVdMcr0MmcJLZyiQ95UkX0zynp3ICVXVDye5YZIfSnJYhqzaF5K8o7u/vt3z70VV9SNJjsmQ/7tkkm9n+Fw/myF/+b1tnt+zPP+8u+WZvF6SK2bIDp6T5Ivd/eJN9pcB3gZVdYEkN8rwPFwqw/flGRlyse+dYZxjMjyb++6xs5P8d4Z86Hu6+zsLXjoAAAA7RGE0AAAAYFt191eq6owMQYqVLjXPeFV1qySPSPJTGYqhreVrVfX6JL/f3R+bZ655VdWlktw1yW2SHJvksht0Oaeq3pPkT5K8YrMF3arqs0mOWuP0UVW1mSJKx3f3KVPGPiXD2vd5a3cft8Y6PprkR1Y0fSXJD20lbFRV907y0lHzI7r7TzfZ/5Ak901yvyQ/keSC61z7mSR/m+Tp3f3f8614e1TVcUl+I8mtMxQUnHbNx5L8XpKXzlI4q6pOSPL8UfNVuvuzc6xzPO+Tu/ukDfqclOS3V7Z1d604f+MkT0xyh6zxe8yqemuSx3f3e9aZ52eSPC7JjyepKZecU1WvSvLY7v7P9dY862uYYZyjk5yU4Xtj/F25z5eq6jlJntHdZ806x2i+U7KJ53uyrs+sM9QDq+qBG8237z2ZBPtOzxAu2+eU7j5+w0Wvo6r+b5JfHjVff7vDywAAAAAAAADArvGzGYrVrPTC0T//6uj8g5P8yjyTTTI9/zRq/p8c1mQDv99Mcv8kF11jjE8keep6hXmq6roZ8jN3ylAwZto1707ymO5+52yvYn1VdWx+kFs63xrX/HOSZyf5y1k3/FtU7mYy1mWS/FqSn0lynXUuPbeq3pvkWUleNuvGq+tlpCZ5tQcm+fXsn6Vb6fuT3M4T18s7rZjvpIzeo5F/qtrwLXthd5+w0UWbsZ15xTXmu26G5/a2Sa6wzqVnVdU/JnnaZt7X0RzH5QB/ljeRw9vWZ3mN8XbDM3mRJL+U5CEZNqSdZupndqBngDe6r2cxZY0bfqdslE2tquskeWySuye5yJQhXphk3cJoVXWVDN+3d8jan2+SfLeq3p7kj7r7DeuNCQAAwO4z9T+mBAAAAFiwaUV81ir+M1VVXX1S6OxtSe6Z9YuiZXL+fkk+WlV/UVVrFsZapMnuol9M8udJ7pGNAxFJcoEMxbv+Nsm/Tv7ofyAZBxguneSOWxzzhNHx2Un+ejMdq+p2ST6a5EVJ/lfWKYo2cZUMhbM+XVVzhR0XraoOq6rnZgin/FTW/z3etZO8JMkbJ2GeA1oNfifJezIEwdbb3OHYJO+qqkdPGeeIqnpFktckuUWmF0VLhufvnkk+VlW32dLi5zC55/4tQzByve/Fy2UonvZvVXXDHVjawk1293zJqPm4qrrWvGNOdnx+wKj53YqiAQAAAAAAAMBB5cTR8beT/N2+g+7+UJKPjK65X1VNLVC0FVV1tyQfS/KLWaOQ0sTVk7yoqv52vI5JfuZJSf45yc9ljUJKEzdP8vaq+o2trfx/5j5fVf1JklMyZK+mFlKauEGS5yZ526RIzY6qqgtU1VOSfDrJ47N+AaZkyCHdIsOGnR+eFKtaxDqumOQdSZ6XtYuiJcN7eesk766q313E3HtRVV2+qv4qyYeSPCjrF0VLhk0a75LhfT25qjbKlm52HZ7l2efcLc/kTTN8dr+f9YtmTet7MGaAd0xVPTHDs/2ATC+KtlH/i03u648neWQ2/nwvmCGD+/qqentVXXnWOQEAAFgehdEAAACAnXDklLYzNtu5qm6dYfev288x9yEZgm9vrarNBBS26sezfiGnjVwryXuWUaBpC16S5HujtgfNO9gkKDZ+/Sd399c30ffRSV6XoVjYrC6a5I8nhfS28hluyaSI3xuS/PyMXf9XhvDGegGmA8FzMuyOudnfXVaSP6iqh/5PQ9WRSd6c5G4zzHuRJK+pqhvP0GdLJgHHP05y4Rm6XTnD99kBWRwtw66YYw/bwnj3zup/xzx7C+MBAAAAAAAAAAeQqjomQ0GalU7u7jNHbS8cHV8iQzGlRa7lfhkKsh0xQ7efy1BQa98YlaFA0ZOzfiGj/aZO8rtV9cgZ5l09yDD3S5I8Ysaut8yQZ5mpANFWTIpf/X9JfitzFNfJUMDsnVX1M1tcx1UzbAB58xm7/kZVPXUrc+9FVXW9JO9Lcp+svRHmeu6cIX959S2uw7M8+5y75Zn8iQzF4OYtgHUwZoB3xKSg2e9kzve3qo5K8s4M9/X55xjilkneV1U3m2d+AAAAdt7S/gNPAAAA4OBQVVfL9KI/n95k/59J8oqs/iP2OUnekqFg2ueSfDPDzn9HJ/nJJLcaXX+TJCdX1U9097iI13b5foad/v4tyX8k+WqGgnCV5GJJfjjJzTLseLeyCNThSf6mqn6suz+3zvgfS/KNyT9fOcnFV5z73uT8Rs7axDXr6u4vV9XrM4SK9rlDVV2mu788x5APyOqiWM+bduFKVfW/kzxuyqmvJfmHJB9M8uUMO8IemWE3wtslucbo+hMzvK+PnmnVi/O8JMevOP54hkJp/5HhtRyR5MeS3D2rdyP8iSS/luTp27/MxauqX0ny0BVNpyX5+yT/muG1H5nkphlCZBcbdf/jqnpThu+Dv0mysnDYB5O8MclnkpyZ4X37ySR3yv732oWSPLeqbtTd5y7oZU1VVb+eZNrunmdP1vq2JF/IEBK7Sobna9+OshdJcnJW7Gy8Tc5J8uEVx9fO/t/FX0/yn7MM2N3/VlWnJDluRfMDquoJ3f3tOdb48NHxV5O8fI5xAAAAAAAAAIAD04OzuoDSuAhakvxVkv+T/QsUnZjkZQtax42S/N6KtXwjyeszFM36coZcyrWS3CNDxm2l+1TVyd398gx5khNXnDstyWsz5Ge+miE/c5PJOOP8zNOq6rXd/dk5X8OjktxrxfGZSV6d5P1J/msy9zUz5JauNOp7pSRvqarrd/c3so0mmya+c7KWsX9N8tYMmb1967hMhsJld8iweeY+hyd5eVXdors/OMdSLpoh1/VDk+NO8q4k/5ghU3NWkktnyAfeNckFR/2fUFV/393vXWP8L+UH2Z3Dk1xtdP5T2Tj/N1O2ZwPbmlesqhsl+acMr3Wl85K8PcN7+5nJGi6U5IpJjk1y6+z/XP9whg1Gb9jd39zEmsY8yzM+y7vombxckldm/2ftfRkKtp2W4X24fIYc3M9tYryDIgO8Qx6S/Qv1nZUh1/vODPfkIRme6eMzvO/7mRRFe29WZ2aT4TN+Z4as7deTXCDD5/zjGTbkPmzFtZdN8rqqukF3n7a1lwQAAMB2q+5e9hoAAACAXaiqjs4QIlnprd193IzjPDbJ00bNX09yqe4+b4O+V8kQKjhyRfO5Sf4oyR9091fW6Xv9JH+R/YsjJckfdvejNpj36Kx+7Q/q7hes12/S9xNJPppht723bCZYM/mD/e8nuffo1Ou6+6c36j8Z4wVJHrii6bTuPnozfdcY75QMoaF91v3sq+pOGYIzKz2qu/9wjrk/kSEwss/nkxy13v1SVXfNEGhZ6etJHp/kRd393TX6VYadX5+TIWyz0p27+zUzLn8mU97n7+YHoZwvJfml7p5a/KqqDk/yrAyF5Fb6RpIrdPd3Npj7hCTPHzVfZZ4wVVWNf8n45O4+aYM+JyX57VHz2RlCKN/OEM56bndPC7lcNkPBxFuMTv15hnDLMybHn07y0O5+8xpruFGS12X1Z3+f7v7r9da/1mvo7g13Kq2qayT5UFaHHd8wWe/n1+h31yTPzg/CPd/JELSbdf5TMsPzvaLfZ5MctaLphd19wkb9poxz96wu6nZid29YAHE0zg2TfGDU/PTufsysawIAAAAAAAAADjxVdb4MhZ+usKL5C0muNC1rVFWvy1CIZ5/zklx11uIoVXVchgJOK+3LvSTJM5M8aVpRoao6LEO25RGjUx/PkAN6d4YCMRvlZy6XIT/z46NTf97dv7CJ13BSVmd3VmaXnp/k19d4DYdk2LzxqVmdf3lBdz9onvk3k3uZ9H1VhszXSu+arHetImP7ijf9Voa1r5zrs0mu291nbjDvOCO18v16b5Jf7O5/XqPv0Rk+rxuMTr2pu2+33ryT/sdl9T13fHefslHf7bANecWLZ8iKjsd4fpKTunvNAm+TzXufleS2o1Ov7O67bzDvcfEsb+lZnoyzW57J7+cHRfI+kuRh3f3uNfpecFqudC9kgBf5fTFPZnCNbOrKz+Y5SZ7Y3V9do/9+n01VXSDJO5LceHTpa5M8trv/fZ21XC7JHyS53+jU+5PcfNozCQAAwO5xyMaXAAAAAMynqi6f5NFTTv31RkXRJv4q+xdF+3aS23b3Y9cripYk3f2hDEGRfxid+qWqGu9wt0g37u67d/erNrvbYHef1t33SXLS6NQdqmraDnq70esz7Nq20gmzDlJVt8j+RdGSIUixXlG0y2R1iOKTGYIxf75WUbQk6cGrMuzyOC5G9fuTwmk7aV+46NNJbrZWUbQk6e6zMrzHbxqdOjLDTo4Hon1F0W7T3c9ZK3TS3f+V5Kcz7MC50v2SPGXyz/+WIbgytSjaZJwPZPp7talA1xY8O6uDZH+b5KfXKoqWJJN79dj84HVfaK1rd7mTs/p5e/gc44z7dJI/m2tFAAAAAAAAAMCB6PbZvyhakrxknazRC0fHh2SOjNMa9hVS+pXu/uVpRYiSpLvP7u5HZnXm5xpJ/n6yprOS/OQG+ZkvZcjPjHN096qqeTMl+/Is/7u7H7zOazivu5+R5OcybHS60glV9RNzzr+hqnpoVhdg+tMkt1yvAFOSdPc3Jpuqnjg6dXSSX5xjOfver9cmOW6tomiTuT+b5KeyOmP3U1V15Tnm3muelf2Lon0/yf0m9+GaRdGSpLs/leG7YJwhvFtV3XSOtXiWB5t6lnfZM7mv8NY7k9xqraJok7nXypUerBng7bbvs3lUdz98raJoydTP5qSsLor2+O7+mfWKok3G+lJ33z/Jk0enbpzkZzdeNgAAAMukMBoAAACwLSa78L0xyaVHp76dYWe0jfr/VJKbj5of3N1v2ewauvucDIGN/17RfP4kv77ZMWa12SDEGp6SYReyfSrJg7e2op3R3edm2CFvpR+tqhvOONS0glTjwNLYryQ5YsXxt5Pcbr0CU2Pd/bkk9xo1XzvJnTY7xgJ9L8k9NrMTbXd3pt/P490vDyS/ul4gaZ9JWOvpo+YLJ7lIhh0v79Hd48Jp08Z5R4bvqpWOr6px4bKFqKofTXL8qPnUJA/YTMHI7t63o+gBaxLyGxcwu1FV3WizY1TVEVm9w+Y/dPepW10fAAAAAAAAAHDAGBfTSZIXrXP9q5OMCwQ9qKoW9d/YvbS7/98mr/2tKW2Xmfzvr2xUUChJuvvrSZ4xar5Yhg1F53VKdz9hMxd292uTPHXKqV/ewvxrqqpDk/zGqPmN3f2ISY5qU7r7+Un+YtT8a1V12LTrN/DZDAW81ty8c8W8X8vq4jyHZCiYdtCqqmskueeo+Te7+682O8bk8/+FJOMiSY+fc1me5cG6z/IufSa/meSe3X3GHH0P2gzwDnlFd//hLB2q6uJJfmnU/Jzuftos43T3SVm90fa83w8AAADsEIXRAAAAgIWoqgtW1Q9V1R2r6s+TfCTJdadc+pBNFqx63Oj47d39slnXNQkp/N9R811nHWcnTIIgLx4133IZa5nT86a0nbDZzlV14ST3GDW/bbKj41p9Ds/qnQGf0d2f3uy8+3T3O5O8edS8jHvlpd39wc1e3N0fSzLebXTWgnS7xSeyOuC0nles0f7iyfuyWX83Oj40yY/O0H8WD5vS9qjuPnuzA3T3mzLsKnog+/Mk54zaHj5D/wdmKIS30nO2tCIAAAAAAAAA4IBRVZdJcsdR8z9397+t1WeSzxhn0I5KcusFLOn7WV0gaE3d/f4k/znl1Mez8UaSK41zL0lygxn6j81a1OxpScZ5wDtX1eW3sIa13CvD57VPZ3XBnM16yqT/PpfN6o1cN+PJMxZS+psM98pKB2rWa1Eek/3/O9fPZPWGmRvq7u8l+b1R8+3n2CDTs/wDGz3Lu/GZ/MPuPn3ONWzJHsgAb6fzkjx6jn6PSHL4iuOzsjpfvllPGR1fv6qOnnMsAAAAdoDCaAAAAMAsjq2qnvaT5DsZQhGvTfKQrC5Y8+0k9+3ul240SVVdIslPjppnKZY09rrR8VFVddTUK5fvk6PjG1TV+ZeykhlNClG9b9R8nxl27bt7kouO2jYKBt0myZGjtr/c5HzTjO+VY7cw1ryeO0ef8ft+9UUsZAmeP+NOkZ/OsMPj2Kz3wL9MabvGjGNs1u1Hx1/M6vtuM/5sAWtZmu7+cpKXj5rvVVXj53ktvzA6Pj0HfrE4AAAAAAAAAGDzHphknKt64Sb6vWhK24lbX07+sbtPm7HPh6a0zZqf+VSSM0bN8+Ze3tPdH52lQ3d/N6sLAR2aIde1aD87Oj6lu0+dZ6Du/lyS8WudNSv2rSQb5iFH8349qzOC25VT2vWqqpLcbdT8gu4eF4/brNePjg9LctMZx/As/8BGz/JueyY70zf43UkHbAZ4m72luz87R7/xPfby7h4/J5v1riTfGLUtIyMMAADAJimMBgAAAGy3MzMUNbvmZoqiTdwqSY3a3rWFNXxmStuPbWG8Tauqw6vqDlX1+Kp6UVW9rqreXlX/XFUfGv8k+ZPREIdl2PnuQDEuZHaJJHfaZN8HjY7PyurCSWPjUMLpc4SSVhrfK0fPUKhpEb6T1UXONuNTo+PzVdXhU6/c3d42R5/xbpvfTvLBGcf47JS2hX/uk52KrzJqfvWcQb43ZQhXHsjG33cXTvKAjTpV1bFJrj1qfm53n7uohQEAAAAAAAAAu96DR8fnJvnrjTp197uyunDNXSabeW7FPLmXaTmnty9gnHlzLyfP2e+VU9puNudYU00KaN1q1LyVTGGyOis2a6bwPd19zhzzjrNeR8wxxl5x3SQXH7XN/bl299eyeqPNWT9Xz/L+pj7Lu/SZPLW7P7/FNeznIMwAb5d/mrVDVV08yY+Omrfy/XBeVj9jO5IlBwAAYD6HLnsBAAAAwJ73gSTPnOzmtlm3mNL2iqra9O55m3CpBY61SlXdMMljMhQFu9AWhzsyyULDGtvor5P8YfZ/zSdkgwJnVXVUkuNGzX/b3RsVfhrfKxefhEvmNa2Y2KWyepe47XJad39vjn7jMFcyBObO2uJ6dto8u0WeOTo+bY4CWeMxku0JHN5wStusRdySJN19blV9JMnNt7ak5enu91TVB7P/+/KwJP9vg64PHx2fm6EAJwAAAAAAAABwEKiqWyS55qj5Dd39lU0O8aIkv7Pi+LAk903yzC0saxG5l0WNM2/uZa4cS5KPJvlekvOvaJuWk9mKa2XYpHOlB1bVT29hzCuPjmfNFI4L7G3WOOt1MBdGm5YVfWZVnb2FMS88Op71c/Usb+5Z3o3P5D9vYe79HMQZ4O0yz2dz8ySHjNqeUFWP3MI6jhkdb2uWHAAAgK1RGA0AAACYxbcyPaxx/gy79l1+yrnjk7y/qk7o7g135Jy44pS2626y72ZdcsHjJUmq6vxJ/ihD4Z7xH+TndcAEn7r7m1X1qiT3WdF826q6fHd/cZ2uJySpUdvzNzHl+F65cJLrbaLfLC6Z+UJK8/janP2mFVM7/5S23e7rc/QZv/aZx+ju7w0bWO5nO96/y0xp+/gWxvuPHMCF0Sb+JPs/69eqquO6+5RpF1fVZZLcddT8mu4+fZvWBwAAAAAAAADsPidOaXvhDP1fnOQp2T+vdGK2VhhtEbmXRY0zb+5lrhxLd59dVZ9N8sMrmqflZLZiWqbwimu0z2vWTOGisl4HYs5rUaZ9fuOih1s16+fqWd7cs7wbn8kvb3XCgz0DvI3m+Wym3UtX3epCRrYlSw4AAMBiLOr/mAMAAAAHhw909/Wn/Fynu6+Q4Q/EJ2Qo1rPSBZK8uKp+ZpPz7MQfmre6g9sqk0DEy5M8Iov9vcuBFnwaFzQ7X5L7r3VxDRWpHjBq/mR3v2MTc413HNwOC79X1jEtIHXQ6O5FvP7d/B4eOaVtvAPsLLbSd7f4myRfHbU9bJ3rT8zw75SVnr3QFQEAAAAAAAAAu1ZVHZ7kHqPmryd57WbH6O7Tkpwyar5eVd1wC0tbSGZlQfmZeS0yxzItJ7MVuzFTuJtzSgeKPfu5HgTP8m787M7YymQywNtqns9mN95jAAAA7CCF0QAAAICF6e6vdfcLk1w/Q7Gblc6X5CVVdfQmhrr4gpe2Ux6X5M5T2k9P8qdJ7pfk5kmulCEscsHurpU/SY7fsdVunzcnOW3U9qB1rj82q3dxGxdXW6WqLpzksNmWBkt10Slt39rCeFvpuyt093eT/OWo+W5VddnxtVV1SJKHjpo/meE7BwAAAAAAAAA4ONwryUVGbS/r7rNnHOeFU9pOnG9Je8YicyzTcjJbcaBmClmfz3V77MSzvBs/u3O32F8GePvM89nsxnsMAACAHXToshcAAAAA7D3dfXZV3T/JZbP/H/kvlqEAzq03GOI7o+NvdPeu/gN3VV0myRNGzecmeUySP+nuzf5R/4Dffay7u6pemORJK5qvWVU36+73TOkyLpr2/SQv2sRU301yXvYv/ioagZ8AACAASURBVH9yd991pgXDzjlzSts4qDuLrfTdTf40yaPzg2f5/BmCxr83uu72SY4etf1Zd/e2rg4AAAAAAAAA2E2mFS97WFU9bAFj37uqHtXd4/zaweIiSc7YQt+VpuVktmLaZ3KX7n71gudhZ037XC/e3d/Y8ZXsLTvxLO+pZ1IGeFeado9dv7s/vOMrAQAAYCkO2fgSAAAAgNlNQgAPyOpwxU9W1T036P7fo+Mjq+rIhS1ue9wpyYVHbY/r7j+eIRCRJJdY4JqW6QVJxsWKThhfVFWHJ7n7qPn/6+7TN5qgu89LMg5AXWXzS2QRqur8y17DAWRaYO+ILYy3lb67RnefluS1o+aHVtX499cPHx1/N8N3DQAAAAAAAABwEKiqaye52TZOcWSSu23j+LvdInMsiy5sNc4UJrJie8G0z/XonV7EHrQTz/JeeyZlgKdbZj50r91jAAAAzEhhNAAAAGDbdPfnkzxpyqnf26CY0n9NabvuYla1bX5qdPz1JH8yxzhXXcBalq67P5PklFHzvarqgqO2e2T1DoPPn2Gq8b1y9ao6bIb+B7PvTWmbJ8Ryya0u5CDy5Slt19jCeNfcQt/dZvx9eVSS2+87qKr9jif+tru/ut0LAwAAAAAAAAB2jRP3yBy71dXn6VRVF8jqYlbTcjJbcSBmCtmYz3V77MSzvNc+u72UAV5UNjRZbqG3vXaPAQAAMCOF0QAAAIDt9uwknx61XTXrB8jeN6VtXBBnt7nS6Pi93X3OHOPcfBGL2SXGBc6OSHLXUdsJo+OvJXnNDHOM75ULJTluhv4HszOmtF1sjnGO2epCDiIfnNJ2w3kGqqpDs7dCPv+Y5OOjtoev+OeHZvXvs5+9rSsCAAAAAAAAAHaNyUac9x81n5Pkw1v8+dpozOOqajcUtlmGuXIsGTIs46I703IyW/GRJN8dtd1uwXOw8w7ErOiBYCee5b32TO6lDPBCsqFVdcUk482Qd9J7p7T5fgAAADiIKIwGAAAAbKtJMOApU079ZlUdtka3f5jSds9JIaDd6lKj43FgbkNVdakkx885/7mj4/PNOc4ivSKrAxYP2vcPVXW1JLcanf+r7j57hjmm3Sv3m6H/wewbU9rmCXUeu9WFHCy6+8tJPjNqvlNVzfN72tsmucjWVzWTbfue6e5O8qej5ttX1VGTYPO4mOaHuvs9i5ofAAAAAAAAANj17pTk0qO2V3X39bfyk+SJozErKzJOB5m7zNnvblPaFprr6O7vJnnHqPnyVXXrRc6zi41zO8lyM4KLyhG9K8m3Rm13rKqLzzkeg21/lvfgM7mXMsB7Ihva3aclOXXUfJOquvoy1gMAAMDOUxgNAAAA2AkvSfKJUdsVkzxk2sXdfXpW7zJ3lSQnLHxlizMO54xDEpvxiMy/u9qZo+PD5xxnYbr720leNmq+dVXt21nvhCndnj/jNG/K6l0H711V15hxnIPRx6e03WSWAarqfEkevJjlHDTeMDq+QpI7zjHO1O/Pbbbd3zMvSHLWiuNDkjw0yV2TXHZ07bMXPDcAAAAAAAAAsLuNN1VLhlzaVr0syTmjthPm3OjuQHfzqrrOLB0mm6Pef9R8bpJ/XNiqfuDVU9pO2oZ5dqNxbidZbkZwITmiyca7bxw1XzTJo+YZj/+xU8/yXnom91IG+PTsn8NLZsyGTjx0C2tYlPE9dkiSJy1jIQAAAOy8g/EXtAAAAMAO6+7vJ/mdKaeeUFVrhQB+d0rb03fxTl9fHB3/eFVdZLOdJyGUJ2xh/q+Pjo/cJbsmjgudHZLkAZPg4ANG5z7c3f8yy+Dd/d9J/nzUfL4kL62qC8200oNMd385yedHzfeYFDvbrEdkvp0ED2bPmdL29Kq6wGYHqKrbJLnz4pa0aePvmYV+9t19RpIXj5pPTPJLo7Yzkrx0kXMDAAAAAAAAALtXVf1Qkv81av5KVhdUmll3fy2rN7q7YpLbbnXsA9T/nfH6x2Z4v1Z6dXeP83SL8JdJvjRqu2VVPW4b5tptxrmdZLm5rUXmFadlRR9bVbecczwGO/Es76Vncs9kgLv7vCQfGjXfsaqO2OwYVXWnJD8xz/wL9oys3jz5vlV1z2UsBgAAgJ2lMBoAAACwU16a5D9GbVdI8rBpF3f3q5J8YNR8RJI3zLqT3T5VddGqekxV3W+e/ht4++j48CS/vZmOVXV0ktckOWwL8390StsdtjDeQnT3u7P6cz8hya2TXHnU/rw5p/n9rN6t7wZJXjVvMKSqjqqqZ1bVj8y5pgPFONR55SS/upmOVXXrJP9n4Sva47r7o0n+adR89STP38xOw1X1w1ldPGynjL9nfqSqrrTgOf5kdHzZJOOQ40u6e7yjJQAAAAAAAACwdz0ow2aJK72su89d0PgvmdJ24oLGPtDcuqqeupkLq+r2SX5ryqn/t9glDbr7O5leROv3quqR845bVberqj+df2U74nNJvjlqW2Y+cGF5xclmqq8YNZ8/Q/5vrsJMVXVYVT20qn5tnv57xLY/y3vsmdxrGeBxNvRCSTZ7P1w3qzdFXopJYb5nTTn1vKq6+zxjVtX5quqeVTXt3gUAAGAXURgNAAAA2BGTHciePOXU46vqwmt0u3eSr43arprkvVX1m5vZvayqDqmq46vqOUn+M0Mhp8vNsPTNekWS80Ztj6mq36mqQ9dZ372TvDs/2L3xjDnnf8+U+Z9RVXeuqvPPOeaijAMSx2T1boTnJPmreQbv7i8leWCSHp26bZIPVtX91vsM9qmqi0zCDq9McmqSRya54DxrOoD8xZS2p1XVL1RVTetQVRec7Oj4hgxBnvFufGzsF7P6fbtPktdMdjieqqrukuRt+cF32He2Z3lretfo+JAkL6+qGy1qgu7+WFYXjht7zqLmAwAAAAAAAAB2t0mG5UFTTk0rZjavv8/qolN3qqpLL3COA8G+PMtvVtVz18rnTTJ5v5rklRkKWK30gu5+2zau8VlJXj1qOyTJM6vqVVV1vc0MUlVXqarHVdVHMuSg5irAtVO6uzPkDFe6TVX9flVdZglLWnRe8ReSfGbUdqkkb66qP6iqTWU+q+qmVfWMJJ9N8mdJrjbHWvaCnXyW98ozudcywC9I8v1R2yOr6slrvZ5JwbATk7wjySUyZHLPmWPuRXtikveN2i6c5O+q6i+qalPPeVX9SFU9JcknkvxNkk3dmwAAACzPhv9BKAAAAMAC/W2GP1BfZ0XbZTMUCXr6+OLuPrWq7pHk9UkusOLURTLsXPaEqnpHkncm+WKSb2T4Y/eRSa6U5AaTnyMX/kpWr/UTVfWSJA8YnXpikhOq6u+SfCTJWRkCA9dIcqfsH7z5dpLHJXn2HPN/saremP13iLtskpOTnFNVn0vyrawuHvbz3f2BWeeb0YuT/F7237X1WqNr/r67vzrvBN39iqp6UpLfGZ26ymT+p1fVKUk+kOQrGd6Li2W4N45JcqMk183Wduw74HT3+6rq1UnuvKL5fBkKTz2iql6VoUjcOUkuneSGGe6xlWG6X41CVTPp7v+oqt9M8ozRqTsmObWq3pBhB8ovZtip8aoZPqMfXXHt6UlenuH93ymvzlCs8hIr2m6a5P1VdWaSL2RKobzuvv6M8zwryfFrnHtHd0/bHRMAAAAAAAAA2JuOzw8Kzuzzye5+76Im6O6zq+rlSX5+RfP5k9wvyR8tap4DwJMybDyaDO/FParq5CTvT/LlDFmraya5e5IrT+l/WpJf284FdndX1f0yFO4ZF7W5S5K7VNWHk5yS5JNJ9mXSjsxQaOu6GTJQ43vqQPC8JLcbtT0+w+a0X8yQ6zl3dP413f2kRS9k0XnF7v5qVd0pw+e6sojXoUkeneSXq+rdGTaV/HySr2fI+h2Z5PJJfixDBvBgK2a4lh17lvfKM7nXMsDd/YWqemZW5wuflOS+VfWKJP8+WfMlM2QT75j974enZdjg+qhZX88idfd3q+quGYrHXWl0+sQMn88Hkrw1Q1HEr2XIwR6ZIet6/QzfD2tuWgsAAMDupDAaAAAAsGO6+7yqenKGAmkrPbaqnt3d35rS581Vdaskf5fVf9C+SJLbTn52g19OcpMMgZGVrpiNixd9L8nPZQgZzOsxSY7N8L6sdIGsvfPh4VuYb1NWBDbuuM5lz1vAPE+tqi9kKKp0wdHpyya55+SH/T0syY2TXGHU/qPZvxDXNH/Q3X9WVQqjzai7/7CqLpXkCaNTF0xy18nPWr6VITT209u0vKkmAaNfS/LCKacvmiHstQgnJ/lcVn/nJ3OExgAAAAAAAACAA9qJU9pesg3zvCT7F0bbN/fBVBjt6RmKx9xjcnyxDEWCxoWCpvl8kp/s7m9s09r+R3efNckUPj9DYaex62V1gaa94BVJ3pzk1lPOXX7yM/ahbVzPQvOK3f2vVXXjJK9M8iNTxjx28sPGdvRZ3kPP5F7LAP9mkttk9fN0tSSP3WAtL5v0v/cG1+2ISaG3m2RY10+MTp8vwwavN93xhQEAALCtDln2AgAAAICDzr5d01a6dJJfWqtDd78vyQ0yhCa+t4W5O8Ouc2/fwhhrD979zQwhgvfM2PULSW7T3a/f4vwfS/JTSU7dyjjbZL3CZ19M8qZFTNLdz0ty8yRv2eJQ303yN0n+c8uL2uW6+0tJbpnZ7ptzkjy6uzcKx7CO7v6NDDtrzhKG+nyS46ft8rgTuvtFGULAZ27jHN9P8mdTTn0lQ8ATAAAAAAAAADgIVNWRSe425dRfbcN0b8vqrNB1quqgKbTS3Z3kvklm3STxnUmO7e5PL35V03X3md39s0kenuT0LQ73nxmyibtad5+X5GeTvHTZa0m2J6/Y3Z/MUNzoDzNsHrkVH0iypUzmgWoZz/JeeCb3Wga4u7+d5Lgk75ulW4bCeveZfOfsGpOs662TPDHJ17Y43L9n9SbfAAAA7DIKowEAAAA7ahK4OGnKqUdX1UXX6fff3f3gJMdk+KP7v2X4A/xGzkzyugzFh67S3cd393tnXvgmdffpGXYje2SSjcIhpyX5rSTX7O63LWj+d2fYre4OSf40yTsyhC7OSrLMkMLfJ/nvNc69aFIIaSG6+0PdfeskN0vyogyFpDbjixl2fn1gkst19727+8uLWtdu1t2fSXLdJL+R4X1YyzkZdtz7se5+xk6sba/r7j9Ocp0kL0xyxjqXfjnJU5Ncp7vfvxNrW0t3/2WSH0ryoCQvTvIvGdb3nQVOM63w2/O6++wFzgEAAAAAAAAA7G73TXLBUdu7u/tTi55okmubVnDtxEXPtZt197nd/fAMxYHekvUzZ/+S5CFJbrWTRdFW6u7nJLnqZB3/mM1tUHhehrX/QZLjkxx9oGShuvsb3X3fDBnBk5K8Nsmnknw9W9t0dt71LDyv2N3f7u5HJTk6w2v8QJLN5Au/m+Ge/Y0MGasbb7VQ1YFsWc/ygf5M7rUMcHd/NcktMhSsW+/fnd9P8oYkt+jux+y2omj7TO7r301yVJJHZXh/ztlE13OTvCvJU5LcpLuvPdkkFgAAgF2sht/ZAgAAABx4qurSSW6Y5NJJLpnk8Ay7BJ6ZoRjWfyQ5rZf4C5CqunqSm0zWeJHJ+j6f5CPd/fFlretgU1XHJLl2hvvkkkkukCEo8s0kn0nyHwdLEbTNqKrrJrlekksluXCG9+njGYKlZy1zbXtZVR2W5JZJrpzkchmCTP+V5CNJPrRbw0bboapemuTeK5o6yTHLCtECAAAAAAAAAByMqupSGTaovFqGfN4ZGTZe/JftKFC3VVV1gQyZwitmyD5dPENBnDMzbOz5iSSf6O5FbgDINquqI5LcOMllMuT/jsiwieOZGYpGfTzJpxe5QeuBoqpOSvLbK9u6u6Zct5Rn+UB/JvdaBnjyem6Y4Vm6aIbP4VNJ3tXdX1vm2uZVVRdOcqMkV8jw/XBkkrMzvLYvZ/h+OLW7N1NADQAAgF1EYTQAAAAAAHaNSdHLzyU5bEXzG7v79ktaEgAAAAAAAAAAwK6z2cJoAAAAAAeaQ5a9AAAAAAAAWOEh2b8oWpI8axkLAQAAAAAAAAAAAAAAAGBnKYwGAAAAAMCuUFUXSfIro+ZTk7x+CcsBAAAAAAAAAAAAAAAAYIcpjAYAAAAAwG7xlCSXGbX9cXeft4zFAAAAAAAAAAAAAAAAALCzFEYDAAAAAGCpquoSVfX0JL8+OnVakucuYUkAAAAAAAAAAAAAAAAALMGhy14AAAAAAAAHl6r6iyQ3mhxeKskVktSUSx/T3efs2MIAAAAAAAAAAAAAAAAAWCqF0QAAAAAA2GnHJLneBte8qLtfvhOLAQAAAAAAAAAAAAAAAGB3OGTZCwAAAAAAgJGXJPn5ZS8CAAAAAAAAAAAAAAAAgJ116LIXAAAAAADAQe87SU5P8u4kz+vuU5a7HAAAAAAAAAAAAAAAAACWobp72WsAAAAAAAAAAAAAAAAAAAAAAAAADnKHLHsBAAAAAAAAAAAAAAAAAAAAAAAAAAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdAqjAQAAAAAAAAAAAAAAAAAAAAAAAEunMBoAAAAAAAAAAAAAAAAAAAAAAACwdIcuewGwbFV1RJJjVzR9Lsk5S1oOAAAAAAAAAMBWXCDJlVYcv7W7v7msxQCAjB4AAAAAAAAAsEfI5+0QhdFgCFy9etmLAAAAAAAAAADYBndO8pplLwKAg5qMHgAAAAAAAACwF8nnbZNDlr0AAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgKU7dNkLgF3gcysPTj755BxzzDHLWgsAAAAAAAAAwNxOPfXU3OUud1nZ9Lm1ruX/Z+/Owyyr6nvh//bpmrrpEehmVBkFJCqivIGmQQRUgnkjMV4SL3mIxleNEoPxRdQYBuONQ5zyJnLjcFFITAxBBSUKeq8yo4IMsZNGGQSaubvpeajxrPeP7i5qOPucfapO1Tl16vN5nn7ovfZae62zq55m7aq1vhuAaWKNHgAAAAAAAAAw41mfN30Eo0FE/8iDww47LI4++uhmjQUAAAAAAAAAoJH6a1cBgClljR4AAAAAAAAA0I6sz5sipWYPAAAAAAAAAAAAAAAAAAAAAAAAAEAwGgAAAAAAAAAAAAAAAAAAAAAAANB0gtEAAAAAAAAAAAAAAAAAAAAAAACAphOMBgAAAAAAAAAAAAAAAAAAAAAAADSdYDQAAAAAAAAAAAAAAAAAAAAAAACg6QSjAQAAAAAAAAAAAAAAAAAAAAAAAE0nGA0AAAAAAAAAAAAAAAAAAAAAAABoOsFoAAAAAAAAAAAAAAAAAAAAAAAAQNMJRgMAAAAAAAAAAAAAAAAAAAAAAACaTjAaAAAAAAAAAAAAAAAAAAAAAAAA0HSC0QAAAAAAAAAAAAAAAAAAAAAAAICmE4wGAAAAAAAAAAAAAAAAAAAAAAAANJ1gNAAAAAAAAAAAAAAAAAAAAAAAAKDpBKMBAAAAAAAAAAAAAAAAAAAAAAAATdfR7AHAbJRSinK5HCmlZg8FYJwsy6JUKkWWZc0eCgAAAAAAAAAA1M0aPaBVWZ8HAAAAAAAAUJtgNJgGKaXo7e2NLVu2xJYtW6K/v7/ZQwKoqaurKxYsWBALFiyInp4eC7EAAAAAAAAAAGhJ1ugBM431eQAAAAAAAAD5BKPBFNu+fXs89dRTMTAw0OyhANSlv78/nnvuuXjuueeis7Mz9t9//5g3b16zhwUAAAAAAAAAAMOs0QNmIuvzAAAAAAAAAPKVmj0AaGfbt2+P1atXW3AFzHgDAwOxevXq2L59e7OHAgAAAAAAAAAAEWGNHtAerM8DAAAAAAAAGE0wGkyR3QuuUkrNHgpAQ6SULL4CAAAAAAAAAKAlWKMHtBPr8wAAAAAAAACe19HsAUA7SinFU089NW7BVWdnZyxcuDDmz58fnZ2dkWVZk0YIkC+lFAMDA7F169bYvHnzqDfq7v737dBDD/VvGAAAAAAAAAAATWGNHjBTWZ8HAAAAAAAAUJtgNJgCvb29oxYqREQsWLAgDjjgAAsVgBmhs7Mz5s2bF0uXLo0nn3wytmzZMnxuYGAg+vr6oqenp4kjBAAAAAAAAABgtrJGD5jJrM8DAAAAAAAAqK7U7AFAOxq5QCFi5wIGC66AmSjLsjjggAOis7NzVPnmzZubNCIAAAAAAAAAAGY7a/SAdmB9HgAAAAAAAEBlgtFgCoxddLVw4UILroAZK8uyWLhw4aiysf/OAQAAAAAAAADAdLFGD2gX1ucBAAAAAAAAjCcYDRospRT9/f2jyubPn9+k0QA0xth/x/r7+yOl1KTRAAAAAAAAAAAwW1mjB7Qb6/MAAAAAAAAARhOMBg1WLpfHlXV2djZhJACN09HRMa6s0r93AAAAAAAAAAAwlazRA9qN9XkAAAAAAAAAowlGgwar9Ia2LMuaMBKAximVxk8ZvJESAAAAAAAAAIDpZo0e0G6szwMAAAAAAAAYTTAaAAAAAAAAAAAAAAAAAAAAAAAA0HSC0QAAAAAAAAAAAAAAAAAAAAAAAICmE4wGAAAAAAAAAAAAAAAAAAAAAAAANJ1gNAAAAAAAAAAAAAAAAAAAAAAAAKDpBKMBAAAAAAAAAAAAAAAAAAAAAAAATScYDQAAAAAAAAAAAAAAAAAAAAAAAGi6jmYPgOmRZVlnRJwYES+MiP0iYmtEPBUR96aUHm1wXwdHxDERsX9EzI+IpyPisYi4I6U00Mi+AAAAAAAAAAAAAAAAAAAAAAAAaA+C0Zoky7JDIuK4iHjVrv8eGxELRlR5LKV0UAP6WRoRH42I34+IPXPq3BERn0spfWuSfb05It4fESfkVFmfZdlVEXFxSmndZPoCAAAAAAAAAAAAAAAAAAAAAACgvQhGm0ZZlp0SER+OnWFoFUPKGtzfb0XEFRGxrEbV5RGxPMuyf46Id6WUttXZz/yI+EpE/EGNqntGxLsj4k1Zlv1RSukH9fQDAAAAAAAAAAAAAAAAAAAAAABA+yo1ewCzzDER8bqYnlC0UyLi2hgdipYi4u6IuDoi/ndErBvT7JyI+EaWZYW/L7IsmxMRV8X4ULS1EfHDXX3ds6vv3faJiO9kWbaiaD/Qzg466KDIsmz4z0033dTsIQEAAAAAAAAAAMCMZ30eAAAAAAAAAMw8gtFaQ19EPNyoi2VZdmBEfDsiukYU3x4RR6eUXpVSOjul9LqIODAizo+IgRH1/u+I+B91dPfJiDhzxPFARLw3Ig5MKb1+V1+vjIjfiIifjKjXHRHXZlm2Xx19AQAAAAAAAAAAAAAAAAAAAAAA0KYEo02/gYi4LyL+V0S8KyJeGRELIuL/aWAfH42IJSOO74iI01NK94+slFLqSyn9XUScPab9+7Mse1GtTrIsOyR2BquN9N9SSl9IKfWP6WtVRJwWo8PR9oqIS2r1AwAAAAAAAAAAAAAAAAAAAAAAQPsTjDa9royIhSmlV6SU3pFS+nJK6Z6U0kCjOsiy7PCI+KMRRf0R8daUUm9em5TStbvGtlt3FAssuyQiOkccX5FS+k6VfnZExFt3jWm3t+8KWAMAAAAAAAAAAAAAAAAAAAAAAGAWE4w2jVJKG6oFlDXIf4+IOSOOv51SerBAu0+NOT47y7KevMpZls2NiDfXuMY4KaUHIuLaEUUdsXPMAAAAAAAAAAAAAAAAAAAAAAAAzGKC0drP7445/lqRRiml+yPiZyOK9oiI11Vp8vqImDfi+CcppV8WGuH4Mb2pYDsAAAAAAAAAAAAAAAAAAAAAAADalGC0NpJl2b4R8fIRRYMRcXsdl7hpzPFvVal7Ro221dwaO8e22yuyLNunjvYAAAAAAAAAAAAAAAAAAAAAAAC0mY5mD4CG+o0xx79IKW2ro/0dY46PrqOvnxTtJKW0LcuylRHxijF9PVv0GkD9Ukpxzz33xC9/+ctYs2ZN9PX1xdKlS+OAAw6IFStWxPz585s9xAl7/PHH46677oonnngiduzYEXvvvXe89KUvjVe96lVRKk0uA3TNmjVx6623xlNPPRU7duyI/fffPw455JA4/vjjJ33tSlatWhUrV66MtWvXxubNm2PPPfeM/fbbL1asWBF77bVXw/sDAAAAAAAAAABgcqzPmxjr8wAAAAAAAACoRDBae3nJmOOH6mz/cI3rjXRUA/oaGYz2koj4cZ3XAApYt25dfPzjH4+vf/3rsXbt2op1urq64tRTT41LL700fvM3f7PQdd/61rfGlVdeOXz8yCOPxEEHHVSo7U033RSvec1rho8vueSSuPTSS3PrZ1k2/PdXv/rVcdNNN0VExB133BGXXHJJ/PjHP45yuTyu3T777BMf+chH4rzzzqt7kdS9994bH/jAB+LGG2+seO0DDzww3vWud8WHPvSh6OjoiEsvvTQ++tGPDp+/8cYb45RTTinU13PPPRef/vSn4+tf/3o8+eSTFeuUSqVYvnx5XHLJJXH66afX9VkAAAAAAAAAAABoPOvzrM8DAAAAAAAAoPEEo7WXw8Ycr66z/WNjjvfKsmxJSmnDyMIsy/aMiD0n2dfY+ofX2R4o4Nprr41zzz03tmzZUrVef39/3HDDDXHDDTfEO9/5zrjsssuio6O1/xfx8Y9/PC6++OIYGhrKrfPss8/Gn/3Zn8WNN94Y//qv/xpdXV2Frv25z30uLrzwwqrXfuKJJ+Kiiy6K66+/Pr797W/XPf7d/vEf/zHe+973xubNm6vWfx0p0gAAIABJREFUK5fLcdttt8VrX/va+MM//MO4/PLLC38eAACgve0Y2h6P9P4q+st9dbXbu3Pf2L/7hVHKqm9UGUpD8Xjvw7FxcP1khtk2ukrdcXDPi2PunD0afu2tQ5vjsR0PxkAaGHeuu9QTB889InpKcxveb6MMlAfisd4HY0nnXrFX5z7NHg4AwIywdWhzPNP3eOzb/YKYP2dhs4fTktYPrI0n+h6Jchq/UX7BnEXxormHRUfW2fB+Nw1uiGf7n4wX9hw6qXl4b3lHPLrjgegt72jg6KbOPl0HxL5dB44KRqhk5/z/gdg6VP33kPPmzI8Xz/uNRg4RAABahvV51ucBQCOkgf6IR1ZFlEoRh7605s/mAAAAAABgNmjt36pTr8VjjtfU0ziltDXLst6I6BlRvCgiNoypOraf7SmlbfX0VWFsi+psD9Tw1a9+Nd7xjneMe5vioYceGi95yUti3rx5sXr16rjzzjtHLTD68pe/HKtXr47rrruuZRdffeYzn4mPfOQjw8dHHHFEHHHEEbHHHnvE008/HT/96U+jt7d3+Pw111wTF110UXzqU5+qee3PfvazccEFF4wrf8lLXhKHH354dHd3x+rVq+Ouu+6KoaGhuOOOO+Lss8+Ok08+ue7PcfHFF8fHPvaxUWVZlsURRxwRhx9+eCxYsCA2bNgQP//5z0e9TfTrX/96PP3003HDDTe07NcIAACYHjdv+H5cveZ/RTnGBwQUsX/XC+NPX3BpLO4Ym4G/09N9j8ffP3FpbBx8bhKjbD+lKMXZy94RJy/5rYZcL6UU1z/3b/G95/41UqQq/c6Jc/Z9T5yw6LSG9NtID2xfGV988hPRW94eEREvm/9/xdv3uyA6SzYNAQDk+f66q+KG9VfHYBqMLLJ487K3x2uW/Hazh9UyhtJgfO3pz8c9W26vWm+P0oJ4z4F/GQfPPaIh/ZZTOa5a8+W4deMNERExJzri3P3+LI5bWP/vgn626ab4+jNfiKEYbMjYpsuLeg6P8w68KDes71fbV8aXnvx4obC3g3oOjwtf9OlGDxEAAJrO+jzr8wCgEdIj90f64FkRTz+6s+DwYyI++++RLVnazGEBAAAAAEDT+W1te5k/5ngir5zeEaOD0RZMYT8jVeqnblmWLYuIen8DdGgj+m6UNDgYsfaJZg+j/S09MLI2XrBy3333xbvf/e5Ri66OOeaYuOyyy2L58uWj6q5duzYuuuii+NKXvjRcdsMNN8TFF18cH//4x6dtzEWtXLkybr311oiIOOuss+ITn/hEHHnkkaPqbNiwId7//vfHFVdcMVz22c9+Nt797nfHQQcdlHvtu+++Oz70oQ+NKjvllFPiC1/4Qhx99NGjyteuXRsXX3xxfPGLX4xbbrklVq1aVdfnuPLKK0ctuiqVSnHeeefFBRdcEC984QtH1U0pxXe+8504//zzY/Xq1RER8aMf/Sguuuii+MQnPlFXvwAAQPtY3ftQXLXmy5O6xlP9q+Ofnv67eO8LLh13LqUUX3ryE0LRKihHOf51zZfi4LlHxAt6Dpn09VZtvzf+/blvFOh3KP7pmb+Pg3peHPt1v2DS/TZKf7kv/uGJv46+9PwmqF9svTOuf+7q+J2l5zRxZAAArWvl1rtGzQFTpLh6zf+Kg3oOb1jA10z3w/XfrhmKFhGxrbwl/ueT/yM+eejXYk42+d///WTTj4ZD0SIihmIwrnj683FwzxGxd9c+ha+zpv+puPKZv530eJrhsd4H46pnvxxv3398WEFfuTe+OGb+DwAwk1ifN43aeI2e9XnW5wFAI6SUIv3Vuc+HokVEPHhfpL95d2Sf+GazhgUAAAAAAC2hPVcczF5jA8smshJ5R0QsqXLNRvZT7ZoT9Z6IuKRB12qOtU9EOttmh6mW/duvIvY7qNnDmDJvf/vbo7+/f/h4xYoV8YMf/CDmzZs3ru7SpUvji1/8Yhx22GHxgQ98YLj8U5/6VLzlLW+Jl770pdMy5qLWr18fEREXXnhh7hsmlyxZEl/72tdiw4YN8Z3vfCciIoaGhuLyyy8f9wbIkc4777wYHBwcPn7Tm94UV111VcW3Pi5dujT+4R/+IQ455JC48MILY926dYU/w2OPPRbvfve7h4+7u7vj2muvjTPOOKNi/SzL4qyzzorly5fHiSeeGA899FBERHz605+Od77znXHwwQcX7hsAAGgf/7n17oZc51fbV0ZveUf0lOaOKl8z8FSsGXiqIX20q19svbMhwWi/2HJnXfVXbr2rpYLRfrV9ZcVQhF9s/ZlgNACAHNc/d3XF8vu2/lQw2i71PPNsG9oSD+/4Zbx43m9Mut+V2+4aV5Yixcptd8Vrun67+HW2jr/OTPKfW38eQ2ko5mRzRpU/kDP/BwCYMazPmzbtvEbP+jzr8wCgIR76xc4/Y/38R5EGByLr6Jz+MQEAAAAAQIsoNXsATKnUZm2AAm688ca45557ho8XLlwYV111VcVFVyNdcMEF8du//fxmjnK5HJ///OenbJyTsWLFikJvYvzrv/7rUcc//vGPc+vedddd8bOf/Wz4eL/99ouvfvWrFRddjfSBD3wgXve619Ucy0if/vSnY8eO5/MhP//5z+cuuhpp2bJl8S//8i/Dx0NDQy37NQIAAKbepsENDblOOYZi6+DmceUbB55ryPXb2abB9Q25zsbB+u71pqHG9Nsom3LG36jvUQCAdrO696F4tPeBiuc2DrTWXK+ZtgxtrKt+w+bnOc9C9c5v653nt5q+1Bt95bHvO4vY2KD7DAAAM5X1ec+zPg8AJum26yqX926P2LF1escCAAAAAAAtRjBaexn7m4+5E7jG2DaVfpsyXf0AE3DllVeOOj7vvPNi//33L9T2k5/85Kjjb3zjG9HX19ewsTXKRz7ykSiVav8v7Oijj46DDjpo+Pi+++7LrfuNb3xj1PGf/umfxqJFiwqN56KLLipULyJi27Zt8dWvfnX4+JBDDol3vetdhdsfd9xxcdJJJw0ff/e73y3cFgAAaC+DaaBh1+pL4ze791bYAM9ojbpHfam3Kf02Sl+58vgrfV8BABBx88brc8+ZQz2v3jdt5c1L65U3P68UElZNq83bJ6LSZ6j3PgAAQLuxPu951ucBwOSkZ5+ocrLen5ACAAAAAEB7qf6aLWYawWgR/zMirq6zzaER8Z0G9Q9Nd9ttt406/sM//MPCbY8++ug49thjh99o2dvbG3fffXcsX768oWOcjLlz58app55auP5RRx0Vjz76aEREbN++PbZu3Rrz588fV++OO+4YdXz22WcX7mPFihWx//77x1NPPVWz7m233TbqbZRvfvObCy0iG+k1r3lN3HrrrRER8dhjj8Xq1avjhS98YV3XAAAAZr68YLQ50RFdpa5x5SkiesvbK7bprRAgUC2sa25pXrFBtomB1B+DaXBcecOCF+q8TqP6bZS88QymwRhMA9GRdU7ziAAAWte2oS3x88235p5vtblec9W38a9RgV15gWaNCkbLe2ZrlhSpymce//2YV7cUpegu9Ywrr1QGAAAzmfV5o1mfBwCTsLZKMNrQ0PSNAwAAAAAAWpBgtPayaczx0noaZ1k2P8YHlm0s0M+8LMv2SCltq6O7ZQX6qVtKaU1ErKmnTZZljegaWsKGDRvi4YcfHj5evHhxHHXUUXVdY/ny5cMLryIi7rrrrpZaeHXooYdGV1fxzSJLliwZdbxp06aKC6/+4z/+Y/jvixcvjsMOO6yucb3qVa8q9HbIsQvj9t9//+GFYUWN/fy//vWvLbwCAIBZqFJQV0TE8sWnx1v2+ZNx5SmleO8DvxflKI87V2mDf95m96Wd+8VHD/mHOkc7s3137T/HDevHZ/Hn3aN65QUsdGQdUxrI1ijV7kNfuTc65ghGAwDY7SebfhQDqT/3fKPCvdpBSvUGo01tcHG9188Lpj5lyZnxe8v+uO5xTZXe8o54/4NvqXiu0vdj3n04ao9j4rwDL27o2AAAoNVYnzee9XkAMAlrn8w/l8av7QAAAAAAgNlEMFp7eXDM8YvqbD+2/vqU0oaxlVJKz2VZtiEiRq5meGFE3D+JvsaOHZiAtWvXjjo+/PDD6w7/O/LII0cdr1lTV9bglBu7kKqWzs7Rm68HBgbG1dm2bVv09j6/iWMii5iKtnn88cdHHb/vfe+L973vfXX3N9L69esn1R4AAJiZBtP455uIiM6scghVlmXRXZobO8rjs+3r2ezeUxqbq9/+8j5zX2pM8EJesNjCOUti/eDaceWtFpZRLSCir9wbe8xZMI2jAQBoXeVUjls33lC1TquF4M4kjQguTik1MBit8ni6W+yZqivrjiyySDE+iK7SZ857Hmm1zwUAAFPB+rzxrM8DgEnY9Fz+ufLQ9I0DAAAAAABakGC09jI2mKy+16lFHDLmeFWNvka+ou6wCv3X01c9bdvb0gMj+7dfNXsU7W/pgc0ewZTYsGF0luGiRYvqvsbYNq22qKdUKjX8mhs3bhx1vGBB/Ru2Fy5cWKjec89V+QX2BG3ZsqXh1wQAAFpfXjDanCz/R37dpZ6cYLR6Nrv3FBxh+8j7zI0KKMsLWFjUsWdOMFprhWX0pfz70GpjBQBopvu33RtrB56pWsf86XmVgrqqacS9G0j9kaJc8Vy9wWt59eeW5tU9rqlUykrRlXVXDH6u9Bny7vNsfFYEAGYo6/OmTxuu0bM+b2KszwOAHNs2558bEowGAAAAAMDsJhitvfznmOOXZVk2L6W0vWD7E2tcb+y5kcFoJ0TEdUU6ybJsj4h4WR19zSpZR0fEfgc1exjMUCmN3iBS79soK2nENVpdd3f3qOP+/v66r1G0zUSuXcvYrzsAADA75AWjdWSduW26S3MrltcXjFb5Gu2snvtWr5RS7nUWdiypWF5vIMNUq3YfWm2sAADNdPPG62vWEYz2vLxgtFKUolwhvKxaYG9R1cKPKwWHVZM3F27FZ6ru0tzoG6rwXFjhM+fdh+6s9T4XAEAl1ucxGdbnTYz1eQCQo6/KzzRT5Rc4AAAAAADAbCEYrY2klJ7OsuwX8XzoWEdErIiIHxa8xCljjqutzL8hIt5ZpW01J8Xo7717U0rP1tEeyLHnnnuOOt60aVPd1xjbZsmSypuwJ2Ooxd5gNfYzjn2zZxFF39y59957jzq+44474oQTTqi7PwAAgME0WLG8WjBaT84G/Eob9vM38fcUGF17yfvMjQj9GkyDUY7Kz8kLOxZXLG+1sIxq46kWLAEAMJus6382/mvb3TXrNSLcq911l+bGjvK2ceWNmCc3cm7bW678/rKe0ry6rjMdekpzY/PQ+N+P1fOsmPe8CQAA7cT6vImxPg8AJqDcWv8/BwAAAACA6VZq9gBouGvGHL+tSKMsy46MiN8cUbQtqgeq/SAiRq54PmHXNYp465jjsWMGJmjp0qWjjh944IG6r/GrX/1q1PGyZcsq1uvoGJ2tOThYeUN+JRNZ2DSV5syZEwcccMDw8a9//evYvr3yZpU8K1euLFRvn332GXU8ka8RAABARMRgGqhYXi0YLS/gq9Lm/7xAgNm42T3vM/eVeyOlNKlrVwu+WDSn8maoVgsbqxYQ12ohbgAAzXLLxusjRe2542AazJ3rzzZ596uewOd6VbtGb51z27x5e08Lhk034llxNoZoAwAw+1ifNzHW5wHAeKmvxs8zy+XpGQgAAAAAALQowWjt558jYuSrYd6UZdnhBdp9cMzxv6WUcld2p5S2R8Q3a1xjnCzLXhwRvzuiaDAi/qXA+IAClixZEoceeujw8caNG+P++++v6xp33HHHqOPjjjuuYr2FCxeOOt64cWPhPv7rv/6rrjFNh+OPP3747+VyOW6++ebCbdevXx//8R//Uaju8uXLRx3/8IfVMigBAADyDabKG2A6so6K5RH1BQjkBQLMxs3ueZ85RTkGUv+krl0t5GxRx56V26TeKKfWWQRdLfysEeEUAAAzXX+5L36y6UeF6wuX3SUnhLhacPFkVbtGPQHFA+WB3Ge2ntK8usc11fKD0cZ/5rz7MBufFQEAmH2sz5s46/MAYIwtNYJMy0PVzwMAAAAAQJsTjNZmUkoPRsSVI4q6IuKKLMtyVyFnWfbGiHjriKL+iPhoge4ujYiRryt/a5Zlv1Oln56I+NquMe12eUrp4QJ9AQWtWLFi1PE///M/F257//33x9133z183NPTE6985Ssr1h37pspVq1YV7uf73/9+4brT5fTTTx91/JWvfKVw2yuvvDL6+4tthD/ttNNizpw5w8ff/e53Y82aNYX7AgAA2G0oNxitM7dNd86PiPpSpc3ulQMB8kII2lm1zzzZ4K9qwQsLOxbnnutPfZPqt5GqBUT05b97AQBg1rhny+2xrbylcH3BaDtVjkXLDxZrSDBalfnrQOqPciq2GbHaHLkVn6m6c8Pmiodot+LnAgCAqWB93sRYnwcAY/zq3urnh1rnZWkAAAAAANAMgtGmWZZlB2ZZdtDYPxGx75iqHZXq7fqzd41uLomIka+PWR4R/yfLsiPHjKU7y7L3RsTVY9p/NqX0WK3PklL6dUT8f2OKv5ll2Z9mWTYy/CyyLDsqIn60ayy7PRfFAtiAOpx77rmjjr/whS/EM888U6jthz/84VHHf/AHfxDd3d0V6x577LGjjq+77rpCffzgBz+IO++8s1Dd6XTOOefEggULho+vueaa+MEPflCz3ZNPPhl/9Vd/VbifJUuWxDnnnDN8vHXr1rjgggvqGywAAEBEDKaBiuUdWUdum+5STjBahQCBvI383dns2+yed98iqgceFFEtvGFRx5Ip67eRqoVHCPUAAIi4eeP1ddU3h9opReWNf/nPNZOfI9cKPi76tal2nbxgt2aq71mx8j2o9twEAADtxPq8ibE+DwBGS1+5pEYFwWgAAAAAAMxugtGm320R8UiFP98YU++AnHqPRMRnqnWQUnoiIt4UESNfj3ZiRKzKsuyuLMuuyrLshoh4PCL+LiI6R9T794i4qI7P86GIGLmSvzMi/j4iHs+y7Posy/4ty7KfR8R/xehQtP6I+N2U0tN19AUUcOqpp8YxxxwzfLxp06Z4y1veEjt2VN/I8fnPfz6+853vDB9nWRZ//ud/nlv/hBNOiHnznt+4cc0118TPf/7zqn08+OCD8Ud/9Ee1PkJTLFiwIM4///xRZWeffXbceOONuW0effTReO1rXxsbN26sq69LL7101IK2f/qnf4oPfvCDMTQ0VNd1Vq1aFbfccktdbQAAgPaRH4zWWbE8IqK7VDnUrFKAQF7Y1Wzc7J533yJqByfUkhcqkEUW8+csqrtdM1QbSysFuAEANMOjOx6Mx3ofrKvNZOeY7SLllPfkPtdMfo5ca/5aPBhte+65vPE3U9FgtJRSfoh2C34uAACYCtbnTYz1eQAwxvpnq58v1/f/LQAAAAAAaDeC0dpUSummiPjdiFg7ojiLiFdFxNkR8fqIWDqm2Tci4g9SSoV/g7Kr7tkRcdWYU8si4oyI+G8R8cpdfe+2JiLemFK6tWg/MJs888wz8eijj07oz26XX355dHV1DR/fdNNNcdJJJ8XPfvazcf2tW7cuzjvvvHj/+98/qvzCCy+Ml73sZbnjXLBgQfz+7//+8PHQ0FC84Q1viB/+8Ifj6vb398dXvvKVOP744+PZZ5+NJUuW1HNLps1FF10UL33pS4ePN2/eHKeddlqcffbZ8c1vfjN+8YtfxC9/+cv44Q9/GO973/vi6KOPjvvvvz96enrijW98Y+F+Dj744Pjyl788quxv/uZvYsWKFXHdddfF4OBgbttHH300Lrvssjj11FPj6KOPjh//+Mf1f1AAAKAtDOQGo3Xktim62T0iP4xhNm52787yP/Nkwxfy73NP1cCEVgnLGEqDuSF9EYLRAABu2fj9utuYQ+1WORqtpzSvYnlfmvx9qzXPzguQruc6rfhMlffsMfZzDKaBKEe5Yt1W/FwAAFCJ9XnNY30eAOyUhoYiNq+vXqlc+edwAAAAAAAwW+TvkmTGSyl9P8uy34iIj0bE70dE3kqHn0bEZ1JK35pgP1sj4g+yLPtmRPy/EXF8TtX1sTNA7ZKU0tqcOjDrveUtb5lw25R2bhA59thj4wtf+EL8yZ/8SZR3/VL07rvvjuOPPz4OO+ywOProo6Onpycef/zxuPPOO8ct9Hnta18bH/vYx2r297GPfSyuueaa4TcyrlmzJl7/+tfHYYcdFi972cuiu7s7nn322fjZz34W27Zti4iIfffdNz71qU+15Jspu7q64nvf+16ceuqp8dBDD0XEznt69dVXx9VXX12xTZZlcdlll8Xq1avHvdGzmnPPPTeeeeaZ+PCHPzz8NfrpT38av/M7vxPz5s2LV7ziFbHPPvvE3LlzY8uWLbFu3bpYtWpV3W+/BAAA2tdQqrxpoyPrzG1TdLN7RH7gV7WwrnbVWeqMOdERQzH+nk82tCKvfXdpbm6Q3c52kwtka5Ra42iVcQIANMPWwc3x8y23VTx35LyXxyM7flUxaMscaqdUZzDa4K7Q3mrPRLXUnt8Wm//3lrdXLO/IOqKzNPHxTZW8MOix35/V7k93lv/8AgAArcT6vOaxPg8Adnnu6Yih/KDOiIgoD03PWAAAAAAAoEUJRptmKaWDprm/NRHx7izLzo+IEyPiRRGxb0Rsi4gnI+LelNIjDerrmxHxzSzLDo6IYyNi/4jYIyKeiYjHIuL2lFJ/I/oCanvHO94RS5Ysibe97W2xdevW4fKHHnpoeFFRJX/8x38cX/ziF6Ozs/amjAMOOCC+9a1vxVlnnRVbtmyp2cfBBx8c3/ve9+LZZ5+t89NMnxe84AVx6623xnve85645pprqtbda6+94sorr4w3vOEN8cEPfnDUuQULFtTsa/dbP9/2trfFM888M1y+ffv2uP322wuNt1Xf7gkAAEy9wTRQsbxaCEB3TqjZ2M3tKaXcDe/VwrraWU9pbmwrbxlXXinIoh659znriTlZR3RknRW/1pXC7Jqh1jiEegAAs9kdm/5P7rz95MW/FU/1rY6+oQrBaJOcY7aNyrloVcOa+8q90TFn6oLRis7De3Ofp1ozaDrvno69H9U+/2wM0QYAYHazPm9irM8DgIh45rHadYYEowEAAAAAMLuVmj0ApkdKqT+ldGNK6YqU0idTSn+fUvp2o0LRxvT1SErpW7v6+OSuPm8UigbT781vfnM8/PDDcf7558fee++dW6+zszNe97rXxe233x6XX355oUVXu5166qlx5513xhvf+MbctzAuXbo0PvCBD8R9990XRx11VN2fY7rtu+++8e1vf3t4AdZLXvKSWLx4cfT09MQhhxwSp59+enzpS1+Khx9+ON7whjdERIx7U+SiRYsK9XXGGWfEI488Epdddlkcc8wxNd9k2dnZGcuXL49LL700HnjggTj//PMn9iEBAIAZrZyGohzliueqB6NVDjUbu9l9IPVHyrn+bN3snnfvJhtQlhd6sbu/ogEFzdKo4AgAgHZTTkNx66YbKp5b0rF3vHT+cYXn57NVyklGqxWMNhl9DQr+7S1vr1jeU5pX95imQ9Hnnb6Uf39ma4g2AACzm/V5E2N9HgCz3pona9dJlddsAAAAAADAbNHR7AEAzHaPPvrolF5/2bJl8bd/+7fxuc99Lu6+++745S9/GWvXro2+vr7Ye++948ADD4wVK1YUeoNiniOPPDKuvfbaWLduXdx8883xxBNPxPbt22OfffaJgw8+OE466aTo6Hj+fzmnnHJKpFR5M0sl9dQd64orrogrrrhiQm1XrFgRK1asKFR31apVw3/PsiyWLVtWuJ+enp54z3veE+95z3ti/fr18dOf/jSefvrpWL9+fQwMDMT8+fNj2bJl8eIXvziOPPLImDevNTfNAAAA02cwDeae68jyf+SXH7I1enN7tTCr2brZvXuKAsry2u/ur7vUE1uHNldo1xqBY7U+f17wGwBAu/uvbffEcwNrKp5bsfj1MSebM2Xhu+2iOcFoNea3Ba+fN19v1aDp/JC+McFoVT7/bH1WBACg9VmfV5v1edbnATDNerfVrlMemvpxAAAAAAAz1rotKbb0PX+8dH7E/J7qLwmCmUYwGsAsUSqV4rjjjovjjjtuyvrYe++94/d+7/em7Pqtatu2bXHPPfcMH7/4xS+e8EK2PffcM84888xGDQ0AAGhTg2kg91xH1pl7rjvL2eyeeqOcylHKSjuPqwajteZG/qk2VaEVefd6d3/dWbEwu2apNY7JBlMAAMxUN2+8vmL5nOiIExe9NiKKBxfPXpU35ld7Jpn0/DxVb1/0+jvK2yuWt24wWrEg6LzPX4pSdGZdDR8XAADMJNbnTR3r8wBoO/0Ffo9eLk/9OAAAAACAGeeex1Kc+9VyrHp6dPnX357Ff/9NwWi0F8FoADBJV155ZWzf/vwGlxNOOKGJowEAAGaDwTSYe65qMFqVTfj9qS96doVwVdvsnxcQ1u7yQysmF/yVd69395d3v/tSawSO1RrHZIMpAABmorX9T8eqbfdUPHfsguWxsGNxRFSZ6wmXjYi8WLSd9y2LLFKFGpMNleutce+Lfm3yxtG6wWh534s7IqUUWZbtOq78+btLPcN1AAAAGs36PADaTqFgtKGpHwcAAAAAMKNs3pHi1M+WY7NlpswSpWYPAABmsieeeCIuuuiiUWXnnntuk0YDAADMFoNpIPfcnCz/XQjVQs1Gbtyvttm/VTfyT7VqQQGTUS1YoFq/rRI4VuvzT/b+AADMRLdsvCH33MlLzhz+u2C0WipHo2WRTdm9a9T8Nj8AeV7dY5oOeSHa5SiPev7Mf36Znc+JAADA1LM+D4C21N9fu45gNAAAAABgjG/fm4SiMasIRgOAEb71rW/FX/zFX8TatWtr1r333nvj5JNPjvXr1w+XvfyA4QheAAAgAElEQVTlL4/XvOY1UzlEAACAqsFoHRMORusd8ffKm/jnREd0ZJ0FRth+8jb6T3UwWl4QXauEZdQaR6uMEwBguvSX++Inm35U8dyB3QfHIT1HDB93Z60912u2lHKC0bIsurOpCRCude+LXj8/GK01A8R6JvmsKBgNAAAoyvo8AIhI/QV+BlwuT/1AAAAAAIAZZeWTzR4BTK/8XZIAMAtt2bIlPvGJT8RnPvOZOOOMM+K0006Ll7/85bFs2bLo6OiI9evXx8qVK+Pf//3f47rrrhu1KaerqyuuvPLKJo4eAACYLQbTYO65zirBZdU24Y/cuN+XKi/CbdVN/NMhL1Ru0sELOfd6d0hGXsDAZPttlFrj6Cv3RkopsiybphEBADTXz7fcGtvLWyuee/XiM0fNi3LDd1NrzPVaWXdpbsTQhnHlefPromoFHxe9/kwLRssL6YvY+Vnmx8KIqB3sDAAAUIv1eQAQEYWC0YamfhwAAAAAwIzy6LrKL5yFdiUYDQAqGBgYiOuuuy6uu+66QvXnzp0b//iP/xgvf/nLp3hkAAAAEYNpIPdcR5VgtLzghYjRG9zzNvHP5s3ueQEGecEARdW611PVb6PUGkc5hmIwDURn1jVNIwIAaJ6UUty84fsVz80tzYvjFp48qixvfl0rnGu2KEe5YnkWWZV7N9lgtOrti16/t7y9Ynm1Z7JmqvasNzKoL/f5JZu9z4oAAMDEWJ8HwKxWKBit8s9HAQAAAIDZ65F1zR4BTK9SswcAAK1k8eLFMWfOnLranHjiiXHLLbfEm9/85ikaFQAAwGjVgtHmZPnvQpiTzckNqBq5wT1vs3+rbuKfDnkb/fOCAYrKu9e7A9FaPSyjSDBEq4S4AQBMtUd7H4jH+35d8dwJi06LrlL3qLKpCvdqf1nus8lk58m1g9GKXT+v3tzSvLrHNB3yApkjRt+TkSFpRdsDAACMZH0eAETBYLShqR8HAAAAADCj5AWjffR3snjjMdn0DgamQf4uSQCYhc4666x49tln44Ybbojbb789Vq5cGY899lisX78+ent7Y+7cubHnnnvGi170ojjppJPizDPPjBNPPLHZwwYAAGaZasFoHVln1bbdpZ4YGOofVz5ys3te2FdecMNskLfRf7KhFXmBCbvvdX7gQ2uEZRQKRks7Yn4snIbRAAA0180bv5977uTFvzWuTDBadSlSxfJSZFMSIFxO5ehLtYLRin1tduTO81szQKwj64xSlKIc5XHnioVoz95nRQAAoD7W5wFARAyMX7MxTnn8z+oAAAAAgNlrw7YUm3KWSJ5yRBZ7dAtGo/0IRgOAMfbaa68455xz4pxzzmn2UAAAACoaTIMVy0sxJ0pZqWrb7lJPbB3aPK68r8Bm97xwsNkgN6AsTTx4IaJ2sMBUBD40UpHPnxe0BwDQTrYMbox7ttxe8dxR846JZV37jyvPm1+bP+1WORgtsmrBaBMPletPfTXrFL1+3ny9VZ+psl33dEd5+7hzQrQBAIBGsz4PgFmvv8DPGQWjAQAAAAAjPLIu/9zBe0/fOGA6Vd8lCQAAAAC0nME0ULG8M+us2bY7ywn4GhWMZrP7WLnBaJMIXkgpVQlG29lfd1b5nrdKWEaRcUzmHgEAzBS3b/o/uQHGr15yZsXyqZhjtpOUl4sW2ZSEyhUJHy56/d4KAWMRrRuMFlHt+1GINgAAAAA0VKFgtKGpHwcAAAAAMGP8OicYrasjYv9F0zsWmC6C0QAAAABghskLXJiTddRsmxdu1peeX3ibH4w2eze75923yQQvDKaBKEflxcy773VewMDIr1czFQntEOwBALS7chqK2zb+oOK5PTuWxm/s8cqK53Ln5uZPERGRIicZLabm3hUL/a1dZ6A8kPvM1soBYkWC+moFOwMAAAAABfQVCUYrT/04AAAAAIAZ45F1lddUvmjPiFIpm+bRwPQQjAYAAAAAM8xgGqhY3pF11mybtxF/ZAhAXiBAXvjAbJB33wbTQAzlhB7UUi20oTvbea/zAx8mHsjWSEWCJyYTHgcAMBP857a7Y/3g2ornTlp8RpSyORXP7Z7zjTUUg7lz/tml8iKeLLLozhofIFwo9LfA9avN1XtK8+oa03QqEjaXH6I9e58VAQAAAKBu/X2165Qrv2QNAAAAAJidHllXufzgvad3HDCdBKMBAAAAwAyTF8TVkXXUbFtss3vlzf554WCzQbWN/kUCFCq2S9UCE3p2/TcvkK01wjIKhUdM8P4AAMwUN2/4fsXyjqwjli86PbfdVMwx20nlWLSdwWhFAp/rVWxuW/v61cbQys9URe5p3j3qbuHPBQAAAAAtZ0AwGgAAAABQn0fXVV5VedDe2TSPBKaPYDQAAAAAmGEGcgKxOrLOmm3zNqyP3OCet5G/O8sPbmh31QIMJhq+UC14YXdIRrWAgf5ygcXSU6xIMESROgAAM9Wz/U/G/dvvq3ju2AUrYkHHoty2UzHHbC950WjFAp/rVeSeFwko7i1vzz3XU5pX97imS97z3shAZ8+KAAAAANAA/QV+jlkuT/04AAAAAIAZ45F1lcsP3nt6xwHTSTAaAAAAAMwweRvxO7KOmm3zwhdGbnDPCxOoFtzQ7vKCFyImHr5QPRhtbs1+WyEso8hnn0w4BQBAq7t14w255169+MyqbauF4JpDRaScYLQssirBaBOfIxe957UCiqvN06t9zZst73lv5H3Ju7+z+VkRAAAAAOpWKBhtaOrHAQAAAADMCOVyikefq3xOMBrtTDAaAAAAAMwwQ2mwYnlH1lmzbZEAgb5UebN7K2/in2rVQysmFr6QF5iQRSk6s64C/TY/LCPve6XeOgAAM1FfuTd+sulHFc+9oPuQOKjn8KrtpyJ8d1bIstx58uSC0Yq1rRVQ3FveXrG8I+uIzlLtZ7Zmyft+3P15y6kc/alyKFy172UAAAAAYIz+6i9fiIiIcnnqxwEAAAAAzAhrt0b0Vd5KFgfvnU3vYGAaCUYDAAAAgBlmMA1ULC8WjJYXINBb8e9F2s4GXVl37rlawQh58u9zT2RZNvz3RvfbKINpIAZzQvpGEuoBALSruzbfEjtyQrBeveTM4Tldns6sK7KoXGcyAV/tIKWUey6LaoHPvVXbVlP0ntea3/bO0Oepavc0IqI/9UWKyve21T8bAAAAALSUQsFoQ1M/DgAAAABgRli/Lf/cfoumbxww3QSjAQAAAMAMkxuMVioSjJa32f35EIC8wK1qIV3trpSVojur/PknHoxW+z53Zd0tG5bRXy6wWDsEowEA7SmlFLds/H7Fc/NK8+NVC06qeY1SVsoN4G12CG6z5QVw7ZTlBnGVo5z7vFRLXyo2b601D88731OaV/eYplOtEO1q8/oewWgAAAAAUFx/gZ9FCkYDAAAAAHbZWPkdvhERsaS1lybCpAhGAwAAAIAZZqCcE4wWHTXb5oV77Q4BGEqDuUECs32ze62ggHrltRv5NWrlsIyi/Td7nAAAU+HXO34ZT/Q9WvHcCYtOi65S5TncWHlz7NkeLlstGK0UWfRUCW2eeHBxsXte6/q95corkFr9eSr/eWfHrv/m35/ZHKINAAAAAHUrFIxWnvpxAAAAAAAzwoacYLSOUsS8rukdC0wnwWgAAAAAMMMMxWDF8o5SZ822eZvxe212ryk/tGKCwQspJxhtzH1u1bCMov03e5wAAFPhlo3XVyzPIouTF59R+Dq5YVQ5c8XZIz8YLSKL7iw/ZGyi88+igWq1rp93ndYPRssJ0d71eas998z2Z0UAAAAAKCqlVDAYbWjqBwMAAAAAzAgbt1deU7lkj4gsy6Z5NDB9BKMBAAAAwAwzWM4JRss6arattdm9WhhAq2/kn2q5926CoRVFAxNaNSyjaCDcRIPjAABa1ebBjXHPljsqnnvJHq+IpV37Fb5Wrfn5bJWqBKNlkVUN4upLEwwuLhr8W2Me3luu/GrGVn+eqhUELRgNAAAAABpgoL9YvXJ5ascBAAAAAMwYGyovS4zFrb0sESZNMBoAAAAAzDCDaaBieUfWWbNt3mb3wTQQQ2mwahjAbN/snhdQVi1Mrpq8ez22n/ywjOYGjhUOjpjloR4AQPu5fdP/jqGoHFZ88uIz67pWq871mi3l56JFZFnVkLHeCc4/i87ra9XLO5/3PNEqurPK34u9w8Fole9rR9ZR6FkUAAAAAIiIgb5i9cpDUzsOAAAAAGDG2JgTjLZk3vSOA6abYDQAAAAAmGHygtHmZB0121bbjN9X7q0awNDqG/mnWl74wkSDv/Lu9dhwjLz73uzAsb5UrP+JBscBALSioTQUt268oeK5vTr3iaP3eEVd18uf6832OVR+MloWO0OhSznLHSZ674q2qzUPz5v/zi219gqkvJC+/tQX5VTOD3zLZvdzIgAAAADUpb/g7/nL5akdBwAAAAAwY2zIC0bbY3rHAdNNMBoAAAAAzDCDabBieUfWWbNt3mb3iJ0b+KuFWHVl3bUH18by7t3EgxcqL3geH4xWud9mB44V7b9ogBoAwEywcutdsXHwuYrnTl58RpSyOXVdL3+OObvnUKlqMFoWWZY1/N4VbVdr/p8bINbiQdN5QdApUgyk/tx5fbVnTAAAAABgDMFoAAAAAECdNuYsW1w8N5vegcA0E4wGAAAAADPMYBqoWN5ZKBgtfzN+X7k3P6wr64lSNrt/nJgXFNDo4IWxwQL5/TY3GK14cMTsDvUAANrLzRu/X7G8I+uMExadVvf1BKNNxM6FPHnPNhOfnxcM/q1x/d5y5Vcz5s3rW0W1Z8VqIdqtHvgGAAAAAC2lr2gw2tDUjgMAAAAAmDE2bqv8stnFe0zzQGCaze6djAAAAAAwA+UFo83JOmq2zQteiNgZBGCze768e5d3z2rJazc2MKFVwzLqCY5IqfIvYQAAZpJn+p6IX23/RcVzr1qwIubPWVj3NbuznHCvNLuD0VLkzx93v98wPxhtYvPzove81vXzzrd+MFq1Z8UqIdpV2gEAAAAAYwz0F6uXylM7DgAAAABgxthQ+X2tsbi1lyXCpAlGAwAAAIAZJi8YrSPrrNm2K+uObDhKYLS+cm9uGECrb+KfDtMVvDA2HCPv3k80kK1RigazpSjHQCq4uBsAoIXdsvH63HMnLz5zQtdsdPhuu6gWjLY7Gq3RAcJF29WqtyM3GG1e3WOaTtWe+frKO3I/t2dFAAAAAKhDf8Hfsw8NTfFAAAAAAICZYmNOMNqS1l6WCJMmGA0AAAAAZpjBNFixvEgwWikrRVfWXfFcb3lHbshXXujAbNKdNTa0Ii9YYOy9bnTgQ6PU0/9Ew+MAAFpFb3lH/HTzjRXPvajn8Dho7uETum5eqFSz53qtLMt2BaPlzM/70sTmnkXn9XkBx8Pnc4PRWjtArNozX59nRQAAAABojILBaFEWjAYAAAAA7LQhJxhtsWA02pxgNAAAAACYYQbTQMXyIsFoERHdeeELqbdKWFdrb+KfDo0OrSgaLNCd5fXb3LCxegLhJhoeBwDQKu7cfHP0liuvLHn14t+a8HXzQ3Bn9/wppZR7Ltv137z5+UTmnkNpMPc5q97r532ftHow2pysI/eZsq/cW+X5pbU/FwAAAAC0lMLBaOWpHQcAAAAAMGNszFm2uGReVvkEtAnBaAAAAAAwwwymwYrlHVlHofbVAgTyNvnnBTbMJo0OrSgaQpfbb5pYIFuj1BMIN9HwOACAVpBSils2XF/x3B5zFsQrF6yY8LXz55izff6UH4y2OxqtkfeuUXPbwTSQ+7zW6sFoEfn3tLe8o8rzi2dFAAAAACiscDDa0NSOAwAAAACYEcrlFJtyti0tnje9Y4HpJhgNgIZYvXp1/OVf/mWcdNJJsc8++0RXV1dkWTb854orrmj2EAEAANrGYBqoWN6RdRZqXy1AIC/kayZs4p9qYwPLdptIQFlKKfdej/365PWbF2I3XfpS8f4FewAAM9nDO1bFU/2PVTy3fNHp0VnqmvC1c+eYs3z+lKoEo2VTEIxWz9y6WjBytev0/P/s3XmcHGWB//Hv09Mz3TO5JmQSAkRICDcIGOW+AiIgouuBB14rIovXeqDrrusB7LreirqKJyJe/EBAUYFwbQj3lQDhNiSThDNkkkyume7p7np+f0wmme6pp7qqr+nj8369eJG6nnq6qqf7qern+Vas/nsgJYw7lNkZou3YBgAAAEBl0T8PAIAmMTQUbj3rVbceAAAAAAAAABrCppRkHV0qp9Z/t0SgLPHxrgAAtLrZs2dr1aodg2kWLlyo+fPnj1+FSvDLX/5S//qv/6p0Oj3eVQEAAACAlpCzWd/5cRPudp87QGDQGSLg2qaVuMLh0l5K1loZY0KXlbUZefLvyFwYjhG03/EUZf+lhMcBAADUi0X9N/rONzI6bsppZZXtamenvMHIbcxmEiYYzdVOLiVAOErbNqj8VC4oGK3+w6aDrj1cx6gRXhcAAABaG/3zAABAXRkKeS8yl6tuPQAAAAAAAAA0hA0D7mXdBKOhycXGuwIAgMZ2ww036Lzzzgvd6er222/Pe1LlhRdeWN0KAgAAAEATytqM7/y4aQ+1fWHw1oi0N+gc5M9gd/dxs7IastEGIwUFLyRMfjiGO8huOJBtvFQqPAIAAKCebcyu18Ob7/VdduCE16qnY+eyyk8a/zamp5yyjkDkVhAUjKZtwWju65roobyRQn8D1g1q9yZj9d8DyXVMUwHXiq5tAAAAAFQG/fMAAGgyYYPRPILRAAAAAAAAAEjrtriXddN9D00uPt4VAAA0ti9+8Yt5g7Df+9736pxzztGrXvUqtbfvGJDf09MzHtUDAAAAgKaUcQajhbvdFxS0lXYOdvffppUEHYOUNxjpGKVtUGBCuGA0K08ZO6QOkwi930pyvVfKXRcAAKCe3N1/izz5D0A7YerpZZcf1IZM20G1K1z4cdMJyEUzw7loAdc10due0dq2wwHFZqQio6Q896MZGyFALPBa0foP2ORaEQAAAKgu+ucBANBkciEfiEEwGgAAAAAAAABJq9b5z++ISztNqG1dgFojGA0AULJnnnlGS5cu3T59+umn6w9/+MM41ggAAAAAWkPO+neUjZtwoQlJx4D8lDeotOcY7G7qfxB/tbmOmyTncStl/cLAhOD9DqojNl7BaOFfc9TjAwAAUA9yNqs7N97ku2x6+0zt33Vo2fsIDEbzUprYNrnsfTQiG5CMZjQcSOYKGiul7ekK/fLjKaeszajddPjs2z9grU1xtcfqP+TOfUzd14pB1ysAAAAAykP/PAAAmlDYYLSw6wEAAAAAAABoaivX+fen3GMnKRYb+4BXoJnExrsCAIDG9dBDD+VNn3nmmeNUEwAAAABoLVmb8Z0fNhjNFb6Q9lJKOQbyBwU2tIrg0Ar/4+biOs5++wnab1A51RYlcGI86wkAAFCqR7c8oI3Z9b7Ljus+TTFT/s/triAqKXobs7m4g9E0EoxmXNc10Y9b1G1cbeFBRznJtsYID3NfKw46jxHXigAAAED10D8PAIAmFDoYzatuPQAAAAAAAAA0hJXr/OfP6altPYDxQDAaAKBka9asyZueNWvWONUEAAAAAFqHZ3Py5N8BNnQwmvEflJ+2KaWt/wD/ZEBgQ6uoZDCaK0jBKKZ201Gw36CwjPDhZJWWtuFf83jWEwAAoFSLNtzgO7/ddOioKa+vyD6C2tmt3IYKjkXbFozmCvFyXNMESUU81q62sOu6oFGup1zHdMDbqowdirQNAAAAgPLRPw8AgCYUOhgt5HoAAAAAAAAAmtrKPv8elXtMMzWuCVB7BKMBAEq2ZcuWvOn29nAD8AEAAAAApctad+fXuImHKsM1KD/lDToH8geFc7WKuGl3HuNUhYLRErGkjMn/ccIVZFfKfislazOB78VCrRzqAQAAGtOL6dVaNvi477LXTT5OE9omVWQ/7aZje9BXoVZuQ9nAaLRhruuatJeStcW3z98mWrva1Q5PeQO+85OxrkjljxfXMd2c3Rh5GwAAAADlo38eAABNKJcLuR7BaAAAAAAAAACklev858/uqW09gPEQbqQkAKDhWWu1ZMkSPf3003rllVeUTqc1ffp07bbbbjr22GM1ceLEyGV6nleFmgIAAAAAgmRtxrksbsINiEnEkr7z096gM3yBwe7DErFOZXObx8yPGlrhDqAbe27aY+1qU1w5je34nLbjE5ZRqdcLAABQr+7sX+BcdkL36RXbjzFGiVjSN2hrvEJw64M72GwkSM4V3mxlNWTTShj/6x4/0du3/uu7zlmjXE+5jtnG7Hr3Ng3y2gAAAIBqo38eAAAIJWzgmRcyQA0AAAAAAABA07LW6okX/ZfNnlbbugDjgWA0AGhyfX19+vrXv67f//73Wrt2re86HR0dOumkk3ThhRfqiCOOcJa1cuVKzZkzx7n8xBNP9J1/2WWX6eyzz/ZddtFFF+miiy5ylrlw4ULNnz/fuRwAAAAAWk3WujvJhg9G8x+4vjm7UdYRQOAKU2s1CZPUVo0NRosaWhE1gC4RS2rA2+JTzviEZUQOjrCtHOoBAAAaTcob1P2bFvoum5PcV7sn51Z0fwmTVEpj20tR21zNxB2LNhwmJwVfo6S9VKRrmEq151PegO/8hglGc9RzU26De5sIAXQAAABAM6J/HgAAiCRs4FnYADUAAAAAAAAATev/PejuTTl7mqlhTYDxERvvCgAAqucvf/mL9txzT1188cXOTleSNDQ0pAULFujII4/Ueeedp2yWH1IBAAAAoF5lbca5LG7CPQfBFRDgF7y1Y5vGGMhfba5Ag7SNFlrhCl5whQq4ztl4hWVEDkZr4VAPAADQeO7fuNDZXju++40V35+rrT1eIbh1wQZFow0LCj6rVNBZ1PKd7fwGuZ5yXe8EBXQ3ymsDAAAAqoH+eQAAICobNvCMYDQAAAAAAACg5f1kobsv5ZyeGlYEGCfhRkoCqB0vKw08P961aH5ds6RYc38E/vrXv9a5554rz/Py5s+dO1cHHHCAurq6tHr1aj3wwAPK5XY8eeoXv/iFVq9erb/97W+Kx5v7GAEAAABAIwoKRmsrMxit0ts0o0qFVriC1FzH2RVQEDXwoVIiv16C0QAAQIOw1uqO/ht9l01sm6J5k46p+D6dIbgRw3ebiZW7M4/R8FMOXW1kqfrtVdf6rvZ5Z6wrUvnjpbRrxUQVagIAAFBF9M+rnSbvo0f/PAAAUJKwAakEowEAAAAAAAAtr3/AvWzGpNrVAxgv/KIO1JuB56W/zhnvWjS/t/RKE2ePdy2q5pFHHtHHPvaxvE5Xhx56qH7yk5/o6KOPzlt37dq1+spXvqKf//zn2+ctWLBAX/3qV/X1r389b91Zs2apt7d3+/QPfvAD/fCHP9w+fcUVV+jII48cU5+enh7Nnz9fknTffffprLPO2r7s05/+tD7zmc84X8vMmTOLvFoAAAAAaC1Z6+782m7aQ5URFCBQyW2akSsoIGpAmStIwRW85gzLGKdgtKivd7wC3AAAAKJaNvi4Xhp6znfZMVNOVnssXJs7Cnf4LsFofkaC0YJCvCIHndmo7Xn/9V3tXtc5rjdRg9HaTYdipq1KtQEAAKgS+ufVThP30aN/HgAAKFnYwDMvV3wdAAAAAAAAAE3tyZf8509ISLGYqW1lgHFAMBoANKFzzjlHQ0ND26ePPfZY3XTTTerqGvs0+unTp+tnP/uZ9tprL/3bv/3b9vnf+ta3dNZZZ+nVr3719nnxeFyzZ8/ePt3d3Z1X1syZM/OWjzZx4kRJ0sqVK/Pmd3d3O7cBAAAAAIyVtRnnsnjIYLSog91L3aYZVSq0whWk4Aqgq7ewjOivt3VDPQAAQGNZtOFG3/lGMR3bfWpV9llvIbj1biQYLW7a1aa4cho7kDDqsYu+vn/7Nmo7v95EDXBrlNcFAAAAVBr98wAAQMnCBqOFXQ8AAAAAAABAU7pnufsBsz9/P6FoaA2x8a4AAKCyFi5cqCVLlmyfnjx5sq688krfTlejff7zn9cZZ5yxfdrzPF188cVVqycAAAAAoDSVCEaLOng9buKhy252rmOXqlCQgisUwzU/6n4rJW0JRgMAAM2nP7NOj265z3fZqye+TtPaZ1Rlv/XW1qsHVl7A0h0delzt82q3V9PW/9ykvAHf+Y0SIJaMGIhNgDYAAABaEf3zAABAWUIHo+WqWw8AAAAAAAAAde1rf3f3o3zVTgSjoTUQjAYATebyyy/Pm/7EJz6hXXfdNdS23/zmN/Omr7jiCqXT6YrVDQAAAABQvqBgtDYTD1VGwkQblB91/WbmGvgfNUjBFXLhKt8Z+DBOgWORgyNaONQDAAA0jrs23izPEch1fPcbq7bfemvr1QPrftChzKj+PNVun7u4yneVk4wFByTUi0TEALdGCXwDAAAAKon+eQAAoCwEowEAAAAAAAAIYcET7mVTG6NLIlA2gtEAoMncddddedPvf//7Q2974IEHat68edunU6mUFi9eXLG6AQAAAADKl7X+nWRjalPMhLvd5woPqNT6zcwdWlGZIAXXsXaF041X4Fjk12tT8qz7aTUAAADjLWszuqv/Zt9lM9p31X5dh1Rt35UK92ouAclo2pGM5jp2lQo6c3GV7w5Ga4wAsajBaFHXBwAAAJoB/fMAAEBZwgaehQ1QAwAAAAAAANA0rLW65Umrz/0pePxNN8FoaBEEowFAE9mwYYOWL1++fbq7u1v7779/pDKOPvrovOkHH3ywInUDAAAAAFRG1mZ857eb9tBlxE27YmoLvT6D3XdwHYuoQQpp6whGcwSg1VtYhivwIR7wPhyy6WpVBwAAoGyPbr5fm3IbfJcd331a6BDiUjhDcB1txlZgA4LRTF4wWnWDiyfEJkVa39VObpRrqoSJGKIdcX0AAACg0dE/DwAAlC1s4BnBaAAAAAAAAEBLyXlWH/y11WxCGWAAACAASURBVKk/8HTxLUEPl5WmEoyGFhEf7woAKNA1S3pL73jXovl1zRrvGlTF2rVr86b33ntvGWMca/vbb7/98qZfeeWVsusFAAAAAKicrPXv/Npmwt/qM8YoEUtq0Nsaav1kgwzirwVXQJkrAMHFFaTgKt91DsYrLMNV/ynxqVqX8b+XkPZSvJcAAEDdWtR/o+/8DpPQkVNOquq+6y0Etx4Ed+nZoRLHzlrrbM9Pjndr69DmUOVnbcYZZN3ZIO3gRCwRcf3GeF0AAAB56J9XO03YR4/+eQAAoGxerrLrAQAAAAAAAGgKNz8h/eH+cL0nuzqqXBmgThCMBtSbWFyaOHu8a4EGtWHDhrzpKVOmRC6jcJv169eXVScAAAAAQGW5BtrHTXukcpKxztDBaK6wgVbkDCiLHIzmv74rWKBSgWyV4gqamNwWFIw2KGlqFWsFAABQmhfSK/Xs4BO+yw6bfLy62iZWdf/11tarD+7OPUY7QgcqEYyWtVl58h9kODk+VS8NPedT/thzE3S+GiVALGba1GESGrLpUOtzrQgAABoS/fNQBvrnAQCAsuX8H4ZX8noAAAAAAAAAmsJfl4Z9pKwiP7wJaFSx8a4AAKByrM1v7FSiQUOjCAAAAADqS876d36Nm2jPQIgygL1RBvHXQsKUH7wwvL4rGM2/fNc5iBrIVinOYLR4d+RtAAAAxtsdGxY4l53QfXrV91+p8N1mYkMGo7mOXZRQuaDjPCXuH+zrV34q5y6nM9YVuj7jLdq1IsFoAAAAaC30zwMAAGUjGA0AAAAAAABAgWzO6soHwwWjvWNelSsD1BGC0QCgiey000550xs3boxcRuE2U6f6D/gAAAAAAIyPjM34zo+b9kjlRAk7Y7D7Ds7QChs+eMFa6wwJcwej+c9PjVPYmOv1TnYER0itHewBAADq12Buqx7YdLvvsrmd+2tWck7V6+Bq6xEs6zAqNCBhXKFy4Y9dUFt+cpt/+9av/KAwtkYKm3Zd85S7LgAAANAM6J8HAADKRjAaAAAAAAAAgFEeWmnV8TFP/QPh1v+3U4mKQuvg3Q4ATWT69Ol50//4xz8il/HMM8/kTc+YMaOsOgEAAAAAKivrDEaLRyonGSHsjGC0HVzHImuzznMzdt2MPHmO8v2DBdxhGeMTNubab1dsojOkLygoAgAAYLzct2mh0tY/ROv47tNqUgdXGzDtpWRtuCcANpug121G/dvZTnacU991A0LUpjiCf/3KT3nuXknJWFfo+oy3KNd/XCsCAACg1dA/DwAAlC1s4JmXq249AAAAAAAAAIy7nGf1tkv8xxcVeuuh0mMXxnT4HFN8ZaBJEIwGAE1k6tSpmjt37vbp/v5+PfXUU5HKuOeee/KmDzvssIrUbYQxNLQAAAAAoBxZzxWM5h9G5eIKX/CTjLBusws6bkGBCmHXcwXWuc5Bxg4pZ2vfIdr1GhKxZECIW/hwCgAAgFqw1uqO/gW+yya1TdGhE4+uST0Sxr/95CkXOny32VgFBaPt6ObgaidHCRAOCvCd7ApG89nGtc82xdUei3a9Np6iXCtGWRcAAABoBvTPAwAAZQsbjBZ2PQAAAAAAAAAN665l0gv9wess/nJM3i/adO3H23TgrvwWiNZCMBoANJljjz02b/oPf/hD6G2feuopLV68ePt0MpnUa1/72orVTZISiUTedDqdrmj5AAAAANDscvLv/Bo5GM1EGOzuCGpoRUED/4MCFUZLW/d6rvMStN+hcQgcCwpGc4ZTWILRAABAfXlmYKnWDD3vu+yYKafULMyqEuG7rWR0tx53KG/4YDTXMTaKaWLbZOc21uaHtw069plsa6zwMEK0AQAAgGD0zwMAAGUJHYxW+wekAQAAAAAAAKitKx50P0RWkiYmpH13rlFlgDpEMBoANJkPfvCDedM//vGP9fLLL4fa9otf/GLe9Hve854xHaXK1d3dnTf90ksvVbR8AAAAAGh2WZvxnR+PGNrgChDww2D3HYKORdjQiqAANdd5qcR+K8m1z2Ss0xmkFzY4DgAAoFYW9d/oO98opmO7T6lZPZIBbfOgUN1mZhXU2WdHNJo7GC18G7mU0F8rq4wdKijHEYzWYNdTUYKxo1xXAgAAAM2C/nkAAKAsYQPPCEYDAAAAAAAAmtbiVVZHfD2nX9wRHIx2zrFGXQkTuA7QzAhGA4Amc9JJJ+nQQw/dPr1x40adddZZGhwMHjhz8cUX67rrrts+bYzRZz/72YrXb88991RHR8f26YULFyqT8R/UDwAAAAAYK+M5gtEUj1ROlAHsiQYbyF9NQcfNFYQwdj13SIOr/KBwgvEIHHPtMxFLOt8v4xHgBgAA4LIh06elWx7wXXbwxMO1U/v0mtUluI3Zqm0od2cfEyIYLUob2bVuMtYZeC1UuJ27nK7QdakHka4VI4SoAQAAAM2C/nkAAKAsuWxl1wMAAAAAAADQUF7eaDX/u54eXFl83e++k1A0tLZooyUBAFX38ssva+XKlSVtO3v2bEnSpZdeqqOOOkpDQ8NPqr/99tt13HHH6Sc/+YmOOOKIvG36+vp0wQUX6JJLLsmb/4UvfEEHH3xwSfUI0tHRoWOOOUYLFy6UJK1evVpvectb9NGPflR77723urryB4fMnDlTySSDKgAAAABgRE7+nV/jsfZI5SQjhJ0RjLZDh0nIyMj6BDWEDa1wrWcUU7vp8F0WdA7StvZhGa7XkIh1OoMUWjfUAwAA1KO7Nt4kK8932Qndb6xpXQLbei3ahvJswFMQR/XzqUQoryvgeDj0t1gwcvf26ZQ34LtelGuvesC1IgAAAJod/fPonwcAwLgiGA0AAAAAAABoaX+432pruvh6u3ZLbTGC0dDaCEYDgDpz1llnlbyt3TZIZN68efrxj3+sj370o/K84UE9ixcv1pFHHqm99tpLBx54oJLJpJ577jk98MADymbzfzh9wxveoP/+7/8u/UUUcf7552/veCVJCxYs0IIFC3zXXbhwoebPn1+1ugAAAABAo8l6jmA0E+1WX9AA/3LWbXbGGCViSaV8whP85vlxhTQkY0kZ4/+jRSKWcJYXdr+VkrUZZ0BfwiQDwilqW08AAACXrM3o7v5bfJft3DFL+3ZVfmB6kHbTIaOYb1Bbrdt69cMdjGZGJaO52p5DNi3P5hQzbUX35Az9NcWC0fK3c52rRgtG41oRAAAAzY7+efnonwcAQI3lcuHW80KuBwAAAAAAAKChPPpcuPU+9wZC0YDYeFcAAFAd5557rq688kpNnDgxb/6zzz6r6667TldeeaXuueeeMZ2uPvzhD+v6669Xe3t71ep2xhln6Gtf+5ra2ooPRgEAAAAA5MvajO/8uIl2HRdlcH6jDeSvtnKDv1zrucqVpJhpU7vpKGu/leIKjpCGgxFc4QgEowEAgHrx8OZ7tSnX77vs+O7TnGG11TISvusnqO3VzGzYYDQTFFwW4pGKktLW3T4PuhYqDEJLeQPOchpJtGC0xnptAAAAQCXRPw8AAJQk5/8QspLXAwCgjj2/weqTf/QU+5fc9v/OudzT4y+4fwsEAAAAgGbX2xfumujdhxGMBhCMBgBN7Mwzz9Ty5cv16U9/Wj09Pc712tvbdcopp+juu+/WpZdeWtVOVyO+9KUvaenSpfqP//gPHX/88Zo5c6Y6Oxk8AQAAAADFuILR2kw8UjnRBruHX7cVuMIXCoMRXFzrFTvOrlCG+gpG6yTUAwAA1L07+m/0nZ8wSR05+cQa12bbvgmXLUlQcFnahmt/utqpiVhScdOuNvlfaxWW7yqnM9YVqh71IkrYGSHaAAAAaHX0zwMAAJERjAYAaBFrNlkd9Q1Pl9yeP+D/srutjv2Wp8eeJxwNAAAAQGvqXVd8nQWfjmnXboLRgGijJQEAFbdy5cqqlj9jxgz94Ac/0Pe//30tXrxYTz/9tNauXat0Oq2enh7NmjVLxx57rCZNmhS57AsvvFAXXnhhyXU74IAD9I1vfKPk7QEAAACgFWWtf+fXuIk2iIbB7qVzB5SVGbzgCFzbvjyW1ObcxpL3WylBAXCJWLLs4wMAAFBNz6d6tXzwKd9lh0+er862CTWu0TBXW7BV21BW7oEQRjs6+wSFC4cNlXMd45F2bSKW1IC3peh2g96AbzlRrr3qQZTrP0K0AQAA0Ajon0f/PAAA6grBaACAFvGbe6xe6Pdftikl/ej/rH75QQb5AwAAAGgtqYzVi45rpe+90+gthxjN6ZFiMa6XAIlgNABoGbFYTIcddpgOO+yw8a4KAAAAAKAMWZvxnd9exWA0Brvncx2PtA0ZvGAdwWhFzkm9BI4F7S8Z63SGegQFqgEAANTKov4bnMuOn3paDWuSz93GbM1gNAUEo6nCwWiudupI2clYpyMYbTBwekSjBU2HvVY0MuowiSrXBgAAAGgc9M8DAAChhA088zxZa2UMAyABAI3pxseCfu+T/ni/1S8/WKPKAAAAAECdWLPJvey0g4zmzuB+IDAawWgAAAAAAABAA3EFo8WjBqM5wqt8122wgfzV5joeYQPKXOsVC6Bz7bfWgWOuwAcjo3bT4T4+LRvqAQAA6sVAbose3HSH77K9Og/QbonZta3QKK7wrFYNlw2MRTOjg9Hc1yqpstvnndv+Hy74N+UN+K7XeMFo4a4VE7EkgzIBAAAAAACAqMIGo0lSLifFGfZVa9Za3fi4dM9yq71nSG+fZzQpyb1QAIjq6ZeDlw9mhj9zV6+X/vKI1bI1w/OnTpBev5/R/H357G11fCcDAIBSZHNWNz0h3bvCav9dpDPnGSXaaUOgfvT7dzOUJPVMrF09gEbBHXIAAAAAAACggbiC0dpMtFt9UQbnd5hEpLKbXbmhFa5gsWLnpNxAtkpx7a/DJBQzMefrcL1uAACAWrlv4/9pyKZ9lx3ffXqNa5OvXtp69cLa4CfIj2gzbWo3HcrYoTHLwgcXB7fPXUFhheW7rgcaLhgtZIh2lLBtAACanTGmTdJekg6QtKukKZLSkjZIWi7pIWvt1grvs13SMZJ2l7SLpC2SXpT0sLV2ZSX3BQAAAKCCcrkI62YJRqsxa63O+73Vr+7ccY/6B7da3fzZmKZPYhA1AIRlrdUrm4uv97dHpbN/42lDQTDA/1xv9eU3Gf3XP8WqU0HUPWutzv2d1a/v2vGd/MPbrG7+TEw9fCcDAACHbM7q/ZdaXfXQjjbEzxdZXf+pGAGrqBuF1z+jdTdWV0OgJrhDDgAAAAAAADSQrPV/enDctEcqxzW4f8x6JqmYoYPRaGGDEVxc6xU7J67ggbCBbJWStq76RwuOAAAAqCXPerqjf4HvssltU3XopCNqXKN87jZUq4bLuoPRYsq/PknEksrk/ILRwh07V3t65Jy4Q+vyt3MHo3WFqke9CBvk5jouAAC0CmPM7pLeLulkScdJmhywes4Yc4ukH1trry9zv9MlXSTp3ZJ2cqxzj6TvW2uvKWdfAAAAAKog59/nw5cXIUQNFbF4lfJC0STp0eelS263uuDNDKAGgLDWhghFk6Szfulp0P85sfqfG6zOOdZqj2l8/raiB3qVF4omSY88J/10kdVXzuA9AQAA/N38pPJC0STprmel399n9bH5tCFQH/odwWgTElJ7nPcpUIgRjQAAAAAAAEADyVr/nkBVC0ZjsPsYrmMSNqCsWPCCe7/1EThWPDiiPgLcAAAARntmYKleybzou+zY7lMit6crrV7aevXCHYs2lju4rMzgYhPcvi3czt1ObqxrqvDXiuHWAwCgGRlj/ihplaSLJb1JwaFoktQm6TRJfzfG/M0Ys3OJ+32jpMclfUyOULRtjpZ0tTHm98aYCaXsCwAAAECVRAlGi7IuKuKaJf53p698MMpdawDA8xvCrecKRZMka6UFj/P526r+/Ij/ub96Me8JAADgdvOT/m2Fz/2JNgTqx4YB//fj1MZ6/ipQM/HxrgAAAAAAAACA8LLWv+Nr3ES71Rd2cH6ywQbx14LrmKRDBn85gxeKHGvnfm1tA8dc9R+pnysgIWOH5NmcYqatanUDAABwWdR/g+/8mGI6dsopNa7NWITLFnJ3RjPKfyriSIBZodDtcxvcPk+Y4sFrWZtxhlh3Ntg1VdhrxUYLfAMAoML2ccx/QdIySWs03DdzT0mHKP8BtmdIusMYc4K19uWwOzTGzJf0F0kdo2ZbSUskrZDULek1knpGLX+fpMnGmLdaa72w+wIAAABQRV6EpjnBaDX3rQX+96afLrh625Kyum+FlMlJR82VuruM73aeZ/XkS9KTL1lZK+030+jVu0mxmNHmlNX9K6RpE6Utaekfa6w8KyXi0sCQFDNSsl06aT+jWVP9yweAUm1OWd27XPKsdNSe0hTH51ip+iv0E+eKvsqUgx2stXr2FenR56WcZ7XndKPXvEqKt9XXd823Hd/Jj72w4985z2rp89KKtdK8PaQ5PfX1GgAAQO396Db/NkQqI12z2CrrDS/frdvosNlSop32A2pvw4D/fILRAH8EowEAAAAAAAANxDXYPm7aI5XTZtrUbjqUsUOB67kCGlqZ65i4AsPGrOcKXnAEOhTfb62D0fz3N1K/oDC9tJdWZxu/2AAAgNpan1mrx7Y85LvskIlHqrt9Wo1rNJY7fDdcG7PZ2IBgNBUGo5UZKldq+3Z0+UH7arQAsbDh2IRoAwCw3cOSfi3pRmvt8sKFxpjdJH1V0r+Mmr2PpD8ZY4631hZ9PLkxZpaka5Ufina3pHOttU+NWi8h6TxJ35U0csP4zZK+Juk/o7woAAAAAFUSJbPYy1WvHojsukes/ulQo1uftHrHzzxt3nb7viMu/eZDRu85PJa3fv+A1Tt+6mnhM6PnWh09V/rYfKOP/t5qazrMnq0+f4rRN99uFIsxYBtA+a5favXuX3ga2NZtMBGXfndOTGe+tnKfMf2Ogf5RrSQYraLSGasPXWZ15UOjb0laHbCLdP2nYtpjWmN8z2xNW21JS2f8r6fFq3bM/8CRRpf+s6m7kDcAAFA73V3utug7fz76nozVrKnSDZ+K6aDdaDugtlzv0W6G2QC+YsVXAQAAAAAAAFAvctb/icBxE/0ZCGEG6DfaIP5acB2T8MELjmC0IiF0rv3WOiyjWP2D3jO1DnEDAACQpDv7F8jKf7DZCVPfWOPa+EsYR1vPEarb7ILyQUxBXzRnqFyIY2etdbZvR8p1BhSPKj+Vc7dzO2ON1WOp3XTIqHiHP0K0AQAtzkq6XtJh1tp51tof+4WiSZK19gVr7XmSPlGw6FhJ7w65v4skTR01fY+kk0eHom3bV9pa+yNJ7yrY/nxjzB4h9wUAAACgmqKEneX8+4egOp54MTi3+m2XeNqw1epdv9gRiiZJQ1npg7+2WrMpf/uL/mYLQtGG3bNc+sClYUPRhn33ZqsbHw+/PgC4bBrMD0WTpHRWev+lnvo2F83vD61/oDJl9fZVrk6QfrqoMBRt2JMvSZ/8Y4Tw1nG2cp30uatsXiiaJP3uPqufLeI9AwBAK5vVHX7d5zcMt4NDPMcKqKgNjmC0qY3VzRCoGYLRAAAAAAAAgAaStRnf+XHTHrmsMAPZGew+VsI4ghFCBpS5wsGKhdC5zkXYQLZKcdd/WzCa4/hIrRvsAQAAxk/Gy+jujbf6Ltul41Xau/OgGtfInzN8q8YhuPXCKiAYrSC0q5xjl7FDzn0ligWjjWoXB7XJGy1s2hjDtSIAAMW901p7hrX2obAbWGsvkXRNwewPFNvOGLO3pH8eNWtI0oesdd9os9b+RdLlo2YlJF0Qtq4AAAAAqsiLEDqS9e8fgur466PFB0J/4Rqrfp/Bq1lPunZJ/vZ/WlzZgdVXPshAbQDlu+ExmxeKNmIoK10X4nMwrP4KdWfr7atMORh2lU8o2ogbHx8OzqsHqUxwPZatka592H+dv1XwfQwAABrPblOLrzPa0uelf6ypTl0Alw1b/ed3dxV/mCnQighGAwAAAAAAABpIxhmMFo9cVlCA1Yhkgw3irwXXMXEFhoVdr1iwgHu/tQ3LcO1vR3CE+z0T9hgBAABUypLNd2tLbqPvsuO73yhj6qMzSZjwrdYS1GG9MBjNv/0ZJkA4ONBs+JyEaf8HnadkrPEe5RgmzI1rRQBAK7PWrixx058UTJ8YYpv3SmobNX2ttXZZiO2+VTD9LmNC3BAGAAAAUF22csFoGwesXuy38jwCQCrh+Q3F17nhMfexHj2QekvK6sX+ClRqlN/fz3kGUL5lr7iXPfJc5fbjFyJZinVbpc0pPv8qZVlA6IdnpRV1EkS3en3w8ruXW6UczaS7l1e+PgAAoHFMSkTfJqiNDFTDynX+1zg7T65xRYAGQTAaAAAAAAAA0ECyzmC09shlhRnIXiysqxU5gxFsSl6RTszWWmewWLHzUU7gQyWlrSMYzYwEo7l/Uax1XQEAAO7ov9F3fsIkdfjk+bWtTACC0fKFj0ULOnbFA4SDju9IuWHKT3n+ozvaFFd7LPq12ngLE6LNtSIAACV5uGC60xjTXWSbtxVMXxZmR9bapyTdP2rWBEmnhNkWAAAAQBXlcuHXzfj3D3niRavD/iennT7radYXPPWc7+lLf/YISCtTmBCfl/yfwyJJ+uFtVqnM8DlgUDWAenX9Uvd3xU8WWp3xo5z6Npf/fbKxgj9x9tZJWFej25yyWrc1eJ3v3FQfbYli5/x7N9dHPQEAQP3JRLjtMmJlH20L1JarvTunp7b1ABoFwWgAAAAAAABAA8nZrO/8UoLRwgxkDxOe1mqCjtuQTQdum7UZefIPTyt2PoICGayt3Q9yrvCIkfrFTJvaTYdj2+LhFAAAAJWyOrVcvalnfJcdMeVEdbZ11bhGbq4Q3Fq39eqFjRCN5gwuDhEqF9Q+HSk3XDCa/76SbY15PRXmWnEkGBkAAETid3PX/0aaJGPMTEmHFGx/d4T93V4w/cYI2wIAAACohiIPW8uTGdv/YGvaav53PC1eJY3cOu4fkL5xo9V3CAkpS/9A+cfvk1cMl3HWLyOc5wg2pzjHAEq3JWX1wMrgdW54XHr7T8v/DKtkMNqKtZUrq5WFCZi74gGre5aP/3dNbxnhJOTEAgDQ2oZKCEbrXVf5egAug0PWGbw/p6fwkbEAJILRAAAAAAAAgIbh2ZwzVKuUYLQwoWdhBsS3GldohVQ8fCEoeKHYsU46ggc85ZS1/k+KrgbXaxhdf3c4BcFoAACgdhb13+Bcdnx3fWVCuNqYnryatvXqh7vHuikIRgsTXObiCjQbXW5QaF2xcho1aJprRQAAqmavgumspKAhiQcVTC+11m6NsL97CqYPjLAtAAAAgGrwygtGu+4Rq3WOq4JL7yIJpBwbBsov44r7rbakrP6xpvyy/IQJtQEAlz8/HO574q5npadfKu87ZcPWyn0nlROShR3Cfodcdvf4H+9yvu9SGSmVGf/XAAAAxkemhGC0VbQ3UUOr17uXzempXT2ARkIwGgAAAAAAANAgsjbrXBY38cjlhRnInnCEcbWyoOMWFKxQbHmxYx2031oGjrlew+j6lRNOAQAAUAkDuS16aNOdvsv27jxIuyZ2r3GNgiVMfbT16kVQdzNjCoLRHMeuWGixJKWt/7FtU3x7+LQzGM2m5NnhQYzONnKDXk8FhUFHWQcAAIxxZsH0Q9baoFSEAwqmn424v+VFygMAAABQa16EEbqZoTGzlr7gXv3ZV6TBIQbzlqq/AsFogxnpzmXll+OyYm31ygbQ/IK+Q8auW973yQv9ZW2ep3dd5cpqZWED5h57fvzbEivLDALdWPxnYgAA0KSG3MNtnAghRy2tD3gM2m7dtasH0Eiij5YEAAAAAAAAMC6yNuNcNjJoP4pwg92Lh6e1mmTAcSsWWpG2AcFoRY514H7toCZqcuD2leJ6jaPr53pvFQuOAwAAqJR7N96mjB07aEySTph6eo1rU1yySPhurdp6dcP6d7g3MmPmBQWXFeMKT8tr2waE1g3ZtJKmUynPf8RcZ1tX0TrUo6BrjyjrAACAHYwxEyWdUzD7z0U226tgenXE3a4qmJ5mjJlqrd0QsRwAAAAAFWCtdd779JVJj5n17QXB269cJ+2/S9SaQZI2VCAYTZLe9L9B+dfleWaNlXzukxey1uqHt1n94g6rp18enjenR+rulF6/v9GFbzbqShgtesbqh7d5euwFybPSXtOlDx1jdNbhsaq9BgDjp3dt+O+g5Wul/gGrr/7V6o5/WG0e9bPbvjtLHzkuprfPG/48um+F1fdv9vTI81Ju20fg6vWVq/d9y8c/qKsR+J2vA3aRzjshpi0pq/OvCnccH1gpxf4lp50nS10dw/NGh4XsvpPUtu1rYk6P9L4jjM4+prLfGyvXlXfON2yVdm6xn9cBAMCwTIQ8+hErCeJFDQ34d2mVtKP9DSAfwWgAAAAAAABAg8ha9yNsqhWMxmD3sYKOW7Hgr6DgtGLHOig4rZaBY67XkAgRHuEKngAAAKgkz3q6o/9G32VT4jvpkImH17hGxQW1MYPCdZuVlauze4RgtCKhxUHrjG57BwcjDyoZ63S2x8Ncc9WjMAHZhGgDABDZNyTNHDXdL+lXRbYpfCb0K1F2aK3dYoxJSRr9xT1FUlnBaMaYGZKmR9xsbjn7BAAAAJpClFA0Scrkj5T87s3FA7dWrCUYrRTW2ooFo1XTF6+1+vfTiq/3+autLr4l//02Emrz8HNWD/RaXfiWmE79gZc3aLy3T7rlKauNg54+egLhaECzWdFXfJ0Ry9ZIJ37X06PPj13W2ycteMLT5Wcb7TvT6KTveUq5n/datodWSRsHrKZ0FQ+GbFWZrNUJ3xkOuhytt0+6/rHSAjvXbPKfPzr0rrdP+r+nrdZt9fT5Uyr3vdEb4b3q55olVl96E+8XAABa0VAJwWgbBmhvonZcwWhdHZIxvAcBPwSjAQAAAAAAAA0iLliMLgAAIABJREFUa909iOIm+q2+cIPdG3MgfzW1mTa1mw5l7NhfJYqFL7iWxxQrGm4XGJYRIvShUsoJj0jb2tUTAAC0rqcGHtHazMu+y46bcqraSmg7V1tQ27yWbb1659f1x3XswoQHuwPNkr7/9tt+iqSU5z9irlGDpglGAwCgsowxb5P0yYLZX7LWrvdbf5SJBdOlJOYOKj8YbVIJZRT6uKQLKlAOAAAA0Fq8iKNzRwWjZXNW37u5eLBab5+V/51UBEllpCHHswr//PGYDvAJmzvzZ2MDaIIcMku69uMxZUe9DaZ0SlvSUrJdmtolZb3hgbDv/rmnax/2L+epl6z238V9jjcNWv3s9uD3yh3LpLN+mR+KNtp3brI673jLgFygiVhrtWJt+PV/c0/x75zv3mx1yCxVLBStI+7+LL7uUasPHsVnksuNjyvSd1Klff9mq8+83ireVv452pKy6ttSXhnfuNHqS28quyoAAKABua5zPz7f6NOvN9r3K/6hsSvXSYd0VbFiwDZb0/7XWhMSNa4I0EB4fAMAAAAAAADQIIKC0UoJdwgzkL1RB/JXm+vYpYuELwSFihXrUNpuOmQct3TDhD5UQtZmlJN/D7SEKR4eUat6AgCA1rZoww2+82Nq0zHdb6hxbcIJauu1YjCalWuwxdg2s+uaJWszylnH6IltXO330aHEYULrXOeoUa+nwgRkN+prAwCg1owxh0j6bcHsmyX9NMTmhcFopTQMCxs8hWUCAAAAqBXPf/CtUya9/Z+9fdKaTcU3eTnEOhjrxX73sr1nSHvvbMb8d/Re0cJf5k6X5vTklzFjstGe04127Tbq7DCalDRqixkdOddd9v29wWFF966QBkOEFAW9n8K+3wA0jg0D0qYK/+T42AvSrU8VD1AL67QD3cseXFmx3TSle1dU7jyU4uVN0qp1lSurXMng59MCAIAm5graPWBXaU6PFHek6/T2Va9OwGgDQ/7zuzpqWw+gkdTfo7ABAAAAAAAA+MoGDOpvN9F7c4QZyB4mPK0VJWKd2pIb2wunWGiFKxgsTPCAMUaJWFIpbyDyfislKNhs9HvFHRzXeqEeAACgtvqG1uiJrYt9lx066UhNie9U4xqFUw9tvXriCkYzPsFoxYLLutrc2R9BwcU7/u1uq49sP+hz3iQpGWvMR4mODj12rsO1IgAARRljdpd0vfLDyFZJer+1tpTRirXaBgAAAEA12PxgtP+d+jH1ts/WYKxLA7FObTUTtCU2QT25ddopt0Gb7n2tzGpPbTFpzaZwTft+/1uVGOWuZVZ/W2p1/wqrF/qlNx9iNCWgy8bujp8Vzpxn9PNF4S+5ZveED1J7xzyjL1ztX/btz0gn7GN15YNWT78sjVxdela67hGrLWnfzSLr7ZNmTqlMWQDG34q11Sm3koGc//O2mP76qH+IKN9vwf766PjfAtz7y55uPT+mk/aLFhxaqBLnev1WadOg1eTO8uoCAAAaTybnP7+jTYq3Gb1qJ/8QtHf/wtOKr8e021TaDyiftVY3PCbd/KRV/4C03y7Su183HI6/1RGMNoFgNMCJYDQAAAAAAACgQWSt+5Gu8RKC0cINdi8e2NWKXMcuKDhMktJlBKNJw2F2/mEZwfutlKBQjtFBe67X04qhHgAAoLbu3LjAGap1QvfpNa5NNK5gtGJtzFZifPqeBQV0pbzBsoPR2kyb2k2HMnZsr6SRc+Nqj4cJo65HYULPEqYxXxsAALVijJkh6RZJu42a/bKkN1hrww5F3VIwXcoXcOE2hWWW4hJJf4q4zVxJ11Vg3wAAAEDjyuWPzv39lPdpcec89/rPSXouWtDJRm4nB/rZIk+f+KPV6KjqH9zqPsbTJ0kTk/6Dok/aT/r304y+tSDcOZrTE76ecwJC1H57r9Vv761+AM53b/Z0zcfaqr4fALWxom/8g7NcjJG+906jA3c1OmKOdH/v2HX6B+q3/uPt70utnnqp9O2nTZDWba1MXU7+vqdvvcPo306NlVzGhgqF4K1cJx08qzJlAQCAxjGU9Z/fvu3ydk6PfzBaJie96t89PfVfMe07k3A0lOcL11h97+b8a5jv3mS14DMxDTiC0boIRgOcSr/CBAAAAAAAAFBTlQ5GCzNIP8yA+FbkOnbFAsrCBC8Eca1Xq8CxoP0kQgWj0QsbAABUT8Yb0j0bb/VdtmvH7tqr84Aa1yiaUtuYzcha/6fBS2M7ngVd1xRrJ7tC5wrLLNYO9wu0K1a3ehbuWrExXxsAALVgjNlJ0q2S9hk1u0/SydbaZRGKqstgNGvtK9baJ6L8J2l5ufsFAAAAGl7Bfc9OW6Hkj1E2bCU4xmVwyOqL1+aHohUzZ5p7mTFG33h7TG96dciyAsLO/Hzm5PEdiP3nhyXP4/0ENIsVjpj+2QGfc+X48XuNfvXB4M+xyz5kdMW5Rqu+GdNnTh4e5nzaQf7bVCosq9lYa/WFq12/q4bz/Ldj6ohXqEKSvnitLSvIrr9C59ov8AQAADS/oZz//JH2zh7TgtuoYcPPAZfevrGhaNLwNc1//c3T1rT/dhMSVa4Y0MAIRgMAAAAAAAAaRFAwWpuJ3jslTBhXow7krzbXsXMFK4xIW0cwmgkbjOYKy6iHYLSk77/Dbg8AAFCuxZvv0tbcZt9lx089XcbU99McXW3CVmxDWfl3MjM+wWhBAV3Fjp0zuNgUBqMFh9aFDVhrFMVCz2JqU7yEa1AAAFqBMWaKpJsljR4av0HSG7YFhEWxsWB6esS6TNTYYLT+iHUAAAAAUClefnDJBMcDF8rR33rP2QjtvhXSxojHZ8/pxX9XeP3+4X57mNMTbd/VCiuK4pk1410DAJWywhESdeCu0q7dld3XxIT0sROMPnxs8NDlfz46pncfFtOsqTs+R6d2+a9LMJq/59ZLT79c+vbdXVKi3Wj+PsXXDcuz0i1Plr59/2BlwkhWriPUBACAVpRxBKO1tw23OYtdm//mHtoQKM8tT7rfQzc/KW12dGfs6qhShYAmQE9VAAAAAAAAoEFkbdZ3fkxtipnoz0AoNth9eJ1wgV2txhVw4Ao+277cEZgQ9ji7wjKKBbJViqv+RkYdZsdjatzBaPTCBgAA1XNH/42+85OxLh0++YQa1yY6ZxuqSBuzGUXpYja6HVqoWPvTGVxccC7coXUjwWj+5SRjjtEbda7Y9Ukilqz7oEEAAMaDMWaSpAWSXjtq9iZJp1lrHymhyGUF03tE3L5w/fXW2g0l1AMAAABAJXj5o3O7qhCMRnCMW29f9MHNs0OEmZ12oNH5Re5qz+mR9t052r5PO8hIV47vgOzePmn/Xca1Cg2nf8DqzmXSpKR05J5Ssr20e+nPrbe6b4W0987SwbtJsVj93pPfsHX4Na/ZPPx+7WiTjphjtO9M8VtClVhr9dgL0uJVVtltmZs7TzI6bm9p6oQdx3z1Oqu7l1sl240e7PX/PJkz3WhTyurFCkbpn3Zg6ee+2/HTWj/fb2N4ntWfHynve+Kfj6rO3+jXb/DUPzhcdiIuHT7baOoEadE/rB5eLa3dIu2xkzRzirRnj9Gu3dKS1VYDQ9Kld1bmu6/XEQYIAFFZa/X4C9LCZ6xe2igds5fRSftKXQnaOUA9GvIfbqOOtuH/v/Ego69eF9zeGByy6uzgbxzheZ7V0hekJaus/vPP7vdXJictW+O/fALBaIATwWgAAAAAAABAg8jajO/8dtNeUnnFgtHiJq54iWU3u1KDv9LOwITiIXWB+7W1CRxzBbAVBiOUGhwHAABQqlWpZ7UyVZgbMezIySeGbm+NJ1f7vDXDZf07ABmN7XQWMzElTNK3rVlqcHHh+6VYaF3KMYAxTBh1PSr299IIf08AANSaMWaCpBskHTlq9hZJb7TWPlBisU8VTO8Vcfs9C6afLLEeAAAAACrB8/Imu2zlU14IjnFbUUJAypwQwWj77WL0iRONfrLQ/752e5v07XfEIgdb7bOz0QePMvrtveMXjjYcJsdg8LDu+IfVWy/xtv8d7r+LdMOnYtpjWrRj+KPbPH32Kiu77dS/Y5702w/H6nJg/m1PWb3jp542jfk5xurj841++B6prY5D3RpROmP14cutrnig8LPBanJSuvbjMZ20n9HFt3j6/NUj7yP358iePdLmQaM7l1Xus+bLZ0R/wOuIqV1GfvUl+DPfQNrqrF96+tvS0svYs0f6zMnF/z6PmSvdvXzH9MzJUkdcWr3evc2jz0vn/W70eQx6f5X+3jv9IKlnkv935Y9us/rBu0suGgAkDX/vnvVLT3/Je/SNVVtMeuyCmPbbhXYOUG8yOf/57duC0ebtLh08S1r6vLuMVeuk/QgJR0ipjNX7f+Xp2ofDrf/4i/7zCdwE3AhGAwAAAAAAABpE1vo/wqbU8DLX4P7tyw2D3V3coRXFghf8lxc7FyNcAQSuwLJKc9bfJAOnR9SqngAAoPUs2nCDc9nx3W+sYU1K5wyXLdLGbEY2QjCaNNyeTud8gtGKBhe7g39HCzo3WZtxhlh3NmiAWNFrxZDXLwAAtApjTKekv0s6dtTsAUlvstbeU0bRjxdMH2yM6bI2dHrCMUXKAwAAAFBLXv7o3AmOBy6Ug2A0t5WlBKOFDLT60XuMTjnAaOEzNu8c7L6T9NbXGB36qtIGt172ocoFo33trUb9A1Lflvz5sZj067v899FbwjFrVTnP6gOXennn/6mXpM//ydOfPtoWupxla6w+c2X++bhmiXTCPlafPKm+Bklnslbvv9QvFG3YJbdbnXKA0VsOrW29mt3v7vMLRRu2KSW9/1eebjk/ps/9Kdxnx549RptTlQtFO/sYo4Nnlf5endrlPz+VGQ4cSLbX19/BePnpIltWKJok3ffFmHomFT+ef/hITItXS3c9azV3uvSu1xpNSEgTPukV3baSpnRK5x5n1LdF6uqQjp4rvet1Rt9c4H7/9vZZzenhPQOgdD9eaAtC0YblPOkTf/R02+fCt/MA1MaQIxitY1uqjjFGt342phmfc7dlVvQRjIbwfnmnDR2KJrkDhrs6KlMfoBkRjAYAAAAAAAA0CNdg+zZT2m0+1+D+EQx2d3MFoxUL/nItd5U3dj3/c1KrsIy0dQW7dRZMj289AQBAa9mS26TFm+/yXbZv18GamZhV4xqVhjZU6RKxpOTTsS1VcnBxuPZtyhsMvAYI286vN8WD0RrzdQEAUA3GmKSkv0qaP2p2StJbrLV3lFO2tfYlY8xSSQdvmxXXcPjazSGLmF8wfWM59QEAAABQJps/6LazCsFogxlpIG3VlSAEpFBvX/Tgnzk94dYzxujNh0hvPqSyx90Yo3m7S0tWl1fO2ccY/efpMefyXM7T5T4BbCtLOGat6sGV0nMbxs7/66NSOmOVCBnmdO3D/sf8miVWnzypjApWwd3LpTWbgte5erHVWw7l86iSrl4c/Hf58ibpc1eFD6zac7q0JV1urXY4fu/ytu92BKNJ0rot0m5Tyyu/WVyzpLzP55P3V14omg0obkJCettrjN72mvy/5ZP3l259qqxqRPL2eUbfPnPsd9mcHnflr1li9flT+AwCULqbn3B/xix8RurbbEOFTAKojZxnne2a9lE5htMmBpczfP+Av22Ec02Ra7SwCEYD3AhGAwAAAAAAABpEzmZ958dLDEZrNx0yMrLyvxnPYHe3ZImhFe7ghXAhdK4wu3SRQLZKCVt/Vz2zNqOczZYc5gcAAODn3o23KWOHfJed0H16jWtTuqDwrVZjHb3UjPEfuOUOlSs1uDhZMO1qh6cC91EsjLpeFbsWdF0PAQDQaowxHZKulXTyqNlpSW+11t5Wod38WTuC0STpbIUIRjPG7CfpiFGztobZDgAAAEAVeflBNRNs5YPRJGnVemn/XapSdEPr7Yu+zR7TKl+PqI6aa7RkdXmDbN97+PCAbtvfJ3VNkulI5C2fPWGrpLFpRKUcs1Z1kyM0I5OTVq+X9t55eJB+b5+UHfWgl50nS1Mn7Bhw/7Xr/ctZ9I8d/35hg9XmUd139pgmdXa4B+1vTVu9vHE46C8WKz64f90Wq7Wbd0xP6ZQ2+vwUcvezxd+Xz64lXK9Uo89zZ4e0+07DYYlPvFh825ufDL+fOT3ShISRHP0HozpqbnkBErtMcS9btZ5gtK1pq+fWS/etKK+cw+eEP0+ugIYPH2N061O1+xs/Yo7//CPnuN+/y9dWrz4AWsODq4KXP7NG6plUm7qgOGutVq+XBv27kKEFpP2H2kiSOkYNXTDG6A37S7c4Ql65FkYUdyyrTDnT+T4BnBh9BgAAAAAAADSIjM34zo+b9pLKi5mYOkxCaesfdtWog/hrwR2MEBy84FqeMOGCBYICGWrBWf+QwRHDZaTU1VbkUUsAAAAheTanO/oX+C7rjk/TqyceVuMalc4d7lWbtl49cYU3u7rol9pOLjf4N+0NajAXFIwW8Fj7OpYwwdeChGgDACAZY+KSrpL0xlGzM5LOtNbeVMFd/UHSlyWNPMf87caYva21xbpY/3vB9FXWOm4EAwAAAKgNL5c32eVVJxitt49gtEKDQ1Yvb4q2zev3k+Jt5QX8VMLH5xv97l6rTY4rugkJ6UNHG/1kof999cNnS/MnrZB3zvukfzwsdSRl3/xhmU9+R3pltexX36fZL+8n7fqrMduuYDB4KI8+Z3XR39zhQL190o2Pe7rgr3ZMwJgx0vx9pCvOjamrQ9qadu/n/562Ove33phB+h1x6X1HGP30fUYd8R3v2YG01Ud+a3X1YqusJ03tkr75DqNzj/N/CM3qdVbv/oWn+3uLvuTQ7lsxHFBhzPj/LTWKe5dbfeBSb8zf38zJw3/vL/RXbl87Tx4ORZuTkN5zmNH/e7B4yNWMSdIrm/2XvWOetM/O5Z3rnSZIk5LKC/8bsWKt1dFlBq81qq1pqw//xurPDw//PRdz2/kxvf2nnm+o4bQJ0j8flX8cg/5Ek46uqW99jdFeM6yefaV4fSrhHfP8Kzl3hrvyK/sIZwRQnslJqT/gsu2Ffit3TxbU0k1PWH3kcq+ibSU0l/a2/OnzT4nplqf8G1a0IRDGvcut3vXzEI3zkGbXQTg/UK8IRgMAAAAAAAAaRNYZjFb6bb5krFPpXLgwAOzgDkYoErzgGHsY9liPd1iGOxits2Da/XpS3iDBaAAAoGKe2Pqw1mXW+C47rvtUtZk232X1yBVGVSx8t7X4dyh1BXWlAo6dZ3Masv4jjArb+672bcobDDw/jRo2HTdxxdQmTznf5WGDnQEAaFbGmDYNB5b906jZWUnvttb+vZL7stYuM8ZcLunD22Z1SPqNMeb1rqAzY8w/SfrQqFlDki6qZL0AAAAAlMDLHyw5wdtaclG7dQ+HmDy/Yeyy3j4G5xdauS76Nj98j394VK3tv4vRnV+I6ds3WS1etSMQp81I8/YwOv8NRq/dw+j4va3e9ysvLzDnX08y+tpbrMzZb5Je3JZ2NZSSrrlE6p4ue9PvpeeXa3an/z3fjYPShq1WUyfwfnIZHLJ6/feDB0L/6DZPNzzuv8xaaeEz0pk/87THtODjfLJjP0NZ6bK7raZ2Sd99544yPnWlzQu62jAgnfc7qz17rF6/f/6+rLV60/96euLFwCqU5Pf3WX3gKN5DYazfavWGiz0NDI1dFjXcMYw9e3b8+7cfNjpwV+nGx63uWe7e5u5/j+l/brB6cKVVOjs8b/pE6dSDjL54Wvnn2RijOT3S0ufHLisMBWwln/ij1Z8Whwvo2GOadOJ+2747Flg9tO27o71NOmKO0edPMdp758LPAHd5rmDDZLvRvf8R0+f/ZHX5vTsK2GuGNDhU2RC/Gz4V07SJ7vfX195q9OW/jH0RK1v4PQOgMgqDlAq18ndTPents3rz/3qhwkPRujoK/p5PPdDomLnS3T5tX/62UUzQtVupit0TAFoZwWgAUOcGBga0ZMkSLVu2TH19fUqlUurs7NTOO++sffbZR695zWvU0dEx3tVsWPPnz9eiRYu2T9ugu7lluP3223XiiSdun77gggt04YUXVmVfAAAAAJpX1nMFozkeyxdCItYp5Xx6ysodLoDgYIQgrgCzsIEJpQQ+VJKr/oXHI+i9U6sQNwAA0Bru6L/Bd36b4jpmyik1rk15nCG4jnDdZmbl/3uNcQWjOYK6gtqeac8/FE0KH/yb9lJKef6PB25TvKxrtfFkjFEy1qkBb4vvcq4VAQDQryW9q2Def0p62BgzO2JZL7sCzka5QNLbJE3dNn20pFuNMR+x1j49spIxJiHpXyR9r2D771lrV0WsF9Ay6J9XXfTPAwBgFJs/SrvLlv47/zF7Gb200TqC0UoutmmVckxmT6t8PUr16llGvzsneIDsO19n9M7XjU1usI/cKTsSijZ6/qU78rPnZNyXjL190tQJESrbYv6+VFpfJOPQFYo22l3PSnc9W15b+fJ7rL5zppUxRqmM1f97wL+8y+8ZG4y2eJWqEoomSb+4w+oDR1Wn7Gbzp4dsRQfWF7Pn9B3vg3ib0ZfeZPSlN0ntH80p5wgWmTvD6Ncfqu6A/TnTCEYbbSBtddVD4T8f5u8zfH4O2s3ot0W+O0ZMKfGnv2kTjS472+iys/PnP/6C1cEXVS6d5pi9gpfvPcNIPr8vr1o/fB/CFe4GAMUMZYOXlxLAjMr7w/2WUDQU5Rd0eM5xRncvH9uG6OVvG0Vcvbjy1271dB8KqDcEowFAHcrlcrrqqqt02WWXaeHChcpm3VfQyWRSp556qj7ykY/ojDPOqGEtAQAAAAC1lpP/9WF5wWj+A/yLLWt1QQFlQZ1p0o4As7DBAqUEPlRS+GA093uHYDQAAFApa4de0pNbH/Zd9ppJR2lyvLvGNSqPq03Ymu2naMForqDhwGC0gPyRwnZ3UDvcFVKcjHU2dCf7RCwZEIzGtSIAoOV90Gfet7f9F9WJkm4PWsFa+7wx5u2SbpI0ks50jKQnjTGLJa2QNEXSPEnTCzb/u6SvlFAvoKnRPw8AAIyLXC5vssvx0IXRJielTT63Mt9/pNHVi6U7l429l7qyrzpBpI2sN+Ix2WuG1JVo3Pu7o9nbry26zq7ZF9XhpTUUS4xZ1tsnzdujGjVrDo+/WD9/b+u2Si9vlHbpllb2yTlI2y+ArZqv48WNVSu66TxepXA6l4N285//vXcafebKse+Js4+pzefi7B7/kKtW/X5b0Sel/J+n6+vVs6Lv41Ovj+nqJWMTZY6ZG70sSdqzR+rqcH8ORTF7mjQpGfzem93jPz+V2fG5CAClGMoFL1/Vot9N9ebJGreh0HgScelVO42dP2eaf7uzf0DqH7Dq7mqO+wKovEpfu02fJM2YVNkygWYSG+8KAADy/d//Z+++46Oq8v6Bf86dmcxMGqmEThIpgnRBpCiwKM2yigVRf7ZddW3oKutaHttaVldcF3tZH2Ctu4+AulgRBQUFDE1pQiAJEEJIL5NMvef3x0CSydxzc6e37/v14kXm1jN37tx77txzPvebbzB06FBceeWVWL16tWqjKwCwWq34+OOPccEFF2DcuHHYunVrmErqm/z8fDDGwBhDfn5+pItDCCGEEEIIITHJyZVbuOilQILRxIFconABIg5GkOGCkytfy3PONQeLiYgDH/x/krQvROERRuZZriTm3Vi2bRlhKishhBBC4t/39V+CCwK0pmTMCXNpAieqEyZi/UnYdFTQ3ky47bh426lt1871bmFoHW8VB6PpYvt6Su16kK4VCSGEkPDjnK8FcDGAqg6DGYCxAC4HMBPeoWjvA7iCc95F1x1CEgu1zyOEEEJIxHDPwJEUDcFoT1zk/aNon0xg5lB3UIiSj3f4Vbq4VlLt2/S/nxwfnZ959VFg+StdTieBI99RpjjuIIU9qPpBIWQskt7bzHHbezKGPuIdcHRSaY27DdNr62RM+KsLuX904fb3Qvc+DtUCTld0badotXp3+LaTyQBcPV75WDf/DIbkJM9hjImnD7YCQchVSU1YVh91fDmHmQ3A/HG+f04TTgFO6fzLItxBrP5INjLMPyM4+8sNGs7JBYI6EeA+5hFCiL/s6j8d0zEmTFZu4/jNIhe63+2uu+b+0YU+97pwyasu7K3g+PQXqmsSdReNYkhRCD8X1TsBYH1xCAtEYt6aPcE97lw/iUGS4uO3KEJCgYLRCCEkijz22GM455xzsG/fPo/hjDEMHToUM2bMwPz583HOOedg0KBBXvMXFRVhwoQJePPNN8NVZEIIIYQQQgghYeSQBcFo0Pu9TLVALq1hXYlILQhAFLDg4HbIUG54qHVbiwMfrJC5uFFjsIhCHzqXS2KSMDxOFK5GCCGEEOILu2zDjw1rFMf1Meaj0HxqmEsUOFFdzypbwXmiNeJTfr9MkIzmT6ic2rjOyxMGo8lWcR2ZxXZ4GF0rEkIIIdGHc/4ZgGEAXgNQpzLpRgCXcs6v5JxbwlI4QmIEtc8jhBBCSETJnr97mrl6MFou6nDbNIZnL2XISwd0EjB5ALB2oQSDngk78Lpk4MDxRPtNWV2pSrhXVorn3w+ex7BwRux3RuWtFvA/TNE8vSgYzddQuURisXGs2RvpUnj604ccr67t+vv/m+dk3Poux6YSoMYCtNgDW6/EgCRB8zWXDBxW+xWDAAAqGzn2Vfo+38Duvs8zrBfw9d0SemcqH+ty0xjWLpQwoo87EK0wB3j7BoZpp4YrGE15PYdrAYcz8c5vpTXa3vOwXsCaeyT0zPD9c9JJDN/cI2HaYEAvAT3Sgb/OZbjpbP8/85fmM/xuMkOq+PmqqrJSgD/PYnhgdtdlyE4FUgTr0br9CCFEiU1DMFritecJrxVbOS55VcbafUB1s7vuWmMBjtYDK7cBQx+R0UTN0olAqhH4f2cy/O91yvWJ3pmAQac874UvyWiy0vebeKtq4thToT5NqtEdRq3FvLEMT/w29n+HIiSU/O9LzY9AAAAgAElEQVQxSQghJKjuuusuLF682GNYWloa7r//flx11VXo16+f1zzFxcVYunQpFi1aBJvNBgCw2+246aabYLFYcNddd4Wl7IQQQgghhBBCwsPJle+w6iWNv5orUAv4UhuX6NSCAGy8FalI9x4ui++8ag0WUPtM7NwGU4jDF0TvQalcRskMm8t7erUACkIIIYQQrbY0rYdFblIcd3bGHDAWe41FRHU9DhkObkcS87PVeAyShQ1HRcFo4uAyEavKuCSvYDRR8JoVVlm586JZlyxcfixQD0aja0VCCCGJjXMescom5/w4gFsYY3cCmASgP4AeACwAygFs45yXRKp8hEQzap9HCCGEkIiTXR4vU2T1HON8uRyM5eCeGQx3n8thdQDmpPbLEXdwjPJvqS9+y/GPebH3O3moHBSEez1yAcND5zEcb3KH/+SmApIUJ9tt3Uqg8pDmyQscpYrD1ULlEt3yrbG7bdbt63oakaPPSl7DTgYfpS9QfqjjwSoIwxyJ29sb/duf1i6U8O8ijrv/I55/60MSepxoymY2AN2Suz7Ojc1n2P6wDq127nHuCQfRviJzd8heYW5YixNxooDKU3sA3y6UkG4C7E5tn6uavlkMa+7RwergMOoR8P12o4HhzWsYXr2Ko7rZPSzdBEgSwDlg1LvPubUWDrvTHYSWpGew2DiarED3NO3nZMYY8rOBXUe9x1HAJyEkEPYugtGsDqCyEejRLTzlSUSL1/j/0PD3b2SYMihOru+IX7JTAINevA/oJIZ+WcCBKuXx/1fEccNk2oeIJ7Vrt3d+x3DleAkumcPpAs5/Ue4yUP29G1lMtnUlJJwoGI0QQqLAsmXLvBpdTZ48Ge+//z769OkjnG/AgAF44okncM011+CSSy7Bzp0728bdc889GDVqFKZOnRqqYseFtWvXRroIhBBCCCGEEKKZSxSMxvz/mU+1szvTFtaViNQCyqyC4C+1UAatIXRqAQQ2uTXkYXaiUDOl/cgomQCX97RqARSEEEIIIVpwzrGu7jPFcWYpGePSzw5ziYJDNXxXtiJJSpxgNFFnPlETING2E9XNAXH93MCSoGOejwMV1bMd3I4WuVlQptgOD1Mrv0ljsDMhhBBCQodzbgfwbaTLQUisoPZ5kUPt8wghhJAOuGeH7p7OY6qTD3IeBDASgDvww5zkOX5gd/G8O8tjN7ApFKqVf8ZFvyx36Eo8BhnwPT/5NH2+vVRxOAXKiG1OwFjyKYOAHt3EHba7pwHHFZ5rVFLNIb7LQwDgJz/3p25mYGB3cVBmkh4Y0sMdUuWPQEPR7pzOsHiNd9nOHSKeRy1Er6Q68YLRRAGVZxYy5KW7P5/OdYRAmPzcV0T0OvXzbFaK5/pSjAwpftwWL8hRDkYrrfF9WYQQAgCyzOHUkMlVWkPBaKEiyzygOve4fKZadyUEAAbniYPRfioDbpgc3vKQ6Kd27Ta4h/uYo5MYdBIwqAfDmr3i3+iG9w48kJiQROAd0U8IISSs9u3bh9tvv91j2MSJE/H555+rNrrqaNCgQVizZg2GDGn/ZViWZVx99dWorqY7UYQQQgghhBASL5zcoThczwx+L1MtSCvWO/KHknpAmXLAgo2LQxmMTGswmnpYRqiJ1iEMRlNchng7EEIIIYRoUWrdj0O2A4rjJnSbrlpnimZqdcJw1PWiCRcGoyk3BBJd16htN3Hor/ey1PapBmedT2WKFWr7I10rEkIIIYSQWELt8wghhBASNWTPXvUFjjIMte0WTn655SPVxfXMEHec3HjQt6LFO4tNeXiaKX46n3KnE/yTtyBP7wb5LCOw4jWf5i9wlCoOL61xBxKQdodrOR5fJeOVtYm3XS4bq/6dEQVaHaTLpjbHGjie+kzGZa+5MPcVF+76t4wNxRwHBeFXagw6dyDW9CFAZrLyNBePYn6HogXDNROU1/37s8TdmlOMDN3TlMeV+LGdYp0o2CtfJUAuEfXPVt7XyhJwnyGEBIdd4cHQSkQBlqJpX10r45Z3ZSz4QMaOw3SMOolzjvc3y7hhqYzrl8hY9oOMow2ATfmZ8poU5sbP9R4JncvHifeT19dxNFmj+3u6fj/HXf+WccUbMp77SkZ9C8eROvc168lrjvtWyPjlSHS/j1iidk0ypp/n6ytU9i8AuLyLa2xCiJs+0gUghJBEt3DhQjQ3tz+CKCMjA8uXL0dqaqpPy+nevTs+/PBDjB49Gna7HQBQXl6Oxx9/3Otpl4QQQgghhBBCYpMoGE3H/P+ZT62DP3V2FzOwJDBI4PB+HJhVELCgFsqgNbxDLVxBtN5gEgejeZfLn3AKQgghhBAt1tV/Jhx3VsasMJYkuFRDcFVCduOTqAGRcmMg0bWLejBa4KG/ANDgrFUcHvPBaGrXiiw2wwcJIYQQQkhiovZ5hBBCCIkasnfP+v8cuRIz+32KckNvj+H3Vf8Nc5pXdbnIZy9l+NOH3r+nttjdne7zc6iDJQA0C4LRUo3hLUeocM7BH7oCWP9fv5chCkazOYGKBqB3pt+Ljiv7KzmmLpJR0RDYckb1BbYfDk6ZQsGoB84bDvz3Z8Bx4tB17QSGGyerH1MKcxk2lXgfk0qqQlHK2HOohmPKIhllHkFXHC99w+FP/mCSHmCMwWQAPvyDhLmvymjocEvx9P7A8/Miex4Y3Y/hlasYbn+v/T0unMFw6enq8xXkAMebvIcnYsheieA9F2SHtxzRThTMWCIIliOEkK7YNQZy3f0fjivOEC2D4/v9wOc7OT7fybGnwnP8q2s5Pl8g4ZyhdN1223scr61rrxAt+xHon+1/kNNTF9M2JdpcNZ7huiXifW3qszK+XSgh3Rx9+9Q7G2Vct6S9nv2fIuDhj90vWj26HbmvOT69Q8KUwdH3PmKNqH55y1QGxjy37+QBwJMXMzy40nsfmzsauPtc+jwI0YKC0QghJIL27t2LVas8b1g+/fTT6NGjh1/LGzp0KBYuXIinnnqqbdhbb72FRx99FJmZ8XUnqri4GD///DPKy8vR1NQExhiSk5ORl5eHgoICDB8+HMnJgkeeBJHNZsO6detQUlKC2tpadO/eHX369MFZZ50VkvVXVFRg06ZNOH78OGpqapCamoru3btj3LhxKCwsDPr6CCGEEEIIIdFFFIymZwa/l2lk4s76Jo1hXYmIMQaTZEKr3OI1ThSwIAoukyBp/gxVwzJCHDjGORe+B1/CI8IR4EYIIYSQ+NXkbMDWpvWK405NHom8pN6K42KBWl3PmmDhssJYNCYKRhPXPTnnivPZBPVSpUAztZAzcTBa6O9ThZLae6YQbUIIIYQQEiuofZ7/qH0etc8jhBASArL3g9dOte/DgeJTUWQag3JDbyRxB8Zat6Cn8xjAmPD3zZPOGcIg+kX1oY853v4ddbB0OHlbsFNnKXESjIafN2gPRTtzJtic6zyH1RxFwYtPCGcpqaZgtJOe/5p3GYp2zhDg6z3q03x+p4SeC72PCSe98zuGKYMYPtnBcdt7yt/xu89l+Ptq/8MiOhvQHXjqYgndzMD4AiDdzNDQwlFU5h7XP7vr40m+IKippDp45YxlL6/lnULR3NRC0V65iuHWd5UnsHQIfZx2KsPRZyVsKgGqm4FBecCwXoAkRf488IcpEuaPc+9Lw3oDeeldl6kgRzlkrzTBgtHqLNwj7K6jAgo/9ZCfrVwnKqsBZJlHxXeBEBJbtAajHWsEWu0c5iT3ceZwrTsE7fNfONbsFYc0A4BLBu5dLmPrUF0QShy7Dhz3DEU7SanepNXsYXTcJ9roJIb3fs9w5T+V69zbDgPvb+a4eUp07VMumePBld4By63K3Y3QYgce+6+MbwYn9vEmUM1WjiqFAGcAmDvaex9hjOH+2Qy/m8SxqQQ43sSRZgJO78dQmCtuC0kI8UTBaIQQEkGLFy8G5+21zpycHFx//fUBLfOuu+7Cs88+C4fDXXu1WCx48803ce+993pNe91112HZsmVtr0tKSpCfn69pPWvXrsW0adPaXj/yyCN49NFHVZd/UllZmWpl7dprr8XSpUu9httsNrzwwgt48803sX//ftXy6XQ6jBo1ChdddBHuvvtuYSOoqVOnYt26dW2vO34eahoaGvDwww9j6dKlaGxs9BqflpaGefPm4bHHHkOvXr00LVPE4XDgrbfewiuvvIJffvlFON3AgQOxcOFC3HDDDdDr6RRPCCGEEEJIPHJy5bushkCC0VTCF6izuzqjZBYEoym3RhIFlxkls+abGjqmh54ZFEPyQh045uROyFBuLWxSCNgT7VuhDnAjhBBCSHz7oeFrYb14SsacMJcmuAwsCRIkyPDuCCOqY8Yr0f0aBkEwGlOue8pwwcmditdMwtBfhWWpXRs1OOsUh6sFi8UC9WtFCtEmhBBCCCGxgdrnKaP2eZ6ofR4hhJCw4cohSHq4cKb1J8D6U6fpOWBrBUziMNCCHPHq9lRQEBEAWOzicSlJ4StHKPFv/k/ztOz/3Qc2YqLn/K0WZC6+B+muBjTqunnNU1LNMXkgddYFgC93df29Gtab4es94ukyk93BUFkpQK3Fe/zLVzJcOV4CAMwaBojCD88fEdxgtJF9gEtP9/ycuyUzTB+ifRmFucrDDyZYmJXIGpX9QuRclQDMMztlN5uTGKYO9qNgYeDrvpQvOL+V1yfWua28XjyuvyCIMFGJghkdLqCigQI+CSG+swvClZU8+xVHs5Xji50cO4/6tp4dRwC7kyNJn7j17TV7g39+V7tWJqSz/BxxnRsAvt7DcfOU8JVHi/2VwGHlJmtC6/YDNgeH0ZC4x5tAlahc24quhwGgezrDBSMBCNo+EkLU0V1ZQgiJoC+++MLj9TXXXIOkpMDuruXm5uKCCy7AihUrPNaj1PAqlhw+fBgzZ87Enj1dPDrnBJfLhS1btmDLli244oorMGDAgKCVZceOHZgzZw6OHhX/StHU1IR//vOfWLFiBT755BO/17VlyxZcfvnlOHjwYJfT7t+/HzfffDNeffVVrFq1Cr179/Z7vYQQQkisaXDWYZdlC47ZjoR0PQYpCYXmU3Fq8kjoGD0lIRSanY3YZdmCRlcDhqaMQm9jfqSLROJEk7MeOy1bUGE7HOmieNAxPfJNAzE0ZTQMUtfXg0phWACgDygYTdxZP9Y78oeaaNuJgr/EwWi+hQoYJROcLu99YUPDV9jfshOA++kxvZL64bTU05GqSxcui3OOX1t+xoHWPV0Glon2v5Nl8h6mvH0OtO7GiuNL215302dhaMpo9DT2VV1/pb0cu5q3oN5ZqzjeJJkxIPk0DDSfptrhK1z1Bl8lSca2eobEJL+WccRaij0t29Dk7OLxxB3omQEF5sEYmjIKOhbcWwZ1jmrstmyDjVsxLGUsuif1DOryy22l2G3ZDodsw4DkoRhoHkZPTiIkiLo6R+iZAYXmwRicPBIGyf+6CCG+kLkL39d/oTguS5+L4aljw1yi4GKMwSiZFMN3v6//AnstO1Tnl5iE3sb+GJYyFmZdSqiKGZDj9grssmxBnUO9B0yF3bdrN7Vrl5VVSxWvmYpbdytOr1S3TWJG4fIdXLlXXawHTVMwGiGEEEIIiQfUPk87ap9H7fMIIYSEgcuHnvUntVpUg9HSzeL7o2U1vq8uHlls4nEp4p9+Y8uK17RN1y0HGOJ9L4WZU8Ayu6PAUYYduhFe40toXwIAyDJX7QR90tAumkZcMNL9vb30dIY3vvPsfC+x9vGAO+hnaE9gd4XnMgZ0B6YMAsb2B4rKxOsy6IBZpwH//bnrcp83IvD2FgWCQIHqZqDJypFmSuw2Hb4GxBl07oCwOcOAz3Z6jz93aPxuz9xU5eH13rdR45ra+81NC185YoFaAE5JNQWjEUJ8Z1N+ZqOiRz/xP9iLc8ClnKGdMEqDfL2RnaJ+rUxIZ6f3A7qnAceblMcXlQF/X+3+oibpgLH5DGfkA5IUuf3Mn+8N58ChWmBgXvDLkyhEvwnoJKAv1TcJCRkKRiMkyri4C/VOehRGqGXocyIeZHHkyBGUlpZ6DJsxY0ZQlj1jxgyPhlcbN26Ew+GAwRCbndPsdjtmzZrl1egqKysLw4cPR15eHgwGA5qamlBRUYHdu3fDYlF4dE4Q7N69G9OnT0dNjedVQ15eHkaPHo2MjAxUVlZi48aNaG1tRW1tLc4//3w8++yzPq9r1apVmDdvHlpaPH/J7tmzJ0aOHImsrCxYLBbs3r3b4wmd27dvx/jx47Fx40b06dPHvzdKCCGExJCjtjK8cPgRNLpUHosVZGPSJuL6nncHPTwk0R23H8ULhx9BrbMKAPBRFcNVPW7DxG7nRLhkJNYdsx3BC0ceQb0zelvpDU4ejj/0frDLzuWiYKpAjkdqAQLU2V2daPtY5VbF4TbBcF8DE0ySGRaX9523n5s3ew3L0ufizr5/Qa5CIJXMZbxX+Qp+aPjap/UrUQxGY8rvq8J+2CvoYmWVDjf0uhtj0iYpzrO9aSPeOroILnTR0qAGmJZ5Pi7N/Z1iQFYk6g2+Gpc2Bdf0XODzb1cb6lfjvcpXwFWeWKVmWMpY3NjrXk0hjVqUtu7Dy0ceh0V276sfsWW4qdd9GBakwJofG9bgnWMvg+NEi5AaYErGHFze/UYKRyMkCDjneL/yNaxv+LLLaYemjMHNve4L2vGDEDU7LVvarhk7m5wxE1IchJgbJbNiMNqO5k2al9EjqQ8W9HkMGYboekz4zuYivHn0b8IgMS2Y4KmJatcua+s/9WkdStdIEpNgZCbYuHqYcEfmGA9GU7tWpBBtQgghhMQyap8XPpFuo0ft87Sj9nnUPo8QQkiYcD96u1stAHJVJ3nyYoYHV3rfJ66xUBARADTHeTAa5xrbCOj0YHf9HcwguKfXMx/5jaXYYfIORiulSygAwFENz6hLMwG9MpTDwU56cI77O3nfLIY1ezgOdLj19cgFDH0y27+zjDE8P0/C3FfltpA/swH4xzwJjDEsukzChS/JaBTcvnjiIoZLxjD8Ui6rdpw/Zwhw+emBHysKuwgmGpHA1ec6C/c51Cs/G9BJDE9cLKGoTPYIahjVF7h9Wvwe3zMEmaB1iRaMptzcECYDYDLE7+fvj4xkIN0ExeNhaQ3H5IG0vQghvrH7EIwWKNn/XLW4cCjIXTwK1S+hCfFi0DMsvoJh/pvKX8ayGmDh/3UcxzH/DIYl1wFJ+sjUMd7e6N+BY9ZiGfuekKCLYKhbLCupUd7ufTMBvY62KSGhQj24CYky9c5qPHTw5kgXI+49Xvg6sg2RjbTdsGGD17CxY4PTMfT000/3eN3a2ort27dj3LhxQVm+VosWLcKjjz4KAJg8eTLKy8sBAL1798b69euF86Wmej7aY8mSJdi9e3fb6/z8fLz88suYNWsWJEnymp9zji1btmDVqlV46623gvBO3BwOB6666iqPRlc9e/bE4sWLcckll3iUpbm5Gc899xyefPJJ1NfX+/xE0N27d+OKK67waHQ1a9YsPPbYYzjjjDO8pt+2bRvuvPNOfP/99wCA8vJyzJ8/H2vXroVOF/sdwQghhBA1K6uWhT3cZGvTDxibdjZGpZ0Z1vXGu1XV73t0cOfg+KDyNYxJm0QdbklAPql+J6pD0QDg15ZfsKnhW5ydOVt1OidXvsuqZ/53tFELEPA1sCvRiI5NNlm5taFouK8BdEamffpaZxVWVX+A63v90WtccevuoISiAcr7ii/vS4YL7x97DSNTz/TqKCdzF96rfLXrULQTvq1bhTPTf4O+pkKvcSur/hXVoWgA8FPTOpzRbQpOSxmjeR6r3Ir/HH/T71A0ANhpKcKWpg04s9s0v5fR0fKqJW2haID7+PXusZfx1Cn/G3BwmV224YPK19tD0U5YV/8ZxqdPQ755YEDLJ4QAJdZfNYWiAcBuy1ZsblyHSRnnhrhUhADf1X2uOFzP9JjULT72wWCEEx+zH8HqupW4rPvvg1Ci4OCc473KVwMKRQPUgtGCd+0i+gyMkgk2l/ZgtFi/nlK/VqQQbUIIIYTELmqfFz6RbqNH7fOofZ4aap9HCCEkImR/gtG6ToC5YpxyMBrg7rw7rLfvq40nFrVgtHh47s+urh+swv7wJHDmLLBThokn6lWAguoSxVEHK50A4mFjBUZLQFxBjjuwSGTuaGBgnvteR34Ow8b7JXy8neNIPTD9VIZJA7zvg5w7lGHbQxL+u4ND5sD5IxgG93BPd/Yghm0Pu8d1DFjLTgVmDGU4s9A93eYHJHy8g+OXcqBjlp5RD5xRwHDhyOB06O+TCegkwKVwuEv0YLSDfgQMngz1GNWXYetD7n2luAo4vZ97P0g3x2/H+8xk5YBBX8PlYl2dRfn8nhHbtyFDgjGG/Bzg5yPe49SCIQkhRCScwWhas47jVZkgaMhfBTnxW0cioTNvnIQai4zb39O2P76/meO84cCV48O/v8kyx/ub/fvelFQDX+0CZg8PcqESRInguq5AJSScEBI4CkYjhJAIOXLE85e2vLw8ZGdnB2XZw4Z537A6cuRI2Bte5eTkICfHXZvT69tPOXq9Hvn5+ZqX8/HHH3vMu3r1agwYMEA4PWMMY8eOxdixY/HQQw9B9ucmsoIXX3wR27dvb3vds2dPrF+/HoWF3h2tU1NT8cgjj2DYsGG4/PLLUVdXp3k9sixj3rx5Hk/VfPTRR/HII48I5xk9ejS++eYbzJs3r+1ppOvXr8e7776La665RvO6CSGEkFgjcxd+bfk5IuveY9lOwWhBtqdlu9cwJ3fiYOteDE0ZHYESkXixx+K9b0Wj3S3bNASjORSHBxKMZpYEj1eEOPiLuIkCyqyy8qMabVx5uC9BZwBg1qX4NL3S8RUA9lp2+LQcNUr7itq+pcQiN+GQ9QAKzIM8hpfbytDs0vDY3Q52W7Z5BaO56w3Be8+htMeyzadgtAOtewIOGTm53mAEo1nlVhxo3eM1vMFVh0p7OXoYA2vpqvZ+97Rso2A0QoLgl+Yin6bf37qTgtFIyB23H8Xulm2K48akTUKavluYSxQavtahRHY2F0VVMNox+5GgBFbrmHITh2Beu5gEn4FJSvYpZDdYn2WkmCTl6w4DSxJ+DoQQQgghhEQTap+Xr3k51D6P2ucRQggJE9nl+zwtzV1O0icDkBggK/SJLaVgNFhUbqWnGMNXjlDh6z5SHc9ueQrsynu6XlDPfBRsKVMcVVJhBwWjASXVXXc8L+wiGK17umen+exUhhsmd92RfkB3hj+eqzxdQQ7Dgunqy8hJY/idhvUESq9j6J+lHAJ2sIoDggfgJIJDtb7P0zHUo1cGwy1TE2f7ZQhuszXbAIeTwxCEIL9YUK/c3BCZvjUfTBgF2crBaP58/wghxBbEYLR0EzCyL/D9fuXxStdyieRIkJ93TQFFxF8XjGCag9EAYOU2jivHh7BAAj+XBzb/im0cs4cnRn062EqqlPePfApkJCSkvB/jRQghJCxqaz1/VcvMzAzask0mE4xGz7t0ndcXS8rK2m+wjRw5UrXRVWc6nQ4Gg/8BASfJsowXX3zRY9gbb7yh2Oiqo0suuQS33nqrT+tasWIFdu7c2fb68ssvV210dZJer8eyZcvQvXv3tmGLFi3yad2EEEJIrLHJNjh5GB/F0oFFbozIeuOVzF2wuJoUx1nlBHvEGwkqh2yHjVsjXQxNRN+BjkTHPH0AndJ7GwsUQwT6GU+BUfItsCvRiAITbIJgtFaX8nCzzrfAhAHmoT5Nb3E1gSs8TszXsDGRfqYBSJK8WwsPSPatnABgcXmfX5sVhnW9HO/vk022Rqze4KtmDccDj+mdwfks/dnWSpQ+x5Nag3BeV9t3g/UeCEl0tY6qrifqwCbbQlQSQtp9V/+FcNyUjDlhLEloneJjXU+kzlkNmQenY3owqNUPfFFoPlVxeJJkRH9TcMJRBySfJhiu/bORoBOWNVYUmgdDUmhSMjDZOwCCEEIIIYSQaETt87Sj9nnUPo8QQkiYiH6zZQyQBN27LOJ7o7ylGfzXrdBbG9FHUNUpq0nMHvaccxys4mhs5bAIbmMZdEBSPATrHClWHz/5Ak2LYSMnId9RqjjucIsZdmdi7ksdlWp4/sukAQymBHy2CLdZwX/dBr77JxRkKKcRlgT+/JyYVmfx/TuUyKEemSrN6RoEYWHxqF7QzCojwZ53yzkHP7QPfE8ReMlu8NpK8OKfwXf/5PEvT1Zu6+LP948Qktg4F19HaDWiD3DvLIa1CyVU/V3CP+aJIz0UmnjHrcZWjtJq7tGuvc6iMoMfJg+Ig+s8EhG9M4B8H56vc8C3ZraaNLRwbCnjsNjEB4aDAa73oCDci3StRCEEHHCHpBNCQicBf2ojhJDo0LkhVEZGRlCXn5GRgcrKyrbXNTXxcRfh+PHjEVnvd999h9LS0rbX48aNw/nnn69p3ocffhivv/46HA6HpulfeOGFtr8ZY3j66ac1lzM1NRU333wzHn/8cQDAL7/8gtLSUp+eAEoIIYTEElHwTDi0uiisK5hssji4yiFrq0cRoiSWgvW0HFecXPn7oGf+dzgxSAacl30Fllct6bA8Pc7Lme/3MhOFSafcwki031ll5Tu3ooA1kckZM/FT43eodWq7q8Uhw85tMDLPoDtrEM6jeqbHedlXKI7LNw3CiNQz8HPzZs3LUwrN8idIq1VhWwcjkCtcfD12BeOzBIK3jVpc4lYKouOYL1pV3q9VEEBICPFNncZzTDtqKEFCyy7b8GPDGsVxfY2FyDcNCnOJQmdKxmxsaVqPemdg93Wc3AmLqxFp+uDef/KX2vlbqxRdGs7J+q1w/HnZ8/DG0acDCsM9xTwEw1JOVxz3m8wL8XPzZk1BrDOy5iJZl+p3OaJBii4N52ZdjC9rl7cNMzITZmVdEsFSEUIIIYQQoh21z/MPtc9TR+3zCCGEBEQWBKPp9IA5FWiq8x7X7B2MxqzU87MAACAASURBVF0u8BcXAh+9DrhcgCSh/4itOATv38q1BDnFm1+OcFzymozi44DEAFlwGyvF+/lvMYdXHgLW/1c8wfTLwfppvIcy9hwU2O8Vjn5ljQN3zUzysYTxRdQB+qR+WcA1ExiqVJ6FF293VTnnwDvPgi99ArC700MKerwEZN7gNW1Jgne+r/fjVllhTuKGemSoNKerawFy0sJXlkiqEwWj+dbcMKbxXZvBH54PHD/S5bQZuY8BOX/yGi7ajoSQ+MM5R6sdaLS6/zW0Ao2tJ1638hP/t49rEgxvbAWcPj6LMM0EnDMEmD2MYdYwhj6ZnudxxsR1IdE1SzxxujhufY9j6QYOp+wOEVp+i4SB3d3b3Ren5IoDqc7IB2bR8/6InySJ4cHzGG78l7Yv5fbD7uMOY4HX2+1Ojpvf5nh7I4fMAb0E3DqN4bnLGHSS5/JLAwzB7+ralijjnAsDvxM51JqQcKBgNEIIiVPBqEhHi1NPPRW7d+8GABw+fBiLFi3CwoULw1qG9evXe7yeP197QEBubi5mzJiBTz/9tMtpLRYLNm7c2PZ63LhxKCgo0F5QANOmTWtreAUA33//PTW8IoQQErdsXPwL+ODk4QEFBZ1UZT+G446jXsODFUBC3NSCWIIRoEISl9q+NSh5OAxBOE74qt5Zi3JbqddwLUFILkEHfz0L7Ge+6Vm/Rfek3vi5eROMkgmnp52FAnP8hEuEilkQaCba70RhEKLliGQbuuOefn/Fjw1rUGYthgwXAMAm21DcuktxHqvcAqPkGYymFB7mXn4eeiT17rIceUm9VfcViUm4sde9+KFhDfa1/OKxjxe37FY8jyudX0XfDQNLQqouHXVO77tzviwHAAYnjwj4e+SP4/YKVDkqvIb7GsAq+izNUgoKzYO9htc6qlFhP6R5Ob5SO/Y6uPKTgX1hVdk+wXoPhCQ6pWMrADBI4PBu9cXjrgk/iTY/NX4nPMZPyZwTV/dEcpJ6YGG/p7Gx4RuUWvcrfuc6cnEX9rbsUBxX56yJmmA0UV1Mz/QYnDxCdV4GCX1NhTgjfQryVOqpw1LH4u6+T6GoaT0q7V03jO8oiRlxinkIJmXMQJKk3Buul7EfFvZ7Bpsav8Vh60HFzyZNl4FhqWMxOnWCT+uPVhfmXI2+pkLsat6KFF0azkifij6m/EgXixBCCCGEkKgQT9ei1D6P2ucRQggJE9mlPFySgLQM5WA0pWEfvgQsf6XDcmXkV27G9xne9+7LqhPrHo7TxTH7BRlH692v1QIGUuIg44s/cLl45KDRYA8t1bwsptMhf9okwLspAQDg7uU6XDyWo392/NSDfVWq8n1aMJ3hzzMZctMYmqwJ9L377mPwNx7yGJTvKFWc9GCCd76v9yOYqTA3+OWIFZkqzen8CZmLVaL9JjM5MY7FvNUCfs95gKXrB1cBQKarXnF4HTUnIyTqcc7RYncHkjW0BZmdDDjjXsM9As06BaC5fAw088f9sxnWF3MwAOMKGOYMY5g0AEjSi4/PksqhOxFqj09/wfHP79vf6cFqYPZiGbOH+3ZO654GFD0o4bFVHP/42r28dBMwqi9w1iCG+2Z5h0gR4ovfTZaQm8rx7iaO4uPufazFDvxaqTz9q+s4bp0a+D73l1Ucy35s/444ZeCFNRwFOcCd0zsHowW2rsN17t9P9Dr6rviiuhmw2JTHFSRwqDUh4UDBaIQQEiFZWVkerxsavJ/mFIj6es8f8zqvL5ZceeWVWLFiRdvrP/3pT/joo49w/fXXY86cOejZs2fIy1BUVOTxevz48T7NP378eE0NrzZu3Ojx5MrCwkKPJ2FqIXd6mtiBAwd8mp8QQgiJJTaVcLKbet0Hsy4l4HV8W7cK/3f8n17DtQQYEe3UQkwoGI0EQu27elOvPyNZlxrG0rhtbfoB/zz6N6/hakFCJ4m+D8EIghyeOhbDU8cGvJxEYpTMisNF4ZlWwbHO5GMwGgBkGnIwJ2eex7B6Zy0eOOD9xNWTZeqmsZwT0n/jtWx/6ZgeZ2XMxFkZMz2G/7X0bhy2HfSavtXlvY1EIVi5hp4YkjISa+o+8Z5H4fskCqYDgFt6PygMwAil1bUrsbJqmddwX+sZos+yv2kAbuvzsNfwTQ3fYtmxxV7DfQ1kE1H6HE8Kxnld7XhJ4bWEBE7mLtQ7ahXHZeqzUesUPG6RkBDhnGNd/WeK45KlVIxNOyvMJQq9LEOu5vqYzGXcue9yuOAdolznqEY/0ynBLp5fROfvTH2uYn3FX/nmQcgPYchz96SeuCDnypAtP9owxjAmbRLGpE2KdFEIIYQQQgjxGbXP047a55X6tC5qn0cIIcRvsqCHvqQDUgUPuWj2rsPwL9/zGtbfoZxmFWhn2Vjz7a9oC0XrSkr4mwgEFS/dA+zbJhzP7n4BTKfzaZkpAwYi72AlKvV5iuPf38xx3+zE7ewr+j79Yx7DgulS22tT+J/TGTH8K+/jUaG9RHHa0mr3fb94Cpn2RYMfzVkKc4JfjliRanQHyCgFXNYmUMhVnUU5Kqeb780NY9OGTzWHogFApiwIRqMm/4SEDOcczbYOIWYe/3OvkLOmjsPbgs/cf6uFGkeT5CTgyYulrifsRK0GJLpUjCcfbvH+gI81Aks2+PbBF+QA3ZIZ/n45w99VcqIJCcSFoxguHNX+rT1Sx9Hvz8pf1Hc2ctw6NfB1vrtJ+bvwzkaOO6d7Dgs0BN8lA0fqgPwEvt7wR4lK2HcBbUtCQoqC0QiJMhn6HDxe+HqkixH3MvSRr2F0bghVV6fwNCc/Wa1WWK1Wj2HZ2dlBW364zZ07F3PnzvVofLVhwwZs2LABADBgwABMnDgRkyZNwllnnYUhQ4YEvQyVlZ5xzgMHDvRp/kGDtHXCOXz4sMfrDz74AB988IFP6+qstla5EyMhhBASD9SCL4ySKSjrMAvCarQEGBHtrC7xZ0nBaCQQaiE/JkGoVaiJ1muVW7ts/OUIYTAa8Z34s1Te70TBXKJzTbDKAygHVYnCq8Lx3RCFwSmd20Xne7Mu2cflKH8uEnQwsMg8Clpcft/qGaJjneizFIXHqgWV+lQelfI7uXdoi6/Utg/V0QgJXKOrQTFgCXCHNVEwGgm3g9ZfccSm3IFiQrffRCTcNJpITEKGIQs1juNe4+qd0dPjTRR2G6nrMkIIIYQQkriofV74RLqNHrXP047a51H7PEIIIWHCBb3dmQSkKQej8aY6jw70XJaB/du9pqNgNLcPftLeOXho6LNfQ+vQPvE4QxLQf7Dvyxw4CgWrSoTBaH/9nOO+2b4vNh44XRyHBZcU+dmebb3UgtHiLhKsbK/XoD7OI4qTtjqAVjuQnKC39nwNRsvPdod+JCpJYshNAyoVMrEO1XLE4bdJ0RFB2GdO+J8HHBG8dI9P02e6lA/UFIxGiDdZPhFo1inMrOFEcFnn0LImK9DQyr0D0KwAj5FAs2A5tYd/86llwybCJvxZuYrosz6ZwVkOIb7o1fnp9B1UBOGZPBYbR5ng95stZd4B01p/6zklFzggaO5bUk3BaL4qEQTSmQ1AXnqYC0NIgqFgNEKijI7pkG1QvolA4kvv3r09Xh87dgw1NTVBaSC1a9euLtcXSxhj+Pe//41HHnkEf//7370alRUXF6O4uBj/+te/ALgbYl199dW44447gvYkzs4N49LTfaulduumcuXTQU1N8O8+NzU1BX2ZhBBCSLSwyVbF4QaWBIn59rRDkWAFlhB1akEsDm4PY0lIvBEF5BiZKWjHCV+ZJeVAIg4ZNm6FiYmDAURBgXpGP/NFgijQTBTkFeowCCMzgYGBK9wi9y1wTHkfDSazTvv5VXSOMElm4XlaOQhOefubpeSIPY1W9NmLQvRERPUS0fFGNNzB7XByR8Bhi2rn9WAEnqqFn1EdjZDA1TnEjzXLMuQCCoconmgt3EhYfVf3mXDcWRkJ2vumkwx9tmIwWl00BaMJ6jei+hwhhBBCCCGhQu3zEge1z9OO2ucFhtrnEUII0czlUh4uSUCqcjAamuvBW5rAX/gTsOlLoPqo4mT9HWWKw6ubgWYrR6op/gNkOOdYskH7PatrJ0ohLE0YlOwWjzvnCrBUbfUjD6OnoMDxPjbiTMXRTcrNNeNeUSnHFW/IcAmyDQs6dSY3xXAzLr51Lfj/Pg78uhVwnXiYVlYPYNJ5YLc+DWZsf2AxX7UEKPvVaxmZLkGSE4DalsQNRqtv8e2e+k1nx99xm3/+NviSJ4CKUuUJxkwFu+kvYKeNB+AOh1MKRisRN2mIO1uUT+/oH5xL8ei3Y71Pk2cIjj8NrYBL5tBJ8fe9IonHJXM0Wz1Dy7zCzE7839AKNLVyj2nbgs5siRdoFizXTvTvWKJ2CJLj/LNwuoL3BjMSODiWRI4kMYzooxzwV1YDHKrh6HciMHt/Jccf/y3jh4NAix3ITgFmDGV4fh5T3H+LSjkueElwsXnC1kPA6f3df3PO8Ut512VO0nO8da0Ol7wqo0ahWX9JNce0BAkbDpaDguuQghxErC8KIYkihn9qI4SQ2DZx4kSvYUVFRZg5c2bAyy4qKvJ4bTabMWrUqICXG0l6vR5PPvkkFixYgHfeeQcff/wxNm/eDJvN5jVtcXExHn30UTz//PN4/fXXMW/evAiU2D92e/BDP6hTIiGEkHgm7lQbnIAZQD30RuauiAUrxRu1gBMnd4axJCTeiAJyTIJQpnBQO0ZZXS2q412C70OgIUbEP+LwTEEwmii8Kkj7I2MMJsmseExVHiYOHAs1YaCZQjmFAW5SikrAmlIQXPQdD8T1DHGwmBLRedSkU/4sRcFogDtALk3vRwNpj2WENhhNLfxMFIBHCNGuzqn8iDgDS0Kqjh5rRsKr0VmPrU0/KI4bmjIG3ZN6hrlE0SlTr/z4RrWgw3ALdV2YEEIIIYQQQjqj9nm+ofZ5/qP2eYQQQjQTnTMknTgYrakB/N6LugwGyRcEowHA019wPHFR/HfQfPlb7efksf2B346K7W3C//mocBxb+JJfy2SShJTxZwN7/SxUHCo+zjF1kYwWlWpkfqfbNMYYbcbF924Bv+d8wNmpXUflIWDFq+BV5WBP/Z972s/fBn/mD4rLUQtGq7MAfTKDVuSY0iB4RuJ1ExmONXCs2we0OoC+mcCNZzP8eVZsH6M641++B/7U79Un2roWfMEM4K2NYPlDUJDDsKnE+9heGj23QEPq+/3i81r/7PjaP5Rwawuw/Tuf5smUxcefhlYgK/TPiyVEyCVzNHkEmZ0MKuNeYWaNrUBTx6CzDsObvX+qI2HSPxu4dSrD7dP8OwarZebE+8+LonqQPzKpmRGJkGXXSxj9uHKA2ci/yKh8TkKzDZj0jIzq5vZxFQ3Ash85dldwbLxf8gjQKj7OMe05GZYuju3jnpTR/KKEZCPDqp/Vp2VcxljrFjzQaz3OHrQQBTlQDkaLnuetxgxRQHPnsHRCSPBRMBohhERIv3790K9fPxw6dKht2FdffRWUhlerV6/2eD1+/HgkJSUFvNyOXKInVoVYXl4e7rnnHtxzzz2w2WzYunUrfvjhB3z//fdYs2YNmpvbrxgaGhowf/58GI1GXHTRRQGtNzPT8+5LY2MjcnNzNc/f0NCgabqcHM8a8FNPPYX7779f83oIIYSQRGOTlR9BaJRMisP9oRaWYpOtMOvoLmkwiEJvgOAEqJDEJQoLEoURhYPacaNVbkEGshXHydwFGco3UygYLTJEAWI2uRUylyExz6cLC8Orgrg/mqRkQbiY5zDOuWrgWKiJA8G0hboB7u3vW8Ca6HgQ+iA4EVH5ndwJh+yAQdL23Ra/N+XPUi2ApFW2IA0BBqOpBLs55MA7namFn6mFphFCtBEFKbmDl5RbaHHEeessEjE/NKyGC8rhwFMyZoe5NNErQ698DVHvjJ5eAcKQ2gjWxQghhBBCCCHxjdrn+Yfa5xFCCCEhJCu3+YAkAWmCYLRt64C6410uuo+jHBJ3QVZ4yOfL33I8EdipOia85EMw2sMXSF1PFMV4yR7xyPOuA0sy+r3szOxU1fE2B4fREP+BPCct2cBVQ9GyU4A0k+f20EmxuX34x//0DkXr6PtPwCsPgeX1A1/+inCyTLlOOK4ugZt01Ave+2m9gP+9Tgeni8PuBJKNsbn/dEVtn/Fgt4J/uhTstme8QgdPOliVGO0TFn0pqDfAHc4T99Z9pHlS9vI3QH01Mh/9k3CaOgsFoxH/OF3uQDPPMDOgsZW3B5ZZT4aZtQ/3CECzosvQGxJaaSYg3QSkm93/dzvxf5qZeQ83A+km1jbs5PhuZngEGvlKrYoY78FowawDZtKxnETIKSq3KxpagX/9yGFzwiMUraOfSoHNJcD4wvZhS3/gms8PK7dzXDWe4bmvxHXE0v0DkeuqgpHbgUMSePVVKMjJQ1FZ4oYNB1NptfLBOj8nPq/hCIkmFIxGCCERNGvWLLzxxhttr99++208/fTTMBj879BeVVWFTz75xGs9SvR6z9OA06ncuUhJXZ34ZkW4GI1GTJgwARMmTMA999wDu92OlStX4uGHH8a+ffsAuDt6L1iwABdeeCEkyf8bmHl5eR6v9+/f71PDq5Pl8XU9WucjhBBCEpVNEOhiDGKnWrXwpFa5hYLRgqTVpRKgwoP/1G6SOMSd7yMYjKaybrVAHycXX7PpGf3MFwmi/YiDw85tMLH285GTO4THs2AG9YnK1DkEzcatwhCbcIRT+BRoJgjBMknJwrJa5VZwzj0aIYQjmM5XagFlVtkCgyRo/N6JWnickmSV8DvRsnzRohKMpnYs00rtWGnnNri4Ezo6LhLitzpBkFKmIVsQi0ZIaLi4C9/Xf6k4LtvQHaeljAlziaJXpkG5V4Do+xwJrYLfcCJZFyOEEEIIIYTEP2qfFxhqn0cIIYQEmSwIPmUSWHqW8h18DaFoAJAEB1LlZjTqvB+CZXMCsswhxWhYkxZNVo59ldqnz4/1QJlftwhHsb4DA1r0BSOAZzeIx1c3A70zxePjzRaFDuQdDe6hPDwrBahVaDpx9ZlR/D1U2a/a7NsOnt0LKN4hnMTI7TDLLWhVuAeUyMFoRwVZzpknNpNex6D3zraMC9zlAvb8pH2GD/4B3PYMCgTBaCU1wSlXtDui8rNA3wQ4DvNft2qbUJKA/CFAYy2yXbXCyY42AKd0D1LhSExwOHlbKFmjR6gZdweWdQgta1IafuJ/tYBUElqMAWnG9lCy9gAzhrROAWdeYWYd5kk1IiquhdQy1eQ4D0YTBcT6I4Oev0giJNXE0DsDKK9XHv/05xyTBqgfa4rKOMYXtk/T1fWmx7ylwFXjgeNN4ml6OY9COvnrkiwDB35G/+xzFacVhXwRsRJBU8xCwXULISR4qGcQIYRE0J133ok333wT/ESkd1VVFZYsWYKbbrrJ72UuXrwYDkf7U1pSUlJw4403Kk6bnp7u8bq+XlAjV7Br1y6fyhVIGrpWSUlJmDdvHmbOnIlhw4ahvLwcAHD48GFs2bIF48aN83vZY8eOxccff9z2euPGjZg4caLm+Tdt2qRpugkTJoAx1rZPrF692qsjNyGEEELa2WSr4vBgBrqoddBVC+Ugvukc2NORUw48QIUkrlZBoFIwg6h8lcSMkCBBhvfTWtQCiZxc/EROPfO/Aw/xn9r5xupq8RhvdYmPc8EMgxAHhXnuW6KwMQBhCf0UfQeVyqUW+mUWBHxxyLBxq0c4XTQGJaqtu1VuRRo0BqMJAkZF28comcHAFMPx1MJKtVLbv9SOZZqX30UdzCq3IkWXFvB6CElUtY4qxeGZ+lyAotFIGP3S/JMw2OusbrMgsTjtGeCHTL1y65p6Z03U3GOwCoJTI3ltRgghhBBCCIl/1D4vuKh9HiGEEBIg7t1OBAAg6YC8vgEvfkLrJnyZOsNruNUBHGsEemm7/RyTynwMyYn2YDT+4+fg364AjpYAO753D5xyMdhNj4H1Gwx+5IB45mmXBLTuCYONMMmtsAranzS0JlYwmqjj80lXjFOuR141nuHFbzzbZPTsBowvCFbJQqCirMtJ+D8fBTtlGOASBD2ekOmqFwSjcSTiPecWG0eVIMCgX1YCbI/qcp9nkf/xR+SfdiuAQq9xVU1As5Uj1RRf287h5Hh5Lcemg+6AnG2HxdMaDfH13hVVlGqb7oxzwdKzgPQspMtNyHDVoV7nfaIqreY4a2ACbLc4trWMY8kPHNVNwKxhwDUTGL7ZC7z/E8eB4xzNNs9Qs9bAmykSP0kM7QFlpg5/mxnSToaZeYxn7SFnHYLNUpKiI9AsWNTeSrzHEwUzGC2TmhmRCLriDIbnvlL+xh6sBg52ETb23FccK7e5oGPAqH4MX/pwG+iDnzh+KXehWJCfn+5qaA9FO6miLOHDhoNlSxnHAeWm1SjIiZ9zFSHRioLRCCEkgoYOHYrZs2fjs88+axv25z//Gb/97W+9nkyoxe7du/Hss896DLv++uuRlZWlOH337p6POti9ezfGjh2raV0dy6yF0Whs+9tms/k0r68yMjIwd+5cvPjii23DSkpKAmp4NXnyZI/X77//Pu6++25N81ZVVeGrr77SNG1ubi5Gjx6NrVvdT7YoLy/H559/jjlz5vhWYEIIISRBiMK0jMwUtHWohd60qoR5Ed+0CjpIA8EJUCGJKxqDkBhjMEnJaJGbvcaphf04uTgkkILRIsOkUwu1akEG2lvSqn22ZpXl+EoUatY5JFAthC+YAaPCdQjes1K5ROd7sy5FPZxObtUUThfJMA61dfsSwCraRqLtIzEJRsmsuA61c7JWLSE+r3dVB2t1tVAwGiEBqHMqt3jINOTALiv/tqsUtEhIoL6r/1xxuJ4ZMLHbOWEuTXTL0Cv34HJyJ5pdjUjTdwtzibyJzt+RvDYjhBBCCCGExD9qnxca1D6PEEII8ZMsCkaTgB79A178GxW3ov/AYsVxB6soGO2knFREdZgOX/Eq+PN3eY9YtxJ83UpgSRGw7Cnh/KxXYMlbktmMNYfOwqT8dYrj6xOoyaRL5ihV2bduOpvhD1OU96Wn5zKUVHOs+tn9uncG8OkCCbooDffgTfVAs4Yg54O7wOcN6XKyTFcdjhp6eQ2vDbxJSkw6VCse1z/KgxqDgX/4iu8zLX8F+V98C/Tbojj67Y0ct0yNzu+TP2SZ48KXZU3hGMtvkUJfoGhQUdr1NIPHgP359fbX1/8P8tcewnalYDQK/4hp3+7lOO9FGdYTTQ//XQTc9W+ORivAqclS0EhMKbQM6HYi0KxjaJl7PPMKM0s3ASnG8DzEIdaobRHRpWK8qAtiMFpGMu1bJHIevYBhzR6O7SoBtmpKa9rrJKv3+HYCq2x0/xP5z5ErvYbxY2UoGMCgFL94tB6wOjhMiRC4G6Dv93NMeVZ8oBaFzxFCgoeC0QghJMKee+45rF27Fi0t7qu7+vp6zJ07F19++SVSU1M1L6eqqgqXXnop7HZ727CePXvi4YcfFs4zZswYj9f//e9/cc0113S5ri+//BKbN2/WXDbA3RjqpOrqajgcDhgMoeu4r9d7nuI6Nvzyx9lnn438/HyUlpYCAIqKirBq1Sqcf/75Xc77l7/8xeMpoV25/fbbccMNN7S9XrhwIc4++2yf9gdCCCEkUdhkq+JwYxADXQwsCTro4YJ3IJEvgSVEnVpAj4PbheMI6Yo4UCmyne9NklkxGK1zeFVHamFCekY/80VCV6FcHakHkQVvfxSVqfM5SzWoTVIOVwsms8ZyioYB7veqGizmagH07Z3RRIFfkQzjUA9g1VbP4JwLt5EoKA8AkqUUxflaXIG3QlUrezCC0axdhLdRHY2QwNQ5lB97nqXPRaVd9CRnamVIgqvSXo69LTsUx41Nm4xUfXqYSxTdMg3i1jV1zuqoCEazCq51whHKSwghhBBCCEls1D4vNKh9HiGEEOIH2aU8XJKAHv18W9bAkWC3/hVoagB/eD4AoJfzKLq56tGg805AK6nmmDwwfju7ltVqv1cVzQFx3OkAX/Kk+jRP/U48ct6dAZeBMYYzsAc67oRLoT1SfQLdjj9aDzgEX9sv7pQw4zTxd8qcxPDJ7TqU13FUNwPDewNSlIaiAdAWQOSDTLlOcXgwQzFiSZlKMFpf5Zzt+PLB837N1s+yHxJckKHzGnfvco5bpgZYrijywwFoCkUDgNN9rDLEIs65+Lg062qw6ZcBvQqBvgM9wpfYmKnov7oM200jvWYrPWYDQPemY9VTn7WHop3UkEBhrV3RSScCzdqCzE7+fSLQrENomTvIjHUKOHP/nZxEgWahJKnkWsZ7y7v6Vt/e4Wm9gF1HlcdFc5WaxL8UI8PWh3SY8bwLX++JdGk8jbL97D2wokw1tKusBhjcI3Rlihd//Uw9vZKC0QgJvQSJByeEkOh16qmnejw5EQB++OEHzJ49G0eOHNG0jP3792P69OnYs6e9Ji1JEt5++23k5uYK55swYQKSk9s7/65cuRJFRUVdruvaa6/VVK6OhgxpfyqM0+nEt99+q2m+lpYWvPjii2hqatK8rubmZqxYsUK4fn9IkoTbb7/dY9jNN9+MkpIS1flWrFiBV17x7ekm11xzDU499dS213v27MHFF1+Mujrlm0MiVVVVXtuBEEIIiTeiwCOjZAraOhhjMOmUb4SqBRgR36gFmAQjQIUkrmgMQgLEYUWi8gLq3wUdBaNFhJGZwATP8LJFKBhNFBSmNahNggQDSwpaeURE71np3C4qq0lKhkkl5LDzfKJ6g+g8Hw4S08HIlOstovCQzuzcBhnKN9zUguPEn0Hg9ZtWlXA1R4DndYfsgJN7B9Z6rJ+C0Qjxm0N2oNGl/DukWvASIcG2ru5z4bizM2aHsSSxIU3XDTrBM9HqndHx6GthXSzC12aEEEIIIYSQ+Eft89RR+zxqn0cIISSMZEFHSkkHZPcEkrQHjbKL/IdRgwAAIABJREFUbgIbOx0YP6N9GIACR5ni9AeVn4sTNyoatE87OC+Ke9KX7gHqq9Sn2a/8YBkAYL0KglIMZk5Blks5yam+Jd5jG9qp7Vfj8rUto3cmw8i+LLpD0YCgB6NlCe45H/PhuxpPKhqUvzd56YDJEOX7RoB4i/Zrzc4McCLPeVxxnNMFyHL8HI/W7tP2XpL0QO/MEBcmGjTWAoJ9h13wO7AzZ4H1G+Qd4NQzH/3tynWhsmP0kO5Y5ZI51uyNdClCQy8B2SnuQJVRfYGzBwLnjwCuPIPh5ikMf5rJ8MRFDC9cwbD0eoYVt0j4+m4Jmx+QsPdxCRWLJFhekmB/VUL18zoc/KsO2x/WYd2fdPjvHTq8+3sJr10t4W+XSvif8yQsmC7h2okSLh7NMH0Iw7h8hsE9GHpmMKQYGYWihZja1o2jU5qiykbfpp94inhrDcwLsDCEBMFLV0qIpkNmmqsR2S6FNoKVh9A/WzxfSZz/VhQMnHOs3Scen53iDhwlhIQW9ZgkhJAocMMNN2Dr1q14+eWX24atX78eQ4cOxQMPPICrrroKffv29ZqvuLgYS5cuxaJFi2Cz2TzGPfPMM5g+fbrqetPS0jBv3jwsWbIEAOByuXDeeefh7bffxowZMzymtdvtWLZsGe677z7U1tYiMzPTp4ZA06ZNw9KlS9teX3/99XjwwQcxfvx4ZGZmQuoQeZ6amoqcnJy29S5YsAD/8z//g0suuQQXX3wxpk6dirS0NMX1bN68GXfccQfKytp/yDzzzDMxaNAgzWUVWbBgAd5++23s2OG+mXj06FFMmjQJL7zwAubOnevxHiwWC5577jk88cQTkGXZp+2l0+nw4YcfYuLEiWhsdF/1f/311xgxYgQeeOABXH311cL3X1tbi9WrV+Ojjz7CypUrceaZZ2Lu3LkBvnNCCCEketm4qFNtcANOTFIyLC7vG6zBCA4hbmohc12FnxCiRtT5Xi0sKBxExylReQH1YDQDMwRcJuI7xhhMklkxhMk7lEv5OJfEjNAx76da+ku0b2ktj1lKCUvjBtF30MHtcHIH9Cf2aZnLXiFzHZdxMpyOKzwvrfN7FL/nCB8PdMmwOa1ew7XWM/wN3UsWBjQGIRgthIGnWrYL1dEI8V+DSoBSpl4cjBbnbbNImFnlVmxs/EZxXD/TAOSbA/+9P95ITEKGIQs1Du+OAXWO6GjBJKyLqQTdEkIIIYQQQkiwUPs8ap/XEbXPI4QQEjGyS3k4Y2A6HfiEOcC6lV0vR5KAiXPcsyanetynKbCXYLtppNcs8d7Ztd6HW8QXjgpdOfzBZRnYuhbYUwT+7YeBLWzSeUEpE0zJyHA1oErf3WtUg7hpU9yx2MTjukXuGXyhUaEeSOyrvg7lEOrS6sS8syw6RuWmhrccEVF+MKDZ8+2lqND39BpucwLHm4Ae3QJafNTQGhhzwQhAF+1Bi8FwTDncDADQK188LqcX+svliqO+OZQKm4PDGOdhhPGo3Lcc+7BI0rvrAummE/9O/m1mSDOdGOcxniG983AzYNSDwshiDK+uADavBlc7TonY0gHcrjiKx3kVydfr0ZF9gbH9gaJOm3lgdyBfJeSJkHAZlMcwZSBUA7P8NbovcLTBt0DBC5tXKYcvlu2FycDQs5ty8HdpDYd6bCOpbASsKl0fLhxF24+QcKBgNEIIiRIvvfQSMjMz8eSTT4KfuJJtamrC/fffjwceeABDhw5F3759kZmZiZqaGpSVleHXX3/1Wo7BYMDixYtxyy23aFrv448/jpUrV6K+vh4AcPz4ccycORMDBgzAiBEjYDQaUVlZiU2bNsFisQAAevTogWeeecanJ1NedtllePDBB9uesnn06FHcdtttitNee+21Ho20AKCxsRFLlizBkiVLwBjDgAEDUFhYiIyMDOj1etTU1GDnzp1eT/FMTk7GG2+8obmcagwGA959911MmTIFNTXuDoIVFRW47LLLkJeXh9NPPx3dunVDZWUlfvzxR7S2uu/6devWDc888wxuuukmzes67bTTsHz5clx66aVoaHBfcRw5cgS33nor7rjjDgwfPhz9+vVDeno6WlpaUF9fj3379ml+iikhhBASL0RBKUbJFNT1iAJTghEcQtzUAkwCDVAhia3VZVEcrhYWFA5mSRRIpFxeQD0kUE/BaBFjkpIVzwedj2uiAMhgh3KJ9m2t5THpwtNyU+07aHW1IlXv3qft3KYYenZyGWrhdF7vWXCuifTxwCQlowHeT1rWWs+wqoSLqu1fovfdIjhuasU5Fx57gcDP61q2C9XRCPFfrVP8BPpMQ464MV68t84iYfVT43fCa8QpGbPDXJrYkaHPVg5GUwk8DBcXd8LOlXsPRbouRgghhBBCCEkc1D6vHbXPo/Z5hBBCIkSWlYefCP9kNz0GvqcIOH5YdTHslqfAcnq1v779b+Av3QsAKHAohxsdrIrvezkNGm8R/3YkcOmY6Om0yp0O8L9cC3y7PCjLY3n9grIcmFLQTVboNQ2gPpGC0ezKw80GQIqzYCL+8n2BL6R3YVsIluhYFO8hjSKiYLSMOL9Nxh128BsnBrSMl47dhdMLNymOK6uJn2A0tSDGjp64SOp6ojjAv3xPeUSSEcjqIZyP6XTITxFXCn7znIxPF0jISI6vY3i8+2RH8OqxJkOnILMTf3c7EWjWMbTMPZ55hZmlm0ABewmK79wI/ueLgUbv9r5aMH1vYKByMJocx5drnHMs2eDbG8xMBp6fJ+HCl2TUnTispxiB1/+fRGGCJGoUdmdYuy/4X96XrpRwrBG48k0ZNnH3ofZy2A/i4aonlUc2N4BXlaMgp4diMFqiXp/54tNfxJ9xRjLw0Hl0TCIkHCgYjRBCosjjjz+OKVOm4NZbb8X+/fvbhnPOsWvXLuzatUt1/jFjxuD111/H2LFjNa+zd+/eWL58OS666CI0NTW1DS8uLkZxcbHX9AUFBfj0009RWVmpeR0AYDabsXLlSlx00UUoL1d++oJWnHPs37/fYxsp6d27N1asWIHhw4cHtL6OTjvtNHz99deYM2cOKioq2oZXVlbis88+85o+IyMDn3zyCVwuwRO+VJxzzjkoKirC/PnzUVRU1Dbc5XJh+/bt2L59e5fLyMzM9Hm9hBBCSCyxyVbF4UYpuKEuWkNmiP/UtqWDC1oYEaKBVRCgaNZFOhhNcFxxiVsPqoUJUTBa5JgE55zO+57oOGcK8r4oPmdpK0+wg9pE1L6DrbIFqUh3/60SsHVyGaJwus7DRAFikQ7jMAv3IW31DLUQMLX9SxTQaFUJaNTCwe1wQXwnNtBgNC3bRS0sjhCirs6h3NLBLKXA9P/Zu+8wN6qzbeD3kbRFu+tt7gXvrgGDDRgwpmNDDJjQQkgIJEA+SDAlkISQhIQ3gQQICeQl8AIJPdQQWgqE3rHpNiVgG2NsbK+Ne9tdb9FqJc35/pC36jyjGXVp7991+fJq5syZI2maZs7c4/FD8elwlGZaa8xtij3XDgDlniHYb8hhGW5R/qjxDTMObw5nvweT9LsMyNzxJxEREREREcD+eU6xfx775xERUZpoKRjNCwBQ43cD7p0HzH8ZetWSmGKqogqY+hWoifv0HzH9a8COYLQJXY3GWRT6za4tAfONql/fBzh2L4WN24ED6hWOnAR4cynQ6s2nUxeKdu5VKakHAOAvR9V2IRhtEF2Ob+s0L1flJRluSJrpptgH77g2bAwwaf/eYLSuVcZiq7YB4YiGz5tD62EGSIGChR6MhrlPAhGbNIed9wLKhgC1I4HmLcAnb8YUmRJcKE7euFXjwAmFsSxJ+7G+Vl7rQd3Qwni/drTWwD/+bB45cjyUxz4crq5WA+bbC/DuCuCOuRqXHVv4n2Mh+fGj7kJnHjpHodKvjAFoxT5+95Q4fdMlCYeiAYBHeEg0UNjPJH13hftpqv0Kh+6isOC3Hrz8mUYwBBw/RWFcDddhyh31Q+3H33GmwphqhWUbNbZ1AJ0h4IaX7Ff2IyYCB+8cXc4XXenBi4u1MdAMlgYevBaTuz7DrLZXUGM1i3Xqv/wSDeMfxDvLY+fdWODnilLh3Afl72zFHxi4S5QpDEYjIsoxRx11FBYvXozHH38c9957L+bOnYtwWD4RXFJSglmzZmH27Nk48cQTE0q8njlzJubPn4/LLrsMTz31VM8TMfsaPnw4zj77bFx++eWorKx03fEKAKZNm4bFixfjkUcewQsvvIBFixZh06ZNaG9vFzsmVVVVYe7cuXj22Wfx6quv4pNPPrH9PABgt912w1lnnYWLL74YZWWpv1Kwzz774LPPPsMVV1yB+++/v1+HtW4VFRU45ZRTcPXVV2OnnXbCnDlzEprXLrvsgvnz5+PZZ5/FzTffjDfffBPBoP2jQCZNmoSjjjoKp556Kg499NCE5ktERJQvpBtrSzylKZ2PHHoziHr5pJldqEtYO3jMBZEgIAT8ZDsISZq/1F7APkzIq3iaL1uchmdK27lUB0E43WdJ7cnUumE3n777d7sQje736veUoclUz4BwLDEoMWe3B86OM6TjEQWFEiUfE5V5zcFoHUkGo9ltxwAgZCUXjObkc3H62RFRrCYhQKm2aLjtdNqm4xaRG8sDn2GdcKPEwVVHothTYHeapFC1z9zbSgo8zCS78yfS8SsREREREVG6sH9ef+yfx/55RESUQZYQ5Nkn4ENVDQWO/ra7R9WMGBetw7JQH2o0FlnbDHSGNEqLCvOGTSl0aK9xCudOtw9QySb95lOpq2xMQ+rqKqtAdbM5GG3L1k4AhZ7mFNUuPM+10ILR8O4L8rjakcA2B79N6nbrtww2hFYai0UsYMN2YNwgyxduES6VVfsLc5vcTb/1tDxy6hHw3Pxiv0HWWfsBKxb1G6YATPJvwWeB2IdErdqailbmhnihk7XlGBShaACAjavlcaPr405eP6oUaJTH/+djjcuOdd0qypL2oLv+SN/aT+H0A3P32I/yl968Fvj8o6TqUDb96yLhCAo18uOFRe77FXaHx46tUTj7kEGy/6O8U1crj/v+YQrnzejeH0WXYa01bntdI2DTjb47FA0Adh6hcOEI8/KvP/8IesvvnDX0i09QP9U8auUW9vu10xmSP5/Jo8FQNKIMKsyjJCKiPOfz+XD66afj9NNPR3t7Oz788EN88cUX2Lx5M7q6ulBSUoKRI0di4sSJmDp1KkpKkr+ysvvuu+PJJ5/Eli1bMHfuXKxZswYdHR0YOXIkGhoaMH36dPh8vbuNI444wthBK57Kykqcf/75OP/88x2VV0phxowZmDFjBgAgEAjg008/xfLly7Fhwwa0t7dDKYXKykqMHz8eU6ZMQV1dneP2JNohqqqqCrfccguuv/56zJkzBytXrkRTUxOGDx+OcePGYfr06Sgv773BONHPC4h+BieccAJOOOEEdHZ2Yt68eVi1ahW2bt2K9vZ2lJeXo6amBrvssgsmTZqEoUPjRE0TEREVkKBlfqRTqm+q9XvMwSGBCEM3UsXuJmm7MCgiO1rrnA1C8nulMC05BEoKCfTAC4/ihfxskfY5A/cR0neb6iAyvxB2Fdue3A1G6xtqZbd/6N4/y+F0vZ95REcQ1MJxg7A+Zoq0PeqMyNuDvuSQO7/tDXpiIFuSxzcdEftgtGT36wMD74xlGIxGlLBtQoBSja+7k7HQ0YLBaJQibzQ/bxyuoDCjmr2T7dQUxd4MAADN4ezfERCwOa7Jdmg1ERERERENTuyf14v989g/j4iIMsiyzMOT7POhfEXQO+qeIIQRAUDjFmD30UnNKmdJgTLVaXw2h27ZGg3wiUSAMfXA6AZXIbp66wbg5UdS0xiPB5iSwsDW8bth9OoNxlGrNgZRyMFoWmus2AxENNAu5OVWFFAwmt6wCvrpe8Tx6nuXQ9/wo/gVTT4AanR9z1XjUWE5TG1be+EHo23arrFoHaA1UFYMbNhu/q1SVbirUtS6FeIote/hsQNH18UEowHAeGzEZ4i9FtqY/cugKdMUp6vTzN0y046csFZebjBp/7iT14wbib2XLMAnpVOM41dk/7li5MJKl99XHU/ZULrYbZscsgtG0+EQCjXyY1PsMy/iGlOd+nYQpdqMiQpKaZguS5ywV+y5AaUUDp8IvPCpXOcRuzk8p+Bmm7R5HeqF/aPb/exgYxfE7PaYQ3d2AEs/BiJhYJcpUEO4oSNyozCPkoiICkh5eXm/jkfpNmzYMHzzm9/MyLwS4ff7MW3aNEybNi3bTQEQfSLoMccck7H5lZaW4vDDDRcAiIiIBikpZKYkxcFopV5zfQzdSI2Q1SUGPnWPJ0pEUHeKIR3ZvvleDNNKICSwSBWlpE2UGGlZGhjeGbDMYVGpDvOU6uu0OqC17umEK4VfZSo00Ku8KFYl6NKxvUj77l+ldcIDD4pUMQA52KzvtEGb0EF/ir8Dt6T2Oz3OkMpJwa7dyoQQvWSPb+JNn2wwmt120k0ZIjJrCtsHo/H5ZpROLeEm/Lf1XeO4Pcr3w7DikRluUX6p9pl72zSFt/Y7DswGu+ODbP82IyIiIiIiYv+8/tg/j/3ziIgojbQQjObxJl/39y4H7rsGdaHVUNqCNoStXfh3C6/+zJPV88XpIgajpeEUtA6HoW/5KfDEnf1HNEwGbnoBqtb+eoYOdkJfey7w6uOpa9RJ50KNGJey6tR3LkH96zcbx63cloLlNUdtaNE46VYL7zfalysvzkhz0kpv3wb969OAj9+wL3jSucAHrwJzn7Qtpr55IbBqSc/r6kizWFZaXwtBV1jj3Ac1/vaes9DmdGyjcoXWGvjsA7nACd+LHTa63li0PtQIYI+Y4XfM1bjtjISal3Ps1ouKEuBnswbHg3O1ZUFffZY4Xn3jgviVjKnHFVv+gFPGPWocvbkVaA9qlJcU3vFQIXpnubsQ/Hrz8+SIkvfJW0lX4ZF+D0LO0C4Ebo/9fJ7CD9GlwlA3VGH2YQp3v9l/X3XYLsDX9jZPc9mxHsxdaiFg6Ep/+ETgyN2dzVu/+4Lzhgba0FC6HcCQmFFb24HWTo0hpTwuMrELjvvDyc6Pz/UTd0Df8nMgvOOLVwr69J9DnXc1lGdwHOcTJYvBaERERERERJSXtNYxoTPdUh0yIwWLSMFs5E688JJkA1Ro8OoUgp+AzIU/yfN3H0gkBQj6GIyWVU7DMzsj5n1GvPAqt6Rl24KFkO5CsSoxtq+bFNKVDqWeMnRFYoPR+oa2ie30lPV01pbes5OAtWhdqf0O3JLa7zTcSwq5i3c8JM23Qwjxcyre9Mnu150EtzG8lihxTaHNxuE1Rew5SOn3dvNLiMB8zHt49bEZbk3+6Q4wHCisQ2iLbMcQX1WGW9RL2jf7lA9FHv6eISIiIiIiIiIiokEiEjEPT8FNkOpr50Dfdw1KdBfGhdfiy6KdYsrMWQq88hlw9OSkZ5dzmoVufFX+NNzc+9TdsaFoALByMfT1F0Jd+y/byfXf/ugsFO3AWUBRCbBlHbDkw+iwvacDfYPtqoZCHXQMcPzZztvvgBo5Hg1qo3Hc6nY/whENn7fwbpye/UD8UDQAKC9Je1PSTt90SfxQtFN/HO2bc+XfgSfvhL75p2JRNXQUdFdvf95ihFBmtaPD0CenqYC7dPzpJeehaABQU8DBaHjxYXGUuuJ+qGGjY4ePrjc+Bnd821Kg9HhjXcs2auw6Mv+3R9J6MbYaePEnHkwek//v0ZHX/glsM+9/MHJ83PBRAMCoOny99Sncs+48nDPmLmORxq3AHmOSaCdlzAUPuQxGGzpI1hXKOP3XK80jyiuBXfdxVIfqkAOGdQEnozV3uFuPx9cCXg/XZcoPd5ypsH898OKnGp0h4NBdFH5ylIJHWIZnTFR48xce3Pu2xuJ1GhrAkFJg+q4KP54pT9eX1hp44W+u2lkfXg1T0DAANG4B9kpdznpBWbFF3n7tvZOz7ZT+dD70jRcPGKiBv18P7LIXcNRpyTSRaNBgMBoRERERERHlpbAOw4K5s1iJKk3pvKRgEaeBJWQvXniJFAZFFI9tEFIGw5+M85eCkGzC3KQwIa/iKb5schpqFRDCoqRgtURJy1Z3m4o9JT1/m2QyNNDvLcP2SFPM8H6BZsI64e+zDjvZT9vta/wpDlR1S/rOnIZ7SeX8XvvANzGg0WY75EQgEi8YLbn9upPjL7ttKRHZawqbH3HWG7hkvpivjd2TiZyL6AjeannJOG5Y0UhMKt83wy3KPzVFQ8VxzeGtWQ1Gk/bf2Q6oJSIiIiIiIiIiIsooLdzsrpIPRkPtKKC4BOgKor6r0RiMBgCPzNc4enJh3WQejmi0mp+viuo0dIHQr9iEmr3zHHRbC1SFzTn5Vx6NOw/12GdQYyYk0LrUqZ9QC7TFDo/Ag7XNQJ18WSIvbW3TeOFTZ2XzPRhNBzuBuU/ELafG7RL93+cDTrlIDkYbPnbH/+MArw+IRPuFVEdahGA0Dem6c757ZL676+bV2e2ylFb65UfkkXseZB4+qs44uL5pARCbowYA+M8nGj+fld/Lk2VpbBf2Y/edPYhC0QBou33k5P2dVTK6HgBwesujOHf07bBUbBDRyi0MRssHW1rd90WqL7DjE8oNeuOX8shpM+G55jFH9Xj/+zFwuzCPAu571+yyO28Dn99KeUQphdnTFWZPdz7N1DqFqXVJHN8t/a/rScZ9+Bi8nqsRMZyWWslgNNFKc3dqHLaL8zrsjm/1y49CMRiNyJEUnD0nIiIiIiIiyrygJTzmEUBJigNOpJAYp4ElZC9ewElId2WoJVRo7IOQshuM5heC2aTwLACICGFCPgajZZW0z+kcsJ8a+LqbFE6VKCkkLNqG+EFhdsFqqSYGBPZrp/lz6zutHCzWO61dUFYm37OJ03A9iRw0Yn88JAWnBaz26NOkEpTu/bqT4y+G1xIlJhDpENefmqJojyNVoB3UKfsWtM1Dc3ircdz06mPhScVNYQVuiLcaHpifLiuFHmaKfCxcwHd7EBEREREREREREQ0UMT8EFL7k+30oj6cnUGZqp3yT7OcbCu+G+zWxz2PrMbwiDTNc+I48zrKAVZ8bR+lQF3RHK7BupX39VcOAEeOTaGBqjB0p96XYZv+8tLy0aC1gOVw9yovz95qptizgy2VAVzB+4YkDHlx02sXGYupbP4z+7/MBo3qX3RrDwxIB9+EY+SJiaSzd6G6a6rL8XZbi2rJeHjfCHN6JMQ3Gwft2fChWtcp8iTmvbO8EpK5aNQXynKl4fdG01tDhELBysVhG7TbV2cxqRwLFpShCGOPCa41FVm4pvOOhQqG17lleFq1zN21lKTBheBoaRbTafHwPAGrnvRxXo2z6PlmRwtsuRSyNYEijyeWxX1KBUUQFTofDwBcLXE/ne/I27FRlPie1cmvhbX8SobVGeMC2eOVm82fTMEx4wLRlQXcF+/2zO761278QUX/sQU5ERERERER5KajlYLRST2lK5yUGrtiErJBzgYh9T6mwDmWoJVRopGAPDzwoVtl9dKe0XQnpLjEALSSsCz5VlLJ2kXtyKFfHgNfmbV288KpUtSfahj5BYcL6kcnQQCfBo1JYYN/PTQwW67N/kcK0fMqHIk9x3Lamk9NlSCKVixe6J31uFiwEtfAYUgfSvV+3C7nrxvBaosTYBSfV+uL1HGTnCErO3ObnjcOLVDEOqToyw63JTx7lQbWv1jiuKZTtYLTsh/ISERERERERERERZZ0UjOZN0QPxRtcDAM5pvl8ssjK7p4vTwi4Up25o6uaj13wB6weHxy930VegW5t7X7/wd1hn7g09cwj0McPk9JtuXz8vGjCVZTVjR4jj3IYb5IPlwg3PJmXZ7XaWEN20CdavvgX91eHQ35sWf4JJ04DJ+/cbpE74HlA8oG9uRRUw6/Te1zu2QwBQbTXDZK15cN5b1wyEhM28pLpAL5VprYGNq80jxzTI27gdAZ8DTez6QpxXSwFsj+y2qdV5/pwp/cVCWBfNhD6qGtb3D4Se/3L/8ZEIrNt/BT2jFPorFfbhocecLo/rQykFjIyG79V3NRrLFOLxUL6zLI0rn7JQf5kF7/kWPOdFMPMGy1Uds6crlBYxUInSYPkiedxxZzmuxmOT6JHMw4xzzcbtGt+4LYKaiy34L7KwbJPzaf1FwDmHcT0mGkivWgLrx7OgZ9VAX3e+WE59/wrziM4O1IdWGUcN9uOirrDGxY9aGHNpdJt10B8iePuL6DZZ+mwahvV/rVubYP32TOjjR0EfWdnvHz58XZ75muXQG79M0TshKmwMRiMiIiIiIqK81DfcZaCSFIfM+L1C4ApDN1LC7rsEgLAOF9TFHsocu5vvlcruRTO78Clp2yKFCTEYLbv8wj5n4PIXELZ18cKr3CqxCQftG+gphXtmMpxCCoXruw5I+4i+n1upsJ/uO61UTy6EcUifQ2fEfv/YTQoKixe6Z7fsxQs3s22PEGbXLdlgNCehZzxGI0qMFIymoFBdFA1bkg6heLROyVgf/BJLOxYax00bMh3l3iEZblH+qikaZhzeFM7uo9Ll32Z53pOfiIiIiIiIiIiIyI2IcK00xcFok7uW4PLNfzAW2bAdCHQV1pWdVdvM76e6DKj0p6Z/kO5og77wK8Ci9+IXjoShf3lydLo3n4L+/feBVUviTzdiJ6hzr5JvZM4w39g6DIlsN45r+mJFhluTfrMfdL5elOdZMJq2LOiffBV48ykg0GZfuHo4MOt0qBuejelfp+onQd30ArD3dKCyFtj/SKjb5kANHdVbaExDb1WRFuMsbnipsLZB3RIJFMj30CtRWzPQbt5+qF/9VZxMVVQBQ2qM486pM4ejNXXk//LUbBeMlv2ubQnTTZugfzgTWPA20NUJLPsY+hdfh/78o94yt10GPHxD3LrUr/4KNWyM85mPGg8AaBACQBq35P9yU2iufkbj6mc0vmxyP+3Ow4GbadqDAAAgAElEQVTLj1f44zcZpkTpoW/9pXlEiR9qRxCjE3b3LlhWYWyXLEvjqBstPPkx0Ba0L/vr4xVm7AqUFkX/HT4ReO1nHkwcyXWZqC/d2hw9H/HfuUCoSy5Ytzvw7UuAGnPIecP6d4zDB/tx0YUPa/z5NY2N24GIBcxvBI660cLSjRorhS6XfYPRtNbQl54EvPYPoM38G9iO/s5k6HA4scYTDSLZf4QEERERERERUQKCVqc4zi4UJhHSjbpdOoiIjsCrvCmd32ATL0BFw4KFCLw8jUEuJRoWlAl2wWidkQAqvJUxw8OWFIzGdSObpGCtzgH7qUyFQXiUB6UevzEIrG9YlBQcJYWBpoP42UX6BprF/9yk9anTwfvNie2B1xxQFrDaobWOG+Qo7Ufjhb7ZfdcBqwPmbobxdcQNRkvu4l28QNVoGQajESWiKbTZOLzSW90niJUdjyj13mh+Xhx3eM2xGWxJ/qvxmYPRmoXgw0wJCIGvuRBSS0RERERERERERJQpOiJcK01RMJoaXd/zMJvTtz+Ka4b/yliucSswaXRKZpkTVgk3qtbVpnAmbzwJNG1yXn7hO9DLF0H/525n5YeOhudf5tCfrBlVh2qrBa2GPkxNb70BnLBzFhqVHpu2u7sRvLw4TQ1JlwVvAys+jV9uyqHw3PqabRG118FQf3lFHj+6oWc7VBOR022+3KaxU21hXXtemUCgQD6HXtnasFoeN6rOftrR9UBr7LIzJrwewC4xw+1CxfKF3Xuoyn7XtsS9/GhsQF4kDP3MfVC7TYUOdQHPPeCsrkOPdzfvkdHlrE4KRsvuc8VoAMvSuPMN59vQE6cA//kh792gzNBrl8sjDzvRVV0ej0eeT4EEo731BfDpOmdlj9tT4XcnyZ8JEe3w+j+B7dvil9vvCCh/OXD6T6FvvSxmdH1gOWB4Pm0iAc+FYntA4+/vxW5/g2Hgple0eJw+YXif37LLFwKfzku8EaEu4P2XgYPZT5bIDo8YiIiIiIiIKC9JoRgKHhSp1PY88XvMgSXRdhTAVfUscxJwEtLCE1OJbEjrpxRClEl2AQBSyFEE5g6yvUEllA1SsFbf5U9rLQb1pWN5lMPaom2I6Ai6tPlRXJkMp5CCufquA3LAYZnx7776fgfi9sBmH58p0jJkwUJI2zzZaQdpPxpv2bJ771KQnBOdwnfWLZzkPj1eoCoQXW60LoyOIkSZ1CQEJ9UUmYOW+uI6R4nqtAKYt/1147j60okYXxrbuZ1k1b6hxuFNoez27JbDbgv1bg8iIiIiIiIiIiIig7AUjJaiYIfRDT1/1oVWQ2nLWKyxwG563dxmHj4u0aeBGeil/3U/0bKPgWWfOCtbt5v7+tNt3M5isFVzU2H1mfxsvbvydebLMblr2cfOyo2uT35eY3q3Q/VCIBEALFiT/KxyTSKBAgUbjGYX3DBsjP20I3cyDq4JmT/gQtgcSe9hSCng8+ZvgKD+x1/MI568K/r/+kagrSV+RTUjgCHuduqqbiIAoCHUaBw/mANActGG7cDG7fHLddt9dP6uF5SHli0QR6m63V1VZfeQZKtAgtH++6Xz91Gb/e7bRHlBL3X2e06N33Fe4aTzosdPA9gdFw3W/r+fb4yGoJk89Yn8mYzvG8Tv9LyPHYffMdFglprHihARERERERFlWNDqNA4v9ZTaXjRIhBRYAkRv7i33Gh6bQI4FIvEDTqIhKvn86DPKBinYx26dzhQpEAqQQ46kMCGfh8Fo2SSFOYR1CCErhCJPEUK6CxYiwvSpXx79njI0Izb8onudsAv19GcwnEIONAv0+Tv+eiy1udMKwNIWPMrjqJ5ssQ8oa0exp8R2+kS3dUWqGF74jKGLgYjQc9yBjjjBZSErftibHSeBqhYiCOkuFCv7z46I+msSOhLX+HqD0RSk31qDs2MEJW9+yxxx2354NZ+C55YUZNgsBB9minS8Yve7iIiIiIiIiIiIiKjgRKRgtBT1+xhT3/Nnie7CmPB6rC0aG1Ns5VYNiNd88k+L0AWitjyF73HJR64n0Xf/Fti20VFZNet01/WnmxpSg6qI+Qbfps0OgmzySHP8bgg9in3ACVPSu/7o91+Bfv4hYM0y5xP5ioFJ06C+81OoYaN762prgb7l587qSHEw2jdan8Q1w39lLPb0Ao3j0/w5ZlpjAs8pqsp+t6X0CAj9jvzlUPHCQCtrjYOru8wfsJv1N1c1d5j7W9TEuZSqtQaevgf6+ot6B06aFv2/shbYsBoYXQe0uF04FTBhT6iTZkN11+eCXt8I/djNwAY5HNE671Cgw2H/tFnfcX9fwMxvAbdehvquRuPolgDQ1K5Rk8pjhTz339Uat83RWLRWo7wEmL6rwqWzFMpK0v8ZuQ2qO+NAfm+UQetXyuOOPs1VVR6PPK5QQomWbHBeNu/CholSSFsW8J+7oN95HmjpsyP0FgGT9oP69iVQI8ZFh33u4HyErwg44hsAAOUvhz7gaODFv/crUi8Eo7UFga1twLBBeFuk3YMD1jXL44buuPVDd3ZAX3de0u3Qf70SOOUiqPJKd9N98Br0cw/GnDtQ5/wG6sBjkm4XUS5hMBoRERERERHlpaBw43RJWgJmbAJLIgGAmURJkW6Q7itshYAUPRyVBg8pCMlunc4Ur/KhSBUjpGMDggJCqFDIEoLRFDdC2WQXPhW0AijyFNlu59KxPMYLHMuVYDQ50Ky9z9/m/b3f2/u5Sd+BhkaXDqJU+RGISOFh2Q/jsA9gDaAqzvSJbuuUUvB7y9EWie2w7GTfLIkXeBrWQmf/FNXfU87qiBsqR0T9bROCk2qKhme4JTRYaK0xt/l547gKbyWmDjk0wy3Kf9U+c6/BpvBWaK1THiTvlBxSm/1jMSIiIiIiIiIiIqKMkYLRfCm6tWtAqFF9qNEcjJbdZ2mknBQoU5WiU9C6fTuw8B33E25aE7+M1wd8+xLg2O+6rz8DanadAKyLHd7iqYJe/D7U5P0z36g0aBKWoYEqSoB/XODBuJr0XW/Rr/0T+qrvApblfuKF70C/8R/grregakZABzuhf3ik48lVKoLRxk7o+XNKcJFY7K43NM6drrFfXeGE26zc4j7QxOspnPffT0Do2+OviD9thbmnVE3QHDTZ5KwbUU5rErppVccLRrvlZ8A/b+0/8LMP+r9etSSxRn32PvTLjwA3Pgu192GOJ9MbVkFfMCN+MOjAdkpmfgvq3Kscz7+bGjEOGkBDSA5nu+MNjf85tkDXQZfmrdA48kYLHX26M7+2ROOlTzXe+IUn7duqS//pbJ9XXgLcfobClHH83ihz9PpGcZwat4urupRNMppl5X8wmmVp3DnX2fsYXQWUFnFdpsFL3/BD4Kl7zCMXvQs95wngzjejx89LPrSvrLIW6rcPQg0d1TtsVF1MsfrQarGKW+do/PbEwbdOrtqWyG+46DGJjkSgLzk2sd/uBvqHRwJ3vAlVUuqs/Ov/hr7yDPP8tzelpE1EucQmX5aIiIiIiIgodwWtTuPwdASj2dXZKQQYkXN2AT3dwtocCEVkRw5Cyo1HLUqhUFK7pTAhn+KzD7LJLsyhe/tmt51Lx/Io1dndDmkZi06buXAKaV6BPmFocoiGv8/fNt9BxP47yIUwDrs22H1X3TqT2NbJ26HEj2/ihapFEIalE78IKIXlxZZLPNyNaLBqCgnBaL5hcafN/65ZlA3LAp9ifZe5w80hVUejyFOc4RblvxohGC2sQ2iLbM9wa3pJ++9c+W1GRERERERERERElBFSMJo3Rf0+htQA5ZU9Lxu6Go3FGhMI78llzcIl5JpUdQd45TFxlLroj8C0me7qUwrq1teg7nwL6vlN8FxwjW1IQjZVD680Dm/yVkPfdUWGW5M+ToOVmm/24Jg90nuzuH7g2uRurN6wCnjuwejfbz4FLF/ofNoUBKOpITXRbdEOZzb/XSx70yuFtS0qtNDJpATazMNL42+YVZ/lp6+qzk3mWYWAYCi/l6VE9mO6aVNsKFqqdXVCP3Kjq0n0f/4aPxTNqWP/HzxXPQRVkuA15Un7Y0x4HYoMDy8GgCuezO/lJpVueKl/KFq3d1cALy9O77zDEY33VsQv9+HlHmz7Pw/OPCg3j5mogK1vNA8/abbrquwO+bXO/23SG8ucl22I3x2RqGDpTWuAZ+6zL7R5LfDM/bbnI3DaxVAPfAT11BqoA47uN0qNjg1GGxXegBJtvg/zqqfzfxuUiMYEfsPVlEUfTo8PXgEWvScXPPrbULfP7fcPZ/9aLv/FAuCtpx23Qz+Y5LkDojzDXwFERERERESUl6Sbaks8ztLx3SjyFMGniozjAg7DOUgWL0AFAEIMRqMESKE4fk95hltiJoUhSe2OMBgtJ5V67cIzo/sIu3Arvzf1y6O4bEV2tMcuqM3m/aSaFMrVdx2Q2tp3Wr/XJlisOwxO2F/bTZspJZ5SKJg7zsYL97J0BEHhIqWTZUsMRksiVCzgIDRW2p7Fo7V2HHjmJFSOiHpprdEUNl/lry3q7Ykkba8YjUaJeKP5OeNwBQ+mVx+T4dYUhpoiuedgc3hrBlvSn/zbLPvHYkREREREREREREQZk+ZgNKUUMHbnntf1oVXGcoUW3tMsXBquTlH3B/3JW/LIvQ6BmvF1dxWOHA815VCoyftD+XOjD5Okdqi5fet9o6I3ahcIKZSor5m7Ax5PmkPRWpuBFYuSr2fB29H/P3nT3YRj6pOeNwBg+NiePxtCjWKxN5YWzjVmrTXWt7ibZv/6tDQlNwSEvkP+ivjTVlQZB9e2rxEncfvZ55qE9mPzXk5LW2LY7QNTUd6G+uoZyVVQUQUPNEaHNxhHe1Q0lIvsw4zeXJbez+gLc+ZhP3uOAfYdr1DkS+9+mMhoq3kbokbGhg7Fo2yOJS0r/7dHb7jYXkwYxvWZBrGF7zoKtNIL3ur5bWeijv4O1IQ9oLze2JEjx8cM8kBjTGi9sS6PAkLh/N8OubW51f003eHF+mP74161x4FQex7U/9+UQ2yn0QucHUvr9u3RIDWiQYTBaERERERERJSXgpY5BKTUk55AFyfhLZSYTgfBJWEGo1ECpGCfTAY/2SkVApmkdkvrgRTcSJlht9/p3kdI+woFhWJVkvo2Cct4d2CV1J4iVZzR5UlcByIdPU8/k9raN/xNCoLrO32nENZlN22meJQHJcJyFC+gTAqKBQC/g2MiKTzNSbiZJBCJP21IeBJnPF06CAvOnm7EYzQid9oiLeKxRo3PSTAakTvN4W34uHWecdxeFdMwtGhEhltUGIZ4q+CBobMTIIYfZoL0uz9d53CIiIiIiIiIiIiIclIkYh6eomA0AFAzTur5WwokGjTBaKnqDrBupTxu9/2AQ48HPC5uz+vzHeW68cPM1xzmlB8BbFjd07cj3zU56F5w8r6910n1p/OgH/wj9PN/g96+LXUNWbciNfW88xysM6cAT97lbrphY+OXcWLPA3v+PKn1abHYl01AV4HcfN8WBCJCd5YG4blGx+6Z+WvvOhyGfutpWHdeAeu2/4F++VHojgTSAOJJJhhtSI1x8PjWz8VJPt/opFG5S96PycuI/vzDNLVmgLYW6Aevg96xL9Sf/xfWNd+HdeYU6Pt+D71pDbTW0B/NgfXzE4GF76RmvtXDgb3sgyPiGlINANgjuNg4OmwBa5uTm0UhaA9qbLLZDKT7uNFJ/V/fl32VKIvahPTNqqGuq1LKZrteAMfVjS62FydP5XpNg5de8oGzgh+8Brz8qDx+173lcaPN4Y1TgguNwy0d/X022LQF3W97u4PR8MGrciGlgMNOiB2+93T7/cf8V2D95RfR4+wBgcN6wdvR4Q9eB33v71y3myjfMRiNiIiIiIiI8pIUBFKiStMyPyk4JV5gCcXn5DNkMBolQgrFkYIOM00OXDRv36T1wKtS10GW3POpIhSpYuO4wI7vUtrOlXj88KjUn6KNt2xJ7cn0uiHtWy1EENJdsLQlrg9921qsSuARTnV3v9eAUE+uhHEkGsBqtw8t9cR/srQ034CD0FKTiI4gqM3htX2FtfAk9DjcHHfxGI3IHbvApJoioad2Hxr53zmLMuut5hdhwXwD2IzqYzPcmsLhUV5U+2qN45pCWQxGk47phJBWIiIiIiIiIiIiooIUEa6TpjAYDd/4Qc+fdaFVxiJNHUBLR+Fc22kWnidmFyjjyvpG8/DDT4byeqFGjIP60fXRG1/j2W0q1JmXpqZdGTBhmPye/q/iXKBpUwZbkz7NcZ7/dtyewNmHRD8L/dD10BfMgL77N9B/mA193qHQ6xuTboMOdkLPPjjpenqskkOkJMprDsJzXc/51/T8vU9wAU7e/qRY9uTbnD0cL9dJwVYAcOvpHuw64JlQ03cFLjkqs4EguisIffmp0P9zCvDQ/wKP3Ah99VnQF82ETvG6rANt5hF+B9cGd4RZDVTZugbDhFy1Y2+20J5AqEGuaBb2ybYBn5YQtpoG+u7fQn9vf1i/OR169kHAi38HVn0Ofe/V0N/cGfqHR0JffAww76XUzNDrg/rl7VBF5j6ZjlVUAQBu2XCJWOTxD/J3uUmVxq324x99XyNipe9zWrnVvu5Dd8789pKoHykYTdhf2fF45GXZSuN6limNW5y9h7MOVjhxSpobQ5Sj9JfLgEdvSr6imadA2QW0j9jJeI7ipg0/EycptBB9J9qD7qepKQf0vBeBJXJQsbroj1Ajx8cOLy6B+sXtcuVrvgAeuzl6nP3DI2Hd/VsAgPXXK6O/2+69Gvru3wKP3+K+4UR5jndNEhERERERUV4K6swGnEj1diYYHEK94oW+AECIwWiUACkURwpjyjQ5cNHc204KRvOpopS1iRJT6vEjFOmKGd69fct0SJ+0bPW0R9h3ZXrdsHv/AasDxULgHACUenunVUqh1FOGDiu2U113CIf0nnMlKDHRAFa7ADO/g2MiKYxE2g7F43S6RANP3Rx3OTm+IKJe24TAJC98GOJ135GLyE5Eh/F2s7lT9PCi0di9zOZphhRXTdEwbAtvjhneHI7TozlN7IJTcyWkloiIiIiIiIiIiCgjMhCMpoZUA9c8Bn35aWjoahTLNW4F9s6Ny+VJCUc0WoVnd1Wn4BS0DrQD2zYax6mvn9v79yk/BA44GvjvG+bwBI8HmLAnsM90qJL8OTc+Ybg87tKRf8T3Vn6M2tqRmWtQmjQH5BCHOT/34JCdAZ9XQW9ZB333b/oXWLsC+qH/hbr0tuQa8YYcHobq4VDf/knMYL15LfCvJOebBqqyFnrETsCmLwEAD6w7B09Uft1Y9vlFwMdfauyzU36H3jTZdFGZOh744HIP5nwOLN2oMXW8wqG7AMW+DL/nN58C3n42dvgXC6D/dRvU7CtTN69Oof+Qk2C0CqF/QqgLE4Za2NJmDoB4eL7GudPzczmSlh/bYLRNa93PaPIBUDNOEkfru38DRITAtY5W4PV/mccteDv+vHfdB9jvCKhqYccS6oLu7ICq2w3Y7ytQI8bFrzOeHctSQ2gVyq02tHtik/V++S+NS49Jflb5zEkIyqufAbP2SM/8G23m/9JPPJi+K1BSlJ/rNuU/rTXQLgSjlVe6rs8uxEjr/A9GWyl0S6ofClxwuEJJEXBgg8KBDdF+30SDkb7/DympRx1/tv34omLo4WOBTWv6Dd8pvBaVkRZs91bFTLNyiwYwuNbNtgSC0arLAH3TT+UCp10MddrF4mg14yTggt9D3/Hr+DN78DrofWcAD1zruH3qgt8Du7D/LRUeBqMRERERERFRXgpa5mC0Ek9pWuYnB4cwdCNZTj7DRANUaHDL9SAkqR2dEfP2LazNHWSLGIyWdaUeP1ojsRe/u0O5Mh3SJy5bO9ohtseb2XXDLgij0+pARAmdwg3Tlnr8xmC0QKR9R31SoGpubA8SDWC1C/8q9cTvTOgXyiQajOY0uCzR/bqb4y4eoxG50xQ29zSsLhoKj+rtlMVOSZQKH7e+h5ZIk3HcjOpj+y1z5F61b6hxeFOWgtGk8zdA7hyLEREREREREREREWVEWLhO6vWmdj477QoAGBdeC58OIWzoV7JyC7D3TqmdbTa0yKeg7QNlnFrfKI8b09DvpRq/GzB+txTMNHc0DLMf/9gHGj/YLzNtSacmoYvEFScozJjY5/rouy8AlhVb8PV/A0kGo+l3n5dHNkyGOuPnscM3r4VOVTDarvukpp5udRN7gtHKdAAjwxux0WcO0XtmQQEEo9l0s6kui4agnbg3kM2gAf3Oc/LIt58FZl+Zupl1SMFoscFUMYbID26bUBnAfJj7Oj27QOPc6U4al3uahS5ONXb7sfWNruejDjrGvC3ZQT9xJ7Bxtet6Hc379rlQJfb9+1O9dqiKanTHDO0eXIoP/VON5Vo7NYaU5vc2KBnREBR7Ty/QmLVHej6jNeauIzjzQIWjJg/e74VyRKDNfOwHyEGeNjweeZnWVn4Ho2mtsVZYn286zYOv7cP1mUhrDbxjCCpOxOj6+GVG1cUEowHAxK5l+MA/LWa4k7DUQtOeQDBardUMrPlCHK8OcpC6u9chjuenb/ix47LY7yu2x/tE+YzBaERERERERJSXgpb5UY8lNiEryRADSxi6kTQnnyGD0SgRmQ6jcssvhFBJgUTSeuBjMFrWSctU9/Yt0yF9UnsCO0IppO2uP037UIkUygVEg8wiSngCpWFa+TvoDqczr1fSephpiQawSuN9yociT/xtQ5kUjOYw4GygDoeBaonu190cdzkNaSOiqKaQuVdDrS/O3Q47FMJTKylz5jabb+woUsU4uGpmhltTeGqE9VZaz9PN7ngmV36bEREREREREREREWVERHg4mC/F/T5G1QEAvLAwPvQlVhRPiCkSDcHI/5vTpTAZIEXBaOtWmId7PMCIAkiWi6O8RKGsGOjoMo//9/Ja/CCzTUqLZiFgb2AokX7mPnPB1iboYACqxH2/G93RBix8B3j5UbGMmnakecSwMcD4icDqpa7nGzOPMy9Nuo5+9jgIeP/VnpdHtr+Gh6u+YyxaCDfgS8tQWXE0FC0nrG+Ux61bCa116h6UFoh9uCUAwB//IY8YPlYcNXPoOjyKXY3jPljlpGG5SVp+pP2Y1hpYvtD9jPaLcy1+2kzg2fvd1xvP3ofFDUVLi4qqnj937VomBqM1bgH2GpepRuWeRgfPV2t0EJ6WqOYOc90jKp3XoVubgMXvA0GbxFyiRGzfJo/rs41xym4/m+e5aGgLAmEhQ26U+4+KqKDoriCw5EPgy6VAW0vyFY6qA8buHL/cznsCC96OGdwQajQGo63KzjNXs6pdONdh5/Cy5fJIXxEw+YD4ley2bzRgs605flmbELaBxHMHRAWAwWhERERERESUl7qDTgYq8aTn4qkU3iK1g5yxdMTRZ8hgNHIroiPo0uZHeORKEFK8MK2BpPXAq3iKL9vk8MzuUC4hpC9Ny2K8ME85NNBB57MUKvGUQkFBI/aKfiDSjohH6BSO2PcordedVgciOoyQNl+5ypUwjkQDWKXxTr9LaRmUguTiiRfk1i2U4H7daf1uyxIRsC282Ti8pmhgwJK5g5ZpW05ksi64Cl8EPjWOO6DycJR5HTwlnGxVFw01Dm8OZ6f3kt3xTKaDeYmIiIiIiIiIiIiySgpG86a234cqq4CuHg40b0Z9qNEcjFYgN7xKYTIAUJ2CU9D69X+bR4zcCSrVgXY5yueRx73aXJe5hqRRk3ApIyaUyC40an0jUD/J1Xz1G/+B/vWp8QuecLZxsFIKOPdq6CvPlLcvA1UNBWpGAI2f9Q7b8yDgsBOdTe+Q+uaF0Pf/vuf1pVtvFIPRVm3N/2vNTUKwT0oCGlNlfaM8rqMV2LQGGJmiwEcxGC3+tWBVXgldWWsMozmt/EOcJwSjrWsGrn3ewmVfVakLeMuQJqGbVrU/9n3ojjbonx7nfiaHnQDsdbBtEXXaT6DffhZoNvcfSUiJH+rsX6euPjeGVPf8efXmq/Bo1WnGYnOWauw1Lr+WmVRyEnqWzgBLt8GAA+kn7oC+6RLAEhKZiNIlgWA0eDxQ2oJWsQfYOs+T0dIeWE2Up/Ti96Ev+wbQtCk1FXo8UOdeBeWx+aG+g/p/l0E/cWfM8PquRmP5h+drPDQ72Qbml3bz7Waiw0a14Li7Z4nj1ewrocqGxK1HlfiBc66Avvln7hpgZ6ddgePPTl19RDkm/laPiIiIiIiIKAcFrU7jcClYJFlSvYkGh1CU9D0OFLIYjEbu2N18nytBSH7XwWjmDmw+NTg6WuayeCF30ncqLQNJt0cKCYsEoLW2aU9mgyk8yoMSm1A5KdjKAy+KVHG/YdJ3ELA6bAM40/UduCVvD+zDQ6XPyOl3Kc030VCxQMTZcVE4wf16vKC4RMsSEdAUMvdirPENDEYjSs7c5ufFcTOqj81gSwpXjU8ORtM68x0pOyPy8Uyu/DYjIiIiIiIiIiIiyogMBaMBAEbXAwAaulYZRzsJwcgHdjfgVybZBUJbFvDSw+aRoxuSqzyPxMsXam0SApDyiBRKVFM24M1bEbmS9Y2u5qmbtzgKRVNX3A9VO1Ief8TJUH951fF81a/+CvXnV6AuvBY45gyoH10PddOLUMUljutwNJ/qYcC4nXte7xX8FBdtu91YtjGNgTuZIm2LanLkUpjuCgJb1tmXueFHqZthp/kDUX6HD+3csQ8bqHzzF3j2R/Lt0L9+QuPNZc5mkSuCIY2A0I2qxvBx6QevBT6dJ9anHl0M9et7gGPOAA45Djj621CX3gr1u8fiBsaphklQd74JpDDITN0+F2razJTV50qf0KIJoUaUCP3VL360MI6JEuUk9KxxK9LW10DafjoJuNXLF0HfeDFD0Sg7yhMIRlPRR0mbWFnoz5NKUtAwkJrAaqJ8pCMR6MtPcxSKpv6+MH6F3/gB1M0vQc0yB07H1DlsDFAV28EBIjoAACAASURBVP+3PrRanOb9xvzeFrnVJgSjDS0HTpjS++/UaQo3fTOC5z6cijIt94VUZ/zc8bzVKT+E+tPTwEmzo8ftLoPWY+q7fS5UzfCk6iDKZWk4e065Sik1BMBhAMYBGAagFcA6AIu01ktTOJ8iAIcCGA9gNIC2HfP5r9a6MVXzISIiIiKiwU0K1JICVpIlh97YB5aQPafBK2HNYDRyxy4QJ1eCkOyCnEyk9YDBaNkn7iN2hEBI32n6wjzN7YkgjJDuQiAitcdh57MUKvX4jetrwGpHRAgD9HvLYjpq2QUNSu+3e/65wO32oFun+F062875he/cacBZzHQOA2MT3a9L79fcFgajEbnRFBaC0Yr6XygfvM/IpVQIRDowv2WOcdyE0t2xU+mEzDaoQEmBhiHdhfZIKyp8lRltj3R84FM+FHmKjeOIiIiIiIiIiIiIClKmg9E+ex/1oUbjaCchGPlACtOoLAW8niSvbC2eL49jMFqP5/6zEKedfXBmGpMGtqFEA7tebN0gV7RBvrnc6M2nnJXbbd+4RdSeB0HPPAV47Z/x6xvdEA0t+85P03/td+JUYM3ynpcz2+fg1tofxBRbvQ2IWDr5dTaLtgrdZXImCGSjg+Vz8fupm19ACEx0E4z2+Uexw9c3Yo8x9pM++r7GjIn5syxts+lqZVx+Xv2HPEFxSXQdH7sz1FfPTKg9akwD1Dm/gfXFAuCtpxOqo6eu2VdC7bp3UnUkpaK638uDAvMwt/xwY9GN2zVGVubPcpNKTo4JO7qATa3AyDR0NZCO5aqcBKO9ZrM+EKVTcQlUSan76ZQHHliw4I0Zpa38DiOyC6yuzo3bNogyb+E7wOa18cuN2wUY0wB4PGLYp7rg965Ct3pMmga890K/QdJ5IiB6LL1//eA4JgqFNUJC9vm/fuCJ+U2h334Jevt6ucIEjr/VgbOgDpwVrf/Fh6Gv+Z7rOgAAXzsHqsr8MF2iQsFgtEFAKXUogCsAHAnhO1dKfQLgDgB36gTju5VSwwFcBeA0ALVCmXcA3Ki1/lci8yAiIiIiIuoWFALJSj0JXGRwQAxccRHQQbHSHaBCg5d9EFJuXGGTtyvm7VtYCInyKZ7iy7ZSr7kXRnfglxSiKYVSJctvE/bVaQXE4EC/8D7Sye8pQzO2xgzvtAKwlPninmkdlgNMO+IEJWY+DM4k0eMMKfzL73X2vqRyQd2JiI7Aq2I7YNi2x2GgWqL7dTdhZwyvJXIuoiNoCTcZx8UGLJk7PWjhaZZEfc3b/jqC2hxyfnjNsRluTeGqLjIHowHREMRMB6NJ++Rc+V1GREREREREREREg48OdsaGthSXAFBAVyfgrwA624HSMqiSFF5Hz3QwGoD60Crj6MatgNY65qFk+aY5YL5GVRPnkrlubQbKK6E8HrnQ6qXiKDVpPyfNKwjxlpBla4IZaUe6NNt0Legb4qC7gsCmNXLhoLs+Cvpft8UvVFkLjHH2YCH11TOh4wWjDakBxmbuQUVq0rR+oTXSDfhhC1jXDOxkvBMxP6yO7foEID0hQibasoDt26Iv/OU9+66e4Us+jF9JWzN0JALldddXqF87WpuASARo324u4K9wVtGOfViM9Y0YWwOMrgLWt5iLLNuYX30XVm+Txw1cfnSwE9hg3q8DACZOtd+vuaAm7Q+dZDAaZpyUkrYkrKKq38s9g4vFYLRlGzO3vuaSpnaNFoe7r5Vb0hSMJsy/uqz3CESHQ0CbYaVf8WnqG0TkxK77JDadUlBCHzurQIPRyoqBYl9+/+YkSpjNOYV+Jk2D8hVBT9xXPm7fPcFzEKPrYgbt2/mJWDzfjqWd6gprBMPAkNLe7VF7l1y+osQwMM73qRL9jrolcZ5J7TZ4zlHR4JWaX7qUk5RSRUqpOwC8BeAY2Afh7Q3gdgBzlFI7JTCvYwEsAvADCKFoOxwC4J9KqYeUUrlx1yEREREREeWloGW+mbrEJgwmGaVe8w27bgI6KJYUADUQg9HILbsgpFy5AV/errTDlFsvrQc+VZTSdpF7pcK+p3sfIYVbSdMl3x55Ge+0OsR9V2kWQsKktgYi7WJ4pin4TfwOIvbBaOk6bnAr0eMM6b05XbbKbL5zu89N0uEw8DSU4H7dTZuchrQREdAS3gYNcxhlrU3AEpEbWmu80fy8cdwQbxX2qTgkwy0qXJXeKngMT5cFosFomZbs8QoRERERERERERFRyr34d+gTx/b/d8ww6GOGRv8+qgr6hDHQR1XDumgm9NrlqZlvJGIenoZgNLXj5lcpiKg9CGxuTflsM066Ab9aOAWtX3gI1rcmQh83Evpr42D95RfQwvei7cJnjjzVZUvzV7zsvGdWD81MQ9KkyaZrQc2Orhy6Kwh96dfsK5KCDw30oveA5QvjFzz5fKiiYmeV7n80ULd7/PqKTXd4p8kxp/d7WRdaLRa95638vgG/cau5/fXD0hsEoi0L1p1XQH9tXL/9mfWDw2H98mTo40dHh119VvzKImHg1ccTa8fT98I6ZVfo40ZBnzgWWLfSXNBhMJqSgtEWvgPPk3fgRzPlz/XVJcDf3jX3f8hFC9eal52yYmD4kAED1wuf6w7q1B+lqFUAjj0zGqaYqP2PgmqYnLr2JKKiut/LH26TAymldbjQrXDRfWDlltR/Rp0hjU6hG2F1GaA7WmH99kzoY0fEHrufOBZINryPKEHq5AsSnFDBo837qHzfCjV1CIHVuXHLBlHG6VVLoK+/MH5BX1HPNkV9SziW22UKsK853DUe03H1iMhmsfzKzHctTKvmDo1v3RFBzcUWqn5sYe+rInhneXR71WaT8V4+4Gez1hr6tv+RJ6gZARz97aTaqsbvBhz0VfcTDh0NzDwlqXkT5YM0PFaEcoFSygfgaUQD0foKAZgHYA2AckQD0cb3GT8DwMtKqUO11sLzCmLmdQSAJwH0PduqAXwEYAWAagD7Auh798wZACqVUl/XWjiSJyIiIiIiEljaQlBnNhjNFMICJBYaQr2k0JuBQtrmcQxEBlKYkE8VociTG0FifiEQyoKFkO5Csep/Rj2izR3ofIqn+LJNCvfqtKLhj9Ly6PemJ4hMWraibZKDwuymSxdpnp1WAJYQ0mMKcPMLwWKdViCvtwfxjjPEZcthyJ3ddx6ItKPcO7CHnT2nx0WJBp66CaTtXv+IKL5tIbmjQ42vfzCaEp8Jn+/dsyjdlnYsxIauNcZxh1QdnTP75ELgUV5U+2qxLRy7bjeHHF3+TamAsE/OlcBqIiIiIiIiIiIiIlsL3ob+0dHAY0ucBxRJhOAklYZgNOy4+bWhSw73+unjGg/NTm9oT7o1C5eFqw2noPW8F6F/f07vgJatwGM3Q/uKoC74fewE64XPbvf9oCqq3Dc2T8VbQuZjMrZva0Vlrbv+BblCWoaA3uVI/99PgI/m2FfkMBhNb1oD/ZP4Nzuri64DTvuJozoBQPl8wF9ehf7TRcDcJ/uPHDEO6psXAt/5qeP6UkHVjIAe09ATklVttaA60oRmb2zY0tXPaJy2v8ak0fm5TZICBBrS/RyyB64FHvrf/sMiYWDRewlVp393NrDnQVBjGpxP88Z/oP/3B84Klzq8Pmgzf/1/P8EvflOLV3Y/Ba8tMZc56z6N4UM0vrpn7i9P5/1NCNUbCqgByZT6uvPFetSv74X6yjdT1i41fCxw2+vQd14BLH4f6NrRZ7+tObZwRXX/4V87B+pHf0pZWxI2pH8w2q4hOei20EJAnDr7Pue3dafjM2qx2wf7AX3ld4F3zQ/gs1VaBviSPG4nGkgpYMIeUCedC5Vo+I3yQAl97KxIfve9c/O7jKjQ6UA79EVH2heqGgpM3AfqjEuh9joYAKBmfQdQCvqJO4HGz4CKSmDqTKiLroXyeBJrzGjzcfX9G8/H2SPvjBm+cks0BGzgcWi+OvVOC6981vt64VrgyBssfP47D55eIG93Bwaj4R9/tp2PumMuVGVtEi3dUc81j0aPv997AWga0Pcz0NZ73sFXBFQPB/Y6GOrCawfVOSoavHjXZOH6I2JD0W4BcKXWuqnvQKXULAC3A5iwY9BuAP6tlDpCa217NK2UGgfg3+gfivY2gHO11p/1KVcC4HwAfwLQfWfDiQCuAfArF++LiIiIiIgIXVqO5i9RpWmZpymEBWDoRrKcfn5hIRCKSJJLwU8Su+CigNWOYk//M+pSkJBPMUQi20qF8Mzgjm2ctDxK0yWrxCPvCwM2QWHZCKcoFQPNOmDB/FRm0+cmh9PlVhCcxK79dpJdtuzC+dyEkHXriDgLPE00GM1NIK3T8FUiAprC5t6LJao05nhFCkbL765ZlAlzm58zDlfwYHr1wEualKxq31BjMJq0vqeTfLySO8diRERERERERERERLY2r43elDj9a8nVIwUnpTEYbWRkI/xWBwKGc7KPf6Dx0OzUzzqTmoTLwtWGS+b66XvNhV98GPr8a2Jv/F3faC6/z3SnzSsIteXA1jiX3//9+Cc4+4LDMtOgFJOWIa8HqCiJ3tSOlx+JX5HDYDS8/CgQjNNn8vCTob59ibP6+lDVw6Cuecz1dGk1bSbw1D09L+tDq/GxIRgNAB54V+O6b+TfDfhdYY21hqwoAGgYlr73o7WGfvqe+AXdevFh4Hu/dt4OadtqUlbhrNyOfZjo6Xvwp0tPxdTfyaFO97xl4at7ep23LQs2tMg9LQaG6mmtgU/nmQsPHQ311TNS2LIoVT8J6tp/przejCkuBYqKgVDvg7m/1vo0nhpyYkzRwRiMprXGp+ucl0/HZ9Rs0xWwqmN9YqFoANQfn4CaekRijSJKJ6XgER4YbZ/kkPvc/C4jKnhvPgW02Ow4v/tLeM672jhKHf3txMMXTYTj6p0DnxuHd3QBm1uBEZWpa0K2rNyi+4WidQuGgYfmafzjA5tgtAH5qvqZ+8Sy6oLfQ42ZII53Q5X4oX78J+DHORAyTJRjEoyHpFymlJoEYOBjIX6mtb54YCgaAGitXwJwKIAVfQbPAHCag9ldBaDvGcl3ABzVNxRtxzyCWutbAJw6YPqfKqXqHMyHiIiIiIioh12Yll0YTDL8QsBISHclHO5BzkNX+BmTW4FI7t98bxdcZGp/iMFoOUsK2OrexknbOrtwvGR4lFcMCg1E2tEZMe9H/UJIWTrZfXbSemyaxrYe4bghl7YHUvs7rQAsLXfikz8jZ8uW3WfQkUCwWLr369L7NWF4LZFzTSFzJ4zaouEF8+Q3yq6m0BYsaJtvHDelYn/UFg3PcIsKX02R+fHzTeGtGW5J5kOCiYiIiIiIiIiIiNJi+aLk65CCk3xpCEYbOR5Q0UfeVFnbzc3R0UCffLamydz+2grDNa65T5or2bIOCBiuj29YZSyuRg2uW6B+c2L864ULVufvQ0+/FJahYRWIXitduzx+kBkAHXbWD0IvXxi3TDoCjrJF1U/q93pycLFYduGa/Nwerdoqh5kMDLdKqe3bosGdKeZkGe1nhYv9Y7zAs26j6oBSm35dyxdil+FAsc3uc8Ea583KlkU2X9/uowdse1tsrvNWp3NBy19KKWBASEV9V6OxbOOW/Nz+JCPQFb9MX6u2pv4zsgtGq974aWKVKgXU7Z7YtETpphSU8PhRK8+T0ZqFw+Wa9HSTJ8pp+osFtuNVw+QMtQTAaPP5i4Yu8/kOAGjMfPfCtLD7PbBwDdBp8xO+sk+3Rh3qAhoNCWvdMvl9Eg1iDEYrTL9E/+/2Fa31jXYTaK03APj+gMF/UEqJ0fhKqV0BnNVnUBeAs7XWnTbzeRLAA30GlQD4rV3biIiIiIiIBgraBF2k68baUpuAESlghuILRJyFrjAYjdySAnGk8KFs8HtttiuG8ABpPfCpNHSQJVekcKnuUCtpv5XOMIhSIeSsLdKCCMwdUrMRFCZ9Bp1Wh02IRmw75e+gA51iUGLuhHFIbdHQ6NJBcbpkg0a8cUL03Ao4DFOTgh7jcRN2FowTKkdEvZrC5mC0Gp/zzrNa6LRFBABvtbwIS3ji6eHVx2W4NYNDtW+ocXhzFoLRkg1yJSIiIiIiIiIiIsoFroNiTKTgJG/q+32o4hJg+FgAwMnb/2Mso3U00CefPDzPwnE3RzDlygi+d5+FF4TMjPoBp8l1JGJfcaCtf/lwCNgs3EXrNNinQBy/l0JFiX2Zm7ZMz0xj0mCl+VJpb6DV2hXOKpKCDwf65C378dXDgQNmOasrH8z8Vr+XZ7Y8LBaV1udcZxccMHBblCpaa+jbf5Weyt9/xXk7Ql3Ow9l23w9q7M6OiqriEuDI0+QC27ehPNKKU6bKwY3LNgHtwdzux/DsQrl9Zx084L2tbxTLqlnfSU2DCpA6qv9y1BBqNJabsxSIWLm9vKTaApe5itL+MhlSkJJHAeVvPJ5YpQccDTV0VOKNIkon5YFH6NOq83wb1CIEHVb744cs69ZmWLf8HNbsg2GduTesq8+CXvReiltIlBy9djms686HddZ+sM7YK/rvzL1hXfld6E/nRctoDf3UX4FHbCJdKqqAQ0/IUKsBDKkByitjBo+MbITfa/4Nu2Jzfm+Pui3bJL+Pxz7Q+HyjedzQcsDr6bPt2vSlnIQNAPsflWALicgNBqMVGKWUAnD8gMF/cjKt1nougPf7DGoAcITNJKcD6Buc9m+t9TIHs/rjgNenKiXcfUdERERERGRgF4xW4knPzwu/Vw4YcRoCQrGcBpyELAajkTvSeimFRWVDsSpB9Nm8sQKGsKOINl988KmilLaL3JNCqIJWAEErIIbFpDOITKpbCr8BshMcKAViBCIdxvUAAPyG9VgOWAugQ9oe5ElQol1AmRSMZlef07KJHN+kO/DUTZs0NIKW+AwPIupDDEYrig1Gi16GMsjzp1ZS+oR1CG83v2wcN7J4LHYrm5LhFg0ONUIwWlMoDb2V4xCDXG3OsxARERERERERERHlnDn/hg4mef1RCk5KQzAagJ4Ar+s2/VoscuXT+XON55ZXLZx5j8YLnwKL1gEPvKvRJXykDQMvc738qH3lnQOuRW/6ErCEB3ENsmC06jKFV37qwYQ4z1S67vn8fHCZHIwWvS6qL7cJZ+pLCj7sQ2/dAGwSAvcAoLQM6uYXo6FQBUINHQVU1va8ntX+Kg5vn2ssqzWwbGP+bJO6rdxibvPISsBfHD8MJBH6ziuAZ+9PS93oaIVe3+is7MbVzvoK7HUI1LX/ctUMdfENwOQD5ALrG3H7mQp1NuFzU39nQedoX4bF6zRuflVu255j+y87+i+/kCv79iWpalbh+e4v+72sD60Si85+IDeXlXTYuF3jkOvc7bdXb0t9eFxzh7m+6pIw1AsPuqtMKWD/I6GuuD/5hhGli1JQQn/yPM9FQ5O0PsfpyqxDXdAXfQX4x5+Bzz8CVi0BXn4U+idfhV74bhpaSuSe3vgl9AWHR4+/VywCVi+N/lu1BHj1cegfz4Je9B70PVdDX3+RbV3qphegyioy03Ds6O9rOIehANR3mCNhTv9rnm+QdvjFPxN7H09c2D9+Sd9/rVhW3fU2VFFxQvMhIncYjFZ4JgPoe7q5C8AcF9O/MOD1KTZlTx7w+j4nM9BafwZgXp9B5QAK6HEWRERERESUbp02IRclQjBKsuzCU5yGe1EspwEniQao0OAlrZfZCH6SeJTHJsypf3iApSOwYO6IwGC07JO+Rw2N5vA2cTpTwFeq+IU22YVhSO8jnezWAWk9Nk1jFwTWInwH6fz83bL77O2OM6TwODffpbRdlOq2k+79uttjLobXEjmzLbTZOLzGF+fuBiIHPm59D9sjzcZxM6qPlcP2KCmmYEMAaA5vzXjn/3z4bUZERERERERERESDzBEnQz3wEdSPrnc33YK3kptvloLRynUHRoU3GIs8Ml/nbGhMXxFL439fdN7O7lCrbvreq+0nCAy4Pr5eDk7ByPGO21EoDmhQ+OIPXly7x8dimRtf1ugK5/6yNJAUatUwDNCtTc4rktbvvp59QBylLrsLnpeboCbs4Xye+eK4/9fv5bWbrhCL/tHFep4rGreah8cENKaI7mgF/nVr0vWoG56R5/GPvzirZIO8rVR/fTe6r316LTy3vQ41bLS79vnLoW6bIxdYtxJDShU+uly+PXrZJuC9Fa5mmzG3zZGX9W9O7f9aRyLAgrfNhcdPhPLwFnGJ8nqBY87oeW0XjPbAuxrrm/NvG5SIB991/z5DEWCti92iE81C98TqkNznFoedEN22DPz37Hp4bnwOqsomLZEo2zweMRgtH36T2RHX53hdmd9+Fli5OHZ4MAD9xB1Jt4soFfQz9wHN5j62AICuTui//TEa8GdDXXYX1G5TbcukhRDubndctK09v7dJX2xKvP27jxow4IW/mQtWD4eaNC3h+RCRO2k6e05ZNG7A62Va66CL6RcOeH28qZBSahSAvfsMCgMQzrAYzQFwYJ/XxwJ4ysX0RINGR0cHPvroIyxbtgxbtmxBZ2cn/H4/Ro4ciYkTJ2LfffdFcXFqEmVXr16Nu+66C3PnzsXSpUvR1NSEUKj3RtX77rsPZ599tnHa+fPn47777sM777yDL7/8Ei0tLbD6PCVp5cqVqK+vBwAcccQRmDu39ykv+f7DnYiIiDIvKNxUW6SK4VXetMzTLhgtkeAQinL62TEYjdySwnDs1uVs8HvKjevBwGFhLXeeYzBa9tktV81hofdbnOmSJdXdZNMevyfOo7nSQAo067QCiAhhgKb3ZhcE1hQ2h8Hl0vbAPoBV3ldK49wEjUjfe2ckgWA0h9Mkul8PRNwFnTG8lsgZaTtpDlYyh1hpodMW0dzm54zDS1QpDqr8SoZbM3hUC8GGId2F9kgrKnyVGWuLdLySjVBeIiIiIiIiE/bPIyIiGnxUZS1QWQtdWQv8+VLnEy75CNj/qMRnnKVgNAAYE1qPDb6Bd3dGbWsHhlakpwmpsmorsM78HBajCQNPk7e12E/QOeBatBT2Uz0cqizHP6w0mv7/2Tvv8DiK849/5+5kFVvWqdiW5CbZFOMCprjSTDPYtFBCaIGYEpKQEAjwA0IzpgdIgACBQOi9mF4N2BhjwJhusI2LzlWSbVmy6p3ubuf3hyzpyrxzu6eruvfzPDz4ZmZn506zu7O773xmlAP4SZ23rblDQjSmPLFt6ilrifntlSUAVn5rviJf5DgIuXwJnTluivl9pRmirCLobfJIL22qWlGdfvcuLmKNyoriOC0Qtep7wN3DmOWBQ4ARY+n81T+Yq4eSSBYOjIn0QdjtkOWVwOYqxb5dHbvqK1DcF6gjQooWr5GYMjL1FutavIbu6yMGhLS3ViPrHDA4Ri3qxfQr6PpnZbsLNumHQcw1WOICjh+foHYlEZ2YT0dNIzAsht6xBiK0z+nRyGd2Hd87JaJMhiBgI+KiDSP9xkCB1FNitAihzPLHxXTmz5qxM8MkEl0/7WSxOkYyiCEje96WaBis3u+u7avxLrHJN+uAw0fHr0nxRjfW1mETwc/HtLL0YvUzNoZh4gOL0XofRSGfLTz6V5YfKoQokFKGvgUIffr1g5TSyqy00FEA340yTAB+vx8vvvgiHnvsMcyfPx8+Hz0BPicnB0ceeSTOO+88HHPMMVHv8+GHH8Zf/vIXeDxWXIqAz+fDn/70Jzz88MNR75thGIZhGMYqHsOtTM+O46Rau7Cjj8hGu8I9rROWMHrM/nZe2R7nljC9DUqGY0UWlAgoGUCokEgnEXIIfsSXbHLs0YnR4tkfqbrrvepoPAGBbFtO3NpDQR0DbUYL/PAr81TfTScWo75zKp0P+ohs2GCDoQh6oCSiXqOdlCZakb7lEv23lRBMUkgpSSllKF7DuhjNkH54pHoMSMHyWoaJTLvhQYu/SZlX5BgQlpZ64cJMKrPR7cKatuXKvAn9DyYFqUzPUYsNO6j3bUuoGK2NuDdLJUktwzAMwzAMwzCZB8fnMQzDMAwDAKKkDHLsFGDZ56bKS68nqncl0t0KfPSiWuwCxE2MFigjOrTlY3yTu7eynKsu9cVoP24yXzYnCyjtdqBANjUAusmsQJgYTVa71OXKhptvSC9k4vgSDHqhFrWOQcr8dXXpJUZrcktSpjSiRACrXOYro8SHgVASKQAYuqv5faUbAZJGACj2byeLfq35iVIVV5160n0F/boOACB9XmDBXMhlXwD9iyCmzoQYtW/E/cnXY3BvePAJHddAKv/bT2Dccn7Hv5d+BLQ1A0eeATHtRIjxB3a3pdql3r40hufKsgrl9VN+txDiN38FAJy4j8DDn6q/zeUvSxw1VmJMeWpFO3y3gc47aZ+QtmrOHeKg42PUol5MfmHXP/vJFhzV/AHeyZ+hLNpxPKdWX4klNTskXvpaYh0d0oqB+R2yU5WjqSHGoXjv/qg+bgs8W8htxLQTY9sIhkkkQkAQC1ik47oWtY0SLy2VWLaZvl8rjBQatHE1ndfG8b9MivD1/J7XUVIOjJnc83qiQEw7AfL5f4Wln9D4Gu4t+rNym3Xb03tMVEXIqyMxpBAQIuB7b3bRhfeZFt1OGIaJCluyG8DEnNCZ4tkWt1eVVzk9Q9M0o08la0zsg2Eyko8//hijR4/G6aefjnnz5mmDrgDA7Xbj9ddfx7HHHosJEybgm2++sbzPd955BxdccIHloCsAuPrqqznoimEYhmGYhEMJj+ItdKEm7bb5+aF7tJj97SjxC8NQtPnVUWupNvmekkGEynx0x4BDZMW0TYx1KLkXQEu5bLAjS/SJV5PIvl7vU7cn25YLm0j84+Jcm/oYcBttYYLATlTfTSc5o+R0qXQ+EEKQ7aEkojq5KCU7U5Yl/gZmJWedeKRbKXZTEc11nRLj6mB5LcNEhrouAHqxEsOYYWEDvRLiQU51oDETG/rbC2AjQgF04t54QF2PU0lSyzAMwzAMwzBMZsHxeQzDMAzDBCIuvx8YOMRc4cdu6hDZWEA2j2HnewAAIABJREFU74C86AjI2y6gC8VJjBYoI7p2261kMVeUE0YTxfYWiRMeMPcuGgAqikMmsn70YuSN2kLej1MSmljKftIQ+4AyPFN7Lpn/z3nm/06pgG6ydGWJRvqkIsJ9BQCgdr06/dd/Ce6zvY0QMRoA/LPmMmVRjw9YvSW9zCBUP6rUvG6X3nbIK0+EvOEs4JUHOq4vFxwA+f6z2n0Z918JzHu+B60FMHYyxFlXAgDE+XPocu8+2fHf1k1A8w7glQcg/3I45LN3dZd56nb1toq/edSUVarTF70FubLj/nzO8frjZ8LNBt7+IXX61Xcb6LYcNgqYUBGcFvSbh3IsfU5mOhD9CoI+/6tWff4BgEteSJ1+Emt+qZWYcLOBvz6v/45FfQEn8Sq/vjV2v889HxlYuEqd5/TvUGcceQbEiDExawPDJBxbx/LJKqRMr3H06i0Sk24xcNHzEv9dSJ8bnHn0NVp624HFdGwZPBz/yyQf45HZPa+kb3+Iax6FcMTp2U8kRk9UJh/Qtpjc5OpX03tMdMOb0bX/yXOC4y3ly/eRZcV510e1D4ZhooPFaL2P0Ej2Movbq8rvrkjbJeQz8XSWJPQtQbEQolBZkmEyiBtuuAGHH344fvnll6B0IQRGjx6N6dOn47TTTsPhhx+O3XbbLWz7pUuXYsqUKZYDoa666irIAK346aefjo8++gi//PILqqqquv47+eSTg7arra3F3Xff3fW5T58+uO666/DFF19gzZo1QdsOGWLyhTHDMAzDMIwJKDGGTkwTCyjJCEs3osfsb+eT1oIKGYYSKFqRBSUC6rwVemzojgGHSNJLEqaLbJEDQayKQwlncu15cQ1qzLGr+5ZXhq6rsLN8nK+hFNR+JSQ8krjeK47jLNEHNtiV5anvnGoyDur8RElEQwWKgViRvpFiNEIwSUGJ7FT4iL+JDt33JbdheS3DRIQSeAKA01EclkZd7yS9ljSTobT6m7Gk8RNl3sjcPTAkpyKxDcowbMKOAkeRMk933McDK7JbhmEYhmEYhmGYeMPxeQzDMAzDhCJGjIF46juIO9+A+MdrEM/8oN9AN3FbxbtPAsuX6ss44rQgXoCYpq9sxcj2NcpirrrUfs/z8KfW2hcqI5J3/SXyRu6QZ9k1LEZTIWw2TCvYgD08y5X5H68A/EZq96dA1m5VpztswJBCANUu85X59WI02dTQIZdSIKadYH4/6YhCknVUywdk8UtfTB8xSFu7RG2jOq+iWBMXtvgd4MuQ38AwIO+9FNLvV24iN60Bnv9XlC0FMOMsiPvnQ9w7D8K580R5wDGWq5GPzIZs3A65eS1dqCx250qhkazJR24AAAzqL3D9sfTv7fYCl79sBN2XJ5OLnqP7+GOzbEExhdLvB5bMUxcetS9EVvwWZu015AdPWR7prcLJja+Qxbc2pUY/iTW3vSuxqSFyOZsAnEQoaUOMQvEa2yT+PlcjUjKI6+Xf7o1NAxgmaQgIIsbOSJ/hDwDg9vck1m+PXK5QFxq06C39xu6WlLl2M5mJ3FYNPEFL5s0iXlgBse8hMWhRlPsXAjjqt+HpAE5qnKvcZksT0OpJz+OvJ6LtSQFOZikl8N7T6oJDRkLk5Ue9H4ZhrMOzJnsfK0I+DxZCDJFSbjS5/RRFWoEizRnyeYvJ+gEAUspmIYQbQE7Ifuqt1BOKEGIggAEWNxvZk30yTKy4+OKLcc899wSl5efn46qrrsIZZ5yBYcOGhW2zevVqPP7447jzzju7VpNsb2/H73//e7S0tODiiy+OuN+VK1fihx+6X+DOnDkTzzzzjKk2v/baa2hv757IetNNN+Hyyy83tS3DMAzDMExP8BDCo2yRo0yPFdSk3WhEHUwHZsVolNSGYSjaDLXQJ9Um35NCIktitDgFyDKmEUIgx5arvB7U+0LXMegg3n3Rav1UX4w30fwOuQqZmhACubY8tBhNFvadHBkcBfVbUNdK3fjDivSNFLJZHN+0EuddFdEIT3Vjhj4iG+3So9jGmtyNYTKR7T51tH8/ewH62LIVOb14pXImpnzROF95bgaAg50zE9yazKTQUaKU9FLj03hgSL8l2S3DMAzDMAzDMEw84fg8hmEYhmEoRF4+MOnIrs9yn2nANwuUZeX9V0AcdLzpuuXn70UuZI/T1K6S8g7pmq/j/WxlexXW9AmfPuNK3GPjqHhvmbVJrRUlAUIZj/oZdRhtIe+Wq13KYjpBT8ZQVoHxG7/H8uw9lNnLNgF7DU1wm6Kkapu6bw0rAhx2AWNzlfnKfBHiICjZHtDrhXsiOxeyqBTYXtOVNty7niy/mhDWpSK682eopDEQ+dnb6ozG7cDaZcCue4XnUXKsTnbfB1j5DZktTr0YYsSY4MRozmneduDrBUADPZVUxLJPl1fQeV/Ng/T5IBwO7D5IX82Kmo6/l+7vkigoOZXDBpSFzuKt+pmuiK9J5ugXPjV6D0/oFOxuPloucerE3hcb867J8dTwYpDCx/oYTZdYuApo01w2C/0K25JzAERev9g0gGGShc0GGyFGSzf/1zs/mmuwUxMaJL98X7+x398xxmYJKJMsln7U8zqOOxeiIHyB4kQjyiuUZ59hmvuyxWuAw0fHr03x4v2fojuhDnYC2VkBY8BN6sUFAADlI6LaB8Mw0cNitF6GlLJGCLESwO4Byb8FEFFJKoToC+BERZZKWRl6F6m2EuhpQ7AYLRZqzD8BuD4G9TBMQnniiSfCgq4OOOAAPPfcc9qVHHfZZRfcdNNNOOuss3DSSSdh2bJlXXmXXnopxo8fj2nTpmn3vXRp8ApUoatOxmPbBQsWmN4HwzAMwzCMCjchRou34ISqn2oPExmz0hWf1K+oyDChUMelFVlQIqDOK21+K2I0fsSXCmQTYrQGb7iMAoh/X7QqHEuWJIyScunIISRuOXZrYrRo9h1PyPMBca10++lrqJW/Jylo9FuTilkpH811PfS8GEhh1gDUtoevDdLGYzSGiUg9cZ0qdFgNxkiz6CwmrhjSwML6d5V5/e1OjM+fnOAWZSbOrGJAMd9LJUuLF7rnJSrZLcMwDMMwDMMwTLzg+DyGYRiGYSxhs9F5JkVJ0ucDVn0HfPVh5MJ2u8mGWUPY7ZCDhgKb1gIAKogJry5CDpUqrLUoSQqS3tTSk3yDcHe/75btHmDbZnW5st4tsDJFeSUOWzkfzxWcqsyu2pb6YjQpJVZvAW59V933RwzY+Y+dx44p/BHiIKpd6nRHFlBcZn4/6Up5RZAYLVuzUO66uo6/kRCpKyba2iSxeA3w/BJ1HxICGFqoqWCzpm+1NSuTZYTrj5h1NeSNs4AWhdFo4BBg+KjwbXL7Qu65P/DDZ9q6w9ry6RtAyw66wMTDLdWnZZ9pdJ7fD2zZAJRX4pBRAg6bhM+gi983X+LaowFnXvL6lt+QqNK8rrXbQtqm6Stiv8Ni1KpezoDBYUlHtHyIGwdcrSyeTnJGs7R4JCk7C+XwPQQpPGqIQSje5gaJf7ynOVABHNqyIDxx4hE93znDJBshIIgYO8NI7XuyQNraJao1w4BABjs1mdWuyBW4W0yJ0WRrM/DTF0BdTcSyTIZROhwYMwkiCsGe3LCqx7sXE6f3uI6YMPEI4NEbw5Knt3yIfxWrFwCqqpNIx4WU10YZGlkRGjKtuf8Sex8c3U4YhokanjXZO3kaQODV6f+EEE9KKTdF2O5GAOEKdHNiNJPLqATRBiDwMR8ru5mM5JdffsGf//znoLSpU6fi3XffRb9+5g6L3XbbDR999BGmTZuG5cuXAwAMw8CZZ56J7777DiUl9JIWtbW1QZ91gV6x3JZhGIZhGKYneAz1LUi2LUeZHisoiU2bYU0cwnTjNi1Gi7CiIsMEIKUkBTrJkj9RUPKq0GNDJxFyiKyYtomJjlxbHhoQvgxovU+9NKhVcZn19ljr67l2tRwr3kTzO1Dfzep3jvffwCqUoIy6VlLCtGyRA5swHzhPj2+sLfFoZTzkjeK6Tv0OdjiQby9ALcLFaG4eozFMRChBUlHWAGU6FeaQPqFZTCJY2foDtnjVE4b2d07n8WuCKHSo3w01EOPTeKATo6XaWIxhGIZhGIZhmN4Lx+cxDMMwDGMZoRGjmUDWb4G84gRg+dLIhYEOg068KKsIEKO5lEXe/rFjIr4tVMaSArT7JDY2WNumsjjge3y/yNxG7oD30Vs2AJJ4+1XKYjRRVoFTGm/EeeUPKfOf+sLAr/aOj+wvFvj8En9+TuK/C+k3nBUlAnJ7LbDDwozqSGI0StI3cAhEnOSIKUVZBbDsi6Ck22uvwhWDbg0r2toObNgODLO6lleCePoLA+c+IeH102UGO4HsLM05dcsGOs9HxNQ8fze9zf5HA1NmQlxwI+Q//xqcZ7dD/OFmsp+J82Z3XLMIIZuSec9ps0X5CPN1RUAUDYI89WLy+8vrTgf++xkG9bfh7zMF5rxFH9v/mtdx7L/wextmjkvONU/XvgfOCG+TXDCXruwItaCSCaGsIixpStuXZPHrXpf4/YESA/un3rgoWlwmQwTGDwXOniqweA0hRrMWThjGv+YZuPQlfYTR0U3v4LCW+WHp4szLe7ZzhkkJBGxSLQaU1P1HCmL2nNI3GyghHr9Lvx/4ZkHkStytQL7ONgvIn5Z0jGWsjN2ZzGLAYOCe9yGG7mp6E1m/BXjytp7td99DgKkze1ZHrBg9Edh1fIfAPwCljHQnFzwlcdoEiX456TUmilb+7wwNZdSJqY8/L6p9MAwTPT17Ws+kKvcBCPTtOgG8K4QI15vvRAjxNwBqpSegV3B3EM1VIn1G6gwTRy677DI0N3c/QHY6nXjllVdMB111MnDgQLz88svo06fbXLxp0ybceGO4xTeQwH0DQFaW+QlJPdmWYRiGYRimJ3ikemJtdpyFR6TAyB+DJZAyEK/RrpU9hZZlGLP4pBd+qPsWJR5KFpSMKlRIpJMDslgiNaCuEZQsipJRxQqroolkSQP7iGzYLD6mpr6b9e+cWjIO6m9ACcooUZhVyZ3Z81AkrIjRohGeUu3JsefScjceozFMRLZ71UvdUkKluE7MYXoNCxveVabbYMOBBUcmuDWZS6FDPVukwZtIMRo9nki1sRjDMAzDMAzDML0Xjs9jGIZhGMYyESRF0q+x4QCQD11rXooGAHW1kctES4AMpMK7jiw2b3n8mtAT1m+nHWUUlQGvueQ//mhqG9kW8L672kUXVMhVMo6ySuTJNkxtXazMfvVbwG+k7nSxl77WS9EAYEQJIP9FTbEjoGRWO5HVxPGXKbI9xbFzauNLZPFLXjQzlTHx1OyQmPW4XooGABUaqZv0+YAt4Yv/deENj5WVNfT5G+WVEDe9CGGzQZzwB4h/fwicenGHNOuMyyEe+ARCI9ASex8E8fBnEOdcR+/DCr+7Ojb1BGC78HY6c+U3wFfzAACzj7PhnYv0cWgtHuD0hw20ehJ/nlpfJ3GjRoz2632D4zGklMC859WFx06GyE2tWNiUpaAYyA1+BiQA/KH+v+Qm17yeutexaKiK4Arae2iHmG/+pTYU9RVw5qljg3oiRvtxo4woRbNLH17eeCqyQuO/jzkHonJ09DtnmFTBZoMgtAopPHwOI9I5pZPKYkBQsYafvGquErf+xCMNA3LOWSxFY/Rs3QR5w1mWNpH/vZ7OnDoT4uVVEH+4GTjitI5xd+B/R8+CuPIhiDvegMjqQ9eTQIQQEP9ZEJZuh4FfNb5ObvfPD9Po5LQT6hx19dECN/2Kjn8OXStAUmK0keMgIggbGYaJPY5kN4CJPVLKBiHEOQBeCUgeB2C5EOJBAO8C2AwgF8B4AOcCOCCg7EYAgcvKqdZXCV0GIJqZk6HbWFhagOQBAPSTUTUjAdBXbYaJIytWrMBbb70VlHbbbbehtLQ0qvpGjx6Nyy67DLfccktX2v/+9z/Mnj0bhYXqgZZhRP/CoCfbxoKff/4ZP/74I+rq6lBfX4+cnBwMGDAAe+yxB/bcc09kZ2dHVa/P58OSJUuwdu1abN26FR6PBwMGDEBFRQX2339/5OTkxPibMAzDMAxjFY/hVqZn2+J7nc61E2I0i+IQpgMrwpVoBCpM5qLrWzn25MifKCgRUuh5RXcM2AU/4ksFrIrF4i2CsCpei7eojUIIgRxbHloNc48GHcKBLJv6JaHV3zRZ35mCEje6/epzGikKs9gXaalYC6SUdGBCWHkr13XrwlNSBGfL04zRzMvaGCZTqfepBUmFWYQYjSCdVq1k4st271b80PyVMm+vfpPgzErRpd17IU7iOK73bbN0je8JuvFBqo3FGIZhGIZhGIbpnXB8Xs/g+DyGYRgmYxERFvfaupGUGUkpgfmvKPNI8p3WyltAlFV2Tb0frhGjvfCVxJFjUm+BHLOT7gPpFKMFyc4i4Q4UoxG/U9EgiOzUijtKCuUVAIDRnhVYnDdVWWTxGuDAXRPYJgu8/HXk95qVJQB++tJaxf4IC8RSYqsMke2JsoowDUiZrxpZsh1eER4H9JUrIc2yzGvfSfhN3KZVlmjOp1s2ADrBpkqy98lrZHHxu6shHN3xg2L8gRDjD4zcyMA6ho8CZl0N+f2nwNfzLW0bVle8+vQeE4Dl6vfQcv5ciEkdC3QdNVbglP0EXlxKH+uN7g4h6PHj49JSkrnf0m0qzAMKQmVUq76nKxu+R4xa1fsRQkCWVQBrlwWlj2hfS27z0lKJh85MzDv1RLB+u7rvDS0E1t0eLgR2Eq/yG1qjjw16ycT195ptt4ZL0QCIPdXjDYZJO4SADeqBRDrF3lVtM9fWSk34ofzoRXM7iyBGw6rvAUpexDCBrPwGsmEbhDNyXKyUElhAP9cRk6ZDDBoGnHEZ0mmkILJzIUvKgW2bg9IrvfQx9PJSieuOiXfLYouLWDN214HAGZMErnlNfQ6bWBny16x2qSsaOS7qtjEMEz08a7KXIqWcK4T4K4B/Aeh8K5MP4PKd/1HcC6AAwNkBaWkjRpNSbgGwxco2veUBBZOe3HPPPUE3rSUlJZg1a1aP6rz44otxxx13wOvteBje0tKChx9+GP/3f/8HAHC5XKisrCS3P+SQQ5Tpjz32GABo20cdT1VVVaioqOj6PG3aNHzyySddn63cuG/YsAH/+Mc/8NJLL6G2ll4dKzc3F4cccgjOPvtsnHTSSbBHWLkLAJYvX46bbroJb731FhobG8l6jzvuOMyZMwe77bab6XYzDMMwDBNb3EabMt2qCMQqlHDFiuCL6caKUM4nIwQOMUwAur5FiYeSBdWe0PMKdQzYYIctUkAukxAsS7kIkVOssNqeeIvadOTazYvRdO20KtdI5ndWQYkbqXEGLQqzdp7LtfdTpvvhg1e2o48wN7Gt1YKELJrrOi2Cy9OM0dRjRoZhOpBSot67VZlX6BigTBdkKEf6BGcx8eXThvchiSC+gwpnJrg1mU2hQx3I5ZXtaDGa0M/eP+5toMYrdjjgEFlx3z/DMAzDMAzDMAzH53XA8XkMwzAMYxFbhDiM6nWkGA31W4DWJmv722eatfJWCBDUjPX8TBZbuzU13/WYnXTfyahSoLDvzjFTtcv8hl5P1z8lJbCi/uaZRkWHjGdS2xI8UniOssiqWokDd03NuVq/0EPcLiYMl0CD+j0qSZRiNJEp/WrM5LAkGyQk8f65rhkJW+jHCmb6DwBU6HwL1S79xgoxmty4mi4/ZqKZJpljzKQei9Fi2p7QegkxGjauCfo4qRJ4cam+utVbJJBglcUqzYzXySMUiZvWKBI7EPH6nXsrZcPDxGiT22gB5o62jvNQSX68G5YYthNhfWUF4WnSMOD0N6BjinkwDT2YLrHaxIzvSW1L1BmjJ0S/Y4ZJKQQEEWOX5PUxLLHWpLx68kjNdbZ2g7lKIonRNqwyVw/DAEDjdsCEGA0NW4HmHXT+mEmxa1Oi6V8YJkabTF1/AazZKlPyvoyioVWS45XKEgG7TWDqyA6Zeygn7hPyHSnpYjn9/o9hmPjBsyZ7MVLKewHMALDSRPFmABcCuBjA4JC8GkX50Cu6eoYMgRCiH8LFaCoBG8P0at57772gz2eddRb69Alf7cQKAwYMwLHHHqvdTzoipcRNN92EXXbZBffdd5826AoA2tra8M477+A3v/kNNmzQ3yj7/X5ccsklGDt2LJ599lky6Kqz3hdeeAFjxozBPffcE9V3YRiGYRim53gMtzI92xbflaMp6YYVwRfTjRWhnE8qVsFjGAJd34q3QNEqVHvc/lAxmvoYyGKZQMpASa3I8nGWclltj1WpWCyx8lvojmHLMjiLv1G8occZarlXm58ShcXub99mQXZmZTzkjeK6Tovg8sjv4LbQfobJRFqNZrRLjzKvMMtEAAjDhOA1vPhsxzxlXlmfodgtd2yCW5TZFDqKybwGL7E0YoyhJKU59ty0CZhiGIZhGIZhGCa94fg883B8HsMwDMMEEGmBumqXMlm2NEKeGy7/0TLjLIgC+nlujwkQo+Ubzcgm4u6qTE5uTzRUuyaPAH43Nfw582XTA9KqiUmsKtrbA7ZzqcsE/JaZjMjOBfoV4NeNr5Bl5tEOvqTi2ibx02Z9mVP2E6g0NgLedn3BUCKJ0aop4d4wa/tJU0TlHsr0S+rUY/42L1BL3zYkjWe+NCdrrNCc1uUDV+k3VojRKLEeAIhhu5tqkxnE0b8D8gujr+CAYyCGj4pZewIRx59PZ37/adDHMycLpfApkMtflli2KbFSUJdG9nnx4eFjD7nsC7qyQ0+ORZMyB8U1fErblxgp6IvCQwtTUxobDZQgpDBk/VX5ygOQxw2B85nrleXrezBdIpLsNs9owWEtCjHjfofG7bzCMAnHZoNNqg1oFy2shM+fHucd3fWskwH5wNlTNHFBK78xtzM3HQMspYS85Vxz9TAMALOL/8pXHqAzR4wBdts7Ru1JPOLsv4elHdP8Dlm+zStQ86/ZkH5/PJsVM3TPtjrv0f52hA2hYYvH7AnsURaS+Mu3ynoEi9EYJik4kt0AJr5IKT8QQowBcDyAmQCmAhgEIB/AFgBVAF4D8IyUsgYAhBChd4oqR36oRtfqEhWh5bdLKest1sEwac3GjRvhcrmC0qZPnx6TuqdPn465c+d2ff7iiy/g9XqRlZWeE+Z9Ph9OPfVUvPJK+Muz0tJSjBs3DiUlJfB4PKitrcX333+P5uZmU3W3tbXhV7/6FT744IOg9KysLIwfPx5DhgxBdnY2ampqsGTJErS2tna16eKLL0Z9fT1mz57d4+/IMAzDMIw1PMTE2uw4C49o6QaL0aIhVPykwystBhoxGY2ub6WaGC3X3leZ7pFuGNIPm7ADAHxSHTznYDFaymC1b8W7L1qXhCVTjGb+t8i1qY8ZAMi1+B2SKYNTQbWHkj2SorAY/g5t/lYUOIpM1dPqNy8h8xnWxWi0CC6P7O+UjIVhmA7qvXQUQJHDmhgtPcKymHjzbfNiNPvVqyUe5JzBIqwE09/hhA02GAgPqqz3bcMQxD9IhxqvxFsSzDAMwzAMwzAMA3B8nhU4Po9hGIZhQrDpxWiyZh1UT7zlLecB2yJYlwIQ580GzrjcUtMsU14R9PGFTWfgV0PDr/kbG4B2n0QfR2o9y3cRr7MqSwQeOlNg10HAq99IlPQDzjnAhpP3DRSjuczvyBuwmBAlICq1Om2q9yKu/h/6XXUyDmhdhEV5B4Tlv7BU4qlzJRz21OlPhiGx1xy1iKKTa48RuGamgLzsArrQaX8DnvtneLpKZrUT2bwDaG5QZ2ZQvxLnzYZ8ZHZQ2iXb/407Si5Tlq/aBpRGkFslkpodElubzJWtLFH3ffnpG+QE+y5UUr5ql7KoOFctL4oWUV4JPDAf8olbgeVfAZvWBhcoKgUcivteZwkwaTrErGti2p6gtlXsAZx/A+TD6u8sv18EsVfH+WhAvsDiK224/g2JJz+noxkOudPAuttsyMtOzLmKEjUcvgdwxOjgNkgpgRfvVW8wYgxE3/4xbl3vRpRVhMW1CABfNxwPZ8FXym2ufV3iNxMkdhmYOteyaGkgQuicud3fTS58HfLuSzrS+6uvWVQ9Zogk4V29ejTsitgGcftr0e+UYVINISCIKLsWnx2z35S46Vepf85Zu5XO22UgMKlSYPaxAuVOYjw073nzO3Nr5hu99hAtM87OBQp4YdiMxPDTz2Vk5ChXWfUz8MStZL7472fpHQN5yEnA9WcEJWXLdvywZh/sOVItLLzqi0o8WnAzxLnXJaKFPYIab2TZgXJnx79P3Efg9Qtt+M8CA7WNwPQxAtcfEzIW/+A5eicszWeYpMBitAxASukHMHfnf1qEEEMBDAlI2iSl3KQoujzk8y4WmzUi5HOKrgeSeHx+iY2siIs7QwqR9Jcsn332WVjafvvtF5O6991336DPbW1t+O677zBhwgQMGTIEVVXdqx/dfffdQSsrPvfcc5g8OXylqpKSjhvBadOmdaWdeuqp+PLLL7s+B9YbyJAhQ5TpZrn00kvDgq5mzpyJ2bNnY8KECWHlDcPAF198geeffx6PP/64tu4LL7wwKOiqoKAAs2fPxrnnnov8/Pygsm1tbXjggQdwzTXXwO3uWC1rzpw5mDRpEmbMmBHlt2MYhmEYJho8xMqVyZLMUMISRo+V342SQjGMCqpvZYucLtFYqpCrOW+5jTbk2fsBAHxSHTxnF/x4L1WwKneIt5TLav3JlITpZGeh6K71VsYBWaJPyh0/VB+ihCLUuc5yXyQEjbp9qMtaEKMR5zQdOhEcKa+1IGFlmExku08dpWSDDQUO9SrQQjnNB2A1GgMAn9SrVw/MFjmY2H9aYhvDwCbsKHAUod4XHvFT76tLSBvI63eKCasZhmEYhmGYzILj8xJHsmP0OD7PPByfxzAMwzAhCL0YTSWokTvqgM/eorepHA3bkxFkOPHAOQDIyeuaUD6iXT2ekBIAWK/HAAAgAElEQVRYv71jInsqUbVN/Q6qohjIcghcNUPgKmKYIDe7zO8ocEJ9tVqMJsoyR2AVkbKOxVcmt36pFKMBwIfLgaPGJrJRehatBprUYacAgOo7bRjUv+P+xfh6vrpQvwIIZ4n6zahfE99Ys57Oy6R+NWy3sKQB/q3oazSjxdYvLK9qm8SUkakjHXhuifl34hXF6nT5zpORN/YHx9RIKcnzEobuarpNZhEVe0Bcb6KdyWD/YwBKjPbaf7vEaAAwvFjg8VkCIwcYuP4N9d+urgV460eJU/aLfz+TUsJFvKI970DF/n/5jq5s9KTYNCqTICSU/WpXYtTuwIoa9WZPfSFxw3Gpcx6KloYW9THgDAgblO880Z3uV4vR6ls6+rJVIUyLR2JLBLHkQL8ihmnsZIg+2Zb2xTCpjNCI0QDgsc8kbjze+jGWaKjr2ROzBH47JcK9NAD5+sPmd6YRo2nHVcfMgu3if5nfD9NrkNtrIY8fRmSaEKO9/wydWTkaIju9Y96EEJDDdwfWrQxK36N9BXJsPriN8LkVr+cfC3x4EJAGYjRXnfpvPLwYsNu6z63H7ClwzJ70vDL55qP0TsrjvxgtwzDhpNbMLyYVOCzk8wKi3LKQz3sKIfKklGZnmu0fob6MZWM9MOLv+lVImJ6z9hYbKpIsfN64cWPQ50GDBqG4mHj6bZGxY8PfIG3cuBETJkyAw+FARUVFV7rT6QwqV1paGpQfSr9+3S8ccnJygvJ020XLBx98gHvvDV7l4rbbbsMVV1xBbmOz2TB16lRMnToVc+bMCWtnJy+99BIee+yxrs/Dhw/HggULyO+Rm5uLSy+9FFOmTMFhhx0Gt9sNKSUuuugirFy5ErYIq4MxDMMwDBM73IZ6yaFsm/q6Hyuoibtuf1tUL/oyHSsCFQkDfumHPcWkVkxqQstzzMuXEkWORgjVZrRGFKM5UkzslMlYlVFZLW+VbIuyiXi3R79v823VtdPKd0imCI7CqtyLFo1Y+27ZIgc22GAoVly0cq22Jjy1LkZrI8Z/ObY85NitSeUYhumg3qteHq3AUUTKZGkxGpPpbHCvRZV7pTJvYsE05BLnaia+OB3FajEacfzHGur5TTLHngzDMAzDMAzD8XmJI9kxehyfZw6Oz2MYhmEYBZGuOdWu8LR1KwC/n95mRHIMUUIIyL4FXRPKK7yEXAdA1bYUFKMRk+4rzYwzq9USOCVeDwBAetqAump1GUKqkpHsnAi8p4eeCvbjJomjxqbOu8UXl9KT4LPswMCdzl7Z0khXkl8I2IlYLZ8mDqLGpU63O4Dicnq73obiGBIAKttdWJYTfo6sSszrLNP8uMlcuYLcDlG4krUmpk8GihoBYHst0E5Y/coqzDWqt6CTENRuUCaPHSygW+jtx03AKbFxqGup2QG4idNEZYniXFn1E1mXGDE6Rq3KIKi+4/dhbHErVtSo31//tKl3LBLYoH5tD2dg2GbA+clpqMVoPgNobQf6WnSVrYuwbtv05nnqjBFjrO2IYdKAEd4qrO0zQplXvQPY3gIUh/tiUwavT2IHcU4ZUmhy7E/db6lo9yiTpZTAWt21MoUMzUxi0c3pM3NZ1/SrZD3XiTmlw8PEaAJALjxwK9RDbSIXxsY1EGkwZ3Jbszp9iFOdTrKdsOYCQEkG3cMzTArBb4iZUM4N+fyIqpCUshrADwFJDgDqZT7UTAv5/K6FbRmmV7B9+/agz4WF1JNv6+Tk5CA7O/gpU+j+0oU5c+YEff7DH/6gDboKxel0KgOvpJRBdTscDrzxxhumgsc6A7o6Wb16NV577TXTbWIYhmEYpud4DPVLfqsSGKvkEFIlP3xRCT4yHWqCNIVXtkcuxDCg5TxW5EuJQicwaguQIfmkelVRh8iKeZuY6KDkmWT5OMtB7MKOPsJ8BEoyRWG5GkFgKDqJhpXvkIoyDkru5ZFuGDI8gL6NEKZZ/W5CCPJv0Oa3IEazUDaacZObkLTl2vLIv70VWRvDZCIqWRIAFGUNsFyXNBU1wvRmPml4h8w72DkzgS1hAinMUs8Ma/BFiDyOEZRkNRXHYgzDMAzDMAzD9D44Ps8cHJ/HMAzDMApEJDFauFxMfviCvsqZZ/WkRT3j8FO6/pkn2zDIV6ss9oJGHJUMmt0SW5vUeUqJTCifvW1+ZzvFaKhdT5fJNAGRBpHbFxACxze9SZa56e3U6k/LNHKbLDu6J3hXu8hyYsZvaTGaXx3bBQCoIYSEAwdDODJoUUziGKKEjXPeSp0+JKXE44vNteesKQIOe/g5Svp8wGYTwsZQyR7VfwCgLLOEjSJXE2NGnL9njgUG9ac3uzlB5ypK9AkAFQqHu3StoDc47BQ6j1GjuYbPqlhL5qWaoDFaGogQusKdr+2lzwds6V5gwOnfYbkuHZF+x1kNTyjTxYwkjp8ZJk6c0vSKNj8Vzzten8S1rxvY90Y/Jt5CLzpTaCIUXLY2AxvXWNi5WoyGuhpaHAsAh5xkfh9ML0P3rEA/7pOGAXxO607E0WdH2aYUgxgX/cq+WJnebstGjaNUf8ylCNQ4pUhxfpLtHhgPXgNj1gQYJ1TCOHUPGDefC7l5LVBDPBsaNAyCF/BhmKTARx7ThRDiAATLzVZKKRdoNnk15PMsk/sZBWBSQFILgA/MbMswvYnQQKjQlSF7Smh9dXWJmeQSS3744Qd89tlnXZ/z8/Nx++23x6Tu+fPnY9my7tUMzjjjDOy5556mt7/wwguDArreeOONmLSLYRiGYZjIeA0v/FAHkWQL9UrUsUInvWHxhnWsCFSA6CQqTGbiJo5HK/KlRKETAgR+D6r/sxgtdbAqd0iEDCJdRGE5dvNSOZ1Qzsp3oCRkyUQ3zlDJROlznfXvRv0elMykp2W9UVzT2wihao4tj/zbe2U7jx8YRkO9Vx1JVehQi5R0pE5IOpMMWv3N+KpxoTJv19wxKM8eluAWMZ0UOhRR9AAaCDFirHH71dfvZEp5GYZhGIZhGIbJHDg+LzIcn8cwDMMwBJEmOW7dCOntXuBRrvgaePUhsri48iGIiUfEqnWWEeffEPS5ot2lLPfoIolv16fOWx+dFKAywussuWEVIC18F+/O98oK6V0Xg/h9RyDijjfQV7biwJZPlflNbuDhT2lxQiKRUmLhKjpfBM6d14mrfnsl4CBitUJlVoH7p/pVaQW9r95IQTGgEFtVel3K4l4/cP/81OhD17wW+XyS1wc4/0CBO04mZAzvP21uZ76QBYSrXepyOXmA0/qiZ+mOuPF5dca2zUHX5k6yswTmX6q/rt/9Yfz72QVPqffRNxso6afIeOYOdUVFpRBFg2LXsAxB9O0P9C9S5h351Mk4cFf1djqhXTpRT0xxcHa+tt+6EfB3L9xa6G8g63rrB+tjxapt9Db/rLkMv26aG5YubngGYuxky/timFTnnMancdOW68j8VBSjnfWoxM1vS3y7Afh+I13OGSEUXEoJee5EazsPHRd11vX4TeQm4s43IfJj+y6ASSOERowW4RmB/OdFdOZ+h0JMODzKRqUWghCj3VpPH1c3l1wJtFmb/5cMKDFaQZ5CXH396R1j7tU/ANs2A5vWAu89DXn6OFICJ2Y/FcvmMgxjARajMQAAIUQegAdDkq+OsNkzAPwBn08UQhCPAYIIXUruRSll6mtCGSbNELoBfJrw0UcfBX0+/fTT0b+/ZqkOC8ybNy/o829+8xtL2+fl5WHixO4b8U8/Vb/QYxiGYRgm9nikelItAORohCKxwKzAiDGHVZmcT2pWVWSYANr86r4V73NENGTZski5WeAx4jMoMVoGrRqa4ljtX4mQQViRf+mEY/HGktBMU9bS903B80GORt6oumZS19FopG95xL6tXKutCE+jkZW5Ned23fFECVkYhgHqCTFSYRY9k0RoV9RjMpXPd3wEr1QHoh1cODPBrWECcRKiw3pvYiK4qWclyZTyMgzDMAzDMAzDxAqOz9PD8XkMwzBMWiMiTLWSEtiyofvj3NCpOAEccCzE0b+LTbuiRGTnAsVlXZ8pCREAPLAg9cVoNgEMLdRvK1+819rOvJ6O/9cQAqviMojs+C7amnZU7AEAOK75LbLIXR+kRn9a+Is+vyjwtUW1S12ovBLC4QDsRKyWXxPbWLtenV46XN+wXoYQAlBMwqdkjUBHH5JWJIdxoK1d4r75dBuePlfAdasN9Xfb8NBvbejjUN8ryqcJ0VUovpC+RIn1yip6xX2pZYbvrk43DGDzWmXWqDKB+0+nf6t/zpMwjPj1M69P4qfN6rzK4vDnC3LNMnVhADjC2r01EwB1zq1djzkz1efwhlagoTU1rmU9gZKEdInRql3B6QYtRvvH+1GI0YjwhANaF+Gi+gfCMw79NcShJ1veD8OkBULgyro7satHbe3ViQSTwbo6iRe/Ntemgkhh2Su+BjausdYAhfQUAPD6I+r03H5AEqXkTAoQpRhNtjQCrz9MVzvr2p60KrUoq1QmF9d8j3y7R5n3UOH5gDsdxGjqv3FhSKiiXP8LsIh4lqG7tx+yS5QtYximp/DMyV6KEMIhpbkZ40KIfgDeBDAmIPkVKeUruu2klKuEEE8AOGdnUh8AjwshDqNEZ0KI4wH8LiCpHcANqrIM09spKgpeaWDHjh0xrb+hIfghVOj+0oHFixcHfZ42bVrM6l60aFHQ56KiIrhcLkt1BAaBuVwuGIYBW6QVwhiGYRiG6TEeg5ZbZNviG3ykk25YlXwx1mVyPoN4scEwIVB9K5niJx05tjw0+8PvCQO/hx/qxzyUVI1JPCkpRouRcCzeWPktdL+zFdlZKso4dO1XndeosUc0fYv6PVotyM5aDWtiNCmlpQBN+tzeN6K8th9iM5GPYXob271blemFhEhJT2oFZTGJw5AGFja8p8wrcBRhr36TEtwiJhBKdFjv22b5WhwNtMg19SS1DMMwDMMwDMP0Pjg+LzIcn8cwDMMwBGauN9UuYPDIjn///CVdLlUmTZZVAHXVAIBd21eTxb5cmzrvfKrq1G0ZWgRkEeKh7o2XW9vZzgn3stqlzlfInDKeknLAkaXtT7/UdkxMduYlV970RZW+X19+ZHf75OYqdaHOPuAgYrX8fnoHhNhKlGWWGA1Ah5ho7U9BSbo+5KoDtjYBA5MY9rGiBmhSzpLsYO9hAsOKTfTx1mZzOwwRgMhqok9mmFivC933/uxtYPgoZdZugwSouIaN9UD1DmBwBOlmtFBSKAAYotrnz0vI8iJVxhXpSOkw4JdvlVmVnrUAdlPmueqA8akXamgaw5DYQUy9KOy8Ple7gtJzpFqKAgB+w3obtjSq0yvaCfHjkJHWd8Iw6cLOOJ1KrwursncNy9ZdM5LB2z9KnUsqiP6RQoF+0tw3U3jDF2GWujFV0cDMFMcy3UQpRgu9Rwlj8Ijo2pOKDBqqTBbedgzKakGTP1uZ39bYhrzSeDas5zQQYx5n6Fju56+sV57bFygotr4dwzAxgcVovZcLhBAnAXgSwNtSyrDZLTuFaCcBuBnA4IAsF4A/mdzP9QBOAND5GGYqgA+FEOdJKVcE7CsbwO8B3BWy/V1SSuIOlmF6N6GBUPX19TGr2+12w+0OfvJeXJx+A67q6uqgz2PGjCFKWmfDhg1BnydPntyj+gzDQENDQ1oGuDEMwzBMuuEx6AgDq1Iaq+jEa24/i9GsYlUm55XhLzYYRoWbECimoggJ6JAYqcRogceIj+j/DhuL0VIFq/0rJwGiPivXxUSI2iis/Ha6dubY+saknmSha7/bH3xeM6RBymJzLfwOXdsQ/dGsxNQnvfBK8wJTCQkDftgtvKIgxSq2XK34kuW1DKPGkH40+LYr87RiNCJwJNmrdDPJY0Xr99jqrVbmHVAwHXbBr6OTSaFD/W7IK9vRYjShnz2+s0jS7d6MYRiGYRiGYZjeBcfnRYbj8xiGYRiGwGaPXGazCwAgDQNYt5IsJg49OUaN6iFlFcCyzwEAJzfOxY0DrlYWW7YZuO51A6dNFNijLLkTyqu2qdMrzQy7ql3WdubdKQAhBFbIRIFVBITdDlk6DIdv+lhb7sdNwIHhzoeEsnqLPv/EfQL6+roV6kLllR3/txPvvnya2MYaol8NGqZvWG9EIbU6tHWBdpOfq5MrRnNpBCWjy4BRJuQA0uMGtteY2p/0exF09qX6T4YKG0VuX8hR+wIrvg7Lk//5e4fc9MgzIQoHBOUdtCuQZQe8hMPw0c8krj0mPte9b9fT8RSnTAjfp6xdT1d20PGxaFJGIg47BXLh68q88qZVyLLvpuwfVduA8Wp/SFrQ5AYMogt2SkJUUtAS31ZscwwIS9/UAPj8Eg67+eOloVXdgCK/Om5JHHKS6boZJu0QHRLuSq9Lmf3yUon/nJHA9kTgh43myvXPAew2/XmBFBDrtvG1I6xWamwEAPseYnkfTC9DK8bTxLg2N9B5ex0IUZziRjArFNDvWA7qW4XVbnW+a4sXo9Ue2bhT3yLxxOcS36wLH887+wJH7CFwwt5APbHGuzN0Sk21y3ojSoezeJFhkghHovdeBIBDdv4nhRBVAFYCqAeQB6AUwD4A+oRsVwVgupQywmPfDqSUG4UQJwJ4P6Cu/QH8LIT4GsBaAAU79xV6J/wWgGstfq9ez5BCYO0tvKJdvFGuqJBgBg8eHPS5pqYGdXV1MQmQ+umncDtx6P7Sgbq64DcIhYWx+8OF1h0LmpqaOPCKYRiGYRIANakWALLjLEazCTtybLnKNrB0wzq6v6UKSgzFMKG0Geon2qkoQgJoeVWgcNFrEGI0wWK0VMGq3CER/dFsm2ywI0uEPiZMHFZ+C913yrUwDkhFGUeWLQsO4YBP+sLyQs9rHsMNSbygjUYUm0fI1KjzaVi5KASxXuk1LcvRiddybX2135nHaAyjptG/AwbUEb9FWeGBjZ2I8FAjJsP5pP4dZboNdhzgnJ7g1jChOAkxGgA0eOsSIEZTX4dT9d6MYRiGYRiGyQw4Pi9xJDtGj+PzIsPxeQzDMAxDYIs8XpQ16yAAyKtPoQtNOxEYtW/s2tUTyiu6/jmmfTlO2/E8nis4VVn0prcl7v5Q4q2/2HDQbsl7N+Tapn4nXlESYcK9tx3YSszgrxwNVP0cnt4pRqMm2StkTgyAsgrkbFyDd9Yfi5nD3lQWOfgOAw332NA/Nzl9yTAk/reIngD/xCyBcmdH22S7B/h6vrKcKNspRnMQsVr+8FgPAJAtjUCjWvySicI9UVYRFu2SIz14b93ROGr428ptDr3LQOO9NvTLSU4fos5FAPDMeTZzk+N1oqtQvCHxMdUuZTGRgf2nEzHtREiFGA0A5P1XAq8+BNz3EcSA7vv0LIfAvEtsmHanodzu+jcknHkG/nJobJ8ZbW2SOO1hug/9drKi/zxxK1leFA2KRbMyk4NPILPsW9ZhWBGwZmt43rWvGThhbxPS3BSlQROqX9j52v7J28LyXth0Bg4b/kFYut8ANtQDlZo1F0OpJ8L3Cg21hEbssqf5yhkm3dg5bqhodymz61qAl7+WOHnf1IjR++9Cc4ulFkQIW5ZSAi/9my6w+z7Aym/C09s94WnVtGBN/Cn8fMZkGppjR7f4b0sjXeMV/+lBe1KQfPo90D9KXsWjdernWP/5xol/HxCvRtFsa5KYdqeBn9Vr9wIAHvpE4i+HCnLc4wwJVZSPzrHekAwVUzNMqsBitMxAABix8z8dbwA4T0qpuIWnkVIuEEKcAOBxdMvPBID9dv6n4jkA50spCc9+5uKwC1RYeDDApC9Tp04NS1u6dCmOPPLIHte9dOnSoM+5ubkYP358j+tNNrG06ba3qyfT9gSpuzFiGIZhGCZmeAy3Ml3AlhCpS44tTyn0oib7MjRtfnOylU5YjMaYhZLupaIICQBy7ZSQqPu8ohIlAYDDpFSIiT85dvMyqizRx7QQqieYFYXl2vOSuoJNjt38sZmrKWvlGE/V80GOLQ/N/vCXq6HnNd24gzqn6Per3qbV5LU6GvlYx3XdXB91++kIrRxbLuzCgT4iG+0yPAiCx2gMo6beS78KKnTwSwrGHHXeWixrWarMG58/GQUOnqicbAochbDBBgPhAf71vjoMQWVc90+NEVJ1LMYwDMMwDMNkBhyflzlwfJ51OD6PYRiGYXYiTEhRql2Q61cCi9QyKAAQl92X1HfxgYTKiO6ovYoUowFAsweY/YaBjy9Lngikaps6fQS9xk8HtevpCc9TZhBitJ1xadUu5WaCJ8CqKe94zzC95SOU+mpQ4yhVFnv6S4k/TUvOsbDgFzrvyhkCv50ScLwvfJ0u3NkH7ES8j4+IbazRCLEyUbhHHEuHt85HeU4rNrvV75Ce+0ri/AOT04eqCOfzAbsAew012SYrYrSAviQNg+5DZfF9z5fSHHIS8ODVdP7mKsi5D0JccGNQ8kG7CYwcoJZfAcC1r0mcu79EXnbs+tojGjHjlBGA3Ra8L1ntois79ZLYNCpDEXY75D7TgG8WhOXJahcqS9R94+dqoN0n0ceRGmM6qzRoQuecuYCsWq7M28f9Hbmda5s1MRrVBqdfIUabfrr5ihkmHdkp4a70usgiV75i4MS9bbDZknve2VRv/llsqHQoDJX0rJOz/w788q06z6d4xryZEKMNGgbRN74LRDJpgO4ZjO79QpNa1onS4RBDd+1Zm1KNPPo4cbZUo9y7GZuzysPy7l9WjnulTPhzrkcWSa0UrZN/f0z/fQvzutss12seEujIxPt3hkkheNm73ssiAC8BqI9QzgfgXQBHSCmPtypF60RK+Q6AsQAejLDPLwCcLKU8XUppbQY8w/Qyhg0bhmHDhgWlffBBuEk/GubNmxf0edKkSejTJ/6SkFhTUhL8lGz7dmKlnB7WnZOTA8MwIKXs0X8VFRUxax/DMAzDMDSU8CjblpOQB2w5hGQmGiFIpmNVVOJlMRpjEkq6l5uik++pdgUeI34Wo6U81PVBRaL6olnhRLLFFFZ+D93vnGXrY/qY0AnWkgn1W4SOM3TjDit9sZM8QqZm9lrdZlh/1EsJH622I3en1I3qx21+HqMxjIp6n3omSZbog772fHI76o5Lhq3rzWQCnza8T/7tD3bOTHBrGBU2YUd/h3qVR+o8EEvcxHU4mvEKwzAMwzAMwzCMVTg+LzIcn8cwDMMwBGYmoFe7gK8+ovPz8oH+KbSASIiMaJC/FnkR3vN+sgpwe5PzDkhKSYrRIoo4qInyAMSw3dQZXg+k3w/Ub1Hnlw5Tp2c4IkDMtKf7R7LcBz8l713i+5p97zc8REi0VHNM75TAwUHEpfiJGIiadep0ux0YMITeX29FIxkcY6wh85LZh9ZtU+9791IL8co6QV4ogQKQbZtp6V4GT8wX5ZXAqH31hb76UJk8bjC9SaMbWOKKvl0qdH23skTRh5Z+TJYXZZn7N48Z1Dmo2oXhxfQx/d2GuLQmIdRrQucKcgF8NU+Zl280o5iIKXDVWTsnU21wGjvCE7mfM72ejnONToy2dhstiU4kn/xi/lgviBQGtER9XQYAMXgE0CdbnekNF6OREtHBIyI0gskIohWjNSuuSQDg7H0rLQmHo+OZlYrGOgzz0vcuW5vi1CgNHy7v+b1gkLxRd9+vgcfiDJNcWIzWS5FSfielPAVAMYBRAE4EcBGAawBcDeBCAEcAKJJSzpRS0qNK8/vcIqX8I4BSAIcCmAXgqp37PQnACCnlFCnlKz3dF8P0Fo466qigz0899RS83p7JHrZu3Yo33nhDu590oaysLOjzzz8rVmeKkkGDBnX92+12Y/16Cy8aGIZhGIZJKh7DrUxP1KTaTvlGKJSwjaGxKpPzsRiNMQl1POakqAiJlPkEHCNU/3eIrLi0ibGOQ2QhS5ib9JQoEZlZ+VeypYFWfg/qOmy1rmTL4CiodoWKwcyIwqxA9YFWQjQZCiWk1OEzFCu5UfXrRHD2jjEg1d+tilgZJlPY7lWvk1PoKIkgnE7PFXCZ2OM12vHZDnWAbFmfYdgld3SCW8RQFDrUAVoNXmJ5+xhhSD88Uv0MJ9njT4ZhGIZhGIZhMgeOz9PD8XkMwzAMQyBMTLX66Ut6QjYATJmRkEU+TRMiAhEAjmrWS2OlBNbF91EySV0z0OxR5ylFMoFUu9TpRaVAP6c6z9sOuDXvvantMp3J3ePgGc3vkcWSKXao2kpPoj50VEhCtYuuaLfxHf+3U2I04j6DEqOVDO6YkJ5pjBxHZs1on0/mrVW/3k4Ia6OVNAagle6FEihCo/oPAJRXmK+zFyKOOlNfYOU3yuQZ4/TXkM9Wx1bCt5rwbQLATMXhIHV/80nTe96gDEdQYrSfl2Kmpm98vjZ9FwtsIELn+mUDWQ6hHc9WEGIUq9d1qg1Of0NYmpgyw1rlDJNu7LxH3Mv9AwoUx0Ana5I49umkzkJY8GCn/vqqvXeeeATgIOLvfYo4Y6oujYCXySC0z2Ho67lsJo7HfgU9a0+qkq9eaBU76jCx7Stys2Tc27tisM8hAV9Xez7SUVrR84YwDBM1LEbr5cgOVkopX5VS/ltKebOU8hYp5QNSyg+llDF3c0op26WU86WUj0spb9u537lSSnrZFYbJUP76178GvfDcunUrHnvssR7Vec899wQFb/Xt2xfnn39+j+pMFvvvv3/Q5wULFsSs7qlTpwZ9jtVqoAzDMAzDxB8PITzKtuUkZP+UgC0aIUimY1VUwmI0xixtxIq2qTr5nmqXm8VoaUe2SUlnoiR96SIJy7UgN40kQjUrSk2UUNUqVLtCr5mUKMwGm2lBX/B+eyYVo867OrwWrus6MVrnOdSMZJJhmG7qiVVdC7OiXeEufYNAmej4uukztPjVrxkPdqbYZK8MpzCrWJlOnQdiBSW2B1JXWs0wDMMwDMMwTO+D4/P0cHwewzAMwxDYTE61euEeMkuc/fcYNSZGDBgC2O1BSdduuwWDfHK0aE4AACAASURBVLXazWbea8BvJP490Mcr6X1Wqh97d0FOci2vABxEnI3XA7Rp3nvnWF+gLBMQI8d2/fusHc+Q5aq2AVIm530iJbXKzwGceSHvszYT097GTobo7DtUH/L7lMmk5Kh0uDq9lyPs9g75hYKza/5LbvftBsDjTXwfamuX+GmzOq8iwrmoE/nErcDHL5vfaaDMe7NLXaZfAQQlM8gUjj8fGDdVW0S+9O+wtNMmCBy4K73Nta9LPLfE6GnrAAD1LRKbaOcNTtxH8U69mhajicEjY9CqDIeS5myvwdEeWmB4yQsSLy6NTb9INPWt6nOns/OVfbWL3LbCq86zIs71eCXaiDBBlRgNoyear5xh0pGd95oO+PFg9Z/JYkfdY6DVk9x4vHoLobfDIo2Lqmm9hCguBbKIuGfVIifE+IiUXzIZhiZmUXdP2rJDnd5bJemU8G1HHa6uu53cbNqdBry+xJ2bDENiQ33P6rDbgMGBf8bn746uIj7HMExSYTEawzBMEhk9ejRmzAg22V9xxRWordW/YKT4+eefcccddwSlzZo1C0VFRVG3MZkcfvjhQZ+fffZZNDXFxud45JFHBn1+5JFHYlIvwzAMwzDxh5pYa1ZG01Nyicm7bkLYxqgxpN/yb8ZiNMYMUkqybyVb/kRBynz8kcVodpGBK4emMGYFX1ZEYD3BbJ9PtjQwx2Y+gDjSd8o1WVeyvzNFrl3d/sDzAQC4/eqIg1xb36hENHnEfltNCs9aCUGs7u9l5bpOCdqyRJ+u86AZySTDMN3Ue9UzAIocA7TbCSJwRLIYLeNY2PCOMj3HlouJBdMS2xhGi9OhFh42xFmMppOTpqqklmEYhmEYhmGY3gfH5+nh+DyGYRiGIRA9nGp13LkQlXvEpi0xQjgcwMChQWnjPD9hSdX+uLvmb+R2VduAd5fFu3XhnPpf9bunnCyglJi/20W1S51eVgH0yVbneT2AR/NuOTc1YwxSgjMuBwAUGI14f91MZZFmD1DXnMhGdUOJ0e49Nfi9p/R5gS0blGXFmZd3f7ATsVp+v1r+RkmOyjJTjAYA4jT1Oaegfi3e+r2H3O4/nyT+nfQ/59H7rCiJHJ8jV30P+chsazv1BcTTsFiPRDiyIO79AOLc68ky8t7LIOu3BqX1yxF4/2L9df7cJyR2EDIpK1w5l67jm2ttyMlS9CHqb376pT1uDwOt0MJx5XE4dHf6b3b2oxJN7vSLjWkghjeFJsRow73q/uiqM/87NGimCjiNEAnNzLN5ET4mA+ju479umotcTWzNI4uSe86hzh8qhkcSoxHXN/Hnf3T8w0GJ0YLHhlJK/f0ew+iuIzoxWhMhRusb6QFEmkJJlnfUodi/HUO96ntjjw945ZvEnZuqdwBef8/qGFoIOOwd/YIUl5shg+/hGSYVYDEawzBMkrnrrruQl9f9oqyhoQEnnngimputvfnZunUrTj75ZLS3t3ellZWV4brrrotZWxPNmDFjcPDBB3d9bmxsxFVXXRWTumfMmIGRI7tXy1iyZAkeffTRmNTNMAzDMEx88Uj1G7JskZOQ/VOCD5ZuWIMS3OnwGixGYyLjkW5SzJG6IqTI5xWfVK8qmiWIVUiZpGBWRGZFBNYTzAonki0NzLJlwWFS8heprenynSmo9oeOMyjRSI49OskIJZTzGG0wZOTVLqlxUL6dfiFMnddUhIrhOglsN/Xb6aQsDJPJbCeESIVZaoESwwSyzr0aLvcqZd6k/oew9CrFKCTEaPVeC8s4R4HuOYlZmS3DMAzDMAzDMEws4Pg8Go7PYxiGYRgCW8+mWomxU2LUkBijmCg+2LcZf65/EPtX0O9v5yZw0isAtPs0IqJiRBZmVLvU6WUVQBYhRvP7gVbN+DCHn2tTiPKKrn+Pbl9BlquK72sJJfUtkhQ6jBgQ0o+2bAAMIj6irLL733ZNrJZfcRxt2aguO2gYXU9vJ6DPhDLGrp6ADwDv/Jh4Oci7y/Tno0jIT16zvlNf9z2nrCV+DxZ/AOiQo+G3V9DCQgBY/HZYUk6WwKXT6WuJ26v/25tl8Rq6jl2oNesocQzL8GKDTmjh96PSRov0PT7g/Z/i0KY4U0esi+rMiyAYAlBJiNGqLKzBphMrFfobgj6L8kqiJMP0IkLuZY5reossmuj7sFAsidGK6Ouq9PuBSGOaPpQYrT34c3MD0Ebct/H4iAGiF6NR9235vVSM1o/4Xq0dC+eM9dCDnkSem5Zt7nkdQfdti96MrpK8fFomxzBMQmAxGsMwTJIZNWoU/v3vfwelLV68GDNmzMDGjcRgOoRVq1bhsMMOw/Lly7vSbDYbnnrqKQwYQD0tTQ9CA8fuv/9+3HXXXaa337FjB9zucOmGw+HAnDlzgtL++Mc/Yu7cuZbb+OGHH2Lt2rWWt2MYhmEYJjrchlqMlqiJ15RIhaUb1ojm9/JJFqMxkXET8hwgdUVIlLCtzeiOSKD6v4PFaCmF2WtRbpKvWaFQcr5EYkYW5xBZyLLp+7x5OV3yv7MKShISet2kRCPRCiBz7er9Skh4iLFXIK2GOoKqv8NJbuOV7WReKNT3DTzmqN9Od11gmEymwUuI0QiBUiTSb01cpicsrH+XzDvIOSOBLWHMUJilnpVR79vWEegcJ9o0YwiW5zEMwzAMwzAMk0g4Pk8Px+cxDMMwjALRw6lWYyfHph2xpnI0mbV/MW24+GlzYt8EbdhO5w01Mw91s0uZLMoqgCxiwj0ANNXTebksRiMJEBCU+mqQQ7wfWLs18W8U12rELSNCX4sS/QYAECgk0gmYfIr4riZ1hxbFpXQ9vZ2BQ0kB5ZAW9eJMALCpgcyKG7p9lvY3U8Ea6zsN7EdE/0HRIOv19lKE3a697sqN6r/B/iP1ks3VW3vULADAZk3/6ZcTvn/Z7gG2EfYHjVCQsUBxGaCRb03N0T97eGJx5AVGU411hJi0tL8AGrYCbYQ5DcDwdrUYbVODXmQbSL0mdM8ZIkZL2TE0w8SSkDHQ/m2fk0VjcS3qCQ2t5sfvEyo0mds2qcfJQPe9hIO4T/OFxBk3am4WM3l8zXQThRhNetzAyq/V1fVW4V6x/n5iamtqnJvmr+z5c4SKku4+ITdF+Z6pdHhkST/DMHGFxWgMwzApwDnnnIMLL7wwKG3RokUYPXo0brvtNmzYoDZir169Gtdccw3GjRuHH3/8MSjv9ttvx2GHHRa3NieKQw89FJdeemlQ2mWXXYbjjjsOX3+tvtkwDAOff/45/vrXv2Lo0KGoqalRljv99NNxzjnndH1ub2/HSSedhDPOOIOsGwD8fj++/fZb3HDDDRg9ejSOOOIIrF+/PopvxzAMwzBMNHiM8KBqAMi25SRk/5RwhBJ2MGp0v1dfW74yncVojBl00r1UkD+poARNgSJIFqOlB+alXIkJmDUrYEsFSZiZtpppp9njPHXPB+rfIfS6SZ3rov1b6oRqlPQsqD2EfCzP1g824jWEles69X0DhW45dvVvx/JahgnHa3jRGBpcuJPCLL0YjX65z2q0TKHZ34ilTZ8q83bPG4ey7KEJbhETCUp46JXtaDWIVVRjAHXfb4MdWUIz8YxhGIZhGIZhGCYOcHweDcfnMQzDMIwCQthjFjF01xg1JLaI0y4h884f9B2Z95ULuO51I66LbQTiIgQeAHDD8fq/jWxtBnYQNqyyCiArm964kRCjCQH0SUxsYloSMFFcAKj0upTFTntYJlyy9/ka9f6yHUBZQUhitUtdSeFAiLx+3Z8dmlgtvy88rWmHumw+vdBcb0c4sjrkaKq87xbikN3V2y2vRsLOQ0CH9IcSCh23F2CzmZgY/+EL1nfsDRCANBFmrXwzlsjMQZz2Nzrz6X9AusPfWx49DthrCL3Zda9LeLzR97cdrZIUQv1xGtF3ateTwo4gQSMTNUIIiDP/j8w/qfoJ7fYLaXdjyuLapu5TFc0rII/TxHeUVaDCqxajSakX2QbSQBwHdulDXxkSl7j3weYqZZi0JvgacNoOeqywuQH4Ym3yYvLe/8l82YH96XGRfPoOesPOewlKYO0NEaM1E2NrgMdHzE50Y3TieProxfC+1sm4qT1uUSoiymhRLAD8bsdTZN53G4BVtYk5Ny1Yod6P08J0ieGBa8q+82R0DWFJMcMkHc0yBQzDMEwiue+++1BYWIibb76562F9U1MTrrrqKvz973/H6NGjMXToUBQWFqKurg7r1q3DypUrw+rJysrCPffcgz/+8Y+J/gpx4/bbb8f69evx0ksvdaW9+eabePPNN1FeXo5x48ahuLgYHo8HNTU1+OGHH9DU1GSq7gcffBD19fV49dVXu9KeffZZPPvssxgwYAD22msvFBcXw2azobGxEZs3b8by5cuVq1wyDMMwDJMY3MSKgpRIJNZQwhFKCMKo0f1e/RwFaGkPH8+xGI0xg066lwryJxWUkKjN3wopJYQQ8ElF4BwAu+DHe6mE2T6WSwicYo3p9qTAsWFKemaiTDp9ZxXkOCNk/EOd66IXo9GyvjZ/KxDBwdhGyNNy7X2RJfrAI8Ofo1i5rpsZ/1HfgeW1DBNOg49eGp0SKHUitIEjTCbw+Y6P4ZXqQKCDnDMT3BrGDE5HMZlX7932/+ydeZwcRd3/P9UzszuzV3ZzX2R3E44gZzgEAyRyyX0piKIi8Mij4K2PeAuiiA94iwieqMAjigry45I73EICAQkhQHZyTpJNsvc5M12/Pza7mZ2pb3XP7szs7M7n/XrllZ2qPqpnqquru7/1LlQGzHLy0dIr3PdHnArOoEgIIYQQQggZExifJ8P4PEIIISQNJzDiVdUn/zeHBcktasY86LIw0J95nZ3f8Rp++oFT8Nk/mwedfvdejYYpwCVH5//5bnSHPMD2yPke+49F5bxZDUCfpY/RIYjRwnyubWXGvAF53K4+dmN/FK+X72tc9D0/dhG91kEoWJjv8zNCfW6cmim10rGoeSMp4jcAQMASq5UmRtNaA51CvSphMRqAAcnTFoNw546f4po/fB+Lv2/+7X7+qMZnji9M/fnWP+W26Ltnews09dv/kTOnzQGOPw/4808y85Ip8TRCu6RKvf6koY46DXrfw4HXXzDm6198GeqLPx+WFgoqPPElB7WfdcXtfv0ujR+cN7L6ZpN8fvkkYZumc2IQitFyhjrjEujrLzdK6Koe+xOw783iuh29QEevRnV4/PQLmoS62PD4L+SVysLAfkeg4ZF/ytvdDiyY7r3/1m5zW1qXbBkegXTQMVCjlBMTMi5Iq+d1bisejZ6I4xoeMi6++Psuum5wECkrbLvT2q3R4zPE99cXWqRob70C3PUrc2Z1HVTVLltxUBCjJdIKId2zKQVU1niUlJQEtnt3w7Vfaw197aXm5asmAfP3z1HBioz0+9z07MQW/HHTxbhwzu+N+Ude66L5R44/WfQIaevWeFHoHp99sMItz/iTszXsCp3UO7YA3f7ea2XAvjghYw5HThJCSBHxne98B0uXLsXll1+ON9/cPY2A1hqvvfYaXnvNrtk+5JBDcPPNN+Owww7Ld1ELSiAQwB133IH99tsP11xzDeLx3Te0mzdvxubNm0e87VAohL/97W+4/vrrceWVVw4LqGpubsbDDz/saxuVlfIAYkIIIYTklj7XHJxU7hRmVkZJwEbpRnZIApUAgqKsJk4xGvFBj3AuOnBQpiyzvo4hksgoiQQSOo6QKhMFQkHlYSsiBcWvpDNskVDlEr+SrELJRe1l8CM98y6n32MuL4JjNiFdA9PFIpJgdKTCt0hAXk+6ZvtZJuJUIKhCghjNLHzMZvupvzf7aIT4p8UmRgvZxWgShZyZm4wdrnbxZOv9xrza4BQcWPXOApeI+KEmWAcFBxqZQf0tiR2YC/sMkCNFFJsWSBJMCCGEEEIIISYYn2eG8XmEEEJIGqORMsxdkLty5INDjwWezXzWr2NNOPEEBUB+5/On5zQuOTqPZduFJJN5Z4OPlWNN5vRAAJi+B7AlKq/bvtOcHmY/xIYKlUFPmwts2wAAaIxHxWVjbcAjq4GTCzC2fL1FsDff9Eo0FjUvnI0YLV3c0NMFJJPmZatKXGw1qwF4eZkxq771NQDvMObd+pzGZ47PX7FSufNFuQ41yPMSDaEfuFXMU1/9FfSrz5ozU+7H0NlqXqa6zrsAJYY6/SJoQYyGh/4M/dkfQwWHn781EYUfvV/hC38x/9Z/ek7j+nP1iOSYTUJYRtAB5kg/X0wwP0yeAVXOd6w55bxPA3/5mTFr6ew2PLF5krjq3S9rfPjI8SFG641rbBaakfq4RcQ3qx6Y3YgK3YPpia3YFpyRsciAyNb7e2gRQvdq3bbhCVNneW6LkAmB4Zryzt4Xravc9yrwvkPzVSBpn/5jAWfWWMRoD94mr5jSz1ahMvOdaDxt8s6ONtNSQOUkyhXJAFmK0bBK6D8CwP7vggqMXJxf1HiI0QDgmO6nxLyWbuDpt4Fj9sphmdJ48i3AFZqicxZlI0bbVSceu3PEZVEUoxEy5vAqTwghRcYJJ5yAVatW4bbbbsPxxx+PYNDusCwvL8cZZ5yBu+++Gy+++OKEC7oaRCmFK6+8Em+88QYuvfRSTJ482bp8VVUVzj77bNx1112YN2+e57avuOIKNDU14Stf+Qrq6707qdXV1Tj11FPxi1/8ArFYDIcffnhWx0MIIYSQkdMnDKwtlOAkEjAHOkkDfokZ6fuKBCoQEkRPkhiKkFQkAU7YKd7ZW+1CooHjkQRCQcV5D4oJv5KHSMGuWf4kWdK1rZD4Kasf6ZkfMVi5CiOgivNFZVj4HtLbNrGt8/mbpxNUIYSUecY1X2K0pHmZikCl2E5lc13vTQr9hpTfOyIIByVhJiGlzM64OQK3wqkqClkmKV5Wda3A9vhWY94xtScV7fW11AmoACYFzdH1rQnLVOWjxHZvRgghhBBCCCFjCePzzDA+jxBCCElBjWKo1YIDcleOfCANfo1F0TgVqLbMTfp6LB8FymSdIJNpmOoj7icWNadP32NAiGORnOmd5ncgCPO5tieTpw/9eWDfq9ZFX48VZsKlVZb6esBcQ12KRc0Lp58ztvuHZFp8V0eLvGx1aYvR1F4Hinkztsl1aFtHPkpjZoclXKYq7KM9ir4u5zXuByVJ9lLrUQfFaL5ZINcpdLUD2zcZsw4ytQe7aO4AdnSOrDhN281t3bzJQMAx71NvEURVFDHkHGXpr1061S4osl1fio11lnAAm8gUU2ZB7TlwTtXH1xsXkUS26bQKwytqk2lyoypZRkfIxCLzGhDWfVhY3S6usapA/edU1srzrg4j6ABH2OZjtPWHUtvikDl+GfG+4Z+l/nU12xCyi2zFaJY6qhYtyUGBihQfYrTZiRimJprF/FWb89s2PbravP1ZkzzanTTqd0mtta098sLH90UIyS8cOUkIIUVIMBjEBRdcgAsuuABdXV1Yvnw53nrrLTQ3N6O/vx/l5eWYMWMG9t57bxxyyCEoLy8f8b6uuuoqXHXVVSNa9/HHHy/oegDQ2NiIX/3qV7jpppuwYsUKrF69Gtu3b0dnZycqKysxffp0LFy4EAceeCBCIbNQQ2LmzJm49tprce2116KpqQkrVqxAc3MzWlpa4DgOqqurMXv2bCxcuBB77bUXAhPV9kwIIYQUOX1urzG9UGI0SRTQ63ZD65HNDFaKSJKSiFOBIMVoZBT0JIW6NUJZUCGwiQF63W7UoFas/9L5QsYGv5KHsCBwyjV+5TbFIMHxJT3zJU/zPpZiOF4JSeyWft20XUdHvu9KxJP9GemS9Gx4eczLRJxKBJ0QYJgAOe5m7ivb7afWG7GPJkjVCCllWhLmyKXJIdPU6MNRPmZ7JROXJ1rvN6YHEMTiSScWuDQkG+qCU40StBZBlJgL8tFfIYQQQgghhJBcwfg8GcbnEUIIIQCcEYrRDj8BqsgHS6pZDTAOLX3xUZSHFD66WOGGR82DT7d1AN19GhXl+X1fFN1h3v/gYFYbetUL5ozB38UmE9q+2ZweGfvJ5ood9d7LoL/3MQDAue1/x5enX4PWgPm7/s69Gp8vwGslSUoEABcfZajDm5uMy2ac05LMCgASafFdnW3m5QCgqrTFaDjhfOBn/2POu+ZiLDrhXLy0KfN+YP1OINaqMas2v+1QS5dGmxBucrrFvzWM5x4Qs9TUWdAeYjSdTMp1iAKhTN5xODCrHoiZ5WL6qo8ANzwCFRx+H7t07wEpaIc5NB1NO4Cp1dkXp0mQRjXawjIoRisc7z4HuPZSY9aZrXdhSuXxohzx+/drXHN28Y8XeGy1xvE/csV8SXgGYKDvs/g0AEBjfxQvRDJl9VGfoQYtwvdYm0yTG1H4SEoF4V7z0sa1+OIrBxvzrvynxh0vJPH+wxW+caqCIwg2c0mrz/mI33eIwtRqQfgZ7weee1BcV51+8e4PohgtLc5YEqOVet+apGA7PzLvEXUsKi9+2kWjLEsRM2kKEKkCemQLcAAuLmm9BddN/ZIxf+XGfBVugMffMN/TH7dQYZLPoSABB5hbB2itgbt/M/LCFPmzPkJKAYrRCCGkyKmsrMSSJUuwZMkEtguPAMdxcNhhh+VtBs7GxkY0NmahDSaEEEJIweh1zdEG5Y5lusocEhFkNi5c9Os+lKvClGO8I0lWwhSjkVHSKwy+9yusGgtsYoBBmYAsRuPjvWLCr3ArUiAxV0AFEVJliGu7gEq6thUSP4IMP+exr2XGoSgxrvuR1AkEdp3zkmhkNG1dJFCB9vSAI8u+/CwTcSoRVOaAhWyu61L/L1WWFwmY63GP20V5LSFptMTNs7jVBr3FaBLaPISGTCC292/Bqq4VxrxF1e/CpCCDVIuZ2qB5tFirIErMBePx3owQQgghhBBSmjA+zwzj8wghhJQ0amRiNPWd/8txQfLAbPn6q994CT8892A0NWvc+6p5megO4B2z81S2lH2YaPAQo+lEAnj4DnPmrIHjVuVh6LJyoL8vc5lmQYxWzufanpz8YWCXGG2S247H152Ig+e/aFy0tRu45RkXFy0eoYDQJ02WVyB7zxgeP6B7uoCWbeaFZzcM/xy0yIF3Ca2GkMQNQMnLG1TddOgZ84CtZjHP79Z9FIuCtxrz5n/NRecNDgJ5lIJI7RAA3PBB77qrm1aJeeorNw/8IYmg3V2zD3ZZxHoUCGWglAJuehL6rHnmBV57Hvq6y6G+9uthyY6j8Nq3Hcz7slkg9bE/uFh5ZfbS7nWCnLFhqqXeClI3zKIYLdeoimrohYcCq5dn5FU8+Fs8/ZefY+GV8vrfu0/j66cVbyza82s1Tv6pLEWbFY8hrA19oUHKKwb6TJNnoD5urpeSyDadVkEyWesOb+MUhY+kVBDiWD+7YLUoRgOAVTHgqn9qtHQBPz4//+2PJIgFgLoKIOkC7z1E4YYPymUZFCcbOf79UAcu3v05KIjREsPj37UkjWXfiAxiixXXhmuXJKad3Qg1yYedfZyilIKe1QCs/Y91ue80f1sUo930hMYvLshPfP6OTo2XN5jz3r0PUB5SiISAHo+hCHPrgGBAwf3dd0ZXIIqKCRlz8vsUkRBCCCGEEEIIyTF9rnlaLr8ymtFi24806JdkIglObGK0uEsxGvFGlvMUb5Biua1dSQ4cT1InjPnS+ULGBr/1LCwInPKBP+FYYa6h9jJ4l9PPsUR8SM+KWcZh+y1S27fBtiGd0bR1kiDPjxitWxCeRgKVCAkCx4TQrpnodWWh6u6/zd/doLyWELKbFkGEVBfyI0YTZnikGG3Cs6z1AfF3XlJ7SoFLQ7JFOr+l9iAXyCLXse97EkIIIYQQQgghhBBCiBVnhGK0ypocFyQPzGoQs/TtP0QoqPC3y+Tjt8mCckF/QmNTqzmvYYrHYNvnHxSzVKrcShJSbd9kTo+M/WRzxY5SClhwwNDn/ftW4dvbvi0u/9OH8/9usUmQEn34CEM9kgbDA5nnTMAyiWUiLb5REqOVR6DKyuXtlApLzhKz5r/1gJjXlwAekr1jOUES64UCwBwf3g3955/ImY37DfzvCLKtQcGeTaxXXdpiPQk1eQaw9yJ5gfv/CN2a+ePOrVPYZ4Z5lVc3AYlk9m2WVIcabWEZQlukKGLID0eeLGbtteFR3PwRud9xw2MaSbd442RuekIjnpTzG+JR+wbCu2Ly9jkEjYIYzSYgTaVNCD2sS6Z1+NiukVJBEAgppX0Jz37zlEZXX/7bn7Zu8z7+e4lC848c7PiJg99d5KCiXIgl3LFFllYDUOd/dnhCSBCjxdMmBpf6R5QrkkFyJUZbcnZuylPM+JDvBuDiq9v/V8x/bm0uC7Sbp9+S845bOPAbT/IRgtgwBdCJOPD3m0ZemKpJUOynEDLmUIxGCCGEEEIIIWRc0ScItcpVuCD7twlHegRJCcmkRxCcRAIVCDlm0VNCU4xGvJEEhcUsQnKUI8oBBmUCcaH+U4xWXPitZ5ECyiD8CcfGPog3VwK3XAnWxgrbb5EqQ8tHWyd9Lz2C9GwQV7ui8DRiEZ5mc13vsWx/99+W747yWkKG0RI3RydODk7zXLd457sl+aTf7cOzbY8Y8+aUN2BBZN8Cl4hkS13QPINlSzx/I9h6k7IQnRBCCCGEEEIIIYQQQooZpSxDrcqF99Yf/EJ+CpNr5syX82JNAICyoMIegvgnuiO/g/DX7zSPVQaABo85fvQbK+TMPfbe/bc0oLV5szk9zOfavpi397CPe/e/KS76yiagL57fuiQJW4z1aHOTeWHHAWbMG54WtMRqJdMsNNuFOlUzWd5GCaHS6kwqlbobc8s7xPwXovmuP+bt108BAo6Pt+br18h5cxcM/C9J9gbFaDu2yNtgHZKZOc+ev/IpY7JNeLfB4qgzobVGk/AatsH82ha6v09uM3xIK0j22NogrF6BfWbI5/rWdmBjlvWikHi1kXv3W2wjABDe1d+trkO9fTKEzAAAIABJREFUIEaLtQG9Pq7l7b3mZard9uEJNcLJQchEQ7rX1Nra7gzS1QestnQRckWrOeQHkyKA4yjv/tCbL8t5SmXel0r32T1p8cvStbKafSOyi2zFaDFBTJsqV5+oWMT5qezTJ9/bvLguP/dl63eatzu3DmicOvAbT/Yx/KVhihqQ37WNYvLYaXNGvi4hJGdQjEYIIYQQQgghZNzgahd9uteY50eWkgvCATnQidIN/0gClXCOBCqkdJEEhcUsQgJkOcCgRFCq/0FlmYWUFBy/16JCyiB8ycQChRO1iWXwUU4/ArdcCdbGCttv0ZPSz+gR+hwRSz/Fi0jA/P1KMtNB+txeaLjmbTqVObmu9wpte+q5ZPtdKa8lZDg7E+aX/HUhj9EkpGRZ3vEUulzzwIOltadA2QKKSFEgnd+tiR3Q0gizUSKLXIu3L0YIIYQQQgghhBBCCCEABmRIEid8wJisjn9/ngqTW1RFtZy5Zf3Qn5KE7FO3azz9Vv6ERFHLWNV6r7HuwoBmAMCRJ+3+u0oQoyWEd9jhsZ9sbjygTjh/2OdTOh8Ul9UaiOZv7hYAshhtvmmuqFjUvPC0uVDpIjRJZgVk1CG9WdjuTEqOAABLz7aK5s6reEHMW7M1HwXajVR/Gv16e2JRMUsNSs1EMdouwV5KmzyMyhqoqkk+C1J6qPdcYF9gq/l7ff9h8jvvnz6S3XVve+eAuMbEoMjBb7kAsM3IF4tPFbP0hjU4ak+g2jJnu63PMpZorT2vse9v/6t9gcG+T9UkNMaj4mLrfFzLpXOhMj2ewEtqSMhEQYqxcl0ctxCYZrldG8TPuTda2gQxWq3fEOWtG+S8d564uz80iNS36WwdHtcUixoXU5SIkl3Y4xiH9+l0vB9o3mhetAT6X8qnGO30zvvEvCvu1HmRnrcIYf9zU2TG9T7uzeqnAPrvvxxdYSprRrc+ISQnUIxGCCGEEEIIIWTc0K+Ft2MAyh3L28ccUq7CUDA/LJUkJSQTSbISoRiNjBJ58H1xi9EkmdOgRDChE8Z86XwhY4NfyUMhRX02oecgxSAO9CP08iV587XM2B+vhO23GGwPkjqBuO43LjOaY5P27SVGs+VHAvJ1Pe7zuq619iWCk8RuAOW1hKTSk+wWz4m6oB8xmvleSCO/M3KTseWJ1vuN6RGnAofXLC1wachIqA2aI4H6dR+63c687FMSotuu2YQQQgghhBBCCCGEEFIUKHmolVp8CnDR13cnOA7U538Ctc+iAhQsN6iv/86c0bINum/g2W7DFHkw8THXufjri/l5NxTdYd7ujBqgotxjopZY1Jy+18FQkZRn09kKhSJ8ru2LY84E6vcZ+lilu3D3hveKi69tzl9RWru1OJC60VC3dSxqXtg0UNwi8kIyLb4rm+2WIKpuOtS3bxPzr0z8Ssy77XmNpJtPSaN52w2S1CoF3dcD7IgZ89RXbt79IRAwb2CwHm0RZI8zKA+ysuQsa7ZuM9tkPna0/Nv+7BGN791nnjTShCTWA4BGKSwjFpVXKgExx1igKmuA+oXmzAduhaNdPPIFuU/4zbv914lC0twBdJtDCwEAVzVfjfd0PWzdhgrvismrrsO8uCw3stX1QaSyVKbHHLKek1JBkDbpVc+jLKjwj8sdTPG4/Vgn3DPlklahLz3J51yI+gefEvPUFQZJkSSvjvcD/b0D29Sa/WsyOtInD922ITNtkJkNeS/OmOPzvKl12zA9YTZT9yWAM29wEU/ktl1qleSMKW2Qn3uz+jX3A3+9QcxXn77euzDh4h13QkgpQTEaIYQQQgghhJBxQ58wqBYAyn3KaEaLUkqUrlC64Z+epCA4cSoRGqVAhZQ2fuQ5xYgkM+pJdsHVSWiYgygoRisu/EqpCiXzBLylZyFVhoCyzGZbIPx8d/4kb94BycXcHgRUECFVZswbFJDZRKyjkdxJ3510zU4vl4kKp3LUwtO47oeLpDEvtd6UqXLKawnxQUtCjkqcHPIWo9ln1CMTkWjPGqzvfcuYd+Sk4wraryEjRxKjAUBLPD9TyUp9BL8yYUIIIYQQQgghhBBCCBkzHMtQq0AQzn99C+r/bYa64RGoe7dAvfeywpUtF+z3Tjlvl4inXn6sDAD41t3uwMD0HBMVHlk3eJQHgCgRUqd9dHhCdV12hSrnc20/KKWgrvzTsLTTOh/A1ITZgLZWEE/lgqylRLGoeeHZjZlpAUuMTSItDkLaLsUNQ6glZ0Fd8k1jXtWW1fjx+fL76YdW5atUQJPQFolSq1QkoRkAHLB4999SXdolRtPSdmZSjGbDM6YhZv5eHUfh8AZ5te/dp9He46/dkiSf4dCA6NOI9HtPngnF61DeUGf+l5z54iM4rEHhgDnm7KfeAhLJ4ptE0HYNfLXq0/jG9u8LEXYp7KpzqmoSwroPs+ObhX15H39Xnzm9UqfE80WqgEl+OnuETACk69Q/fwsAWLxAYdP1Dp7+snxPKt0z5ZI2H1IiCd1qaYiOOw9q+tzMdEmMBgAdrQP/t24HeoR4ZVO/nZQu0nmW/gxD6BcCKI0+9yz/582lLYJgH8BDrwNPrMlFgXYjyRnrKnf/tn7uzeqXGUSMg+x1ELC3j0kOwpTlE1IMjP2IN0IIIYQQQgghxCe9VjFaISUzlUbBhq18E4UX2pfh2bZHRKFCVaAGB1a9E8fVnYmAEma0gyyRCzsRaNcsgPIrUCGlja1uFTOSzKjX7UFCJ4x5AMVoxYYfcVfYicCxtI+5xks45kckVgj8CL38nMd+RKl+BXZjRcSpQDyZOVXiYD+j1yIqG5UYLSCI0SziM2BA4CgRtghP/V7X/YrgHOUg7ESEPhrFaIQM0hI3DzxQUFZxkid5GPhCioMnWu8X85bUnlLAkpDRMCk4GQqOUbjcmtiOuWjI+T6lZySj6a8QQgghhBBCCCGEEEJIQbBJVXZJ09SkKcBBRxeoQDlm+h5y3pb1QP1CzJ9m38QbW4ENO4F5OXZYrBPFaHaFh07EgeaN5syZ9cM/V03KrlCR4oirGBcYhAT79q3Gk8HMCrXW4ksYLZIUJhQA5pi8eJubjMsrk8DMJkZLpsV4xaL+t1vKNOxrTt+yDo1T5PfQD7+ucfL+uZ/YS2uNqFCHfInRYlFzulLD2yOpLg3Gz26PmfNnWNpwMsDJHwEe+JM5LxYVV5s/VeGFqLnOdfcDzzcBJ77De/dSG9QwRRa3aUnMMavenE5yw5z5YpZe/hjUEe/BntOBVzeZl3k9Bhxg8PuMJc83metwJAQs3PaUv42Ed73Trx24fjfEo9gcmp2xmE3CNkhXZhgkAKAiNZ5vVgMnaiSlQ5k85klrDaUUyoIK71oAXLRY4ZZnMs/p9YKAM1ckkho7hLDgSREf5+orT8t5Uj+42kOMNnUWsEPoGwGZ93yktFHKHM+aniaJaeumQ5XCc4DZDb4XbYxHrflPvKlxwjtydy1v7Ta3c5NShonMn6oA2NvDhs435Mw5C4Cgj7FYpVAXCBkHWKYxIYQQQgghhBBCios+t1fMK6T0SNqXTQwyEVjWcj9+H/sRVnevxNb+TcZ/b/e8jn80/wF/3nqTdVuSoCQSqBRFTxSjET9IAp1ikT9JSEKtHrfLWveDivMeFBN+rkWFlnJ5lalYpIF+vhc/53HICXkKA4tdjCaVb7CfYROF+ZHzSUiSEtv+bPkhVWb9Pfxe121Ss/T6K353FKMRMoQkOK4J1iHgo18hhS5QizYx6Uy0Y3mHOTB2YcVBmFEmTI1Mio6ACmBS0DTSB2hJ5GcqWVlaXdx9MUIIIYQQQgghhBBCCEHAMtmZM/6HYanyMDBlljlz63oAwMn7eQ9oXbczl6UaILrd/Nap3ktGtG3jbplQOumD76vNz8slVLi4Y46KCVVZk5E2XxhA/eOHtPh7j5YmqR5NAQLO8LqttZZFSQZxg3IcuR1IEaPpzjago8W8nEEgV9JIgoz+Prx72jZxtX8L8p/RsrUd6BFCWhqn+hjsH4ua06fOhior3/3ZEa41g/Woo9WcX+thriRQx5whZ66X5QinH2Tf7idudXHXSxrtPfa6J8mirGK9WNScTtFLflm0VM6LRQEApx0gn/ePrC6+aJnH3zCXadE8QEkCvnQG+z6HHw9AlqH4uY53C2K0ytTJWrMQsxAy7olUyXmtwy8gDcJ14+6VQDyRv/ZnYwuQFG6t9pjsYwOxqJiljjrNnGETo3Xu6hNJfSMAqPVjryUlgyjbHH7e6FjUvFiJ9L9URbXvZU/qegiOTor5b8Ry2ya1CmH/dSlhh8cv9N5OfXy9mKeOOs2fGC3MWEdCioHx/0SeEEIIIYQQQkjJ0Ov2iHnlBRWjmR9s2co33om7cdyz/Xbfyz/d9hC29gtTZEEWlISdCEKqzFwGitGID3qTct0qZiQhUa/bg4ROGPMAeAqgSGEpV2EoURkzgPRb5wsv8UQkUBwBvBEfQi+/57HXd1zo3yBbJLnZYD/DJvkazbFJ4rkeoV0dpFsQww5uT2qn4q6/67pt/+nHK7alHsdASCmxM26OwK0L+g0O4gytpcQzbQ+LIssltacUuDRktEjneasgTBwNrnbFZyTFfm9GCCGEEEIIIYQQQgghUJahVra88cTMecZkfet1A9mTFK460/5e6A/P5n4wflSYy6NhiseKWyyij7RBzapqUnaF4iDYrFCf/P6wz43xJnHZfb/l4s7lua9HX7rTvM1GUz1q3wl0d5g3JAm7pMHTyZT3arGoUDpQAJOO9D0DqF5+H+YKLsOn3gKeW5v7+iNJrQAPsdUu9J+uM2ekCxYCwsRlQ2I0s1hP2cQhZIDFpwIGUSMAoH0n9PbNxqxzD1E4/UB5s03bgff+0sVh17hY2yzXPUkW1SCI9bTWwCN/MW+sRMQcY4WqqJZlsY//Hdp1ccERcn/oC3/RuPU5wR40BiRdjcfXmPPePa8L6JcnqB/Grr6PmjITANDQb+5n3bkCcF17O9zVZ06vSI2BZD0nJYS64kY5c/mjwz7WWyRkZ9zgorM3P3I06Z4M8HFfBkDb7s32P9KcXhYGQuYxREN9Ikk6HKmC8iM3IiWEcO3WaeeMJAydVTrXJXXJN30tNyuxBdds+5aYf+cK4Jm3c9cmSWK02pTHM5Mq1LDP6Vw2/QU52vnIk4Bj3wcEhXYnFcryCSkKJsgTeUIIIYQQQgghpUCfa34hF1JlCCjLTJ05RpK32EQl451VXSvQ5QoBQALL258S83qF7yriVCCozAEf0oB8QlKRzsNikT9JSPKqHrfbWvel84WMDUopT1Gnl6gs13iJsopFTOHne/Er/fLaVqF/g2yRRYndw/5PZ6A/NPI2Qe7fmMVnXvmD2ws65oADv9d16XiBTDGurS0lhAzQIgiQ/IvRJIpvFlwyOlydxLLW+415dcGpOKDq8AKXiIyW2qA5OrFFECaOBun5DVD8fTFCCCGEEEIIIYQQQgiBYxlqZcsbT8wwi9EQWwfdM/AO+Fun24/1d0/pAZlLjuiLa2xuM+c1TPGYvEca0DxpKlRF1fC0qiylQpHijjkqOo5937CP8/tlMVpfAvj4n1z0xnNXj7a2y9sySoliUXljksBMElolUia/3CwcdzAETJ0j77MUqZkMVFQbs/T1l+Pqs+Tz/1O3515I1CRIrSrLgalVxqwhdHcn0CxMKJwugJPqkZsc+L9TaBCrBVMcGUIFQ1A3Pynm659fYUwvDyn8/TIHVeX27b+1Dfjm3RYxmiCUEcV6K+VYa1VCYo6xQl16lZy5/FGEQwpH7ykvctltGh15khNly8oNskjk3bUb/G+ofHdMnvr4d9EQlyVHj66WN5N0NfqEeaEr9O6CKosgk5AJx4IDxCx99UeHfa633AP9axXw+2fy0/ZIfaHJlUBNxMekqrGoOf20i6GUeX2llNzHGewTiX0jSmNJGkI9yxCjSRK/UhJ2Lj3H96Jf2vljHD1TOA8BXH6bm7NnRC1Cf6YuLezws8fLbdJHYY59RXkE6tq/QZVHgKCPcRd8JkRIUTBBnsgTQgghhBBCCCkFpIG15U64oOWQBvHaxB3jnRc6lmW9zvIO88v6uNuPhDa/6Yw4lQiq0QlUSOmS1En0a/P0YsUif5KQREg9yS4PMRpnOCo2vOqaX7lXrii28kj4OUfDgrgr221Firw98JJ79SRluehoqHDML+7iuh9xV26HRCHlru2FRnldl7YfdiJw0mZjl+RuE7mPRki2SGK0ySF/YjQlzKGmKUabcPynazl2JpqNecfUnlRQOTnJDXUhQYyWsEz1OkJsYlXpek0IIYQQQgghhBBCCCFFg7KJ0SbI83GbaGX5o0N/VnuE5a3ekqPyAFi/M3Oc8iAN5kfcQ2hpQLPpOLOVCpXzuXZWTJ0zIP/aRWNcFqMBAwOel63J3e7vfUV+bzl/miExFjUvXFYOTJ5pzpOEVsmUmMjmjeZlZuwBFZgg7UiOUEplSsNSaKg2xwMCwIr1wIaduX1X3STMKdQ4BaLMY4iU9jOD9GOURJuD9aijxZxP+Yc/ZjbIeW++LGYFAwqfOs5b+nLXSxqum1n3XFeLYjRJ8qmX3S3vqJTEHGOFpf0Z/G32nC7Xia4+4OHXc12okbFivbk9LAsCi9Vr/jeUKpWd1YCGeFRc9B8vy21wd7+8i8rUeD6K0UgJoZQC6heaM7WGTiaHPnrdA931Un7i9TYIXRCv8gwRixqTlSQdHqRqkjm9s3Xgf6lvJK1HSpdRitFKStg5U5DmC5wwPSbmvbJRFgRnS1uPOX1SmpzxwLlyH61x+wpzxrmfhBp8ZhH0HoulwhSjEVIMUIxGCCGEEEIIIWTc0Oean26VF1hwIgqMJqh0o9ftwaudL2S9Xqx/Azb3ZT4stslJwoEIQk6ZMS/uWt6QEgJ73YoIwp9iQRI+9bo9HmI0H7OUkILiJacKBwp7zfKSiUkSrkITUEGUKft0m34Fh5GA/XwPe+SPNZK4bbCNk9q60f6WYUs72WuRm/QkzXmDorXRCk+zOV4vqRwhBGiJm0VXdUF/YjQIYjQy8VjWYp4xL6iCOGrSiQUuDckF0nnemgcxWq/w/AYonv4nIYQQQgghhBBCCCGEiNjENzZp2jhCHXS0nLl5t8jq8nfb3w29tS1XJbIPoK33GoQfi5rTZxgG+VZnOXA+UtwxBsWGCgSAxO54gIN6X0VNss26ztrtuZM6vGV+HQoAWLKXoT5vFsRtM+uhJHFVQBg8nSpG6xbiLCb5fS9bYsxuFLMOKVtnbZbftvzmI6FJaIsa/fx0m94Ws9TBae2uRbCn+3qBfvNE0qiiGM0Pqtxi9tweg1751MA/gxBj6d7ecRE9cWBLe2Z6rA3oN88bLdehzWvlHb3jcM+ykFGy8FA5b9PAb7N0b/sm1jYXx2SCawWx48Fzgcg2Sz1LJVQG7HPI7s+zGnBYryAWgf3Yu2SvJSpT4xFLSUBDCABMEeS7ALB909Cf8ybb74Ny3QcapEXoxs6s8V5Xay3fm3md61Ifp2NAjKY7hXuKbMXXZOIj3jzsvmbp/j5g+2bzYjaR/ARDVVRntXyta+gAp/B2jp4RdQp9iJq0IRbH7gOEDbfn+80GJsdeMW5jmPjOhxgNEcY6ElIMTIwn8oQQQgghhBBCSgJRjKY8pqbMMdIg3t7kxJRurOx4HnFtlpKdNPl9OG/6x6AEQcKL7U9lpNnkJBGnUhQ9JbQQLUDILqzSvQILFLNFFi52Weu+JBwiY4eX6KHQkj4vUVvEQ5xWSGzfXUiV+a7vXue7JB4rFiRBWc+ufoZ0HfWS4Hlhqwu2a3ePIE0bLM9oxWjSvk11W6rvtusDIaWEq120CAKkupBpenT/FEeIJ8kV2/o3Y1X3S8a8RVVHoTrIYPvxSG3QHC3ZEt8+EJiYQ+zS6uLpfxJCCCGEEEIIIYQQQkjWSKKk8cbh8iQo+om7hv7++BKFMsucfWf9wsXydbl5xhzdYd7OjBogUuYhqTGIbQCYB99nO3A+zOfa2aI+dtXQ3xW6B1fs+KF1+X++nLv3FFFBCgMAR87PTNOxqHlhm7hBElqlCOF0r2CUYH0yklpn0qluieJbp8ttwEd+6+b0XVdUEPU1TPWWZen7b5UzDzl2+OegJEZLAh0t8nYo//DPh75kTu/phP7U8QP/ztsb7ieWQO/YMpR9wr7AUQu8N3/VPZl1ZeVGeXlRjBaLiuso/t55R1VUy23zrv7FuYcq7Ddb3saX7tSIJ8Y+cubXy8xlmD9NQd/3B38bef9nhktSZtWj2u1ERIgBePA1eVPdlvnQK3TK9ihGIyWG+u+r5cw3dsdrOY7CN0+T+x/rdwK98dy3Pa1CyE9dpY8JVVu3Az1CP9jrXK82x6PpzgExmtg/qspSfE1KAKGupt4zbF0//HMqM0tHjAYAOPO/fC9am2y15r/nJy7e3Dq6dime0IgnzXkVZWnlqVD4/AnDf29HAd84sQ9q5xYYSW2LnIB3gcKU5RNSDEyQJ/KEEEIIIYQQQkqBXkGMVmjhkbQ/mzRkPPNix5PG9JpALc6YegGOrTsdCyLvMC6zvOOpjKATuxitYtQCFVK69FjkhIWWUWWLKFx0e6x1n2K04sPrmlT4a5Y9oNIrv5DYxFzZfG/j6ZhNRALmYx0UjEiikdFKRios7WR3UghUgCxGG9yeJDyN+7yuS+JZ0+8o/ba26wMhpURnsl3sV9QF/c1MLoc3jX2AJ8kdT7Y+IOYtrTulgCUhuaQ2ZD7P+3WfeD0fKdLzGwcOQqrMmEcIIYQQQgghhBBCCCFFg02woybGMCwVDALHv9+c+crT0PEBk0XDVIXVV9uP+bSfuejPgQxEElo1mOf9GE4sakxWsxsyE7MdOB8p7pijouT0i4d9/MqOH+C2TReKiz/wGnImlFnbbN7OF9+joJThbWcsat6QTdwQFOK1kimTX/YKcQoUoxlR8/eTM2NRXHmG3A5tagX+79+5e1/dJLRFotRqF7qzDVj7H3PmKRdCpYs1pUH4yQTQYREOCNIQkok65+P+FnzteehrdgshAo7Cvz7v4OqzFE7cV17tN09qrNwwvO6d/nPXuGxNGKgznP5aayBmlnuqb97iWXSSG9TXfmvO2LIO2nVRWa7w5BX2/tD1/xrbuJmt7Ro7hNf+9dW9wKa18sqHvBtYchbUV38N9fHvDs+rnQaEK/D7zZeKqz+8ynzsXX3yLisHYyBrJkNV1sgLEjIBUfsdIebprw+/R7vkaAf/+z45Yu/rd+VDjGbe5iQ/YdySsBrwlk1VCX2cwX5RZ1t265HSxXTfBwx/1jOaujrBUOd/1veyTp93jOHZN45OXN1lEatWGsIOv3u2wi0XK7x3EXDhuxQe/JyD8575H3kjqff6kvQ8FYrRCCkKJsYTeUIIIYQQQgghJUGf7jWmlzvhgpYjEjA/2JIG/o5nOhJteL3rJWPeIdVHw1EDwRmHVR9tXKY5HsOGvuEvUyXBCTDwW0qip7i2POEkBLIsCADCgmioWJCERn1uD+KuXPcDgnCIjB1e0q1CS/q8hGKjlWnlEtt3l8335nVMxXTMJmyiREAWjI72uMqdCJSgPLK1r5J0bPA4JPmJX+FpNscryfUmYh+NkJHQkpCnR68ThEmk9Oh3+/BM2yPGvD3K56MxvE+BS0RyRV1QHjm2My63DyNB6juEnQrzoCNCCCGEEEIIIYQQQggZL6SLbcYxqn6hnPnvh4b+bJiqcNFi+dnutg7g4ddHX551O8zpjVPtz5V1vB9o3mTONA1oznbgPAfBZk/ddKCsfFjS+e134ivbrxNXeeyN3Ox63U5z+j4zhBU2NxmTlU2MFhCEVomUOIheYcA465PMgUcZk/UuadS5h8ir3v58bqQgrquxQahDXm0RnntQzFKNBruWNAg/mQA6bWK0Ons5yG6mzvYnOwCAFx+Bbtk29DFSpvCN0xw8+PkADpgjr3ZbSt2zSUIbpsL8nrRtB9DTaV7J1g6R3GISqQJAvB/YEQMA1FYofO8cuR24LUft0Ei5Z6Wl/u18WcxTn7oOzk8fhHPNX6BOvTCjniqlgFkNaIjLApnbBTmlVWwyOHkb6zkpVfY6WMzSPcP7kZctldse27k/UlqEcOE6P93YWNScXhYGpsy0rysJrAf7RVL/iNJYko4vMdp68zKTZ0CVF/e4o5wzw78IrqpfuFlK4fUY8JLw9frBKlYtz0xTSuHCdzm487IAbrnYwfH7KvneTClgxrzdn/3cK0SKe9wJIaXCxHkiTwghhBBCCCFkwiNJLQotRpMkMz2u9+wH442XOp6BC/MMZofXLBn6e1H1u6CExwzLO54a9lkSnISdCBwVsAhUEsZ0QgaR6lZIlYnCvWJBEi5qaHS5HcY8BwE4E2Qm4omEl4jMKz/XeMmyvERuhcRW1my+N69jKnS/IVuk72GwnyEJRkf7WzrKGVEfR8qr2NWuSe2vXzGaKFYxSNCk72Ai9tEIGQktgvgoqIKoDgiBRWlIQiONsQ3wJLnjhfZlYru5pPYUSq3GMZOCk8X79laLOHEkyOLUEgscI4QQQgghhBBCCCGETDwcQYg0Htn7IDlv/XBL1aJ5wnK7WL1l9O+KojvM26iX5/0YYNuG4QOcU5nZkJlW6e+92BDlxR1jUIwoxwECmbECi3plMcvrOahDWmtsF/xCc+sy33Fp1wW2CiO2Z8+XdxQU4tCSKfGNvcIEbuHiidMpOkwiQwDYMiDjWVQvv6dcvSU3RWjrARLmcFnM9fKRbZGlQUb5iW0QfrtgigyGgFITNYwCFQgACw7wt7DWwIY3jVmHzJPr3hspbdcOof0BgFrpZ4tF5ZUojCoctu86tvvcXmSpC29uBZLu2MXORIVmAwAW9ayQM/de5L3xWQ1Y2CcbTLe0mY+72yJGC+vegT+mzfbePyETkVkWEVEsOuxjVVhue6S+72hoFbqx4rUslVjUnD5SP1xEAAAgAElEQVSr3jvmTJK/drQO/z+dbMXXZOLjR4zWLgi+pszKfXmKHJXFM4/FyVfg+AgfHc0zIqtY1SBGS0drLf++WkOlStz9iNEqqr2XIYTkHY6cJCTHmDrnWnrJQggh4wTXzXy7wwFwhBBCxoI+t9eYXuiBtZJ0QxK3jWde7HjSmD41NAMN4b2GPlcHa7FPhTmAYHn7U8Pui6RB9oPfa1CZHy5quEjqpK9yk9JElOeMg8H3tjJ2JNqM6aEil72VKuGAhxjNIHPKJ16yLC9xWiGxnQfZfG+2YypXYTiquAPVvfoZkgQykoO6FXHMksbupCwWk/IGtzV6MZq5f2X6naXffiL20QgZCTsTzcb02uCULGSrUtDIyMpEigutNZa13m/MiziVw+TYZPwRUAFMCpqDCFsTlijpESDdm0lCaEIIIYQQQrKFMXqEkIkG4/MIIWQc4UygYVhHnCRm6Ru/OqyP/cHDFWotr6T/568a37/fHVW/XBJ6NHiJ0WJROc8gHFDBYHYDWykhGhmnXpiRdFqn+T0UADzz1uh32dkHJAWpVZ2p/m7fDMSFUdc2SY40eDqREgfRZ35XQjGaBUkQ8tjfAAAfOVLuH6/dDhx8dRJrm0f3bEASgQBCHUpBd7TImYe8OzPNJtpsFSY1qq7jfUKWqHM+7n/h6Gpj8qVL5O/8nleAj/7ORVu3ttafTx+X2X/Qz94P/d9HmVcoCwNTZlqLS3JIdZ3YN9D3/XHo7xP2lTeRcIGNlmYg37QKlx0AOLTtWTnzoKO9Nz6zHlVajh+U6n5Xnzm9wu2CMxhoVOVlnSRkYqLO/5yYpx/5S0baewWHYWs38OrG3L4bkdoT2/3gIHrlU+YMH7JPVSUIrNe8NPB/p1mMpqopRiPpSH233eeKlkR7pVqf3nOBr8Wm9mzEOT6cqh/+rcbPHhnZMyKp/wAAlWU+NtDaDPQKDdnJHxn+2Y8YrXqyj50SQvLNBHoiT0hx4BhedMXj/gb5EUJIsZJIJDLSTO0dIYQQkm/6BKlFeYGlR5J0o8/tgauFyJpxyM54M97qWWXMO6x6SUaAxaHV5pejOxPNiPauGfrsJTiRBCqAf4kKKU16ksLge0H0U0zYytiZbDem284VMnYUm4jM6xpZaFGbDdt3l833livB2lghHWtPshtaa4sEMgdiNEFWIu3Tlje4LUl4mtCZzxpMSCI40/FK30GPRexGSCnREjcHT9cFpxW4JKRYaep9Axv61hrz3jXpeJQ5PqbcI0VNbdA8eqwlIQyuGCHy9ZuDxwghhBBCSG5gjB4hZKLB+DxCCBlH+J5spvhRwRCw+FR5gT//eOjPqdUKT11hP/av/UPje/eNbFB+b1xjszAuuWGqhwQots6cXjcdSpJQVWUx2Lks7H9ZMoT66Ncy0sK6D8d3PmJc/q/LNeKJUUqtLFKYOlM4RCwqrzC7Qc4LCjFbyZQ+XY8Qp0AxmoiaKYjRAOiNb2FuncLvL5Lbg1c2Akde66Kzd+T1yFaHPGUggqwDBx0NZerb2wbhi2K0EhU1jAJ1+sVQX/gZUL+P57L6+suN6YsXKHzoCLnu/ek5jTNucNFiqT+nps07rV95Bvqr75NXmFVPCV4BUUrJ0p57fw/91isAgICj8PrVcn/oi38ZuzEEUvt19sGA2hI1Z575X+b2KQ2167v5wdYrjPktwiWvq8/cHlekxhNUCyIkQiY46sDFcuYfvw+9/o1hST96v3yuHnS1i57+3MnRpOtZXYX9uqT7+4BnBRGyDzEaqgVRYmcbdHcnIImssrm3I6WB1IdKlXR1tZmXKdH+tvrEd/0t2NGKP17i4ONLvfupn7tD48bHcyxG8xO+ujkqZqnLrhme4EuMVpp1gpBiY+I8kSekSFBKoaxsuHK0s7NzjEpDCCG5Ib0dKysr40N2QgghY0Kf22tML7QYTZJuaGixjOOR5R3CjC0ADqs5JiPt4Ooj4cA8i13qtiQ5SXhIjCZP4xDXwgyNhECW7o2Hwfe2MnYkzS9eJNkQGVu85FS5kFdlQ8gJWSV6hRa12YhYpGXZfG+27RTT8UpIx5pEAgkdl0VkuRCjCdvodmWxmJQ3KHyU6p/fa3qvKL3MLKsor9W9cHXS1/4ImchI4qO60FTf25Dn0svtzJNkbHiiRQhOA7Ck9uQCloTkizpJjBbfkdP9yPdmxd8XI4QQQggh4wPG6BFCJhqMzyOEkHHEBBNXqgOPEvP0P24a9vkdsxWuOcd+fbrxcQ2ts39vtH6nnNdgfrQ9hN4iiNEskqWsBrZSjDYyaqcaJWBLuuWYxPv+M7pd2qREtabQrFjUvHDVJChJzADIg6dTxWh95ncloqyPWM9Zfc/vAADnLLK3Qds7gb+tGPm7a1sdmuQVgijJOvbY25xuGYSv24R3d7Z6SUTUOR+Hc+srUI93Qz3eDRxzpris3rbRmH75u+1176m3gGVrzHWvLAiE08Kn9D9/AyQtsUx+BDIkt1i+c33Pb4f+3memQp3QlP/9pRyXKQtau831r2GqEgUhat/D/W18diMAYJoQd9RqvuShWwgPrEyJf7RebwmZ6Njuxe79w7DPc+qAoOVW9J8rcxO7l3Q1OoThUJ6S2GfuE7OULzGa5R5t2V2yhLaKgkWShh8xWqcgRqss0fo0ZZYsAE+lsxWRMoVffshB8mYHnzrO+xlRtnQJ/YegA5QFfbwziUXN6eEKoG768DRfYjT2VQgpBibWE3lCioTq6uphn9vb20f0cocQQooBrTXa29uHpaW3c4QQQkihkAbWljuFDT6yCVckWcl45IX2Zcb0OeUNmF0+LyO9MlCNfSsPNq6zouMZuHpgJizpdxyUmYQc+YFqQmfOlE3IID2SnMdyzhYLIVWGAMwP1jsFMVqAYrSiJOIh4hsLMZdtn8Ukp7CVJRvBoX07xXO8EuGAfKy9bjd6hL5GLo5N2kaPICeLu/1I6Lgxb/d13Sw8Tbjm9TL2LR2voW03pQ0i9T8IKSVa4oIYLehfjCap0ShGG/90JFrxUufTxrx3VCzC9LLZBS4RyQeSCFESJ46UfIpcCSGEEEIIGYQxeoSQiQLj8wghZJzhmCeNHLfU7yPnxdZBd7QMS9p3pn0QaqwN2CKML7YRtTymnjfZY+VY1JxuG3xflYUYrbz4J2QsRpRSRiHUvv2rxXVWrB/dPV2LPOebWWITi5oX9hI3SAPGEymxjT1CYShGk5knCMQA4O1XAQA1EYXZHqfvzctGXo9ahfDfmjAQcDwG4UuyDknyEbBcT1qFRjEbqSPJQAUCUIEAMM9y7XvrFWOyl6QTAB5/w1z3aiPIFF+v8TBo2cpI8oOtT7Tm5WEfp1bJi3b2js3zSUlOVhvsB9qENsWvgG/XcrWuuZ2T2k5JbFKpU66RFBqRUkaSpwIZ14mAo7D3DHnxFetzU6ROQYoGeEtite3aZuvnDTIjc3zS0LZff0HuX1NaRNLxJUajaC8V5TjA9LneC6YI5ZRSWDjTvvjrMaCnP7u+UVefOb2y3OcGYlFz+sz6zD657Z4MGLj3j1T63DEhJJ9QjEZIHkgPSIjH49i0aRMDrwgh4w6tNTZt2oR4fPhg5ZqamjEqESGEkFKnzzU/ac9GlpILbOKRiSLdiPVtwMa+JmPe4dVLxPUOrT7amN6a2IG1Pa8DkOVVgzKToEX25FeiQkoT6fwbDyIkpZQocOtItBvTg8rHrCyk4HjVt7Goj7Z9FpOcwlaWiOP/pVKuBGtjhe1Ye9xu9CbtgtHRUBEw77tXuHZL0rLUbUltlV/ZaTZiFdt3MFH6aISMBkl8NDk0rcAlIcXI020PiW3zkrpTClwaki9qg+aI/daEMOv8CJGu3+OhL0YIIYQQQsYPjNEjhEwEGJ9HCCHjEGeCDcM6/ER7/ubosI8n7y8IplL43v3Z98mjO8zrzKwBImUeMqLYOnP6rHp5Hb9yIaVkCRbxRJ14fkbaKZ0Pist/5/9p7OwahdRKCAuoLAeCSELf8VO4Xz4H7iePg/vJ46B/9x3zCl6imIAQ35hMedfWJ8RTUIwmomwD8Z//19D9/gffaW8Tnls78jK0dAtiKz8/W4dZrqAkEaNUjwBZYpSN1JGIqBM/IObpG78CnUxmpM/04ciQpDTp102dSABNq6zbspWR5Ad1guU7T+sPnXGQ3A5Fc/vq3TctwmWnLrFTXsmvGG3mQJ+qNmlu5/oSZumJJDapSI3jo9CIlDCmvvIQLz4K7brDki44Qm57rn9Q44o7XWxqGd37EUloCACV5jmSdxOLynle950AsPBQOe9Ns7gUAMWxxIDHMwQA6DSPzxH77qXATMszlEHS5PnnHqIQ8nCLZds36uozt2N+xWh6nSBjN/R7lFJ2OVp1XaZMjRAyJlieoBBCRko4HEYoFBoWqNDR0YG3334bNTU1qKqqQjAYhDPRXooRQiYErusikUigs7MT7e3tGUFXoVAI5eV+9cqEEEJIbukThBblTrig5bBJNyTp13jjxY4nxbxDa8zyMwA4qOqdCKqgcUD98o6nsWfFfqJEZfB7DSr5rUlcW962kJJHOv+KSfxkI+xE0JnMfMliSgMoRitWyj1kD5IAL5/YBBQRQYQ1FuRKaJYrwdpYYTvWHrfbUzA6GqTvp1sUo8n9nrBjF54mkYCrXTjK/oxU6jeYvidbHRooK+VPpHRJ6gTahGDHOkGUZEKJQSMcdD6eSeoknmw1D0KZHJyG/SstgWdkXFEXnGpMb43vgNY6Z4E8ksh1PEirCSGEEELI+IExeoSQ8Qrj8wghZJwzwQZEqvIw8MsnoC9baszXv7kK6vq7hz6HQwr3fsbBe290scUczoJfPKYxtcrFlWf474tLA2UbzI+1h7PFLEZTtkG9fgc7l4U5CHY0nPdpYMObwD2/G0qK6F4s7n4Gz1QsNq5y9P+6eO6rDmoi2X/votQqAuhvfgB46h5/G/ISxQiyPJ2I736b2itY2sLFH7cylqhPXQd9wxXGPH3zN6A+cQ2+fYbCD/9lfz/9i8dcfPLY7J8HtEpiIT+vuDrNwiBR1mEbgN8qiNEo/sgJasH+coTDujegr7kE6lt/GL6Oj2vB9k5zerpYT3/ePjGZ+tKNUDY5DMkLas8DoE/8APDQnzMzd26B7u2G2iW3/O7ZCj96yFyLvnefxu2XFr7vILVfk16615zhOIBNSJmCqq6FrqpFXb/Qzu3afyQt/L9bCPmvSI05rPJhHSRkgqIOPRb6oGOAleZxO/q6y6G+ctPQ5/95j8I37pL7QD/4l8YdL2g8+1UHs2tH1g5JQkPAh5QoFjWnH3osVJn3s07lONDHvx945C+ZmW+tlFdkO0LSkfptqRMriX33Eq5PM+Z5L9PXA93fN3ROT69RuPuTDs69yRWv+//7gMYtF/tvkyRBo6ecERgQHD94mzlTus8PBAGDGBkA778IKSIoRiMkDyilMHv2bKxfv37YDJTxeBw7duzAjh1jpH4nhJBRMti+8QUvIYSQsaLP7TWmZyNLyQUhVQYHAbjIfPjVK8jbxhNaa7zYvsyYtyCyL6aEpovrRgKVeEflIXil898ZeSs6nsa50/9L/I4GB0iHLLKnhI6LeYR41a1iRxISdSTbjOmSbIiMLRGPa9JY1EdpnwoKZap4BtZYxWhZSL/s2ylsn2Ek2Po17YlWuHCNebmQQErtUE/SHDnVk5TFaBWBKgB2iWNCx6110NWuKMY1ldX2HUiCFkJKhdbETmghtHdyaPTSQGrRxjf/6XwRLQlzcP2S2lPgKI9p/ci4oTZkHkHWp3vR43YNXb9HiyhEHwNJMCGEEEIImbgwRo8QMhFhfB4hhBQLljcfE1C8q/Y/EnrOfGDT2szM5x6Adl2olOM+cr7CxuscBD9hfncNDAzK/8KJGtVhf9e0dZIYbYp9fd3XC2zfbM60ya38DnYuK+yErRMNFQxBXfFLuK88Dax7Yyj9g+1/EcVoq7cAt/9b4xNLs+8PiVKrYA/wpE8pGgDlJUaThFbJlMlke4V4ijDflVg5SJ60F7f9APqCL6KiZjI+cLjCn1+Q2+rv3qvx38dohILZ1aNWIbQkXWxlpMMc4ycOpncs72DbJDFanY+CEF+c/GHggVvNeQ/9GfqjX4WqX5iTXaXWH/32f4CXzfHZAKD+usYu9iR5RV3yTWiTGA0AYuuAxn0BDIhi66eY+y9/fkHjto/lblIyv4hitJfvM2dM3wNKEH0amdWA2qat8v57gFlpzZ0oNtEphWW7Rkoc9bkfQV98uDnz3t9DX/w1qF2yorKgwq8vVLj0j3IfaEML8JunNL51+sjaIElsBAAVXlKiWNSYrI471/f+1ZEnQZvEaD1yrDLbEZKBLzGa0HevLGEx2kwfYjQA6GoDynaPKTx5f4XWnzoou8z8jOiPz2r8/iL/fSNJ0OgpZwSAFx8Ws8T7/EAQgLBTti+EFA0cPUlInqioqMC8efMyAq8IIWS8opTCvHnzUFHBl3GEEELGDkl6VK4KG4CklELEqUCX25GRZxOEAEBbYifW966FNkhNwk4EDeG9UeZ4P7FrTezEht61mFE2B9NCM0f8AtXVSWzsa0JrYudQWkt8O5rjW4zLH1Z9jOc2D6s+xihG60i24dGWe7Azvs243qDMxC5QSYh5qWit0RyPYUv/Rl/LD1ITqMUe4QUI+Bj43+/2Idq7JisZngMH88J7oiboPXNE3O1HtPdN9Lj2OpXOnPIGq7xupPS6PYj2rEG/tkwFNMZs7ze/dB8vg+8lGVJXMrOtAeznChk7vMRnYyEik86BsBOBo4onaNt2rnoJ51Kxyc9yIQ/LN44KoFyF0aczhbCrulaI6+VCuif9Bi2JZuO1fWNvk3F5BWeofxZScjREQsdRBvmc6HN7RZGTqc0MOWUIqqCxv/B698vGvpsfAiqI+vCeqArUjGh9QoqBlrgQOA2gLmgWJeWSpE5iQ+/baE/Ks8eamF1Wj6llM3JeHq01Yv3rsT1u7j9OD83GjLI5JTMA9YlWcyBsUIWweNIJBS4NySd1wSli3gvty1AniNOypS3lGUMq40VaTQghhBBCxg+M0SOETCQYn0cIIeOEInrHnlNm1pvFaACwJQrMnj8syXEUzjoIuHuleZWuPmDFOmDpPv52H91u7s/Xy4+1B9i6Xs6bJYtlVHWdv4l/yot/8rVxwT6HDhOjze8X6toulq0BPrE0+91saTen18XN7y1E5sy35weEmK14SlxdnxBTyDplZ3ajPf/1F4AjTsL5HmK0re3AG1uB/edkt/stgh+hzqOLruP9QLtgeJTEaAHLsN4287aUtC2SNWr2fPt1YOVTQJoY7ZPHKvziseyfP9VVpMQdWKRoiFQCM3wKKUh+mDFvQKZies4YaxoSowHA3FpZ7Lq1HZhZQK9Ke49GjzDveF2yxZwxLcsGcspM1L21Wsze0gbsO2t4miRYqkidaK2K7RopcbyEvK88A5y4+9qwYJqC1xSmy9aM/F2JJDQE7FIi3dcD7BTkiV7HmEq2clClgEhuJoEkEwgPMZp2XVlEXFW6YjQ1u9Hfc5IdW4G64ePVggGFI+cDzwm3+s0dwHSfIfiiWNVLzghAv/SknCnda9ruy0q4PhBSbFCMRkgeGQy82rx5M+Jx4ekCIYSMA0KhEGbPns2gK0IIIWNKQseRhFmKVZ6FLCVXhAMRo1xDkmQldRK3b70Rz7Y9Yt1uSJXh4llfwMHVR8rb2XIjnm3fvZ19Kg7Ax+d8TZQqSWzt34QbNn4bOwRRWToOHBxSbZ6pMZX9qw5DSJUhrjOfSP6j+RZxvUigEgAQVPLjCtM20+lJduGmTd/Dmz2veS5rYlKgDp+ceyXmhhvEZV7qeAa3xH7iqzwmjqk9GedP/29RSPRa53L8ZvP1RimOHw6qOgKXzPoiQo6Pp78+eK7tUdy25UbxHCx2xsvg+8FzIB2TSBEAgg7FaMWIV30bC8GKdH0otnPDVp6wYz4/TNjkZ8V2zBLhQAX6EpnXAElcA+RG+hYRvuft8a24adP3sthOxVBdH43wtNcVprKE3GaGnQp0JjOjne/bcYd1X344efJ5OGPqBSUjSiITi5ZEszE97ETE88mEglT/5ZCIjb1NuGHj1WiXgi092K/yEHxs9hUod3IjxG5L7MTPN3wbm/vXWZebV74An5p7JaqCE1uKuLV/E1Z3m0ctHVp99IQ//lJjUrAOCo7xHuOObb/K+/6zfW5BCCGEEEKIHxijRwiZCDA+jxBCxhEB78kWxyPqyJOglz9mzly/JkOMBgBnLVK4e6X8jmhVTGPpPv7erUYFsUij13wesaicN8MyqN7v4Naywk9+NxFRS86C/tftQ5+XdD+F2mQLWgN1xuXvfXVkMoeoMLZ9D22eJFZkkYeVLSK8X+1NmQA1Lkw+yjplRdVMhj7oGGClMKB9cxQAcPxCIBwCei2PAdaMQIzWJEga95js0ZZtXW8WKQHAdEF0ZRuA3ykY2igQyh3HnAH87moxW2+OZkRHnHXQyMRoe0xO2W4sKi949BmMSRpjVKgMevoeRvGq/vmXgHe8E6p2oHNy7EKFp98214em7YUVozXJcyViXnyDOePAo7Lah3rXyYg89wCmJpqxPTjNUAaNY9POmm7hUliZOmE4hY+kxFGVNdCHHgtI92Kx6LCPixcAU6uA7Z3yNh9dDby0XmPRvOyvKdJ5qxRQbjOSxKJyXjayM4vc2kioHMqZoPJyMgo8Ylx3xIC4MA5s+h55KdG44IiTBu5Rkh5jxmJNwJ4HZCQv3VvhubXmvtG/Vml8+Eh/bVKX1H/wcysdi8p5hx1nTrfdl1G8SEjRwKs9IXmmoqICCxYsQGNjI6ZMmYKystwMSieEkHxTVlaGKVOmoLGxEQsWLGDQFSGEkDFHEo4ByNkA+WyQ5COSwGNZ6/2eUjRgQPz1m83XoS1hnqVwWev9w6RoAPBG96v4+7ZbPLedzq83XedbigYACysPRnXQ+wVk2InggKrDsi7P4ABpRwXgwBxEmNDeA1r+3nzLiKVoANCWbMFNm66BFgJVdsab8dvNPxyxFA0Anmx9AM+0PWzM60524ubN145YigYAKzufx/07/jri9VPZ0rcRf9zys3ErRQNyIwsqBNlKAmyyITJ2hAPFJ3uQZGDFdm7YyhPJ4vwIqCBCyvwMrtiOWWIk5cyF9C1X30+qZMkmPPW6rvdYxGhSm5nP3/iBnX/Fys7n87Z9QvJJS9w8mqTOEKxoI9sgXFe7+OWma0YsRQOA17pW4J7tt3sv6JM/xH7qKUUDgPV9b+PWrTfkbL/FyrLW+8W8pbWnFLAkpBAEVBA1Pu7r88V4kdQSQgghhJDxB2P0CCHjEcbnEULIOEWYBHHcc/bHxSz9pbOguzMnEP3A4QpnHSRv8pO3a2zv8BbI9PRrxAQHUMMUj3dTW4R3PlNmQZVbYgqrzUKuDMoKH5c4ITnq9GEfI7oXv4x9Wly8oxe47XnzRJI2JKlV/VpznJ4JddWtUOUeMSphQYzWMxDjoJNJwBXKH6IYzQv1mR+IefqXXwMAVIUVfvURe/tw7k0uOnuzk1hJcqFRSRolwYczAtGm37aLeKL2PBD40JfkBW67PiPpuIXAx47JXjLTMCXlwx0/lcv0sSuz3jbJA7MazOkb34I+Yw509HUAwBUnyXXhN0+NTPA5UqS2K6hczElsNuapC7+c3U5OuxgA0BDPlMYBQJMhLKmrz/w9VKbGBFL4SAjUpzKvOYPoXw+/NpQFFW7+iGOXlAE49LsufvJw9v3pLmF4TGWZR9xgLGpOVwqYIUhiTUyZbZcUpRPiuyBiQKqrg+PDtpivZQCAmVnU1wmGqpsG9dkfyd/fILGoMflrp8rrXfg7jX+85K9/lBcx2vQ9oCqqzXm2Nke69yeEFJwsegeEkJGilEI4HEY4HMb06dOhtYbruuIge0IIGUuUUnAchzONEEIIKTr6XFkSla1MKBdIg3klgccrWUg0XLj4T+dyHFV7YkaeJON4pfN5XIDLfO+juT/mSwaQymHVx/he9tDqo7Gi45msth9xdj80DKkQ+nQyYxk/YrRcCEt2Jpqxsa8Je4QzZzt9vetluMgsW7a80vlvHF37noz017pWIKFHLyFb2fk8zpz2oVFv55XOf496G2PNeBl8n3oO+MEmGyJjh+2aNFZSLukcKLZzw/bdZVvWiFOBeDLzDX2xHbNEtuVUUDkRxaYKzUa1nZTy2ySOXtd1STgLjF29fqXz3zi4+si87oOQfLAz0WxMrwt5RXD7Q3rfsbFvLVoSlqlpfbKy8zmcO/2SUW+n1+3Bmu7/+F5+dddKJHUCgQna7+pze/Fc26PGvHnhPdEQ2bvAJSKFoC44RZSx55vxIqklhBBCCCHjE8boEULGC4zPI4SQcY4zMcVoKlwBvdfBwJsvmxe47w/AuZ8alhQOKdx5mYMpn3PRLoT2/fwxjW+fab/mrbc8sm7weJWlY0L8myQiGqRqkj1/EIrRcoIKBqEXnwo8c99Q2nkdf0d77HJ8fNaNxnUu+r3GexdpRMr895lEqVV/1N8GwhVQx5/nvVxEeN/R2zXwf1wYyQ0AQcobvFB7Hwx9xHuA5/+VmdnTCd3RAlVdhw8f6eCIRo19vilLP/70nMZl7/ZXhxJJLbZHjVNHJgfA5BlQYaG+ZCP9GKSaAqFc4nziu3DffBn490PGfL1+DdS83e/MHUfh5g8DFy1WOO6HLvp9hvkO1h/dtEpe6PzPQs3OjFcmY8DsRuDlZWK2/s23ob77Z1SFFRbOBFZvyVzm909r/OZCXbD7fkkMOq+8HQEY2sg582U5iIAqD0NX1qAhHsWLkUMz8qOGa3C3IFiK6F0xgYEAEKFwhBC15wHQJ34QeOj/jPl620ao6XOHPp+zSOH1qx386GGNGx6V3398+W8aHzpCY1q1/7aou9+8vQqvLmwsak6fNgeqzL8YWLQrXUIAACAASURBVAWD0NPn2qWzqVA6TEx4idG2CmK0SBVQMzk/ZRonqHM+DixaAqx4HPrHnzMuo2NRmL7h6rDCntOBt7aZt/3J21yccaCDYMDeJkn9h0o/zwZiUWOyuuhr8jo2YbV0708IKTgTM4qfkCJHKYVAYAQzOxBCCCGEEFLC2MRo5UUkRpMEHi1xw1RIFiR5wJruV43p7clWJHTcKh/xs32JkCrDQVVH+F5+v8pDEXYi6HV7fK8zt7xx6O+gCqFPZ/7mXgKVuBtHZ7Ld9z5ttCZ2YA9kBhq0J1tztH3zb9CayK6uZLv97LeTm/KMJal1q5jJtpzj5bhKjaAKYVbZHoj1b8jIOzCLdjSXSHVlbri46lBtcDKqApPQmRw+FXRIlWF62eystjW3vBGrul/KTC+yY5aYW96IaO+arJZ3cjAz+ZzyBigoaIxusGj6NV0iroW3l4P5rpxfpswBDXPLG7Ghb61HCUfORLguktKkJW7uG04O5kaMJu83N+dMS3wHtB590GhXsiMryXG/7kOf24uKQNWo9lusvND+hCj3Xlp7SoFLQwrFvPCeiPa+WfD9KijMLvcYiEYIIYQQQkgOYYweIYQQQgjJCzl4L1u07LGXKEbTT94DlSZGA4CAo3DRUQo/e8T8jvmelRrfPtO+26jlddI8rzHJsag5fVaDfb0qn3Kh8sLHJU5Y5mTG4R3X9Zi4eNIFnnwTeM9+/jbf2auxvdOc1xCP+tvIYcf5Wy4sSFx6BsVolliILMQQJc3Cw8xiNAB44RHguHMBAHvNULhoscItz5jboH+u1Ljs3f52ubFloN6ZaPSSNG6OmjNsbVFwJGK0uuzXIVbU0nOgBTEanrkXmDd8MjGlFBYvAH54nvr/7N13eBzF/T/w9+zd6Yok6+RuuUm2sXGhGJteDMGGQKhOIAmEGkIKCakkkMYvvZPeviGEkEYgQEJCTQi9JxTTYmywbGNkY2zJRbqTrszvD+ns0918ZndPp9NJfr+ehwdpZ3d2fNrbnbudeS8+8idv46t2HT8P3ya3Y9a+nuqiwacmNdtHzj1yG3QmAxUIYPYEczAaAKx6A5g9YTBaWOw1YVh7s7PJXDB1r9J2NGo0moWwUVM4W6cUbJIbp1IXZ2g8UR81ZyG0EIyGR+8ATn1fv0XNYxW+dhqswWipDHDn8xrnHOr9fdYp5PvWunRhdVurucDtc5nJxOneg9HYtyYTt2C0N14zl0+cxusSANU8F2ieC/3ys8BtvyleYdWz4razLcFoG7cDT7YCh8607186D0VdAhp1106gw/wAaeu5yBZYHWYwGlG1GMHfyBMREREREdFI0m0J2IoMQTBaVAhGS2TMk8r9BIT1rm+ux0bat0lnRhgFJFg2+nREA96/1Ktxwjh+9Ds8rz+v9gCMrdl9BzjomENUUll7MFoy2+l5n26kgAAMMCzGrX4/f0ebZDaBrJafhui9nvK0Z6jMie2DieEp7itWgf3qDkZD0NtTZiJODIvrjxzkFlGpjjIEiQQQxOENS4egNcCCukUYExrfb1lI1eDQhmOHpD0SRwVwZPz4ouWHNSxFjePv5vWR8bdCFTyPqDkyG9PCLnfTqsRhDcd6DjsFzMdcKRqCjdi/7tAB1RFUQRzesGzX7yFHvhOZ1vZHp0qBqEEVFG8+HxZfhqAavGfCDPfrIu25pGDkxpC/YLTCc6ubcr1nssigR1uerO6RW9CyyUDDIquV1hr3d9xhLKt16rGo/ogKt4gq5YiG4xBSbo9yLb+F9YdhVJBPsSciIiIiIiIiIqJhzhm54btq0dFyYdsasegtc+T7R8+sB1a/oaG1fL+l1RCkAQCTGoBIqH/deuc26P/8G/rRO6BXPgVseMVc6USXB3V4DRfiRPuyUQccXbRsemodZvTIDz7790r7sZPPFrDX4jUYzWNwg5KC0ZJ990ZTlvuawcrfoxmOrOej1/ufj96yt7zqSiGwyGSN5Tm0bsFoJYU0lnI9qWvwvw3ZHbBELBJDXgAcY7n2FZowqq++DZYHPe7PsaBVw3C96ifVA2xpAwAcNlM+DmznlHLbKTx7fkyPkExSSlARANTF0ZxaZywyXYfFgKXcWP96jh8g2mXRMWKRdD2qjygsdvnY86rPc1GXEGgYE7qwevMG6MfvBp550LxCqcFoXgW9j7OmPYl0fe79bKl3CImijePNy/dQasY8c8GKh6GT5nHBx+xt7yOv3OT++b6z27yOFNCo33y97zz0gFxpU7NcZnvIVlT47E9EFTd4s4OIiIiIiIiIyqg7a75rp+AMyYTeiBASlhCCuaTlklLCsRLZTtTD28CHLiEYTUEh7ER2/d4YHIdDGo7BsY0uj+40WDb6dIRUCI9suwdb0+abq/WBBsyvXYzTxp3Tb7kUBuMWZJCwBNCFVcQYotKdTRrDDpLC30AabKXgIGwI7snoDFK6+C6R9DeWjhUHjjEYKKuzxpAIDY3ubNJXoJ25PeZ2BhBESAiwqwZ1gVGYX7sIp407d6ib4lldcBQ+OfXruGXzdXgl8aLx7xpQQcyI7I0Tx75z2AS+7YmWNJ6IgArgkW334I2e1zEtMhPLRp+OWTGPj7Ets4gTxSemfh23bP4tXk38DxPDU/HW0W/H9MisIWmPzUlj3o2IE8V/tj+ItE7jgPrDcMKYM3zXs1/9wbio6TLc134b2tNvYk5sXywfd8GweZJTc3Q2PjzlSty95Sa0Jlchi4xxvUk103BE/Liyhtxd0PRxjNk8Hit2PoHtmXbP2yk4mB6ZheNGL8fM2Nxdy20hZWmXwNOUGIwm9/1mRvfGJZO/iLu23oS1ydXQKC0kNK3Txn6HHJxKVN3aU0IwWtBfMJpECg+T3jOFnzt21aM1urX5s18i22Xcxg+3oGWTkRqM9kriJWzobjWWHdpwrO9QUho+pkRacOmUL+GOLTdgbXI1MrAHlQ5UQ3A09qk9EKeMO3tQ90NERERERERERERUEY4z1C0YPMeeCXznEnNZ21ro7gRUuPgBpicsABwFZIVbKrM/n8WS2cBNH3Qwurb4nr0UaNU8ZvfPWmvg+u9D/+JzQNb9HrBym0zvNVyoZmD3pijPIcUPfHOg8aXNX8Y5k681bvLtOzWee03j+osd1Efs4z2kAJqATmNq6jVPTVRNLZ7WQ1QYj5fsG/dnC0arYTCaJ/sfJRbpW34J9Z7Ldv2+fKHCucI93dYtwAMvaxw123280BohpHFMLVyPv5KC0QIlTOv1GupInqkps+QRATf/Avj4D41F85oUzjlE4XeP2ccTKAWMivQGNuAf18jr+QmBocG1z6HAlFnAa6vlddpagfFTcNGRCpffbD4Gzr46i81XORUZrygFGdUmzBdHz9e7QvVxNL/eaix6vQNIpnS/UFsxYEn3jfWvYzAaUY6ata98Pbr++8AHvmYsuvJkB8t/nkXKPMQYP7pH48qTvbejUzqfFHRhdXcS+hvvA+65wV5hCdc3NWm699F6IY5vIwPp2pubB7ZTCEZjYGd/C4UAYa2BG34MnPuZoqLzD1O4+kGNlZvMm154rcZe4zUOnyX3j8TzUMHbXfd0Q3/zYuCf14t1Aej9Hm/8VLnc8rlMRQY2F4+IyofBaERERERERDQsJIXAq7BjDrsabFHH/AWXqZ0ZnTYGYwHAxJop2NhTPPAmaQgQcAsF68p4D1/rypqD0SaHm/HZ5u97rsfGUQ7eMvoUvGW0/1C1UoPRTK9bztdmXo1YoK5o+TfXfgrrksU3sKUQBykYYWZ0b3xi2teLlr/Y+TR+8tqXjG3VWhcdv9KxvnjUUTh/0seKlm/q2YAvrTEPSkxmuwYcjCa9pktHn4pTCwLtaODG1kzE+yZ/eqibQWVwRPx4HBE/fqibsUtjaCwubPrkUDfDlVIKy0afjmWjTx9wXQvrD8PC+sPK0KqhMTu2ALNjCyq+36AKYfn487F8/PllqS9guQ3hdl1Pa3NQi9RPyJlTuy/m1O7r3jiLx7fdi99uLB7cKAWnElWz7mwSndkdxrLG0DiftZk/e0l9ZKkvOT0yC5+e/p2i5R3prfjsKxcat0lkOhEPjvbYTjO3846J16fQDzcPdNxhXK6gcFT8rRVuDVXazNhcfDh25VA3g4iIiIiIiIiIiGj4USM3GE3VjgJ+ei/0JccYy/X/fRHqI8X3d0JBhZe/6mDW5+TAsvtfBj51o8Y15xffa1orBaONzVv32Yegf3aF/R+Qr6nZXu51wjOD0cpGBYPQRy8H7ru53/J3b78Bl4//GjaEJhu3u+N54It/0/j+O92C0cz39KakNiAoPIyuyDiPD6mM1JqXJ3LBaMJMbgAIMhjNC6UU9CnvBW79dXHhG+uhd7RD9YWExcIK91/mYMl3zOego7+bRddPnX5hPSavCuF6LV6eNdbWalysyhmM5jhArN7fNuSJuvgr0P/3BWOZfm011BTzw0d/c77C/S9rrNsq190QBRxHIfvtD8n7v+SbvtpLg0spBfz6cejjx8grtbUC+x2B0bUKcycBL7UVr7K1E7jlaWD5AYPV0t06u83XwNpO80PNMan0YLSW1Ati8dotwJyJ+e0yr1ebe4C416Baoj3F2ZcBfyj+vIVMBnrzBqhxxf3lt+2r8MBlDg79prkf1N4FbN6hMa7e23wrMdCwsAv75x+4h6LBpS8k8ROmVsNgNDJwDUbbZi5nYGd/M/cBRo0Gthd3dvWvvgic9UmoYP/PNGPqFB76jINxn5C/Hzr1p1ls+LaDsPD5TOw/FJ6HbviReygaAIybAhW0zDuwfS5jMBpR1Ri538gTERERERHRiNJtCUYbChEhGM0UpiUFbAFAY9A8asK0TTJjfg12b+M9GK0zYw5GqzUEhw2FUInBaLbXOuIUP7EUkEPu/AajSSERUv1ZZNGji7+1lf6OUj3Ssdhb18DDWxJCAEzUEQZ4ERER5VFKlRx4mhaCZYNq8J/5Eg2Yr3PluLYSVVp7ShjBDfnziMRvJLUU+iv1YaU+L+Dv846klGA0eH8G5bCxLd2Op3c8aiybV3sAxtZMNJYREREREREREREREe0RbA9NcUb4NKxZlgdQPXanWNQ8Bgi73Ma94T8amWzxa7t2i/n1np6XR6I9TLrvx20yfbQOCATc62EwWnlNm21cfN6231k3u/5J9/t1a4Rbos2pVtdtdxnb5G09KRgt2TeewBaMxvAGz9TUveTCB27t9+sClz/dP1903986IaSxZaz9LrnuTgAdm82FtjAQx8M5KF9dHGqkX4OGSpMlJOrffxGLHEfhK6faj4/GGKB3dACP32XZ/wy3FlKFqZjLWPq2tbt+PGCafAxc/4QcClJOUoBILG1+iKL13GRTF8f01DqxuPBa3CkFLOXG3zGAhqgfNdlyPSgIF8538AyFH79bPhfd/JT3sW9iIFFBF1b/68/eKhzsYDSGDpOJWzDajnZzOQM7+1GOAyw8Sl7hmfuNi8fUKVx6rHxO2toJ/PMluVqp/1B0HvL6PZHbecgajMY5c0TVgt+GEBERERER0bAgTagPq6EZfCSGaWWKJ+vbAs0aQ96D0dyCALqEsDPzuuabnTGnOoLRpACVlEuQQVII8QqrCBxlHkgihTIkfQafKCEmwm9wmd8gMnt4xMDDW+QwC3PQHBERUSEp8NTtui4FGEn1lZN0nevR3choj0+TJqoS7WlbMJrlCbdlIPdtzX3YGhWGA3O/3fRZy69SgtFGXiwa8Mi2fyKDtLFsSfyECreGiIiIiIiIiIiIiGgYkSbYjhDWIJBtQmoQesNhFrnMX+/qATYY5h9vEW4BNeXPSV73sr3yfEoB46e6rKKA+Hj3uhpGe98vuVJzDjAuX5x4yrrdpu3Ati77XbvWN83lLam1xuVF6uL2YMB8USkYre9gtgWjMbzBuzmLxCK9vv85obFWYYblmWArN7nf9d3SaV6nqSC3R2sNncy7D245N2KcJbHNb8hZrN7f+uTd3uZzEwBol+vP5EZ7vyAeBfD6q0DWEpA1e39rHTREjjhJLNJtrbt+tvV/Vm4qX3NsxAARLYwhLzUYLT4OEd2NSak2Y/GagmtxlxSMlmtXPYPRiPqZu1gs0utXWTddPF2+Hr1ofssaycFou+vXmQywxkPqLAA0NXvfec4kH8FoDB0mE7dgtJ3bzJsxsLOIOmiZXGjpJy92eRuv3Ch/PhPPQ3kfpbXWwOoV9p3kWPr6AFyC0eS5ekRUWQxGIyIiIiIiomGhO5s0Lh+qcCY5TKs4RMoWsNUYNI/GMG0jBVTluAWn5evKmkPUYoHqDkZzCzKQgsAiAfkLSTnkzlyXhnmAghK+QLcGl5mC9KR/g3Csh1SNGB7hN9zNRDquopbXlIiIKF+p13UpOE2qr5xswabdLn0yomojBaPVBxoQcvwNvJfCgLUQHyb3bc3vMaWU2M8sR+ivWyCjifRvG64yOoMHO8xPox4bmoB5tS4DQYiIiIiIiIiIiIiI9mQjPBgNAHDM283Lt22BXv2cuNlH3uL+2vzqoeL7Lh3CLaDG/Oypp+5zrXuXcZOhvEyQ9xAKokoNDiGzQ08AmlqKFp+w807M6llt3XT1ZnvVrUI2VXOq1VvbTn0fVNjjQ3qlydGJXDCaMJMbYHiDH/sdIZc9fFvRokuPlc9Bn/6LxrPr7fd93c5FOp1G9seXQZ88BXpZI7Lv2Q/6gb+JwQoAgPpGsUgpZZ+EX0gK5KMBU5NnyoV3/QH60TvE4rjLEPbGWkDf+BN5hSNOhproIwCGKkYt/6Bc+K/rd/149sHyuee5DcA1D1lC8cpEDBAxjf+ui0OVGEim+gKOpGvrw3mX8kxWIykM0dnVLgbQEPWjbCG9t/wSOm1+CCYAHFTcxd7lx//WuPDaLBI97mPgElKgYf4Qwyf/6VoPgN5+ztjJ3tbNN3YyEDDPjSkSHPyxxDQcSdfmXDBah7mYgZ3FjjtLLNLPPSqWLV+oMEX+KITL/qLxUpv5nCQHNOb90iE/LLqQOukC+woMRiMaFhiMRkRERERERMNCtzYHUIQdj4NRykyerF98E9E2gb8xZA5GM4VyuQWfdRlCtiSdGXMwWm2gOp4qFyoxQMVv8IKtTKpLC/eEpK/PbaFsfoL0ogHzwBZreIQQ7uaHFMhne02JiIjylRqMltbmgRyVCEazBpv6CKMlqgZbU+ZZAlJIs5XPyT7SZyFbyG7MMfd7u8rw3nM775iMtGC0FTufQEfaPDPkyPgJcBRvHxMRERERERERERER7cnUB74qlukLFkN3mx9w+s4DHfzhIoWDLZPyv3abxvMbdt970VqjXRjeFI/23pfSTz/g3uh8XgNmvISeMRitrFSoBupn9xUtDyGN+1uX4h3bbxK3PetXcrCM1hprhHnRLT2txe348p+A8z4LTN0LmLEA6n1fhrr4y27N300KqMqkoVM9QEpIlACAoL8HV+3JlOMAp11sLmx9CXpHe79Flx5rv8951HeyeHOHfO+3Q3hGXi74Sv/scuCGHwHb+g62tf+D/vw7gUdul3fqFvrjNfQDACIMRhtM6pJvimX6irdDr3zKWNbgEozWkNoK3PUHeb//7/ee2keVpw5cChy41FyY6oFuawUAjKtXuOZ8eSzNRddp3PL04I476ZSCjEzjvw0BpZ719YtahGC0Pz6hkcn2/lulcKX8dikGoxEVO+8KsUj/8vNimVIKn1gmn4uufUTjgmvdz0WdQnhaLhhN79wGfdmprvUAACZMhfLT1+mjgkFg/BRvK4cYOkwG0hjX3ESwHUKwMa9LRVQkBux/lLnwX3+Gzpo/p8fCCo9cbv98duS3s9iRLD7nSP2a2vDuv6u+Vv7eqp93fwJq+t72dRxLOxlOTVQ1OLKdiIiIiIiIhoXurHlAVdhxuas8SKLCZP2U7kGmIMRDCroKqRrUBUYZy0zbSAFVOX5COrqEYLSYU+e5jsFUaoCKGLxgCTeRQ+6EYDQhGEEJX7OEVUQs8xOkZ/03iOFuAwuPSOsUUtr8zTKD0YiIyKvSg9HM16BKBKPZrnOJjL1PRlRt2tPmWQCNoXFl3Iu5j1zW4OIyhP5K5xUrKRl5mHqgwzwwP6RqcGjDWyrcGiIiIiIiIiIiIiIiqjrjptgflmMJAXr3QQ4evSKARZZsst88svveS6IHSGXM6zX2Dc/TN/7Y1tpiXoPRmprd15k0gPAQMlJjJkJd8aui5RMyb+D6DedgZmy7cbtVbwDpjPm+XXsXsN08vBTTU2sNC+fAuehKOH98Hs5v/wt17md6Q7i8sgVUJTuBVLe5LBAoKRxiT6ZmL5QL77mxaNE3lsvnrh1J4E9Pyvd+24Whlo0x9Abe3f7b4kKtof90lXnDcBSqxiWsIxC0l+fjpPzBZQtMyGSgb7vWWBR3GUbb+MZLcuFBy6DCQ/NwcPJGvf2DcuGduwPvjptnf8jgrx6Qwz3LoVO47NSaxpAPJPS1b9vpqXXiKvf0HfJSqEm/dtU3lN4WohFKzVggF952LXTa/LBhANh/qr3um57S2GwJiQWALiloMZfte9/N9p3kG8j5ZqLHbd36WrRncgtG29luLq/jdclo/yPlsmfkIPspjQpfO13uI23t7D0v5ctmNZLC1ILa/Izxu6+X25RHveUd7ivZgs3DnDNHVC0YjEZERERERETDghQKFhmiYDTbfguDraQwgKgTE+vp0d1FAWuJjD3kqstPMFpWCEYLVHcwWsolQEUOXpD/XnKomL9gNIlSStx/4T601kgIgQ+2f4MUHpFwCdNzk7QEv9iC2oiIiPKVel2XgtOGOhhtoMGjRJXWnhKC0YJjfdelYB6oIGWHldI/jwXMA7r9fN6RpLU8OEzit/9fzdq612Nl13PGskX1R4jB3UREREREREREREREe5SjTjUvr4kAtSN/oqwK1QBTZonl+pUVrnXMmyRPfl2xfve9l3bLc3HiudtJGw3BVjYeJ+Cr5rn2FUI1QBOD0QaF5bWfpDeLZa8J89fXmG+HAgBaCoPRasID/7tGLOPmEp3yxOoQgxt8a5knFunVxeci27kHAJ59TS7rEIZKxmMKaGsFOs2hfdi+1by8Lm5tCwAg4GP8i+24o4FzuyasMl/7Rrnkmo3etkYutIWxUXWwHBf5/aGJo3pDFCW2c085SEFGtdrQ0XI71m0mTAMAzO9+UVzlmb5+nhTW1tuuXDBaY+ltIRqpbO/RHe3AG+vFYrd+UCYLvPC6ffdi0GJfN9bU/xIN5HwzfY639YI17uvQnkd6K2gN3Z0EeoQDvd5D/30PpCyfyeByTpjvcl56puCUtkMIPAeAur5+t9ZaDiPPFwgAk2e6r9dt+WIqWh3zK4mIwWhEREREREQ0THRnzd9whZ2heVpW1JGfvpYsCLaSg65i1noKA9YKfy9a3yU4LV9nprqD0UKOecBHOmsPUJFea9vrLIeKSa+3ORhBCono3b+wj4L2pnUKGZjDGmz/BjncbWDhEVKQBWAPjCEiIsoXEoLMpOCznJRw3ZfqK6eQExID2AYaPEpUae1pIRgt5D8YzS/p/WLvn5vLEmUIRpMCGR3LLdORFIz2QMcdYtmSxhMr2BIiIiIiIiIiIiIiouqlJkwD5i4uLjjuLChnz5iGpY4/Wy5c9azr9uccIo+juud/wFm/yuLe/2kxiAjoDRjRqR5P+8unJk33tuLhJwF1lqC7o06DilXHWLoRx/T+6nPBK98Sy5ZelcVzrxXfu5OC0cLZJCal2/ovXLIcaqABU1H5XieSlmA0Bjf4N+8guezFJ4sWHT8fGF8vb3LNQxrHfi+Db92ZRTqz+1hKpjSSwhCWxhh6g9H88hKsUOMjLC9iOe5owNSkZmC/I+QVnn8UOpMpWhwKql1hMSYt256X93n8WT5aSENB2cI07v8r9JregDDHUTjb0vdp2wZ0pwZv7IkUZBQzjLNRy95Z8n5UqAaI1uGkHbeL6zy/off/Ulhbb7v6OoC2fhjRnqplHjDFcu5paxWLFk4D5jfZq//g7/v3gQpJ791Yrhvr47OZOq7065z182g+P30p2oOIyWjAzg55MwZ2mh0mjyvV6162bnr8fGCs5WuVH92j8cE/ZNH6Zu95yRaevyuEdusmoNvDOP7D3gbl5TNZwjIumWF5RFVjz/hGnoiIiIiIiIa9pDChPuxEjcsHWzQgD44pDNSS2h5xoohY2p/M9N/OFlIFAF0egwIyOiPWVetUx2AuKYjELUBF+ndFAvLrLIeKmevK6qxxuVLy1yzRgHlQSuE+bOF3tmNOql8KivOq1PYQERHlK/W6ntbmsNCgEKBablIIqFufjKiaaK3RnjLPBBgdLF8wmhQeVhganWP7HBSTgtF8BEFLpPNOSMmTEEZKMFoym8Dj2+81ljVH9sL0yKwKt4iIiIiIiIiIiIiIqHqpr/8FmH9w7y+BALDkdKiPXTW0jaqksy+Tyx65Hbrb/JDTnKXzFJbOlcuvf1LjuB9k8fvH5Psw8RigP36CW0uLTfQWjKaitVBX3W5e/9AToD71E//7Jk+UUsCpFxnLzt32e3G7V98Ejvx2cTha6xbzcTQ9tQ5Owb0+9ckf+WytgS2gKtElB6MxuME35TjAKe81F656BnpH/2CDmqDCXR+zT5e9dyVwxc0a7/n17mOjwzIMJB4D9Pc+4rnNu9R5mEQf8nFM2AL5qCzU/5PPPwCgrzSHtISD8jbNO140F5x0IdScA7w2jYaQev9XxTL9oaN3haN9a7nCflPkev74xOCMPelJa6TNw9pRawpGm773gPanvvEX1OlOLEo8ZSz//eMamawWw9r6tcvLeZJoD6OUgvrBnWK5/u6Hrdve+mEH+0+V61+5CTj7avl8JL13a8OATnYBKx6WK8+J1UN99mqoeQe6rytQCw4Blr3bfcUQg4fJQAnBaNolGI2BnUYqEgNmLDAX/u1X0Fo+p4RDCnd/3P757Jf3axz6zSzWaYENLgAAIABJREFUb7WH58f7hhzrG3/s1mTgwKVQV/yf+3oA0LVDLmMwGlHVYDAaERERERERDQvdWfNgKtuE+sFk229hmFRCCCyLBmKICpP+TdvZQqoA70EBtvVigeEdjCa9RrbXOSIEfCUyXdYvaQvJz/qSjxevx0pvHXIQmVT/QINbbMfcUL33iIho+JGCzNyD0czlUj+h3KTwVLc+GVE16czuQI82j1hqDPkPRlO2p+kVLtFafL9IfXBADuAtx3svnRWC0RzbIKmREYz2xLb7xNDuo+LyU/2IiIiIiIiIiIiIiPZEauwkOL94AOpv66Bu2wjnq9dDhfecsTIqGIT6pGWy6YO3utbx3TPsU9YyWeBbd5rvw4SDQGTdc8CzD7nup8ikZs+rqrmLoW5YCfXnl6Cufqz3v9va4Hz7r1CcFD2o1KJjzcsBLO5+WtxuexL40b/7HzdrzM+JQnNqbf8F7/woVO0oP800swVUJTuBlJAoEWRwQynU4qVy4b+uL1q031SFWz7kPmX2hv9ovLyp91iyBqOFeoC2Vtf6iniZRO8nLI/BaINOjZ0E9Yfn5BXuvwV6wytFi3vMz30EAMzoWWPe13mX+20eDZUFh8hlO7dB3/RTAEC0RuGhz8jnnitvHZyxJ/YAsoKT2wnnDnyHM+YDAM7Y/hdxlVueBjqFjFAAiOq+sSvsaxEZqQnTgLmLzYWvrYbukd/4LWMVnvpCAAe3yPXf+F+NlRvN56Qu4b0bqwFw3y1ype/6WO9nqeuehrp9E9QJ58jreqTe+wX3lRiMRia2YLQdtmA0hmBJ1NGny4UugYn7T1W47kLbbDtg03bg6oc02i1TIuO5YcV/+K64jrr6Uai/b4Bz1W1Q9Y3Wfe5iCUbbk74HJKp2DEYjIiIiIiKiYaFbmMAddiIVbkmvgAqiRpkHJRSGUUmTzyNODJGA94C1ZMby+AMAXZZQrXydWfmLu2oPRku5BKhIQWC2EC8p9CSLDFK6+O6OFoMR5C9rpWA2r8dKbx2W8Aih/oGGR0ivZ0jVIKAsj7kjIiLKI17XhYCinLThOmyrr9zE4NEMg9Fo+GhPCbMAAIwOjvNdnxyMViyle5BFxlhWUt/WYxC0TSmBiz6ykquW1hoPdNxhLKsLjMKi+sMr3CIiIiIiIiIiIiIiouFBjZ5QniCl4WjKTLFIP/eI6+YtY+X5yG7iMZQWihYMAeOn+NpEKQXVNANqzsLe/0aN9r9f8s9yfM1Kvmzd9OHV/W/gbdxmvqE3PbWu3++qyZIQ4YMKhnqPNZNkJ5ASEiVqGNxQkskzxCL93KPG5bPGe6s6dyy1bZPXadxiPx5FXibih3wEo0UYjFYRE6YBgYBc/txjRYsOEk4tjtKYll5fXBAIAuP8XatoCE2abi//29W7fqwNK9QJb2spbGigbPXGdP8xbspHeKwoPg6IxDAzZQ79A4Dbn9Niu6LZLji5cfgMoCGSTZgml61b6br5UbPtH8Ruedrcf5ZCDWtrFPQK+fOZOvKU3s9SLfOgbNdRPyZMAxyXGBQ/fSnac9iC0XYKwWiBIBCRx7Tu8Zrkz2RY4f790Kzx7l8OPbJao0OYTlcXBoIB1RsMKf19J8+AmnMAVNznA6OzWX/rE9GQ4AxWIiIiIiIi8u26th9ic2pjRfe5sec14/KwJfBqsEWdGHoyxU9cSRSEZUjhVBEnhqAKIaRqjAFchaFUCZfgM69BAV2W9WoD9Z7qGGwhIZhACjLIKXztc2zBCxFLWSLbhRqn/w0TKRjNFhIh7b/oWBH+NgrKeqxL/4aBBqPJrycH2RARkXdBIUzT7bqe1uZHqkr9hHKLBqRgU3tYLVE1aU+bg9EcBDAqWL4BhqYesq0vauuDi33nAfZtATloWQq97jX8k9FWJ17E6z3rjGWHNSxFyOEkDCIiIiIiIiIiIiIiKrDvEXLZzT+H/tA3oMLyeKb6iMJx84C7XvC/68YYoNta/W94+Em9oVVU/WbuAzS1AK8XB6ucvuNvuL7hneKm/9sIrNuiMW1M73i9dmE45JjMlv4LyhEIkxOpNU+qT3QBqeIxpQCAIO/JlWTWvnLZ+lXGxfMmAXMmACs32at+9c3c/833hMfUArEtraXdMZ4w1X2dGu9hHirKMZuVoMIR6ENPAB76h7Fc33o1cPxZUHmBDCcsUPj3/4qPkpPHrkHY9FDICVPLFxpDg2/s5N4wzLQ8zk1rveuYmDYaeLGteJ2tncCK1zT2nVJiaqwgaRl+Fy0c41aG66BSCnpSM5auvUdc596VGsfPN5fV5s+F8BIgSbSHUktOh77vZnPhxrX2/hGA5QsVvnOX3IN54GWNy08oXi6FGsZqAKxfLe9w3sHW9pRCBUPQ46f2/nsl7F+TkXSt1cBOIRG5vrFf/44KHPpWsUj/+QfAWZ+09m8PbAYmx4ENQi4dAKzYALR3ms9bjbkhxRvXyk86nneQXDkRDXsuUalERERERERExV7rXoNXEi9V9D9TcBgAhFWkwv/63SIB84T9wkCzwt9zchP+vYZmuYVwuAWn5XRldhiXOwgM6euZL1hiMJr0WpcSvCDX5z8YTQ4u6yz43dz+sBOFo+SvcaR/Q1IINvNKfj2HLpCQiIiGn5AyDz5wu65LAUZSP6HcpOud1z4XUTVoT5mD0eLB0XBUOQfaFveRpb4kYO9PSqGE5XjvSecdWzBYdgQEo93fcbtxuYLCkfHjK9waIiIiIiIiIiIiIiIaDlRNGNj3cLFcf/R4aGlScZ8fvNNB8xj/+47HALS1yiuMnlC8bMosqA993f/OaEgox4G64lfGslN3/B3nd1xn3b75iiyeWtt7H69DGFbZmGnvv6CcwWhSSFVipxyMFvIegkW7KccBjj3TXPi//0Iniu8jK6Xw6/MdjHbJEvvabb3H0BrzbXW0jAX0H77rp7m72+DleKvxMV43Io9zpfJSH/62XPjcI9A/+Hi/RR86WuHEBf1XmzUe+PajJ5vrmDh9gC2kSlKBgHvQ4cqndv34mwvksd77fzmLR18p7xiUbvNzRwGgOJivqbk8O53UjPrsTpy57UZj8dotwPOvmzetzY0lqglDhatjzgJRVTp6uVik//wj180ParGX32kIr85ktRi2GHO6gWceMBcefBxU0Pzw5AFz60/5CJmlPYgUcKY1sENI5qprGLz2jABq1GigdpS5cNsW6M+dAW0JkQ04Ctde4KDecunfvAN4aaO5LN73UUjf9Qe5jbY+PBENewxGIyIiIiIiomFtKAOaxECzwrArIZwqF5YlhWYVBgm4BQGkdA9SWeExLXm6sjuNy2OBuqp5ykXpwWjmUU5RIcQOsIemmf52WgpGs7x20v4L21tqEJkU0icFrXklbS+FVRAREZmUel2XyisXjObt+k1UzdrT5hHcjaGxJdVnCwMuZHuvRB25PymVJTKDGIxmPa8M72C0bemteGbHY8ayBbWLMSZkmDhEREREREREREREREQEQJ3+AbnwhceBO+zhVXMmKjx7pYO/f9jf9LVGWzDaWZ+EunEV1A/vgvro96Au/S7Ud2+FuuYJqKYZvvZDQ0vtfyQw/+Ci5UFk8Ku2D+D2Wb+1bv/5v2YBAO3CELl4tiC4r5zBaFJIVbITSAljIULyw5rITh1/llwoTI4/bKbCyq84uPH9DmosWR0rN2q0CsFozWM08Lz5XqsrL8ebn2MiwjGblaImzwROvlBe4eafQ7/y/K5fozUKf73EwaOXO/jxuxVu+4iD/17yJmam1pi3n+SSVkPVx+X9rK/66K6fD5hmr+qKm7NlaNBuUogRAER0sv+CcoXy9dXz400fF1e5bYV5rE1M91206+LlaQvRCKWCQWC/I82FzzwAncnYt1fK2v8BgJc39X+fJizTkGLP3iPv65SL7DsaCJfzr2LwMJmUEoxWz+uSG3X+Z+XCh28DHjE/vDfn2LkKq77q4LMnymOQv3e3uf+QC0bDdd80bxgfB2UK0CeiEYPBaERERERERDSs1Qbqh2zfXsMypLCrXFiW11ArLyEcXS7haQDQmTEHo9UG6ly3rRQpmCBlCVDRWluCxeTws7ATEQMeTPVpLQSjWUIipP0X/o3FIDJLcERv+eAEo0nH3FAGEhIR0fATVOYRFmlteWQlhj4YzWsILlE125rabFzeGCwtGE1iCg+2BZmFHfnRb1IIb7dOIqPtg7rcyOcVecC5FIw8XDzUcTeyML9uSxpPrHBriIiIiIiIiIiIiIhoWGmyh7foR+9wraI+ovC2fRUOn+l9t/GYEoPRVMs8qJow1AFHQ73jw1BnfATq4OOhogwNGpb2XmRcrAAse+EnqJdvK+LuF4GetEaHMESuMdO++5fRE6HCZRzzJoVUJTqhU93mMgY3lG5is1ikH79LLBtTp/D2RQo/eKc8tvP25zReazffE25RGz03sUhTs/s6fo4JnuMqSs2Yb1/hsTv7/RoMKBw8Q+GSYxycsI9C3QpLgIyXY4Oqi1vQ4Zbd54qAozDDMiTngVXAjmT5xqEkLcPv+gWjhWqAsU1l2afqez3GZLZi/+SzxnWeWW/etjY3rr2uoSxtIRrRJlnCDNe84Lr5h462PwD19uf6n4s6bcFoz98nF5YzfLiAcqubwcNkYglG0zuFYDRel9y5hPvqR++0lgPA+FEKnz7e+8OZcxpjgN62RV5hio8vnArttb95ebR65lcSEYPRiIiIiIiIaBiLOjG0RGcP6f5NEpnCQDN7WJdUT+F2tmABP+t0CcFoMad6vriTAk+kIAMA6NHdyML8JC3pNQYARzli0JcpWEwORpC/oJWPlf5/r2RGCkaT2w/YQvoGFowmBb+4tYeIiCifdF23BZ4C8nVfClAtN68huETVrD1tfrT16NC40iqUBo0Y2EJ2HSXforT1NQfav5XOOzWWYLThLKPTeKjDPBFgXGgS9o7tV+EWERERERERERERERHRsLLXfkCDJd3jFfcJ+TnL5nu/zxQPdgM7t5kLB3HiPVWeOnCpXPbqC1g6V942q4EHVwHbhFv4DZm8Yyg+psQWCoSQKp3sAlJCqkSoMmMdRqRplnHCG9e5br50rnz+WbMF2CoMu52Q3uRat1EgAIyf6r5e2JL8V6jGx7o0cIuPtRbrtlb79q+vKbluqj62axUA4I310OndCWVL59n7POu2lqNVvZKW4Xc1Ou96NGEalFOmOIG84NzFif/62jSaG/dT31iethCNYGrRMXJhW6vr9mcssp+L/vSERk9697yYTiHbFwBqt7wqF7a4hIkOhNv5d+ykwds3DWPSsa8BKRiN1yV3+x0BBC2fadss/d88o6L+g9Fs4fkAgJkLfNeZo878iHn5R79Xcp1EVH4MRiMiIiIiIqJhKaiCOHfiRxFQwSFrQyQghF0VhEklLIEAgCU0K1sYsOYewiEFWeXrygrBaIEqCkZz/AejmULMcqRgE7dyP8ELtq9nvQarSP8G6VjLkY6htE4hlbWHztgkM9Kxy2A0IiLyLiQEDqW15RFzkAOMpKC1chPDa4UgU6Jq1J4yB6M1Bi0TWCz8DElwC4iWxBz5SdeFIdR+iYGLjhyMltXm8OXh4Nmdj2Nbpt1YdlT8rdaAOiIiIiIiIiIiIiIiIhWqgbr4y/IKWzdCP3anp7ref5SPYLSdr8mFDEYbWQ4+HgibH2oKAJ+t/wfCliGiy74v38trzO6e9K4+elVJzRNFhHueiU4gJaRKhMLlbcMeRAUCcjDG6hXQafsYyVnj5fNP65saHcLQ3PgdP/faxP7GT4GyhQbk+DkmQiPzYV/VSjXPBU66UF7hb7+ybm8NTpu7uJQm0VA6/CRgvyPt69zww10/fnKZwljLkPyHVkkP6PavWzj9hbPJ/mN8ytl/mjh914/NqVZfm9bqvnE/dQ3law/RSHXM28Ui/fBtrpsfMgN4xwFy+ZOtwNwvZrFyY+85qcsynDf28uPmgn0OgwoO4nyueQfay/nZkEykh/9qLQew87rkSsXHQp17ubxCW6vnuq44wV84WjwG4Il/iuXq/M/5qq+fJacD+xzWf9m8g4Cjl5deJxGV3dDNHiciIiIiIqJh66j4idiREZ6UUAGjAo3Yu3Y/jAmNH7I2AJawjIKwq6QQVpbbXgzNypv0r7X2FNLV5SEYrTNjDkarraJgtJAQeGIL+bKFlEh/q/xyU1yAKagsC/NgKmXJn496DNGT/sau7bcEpyWznQg5cev28ralhVkQERHlk4LMbIGnAJAWrvvBCgXjyiG4DEaj4SGrM+hIbzGWNYZKC0az0VpD5Q0qkd4rbn1bWyiwlyBoGzEYTQhwHO7ub7/duDykanBoA59CTURERERERERERERE7tQp7wWSndA/vsxYri87FfhnO5QUFNVnwiiFq89VuOg69zCQ+L+vMReEaoCxTa7b0/ChgkHgd89AnznHWL7wl2dixXWbMOcb9b7rjuePcV24pNQmmkWFhz0lOwEnYC5jsNWAqPOugH7yX+bCP/8QOPtT1u2/eprC5/9afP55ZTPQLgwDiWeF4IRFx0DtdwT0NV8xl09qsbZlFz/BaDUM1qs09emfQf/vP8DqFcZyvX4V1NS9zBu3tZqXn/HhfuMqaHhQNWHgqtuAG38M/Qtz8Ib++WeBE86FahyHvSYoPPUFB9M+Yx5v/sE/aLy/TJelZNq8PKKT/RdMmm5esRR5QUQtfoPRcuN+6kob1060J1HhKPTcA4GXniwuvO1a6M/8wnpNUUrhTxc7ePaLWax6w7zOmjeBC6/N4uHLA+gUsn2BvPdu4T4u/ILtnzBgSinoeQcBLz5hXqHJY5+L9iy2YLQd5ofM8rrkjbrg89BvbAD+YfjOZtN66EymN9TaxfuOVPjGHd6DYuNRQP/kSnNhwxioAXxPpKK1wHdvBf71Z+iX/gs1a5/ePl2seuZXEhGD0YiIiIiIiKgER8SPG+omVAUpHCp/sn4qm0Jam+865raXQ7N2j7bo0d1iIFe/bTLuQQFdQjBazKmeL+5KCVCxhZTYwhUAb+F0uwjfv9rGKkj1p3QPMjqNQF/AixT04BoeYSlPZBOoR2lf1IthFi6vJxERUT4pyEzqI+0uF4LRnMoMFo465qdSewmrJaoG29Md4meIxmCpwWhyp1dDQ+WVlxqyG3WESQQoQzCaGLgoP61bSx8Aqtzr3WuxKvGCsezAUUchVkXB2EREREREREREREREVOVOOBcQgtEAAE/8EzjqVNdqDmxWEAdf5YmntpoLJkyDcuSHV9IwNWFab2hYqsdYPGvlP3Bwy7vx+Bp/1TbmgtGa55Y/iCgi3NPs3AFEzGMNfIVgUbG8IJ5C+sFboVyC0VqEW+QvtcnbxDNCcELzXGDBIfKGlrb24yfsjMdPxSmlgLMvg/7SOeYV7r0JOPdyc9nGteY6m2aUqXVUaaomDJz9KejffxvYKYQmPvg34JSLAABTGhUOnwk8/Ip51R1JjfrIwK9NyZS5XxXR/ROOlNfARg9UfRy6Lg7s7MD0HvOxLonlxhLVNZStPUQj2vS9zcFoAND6EtAyz7p5wFG48mSF9/xa/gz26KvA+q0aXeauOAAgqhPmgkoEk+17uByMFh83+Pun4ccWjCZcwxWD0TxTb/8gtCkYLZMGNr8GTHQPY53SCAQcIOM+RRJAQeh5ob0XeavEQsXqgVMugurrxxFR9eG3wUREREREREQlkibsJ7OJvJ/l4IxcuJRcz+5tbaFf+bo8BAV0ZYVgtCqaGF9KMJr0Wis4CKuIdX9yOF3x6ykHI8g3qG3BZvl/22TGfNPIPTxCLk8OIDyi1DALIiKifNJ1PWW5rgPydT9kCTAqp4jQR/PaLyMaalvTm8WyxlBpwWjK0uctlDCFDMM99DegAmL/vctDELSNdN4JWQMXh2cw2v0dd4hlS+InVrAlREREREREREREREQ03Kn6ODB1L3mF9as81TN7AhD3MOyoUQojGjfZ035oeFGOA+y9WCzX61fh4Bn+w2NGZbf3/uBhYrZvceF+6xvrgZQwFoLBVgMztkkue9OSbtZn4VT/x1CjMAFfzTsI2Gt/IGB+UKCaKx/P/fgJRgtW5iGCVGCuHLSg1682L0+nes8FJpMG4XxElWV5fxceEy1j5fNO65vlaU5SuOSEC4LRPAc2ehXrnXPQkvIXjFar+8YS1TeWtz1EI5SyXIe8fgY7qMW9D7TqDaBTCEaL6gQcafzc+Kme2jAQ6i3vMBcccHT5w49phJCOCw3sFAK26hmM5pnt83Wbt35BMKCw2Ee3OJ7YKBfO2s97RUQ0bDEYjYiIiIiIiKhEEcf8ZL9E3mR9W3BGLlxKrKdfYJa3AI6Eh6CAzswO4/LaQL2nfVRCSJkHcdgCVKTXOuJEXW96SEFf+SF3ORrmx1I4lq9ZpPA7oP/fVvo3SMFtOdIxBMiBFF6I7WEwGhER+RB0hMDTrOURc5CD0YLKPLC03KLC9TWtU0hl7aFuRNWgPWUeRVmjwqh1BqPv338AlBiyG5D7rjnRgHt4dCmk80qN8PkDALJ6+AWjJTJdeGLbfcaylsgcTI3wKdREREREREREREREROSPetfHxTL9xD891REOKVxyjPvk9YbMNnMbzrvC035o+FFnXioXXvdNXDz6CdT6yJBqyHQgkBvn19Q8oLaZKClgpq0VSHWby0KVeQjcSKUcB1h0jLlw0zroNS9Zt997ksLBLf72GReC0bDkNKj4WOCt7ykuG9sEHHumtx34CcvzE6JGZaMmz5QL21rNy99YD2TN44wxyedBSFVHnfERufDem/r9+um3yn2eA7+exfbEwMejdKfNyyPZZP8FZQ5GU2d/CgAwPvMGoj7G8sT6Hvat6hrK2h6iEWvpO8Ui/aNPeapi1niFU11yg678WxZdPeZzUkyanzTnAKhgBcby7r0I2O+I/suUgjrTcj6mPZs0d0xrYIf5uwbUMRjNK1XXIAac6t9+3XM9H1vqPdgwvkUOglSnX+y5HiIavhiMRkRERERERFQiabJ+v0Azy82+XLiUFJqVv60tYC1fV3an+zrCzYmYJbyr0qTAE40sMjpjLJNeay8hXtI6iax70JwXtvCHRL+/s3l/UnBbjqMCCKuIa/1+iWEWDEYjIiIfpMDTtBZGZvWRAlGDqjKDhSOWvlG3ITyVqNq0p83BaI2hsSU/LdG2VeHQKFPIMOCtLyn1z7sG2D+XAxdtT9cefsFoT2y/D906aSxb0nhihVtDREREREREREREREQjgTrlvUC0zlz41H3QPUIYVIEvn6Jw1Zn2e1WNWXMYkZJCkWjYU0efDkyfI5bv/fWluO/cDag3D5Er0pgXaCWGmA1EkxButHkD0GV+cK2vECwyUh+9SizT5+4PnbI/oO/Lp/qbSms6F6nf/Acq3DseVH3qp1AXfhHYa//e0KFl74b6xQPeA39qPB7QABCy3dOmwaQu+Za5oK1VWL5Wrmzi9IE2h4aYOvSE3pAek03roNs37/p1wWS5v9OTBs75tRCg50NSeLZnpHDMyKQyH3unXASgdxxRc8pyzBeI5cYS1TOAhsgLNWo0MHUvc+GmddD/vN5TPddf7FjDGh9+Bbj5KXNZrTbPJ1Gf+omnfQ+UUgrqO7cCZ3wYaJkHHHgs1Ddugjr8pIrsn4YhWzDaznZzWT0DO32RPmP/917o//zbUxXvPNDBje93EPcwNa3hHz8yF0TroCZM87Q/IhreGIxGREREREREVCJpsn4ym4DWvZPnbaFUESfa7/+FEhlvAWv9t7EHBWit0ZU1D7yJBeo97aMSbIEnUphB/uuVz0vwgrROMlMc5qCFYARliYmwhbP1D9Izh0d4CncTgvq8HjuFtNbiaxoNMBiNiIi8kwJPpWu6W7k9wKh8otZg0/KEpxINpq0pIRgtOHYAtXoPVJM+C3np28r989JDfwH5vFLjyOcVqf9frbTWuL/jdmNZXaABC+sOq3CLiIiIiIiIiIiIiIhopFDnf1YufOxOb3UohY8tdTC1UV4nnjEEo8090FP9NHypMy+VC9MpLFxxLf77eW9TIePZbbt/mSSEmA2ENBFca+C11eYyBlsNnFuolMt5aOlcYMlsb7tydAb1hWNtIzFg5oJdv6pgEOqCz8G55nE4N6yE88VroSZM9bYDAMpPWF4Ng/WGzDThoHlzgzmMr63VvH58HFRMCBilYUWd/gG58N839vv1GDnzE/94Dti4bWBjUqRgtLDOC6yNxID4uAHtp5AKhoC+IBI/wWi1uTF3dQxGI/Js/yPFIv2P33iqIhxS+OZyB2csksf+3fAf8/koJs1FGYzwYYGK1sK59HtwrnsazlW3Qx3+tortm4YhKRitayeQyZjLeF3yx/L+17df57maty9S2HyV4xqA3mj6jggADn2r530R0fDGYDQiIiIiIiKiEkmT9TWy6O570pI0cT+sInBUAIA90MpLwFq+LpeQjh7djbROG8tigeq54W4LRktp81P9pAAwLyFe0jqm1z33NymkpC/QAQRUEDXKPDAlv91SsJ2XcDcpYMLrsVMopXuQhfmLfy/tISIiypGu67ZgNK212GcJWfoJ5WS73klhpkTVpD0tBKOFBhKMZtO/nyz1z730JWPCZyS3zztuhjpwsRJeTjyPjT2vGcsOb1iGkFOZcygREREREREREREREY1AM+bLZa++ULbdGCe9VnDiPQ2RFsvxBQCvPo9po4E6D/lQ8Uz77l/cwrRKYTse168yL/cTgkVGKlprf+1dzkNKKXzlVG/Tacdm3ix+bNjE6dZxor7V+LhPzeNn6EjHXDYLvLG+aLFuaxXqGYRzEQ0NS39Iv/p8v9/nT5bPGVoDL7w+sKZ4Ckab1Fzec1devQAwP+m9D7gruLSeATREXqkyfgabP9n//muluSijRvuvjKgizNc83bXDuBwAEBs1SG0ZoWznpTX+zksBR+HQGfZ1xma2GJer5nm+9kUb22FZAAAgAElEQVREwxeD0YiIiIiIiIhKJAVRAbsD0eQwgKhrPVlk0dN3Y1IKzCrktl5XZqdYVutUTzBayJEHfEghKVIAmJfgBWkd099PQ3o6l/2msbSP3N8sqzO7AvUKSeF5XuqXjkE3tsCXaN7xS0RE5EYKRktZgtGyyEAjK9QXLEu73Nj6EIkBhjMRVYIYjBYsPRhNWfq8hf3khBASbfsctXsdc/93oO896bxTYwlGk85F1eqB9tuNyxUcHBk/vsKtISIiIiIiIiIiIiKiEWXxsWKR/uN3y7abUdntRcvUae8rW/1UpRYcAkzdSy5/4G8IvfwfnHWwe7hLPLNt9y9NzQNvWwEVjgJjJvnbKDRyHtY0lNQJ54pl+rpvuG5/xF4K7zrQ/RianlpXvLDcAY01Ee/rMhht6FjCFfW75iH76y9Dp/PGIrz0H/PKDPgcOeYcIJfd+mvodSt3/XreoQq2TLJXNktj0r3pNg+pRySbNx59sI69vnrP2fZHONr8IO5CU1N9YYJ1DEYj8uzYM+Wyjs3QXfL8oELv8dCPLhTVhjGAsxcOTuAiUTlIx2bC8l6Juo9ppd3Uce+WC1evgO7plssN9pogn0/CThoT0xvNhcdb2kFEIwqD0YiIiIiIiIhKFA3YwjK6+v2/UCQv6MoeupELWJNDqvqvbw8K6LQFowWqJxjNFniSzprDDKQAMG/BC0JombFO801oW0gEIB8vXv7GXoLIxH+DEEjhxnYseQmbIyIiygkJwWhpSzCaLTRNClort4AKoEaZB5Z67ZsRDaX21Gbj8tGhcaVX6mNAkxgSbfkclSMGo3kMjJZI5x3beWVgQ1Arqz31Jp7d+bixbJ+6xQP72xMRERERERERERER0R5PBUPAwceZCxOd0Lf+uiz7CRgeXKMWLilL3VS9lFJQ3/uHdR196TJ8f+GzOOcQ+33LxmxH7w91DVD1jeVqYn8+g2YUg63K45zPyGU93dC3/NK1it+cr3DWQfZjqKWntXhhucOF/BwTNTx+hoqK1gKN4+UVrv0a9P87BwCguxPAk/8yr8dgtBFDKQWc8RGxXH/waOjX1wAAFk1XuP598jT+D/x+YKNSksIQu4jOCySxhPsNhOo7puf3vISbXnsXmlKvu26zK3SyrmFQ2kQ0EqnG8VCfu0Ze4eafe65rxjiFr53uL9Cs1jAGUH3+N77qIKooaYxr0jKvKmIer0pmasos6+cy/Ym3+aqvxfKs5+mhDjjSHL6mGb72Q0TDF4PRiIiIiIiIiEpkC4dK7gq7ksK6onk/W4LR+ib+uwWe5XS5BAV0ZeVgtFhVBaPJwQQp3WNcLgYveAgVk/6WpjqzpQajuexDCtHrbZ/7F+1SwITXY6e4XbagNgajERGRd9J1Pa1T0Np8XbWFplUqGA2Q+wilBo8SVUoq24Md+U9Bz9MYtIwiGIDCt7MYEu0luNglVLhU0rmlxpGfzi6dp6rRQ9vuRtYwUQgAlsRPrHBriIiIiIiIiIiIiIhoJFIHLhXL9J++Nzj3VhYdU/46qSqpSc1QP/23vEJ3AuG//hS/vdDBN5bL4/UaMn3BaIMUBgPAf8hRqHJjHUYyFQxCffR7YrmX81A4pPD7ixxccYJ8DLWkWov3PZTBaAzWG1pu55L7b4F+bTXw4K3iKmowz0dUcWq/I+TC7Vuhb//trl/PWKxw5mL5fLOhvfS+UzJtXh7OC0Yr+7krJ6/ek3fehrWrZ+G97fawpGmp9b0/1MUHp01EI9XSMwHHHAmir/umr6ouPtJvMFrBXBSlgMkMI6IqJgWjJSzzqiKcH+WXOuW9cuGzD0KvedFzXc1j5PPSdGw0F7zlDM/1E9Hwx2A0IiIiIiIiohLVqDAc4aN1YlcwmjlcKj8MQAq0yt/eFlKVr8slBKsrYw5GC6sIAiroaR+VEFJyMIEUZiAFlHgKXhBDyxLI6kzB0tKC0cRglVwwmiVgxUsQme3fUIqEJWQv7CFsjoiIKEcKMtPQyKLwOtsrrYVRWwBClgCjcpPCmaRAVqJq0Z7eIpYNJBjN3uPd3U/WWov9UG99W3MwsK2P6oX0WSJo+fwh9f+rTVqn8HDH3cay8aEmzIntW+EWERERERERERERERHRiGSbBP/aK8A2+T5VvsuFQKJ9kyuKF05s9lQnjRCTZ9rLX3gMALDvZPnuZVO6rfeHxvHlalURNXUvfxsw2Kp8psySy9rWAluEyfMF5jfJZbN6XjHs1+XY9Csc8b5ukMF6Q8p2zOW8+CT0848NrA4aPlyvVY/3+3WW5XL0ZGvpzejqNi+P5o/ZaWopfQc2k/qH/SkARyQeFlcfm96MWt035q6ewWhEfqhgCKgfbS5M90BnzQ/SNBldCzT6yIAqCkYb2wRVw34tVTExGM08lw4AEOb8KN/GTgZs54KCvpDNXpZ+0uye1eaCidM8109Ewx+D0YiIiIiIiIhKpJQSJ+wnXcKu8sMAwioCJQasdfb7v5tEptP6tLvOzA7j8ligzlP9lSIFqAByUIoYvGAJnvOyTmG94svr8vAcKQAid4wkLX9jL+FubsFrfsmhflE4il8pERGRd7brekoIKUpneyz1VS7MtdzXV6JKaU+/KZY1hgYSjObtiZHdOgkN84CrgQQXD+S9l9VZ8bNEjSUYTQ+TYLRndjyG7bkn3xc4qvEE9uGJiIiIiIiIiIiIiKg8Fh9rL29r9VTNafsr43zlM7f/pWiZKgjeoJFNjZkI7HeEvML6VdCZDI7ZWw51OGnn7b11LTltEFrY5+jl/tYPVe4hcCPewqOtxfqLZ0E//YBrNW/bRyFiGNJSk+3GyTtvKy44cKnHBnrk9ZioCUNJAQ9UEeoY9/e7/v7HgBVyKBT2P7KMLaIhN3MBYAvIfPWFfr+esUh+D//03qx17L9NR5d5u3h22+5fJjWXVLcrQ73Te9aKqzfmxrREa3tDnojIn9n7mZeneoAtbZ6rUUrhHZZzUqF+5xNg8M4pRGUjHN9JYexpJMa+dglUMAgccYpYrv97r+e6FkwG5kwwl7399V+b989gNKI9CkfAExEREREREQ1AJGB+MsTusCvzl6f5YQBKKUQccz257ZMZc0hVoQzSSGk5SKRLCN+qrbpgNDnwJC0EqEjhcQMJFQMMwWhCwIPj8jVLRAhf2xWiJwSRBVUIIcf9BrAcvOYtVK9ouwG8nkRERPnsgafm67oUmOZWX7lJ11epj0dULdpT5mC0WqceYcfHU6d9yA8Qk0J2AYifffJFA+YAaq+B0SYZIRQNAILO8A9Ge6DjDuPyGhXGIaOOqXBriIiIiIiIiIiIiIhopFKRGNS3bhHL9Q0/8lTPpLjCby9QCOQNuTopcRc+tvXHxStPZDDankZd9lNruf7MaYiEFP74Pgd1od33AZXO4qdtl2J2z+reBSeeN3htbJnrb4NQeHAasgdS4QjUd/8ur/DcI9CXLoO+0XA+ydMQU/jdhQ7CecNVa7LduKbtYozNbOm/8uyFUGH3e92+eD0meOwMvcPeBrzjEvs6OzuAVc+ayw44mkFQI4xSCuoL18orbN0E3bF77M5+U+XAlXv+B3z6ptLGprQLQ9ji+Q/WG6x+1NimooDH5pQcjKZzoTN18cFpD9EIpz5l6R/f/SdfdX3lVIWDmr2t25BhMBoNM1LIWWKneXnEPFaV3KkPf0su/Nefof/3X2/1KIXfvdfB+Pr+yz+3ZAeO7LjHvNEEBqMR7UkYjEZEREREREQ0AGIYVd+E/YQQmhEtCMmSQ61yoVneAwCk8DMA6MrsMC6PBeqNy4eKowJwEDCWScFvUviC9Np6XWcg4Qv99yGFO+RC9Mz78dJ+wBa85i1Uz+t2XttDRESUYwv4TGfNAWhSYBpQ2WA0KcBJ6uMRVYv29Gbj8sbQ2AHW7O3JeMmM/B6RQs/6rWP5fFTqU3Jt55UaZQtGq34buluxOvGiseygUUsQq7IgbCIiIiIiIiIiIiIiGt7UYScCoyeYC//1Z8/3c95ziIPXv+Pglg85eOZTnbi5dTkiurt4xUkMRtvTqOl7Q938qrzC43dDr3oWx89XaD3lbtyy/h24/rWzsX7VTLy/4+redeoaoELyfcCycAtKysdwq7JSBx8HjJtsXUf/6kroLvOY2Zy3L1JY/y0HN3/QwY1L/ovW1bPxru03Fu/v9PcPqL1GNR4fahYc5OOYXKlAAOrS70H98fmSQp3USRcMQqtoqKm5i6F+dLdYrv/wnX6/X3iEPObmqn9qrN3if4RKhxSMlu0LRquLQ9UPThCZcpyiUJKmdJu4vs6NOaprGJT2EI14k5qBiHlMnf7F53xVNX6UwoOfdvBey3kpZ9f5JIeh1VTtxGA0YV6Y8L4id2rcZOCMj4jl+pqveK5rcbPC6q85uOOjDn7/XoVXvu7gS69+XB6xzHMR0R6FwWhEREREREREAxARJuznQqWSQmhG4XZyPbnQLO/hVomMHOTVmTE/5SImhHYNpZAQeiIFGkj/bum19bpOMtP/tddCNIJy+ZpFClbJ/Y0TQniEFKhWvJ49pM8vr8cuERGRG1uQmXRdT+u0cTkAhCwBRuUm9tEypQWPElVKe+pN4/LG4MCC0bzFotnDA6V+cb6oEOSVQVoMSnZTcuBiiUFslXR/+x1i2VHxEyvYEiIiIiIiIiIiIiIi2mPstZ9ctuEVz9WMq1c4dX+FfdQaONIjazjhdc80tskenvJ4bxhNY/cbOHnn7XjHjlswMbNpd/kgBcHkU5Oava882CFte6I5C+3liU7guUdcqxlbr3DaQoXT267D+Iz5IWTw87f2qsZjWJ7X9WhQKaWgpu4Fde5n/G88GMcPVYeW+XLZy8/0+3WGZciO1sDdL5YQjCYMYYtntvX+MNjHXkH9QWQQFcYMXdDx294fony4H1EplFJA0wyxXHf7G9MaCiq860APwWi580muHbymUbVjMFpFqelz5MIn/wWdyXiuqy6icPx8hbMOdtAyVgFr/yevPHGaXEZEIw6D0YiIiIiIiIgGQArLyIVRyeFS/cMAogGpnq5+//eiyxKE1ZU1B6PVBuo9118pUjiBKSglqzPo1knj+lJgWL6QU4OgChrLCoPFNLLG9ZRLTIQUcJYLRJPC77wER9jql45BN3JQG7/4JyIif2yBQykxGM0WYGS+Zg8GuY9WWvAoUaVsTQvBaKGBBaPZ5AcIS31QBQdh5f7Ua1ufs9T3n3S+AYAaRx5ILvX/q0Ui04knt99vLJsZnYspkebKNoiIiIiIiIiIiIiIiPYIauESufD1Nf4rbGs1Lw+GgDGT/NdHw55SCjjoOLFc//X/oLt2ADs7zCvUNQ5Sy/I0tXhfl8FoZacsx0eOfu4x7xXazl0LDvFej1chj4FnPHaqi4fjrghDZEYsFbeMw3nqvn5hIG+dbx9nvnaL//23C0PEGzN918amZv+V+mGo//yO3xlXXb7jr70/JEsb105EAKbuJZdtXOu7ukPlnLVd4tn+wWg4aKnv/RBVlnC9TTIYbVAcaDknpFPAm6+XXrflvKZi1TcHkogGD4PRiIiIiIiIiAZADKPK9IZcSYFmhdu5hVr5CbfqypjDz2xlsUD1PX0p6JhDVFLZnqJlUqgYIAeaFJJC7grr1tIDuVwemCO1I7kr/M78Rbv39psD1JLZBLLaf5iDGOoX8BbURkRElBOyBKNJAWgpXXy9BwAHDhwVKEu7vPDaPyCqNu0pczDa6OC4AdYsd3q9BKNFnGjvBAYXMeHzEQB0ZUoLRrMHLsrnKf/P462sx7bfK4ZEL4mfWOHWEBERERERERERERHRHuPU94lF+pMnQafM93zFbe65wVwwYSpUoHL3iKm6qPOukAs3rYN+9wLop+4zl9fHB6VN/UxiMNqQOv4sYP7B9nV++3Xov1/jrb62VvPyyTOgwoMwbrLGazCax/WoItTMBcCpF3nfoCYCjJ4weA2iobf8g2KRvuwU6K7esfsHTFe44HB5zMzXb/c3QiWV1ujsNpc1ZPuC0SZO91WnX8pwHfz41h9iek//IJOPbP0pZves7v2lc/ugtoloJFMf+oZYpr94NnTW35yRWFjh82+zj+VryPQPIVbjJvvaB1HFSeNTE8I8u4g8VpXcqaYW4JT3iuX6y+dBi5PwZLprB7DNnBqrLvyi7/qIaHhjMBoRERERERHRAEghUbmQq1xAWtF2BSFWUqhVItMXjJbxHowmBWwBlmA0pwqD0YRwAlOggS2cRAo0KRQV1isOtzN/Keu4fM0itSP395JC9CKWUIh80YC8XncJ4S1eQ/2IiIjc2AKHpKAiabmtrsEg9Q/8hNYSDYX2tDkYrTE0ZkD1egk1A2x9SY+hv5Zw4FLff7ZgtBolT0LQVRyNprXGAx13GMtGBeLYv34QnlpOREREREREREREREQEQNU1ADP3kVe4+0+e69LZLPDvv5gLBznQg6qbmjEfOPNSeYWtG4HH7zaXVSQYrdn7ugy3KjsVq4f64V1Ql/+fdT393UugN2+wr5PNApvWmffz/q+V3EYrr8FoXtejilGf/AnUlz1e5yZN9zzWgoYndfKFcuGT/wJu+tmuX68+V2HWeHn1N3d4H6OyzTI0PJ7Z1ts2P9epUoyZWLRoRqoVj7YehR9u/AQ+seX7+Ov6t+OqTZftXqFz2+C2iWgEU00tgBTW+urzwNP3+67zE8vs16jc+QSwB7MRVQ2p3yUFB0YGIQB5D+Nc9jO5cMXDvf/51bZWLnvr2f7rI6JhjcFoRERERERERAMghUQlsl3QWoshZYUhVlI9yWwXsjqDbp303KZERg5G68yag9FqA8M7GM0WBuc5fMFj8Em2xGAEOVglAa21GPAQFULzvNYPyMEUNlJ7pBA/IiIiiS3MLCUGo6V91zUY5GBTBqNR9UpkOsW+XGNwbEXaIAU7e+1LhlVEDB7usvT9bWzBaEFLMJoUjFwNVnatwKYe8wD+w+PLKn7OJCIiIiIiIiIiIiKiPUzLPLFI33ez93pWr5DLJjZ7r4dGJLXv4aVtWDf4wWgqVgc0eLwHy2C0QaHCUai3nQecd4W8UjYLPHirvaI3XwdSPeaypuaS22fl9ZjgsVN1lFJQxywHxk12X3mwg6lo6LmEuOb3iZRSuPQtcgjR31d4H6PSYQtGy3b0/jDYx9+EacbF4zObcUn7L/DtNz6Hk3begX7/4kVvGdw2EY10sxeKRfrem3xXF7MNmwPQkM0LM+RnMxoO/AbShr3NNyMXe+0vFvn6fiinbY15eSAAjJvivz4iGtYYjEZEREREREQ0ALawq5TuQRbmp0oUBgJEA3LoRjJruXNpYAsK6MrsMC6PVWEwWkgFjcv/P3v3HSbJVd9t/3uqu2e6J+zMbNDuKq4kJFACBYQkkHclgoRkko2JIhkcCA8YY4IJNvYLGAfA5sEIv4Bfg7EJxg/2izESIIIQGGwRTJBF1kqAVkLSzmyY6d7t7jrPH7O92zNzftVVHad37s916dJOneqqM6m7uqf6rlDQoFK3v0ZW0CTteuUVUYfwH52dkl9At35WvLwO+EpgP415haN5K9ezP08rjJHE+rlL+/UEAKAhcpEi5YJjVqjIWl5YJWG0dh5bgX6Zrd1rjs0UNnW07aQjXu+PHCdbx5LLA9HmfpyzI9TGcXMr1TgpjGbftzR/XqvNjXOfDC6PFOnSqSv7PBsAAAAAAAAAALDWuHMusQfv/En6Df3cXted9ZAMM8JR6cwLpaiNt0Cu39z9uYScc3G69U45q7fzWOPc2cnfB/+zHydvYNdOe6xXYaGRYrr18lwQa9Vq8XMnSe6slPcRGFpuYioxFrv8mOihp9pn3/z4nvT73X/AHlvXeL/Ahi3pN9iOMx4sjWa74La76hk9mgywRiQ9B/vpDzNvbiSf/B6Y6XpTGG1rcggSWB2yhtGyPY7BkPS8+Jb/yr69XTvDy485Xi4ffq8hgKMXYTQAAAAAADqwPHDWUK7Pq5wQzFge2TC3Ey8kbsfad0js6+a2xqLVF0bLu/DlZ6qhMJrxeeVdXoWoxWVsDrHjdEu/nt4Ko7W4skhSUCzp58Wa14r1ErefPR5h/Rwl7QcAAIsVNLMCaNU4fBXefNTfkz3N44P6wqqOJWFt210NnyXp5DSdX9/h1tOdNLL8GLrBet4Tkvb4PC3r/kZafN5ghY6t4/9B2129R9/ef3Nw7IETD9FMIeWV6QEAAAAAAAAAANr1qKfaY3f8QP7276Xbzl077bGH/1qmKeHo4zYdJ12ZPaLijj25B7MJ7OcpL2290pNeLFdKdxEptOnCR0mnnWuPf/Qd8uWEvzXv2hlePr5OmpzpZGa2wmi69QijrVruSS+WRhK+jzPHSL/87P5NCAPjnv5ye3D/Hvl9c4c/PO9Ee9U/+aTXwVq681TmE8Jo4/7Q/d3kdKpttcsVx6SnpngcbPbgR/ZmMsAa4R73PHvwG1+Q/9Dbunpu67p475EPthBGwxBo8b6uFQrp3m+GZO4Jz7cHb71Z8fO3y9/909Tb87t2hge29ud5PoDVhTAaAAAAAAAdKOXCJ6tU4gUz1iWtjEuVIns7WaNWVihgISEgMJ6bzLSPfshnCKhYUbGkGFnadStxecnH1h+KrJBCQ1LgrBKXzZ+XtJ9DIRpR3oWvfNFOPGL55314PilDbQAANLMf12vG8nDAyNpOr1iPw7HqqvpwvA0YtNnafcHlU/n1yhnHi91x5DjZPJbMcHxuPUeyAr6tJN2vLEaOM54QM2Bfmvu0vOLg2I7pq/s8GwAAAAAAAAAAsBa5yRm5P/moOe6f82D5WvhvwkvWu+v28MBpD5IbX9fu9HAUca/6G7nnvynbjbZu68lclnPn/pLcOz+XvM6L/6Ivc1nLXC4n947PJK7j3/YSe3DXzvDyY09uedHctiUFtZrlevl3fnTCnXOJ3Ns/vRjxPOE06fhTF//bdoZ09bPl/ubGxbgjjnru0dfI/c7b7BWajnWcc3rxw+37lVf/S2dhtJyvaaRxXluvwo5N3PNen37lU86SGy32bjLAGuCOO1Xut95gjvtrXy194WNd219e9cV/lMalqQ1d2y7QM1mP3YkQd4U7+Qzpma+yV7jlP+Vf+fj04cZdO8PL+/Q8H8DqQhgNAAAAAIAOLA+cNZRbBM2WBwGKUSm8nXpyYC1kob4/03JJGjMCb4NkRb5CQQPra2R9f7Ksuzwq5mW9ENsijGaEHRr7sOJuWT6HtHG3NKyYWpb5AADQkI/CfziuxuG4mBVM63cYLelxr53HV6AfZqv3BpfP5Dd2vO2kGHDzcXI3jm2tCHU70V9JqrYILlqfm338PzjVuKov7/l0cGzLyPE6feycPs8IAAAAAAAAAACsWWdfbI/VqtLXk4NRkqRdRhjtzAvbmxOOOi6Xk7vm5dIjnpz+Rn18w7R74MPswYmp3oW1sIQbXyf3ur+zV/jcP8tXwn/L9tb9UC9/jnJ5KUrx9l5iDauaO/tiRX/8j4o++F1FH/qfxf8+8N+KXv1uuWNPGfT00E+/8nz793XXziUfnr7Z3swHvuJTRUPmjWt6jsULR86AGet9YNY5J/3yc9KtvGFrT+cCrBkXXZE47K/7QPf3uXUbx7QYDll/TgsjvZnHGuQufWzyCj+5RfrBN9NtzHh+5gijAWsSYTQAAAAAADpghaiq/qDm433BMSen0Wjp1Y6sN/1X4gUzKmBZMEIBiWG0aDLTPvqh4MIvMIfCaNbXyPr+ZFk3bfQkKRIhLX4+kfFSTDleUMUI6XUn7pbtZ8h7b37eWb6mAAA0WEGz0ON60vJ+h9GseK3UfpwJ6LXdtXuCy2cK/btio3Vsm+VYslvHtg2t7leGKYz23/v/Q/vqe4Jj26ev4iQ0AAAAAAAAAADQP9ObpPUJdY/b/qf1Nu4y3vC6+aQ2J4WjlTvl7HQr5nLSMSf0djLLPf43govd01/e33msdacmXETqYEW687bw2Fz47+zadFznczI456TCaOsVCaMBQ8HlctJm47Fn2bHOOcfZ53Xcu1+6J/wWhCXmD4TPZxn3h86rmZhanFMfuFNTPj6PFluvA6C14+8njST8Pu1M8Rwsqy08N8NRKs3xONI58fTWobnbbm25Ge/9iqjsYYTRgDWJMBoAAAAAAB1IilbNVu8NLh+NSorc0qfkViDgoD+g+XqKv242KdfDkY75OBxGixQlRj8GxQqfVANBg0oXwmhmeGHZ19MrDq7XKozmnFMpCgfwynU7gFfMdR53s34mLAd8xQxAZAm1AQDQ0K0wWqHPYbSkx7208VSg36znITP5TX2bgx0uTv+8wz52bi9K2Op+xWqJrcYw2o2z1wWXj7qiLlp3eZ9nAwAAAAAAAAAA1jLnnPSYXzfH/TtfJb/7bnvcezOMpq28+R7LXPFUaSTFG9ePOV4un+/9fJq4q5+z8o+OI6PSFU/r6zzWOne/c6TTzjXH/ef+OTywP3xhKq1b34VZJSCMBhxdjHCQf8crlhwPXXo/aTrhdOzPfq/1uSrzB8LLxxsX+5yYbrmNrnnkU9KtN7L63q8ADCM3NiE94sn2Crtul6/VurtTwmgYFlkvKtsq5IXU3MSUdPmvJa9kvf7TbO9uacF4HyX3RcCaRBgNAAAAAIAOlBKiVbO1cJAgFANIDKwZ27GU43AoYKEeDqON5SYWT1BbZbIEVMr1cHgh6fuznBUgWx496SSLYO1jX31OserBsSwhMiuMljXcUjG+nkn7AAAgScGFTziu+fDJF6EQqmQfH/TKaELEqd04E9Brc8bzh5nCxo63nRQDbg6IWcefpVw4dhZe14j+GtG1Vqww2pH7FauMtrrCaD+t/EQ/qXwvOPaQqcsyPQcCAAAAAAAAAADoBvfcP0wc9y/YIX+gEh7cc59UNv72yhtesYzbcpLc2z4pTc4kr7j15P5MqIk780K5N35EOu6UxQUnnyn3l9fLbT6h73NZ6/eQ2FsAACAASURBVNxbP2EPvv9P5H/83ZXL982GtzUx1aVZGUaKrdchjAYMjy3bzKHm46EocvrWH9pv77/mvV53700+X2X+YHj5kTBaj++/mriZY+T+4H2tV0xznwcgFfd775DOeLC9wnV/3939Ea3GsMj43jiXJ4zWTe6V10qPfqY57tOE0XbttMeO3ZZ1SgCOAoTRAAAAAADoQFIkarYaDhKUopUxgMQwmrEdy0LWMFo0kWn7/VKIjDBavDJoUDHiCKEIncX6HqwILxhhhMi1fpmlZMxnd/WehNt0Ix6RLdySFJuw4m4AACTJEjxNWt7vMFrkIvN4Imt4FOiH2MdmWHl9flPf5mEdf2Y7Pg8fB2c9tm1oFVy0om++ozRy931x7jpzbMf0VX2cCQAAAAAAAAAAwCKXy8n91hvsFe68TfqyESpKelMsYTQEuAddKveJO5NX2rqtL3NZzm1/vKIP3yp3w5yiv/+m3AMfOpB5rHVuZpN03g5z3H/8PSsX7t8TXrlVhK9TI6Ot18mFL0YIYPVJDActOx46Yb3T6Zvt1T/w1RZhtAPh5WONc8B7ff+13GW/2jpGM5riPg9AKm60KPdXnzLH/Qff2t0dJoQfgVUlYxgt1fE4UnOjJUWvfa/0q88Pr7BrZ+uN7DJeJxoZldZvaXdqAIYYYTQAAAAAADqQGEarhWNXoRhAUmzKChtYyvV5+UC8a76+L7j+WG51htGyBFSskFeWqJj1vVweXYsVG1to/QJ60ZhP0ve4O/EIO3QWYoXmFvdBGA0AkF3eha+oVfXhS1faYbT+n+yZ9hgBWA321/eq5mvBsZnCxi7swT7mbQ6IWeHApOdPy5nHtvX2wmit7leGIYy2UN+v/9p7Y3DsfqWzdOwobw4CAAAAAAAAAAADcuLpicP+1q+FBxLf8JpQC8Ga5qJIOuUse/yE0/o4m8D+R9Of84ceOeF+9titX1+5bN9seN2Jqe7Mx5IqjNbfiwgC6MDxCfc9kvytNy/5+LRj7HVvvi15V/Ph0+403rjg4Lr+htHcyKhUbHHe/kixP5MB1gg3NiHlcuHBhf2pt/PcS8Pnzb149zuPfLD5hCxTAwYoYxgtz7F2LzjrmGjXztY3nr07vPyYExZfCwCw5vCbDwAAAABAB3IupxEXPjFhtnpfcHkoLJUUm5qthqNZU7nwHyxjxTrgKyuWL8ThgMD4kIXRqoGggRUmyRYVC38Par6qahyOKDRL8/K5tQ/reyxJpVyWuFv4880abrFCapEi8+cdAIAkVtDMCjhZAaOCEVjrJevxO2t4FOiH3dVwnFmSZvKdh9ESL6Z3qB8W+1gHjDBalsjumHEc3O7vXqv7lWEIo31lz+fMoOSO6av6PBsAAAAAAAAAAIAmD3mUNL7OHr/hI+Hld+0ML998Im94RSL38CfZg5c/sX8TwaqU+PNx681LLj7sDx6QDoT/xq3JHoeFSinO3833/yKCANp0yaOlUsJ537d/f8mHT3qwfSLOR7/uddce+5yV+QPh5eP+0Hk1m0+059Erp5+XPE4YDei+E4xA9e675CvpzrN73APD90VP3fNPRz7oc2wRaFviSa4Bhf6fl74mbDEu8rtrp/xt/5N8231z4eVTGzqaEoDhxSvEAAAAAAB0yIxd1cKxq2Ju5fo5lzdDH9Z2ZgqbzDkt1Fde4WWhvi+47lg0aW5nkApGGC0UNCjXw3+0KUVZomJ2pKHSFJWzwgguxcss1j6s77GT06hL/0dg6/O1vj4WOzQ3Jpf1DwUAAMgOnlqhImu5tZ1esh6/s4ZHgX6wjivzrqCJXMIbUbroQFwxj5mTjrnTrls2gs+tmPcr0XBc8S/2sb44d11wbCo3o3MnL+7zjAAAAAAAAAAAAI5wpXG5N3zIXuHeO+Vv+KcVi/1dt4fXt95ECzQ85Xek7Y9fuiyXl3vNe+WOPXkwc8Lqcf5l0oMuNYf9215y5IP9xhvvJWliuntzCkkVRhuOv2kDkNzYpNz/80F7ha9cJ187cv7KNRc5jSa0D+//B7HuuC98Do4ZRjt0Xo3b2v9jKffKdyaPj6a/4DmAdNyr32OO+RdetiQGa3nsg6TXXH3kPSLOx3rrXa/QRZWbj6zU62MioFuyvt8pTxitJ7ZuM4f8s86Tv+U/7XHr+dnEVIeTAjCsCKMBAAAAANChYi4co6r6g8HlVkjNjFoZb/xfnxBGC91mPhBLk6QxY/6DliWgUonDV+srRun/gFoKBOsayk3bN8NoKV4/t/axp7Y7uLwYlTKFyKztZw23WCG1LF9PAACaZQmeSlI1Xj1hNOvYLWt4FOgHM6qc36DIdf5nQSf72LRxnJx07Jl0zL3cmPH8qBKXFft66u00tLpfccbXJ83JYf3wvYVv6Z7qruDYw6avUM5xlXAAAAAAAAAAADBY7sJHyr30L81x/+4/kI/jpQt3GWG0AcQ8MFxccUzujR+R+9Ati/9/y8fl/u3nclc9c9BTwyrgnJN75bvsFf713fK/+Nniv5PCaJM9joAUU/wNnTAaMFTcxY+We9nb7RW+ev3hf+Yip39/iX0+z76KdO2N4fNWyuG3KWi8cd5OQpCkZ44/Lfk+ayT9xcIBpHTKWfbYD78l3fq1lptwzumNT4i069lf1aduv1p3/+AE/c7sstDhOEEiDImsYbSR0d7MY61rEbv373+zPbjPCqMRaATWKsJoAAAAAAB0qJQxFlU04hpZo1Pr8wlhtPrKMNpCHA6jjecmM+23X7KE0ax4XJbwghU9kaRK0/btMELrF9CtfVixNSuWZ7F+trKG0ezQXPqvJwAAzfIufEUtKyRrBdPyUf/DP8Vc+Bgt6+Mr0A+z1XuCy2cSosrZJB3zNsJo4WNJKdvxZNKxfNI+LOb9yqGgmPWZWcfq/fbFueuCyyPldOn0lX2eDQAAAAAAAAAAgGHbGfbYrp3SnT9ZuuzeO4Orus2E0dCac07u+PvJ7XiC3EVXyvU6YoXhsvnE5DDCN25c/L/1xnup92G0sYnW6xBGA4bPKWebQ/7mzy5ddWPypv72pvB5K/sPhJePNc5537ItecM94KJI2nyCvcLY6nzPAjDMXHFMmjnGXuFrn0u9rWPq9+oRC1/Q+nh26UBpQi7PRTsxLDKG0fLh89vRGTcxJa1bb6/w9c+tDOc3WOFqnu8DaxZhNAAAAAAAOpQ1FmXFsUq5bBGsyfyUCkZkZCEQCluoh8NoY7kUJ1YMgBVGqwaCBt0IeSWF6cpN27fCCC7FC+hZf1a69bNVzhhu6UZoDgCAZlbQrBbXwsvNgFH/T/a0w6PZw0xAr83W7g0un8m3OIuyi6xjSSk5RrxyXfv5UdI+LNb9ypHnVOHj+dUQRruv+gt9Z3/46p3nTl6k6XzCCSQAAAAAAAAAAAD9dPYl0sioPb5r59KPrTe8Tvfv71sAjk5utChdcLk57q/9ffnvfV3aNxteIZeTSj0+vzbN9gmjAcPnjAvtsY+9S/FfvlTxG58r//G/1YnVOxI3dZ9xisyccWr4dLxn8R9TG1JMtAceerU9lnCfDKADl1xlDvnP/7O8T3n+mxWLJUaEYZIURg4pEEbrmYT7Jh08IO2+Kzxm3RdNcF8ErFWE0QAAAAAA6FDSG/ZDrABXlkjA4nbGNGbsu1zPEEaLVmcYrWCET5YHDWq+qqo/GFw3y9c0cjmNumJwbOnXs/0wWtbvcdYQmRlGqy+k/4OWuhOaAwCgmRU0s0JFrQNG/WOHR7OHmYBe213tbRgt6Zi3cbRpHUtGijL9Dic9z1oIPN9ppVVw0f7cBh9Gu2nuU/IKXx1v+3TCCaUAAAAAAAAAAAB95kaLci9/pznu//39Sxfw5nsAPeSe/yZ7cPYX8r/5UPk/vCY8PjEjlzWskFWx9TmZLhe+GCGA1cuNjErbzrBX+Ni7pE/9o/xfvFB68un6zW0/StzebfeuPHdlzrim53T90LHVgI6l3FN/Vzrx9JUD17xCLrQcQMfcs15lD/7o2/J//kL5er31hqxo9cRUexMDBoEw2qrhnv1qqWSfB+xf8+Tw+9yM14kcrxMBaxZhNAAAAAAAOlTMhUNnllIu/MKeFUwztxONmdtaWBbq8N5rPg6H0cZzqzOMlo/SBVQqdeMvu8oe8ioaIbLmuIPvJIyWMXSWef7G+nXVzBBEiBV6yRp2AwCgIW3wtKFqBoz6f7Kn9fhqxZ+AQZqthcNo6wvdCaOlUYnDl6QtReOZThpPOnYuG/tI0up+xZrboLNo1fig/mPPZ4JjW0dO1Gmls/o8IwAAAAAAAAAAgGTuqmdKo8a5cJ/9J/l48YIwPo6l+b3h9XjDK4AucPc/X3r4ryWvVA6fW6vJPkRASinO382Fz7kBsLq5Z7wy9brPvfE3Esdf/MGVF9ObM06dmY73SPmCNBK+WHivuWOOl/ubm+Re817pSS+WnvNauf/9GbnffsNA5gOsBe64U6Vn/b69wif+P+mr17fcjt+/JzwwwXMzDBHCaKuGO+E0uY98317h1pulb3955XIz0sh9EbBWEUYDAAAAAKBDpci+gkGIFUBrZzvWbcr1pWGrqj9ohkfGolUaRjMCKtV4WRgtIYqQNURmhb+aQ2HBK1LIDik0yxo6yxoi61Y8worNZZ0/AAAN1uO6dXxiLbe200vm8UE9HBIFBqXua9pbmw2OzeR7H0ZrBITL9fBxZ9agdM7lNeJGg2Pt/P61ul+xQsferzy5tJ++se/L2l8PvyFo+/Sje3+FcgAAAAAAAAAAgHb80uPssR9+a/H/83sk41ws3vAKoFvcOQ9t74aTM92dSIBLE0bL9/8iggC6YOtJqVc9+cCPE8e/e+fKZXPGNT2n6nuliemBnk/iJqflrnqmope8RdHz/lDuvO2c3wL0mHvABYnj/sZ/bb2ReSuM1odYLNAtWR9v8oTResnNbJJOOdscX37f5L2X9twXXpmAPrBmEUYDAAAAAKBDWeNVVlwqe8RrXGO5cBhtIV4aClioG1e0kzSWW51htELKgEpS8CtryMtavxIf+etxI/iwUusX0DOHzjLH8pLCaOnjEda6WX9GAQBoMIOnQxBGKxqPf83HB8BqMFe7zzxWnSls6so+rHjYosV9W+HidiK7JeP5Tpbob4N1v1JwjRNbjDBa5j11141z1wWXF6OSLpq6vM+zAQAAAAAAAAAASMc98GHmmL/hw/K33Srd/n17A7zhFUC3POjS9m7XjwhIKcXf0fP9P1cGQBfc70GpV91Qv09njIcvhihJd+yWvn671665xbNYqjWv+QPhdafiOSJGwFp01kVSLiGmetstrbexzwqj8dwMwyRjGK1AGK3nzk14PnbHsteF9s1KC/vC627Y0r05ARgqhNEAAAAAAOhQ1jf4W3GszBGvXMkMZ5XrS8NW87HxwqCk8dxkpv32ixU+6WUYzfreLP96hqR5+byYNXSWK2VaPym8liXeYq3bTswCAAAp/eN6q+VHAkb9Yz3+tRNmAnpptnqvOTaT39iVfaS5eqv1u5E1Epx0myzR34ZWwcXIPKIfXBrtjsqPtLPyg+DYResuVzHK9nwBAAAAAAAAAACgbx71VHvsw38l/6xz5V+ww16HN98D6BJ32oOkSx+T/YaTM92fzHKlFBc2JowGDCU3NiGNpTtH30l6zXFfSlznwjfFOu6Vsbb/eV0//IW93nR9D2E0YA1y6zdLj/8Ne4XvfV3xe/9I3iecC7d/Lryc+xQMkxTnuC5RGO3NPHCY+5Xn24P/+Wn5/3PtkY937bTX3bqtSzMCMGwIowEAAAAA0KFSLmPQzHhzf9ZQQCkaVykXDm0tLAsFLCSEvcaMbQxa2oBKxQgvjLhR5Vwu0z6t703zPrzi4DouxcsspS6GzkJGo5KcEXRIE3drsL6mhBcAAO0qZA6j1YLL8y7hinY9Yj0eV+Jy8kkiQJ/N1sJhtGI0lvk5Szsavw32sWQ7YbR0Ieg0qrEVRmvcr4SPo/0Aw2g3zl5njm2fvqqPMwEAAAAAAAAAAMjGTUxJZzy4/Q2M8+Z7AN3j3vBhud9+Y7Yb9SMCQhgNOKq51/5t6nWfVvqK3v/rrWMuX/qR9Jh3hM9ll6TpeI6IEbBGuZf+lXRJwjll73+zdP0/2OP794SXTxKtxhDJHEbr/wW71xq37Qzpma8yx/1f/a781z67+MGu28MrjYxKG7Z2f3IAhgJhNAAAAAAAOpQ5aGZECbKGAopRSWNR+KSI8rIw2nx9X3C9UVc0A2SDZgVUYsWq+/rhj8v1cHgh6/dFsr83lbh8+N9WFsEKki2dU7YIXdb1Ixdp1IiXlY1ARZZ1s84HAICGtMHThqo/mGk7vWQdo3nFOuArfZ4NYNtdDYfR1uc39mcCh0KB1rFkO5FdKwS9/PlOGtb9TeN+xTqaH1QYbX99r76276bg2Olj52jr6Al9nhEAAAAAAAAAAEBG7YbRxibl8v2/aBaAo5fLF+Se8Qq5v//v9DeanOndhBqKKc5zzXF/CAytjcemX3f/Xj3jYqdSitPjdt5nj03X9xCYBdYo55zcC96cuI7/9Aftwf1z4e0SW8QwyRpGI0LcF+4hj0oc95/60OI/7toZXmHziXIRaSRgreK3HwAAAACADmUPmoXXt6Jc9nZKGrNCAfWloYCFeL+xz9UbukoKnzRHDSpWeCHj11OyY2rN4YVOwghZYxDtxCOs21hfp+C6RmyunfkAACBlD6PV4uSAUT8lxVab46nAoM3WwmG0mUL3wmhpYsCVevj3op3Irn18nv7YtsG6vylEh674Z5wQ4/1gwmhf3fM5MxK5Yzrhyp4AAAAAAAAAAACrhDvt3PZuON2nC/8AWHuOPVkam0y1qpuY7vFkJI2va71OjlgDMLROOStdAFGS9s/JOadzO7hOnvOx1sV7pekN7W8EwHBrdaxz+/ftsf17wsv7cUwEdE3GMFphpDfTwFInn5kcfL79e5Ikv2d3eHzTcT2YFIBhQRgNAAAAAIAOJcUylosUacSNBseyBNZGXVGRy5lxgeUhtIV6OIw2nkt3gscgpA2jWVGELN+XBut70Bw98T4OruNc65dZIpfTqCumnk874TrrZyJtPCL2dR3wla7NBwAAyX5cr1phNF8Lbyfq/8meSbHV5TFaYJB2V+8JLp/Jb+rL/hsB4eaocLNiLntk1zy2beN3z7xfOXT/ZEff+h9Gi32sm+auD45N5zfogRMX9XlGAAAAAAAAAAAAbbj8idK69dlvt3Vb16cCAJLkRovS1c9Kt/JkHyIgkzOt18kTRgOGlSuOSVdek27ln/9YkvTbOzIGXZqsi/cqkpfbenLb2wAw3Foe69zzc8W/9xj5O29bObZ/LnwbwmgYJsYFck1RrjfzwBJuasPia0SWW29W/EfPlH76w/B4P56bAVi1CKMBAAAAANChLEGzYjQmZ7zQmiXk1QhUjRmhqoVloYB5I4w2Fk2k3me/FSL7yhvNEZWKEfzK8n1psL4HacILaV8+T4qrrFi3i59DpZ4ujNYcgVu57ewxCwAAJKlgBM1qgTBa7GPVFQ4YFRLCqb1STHj8S3rcBPptrnZvcPlMYWMX92If9TbCaNbvRTvh4pJx7Jw2+tus6g8Gl+fd4lXorDBa/7No0q3z39Q91buCY5dOXaGc42QcAAAAAAAAAACw+rnxdXLXfl46d7tUsM8FW4GYB4Aeci/6c2n741uv2I8ISJo3+BNGA4aae+lfSk/6X9LMMdJUwjk8P/yWfL2uZ10S6a+f3l4cbbq+Z/EfRGaBNc296M+lS66yV/ivz8i/4DL5hSPvMfJxLM3vDa8/MdXlGQI9lDWMlsv3Zh5Ywf3+u6XjT7VX+Ow/STf+S3hsIkVQGsBRizAaAAAAAAAdst6sH5IU1sgWWFvcTikKh9Eq8YJiHx/+eMEKo+VWbxitESgIqcVHIipWFCHpa22xomXNcQdvpBGskMJymQJ4bcQjrM8hbTwiab2i8fMGAEAreSNo1vyYfnhZIJbWaju9NOqKcsafU8px63gq0C+z1fuCy2fy3QujpTnitY/P24n+GiHoNn73rPuWxv2KHUaLg8t76ca564LLI+X0sOkr+jwbAAAAAAAAAACA9rmTHqDoHZ+R+/Tu9Lch5gGgh1w+L/fH/yhFLd5amyZa1qnJFG/wzxNrAIaZyxcUveStcv//HXIf/6ncy95ur/yNz0uSXnhZpA//VvY42nR8KIy25aR2pgrgKOHyebk3fDh5pd13SV/42JGP5/dK3riEaD+OiYBuIYy2arnRotxbP9HejScJNAJrGWE0AAAAAAA6ZL1ZP7huzl43aczap7VvL68DTTGvhTgcRhtf1WE0O3zSHDWo1MPhhSzflyO3saJiR8ILnYbRsgQh2gmjWbeppAyjJa1XaiM2BwCAlBBG87XAstUVRnPOmcHV5ngqMEgH4orm433BsfWF7oXR0rCOJ9sLoxnHtsZzgCTWfUvBjWTeVi/de/Bu3TL/9eDYeZOXaCrPle8AAAAAAAAAAMDwcfmCdPWz06180v17OxkAa57LF6Rii3NM00TLOlUck/ItzoVpNQ5gKDjn5KJIOuYEe6Uf/Pfhf15ySvYw2lR9bvEfmxP2AWBNcKNFaWtyJNF//xtHPtg/Z684QZAIwyTj4ycR4v465gRpNPv70lw/npsBWLUIowEAAAAA0KGCG1GU8im2FdVoNWatO5YQNltoinnN18ORhLFoOMNoVX/w8L/LVnghl/3FUivWUInL8oeugOOtK+GkvLJIlthZMde9eERz3C1JpW4HXtqJWQAAINmP63XVFPt4ybJQLK3Vdnqt0/Ao0Guz1XvNsZl898JoSTHgRkDYDhdnP5YcM+LRCymPbZtZ9y15t3hii3Ph53RWGLlXvjh3nbnPHdNX9XUuAAAAAAAAAAAA3eQe9ZTWK01MSRdf2fvJAMCZFyaP9yEC4pxrHWAjjAYcXR78cHPI/81r5d//Zvn9e3TCeqdL75dt09PxnsV/EA8BIEkPf3Ly+Mfepfj3HqP49c+Qf9Pz7PUmprs7L6CXUr6v67AcYbR+cvmCdPkTs9+QQCOwphFGAwAAAACgQ845laIWV447JCksNeqKqQNrpUPBrLGE/ZbrR2IBVjggKaw2aAU3Yo41Rw0qcTjklfZ7svQ24e+Pl9cBXzn8UUhSJGLJPjLEztqJR5hxt4TgWTMroJZ3eRUi+3sCAECSQkLQrOariR+n3U4vWY+vZSMABfTb7to95th0F8Nora6mF/t603HzUu1Ef4vGMX0lnreDxQHe+yVx5WaN4KL1mWXZT6cOxgf0lT2fDY4dO3KSTi2d2be5AAAAAAAAAAAAdN0FD5d7/pvs8akNcn/2L3Kj2S+ICQBZuZf/dfIK/QoLTbaIjRBrAI4qbrQknXqOOe7f+0fy/+sR8gv79YHnRTr72PTbnqrvkUZLciOjXZgpgGHnnvMaaccTklf6r89In/uo9K0v2euMEyTCECGMtuq5l7xFOm9HthsRaATWNMJoAAAAAAB0Qdo3+SeFrpxzieG0Jfs7tF5SZGsh3n/k3/V9wXXGc5Op9jcIeWe/wNwcTKkYIa9ilP0EuaSvfyM05zsMo6X9HhfciHIJXwOL9TNRjtOFW6zQXNp5AwAQku9SGC1pO71kPb5WUj6+Ar02W703uHxdblqFqF+/N948lpSkUhvH51YIuuZrZugspK6aOdYIMlvH89bxfy98fd+XNB+Hn7vtmLl68WrhAAAAAAAAAAAAQ8o5J3fNy+Wuv0fu7Z+Se8vH5d7yb4v/vfvLcv96h9wDHzboaQJYK7ZsSx6f6FMEpNWb/HODOVcGQO+4Rz4leYUff0f63Ed10ganb70+0nW/ky4FMB3vIRwC4DBXHFP0xo/IvehP299IaUIuTzgKQ4Qw2qrnJmfk3v4p6VdfkP5GrWLSAI5q3FMDAAAAANAFad/k3youVYxKS4Jm9v4Wt5NzeY26og74yop1FupHgmHz9fA2rdDAahC5nCJFihWvGGuOIJSN+EKpjc8tKTTXiDx0GkZLiuMtXa+97431M1Y2AnIr1wsHXtLOGwCAkOQw2tJgUVLsaFBhNPvxlTAaVofZWjiMNl3Y2NX9JJ0z4r0d2ZWkYpePz8vxgkaidFe4XX4/0yx/OBxnfXL9C6PdOHddcHkxGtOF67b3bR4AAAAAsnHOnSLpQkkPPvT/8yU1X5nmdu/9tja33emTkpO99zs73AYAAAAAdJUbXyedf9mgpwFgjXO5nPyWk6S7bl85ODkjl+/TOSqt3uRfGOnPPAD0z9ZtLVfx131A7jG/LuecHvGAdC8TT9X39C/qCGB4PPDS9m/LfQqGTsYwWpTrzTSQyDknXXC5/Mfele4GhF+BNS1dJhoAAAAAACRK+yb/YouAWimXdjtHAgHWbRohrNjXVTGiHeO5yeDy1aLgwid01Hz18L8r9fDn1uprHb5NUnhh8evZ6TuQ0gbP2pn/4vbDn0NSpGLpetbXkzAaAKB9hcQwWnXZxwkBowGF0ezHV8JoWB1mq+Ew2vp8d8NorU4aSYrxpo1JL72NfexcrqcL/0pSLa6aY3m3eB0pK3TcryzazvIPdUflR8Gxi9c9vO3nBwAAAAB6wzl3mXPuU865+yT9WNKHJb1c0g4tjaIBAAAAAABgtdrxhPDyi6/s3xwmZ5LHi5y7CRx1LnxE63W+/eXD/8zn0kVepuO51rFFAGvP6edJG49t77aE0TBskq7+u1wUyUXkdgbmgsvTP9fZfEJv5wJgVeOeGgAAAACALrBiGSvWaxE+S72d5jCaEQtohALK8YK88Xb+sdxEqv0NihU/aQRTvPcqG0GStJG5ZiNuVJHxckkjLOZ9HBx3Lt3LLMVcd35WzO0bP0NpwxF2GI0QAwCgfUlBs6o/uOTj5IDRYMJo1uMgYTSsFrO1cBhtptDtMFoSr0rdjvG2E9pNOia2ngeELL+fada4iXEGQwAAIABJREFUX3HGCTHWc6lu++LcJ82xHTNX9WUOAAAAADI5V9IVktYPeiIAAAAAAABoj3vay6RTz1m6cOs2ud94ff8m0SpiVGrvXFIAq5dbt14azXZe9t8/t3XoZbq+Rxpf1+60ABylXD4v9/J3SCPF7DeeILaIIZMljJbL924eaMmNr5N76V9JuVzyivlC+3FHAEcF7q0BAAAAAOiCtG/ybxWXSr2dprjWmBELWIgXQ1jz9f3mdsai1R5GC790UfOLwZSqP6hY9eA67YS8nHMqReOaj/etGGsVFnNK9wJ6O/G7LKx4xAFfUezrilzyi8blevdCcwAANCQFzRqP69bHS7czmD9r2OFRwmhYHXZX7wkun8l3N4yWdMzr5c1YYN7lVYhGMu9v1BXlFMlrZZy4HKcL/0rJ9ysF15iXEUYzwsjdtL+2V1/b96Xg2APGHqTNI8f1fA4AAAAAuuaApJ9JOrUH2/5PSU/NeJuf9WAeAAAAAAAARwW3YYt07Rekm2+Q//F35LadIV34CLnJmf5NotW+ipy7CRyN3PPfJP/2lyWu4w9U5EYXQ0ZXn+OkFhf3m473EDECEOQe9hjpA9+Uf8oZ2W44MdWbCQG9QhhtqLhffrZ05kPkr32V9NVPhVdav0Uuivo7MQCrCvfWAAAAAAB0QSmXNnaVfIJCO9Esa5uNUMBCQhhtPLfKw2jRiELds2p8UJJUNsILUuuvtaWYKwXDaJW4LGkx+BCS9uXzbkX0LKWE21XissZafM+tmEW78wEAQJLyUVIYrbbk46o/GN6GK8hl+YN1F1nHeo3jA2CQvPeard0bHFtf2NTXuVjH52mPgZdbDBePaSFe+ZymVbi42fL7mWaNcONg7l0W/ceeG8x42/bpq/o8GwAAAAAZVCXdIulrkm4+9P/vSHqYpM/3YH8V7/3OHmwXAAAAAABgzXJjE9KOJ8jteMJg9j85nZw6KhFGA45KW7e1XufuO6QTT5ckzYxJk0VpX8Vefao+J03cvzvzA3DUcceeIn/NK6R//Iv0NyK2iKFDGG3YuJPPkF78F/JWGO34XlyPDMAwIY0IAAAAAEAXpA2atYpLpQ0GNEe/xnLhkx4WDoUCQhEBSYoUtR0o6JdGpGC5RjTAinhJnYTFwl+TRmjOKw6Ou5Qvs6SP37UZdku4XVJIrtU67c4HAABJyjv7j8e1eGkMyAoYWccF/WAdMzWOD4BBmo/3mUHBmfzGvs3DqzeR3ZLxfCfL758VHZOO3D9Zx/NWGLlbYl/XTXuuD47N5DfqnIkLe7p/AAAAAG17v6R13vvzvPe/6b1/t/f+G94nPAEBAAAAAAAAlpucsceck0aK/ZsLgP45+2KpMJK4iv/E38nfd5ekxYsLjiWvrun6HiJGABK587Znu8HkVG8mAvRKlgtwR7nezQPZHHc/adNxwSF3wcP7PBkAqw1hNAAAAAAAuiB90Cx5vVIue2DNClY1QgEL9XAYrZQbl8vyou8AFIyISiOYUq7boS8roNCK9b2sxGVJ6jiLkPpnJeXPworbJWw/6evV0IuYBQAAOeXljKtwLQ8WWQGjQYbRrMfXxvEBMEiz1XvNsZnCpq7uy/o9XuRVNn4nOons2uHi1se2DVY4Tjpy32J9Zr0Oo90y/w3dV/1FcOzS6SuVc5x8AwAAAKxG3vtZ731l0PMAAAAAAADAkEsKo5UmVv15vgDa46Y2SE/+neSVPvQ2+SecpPj118gfqOjPnph8fzAdz8lNEkYDkODBj5Ae9Evp1ye2iGGT5dg5Z1/0G/3lcjm5X3/dyoGtJ0m//Oz+TwjAqsK9NQAAAAAAXdAqeHZ4vRaxq/TRrCNhgTEjALZQXwyjzdf3BcfHo8lU+xqkvAtf2qoRNrAiXk5OI260rX1a34NGaM5Ko0UuXX8+ffyuvTBa0u2sr1czK57WScwCAADnnPKuEIwTLV9mh9EG9ycNO5yaPswE9MpsLRxGi5TTulx3r9iYHEaTKoePmZfqJLJrHYc2nu+kYd2vSM3RxfDn1usw2o1z1wWX55TXw6Ye1dN9AwAAAAAAAAAAAAAGLCliVGjvPFgAw8H99hukU86Sf8Nzklf83D/Ln3CanvLs1+s5f2efxzJd3yNNdPdcIQBHF5fLSW/9hPR/3in/rS9JP/qO9Iuf2utzn4JhQxhtaLnHPlc65jj5Gz4q3Xen9IAHyz3xhXIbtgx6agAGjHtrAAAAAAC6oNil2FXawFpzWMAKBTRCXgvx/uC4FVRbTY5ECpZqhA3KRoykGJVSh8qWs74HjWCY952FEdIGxtL+LCxXiArKu0Iw/mB9vZpV4nJweScxCwAApMWwWSiMVvO1ZR+HA0YFI5jaD9bjciUuK/Z1RS7X5xkBR8xWw2G06fz6vv5senmV69axZHvHtpIdFs4SJlx+P9OQU/7w8wbzKtsdHv8n+cXBXfqf+W8Ex86ffKjW5bniJgAAAAAAAAAAAAAc1SZn7LHqgf7NA0DfOeekK54m/9Xrpc98OHnlGz6i0d/4o8RV1sV7pQnONQGQzI0Wpaf/ntzTf0+SFL/00dLXPx9emfsUDB3CaMPMXXSl3EVXDnoaAFaZ9t4hDAAAAAAAlkgbsWq1XtpgQHNcywyj1Q+F0epWGG0y1b4GKe/CLzQ3wgZWDKGT8IIVuWvsyyscRnApX0BPGxjrKB5hxlvmW97W/JqmjP8BAGBpFTxtqBphNOv2/ZD0OHggrvRxJsBKu2v3BJevL2zq/s5aXE3POpa04mZpjLUIQadRjVdGGaWlzzes4/neZdGkm+auM8e2z1zdwz0DAAAAAAAAAAAAAFaF6YS/7S/s6988AAyMO/281ivdeZv8wQN63IPCw2dVblFOsTSxrruTA3D023KSPUYYDcOmxTmuS+S4KDYADAPCaAAAAAAAdEHaMFqr2FWaYECkSAU3cvjjsdxEcL2FQ6GAeSOMNh6Fb7ea2AGVxbBBuQdhNOt7We5SGK3gRpRT6yuLlHLhAEQa1udfjsstb2t9TdP+jAMAYEkbRlv+8ZHbD+7KXEmPg9ZjJ9Avs9V7g8tn8hu7vq9WR7y9OD4vGmG0hXr6MJp5vxIduV+yw2hx6v1kcTA+oK/s+Vxw7PjRk3VK8f492S8AAACAoXaic+7vnHO3OOdmnXMHnXN3H/r4H5xzv+WcWz/oSQIAAAAAACCDDVsGPQMAg3bF01rHh7yXvnq9XnBZJOdWnsv+m3N/u/gPIkYAsjrmeHtscqp/8wC6IUMXTbnBnZcOAEiPe2sAAAAAALogzRv9c8qbQZAs2ylF43JNV7EYM0IBlXhBsa9rIQ6H0ayg2mrSHIBrVj0UNqjUux/xsr4HlUNRMSuMlvYVdOecSrkx7a/vbTGPUqrthVifv/X1aqj5qqqHonMr50MYDQDQmVaP6w12GC35OKqXkh4HK4TRMGCzNSOMVki4qnQPeO/N34dOjiXHjGBwlt89637Ful9qZh39d+pr+24yn6vtmL56yXM+AAAAADjk5EP/NTvm0H9nSrpG0tucc++R9Afe+/CTjg45546RlPVJ56m9mAsAAAAAAMCwc8717O/SAIaDW79ZuvYL8u94ufSNz0v1enA9/9on64pP3KmPPi3Wn/3tj/Wt0QfqAQe/r+fNvU8vmv2bxZUmiBgByMatm7GPRYgtYthkOe+SMBoADAXurQEAAAAA6IJSLkXQLDfW8s3taYJexdzSYFbJCAVIUjle0EJ9eMNoVgClETYoW+GFFN8Pi/U9KNfnF//hw3/2yRIuKEallmG0khG8S7V94/Mvx/OJt6vUywnzIYwGAOhM3oX/JLE8WGQGjKLWAaNeSQqWlmP78RPoh9mqEUbLb+jB3uxjXi9/OCa8XCfHktZtF+rJx7bNar4WXN58v+TMz637p6B773Xj7CeDY6VoXBeu2971fQIAAABYM8YlvVTS1c65X/Xe39KDfbxQ0ut7sF0AAAAAAAAAWJPcyWfIve3fJUnx40+Udt8dXvGGj+hXzr9MT9i5IzxOxAhAVusSzjMctc+dBVYlwmgAcNSJBj0BAAAAAACOBmkiVklBjSzbWR4GGEu4Tbk+r3kjjDYeDUEYLTICKvFiMKVihNE6CS8Ujds2Ig9WFsEOKazUzvc5C+u2VqjiyHj46ynZXxcAANJqFTxtqMbhMJp1+34ouBHljGvNVDLEmYBui31dc7X7gmMzhY1d31+rY96y8fuQ5rmQxQpBJx27Llf1B4PLm+9XnAv/2dQbYeRO7Kz8QD898JPg2CVTj9BINNr1fQIAAAAYajVJX5D0OkmPk3S+pNMknSfp8ZLeIukXy25zuqQbnHMn9W+aAAAAAAAAaMvTXhZe/msv6u88AKwO284wh/wPvyXtm7NvSxgNQFbnXxZeXhiRNp/Y16kAnSOMBgBHG8JoAAAAAAB0wWiKN/qnCUsVc9m3Y4UCJGkhntdCHA6jjeVWfxit4EaCyxsBlbIRQ+gsvBD+PpXjxciDVxwczxJGS/ez0P0wWuNzsFhfT8n+ugAAkFbaMNryj4/cfnB/gHbOmcdp5RbhUaCX9tRmFRvHp+vzm/o8GzvE20lk1zq2XWhxbNvMvl9pCqMZt/VmGrl9N8590hzbPv3oru8PAAAAwFB7naTjvPeXe+/f5L3/N+/9N733P/Le/7f3/uPe+1dIOknSn2rp9V22SPqYc1kujQ4AAAAAAIB+c1deE16+41f6PBMAq4G74mn24L+/T/5Fl4fHRkblRou9mRSAo5bbuFW6IHC/ctGVcmOr/z1HwBJZ/iyaJ4wGAMOAMBoAAAAAAF2QczmNuuQ/JFpv6M+6zoowWsJtyvV5LdSHN4xmBVSqh8IGVnihFNmxuFasaEPVH1Td1xKyCOlfQE8TGUvzs2CxPody3Q6fSclhtE5icwAASFIh6jSMFr59v1iPzZWEx0+g12Zr95pjM4WNXd9f0hGvlzd/HzqJ7FrH9gfismIfjsItZ92vLA0xhz+7bofR9tXm9I19Xw6OnTF2ro4ZObar+wMAAAAw3A7F0H6RYr2K9/7Vkl68bOh8SQnvomvLtZLOzvjf47s8BwAAAAAAgKOGO/VsuT98v1Q89Lf1sUm5l/1vuXN/abATAzAYVz1LKrVxLvz4VPfnAmBNcH/wPunsi48sOP8yude8Z2DzAdqWJYyWI4wGAMOAe2sAAAAAALqkmBvTgVrFHk8Rusq5vEbcqA76A+Y6y6MckcupGI0FIwTX7/5nVf3B4HbGouENozXCBuX6fHC8k4hXYmguXpCMMEKU4QX0Vj8LkSKNuNHU21vOCk+0CrdY4wU3opzjZSQAQGfM4Gk8HGE0MzxKGA0DtLsaDqONumKPjvftY966r5nPY9I8F7KUcuETPRshtjTB55qvBZfnm45xnfm5dTeM9uU9N5jz2TFzdVf3BQAAAGDt8d6/0zl3haTHNS1+oaQPdnEfv5DUMtbWzGV5EwIAAAAAAMAa5B71VOnyJ0o/+5F03KlyhZHWNwJwVHJRJP3RP8i/6ley3XCCMBqA9rgNW+TedaP8vXcufryRi3tiSBFGA4CjTjToCQAAAAAAcLRo9WZ/K1aVdTvFwHbGonAs4PsL3za3M56bTDWfQSq0CKNV4nJw3IonpJEURqvUF+S9FUZI/wJ60j6kxZ+BTt4kVDR+HlqFW8r18HjJ2B4AAFm0Cp4e+TgcDLKOC/rFOkZrFR4Femm2Fg6jTRc29v1N59axudT6+DdJ0rFo2jChFYtuvl+ywmjdzKLFvq4vzX0qOLY+v0lnj1/Qxb0BAAAAWMPevOzji51z0wOZCQAAAAAAAFJz+YLctjOIogGQjj81+20meBkYQGfcxmOJomHIZThvNsr1bhoAgK4hjAYAAAAAQJekiV2l2k6LgFpoP+2EwMZyE5lv02+tAirleD44XoxKbe8zFJ5rKMcL8kYaIUt2olsRPfP2xuffKhxhhV06+XoCANCQNoyWJmA0CNaxnhUWBfphthoOo83kN/Rkf1Y8TLKPzaVOw2gJx+d1e5/Nlt/PNCwJoxkhOe/jVPtI4zv7v6bdtXuCY780/WhFjhNtAAAAAHTFf0mabfo4J+nMAc0FAAAAAAAAAJDVCadL287IdpuJqd7MBQCAYZHlgsI5ztcEgGFAGA0AAAAAgC7pWhitje2M5yZTbbvByWksGv4wWiUuB8dLUfZQ3JHbthtGS/8yS6vvcSfhCEkqGp+/FT5rsMJp7YT3AABYLm0YLU3AaBCsY7lWj69AL80aka31hU292WHCOSNJkcC0z4VCkqLBrcK/DbW4FlxeiPp7v3Lj3CeDy/Mur4dOPbKvcwEAAABw9PKLhec7li3u0RNFAAAAAAAAAEC3OefkXnGtNDmT/kaT072bEAAAwyBTGC3fu3kAALqGMBoAAAAAAF3S6s3+aWNX7Wzn/mMPTLXthlNLZ/Y9AtCOghFAqfqqYh/rgBFGK0altveZc3kV3EhwrJIQRsuiVWisk3DE4vbDty/XF+S9PX8rNNfJ1xMAgAbrcb3ma8s+Xp1hNOvxlTAaBmm2em9w+Ux+Y59nkvy7UMy1fzyZdwXz+Lwcz6faRpr7FWdU37px/C9Jdx/8ub638K3g2PmTl2oyz1V7AQAAAHTV8hf8eaEfAAAAAAAAAIaIe+BD5f7x23Kv/4D0jFe2vsEE554AANY4wmgAcNQhjAYAAAAAQJdYsYyGtHGpVgG1UDTr0qlHaevIiam2P+qKeuzGp6dad9DyRryt5qs6EFfMSEGr8Fgr1vegXF+QjH1aIYWQVj8LnYbRrNvHqqvqD5q3s2IWnc4HAADJDpstf2xaHkprsMJq/WI9HpYJo2GAdtfCYbT1hU092V/SMa8VKSu4kY7DhqUofHxfrqcLo1nHwP0Mo900d705tmP66q7sAwAAAACaLC9mh59AAgAAAAAAAABWLTdzjNwjn6zot9/QOnw2ThgNALDGuQz5HMJoADAUuLcGAAAAAKBLWsWj0salWq0XCrBN5qf1shPfpK/v/ZJ2Vn6guo+Dt90yepzOm3iotowen2oug2YFFGpx1Yx4SekjdPbtx7S3PrdieSVekPdGGC3DlUVaxe+s8EM3tl+OFzQSjYbH6uGvaav5AgCQhvm47qtLPq4u+7jV7fvFOr6oxOU+zwRYVI0Pan99T3BsJr/8/e/dkRxGsyK7nR2bS4vh47312RXLF4wY23LL72calt6v9C6MdiCu6Ct7PhscO3H0VG0rntbxPgAAAACgwTm3UdIpyxbfOYi5AAAAAAAAAAC6ZOs26YffMofdpmP7NxcAAFajscn06xJGA4ChwL01AAAAAABd0jJ2FQiatbOeFU4bz01q+8xV2q6rUu1nGFgBlKqvmuEFqfOwWDE3JgXaCeV4wQwjJEUilms1v2Kus3hE0s9iJV7QlGbMseB8CKMBALogbRitFh8M3z4abBjNenwt19OFmYBum63dZ47NFHoTRktiRXa7cSxp/f4lxZKb1XwtuLzQdL9kh447D6PdvPeL5vOXHTNXZ4osAwAAAEAKT5XUfDn0uyXdOqC5AAAAAAAAAAC6oUUYTVu39WsmAACsSm5iKv0Zn4TRAGAoRK1XAQAAAAAAabQKo6UNArRar9V+jiaFhIBKUgShGPUmLFZJCKMpQxitVfis47Bbws9IUrzFijWkjfoBAJCkYITNlgeLrICRFVbrF+vxtRKX+zwTYNFs9R5zbCbf/zCadXzejecvY8bx8ULKMOHyAGND8/2KmUXrsIvmvdcX5z4ZHBuLJnTB5KWd7QAAAAAAmjjnNkt63bLF/+Z9p89uAAAAAAAAAAADteWk5PGtJ/dnHgAArFaTM+nXJYwGAEOBMBoAAAAAAF1SbBGPShsEaLXeWgqjWQGUmq+aEa+c8iq4kY72a32NywlhtChDGK1V+KzT7/FoVJQz5pMUb7FiFmmjfgAAJLEe16vLgkVWwMgKpvaLFQpNirUCvTRbuze4fDw3qZFotCf7tI4xJakchyNlrZ4npWFtI+3vX9UfDC5fGkYL/9nUDiOn85Py9/SzAzuDY5dMPaJn3ysAAAAAw805d3/n3GMz3maLpE9I2ty0+KCkN3dzbgAAAAAAAACA/nNbtyWv0GocAICj3cRU+nWjXO/mAQDoGjKWAAAAAAB0SbeCZq0iVGspUmUFVGLFWqjvC44VcyU5lz5SFtyG8TWu1BckK4yQYZ+9jt9FLlIxKgXjcVawYnEsHJZYSzE+AEDvmMHTeGmwyAqjWbfvF+v44KA/oLqvKef4kwv6ywqjrc9v6vNMFpXrVmS31PG2x4yw8ELdPrZtVvO14PI09yudhtFunPtkcLmT0/bpR3e0bQAAAACD5Zw7XuFzMLcs+zjvnNtmbGa/9z70BG+rpI87574j6R8k/Yv3/ofGPCYlPVvS67Q0iiZJb/Te/8TYNwAAAAAAAABgWJxxoT120gPkxib6NxcAAFajyZn0646Fz0sFAKwuvEsHAAAAAIAuKRlv1m9IGzQr5VpsJ9d5WGBYFBJCBfvqe4PLuxGOK+XC2yjHC/JWF03pw2ijUTFxvGjsP4tiNGaE0cLBCkmqGGNrKcYHAOgdM4y2LFhU9QeD6w06jJYUCq3EZY3nJvs4G0DaXb0nuHymsLGHe7WPee3Ibucnj1jHo0nR32ZWcLH5+YZ9PN9+GG1vbU7f3PeV4NiZ4+dp08jWtrcNAAAAYFX4kqSTUqx3nKTbjLH3S3pOwm3PkfRnkv7MObdH0ncl3Stpn6QJSSdIepDC54K+23v/hhTzAwAAAAAAAACsdmdeKJ19sfTdr64Yck9+8QAmBADAKjM5nX7diQzrAgAGhjAaAAAAAABdUoySg2Vpg2ZJ2ym4kYFHQfop6XPdV9sTXJ4ULUnLCi9U4gV5xcGxLGG0yOVUjEqqxOXgeDc+h1I0ptnA8ko9HKzw3qtSt+azdmJ8AIDeybvwnySWB4uWh9KO3H71htHK9QXCaOi72dp9weUz+d6F0ZxLCqOFI2WtnielMWbEo5Oiv82sMFo+RRjNdxBG+/KeT6uu8H3a9umr294uAAAAgDVrStLDUqw3L+l3vffv6fF8AAAAAAAAAAB94pyT3voJ+WtfLd18g7R3Vtr2ALnHPk/u6mcNenoAAAxehjCayxJRAwAMDGE0AAAAAAC6pGS8WV/KFjQrRfZ2uhHMGiZJX7P99XAYzYqaZWF9nRfDaGFZwmjS4jx7GkbLGI+o+oNmtKGY8LMNAEBaBTcSXN4cLPLemwGjwoDDaEnHGJWUcSagm2ar9wSX9zKMlsT6PUh6fpOWtY1yPRxjW64aHwwuz0dNYTQj+uZ9e2G0uq/rprlPBcc2FDbrrPHz2touAAAAgDXjVkl/ImmHpPMlpalO/0DS+yS9x3t/b++mBgAAAAAAAAAYBDc2Kffyvx70NAAAWJ0mMsTOsqwLABgYwmgAAAAAAHRJUiwjS+gqad1uRL+GSSGyAyj7jDBaN6Ji1td5MSrWXhhhuVI0pjndl2n/WRSj8HukrDCaFWmTpJKxLQAAsrCCp1V/JFgUqy5vPNamjcz2SjFnPx4SRsMgzNbC73GfKQwqjBY+nrSOS7Owo7/pwmg1Hw4AL71fMcJobR7/f2f/zZqrhY/3t08/WpHLtbVdAAAAAKuH935bD7d9t6TXSpJzLpJ0mqRTJR0naVpSUVJZ0qykXZJu9t6HC9oAAAAAAAAAAAAAcLQbm5QKI1I1fDHdJSZnej8fAEDHCKMBAAAAANAl3QqaFXMJ20kYOxolBVD21cJhtG5ExazvZaVeNsMIi+9LSi8xpNeF73MpCscjrHBLUlRirQX5AAC9kXfhP0k0B4uqvppw+8GG0fKuoIIbWRJya7DCo0CvlOvzZohsJj+YMJqlG89hrOPztL97NeO+pdB0v+KMMFq7YeQb5z5p7HNEl0w9oq1tAgAAAFibvPexpO8f+g8AAAAAAAAAAAAAsIxzTn7zidLPftR65cnp3k8IANCxbO/YBQAAAAAApoIbUaRccKwYlVJvJymwljR2NEoKoOyvh8No3YiKWfGGpHiYlVGwlHLhcJlkR82ysGJm5Xo4HmGFNRbns7Z+7gAAvWE9rtd8Vd4vhodq8eoNo0n2MZ0VHgV6ZXftHnNsfWFTz/Zrx8Ns3TiWtI6Pa76qatz6yn6hoKGU7n6lnSzaXQd+pu8vfDs4dsHkpZrIrWtjqwAAAAAAAAAAAAAAAAAAADAde3K69SYIowHAMMgPegIAAAAAABwtnHMq5cY0X9+3YixLrGvEjSpSpFjxijErdnW0KrgRc2xvbS64vBtfIyveEPqeHJEtEpEUyxvNENLLuv35eF/wZ3Suel/CfIodzwcAACtA5OUVq66c8qp5O4xWiAYfRitF49oXiLPuqc0GH1+BXrnrwM+Cy50iTeXX92y/7YTRunJ8nvB8anftnsOhsWJUUs6t/PNnzdeCt22+X4pc+HpS1fhg5t/vz899whzbPn1Vpm0BAAAAAAAAAAAAAAAAAAAgha3b0q03wQVuAWAYEEYDAAAAAKCLilE4jJYlBuCcUzEa00K8f8WYFew6WuUDUYOGA74SXN6Nr1EpGs98myhjJMKa56grKudymfe/Yvu58Ofwg4Xv6BU/embq7RSjkqIuzAcAgEJkB0+rvqqcSw6jJR0X9IsVHv3YPe/Tx+55X38nAwRM5We6cizZTaUuRH+Tjs//+LYXHf73qCvqzPHzdM2WF2ksNyFJqvu6vBE4toKNzW7ac71u2nN9xhmHnVQ8TdtKp3VlWwAAAAAAAAAAAAAAAAAAADjCHX8/+VYrRZE0fUw/pgMA6FD40ucAAAAAAKAtVuwqSxhNkkq57mxn2EUupyjjyxdWsKT328gaRgvHHYrG9z6rbkX01trPHACgd5LCZrV4MYhWTQyj2WG1funW4zTQKzP5jYOewgrFNqLDy6UNFx/wFX1z/1f0//78Tw/Oha74AAAgAElEQVQvSwouFprCaC7j8Xw7dkxf1fN9AAAAAAAAAAAAAAAAAAAArEnbH996nfN2yI1N9H4uAICOEUYDAAAAAKCLrIhU1kiVuZ01GOPIN8UK0ijluhBeaGMbWUMKVnytWyGybm2nW4E1AACSHtMb4aK0AaNB4XERq91MobdhtHbiYaVc5+Hi0agol+HPmj8sf1f3VX8hSar6g+Z6S++XehtGG89N6oLJS3u6DwAAAAAAAAAAAAAAAAAAgLXKHXuy3Ev/UnLGOaG5vNwr3tnfSQEA2pYf9AQAAAAAADiabCps0Y/Kt6xYvqGwOdN2Nha26OcHdgaWZ9vO0WBDYbN2Hbwj0/qdGnVFTeSmtL++J/Vt1hc2ZdrHppEtweXd+h5vKoS3n1U3vp4AAEjSiBs1xw74iqTkMFrWWGovrMVjMQyXLSPH93T7eVfQZG5K+1IeJxfciCZz0x3vN3KRNhY2657qrtS3ufvgz7WhcIxqvmau03y/siHj8XxWD516pArRSE/3AQAAAAAAAAAAAAAAAAAAsJa5J75QetgvS9/+D+muO+Tvvl0qTcid+0vShY+SGy0OeooAgJTSX1odAAAAAAC0dMH/Ze/O4+yu63vxvz5nlpyTCSQBEsImhB0RAUVQca1KXapWtO5XRa9LW5dbrVWrrVWrVm9rl9vFq7+6XrVqRVGLdUMEpSIugCAqsoY1SICQZLJM5vv7Y0IZJuecOTOZcyYz83w+HueR+X4+78/n8w7JfDmTmfM6ez5ip7H+0p8T9jhlavvssfM+g2VRHjB00rR7m6tO3ONhHdfu1b8iq+tH7vKZpZQ8eI9TO64/pH5Elg/sM6Uzjh16cBaVnf8xvdmf/XSsbhyZvfp3PdzhpD0fOQPdAEBSry1uOTe8fVOSZFvbYLTZf6+XB+1xakpavIMYzLKSWh6y56O6e0YpOWFJ58/Pj19ySgZrrUMRp2Kqz5M3j47dV0ZGOwtcPH7JQ7v2+V2vLc5jl/1OV/YGAAAAAAAAAAAA4F5l1cEppz0v5UVvSu2N/5zaq9+f8oinCkUDmGMEoy0gpZRGKeVhpZSXllLeUEp5aynlNaWU55RSjiilzMirPUopA6WUx5RSXlRKeVMp5Q9LKc8opRwyE/sDAADszu4/dGKeu/KVadSGkiRL+5bnVQe8NXsP7DulfU7a8xH53X1elHqtkWQs8Os1B/5F9uhfOuM97+6evPez88hlT7xPaEEzByw6JK896J2plZn5547TV5yRh+zx6NTS17busMYxedUBb53y/ov7luS1B73zv/9uLCr1PHWf5+eUPR8znXZ3Uit9ee1B78gBiw6Z1vpFpZ6n7fOCPGSP7oZrALBwLKrVW4YO/XeAUYtgtFpqqZX2/0/uhdWNo/KiVa/LUN8es90K3MeSvqV55QFvzr6DB3T9rGetfFlO2uOR6UvrsMKSWh645OQ8f9UfzNi5T9nnuXnE0tM6Dkm8J3Cx1X0lSQZq936NccTiY/PCVa/Okr49d63RCZb1751X7P+mLBvYe0b3BQAAAAAAAAAAAACA+aqzVw4wp5VSHpbkfyX53SSDbUpvLKX8a5K/r6pq3TTOWZHkHUmek2SvFjUXJPlAVVVfmOr+AAAAc8Wjlj8pj1h2Wu4cWZfl/ftkujnUp+19eh6319OzfuSOLOvfe9r7zHW10pfn7fuqPHPFGblt282pqp1rlvTvmWX9Tb8UnbaB2kDO2P+P8rzRV+U3W29tWrO0f/kuhdWtbhyZd67+YO4cuT179i9LX4chD51aObh/3nrI3+XOkXXZMLK+43W1Usu+g/vPeD8ALGy1UsuiWuO/Q9DGG54kGG2gtPun7d46Zelj8pA9H5Xbtt2cbaOtA5egVwZrg1kxsF/Pvl4YqA3kpfu/IZtHh1s+T957YEUafUMzem5f6cvzV/1BnrXyZff5uuD/u+n9Wbvtpp3q77nXbKu2ttxzYvjyw5Y+Lqfs+dgZ+/xeVFuUvQf2nbHwZgAAAAAAAAAAAAAAWAi8unUeK6X0J/m7JH+QpJNXwxyQ5M+TvLKU8pKqqv5zCmc9KcnHkqycpPThSR5eSvlUkldWVbWx0zMAAADmklrpy14DK3Z5n77Sl+UD+8xAR3PfYG1RDlh0SM/PrdcaObDevXNLKV3/M17Wv9eMB8cBwHQ0aoubBqNtniQYbWJ40WwbCxE9YLbbgFnV7efJrUz8umCP/qVNg9HuDVwcablXs3uLz28AAAAAAAAAAAAAAJhdgtHmqVJKSfKZJM9qMv2LJFckGU6yIslJSZaPm983yVmllKd3Eo5WSnlMki8lGRw3XCX5SZKrkyxLcmKS8a/yfkGSPUspv1tV1WiHvy0AAAAAAOawem1x0/F7Aoy2jbYKRvPtDKC5Rm2o6fhkgYvJ7he6CAAAAAAAAAAAAAAAJLXZboCu+Z/ZORTtvCTHVVV1TFVVp1dV9YKqqk5LsjLJS5PcNa52MMnHSylL2x1SSjkwyZm5byja95McW1XVSVVVPXvHGQcmeV2S8a8+eWqSv5zG7w0AAAAAgDmo0SIYbfP29gFG/TXhRUBz9Vqj6fjwJMFotdTSV/q61hcAAAAAAAAAAAAAADA9gtHmrz+dcH1eksdXVXXZxMKqqkaqqvpokscn2TJuamWSV01yzjuSLB93fcGOc66YcMaWqqr+IcmzJ6x/fSnl4EnOAAAAAABgHqj3NQ9GmyzAqL8MNh0HaNSGmo7fE7i4rdradL6/CFwEAAAAAAAAAAAAAIDdkWC0eaiUclySQyYMv7aqWryibIeqqn6U5MMThp/a5pwjkrx43NDWJC+pqmpzmzO+lOTj44YWJXl7u74AAAAAAJgfGrXmwWib/zsYbaTp/EDp71pPwNxW72s0HR+e5L4iGA0AAAAAAAAAAAAAAHZPgtHmp0MnXK+pquqSDteeNeH6iDa1z0/SN+76zKqqruzgjPdNuH52KaXeSXMAAAAAAMxd9Vr7AKNt1dam8wKMgFZaBy4OJ0lGWrxv0ID7CgAAAAAAAAAAAAAA7JYEo81PQxOub5jC2jUTrpe3qX3GhOuPdnJAVVVXJLlw3NBQktM6WQsAAAAAwNzVqE385+sxkwUYCUYDWqm3CEa7J3Cx5X2l5r4CAAAAAAAAAAAAAAC7I8Fo89MtE67rU1g7sXZds6JSyqokx48bGkny/Smcc+6E6ydNYS0AAAAAAHNQvdZoOj68fWOSZKQaaTovGA1opVUw2uYdwWjbRrc2nXdfAQAAAAAAAAAAAACA3ZNgtPnpoiRbxl0fU0pp/mqznT24yV7NPGDC9aVVVW3s8IwkuWDC9bFTWAsAAAAAwBzU6BtqOr55dDhJMlJtazovwAhopdEqGG37WDCawEUAAAAAAAAAAAAAAJhbBKPNQ1VV3Z3kE+OG6kleNtm6UkpfkldPGP54i/L7T7j+dccNjrlqkv0AAAAAAJhn6rXm7+ExPDr2vhvbqq1N5wcEGAEt1PuaB6NtqTZntNreMnDRfQUAAAAAAAAAAAAAAHZPgtHmrzcnuXbc9ftLKY9vVVxKGUjyoSQnjhs+J8kXWiw5fML19VPs77oJ13uXUpZPcQ8AAAAAAOaQRm2o6fjm0eEkaRlg1C/ACGihUWsejJaM3VvcVwAAAAAAAAAAAAAAYG7pn+0G6I6qqtaVUh6b5MyMhZ01kny9lPLvSf49yS+SDCfZJ8nDkrwyyVHjtvhhkmdVVVW1OGLZhOu1U+xvQyllc5L6uOGlSe6Yyj4AAAAAAMwd9Vqj6fiW0eGMVqMZGR1pOi/ACGil3iYYbXh0U7YJRgMAAAAAAAAAAAAAgDlFMNo8VlXVtaWUU5K8JMkrkjw4ybN3PFq5PckHkvzvqmrxSpExSyZcD0+jxeHcNxhtj2nscR+llJVJVkxx2WG7ei4AAAAAAJNr9A01Ha9SZcvo5oy0CjCqCTACmmu0CUbbPLqp9X1FMBoAAAAAAAAAAAAAAOyWBKPNf307HluSVElKm9o1Sf48yb9NEoqW7ByMtnkavQ0nWd5mz+n4gyRvn4F9AAAAAACYYfVao+Xc8OjGlgFGAwKMgBbqbYLRhre3DkZzXwEAAAAAAAAAAAAAgN1TbbYboHtKKacmuSLJvyQ5NZP/eR+U5KNJri+l/M8pHldNvcNprQEAAAAAYI5q1IZazm0eHc62amvTuX4BRkALA7WBlveIzaOb3FcAAAAAAAAAAAAAAGCOEYw2T5VSHpfkW0kOGTd8Y5I3JzkxybIkg0lWJXliko8nGdlRtyLJh0spHyqllBZHbJhw3ZhGmxPXTNwTAAAAAIB5pF5r/U/Jw6ObMlKNNJ0TYAS0U68tbjo+PLopI6PuKwAAAAAAAAAAAAAAMJf0z3YDzLxSyookn0lSHzf8lSQvrKpq/YTyW5N8PcnXSykfTPLVJHvvmHt5kquSvK/JMbtrMNo/J/n8FNccluSsGTgbAAAAAIA2Bspg+tKf7dk5qGjz6KaMVNuarusvvp0BtNaoNbJh+107jW8eHW5zXxGMBgAAAAAAAAAAAAAAuyOvJJqfXp9kxbjrXyR5dlVVm9stqqrqB6WU5yT51rjht5dSPlpV1doJ5RNfXbIiU1BKWZKdg9HunMoezezoc2Kvk/Wyq8cCAAAAANCBUkrqfY1s3H73TnPD21sHow2UwW63Bsxh9dripuPD2ze2vq/UBKMBAAAAAAAAAAAAAMDuqDbbDdAVvzfh+n2ThaLdo6qqbyc5f9xQI8lzm5ReOeH64M7ba1q/rqqqO6a4BwAAAAAAc0yjRYDR5tFN2dYiwKi/CDACWmsVjLZ5dDjbqq1N59xXAAAAAAAAAAAAAABg99Q/2w0ws0opQ0kOmzD87Slu860kjxx3fUqTmismXB8+xTMOnXD98ymuBwAAAABgDmoVYDQ8uikjgtGAaWj0tQ5cHKlGms65rwAAAAAL0tY7ko3X7zw+dL+kNphsW5809ut9XwAAAAAAAAAwjmC0+WdZk7FbprjHxPp9mtRcNuH6gaWUxVVVberwjFMn2Q8AAAAAgHmo0SIYbXPbYDTfzgBam17govsKAAAAsIBsvSu54PnJTV9LUrWvXXZ88sgvJHtMfJ9mAAAAAAAAAOiN2mw3wIy7s8nY0BT3WDLhesPEgqqqbk5y6bih/iSPmMIZj5lw/bUprAUAAAAAYI5qGWC0vXWA0UBtsJstAXPcdAIXB4r7CgAAALCA/PDlyU1nZ9JQtCS585Lk3CclVQe1AAAAAAAAANAFgtHmmaqqNiZZP2H4xClu8+AJ17e0qPvihOszOtm8lHJ0klPGDW1M8o3OWgMAAAAAYC5r9LUJMBptHmDUXwa62RIwx7UMXBzdlG0tgtHcVwAAAIAFY9v65IYvTW3N3Vcmt1/YnX4AAAAAAAAAYBKC0eancydcv6LThaWUVUmeNmH4/Bbln0qyfdz16aWUIzo45k0Trj9XVdXmDlsEAAAAAGAOE2AEzLRGi/vK5u2bMuK+AgAAACx0d1+ZtHhTirZu+PLM9wIAAAAAAAAAHRCMNj99dsL1c0opL5xsUSllUZJPJlkybnhDkq83q6+q6sokHx83NJjkY6WUepsznp7kJeOGtiZ5x2S9AQAAAAAwP7QKMBoe3ZjR+7wXx736S383WwLmuHpf68DF1sFo7isAAADAAnHNJ6e3bsNVM9sHAAAAAAAAAHRIMNr89G9JLhl3XZJ8opTy96WU/ZotKKU8NskPkjx+wtT7qqq6o81Zb08yfv7hSb5VSjl6wv6LSimvSfL5Cev/pqqq69rsDwAAAADAPFJvEYy2YeSulmv6y0C32gHmgUat0XR8c5tgtIHaYDdbAgAAANg9rPtJ8su/n97a6z83s70AAAAAAAAAQIe8Ffo8VFXVaCnlWUm+n2TljuGS5LVJXl1KuTTJ1UmGk+yV5MQkq5psdXaS901y1g2llNOTfD3JPa8gOTXJz0spP95xztIkD0qyYsLyryb5s6n97gAAAAAAmMsaLYLR7t7eOhhtoAgwAlqr14aajm8eHU6txftECVwEAAAAFoQrP7hr6++4OFl+wsz0AgAAAAAAAAAdEow2T1VV9etSyqOTfDLJSeOmaklO2PFouTzJh5P8r6qqtnVw1rmllGck+VjuDT8rO849qcWyzyR5eVVV2yfbHwAAAACA+aPe1zwYbcP2u1uuEWAEtNOoNZqOb6u2pqQ0nXNfAQAAABaEdRft2vrbLxKMBgAAAAAAAEDPCUabx6qq+kUp5WFJnp/kVUkemrR49ceY4SRnJvnHqqp+MMWzzi6lPCDJO5I8J8nyFqU/SPLXVVV9YSr7AwAAAAAwPzRqzYPRqoy2XNNffDsDaK1eG2o5V6VqOu6+AgAAAMxLN5yV3PDlZPjmseu7rmhde8L7k4v/pP1+P3xFcvl7kqX3T6oqGdmQ3Hb+2Nzx702OeGUy2OpHhgEAAAAAAABgevzE/zxXVdVIkk8k+UQpZWmSk5KsTrIsyaIkdye5I8llSX62o366Z61N8vullNclOTXJwUlWJdmY5MYkP62q6ppd+O0AAAAAADDH1VsEo7XTXwa60AkwXzT6GlNeM1AGu9AJAAAAwCy6/L3JJX/aWe2Bz0iO+eOk1JKfvjFpES6fJNl47dhjokveklz/ueTx5yUDS6bRMAAAAAAAAAA0JxhtAamq6q4k3+7BOVuTfKfb5wAAAAAAMPc0BKMBM6xRG5ryGvcVAAAAYF7Zdndy+bs7rz/pH5JSkmPekBz20uScJyTrfjz1c+/4aXL5XyYn/NXU1wIAAAAAAABAC7XZbgAAAAAAAFg46tMIRhuoDXahE2C+WFRrTHmNYDQAAABgXrn9wmRkY2e1tUVJY/97rweXJ4e/cvpn//x9yfAt018PAAAAAAAAABMIRgMAAAAAAHqm0Tf1YLT+0t+FToD5oq/0ZbAsmtIa9xUAAABgXth6V3L9F5ILX9H5mgN+JykTfoR8/yfvPDYVX9wvWfOlZNvd098DAAAAAAAAAHYQjAYAAAAAAPRMvdaY8pq+CDAC2mvUpha6OFAGu9QJAAAAQI+s/1XytROS7z0r2XhNZ2saByQPfOfO44sPSI5/z671c/4zkq8/JNl43a7tAwAAAAAAAMCC55VEAAAAAABAz/SV/gyWRdlabemovr8MpJTS5a6Aua7etzh3bb+j4/r+MtDFbgAAAAB64OI3JxuvbV+z9AHJ/k/a8fH9k/2fktRXNK+9/5uSlY9NLv6TZO13p9fT+l8ml749edjHprceAAAAAAAAACIYDQAAAAAA6LF6bXG2bu8sGG1AeBHQgUZt8ZTq+2vuLQAAAMAcNrotufErk9cd8NTkhPd0vu8+Jycnfyj56lHT7+2GLyVVlXjDCwAAAAAAAACmSTAaAAAAAADQU42+xVm//Y6OavsFowEdqE81GK34NikAAAAwTaPbk/VXJNvuSqrRGd68JKUv6R9K+hYlm9c2L9t8a1KNTL7dykdPvYUlhyWNA5LhG6e+Nhn77zJ8c7J4/+mtBwAAAAAAAGDB8xP/AAAAAABAT00lwEgwGtCJxhTuKyUlfb5NCgAAAEzH2vOSb00jbGw2rDg1WfX4qa+r9SUPeFty0e9P/+wvHZA8+P8kR716+nsAAAAAAAAAsGD5iX8AAAAAAKCnphJgJBgN6MRUAxdLKV3sBgAAAJiXtq1Pvv3Y2e5icqtOS1Y+Kjn69WMhZ9NxxKuSxv7JdZ9NNl6T1FclBzw16asna85MUiVb70xu/XbrPX78mmT5A8d6AQAAAAAAAIApEIwGAAAAAAD0VL3W6LhWMBrQiUbfVILRfIsUAAAAmIYbzkqq0dnuor29T05+6+szs9eBTxt7THTI8+79+MuHJxuuar3HtZ8SjAYAAAAAAADAlNVmuwEAAAAAAGBhadSGOq4dEIwGdKBem0owmvsKAAAAMA1X/stsdzC55SfuXuet/0Vv+gAAAAAAAABgXvF26AAAAAAAQE/V+xod1wowAjpRr3V+Xxkog13sBAAAAHZDo9uTn709ueYTSaklB56enPBXSZ+vkZvaeH1y0R8ma7+bjNw92910rvQnh7+it2ce8apkzReSVM3n156XfLq0Xr/02OSo1yWHv7wr7QEAAAAAAAAwN9VmuwEAAAAAAGBhadSGOq7trwlGAyY3pfuKwEUAAAAWmkvenFz+7mTTmmTjdckv/za56JWz3dXuafuW5JuPSG766twJRSt9yd4nJ4/9WrLXg3p79qrHJY/89+mvv+vy5IevSK7++Mz1BAAAAAAAAMCc1z/bDQAAAAAAAAtLvdbouFaAEdCJqd1XfIsUAACABaQaTa76yM7j1/y/5IT3J/UVve9pd3bjl8cC5KbqoNOTUz83vTNHtyafW9y+5og/TB78983nSknKLL5X9kGnJ0+5PPmPY6e/x6/+KTn0xTPXEwAAAAAAAABz2ix+FxwAAAAAAFiIGrWhjmsHBKMBHWj0dX5fEbgIAADAgrJ5bbJ13c7j1Uiy5gu972d3t+4n01u3+iVJrW96j/5GsuTw9vsvPab1+tkMRbvH0Oqktmj66++8OBndPnP9AAAAAAAAADCn7QbfCQcAAAAAABaSeq3Rca0AI6ATU7mvDNQGu9gJAAAA7GaqkdZza8/vXR+7s6pKrvpocv4zk5//1dTXDyxL9jtt13o45AWt52oDyf1+b9f277b+RnLQ6dNfP7otWX/FzPUDAAAAAAAAwJwmGA0AAAAAAOipRt9Qx7WC0YBONGpTua/0d7ETAAAA2M2MtglGu+7TybYNvetld/WTNyQXvjRZc+b01j/260nfol3r4di3JIe8cOfxgaXJo85K6it3bf9eOOkfk30fO/31Zx+XjGycuX4AAAAAAAAAmLP81D8AAAAAANBT9Vqj41oBRkAnpnZfEbgIAADAAlK1CUZLkjX/nhz6kp60slvavDb51f+ZvO6YP0n2f9K916WWDC5Plh479vGu6luUPPyTyYM+kGy+JamqpNqWLDs+qc2RfyNdtFfyuHOSTTckd/96bOw3FySXvLXzPa7//ML++wgAAAAAAABAEsFoAAAAAABAjzVqQx3XCjACOlGvLe641n0FAACABWXb3e3n1353YQdR3XbB5OFxSbLfbyf7Pqbr7aS+Yuwxly0+cOyRjIXHTSUYbaH/fQQAAAAAAAAgiWA0AAAAAACgx+q1Rse1A2Wwi50A88WiWj0lJVWqSWvdVwAAAFhQNq1pP7/h2p60sdsYHUlu/npyw1nJHT9J1v148jWL9k5WnNr93uajZcclQ6uTjdd0Vr+hwzoAAAAAAAAA5jXBaAAAAAAAQE81+oY6ru0vA13sBJgvaqWWRbVGNo9umrS2v/gWKQAAAAvIxusnmb+uN33sDkaGk+89K7np7M7X1BYlJ38o6VvUvb7ms1JLTvlQct4zkpENk9dvvLbrLQEAAAAAAACw+/NT/wAAAAAAQE8NlkUpKalSTVorwAjoVKO2uMNgNIGLAAAALCCb1kw+P7o9qfX1pp/ZdP1npxaKdvKHklWPT5as7l5PC8Gqxye/c0Vy8zeT4RuTxQcm29YnP37dzrWb1iSj25Kaf78BAAAAAAAAWMi8mggAAAAAAOipWqmlXmtkWIARMIPqtcUd1fWXwS53AgAAALuRTde3n69GkuGbkqGDetPPbLrxK53XHv/u5PCXd6+XhWbxgclhZ9x7fedlzeuq0bFwtCWH9qYvAAAAAAAAAHZLtdluAAAAAAAAWHg6DTAaqAkwAjrT6DgYzXtHAQAAsABsujG58ezkun+bvHbjtV1vZ9YN35ysObPz+n1/q3u9kAwd0npuwzU9awMAAAAAAACA3ZNgNAAAAAAAoOc6DUbrLwNd7gSYL+p9nQYuuq8AAACwANx6bvLdp3RWu/a7XW1lVo1uSy54YfLF/Ttfc8DTkr1P6V5PJANLkkUrms8JRgMAAAAAAABY8ASjAQAAAAAAPdfoOBitv8udAPNF5/cVwWgAAABwH5f+2Wx30D1X/E1y7ac6q73f7yUn/VPyyC8kpXS3L5Ilq5uPbxSMBgAAAAAAALDQeTURAAAAAADQc/U+AUbAzKrXGh3V9ZfBLncCAAAAc9Cmm5LF+892FzNvzZmd1z7ic93rg50NrU5u/+HO4xsEowEAAAAAAAAsdLXZbgAAAAAAAFh4GjXBaMDMqnd8X/HeUQAAALCTu3812x10x92/7KzumDd2tw92tmR18/E7f9bbPgAAdldVlYxsnO0uAAAAAABmhWA0AAAAAACg5+q1Rkd1A4LRgA51GrjovgIAAABNbLx2tjuYWWvPT84+Idm2fvLavsXJYS/rfk/c19Ahzcfvuiw565Dkl//Qy24AAHYf1WhyyduSL+6ffG5J8pUjk2s/PdtdAQAAAAD0lGA0AAAAAACg5xq1oY7q+gUYAR2q93UWjOa+AgAAwIJQ+pK+xn0fex7Tun7DtT1rres2XJuc++Tkzksmr131hOTx5yZ7HtXtrphoyerWcxuvS378uuSqj/auHwCA3cXP3plc/u5k8y1j13dfmVzwguSmr89uXwAAAAAAPdQ/2w0AAAAAAAALT73W6KhOgBHQqUat02C0wS53AgAAALuBQ5479pjo/Gcla76w8/jGa7veUs/8/L3JyIb2NU++LFl2bG/6obmhNsFo9/j1/00OO6P7vQAA7C6qKrnqQ83nrvpwsv9v97YfAAAAAIBZUpvtBgAAAAAAgIWn0TfUUZ1gNKBT9Y6D0bx3FAAAAAvY0CHNx+dLMNrm25JrPjF53eDy7vdCe0MHT15z56Vj4SAAAAvF5rXJ8M3N5275dm97AQAAAACYRX7qHwAAAAAA6Ll6rdFRnWA0oFONDoPRBtxXAAAAWMhaBaNtuKanbXTNlf+SbN88ed3gsu73Qnt9g0n/kmRkQ+ua7cPJ5luTxqre9QW74pZvJ7/+cLL+ipDAke0AACAASURBVPuOb7sr2XjdfceWHZ+c/MFkn4f2rj8Adn+3ntN6btudybYNycCS3vUDAAAAADBLarPdAAAAAAAAsPA0akMd1Q3UBBgBnal3GIwmcBEAAIAFbcnq5uPDNySj23rby0zbvjm58p86q+3r7I0b6LJHf2Xymiv+uvt9wEy44cvJd347uf6zyZ2X3vcxMRQtSe68JPnGw5K15/W+VwB2T5tuTC54fvuasx+QVKO96QcAAAAAYBYJRgMAAAAAAHquXuvshYcCjIBONfo6DEarDXa5EwAAANiNDR3SfLwaTdb9pKetzLhrP5VsXttZbSnd7YXOLH3A5DW/+Jvu9wEz4fL3JtX2qa8T/gfAPX76x5PXbLxOqCYAAAAAsCAIRgMAAAAAAHqu0TfUUZ1gNKBT9VpnwWgDpb/LnQAAAMBubMkhSVqEgl32zl52MrOqKvnFBzqrXfbA7vZC5xbtnQwsnbxuZFP3e4FdsX1rcvuF01t741dmthcA5qY7Lk6u+7fOam/7Xnd7AQAAAADYDfipfwAAAAAAoOfqtUZHdQOC0YAONToMRhO4CAAAwILWP5SseHhy2/d3nrvp7GTt95KVj+h9X7ti45rkh69M7vp5Z/X7P6m7/dC5UpKDnplc/ZH2dec+JVn5yGTVaXPv7yfz0y3fTm49J9l659j1yIYk1fT3++Grkr56sufRyfbhZMu6ZNVvJfs+dufakU1jwTmXvyfZeE0yuFey5zHJsuPGPt7vCcnKR02/FwB6b8M1yddOnFo9AAAAAMA8JxgNAAAAAADouUZtqKM6AUZApwbKYGrpy2i2t61zXwEAAGDBO+ZNyW1Paz536VuTx507Flg1F6z7SfKd3062/Kaz+hWnJsf+aXd7Ymoe+M5k3Y+SOy9tXbP23LHHZe9Kjn9PcuxbetUd7OziNyc/f9/M7vnr/7vz2OV/mdz/LckJ77l3bOudybcefd/Ply2/SW47f+xxz7rj3pEc9+cz2yMA3XHb95NvTjH4dcPV3ekFAAAAAGA3UpvtBgAAAAAAgIWnXmt0VCfACOhUKSWN2uJJ69xXAAAAWPAO+J1k74c2n1t7XnLLN3vbz6645G3tQ9EOembytGuSh38qefx5Y6FvA3v2rD06sPiA5LQfJL/1rc7qL/3zZPiW7vYErdx91cyHorXz8/cmG6659/qqj7QPEbzHZe9INt3Yvb4AmDkXv2nqazZeM3kNAAAAAMAcJxgNAAAAAADouYEymL70t62ppS+14lsZQOfqfZMHow0IRgMAAGChKyU54T2t5y/506SqetfPdI1uS275Rvuao1+fLDkkOeT5ycpHJrX2/ybJLOlvJKsel6x89OS11Uhy8yR/7tAtN/9n78+84cv3fnz95ztbU436PAGYC7bemdz2/amv27Rm7LkwAAAAAMA85rv7AAAAAABAz5VSUu9rZOP2u1vWCC8CpqpRa0xa0+/eAgAAAMm+j032fVxy67d3nlv34+SGLyYHnd77vjo1Mpxc95mk2t66Zu+HJise3rue2HWrnpCs/e7kddf9W3LI85Kaf+chyfYtye0XJrXBJCUZ3ZLsfXLSV98xvzVZd1Gycc2un3XLN6dWv+z45M5Ldu3Mn/5xUt937OPbf9D5unU/Sg47Y9fOBqC77rys/fxJ/5T86A93Hq9Gk43XJ3sc1p2+AAAAAAB2A4LRAAAAAACAWdGoLW4bjCa8CJiqem1o0hr3FgAAANjh+Hcn32gSjJYkl7wtOeDpSa2vtz114vYfJd99SrJ5bfu6kz/Ym36YOYe/PLn2k8n6X7avu/lrydnHJY/5WrJkdW96Y/d0x8XJuU9Ohm++73h9VfKYs8fC0c59UrLxut73tuTw5NFfTn5wRnLrOdPfpxpJLnje1Ndd+c/JsuOSI141/bMB6J7f/CD51iNbz9//LcmhL24ejJYkt35HMBoAAAAAMK/VZrsBAAAAAABgYarXFred768JLwKmpl5rTFojGA0AAAB22OeU5MCnN59bf0Vy3ad7208nqtHk+8+ZPBTtaVcly4/vTU/MnPrK5AkXJCf+TXLwJEFQ63+Z/FDg04JWVcn3n7tzKFqSbL5lbO6/XtybULSlxyYHPWvscfBzkxP/d3LaBcnQ/cYC/E7+v8nyB913TW0wOeiZycpHd6+vi35/8qBBAHpvdHvyvWe3rzn+3Un/UFLft/n8D18+830BAAAAAOxG+me7AQAAAAAAYGFqTBaMJrwImKLJ7yv9KaX0qBsAAFg4ytgT7TcmqY8b/kRVVdfu4r6rk/yPcUObqqr6613ZE5jgge9KbvhykmrnuUvfntzvOUnfYM/bamndT5INV7ev2fuUZMmhvemHmbdor+SY1499vM/Dkx+/pnXtLd9MtqwbW8PCc9dl7UO/7v5V73o5+o+Sw17WfK5vMDn8FWOPZrZvST5bbz43E677XHLcn3VvfwCm7vYLk01rWs/v96Tknu9nDa1ONt/avM7zIAAAAABgHhOMBgAAAAAAzIq6YDRghtX73FcAAGCWPD/JX+XeZKUzdzUULUmqqrqmlHJcktPvGSulXF1V1Zm7ujeww7LjkoOfl1z36Z3nNl6TXP2vyRG/3/u+mhndnqw9d/K6vU/peiv0yD4PnaSgSu7+dbLo5J60QxdVVbJ5bbJo72TbXcn2zZOvWfPF7vfVqb134e9g36LkIf+SXNSle+3dV3ZnXwCmb/0v2s/vM+757NKjk9t/0Lxuw1WTB6ONjiTVSNLXxRBOAAAAAIAuEIwGAAAAAADMisYkAUYDxbcxgKlpCFwEAICeK6XUkrzznsskv0ry4hk84iVJjk9y+I7rdycRjAYz6YHvSK7/bFJt33nusnclq1+c9Lf/mrurRkeSn74xufojybb17Wv7h5IjXtmbvui+vR6crHx0sva7rWu+cUpy+q1JfWXv+mJmXfWR5NI/S4Zvmu1OpmfVE8ZCJnfFoS9Nrv1Uctv3Zqan8a79ZPLwT8z8vgBM3ej25OI3Jb/4m9Y1g8uTQ8+49/qYNyZXf6x57c/+InnMf7Q4ayT58euSa/9fsn1Lsv8Tk4d+LBlcNs3mAQAAAAB6qzbbDQAAAAAAAAtTfdIAo8EedQLMF5PfVwSjAQBAFzw+yeok1Y7HW6qq2jRTm1dVtTHJm8cNHVlK+a2Z2h9IssfhyWEvaz43fHNy5T/3tp+JfvYXyS//bvJQtAN/N3n8ecnS+/ekLXqglLGwj6P+V/u67z6tN/0w8276WnLhy3obilYbSOr77vpj6bHJ0a9PHnXWrvfUNzi2z+Gvuu94s3MXrdh5/arT2u+//spd7xGAXXfZu9qHoiXJEy5Ihu5373W757Y3nZ3c/M3mcz/9k7Hn8dvWJ6NbkhvOSs5/5tR7BgAAAACYJf2z3QAAAAAAALAwNQQYATNssvvKgPsKAAB0wwvHffzjqqq+ONMHVFV1Zinlx0kevGPoBUnOmelzYEF7wJ8lV398LDRhosvfmxz+imRgz973VVXJVf86ed2Rr01O+vvu90Pv9Q8lD/7b5O4rk5v+o3nN7Rcmd16WLHtAb3tj13Xy+T3TDvq95NRP9f7cySzaKzn5X8Ye03Hj2cl3n9J87ppPJMe/a/q9ATAzrv5I+/mj/ihZevTO4/s/eSwErdWe+z3hvmNVlVz/bzvX3npOMnxL0ljVWb8AAAAAALOoNtsNAAAAAAAAC1N90mA07+8CTM3k9xXBaAAA0AVPHPdxN9NN7tm7JHlyF8+BhWnxgckRf9B8buu65IoP9Lafe2z5TbL5lsnrBGLNf8uOaz9/58960wcz69bv9P7M+Xq/WHZs67m7fH4AzLqtdySb1rSvaXUvb/c8qNlzoK13JMM3N6+//vPtewAAAAAA2E0IRgMAAAAAAGZFQ4ARMMMafe4rAADQS6WUg5PsM27oq108bvzeK0spB3XxLFiYjn1L0r+k+dxl70juuLh3vYxuTy5/b/LFVZPX9g8l93tW93tidq1+UVLa/Oj7Bc9PfvjKZPPa3vXE1Gy4NvmvlyRfPTo5a/XYY+u63vZQ+pNDnt/bM3tl6ODWczeclVSjvesFgJ3dck77+f4lyUHPbD53yP9ove6uy5Oq6ryPanvntQAAAAAAs0gwGgAAAAAAMCvqkwQYDQgwAqaoLnARAAB67fgdv1ZJrqqq6sZuHVRV1Q1Jfj1u6IRunQULVn1FcvQftZ7/2onJltt708sPX5Fc8qeTB/nscWTyW+ckg8t70xezZ+kxyaPOal/z6w8l33hYMrKxNz3RueFbx/5srvl4sv6XycZrxx69tPh+yWP/s32A2Fz3oL9tPfej1/auDwDua/jm5Httgnz3OCJ53DnJ4LLm88uOTe7/5tbrb/nmhIEpBKUBAAAAAOym+me7AQAAAAAAYGFqTBpgNNijToD5YvL7imA0AACYYSvGfXxTD867KcnhOz5e2YPzYOE5+g3Jr/4x2XpH8/lrP50c9Zru9jB8y1h4UjulP/ndNUljVXd7YfdywO8kR7567O9oKxuuTq7/QnLoi3rXF5O75hPJ5lumvu4Rn0+WHT95Xf/ipBoZ+7j0JyObdp5ffMDUz59r9jqp9dyV/5Q88B3Jor171w8AY65u89x2YM/kqb+afI8jX5P8/K+az132rmS/0+69rrZPrT8AAAAAgN2QYDQAAAAAAGBW1CcLMKr5NgYwNfVao+38gGA0AACYacvHfTyNtJMpG3/Gsh6cBwvP4NLk/m9KLn5z8/nf/Ff3g9Fuv2jyMIf9nyQUbaHa44jJa37zX4LRdje/+a/prVv5qKQuC7Vjexzefn7dT5L9ntCbXgC4V7v/D654RGd7tHvuu+W2+16PjnS2JwAAAADAbqw22w0AAAAAAAALU2OyYDQBRsAUNWpDbef7a+4rAAAwwwbHfdyLn0ccf8aiHpwHC9ORbYLPrvtMctPXZ/7M7VuSqz6SXPiK5LynTV5/v9+b+R6YGw46ffKaX38w+Ux/ctm7k613dL8n7mv85/MFLxp73Pa9qe+z8jFC0aaqsSpZ8cjW87/8h6SqetcPwEK36Ybk5/87ufHLrWs6fV5baklfizcIWv/LZP2v7r2uBKMBAAAAAHOfYDQAAAAAAGBW1CcJRhsQjAZMUb3VC0J2ELgIAAAzbtO4j1f04LzxZ2xqWQXsmv7FyVGvaz1/7hOTS/9i5s7bvjn5zhOTC1+WXPXhyesPPSM5+Lkzdz5zy+IDkwe+a/K6anty6duSrxyZDN/S/b4YM/Hz+dpPjj223Da1fYZWJyd/sDs9zncnf6j13E1fTX7yht71ArCQ3fXz5D8fklz8J61ragPJIS/ofM9HfL713FePSm6/aOxjwWgAAAAAwDwgGA0AAAAAAJgVjb72wWj9ZbBHnQDzRX8ZyECbe4dgNAAAmHHjk2YO7sF548+4tQfnwcJ1wO+0n7/83cnwDH0arjkzWXvu5HW1geQpVySn/OvYxyxcx76189otv0muFLDVM51+Pt/j2Lclp3xk7PGwTyYP/WjyuO8kT7k82fOorrU5ry09OjnwGa3nf/m3yYare9cPwEJ1+XuSzZOEsz7u3Kk9r93nYe3nL3nb2K+j7YLRqs7PAwAAAACYRYLRAAAAAACAWVGvNdrO95f+HnUCzCft7i0DgtEAAGCmXbXj15Lk4FLK4d06qJRyWJJDmpwNdMOSQ9vPVyPJrefMzFk3/Wdndcf+2VjgTykzcy5zVylJfWXn9Vd/tHu9cF83f31q9Ue8MjnsjLHH6hcmh74k2fcxSX/77x8wiaX3bz9/8zd60wfAQnZzB89xJ3vOPdHg8mRgaev5284f+7VqF4wGAAAAADA3CEYDAAAAAABmRV/pz2BZ1HK+X4ARMA2N2lDLOfcVAACYcZck2Zqk2nH9tC6e9bvjPt6W5OIungUMrU72OLJ9zZX/lIxs2rVztqxLrv1kZ7X7P2nXzmJ+OfgFndduur57fXCvajRZ84XO65c+IGkc0L1+FrL9nth+/uqPJSPDPWkFYEHZekdyw5eTm76WbLm9fe3yE5LGqqntX0r758TbN4/9OioYDQAAAACY+wSjAQAAAAAAs6ZeW9xybkCAETAN9Vqj5ZxgNAAAmFlVVW1N8t0kZcfjT0oprdOKp2nHnm/MWABbleS8HWcD3VJKcuJfJ7XWb2yQ276f/PteyfpfTe+Mm7+ZnHVIZ7WrX5zs9eDpncP8dPQfJUsO67z+yg92rxfGQhLPe0YysrGz+r56cuL7x+41zLwVpyYHP7f1/O0XJl87Idlwde96Apjvbvl28qWDkvOenpz75Pa1fYuTE943vXOOfVubySqpqqQSjAYAAAAAzH2C0QAAAAAAgFnT6GsdjCbACJgO9xUAAOi5z+z4tUqyIsn7u3DGXyVZmbHwtST5dBfOACY68KnJEy9qXzO6JfnRq6e+9+i25L9emIzc3bqmvio58rXJI89MHvpRAUrc19BByWk/SE76x2Tfx+be/0W0cNHvJ5tv60lrC9KVH0xu/HLr+f2elBx6xtjjge9KfvtHyf5P6l1/C00pycM/1T488O5fJT/+o971BDCfjW5LvvfszgJCj3tH8sQfJfudNr2zlh2bPLzdl8RVMioYDQAAAACY+/pnuwEAAAAAAGDhqtcEGAEzq919ZcB9BQAAuuHTSd6dZFXGUmleVUq5saqq98zE5qWUNyf5w4wFr5Ukt0YwGvTOsuOSB30g+cnrW9fc8s1k6x3J4PLO9117frJ5bfuax30nWXp053uy8NT3SY78w7HH1juTf5/k7+CNX0kOe2lvelto1nyh/fyDPuDzuddKLTnmDclFf9C65qb/SEY2Jf2t/00VgA6sPT/Zum7yuqHVyXF/vuvnDd2v9Vw1mlSC0QAAAACAuU8wGgAAAAAAMGsagtGAGSZwEQAAequqqq2llLck+VjuDS97VynlgUl+v6qqO6azbyllWZJ/TvKccftWSf60qqqtM9E70KF9Tp285pZvJUsfkCxZnfTV7x0f3ZZsWZc09h0LaRi+JRndOhZQ1U59ZbLHYbvWNwvL4LJkz2OS9Ve0rrn5G8mhZySjW5IN17TeZ+tdGftfTpLFByYDe8x4u/PGtg3JpjXJby5oXePzefbs8/D289X2sc+FZcf2ph+A+WrNmZ3VrZjkvtyxWuspwWgAAAAAwDwhGA0AAAAAAJg19Vqj5dxATYARMHVtAxfdVwAAoCuqqvpEKeUZSZ6ee0PMfi/J40spH0ny4aqqruxkr1LK4UlekeSMJHvl3kC0KslXqqr62Mz/DoC29n5IsvzE5I6ftq753rPHfq0tSg57WfLgv0su+8vkF3+TjGyc+plH/3Hi63im6v5vSn7wktbz13927DEVpS858OnJQz8mIG28bRuSH5yR3PDFsXCtdnw+z57lxyf7PTG5+T9b15z9gOTBf58c9dre9QWwUB31upnZp5TWc+c8LjnyNa3nq9GZ6QEAAAAAoMsEowEAAAAAALOmURtqOddfvFAKmLp6u2A09xUAAOim/5HknCQn5d5wtL2SvCHJG0opNyf5YZIrkty545EkS5MsS3JMkpOT7L9j/J5Xet+z14+TvLDrvwtgZ6UkT/h+8rnWX3P/t9EtyZX/PBaWNHzz9M576EeTQ18yvbUsbIe+eCy87Pxnztye1fZkzZlJrf7/s3ff4XFddf7H32ekkVXcbcklbrHTnR7SExISUigJoZelZhd2YYEsS1nI0kLgt7CFXcrCshD6AqEEUoFU0kmB9B7HvUlx72rn98fISI7vHc2MZkYa+/16nvvo6nzPPeer2BnZ8tzPhZP/r3zr1rr73gdLfzn4vPkXwyEfrXw/Svfi38BjX4BHL02f86eLoGUOzDi/am1J0l5nv7/LBQ6XRSa91HFH7kjT21WmHiRJkiRJkiSpsgxGkyRJkiRJkiRJw6axrim1ZoCRpFI01aXfpJ31dUWSJEmqmBjj5hDCmcD3gVeTCzSD/oCz6cCr+o40YcD5wOuvBN4RY9xctoYlFac+/ed4iUoNRZt/saFoGpqZr4Hj/hfufU951136S+j6FmRHl3fdWtS9BZb8vLC5h36qsr1ocHWj4PDPweo/QMft6fMW/sBgNEmqpNlvKN9aIU8w2mBid/n6kCRJkiRJkqQKGsJPQiVJkiRJkiRJkoamKdOSWjMYTVIpGjPpwWi+rkiSJEmVFWPcFGN8LfBhYBu5ULM44KBvLOngBXMDsB34WIzx1THGjdX6OiSl2Pcdld9j/OGV30N7vvFHlH/N3k7Y/Gz5161FmxZA747B5405AOoaK9+PCjPY6+uGx6rThyTtiXo7B58zbn759htKMFqvwWiSJEmSJEmSakP9cDcgSZIkSZIkSZL2Xo2ZptRa1gAjSSVoMhhNkiRJGnYxxv8MIfwQ+AfgfcCEgeWUy8KA83XAN4CvxBifr0yXkoo270JY+IPKrT+qFfY5v3Lra+8x6VgYfxisf6S86/72qN3HRk3afSzTAJOOg8O/AOPLGIIynLatggc+Bh23wZbFhV0z768r25OKM+9CePabEHuT6xufgmVXw4zzqtuXJO0Jutbnr8+4ABrbClpq2faFXP38T1iy/Vm62T3ELBsamFs3lfNGtTBlx5bie40Go0mSJEmSJEmqDQajSZIkSZIkSZKkYdOUaUmtGWAkqRT5Ahd9XZEkSZKqJ8a4BvhUCOFzwPHAacDJwD7ARGBnksxaYA2wArgTuBW4J8bYWfWmJeXX9mI4+Wdw55vKu27IwMTj4MTvQ3363+ulgoUAL/k93P1OWHV9ZffasSZ5fNmVsPoP8PKHoWVWZXuotJ7tcMPJsPm5wuaPmgz7vxcO/khl+1JxJh4Np/4GbssTQHnb+XD6dTD9ZdXrS5L2BJ3r8tdP/FFBy7R3ruQ/lnyCHXF73nl/7l7DsweewsefuJXxXfnn7sZgNEmSJEmSJEk1wmA0SZIkSZIkSZI0bAwwklRujZnm1FrW1xVJkiSp6mKMXcAdfYekWjf7jbmjexv07oCeHfC7Y2Db8tLWO/abMOetkB1d3j6lpmlwxu+h465cqFea5lnQ2wnbV5W/h64N8Nz34LDPlH/talp2ZWGhaOPmw5k354LRQqbyfal4M86D1z4Pv5qcPueprxiMJknF6lyfv17gn3XvWP/7QUPRdtqYbeTB8dM4vWNhQfP/otdgNEmSJEmSJEm1wX9xlCRJkiRJkiRJw6apriW1ZoCRpFI01aUHoxm4KEmSJElSmdQ3QcN4aJoCYw8sfZ3pLzcUTZU1bn7+kK6xB8L8iyu3/5p7K7d2tTx/T2HzWk+FxjZD0Ua6hom5I82a+6rXiyTtKfKFBB92ScHLLNr+dFHbLm0eV9R8AKLBaJIkSZIkSZJqQ/1wNyBJkiRJkiRJkvZejZmm1JoBRpJK0ZgxGE2SJEmSpKqa/UZYfXPx1006AVpmlb8faaCGcTDtZbDi2uT67Dfm6n/+EMSe8u/fcSfcdsHu443TYMb5MP1l5d+z3Bb9qLB5s99Y2T5UHiHkfq2e+WZyvXMtdG02tFKSCtW9DbatTK/PflPBS7V35lknaetSwkh7DUaTJEmSJEmSVBt8HJMkSZIkSZIkSRo24+onJI5nyNBYlx5uJElpRteNJZPyz6Cj68ZWuRtJkiRJkvYCc98Fcy8s7pq6Zjjxh5XpR3qh4/4Hxh+2+/i8d8O+74Dm6XDijyHTUP69uzbAsit3P579H/jDy+Hxfyv/nuW08Eew4/nB5x3+eWg7rfL9qDyO+AI05wmm3LK4er1IUq3bsii9dvBHYewBBS2zvXcbG3vWFbV1d6auqPkAxK7ir5EkSZIkSZKkYVA/3A1IkiRJkiRJkqS916TsFKY1zGRl59Jdxuc1HUxjpmmYupJUy0ZlGjmg+TCe3PrQLuNt2elMbpgyTF1JkiRJkrQHy2ThhMvgsE/D2gcgdvfXenZA73bIjoXYC91bYNwhMPFFkPFtzKqS5hlw7gOw/mHYvABCPUw8Blpm9s+Z8ybY5+Ww5j4Ysx+0zIbt7XBFAT9POuar0LMdHvxY8b09+jnY/72QHV38tZXW2wMPXZxe3+c82O89MOk4aGyrXl8auoYJcN4zcPmo5PqWxTB+fnV7kqRatf7h9Nrhlxa8TEfnytTa3MaDeG77k7uNd4XkBwXl1ds9+BxJkiRJkiRJGgF8R4EkSZIkSZIkSRpW75j2D3x92efY3LMBgAn1k3nr1PcPc1eSatmbpvwdX1v2GdZ0tQPQnBnNhdM/PMxdSZIkSZK0h2uZnTukkShTBxOPyh1psmNh6pn9nze2wfGXwT1/nX/tue8qPRitezOsuWfXfUeKTU/D1mXp9YM/Bm2nVK8flVddQy40MOnXeOvi6vcjSbUo9sLjX0yuNc+AupQAygTtnSsSx+tDPXObkoPRujMlBKNFg9EkSZIkSZIk1QaD0SRJkiRJkiRJ0rCa1TiPS/b9Bgu2PUEm1LFf0yE0ZAp/k7gkvVBbwzQ+OeerLNz2FJ1xBwc0H0Zjpmm425IkSZIkSVKtmf5yCHUQe5LrU14C2dG5Y9LxuZCzYq28fmQGo21emF7LjoNJx1WvF1VGy+zkYLTl18L+761+P5JUa5b+CtY9mFxrO72opdq7ViaOT85OTf238+5QQjBar8FokiRJkiRJkmpDCT8BlSRJkiRJkiRJKq+muhYOHf0iDmk5ylA0SWUxKtPIQS1HcPjo4wxFkyRJkiRJUmmapsLhn0+uNUyEI77Y//lR/54LDCvWE/8KT329tP4qafNz6bVjvwF1DdXrRZXRPDt5fMW18NCnqtuLJNWa3h54+NPp9YP+oajlOjpXJI63NUynPmQTa92ZuqL2ACAajCZJkiRJkiSpNtQPdwOSJEmSJEmSJEmSJEmSJEmSJI1I8z8ObafB6ptgxxrIZKFlDuxzHrTM7J/Xdgq87EFYfg1sfnb37ZH24AAAIABJREFUdVbdABseT97jzxfBzFdD8z4V+RJKsmVh8njDBJjzlur2ospoSQlGA3js87nfkxOPrl4/klRLll8NG59Mrs18DUw8pqjl2jtXJo63ZqeRTQtGC5mi9gAMRpMkSZIkSZJUM2oqGC2EcHPfaQTeHGNsL3GdKcBPd64VYzyzHP1JkiRJkiRJkiRJkiRJkiRJkvYwrSfmjsGMngMHvj+59uDF6cFosReWXQkHvK/kFstuc0ow2j7nV7cPVU6+YDSApVcYjCZJaVbdkFIIcNjnil6uvWtF4nhbw3R6Y09irauUYLReg9EkSZIkSZIk1YYSfgI6rE4HTuv72DiEdRr71th5SJIkSZIkSZIkSZIkSZIkSZJUGW2n5q8v/ims/TP0bK9OP4PZ/Fzy+Oi51e1DlTPY78nNC6rThyTVorTXyJmvhfHzi1pqa89mNvdsTKy1ZadRH7KJte5MCbcFRoPRJEmSJEmSJNWGWgtGAwjD3YAkSZIkSZIkSZIkSZIkSZIkSQWbejZMOj693nEH/O4Y+MV4eOyLEGP1enuhGGH9Q8m10ftWtxdVzrhDcgE+aRb/DLa3V68fSaolK3+fPD7puKKXau9cmVprbcgTjBbqit6L3q7ir5EkSZIkSZKkYVCLwWiSJEmSJEmSJEmSJEmSJEmSJNWOTB2cedPg83p3wEOfgGVXVr6nNM98M73WYjDaHuXkn8GYA9Lrd721er1IUq1YeUN6rYQA0Y6uFYnj2dDA+PpJZDMpwWiZEm4LjN3FXyNJkiRJkiRJw2BvDUarH3DuT3QlSZIkSZIkSZIkSZIkSZIkSZVV3wInfL+wuYt+XNFWSt67hMAXjWCZejj2v9Prq26Abauq148k1YIFl6XXRs8tern2zpWJ463ZqWRChvqQEowWSrgtsLez+GskSZIkSZIkaRjsrcFokwecbxm2LiRJkiRJkiRJkiRJkiRJkiRJe48JRxU2b8Pjle0jn23JAS0ANE2rXh+qjnGH5a9vfKo6fUhSrdj8XHptzAFFL5cajNYwHSA1GK0rU8JtgVtXFH+NJEmSJEmSJA2DvTUY7cV9HyPgT3QlSZIkSZIkSZIkSZIkSZIkSZU34XCYfOLg8zY+ATeeBluXVb6ngXq7Ycui5Nr4IyDsrbcg7MGapsDM16bXtyyuXi+SNNJ1boC19yXXQgayo4tesqMr+da2toZcGGlaMFpvyNCb2Edd+mZbFua+10uSJEmSJEnSCFfL/yoZi5kcQsiGEGaFEP4G+OcBpUfK25YkSZIkSZIkSZIkSZIkSZIkSSlOvxZmvR7qx+Sf134bXH8S9GyvTl8AT301vXbiD6vXh6or369tWlCeJO1tYoQbT02vn3ZdScu2d65MHG/LTgcgmxKMBtCdFIJ22rX5w9Ge/lpR/UmSJEmSJEnScBhxwWghhJ60Y+A0YFG+uQnXbgcWAt8Cxg5Y66oqfnmSJEmSJEmSJEmSJEmSJGkQIYRjQgivCyGcF0LYb7j7kSSprBomwCk/h9etg1ctyj9361JYVsW3vD/1X+m10XOr14eqq74ZZlyQXDMYTZJy1j0A6x9Jr489oOglN/dsZGvv5sRaW0MuGK0+XzBaJuHWwOnnwOvWp2/66KVF9ShJkiRJkiRJw2HEBaORCz1LOwqdN9gR+9Z4Evhl5b4USZIkSZIkSZIkSZIkSZL2XiGExhDC3AFH3SDzzw8hLALuBS4HfgM8FUK4I4RwSBValiSpejJ10DwLGibmn7fgsur0A9C1MXk81EN2dPX6UPW1zEke37K4qm1I0oi19v70Wl0zNM8sesn2zhWptbaGaUD+YLSukHJrYHY0NO2TXOtcDzvWFtyjJEmSJEmSJA2H+uFuIEVk9yC0cgrA/cAbY4xdFdxHkiRJkiRJkiRJkiRJkqS92YeBz/WdLwPmpE0MIbwB+AnJD1M9CbgnhHB6jPFPFehTkqThEQLMfjM889/pc1ZdDz8J0DABOtf1j9c1Q8/W3PmUM5IWh/GHwry/yX1Ms+L3sORyWPcgdG1InjPxRYN+KapxacFoa+6Bm86E+tHQdioc8H6oaxzaXjHCc9+FlddD41SYdyFMOGJoa0pSpW1emF6b9XrIFH+bXnvnysTxUaGRsXUTAMjmCUbrzqQEowG0ngRLfpFQiLDydzDnLcW0KkmSJEmSJElVNRKD0W4jF4yW5LS+j5Hc0yC3F7hmBHYA64EngFtijLcPpUlJkiRJkiRJkiRJkiRJkjSoC8iFnEXgshhj4vsDQwgTgG8Bmb65Ax+wuvOaFuCKEMKBMcZC3z8oSdLId+S/5A9G22lgKBr0h6IBrL45+ZrVN8GC78IZN8Lk43avP/ttuPc9g+994g8Gn6PaNnpO8nj3lv7fX8uvguVXwxk3Q6au9L3u/VtY8O3+zxd8B864HlpPLn1NSaq0x7+YXjvmP0tasqNrReJ4a8M0Qsj9lbg+XzBayPNafML3UoLRgLv+Cma9oaQwN0mSJEmSJEmqhhH308sY4+lptRBCL/1vcHpjjHFJVZqSJEmSJEmSJEmSJEmSJElFCSE0AUfS/76/a/JM/wAwjv5AtOXAFUA38Bpgdt+8GcAHgX+tQMuSJA2P7BiYdi6s/F1l1u/eBE98CU791a7jvd3wyGcHvz7TAGP2q0hrGkFa5hQ2r/02WHU9TH9ZaftsXrhrKBrkQv4e+xc4Pd8fFyVpGG14Ir128MegYUJJy7Z3rkwcb2uY9pfzfMFoXZlM+uL1LTD3nfDc95PrK34LM84roEtJkiRJkiRJqr48P/0cscLgUyRJkiRJkiRJkiRJkiRJ0jA7DKgj976/LTHGP+eZ+1b6Q9GeAg6NMV4UY/xw3zr39c0LwDsr1rEkScNl7jsru/7qW3Yf2/QMbFsx+LUtcyDU4q0HKkqhwWiQ/PupUMt+kzy+4lqIMbkmScOt/Q/ptdFzSl+2M/n7cGt2+l/O6zPpwWjdg31/nnJmem0or+WSJEmSJEmSVGH1w91AkS4ZcL5+2LqQJEmSJEmSJEmSJEmSJEmD2bfvYwQeT5sUQjgI2K9vXgQ+HWPcsLMeY9wcQvgA8Me+oQNDCDNjjEsr07YkScNg2tnk8j8rFAzVuQ4e+iSEAbcQbFlY2LUzXlWZnjSyNIyDttOg/dbB524u8PdOkhW/Ta/t6IDGttLXlqRKWfun9Nr0V5a0ZIyRjq6VibW2hml/Oc+GIQSjTX95em3Lc/mvlSRJkiRJkqRhVFPBaDHGSwafJUmSJEmSJEmSJEmSJEmSRoApA86T7/bOObXvYwA2Ab9+4YQY470hhGXAjL6hwwGD0SRJe46GCXDsN+G+v6vcHo99ofhrJhwJB324/L1oZDr6y3DLubmAsnyW/hJ6eyBTV979Ny8yGE3SyLP+MVhwWXq9ZWZJy27q2cD23m2Jtbbs9L+cZ6gjEIgJ4andg70Oj5oILfsmh6EuuxJ6uyFTU7cXSpIkSZIkSdpLDPJYCEmSJEmSJEmSJEmSJEmSpJI0DzjflGfeyX0fI3BTjLE7Zd6jA85nDaUxSZJGpP3/Fl7+CBzwwdLDoeZ/EkIZAk4O/TSc+is46w5omjL4fO0ZJh6d+z14wvdzv5dmXJA+d/VNpe3RszW9lhTcI0nD7cF/Sq/N/+eSl23vXJFaa2uY9pfzEAL1IZs4rysUcGvg4Zek11ZcN/j1kiRJkiRJkjQMDEaTJEmSJEmSJEmSJEmSJEmVEAacJ9/FnXPSgPPb88xbM+B8bEkdSZI00o0/FF70FTh/UWnXH3EptMweWg/7vj0XojLzNVDfMrS1VHuapsDcd+R+Lx34wfR5y35T2vqbF+WpGYwmaYTp2Q4rf5teb5lT8tIdXSsTxxszzYyuG7fLWH1K6Gl3poBbA1v2Ta+V+louSZIkSZIkSRVmMJokSZIkSZIkSZIkSZIkSaqETQPOpyRNCCFMBfYbMHRXnvUG3gkeUmdJkrQnqG+CSScUd83+78t9nHL60PZuG+L12nNMfFF6bcFlsP353cc3L4KNT0GMu9d6dsC2Felrrvxd8nWSNFy2LIbYm15vO63kpVd3Jr8etmWnEcKuf+WtD8lZ492hgFsDJx6dXlv6a+jtGXwNSZIkSZIkSaqymg5GCyG8JIRwaQjhmhDCvSGEp0IIzxV5LBjur0OSJEmSJEmSJEmSJEmSpD3Q8r6PATgsZc7LB5zvAP6cZ73xA863DKEvSZJqw2GfhkxyEMpuRrXCgR/MnR/4IWiYWNqe4w+DWa8v7VrtebJjIDs2udbbCVe0wj3vht4u2LEGbjgFrtoXrjkIrjsMtizd9ZoNjwF5gs/ab81dt3lRub4CSSpdjHDve9Lrs94IY/cvefmOtGC0hum7jWVDQ+Lc7kzd4BvVN0PTPsm1rvVw5UxYc//g60iSJEmSJElSFdUPPmXkCSGcA3yVXZ8SWerTH32ckCRJkiRJkiRJkiRJkiRJ5ffwgPOJIYRzYoy/f8Gcd/V9jMC9McauPOvNHXC+qhwNSpI0ok1/GZx5Kyz8AWx6JhcqtX11rjZ6Low5AOoaYfQ82P+9MGZerjZ+Ppx9Nzz7LVj3IMSewfeqa4LJJ8KBF0F2dOW+JtWe4y+DO/KE5S34Dow7BNpvh447+8c3PJa77pw/9o/d9VeD77fhMbjzzXDO3aX3LEnlsPJ30H5bev3knwxp+faulYnjScFo9SE5KLUrZArb7Nhvwm3nJ9e2rYRbXwEXLCs8kFWSJEmSJEmSKqzmgtFCCB8FvrjzU/qDzUoJOCs1TE2SJEmSJEmSJEmSJEmSJOURY1wQQniG3ENQA/CNEMJLY4wLAUIIHwZOHnDJlWlrhRBGs+vDVBdUoGVJkkae1hNzR7HGHgBH/0f5+9HeZ/S+g89Z8N1ceN8LrbkHti6D5hkQI2x8srA91/wRNi8sbG9JqpRFP02vtZ4KhYaSJYgx0tGZHIzWmp2221h9SL4FsDtTYA+j5+avb2+HVTfB9HMLW0+SJEmSJEmSKqymgtFCCOcAX+r7NPYdO8PNtgLrgXxPi5QkSZIkSZIkSZIkSZIkSdXzHXLv+4vAvsCTIYSHgDZgJv3vA9wO/DjPOqfT/37BbuCxCvUrSZKkgcYeBHXN0LM1fc6GR9Nrq2+F2W+Aro3F7bvxqfzBaDFCCOl1SRqqjU+k1yYeM6SlN3SvpTPuSKy1NUzfbaw+ZBPndhcazjZmHmTH5n8t3vikwWiSJEmSJEmSRozSH00xPL7Y93HnG6GWAe8H5sQYR8cYZ8QY9y32GLavRpIkSZIkSZIkSZIkSZKkPdtXgCf7ziOQBY4BZtEfdBaBL8cYO/Ks8+oBcx+KMeUOckmSJJVXfQvMu7D06+9+K/ysAX41ubjrHv9i8viin8K18+Hno+Hmc2DzotJ7k6Q0z3wL1t6fXp/3N0Navr1rRWqtrWHabmPZTEPi3IKD0eoaYb/3DNLUbYWtJUmSJEmSJElVUDPBaCGEecAR5N7UBHAPcGiM8RsxxiXD15kkSZIkSZIkSZIkSZIkSUoSY+wEziEXjrYzCC3Q/17AAFwBfCZtjRDCaOC1A665qSLNSpIkKdnR/wXzL84F61RL+62w4re7ji2/Fu56C2x4HHq2wqrr4YZToGd79fqStOdb+CO47+/S64dfCuPnD2mL9s6VieMtmTG01I3Zbbw+1CfO78rUFb7pkV+CQ1P/6g3Lfg09nYWvJ0mSJEmSJEkVVDPBaMCJfR93viHq7THGTcPYjyRJkiRJkiRJkiRJkiRJGkSMcSlwJPBe4LfA48AT5ALRXhdjfH2MsTfPEu8ExpJ7/2AArq1ow5IkSdpVpg6O+AK8YQtkGqq37zP/s+vnz35r9znblsPya6rTj6S9wzPfzF+f89Yhb9HeuSJxvLVhWuJ4fcgmjneHIm4NDBk4/LNw+OfT56y4rvD1JEmSJEmSJKmCaikYra3vYwQeiDE+M5zNSJIkSZIkSZIkSZIkSZKkwsQYu2KM34oxviLGeGjf8boY4xUFXH4ZMGHnEWO8o7LdSpIkKVHIwNiDqrffugd3/Xz51cnzFlxW+V4k7R1i3P21Z6D60dA8Y8jbdHStTBxvKzYYLVPCrYHjDkmv5fvaJUmSJEmSJKmKaikYLQw4f3bYupAkSZIkSZIkSZIkSZIkSVUTY9wWY9yw8xjufiRJkvZq+76tvOvNe3d6besSuONNsOxquP+i9Hmrri9vT5L2XlsWQs+29PrsN0GmfsjbtHeuSBxvy05PHE8NRgsl3Bo47dz02ubnil9PkiRJkiRJkiqgloLRlg84rxu2LiRJkiRJkiRJkiRJkiRJkiRJkvZGB/4DzH5z+dY7/FI44gvp9SWXw23nw9NfTZ8Te6FnR/l6krR36u2Bq+al1yefBEf/59C3ib10dK1KrLU2TEscz6YEo3VlSrjFrr4J2k5Prm1ZWPx6kiRJkiRJklQBtRSM9tiA85nD1oUkSZIkSZIkSZIkSZIkSZIkSdLeKFMPJ/1f+dZrGA8HXjT0dZZdOfQ1JO3dVt2Qv37WHZAdPeRt1nU/T3fsSqy1NUxPHK9PCUbrDiXeGjjr9cnjGx6D7q2lrSlJkiRJkiRJZVQzwWgxxkeAR4EAHBNCmDDMLUmSJEmSJEmSJEmSJEmSpBKFEGaEEF4cQrgghPC2EMLbh7snSZIkFSAEGH/E0Nepa4S6UVDfAtmxQ1ur/bah9yNp75bvdWT8EbnXvjLo6FyZWmvLTkscTw1Gy5R4a+DoucnjnevgmW+UtqYkSZIkSZIklVH9cDdQpP8AvgfUAR8GPjm87UiSJEmSJEmSJEmSJEmSpEKFEGYDHwLOB2YnTPlhwjWnAi/p+3RdjPFrletQkiRJBZlxAax/aGhrZMf1nzfPhA2Plb7WM/8Nm56GcYf2j9U1wKTjYPorc+eSlE/H7em1ma/Je+nWns08vPlelu9YTCTmnbtqx9LE8TF142iqa0mspQajhRKD0VpPyYVT9mzfvfbAR2HSCdB2SmlrS5IkSZIkSVIZ1FQwWozxByGEVwKvBT4WQrgzxvjb4e5LkiRJkiRJkiRJkiRJkiSlCyFkgEuBj5J7OGpImJZ29/jzwGd31kMI18UYF1SgTUmSJBXqoItg9c35g4QG0zC+//y4b8MNJw2tp1U35I4XmnImnHYV1DcPbX1Je67n/wgdd6TXD/xgamlNVztfXfoZOrpWDqmFtobpqbVspszBaNnRsN974an/TK7feCocfxnMu7C09SVJkiRJkiRpiEr86eewegdwFblQtytDCJ8LIYwf5BpJkiRJkiRJkiRJkiRJkjQMQghZ4HfAx0l+oGtaIFquGOMTwC30h6m9pawNSpIkqXgNE+CMG+GMm+Cof4d9zhvaepNeVJ6+kqy+CRb/tHLrS6p9D3w0vXbMV3YNcnyB69dcMeRQNIDW7LTUWn1IDkbrytSVvuH8j0N9S3r9zx+C7q2lry9JkiRJkiRJQ5D0BqMRK4Tw6b7Th4CTgMnAPwP/GEK4G3gcWAf0FrNujPFz5exTkiRJkiRJkiRJkiRJkiT9xWXAS8kFoEVyAWe3kws76wQ+X8AavwJe0nd+NnBp+duUJElSUeoaYOoZueOAv4fLm4q7vnlm/3kmm/t869Ly9rjT8mtg3l9XZm1Jta1zPXTckV4fs3/eyx/Zcl9Z2mhrKD4YrTtkSt+wsQ0OvAge+3/J9a6N0H47TD+n9D0kSZIkSZIkqUQ1FYwGfJZdnwy58w1SzcAZfUcpDEaTJEmSJEmSJEmSJEmSJKnMQghnAm+l//1+zwJviTHe31efTWHBaNcCX+9b49gQQmOMcXtlupYkSVLR6hqh9VTouH3X8cwoaBgH29t3v2bKmbt+3jK7csFo6x+Bpb/OndePhsnHQ3ZsZfaSVFs2L8xfn3xSaqmzdwfru9eUpY2Dmo9MraUGo2WGEIwGcPBH4On/hq4NyfUn/wNiD0w6Fhpbh7aXJEmSJEmSJBVhiD/9HBF2PkGyFKGcjUiSJEmSJEmSJEmSJEmSpF18pu9jABYDJ+0MRStGjHExsL7v0yxwUHnakyRJUtkc9lmoa9p1bP7F8KL/hlC/6/jYA2Huu3Ydq2RQ2eYFcPtrcsctZ8OvWmHRTyq3n6TaseqG9Nphn8uFO6Z4vmtVWVo4esxJzG7cL7WeGowWhnhrYMMEOOnH6fVVN8Ctr4Ar2uDRL0As9RY+SZIkSZIkSSpO/eBTRhzDzCRJkiRJkiRJkiRJkiRJGuFCCBOBk+h/+OlFMcbnh7Dk433rARwAPDiEtSRJklRuU8+As+/OBY51roN9XgEzXpWrNe0DSy6HrUth0vG5ULTG1sLXDvUQu3PnDRNz6z73vdJ77e2Eu94KradCy8zS15FU+x78p/TaYZ/Ke2l758rE8UCGQ1uOGXTrprpm9m86lBPHnUEI6bfMZdOC0TJDDEYD2OeVMGZ/2PRM/nkPfxJaT4IpLxn6npIkSZIkSZI0iFoLRvMnp5IkSZIkSZIkSZIkSZIk1YZTgJ13abfHGK8a4noDQ9XahriWJEmSKmHCEbnjhVpPzB15rz0aVlyXXHvTDggvCADasQaWD+WPmBGW/hIO+tAQ1pBU07YsSa9NPXvQyzu6ViWOT85O4b0z/rnUrnZTnxKM1hXqyrPB7DfBo5cOPm/x5QajSZIkSZIkSaqKmgpGizHeOtw9SJIkSZIkSZIkSZIkSZKkgkzr+xiB+8uw3qYB56PLsJ4kSZJGklmvhcc+v/v45BN3D0UDmPvOIQajAWvu7T/v2Q5dA/7ImamHhglDW1/SyLbxqfTahCMHvbyjc0XieGvDtMTxUqUFo3VnEl4bSzHpuMLmbXq6PPupcD3bc0f9GMjU5c4zoyAE6OnMfa9K+h4pSZIkSZIk1biaCkaTJO3B1j8CT3899480s14P01+R+4caSZIkSZIkSZIkSZIk1aqJA87XlWG9pgHnXWVYT5IkSSPJhCOh7XRo/8Ou4wdelDx/+itg9H6w+dn+sUwWpp4NK64tbM/FP4PlV0P3Fsg0QG/nrvWWOXD4pbDvWwv8IiTVlDX3pNf2/7tBL+/oWpk43pqdWmpHiepD8i2A3eUKxJp2Low9GDY+kX/e6lvg2e/Afn9Tnn2VbsH34J4Lk2vZsdC1EeqaciFpc98JR/1bLiRNkiRJkiRJ2kP4OABJ0vBbdSP89kh49n9h4Q/h1vPg0UuHuytJkiRJkiRJkiRJkiQNzcYB52PKsN6UAedry7CeJEmSRprTr4H9/x7G7A+tp8LJl8PsNybPrWuAs++EOW+Dln1h6lnwkt/DaVfDMV+BiS+C7PjcUdeUvAbkQtFg91A0gC2L4O63wcobhvylSRphYoSHP5Vcqx8No/cddImOzlWJ460N04bS2W6yoSFxvDtTRyzHBpl6eOltsO87oGV2/rn3vhuW/rocuyrN8mvSQ9EgF4oG0LMNutbDU/8FD11cnd4kSZIkSZKkKvExAJKk4RUj3P8BiL27jj/2BZh3ITTPGJ6+JEmSJEmSJEmSJEmSNFQdA873H8pCIYQ64KgBQyuHsp4kSZJGqPoWOPbrhc9vbIOTfrj7+IEfzB07LfkF3PGG0vta8B2Ydlbp10saedY/kl6bccGgl3f1drKu+/nEWmu2vMFo9SGbWusOGbIvvB+jFI2T4cTv587XPwLXHZ4+d8F3YOarh76nkj377eKvWXAZHPEvkKkrfz+SJEmSJEnSMMgMdwOSpL3c+odg45O7j/d2wtIrqt+PJEmSJEmSJEmSJEmSymXnXeYBODCEMJQn5L0MaO47j8Afh9KYJEmS9jLjDh3a9esfLk8fkkaO9Q+l18bNH/Ty57tWE4mJtbaGMgejZfIHo5Xd6HmQGZVezxcqp6FbflXx13SuhW3Lyt+LJEmSJEmSNEzqh7uBoQohZIETgVOBecBEYAxAjPHMYWxNklSIFb9Lry35xa5PapMkSZIkSZIkSZIkSVLNiDE+EUJYDuxDLhztw8CHil0nhJABLt65LPBQjHF92RqVJEnSnm/cwTDxWFh7X2nXb3wSenZAXZ6gIO2ZOjfAI5dAx23QvRm2LIae7blaYxs0TNh1fmYUTDoODrsEmqdXv18VZtmVcPfb0+tz3jLoEh1dKxPHAxkmZdtK7SxRfUi/BbA7k4Hesm4H9c0w6/Ww6MfJ9a1LYfm1sM8ryrzxHqbjTnjqq31BcuX+RUpw/UmwbUXuvHkmnPBdmPrSyu8rac+w5n548su5QOBxh0J2NCz4LrwwBHTGq2Deuwf/HrD4clj4Y+jZBjNfA/u/F0KoWPuSJEmSpD1PzQajhRBayL1B6v1A6wvL7Pa37b9c92bgC32frgWOjTEmP55DklR5+Z4U9PzdsGMNjJpUvX4kSZIkSZIkSZIkSZJUTv8HfIzc+/reH0K4LsZ4Q5Fr/D/ghAGff7tczUmSJGkv8uLfwJ1vhI47Srv+hpPh3PvL25NGtt4uuPHU9Pe8b2/PHS+0/mFYcS284gloGFfZHlW8hT+Gu9+WXq9vgZZZgy7T0ZkcjDYx20p9yJbaXXJLedbrDpmy7vUXx34zFya58ank+q2vzL2uznhVZfavde23wc1nQW9n9fbcGYoGufC6m8+C064xwE7S4NbcBzeelgsxA9jwWPrcZVfCsqvglMtzIZpJnvkfuO+9/Z+vvikXLnvUl8rXsyRJkiRpj1ehn3xWVgjhcOBPwCVAG7k3TBXqamASMAc4Cjir3P1Jkoqw8cn0WuyB5ddUrxdJkiRJkiRJkiRJkiSV278CG8k97LQOuDKE8J5CLgwhTA4hfB/4KP0PS10FfLcCfUqSJGlP1zwdzrodXvZAadev/ROse7i8PWlkW35N/geB57NtJTzzzfL2o/J4/Iv56/v9bUHLtHclB6O1ZqcW29GgsqEhtVaxYLTsaDhnkDDIxw24SfXkl6sbipbmiX8b7g4k1YKnvtLBKQYhAAAgAElEQVQfilaQCI+lfD+NMfm15+mvQ/fWktqTJEmSJO2dai4YLYRwCHArsD+5QLSdb3YKFBCQFmPcDPxiwNBry92jJKlAsTd/MBrAst9UpxdJkiRJkiRJkiRJkiSVXYxxLfBB+t/v1wh8M4TwTAjhX4DzB84PIRwXQnhbCOFHwALgbfS/P7AHeFeMcQTcWSxJkqSaNe4wqGsq7drn7ypvLxrZhvrrvfK35elD5dO5ATY8ln/OmP0KWqqjMyUYrWFasV0Nqj5kU2tdmbqy7/cX2dHQOCW9vuYe6O2q3P61rGOEfL9ovzV3744k5dNxZ/HXrPszdCeEqW1fBZuf2328Zyusvrn4fSRJkiRJe6364W6gGCGERuAaYBz9gWiPAF8BbgFGAU8UsNSVwIV952eWuU1JUqG2rcr9UDMf3zwgSZIkSZIkSZIkSZJU02KMPwwh7Ad8ktx7/wIwD/jYC6YG4O4XfB4HXPOJGOP1le9YkiRJe7RMHcx4NSz+SfHXPvu/sPZP0DwTZrwKJhxR/v7Ub+2fYNnVuXCmGRcUHFg1JKtuhJU3QOdaWP2Hoa3VfhusvB6mnV2W1lQGWxYOPmfGBQUt1dG1KnG8LVuJYLT0WwC7Q6bs++1i5mvhmW8k12JvLvxm7IGV7aHWdG2CHR3D3UW/2y6Afc6H2W+A7Njh7kbSSLJpASz5OWxZVNr191wI9aMh1MGEI2HWG3KvgWm2JX/vlCRJkiQpSU0Fo5F7auQc+kPRvgr8Y4y5xxaEEGYXuM4t9L9Rat8QQluMsb3MvUpSabYshQc+nHvSwpj94NDPwNQzhruryti2fPA529uhcz00jK98P5IkSZIkSZIkSZIkSaqIGOOnQwgLgG8ATfS/DzAMON/5OewaiLYDeE+M8UdValeSJEl7uqO+BBsegfWP7Doe6uHwS+GhTyRft+6B3AHw2OfhpJ/ArNdVtte91cIfwx/fkQteAnj0Ujj9d9B6YuX2fPjTuX3K6ZZz4Ogvw0EfKu+6Ks3mAoLRmgYPNuuOXaztSg6+am2oRDBaNr2XTIWD0Q77LLT/ATY8nly/9lB4w2aoG1XZPmpFjHDj6cPdxa6WX507nv4anHETNE4e7o4kjQQdd8EfXg5dG0pfY/HPdv38yf+EI780tL4kSZIkSepTa8FoH6D/DVC/iTH+QymLxBg3hxAWAfv2DR0MGIwmafh1b4UbToGtS3Kfb1sBN58JJ/4Q5rwVQsh/fa3ZWkAwGsCmZ2DSsZXtRZIkSZIkSZIkSZIkSRUVY/xBCOEW4GPAu8gFpEF/GNpAAegB/g/4bIxxUVWalCRJ0t6heQaccx88/0fY+ERuLDse2k6F5n2gcx088a/51+jtggc+AjNfA6HCwUR7m95uuP8D/aFoAF0b4cF/grNuq8yeW5fDY18o7dpDPgHPfgs61ybXH7oY5l4IDeNK70/lMVgw2uGfL2iZNV3tRHoTa63ZKgejVfr1p7EVzn0ALk8JPovdudAtQyJz1twL6/6cXAt18KKvkfxjkASd63Pfj5r3gUxD7vvO1qXQMAEaxsPWZRCyuV+j+98/+HrrH4YF/wvzLy74y5G0B3vo4qGFoiXZ9DQ8+rn0euwu736SJEmSpD1azQSjhRAOAfbp+zQCHx3ikgvoD0abC9w6xPUkaeiWXdUfijbQ3W+HBz8OJ/8s94/te4ptBQajrX/EYDRJkiRJkiRJkiRJkqQ9QIxxCfD+EMLHgFP6jpnAJKABeB5YDdwF3BRjXD9cvUqSJGkPVzcKppyWO15o7IGFrbFlMWx4AsbPL29ve7tVN0JXwl8FOm7PPYy8vrkCe96waxBbMQ68CDY9BUuvSK73bIf2W2HG+aX3p/LYMkgw2uh989f7tHeuTBwPBCZnpxTb1aAyIUMd9fSwe6BMV6au/5MpZ5R9bwDqGmDScbnQryQrrjMYbacVv02vNc+E/d9bmX0LCUaD3K+VwWiSurfm/mxSCeseSK+VO4hNkiRJkrRHq5lgNODIvo8ReDTG+NwQ1xv4LyQ+ckXSyLD4p+m1bSvgxhfDYZfkwtHaTqv9J4ttLTAYbfk1MO/CyvYiSZIkSZIkSZIkSZKkqokxbgWu7zskSZKkkWXqS4FA7haWQTz4T9B6ErS+GCYfD5lsf61rM6y+Ofeg6MY2CHWwfRW0zIFp58CoSRX6AmrcxqfSaz3byhuM1rMD1twDj1xS2vUTjoSmKTDjNenBaABLfwWd63Lno1qh9WRo8HamqtucJxgt1MGUMwtapqMrORhtQv1kspmGUjobVH2opyfuHozWPfC+kkM/XZG9AZh2bnow2srfQ4wQQuX2rxWrb06vTTu3cvvOeRss+tHg8zruhCW/hMknQfP0yvUjaWSKETY+AYvy3MNYSSt/Dwd9GHo74fk/wtalufFQBwQYfxiMP7T275mUJEmSJJVFLQWjtQ44f6YM6+0YcF6BR8VIUglW3TD4nEc+k/s4/eVw6q9zT96pVdtWFDZv9c3+I5kkSZIkSZIkSZIkSZIkSZKk6miZBQd/BJ74t8Hnrrg2dwA0z4Kz786FzTx/D1x/Qv5rT70CZr566P3uafK9bzwWEFZXqE0L4A8vg00l3qZU1whH/EvufPabYMG3of3W5LkLf5g7dsqOzd0PMPWM0vZW8WJv//+rSeb/cy7krgAdncnBaK0NU0vprCD1mSw7erbvNt6d6QuPmfX6XOBepez/Xnj0c8m1bSvg7nfA8d+p7XtchiL2wp//ETpuT59z8Icrt//8jxcWjAZwx+uBAMd8BQ78QOV6kjSy9GyHu98JSy4fvh5W3wJXtOV66dmWPGf6K+GUn0F9S3V7kyRJkiSNOLUUm9044HxH6qzCDXysyqYyrCdJQ5cdW/jcFdfBs9+qXC/V0F3gy2/XBtiW/A+HkiRJkiRJkiRJkiRJkiRJklR2R/0rvPgqOOD9MPst0FhA4NHWJfDgx3IBOXe9ZfD5d7weOjcMvdc9Tr7bnXrLt8197xs8FG3c/Nyv/8EfgZfeBmfdAQd/FA79NJxzL0w/NzcvUwdnFPCg9J26NsKdb4LertL7V3FWXJde2/ftcPglBS/V0bUqcbw1O63YrgpWH7KJ493TzoGTfpI7MvUV25+mqXD8Zen1RT8qPJhrT7T8WnjqK+n1Qz4BY/ar3P7jDoFXLYGDP1bgBRH+9EHY8GTlepI0sjz7ncJC0Y78Irz4ylxgaKbve092HLSeAs0zYMoZuT8bzXxdaX10rksPRQNYcQ089dXS1pYkSZIk7VEq+NPOsnt+wPnkMqw3d8D5mjKsJ0lDV9c4+JyBnvtebT+dpTvPDzFfaOOTuSenSZIkSZIkSZIkSZIkSZIkSVI1zDgvdwDc+Vew+CeDX7P0V3DgRbD5ucHnxh5Yfg3s+1dD63NPE0J6LfaUZ4/OdbCqgCCzee+Ggy7adaz15OS5mSwc+il49NLCetjRAe23wtSXFjZfQ7Pop+m1/d9X1FIdnckPfm9tqFwwWjYtGG3Om2H8WRXbdxcTjspfX/ILmPfX1ellpFnyi/z1ySdUvoeWmXDUl3JHz3a4vGnwa5b8Ag77VOV7kzT8lg7yOgUw6Xg45J9y5zPOhyM+nz439sLlzdC7ozz9DbTk5zD/E+VfV5IkSZJUU2opGG3nozQCMMhPUfMLIUwCDh4w9OxQ1pOksogRdjw/+LyB1j0A6x6CCUdUpqdKy/d0hxfa+CRMPaNyvUiSJEmSJEmSJEmSJKkqQghZ4ETgVGAeMBEYAxBjPHMYW5MkSZLSTT6hsGC0nu3w1FcLX/fJf4fWEyHUQfNMCJnSe+zalHtYdyY5QGmP0Ntd+rVdmyAzCuoaYNMCIA5+TbFhRpNPLG7+yt/DuEOhaWru8+3t0L0ZGibkDpXPloXptfGHFrxMT+xmTVd7Yq01W7lgtPqUYLSu2FmxPXcz9iDIjoOuDcn1jruq18tIs+np9FrIwMQXVa8XyH0vmHA0rPtz/nmrroe5b899/+nakAuNbJoB9OaCKOtbqtKutIsYYduKCgRuhb7XsPXQND33/8merGvjrvcqbszzOrVTMX/uCRmYfDy031Z8b4NZ92Du9YgAnWsHmZyBlllD+zO0JEmSJGlEqqVgtLuAXiADTAohnBFjvLnEtS4kF7AGsAW4vwz9SdLQ7FgD3VuKv+63R8Kbe/M/FWuk6tle+NyNT1auD0mSJEmSJEmSJEmSJFVcCKEF+BDwfqD1hWVSUglCCG8GvtD36Vrg2BhjAQkGkiRJUhnNeQs8/iXYtnzwuYt+XPi66x6Eq+blzkdNgsMugQP+vrjetq2Cu94C7bdCXRPMfRcc/V+QqStunREjz3vjYwnBaNtWw11/Be235ILRJh4NHXcOfl3rqTDpuOL2mnoWjD8C1j9U2Pwn/j13JJl4LJzyMxg9t7gelOz5u5PHs+OKCn9a09VBLz2JtbaG6gejdceuiu25exNNcOAH4dFLk+vdm+Cq/eCkn8DkIv/fqWVblsCae9Lrc94GzdOr189OB38U7npz/jkdd8CVc9Lr018JJ/3QoEZVz+Kfw4Mfzx9mWQ6ZLMx6Axz37dxr255k4J97Ym/h19WPgf3+tri9DvpI7nWkmH0K9cuJhc9tmADzL4aDPlyb91hKkiRJkhLVTAR2jHEdcN+AoUtDKP5vqCGEfYCPk3sDVQRuiLESf+uWpCLlezrMYB65pHx9VFPPtsLnPv21yvUhSZIkSZIkSZIkSZKkigohHA78CbgEaCNv0sFurgYmAXOAo4Czyt2fJEmSNKhRk+Dsu2HuOysXVLVjDdz/flj6m+Ku+8MrYHVf+EX3Fnj66/DIpyvTYzXku12ot4RgtNsugNU35f779GwbPBRt/BG5YI2X/K74cI1MPbz0D3DA+2HcodA8K3fUjy6+77X3wU1nQm9yCJeKsPTX6bWTLy9qqY6ulam1ydmpRa1VjBERjAa58MZ5706vb14AN58BO9ZWr6fhFCPccEp6ve00OP471etnoDlvglOvgGnnlr7GimvgzkHC1aRyWX1rLtCr0qFoAL1dsOj/cn/u2tPcdn7/n3sKNeuNcNbtMO7g4vaacR68+GqY/gpomd3/557mWVDXWNxaQ9G5Dh74KCz+afX2lCRJkiRVXM0Eo/X5yoDzE4D/KebiEMIU4CpgAv1vqvpyeVqTpCHa9Ezp1z56CXRtLF8v1VJMMBrAmvsr04ckSZIkSZIkSZIkSZIqJoRwCHArsD+59+7FnSUKCEiLMW4GfjFg6LXl7lGSJEkqSMtMOOF7cP6Cyu7z3HcLn7vhCVj3593HF/64fP1UXZ6/JsQig9E2PAlr/lj4/GnnwssfhKP/Heqbi9trp4bx8KKvwSsegQsW546DPlTaWlsWQfsfSrtW/Z75ZnqtyKDDjs7kYLTx9ZNoyIwqaq1iZFOD0UoICxyK/8/efYfHUd1tH/8eraolW5Z777gXsKm2AYNN7wkQAk+AUEMq6SEJLaQ8SQhvypMQkkACCaEaTHXoBowxNsXghnvvkqtsWdqVzvvHSPFqvbN1drQr3Z/r2ks7c86c81Pbnd2duccY5/8jltB+WP+4P/W0tMp34cAG9/bj7ncCE1tK34vglJlw8gupj7HlJTiw0buaRKKxFj78VvLP8+la9wiEkjy/LZvtWQJV85Lb5nM1MPlRqBiX2py9z4Ypz8MFaw/t91y4zhn3cgujfpTauKlYlcQ+tIiIiIiIiGS9nApGs9Y+CixoXDTAdcaYt40xJ8bazhhTaoz5UuO2R+IcVGWBl621cS7zIiLik33L09t+/XRv6vBTssFoy36bmTpEREREREREREREREREREREJCOMMcXA80B52OqFwLXAIGAECYSjAc+E3Z/qWYEiIiIiIqnqdXbmxt69KPG+buFDB9ZDfa039fguxkuEhmByQ215Kbn+Hcck19+PcZP5e5DoYoU6lfZPaqgdwejBaF0LeiQ1TrLyXYPRkvyf8EJBh/g/t7byd7t7oXtbQQco7edfLbF0HJ3e9ttne1OHiJuNM6IHvWZafQ1Ur/Z/3kxJ9rG3/VAIFGemlibdT83s+OH2tJHnHhERERERkTaiBS83kLKLgblA58blScAsY8xWYGV4R2PMvcBQ4ASgiENXmjTAJuALPtUsInK4vcthzUNwcDv0PN1ZjqbiKAjuif8m63vXwoDLIZC5Kwx5LtlgtE0vOB9k50X/QE9EREREREREREREREREREREss7XgQE4x+4B/B74lrW2AcAYk+gZ6G9w6Pi/gcaYbtba7R7XKiIiIiKSuMHXwuYXMzP2/jXw8iTAgglA9SqoCQtjKunpfK2JHtD0X3W7oaR7ZmrMJBMjGM2GoKEelvzCCVGp2Rx7rHg/o2bzBmDglYn3T0avc6GoK9TuSH7bD2+Gpb+EDiNgyI3Q/1Lv62vNrIW9S6O3FXWGQGFSw+2o2xp1fdfCnslWlhS3YLSgrcvovK4GXQsLb3NvX/FHJ6Bx5Peh6yT/6vLL/nXw8Y9g7cPufQZ8IXvOfyntBz1Og62vpLb9nM/Dojuh+ykw7hdQWB5/G5F4DmyGj2+B7W87+z4t5dWTmp+PVzoABlwBR3w59j5JNln7KCz7LVS9l9x2g6/JTD3huk9xAmJjBUl65eA2CNVAfknm5xIREREREZGMy7lgNGvtamPMucDTQE8OHejUEwi/tIYBbgi7T1jfjcC51tpKX4oWEYlU9T68Ps0JPANY9Vf3vr3Pg9G3QtU8eCXWh0EWXp0Cp70NeTny8J5sMFpwN2x/C3roor8iIiIiIiIiIiIiIiIiIiIiOeJrHApFm2GtvTmVQay11caYtcDAxlUjgDYXjGaMKcC5oGw/nOMmq4HNwEfW2rUtWJqIiIhI29P3MzDhD/DB1zIzfuUc97ZEw76CORqMRowQkoYQzP8SrPqb99Oe9Ax0HO39uOAEdEybBXO+ALs+TH77mi3Obdvr0FAHA//H8xJbrXWPured+HTSw+0IRv//61rQMsFooYZQRud1NeqHENoLS+9277PpOdjyMkx7E7oc519tmVZbBS8dDwejh+T91/jf+FNPoiY/Bu9eBVv+Aw3B5Lff+6lzq3wXzngf8gLe1yhtR3AfvHw8HNjQ0pVA3c7myzVbnL/zul0w+sctU1MyVv8D5n4xuW0KyuGIm2DEdzNSUjMmD05+znn82f4Wh94qBkoHQmnfxvUeWf4HGPk978YTERERERGRFpMjyTnNWWvnGWPGAw8AZzWtjvjabBOcT0UM8ApwlbU2zjuPIiIZtOiuQ6Fo8bQf6gSddZ0I562A545w71s1F9b8EwYn+WZmS6k/GH39pEfhncuit216TsFoIiIiIiIiIiIiIiIiIiIiIjnAGDMS6N24aIF0z7RbxaFgtEHAm2mOlzZjzCDgGODoxq/jgfZhXdZZawd4ME9X4E7gc0Anlz5zgHustdPTnU9EREREEjTsqzD0KxDaB6H90YNm8kvB5ENhubMc3AvWOseTh/bDCyMzV1/drsyNnVExgtEObnECQLx26mvQ41Tvxw1XPhLO+gDqdjvH/X/w9dTGWXq3gtGSsfhn7m0dRiQ1VIOtp7JuW9S2boUtFIxmUwi48kJeAI76NVQcBXOucO/XUAvL/691BaOtfTh+KNqoH0OgyJ96ElVYASc/C6EDsG8lzByX2ji7FsC216Dn6d7WJ23L+scTC0Wb+gaUDUpvrmf6p7bdst/CiO9BoDC9+TNtaQIhjAOvhLF3NS4YKOnlb7hhaX8nIDa479D+aaAdFHdx7jeEnAC1R+LUdME656sNwbNDiHo6+ZJfKhhNRERERESklcjJYDQAa+024BxjzATgG8BUnKsfRrMHeA34g7W2xQ+EEpE2zjbApmcT798+LAit/RDnCglvnufef92juRGM1hAEWx+9raQ39LvUeZM70p7Fma1LRERERERERERERERERERERLxyZONXCyyy1q5Oc7zdYffL0xwrZcaYKcAtOGFoUUPKPJ7vLOAfQLc4XScCE40xDwM3Wmv3Z7o2EREREQGMgYIOzi0RTf2agtKKu8PB6EFLaavbHb9PNjIxgtGq5jlhGF6rSDEgKBWFHdO7WPjujyFUA/kl3tXUmtVWubcVdU5qqJ3BSuqJ/vfXtSCzwWgFeVkWjNYkkXC5qnmZr8NPle/F7xN+LlC2yW8HFWOhqAvUVqY2RtU8BaNJeirnxu/T71LoPiX9ubqcAJXvJr9dbRVUr4by4enXkCnBatizKH6/iiOhtF/m64mnoL1zi5TXeKr74Oth1V+jb9vnwubfQ0E5BKPs69YfdEKIY+1PioiIiIiISE7I2WC0JtbaD4Ar4b9XXuwLdAYKgUpgG7DYWtvQYkWKiITbvz7xvkVdoNNRzdd1OxnyyyBUHX2bba87H2AXdky9Rj/U17i35Zc4Vw2KFoyWs1ctExEREREREREREREREREREWlzuobdX+HBeLVh99t5MF6qjgR8Ofu3MYRtBs4xkU0s8CGwGugIHAV0CWu/AuhgjLlQx06KiIiI5IB+l8Dy/8vM2It+Aqv/7gTfbHvdCWUb/1sY+IVDARTZyFr3tn1evLSI0OvspAOy0tZhBJSPhD1LUtt+9qVOuBFA2SAnPCby3AOB0AE4uDV6W+nApENTdgS3uLZ1KeyR1FjJyjfRg9GCti6j88ZVcSSUDYHqle599i2Hd6+CrpNh4FUQKHTvmwt2L4jdnlcEfc7zp5Z09LsEVtyb2rarH4TdC2HrK855Pv0ugZLeENoPHUfDoKsTDwyVtmfLy7Dqb7H75BXBmDu8ma/fJakFowGsfgCO+pU3dWTC/rUJdDLQ97OZrsQb/S5xD0brd2nz5YpxsP3Nw/vVH4Btb0CPU72vT0RERNq2fatg7cON7+XEeO/K5EOnCc7roqKMX2NLRKRVy+JPMZLXeDXJdK8oKSKSWdteT7zv8G9D5FV9CtrD+N/AvBujb2NDsHkmDPh86jX6IRQjGC2v2D3YLVevWiYiIiIiIiIiIiIiIiIiIiLS9hSH3a917ZW48rD7+zwYz2u1wEZgsBeDGWP6AE/RPBTtHeB6a+3SsH5FwI3A3UDTwUbnAT8FfuhFLSIiIiKSQWN/Ars/ge1veT925btAWBBIcC+8dw1sfBpOmgEmz/s5vWDr3du8DkYrHwlH/8HbMRNhDEz8N8w6C2rcw7ZcbX6++fKn98CJ06H3ud7U11qse8y9bdK/kx5uR13031WHQAXFeSVJj5cMt2C0kA1ldN64jIHJj8Ksc+DgNvd+ax5ybuseg1NmHn6uTK6o2xU70DBQDBMfhsIK/2pK1difOuFmO2Ynv231yuZheOufaN6+6n6YNis3fg7iryW/ggXfj90nrwgmPw7lI7yZ84iboHIurH88+W2X/hra9YNhX/WmFq8lEq57/ANQ2i/ztXihxzQY9WNY/NPm64d8yQlNC3fsX+H5odHHeX0qnPqawtFERETEOzs/gNdPc14TJmLdv2HVX2Dqm1DSPbO1iYi0Yq0qGE2ygzGmAJgE9AN6AtXAZuAja+3aFixNpOXtXQ7vXZtY3/KRMPxb0duG3OAkBf/n6OjtW1/N/mC0+hjBaPklUOASjBZUMJqIiIiIiIiIiIiIiIiIiIhIjqgMu9/Fg/EGhd2v8mC8dASBxcD7wPzGrwtxjp17w6M57gTCzyCeA0yz1h4M72StrQV+b4xZDzwd1vQtY8x91tp1HtUjIiIiIplQWAFT33DCaWYe6c+cm56DbbOyNywilWC0bifBEJeLjzeprXLCmAo6OMtlg6BiPAQKY2+XKRXj4PzVUPke1Gxy1hX3cM4l2LUA6nbCnCsSG6uhDhbcAr3OcYKqxDH/Jve2ivFJD7cjGD0YrWthj6THSpZ7MFow43PH1WkCnL/GCeybfWnsvtteg00vQN8L/anNayvudW8b9k0YcxsUupwPk22KOsHUWbBnkRP2VlgBJT1h33KorQTb4ITZVc1Lfuzdn8Dqh2D4NzwvW3JY3R5YeEfsPkO+BOPvhvxS7+YNFMOkR2HsXVC9Ckp6O/sTDWHXcVj8M/fQww++Dt1PgY6jvKvJC9bCyvti9ykfBYOu9qUcTxgD4+6CI26ELa+ADUKP06B0wOH7N+2HOL/b+oNRh+KTW7N3X1dERERyz6K7Eg9Fa7J3mbO/Nua2zNQkItIGKBitFTLG/AO4yqPh1llrByQ4b1ecA7E+B3Ry6TMHuMdaO92j+kRyy7wbEu979J9if8DaaYJzxYpoH6qsfsC5mlfv82DAFZAXSL5Wr9RshZV/ca72cmA99D4fxt/jfPDqJlDi/kFQ3W7njVt9WCsiIiIiIiIiIiIiIiIiIiKS7bY2fjXAUekMZIzpDIwIW7UynfHS9CDw58iAMgDj0TEtxpgjaH4cYB1wdbQ5m1hrZxhjHgzbrgi4HbjGk6JEREREJHNMnhOS1ft82PSsP3Oufyx7wyJiBaOF9kdf3/UkGHB5ZurJpEAxdD/58PUlZzpfV94H299KbKw9i+DgVifYSKCh3v1vqV2flALxdgS3Rl3ftSDzP/OCbA5GA8gvgb4XO2FGbv+nTba8lLvBaNvfdm8b+pXcCUVrkhdwnn8qxh1aF36/XT946/zUxl77sILRpLnKOVBfE7vPETd5G4rWxBjoMNS5AVSMbd6+eaZ7MBoWFt0Jkx/3vq50HIz+nNTMsBz9H2zXBwZ/MXYfY5yQW7ffW+UcCFZDQZn39YmIiEjbYq0T2pqKrS8rGE1EJA15LV2AZL047zQ5jDFnAYuAm3AJRWs0EXjSGPMvY0wG3qESyWLBfbAjxgcg4TofG/3DzUgVMY4X3fAkzL0K3vmcs8PdEqrXwsxxsPB2JxQNnA/qnxvifJDlJlDiXGkmGlsf/0MyEREREREREREREREREREREckGc4CGxvudjTHppC5cgxOwBrAfeD+dwoi/y6YAACAASURBVNJhrd0VK6DMI5cD4VdDfMpauyKB7X4ZsXypMabYu7JEREREJKN6ne3fXCv/Agvvci7UveNdaAj5N3c8sYLR3JQN9L6ObJDs38S6x5xAMIGajWBd/q5L+6c05I66LVHXdyvMfDBafrYHo4ETUtPzrPj91ufw3+m+GDntZYP8q8Mv3U+GQLvUtt05H6pXe1uP5K7qtbDwJ7H7tOsH5aN8Kecwvc6J3b7+CfjgZtjzqT/1xFOzBRb/b+w+JgC9z/WnnpYS7/e2f60vZYiIiEgr1BB0grGX/wmW3g31B1IbZ8c7sOp+2L3Y2/pERNqInApGM8aMNsa83nh7zRjTLYUxujdu2zTO0EzU2opMj9fBGDMFmAGE/z4s8AHwBPAKUBmx2RXAI8aYnPobFElLbRXYhvj9ADofl1i/DsPj99kwHSrfTWw8ry28Aw5uj9724Tfdt8svi32VnAMb0ypLRERERERERERERERERERERDLPWrsLmB+26i5jjHHr78YY0xv4Ac5xaRZ4xdpED8TJWRdFLP89kY2stUuB98JWlQKne1WUiIiIiGTYgCug64nx+5X0hE7HpD/fwttg/pfhlYnw5rkQrE5/TC8oGO2QwddDpwmJ9//wm/D2RRBK8YTd1mTzf9zbjv5T0sM12AZ2BLdGbeta0HLBaMFsCkYDGHMHFPeI3aduF7z9mdz7Ow3ug2qXYLSBVznBcK1NQQc4MjKDPQnPDoZPf+tdPZKbVtwLzw2GqrnuffIKYfw9kBdw75NJfS+CnmfE7rPsd/DCCPj4VrDWn7qi2TADnh0Ey38fu9/o2519xtZs2M1QNti9/bVTsyv8V0RERHJD3S5nP+LVk+D9r8CC76U33nvXwYuj4aPvt+x+pIhIDspv6QKSdCMwBefAppettS5pO+6stduMMUGcA30scD3wXS+LzALfAe5IYbujcYLMmljggVgbGGP6AE8BhWGr3wGubzzAqqlfEc7v726g6Z3484CfAj9MoVaR3BPal3jfzgl+SN0+wWzHNf+ErhMTn98L9bVOKFuy8ttDXj4UxAhGe/l4uHhX6/zQSERERERERERERERERERERKR1+R3w78b7xwN/xjmWLCHGmO7As0BF4yoL3ONlgdnGGNMDGBe2KoRzXF6iZgHhV2Y8C+dnKCIiIiLZrqAMTn0Z1k+HqnnQUAeBIigb5LTvXQ7lI6DvZ5zgoU3PQeVcqN0O5MGWmZBfCt2mAAbWPQrB3YnNveUlJ7hkZBacYpNKMFrpAM/LyApFnWDqLOfY/J3vHwr32DAdandE32bTc7DyrzD8G76VmZXmf8m9rWJs0sPtDlURcgkh61roRzBa9NMA3WpqMR1HwZkfwIanYNFPYvydPgur7odhX/O3vnR8crt729Cv+leH34Z9FTofDZtnwsHG0zlX/jnx7T/8JvQ5/9BzmbQtBzbC+1+FeNc4OPN96DjGn5qiCRTByc/B+idhzuWx+y7+KfS5wPm/8FvoAMy9CuoPxu43dRZ0P9mXklpUu15w5nx4slP09todsPEZ6PdZf+sSERGR3Lbk17Bjdvx+eQUw6Frnfqga1v4rdv+lv4Li7jDiW+nXKCLSRuRaMNoFYfcfTGOcB3GC0QzOVRWz4FMb71hrK4HKZLczxvwgYtUb1trVcTa7k0MHnAHMAaZZa5u9s2KtrQV+b4xZDzwd1vQtY8x91tp1ydYrknOCSQSjJXr1rsKK+H0AVj8Ax96b+Pxe2Pa6sxOfrMLGQLTCcvc+wT2w6yPoND612kRERERERERERERERERERETEF9baR40x38MJ+jLAdcaYkcAPrbVvu21njCkFvgDcDnTDCUQD56KqyYSE5aLREcufWGv3J7H9nIjlUWnWIyIiIiJ+ChTDwCucWzx9zndubspHwQdJhA5teDI3g9FMANr1zUwt2aCgDAZd5dya1GxyAtDcbJjetoPRgjHOZeh8bEpD7qjb4trWtaBHSmMmI98URF2fdcFo4ATVDPsqdD0B/hMjOGjD9NwKRtv2mntb2UD/6mgJXY53bk2SCUYDJyhvxHe8rUlyw4YZ8UPRRv2wZUPRmuQVwIDPQ6AE3r4odt8N01smGG3b6xDcG7tP7/PaRihak8IK6HYybH8zevuG6QpGExERkeRseDKxfqUDD+U31B+MH4wGsOB70PkY6HZi6vWJiLQheS1dQKKMMYOAPo2LDcDzaQz3HND0KclAY0y/dGprDYwxJcBlEavvj7PNEUDYpyrUAVdHhqKFs9bOoHmoXRHOgWsirV+iwWgFHaDD0MT65hXgHC8aTyJ9PLZxRmrbNQWjBYqhqIt7v50fpja+iIiIiIiIiIiIiIiIiIiIiPjtYqCKQ+Fmk4BZxphNwEPhHY0x9xpjXgN2AH8Eujc1AZtxwtJau5ERyyuT3H5VnPFEREREpK3oc15y/fetgF0Lmt/2b8hMbbE0hJLrb+shLz8ztWSrrpNjt+94G6yN3ac127/Ova1sUEpD7ghGD0YrC5RTEihNacxkFOQVRl0fasjCYLQm5aOgoKN7+/Y3c+vvtGaTe1thJ//qyAaDr0uu//on4cDGzNQi2W3f8vh9ukzKfB3J6HMBVIyP3Wfvp/7UEmlfAm8Tds2yn6cfYu0XJfIzExERkdzVUA+h/VBbBQc2Oc/9uxdB3e7kxqmvdbbbu9x5fywR4ftdgWLodEz8bWw9vPM52PHu4e/Bhd/qdkP1mkMhw9Y673XU1yb3fYmI5Lhcete/6QqIFlhmrY1x6Y7YrLXVxphlHDrYZwywPs36ct3FQHnY8i7gqTjbXA4EwpafstYm8iz/S5oHql1qjPlyrEA1kVYhlGAw2sCrwSSYW2mMs6NcXxO7X4PPO7m2ATY+m9q2hRWH7vc+H1Y/EL1fKJmL4IqIiIiIiIiIiIiIiIiIiIhIS7HWrjbGnAs8DfTEOQ7QNN7vEdbVADeE3Ses70bgXGttpS9Ft6whEcvJHt8YmQDQ2RhTYa3dlUZNIiIiIpKLSvvDwCthzUPx+wLU7YKZRx2+vsMIOHE6lI/wtj43tj65/qNvz0wd2WzgVbDs97GDmp7qDpOfgO4n+1dXtlgY429i9K0pDfnhvjlR13ct6BF1vdfyTUHU9SGbZJCgnwLFMOLb8EmMn/nTveDEJ7M/yKdut3OifTSDrnbO72lLhn4NVv0t8f5V78GMvlA+2nk+6TA0c7VJ9lj7KCz/Q+w+nSZAz9P9qSdRxsBxf4NXT3Y/H3DjDFj+Rxj6FX9rq14Tu72kl7OP0NYMuR4W/yx62875TjBjuz7+1iQiItKW2AaoP9h4qzl0v+EghGqcr5Fthy3XHNrGrS1aX9ewcAPdpzjvixR1jl3/kl/Bgu8n9z3nlzmvi8KNugVmX3wozMxNzRZ4ZWKC87SHI26CdY/AgQ3O6+yRP4DRt7W916Ei0iblUjBa/7D7kVczTMUqDgWj9fNgvFx3bcTywwkElV0Usfz3RCay1i41xrwHHNe4qhQ4HUgxRUkkRwQTCEbrfiqMuS25cRMJRgPYvRg6jkpu7FRVzYODW1PbNvxqQOPvjhGMlnI+poiIiIiIiIiIiIiIiIiIiIj4zFo7zxgzHngAOKtpdcTXZpvgBKIZ4BXgKmttigek5JyOEcvbk9m48eKxB4HisNXlOBdMTYsxphvQNcnNBqc7r4iIiIik4bgHoOMY+Oi7qY+xdym8cTqcvwbyfDgVKdlgtGFfz0wd2aykO5wxF+ZcAdvfit6ndgfMOhMu2ADFXfytryXteAc2THdvLx/p3uYi2FDHpwc+jtrWrbBX0uOlIt9E/98L2jpf5k/Z6B87oWKf/iZ6+8Gt8PppcNEmKKzwt7ZkfHCze9voJM8Dag0qxsJZH8O8G6FqbuLb7VkEb5wB562EvEDm6pOWt2sBzPl87D4jvw+jfuTPvkWyOh0F096Al44HtwDK978K7Y/wN9htf4xgtCNugpG3QIk/gZ1ZpbQ/HPsXmHdD9PbXp8G5n/pbk4iIiN9sA9TXphYwlkww2WFhZwehIRtfl1rY9gbMvhSmvubebeOziYeilY8Ekw8VR8Hwm6HiyObtfS+CKTOdEOk9S2DP4tTLbxLaB0t/dWi5/iAsvANKB8KgK9MfX0Qky2XhOwau2ofd3+PBeHvD7nfwYLycZYwZDJwUsfr+ONv0AMaFrQoB7yQx7SwOBaOBc6CbgtGkdXO7QkTpQDjur1DcDTqMTP6N/UBx/D7gXInCr2C0Hck8HEQwYd9/YYUTFrft9cP7hfanPoeIiIiIiIiIiIiIiIiIiIiI+M5auw04xxgzAfgGMBXo6dJ9D/Aa8Adr7Zs+lZgtyiKWE7hq4mFqaB6M1t6tY5K+DNzu0VgiIiIi4oe8AIz4jnN7ug/UbEptnAMbYfss6DHN0/KiSjYYLZvDlDKpXR84+QV4Isbufv1BWP84DP2yf3W1tDX/dG/rOjmlIRfv/9B9yAJ/AmjyTUHU9SEb9GX+tIy53T0YDZyT7Dc8BYOv9a+mZG1+Ifp6E4B2ff2tJVtUjIUz3m2+bsMMePui2NvtXws7ZkP3kzNWmmSBWI/FACf8Ewb+jz+1pKrTBDj1ZXjtVPc+ax7yNxit2iUYbexPYfSP/KsjG8XaR927DPYshfIR/tUjIiJtk7XQUOt9GNlhfaO0ZWU4WRbY9gYcrHQPjA8PHYulsBOck0DQWc/Tm+8fzvsSrLwvsTmSseYhBaOJSJuQS8Fo4Qf2eBFkFv6uf5KfmLQ61+BcVbPJh9baBXG2GR2x/Im1NpmUojkRyz6lNYm0oKBLMFpxN+gxNfVx8xIMRtu/NvU5krVvefT13afCCQ/BjN7u29YfbL5c4PIhbag6tdpEREREREREREREREREREREpEVZaz8ArgQwxgwC+gKdgUKgEtgGLLbWNrRYkS0rMhjtYNResdUA4ekQkWOKiIiISFs04tvw4bdS337PkuwLRut6IhgTv19rVVAGZYOgerV7nz0JnLjbmsT6fjuOS2nILXUbXNv6FA9MacxkFZjCqOsbaKDB1pMXfpH6bFPQHkoHwn6XQB9wHl+ylW2A4N7obSYf8nLpFM0Mq0jwf2zvEgWjtXbxnnsqjvSnjnSVj3ICEN32Tfx87LLW/fzAMn+ei7Jau75OWG7drujtexWMJiLSZvw3nCyBgLFQTVgoWYxgskT7NtS29Hcvh7FQszF6MFr1atjxTmLDJPpaJ9KE38LO92HnB6lt72bba96OJyKSpXLpXbfKsPv9PRivX9j9Kg/Gy0nGmABwVcTq+xPYdGTE8sokp14VZzyR1ifkEozmFvyVqECCwWgHUryyVyr2Lou+vnykEwQXS5cTmi8HSqP3CyWTxSgiIiIiIiIiIiIiIiIiIiIifjPGtAfCz8pbFXkBTmvtaiDGGfwCWJ+2EREREZHWrv/l8MmtqR+L/cE3YOV90O8yGP0jMHne1tckmWC0ITdkpoZcMuQGWPAD9/aV98Gah6CgHLqfCuPviX5CcGsQOgA7Zru3D/5iSsNWBre6to0qHZ/SmMnKNwWubSEbojCbg9HA+Tv9+Bb39k/vgYFXQcVY/2pKxO7F8O4XoKEuevuAK/ytJ9uVDYQep8HWV2L3m/9l2PISHHU3tB/iT23ivWA1fPB1WP33Q+vyG7P5Y+1rdDkBOo7ObG1eKe4GfS6CDU9Gb9/1EWx6EXqfnfla9i6DUHX0ttIBmZ8/2+Xlw+BrYend0dvf/ixMfhz6XeJvXSIikll7lsJH34OquU4wmQ05X0XC1UcJrFv3GLxzWeJjDLkxtbkDxTD5SXjpaKj1ONbm8YiMivB9RZMHgXYQKIGukxpfew32dn4RER9k6BOIjFjf+NUAY4wxnVMdqHHb8HdJfUwLyjpnAr3DlmuAfyewXeQ7juuj9nK3LmK5szGmImpPkdYi6BKMlu9TMNqWmenNk6iNz8H2N6O3tR8a/0o4kW8EF7hcrNbtjVwRERERERERERERERERERERyRafBz5qvM0Dilq2nJwReWBMSQpjRG7j1cE2fwJGJ3m7wKO5RURERCRdJd1h2pvQ6WhINURpzxJYeBt8+B1vawuXaDDa0f8HA/8nc3XkihHfgzF3uLfbeuf4+5pNsPaf8NrJ0JBE+FwumXWWe9vQr0KnCSkNWxXcHnX9uLLjCJg450h4JD/GPEHrEtqVTUZ+H0bfHrvPK5Oheq0v5STkwEZ4ZZITfOTmyF/6V0+umPwE9PvcoYAsNxufgZdPgIOV/tQl3nvzvOahaOA834SqiZnZf/JzGS3Lcyc8CGWD3NvfPAe2vpbZGhpC8MII9/ayge5tbcm4X8Run30prJ/uTy0iIpJ5BzbDyxNh8/NQW+nsgygUTaKJDLpe/2TioWilA+CYe6H/51Kfv2wAnDYHup4IXr6H0LTv/d998DC2wVlXuwM2znBee9Xu9G5uERGf+PPOqzfmArVAIU442leAn6Q41pc5FAoXAt5Ju7rcdU3E8nRr7e4EtusYsRz9HX4X1tpqY8xBIDzRqRzYlcw4kYwx3YCuSW6maFPxh1swWkGawWh5SRwvunc5dBia3nyx7F4Mb53v3t5hmPO141jY/UmUDgYqIq6WFCiNPlaqVykTEREREREREREREREREREREb90wTneD2C+tVZHWycma4PRrLXbSfJ4QWNM/E4iIiIi4p9OE+DM+dAQhLwCsBaCe2kWYLL017D457HHWfVXGHcX5Lsc752ORILRKsbD0K94P3cuMgbG3A7lo2H2xfH771kCW1+FXmdkvjY/7VkC299ybz8i9b+XquC2qOuHthuT8pjJyjcFrm0hG/StjpQZA2PvgNJ+8N610fuE9jkhS2Pv9LU0V6sfhOAe9/b8Uijq7F89uaKwHCY/6gQ5ffQdWPY79761lbDu3zDs6/7VJ97Y9TFsn5X8dme+n3v/N/ntYOoseKafe5/l/wc9pmauhq2vuLcFiqG4R+bmziV5+TDoGlj9gHuf5b+Hfp/1ryYREcmcNQ9CMJFYDGl5BgIlkF8CecXO/kug2FkXeT8vRlu0vuFjzjySqAG9DbXNl2O9Rol0wZq0vvP/6jAUTnvLCe9zC/Cb0ffwgDOv1O6AdY/ovTQRyTk5E4xmra01xrwNTGtc9R1jzNPW2oXJjGOMGQ18l0PPaO9Ya9tkuo4xpitwXsTq+xPcPPKSDTUplFBD82C0NNOhACf0Ls7lQ0RaSMglGC0/zT/9RK+GBfD8MPh8g/OBUias+7d7W14BdD7Wud/7/OjBaBdXHV5bgcsVYjK1Yy8iIiIiIiIiIiIiIiIiIiIiXmk6e9gCG1uykBwTedZ1UhcLNcaUcXgwms4MEREREZHm8hpDloxxQmzCdRwbf/tQNexdBp3Gx++brESOkS+NEU7SVnUYnnjfnfNbXzBa1Xz3trxCKBuQ0rD1NsTOYGXUts4F3VIaMxUFuR6M1qTDsNjtO9/3p45E7IzxNwXQ/ojMnZ/TGuTlQ+fj4veL9b8r2WvD9OS3MXlQNtj7WvxQ0ssJQwy5nIqc6ceuqhjjtx+qx6JwHYbGbq963wkG1s9MRCT3Vc1r6QpyjHEPGGu6Hy+0LGrfOGMGisHk+/PcGyiKHjpWHxaMZi3smJ3YeMO+6U1d4Zp+NtF0PwU2Pef9nE302ktEclDOBKM1uhsnGM3iBHPNNMZcbK2dm8jGxphjgSeBUpyrUNrGMduqK4Hwd8VXAW8muG1kUpFLLGlMNUBFjDFFWpegSzBaQZrBaA1J/vu9ejKc+CQUZ+ADuF0L3Nu6TTn0gfmoW5w3fLf8x1kOtIOJ/4TCisO3c7uCmILRRERERERERERERERERERERLLdlrD7hS1WRe5ZEbHcP8ntI/vvtNbuSqMeEREREWlrep0D+WXxj9l+eSIc8ycYdLUTduIVG4rfZ+AXvJuvtSgf6YTaRbuIeaRPboXh33Q/Xj+X1B+EFffCh99y79PnQvcTj+PYFazE0hC1rUtBj5TGTEV+nvvL6lAi/zPZovPx0K4fHFgfvX3zizD7MueE8MHXQV7A3/oAdi+CNQ/Cxmdi9+t/mT/15LLe58YOkwJY+y8o7e/8vlMMMBQfhQ44j7mL7kp+255nQmFH72vyQ14A+l0Kq/8evf3ARidwI1Dk/dxbX4OFt7m367GouX6XwoIfuLfXH4CNM6DvRf7VJCIimZFouFW2iRYcFjVkzCVwLK8Y8hMMMQvvm1fQ+oNB81yC0RrqnK/bZ8PyPyQ+Xv/PeVNXwvNdltlgtDUPOq/R+l2cuTlERDyWU8Fo1tqXjTGzgCk4oWa9gLeMMf8E7gPmW2tt+DbGGAMcDdwIfAEnCMw23t621r7o2zeQfb4YsfxA5M8vCalsl+pcIrkplKFgtGg76LHseBteOg6mzXI+OPBKcJ/zAZSbkd87dD+/HUx5EfYsgZpN0OloKOoUfbt8l8zEnR/o6gwiIiIiIiIiIiIiIiIiIiIi2W1R2P2BLVZF7lkasTwkye0HRSwvSaMWEREREWmLCsrgpBnw9mchuMe9X0MtvHctbH8TTnjQu/ltffw+fRRmcRhjYNJjMOts2L8mfv/XToVpb6YcGJYVGoLw+mnxT4g/OokTnyNUBre5tnUuyMAF613kG/fTAIMNQd/qSFteAE56Gv4zwb3P+sec29ZXYPIT/p43smMOvHFG/GDI/pfDsJv9qSmXFbSHE5+G2RdDcK97v8U/g1V/g2lvQYeh/tUnyak/6Dx3VL2X/LYVR8Kxf/G+Jj8ddTdseh5qd0Rv3/Qs9LvE2zlXPQDvXRe7z/AYwaBtUdlAOOGf8G6MEN23PwOTn4R+n/WvLhER8db+DVBbmfr2foWRHdZWqPPiM8ktULy+FtY/Ae98PrH3nEweHHUPdDnO2/ri6X8ZVL0Py/5f5uaYfQmM+hGM+2nm5hAR8VBOBaM1ugz4EOiJE6yVD1zdeNtvjFkG7Gps6wQMBZpSdUzjegNsAC71se6sYow5HhgVtqoe+EcSQ0S+u1uSQhmR28R5xzghfwKeSHKbwUCcS3iIeCDoEoyW73MwGsD+tfDWRXDWh+nNHV7DU93d2zsdAz2mNV9nDHQc5dxiiXUFqj2LoOOYxOsUEREREREREREREREREREREd9Ya5cbYz4BxgJjjTG9rbWbWrquHLAoYnmsMaadtfZAgttPijOeiIiIiEh8PabCZ7bBzvfhlcmx+655CEb+AMpHeDN3vJNUu5+iE4ndlA+H81bA7gVwYLNz8fOVf47et2oebJgBAy7zt0YvbXohfija8G9DceoBZm7BaB0CHSnK8y9ULt8UuLaFbJ1vdXii03g4/V14+YTY/TZMh50fQOej/akLnICueKFokx6D/m32tMTk9TzNeT5Z9FPn5+vm4DZY9js45o/+1SbJ2fhM4qFoJz176H7ZIGcfweRlpi6/FHWCC9bC4y7nus3/irfBaA0h+ORWnFOiXUz4HQSKvJuztRj4P9DnQngixnmbn9wKfT+jfUoRkVy16C73tnE/h25TogecBYohr0iP/62V235RQy0s+kVioWhTXoQuE6Gw3NvaEmHyYMI9MOoHTkBacC/kt8OJxwHqaxrD9QLNt1vzD9jwVOLzLP01DP8mFHX2qnIRkYzJuWA0a+12Y8yZwLPAAA69qjc4AWgTItb9d1MOhaKtBC6w1m73o+YsdW3E8kxr7eYkts/KYLTG32lSv1ejHVfxS8glGK2gBYLRAHZ9BFtfhx6nRm9vqAcbgrqdzhupRV0A6+z011Y5ffIKoKQXvHm+szPtZsxtqdUIUNDRvW3bLAWjiYiIiLSk4F4IlDpXcBQREREREREREREREYnuD8BfcY7d+wmHH7smEay1W8IC5cA51nMy8HKCQ0yJWJ7pUWkiIiIi0tYEiqDrJBhyI6y8L3bfra95F4zWEOdE1dKB3szTWuUFoNME5wbuwWgA217L7WC0ba/H79N+cFpTuAWjdS6IcXH5DCiIGYwW9LESj7Qfmli/ra/6F4xmLWx7I36/bidlvpbWJlAMA6+MHYwGzmOSZK+tCf5+xv0M+pyX2VpaSn47KO4BB7ce3hbaB/W13gWV7V0GNXFO+dU+kbuCMigfBXsWR2/fu9T5PZb09LcuERHxxu6F7m2Dr4Pirv7VItkjz2U/rHqNs28VT1Fn6HWWtzWlorgb9D478f771yUXjNZQ54TM97kg+dpERHyWkxHr1tpFOAFoj3Io7MyG3f7bleaBaA3AQ8Ax1tqlftacTYwxpcDnIlbfn+QweyKWk9o7NMaUcXgw2u4kaxDJLUGXYLT8FgpGA3h9Krx3vfOma7gNM+DRfHisGJ7uBc/0g8fbOVe0eKIDPDvQuc3oA4/kwdZXYs9T0iv1Grud6N4W7yo8IiIiIpIZ+1bBS8fBEx3hqW6w8CfOAUEiIiIiIiIiIiIiIiIRrLX3Ay/gHMN3tTHmey1cUq54OmL5i4lsZIwZDhwXtmo/iQeqiYiIiIhE1zuBcJMPvg7b3vTmOCIbJxgtkXrE0X0K5Je6t6/6m3MCbS6yDbDmoTidDPQ6J61pqlyD0bqlNW6y8ghgXE4FDNmQr7V4oqgTdJkYv9+in8CBOMFAXrAWNkyH+prY/TodAyU9Ml9Pa9T+COgwLHafvctg6T1QOVfHpWajyjmJ9etzUWbraGkdx0RfX38wscDORG1/M3Z7fqnzPC/u4u0zfvxjqF7rSykiIuKh4D6omuverlC0tiuvMPr6RXcmtn2fC72rxU+9U3jfY/XfYfHPYfVDULPF+5pERDySk8FoANbaXdbay4GRwP8DmmJdTcQN4GPgbmCYtfZqa21kqFdbcwkQnsS0DXg+yTFWRCz3T3L7yP47rbW7khxDJHdY61z1IZqCNIPRGtIIRgPng8wPv3loec+n8LbHb0CXJvsQEaaos3tbOqFwIiIiIpKahiC8NgWq5gEW6nbCupZEtwAAIABJREFUwtthxb0tXZmIiIiIiIiIiIiIiGSvz+MEfRngF8aYl4wxp7RwTdnuYSA8DeIzxpgjEtju+xHLj1trdZCNiIiIiKSn5xnQ/7I4naxzXNG7V6YfZhMrGK3vxamd8NlWFbSHCb+L3ef54bDxGX/q8Up9Lcz+HATjnCI29idQ2i+tqSpdgtG6FPgbjmWMId/kR20L2qCvtXhm/D1Q2Cl2n/oaeGEEbHsjc3U0hJzHrtmXxO5X0BEm/L/M1dHaGQMT/hA7rBHgo2/DyyfA/JucAETJDtvegD2L4/cb+X0oH5H5elrSMTGOmZ51NlSvTn+Ojc/C+19xbzd5zvN7uucltnbDboaO49zbVz/g7AdteMq/mkREJD3Va+H5GPsaY+/yrRTJQoGi1LfNL4VRP/KuFj+VDYQxdyS3zcZn4OMfwdyrnP+pbXFCeUVEWkj0d0NziLV2OfBtAGNMGdAdaErRqQS2WWv3t1B52eraiOWHrE360iBLI5aHJLn9oIjlJUluL5Jb6mvc34zPT/MNyMIKOLg9etu5y+CTH8P6J2KPseJeGHIjVIyDpb9Or55IHUbEDjdLRI/TYWuUC9c21KY3roiIiIgkb/tbcGDj4evX/RuGftn/ekREREREREREREREJKsZYx5ovLsX2IdzUc9pwDRjzD6cC59ub2xLlLXWRh4H16pYa1cYYx4ErmlcVQj8wxgz1S3ozBhzAXB12Ko6IMFLoIuIiIiIxJCXDxMfhoFXw6wzY/dd+y/oMQ0GXZX6fG7BaKUDYPJjThiIJG7wtXBgMyy8LXp7/UF473roeRYECv2tLVXrn4QNT7q3l4+E4x6ALselPVWVSzBa54JuaY+drHxTQNDWHbY+FGVdTuhyHJz9CWx+IXYIVnAvvHcDnLfcCdfy2qbnnceuWI65F3qdA6V9vZ+/Lel5Gpy9EFb/HRbFCa1YeR/0uwR6TPWnNnFnLcyN81Zcnwtg+Heg22R/ampJ7QdD52MbLzIdxce3wqSHUx+/IQjvXRe7z5kfQcXY1OdoK0q6w2mz4YkY52821MK8G5zH+HTCVERExB+f3Ao1m9zb+3/ev1ok++Sl8FxeMd5536T/ZVAUJ7g7m4253bmwwbbXAQPdp0JxF3h2cPxtg3tg/o1wztLMvOYWEUlDzgSjGWN6AMeGrZptrd0Z3sdaWw1UA6v8rC2XGGOGApHvLt2fwlCLIpbHGmPaWWsPJLj9pDjjibQuwRjHbaZ7ZYZxP4/+ZueAL0CHoTD5cXjxSNj9cexxZh6ZXh1uTvTgigmB4ujr63UxWxERERHfLb07+vod7/hbh4iIiIiIiIiIiIiI5IqrARu2bIGmI6o7cPjxbPGYxjFaNBjNGNOH6Mdg9ohYzjfGDHAZptpaWxljmtuBi4CKxuWJwKvGmOustZ+G1VIE3AD8JmL731hr18UYX0REREQkcSYPep0Bx/4V5l0fu++iu2DAFU6gWircgtF6n6tQtFT1Od89GA2gdgdUvgvdT/avpnRsnBG7/Zj7PAlFO9hQQ3X93qhtXQojX/5lXoEpoCbK+pAN+l6LZ9r1hiE3QFEXePuz7v2qV8KexdBxtPc1bHw6dnvHsXDEl7yft60qGwhj7oSlv45/XtCGpxWMlg32LIH9a9zbz/oIKjJ0Xlq26nOBezDaxhlOmFyqoRI75jjPy24GXqVQtGQUlEHv82HTs+59aqtgx2w93oiIZDtrY78WNHlQ2s+/eiT75CUZ9t7rXJjyXGZqaQldjndu4cbe5QQKxrN3Gez9FMpHZKY2EZEU5dKnAZ8Bnm68PQzUtmw5OeuaiOXZ1tplyQ5ird0CfBK2Kp/kDlCbErE8M9kaRHJKKIPBaL3OhvwoYwy44tD9oV9Jb45UDf8WlA9PfxzXYDQ9FYiIiIj4rm5n/D4iIiIiIiIiIiIiIiKx2bBbrpoNrIlyeySiX2+XfmsAlyvSOKy1G3GOnawLWz0JWGKMmW+MecwY8x9gA/B7oCCs3/NAAke5i4iIiIgkqdtJ8ftUr3ICb7a/7dx2LYCGUOJzWJe+JpD4GNJchxFQ1DV2nw3Tk/s9tZSG+tgnw+eXeRbQU1m3zbWtS0E3T+ZIRr4piLo+5PY/k0u6TIz/P775BecxZf9652911ydQ+R7U7Up93oOVsOah2H0SedyT5BgDXRP4ua75B+xeBLYh4yVJhIYQ7F4IwWrY+YF7v8IK6DDSv7qyRa+z3dvqD8Cm552LTtftTn7sne/Hbu+WIyGm2SSRn9nWVw49x4iISHaq3QGhavf2LhMhL/prJmkjAkXJ9W8Lr/WS2XesXpW5OkREUpRLwWgdca70aID51tr9LVxPzjHGBIArI1bfn8aQkZfD+GKCdQwHwi+7sh94OY06RLJf6IB7W6A0vbFLesKpL0P5qEPLx93vXI2ryaBrYNzP05snWd2meDdnnssLkYY4V4YREREREW80hGDRT+GlE9yvbgbO1VdEREREREREREREREQOZzy8tSnW2lnARcCOsNUGOBq4FDgDiEw3eAS4zFpb70eNIiIiItLGdBgK/S+P3+/jH8KrJzm3mUfBU91g80uJzbF3WfT1Jj/xOqW5QCGM/nHsPsv/ANO7wuaZ/tSUiu1vwdM93cPzAEZ8DwrKPJmuMrg16vo8AnTM7+LJHMlwC0YL2qDPlWRASQ844iux+yz4gfOY8kx/eLQAZo6Dl4+HJzvB3GugIYmfQ6gGZl8GT8UJDCzqAkO/lvi4krhRP3A/X6hJaD+8OAZm9IWq+f7UJbDxOZjeBV4cC0+0h7lXufcdfZvzHNPWVBwJ3ae6t791Prwy2Xl8mndTYsGjDUF473r46DvufcpHQb9Lkq+3rRt4JZQNit1nyS8PPcf851ioib4PICIiLWjhHbHbR/3IlzIki8V7fRGudAAMirGf21p0nQw9piXW983zYO/yzNYjIpKkXApG29n41QJbWrKQHHY20DNseR/wRBrjPQyEHzj1GWPMEQls9/2I5cettUo3ktatvsa9Lb8k/fG7HA/nLIKLd8GFm2DwNc3b8wIw6ha43PpzVYgep8G0N5JPVnYTKI6+vl4PHSIiIiK+mPtF+ORWqJobu1+s/V4REREREREREREREWmrBmbgFucsttbFWvsiMBr4M7ArRte5wMXW2st18VkRERERyagTHoIJv4de5ya+Td0ueOs8OLg9dj9rYZ/LSZgmkPh8crhhX4cTn4rdJ7gb3roAarb5U1Mygnth1tlQu8O9z5AvwZhbPZuyKhj977VTQRcCLfD36BaMFmoNwWgAE34Lx/41tW1X/x2W3p14/0V3wvrHYvfpMBxOf9cJhBTvdT8Fpr0Fg6+P37dmM8w6S+cR+eHAJnj7IgjuSaz/8JszW082OyWRwFcLK/8My34fv+un98Cqv8Xuc9psz8I/25TiLs7j+cjIU5td7JwP71yW2ZpERCQ5uxbAinvd26e9Db3O9K8eyU55CQT2lg2CEd919g2Ku2W+ppZmDJz8PBz5v9DzTOhyAhR0dO//1gXOe3MiIlkil4LRwsPQSlusitx2bcTyo+kc/GStXQE8GLaqEPiHMcYlwQiMMRcAV4etqgPuTLUGkZwRKyAi4EEwWpPCjs4Oaiz9fXhT7uRnvR3PLWCtvtbbeURERETkcPvXwdqHE+sb0vk1IiIiIiIiIiIiIiLSnLV2XSZuWfB9DbDWmjRvVycx33Zr7U1AD+BU4IvALcDXgc8Cg6y1J1hrp2fi+xURERERaSYvAMO+BlOeg/NWgEnw9KSGIKx/InafXQvc2xSMlr6+FzknAMeSyO+pJWx8Nv4xaqN+6OmUlcGtUdd3Kejh6TyJys9zCUZraCXBaMbAkOtg8HWpbZ/osY6J9j3pWWg/JLVaJDFdjoXj/gJnzIvft7YKtryc+ZraunWPga1PrO+AL2S2lmyXF4Dy0Yn1TeQxJ16fEd91zh2U1BR3cwJBRt6SWP/tb8HBGGGsIiLir1jPk+WjoNtk/2qR7OWWR9AkrwDOXQ5H/QpKWuZ1fYsIFDkBsafMhNPnQJ8L3Pvu/RR2fehfbSIiceRSMNpHQFO0pC6zkCRjTHfgnIjVceLjE3I7za9AORF41RgzPGL+ImPM14DIT0Z+kw0HqYlknFswWl5h4h8Ce2XgldBxbOL985PIoiwbBBdugIBrPmJq3MbTlV5EREREMqt6LXz0fQ69HI9DwWgiIiIiIiIiIiIiIiIZZa2ts9a+Ya39h7X2f621f7DWPmWtXdPStYmIiIhIG9V+CPS/PPH+e5aCbTweyUY5LmnvUvdty0cmV5tEVzE+fp+9jb+naL+jlrJnSez24m5Q0svTKauC26Ou71zQzdN5ElVgXILRbCsJRmvSKYG/0Wj2LIaG0KG/XbdbcB8c2Bh7rMIKKO2fWh2SvA7DIVASv1+s5wjxxpJfJN6301GZqyNXVCT4M9j7KdgG98elhnrYuyzOXCk+NkpzCT/HWKjZnNFSREQkTLTnx3B7YuwH6jlSmuTFCUbrOM4Jt23r4u0Pxfp/ExHxWX5LF5Aoa+16Y8xc4ARgmDFmqLV2eUvXlUOuovnve5G1NoFLKcRmrd1ojPkM8BJQ2Lh6ErDEGPMBsBooB8YDXSM2fx64Nd0aRHKCWzBaIm/aey2/HZwxH1bcCx/e7N6v36XQ6yzoMAJePj56n/KRcNRvYNvrUNzDuTJPQQfva3Z7IdJQ6/1cIiIiIuJ8gLDop7DoDudD+EQpGE1EREREREREREREREREREREpO0ZeydsfAZC++L3XfFHWH2/c5HsQAm06wtHfAmG3QzGQHWMzN+eZ3pXc1vW90Io6Q01m9z7rPiTcwPnvIFh34AhN/hTX6Rts2DBLVA1N3a/ITd5foJzZXBr1PWdC7p7Ok+i8l2C0YKtLRit/2Xw8Y+gblfy2z4a/WeUtMHXQ6Awfj/xRkF7GHgVrPxz7H4LfuAE2425U4EGXqs/CB/cDLWVifUvKE8uGLW1OuJGWPdw/OOt6w/AI2n8zZb0gj4XpL69HNL7PGf/88CG+H1nHgkTH4EBl2W+LhGRtmrFfTD/S4evD5RA10kw5iew9Few+QX3MVrqtapkn7w4r+GO+LI/dWS7/pfDJ7dBcE/09ne/AAvvhCHXw4jvOu/XiYi0kLyWLiBJv3a5L/F9MWL5fq8GttbOAi4CdoStNsDRwKXAGRweivYIcJm1tt6rOkSyWiiLgtHA+XBm+Dfgwk1QOuDw9pOegcmPwaCrIb/MfRxrodeZcNSvYMS3MhOKBhAojr6+/mBm5hMRbwX3wsq/wUffg43PJRewIyIiLaPyXVh4W/KP2aHqzNQjIiIiIiIiIiIiIiIiIiIiIiLZq2wQnPISdD4eTH78/k3HgdfXwL7l8OG3YNnvnXX710bfpv1QKO7iSbltXqAYTn8Hep6VWP89S2DejbDq75mtK5pdH8Mbp8cPRRvzExhzm6dTW2upCm6P2taloIencyXKLRgt1NqC0Qor4LQ50H2q+/kkmVLSG0b9GMb93N95BY7+PQz/tvM7iGXxz+DjH/hTU1vy7lWw8r7E+lYcBafNhpKWCYnMKl0nwUnPQqcJYDJ0unbn4+C0dyC/hc5DbG0CRc7fb6+zIb80fv85n4dNz2e+LhGRtmjV/dFD0cB5v2Drq/DKRNg4w32MAVdAt8mZqU9yT6DIva24GwyOjFxpo4q7OPuXsVSvhAXfh6WK9RGRlpVTwWjW2hnAAzihW+caY/5oTCKfmLRtxphJwPCwVXXAv7ycw1r7IjAa+DMQ63Icc4GLrbWXW2v3e1mDSFarz7JgtCbtesF5K+HU12DkLTDpMfhsFfQ5/1CfmG+a2oyXCCgYTSSXHdwOr0yGedc7L4DfOh/eu07haCIi2W7tv1PbLqSXeSIiIiIiIiIiIiIiIiIiIiIibVLXE+CMd+GyWrgsBBMfTm77FX90vlavid7e84z06pPmSvvDKS/CxEcS36bpd+SnVX+DhjihX8feB2Nu9TyQZm/9boK2Lmpbl4Juns6VqDYTjAZQPhymvgqX7nceU3qemfk52/WDizbCuLsgL5D5+aS5vAIYfzdcuAHG/SJ235V/hfpaf+pqC2q2wvrHE+tbUA5nfQgdR2e2plzS+xw48324LOjcAu28Gzu/PZz+LpQN8G5MgdJ+MOUFuGSv8xwT7xzPFff6U5eISFuz/E/pjzH0q+mPIa1HXqF727j/9a+OXNBxFAz7Rvx+y/8I1qc8CRGRKHIxVOxGYB/wDeBLwMnGmN8Az1prq1q0sixlrX0HJ0wu0/NsB24yxnwDmAT0B3oA+4FNwEfWWpdPqERaObdgtGy4UkNeAHqc6tyiifnGnk87snkuCc0N+hBDJOutuA92L2y+bvXfYcgN0OX4lqlJRETi2/xiatspGE1ERERERERERHZ9Aot/DrWV0OkoGHNHYldbFxERERERERGR1sHkOWewlI9Mbrt9KyBYDftdTjspG5h2aRJFMr+nXR9DQ72/gVE7P4jfp8PwjExdGdzm2taloEdG5oynoC0FozVpekzpMBy2/Cezc5WPyuz4khhj4oduBffA/rXQYZgvJbV6299MvG+HEZmrI9eZPOfWYRjs+sibMctHOP8TkhlNzzFu53422fmhL+WIiLQpDSHYlebjq8mD9kd4U4+0Du36urdl6L2DnPb/2bvv8Diqe//j76Nmyb33XrCNbYwNphubTiB0QighIZWUm/IjJIGEm5BcEkKSG0hCSGghhBog9GqqaTaYYoptjLstNxV3SZa02vP7Y6SrlTWzO7s7O7srfV7Ps49Wc86c+dqWV7M7cz7Hz99J7Xpo2AZd+mW+HhERF3kVjGaMeSnm291AD2B/4Lbm9nKgornNL2utPS6wIgVrbQPwcrbrEMkpXh+OJVpNIBfkQo2Fpe7bm/aGW4eIJO+jn7tvX/+QgtFERHKZ182FiSgYTURyQbQJbAQKPUK2RUREREREJHN2rYB5h7Zex9v6Imx9GU5627khVUREOiVjzBcDHM7i3B+4E9gCfGKtlqgWEREREclJvac7oVs7l/rf58Ee3m3dFIyWEb2nQa+psPPjxH1tBJ4/AgpiwrmKusOA2TDp/0FR1+DqqnzDWYy5akH8fl1HQv8jgztujGqPYLQuppRuhXF+VjOoyLhPBWzsyMFoLUZfCMtvyPAxLsrs+OLf4BOgS39nERYvT06CCd9yFm3vc2B4tXU0lQvgjfP999f/k8RGXxRcMJr+vnPD3i3w2rkw7qsw9DPZrkZE8pmNwqp/wKanYceHsGdVa9u4rzsLz3UdmrXyQpXMZwVehnxGYU3S1tBT4f3LwTa13d59HPQ/NDs15bIR58C734doQ/x+1e/A0JPCqUlEZB95FYwGzMW5samFxcnjbok8H9H88Hujk0mir4hI6jpqMFpY95UWeExmj9aHc3wRCd6q22HmH7JdhYiI7MtaWHNX6vs3KRhNRLIo2gjvXQ5r/ulMwB9yEhx2hy52ioiIiIiIhGnxT9ovbrTtXdj8nCYJiIh0bv8kc/fp1RhjFgF3Av+21upmEhERERGRXGEMzH4E5p8Guz9Nf7zuo9MfQ9ozBo5+BOZ/FnYtT9y/+u322zY/B5ueguNfhYIApqptfBJePcsJYoun22iY8zgUFKZ/TBdVDVtct/cvGYwxxrUt04pMiev2SGcIRus3Cw65Bd75bvBzSUwhTP6xE74muaGwC8x9Gl49E+o2efdb8TdY8y849gUt3J6KzfOc39O+GJjwbSeMTuKb+D3nd+qq20j9Y1EDE77p/J1LbtjwH+dx6O0w7ivZrkZE8tU734UVN7m3rboVNjwEpy6BsiHh1hW2SB08Mz39cQ77R/pjSMfScwIc9QAsuAQiu51t3cfBnCe0oKOb0gFw9ONOUHLjDu9+r5wM526Dkj7h1SYi0izfgtHcKNhMRHJfPgejFbhfOHOE9BJcWOq+vbY8nOOLSGps1LutpHd4dYiIiH+b58HCL6W+f+Oe4GoREfHDWmelrF2fwuIfw84lrW0bn4DXzoHjX8laeSIiIiIiIp1Kw04of8S9besrCkYTERFoXQA1SN1xFlydC1xrjPmytXZeBo4jIiIiIiKp6LkffPYTJxjttXPaXtdPVrcxwdUlbfUYD6cug90roG6zs+3VM+NPit1X1QLY9AwM9xuwE8fH1yQORTv6MRh2mhPsliHVjRWu2/sVD8zYMRMpMsWu2ztFMBrA+K/DmIth+wfOIh0FRYBxfl5sivNbCoqg9wFQ3CPQUiUA/WbBmRvgwZ4QibNwb6QGlv4Ojn44vNo6io+vgWhD4n7Hvwq9p2keiF8FxXDoLXDgb51zn5a5NW99DfasdN/n2Oeh5TXeFEDvqQqeyFUf/wrGXqJwFRFJXt1W71C0Fg3bYdXtMPWqcGrKlg0BnLeZIijN3nszyWEjzoZhp8P2xVDUHXpOzOhnB3lv6ElwTiXs+Aienendb809MPG/wqtLRKRZPgaj6beOiOSfSB4Ho8U72Y8XehQkr2A0gI/+x3mTrzclIrln5S3ebbogJiKSmz79S3r7N8W58UREJGhN9c6NQmvv9u5TMd8JTeu5X3h1iYiIiIiIdFYf/ty7bcPDMOO68GoREZFcFHtjh/XYvq99ZzS79bUxbUOAZ4wx37PW/jX5EkVEREREJCOMcSahjv0KvP/D1MYo7AolvYKtS9oyxrm/ouUeix7jYds7yY1RMT/9YLRIHVS/Fb+PKYQhJ2V8DkFV4xbX7f2LB2f0uPEUGfepgJFoJwlGA2d+Sf9Ds12FhMUUOKEG6+6L36/ilVDK6VCaGqDqjcT9xn0NBs7OfD0dUZe+bf/uDvglvHlR+36lg2Hw8eHVJempWec8uiu0V0SSVP22v34rb+74wWhBnLsd8Mv0x5COq6AI+h2c7SryR0ER9J0BQz4Dm59x71MxX8FoIpIVeRWMZq1VhLaI5KemPA5GiyvFFXWS1WWAd9tHP4chJ0D/w8KpRUT8qd8Gi77l3V6sm1NERHLGjiVQ/ijsrYBNT/nbp+9BsO3d9tvjrcgnIhK0VbfFD0VrsXmegtFEREREREQybfdKWHFjnA4hLbgkIiK56svNX3sAPwf64QSZRYGFwCJgPbALKAH6AtOA2UDLbHML/Bt4FigDegP7N/cZRduAtOuNMcustS9l9E8lIiIiIiLJGX566sFopQODrUUSG3FW8sFom5+BxcWwaxlsfRlK+sGwU2HYaU7gi0kwLSzaCCt85FwPPQUKuyRXWwqqGytct/crzt7PY3FBsev2RtuJgtGk8xl+RuJgtIbtUP4EDP2MM6lfWkXqnNfn3Sug22ho3AUbHoHqhWB9XL8ZfmbGS+w0hpwMBV0gWt92u/6O88+u5QpGE5HkRff661dbDouvhB4TnPc+ZdkLZs6Y3SvTH0O/P0WCN+JM72C0DQ/B4p9Crykw7BQo6RNubSLSaelTHhGRMKy61X17Uddw6wiaDSkYre8MKOrmHbSx5m4Fo4nkmvLH4rcXdQunDhERiW/Do/DGec4NZX7Nfbb55jMFo4lIlq2911+/mrUZLUNERERERERw3qPFmzxTsxaa6kOZrCgiIrnHWnunMWYC8DhOKBrArcA11toNXvsZYwqAM4A/AGOAzwHLrLW/2qffKcCfgHE4AWlFwP8CMwL+o4iIiIiISDp6jIfpv4YPfpb8vof9I/h6JL4J34ZNz0Lla/732bnUebRo3AWf3ug8Rl0Ah98FBYXu+0Zq4dUzYcvz8Y/RdSQceJ3/mlIUsY1sj1S5tvUvHpTx43spMiWu2yMKRpOObPhZMPI8WP9A/H6vng6jLoQj7kocxNhZNGyHl09xQtBSMfYSJ8xLgtGlLxx8Iyy6tPW6Wq+pMPWq7NYlyXvlM/C53VDcPduViEg+iUb89136W+dr6SA45jnoMz0zNWVDUz1UvJLeGFP/G3rtH0g5IhJj9Bfg7Uu925de63ztPg6OfV5BsSISCgWjiYhkWuMe77bCsvDqyIiQgtEKS2HAbNj8rHv7ir/CrHgr0ItI6FbcFL+9yecKByIikjk2Cu9+N4lQNAOzboKhJ8Gaf7p3UTCaiISp6k1//eo2ZrYOERERERERSbxgio3C7hXQe2o49YiISE4xxnQFHgUmAo3AxdbaBDNZwVobBR4xxswDngGOAn5hjFlvrf1nTL+njTGvAa8ABzZvPsAYc4K1NsGMehERERERCdWUn8LQU+HlE2Fvhf/9+h+RuZrEXUlvZ5Lr1ldg+3tgm1rbdnyUOKBoX+vucybYDjvFvX3tPYlD0Y56AAYfDyV9kjt2CrY1VmE95kv0Lx6c8eN7KTLFrtsVjCYdWmEJHHkf7PcdqHwTPrjSu++6e6H/oTDxe+HVl8tW/C21ULTRF8P4b8CAI8GY4OvqzMZ/DQbOhq0vQ9lQGHSswrXy1Zo7ndclERG/fM/dibF3Kyz+CRzjMbc6H8V7Lzn6YjjkZifcdcvzUNu8vlK0AXZ8CF1HwNivQF+tjSSSEUVd4dgX4KXj4/fbswo+vgYOuz2cukSkU1MwmohIpsVbIam4R3h1ZMLgBCe2QSrL3sVDEUnSugdg2zvx+yg4R0Qk+3Yth9pyf30PuAamXNm6gl6RxwX4SJxQYBGRINVX+++7c5l3W7TJuXAKzs1FhaXp1SUiIiIiItIZ1WxwJkYmsmuZgtFERDqvXwGTcVbgu85PKFosa22NMeZs4BOgL3CjMeYpa21lTJ/dxphzm/u03Bd5IqBgNBERERGRXNNnOhx6B8w/1V//siFQ2CWzNYm7wi7OQppDT2q7veK15IPRADY+5h2MtvGJ+PsOOApGfi75Y6aoqnGLZ1u/4oGh1bGvIuM+FTBiIyFXIhIyUwADj3Yeq26FPau9+y65FsZ9HYrKwqsvV5U/nvw+A46CI/4VfC3SqudE5yG5o88M2P64iqP7AAAgAElEQVR+cvuUP65gNBFJTqphxpvnQaSu45zbxHvvN/ky589ZVAZjvxReTSLSqsd4f/02PgYoGE1EMq8g2wWIiHR4W1/ybhtwdHh1pGPi9z22h7iCSkm/+O0168OpQ0QSW/KbxH0UjCYikn3Vb/nvO+WnraFoAEXd3Pvp9V1EwrLrU/99d3wAD/aGxVdAU4OzrakB3v4W/KcvPDzAeTzYE148zpnQLyIiIiIiIv6VP+bdVlAMw06HyT+GHhPCq0lERHKGMaYI+GLzt/XAdamMY62tAm5u/rYMuNClzxrgQcA0bzoylWOJiIiIiEgIBh7tfQ/SvgYdm9laJHl9D4KiFBaJX3mL83nirhWwcylseBQ2PAIbn4KdS+LvO+i41GpNUXVjhev2noV9KCnIXlBfsSl23R6xDSFXIpJFiX4v7N0Cr57uvMZsfh4ad4dTV7ZE6qDyTajbAnsrYdNzzmvrhkeSu1e4hX7vSmc0+cfu23tO8t5nyzznHGb3SrA2M3WJSMcSTTEYDQtr74FNz0Ld1kBLyoqqBd5tvaaEV4eIuOs6ErqPS9yvvho2POycD218CioXtM7XEREJkPsyESIiEgwbhWV/8G4ffHx4taRj4vedD8RrY8LHxl4CvUJc0b1L//jtzx0KZ28OpxYR8daw3QmeSKSpNvO1iIhIe9Em53U62ggLv5y4f0lfOPYFMKbtdgWjiUi21W1Mrn/jTlh6nXOh5aA/wns/gJV/b9sn2uiEmz93MJy5CSK7Ydu7zgXWssHB1S4iIiIiItLRbPQIRus5ET77Sbi1iIhILjoK6A9Y4G1rbToXE+YBVzY/PxP4k0uf53BC0wwwPI1jiYiIiIhIJhV3hylXwQdXxu9X0gcm/yicmsS/oq4w7efwfgr/Nq+emfw+3UbB+K8nv18aqhq3uG7vVzww1Dr2VeQRjNZoUw1ZEMlDky6D8kehvsq7z5YXnEeLQ26G8d/IfG1h2/AwvPkFaKoLZrxuo2H8pcGMJZJPhp8G/Q6D6oWt23pOhjlPwBPjvfeb/1nn68A5MPth6NI3s3WKSH6LRlLf9+2Y90MTvg0H/RkKCtOvKUzRRnj7Uqgtd2/ve7Cz+J6IZJcxcMD/wIIvODkZ8bx2TtvvS/rA7Edg0JzM1ScinU7eB6MZYw4ETgdmA+OAvkAPwFpr2/35jDG9gZ7N39ZbaztANK6I5Kyqhd5t474OhSXh1ZKO7mPgxAWw7j5nFYOBc2DUee0DMjIp0Ypge7c4b4i76p5WkazatdxfPwXniIiEr2YdvHJq4pU1W0y6DPb7DnQf276tqLv7Pnp9F5Gw1Fentt/y62HcV2H1nd599lbA/cXOe96WCzmTfggzfh/u+2AREREREZF80LADtr7i3jbyvFBLERGRnDUy5vmmNMeKXTFvlEefZTHP+6R5PBERERERyaQpV0CvybDmbtjwkLOIY8M2p633NBh6Coz9CvTcL7t1irvJl0OPiVD+CNQ2L3C3ZV7wxxl8Ahz+r9AXtatudJ9u1r84u4vrFRn3OSgRm0bIgki+6TUZTnoLVt4KS3/rb5+3L4X+hzu/XzqKus3w+nlgm4IZb+ovYMI3tYiodE5F3eDYebDyFqh+G/pMh3HfgNL+cNzL8OIx8fevmO8Exh52ezj1ikh+ShhmbHDWGUpgxU3Qd6ZzT3w+WfE3WH2Hd/uBPs/rRCTzRl8AZUNh3f2w+1PY+pK//Rq2w6tnwFmbnFB9EZEA5G0wmjFmGnA9EPuO0s/MxGOAh5qf1xhjBltra4OuT0QEa+GT673b+80Kr5YgdB0Kk3+YxQJ8vMRveib0laBEZB+bnvXXT8E5IiLhe+sb/kPRxn4ZZv6vd7tXaG1kT/J1iYikoiHFYDSAp6f66GSd9/UtPvlf6H8ojPxc6scVERERERHpaHYua55w4zHhbviZ4dYjIiK5akjM8wSr4iXUcve0AbxmaG6Ped4lzeOJiIiIiEimDT/DeUh+Gn6a82hxbwYWnDvsjqyE9FQ1eASjlQwMuZK2ioz7VMBIwpAFkQ6m+1g48FqY+H14fCw01SXeZ939HSsYbf1/ggtFm/wjOODqYMYSyVfFPdznTvaZ4W//9f+GQ26BgsJg6xKRjiPqcc7e92A4eZHz/LnDoXph4rHW3pd/wWjr7o/f3n1MOHWIiD+D5jgPgMfGQM1af/s17oTNz8KIszNWmoh0LgXZLiAVxphLgIU4IWf7fmqeKAr3MWB9837dgHOCrk9EBGvhra86K1d50QrpySkblLhPtCHzdYiIt/LH4eNf+usbqWkbNCEiIplVvw22PO+//+QfxW/3DEZT8KWIhKQ+jWC0VJU/Fv4xRUREREREctWKm+GpKbDzY/f2riP8TxIQEZGOblfM8/3THGtKzHOv1VpKY577mBErIiIiIiIigRlxbrDjlQ1xHllQ3Vjhur1/cfghbbGKTbHr9ojVXArppMoGw4Rv+eu75DfQuAua6jNbU9AitU7d0Sbna8tj2e+CO0bQr98iHUlJL+g+PnG/SA3s3Zz5ekQkf3ktOhcbftzvYH9j7fqk9ZwgGlBQaiZFI7DjI+/2LgOg68jw6hGR5PSblVz/6kXO+xgRkQDkXTCaMeYc4HagLHYzsAFYTPugtDastVHg3zGbTg+6RhERqhbA6ju82wuKnQ/FxL/Bxzt/b/EUdo3fLpKrmvbCh7+AF4+FhV+Gbe9mu6LkRWrh1WRW7LNO8reIiIRj51IS54jH6DU5fnuhgtFEJMsatoV/zLX3hH9MERERERGRXFS3Bd6/nLifNw07HUzc2zdERKTzKG/+aoCxxphD0xjr4uavNmbcfQ2O6VOZxrFEREREREQkWft9O+Dxvgsm/KlvdU011ER3u7b1Kx4YcjVtFXkGo0WwWrRaOqspP/UXWgTwYC94sAe8MAd2rchsXena9Aw8NRUe6ObUfX9Rc/3Nj9oNwRyn32HJBx2IdDYTv++v3+o7M1uHiOS3aKP79th50+O+DoWl7v1i1W1sPSf4Tz9nTmouhhBVLYR/l8H9xRDxWvMI2O87UFDk3S4i2TXhO2AK/fdf+lvnfcwTE6H88czVJSKdQl4FoxljhgAt7wxbPq29CRhnrR0NnO1zqMdahgTmBFagiEiLTc/Ebx/ymXDq6EhK+sCYL8bvkyg4TSQXWQsvnwQf/wq2vgyr/+lcZKt+J9uVJefJScnvU18dfB0iIuIumdWnxl+auE9xd/ftEfebwUREAqdzSRERERERkezZ8HD8G1YBhiezmIqIiHRw84FGnPv9DHCTMSbple+MMZ8HTqT1vsHnPbrOjHm+NtnjiIiIiIiISBoGHQNznkpvjMKu0Hs6zPwj7H9FMHUlqapxq2dbv+JBIVbSXlFBiWdbxEZCrEQkh3TpB8fOg9EX+esfbYSKV+GFo3IzQARg23sw/zTYuSSzxxn3VTj2OS12I5LIxP+CWTdBn5nOuYqXD6+CXZ+GV5eI5Bc/wWh9DoBjX4BBx0FxL38haY07nTmpCxLMvw5bzXqYdzg07Y3fb8K3YOrPw6lJRFIzaA7MeRIGHg1FPZzzocKuYBIEGu7+FF49I//my4tITsm36NSfAy3vGpuA8621/4lp97u0xSKcm62KgX7GmDHW2jXBlSkind6Sa+K3l/QOp46OZtbfYdXt3u01a0MrRSQwFfOdi2qxIjXw6Y1w+D+zUlLSdq9KbbWh+mroMS74ekREpL09SbzlHXpq4j7Fvdy3N+2Fpnoo7OL/eCIiqVAwmoiIiIiISPYs+U389uKeMFBr1ImIiMNau8sY8yRwFs79fQcCzxljLrTW+rrQbIz5GnAjreFqUeBuj+4nxTz/IOXCRUREREREJDXDToEL95neda/PwJ1Dbobx3wi+piRVN1a4bi+gkD5F/UKupq3iOJOOI7aRYrTYvHRS3cfAEXdDnwPh/R/522dvBZQ/BqMvyGxtqVj1D7BNwY139OMw/LTgxhPpjCZ8y3kAPDMDti9277f6n3BgguupItI5+QlGAxhwJBz3gvM8UgsPdPM3fvkjULcVyrIb5vx/1tzlo5OBmTcopFUkHww92XnEWvZHeP+Hiff95Ho48p7M1CUiHV5BtgvwyxhTCFyAc3OTBa7bJxTNN2ttBPgkZtOk9CsUEYmRKIW7WMFoKSlIkOf54X+D9ZuRKZIjPv2L+/Y1d4ZbR4umvVD1Nuz4KP7/JxuFbe87KxF9dHVqx6qvSm0/ERFJXjIBskNOTNwnXtBv407/xxIRSVXjjuwcd+OT2TmuiIiIiIhIrmjcA3Ub4/cZegoUloRTj4iI5IvLgdjl4I8Elhpj/maMOdYY03PfHYwx+xljLjXGLAJuBkpwQtEscLu19iOXfUYAc2ldYPW1YP8YIiIiIiIikpIBs/31G3RsZuvwqapxi+v2fsUDKDCFIVfTVpHxDj6LWI+gBZHOZMjJifvE8go2yrYdQeb9G+g3K8DxRISe+3u3Bfr/V0Q6FBtx3x4n/JiirtBtjM/xo7BzSfJ1ZcrS3ybu02O87i8RyWe94pwTxdr6kvIfRCRlCRJmcsphQMsNUA3A79IcrxyY1vx8RJpjiYi0VdTDCRfyEi9IQtJTvQj6H5LtKkT82/BwtitoVfkGvPmF1vCcwcfDUQ9ASZ+2/Wo3wssnpf9BWUN1evuLiIh/e9b663f6Kijskrjfvr8bYjVsh9KB/o4nIpKqSE3iPtN+BR/9PNjjfnoTDPtssGOKiIiIiIjkk/d/lLjP8DMzX4eIiOQVa+0aY8xXgLtwFnO1QDfgG80PjDG7gN04AWi9mr+CE4ZG8z4GeAu4zONQV9C6WOxe4PlA/yAiIiIiIiKSmjFfhMoE2dX9D3cmxeeAzfUbXLf3Kx4UciXtxQtGa7QNIVYikqN6TYE+B/oPPFv2O2jYBpN+CL0mZba2aBMsvwE2PQP1lW3buvSDvgdBUz1Uvw3VbwV33CEnQtng4MYTERhzMay7171t09Owazn0nBhuTSKS+6IeQcYF3uf4gPOa8/Gv/B3jpeNg1Pkw/lIYNDep8gJRtdC5337nRxDZk7j/6IszX5OIZM7g46BsCNRtjt9v7xZ4ehqYQigscz4DmvIzKO0fTp0dSd1mWPIbqHoLovXt26ddDSPOCr0skUzKp2C0lk+3LbDIWrsrzfFi92+34qSISFq83qC28Er2lsSmXwsfXOndvuo2BaNJ/tj1afx2GwVTEL9Pumo3wcbHYfsHsPLvbdu2vACLfwqH/K3t9gVf8h+K1qUf1HsEoHltFxGRYFW+AZufSdzv4Buh+1h/YxbHCfpt2OFvDBGRdERqE/eZ9t9Q9SZsfja44/p5PRUREREREelIok2w4T9QuwG6jmh/LWFfBcUw5ORwahMRkbxirb3fGBMFbsG5X69lSeiW4LNezY92u8b0ew4431rrtXLCXcADzc/3xOknIiIiIiIiYRr3FdizGpZe697e/3A46qFwa/IQtVEW7HrRta1/jgejRTRPRQSMgaMfgxfmtC4Yn8iq25xrIScuyGyQ0VtfgTX/8m7f+nLwxxw4Fw6/K/hxRTq7oSfDgCOd+/TdzDscTlwIPfcLty4RyW2pBqNNvQrqNsHqO8A2JT7Ouvth/UPOOdGwU5KvM1UVr8NLx7sH9bgZfylMiTNXXERyX0ExHDMPXjsHdieYLx87J736Ldj0FJz8LhT3yGyNHUl9tXOeWbPOu0/D9vDqEQlJPgWjDYh57r70RnKiMc/z6e9BRHJd4x5oTBAG0T03VjLKSyPOjh+MVrcpvFpE0rXxyfjt710OB/0xc8ff9j68fFL71YZirf4HzPhd65vLhh1Q4fOC27RfwX7fhtfOhopX27fXVyVfs4iIJOejX8JHVyfuZ4pgv+/4H7eom7NKg9tFFQWjiUgYIj7nM3bJwAoyDTugJE5ApIiIiIiISEfR1OBMHKpe6H+fsV+BErdMGxEREbDWPmCMeRP4A3A2rfftWZfuJubrGuDX1tp/JBg/iV9aIiIiIiIiEhpTAAf+Bqb9HGo2QFMdFBRB6SAnHKBscLYr/D+f1n7k2da/OPt1FscNRvMIWhDpbLqNhDPWOIvIN9VC4y5n7sZHv/Dep2E7fHoTHPynzNRUsw7WBBxQdvK7rc+LujffU2ehxwSINoCNQukAz91FJE0z/gjzDnVva9gOK/6e2TlhIpJ/vM7X45zjA07w0KG3wszrYfcKwMIHP4u/eLiNwLLrwg1G++QP/kPRpv3SeX8oIvmv91Q4bbnznqe+Gp47xF+I4+4VsP5BJ0xf/Flzd/xQNJEOKp8CwWJvfioMYLy+Mc81a1tEgpMo0Rag38GZr6OjSrRSglY5kkQad8HS66BqIfScDJN+AD2yFFZYtzF++/LrYfIPoesw/2PaKHz6V1jxV9i13Nm2/09g/yvbT0T64KfxQ9HAuSD2YE/n+bivwoCjnWMk0mM/ZzUCY6Ckn3uf+urE44iISOpW3e4vFA1g1AXJjW2MEwrk9lqulQVEJNNs1LlhzY9+h8Dau4M9/o4PYeDRwY4pIiIiIiKSi5bfkFwo2ohz4cDrMlePiIh0CNbacuB8Y8wQ4FzgCGA60B/oDdQD24F1wELgBWCetdYtPE1ERERERETySWEp9JyQ7SriWlm31LNtQEn2g9GKFIwm4l/Xoa3PI3vAO/fQUfl65mqpfBP3tQFSNPh46DszuPFEJHndx8Zvr3ojnDpEJH9EPeY+F/iM+yjuDn1nOM/7HhQ/GA2gagFEm6AgiFgOH5I5lxp2aubqEJHs6DbKeUy6DJb93t8+la8rGC0ZmXzPKpLD8ikYLTa1Y6hnL/+mxjxXKoeIBKcliMjLgNnQe1o4tXRUfQ+Gbe+4t0V1MU/iaKqHF+bC9ved77e+BOsfgBMXQI9x4dcT2ZO4z8YnYfw3nACaFvE+kHr7m7Dq1rbbll7nJGefusS5oSAacYIkNj+XXL2rbncefky7urXmLv3d+zToFExExJO1bV/7k7Xmbnjra/76miKYcGnyxyju4x6M1qjscRHJsKY6/31HXeCERDZsi9+vdDAccTe8dHziMV+YAxdE03udFhERERERyVWx1yBW3+F/v3OqoUvfxP1ERESaWWs3A39pfoiIiIiIiIjkhMqGzZ5tk7vNCLESdwpGE0lR/8OhdBDs3erdZ9cnsOg7bbdtexdq10P/I6F0YOt2UwC9D4ARZ0MXl4Xkd6+CdfdDUTcY9XnYszqYP0eLEWcHO56IJK+0PwycAxXz3dur34at82HQnHDrEpHc5TX3ucD7HN/TiLNhya8TH++N82DYGTDyHOe8JEhVC2HTs1D5GlS/BZEaf/t1Gw19sv/eSkQyZPRF/oPRVt8BZcNgyIkwcHZm68pVteWw4RFo2A5DTob+h4CNQvnjznvKipeh+3jocyBseCjb1YpkRT4Fo61v/mqAGcaYYmtT+8TWGLMfMCxm04fpFici8n92feLdNuHbMMPnyZx4i9Z7t+1cEl4dkn82Pd0aitaivhJW3gwzfhd+PX4+7Fn0TecBMPJzUP2OczFu8HFw6G2tF9dq1sMrp3j/H9izGv5dFkzdiRx+N4y+oPV7twt9APVV4dQjIpJPbBQ+/G/nd1NTAww7DQ66AUoHJDGGdUIx/Rg4F6ZfAwOOTL7Wkt7u2xsUjCYiGeb3oik4N56c/C4s/BJUvOrdb9Axzjn2ye/ABz9LHCJc9WZqr50iIiIiIiK5quI1eO8y2PEB9D4Q9vuv+Nc9Yw0/S6FoIiIiIiIiIiIi0iFUNroHo/UvHkRpQUj3YsdRaLynAjYqGE3EW0ExHHYnvH6u9wL3TbWw4ib3Nq8J6Euvg+NehG6jWretvR8WXAw24ny/5Br3hYhTNfwsGHNJcOOJSOoOvhGenubd/uJcmPZLmPbz0EoSkRzmdb4eJ/zYU9+Z/vpteNh5fPpnOGZecPd2LP8zvPv91PY97J9OyKyIdEx9psMB/+PMj/RjyTXOY/pvYMqVma0t12x7H14+sXWu/UdXO+eXFa/A+gdb++2tcOYwiXRS+XTWsACoAyxQBlwQv3tc34t5vtVauzydwkRE2qhZ6759xDkw669Q1DXUcjqkpjjBaHu3QuUCJ1REZF8rb3bf7jd9OmjJBDqA80amZo1zwW3jE/D8bCf8JhqBZw7MjWDAox6CMRe13eYZjBbgxT0RkY7io1/Ckt84r5GR3bDuXljwRef13q+G7bDzY399j3859WCf4p7u2xt3pTaeiIhfkdrk+ncfDcfPh5Pfg3Ffg8J9blIt6QP7X+E873sQHPMsHPtC/DFX/zO5GkRERERERHJRpBa2vATL/ggvHA3b3nFWDN62yAmY9qvXlMzVKCIiIiIiIiIiIhKiyoYtrttP6ntuyJW4KzAFFHmEo0UUjCYS39CT4LSVMCPA+SN7VsHSmPEa98B7P2gNRYP05k0MPgHmPAUnLXJCRE58C456EIqyH9QoIkDvqc7/z3g+/iXUbgynHhHJbVGP8/WCFILRAIp7+++77V1YdVtqx9lXww5Y/BP//addDeO/AYfcAmdXwKA5wdQhIrlr6lVw6lI45FaYeYPzGpDIhz+Huq2Zry2XfHhVaygaABbe+U7bUDQ/hp/p/D3PvAH6HRpoiSK5wHuZiBxjra03xrwIfLZ506+NMY9ba3ckM44x5kjgUpyANYCHAyxTRMT7g6rY1T8kPdE4wWgAzx8BPSc6H/73GBdOTZIfNj+X7Qra8lppyK/dnzrhOdvfc0Jwsq10EAw9uf32Lv3d+ysYTUSkLWth9T/ab9/8rDMptd8sf+O0+UAsgwq6uG/XzVUikmnJBgy36DsDDr3VubFt3X1Q/Y5zDjv2y9BzQtu+g4+DsqFQt8l9rFW3OWOJiIiIiIjkqzX3wIIvBDNW2ZBgxhERERERERERERHJopqm3dREd7u2DSjJnc9Bi0wxkdjQpWYRr6AFEWlVNggm/j/44Kfe4STJ2vR06/Mtz8PeACfzH3QD9Nrfed7v4ODGFZHg9J4av91Gnfls474STj0ikrui7c/hAfAIPk6oIMn9Nj0F+/84tWPF2voyNO3117eoB0z7RfrHFJH802uy8wDY9j6svCV+fxuBLfNgzMWZry0XRBvbvpdMx0E3KMdEOrS8CUZr9mucYDQLDAPmGWM+a62t8LOzMeYY4CGgADBABPhDhmoVkc6q4hX37WVDQy2jQ2tKEIwGsGu5s5L9Ca9nvh7pGGwUTEG4x0w10CHWh1elP0ZQDr0Nirq1317Sz71/fZUTAmRMZusSEckXTXuhtty9bcmv4ehH/Y0TVjBaYYn79qaGcI4vIp1XuufRJb1hwrdgQoJ+vad7B6MB7FzaetOZiIiIiIhIPtm9MrhQNIAeid5giYiIuDPGFAOHAOOAvkAPwFhrf5XVwkRERERERKRTqmzY7Nk2sDi3gtGgrt32iBY1FfGnoBAGHecsXByE2g2w9j7AwLLfBTMmQNeR0GNicOOJSGYUlsKA2VD5mnef9Q/BmC8mH2KUDbXlUP2287zvLOg2Irv1iHQkXufrBcWpjZfsXNidy2Dt/e5tvSZD72lgm2Dbu7Bnrfc4yZxDlfRJqkQR6aB6T4PSQYlDpJdcCz32g74zU39tzFU2CjuXOPOQrIWG6uDG7joyuLFEclAevItqZa19yxhzP3A+TjjawcAnxpjrgQeAdrOvjTGFwFzg68DncALRaN7/T9batZmvXEQ6jfInnDd+bsqGhVtLR9ZjAuzdkrhf5RvOG/DuozNdkXQE9dVQOiDcYwYRjBa0ISc5K5Eka+BcGPZZ97YuHsFo0XrnA3N9SC4i4ojs8W4rf8z/OH6D0frO8j+mmwKPYLSogtFEJMOaQjqPjiYI5X5qCpzf0PEuuIiIiIiISMe34ZHgxiodDIOOCW48ERHpFIwxRwGXAycCXVy6tAtGM8acDJzX/O02a+3lmatQREREREREOqPKRvdgtGJTQs+i3JnQ7wSjtdeoYDQR/6b9AqrehMZd6Y9lI/Dmhantu9934dO/tN9uCuHAa50QNxHJfQf8Cl45FZpq3ds3PwPPHgxzn4auQ8OtzS8bhcVXtg94nHQZzPh98gFMItJeNOBgtGTVV8KbF3i3lw115gP5nZPkx/4/CW4sEclfBUUw/Vp466s4MT8edi2DeYdBz0kw95mOkw/RsANePQsqXgl+7J6TwZjE/UTyWF4FozX7KjARmIHzqtcbuLr50Wb2tTFmGTAGaDkjNM37GOBN4IowChaRTiLaBG99xbs9Vz+0ykf7/xjmx1lFIVb12x3nxFfSU7MufnvdxiwEo8UJwMmGqb9wLvAt/xO89/+S23fYqd5t3cd4t216EiZ8K7ljiYh0VIkCM3evgh7jEo/j9yLExO/56+fFKxhNN1eJSKZFPG4cCVrT3sR9lv0vTNFHjCIiIiIiksPKH4O19wFRGHEu9D0IFv84mLFLB8GxL+THyuYiIpITjDHdgFtwFkaF1kVOY3ndCb0EuBgoaB7rLmvtB4EXKSIiIiIiIp1WZYP74u0DigdTkENhIEXG/TPZiO7dE/Gv/2Fw0tuw9l7YubR9+4aHMl/DxB/AzD/CwKNhy/NQv83Z3m0UjDgHBhye+RpEJBiD5jqvKU9P9e6z4wN49/sw+8HQykrKxqfah6IBfPJHGDAbRpwZfk0iHU3gwWgBB+HUbQp2PIBe+wc/pojkp3Ffhh7jnQU9l18fv++uT2DRN+GYZ8OpLdM++mVmQtEARn0+M+OK5JC8uzvVWltnjDkJuB84ltYboQzO6pEtwWcGJ0Dt/3aNaZsHnGetbQqrbhHpBCpfjx9CUaZgtMAMOhZ6TIDdKxL3fePzMOq8xP2kY6vbDE9Pj9+nthz6HBhOPS0SBeCEab/vwgFXO8/HXAxLroH6an/7lvSFUed7t5cNgd7TYMdH7du2L066VBGRDivR74Xyx2DyZaxdtZsAACAASURBVInHqa9M3KdsGAxP8+Kk18WXpgb37SIiQfFaUS9oQ050VgWN5+NfwegLodvIcGoSERERERFJxoqbnZvEWqwP8Cb74WfC7Ie14qSIiPhmjOkJvAZMpXWB01gt9/a5stZuMMY8DZzW3Pd8QMFoIiIiIiIiEpiKxs2u2weUDAm5kviKjfuipgpGE0lSz4lwwC/d2+4N4fpHt9HOdZaR5zoPEclvvafArL/Bom9599n4ODTVQ2GX8Orya/0D8dsUjCaSPhtx3+4RfNwhdOQ/m4gkb+Bs59F9DLz7vfh9N8+Dhu1Q0iec2jJp/b8zN7ZeZ6UTyMufcmttlTHmBODy5seAlqZ9vrZoCUrbAfwe+J1C0UQkUHVb4MW58ft0hBOvXFHUFY57Bd6/HNbdl7h/3VYoG5TxsiSHrf4nNO6M32f+aTDgKDjoT9B3ZihlEdkTznHi6TkRRl0IU37auq1LPzhhgfN/bOPj8fcf8hmY+QfoOjx+v36HugejNexIvmYRkY4q0e+F8kcTB6NFamHxFd7tZcOcVe5mXg/F3ZOvMVaB+81VRBWMJiIZ1rQ3nOOM/Dx8dHX8Pk11sPzPzjmxiIiIiIj4s/0DePtS2LUcek2G6b+GQcdku6qOx1pY8uvMjD39Wpj8I4WiiYhIsh4CptF6b18D8ADwMhAF/uljjEdwgtEATgCuDLZEERERERER6cwqGzyC0YpzKxityLgvaqpgNJEAjTof1t2f2WP0PzSz44tI+Pol+H8dbYDaDdBjfDj1xNNUD427oLR5ev7uT737bn8/nJpSsbcKoiHdVyySrojH4uAF7uf3HUJH/rOJSOoSnTMBYKFqIfSe1rqpdFBuva407oai7u730DXscOaKRuqgzv3zpkAU5GVklEhS8van3Fprgd8bY/4CXIBzo9NRwFCgIKbrduBN4DngLmttglQUEZEk2Si8dFzifoVdM19LZ9J1KBx5L4y+0Am0imfdvTDxB5qc0ZlVL/LXr/J1ePFYOOUj6DYiszVZ6/1hVhD2vwIOvDb1/XtOgDmPwaOjoHZ9+/ZDb4NxX/U/XnFP9+2Nu1OrT0SkI4rUxG+vfA32VkDpQPf2PavhlVO99x99ERxxd+r17UvBaCKSLU314Ryn1yQYe4kTtBzPhv/AjN/rPaeIiIiIiB+1G2He4U7IMEDVAuc6zykfQ/fRWS2tw9m9wrmpPmgzr4dJPwh+XBER6dCMMecCx9MairYA+Ly1try5fZTPoZ5tGRKYbozpbq3NgRXJREREREREpCOobNziun1giYLRRDqd/b7r3BcWjfl/1WsqTP8NvHamM5csHf2P8BkGICJ5pe8MGHQsbH3Ju8+8w+D0tekvcp6qxj3w1tecRduj9dBtNHQfC9Vve++z6xOYd6QzF6H7mNBKjWvzPFj0bdizKtuViKQv5ZCfOPeuT/4xLPtdiuMGSIE9IuKm3ywYMNuZKxnPK6e0/b6oG4y6AA6+EQq7ZK6+RCpeg7e/7iwM23UEzPgDjDrPadvxESz4UnjBskavs9LxFSTuktustXuttXdYay+01o4EioH+OAFpXay1/ay1p1lrb1QomohkRMV82Lk0cb/C0szX0hkNPh7KhsXv895l8MLRTrqudE7lj/jv27gzuf6paqqj9Z7vfQycA72npz72ft9LLxQt1oiz2m8rKIbhZyY3TlEP9+2RXcnXJCLSUUV8zNt5eJAzgThW01547XPw+DjnoqOXvgenV9++FIwmItkSDSkYDeDQ2+GwO2D0F7z71KyFHR+GVpKIiIiISF5be09rKFqLSA0suSY79XRkfj5rSkW/WZkZV0REOrqfxjz/GDihJRQtGdbaLUBF87cFwOQAahMRERERERGhrqmGPU3u084GFOdaMJr7pNdGBaOJBGfAEXDM8zD0VOg5CcZ9HY6fD8NPg6OfgMEnQulgKB3k/ogVu73nZCd07ZjntBCnSEc15wmY+P+82+urYeEloZXTzsIvw/p/t96LW7M2fpBbi6o34cVjINqU0fJ82bXcWVBeoWjSUXgEH6dl3FfgiPtg4Nw45ys+zkVMoff++57zuO6vwB4RcWEMHPOMMxe+ZxKX/CM1sOo2JzciW2o2wEvHO+cj4Cxc+sbnofJNaNwNzx/tPxStdFD7+Zl+X19b6HVWOoGc/yk3xkwHTgT2xwk8A6gClgHPW2vbvCpYay2wLdQiRSR51kLlG1C3EWrLnXCHuubHQX9x0vHzRfU7/vrpA+vMKCyFQ2+F18+LP8Gj8nVYfAUc8vfEY+5cCpuedSbmDDgKBh6tf798V9wTGpMI4PITdpiuSK1320F/di6e/aev80YtWVOuSL2udmP9zEmv3v6e870phFl/gy79khunuKf79sbd6dUnItKR+H3Nf+e/4OiYEM+P/wc2PJR4v+Gnp1aXF69VaaK6uUpEMqwpxGA0UwBjL3EeB/0JHh4I1uWmjg2PQJ80wo1FRERERDqL7Yvdt6+6HWbdDAWF4dbTkbm9d0lXl/7Q77DgxxURkQ7NGDMEODBm03ettXEumCf0CTCw+fkEYFEaY4mIiIiIiIgAUNm4xbNtQEluBaMVG/dFTSMKRhMJ1qA5zmNfw05xHiIiboq6wkF/hMrXYJvHvNPyR52AtGTnZqWrvhrKH0ncz0vNOtj6Igw5MbiaUrHmLrCR7NYgEqSCDMR9mCIYfb7z8PLkZNj1SfxxBh0Dxz4fv8+9BYD1rkNExE1RNzj4T87zl0+Gzc/533fNXTDzeih0/3wko9beA9GG9ttX3wEDZkPjDn/jdBsDZ6z21/eNi2Ddve5tmfgdIpJjcvan3BgzE7geOCpOt2uNMW8Al1lrfSYTiUjOePnE9ivCg5PUnk/BaIt/nO0KZOhn4LPL4JkDnQ/ovKy9B2bd5Exs97L6X/DWV9t+ODb+G04QVLz9JLeVDUsuGC2VMLJkReOEORR2cd6QDT8b1t6V/Nilg1Ovq91YA+DEN2DrfKgrh4FzoMf45Mcp7uG+XcFoIiKtNj/rr1/5o06wcNdhTjjQ8r/426/bmNRrc7PvigQt3D7cExEJUrxz6Uzq0tc5H3ZbGa/ildDLERERERHJS+vu827bvQJ6TQqvlo4uE9c6Jv1Q4XUiIpKKw5u/WmCDtfbVNMeLXTQ15FljIiIiIiIi0lFVNmx23V5kiuldlFtvP4s8FjVVMJqIiEgO6TXFOxjNNjlhRAOODLemncvSX2Br7b3ZD0bb8WF2jy8StO5jgx/TT1BOrymJg9F6Tcl8HSIivaYmF4wW2e0EtvackLmavCz7nfv2VbdBcS//4/Se6r9vvNdSo3v5pOPLybMJY8wZwL1AKWBimlriYmO3HQW8aoy50Fr7aEgliki6jHGCivasbN9WuzH8elL18a+zXYG06DrcCS97/TzvPpE9ULMeuo92b99bBQu/1H77yltg1IXuK73kOmud5OONj0NxTxhzsZPS3tkkuwpEZE9m6ogVNxit1Pk666/QUA2bnk5ubGMS90lGYSkMPSm9MYo8gtEiCkYTEfk/a/7lv++jw51gsmRCyIL+/aBgNBHJlqYsBaMBDPusezDarmXh1yIiIiIikm9q1sdv37tFwWhBCvpax8C5MOmyYMcUEZHOInZlrw8CGC/2l1z3AMYTERERERERobLRPRitf/EgCnJsgfUi4z4dMBJN8p55ERERyZyxl8CaO73bnz+q7fcTvg0H/I+ziG+Q6rfBh/8NFa/Czo/TH2/Nnc5j1AUw9SrotX/6Y/pV8Tp88kfY+ER4xxTJtNJBMPDo4Mf1eM/Qxtgvw4b/xBsExnzRx8Gsd5OfOkRExnzR+R0f7/VkXy8c7dxv2GL0RTDzeigdkF4tVW/Bst/D9sXugbIN2733Xfl3/8cZ+2X/feO9lup1VjqB3PpkFjDGTALuA8pwAtAsbQPRWmZy25hHKXCvMWZyuNWKSFq6DnPfXpcnwWir74QPr8p2FRJr2OmJ+8RLMH84zsluMknDueSDnzlhbxv+A6vvgJdOgPXxPqzooCI1SfbPcDCatfHDHAq6OF+Le8Dcp+DsCjhzAxz1UOKxR10YTI1BK/YIRmtUMJqICAC1m5LfJ5kAsuFnJj9+IgpGE5FsiRcy3KLHfpk5du8D3LfvrXBuHhEREREREXd1m+H52fH71FeFU0tnkey1kXj6zoLjX4ZCj8+DRERE4otdFnlXAOPFhqHtDWA8ERERERERESobtrhuH1A8JORKEisyxa7bG63u3RMREckZg+bCYXf477/iJicsLcjFg6ONzpgrbgomFC3Wuvtg3pGwe2Ww43qpfANeOg7KHwnneCJh6DMDjnsFCkuDH9sUJu4z7FQ4+K9Q4hLIWDYEjnoQ+s5Mr44CBfaIiA99DoDZDzuvPX7t3edznLX3wLzDIVKXeh3V78CLc51Mhj2roGZt+0c8fu7XK+kDB/0JRpzlv654r6V6nZVOIBd/yv+OE3QWG4bWCLwDbGj+fjhwEFBC23C0m4EMxOKKSEZ0He6+vTYPgtG2vgILL8l2FbKvwi5wxjp4bJR3n51LYOjJ7bdXvR1/7PrK9GrLhoYdzQnJMWwTLLkGRp6TnZqyJVKbXP8tL8CbX4RZN0Jxz+DqWHkrLL/BCb+Jt4JHYZe237ckVHdzX4msjSEnpV5fJnkFo0XroalBk6lERGrXZ3b8kecFP2aB+81VRBuDP5aISCw/N31M/01mjt1zknfbzqUw8CjvdhERERGRzmzVPxJ//rFzCXBuKOV0CkEtAlPSF45/JZixRESks4pdMrmXZy//hsY812oFIiIiIiIiEojKRvf7tAeU5E8wWsTq3j0REZGcMvYSWPcAbH7GX/9dy2DTUzDi7GCOX/6YM2amNO5w5srNuC5zx2jxyQ2JF3A/6iHoMz3ztYgEobg3lPbP3PjGZ4TIft+GCd+EmvVgI862gi7O/H9jwqtDRGTEmTD8DKjbCE0x66O9/nnY/p6/MfasckJUR1+YWg2f/qXtsYMy848w7DQntLLbKDAFye3v8TmQ06bXWen4cuqn3BgzFSfYzOIEoFngf4HfWGu379O3N3AlcHnM5iONMQdYaz8MqWQRSUfZMPftdTkejLZzGbx4TLarEC/dRkKvqd6rGGx5ESb/sP329Q/EH7dhR/q1hW3zPCd0al/bF0Pjbu+gqo6oyUfK8r7W3gU1a+CE14KpYc3d8PY3Wr9vjPMzVdDFfXu8EAaAnpNh1PnJ1xaGeAFzla/B4OPCq0VEJBfVbcrs+EFdHI1V4BFqmeiCo4hIutze58QacCQM/Uxmjl02FIp6QGR3+7bNzykYTURERETEy7Z3E/f56GqY+vNgbqwUaAwoGO2EN6CoazBjiYhIZxW7Et2UdAYyxnQBDozZVJ7OeCIiIiIiIiItKhs8gtGKB4dcSWLFxv3ePQWjiYiI5KAeE/wHowGsvjO4e/8rApoTF8/mZ8IJRqtakLjPwNlQOjDztYjkg4IkIkRMAXQfnZk6FNgjIskwxglmjNVriv9gNIBVt6cejObnfCMV/Y+EHuNT3z/ea7peZ6UTSDJKMOPOaf7aEor2PWvtj/YNRQOw1u6w1v4E+E5Mf4AMzPYWkYzo6hGMVrMu3DqSYaPw1P7ZrkISiffh39aXILJPSJa1UP5o/DHjhVjlKq9wOMh8+EouiTY6j1RUvg4rbg6mjlW3++/rFYyWKMzuM+9BoUdITbYVxal91W3h1SEikqtqMxgOPOx0KPT43ZIOBaOJSLbEC0ab8QeY+0zmJu0bA/0Pd29L9L5SRERERKQzK3/EX7+K+Zmto7OwFt77Qfrj9J4GvRIs2iIiIpJYy13KBhhtjEnnl8s5QMsFigiwMJ3CRERERERERADqo3vZ2dRu6hoAA0qGhFxNYkUek14jNhJyJSIiIpLQyHOT67/xcfj0Jmjclf6x480tDMqOj9pv2/gUvHsZLP091GxIb/ztH8DiK6AuwXyLgXMViiYSK1eCcpIJaBMRcTPyc8n13/oSvPlF5/Ha5+Cx0fDyKc4c/yaXuUjb3oMProI3LoLdKwIpuY1uo6HfwemNEe81Xa+z0gnkWjDarOavFlhorf1roh2stX8H3sC5cQrgkAzVJiJB6zrSfXvNWqjbEmopvr16VrYrED8mft9JKXcTrYctL7TdtnMJ7FkVf8wG9wudOc1a77ZtSaQj57t9g/CSteib0Lg7/ToqXvHXzxRBQaF3+9BT3bcf+FsoLE26rNCUxVktrUr3qouIJLxQl47Bx2VmXK9gtKa6zBxPRKRFk0cA49hLYPIPEwcKp2v4Ge7bd34Mu1dm9tgiIiIiIvnK7w3I5Y9lto7OYv0D6Y9RWAaz/p7+OCIi0ulZa9cAsR+cXZnKOMaYLsDPWoYFFllr07whQERERERERAQqG7znrwwszsVgtGLX7RGb4mLiIiIikjkDjoKpv0hun3e+A8/Phvrq9I4dRjAawJ7Vrc8XXwHzPwvLr4fFP4bnZsGOJamNu/FJeO5QWHpd/H7dxsAhurYtnZAx3m25EpRT4P7eRUTEt2GnwsQkFwhde5fz2PAQ1KyDzc/AW1+Dl0+Cpr2t/dY/6JxrLPk1rLs32LoBuvSDI+7xzrzwK95req4EYYpkUK4Fo02OeX5nEvv9K+a5lisWyRf9Znm3Vb4WXh1+LfqOk7gvua9LX/hcnCCrqgVtv694NfGY296FaFN6dYWtYZt325sXwqbnwqslmyK16Y/xZJqnF/FC6vZV2CV++9gvtd9mCmHUhcnVFLaibt5tNWth1R2hlSIikpNqN7lvT3fVIlMII89LbwwvXhco6jZBVCtPikgGRV1WaQEoSHAuHZThp3u3KcRBRERERMRd7wP89Vt3f3KfqYu7DY8k7jP2EmexIS+nr4YBRwRWkoiIdHotF4QN8AVjjMuFb2/GmALgVtreX5hw0VURERERERERPyob3e/fK6CQPsUDQq4mMa9gtEbrsdigiIiIZI8xcMDVcMqHye2340NY9Y/Uj7u3EvZWpL7/8fPhxLdg5g2J+77/E+drzQZY+rt96tgKS69N/vjWwuKfeN8z3GLuM3DqEug5MfljiHRkuRKUkyt1iEj+MgVw0PVw2gonZOzQf0Dv6amNVTG/9b46G4X3fwTWxxzIWX93jtvyiKelz9xngrv/Lt5raa4EYYpkUK4Fo/WOef5eEvu19DX7jCEiuazrMOg+zr1t09Ph1pLI8hthxU2J++33Xfftfj4AkmAVdYUR57q37btaQs06f2NuzLMJ7pufjd/+9jfaJht3VJEAFoiu2wTbP0h9/2T+nhOFOYw4F6Zd3fpGprgXzP4PdBuRcnmhmfrf3m2LvgWNcQINRUQ6uvpK9+29pqU+ZkkfmPMklA1OfYx4Ckq828ofzcwxRaRzqlkH7/0Q5p/h3DDRuNO9X1jBaF2HQ1+PsPf3Lw+nBhERERGRfGN9Lj6zdwvsTHG1aGlV8XLiPlN/ARO+7d7We3rmPlMSEZHO6k9ABWBx7vG73RjzG2NM10Q7GmP2B+YBFzXvb4GVwP2ZK1dEREREREQ6k8qGLa7b+xcPotAUhlxNYsXG/d69iJ/JvCIiIpIdvac59/cnI9HcwHjSve5e2BX6HwKT4iy21WL3p87X8sdwPsLfx9p7kj9+bTnsXBq/T+lgGHoyFJUlP75Ih2DiNOXI+xgFo4lIUHqMh9EXwrgvw9SrUh9nXfNtBrs+9ZcvUdwLJlzqHLfl4TVXvmxIa5+hJ0Nxz9TrjBXvtVSvs9IJ5NpPea+Y59WevdrbHvO8R0C1iEgYBs6BPavab19zF0z+MfSa3L4tbOsfhHc9As9iTfi281j9j7ZBTCV9YcTZmatPvJX0ct++b1BWnfsKT+2suz9//i2rFsKe1fH71K6HLS/CsFPDqSlbmmqDGWft3dAnxRRpr+AGN4UJwhyMgWm/gMmXw5410HNS/iQ6dx3p3Rath/LHYcxF4dUjIpJL6qvct/faH7a+mNxY034JYy9xPkwrcF8ZMhBxg9Eeh5EeIbUiIsnYvQrmHd4aILnxce++ic6lgzTiTNi2yL1t+Z9h4vfCq0VEREREJB/4DUYD57y/99TM1dIZJFr5e+ip0H2083zQsbD1pbbtEy7NSFkiItJ5WWtrjTFfAp7EWcy1APgJ8B1jzNPA+tj+xpjPA/sBJwKH48zsaJndsRe4wFrrMrtKREREREREJHmVjZtdtw8oGRJyJf4UeUx6jdjGkCsRERGRpAz5DKy713//rS/Bir85c8f6HZZcANiOj5OvL1Yy9+TuWQ0rb4EPf+bdZ9F/QY8JUNwD+s50FpDf+TFsexdsBGo3OfcVdB8NZcNg01OJjzv0FP81inQ2Jk5oWpjyZd6riOSXwcc7gWCpBMRvfBx2/n/27js8jure//h7dleSVVzl3ns3pts0B2x6MaYGCEloCSUhjSTkF3IhnRsCCUlubgoJkBB6B5tmbAOmmG7ce+/dkiVb0u7O749BV21mdnZ3Zov0eT2PHmvnnDnnK1lazc7O+cxSqFrnrX9hp5bb+l0Mi37RcvuAK5Kvxwu351I9z0obkGs/5aFGnydxZXSTviHHXiKSe3qdbgWJNWfGYN0jMN7moCCTYjXw9qXe+h75O+uEz+TX4bOfwL750OVoOPwuKO0XbJ1iL1xqv339ozDxfgi3sx57vXvChif9qSsTFtzhrd/m6W0gGO2gP+MsvRt2f2D9rnc5Krl9kwlGC7Xz1i9Smn8LwxKlW2+ZoWA0EWm7nILROo2FsqFwYJX3sUr6QqlLGKVf3ILR1j0Ex/87+BpEpPVb/oeGULREQhkMRus7DT5zuIBjwR0w/ObceUNZRERERCQXJBWMNh3G/Di4WtqCSHuIVtq3FXSEExu95zXpefjkO7DlZSgqh6E3wLAbM1OniIi0KaZpvmoYxk3A/9JwjV97oPmFOQbwSLPH9SFoUeBa0zQ/CbJWERERERERaVt21DoEoxXkajCa/Q1TFYwmIiKS48beZoWdHdrmfZ8Pb7L+7TASTn654QZYiexfnHR5TbitFWguegA+SHDzrZV/Tq+e5or7wOhb/R1TRPxnKPZDRAJQ2AmOuAs++V5q+88Y7b1v2GbNf+fDYOjXrWDYemVDYcS3U6snEYeA/IRtIq2EfspFJLv6ToOibvaLnHd/kPl6mvvo5sR9jAhMeq4hBb/rRJjyerB1iTcRh2A0gPe+Cic+Dod2OQeR2IlHcz891zRh9/ve+lauCLaWXBA75Nw2bSM8l0Rw4Y634JWjrQVD7YdDxzEQCife75DHIAdI7o4a+aagfbYrEBHJXU7HI0Xd4LCfwbtX0rDmJwG3YyA/JfNmp4hIqlb8yXvfTB5LdxgFpQPt7xJTtw8OboGSPpmrR0REREQk18WTuDvj7g/AjOviyHSE7BfFAdZ7I43vJF5QBhP+EXxNIiIigGma9xmGsRp4GOhB0zc/Gn/eOAzN/PzxLuCLpmnOyUStIiIiIiIi0nbsrHMIRivsmeFKvIk4nANWMJqIiEiO6zgazvwINjwJ22bBttcgXutt34pl8OktcNLT3vrvX+TcNvhqa13cop9D7KB9n0zerDhZR94LAy6F4twMsRUREZEMGPld6HIULPoF7HwbyidC2SCrbc0D/s0TsglGAzjmr9D7bNgxF8oGQ/9LoV1X/+ZtzO06SgWjSRugn3IRya5wEfQ5B9Y82LLN60mdoNTuhdX3uffpdxGM/Ql0PjwzNUly3EJBNj4FB7c2TeP14sAa6DA8vbqCdmg71O331nf7bIjHvIV75Su3E7QlfaHDCKhYntyYb19i/duuJ5z0DHQ7zrnv2ofgva94HzuXTxynK6JgNBERW7FD1l2S7BSVQ/dJ0K4HrP239WGErMXBTjIWjOaywFZExA/JBCdAZo+lDcM6J7DsHvv2yhUKRhMRERERacyMJdd36d0w+ofB1dOamSbUVdi3Hf+obmIiIiJZZ5rmbMMwhgI3At8E+jt0NT7/dxfwv8A9pmlWZqBEERERERERaUNq4zXsi+62betekJthGxHD/tq9uriC0URERHJeSR8Y+R3ro15dBTzZMfG+m16w1h6EHQI66pkm7HMIRjvmLzDsBuvz9Y/Bvs/s+zW+WbERATPJa3qD0u9CGPntbFchIiIiuaD7JJg8s+X23e/D/iX+zBEutt9uGND3fOsjm0KKjJLWTz/lIpJ9pQMdGlzCHjJh8wz39on/gsFJhB1J5rmFgphx2PMpLP9DcmMe2pH7wWgVS5Prv/IvMOKbwdSSC2KH7LfXnwSe8ADMPhVi1dbjSHuIeryW+tA2ePNcmLYJIjYvbvYtTC4UDZqeOG5tEi62MhK0i4i0UjX2F1UBUPT5nQJ6TrE+jvuX9XjzdHjzPPt9ImX+1ufEKXxURMQv+xYk1z/Tx9KH/dw5GG3WZCtEufc5EC7MbF357uB22DIdMKzQ76Lu0HUCtB+a7cpEREREJB3JBKMBzL/VuqC5rR8H1lXA1ldh32Lr8+4nQc9T3c+3x2ucL0ov7RdMnSIiIkkyTbMKuBu42zCM4cCJQD+gHCjECkPbDrwLfGKappmtWkVERERERKR121W33bGtW2FuBqMVOASjRU0Fo4mIiOSlgg7QcSzsdwgzq2dGYdd70GEk1FVa7xsXdIRISdN+B7dC3T77MTqOafjcCDnPFWp07evhv4FPb3GvLVO6HpftCkRERCTX9TjVx2C0HF/zb4SzXYFI4HIxGK3+IqaJhmEM9LhPz8YPDMM4iSSSNUzTfMtrXxEJgsMJlB1Z/tXc8YZzW6S9QtHygVswGsAn34HavcmNGT2Qej2ZUrkquf4bn2zlwWgOoS31wWjdjoPz18Gm56yTtr3OgFcnQPUGb+PX7oGtL1sLtJrb8GTy9YZy/EVSOhIFo61/BE54ODO1iIjkkppdzm31wWgtuL0Jmam/JS4vu93er5MFkAAAIABJREFUJBUR8WL/MnjlqOT2yfSxdKQEyo+F3R/Yt8+9ELocbd2BprBTZmvLVzvfhTlntHztHS62wkH7X5KdukREREQkfckGowGsexjG3eF/Lfmiaj3MmgIHVjdsW/576DgavjAdygY57Ofy/kZBB39rFBER8YFpmiuAFdmuQ0RERERERNqmnbVbbbeHCNGloFuGq/EmomA0ERGR1mf0rfDelxP3mzW55baBV8KEfzQEd2yf47y/52C0RtfkDrwclv0ODm5OXF+QinvDIK3pFRERkQSG3Qhr/wV1+9Mfy8jFSKZGcr0+ER/k6k+5ATyaxr5vJNHfJHe/DyJtQ8gliXTvZ9B5fOZqqWeasPqfzu2DPJxkkuxLFIxWuTL5MaOVqdWSSXUVyfXPdghh0GKH7LeHixs+b9cNhn6t4XH3SbDuP97nmHsRdD4c9s5PrcYmdbVLf4xcFUkQjAZQtRFK+wVfi4hILolWObelsljV8JwTnp6uE53bzDhUrIAOwzNTi7RuB9ZYr892f2gtpC8dCAMug16nZbsyCdKC/0p+n8YXa2RKl6Ocg9EA9nwET3WG4TfDqO9Daf/M1ZaP3r/WPpA8dhA+vBH6nA/hRnchPLAWlt5j3dmwxykw6Cr380x+MuOw6j7YPhuKe8GQa6HTuMzMLSIiIpKPUglG2zHX/zryyfwfNw1Fq7d/CSz6JUx0eC9zyW+cx/Rynl5ERERERERERESkDdlZZx+M1qWgm2MAWbYpGE1ERKQVGnQlxOvg/WuS33fdf6CoHI6613r83pX2/Yp7Q1GXRhvcgtEaXatZ3AtOexuW3Al7PoXaPVDY+fM1jGbLfVNZs5nIkOtg7O3Qrrv/Y4uIiEjr0nHk58cud8G6h9IbK1PrNFMVUlSStH65+lNuYgWcJbtPvRx/dhGRJuJR57aNz2QnGG3+re7tw7+RmTokPYmC0Zx0PgJqdkP1hpZtdXkQjBavyXYFucUxGM0lgGzEt5ILRgN/QtEA2xPCrYWXcJ/n+8NldXoxJiJti9PfKmh6p6XG2rncibKgU3r1eFWQYCHtzONhyhvQaWxGypFWqmIlvD4JDm1run3NAzDxfhh8VVbKkoDFDsGmZ5Pbp+No98DGoAy5Dlb9PXHIw4o/WQF/Z38G7YdmprZ8U70ZKpY5t9fshp1vQ8/P73a4fym8fETDa+B1D8P2N+D4NN+48mre1bD23w2PV98Pk1+HrsdmZn4RERGRfON0zNx3Gmx6zr5t+yyoOwAFZcHVlcu2vuzctvkF57Y19zu3pRLCLyIiIiIiIiIiItKK7azdZru9W0GvDFfinVMwWpw4MTNG2MjQTeVERETEX4OvSi0YDazrGY/8HVRvdO7T/AbEbkEfoWbHG2UD4di/JVfTIz4t9T/8NzD6h/6MJdKqKE5DRMRRp7Fw/L+tD4BoFTw/EGp2ZbUs3xlaiy+tn0ucc9aZSX6ksq+I5AIz7ty2f3Hm6qi3byEs/a1z+/g7rQXXkvtSDUbrf6lz0Ec+BKO5has4iVb7X0euiB203x4udt6n/BiYPCuYehIp6JideTMh7BDu09zOd4KtQ0Qk17iFeDq92dj5SPu7HZX0hw4j/KstkeMfcW6r2Q3L/5i5WqR1Wvm/LUPRADBhwe0QTxBGJcnZ+S7MOhWe6w+zT4OKFdmpo2J54qCxekYE+l8CU+ZkJ1y3y5FwzF+99Y1Vw4vD4NGI9YbKpz+07u4nlupNifscWAWf/cS6WGbG6JbB4Ov+Y7XNmuxjeLWN/UubhqIBRCvdzyeJiIiItHVOx/i9zoR+FzvvN/fCYOrJdbFDULvXub1ml/1r4kSvkxMF3YuIiIiIiIiIiIi0MTvrttpu71aYu8FoBQ7BaABRU9eiiIiI5C3DgG4npbZv7V44uA32L3Hu0+WoZhtcIgbcQtO8Gv7N9McA6HSYP+OIiIhI2xUphVGpBK3meAilgtGkDci1n/INKLBMpO0p6e3cdtD+TabAmCa8lOBEyeCrM1OL+CDF/M/h34RNz9m3RQ+kXk6mxGoS92muZhdE+vtfSy5wC5tx03MyXGHCoV3wTDf/63JS2Clzc2VD/0thwxPufdY9BD2+kJl6RERyQdzhb1XI5W9VKAxjb4ePmr1ZOO52f96E9Kqws3v76vtgwt8zU4u0Tm6BqdUb4cBq6DA8c/W0ZlUbYM4ZDa95qjfCK0fD1NXQLoPHwwC75iXuc+JT0P8i63V8Jp/37Ay9Dur2wac/8NbfjEHVeitEq3ojnPBosPXlC7fg/HofXO9trO1zYOaJcM5SKO2XXl121j1sv33jUxCrhXCh/3OKiGTagTVwcDsU94TSgdn/eysi+S8etd9uhGHMj61jKTvbZlqht50PD662XFSzO3GfaEXLczNV69z3aX5XbxERkQwyDCMEjAXGA/2BbkAx1vWCB4EdWNcPfgYsNk1T1xGKiIiIiIhI4ByD0QpyNxgtkiAYrYgE18mLiIhI7hpyHeycm9q+VeuhYpn72I0ZKa699GrwVdZNsr1cH+qkdAD0PNW3kkRERKQNG34TrH3QPUi2hVy4ftqlhlCuRUaJ+C+nfspN0xyY7RpEJAvcTkxkOoRq20z39q7HQXGPzNQi6YuncLejHlOgoAwK2tu3RyvTqykT4ikGo5W21mC0g/bbw8Xe9m/XFbqd4B7K4aceUzIzT7aM+kHiYLTV/4Txd2Y+gENEJFtSDfEc/g0o6QcbnrKC0vpdAn3O9r8+N5GSzM4nbY/TsVy9imUKRvPLol+2fA0erYR1/4GR381MDWbcChdb9jv3fic9C/2mWZ/nSkjLqO9Dp/Ew5/Tk9lv/GETaw7F/Df4Ck1zn9zmgaBWsuR/G3eHvuAAbn3Zue6IEjr0PhihYX0Ty1MFtMPMkOLCqYVvpQJg8E9oPzVpZItIKmDH77aEIdB7vvu/Kv1rHzG2Jl2C02v0tg9HcLnLveVp6NYmIiKTIMIxJwPXAWUBHj7vtNQxjBnCfaZpvB1aciIiIiIiItGl18Tr21O2ybetW2DPD1XiXKBhNRERE8tigL0PtblhyFxzalty+H98Mez52bm8/pOnjoK9b7XKUdc3vJ7c0vRapsUiZdf1ouARi1Y1qC1vr+Sb+S4EfIiIi4o9IKZzyKsy7Fna8AfHabFeUPkPHSdL66adcRLKvbDB0GAUVS1u2HdyS2VrW/se9/ch7M1OH+KPLUVgpuEncRLjbCda/EYdgtLo8CEaLpRCMtnkGdD4id0IF/JRq2ExjR/4e3jjbCpDzQ1E5nLcSPvo2rHuoYXv/S6D/xf7MkavKj4YxP4bFv3bv9/F34ISHM1OTiEi2pfO3qu9U6yNbwh6C0eJRvRkpqUt0krliGZDF34HWIh6D1ffZt7ldIOG3VfclDkU76o8NoWi5ptdpcN4qeDHJ0JjV90FhRzjit8HUlS+iVf6PufHpYILR3M4NmDF4/xrY+goM/BL0OgPCRf7XICISlHcua3khYtU6eHEY9DoTCrtApzFQ3Nt6jivulZUyRSQPOQWjGWHrYutj/wYfXG/fZ/eHwdWVq7y8H1G3v+W2qvXO/dtauJyIiGSdYRijgT8Dk+o3JbF7F+BK4ErDMOYAN5mmucLnEkVERERERKSN2xPdgUnctq17Qe8MV+OdgtFERERaMcOwbmg84jvWOoNIMTzi8fS62zW/A6+0myylEpNSv94hetD6Wsw4HNrZ0N6um3XNQDxqtYUKoGanFZimm7iLiIiI30r6wuRXrWOTugprW7gdPNUpu3WlSms2pQ0IOM5ZRMSjo/9ov71mV2ohT6mo3tQ0oKi5gVdC12MzU4v4o11X6HZicvsM/JL1b0EeB6PFHcJV3Cy8HT76hnUCsbVxDJsp9j5G+TFw9kKY+AAc85f0a5q2GQo7w3EPwpQ34Ih7YMpsOP4R6wRuazf+V1A+0b3PhseanugWEWnN/PhblS1e3mys3Rt8HdJ6xRO8HqxYlpk6WrtKl/WE6zIYVrv+Eff2/pfAiJszU0uq2g+BC1M4jl16t/XRlgURjLZvIWye7v+4Xmrd8AS8dT7MPAFq9vhfg4hIEGr2wI43ndu3vmL9vf7sNph3NUwfDdtd+ouINOYWjAYw9OvO+1YuBzOJm+C0Bl6C0Wr3tdx2cLN9307jrJtViYiIZIhhGJcCH2CFohk03NWu+Uc9u7b6/SYDHxuGcVGm6hcREREREZG2YUftVtvtBgblBT0yXI13EZfrzeviCkYTERFpFQzDChIDOPy/0x+v/fCW24bdaN+3uE/68zVX/7UYISju0fBhfB5zEIpAuND6utt1VyiaiBejfmC/vf2wzNYhIpKPIsUNxyORUud+RgaCZBNxq8FQMJq0fgpGE5HcUOxyN51D2zJTw4c3ubf3nZaZOsRfJzwGpQO89T3uIejw+Um+SJl9n3UPwRvnwvvXwTtXwCvHWHddeP0UWPFn6+4E2ZZqmODKv8D2N3wtJSfEDtpvD7dLbpzinjD4Khh2A/S7OPV6hnwNwkXW50YIenwBRn0PepzStpKZO9icUG/MjAcTYCAikoscg9GS/FuVDWEPbzh6Wcgr4iRe696+5gE4mKHXjK3ZwS3ObSX9MlfHjrfc2wdcnpk60tWuK1y8D/qen9x+n/4AZoyFJXdZd59pa6IHghl33lX+fz+TCSTf8zEs/rW/84uIBOWg/cIPR3X74IOvQdwh7EhEpLFEwWgAJz5l3ydaZd3gqC3xcj6l8XuoG5+Dedc4H3t2GO1PXSIiIh4YhnEJ8AhQQtNAtPqgM4CdwApgHlaA2kpgV6M+jfcDKAUeNQzjgsx8FSIiIiIiItIW7Ky1v2amc6QrBTl8s+sCw7m2qKlgNBERkVan/yXpjzHg0pbb+pxnfzP3IdekP5+IBG/AF+0DcZxCD0VExF4+r+3P59pFPFIwmojkBrdgtIPbM1PDno+c2wo7J7+gWXJDSW+YujZxv3OXwaArGx4XtHfuu2UGrP4nrH+04edmxxvw0Tdh7oVgms77ZkI8xWA0gM0v+ldHrggibGbYjTRcr50EIwKjvp/6vK1Jl6MS99n1bvB1iIjkAqdwlXwIRvNyJ6YtLwdfh7ReiYLRAF4aCxUrg6+lNavd49xWtz8zNWx9LXGfjmOCr8MvhR3hpGdh2iY45VU45TUo6Zt4v/2LYf6tMOsUiHn4+W9NolXBjFuzG7bP8m+8aLXz60wn6x6ywp9FRHJdKoskKlfC7vf9r0VEWh8vwWg9pzjvv3Ouv/Xkuv2LEvd55zLrZjmL74S5F1jh4U5KArijt4iIiA3DMEYAD2Bdl9g4EK0CuBc4B+hqmmZP0zRHmaZ5vGmaE03THGmaZg+gG3Ae8EegkqYBaRHgX4Zh6Db3IiIiIiIi4ouddfY3ZOxW2CvDlSQnomA0ERGRtqVsMEx0eT/Yiw4jWm4rKIMvvACRsoZtfc+HMbelN5eIZEZxTzjxSQgVNWwb+GUYfnP2ahIRkcyyC8gUaWUUjCYiuaGgg3NbLKCFsY3FY3DIJYDt7AVKTM1nhgHdv+DcXj6h5cm9ou6pzbX5Rdg2M7V9/eK0QHvk9xLvu/xef2vJBRuesN9ud0cLr3pOhpOehrKh9u2DvgonPQOdDwcjZC3s6nwkTH4dOgxPfd7WpN+FiftULA++DhGRXBBEiGemFJYn7rPgJ8HXIa2Xl2Comt2w7HfB19Ka1ex2bqurgLoDwdcwN8HxYXEvKBsSfB1+MgwrfKDX6dDrNDj8N9733f0+LLy94XE8CsvuhRdHwAtDYMHtwQWJZUuQX4+fIZ01u5Lf59AO2DvfvxpERIIST3GRxMwT4PFiePkIWPeYvzWJtEa1+2DetfBsX3h1Aqx9OLn9Nzxt7fd4CTzWDp7sBLNPg30egrSyyUswWmEnKB1k3+/dL8Ghnf7Xlau2vOKt3wfXw2c/TtyvWMFoIiKSMf8DlNAQiGYCPwP6mab5PdM0XzZNc6/TzqZp7jZNc4Zpmt8B+gG/+HyMemXAnwKrXkRERERERNqUnbVbbbd3K1AwmoiIiOSYwVfBxftg0nMw8V/J7TvsJue2nqfCRTvh1Ddh6hpr/HCRc38RyS39psHFu2HKbDh/Axz/b62FFxHxlZHtAtwZioyS1k9HNiKSG4yQFVIUO9iyLVod/Px1+8CM27dN+AeU9A2+BgnW6B/BrndbLu4zQnC0zTWzJWksEPnku3DO4tT3T1esxn57qAj6TIXNL7jvX7ka2vscOBCtgopl1gKnjmMg5Pxm7P8xTahaD6FCqNlhfV1GGDqMtO5I4cX2OWBG7dsiHsdw0u8C68P8/Brs+ucQI2QFINT3iUcBA0Jh22HaLC/PqxXLgq9DRCQXOAWjhfIgGM3L37eC9sHNH4/BgVVQOlBvwDZWtcH6vhd2znYl6Ys7HNs2t9XjgnGx5xaMBlYQlNdj8FRUrEgcijX85vw/pu5/CSy+E/Z7DKxY8hsY8W2ItId5V8HGpxvaFv3CCts69q+BlJoV0QAD+PwMJUslGA1g/1LocqR/dYiIBCHuIZTWSeyQ9Xz77uVWyHO/af7VJdKamCa8cTbses96fHAzvHelde574GWJ99/0Arx9cdNt8RrY9roVUnjeSmiX4o1fguZ0rt5odpzf5xxY8T/2fWedDGctyP/XBonEo1C11lvftR4veNd7nSIikgGGYZwATKEhFK0SuNA0zVmpjGeaZiVwh2EYc4FngNLPxz3NMIzjTdN815/KRUREREREpK3aWecQjFaY28FoYSOMQQiTlmtg6hSMJiIi0noVdoS+51ufb3oONj3rbb+ywe7t4XbQfVJ6tYlI9kRKoccp2Zt/wGWwXjdUFZFWquep2a4AOo5zbnMJzxdpLRT/JyK5I1Jivz3R4mg/uC1q7Xl68PNL8HqfCVPmwJBrG7YN+iqcNR/Kj2nZvziNYLT9S2D1A6nvny6n8IhwO2/BJOse8a8W04SFP4cnO8IrR8PLR8BTnWFNgoU6lavhpcPghUHwXB9rv9cmwqvHwFMd4bPbnMMM68UOwazJzu2dDkv+67FjGNZHKGx9GM3Sn0OR1r9IK1VH3uveXrMTavZkphYRkWxyCkYL50EwGlgBx26CCjrePB2e6QbTR8JTXWDpPcHMk0+q1sNLh8PzA+Cpcph7MURtwqfzhWl6D+eoWpffX2u2JQpGiwUcWL71Nff2DqNg5C3B1pAJoQI4430Y+1/e93m2NzzZvmkoWr1Vf4MDa/yrL9uCPP9Tudy/sRL9vjh570qIpRE4JCKSCc1vKpGquRdAXYCBlyL5bP+ihlC0xlb+b+J9Nz0Pb53v3F5XActtbgSTK8yY/Xaj2b3c+roEK+5fAltm+FdTrnIKkUtH+dH+jykiItLSTZ//a2CFo12faihaY6Zpvg5c32hcgBvTHVdERERERETatpgZZXfdDtu2bgU9M1xN8gocFr5GFYwmIiLSNvQ513vf3ucEV4eIyIjv2m8ff2dm6xARSUfj/In/Y8Cgr2S8lBZ6ToHCzi2395gC4cLM1yOSYQpGE5HcEXYIRgt6ATa4B6MVlQc/v2RGtxNgwj/gCtP6OO5B6OSQklvSN7253r8G3rkcFtwO866Gj26G3R9a4Q5BizkFoxVBxEMw2rYEoQRe1FXAhqfgteNg4R1NFzxFq2DeVdYiLjumCW9NsxaI2bbHYfGv4a0LIO6wkKp2L8wY41yfEYHeZ3n6UiRAzUPk7FT4GGAgIpKr8j0YbfSt7u3RKv+PgQ6stY4Xavdaj2PV8On3YdOL/s6TT0wT3jgX9n1Wv8EKUvo0j8Okkl0Ivnd+MHW0BbUJgp6CCqwyTdg2C+b/0L3fSc+0npP1kRI47OdwqU/f0zlnwr6F/oyVbTGH78nAK6HvBfZtw78Fx/2nZZhGczW7YadNAEkq3M4hJbLkN/7UICISFLdQ2lCSdxR7sj2seRCqN6VVkkirs/Yh++0751r/Rqth8wxY+TdYdZ8VAr7kLvjwm9br4EQW/9K6McmmF5zPN2SLYzBasxuLdJ8EBZ2cx/noZuv7s+uDxDdQyVdxn4PROo5NfAdwERGRNBmGUQSchxVcZgJPm6bp263hTdN8FHgaKxzNAKYahtFKThqKiIiIiIhINuyu20kc+/PM3Qt7Zbia5EUUjCYiItK2DbjMCsNIZNT3oePI4OsRkbar/BgY9o1m2ybAsBuyU4+ISCrG/heUDmq67YjfQrtu2amnsVAEjv1b02sti8rhyLuzV5NIBiVYMSYikkERh2C0aAaC0Xa+Y789XOxcl7Ruxb3TH2N9s2t8V/wPDPkaHPMXCIXt9/FD3GGxU6gICjok3n/n29bCqz4p3g2ichXMPh2q1rr3e2sanPQ09Luw6fa9nziHojW2+QV4ri+cs6hpgOG+hTBrCtTsdN63+0lQ6LKwSjLDaSFcY5XLodtxwdciIpJN+R6MNvBLsPCnLh1M62uMFPs358an7f+ObHoG+p7n3zz5pHKl/THUhqfg6D97CyTNNU6Bv05mHg/nr4PSAYGU06olCnoK4nV5tBrevhS2zHDvN/7XrfOCjEiJ9TqmJkEoXSKVK+Gl8TD+VzDm//lTW7Y4BfBFSmHAF2HTs023h4pg+Degw3DociRsfc16PTz/R/bjzDwejvkrDLs+vTrTCUZb+y8Y91/pzS8iEqS4wyKJcDGcvQC2vAwff8v7ePOuhkgZnPA49DnbnxpF8p3bscSBdfDW1PSDb+ddZf3baRxMegHKBqY3nl+czgc3f78kVABDvw5L77LvX70BPvz8wslBX4EJ/7Qu/GlNkg0KT2Skw515RURE/DURKPv8cxP4XQBz3ANc9PnnZcBxwJsBzCMiIiIiIiJtwM66rY5tXQt6ZrCS1CgYTUREpI2LlMDJL8HmF2H3+y1viFjQEXqcDD1OyUp5ItKGGAYc/Sfod4G1Vr/jKOh1FhSUJd5XRCRXlA6AMz+EzdOtm0L3PBW6Tsh2VQ36XwIdRsPWlyHS3sqAKOmb7apEMiKU7QJERP5P2CGALJaBYLT5t9pvL+oa/NySm8KFTcO2/LL6PuugM0hOARLhIjA8/ul/+1Ko2pjcvBufg3nXwovDEoei1Zt7EdRVNN225RXvcx7aBm+c23TbBze4h6KBtRhTsi/uYXFXxbLg6xARyTanUNN8CUZrPxSOe8i9j1PYTao+/YH99jUP+jtPPtnwpP32mp3O4Xu5rvkb9F7MOcv/OtqCA6vd22edDHPOhP1L0psnWg1LfguPGPBEaeJQNICRt6Q3Zy7rNsmngUxY8BPY5yFgOpc5BoUWQ++zYdxPG+5wU9gFjv2rFYoG1hvoI78No35oBfA4+fAGWPDT5J8XqzbCwp/Bu1fCsnuS27exA6v9/5soIuInp2C0UIF13D/iZjh/A3Q5xvuY0QPw5jkQPehPjSL5zu3mJR9/O/1QtMb2LYTFv/RvvHSYJphx+zbD5kYyY3/ibdy1/4ZNz6deV65yej5O1eCr/B1PRETEXv3drkxgqWma8/ye4PMxG5+k1B22REREREREJGW763bYbu8UKacwVJThapIXMexvGhL1++YbIiIikrvChdD/IjjiLjjq3qYfh/1MoWgikjmGAT2nwLjbrfAehaKJSD4qKofBX4Wxt+VWKFq9TmNg1Pdh2PUKRZM2RcFoIpI7IqX226MBB6O5ja9gtLatMIBgNIBVfw9m3Hpxh2C0UDuoq/Q2RqzaOXDEzsJfwNwLYM393vep92yfpo8XeFzwVG/3vIYwtdp9sOs99/5H/h7adUtuDglGaf/EfQ6sCb4OEZFscwpnCeVJMBrAoCvh7AXO7TGFwGRVvobwpBKMVrG0dS6KD1I8CpUJgtEAtr4KM8bA9jdTmyd2CGafBvN/6H2fk1+2LtporUbc7N9YZhzWJgipzHWJQr7H3QEXbIGzPoPz19qHOxgGdBjhPs+in8Gb53kPmziwFmYeDwt/Cusehqr13vZzUrEivf1FRILkdPwVanS3+dJ+cMY8OGeJ9bd60Fe9jf1aDl4gIJINBR2d2za/4P986x51DiTLJLca7ILRCtrDJR7fz9jyUmo15TI/F62dNd/7TXNERETSM6bR5+8EOM/bDnOKiIiIiIiIJKUqVmG7vVOkS4YrSU3EKLDdXpfKNVciIiIiIiIiIiIiOUhXwIpI7giX2G+PBRyMVrHcua1sSLBzS24L2d9FKW2bX4QPrvceUlYvdgg+/SE8XgyPGNbHm1Nhzyct+9kJF0E0iTk3PA4HtyfuV1cBi3/lfdzmogfg6e5QsdLbfHbeOMtaWFWzG+sG1C5GfDu1OcR/vc+BUIKgi9q9malFRCQTNj4Dr50Azw2A974KNXus7bGD9v3DeRSMBlDkEjy6b3Hm6mir7BaS1/vom94DgHJJqhfpfXCDv3W0dlXrklt0/8l3U5tn83TY9a73/qECKD8mtbnyRY9TYNLzVpBXouNiL5belRuhF6lyDPludBfmdt2h82FQ0MF5nPbDE8+17XV4rBBePwXm/whmngjTR8E7X4JDO5v2XfFnqN6UeEyvKpb5N5aIiN+cjhmb/50yQtBxFPQ+EyY+4G3sfQvTD5cUaQ3cjmOCEKuGR8PW+wkvjoDZp8Ou9zNbA4AZc25zej1bUAadDks89pr7oe5AanXlqriPwWidx/s3loiIiLvGF9gEecDReGxd1CMiIiIiIiIpq4rZn1suDbfPcCWpKXC41iRq5uF1YiIiIiIiIiIiIiI2FIwmIrkj4hCMFg04GO2tac5t424Pdm5pu1b9Hd48F0yXEK9oFRzcBrEaK0xkxhhY+tumwWebX4TZpzYNFIu5LCbvfU5ydXoJLtg1z3kBu1c1O2H6cNj8QupjfPztxMFvZy8Cw0h9DvFXQRmMTBCsUbsvM7WIiARt04sw92Lrb2v1Blj7b5h1ihVg0zyApV64OLM1pitS6tz25jnJh8JKctzuag3sAAAgAElEQVSC0TY8DvOuzVwtfnE6rgUoP9a57dA2qFjhfz2t1cEtyfXf+2ny31/ThJV/TW6fgV+CovLk9slHfafCucvgshr44qH0A9Le/ZI/dWWDUxhist+TDiO8993xBiz5Dex8xwosW/8IzDwB4o2CO5bdk9z8iRzc7O94IiJ+cnoudrjbvNVmwNTVEPGwQOSz26zznH4G/oiId5UrYNtMmD0l80GFbmHMhstNao7x+DrincuSqyfXJRNe7ab3uf6MIyIi4k2PRp8HebDReOyeAc4jIiIiIiIirVx1zP56tpJQfgSjRRzew4v6dY5ZREREREREREREJMsUjCYiuSPsEIwWCzAYLXrQCqawY4Sh07jg5hbZ8RbsW2jftvxP8Fx/eLYXPN4OXhoLB9bY963dC4t/3fDYKaQs3A56ne6+yKi5RCEJO9+BOWd4Hy+RD76e+r6r/gY1u5zbz5oPncakPr4EY/ydMOF+53YFo4lIa7Hyz0CzQNR9C2Db61C53H6fsoFBV+Uvp+P5eusfzUwdbZVbMBpY33+nEL5c5RTMAXDSs+77bnnZ31pas3gKd4nd+pr3vvuXwDPdYfus5OY4/K7k+rcG4SK4cJt7n67HQZejnNs3PBl8wHxQnMIQw0XJjVM+Ib06KlemF9qdSPRgcGOLiKTL6e7xiUIqywbDWZ/CkK+591v3sHWe8+lyWPdIajWK5LtUjr/rlQ5s+r5V1+NSGydaBQt/mnodqTBjzm1ur2e7efwat8yAPZ8kV1Mu8ytActgN/owjIiLiTeO7HAT5Jm/92AbQJcB5REREREREpJWrih2w3V4aLstwJamJOKwJiDq95yciIiIiIiIiIiKSZxSMJiK5I+IQpBDkgt6KZc5tfXQXdcmAj29u+BmPHrQCBuZeBB9/C2r3eB9nxR/BNKFmD8QcFllHyqCwExz9R+/jVm+0/q07YIVLrH0IDn6+UL92H8w+3ftY6ep1lvU1OInXwaYX7dtCRdB5fDB1SXoMA4ZcDcc7LIat25/ZekREghCtgq2v2rfNOQNih+zbOowKrqYghMJWEKuTNQ9mrJQ2yTDc280obHwqM7X4xS0YLVICF7mE4u5f5H89rVUqwQyf3gJbZzZ9/qraAGv+BUt/B5/9Fyy4HeZeAjPGuAcY2xl8DbTrlnxdrUFhZ5i6Fkr6N9powBH3wBUmnP4unPkRlE+039+MwfY5GSnVd06/84nCeJrrcYr7a0cvdr0H+xbBpz9Mbf+icuc2p9fsIiK5wOm4IGR/t/km2g+BCX+Hy+OJ+9ZVwLtfgvevs44dVv4N9i1OrlaRfJVqMFpRV5i6Bs5eYB0XXmHCqW9CuDi18dY86F/4lhepBqMB9DzV2xyL7/ReT64zffi/6X8J9Doz/XFERES8a5xuH2QwWuM3kF3elBARERERERFxVx23D0YryZtgNPv38OoUjCYiIiIiIiIiIiKthP3tIUREsiHsEIwWCzAYrXKFc9ugq4KbV/JD6SDYvyTYOXa8Ba8eCxMfsBYC7luQ+lgr/mwFkjhpP9T6d9iN0PU4WPJbWO8QRlVvyW9gwOXwzmUNQYKhQjjpWajZ6f33s9cZMPQGqFwO83/kbZ/GinvBKS9ZwQuvHOX8/7L5BfvtBe2Tn1Myq7CT/fa6fVboX6KwFxGRXHVgLcz2uIC3uQ4j/a0lE8LFzkFvu97zZ46oAmVsuYWI1TuwJvg6/OT2NYUKrXC0IdfB6n+0bHcLwZamUglmiNfCnNOhyzFw8nTY9jq891V/Fu8bIRj+zfTHyWdlA+Hs+bDxGSuQuvskKD+maZ9hN8Luefb7v3kuXB6zvpf5JF5jvz1UZL/dSbjI+v4s/W3qtSz9bXr7n/mp9dq1ZmfLNgWjiUgu8yOk0jCs4KaXDkvcd/U/G+8I438JY37sfS6RfJTqYqQBV7Q8RxoqsM7fr7k/tTF3vQfdT0pt32SlE4w28EvWa45ENj4FS++BUbckV1suSuW11ZG/h8Iu1g1vOh8Bvc/SeXUREcm0xidxglyB3fgPpYcUZxERERERERF7VbFK2+2l4fy47rzAsH8PL2p6uI5MREREREREREREJA/k2eo4EWnVIg7BaNEgg9FWOrf1nRrcvJIfMrUYf/9iKxwtnVA0gI9vhg9vsm+LtIfi3g2POx8Oh/3c27gvH940WCJeC+9eAfsXea9twj+g3zQYfSu06+l9v3r9L7P+DbeDsz5z7le1zn57QYfk55TMKnAIRovXKThARPLbrMmphVGVDoKC/LjzZBO1e93bTTP9OaL2d+ps87wExh2yCejJZU4hSdAQlNTlSPv2nW9DzR6oq4Sld8Pbl8IHN8C22bDxWZh3LbxzBaz8K8Rc5mkL0gkz2/MhfPZjmHe1P6FoAEf+Aboc4c9Y+aywMwy51gp1aB6KBjDoSvf9NzwZTF1BcvpdDCcZjAYw7o70aklVuAROfAJK+0H3L9j3SfS3UkQkm5wCU0NJZg10HAtlQ5Oc3ITPfgJ70zxHKpLrUgkm7nUGjP+FfdsRd6Vey+uT4OPvwJ5PUh/Dq7SC0b7s/f2aT78P+5J47yJXxVN4fTXyOzD4KzD2NuhztkLRRERERERERERERBJwCkYrCeXHdXsRI2K7PerXNTwiIiIiIiIiIiIiWaZgNBHJHZFS++3RquDm3Pm2/fa+08DQU2Sb12MylA7IdhX+6DCy5SIYp985L+r2w8ZnvPXtOBpK+jY8Hv+r5Ocr7tXweSgCo36Y3P6R/LhzV5tW6BCMBvBRhkIKRUT8tvZh59DORHqf5WspGdN+mHu7H2EwsUPu7aksHm4N4gm+LwCHdgRfh5/iDncvNUIQ+nzhfIeRzvs/XQ4zRsOnP7BColb9DWZPgbkXwpr7Yf2j8OGN8OZUiLXhO6WmEszQ2Op/Ov9fJevsRTBCx36eGCE4/hHn9tX3Z64Wvzj9HIXs73DsKlIKR/9PevUkq+fpcMEW6H+J9ThcbN9v7b8UyCgiucvxuTjJYDTDgDE/SqEA03qeFGnNkj3+nroaTn7Z+eYfReUw5rbU61n+B3htImx5OfUxvEgnGC0UhqP/BGd6DHB7aRyYce+15aJkF601vjGOiIiIiIiIiIiIiCRkmiZVMfsbdJaF8+O684hh/x5e1EzzWiARERERERERERGRHKHUHxHJHeES++2x6mDmi1bB9tn2bZ0OC2ZOyS/hQjj1LWtxc77rPqnltnY9oGxI6mMeWOOtX79Lmj7udXrywYPdTmz6uKRPcvsX5Mcb1G2aWzDamgf8CdIREcm0T7+X+r4DvuhfHZnU7ST39ppd6c8RO+je3laDFKIJvi8ANTuDr8NPTmFljUOSOh0GGPb9AKo3JZ5n22vOrw3bgnSD0fzSYzJ0GpPtKvJL7zOd23bMgdr9mavFD3GHsLBQUWrjZTpktOsEKOzY8DjiEIwGsG1W8PWIiKTC6bgglZDKwdfAkb+D4iTP4y37HTxiNHxMHwXrn0h+fpFclczx99DroWxwy5ueNDfwivRreuNsiLuEl6XLLcQ8UTBavc6HQ+lAb323z/HWL1clG/o+9vZg6hARERERERERERFppWrMQ8SxPy9ekufBaHUKRhMREREREREREZFWQsFoIpI7Ig7BaNGAgtH2LXZegNLn3GDmlPxT2h8mvwqXRRMHfeSy4d9ouc0wYMz/C3bekr4w6paW24Zc532MHpOh68Sm25JdUFnQIbn+knkFLsFoANvfzEwdIiJ+qd4Eh3akvn++HncM/6b7gubqjenPkSgY7f3r2mZwQvxQ4j75FjQadwhGa3xRX1F5y2PFVGx9Lf0x8lUuXAxphOGIu7NdRf4p7Ax9zrNvi9fB1lcyW0+6nH7nwykGo5UNhgGXp15PssLtmj12CUZb/odgaxERSZXTc3HIflGFK8OAkd+FCzbBJZUwOsXzkBXL4J0vwpoHU9tfJNckc/w94lve+nUcDX0vSK2ext6+2LktWg3Vm1Mf23QJXQtFvI1hGDDmNm99t8301i9XmS7BaCX9mz4uGwr9Xf7vREREMsv8/N+JhmFMCuIDmJDNL1BERERERERah6pYpWNbabgsg5WkzikYLWo6vOcnIiIiIiIiIiIikmc8XmUsIpIBYYdgtFhAwWg7HO4WHymFLkcFM6fkr1AYht0IO+dmu5LkDb4GygbZtw25Foq6wtqHYOPT/s7b+1yY+E8osLlr1jF/gY7jYMsMKOwC7bpB1QaoWtfQp7CTFYo26vvWgqfGinsnV0skP+7c1aZFiq2fhdo99u2NfzZERHKZacKiX8DCO1IfY+rqln/78kWXI+DMj+Hlw+3bZ59qLWI+7Bepf42JgtEAVv4ZBlya2vj5Kurh++IUDJ2rnBaCNw/mGPRl2PVeenMt/70VpjvudjDa2H0E4i4L7oPSYwpEq6xgu4KOMPpW6HxY5utoDSY9D486/Mxueh4GfDGz9aQjVmO/PVSY+pjH/RsqlsPeT1Ifw6tQEsFo29pwGKOI5Dan48V0nosBCspg/K+g4xhY/xgc3Aw1O61Aaa+W3g2Dr0qvDpFc4PV12eCrrMAzr058HJb9Hra9DiV9YOj1VoDWkv+G3R/C7nmJx9j0HBxY2/T9hHgUPvkerPqrVXuHkXDik9BprPfawD0YzS1gvbmh11nvaax7CDY+S0P2SjNLfgOH/3dSJeYUt5+T09+znhP3zbfezxx5i/XaSkREJHcYwKMBz2F+Po+IiIiIiIhISqpjBxzbSvIkGK3A4eZGUbebb4iIiIiIiIiIiIjkEQWjiUjuiDgEo0UDCkab/yP77e2Htb2F8OJNvwuhz3mw+cXs1VDcx1o4mIwRN7u39z3f+qjeBM/1S722xkbf6r7oyAjBiG9aH6ko7Z9c/8JOqc0jmTXkGmtBl53YoczWIiKSqvWPpReKdsTdUDbYv3qyofN4KOnrHHKw+FdQOtBazJwKL8Foez5Nbex8Fvfwt7J6A1SuhvZDgq/HD06BXaFmp7OGXAcf3pT+fIt+ZgUADP5q+mPlEzPDgXmX1bX8P5TUGYYV4r3yLy3btsyAWC2E0wyzcVO7D7bPgeqNYESg8xFQfqwVLp4MM+4ShliUen2hCBz/MMwYlfoYXoWbB6O1s+8nIpLLHIPR7BdVJMUwYNCXrI96Myd5vxHF/sWw6j7rPGa77unXI5ItXoLRyo+FI3+f3LihAhj9Q+ujsaP/aP27+E747MeJx3lhMFwWbTieW3YPrPhTQ3vFMnhpHFxWm9xzg1/BaAD9plkfAM/0hEPb7ftVroL2Q5MbO1c4HRsbESjpDUf9LrP1iIiIJCcToWUO6agiIiIiIiIi3lTFKm23GxiUhEozXE1qIoZDMFq+3TxTRERERERERERExIGSf0Qkd4QdgtFiAQSjLbnLua39cP/nk9YhXAQnPgVfeBFG/dChj8PPsV9OSPLGyl2Pg07jvfUt6QtT1yZfU3NTZruHovmhuLcVqOKVfq/zw9DrndtqdmWuDhGRdCzzsHB5wv1w6QH4wnToMcX6OzXup3D6PBh1S+AlZkRRV/f2DU+kPnbUQzBatNIKA2pLvHxfAKaPgEW/CrYWvzgtnDeahWqFCmDqan/mnHcV1OzxZ6x8kemLIRWK5r++0+y311XAno+Dm3fvfJgxBuZeCB9/Gz76Bsw8Ht6alnzIfdzlOTuUZrBbhxGZeU3YIhit2LmvHwFDIiJBcHo+dlhUkbZhNybX/4Ovw/SRsG12MPWIZILT8XdxHxj3MzjhMescu983+xj0VYi099Z37b8aPl/zoH2fN85Nbn4/g9EacwuQe3EYmHmameI1KFxERCR3mQF/iIiIiIiIiKTFKRitOFRKKJ3z1hnkFIxWl+mbJIqIiIiIiIiIiIgERFfOikjuiDgFox0CMw6GT1mOsRqYf6tze+cj/JlHWqdwIfQ51/rofRa8db612Byg7wVWcNnci2HLdP/nHn8ndDsxuX0m/BOMJG7GXNInufEbM0JwxkfQJQO/Q4ZhLf5ffq+3/h1GBluP+KP9UOc2BaOJSD7Y9jrs+dC9z+BrYMjV1ud9zrE+WqNEwWjbZqY+dsxjAFjtbijulfo8+SZ+yFs/MwYLb4deZ0D50cHWlC7TYSF482A0sEJzi7pBzc705517AZz6Zvrj5ItMBqP1PD1zc7Ul3U+GSClEq1q2VSyFbsf5P6dpwvtfh4NbWrZtmQ7P9oYzPoAOHgPJYjXObeGi1GqsZxgw6VmYfToc3JzeWG6SCUZzaxMRySanRRLphlQ6GfBF2DUPVvzR+z61e2H2FPhijXWuViTfOP2e9Z0K424Pbt6S3jDxfvjwBqjZ7d73/Wth0/PWa4WKZfZ9tr0G+xZDpzHe5g8qGC3Re3qPhqDfhRApg24nweCrIZQHC9ocXw8rYFdERHLaBhRaJiIiIiIiInmiKn7AdntpuCzDlaTOKRgtqmA0ERERERERERERaSUUjCYiuSPsEIwGVvhBpNSfebbPcW8f9BV/5pHWr8fJcOEO2PMRlPSF0gHW9iHX2gejTZ4F7YfBkjth5V8Sjz/xAeh0GBzaAeXHQFF5cvVN22wtdkpGqAAi7SFqfxcsRyX9Yeoqa/9MSSYYreOoYGsR/wz/lv1iWAWjiUiu2/U+zD4tcb/eZwZfSy4o6hbc2F6D0WraWDBazGMwGljB06v/kcfBaDaL2I0QDLsBFv0i/Xl3vAU73obuSYYS5yun73MQhl6XubnaknAhdBhtH875/rUw5Br/59y/2D0MtG4/vHosTH7d23NNvNa5LZRmMBpAx9Fw/nrr9fvye2H9Y+mP2VzzYDTXvgpGE5EcFXN4Pg7qnJ8RgqP/AKO+D/sWwLJ7Ep+/r/fmeTD51WDqEgmSUzBxJgKv+l8MPU+FihVQuwfeOMu57+YXEo/30li4PObtxkZBBaN19HBTlI3PWP+u/TdsmQEnPZPcDWWywel1WkiXd4iISO4yTXNgtmsQERERERER8ao6Zn+tfEm4fYYrSV2BgtFERERERERERESklfNwlbKISIa4BZ9Fq/2bZ/8S9/Zkg6SkbQsXQbcTGkLRAPpNgwn3Q9kQMCLQ/Qtw7groORlK+1mPvRh8FXQ50gpQSSYUrctRcObHqf8sF3VJfp/T3s5sKBpY3/d2PRL3K+nX9P9HcltRV/vtmQxG2zwdZp8O00fChzdBXUXm5haR/LXwZ4n7RMqgVxsJRisdGNzYyQSjtSVuoUJ2Vv3NCkjLZfEkF4KPvQNG3+rP3J98z59x8oFTMEO6Jj0H3U+2XieUDoJj/wb9LwlmLoEOLoEQ+xb7O9fuj+ClcYn71e2Hxb+ybzuwDuZeBC8dBnMvhj2fOI8TKkypzJbjhKHrBDj+YRhzm/V6MlIK/S5yfu7oMML6OfY0frNgNLfASgWjiUiuclok4ddzsZPSftDnHDjS400QALa9Bi+OgE3PB1eXSBCcjr8zdX69sBN0PdZ63+HY+9If79EwVKxM3K92j3NbOsFoAOd5mL/epufg0RDMPsM6rs1VTq+HDQWjiYiIiIiIiIiIiPihKnbAdntpqCzDlaQuomA0ERERERERERERaeV05ayI5I5IiXNbzMdgtNq9zm2j/59/80jbNuRq6yNe13JBk5eQro5jndsGfhnWPWTfdvp70HWi9zrtFHaGqvXe+5dPsBYvZlooAuN/De9f695v7E/AUBZs3mjnEIxWvTEz8295Bd6aBmbMelyxHPbOt8L/9HMkIm52vp24z2G/gIL8uaNkWsqPDm5st6CZxmrbWjCaw6JpN7s/shbE5yozyYXgoTAc/t8w/k6IVkKoqOG1ZEFH62/5snvhk+8mnnvPhxCtcg/wbi2CCEbrfQ70mQp9z7d/TST+6+gSjLbhCejkIcDTi8pV8Oox3vtveq7ltpo98MKghsf7FsLGp53HCBd5n88LIwTjf2n9XTZj1mvLmj2w5kE4tL2hX9lQOPNTiBRbX/fME5u2N1fQoenjeI1zXwWjiUiucgrbzdTf8s6HWccQm1/w1r9yhXUe5wsvQp9zg61NxC/ZDkZrbOh1sH8RLP9DeuNMHw7nb2h4n6Bmj/X1FLQH04TqDTBrsvP+TuHXXrUfagXRb33F+z7bXoMdc+CsBe7H0tni9Ho43e+ViIiIiIiIiIiIiABQ7RCMVhJWMJqIiIiIiIiIiIhIrlC6g4jkjrBLMFq0yr95Nj/v3Nb/Iv/mEQH7xUxdjobiXu77DXEJ+xr6NfvtA7+cfigaQGGX5Pp3cglxC9qQa9zbT3gMhn49M7WIP0oH2W8/uAW2vBr8/Kv+2hCKVm/Xe7D30+DnFpH85hbkWzoATnoGRnw7c/VkWxcPwWjzrk4tkCl20Fu/mjYWjJbKBW2vTYDqzf7X4pfmf5PrJVoIbhhWQFG4yAr9LezcEHDqFsjd3BNlsOZf3vvnKz+D0bpPgsN+aT3nGYa1TaFomdHbJQxm0c/9+39emELA2paXGz4/tBOeLk9u/1Bh8nN6YRgNzydFXeDsBTD0BitUY+QtcPq7VigaWGEbp70DJX3tx4qUQnmzwDincCFQMJqI5K6YUzCazyGVbk562gq67TDC+z4LfxpYOSK+c3rtlq3j5jE/aRnwmoo198PB7TBrinW891RneLobPN0Vnh/ovq8RTn/+k2ckv0+8Dhb/Ov25g+AUfu4UFC4iIiIiIiIiIiIiSamKV9puLw3nz41PnYLR6hSMJiIiIiIiIiIiIq2EgtFEJHe4LVCPugRNJKOuEvYtdG7vcpQ/84i4CUXgiHucFxSWT3QP/Op2Agy+qum2rsfB0X/0p75kg9E6jPRn3lRNfMB+e4dRMOCLma1F0uf28/TGmXBoV7Dzb3IIz1xyV7Dzikh+M03nAKeux8H566DfBQ0hQW1BSb/EfdY8CJ/emvzYXoPR6iqSHzufOS2aTmTuhf7W4acgFoK7BXLbmXcV7Pk49flySfVm2PgsbJ9jPW/VMx2+z50Ph4jHu+D2vQAuj8Opb8LY2yAcUJCVOOt8WEMAoJ0Pv5H+HPEobH4x+f3eONsKRAN45/Lk9w9nKIynXXc49i9wystw5N3QrlvT9vZD4PwN0P+SptuNEBz955Z19r3AeS63/ysRkWyK19hvz+Tf9lAExvwIzl0GV5jWMUYiez6G6k32bfuXWMdAez7xt06RVDkF1josXgpcu64wOoXX5s3tfBee6wvbZ1uPzRjU7ILaPYn39SMI1wjB5NetwNpkrHsIFtwBH94E6x+H2KH0awEw47D3M1h1H2yebr0/mdT+CkYTERERERERERERCVJVrPUGo0UVjCYiIiIiIiIiIiKthK6cFZHcES52botW+TPHK0c7t42/0585RLwYeDl0GmctEorXQlF3qFwJHUZA/4sh3M55XyMEE/4J/S+FXe9Bh9HQ97zkF/w4KeycXP9uk/yZN1V9p0H4ppYhKQOvyE49kp7S/tbPv9MCtG0zrd+fTDu4NfNzikj+cApFAzi8jQYrGoZ1TFG7173fhifgqN8lN7bXYLR4bXLj5junxfWJ7P4A9i2CTmP9rccPjgvBw6mPmcox85LfwIlPpD5nLlj9AHz0jYbfn24nwMmvQEGZ889OST+YMhuesglO7n02DLgCqjdAx9HQZ2rbCn/MVVPXwfP97du2vpr++PsWQN3+1Pbd8CT0OQe2z0p+X6dQ8WwwDDjhcRhwufV6vLCT9fvQ+fCWfTuPdx7HKXhIRCTbnJ6fsvlcbBhwzlKYMcq938xJcP6aptvm/+jzsPvPQ2EHXwUT7tdxi2SX0/F3KEvBaAAjvgMLf+pcW98LrGN/t9Doba+lNnf5RP9CY3tOgbM+g43PWPXGDsHqfyTeb9HPrX9X/sX697yV0H5o6nXEo/DulbDh8YZtpQPgCzOg0xhvYzi9Hg7p8g4RERERERERERERP1THDthuLwl7vIlgDihQMJqIiIiIiIiIiIi0crpyVkRyRyhihaPZBR3U7Ut//IrlULnCub2jx8UIIn7pNDb1AAojBL3Psj78VmQTfOCkuA+UuwQOZkJhJzjhMXjncohVW9v6ToOR381uXZIaIwTtekHVWvv2fQuALASjacGsiKVqI6z7D1RvhO4nQ/9L9PsB7oFUbXnB6shbYMFP3Psc3AybnoetM6GoHAZ+CToMd98n6jEYzW3BdmvktGjai/WP51kwWhq/V26B3E42PAnP9oUj77HCifPpeS8egwX/BUuaBYHvfAfe+zJMetY9mKGwM5y7DGafZj33A3Q6DI69D0p6B1u7JK+0H7TrCYe2tWyr3gC1+6GwY8u2eAzWPQx7P4XinjDsG1ZoXnP7l6ReW8VyK2wvFan83gbJMKDfBdaHa78QDP06rPp7y7aYgtFEJEfFHMKFw1kOqew4Eo79O3z0TecA5Kq1sHcBdD7Merx9jhVw29iaB62Psbdbz9ElfYKsWsReLgajRUrg6P+FD77Wsq1dDzjpaesYaOtrMOcMf+fud6G/47UfAqN/0PB48FUw92L7Y2QnLw6zXvsNviq192Devtg619FY1Xp4aSyMuQ1G/8j+eLuxeACvh0VERERERERERETk/1Q5BKOVhvInGC3i8N6CgtFERERERERERESktfDp9ssiIj4pKrffXrM7/bE3POXe3svnxRwi+aowiWC0cXdYi72zre9UuHAbTJ4F562Ek56BSGm2q5JU9b/Eua16U+bqaCKPAlBEglKxHF49Fj77Maz8C7zzRfjwhmxXlRs2v+jc1pYXrA7z+PPx1jRY+WdY9HN49RjYNc+9f/yQt3E3Pg1bXvXWtzVIJxitar1/dfjJaSF4WoGDZmq7HdwM71wG730ljbkzLB6D2VNahqLV2/ScFZDmdDFk/V1lO4yAqWvg9PfgrM/gzE8UipbLRn3fua1yZcttpglzL4B5X4Xl98L8H8GMMVBrE1BfsSz1ug5ugsrlye83/BfDx+AAACAASURBVFv5FUbYXPlE++1xBaOJSI5yen4KFWa2DjtDvwbTNkHnI5z7rHmg4fOVf3Put+jn8NI42POJf/WJeOV0/J3NYDSwQsDsjl2G3tBwPNbrdCgd5N+chZ2tkMIgdTsBpq6CKW8kt9+GJ+CNs2HhL5Lbb8FPW4aiNbb4V/BcX/vj7cYcA/Ta8HkmEREREREREREREZ+Ypkl1vNK2rSTcPsPVpC5iOAWjRTHNFK+REhEREREREREREckhOZBkIiLSSGGAwWhugRUnPAbhHFjcJZILCjt76zf+ThhybbC1JKOgPfScDO2H5vfCeXEPRmvXPXN1NKGfKRGW3g2HtjXdturvsH9pdurJFWbcPSAu2wubs6mo3DrOTkZdBSz8qXufeK338Rbcltz8+cxp0bQXNbv8q8NPZsx+ezqBg05ha16t+w/seCu9MTJl8wuw4033Pu9f5y2ALhSBrhP/P3v3GeZWfedt/JY0fdx7t3HFBoyNwfTeHXpCKMmmV9iQPEvabsqm955N2M1uCmwCaSS0UBIILfSOKabZuPfumfF4RtLz4uB101GXRtLcn+vS5dG//kbWaCTNOV/BwJkQjRWvRhXftI+F9215I5isux2evBKujcB10X3fL2lfAn8c+EZ/DK6rC75+/qvha5/xRPq6lv4JnvpEdt/D7g75bu5zKkmsMXV73GA0SRUqNBgt5PGs3JqGwtyfhfe/9IPgNVqiG5b8Lv1aOzbCc18Jvl51F9x1Etx2CDzxL9C5oXg1S3sLDbzq4fcPonVwwi0w5vwgDLFxMMz4Vzjwc3uOOybDz1a2GgbBSX+Dhv7FWS+dulYYfjwcdV3uc+d/Pnh82L4m89jt69I/Z96pa3PwfHvZTeFjwsLPe3MAvyRJkiRJkiQVyY5kJ90h78O2xvqUuZr8hQWjAaHfnyRJkiRJkiRVE4PRJFWWxpBgtB0FBqN1rof1j4T3j7+osPWlWtIwKPOY0x+DAz4NEZ9KqAQGHxre192+6+vta4JLPIeAnHTSfTqaYXsSLA458fX1X5e3jkqz5v7ghPowvf2E1eEn5j5n5R3pQ75yCQDb8ER2Jy/XgkIOZutcW7w6iinse4oW8HPVZ0J435TLsltjcY6Bfz1leZqT7HfasgC2vZa6r6eDGZSfaAz6H5i6b/Vd0LYYbj0IFnwvu/WSifCQwp0O/BwMOgTOfCa3WjPZ/18K+3mvBGFBQonO4L2qYr2WkaRiCXtcCgt67Anp3jcCuO882PpKdmst+3MQ+P33U2D13bDxKXjp+3D/+enfJ5IKEfaaNs3JS2XTOBiO+xNcuBUuWAuzvrZvMHK/afmvX98f3toGlybhLeth0JzC6s3VuAth4CG5z1t9N9x9JiQyPC9ee19ur83vOxeWhXyok8FokiRJkiRJklQybfGtoX2tsb5lrKQw9WmD0TweQZIkSZIkSVL1M81EUmUJC0brLDAY7aUfh/cd/vPC1pZqTWOGYLTmkcFJ71Ipjb84dXt3G2x8Fq6rhz8NDy6/a4SnPhGENhQibeCDT5vVyyWT0B1yMNDCq8tbS6VZcUv6/t4eLBRrzm/etoXhfYkcA8C2vJxfDdUml8C4vXWuK14dxRT2fx2JpW7PRv8DoXX8vu0DDoJD/wPGvjnzGq9clf/+5fLaz2Hhr7Ibu+be1O2VEMyg/Ayem7p94S/hxgnpH2ML2W/gTJj55eKtO+HS4q3VU8KChHZshOuHwJ+GwvwvGr4jqXIkOlO3hwU99pTzV4b3Lb8ZHn5P9ms9+sF929bcB8szvNaT8hX22q2S3j+INYR/UER9v/xC0CEIvq1ryb+uQkVjcMrdsP+VMOiw3OZufBKWhHxowE7ty3Kv6b5zUodShr0erqT7iSRJkiRJkiRVqbTBaNHqCUarSxuMVsCxZJIkSZIkSZJUIUx4kFRZGkoQjJZMwHNfDO8fOCv/taVa1Dwmff+cH0PEpxAqsYaBqds718Gdx0JyrxPDXvwOLPh+YXumC5QJOxFQ6i12bAzvCwtM6y02L0jfH60rTx2VKtaU37wtaW7XXA/aSrdWLck1MG53lRqMtvfv+50iBfxcRSLB89low662WAsc8r2g74hf7tkXpqtCH/val8HTn4ZH3lf4Wr398auajT67vPvtHowx5tzirDnt/8GgOcVZqydlChLq2gLzvxCEGUpSJQgNRsvi+VE5NY+AYceH969/uPA9lv1pz+vJJGx6Hhb/HtoWF76+eq94W+r2SgsgTCefMNx++8P0TxS/llzV94NDvgNnPAoXbYeBs7Ofu/RP6fs7VuRX06Pv37ct7PWwr9MkSZIkSZIkqWDt8W2hfc2x1jJWUph0wWhdBqNJkiRJkiRJqgGmmkiqLI2DUrfne6J+dwf85cD0Y3I56UHqDfpOhn7TU/cd9lMY9+by1qPeKdaSun3lbUF4QCqL/rewPRM7Cpsv1bKOleF9XVuCINreatsr6fvTHHzUK0Tz/P7XPx7ely7IMpXeEoxWyMFs3dsgvr14tRRLWNhboSeCjzkbznwKDv46zP42nPkkjDgl6KvvCxPelnmNrS8XVkMpLPpfuGkyvPDN4qzX2x+/qtmQw8u314hToG63g4L7Z3gPJpUZn4Lpn4T93hGEbJx0J8z5XvFq7EnZBoQu/m1p65CkbMVD3huJVWBg0+QPlnb9Rdfs+jrRHQTP3nogPHAR3DgBnvtqafdXbUrEoXND6r6mIeWtpRBDj4Zzl4T3R+qgdUJw6TMZDrsK5j0Ldc3lqjA7sUY4/ZEgIDsbS69P/9q5Pc9gtBW3BeGLuwt7PVxIULgkSZIkSZIkCYC2ROpgtOZoC7FIrMzV5K8uzXvG3WEfwCFJkiRJkiRJVcQjZyVVlqYRqdu3vZbfenedAFteDO8/7gaIRPJbW6pVkQgc83u4+3To2O1EnoO/DlM+3HN1qXepy+MT1zY9E5xAlu/jetpgNPOE1ct1ZDixc90jMPTI8tRSSRJdsDXD89RCA5x6q+U3wcFfTt1nMFpqYSdNZ6tzHbSMKU4txZKMp24vxong/WcEl1RmfQO2vATrHgyfv3kBDJpTeB3F0rkeHv0gJDqLt2a+wYbqeU0joK5PEHpYaqPP3fN6JALTPw4vfie7+fUDgteatfreTDTLIKHVd5W2DknKVthziWwfz8pp/MXw4KWlWz+ZCAKsGgcFAZYLf7Fn/7OfhRGnwpC5patBtWfHBiCZuq+xioLRAFrHwls2wf0XwOq/B21Nw+GIq2HU6T1bWy6i9TDxXTD85OB72ZAmqB3glunQOh76TIR4JyS7Ycnvgw/6iLfnV0PnWti+CppH7moLO2HNYDRJkiRJkiRJKlh7fGvK9pZY3zJXUpj6NB962F3Ih2xKkiRJkiRJUoUw4UFSZek7NXV7xwroSv0HqFCPXQbrHw3v7z8Dxpwb3i/1ZgMOhHMWwSn3BwGCF6yBAz7d01WpN6lryW/ejo3575kuGK1WgxqkbG1fnb5/+U3lqaPStC0OP1F1J09Yzc+mZ2HbwtR9uX6aZW8IRkvECT25Plud64pSSlGFnghe4k9mbRoGp9wLZ6Q5IX7tP0pbQ66W/gniHcVd02C06hWJQN8ppd+nZUwQIrG3cRdlv8bIU2v7uXasAoOEJCmd0GC0hvLWkY1IBM56qbR73DItCGbeOxRtp+U3lnZ/1Z50r7uqLRgNoKE/nHQnnPFE8Brq7FeqKxRtd61j4fRHgr+JpNP2Oqy5Fxb+EhZfG4SiQf6haDtt2evxLOy96lK/HpYkSZIkSZKkXqAtnvqD5lqjfcpcSWHqIuF/w+tOpvuwaEmSJEmSJEmqDp6hLamy9JsW3rf1FRg4C7a+ChueCC4bnwxCcFonwMyvwIADgrFbXoFXrkq/1/hLi1a2VJNiDTDsmJ6uQr1VLM9gtI7l0Dgov7npgtGo4bAGKRuZwnaW3Qizvl6eWirJ9rWZxxgsBCPPgJW35z5v+S0w7Yp92xM5fppl2yKIb4dYU+41VItsw+JOvgfuOiF1322zYcLb4eCvBSeEV4LQYLQyvJ0VrYNBc2C/d8Cia/btf/U/g5/vQ75bGT/nS/+UeUzfqXDiHXDTftmtabBjdRt6NGx8Kv/5kbrgZ7DPJGgeBRse3/P5wJAj4dCfQH2Kg4L7HwD1A6BrU+Z9xr45/xqrQdOw7Mc++XGY8SloGlq6eiQpnUQckonUfZUa9NhvKkx6L7z289Ks37kOVt4Bq+9O3f/81+Dgr5Zmb5VWMgHxziAMcOe/iR37tqXq26d/R+o5qebuSPP8qGFw+b7/YopEYNAhPV1FcUSiwd9EzloAt+xf/PWP+CU8/O7UfXedCPOehQEHBdfDPgCkoX/x65IkSZIkSZKkXqYtvjVle0us2oLRwo9Z6sr1w0clSZIkSZIkqQJ5hqOkytIyFqKNwQkie3vwUuhYCV1b9u3b+DSs/Cuc9SK0joMVt6bfJ1oPU/+5ODVLkoqvLs9gtPYVu04ey1W6oJ1INL81pVoRT/HcbHdbXgyCaftNKU89laJzXeYxBgvBtI/BqjuzD+/aadNzqdtzDUZLJqBtaW3fP7O9TYYfDw2DYMeG1P2v/xpW3wVveh4aBhavvnwlQu4z0TL+XI16U+pgNICXfwzdW4OT23tSvDO78MEznghCrObNh1uzeL5U11x4beo5Uy4P7rup3kMBmPQ+eO1/wudfuCV4b6ZhQO571zXD9Cvh2c+lHzdwNox9S+7rV5OmEdmPXfBdWPsAnPoPiMZKV5MkhUn1nvxO0QoNRoMg3DebYLTxl8JRvw5eH+xYD099EhZdnXney/9ReI07da4Pnmf3tveZEt2ZA8MK7cs1pKzSTgaqa/X5dyXpNw2O+SP8o8jPVaMNQYDx2gdS9986E057KHgO2bEi9ZjGIcWtSZIkSZIkSZJ6obZE6mC0PrF+Za6kMHVpjk3sTuZ4jJ0kSZIkSZIkVSDP0JZUWaIx6DsFNqcIQdjyUvq58XZ47itw+M9g3UPpx56zyE9Vl6RKFmvNb17H8vz3TOwI79v4VP7rSrUg3QnyOy2/Efp9vPS1VJJsgtGi4Z/K2GuMOh1OvA3+fmpu83ZsTN2eazAaBMEH1HAwWi4n9TcOCQ9GgyCMetGvYdpHCq+rUMl46vZyBg6OOhPq+kD3ttT9C38FRODw/+m5gItlN2QeM+K0IBQNoP8B0GcibFuYfk6/GYXXpp7Tf3849QF44Vuw4fFdjxPNo2H8xTD5A+mD0eqagQLCOQ74TBDosPi3sH0VdLdBfd8giKSuFYYdDwd9ofYDwCKR3MavfxiW/AEmXFyaeiQpnbTBaA3lqyNX2YYETbg0eFyOxKBpGEz5cHbBaCvvKKw+gA1PwoNvD0LF6wfAAf8G0z+e+++JTJLJ4PVSysCwTojvSNFWypCyN/qTieJ+n7XIsKvKM/L04q8ZrYdBc8OD0QD+emT6NbyvSJIkSZIkSVLB2uOpjwNqifUpcyWFiUQi1EXq6E5x7JjBaJIkSZIkSZJqgcFokipPv2mpg9GysfxGSP4nJLaHj5n9XWgZnd/6kqTyqGvJb17Hivz3TBeM1rESdmyChgH5r1+pti0Kgt8GHQqt43q6GlWqdD8fO73+m+DE7lqX6IY190J8Oyy+LvP4cgY4VbIRp0DDoPSBXHvr2pS6PZcQsJ22r819TjXJJixuzHnBv01DYevL6ccuurpCgtFC/q+jZfy5qu8L0z8B8/89fMzCX8LQo2HSe8tX1+7WPph5zMwv7fo6EgnuDwu+Fz4+2hj83Kq6DTgQjromvH/ax+ClH+zbPvE9he8dicDk9wWX3m78Jdk9Z9jp5R8ZjCapZ8TTvO6LNZavjlxlExI09s0wat6ebUMOh/3emV04WiG2r4Xb5+y63rUJnv4kLL0exl4QHiaWb0iZqlPLmJ6uQHur7wP7XwkLvlu8NSP1MOYceOn7+a9hMJokSZIkSZIkFawtJBittcqC0QDqIg0pg9G6/LuRJEmSJEmSpBrgGdqSKk+/afnP3b4GVt4By24MHzPhbfmvL0kqj0oLRgNYdhNMfEf+61eaZDI4EffF7+xqO+AzMPPLQZCFtLt4Z+YxG5+GFbfBqDNLX09P2bYQ7j0HNj+f/ZxorHT1VJtoQ27jd4QEo2UTAra3znW5z6km2YTF7Qw6yuYk6g1PFFZPsSRCvq9ImX+uZnwqCDXasiB8zCPvg9HnQlMPnKSeLuhu8ofgoM9D88g92zMFo+33T0EQgGrbuLekDkYbc275a6llk96TWzDauodKV4skpZNI87ovWsnBaIPT9x92FUz+QOr3Oo74ZfC86P7z89s7Ek3fv+VluCXk7x3rHwkuEgSvJVR5Zn87CDFLJoqzXrQehh4D/abDlhfzW8NgNEmSJEmSJEkqWHt8a8r2lmjfMldSuLpIfcr2VGFpkiRJkiRJklRtDEaTVHkGHlLY/HvmhfcNPQaahxe2viSp9GKt+c1rX57/npmC0Z76eG0Fo624dc9QNIDnvwrDjoeRp/ZMTapc6U6Q39098+CSRG2G68W3w02TerqK6hbLMUxhw+Op25MGo+0jLEBsp+mfhNFnBV83ZAiO2OnxK2Ds+TD8xPzr2vIyvH4trH84CFsbejQ0jwnWHHtB5seKsAP0ImV+OyvWCCfcBjftl37cPWfCGY+Vp6bdhQWjjTgN5l6Vum/IUdA4FDrXpuiMwMFfK1p5qmBDjoKZX4FnP7urbfrHYfTZPVdTLRp+cu5z1j8Ogw8tfi0qv/YVsOhq2PISkOzpaqT0ulKfAALk/ly+nKKpT/b4P5M/GP68MxKBsefBQV+A+V/IY+8M4c+Pvj/3NdX7jH0zTLuip6tQKpEInPl0EJLf9nrh60XrIVoHR14Nd58OOzbmvobBaJIkSZIkSZJUsLbEtpTtrbHq+xDBupDjqLrzOcZOkiRJkiRJkiqMwWiSKs+Yc6BlDLQvCx8Tieb3Ce2eXCJJ1aGuJb95HSvy3zOR4SCAlMEhVeyVkKCUhb8yGE37yhQcuLuFv4JJ7y5ZKT0i3gk3ju/pKqpfNI8whZd/ClMv27Mt0+N1KrUejJbuQLZTH4ChR+26nu3t9/KPg8vsbwdBSblacx/cfSbE23e1Lbsx+PeVn8Ck98PhP0u/RljgW7mD0QD6TIDzlsMNo8PHbHgcVv0dRpxUtrJIdIefoL/3z87uojE48PPwxEf27bu4K+hX7YtE4MDPwMR3wcanYMBMaB3X01XVnkgEmkdCx8rs59xxGBx1HUy4uHR1qfQ2L4A7j6395yHqHTIFgPW0gbOD32V7a92vtMHd6W6X7WuD58SqbpFY8Fo21pji34bUfdFGiDXs9nXI3FgzDD4M+k6tzYD5WjHgIHjT83D3abD2gX37j/oNvPBN2PRs5rV2BjkOPgzOXQJ3Hpf6sSudxizDziVJkiRJkiRJKSWTSdriqT8wqDXWt8zVFK4+kvpDhAxGkyRJkiRJklQLDEaTVHmi9XDSnfDQu2DDo0AE+s+AgYfAoDnBZeDBcPthsOXF3NYePLcUFUuSii3WE8FoOQQ/1YIVf0ndvvhaOPo35a1FlS/emf3YR96TWzBaojs4gXTV34Kwo+lXwqgzc6+xlF79GWxf09NVVL98whSe/iSMews0DdvVFhaWlU6tB5Kku01a9wr127Eht7Wf+gT0nQZjzt53z0XXwPNfhW0Lg7bm0dCxPLt1X/vv4LKzvvr+MPxkmPklqH/j01eT8dRzoz30dlbLqCBo7m9Hh495+F1w3pKylcSOjeGh4S0ZAq6mfBg618CCHwQBdsNPhMN/YShab9QyOriodPL53fXMp4PfgT31mKfcJROw4Huw9E/Ba9O2xT1dkVQ8+YQcl9OBn4X737xv+9A0z9uKId3ju48Bufu/oLE0oWLRhpCgsRz6sg44a/C5sQJ1LXDyPfDUx+G1X0D3VqgfAAd9HsZfAmPOh6euhIW/hPj28HV2Pzmtvk/w+vKpK8M/wGKfOvpCv/0L+lYkSZIkSZIkqbfrSu4IDQ1rqcJgtDqD0SRJkiRJkiTVMM+qklSZ+k2D0x8KTihMdAcnwuytcUhua467aN9QAElSZarLMxht+2pIJiESyX1ubwtGqwWdG6B7GzQM3HXirEojkUMwGkDbEmjNEMiz00PvgMXX7bq++i44/mYYfVZue5bS4t/2dAW1IZZHmEJ3Gyy7ESa/f1dbPgdtbV+d+5xqkkhzm0T3Ovht7JvDwzHD3HcOnHIvDDsu+D2b6IIXvwXPfm7PcdmGou1u98CITc/ChseDvSIRSIYETUR68O2soUfBcTcFt0kq7Uth84tQ1xpc4tuhcTDEmopXQ6I7eK0ca4DO9eHjGgenXycaC4LoDvxccJvm8/xJUnbGnBeEQeaibXHwuNh3chCCCEGYRl1LECbpz2zleeJj8PKPe7oKqfgiUYg193QV6Y05Pwh5XX33rrZoI0z9SHbzBx2a377xdkjEU4dnFRLeX3KR9MFgxQgiSxc4lnLPBn+3qbJF62DOD2D2d4Lw/OYRweMjQF0zHPZTmPNDePQDsPBXIWvs9fp893m3zYLNL6SvYeo/F/e1pSRJkiRJkiT1Qm3xraF9rdE+ZaykOMKC0boMRpMkSZIkSZJUAwxGk1TZItHwkJNcg9GO+t/C65EklUdda37zkvEg4Cyf8B2D0arHhifh4XfBpvl7tk/7KMz+buoTklWYXH8+lt0I07I4AX3ZTXuGou1079lw3I0wJiR4qJy2r4N1D/V0FbUhmsdjM8CyG/YMRksXAhamokMJiiAsQAz2DREbeWp+ezz7eTjke/DYh2H9o/mtkY2198PKO2DUGWmC0Xr4cX7M2dAyNghBS+UvM/Zt2+8dcOh/QH0Bnywb74Rn/i0I3Ul0waizYMIl4eMzBaPttPfJ+ZKKb9S83IPRAG6fA0SA5L59c34YBP4YIlMZNj1vKJpq15CjKj+IPBKBY6+HBT+ElbdD8yg46PMwcFZ280ecDPX9oGtL7nt3b4OG/vu2z/9C5rn1A6D/jPSBY4WEjYX1GYor5S9aBy2jQvrqg9eKoXNDXntF6+G0R+CpK+HVn6UeM+fHMPXy3GqVJEmSJEmSJO2jLb4ttK81VjvBaO3xrWzt3vzGmDqaY3kely1JkiRJkiRJPchgNEnVK5dgtFPu92RvSaomsZb853a35ReMFjcY7f8suwmGHp19oEohkskg4KxjBTQMgu4t0GdicNnb1tdg45Pwj7emXuulHwYnFc/8QklL7pXinbmNTxWMtmMTrP0HdG4I7lsDZ8F954avcd+5cNYC6Dct93o3Pg2r7wnuU8NPgNZx2c3r2gLrHoaOVcGJrk3D4aUfkTKMRLnL9/n4iluhfRm0jAmu5xOMtvEp2LERGgbmV0OlS3eb7H27t4yBGf8KL3w9tz3W3PtGQE8ZLPlDEIyWCAlGi1bA21mnPQw3jM5+/KJrINYEc/8r/z1f+CYs+N6u6ytuCS6pRBsLez4lqbhGzYMRp8Gqv+YxOeR5yBMfhebRMO7NBZWmIrn1wJ6uQCqNur4w6xs9XUV2GgYG7wfk855ArAlmfQse+1Duc1MFoy2/NXgNks7BX4UD/i33/SRVuDShg+neF6nvE7xe7H8gPHHFrva61uBvnINmF69ESZIkSZIkSerF2hNbQ/taaigY7Y4N13PHhuv/7/rwhjG8Zei7OaBPmY7/kiRJkiRJkqQiqIAzSSUpT9kGo9X1gSFHlrYWSVJxReshEoNkPPe53W3QOCj3ecksgnaSSYikObmtVtx3LhCBY34H4y4s3T7dbfDwe2HJ7/Zsj9QFJwfP/GJwPZmAZz6bXYjPomsMRiuFRI7BaGvuhfj24ORyCILS7jsv931v2R8uiUMkmt34RDc8cDEsvX7P9tnfgelXpp+77hG4/3zoWJl9feMvgUGHwlMZ1tYb0gTMxZqC+0yYG8YGJwhP/gAkQ8KyMrl+CBz7JxiTJpCvWqW7TSIp3vo5+Ksw7HhYfhO88tPS1ZWvhb8IfgesvT91f6rvqdxaRsH0T8CL385+zms/h4O/ll/waHcHvPit7Mc3Du4dz1mkahFrgBNuhdd/Aw+/s3jrvnKVwWiVYNP83MZPfFdJypCKrt/+MOZ86De1pyspjykfhAEHwd+Ozm1ed9u+ba/9T/o5pz0EQ47IbR9J1S/k5LQ9TPtI8DfNZX+GaBNMfj80jyh9bZIkSZIkSZLUS7TFt6Vsb4o2E6uEY5JyVJ/Ne8/A6h3LuGr51/jU+G8ztinFBxdLkiRJkiRJUgWqvndtJWmnpqHZjRv3VojGSluLJKm4IhGoa4WuLbnPTXVC6k6JOKy8A1b/HVpGw6T3Qn2/zPN2SnZndwJbTUjCQ++EEadAw8DiLr1tIbx+HTz72ZCtu+G5L0HX1iAQa8kfoH1Jdmu3LYJEVxCup+JJ7EjdPvxEWH33vu3J7iAAaOrlwc/xAxfnv/d1Meg3Pfh6yBHQOgHGnh+csL5T2xKY/8UgTCmVpz4Or18LA2ft1piAtQ9C/wNg5GlBuFEuoWhTr4BDf/jG+gajZaX/QbDmvn3bow1BMMBts9PPf/SDwWNSIosgy1SSCfjHRXDBamjon98alWbdo7DsBlhxS/iYVI+HkQiMOj24dKwMTriuNDeMDe+LVsjbWRPfnVswWjIOj/8zHH1d7nutviu75yo75RO+Jqm0ojGY+I4gkHL9I8VZc/Vdwe+3bENkVRobn8l+7Fu3Ba91JVWmoUfB1I/Ayz/Ofk68fd+2dM+vp/0/Q9Gk3irb9ysHHxpcJEmSJEmSJElF1xbfmrK9Nda3zJUUR10Ox8omiPPYlvsMRpMkSZIkSZJUNSrkTFJJykPz6OzGzfhkaeuQJJVGrCW/YLR4SGhIMgmPXw6v/teutgXfg9Mfg+YRQQhXJokdvStwK94By26Cie8s3pprH4S7T4fubqWuyAAAIABJREFU1J+6t4eXvp/fHot/D/u9Lb+5Si3embp90BxYc38QhLa3x/85CPFpnQDx7YXtv+XFPf99/mtwzO9hzDmw+l6464TMa2x8MrjsbevLeYRCRWDy+3KcI8a/NQiDIbln+7iLgtC6t7bB7zMEhSy5PjwY7bgbg/vcg5eGz090wqq/wrgLcyq9Ii38FTzy3iAQJ51IhpDobAOnCzH3v4PwtmU3Fme9TN9zufTbH/pOga2vZD9n8W9h4OzcX6cuuyG38Q0Go0kVa/wlxQtGA9j6GvSbUrz1lLv2pdmNO/luQ9GkatA0PLfxe4fXdqcISttdv2m5rS+pykTCu3rT+8qSJEmSJEmSVKHa46mPXW2J9ilzJcUxuH5YTuNX7VhWokokSZIkSZIkqfiiPV2AJOWteVTmMcf+2RONJKlaxZrzm3f7ofCPi2HT/D3bn/7knqFoAO3LYP6/B18vvjbz2mFhPLVs8wuFrxHfAa/8J/ztWPjb0dmFohXiUQOrii6xI3V7XR/oOyl83tOfggcuKkE9nfDUx2HjM9mFohXblMtgwEHl37faDTsOjvxfaBkTXI82BOEwc68Krte1BEFT6ax7iH2C1XZqGADjL4a+U9Ov0V4DB3d1roeH351FKFodRNKclA3QmNvBcTmb9tEgSPDQnwT1FEPHyuKsU6hIBMa+Jfd5878A29dkHrf2QbjnLPjjIHjt57ntMfiw3OuSVB7TroADP1e89W6fDX87Lvi90La4eOsqOzs2wzP/ln5M49AgJHT4CWUpSVKB6vvlNn7vYLStL6cf3396butLqh0Go0mSJEmSJElSj2tLpP4Q5dZY3zJXUhyz+xxFJN2HduwlLBhOkiRJkiRJkiqRwWiSqlfL6PC+ie+Ci7th7HllK0eSVGSxhvznLvkd3HE4bFsUXH/pR/Did1KPffVnsPDqfYPUUumNwWjZ3C57i2/f87Z65l/hsQ/D2n8Ur65M+3esLs9evUWiM3V7tDFzkFWpbH0FbptV/n37HwgHf7X8+9aK/d4G5y6B85bBhZvh6GuhrnVXf+v49PO3p/nZ3hkCNv3K9Gt0rMq+3koS3x4EoiW64foh2c2JZhFE1lTiYLTmN163tYyG/d5RnDX7H1CcdYphxieCwJtcxDtg8W+D/0sIAu6SCUgmIREPfoetuS8IE13xF9ixMfe6Jr4n9zmSyiMSgZlfCt63mvTewtfrboO198PCX8Hth+X3mKH8JLrhrpPSj7lwK5y/IggJlVQd6nM86WXvYLTNC9KP76nX0JLKI104ecRgNEmSJEmSJEnqaWHBYC2xPmWupDgmt8zgn0ZcQZ9Y/6zGtyUMRpMkSZIkSZJUPbI4Q1aSKlTzyPT90Vh56pAklUakwKeq8Q64aSIc8Fl49b/Sj334Xdmt2RuD0VbeDtvXQVMWITxd2+CR98KyGyEShXEXwoS3w4Lvlb7OvT33RTjsp+Xft1bFw4LRGmDkGcH/eW8w8nQ46jfQkN1BRAoRiYSHHGcKRos1h/dF3zjBePIHoK4PPPi21ONe/BYsvi54jBh9VuZ6e9qOjfDwe2DZDbnPzeak68YsQ9byNfK0XV/P/Rn0mwYrbg2uT/sobHgCns8xbHDIEcWrr1ANA+H0h+HZf4fXf539vCc+Ck/+CyTjwXOeZHfxapr0Xuhv4IZU8aIx6DuluGt2roVbZ8F5i4u7rlJb/XfY+GR4/+QPQn11Hjwv9Wp1uQajte95fdmfw8cOmpN7qK6k2hE1GE2SJEmSJEmSelpbfGvK9tZojn8jqiBH9D+Ruf2OZ13XarqTwXHOz217nBvWXbPP2PaQ71+SJEmSJEmSKlG0pwuQpLzFmiDWkrpv3MXlrUWSVHzFOlHs+a8EAQHFkNhRnHV6WiKX8JUkPPu57IY+/E5Y8ntIdAbBdIuugbtPyzyvFF65CtY92jN716Kw+36sMQi/G3x44Xu0jIUjfgWRCg23PeAzcOLt0Di4pyupbZmC0dI9nu/+e2PCpTD5Q+Fj25fCvWfDpudyq68nPHBpfqFokN39tS7kNVUxTHw3DDx41/VoDGZ8Ek65J7iMPR+mfiS3NSd/EAbMLGaVheszEY76X7g0ueflopBQyZ2S8Tf+LWIo2qA5cOhPireepNIaNS99f8tYeMtGOOX+7NdsXwKr7ymoLGVp6fXp+/sfWJ46JBVXfY4nvcTbdvt6e/C+SJhZ3wiCoiX1TgajSZIkSZIkSVKPa4tvS9neEqvuD72KRqIMaxjJqMZxjGocx+jG1MfhtcW3kUwmy1ydJEmSJEmSJOXHYDRJ1W3iu/dtq+sDw48vfy2SpOKqq8CDDBJdPV1BccS35zZ+0dXQ3Z5+TOcGWHZj/jWVwoLv9HQFtSMREu4TbYT6PnDy3TD94/mvP+ZcOPNpmPhOOPOZ/NdJZdjxQXjbzkusOfu5E94OU6+A4/8CB3+luHUptdYJ6fs3PRveF6nb83rjkMz7vfLTzGN6UttiWHl7/vNHnp55TF2RP+20zySYcjkc8wc4/OeZxzcPD0J/MmkaAcfdGIR+VUuYRKwBzniidOvP+SEc8n2Y+C6Y+B447Kdw6gNBaKWk6tD/QOh/QOq+Q74Hb3oBGgbAsGNgzo+yX/fV/y5OfQrXthhe/Vn6MS2jylOLpOLK9flx927BaMtvDh839gIYcUp+NUmqHnu/N7E7g9EkSZIkSZIkqce1xbembO8TK/IxVD2sJeT7SRBne6KjzNVIkiRJkiRJUn7SHJkrSVXgoC/Axidh3UPB9VhTcAJ+rKlHy5IkFUGxg1qKIVkrwWg5HtQQ74CXfwwzPhU+ZuPTkIwXVlcu6voEgT9Lrw8fs+QP0LkeGgeXr65aFQ8LRmsI/q1rhtnfhtb94PHLc1v7wH+HmV/YdX3AATDoMNjwWF6lAkEY2sl/h0iKLPDkNfDYZfDqf6Zf47yl0DImu/3m/jc8+v592ye+K7v52qU19SdVhlnUMYEb153Dpu4BnL2iD3MG7NaZVTDaVUGYVKVadWdh82d9I/OYwYcFP8uJHYXtBTDtY3DId1P/7KXTMABO/Qfcdz50rt2rb1DwGm/ESYXX1xMGHRKELL7+6+KvPf4SaBpa/HUllU8kAkf8Eu47FzpWBm2tE4LnMX3223PsmHPgiSuyW3fxtTD+Ihh9dvWESVabxy7LPKZ5dOnrkFR89Tm+H9W5YdfXG54KHzf+0vzqkVRdJrwNnv3svu0tY9KHpkmSJEmSJEmSyqI9sS1le0usAj/MuQCtab6f9sRWmmMtZaxGkiRJkiRJkvLj0beSqlvTEDjl3uCEo+0rYdhx0DCwp6uSJBVDfZqDDA67Ch77cPlq2akYoTGVINdgNICnPw19JsG4t6Tuf/FbhdWUq/EXwZgL0gejAVw/BM5fCc0jylNXrQq77+8MRttp6mVB+EY2QREAk967ZyjaTrmGKu1u4Gw45Z7w/kgE5l4V3IfuOjH1mAtWQ9Ow7PccNQ/qWqG7bc/2sRdmv4YCOQSjPbz5cObNv4VN3cHz/y//MMkv35XgHUe+cf/JJhgNYP6X4aDP5Vpp6W17HR55X/7zL1gdBI5lUt8XxpwHS36f/14AZ70E/abmP3/o0XD2S7D2AehYFbQ1DYOhx0DjoMJq62mzvw3Lb4KuLcVbc8plhqJJtWLwYXDWAlj3SPAcaOgxEGvcd1zLWIg1Z/9c/r5zYdL74fCfFbdewdbXYMWtmcc1jyp9LZKKL9dgtOe/Agd8OnhNuGVB+LjRZxVWl6Tq0GcCDJ4L6x/ds33cRQbWSpIkSZIkSVIFaItvTdneGqvAD3MuQLqgt7b4NgbXDy9jNZIkSZIkSZKUnwLONpekChGthyFzYcy5hqJJUi2pSxOMNvbNMPWK8tWyU6Kr/HuWwuYX8pv31CchEd+zrWsLPHY5rLyjsJrq+kLLuMzjog0w4W0w58cwel4QkpfJ058urDaF3/djDfu2TfkwHPIDqO+ffs39r4S5IUEd+Qaj7fcOOPmu7MYOPwFOuQ/6TNy5KQw+HM59PbdQNICWUXDiX6HvG6FQTcNh7n8F91Hlpmlk1kM/s+gr/xeKBpBMRvjIdUm6upNBw+BDs1to/udh28JcqiytjlXwyAfgpv0KWyeX+/HhPw9+t0brg8uY82D8xdnPH3lmYaFoOzUMDAIjJr8vuIw5p/pD0SAI55z5lSIuGIFZXy/iepJ6XH0/GHkqjDg5dSgaBM+PhhyZ27qv/Tf8rgUWXg3JZOF1KrD85uzGGc4sVae6PE56+euRcG0Elv05df+4i8If3yXVnuNvhuEnBc/fYi1BWO2sb/R0VZIkSZIkSZLU6+1IdNKVTP0hsS3RNMcsV6GWaGtoX3t8WxkrkSRJkiRJkqT81fV0AZIkSVJK6U5EjTbApPfCwl9Adxn/QF8rwWgv/SC/eW2LYONTu8KGkkm473xY/ff81qvvD2e/DJE6qO8LiW74fUv4+HnPBiFWdbsdsDHlQzD5A3D3mbDqr6nnLfl9EKBW15xfnYJkyH0/Up+6ff+PBgFpiR3Byd+JHdC5Pvi/i8Qg1pzhpPBI9rUNPAROvQ+I5v5/POxYOPtV6FgJsabCApiGHgVnvwTb10HjYIjk8D1ol2gsq2GdiQbu3nTiPu1bt8M9L8OpM4B+07Lfd/Hv4YAKCFHs2gq3HwodywtbZ9BhuY2v7wPH/hG62yGZCK5veAoW/zbz3EgMpvVAWGm1mfIheOYz0J36U2ez1mcSnPViEGAnqffZ/0pYc0/wWJ2teAc8/C7YvgZmfKJUlfUum5/LPKZpuI/VUrWqzyMYbdP89P3j3pxfLZKqU9OwILh/x+bg/SaDESVJkiRJkiSpIrQn2kL7WmN5/I2ogkUjMZqjrXSk+J7b4gUevyRJkiRJkiRJZRLt6QIkSZKklOrTfPpatB4GzoST7ixfPVAbwWidG2DV3/Kff8dhsOD7QSja8pvzC0VrnQBj3wynPxacKNg4KPg/zRRq1Tx6z1C0nSJRmPy+8HnxDlh9V+51apdEd+r2aJqs7VhD8HMcrQ/+31rHBYFhDQMynxCaLlRs7s9g2HHQ/0CY8Sk49R/B+vkG30Ui0DKqsFC03TUNMRStUFM+nHHI5u7+oX0LViV3XZnwT9ntueyG7MaV0o7N8Id+uYWiDT0mdfuYc/Oroa5l1+/fQbPhtIeh3/67+kecCvOeg2kfC34GR54Jx/8FRp2R3369SbQe9nt7bnNaxgS/J5uGw6A5QRDoqQ8YtCP1ZqPnwXE3w8jToXkUNI/Mfu7Tn4S2paWrrTd57eeZx4x6U+nrkFQa0XoYemxx1+ybQ2izpNrR0N9QNEmSJEmSJEmqIO1pAsFaYmmOWa5SfULC3gxGkyRJkiRJklQt0pzFLkmSJPWgkafD819L3RdrCv4dcjhM/wS8+O3y1JTYUZ59Smnjk5BMFLbGk/8C21fDhidzm3fg52Dml9KPiTaE3871/cLnjTwDIjFIxlP3L7sBRp+VXZ3aVzIkFLBk4TxpgsUmvB0mv79E+6oi7P8vsOymtAFhW7rDHw/67H7OcfOI7PZc/wi8/NMgUKxldJaFFtmDb8t9zsT3BMGAK+/Y1dZvOkz+YHFqGnI4nPXivu1zvl+c9XubmV+Bhb8KAjt3F6mDo6+DcW/pkbIkVZnR84LLTmv+AffMg+4sDly+ZX+4KPwTsCtadwdsehZIwuDDey6IduMzmcc0j4TpV5a+Fkmlc/BX4c7jirde3ynFW0uSJEmSJEmSJEl52ZYmEKy1BoPRWmJ9oWvVPu1tiW09UI0kSZIkSZIk5S7a0wVIkiRJKQ09BlrG7Ns+5jyI7PY0tpxhV4mQcKhqUqzv4YVvwqq/ZTd2ymVw/C2ZQ9EgCIcJE03TV98X9ntHeP+quzLvrdSSifAwvXT/XwVJE3SxMxhRtavvZDj90bT3r83x/qF9rbsHozUMyH7fxy+HG8bAM5+FZDL7ecXQvgxW/CX3efV9g8fXw38Bkz8Eh/wATnsQmoYUv0YVrnEQXLAKDvhs8FgWrQ8CXk9/2FA0Sfkbdgyc8RhM/3jmsfF22Jwi8LLSbXgSbjsY/noE/PVIuGMutIcHqJbU/C+m7+8zGc58GvrPKE89kkpj2LHQlGXIcib1A6CuuThrSZIkSZIkSZIkKW/t8dSBYI2RJuoipfqQ2J7TGk0d9taeJiBOkiRJkiRJkiqJwWiSJEmqTJEoHHVdcALpTn2nwqE/2XPc0GPhgH/bs23S+0pTU7IWgtG6y7fXzC/DpUk47Ccw+k3ZzUkXfpbJrG+F97W9Xv6go1qRjIf3lSoYLZLmpWokTWiaakfLKDjws6Hdm7vDg9FaGna7j9TnEIy20/NfhVV35j6vEJuey3NiJHjcnPRumHsV7P/R3MLgVH71/eDgL8NFHXDxDpj9LRg0p6erklTt+k2D2d+G4/8SPM6k8+zny1NTsSST8Mj7Yesru9o2PA6Pf6T8taz8Kyz7c/oxZ78MTcPKU4+k0hpyZHHWGX5icdaRJEmSJEmSJElSQdpCAsFaY33LXEl5tMRSB6O1hQTESZIkSZIkSVKlMRhNkiRJlWvYMXDuQjj+Zjj5bpg3PwjL2V0kAgd/Fc5+NQhSO/MZmPuz0tST2FGadcspXchVMY16U9pQo1CDDs1/z6YhcNpD4f0r78h/7d4skSYQMFqiT0nsM6k066q6RBtCuzalCUbbIwMxXcheOouvzW9evjpW5jfPEDRJ0u5Gz4OzX4EDPxc+Zukf4cXvlq+mQm14AjY+uW/7sj9D29Ly1TH/y3D36enHHP5zQ3ylWlKs59pTLyvOOpIkSZIkSZIkSSpIeyJ1IFhYgFi1Cwt8C7sdJEmSJEmSJKnSGIwmSZKkytYwEEafBcNPgFh4SA59J8GEi2HgzOBk9BmfLn4t6QKiqkWyuzz75Hv7T/946vb93pnd/KZh4X2Pvj/3epT+PhOtK82eU/85dfuoeaXZT5Up2hjatTlNMFp3YrcryUTouLSWXJ/fvHy1L8t9Tl0rDDmq+LVIkqpb0zCY+SUYODt8zFMfh62vlq+mQqx/JLxvxS3lqWHRb2D+5zOPq6/NTxGXeq36IgSjzf0vGH5y4etIkiRJkiRJkiSpYG3x1IFgrb0sGK0tvrXMlUiSJEmSJElSfgxGkyRJUm2a+K7ir1kLwWiJLILRhp9Y2B6Dj4ChR+c3d8Qp0P+APduijTD5A9nNbxwS3te+DLo8oCNn6e73kfrS7DlwFgw9dq+9ojDlw6XZT5Upll8wWnz3LLR+0/Lbu3treQNjsglb2dukD0Bdc/FrkSTVhqN/m77/5inlqaNQG54I79v4dOn3X3oDPPT27MbWGYwm1ZSGAoPRRp0VvJcRiRSnHkmSJEmSJEmSJBWkLb4lZXtLtDb/1tsSEvjWHhIQJ0mSJEmSJEmVxmA0SZIk1aZ8w3DSqYVgtGQ8fX/rBDjxbzDrm1DfL/f1hx0PJ/01/xN/o/Vwyr0w6X3B/+GoN8GJt8PQo7KbnymMYOsr+dXVm6UL04vWlWbPSAROuBWmfgT6z4ARp8FxN8Los0qznypTtCG0a3M8PBitO57cdWXosVCfZ6DBzVMgmcw8rlCbnkvfP3guTP8kzPpWEDw56FCY9Q045Dulr02SVL36Tc383Hj94+WppRDrHwvv61xXun3jnfDoB+H+87OfU1+bB8tLvVahwWiT3lucOiRJkiRJkiRJklQUYYFgrbHa/FtvazR1MFpb3A8YliRJkiRJklQdSnQWuyRJklSDEjt6uoLCJdOEXEXq4OCvQzQGMz4Jkz8AfxyY2/rH/qnwQIDGwXD4f+c3N1Mg29LroWsL9JkErWPz26O3SaYJBIzUl27f+j5w6I9Kt74qX7QxtKst3hrat3suGrEGmPV1eOzDe6476BBY91DmGl65CqZelkWxBVjyx/C+g74IB31+1/UZnyhtLZKk2jL1Mnjhm+H9K2+HwYeWr55sdayGtkXQOBS2vBA+rpTBaI9/BF7L8TVJXeqDyiVVqaYR+c8dfhKMmle8WiRJkiRJkiRJklSwtkRYMFpt/q23JSTwrS2+jWQySSTfD0CWJEmSJEmSpDIxGE2SJEnKViJNQFS1SMbD+069H4Ycset6ff/c12/IMUit3J7/WnABmPQ+OOw/gyA4hUukCdOL+pJSJRQLD0ZLJKOhfd17P8xN+RD02x+W3Qh1LTDuQhg4C1bcDk9/GjY9E17D45dD8ygYe16Oxedg1d/C+8aUcF9JUu2b+O70wWjPfi74HTnuLeWrKZ1kEl7+CTz5/9IHOu9UqmC0rm3w+v/mPi/ic2Oppow8Nfi53vvxqHkkTHg7dG2GV3+277xIHZxwaxDSLEmSJEmSJEmSpIrRHt+asj0sQKzahQW+xemmM7mdpkhzmSuSJEmSJEmSpNyEn0ksSZIkVbvpnyjuepueLe56PSEsYKDP5D1D0QAiEeg3Lbf1K+ET5LINEnrtf4LQhRe+CS/9CNoWl7auapUulMLwB5VSNDxIIF4/ILwvkaJx+Akw5/tw8FeDUDSAUWfAvKfhzKfT13H/+dCxOnO9+dq2MHV741AYOLN0+0qSal+/aTDnR+nH/ONCePwK2PxieWpKZ9HV8MRHsgtFg9IFo21ZAPHtuc2JNUOfiaWpR1LPaBgIR16z5+veIUfBm16E2d+Cuf8FR/8OorsFOg86FM5bljbkWZIkSZIkSZIkST2jLb4tZXtYgFi1a00T+NYecltIkiRJkiRJUiUxGE2SJEm1a+xbgCIGdS38BSy9oXjr9YRkPHV7NCTgavylpaulVMZfkv3Yl38MT38anvgo3DoL1j5QurqqVaIrvC9aX7461PtEw8ME4tHwg9G6UwWjpTPwYBh3UfoxK2/PcdEsJbpge0jo2pHXlGZPSVLvMu0jMPWK9GNe/jHcNhuW/rk8NaWy8Bp4+N25zelcD8lcf/FnYcuC3OeMPgfq/DRtqeZMuATOXQxH/xZOfQBOuQca+u/qH/9WOOc1OOo6OPluOPUf0Dy8x8qVJEmSJEmSJElSuLAwsJY0x6JVs9ZoeDBaW3xrGSuRJEmSJEmSpPwYjCZJkqTaNWQuHPUbaByyZ3tda/6BTo9fVpqT78sl0Z26PRISjHbAZ2DKZbsCigYcHLSlMuXywusrhvFvheEn5T6vaxM89Yni11PtkiH3GQi/30jFEAsPRktEW0P74vk8RB/xi/T9HSvyWDSNba/DvefAbxuAZOoxLaOLu6ckqfcanyEAFCDRCfdfAPHO0tezt64tQVBxrpJxuO88WP9Y4TWsexgefDv8/XR46J9yn3/4/xReg6TK1DIqeBwdelTq95JaRsOEi2H4CWlfw0iSJEmSJEmSJKnndCW66ExuT9nXJxYeIFbNmmPhx9iFhcRJkiRJkiRJUiUxGE2SJEm1bcIlcMFqOG8pXBIP/n3LZpj3PMSa9xzbPBrOfAaGHRe+XsdK2PRcaWsupbCQq0gsdXs0Bof9BC7cBOevhHlPwwH/GtxWu4s1w+T3F7fWQhzz+/zmrXsoCCzaXTUH4RVDoiu8L9+AQSkb0YbQrni0Obwvnx/ZuhY44bbw/u4iHgjWsRJungzLb04/bu/HWUmS8jXkyOCSjTuPL20tqSz/SxBSnNfcm4Oa1z6U//4rboM7j4PXfwOr/pr7/KlXQH1tfoK4JEmSJEmSJEmSJNWC9sTW0L6WGg1Gi0ViNEdbUva1pbk9JEmSJEmSJKlSGIwmSZKk2heJQsuYXf9GY9BvCpz2IIw8A1r3g/GXwCn3wMCZ+wam7e22g+Guk2Dra2Upv6iS8dTt0br082JN0Dwi+LquFU5/BMZfHNx2o94EJ90FAw8ubq2FaByc/9yb9oPf94X7L4RbZsBvG+C2ObDqruLVV00SIWF6kPl+IxUi2hjaFY80hfZ155tlOOoMIJK6r5g///O/GP5YvFOsCRoGFm9PSVLvFonAiXdkN3b9I9C1pbT17G3FrYXNj3fAS9/Pf/6C76UPA86kvjYPkpckSZIkSZIkSZKkWtEWD/9gzNZY7X4QVljoW7rbQ5IkSZIkSZIqhcFokiRJ6r0GzoITb4NzF8LR10LfyUF7mjCe/7P6brjzeOhuL22NxRYWchWJ5bZOy2g4+rrgtjvhFhh6ZOG1Fdu4i/Kf270Nlv4RtrwYBBhtfBLuPQc2LyhefdUimSYkIlJfvjrU+8TSBaOl6cs3GA2CwMdU1j8CnesLWPgNiW54/deZxzWNCEJsJEkqlvq+MOl92Y3d8GTx908mYdsiWPsAxLfv2bf15cLXX/KH/Otac19hezcNK2y+JEmSJEmSJEmSJKmk2uNbQ/taorUbjNYa8r21pbk9JEmSJEmSJKlSGIwmSZIk7a1xcHbjOpbDqrtKW0uxJeOp2yN15a2jHCa+s7jrxduDsLTeJixMDyBag/cbVY5oQ2hXMk0wWnchwWh1aQ5ye+mHBSz8hvlfgO62zOOGVGDYpCSp+tWl/iTofWwpchhwdxvcfwHcNBH+dgz8aQSsunNXf+e64uyTT4hp9zZI7Mg8bs6Pob5/6r6RZ+a+ryRJkiRJkiRJkiSpbNri21K2N0QaqU9znFq1a4mlPh6uPeT2kCRJkiRJkqRKYjCaJEmStLdsg9EAnv9a6eoohWRIyFUtBlyNPAMGzi7umpufL+561SDsPkMEIr6kVAlF60O74oQHo8ULCkZrDe977suw4Sl4/hvw5JXw0n9A2+Ls1+7aBs9/Nbux4y/Ofl1JkrJVn20w2kvF3feFb8GyG3Zd79oMfz8VVtwRXC9WMNqTV+Y+J9u9J74DjrwGYk17th/yfeg3Jfd9JUmSJEmSJEmSJEll055IHQQWFhxWK/rE+qVsb0tsLXMlkiRJkiRJkpS7Gkw/kCRJkgrUOCT7sTvWl66OUkjGU7dHYuWtoxwiETjqWvjL9OKtueQPcPR1xVsPNJzYAAAgAElEQVSvGiS6UrenCa2SSi0ebQnt6y4oGC3DgW63H7Ln9Wc/C8ffAsOOybz2rQdmV8OAg2DUmdmNlSQpF9kGo219pbj7vv6b1O33nAH7vRO6thRnn0VXw5G/ym1ONsFodX2hvh+MOQfOWQir74b4dhh2PPSdlFepkiRJkiRJkiRJkqTy2RZPHQTWJ5bl39GrVFjwW3s8dVCcJEmSJEmSJFUSg9EkSZKkveUSjFZt4VCJ7tTtkRp9adDQv7jrJeOQTAaha71FspfdZ1Q5+kwMHo/3DiyJtZBoGhE6LV5QMFprbuO7NsOdx8LZr0DfyeHjtrwEbYszr9c0Ao66rvp+t0iSqkN96k+C3sfGJ+Hh98LCXwTXYy1wzB9g9LzU47s74IVvwpp7ofuNg8nr+sLwE2DK5bDttfC9Fl2ddflZ6VwPjYOD5+yLfwuL3/i9OuUyGHFyivFZBKPtHijXPBImXFq8eiVJkiRJkiRJkiRJJdceEozWUuPBaK0hwWhtIbeHJEmSJEmSJFWSaE8XIEmSJFWchkHZj41UWXhNaMhVrLx1lEv9gOKv+exni79mJUt0pW43uEmlFonC5A/t2z7pPcST4cF83fEC9qxryW/ezVNg66vh/Uv/lH7+vOfg/JVw/goYcEB+NUiSlEm0MbtxHSt3haIBxNvh3jfBot/sOzaZhLtPh+e+CGvugQ1PBJc198D8L8BNE4tQeA5e+EZQ0/wvwIOXwvKbg9/Dfz8FXr9u3/Gd6zOvWV/bB8JLkiRJkiRJkiRJUq1ri29L2d4aTR0cVitaoqn/3h12e0iSJEmSJElSJTEYTZIkSdpbMpH92GhD6eoohWRIYlAkPGSoqtU1w6BDU/dNuTy/NRd8D7o78q+p2oSF6UVr9D6jyjLzSzDrWzBgZnA56Isw54fEE8nQKfHwrswSIff3bNw8Be46CbYt3Ldvxa3h88ZfEoShNY+ASCT//SVJyqSrwE98fv4r+7YtvwXW3h8+p7uInzLdPDLzmBe/A79rhOe+tG/fg5dCd/uebZ3rMq9ZZzCaJEmSJEmSJEmSJFWz9kTqv123xGo7GK015Ptrjxfxb/mSJEmSJEmSVCIGo0mSJEl7GzQ7+7GxKgtGCwv9qeWQq5lf3jfAbtY34bD/yG+9+HZYfXfhdVWL7WtTt0fqy1uHeqdIBGZ8AuY9E1wO+jxEoqTJRaM7JP8xK/ECQw9X3w1/OwbinXu279gYPmfMeYXtKUlStgbPLWz+lgV7BottXwPPfrawNXMx/JTsxiW6wvtum7Xn9bbFmderNxhNkiRJkiRJkiRJkqpZW3xbyvbWWG3/PTgs+K0tsY1kspBPIJUkSZIkSZKk0jMYTZIkSdpb637Qb3p2Y6stHCoZkhgUiZW3jnIadQac+gBMvQKmfBiO/wvM+GRha3auK05tlSyZhBe+BY9fnrq/lsP0VPHiifz6MooU4W2SjpWw9Ppd15NJaF8aPn7UvML3lCQpG4MOgcbBha2xMxht/pfghjGw6dnC68pWrAEmvbewNba+Ahue2HV9y0uZ54S9hpIkSZIkSZIkSZIkVYX2kGC0lmjq4LBa0Rrrl7K9O9lFV3JHmauRJEmSJEmSpNwYjCZJkiTtLRKBI36Z3dhotQWjdaduj9R4yNXgQ+HQH8JhP4XRu4UQHfBv+a1XX9ufEgjAmnvh6U+F91dbKKBqSrrws+5CgtHGnFvA5N08+DZ47HL4ywFw28HQtSX1uCmXQ31tH1wnSaog0To46lqINua/RrwDVv4V5v87JLqKV1s2og1w0BdgwEGFrXP7obD+seDrLQsyj+/aWth+kiRJkiRJkiRJkqQe1RZP/Xff1lhtHwvamib4Lew2kSRJkiRJkqRKYTCaJEmSlMqQw+GIqzOPq7ZAsWQ8dXskVt46KsW4C4FI7vMKCZOoFq//Jn1/tMru+6opiWR4X7rQtIz6TYf+MwpYYDev/BQ2vwCb5oePmfnF4uwlSVK2Rp4G5y2BI6+BaR/LfX68AxZ8r/h1ZSPaAC1j4LSH4YTbClvrjrkw/0vQ9nrmsWEBp5IkSZIkSZIkSZKkqtBrg9Fi6YLRtpWxEkmSJEmSJEnKncFokiRJUph+UzOPSXaVvo7ddW2DF78D954L/5+9O4+P667v/f/+zqbdliyNFie24zh7AtkJWYCQBZJSoATKvhVoadNLgUJb2lsaKC3w47LcUlpogQa4BUpICaUUAmHPBiQBErKROImdxYtGtixb6yzn+/tDsS3NnO+Zc2bVjF7Px0MP63y389FYOkejmfM+t10pzT4ebb7N+7ev1pCrgdOk874kJddGm+dl61PPSvLQZ4L7Wy0UEG0lKPwsX00wmjHShd9aPDbUW0da6his/34AACjWOSxtfo208SXR537zeGnnd2pfUxix5OK/iW5p/WXSmhOqW+/XV0kKSFs9KM+bwQEAAAAAAAAAAACgVeVtTgt23revOyA4rB0EfX0znn9YHAAAAAAAAACsFFzJDgAAALh0DJUfU/B/s0RdWE/68W9L4z8+3Lb9K9Jlt0m9R4dbw3MEo63mkKujXi5t/F3p7vdJd7833Jx2D0azIQIiDgZTAE1QCPgWDQpNC6Vnk3T5L6WZx6TUWim5RlrYI81sXwySiaWkRJ90z/ule/6u8v1UG+YCAEC14t3NriCaWGr5dtd6af/99d/vkS+s/z4AAAAAAAAAAAAAAHUxW5hx9vW0eTBa3CTUGevSvDdX0jdbIBgNAAAAAAAAwMq2itMPVjdjzAmSTpV0pKQuSfOSxiVtlXSntdb9l//yayclnS9po6QxSdOSdkj6pbV2W3WVAwAANNBKC0bbfs3yUDRJyu6VHvgn6YyPhFvDFvzbTby62lpdLC5teUN7BqM98S3prndLs9ultSdLT/uMtObY4Dlb/6X8uqs5TA9NFxR+VnUw2kE9Gw5/3jG4+LHUqe+TOkekO95S2fqjF1deGwAAtZBo8WC0nk2N2e9Rr27MfgAAAAAAAAAAAAAANTcTEADWE+trYCXN0R3r9Q1GmylMN6EaAAAAAAAAAAiPK9lXEWNMv6S3SnqDFkPLXArGmF9JutZa+8EI66clvVfSyyStc4y5RdJHrbX/GbpwAACAZkmuXbz4PigEq5HBaPd/2L999w/Cr2Hz/u0xnhqoZ6N0zB9KWz9VfmyrBKPtu0e68XckL7e4Pf4T6TtPk164TUqt9Z/z6LXSbX9Ufu3UQM3KBKLyrLuvZsFoYRz/v6TsHunX74k+95g317wcAAAiiTc5GC3WsRg8Orcj5Pjk8u1Nr5Aevrr2dS21/nnS0Hn13QcAAAAAAAAAAAAAIBJrrX62/4e6b+ZXmvGCA77mCjPOvu54b61LW3F64n3am8+UtM8WBaMtePP6yb5v6+G53yhnS98jG1dcmzqP0TP7L1dvYk3d6gWAYtZa/Xz/j3XvzC814/mHXQ4kBnV633k6qef0BlfXmqbyk7px3/XanX1CR3Uep2f2X6Zk8U0rQ8h5Od2479vaNv+ghlPr9Yz+y7Q2wTUGAAAAAIDaIf1glTDG/K6kT0oaDDE8LulMSUdKChWMZoy5XNLnJA2XGXqepPOMMV+U9GZrrfsVBgAAgGYzRlp3ljRxi3tMo4LRrJX23uHfN/mrCOsU/NtNPHpN7ejsf5bS50lb/1XK3OQe1yrBaL/+m8OhaAfl9kmPXStteePydi8n/fQN0rZ/D7f26MW1qRGoQFD4Wd5xmKubp1wl9T9VeuIb0twuaWabtP/+4DlnfULqGm1IeQAAOCWaGIx2/Nulza+SBk6XHv68tPv7UvfGxd/BMzf6zyl+893IhVLfcdKBB2pf36ZXSMPPkI5+oxTjuRIAAAAAAAAAAAAArCRf3v1J3TT13arWSJqUUrGOGlW0cvXE+3zbl4YL5bysPvbYX+vR+a2Ba/165jb9fP+P9Y6NH1BfwnFzXgCosa+Of0Y/2vc/ZcfdPHWDXj78Zj1z4PIGVNW69uX36sPb/+JQaOYdB27SndM/1Vs3vE/xCNeUFGxB//j4e7R17p5DbT+d+oHeufGD6k+GuYQZAAAAAIDyYs0uAPVnjLlK0jUqDUV7VNL3JH1Z0nWSfiopclCZMeZCSV/X8lA0K+kOSV+VdIOkiaJpr5L0ZWMM34MAAGBlW1/mhTGvQcFouf3B/dmpcOt4ef92Q2aypMUwvM2vkZ79HSmWdI9rhWC0/Kz02Nf8+372Jmn64cXPpx+WHvhn6T9S4UPRRi6Wjn9rbeoEKhAUjFbwbOMKOWjDi6SnXy09+9vSb98nnfVP7mPIUa+Sjr2ysfUBAOAn3qRgtCOeL535UWndmZKJSVt+Tzrv36XT3i+tPdk9zxSdW2NJ6ZzP1r6+0z4onf8l6dg/kuLR74QKAAAAAAAAAAAAAKif8ezOqkPRJHdgWLvpjvf6ts8Wpg99/svpW8uGoh00ntuhW6a+V5PaAKCcvbmMfrzv26HHf3PPl5W3ufIDV7Eb911/KBTtoK1z9+qemTsirXPPzB3LQtEkaW8+oxunrq+6RgAAAAAADiL9oM0ZY94h6T1FzV+W9AFr7a99xscknSvpxZKeG2L9IyV9TdLSK8RulvT71tr7lozrkPRmSR+WdPAKtudL+jtJfxXyywEAAGi8ztHg/kIDgtEKC9IPy/xqNrNdSj21/FrWEYwW46nBMoluaexy6Ylv+Pe3QjDaT14Y3P+NLdLRr5e2XyMVZsOve/GPpPR5wcFxQJ0FZZ8VmpCLVuK4K6Wx50iZW6TCjBRLLQZcrjtLSl+wGMIIAECzxTubs9/Nr3P3xQPuxu0XUjZ8gfSSfdLDV0u/eHv1tUlS1/rarAMAAAAAAAAAAAAAqLkHZu+qyTp98bU1WWel64n5B8BNFw4c+vz+mTsjrfmb2bv03MEXV1UXAITxwOzdsgq4m3KR6cJ+7VjYro2dx9Sxqtb2mxn/8+j9M3fpqb1PC7+O43x8/8xdev7QqyqqDQAAAACAYqQftDFjzKmSPrikKSfpldbaa11zrLWeFoPNbjbGhPn+eK+kgSXbt0i6xFq7LCHEWrsg6ePGmEclXbek60+NMf9ird0eYl8AAACNl+gO7l+YkHLTUtL/jmo18eg10p6fBY+Z2SYNhAlGK/i3m3jkstre06+W/nPQv68RgXjVmM9Iu0Lcke/hz0Vb9+xPSSPPqqgkoJYKAe9xyDsOcw3Xd8ziBwAAK5UxUv9TpH0l98+QTEyy4d9UqFhKGr5Q2hXirtwbXhS8TtS+1FrphLdJg+dIN5xXfv/ldI1VvwYAAAAAAAAAAAAAoC7Gsztrss5JPafXZJ2Vrjvu//7m2SXBaJlctMc0k9tVVU0AEFbU45MkjWd3EYwWwPWYRj4XZP3PBZwjAAAAAAC1FGt2AaiPJ0PN/k3Lw+/eHBSKVsxamy+zj2MlvW5JU1bS64tD0YrW/Lqkzy9p6pB0VdiaAAAAGi5eJhhNkr57jpSfk6ytTw33/9/yY2ZC5sx6jl/xQmXirjId66RhRwjYXe9ubC1RhQlFi6ojLW1+Te3XBSoQFIwW1AcAAIps+YPStrHLwz0PWuol+6Sn/E35cSf++WLomku8091nksFrD50jDZxWvoZyuo6ofg0AAAAAAAAAAAAAQF1UEpJT7MiOzbpo4Pk1qGbl63EEo80Upg997gq3cdmbyyhvc1XVBQBhZCoIw6zFeaJdzRVmdaAw5ds3ETHQzBWANl2Y0lxhNnJtAAAAAAD4If2gff2upDOWbH/fWnt1jffxSknxJdtfs9Y+GGLe/6flgWovNcZcGRSoBgAA0DSJEIEAU/dK13RLyTXS6HOks/9J6hyuXQ2Tvyg/Zs/PJL0leMzMo9Lu7/v3mbh/+2oXS7n75sdr+/9cS/M1vtPS+t+Wzv5EuJ8HoAG8gBzKPMFoAACEd/z/koyRtn5ayk5K639LOuMj0jU94dfo3igluqSBEHfT7hor07/e3Rf0u7m0GLh20fekO94u7bpB6j5SOuEd0sizpNuulCZuleZ3B6/RvVHqOy54DAAAAAAAAAAAAACgaVwhOcd2nayjuoJf740ppg2dW3RSz+nqjHXVo7wVpyfe59s+6y0Go817c9pfmPQdc0rPWbp75vaSditPe3LjGklx4zEA9TXuCDnb0nWipgv7tTv7REnfRMSwx9UkKPxsIrtbni0oFuK6Es8WtCdordwubYgfXVGNAAAAAAAsRTBa+3pz0fb767CPFxVthwpes9beZ4z5maRznmzqkfQcSd+oYW0AAAC1EY/wxofcfumxa6U9P5de+MjihfnV8kLeUW3bF6Wnf16KOV6IKixIN5zvnm94auArKHxh+1ek48uE0RUWpKl7pDUnNDZUbGGi+jVOeId0xoerXweog0JA+FlQHwAA8HHcHy9+VCvRLXWkpYWMe0y5YLQ1J7j78gfK19AxKJ33hdL2Z15X2vbIF6VbX72kwUhP+Rv3cyoAAAAAAAAAAAAAQFN51lPGEcRyQf9zdPaaZzW4opXPFYw2U1h8Dd4VNCdJL0q/TvfM3CGr0juZZrI7CUYDUFfWWmWyO3z7zl17sXYsPOobjJZxhKkh+LEpKK/J/B4NJsvfOH5ffq/yNh+wn13a0EkwGgAAAACgejVIasBKY4w5RtLSv+Zvk/TDGu9jVNKpS5rykm6OsMSPirYvr7YmAACAuqgkzGr2Uelrw1IhW/3+p7eFH5u50d33xDek2cfd/Vz871D6Zo5DDmwNnvrwF6Rr+6Xrz5SuHZDu+0htSwtSbTDaeV+STv8/takFqIOg8LM8wWgAADTPuT6hZEuVDUY73t1XmIteT5DNr5Ke81Pp6N+Tjv1j6eIfSFveWNt9AAAAAAAAAAAAAABqZiq/Vznr/97cdHJ9g6tpDd2xXt/2nM0q6y04g+biSmgktV79iUHfftc8AKiVGe+A5rxZ377h5JjSyVHfPo5Pbpls8GMTFJYZZVzYdQAAAAAAKIdgtPb07KLt71trAxIdKnJK0fZd1tqZCPNvKdo+ucp6AAAA6iNeQTCaJC3ske5+X/X7XxgPPzYTkFO757bguQceCr+f1SQofCEoNG/yTumnr5MK84vbXlb65Tulnd+tbX1LTd0r3f8P0l1XSVv/tfJ1nvK30lGvkIypXW1AjRUCnuEGhaYBAICQjr2ysnn9xX82LtK7Jbi/c1RK9vv3pS+orKYgQ+dIT/836exPSCMX1n59AAAAAAAAAAAAAEDNZHLuoJXhVJkbda1SPfE+Z99sYdoZXjOUGlHMxJV2PK6E3gCot6AQr3RqzHl8msrv1YI3X6+yWlrQeVSSJkKGypULnwu7DgAAAAAA5RCM1p6eVrR9qySZRZcYY642xtxrjJkyxswYY7YbY75njHmXMeaokPs4qWh7a8Qai5M3itcDAABYGYLCr8p57KvV7z93IPzYu/5a2v9gabu10n3/J3juWn4d85X3v8uUJCne5e57/Ov+7Y9dV109Lls/I33rqdIv3ibd/bdVLGSkza+uWVlAvXgB4We5QuPqAACgbR35O+HH9h1z+PPuI6WRi/zHpZ8hdR8RvJYx0jFvKm3v2SQNnBa+JgAAAAAAAAAAAABA23GF5PTE+9Qd721wNa0h6HGZ8Q44Q3LSybEn/x317S8XrgMA1RrP7vBt7zCdWhMfcB6fJIK5XMqFWo6HDL0sdw4Iuw4AAAAAAOUQjNaeziravu/JwLPvSbpB0uslnShpjaRuSRslXSzpA5IeMMb8kzGmXALIMUXbj0ascXvR9qAxZiDiGgAAAPUXryIYbXrbYihZFE/8j3Tr66WfvkHa8R0ptz/a/G8eJ930Uun7l0i//HPpwEPSxE/Lz1tzQrT9rBaFCoPRfv0e//atn6qqHF+zO6Sf/75ka5AGdcE1Uu/m6tcB6qwQcGidzzWuDgAA2tbYpdIZHw33fOjEdy7fPvcL0rqzl7etO1M6/z/C7fuUq6SNv3t4u+9Y6cLrJcPLGQAAAAAAAAAAAACwmo3n/ENyDoZ4oVRPUDBaYdoZXjOcOhiM5v/YukLqAKBWnMGNqVEZY7QumVbMcXk0xyh/mTKBcWED5coFrBGeCQAAAAColUSzC0BdFP/VuVvSbZKGQsxNSrpS0rnGmOdZa11/hegv2h6PUqC1dtoYMy+pc0nzWkmTUdYpZowZlpSOOG1LNfsEAABtLlFFMJq3IOVnpGTIu9A9+Cnptj86vP3w1VL6/Oj7ffSri//u/r70yOel9DODx/cdKw0/K/p+VoN8QDBaLNm4OoJ8/YjarPPSmeq+34EGKnjuvpls4+oAAKCtnfB26Zg/lKYfkvb/RrrpJaVjerdIIxcvb+s+Qrrs54tB0bOPSd0bpN6jwu832bsY2LuwR1qYkPqOk4yp5isBAAAAAAAAAAAAALQBVxALwWhuCZNUh+nUgp0v6ZstTLuDh558TNMp/8d2IrdbBVtQ3MRrVywALOEKNzt4fIqbhAaTw75hX+UCwFajrLegffk9gWPCPm7lAtT25fco6y0oFesIXR8AAAAAAH4IRmtPxaFlV+twKNqMpE9J+rakxyX1SDpV0hskXbBkzumS/tMY8yxrbc5nH8XpHnMV1Dmn5cFofRWsUexKSVfVYB0AAIBF8a7q5mf3hAtGs5706/eWtmdurm7/8+PSY9e6+9PPkM79XPjwttWmEBCM9puPSye8zWdO6ZtH6mbP7ZXNMwlJnpTok0aeLZ31CULR0FI86+7bGim2GwAABEp0Sf2nLH6c+wXp1tce7hu9RHr656V4yn9u71HRAtGKdQwufgAAAAAAAAAAAAAAIGncEYw27AjvwqKeeJ8W8qXvbZ3MT2gqv9d3zsFANFfonKeCJnMZDaVGa1coACzhDG5ccsxPJ8f8g9Ec54vVbCK3u/yY7C5Za2UCbmJprXWG1i21JzeusY4NkWoEAAAAAKAYwWhtxhjTIak4Sv3IJ/+9V9Jl1trHivp/IelqY8w7JH14Sfu5kv5C0t/57Ko4OaOS9Ic5SQMBawIAADSfiVU3f2FC6tlUftye26X5JtyZ6NKfNH6frSQfEIw284j00L9JW96wvP2W19S3pqV2/yDa+Ct2S53D9akFaKCCF9z/lds8vezsKo/fAABguc2vWfwAAAAAAAAAAAAAAKDBrLWhQnJQqjveq735TEn79vmtzjnp5GLg2VBqxDkmk9tFMBqAunGFmy0NbBxKjUo+b/ef8AlLW+3ChMUt2HntL+zT2sSAc8yBwpQWbPlLiTO5nQSjAQAAAACqxlXC7SfuaJ+SfyjaIdbaj0j6WFHz240xYQLLbMj6qp0DAADQWuYnwo1bGK9vHX5O/0jj99lqbJn0pYc+s3x7fkJ6/GvBcwrZ6mpa6p4PhB+bGpA60rXbN9BE5YLRPnsTTzcBAAAAAAAAAAAAAAAAoF1MFSaVs/7vv1wakoNSPXH/y8K2zT3g2x5TXOuSizfh7Yx1aU3cPyAnTMgOAFRipnBAM94B376lYZiu478rSHM1C/uYTGSDQ+XCHvszZdYBAAAAACAMgtHajLV2VpLfJeIfDQpFW+LdWgxRO2idpMt9xk0XbXeFqzBwTvGalfhnSadE/HhhDfYLAADa2ZrjK587+2i4cbYJIT7dRzR+n63m9A8F90/cunx7/33lw9S+/2xprgYvts48JuX2hR/fNSYZU/1+gRXAK3PI/N59jakDAAAAAAAAAAAAAAAAAFB/49kdzr7hFMFoQbpjfb7t4zn/x3QoOaK4iR/aTqdGfccRPASgXoJCtYaXhKG5jk97cxPK21zN62plYYPKyh3bM7lw60yEHAcAAAAAQBCC0drTjE/bF8JMtNbOSPpaUfOFPkNXZDCatXbcWntPlA9JD1W7XwAA0OY2vry0LbVOevGEdM5npfO+KCXX+M/9+R9Ik3eV34ctVFdjJboIRitrvV9GcICc/52plpm4Rbr+TClzS2U1HfTQZ6ONH76wuv0BK0ihTP4gAAAAAAAAAAAAAAAAAKB9ZLL+QS3dsV71xP2Dv7Ao6uNTHDSUTvoHz4UNxwGAqFzhXEmT0prEwKFt1/HJytOe3HhdamtVYcMsyx3bQ6/jOG8DAAAAABAFwWjtaV/R9m5r7bYI839atH2iz5ipou10hPVljOlVaTBacd0AAAArwyn/WzrqNZLM4nbXeumi70odg9KWN0hHvVJae7J7/s/eJD3yRenmV0q3/4m05/bSMc0IRus9uvH7bDU9m6R4Z/AYaw9/ng8RjCZJczul718o/eId0i//XLrpZdKDn5S8CN8Hd783/FhJ2vLGaOOBFYxgNAAAAAAAAAAAAAAAAABYPVxBLcMp/1AcHNYT7400Pp1cv3zb8RgTegOgXlzHl3RyTDFz+JLooeSIzMFrPEKusVrVKtBsIhsuFJPwTAAAAABALSSaXQDq4gFJG5ZsR/0rzo6i7UGfMQ8WbW+KuI/i8XuttZMR1wAAAGiMWFI67wvSmR9bDLRae5JkijKGEwF3U9t7m3Trqw9vP/Rp6Vn/LY1ecritMFfbmstZe4rUvb78OEgbXixt+6K73+Ylk1z8PBcyGE2SvJx0/0cPbz96jbT7h9L5X5GM/wu0h9x1Vfj9SNLGl0rrzog2B1jBPFt+zHfusXruyWV+lgAAAAAAAAAAAAAAAAAAK14mW3yp06J0kmC0crrjAe9x9pFOjS7fdjzGmdwuedZbFlIEALUw7gjxKg5qTMZS6k8MajI/UTKWYK7D8janvbnSx8jPRJnHLWzA2p7cuAq2oLiJhxoPAAAAAIAf/vLYnu4p2l6IOL94fKfPmPuKto+JuI+ji7bvjTgfAACg8ToGpf5TSkPRJCkZ4U0DhXnpB5dK1x0p3f6Wxe38TO3qDGPsOY3dXyuLdQT3e9nDn+cjBKP5efSr0tTd/n2PfV361mnSl4x099+617j8V9KZH5d6t0idw9Lxb5PO/ixCrxkAACAASURBVGR1dQErTMErP+bdXw8xCAAAAAAAAAAAAAAAAACw4rmCWIpDclCqJ94bafxwURDacFFQ2kF5m9O+/J6K6wIAl0zWccxPlh6PhnzaFtcgGO2gPblxWYV7X3W5xy1s4JyngiZzmVBjAQAAAABwIRitPd1VtN0fcX7xeL+/UhenNTzVGNMdYR/nl1kPAACgtUQJRjto7gnpgU9IP36BNPmraHOf/nlp4Izo+zxo7cmVz11tYqng/sKSXOHc/ur399BnS9t23iDd9GJp353Bc/tPlQZOlY5/i/SCrdIVu6UzPyZ1rKu+LmAFCROMdvt2yfNs/YsBAAAAAAAAAAAAAAAAANSNtdYZ1JJOEoxWTncsWjBacdicK3RICh+QAwBRuMIwh33CMP3agtZYjVxBc35mvAOaLUz79s0WpjVTCH8j+XH+DwAAAAAAVSIYrT19W9LSq7+PNsZ0Rph/StH248UDrLU7tTyALSHpggj7uLBo+9sR5gIAAKw8iQqC0Q7adYO09VPR5nQMSVveUPk+1xxf+dzVxuaC+72lwWjhX+hz2nVDadvWf5VsiCSoza+tfv9ACyiEzDub8H9dHgAAAAAAAAAAAAAAAADQIvYXJrVg5337XIE4OKwnHv49zjHFNJgcXtbWHe9Vb3yN7/goYTsAEMZsYVrTBf+bladT60vbHAGZHJ8Oixpi6Ro/EXGdCUeoKQAAAAAAYRGM1oastTsk3bqkKSnp4ghLXFa0faNj3HVF278XZnFjzAmSzlnSNCPpu+FKAwAAWKGSVQSjVaJjSDr69RVONtKaE2tZTXvLzwX3F5YEo+VrEIw2da9ki1KfHrs23Nzjrqx+/8AKZ60t+RFx2TlV31oAAAAAAAAAAAAAAAAAAPUVFG7jCsTBYVGC0QaTw4qbREm7M3goR/AQgNoKCt9KJ0dL2oZSpW2StCc3Ls8WalZXK4saEucaPx4x6IxzBAAAAACgWgSjta+ri7b/NMwkY8wzJD1tSZMn6VuO4V+UtPSvQ1cYY44NsZu/KNq+xlrHrVsAAABaRdL/Tmh10zkkJXqkZ30z+tz1z5M61tW+pnZVKBOM5i0JRsuVCUZbd6Z06U3l9/mzN0lexBdiL7lRindGmwO0IC9kKJok7dhXvzoAAAAAAAAAAAAAAAAAAPU37ghW6Yr1RAr9Wq164r2hx7oC0NKO4KGoYTsAUI4rfCtpUupPDJa0+4WlSVJBeU3mJ2paW6vKBITNRRkfNegs6n4BAAAAAChGMFr7ulrSfUu2LzLGBIajGWOGVRqodo219iG/8dbaByV9fklTStLnjDHONAZjzAslvX5JU1bSe4PqAgAAaAmJBr+xIvXki3qp/uhzz/nX2tbS7soFoxVCBqOtOUG64Bopfb7UVeYOhQ//m/TwZ6W7rpJ+ckX5Gs/4v9LwBeXHAW2g4IUfu3MqQooaAAAAAAAAAAAAAAAAAGDFcYVvpVNjMsY0uJrW0x2LEIyWcgSjOQLTJgi9AVBjmdwO3/ah5KhipvRyaNdxS5IyjpC11SZqiKVr/ETEx5PHHwAAAABQLYLR2pS1tiDprZKWXjL+EWPMPxhjBorHG2MukXSzpC1Lmicl/VWZXV315LiDzpP0PWPMCUXrdxhj3iLpq0XzP2Kt3V5mHwAAACtfo99YkVyz+G+8K9q87iPLh3JhuXLBaF728OfZPf5jNr5Uet69Uu/Ri9smWX6/P3+zdPffSo9fFzzu6DdIJ7y1/HpAm/AiZJ3tmKpfHQAAAAAAAAAAAAAAAACA+svk/ANahh1hXVguGUspZTpCjXUFDA0lR33bM9ldspYbmAKoHXcYpv9xqDPWpb74Wv+1CG9UwRa0Jzfu27cukfZtd4Veus7Ha+MllysfWsezEe6IDQAAAABAEYLR2pi19gYthqMt9SeSdhtjfmKM+bIx5uvGmG2SbpB0zJJxWUmvsNY+UmYfj0u64snxB50v6V5jzG3GmK8YY66X9Jikj0tamgDxTUnvruBLAwAAWHkWHIFY9XIwiC3eHW1euZAvlCobjLYg3f8P0rdOlSZu9R8zctHy8LxYqnb1DT+zdmsBLaAQ4fXxnQSjAQAAAAAAAAAAAAAAAEBLG3eG5BCMFlZ3vDfUuLQjbG7Y8Vgv2HntL+yruC4AKOYKM3Mdn4L6XCFrq8lkbkIF5X37Tuw5zbfd9bi5/m9O7Dndtz1ns9qfnwxRJQAAAAAA/ghGa3PW2k9IulLS7JLmpKRnSHq5pBdK2lQ0bbekZ1trvxNyHz+S9CJJmSXNRtJZkl4q6bmSiuPjvyzp5dbaQqgvBAAAYKVrVjhVImIw2nF/Up862tmGlwT33/MB6Rdvk/bd5R6z5oTl28f8fvV1HTT23NqtBbSAKMFou6a4EyUAAAAAAAAAAAAAAAAAtCprrTOgJSgkB8v1xPtCjXMFoAU91gQPAagl5zE/IAxzKDXqv5YjyGs1yeTcx+iTHIFmU4VJLXjzy9qy3oKm8nsjrSNJ4wH7BwAAAACgHILRVgFr7SclPVXSv0s6EDB0l6T3SDreWntLxH18S9Ipkj4lKSjG/aeSXmKtfaW1dibKPgAAAFa0wXOkRLg3DVQtuebw553D0eZuuKK2tawGm14W3L/jf8qvseb4ojVfXnk9S41dLnX5v5ALtCsvQtbZDm5ECQAAAAAAAAAAAAAAAAAta39hnxbsvG+fK8QLpcIEoxnFNJj0f19yT7xPXTH/mzkHhe4AQBRzhVntL/i/+Xc4IKDR1Udwo/sxWBMf0BEdm53zJopC5Yq3l9rYeYx6Yv7nmaB5AAAAAACUk2h2AWgMa+1Dkl5jjOmSdL6kIyWNSspKyki601p7V5X7GJf0R8aYtz65j01P7mNG0hOSfmmtfaSafQAAAKxY8Q7pnE9Lt7xKsoX67uv0jyzZb2f4eSf+mbT25NrX0+56NkqnfkC68y8rm5/slzpHfNb8e+nO/11dbWd/orr5QAsqeOHH7pyqXx0AAAAAAAAAAAAAAAAAgPoKCrVJB4TkYLmeWG/ZMeuSaSVM0rfPGKN0ckyPLjxU0pfJEnoDoDaCQrTSAWGY6ZT/jcYncrtkrZUxpuraWlXG8ZimU6MaTKYVU0yeSt+cncnu0hEdRx3aHnecj2OKaTCZ1lBqVDPzB3zWIZwOAAAAAFA5gtFWGWvtnKTv1XkfWUk/rOc+AAAAVqRNL5MGTpN+/ofS+I/qs494t7TxxeHHP+M/pQMPSukLpKHzpFX8ol5VTn5X5cFoI8/yf9xP/itp9NLF75fJX0Rfd/BpUu/RldUEtLCowWir/Q0NAAAAAAAAAAAAAAAAANCqMjn/QJXOWLd642saXE3r6o6XD0ZLJ/2DhQ71pxzBaI7/IwCIynU8SZiEBhKDznlDjqDMrF3Q/sKk1ibW1aS+VuR6TNPJUcVNQuuSaU3kdvvMWx6o5gqtW5dMK24SSidHtX3+wbLrAAAAAAAQRazZBQAAAABtZc3x0ql/V5+1k2ukC74qpQbCz9lwhXTSX0jp8wlFq1b3kZXNG7vc3Td4tnTpT6RYKvq6J1UY1Aa0OM+GH5srSNl8/WoBAAAAAAAAAACoJ2PMe4wxtoqPzzX7awAAAACAaoxn/QNdhpNj3DAzgp54X9kxw6n1gf1pR/BQxvF/BABRuY75Q8lRxUzcOS+dcgc7rvZjVCbrH0yWTi0e013H9omiec51npzv+j9Y7Y8/AAAAAKA6iWYXAAAAALSdlPtuRKHEu6ULvykNnC6l+qW5XdLsY9LaU6REV+n4jrS0kClt795QXR1YzstVNq9vS3B/okfq3SLtvy/8moPnSEc8v7J6gBZnIwSjSdJcTupI1qcWAAAAAAAAAAAAAAAAAED9ZHL+gSoHA10QTnest+wYVzjOoX5X6E1up6y1BNUBqJorRKvc8akn1qeuWI/mvJnSNXO7dIxOrkl9rcazniZywYFmQ6lRaba0v/j86zofDz15bnAGrOV2cY4AAAAAAFQs1uwCAAAAgLbTMVR+TP+p7r7fulMaefZiKJokdY1Kg2f7h6JJ0lPf599+4jvL14HwFiYqm9cVfAc9SdJld4RczEibXild8BUp5r7rFdDOvKjBaNn61AEAAAAAAAAAAAAAAAAAqK9KQ3KwXE+8r+wYV/DZoX7HYz7nzWqmcKCiugBgqUrDMI0xSicd4Y1Z/2Cw1WAqv1c56/9G6oOP6bDj2J4pClQr3j7o4Pwhx+PPOQIAAAAAUA2C0QAAAIBaSw2UH/Pcn0tjly1vi3cvtvcdE21/m14q9R27vK33aGnTy6Otg2CDT6tsXtcR5cckuqTNrw0eE+uQXlGQzv+i1LOpslqANhAxF01zubqUAQAAAAAAAAAA0AyvkLQ5wgd30wIAAADQsqy1zpCc4TIhOVguVDBambC5oGAi1/8TAEThDsMMDm6U3Meo1Xx8coWZSYcfU1eg2d5cRnm7+CbsvM1pby7jO+7gfM4RAAAAAIB6SDS7AAAAAKDtxOLS+t+SdnzLPSaekp75X9L9H5UyN0mdaem4t0jrzoi+v9SAdOkt0n0fkiZ/KQ2cLh3/NqlzuPKvAaVGLpImbo0+L7km3Lgjf0d65Avu/o5ByZjo+wfajOdFG08wGgAAAAAAAAAAaCO7rLXbml0EAAAAADTCdGFK896cb1+5EC8s1x3vDew3Ms5wnIPWxPvVYTq1YOdL+sazO7W56/iqagSwus17c5oqTPr2DafWl53vOi+4wtZWA9fX3hPrO3RecAWaWXnam8toOLVee3MZWfm/gfvg/KBzRCa3i3MEAAAAAKAiBKMBAAAA9XDaB93BaGtPWfw3npJOfldt9tc5JJ3+odqsBX8nvH3x/3Tyl+Hn9D81fJjZ2HMkGUnWvz81EH6/QBvzHD8iLnPZ+tQBAAAAAAAAAAAAAAAAAKif8YAwm2FHkAv89ZQJRhtIDCkZSwaOMcZoKDWqJxa2lfRN5HZVUx4AaCLrPo6ECcNMp/zDHTO5nbLWyqzCG5RnHMfmpY/VUHLEPT+7U8Op9YHhcgfnB50jVnM4HQAAAACgOrFmFwAAAAC0pf6nSC94yL9vwxWNrQW10TEoXfLjaHOOenX4sYkeaeB0d39ybbR9A20qYi6a5nJ1KQMAAAAAAAAAAAAAAAAAUEeZnH+QSmesS71x3lMZRU+sL7A/HTJoLp10Bw8BQDVcx5G4EhpIDpWd7zo+zXmzmvEOVFVbq3IFki0NmkvFOtSfGPSf/2SwmitgrT8xqFSs49D2kPMcQXgmAAAAAKAyBKMBAAAA9dJ7tHTxj5YHWm14sXTyXzatJFQpGfzGkGWO/j3puD+Otv6zvuHuCwpNA1YRz4s2fp5gNAAAAAAAVowf3G/1J//h6Z1f9fSzh6PGnwMAAAAAAAAAVhNXSE46OSZjTIOraW3d8d7A/uHk+lDruALUMllCbwBUx3UcGUqNKG7iZecHBTyu1mOU8zxa9Fi5A812Bq9TNM8ZnukIaAMAAAAAoJxEswsAAAAA2trIs6QrxqW9d0jdR0o9G5pdEaoV75YKs/59Y8+VnvJeqWtU6tkUfe3uI6Tj3iI98I/L201c2vza6OsBbSjqJdNz2bqUAQAAAAAAIvr0jZ7e/P8OP7P/xx9YfeUPYvqd07l4DQAAAAAAAABQatwRpBIUfgN/qViHkialnPV/Q1065R9mUzIu6QhGc4TmAEBY47kdvu2u406xNfEBpUyHsnahpG8it1Obu46rqr5WY611BpKVBJqlRrV17p6ScQcD5dyhdcXr+P9fTeRWZzAdAAAAAKB6sWYXAAAAALS9eEpKn0soWrs46V3+7R2D0gXXSEPnVBaKdtAZH5GOf9viepLU/xTpmV+Xhp5W+ZpAG/EiJqPN5aJGqQEAAAAAgForeFb/+7rlz9FzBend/+U1qSIAAAAAAAAAwErnDnQhGK0SPfE+Z1/Yx9QVejNd2K/ZwnRFdQGAFHDMDxncaIzRUNJ/rCvYq51NF6a0YOd9+4qP5cVBaQdlngw0yziCzYrPHa51DhSmNO/NBdYLAAAAAICfRLMLAAAAAICWcvTrpK2flOaWvPi65kTpstukRE/168eS0pkfk874qFSYkxLd1a8JtBEv4vXSc7n61LGSzWWtJmel4T4pETfNLgcAAAAAAN28VZrwuR7qnh3Sjn1W6/t5/goAABDSm40xfy3pREmDknKS9kjaLukmSddba29sYn0AAAAAUBPWWmVy/iE5w45wLgTrjvVqn/b49rkCz0rGOUJvJOmmfd/VQHKootpckialLV0nqi+xtqbrNoJnC3piYbt2ZR/37R9IDGpT53FKxpINrgxovgVvXo/M/UYHClOH2nY6flaihGGmU2Pakd1e0j7uOJ+0i4LNa/v8Vu3JjR9qm8jtdo4vPpa7HuM9uV26bf9PtMexVsk6AeeSG/ddr/7EoLO/EnGT0KbOLRpMjtR0XQCAv8nchLbNP6i8Lb1IJ2U6tLnreK1J9DehMgAA0M4IRgMAAACAKHo2SpfeLN3/MWnfr6XBs6WT3lWbULSljCEUDfBhI46fy9aljBXrYzd4+ttvWk3NSWNrpX95TUy//VQuLgcAAAAANNf2Pe5n9PvnpPW8LxIAACCslxdtd0jqlbRJ0jMl/ZUx5nZJf2mt/V6jiwMAAACAWpku7NecN+vbFyUkB4f1xHt9241MYODZUv2JQSVM0jcM4esTX6iqviAvSr9Ol657Ud3Wr7Xp/H596on36+H5+wPHrUukdeWR79b6jo0Nqgxovodm79OndrxfM4UDocYPp9aHXtt1LJvI7gq9RqvJZHfqnx5/n8ZzO0KN74x1qTe+PGwynfJ/3PI2r6t3ftS5VnEQ2kBiUHElVFC+ZOx1mc+Hqq8SF/Y/Ty8ZfoNiJl63fQDAauZZT/898SV9Z++1geOMjK5I/54uXveCBlUGAABWg1izCwAAAACAltO7WTrr49IlP5RO/5DUsa7ZFQGrhhcxGW2u9P1Xbeu/77R6x1cXQ9EkaeeU9LJ/8fRowMXnAAAAAAA0W4GnrQAAALV2lqTvGmP+3hhT87unGGOGjTEnR/mQtKXWdQAAAABob5ncTmdfcRALwumO9/m29ycGlYylQq0RM7HQIWq1dF3m83po9r6G77dS35j497KhaJK0N5/RF3Z9vAEVAStDwRb02Z0fDh2KJrnDznzHOs4PQeeUVvel3Z8MHYomLYaLFv/JcKjC43rx/03MxDWUGqlorWr8aN//6FfTP2v4fgFgtbh/9s6yoWiSZGX1n5l/0+PzjzSgKgAAsFoQjAYAAAAAAFqGjRqMlq1PHSvRtXeUPjhzOemff8wV5gAAAACA5gp6Zjq7ip67AwAAVOEJSZ+W9PuSLpB0kqQTJJ0v6S2SvlM03kj6K0nvr0MtV0q6O+LHf9WhDgAAAABtbE9ut297h+nUmnh/g6tpDz3xXt/2qEFzzQqmu2fmF03Zb1TWWt1x4KbQ4x+d36pMtn1Dm4ClHpq7V/vye0KPjymudcnh0ONdIWoHClOa9+ZCr9MqDuSn9JvZuyLNSadKH6PueK96HOGZLr3xNeqK95S0VxqyVq3b9/+kKfsFgNXg9v03Rhof5XdhAACAcghGAwAAAAAALcOLGoyWq08dK9Ft2/wfnA9dTzAaAAAAAKC5goLOZxYaVwcAAEAL+rmk50raYK39A2vtZ6y1N1tr77PW/sZae4u19hPW2ssknS3pwaL57zLGvLDhVQMAAABAleYKs77taxPrZIxpcDXtYWPHFt/2zZ3HR1rnqM7jalFOZNOFqabsN6r9hUnNef7fvy67s0/UqRpgZdm58Fik8Zs6j1HcxEOP9wv9OqgdAwjHszsiz3Edw2t1LtjcpHPEruzjTdkvAKwGUX9X5XdbAABQSwSjAQAAAACAlhE1GG02W586VqL7d7n7DswTjgYAAAAAaJ75gOBygtEAAADcrLXfstZ+19qgqNlDY2+X9HRJDxR1fdCYCFeQAgAAAMAKsGDnfds7Yp0NrqR9nN53rvoTg8vaumLduqD/0kjrnLv2IvXE+2pZWigFFRq+z0pUEr6UyQW8+Q9oI7sjBnldvO4FkcYPJIYUV8K3rx1/zqJ+TX3xtTpnzbN9+y4aeL5iIS83jymmiwae79t33tpL1BNr/Dkik92lgm2N8wQAtJqo55t2POcCAIDm8X+WDwAAAAAAsAKVv+xnucmZ+tSxEvV0uC8mn5yR+nhPIAAAAACgSaYDws9WU6g5AABAvVlr9xpjXiHpdknmyeYTJD1b0vdqtJt/lvTViHO2SPqvGu0fAAAAwCqw4BGMVmt9iX796Ya/1zf3/Ie2zz+osdQGPX/oVRpMjkRaZ21inf5s44f03xNf1Lb5B5TzAu6OUoE5b0Y5W/rigbVeTfdTL64gCKOY4iauvC19vDJZwiOwOoxnn/BtT5kOdca6JS3+QWusY6Oe2X+5Tut7eqT1YyauweSwxnOlAWyVhBaudJmc/9cUV2JZgGUyltTmzuP1gqFXqy+x1nfOCT2n6o+P/Bv9YPIbenxhm/zu02CM0REdR+migefrhJ5TfdfpTw7qnZs+uHiOmHtQeZuv4Ctz8+RpujBV0l5QXntz40qnxmq6PwBY7eYKM77HXUnqMJ2+gdaZ7E5Za2WM8ZkFAAAQDcFoAAAAAACgZXgRg9EmpiNOaGFdSXcw2oGAC9ABAAAAAKi3mYDws5ms1eHMDgAAAFTLWvsLY8x3JT13SfNlqlEwmrV2XNJ4lDlc/AIAAAAgqgVvzredYLTqDKVG9fqxt1W9znBqTG9c/84aVFTq/+38R926//sl7Z5aIxht3BG+tKHzaG3o2Kybp24o6XOFGwHtZnfOPxjteUMv16XrXlSTfaRTY77BaBOO0MJW5gp7O7XvHL1p/Z9FXu/EntN0Ys9p1ZalkdQRetP6P696HT8L3rze/uDLfft2Z58gGA0AaswV+itJrx37E316x4dK2rN2QfsLk1qbWFfP0gAAwCoRa3YBAAAAAAAAYfncgCzQxHR96liJUgHx9/v93ycIAAAAAEBDuIK8y/UBAACgYtcXbT+1KVUAAAAAQIUWPP8/HhOM1v5ixv9yR8+2RjBaxieQSZKGk2NKJ/0De1zhRkA7yXoL2pvL+PaNpI6o2X5cP2eu0MJW5gp7SydHG1xJ43TEOjWQGPLtG8/6H38BAJVz/Z6aMEkd23VK5HkAAABREYwGAAAAAABahkcwmlPcuPsOzDeuDgAAAAAAigWFn81mG1cHAADAKrKtaDvdjCIAAAAAoFILnv8bnjpMV4MrQaPFFPdt91RocCWVyWQdQUWpMaVT/mFFe3LjKtjW+PqASmVyO2Xl/ybgmgajOX7OXCFirSzoeNPOhlPrfdt3E4wGADWXyfkHnKWTo+pNrFF3rNe3f9wxDwAAICqC0QAAAAAAQMsgGM1tIe/u208wGgAAAACgiYKC0YL6AAAAULG5om2SAwAAAAC0lAVb/LRmUUess8GVoNFixv9yR896Da4kOmttQHjEmNJJ/7CigvKazE3UszSg6VyhVTHFNZQcqdl+0kn/YLTJ/ISyXvu8MDlbmNaMd8C3z3WsaReuIL3x3BMNrgQA2l+5EE5XGGcmSzAaAACoDYLRAAAAAABAy7ARg9Gm5qRsPuKkFhUUjHZgfnU8BgAAAACAlWlmwf28dCbbwEIAAABWj6Giba6uBgAAANBSFjz/O0ESjNb+jONyR08rPxjtQGFK855/qF86NaahlH9gkyRnoBrQLnZn/UOrhpIjiptEzfbjCmiRpD258Zrtp9kyOf+gGskdDtcuhlPrfdtd4XsAgMq5Q39Hl/0bdh4AAEBUBKMBAAAAAICW4VWQ77VnuvZ1rETBwWiNqwMAAAAAgGKzAeFnQX0AAACo2DlF21wVCAAAAKClEIy2esWNIxjNrvxgtEzWHQAxnBxVZ6xLa+ID/nMDQo6AduAKRhtJHVHT/Qwmh50Bi+0U0uI63iRNSmsS/seZduH6ntmX3+MMpwQAVMZ1vkknF4NIXYGkmSy/2wIAgNogGA0AAAAAALQMW0Ew2r5V8Bq3tTYwGG0/wWgAAAAAgCbKB1yrlCs0rg4AAIDVwBjTKemKouYfNaEUAAAAAKiYOxitq8GVoNFcgUaeWiAYzRG61BnrVm98rSQpnRr1nxsQqga0g/EGBaMlTFLrkkO+fe0U0uIKUxxKjirmCJhsFyPJ9c4+jqUAUDsL3rymCpO+fUNP/k57MCCtWCa3U7aSi38AAACKtPczXAAAAAAA0Fa8SoLRZmtfx0qTLwSHxh0gGA0AAAAA0ERBz1nzBKMBAADU2l9IWnpFaUHS/zSpFgAAAACoyILnfzfMjlhngytBo8VN3Lfdsyv/BQVXMFo6OSpjzKHPo8wF2oG1VrsbFIwmBYe0tAtXAJgrfLGdrEumlTAJ377d2R0NrgYA2teEI4RTkoafPNemU/7n3HlvTtOFqbrUBQAAVheC0QAAAAAAQMsICkZLOP7KsRqC0Rbywf37CUYDAAAAAKxQBa/ZFQAAAKxMxpjXGGNGIs75fUlXFTV/zlq7vXaVAQAAAED9LVj/NzylDMFo7S5m/N8I6Gnlv6Aw7gwqGvP9fKlM1h08AbS6A4UpzXn+b+YdSa2v+f6GHAGEE230c+YOYvQ/xrSTmIk7v85xRwAfACA61++nMcU1kExLkoYd51xJGg8IVgMAAAiLYDQAAAAAANAybEAw2kCPf/u+uYBJbaJcMNoMwWgAAAAAgCYKemaeX/nXMQEAADTLGyU9Yoz5vDHmecYYxyshkjHmLGPM1yT9qySzpOsJSX9d5zoBAAAAoOYWPP83PHXECEZrd8ZxuaNnV/4LChlXMNqSAB9XmM9EbldLfI1AJXYHhFWNpI6o+f6cAYSOMLFW5Ap5SwcE1LSTYcf3ze7sjgZXAgDty3XeHEqOKG7ikqTe+Fp1LmRZYgAAIABJREFUxrr85zt+NwYAAIgi0ewCAAAAAAAAwvIcV1IbI/V3SZkDpX37/G8y11bKBaOV6wcAAAAAoJ6Cgs7zhcbVAQAA0IK6JL32yQ/PGPOgpG2SpiQVJA1KOlXSiM/cvZIus9b6XyUJAAAAACtUwRaUtznfPoLR2t/BkIVinl3ZLyhYa53hEcNLQppcgU05m9X+/KT6k4N1qQ9oJlcwWlesR73xtTXfnyscbE9uXAWbV9y09mXVC968pgqTvn2uY0y7GUmt923fnXOH8AEAonGG/qYOn2eNMUonx/TYwsOl89sokBQAADRPaz+DBwAAAAAAq4rrQuqYkfq7/fv2zdWvnpWiXPDZfC7gCnQAAAAAAOos6Flp3pWCDgAAgGIxScc/+VHO9yW93lr7eH1LAgAAAIDay3rzzr5OgtHanlHMt92T1+BKopkpHNCc538X13RySTCaI7BJksZzOwlGQ1tyBaONpI6QMabm+1sa2LKUJ097c5mWDw/LZN33QVh6vGlnI6kjfNvHsztkra3L9xUArDauYLPic006NeofjOYIVgMAAIjC/y+FAAAAAAAAK5DrWmkjqb/Lv2+f/3uN2kq2bDBaY+oAAAAAAMCPK+hckvKFxtUBAADQYv5B0pckbQ85fkbSdZIusdZeQigaAAAAgFa1EBCM1hFzvEkMbSPWosFo47kdzr6lIUzd8V71xPt8xxEegXYVFIxWD0MBAYSZnDtUrFVMOL6GmOIaSA41uJrmGE6u922f92a1v7CvwdUAQHtyBXEWB4y6Qjnb4ZwLAACaL9HsAgAAAAAAAMJyBaPFYlJ/t5FUOmA1BKMtlAtGK9MPAAAAAEA9BQWjPbC7cXUAAAC0EmvtdVoMOpMxpl/SyZI2SBqR1K3FG+PukzQp6T5Jd1lriZ0FAAAA0PIWbEAwmulsYCVohriJ+7Z7K/wpryvUrMN0ak28f1lbOjmqmcKB0jUIj0CbGs/6BweOpPzDrarVEevU2sQ6TeX3lvRlsjulntPrst9GyeT8jzdDyRHnMbTdDAd874xnd2htYqCB1QBA+8l5WU3mJ3z70kUBpK5jMqG/AACgFghGAwAAAAAALcN1IXXMSGu7/fum5upXz0pRNhgt15g6AAAAAACI6je7pR37rNb3m2aXAgAAsGJZa/dJurnZdQAAAABAIyx47jd8dcQIRmt3xsR82z3rNbiSaFyhZunUmIxZ/hpIOjmmbfMPlq5BeATaUN7mNOH4+RhJHVG3/aaTo/7BaG0QQOg6VqRTo77t7ag3vkbdsV7NetMlfePZHTq2++QmVAUA7WMit1tW/hfvpFNjy7eT/uefWW9aM4UD6on31bw+AACwevj/pRAAAAAAAGAF8hzBaEZSn+M9bwfmHZPayEKZ4DOC0QAAAAAAzVTumfm1d7T/c3cAAAAAAAAAQDjz3ryzL0UwWtuLOS53tFrhwWiuoKLkWGlbqrRNkjI5gtHQfiayu+U5fn7rG4zm+DlrgwBCV7jbkCOYph0ZYzScWu/btzv7RIOrAYD24/q91CimweTwsjbX77ZSe5x3AQBAcxGMBgAAAAAAWobrMulYTFrjDEarWzkrRrYQ3E8wGgAAAACgmWyZ3LO3fYVgNAAAAAAAAADAogVHMFrSpBQ38QZXg0aLOf6PC7bMm+SabNwRHuEXFJF2hBdN5HbJlntRBWgxrpAqI+MML6uFdMr/56wdAgidQYwBwTTtyBWsN57b0eBKAKD9ZLL+IZzrkmklTHJZ25r4gFKmw3+dNjjvAgCA5iIYDQAAAAAAtAzPcdNHI6nPEYy2fxUEo7kel4MIRgMAAAAANBOX8AAAAAAAAAAAwnIFo3XEHG8QQ1uJOS53tCrzJrkmcwYV+YSgucKL5r05TRemaloX0GyuYLR1yWElY6m67XfIEbo2kdstz67s40mQnJfTZH7Ct88VutiuhlPrfdtd33MAgPBcgWZ+5xpjjPP323HH78gAAABhEYwGAAAAAABahue4kjpm3MFoB1ZBMFqhzBXmcwSjAQAAAACayJKMBgAAAAAAAAAIacGb821PmY4GV4JmiBn/yx29FRyMNlM4oFlv2rfPL7gnKLxoPLerZnUBK8HunH9I1UjqiLrudzjl/3OWtznty++p677raW9+XNZxW6q0IwyuXbm+hzLZXSrYQoOrAYD24gz9dQSguX6/dQWsAQCA/5+9O4+O5Czsvf+r6kVSt7bRqFujGW941djgGTtgsyRsISwhQGLWhPAmARJ4sydkuQnJzfoGSHJzk8ube8EkkJATDA4xEAw2YFZjY8DYI49taWzP2GN7tHRLo7VbvVbdP8Zjy9P1VFdL3a1evp9zOBxXtaofaaqrt3q+haAIowEAAAAAgLZhmkdt29JgF4fRnCrnfOUIowEAAAAAdhBhNAAAAAAAAABAUHnX+4SvHruvySPBTrAV8lzeypEbUzhC8o5H9IeG1GvYn/22BbSjVGHGc/mYRzSwnkZ9AoTpNg4QpgzHCEuWdkfGmjyanZWMeO9DjspaLM43eTQA0FlMQTNTAM0UTEsX2vc5FwAAtAbCaAAAAAAAoG2YAmCWpIFey3PdaheE0cpVJpi3exjtnsdd/fS1ji7+o7L2/3FZb/tnR48sMKseAAAAANoF7+AAAAAAAAAAAEHlHVMYzXDlTHQU2/Ke7ui6Va4euoNShnBE1OrRUGhXxXLLspSIGOIRhm0B7Wq+cMJz+VhkX0PvNxbqVzw04LluoY0jLQuGqNuu8KgidqTJo9lZSUOER5LmDUE+AEB1Zbekk8W05zrTa1he2wIAgEYhjAYAAAAAANqGaSK1bUkDhvPeCiWpUOrsKdimYNxpJUcqVauntaipWVc//AFHn7rT1UMp6ci89O/fdXXVXzlaXG/P3wkAAAAAAAAAAAAAAACAtwJhtK5mG6Y7OmrdMFq64B18SETHZVneF3xNRPd4Lm/nYBNwpkx5TevlVc91Y9HGhtGkzoy0mI833seUTha1ezQSTniuSxmCfACA6haLaeNr74QhSmlavl5eVba8XrexAQCA7kMYDQAAAAAAtA3H9Q5hWZY06HPe25r3uXIdI0jzLF9q/Dga4R+/7mo9X7l8YV36h68SRgMAAACAdmB4Ow8AAAAAAAAAQIU8YbSuZlshz+WO28JhNENkKRExh4o6MdgEnGneJ07VnDCa92PQFBdrB+bjjfcxpdMlo3s9l88XZpo8EgDoHH6vR0cjY57L/V73LhQJ/wIAgK0jjAYAAAAAANqGYzi3ybakAZ/z3lY7PYwW4JyvXLHx42iE24+aZ8/fcBcz6wEAAACgHfDuDQAAAAAAAAAQlDGMZvU1eSTYCbZhuqOjcpNHElzKEFlKRM2holFjsIlwBDqHKYzWY/VqKDzS8Ps3PQbTbRxoMR0jTMeUTmcK7PlF+QAA/kwB0eHwbkXtHuO6sBXxXJfi9S0AANgGwmgAAAAAAKBtmCZSVw2jbTRkOC3DcatPMW/HMJrjuDri8z3Y/bPSg/NMrwcAAACAVhfgbSsAAAAAAAAAAJKkvOt9sleP7XOCGDqGbRnCaG6Aq4fukHTREEaLmMNopmBTxllTprxWl3EBO22+MOO5PBndK8uyGn7/CWOAcFZuG36BWXbLWiymPNf5hRg7WTK613N5qui97wEAqtvKa1vbss3Pu4btAQAABEEYDQAAAAAQSHrN1d99xdF7P+PopsPt92UwOoNj2PUsSxr2uSDo/GpjxtMqygHO+WrHMNpjS9JGlXF/bpLjEQAAAAC0ujacVwAAAAAAAAAA2CF5J+e5nDBad7AN0x0dtWYYLVteN4bMkj6hoqRPWCJd8LmaKNBG5gsnPJePRfc15f5HDY/BvJvTenmlKWOop6Xigsoqea7zi9V0MtO+tFI6qZzT4VfVBoAGMb0W9XttK5kjnekCYTQAALB1hNEAAAAAAFUdX3R15V84+p3/cPW+m1y9+oOOfvv61jzJBJ3NNJHatqRI2FJywHv9zEpnz8A2BeM2qxYYa0XH0tVvc+sDnf1vCwAAAACdIMg7t2KJ93cAAAAAAAAAAMJo3c62Qp7LHbc1z1lNF80RM79Q0WB4lyJW1LBN4hHoDKkdDqMlI3uM61I+j91WteAz5tHoWBNH0jrGonuN61KFmSaOBAA6h+m1aLUIZ8LwvMtrWwAAsB2E0QAAAAAAVf3lF1ydWH76sn/4qqvJx5iwiuYyBcAs69T/7x32Xn9iqTHjaRXlAOd8FbwvEtfSsoXqt5luv3NTAAAAAAAe2jHoDQAAAAAAAACoP3MYra/JI8FOsA3THR21ZhjNFN6JWFENhUeMP2dbtjEe4Rc/AtqF45aNIZRmhdH6Q0PqNTx3pAvtF2lJGf6eg6Fdxt+z0+0KjypsRTzXzRvCfAAAM8cta6Ew77kuETUHRyVzOC1d4LUtAADYOsJoAAAAAICqbnuoskblutL7biKMhuYyhdHsJ8Jo+0xhtGXv5Z3C9HfZrFBu/DjqrRTgXLZjC1KhxLEIAAAAAFqZG+BtW5A4NgAAAAAAAACg85nDaL1NHgl2gm15T3d05cgN8oVDk5niSqORPcbf5bRE1BSPaL9gE3CmxWJKJdf7ir7NCqNZlqXRDgoQmo4N1UI1ncy2QkoaQjymcCUAwGyptKCyvJ+/TeGzJ9cbXtuulpeUcza2PTYAANCdCKMBAAAAAKqaNnz3e/2drXeSCTqb6bym02G0vcOW5/qZ5c7eV8sBAmIF7++nWloxQMyt7EhH040fCwAAAABg64K8K98oNnwYAAAAAAAAAIA2kDdMmu+xepo8EuwE22e6o6MAJ8o1WdoQV0oawhCbmYJNpm0C7WS+cMK4Lhnd27RxmCIu7RggNMXcEoZjSbcw7U9++yAAwFu6YH4dOlolxOkXTlvw2S4AAIAfwmgAAAAAAKBtOIaZ1NYTPbTxIe/1C+uNGU+r6NwwWrCg3fHFBg8EAAAAALAtptD5Zmu5xo8DAAAAAAAAAND68q73B8Y9dl+TR4KdYFkh4zrHbcEwmiGu5BeGePI2hnhaOwabgDPNF2Y8lw+Hd6vH7m3aOIyPs2L7Pc6Mx5sAIcZONhbd57k8ZdgHAQBmKcPz42Bol3qrvB/bFRlVSGHPde34vAsAAFoDYTQAAAAAwLas5YKFi4B6ME2ktp8Iow0ZvmtZzzdmPK3CFIzbrFBu/DjqrRhwzCeWOQ4BAAAAQCsjjAYAAAAAAAAACMJ1XeUd75O9mhnSwc4J+Ux3dNR6J8GZ4hFBQkVJQzxttbysnLOxrXEBO22+cMJzuSli1SiJyB7P5eniXFPHsV2u6xrHPGr4HbtFMrrXc/l84YTcIF9UAwCeZI5wVn+uCVkh7Y4kDdttr+ddAADQOgijAQAAAAB8VftCcHalSQMBZA6AWU+E0foN5751+uTqcoALYRZKjR9HvZUCnsc2s9zYcQAAAAAAtifI6earzO8BAAAAAAAAgK5XdAty5X0yFGG07mBbPmE0N8CJck20Uc5ovex9Eq0pxvS02/gEJhaIR6DNtUwYzfA4y5TXlC2vN3Us27FSXlLRLXiuSxgii93CtE/l3ZxWy0tNHg0AtLe0KfobMMJpigObtgsAAFANYTQAAAAAgK98lZjSLEEiNJGp02c/EUYb6PFe3+lhNFMwbrN8qf2uelYMGEY7wXEIAAAAAFpakAtxr2y03/tWAAAAAAAAAEB95R3ziV6E0bqD5TPd0RTN2ynpojlelozurfrzu8KjCils2DbxCLS3VKuE0XyiYX6P4VaTLpiPCUlDhKZb+B1vTYE+AIC3tCHOawqeVdzO8LybKsxseUwAAKC7EUYDAAAAAPja8L641JNmV5i0iuYxBcCeDKP1Wp7r1/MNGlCLKAc436tQJXLYioKG0WaXOQ4BAAAAQLtb7fCoOQAAAAAAAACgOt8wmtXXxJFgp4SskHFd2Q14QlmTmEJFYSui4fDuqj9vWyHtjiQN226fYBNwpo1yVivlJc91zQ6jDYVHFLYinuva6XG2YIi4xex+xUL9TR5Na+kPDSoeGvBcR4gHAIJzXMf4fOMXGn3a7aJ7PJe3U4wUAAC0FsJoAAAAAABfG0X/9fNrzRkHIJnDaNYTPbT+Hu/1uaJUKnduPCtQGK21zgkLJGgY7cRyY8cBAAAAANieIO/ICaMBAAAAAAAAAPLuhnFdj93bxJFgp1g+0x0dBThRrolSRe8w2mhkTLYVbNpmIuodmUgbtg20g1TRHKMai+5t4kgk27KViJgiLe3zOEsZQoymY0i3SUa896v5wokmjwQA2tdK6aSKbsFzXdDnm6QhoLZcWlTByW95bADQbR7NHdVD2fu0Ujop1+3c+ZBAEOGdHgAAAAAAoLVteH+u/aRV83lIQN2ZPsuznwijDfic+7aWk3bF6z+mVmAKxm1WKDV+HPVWCnge2wxhNAAAAABoaUHOzeEzJgAAAAAAAABA3jFfRYMwWnfwC4q99+g7Zcna0naHI7t1Rf/z9LrEzypk1Tal0nVdfX35Rt2+/BXNF54KPjnyvvJnwhCEqOW2t618RXesfL2mcW7WG+rTxX3P1JvGflFD4ZEtbwc47YHsYX1+4RN6NHdUjut/cqdriBhGrKh2hRONGJ6vRHRcs4XHKpbfuPAJfXHhU00fz1aYjzfe0bduMxbdq4dzRyqWf23p8/rG0he3vN14qF/741fojcl3KBbq384Qm+r+zN26afH6QI/XzWKhuCZiB/XGsXeoPzTYwBECrc1xHT2eP6apzKSms4c0VzihXrtPL9n1Gr1w+JVNGcPDGw/o8wv/roc3jqjkbn8iSDw0oEvjB/XG5DvVF/KeVOMXDA36fOMXUPvtB39my6/lTWzL1rm9F+o5gy/SC4ZeJtsK1XX7ALBTvnzyBt21dpskKWr1aDSyR4nouK4ceJ6eM/iiHR4d0FyE0QAAAAAAvnJVPkNfNZ+HBNSdKQB2+usRvzDaer5zw2jlAN9ZF7zPiWhpxYBjnl+TiiVXkXB9vygDAAAAANRHoDAanzEBAAAAAAAAQNczhdEs2YpY0SaPBjshJHPMwBQGCmKxOK9blj6rjLOmt+35tZp+9utLn9en0x8NfPukTxDiTImoOTJR1tYjGJnymu5e/44eyx/TnzzjH2uOwQGbPZo7qg8+9mfb2ielUyFAv/hho4waYi6u3G3/TjvN7xjSTZLRfZ7Lt/tvvFpe1ndXv675wgn97jkfkGW1/nnKR7NT+t+P/+WWnjPXyiv6/to3NVM4rj849+925PEK7JTFYkrTmUlNZQ/pSPYeZcprT1u/IumT8x+S6zp60a4fb+hY5vKP64OP/4lyTv2uMLhaXtIdq1/XfGFGv3PO+z2PZ+nCnOfPxkMDgeOQI5GEbNlyPCKp23ktb1J2pYc27tdDG/fr28tf0k+PvVvn9V1c9/sBgGZLF56KVRbcvGYKxzVTOK69Pefs4KiAncG7EgAAAACAr42C//rV+n3WDlRlmkdtP/EJR3+P+WeXsnUfTsswBeM2K7ThuRtBw2iueyqOBgAAAABoTQHetvIZEwAAAAAAAADAGEbrsXvbIkaC7bMaHGH53so3K0IXflzX1deXb6zpPhKR4GG0ZA233YqF4rwOr9/Z0PtA57t1+ea6BMTGDPGqRksYwmidoJbjTScbi+5t6PYfyT2g47kHG3of9XL7yi3bjg+dyD+ihzeO1GlEQGvaKGd0aO0OfXL+w/rTY7+sPz72S/r3+X/UXWu3+b5W/Gz641opnWzo2H6w9u26RtE2ezh3RMdzD3muSxdnPZfX8lwTtiIaiSS2NLbteix/TH/z6O/rurkPKVte35ExAEA9uK6rdNE7Vsnrf3QjwmgAAAAAAF8bRf/1a97nIQEN4VReOEaSZD9xzttAr/ln/+ZLQaZht6ey4e+yWTuG0UoBfq/TTiw1bhwAAAAAgO1xA7wlX93o3PftAAAAAAAAAIBg8oYAQI/lc8VMdJT+0KBCCjds+2WVdCL/SODbZ8prWiymarqPPT1nNeS2W/Vo7mjD7wOdrV770N6ec+qynVrt6Tl7R+63GfZEG38MaQd7e85t+H2YQkKt5vH8wy21HaBVlN2SHsrerxsXrtPfHP99/e5Db9O1M+/Xt5ZvUqo4E3g7eTen/1r49waOVJrJP9rQ7T9qOJ7NF7z/DrUGRvdEd+5515WrW1du1p8+/Cv6zspX5QY5YQkAWsx6eVU5J+u5rpOjz4BJ4z4lBAAAAAB0hI2C/3omraKZHMPudvpaoPEeybK8J1x/52jn7qumv8tm+TYMoxVruGDZzErjxgEAAAAA2J4g78hXie8DAAAAAAAAQNfLO94fFvfYfU0eCXZKj92rS2LP0v3Zuxt2H+nCnC6OPSvQbWsJZUjSrvCoLuy7NPDtd0fGdH7vhI7lpmu6n1qki7MN2zY6n+u6dduHnjP4orpsp1YX9l2q4fBuLZcWd+T+GyURGde5vRft9DBawlh0n87pvdAY+6mHdHGuYduup6yz3lLbAXaK67pKFWc0lTmk6eykHsgeVs4QYa7VHStf04uGf1zn9F5Ql+2dyVENkyi2wPS8njKE0cai+2ra/lWDL9K9mTtrHlc9rZdX9G9zH9TtK7foLWPv0r6e83Z0PABQiwWf152J6HgTRwK0BnunBwAAAAAAaG0bRf/1TFpFM5kmUttPfMJhWZZnFE2SIqGGDKkllJ3qtyk09vuxhqgljLaw3rnhOwAAAADoBqv1Of8UAAAAAAAAANDG8m7ec3mP3dvkkWAn/dz4b+ic3gsbtv1aYmfpQvAg1HB4t9697w9lW7WdrPgLe39L49FzavqZWtTyOwBnWi+vbjskE7Yi+vnx31Jyhybxh6yQ/t9979VwePeO3H8jjIQTete+/ybLsqrfuEu8ffw9Ncd7atEux9JMuT5Bs3ptB2imtdKK7ly9Vf8290H90bFf1J89/Cu6PvUR3bP+vbpF0STJlatPpz4q1zRxZZvKbqPDaJXBHcctG4NpyejemrZ/5cAL9PKRa2Rp55+jjm5M6X2P/LZuSP1LXfcBAGiklOF1Z4/Vq4HQUJNHA+y88E4PAAAAAADQ2jYK/h/WE0ZDMzmGANjmr0x+dEL6qsfFE5c7+HuMQGG0UuPHUW+1hdEaNw4AAAAAwPYEOReUz5gAAAAAAAAAAHnDZHXCaN1lIDys/3bu32qhMKeUIdAQxC0nP6vp7GTF8lriNqb7T0b26k1jv/jkfw+EhrSv59yao2iStDsypj867x80V3hcS6WFmn/+tAeyh/XlkzdULE8XZ+W6LgElbIkpkiJJ79z7e+q1+3x/Pmr16JzeCxS1e+o9tJqc3Xu+/vL8a3Uif1xr5ZUdHct2DYaGtbfnXNmWvdNDaSnJ6Lj++LwPaq7wuJZLi1vezt1rt+u2la9ULPd7LLSKsltWzsl6rvupxM9rX8+5Fcu/cvIzOpK9p2J5trxW9/EB9VZ0Cjq6MaWp7CFNZyb1WP5YXbcftsIKW1HPx9VDG/fp0Pp3dMXA8+t6n5LkyntyyBX9z9cLhn8s8HbuWrtNt6/cUrHc67XwyeKCSm7Rczu1Ridty9ZPJv4fvXzkGj2WO6ayGhN6c11H3175sibXv+t7O0eObln6rO5cu1VvSL5DV/Q/j9fFAFqa6XVnIjrO8QtdiTAaAAAAAMBXrkpMabWDY1NoPaZ51Pamz/V+82W2vjpd+WXQsvf3vB3BCTDBvB3DaCXCaAAAAADQEYKE0Vb4jAkAAAAAAAAAul7e8b6KBmG07jQa3aPR6J4t//yxjWnvMFpxLvA2TBG1fT3n6dL4FVse25ksy9J4z9ka7zl7y9vosXo9w2gbTlaZ8pr6w4PbGSK6VLrg/XjpsXrbLixiWyGd3Xv+Tg8DDWRbtvb2nKO9PedseRs5J+sZRlsozslxy1sKYDbLRjljXDcRu9xz/z+8/n3PMFqmzInZaD2O62gmf1xT2UlNZw7poY37VXQLdb2PfT3naSJ2QPvjB3Vh36Wazk7qQyf+yvO2N6T/Vc+MP1sRO1rXMTiudxgtEd1T0+vPbDnjHUYrzslxnacFNlPFGeN2EtHxwPe5WSzUr0vil2/pZ4O6rP+HdHj9+7o+9REtFlO+t10uLeqfZv5al8au0JvGfknJLf5eANBopvdgiQjHLXQnwmgAAAAAAF9574t+PGnV+zwkoCFMATB700XPhmPet8mXpFzRVW+kfU7CCKrs/d3X0xQac6GdhirWMOZFvn8HAAAAgJYVoIvGZ0wAAAAAAAAAAMJoqCvTpOF0YVau6wYKOqUK3pGIVgwp+EUr0sVZwmjYknTROw44Gt3TVlE0ICjTc0fJLWmptKjdkWSTRxRcxlkzrouHBmpannU4MRutYbm4qKnsIU1nJjWdndRaeaWu2x8Kj2h/7IAm4gc1ETugwfDw09Y/K/4cTcQOeMZ2F4vz+vrSjXr57mvqOiZH3pNDLNmey02ShsBwyS1qubSokUjiyWXzhROetx0O71av3VfT/Tbbs/qfo0til+tLJz+tr5z8jEpuyff292fv1l8+8ut6+cg1esXI6+setgOA7TK9B0tsIxwPtDPCaAAAAAAAX6YQ1WmrGwp8ggiwXY4hALZ57zOF0SRpKSOND5vXt6tqj1NJKvp/v9OSSjWF0YJMswcAAAAA7AQ3wFu2TF4qO65CNp8xAQAAAAAAAEC3MobRrNaejI/WlIzu9VxecPNaKS9pODzi+/Ou6xonJJu2vZMGQkPqsXqVdysfR6nCjJ7Rd8kOjArtbqE457k8EWFSPjrTqM++nS7MtnQYLVs2x8xiof6alvttC2iknLOhB7P3aiozqensIc0VHq/r9nusXl0Yu+zJGNp49GzfuVCWZen1yV/QXz3y23I9gmU3n/wPXT30Eg2Fd9VtjI7rPYkiZIVq2o7v8aw497QwmjkG3Hqveb1E7R69ZvStumrwxfpAI2cQAAAgAElEQVTU/LWeIbvNSm5RX1z8lL6/+k29KfmLuqz/h5o0UgCozhhGMwR8gU5HGA0AAAAA4KtacKnkSLmi1MdFMtAEpt1x85zpYZ9z4JY3OjOMVjYE4zbLt2EYrVhDGG2B798BAAAAoGUFTVmv5fyD5wAAAAAAAACAzpZ3NzyX99i9TR4JOkEiao5BpAozVcNo6+VVbThZ7223YBTKsiwlouN6PP9wxbq0IW4FVJMueO87frEVoJ31hWIaCA1prbxSsS5dnNOEDuzAqILJlNc8l4cUVo/l/VoqbnuH0TKE0dAkjlvW8dxRTWXu1nR2Usc2jshRDZMIqrBk69zeCzQRO6iJ+AGd33eJwlakpm3s6zlPPzz0ct26cnPFupyzoRsXPqG37vmVeg1ZjkeATZJs2TVtJxbqV39oUOvl1Yp16cKsLok968n/ni+c8NzGWGRfTfe508ai+/RrZ/2pfrB2m/4z9c9aKS/53j5dnNM/nvgLXdH/PL0++fanxeIAYCdky+vG13R+n3EAnYwwGgAAAADAV7UwmiStbBBGQ3OY9sfNF+nxm0C97H2OUtsL8jgtlIJOQ28dpQDBt9MIowEAAABA+1vdIIwGAAAAAAAAAN0s7+Q8lxNGw1b0hwYVs/uVdSpPLksXZnVx7Jm+P58qzhrXJaJ7tz2+RkhEDGG0gvl3AfyYonrJ6HiTRwI0TyIy7h1Ga/FjqSlmFg/1y9p8sv0msdCA5/KssybXdY0/B2xHujCrqeykpjOHdCR7WBtOpq7bH42MaSJ2UPvjB3RJ7HLFQt4BwFr8xOhP6/tr31LOI5p7+8oteuHwq3R27/nbvh9JclzvSRSWVVsYTTp1PPMMo53xOjdVmPH8+WSLvub1Y1mWnj34w7osfqW+sHidvrH0BWNs7rS717+j+zN368dH36yX7nqNQhYJFgA7Y8Enap6I8B4M3YlnZQAAAACAr3KAMNFqTtoz1PixdLp//66j67/vyrakt1xl6c3Pqf2Li07nGtpe9qbvXGNRKWx7R7U6NYwW5HFaqN+Fk5qmWA4ecyOMBgAAAACty/R+/kwrG40dBwAAAAAAAACgtRFGQ70louM6nnuwYvmZMQgvpgBOj9WrwdDwtsfWCAlDrCrI7wucaaOc1bpHHEqSRiN7mjwaoHkS0XEdy01XLG/1Y6lXCFSSbxQqblhXcksquHn1WLwGw/Zlyms6kj2s6cwhTWUntVicr+v2++y4JmKXayJ+UPtjBzQarf9z1EB4SD+++026If0vFetcufp06p/1m2f/ZV1igq4h4hVSqOZtJaJ79HDuSMXyza9zC05eJ0tpz58fa8Mw2ml9oZjekHyHnjv4Ul03/yHPv8NmeTenz6T/VXesfF1vGXuXLopd1qSRAsBTUgXvMFrEimooPNLk0QCtgTAaAAAAAMCXE2Di6iqTVrftAzc7+oMbnvpjf27S1cyyo9/6MeJom5n2x81hNMuyNBzzDmXNrbqSOu/KVUH6Ybli48dRb8UaYm4rG1Kx5CoS7rx/XwAAAABod0HDaKve890AAAAAAAAAAF3CFEaLEkbDFiUjhjCaIXr2tNsUZzyXJ6LjdYleNELCEKtKGyZXA34Wiub9xhThAzqB+Vja2mG0THnNc3k8NGD8Gb91mfIacVpsSckt6tjGtKYyk5rOTurR3FFj7GsrQgrrGX2XaH/8gCZiB3Vu7wWyrdqjYbV68a5X69blL3lGEh/cuE+T69/VwYHnbvt+yq73JArLqn1uUSJiiuY+9Ryf8jm2JaP7ar7PVnNW7zP0nnPepztWv6bPpP/VeKw8bbbwqP7nY+/V1YMv0TWJn9NAuDWDyAA6kynEOxoZk72F5wGgExBGAwAAAAD4ChRGY9LqtuSKrv765so/9PtucvUrL3EVJfT0JNP+eOY5Ruft9g6jHanvxYVahhPge8KVNgwY1hJGk6STWWlssDFjAQAAAABsXcAuGvF9AAAAAAAAAOhyecf7g+IeiygHtsYUb0oZJhs/7TaGSESyhYNQpt8346wpU17zDeAAZzJNyg8prF3h3U0eDdA8yehez+Xp4pwc12nZKEW27HHyvKSY3W/8Gb912fK6RiKJbY8Lnc91Xc0WHtN05pCmspN6KHuf8m59JxmNR8/WxBMhtItil6nX7qvr9oMIWxFdk/h5fXjmfZ7rb0h/TJfFf0gRO7Kt+zFF5GxtIYxmeG2YLszKdV1ZlqWUIQYcUli7I8ma77MV2Zat5w+9TJf3X6XPpf9Nt618perPfHf167pn/Xt63ejP6oeHX96U+B4AmEK8hKnRzQijAQAAAAB8BQkuMWl1e+5+VFrKVi5fWJfuPSFdeW7zx9SqXMNMavuMMNrEHkt3Hq+88ZHZoFOx20s5wK+17LGPtbpSjWG0hXXCaN3okQVXKxvSubul4RghSQAAAKAVmd7Pn2k150ridT0AAAAAAAAAdKuCm/dc3rMD4QN0hkSkegzCxDghOeIdzGkFScPvK0npwpzifYTREFy6MOe5fDQ6RhwEHc0Unii6Ba2WljQcac0wYMYQRouHfMJoPusyjvf2AElaKS1pOjOp6eyp/62UTtZ1+4OhYV0SO6D98QOaiB1omcfd5f1X6ZLYs3Qke7hi3UJxXt9YvlE/NvJT27oPxzWE0bYQZTS9Fi64ea2UlzQcHtF84YTnbUajexTqsOf7/tCg3rrnV/T8oZfpuvkP6fH8w76333Ay+mTqw7p99av66bF369zeC5s0UgDdyhSnTkT2NHkkQOsgjAYAAAAA8OUEmLjKpNXtOTJv/iM/MO/qynP5255m2h/PPDfpYsPnfdPe52i0vSABw+U2DBgWaw2jrTVmHGhNjuPqlz/h6p9udeW40nBM+sjbbL3+hzhmAgAAAK0maKZ8tb4XDAYAAAAAAAAAtJm84/1BcY/d2+SRoFMkDXGbzTEIL67rKmWYkGzaZisYCo8oYkVVdAsV69LFWZ3Xd9EOjArtyjQpf5RJ+ehwfuGJVHGmZQJNZ8o63idSx0LmKGbICqnXjinnVF6BO1vmxGw8peDk9eDGfZrOHNJUZlIzheN13X7EiurCvks1ET+o/bGD2tdzrm/AdqdYlqXXJ96h9x3/bbmqnMRx0+L1unrwJRoMD2/5Psoe25UkW1sIo0XNx7N0YVbD4RGlCjOe68eirRsD3q5n9F2i3z/3b/Wt5Zv0+YVPeB4DN3s095D++vjv6keGX6nXjr7VNyoJANuxYIhTm0KXQDcgjAYAAAAA8BUojNaGwaVW8lDKvO4Bn3XdyDXsj/aZYbQx79s9tqSqV3lsR0Eep8vZ9vvdaw6jcWGyrvKx211d+62ndv7lrPTGDztK/Q9bowPts58DAAAA3cD0fv5MK3zGBAAAAAAAAABdq+yWPWNOEmE0bF3CJ2J2OgbhZb28YgwktPKEZMuylIiMe8ZK0gXvyBVgkmZSPrpULNSveGhAGY8wWLowp4tjz9qBUVWXKXufSB2vEvCJh/o9n/NM20N3cFxHj+ePaSozqansIR3bmFLJLdVt+5YsndXzDO2PH9RE7IAu6NuviB2t2/Yb6aze8/SCoZfp2ytfrliXczZ048In9DN7fnnL23ddQxjNCtW8rbg9oD47rg0nU7EuXZzVRbpM84UTnj+bjHRuGE06FYZ8ya6f0JUDz9cNqX/R99e+5Xt7V66+tXyT7l67XT+V+HldPfjitpqbA6D15Z2cVspLnuv8PtsAOh1hNAAAAACAryDBJSatbs9Rn/jZEe9zCrqWaX88M4x29i5LUuWNs4VT++twrP5j20mO93dfT1MsSxsFKdbT+PHUS+1hNFcSXy51i7+/xfuAkHyPo/KHbb5oBAAAANoQ8X0AAAAAAAAA6F4FJ2dc10sYDVvkF4NIFWZ0Uewyz59LFc0nbyajrR2JSEQNYTSf3wnwki56x/QS0T1NHgnQfInIuHcYzfC4aAVZQ8gsZvuH0WJ2vxZVOaHBtD10rsViStNPhNCOZO/xfAxsx0g4oYn4AU3EDmoidrn6w4N13X4zvWb0Z3Tn2q3KOZUnuty2coteOPwqndX7jC1t25H3JApbds3bsixLiei4Hs09VLEuXZiV67rGMNpYdF/N99eOhsIj+oW9v63nZ16mT6Y+bPx7nLZWXtHH5/5Bt6/coreMvUt7e85p0kgBdDpTmFqSEhHeg6F7EUYDAAAAAPgKEkbLeF+kEQFlCuY/8vRsgH+ALmLaH8/sH+0dNm/jxHLnhdHKAXeT5Y32CqOVAgTfNlvyvkAnOtDxRVf3zZjXf+9h6erzmzceAAAAAP7cgO9bV81z3gAAAAAAAAAAHS7vE0brsfuaOBJ0EsuylIzu1fHcgxXr/EJh6YL3yUm9dp8GQkN1G18jmCZMpwutG/NB6yk4eS2XFj3XMSkf3SARGdcjuQcqlrfysTTrGMJoIf8wWjw04Lk849Q3ioXWs1HO6Ej2sKazk5rOTCpV9Dk5ewt67Zgujj1T+2MHNRE/oGRkb8dc+HogPKxX7X6TPpP+14p1rhx9Ov1R/cZZf76l39dxvSdR2FbtYTRJSkYMYbTirNbLq54BYUkaa/EYcL1dEr9c7z3v73XLyc/ppsXrVXT9J8o9tHGf/uqR39JLd71GPz76ZvXynhXANpkCvLZC2hVJNHk0QOsgjAYAAAAA8OUECBOt5xs/jk5W8r6giyTpyLzkOK5suzO+ANou00TqM/884z7nHZ1Yki7rsO9oygEDYstZ/2hcqyn6PDa8EEbrHvf6X4hJnznk6urzOW4CAAAArSJo9n218kK6AAAAAAAAAIAukXd9wmhWbxNHgk6TiOzxDqMZ4meSlDKEbxKR8ZYPeiSj457LU4ZJ1oCXxWLKuC5h2MeATpKIGiKTLXosdVxHmbJ3GM0UPjvNFE7LGraH9lV2S3p44wFNZyc1lTmk47kH5ajGK5n7sGXrvN6LNRE/oP2xgzqv7yKFrM5NWbx4+Cd06/LNWijOV6x7IHtY96x/TwcGrq55u6Z/E1tbC6OZnrfThTmlfF4PJ6P7tnR/7SxsRfTK3W/QcwZ/RP+R+mfds/4939s7KuuWpc/qzrVb9cbkO3Ww/7kt/14BQOsyBXhHI2MKWaEmjwZoHZ37ahIAAAAAUBflADNXM4TRtsUv/pQtSI8tSefubt54Wplj2B/P/O4gGraUHJBSHheqOrHsSuqsLxsc0x/mDCttNsGcMBpMsv4XYNIt97vSNc0ZCwAAAIDqTKHzM63lgibUAAAAAAAAAACdJu+YT27qsQmjYeuSUe8rqfrFbUzr2iEIlYh4j3G9vKKNckZ9oXiTR4R2ZHoMWLK1O5Js8miA5jMdS9OFObmu23Lhm7yzIdcQU4rZ3uGz0+K2dzgtU/Y4ER9txXVdpYozmsoc0nR2Ug9kDyvn85p7K5KRvdofP6iJ2AFdHHtmV73OiNgRXZP4BV07837P9TekP6ZL41cqYkdq2q7jGsJo1hbDaKbjWXFW80Xvq5X32TENhIa2dH+dYHdkTO/e94e6Z/17un7+IzpZSvvefrm0qI/MfECXxa/Um5K/2BbvGQC0HvPnEN7BXqBbEEYDAAAAAPhyAlwAhjDa9pSq/I0fWSCMdpppIrXt8d3yvmHvMNpR/+8k2lKQgKEkrZovqtqSTGG0kC2VPR43yxkm0HeLQpWdfqPYpIEAAAAACCTou7V2C3oDAAAAAAAAAOon55hPbooSRsM2JCLek4j94japwoznzyQj3pG1VuIXYkgX53RO6IImjgbtKl2Y81w+EhlV2Kot8AK0o6ThWJp3c1otL2sovKvJI/KXKa8b18VD/mG0mGG93zbRutZKKzqSvUdT2UOazkxqqbRQ1+3HQwOaiB3QROyA9scPaiSSqOv2282B/qt1Ud8z9eDGvRXr0sU5fXP5C3rZyE/WtE3HEDm0FNrSGE2vDXPOho5mpzzXJaP7Wi4AuRMu779KE7EDunnx0/rKyc+orJLv7e/L3KW/eOTX9YqR1+vlI9coYkebNFIAnWCh6P0ezBS4BLoFYTQAAAAAgC8nwMzVTJ4Y0XaUDPGn004su5L4UkEy749eYbSLxizd/VjlD0zPdt7+GiRgKEn5NotFmR4biX5pbrVy+TIT6LtGwf87xarHVQAAAADNZQqdn4kwGgAAAAAAAAB0r7whjBa2IgpZW4sAAJKUjHrHzE7FbZY0FB552nLXdZUuzhq21foTkofDuxW2Iiq5lScMpguzOqeXMBqqM03KHzWEBoFO4xuZLMy2XBgt63hcTfwJ8dCA78+awmlZhzBaOyg6BR3dmHoyhPZY/lhdtx+2wrqgb7/2x67QRPyAzup5hmzLrut9tDPLsvSG5Nv1/uPvketx2cAvLl6vqwdfooHwUOBtuq735JDQFv/uSZ/n7vsyd3kuHzO8fu5GUbtHr028VVcNvkifSn1YR7KHfW9fcov6wuIn9b3Vb+jNY+/SpfErmjRSAO3OFKf2e10KdAPCaAAAAAAAX8HCaI0fRycrVg2jNWcc7cC0P3pdjGbC8P3NtPfnhG2tHHCCea7UXpE902MjOegdRlvKNnY8aB35KmG0E8syXs0VAABgKx5KufrSfa6iYenVz7K0d5jXGUAjpM3nagMAAAAAAAAAOpwpjNZj9zZ5JOg0iUi1uM3Tw2jr5RXlHO+rufhtq1XYlq3RyJjmCo9XrDMF34AzpQve+0o7PAaAeojbA+qz49pwMhXr0sVZXahLd2BUZpmyd8TMkqVeO+b7s6ZwWqbMF/ityHEdzeSPayo7qenMIT20cb+KbqGu97Gv5zxNxA5of/ygLuy7VFG7p67b7zRn956v5w+9TLetfKViXc7J6saF6/TTe94deHtleU+isLS1MFp/aEi9dp/n69vV8pLnzyQjhNHOtKfnLP36WX+uH6x9W59OfdT4tzstXZzT///4n+mK/ufrDcm3a1dktEkjBdCOik5BS6UFz3XEqdHtCKMBAAAAAHwFCaOtE0bblpL3BV2eNEMY7UmuYX+0PZoE+w3nXjyYkkplV+FQ54QMnCr70Gn5ygtAtjRjGM1w4bKlynMP0KEKVcJo2cKpUN5IvDnjAQAAne3zk67efK2j3BOvp3fFXH3pN209+7zOeU8BNJrp/fyZZleIHAMAAAAAAABAtyq4hjCaRRgN2xMPmeM2qeKsLtRlT19mCEJJUjLaHlGoRGTcO4xW6MAry6Ih0kXvfSURZVI+uoNlWUpEx/Vo7qGKdX7PEzvFFEaL2f2yLf+YUszu91yeNWwTzbdcXNRU9pCmM5Oazk5qrbxS1+0PhUe0P3ZAE/GDmogd0GB4uK7b7wavGX2rfrD2bc/42LdXvqwX7nql9vWcF2hbrus9OaTaY9nEsiwlIuN6LH8s8M+MRfdt6b46nWVZevbgj+iy+JW6cfE6fWPpi3LlP5nn7vXbdX/mLr169C16ya6fUMgi7wKg0kJxXq68T7Jsl88hgEbhmRMAAAAA4CtIGC1T3wvMdB3CaMGZ9kev6dL7xy3J40PBYlk6mpYu6aBzM8oBJ5jnq8SkWo3psZEY8P63Xco2djxoHQVDNG+zB+al557f+LGgMb57zNUHv3bqq51XXib97HMt4hgAgB3hOK5+5RNPRdGkU687r/orR861oZ0bGNBmAr5tVb5E5BgAAAAAAAAAulXeMYTR7L4mjwSdxi9uk/aI26SKM57b6bVj6g8N1X18jZCIjkseFxpNF1sv5oPWU3bLWiymPNclIkzKR/dIRgzPHS14LM2W1zyXx0Le0bPN4obbFNy8ik5BETu6rbGhdjlnQw9m79VUZlLT2UOesdPt6LF6dVHsmZqIH9D+2EHtiZ7FObrbNBge1itH3qjPLny8Yp0rR59OfVS/ftafBfo7O4bQVkhbP1ctEd1TUxgtGd275fvqBn2huN6YfKeeO/hSfXL+w3o4d8T39nk3pxvS/6I7Vr6mt4y9WxfGLm3SSAG0C9PrS0u2RsLJJo8GaC2E0QAAAAAAvpwq0S5JWvc+HwkBFasEfmaWg04f7nymv4RtV35BdPGYZFveMbWp2Q4LowV4nEp6WsyhHZgeG6OG7+iXN06FK7z2B3SWfIB9+cicq+eez77Qjr50n6tX/cNTB7brvifdOyN94PX8ewIAmu+Oh6XHl7zXve8mR3/wqq1diRPoNm4NH23MLBNGAwAAAAAAAIBulHc2PJf32L1NHgk6kSluk/IKo3ksk6REZE/bREOShniVVwgOONNSMS1H3idwjkY66ORboIpE1Ht/b8VjacZZ91xuip5tFgsNGNdlnXUN2SNbHheCcdyyjueOajp7SFOZSR3bmDYeh7fCkq1zey/QROygJuIHdH7fJQpbkbptH6e8ZNdP6NaVL2mxOF+x7kj2Hh3OfF+X919VdTuO6z05xLK2fp5arWFTwmjBnN17vt5zzvv0nZWv6rPpjyvjeEcqT5spPKq/e+wP9dzBl+qnEj+ngXB7RJcBNF66MOe5fCQyqojNcza6G2E0AAAAAIAvr6jUmTKFxo+jk5WqfGe16HHVvm5lCvV5dbB6I5aeMSodTVeum5pz9ZNqjxOUggjyOJWkfKmx46g3Uxgtafj+3XWl1Zw0HGvcmNAaCgG+65/2/l4ALc51Xf3adZUH+w9+zdXvvtzV6EDnHLsBAO3hu8fML7bf+xlXv/cKVyHCvEBVtSTfZ5alZ+5r2FAAAAAAAAAAAC0q73hfoZUwGuohETWEwoqVcRuvZVJ7BSJMv+9KeUl5J8fjCr5ShseAZA5FAZ3IFBJKF+fkum5LxTKzZe8Yj1/07KnbmONpmfK6hsKE0RohXZjVVHZS05lDOpI9rA2nvpNGRiNjmogd1P74AV0Su9z33xn1EbGjuibxc/rIzF97rr8h9S+6NH5F1SidKYpnaxthNMNrQy/D4d28VqyBbdl6wfCP6UD/1frswsd1+8otVX/mjtWv6Z717+l1ibfpBUMvk22FmjBSAK1soeg9AarWsCXQiQijAQAAAAB8lQ0hqs3W840fRycrVfkbL3hfwKkrmQJgpu+V9497h9EePVm/MbWCII9TScoVGzuOenJd1xxGGzT/3FKWMFo3KASI/J1Yavw4UH93PSo9lKpcnitKtx2VXnew+WMCAHS3bJUQ+OET0sGzmzMWoJ25NZTRZlZcqYNi5ttxLH3qvfGFSRFhBAAAAAAAANDxCKOhkZKmuE1htiJuky6YwmjtMyHZb/J0ujCns3rPa95g0HYWCt6T8gdDuzgmo6uYjqU5J6v18qoGwkNNHpFZtuwd1Yrb1WNYMTvus10mMtRLprymI9nDms4c0lR2UovF+bpuv8+OayJ2uSbiB7U/dkCjhCx3xMH+5+nCvsv00MZ9FetSxRl9c+km/ejIa40/77quXMPlB21rG2G0GsI6Y20UA24l/eFB/eyeX9Xzhl6mT81/SI/nH/G9fdZZ13Xz/0ffWblFbxl7l87pvbA5AwXQkkyfQ4xGeD4HCKMBAAAAAHyZQlSbFUpSqewqHGKC5laY4k+nncxIZcdlAqxk+IpHMv1pxgYtz5862WHf0QZ5nEpSPkBMqlX4/U6Jfu9/V0lazjZmPGgthSrHTUlay9VQXkDL+Nwh87/b4ROuXneQ50IAQHNVC4EveF9wF8AZagqjLTduHO1iLefqp/63o69Nn/rvi5LSZ37Z1qV7eT0MAAAAAAAAoHMZw2hWX5NHgk6UMETN8m5Oq+VlDYV3SToVo0gVZry3EWmfSMSuyKhCCqusypMG08VZwmjwlS56T8pPENlBlzE9d0inHietFEbLON4nsMRC1cNoUbtHESuqolt59cCs02En3TdRyS3q2MYRTWcmNZU9pEdzR+Uq4NXQAwgprGf0XaL98QPaHzuoc3ovkG2F6rZ9bI1lWXpD8u36wPHf8QycfXHxk7p68MXqD3tfKd7x2Udsbf3f1+94dqZkdN+W7wfSBX0T+v1z/4e+ufxF3bjwCeWcDd/bP5J7UB84/nt64fAr9ZrRnwl03AbQeczvwdon0A40CmE0AAAAAICvoMGlTF4aijV2LJ2qVCXw47jS0uxJ7b73S9LaSenqV8g6+6LmDK7FOIbveUzTgncbvhNYzHRWMKkc8DvSdgqj+QUDTf+ukrREGK0r5IvVb7NWJWKC1vRfk+bj87F0EwcCAMAT0lXO72yn19hAu5hd2ekR7Lxf/YT7ZBRNkh5MSW+51tHkn9iyLOJoAAAAAAAAADpT3vWeMN5j9zZ5JOhESZ+oWbow82QYba28orzrHelrpwnJISuk3ZGkUsXKyFu64D3hGjgtXZzzXJ6IEEZDdxkIDanH6vV8XkgXZnV+38QOjMpbtux9gkvQwE48NKDl0mLF8kyZKwYG5bquZguPaTpzSFPZST2Uvc/4mmKrxqNnayJ+QBOxg7oodpl6bQLCreic3gv03KGX6jsrX61Yt+FkdePidXrL2Ls8f9ZxfcJolr3lMQ2FdhkDiGcaa6MYcKsKWSG9dNdrdOXAC3RD6mO6c+1W39u7cvTN5S/qrrXbdE3iF3TV4Is4PwjoImW3pMViynMd78EAwmgAAAAAgCqChtHWCaNtWSlA1GrhN9+skbknPgwP/Z70x/8q60ff2NiBtRHb8B3P7rj38sUOu3hV0MdpLkBMqlX4hdH6ItJAr7Tm8V3xUqZxY0LrKFQJSkrSqv/FldCCVjdc3fO4ef33H+msqCUAoD3MLfs//5yKLnMSElBNLa/kZqs87jqd67r6wuHKv8G9M9Idx6TnXbADgwIAAAAAAACAJsg73uEIwmioh3hoQH12TBtO5ZU308U5XajLJEmpQmVI7LRkpH3CaNKpkJtnGK1IGA3+0gVDGK2N4oBAPViWpWR0rx7LH6tYZwoI7pSMIYwWt4OF0WJ2v5ZVGUYzBddwykppSdOZSU1nT/1vpXSyrtsfDA3rktgB7Y8f0ETsgIYju+u6fXL/LZIAACAASURBVDTOa0ffqrtWb/OM4926/CW9cPiV2ttzbsU6R+aT5G1tPYxmWZYSkXHNFI5Xve1YdN+W7wdPNxwe0dv3vkfPz7xMn5z/sOdr883Wyiv617m/1+0rX9Fbxt6t8Z6zmzRSADtpsZiWI+/JpUnegwGE0QAAAAAA/oIGlzLVLxwCA78A1GkLKwVdfPo/ymW5f/PL0o+8Vla0p5FDazmm/dGUITCF0Y7M12U4LaMcIK4nSflSY8dRT36Pi0hI2hUzhNGyhCm6QTHAvuy1f6C1Pbbkv/6+GenInKtL9uz8Y/z7j7j62G2u0muuXn6ZpXf+sMWVuQCgQ2WrvNfttOgy0ChuDa2zmZXGjaMdFMvSSUP0++N3uHreBbzuBAAAAAAAANCZCKOhkSzLUiK6V4/mHqpYtzmGZoqG9dkx9YcGGza+RkgYQm6pAmE0mDmuowVD8Gk0sqfJowF2XiK6xzuM1mLH0mx5zXN5LDQQ6OfjIe+Amim41q0KTl4PbdyvqczdmspMBopM1SJiRXVR32WaiB/QROyg9vWcy7mpbWooPKJX7H69/mvh3yvWuXL06dRH9Wtn/WnFv6/jmieG2FZoW2NKRIOF0ZLRvdu6H1SaiB/Qe8/7B92y9FndvPgfKrr+JyU+uHGf/r9HflMvG3mdXrX7TbwnBjqcX7yc92AAYTQAAAAAQBVOwODSOgGaLSsF+BunQ8mnL8isSvd9V7rihY0ZVIsy7Y+m7/t291uSKmdf54rSStbVUKwzvigMGjAstFEYreQTRgs/EUZ71OOiWkuVF/REByoECEqu5Rs/DtTXiSphNEna/98dOddu74v97frmEVev+l+OcsVT//2fd7m661Hp/7y1M55TAABPV+11x6IhXgTg6Wrooul45UWou4pfRO5oqpa/JAAAAAAAAAC0F8JoaLRkZNwzjLZ5ErIpGpaIjLddmCQR9Z5A7TfpGlgtLRljHabYHtDJjJHJFjqWuq6rjOMdMDMFz85kCqhlHO/gWrdwXEeP549pKjOp6ewhHd2YUsmt3wn5liyd1fMM7Y8f1ETsgC7o26+IHa3b9rGzXrrrtfr28pd1spSuWDedndS9mR/oWf3PftpyVz5hNNnbGk8iQFwnpLB2R5JVb4faReyIXrX7jXrOwAt1feojujdzp+/tHZX15ZM36Pur39Ibk+/Ugf6r2+79CIBgFgreYeqh8Iiidk+TRwO0HsJoAAAAAABffpMxN8v4X7ACPvwCUKfNeH2pevg7XRdGM+2OtuE7npG4eVvvv9nV+67pjC8GggYMT0d82kHR53ERCZn/bQlTdId8sfqT0xrBzrYzsxLsRcddx11dee7OHb//+ktOxfH02m+5+u+vdjU+3BnPKwCAp1SLC/P6Ewgm6OdLkjS7Iq1uuBrs687XVn7x8wdTzRsHAAAAAAAAADSbMYxmEUZDfSSi3nGb9KZJyOnijOdtktG9DRlTIyUNMZ/l0qIKTp4J1vCULnpPypfMsT2gk5mfO1onjFZ0Cyq53ieJm4JnZzIF1LJl7+BaJ1sspjSdmdRU9pCOZO9RplzfONxIOKGJ+AFNxA5qIna5+sODdd0+WkfU7tFPJX5O/zz7t57r/zP1UV0aP6iQ9VTuw3F9wmjW9sJoScPxbLNEdI9sa2cvYN3pRqNj+uWz/kj3rH9P189/xDOct9lSaUHXzrxfz4w/W29KvlOjvB4DOo4pXk6YGjiFMBoAAAAAwJffZMzNMvnGjqOT+QWgTjsR9jipprev/oNpcab90TbMlR4fMm/rc4dcve+a7Y+pFZQDPk7zpRpmou+wamG03aYwWvd9/143ruvqyJw0HJPGBtXSVxQqBDhuruUkx3Flmw4QaDknloLd7hsP7GwY7aZ7K5e5rnTtra7+5DXsbwDQaaq97lgmjAYEUksYTZKOzEvPOa8hQ2l5fp/Fza00bxwAAAAAAAAA0Gx51xBGswmjoT5Mk4pThRm5rivLspQyhG5MYZxW5jfmheK89vac08TRoF2YJuXH7H7FAwaWgE5ieu7IOuvKlNda4nHhF+6K297BszPFDLerdxSsFW2UMzqSPazp7KSmM5NKGSKpW9Vrx3Rx7JnaHzuoifgBJSN7W/ocbdTXlQMv0DeWv6CjG1MV61LFGX1z+Sa9dNdrnlxWlvlkNUvbC6MlAoR+x6L7tnUfCO7y/qt0Sexy3bz4H7rl5OdUlv8VXO/N3Kkjj9yjV4y8Xj82co0idqRJIwXQaObPIQghAhJhNAAAAABAFUHDaOuE0bbEcdxAf+OZsMeXqpnV+g+oxZUNF8AxdY8uSJi3NT0nnVhytW9X+3+x6JgvDPQ0ee+LgbWkamG0kX5LUuWDZynTPvG3VvLAvKuf+6ij7z586r9f/Szp42+3tSvemo+Pgv/3fk/KFKQBzo1tGyeWg91u2nxR0h11f33PhQEAtIhqrzvWcrz+BIKo9ZFyZM7Vc85rzfcjjeYXkcsHfC8EAAAAAAAAAO0o75jCaN13AVE0RtIQCsu7Oa2VVzQQGlLaMCE5aQjjtLKRSEK2bDmqPMEwXZgljAZP6YL3yVmjTMpHl/KLTKYLs4r3tUIYzXxV6XgoWBjNFHjL+my7XZXdkh7ZeFBT2UOayhzS8dyDns+VW2XL1nm9F2sifkD7Ywd1Xt9FClnkHLqVZVl6Q/Id+sDx3/Fc/4WFT+qqwRepPzQoSXJd874YskLbGksiUv25PBkgnob66bF79brE23TV4Iv1qdS1eiB72Pf2RbegGxev0/dWv6k3j/2S9scPNmmkABopXfR+D2YK9ALdhlfSAAAAAABfphDVmTJ5V1JtE1bXc65umZIeW3L14ostPeus7pvwGvTveyJc+QWDu5yu8S/e/hxDRc4URrMsS594p6Wf+Sfvnzt+Utq3q16j2zlBA4a5NppAXfJ5bIRtaXfce91ipjHj6WSO4+od//JUFE2SvnBYes9/uProz7fmUSZoGG0tRxitnRxNBTuYPTDXmgGaQqk1xwUA2B6/YK8krREJBxoi3fkXnTYK+h4fAAAAAAAAADqJ67o+YTRO/kB9+E0qThVm5EZd5V3v/dAvjNOqwlZEI5GEForzFevSRe8AHGDaN9oxDgjUw1BolyJWVEW3ULEuXZzVeX0X78Coni7rmL9gjwUOo3nfLuO0fxjNdV2lijOayhzSdHZSD2QPK+ds1PU+kpG92h8/qInYAV0ce6b6QoYT3dGVzu29UM8dfInuWP16xboNJ6MvLHxSbx77JUnyjfTZsrc1juHwboWtiEpu0Xibsei+bd0Htma852z9xll/rjvXvqX/TH1Mq2X/q42nijP64ON/qisHXqA3JN6u4cju5gwUQN05blmLhjCaKe4OdBvCaAAAAAAAX0EnY67XOBl8ftXVK//e0eTjp5e4+p9vtvQbP7q9D+vbTbVJ9qfNep1QsLxY38G0AdP+aAqjSdKbn2MOoy10yETroI/TvPk7rJbj99iIhKTdhu/pF9v/+/em+84x6bajlcs//QNXH/pZV9Fw68XR8gHDaKsb0t7hxo4F9XOk8hxMTw8EvF0jmAKdUvD9EgDQXqoFWde950UAOINbY+wrU3lOedeo9W8FAAAAAAAAAJ2g6BbkGiIAhNFQL/2hQfXZMW042Yp1p2JQ5g/pk5HKi9u2g2Rkr3cYreA98RpYMOwbo5E9TR4J0Bosy1IiMq6ZwvGKda1yLM2UvU+e7rX7FLKCZQRioQHP5dlye55sv1Za0ZHsPZrKHtJ0ZlJLpYW6bj8eGtBE7IAmYge0P35QI5FEXbePzvPaxNt019rtKriVE69uXb5ZLxx+lcZ7zpbjmsNolrW9uVa2ZSsR2aPZwmPG27Tra95OYFmWnjP4Ij0z/mx9fuET+ubyTcb3yKfdtXab7lv/gX5i9Gf04l2vVsgKNWm0AOplqbSokut9ojLvwYBTCKMBAAAAAHz5BUA2y9QYRvvAze6mKNop77ne1Zuf7WrPUOtFeBql5P859ZOWbY+yz0p9v6BrB6bdMeTzHY9lWTprl/T4UuW6hXVXUvvvb4HDaG0U7akaRjNcSGsx05jxdLL/9VXvHWg9Ly2st2ZYrBAwKjm3Kk1wkZS2kMm7evRksNvOr0nFkqvIDkT7/I5NQfdLAEB7qXZ8X6vxvTDQrWptfdX6OVMnCfoeHwAAAAAAAAA6Sd4xX42GMBrq5XTc5tF85VUkU4VZ48/12XHFDcGYVpeIjkvZuyuWnwrBAU/nuq5x30hEmZSP7pWMeofRUi1yLM0awmgx23AVag9xw203nKzKbrnlYztFp6CjG1Oazk5qKnNIj+WP1XX7YSusC/ou1f7YQU3ED+isnmfI3makCt1lODyiV+x+vT6/8ImKdY4c/Wf6Y/rVs/67HJlPVgtp+4/DRHTcN4w2FiWMttP6QnG9aewX9byhH9V18x/SI7kHfG+fd3P6z/RHdcfq1/SW5Lt0QWx/k0YKoB5MYWpJShBGAyQRRgMAAAAAVBF0MuZ6jRNWP/zNyg07rvTZQ67e/aL2D1UF5RdY2WzN68vGpXR9B9MGTPujXWWXGe03hdG2P6ZWEPRxmis2dhz1VDWM1m/Ja2r9wvqpk3Msq3uOI9t1bMG8Ay22ahgtYORvZrkz4ofd4MFU8Nu67qno3dkjjRuPiV8cJ99Gx1gAQHDVXnesmefoANjENbztCNve0fhaP2fqJITRAAAAAAAAAHQj3zCa1dfEkaDTJaN7PcNop2JQ3h/SJ6N72/Z8NNNEasJo8JJx1rThZD3XMSkf3SwR9b5Cb9onqtlMWcf7hPhaop6xkDmitlHOqD88WPO4GslxHc3kj2sqO6npzCE9tHG/im6hrvexr+c8TcQOaH/8/7J33+FxVIfawN+ZLZJW3dJKstzBxqaFltAuaUAaKRdISOAmkOTmBpIQQgmhhl5DS0IJLRA+SgoQIISSEEIJYDCYYoyxZWNbLpIsrbq0K22b8/0hy15J58zOrLbM7r6/5+HBmjMze3anz5zzzr5YWLYHvHpJWudPxeeI2v/Gq/3PoS/WPaXsw+A7WDX8Nuo8jcrptTSE8Zkdz8v0clS4qqf9GZQec0p3wdlzr8XSgefxROB+5b5+XFu4FTduOR+HVB2Bo/0nodLNZUmUD1TX5hWuapS5yrNcGyJnYjAaERERERERmbLaGTNo8znSiCI85L7XBH70aXvzymeyzr8yQ64qGNCgJza86XHGw9RsUgajJXnG41c8q11rI4jHyQyL65Fqu3OimEn4kFsHGhTP6qNxoDcI1Fl/yVnR85i8PMqp4YFhi8Fobf2ZrQelz5oOe+kPbf05CkYzWffMQtOIiCh/Jdu/MxiNyBpVMFpFKdAv6VsRLOJgNNVvNS4WF3C78rPzFREREREREREREZFKWIwoy0r00izWhAqd3ysPg/gotApb9A3yafI4EEoV5tMbDeDBbbemPF8X3JhXthAfr/wkg2Icbjg+iLcHX0VbuBUGzBubhuLqBoOqdYmoGPg98vW/PbxpWvtSu2rd9fhYxYGYU7rLhOFBxbbrsxGmYRaiFjSGUIGdwWhCCHwQXI61oZXKMMVMGjVCWBdahaH4QFrnW+2egd19+2BJ+b5Y4tsHVW4Hvlma8ppXL8Ex/u/i3o4bpeV/6rwDc0t3VU6vIx3BaOrjeWMehwEXKl3TcVjN57FPxUF4ovt+vD7w76TTvD74b6wYXoaj/Sfi0OrPQU9DoF4hyvWxLJ08mhfzS3fDAVX/BbfmyXV1yKYuRdBuPt+HIEo3BqMRERERERGRKavBaAPqdklTBMPqmSYLuCo0ZuFPkwX1clQmvuVjoAciEobmLZ5GJaoAMD3J85f6Sg2ytzne+6rA3SeKvH+AY3U7DaX3RVgZFTULRnMBM01eYNMxwGA0O+ImbZ16gtmrhx1m4VSJ2hmMljdaOu2Nn6tla7ZvsrpeEhFRfjHb9wNj59hxQ8CV7KKEqMipLlsrSuTBaPl0/Zpuya7xg2Gg2peduhARERERERERERFlS9hQv42GwWiUTn5Ps3T4YLwfiMsbpDR45dPkA1X4hYDA0oHnpzXvVwaAV/v/idNmX4YyFx9eOFFftBu/3XIxuqLt05qPVytBlas2TbUiyj+qYMCwGJ32vtSuf/Q8iu83n4X9Kw/dMSwUH5KO69PVYWdTxnWpG15PDk18pOv3eKn/acvzdqoSrRSLfHthSfk+2N23L5q8s/O+TwE53wGVh+HFvqewcbRlSllvLIDe4YBy2nQEXJkFnTZ4Z017/pQZle5qnNh0Gg6tOhJ/6rwD7ZFNpuOHjGH8sfN2LB34N05o/NGUQE0CHu66Gy/3P5PraqTNy3gGywZfxI9n/RIeneFo+SQQ3SYdzmBqop2KrLs5ERERERER2WU1cKl32OKIADoH1WWuInuWlKyTfaJBvWrqwO7pNVbIN6r1MVkGgVlI1ivrUq+PU1jdToPhzNYjnVTbhlsHNE1Do2RzGNeR3heAFbwRk8CBbhv79myKWNx3Mhgtf6y1GYzW1p+bddMs/CzMYDQiooIjhLAUfJlP59lETlOp6Ms2POrMa5FsSPbNizk0joiIiIiIiIiIiAqXKhhNgwaP5s1ybaiQpdK5WBUulg/qPI3QkLmGua2j6/DG4AsZmz9Nz4t9T007FA0A6j1NDAuioub3NOW6CjvEEcNjXX+AIXY2pA1OCi4bV24SdjZZiVYKF9zSsmBC8FpHeEvehqJp0DG/dBG+OOM4nDHnSly/6AH8ZPYvcXjtVzGzZA73c5QVmqbhuIYfpDStDte0P9/svLYxj8OAi8Wuvt1x/vyb8HX//6JESx4g3jq6FtduOhsPd96NkXgwCzXMD+3hzQUVijZuTWgFVgy/ketqkE2BSId0uJPOP4lyjcFoREREREREZMowrI0XkL9oSMo0GK3IrlRjFn9fABjSJQ8nu+U3wApVqsFoC+rUZZc+aWMhOJTVYLR86jyt2jbc25/ned0a6hXP6zsGircDfSpGTcI+uuVtJXLOSkAJAASGuC7kix6bIXy9OXo2axbKx2A0IqLCE7MYxjok76dDRAmE4nSvokQ+PJhH16/pluxeXDH/NkRERERERERERFS4VMFoJXopQyoorRpSCDlrSCFMzSk8uge17vqMfsaq4DsZnT+lblXw7bTMx+9lp3wqbjXuOkcFtfbGAmgPb97xd8iQd+TwuSotz1PTNGWQWmLw2od5ts+v9zTisOov4IfN5+D6hffjnHnX42v+b2M3315wa55cV4+K1Pyy3XBg1WdsTaNBh1uThxfaUeupV4YgNngYjJYPXJoLR8z4Gi5ZcBsOqDws6fgCBl7qfxqXbTwVbw2+DKFqxFVECvn65YPg8lxXgWzqiwWkw+sZjEa0Q5F1NyciIiIiIiK7rAYu2QnP6TIJUSu2UBGrHe0BYEiXPJzs2pq+yuSBVIPRjtlPPcJLa4FL8jwczep2GjOAaCw/HmREFduGJ+FFRzOr5eN0DKS/PoVsxKRTfY9Dg9GsHit6+GKjvGH3+J+rABrVvgmwHthHRET5wywQMxGD0YiSU12JKoPRwhmriuMlu8Yv5t+GiIiIiIiIiIiICpcyGE0rzXJNqNBVuqsxp2QXy+NXuKoxp9T6+E60R/n+GZ1/IFJcL/jNF4YwEIhuS8u8Mr0OETmdrunYvXzfXFdjgq5o+45/JwaXJVIFnan4FOOHjJ3z74o6e59fppdjv4pDcELjj3H5gjtw+S534n+afoz9Kg9Vfj+iXPjv+u/AqykazUjMK10Ijz79gEaX5sKS8n2mDHdrbiz2fWza86fsqfHU4QfNZ+O02ZdaCrUbjPfjDx2/xm+3XoyO8JYs1NC5Cvn6JRBJz/k/ZUdcxDFihKRl1e7aLNeGyLkYjEZERERERESm4hbzogI2wnM6B9U9PIstxMYsYGWyQVkwWtv69FUmDyiD0ZLc4Zhfr+FrU5/f7HDFUwLvbs6PwDAZw0auW8gkBMtJVPsed8KybqqSj2MnqJGA0ai6zKnBaFYDqIrtmJLPzNZDmVwF0Jite239QDiav8cSIiKayuo5R76cYxPlkuplo6pgtOEiDv9KdkYZ5D6HiIiIiIiIiIiIClBYKILR9LIs14SKwdH+k+DRkgdLaNBxjP8kuDVPFmqVOZ+bcTRq3HUZm39PtAtxwTcKOk1/rAcxYbNRlsT80kX4RNWn0lAjovx2VN23UC5ry58jnZG2Hf8OKYLRfLq9ILByl/z7BeNDO/7ttDAZF9xYVLYnvlr/bZwz9zpcv/B+/HDWufhkzRdQ723KdfWIlGo99fjuzNOhW4j68GolONp/Yto++8t1x6NML58w7Et130KFW9E5gxxt9/J9ceH83+Kr9f9j6RpnbWglrm49E38LPKAMKC903WkKD3aiQv5uhWgkru7wpDovIypG7lxXgIiIiIiIiJxNFUQ1WV8IiMUF3C4t6bidg+qy1m6gPyRQ40s+n0IQsxFoNSx5mCq2rENx/FJjVAFguoUf4dKv6XhyhfoH/3+vC+w3Nz9/TavbKTAW2lDty1xd0kX1nbSERVRfqUHWZdypYV5ONWrSJq0n6LyQJyEEIhZDJXuGx8bXtPzctotJ2GbbyJwFoyVZ94693cBTp+lc54iICoTVIOuR6bclJyp4ymC0Uvl1XbCIg9GShZ8X829DREREREREREREhUvVIbtEL81yTagY7F6+L86ddz3eGVqKQETecbzGMwP7VByEXcqWZLl26ef3zsS5867HW4P/wdZwK4TqwU0SYTGC94ffnDLcQBy90QD83pnTrSqlUcAkFOHjlZ+EliSIxa27Mb90NxxU9Rl4dcXbjoiKyNzSXXHuvOuxfOhVbItsUT4DT7cNo6vRE+2aMjwxGC0xuCyR3UANVZBaYvCaat8yv3QR/J5mW583HdXuWizy7YVFvj1RyiBdylP7VR6KX8y7Du8PL0N3ZOp2DgBNJbOwb8UhmFkyJ22fO79sEc6bdwOWD72KYHwIe5Tvhz3K90vb/Cn7PLoHX6r7Jj5R+Sn8peturAq+bTp+HDH8s/eveGvwPziu4f+wT+VBWaqpMwSi8pDPbB/LpmM4PoDVofemDB+KD2DUGOGxMU8EDfk5HAD4XPYCbokKGYPRiIiIiIiIyJTVwCUhxsLR/Baen3Wp79sgZgDPfiBwwoH5HSjyziaBsx8xsHwTUOMDjt1fwzXHaCjzTvxedoLRBmUPJ7esm2ZN84tqfbQSjLZbg3n57S8J/OZb9uvkBHEb61Eokrl6pJOhaDGQuKzrFPd5u4edF+blVEIIjJisE90ODJmLG+pQhcnCsbF1vpztshxPFYzmcclDaYZGc7OdJwvIefYD4In3gGPYPoCIqCBYDWPNl3NsolxSnb2pztWDRbxdJTvTNbuGIyIiIiIiIiIiIspXYWNEOpzBaJQpzSXz0FwyL9fVyJpq9wwcOePoac0jbIzizHXHS8sC0W0MRnOYQEQe+FDhqsL/Nv88y7UhKgz13iZ8se4bWf3Mx7ruw/N9T0wZ3hVpBwDERBRhIQ+YtRuooRo/ZAzv+KzeaEA6zhfrjsPHKg609XlEBMwrXYh5pQuz/rl+70x8qe64rH8uZVa9twk/mfVLrBhehke6fo++WLfp+L2xAO5svwZ7l38CxzX8H+q9jVmqae6MHcvkv0s+Hcu6I524eOMpirJtmF26IMs1olQkhs9OZjfglqiQmce6ExERERERUdGzGowGAL1Ba+N1DZqX/+Z5kfIb6ZygZZvAx68y8NJaYDgMbO0Dbv63wMkPTP1OyQJWEvW4Zkwd2NGacj3z0XSC0XwlGubVqcujcSAYzs/1zs52mi+hDapdQOKyrlc8r+9xYJiXU8Xi5uuPE4PRVAFaKlwf8kM4Kh+uClwdkrfjybiIhfXv0idtpFUSEZGjWdnvAwwpIrJCdY1XqejPNjACxO1c7BaQZF87FCnO34WIiIiIiIiIiIgKW9iQNwRgMBqRc5Topah21UrLVCFclDuBqHyZ+D0MsCPKJ43eWdLhnZE2CCEQiqs7cJTbDEZTjR/cHtrRE+2CgLx9JPctRETOoGka9q08GBcvuBWfn/F16HAlnWZl8C1c0Xoanu15BFFD0ai/QPRGA8pjWb2nKcu1SV2tpx4uuKVlgei2LNeGUhWMD0mH63ChROP9MKJxDEYjIiIiIiIiU3b6oAbD1sZ75G3zmb7VCux1qYF1nfnV0dMwBM551MDuF8tvkj60TGB918TvFLMRjNbhltxk7Q9AxGymBOWx6QSjAcB/72s+4tubbFbIIQoxGM3KslYFozkxzMupRpI8t3JiqJjVgJJx25KEcZIzqALvVNu5k4PRVrYhrwNeiYhoJ6vnHQwpIkrdzGr58LgBBOTtfgqekSRnN1+u64mIiIiIiIiIiIjsYDAaUX7we+XBN6oQLsodVVidahkSkTOpgtFGjBCG4gPKQA0AKNcVb6ZV8OnyBpuh7cFoqv2KBg31nkZbn0VERJlVopfiaP+JuHD+b7CobK+k40dFBH/vfghXtZ6ONcEVWahhbpgFOufTscyluVDnaZCWMbQ6f4yHz05W7qqAplnsKElUBBiMRkRERERERKaSdcZMFEzSMVMIgT8uszbD1R3A4osMrO7Inw7m974mcMNz5vV94r1JwWg2ft8Ot6QxghBAX6f1meS5uOL30i3e4TjnCxp2N2nT8ZVbbCwQBymqYLSEZV1XLh+HwWjWjSYJRhscBSIxZ+2HIzYCJQHgxRZn1Z8mWrlV4J5XDbT1y8uVwWgWw1jTLWpx/XNiqCAREdln9bwjWdgsEQGqs/LZNepp2hXniIUu2RVMvlzXExEREREREREREdmhDEbTyrJcEyIy4/fIG2B2sfO946iWSYNiGRKRMzV6m5VlXZE2hIygstznUjTAVCh3yYPUxsPXAtFt0vJadz08utfWZxERUXbMLJmDR3HcowAAIABJREFUM+Zcge/NPBNVLpOGWtt1Rdtx89ZLcG/7jeiP9WahhtmlOpbVuOvg1UuyXJvpqfc2SYd3K74jOU/IkHc68SnOyYiKFYPRiIiIiIiIyJSdwKWgSUjJSETgm3ca+M499gJq9rzEwO9eyo+wqvtfT/7dXlwzcRyrASsA0C4LRgOA7uJpUKIMy7L4IoTmGg1vnK++HTIcBsLR/AtRKshgNFUIXsKyrq+QL/i+kPPCvJwqWTAaAPSq20zkRCRmb/xX13FdcKornjKwz+UGfni/ehn5Fdv54EimamXOakBO+0Bm60FERNlh9XotX86xiXJJKE75/JUa3IrLdFV4bqFLdo3PfQ4REREREREREREVorCQNwQo0UuzXBMiMuNXdL5XBQxQbgghEIjK2xarliEROVOFqxpluvxN0p2RdoS2h5ZN5tG8tgNeVEFq46EdAUXgIvcrRETOpmkaDqz6NC5ecCs+XXMUNAsRM8uHXsHlG0/FC31/R1zYfLO9g6lCw+o9+Xcs8yvqzGuz/BGKy4PRynV74bZEhY7BaERERERERGTKTuDSSfca+Pdq+QQPLxf46zup1eGnfxRTAsWcRgiBlW3Jx1s96f5izFYwmuKNTz0MRrMajAYAlaUavry3uvyjgL06ZYoQAg++YeDEewz84lEDH7artwFViJhMvnSgtrKsZ1arp1/vkOXodCMWgtG65ffacyZsMxgtIG/zQTn27maBy/6e/Nhep3imMyR/UXTGWQ1dbOvLcEWIiCgrrAayWjmnIiI5l66+tmvvd/a9oExRhciN4z6HiIiIiIiIiIiIClHYkDcE8DIYjchRGrzydqw90W0wCigwId8NxPsQFfLGon6P4iXNRORImqah0TtLWtYZaUNQEajhU4SpmSl3VUqHB+PDMIShDlzkfoWIKC/4XBX4VuPJOHfedZhXuijp+KPGCB7tuge/2vRzbBhZk4UaZl5XAYV8qsLcVOFv5DzK8zhFWC1RsWIwGhEREREREZmK2whc6h4GPv8bA/e+OnWiR9+eXmfWI24y8FarczvEdg4CA/KXVk7Q2gOMRnd+j5iN37fdrXho2FM8Ny1VAWB2gtEA4KzPqW+JrHZIztxpfxI46V6Bh5YJ3PicwMHXGHhjg3wbsBNgGIw4dztKZCUYbVe/etmvKZ7NYlpG8zAYzWpAybihcGbqQdPzh6XC0r7LL29ng5EoMDiS/f1Z1GL7zbYiDfEgIio0Vs878iV8mChXRJKkr1m18uEdAxmoTB5Idp7MfQ4REREREREREREVooghb+BRwmA0IkdRhd/ERAx9sZ4s14ZUAorABwDwexlgRJRvVKGUnZE2hOLytwf7FCFnZny6PIRDwEDYGEEgIm+czf0KEVF+mVu6EL+Yey1OaPyxct+faGu4FTdsPg8PbrsVw7HBLNQwc1ShYX5FyJiTqcLceqPdiAm+eTMfhAz5eZwqrJaoWDEYjYiIiIiIiEzZCVwCACGAi58UiMUnTvj0yunX5cy/2EgRS4PBEYFfPmFg1wviOPCquDTwbZzVECYhgLWdO/+2GrACAMOuSgxJbjqLbockeWWBlbAsKz67RD3BPSbLOVu29Ar87qWJX3Y4DBx6rSHtUG5nOx2Sv1zVcVTfSUtYdCUeDbv45eOt2cZQIitGLDzv6HFaMJrNF4vmyzpfbH7/irVtdLdGddmKrWmqjA1WA3LaizTEg4io0Fg9zx5hSBGRKbNcNA2AX9G+rt9CAH0hYjAaERERERERERERFaOwIb8pzGA0ImepNwkMMAvjouwKROXLwqdXsJM9UR5q9M6SDu+KtiNoyBv5lruSB93YmWYoPoDuaKe0TBWaSUREzqVrLnyy5gu4ZMGtOLjqcEvTLB14HpdtPBWv9f8Lhsh9vyu7DGEoj2X1eXgsUx1/BQz0RLuyXBtKRTAuP4/zucqzXBMiZ2MwGhEREREREZmyG4wGAO39wGqb7Rv+fHLyZKul68cCo7LltD8JXP2MwMZuYPkm4P/uF7jtRfnN243d1uu1pXfnvycHyCXT7pbcuOwpnsYkqvXRlcIdjqP3lQ//5ypgXWduQ7We+1D9+Tf+q7iD0SaH4C1WhCZtCKS3PoUqbCEYrXvYWSFzVuqcaLBIwxScLBgWGLW4HHdr1FDjk5e9szn766bVYL6N3AcRERUEq+fZDCkiMme2KWkaUOOT3xMaCGWmPk5nFiQHcJ9DREREREREREREhSks5I2aSjQGoxE5SZnLh0pXtbQsELX4hmHKOFVInd+bf4EPRKQORgtEtmEo1i8t86UUjKYOTtwa3ggD8gaUfq86NJOIiJyt0l2Dk2b+DGfNuRrN3rlJxw8aQ3io8zbcuPl8bBndkIUapk9/rAcxIe/E0JCHx7I6T4OyrDvCa7N8EFIEo5XrDLMmSsRgNCIiIiIiIjKVSjAaAKzetnPCkYj5TJqqgGP21fD5PZLPd955BroGMx+EsmKLwANvTP2c370k/+w2+TNFqYGRnfOI2XxJRpu7eerAbgajTQ7LsmLJTPVEiy8yYKS68qfB8x+qyy54TEBM6iVtp6qD+RKMptg2Ji/ruXXy5djR76wwL6eysu70BDNfDzusBlONGw5jyjZDudVu45hZ5gH2VzxjfXdzeupjR9Ti+teS44BNIiJKD6unECM2g1uJaCdNA6rK5GX9oeI8p0p2nTbCYDQiIiIiIiIiIiIqQGFDEYymK24iE1HO+D3ycC1VGBdlXyAqXxYNimVHRM7W6JX0HwBgII7No+ulZakEapTqPmiQt8veOLJWOV29J//CZIiIaKKFvj1w/vyb8HX/9y0FlG8cbcG1m87GI12/x0g8P95+2W0S5JyPxzKvXoIad520jKHV+SEYH5IOTyXglqiQMRiNiIiIiIiITKnCiZJZnfBM/YqnzXt03nKCDo9bw2+P19Fg4RncnpfsDK1atkHgj8sMvLkxvZ1lf/28fH6rO4BQeGqZnZCXgZGd/7YasDKuwy1plNBTPDcslcFoKdzh2D3Jfeu7XsldB+wKk+cIMQMYSmgHKISwHNgATJzWyVRfaXIw2qwa+Xh2wgqLmZVgtG75S0hyJhKzN74hgBCDAxzFzjGzxA3sN1fe0OadTdnfT1td/1q2MZCPiLKjPzR2PfTEuwI9w9zvpJvVX5QhRUTmzE6LNAA1PnlZ/4h8eKFLdhqZ7AUERERERERERERERPlIHYyWvEM2EWWX36sIRlOEcVH2BSLydsWqZUdEzub3zFQGlm0Nt0qHpxKooWs6fLp8uk2j66TDq90zeL5GRFQgXJobR8z4b1y84FbsX3lo0vEFDLzY9xQu33gqlg++4vi286pz5HJXZd4GUfkVgW5mIXDkHCFD3lmrPE/XR6JMYTAaERERERERmbISmiOztnPnv59aoZ7J8gt1fP2AsQd1i5s0rLtKx6IG83n3BIH9rzTw7d8bOORaA9+5R+Dgawz88H4jbTdSn1ulnk9PcOqw9n7rn5vYsTdmM3iuXRaM1r4BImYzKShPqYL6JodlWbH7TPOJHnojdzflh5OEl/UmrIN2V/mhPOlYbjUETxWM1j6Q3voUKivrT0+eB6MB+RMIWCzaB6zvuEo8wP5z5WWrtwGRWHb31RGLgaZ9ISAgf4EPEVHaLG8VmHfe2PXQsbcb2OdyIyehkYXM6vVwiCFFRKZMg9E0oKZMXtafHy8TTbtk+x4GPxMREREREREREVGhiYs4okJ+85NBG0TOo+p8H4gwGM0JhBDoirRLy1TLjoiczauXoNZdLy0zIG/UmGqghioYplURjOb3MHCRiKjQ1Hrq8X/N5+Cnsy+xtJ8fiPfh3o4bcfPWS9AZactCDVMTUISF5fM5cr1XXvcuXps5niEMBOPyzlo+V2WWa0PkbAxGIyIiIiIiIlOpBqNt6d054ahJiM3+8yaGU1WWavjgUh3HHWAeWvX+VuBPb06s3D2vCrhOGQtMu/NlA/FUKw8gbFLnbsl9p/Z+6/MeSAimiloMWBnXIbupPDwArFxqb0bTIAwD4sW/wrj2FBh3/BKiJ3tvklCGZaUQjLbHTMDrVpe/th45e2NJstCgvoTO4XZX86HR/AhtsBqC11wjX/iBISAczY/vmktW1p+BEWf9jmb7Z5VBBqM5SpuNY2aJG9h7lnw7jxvAtiyHIMZtBJq2dCYfh4hoOk68x5gQ/tneD5z+Z5vJy2TK6uUAQ1iJzCXblGp88uH9eRLsnW4MRiMiIiIiIiIiIqJiEzHUD1tKGYxG5Dh+rzwcIRDdBkPwmXWuDcUHEBby/apq2RGR8zV6Z9kaP9VADVWgWkxEpcP9ikAWIiLKf3uU74dfzv8tvlJ3AtyaJ+n4LaH3ceXG0/G3wIOIGOEs1NCe7qg8LKw+j4PRVKFu3YoQOHKOsDECAfn1c7meWsAtUaFiMBoRERERERGZSjVbLDH0ZEDRkXWvZvlwj1vDX07RceeJKaRdYSww7ccPCRx3h5FysJVZ8IksGG1zr/V5J/4eMZvBaO3e2dLhYunT9mY0DeK6H0Nc/D/A0/cBD10P8d39ITatycpnpzMYzVei4SefMZ/wyRX255sOydanaQWjOe/5gpTVZT2rRj2PbYPpq0+hsrL+DDosjCASl1fabXKnk2ElzmInTLTEbb6dd2Q5GM3OPnfNNmeFChJRYWnvF9IAxtfWA+u7uP9JF6v7/f5Q8nGIipnZrRlNA2rK5NfmxbptJbuVxWA0IiIiIiIiIiIiKjRhk2C0Er0sizUhIiv8shf8AoiKCAZjfVmuDU0WiMgDHwD1siMi52vwKjpeKKQaqGE3UI37FSKiwubRvTiq/lu4aP7N2LN8/6TjxxHDP3sfxeUbf4r3h9/MQg2tC0TkYWH5HB5crzgOd0c7GVrtcCFD0jl1u1QDbokKFYPRiIiIiIiIyJSqI/g1x2r4hsk9zfZ+7AglUwWjXX2s+WXpDz+p4xPzLVRS4Yn3ANcpBhZdGMc5jxoYjVrr1R6LCwyahOj0DE+cT19QoGvIer0SQ4ZiNu8zvlB5hLzg1b+nHAJnh3j+L2OBaIkGeiD+9OuMfzaQ3mA0ALj2WA0/OEw98TG/M3DDcwaMVBMCUxAKi+TBaMGd/zYL8ZNxWsiVitVl3WwSmNRmI3ypWFkKRnNYqJhqna/xqafJl/W+WHTY2DZLPWPLtlTxkqn2bAej2djntvBFS0SUQWbnOW9sZDBauli9xOrnuQaRKbNNSYP6XH5wFFm9HneKZF+ZwWhERERERERERERUaMLCJBhNK81iTYjIigaT4ICuqDqUi7IjoFgGpboPFa6qLNeGiNKl0TvL1vjlKQZq2A1UMzsmEBFR4fB7Z+Insy7Cyc3nocZdl3T83lgAd7RdjTvarkZPVPIW4CwTQiAQVQSjeZqyXJv08XvldY+JKAZiSTqmUU4F4+pgtHJXagG3RIWKwWhERERERERkShVAU18BPPwjF147V35pGY4BPcPAaFQgEpPPo8bCyxyfO2P6l67rA8ANzwn817UGVrULvL9V4MN2gVhc3tO0NygdvEP3pHtPLTbv0Q6Edn5uNG5v2l5RiYCrfmrB1vXA5hZ7M7NIDPVBrH0PYsWrEJedJB/p9X9k5LMnU4ZlpbiaeN0a7j5Jh9/k2e85jwpc8XT2OmKv60oewNCXsA7Z7SM+5LCQKxWrwWjVZYDPKx+3ncFoSeVjMJqqzl43UFEiL3uztfjCFJysrd/68vC4AE3T0FwtL2+3Ma90sPNpW/gskYgyqEwRGAkA63LfhqRgWD3X7g9lth5EhUzT1MFoQiS/R1OIkt0TGIlmpx5ERERERERERERE2RI21I1TvLqiMQgR5YzPVYFyXd7oMhBhMFquqYLR/J4maFqKbyEmopyzG4zmSzFQw+50fg+D0YiIioWmadi38mBcvOBWfG7GMdDhSjrN+8Nv4vKNp+EfPY8iJnLX6Gk4PohRQ97Qsz6fg9FM6q4KgiNnCCmC0TRoKNMVDSqJihSD0YiIiIiIiMhUsnCiuTPU07b1AwMj6vJqC8Fo1T4NHTek5/L13S3A3pca2PdyA3tdaqD+TAMPvD41+a1ryHw+gUn3nt7fai+UpT/hN4nZDEYDgJtnnCovWPac/ZmZEMFBGJd8B+KoJogfHATx0yPUI/dugxjKfAqVoQjqmxyWZddndjOfwWV/F/ioKzvhO2u2Jf+cvoT78XaD0ZwWcqWi+l6T2+VomobmGvm4dsKXipVqm0o0aLIfzwVVnV0asM9sedmzK7kuOInV0MLyEuxojDdTEYzWMZCmSllkZ587NMr1jogyx2x/9FFX9upR6JKFE43rC429UZCI5Mw2Dw1Ak8mL6duzfL7nBMnOOUOR7NSDiIiIiIiIiIiIKFvMgtFK9NIs1oSIrPJ75R3w2fk+9wIR+TLwexleRJTPGrzNtsYvTzEYrdxl8rZxiXwOkyEiotSU6mU4xv9dXDD/11hYtmfS8aMigie7H8RVrWeiJfh+Fmo4VbfJdUo+nycztDp/BePyzqtlejl0LXnoIFExYTAaERERERERmUoWRNVYpQ6lShaMVmMxwL6xSsO7F6X/EnZwFPjuHwT+9z4D5z1m4Du/N3DNswY+dpl5UtCmnol/P2MzcCeQcO8qpvio2nivcvrH6k+QDhcbVtmqh4oQAuK9VyC+6AdeeMT6hJvXpuXzzSQL6kvVtV9PPoMDrrSQIJUGk9cvmd7gzn9bCbZKlC+hDXZC8GYpgtGshi8VMyshT04L01PuB3Tgq/vIt+WVbfmx3mfK4IjAI8sFnnxPoDeY299BCGE53KLcu/PfzTXyZZvt7dzOPnfIYdsOERUWs2P4tsHiPealm9VAzLgBBMOZrQtRPjMNRtPM7y0V43Udg9GIiIiIiIiIiIio2IQNeSNDt+aBS3NnuTZEZIXfIw8PYOf73OuKypeBapkRUX6oddfDo3mTj7idT08tGM1nI1Ct0lWNMpfFDiFERFRwmkvm4sw5V+K7Taej0qV4C3qCzshW/HbrxfhD+00YiKn7zGWCKsC5RCtFlUvRISlP1CtCq83C4Cj3gsawdHiq4bZEhYzBaERERERERGRK1RnTtf2K0u3S0KS4f7m1T5iGPFWXWa/HPnM0rL48M5ex9y0VuO4fAn98U+DCx5P3fG/ZtnMcIQReapGPN69OPrytf2dATzQuH2ff0RXqz8dcbHM1Ti3YpKiIDSIagTjvWIjTjrQ/8aY10/78ZDIVjLagXsMFR5nPZGgUWNOR+ZCJNgudvvtCO/9tNaxh3Gg0P0Ib7CxrpwQm5SMrq89oFIjEnBOwEjcJzTt4F/m60BcCuuXPDQreu5sFFpxv4Ft3GTj6d2Phn+9syt3y7A2OrVNWVJTs/PdMxfPGjoHsfhc7+1ynhQoSUWFRHQ+BiSG6ND12jjL9JqHgRMUu2bbkdmlorJKXtfU751okW5JlOocixR38TERERERERERERIUnbMgfsJfopVmuCRFZ5fcqgtEUoVyUHUIIBCLt0rIGxTIjovygazoavM3WxoWOUj21wLJyG4FqDFwkIiJN03BQ9WdxyYLb8KmaL0FD8s5dbw39B5dt/Cle7HsKcaHoVJdmqgDnem8TNG2aHdJyzO+RB6OpwuDIGULxIenwMgajEU3BYDQiIiIiIiIyZSWcaLYirKStH7jwcXmPfU2bGHhixeImDf88Q0ddub3p0q2lc2cH1GBYHXzyg8PkN0dDEWBwe6f5mCLQwCNieGbzV5V1aPNIHmxuWmO7Y+yyDQKn/tHAOXd1YMV1N0AcXgksfcbWPMaJzdMPZkvGLBBpui76soZvH2Q+oz0uMfBRl73f+NV1Aqf/2cDP/mzglXXJp2230Om7fxrBaAAQyIOAKNXX0iV3s5oV+6CHlgl2Fk/CMAlVSTTooKAPs+PSEvkzHQDAmiJ9rvPde40JYYrt/cDP/mxxwWfA2k7r45YnnCc0K0JYOwamVx+77OxzhxiMRkQZZLY/Stzv0/RYPVcCJp6jE9FEZpdl4+3KVNd1xRh4beWc02rYMBEREREREREREVE+CAtFMJrGYDQip1J2vo90sM1eDgWNIYwY8ofXDDAiyn8Nsv4DEj5XRcohLz5XpeVxVSGZRERUfHyuChzfeArOmXc95pYuTDr+qBHCI12/x682nY2NI5nvi6YKCatXXNfkE79X/h26I0XagSZPBOPyjn12QmqJigWD0YiIiIiIiMiUlWC0WbXycdr6gfUBeVlVKaCnkGb1uT00tF6r46WzdTzxEx0fXKojcruOlZeO/X3jcZl/U0N/CAhsD+bvNgmYOniBui5t2zv2xhQvt3CLGI4MvqCcPuCqnzpwqA9oXa2u0CR3v2LgkGsN3P6SwA3LG3Dw2h/jqYovWZ5+ik1rUp/WIuX6mIY7HCUeDff/r4anTzOf2QFXGnh3s7WGOw8tM/CZGwzc8oLArS8IfPYGA/e/bp6u0Gah03dfcOfnpxKM1jVof5psU4VQyHYbsxQd6AHgnL+ykZUZq+uPKgAyF1R1dumAvxKoUbzkbn2g+NaFjn6BDyQvAF26HtjYnZvfo6XT+ucmbu8zFcFo2Q7KYDAaETmFWWBXXzB79Sh0do6WvfzdiZTMtqXxUz7VdV17loNwncBKX6ERBqMRERERERERERFRAQkbimA0vSzLNSEiq1RhOGExiqF4ET7gcYhApENZxgAjovzX6J1laTzfNAI1yl3Wp1WFZBIRUfGaV7oQ58z9FY5v/BHK9PKk428Nb8T1m8/FQ9tuw3A8cx2dVCFhhXAsU4W7BaIMrXaykCoYzUZILVGxYDAaERERERERmbISRNVcIw8Aa+8TUL1saGAk9TqVl2j41G4avravhj2aNbhdGvZsHvv7zM/pePKnOhY3pj5/K1o6x/5vFoy292x12XiQS1QVjIYYdAg0xDql5d0ev3zCV59Sf2iCtj6BUx6YuHDDeiku8V9iq/P/BDZC2VKlDupLTyCepmn40t4aPre7epyh0bFwtMCQ+S8Viwtc8JiYUGdDABc+LhCLy6cVQuCNDcnr2ZfwQr9UgtECJuutU1gJZRzXbBKMduNzAvVnxnHcHXGsap84065BgVP/aGDPS+I47Fdx/OOD4rvpb1h80JEPwWi6NrYNz1GEdRZjSMzmXnXZGxtys76vsfHioVhC6I/qXKN7GIjEsvddbAWjhTNXDyIixekkgLHjNhszpIedn7FjgL85kYrZtjR+OT/T5N5SsbFyzhmKZL4eRERERERERERERNkSNuSNCUv00izXhIis8nvUIVtm4VyUWV2K375EK0WVy6ShJRHlhUZvs6XxphOoYSdUjYGLREQko2sufKrmi7h0wW04uOqzlqZ5beBfuGzjqVg68DwMYfLm4BQFovLz5EI4lqnC3UaMEILGUJZrQ1aplo3PRkgtUbFgMBoRERERERGZMhT3ExODqGYpnpVv6ZsY4JTonC+mJ8hK5isf07D6CheMu1x44/zMXPq2bBvrpaoKRnPpgL8C8CueK27sGZs+pvh9PSIKAPDHuqXlgdmfkA4XLe8oajzRnHPlH7yi9GPocCtu7GoatAfeg3benRjRSrHKuztGtITGZ1vXQ7RvtPT5qbITljUdt307+XrT+HMDQ6Pq3sqrO8a2gcna+oFV7fJp/u9+ax2+exMCnlTbqJlkoW5OYGdZz1J0oB/XGwT++g7w2RsM9AyPzdgwBI75nYHbXxJY3QEsXQ8cdbOBl1uc/9ukk9WQp8FphFmmW7J1o9YnL1cdjwqZ2fLdYhKalkmt8sOaVHxCMJp6vE09qdfHLjv73EgMCEeLa59CRNmTbH80nSBq2slqiCwwdp5PRPaNX82p7i21D2StKo7BYDQiIiIiIiIiIiIqNmFD/sY+BqMROVeFqwqluryhlip0gDJPHfjQBC1NLyAmotxp8M6yNN50AjXKbUxrFpJJRERU6a7BSTNPx5lzrsJM79yk4wfjQ3hw2624afMF2DramrZ6jBojGIrLG6GpQsXySb1JuFt3xMZb7SmrQnF5h1Q752JExYLBaERERERERGTKSjiRqvPqqnZA1Y/8Wx/PzgP2AxdoePuXOr6x/8ThlaXAPrPNp/3c7uqyls6x/6sCpuorAF3XsKtfPv267dPH4vJyt4iNzScuT5DpbtxLPuHmFvnwBLe9aJ6i0OJdNHXgl78P7S9rEJu9BD9qOxZ1u3Vgn13fRu3iTpzTcBVicI2N99pTST9/OtRBfen9nIUNGlwW7ppU/8zA3a/IK7WqXd2T+QNJWSwu8Mhya8ELiQFPZh2my0vkwwN58NIPO8FoZoFJibqHgev+OTbjMx8WeH3D1HE+e6OB0SIKMrIcjCZvf5oT8ST7gRpFMFp/EQbEBMPqstYshokl6hiwvn0lhofOrwNUbfPGj8nZYHfvMOSgbYeICkuyY/jPHxEQNkK9SM7OT8hgNCI1s21p/ByvuVpe3iYJHC90VvY9DEYjIiIiIiIiIiKiQsJgNKL8o2maMkSAwWi5E1AEHzC8iKgwNHqbLY03nUANO6FqDSZBLEREROMW+fbEBfNvwjH+76FES36dv2F0Da7ddBYe7boXI/FQ0vGTCUTU1yd+b/4Ho1W7auHRvNKyQJTBaE4VVASj+fTKLNeEyPkYjEZERERERESmkgXQAMCsWvupVPVZDLDfb66Gh3/kgnHXzv8Gbnbh3YtdGLxZx56TnhGe/CkNxl0u/PNMF048WP7dtvaO/b9bfh9qx/db1CCffl3nWC/XqCoYDePBaPLkmu4SxYPNjR9CxGLyMgBDowKn/cm8h+1a724T/tbuXgr9vDugzZyPy58WuHt5OSL6WOJWTPPgprozUbr7EB6sOgHDr/zLdN7TZScsa7qszvKUBwSueMpAJDaxcusD6mk2SMrWB4BhkxCjRP0jgLH9xzALxWhU3A8NKNZbJ1F9L1kwkqoDvcz1/xTNJWnxAAAgAElEQVToHBS45QX1D3fOX4snREQVNjjZ4IhzfhPlfmD7nc4an3zr7Q9mqEIOZhaWsLYzN8u0Q/6yJanE8NAyr4Z5M+TjrdmWve9iNUxw3JDF/ToRkV3J9kd/eE3g8XezU5dCZme/38FgNCIls01pRzBajfw8vnNoLEi8mFjZ90wnGM0wBN7ZJPDQMgMbAsX12xIREREREREREZEzKYPRtLIs14SI7PArAnFU4VyUeapQOtWyIqL84nNVoNKVvNH0dAI1XJobpXryc7ByvdJWiBoRERU3l+bG52YcjYsW3IL9Kg5JOr4BAy/0PYnLW3+KtwdfndaLgrsV4WAuuFHrrk95vk5hFlqt+u6UeyFD3rFvOgG3RIWKwWhERERERERkykoQ1awa+/OtK0+tPulWUarhnV/quPd7Gq45VsNzZ+i44zs7L5ebFd+tfWDsh+kakpfvCEZrlJev6xr7vyp4ziPGws388W5p+ca4Xz4hADxwrbLoT7c+p55uuxbvop1/fOHb0JYcsOPPB99Q30z+3qx7UD36ON5aZSP1xibV+ujKwB2OT++WfJxxlzwp8KnrDPQM76zg+DKWWd469YustvGSRCGAwe3tAU2D0arkw7sV662TqAK7ZCF4JR4NPvkLTqSuedb8ociflomi6Xhv9VsOjGS0Grao1g3X9nWjxicv73dQuFu2BCPq77wmB8+4hBBotxEaE5u0rBcrXsjUksXvYjVMcJyTth0iKiyq64hE1z5rc6dFU9g5e2jrL75zDSKrrLRLU91bEsJeuG4hsLI3CaUYwBuJCZxwt8DHrzJw4j0CCy80eLwgIiIiIiIiIiKinAsLRTDa9pd3EpEz+T3ysK0uRTgXZZ4yGE2xrIgo/zR4FS9XTzDdQA2fnnx6v1fRoJOIiMjEDI8fP5x1Lk6dfbEyzCvRQKwX93TcgFu2XorOSFtKn6kKbq7zNEDXXCnN02nqFcflQITXZk4VisuD0Rg8SzQVg9GIiIiIiIjIlKrDfWIQld1gNJ8X8JVI0o1yxOPW8L1DdZz7RR1H7jGxXjMVL1Ua75S7vkveXbWpamw+8+vk0/cEx/4/OfRlnHt7MNrc6GZp+Stt5RjwzJCWiXuvgAhPTWIR6z/Ak+/E5B+Y4PYZp4z945AvQTvrtzuGD4QENvUknRw/vC+KuFla1zRYCepLl5MOsTfTN1sB/1nGjtCzwJD6N/jXaiAUnli+Zpu936wvNPb/VILRzOrmFHaX9cVfsb68bv63+ffvCQJL11ueXV6zuqkOytuf5oRy3dh+XKpRvKiuL5iZ+jhZ0CQsob0fGMxyWNzQKBCKWB9/8jnIwgb5dt7Wl73vYffwtiGQmXoQEVnZHy3fBLQzrGta7ARiFuO5BpFVZnui8TO8OfJbHADMg8cLkZV9z0g0tXn/4TWBR96euEQueFzgvS08XhAREREREREREVHuhA1VMFpplmtCRHY0eOVhW4FIO4SVN+dQWoXiwwjG5W/NZYARUeFo9M5KOs50AzXKXZVJx2HgIhERTcee5fvjl/Nvxpfrjodb8yQdf01oBa5qPR1/734IEcPeGyWV4cEFdI6sCpkLRLP4BnqyLGKEERXyjjXlevLzMKJiw2A0IiIiIiIiMqUM7kp4KUJFqYZqRRCNTH0ehdfP3PCydHhHv4AQAmsU9wgXb7+nWN3fKi0fGBq7gRWNyRt/uDEWYHZE8EVpeTSu4c09vquoNYDlL0wZZPz9XiwtO0g9zfi8NS9uPq0V2q8eh+ar3FHP+edbSwV4f6AWb2ywNKptyQKR0unr+2sprasHXm3g8XcF+kPqcUajwDuTMu9abN5v7t0evKAKLwSAhip5iFBA/mIJR7G7rE/5VHrT8Z54rzgaZlkN+xicmrWYM6p1fjw0r7ZcXt7voO+QLcEkIWTrsxza9UG7vfE/MX/i36og1vaBlKqTErvBaHZDL4mIrLK6P3p6JfdD02Hn1+szOf8nKnZm/V607efxNT4NfkWbnlMesJFSWACs7OOD4dT277e9KJ/uwTd4vCAiIiIiIiIiIqLcUQej2WiUSERZp+p8P2KEEDTkAV2UOWahBw2e5izWhIgyyUowmpVgMzNWgtX8inBMIiIiqzy6F1+uPx6/nH8z9vDtl3T8mIjh2Z5HcEXrz7ByeLnlz+lWnCfXK65n8pHqu3RHGIzmRKG4ulPfdANuiQoRg9GIiIiIiIjIlCqAxj3pilIVViKTL8FoIhpB0z9vlpYFIxr6hmJY2yWfdsn2e4pVL94vLR8VXowu/ZcyeM4jogCA/UffhT8m/5B3Fhyjrnzr6gl/io/eR+cTj6LfVaueJsH5LzVgePtLNIJhAd9PDQzYCBU66+GJX+y5VQKH3xBH89lxfOq6OB5allqnZlWIk57eTCwAgK9Ew39+oeOQXexP+/XbDbyeJBxucljOn9+y1wm5b3swmlmH6cYq+fCuPGhzpOo4r1rW1T4NVx6dvhXhN88LGHYTkPKQ1a84KG9/mhPK0LzxQAVFm9hiDCsJJQlGC2R5X/DsB/a2qTOOnHiy0aw412jrS7VG9tndLaztzEw9iIjMwnETPfN+4Z/PZJKd/X4xhrASpUPiVdwSRVuz9QEgMFQ8+zMr39TKPZql6wW+8OuxezGNP49j/yviyrDim/5VPL8vEREREREREREROU/YkN/0LNFLs1wTIrLDLBQnwA74WReIdEiHezQvqtzW2g4TkfNZCTos16fXWaPcSjCah8FoRESUHg3emTh19sX4YfM5qHHXJR2/J9qJ29uuxJ1t16AnqujUl0B1bVJIIZ+q7zIQ71OG0VPumAWJTzfglqgQMRiNiIiIiIiIlAxDKDuCF0MwGtavRHPvKmXxy7+6E5GYvGxxkwYhBKpXvaCcvv+C7yMak//ALjE2Yw3AHuHV0nEubPk4BMY6zA7pFRjVSnaUiU0tO//d0Qrx/U/g+NkPKOsyWTgGPPCGwIftAntfalgOXhj3VutYB1wRGsIL7w7ji7818NJaYNsg8OpHwIn3CNy3dGymXYMCW/usdcBNFoiUbktmanjtPBdGf6fj9CPS+yFrEu6tr+0UCCvWJZXxkCdVWBwANCmC0bIdhpSKVJb18Z9I7zI65nepBfjlE6thH0MOehaiqrNr+3FpRrl8PegahHKfW6iCYfPy7uHs/h4fbJV/3uxaoGpSW+ZDdwUOWzhx2Kwa+bLtCQLhaHa+i91gtE09xbXOEVH2WN0fvb3Z/rx7gwKrOwQ2BASEKq22SNj5+sFw8Z1rEFllti1pCad4uzWqr+n+vqJ4ti+z6/xxyYKf39si8OnrDfxr9di9mMAQ8N6W9NSPiIiIiIiIiIiIKN1UnXRLNAajETlZlasW3oR2q4kCUXlIF2VOV0T+hhy/pwm6xm7ERIWi0Tsr6Tg+C8FmptPryQM5GgooTIaIiHJP0zTsV3koLl5wK46sPRq6hRicFcPLcMXG0/Bcz2OIiah0nKgRRV+sW1rm9yje4pmHzL5Ld5Sh1U4TjA8ry3yu8izWhCg/8I4GERERERERKZmFYbkmB6PVWg8kqqvIUIpVum1qwexoG9yKG6RPrlM/NNytEUBPB6qD8oYGADCgVyG6Xh565hY7U7KWRNYq53Hzofdh4a6rUbu4C/MXrsXvak8ZK1i/EgAghMDGb38Oh8x/Ga/6DlPOR+anfxTY61IDrT22JtvhsF8ZCB81G0feXiYt/9GDAgdcEUfT2Qbmnmtg4QVxvLHBvKNztoPRxnndGm76poZbTtBQ4k7PPFu27fwyt7xgv4N3X2hsGrNQjMYq+Q8TigChsLM7laeyrOclfzmMLX9/HxgIOft3mi6roSqDI875HZKtG/MV60HMADamuD/LR63dAlc/Y77cutXPUzKirV8+/AeHaXjpFzq+/18aPrkIuOAoDf84XYfbNXGDbzYJYX3k7SwFo9nMS+zJ8m9MRMXD6v5oax8wPGptH9nWJ/CZ6+OoP9PAnpcYWHihgaazDfw1S/tYJ7IbiDkwkpl6EOU7s00pMRjtKx9TX/D944Pi2RdZ+ab9SfY3Vz1tP+SeiIiIiIiIiIiIKFfCQhGMpjMYjcjJNE2DXxGME4gwGC3bAorAA9UyIqL8VO9tTBoWM91gtHIL0/s93LcQEVH6leplOLbhe7hg/q+xa9nuScePiDCe6L4fV7eeibWhlVPKe2NdEIrWWPUFFIw2w+NXnh8EIgxGc5qQIhitRCuFW/NkuTZEzpemrrxERERERERUiGImHSjdrol/m4WVTFY3vWdtWSM2t8CDGBZG1mNNyZIp5X+r/Ip0urkzgPISDeKDFlQbg8r5D7iqEeveBpTvMaXMg53BaHuGP1TO4+d93wS8Y//udvvxs6ZfY0l4DQ5f+zLE0/8PhmHgC3Ofxnrvrsp5ZFL5IvmbNQAgEgPe3bLz7w3dwJE3Gdj8Kx0zyqd2hhZC3TU408FowFgjnlM/q+HUzwKnPGDg7lem1yl7TcK95TUd6nnNr4M0nK4vNPZ/82A0dVlgGJgnf1mjI6QSjObSNezVDHygziO07V+rgW8ckL75OY3lYDR5+9OcUHXuH183FjWOhSvIdhlrOrYHVxY4IQS+fEvyFIRsB6O1D8iHz6oB9p2j4Z7vmu/M59SOBbPK1oErnhL49kECmpbZA4LJoUiqJ5iZehAR2QnsOusRgf3nmk8gBHDqH6eOExgCjrvTwIqLdew9O08CrtPI7n6/fwSoT/7SXKKiY3Vb+vLe6rJ1XempSz6wso/vD6nLRqMCz35g7zOzcV+FiIiIiIiIiIiISCVsqILR5C/kJCLn8Hua0BZunTI8EGUwWrapwugYXkRUWNyaB3WeRtP9bLk+vcYrPpf59GW6D+VJxiEiIpqO5pJ5OGvO1Vg2+CIeC/w/DMcVHRG22xbZit9suQifqPw0jm34HqrdtQCALsU5sgYN9Z7C6Vji0tyY4fGjO9o5paxbEaBMuROMD0mHTzfclqhQmcdCExERERERUVFThc8AgHvSFeUsG8Fo9flyn2ZTCwBgcWSttLjfVSsdvrhiLAxNXPJtVBmD0IT8hxzQqxCFPMnfLXYGox07+ITlKgPA1fXnjn3+tSfjgj905SwUDQCEZu/WQygCPP6uvAewWcdgPct3OO48Ucc/Ttfx88+n3nN4Y/dYZ2VAHRYEALv65cN7t4ftpByMJr+P6hjKYLQky/r4A9Pbm/uFNdMLwHM6I3l2FgBgcCSz9bAjWWheqUfDgjr5OC2dhb08x134hMBqC20LsxmMFjcEtimD0axttxWlGo5UvPhpXRewfFOKlbNBtQapzm16g+bBnkREqTK7Vpvs968I/OQh8/9koWiJ7nu9OPdldgLoAPOgIqJiZrYpJZ4Jul3qsFyz6+ZCY+U6zWx/81br2P0VO1xsOUJEREREREREREQ5IoQwCUYrzXJtiMguv1ceuhWIsPN9tqlCklTLiIjyV6N3lml5mat8WvMvTxLK4ffMzPhLbImIiDRNw8HVh+PSBbfhkzVfhIbkx563hl7GZRtPxUt9T8MQcWUoWI27Dh7dm+4q51S9p0k6PMBgNMcJGfKOPMnOwYiKFZu3EhERERERkVLMLBjNNfFvq6EmQB4Fo20eC0bbI7za1mTzN70Isf4DYKAHOgQqDXkC1aCrGjHNLS3ziOiOfzfFp76xwcxL5Z9Bj2sG1nh3w/X1Zycd/9b/Sf3B5Ml1b+KhtpNSnl5mjeKeq1nHYD0Hz1Y/v6eG67+hw7jLlVJAmiGAj7rG/t2h6OB91TEaan3ysr7QzvmozChXd252fDCaYnkn+6XPOELDsfulrx7LNhR2CIjVbzeQB8Foiev6LopAwc7B9NfHaQZHBK591tqS7cliMFrnoHrZNdsIV730q+pb2u9vzfz2qto3+RUvPwzH7IdSEBFZYTewa7peWVvY50QqdrMtGYxGJGe2LU1uKz2nVn7VFxgCwtHi2BdZ+Zb9IfVYq9rt/06J91Xe2yJw0d8MnPtXA0vXF8dvTkRERERERERERLkTFREIyB/GMxiNyPn8HkUwmiKkizJjJB7CUFzeENWvCEggovzV6G1WlpXpPrg0l7LcCp+eJBiNgYtERJRFPlcFTmj8EX4x9zrMLdk16fijRggPd92NX236BVYNvy0dRxUils9Ux+duhlY7TjAu78jjcyk6pRAVOQajERERERERkVIsri5zT7qinFVrfb75EIwm4nFg60cAgMODL9qatqp3PcR9V+34u9qQJ/H06TWIah5pmRuxCX9/cy97qURLyw7GT5puTjremxfo+M5B9kO9/vA9Da3X6Lj9jNk4cOQt29Obae+XD4+b9MXNRTBaouu/oeN7h9qvxKsfCYxEhDJA4ZBdNNSUy+fbFxz7QcwC49y6ensLDDu7c7Mq7CPZsvaVaHjkRzpartDxyCk6/iv5cw8AwGcXy4e/u2Xnb12IrIaqDMpfzJsTqnU+cd2or5CvKL3BDFTIYfa7wmSnMEkqgQmpUu3bAXvBaAftomEPRZualiw8s1NtM36Tc5tsBtARUfEw7CZ2TdPyTUCPw88fM8HuN+53UJgskZOYBqNN+tvs/tK2Igg6Bqzt482CGFWB82bGX4Dw7EqBg68xcNXTAtf/U+BT1xl48A3r1xhEREREREREREREdoUNdaMUBqMROZ+q8/1wfBAhRWdvSr/uqPoBEQOMiApPo3eWsiwdgRrlSeahCsUkIiLKpPlli3DOvOvwrYaTUab7ko6/JbwBH4belZY1FOA5sioQmaHVzqO6Vi5PEk5LVKzcua4AEREREREROVfMpN+ja1Iw2mwbwWizanKcYmXFtlYgGgEAHBZaihJjFGGLDa0qjWHgpcd2/O2PdWOLZ87Uj3A3IqiXS+dRbkzs4VpXaS/b/Jg5jyYd5y8n6/j4/LFlcdM3NZz1sHnHW00DDt0F+P13dSxuGl+Gc9D8+S8AG2xVz1Rbn7weZgFguQ5GA4A7vqOhrgK46z8CQxZDpJ58T+Dze6grP7NaHWw2HrRjFmyla2NhPZ2SzuNdQ9bqmCvKYDQLC1vTNCxqBBY1An0hDa+tT96p/LTDdbzYIl/JPnODgRWXTO/taU5ltl0lGnRQyId63dj57xnyXWvBBrps6hE4/zGBP79l7/t92AFsCAjs4s/8TlQVjOZxAXWK5aXy8fkaPuyY+l1btmV++arWP7PQ194QMLcuM/WZLiEEHl4ucMsLAuEY8PX9NZxxpIZSj/V14sE3DNzzqsBwGDhqbw0XfVmD2+WAAzNRgbMabppOv/23wOX/XVzbt93feTgsMDXmiYjMaJM2meZq9bjt/cA8h55XpZOV7Ms+k2C0VM6Lx0/fznvMQCQhq98QwC8eFfifA4Wl63EiIiIiIiIiIiIqXBEjjLbwJsRENK3zHYz1KctKNAajETmdqvM9ALw3/EZGwnNmePyo8zSkPL0QAoHoNgzEeqXlDd6ZqHbPSHn+2TBqjKAtvAmGGHsD9kcjq6TjuTU3at1F8ICNqMg0eJuVZekI1Ch3mc/D71Xv+4mIiDJJ11z4dO1R2K/yUDwWuA9vDr6U0nzqTa5j8pXqO/VGA1gbWgkN5v0Sq90z4Pc0QZvcoI/SLmTIO/T5kpyDERUrBqMRERERERGRklkwmnvS/TB/xVi4STSefL5L8uH+4aaWHf/0IIaFkfVYVbqnpUmr4hNTqJpi8jexbXM3YVCvks/DmDiPuur0XcJrEAjf7poQWnL6ERqeWSnw/Oqp49/0TQ0nHKihogQoL5l6g7P01MvhPz2AgNuflvq1KcJzTAPA7OXGZYTXreH6b2j41bEC/1kHHH5j8sSpF1qAlW3qcrNgtG6rwWiKl3YF8jUYzeY99qP21gCYdwr/yWc0HDBPXb6yDXh9vcAhuxbeDX6rYR8jUSAaE/C4c/8bxBWbVuK6UafYbnqD6a9Prg2EBA6+xpAGIFqxfFN2gtHa+uUrW3ONtcDDRLs1yoe3dNqtlX2qbWZGhQZNE9IQi7Y+YN+p+ag5MRIR0LWx7SUaBx5+W+B/79tZ6bc3CawPADceB1SWIumDzd+/YuDkByZOvzEA3P+D3O8riAqd6niYSa+uK8yAUTNWwokSBcOZqQdRvjPblCafblSVAeUl8u2ptacwr8sms3Kd1m8SXr06hZd8unRg24CQ3qPoHASWrgcOW2R/vkRERERERERERFQYXu57Bn8N3IuYiCUfOY1KLL7IlIhyp8ZdB7fmkYYmPrjt1ox97oLSxThl1vmoctfYmq4n2ok72q5BW7jVdLwlvn3ww+ZzUebyTaOW6SeEwNM9f8Y/eh6BgeQNB+o9TdC1wnwpLFExa/TOUpalI1DD51I0Pt8uE6GXREREdlS5a/C9mWfg0Ooj8ZfOO9ER2WJrer+38I5lquBSAwZ+s+UiS/No8s7GT2ZdhHqvosMGpUUwPiwdXp7kHIyoWDmg2zARERERERE5lVlne/ek5+S6rmFmdfJ5+iuBuoo86MS6uWXCn4siH1metNKYeINqpiIYrcPdhEFdftOqKj4xtaquKn3BaIHT104IRQPGgk/+dqqOC47ScOB8YHEjcNRewN9O1XHGkToaqzRpKBoAaJW1+IJ3Rdrq19Y/FsA0WbIAMKfQdQ2fWazhvYt1HHcAsIexHjOj8l7JkRjwm+flG5q/Eqgq06YXjKYD/kr5j+P0YDRVCIXdZd1co2Fxknvyt5ygYXYtUGXSlvKiv+UgfSQLrAajAcCQQ4I+VHV2JdzprCuXj9NTgMFot70kUg5FA4AW+SEq7doH5MObLZw7TLakSb4jWB8AIpLjRzoZihXQ4wLm1MqnaenMfZCQEAJXPm2g/KcGyk41UPITAxWnGRNC0cbd86pAzekGDrrawLIN5nW/+d9Ty//4pkCHIgiPiNJHdTxsqAQu+oqGg3cZO6e3+58qfBIA1nVl5rs4mZ1zJQAYdsj5EpHTmIUMTj6z0zQNu9TLx12bhSBcJ7ASytgfGjvHmywYFtjca/8zXTowYBK2tqmX53dERERERERERETF6qPQh/hL111ZD0UDgBK9LOufSUT26JoOvyf7b0veONqSUvDaPe03JA1FA4A1oRX4S9edKdQss94dXopnev5iKRQNYHgRUaGqctWiVHGelI5ADZ+uaIS7XSGGyRARUX7azbcXzp9/E46uPwlercTydLm4hsm0+jR8p22Rrbi97co01IbMhBTBaD59+gG3RIUofb2qiYiIiIiIqODE4uoytyRqe1YNkna+XJIn9w7Fhg8n/L1bZK3laSuNiYlTTYpgtDZPM4ZcVYp5JKTclPowZ4YGYHqdUEuMUby7x+2YsefZ0vIyr4Yrj9Zw5dH2533ByQvx4B3Tqt4Oo1HglY+Aw5dMHJ4vwWjjPjZbw59PGIB4cG8Y0DB/4Tq0e5qnjPeyYtUa31bqK+TLvnt4rBN0st9FHazm7E7Nqu+VyrI+6VANFz4un+GyC3Ro2thM7zpJw/F3ycd7YQ3wxLsCZV7g8MWAx+3AlS4FdsI+BkeAGeZtHbLCyrpRp1jvnRqM1jMs8P5WYFW7wIJ6DXNnAL1BYF2XQFUZcOiuGmbXTl3neoMCv3zC2kI8Zj/g8XenDs9WMFpbn3x4s72XtgIAFivOJeIGsCEALMlgmxuz9W9Jk/w8aE2WfmMzN/5L4OK/2dvvL98EHHengQ8u1VFVNnX9i8YEPmifOp0hgIffFjj9iMLYTxI5lWp/VOYFLvuajsu+lvq8z3rYwG+en/oBbf3A8KhARWnxbN9WwokSBRmMRiRl9+pzt0ZgZdvU4evyJBhtaFTg5bVATRnwiflAicfeftPKdVo0DoQiQPmk9nyphsd1DwOPvq3+YKMws8KJiIiIiIiIiIjIgjcHX87J52rQ4NG8OflsIrLH752JjsiWrH/uquDbGI4NosItb4c7WVekHa2j6yzPf8XQMsSbYnBpzumCu2zgJVvjM7yIqDBpmoYGTzM2h9dPKfO5ph+o4dXNg2WqXCk0/CQiIsoQt+bB5+uOxcerPolHu+7Be8NvJJ0mHSFiTlOil6LaVYuBuKLjhkUdkS3oinSggdcSGROMD0mHpyPglqgQSbqxExEREREREY2JmXR6dCmC0ZL55CLnd6IXAz3As/+fvfsOc6Ja2AD+nsn2hS1soxepSlERuSoWELuIyrXfa0Gxo9jrp2LvXa5eK/aGXkVsiAURVLChUhaQKtv7bpYtyZzvj7DsbnLOZCab7Gbh/T0PD5uZM2dOksnJzGTOO6+0mnZg7RLby/sHo/XQBKOtiRusrSOlZR3xSTh8D9ur17rC+waGXaUORWurYaMH4u+hd+L2otvDUt8XKwMH43a2YDQAQLEvMcaAxHE1HztadGh335PSBZt5TF9QldXgZEMAWZrzosXq86hRQxdCYYRwNuus/QS6KH6jP+9AgX37N288p4wxkG1xHnnK0yaOftzEsFtNrMyL7mA5uxwFo9VFrh1O2ApGS1Z3CmVuwHTypNvBwlyJ4beZmPiIicvfkjjuKRN73mFiwsMmLnhV4rRnJQbdbGL2ktYf9m9yJTKvtJdOsOV+A0Ny1K9JbmH7vB75ler19Exz3oEPytL3+7kRDsuw2v6GdFc3ak1Bx25zLy02cd2c0Nrwdznw0hL1stUW4T+hBnIQkX1ezVdAOPaLp0/QV/K7IqhoZ+Z0t8HdEJl2EHV2ViGDQtHlDNbsu65pp33Xtli8TqLPdSYmP2Xi4AdNjL3HRF6Fs3bb7XsqagOn5bZh3/MWiyDdKDuMIiIiIiIiIiIionaU37C5Q9bbI67PjpsdElF06xs/sEPWKyFR2GD/R+y8emf9Wb2sQ41mwHpHKXAYQNc3oWPeGyKKvH4J6nEIPeP6hqX+/pr6ByUO5z4aERFFpW6xWbig1w24pNf/ITM2R1suO7YnEl1J7diy9tMnTPv/FZ7SsNRDarVmjeHAQ9YAACAASURBVHJ6OAJuiXZGDEajsBJCxAohxgshzhJCXC+EuFQIcaIQon9Ht42IiIiIaGclK0shX7kP5mNXwrxhCsz/3Aj52euQXm+b67YKRotRHFH2TA/+I9exI6P7hzBpmpBTdguYfmjtN0gy3bbq8A9G6+VRX3hR4UrX1pFiVjU/SEhC1wSBCw9p22t35iGJbVo+mB6X34Sbh6/G6ZVvtbmuVfmKYLQgAWBRqSRvx5+Tqz9ytOhuwheopws2A4Dv1gFnvah/YVwGtEFf0R6MZif8yq5e6QLPnimQ2uIjMHlP4KnTAyv75Zbgp8s2lADnv2JCWo3u7yScPIXKbZFrhxN2gmB0nxuvCZSof0PoEKYpMXW2iaIgn8cGD3DubAnjAi/2usOLM54zcejDwUPRkuKA16cJ9EoXGKa5qVFuAdplWy7VvO459m7Y2kp8rECfbup5hVWRfS5WfZPuNV6tzkcNm9X5EnfMMzH1JRMPzTdR7m5u5PwVEue93LbX5I6P1MvXWIQlVkdJf0G0MwvnvpK/fhlAYqx63qd/dv79HyecfkVa9Y1EuzLLYDTFtCGa69JyC9tn3zVUpilx8jNmq1DpP7YC17zrrM12n2KFYp8rUsc7DEYjIiIiIiIiIiLadRU3RPhHb41xaUd0yHqJyLn9Ug9FnFDcubQdFDfmOyjrvD+r9UbPxWZe6UFpY5Ht8qmudOzVZb8ItoiIOtJBaUfCgKvVtGSjK/bqun9Y6h+Xqt4XOyTt6LDUT0REFCkjuozB//V/AsdknIoYERMw/5D0YzqgVe3j4LSjwlKPlMHHqlBovNKDOlM92CKZwWhESoE9OXV6QoiZAG5rQxUvSynPcbjOLAC3AzgVgHJYohBiCYBHpJTvtaFtRERERETUgszbADltf6C6vHni4o8hAWDBW8CDc9t0Rx5d+AwAxLgCp/VKC17n4OyQmxNxUkrIW08HGgJHsyfIehxRswAfpBwftJ6ufsn9w+pzHbclpeVd5hJ8aU5Pnibw34WhjUQdUr8Gw3bX3/EiHERsHMTd7+CG79fgzZfaVpcqRMZqEK4RrdHvLYLRxtd+i67eKlS77KUApc+5F3LAUcjcR3/S/binrE82CyG2B0QFvnjF0XO9jpJVEF4oThtr4LDdJf7YCqQnA3v1UfeNPdMEjhwOfL7Cur7v1wO/bQH2Ds+N1TqMk8HtFbWRa4cTdoJgeqbql99aAWSHEMYVCT9uADY6vJnO738Dv/8d/I2bO93AfgOAzK6+F2ZodwFVX1BTD+RVAL30WZ1hUa7ZftJDvNlSVhdgk+K1i3TwnS6kwjCAoTnq17ioGih3S6Qnhz/F85tcieOeMuGub5721FcSP9xoILcAOOrxtnem5bW+fST/fcrqes0CAKrqmJxBFGm6fSVXGPaLXYbA+KHAp38Gzluybtf6fDsNAqptiEw7iDo7q4+S6rTVEM1+VXUdUFgFdLfY3+9Iv24BCqoCp7+1TOK18yQMm+mVdvueckV+f1WEAhoZjEZERERERERERLRrqjO3ocpbHrxgGHWP641xqUdgfNqx7bpeIgpdt9gsXNX3bswpehEb69bAIz3ttu6iBgfBaA7KNnF7o+cOtKWNxTAR/FqgeJGAgUl74LTsCxFndExgHRFFXu+EAbi8z0z8r/gVFNRvwYDEoZiSNRWpMeG5GHRc2uHwSg8WVnyKgoYt6BHXBxO7HY99Ug4MS/1ERESRFGfEY1Lm6Ribcgg+LX0Xf7p/QhdXKg5KO3KnPt8wossYnNvjGswvm4Ot9ZsgLa/c07Nz3EGhsQrfTjIYjEakwmA0ajMhxNEAZgMIFm9wAIADhBCvA7hQSqm4VJuIiIiIiJyQ/7mxdShaSz/OB76aA0w8OeT6PV79vBjFgPtgwWhxMUBGlJ6jkV4v5EPTgYUfaMtMjluGD2AnGK31hRADGjciVjagUcTZbk+K2WIkbbwvNSbGJfDBJQZO+I/zE4z/3PYRxIiLHC8XipH7D8GceImTngn9ROiaQqC2XiIpvnnQsNUgXFf4s2bCo7g5GC1eNmCi+2tb4XoAkN5QDPn0TUh+5WjkpPgGfzvRNN46S/OZq64D6holEmKj88XThl+1Iewjs6vAhGHBy43oJfD5iuA/AMz5WWLvvtH5+tnlZHB7fqUE0PHPV9dmV4uQgewUXzCMKuAzryJ6Au1yCyOTLnDbcQKTRrV+r4ZaZGOuLuh8wWiZmr4t0sFoVsF8w7rrl8stBPbbLfztufl/rUPRAGBzGTD+IRNrCsO3nvJaoFty62k1FqEbVeqbGBFRGNkJCm2Lw3YX+PTPwJV8nQtUbZNISWzffYJXvzcxe4lEXSMwaU+B648UtgOG2sLpN3UNgyGJHFMGo1n86rymMHqD0VT9ZpMyN5DZ1V49ujBefxWKfS4GoxEREREREREREVE4lTQo7m653e0DnkZGbPhv1GmIaL1DJhFZ6ZswCFf1vcd3g+IQB99beTH/YfxSvThgenGjg2A0TdmD047G95VfolEG3gmr1oyeO9BaPddHBr+JOOELQRMQbbqpNhF1HkOSRuL6fg8qb3waDgenH42D04+GKU3uoxERUaeUHdcTZ/eYEbHvymg0JuVAjEk5EKYMPqbvirWnwiMbA6YzGC1y3FbBaK4oHXRL1MF4JEJtIoQYD+ADtA5FkwB+BvAugC8AlPgt9i8AbwrBI2EiIiIioraQNZXA4nnWZea/0aZ1eCzOY7kUe/S9061PEvZMRfSeSHz3CWDei5ZFjv33QbaCBrr6XQgRAy8GN6xz1JxE2WJ0a0JzaszkvQROH6tuRGoisO5uAymu1gkp3T0FuPqgOojkFEdtaIspowW8/zXQeMyLKFjTB9Wru2FK1f8c1THy9tYboNUg3LaEZUWSLMlr9Xh4/Urby6aalcCm1RAFG3HkQOfZ4juC0SwGXpdGzzU7ASId9mHFKtyoJTvhadHOdPB7RV5F5NrhhK7NLfsBlyHQQxOWsLUiet63sgjcNiC7K3D5oYEflPRkgWxNfxCpgLYmpilRoQtGSw7tQ53ZRb1cJF7Tlqz6pp5pQBfNTVbXF4f3NfZ4JYqqJL5fr54fzlA0AMivDJxWbRG6UVQNSClR5paQdpM9iMgRVfgnEL59pRG99BVlX23CXd9+n+1nFpo4+yWJr3OB79cDN/9P4uLX22f9TvaVAMAdeJ08EcE66EvV22R2FQGhrE3WRHjftS3iLW5LV+zg+NtuCFlFbWDByggF1NrtD+sbJbaWcx+QiIiIiIiIiIhoZ6EL4XEhBt1is2EII+z/iKhzE0JEpG/Iju2pXF9xg4NgNE3Z7NgeSHapL6xye6uV0zuCrv1pMRlIMBJ3vFZRe502EUVMpD/33EcjIqLOblfcR7Z1rKWJGzKlt51bu+twW4Rv645LiXZ1PBrZNZwOYICDf9fYqVQI0RvA+wDiWkxeDGC4lHKMlPIUKeURAHoDmAGgZVzocQDuasNzIiIiIiKipV8AnsBU/laWfAJZG/qP8lbBaDGKI8qRvawH4vdKC7kpESU350LOusG6UEYPZB1xDPbsbV3MkF6keQPTg8Zs+9lRm1q9jPGJrebNPkfgjuMFurfIOZs0Clh1h4HdsgSW35WIc/qtx4HGnzjH+BxLDv0S6dNvcbT+cBBCwOg1AJneUiTKOkyutg7y87ehBNhQ0jyQ1jIYLVrPUfsFow1ryLW9aJrXl0IjT90dx300zfGqm0KiUhP1ZaxCbTpaRwajHTlcKMMf/f2yGfh2Tece7G13wD0AbI2SYDSvzW1D950TLc8DUIdNtUVOCrDsZkMbNqYL/Vutv8FzWFTX6be19CT19GAyNDfDKamOcMibpnohfN97fbup54frvc4tkNj/Xi/iLjbR/Zr2uxNTvuJzU1MfOK3Jynyg17UmMq800e8GE/N+79x9JVE00vVHdvZh7LAKim3wAF0vM3H6syZq6iL/+X5sQeA6Zi+RKK2J/LqdrsGqbyTalYXyaR2So54e7gDYcEqI1c8rqrJfj93jtHJF+HC1Jhht3ED761fRHYc1qWuUOPtFE92uMNHnehN9rzfxxo+8cygREREREREREVFnV9ygvqAgIzYbLuFq59YQ0a4sK079I3ZRY76tG7Y0mg0o95Ro6u6pHYBe642eu8/qwiqzYm3eCZaIiIiIiKgFXfipKXndV6TUasK3Y0QM4kR8O7eGqHNgMNquoUBKudHBP/VZvkC3A0hv8XgJgMOklKtaFpJS1kspnwBwit/yVwkh+oX+tIiIiIiIdg3SNCFXLIX84bNWIWfyO5shUwveCXndHouA/xjFdU3pyQIHD9Yv0zs9+tKrpJSQ/xoVtJx4ZiEAYPce1s+hm7cMLgSeAJxc87HtNu1ev6r1hITWqTGxMQL/d6yBvIdcMJ/1/Zs73YXuqb629csQePHmwfj2mT3x4jPHoP+/z+q4u1v0Hbrjz1Oq5uCA2iWOFv/g1xbBaBbnVaMxGE1KCSxb0GrasHonwWjNKTSH1yxAvOksxazpNUmxCEariuJgNN21Su3xXvdOF7jxaHsrGv+QCa+TdLEQbGuQ+OQPiW9yJRo84V2Xk6bnVURHsJGuL/DfNnqnq8tttHvmqx0UhDkYLe9BA3266bfdId3V89YURPa9VQU2NAk1GC1TE4z28+bQ6rMr2PbXPVU9P1gwmrte4ouVEq//aGJlnvr9qGuU2P1WEz9usNlYB2JdwD4WZ2rzKwPbVB0kDKlge/jH3+XACbP0z4uIQhPpENleaUDXBOsyb/8kcdFrkf1s19RJZQhSoxf436+R71ec7ua5GYxGpGQ1FkV3umJIjmbftTB69ykaPPp5xQ7GzNgYu+OrU3GNVJVmH22f/gKXTwz9S6I+yL0Zpr8p8eoPEtu2l9taAZz5osSitdH7fhEREREREREREVFwRY15yunZcT3buSVEtKvLiu2hnF5n1qLGG/wONSWNhZCa2/lkx/VAkqG+GKlGM2i9I+jCKrPi1K8NERERERGRFaGJGzIV4yIpPHTh20lG144b+0kU5RiMRiERQgwGcHaLSQ0AzpFSaodUSyk/APByi0nxAG6LTAuJiIiIiHYOsrwY8sqjIS86CPLa4yFPGQq55BPfzF8X2qvjwUual3HIG0IQ1Ql760/C7D8wpGZElHzh9qBlxJWPQXT3pYUMCXJjtUxvqXL64TULkOCySJpr4aiaz1tPSAgxNSYaZPcGEpMBAHFoxNebjsCzeRejf8NGpHvLcFXpo7il+G7t4gtWtQhGsxhLG23BaLK+DvL2s4CG1skII+pXIM1bbquONLM5RaeLdOP0Kmchh02vSXKcvkx1FAejmZqR4O31Xt9xvIG50+2dOrvk9cgN9F62UaL3dSYmPWni0IdNjLnLxIaS8K3PSdjH1orgZdqDLiTA5fd27ZYV/UEK64vD15YN9xpBfwgZpvkO+3ULYEYw4C8SwWgZmmC0wirgkS8i90NcsCCiHqnq98AqBG/5Fonht5k48jETZ74gMWKmiQtfNVvdzbaoSiLp0vA8r/12A2ZMFHjgJIFbJgncOklg5e0Glt2sv5v3ekWgYI2D8B9TAi8tiZ7PHtHOQHesFq59JcMQOGVM8Mre/VmiojZyn293g37e2qKIrXYHu+FETZz0jUS7EstgNM30wdnq6b9tQav9pGhidYxdVG2/zXZ3zfMU+5hV29RlUxOBR08RmHdZaJeI1FuEvjV6JOb8FNhoKYG3l0Xne0VERERERERERET2FDfkK6dnxQW5iI6IKMysAhmLG9V9lZ0yAga6xWQj2aW+GEk3aL0j6J6DLjSOiIiIiIjIiiHU15JJBqNFjNtUH2PqjkmJiMFoFLozALQcKfe+lHKtjeXu93t8ihAiIXzNIiIiIiLaucjHrgB++aZ5QmUp5PUnQn74HFCivhujsp7rT4Ssdp5o49Gcx4oxoA1fOX4v/eB5q3kdQa5dDrx8b/CCYw7d8efwHtbPIUMTjJb8z6k4bLg+cKTJuNrFmFl8V+uJ8Z03GE0IAfQduuOxCybOrXwZ6/7aA8VreuOBoptxW4k+GG1li+s4OlMwGj55GfgyMMgsFh4cVTPfVhWp3tYjnO8uuhX7bltmuwlNr4lhCHTVHHlXRXUwmnq60Y5nsyaNElh4rYGsrtblnlskUexgkLtdUkqc/IzZKlTqzzzg8jfD9yODkzyBMnfYVtsmum3D/2tpSI66XG5hdAQplLslvl9vXaZ3OvDd9QauPVJo+7mEWGD2VIF+GcE7wj0032HF1cDSjUEXD5lVMFpaiF9x3VP0z/eadyV+2RSZ9zhYMFr3VPX8/MrWC5a7JR6ab+L690zsfaeJzWWtyz+3SMJ1oYlr3jVR7pa4dW74ns+SG1x49FQD1xxh4PbJBmZONjAw2/cEJo1SLzN/ReD6nYZrPjy/4z93RDuT9thXuuuE4N8tjV5g/3tNXDvHxIKV4f+c11oEo1VVRT6FzOkug1V7iXZlVh8lXbbv7pp9181lwAr7p8TaVbVFt1Rcbb8eu11PfkVgyUpNMFpKgu8czTEjBf7zL+cnUeoa9fNKavTnF75cxX1AIiIiIiIiIiKizqy4sUA5nSE8RNTeurpSEa8ZgqgLcWxdRt2fdYvNRKwRi2SX+iJBt+ngR54IMqUXJQ2FynlZceyTiYiIiIjIOUMTN2RKBqNFii58O4nBaERaDEajUJ3o9/glOwtJKVcB+LHFpGQAR4SrUUREREREOxP5+2LgqznqeQ9Nd17flAGOl/F41dNdFkeT/TIEzt4/cIDlWfvbC21pL3L1z5Dnjg1ecM8DIVoEe40fav38M+MUo2CPPQfGjEewT7/gz/+bTYcjWfolyMR38jzpfsOCFvlwyxTl9E2lgLveN4jWMhgtys5wSEUoWpPRdb8GXT7JdCMOrUcd53iL8O3GiVi0cTxeypuGl47abFlHyxAlXTBadV30DlA2NefR2zsE76DBAmvuNPD8WdYrzrk6/Cf+V+YjICwJAD7+A9hSFp73zupz5a/CItyqPQULpmoyJEf9nlXUAuuKwtyoEIy9R7/NPHWGwPwrDKy+w8ABAwXu/6eBVXcYmH+F7//vbzDw8lSB9y82sP4eA2ftb68TPHAQEB+jnvfhb5HrD8o1oXpdE4AYV2gf6qFBbj495m4TjZ7wP6dg218PTTDa3+XNf68rktjrDhPXzZF48HPrNj7yhUTGlSae/TY8zyUnxXr+IUPU78cPG4ASvwDImsjnERGRBV1/FGK3qpSTIlA7K/h3TG6hL/zwiMdM3DkvvPtEbou+pnLhfMiS4Be4t4WTfSUA2MZgNCLHdMFoVudf5i6PzmPZKk0oGQAUORgzozse9penuAeCLqAsJbH577REdRkr9R79PKtQSDf7RSIiIiIiIiIiok6rwaxHhUd9k1CG8BBRexNCaPueokYbwWiaMk1Bj7pB6LpB6+2t3FMCL9Q/2GTFBrmQioiIiIiISEEbjAYGo0WK26u+kFAX1k1EDEajEAghugPYs8UkD4DFDqr4xu/x0W1tExERERHRzkg+eGl4K6yrhdy4ytEiHs15rBiX9XKPnCJwzgECQvgGuJ5zgMAjp0RHKJos+hvmnVMhzz8geOF/HAFx51utJmV0ETh4sH6RzH+MBcYd63sQGwecOgPiqicAAENzrFd3RuWbUL5KsfHB2xrFRL+hQcsMq8/Vzluz/SZ3lsFo0bF5NVv+nXbWUGNr0MWzPCXK6bHwYP9tS3Fm5Rs4s+xlXHm4/om3DItL0QajBW1Kh7EbftUeUpMEzj3QwMXjrVd+yesmpAzfAH3VIPcmdoIA/i6XmPqSieG3eXHAfV48PN+E1++FdRL2UVMPeLwdH0DgtRmaN7ynvo7nv2vf5+HxStz/mYne13lhXOD791exumyfdODiQwQO20MgKb75SQ3O8U0bsvUb7DvrOPzr1Yk4/o/7kRNvkb7gp0uCwERNVmVEg9Fq1XWnJ4Ve58Cs4GXmLg+9fh1t37S9z+3bTd1PbChp/vw8+LnElnJlsYg7d5x1P3bsSPV8KYHPV7Z+8tsalUUtRXMgJ1FnE6w/CpeEWIG1dxk4cJC98nfOkyisCt9n3TIYrSEG8tX7wrYuFafPpM4iOIhoV2Z1mKTbO+mWLDBuoHreJ39E5z5FjcUx9vIt9tts9zgtvzJwmi6cLbVFGFp6svMD6zqLfT+rYLQwHiITERERERERERFROytpLNDOawoSIiJqT9maYLTihuDBaEUNecrpTWFryYZ6ELpu0Hp7K26w6JMZVklERERERCEwhHqAqCkZjBYpuvDtJEMd1k1EDEaj0Izwe/y7lNLtYPklfo+Ht7E9REREREQ7HVlTCTgMMbPlh88dFdeFz8QEOZpMTxZ48RwDdbN8/148x0C3EAZdhpusKIGcui8w/42gZcXH+TAe+ggiPTB55fi99M8lK7srjPveh/i6BmJ+OYzpD0DE+YLNhvUIEkZS86l6hitIEl206xs8GK1/4ybEm+oRxKsLfKNoddsjEF3BaPLr9yzn737YfkHr6OlRX4TTyqK5yLI472m2eL26aoLRqjphMJrowPf6idOsV/7MQokb/yfDFo5mNbj8p43Wy1bWSoycaeLl7yVW5QM/rAeunSNx5TuhB6MB0bHN6Nrs8vtu6pYsMLa/uuxjCyRW5bffCP2LX5e48X1pGXbX5JhRAkKzoculX0BecRSw9AvgjyWQz90Gefd5geVME7LWd1GebPRtSLJ+G2ThFhy3m7oRqwuANYWReU0qNOEMbQlGi4sRGJxtXeaTP8P/fHQf76bvoSGaEFSPCWzcfiPtj2wEG0ZCelLwYLSh3YHdMtXzft7U+rFVOIbOt2ucL0NEanaDQsNhYLbAt9e5cNyo4GU9JvDlqvD1c1b7QxVGKvDVe5Bm5C7AcFp1gwcBQbREdkmPB7LefuhtZxLqp+K4PdWd2h/B88Y7hFUI7JK/gBqbIbF2X6+iaqDR01xaSolKzSaUktD8WqYlqstYqbcIfrQMRnO+KiIiIiIiIiIiIooSRZqgIQMGMmJt3M2MiCjMdKGMxRZBjsHKZG+vM8mlvhiz1lQPWm9vRY3qPjnFlYYEI4Qff4iIiIiIaJdnCPUAUQkGo0WKW3OMmaw5JiUiBqPtKi4UQiwQQmwVQtQJIaqFEBuFEAuFEHcLIQ5yWN8efo/XOVz+ryD1ERERERHR5sikRsiPZzsq7wkxGK1JbIxAbEwUJVbNfR6oKgtaTDw8DyKlm3b+lNECcTHqeYft7nu+IiYWIqZ1oRE9gd7p6uVS4704qma+eqZLs7LOYvd9ghZxwcSQhrXKeau3X49ilS8QVcFoj1+tn3nOzRhw0XRkBjlf2ctOMNr6FRhZ+5t2dssAqxRNMFp1FIRc6eje7458r12GwLfXWneAD3wmkTbDxDML2/5DgNWg+tU/roIsDkwDKK6W2O8eL9KvMJUD4p/6SuKnjc31Og37qKh1Vj4STM3Godo2poxWbzCNXmD6G2bYQux0TFPigldNvPCd/fWcOiawzXKbG+bd50FePSlwgW/eh/zwOV85KSFffwhycm/IIzNhHhQPeWhX3/+HpUGeNAiTHh6tXfeHv0Xm9SjX3FKhLcFoADDZIqgUAF5aHP7nE6xvGmRx7ffaQqBqm0RBVdibBQDoEg/00exnnDFW4NvrDAzMtn7NhBA4eIi6zDMLWz/5UILRPl/JaAyicLEbFBpOE4bZ2xH79wuyVVBPW7gtwnYKY3KAimJgrX6fuK10zyIpTr9MKP0j7dqk1wvziashj+sJeVQWzKsnQVaUdHSzwspqt9sq/Hp0X/XM6jrA442+/Yrqeuv5T35tr81OjtNa7lvWNerP5aW0GA+TFsJ+uFXfZhWMZhVyT0RERERERERERNFNFyKUEZsNl+jk17MRUaeUFacORitqyLO8DswjG1HWWGxZZ7Krq3K+2xsdwWjFmrBK3WtCREREREQUjKGJG/JKbzu3ZNdR661WTk/SHJMSEYPRdhWnAZgIoCeAeABdAPQDcDCAmwB8K4RYJoQ4zGZ9g/web3bYnk1+jzOEEJohe0REREREu6jNuaEtl9ULOPRk/fyNqyDLi2xXpxtkGsnB9pEkf1sUvNCUiyDGHm5ZpHe6wMzjAgfn/nM0cMgQ/XIxLoEH/ikCguWEAO4/tASppiYppZMHo4mcvsCgUUHLDW1QBwLOX+HbDq0GBkdLMJosyQNK1RegoGs6xLm3wOUyMGmUdYN7NrYIRuuSpi034fHxttrVVROMVqUIzooW0RiMBgAHDhbISLYuU10HXPK6xNSXTORVBB/4bpoSK/Ik3lxq4of1zUEiNRaD6nMbc2D+a1TABV0nP2Ni6Ubr9Y29pzkQzCpwUCUqgtF024biu+nCgwVyUtTlv84F3lwa2TCFl5ZIPL/I2TrGD229kcttbsjz/gF89pp2GfnQdMhtbuCTVyCfuRmoLNWW7eEpwNhtS5XzQnk9TFNi0VqJJX9JuOvVy5drtpv0IJ+lYK6YKLBbpnWZlkGA4aDb/poCPZLihTYEdU2RxFr7u2GOHDsSqHzCwKb7XTCfDfz32jQDw3va60AH56in1zUCm0tlq8dOrS2MvgATos5Kt28cyX2lY0bar3zATSb+u9DEyry2fe513y0AkBfTwxdc9tefbVqHFV2/nxyvX2abRUAQkYp8fibw7lNATSXgaQSWfgF5w5SOblZYWQajWSxnFeBVFYVB36pw6pbe/8Ven+ik58yraP7b6jVpGZieFcI1VA0e/TyrYDT2iURERERERERERJ2XPoSnZzu3hIjIJztWHQK2zXTDbaoHlwNAaWMRJNQ/smfFNgWjqe92W2fWwistfihpJ8WNmj45tns7t4SIiIiIiHYWQhM3ZGqOn6jtdOHbyYb6mJSIGIxGzcYAmC+EuFsIq/tyAwD8R2Q7Gs4nt3QxeQAAIABJREFUpawB4H9ZdqqTOoiIiIiIdnZyzW+hLZjSDWLmq8Do8foyc1+wXZ1Hcx4rxuWsWVFj2QLr+YP3hLjiMVtV3XC0gS+uNHDFYQIXjxd4Y5rAWxcYcAVJIjhtrIElNxi46RiBs/YXuOYIgUXXGTh/X33akOjkwWgAgIMmBy0ytF4djPbjBuCOeaZlgJMqEKkjyDvO0c/cdyKaDrlP2Mt6O+l9+ETgjKshZjwC8cEmYPd9leUSpEVyVgspier1VUfhQPImHRH2Yddf99jb4F7+XqL3dSae/kb/o4C7XmLK0yZGzjTxr+clDrjPxIEPmMivkJbvT4UrHRs8mZAn9Id0+0IV1xZKfLvW3nP4aXtsveNgtCgI0/M62DZSkwQePEm/0VzzrkRlbWSCmipqJc5/xVndWx9ovW3JX7+FPLE/sMXGG/vFm5DzXrS1nsnV85TTf9sCfPqH/TZvKpUYfZeJQx40ceD9Jva6w8QvmwKX1wXqpSW17QPdK13g11sNHGeRvfnfb8McjGZj+xuiCRZbWwisKwpvey48RODlqQIfXGog+Glde4Zk6+t56uuWwWjOn0vL4A4iahtNhnVE95WG5Aj00mf2tpJXAVz8usSImSamvWJa3p3birtIfdduAKgzElFppEKGGixug67ZSXH6ZbaFEBxJu7gv3w6ctuJHyL/XtX9bIsSqB7DahbEKRouG0GZ/ZW7r+T9v8h0nBOPkOC2vsvlvq2C21MTmv7slCwzKtr8OANhmse9nFYzmbkDI3wFERERERERERETUsYpb3tixBYbwEFFHyYpTB6MBQHFDgcU8daiYgEBmrO9CnyRDf2eZWs3A9fake35WrwkREREREZEVQ6jHRknJYLRI0R1fJmnCuomIwWg7u60AngNwPoADAewBYBiAcQAuA/C5X3kB4CYA9wSp179XDWVIrP8yIdyXOpAQIlsIMdzJPwADw7FuIiIiIqJwkVICi9WBJUFl9YQQAmLaTH39331kuzptMFonPJqU9cEToMSNzzkKFZm4u8AjpxiYdYaB08YGD0VrMqa/wF0nGJg91cADJxk4YKAAYi1G1u8EwWjCRjDanvW/a+fNnCux/G/9QNqEKHiJZN564NeF2vniikd3/H34HtZhCsMOGAHj4nsgTroUIj4B4uDjtWVf3XqOcvrY/s1/6waTF1VH7+BkXcuiIRgtJVFg3mX2O8JL35AYOdOLmAu9OORBLxava352T34lMXd56/LLNgK9rjNx/XvW789HXY4FygqA954GACz/23aT8NsWX91Ox6dHQ/iALiRAt2386x8ChwxRzyuoAm6dG5nPwVXv2K83MRZ49ZhNyHnvTpiPzoB8/SGYz8+EvPxwYHvwXTDywUuBP3+wVVYXjAYAxz5pwmszieGwR0z83mK7+6sYuPC1wPCbck34Q7pF0IVdXRMEXjhb/3lckRfmYDQb298gTbDY2kKJQntvpy21sww8/S8DZ+5vfx/Ejj376OfNXd4yGM153fmVwcsQkT0dFSJ78hjnK3jxO4lZX9vvj+WP82HOuh7115yIJ99WD7hpkhfTA9isDlgOB12/z2A0Chfp9QL5m9TzPnutnVsTOVbHHZbBaIn6edFwbOKv3EabttoIitX18Sp5Fc0vbpXFr/YpCa0fHx8ksN1fjcVptdoG/RvsNYF6j6NVERERERERERERUZRgCA8RRZsUVzriRYJyXlGD/rflokZ1MFpaTAZiDd+Pv8kWg9DdHRyMZkoTJY2aPjmWfTIREREREYXG0MQNmWAwWiSY0kStyWA0Iqc64VB2smEpgCMB9JFSXiClfF5KuVhKuUpKmSulXCKlfEpKeRSAfQGs9Vv+BiGEfsR1YDBa8HSBQP6XZYerp74EwJ8O/30YpnUTEREREYXH+hVA3oaQFhWjx/v+GLGfvtDqnyGLt9qqz7szBaPdebZ1gX0mAINGtU9jVGLj9fOMTviC+xs0Cujez7LIUTXzke4t085/eYl6oG1iLJAU3/FpWfLjl/Uzx0+BSM/e8TAxTuCS8eo2d08BjtjDb+Kkqdqqp1R/gMGJgSOrT923uf6eqeplt5brm9zRtOFDUfJxOGakwKcz7DdmRZ7vOS1aCxz0gIk75vk62LeXhR7atCjpQACA/NS37W2tsF/X6u3XSdnMv9qhQhNw1Z50bXZp3g4hBGadYWi/u2Z9LfHr5vA/ry9W2qvz3QsNrDv8A5z+2Ahg9t3A+89APnMz8PK9YW9Tk90bVmNQwzrt/CV/Ba/jmYUm/ioOnP7zJt/23lK5W11HOILRACCzq/47ILcAAUFtbWEnGG1IjrrMumKgVPNaNOkSD2y5P3jf8uNNBhJiI/Pdpwt2A4A1hcDqfN+LEEowWkkNUN/Y8f0I0c7A6fdhuFwxMbS+5/K3JIqqgn/+zadvgrzmONS//R/sX3QLlidYH6Ntie0NbM4NqU126L5CLIPRGiLTFtpJeSy+UGt2jURRq14lxSoYLZRbd0VQg0fCXR+8XEl18DJO9pbyWpwOqLL41b6L3xih6RME4h2EzFu93rVB+j07rwsRERERERERERFFl0azAeWeEuU8hvAQUUcRQiArrrtyXrEm/AwAihvU87JbBD0mu7pql3drBq63l0pPGRql+gcZhlUSEREREVGoDKEJRpMMRouEOrMWUnN1oNUxKdGuLkqGklI4SSk/kVLOlzZG/EkpfwKwH4A1frPuE0K47K7SaRtDXIaIiIiIaNewaG7oyx40GYDvx3/xxHx9ucUf26rO41VPj7F7tBAl5IJ3gIUf6AuMHg/xfy9BiA4M13JZjEa1mtdJCCGAg46zLJMkt+Guopna+b//rZ6eKSphXjwe5q1nQP66sA2tbKN5s/XzsnoFTLp9ssC0gwRiW3ye9u4DfH2NgbiY1tuiSMsETp6urDpeNuDdxuswtr/vcZd44PqjBK44rLmOXunqZm3Nr4H571EwrzsB8tvoyg03NefRjY7PwNvhyOECr08TyAwh7n3mXAnjAi+Wa7ZrO3Ljh/j++PsvVFfV4cq37Z9uyd0ebOQ0GK0mCga02wmm8rdHT4GrjlAXMCXw5FfhOVVVWStx/XsmRt/pxdbAvMJWztxPoPhBEyf+egdyHj4D8Gq+dCNAADihSv+Zn7vc+vWQUuLSN/Rl/tzael55rbpcerLlahz5aLr6VHd5LVBsI3zCLjvb34BM9baWVwGUWlwnuVsmMHe6gV7pAvOv0J+6f/4sgX37R7Yz/GOmfv1N28e2EILRAKCgKrTliKi1UL4Pw6FvhsDHl4X282L3a0xU1wU2XEqJF74zceg1f2HUD6djt0GrkTysAr8l7Bm0zr/iBgKbciG3h0t5vBK3fGjCuMAL4wIvsq/yYt7voX/P615ny2C0EPtH2kV5LTaYuihL/moDq0+h1akYlyHQNUE9r0Kzj9lRdPu8/optjJtxcpyW3yI/r0qzyXRN8L2WLfXLEPjfJQb6bD9fEOz7w+r1ZjAaERERERERERHRzqeksVA7UDObITxE1IF04YzFDQXaZYob1fNa1hUr4hAjYpXlar1hvPgoBFahb1mx6qA4IiIiIiKiYIQmbsgEg9Eiodarv3gw2QhhYBrRLoLBaAQpZRmA09H6mvRhACZoFvHvcS3u1a3lv0zH3jqBiIiIiCiKyFCD0Q6aDNF70I6HYu9DgAF7qNfx3UfWbajzjXb0aM5juUI4mpT122Ajvzns5E9fQt5+pr7A6PEwHv8cIrODL9iK04z0BYC+Q9qvHREktgf3WZlW8aJ2XqlbPT2zagPw5/fA1+9BXj0J8uevQ21iSOQ2N2TeBqBMf2GNGLZPwLTEOIFnzzRQ9YSBtXcZKH7EwM+3uDC0u3o0srj0AW39I1a8ge8vLkXNkwYKHzZw7xSjVdBfz1R1neWyC7Zt3gR8/ynkzadAfv6Gdh3traPCPpw6fazvNb9vSvs3bF3cQDQiBiYEjphZ5GjZv4p9/3fGYDRviKF5txwrdgz69/fV6rZ/P5mmxJGPmXjwc4nftujLPXqqQO0sAy+fayD9sfOAl+9p87pDcWXZk9p5P220fj02lgJWX+lr/DZHbTBakuVqHNm3v37eevVNrEOi7Zta7Bv1SlOXqfcA64rUFRw9Alh3jwvjh/o25MP2ELjs0MCN+snTBc49MPKn9Yf3FDhgoHpe0/ZRF2LwT16Q0EAisifU78NwOHqkQOMzBmqeNFD+mIFlN9vvlw57xERpTeu+8N5PJc5/ReKbqv5YGb8HNsf2tV3furjtndWcpwAAJz9j4u6Pm+svqQEmP2Xi5SUmtjU4/77Xfd9ZBqMFCQgiaqXRYoOpj7LkrzZoy+mgNM0v0RW10XUfrjLNOQt/U2cHv2jMyeuVX9lcuHKbesEUzSmno0YIbLzPwN8PGCh91Lovr7DI6QsWjBYNx5FERERERERERETkjC6ER8BAt5jsdm4NEVGzLE04Y3FjnnaZ4gZ1n9ayLiGEdiC622LwenvQhb4lu7oiycXB80REREREFBqXcCmnS8lgtEhwm/pjSx7bEekxGI0AAFLKXwDM95t8lKZ4NAej/QfACIf/jg/TuomIiIiI2kwWbgbW/BrSsmLGw4ETDzxOXfiXbyBrA+9gJj94FuaJAyCP6AbzooPhKS5ULh7j4GhSbv0L5iUTII/MgJyyG+Tbj9tfOAzkczMt54vJ09qnIUGIxGRg+D8CZ3RNB/Y9rP0bFAkjxwHZvS2LuGDi3zXvOKo2w9Mi8aaxAXLOrFBa55jM3whz+kTIo7MgTx1mXdjiPYyPFRiYLZDRxTrFQrhcELM0oW+mCfnYlUiKF0iMC6ynlyYMCgDyYpov7pGv3m/ZhvakCx8SURaMBvguirruKAP3/7N9G9co4rAhrj++TJ6AH2t6OVp26/ZgIqfBaO4oGNAeamhecrzA7cerCxVUoc3hndfMkVi6MXi5yyYIJMQKyL/+BBa83aZ1tkWOtwiXlan7y9x86x+yVutvQgoAWNniOkMppUUwWvg+M1ldgQT1TVuRXxm21cC0EUTUUxOMBgB/bFVP36Nn4Gvx4EkCj54qMLY/MG4g8Po0gYsPab9+ZsIw9brm/OL7XxeMdt6BAifvo29nON8Pol2Z7vswlBDrULgMgaR4gdQkgX36CSy+3sCRw4Mvt2wjkHWVid7XefHRcoknvzLxfx+E/h28Jm4wAEDOvge5BRIfLleXmzpbIm2GiWMe96Koyv76dCVdAoiPUc/bFmJwJO2iPBYbTN2uEYwWbO8mTROm+9Hy6ApG0+3z+nPXIyAg0p+T47SWobNVdeoyKRa/5gsh0DPN159bqajVHzMFC0ZzMzCSiIiIiIiIiIio09GF8HSLzUSsoflxnoioHWTFaoLRNP2WV3pQ2qi+6ah/Xcmurspytd7A663bky6sUvdaEBERERER2SE0cUMmvO3ckl2DW3NsKWAgwdBcKElEDEajVj7zezxKU85/6FqWk5UIIbogMBitQlXWKSllkZRyhZN/AP4Kx7qJiIiIiMKicAvQo7/jxcQNz0Lk9A2crgtGa2wAfmydjSy/fh/y4cuAkjzfiNUVP8Lzv+eUi9sNRpMN9ZCXHQ78sQTweoGSPMinroP87DV7FYRA1tVC/rYIctVPkH/+AKxcar3AhH9GrC1OiQvvBBJanMgSAuLieyBido6LyURMDMSMRwCXJkFgu+x6TWqMRqa3tPWE7z5y2jRHZN56yK/fgzxlKLD8O9+2beXsmyDSHR06643cH+g9SD3vqzmQeeuVs3qm6qssbHkX102rIStL9YXbUajhVx3p2iMN3D65fRuYGzcUixMPcLxcTT1QXSe1IU86HT2g3eOV+HGDep6dIJjdu6vfnwYPULkt9HblVUg8tiB4esHovoBhCEgpIZ+7NfQV9h4Y2nL7Hw0xZ92Oh8dWf6IsVlBtoKJW/3xWF1g/1y9WSni8vjI19YBXs52lh/G3GyEEemj6uvzK8IVm6Gpq2Td1T9GHOOpCwbolB06LixGYMdHADze5sOh6F04fa8Box05waI5+3n8XmtoAjH8MAN6+0MBAzVdfXkV0hZgQdVbRtq+0/0CBT2e48NkMeweLeRXA8bNMzHirbX3CjpDfulp8t8ZjWbbRC3y2AjjuKfs7QFZhvYlx6nnbGABETlgFo9W3YQc1ylh90oOFX2dqboT44XLgnZ9MNHiiY9+izG2/7E+brOeHHIym2WRSEuzXp9Po1fdvwYLRKnaejD8iIiIiIiIiIqJdBkN4iChaZcWp+yG3Wa0cZF7aWKwd1J8V173V4yRNMJrbrHHYyvAqbmCfTERERERE4WcITTCadDjQiGyp9aqPLZNcydr3gogYjEatbfR7rBu1vdbvcT+H6/EvXyalLHdYBxERERHRTkmMGgfx9mqI2T9DnHcbMGTv4AslJkMce7Z63rB9gAz1D9/y569aP/5kdkCZRxOmKpeNcQVvFgDg9++A4sCQK/nFWzYrcEb+tgjyjBGQlx0GecE4yIsPsSwvXlsOYUTPobHY+xCIZxdDnHsrcMbVEE99CXHcuR3drLASBx8P8d/vgH9dAxx8vLJMmleTGqMREIwWQeasGyBP3R3y1jNsL2NMuy1s6xdCAAdN1s6Xp+4OKQNHUCfHAwmafL1SV2brCZvXtKWJYRNtYR923TLJwFdXGxiz/ezHbpnW5dtqddwQ5MYPCWnZreW+HEwnaupDWlVY/F0uMeZuE9V16vl2to2cFP28wqrQ2gUAby+z90KOGyQgK0shLzsMWPyx8xXtOxHi2lkQs3+BmPGwo0XFebdB3Pc+RE4fiAvuBAAMbdB/3nPVN1EFAPy2xXpd5bXAou1nEMstAiLSFWFgbaELRpv7W/jCMqwCcprEuARy1NdJamWE+bUIh8HZ+g/Vxa9LbNR8/TZ93+jejzxnX/NEpKHdV+rgw5sjhgusuav9GlHqyvD94fVg5Tp7X+bLNgJ/brX33aDbVzIEkKjZv97WGB0hTdRJeCwSpZYtaL92RJjVcUewYLR9+ukLnPasxNBbTPy4vuM/d2Vu+2145Xvrsk6O00rdwLYG3wK6sOdU/1uWhahQfcPKoMFopTUd//4QERERERERERGRM0UNecrpukAiIqL2km0RBqYKENMFPQKBwWLJLvUde1SBa+1JG1bpF+xGRERERETkhKGJGzLBYLRI0B1bJhsOB58Q7WKiZ/Q3RQP/S6V1l0iv8ns8yOF6dvN7vNLh8kREREREOzUhBMTAERDn3ATjhR8grnzMuvyLS/XzDAPY7yj1zM/fgPnsrTCfug5y4QfAD5+3mv1TwmjkxfZULuqyeTQpX7hDPWPpF/YqcEDW1ULefZ4yiE1FXPU4RL9hYW9HW4kBe0BMvRnGxfdAjBrX0c2JCDF0bxgX3Q3j7neAA44JmJ9uVjiqr6cn8EI86VXf4a8tzKdvAt561NlCh54U9nYITaDcDh+9ELiMEMhUX7ODkqYwie3kkk9CbVpYmZrz6NEejAYA44cKLL3ZBfNZF9bd48KzZ0au0bnxQ5Ebpw9Ge/RU/brzKgGnw9PdNfWQ7z8Nc8puMC+ZAPn9p8owvkiY8ZaJ3//Wz7cTBJNt8XtBW4LRVuivn2tlcu8CyEk9geXfOV6HuPE5GI98AjF5GkR8AjDlEvvLXvU4xDk3NYeBnn4VMPEU9PLkIVlzR9PVD94P89x/wHzoUsiX7oJcuxwA4DUlPvkj+Hv+4XJfmfJafZn0JNtPwRZdENf8lYCpSxByyG7f1DvdWb290qKvcxvWHYi1G4bbQkKs77n01DynfGdf80Sk4Y3ifaVB2QIvnN0+DSlxZezYn6mvsP9lvmCVve8Fq0BMfTCa7WYQAR7rDUY2Bkmc2gkE6y0mjbIusakUOOclEw2ejg3fstrv9ffmUmm5f+p013V9ie//Kk2IdEqCvXpmTrZ+re/6WN2wbUE20xL1IQcRERERERERERFFseJG9d3UrAKJiIjaQ2pMN8SKOOU8VYCYKiwNANJiMhBnxLealqQJRqv1dtyPHVJKFDeo++SsWAajERERERFR6AyhCUaTDEaLhFrN2B3dsSgR+TAYjVrK9Htcoin3p9/jUUIIJ8MY/Uf2+9dHREREREQtTT4f2G24et7x0yB6W2cViz6a+XW1wKv3A28/Dvl/pwbM/qzLEdo6Y+weTdY5GBXaVt9/ChRsslf28NMgTrwosu0he7r3C5iU6q10VMUE98LAidvCeyGKfOsx4I2HHS8njj0nrO0AAAz/h+Vs+eClkOVFAdPtBqPhtQcgF38cauvCRjcQPBrCPpyadpCBzfcbePpfApdPFLjhaP2TeOoMgc9mGHj8NIFnp1TjmfxL8WDh9cjxFCrL/xm/B9bFDVTOu/d4EzMmGuiWrF7X5jKpDXnSqflxEeSjV/hCKP9YAnndCZAz/x3xcDR3vcTc5dZl7GwbSfECXeLV84racGPPvPLgz39k3R845Eb/+wXYI+ashTjmrNbTDANi9s/BF558XsB3noiJgbjtFbhmPIwhDeuUi60uBLD2N+DD5yFfvBPy/P0hP38DawqBUnfw1X63NngwWprutgwhyknRbwQ/2dxFCMZu3zS0u/3OKsYAxjm99UQ7SE0S6J8RvJy/pqAgXVBdfmXHhpYQ7Sx0/ZErSnaWTh0j0D0lfPWNrPtDOb3eSEDt9p+o8gvtH3/a/d7X7eIYAkjQBaPt/DlWFE4ej/X8XxXHu52Q1be/CNJtHWhjPym3EPiig2/FVWZjH7klq/1Tp4dXudvHwlRrgtG6Jtr7bjhptHW5d3+SymM/d711gxmMRkRERERERERE1Ll4ZCPKGouV87LiGIxGRB1LCIEsTUijKkBMFZYGqEPFkg31XTfd3jZcWNZGVd4K1Ev1j0Dsk4mIiIiIqC2EJm7IBIPRIsGtCd1OZjAakSUGo1FL/iOr81SFpJT5AH5vMSkGwIEO1jPe7/GnDpYlIiIiItrliJgYiDvfBHr0bz3j6LMgZjwavIKsXiGtt8iVrZ23d1+bg+0tRnLK78N7KCAfvtx2WXHS9LCum0In0vwzuoF6oUkt0hhTpwgGqg1+IYrM2wDzzqkwD4r3/TtvP5hn7wNzxpEwbzwJcsWPvnLffgg563pHbUKXNIhrnoIYe7iz5WwQQkC89JNlGTm5D6Tfa6ALRiuOCXwP5H9ugHSamBVmut7D6KRns3qnC1x4iIHHTjVwz4kG5l1moGda8/zEWOCuEwQuOljgiOEClx1q4LzdCzCt4iVcWfYk7iyaqaz3p8QxqDXUyWcHpPwNAOjXTd2mNYX6UBUdt8cVOPGrOcDiec4qcmhtEeANskm6bG4bOZqQlsKq0MOa8oLkOSaatXgh/0IYlpEQCnsd7AtFy+mrnC0GjoC47RUgu4+2CnHqDPV0IYATL8JQqU5kWBM3uPUErxfyrqnY8luurab/shk48wUTU55Wv3Fd4oHYmPCG9+zbXz/vle/DE8ZlNxhtSI79OscOANKSoiPIyN8PNzrvdJuCgnSftWgIxthQInH2iybG3efFFW+byKtgWBt1PrpdtSjJRUNSvMDHl7dtxy3e8OLqmqdRt6or3t76b225pqDf/LJG23U3BMmiaqLr94UAkjWHLbUMRiMnPEE2mE2r26cdEdaWHGXDEPjmmuD9Sbj290JlFQissqVMP8/pcVpuoW+Bylr1gikJ9urZo6fAR9P1r3VNve840l+wfi8a9v+IiIiIiIiIiIjIvtLGIkjNAFhdGBERUXvSBYIVNQYOhVSFpenqSNIMRnebHfdjR3GDOtgNYJ9MRERERERtYwjF+CAApvS2c0t2DbWa0O0kTUg3Efl00qGkFG5CiAQAU/wmf2OxyP/8Hk+1uZ5haB3A5gYw386yRERERES7MtF3KIx3ciE+K4aYsw7iyyoYNz0HERsXfOHM0H74bhD6us85wG4wmj7FRt4wBfLr95w2S13Xdx8BlSX2Cu9/NMQe+4ZlvRQGqRkBk4Y0rLG9+OWlT0K5NQYJRpN5GyCn7gvMf6N54ppfgfV/Ar98A3z3EeRFB0O++gDkzafYaou47mmI13+HeHsVxMf5EMefb/t5OCUGjQTGHWtZRk6fCOltPhmd2UX9uS11BQajYfMaYLO98KNIcRL2IRvqtfVYzetIx4wU2HK/gY33Gsi900DF4wZuOsaA0fIJlhXt+HOful8cryN9w1IAwLAe6vc+t0A6HnBfY6gv/pKfvuqsIocuejV4UJ/dIJhszW8GhVUOGuRng8VXkEt68ELehRhd91vwio76N8S3dRDvroH4OB/Gk19oQ9GaiMNOhXhrJcQNzwbO3O8oiL5D9cu6XBjSU/1jVm78EOX0/Fn3W7anpdd/lKjQBESkJ9muxrYpo/UbwX++kVi6oe1hGdqAHL/Qu2Hd7ScT9c+IkhQjhfRkgSdOc9a+pmC0DE0gZ6m7jY0KUXWdRF2jxJ9bJfa6w8SrP0h8vx544kuJiQ+bqNAEiQQjpYTptDMlCgOvzaDGjrR3X4E/Zjr7KfKJgiuxcsxLWH2ngcqnYvHAa5cg9u0VyHxziXaZ0pgM1Is4/CEH2F5PfpBQ0ya6MCcBIFlzyFwTnbufFK081oF+csvadmpIZFkFo9nptg4eIrC3PgsYALBwTcd+J5c73Mcpdevb6vRprNk+nqeqTj0/NdF+XceOErh9sv5d+XVzYOPcQYLRShmMRkRERERERERE1KnoQngEBDJjHdwljIgoQrI1wWiqELSihsCwNEAdKpbsUl9Yphu83h5KGtXBbglGErq4NHctJCIiIiIissHQxA3pAvOpbdxe9YV0Sa7kdm4JUefCYDRqcj2AXi0eewF8bFH+9e1lmkwRQgy2uZ6W3pFSai7RJiIiIiIifyI5BSKnD0RcvP2FMnuGtK4GEaucPiTHN8DdFl2y0fZ58u3HQ2hZM1lbA/P+iyHaf04KAAAgAElEQVRvPMneAidPh7jzzTatk8IsNTCUa4yDAKi7imeqZ7iDBKPNmRU0PA0A5LO32GvIvhMhjjsXou9QiJ67QRiRP+Ui7pljXWDtcsjnbt3xUBdQU6wKRtu+fEfSDQRvGfYhP54N85QhkIenwbz4EMiNq5rnff2eb95hqTDPPwBy9c8RbrFzQgj0zRAYnCMQGxPYr8qnb9rx9/D6lUg0NQlTGmm/zAMADNVck7q6wPmA+1pDk2b17YeQQUIdQlVQKbF0Y/BydoNgcjTXg4USjFZUJXHUY15Ua85uuaQHCzdOxCnV9oJAxakzIISA6N4PIqWb7XaI2DiIY8+GuPMtYJ8JwG4jgNOuhLjr7aDLDhutDpFZFzsQHgSGpuXHdLfdLiuDssNSTStdEwQOtjhDedvctv9Ap+2bHrwY5qReMP97C6TXizH97dfZK73NzYqoSycIPH+W/aSl+Bjf/xnJmkDOdg7G+GG9xKiZXqRebiLpUhOjbjcDPrO5hcCHvzkPUvl5k8SEh0zEXWyiz3VevL2MPwJT+3ESItuRhvcUWHJpJbp7Ai/WzvEU7vh3QO0SvFJyCS6dOhxDzz8PQ3IE4mIEhGFA9ByA9Myu2udW4srA94n/gFsT4KqSV2HvM2+1T9olQT3PzWA0ciLYPvTOEoxmMU/Y7Lcm7m5dsKgato4bIqXcIuhMxSos1ipITiW30LeALhgtxUEwGgDcMkl/TmNrReC0YP1eSQ1DZImIiIiIiIiIiDqTYk0IT1pMBmINGzdyJSKKMFWoGQAUN7YOdvRKL0obi5RlVeFqyS71b866wevtwf85NcmK7Q5h94c2IiIiIiIiBUOorxMzGYwWEbWm+thSF9JNRD4xHd0ACi8hxJkA5kspCx0scz6A2/wmz5ZSbtItI6VcK4R4GcC52yfFAZgthJioCzoTQhwP4JwWkxoA3G63nUREREREFKLs3iEt1iDUFzEdNNjBD+kyyImwFT86aFGLaqUEtqyBvGQCUFkafAGXC+LWVyAOtRmgRu0nNSNgUrxswEHuRViUfJDlov0bNiJJblPP3PoXMHxswGRZVgjk/gK8+2RIzVXqM9hW+FC4CcMA7nsP8oZ/6gu9/hDkyZdBZHRHluY86ZZYdR8h7zgb4vDTwtDS0OhCKMTKHyHjioDyIsiHpjfP+PMHyMuPAN5c4QuFu/WM5nmrf4a88mjgtd8hMsIT6hQOsrTAtz3WB55KkUu/AFYt2/E4Bl7sVbcc3yftb7v+9F/mQtZUYnDRHwACl9taLjFcfY0Y4mOAek/g9BqrwJEt64ABu9tun119r7f3o4rtYLRUAVU0w+YyZ4P1pZQ4/TkTX+fqy/yxfjSGNKyzV+EJF0AMGuWoDf7E+BMhxp/oaJmh+48Avgx87g1GPDbG9sOgxvWtpheEKRhtTP/IXJg3fqjAt2vV7+XnK4CKWom0pNDXrQ0iMhuByhLgtQcghcCAC+7AHj2AleprE1vplRZyc9qFEALnHihw0GCJcfebKAlyrWdG1XrI3wvQbT0A7Bcwv6YeqG+UiI+N3MWZ7nqJ5X8DK/IkLnzV3md72Ubg7APsr6OyVuL4WSbytoeDbK0ATn9OIrurxIRhAmVuiV82AUO7A3268UJUCj9daI4rym6JJNf9jrHPXIa/1/5gXfCUy2Fc9l/tbJchkJ6kDhIqc3XDNuEs9aeg0l45XQ8ihEBynLpEDYPRyInGBuv5W2zuS0Y5q6Avu+M1htnYDf3wN4n9duuY790yZznWKLMIRnMaYL1m+5UBVZpTJCmaIEcrh+0OLFgVOH1FHrBgpcTI3kBOiu+1rg2yGZc7fG2IiIiIiIiIiIioYxU3qH/oVoUIERF1hCxNf1TjrUKttwZJ2wPOyhtL4IXiIjiow9WSDfVFlttMN0zphSECbzIZacUN6rBK3WtARERERERklwFNMFqw8aAUklpN6HaSJqSbiHwYjLbzOQ/Af4UQ7wJ4B8A3UkrlZdVCiDEAbgLgP1pyK4D/s7Gu27Yvm7798QEAFgghpkkpV7dYTzyACwA87Lf8w1bha0REREREFB4iIQly4Ejgrz8cLdcoYpXTY538rm818rWpiNcL4bJfqWyoh7xnGvDlO/YWOO0KiAknQeyxr+11UDtKy1JOvrH0gaDBaCdVvaedJ+88B3BXQZx4YfO095+GfPJawNMYSkuVxCX3AsefD5HUMXdnEOMmQY7YD/jTImjih8+BY8/GIPVLjTVxg+GFAZfijh6yJB8is2MuoPFqzqOLBW9BvvuMemZ5EbB0AeS3HwTOq6kEFs8DJk8LXyPbQL7zBOR/bgS86guvVPat+9l2MFq8WYdEWQd5zzRkbu4CKJarrpPwmOrQgJREoLg6cLpbJOlXuml12IPRtpZLeGz+pmI3CGag5rOQq76GTOunTbAMRcvwlGBgw3p9gRbE7a8DEyxCDiNoaI46KA4AcuOHBASj5YcrGK1fZAIrTh4jcMc8/f7HmS+Y+Oiy0C9S1NVstPzx79NXIafNxN59BVbmB98X6pXWOUKzBucI/HqLgRcWS6zOB95aFvjcBjWsQ99LR0EC6Ba/B7DbT8q6St1AzwgFwi1YKXHWiyYKqpwt994vEk+dEbxck2cXyR2haC3N+trE2iKBS9+QO77LLh4v8PipAjGuzvFeU+egDZGNks1M1tZAXncCsHxR8ML7ToSY/kDQYhld1MFoJa7AsOVgVPWoaAMxBZCsCRoKFhBE1Io3yPFp4WbI+m0Q8c7C/6KN1R6R3W5raHf9fmuTucsl7p1it1XhVW6zX2lSahE2qzudlhwPuBXhi2VuoKRaolITjJaa6PzLoWea+vWevURi9hLf9JuPFbhjsoA7SL+3LXynYYiIiIiIiIiIiKgdFDWqg9FUIUJERB0h26I/Km4sQD/XoO1/6+9omBkXeA2U1WD0WtONLq4UB60MD/bJREREREQUKYZgMFp7cmuC0ZINBqMRWWEw2s4pEcBZ2/+ZQoi1ADYCqATgBZABYE8AOYplywAcJaUMOhRUSvm3EGIKgM8BxG2fPA7ASiHEzwDWA0gFMBqA/5DTeQBucfa0iIiIiIgoZAdOchyM1iDilNPjnBxJmt7gZTwNgMv+AF85+27boWjio60QaZm266YOkNVTOTnFa51mMq52Ma4te9SyjHzkcmCf8RB9h0Ku+x3y0StCbmaAjB4Q76+HMGwmMUWQuOddyMl9tPPl3+sgAAzTDCKvNxKwKbYvdmvcGLjwX38A7RSMVt8o8f6vEj9t8g0CX6m5JqmLaT3aXL71KLByqXreZ69DdHAwmly5DPLV+4Dv5jledp9tv9gum25uT+tZNBdpCXsDAxRtgYGK8m3wnUpqrUu8Ohit1ggSjBZms74JHirVxLA51n9ItvqzsKkM2NYgkRhnr6IPfrVu26SaT5WBg60LnQtx3X8gOjDFJileoG83YHNZ4LzcuCE4Fv/P3n2HR1Htfxx/n9n0QhKSUIKA0ouI2EWxYBd7vfZesKBe61WvXq+/a0WvDXvvHbH3ih0vYgEJiNIJSSC975zfH5uQsufszm42Db+v5+Fhd+a0bJmd2Z3zmXdbLVvrsyTLRWjbTWPSTJCxeYobDlVcOdP8/Lz1Mywr1gzKju4xtwYRtXxNFa2CylL6Z2R4arOjAsI6woAsxTUHBB67q6ZoDry+gD/9gddEpn89z6w8aUO4SU5DsbWd4orwf/faMs2seYHwsb3HKHYcGv45K6/RnPx45KFoACNN35aHcN0b5hfDq3Ph1Tbbh/s+1Ww1CE7buZskVokNXDcQYOfXgQAsvw6Es7b6F2aZG3EdHVw3wjZcDXOWml+D3WD3FAB981neQtEAdcvrnj4Lc9IgvyB4ebEvmyRdE9H41lUGngtfmB0I26e9UpBqPmSmstb7/osQnoK7V/wOQzfv+LF0Ea+7wmPzIM4hZHDygtWQX6AZ0bfzP3Nt4V9piVBhDDOzbyts+5yj+wUCmk0WFkCZZVPYK4pcvf4edmX/85Zmh81U2EBICYwUQgghhBBCCCGEEKJnKayzhPAkSAiPEKJ7yIjrTbxKoF4H/whRWLeawUnDNtw26eXLIskJ/gEl1We/QG6lv7zTg9G01hTWrTKu6yPbZCGEEEIIIUQ7OZgvOO/iYT6oiIjWmirXMEkLSAlxLCqEkGC0vwIHGNn4L5yPgJO11iu8Nq61/lQpdSjwOM3hZwrYpvGfyXPAGVpr+UQUQgghhBCik6iDz0A/cWNEdazBaObvvMxcD1cIaKiHRG8zNPXK3+Gpmz2VVVc8KKFoPYDKyEYPGQtLfm21PE3bw6/+ud0qrnxiP+JpCNu+fv95OPkq9CnbtnusLanjL+kWoWgAKqsPfFiK3tMya7nxSh0jQgS+5CcMNwejLV8E2+/d/kGGUVGj2f8ul9mLw5cdVhem0NoQX2ss+SWygcWYfuVe9J1/DyS/RWF0nffgsSz/+g23M/0l1nLr15ZiCkazBX1UOylowBQzoH/52rg8WlOfcXngs9gHo40MvtgnEHhafi+EzQd4a2fWj/axKTTT1t0Tsr665TXUjvt566yDjepnCUZL2yJwGYUWinzt/2zNToXB2e1uxuqK/Ry+WOTnHctb/qlvNFdNiTIYzbJr47QNwSspYkCWt2C03B76O9aY/jDvz+35lC2pU4nsXfEBqbpqw/refsOLqlFx6IxLFhVo9vqvu+F1ed0bmluPUFy8d+jP3lf+FwhS62gFZTrigI8zntQcsZUmIyWy157W2hi81Z5AraB1xjo6dPiXx35DjTN4LJqwY/WwrFW9MOU3Rr5ukL+nf/0WPn7ZU1n1+A+oOG8/V2anmpcX+7Jb7ft44WooqYLsMBdZs4UTOQpSE83rTAFIQlg1hD+uZcXiHh+MFuoQyOtmKzNFcdhWihfnhD5GmPWj5tJ9On9jaPtc6ZNu3i6sNZ/jBNi3Pf0zID0Jyg0BaHOXaesY0pPsfdkM8Bje+/hXLpVhtnsSjCaEEEIIIYQQQgghRM/h1w0U1681rsuNlxAeIUT34CiHnPh+rK5bFrSusH618XZLuQnmE8hSfPYfkKv8FRGOsv0q3XKq3Srjutx4y0lwQgghhBBCCOGRwnxuvtt2boRotzpdS4M2ny+aGuJYVAghwWgbozuBlcBOwGAP5SuB94EZWuuPoulQa/22Umpz4DrgaCDLUvQbYLrW+pVo+hFCCCGEEEJET+UOQE85Bd56zHOdOhVvXJ4QyZGk9vBFWH342ZG6aBX6qZvh1fs9datOvQb2O8FTWdEN7LhfUDDaiNpFZPhLKPW1nombngSXjs73FIoGwLzZ8O5TsRppwA77wiFnx7bNdlKJSehBI2BZfvBKfyCXPC1J0T8DVpcGF1kZH5wEpYGHfurNOwWB+udPdthjtHly+TdLNNPfc6msg303V0zdVZEQFyj7eb7mwc81v6zSaA3D+8C5uzvsPqq5rae+0Z5C0QBG1Rn+xpaKzFdIBCC7c04G0n4/vPs0+qYzmxdm9YH15hNHvRpRu8hz2Qx/8xOd6Rqe9EbrqjAmEdiCPgBqVSJJ2jDz/Zv30FXlqJT2pzw9/11koWgAXrMKh+SAzzEHFyxc4y0YLb9AM9983hwATw6dxfgFP5tX5g5A/eNB1LZ7ehtwJxjRT/H+/ODHO3+Lv0H5la1eu4Vx7Q9G230kKNWxYRWX7O3wzi/m/ZA35mmumuK9rfoGzRNfa16ao1lTZi7jtN3nKS2mf8ZQT+3bgn66K718EfrmqTDvC1KBKbxrLJdAPen+MsoNV8stCnOu6H/e1kFhfVe8qjl5oiY7zf7aef676IInAUqrvZd966fo+sm60GVITmTBX7ZgFCFsujq7V69agj57F09l1dWPoSIIewq8/4PfFMW+3iSY9k3CKKoIH4xmC3NSCtIs+0vhAoKEaMXDdyIUruz4cXSwKLOhgzxwvKK6TvPWz/bPyMtf0Vy6T2z6i4RtPAN7w5Ki4OWLCuxt2R4vR8HIvjBnafC6H0NkhNu2V6Fss6l5m9vWK/8L35YEowkhhBBCCCGEEEII0XOsqy/ExW9cZwsSEkKIrtAnob8xGG1t3Wrj7VZ14/OMyxNVEj7i8BvOT630h7jqTQcprFtjXZebIGGVQgghhBBCiPZxlPmkY+1lPqiISKhjylRf++dgCbExk2C0jYzWeiYwE0AplQmMBQYCfYEUwAFKgPXAAuAnrbX5V4vI+l0LTFVKXUBzKFs/AsFrK4G5Wus/2tuPEEIIIYQQInrq0hnoJT/DgjmeytfHIhjNS5JDQ+jZkbq0GH3WJFgbYoZnC+rlxai+Az2VFd2DGrJ50FTbBOo5c/3D3JpzSavlU3dTpNaVeJia2+jPBej3n4vFMAN23A/nltdi114sDRxuDkZzmw/7B2RagtHi8vDjUK2SSdOVAFzc52buWnMUNJ5b8/o8l0dPVhy7naKmPhBSp5TirZ80B97T/KX3e79q/rcUnjhV8cF8zQF3u9S3+Obh55Uw80eXN89z2G9cINzmTY8BM70bisnxF3sqa5SZG33dCOgH/wnP3tZ6YTtD0QDSdCUDkytZXh0+RSnLLdlwu2VIWlvrdFrEwWjVKtkcjAbo8/dCPfJN2PGFsq5Sc+zDkScnOJasJK01Sil0Qz0qLp74OMWQ5FIWVWYElV1YoGl6QJrqmcz60T6+ZTc75D35pXnlkLGox3/o8FCwSI2ynLv821oH9cJv6L17A+CiKPZlG8v+39pruLbPtfjxhexLKfjH/h2f2rPbSPu67/6ENaWafhnenoeLX9bc83Ho16TT9qpIpUUM7Bc+TMLnQEayp2F0C3r1n+hjIwgx8q8zBqMVVzS/10ye/Dr4cfO78NqPmtN2NterrtN8GiY7M5RIgtFenxd9uospGEWIWErqwl/+dHkJ+ujRnsqqadNR+xwbUfu2ELNiX29rEOx2mwa2+8Z6leH7DBVOZNtfqpBgNBGJhvqwRXTRqhCfmj1DqE/OSHaNM1IUs87zUVKlueldzS3vmlu++2OX8yd3blKkKXgZYFR/xWf5hlDHSigq1+SkBz8Atq/TlIKR/RRzlgYXWLDK/ignmb/iC2n7zSKvY1NVF/r4SgghhBBCCCGEEEII0X0U1ttDeHLiJRhNCNF95Mabg8EKW4ShFdabg9FsQY9KKVJ9aZT5S4LWVfrDXAWwA9jGn6AS6eXL6uTRCCGEEEIIITY2DuZz7Ny2cyNEu1WFOKZMccJc5VmIv7guvm686Eha6xKt9Zda6+e11ndqrW/UWv9Haz1Da/2s1npuLELR2vRZp7X+RGv9uNb6Jq313VrrVyUUTQghhBBCiK6nfD7Uza/BIWfCkM1hy11Q/30H9jZPRq9TCcblCaHzTlqzzSJvqT50MBrvPOktFG2nKain50koWk80aIRx8Q2F13BT2nNsORC23RRuOUJx46EKKuwhT0EcB+Z94b38VrvB+EnBywePhOMuQV3/vPe2OpvlSh20uFLHgExzkX/nXk3i6AoyRxUyeNginsw4jgeyzggqd+rjmqRzXDIvcPGd5eKc6W8VitbkqW80PyzV3PZ+61C0DUPScNVrzfXyC0L/aU22qpnrraBNtYf0i3bSBcuDQ9G8ik+AjOzmfwlJrVara59k5KbhQ9EAsvzrN9yOw0+a5eoilZYv0FPMHwEAVDshUpzy56I9BlnabH9DdD+i+Fq8BXTBctx/HoM7KRG9S1Lg/93TcCcl4j54DSPWmIPL8n8v4YP5GudM/4bXuHOmn49/a/15ZgtG234z2CQrxHZq2PhuGQYwsq95TIXlUNSQAjtNAWC9Lwu/Mifu7Fn5Me+5FzJ5FIwbEFg2MKs56MJRMHkUfHW5w4RBHf8YKKX44Wr7199eAxl/W62Z8Un4skHBaCXFbD0Y0kKEDAJkp4JjS/XrhvRD/4qofLZ/nXF5qDAiN0Sw7ofz7fU+XAB1wRfs9cxrMFp9g+aDEOMQoqvtNKzjtyn6py9xz5qEu0cG7rGbo+d8hF6/Fr1/X0/11RUPwBHnRdxvji0YLS6HSpViXDeqvyLZEghU5OGC3rZDWqXs2/hKCUYTkfCHD0ajyDzhoScJ9fVQNLvHmSmKE3ewV7QFpnUkWzDaGPOcHAB+s8wvtI3eUTDYnFPM74X2fqIJzVRKcfLE2HymaA217dhPE0IIIYQQQgghhBBCdJ6WgUItZcT1JtFJMq4TQoiukJtgCUZrDBNztZ8iS9ijLVQNIMVn/mG6yu2CYDTLNjk3oX+3PAdNCCGEEEII0bM4lnlorpZgtFirDHFMaTsOFUIEdOF144UQQgghhBBCdDaVlYu6+O7WC7feHV1fC5+80mpxvSUYLT6iYDQPX4Q1hJ4ErH8MH2qlHv4aNXIrr6MS3Y0lGE0BlxRO57Lbj2+1XFdGEIy2zmPiVlw86q3VqJR07213Nz7Lm9PfnEyWl6WwT7EOWBk/gFPzHmr3cK6Z5fJ+iOCYH5fDkkLNJlnwZ7G3NveveLd9g6oIvpJjzH0xK6pq6pJ7UAcHh9G1NarI5cMF4Sf5Z7W5amWmW0qFz/vrOzXB/lqpUWGSnr54HQ4/x3NfLX22UIec0B9KU7aUdl30dSfCz1+ZCz51MyP63MBb7B+06t25NTz5c/Bn1563u8y/zmFUf0VBmebrJeamD96ycRC2YLS0jHB/RpcYFeKizmc86TJz0kHoL9+iyGdJYQByGwrZZvET7P7QjG5z4t2EQYpR/cyBE2/+pDndkIPZ1hNfa085r07b90tpEQlxipsPV5z7rL0BW8hPd6TrauGD5yKq09tv3sCHCkYrCRFQlmQJNwKYOdf+OPscePN8h33GKt77VbPfncHv87Ia0FqHff2uKIFqDxk2QnSF3UfClHEd24deV4A+d3LzguWL0BcFf6baqOfnowYMjarvbEs+bLGvN1WOORgtJQGy02DF+uB1RRWawFGHXahwolRLkGyFBKOJSIQLiwcoXNnx4+hgoXanot1zHN0fBvWGZYYc1pUlUFKlyUzpvP1SW7ZrXoaiV5KmrCZ43dJ1mp0Nj4AtZE0pe+D52hBhj6H2oUIZGeI4IVIzPtFcvHf3OE4QQgghhBBCCCGEEELYNQUKtdUnRIiQEEJ0Bdt2qdxfSrW/imq3kgZtvnKLLVQNINVyjl2l5cKkHcm2Tc6Nj+GPOEIIIYQQQoi/LAfzPDS37UXjRbtVWY4pk5wUfCqSybpC/PVIMJoQQgghhBBC/MUppeBfT6PbBKPVYZ41mRDJkaTb/mA0luWHXr/VbhKK1sOplHT7JOk/F6CrylsFlulij2FnkdjtsJ4digZguVJHy4BC2wTqjvDOL+HLvPGTZt+xyjrpu6Vkt4ojy19t36BsYVUxomuq0HdeHFmlbfdAHX8ZaqvdPBUf2ddbs5ltgtEy/KWsiN/E87BSQmSfVavkkHX1z1+jogxGu+W96H9AqWrKlJjzkT0UrdHIukXG5Wvj7A/wjE81dx+j+GiBPSjrkHDBaOmd+CaMQF4mpCWag1xenwcNxx2ML+1yCv051jZy/UWgG+DzWbDrIR042sgcOF7x25rgJ+yD+VBdp0lOCB3O8OIcD6logNMmDFaXFKGAqbs5fP27y9PfmtvJ7knBaI/+O+I6OZZgtKI/VgHmbdIC8zmdACRaQj1WlWge/8r+XM25ymH8wMBznWHZhPndwHsgPcxFzos6/wLAoofyOY3/VIvbjf8cZV8XapljWZeaqNhlBBy3vQq7XWsvffCg6CrudhjqojtQvT3uzBhkp5mDW4t82VQ65tS01MRACKU5GC18n6EOaVMTzeOplGA0EYlw34kArFziKbyzOwsVNBvtn6WU4sDxihmfmBv/aAEcvnV0bUfDdlzrc2Bgb/h1VfC6lYZtU+i2FAMywweetxVtMFpeDHOd7/9Mc/HesWtPCCGEEEIIIYQQQgjRMdbWWUJ4QoQICSFEVwi1XSqsX021337VvlDBYrZgtCp/558wUlhnuBoksk0WQgghhBBCxIZjmYfman8nj2TjV2k5pkz19aAJJUJ0EQlGE0IIIYQQQgiBchz05CPh45c2LKtTCcayCZGE0GsPATf1ddZVurwElpvDa5qoY/8ewYBEd6X+/Sz6mmON6/R/L0Jd9XDzgu/ej23nQ8aizv5PbNvsCo7lzek2fyHdmcFoXlz0gmbw1PCz4BPcWu5ZcyH9G8wn+nhWWYp2XZRjCZFrB712BfrYzb1XcBzUuTejjpoWUT+j+nmbBJ/ltp5h39u/LqJ+UkMFozmhg9Goju4ksPIazUe/RVUVgN//KMW971Z49rawZYdbgtFCmb0o8LibAg0AhveBUf2bgtFKjGVUWgyTBWJIKcUWm8BXv5vXf1mQya6X3UfRf18xrk9xK0nR1QDoq4+GT6tQvu5x1ZoDt1Dc+l7we6a6Ht6fDwdvGZt+VNv35ao/Nty86XBlDUYbmtszAk50VQU8Mz3ietmWbU/x3B/RFenG98S5z9r3H5MtoR6HzLDXeWVqcygaBAKSbP4sgnFhMiSLOv8CwB1GqfDBXEFBXBEEeTnGdap10FcE4V/hlrWqp+x9GscZRUhZqMfHcXrGeztSes7HUdVT/3kRtcvB7e7f9v6tclIp9vU2rktJsNcrtp8Hv4Ftr8txAqGiJtX14Hc1vo30dSBizEswWsEy+HMBbDam48fTBdrzTrn5MHsw2pEPuLgPdt4+qWvZYPicwLG46ThilSVPOVTI2iZZkY8t2mC0AVmRh7DZ/F4Yk2aEEEIIIYQQQgghhBAdrLDeEowWLyE8QojuJTMumzgVT4MO/r2tsG41Va75B+E0XwbJPvOFtwBSHPMPzJX+zj9hRLbJQgghhBBCiI6ksASj4WE+qIiILWzbdgwqhGgmwWhCCCGEEEIIIQLaBJjUK/OsyYRIjiS1h8mT//sURgSnkujSYvQBeaHrjtwHVC0AACAASURBVNwKttkzggGJbmvH/ezr/vfJhpu6sgyW/Nr+/jJzUSdfCZsMhS13QSWGCXrqCWxhX27zF9J5GbGZ0BxLh91n/8L8v2suJtMtZVLVbDatX9b+zlw3EFjVyxycES09/3v0xVOgtjp0wUPPQg0aAcnpMG7HwO0IjbJfrLKVTH/rGfZ5DeaTpGxSzNmYAFSrpNCVi6MLsHv/V6hriKoqAP3euAWKb/dUdmRt5MFo81aA1pqFa8zvo202bRHpUGFJOEjrZumELRy7veKr381/26wfNbsdfRiFVbvCrOD1uQ1Fre7rG05H/fOxjhhmxHYcCtmp5vCbQ+91qbvPIc5nj+NY5yE0B0C1/fFv2cINN/MyFUdto3hxTvDje8x2PSQ053PDE++BLZSx2NcbPpsJU05utdx1NT+tsLdneoXW1GvmWeokxcPebTJkBveGeB/UGy5k9dsaD8FoFZF9lh6yZWD7kJkSLvhLeQrlsod/RR5SplQPef2JbkHX1qAvCrHPbrPN5JiEokFge26zIt785k358QNy+u+FaQtS5CHL1RZ0pAgdJFtVB+lhdpmEALwFowH8+HmPDkbz8vVQNFISFZvnwS+W8OL7P3M5e9fYB2ObhAozy8s0B4ytWm9+YKxtKRgQYTCaUoF9n2jkdc9cZyGEEEIIIYQQQgghRAdxtZ+iugLjutwECeERQnQvjnLIje/H6rrlQevW1q+m2m8+6adPmFCxVJ8lGM2N7mKh0aryV1DhLzOuk22yEEIIIYQQIhYcZQlG0xKMFmtVlmPKFMsxqBCimQSjCSGEEEIIIYQIcFrPkqxT5lSctsFoWmv46i30G49CYgpqjyObJ7674b8I0zMuR/3twsDtL99Ev/M0VJXD9x+Grjh6W9TVj6B8Uc7uFN2KSkpBJyRBXU3wyrUr0HW1qIREWL82Nv2deDnq8HNi0la34VjeCy3ehwN6+YGe8Z7Zq+IDzl9/X+wb/u4D2PPodjej/X54ZQb663dgzsdhy6vrnkFNPqLd/eZlQloiVNSGLpflL2l1v3+EwWiJcYEJ/KYJ+dVOmCDBZflorSMO3Hnjp/BpCQOzYPl687p9Kj7w3FdffwGD65ayNGGw5zoAa8thgSX3bWRjaJ3WGsotg0ztvskCZ++iOO9Z83PwxjzNf4+GIrIwBTrk+lsHo/H+s+jJh6N2OqADRmqmi1ah774UPn45sGDPo1HTbsOXlcuULRRPfm3+2xKmukwZB3uPVfRKgplzNWvLYevBiiv2VZSGyTts4rT98W/FYrTfv2E/5Z5jFBU1mrd/CazulQQ3HqbYa0z3DqbS5evRj/0fvHRPVPVtwWilvgz07DdRbYLRTAF2LVUatn2LCswhZwBbD4LUxNaPcXycYmhuIAStrYUFmkDckV24Mbb0zOmKY7brnDAWITrczPujqqaueTJmQ8gJ8dv/mjhzemzKnLfpvf/WQHCSULGHoENbmJNSgX0ym8paCUYT3ug1S72VW74ozCdU9xbq3dbenM7thyh+WWXu4ZxnNKfupEmI6/hHzxak6KjAcZzJKkuesm3b43MgNw0ykvG8n5oUF30YaqQhbEIIIYQQQgghhBBCiJ5tfUMRfsxXtMuN93glPyGE6ES5Cf2NwWiFdaupds0neIQLFUvxpRuXV/nLIx9gOxTV2y9OKttkIYQQQgghRCw4mM9z120vGi/ardJyTGkL5xZCNJNgNCGEEEIIIYQQAW1S/utUvLFYgq/NZMrXHkTfPm3DXf3xSzBtOurI88G1pFS0odevha/fRd94hrexjtkOdf/nUU/sFN3UUdPg6VvM6169D/52YSD0Jhb2PjY27XQnjiV4pWUwWloDPSUYbUTd4g5pV193IozfGZU7oH3t/OdU+OB5T2XVebfEJBQNAhPaR/WDOWHyEzLd1sFcAxpWRdaP1iTHmwPYalSYYLTqCiheDTl5EfX51e/m2f+nT1LMOEaxuhQG9oZZP8Jh97X+oWVi1VeMq/3Fc18KOGf9/Vze98aIxvjst5oFloy5UU3nm83/HirNV+sk3ZKI0A04juKxkxWnPB78PCwpgqJyTaHlwqfZ/uKgZfqKw+Gu91ETdo31UFv3U18HxavRR45oveLDF9DfvAcvLODALbKswWgAb/0Mb/3cev03SzQPfBY+MKeJ0/bHv/o6WPMnDBgKQE664s1pPoorNAVlgSA9n9O992N0VQX6lO2gYFlkFTNyAvuA5evJ9JvTPkp8mYH3ShsrSwyFW6iqC1620HzBcgBuPdL82TiqnzkYbUlh6P4BijxeAHhwNhw6oXs/x0JEQr/9RGQV0jJQry1DJcYuHax3auR1Ut1Kstf8BAR/Hnl5P4cKOkoNEYwWLsRWCGj8LmTWQ94KL1/UsYPpYLagL2h/MNq5uysemW3v4LN82GtM+/rwwhQqDYEwM1sw2hpLMJqtLccJ7LfvM1bx4hxv+6pJ5q/3PElPiu2+TDQB2kIIIYQQQgghhBBC/FXNLnmfd4tf6tQ+G7Q5FA3CBwkJIURXsAWE/VA+2zqRP1yoWKpjnpRe6fd4wkgI+VW/8PH611lZuxTd9iKMbdRrw0kyQJyKJzMuu91jEUIIIYQQQghHmc+1z6/6hat/9zjHs5PFqXiGJI9k3+yj6NNNv6/6ueJ7Pi95hzV1K9CNJ09W+M1zjFIcczi3EKKZBKMJIYQQQgghhAjwtQ5LqlMJxmLxLYrpyjL0/VcFldHP3AaHToUwP9xvUFKMfupmz0NVh02ViZQbIXXK1WhLMJqecTkcdDp89Xb7+7nkHlTGRnhiiGMJPGsRUNgroYE0fx0VlqsaRiojGQb1hhN2VIzoozjk3thdFWTLmnkxayvIu8/ACZdFVVUvW4g+ZzKUFnmuo46+IKq+bCYMUsxZGnoSfE5D66CqvAZLmpeFem46yVlnUUHwa6Xa8RBw8sf8iILRyms0i9ea1+0zRhEfpxjU+LY9ZALMPMfh9g9cVq6HfdT3XD/7cBy8h1gx+UgunvscN/ovo8SX5bnaxS/Z+9h6kEJrjT57krmAUjB0c+9j7AJ7jVFgeRz7XOySZgmAyW0wp0npaXvDY9+jhm0RoxG2aPvPBejp58Ev34DfcnJ2RQnMepi9j4wuVLMhgk1aUDAawNKFG4LRmmSnKbJ7ykV93nky8lA0QB0+FXY9FP3QtWQsNe9Pljq9YN0adEUpKi1jw/JVYYLRKmuDX5+/rbG/L3cYYt5fzMs0v9bXVYbfjoQKUtosB+oaYJcRiulHKJLiZX9V9Hx6+SL0pQfByiXeKw0Zi7rtzZiGogHE+RSZKVBS5b1OiltFzrLvIC66YDRbmJNSkGrexAFQKcFowov3n/Nedll+x42jE4QMRmtn21sOVEwZFwi7Nfnbgy7Fd8QuIFy/+Rj6iRuhohRGb4O6/D5U30H4QwQp9k4xryutNi+3teVrPA9tt5Hw4hxv421PMFqs1fshQc5QEUIIIYQQQgghhBDCkxq3inWW3+I7Wy9fJklOmIvoCSFEF8hNMJ+fZgsVC9QJPXE+xXJuZVU7g9Hyq37h7uX/wo89hNKL3Ph+1vACIYQQQgghhIiEwnxsUa/rus33UiZr61cxv/JHLht8C73jc7t6OK3MLf+Kh1fdivY4vynV11MmlwjRdeS0UyGEEEIIIYQQAU7rL7NswWitJjB+PguqyoMLFa+GFYtCz3xtqbQIViz2VnboONjzaG9lRY+iEhLRA4fD8kXG9fpvo0M3cOhZMPOB0GV2Owx1cPe8akW72U52cVuE9fgbGFy/gl99YyNq+tSSx3lw9TmoM6+H3AEwYAgMH49Kaj27+6O/O+xxe/vD0ZR22b/i3Xa3Y6Mf/CcMGQP9N4NNR6Mc+4lCuqEeFs6FkkIoKULfdKb3jtIyUfd/FoMRt3bgeMVDX4Tevmb717W6n1e/KqI+nJpKkmvWQ7whGE2FP9lVf/s+ats9Pff380r7ugmDgpcdNKqag+J+gvVr0Vce6bkffHGoa59C7X4YWmt+nrwpQ4cuoM6xJH55NLo/DO2j0M9Mtxfadk9UVp929dPR+mdAryQoqzGvr7CEvOT47UGB+pRt4e0CVHpmxOPRtdUw/3soWA6JyZDQ/DzpKw7z1sZ7T5N+wmVM3U1x36cRhOdFyDGFwS7Lh4n7d1if7aHr62DF74EQ283GBAXO6toa9It3Rd7wgCFw4GmonP6oG1+m9yINtwY/NtVOCrUqAf/vi5mXuhUj+kJuumJlSejnyPQazF9jLnvweHs7tnC6dZUhuweguMI8xtMnKR48QU48FRsP3dAAC/9nD/y06TMQ9fgPHRZk3Sc9wmA0XUV2wS8wIHhdsYfz1l3LMa2jIC1E7lul/Tx7ITbQL9zpvfCqP9CVZajUXh03oA5QVav5/k/48nf7Z3wsNhfPneHQa5r5WHR9Ffxzlstl+yjSk9rXmf7qbfTNZzcv+P5D9Pl7oZ+db/0KzOdARrI5lLWsBrTWQdtMv+WwuikYbZMse6BxW+0NRtthCHwTQTZmKDX1EowmhBBCCCGEEEIIIURPFC5ESAghukqf+Mi3T7lh6tgmpVe5FbjajTqU7OP1r7c7FA1kmyyEEEIIIYSIHZ+K3QVHO1uZfz0/lM9mr96HdvVQWvlg3WueQ9HAHs4thGgmp50KIYQQQgghhAhwWn+ZVa/MMycTWhTTX75pb69oFVSWeepaf/Oep3IA6qGvUL6e+8WbCGPH/azBaKxfG7Kq2vlAdIhgNHXpvTDl5HYMrpvz2YLR/M23/Q0cWPEWvyaZg9GG5MABNR/wx+pA8kyGv5Q9Kz/muLLngMZAsZb++zZqmz023J00HIbmwu+GC4OM7g/PnO6w1fXhg9P2q3iPvv7Qz3d76SsOD9wYtgXc9Cqq78DgMvO/R//jCFhnSd0JJSMb9fDXqH6D2znSYHuMgtREqLSEVAFk+4tb3c9rWB1RHw4uyW61cV2NCpEC0uS7DyLq7+cV5i/+05Ng0+zWy/Tns9D/dwpUe0gwarLrodBnE9TkI1Cb7wCAUor+Bx/G6bMf497eZ4dpILSDxgeCDPQ7T1rL9IRQRqUUo/rBd39GVi83RDAaAG8+Csf8PaI29eez0FcdFdlATJYuxL19GndP+y/3fdr+5mwcgrdtetlCOiYWqH30H/PR/zoBlvwSWDB+Elz3NCq7X2B9/o/o07b31JZ65Fv49Rv0gh9Qg0fCvsdvaAcgI0SO4oOZp3HFfeOobQzwnLaHIjNM7qJpu/fbGvP2Y2R/+6PfO9W8vNhTMJp5eY5crElsRPTqPwPb4EXzIq+83/EdFooGsO2mivwC7ycMpLqVxGnzyeWl1eZAopZsQUcKSIwLBKS5hjJLCjUTh3bHTwHRrRSGSAc2WTQPtowwrLALvTjH5aRHNbVh5nfEYpuRlqS47zjF1GfMb9r/vKW56yPNoyc5HL519P3ph64NXrj6T9yv3gbMgbiOgl6WfZx6P9Q2BIeX+U0bFsDXOPQBEWQOJ7czGO34HRTfLIlNwHBNvf2xEEIIIYQQQgghhBBCdF99EvK6eghCCGEU6fZJoegTJlgs1TIpXaOpcatIsQSnhbOkemFU9drqEy/bZCGEEEIIIURs2I5/eoqlNZb5h12kQdeztGZxRHUy43p30GiE2HhEF1EvhBBCCCGEEGLj0yJszI+DX5mztBMaF+v6OpjzsbU5/c7T3vt+5lZPxdTLi1DxCd7bFT2OOukf0VfeZg84zBBulJyKuvFl1EGnbdyherYrEeoWYT0N9VxcfAc7VX0ZVGxYVh3vXejw339uxcwVRzFzxVE8vvoMji97zhrsoy/aH/e+K9HFgeCwOJ/iob2WkhVX06rccfGf8dOf2zF+zgP8cOJi+idYUmUa3V5wacj16tIZOF/UwuY7hiznyeKf0LeeE7RYNzSgrz46ulA0QL22rENC0QCSExT7mrPtAOiVBPH7HdtqWd4++0TUh4NLsq4xrqt2PASjrf4TbUsSMVi2zrx88zxwnOZXoF5fiP7X8ZGFoo2biPN/z+NMm74hFK2JOv4yblp7FdtXfbthWZyu5+QSe8CZyUHlb6ILlsNSywlscfEwcUpEbXaVcZtEHhSRO2mXkOv1vf9A+/0hy7QqX7wmNqFoTWY+AMeO5tODf45dm22YgtFYlt9h/UVD19ag330afeKE5lA0gHlfoA8ZjDvjCvQz0z2HoqEUDB6FOvRsnCsfQh13SatQNCBk0NlF/W6j1m3+XL7rI82/3wy93WgbjKa1ZmGBuezIvvZ2sm3BaKE/ngAokmA08Regp58XXSjaFjuhIgzCjNQBW0RWPsWtJsMtNa5rcKG6LnR921bJcQJhTqmJ5vUnPhqbECEhWsmf29Uj8GxpseaYh8KHosXS0dsq4kKc/VBeA0c+4PLdH9G9P92Vf/DpqgxuyL6MF9MPp0o17+j4f7M/Nz4ncIxmU2rIo/Zb8sSb8tDzIghGaxu6FqlTJsYu5LGmPmZNCSGEEEIIIYQQQgghOtHW6Tt39RCEEMKod3wumyWN9Fx+dOqEsMFmqSHWV/jLPffVUrW/kgq/+XfrSG3dS7bJQgghhBBCiNgYkzqhq4fQLjWuec5TVymuX4s2zSux8BHH2NStOnBEQmwczLPchRBCCCGEEEL89TjNwRT1yj5rsikYjSW/QGWZvb33n43RwALUy4tRfQfGtE3R/aheveHvd6JvvyDyuo4DF94BB5wKC75Hr1mGGrU1jN4GlTugA0bbzdhC31qGEfkbyHJL+GDp/nydsj0/Jo7HVQ4j6hax6z/uoFefzYA+6BMuh6du9tbvs7ehn70NZnwCq/5gl5vO5Fey+Dh1N4p92WxV8z92qP4OBejbL2A88JOTyQEDZ/JtSnD4zur8QeT6i+z9JSbD7ocDoI79O/rKI72NM5TvPkCXFKEyc5qXzfsCCldG1Zx65FtUXMd+7XbQeMUr/zNP6C+rAefKh9CHnAmr/oBNhpI6amuyLvSzvspb+wpNkmuYoQ9UtwgAICER6mqDC9VUQVU5pPby1N9qy3lfm2S1mYT/2UyoD5Ng0oY63h60p3L6k3rOv/hixmQ+St2dYl82E2p+ZGD9Cp7IOB5tCxxsoV/DGrZ9+Cj0wyECFg46vcNfE7Fy8kTFI7MjC4vos8c+kHgBvHCntYw+cyd4YLanx0Ef0gGhgquXsvNN23PsxK94dv2WMW9emaJzulEwmi5ahb74AFjyq73Q8/+1BgAZ9RuMSgwdlJiZEkmD4ZW32dwUlAVCTkxG9bOHeGSnKkxxR+sqA2FrStnr2oLRbGFrQvQ0etUS+O4DT2XVtU9Bckpgf2PT0TBhtw7/vNtqkPn9a5OqK/G59nDOkmpIsYSbAbiW8xOathK2bRBAVa0mJTF2gUJi46JtL65QdRbOtYZWdzezftREkJMcE5kpiolD4fMwF4Hc4UaX2Zc7TBwa2aN50aMl3D34vQ33t67+H28vP4hs/zr8P3wGXGWs5yjICBEWW1YNfdscNoULRstNg3gf1HvIHm5vMFpyguKlsxyOfCDy12xbNZ0YlCeEEEIIIYQQQgghhIiNPbMOYVTK+K4ehhBCWB3X71zuXXE96xoKQ5brE5/H0X3OCNteipNuXVflLwf6RzpECuujuzhrWwfmHMegxKExaUsIIYQQQggh+iYM4Ni+U3mu4H50ZDMJuoVay5ynrrK2brXnsj7iODXv4rDh3UIICUYTQgghhBBCCNGkRfhLnUqwFov79CXc+56Gb96zlom5CbtKKNpfySFnQRTBaEAgyGT4eBg+vsdMGI8ZW4CTbjF52R+YhZxAPbtWzWbXqtnN1VOag9XUnkejvQajNXVz7u4bbvehkL+VvWQtm+WW8OnSvbi0703cl3UmfhXH+JqfeGD1OaFD0QA1/Q1Uelbgzs4HRjRGK61h7me482ZDwTLYdAz8uSDydlLSURf+FzUi9qFLbU3ZInwoiBqzLYzZdsP9AZl4DkbL9q8jRZsLVzot0n/6bAIrfjc3UrQqgmA089/SP7P5tq6qQN92vqf2WlIT9w9d4KhpODMuZ6/Kj1stHl63mPzEEWHbP6D8bZxwz8V5t4Rtp7vYaZjiwRMU057X1NR7q5ObDmrqjejli+Crt82F8ufCO0+iJ+6PnnEFfPBcYPkBp6LO/j9URjYA+pt3Y/BX2N3zzT7UTZnPy4uzY9qui2EbvH4t7jXHok64HDW8a08U1y/eHToULRpjtgtbJC0xEAbixuh30rVlrYPLVpbYyw7Nta/Ltvx+2OAGQo56WcJLtNbWYLSctL/cnofYCGmt0Vf/zXuFEVuiBoX/rIylTbMDwUC20KC2UtwqkrU9vWx1Kbw4x+Xj3zR9eymu3F+xWU7z+9m2+XI8vOWLKmBQiNA18Re3fm3kdfLnxn4cHWTpuq7pd+Y5DtkXhd9A7HxzoMxuI+De4xxG9Q/9pp67THP38i1aLfsheSvuzTqLfxbdiFtTDZb3u8+x71sAlBrOzQoXjOY4ioFZsCT04TPQ/mA0gBT714QR8Xp8IYQQQgghhBBCCCGEgDGpE0j12cN5OlqcimezpBHkJPTrsjEIIYQXeYmDuGaze/ijJp919ebf4HLj+zE4aTjxTvgfPZKcZBwcXIJ/sKl0LSeNhFFomRwfp+I4pu/UsPUTVCKbJY+kd3yIk2GEEEIIIYQQIgo7Z+7D+LQdWFz9KzXdLGisyYLKH5lT/kXQ8u423sJ687Ffui+DQ3JP3HA/xUljWMqYLv3uT4ieRILRhBBCCCGEEEIE+JpDkeqVfdZk/LM3QW2MgzXCUGf+u1P7E11LKYXedk/4/kPvlTbfoeMG1FM4PvNy1998uzEYzcjX/DWRGjIWvesh8NlrMRpcsHgauKPgEv5VeD1VTgp9GwrwGU4m2qDfYNQLv6Gc5vAhpRQ8+wv62M3bPR59zbHNd2a/GVFd9VI+VFXAoBGouBjMOvegd6qiby8oKAteN2WcuU5eJvyyylv7I2sXkuZWGtdVOSnNd/oMtAejFa+BwaM89bfKEm6UlxH4X9fXoc+c6KmtltRjc8KXcRy45B709PNaLT93/f1c0O/2sPUPrAjzehk0AhUfoySBTnL6JIeTJ2q2u8Hlx+Xhy+ekgfL54KZX0YcMhnUFxnL6udvhtvPA32K79Oaj6C9mwcuLUUkp6LefjG7QvfvCuInw2cyQxXq55Tz/xkDWv1XFH0Uax23g1Gfi+WlldN02SbH9qPbJK+hv3oM730ON3qZ9nURB19cFbnz0Ymwb9sWhDj8nbDHHUWQkew9lDKe6HsqqIaNxM2TbdsT7Aq9Lm96p9nWrS+3hJeU1gfA0k1D9CdFT6If/BYvmea+Qt1mHjcUmPk6xWQ4s9pgplepW0cs17DA12uM2P2U1TYFImhe+13zzD4cxeYFltmBH5SEYrSbErrcQ/Ppt5HWWLUTX1aISun/iXrHHOSGJMT5bIStV8chJitOe8JbK+mk+jLnW5bsrHcbmtV6XEAe+xhTEl34wt/d6+oH8s+hG/CuXwhBzHz4H0pPsYygzZDf6LcP3tcjiHd3fYzBaDB7jhBg9TxKMJoQQQgghhBBCCCGEd3mJg8lLHNzVwxBCiB4hwUlkZIrlpLkIKaVI8aVT4S8NWlflL4+qTdvk+Jz4fuyYsUdUbQohhBBCCCFErKTHZTAhPfL5Op3Fr/09IxjNEoqdlzhIjv2EaAcnfBEhhBBCCCGEEH8JLUKV6pQ9wCVB13XGaDZQ099ASejVX8+ICREVVwee1kED6UEcy9c8bosEl5ZhRG35Ws90Vlc/BkecG4OBhZbplpLXsDp0KNq+J6AenN0qFK2JGjgc9eCXHTjCMI48H9VvMGrI2E4LRWvyf4eYEzn2GmNenpfpIcGj0ci6RaRagtEqnBbpP0kp0Ku3uZG13pOmVgefRwZA/8ZgND56CZYu9NwegDrtWtQwjye87XRA0KJz198ftlp2QxF7VH4SutBmY7yNoZuJ8yku3NPbaya38UI1SinY7wR7weWLzNuh0mL0Xlnol2fAJ69EPtiDT0c9vwB1/XOo82/1VCVrSgpbnZTKlqdk8NXsPC5OmsWmWdEl2CS4tWxR+7O9QHUF+qW7o2o7WvqHT3BP3gY9OR09OR3Wrohd4xN2RU1/HTVuR0/F+/aKXdcAWRe6XDnTpbpOs7LEnBrSPyMQymYzINMeahQqbKkoRMiLBKOJrqJ/+hL33Mm4+/XBPW0H9Pzvo2unpgqev8N7hW0md/q+T5OtBnnfp0nRVSTpGuItx7HNoWgBFbUw/f3mbYu2hBOF2MRsUNW5h86ih9Ffvxt5JdeFlUtiP5gOUFzhLZhsR0uYWHucPDEQjpaZEr5sk+1ucEk9r/W/jGkuqef6yb3Iz03vmP+euUlbogF/vT3xy1GBgLU0S55dmeHcLL/l8NjXYtszsp+3bWFSDDbV8ZYc9khVy3ZRCCGEEEIIIYQQQgghhBA9QKrPfBJIpd/j1YHaKKxbY1yeG98/qvaEEEIIIYQQ4q8kyTFf9by2uwWj1cuxnxAdQYLRhBBCCCGEEEIEtAxGwz5rsjOD0dQDs1Hb791p/YnuQ+0cHFIU0q6HdMxAehLHMlPZbRFC5A8R+tMm2EIlpeBccDvq1ln20LVOoq58CJXVx75+9DZw3KWdOKJG2f1Rp1zV+f02OnmiYqehrZeN6gfHbmcLRvPWbi9/KTn+IlLdKuP6StUiYcAXBzl5xnJ63mxP/VXUaGvYUF6mQtdWo5+80VNbrRzkPTBR5fRHnXl90PL/LdmOdH+Ztd5Na68mSdeGbnvSwZ7H0d2M7h8+bCEhDjJa/M6kjvl71P3pOyOsqxTqqkdxLpmBSk5FKYU6ahqccHlEzSTVlHDz3GNYvGwCtx0RuuwRW/rxqdbBGNcV/ptkXRO64rzOC3DUS35FX7gv/B4irC0aY7dHfVqFc9f7C1GGMgAAIABJREFUqG28X7HI67YnEje9o7n2dc2SQvP6AWH6TE5QDMw0J47kF9iDXJats7cpwWiiK+jClejLDoGfvoSKUsifiz5rZ/SqKIKTfv8Z6sJsy5okp6JOuTryPmLkgC28l01xq1BApr/Ec52Pf2veDriWTUJTuOK+Y+3tVNXB2jLNzys06yq9hUSJv5BFP1pXqQtutx+DLc/voAG1X2295rs/NJ/na/4oCl8+KR6uOTD2x5pKKU7ZyWHdHT4u2dt7kGJbVXVQXQ/F5rzoDVbGDcANcdqFr3FVL/O5WZRWB28frMFoLboZ7fFcqaT46B+DJsPsh+MRqYkuh1gIIYQQQgghhBBCCCGEEKJTpTjmk0Cqog1Gq19tXJ6bIJPjhRBCCCGEECKcREswWk13C0ark2M/ITpCXFcPQAghhBBCCCFEN+FrDlVK0rX8rfQF6lQCdZn9qR+9A3VLFlJXbA/KiblhW8CorTunL9H9jNnOc1F1x7uo1F4dOJgewjZx3m0xozpUMJrP/DWR2mFfePR79Mz7YNbD7Rhg9JQKP5FbHX8p+plbO2E0wNBxMOkg1FHno9KzOqdPA5+j+ODvDk98pfn2DxiSCxfsoUhPMj9e4YKCmmxavxQFpLrmE7kqndQWg4iD0dvAkl+CC875yFN/+QX2dUNWfo6+5G9QFiKNyGT8zqjefSOqok64DEZOCIRzLQsETmxR+wvf/zGRB7NO47eEUejG1+Im9Ss5quwldq/6PHSjaZmw05TIxt6NjPTwEI7u1/o9qjKy4c1V6APMgXntctBpqJwB6EU/Qu8+qD2ORk3YJaiY2vd49HO3Q0N9ZO2v+J0L5p7HdUn3UGbIBkpwa7n3zfH8Y/I5PPJNApVOKoeVz2T/infDt71uDVprT9uz9tAL56JP3yH2DR94KurCO1A+SwhnCAMyFRD7QKDp79vbDBXGprWGx29g+PJtWZYWHPAWKhjttzXmddmpkJHSsc+tECb6melQGRzgqY8eDZ/XRLbNCRWKNnQc6vjL0N++D1m5qH2PRw0JkQjWwSYN97ZdSXKr8RHYF870l1IY5y3ZZ9k6KCrX5KQrtC0YrfH/KVso3v3VXOiKV1zmLIWaekhJgDv/pjhtZ7lmlWj8LFq20Lxyr2NQR5yLfvkeWGkIOVzWPYPRZi/SHP2gy+rS8GX3GAUTBimO2U4xYVDHfn7efLji11WadwyHK7HyW8IIxtfaA2mdxj8xIxlWGTIaTfudXoLRBvX2ti1MSQxbJKy8TMV2m8J3f7avnZoId8+FEEIIIYQQQgghhBBCCCG6Qqov3bi80i2Pqr3C+jXG5bnx/aJqTwghhBBCCCH+SpIswWgNuh6/bsCnuj42ya8bKK5fa1yXGy/BaEK0R9e/w4UQQgghhBBCdA9Oc9BFX/9anl51SuBOziScCz7EvetR+N/dnTYcdfn9KFvQk9joKcdBn3QlPHFD+MJb7dbh4+kRHEtYjetvvt0QeTAagBq6OeqSGXDJDHRDPXp38xURu5JKy0D3GwxrlnZcH1NvQB17cYe1H42keMVZuyrO2jV82TyP4URPrDoNgFRtDsKsaBOMpnbYF/3W48EFC5ahG+pRcfEh+7OFECXGaTa5/RgojzAULbs/atptkdVppLbbC/VMINRAz3wAffs0htUv4Za1V0XX3uX3o9IyoqrbHfRKVvRJh7UhzukzhVmojGz0UdPgxbtiOh516FTUsHGEi89Qg0bA1BvQ9/4jdCCkyZuP8v0+OWy+9ErqVUKrVY+vOp3e5cvoPesKIv7LGuqhtBgycyKtGZIuWg1fvxMINNp+744JRes/GOey+6Kv7jGUMZYGZYd4lXz5JvrRfzO0312Y4hvXLC8GzOFJC83nqTIyqxr9wiOQ3Q8mHYxKTIp4zEJESmsNr9xrL/D2kzDlJO8N1tdZV6lL70WN3Q6151ERjLDjDMyC5HioDhOwk9Ii1DvLXR9RH6c94TLrPB+uZdep6VD19J0V5z9nLjR7cfPtqjo48ynNpOGaEX0lSPEvr3AlVFcaV6nDpwZuDBxhDEbTy/LD7gt1tuo6zTEPeQtFe+4MxdHbdt53PUopXj/PYZ87XD7+rWP6WJg4knG1v1rXN4WZ9bLsHpQZLlppC0ZzWjz5XoOv02IQjAZw/wmBx7Gw8dggKwXev8hh/CZwyAyXtz2Ez9XUa+h2r2AhhBBCCCGEEEIIIYQQQojWrMFofvOFRkOpdWsobTCf/5abIJPjhRBCCCGEECIcWzAaQI1bbT2G60zr6gtx8RvX9ZFjPyHaRWaYCyGEEEIIIYQAQCnLIaJunI1ZFmEwTXtsviNq1Nad15/oltQBJ4cvtO0eKCWTaoHmdIa23BYzqkMFBIUIRmtJxcWjHvs+fLlbZ6GuewbSs+yF+g1G/f0u1FQPAXhe7Ht8bNoxOezsbheKFikvE+dT3YoNk/pTXXNYQ2WbYDQGDjc3pjWsKwjb5+JC8/JhSevxlReHrb9BYjLq+udRT/yAGrGl93o2ex4NifYfUMJRN76M2u3Q9o+ji/UJ8xvRVoPMy9UhZ3rerniy6WgYurnn4uqoaagn56KueDDiroa+dwvrF/blqZUnc2jZa9xacDlLFw3jqPJXIm6rlWJLqlaU9I9foE/eGn3LVPQdF6GPGRvT9puoR8Nv80PxGtoRS7sMt+8b6C/eACDHX2RcX7zaHp60yBLkOPKXF9H3XIa+7kT01F3QRasiGK0QUSpYFnK1vulMdHkEYWChgtHGbue9nU7gOIqRHi6c3TLkNa9+dUR9NIWaaUswWtNWJjFekZ1qLtOW1vDol+FDasVfwPJF9nWDRrT+P6hufuzH005v/KRZWeKtbE5a5x+/+xzFBxc5jOmgc4vyE4bjV5agcprDzGzBaKWmYDTLpsLX4rDf6z5WaoyC0bYcqJh/ncNLZzk8d4Yi//8cth6siPMp3jjf4cO/OzxwgmLeNQ4DLV8D1IQJtBRCCCGEEEIIIYQQQgghhOgOUn3mC8dW+kNcXdKiqN5+vlCfeJkcL4QQQgghhBDhJIYJRusO1oY4Tzkn3sNJz0IIKwlGE0IIIYQQQggR4LNM4nQb0+qLI5tI3i7JKZ3Xl+i++gwMXyYjp+PH0VM4tvdwi2C0UOEYtvoGatgWqCsfNq8cMAT18NeoHfZFTT4C9cZKezsnXoE69KyYBY6pEy6H/U+CprA823Ytmran3R6ztrrKyH7Nk/JttqyZt+F2mtdgtNw8e4OF4cOB1pm7YeCayMKY1J3voXY7FJWRHVE9a3vpmajpb4QvOOkgGDex+X5iMurSe1E7HxiTcXS1HPN5fhtsNdj8olIDh6OueQLSMto/iCGbo26eGXEQpho0AjXlJNj72Ii7TNK1HFP2Ii+tPJaL1t3NgAaPQVehXn8x3JfSWqPP3xNKIwgPDEFd+xT07tt6Ye9+qLs/RLXzORzUu/MDUPYaHWLlbz8AkNNgCUarsv9sYgt9GVK3pPnOonnol2eEG6IQ7bd2RfgyL9/rvT1bgG5aF6QbejCyb/htS4qv+W/Ka4hsG7y+CiprNa4lnKjlPlW6JezI5MP5EowmgPWWZOC0TFRjsLSyBaMty0fbEvu6yLu/eC+bHWbfsqMopZh9ucOBW8S+7d8SRuCGOO2iKcwsw3JuVllN8DK/G7ysZVsAvZIhJSH8+NJiFIwGkJ2mOHxrxdHbOmS3CLlTSjF5lOKMSQ7jNlEkxZvrSzCaEEIIIYQQQgghhBBCCCF6ghTH/KNWlb8i4rYK68zBaA4+suJzI25PCCGEEEIIIf5qkkIEo9V2k2C0wjrzecqZcdkkODE8iU+Iv6C4rh6AEEIIIYQQQohuwhaK5G8MRvMy8T5W1q3tvL5Et6UcBz1sC1j8k71QjAKQNgZKORinx+vAjGpdV4u+4jBzZcdBOZHl56v9ToDJRwSCftYXAgp6ZcEmw1qFFymfD+7/An32pNYNDB4F+x4fUZ9hx5SQiPrHg+jzb4UVi2HQCPRBA6G2fV90q8fmBP6OHi49STE2D362Z9UxqjZ/w+1Ur8Fo6VmQkAR1hhn9ReHDpEqqzMuz/CGC/NoauRWM2c57eY/UlpPgno/Q5+1hL3PAKaiJ+6OLVsP6tTB4FCph4/nhIlQwmlKwxYAQ6ycfAbscDH/+Fvw+jItHf/AcvHBnyP7VI9+iRmwZwYgNbZx8Jfr9Z9vVhqd+TrsWjrsEPTndXCAG+1La7wet0Xdc0O62WtntsMDztWwhVJZDajoMGhnxZ4PJyL7hy8TSweMhJTFEYFLj9jzHbw6VK9K90Fobg/hswWibNLTZsH72Gpz9H0/jFSJqxfarSjfRH7+EOuUqb+3V15mXx3tI3ekCIz1cPC110CBYmQEVpeR5DbhsIb8A8/41zTm84C2YqMn/lkU8DLExKjWHc5LZIvjbFoxWtg7+mA9DxsZ+XFGat9x7UFu40N2OlJmimHWej4IyzaoSiHOgqs2mz69h55stqWQW+Ykj8HsIRktPVpi2KmWGw1UvwWhKKQZkwqIwX6HFMhjNK2swmiWDUwghhBBCCCGEEEIIIYQQojtJ9ZnP/an0l0fcVmG9eXJ8dnwffKrnn5MohBBCCCGEEB0tVDBaTXcJRrMc++XGezjhWQgRkgSjCSGEEEIIIYQIsAVfuH50QwOs+sNed8hYGDcRZj0Um7HUmMN4xF+POuVq9FVH2ddn5FjX/eXYgruawg1/+DhE3ei+IlKJyZA3JPAvVLmx28H0N9CP/BtKCmHs9qizrkd1UNCGSsuAUVsDoA3BNp5tvgPqzH+jho2L0ci63ndXOiSfa5/oP7Ju4Ybb1mA0ldJ8x+eglELn5sHKJcGFC0OksDUqqTIHKWT6S8PWBWDf41HTbjOGGMWCGr8z/Ps59DXHBK/MyIatJwfK5fSHnP4dMoau1DvNHOAA0Ccd0pJCP+4qLh5s76ERW8KQzdE3nmGue94t7Q5FA1ADh8OMT9CXHAjVkV+51bNt90DFJ6BHbwML5gSt1t9/iDrglIia1LXV6KduhidubN/Y+g2GbfaANx8NXjdhV1Rc4+fApqPb14/BkNxAiIct4CPWjt42zLagoR6AbEswWrGThVu8Fl9O60S32npNkeXl07/tD5krFlvD1f6KtNaB/RG3xT+/5Xar+27jvwjrNN3WbsR19IZ+I+in5TrtWsYa5u9oNVZbG4b74fy5wPsT1cOC0UZ5OE8gN8OHevBL9N2XkrekLOI+fl2lcS3bLqfF29sWAGSiFFTWalJDBTiKjV/ZOvPylsFow7YIfE9jehF++Va3CkYrieC8ouzU8GU6Wt9eir697OtXT3e46JH1fPxzDaVOBgCb1i+lf8NqPk3dLaj88viBlPnsDTZtLzIs52aVVQfva1uD0dpsOjbLCR+MltqdgtHqO3ccQgghhBBCCCGEEEIIIYQQ0Ujxma/2U+VGft5RYZ1lcnzCxneemRBCCCGEEEJ0hHiVgMJBE3xiXbcJRqszX/Bajv2EaD8JRhNCCCGEEEIIEeBYQpVcPxQs3RAi0ZZ6bA5q2Di066K/eB3WFbR7KOqQs9rdhthITDoo9PpsuXLCBsoSbqhdtNboZ6bb60YZjBYJtf3eqO337vB+gvo97lL0I9dFXu/M61EnXNYBI+paifGKkycqHv/KHHQ1si5/w21bMFqF0+LEr6bXTo45GE3/OZ9wsR8lVeblGa49GE3dPBM1cf8wLceO2v0wuOJB9E1ntl5+3i2oxKROG0dXyDGf5wdApv3CO54opWD/E2HbPdAnToCKFs/5xP3hqGnt66BlX1tMRL0fHITl3n0pvHhXbDoZPCrw/ybDjMFofPwy+spHInrN6IeuhRfujH5MY7ZD3fcZqjEA183oDS0/DxKSUCf9I/r2PUiIUwzNhfz27yJ6ctQ2YbY6VYGTVHMswWiu8lGyeAnZbYLRVofIahzQsCp44fzv0CMmwKJ5UFFiCPyyBGBZA7Gay2pr+FbL+7ZwrxDLw42jVb8ext50X/QMDZZgtLgIUr860aj+9uDOJnmZCjVwOOqW1xj8m4bbI0to/GC+vYeWuYehtg9taR1o95AJEQ1FbGR0SZF5RUb2hpsqPQs9bieY90Vw/fy5YfexO1N5jbdyKQmQnNCdRt6ariyDxT/Rp66Gp1+dErR+SfymjBg231h3YcIIa7u+xkP1XpZdwDLD42cNRmtz2D+8r+L9+aG3hWldEMQowWhCCCGEEEIIIYQQQgghhOjJUn3pxuWV/gpc7eLYztU0KGx7sb1GufFy7qsQQgghhBBCeKGUIslJotoNnnxU212C0azHfhKMJkR7STCaEEIIIYQQQogAnyUYze+HFYvt9TYZCoByHPR+J7QO24hWF4Qnie5JKQWvLkEfNsRcYId9OndA3ZljOdlm+SL0sZuHfh9HcKJOjzNxfzAFox02FV69z15vzLYdN6YudtKO5mC0TFXJ5FOmoFIPQ990JqnaHIxW6yTRgI84/M3BaJm55s5mPfz/7N13eFvl3cbx+zmSLHkkTmI7w9khgwwCgbDCCJuwd6CMQmhLgQ7a0pc9CqVQKB28BUrZ0EIZYa9SRtn0BcreOwkhyxmOR7yk5/1DSWxZ50hHsuT5/VxXrljPOj8nWkc65z6yg0dKx50Zfzy3Y5ct0pqPayRnUnI90TWuS5qbX5OZsLnHb5c/Zr/jpZETZB+/TZKR2e94mc227/Q6OlvKYLSi3GzDVAyX7nhP9q4/SWuqZKZsLe1/out9JtfMj6+Q/fxd6c3nOrbQwMEyJaXxNUdO8I7qeeaeeBicD3b1cmn+1R0qy/z56Y2haJJkfniJNGEL2VefkPoPktn7GJlJ+U/n2XRo5wSjfXSxI8dJc79ZtlCSVOYRjCZJK75cpLLtEh/fi92fkiRJlS3JX2Tak3dOXQfQ3TR7BKOFCjq3Dp+m+DhOoHJA6887jM98G4+9Z7Wpx7HoTpbBaJL0xPtWB8/ovuFQ6ATVHq9BpeWJt7fYyTUYTc/dL7tskcyQkbmvLQu1jf7GlRXnt46OsPddK3v1GZ4XBZCk0c0LFY41qNFJTjj7MDzZc96G54v+HqHC1S7HZUU93ky2D0abNMR9XFvFXfA0HvE4CoVgNAAAAAAAAAAA0BMUOe4HTFnF1Bhbp8KA/y++VjQtdW2vKODkeAAAAADwK+wUugajNXSDYLSYjaqqyf1kCfb9gI7rxWe9AgAAAAAy4hWMZGNSlfsX8yobJhNpTUUxx54hTZ7ZsTJOvEBm7JQOrYHexVQMl/nl1VK7gBzzk9/JDB7RRVV1Q17BaGtXpQ5Fk6R1tbmvJ1MnnOveftipHVt3wubSsWcktm29ezwcaNKW7nNKBkib79ix7XZjsycZnbZ74uOpICj95fslKp57klQQliT1j9Z4rrEmsD5pZGMwWpnnWHvDhdLrTye3f/2R7OHjtaYl7DpvQCw5ZcQ8ubJLQtE2bn/6LDln/VXOWdf1iVA0SapwvwCqpNwFo0mSGTREzqmXyTnnBpmDT5IJds41PYwxMn94XNpx/+TOfgNl/vy0tNOB6Rcav1nrz2Oneg6zLz7suzZ779XxgNpsjJsm89BCmYLEx5cxRmb3I+Scd7Ocn17ZKaFokjRxSPYBQJ98PlWHrH0w7bhLDzGaNDT1duxLj2z8eXDLCs9xX36d/Pzz5Qr3hJLiWK36x9amrQ/oKvaTt2T9PJe0eASjBUK5LShHCoJGc2emfsxXtDlWvSBodPY+mT0XraqTXvnCva8j2Z0ffOsZn4m+orrKvb008T21GZ0cHryB/dWxuawoay1R6zvsKlXgbley7/9H9k8/TxmKJkkBxbRJ85eufYuDw73nrd9VL/UIRlvbkNwWjaVea4PJw9I/GZUk57jlXaFHGBvBaAAAAAAAAAAAoCcoCXgfMFUX9X+sZXOsSatb3L8brAhxcjwAAAAA+BVx3A/A6w7BaKtbqhRVi2vfYPb9gA7rnLPLAAAAAADdXyDg3h6LSmtXuvcNKE+4aUpKpWv+Lb32L+nrj6UhI6VvvpC96SLX6ebM66S9jpbefkFa/KU0fQeZTaZ15LdAL2UO+oE0Y7b05nPxsL4Zs2XGTO7qsroXx+Mx3EOYnQ+Sve1SySYGRZjZB3dsXWNkfvhr2V0Pkz74jzRivDRjl3jo0jXPyu4xIHnO3J/IBLtnCEiu/PFIR0dtbfXql1bFYWmPyUZjy9efVL8+6aM86hHYIGl5oELl0ZWtwWil5Z5jJck+fJPMNnu23n78dtnLfiBJWhModZ0zILom4bY59TKZom6aptCLVZYaSe4BLuFe8umyCQSkS+dL//239NnbUnOzVFEpbbOnTNlQqaEubaCZ2btNOMn2c7wHvv2CrLUyaRJ17OO3S3+7PJNfI27OsTI7HShtu5dM2CN9owtsOjT7uZs0f6W7Fh+re2sO07HDb0vqnz5Cuv1ER9NHpA8GsX+7YuPPRXadhjcv1uJQcpDJJwsbtG+7ts+Wu685oekLdSAfCcg7+/3tpKJ+stO2k9l8R2n6DtLkrWXC7ZJymj2C0UIe6TbdwC/2NLrnDe+QsTFliY/OSw42uut1q6/avcUpja5Rswmp3vF/Ve+2K08Y7P0c4eajJfL1WoBebJX7Hca0C0bTKO9gNL3/H9nl33R5WHhto/+xZd3wrbxtbpI9Zbbv8RUtKySXXOflwQrPOc76h3r/iPv76mqX47L8BqNtNy7+nrzR/ZgqSVJxFzyNR0Luv2tDijoBAAAAAAAAAAC6i6KA9xdbdbEalWuIr3WqmpfJehx3NbiAk+MBAAAAwC+vYLTGbhCMtrxpiWdfeUEHTqQAIIlgNAAAAADABl6hStGobPUq9772J+1KMqECaYf9438k2Y//K7kFo43YRNrvhPjJ4G3CcgAvZtREadTEri6j+3Kc9GO6MTNhc+m8W2Sv/LG0rlYqLJY55TKZGf5PUk+5/sQtpIlbJLaFC6W/viR76felBR/HA8HmHCcd8z852WZ3t+04o23HuQRymPh9qSJFMNqKYLnUpI3BaKb/II9DuNZ7/gE9cdGfdc+AI9VY0E/ff/B27SIpJqNqxz0YrTRWndiwyWaptoA8qUzODtyo3iNDpycyxkgzd4v/aW/bvWVOuVT2hgullubEvkBAOvqX0p5Hta4VLpRO/o3sdecmr1VbLa1cKpV7H9xoVy7dGByY0e9w9g0y+34343mdYdJQ74C9VO5fNFeSFFBMR629V0WxdZpXeb2qAwMUtM06f9wbOu+sHXyFC9k1VdKHryXW1fSJazDap6sKZNdUybQJAf50cZOk5NDM8U2fZ/hbAV2gvkZ67SnZ156K3w4VyG46U5o+S2b6DtJms5Kf3zboxsFo24w1uuooo9PuSn5+MUbaYmT7NqOnfu7ohFtiemn9Q3e/msd1w5JTdPKwq/VwvwN8bzvS5ulg3g5G5zzg/zludb20vEYa0t/3FPQiNhaTFn/h3lnW7v3B6Enxx6BXcOG3X0ldHIxW0+B/bOWA7hMGaKNR6aHrZf/4s4zmlUfdLxywPOAdjLYhzGxgkXt/9TqpJWoVDLT++3gGo7X7JywOG+22qfTE+56bV0nEuy9fIh45440eLzUAAAAAAAAAAADdScQpkpEjq+QvbeqiNb7XWdHsfnK8kaNBwcFZ1wcAAAAAfU3YIxitIZbBQYx5ssIjGK1/YKBnoBsA/whGAwAAAADEeQWjxaLSWvcTP9V/UNplzaZbyU7fQXr35cT2ky/1FWIBwCevx3APYvb6jrTb4dKiz6QR4+NBi/ne5pStpVv/Ky1fJIULZcq4GseGkL2IbVS/6FrVBJJTO6oC68OC1gejqbQ8aUxbfxl4kn6y+FRpcfz2XaOf1M3f/kBzav8la9xD/QZE2wWjjZns/3dAzqQKRqtr7Lw6upIxRjr6dOngk6Q1K6SySqlmlbTsG2nsFJkil6vE7neC5BaMJkkLP0kdjHbw6Mxr/MHF3TYUTZI2zfKpdXb9Cwm3D6x9VMs+HalPCiZqbPPXKqrcX8bs6G+xj99IrqvxUz1bnByG92VwdDxEbda+G9u+XlAtKfm5bnyTR7gNOkcgEH8P5ATir19Om9tt+wKp+gLxUNCE9va32/2cNM9JPc4JyLTtMyb92kk/O4m/Y5sx9q/nS++/6v/frblJeu8V6b1XZO+4Ml5PsUdKV7D7BqNJ0k92c9TYEtMZ8xODyQ6cLo0qS97fHFdh9Pz/OFqwUgo8cYuGX3+KJGla4wcZBaMVh1t/PmJKrc55oDijup/7xOrIrdkf7pOWL5IaPa5QOHpSwk0TKZI99BTp7qvcx69cmuPiMlebwfvBiUPyV0cmrLXxcOx/3el/0rAxMn97W+U31kjvJHcvT3HiirP+oV7ez6ueeGBiRZt+z2A0l12nAzY3euJ973DGkrBnV96EPY5CaSAYDQAAAAAAAAAA9ACOcVQUKHYNQauP1vpeZ0WT+/d5g0LlCjkeV5oBAAAAACTxChhrjHkcj9mJvEKxKwo4Pw3IBYLRAAAAAABxnsFoMWntKve+/gN9LW0uf0D26jOld16QggUyx/xS2vmgLAsF4MpxD5fqaUwwJI2d0snbDEqVYzt1m91am6CyimiVazDaikBFfOj6YLRH1k7SeWNf07LgYO1W95x+veJXGtf8tSSp0RToN+VnJa1xYuUNKcsY1byo9cbICVLF8Ex/E+RAv4h3aEt9UycW0g2Yon5S0frEinClVF7pPXZAuWxpmVTtEi779UfSlru4zrP/92Tmhe13gnTcGZnP60RlJUZlxdLKOv9ztlr3pkpja5Pag4pqatNH8RtV3/pfcMEnSU0jWr5xHboyUC4tfCkhGO3b5Q2SyzGpY5oX+K9Bit+H2od4tQ2+SheQlRDg5RHG5bpGu1AtjzkmaU6K7biu4XjU6nOOs36ej9Aw00ve++TEFQ/I7tuBL8+hRdvnAAAgAElEQVStlWqr3ftC3f9g7F/sYVRUIP3vM1ZG0l5TjS4/zPv1yxijMeWSPXae7IKXpCfv0MTGzzLaZnGbvLhxr/9NR1eX6s7S7/ie/50brE64JaqAEw86Crb/OyAFTOLPwUDiGNd5G/tMwjzH97zkGjZsN7kGk3pNz3lpamnzuztOLwyPc3k92mjUxKQmc8plsl7BaAs/zVFR2avJ4GKLk4Z07f+n/fRt2at+kRTcn1K/gdKWs2VO+4NMuFDlI8LSO8khZMtSBKNtCDMrd8nS3aCqNjEYLeaRc+b89VzZxpkyux62sW3/6Uan3uEdjDbUI/cynyIeLx0Nzd51AgAAAAAAAAAAdCfFTj/XYDS3Ni9Vze7BaBUh7wsqAgAAAACShT2C0Rq6RTAa+35APhGMBgAAAACI8woWiEWlaq9gtDJfS5uSUpmzrsuyMAC+eIUb+jFhi9zVgZ7PtAYWlEer9KXGJQ1ZESyP/+AE9NSHVgc/PUOKxJvuLp2rD8OT9dpXOyikFr0fnqqlwczCWgZGV2lwdPn6bTgy3/+VjOmFwRg9RDgoNbYkt5+0M/8nKY2aJL33SlKzff1pmUNPSW5vaZb95YGZbePQk+X83CMspZvZdKj08hfJ7UP6S0fMNLr62dagjJBt0vlVv0m/aAbBaHZRcnhMeYtLcJ2kqmCZ7MJP1Nhs9fYiacD7T2lJcLbr2GEtS6RDfig98Ne0NZgfXCzz3TN91wz4Vtgv/ZhsBQvSj+lijmN06i5Gp+6S2TxjjMx5NysmacrzH2Q0tyTc+hpon52vY6qLMgpGk9xfW3OnM8KH8r8NY7IJhcsk3E0KOmbjWKdDYXSptmtaf/5Acop3UzjWqC0a31X/2PoTJwYNlSlOTrAygYDsjNnSW88n9dmbL5aZd27O/92r660Wr5HGVUiRUOr3e7WN/ted3IXH+NiVS2W/t63/CUf9TM6PLk9q9go3q3eKPZdybExSQGXeQ1RVm3g7GnMfF6haJHvBH6Q/PCaz9R6SpBEDjWaMlN5alDz+yJmmSwIGvYPROrcOAAAAAAAAAACAbBUFSiSX7zbqY7XJjR5WNC1xbefkeAAAAADITKQ7B6N57fsVsO8H5ALBaAAAAACAOK9QpVhMWuseGmFKB+WxIAAZMR7hhn5s6R72gj6qTQBZRUuV65AVgYr4D4GArno6+az99yKb6R+lR+q71Xfok4KJGZcwqfFTGUna93iZOcfKzNg54zWQOz/f0+i3TySHn+w/nWC0lKZt5xqMpjeelW1pkQm2+3j+2flplzTn3iT70RvS2lUyOx8kzT4kR8Xm36FbGr38RfL96A9zjY7a2mjWOOmRJ79S/3ef0rHVd2j7da+lX7TqW1lr0wYn2sZ10kM3JrWXRz2C0QJluuXzkfrJz2LrAzx2lzw2MfyU02UO2EmavqPsb06UWlIkfkTcv5AFOsoEg/mLqAp6pNv0IuacGzVj4jXS0/7nFIfb3HjvFU0Kjcp5XZCslVqs1OIREpWjreRzcZdt7C6N2l2SFLTN+umqq3X58nNTf75S7n1wjP3ifZlNpuWkyljM6vInrc5/0CpmpWGl0h+PNJo703tfc6XP8z6mj+jiYLTDNslovFsomqSU4Waea73yqLT7QSosMCoOS3UuYXJJwWged8uAjUqS7M2XbAxGk6QTdzT6yT+SJ524Y9e8X/cKRltHMBoAAAAAAAAAAOghigPuV8ypi2YQjNbsdXJ8ZhcZBQAAAIC+zisYrbGLg9FiNqYVzUtd+wjFBnKjA2fMAgAAAAB6lYBXMFpUWrXcva+0PH/1AMiM12M4nYKIzPFn57YW9GxO60eGXqFBqwMD4j8EgnrmY/dlTqy8QQePuFeXlZ+RcQnTGj+UOfECOWdfTyhaN/CLPYy2HpPYduURRiMHEYyWitlhP/eOhnpp2YKkZvvCg6kXPPp0mTnHyvn5n+RceLvMrofJOD3nI/7v72S026aJbWfMiYeiGWN01DaO/r7j27pm6Wn+QtEkqalRqlmdftx917o2D/J4jqt3ivUDnbk+FC21ylnbyhgjs8dcOf+ulXmuXip0PzhWMwgiRR6NGO/dN2ELabs5Uklp5usOGpJ9TT2EcRwF5v5EN/f7i+85JeuD0ez6MMRRzYvUP1qdj/LQi7WYkP5Q9nPdWvpdKZIicWu4d6iXvf2ynNXzyLvSuQ/EQ9EkaUm1dNT1Vl9VeYfHPf1R+mC58hLpT0c6aYNMc822NMs+fY9i87aWoi3+Jg2okLnBJdh2vYp+mf8Ozt8u3fizV7BaVW3iv2PUIwwwoHgwmt5/VXbVso3tP9zZaO+piWNP2cVozyndKxjNz3srAAAAAAAAAACA7qA40M+1vT5a42t+1LZoZbP7sdecHA8AAAAAmQl7BKM1dHEw2pqWlWqx7gfGDS5g3w/IhWBXFwAAAAAA6CYcj1ClxnVS3Vr3vnI+oAG6DZNdOI55bIlMpCjHxaBHaxNYMCDqHji0OjBQkvRO/RA1psgYeLSfRzBUGsdW3yEVHpTVXOReeT+j537p6NmPpa+qrHaZZDRtOKFoaU2c4d238NOEkBPb2CA9nyIYbY8j5ZxyqXd/D9AvYvTETx09/ZH02XKrHcYbbTlKiSEpoYLMF/76I2n6DimH2Lv+5NruFf7oV8C2aPCgxJpNICC711HSQzcmDh49SRo/vUPbA1KafYh0x++S2wtLZP7yvEw4IhuNSl99IL3zkuy7L0vvvCytdL9C9QZmpwPyVHD3c/zu/XXafWtVE+ifdmzx+mA0LVsoSXJkNbv+RT3Sb/88Voje6qF+B2he4ULPfrPb4bK3/sa989n5spO3ljnqZx2u42+vuqdxbXJOTNG/JgebxWJWj77rHox20ObSgVsYFQSl3Tc1GlrayaFoa6pkf7Rr/D2XT+anV0p7HCkzcLDnmMos8iWdL97d+HN5ibRwVfKYqtrE257BaLZNx8uPSQecKEkKBowe/6mjf30oLVplNbXSaPtNuu79esTjKBSC0QAAAAAAAAAAQE9R5LgHo9VFa13b21vZvEIxuX/pU8HJ8QAAAACQkYhnMFp9J1eSaEXzUs++itDQTqwE6L0IRgMAAAAAxHkFo3mFoklS+fD81AIgc16P4VQOOJFQNCRrE7I3IFbtOmSNE08EOOrdPXO++cEty7TjulelyNE5XxvZKyww2m+6JBGI5pcpLJYdPFJavii5c9FnstvNkZ74m+w//y699XzqtQ45OU9Vdq5Q0GifzaR9vO5HobB7ewr2lcdlUgSj2Vcel1a7X4G3o8FoQ0uicpzk38Wccpns8sXSq0/EG0ZOkLnsvqRAGSCXzPcukP32S+nf9yW2X/mwTDgS/zkQiAf0jZ8uc9ipstZKS76S3nlZ9p2XpXdfkhZ9Fp8YLpSZd57Mtnt39q/SdbbfRz+86UZdWfaLtENLNjxd1bbuL9/+7YkaOMn9+WZk8yItCo3MRZXohRaHhkuFxZ79ZuwU2QlbSJ+97dpvrzlT2n6OzOhNE9pX1Vld+S+rW1+2WrpW2maMNLbc6JAt4wFVj70rVdXGg81GDjK6/y3vGgM/jOmEWUa7TJKO287IGKP/LpSWuO8u6JjtHB2+Vde87tmmRtkDMvu8yvzxCZmZu6UdN3xg5vU4islaK2OMykvcx/gNRnPanDxjX35UZn0wmhQPm917qtQd3q9HQu7tBKMBAAAAAAAAAICeojjg/sVOXbTG1/wVzd4XKSsPDcmqJgAAAADoq7yD0dZ1ciWJVjR969peEihVYcD7uFAA/hGMBgAAAACIc5z0Y9or56plQLeR6WO4sETm+LPzUwt6tjb3pYHR1a5DqgOlqjeF+qre/cqY2YrE1um9L7eK3wh6nE0P9CSjJrgGo9mFn0pX/UK679r0a0zYXNps+zwU1w0VZB6Mpvf/z7PL/usfsr8+wbN/YHS1jJGszXyzklQ5yD2U1BT3l7niQdmVS6XaNdKoSYSiIe9MqEDm4jtlVyyWFn8pDRoiDR0tk+JxZYyRKsdJleNk9jlOkmRXL5fWVEllQ2X6D+qs8rsFM7BCBw5eoCuj6ccWb/hnbWw9oKJfrFZ3fnOcjh7xt4Sxmze8q9e+mqXlwcH6LLSJonOOU2zOCYrGpJZYPACpJSpFrW3z8/q/24xJGB9L0ddufixhLes6NlfbbfEIc0Jq60xEiqQ+AMb86nbZY6Z79ttjN5deaNj4elNdb7X5RTEtXtM65rWvpde+trr7DdcV0tZ56ytWt74i/d9X0jVHGz38jvucgqDWB3R1Pmut7GmZBTqa616Qmbqtr7EDi6RwUGps8bm2jcVjyuprpOL+Ki8xcvu3Xuk7GK3NE9Trz8iuq5NJEarXVTyD0Xz+uwEAAAAAAAAAAHS1Iq9gtFita3t7K5rcg9EGBMtU4GRxfAwAAAAA9GFhj2C0xi4ORlvuse9XERrayZUAvRfBaAAAAACAuExDlSJFUklpfmoBkDnHPZzF1eY7yZx0kcyQUfmrBz1Xm/CeAdFq1yGrAwP1XNHOarYZ3O9SiMTWadt1r+mqZaerLLoqJ2sC3cLICdIbzya3P3SD7yXMn/7Zd0K1CiKZz1n0qWuzbWmRvTZ1AGhg1hxNCksfL818s5I0dFDqr1hM2VCpjC810blMxXCpYnj28wcOlgYOzmFFPcv2u22qkY8v0qLQyJTjigvW/9CUeEDFETX3ad23hbq87JdaESzXXrVP6/fLzlRAMQ1rWaphLUulB16WHjg5u3DyHiAmo6gCipqAWhRs93e8PaqAWkyw9W/jJI1tHeNsHBvd+HfrWhvnbehTQC3GfftuayVvI7nexLVb640l1evyuymwcXyjCavJ5SSHdaZQKnQ/sWKjkROlsVOkrz70HnPn76VjfilJuvQJmxCKlkvXv2B1xt5WD7/tHoy22ySpXyT3713sujrZmy6Snn9QkmT2O0H67lkybR5L9uZfS++/6m/BkRNkfnyF71A0KR4oWTlA+qrK3/jAhiCz6pVScX+Vefw3r6xN/LeMeuTUBWybYLSmBun1p6WdD/JXTCfyDEZr7tw6AAAAAAAAAAAAslUccL9gaH20xtf8Fc1eJ8dzQWoAAAAAyFTEIxitIdYga22XnW+xotn9RISKAvb9gFwhGA0AAAAAEJdJqJIkDRrSd0I6gJ7AZ7CC+d6FMieck+di0KOZ1vtSacw9GG2NU6q3I5tnvYmrlv5CP1p9nbT7XOmZe7JeB+juzKiJ8si18Df/krtl+g/KWT3dXiiLK+KuWiZbs1qm38DE9vdekVa6H2S6gfnu2drnQ6OPl2b3v1Q5gPfCQG/jHPh9XXHLPH1nxN9Tjive8HTVmBiMZiQdX/13HV+der4kKRbLrshuzpHkKCqPXKQ+7a7+R+jY4bclta9zIlJhUcq5xhjplEtlzzjYc4y97lxp/3l6a80g/e7JjrwDSS0ak659zuq9xe79B2yen9dH++sTpBcfbr1900VSc6PMDy6SjcWkD1+Tbv2Nr7XM+bfK7PWdrOoYnkkwmm0TjFY5VuUewWhVtYm3ox5PDxuD1tazLz8m0y2D0Yzk8i6YYDQAAHLPGDNW0haSKiWVSFoiaYGkV6y1vPoCAAAAAABkqdhx/2KnLlrr66T7FU1eJ8dzgT0AAAAAyFTYIxjNKqZm26QCk8V5CDmwosn9fIXBhGIDOdM7L0UOAAAAAMhcIMNgtOL++akDQHb8hhvO2Dm/daDnaxOyNyC6xnVIg1OodyObZbX8Vuve1Mmrr5e54DaZky7Oag2gxxg5sWPzt94jN3X0FNkEo0nSwk+TmuxLj6Ses+thMlO30TZjstukJFWWZj8XQPdkwhHNPe84PbVgTspxwcD6g9wbGzqhKvQWhTH3+8s6UyhFitPON9vvI3PxPzz7o3L0yz98qpm/yX/oXqrgtVwHo9lYTLHzjkoIRdvo4Ztkv3hfdt8hsqfM9rWe+emVWYeiSdL4wf5/P0fr/y+WLpSkjgej2cRgNL3yuGw06j64C0U8Ls9HMBoAALljjDncGPOKpC8l3S/pakm/lXSbpOckLTXGXGuMKe+6KgEAAAAAAHquokA/1/aYomq06b8nXtHsfnJ8BSfHAwAAAEDGIk7Es68hts6zL5+std77foRiAzlDMBoAAAAAIC7gcdail3BRfuoAkB3H58c8ozfNbx3oBVpP9B8Qq/Yc9Vrh1q7tR2zlHRQwrulL3b34aAX/9qbMnkdJFcOliMfrSV8LhELvNHpS9nNn7StT5JGe0VsVFGQ3b8EnkiTb0iz77/tkn7pLuud/vcdP2lLm51dJkoYPyD68ZZOKrKcC6MbMrH21a/0L2mrdm6794wPLWm80ds3BFOiZItb9/rLOKZQp9Peab3Y9VNouObjvrfDm2mX0U/rjkm06VGNHbTlKGjEwd8FotqVF9rwjpecfcB+wZoXsCVtJdWv9LTjvPJkjftKhmiYO8T92Q5CZvfR7kqTyEvd/m7bBaLGYd+hcQO1C0NaskD74j/+COkkk5N7e2BI/GAwAAGTPGFNijPmHpHslbZ9i6CBJp0h63xizd6cUBwAAAAAA0IsUewSjSVJdtCbl3JiNqqppmWtfRQHBaAAAAACQqYhT6NnXVcFo1dHVarZNrn0VocpOrgbovTI86x0AAAAA0GsFMwyiiHh/oASgC/gJRistkxlQnv9a0LO1uS8NjK7xHLYwNMq1fe+p0i0nOLr5mud1z5tGY5oWaEzzAk1r/EB71D2rgfPfkqkYLkkyoQLZWftKz85PXGTSljJDRnb8dwG62pBR0tDR0tIFGU81c3+ah4K6uVA4q2l24afSqmWyp8yWvv0q9eCdDpS54DaZ9aGMlQOy2qQkaf/puQt+AdC9mIe/0WHz/qD/Fm6Z1HfQ6vmyzSfLhAoIRkNGCj0OvmkxIbXIkUeWVBJz6b2yu7WeiPHr8rN1UcX5Oaiw4w7YPIehaNUrZX+8u/T1RzlZz/z5aZktdurwOpsONZL8hXs5isV/aKiXjcU8g9Gq10kNzVaRkNET73uvtyFoLcFbL0jTd/BVT2fxCkaT4uFoqfoBAIA3Y0xA0t2S9m3XtULSW5KqJW0iaYZar34xRNJDxpg9rLUvdVatAAAAAAAAPV1xwPvCRvXRWpWFBnv2r25ZqahaXPsqQkM7XBsAAAAA9DXhFMFojV0UjLaiaYln32BCsYGc8XHGLAAAAACgTwhlGoxWlJ86AGTH+PiYZ+zU/NeBnq/NfaksujLj6ZsOMyoKG/3otJ303Iz5unXpSfpV1SU6XM9p4B/u3hiKtnFzv7xG2rxNQMGYyTKX3JV1+UB3YoyRZu2T+cS9jpbZatfcF9TdFUSym7fgY9n//WX6UDRJ5hf/uzEUTZKGlWa3yW36LVX/QoLRgN7KDKzQL3aN6oQ1tye0H7b2fl387bnSW8/HG7yC0TbZTOaeT6Rp2+e5UvQkEdvo2Ve/vMr3OiZUIHPpvZKkqwb+KCehaA//2NGcqZLp4EvbQVu0LmCbGmXnX63YhccoduNFsssWxtvXVCl29RmK7RSO/7nuXNnP3lHs2rMVu/AY2Qevl21plr3hgtyFol33Qk5C0SRphns+tKuA2gSZrV2V8n3HFyuk+karE2+L+VtvPXvv1f4L6iSFKT5ibGjuvDoAAOiFfqvEULRmST+RNMJau7e1dq61ditJ0yS92mZcWNKDxhiOvAYAAAAAAPCp0CmSkfuXZ3XRmpRzU50cX8HJ8QAAAACQsUiKYLSGLgpGW970rWt7sdNPRSnCtgFkJtjVBQAAAAAAuolghsFoYYLRgG4lEEg7xGy7VycUgh6vTRpCoW3QoJaVWhUs8z190pD1ywQCMqf/Wfaki6UlC6Rx02SCyR9Hmn4DZK5+Oh6U0NggjZwQD5MCegkzaz/Z+6/LbM5pv89TNd1cQTi7ea8+LkWTg0KSBALSoCEJTYUFRoOKrFbVZ/a8c9KkhZKGpx0HoOcKnXqJbny4XJcvP0fvhadqcuMnGhJdHu/8/F1pmz2lJo+gq3ChzLAx0rX/lhZ9Gh/X2CCtq+20+tH9FFVFpPvd+xrHbp7RWmanA3XVxN/o9MDPfY1/6avZumbQKfpH6VFJfSVmnfbbrFj7Tw9oVZ3Vu9/E39Pf+ZrV/8y3vmvaZ5q0xcj466ltaZE961Dp9ac39tsnbpcuvVf2jEOkVUtbJ95xpewdV7aOe3a+9OoT0pvP+d62p0iRzBPLZYKhjq+13ugyo903lZ75OP1Yx7YJOVu5VONGlyngSFGX7LOPl0ifLZNWpDiPJmBdJlZXyT58k8yB30tfUCcZUybddZJRJGgUCSnhT0mWb/cAAOjrjDHjJJ3WrvkIa+1D7cdaaz80xuwu6RlJG9KayyRdKOnkvBYKAAAAAADQSzgmoEKnWPWx5O940wajNS91be8fGJDyZH4AAAAAgLugCSlogmqxLUl9XRWM5rXvV1EwtJMrAXo3gtEAAAAAAHGhDIPRIgSjAd2KcdKP2Wz79GMAJ/G+NLzlW9/BaOUlUllJYriQ6TdQ6jcw7VwzZJT/GoGeZMbszMaPmezrMdMrhVInZZjvXSh700XJHX5C0SSpf5mMk/x6ueVoo6c/8rfEBjtPIMAR6O1MqEB28tYqe+cl7VL/YkKf/cs50vb7yDZ6HEwRjh/MboyRRk3Kd6noIYqWW+l+l2ArSeum7pzRWmvXWV1Q8CPJx0vguo/6K6QWaZVcg9H2qP6X9NFIacrWGlRstMv6u+xpu8f/9hOONnem0V+PbfPa+M6LCaFokqTl38ieuqvU1JC+6FceTz/GB3Pi+TkNRdvgisMdbXWJ+/9lW4G2/0ErlyhUPkzjnEZ9FhuSNPaIv2a4Xhv2+guk/ee5vs/pCgOKjObO5L0SAAA5dqGktm9sbnULRdvAWrvOGHOCpPckbfgC8HvGmCustV/mr0wAAAAAAIDeozhQ4h6M5tLW1oqmJa7tFQXDclIXAAAAAPRFYadQLS5B1Y1dFYzmte8XYt8PyKXucWQsAAAAAKDrZXqiaJirlgHdSiCQfkxxaf7rQM/XLmSvssX9w3o3m3JhEyCJKQhLx53pf/zx58SDdPqiVO9HSwZIR/2sY+9BS91DHs/fP7OvSk5Yc7s22WRQ9nUA6DkC3teYsqfuKn3zuXtnOJKngtCTFaZ4mWsorcxorSfet6qNpg+4f2DREfFQNEnbNbyu49b8PaG/KFanM1b+XnrtqaS5wYDR6Xs5+u95qV8nT9nF6K6THJUWtb5/sXf9yX2wn1C0XBk+Tjr01LwsPWOU0TAfu9eO2oTKrVwq++sTNHH1f7PebsB6JOFVV0nfkm8CAEBvZYwplHR4u+bL082z1n4q6cE2TUFJR+ewNAAAAAAAgF6tKNDPtb3e5UT8tlY0e50cz8F1AAAAAJCtiON+HkFDVwWjee37EYoN5BTBaAAAAACAuFD6E2oTRIryUweA7BgfH/MUux+oAyRwEu9Lw1u+9T114tA+GuYEpOGcdLGvceaPj8vsMTfP1XRfxhhpuznufQ98JRMpkqZsk/0GSstdm3eaYLRz6EPXvln1r+ii5Rdpz9qndEDNo7p6yWm6fskpUnlmATYAeqhU4cO1a6Rn7nHvI0gcLgpTfOyyrtn/OtGY1XdusGnHTWn8UAfUPpbQdv2SU3XDtyfr4LUP6furb9YbX22vbRrekL3pIs91ZowyOnSG93auOdplX/Q//0xbX14d8ROZG/8jk8eQwsk+jl1qG2Rmn50v/d+/NLp5YdbbDMgjGE2SatZkvS4AAOj29pbU9ku5V621H/uce0u724fmpiQAAAAAAIDer9gpcW2vi9amnLeiiZPjAQAAACDXwsb92NzGLghGs9Z67/sRig3klPdlzgEAAAAAfUuGwWiGYDSge3FShDZsUEQwGvxIDDerbPYfjLYpn98DnsyNr8p+f3vv/isfkZm5eydW1D2Zn1wh++nb0qql8YZQgcw5N7W+9xw1QXrr+ewWH1Dm2XXv1Ee1+39iej8ybWPb0JalunbpTzWt8UNpZZvBxf1litwPfgXQy/h5j+2mgGA0JCsMefeta/K3xpsLrL57c8zX2H8uPCCpLaQWzau+XfOqb0/qs4s+kxk5wXWtm09wtGBVTP9d0NpWXiI99tPudR02c/6tMnt9p1O2NXGI0bMfpw6oSwgyWx8WN6zF/WAoP9oGrSWpq856XQAA0O21T5F/LoO5L0pqUetxojOMMUOstctyURgAAAAAAEBvVhRwPzakPkUwWszGtKJ5qWtfRYhgNAAAAADIVsRxPza3oQuC0Wqi1Wq0Da59gwu4ADuQSwSjAQAAAADigpkFoynMid5At+L4OCGdYDT40e6+VBGt8j110hCTfhDQR5lJWypldEY5X4BJkhk1Sbrtv/HwkPoaaatdZUZv2to/cmLqf8dUSr2D0crHjdSrd+2sh/odoA/DkzWmaYEOqH3M/TmwnANVgT4jkOVXqewvw0UkVTBac/r5Z90f0xX/9PcqeNO3J6kywwAue/Q06YUGGZP8nr5/odHLZzp68G2r9xdLIwdJB0w3Glrazd7/73Rgp21q4pD0YxybHGI3vMV/8HR7CUFr7dWuzXpdAADQ7U1rd/tVvxOttXXGmPckzWjTPFUSwWgAAAAAAABpFAfcj7esi9V4zlnbslrN1v2qSBUFHG8CAAAAANnqTsFoK5q8j88kFBvILYLRAAAAAABxoQyD0SJF+akDQHZMmmC0grBMpo9z9E3tgtHKMwhGm0quE5BaaZlUvdK9j+fojcyAcmnOse6d46Zmv+7YKd6dY6eq0DboqLX3pl9obPY1AOhhsg5Gi+S2DvQKxhhFQlKDSwjaOvdzIzZ69QvrOxTN2Jj2rHsmiwolu3NEdve5MlvOlvabJxMIbOwrCBrNnWk0d2ZWS+edOfUymcLiTttePBQ69f+JW5DZsNcqDQ0AACAASURBVAwD69qyShFEV1edOLbqW9m/nCv96854wwEnysw5Vmb6Dtlv/60XZJ+7T4rFZHY5VGarXbNeCwAAZGRyu9ufZzj/CyUGo02R9GyHKgIAAAAAAOgDPIPRot7BaMubU50cP7TDNQEAAABAXxX2CEZr7IJgtOXN7hdILXSKPPclAWSHYDQAAAAAQFwwwzCOMMFoQLfS5oR1V4V8sAq/Ek+2L2/xF4w2cYg0tjwf9QC9iJPiuZpgNH82myWFC6XGLL7A3OVQ777x06UBFdKaFWmXMQecmPm2AfRMqZ63UykgGA3uCr2C0Vza2rrtVX+haJK0f+3jquxA+JaeuUf2mXuk156WueSu7NfpbHOO69TNTRySfoxjY0ltwz0OiPIjZFPcUWpbg9Hst1/JHrlpYv8jN8s+dqt04d9kdjs8423bp+6SvWSeFIv/TvahG6Qz/yqz3/EZrwUAAPwzxgySNKhd88IMl2k/fkL2FQEAAAAAAPQdRYES1/blTd/q0ap/uPYtblzg2l4c6Oe5HgAAAAAgvYhHMFpDnoPRFjZ8rk/r30/YzufrPnQdWxEaJmNSXAAVQMYIRgMAAAAAxAVDmY2PEIwGdCvGSd1fxEE18MlJvC+VR1f6mrbXVMMH+EA6BKN1mIkUyc7aV/r3fZnN++39MuWV3v2BgOzsg6WHbki90OARMtvsmdG2AfRggSy/SiUYDR6KCqTV9cntdY1W7QOKN4jFrK5/IX0wWv+IdOiwr3XVe5d4DyoZIPPnp2XnzUxf7PMPKLZTWObE86XjzpIJpn482Leel73p19LK7IO/shYMSaVlnbrJMeXxf/O1Dd5jAoomtY1r/koFsUY1OeGMtje4ZZnGNn/t2W/XVG28B9m/nOM+KBaTvfAYaccDZAr8b99aK3vDhRtD0dY3yt74K2nf77IfCABAfg1od7veWluX4RrL290u7UA9AAAAAAAAfUax437MZU20Wo+vvDujtSpCw3JREgAAAAD0WeEuCEZ7tOofGe3/VRSw7wfkWpozZgEAAAAAfYUJBKRAirCO9sKc6A10K+kev0X9OqcO9Hwmu2C0ad55QwA2SBWwEyQYzS8z7/zMJ22/T/p1v3uWVNL+fOM2BlTI3Pxa5tsG0HNlso/chiHsEh5KPLKo6pq85xxwdcy7U1LQkZ76uaNVf3J089mbqN+dr8s8WyNz6mVJY81JF8uM30zaeg/fNdubfy17nUfQ1oYxX34g+/N9pXdelL75wvfaGakY7t1XNkzG6dxDHwKO0V5TUo+J2EbXtt3r/51y3hSXY6POrbpcjlIE5P39CkmSra+RXnw45fr2iAmyDS4JfV4WfSYt+Tq5vepb6dO3/K8DAACy0f7s22yO6G4/p8NfFhhjBhtjpmbyR9ImHd0uAAAAAABAZyoK5O6YS4LRAAAAAKBjIh7BaI15CkZb2vgNodhAN5DlZc4BAAAAAL1SsECK+vwwKOz+YRKALmLSnARe3L9z6kDPZ0zCzfJola9pk4eZ9IOAvi6Q4rm6wCMpBUnM2MnSbW/KHr+lvwl7HuUrLMUMHiHd8prsHVdKn78nFZVIq5ZJw8ZIg0fIHHuGTGlZx4oH0LOkCrRMJRjKbR3oNYo9Xu5rG9zbm1usnv/Ue72Dt5DOmONou3GJ78VNqED2qJ/LjJks+9itkozMAfNktt073n/lI7KzM/hc575rZb97lkz/Qa7d9oYLpWiL//UyVdRP6j9IWrHYvb+8aw4mOnym0fw3vcPKpjW879p+YM2jeqJkjue8Z0539MoX0r1/fUaNa6p19Nq7dUjNQ2nrsVXfSu+8nP7/YtUy2T0Hxu8jp1ya/n3S2lXefauXp60LAAB0SPtgNI93jim1/+Kv/ZrZOFXShTlYBwAAAAAAoNsqyWUwWsHQnK0FAAAAAH2RVzBaQ56C0T6oezPjOez7AblHMBoAAAAAoFWoQGr0+WFQQSS/tQDITLrQhqJcnOuEPqHdSfFh26RBLSu1Kpg6DGgKFzYB0nMC3n3Bgs6roxcw46ZKP7hY9oYLUg8cOlrmhHP9rzt0tMzpf+5gdQB6jWyD0UI8p8NdiUcwWl2Te/ui1VK9R9+2Y6X7T/V+b2GMkbbfR2b7fZL7HEe66knZsw+X6mvSlS21NMv+7kfS7IOlKVvLVI7b2GVr1kgvPZJ+DS9b7Sr999+px5QPSx0iO2hI9tvvgENnGE0fYfXuN+79+9c+7tl+iseac2caDelvdMgM6SDnN9LiV/wX9N6rsi+kD1Db6K4/yq6rkbaYLVWOlZmytfs46x3+1j5YGwAA5F2KF+aczgEAAAAAAOjzhofHKGwiarTZZNUnmlg0LQcVAQAAAEDfFXbcz2VtjHV8n81NTXRNxnMmFLLvB+Ramkv/AgAAAAD6lEwCOQhGA7qXYLpgtNxdvRC9nMuJ7bPW/SfllGmVUlkJJ8QDaaUMRgt1Xh29xXFnSMPHJbcPGipz8m9kzr1J5sZXZUZN7PzaAPQOTpZfpYZSBDihTyv2CkZrdG9fUu291qm7dOz9t9lyF5nb/itz2h+kfgPTT3juftmLvit7zHTZ+/8iSbKrl8vu27FQMrPzQdLgEakHlVemflwVl3aohmwFA0bXHO3IcfmvGNGvWfsft5PrvGEtS3Vk9T1J7UYx/f17bRaLtmRUj73gaOm5+zKao4dulL3oONkf7qjYeUfJxmKZzQcAAPlW2+62+yWwU2s/p/2aAAAAAAAAcFHghDWn7IgOr7Np0eacHA8AAAAAHRRx3L8ub4ity8v26qI+Ljrbxg6le6q8oGsu8gr0Zlle5hwAAAAA0CuFCEYDeqx0j9+i/p1TB3o+l2C0Q2oe0qP99vOccvAMQtEAX1IEo5lsw3f6MGOM9Kd/yl54rPTha/HGyTNlLrxdZvgmXVscgN4hkOVXqZnsW6NPKfa4a9RmEYx27HYdfw9uho6WDv+RtMXOsvNm+pvU0iz7x5/J/vFnHd6+JKliuMxv75c9cRvvMZtMk7760Lu/qCQ3tWRhh/FGd/7A6IRbrBqa423DSqV//DCsovE/kp0zV/bCY6S3nk+Y9/tlZ2pJcKheKN5ZkjS14QP9rfQaBQN/bR2UYTCaJKkjwWbPPyA9erN04PcT21PWwb4gAAB51l2D0a6VdG+GczaR9FAOtg0AAAAAANBp9i47TIMLhumd2v/T6uaVGc0tDBRpQuFUzR64b/wYFwAAAABA1sIewWiNeQpGq4+6f7U+IFimitCwjbdLAv01pXiGZpXukZc6gL6OYDQAAAAAQKtgyP/YgnD+6gCQuUCax28XniiOHsYkhzPtX/u4ArZFUeP+ceIhBKMB/mQbsANPZuho6boXpC/elwoKpMpxMpm8pwWAVFIEWqYUJBgN7koiRpJNaq/3DEZLHitJm1QopydPmPGbyW6+k/TOizlb07fySpkJm0tPV8v+dM/WsNMNAkGZOcfJ3vgr7zWK+uW1xHTmznR0wHSr17+WCoLSFiOlSCj+/2MGVkh/+qf0zWfSkgXS2CnSv+/T0KvP0DML5+jDgslqNiFNa/xAwVHtgl29Askcp2MBaCnYe/4s0z4YrdnjDiplF94GAAAy0T4qt8gYU2ytrctgjcHtbq/pYE2y1i6XtDyTOZz8CwAAAAAAeqoZ/WZpRr9ZXV0GAAAAAPRpEa9gNNugmI3JcTkXqiPqYu7BaNv230UHVRyX020B8JbbRzYAAAAAoGcLZXDydkEkf3UAyFy6EJguPlEcPYiT/JFhWXSVdq/7t+vw8YPjJ/4D8CGQZcAOUjLGyIzfTGbUJELRAORWtoGWmexbo08p8rhr1DW5B6AtbR+Dsd6w0hwV1Ia59B5pjyOl0vLcL55KRWV8++GIzFVPSof8UCoZIBkjTdhc5ooHZSZukTKg33SD/d3CAqOdJxptN85sDEXbwDhO/H3KtnvJDB4hVQyPt0ua2vSRtmh8V0FFpYWfJi7qFTq21W55+A3WW/Cx7JKvE9uaGrzHN6UITQMAAB1mrV0paXW75lEZLjO63e3Psq8IAAAAAAAAAAAAAIDO5xWMJkmNsRTHuGWpPlrj2l4U6PrjFYG+hGA0AAAAAECrIMFoQI+VJnzBFJV0UiHo8Yxxbb54xUUqiDUmDb38MEfGYw6AdhyC0QCgRyEYDTlW4vFRSq3HMTlLPILRhvbPTT1tmf6D5Fx4u5xHF8vc/XHuN+AmEJQGDmmtIVIk5xf/K/PYEpmn1si5+TWZbfaMdxZ4H9Sknra/Wz7Ms8u+9ULrDY9gNLPj/q6B1jnzyVuJt1OFnzW799loVHb1ctm6tTksDACAPuujdrfHZzh/XJr1AAAAAAAAAAAAAADo1sIpg9HW5Xx7ddFa1/biQA87XhHo4QhGAwAAAAC0yuTk7TDBaEC3Egyl7i/Ow5nz6J2M+0eGMxve1Ctfz9axa+7QzIY3dcRWRv/6maNDZhCKBvhGMBoA9CyBLJ+30703R59V7PGxS12Te/vSauvaPnRAft+Dm8qx0uCRuVls/HRp6rbufdvuJePyODOOI9P+c6eBFd7b6Gn7u+WVnl32L2e33vAIRlMoLHPn+zkuqo0F7YLxGlNcTbMpuc9+9Ibs97aVPXCk7P6Vil19hmw0muMiAQDoU9q/8G/vd6IxpljS9DTrAQAAAAAAAAAAAADQrUVSBKM15CEYrd4jGK3IIRgN6EwEowEAAAAAWoXC/scWEIwGdCuBNOELRf06pw70fI73R4ZbNL6rW5f8QP9ZdZDu/qGj3ScTigZkwhzxY/eOkRM6txAAgD+BYHbzMgkdR59S4vGxS22je/uSavf2YaW5qScVc+FtHV+kpFTmR7+Vuew+afSkxL5BQ2R+cLH/eiq8w8R63P5ueaVU4HFn+PID2Yb6+M9eYWKBoDR0TPbhjWnYBZ8kNriEn7X2NcrWrJF9dr7sf/4pW7Na9qQdpC/ei/e3NEt3XyV7zDTZ+VfnpV4AAPqAf7a7vUsGc3eS1HbH5i1r7bIOVwQAAAAAAAAAAAAAQCfqzGC05lizGq37cXPFgR52vCLQw2V5ND8AAAAAoFfye/K242R/gjiA/AimCUYr5IoU8Mn4uJZCpDj/dQC90Q77SeFCqTHxizez53e6qCAAQEpOlqFDmYSOo08p9gpGczl+piVq9c437uM7JRht+g6yu8+Vnrkns3l3vi+9/JgUjkiz9pUZMireccOr0rPzZb/+SGbkhHhf+TD/C5elGFvUs/Z3TUFYdtQk6fN3kzsb10kfvSHN2FmKtrgvEAjKBAKyZcOk5R53ko5Y9Gni7RTBaPbFh6XrL5Bq16Rec/GXsledLnO4R1AwAABI5UlJ6yRtOMp7e2PMptbaj33MPaHd7QdyWRgAAAAAAAAAAAAAAJ0h7EQ8+xpzHIxWH6v17CsO9KzjFYGejrPYAQAAAACt0gUrbVAQkTEmv7UAyIgJBGRTDSjiihTwyc/zeyHBaEA2TFE/6fIHZM85QqqviTfueph07P90bWEAAFcmEEz9HtuL39Bx9DmlHhcsXF2f3PbAW97rDO3fOZ/JmDP+IruuVnrlcX8TttkzHnp21M+S1yoslvY7XllXXpIiDc5PuHM3Y373sOwhY9w7Vy6J/50iGE2SNG5qfoLRqqsSbtqXH/Ue+/rTud8+AABIYK2tN8bMl3Rcm+YzJc1LNc8YM1HSIW2aWiTdmfsKAQAAAAAAAAAAAADIL8cEVGDCarKNSX0NuQ5Gi3oHoxUFOD8P6Ew97whhAAAAAED++D15u8A7YR9AN0UwGvxyfHxkSDAakDWz1a4yjyyWufY5mfmfy7n4ThkCdACgewpkeY2pIM/rcFde4h4LtrpeaokmxvDd/XrMc51hKTLCcskUlci5/AGZ29+Wuf5lmafXyNz3hcx5t7gMNjLzzstfMeWV3n3F/fO33Twx5cOkEePdO6tXxv9OE4xm9j8x/Ya+84vMi6up3vijveUS6Y1nM1/DjZ99TQAA4OVXkprb3D7BGHOg12BjTETSLZLa7pzcZK39Ij/lAQAAAAAAAAAAAACQXxHH/eq0uQ5Gq4vWePYVOZxPBXQmjjwFAAAAALQiGA3ovQqLuroC9BTGTzBaSf7rAHoxUxCW2Wx7mSEju7oUAEAq2Yb4EHgJD+Up3kavqku8ff9b3mM3HZqbevwyYyfLTJ4pEy6UGTxCZu+jZW58VZq2vRQulIaNkfnV32WmbZe/IsZNk8qGJbf3GyiN3zx/282n0jLXZrv8m/gPnsFoAUmSmX2wdOjJKTdhBpTH/+0yUbtGse9vr9hOYdmbf53ZXAAAkBfW2i8lXdWueb4x5sfGmIQdEGPMZEnPSJrVpnmlpIvyWyUAAAAAAAAAAAAAAPkT9ghGa8xxMFp9rNa1PWQKVOCEc7otAKkRjAYAAAAAaBX0G4zGBzhAjxN2//AXSGJM+jERgvYAAEAfEAhmNy8Yym0d6DVSBaNVtTmO5q2F1nPclGFSOOTjPXuemUlbyvnLc3KeXiPnnk9kdjs8v9sLBGSO/WVy+9GnywSzfKx2tf6D3Nvv/L3s1x9JtdXu/W2em8y881Nvo7BE5tj/8bef19Ynb2Y2HgAAdIazJD3R5nZI0p8lLTLGPGGMuccY84akD5QYitYk6RBr7ZLOKxUAAAAAAAAAAAAAgNyKeASjNeQ4GK0uWuPaXhzol9PtAEivhx4hDAAAAADIi5DfYLRIfusAkHsFBKPBJ+PjWgqFKRIdAAAAeotAILt5fvet0eeU+QxGO/v+mOe4W+f13WufmcN/LA0cIvvsvVJzk8xuR8jMOaary8peaZlnlz1uC+95bYPgSsvizznNTe5jC4tl9jxKKu4v+/ht0vMPZllsBwwaIg0cLDl9974LAEAuWGujxpi5km6UdGSbrsGS5nhMWy7peGvti/muDwAAAAAAAAAAAACAfAp7BKM12twGo9VHa13bixzOpQI6G8FoAAAAAIBWQYLRgF4rTDAafPJzsnoRH+YDAIA+IJDlV6kEo8FDJGRUEpZqG5P7NgSjNbVYvfql+3zHSJOG5q++nsDsfoTM7kd0dRm5UVud3bw2YdbGGNnyYdKSBe5j14dam1n7yszaV/aFh2TPnZvddrOx3zw5Z13XedsDAKCXs9bWSjrKGDNf0umStvMYukrS3ZIutNau6Kz6AAAAAAAAAAAAAADIl4hHMFpDLLfBaHUewWjFAc6lAjobwWgAAAAAgFahkL9xBKMBPQ/BaPDLmPRjBlTkvw4AAICulnUwWji3daBXKS9xD0ZbUWMlGb34mVTT4D53kwqpX8TH+3X0CGbiDNmXHsl8ohNIvF0+3DsYLVKUeDvb57UsmTOu7dTtAQDQV1hr50uab4wZK2lLSZWSiiUtlbRA0svW2qYuLBEAAAAAAAAAAAAAgJzqtGC0WI1re1GgX063AyA9gtEAAAAAAK2CBf7GhXyOA9BtmEAg/SBAkoyTfsiA8k4oBAAAoIu1Dx/yi31mpFBWIn29Mrl9zfrjch5913rOffJn6d+rowcZv1l285x294NBg73HFra7QuXkmfEwbOt9P8uJYWNkLr1Xpn2tAAAgp6y1X0n6qqvrAAAAAAAAAAAAAAAg38JOxLW9McfBaPXRWtf24kCJazuA/CEYDQAAAADQyu/J20F2JwGg1/Jz4vqAivzXAQAA0NUCWe77+g0dR580wP2ChVpTH//71S/cA6sO21IaU27yVBW6xHZzspvXPsy6vNJ7bGFx4tRBQ2S33Uv6z5PZbTtVWRfdITXUSyMnSBNnyITdD0IDAAAAAAAAAAAAAAAAACBTEcf9AMyGWENOt1MXrXFtL3IIRgM6G5fnBQAAAAC08huMFgjltw4AQNcxPsIWBpTnvw4AAICu5gSymxdknxneSr2C0dZJ1lp9uty9f88phKL1NiZUIHPJ3ZlP/H/27j3KsrOsE/DvO+dUneqq7nR3SOdCEuhcCQkYQJCrEklAgZEAIjoIGhGHhTdQRnGWo5AZlzoizBqdYXS8wQg6423AcURcusRRkFkjwvKGw02iokBUwO6qVHdSteePatJ1Oafq3HfVOc+z1l7p8+1vf/vtXbve6jrZ9attYdbl4iu6z51v7zzva96cPOUrknaXm7FfD7o+5Zc+lPKU56U842tSHv54oWgAAAAAAAAAAACMVLtLMNqZ9XtGep5uwWhLzSMjPQ+wtwF/zTkAAADTqLTmU/UyseXbSYCpVXr4XQrHLx5/HQAAdRvwe9/S8Lup6O7oYkk6vPvy2ZXk708nn1npfNyNlwlGm0blyc9O9bgvTd7zG30ctO1eeNjju889ujPUuixdkHLnm1Pdezb5hR9J9WPfvfc5r35YGm96b6r77k3OriZnzySHDgtAAwAAAAAAAAAAYCIWugSjrY44GG1l/XTH8aXm4ZGeB9ibp/IBAAA4b26+t3nNufHWAUB9egnyOLbzh+sBAKZOc4BgtMfcOvo6mCrHFjuPf2alygc/2f246y8ZTz3Ur/zAL/V5wLbv2W56bHLZg3fOu/qmlF2+dytz88lTnpe09n6frzzr6zf+25pLWTyScuwioWgAAAAAAAAAAABMzKSC0ZbXugWjHRnpeYC9CUYDAADgvB5+ELKveQAcQGXvKUcFowEAM6DR7PuQ8k0/NIZCmCbHOj+Xk8/ek3zwk1XHfUcPJSc8TzO1Smsu5a13JScf2tsB28KsS7OZ8s2vTebb5wfnF1K+9XV7n/uykykv/t7dJ13/yOTpL+qtNgAAAAAAAAAAABiDdpdgtDMjDEZbq+7L6vpKx32LgtFg4gb4NecAAABMrbn53uYJRgOYXo09fpfC0YtSNv/APQDAtGr2GYz2mFtTrnnYeGphahxb7Dz+mXuSD36y877rL0lK6SHAmAOrPODS5Cf/INWXnkjuu3ePyTu/ZytfdHvyk+9J/uDtyfp68uRnp1x5XW/nftF3Jp/3hFTveUfyjrckd398Y8fFV6a85NXJrc/3PSAAAAAAAAAAAAC1WugSjLY6wmC0lbXlrvuWGodHdh6gN4LRAAAAOK/VYzBa07eTAFOrww/Zb3HRZZOpAwCgbo3+gtHKi141pkKYJsc6P5eTz6wkH/pk1XHf9ZcIRZsFpX0o1YtelfzM9+0+sUuYdbnqxuSqGwc7981PSrn5SclL/+1AxwMAAAAAAAAAAMA4tbsEo91X3Zu16r40y/A/87qyfrrrvsWmYDSYtD1+yhEAAICZMtdjMFpLMBrA1Cp7hC6ceOBk6gAAqFs/oeAPuj65+QvHVwtT49hi539v330qeddHOh9z3SVjLIh9pRx9QA+TPOYBAAAAAAAAAADAbFnoEoyWJKvr94zkHMtrp7ruW2oeGck5gN55YhYAAIDzeg5GmxtvHQDUp7HHW4YPEIwGAMyIvYLRjl60MedRt6T8+7en7PXvKEjywGOdx+9bTz75T533PfzyPcKLmR5HL9p7jl4DAAAAAAAAAADAjJlMMNrpjuOt0sp8aY/kHEDv+vg15wAAAEy9Vo/BaHv9cDhQj6tuTP7yz3eOX3715GvhwCqlpNptwkWXTaoUAIB6ze/yAMMXPDXltb+a3Hs2pb0wuZo48B5ySX/z51vJrTeMpxb2oaMX7j2nCEYDAAAAAAAAAABgtrR3CUY7M6JgtJW1Ux3HFxtHUopfcguT5olZAAAAzpub621es8d5wESVF35n5/GXvGaidTAFGt3fNiyHL5hgIQAANXrQQ7rvO7SU0mgIRaNvhxdKrjje+/xbb0guOORhmplx9KK95+zy/RoAAAAAAAAAAABMo4VdgtFWRxSMtrx+uuP4UvPwSNYH+uOJWQAAAM5rzfc4TzAa7EtPfk7ymNu2jj3mtuQLn1VPPRxcu/0Wk/bi5OoAAKhROXZRcsW1nfc99DETroZpcsOlvc991s1C0WbKict3/34s2Xs/AAAAAAAAAAAATJn50k7pEpM0qmC0lbXOwWiLgtGgFoLRAAAAOG+ux2C0Zmu8dQADKe2FlB/45ZQ735K84JUpr3lzyg/+Skq7+2/EgI7KLm8bLghGAwBmR3nhd3Te8dinTbYQpspDLu092Orx1wjBmiXl+InkUbfsMck9AQAAAAAAAAAAwGwppaTdWOi478yIgtGW1051HF9qHhnJ+kB/BKMBAABwXru3sJvSmhtzIcCgSnsh5SnPS+Nl359y61ekzLfrLomDqCEYDQAgSfKlL0qe8bXnXzdbKS9/Xcq1n1dfTRx4N1za+9xrT4yvDvan8sof3X3Cbt+vAQAAAAAAAAAAwJRaaBzqOL46omC0lbXTHccXG4dHsj7Qn1bdBQAAALCPHL2wt3mC0QCmXOm+q935fyIAAEyj0mym/Kv/kuqff1vydx9Lbvj8lOMX110WB9wNl5Yk1Z7zrjyeLLZ3+bc5U6lced3ud0cRjAYAAAAAAAAAAMDsaY85GG15vXMw2lJTMBrUQTAaAAAA5x19QG/zms3x1gHA/rWwWHcFAAATV04+NDn50LrLYEo86kFJKUm1Rzba9ZdMph4OmIZgNAAAAAAAAAAAAGbPQpdgtDMjCkZbWTvVcXyxeWQk6wP98cQsAAAA5y0d7e2HK1tz468FgPrcd7b7vrZgNAAAGMbxpZJX3Fb2nHfdJXvPYQYVj3kAAAAAAAAAAAAwexYaCx3HV9dXR7L+8trpjuNLjcMjWR/ojydmAQAAuF9pNJIjx/eeKBgNYLqtr3fftyAYDQAAhvXDz9s79Oz6SyZQCAdPL7/UAAAAAAAAAAAAAKZMu3Go4/iZ9XtGsv5Kl2C0xeaRkawP9McTswAAAGx1wYV7z2kKRgOYWQud/ycCAADQu1JKvuSm3edcf8ne4WnMoOIxDwAAAAAAAAAAAGbPQpdgtNURBKOtV+tZWe8cjLbUPDz0+kD/PDELAADAVkcfsPecZmv8dQCwP7UX664AAACmwmVHuwefNUryuKsn6svn2QAAIABJREFUWAwHR8NjHgAAAAAAAAAAAMye9hiD0VbXV1Kl6rhPMBrUwxOzAAAAbLV4ZO85rbnx1wHA/rQgGA0AAEbhqou673vMyeTCpe7Bacyw4jEPAAAAAAAAAAAAZs9Cl2C0MyMIRlteO9V132Kjh5+5BUbOE7MAAABsNd/ee45gNIDZJRgNAABG4taHdg8+e84jhaLRRXFvAAAAAAAAAAAAMHu6BaOtjiQY7XTXfUvNw0OvD/RPMBoAAABbzfUQjNZsjb8OAPalIhwTAABG4nFXJZcf67zvWTcLv6KLhsc8AAAAAAAAAAAAmD3tLsFoZ0YQjLay3jkYrZFGFhqLQ68P9M8TswAAAGzVSzBaSzAaAAAAwDAajZIfet7OALQXP6nkhssEo9FF8ZgHAAAAAAAAAAAAs2ehSzDa6giC0ZbXTnUcX2weTime6YQ6+El2AAAAtuopGG1u/HUAAAAATLmvekzJ4nzJf/it9azelzz3USXf8sUeoGEXDcFoAAAAAAAAAAAAzJ5xBqOtrJ3uOL7YODz02sBgBKMBAACw1fz83nOavp0EAAAAGFYpJbc/Irn9Ec26S+GgKILRAAAAAAAAAAAAmD3tLsFoZ9bvSVVVKWXwX0y7vHaq4/hS88jAawLD8cQsAAAAW821957Tmht/HQAAAADAVg2PeQAAAAAAAAAAADB7FkrnYLT1rOfe6uxQa6+sn+44vtg8PNS6wOA8MQsAAMBWc/N7z2kKRgMAAACAiSse8wAAAAAAAAAAAGD2tBudg9GS5Mz6PUOtvbzWORhtSTAa1MYTswAAAGw11957TrM1/joA2H+WLqi7AgAAgNnW8JgHAAAAAAAAAAAAs2dhl2C01aGD0U51HF9sHBlqXWBwnpgFAABgi9JLMFprbvyFALD/XHC87goAAABmW/GYBwAAAAAAAAAAALNnnMFoK2unO44vNQ8PtS4wOE/MAgAAsNX8/N5zBKMBzKbH3FZ3BQAAALOt4TEPAAAAAAAAAAAAZk97l2C0M0MGoy2vdw5GWxSMBrXxxCwAAABbzbX3ntNqjb8OAOrzZS/uOFxe8MoJFwIAAMAWpdRdAQAAAAAAAAAAAEzcXGMuzXT+2dbVIYPRVtZOdRxfah4Zal1gcILRAAAA2KqXYLSmYDSAaVZe+B3Jicu3Dn75N6Zcfk09BQEAALCheMwDAAAAAAAAAACA2bTQONRxfHV9deA1q6rK8trpjvuWGocHXhcYjp9kBwAAYKv5HoLRWnPjrwOA2pQHXp38+O8lv/0LqT751ymPfHLyhc+quywAAAAagtEAAAAAAAAAAACYTe3GQpbXT+0YP7N+z8BrnqlWs561jvsWm0cGXhcYjmA0AAAAtpoTjAZAUk5cnnzVt6XUXQgAAAD3K8V3aQAAAAAAAAAAAMymhcahjuOrQwSjLa/tDFr7nKXm4YHXBYbjVwkDAACw1dz83nOacrYBAAAAAAAAAAAAAAAAAJiMdpdgtDNDBKOtrJ3uum9RMBrURjAaAAAAW/USjNaaG38dAAAAAAAAAAAAAAAAAACQ5FBjseP46hDBaMtrp7ruW2wsDbwuMBzBaAAAAGw11957TlMwGgAAAAAAAAAAAAAAAAAAk9FuHOo4Pkww2sr66Y7jhxpLaZTmwOsCwxGMBgAAwFbzvQSjtcZfBwAAAAAAAAAAAAAAAAAAJFnoEox2ZohgtOW1zsFoS83DA68JDE8wGgAAAFstXrD3nNbc+OsAAAAAAAAAAAAAAAAAAIAk7S7BaKtDBaOd6ji+2Dwy8JrA8ASjAQAAsNWDrk8OLXXfX0pKszm5egAAAAAAAAAAAAAAAAAAmGkLYwhGW1k73XF8qXF44DWB4QlGAwAAYIsy304e8UXdJ7TmJlcMAAAAAAAAAAAAAAAAAAAzr1sw2pkhgtGW1091HF9qHhl4TWB4gtEAAADY6YILu+9rtiZXBwAAAAAAAAAAAAAAAAAAM6/dWOg4vjpEMNrK2umO44LRoF6C0QAAANhprt19X2tucnUAAAAAAAAAAAAAAAAAADDzFhqHOo6fGSIYbblLMNpi8/DAawLDE4wGAADATvPz3fc1BaMBAAAAAAAAAAAAAAAAADA57S7BaKtDBKOtrJ3qOL7UEIwGdRKMBgAAwE6t3YLRWpOrAwAAAAAAAAAAAAAAAACAmbfQJRjtTLWa9Wp9oDWX1093HF9sHhloPWA0BKMBAACw01y7+77W3OTqAAAAAAAAAAAAAAAAAABg5nULRkuSs9WZgdZcWescjLbUPDzQesBoCEYDAABgp7n57vtarcnVAQAAAAAAAAAAAAAAAADAzGvvEoy2un5P3+udXT+Te6uzHfctNo/0vR4wOoLRAAAA2KHMtbvvbApGAwAAAAAAAAAAAAAAAABgchZ2CUY7M0Aw2sra6a77lhqH+14PGB3BaAAAAOw0P999X2tucnUAAAAAAAAAAAAAAAAAADDzdgtGWx0gGG15/VTXfUtNwWhQJ8FoAAAA7NQSjAYAAAAAAAAAAAAAAAAAwP7Qbix03TdQMNra6a77FgWjQa0EowEAALDTfLv7vmZrcnUAAAAAAAAAAAAAAAAAADDzGqWZ+dL551/PDBCMttIlGG2hcSjN4mdpoU6C0QAAANhpbpdgtNbc5OoAAAAAAAAAAAAAAAAAAIBshJZ1sjpAMNry2qmO44uNw32vBYyWYDQAAAB2mpvvvq8pGA0AAAAAAAAAAAAAAAAAgMlqjzAYbWX9dMfxpeaRvtcCRkswGgAAADvNtbvva7UmVwcAAAAAAAAAAAAAAAAAACRZ6BKMdmaAYLTltc7BaIvNw32vBYyWYDQAAAB2as1139cUjAYAAAAAAAAAAAAAAAAAwGS1uwSjrQ4QjLaydqrj+JJgNKidYDQAAAB2mm9337dbaBoAAAAAAAAAAAAAAAAAAIzBQpdgtDMDBKMtr53uOL7YONL3WsBoCUYDAABgp7ldgtHand80AgAAAAAAAAAAAAAAAACAcekWjLY6QDDayvqpjuNLzcN9rwWMlmA0AAAAdpqb775vUdI9AAAAAAAAAAAAAAAAAACT1W4sdBwfJBhtee10x/HFpp+jhboJRgMAAGCnuXb3fYuS7gEAAAAAAAAAAAAAAAAAmKyFxqGO42cGCEZb6RKMttT0c7RQN8FoAAAA7LRbMNohb+gAAAAAAAAAAAAAAAAAADBZ7S7BaKsDBKMtr53qOL7Y8HO0UDfBaAAAAOw0N9d1V1k8MsFCAAAAAAAAAAAAAAAAAAAgWegSjHamz2C0+6p7c6Za7bhvqennaKFugtEAAADYaW6++75DS5OrAwAAAAAAAAAAAAAAAAAA0j0YbbXPYLSVteWu+5aah/taCxg9wWgAAAD05/gldVcAAAAAAAAAAAAAAAAAAMCMaXcNRlvta53ltVNd9y02j/S1FjB6rboLAAAAYB86cUVy/OLk05/aOj7fTr7gtnpqAgAAAAAAAAAAAAAAAABgZi10CUZbXjuVH77ru3pe50zVPUhtsbHUd13AaAlGAwAAYIfSaKT6shcn//UHt+546gtSli6opygAAAAAAAAAAAAAAAAAAGZWu0swWpX1fHT1L4Zef67MZ77RHnodYDiC0QAAAOiovOQ1SXsx1W++JVlfT77o9pSX3Fl3WQAAAAAAAAAAAAAAAAAAzKCFLsFoo7LUPDLW9YHeCEYDAACgo1JK8jWvSvmaV9VdCgAAAADMjmfekfyvN+4cP7Q06UoAAAAAAAAAAABgXzncvGCs6x9pHh3r+kBvGnUXAAAAAAAAAADAhvLcl3Uef/H3TrgSAAAAAAAAAAAA2F8unDuRy+avHNv6Dzv8+WNbG+idYDQAAAAAAAAAgH2iXP+I5Ov+9dbBL3hq8pyX1lMQAAAAAAAAAAAA7CMvvPSbc6ixOPJ1r1p4SG49fvvI1wX616q7AAAAAAAAAAAAzmu8+HtSfdGzkz95d3LyocnDH5/Smqu7LAAAAAAAAAAAAKjdVYcekldf9YZ8YPn9+cf77h56vUYauXLh6lx36KbMNeZHUCEwLMFoAAAAAAAAAAD7TLn24cm1D6+7DAAAAAAAAAAAANh3Lmgdy2OP3lJ3GcCYNOouAAAAAAAAAAAAAAAAAAAAAAAAAEAwGgAAAAAAAAAAAAAAAAAAAAAAAFA7wWgAAAAAAAAAAAAAAAAAAAAAAABA7Vp1F8B0KaXMJXlikgcluSzJ6SR/m+R9VVV9rMbSAAAAAAAAAAAAAAAAAAAAAAAA2McEo82wUsp/S/KV24bvqqrq5ABrnUhy57n1Luwy591JXl9V1S/3uz4AAAAAAAAAAAAAAAAAAAAAAADTrVF3AdSjlPKs7AxFG3Stpyf50yQvS5dQtHOekOSXSilvLqUsjeLcAAAAAAAAAAAAAAAAAAAAAAAATIdW3QUweaWUY0n+84jWuiXJW5PMbxqukvxRko8mOZbkkUku2rT/q5NcUEp5dlVV66OoAwAAAAAAAAAAAAAAAAAAAAAAgIOtUXcB1OJ1SR547s+nBl2klHJFkl/J1lC0dyW5qaqqR1dV9fyqqp6W5IokL09y76Z5X5bk+wY9NwAAAAAAAAAAAAAAAAAAAAAAANNFMNqMKaXcluTF517el+R7h1juziTHN71+d5Lbqqr6wOZJVVWdqarqR5I8f9vx315KefAQ5wcAAAAAAAAAAAAAAAAAAAAAAGBKCEabIaWUpSQ/sWno9UneP+Ba1yX52k1DZ5PcUVXVardjqqp6a5I3bRpqJ3n1IOcHAAAAAAAAAAAAAAAAAAAAAABgughGmy0/kOTkuT9/NMlrhljrBUmam17/SlVVH+rhuH+37fXzSykLQ9QBAAAAAAAAAAAAAAAAAAAAAADAFBCMNiNKKU9I8k2bhl5aVdU9Qyz5nG2vf6aXg6qq+kCS/7NpaCnJ04aoAwAAAAAAAAAAAAAAAAAAAAAAgCkgGG0GlFLaSX465z/eb6qq6reGWO/SJDdvGrovybv6WOKd214/fdBaAAAAAAAAAAAAAAAAAAAAAAAAmA6C0WbDa5I85Nyf707yyiHXe9i2139cVdVyH8e/e9vrm4asBwAAAAAAAAAAAAAAAAAAAAAAgANOMNqUK6U8Ksm/3DT0iqqq/mHIZW/c9vrDfR7/kT3WAwAAAAAAAAAAAAAAAAAAAAAAYMYIRptipZRWkp9O0jo39BtVVf3cCJa+dtvrv+rz+Lu2vX5AKeX4EPUAAAAAAAAAAAAAAAAAAAAAAABwwLX2nsIB9l1Jbj735+UkLxvRuse2vf5UPwdXVXW6lLKaZGHT8NEknx62sFLKxUlO9HnYNcOeFwAAAAAAAAAAAAAAAAAAAAAAgOEIRptSpZQbk/zrTUPfU1XVx0a0/OFtr+8ZYI17sjUY7cjg5WzxjUlePaK1AAAAAAAAAAAAAAAAAAAAAAAAmJBG3QUweqWURpKfStI+N/TeJD8ywlNsD0ZbHWCN7WFq29cEAAAAAAAAAAAAAAAAAAAAAABghghGm04vT/K4c3++L8lLqqpaG+P5qgkdAwAAAAAAAAAAAAAAAAAAAAAAwJRq1V0Ao1VKuTrJ920aen1VVe8f8WlOb3t9aIA1th+zfc1BvSHJL/Z5zDVJ3jai8wMAAAAAAAAAAAAAAAAAAAAAADAAwWhTpJRSkvxEksVzQx9N8poxnGrfBqNVVfWpJJ/q55iNywYAAAAAAAAAAAAAAAAAAAAAAECdGnUXwEh9Q5KnbHr90qqq7hnDeT677fWJfg4upRzOzmC0zwxVEQAAAAAAAAAAAAAAAAAAAAAAAAdaq+4CGKk7N/3515N8uJRyco9jLt32utXhmL+tqursptcf2rb/wT3W123+P1ZV9ek+1wAAAAAAAAAAAAAAAAAAAAAAAGCKCEabLoc2/fkZSf5ygDUu73DcI5O8f9PrD2zbf22f57h62+s/7/N4AAAAAAAAAAAAAAAAAAAAAAAApkyj7gI4kP502+vPK6Us9nH8E/dYDwAAAAAAAAAAAAAAAAAAAAAAgBkjGI2+VVX1d0n+eNNQK8mT+ljilm2v3z5sTQAAAAAAAAAAAAAAAAAAAAAAABxsgtGmSFVVx6qqKv1sSb542zJ3dZj3/g6n+x/bXn9dLzWWUm5I8thNQ8tJfrPnvyQAAAAAAAAAAAAAAAAAAAAAAABTSTAag3pLkrVNr59bSrmuh+Nete31L1RVtTq6sgAAAAAAAAAAAAAAAAAAAAAAADiIBKMxkKqqPpTkTZuG5pO8sZSy0O2YUsrtSe7YNHQ2yZ1jKRAAAAAAAAAAAAAAAAAAAAAAAIADRTAaw3h1kk9vev2EJL9VSrlh86RSSruU8i1JfnHb8a+rququMdcIAAAAAAAAAAAAAAAAAAAAAADAAdCquwAOrqqq/qaU8twk70gyf274iUn+vJTy3iQfTXI0yaOSnNh2+K8l+Z5J1QoAAAAAAAAAAAAAAAAAAAAAAMD+JhiNoVRV9c5SynOSvDHnw89Kkkef2zr5+STfUFXV2vgrBAAAAAAAAAAAAAAAAAAAAAAA4CBo1F0AB19VVb+e5GFJfizJp3eZ+p4kz6uq6gVVVS1PpDgAAAAAAAAAAAAAAAAAAAAAAAAOhFbdBVCvqqremaSMYJ1PJXlZKeXlSZ6Y5MFJLk2ynOTjSd5XVdVfDnseAAAAAAAAAAAAAAAAAAAAAAAAppNgNEaqqqqzSX6n7joAAAAAAAAAAAAAAAAAAAAAAAA4WBp1FwAAAAAAAAAAAAAAAAAAAAAAAAAgGA0AAAAAAAAAAAAAAAAAAAAAAAConWA0AAAAAAAAAAAAAAAAAAAAAAAAoHaC0QAAAAAAAAAAAAAAAAAAAAAAAIDaCUYDAAAAAAAAAAAAAAAAAAAAAAAAaicYDQAAAAAAAAAAAAAAAAAAAAAAAKidYDQAAAAAAAAAAAAAAAAAAAAAAACgdoLRAAAAAAAAAAAAAAAAAAAAAAAAgNoJRgMAAAAAAAAAAAAAAAAAAAAAAABq16q7ANgH5je/+PCHP1xXHQAAAAAAAAAAQ+nw3MN8p3kAMEGe0QMAAAAAAAAADjzP501Oqaqq7hqgVqWUZyV5W911AAAAAAAAAACMwe1VVf1q3UUAMLs8owcAAAAAAAAATCnP541Jo+4CAAAAAAAAAAAAAAAAAAAAAAAAAASjAQAAAAAAAAAAAAAAAAAAAAAAALUrVVXVXQPUqpRyNMmTNw39dZKzQyx5TZK3bXp9e5KPDLEeQL/0IWA/0IuAuulDQN30IaBu+hCwH+hFQN1mtQ/NJ7ly0+vfrarqs3UVAwCe0QOmkD4E1E0fAuqmDwF104eA/UAvAuqmDwF1m9U+5Pm8CWnVXQDU7Vxz+dVRrVdK2T70kaqq/mxU6wPsRR8C9gO9CKibPgTUTR8C6qYPAfuBXgTUbcb70PvqLgAAPsczesC00YeAuulDQN30IaBu+hCwH+hFQN30IaBuM96HPJ83AY26CwAAAAAAAAAAAAAAAAAAAAAAAAAQjAYAAAAAAAAAAAAAAAAAAAAAAADUTjAaAAAAAAAAAAAAAAAAAAAAAAAAUDvBaAAAAAAAAAAAAAAAAAAAAAAAAEDtBKMBAAAAAAAAAAAAAAAAAAAAAAAAtROMBgAAAAAAAAAAAAAAAAAAAAAAANROMBoAAAAAAAAAAAAAAAAAAAAAAABQO8FoAAAAAAAAAAAAAAAAAAAAAAAAQO0EowEAAAAAAAAAAAAAAAAAAAAAAAC1E4wGAAAAAAAAAAAAAAAAAAAAAAAA1E4wGgAAAAAAAAAAAAAAAAAAAAAAAFC7Vt0FwBS6O8md214DTJI+BOwHehFQN30IqJs+BNRNHwL2A70IqJs+BADTydd4oG76EFA3fQiomz4E1E0fAvYDvQiomz4E1E0fYqxKVVV11wAAAAAAAAAAAAAAAAAAAAAAAADMuEbdBQAAAAAAAAAAAAAAAAAAAAAAAAAIRgMAAAAAAAAAAAAAAAAAAAAAAABqJxgNAAAAAAAAAAAAAAAAAAAAAAAAqJ1gNAAAAAAAAAAAAAAAAAAAAAAAAKB2gtEAAAAAAAAAAAAAAAAAAAAAAACA2glGAwAAAAAAAAAAAAAAAAAAAAAAAGonGA0AAAAAAAAAAAAAAAAAAAAAAAConWA0AAAAAAAAAAAAAAAAAAAAAAAAoHaC0QAAAAAAAAAAAAAAAAAAAAAAAIDaCUYDAAAAAAAAAAAAAAAAAAAAAAAAaicYDQAAAAAAAAAAAAAAAAAAAAAAAKidYDQAAAAAAAAAAAAAAAAAAAAAAACgdq26C2CnUkozybVJbkzywCRHk5xJ8ukkH0nyh1VVLY/4nHNJnpjkQUkuS3I6yd8meV9VVR8b5bkmpZRyU5JHJDmRpJ3kE0n+Jsm7qqparbO2SSqlHE9yU5LrklyYZCHJZ5LcneS9VVV9pMbydiilXJWNj9sDkxxO8ndJ7kry7qqq7q2ztlmiD42GPrRBH2JQetFo6EUb9KKu53F/7EIfGg332YaD1ofYH/Sh0dCHNuhDW5VSrszGtbgiyUVJDiU5m+SzSf4qG9fk7voq3B/0odHQhzboQwxKLxoNvWiDXsQg9KHR0Ic26EOduT+AOvgaPxp6+IaD9jXeszH7gz40GvrQBn2IQehDo6EPbdCHup7H/bELfWg03GcbDlofYn/Qh0ZDH9qgD23l+bze6UWjoRdt0IsYhD40GvrQBn2IQehDo6EPbdCHOjvQ90dVVbZ9sGWjYb4iya9l45v7apftviRvT/LMEZz3RJI3JPmHXc73riRfPuR5rk7ylUlem+SdSf5p2zk+NqLreCTJdyf5+C5/n39K8rNJrqnx4z2265FkLsmXJPmPSf50j3upOnet/k2SS2v+HHheknfvUuc/nLtXLxpg7b2uwV7byTqvzQQ/BvrQaK6jPqQPbV7z5Ah60Obtjjqv0YQ+DnrRaK6jXqQXHfj7o8aPgT40mut4IO4zfai2+2MpyZOSfFuStyT5YJL1bee6o67rUPemD+lD+tDYrsd1Sb4/ye9k439q7HU9qiR/lOSbkrTruiY1fRz0odFcR31IH+q0fi+9Z7ftZF3XpoaPhV40muuoF+lFm9c9OYI+tHm7o65rNKGPgz40muuoD+lDB/7+sNls07X5Gj9bPdzX+I51e0av5k0f0of0Ic/o1b3pQ/qQPuT5vLo3fUgfmuU+NMH7w/N5u18ffWg011Ef0oe2r+35vP6ul140muuoF+lFndbvpf/stp2s69pM+OOgD43mOupD+tDmdU+OoAdt3u6o6xpN6OOgD43mOupD+tCBvz/2/HvUXYCtSpKfG+IL2v9McsmA5316kk/2ca43J1nqY/1bkrxjjy8KI/vETPLYbKRw9vr3WU7ysgl+nMd+Pc5dg38c8F76dJIX1nD/H07y833U+YkkX9LnOQb9/PrcdnLS16WGj4M+pA/pQ2PoQxn9N7JfOenrM+GPhV6kF+lFY+hFB+n+qHvTh/ShWexDk7w/svHG8Z9k4w3pvc51x6SuwX7a9CF9SB8a3/2R5CVDfH79vySPndQ1qXPTh/QhfWi898cQn1+f205O6rrUuelFepFeNLbrcXIEfWjzNrXvV0cf0of0oZm/P2w223RuvsbPRg/3Nb5rzZ7R2webPqQP6UOe0at7iz6kD+lDns+redOH9KFZ7EOTvD/i+bxerpE+pA/pQ2O6P+L5vH6ulV6kF+lFY7w/hvj8+tx2clLXpa5NH9KH9KGxXY+TI+hBmzfvVetDvXwO6kP60IG8P/rZWmE/uL7L+MeTfCgbzbWVjdS/m5M0Ns35Z0n+dynlyVVVfaLXE5ZSbkny1iTzm4arbKSsfzTJsSSPTHLRpv1fneSCUsqzq6pa7+E0j0jytF5rGkYp5bZspIG2t+26K8kfZ+OT8IpsfPLOndu3mOQNpZRGVVX/aQJlTuJ6nEhyvMP42Wy8uf2JbCSmPiDJo8/993OOJfnZUsrFVVW9fsx1JklKKc0k/z3JM7btujvJ+87Vek027sVybt8lSd5WSrmtqqrfn0SdM0IfGpI+dD99aHxWspFoPc30oiHpRffTizqf5yDcH3XTh4Z0QO4zfWirid0fSV6Q5OiEznVQ6UND0ofupw/trcrGm/wfzsb/WFjJxm/MvSrJTTl/fyQbn5u/XUp5ZlVVvzvpQidMHxqSPnQ/fYhh6EVD0ovupxeNz7S/X60PDUkfup8+1MEBuT+A6eRr/JAOSA/3NX6bA/ZszLTTh4akD91PHxof73noQ7vSh+6nD3U+z0G4P+qmDw3pgNxn+tBWns/bX/ShIelD99OH9ub5vO70oiHpRffTixiUPjQkfeh++tD4eK9aH9qVPnQ/faiDA3J/9K7uZDZblSR/mPMpen+U5JuTXNNl7uVJfjw70/d+L0np8XxXZGfq4e8neei2ee0k35qNT/rNc7+/x/O8okOdVZLVbLyhMZLEwmykp25PRfxwkqd2mHs8yY9um7vWae4YPs5jvx7Z+EL+uTVOJfmpJLcmOdRhbknynGw0r+01jf16nKvhtdvOe/bc/T+/bd6NSd69be7fJ7msx/NsPu495+6ZfrbWJK5HnVv0IX1IHxpLH8rGN1579Zhu2+9vO98bJ3FN6tyiF+lFetHY/k10UO6Pujd9SB+axT40qfvj3Lk+0+Vcf9Nh3x3j/rvvx00f0of0obHeH1+f5C+y8W+vZyY5vsvcY0m+PRv/A2Tz+T+e5Oi4r0mdmz6kD+lDY//30Oa1vFfd/TrpRXqRXjSe6+H96t6vlT6kD+lDM35/2Gy26dx8jZ+NHu5rfMd6PaO3T7boQ/qQPjSWPhTvefTzsdCH9CF9aEz/Hjoo90fdmz6kD81iH5rU/XHuXJ7P2/sa6UP6kD40vvvD83m9Xyu9SC/Si8b7b6LNa3mvuvM10of0IX1oPNdaSfFZAAAgAElEQVTDe9W9Xyt9SB/Sh2b8/ujr71R3AbYqSf5vNtL2Ht3HMd/Y4Yb/qh6P/altx70rycIu85/d4RPrwT2c5xXnmv77kvxEkn+R5FHZSAy8ZYSfmD+/ba0PJbl4j2O+c9sxf5akOeaP89ivx7nG/cn8//buPFqatKDv+O8ZEBjWUZBBQBj2oLiAmAhqHA0YiEeQJS64MIL7cqLRHA9CTlATjYnrOfEoUQTEJRIEREEgiANuuJ1BQEcEdVCUQVZxhlnhyR99573d1ff27equ7qqu+nzO6T+q3q7l9vu837rvc+vUTb4jyW3W3OaOSf68cfzLs+Y3Alt8HvfO8jcFj13x/vOz/IPGn1rzWPPbXLrLr+tQXzqkQzq02w5tcG53S3Jj41ifvcvPYwgvLdIiLdpdiw5lfPT90iEdmmiH9jI+jo71gcx+08LLknzP0ed04dGfXdo41iW7/LqH+tIhHdKhnY6Pj9pgm09NclXjHL5rl59H3y8d0iEd2vn3Q/P7unSXX9chv7RIi7Roty3a4NwmN1+tQzqkQ8aHl5fXOF+u8dNouGv80nHdozeglw7pkA7ttkMbnJs5j/W20aHj4+jQ8TF06EDHR98vHdKhiXbI/XkDeumQDumQ+/OG8NIiLdIi9+j1/dIhHdIh9+f1/dIhHdIh46PV19T3CXjVJLlow+1e2BhcL1tjm/s1LozXJbnfGts9t3Gsn11jm48+7YLQYajundkTB+f39VlrbvuaxnZP2fHf8z4+j49dN9iN7T7lhM/x03f8eTyvcbznrLHN/Y/G7E3b3JDk3mtsN3+cS3f5dR3qS4d0SId226ENzu3pjXP7y11+FkN5aZEWadFuWnRI46Pvlw7p0EQ7tPPPY25/p/4G3bjx6qbP4aINt9MhHWruR4e6O7/vbZzD6/d9Dnv+ei/acDsd0qHmfnTo5P3N7+vSXX5dh/zSIi3Sot18Hluc2+Tmq3VIh3TI+PDy8hrnyzV+Gg13jV86pnv0BvTSIR3Sod12aINzM+ex/nY6pEPN/ejQgY6Pvl86pEMT7ZD78wb00iEd0qHdfB5bnt+k7s87+pov2nA7LdKi5n606OT9ze/r0l1+XYf60iEd0qHdfB5bnJu56vW30yEdau5Hhw50fLR5nRd6V2u9YsNNf6Kx/LlrbPOkJDebW35RrfWta2z3g43lLy6l3GrVBrXW99dar11j39v4gmRhHL++1vo7a277Q43lr+7mlE62j8+j1vruWuvVG2z3p0man9s642kjpZTzkzyxsbo5xpbUWv8yyUvmVt08szHNlnRoKzq0eAwd2lIppWR5LDy7y2MMlRZtRYsWj6FFiw5mfPRNh7ZyMONMh5aOuY/xcdOx3rmP4xwyHdqKDi0eQ4e68/LG8n17OYs90aGt6NDiMXSIjWnRVrRo8RhatKWpzlfr0FZ0aPEYOrToYMYHME6u8Vs5mIa7xh8b8r0xU6VDW9GhxWPo0JbMebSmQzrUPIYOLTqY8dE3HdrKwYwzHVo6pvvzBkSHtqJDi8fQoe5M6v68RIu2pEWLx9AiNqJDW9GhxWPo0JbMVbemQzrUPIYOLTqY8dGGB6Mdtssay+eXUi44Y5vHNZafs86Baq2XJ/mDuVW3SfL562y7Y/+6sfzKFtv+ZpLr55YfXkr5uO1P6WA1x9Ndd3isf5vk1nPLv19r/Ys1t22O2cd3c0psSId0qEs6NPM5Se4zt3xjZr+xjtNpkRZ1aYwtMj52T4eMsy7ts0OMhw7pUJd0aNH7Gsu36+Ushk+HdKhLOsSmtEiLuqRFM+ar29EhHerSGDtkfACHyjVew7s0xp9Hs3s6pENd0qEZcx7t6JAOdWmMHTI+dk+HjLMujXHuld3TIR3qkg4tcn/e+rRIi7qkRWxCh3SoSzo0Y666HR3SoS6NsUOjHB8ejHbYbjxh3S1Oe3Mp5S5JPqWx/e+2ON6ljeVHt9h2V+7eWH7zuhvWWq9L8ra5VedlGF9TX5rj6dSx1IFHNZYvbbHtb2fxXB9cSrlw6zNiUzqkQ13SoZmnNpZfVmu9ssP9j5EWaVGXxtgi42P3dMg469I+O8R46JAOdUmHFt2zsfwPvZzF8OmQDnVJh9iUFmlRl7Roxnx1OzqkQ10aY4eMD+BQucZreJfG+PNodk+HdKhLOjRjzqMdHdKhLo2xQ8bH7umQcdalMc69sns6pENd0qFF7s9bnxZpUZe0iE3okA51SYdmzFW3o0M61KUxdmiU48OD0Q7bfRvLNyZ5z4r3P6ix/MZa69Utjvd7jeVPbLHtrnxMY/kDLbdvvv+TtjiXQ9ccT+/c4bGaY/H3193waMy+qbF6CGNxqnRIh7o0+Q6VUu6Q5AmN1c/uYt8jp0Va1KUxtsj42D0dMs66tM8OMR46pENd0qFFX9VY/q1ezmL4dEiHuqRDbEqLtKhLk2+R+eqN6JAOdWmMHTI+gEPlGq/hXRrjz6PZPR3SoS5NvkPmPDaiQzrUpTF2yPjYPR0yzro0xrlXdk+HdKhLOrTI/Xnr0yIt6pIWsQkd0qEuTb5D5qo3okM61KUxdmiU48OD0Q7bExvLf1xr/ciK939CY/ltJ77rdH91xv76cH1j+ZYtt2++fwhf096VUm6f5JGN1X+4w0M+sLG8z7F4j1LKc0opf1ZKeX8p5fpSyruOln++lPJ1pZRm8DmdDulQJybWoVW+LMn5c8vvTPIbHe17zLRIizox4hYZH7unQ8ZZJ3roEOOhQzrUCR1aVEr55iRfMbfqxiQ/1tPpDJ0O6VAnJtYhc9Xd0yIt6sTEWrSK+er2dEiHOjHiDhkfwKFyjdfwToz459EnMe/RLR3SoU5MrEOrmPNoT4d0qBMj7pDxsXs6ZJx1YsRzr+yeDulQJ3RokfvzWtMiLerExFpkrrpbOqRDnZhYh1YxV92eDulQJ0bcoVGODw9GO1CllNsmeWpj9YvP2Kz5xMK/bXnYtzeW71hK+eiW++jaexvLH9dy++b7H7DFuRyyr09y67nlf8qOnq5/9J/E5n8U247F5vvv12LbeyW5JLMIX5Dko5Lc+Wj5y5M8K8nfllJ+9OjfGafQoXN0qBtT6tAqzX9Tz6u13tjRvkdJi87Rom6MtUXGxw7p0DnGWTf21iHGQ4fO0aFuTLpDpZTblFIeUEp5cinltUn+V+MtT6u1vrGPcxsyHTpHh7oxpQ6Zq+6QFp2jRd2YUotWMV/dgg6do0PdGGuHjA/g4LjGn6Ph3Rjrz6NPYt6jIzp0jg51Y0odWsWcRws6dI4OdWOsHTI+dkiHzjHOujHWuVd2SIfO0aFuTLpD7s/bnBado0XdmFKLzFV3RIfO0aFuTKlDq5irbkGHztGhboy1Q6McHx6Mdrh+IMld5pY/kORnztjmgsbyP7Y5YK31qiTXNlbfoc0+duDyxvJnrLthKeUeSe7aWN3317N3pZSLkvznxuofr7U2nwbZleY4/FCt9eqW+2iO3a7/3m6T5NuS/Ekp5RM73veY6NCMDm1Jh2ZKKZ+U5KGN1c/edr8ToEUzWrSlkbfI+NgtHZoxzrbUQ4cYDx2a0aEtTa1DpZQLSil1/pXkqiR/keS5Sf713NuvSvJ1tdYf6uFUD4EOzejQlqbWoTWZq16fFs1o0Za0aMZ89UZ0aEaHtjTyDhkfwCFyjZ/R8C2N/OfRmzLvsR4dmtGhLenQjDmPjejQjA5taeQdMj52S4dmjLMtjXzuld3SoRkd2tLUOuT+vM5p0YwWbWlqLVqTuer16NCMDm1Jh2bMVW9Eh2Z0aEsj79Aox4cHox2gUsrjknxLY/XTa63vO2PT5tOKr9ng8M1tbrfBPrr02sbyE0optz7xncu+6oR1fX89e1VKuUWSX87i131Fkv+xw8P2NQ5vTHJpkmckeUySh2T2W5senOSxSX4oy9/M3D/Jq0sp99zgHEdNhxbo0BYm1qGzNJ9U/dpa69s62O9oadECLdrCBFpkfOyIDi0wzrbQU4cYAR1aoENb0KFTvSvJ05Pcq9b6032fzBDp0AId2sLEOmSuumNatECLtjCxFp3FfHULOrRAh7YwgQ4ZH8BBcY1foOFbmMDPo+eZ9+iQDi3QoS1MrENnMefRgg4t0KEtTKBDxseO6NAC42wLE5h7ZUd0aIEObUGHTuX+vDVo0QIt2sLEWmSuukM6tECHtjCxDp3FXHULOrRAh7YwgQ6Ncnx4MNqBKaV8SpKfa6x+VZKfXGPzZribT6dcRzPczX3u28sye5rnTS5I8syzNiqlfHyS7zzhj25WSjm/m1M7CD+T5F/OLX84yZM3+G1IbfQxDp+R5G611s+ttf63Wuuv1Vovq7W+rdb6hlrrS2ut/ynJPZP89yR1btu7JHlRKaVscJ6jpENLdGg7U+nQSkffSH9FY7Wne6+gRUu0aDtjb5HxsQM6tMQ4204fHeLA6dASHdqODp3swiTfkOQbSym37/tkhkaHlujQdqbSIXPVHdOiJVq0nam0aCXz1e3o0BId2s7YO2R8AAfDNX6Jhm9n7D+Pvol5jw7p0BId2s5UOrSSOY92dGiJDm1n7B0yPnZAh5YYZ9sZ+9wrO6BDS3RoOzp0MvfnnUGLlmjRdqbSInPVHdKhJTq0nal0aCVz1e3o0BId2s7YOzTK8eHBaAeklHKPzAbifCzfnuQraq315K1W2tc2O1Nr/eckP95Y/Z2llP9w2jallLsneUWSO5y2245Ob9BKKd+X5Csbq59Wa33dnk9l5+Pw6D+vzad3n/S+a2utT0vyrY0/ekiSL2tzzLHSoWU6tLkpdWgNj01yx7nlf0rywo6PMRpatEyLNjeFFhkf3dOhZcbZ5gbUIQ6IDi3Toc1NuEMfTHKvudd9MpsDenySH03y7qP3fXyS703yplLKp/dwnoOkQ8t0aHNT6pC56m5p0TIt2tyUWrQG89Vr0qFlOrS5KXTI+AAOhWv8Mg3f3ICu8e7ROyA6tEyHNjelDq3BnMeadGiZDm1uCh0yPrqnQ8uMs80NqEMcEB1apkObm3CH3J+3JS1apkWbm1KLzFV3R4eW6dDmptShNZirXpMOLdOhzU2hQ2MdHzfv+wRYTynlzkn+X5K7za2+Mskja63vPnmrJVc1ljd5Ml9zm+Y++/D9SR6d4yczliQ/Vkp5YmZPR31DZk/ivOvR+74xxxe/dyS5+9y+rq21Lj3ps5Ry0bonU2u9otXZ96CU8m2ZPfV63o/UWv/nmttftO6xTvg8Bj8Oa60/UUr5/CSPmVv9TUl+scvjHBodWkmHWtKhJU9tLP9irbX5FGmiRWfQopYm1qKdj4+p0KGVdKilnjvEgdKhlXSopSl3qNb6kSRXnPBHlyV5cSnlGUl+MMm3HK2/R5JXl1I+s9b65v2c5TDp0Eo61NKUO7QOc9Wn06KVtKglLVpivnoNOrSSDrU0sQ6ZqwYGzTV+Jdf4lib28+jWzHucTIdW0qGWdGiJOY816NBKOtTSxDpkzqMjOrSSDrU0sblXOqJDK+lQS1PukPvztqNFK2lRS1Nu0TrMVZ9Mh1bSoZZ0aIm56jXo0Eo61NLEOjS6uWoPRjsApZSPSfLqJPefW/2eJI+otb61xa5GGe5a6/WllMcneXmST577o886ep3mvZl94/DKuXUfOOW9f9PilEqL9+5dKeVrk/xIY/VP1lq/o8Vutvk8DmUc/kAW/yP7GaWUC2qtp42RUdOh1XSoHR1aVEr5+CSPbKx+9qb7GzMtWk2L2plai/Y0PkZPh1bToXYG0CEOkA6tpkPt6NBqtdYPJfnWUsoNSb79aPXtk/xcKeXTNvwNQwdPh1bToXZ0aG3mqhu0aDUtakeLFpmvXo8OraZD7UytQ+aqgSFzjV/NNb6dAVzjD2UcmveYo0Or6VA7OrTInMd6dGg1HWpnah0y59ENHVpNh9oZQIc4QDq0mg61o0OruT/vdFq0mha1o0VrM1c9R4dW06F2dGiRuer16NBqOtTO1Do0xrnq8/o+AVYrpdwhyauSfNLc6vdn9iTLP2u5u39qLH9sy3O5bZbDPYiBXGv9+yQPT/KsJDessclvJXlokqsb66/s+NQGpZTylUl+KosxfU6Sb97jaTTH4a1LKbdpuY87N5Z3MQ7/MLN/aze5WZJP2MFxBk+H1qND69GhE12Sxe/J/rTW+idb7G+UtGg9WrSeqbbI+NiODq3HOFvPQDrEgdGh9ejQenSolacn+Ye55QcneURP59IrHVqPDq1Hh1oxVz1Hi9ajRevRohNdEvPVK+nQenRoPVPtkPEBDJFr/Ho0fD0DucYP7d6Y05j3OKJD69Gh9ejQiS6JOY+VdGg9OrSeqXbI+NiODq3HOFvPQDrEgdGh9ejQenSoFffnzdGi9WjRerSoFXPVR3RoPTq0Hh060SUxV72SDq1Hh9Yz1Q6NbXx4MNqAlVJul+QVST5tbvUHkzyq1vqGDXbZfPrlPVtu33z/+2qt7z/xnT2otV5da/2GJA/IbELkt5K8I8k1Sf45yeVJnpfZU1T/Ta31iiQPbOzmj/d2wntWSvnSzCI9/+/+F5J8zT6foF9rfW8W/4OYJPdouZvmWGzzZNe11Fo/kuRvG6tbfbMzBjrUjg6tpkPLSiklyVc3Vnu6d4MWtaNFq029RcbHZnSoHeNstaF0iMOiQ+3o0Go61E6t9ZokL2msflQf59InHWpHh1bToXbMVR/Tona0aDUtWma++mw61I4OrTb1DhkfwJC4xrej4asN5Ro/pHtjVjHvMaND7ejQajq0zJzH2XSoHR1abeodMj42o0PtGGerDaVDHBYdakeHVtOhdtyfd0yL2tGi1bSoHXPVMzrUjg6tpkPLzFWfTYfa0aHVpt6hMY2Pm/d9Apzs6LfRvDzJZ8ytvirJo2utf7jhbi9vLN+35fb3biz/+YbnsVO11r9J8v1Hr7M8rLH8B6fss5y0/lCUUp6Q5PmZPaX6Jv83yZOP/sPWSgefx+WZPWHyJvfN8vhcpTkW22zbxjWN5eYTXUdNhzanQ8t06FSfl+Rec8vXZfZNNUe0aHNatEyLju1ifIyVDm1Oh5YNsEMcAB3anA4t06GNvaWx3PbfzEHToc3p0DId2tik56oTLdqGFi3TolOZr15BhzanQ8t06Ji5aqBvrvGbc41fNsBr/FDujTnLpOc9dGhzOrRMh05lzmMFHdqcDi3ToWPmPNanQ5vToWUD7BAHQIc2p0PLdGhjk74/L9GibWjRMi3amLlqHdqIDi3ToVOZq15BhzanQ8t06NgY5qrPO/st7Fsp5fwkv57ks+ZWfyjJF9Raf2+LXb+5sfzJpZRbt9j+M8/Y30E5eqrq5zVWv7aPc9mlUspjkvxSFh+E+JIkT6q1frifs1oaO81Anurom5pPPmN/XblTY/k9OzrO4OjQfuiQDiV5SmP5RbXW9224r9HRov3QIi064ziTGB+n0aH9mMo4G2iHGDgd2g8d0qE13NBYvmUvZ9EDHdoPHdKhNUx2rjrRon3RIi2K+epT6dB+6JAOrTKV8QHsl2v8fkyl4QO9xg/+59FHJjvvoUP7oUM6FHMep9Kh/dAhHTrjOJMYH6fRof2YyjgbaIcYOB3aDx3SoTVM9v68RIv2RYu0aA3mqnVop3RIh2Ku+lQ6tB86pEOrDHl8eDDawJRSbpXkpUkunlt9bZLH1Fpft82+a63vTPLGuVU3z+LF4SwXN5Z/Y5vzGYDPS3LR3PJra61v7elcdqKU8u8ye3LlR82tflmSL6m13tjPWSVJXtFYvrjFtp+dxYvQZbXWd219Rg2llDtl+Smu/9D1cYZIh/ZKh/rTe4dKKRckeXxj9bPb7mestGivtKg/vbdoDaMfH6fRob0a/TgbcIcYMB3aKx3iLHdvLO/i+67B0aG90iFONeW56kSL9kyLJsx89el0aK90iFVGPz6A/XKN36vRN3zA1/jB/zx6yvMeOrRXOtSf3jtkzuN0OrRXOtSf3ju0htGPj9Po0F6NfpwNuEMMmA7tlQ5xlknen5do0Z5pEacyV61De6JDE2au+nQ6tFc6xCqDHR8ejDYgpZRbJHlRkkfMrb4uyRfVWn+zo8O8uLH81Wue279I8q/mVl2d5FUdnVNfvqux/KxezmJHSimPTPIrSW4xt/pVSZ5Qa72+n7M655VJrplbftjRGFvHJY3l5pjuypdmsZHvSnL5jo41GDq0dzrUnyF06MuT3Gpu+Yokr9lwX6OiRXunRf0ZQovOMurxcRod2rtRj7OBd4iB0qG90yHO8vmN5UFM7u+SDu2dDrHKJOeqEy3qgRZNm/nqE+jQ3ukQq4x6fAD75Rq/d6Nu+MCv8Yfw8+hJznvo0N7pUH+G0CFzHifQob3Tof4MoUNnGfX4OI0O7d2ox9nAO8RA6dDe6RBnmdz9eYkW9UCLWMVc9TEd2h0dmjZz1SfQob3TIVYZ7PjwYLSBKKXcPMkLkjx6bvUNSZ5Ya31lh4f6hSQfnlt+fCnlfmts1xzEL6i1Xtvdae1XKeXJSR45t+oNmT35cRRKKZ+T5Fez+A3SazL7JuC6fs7qWK31Q0le2FjdHGNLSin3T/K4uVU3JvnFDk/tpuNcmOQZjdW/VmutXR9rSHRov3SoXwPp0FMayz879s6sQ4v2S4v6NZAWrTrOqMfHaXRov8Y+zobeIYZJh/ZLhzhLKeULkjy0sfpX+ziXfdGh/dIhVpnqXHWiRfumRcR89RId2i8dYpWxjw9gv1zj92vsDR/6Nf4Afh49yXkPHdovHerXQDpkzqNBh/ZLh/o1kA6tOs6ox8dpdGi/xj7Oht4hhkmH9kuHOMsU789LtGjftIhVzFXr0D7oEDFXvUSH9kuHWGXo48OD0QaglHKzzIL62LnVNyb5klrrr3d5rFrrW5M8b27VLZI8t5Ryq1M2SSnlsVn8jTfXJ/meLs9rW0cXvnXf+/gkPz236sYkT6m13tj5ifWglPKwJL+e5Py51a9L8oW11mtO3qoXz8zsm5ObXFJKecxpbz4ao8/J4hM6n11r/asV2zyglPKFbU6qlHKXzD6/C+dWX5/kB9rs59Do0PZ06JgOna2U8qlJHjK36iNJntt2P2OjRdvTomNadOK2xscZdGh7xtmxA+oQA6JD29OhYzp0rJTy0FLK485+59J2n57k+Y3Vr6u1vqmbMxseHdqeDh3ToWPmqtvRou1p0TEtOpv56mU6tD0dOqZDy4wPoC+u8dvT8GMHdI1/ZtyjNxg6tD0dOqZDZzPnsUyHtqdDx3ToxG2NjzPo0PaMs2MH1CEGRIe2p0PHdOiY+/Pa0aLtadExLTpmrnp9OrQ9HTqmQ2czV71Mh7anQ8d0aNnYxsfaXww79bNJvrix7ruTXFZKuajlvq5c40mT/yWz32Dz0UfLD0/y6lLK19Ra/+KmN5VSbpnk65L8cGP7H661vn2dkyml3D0nj7O7NJZvvuJrvarW+p4zDvWmUsrLkvxKkj+otX7khHN5UJKnJXlS44++u9Z62Rn778SuP49SyoOT/EaS286tfkuSb05y51JKm9O9ttZ6ZZsN2qi1/nUp5ceTfOfc6heWUv5jkv9da73+ppWllAcm+ZnMxupN3puzv4H4uCQvLaW8KcnPJ3nx0TcvS0opt0vy5Mye7H1h44//a631r9f4sg6ZDumQDs103aHTPLWx/Mpa699tuK8x0SIt0qKZXbXoIMZHz3RIhybXoWR/46OUctskdzrlj5sTyndacax3DGlyrWM6pEM6tKir8XH3JC8qpbw5sx+gvSTJW2o9+bcslVI+IcnXJ/mmxnlde7RuzHRIh3RoUVfjw1x1O1qkRVq0qOvx0WS+epkO6ZAOLZrk+ABGyTV+Ig13jT/mHr3B0SEd0qEZ9+j1R4d0SIdm3J/XHx3Socl1KHF/3sDokA7p0CL35/VDi7RIixa5R2//dEiHdGiR+/P2T4d0SIcWTXJ8rK3W6tXzK0nt8HXxmse8OMl1jW0/kuSPkvxyklck+ccT9v9rSW7W4mu7ooOv6blrHOc9c+//5yS/l9k/0l9I8qoV5/F9e/673unnkdlvNOpqLF26h8/jZklefsKx35XZBegFSf74aGzO//l1ST57zXHe3PcHkvxOZhNsz0/y4qNj3HDK5/Csvhuxp7GpQzqkQzvo0CnHvGVmN0rM7+8JfTZgKK8Ox44WadEzOxxLl+7h89hLiw5lfPT56nDc6NDAx9muP48cXof2NT4u6egzuajvXuzw70KHdEiHdvN5fNEJ7//g0fh4aWY3QLwgyauTXHnK/j+U5BF9d2IPfxc6pEM6tJvP4+IT3m+u+vTPS4u0SIt2OD4axzRfffLnokM6pEPGh5eX1whfHTbZNX7gDd/155HDu8a7R28grw7HjQ7p0DM7HEuX7uHzcI/eQF4djhsd0qFndjiWLt3D5+H+vIG8Ohw3OjTwcbbrzyOH16F9jY9LOvpMLuq7Fzv8u9AhHdKh3Xwe7s9r9/ehRVqkRbv5PC4+4f3mqk/+rHRIh3Roh+OjcUxz1Sd/LjqkQzpkfKz9OulJckxArfXSUsrjkjw3yccerS5JHnr0OskvJfnaWuuHd3+GW7ltkoed8Z73J/mmWuv/2cP5cIpa64dLKV+c2W9W+pK5P7pzkkedstk/JnlyrfW3NzzsHZJ85hrvuzrJt9daf3rD43AGHdKhIeipQ49L8jFzy+/ObKKfHmiRFg1BTy0yPgZCh4wz6JsO6dCE3S5nj4+bvD7J19da37jD85ksHdKhCTNXPSBapEUTZr56IHRIhybM+ABGzTVew4fAPXrTpkM6NATu0Zs2HdKhIXB/3rTpkHEGfdMhHZow9+cNiBZp0YSZqx4IHdKhCTNXPRA6pEMTdvDj47y+T4D+1FpfnuRBSX4qs4F6mtcneWKt9Um11qv3cnLt/ViSyzJ7Kucqf5fke5PcZ6j/KKem1npVrfVLk/z7zMbaad6X5CeTPKjW+jbdgAcAAAUCSURBVIo1d395ku9P8rtJrllzm79M8t2Z/YYT/4ndMR3SoSHYcYdO8tTG8vNrrTdssT+2pEVaNAR7apHxMVA6ZJxB33RIhybgNZn9VtxfSvKONbf5UJIXJvnCJA9309Vu6ZAOTYC56gOgRVo0UearB0SHdGhCjA9gUlzjNXwI3KM3bTqkQ0PgHr1p0yEdGgL3502bDhln0Dcd0qEJcH/eAdAiLZoAc9UDp0M6NFHmqgdEh3RoQkY1Pkqtte9zYABKKbfI7KnH90xyl8yebvz3SS6rtf5Nn+fWRinl9kkenORemT2p81aZ/Qfm75P8aa31z3s8PdZQSrlXkockuWuS2yS5Msnbk/xurfX6LfZ7XpL7JblPkrsluSDH4+P9Sd6Z5I9qre/e6gtgYzrEUOyqQxwGLWIodtki42PYdAjomw4xBaWUC5M8MLNxfsckt05yQ5IPJnlvkjcnecsB/GafUdIhxs5c9WHQIqBvOsQUGB/AFLnGMxTu0ZsuHWIo3KM3XTrEULg/b7p0COibDjEF7s8bPi1i7MxVD58OAX3TIaZgLOPDg9EAAAAAAAAAAAAAAAAAAAAAAACA3p3X9wkAAAAAAAAAAAAAAAAAAAAAAAAAeDAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgdx6MBgAAAAAAAAAAAAAAAAAAAAAAAPTOg9EAAAAAAAAAAAAAAAAAAAAAAACA3nkwGgAAAAAAAAAAAAAAAAAAAAAAANA7D0YDAAAAAAAAAAAAAAAAAAAAAAAAeufBaAAAAAAAAAAAAAAAAAAAAAAAAEDvPBgNAAAAAAAAAAAAAAAAAAAAAAAA6J0HowEAAAAAAAAAAAAAAAAAAAAAAAC982A0AAAAAAAAAAAAAAAAAAAAAAAAoHcejAYAAAAAAAAAAAAAAAAAAAAAAAD0zoPRAAAAAAAAAAAAAAAAAAAAAAAAgN55MBoAAAAAAAAAAAAAAAAAAAAAAADQOw9GAwAAAAAAAAAAAAAAAAAAAAAAAHrnwWgAAAAAAAAAAAAAAAAAAAAAAABA7zwYDQAAAAAAAAAAAAAAAAAAAAAAAOidB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9M6D0QAAAAAAAAAAAAAAAAAAAAAAAIDeeTAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgdx6MBgAAAAAAAAAAAAAAAAAAAAAAAPTOg9EAAAAAAAAAAAAAAAAAAAAAAACA3nkwGgAAAAAAAAAAAAAAAAAAAAAAANA7D0YDAAAAAAAAAAAAAAAAAAAAAAAAeufBaAAAAAAAAAAAAAAAAAAAAAAAAEDvPBgNAAAAAAAAAAAAAAAAAAAAAAAA6N3/B89nvm568KCIAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor, Config\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 5), dpi=300)\n", + " configs = get_known_configs()\n", + " to_display = configs[\"Relative humidity\"], configs[\"Ambient temperature\"]\n", + " for i, config in enumerate(to_display, start=1):\n", + " plot = figure.add_subplot(1, 2, i)\n", + " coros.append(plot_sensor(config, plot, {}))\n", + " await asyncio.gather(*coros)\n", + "\n", + "display(figure)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAE0YAAAmZCAYAAAAwyqtnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdd5RkVbX48e8eZkiSGXIaJAoIKElRkiBREZAgQRyCOYvx93yK+MxZjKBkQRHBwEMMKPoQUBBEJKkIKEgecmZm//44NVJ9+1Z3pe7qnvl+1uoFd997ztlVdavWmu5d+0RmIkmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmDNGXQCUiSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNnI3RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2cjdEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZyN0SRJkiRJknoQEVn5OXrQOUmavPxMkSRJkiRJkiRJkiRJkqT5S0QcXa0dG8txgxIRM2pq5GbOL+tLkiRJkqT2TR10ApIkSZIkad4WEVOBDYDnAEs1fhYAHgEeBm4FbgZuzswnBpSmJEmSJEmSJEmSJEmSJEmSJEmSJEmSpAGzMZokSZIkSeq7iFgI2Bs4HHgxsEgbw56KiL8AlwG/AX6emfeMXZaSJEmSJEmSJEmSJEmSJGk0ETEDuKmDIU8ADwIPADcCVwKXAj/NzCf7nd9cEfES4IKaUz/LzF37tMb2wK9HuGSHzLywD+scCpw8wiVrZubNva4jSZIkSZIkTURTBp2AJEmSJEmat0TEnsDfgTOAl9JeUzSAacDzgNcB3wHujIgvj0mSktQnEXFzRGTTz0mDzkmSJEmSJEmSJEmSJEkasIWA5YC1gV2A9wM/BG6LiE9FxGJjtO4RLeIvjYjVx2jNqsMn2DySJEmSJEnSpGNjNEmSJEmS1BdRfA34EbBqH6acAoxXIZIkSZIkSZIkSZIkSZIkSRpb04H3An+JiBf2c+KIWArYp8XpKcDMfq43gldGxBK9TBARzwa27VM+kiRJkiRJ0qQzddAJSJIkSZKkecY3gNe1OPdP4FfANcDdwCPAYsDSwDrAZsAmlF0iJUmSJEmSJEmSJEmSJEnSxPYI8PcW5xYFlgGWbXF+DeD8iNguM//Up3wOBhYe4fxhEfHRzMw+rdfKosABwPE9zHE4EP1JR5IkSZIkSZp8bIwmSZIkSZJ6FhF7Ud8U7QrK7o6/Gq2YKCIWBXYF9m78PKvfeUrSRJeZFjRKkiRJkiRJkiRJkiRpMrg8M7cf6YKIWBV4OXAUsFbl9BLAWRHxnMx8qg/5HFE5ToY2F5sB7Aj8sg9rVd1H2Sh2rsPpsjFaREwBXlMJz6I0mtM8KjOPBo4ecBqSJEmSJEkTxpRBJyBJkiRJkia3iAjgCzWnzga2zswL2tlhMTMfzcyzM/PVwCrAO4G/9TdbSZIkSZIkSZIkSZIkSZI0HjLz1sz8OrAJpaawai3g9b2uExGbAs+rhL8APFmJHd7rWi18F5jddPyCiHhOl3PtAqzadHw/8NNuE5MkSZIkSZImIxujSZIkSZKkXm1N2Umx2W3AzMx8opsJM/OBzPxiZr6n1+QkSZIkSZIkSZIkSZIkSdLgZOYjwMHAdTWnX92HJY6sLgl8CTi3Et8nIpbuw3pV/wZ+Xol124StOu504PEu55IkSZIkSZImJRujSZIkSZKkXu1WEzspMx8a90wkSZIkSZIkSZIkSZIkSdKEk5mPA5+oObV5RCzT7bwRsTBwUCV8YWb+Ezi5El+I0qBtLJxQOX51REztZIKIWBbYc5R5JUmSJEmSpHleR79YkyRJkiRJqrFGTeyP455FCxGxPLA5sHzjZzZwF3AncGlmPjjA9IZo5Lo+sBawFPAs4CFgFnAb8IfMfHicclkK2KIplymNPH6ambeMUw6rA88HVgaWBh4GbgIuy8zbxymHRYAtgZUo989iwL3A3cBVmXnjOOSwJPACYB1gScrzcDdwRWZeP4brbgSsTXncywKPNta9mfIaPDVWazfWXwDYFNgAWAFYGHgE+HNmXtDm+GdT3lOrAEsACwD3NX6uB67OzDlj8gAmiIgI4LmU+2c5YBngAcrn4E2U+2jMn4NB3ceSJEmSJEmSJEmSJEmaUM6viU0B1gMu6XLOfSj1Zc1Oafz3PEqNynJN544AvtLlWiP5MXAPML1xvAKweyPerkOABZuO/5yZfywlQBPD/FiXFRGrUB7vDErt0yLAg5Sayn9S6ukeH1iCfRIRC1JqBtcHVqS8tlAe5yzK63rDOOUylVL7uyHlPTUHuJ1S83ZpZs4ejzzaNRFqTSVJkiRJmtfYGE2SJEmSJPVq+ZrYI+OeRZNGgcFbgAMojbVaVQU9HRGXACcBJ493oURELE7Z3XFnYHtg9VGGzI6IK4FvAqdk5pNdrHkS8Jqm0C2ZOaPp/G7Au4AdKMVKVYdRnq8x0Wji9BrgTZTGbHUyIn4HfCozz20aezNDG/WdnJkzu8hhCmVX0EOAbSkNuVpdexNwJvDZzLynw3VOYuTXYlPgg5R7ZFqLOW4BPgd8ox+NyiJiY+AdwC6UhnStPBwRv6S8Bpd2uMb2wK8r4R0y88LG+dWB91J2ca0WLAL8BqhtjBYR61AKHV8CvIjSXHAkD0TELyiv3+/bzH8GpbiqlddExGtGOA9AZtZ+LkVEVkIfycyj28mtMs+6lOdxd0qxVSv3RsTPKM/BlV2scxIT7D6WJEmSJEmSJEmSJEnSxJSZd0fEgzzTcGmu6XXXt+mIyvGjwFmN9Z6OiNOBtzed3zQintdNrcxIMvPJiPhOZa3D6awx2uGV4xN6TqwPxqMuq7HO1cBGTaG7gVV6qSmKiAOB0yvhN2fm10YYMx3YG9gJ2I7S5G4kT0bEpZSGez/opilcRBwNfLg51qrGrJ8a9V17UWpGtwIWGuX6u4FzKa/ttWOQzwrA+4GZlE1969wVEWcCx2Tm3f3OoV3jVWsqSZIkSdL8asqgE5AkSZIkSZNe3S53a9TExkVEHAD8Dfg0sBmtm6JBaRq/DfBt4KqI2HbsMywi4tPAXcBpwKGM3hQNSqOyzYHjgRsjYps+5rNYRJxF2SFzJ+qboo2pRsOp3wIn0ropGpTX9MXATyLiexGxaB9z2BW4mrJj6M6MUKjSsCbwPuAfEfH2Ua5tN4cpEfFR4HLglbRoJtWwBvBl4PcRUdeksN01V2oU5f2J0vxupKZoUHYz3Au4JCJ+GBHLdLt2JY8jgOuAN1PfFK3VuGUj4grgr8AnKa/daMV3UHbv3Be4NCJ+FBGtCqkmjYhYNCK+BlxDKfocqSkawLKUJnR/jIhTI6Lt532UPMb9PpYkSZIkSZIkSZIkSdKk8HBNrNoorS0RsSaloVOzszOzeY2Ta4ZWm6n1y7crx3u0Ww8TEZsDGzeFnqTUFw7MAOqyTqwcLwfs0W6+LcysHD8BnNHq4kYjvduB44D9Gb0pGsCClMZYZwJ/iYgNu8p0HEXE+hFxA3AlpSHbtozSFK1hOUqN4V8i4viIaGdMuzntDlxL2dx1pHtmecrmyddFxKv6tX4nJkKtqSRJkiRJ8zobo0mSJEmSpF7dURPbf9yzACLiv4HvAqt0MXxD4BcRcVB/s2ppS0YvhBjJqsAFEfHqXhOJiGcBF1CaFw1ERKxFaYr24g6H7g/8NCIW7EMO7wb+F9igi+GLA1+MiG9FxNQecphCKZT5IJ01p3se8NuIWKyLNTcB/kBpjtXNDpOvoBSwrdvF2OY83gN8C+im0d3ilOegF3sCf4iIVXucZ2AaO5X+CngjpfFjR8MpO1deFBHtNGocKY9xv48lSZIkSZIkSZIkSZI0adQ1PHqwy7kOZ3jN0ynNB5l5JaWBUbODI6KX+r1amXk18Mem0FSg3Rq/wyvHP87Me/uSWPfGuy7rNOCpSuywbhdurLlTJfzDzLxvhGFb03ntVbPnUOrpqutONCsCvdT8BXAkpd6rq8aGQyaLeDnwI6CTTVqXBU6PiNf1un4nJkKtqSRJkiRJ8wP/4SxJkiRJknp1MVAtKtgpIt6amceOVxKNpmjH1Jx6Gvg18EvgNsrvQ1YDdgdewNCiqAWB0yLi6cw8c2wzHiIphVdXA9cBd1MKvWZTiiCeDWxB2dlyWtO4acDxEXFNZl7Rw/rHURq1zfVv4Dzgz8BdlN0416AUKPVdRCxJaea0Ws3pfwA/pOw4eR9lt8HnUppxrdi4Zlvg8z3m8EnKbnxVs4BfUIrV7gIepRTmbQjsCqxXuf4I4H7g3V2m8jHg4Kbjf1EKaK4G7gEWoxROvZKyg2Cz9Si7cr6l3cUau4z+ujFvsznA/1He3zdRHtMilIZ82wE7MrTh1TrAeRGxWWY+0O76TXYG3t90/EQjrwspzRefbqy9VU2udR4GLqO8n/4GPAA8RHmPL00pSNqB8lw2Wwf4XkRsl5lPt5j7SeCqpuMNGPq+vA/4Zxs59lVELEJ5zjaqOX0PcA7PvKeX5Zn7aOXKtRtQmqNtmpmzukxnXO9jSZIkSZIkSZIkSZIkTQ6NDTTrNk78RxdzTQFmVsK3UTYJrToF+EzT8VLAPsDpna7bhhOAzZqODwc+N9KARpO2A2vmmWjGsi6LzLwrIs6j1AfOtXtELJ+Zd3WR76HAlEqsk+d1NnAFcA1wPXAvpbYzKHWV61DqUF9UWWcx4LsR8bzM/FcXeQ/CfTzz2t5IeZwPU+oGp1NqJncGqptubknZELWXDZXXBI7lme87J6V28Tzg1sbxasBulOe6ue43gG9ExL2Z+YMecmjLBKo1lSRJkiRpnmdjNEmSJEmS1KvzgMcoxQ/NvhwRLwU+nZkXjWUCEfEi4MM1py4CjsjMv9ac+5+IeCGlyGX95umA4yLi95l5S/+z/Y85wM8pBVc/z8y7RxsQEdOBD1EaBs0t7FgIOJnSLKwbqwIHNf7/MeADwNcys7rrIsAHx2KXTOALDC+WeYhS8HF8ZmZ1QES8DXgPcDTld1xvojSs6lhE7M3wQpX7KI26TsnMx1uMC2Av4BvA8k2njoqI32bmjztMZaWmPB4CjgJOyMzZNWv/P0ojwPdXTr0hIj6RmbeNtlhELA18n+GNxk4Ejs7MVs29Pt4oUPwqsEtTfC3K++mVo61d4708c0//AHhnq4KwEe7B+yk7hp4FXNziHq7OtTXwJWDzpvDWwDuAz9aNycx/A5s2zXEzpXHgXD/OzJmjrT0GvsDwpmizgU8BH627jyPincC7gI9SPkvmWo1SrLZPF3mM630sSZIkSZIkSZIkSZKkSaWutug+SjOmTu1CqX9rdlpmzqm59jTKZn3Nm0Eewdg0Rjud0ghtbp3TBhGxVWb+foQx+1CaKM11G6W+cCIYl7qsJicwtDHaVOAQuts8dWbl+FbKJrsjeRI4m/KYf9XORqERsQbwCYY2t1sW+DrwsnaTHYA7gJMom25e3uK98x+NmsndgC9SmsLNtV9E7JuZZ3WZx3t55v1yPTCzxfvl4xGxZSPn5uZ7AXw9In6Tmfd0mcOoJlCtqSRJkiRJ84Vqt3tJkiRJkqSONBp6faXF6ZcD/xcRt0bECRHx2ojYJCL61qy9UTDwbYYWLEFp2LZji6ZoAGTmJZTd466unFqS1o+pX/bOzF0y8zvtNEUDyMx7MvNtwGGVUxtFxM5d5jH3eXsE2DUzvzRS4VKrwo1uRcQLGP54Hm7kclxdU7RGHk9m5scoTd1mUwpbFqq7dpT1l6c0Amv2N2DjxvotH28W51CKt26tnP5E497sxIKUxzEL2CYzj69rJtVY+6nM/ABwfOXUAgx/Plv5KjCj6Xg2cEhmHj5CU7S5699IKXCqPnf7RMRWba7fbO59eCyw30i7ZLZ4Tf4NrJyZb83M37RTfNeY62JgG+D8yqm39fNzaqw1mkO+vhKeAxyWmf/V6j7OzNmZ+RlKYWX1Ods7Irppcjfe97EkSZIkSZIkSZIkSZImgYhYibJZZtUZozVkauGImtgpdRdm5h0MbzS2Q0Ss2cW6I8rM+ymNppqNVgtTfSwnt6q5GWeDqMs6D7izEpvZzrrNGjVV61TCJ7dxr22Rma/MzHPaaYoGkJm3ZOZBlI1em+0eEevXDJkI/gCslpkfyMw/tPMebNRMngdsBVxZOf2uHnKZ2xTtGuDFIzURzMw/UO6tayqnlqNsIjomJlitqSRJkiRJ8wUbo0mSJEmSpH74EHDJCOdXoRT2HAf8CXgoIn4fEV+OiH0jYoUe1t4DWK8S+yewf2Y+OdrgzJxF2V3wseq8EVGdt2/aLZhpMfZkyu6LzY7sLSPen5m/7XGObry5JvaeRmHUqDLz+5SdJbv1dkojvLkepTRlqxafjJTDv4BXVcIbAHt2mdNhmXlVm9e+H6gW1Owy2qDGvX1AJfxfmfmdNtel0bTu9QzfrfX97c5R8Qfgna2a4Y2Sy5OZWX0Ptzv2ceA1lNd+rtWAbpsNDsI7a2JfzMxT2xncKFb775pTR/WQ05jfx5IkSZIkSZIkSZIkSZocImItSpOs5SqnHgU+0cV80ykbtza7PDOvHWHYydVpGLvN+06oHL8qIhapuzAiZgA7VMLVBkwDMYi6rMx8GjitEn5uRGzWYQp1r+2oz2svtZ3AMcBlTccBHN7DfGMmMx9tPNfdjL0POLQSfmFEbNBDSk8C+2TmvW2sfy9lM9BqjfDBjc+GsTARa00lSZIkSZqn2RhNkiRJkiT1rFHAsjvwkzaHLAxsCbwV+D5we0RcGBGHR8TCIw8d5i01sXdn5iPtTpCZNzF8p7igvmnXRFHd2fLFPcx1I/DVHsZ3JSKWAvarhK+jNNDrxIeB+7tYfzHgTZXw5zLzH53OlZm/Ay6ohPfudB7gN5n54w7WnUXZIbPZphEx2u/93sPQ3w3eBHy23XWb1n8K+HglvFsX72MoDfEGsstpZt7F8N1Je3lPjZuIWAXYqxK+i9KwshOfp+xg2eyFEfH8LtIar/tYkiRJkiRJkiRJkiRJE1BELBwRq0TEHhFxHPBnYOOaS1/bSWOhJocCC1Zi1Zq6qh8B1aZXM8eoRuUC4Jam4yWBV7a49jBKveJcv83Mv49BTuOuh7qsamM5gJntrhsRiwL7V8K/zcwb252jG41NQaubWU6KOrROZeZfgCsq4V4e67GZ+dcO1v8rcGwlvBAd3CftmqC1ppIkSZIkzfP8YpkkSZIkSeqLzLwfeAWl4KjTopwAtgO+DdwQEQe3NShiwca4ZncA53S4PsA3gerudy/tYp7xUm1gtFJErN7lXCc2CnLG24sohSjVXOZ0MklmPgx8r4v1dwKWqsS+3cU8c/1v5bh6b7bj+C7G/KFyvBiwSquLIyIouyU2O6mHpmTVhlYLAVt1OMffMvO3Xa7fL9X31AsGkkXnXgIsUImd0klzSPhPk7u6+6+bz8Exv48lSZIkSZIkaaJrNAHYMSKOiIj3RcTbI2K/iNhk0LlJkiRJUp9sFxFZ9wM8BtwKnAu8Fli0MvZR4ODMPL3LtQ+vHD8FnDHSgMYGsGdWwqsBO3eZw0hrJXBSJVzNmUZTttdUwnVNwSazjuuyMvNahtcTHRQR1XrDVl4JLF6Jndjm2F5VH+/zI2LaOK093vpZc9dNzVndJry79ZBDKxOx1lSSJEmSpHne1EEnIEmSJEmS5h1zd7uLiDOAXYGDgD2AJTqYZnXgtIjYCXhDZj4xwrXPBxauxH6YmdUGZ6PKzDsi4iJg+6bwehGxbGbe2+l8nWoU7LwY2ATYCFiO8rwtxvCmRzB8t0soz90/u1j+112M6Ye6Iphqk612nQu8vsMx1WKS2zLzltor23NT5XhGRCzVaBrYrt90sW7dLpZLAv9qcf3GwNKV2MVdrAtAZs6KiAcaa871PDp7LBd2u34rEbEKsDXl8a5LyW8JYBGG7rA614qV424bDY63F9XEzupyrjOBT7cx/2jG4z6WJEmSJEmSNA+JiGcDWwCbN/77fIZ+gfmWzJwxgNQ6FhEbAR8CXs7wv2PNveZvlC9kfy4znxzH9CRJkiRp0B6ibIJ5TGZ2VRcSES8ANqyEz8vMe9oYfjKlUVuzw4Hzu8llFCdS/n04t1Zp+4hYMzOb68x2AtZoOn6I7mt/xsU41mWdCGzZdLwMsCfw/TbGHlY5frjNccNExGLAtpTHuwGwLOXxPguYUjNkscrxQsAKlEaBE1pErEWp69wYWIvyOJegPIa617b6WnZbc3d9Zt7Q6aDM/GtEXMPQz4MtImJKpxv0jmIi1ppKkiRJkjTPszGaJEmSJEnqu0ZjsnOBcyNiAWBTStOvzSlfZFmP+mZfzWZSCkf2H+Ga59fELu803yaXMbQxWlAaPP2yhzlHFBFrA+8H9mVoY6luVHeka0cCf+px3W49t3L8GHB9l3Nd2cWYasOnpSOil+eiWtAEMB1ot1jl8czspvjpgZrYSPdSXaOrYyNipCaEo6nu6Dq9w/FX9LD2EBGxL/AmSjFSXeFZu7p5Pw1C9XPwaeCqbibKzFsi4i5g+RHmH8143ceSJEmSJEmSJrmI2B74AOXvR8sMNpveRUQA/w0cTf2XhZutA3wcODAiDsrMv4xxepIkSZI0UVwOHNttU7SGI2pip7QzMDN/FxF/B9ZuCr8iIqa32VitbY1anF8BOzZCQamL/HDTZYdXhn0vMx/pZx79MoC6rDOAz1Mars01k1EanEXEGgytAwU4s9PnNSI2A95Daca2yCiXj2YpJmhjtIiYQnlPvZbSrL4X3dbc/bGHNa9gaGO0xSkN+7qtRa0z0WpNJUmSJEmaL9gYTZIkSZIkjanMnE0pWvhP4UJELApsBewA7Aes32L4fhHx1sw8tsX5uuZL1/WQ7rVtrtEXEfEh4P9RdtPrh26aCD2cmY/2af1OLVs5/lfjfulYZt4WEU8B0zoYtmrleFFgk27WH8GywN/bvHZWl2s8VRMb6XmoPm5o/R7sVvW1Hc1dvS4YESsDpwIv6XWuhsnSlKv6GXVTZj7ew3zXMbQxWqefgeN1H0uSJEmSJEma/DYFdh50En10PMO/nD+H8qX/m4EFgQ0oX86d67nABRHxwsz8x3gkKUmSJEl99Aj1tVHTgKWBlWrO7QBcFhEzM/OMTheMiGcBB1TCsygbubbrFOCYpuMFgUOAL3aaTxtO4JnGaAAzI+IjmTknIpYG9qq5fkIZVF1WZj4QEecABzWFd4mIlTLz9hGGzmR4w/IT200uIqYBXwDeSG8N4JpNyFq0iHgO8B3KBsL90O3jvKGHNesaoC3fIt6tiVZrKkmSJEnSfKFfv5iRJEmSJElqW2Y+mpm/zswPZeZzgF2Ba1pc/sFGI7U6S9fEetkx7b6a2DI9zNdSRHwV+Aj9a4oG3TURerCP63eq+vo90ON8nY4fk9e2opOdIusaQ42FTpuWdaPTHTJ7ug8jYhXgQvpXfAeTZ1OJ6vuo110jq5+DC43wGVxnvO5jSZIkSZIkSfOuJ4AbB51EJyLirQxvivZdYPXM3CozD8jMvTNzPWBL4Mqm65YHfhoRC49TupIkSZLUL5dn5qY1Pxtm5sqUOqWZDG9QtCBwakS8vIs19wcWr8S+m5lPdjDHKUBWYtV/0/XL2Qyt51mdZxqlHczQ+sHrM/OSMcqjKxOgLqva0GwB4NWtLo6IAA6thP+WmRe1s1ijKdr3gTfT3+/eTrgNIiNiI+A39K8pGnT/OHupHa0bu1QP89WZaLWmkiRJkiTNF2yMJkmSJEmSBi4zfwZsAfy05vTywJ4thlYLnKDsQtmturF1a/QkIg4B3lRzahbwbeBwYBtgBqXp0SKZGc0/wJp9SufpPs3TjWpTuE6K0+o80e6FjUZP/WxKN5nUNRQctF7vw5OAdWrifwI+AewNPB9YEVgCWLDmPfWRHnMYlOpnVC+fga3G9/1zUJIkSZIkSZIanqL8LvdbwOuBzSi/kzxykEl1IuCbghUAACAASURBVCKWBT5eCR+bmQdm5m3V6zPzMmBb4A9N4XWBd4xdlpIkSZI0/jJzVmaeDGxKaR7dbAHgtIiY0eG0dQ3MTukwr1soDaGabRQRW3aYSztrPQ6cUQkf1vjv4ZX4Cf1evw9OYrB1WRcAt1Rih9Vd2LAd8OxKrNpcbSTvA15RE78N+BpwCPBCYDVK862Fax7vDh2sNxCNBnBnAsvVnP4dcDTwMmATSg3v4sDUmsd6cp9SmrB1v/N5rakkSZIkSQPVSXd9SZIkSZKkMZOZj0XEq4AbgemV0zsyvDAK4KGa2LN6SKNubN0aXWsUlHy65tQngWMy87E2p5oXdoer7tTXazHKEh1c+zgwh6EbB/wwM/fuMYfJoO4eWzoz76+JT3gRsQewUyV8F3Boo+liuybre+ohhu5w2ctnYKvxff0clCRJkiRJkqSGk4FvNL4kPkREDCCdrr0VWKzp+DrgqJEGZObDEXEwcC0wrRH+QER8MzPvG5s0JUmSJGkwMvOJiHg1sAJDm0YtQdlIdMd25omI9YAX1Zy6tE//jjycoU2s++VE4I1Nx3tHxA7A85piTwOnjsHaXZsIdVmZmRFxMvChpvD6EfGCzLy0Zki1adps2mycFxHLAx+ohJ8G3gN8JTPb3fxzMtShvQ54TiV2I/CqzLy8g3n69Vgnct3v/FxrKkmSJEnSQE0Z/RJJkiRJkqTxkZkPUnYYrFqvxZC6L4YsVRNrV93YWT3MV2c7YKVK7NjM/EAHTdEAluljToNSff2W7XaiiFiQoV86GlFmzgGqjcDW7Hb9SeaemtiM8U6ijw6sHM8GXt5h8R1M3vdU9X3Uy2dg3fgnMvPRHueUJEmSJEmSpGEy8766pmiT0Msrx1/KzKdGG5SZfwd+2BRaAtinn4lJkiRJ0kTRaCp1KPBg5dRLIuKANqc5or9ZDXNgRCza70kz8zLg6qbQwsBplcvOy8w7+r12jyZKXdZJQFZiM6sXRcRiwCsr4Z9n5m1trrMnUH3935eZX+ygKRpMjjq06mv7ELBTh03RoH+Pdck+j+3bJrHzea2pJEmSJEkDZWM0SZIkSZI00dTtuDi9xbV318Squ9h1YoOaWF0TqV68tHI8B/hYF/M8uw+5DNq/KserRMTSXc71XKDTbT/vrByvGxELdbn+ZFJ93AAbj3sW/VN9T52fmd3s3DpZ31PVz8E1e7yPq5+D/f4MlCRJkiRJkqSBi4jFImKXiDgsIt4bEUdFxKsjYvOIaLu2NiIWBzathDv5gvj5leN9OxgrSZIkSZNKZt4KfKjm1McjYtpIYyNiKqWx2lhagrH7d9mJleOVK8cnjNG6vZgQdVmZeRNwYSX8qohYuBLbH3hWJVZ93kdSfbz3AV/pYPxcE7oOrdFA7oWV8CmZeXMX0/Xrsa7bw9i6jZfv6mG+OvNrrakkSZIkSQNlYzRJkiRJkjTRPFATa7Xb3hU1sc17WHuLynG2WKMXq1WO/5qZdY2qRlMtTJmM6oqkXtDlXN2Mq66/CLB9l+tPJnXP+27jnkUfRMSCwPKV8P91Mc8CwJZ9SWr8VT+jpjL8S3htiYjVGf58/rGbuSRJkiRJkiRpImo0Q/sVMIvSlOwE4FPAZ4FTgMuAOyPik21u5rIyQ2txH+nwi8RXV4539Iu1kiRJkuZxXwf+UYk9GzhilHEvA1aoxO4Arurxp2q0PLp1KvBki3N3Af87Rut2ZQLWZVUbnC0J7F2JzawczwJ+3MEa1drO32dmq9dsJBO9trP6uwzo7rVdnv41Rtusj2MfAv7aw3x15tdaU0mSJEmSBsrGaJIkSZIkaaKpFi/B8N3W5roCeLwS26tRTNORiFgB2KYSviEzZ3U61yimV447nr+xO+Ze/UlnoC6piR3U5VwHdzHmFzWxQ7pcfzK5GHikEtujzS94TTTV9xN08Z4CdgcW6zKHauPGjj9/enRxTazbnWv3a3N+SZIkSZIkSZpUImJ6RPyC0gxtB2DaCJdPB94H/C0ith1l6mUqx/d3mFr1+mnA+h3OIUmSJEmTRqPR1DE1p/5rlEbRdQ3LDsvMTXv5YXjDo20jYu1uH18rmXkPcG6L06dmZqvNYwdlItRlNfsB8GAldtjc/4mItRhe//mdzHyigzX6Uds5nfJ7h4msX6/tAb0m0uQ5EbFep4MiYl1gw0r4ssyc05+0/mN+rTWVJEmSJGmgbIwmSZIkSZImmpfUxG6suzAznwJ+XQmvSHdNw14HTK3Eft7FPKOpNqSqKzIZzUHASn3IZaAy8yrg+kp434hYs5N5IuLFdLfL4s8Y3ljvwG4KbCaTRnHh+ZXw4sBRA0inV9X3E3T3nnpXDzk8VDnuRyFfJy4AZldir46IZ3UySURMBV5bc2osPgclSZIkSZIkadw0vtD+e2CnyqmHgAuB7wFnAZcDzV+cXRb4RUTsMsL0T1aOR/oSf5266zfocA5JkiRJmmxOA/5aia1Kfe0KEbESsFslfCf1zYq6yaXq8D7MW+eEDuODNBHqsv4jMx+l/Pu92Y4RsVrj/2fWDDuxw2X6Udv5ZmDhLsaNp55f28bmvm/tTzr/cWQXY+o+M37aayI15staU0mSJEmSBs3GaJIkSZIkqScR8fJOG1mNMNdawP41p1rtlAjw1ZrYZyNi0Q7WXQN4fyWcLebu1e2V43UjYka7gyNiBeCz/UxowL5ROV4Y+EZELNDO4IhYrGaOtjR24TyuEl4AOD0iFulmzknkYzWx9zaazE0amfkA8GglvHMnc0TEkcD2PaRxX+X42T3M1bHM/DdwTiW8AvDhDqd6B1At1PpdZl7ZbW6SJEmSJEmSNGiNvxedw9Df3d4A7AssnZk7ZOarMnO/zNyC8kX845uuXRA4LSJWabHEvZXjpSOiky9A122E45dqJUmSJM3TMnM28NGaUx9o8W+qmZS6rmZnNObp1XeBpyux17Rbv9ah8yj/Dmz+WSEzrx2DtXoyQeqyqqqNzqYAh0bEFODQyrmruqh7qtZ2bt3J5pQRsSHwgQ7XHITq44QOX1tKbdo6fcil2Vsbze3b0ri22pztCeCkfiYF832tqSRJkiRJA2NjNEmSJEmS1Ks9gL9GxIkRsX63k0TEypQvplQbmt0N/HKEoecB11diMygFB1PbWHdp4Ec16/4kM6u7UvbD/9XEPtXOwIhYhtIkrpudCCeqE4BbK7GdgZMjYqGRBkbEUpTnY8Me1v8Ew3dAfD5wTuPe6FhErBERx0bERj3kNaYaRV8/qISnUR73tt3MGRELRcTrIuKdPSfYmYsqx9tHxO7tDIyIXYEv97j+1ZXjjZp2Ih0vX6iJHRURr2pncETsQn2zvM/1lJUkSZIkSZIkDd5ngObf1/8UeF5m/qDuC/SZeXtmvg44qik8nfov7EP5G8fDTccLAJt3kN8La2JLdjBekiRJkiar0xle97cy8Iaaaw+riZ3WjyQy827gZzV57NaP+StrZWbeUfm5q9/r9NGg67KGyMxLGH7PzAR2BFavxE/oYolqbeditLk5ZWNz3B8DI9Y8TgSNe65aG3twRGzSzviIOIyxaQC3EHB2O3WbjWvOZvjzfXqjidlYmC9rTSVJkiRJGiQbo0mSJEmSpH6YSikwuS4iLo2It0RE3Q73w0TEohHxBuBK4Lk1l7wnMx9vNT4zEzgCqH555RXAz0faQS4itqIU71QLOu5n+E5y/XI+8FAltn9EfGuk3QUjYmfgUp75Ms2DY5TfuMrMh4DX1Zw6GPhLRLw6IoZ8ASgiVoyIt1CKnLZrhG8C7uxi/TuA1wBZObUL8MeIOKTNBnvPiogDIuJs4O/AW4C63UsnktdTnrdm04ELIuIzEbFiO5NExFYR8TngZuCbwFp9zXJ0Z9bEvhcR+7YaEBELR8SHKE0R5+7Y2O176uLK8RTg+xHRyRffepKZFwNfr8nj1Ig4OiIWrBsXEQtExLuAHwLVa87JzHP6n60kSZIkSZIkjY/GpjxHNoVuBvbNzMdGG5uZn6dszjPXwXW/N8/Mp4HfVcKvbjO/AA6pObV4O+MlSZIkaTLLzDnAR2pOvT8i/rPJaURsB6xTueb6zPxjH9Opa7J2RB/nn6wGXZdV58TK8drAlyqxJ4HvdDH3D4A5ldh7IuKjI9UQRsSBwCXAsxuhyVDbWX1tpwHnR8T2rQZExFIR8SXg2zzzveR+Pda5NcLPBS6KiC1HyGMLShO7ar3x3cD7+pTPMPN5rakkSZIkSQMx6j+0JUmSJEmSOrRV4+fYiLgZ+D1wLXAPcC+lKGAJYA1gY8pufa0agp2ZmSePtmBmXhwRHwGOqZzaAbg2Ii4AfgXcBiwArAbsDmwNRHU64PWZ+c/R1u1GZt4XEV8APlQ5dQSwV0R8H7gCuA9YilIs8zKGFnHMBt7O8CKfSSkzfxoRHwP+q3JqbeAUYHZE3ElpWDcdWI6hr9uTwKEML1CrNstrtf4PGsVYH62cWhM4FfhsRFwIXE4pnnmEcg8v1chxc8q9POF3e2yWmfdGxJ6U5oDNzeemAu8G3hYRlwC/BW6l3JMLUR73SsDzKI99ufHMu8YplB0omxuyLUZpTnYF8BNKAdFTwPLAZpT31LJN11/buK6bwqgfAbOAZZpiWwGXRcRDwL95pnDrPzJz0y7WGslRwDZA8+6RUym7lr4xIs4B/kz5LF4a2ADYB1i1Zq5/MfTLgpIkSZIkSZI0Gb2BoZtCfCQzH+1g/Ocof0+iMc+uwEk1151G+RLsXIdFxNcz80+jzP9Whn+5H2yMJkmSJGn+cSbwQWDDptgKwJuAzzaO6xqUndrnPH5EafC0RFNsj4hYPjPv6vNak8mg67LqnAp8nFIHOtdzKtf8JDPv7XTizPxrRJxGqUVs9kFgZkScRam/ephSK7YesCdDn59HKY+1usnlRPMFSkOupZpiKwK/jojfAj+jNJif04hvDexGef3nuoBSk1t9vrrxaeBdjfk3AC6NiIuAn1Jq2aDU/e5KqZGrq/t9Y2be3YdcWppfa00lSZIkSRoUG6NJkiRJkqSxNKPx042T6WDXxcz8aEQEw3eRnEYphti1jWmeAg7LzLqdDvvpf4DtGj/NlqV8SWckSSn8urD/aQ1OZn4wIpJSRFS1ALBy46fqCeDgzLyoZre9tncjzMz/iYh/A19l+O57KwAHNH7mKZn5l8YOimcztKEWlC951d2nE0pmPhUR+1EavC1aOf38xs9IbgP2AGZ2uf7jEfFOymdW1eKUArgxl5mPRcRLgHOB6o6ZywOvb3Oq64BdM3NWP/OTJEmSJEmSpAF4adP/zwbO6nD8RcDTPFNruw31jdG+CxzNM1+Engb8JCJ2zcxr6iaOiAN45kv+VXM6zFOSJEmSJqXMnNPYELVar/feiPg6pW7sldVhwHf6nMdjEXE2Q+uHplEaPrX6t9s8b9B1WS1yuj0izm/M28oJPSzxNkrt1fqV+KrAO0YZ+xSwH6U52oSWmbMi4mDgxwxtMgewbeNnJH+hPNYv9Cmlm4CDKXWMC1Aan23T+BlNAm/IzB/0KZeRF5tPa00lSZIkSRqEKYNOQJIkSZIkTXqnUgqN7u/TfP8AXpGZMzNzdicDM/MY4EDg312sey3w0szsa9FUncx8CngFpYFRJ+4H9s/M4/qf1eBl5n8DOwN/a3PIn4AXNxW0LF05/0CH658AvBD4VSfjajxO+RLUP3ucZ1xk5t+ArYDPU3Yo7MXlwHk9J9WhzLwS2AW4vcOhlwIvyMybe1z/FOBI4KFe5ulVY8fLHYBvUL6s19Fw4HTgRZk5Ke5dSZIkSZIkSWolIhYGNmsK/QuYHhEz2v2hbNjS/PevtaiRmU9Tvrz7ZFN4VeCKiPhaROwSEetHxHMj4oCIOJfyd4RpjWtvrUzZr7+5SZIkSdJkcBbw50psOeCtwEEMb8h1UWbeMgZ5nFYTa3tj13nVoOuyWhip8dntwM+6nTgzHwB2ouTfiX8DO2XmuNfOdauR6350sAFtw7nANpl5X5/z+TGwF539XmQWZWPdca2pnV9rTSVJkiRJGm82RpMkSZIkST3JzN9l5iHA8sCOwDGUP/Y/3ME0d1Kaq+0BrNcocOg2n+8CawPvBa6gNPtp5WnKboZHAhtn5m+6XbdTjQKaPSlflKkWdlXdBXyG8tycNda5DVJm/gLYEHgZcCJwNXAPMJvS6Owq4DhKsdXzM/NygIhYnOFFcLO6WP9Pmbkj8ALgFIZ/GamV2ynFca8BVszMAzPzrk7XH5TMfDQzjwJmAEdTGpy105jwccr7/f8BG2bmFoMq7srMi4BNgE8zenHU5ZTX6kWZ2e5rPNr63wZWAQ6jNIy8kvLefawf83eQx6OZ+UZgI0oR4B2jDJkFnAFslpkH97tgTZIkSZIkSZIGZEWeaTwG5fffN3XxM71pjmVaLZaZvwcOofzefK4FgTcC5wPXUf4e9F3K38Pm+iFwUmU6G6NJkiRJmm9kZlLqlareDby+Jl7XwKwffg3cVomtHxFbj9F6k8ag67Jq/IRSU1jnlE435K3KzNuAbYG3UDb6HcktwH8D62fmb3tZdxAy8xxgY+CbjFznNge4kLLp8cszc0x+d5GZ5wIbAF9l5IZtdwNfoTzvZ4xFLqOZX2tNJUmSJEkaT1F+dyhJkiRJktRfERGUJkHrAKsDSwCLUxqVPQg8RPkD/9WZOVrjnl7yWAHYgtK4bTlKs6e7Kc2CLm00KBu4iFidsoPcCpTn6nHKLoLXAH9Of4kzooh4KfDzSnjHzOx1Rz4iYm1Ksc2yjZ8FKY3/HqB8Ker6ebEwJSKW5Jn3zrLAkpTip4co9+YNwD96LSQbCxGxALA5pcnedGAqJe+bgMvH8jNnoml8Fm9M+SxeHliK8hl8N888H3MGl6EkSZIkSZIkDRcR21O+lD7XLZk5o4Pxm1G+jN1PN2fmmqOsuznwNcrv10fyFPBx4GON649sOveOzPxSL4lKkiRJkjQW5se6rIhYF9iSUn/6LOARShOsP2fmDYPMrZ8iYiFgK2A9Sr3gFEojvBuByzKz441qe8xnGuX3Kxs28plDqTm+CbhkgtYtzpe1ppIkSZIkjRUbo0mSJEmSJGnSi4gvAm9vCs0Bls7MkXYNlCRJkiRJkiRJE1AfGqO9ELi4z2m1nUNjQ5c9gW2AlSmbVswCbgH+Fzg1M29qXHsR8KKm4S/OzN/1MW9JkiRJkiRJkiRJkqRJZeqgE5AkSZIkSZJ6ERHLAEdUwlfZFE2SJEmSJEmSpPnWPZXjn2fmLuO1eGb+AvjFaNdFxDRgs6bQ08AVY5WXJEmSJEmSJEmSJEnSZDBl0AlIkiRJkiRJ3YqIAE4GFqucOm4A6UiSJEmSJEmSpInhzsrxugPJYnQvAhZuOv59Zj42qGQkSZIkSZIkSZIkSZImAhujSZIkSZIkaeAi4tCI2KnDMUsAZwMvq5y6HzitX7lJkiRJkiRJkqTJJTMfBK5pCs2IiHUGlc8Ijqgcf2sgWUiSJEmSJEmSJEmSJE0gNkaTJEmSJEnSRLA18IuIuCEiPhkRO0TEMtWLImJaRGwREf8D3ATsVTPXWzLz4bFOWJIkSZIkSZIkTWg/qxy/diBZtBARawH7NoXuB743oHQkSZIkSZIkSZIkSZImjMjMQecgSZIkSZKk+VxEfAN4fc2peyhfBHoCWAqYDiw0wlTfzswj+5+hJEmSJEmSJEkaLxGxPfDrptAtmTmjwznWBq4DpjZCjwObZ+Y1/cixFxGxAHA+sFNT+N2Z+bkBpSRJkiRJkiRJkiRJkv4/e/cdZldd5w/8faaldxJCSEJIUSBIR5CiCLrYVkXFFdYCKIKr+0OxLbsqqCyru7rqrgW7riKyomJdsAUbKkgRUFqAkGAoIb3PJHN+f5wh0yczaTfl9Xqe88z99s+dmXufBE7el51GXa0LAAAAAIA+7JVkZpLZSfZN36FolyY5d0cUBQAAAAAA7NzKspyb5MsdugYn+XFRFAcNZJ+iKAYVRXHWZuY09DXeZW5jkq+lcyjajUk+PpC6AAAAAAAAAAB2V4LRAAAAANgZ/DbJvC1c+7MkzyrL8r1lWZbbriQAAAAAAGB7KopiclEU07peSSZ2mdrQ07y2a68+jrgwye0d2lOT/LEoin8timJKH3UNKYriOUVR/FeSBekcsNaT5xVF8ceiKP6ht33bAtZOa6vnjA5DS5O8tizLjZs5AwAAAAAAAABgj1D4t6IAAAAA7CyKojgkyYlJnp5kRqp/oDQ6yZAkG1L946DFSe5J8qskPyvL8i+1qRYAAAAAANgaRVHMS7LfVm7z1bIsz+rjjClJfpLkgB6GH0hyd5JlSRqSjEoyLcnMJPUdJ5ZlWfRxxouS/KBD18NJ/pJkSZLGJHsnOTzJsC5LFyd5YVmWf+htbwAAAAAAAACAPU1DrQsAAAAAgCeVZXl7ktuTfKrWtQAAAAAAALu+siwXFEVxdJLLk/x9l+HpbdfmLBvgsZPbrr78Nslry7J8YIB7AwAAAAAAAADs1upqXQAAAAAAAAAAAAAAbC9lWa4qy/LVSQ5N8vUkS/uxbGGSK5KcnmTiZub+OclXkzy6uVKS/KptzxOFogEAAAAAAAAAdFeUZVnrGgAAAAAAAAAAAABghyiKoi7JIUkOSjI2yegk65KsSDIvyV1lWS7Ywr2nJXlakilJRqX6EOMVSe5P8oeyLBdvXfUAAAAAAAAAALs3wWgAAAAAAAAAAAAAAAAAAAAAAABAzdXVugAAAAAAAAAAAAAAAAAAAAAAAAAAwWgAAAAAAAAAAAAAAAAAAAAAAABAzQlGAwAAAAAAAAAAAAAAAAAAAAAAAGpOMBoAAAAAAAAAAAAAAAAAAAAAAABQc4LRAAAAAAAAAAAAAAAAAAAAAAAAgJoTjAYAAAAAAAAAAAAAAAAAAAAAAADUnGA0AAAAAAAAAAAAAAAAAAAAAAAAoOYEowEAAAAAAAAAAAAAAAAAAAAAAAA1JxgNAAAAAAAAAAAAAAAAAAAAAAAAqLmGWhcAtVYUxagkz+rQtSBJc43KAQAAAAAAAADYGk1JpnRo/7Isy+W1KgYA3KMHAAAAAAAAAOwm3J+3gwhGg+qGq+/VuggAAAAAAAAAgO3gJUm+X+siANijuUcPAAAAAAAAANgduT9vO6mrdQEAAAAAAAAAAAAAAAAAAAAAAAAAgtEAAAAAAAAAAAAAAAAAAAAAAACAmmuodQGwE1jQsXHNNddk5syZtaoFAAAAAAAAAGCLzZ07Ny996Us7di3obS4A7CDu0QMAAAAAAAAAdnnuz9txBKNB0tyxMXPmzMyePbtWtQAAAAAAAAAAbEvNm58CANuVe/QAAAAAAAAAgN2R+/O2k7paFwAAAAAAAAAAAAAAAAAAAAAAAAAgGA0AAAAAAAAAAAAAAAAAAAAAAACoOcFoAAAAAAAAAAAAAAAAAAAAAAAAQM0JRgMAAAAAAAAAAAAAAAAAAAAAAABqTjAaAAAAAAAAAAAAAAAAAAAAAAAAUHOC0QAAAAAAAAAAAAAAAAAAAAAAAICaE4wGAAAAAAAAAAAAAAAAAAAAAAAA1JxgNAAAAAAAAAAAAAAAAAAAAAAAAKDmBKMBAAAAAAAAAAAAAAAAAAAAAAAANScYDQAAAAAAAAAAAAAAAAAAAAAAAKg5wWgAAAAAAAAAAAAAAAAAAAAAAABAzQlGAwAAAAAAAAAAAAAAAAAAAAAAAGpOMBoAAAAAAAAAAAAAAAAAAAAAAABQc4LRAAAAAAAAAAAAAAAAAAAAAAAAgJprqHUBAAAAAAAAAMDOoyzLtLa2pizLWpcCu42iKFJXV5eiKGpdCgAAAAAAAAAAAMBOTTAaAAAAAAAAAOzByrLMunXrsnLlyqxcuTLNzc21Lgl2W01NTRkxYkRGjBiRwYMHC0oDAAAAAAAAAAAA6EIwGgAAAAAAAADsodasWZOFCxempaWl1qXAHqG5uTmLFy/O4sWL09jYmEmTJmXo0KG1LgsAAAAAAAAAAABgp1FX6wIAAAAAAAAAgB1vzZo1mT9/vlA0qJGWlpbMnz8/a9asqXUpAAAAAAAAAAAAADsNwWgAAAAAAAAAsId5MhStLMtalwJ7tLIshaMBAAAAAAAAAAAAdNBQ6wIAAAAAAAAAgB2nLMssXLiwWyhaY2NjRo4cmeHDh6exsTFFUdSoQtj9lGWZlpaWrFq1KitWrEhLS0unsYULF2bGjBledwAAAAAAAAAAAMAeTzAaAAAAAAAAAOxB1q1b1ymUKUlGjBiRfffdVygTbEeNjY0ZOnRoxo8fn7/+9a9ZuXLlprGWlpasX78+gwcPrmGFAAAAAAAAAAAAALVXV+sCAAAAAAAAAIAdp2MYU1KFNQlFgx2nKIrsu+++aWxs7NS/YsWKGlUEAAAAAAAAAAAAsPMQjAYAAAAAAAAAe5CuwWgjR44UigY7WFEUGTlyZKe+rq9NAAAAAAAAAAAAgD2RYDQAAAAAAAAA2EOUZZnm5uZOfcOHD69RNbBn6/raa25uTlmWNaoGAAAAAAAAAAAAYOcgGA0AAAAAAAAA9hCtra3d+hobG2tQCdDQ0NCtr6fXKAAAAAAAAAAAAMCeRDAaAAAAAAAAAOwhyrLs1lcURQ0qAerqut+209NrFAAAAAAAAAAAAGBPIhgNAAAAAAAAAAAAAAAAAAAAAAAAqDnBaAAAAAAAAAAAAAAAAAAAAAAAAEDNCUYDAAAAAAAAAAAAAAAAAAAAAAAAak4wGgAAAAAAAAAAAAAAAAAAAAAAAFBzgtEAAAAAAAAAAAAAAAAAAAAAAACAmmuodQF0VhTFAUkOTTI5yZAk65I8nmRukj+VZbl6K/ZuTHJ8kqlJ9kmyKsnCJLeWZTlv6yrvdtb+SQ5LMinJ8CSPJHkoyQ1lWbZsy7MAAAAAAAAAAAAAAAAAAAAAAADY9QlG2wkURTE6yQVJzkkVWtabjUVRjXXTagAAIABJREFU3Jbk6rIsPzSA/ccneX+Sv0sytpc5NyT5z7Isv93vwnve5xVJLkzyjF6mLCmK4qok7yvL8omtOQsAAAAAAAAAAAAAAAAAAAAAAIDdR12tC9jTFUVxepK5SS5J36FoSVKf5Mgkbx3A/s9PcmeSN6WXULQ2xyW5uiiKrxdFMay/+3c4Z3hRFFcm+VZ6D0VLWw1vSnJnURSnDvQcAAAAAAAAAAAAAAAAAAAAAAAAdk+C0WqoKIqLk/xvknFdhuYn+VmSK5N8N8nvk6zegv1PSnJNkgkdusskN6cKMPtpkie6LPv7JFcWRdHv342iKOqTXJXkVV2GFiX5SdtZt7Sd/aS9k3yvKIoT+nsOAAAAAAAAAMBAzZ8/P+95z3ty4oknZu+9905TU1OKoth0feUrX6l1iQAAAAAAAAAAAAC0aah1AXuqoijenuSSLt1XJvm3sizv6GF+XZJnJHl5klP7sf/kJN9J0tSh+7dJzi3L8q4O8wYlOS/JR5I0tnX/bZJLk/xzP5/Oh5K8oEO7JcmFST5XlmVzh7MOSvKFtueRJIOSXFMUxdPKsnykn2cBAAAAAAAAADvAtGnT8tBDD21qz5kzJyeddFLtCtoCn//85/OP//iPWb9+fa1LAQAAAAAAAAAAAKAf6mpdwJ6oKIpDU4WJPaklyellWZ7ZUyhakpRl2VqW5W/LsrwwyaH9OOb9ScZ0aN+Q5DkdQ9Ha9l1fluV/JXlll/UXFkWxXz+ey/QkF3TpPr0sy092DEVrO+svSU5J8rsO3eOSXLy5cwAAAAAAAAAABuLHP/5xzjvvvH6Hol1//fUpimLTdckll2zfAgEAAAAAAAAAAADopqHWBexpiqJoSPKldP7en1eW5dX93aMsyw2bOWNWktd16GpOclZZluv62POaoii+2mHdoFSBZedsppyLkzR2aH+lLMvv9XHO2qIozkpyR5Kmtu7XF0Xx72VZPrCZswAAAAAAAAAA+uWiiy5KWZab2meeeWZe//rXZ8qUKWlsbL/VYa+99qpFeQAAAAAAAAAAAAD0QDDajnd6kiM6tH9eluWXt/EZZyap79D+TlmW9/Vj3YfTOVDtlUVR/ENvgWpFUQxJ8ooe9uhTWZb3FkVxTZJXtnU1tNV8aT9qBAAAAAAAAADo0z333JPbb799U/sFL3hBrrjiihpWBAAAAAAAAAAAAEB/1NW6gD3QeV3al22HM07r0u5X8FpZlncl+UOHrmFJ/qaPJacmGdqh/buyLO/uV4Xda3pZP9cBAOycWlYkC76T3PfZZNUDta4GAAAAAAD2aH/84x87tV/xiq6f+wYAsIdZdmdyxweSez+drF+SbFiblK21rgoAAAAAAAAAoJuGWhewJymKYmaSZ3XompdkzjY+Y2KSQzt0bUjy2wFscX2SYzq0n5/k+73MfV4Pa/vr16lqe/J38PCiKPYuy/KxAewBALBzWL0g+flJ7YFoRX1y/FXJ1JfXtCwAAAAAANhTPfZY59sPJk+eXKNKAABqbMV9ybWHJxtWt/f98c3tjye9MDnua0nTmB1fGwAAAAAAAABAD+pqXcAe5tld2j8vy7Lcxmcc3KV9e1mWq3uc2bMburRnD+Cs3/X3kLaa7hjAWQAAO69b39keipYk5cbkd69JNq6rXU0AAAAAALAHW7VqVad2Y2NjjSoBAKihJbck1x3dORStq4U/Sm56y46rCQAAAAAAAABgMxpqXcAe5uld2r9LkqIoiiSnJPn7JMck2TfVz+aJJPcl+VmSb5ZlOa8fZxzUpT13gDXev5n9OjpwG5x1eJezfjHAPQAAam/+Vd37Nq5NFnw3mXbGjq8HAAAAAAB2IWVZ5pZbbsndd9+dxx9/POvXr8/48eOz77775oQTTsjw4cMHvGdra+t2qBQAYBfSvDz59cuTluWbnzv/quTIjyeDx2//ugAAAAAAAAAANkMw2o51VJf2XUVRTEvyxSQn9zB/att1SpIPFEXx+STvLMtyTR9nzOzSnj/AGh/q0h5XFMWYsiyXduwsimJskrFbeVbX+bMGuB4AYOe26DeC0QAAAAAAoBdPPPFELrvssnz961/PokWLepzT1NSUk08+OZdcckmOOeaYXveaN29e9t9//17Hn/3sZ/fY/+Uvfzlnn312j2Pvf//78/73v7/XPefMmZOTTjqp13EAgJopy+SmNyWr5/Vz/sZk8R+SfV+0XcsCAAAAAAAAAOiPuloXsIfZp0t7aJKb0nMoWleNSf4hyW+Koui6T0eju7Qf7395SVmWq5Ks69I9qh/nrCnLcvVAzkr32no6BwBgF1bWugAAAAAAANgpXXPNNZk+fXo+9rGP9RqKliTNzc259tprc+yxx+a8887Lhg0bdmCVAAC7qAXfTh66cmBrfvm3ycb17e2NzckdH0x+eFDyf0cm9302KVu3bZ0AAAAAAAAAAD1oqHUBe5iuYWJfTrJX2+PVSS5P8n9JHk4yLMmhSc5JckKHNYcn+XZRFM8qy7KlhzOGd2mv3YI61yYZ3KE9Yjue01FP5wxIURQTkowf4LIZW3suAAAAAAAAANA/X/rSl3LuueemtbVzsMaMGTNy0EEHZejQoZk/f35uvPHGbNy4cdP45z73ucyfPz8/+MEP0tDglhcAgF5Nen4y49zk/s8PbN1Vg5PxJyQT/ya5432dx246P1l6azL5tGTQuGTMYUld25/JHvtl8vj1SdOYZOzRyYgZSfOyZOi+yaO/SFY/lOzzN8mIWUlRbJOnCAAAAAAAAADsvtwluoMURTEoyaAu3ZPbvv4lyfPKslzQZfyWJF8uiuLtST7Sof8ZSd6d5NIejuoaWLZuC8pdm2RMH3tuy3P62nNL/EOSi7fBPgAAAAAAAAB01bohWfNwravY/Q2d3B4ysZu57bbb8qY3valTKNphhx2WT33qUznuuOM6zV20aFHe+9735rOf/eymvmuvvTbve9/7ctlll3WaO3ny5Dz44IOb2h//+MfziU98YlP7yiuvzLHHHtutnr322isnnXRSkuT3v/99zjjjjE1jF1xwQd761rf2+lwmTpy4mWcLAFAjDcOSYz6X7HNqcuO5SfPS9rG6pqS1ufe1i35TXT2Z+9nq2lrjjk2W/SnZ2HYb6eSXVH2DxyeLb0we/VkydGoy6XnJ6EPbAteOSOoaq/mr5iWL/5AUdcm+L66e04bVSVFf9dUPStY+ksz/VjV/ysuqP2MPRMuqqr7B/fis3nWPV9+zsjXZ53lJ47a4HRYAAAAAAAAA9ly75120O6f6XvqXp+dQtE3KsvxoURT7Jnlbh+63FUXx8bIsV23m3HKAde7sawAAdh2lP+4AAAAAALuZNQ8n39+/1lXs/l78YDJ8Wq2r2C5e//rXp7m5PYjjhBNOyHXXXZehQ4d2mzt+/PhcfvnlmTlzZt75zndu6v/whz+cM844I0972tM29TU0NGTatGmb2qNHj+6018SJEzuNdzR8eBVcMW/evE79o0eP7nUNAMAuYerLk3FPT3736uSJ3yXPvSFZeV9yw5m1rWvx7zu3H/5edXW06oHk8eu3zXk3X5A0jkqmnJZsXFddQ6cm089Kxh5ezVl4bXLXR5Lld1RBZx01DKsC2B66snN/XWPS2tL9vNFPq0Lp6odWAW1No5Ipp1cBdWsXJkv+mBQNyYhZyV7HJOsXJy3LkwnPTJbcWs2bcEIybL9t8/wBAAAAAAAAYBcjGG0HKctyTVEUrUnqugz9Z1+haB28N8k5SUa1tccmeX6Sb3WZ1zUobchAa+1hTU/hazvqHAAAAAAAAABgNzBnzpzccsstm9ojR47MVVdd1WMoWkfveMc78stf/jI//OEPkyStra352Mc+li996UvbtV4AgN3CsCnJyb9IFt+YjDuqCu1qGJZsWF3rynasluXJA1/p3Hffp5Pjr6zC4v70z72v3bC6eyha0nMoWpIsu6O6OrrrIwMqN0kV5jb7X5Kppyet65MV9yarH0we+Umy4u5kw6pk3WPt8+sHJyOe0vYzHpEMm5pMeFYy9oikblBSFAOvAQAAAAAAAABqQDDajrU6yYguff/Tn4VlWa4uiuI7Sc7u0H1SBKN19el0/55szowk39vsLAAAAAAAAABgi331q1/t1H7zm9+cSZMm9Wvthz70oU3BaEly5ZVX5jOf+UwGDRq0TWsEANgt1dUn459RPa4flJwyJ7nu6bWtaWdQbkh+c3qtq+hdy/LktndVV39sXJcsu726enLEx5KnXiAgDQAAAAAAAICdXl2tC9jDLOvSfqwsy3kDWP/7Lu0De5izvEt7/AD2T1EUw9M9sKxr3T2dM7QoimEDOSvJhH6cMyBlWT5eluWfB3IluX9rzwUA6FlZ6wIAAAAAAGCn8Zvf/KZT+9WvfnW/186ePTtHHHHEpva6dety8803b7PaAAD2KOOOTl78QDK4622c7NZueVvyYL8+zxkAAAAAAAAAakow2o51b5f2IwNcv7BLe1wPc+7r0t5vgGd0nb+kLMulXSeVZbk4Sdf+qVt5VtfaAQAAAAAAAIDdwNKlS3P//e2fWzZ69OgceGBPnwfXu+OOO65T+6abbtomtQEA7JGG75+87LHk9OXJ0ZfXuhp2lJvfmmxYUz0uy+oCAAAAAAAAgJ1MQ60L2MP8OckpHdrrB7i+6/zBPcy5q0t75gDPmN6l/Zc+5t6VpONdxzN7OH8gZw1kLQAAAAAAAACwi1i0aFGn9qxZs1IUxYD2OOCAAzq1H3/88a2uCwBgj9c4Mpl1XnUlycZ1SYpk1f3V4+H7J0tuTn7x3L73GTolqRuUlC1Ja0sy7phk/PHJre/Y7k+BAWhZlvzvsJ7HBo1PGoYnG1YkE5+b1A9OBu+TNC9O1j6aHPL+ZNTsZPFNSV1TMubwpNyQ1A/asc8BAAAAAAAAgN2eYLQd6/Yu7dEDXN91/uIe5tzZpX1IURRDy7Jc088zjt/Mfl3HOgajPSPJD/pzSFEUw5IcMoCzAAB2QT5VFwAAAADYzQydnLz4wVpXsfsbOrnWFWxzS5cu7dQeNWrUgPfoumbJkiVbVRMAAD2ob/vM3lEHtfdNfE7v8yf+TXLydb2P9xaMVjcoedW65BsDC8vdZPShybI/9TzWMCyZ8Oxk4Q+3bO891fpF1ZUkD32z+/hfv9/72iGTkoPenaxZkCz9U/LoT5MJz6p+n8YckUw8uQrLWz2/ClprWZE8/L2kaKjGJr80qWts32/NwuSxOUlRJJOenzSN2bbPFQAAAAAAAICdmmC0Hev/UqVjPHkXx/SiKAaXZbmun+sP7tJ+uOuEsiwfKYri9rSHjjUkOSHJT/p5xkld2v/Xx9xrk7yxj7V9OTGdf/9uLcvysQGsBwAAAAAAAGBHq2tIhk+rdRXsgsqy84eJFMUWBmBs4z0AAOinyS+pgqy6mnVe3+umvDxZ8O3u/Yd9aPNn1g9ONvZwi21Rnzz318m3xyWtLd3HX/iXZNjUZOP6ZN43kiduSAaNS4btn9x0/ubP7csZrcnczyY3vann8ef8KhkxMxk8MVlwdfU9a16ejDks2e/vqnrvuKTvkLFd0dqFyc0XdO57/JfV10euS/7yb72vnXt5++P6ocnGXj4LeviMZNTsZMPKpGlsFa7W2pIsvbV6PPE51c95+jnJ+OOqgLzm5cn6J5KUybD9Ooev9aVsrepfeV8yYlYV8lbU9W8tAAAAAAAAAFtNMNoOVJblwqIofpfkuLauxiSnJPlRP7d4Xpf2r3uZ9920B6MlydnpRzBaURQHJDmmQ9fqzay7LsnaJEPa2s8oiuKAsizv3txZSc7q0v5uP9YAAAAAAAAAALugsWPHdmovX758wHt0XTNmzJitqgkAgAGYeX73YLShU5NJL+p73bRXdw9Gq2usQsKSZNILk4U93Ea735nJyKdUIWJdHXxx0jgimXxaMv9/O49NeFYVipYk9YOSGWdXV1KFZ93y1p7D1vpjn1OTokgmPb/n8bFHJxNObG9PPb26upr9L70Ho71kXjJ0SnJlfe91HPah5LZ/6nnsqE8l085IGkYk3+xnCNjOpLdQtCRZdX919ebRn1ZfH/pm73PqBiWt67estiSZ8Ya2B0Wy4q6keWkV1DdkUvKUtySD965C4oqG6uufLqqC2SY8Kxl5QDJ8ehW6NuVl1e/30tuSNQuTvY5NBnX4O9PG5iqIrc6t/gAAAAAAAMCeyf8t3fG+nPZgtCS5MP0IRiuK4sQkT+/Q1Zrkx71MvyLJe5I8eVfEy4qimFWW5X2bOebdXdr/W5Zlr3d/lGW5piiKq5O8psseZ/d1SFEUT0lyWoeuDUm+sZnaAAB2PWVZ6woAAAAAAGCnMH78+E7te++9d8B73HPPPZ3aEyZM2KqaAAAYgEnPS46/KvnLh5JVDyTjT0ye/pmkvqnvdVNemhz+H1XA2YbVVXDUcV9PhuxTjU89vedgtP1fk4x8anLXR5MNK9v7G0Yk019bPX765UnzsuTRts8AHndMcvyVvdfSODKZ9prk/s/3+2lvUtQlT31b9XjYfsm0v0/mXdF5fPZF/dtr7BHJ4InJukc79488oAqbK4pk5huTuZ/rvnbGG5ID35nc++lkzfzOY42jk+lnJw1tn3d85H8lN/+//tW0p9iaULQkuf8LPfcvuz155Nre1z3+y+p60p/6+buSJPVDqtC1Q/81WXxTsurBKmCtcXhSNCYjZiV1bbeMr16QrH4oGXNI9fsOAAAAAAAAsIsSjLbjfTlVGNqBbe2Ti6K4sCzL/+xtQVEUE9rWdfS/ZVn2+LFnZVneVxTFV5Oc09bVlOQrRVGc0lvQWVEUL0lyVoeu5iTv39yTSXJJklclefJj5c4qiuK7ZVn2+FF2RVEMbnsuHe+E+WJvzwUAAAAAAAAA2PWNGTMmM2bMyP33V7cHLFu2LHfddVcOPPDAzaxsd8MNN3RqH3300du0xqIotul+AAC7nf1eWV1lWYV39deB70ieekGy5q9VqFjHtfv9XTL/W53D0aa9Jpn43Crs6Tm/TG57V7L0T8mYQ6uQtWH7VfOaxiQnX5esezxpbUmG7rv5Wo7676R+cHLvf/c97/TlyW0XJY/9Ihk6JTngbcmkU9vHj/1KMvppycIfJ4P2SmacW4XH9UddQ3LYh5I/nJOUrW19TVXfk9+bqaf3HIy236uqELaD35vceG7nsdn/1B6KliSzzk9W3JXc95n+1cXOaePa5K7/qK6BGLJvsu+LqoC0Jbckj/2883jTmOq1NPm06jU0bGoVXDhsWjLmsKRpVPvc1o1JuaG61ixMhk5KGoZVY2WZpKx+LwEAAAAAAAC2EcFoO1hZlhuLorggybVJnvw/wB8timK/JJeUZbm04/yiKJ6T5DNJZnToXprknzdz1MVJTksypq19XJKfFUXxhrIs7+6w/6Akb0zy0S7rP1qW5UP9eD4PFEXxiSTv6NB9dVEUFyb5XFmWzR3OOjDJF9pqedLi9C+ADQAAAAAAAADYhZ1wwgmbgtGS5Iorrsill17ar7V33XVXbr755k3twYMH58gjj9ym9Q0aNKhTe/369dt0fwCA3caWBMrWNSbDp3Xvrx+cPPO7yaM/T5bdnow9Mtn75PYzxh6enPzTvvcePKH/ddQPSo76r2Taq5OfHNPznHFPr8Kkjv5U7/vUNSQHvbu6tsT01yUjZiYLvluFok19efXcn7T3KVX42Z0fbO+b/Z7qe5MkM9+QDJmYzPtGFVY15eVVyFynGhuToz+dHPiuZN7Xk9vfu2W1smta+9dk7md7H29eWl1Lb+t7n0F7Jeuf6HmscXTSsqzt8cgq0G/GG6vX5BM3tO1dJJNekIw/rgpgaxxVvX7qB3feqyyTjevaw/02Nle/wy3Lk3WPJSNmCV8DAAAAAACAPYhgtBooy/KnbeFoHT9u7v8leVNRFL9P8tckQ5IclmS/Lsubk5xRluWDmznj4aIoXpbkuiRNbd3HJ/lLURQ3J3kgyagkRyQZ32X5D5MM5O6Hf0oyO8nz29qNqZ7be4uiuCXJyiTT287qeDdMc5LTyrJ8ZABnAQDsQspaFwAAAAAAADuN1772tfnqV7+6qf3JT34yb3nLWzJx4sTNrr3ooos6tV/1qld1CzLbWqNHj+7UfuQRtzMAAOwQdY3JpOdV144y7qjex0Y8ZcfUMP746upJUSSHfCCZ+cZk6Z+S0Yckw6Z0nrPvi6prc4ZPSw5+TxVudc8ntrrsfusrUItdR18/wydD0ZKkZUVy/xerq6u7/r173/AZVahfw/Aq8GzVvGTDyr5raRyZjH9msvqBKmCttTlZcnPSNDYZPj1Z8sdq3pgjklnnJavnJ+sXJQ9fk6xfnJQbq/HpZ1evrVUPVO8/409MBu+dbFhVBRXWb9u/awIAAAAAAAADJxitRsqy/GRRFBuTfCTJ0LbuxiQn9rHssSQvK8vyhn6ecX1RFKcl+Uraw8+KJEe1XT25Msm5Zfnk//nt1zkbi6J4ZZIvJOn4cXMTkvR2l8rjSV5XluWv+3sOAAAAAAAAALDrOvnkk3PYYYfltttuS5IsX748Z5xxRn784x9nyJAhva772Mc+lu9973ub2kVR5G1ve9s2r2/69OlpampKc3NzkmTOnDlpaWlJY2PjNj8LAIAaK+qqsLFlt3cf2/+1O76e3gydXF3bwuTTeg5GK+qSsnXbnJEkIw9IXnRXe/vx3yR3XJI89vMq2OqkHycjD0zu+Xhy5wfb5zWMSA56V3L7QD7bmV3WqvsHvqZlRbLwh937m5ckS5a0t5fektx4Xu/7PPDl6toS445JhkxKRh1UfR00Llk5N3nom8mah5OppycjZlWvq5Vzk33/Nhl9cLL20WTYfknL8mTtI1XQYcPIpGlMUle/ZbUAAAAAAADAbkwwWg2VZfmZoih+kuSSJC9JMqKXqY8muTzJx8uyXD7AM35cFMXBSd6fKrRsTC9Tf5/kI2VZfnsg+3c4Z1WSVxVFcXWStyc5tpepS5JcleTisiwXbclZAAAAAAAAAMCO9+ijj2bevHlbtHbatGlJki9+8Yt5xjOesSl87Prrr8+JJ56YT33qUznmmGM6rXniiSdy8cUX59Of/nSn/ne961055JBDtqiOvjQ1NeX444/PnDlzkiTz58/Pi1/84px//vmZNWtWhg4d2mn+xIkTM3jw4G1eBwAAO8j0s5JbLuzcN2y/ZO+Ta1LOdjfhxGSfU5NHrmvvG7x3cvyVyc97ec4HvD25+6Pd+8cdmxRF8sTvuo8ddFGXc09ITvlZ93mHfKC6yrJqF0X1ddFvk0eu7T5//AnJc36VPPg/ybyvJxvXJlNflTzlzcmvXpr89fs9P4ckOfK/kmV3JPd/vvc50B+L/1B9ffi7PY93/R2be/nA9h8yKZnysmTFvVWQ4NqFSeOIZPW8ZPiMZOmtSf3QKoBw7JFVMNvkl1QBa/VDk41rkpZV1dqV9yStLcnYo5K6huq1tnFNFTBXNCSNo5LWddVcAAAAAAAA2MkIRquxsizvT/KaoiiGJDk+yeQkE5M0J1mU5E9lWfbwcXQDOuPxJG8qiuKCtjP2aztjdZK/Jrm1LMsHt+aMDmddneTqoij2T3JEkklJhqUKd3soyW/LsmzeFmcBAOz8yloXAAAAAAAA28wZZ5yxxWvLtrCDI444Ip/85Cdz/vnnp7W1NUly880359hjj83MmTMze/bsDB48OAsWLMiNN96YDRs2dNrnuc99bj74wQ9u+ZPYjAsvvHBTMFqSXHvttbn22h5CGZLMmTMnJ5100narBQCA7eypFyTrFiX3fjLZsDIZe3QVElZXX+vKto+iLnnm96ugpkW/SYbPTGadnwybmsw8v3uA09DJyaGXJvOvStY83Hls5huSDWu6B6PVD0kmv3iAdRWd25Nf0nMw2ow3VHOnv666utbam5N/lkw8JWndkDzwpaTc2H3O8d9Mbn1XsmZ+97HjrkimnVk9XvzHZN1j1XljDq36vlF0X7M5B7072dic3POxga9l97Z2YfWe1JMV97Q/XnV/svBH1eObL+jn5kV6vJ+tYUQy9fRk1dzk8V91Hpv5xmT/s5KxhydFfTL/6ur1OWTf6nU18ZTej2tZVe05aEIydFI/awQAAAAAAICKYLSdRFmWa5P08HFo2/SM5iRzNjtx25z1YJJtErYGAAAAAAAAAOw+zj333IwZMyZnn312Vq1atal/7ty5mTt3bq/rzjnnnFx++eVpbGzcbrW96EUvyqWXXpqLL744Gzf2EJgAAMDuo6hLDrssOeQDyYZVSdPoWle0/dU3JU/9f9XV0VH/XQWGPfDlpNyQjHxqcuJ3kvrBySnXJ79/XRWC1jQuOfAdyfRzqvkr7k7u+0ySMmkam5x49dZ/H6edmdz/hWTJze19445Jpr6y9zX7nJrc9+nu/XWNyZjD2h43JBOf2z10rX5otX7JLcld/959bNILO9RxVPcz9joueeKG7v1Hfzq56z+rYKiOZp6XHPah6nFvwWj1g5PTVyaP/iy57Z+qwLbmpclBFyV/+bee18Bm9fIhnxtWVqGBPZn7uerqScffxfHHJ0OnJGsWJCvuTdYv6jx3+PTqfWPNgqRxVJLWZMjkKghu5T3JsOnJhGcme5+UlK3JoLHJ+iVJ44ikaOgcoFiWXdqtVfBhfVPnM1tbqq912++/IQAAAAAAALD9CEYDAAAAAAAAAGCHesUrXpFnPvOZueyyy3LFFVfkiSee6HFeY2Njnv3sZ+fiiy/Occcdt0Nq+5d/+Zecdtpp+drXvpYbbrgh9957b5YvX561a9fukPMBANjB6hr2jFC0vtQ1JMd8Ljnio0nzsmTYlPaxETOS5/4m2bAmqR/SHkhUNCRHfyo59NJk9fxk1Oxqn63VODI55RfJA/+TLLstGX1YMvMNVVhYbyY9P9nned1Dz/Y/Kxk0rr19yAeTxTcSLAWJAAAgAElEQVQmzUva+w69tPr5z74oWXJT8ljbZ1DXD06O+1rSNKrvevd7VfdgtLrGZMorkvHPTH75t8nqts+a3ufU5NDLOtT3uuTBr3bf82mXVN/LSc+rro72eW7y85N7ruXwjyS3vqPnsVlvSo78RLL2keShq6pAqvWLkykvq4Lwhu2XLP1T8tM+/t41+SXJot9Wj1ubqzXL7uh9PnuOJ38verPqgeT29/Q9p7egwJ4Mn5Gsur9zX+PIZNyxyfI/J2v/2nnsmC9Vr6U1D1fz1j2WrH4omf+tZOV9SV1TMvm05ClvrkIzN6yuroe/mzz4P9X725RXVK/3jqFsSbJhbdKyPBkysf/1AwAAAAAAsFlFWfbyyT+whyiKYnaSO59s33nnnZk9e3YNKwIAdjnfKHrun35OcuwXd2wtAAAAAAB92LBhQ+67775OfbNmzUpDg89Vo3ZaW1tz88035+67786iRYuyfv367LXXXpk8eXJOOOGEjBgxotYlbhfb6/X45z//OQcffHDHroPLsvzzVm0KAFvBPXrADtHaktz98eSvP6gCjaaclhx0UVJX33neqnnJgquT5qVVmNqEEzvssbEKY1uzMNnrGcngvfp37o3nJw98qWrXD02O/0YVIpYkZWsV1NQ4Ohk6uXOo0qO/SH5xSuf9iobkxfcnw6b2fN7iPybXHd3z2HHfSG59exV+1tUL/5yMOmgzz2VD8s3G3sfP7OXfHfR279TmDNor2bg+2bCy7znrew7S3mTMEcnSW7asBtgSYw5PNq5LVtzVuf/Z1yUtK5ObL6jC0kYdnLQsTcY+vQppXPijZN2iKnxt9j8nk16YDNmncwDjivuqtaMPqeaVG9qDIdc+Ur1vNAxJxh7V+/sE7cqyCsQbMilJWYVRzv9W9XOYeW4y6/xaVwgAAAAAwC7G/Xk7jjubAQAAAAAAAACombq6uhx99NE5+uhe/nE/AADA5tQ1Jge9s7r6MnxacuA7etmjPhl7ZHUN5Nxjv5gcemmy6oEqpKthSPt4UZeMflrPayeenBzzheS2dyfrF1fBacd+pe+woxEz2sKSWruPjT8+mfGG5M4Pduk/YfOhaElS11CFMS27vfvYfmf0vm7cscni33fvP+YLVSDRHZf0vO4FdyZD9u49WG3YfslL5iXL/5L8qJdAzVNvTMa1/V2ybE1W3l+F3o07Klm/pAqiaxyVpKxC55b/ufo5NS9LBo1Nivrk/i8kC77T+/ODrpbe2nP/nFM7t598Xay4p/vcW99RXVvr4Pclrc3JyrnJ4huTEbOSfU6tgthGHZQ0jEiaRifNS6owsFUPJCmr94sNq5PV86v3xbFHJhvWJMvuqN7XRsxKHroqeeS6JK1V0OS4o5J1jydLbk4aRyZjj07qm7b+OWwP65ckd/9nMvezvYcr3vSm6nrZ48ng8Tu2PgAAAAAAYLMEowEAAAAAAAAAAAAAwJYask91DdSM1yfTz67ChgbvXQV59aVpTDLhpOSxX3TuH3t0Fah28MXJxvXJA1+sQo/2OTU55ov9r2fmG5M/vqVzX8OI3sPkkmS/v+sejFY3KJl8WhXC1FMwWsOI9iCip16Q3POJ7nMOaDtzxFOr0Lg1D3ceH7JPMuaw9nZRl4yc1d4evFf3PUcfXF0dTXp+++O7PpLc2ku43pll9fXnz0ke+3nPc05fmTQMTVbel9x4frLy3upnVjQkM85Jhs+sQqju/2Lbcy6SckP3fRpHJS3Lez4DOrrzA53ba+b3/vu5NXoLDzzxO8mkF1TvYSvursIVh+zdeU5Z9v3etn5xsmZBMvLApH7Q1tW5fkly98eq19eGlf1b85vTk+dcv3XnAgAAAAAA25xgNAAA2G7KWhcAAAAAAAAAAADszIq6ZMjE/s8/5ovJnL+pwreSZOjU5Bn/Uz2uq08O/3By2L8l5cakrnFgtcz6h2Tj2uSe/06aFyfjT0wO+3Ay5pDe1zzlzcnyO6uwr6QKPTvhqmTQ2KRpdDJsWrJ6Xuc1U19RPe+kCoeb+9lk47r28aaxybQz2p/TIf+a/P6stN+PVSSHXDrw57c5k17UczDafq9qfzz9rJ6Dp+qHJI3Dq8cjn5o8Z07v5xzx0eraXGBUa0vyxO+SuqYqBK5+cNK6MWldn5StyYKrk7/+KFn0m2SvY5OppyfL/5z8+bKe95vwzOr7tuDbPYfRwUD9+mUDXzP++Op9Yc2C5PFfdR5rGlO9py27PRl7ZBVutnFdMupp1XvC3icnrc3Joz+rvrZuSJ74bbL0tiqYbUs8/sukeVn1fgUAAAAAAOw0BKMBAAAAAAAAAAAAAMCuYPi05IV/SZb8sQrHGntkUj+o85yirj14bCCKIjnwHckBb6/2rqvf/Jq6xuSYL1ThZasfSsYc2l5PUZc885rk+hckaxdWfeNPTA7/SPv60U9Lnv3T5I73VaFeY45Mjvx4Mmhc+5zpr02G7ZfMvypJXTL15cnezx7489ucUQck089JHvhSe1/T2OSgf2pv73NqUjQk5YbOa6edOfDz+gpFS6rv7YRndumrT+qGVo+nn1VdHa1b1Hsw2gEXJhNOrK7D/yNZckuy9pFk4ilJ44hqTtmaLL6xOvuRnyR/+ufOexzx8apv45r+PEPobtFvq6snzUurK6ne4560+qFk4Q+3X02r5yVNh22//QEAAAAAgAETjAYAAAAA/H/27js8zurO2/g9Rb1LtmxLstwbtjHYmF4NobcACYGQTkJ62c2mbMiml01v+242bbPJBkgjpIcNSSiB0AnVNmCMe2+SrK6Z949jZTSaGVnFtlzuz3Wda+Y5v3POc55pBlvzlSRJkiRJkiRJkqRDRTQOY07cf+tHIhAZRChaX0XjQuuvagFctiqEcOVXQtmMzECw2lPh7D8PvP64M0Lb3074DtSeAZv+DMUNIXisbHqqXjg2BLs9+u5UX+l0mHvj/t/bYBSMgfLZ0LQsvT9WBLVnpo6jeTDmhMz5kWjqtVW9CCZeAZvvgqI6GH8OxAoh0QF/f3/28x/zOTjqX8L97jbYei889QnYfDdMegXM+ReoXhhqT9wIy76UfZ3iRigcB8ke2PFoZr32zHBN2+5PBWlJw7VrKVQZjCZJkiRJkiRJ0sHEYDRJkiRpv0mO9gYkSZIkSZIkSZIkSZIkaXRF4zDm+NHexeBEIjD11aHlMvtdUHsabPxTCAyrvxDyqw7cHgcSicC8f4P7Xknaz6/NeS/kVwx9vfJZofVVMjn3+OpjU/fjRSFMbfw5mePiRTDtDbmD0c5/CAprw/2eDtj4xxDWN/YUyCtPH5tMwu5V4X5+JbSth542+MNx2dcunQbHfQPuvCD3dZxyC9z7itz18jnQtDR3XYeW+66FydeM9i4kSZIkSZIkSVIfBqNJkiRJkiRJkiRJkiRJkiRJkiQNVvXC0A5Gk6+BgjGw8ofQ0woNl8PkV+679SecC9F8SHSm99ecALVnDn6d8jlQNgOan0vvH3tKKhQNIFYA9RfnXicSgdLJqeP8Smjfknv8/I9B3fnhPFvuzT5m0tW5g9GO/SLM+adw/6ZIjj3F4Zou2PEELP8q7HwyXNPs90DrWrj/tbn3p9HRthGKxo/2LiRJkiRJkiRJ0h7R0d6AJEmSJEmSJEmSJEmSJEmSJEmS9pEJL4GTfwCn/QymXBfCw/aV/Eo4+X9D+FevsafA6b+AaDz3vP4iETj+W5BXnuorHAeLvjbyPRaMgZJJWc4ZD48NwLQ3ZZ9bf2m4bbw6SzECjVemDuOl2deYfkO4rToaTvwunP8gnPkbGH82TH1N+mPX15iTYMkfs9cAzn0Aznswd724Ea5N5q4DnHPPwHWAhpfufczhpmXFaO9AkiRJkiRJkiT1YTCaJEmStL8k9/IDRpIkSZIkSZIkSZIkSZIkHWoaXwYv3QCn/hTOuRvOvguKJgx9nXFnwsXL4aQfwCm3wIVPQfXCke8vEoFZ78nsn/IqKKwN9ydeDnmVmWOmXR9u534QCmrSa7PelR641ju2v8mvHHh/M9+RvX/GW6B6EUTzMmvxEqicB6VTc69bc1y4PfoT2euTroHaU8N15FLcCKfclLs+5mSomJe7PljRgpGv0V9eJRz9SXjZLqhcMLS5Xc37fj+SJEmSJEmSJGnYhvDreCRJkiRlMPxMkiRJkiRJkiRJkiRJknSkKRwDjVeNfJ2i8SGwbF+b/a4QJrby+9C9G+ovg3k3pup55fCSu+H+18H2R0Ow2/yPQsMloV61AM57EFb+CNrWw/hzYOIV6eeY9U5Y8zNoXZvqa3gpjDlx4L3NuAFe+B507Ur1lU6HiVdBvAgaXwEv/jB9ztQ3QLw4tAnnwYbbM9edcH64nXQNPPkRSCbS69NeH27LZ+XeW+U8iBXmrk+8MgS3PfLO7PVrEiGYLtEDt+T4ylJxI8z/CDzwhuz1M38PpVNgy725x0w4D8aeCj0dkOyCuotCqFy8ONSP/gT89UpIdKXmNF4Nq3+cfb3uluz9kiRJkiRJkiRpVBiMJkmSJEmSJEmSJEmSJEmSJEmSpMPL9OtDy6VyPpz/MHS3QqwoBHr1VToV5n849/zSKXDu/fDC96HleRhzCkx9XeY6/ZXPgpfcA898DnY9A2NOgPkfD6FoACd8OwS3rfkpRPJg8rWw4NOp+Yu+Dve8FHY9neqrPSOMAyibBqfdBg+8Hjq2QqwYjv1cCHeDEMD2yHsg0ZG5t6l7wtMmXglrfp5ei8Rg0tWQ7IZH3gX0+8WyE69KXXs0FoLaNvwh8xxzPwBjT8v+2MSKYdwSiOXD7lXZxwAc8zmoOjp3veESeMm98OLN0NMGDZeG/eQKRlv5g1DPK8295sGkuw1aXoDdK8Prt3J+eL0mE+F5a98EdRdAfjU0LQ21kknQ0w6dO6FgDERzfKUs0QORaOq57OkIz0WiI5y3pxW6mqBtQzhvXnl4L8RLDtz1S5IkSZIkSZIOewajSZIkSftNcu9DJEmSJEmSJEmSJEmSJEnS6IkXD39ucT3M+9DQ51XOh5N/mL0WK4DF34Djvh6O+wetlc+A8x6Etb8MwWqV80PwV6wwNabhEqjfBLtfhOLG9BCswrGw5I9w37XQujbVv+hr0HhluD/vw7D5TujYlqrPeV+4XoBZ74TlX03V8qtg7r+m73PytZnBaNECmPgyKBwD1Ytg+yP95lwTQtEAao6HaD4kOtPH5FWEcLm9qVkcWl8VR4XHrL91v4afloX7jS+HCeeFELHVP4GmZTD+JSFobPw5sOF2WPrF8Dy1roGyWVA+M+yzqwnW3Jq+9rTroXgiNFwOFXMgmrf3vSeTsO5XsOonsOlP0NUM098UXqtPf3rv8wEee+/gxgFMegWsuiWzv+FyWP/77CF62VQvCo/dzLdD0QTo6QyvgaZl0Lk9hLmVzQghdOWzYcffQ2Dbzidg55N7HqdLobA2PP6RvBCyJ0mSJEmSJEk64hiMJkmSJI2I4WeSJEmSJEmSJEmSJEmSJGkf6x+I1le8OISIDTg/CqVTs9dqT4PLVodgtLxyyCsL43tVLQjhay/eDO2bQyBYwyWp+sIvw9hTYMMfQwDWlFdB2fT0c0y+Dpqfg2f+PYSGFdbCyTeHUDSA034B91wB2x8Oxw2Xw8KvpObnV8Kka2Dl/6SvO+0NIZRsOOKlex+z+ieh9fXi/4aWTduGECKXy4rvhNsnPxJuy+dA6TSY9jqoXgwlEzPnPPFhePpT6X3Lv5I5bl/JFooGsPa2oa2z/ZHQ9hbeNlD9wTemH0ficNrPQ6Bc9aLwOuqvuzWE7kVj4floehYiMSidAokuKBwH8aKhXYskSZIkSZIkaVQZjCZJkiRJkiRJkiRJkiRJkiRJkiQdSSKR7KFcvUqnwrwP5Z7b+LLQBlr/6I/DUR8MAWxl09LD10omwvkPhVq8BPKrMtc4/luhf/VPIZoPk6+F+R8b3PVlM5hgtP2taWlo638z2js5NCS74e7LDuw5y2ZC41XhtdfdBsu+AF1Nqfr8j8GU63IHD0qSJEmSJEmSRsxgNEmSJGl/SSZHeweSJEmSJEmSJEmSJEmSJEmjJ14E5TNy14sbctdi+bDoy7DwSyFobaQKx498DR3+mp+Fpz+du/7kR0IDGH8OFNVDrACqF0NPK6z/PWz4Q6hXL4LaM2HGm6FsOnTuhFgxJLugYxsUT9w3r21JkiRJkiRJOswYjCZJkiSNhOFnkiRJkiRJkiRJkiRJkiRJ+8++Co6a+FJYddO+WUsC2HhHn4NvZda3PxLasi/ufa3iBpj/Uag5HqKF0LQ0hPmVToa2DZBXDiWTQrha925Y+QPYfBdsvQ/KZkDJZJhwPhRNgPaN0NUM064P9zffBXmV4T0QzQs//2wgmyRJkiRJkqSDmMFokiRJkiRJkiRJkiQdISJZvuiU9BdASKMikUhk9GV7j0qSJEmSJGkfmXglTH09vPC90d6JlKl1LTxw/fDm7vh7aGtvS+9/7L2ZY/MqoacVEp3huOGyELRWcyJULYCieiABRXUhbA2gYytE4xArgqVfgA3/B+WzYdLLYexp4Xj3Kqg7H8qmQzIBkejwrqVXTyfE8ke2hiRJkiRJkqRDlsFokiRJ0n7jlwklSZIkSZIkHVyi0cwvInV1dZGXlzcKu5GObN3d3Rl92d6jkiRJkiRJ2kciETjhO1B7Oqz5eQii2vHYaO9q8IomQLwUYoUhlGr1T4c2v+ZEiBdDcQOs/MH+2aMOfl0704/X/jLcbrxjaOtsuQdWfDu975Es4wrHQfumcL98NjQ/D8l+fzcaK4Se9tznGnsKJHrCa3f82dBwORSNH9w+ezohmhfe/5IkSZIkSZIOGQajSZIkSSNi+JkkSZIkSZKkQ0ckEiE/P5/Ozs5/9LW0tFBcXDyKu5KOTC0tLWnH+fn5RPxyniRJkiRJ0v4VicDU14QG0NUEP63IPrZkCsy7ESKxEKLWtBy23Q+l00JQ0xMfzjFvElz2Yghy2ngHPPx2aHl++HuuPQPO/ktmsNOvZuRe96KlUD4LundDNB6Cp/o66X8gmYSWF0JIWncLTDgftvwVnvp49jVP/Rn89arM/uJGuHQF3DLAL+C4dAXsegb+/gHo3A6Vx0DZNCACz3499zwd+npD0QCalmUfM1AoGsCWe8PtNmDNz+Cht2SOqVwQAtC2P5xZK50aggW7W8NrvXt3eB32tENRHdRdBJEotG2AWAFMflUIdCuohq5dkOgK7+uC2rBeNBbe34lOiBelnyuZNIRNkiRJkiRJ2gcMRpMkSZIkSZIkSZIk6QhSVlbGtm3b/nHc1NTE2LFjDWSSDqBkMklTU1NaX1lZ2SjtRpIkSZIk6QiWV567NvcDMO31ueu5gtEaXx5uozGoOw8ufW7P+H+Dpz4xtP3N/xgc9f7sQUuz3x1C1/qb+XaomB3u55XmXjsSCeFkR38s1ZdfmT0YbdobYcJ5EC8JoVJ9TXlVCF/Lpf7SEExVOhXqL86sT3k13L44+9ySSbB7Ve61pV47H89da3khtGza1sOKb6f3rf7p4M8biUOye+/jiifCxKtgxyOw+e7sY07+EVTOh9Z1IYyxa1cIeysYA2NOgvbNUDY9BLVtvAOi+VB3YXif93TA2l/CM5+B5ufDZ9vY02Duv0LV0ennaV0H638LRGH8kvDe7JXoguYVUDYjfIb1Z/CbJEmSJEmSDhCD0SRJkqT9JjnaG5AkSZIkSZKkDP2D0bq6uli3bh319fWGo0kHQDKZZN26dXR1daX1l5cP8CVcSZIkSZIk7T+TroFVN6f3RaJQf8nA86a9MTNQCWDyddnHz/sIrP4JNC0feN1rB/nzp41Xh7C1zu2pvmg+TLt+cPOzqT4uhDet+Vmqr7AW5rw3hC+ddivccyV0t4Ra3UVw1PtS+1n948w1p71hL+dcCMWN0Lo6vX/CeXDWH+CmIf699bizYfF/wG9mD20eQOE4aN80tDmRGCR7hn4uHR4GE4oG0LoGln954DH3vXLk++nV3RLej73vyWyhhn01XAY7/p49iLDmRNh2f7hfMhmIwO6V4XjMSTDjLeFzLxKBRA+0PA9F9dC8HLbcC9GC8HlaMAZ2PQn5VelhbJIkSZIkSVIWBqNJkiRJI2L4mSRJkiRJkqRDS2FhIXl5eWmhTM3NzaxYsYLy8nJKS0uJx+NEo9FR3KV0eEkkEnR3d9PS0kJTU1NGKFpeXh4FBQWjtDtJkiRJkqQj3NwPwaa/QPvG9L6iCQPPm/1PsO5X6UFak6+DqqOzj4/G4Ow74aG3wtpfZB8z4y2D33fhGHjJvfDIu2D7Q1AxFxZ8CqoWDH6N/iIROOUWeOG/YfPdUDolBJuVNIb6hHPhik2w9X4oqoPymSFEDmDm22DNz9ODospnQd2FezlnFE78b7j7cuhuDn3FjbBwT4jUjLfCc/8vc16sEHraM/snvzLsbajGngLlR2UPu8uldBpcvAx6WqG7FTb8AWJFUHsmPPbP8OKPhr4PaX8YKBQNYO0vc9d6Q9EAdr+YXtv6t9D+9uqB13/ozQPX8yohryy02jOhcDy0rYeCaogWQtdOSHSFcLWJV0Ll3OzrJJPQsSWst/Nx6GqCinlQNG7g80uSJEmSJOmgYzCaJEmSJEmSJEmSJElHkEgkQl1dHatXryaZTP3yh66uLrZt28a2bdtGcXfSkaf3PRmJREZ7K5IkSZIkSUemyrlw/kOw+qchiGf8S0IA2N5UzIZz74eVPwhhQbVnwJRXDTynaDycfiss/wY88o7MeuPVQ9t7xWxYcvvQ5uxNNAbTrw8tm3gxjF+S2V97Gpz1e3jmc9DyAow9FY79AkQH8fW18Uvgkudg058hXhIey/yKUGu8Knsw2kk/DAFu63/XZw9nwqSrwx7HngJb7u03KQInfBceeH3mehOvguqF2YPRGi6D9X+AREd6f+NV4fqi5ZBXDlNfm6pVLgCGGIxWNAEmviy8nvIqYOzJUDIJnvn38Npsfi41duY7oGAsdO2CbQ9C8cTw+kp0wbNfz32OxpfD6p8MbV/S/ta1MzSAXc8MPPbJj8DY08JnzIbbYceje1+/oCa8Z8aeFoIwW56HLfdB57ZUaNyEC6B8NtSeGgIOi+pD4GQkCp3bQ9haNDay65QkSZIkSdKgRfr+kLN0JIpEInOBp3qPn3rqKebOzfFbIyRJkvpLdMEt+dlrk66FU/xNb5IkSZIkSZIOTq2trRnhaJIOrEgkQmNjI8XFxftszaeffpp58+b17ZqXTCaf3mcnkCRpiPwZPUmSJCmLrha4+9IQ0NNr6uvhhO+AAfrpkkl4/EPwzGdSfTPfDgu/AiRg7W2w/VGonB/CzWJ7fq5328Pw53NCcBhAtACO+xpMfxMs/SI89t7UenUXw6m3hDCkPy2BzXelavEyOOeuEKR033WQ6Az9tWfA6bdBfmX2fe9aCr89KrO/dFoI3nvuPzNrJ3wXpmUJbevV1RLOX1Cde0zHdvh5Tfba6b+EhkvT+5LJ8Bi1roP7roGdTwIRGHdWCFF76M25zyUdiWKFUDIFWtdC+UxIJqBlJZCEwnEhLDFWEgIaJ18HHZth8z2w4Q9hfsVcqLsQJl0DpZOBSFizY1uY37EFtv4NYsUhHDGvfBQvVpIkSZIk9efP5x04BqPpiOcPXUmSpBHp6YQfF2SvGYwmSZIkSZIk6SDX2trK+vXr6erqGu2tSEecvLw86urq9mkoGviDV5Kkg48/oydJkiTl0NMBG26HXU9DzfEwbomhaANpfh52PAaVR0PZzME9Vm0bYfXPgARMOD+EGP1jvRUhfKhsOlQvhmgs9He3wdLPw+a7oXQKzHwHVB0dau2bYctfoagBqheGAKSB3HFGWKevY78A48+G/zsJetpT/UX1cPEyyCvd+3Xtze+OgZ2Pp/fFS+ClGyCvbOC5XU0hkKn32v76Clj94+xjr+3zvcSu5nCOSDQcv3hLCFrL5pRboGpheMy3PgjJHmi4BNbcCve/LvucCx6HrffBQ2/JrJVOg5YVua+pqD48X1ULobsZln0p91jpYFQwFqJ5kFcBkT2fVXUXwJTXhPfP8q/A7lVhTP2lMOak8Bm5/OvQtBTat8C8G6H2tDA/vzoEsCWT0LQcttwD2x4IIW9l06HhpSG8zT+TJEmSJEnK4M/nHTgGo+mI5w9dSZKkETEYTZIkSZIkSdIhLplM0tHRQVNTE83NzXR2do72lqTDVn5+PmVlZZSXl1NQUEBkP3ypyB+8kiQdbPwZPUmSJElHrM5d8NBbYf3voKAapr8J5rwvhA1tuQ+e+mQILao5ARZ+AYob9s151/4S7rkKkt2pvgWfhrkfHPpa634Hd12U2T/+HFjyx9zzOrbBL+og0e/fHKoWwgWPZJ/T8iL8akpmfzQPrtoRgtcAEl3Q/ByUToVYYWrczidh+6NQOA5qz4B4Ufbz/KQ8BKRJGrqCMdCxNXstvxoKx4YxBWMgXgata2HznaFefwmUzwnhbD2tUD4rhIRGolAyCfJrINkFRXVQNiMVtNhXMhHmRPNDPde/syS6obslfEb0/ZyQJEmSJGmE/Pm8A2cvv5ZCkiRJ0vAZQixJkiRJkiTp4BeJRCgsLKSwsJDa2lqSySSJRAJ/0Zq070QiEaLR6H4JQpMkSZIkSZJ0kMqvCL9kOZnMDO8ZezKc9bv9c96Gy+Ccu+HFH0HPbqi/DCZePry1JpwbAshaXkjvn37DwPMKamD2e+CZf0/1ReIw/99yzymdHELitj2Q3l9/aSoUDUJQWsVRmfMr54e2N3M/AI9/KLN/zMmw9b69zx+MyvkhqC2Xy9dCcX24n0zAjsdg9yooHA9Vx8CLN8GDb8w+N5qfGTjXa/y5MOlqeOANuc+9t+ucfB3sXglb7s09RkeuXKFoAJ3bQ2N59vq6X4c2FEUTINkTgs5IQvfu9Nf/mJOgejGs/D50NYXwxYGUl8UAACAASURBVB2PZl9r/LlQvQialsGYE8J7r3I+7FoagtrKZkHlXOhqCe+B4onhMynZBbGiEMTWvhnW3gadO6H+4uyfRYkuIAJRv74tSZIkSdJI+H/WkiRJ0oj4xUBJkiRJkiRJh5dIJEIsFhvtbUiSJEmSJEmSdHgYjV+YMPak0EYqGg8haw/eAJvvhJJJMOdfoPGqvc9d8BkoPwrW/wbyymHKq6H29IHnnPpjuPMi2PV0OB57Ciz+5ogvI039ZdmD0SZdHQKNtj+UWcsadBaBeHEIaupv9j/Dyh/Cpj9l1qIFIQDtH8tEQ1hT9aJU35gTcu//kmfht/Ohuzm9P14Kp98KrWtzzz3uG1B3AfxqWvb69DfB8f8VAqNuzvFvRQs+BdOuhyc/Cmt/Be2bwuti7Cmw7SFoWpr7/NJQtW0YuL71b6H1yhWKBrDx/0IDWPuLke/t7+9P3a89M4TC7Xwi1Tf2NJh8DTRcEcLVIrEQ9DZciZ7weTHQnynJJJAM4yRJkiRJOsQZjCZJkiRJkiRJkiRJkiRJkiRJkiRJkjIV18OZvwmBO0MJeYtEYOqrQxuskklw4ZPQ/GwIECudPOTt7lXl3BDu1Tccre4imPYGyKuE+1+TPn7sKXD8t+FPS6B9Y6p/9nsgVgxPfzJ9fDQf6i8GktmD0eovguhefkFNxVwomQK7V6b315wYHqOZb4NnPptem/FmiJdAcWPYQ6Izc91xZ0PhAMFMZTPCbSQaxmbbf8PlUFgLi/9faNm0bwmBVuWzIZYPNw3wupnxNnjuP7LXJl0Lq27KPVc6WGy+M7Nvyz2hPfTW4a0ZKwaSkF8Nbesy66VToageelph+yOZ9VN/Ej4POrZCwVioOhq6miC/Jnw+xApHJ7hTkiRJkqRBMhhNkiRJ2m+So70BSZIkSZIkSZIkSZIkSZIkSRq5AxWgE4lA+az9e465/woTr4Qt90H5zBA4Fo2FELdkTwjqat8EE86DhV+CvHI470FYdUsIKBq3BOovge4W2Pq3VIBYNB9O/D4U1MDk62DXM7D086nzFjfCgs9m3VKaSBSO/ybccwV07w59BTWw6Kvh/oJPh7CkVbcACWi8Go56X6jFi0Iw25pb09esOgYqZof75bOhaVnmeRtemrp/1Pthy92Q6Er1TbwSKo7a+/4Lx4bWq/FlsPqnmeN6H6tcwWjHfn54wWjnPQg1i2H3anj8Rtj59/DY1yyG0mnQshKqFoSxOx4PYXPVC8NzXtwAd14ILS+krxnNS38spP2tpzXcZgtFg/Aa7f867euvLx/ceSrmhvdETyvES0MYZtsmaLwqhCBu+CNsfyjUzrkrfM6tuTV8VpbPgp522PU0FE+E6uMg0RHGjDk5fK42LYdtD0PJnnq8eGiPgyRJkiTpiBVJJg1r0JEtEonMBZ7qPX7qqaeYO3fuKO5IkiQdUnra4cdF2WuTXgGn3Hxg9yNJkiRJkiRJko5oTz/9NPPmzevbNS+ZTD49WvuRJMmf0ZMkSZIkHdYSPSF4a/fqEARUNC69vvPpEJ4WL4G6CyC/cvBr714FG24PIUMTzoei8YOb174Z7roEtj0YjkunwZm/TQXOPfef8NBb0+fUXQxn/jq9b/M98Nw3oX0jjH8JzHkvROOD33+v9bfDneen9xXUwKUvQrIbbh0fwpT6Kp0GlzwHf/8ALP1c5przPgIv/i+0rEjvLxwHl68JQWbD1dMRgp+6dsK4s0N4HsCtE8Jj0d+ir8Gsd4T7bRthwx+gcALUHBfWIgG3TRz+fqTDXXEDtK5NHY85GWKF0N0Ku18MQYYtL4SQxTEnQVEddGyFkikhhDGvPMzrboFoIZAI8yVJkiRpP/Dn8w6cYfwtlCRJkiRJkiRJkiRJkiRJkiRJkiRJ0hEuGoPqRaFlUzk3tOEomQTT3zT0eYW1cO790Pxs+EXgFfPCPnvNeAsQhee/BZ07oP4iOCZL+FjtaaGNVN15cPKP4KmPh3CjmhPghO9AXmmoz3wbLPtS+px5N0IkAlNeBcu/AonOVC1aAFNfEx7Xe68N4WoARGDBp0YWigYQK4DJ12S5jgvhhe+l90Wi0HBZ6rhoPEx9bebchpfC2l+MbF8A1yRgx2Ow8ofhsSyZDBMvh6pj4GfVueeddTtsfzQ8NvlV4Xnv3g0Vc6G4Hrqaw7XsegY23w1rfja8/dWeDrVnhtCqjq2w8wloWja8tXTk6BuKBrD1vvTjDXsCCZ/+9NDXnvVumP+RoYVSSpIkSZIOCgajSZIkSftLMjnaO5AkSZIkSZIkSZIkSZIkSZIkHWkiESiflbs+44bQDpTJ14aW6IZov6+1HvsFKJsOa24LYWlTXgMNl4Za5Tw487fw2L/Azqegcj4c9w0onRJaUUMI8Up0wcQrYNyZ++8a5n4QNt4Brav79N0IJY17nzvt9ZnBaPFSaHwZvPDfgzv/Ue8Pz2v1wtD6m/XuECLX38QrYMK5oe3N+LNh1jvgF/XQtj77mKpjQzhbNmf/JQSsZfPUp+CJG7PXZr4Tnv1a9tr0N0HtGSE8q2MbbH8INv0l+9h4CYxbEgLeWlZkH6Mjy/KvhPft2X8KoZGSJEmSpEOGwWiSJEnSSBh+JkmSJEmSJEmSJEmSJEmSJEnS3vUPRYMQ9jXjLaFlM/4cuOCx7KFqY08K7UAomw7nPwRrboXWdTB+CYw7a3Bz6y+Gxd+EJz8C7ZugYi6c9D8QLYBVN0NP+97XaLx64PrEl+YIRrtqcHvsa+6H4OG3ZfZXHQsz3wYPXJ9ZK5qQOxQNoO787MFoeZVQs3jgvfQPn+vpDIFyO58Ij+WkV0BBdebcnnaIxEOg2rYHoaAmhMr1tMGTn4C2tSFcb8K5UDoNWp6HOy/MvZdJr4BVt+Su6+C06ylY8d0QbihJkiRJOmQYjCZJkiRJkiRJkiRJkiRJkiRJkiRJkqSDV7ZQtQOtsBZmvHl4c2fcANPfBN3NkFee6l9yBzx+Ywhvqj4OFn4JXvgeLP3CngERWPhlqD524PXHngZz3ttnHjD5Oph45dD32nAZPPIOSCb69V8OdReFALT+tUnXDLxm1UIonwVNy9P7p1y3J2AuAvT7xfUFY6GoPnOtWH54PPcmVhhui8ZBwyXp/Yu+lDm+fEZ4jts3Z9ZO/hFMvjYE9K35WfbzXd0RHpvVPw3Pw45HIV4WnvOieujYAonOve9b+97GPxqMJkmSJEmHmIPgb4IkSZKkw1Vy70MkSZIkSZIkSZIkSZIkSZIkSdLhLxJJD0UDGHsKnPOX9L5jPw+z3gO7noaqY6FwzODWPvbzMOU1sP0RqDgqBK1FIkPfZ3E9HPf/4OG3pgLQxi2B2e8O+1/4FXjknanxVcfAnPftfX9n/AbuuhSaloa+iVfAMZ+FeAnUXwLrfpU+Z8abIRob+v5Hov5SWPGd9L5oAUw4P9yf+prswWhVC0NgG8Dka0IbSMe2EJ7WshJqjoNpb4T8ilT9pgGet4uXw29m5a6fcze0b4I1P4fVP4Nk98B7ORJ0bB3tHUiSJEmShshgNEmSJGlEDD+TJEmSJEmSJEmSJEmSJEmSJEn7UHFdaENVOS+0kZpxA0w4D7beByWToeZ4iO75SvKsd4SgtM13QnEjjF8Sws32pmw6XPQ0tLwAeRXpgW+n3BzC1tbeBvEymPpamPfhkV/HUM37N9jyV2haFo4jUTjua1BQHY7HvwQKa6F9c/q8qa8Z2nkKauCYz+SuT3sjrPh2Zv/cD0H5TJj5dnj2G5n1ya+C2tPC/car4NgvwK5noHAsVB4drmf3GvhlY/bzzv4naLgc7jg9997m3gid26CrGV7839zjDiadO0Z7B5IkSZKkITIYTZIkSZIkSZIkSZIkSZIkSZIkSZIkSVJK6eTQsqmcG9pQRSJQNi2zP14MJ3wHjv92GDNaSibCeQ/Cxj9C24YQAFcxJ1WPFcCSP8G9V4fAsVgRzHpnCCrbl6ZclyUYLQKTXxnuNrw0ezDapKvTj4vrQ+uraALEiqGnNXP+5FdC9UI46X/hb9dl1iecDws+kTrOFYxWvQhO/Rk8+RFY+YPsY16+G6L5IXAvmYTdL4bAvObngQSUTodYfhiz8c+w/KvQ/GwYByFcbsprQlBdsge2PwJrbs1+LoPRJEmSJOmQYzCaJEmStN8kR3sDkiRJkiRJkiRJkiRJkiRJkiRJh4bRDEXrlVcGE6/IXa+cBxc9DW0bIb86hHfta7Wnw/Hfgkf/GbqbIb8qBMf1hrSNOwuO+iA885nUnFnvDsFlexONQ+NVmYFlZTOg6thwv+GycM7+gWLT3pB+XLkAdj6eeY5Z7w6herP/OXswWtnMEIbXKxKB0inhfsHxmePrLwxtbzbdBX86M7O/ezfseBwqjoJo3t7XkSRJkiSNOoPRJEmSpBEx/EySJEmSJEmSJEmSJEmSJEmSJOmIUjR+/64//Y0w9XXQugZKJkEkmqpFInDMp8OY7Y9C5Xwonzn4tRd+GXa/CJvvDsfFE+G0W1PBdHmlcM5d8LdXw46/Q+E4mPfhEKjW18QrMoPRogVQf3G4Xzkfak6Ebfenj5nx1sHvdSjyq3LXfn9MuK27KDye2x6E4voQBldzIuRXQF55CLsrGAvRWGruqp/A8/8FXU3h2ub+KyQT0LYOihtD2NxgJLqBSPrayWTqcU90Q7IHYgVDumxJkiRJOhwZjCZJkiRJkiRJkiRJkiRJkiRJkiRJkiRJB5NoHEqn5K6XThm4nktBNZx9J7SsCGFflQvSw7oghJpd8Bh0NUO8NBXe1dec98L2h2Hdr8NxrBBOvhnyK8NxJAJn/Q4efDNs+AMUjIEZb4FZ7xz6ngdjoGC0Xut/m7q//WFY+8uhnWP7w/DkR9P78sqhYh5E88Nj0L0bonnhudn6AOx6au/rxsuguzm9b+Y7wmNVOi398U8m0oPyevsSXWEPXbugZSVUHJU7ZC1bSNvedLeF57qnFSZcAEXjBj9XkiRJkobIYDRJkiRpf0kmR3sHkiRJkiRJkiRJkiRJkiRJkiRJUrpIBMqm731cXlnuWrwYTv8lND8Lu1dBzQmQX5E+Jr8KTv1x9jCvfW0wwWj7Q1cTbL0vs3/TENboH4oG8OzXQxuJSDQ89gBFE6BqEbRvgqal0N0SQu9mvh3aN0PReGjbCKtugspjoP4iqL8ENt4BT308XGevaD7M/1hYs2kpxEpgzIlQOS/09T7fiZ5wG4nsCW/rhp62EBwXLx7ZtUmSJEk6rBmMJkmSJI2E4WeSJEmSJEmSJEmSJEmSJEmSJEk6EkUiUD4rtAHH7edQNIB4CeSVpwd4Hel6Q9EA2jZA22/S690t8MxnM+dtuz+0Jz6cfd1EJzz+wZHtrXwWVB8PhbXh9VF1LDRcDvGizLEHIlhPkiRJ0kHFYDRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0qErEoG6i2HVTaO9Ew1G0/LQ+iuZAoXjoLghhNz1tMHW+yDZA7FCqF4cbiecD+POgEQP5FeGllcBsYIDfy2SJEmS9jmD0SRJkqT9JjnaG5AkSZIkSZIkSZIkSZIkSZIkSZKODIu+DDseg6alo70TDdfulaFty1LraYct94T7G/+YfX6sEPIqIb9iz+2ewLT8ysH1x0tCyJ4kSZKkUWUwmiRJkjQihp9JkiRJkiRJkiRJkiRJkiRJkiRJo66wFi58ErbcDY/fCB1bofnZ0d6VDqSedujZCO0bhzc/EusTmDaEQLXe/rwKiMb27TVJkiRJRyCD0SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJh75oDMadBefeG45bXoBfTcs+9pjPwriz4fbFudcrmQy7X9zXu9TBKtkDndtDG6542eCD1DL6KyBWuO+uR5IkSTpEGYwmSZIk7TfJ0d6AJEmSJEmSJEmSJEmSJEmSJEmSdOQqboT8KujckVmbdC2UTITF/wkPvSWzXjEXLnoKkkl44sOw7MvQ0wrVx8EJ34aqY8K4nk74cUH281ceDRc+njpe8T144A3Zx16xBbpbYPWP4e8fyKzXnAhta0NYW7wENtwOkSgkE6kxeeUhmKttXeb8vHLoasp+bu073c2hsXZ486MFITCtNzxtUIFqffrjpRCJ7NNLkiRJkg40g9EkSZKkETH8TJIkSZIkSZIkSZIkSZIkSZIkSTooReMw7XpY+vn0/rqLQygaQMNl8PDbIdmTPqbx6nAbicCCT8LcD0GyKwSP9Q2eiuWH0LJt92eef/Z70o/Hn5N9nyWToaAGCsfAUe8PbTB6Q9Ei0cxa5w7Ych+UToPyWdDyAvx6evZ1cu0foGohnP8wPPt1eORdg9uXhi/RAe2bQhuOSLRPoFqfwLS0oLUs/b1ha3nl4X0jSZIkjSL/i1SSJEmSJEmSJEmSJEmSJEmSJEmSJEmSdHha8GkgCS/8Twidqr8EFn8zVS+aEI4fuiEVNDb+HJj1zvR14kVAUfZzTHpFZrBYrBAaLk/vK2kMfWtvS++f9a70sLXByhaI1iu/CuovSh0X1eUeO+Mt0Lw8hKn1d/THwt5mvRPGvwS23hfC4RouD6FwK74LD1yfe+2r22DjHXDXJdnrp/4Edq+GFd+BpmW519HgJBPheezcAbuHuUa8NEtgWsXgg9Zihfv0kiRJknTkMRhNkiRJ2l+SydHegSRJkiRJkiRJkiRJkiRJkiRJknRki8bh2M/DMZ8LoVHRWOaY6ddD3fmw+a9QOhmqjwvzBmvm26DpGXj+W+E4rxJO+2kIiervlJvhsffDul+H+rTrQzDZ/hYvgqqFsOPR9P5oHtRdCJvvghe+l17Lq4RxZ6eOK+aE1lfdxbnPWTIphGTVngHxEujul9RVdyE0vizcL50C91yZfZ0574Oln8teW/hlGLcEunZC5649tzuha9ee2779fes7IdGVe+9Hsu6W0Fg7vPnR/MxAtVxBa/378ytC8N5wggIlSZJ02DAYTZIkSRoJw88kSZIkSZIkSZIkSZIkSZIkSZKkg18kApEsoWi9ihtg8iuGt3Y0Dsf/Fxz9KWhdDZXzQ+BYNrFCOO6roR1o8z4Ef305JHtSfTPfAYVjYMEnYfvDsPOJPfssghP/OwSqDaRoHCz4DDz+wcxa48vDbV4ZHPsFeOitwJ7vYxWMhQWfSo2tOTH7+tF8qJyX+/xVx0LV0QPvMZtkEnraBxmolqO/f9CbgkQntG8ObTgi0RCW1j8wLS9HkFq2+lCCDSVJknTQ8b/mJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEkaqcIxoR2sJl4BZ/0frPwf6GqC+oth6utDrWgCnPcAbP0btG+B2tNC32DM/UAIP3v47am++kth/kdTxzPeDNXHwYY/QH41NFwGxfWpenEdjD8HNt6Rvnbjy6DmhNznLps+uD32F4mE0Ld40eCvs79EV3gchxqo1tvftQuSieGd+3CWTEDnjtCGmz0XLxlkoFqO/lhheI1IkiRpVBiMJkmSJO03ydHegCRJkiRJkiRJkiRJkiRJkiRJkiSljF8SWjaxQhh31vDWnfk2mH4D7HgMCsdBSWPmmJrjQsvl5Jvh3lfApj+HUKr6y2Dxf0K8FMpmQPNz6eOrj0sPVzvQonlQUBPacCQT0N2SPUjtH+FpAwWt7YRE5769psNF9+7Q2tYNb340PwSmVR8HM24IQX4j1fIirL0NCmuh7qIQwiZJkqSsDEaTJEmSRsTwM0mSJEmSJEmSJEmSJEmSJEmSJEkiGoeaxcOfXzgGzr4DOraH0LG8slRt8Tfh7ktD2BVAfhUs+urI9jvaIlHIKw+NicNbo6d9gEC1QQStdbfs00s6bCQ6oWMLbPh9aH3N/yjEyyBeDPESiO25TTsuhtievlgRPP4hWPrvIQyv15iTofZ0mP5GaN8S+pI9UHVMmNereQV0N4f3xbpfQaI7vDd2PAYbbg9jSibBUe+HKa8Oe5AkSTrEGYwmSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIODgXVmX3jl8BFz8D634fQtAnnQXH9gd/bwSZWCEXjQxuORDd0NWUGpg0laK1v2NeR4MmP7pt1tt4X2jOfHflau1fBQ28NrXBcCN2LFYfnpuFyaLwKEh3Quh5e+C5s+gsU1UHZdFj8X1AxO6yz7WHY/jAUjof6SyAaG/neJEmShsFgNEmSJGm/SY72BiRJkiRJkiRJkiRJkiRJkiRJkiTp8FDSCDNuGO1dHF6i8RBEly2MbjCSSejePbxAtd77Pe379pqOdO2b0o+Xfzm0/trWh/bbOeE4mgeJrvQx5bMhVgSdO/Y8XztTtcJxMO4siJfBzieguxkmnA/z/g3yK1LjeoPzItFw27Q8tNKpUHFUqn+wOneE11zh+PD6lSRJhyX/lJckSZJGxPAzSZIkSZIkSZIkSZIkSZIkSZIkSdIRKBKBvNLQihuGt0ZPO3TuSoWnDRSo1hvO1be/u3nfXtORqn8oGkDTstzj2zfBqlvS+3Y9A8u+lH38hPOhYytsfzh7PZoPZTMh2QPF9SGQbfuj4Txl06GnbU8oWksqbA2g5gSoOhZiBSGkLb8ytLzKzPt5FYapSZJ0iPBPbEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJB14sUIoKoSiccObn+iB7qaBg9Q6d2UGqvUNYEv27NtrUqYNfxi4nuiEXU+F+01L02sDBbRteyC0wYqX9gtLyxKg1huiljGuAqJ5gz+XJEkaNoPRJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSdOiJxiC/KrThSCahpzUVmNayAu6+bN/uUQeP7pbQWDu8+fGS7GFqOQPWDFaTJGk4DEaTJEmSej33X7DyB+EvMRsuh7k3hr8UHUgyeWD2JkmSJEmSJEmSJEmSJEmSJEmSJEmS9q1IJIRdxUuguB4q58JVO2HZF2H1T6BpeeacvAoorIXu1vB9xO7dkOg88HvXgde9O7S2dcObnzNYrWIvoWp7xsTy9+31HG6SSWh+DlpXQ/FEKJ0G0Tj0dIZQukgk99zOXZBXPvAYSdIBYzCaJEmSBLDsy/DoP6WOd/wdWtfBCd8a/pqGpkmSJEmSJEmSJEmSJEmSJEmSJEmSdGjJr4CjPx5a7/cEe9og2QOxYojGMuckuveEpPUJS+vec/vns7Ofp+FyaH4edj01/L1G86DhClj94+GvoQNnpMFqseLcwWlHerBa63q4/7Ww8Y/Z63kVUD4b2jfB7hdzr1N7Znhv5leE7xlvuRealsHuldnHVx4NY06Cogmw/REoqAnvyfqLIBINYxLdsPRzsPluyK+GadfD+CV7al2h7X4RWteGevWiENCWTEDLCyHsrXs3tKwMz2XDZSGcUZIOYwajSZIkSQDP/kdm38rvw8IvQV7pAd+OJEmSJEmSJEmSJEmSJEmSJEmSJEkaZZFIuI0XDzwuGodoOeSVZ9YWfRUeeVe/daOw6GshdOm+a7KvedX2EGrV0wo/HwM97ZljprwaTvgOcAusuS18L7JtQwhrmvpaKJ0WQpfW/w5W3QLdLVA2E2pPD8eb74RoPpTPgaZnwlgdvHpaoa0V2tYPb36saHihar33D9Zgte5W+Mt5A4cMdu2CbQ/sfa3Nd4Y2WDufCK2vF74fbiNRiJdD1870+qqb975urDg839k8+CZYcgd0bINEB1TMC59RpdMh0QnNy6HpWahaAOWzBn8tq34Cj7wzhMcV1MDib0LjVSEgcstfQ3hbtAAq5kDZjPDZEYlCV3P4fMqvDJ8hLSuguDGEy/XqagGS4TWY7A6ffa1rofY0KJ06+D1KOmIYjCZJkiR1bAv/k91fogvW/gKmvGqAycn9ti1JkiRJkiRJkiRJkiRJkiRJkiRJknSIm/5m2Pq3EEQGEInD8d+CkokQOyccJ7vT55TPCkFUkQjES2DWu+GZz2auPfX1qfsTLw8tmxk3hNa/D0LoUW8AXDIBzSugoBq6mmDdr0P4Ud1FkFca9ppXFr6Xue7X0L0b8qth7S/D9zETnUN7bArGQMfWoc0ZSOXRIQCrc2e4VbqeNmhrC+F5wzGUYLW8isxarGDfXk+vNT8fOBRttCQTmaFog5UrFK3Xn88Z3Dolk2D+R8PzESuGwloonw3bH4I1t8LW+8Pz2j8MrmMb/PVlw9l5pnhJ+KwYyLglIbSxYysU1YXPkoIaGHsabL4rhNrFiqFwDBROgO2PhKC26uNgwaegdPK+2aukg4bBaJIkSVKiO3etu2UECxuaJkmSJEmSJEmSJEmSJEmSJEmSJEnSES2WDyffBPM/Ds3PQc1iKBwbaoVjYPob4bn/TJ9z1AdSYWUAR38SiMCyL0GiIwSUzf8ojDlp5Pvre55IFMpnhPsFNTDrndnnFNTA1Nemjidfk33cTZHs/TUnwHn3p47bNsKqm2H978K1LfoK/PGUEM6UMfd4OPdvsPPJEIiVVwGNLw9Bc30leqC7eU9I2s5wm+t+1j6D1TKMOFitcHCharn6cgWrbXtw+Nd0uNu9Cu5/3ejuYW+haACb/hzaUDU/C+t/A6f8GOrOH/p8SQctg9EkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZKk/SUSCYFjvaFjfR33DSidDut+BXnlIXBs4hXpY6IxOObTMPPt0LoaihtCO9iNW5I97Gjm29KPi8bD7PeE1mvam+CZz2TOnfGWEOBWtSC0XKKxVLDWcGQEq+0afKjaP4LVksM79+Gqpx16NkL7xuHNzwhWqwi32x7Yt/vUoaWrCe68INyPl0G8GNo3heNZ7w6fqQN9Vkg6KBmMJkmSJI1E0r+UkiRJkiRJkiRJkiRJkiRJkiRJkiRJwxSJwpx/Cm1viutCO1RMfX1mMFp+VWbwWzbT3wgrvgUd21J9pdOh8eX7do+5jDRYLZmAruYBgtP6BKjlqhmslm6kwWo6/HU3h9Zr+VdC+//s3XmUpGV9L/Dv09PD7AMM+zrs83+RdwAAIABJREFUIqIggqi4YBTFaFSMihqNGI9LjN6cmOS6JIbojcvNek2iSdRcJDcmUYlKFuOGmiCIYPS4gSKyqOwwIMwwCzM894/qoatrumvp7qrqmfp8zqnz9rP/CoZz6h3q/fb4quQZ30xWHTm82oCeCEYDAIB+/cWQ0DQAAAAAAAAAAAAAAAAAYFQd9pJk403Jle9OttyV7H588ri/T8ZXdF678vDkjEuTq/4w+dmVyZqTk4efm4wv73/d86GMJbvt3nitWNv7+vpAsnV9+1C1KQFrLX33/6yxB9AIS/vsKcnTL09WHTXsaoAuCEYDAIC2yrALAAAAAAAAAAAAAAAAAADY+ZSSHPfbyUN/sxHUtdueva1ffUxy6of6U9tCV8aSxasbrxWH9r6+1slgtV5D1bZfd/Zgtcd/LPnKC6cf2/dJyVO+1PgzmjTe69XvS37w5433fsDTk+PPTf7jhGTbxmn2/nhy6POT9dcl916TXPpLyebbpz9ryd7J5jumH1u8R3LUq5MDz0xu/lxy0380/r3VrcmipcmqY5LlhzTm/vD9vb1/ptpyV3LteckJ7xx2JUAXBKMBAEBbdY7jAAAAAAAAAAAAAAAAAAAjrIz1HorG3JSSLF7VeOWQ3td3Cla7/2edg9bqtnl/W10bX5Uc8Ixk5ZHJ+h/tOH7YSydD0ZLGn9GHvKHxanboC5Przp/at2h5csDTGj+vPLzxOvg5yY9mCPF7/MeSi35ux/7FuyfPXzdZx35PTk5898zv6VH/J7nu75Mfvq/x72fPE5NVRydb7002r2vUtHVDstseybd+J7n72zPvNZ2Hvz35zrkzj5/6t8mm25JvvaW3fZsd/7bku/9r9uvn6vZLhnc20BPBaAAA0DdC0wAAAAAAAAAAAAAAAAAA2MnMS7DahumD06YLUZvvYLVjfyNZvDI54V3JpS9O6gOTY/s9OTn8Zd3t84i3J3d8Nbn36ka7LEpOeV+yePXUeWvPnj4YbY8Tkn2emCw7KNl449Sxw395ajhbJ2OLkyNf0Xh1ctCzkjuvSO74WrJoSbJibbLx5uSyc6aff+J7kuPe1Pjn9N237zi+/JDkyF9pjM8UjLbi8OQJFySfedT04/s+MXnEO9oHox307OTGf5l+7HEfSfZ4RHL7xckVr5t5j3bWXze7dcDACUYDAID08JcGAAAAAAAAAAAAAAAAAADAzEppBJMtXpksP7j39bUm2+7rPVRt2YHJwc9JjpgID1v7wkbfdX+XpCb7PCE5/KVJGeuujhVrkzOvSG65KNl0WyNUbfUxO87b9/RGeNh9P5naf8QrkrFFyZP+JfnyM5NNtzT6939aIySsn/Y6pfHabut9ydd+ZWpI3Hb7/Vzjeshzpw9G2x4kV8aSVcdMBsU1O+mPkzUnNfa69Ys7jh/dKcysJA8/d/pgtDKeHPK8ZNHS5J7vd9injbmE7QEDJRgNAABSh7QWAAAAAAAAAAAAAAAAAACYopRkfEXjtfygue217+Mbr9lavDo55Kz2c8bGk6d8Kbnkxcm6KxprjvkfyUPe0Bhfc1Ly3J8kd30zWbJ3suKwxnscpPHlyQFnJjd9emr/8kOSNY9q/LzniclRr06u+cDk+O7HJce8frJ96AuS771z6h6LVzf2TpIjztkxGG3JXslBz54446Tkrm/sWN/Dz22cv+KwZMP1U8cOfk4jFC1JFu8+83t84qeSy16RbLlr+vGZ+oEFRzAaAAC0NZe/VBCaBgAAAAAAAAAAAAAAAAAAu7xVRyZnXp5suTsZX5WMLZo6Pjae7HXKcGrb7qQ/S3525WTw2PjK5DHnJWVscs4pf90IMbv9K8mqo5JDfjHZbY/J8Ye9Nbn7O8mN/9JoL949ecInGsFrSXLYS5ONtyRXvifZsq4RdvbY/5eML5sYf8n0wWiHvqBRx2n/lPznM5PNdzb6dz8+OelPJ+eNr5j5/S3ZJznmDcl33zH9+Lb7kus+kqz77+TWLyTbNifH/kYjGG7rfY33sPrYZPGqyTW1Jvd8v7H30r1nPhuYV4LRAAAAAAAAAAAAAAAAAAAAAABgrppDxBaa1cckP/+t5Nb/TLauT/b7uWTZflPnlJIc9MzGazrjy5MnXZisvy6578Zkr5OTRUunrj/ut5OH/mZy/73JbrtPXX/Ua5KbP5vc8vnJvoe/Pdn9uMbPe5+aPPv65PZLGgFlax6VLFoyOXfPE5JFy5JtG1vqWpns+chkyV4zB6MlyVdfOrV9xa9OP2/1Q5NlByS3fnFq/6l/myw7qBEut+nWRh1b1ycbfpysPCJZvDrZ/4zG+xhbPHMdc7HptmTpvv3ZGxYIwWgAADAXtQ67AgAAAAAAAAAAAAAAAAAAgM4Wr04O/oW577Py8MZrJmVsx1C0JFm8Mjn93xvBZ/f8INnncckeD99xzoFPn37f8RXJ4S9LrvnA1P4jXpGML0tWPyR59AeTy1/V2/tpdc9VjVerr72y89p2wWxJI1ht+cGN97L/U5IDn9UInLv3R42QtaX7JOOrki13Juuvb8xbdkAjEG3x7slXX5Yc9Kzk5L9ojMEuSDAaAAD0i9A0AAAAAAAAAAAAAAAAAACASWOLk/1Ob7xm4+T3NQLebvhoUsaTtWcnj/iDyfHDfmnuwWj9tPHGxitJbv1i8q3f6X2Pa89Lbrs4ecIFyZ4nzG99sACMDbsAAAAYPgFmAAAAAAAAAAAAAAAAAAAAC97YePLIP0qe++PkOdcmJ747GVs0OT6+LFlz8vDqG5T11ySfPTW5+v1J9bw8uxbBaAAAMCduEgEAAAAAAAAAAAAAAAAAABaMo14z7AoG44HNydd/Lbn2/w67EphXgtEAAKBvCdhC0wAAAAAAAAAAAAAAAAAAAAbqyF9JjnzlsKsYjD0fmRz20mFXAfNqfNgFAADA8AkwAwAAAAAAAAAAAAAAAAAA2CWUseTRH0wOeX5y+yXJirXJwc9O7r8nKYuSMp5svi3JWHLXN5P7703WX5Pc84PkjkuTrRuG/Q66M74yOe2jyaIlw64E5pVgNAAAmFMwmlA1AAAAAAAAAAAAAAAAAACABaWU5MAzG6/tlu47+fOKQxrXNY+cfv0dX0tu/WKy7IBkvycnFx42ixoWJXVb7+u69ei/SVYf3b/9YUgEowEAQO1XuJnQNAAAAAAAAAAAAAAAAAAAgJ3O3qc2XklSH5h53tL9kk237ti//JDkuT9Ott6XXPvh5L6fJnscn6x9UVLGkq0bkw3XJ5vvSNZfl6y/Ntnr5EYQ26IVyb8/dOYz15ycHPfm5NBfnMs7hAVLMBoAALQNMCsDqwIAAAAAAAAAAAAAAAAAAIAFpowle56U3PWNHccec37yX89JHtg8tX/t2Y3r+PLkmNftuG58WbL7RPjZvk+Y7tBM+xz8PqclZ3yll+phpzM27AIAAGD42gWjdVo6h7UAAAAAAAAAAAAAAAAAAAAsfEe9ese+PU9MDnha8tjzk7HFk/37nJYc9+a5nXfcm2ao47Vz2xd2AuPDLgAAAIauX+FmQtMAAAAAAAAAAAAAAAAAAAB2fke9Otm2Kbn6L5JNtyb7PzV59AeSUpK1Zyf7Pim5/eJk2YHJXo+eGpQ2q/Nelfzog8nmOyf7Vj8kOeSsue0LOwHBaAAA0JZwMwAAAAAAAAAAAAAAAAAAgJFWSnLsrzde9YGkjE0dX7Z/cugL5u+8lUckZ1yaXPVHyc++1whbO/5tyfiK+TsDFijBaAAAMKfwM8FpAAAAAAAAAAAAAAAAAAAAI6M1FK1fVh+TnPrBwZwFC8iA/gsDAICFrF24WenTvgAAAAAAAAAAAAAAAAAAAAA0E4wGAABVgBkAAAAAAAAAAAAAAAAAAADAsAlGAwCAzCUYTagaAAAAAAAAAAAAAAAAAAAAwHwQjAYAALVf4WZC0wAAAAAAAAAAAAAAAAAAAAC6JRgNAAAEmAEAAAAAAAAAAAAAAAAAAAAM3fiwCwAAgOFrE4xWSoelQtUAAAAAAAAAGKxSyniSk5I8LMk+SXZLsj7JjUmuTvK9WuvW4VUIAAAAAAAAAACzIxgNAAD6FW4mNA0AAAAAAABgp1FKOSLJKUlOnrielGRV05Qbaq2HDaG0B5VSjk7y20nOTrK6zdSNpZSvJPmrWusnB1IcAAAAAAAAAADMA8FoAADQjnAzAAAAAAAAgF1WKeX0JG9JIwxtzXCrmVkpZTzJ76VRazff/VyW5Iwk65IIRgMAAAAAAAAAYKchGA0AADKX8DPBaQAAAAAAAAA7sROTPG3YRbRTSlmW5IIkP98yVJN8L8mPk9ydZGWSI5IcG98PBQAAAAAAAABgJ+WLLwAA0LdwM6FpAAAAAAAAADupzUl+muTIYRZRSilJ/ilTQ9E2JfnDJB+otd44zZrlSc5I8qIkWwZRJwAAAAAAAAAAzBfBaAAAUNsEmJUyuDoAAAAAAAAAGIb7k3wvydeTXDFx/U6S05J8aYh1Jcnrkjy7qX1zkqfUWq+aaUGt9b4kFya5sJTie6IAAAAAAAAAAOxUfOEFAADSJhitr2sBAAAAAAAAGLLzk/x1rXVT60AZ8i/SKqUcmuQ9TV2bkjy1XShaq1rr1nkvDAAAAAAAAAAA+kgwGgAA9C3cTGgaAAAAAAAAwEJWa71r2DW08TtJVja131lrvXJYxQAAAAAAAAAAwCCMDbsAAAAYuirADAAAAAAAAICFo5SyKslLmro2JHnvkMoBAAAAAAAAAICBEYwGAACZQzCaUDUAAAAAAAAA5t/ZSVY2tf+51nrvsIoBAAAAAAAAAIBBEYwGAAAAAAAAAAAAsLA8uaX9+aFUAQAAAAAAAAAAAzY+7AIAAGD4ap+27dO+AAAAAAAAAOzqHt3S/mqSlFKWJTkryYuSPCzJgUk2J7kjyTfTCFD7x1rrvYMrFQAAAAAAAAAA5o9gNAAA6CXAbOPNyU8+mdz3k2T/M5KVh/evLgAAAAAAAABGTilljyRHNXVtSXJtKeVJSc5L0vo/qpcm2T3JkUmen+RdpZR31Fr/fBD1AgAAAAAAAADAfBKMBgAA6TIY7d4fJRedntz300b7yvckR5zTr6IAAAAAAAAAGE37t7RvSvK8JB9LMtbF+r2SvLeUckqSV9Rat85zfQAAAAAAAAAA0DeC0QAAoNtgtO+9czIUbbtrPzz3fQEAAAAAAABg0h4t7ZVJ/j6ToWg3JHlfkq8kuTPJmiSPT/JrSQ5rWvfSJLcm+a35KqyUsm+SfXpcduR8nQ8AAAAAAAAAwK5PMBoAANR2AWZl8sdrz+t7KQAAAAAAAACMvNZgtL2bfv54kpfXWje2zLmslPKXSf4uyQua+n+zlHJhrfXieartdUnOnae9AAAAAAAAAABgB2OdpwAAwK6uXTAaAAAAAAAAAAzUTN/tvCLJS6YJRUuS1Fo3JXnJxLxmvzuPtQEAAAAAAAAAQF8JRgMAgNqvYDSBawAAAAAAAAD0bP0M/b9Va93abuHE+Btbup9WStl3XioDAAAAAAAAAIA+Gx92AQAAMHztAsyEmwEAAAAAAAAwUNMFo91Qa/2vbhbXWr9SSrk2yRFN3U9K8vF5qO39s9jnyCQXzsPZAAAAAAAAAACMAMFoAAAAAAAAAAAAAAvH3dP0XdbjHl/L1GC0h86+nEm11tuS3NbLmlLKfBwNAAAAAAAAAMCIGBt2AQAAMHy1zdgcvqBd2+0LAAAAAAAAANO6Icnmlr6be9zjppb2XrMvBwAAAAAAAAAABkcwGgAACDADAAAAAAAAYIGotW5L8oOW7tagtE5a5y+dfUUAAAAAAAAAADA4gtEAACCC0QAAAAAAAABYUL7d0t6jx/Wt8++cQy0AAAAAAAAAADAwgtEAAKBvwWgC1wAAAAAAAACYlU+3tB/W4/rjW9o/nUMtAAAAAAAAAAAwMILRAACgCjADAAAAAAAAYEH5tySbm9qnlFLWdLOwlLJnkke3dF88X4UBAAAAAAAAAEA/CUYDAIC0C0YrA6sCAAAAAAAAAJKk1npvkguaupYkeX2Xy1+fZGlT+4Yk352n0gAAAAAAAAAAoK8EowEAQNtgtIW4LwAAAAAAAAA7k1JKbXmd3sWytyXZ0tR+aynlsR3OeWyS323pfnet1f/ABgAAAAAAAABgpzA+7AIYjFLK4iSnJTk0yQFJ1ie5Kck3a63Xz/NZhyc5McmBSVYmuTmN3zh5aa31/vk8CwCg/3w3HAAAAAAAAGBXVko5ONN/n3L/lvZ4KeWwGbZZX2u9Yz7rqrVeV0r5w0wGnS1J8rlSyv9M8qHm7+OVUsaTvDLJHyfZrWmby5OcN591AQAAAAAAAABAPwlGG6BSyu8nOXcOW5xfaz2nxzP3SfL2JGcnWTPDnEuT/Gmt9Z/nUFtKKc9P8sYkM/1GynWllI8m+b35/gIYAMCc+MXYAAAAAAAAAKPsK0nWdjHvoCTXzTB2fpJz5qugJr+X5CFJXjDRXpnk/UneVUq5LMm6NL4b+Jgke7SsvTHJL9Zat/ShLgAAAAAAAAAA6AvBaLuwUsozknw4yb4dpj4uyeNKKR9J8ppa64Yez1mZ5INJXtRh6pokv5rkeaWUl9daP9vLOQAA/dOnYDSBawAAAAAAAADMQa21llJelkYA2muahvZIcmabpZcnOavWelM/6wMAAAAAAAAAgPk2NuwC6I9SyulJPpWpoWg1yX8n+XiSzye5o2XZLyX5x1JK138uSimLknw0O4ai3Z7kcxNnfSNT00b2S3JhKeXx3Z4DANBfAswAAAAAAAAAWJhqrZtrra9N8tQ0vvu3rc307yY5J8njhKIBAAAAAAAAALAzGh92ASPuxUku62H++m4mlVIOTvKJJLs1dV+S5FW11qua5i1J4zdI/nGSxRPdv5DkD5K8tcua3pPk55va9yd5Y5IP1Fq3NJ11XJIPJXnsRNeSJJ8qpTy81npzl2cBAPRHbReMJjQNAAAAAAAAYFdWaz1sAGeUedjjoiQXlVL2SfKYJAck2TvJvUluTXJprfWncz0HAAAAAAAAAACGSTDacN1Sa72+D/u+PcmeTe1Lkzy11rqpeVKtdXOSPy+l/DjJJ5uG3lhK+Zta6w3tDimlHJHk11u6X1BrvbB1bq31ylLKU5JclMlwtL2SnJvktV28JwCAPmoTftY2NG0O+wIAAAAAAADALNRab0/yr8OuAwAAAAAAAAAA+mFs2AUwv0opRyd5eVPXliTntIaiNau1firJ+U1dS9IILOvk3CSLm9ofni4UremcjUnOmahpu1dOBKwBAAxRuwAz4WYAAAAAAAAAAAAAAAAAAAAAgyAYbdfzkiSLmtqfqLX+sIt1/7ul/cJSytKZJpdSliV5foc9dlBrvTrJp5q6xtOoGQBgeKrwMwAAAAAAAAAAAAAAAAAAAIBhE4y26zmrpX1eN4tqrVcl+VpT14okT2uz5OlJlje1v1pr/X5XFe5Y0/O6XAcAMARzCE0TuAYAAAAAAAAAAAAAAAAAAADQNcFou5BSyv5JTmjq2prkkh62+HJL+xlt5p7ZYW07F6dR23aPLKXs18N6AID5VR9oMybcDAAAAAAAAAAAAAAAAAAAAGAQBKPtWo5vaX+71rqhh/WXtrQf1sNZX+32kImavtPDWQAA/VMfSK54bbsJAysFAAAAAAAAAAAAAAAAAAAAYJQJRhuu15RSvlBKubGUsqmUcm8p5fpSyn+WUt5ZSnlCj/sd19K+psf1P+qwX7OHDvAsAID+ufFfkw3Xzzxe5xKMJlQNAAAAAAAAAAAAAAAAAAAAoFvjwy5gxL2opb0kycoka5M8MclbSylfT/KWWusXutjvqJb2j3us54aW9l6llD1rrXc1d5ZS1iRZM8ezWucf3eN6AID5cdWfDLsCAAAAAAAAAAAAAAAAAAAAAJKMDbsAOjo5yedKKe8spZQOc/doad/Wy0G11vVJNrV0797FOffVWjf0clZ2rG26cwAA+u/2iztMqAMpAwAAAAAAAAAAAAAAAAAAAGDUjQ+7gBF1Y5JPJ7k8yVVJ1iV5IMleSU5K8qwkT2+aX5K8NY0gu7e02XdlS3vjLGrbmGRpU3tVH89pNt05PSul7Jtknx6XHTkfZwMAu6q5BKMJVQMAAAAAAAAAAAAAAAAAAADolmC0wbo8jcCzz9daZ0rJuDTJX5ZSTk7yD0mObhp7cynlslrrhTOsbQ0s2zSLGjcm2bPNnvN5Trs9Z+t1Sc6dp70AAJIZP7YBAAAAAAAAAAAAAAAAAAAAMJ/Ghl3AKKm1frrW+rk2oWjNc7+e5DFJrm4Zek8pZVG3R/Za4wJfAwAwBD62AAAAAAAAAAAAAAAAAAAAAAyCYLQFrNa6LsmLMzWN49gkT55hyfqW9rJZHNu6pnXPQZ4DALBz65yHCwAAAAAAAAAAAAAAAAAAAMCE8WEXQHu11m+UUj6X5OlN3Wcm+cI00wWjJe9P8vEe1xyZ5MJ5Oh8A2OUINwMAAAAAAAAAAAAAAAAAAAAYBMFoO4fPZGow2iNmmPezlvY+vRxSSlmZHQPL7u7inOWllBW11g09HLdvF+f0rNZ6W5LbellTSpmPowGAXVUVjAYAAAAAAAAAAAAAAAAAAAAwCGPDLoCuXN/Sninw7Ict7bU9ntM6f12t9a7WSbXWO5O09h86x7NaawcAWCAmgtFmFZAmVA0AAAAAAAAAAAAAAAAAAACgW4LRdg4bW9rLZph3VUv7qB7POaKlfWWbufN9Vut+AAALRG25AgAAAAAAAAAAAAAAAAAAANAPgtF2Dnu3tO+YYd53W9qPKKUs7+Gc0zrs127ssd0eUkpZkeQRPZwFADB8VTAaAAAAAAAAAAAAAAAAAAAAQD8JRts5nNrSvmm6SbXWm5N8u6lrPMnjezjn9Jb2f7SZ+5kOa9t5Qhq1bffNWuutPawHABicBwPRZhOMJkwNAAAAAAAAAAAAAAAAAAAAoFuC0Ra4UsrSJM9r6f5ymyWfbGm/ostzjs3UALYNST7XZslnk2xsaj92Yo9unNPSbq0ZAGABEW4GAAAAAAAAAAAAAAAAAAAAMAiC0Ra+NyU5qKm9Lcm/t5n/kYk52z2vlHJ0l+c0+1itddNMk2ut9yW5oMMeOyilHJPkrKaurUn+oYv6AACGpLZcAQAAAAAAAAAAAAAAAAAAAOgHwWgDUkp5WSllvx7XvCrJuS3dH6613jDTmlrrD5Oc39S1W5IPl1KWtjnnOUnOaerakuTtXZT4+0nub2qfU0p5dptzliY5b6Km7f621vqjLs4CABiOWqdeZ7MWAACA2as1uefq5P57hl0JAAAAAAAAAAAAAAAA0GeC0QbnlUmuK6WcX0p5ZillxUwTSyknl1I+keQDSUrT0I1JfreLs85NcldT+3FJvlBKObblnCWllDck+XjL+j9pF762Xa312iTvbem+oJTy+lJKc/hZSikPTXLRRC3b3ZnuAtgAABYAIWcAAAADt+4byYVrk397SHLBmuTy1yYPbBt2VQAAAAAAAAAAAAAAAECfjA+7gBGzLMkvT7weKKX8MMn1SX6WZFuSvZKckGS/adauS3JmrfWWTofUWn9aSnleks8m2R5QdlqSK0sp/53k2iS7JzkpyT4ty/8tydt6eE9vTvKwJM+YaC9O8hdJ3lZK+UaSe5McMXFWc8jbliRn1Vpv7uEsAIAhqC1XAAAABmLrxuSLZyRb1jXadVtyzd8kKw9PjnvTcGsDAAAAAAAAAAAAAAAA+kIw2vCMJXnIxKuTi5KcU2v9abeb11q/XEo5K8mHMxl+VpKcPPGazj8meVWtdVsP52wrpbwwyYeSnN00tG+SM2dYdluSl9daL+72HACA4ZkIRKuzCUYTpgYAADBrt3x+MhSt2TUfEIwGAAAAAAAAAAAAAAAAu6ixYRcwQt6b5B+S3NDl/A1JPpnkqbXWp/YSirZdrfXTSY5P8tdJ7moz9bIkz6+1vqTWumEW56yvtb4oyQsm9prJuiR/leT4Wutnej0HAGAoHgxEE3IGAAAwUN//s+n711872DoAAAAAAAAAAAAAAACAgRkfdgGjotb6yTSCzlJK2SPJw5IckmS/JMvTCKm7O40As6uSfLvWum0ezr0tya+WUn49yWlJ1ibZP43gtRuTfLPWet1cz5k464IkF5RSDk9yUpIDk6xIcksagXCX1Fq3zMdZAACDIxgNAAAAAAAAAAAAAAAAAAAAYBAEow1BrfXuJJcM+MwtSb40oLOuSzIvYWsAAAtGnU0wmjA1AACA2XNPBQAAAAAAAAAAAAAAAKNmbNgFAADAgvZgIJoH8gEAAAAAAAAAAAAAAAAAAAD6STAaAAC0JRANAAAAAAAAAAAAAAAAAAAAYBAEowEAQFu15drLUqFqAAAAAAAAAAAAAAAAAAAAAN0SjAYAAO1sDzcTcgYAADBg7sMAAAAAAAAAAAAAAABg1AhGAwCArnggHwAAAAAAAAAAAAAAAAAAAKCfBKMBAEBbteU6m7UAAAAAAAAAAAAAAAAAAAAAdCIYDQAA2poIN6tCzgAAAAAAAAAAAAAAAAAAAAD6STAaAAC082AgmmA0AAAAAAAAAAAAAAAAAAAAgH4SjAYAAG1NBKLV2QSjCVMDAACYtVndhwEAAAAAAAAAAAAAAAA7M8FoAACMttLtR2IP5AMAAAAAAAAAAAAAAAAAAAD0k2A0AABGXKePxLXlCgAAwECUMuwKAAAAAAAAAAAAAAAAgAETjAYAwGgrHT4S1zr12ovZrAEAAKDBPRUAAAAAAAAAAAAAAACMHMFoAACMtk7BaPEgPgAAwIJz65eGXQEAAAAAAAAAAAAAAADQB4LRAAAYbWVRhwm15QoAAMDQfe9dw64AAAAAAAAAAAAAAAAA6APBaAAAjLhuPxLPJhhNmBoAAEBf3PKFYVcAAAAAAAAAAAAAAAAA9IFgNAAARlvp8JG41qlXAAAABsTZzKyOAAAgAElEQVR9GAAAAAAAAAAAAAAAAIwawWgAAIy2TsFoDz6I74F8AAAAAAAAAAAAAAAAAAAAgH4SjAYAwGgrizpMmEswmjA1AAAAAAAAAAAAAAAAAAAAgG4JRgMAYLSVDh+Ja516BQAAAAAAAAAAAAAAAAAAAKAvBKMBADDiuv1ILBgNAAAAAAAAAAAAAAAAAAAAoJ8EowEAMNpKp4/EteXagypMDQAAYPbcUwEAAAAAAAAAAAAAAMCoEYwGAMBo6xSMtj3cTMgZAAAAAAAAAAAAAAAAAAAAQF8JRgMAYMR1+kgsEA0AAAAAAAAAAAAAAAAAAABgEASjAQAw2kq3wWizCUgTqgYAAAAAAAAAAAAAAAAAAADQLcFoAACMtrKoy4lCzgAAAAAAAAAAAAAAAAAAAAD6STAaAACjrXT4SFzr1CsAAAAAAAAAAAAAAAAAAAAAfSEYDQCA0dYpGC215doLYWoAAAAAAAAAAAAAAAAAAAAA3RKMBgDAaCuLOkyYCDerQs4AAAAGyn0YAAAAAAAAAAAAAAAAjBzBaAAAjLgOH4kffBDfA/kAAAAAAAAAAAAAAAAAAAAA/SQYDQCA0VY6fSSeQzBaFaYGAAAAAAAAAAAAAAAAAAAA0C3BaAAAjLaOwWgThJwBAAAAAAAAAAAAAAAAAAAA9JVgNAAARltZ1GFCbbkCAAAAAAAAAAAAAAAAAAAA0A+C0QAAGHEdPhLXuQSiCVMDAACYPfdUAAAAAAAAAAAAAAAAMGoEowEAMNrGxjtMqC1XAAAAAAAAAAAAAAAAAAAAAPpBMBoAAKOtLOowYSIQrQpGAwAAAAAAAAAAAAAAAAAAAOgnwWgAAIy2jsFo2wlGAwAAAAAAAAAAAAAAAAAAAOgnwWgAAIy2Mt5+vG4PRBOMBgAAAAAAAAAAAAAAAAAAANBPgtEAABhtZVGHCROBaFUwGgAAwILiPg0AAAAAAAAAAAAAAAB2OYLRAAAYbd0Go8UD9wAAAAAAAAAAAAAAAAAAAAD9JBgNAIDRVjp8JK6C0QAAAIaiug8DAAAAAAAAAAAAAACAUSMYDQCAEdflg/YeyAcAAFhg3KcBAAAAAAAAAAAAAADArkYwGgAAtFVbrgAAAAAAAAAAAAAAAAAAAAD0g2A0AABoSzAaAAAAAAAAAAAAAAAAAAAAwCAIRgMAYLTVDoFnncYBAAAYDvdrAAAAAAAAAAAAAAAAsMsRjAYAAG1NPGjvgXsAAIABcx8GAAAAAAAAAAAAAAAAo0YwGgAAdMUD+QAAAAuL+zQAAAAAAAAAAAAAAADY1QhGAwBgxHV4kL7WqVcAAAAAAAAAAAAAAAAAAAAA+kIwGgAAtFVbrgAAAAAAAAAAAAAAAAAAAAD0g2A0AABGXKfAszkEo1VhagAAAP3jngsAAAAAAAAAAAAAAAB2NYLRAACgne3hZkLOAAAABsx9GAAAAAAAAAAAAAAAAIwawWgAANAVD+QDAAAAAAAAAAAAAAAAAAAA9JNgNAAARlvtFHhWW649bT6LNQAAAHSl4/0cAAAAAAAAAAAAAAAAsLMRjAYAAG1NPGjvgXsAAAAAAAAAAAAAAAAAAACAvhKMBgAA7QhEAwAAGI6O92Pu1wAAAAAAAAAAAAAAAGBXIxgNAIAR1+2D9rN54N5D+gAAAAAAAAAAAAAAAAAAAADdEowGAABdEXIGAAAwUKUMuwIAAAAAAAAAAAAAAABgwASjAQBAWxOBaFUwGgAAwEB1vA9znwYAAAAAAAAAAAAAAAC7GsFoAACMuA4P0j/4IP4sHrgXpgYAAAAAAAAAAAAAAAAAAADQNcFoAADQ1hyC0QAA+P/s3XuwpHld3/HPr89hZ4bdhAUEEQmsi4giQSVUqZALJpS38hIMojFFSWIMhff7pSICqdxMImXQqBWDQmlEAhJQg2i4WepiNLArGkCBheG27LrsCuzsmZk93b/8sWfc3p5+ntPdp5/znH769aqa2tPP9WvZ1XWeZn7vAeiOGDUAAAAAAAAAAAAAAAAMjjAaAAC0Olhob8E9AAAAAAAAAAAAAAAAAAAAQKeE0QAA2G4LB89WCaOJqQEAAKzOMxUAAAAAAAAAAAAAAABsG2E0AABo81fhNAvyAQAAThbPaQAAAAAAAAAAAAAAADA0wmgAANDqYKF9XWXBvUX6AAAAAAAAAAAAAAAAAAAAAIsSRgMAYMsdFi8TNwMAAAAAAAAAAAAAAAAAAAA4DsJoAADQpl4KowmkAQAAnCye0wAAAAAAAAAAAAAAAGBohNEAAKDNhb+4+791hQX3q5wDAADAAc9UAAAAAAAAAAAAAAAAsG2E0QAA2HKHLLS/9c3Jb3xWctsfHc84AAAALEaMGgAAAAAAAAAAAAAAAAZHGA0AAA7z8Xcmb3tO31MAAAAAAAAAAAAAAAAAAAAADJowGgAAdKb2PQAAAAAAAAAAAAAAAAAAAADAxhBGAwBgu1XxMgAAgM3keQ4AAAAAAAAAAAAAAACGRhgNAAAAAAAAAAAAAAAAAAAAAAAA6J0wGgAAdKb2PQAAAMCAeeYCAAAAAAAAAAAAAACAoRFGAwBgy1lIDwAAcCJVz2sAAAAAAAAAAAAAAACwbYTRAAAAAAAAAAAAAAAAAAAAAAAAgN4JowEAsOVqh5fu8NoAAADbzjMXAAAAAAAAAAAAAAAADI4wGgAAAAAA3ZmM+54AAAAAAAAAAAAAAAAAgA0hjAYAAAAAwPq9+78mv/4ZycuvSt74pcm5D/Q9EQAAAAAAAAAAAAAAAAAnnDAaAADbrdYuL97htQEA4AQ7+7LkD5+VfOJdyfh8ctNvJa9/cjK+2PdkbJTDnqk8cwEAAAAAAAAAAAAAAMDQCKMBAAAAALBe7/3Fy7fdcWNy65uPfxYAAAAAAAAAAAAAAAAANoYwGgAAdKb2PQAAAPTjw/9r/va3/cvjnYOB88wFAAAAAAAAAAAAAAAAQ7Pb9wAAANAvC+lZo3PvT25+Q/LxdyanH5J88hclVz8uKaXvyQAATobxhb4nAAAAAAAAAAAAAAAAAOAEE0YDAABYhw+8Mvndp+Wy2N6jvjV5wk+KowEAAAAAAAAAAAAAAAAAAMAhRn0PAAAAg1Xr4ccwDPt7yXXPyGVRtCR5139JPvK/j30kAAAYPM9cAAAAAAAAAAAAAAAAMDjCaAAAbDkL6VmDD/16Mr6zef/Nbzy+WQAAAAAAAAAAAAAAAAAAAGBDCaMBAAAc1U2/2b7/xhcfyxgAACdf6XsANoqQNQAAAAAAAAAAAAAAAGwbYTQAAOiMRfzb45DAx86Z4xkDAAC2imcuAAAAAAAAAAAAAAAAGBphNAAAtlu1kJ41uP369v1X/83jmQMAAIbE8xoAAAAAAAAAAAAAAABsHWE0AACAo9jfS26/of2YndPHMwsAAGwT4TQAAAAAAAAAAAAAAAAYHGE0AADojEX6W+HmNxx+zOSu7ucAAIChKaXvCQAAAAAAAAAAAAAAAIBjJowGAMCWEy/jiN7+Y4cfM7nQ/RwAADA01fMaAAAAAAAAAAAAAAAAbBthNAAAgKOY3HX4MR9+TVIn3c8CAABbRTgNAAAAAAAAAAAAAAAAhkYYDQAAulIt0t8Ko53FjvvAK7udAwBgE5TS9wQAAAAAAAAAAAAAAAAAnGDCaAAAbDfxMo5swbjHu36m2zEAAGDreJ4DAAAAAAAAAAAAAACAoRFGAwAAOIqy4GPVzW/odg4AAAAAAAAAAAAAAAAAAADYcMJoAADQmdr3AByHstP3BAAAMFCeqQAAAAAAAAAAAAAAAGDbCKMBALDlLLTnqDxWAQBAL6rnOQAAAAAAAAAAAAAAABgaK/gBAACOonisAgAAAAAAAAAAAAAAAAAAgHWwgh8AADpT+x6AY1H6HgAAAAAAAAAAAAAAAAAAAAAGYbfvAQAAoF/iZRzR5ELfEwAAnBx3fjC57a0tB4jKsozDntc8zwEAAAAAAAAAAAAAAMDQCKMBAEBXqkX6W2H/zr4nAADoX63JH/9w8vYf63sSAAAAAAAAAAAAAAAAADbYqO8BAACgV+JlHNX4XN8TAAD078OvEUWjA+WQ/Z7nAAAAAAAAAAAAAAAAYGiE0QAAAFZVa/Kxt/c9BQBA//78p/qegEESPgMAAAAAAAAAAAAAAIBtI4wGAACdsYh/8G5/a98TAACcDDe9dsEDS6djAAAAAAAAAAAAAAAAALDZhNEAANhy4mUcwUde3/cEAAAbxu/frFH1fgIAAAAAAAAAAAAAAIChEUYDAABY1cW/7HsCAAAAAAAAAAAAAAAAAAAAGAxhNAAA6EqtfU9A18Z7fU8AALBhSt8DsEkOfabyzAUAAAAAAAAAAAAAAABDI4wGAMCWs5CeIxjf2fcEAAAAAAAAAAAAAAAAAAAAMBjCaAAAAKva3+t7AgAAAAAAAAAAAAAAAAAAABgMYTQAAOhM7XsAujYWRgMAgP545gIAAAAAAAAAAAAAAIChEUYDAGC7VQvpOYLxnYsfe8UDupsDAGBTlNL3BAAAAAAAAAAAAAAAAACcYMJoAAAAqxrvLX5snXQ3BwDAphAmZineLwAAAAAAAAAAAAAAALBthNEAAKAzFvEP3v4yYbT97uYAAIBtJLQHAAAAAAAAAAAAAAAAgyOMBgDAlrOQniMY37n4sZO7upsDAGBTlNL3BGwU7xcAAAAAAAAAAAAAAADYNsJoAAAAqxrvLX5s3e9uDgAAGKTDQtZC1wAAAAAAAAAAAAAAADA0wmgAANCVapH+4C0VRht7TwAAAAAAAAAAAAAAAAAAAEALYTQAALacUBVHsH/ncsfXcTdzAAAAAAAAAAAAAAAAAAAAwAAIowEAAKxqvLfc8XW/mzkAADZG6XsABkXoGgAAAAAAAAAAAAAAAIZGGA0AADpjkf6g1bp8GG1yVzezAABsDL8jswzvFwAAAAAAAAAAAAAAANg2wmgAAGy3aqE9K5pcWP6cur/+OQAAAAAAAAAAAAAAAAAAAGAghNEAAKAzomuDNj6//DkTYTQAYNuVvgdgSISuAQAAAAAAAAAAAAAAYHCE0QAAAFYxvrD8OVUYDQAAAAAAAAAAAAAAAAAAAJoIowEAsOVq3wOwqSYrhNEmwmgAALA+nucAAAAAAAAAAAAAAABgaITRAACgK9Ui/UEbn1/+nCqMBgAAC/NMBQAAAAAAAAAAAAAAAFtnt+8BOB6llPskeVKShyf5lCR3JPlwkutrre9b870+LcnnJnlokquS3JTkbJLraq13rfNeAADQm8mFFc7x6zAAsOVK6XsCAAAAAAAAAAAAAAAAAE4wYbQTqJTyK0m+bmbz2VrrNStc60FJnn9wvQc0HHNdkhfUWn912evPXOdpSb4nyRc2HHJbKeVlSX601nrrUe4FALA+te8B2FRjYTQAAOiX5zkAAAAAAAAAAAAAAAAYmlHfA3BvpZSvyuVRtFWv9WVJ/jTJs9MQRTvwxCSvKKX8UinlyhXuc1Up5aVJXp7mKFoOZnh2kj8tpXzJsvcBANg8FukP2vj88udMVoipAQAAAAAAAAAAAAAAAAAAwJbY7XsA7lFKuTrJz6zpWk9O8qokV0xtrknemuTGJFcn+bwknzS1/58k+eullH9Ya50seJ+dJC9L8uUzu/4iyfVJPpbkkQf3Kgf7PjnJq0spT6m1/t4S/2cBAKxfFS9jRatEzlaJqQEAAPN5ngMAAAAAAAAAAAAAAIDBGfU9APfy40keevDzJ1a9SCnlYUlemXtH0X4/yWfXWp9Qa316rfWLkzwsyXcmuWvquK9M8q+XuN2/z72jaHcl+fYkD6u1fsnBvf5WkscmefPUcaeSvKqU8ilL3AsAAE6OcUMYbXSq5RxhNAAAAAAAAAAAAAAAAAAAAGgijHZClFKekuSfHbzcT/KjR7jc85Pcf+r1dUmeUmt9x/RBtdYLtdYXJnn6zPnfU0p5xGE3KaVcm7vDatO+ttb6U7XWizP3enuSf5B7x9EemOS5h90HAGBz1b4HoEuThjDazum7/8wz3utuHgAAAAAAAAAAAAAAAAAAANhwwmgnQCnlyiQ/N7XpBUluWPFaj0ryjVObLiZ5Zq31fNM5tdZXJXnJ1KZTWSxY9twk95l6/eJa66tb7rOX5JkHM13yTQeBNQCAnoiXsaJxw6/YO6eTUVMYrfHXcgAA4DKHPa95ngMAAAAAAAAAAAAAAIChEUY7Gf5dkmsOfr4xyfOOcK1vSLIz9fqVtdZ3LXDej828fnoppaHmkJRSziR52iHXuEyt9c+TvGpq027unhkAADbL5ML87aNTd8fR5hFGAwC2Xul7AAAAAAAAAAAAAAAAAABOMGG0npVSnpjkW6c2PavWuneESz515vUvLHJSrfUdSf7P1KYrk3xxyylfkuS+U6/fXGt950ITXj7T1yx4HgDAZqm17wno0rghjLZzKtk5M3/fRBgNAAAW55kKAAAAAAAAAAAAAAAAto0wWo9KKaeS/Hzu+f/DS2qtrzvC9R6S5HOmNu0n+f0lLvGmmddf1nLslx5ybpvfzd2zXfJ5pZRPXuJ8AIA1stCeFY0bImc7p+/+s8w5AADA8sSoAQAAAAAAAAAAAAAAYHCE0fr1vCSPPvj5L5J87xGv99iZ12+rtZ5b4vzrZl5/9hL3evOiNzmY6U+WuBcAAJw8kwvzt49OCaMBAMBalL4HAAAAAAAAAAAAAAAAAI6ZMFpPSimPT/J9U5u+q9b60SNe9jEzr9+95PnvOeR60z7rGO8FALChat8D0KUbf2H+9h1hNAAAWI/Dnqk8cwEAAAAAAAAAAAAAAMDQCKP1oJSym+Tnk+webHptrfWX13DpT595/f4lzz878/qBpZT7zx5USnlAkgcc8V6zxz9qyfMBANajWkjPij7+zvnb924WRgMAAAAAAAAAAAAAAAAAAIAV7B5+CB34oSSfc/DzuSTPXtN1r555fcsyJ9da7yilnE8yXXG4X5LbD7nPnbXWc8vca85s91vy/LlKKQ9O8qAlT3vkOu4NAHA50bXBOn9r8777XJWMGsJoE2E0AAAAAAAAAAAAAAAAAAAAaCKMdsxKKY9J8iNTm55Ta33fmi5/1czrvRWusZd7h9H+Wof3mTbvPqv4liTPXdO1AABgvvGdzftGVyQ7DWG0/VV+dQYAGJLS9wAMihg1AAAAAAAAAAAAAAAADM2o7wG2SSlllORFSU4dbHpLkheu8RazwbLzK1xjttQwe83jvA8AwDGwkJ4VjFt+BX7oVzSH0Sar/OoMAAAAAAAAAAAAAAAAAAAA20EY7Xh9Z5IvOPh5P8k/r7WOO7zfKpWPk3wOAFzurjuSOul7Cpiv+pVnsCYXmvdd+43Jzpn5+9qCagAAwL15pgIAAACOWSnl2lLK15VS/mMp5U2llI+XUurUn/f1PeOsUsp9SynvmZmzllJe3PdsAAAAAAAAAACwit2+B9gWpZRrk/zrqU0vqLXesObb3DHzuqHG0Gr2nNlrHud9VvHTSV6+5DmPTPLqNd0fgONyx43Jdc9IPvoHyalPSh793cljfjAppe/JgG0wbgmjXXF1snO64TxhNAAAWBvhNAAAAGANSilPTvLDSZ6Q5AH9TrOSf5Pk2r6HAAAAAAAAAACAdRFGOwallJLk55Lc92DTjUme18Gttj6MVmu9Jckty5xTBHQANs/4YvK6L0rufP/dr8/fkvzxDyenHph8+jf3OxsbyEJ6VjBpCaONTgmjAQAAAAAAwOb43CRf3PcQqyilfEGS7+h7DgAAAAAAAAAAWKdR3wNsiW9O8venXj+r1rrXwX0+NvP6QcucXEq5KpcHy/5ygfvct5Ry5TL3SvLgBe4DAPPd+uZ7omjTzr7s+GeBVqJrgzVuC6NdIYwGAADHwjMXAAAA0KkLSd7T9xBNSilXJHlR7vl7oJ/ocRwAAAAAAAAAAFib3b4H2BLPn/r5NUneXUq55pBzHjLzenfOOR+utV6cev2umf2PWHC+puNvq7XePntQrfWjpZTbk9x/avPDk7zjCPeanR0Amr3tR+Zvv/n1xzsHsL0mDWG00RVJKcmoIYw2EUYDAIDFCZ8BAAAAx+auJP8vyf9N8kcH//2TJE9K8sYe52rzo0kec/Dz2SQvT/J9/Y0DAAAAAAAAAADrIYx2PM5M/fzlSd67wjU+dc55n5fkhqnXs2GyT1/yHtfOvH57y7HvSPLEmXstE0abvdcy5wKw7eq47wkYkmqhPSsYN4XRTt39352GMNpYGA0A2HKl9D0BAAAAAMx6SZKfrbVe9j/mlRP6fVYp5XOS/ODUpmcn+fyexgEAAAAAAAAAgLUa9T0Aa/WnM68fV0q57xLnP+mQ67Xt+8JFb1JKuTLJ45a4FwDcm5AVG8N7dbAmDWG0ncPCaHvdzAMAAIN02MJjz1wAAADA0dVab58XRTupSim7SX4+9/zDuC+ttf5mjyMBAAAAAAAAAMBaCaMNSK31piRvm9q0m+RvL3GJJ8+8bvvLUq895Nw2fyf3/KWsJLm+1nrzEucDsPUsfAZ6Nm4Io40OC6NtzHoKAAA4ATz/AwAAAMzx/Ukef/DzbUm+q8dZAAAAAAAAAABg7YTRjkGt9epaa1nmT5IvmrnM2TnH3TDndv9z5vU/XWTGUspnJvn8qU3nkvx2yym/lWRv6vUXHlxjEc+ceT07MwC0q5O+J2BQLLRnBZOGMNrOpTDamfn7hdEAAGB9quc5AAAAYLuUUh6d5LlTm7631npLX/MAAAAAAAAAAEAXhNGG578nGU+9/ppSyqMWOO8HZ17/j1prY7Wh1npnklccco3LlFI+I8lTpzbtJ/nlBeYDgCkWPrMhLNIfrnFDGG10KYx2uuE8YTQAYNuVvgcAAAAAgI1UShkleVGSg/9RMm+otb64v4kAAAAAAAAAAKAbwmgDU2t9V5KXTG26IsmLSykNZYaklPLVSZ45telikucvcLvnJblr6vUzSylf1XKf00l+4WCmS15Ua33PAvcCgHvUSd8TANtu0hBG2xFGAwBoJx7Mgcl+cu6soDQAAADA4r4tyZMOft5L8qweZwEAAAAAAAAAgM4Iow3Tc5PcPvX6iUleV0r5zOmDSimnSinfnuTlM+f/eK317GE3qbXemOQ/z2x+RSnl20op0/GzlFI+K8nrD2a55KNZLMAGADMsmmaNLMJnFU1htNEhYbTJee85AAB4508kv/rA5NXXJK/6G8lHXj//uEN/d/a7NQAAALAdSinXJPm3U5ueX2t9dz/TAAAAAAAAAABAt3b7HoD1q7V+sJTyNUl+K8mlQNmTkry9lPKWJDcmuV+Sxyd50Mzpv5HkOUvc7oeSfHaSLzt4fZ8kP5nkOaWUtyb5RJJrD+5Vps67mOSptdablrgXANytTvqeABZkkf5gjRvCaJeCaKOGMFqdJHU/KffpZi4AgBOvHH4Iw/bBX0ve+t33vN77UPI7X5F8xZ8lVz68v7kAAAAATrafS3Llwc9/nOTH+xqklPLgXP73Dg/zyC5mAQAAAAAAAABgmITRBqrW+qZSylOTvDj3/CWkkuQJB3/meWmSb661jpe4z7iU8vQk/y3J103tenCSL2047ZYk31hr/d1F7wMA9yY2xTp5P7GC8fn520en7v7vTkMY7dK5I2E0AAC21Pt+6fJt4/PJB1+dPPrbj38egDbnziZ/9sLk9huSBzwhecwPJKce2PdUAADAlimlfFOSpxy8nOTuv+O33+NI35LkuT3eHwAAAAAAAACAgRv1PQDdqbW+Jsljk/xskttbDv2DJE+rtX5DrfXcCve5o9b69Um+9uBaTW5L8jNJHltrfe2y9wGAv1InfU8AbLvJhfnbdxYMowEAwLZ6/8vnb3/Ld6xwMaFroEN3fjh53d9L3vmC5OY3JO/4D8nr/m5y8WN9TwYAAGyRUspDk/ynqU0vrLX+UV/zAAAAAAAAAADAcdjtewDmq7W+KUlZw3VuSfLsUsp3JnlSkkckeUiSc0k+lOT6Wut7j3qfg3u9IskrSimfluTxSR6a5MokH0lyNsnv11ovruNeAGw7C5+Bno0bwmijRcJoe+ufBwAAAFivs7+cnDt7720fe3vyoV9LPu0Z/cwEAABso59OcvXBz2eT/EiPswAAAAAAAAAAwLEQRtsSB0GyNx7Tvd6bZC2xNQCYq076noBBEdpjBZOGMNrOpTDameZzx+fXPw8AwMY48r8FwVY55Hmtep4DOnT998/f/of/QhgNAAA4FqWUr0/y1VObnl1rPdfXPFN+OsnLlzznkUle3cEsAAAAAAAAAAAMkDAaALCBLHxmg9SaFPGHwRk3hNFGl8Jop1vOFUYDALaZ5zkANpznegAA4BiUUj4pyQunNr201vqbfc0zrdZ6S5Jbljmn+N/MAQAAAAAAAABYwqjvAQAAllYnfU8AbLtJQxhtRxgNAADWx4JZAAAAYGu9MMmDDn6+Lcl39TgLAAAAAAAAAAAcq92+BwAAWF7tewCGpHo/sYJxQxhtdOre/51nIowGAGwzoSuWcdjzmuc5AAAAYHhKKY9O8o+nNv1EkvuWUq455NSrZ15fNXPOpNb6/qPOBwAAAAAAAAAAXRNGAwA2T530PQEsoUb8YYAmDWG0nUthtN2k7CZ1//JjxsJoAAAAAAAAQKMzM6//1cGfZf2jgz+XfCyXx9MAAAAAAAAAAODEGfU9AADA8mrfAwDbrimMNjp1z887p+cfI4wGAABr4vsBAAAAAAAAAAAAAAAAGBphNABg89RJ3xMwKBbSs4JxQxhtRxgNAAAAAAAAAAAAAAAAAAAAViWMBgBsICErNkj1fh2kSUMYbbRIGG1v/fMAAPSuLHjYgsdBEs//wIl1y+/1PQEAADBgtdYbaq1l2T9Jnj9zqZfMHHN1H//3AAAAAAAAAADAsoTRAIDNUyd9TwBsu3FDGG06hrZzpuHc8+ufBwCgb4sGzy/lKC4AACAASURBVISDWSfvJ6AvH/6NvicAAAAAAAAAAAAAAIDBEkYDADaQhc+sk/cTK5g0hNFGp+75eTqSNk0YDQAYpAXDaACwKUZXNO97z4uObw4AAGAwSil15s+T+54JAAAAAAAAAABOot2+BwAAWFqd9D0BLEF4bZDGDWG0nakw2qghjDYRRgMAhmjBMFoRUANgQ4yuSCYX5++7cOvxzgIAAHSulPKwzP/7lA+Zeb1bSrmm4TJ31Fo9MAAAAAAAAAAAwBEJowEAG0hoCuhZU9xsNBVG22kIo42F0QCAASrFoxo98KYDOnTqQcn+HfP3Xf24450FAAA4Dr+X5BELHPepSd7bsO8lSZ65roEAAAAAAAAAAGBbjfoeAABgaXXS9wQMSbWQnhWML8zfviOMBgBsK1810wHPa0Cfrnx48777Peb45gAAAAAAAAAAAAAAgC1jtRoAsIEsjGaTeL8O0qQhjDYSRgMAtlQpfU/AVvK8BXTJZwwAAAAAAAAAAAAAAPRht+8BAACWVid9TwBsszpJJnfN37cjjAYAbKtFw2gCagBsiNoSRmvbBwAAbKRa6zXHcI9OvxyrtT4vyfO6vAcAAAAAAAAAAByHUd8DAAAsz8JD1sn7iSVNLjbvG02F0UZNYbS99c4DAHASFF81AzA0bf84g3+4AQAAAAAAAAAAAAAAumK1GgCweaqFh2yQKrw2OOMLzft2psJou2cazj+/3nkAAE6E0vcAbCPPW0CX2j5jfP4AAAAAAAAAAAAAAEBnhNEAgM1j4SHQp0lLGG00FUYbnW44XxgNABgiYTS64Pkf6FHrP87gH24AAAAAAAAAAAAAAICuCKMBABvIwkPWqeuF9hbyD854wTDaTkMYbSyMBgAMUBFGA2BoWr6D9A83AAAAAAAAAAAAAABAZ4TRAIDNU4XRgB5NWsJoO8JoAMC2EkajD8JEQIda42e+nwQAAAAAAAAAAAAAgK4IowEAG8jCZ6BH47Yw2un5P9/rfGE0AGCAiq+aARialvhZazQNAAAAAAAAAAAAAAA4CqvVAIDNU1sWJcKyOl/IaqHs4ExawmijU/f8LIwGAGyVsubjIDn0eUqYCOhS22eM7ycBAAAAAAAAAAAAAKAzwmgAwAay8Bno0bgljLazQBhtIowGAAxQETwDYGja4me+nwQAAAAAAAAAAAAAgK4IowEAm6e2LUqEZVnIypImLWG00RVTPzeE0cbCaADAEAmj0QXvK6BHteU7I99PAgAAAAAAAAAAAABAZ4TRAIANJGTFBmlbRMtmGjeE0Ub3ScrUI9bOmYbz99Y/EwBA7wSs6MJhz1Oet4AutcXPfP4AAAAAAAAAAAAAAEBXhNEAgM1T2xYlAnRscn7+9tGpe7/eOT3/uHHD+QAAm6z4qhmAgWn7DtL3kwAAAAAAAAAAAAAA0Bmr1QCADVT7HoBB8X5iSeML87fvCKMBANus9D0AW8nzHNClts8Ynz8AAAAAAAAAAAAAANAVYTQAYPPUSd8TwBIslB2cSUMYbbRgGG1y0ecYADA8RRgNgIFpe3b3XA8AAAAAAAAAAAAAAJ0RRgMAAFjG+IhhtLZrAABsrAW/ahZQA2BjtMXuhfABAAAAAAAAAAAAAKArwmgAAGy3aiErS5o0RM12lgijTc6vbx4AgJNA8IwuHPa85nkO6FKdrLYPAAAAAAAAAAAAAAA4EmE0AADolIX6gzNuCKONZsJoo5Yw2lgYDQAYGmE0AAamNX7m+x4AAAAAAAAAAAAAAOiKMBoAAMAyJg1htJ2ZMNqOMBoAsE2E0dgA++eS87f2PQWwMVriZ63RNAAAAAAAAAAAAAAA4CiE0QAA2HIti1xhnnFTGG0mhLZzpuUae+ubBwDgJCi+aqYPCz7PjS8m1z0jecX9k1c+KPntJyV7N3U7GrD5WuNnvk8CAAAAAAAAAAAAAICuWK0GAABdqhbKDs6kIYw2OnXv17OhtGnj8+ubBwAABmtNz1PXf2/yvl9KJnfd/frW65Lf+cr1XBsYsJbPoNZoGgAAAAAAAAAAAAAAcBTCaAAAAMsYC6MBAMDJsEA4rdbkvb94+fbb3pLc8d71jwQMR2v8TAgfAAAAAAAAAAAAAAC6IowGAMCWs5CVJU0awmg7M2G00RXN1xBGAwC2Vul7ADbKGt4vkwvJXR+bv+/srxz9+sCAtXxn1BpNAwAAAAAAAAAAAAAAjkIYDQAAOiW8NjhNYbTRTBitlGTn9PxjhdEAAGABXT9PCfUBLVrjZ77vAQAAAAAAAAAAAACArgijAQAALGPcEEbbOXX5tlFDGG0ijAYADI3AFD2oC4SJ2o4p3rdAi7YwWms0DQAAAAAAAAAAAAAAOAphNAAAttsiC+mPdoOOr8+xG+/N374zJ4I2b1uSjIXRAADgeLQ9kwmjAW3aPj983wMAAAAAAAAAAAAAAF0RRgMAAFjG/h3zt+9eefk2YTQAAOjQImEi8SJgRXWy2j4AAAAAAAAAAAAAAOBIhNEAAACWsX9u/vbdqy7ftnNm/rHCaAAAsIA1RM1q2zXK0a8PDFjb54foIgAAAAAAAAAAAAAAdEUYDQCALdfxQtbWRfhspMYw2pWXb9s5Pf/Y8d765gEAAFq0PJMVYTSgRZ2stg8AAAAAAAAAAAAAADgSYTQAAIBlrCWMdn598wAAbBQhKtZpkRB12zHej0CL1viZED4AAAAAAAAAAAAAAHRFGA0AAGAZTWG0HWE0AGCLFYEpTqjWsJH3LdCmJX5WhdEAAAAAAAAAAAAAAKArwmgAAGy5rheyWig7OPt3zN++OyeMNmoIo02E0QAA4Hi0PJMJ+gFtWsOKbfsAAAAAAAAAAAAAAICjEEYDAABYxv65+dt3r7p8205DGG0sjAYAAIeqh4SmD9t/6DHCaECbls+PRT5/AAAAAAAAAAAAAACAlQijAQAALGp8Man78/ftXnn5NmE0AABYXJ0kt9+Q7N203ms2EkYDWrR+frTtAwAAAAAAAAAAAAAAjmK37wEAAKBXtXZ9g46vz7Ean2veJ4wGAABH86qH3RNFe9hXJ5MLh5ywyPOWZzJgVS2fH51/nwQAAAAAAAAAAAAAANtLGA0AAGBR+8uG0c7MP1YYDQAALncpipYkH3z1eq5ZJ837SlnPPYBhavv8aNsHAAAAAAAAAAAAAAAcyajvAQAAoF+17wHYJEuH0U7PP3a8t555AAA2jRAVx67tmc/7EWjTFj/zfRIAAAAAAAAAAAAAAHRFGA0AALpULZQdlMnF5n2jU5dvawyjnV/PPAAAsNUWed4SRgNW1PadTm2LpgEAAAAAAAAAAAAAAEchjAYAALCoyX7zvtF95mxrCKNNhNEAgKERmOKEaosXFe9boE1b/EwIHwAAAAAAAAAAAAAAuiKMBgDAdqsWsrKE2hZG2718205DGG0sjAYAAMej7ZlPGA1o0fadUVt0EQAAAAAAAAAAAAAAOBJhNAAA6JTw2qBMWsJoRRgNAACO1SKh67ZjijAa0KDWtH+n4/seAAAAAAAAAAAAAADoijAaAADAoqowGgAAbJZJyz5hNKDJIeGz2vbZAgAAAAAAAAAAAAAAHIUwGgAAW+6Qha5HvnzH1+d4tYbR5jxeCaMBAECHFnje8kwGrOLQzw6fLQAAAAAAAAAAAAAA0BVhNABgWO64se8JgCGbNITRym5SyuXbd840XEcYDQDYVnN+Z4JOTVr2eT8CTdo+O5LUQ/YDAAAAAAAAAAAAAAArE0YDAIbl+h/oewJgyGpDGG20O3/7zun528fCaADA0AhMcULV2rxvXtwYIGn/7Lj7gGMZAwAAAAAAAAAAAAAAtpEwGgAwLB/41b4nYON0vZDVQtlBmTSE0cqyYbS9BRZZAwAA7Rb5nbrtGGE0oMmkfXc9ZD8AAAAAAAAAAAAAALAyYTQAYLMICQF9qkuG0UYNYbQ6ab4WAACwPq3xImE0oMGh30H6jhIAAAAAAAAAAAAAALoijAYAbJb9O/qeANhmTTGzUUMYbachjJYk4/NHnwcAALbZQvH0lmOKMBrQpC2qmEOiiwAAAAAAAAAAAAAAwFEIowEAm+XiX/Y9AUOz0EL6I92g4+tzrCYNYbQijAYAACdS6zOfMBrQ4NDwme97AAAAAAAAAAAAAACgK8JoAMBmuUsYDehRbQijjYTRAADgZGqLGwmjAU0OCZ8dGk4DAAAAAAAAAAAAAABWJYwGAGyWi8JoQI8mDWG0IowGALAYISrW6f+zd+9hsp11nei/v+4dsjck3OWqBoQoIIrgOMhFBVHQUUEYhfF2BJTjMKMw4hzHyyCCjOMI4x1UznhBOSpyFRkRPdwEQYEBQUJQIEBUIhEIhiR772R3vfNHV8+uVLqqV92ruj+f5+mnV631rvf97dR6Vq9VWe+3DgguSpI2pk05HoERDgw+63D+AQAAAAAAAAAAAAAApiIYDQDYLILRmLsFT2QdNwmfzdMmDUY7MbqvnmA0AABYvHHhRoLRgFEO+DznwOA0AAAAAAAAAAAAAABgWoLRAIDNcp1gNGCFRgWjbY0KRjs+uq8dwWgAwCFSAqZYU8KqgWkcGHzm3AIAAAAAAAAAAAAAAIsiGA0A2CzXCkYDVqg3IhitRgSjbZ07uq+dk7PXAwAAR1mn0LNxbQT6ASMcFIx2YHAaAAAAAAAAAAAAAAAwLcFoAMBmOfPpVVfAodNlIv06989StRHBaFujgtGOjQ5N2zk1n5oAADaK62OWbFx4UQlGA0Y56O+Vv2cAAAAAAAAAAAAAALAogtEAgM0ybkIzwKL1RgSjjQo/S5Lt4/uvF4wGAAAz6hJMNK6NYDRghIM+g/QZJQAAAAAAAAAAAAAALIxgNAAAgK6aYDQAgNl0CbKCeRKMBkzh1OUHNPD3DAAAAAAAAAAAAAAAFkUwGgCwWZpJh8zZwo8px+yh0hsRjLYlGA0AoBP3dCxb643eVoLRgBHe/5zx28edWwAAAAAAAAAAAAAAgJkIRgMANoxJ9MAKtRHBaDUmGG1rRDBaTzAaAHCYCJhiFTp8RjA2jM9xC4zwgecd0MBnlAAAAAAAAAAAAAAAsCiC0QAAOOJMZGUCo4LRtsYEox07sf/6HcFoAMBR5PqbZeuN2SYYDZhSG3duAQAAAAAAAAAAAAAAZiEYDQDYMCbRs2GaY/ZQ6Y0IRqsxwWhbx/dfLxgNAAAWzz0ZsCjOLwAAAAAAAAAAAAAAsBCC0QCAzdJlwqFJicCitCmC0bZHBaOdnL0eAICN436NOep0/z+mTdXcSgGOIn/TAAAAAAAAAAAAAABgEQSjAQBwxC16EqtJsodKb0Qw2tY0wWinZq8HAAAYr/XGbBSMBszAlzMAAAAAAAAAAAAAAMBCCEYDADZMlwmHJiUCC9JGBKOVYDQAgE6EyDBXM35GUILRgFmMC14EAAAAAAAAAAAAAACmJRgNAACgq1HBaFuC0QAAuhGMxrKNO+YEowEzEPYJAAAAAAAAAAAAAAALIRgNANgwHSYcmpTIJBZ+vDgeD5XeiGC0GhOMtjUiGK0nGA0AABau9cZsFIwGzGLc+QUAAAAAAAAAAAAAAJiWYDQAYLMIPQNWqY0IRtsaE4y2PSIYbUcwGgBwiFTXgCn3dMxTl+PJMQcsiM8pAQAAAAAAAAAAAABgIQSjAQCHkEmJwIL0RgSj1bhgtBP7rxeMBgAAi9d64zYurQzgMBp3fgEAAAAAAAAAAAAAAKYlGA0A2DAmLTNvCz6mmmP2UGnTBKMd33+9YDQA4Chyfcw8dTqeHHPAgvibBgAAAAAAAAAAAAAACzFm9v7mqqoLkzw8yZ2TnE5ycZKXtNauWGlhAMAcmPQMrNCoYLQtwWgAALCWxgYX+fwAmEVv1QUAAAAAAAAAAAAAAMChtPbBaFV1pyRfObDqBa21a0e0rSTPSvLkJFtDm3+mqp7UWvvNBZQJAKyTsZOeAWbQGxGMVtMEo52cvR4AgI3jfo0la4KLgAXxGSQAAAAAAAAAAAAAACzE2gejJfkPSb6vv/y/Wmu/PqbtTyZ5ysDrvRkJleS8JL9WVdVa+435lwkALIUJh8zdoo8px+yh0rtu//W1PXqfkcFop2avBwBg47g+Zp66HE9j2viMAZiJ4EUAAAAAAAAAAAAAAFiErVUX0MHXZTfYLElGBppV1ecm+X+yO8tpMBBtb9/WX/7FqrrjYkoFABZvxknPALPond5//fa5o/cZFYzWE4wGABwmdXATWAmfEQALIlwRAABmVlW3rqrzV10HAAAAAAAAAACwXtY6GK2qbp3kLgOr/mhM86fk+v+eVyb510kekeSl2Z2Z15KcSPKD860UAAA4EkYFo22NCUbbGhGMtiMYDQA4TDqGwwiRYdlab9zGpZUBHEJjzy8AAMAoVXVBVf1WVX0qyceSfKqq/r6qnllVJ1ZdHwAAAAAAAAAAsHprHYyW5PMHlv+ptfaR/RpV1XZ2Q9D2ZjH9SWvt4a21l7XW/rC19k1JXpDdcLRK8uiqqkUWDgAsSpdJyyY2M4GFBzM4Hg+VnRHBaNtjgtG2BaMBAMBi+IwAWCXnFwAASJKq+s6qurT/c1FVjfwfZ1X1hUneluTbktw0Z5/nu0OSH07ytv6XqQIAAAAAAAAAAEfYugejXdD/3ZJcPKbdv0hyq+w+JJUkz9ynzY/m7AyF2yS5+zwKBACWbOEhVgBj9EYEo22NCD9Lku0RX2wvGA0AOEw636u5p2PJWm/MNscjMINx5xcAADhaviXJZya5Y5LXt9b2/R9qVXUsyQuT3Dq7z/m1oZ9Kco8kL1lCzQAAAAAAAAAAwBpb92C0Ww0sf2JMuy8bWL6stfbnww1aa3+X64er3XPG2gCAdWViM7Aoo8LMtkd+8X2yPSI0TTAaAABHzbzv1zv15zMCYArHb9ehkfMLAABU1VaSBw6setmY5v9Xks/L2SC0JHlPkr8aWvfAqnrMnEsFAAAAAAAAAAA2yLoHo50YWL56TLv793+3JH8ypt3fDizfdtqiAIBVMuGQeVvwMSWo73DZ2fcL7pOtKYLReqcdHwDAEeT6hyUbe83teARG2D5xcJvWW3wdAACw/u6R5Mb95euSvGFM2+/q/64k/5zkfq21e7XWvjjJfZJ8LGdv1p+4gFoBAAAAAAAAAIANse7BaGcGlsfNQLj/wPKbxrS7amD5vKkqAgBWrMukZRObgQXpjQhG254iGC1Jdk7NVg8AwNpwH0YXqzhOBBcB0/AZJAAAdHSX/u+W5P2ttev2a1RVt0vypf12LckzW2tv3dveWnt3kidlNzStkjywqm6xyMIBAAAAAAAAAID1te7BaFcOLH/mfg2q6u5JbjOw6i1j+hsMV9uZoS4AYK2ZlAgsyM6oYLQx4WfjtvUEowEAR0xzv3akzf3979Df2DEdj8AIrUOoYpc2AABw+N1xYPlDY9p9ec6Gnp1J8uv7tHlZkn/uL1eSL5pHgQAAAAAAAAAAwOZZ92C0S/q/K8m9qmq/RIFHDCxf0Vq7eEx/txxY/vSsxQEAK2ASPXO36GPKMXuo9EYEo22dO3qfrTHBaDuC0QCAo8b18dG2ivdfcBEwjS7nK3/TAAAgyXkDy1eObJU8sP+7JXlLa+1Tww1aaztJ3jmw6q6zlwcAAAAAAAAAAGyidQ9G+6vsPgzVkhxP8vjBjVV1LMl391+2JG88oL+7DSz//ZxqBACWqsOEQ+FpwCK0NjrIbHtMMNq2YDQA4AhwH8ZKzPgZgeMWGKV1CFXs0gYAAA6/czq2u9/A8uvHtPvHgeWbTlwNAAAAAAAAAABwKKx1MFpr7fIkb+6/rCT/raq+o6puXFV3SvJ7ST5nYJcXj+qrqm6X5PYDq94/32oBAGA/JtofGu1MRr6fW4LRAAA6EUR1xK3i/XfMAdPocu5wfgEAgCRXDSzfYr8GVXWTJF80sOrPx/S3M7A85n/AAQAAAAAAAAAAh9laB6P1/Vx2Q9Fakpsk+c0kn07ywSSPzNlZB5dlTDBakq8ZWL4qyd/Mu1AAYAk6TaI3KZEJCGagq53To7eNDUY7MaZPwWgAABwhq7j/ar1xG5dWBrBpOpwfxp5fAADgyPj4wPLdR7T5qiTb/eWW5C/H9HfzgeVrZqgLAAAAAAAAAADYYGsfjNZae0mSl+ZsOFoN/GRg/Q+01sYkFeRRe10meWtrEjAAYDP5Ew6sSG/M7cb28em2CUYDAA6Nrvdq7umYI+HpwKJ0Cj1zfgEAgCTv6f+uJBdU1T33afNv+r9bkve01q4c098dB5Y/MYf6AAAAAAAAAACADbT2wWh935rk13I2DG1PJTmd5Ptbay8ctXNVfVaSr83ZGQqvXkSRAMC6MCmRSSz4eJHHe3jsjAtGO3f0tq0bjd7WE4wGAMBRsoL7o7H3ZO7XgFE6nB86hacBAMCh957sBpjtXUT/TFWds7exqh6Y5JsGtr9qVEdVdSzJPQZWfWi+pQIAAAAAAAAAAJvi2KoL6KK1dm2SJ1TVs5M8PMkF/U3vS/LS1tpHD+jia3P22ymT5A/nXyUAsBwmLQMrMi7EbGtMMFpVsn082dln//3WAQAcau7pjrZVvP+Ci4AJtV5y6vIuDRdeCgAArLvW2k5V/W6S783uRfJDkry7qv4wyW2yG4q2ld0vQG1JfntMd1+SZPAbhy5aSNEAAAAAAAAAAMDa24hgtD2ttb9J8qwp9ntekufNvyIAYC01kxKBBdg5PXrb9phgtCTZGhWMdnK2mgAA1kbH+zD3a0fb3N//Dv2NG9PxCOznb36hW7smeBEAAPqemeQ7kty0//rzknxuf3kvEK0leUlr7b1j+vnG/u+W5AOttSsWUCsAAAAAAAAAALABtlZdAADARDpNWjaxmXXieDw0emOC0bYOCEbbPr7/+v3C0gAAgDkSXARM6JLf6NZOMBoAACRJWmuXJ/nXSU7lbBDa/9ncX/fBJE8c1UdVbSV59MC+r19ErQAAAAAAAAAAwGYQjAYAbBghU8CK7IwJRhsVfHbQdsFoAMBh0SnEOnFPd9TN+/3v0N/YY9PxCOzjU+/u2FAwGgAA7GmtvTbJvZK8MMk12Q1DqySfSPJLSb60tfaJMV08PMkF/X2S5I8WVy0AAAAAAAAAALDujq26gINU1SX9xZbky1prH52ynzsmeeNeX621u8yjPgBgHZnYDCxAb0ww2ta54/cVjAYAAFnN/brPCIAF6Z1ZdQUAALBWWmsfSPItSVJVt+6v+3jH3T+U5JEDr1893+oAAAAAAAAAAIBNsvbBaEnu1P/dMlu9x4b6AgA2kj/jzFFbwvG0jDFYjt51IzZUsrU9ft/tE/uvF4wGABw5ro+PtFXcH7XeuI1LKwM4hJpgNAAAGGWCQLS99u9K8q4FlQMAAAAAAAAAAGyYrVUXAAAwkS6TqAVRAYvQdvZfXweEoiXJ9vH91/cEowEAh4X7MFag0/2/YxNYkJ5gNAAAAAAAAAAAAAAAWATBaAAAAF2MDEbrcFs1KhhtRzAaAHDECLI+4lbx/o8Z0/EIDJvkvNAEowEAAAAAAAAAAAAAwCIcW3UBS3TOwPJ1K6sCAJhRl8mJJjbT1TKOFcfjoTEyGG374H23BKMBAOxyfXy0reD9b73ljwlsrt7p7m0FowEAQGdVdfMk5yep1tqlq64HAAAAAAAAAABYb0cpGO22A8ufXlkVAMCMTKIHVmSWYLTtUcFoJ6evBwBgrbhXYxVmDU933AJDJgkw7wlGAwCAUarqG5M8PMmXJblTkq3+ppZ9nlmsqjsl+ez+y6tba/9r4UUCAAAAAAAAAABr6ygFoz2s/7sl+ftVFgIALFgzsRlYgNbbf/1MwWgTTLgGADgU3K8daau4Xx91HQ+wn0nu05tgNAAAGFZVD0vyC0nuureq4653SfKn2f3w6NqqukNr7YoFlAgAAAAAAAAAAGyAtQhGq6rPPrhVkuSOVV2flUqSnJvk9kkemuQHBtb/1SSdAABrpNMkahPt6Wgpk/Idj4dG29l/vWA0AADoaM73R13u6ca2cb8GDJnkPr0nGA0AAAZV1Y8l+bHshqFVrn/j3TImJK219pqqujjJ3ZPcKMljkvzK4qoFAAAAAAAAAADW2VoEoyX5cA6egVRJ3jTDGIMPVr10hn4AgJUyaRlYEcFoAACjdQ0dXko4MetrFe+/Yw6YwCT36U0wGgAA7KmqJyX58f7LvZvx00nemuTKJF/foZsXDvTxdRGMBgAAAAAAAAAAR9bWqgsYUvv8HLS9y09y9oGrtyR55cL+BQDAGjDpmTUi+OHwmCkY7cT+6wWjAQDAYrXemG3u14AhPcFoAAAwqaq6MMmzs/s/6lt2A9F+MMmtWmsPSvJ9Hbt6xV6XSb6sqoafHQQAAAAAAAAAAI6IdQtGW5S9h6RekuQbWjPbCQA2lz/jzJPjiQnMFIx2fP/1k0y4BgA4FFyDH2lz/2i+S3+OOWACkwSY9wSjAQBA3zOSHMvuM3qnkjyktfbs1trJCft5d3//JDk/yYXzKxEAAAAAAAAAANgkx1ZdQN/zx2z7zv7vluSlSa7q2Ofet09+KsnFSd7QWvvI1BUCAOuhyyRqGajAIswSjLY1IhhtkgnXAABrzX0YXaziOBk3puMWGDLJfXoTjAYAAFV1bpKH5+xN9n9urb1lmr5aa72qujjJvfur7pbkb2evEgAAAAAAAAAA2DRrEYzWWnvcqG1V9Z05++DUD7TWLl1OVQAAMA8m2h8aswSjbQtGAwDY5fr4SJt7kHmX8PTenMcEDrVJ7tN7gtEAACDJA5Kc6C9fneS5M/b30ZwNRrvDjH0BAAAAAAAAAAAbamvVBXRUqy4AAFgXXSZRm2hPV44VJrCQYLST09cDALBWOl5bzz0YCw4y7phzPAJDJglGu+i/JL0RnxUAAMDRcaf+75bkra210zP2d+XA8vkz9gUAAAAAAAAAAGyoY6suoIPHDSx/5askPgAAIABJREFUfGVVAABrwqRlYEVGBaNtzRKMNsGEawAA2HgruKdvveWPCWyuSe7Tr/pg8tYnJF/664urBwAA1t9nDCz/4xz62xqxDAAAAAAAAAAAHCFrH4zWWnv+qmsAADaN8DTWiePx0OiNCEYrwWgAAN25Pj7a5vz+ty79jWnTaX/gSOmdnqz9Jb+Z3PtZybm3Wkg5AACwAQYvos+dQ3+DF9dXzKE/AAAAAAAAAABgA619MFpV/djAy59rrV05ZT83S/LkvdettWfMWhsAsAJdJi2b2ExXjhUm0RYQjNYTjAYsWWtJ1aqrAA4j19asK8cmMIlJg9HSkkuen9z9KQspBwAANsA/DSx/5hz6u9eIvgEAAAAAAAAAgCNk7YPRkvx4kr2ZS7+ZZKpgtCQ3H+pLMBoAbCQTmoEVmSkY7cT+63cEowFLcuZk8o7vT/7hFck5N03u/NjkHv9JSBqwAu7pjrSVhJT1xmxzPAJDpjlPnf74/OsAAIDNcUn/dyX5oqq6SWvt6mk6qqr7JPmMgVXvmLU4AAAAAAAAAABgM22tuoCO5jlL14xfADj0TGxmjaxk4j8LMVMw2vH91wtGA5blzd+afOBXk5OXJVf+TfKuH07e+1OrrgqAI2fe90cd+nNPBkxkXJjiCF0+FwAAgMPrrdn9otOW5Jwkj5+hr6cMLH+ktfaRWQoDAAAAAAAAAAA216YEowEA9JnQzDw5npjEiMnRXSZAb40IRms7Se/M9CUBdHHq48nf/8EN17/rR5IzVy+/HuCQ6nhtLaTqiFvF+z9uTMcjMGSav1OC0QAAOMJaaztJ/md2v6y0kjy9qj5r0n6q6pFJvjW7N+stye/Os04AAAAAAAAAAGCzHFt1AUtUA8tTfN37fFXViSR3S3JBkjskOT+735p5ZZJPJHlPkotaa3NJSaiqc5I8IMlnJ7l9kquSfDTJO1trH57HGANj3TnJF2X333VeksuSfCTJm1tr181zLADYn4nNwAK0nf3Xd5kAvT0iGC1Jdk4lW+dNVxNAFx/53Yy8PnrTY5IHvXKp5QBHnfs15qnD8dRW/r8DgI0iGA0AAKbwE0kek93n826e5PVV9fDW2kVddq6qxyb55exekFeSk0l+fjGlAgAAAAAAAAAAm+AoBaPdbGD5mlUUUFWPS/KVSe6b5C5Jtg7Y5aqq+v0kv9ha+6spx/yMJE/P7sNntxzR5s1Jfqa19pJpxhjo55uSPCXJ/UY0+WRVvTDJj7XWPj7LWAAcYc0keuZpGceTY/bQ6I0KRjvosj4HB6OdIxgNWKCdU6O3ffR/JmeuSY7deHn1AHB0reSefsyYPmMAhk0TprglGA0AgKOttfa+qvrFJE/O7o34nZO8o6pekOT3k3xyeJ+q+qwkD03y3Un+Zc5+6WlL8rTW2uXLqB0AAAAAAAAAAFhPHWbwHxpf1P/dkqwqlOsnknx7kgvT7b/9eUken+TtVfWzVTVRkF1VfW2S9yR5YkaEovXdP8mLq+oFVXWTScboj3NeVf1ukhdldCha+jU8Mcl7quphk44DALs6TFo2sRlYhDYqGK3DBOixwWgnp6sHoKuDAhw/+fbl1AEccl3vw9yvHW0reP+nCTkCjrApzlNdPhcAAIDD7weS/Gl2A85aknOSPDbJHyX5iwxcbFfV1Uk+nOR5ORuKtrf9Za21Zy+raAAAAAAAAAAAYD1NFLS1qarqwiQ/NLDqvauqZcg1ST6Y5NIkV2Y3LO2WSb4gye0G2m0n+Q9J7lRV39TaqESGs6rqQUlenuRGA6tbknckuSTJzZPcO8mtB7Z/W5KbVtU3ttZttlhVbSd5YZJ/NbTpn5K8M8k/J7lLf6y9b/a8bZI/qKqvaq29qcs4AACwcgsLRjs1XT0AndX4zQd/zAAAczLnYLROwejj2gjqA4ZM84ULgtEAACCttV5VPSLJc7MbiLZ3cb33AXUbWHdicNeBdr+e5N8utlIAAAAAAAAAAGATrEUwWlW9tmPT36uqSVIDzk1y+yQXDK1/zQR9zNPVSV6R5FVJ3pzkPaMCyKrqS5M8M8lDBlZ/Y5KnJHnWuEGq6jOTvDTXD0X78yRPaK1dPNDu3CTfk+TZ2f2WziT5hv64P9Lx3/RTuX4o2nX9Gp/XWrt2YKx7JPkfSe7XX3VukpdX1Re01i7rOBYAzGHSMwyYZrLr5IMsYQyWYpZgtK0xwWg9wWjAgtXW+O2C0YBlWso1OAxwzAET6fS9QdcnGA0AAJIkrbVTSR5fVa9K8tQk9xzVtP+7+j8fTPJjrbXfXXyVAAAAAAAAAADAJliLYLQkD8rBiRGV5L5T9D34rZNJ8qkkL5iin3m4Z2vtui4NW2t/UVUPTfL8JN8+sOlHq+oXWmunx+z+9CS3GHj95iRf1X/4bHCM00l+oaouTfKygU1Pqapfba19ZFyNVfU5SZ48tPqbW2t/sM+/571V9ZDshtLthaPdKsnT4ps+AZiIYDRgRWYJRjt2YvS2HcFowIIdFIzWO7OcOoDDTfgUXcz9OOnS35iQI8ctMGya84JgNAAAuJ7W2ouSvKiqHpzkq5M8MMlnZfdZsRsl+XiSj2X3mbZXJ3lVa77BAwAAAAAAAAAAOOuAmbGHwuA3TH46ybe21j6+kkI6hqINtO8l+fdJrh5YfbMkDx61T1VdmOQ7B1Zdm+Sxw6FoQ+O8PLsBbHvOzW5g2UGeluScgde/uV8o2sA4J5M8tl/Tnu/qB6wBAMB6myUYbevc0dsEowELV+M3tzGBMQBzJ4jqaFvB+y/8DJiIYDQAAJiX1trrWms/0lr78tbanVtrN22tHW+tfWZr7Ytba9/XWnulUDQAAAAAAAAAAGDYOgWj1YifLm1G/Vyb5PIkr89uiNfdWmuvXvC/Y65aa1cmedPQ6ruO2eVbkwzOwHhpa+39HYb6b0OvH11Vx0c1rqoTSb7pgD5uoLX2t0lePrDqWHZrBoCOOkxONOmZzpZwrDgeD4+ZgtGOJXVs/22C0YBFqwM+/jHnDJiLjte9ro9ZunHHnOMRGCYYDQAAAAAAAAAAAAAAVm0tgtFaa1ujfvaa9H/uNK7tPj8nWmu3b619ZWvtJ1prl63wnzmLTw69Pn9M20cOvf6NLgO01i5O8pcDq26S5KFjdnlYkhsPvH5La+19Xcbap6ZHddwPAEyiB1ZnlmC0JNkekTssGA1YtAOD0c4spw4AmHsQWZfw9N6cxwQOtWnOGYLRAAAAAAAAAAAAAABgrtYiGK2DWnUBK3bB0OuP7teoqm6X5F4Dq84k+fMJxnn90OuvHdP2aw7Yd5w3Zre2PfeuqttOsD8AHEB4GuvE8XhoLCoYrScYDVi0g4LRRpzfABbC9fGRtpKw83FjOh6BYVOcFwSjAQBwxFXVa/s/r6mq28zQz20H+5pnjQAAAAAAAAAAwGY5tuoCOviznJ2FcOQSA6rqc5Pcd2BVS/KGEc3vOfT63a21qycY7s1Drz9/TNvhsd7SdZDW2tVV9ddJ7j001se69gHAUWbSMvPkeGICiwpGO3NyunoAuqoD8uYFowFz4dqaLlZwnLTe8scENtc0AY6C0QAA4EE5e9M/4n+IdXK831fiwyYAAAAAAAAAADjS1j4YrbX2oFXXsCpVdfskL0oyOKPixa21D4/Y5R5Drz8w4ZAfPKC/QXefw1iDwWj3SPLaCfsA4Ejq8vyzZ6SBBZg1GG1rxDyQ3pHLfwaWbmv85t6Z5ZQBkMT9GnPVKcBoTJtpApCAQ26KMEXBaAAAkCQVH/wAAAAAAAAAAABzsvbBaEdJVR1Lcovsho59fZLvSXLTgSaXJPneMV3cdej1pROW8JGh17eqqlu01q4YqvOWSW4541jD7S+ccH8AgA3h+f9Do42YHN11AvT2iGC0HcFowILVAcFoo4IfAWDuVnB/JPwMmMQ05wzBaAAAAAAAAAAAAAAAMFeC0Vaoqn4uyZM7Nn9dku9orV0+ps3Nh16Pa3sDrbWrqupUksHEhpsluWKo6fA417TWrp5krH1qu9mE+wNwVHWZnGjSM105VpjEqOCgzsFoJ/ZfLxgNWLgav7mdWU4ZwOHW9draNfjRNvf3v0t/IwKOO+8PHC2C0QAAYIUGn2X0wTUAAAAAAAAAABxhgtHW3yuSPKe19icd2p439PrkFOOdzPWD0c5f4DiD9htnYlV1mySfMeFud5nH2AAsS5fJiSY2AwswczDa8f3XC0YDFq22xm/vXbucOgBgFffrwviASbRxYYojHHS9DQAAdHXrgeVJv6QTAAAAAAAAAAA4RDY2GK2qbpXk7klukeRmSSaaddBa+61F1LUAX5tku6pOtdb+7IC2w4Fl0yQsnMzuf9NRfc5znHF9TuvfJXnanPoCAJidSfiHh2A0YGPV+M2965ZTBkASQdYs37hjzvEIDJvmvHDA9TYAANDVl/d/tyQfXWUhAAAAAAAAAADAam1UMFpV3Tq7wVffluSuM3a3DsFoz0jycwOvTyS5VZIvSvLIJF+Z5JwkX5fk66rqOUme3NqoRIYbmGb2xjrvAwDp9CdEEBWdOVaYgGA0YFPVAVnyvWuXUwdwyHW9tnYNfqTN/X69S3+OOWACU52nnGcAAGDARBfIVXVOktsneWiSHx3Y9NfzLAoAAAAAAAAAANgsGxOMVlWPSvLrSc7P9F+93vr7rsUMhdbaJ5N8cp9Nb0ryS1X1wCQvSHJBf/2/z2542neN6PKqodcnpihreJ/hPpc5DgDckNAzYFUWFYzWE4wGLJhgNADWxprd0/uMAbgBwWgAALCfquryRZ6V5MNV0z7ad71nAl8xbScAAAAAAAAAAMDm24hgtKr6tiS/lf0D0QZnGwxvH9429VNXq9Bae1NVPTjJ25Lcqr/68VX1itbaH+yzi2C05LlJXjThPndJst9/TwA2lsmIrBPH46ExMhjtgMChPVsjgtF2BKMBiyYYDViGjte9gqiOuBW8/445YBKtt+oKAABgXXV97m6W5/P2vvT0fUlePEM/AAAAAAAAAADAhlv7YLSqunOS52X3oae9h5/eneRlSU4m+al+05bkcUlumuQOSe6f5AHZnf3bklye5JlJPr3E8mfWWvtQVT0jyc8PrP7B7B/k9c9Drz9jkrGq6rzcMLDsUx3GuXFV3aS1dvUEw92mwzgTa61dnt33urMZvqUUgJUwoZl5cjwxgZHBaNvd9t8eFYx2crp6ALo6KMBRMBoAm6pT6Nm4Nu4JgWFTnBcEMAIAcHTsPbu3KJXk7Uke01q7boHjAAAAAAAAAAAAa27tg9GS/MfshnXtzSp4epJntNZaVV2Qs8Foaa09f3DHqrprkp9O8o3ZDQn7niQPba1dtozC5+j3cv1gtC+tqpu31obDxN4/9PqCCccZbv/J1toVw41aa5+oqiuS3GJg9WcnuXiGsYZrB4ARZp30DDClhQWjnZquHoCuDgoEF4wGLJX7tSNtJeFBjjlgEtOcM5xnAAA4Ev4soy9+v6L/uyV5a5Ku//OrJTmd3S/UvDjJ61prb5ylSAAAAAAAAAAA4HBY62C0qtpK8u05+1DVi1prT++6f2vtA0keVVVPT/LUJPdI8odVdb9N+lbJ1trlQ0FkW0nunOSdQ02Hg8nuOuFQnzP0+r1j2l6c5P5DY00SjDY81iT7AgBsEJNjD42Zg9FO7L9eMBqwcFvjN+8IRgPmYCWBV2yeeR8nHfobe2w6boEhrTfFPs4lAAAcfq21B43aVlW9nL3Jfkxr7dKlFAUAAAAAAAAAABxaB8yMXbkvTHJ+kuq/fsY0nbTWnpbk5f1+7p3kSXOpbrmGg9zO3afNe4Zef2FV3XiCMR5wQH/jtt2v6yBVdZPsvrddxwKAs7pMNDQZka4cK0xi5mC04/uvF4wGLFrV+O09wWjAMrkGZ9kcc8AknDMAAGBKB3wQDQAAAAAAAAAA0N26B6Pds/+7Jbm0tfbecY2rxs70/eGB5e+atbBlqqrjSW49tPpjw+1aa5cleffAqmNJHjjBUA8aev2qMW3/+IB9x/my7Na2552ttRv8ewBgeiYwAgsgGA3YWILRgDUinPiIW8X7P2ZMxyMwbKrzgnMJAABH3tP7P89I8qkV1wIAAAAAAAAAABwCxw5uslK3HFi+aJ/twzMNjic5uV9HrbW/qaqLk9w9yedV1ee31vbrcx09JNcPsbsmyT+MaPuyJF848PpxSf7koAGq6m5J7juw6uoD9nt1dv9bn+i/vl9V3a219r6Dxkry2KHXL+uwDwD0mWjIhjHR/vBovf3XzxqM1hOMBqxY77pVVwAcCq576WDu90cd+nNPBkxkxL3/WM4zAAAcba21p6+6BgAAAAAAAAAA4HDZOrjJSp0/sHzFPtuvHtN+P387sHz3qSpasqraSvLUodV/3Fq7dsQu/1+SnYHXj6qqCzsM9Z+GXv9+a21kQkNr7ZokLz6gjxuoqs9N8siBVWeS/E6H+gCgr8tEQ5MR6cqxwgTazv7rZw1G2xGMBizaAX/veqM+YgBYBNfgR9sq3v9xYzoegSHThCkKYAQA4IjrP98GAAAAAAAAAAAwN+v+UNJg8Nk5+2z/9NDrOx7Q31UDy7ebqqIpVdX3VdXtJ9znnCS/luS+Q5ueM2qf1tr7kzx/YNWNkvxmVY1IYUiq6hFJHjuw6tokXb7J88eTXDfw+rFV9fAx4xxP8hv9mvb8Wmvtgx3GAgDYUCbHHhqjgtG2OgajbQlGA1bkoKAGwWgAbCphRMDcOa8AAMAULq2qp1XVQc/uAQAAAAAAAAAAdLLuwWgfH1i+6fDG1tq1Q23ueUB/g8Fk581Q1zS+K8kHq+oFVfUNVXX+qIZVdaKqviXJO3P9wLIk+e3W2msPGOtpSa4YeH3/JP9/Vd1taJxzq+r7krxoaP//3lr7yAFjpLV2SZKfH1r94qr63qoaDD9LVd09yWv6tez5RLoFsAHAWV0mPZsYTWeOFSYwKhitOgajbY8KRjs5XT0AnR30987fQ2AOOt+HOeccbat4/8eN6XgEhkz1uaJzCQAAR94dkvxYkg9V1Uur6qGrLggAAAAAAAAAANhsx1ZdwAH+dmD5whFtLkryFf3lhyT57f0aVdVNkvzLgVVX7NduwU4k+bb+T6uqDyT5cJJPJbk2yflJLkhyjyTn7LP/K5M84aBBWmt/X1WPSvLqJHsBZQ9I8t6q+l9JLklysyT3SfIZ+4zx1An+TT+U5POTfG3/9TlJfjHJU6vqHUk+neRz+mPVwH7XJnlka+2yCcYCgJhoyMZpvVVXwLwsLBjt1HT1AHR2wPWTv1UALMsqgsyFpwMTmeba2HkGAAD6jiV5RJJHVNWHkvxqkt9orX18/G4AAAAAAAAAAADXt7XqAg7w3iQ72Q3UunNV3XifNm/s/64k31xVF4zo64eSnDfw+qK5VTmdym7Y21cn+ebshqU9PMm9csNQtJNJfjTJo1prp7t03lp7fZJHJvmnoTH/RZJHJ3lYbhiK9rtJ/k1roxIf9h1np9/fC4c23SbJ12T33/bFuX4o2uVJHtFae2MAYCFmnIx45prk/b+a/MXjk/f9XHL6k/Mpi6Ppop9cdQXMy86IS/Gtc7vtLxgNWJUDA2EEOQBLJKTqiJv3+9+lvzFtHI/AsGnOC84lAABwbXafDdu7OK7sfpHmTyX5u6p6QVU9cFXFAQAAAAAAAAAAm2etg9Faa1cleUf/ZSV5yD7N9gK5WpITSf6kqr58b2NV3ayqnpndYLG9h68+meQvF1L0aE9I8swkb0nSKdwsyfuSPDXJ57bWfrK1dt0kA7bW/ijJPZP8SpIrxjT9iyTf1Fr71tba1ZOM0R/nqtbav8luCNpfjGn6ySS/nOSerbU/nnQcAEiy+ImGO6eSNzw8edu/TS75jeQd35+85sHJ6U8sdlxWYxkTV//hFYsfg+XojQpGu1G3/bdPjO7XJGpgoQ44x7TecsoADrmu1zOue1g2xxwwCecMAACYwh2S/GCSD+Tsl2e2/vK5Sb4lyRuq6q+r6t9V1fmrKRMAAAAAAAAAANgUx1ZdQAevTvIl/eWHJ/nDwY2ttYuq6g+SPCK7D1RdmOR1VXV1kiuT3CbJdr/53jdT/tKkIWOzaq29Lcnbkjy1qs5JcvfsfjPmHZOcl+ScJFf1a/5wkne21saFmXUd9/IkT6yqJyd5QJILktwuydVJ/qE/zodmHac/1ouTvLiq7pzkPtl96O0mSf4xyUeS/Hlr7dp5jAXAUdZlcuIMExg/+sfJx15z/XWfenfyoRckd3vy9P0Cm6834lJ2+9xu+28fH9P36fHbAWZxUPiiYDQAlmYFgUNj/w4KQAKGTHVt7FwCAMDR1lr7ZJJnJ3l2VT0kyROz+5zfsZy9YK4kn5/kF5P8t6r6nSS/2lp7xz5dAgAAAAAAAAAAR9wmBKO9MMl/zu7DUd9SVf+xtfbPQ22enOS+SW6bs982eV7/Z8/e+rcn+clFFz1OP5Tt3f2fZY15bZLXLWmsDyWZS9gaACzdu354//Xv+A+C0eCo2zm9//qtOQSj7ZwSjAYs0EFBDYIcgHnoei5xzjnSDgrrnLzDObUB2DPNOcN5BgAA9rTWXpPkNVV12yRPSPLdST57b3N2n9+7SX/9d1fV25P8cpLfa62dWkHJAAAAAAAAAADAGtpadQEHaa1dlOSLk3xJkq9IsrNPm0uTPCTJe7L78NT/2ZTrf+vkq5I8tB9MBsAm2zmd/NUPJ6+6d/LahyWXvmTVFbE0HSYazjLR+sr3Tb8vG8jEVSbQGxWMdqNu+28dEIwGsCqtt+oKAGBxxn5G4J4QGDbFeWHuoY8AALD5Wmsfa609M8mdkzw8yR/l7AX34PN8X5Lk15J8tKp+tqrutvRiAQAAAAAAAACAtXNs1QV00Vp7Z4c2F1fVfZI8KskjklyY5OZJrkjyriQvbK29dqGFArA8f/6Y5O//4Ozrf/zT5AG/l1zw6NXVxHJ0mmhoMiKwADsjgtG2z+22/7ZgNGBVDro2EowGLJHwmCNuzu+/zwiAeVtEaPA1H01O/WNy83slW9vz7x8AANZYa60leWWSV1bVZyX5niSPS3L7vSbZDUi7eZInJXlSVf1ZkucmeVlr7czyqwYAAAAAAAAAAFZta9UFVNUrq+oHquo+VVWz9NVa22mtvai19u2ttfu21j6vtfalrbXvEYoGcIhcfen1Q9GSJC15/3NXUg4AR0Tv2v3Xb92o2/6C0YBVOSg0ZhHhD8DRI/CMTlZxnIwZ03EL3MAU54W/fHzSu+6G63dOJ2/818nL75j88RcnL79D8om3z14iAABsqNba37XW/nOSz07y6CSvGWpS/Z8vT/J7Sf6uqp5ZVRcst1IAAAAAAAAAAGDVVh6MluRfJfnpJG9L8omqenlVPamqvmDFdQGwrv72l/Zff/kbllsHK9JlcqKJzXRkEjxdtV4y6gvpt87t1sfYYLSTk9cE0NlBf+/8PQSWyTnnSHMPBqy7ac9TF/3XG67766clf/fSs69PXZ68/mv2D1EDAIAjpP/lpy9urX11ks9N8t+TfCK7Hxy1nA1Iu22SH07ygap6aVU9cFU1AwAAAAAAAAAAy7UOwWh7KsnNk3xDkp9N8ldV9U9V9aKq+ndVdbfVlgfA2jj98VVXwEqZRA2swM7p0du25xGMdmqyegAmcsD1U+stpwyAJO7pmK8Ox9PYkCPHIzBsyvPC+597w3Uf+u0brjv9ieSyP51uDAAAOJxumuRmSQb/R1ob+EmS7SSPSPKGqnpVVd1luSUCAAAAAAAAAADLtk7BaIMPM+196+OtkjwqyS8muaiqLquq36mqJ1TVXVdUJwArZ9IqBxg76RlgCr1rR2/bulG3PrbGBKj1BKMBC3TQtZFgNGAu3IfRxSqOE8cmMIFpr41PfeyG605+dP+2l/z6dGMAAMAhUVUnqurxVfWXSd6e5LuS3HiwSZIzSU72lwefKXxYkndV1dctsWQAAAAAAAAAAGDJ1iEY7T8leVWST+dsIFqyf1DabZM8JsmvJPmbqrq0qp5fVY+tqguWWzYAKyP06mjz/jNXjic66p0evW1c4NmgqmT7+P7bdgSjAYt00N87fw+BJXJPd7TN+/3v1N+YNo5H4AaWcF7oXbf4MQAAYA1V1T2q6heSfDTJ/5vkX+Tss4J7zwdeluTHk1yQ5A5JvjfJRTkbkNayG6L2+1V1l2XWDwAAAAAAAAAALM/Kg9Faa89qrX19klsmuW/OBqVdlYOD0j4zybcn+bUkl1TVJVX1P6rq26rqDkv8ZwAASzPjpGeAaeyMCUbb7hiMliRbgtGAVTjg2qj1llMGAKzifl34GTCRGc4ZXc83vWunHwMAADZMVd2o/yzfG5P8dZJ/n+RmOftMYPrLr0/y6CQXtNae0Vr7x9bala2157bWvjDJ1yW5eGC/40m+f1n/DgAAAAAAAAAAYLmOrbqAPa21XpK39X+eVVVb2f1WyAcleXCSByQ5b3CXgeW9B57ulORx/Z9U1QeSvC7Ja5O8vrV2+eL+BQAsjwmtACxZb0ww2taNuvezfTy5bp/1gtGARToooEEwGjAXXe/V3dOzbOOOOccjMGSWa+OdU8mxEx3GODP9GAAAsCGq6sIk35PkO7P7hanJ7jN+e1+OWtn94tTfTvKc1trF4/prrb2qql6X5E1J7tPf/6sXUz0AAAAAAAAAALBqaxOMNqwflPbW/s9PV9V2doPSHpzdsLQHJLnJ4C4Dy3tBaRcmuWuSJyRJVV2c3aC017XWXrrI+gFYoIOCHTjkurz/jhG6cqzQUe/a0du2zu3ez/bx/dcLRgNWSjAaAMsy73swnxEAczbLZ88713QLRuvtl5gOAACbr/983yOT/NvsPuOXnH2Orw28vijJLyf5rdbaVV37b62dqqr/muRF/VWfNXPRAAAAAAAAAADAWlrbYLRhrbWdJH/Z//mpqjqW5EuyG5L24CRX2fZoAAAgAElEQVT3T3LjwV0GlvcesLpH/+eJ2aB/OwDDTGg90rpMThSeB8zbzunR27bnEIzWE4wGLNIB10aunYBlcs452lbx/o8d0/EIDJvhvHDmmuTcWx3cTjAaAACHTFVdkOT/TvL4JLfZW53dC+zWX95J8vIkz2mtvWGG4d47sDzB/6QDAAAAAAAAAAA2ycaGg7XWziR5S//nv/aD0v5ldkPSHpTkftk/KK1yNigNgI1k0ioAS9YbE4y2daPu/YwKRjtzcrJ6ACZy0PVzbylVAIecwDPWlmMTmECb4dr4zNXd2vWunX4MAABYTx/M9Z/JG3xO77Ikz0vyvNbaZXMY65qhMQAAAAAAAAAAgENoY4PRhvWD0t7c//kvVXVOkvsm+eYkT4hviASAQ6LL882egaYj4Q10NW7S8tYEtxpbI4LReqcmqwdgEgf9vZsl/AFgYq7Bj7Z5v/8z9ueeELiBGc4LO9ecXR53fmlnph8DAADW01Z2L6Zbzgak/VmS5yR5Wf+5vnmr+KAJAAAAAAAAAAAOrUMTjLanqm6R5CuSPDjJg5J8fs5+GyUAh4FJqwAs287p/dfXdrK13b2fYydG9C8YDVgkwWjAMnS9V5/wnv66TydXvi+5+Rcm2777YvMt6DOdqz+SnHvr5NhNljcmcEjNcM44MxiMtjO6Xe+66ccAAID1VUmuSvLbSZ7b2v9m787DLMnq80B/J6sa6G5WsQq1gG6QtSC0IckbaECDtdmSNVibLVndNjOjsWfRWLN4bGvzjD22Rx7b8iNrNF4k2mgxFthIxrIshA1oYRGLhNqgBbpo9oaGpmmglsy8x39UZtetrBtxI27cLW6+7/PU05kRceOcIg4nTkTl78v6n1bRSK31rlwOYgMAAAAAAAAAAHbY6IPRSimPTPIVuRKE9ozMDkKb3qYSCgBGq8NtXHgesGyThmC0vQf1O8/eQ2ZvF4wGrNS8tZG1E7Cl7vgbyW//9aQeJGeuT778Hyc3f8eme8UQy35ev+/tycs/J/n47yZ71yW3/LnkS3/06vDi1jbdA4EThsxTh9PBaC3hw4LRAADYPW9P8qNJ/nmt9f5NdwYAAAAAAAAAABi/0QWjlVIenquD0L4wV4eelVyuZjoZhPbWJK8++vOadfQVgFVRtHqqCT1jqYwnOmoqWu4bjHamRzDaJ84l73v55cLqz/j65BGf168tgGPz1k9toQ0Ay9b1me69P5+89fuufH94PnntdyaP+sLkkc9YTd8Yn3f82JWvJ/vJO/5xcv1nJM/4/qmDPPcBfQxYGx9MB6MdtjRxafE2AABgC9Van77pPgAAAAAAAAAAALtl64PRSikPS/LsXAlC+6Ike9OHZHYQ2ltyJQjtV2qt966jvwCsgeAG5lL0DCxZU0FzOdPvPF2D0T782uRVX5Psf/zy97/1vcmzX5Lc9Cf7tQeQZP7ayPoaWIYlP4e945/MbuPci5Iv/n+W2xZrtIbn9Tt/vEcwmvcHwAlDfinDYcdgtHqweBsAAAAAAAAAAAAAAHAKbF0wWinlxlwdhPbFSabTBsqMj02SvDlXB6F9fLU9BQA2Q9EysAHrDkZ78/dcCUVLLhdNv+G7ks/4hqTMeiQCGGBI+ANAbx3nnPe/fPb2t/+QYLRRW8M955N3nWjSfQ7oY8CccfCJqdO0BKNN9hdvAwAAAAAAAAAAAAAAToGNB6OVUm5I8qxcCUJ7ZuYHoe0neWOuBKH9Wq31EzOOA2AnKWg93bpcf2OErowVOlp1MNpkKhjt4keTj7zu2mMu3J185PXJY/5QvzYB5t7vJmvpBQBsJqSspU2hacBJdcDa+GN3TH3Tch7BaAAAnFKllEcn+eYkfzDJ45OcT/LeJL+c5N/XWi9tsHsAAAAAAAAAAMAW2XgwWpKPZX4Q2qUkb8jVQWjn19A3AGCMFDbTxfm7k3e/dNO9YCyWFYy21xCMdjD1eHPxnubP3/9OwWhAf/PWRkPCHwCOdX4O87zGmnlHAPQyYM5478uSZ/5wUkoyaXiPkCQTWQ8AAIxfKeUxSb4gyWOTXExyZ5I7ar32hXMppST5K0n+apLrZ5zuf0hyVynlL9Zaf3F1vQYAAAAAAAAAAMZiG4LRzuZylcF0INqFJK/LlSC019VaL2ygbwBspZbitFovF56xuxQ0swznfjJ53a2CYOhuWcFoZxqC0SZTjzttBdJnHtyvPYAkc8Md3A+BdfJMd8pt4vq3tWk8AicNmBc+9Z7kvjuSRz6j+T1CktSDxdsAAIANK6V8UZIfSvKcJHsndn+olPIPkvzdWi8vio9C0W5P8u25+ucDjxffx9uekuTflFJuq7X+1Gp6DwAAAAAAAAAAjMU2BKNNq0l+OcnfSfKaWlUGADCDIupTrsv1N0Zocf7u5LXfGeOEXppCg8rJeo85zlw/e/vhdDDaxebP7z2oX3sASYf1s3siAOvingNsuaGhwR985fxgtMn+sDYAAGBDSinfluSfJzmTq0POjj0+yf+d5CtKKV9fa50k+e4k35HLLwWmw9COPz/9suBMkh8vpbyl1vq2FfwVAAAAAAAAAACAkehZxb9Sxz/k9Lwkr0hyXynll0sp31tKeXYp5boN9g2ArdJWRKvAFpjjzp+IuYLemgqay5l+59lryKaeTGVCH15q+bxgNGARc+57Q8MfAJJ0X2Nbi7Nu3iMBPQz9pRzn33f0Rcsauy00DQAAtlQp5cuSvCiXfxFrydVBZ5n6viT5miT/SynlYUl+MFcHon0gycuT/HSSX0xyb64OWbsuyQ+v6u8BAAAAAAAAAACMQ0NV/lq9Pcnn5NrfInl9kuce/UmSC6WU1yV5dZJXJXldrbUlMQCA3dVSnFbr7N9LzA7pUpyosJkWd/74pnvAGC0rGK00ZVNPFUy3jdEzD+7XHkASwWgAbI2hgUNjaRMYsYFzxnHwufAzAAB2z/+X5EyuDjm7N8k7jr5+apJH5Uo42l9Kcl+Shx9t+0iSF9Ra/830SUspe0lekOQfJHnI0We/spTy1FrrO1f8dwIAAAAAAAAAALbUxoPRaq1PL6U8JslzcjkE7TlJPvdo93S0zfVH+56T5AeSXCylvD5XgtJeW2u9uI4+A7BhrQWtil133soLmo9/uTU7a7K/6R4wRksLRms4/jiUqNbknf+0+fN7gtGABcxdP1n7AOtkzjndNnH95wTsA1xlaDDa0XsnwWgAAOyQUsofTPIluRJ69uEk35Xk52q9/HBdSilJviHJjyV5XJLHJ/meo1PsJ3lerfWtJ89da50k+SellLuTvCxXFuXfnORvr+rvNFallOtz+WcrPyfJY5M8NMknknw0yR1JfrvWerC5HgIAAAAAAAAAwHJsPBgtSWqt9yR5ydGflFIelyshaM/J5R/kSa4OSntIkq84+vN9SS6VUt6QyyFpr07y67XWCyvvPABbRkErGVbYXPYULu46PwfOIpYVjJa99vPf+5vtH+/dHkAyd418HM4IMIjncbrYsmA0gJOGro2P3ztNvF8EAGCn/Kmj/5ZcDjn7qlrrb00fcBSQ9nOllHNJfiOXfy7xD+Tyg/lPzgpFO/H5ny+l/Mdc/sWqNcmXLvev0F0p5ZYkX3bUhy/L5VC4h00dclet9Slr7M+XJPnGJF+Z5MuTXNdy+CdLKS9O8sPz/jcHAAAAAAAAAIBtthXBaCfVWj+U5F8e/Ukp5fG5EpL23Fz+oank6qC0Byd51tGf702yX0r5jVwOSntVLgelnV955wFYg5aC1iGBWIzEqq9xmX8I4zbZ33QPGKPGYLSGoLMmTccfF15fuHteR/q1B9CJYDRgjTy3s26tY854BE4aOC88EMhvjQ0AwE75kqP/1iT/8mQo2rRa61tLKf8iyZ+d2vzSju28NJd/NjBJnt67lwOUUp6T5K/kchjap62z7SallIck+U9JbunxsRuT/Pkkt5ZS/m6S76u1+gdyAAAAAAAAAABGZyuD0U6qtd6d5MVHf1JKeUKuhKQ9J8lnHR06nWTyoCR/5OjPX83loLQ3Jnl1klfVWl+xjr4DsG4KWndepyL6AeOg7BlGu04wGouoDQXN5Uy/8zQdfxy8dvbGOf0wQQGLmDN3NM1xAH10XqdYz5xqG1nPGnNAD0PnqeP3Tk0B6w8cd5DsjeKfaQEAILnyS0yT5OUdjv+FXB2M9taO7RwHrpUkj+74mWX5oiRfteY25zmb2aFoNcnvJnl3knuSPDTJ55849kySv5zks0op31rrAynOAAAAAAAAAAAwCqP8ifta6weT/IujPymlfHquhKQ9N8lTjw49GZT2h4/+/OWM9O8OQKKglfmGjJEy/xDGzc98s4imgubewWh7DTuOQonOXD+vI/3aA0g6hDuYWwBYl20LRnMPBE4aGBo8OXrvNC8Y7fBCsvfQYW0BAMD6PGLq69/tcPzJYz7SsZ17pr5+eMfPrNrFJO/NlZ9H3JTDJL+U5PYkr6y13nPygFLKM5P8vSRfMbX5+Ul+MMn3rqGPAAAAAAAAAACwNE1V+aNSa/1ArfWna63/ba31s5LclMu/dfLHk9x5fNjRf0skngCMW2uwg4LW3bfia9wYWsTOmOyvv825gTRsvaUFozUcX48Kr/fm5TcbS8Ai5swddWD4A0Av1jOn2iaejTyPAX0MnTNqx2C0ycVh7QAAwHpNp/re1+H4j09/U2u90LGd6eOu6/iZZdpP8ptJ/mmS70ryzCQPS/Jfb6Avxy4m+UdJnlJr/bpa64tnhaIlSa31TUm+MsnPnNj1v5VSnrzifgIAAAAAAAAAwFLNq7ofpVrr+0spb0vyuCSPT/LEJA/ebK8AWJ6W4jTFrqdAh2s8aBy05KfWmhT5qqO3iWC01MjmHbmlBaM1hC8en39eOJH7HLAQwWjAOlinMELW18A1Bs4Lx++d5q2xD7vmQgAAwFaY/ofOOSnAnY/ZNrcn+bFZIW5lcz8jcCHJ02qt7+36gVrrYSnlBUmeleQzjzY/KMm3JPmh5XcRAAAAAAAAAABWY2eC0UopX5jkOUmem+TZSR650Q4BsDqtRasKWhmo9YeahVvthHqw6R4wRo3BaA1BZ42agtEmV/+3uSM92wPI/NAXwWjAOgmiOuU2cf2NOaCHoWvj4/dOTe8RjglGAwCArVJrvXfTfTip1nqQpHMo2tTnzpdSfiLJ909tfm4EowEAAAAAAAAAMCKjDUYrpTwjV4LQviLJo6Z3T31dG7YDsJMUu+68TkX0Q8ZBS8hRPVwgBAmSvPOfJU/7bzbdC4ZoKowuZ/qdp+n444JpwWjASsybO8wtAKzLtgWjuQcCJw2cFyaC0QAAgK3wlhPfP3EjvQAAAAAAAAAAgAWNJhitlPL0XB2E9ujp3VNf11ypWihT+96b5D9O/QFgtFqK0zqFZjFuK77GpSVHdW5gETT43X8gGG3smgqaewejNYQrPjC/uI8BqzBnbrHGAZai6zrGeoc1864I6GXgnFH3j/47JxhtcnFYOwAAAO0OTnz/oI30AgAAAAAAAAAAFrS1wWillM/NlSC0/yLJY6Z3T33dFIT2gSSvylEQWq31nSvsLgBr1VacptiVZNg4aAgtSuYXNEKT+96WHF5Izjxk0z1hUUsLRms6/iiUaF44kVAHYCUEowGwJhtZz3qPBPQwdJ6aHGUPzHu+P/jUsHYAAADaPe3E9x/YSC8AAAAAAAAAAGBBWxOMVkr57FwdhPa46d1TXzcFoX04Vweh/e4KuwsAbMyKi5ZLad4nGI0hDi8KRhuzpQWjNYQvPnD+eeFEghuABcwLdxC6CKyVOYd1M+aAPgaGBtfjYLQ57xHf+r3J8141rC0AAFiv4wfsP1RKecqcY58w/U0p5dm5+uf/On2OQb7pxPdv2EgvAAAAAAAAAABgQRsPRiul/FQuB6JN/2BTlyC0jyZ5da4Eof2n1fYUgK3RGtyg2HXndQnuGBLu0RRalCR1YGEkp9vk4qZ7wBDLCkZLUzDa5Or/NnekZ3sAyfy5wxoHWIKuz2HCGE+5DVz/tjFnPAInDZ0XJh2D0T706mHtAADAZpQkP7PAZ17V4/iabiFqNCilfFmSP3pi87/eRF8AAAAAAAAAAGBRGw9GS/Knc/UPNDUFoX0syWtyJQjtrevsJADbREEr8wwZBy0/Yz2voBHaHApGG7WmwLK2MMVZ9hqC1I7nl3nBaO5zwELmzB3CXwFYm02sZ62hgT4Gzhl1/+i/1tgAAOykPqFl04vrPkFnHuQHKKVcl+T/P7H5V2qtb1hyO49L8tieH3vqMvsAAAAAAAAAAMBu24ZgtGPHPzh1/INQ9yf5lRwFoSV5S61SAABI2n8O1q1i9636GrcFoyloZIDD85vuAUM0BSOWhqCzRg1Bag/ML/PmGfc5YAHzXqdY4wBL0XWdYj3DunmPBPQwdG08OTg6T4dfsFBrUvrkQwAAwFZY5GHaA/j6/FCSL576fj/J/7SCdv5ikh9YwXkBAAAAAAAAACDJ9gSjlSSfTPJruRKE9sZaVeYCMENrsIOfpyUZNA5KQ2hR0q2gEZocXth0DxhiWcFoTccfP/rMzYJ2nwMWYW4BYEv43SfA1hs4T9U+wWiHSdmWf6oFAIBW744XyVuvlPLnk3z3ic0/WGv9zU30BwAAAAAAAAAAhtiGn7b/vlwOQntDrcfVAgCwIAW2p8Cqr3Fp2SezlQEEo43b0oLRGsIXHzj/nHnGfQ5YxLy5Qy49ALus7T5ofQ2cNHRemOwfnadDMNpkP9nbhn+qBQCAdrXWp2y6D7QrpXxNkh87sfnlSf7WBroDAAAAAAAAAACDbfyn7Wutf3PTfQBgbBStnmpdihOHFDA2hRYl3QoaoclEMNqorToY7TgQbW44kXsgsIh5c4e5BYB12cQ9x30O6GNgaPDx74DqEj5c95NcP6w9AADg1Cul/NEkL01y3dTmX03yrbWuLBX+R5P8bM/PPDXJz62gLwAAAAAAAAAA7KCNB6MBwHIpdmWo0rxLMBpDHApGG7Wmgua2MMWZxzcEqR3PL/MKp1dWuwDsto7BsqVlHQSwTOYc1ql1DW19DZww9Ll7chyM1uE94uGlq2MLAAAAeiqlPDPJv01yw9TmNyT547XWT62q3Vrrh5J8qM9niveBAAAAAAAAAAD00LOKHwC2QUtxmsCYU6DLNR4wDtpCjuYFFkEbwWjj1lTQ3BR01qhhjjmeX+bOM+5zwIpY5wBrZU1zem3i2htvQB8D54y6f/TfDsFox8cCAAAsoJTyBUl+Kckjpja/JclX11o/vpleAQAAAAAAAADAcghGA2B8WkMbFLvuvlVf45bfUtyloBGaCEYbt2UFozWFLx6f/+D+fucD6KJTeLBgNGAAIeV0tZGx0tamsQucNHBemBwcnabDe8SJYDQAAGAxpZTPS/LLST5tavMdSb6q1vqxzfQKAAAAAAAAAACWRzAaADtGQSsZVmhd2oLRBIYwgGC0cVtaMFrD8cfzy/kPzutIv/YAknSaO6xzgHUSpMY6GW9AH0PXxfU4GK3DeQSjAQAACyilfHaSVyZ57NTm30nyvFrrPZvpFQAAAAAAAAAALJdgNABGqKWgVbHr7ut0jYeMg5blUVMwEnQxEYw2aksLRmuaY+rl+e3C3XP64T4HLGLV6ycA6GoT9xvvkYA+Bs4Lx2FnXd4jCkYDAAB6KqU8Lcl/SPKEqc2/n+Qra61z/qERAAAAAAAAAADGQzAaAOPTWrSqoHX3rfgal9LS9GS1bbPbDgWjjVpjMFrPR6q2ILU6SS58cF5H+rUHkHQLfbHOAQbpu0axpmGdjDegh6GBifXg6L8dgtGqYDQAAKC7UsrNuRyK9sSpzXfmcijaBzbTKwAAAAAAAAAAWA3BaADADhpSwNiyPOpS0AhNBKONW1NgUFvQ2czj2x7BJsmFeb/IXagDsAjBaABsi21bz25bf4DNG7gunvQIRptcGtYWAABwapRSnpTLoWifObX5rlwORXvvZnoFAAAAAAAAAACrIxgNgBFqK1pV0Lr7VnyNS2lpWjAaAwhGG7em///3DUabF754/oNz+uE+Byyiy9whGA1YJ2saVmx63WwNDfQxdM6oB0fn6LC+nuwPawsAADgVSilPTPLKJE+Z2vy+XA5Fu2sjnQIAAAAAAAAAgBUTjAbACLUUpyl23X1drvGQcVDalkcCQ0Zvk3OEYLRxW1YwWtvxdZJcuHteR/q1B5Csfv0E0HcOMeecXhu59gL2gT6WMC/Uw26/YEEwGgAAnDqllHriz3PmHP+4XA5Fe9rU5g8keW6t9c4VdhUAAAAAAAAAADbq7KY7AAC9tRbRKmhlqNK8a9KhoJHtVg8217ZgtHFbWjBaS/jiR9+cnH/fvI70aw+gMwGwAKzDutazNVee762hgR7qEtbF9aDbe0TBaAAAsFVKKTdl9s9TPuHE92dLKU9pOM0naq33LKk/j0zyiiSfM7X5k0lekGS/pQ8z1VrftYx+AQAAAAAAAADAOghGA2CEBKOdbl2u8arGgfE1ehstODV+Rm1pwWgtx//yszv0wzgCFtFh7lhGAARwivVdo1jTsGK1TuWitYw362vgGkuYFyYHze8RrjpOMBoAAGyZX03y5A7HfUaScw37bk9y25L680VJvuDEthuT/MKC52v5LXEAAAAAAAAAALBd9jbdAQBYKgWtp8Amr7HxNXqC0VhUU2BQ6flI1ff4azsy8PPA6dQlGM38AsA6bOJ+4x4H9LCMdXHdT9IheLgKRgMAAAAAAAAAAAAAgFkEowEwQm3FaYpdSVY2DgSGjN/k0ubaNn7GrR7O3l7O9DvP4GA0gAV0ugd1CG4AWBprY1atNnzddhxAspR5YXLQ/B7hquM2+J4KAAAAAAAAAAAAAAC22NlNdwAAoJcuwR4rC6BSMD16k/1N94CxWlowWs/jr+3IwM8Dp1OX9ZNgNGAIaxQ6Wltg9FQ7QqqBPpaxLq5dg9G8pwIAgG1Sa33KGtooPY59VZLOxwMAAAAAAAAAwC7Z23QHAKC31oJWxa67b5PX2PgavbrJglPjZ9SWFYw29BFMqAOwEMFowJaxpmHVrhpj3iMBfSxhXpjsJ598d7fjAAAAAAAAAAAAAACAawhGA2CEWorTFFeTZGWFzcbX+B1e2nQPGKtlBaP1DlK7piMDPw+cSp3WMOYXANZhE/cb9zigjyXMGfUg+dhvzT9OMBoAAAAAAAAAAAAAAMwkGA2A8WkNdlDsuvNWHk5mfO20usmCU+Nn1Opk9vbS85Gq7/HXdmTg54HTqcPc0TTPAXTR+znNmubUWlvgeMd2BKADJy1jXTzZTz722x3aEowGAAAAAAAAAAAAAACzCEYDYIQEV51uXa7xqsaB8TV6kw0WnCq4H7d6OHt7OdPvPEOD0YwjYBGd5g7BaMA6WdOwalNjzBoa6GUJc8bh+WT/4/OP2+R7KgAAAAAAAAAAAAAA2GKC0QDYLYpdWaUqMGT0Jpc23QPGamnBaD2Pv7YjAz8P0MA6GoC12MT9RsA+0MMy1sWHF7od5z0VAAAAAAAAAAAAAADMJBgNgBFStHq6dbj+Kwv2MPZGb7K/wcaNn1FbWjDawEcwwUXAQrrMHQJggSF6rlGsaVi1q8aY8Qb0sYR1cedgtE2+pwIAAAAAAAAAAAAAgO0lGA2A8WktoFbsykBt40vx/vgJRmNRSwtG63n8tR0Z+HngdOoSLCsYDYB1WNd6dqod75GAPpbx/u/wYrfjBKMBAAAAAAAAAAAAAMBMgtEA2C2Cq3Zfp2s8ZBwomN5pk0ub7gFj1RiM1veRaugjmHkIWECX9ZNgNGCtrGlYJ+MN6GMJc8bkQsfjBKMBAAAAAAAAAAAAAMAsgtEAGCHBVafbioPRWoNDjK/R22TBqeDGcWsKDCpn+p2nd5AawDKsOlgWwBxCR2t7Lppqp61Nz2nANZYwLxx2DEa7eM/wtgAAAAAAAAAAAAAAYAepygdghARXsUoKpnda3WAwGuNWD2ZvL2f7nadvkNo1/TAPAYvoMHc0BUACrIQ1zem1pmt/1brZeAN6WMa6+PBit+Pe85Jk0vC+AQAAAAAAAAAAAAAATjHBaACMT1sojMCYU6BLsMeAcdBa/Gh8jd7k0gYbN35GrR7O3t436KwMfQQzjoAFdFkbCUYDhuj7DObZnbUSsA/00TAvPPHrup9i0jEY7cLdyQd+qft5AQAAAAAAAAAAAADglBCMBsAIKWg91VZeQC94b6dN9jfYuPEzavVg9vZytt95+gapXduRgZ8HTqcuc4dgNADWYV3rWetmYEFN7/9u+fPdz3F4ofux527vfiwAAAAAAAAAAAAAAJwSgtEAgB00pABa8N5O22gwGqNWD2dv3+sbjDbwEUxAI7Aq5hdgrcw5rNrUGGu9xxmLwAm1ITC4lOQzn9/tHJOL3dt778uSS/d2Px4AAAAAAAAAAAAAAE4BwWgAjJCC1tNtxddYwfRum1zaXNsCZ8ZtcjB7eznT80RDH8GMI2ARXeaOhgAIgE6sUehoI89FxifQR9OcUbqf4rBHMNrkUnLXi7sfDwAAAAAAAAAAAAAAp4BgNAB2i+ChU6DLNR4yDlo+a3yN32R/g40bP6NWm4LRzvY7T+8gtWs6MvDzwKnUZQ1TBaMB62RNw4pdde/znA/00RaM1jEc7fBCvybvfGG/4wEAAAAAAAAAAAAAYMcJRgNgfFqLVhW0MpTxtdM2GozGqNXD2dv3+gajDXwEE9wALEQwGgDbYl3r2al2rKGBPprWxeVMOgejTXoGo33k9cl9v9PvMwAAAAAAAAAAAAAAsMMEowEwQm2hDYpdd16XguYhRc+C93bb5NIGGzd+Rm1yMHt7OdPvPEOD0YwjYCFd5g7zCzBEzzlEUNUptolr7zkf6KExGG0vKR2D0Q4v9m/33O39PwMAAAAAAAAAAAAAADtKMBoAu0Vx9Smw6mCPluA944AeVzUAACAASURBVGv86v6me8BY1cPZ28vZfucRjAZswqqDZQF6M+ewarXha4B5WoLROp+iJRjtEU+fvf3ci5JJw7sHAAAAAAAAAAAAAAA4ZQSjATA+QhtYpdbxZeyN3mSDwWjmrvGqNakHs/eVM+vvC0Bvqw6WBYCO1rWenW7Hcz7QR236pQl7SUq3cxxeaN731BfM3n7+fcndr+x2fgAAAAAAAAAAAAAA2HGC0QAYIQWtp1uHazyo0Lrls42FkYzG5NIGGzc/jVbb//f3zq6vHwALE4wGrFjfZzBhr6yV8Qb0UA9nby99gtEuNu978p9O9h48e9+dt3c7PwAAAAAAAAAAAAAA7DjBaADsGMWuO2/lBfSC93baZH/TPWCMmoqik6SsOxjNPAQsoMv6SQAsAGuxrvVsx3aE9AEnNa2Ly15SOgajTVqC0R786OSmb5y9773/Krl0X7c2AAAAAAAAAAAAAABghwlGA2CEWopWFbSSZFChdesYMr5Gb6PBaMbPaNWD5n3lzPr6kcQ4AlbH/AKskzmHFbvq2d54AzqqNY1zRp/n/8MLzfvKmeSWW5s/9+6f7d4OAAAAAAAAAAAAAADsKMFoAIyP4KpTbtXXWPDeTptc2lzbxs941cPmfXtn19ePxDgCFtRh7jC/AIOYQ+hqA2PFeySgs5Y5oewlKd1OM7nYdJLL53nCH0uu//TZh5x7Ybc2AAAAAAAAAAAAAABghwlGA2CEFLSebl2u8ZBxYHzttMn+pnvAGNWD5n3lTP/zPfrLF++LeQhYyKrXTwB9mXNOrbUFcdaGrwFa1EnLzh7BaIcXZm8/foewdzZ5ynfMPubDv5bc/45u7QAAAAAAAAAAAAAAwI4SjAbACLUUtK6twJad1VoAaXyNXt1kMJrxM1qTtmC0s/3P9/S/tnhfjCNgEV3WyK1rIIB5rFHYNh2D0bxHAqa1rYnLXlKWFIyWJDff2vz5c/+8WzsAAAAAAAAAAAAAALCjBKMBAOPSKdhjQGFz22cVTI/f4aVN94AxqofN+xYJRnvi1w7oi3kIWESXucP8AqyRNc0ptoFrb7wBnc0JRut8mosN55gKRnvk05NP+9LZx915u+BiAAAAAAAAAAAAAABONcFoAIxPa0GrYtfdt+pgD+Nrp9X9DbZt/IxWPWjeN13U3NUiYWoPMI6ABXS6B5lfgHUy57BiV937POcDHbWGke0lKd3Oc9ghGC1Jbrlt9nGfenfyoVd3awsAAAAAAAAAAAAAAHaQYDQAdovgIQZrGUPG1/hNNhiMpuB+vOph8769BULOSsdC6pl9MY6ARXSYO8wvwBDmEDpb11jpGowGMKUtGK30CUa70HCOE8FoT/62ZO+62cfe+cJubQEAAAAAAAAAAAAAwA4SjAbACLUVtCp23X1drvGAcdBa0G98jd7k0qZ7wBhNDpr3nSxqXjnzELCILnNHSwgEwNJZ05xamwjR85wPdDYvGK3raS7O3r534h3Cgx+dfMY3zD72PS9N9j/RvU0AAAAAAAAAAAAAANghgtEAGJ/aFtqgoJWhFEzvtMn+Bhs3fkartgWjnV1fP05qC2wDmNYlhObgk6vvBwCsjecvYAFt753LXlJKt/McNgSjzXqHcPOts489+GTynpd0a49xuvCh5EO/mnzsjuUEhx58MrnnDcnBp4afCwAAAAAAAAAAAABgwwSjATAuh5eST7yzef8yCojYbl2u8aBx0PJZ42v8NhqMxmjVw+Z9e+sORqvJB1+Z/LtnJi9+SPILX5h86FfW3AdgJ73mG5MPvGLTvQBGq+ezkmerU2xN1/6qMeY5H+io9Rdy7CXpGIx2cP/s7eXMtdue+DXJQx43+/g7b+/WHuPzOz+c/NyTk19+dvILz0j+/Zcn97f8u0eX873kUckv/cHkJZ+W/P6PLa+vAAAAAAAAAAAAAAAbIBgNgHF56/fOOUBB6+5b8TVuLYA0vkZvcmlzbSu4H6/JQfO+WUXNq3Tf25JXf31y75svB7Z97K3Jf3he8vHfX28/gJHpeA96zZ9M9htCHABgrDyLAV21vRcse0npGIzWeI4Z7xD2rkue/O2zj//Qq5JPnBvWJtvnI7+RvPkvJYcXrmz76Bsvh1Uvcs+6+z8mb/6fr/xCiMnF5Df+QvLh1y6nvwAAAAAAAAAAAAAAGyAYDYBxufOFm+4BozCk6Lnts4qpR++4QHAjjJ/RqofN+8rZ9fUjSd7zkuTw/NXbJpeSd71ovf0ARqbjPejwfPLen19tVwCSWBufZuu69rXh67bjAOYEow3VFK5+y23NnznneX/nvP/fZeb95747kvsXCL5/5z+bvf3dP9v/XAAAAAAAAAAAAAAAW0IwGgDjcvHDcw5Q0Lrz6oqvcdv5V902q1c3GYzGaNWD5n1NRc2rcvEjs7ff8X+ttx/AuPRZw5x74cq6Aeyyvs9Knq1Yta7BaABT2oLRs5ekDDt/0zuER31B8qgvmr3v3O3eSe6aC3c37zv//v7ne9dPzd7+u3+//7kAAAAAAAAAAAAAALaEYDQAdosisVOgyzUeMg7aPjsZcF62wuTSBhs3P43WpCUYbe/sYue87pGLfQ5gIT3uQesOfATgdNnEe5vWNj2nAVNqy7u/ssJgtCS5+dbZ2z9xZ/LhXx3WLttlcrF5X1s4PwAAAAAAAAAAAADAKSIYDYAdo6CVDCy0bvms4L3xm+xvrm3jZ7zqYfO+smAw2md/92KfA1hIn3uQV0XAAvquda2NT7E1XfurxpjxBnQ0LxitrDAY7Sl/pvkdw7nbh7XLdjm80LyvLZwfAAAAAAAAAAAAAOAUUe0KwI5R7Lr7VnyNWwv0ja/R22QwGuNVW4pS24qa23ze/5484XlT59lLnv7Xksd/ZfLgxyx2TuMbaNIngGjReQ0AtkrHYDQhfcBV2oLRlrBO3msJV3/I45Inft3sfXf9y+TgU8PbZzscXmze590OAAAAAAAAAAAAAECSpOUn8AFghBS07r5O13jIOBCMttMmlzbYuPEzWvVw9vayl5Sy2DnP3pA85xeTe9+cfOJc8thnJTc88cr+X/zS5KNv6nfO8x9MbvzMxfoD7Lge96A9wWjAOlgbn1qbeG/jXRHQVW0LRttLsuA7gAfOMWetfcttyft+/trtB/cn7/nXyc3fPqx9tsPhheZ9beH8AAAAAAAAAAAAAACnyN6mOwAAsFXaCiAVU4/fZH/TPWCMJg1FqfMKmufZO5M8+suSJ3/L1aFol0/e/3yX7h3WH4Bk+NwGnFKeldg2XceksQtMaXsvmDUEoz3xjycPfvTsfedeOKxttsdEMBoAAAAAAAAAAAAAwDyC0QDYMQpad1+XazxkHLR91vgavY0Goxk/o9VUlFrOrrDRRYqt2wq4gdOtzz3IqyJgHayNT681Xfurgs2NN6CjtmC0speUFQejnXlQ8uQ/M3vfB1+ZfPI9w9pnOxxebN7XFM4PAAAAAAAAAAAAAHDKqHYFYMcodt19m7zGxtfoTS5tru1q/IxWPZy9faXBaAtoK+AGTrc+96B5YQ0Ay2BtzFoJQAe6mhOMNlSXtfYttzbsqMm7XjS8D2ze4YXmfU3h/AAAAAAAAAAAAAAAp4xgNADGo0vhtOJqksXHwbzPGV/jV/c33QPGqKkodZXhQaX0/0xTgBtAn9CXZQQ+AKePZyU6W9dYmWrH+AS6ag0c30uywLP6tC7vER71JckjPn/2vjtvN6ftgsnFln2C0QAAAAAAAAAAAAAAEsFoAIxKl6IvhWE7b6XFf/PObXyNWq3JZJPBaMbPaDUVpe6dXWGjiwSjtRVwA6dbn2C0FYY+AjzA2vjUWlugT234+uRhxiIwpe25uuxl8P2ry1q7lOSWW2fvu//3knteN6wPbN7hheZ9TeH8AAAAAAAAAAAAAACnjGA0AMajU7Gqgtbdt8JxMHeMGV+jtvHCQuNntOrh7O0rDQ8SjAYsUZ/Ql+JVEQA74OD8la8nlzbXD2Bk5gSjDX3uLh0D1p/y7c3vHM7dPqwPbN7agtEWeLcEAAAAAAAAAAAAALAlVLsCMCIdCs/6hD7ANeaMH+Nr3Cb7m+4BY9VUlNq1oHkRZZHiVcFoQJM+wWirDH0EdlffZyXPVqfXmq79m//S5f/e8/o5BxqLwJS24LOlBKN1XGtf/+nJp3/17H13/Yurwx8Zn8nFln1LfH+596DlnQsAAAAAAAAAAAAAYM0EowEwHkKpSNKtaLnhmFqT+9+ZHHyyYf+84kZjcNSawq3W1r7xM1r1cPb2lYYHLRCMNrRAG9hdfe5BxasiAHbAB19x+f73npdsuifAmLQ+V+9lcCB5n/cIN986e/v+fcn7fn5YP9iswwvN+yY931+2PevtXdfvXAAAAAAAAAAAAAAAW+TspjsAAN0NCMRid3QJ9ph1zEfflLzm+cmn3p3sPSh52n+XPOJzkzt/Irn0seQzvj55xg8Mb5vt5fqxqE0Eo5VFgtEa+gnQZ4280tBHgCPW5qfYOq99Td7+d+cfA/CAluCzsjf8/tVnrX3TNyTXPTLZ/9i1++68PXnytw7rC5szudi8r+73PFfL8YLRAAAAAAAAAAAAAIARE4wGwHjUlsK0B45R0MoMB59KXvm8K4WEk0vJ7/3Dq4/5nf83uf/355zI+Bq3TV+/TbfPwpruPysND1okGK3DfRJgrr1NdwAYpb5rXWtj1sA7IqCvtufqsjc8kHyvx3uEMw9JnvxtyTt+7Np9H/z3yafen9zwxGH9Yf1qTQ4vNO//zf/j8v7P//5uofltIWt7D+rfPwAAAAAAAAAAAACALaHaFYAR6VLQquh19y0wDj7wi1dC0dq87+eX0Dbba9PXb9Pts7CmwueyysepBYLRIhgNaNLjHrTS0EcATr21hpUJ2Ad6ag0+2xseSN53rX3LbbO310nyrp8a1hc2Y3Jp/jG//YPJ2/5Ot/MdtgWjXdftHAAAAAAAAAAAAAAAW0gwGgAjIhiNZKFrfMffXFLTQodGrW/B+5nrV9MPxqfp//urDA8qCwSjmaOAJn3ugSsNfQR2Vt+1tjCqU2yN1976GOirbd4oexk8h1338H7HP/rLk4d/9ux9517ofjpGk5Ygs2nvetHw8xXBaAAAAAAAAAAAAADAeKl2BWA8uhS0KgYjyTVFil0Lzvqel5Hpef2ef3fyrJckX/X65BGft4TmjZ/Rqoezt680PEgwGrBMfYLRVhj6CABrJWAf6Kk1GO3M8Ofu6x7V7/hSkptvm73vvrclH33TsP6wfocXuh1339u6Hdf23vvMg7qdAwAAAAAAAAAAAABgCwlGA2BEFLSSxcKlDpcUjCbYatz6Xr/rHpY86U8lj/nyZO/Bq+kT49BU+Lxt4UFNAW4AgtGArePZ6vRa47UXHAz01haMtte+v4sHPbL/Z27+jjSGp9/5wiG9YRMml7of2+U+1vbeu1zXvS0AAAAAAAAAAAAAgC0jGA2A8RBKRVcnx8pkScFoivdHbsj1ayhAXVv7bFRT4FhZ5ePUAmNO8APQpM86WjAasBBrXbaRgH2gp9bn6jL8ufu6h/X/zA03JU/4Y7P33fUzy/uFEGyfLgH4be+99wSjAQAAAAAAAAAAAADjJRgNgBHpUnimoHX3LXCNDy9srm22yIDrV5YQjCbcccQa7j+rDA9aaMwJRgOa9AlG86oIWAdr41Nrnc9FgoOBvhrnjXL5OX3ovHL2xsU+d8uts7df+mjyvpcv3h/Wr899cHLQ4Zj95n2C0QAAAAAAAAAAAACAEVPtCsB4dCkaEjx0CnS5xieOmVxaUtPG16j1Kl49GUq1hGA0xqseNuxY5ePUAmNO8APQqE8w2gpDHwFgnbqsjz3nA1dpCkY/fv4fOGecfehin7vpG5PrHj5737nbF+8P260ODEbzYwAAAAAAAAAAAAAAwIj5iWgAxqNT4IuCVnJtYfPk4rJOvKTzsBkDrl9ZxrLZ+BmtpvvPSsODBKMBG7KUex5w+vRc6wqjOsXWee2NM6Cnxuf/vfb9XZ29ccHP3ZA86Vtm73v/LyTn7168T6xZj3tTl2C0tmP2znZvCwAAAAAAAAAAAABgy6h2BWBEuhQNKXrdeYsU0B9eWFbjSzoPG9Fn7JSToVQLhFRd24ElnIONqIezt68yPOiaMdhBUz8BBBABW8e8dHqt8doL2Af6apw3lhSMdsNNi3/2lttmb6+HyV0/vfh52V6TDsFok/2Wnct4nwkAAAAAAAAAAAAAsBmC0QAYkQ7FqkIfToENBuQZXyPX5/qtIhiN0WoqfC5nVtjoIsFoAwu0gR3W4x5oLgFgV9QOgTIA0xqf/4//OXXgWvlRX7z4Zx/zR5KHPm32vjtvX/y8rFmfZ7OhwWie7QAAAAAAAAAAAACA8RKMBsB4CGlg4wSjjduA61eWEIwmWG+86uHs7WWVj1OLjDn3SaBJn3uQ+xWwgN5rXXPNqbXO56LD8/OP8ZwGXGVOMNqQOeNz/9dh7xFKSW7+ztn7PvZbyb2/ufi52U6TgcFo/j0FAAAAAAAAAAAAABgxwWgAjEiXwjMFrSSrGwfG16j1Kl49GUq1hGA0xqupkLScWV2bi4TxKXgFmvS5B5pLgG0grIplOPjUpnsAjE3jWvg4GK0hOL2LW16w+GcfOEdDMFqS3Hn78POzXWqHYLS2Y6ynAAAAAAAAAAAAAIARE4wGwHh0KuRR7LPTNl3Mten2GWjA9VskpOqke9+UvO7PJa94VvKbfzXZv3/4OVmPpsLnssrHKcFowDL1uQda7wBrMPfZyly0u9Z4bQ/PdzjIWAOmNAajHz//D3ju3ju7+GeP3fjk5PHPnb3vXT+VTPaHt8Fq9Xm/POkQjNZ6zb0nAgAAAAAAAAAAAADGSzAaACPSoZBHcBXJCseB8TVuPa7fNUFoS1g2X/hQcucLkw//WvK2v5W86usUrI5GU2H0mfV2Y56mADeAPvdAIYvAQjwrsYUOPrXpHgCjMycYbcg7x7KEYLQkufm22dsvfjh5/79bThtsh9rhvWHbu0XPdgAAAAAAAAAAAADAiAlGA2A8OhWeKcbebRu+voL3xm1Q8erJoLQl+PCvJve8bvnnZfkaA8dW+Ti1yJhT8Ao06HUPtN4B1mHOXOPZa4et8doenu9wkLEGTGl6/j8ORhvy3L23pGC0z3x+cvbG2fvufOFy2mCFetx3JgcdTtd2jHscAAAAAAAAAAAAADBegtEAGBHBaKde5+L4VY0D42vc+ly/k6FUKwhGS5Lf/sHVnJflqg2Fz+XM6tpcJIyvqZ8Afe6B5hJgIX2fleYd79lrZ60z9O7wwvraAnZD41p4b87+DsqSgtGue2jypG+eve/9L08u3LOcdti81tCzI5P9ls97tgMAAAAAAAAAAAAAxkswGgDj0aWQZ50FtmyxFY0DxWQjt4XBaPf/3mrOy3LVw9nbyyofpwSjARtiPQ1sBXMRy+A9EtDTvGD0QcFoSwxXv/nW2dsn+8ldP7O8dliBHvedSYdgtNoSjGY9BQAAAAAAAAAAAACMmGA0AEZEIQ+bHgObbp9BhhS8lxUFoy2zKJbVmVcYvRKLjDnBaECTPvdAcwmwBvPW5sKqdtgar21TwDFAk8bn/+N/Th2wVt47u/hnT3rcVyQ3PmX2vnO3L68dNqt2CEabtASjCdAHAAAAAAAAAAAAAEZsiT+FTx+llDNJnpbk85I8MckjklxMcm+SdyZ5Y631k0tu87okfzTJk5J8epJPJHl/krfUWt+15LZuTvJFufx3e2iSDyS5K8mv19r668sBmnUq5FE8vds6Xt+VFdEbX+PW4/pdE4S2omA0OcXj0BSoUFZ4/RYJ45sIfgAa9FkbCSMCFmHuYBt5jwT0NicYbVDo/hL/SbbsJTd/Z3LH/3ntvo++KfnYHckjP3957bE8vZ7NugSjtRwjGA0AAAAAAAAAAAAAGDHBaGtUSnlSkucneV6SZyd5eMvhh6WUVyT5kVrrvx3Y7mOT/PUk35rk0xqO+fUkf6/W+tKBbX1Tku9J8ocbDvloKeXFSb6/1nrPkLaA06hD0ZBibFbJ+Bq3QcWrKwrAKmdWc16Wq6mQdKXXb5EwPgWvQJM+90BzCbAO8+Ylz147a53P1QJhgL4a5429Ofs7WGYwWtIcjJYk525PvviHltse69cWenas9XdRWU8BAAAAAAAAAAAAAOO1ooQHTiql/HSSu5L8/SR/PO2haElyJsnXJHl5KeXflFIev2C7X5vkjiR/IQ2haEf+SJKXlFJ+spRy4wLtPLSU8jNJfjbNoWg56sNfSHJHKeWr+7YDnHKdimcV++y0zgXUqxoHxte49bl+J0OpFgmp6tKM5fgo1MPZ21d5/coCY07wA9CkTwiNIFhgK5iLWIKmdfzVB628G8CINAajHz//D3ju3ltyMNrDnpo89tmz9537yW6hWmxAn2ezDtdw0hKM5j0RAAAAAAAAAAAAADBikhjW5w80bH9fklcleXGSlyZ5S66trPgTSV5TSnlCnwZLKc9J8rIkj5vaXJO8KZcDzF6R5J4TH/v2JD9TSveUh1LKmaP+f9uJXR9O8ktHbb05V/+0/+OT/Fwp5Vld2wHoVnimoHW3bbqYy/gatyHXTzDa6dZUGH1mhW0KRgOWqc890FwCLKLvWnvO8UIad9gar631MdDbnGC0ReeVcjbZu26xz7a55bbZ2y98MPnALy2/PdarS7hd6zHugwAAAAAAAAAAAADAeEli2Iy3JPkfkzyt1npTrfW5tdZvq7V+U631S5I8Kck/PvGZP5DkZ0spnRISSik3JflXSR40tfnXkjy91vqltdZvqbV+VZKbknx3kulfKf71Sf5Gj7/P307ydVPf7x/9/W6qtX71UVvPTPL5SV47ddyDk7yslPLpPdoCTrMuhdGKp3db5+LDFY0D42vcel2/E0uubkuw/lYarMXS1MOGHat8nFpkzCl4BRocXuh+rPUOsA5z5xpz0e5a57XtsD523wOmNb57HBiMdvaGxT43z5O+KTlz/ex9525fTZusT+0QjFb3W/a5xwEAAAAAAAAAAAAA4yUYbX1qkn+b5MtqrV9Sa/2RWus7Zx5Y6/tqrd+V5L8/setZSb61Y3t/Pcmjpr7/9STPq7W+/URbF2ut/zDJt5z4/PeUUp48r5FSyi25HKw27ZuP/n6XTrT1tiT/Za4OR3t0kh+Y1w7AZV0KeRT77LRFiw+X14ENt88wPa7fNUFoqwpGsxwfhaa5Z2/Lgu0aA9yAU2/SIxhNyCIAu2Lj7xCA0WmaNx54f7NoMNqNi31unusennzm82fve+/Lkkv3rqZdFtcnrKxLMNqkLRjNfRAAAAAAAAAAAAAAGC9JDOvzzbXWP1FrfWPXD9RafzTJS09s/rPzPldK+awkt05tupTktlprYyV0rfVlSaZ/ffyD0y2w7AeSXDf1/QtrrT/X0s75JLcd9enYC44C1gDaKeSha/FhnwKzXgSjjduQ67eiYDTL8XFoDBxb4fW7JpyvA/dJoMnB+e7HrmwdBey2vnPHvOPNRTtrnfeZTsHBxhowbU4w2qLP3WdWFIyWJLfcNnv75FJy14tX1y6r1xZ61ukY74kAAAAAAAAAAAAAgPGSxLAmtdZ3LfjRf3Ti++d2+MyfSXJm6vt/VWv9/Q6f+zsnvv+WUspDmg4upVyf5JvmnOMatdbfS/KyqU1nc7nPAHN0KVZV0LrTOhcfTo2DZRZdCwoZt17X70Qo1SIhVZ2aOTP/GDavae5Z6fUTjAYs0WGPYDTF88A28OzFMnRaHxtrwJTG5//jf05dcM44e8Nin+vicc9Nbrhp9r47X7i6dllQjzE0OehwupZjrKcAAAAAAAAAAAAAgBETjLb93nLi++tLKY+c85n/6sT3P9GloVrr25O8fmrTjUm+quUjX51kuprjtbXW3+nS1ow+Pb/j54BTrUMhj2Kf3bZQ6M8yx4TxNW5Drt+Kls3FcnwU6uHs7Su9foLRgCU6vND9WOtpYC3mzTXmot21zmtrfQz01PhcvTdn/xxnb1zsc13snUlu/s7Z+z7y+uS+rv9sx9ZpCz07Ntlv27m0rgAAAAAAAAAAAAAArJskhu0366feH9R0cCnlCUm+8MTnf61He6868f3Xthz7NXM+2+ZXcvXf7YtLKY/v8XngNOpUeKZ4eqc1hRNde+DUl8ssADO+xq3P9TsRSlUWCKnq1MyZ1ZyX5WqaR1Z5/RYacwpegQaH53scbC4BFrD0UEXPXixBl3cIAkGBaY3P/wOD0c7cMP+YIZqC0ZLk3O2rbZueetx3hgajuccBAAAAAAAAAAAAACMmGG37Pe3E9wdJ7mk5/vNPfP/WWusne7T36ye+f3qPtl7btZGjPv12j7YA0q1oSLHPTluk+HCZwWiKycZt0PVbVTCa5fgoNAUqrPT6LTDmOodHAqfK5KBbQf0x6x1gHcw1p9gar/1Sg9KBU2Hu8/+C88rZGxf7XFcP/+zkMX949r5zL0om3heM0qTDc1zrs577IAAAAAAAAAAAAAAwXpIYtt83nfj+jbW2VnR93onv39GzvXfOOd+0z11jW8Bpd/87kt/7kfnHKa7ecR2Lua4aB8ssADO+xq3H9Sul/ftlEYw2Eg3zSDmzwjYXCUZT8ArMcHih3/HmEmAhS35W8my/u9Z5bTvd04w1YFrTvHH0/mbRtfLZGxb7XB833zp7+/n3JXe/cvXt002f+2CXgOvJfsvnPdsBAAAAAPxn9u49WpezrhP8r/Y+J3cSAiSQgEnOISAqOgrYNiiIDghoNzdpURBPutsZp132co3jmqvdtmt6pp1erbO6HXW6l445It6gBWy8gEIj0ly0EW0VlcA5uXAJCSSE5Jycy95vzR9nn/Ced7/PW5e3qt6n3vfzWSuL7Kq3qh5StZ9L7f37bgAAAAAAYLwkMWSsKIorIuIfzmx+c8VhN898fWfDy94xpDgpEQAAIABJREFU8/Vji6K4ek7bHhMRj1nyWrOff0rD44FNcdebI37ryyM+/vOrbgmr1qaYq8sCMMX5I9fk/s2GUvUVjNZnsBadSfYjPS6n2oTxKXgF5tl9uOEB5jvAEKr6Gn0RHSh3V90CYGxS6+rz72/avhs8cHm745q48dURWxfP33fsaP/Xp3uTJYPRzKcAAAAAAAAAAAAAgBETjJa3fxERT5j6+vMR8XMVxzx65ut7mlywLMuHIuLUzOaralznZFmWJ5pcK/a3bd51gE032Yn4wD+oKPCZpthnrdUO/Zl6DjoNChI6NGpLBdv1FIxmOj4OqUCFrT6D7do8c/ooYI7d2SV+FfNpYACVc3N90foa8N7Weh/gWQOmJIPRzr+/abnu3h4gGO2iR0c86eXz933iNyLOPNB/G6ihwbhT1ghGKxf83ESAPgAAAAAAAAAAAAAwYgdW3QDmK4riFRHxAzOb/7eyLO+rOPSKma8fbnH5hyPikqmvH9XjdabNu04jRVFcGxHXNDzsycteF+jR3b8XcfbzDQ5Q0LreWhRzpQKN2lgqWIvVa3L/ZkKpip4CzIo+g7XoTLKQtM9guxbBaApegXl2Gy7X9SVAK9ZK5MiYBjRVEYzWdq584LJ2xzV1+JaIO39t//bdUxF3vjHi5u8dph10o04w2mTBZ6ztAAAAAAAAAAAAAIARE4yWoaIo/quI+MWZze+IiJ+tcfhsYNmpFk14OCKuXnDOLq+z6JxtfH9E/GgH5wFy8bk/avZ5wVXrrXYx1/Rz0GUBmOdr3Ja5fy1Cqmqdts9gLTqTCljsM9iuaBOM1mEQJLA+jv1CwwPMd4AhVPQ11vZrbMB7W+cdgmcNmJbsN4qK/RUOXN7uuKae8MKIS6+LePjT+/cdPyoYbWwWhZ498pmzC3Ya4wAAAAAAAAAAAACA8ZLEkJmiKG6IiN+KC0PC7oiI7y7LVlVa63YMQAVdy1qrW3w4PWS2LVicf+IOz8XgmkylZkOp2oRU1bqO6fgopPqR3O5fp/0dsBaOvyHiIz/e7Bh9CZAFay86IDgYaKpy/d9yrnzJ49sd19TWdsRNr5u/7973Rjz4sWHawQIN5jhljWC0ckEwmrUdAAAAAAAAAAAAADBimVXyb7aiKK6NiN+LiCdObb47Il5YluW9NU/z0MzXl7Zoyuwxs+cc8jrApmucCal4eq21KebqsgCsVUYp+Vjm/vUVjLbdz3npVipQodf71+KZU/AKzLrtZ1ocZL4DtND12t3aa30NeW9rBaN51oBpqT5hb43edt39uGe3O66Nw0fS+47/4nDtYHl/+X9Uf2ayIDzNeyIAAAAAAAAAAAAAYMQOrLoBnFMUxWMi4vcj4qlTmz8bES8oy/K2Bqfa9GC0n4mINzY85skR8dYOrg3kQPH0mqtbzDX1HHRaAOb5GrVG/cNsKFVPwWhyikci0Y/kFoxWu48ENsZn39f8GMXzQBasvdbXkMFoxjSgodS7o2Lv/U2bfuXAFRFXfXn7NjV11ZdHPOZZEff95/37jh2N+Mp/9sX/PwyvyfvJydmIe98fcc2CYL3JmUUXq38tAAAAAAAAAAAAAIDMCEbLQFEUV0XEOyLiK6c23x8RLyzL8i8bnu6Bma+vadiWK2J/YNnna1znsqIoLi/L8kSDy11b4zqNlGV5T0Tc0+SYougr6ATohuIdppS7LQ4SjMZ5De7f7Pygr/nCVp/BWnQm1ff0WUjc5pkT/AB0wnwHGIBQc4ZQa37sWQSmpfqN82v0Fn3GwauGDyI7fMv8YLSTd0bc8wcRj/+mYdtDe7e/fnEw2u7D6X3eEwEAAAAAAAAAAAAAI+ZPgq9YURSPiojfjYhnTm3+QkS8uCzLP21xyttmvr6x4fGzn7+vLMv7Zz9UluXn4lx427QblrzWbNsBWlDQutbqFnNNF9l3WQCmeH/klrl/fU2bTcdHIdWPFH0G2wlGA1ZEXwK00nSuXfV5a6/1NeS9NaYBDaXe/S0TmL91sP2xbd34nenrHrt10KYwq+E4eNvPLt6/KBjNfAoAAAAAAAAAAAAAGDFJDCtUFMXlEfHbEfG3pzY/FBEvKcvyj1qe9q9mvr654fGHZ77+yIDXmj0fQAuKfdZam6COTsM9PF+j1ijYbqbgdZkC2IWXMR0fhXJ3/vY+71+bZy7VToBGzHeADAilpgt15seeNeACqfeIe+v/Z/1U81NuXdS6Na1d/NiIJ750/r67/n3E2YeGbQ/9WRSMJvQaAAAAAAAAAAAAABgxSQwrUhTFpRHxtoj4hqnNJyPi28qyfN8Sp/6Lma+/qiiKyxoc//UV51u079l1L7IXCvdVDa4FUI+C1jVXt5hr+jkQjMZ5y9y/voLRtvs5L91KFZL2ev/aPHMKXoEOKJ4H2mi8Fq/6vLXX2hryvY0xDWgq1UedDy9//H8dcdHVzc65imC0iIhDR+Zv3zkRcdebhm0LUzoeBxcFo3lPBAAAAAAAAAAAAACMmGC0FSiK4pKI+M2IeP7U5lMR8dKyLN+zzLnLsvx0RPyXqU0H4sLwtSrPn/n6dxZ89ncrjl3kuXGubed9uCzLzzQ4HtgUjYtYFU+vtTZFzV0WQgveG7km9282lEow2kYrdxM7+lxOtXjmBD8AXTDfAbKgL6IDtebHnjVgWqpP2Fv/X/yYiG9+Z8RVT69/ylUFo13/4ohLrp2/79jRYdtCf3YWBKNZ2wEAAAAAAAAAAAAAIyYYbWBFUVwUEb8RES+Y2nw6Il5eluU7O7rMm2e+/vs12/a0iPi6qU0nIuIdCw55e0RM/8b9s/fOUcctM1/PthngnMnpZp9X7LPeaof+TD0HnQYFeb5GbZn+oRCMttFS/Uif96/NMycYDeiEvgQYgLX7Bhvw3icDjgESkuv/qTX6Y74m4tv+POJV90U87y3V59w62E3bmto6GHHja+fvu+fdEQ8dH7Q57OlyDlSWEbsLgtGs7QAAAAAAAAAAAACAEROMNqCiKA5ExK9HxEumNp+NiFeVZfn2Di/1hoiYrvp6ZVEUT6lx3P808/Wvl2V5KvXhsixPRsSbKs6xT1EUT42IV0xt2omIX67RPmAT7TYMRhNctd7qhv6UgtGYp8H92xdK1VMwWm/npVOpQIWiz+WUYDRgRYQVAa103Hfoi9bYkMFodebHnjVgWqpPmLNGv+jqeoHpWxct1aKlHL4lve/46wdrBj2ZnImF45j3RAAAAAAAAAAAAADAiAlGG0hRFNtxLrDsZVObdyLi1WVZvq3La5VleVtEHJ3adFFE3FoUxSUL2veyiLhlatOZiPixGpf7Z3Eu3O28W4qieOmC61wSEb+w16bzfr4sy4/XuBawiSbJfEY2Uptirg4LwBTnj1yT+zdT8NprABb5S/QjdQqgh5QKcANoRPE8MISqubm1F10wpgFNJcaf5HuhGqHmqwxGu/qrIq7+6vn7jh/1rnMlOvxvvvvwcNcCAAAAAAAAAAAAABiYhIfh/H8R8R0z2/7XiPhwURQ3NfwnGXA25Ucj4v6pr58TEb9fFMXTpj9UFMXFRVH844h448zxP1GW5R1VFynL8lhE/OuZzW8qiuIHiqK4oNqjKIovi4h37rXlvM9FvQA2YFPtnm54gGKftVbWLWqeeg5qH9PwvIzPUsWeNQpdW/FMjUIqcKzXwLw2z5zgB6ADwhGAQQhG21hDjjN1goONe8C05HvE1Bq9TjDawbat6cahW+Zvf+hYxL3vHbQpdKwqGK3T9+IAAAAAAAAAAAAAAMM6sOoGbJDvmbPtX+7909Q3RcS7F32gLMtPFEXxyoh4e0ScDyj7+oj4SFEUH4qIYxFxVUQ8IyKumTn8bRHxTxq053+OiK+IiJfsfX0wIn4qIv5JURR/EhEPRsThvWtNV4mciYhXlGX56QbXAjbN7qlmn1fQut7aFHMJRuMRTe7fTGFr0VMwmgLFcUjdp2K7v2u2eeY8T0An9CVAGx2vlazt6YL5MdBUcvxJrNHrBKZvXVT9mT7d9JqID/9wRLmzf9/xoxHXPnf4NtGNqmC0iHPPdF/vNQEAAAAAAAAAAAAAelTjN/YZq7Is3x0Rr4iIe6c2FxHxrIj4joh4UewPRfuViPjOsix3G1xnd+98vzaz69qIeHFE/L2IeGZcWDlyT0S8rCzLP6x7HWBDTU43PEDx9HqrW9Q8/Rx0WAitqHrcdk4ucXBfBYT6rFFITY3rFEC3JhgNWFLbUCFhRMAQ9DUbbMB7X2t+7FkEpiX6hOT6v8bafdXBaJdcE3H9t87fd8evL/m+jOY6HHd2agSjGecAAAAAAAAAAAAAgJESjLbmyrL87Yh4ekT8vxFx/4KPfiAiXlWW5WvKsjzR4joPlWX5nXEuBO0DCz56X0T8bEQ8vSzL3216HWAD7Z5qeIBCn7VWP7dz6pgug9E8X6P2x99X/7PFbGFrT8FogqzGIXWfiu0eL9rmmfM8AdPazlv0JUAOrL3ogjENaCi5/k+s0VPbp606GC0i4vAt87fvPBhx15sHbQoNFQfS+3ZrBKN59wgAAAAAAAAAAAAAjNSC36amS2VZ9pSmUeva90TEPyqK4gcj4usj4saIeEJEnIiIT0bEh8uyPN7Rtd4UEW8qiuJQRDwjIq6PiMsj4u6IuCMi/lNZlme6uBawIZoGowmuWm91C7mmn4NOi788X6M1ORtx8hPtj69T6NqK4sRRSIYy9pgz3eaZaxMeCayXT/9exG0/HfHwpyOue1G7c5hPA2007juqPq8vWltDjjMf+3fVnzHuARdI9QmpYLQa7wW2DrZuTWeu/7aIix8bcfpz+/cdvzXi0GsHb9LGajrubC0ZjGZOBQAAAAAAAAAAAACMlGC0DbIXSPYfB7rW8YjoJGwN2HCT06tuATlpFXImGI2IePBjDQ+YLXjtKRhNEf44pALHFhWnLq1NMJqgPdhon3xbxHte9sW+4HN/1PJE+hIgA+bJayy3e5tbe4DVSvQJyQC0Gmv3rYtat6Yz2xdF3PiaiI/+1P59d78z4sRdEZd/yfDtolqxZDCad0UAAAAAAAAAAAAAwEjV+FPmALBCkzMND1DQutZqF3JNfa7L4i/F+SPWNGRq5vPJAthlKU4chXJn/vZFxalLE4wGNPRXP9FNP2C+AwxCX0MuPIvAlOR8OrVGH0kwWkTE4SOJHWXE7a8ftCmbreG4U2yn9wlGAwAAAAAAAAAAAADWmGA0APJW7jY9oJdmkIuahVzTgR6dFn95vkaraBEydeEJOmnGPsJnxmGSCEbb6jEYrc0zq9gVNldZRtzz7o5Opi8B2uh6XmuevL4yu7fm0MAFUn1UYo1eJ0g/l2C0q58RcdXT5+87dtQ7qlwtevdU64/KuK8AAAAAAAAAAAAAwDgJRgMgb6kwmhQFXOutdsGyYDRmNQyZ2hdK1VMwmvCZcSgTY1HRYzBaq2fO8wQb6/S93Z3LfBpoo+m6q7Kv0RcxFM8aMCU1PiUD0Gqs3bcOtm5Op4oi4vCR+fse/GjEZz8wbHs2VsNxZ9G7pzo/OxEACgAAAAAAAAAAAACMlGA0APJW7jY9oJdmkIk2wWhdBgUJChmxJYPN9gWldURx4jikCk1zC0ZrPGYCa+PEnd2dy9gEtNK076hYW1l7ra/c7q1xD7hAqk9IrNGTgWlTti5q3ZrO3fTaiGJ7/r7jR4dtC8tLBflfwDgHAAAAAAAAAAAAAIyTYDQA8laruOeCA3ppBrmoWcg1XdjcaZGz52u0GgebzX6+r2A0z9QopMairT6D0VrwPMHmOtlhMJr5DtBG5+FS+iIGIhgNmJZaVyffK9V4X5RTMNql10Vc96L5++741YjdU8O2ZxM1fXeTCrKLSAf5L3M9AAAAAAAAAAAAAIBMCEYDIG/lbsPPK2hda7Xv71TBl2A0ImL5YLOegtHqhv2xWqlgtKLHYLTGYX4R+ijYYCfu6u5c5tNAG437DvOWzZXbvc+tPcBqpcazxI9T66zdtzMKRouIOHzL/O1nH4j4xFsHbQo1HLwyva/WH5WxvgMAAAAAAAAAAAAAxkkwGgB5m9Qp7pnSNEiNcalbbF9OFzZ3WPxVKpgercYhUzOfL3qaNnum8ldO0n3PVo/BaK3C+DxPsLF2T3Z4Mn0J0EbHoRvmyWsss3srEBSYlhp/ku+VarwvKrZbN6cXT/y7EQcfPX/fsaPDtoVqi37eUScYzTgHAAAAAAAAAAAAAIyUYDQA8lanuOeCzwtGW2t17+90wVenxV+ZFXDTQMOQqX0Fr21CqupQnJi9Rf1OkVkwmgAR2GAdfv8rnAfaaNp3VM5bzGsYimcNmJbqExI/Tq0TxH/q3tat6cX2JRE3fdf8fXe/PeLkp4Ztz8ZpOO4s+sMxdf6ojHdFAAAAAAAAAAAAAMBICUYDIG9Ng84Eo6232sX2UwVfgtHoRE/3XvhM/hYVmfYZjFanuHoffRRsrE6L3fUlQAudz2v1RWsrt4AWazJgWqpPSK7Ra6zdT97Zujm9OXRk/vZyEnH7G4ZtC4st+sMxtf6ojHEOAAAAAAAAAAAAABgnwWgA5K1Wcc/05wWjrbcVB6PlVsBNfUXTae9MYWtvfYtnKnuLxqGtHoPR6hRXA5zX6XxH4TzQQuO+o2IebO3FYIx7wLTU+JNYo9d533TtN7ZuTW8e+7cirvzS+fuO32oc7lPT/7aL3kkuCvNvez0AAAAAAAAAAAAAgEwIRgMgb5OGYUSC0dZb3WL7Cz7XZZGzQrLxWjJkqq++RfhM/hYFoxU9BqMVbZ5ZfRRsri6///UlQBsN57VCOjZYZvfeswhMS/UJyQC0Gmv3676ldXN6UxQRh26Zv++Bj0Tc96FBm8MCi95L1fqjMt49AgAAAAAAAAAAAADjJBgNgLzVKu6Z/rxgtLVWO0Rqqoixy+ApIVYj1rTYfaawtbe+RRF+9iYLxqGtHoPR2oT5CXWADdbh97/5DtBG532HeQ0DMe4BF0j1CYk1elWo+VP+UcQVh5dqUW8OfXck/38du3XIlmyYhnOcRe+lFu175HLGOQAAAAAAAAAAAABgnASjAZC3psFoE8Fo661mIVfZUzCa4vzxWjYwqq9gNMWJ+Vs0DhWZBaPpo2Bzme8Aq9a4H6rqa/RF6yu3e5tbe4CVSr0/SgagVfyY9Vn/z1LN6dVlT4p4wgvn77vjVyJ2Tw/bHuZb9E6y1s9OjHMAAAAAAAAAAAAAwDgJRgMgb43DiIQMrbXaxfaTxL8ve32FZOPV8N7NFrwKRttckwVFpls9BqMli64X0UfB5urw+9/YBLTScd9h7bW+cru3xj3gAqk+KvHj1EVr9xteHVFk/mPYw0fmbz9zX8Qn3zZsWzZGw3FwUfhZnWA04xwAAAAAAAAAAAAAMFKZ/0Y+ABtvUSDNPB/9qYj3vCLiP/9gxAN/3U+bWJ26hVzThdadFn9lVsBNjwYKRvNM5a88m95X9BiM1kZuIRPAcDr9/teXAC00XndV9TX6IoYiMAaYkhrPkgFoC4LRiu2lm9O7J7084uCV8/cdPzpsW5hv0c9H6vzsRDAaAAAAAAAAAAAAADBSgtEAyFc5icbF0OUk4hNvifjov4l4x9dF3PfhXprGqtQt5BKMxqwl713TkMa6FCfmb9G97zUYbUFxdZI+CjZXh+OJsQloQ99BbZnNWYULAxdI9QmJNXqx4MesYwhGO3BZxA3fMX/fp3474uHPDNueTdB03Fn0xxrKOu8rjXMAAAAAAAAAAAAAwDgJRgMgX4uKfuo4+4WIv/6JbtpCHuoW21/wuS6DQhSSjVbjezdT8Lpsf5QiQCJ/i4pMtzILRtNHwebq9PtfXwK00HReW9lv6YsYijUZMC0x/iQD0Bas3Xt9Z9Chw7fM317uRtzxy4M2hTnKnfS8qc4fcvDuEQAAAAAAAAAAAAAYKcFoAOSriyCi29+w/DnIR+1CrqlisU6LvxTnj9eS925RONZyJ+7pvHRmUZFp0WORc7LoehHPE2yuDr//Fc4DrTTtOyr6LYGvayyze2vcA6Yl+4REANqitXuxvXRzBvG450RccfP8fceODtsW5ks9l3XeVxrnAAAAAAAAAAAAAICREowGQL4WhdE0sXu6m/OwerXD8gSjMaNpsEIxU/DaVxGh4sT8LSoy3RKMBmSiy/Hk7Be6OxewOTqf1wpOYyieJWBaqk9IBKMlt8d4gtGKIuLwkfn7Pv9nEff/6bDtWXstxp3UO/Faf8jBOAcAAAAAAAAAAAAAjJNgNADyVauwp4YTd3ZzHlavbrH99Oe6LNAXYrW56oTyPf2ftjlxi2MY1KKQzqLHYLQ2SzUBIbDBOvz+P31vxKRuGC3AnsZrpWX7LfOe0cptzmqdD0xL9VHJ8PJFwWh9vjPo2KHXpfcdOzpcO5gv9XOSOn9YxjgHAAAAAAAAAAAAAIyUYDQA8lUniKiOE7d3cx4yULeQa7qIUTAaEc2DE2YKWxcFNT7z30R8659HfNWPNW6VZ2oEFt37Pouck0XXi2QWMgEMp+vx5L4PdXs+YAN0Pa81r1lfud3b3NoDrFZqPEsEoC1auxfbS7dmMJffGPH4b56/7/Y3REzODtuetdZi3Hnwo4lT1fnDMsY5AAAAAAAAAAAAAGCcBKMBkK9JncKeGk7c0c15WL26oR/lVMFXl0EhXYX1sQINiwCL2WC0Bff+5u+LePTTmzcpIroPkKBzi4pMt3ILRgM2V8fF7vcLRgMaarruKiv6rWX3Q13CqoFpqfFl9j3RF3ekz9XnO4M+HDoyf/vpeyM+9TvDtoULve+187fX+fmJcQ4AAAAAAAAAAAAAGCnV9gDkq6sQqp0T3ZyH1asdjDaZ/+9LX18w2mgtG5ywqNBwmUJXgQ75S977ot/wslbn9jzBxup6PHnw492eD1h/nYduVPVr5j3jldm9ExgDTEv2CYk1ejIwLSKK7aWbM6gveWXEgcvn7zt266BNWWtt1m4PfCTi9H1zzlXnD8sY5wAAAAAAAAAAAACAcRKMBkC+ahX21LD7cDfnIQN1C7mmC8wEoxHRvPh+prB10b1fKhxLcWL2UmPRMoF4tbR4rgTtwQbreDy5+HHdng/YAE37oWWDz8x76IpnCZiW6BNSAWiL3gmNLRjt4BURN/y9+fs+9baIU58dtj1c6NQ9+7fV+fmJd0UAAAAAAAAAAAAAwEgJRgMgX4LRmFW2CEarfUyX12ft9BWKpzgxf5PEWFT0HIzWKnDP8wQbq+vxZHK62/MB689aibpyWwN5doELpILRUmv0RGBaRP/vDfpw6Mj87ZOzEXf8yrBtWVsLxsHHfl163+7J/dsmZ2tczzgHAAAAAAAAAAAAAIyTYDQA8jXpKIhIMNr6qFuwPP25ToPRegrHYgBNi+9nClt7u/eKE7OXCukUjAZkpePv/13BaEBDjcOuKj5fdb7cwrVoILd7l1t7gJVKvkdMBaAtCEbbGmEw2rXPi7j8pvn7jh8dtCkb6XlvTe+b9zOOVJj/NAGgAAAAAAAAAAAAAMBICUYDIF+pMJqmBKOtj9qFXNOFzYLRiOWDE/q694oT85cai3ovcG6xVBMQApur6Xjy7F+KuPpr0vsngtGAphr2Q5XzlmX3Q03WZMAFUuNLIgBtUah5sb10awZXbEUc+p75++77UMTn/2LY9qylBXOYix+XfqZ2Ts45VZ2fn5gzAQAAAAAAAAAAAADjJBgNgHx1FUQkGG2N1CxYni6y77LIWTDaiDUsAixmCl67CmrcR3Fi9iaJe1/0HIy2qLg6yfMEm6vh9/81Xx/xkj+JuO5F8/fvCkYDGuo6XGrp4DTyldm9E4wGTEuNP8k1eiIwLWKcwWgR6WC0iIjjR4drxyYqiojty+bv220ZjGacAwAAAAAAAAAAAABGSjAaAPnqKohoRzDa2qgdTDZV8CUYjYhoXnw/G4zW071XnJi/1Fi0JRgNyEnLANCLHjN//0QwGtBQ43mt4DNy4VkDpqXGs0QA2myw/gX7RhqM9qgnR1zz3Pn7jv9SOkCebmxfOn/7vJ9x1LkX3j0CAAAAAAAAAAAAACMlGA2AfHUVRLQrGG1t1C3kKqcKmwWj0YXegtEU4WcvVWRa9ByM1map5nmCzdV4vrMX4LB98fzdu4LRgKYGDt0w7xmv3O6dwBhgWqqPSgagLVi7jzUYLSLi8C3zt5+6O+LT7xi0KWunahw8cNn87bsn55yrTkhdZuMuAAAAAAAAAAAAAEBNgtEAyFcqjKYpwWjro3bB8nTBV5dFzgqmR6tx8f1MwWtX/dE+nqnspYpM+w5GK9os1RS7wuZqOc5tJYLRJoLRgIYah0tV9VvL7oe6PEvAtFSfkFijJwPTYoBA9R7d8KqI7Uvn7zt+dNi2bJQi/d993s846ryvFAAKAAAAAAAAAAAAAIyUYDQA8pUKo2lKMNoaqVnINV3w1WXx12S3u3MxsCWL3cue7r3ixPylxqItwWhARpoGgBaC0YCOdT2vrezXzHvGK7N7Z00GTEv1CckAtEXBaNtLN2dlDl4Z8SXfPn/fJ94Sceb+YduzVirGwe3L5m/fOTnnVHV+fpLZuAsAAAAAAAAAAAAAUJNgNADy1VUQkWC09VG7YHmq4KvLIue+wrEYQMvAmEcO7+veK07M3iRRZFpkGIzWNBgJWCNN5zt749x2IhhtVzAa0FTDfkjw2ebKbs4qGA2YluqjUgFoC/q0vgPV+3b4yPztkzMRd/zasG3ZFEURcSARjLbbMhhNACgAAAAAAAAAAAAAMFKC0QDIVyqMpqndU92ch9WrW8j1ibdEPPBXe18IRiOWL76/+qu7accsxYn5SxWZFts9X9hSDWig8Ti3F+ywlQhGmwhGAxpqPK9dMhgtu3AtRsuzBFwg0SekwssXvSvs/b1Bz679pojLnjR/37FbB23KeqkYd7Yvnb993h9/qfPzE+8eAQAAAAAAAAAAAICRUm0PQL66CqHj4sQhAAAgAElEQVSaVzTEODUp5Prtr4y4/Ze7Lf4SjLZBigu//LL/cf7HnvL9S15HEX72Ut/3fRc4p4quF/I8weZqON8p9sa57Uvm7xcsDDQ1eOiGec945XbvcmsPsFLJ8ayYv3lRMNXYg9G2tiMOfc/8fZ/7YMQDfz1sezbFgcvmb985uX9bKsz/wg8t1RwAAAAAAAAAAAAAgFURjAZAvmoV9tQgGG2NNCi2L3cj/ui/nV801pZgtBFrWgQ4U/D6mGdGXP93Ltx28WOXD0YbPECCxlL3qFVwWQOC0YAmypbj3PbF83fvnl6qOcAGajyvrei3GvdrsATPG/CIVH+QCEbbvjR9qkuesHRrVi4VjBYRcfzocO1YJ1VjTuqZmvczjkXBfI9cz7tHAAAAAAAAAAAAAGCcBKMBkK86hT11CEZbH02DyXZORHzyrau7PhlZstB9azviuW+KeMZPRjzxpRFP+6GIF7w34tFfsWSzFCdmL/V9X2z3fOEWSzWBDrDBWgajbSWC0SaC0YCmup7XVvVr5j3jleG9sy4Dzkutq1Ph5Zc+PuLKp+3ffvCqiOu+pbt2rcqVXxrxuGfP33f89RET70q7cz68+rL5ux/82P5ttdZtxjgAAAAAAAAAAAAAYJwEowGQr65CqHYEo62N3VPNj/n8n3fYAIVko9U0MKoo9m/bvjjiaf99xDe+NeIZPxFx1ZzC1+YN6+Ac9GpVwWipouuFPE+wsZoGupwf57YTwWi7gtGAhpr2Q5Xz84r9AmHplLU+sCc1ns17T3Te0/9pPBJq9ci2H4nYOtBZs1bq0JH52x/+ZMRn3jlsW9ZCxRxm+9L52+95d8QHv/fCMLo678rNmQAAAAAAAAAAAACAkRKMBkC+yp2OTqTAdW3srjjkbtJRWB8rkGkRYNMACYaXLIrueSnV5vyKXWGDNf3+3wtu2EoEo00EowENdT2vXTY4jXzlOGfNsU3AiqT6gwVr9Ju+K+Kb3h5x+B9E3PiaiG94Y8SX/XAvrVuJG1+dXjccOzpsW9bZ+fC9rYvSn/n4z0d87N9+8etawWjePQIAAAAAAAAAAAAA47Qmf64cgLVUdhRCpfhnfeycXO31u3omGYFioOsowM9e6vu+2O75wm2C1zxPsLEaB7pUBKPtnDh3zmKo8RAYv6br7qp+yzp+feU4Z/W8AXuS4egV8+LrXnjun3V00aMjnvTyiDt/bf++T7w54swDERddNXy71tVWxY/uj90a8dTvP/fvkxrBaMY4AAAAAAAAAAAAAGCk2lTbA8AwJjvdnEcw2vrYfXi11xeMNl6NA2MGon/KX7IouudgtEIwGtBEw/HkfLDDRVfP33/mvogHb1uuScBmaTqvrZqfV57PvIcO5bpeBFYg1R9seGDw4Vvmb999OOLONw7alPGrGHO2Di7ef98fn/vfyU69+ZcxDgAAAAAAAAAAAAAYKcFoAOSr7CgYrWlQBPkSjEZrTYsAByp4FYyWv9T3favgsgbanF+xK2yuxt//e+PcY58VyTHv3j9cpkXApul8XlsVnGbeM1453jvrMuC8RB/V9zuA3D3hhRGXXjd/3/Gjw7Zlbe2ty4oD9T6+e6rmeY1xAAAAAAAAAAAAAMA4bfhv8gOQta5CqAQPrQ/BaLTWsPi+GCgYLctQAC6QDEbb7ve6rYquPU+wuVqOcxc/NuLRT5//mdP3LdckYMM0XXdXBZ9Vnc+8hw55bwScl+wPhnpPlKmt7YibXjd/373vjXjwY8O2Z8yqwl27DkYTJgsAAAAAAAAAAAAAjJRgNADyVe50eC4FQGth5+SKG6BYerRy7QMU4I9A6h71vZQSjAY00Hg8mQp22L4scU6BsEADXc9rzZPXV5ZrsxzbBKxGqj/Y8GC0iIjDR9L7jv/icO1YW3vP2NbBeh+f1AxG8z4bAAAAAAAAAAAAABgpwWgA5KvLMAZF1eth9+HVXr+cZFrETfeGKnj1PGUvNRYV2/1et8359U+wwZp+/0+Nc1sHEqfsMKQYWH+N19wV/VbV+cx76JJ3RsB5qfGl8OPUuOrLIx7ztfP3HTuqL62tYg6TWp/N2j1d83LuCwAAAAAAAAAAAAAwTn6TH4B8TboMY1AAtBZWHYwWoZhstDINTvA85S91j3oPRrNUA5poOM4VU8FoRaLwvtO5OLD2Op/XVvVrmc7vqSHHe5djm4DVSI1nQwXoZ+7wkfnbT94Zcc8fDNuWdXN+jVYcrPf53VM1T2yMAwAAAAAAAAAAAADGSbU9APkqdzs8l/ChtZBFMFqHzyUDaloEOFTBq74pe6nv+b6Dy1qdX7ErbKzGc93pYLRE0GMpGA1oomE/VFbMWyr7NfOe8crw3nlnBJyXGp8KwWgREXHjd0ZsJYK7jt06aFNGq2oOtJUIrp41qRmMZowDAAAAAAAAAAAAAEZKMBoA+eoyjEEB0HrYObnqFghGG6uqosNVybVdfFEyGC0RJNQZwWhAE0sEgBaJwntzHqCJztfc1vAMyDsj4BGpebUfp0ZExMWPjXjiS+fvu+vfR5x9aNj2rJW9NVpqfTZrVzAaAAAAAAAAAAAAALDe/CY/APmadBiMpqh6/MpJxOT0qlshJGS0GgbGFEX1Zzqhb8peqoC072C0osVSTdAebK6m3//T49xWKhity7k4sPYah25U9FtV5zPvGa8s712ObQJWIvkOYKj3RCNw6Mj87TsnIu5607BtGaWKMWfrYL3T7NZ9T26MAwAAAAAAAAAAAADGSTAaAPnqMoBKmNX47Z5adQvO8SzRpSxDAbhA6nu+TXBZE63O73mCjdU4kGgq2KFIBKN1GlIMrL+Bg9HMe+hS43EUWF+p8UUw2iOuf3HEJdfO33fs6LBtWSt7z1hqfTar7rtyYxwAAAAAAAAAAAAAMFKC0QDIV9lhGIMCoPHbObnqFuzxLI1T0+CEgQpeBe3lLxmMtt3vdQWjAY0sMc6l+rMu5+LA+ut8zV3Vr5n3jFeO9y7HNgGrkegP+g5HH5OtgxE3vnb+vnveHfHQ7UO2Zv1sHaz3uYlgNAAAAAAAAAAAAABgvflNfgDy1WVgkAKg8dt9eNUtOGciyGqUykyD0RTg5y81fvReFN3i/I2fc2BtNJ3rFlPj3NaB+Z/ZOdG+PcDmadoPVc1bqs5n3kOXvDMCzkv2B0O9JxqJw7ek9x3/xcGaMU4Vc5jU+mzWbs1gNO8eAQAAAAAAAAAAAICREowGQL4mO92dS5Hr+JUdPg/L6DKwjwFlXASof8pb6nu+2O73uq2C1zJ+zoHuTc5G3POeiOOvjzh5Z8ODp4IdikTh/bFfiHjoeOvmARum6zltZTCaddl4ZThntSYDzksFbxaC0S5w9VdFXP3V8/cdPyrAtI3zz1hqfTatLCN2T9c7rzEOAAAAAAAAAAAAABgpwWgA5KvTICwFQOOXSUGdAvyRavj8tC14ffI/bH6MZypvqQJSwWjAKp39QsTvf+O5f97/PREP/GXDE0wHoy3ozz7YYlwDNlTTNXfVvEUw2trKMiwnxzYBq5Eaf/w4dZ9Dt8zf/tCxiHvfO2hTRqVqHNw6WOMcOxGTU3UvWPNzAAAAAAAAAAAAAAB58Zv8AOSry0LnVLAN45HLPbzvQ6tuATk7dKT5MUId8pa6P62Cy5pocf4sQyaAXvzF/x7x2fe3P346AHTrQPpzn/mPETsn218H2Bxdr9cqz5fJ+pD1kMv7BmD1UuvqtgH66+ym10QUibXE8aPDtmUt7D1jqf+m0yZnI3ZrBqMZ4wAAAAAAAAAAAACAkRKMBkA+dk5EPHTsiwVok53uzq0AaPxyCfx5z0vPFZ8xLo2fn5YFr9c+N+Lm/67ZMfqnvCWD0bb7vW6r4LVM+kmgf3/1r5Y8wdQ4V1V4f/bBJa8FbIam85Cqz1fsnwgXHq8c56w5tglYjVR/4Mep+1xyTcQTv23+vjt+XcByUsWYs3Wwxil26gejCZMFAAAAAAAAAAAAAEbKb/IDsHrlJOKPfyDiTVdH/OaTI/7DzRH3/1k6jKYVBUDjl1Gh8mc/sOoW0NiAz8/1L272+U77OrqXGj96XkoJRgN61SAYbXKm36YA66Fp2G9VcHHV+cyh6ZKwauC8VH9QtAzQX3eHjszfvvNgxF1vHrYto7f3jFWtzyLO/UGZusFoufyxEQAAAAAAAAAAAACAhgSjAbB6f/WvIm776YjJ2XNfP3Qs4l0viNg90d01FLmOX0738GP/dtUtoLGGRYBLFbw2PFaoQ95S96fY7ve6rYLRAGqaHueq+rPybL9tAdZD1+u1yvNltD6koQwDWnJ63wCsWKqPEow21/XfFnHxY+fvO37roE0Zj4pxcKtOMNrZiMnpmtczxgEAAAAAAAAAAAAA46TaHoDVO/76/dtOfzbi0+/o7hqKXNdARsXTWxevugU0VTZ9foYMRtM/ZS11f/oORmuzVGv8nAOba2qsqiq83z3Tb1OANdF0Tls1b6k4n3BhOmUeDZyX6A+El8+3fVHEja+Zv+/ud0acuGvY9ozZ+fDq4mD1Z8udiN1T9c7rvSMAAAAAAAAAAAAAMFJ+kx+A1XvgL+Zvf/hTHV5EAdDo5VTEtS0YjQ4Jdchb6v70XRTd6vwCHYCaiqlgtKIiGK08229bgPXQ9XqtKvDVHHq8cgzzzel9A7Bayf5gmQD9NXf4SGJHGXH7nD+IsumqxsGq4OqIiMnZ+sFo3hUBAAAAAAAAAAAAACMlGA2AzaDIdQ1kVMS1JRhtfJo+P0sUvBYNjxXqkLdkMNp2v9dtE4yWY8gEkL+q/mxyZph2AOPWeM1dNW+pOJ81/ojlOGf1PAHnpfoowWhJVz8j4qqnz9937Kh3FbXtPWNVwdUREeVO/WA0cyYAAAAAAAAAAAAAYKQEowGwGQQPjV9ORVzbgtFGJ+cizJyebfZL3Z++g9FaLdUyfs6BjMyEOmxVFN5PzvbXFGCNdDynrZojW+PTpZzXi8CwUv1Bm/DyTVEUEYePzN/34EcjPvfBYdszdlsHqz8z2YmYnK53Pu8dAQAAAAAAAAAAAICR8pv8AGwGBUBrIKNC5S3BaOPT8PkpiurPpA9u9nGhDnlL3Z++i6JbnT+jfhLI1+wYVwhGAzrQdM1dFUQlGG19ZRlC5p0RcF6qP1jmPdEGuOm16QD5Y7cO2pT8VYyDVeuziIjybMTuqW6uBwAAAAAAAAAAAACQKcFoAGwGwWhrIKMirm3BaOMz5PMjGG2tJIPREgW/XWkTjJZlyASQn6bBaGf6awqwPhqvuZcNRrPGp0Pm0cB5qf5gqQD9DXDpdRHXvWj+vjt+tUGI1ybbe8a2DlZ/dLJT/7+pORMAAAAAAAAAAAAAMFKC0QDYEAqARi+nIq4twWjrb8iC14yebfZL9T1tgssaaXN+gQ5AHTNj3FZF0OPkbH9NAdZH5+u1quA04cLjleOc1ZoMOC8VjObHqZUO3zJ/+9kHIj7x1kGbkreKcXCrIrg64twarXbYXI7jLgAAAAAAAAAAAABAtRq/XQ0AayCnUC1ayqiIa+vgqltAU2XT52eJYLSi4bEToQ5ZS4VuFBVBQstqVXSdUT8J5Gt2nCoqXg1NzvTXFmCNNF1zVwWfVZxPMBpd8s4IOC/ZHwwZoD9ST/y7EQcfHXH28/v3HTsaceOrh2/TmJxfp1WtzyIiyp2Iyel65zXGAQCstaIonhERT4mIJ+5t+mREfLQsyw+vrlUAAAAAAAAAANANwWgAbAYFQOOX0z1UhD9CGQdGeZ4yl+h7cgxGaxwACGym2VCHipCHydneWgKskc7Xa1XBaBmtD2koxzlrjm0CViPVHwhGq7R9ScRN3xVx28/u33f32yNOfirisuuHb1duqt7d1PmDHOVOxO6pmtczZwIAaKMoisMR8bUR8ay9/31GRDxq6iN3lGV50wqaFkVRHIyI/yEivjcinpz4zMci4uci4ifLsvSSHwAAAAAAAACAUWpRbQ8AY6QAaPRyCvwRZDVCDZ+fYpmC16bH6p+yNkl8v7cJLmui1fkz6ieBjM2OUxXjkGA0oI6moRtV67uq81mTjVdOa/vzhMYA56X6qL7fAayLQ0fmby8nEbe/Ydi2jM7eOq2o8TfNJmfqB6N5VwQAUFtRFM8viuLtRVF8LiI+HhG/GhE/HBHfGBeGoq1MURRPiYgPRMS/iEQo2p6bI+LHI+L9RVHcPETbAAAAAAAAAACga36TH4DNoMh1DWR0DxXhj8+gxfcNg9E8T3lL3Z9iu+cLC0Zjxs7JiLvfGfHAR/IMFGE4y97/2fDPqnny5Mxy1wM2Q7nT8fkEozEgcyvgEanxZ5kA/Q3y2L8VceXT5u87fqv+NiIq393Ued/0X360fjCan4sAADTx1RHxLRHxmFU3ZJ6iKJ4QEb8XEc+Y2fWxiHhrRPxmnAt0m/bMiHhHURTX9t9CAAAAAAAAAADolmA0ADaDAqDxy6lwThH+Bhiw4NXzlLnU+NHzUqqwVGPK3e+K+I1rI971gojf+opz/7tzYtWtYlWWntc2DEYrzy55PWAj1A3neETV+q5ivzX+iGW0tn+E5wnYk3r/OBsuzHxFEXHoyPx9D3wk4r4PDdueUdl7xrYvqf7oZ98XcerTNc9rjAMA6MDp2B84NqiiKLYi4i0RcePU5k9HxIvKsnxKWZYvL8vyZWVZ3hwRL4mIu6c+dygi3lwUFjYAAAAAAAAAAIyLansANoOi6TWQUfH0RJDV+Az4/DT9nXL9U95SwXXFdr/XbROMllOAJN3ZPRXxnpddGIT2mXdF/NmPrK5NrNbSgZoNg9EmZ5a8HrARug5GqwxttCajQ9ZkwCNWFI6+Tg69Lv1O49itgzYlTxVzoK0DEdf/nerT1J17eVcEANDU2Yj404j4uYj4voh4ZkQ8KiK+d5WNiojXRsTXTX19X0Q8pyzLd8x+sCzL342I50TE/VObnxMRr+61hQAAAAAAAAAA0DG/yQ/AhlDkOno5FSorwh+hpkWAy/zB7KbBaJ6nrKX6nr6D0Vot1RS7rqVP/oeInYf2b7/tp4dvC3lYdtyYDfCsOt/k7HLXAzZD42C0KoLR1leOc9Yc2wSsRCpEqmkI/ia77IkRj3/B/H13/ErE7ulh2zMW08/Y1/50xBVP7ua8Ob1TBwDI39GIuLIsy68py/K/Kcvy35Vl+SdlWa70JXlRFNsR8WMzm3+oLMvbU8eUZXk8In5oZvM/L4o2f5kJAAAAAAAAAABWwy+7ALAZFACtgYwKlRXhj0+qsDVlyIJXz1PeUven77qBVufPqJ+kO7e/Yf52YVWba+lxY3aMq5gnT84seT1gI0waBqNVzc+r1vDm0HTJOyPgEanxyY9TGzl8ZP72M/dFfPJtw7ZljC6/IeJb/7yjk3lXBABQV1mW95dl2XX6fxe+ISIOTX39yYj4pRrHvX7vs+c9OSKe02G7AAAAAAAAAACgV36TH4DNoGh6/HIqVPY8jdCARYBNQ9VyerbZLxmMtt3vddsEozUNAGQcJsYcZi07bsyMU1XjkBA+oI7djmtGK+c15tCjleWcNcc2ASuRmhsPGaC/Dp708oiDV87fd/zosG3JTXIcnHnGDlwa8ew6WRdV1zNnAgBYA6+Y+foXy7L6Fxb2PjM7qXxlZ60CAAAAAAAAAICeCUYDYLWGKohVALQGMipUFoy2AQYsePU85S1ZFJ1hMFpO/STd0Ucwa9lnYjbUQTAa0IXGwWhLBp8JDh2xDOes3hkBj6gZWsViBy6LuOE75u/71G9HPPyZYdszVode28FJjHEAAGvgxTNfv7vBsbOffclSLQEAAAAAAAAAgAEJRgNgtQYrPlUANHo5FSoLqRmhIYvvGxbLep7ylro/rYLLmhCMxp5yZ9UtIDdLhwHNBqNVnO/kXUteD9gIjYPRKlSt/8yh6VJO7xuAFUusq3t/B7CGDt8yf3u5G3HHLw/alLw0fHfzpJcveTnvigAAxqwoiosj4uaZzR9ocIr3zXz9lKIoLlquVQAAAAAAAAAAMAy/yQ/Aig1UfKrIdQ1kVMSlCH98GhcBNgw3W+ZY/VPeksFo2/1et03RtWLX9WTMYdbSz8TsOFUxDn3855a8HrARmgajVc1bKufI5tDjleOcNcc2ASuRHH+WeU+0oR73nIgrZvMb9hw7OmxbxqBIPGPblyx5YnMmAICR+9KImP6h5D1lWX6h7sF7n/3s1KbtiHhqR20DAAAAAAAAAIBeCUYDYLWGCgQSPDR+Od1DITUjlHGhu+cpb6m+p01wWROtzp/xc0575c6qW0Bulh03Zgvuty+tPubMA8tdE1h/k4bBaNUnXLzbHJou5fS+AVixxLo6FVpFWlFEHD4yf9/n/yzi/j8dtj3ZaPjuZuviJS9njAMAGLnZtOE7W5xj9pintGwLAAAAAAAAAAAMSjAaAKslGI3aMgr8UYQ/Qg2fn2UKXpse63nKW+r+FNvzt3fGUo09+gj2WXZeOzNOHf771YecumfJawJrrSwjdpsGo1XMz8uq/cbH0aq6tyuRY5uAlUj2UdborRx6XXrfsaPDtWMUEu8Tty9Z8rzGOACAkXv0zNdtXtbPHnNVy7YAAAAAAAAAAMCgDqy6AQBsuqECywSjjV5OxdOK8DfAEsFoTY8V3Ji5xP3pOxit7fnLcrlgP/IzWTDmuN+badl5yOwzc8WhiGufF3HPe9LHTJoGHgEbZXKmxUFV67uKObI5NF3yPAGPSIxP1l3tXH5jxOO/OeIz79q/7/Y3RHzNv4zYOjh8u1ap6TvuZYPRjHEAAGN3xczXD7c4x+wxj2rZlgsURXFtRFzT8LAnd3FtAAAAAAAAAAA2g2A0AFZrqMIcBUBrIKN7KBhtfHIK1pvlecpb8v5s9XvdoufzMx6L+ohy0n9IH/lZetyYE+rwvN+MeNOj04fsCkYDFuijj6haw5tDj1iGazPvjICIindHgtFaO3RkfjDa6XsjPvU7EU966fBtylLiGdu6eLnTGuMAAMZuNhitzYu42WC02XO29f0R8aMdnQsAAAAAAAAAAPZRbQ/AaglGo66cgq0U4Y9Q0+dnmYLXhsd6nvKWuj9bPYdRtQ5Gy6ivpBsLg9H0Hxtp0kMw2kVXRbzyM+lDBKMBi7TpI6rWd4LR1liO89Uc2wQMb0FfILy8vRu+PeJAInfh2K2DNiUPDcec7UuGvR4AALlrM8EzKQQAAAAAAAAAYJT8Jj8AKzZUYJlgtPHL6B4qwh+fnIL19sno2Wa/ZChH30upluF8WT/rtCIYjX2WHDeKRP9yybULLnl6uWsC62334e7PWRmMZg5NhzxPQERFX7BMgP6GO3B5xA2vmr/vU2+LOPXZYduTq9Q6bdlgNGMcAMDYPTTz9aUtzjF7zOw5AQAAAAAAAAAgSwdW3QAANtzuqWGuowBo/HIK+xFEM0INn59UMWIfx3qe8pa6P8V2v9ctijhXeN2078uor6QbgtGYtfR9XzBObV8WsXty//ah5uzAOLXqI6rmLBX7jYHjldPa/hE5tgkY3qK+QDDaUg4diTh26/7tk7MRd/xKxJf+48GbNBrLBqMZ4wAAxi7nYLSfiYg3NjzmyRHx1o6uDwAAAAAAAADAmhOMBsDqTM5GvOeVw1xLMNoayOgeKsJnoYbFshPPU9ZS40ffwWgREcVWi/5GwevaKXcW7NN/bKReg9EuEYwGNDfpoY+oWsMbA+mSd0ZAxOLgxmJruHaso2ufF3H5TREnbt+/7/jRzQpGSz5niXXa1sVLXs8YBwAwcg/MfH1Ni3NcO/P151u25QJlWd4TEfc0OaZY5o+TAQAAAAAAAACwcfwmPwCrc88fRHzuA8NcS9H0+C0qThya52mEmj4/Q/5StgLFrKW+34coim5zjZz6SrqxcMzRf2ykZechiwqPti+Zv10wGrBIqz6ias5SFYxmDByvHOernicgYnFfoHh/KcVWxKHvmb/vvg9FfP4vhm3PmKTWaHWZMwEAjN1tM1/f2OIcs8fMnhMAAAAAAAAAALIkGA2A1fnI/zXctRQArYGMiqcFo41P47CoZQpeGx7recpbavwYIhit1XIto76SbizqIyb6j4209Lx2wTi1dfH87ZPTS14TWGuTnebHVM3Pq/o6c2i65HkCIhaPPcX2cO1YV6lgtIiI40eHa8fKNXxvs2wwmvdEAABj9zcRMf3i4tqiKB5V9+CiKK6MiMdNbdoNwWgAAAAAAAAAAIyEYDQAVufu3x/wYoLRRi+ncDtF0yOUcRGg5ylzqWC0AYqitw60OCjjZ512FoXN6D8209L3fUEwWqrofvfUktcE1lrZIhit+qQVu42B45XhfFXYLBBREYzmx6lLe9STI6557vx9x3+pXdDqWkms05YNRsvpnToAAI2VZXk6Ij4+s/nZDU7xnJmvb9s7JwAAAAAAAAAAZM9v8gOwGRQArYEVFE+nih4VTY9Qw+enWBAa0/Wx+qe8pUI3hiiKLloEo5UZBk2wnEXBL0JhNtOy933ROCUYDWijVTBaVfBZxRzZHHq8cpyvmlMBEbHwD2sIRuvG4Vvmbz91d8Sn3zFoU1an4Ti4dfGS1zNnAgBYA7878/XzGxw7+9nfWaolAAAAAAAAAAAwIL/JD8DqtAl8aUvR9Pit4h6mCs8UTbNQ02A0z1PWkn3PAEuprTbjZIZBEyxHMBqzlr7vgtGAjk3aBKNVqAxGMwbSIc8TELG4LxCM1o0bXhWxfen8fcePDtuW3KQCrFNrtLpyDCQFAKCpN898/bqiKLarDtr7zHdXnAsAAAAAAAAAALLlN/kBWJ2tg+2PveJwwwMEo43fCoq4BKOtj8ZFgA3DzZbhecrXoudmiKLoVgGiCl7XjmA0ZvUZjJaa+0xOL3lNYK2ViWC07csirn5G6qCKkwpGW18Zzlc9T0DE4lDO6swB6jh4ZcSXfPv8fZ94S8SZ+4dtzyo0fUe5bDCan4sAAKyDP4yI4/Q6OiYAACAASURBVFNfPyn2B57N890R8cSprz8eEf+pw3YBAAAAAAAAAECvBKMBsDqtAl8i4ut/NeJb3t/smEWFbYzDKu7htmC09TFk8X3DUDX9U74WFkVnGozWOASQ7AlGY9ay40axYJxKFd3vnlrumsB6mySC0bYOLO5zFqnq64yBdMnzBERUjD1+nNqZw0fmb5+cibjj14ZtS1YSc6ZUeHVd3jsCAGSnKIpy5p/nL/p8WZa7EfGjM5t/siiKmxZc46aI+L9nNv9IWZogAgAAAAAAAAAwHn6TH4DV2TrY7rjLbwzBQ5toBWE/qcIzRdMj1PD5aRvg0OZYz1PGVlwUvdUyQJT1UibCZiL0H5tq6fsuGA3oWGqsWhTyWhnmWrXfGn+8MgzyNacCIlYfjr4prv2miMu+ZP6+Y7cO2pTVaDgOptZofV0PAGDDFUXxpKIobpr9JyKeMPPRA/M+t/fP43po2hsi4oNTXz8mIt5XFMW3zPn/8KKIeH9EXD21+X0RsclJxAAAAAAAAAAAjJBKewBWp20wWrEdjYPRFE2PX2XhfA+2BaOtjcbPzxLBaE15nvK1sCh6u//rLwoTSVLwunYW9RGCXzeTYDQgN5NEMNrWgUj3ORVzlqoxzhyaLnmegIjFfYFgtO5sbUccel3EX/6f+/d97oMRD/x1xFVPG75dK5eYMy0bjOa9AQBAU++NiBtrfO6JEXE8se9oRNzSVYMiIsqynBRF8YqI+EBE3LC3+bqIeHtRFLdFxF/GuUnlV0TEzTOH3x4RryzLVfzCBQAAAAAAAAAAtOc3+QFYnVaBL3EujKZoGFr0hb9pdy0ysoIiri3BaLTRsH9SoJivhcFoAyyltgSjERXBaMajjbTsfV80j07NfQSjAYuUiWC0tmv+iOo58sQYOFo51uCaUwERsfDd4xDh6Jvk0JH0vuNHh2vHSjQcB5cORstw3AUAoJWyLD8dES+MiA/P7HpKRLw8Il4W+0PR/iQiXliW5Wf6byEAAAAAAAAAAHRLMBoAq9Mq8CX2CtEaBg/9zb9udy3ysYoirm3BaOuj6fPTsI9ZhucpYysORmsTJqLgdf0sCobRf2ympQM1F/RfBy6bv333xJLXBNbawmC01Ly6Ys5S2dcJFx6vDOer5lRAxOrD0TfJlU+NeNyz5+87/vrNDEBNBVinwqtrM2cCAFgnZVl+NCK+LiL+l4g4tuCjH9/7zN8uy/JjQ7QNAAAAAAAAAAC61jKRBgA6UBxsedx2ulBokcnZiK2W1yQDKyjiShWeKZoeoSGL7xv2T56nfK26KLpNMFqOQRMsRzAas5a974vm0QeumL/97IPLXRNYb5NEMNrWgXZr93MnXbzbGEiXPE9AREUop2C0zh06EvHZ9+/f/vAnIz7zrojrXjh8m3K0fclyxy8drA0AsFnKsrxpgGss9Re6yrI8GxE/HhE/XhTFMyPiqRFx/d7uT0XER8uy/NByrQQAAAAAAAAAgNUTjAbA6rQNKSu2o3HwUIRgtLErVxD2s3XR/O2Kpsen6fPTOsChzbEKFLO16qLoLcFoRCy8p8ajzbT0fV8UjPao+dsFowGLlIlgtEUhr1Xz88r9xsDRWsXavornCYhY3BcMEY6+aW58dcSHfjBicnr/vmO3rm8wWtNxcNlgNO+JAADW2l4AmhA0AAAAAAAAAADWkt/kB2B1WgW+xF4hWovQIoWuI7eC8Kjti+dv9yyNUMZFgBPPU74W9DtDFEUvChNJyTFoguUsCugzHv3/7N15nB11ne//d50+3emEbE0WCGFJmsVABJFlDCEoRFCEi6AyUURJ1JlRYO7AOIA63gDKHRnc8OfAT9QLphkUETEgLsAV2VFAFgmGRbISMHtCtt5yTt0/Omm6T9e3Tu3beT0fjzyg9m84RdW3vqc+79OYwn7ubgGezYZgtJ0EowFwUTUEo5XKCvTs3rdT98WuAbaAT/SpAEju9xarKbl2NIqWsdK+ZzkvW7VQ6nkz2fakztBnssrhxqDoMwEAAAAAAAAAAAAAAAAAAADIKYLRAADpsZoDbtfkHuhgQhFQvqUR9lMiGK1xBQ1wCLAt51N2uRZFJ/AoFShAlGC04nH5TLl+NKbQn3uAYLRegtEAuDBdl1xDXg33N7sqbX1VqnQHOyZyIIP9Vc4nAJJSD0dvRO3znOdXOqWVtyfalOT4vA9alnmM2tPh+E4EAAAAAAAAAAAAAAAAAAAAQD7xJj8AID2lEMFoQUKLKHTNuRSKp5sIRisOv+dPiGA038GNFChmlmvxaAKPUq5hIgZphEgiPRQ4N6bQn7vLfapsCEbbSTAaABf2Tuf5Vlm++tWr7pZ+MVG6+2Dp9V/WOSbPZLlUrUgbnki7FUNxPgGQ0h8DaER7nyINn+S8bFlHsm1JnUufqak1xH4ZJwIAAAAAAAAAAAAAAAAAAACQT7zJDwBITylA4IsUIhiN8JBcS+PzKxGMVhhZDovifMout+uOldFgNApei6XevY/rR2MK+7m7BXg2m4LRtoU7JoBiMwWjuT7z1/RZtrwiPfJhqXuDx2PyfJ9Lf/la2i1wRp8KgOR+LUhiDKARlZqkKZ90XrbuUWnrq8m2JxEBxm3CBKPRZwIAAAAAAAAAAAAAAAAAAACQU7zJDwBIj9UccLsm90AHEwpdcy6FsJ8mgtGKw+f5E+Qa89bG/lbnfMqwlIPRAgWIEoxWKFVD0MxuXD8aU+jP3eU+VTYEo1V7pe6NIY8LoLBM9yurbO5X1wYXr7jNHLDmuD33wFxatTDtFjjjfAIgpR+O3qja55qXLbs5uXakzW0s0vTjHZ4QjAYAAAAAAAAAAAAAAAAAAAAgn3iTHwCQnkCBL+oLRvMbPCSJIqCccytOjEup1Xk+RdM5lOGwqDTObXjj+tkk8ChlBbhP1oaMIN/s3jrLuR81pDiD0ZoNwWiSdMd46fVfhzw2gEIyBZqVyrue3522qelnLbo8mmMi2zY9m3YLnNGnAiDJPRzdcD9DeGMOk/Y81nnZ0o7ijZsFGbdpMoxRx3U8AAAAAAAAAAAAAAAAAAAAAMgAgtEAAOkJEvgiSVZJgYLRKHTNuRSKuJpHOs+vdCfbDqQgSPhiwG25NmWXW/GtlcCjVNAAURRHtU7oC9ePxhQ2GMAKGIwmW3rsY1LX+nDHB1A8pvuVVTY/94cNNqv2hNseGIg+FQAp/TGARtY+13n+jpXS2oeSbUtqXJ7TQgWjFSxYDgAAAAAAAAAAAAAAAAAAAEDD4E1+AECKAgZdWU3ugQ7Gw1HommtpFHGVTcFoncm2A+HZCQbr+b0+cW3KsJSLogMFiKYQIon4VHvdl3P9aEyhP3eX+1TZLRhN0s5tDRRMAMAzU8iZVTYHvYYORqtzjwT8qNKnAqA6/Wy+To3VAR+TSi3Oy5YuSLQp8QswblMKEYzGOBEAAAAAAAAAAAAAAAAAAACAnOJNfgBAeoKGOlhNcg10MB4vhWAtRCiFIi5jMFpXsu1ABPyePwGuMUFxbcout8+GYDQkoV5oDMFojSnWYLQ96m/etSbk8QEUjul+VSqb+zNVgtGQIfSpAEjpjwE0smHjpMlnOC977Q6pd1uy7UmFy3Na07AQ+2WcCAAAAAAAAAAAAAAAAAAAAEA+8SY/ACA9QcOAAgejUeiaa3YKRVzNo5znV7vTaQ+C8/t5WWGC0Xxuy7Upu1zvUwk8SpUCBKNxbSqWeqEvXD8aU9jP3e0e19Raf/tqT7jjAygeU8iZ5RKMVi/8s+4xCUZDhOhTAZDqBKM1JdeORtU+z3n+zu194WiNzMtzmgk/yAAAAAAAAAAAAAAAAAAAAAAgpwhGAwCkJ2jhqdUULLSIIqCcS+HzK480L6t0JdcORCDDYVEU4WeXa1F0Ao9SpiARVxk+1+FfvdAY+jaNKfR9w6UfbZWkUov75tXukMcHUDim+1WpbA56NYWpeT4mwWiIEM9kACS5jj0mMQbQ6Ca9X2qd6Lxs6YJEmxKvAOM2YYLRGCcCAAAAAAAAAAAAAAAAAAAAkFO8yQ8ASE+YYDS3QIeoj4dssFMo4iqPMi+rEoxWbAGuMUG35dqUYSkXRZuCRFxR8Foo1TqhL1w/GlPoQLw696mm4e7LKwSjAahhCjmzyuag13rhn3WPSTAaIkSfCoBU51rA16mxKzVLB5zrvGztg9K25Um2JnluPwRTChGMlsaYOgAAAAAAAAAAAAAAAAAAAABEgDf5AQDpSTwYLWyIBNKVwufXPNK8rEIwWr4kWAToVsjohGtTdrl+Ngk8SpmCRNxQ8Fos9UJjCPFoTGE/93r3qXrBaNWecMcHUDym+5VVNge9EoyGLKFPBUByHwNIIhwdUvs887JlNyfWjFgFGbdpGhbmgCG2BQAAAAAAAAAAAAAAAAAAAID08CY/ACA9QcOArJL/4CGJQte8SyPsp+wWjNaZXDsQnu/zJ8A1JiiuTdmVdlF0kGA0Cl6LpV7oC9ePxhT6c68XjNbqvrzaHfL4AArHFHJWKpv7M1WC0ZAh9KkASC5jAFawsWj413aE1Hak87JlHQUPg3c5x+o9o7kq8n8zAAAAAAAAAAAAAAAAAAAAAEVGMBoAID1BC0+tkoKFFgUMYkNGpPD5lUeZl1W6kmsHIpBkEaDP6xNF+BmWcjBaiWC0hkcwGpzEHow23H15hWA0ADVMIWdW2dyfMYWpeWUTjIYI0acCIMk4BpDE8z/eMnWe8/xtS6V1jybalHgEGLcphQhGK3SYHAAAAAAAAAAAAAAAAAAAAIAi421+AEB6ghSeWk27/hkgGI1C13xLo4ireaR5WaUzuXYgAj7PnyDXmLc29re6TWhjZrl9NkkURlsBgtEoeC2WeqEx9G0aU9j7Rr17XL1gtGpPuOMDKB7T/apUNvdnTGFqXtULDwX8oE8FQJKqhmsBwWjJmvJxc/9hWUeybUmUy3NaoOD83Rh3BAAAAAAAAAAAAAAAAAAAAJBPvM0PAEhPkFCH3cFoQZiK25ATKYT9lEeZl1W6kmsHUhAmGM0nivCzy/U+lcCjVKDCV4LRCqVe6AvXj8YU+nOvF4zW6r682h3y+AAKxxRyZrkEo9UL/6x7TILRcifLAb70qQBIMgdI8VVqolonSJNPd1624mfSzh3JtidyAe6HYe6hWb7/AgAAAAAAAAAAAAAAAAAAAIAL3uYHAKQnSOFpmGA0Y3EbciFIkF5YTcNlDA8hGC1fkiwCtHyGqlGEn2Eu1x0rgUcpU5CIKwpeC6VeaAzXj8YUezDacPflFYLRANQw3a+ssjnolWC0xpPGM71X9KkASObrVKjxaAQyda7z/J1bpdcWJtuWpPgdT/SMcSIAAAAAAAAAAAAAAAAAAAAA+UQwGgAgPUkHo1HomnMpFHGVmqSmVudllc5k24KQ/J4/cRUjOslwQECjcwtvyGwwGgqlXuhLlgNGEJ+wfdp6Bfemvs9u1Z5wxwdQPFVDyFmpbO7PmLbxyiYYLX8y3G9hvAiA5BKMxlepidvndGnYOOdlyxYk2pTIBfrxhjDj4gSjAQAAAAAAAAAAAAAAAAAAAMgn3uYHAKQoQFFsmEI0wkPyLa3Pr2m48/xKV7LtQEhJFgH6DFWjCD+7XK87CTxKlQIEowUqsEVm1QuN4frRoML2ieoFoxn6PrtVukMeH0Dh2Ib7lVU292cGbhPkWa9eeCiyJ8tjMvSpAEjmawHBaMlrapEO+LjzstX3S9tfS7Y9iXB7Tgsx1sM4EQAAAAAAAAAAAAAAAAAAAICc4m1+AEB6qgEKT62m4Mej0DXnUiriamp1nv+HuRTj54nfIkDLZ7jZ4I39rR7kWohkuIU3JFEYbQUIRkvrWol42HXuM/RtGlPYz73ePa5eMFqVYDQANUzBaKWyuT8zMPyz2uP/mDyL5Q/BaAAyz3Sd4qvUVLTPMyywpeX/nWRL0hcq3IxxIgAAAAAAAAAAAAAAAAAAAAD5xNv8AID0BCk8DRWMluEiXNSX1udnCkar7JCe+bdk24KC4tqUXSkHo5UCBKOFKpZF5lQNQTO7EeLRmEIHatYLRjP0ffqPHyDACECxme5Xlksw2sAwtUpXgGMSjJY/GX7uoU8FQDKPPZZCjEcjuLZ3SmPe7rxsaUeOxz8SbjffiQAAAAAAAAAAAAAAAAAAAADIKYLRAAApClCUEyoYjULXfEu4aGxke98/S8PM66z4KcVlueH3/KkTGuO6qc9tuTZll+tnk8CjlClIxFVeC4PhqF7oC9ePxvPaL6SXrw25k3rBaMPdl1e6Qx4fQOHYLsFopqDXsMFoNsFouZPlZ2f6VAAkl+sUX6WmwrKk9rnOy7a+Im14Itn2xM11PDHMWA/jRAAAAAAAAAAAAAAAAAAAAADyibf5AQDpCVJ4GioYLcNFuKjPTriIa7+z+/7pds51r5O61ibTHoTk8/zxG242iM8uNkX42eV237ASeJQadUiAjSh4LZTNz7kv5/rRWDY+Kz06J/x+6t3jynWC0aoEowGoUTUEo5XK5qDXathgtCrP+HmT5c+LPhUAyXwtSOL5H86mnGsem126INGmRCfAuE3rxBCHY5wIAAAAAAAAAAAAAAAAAAAAQD4ZKtNQNJZlNUs6XtL+kiZJ2ibpDUnP2ra9POJjTZV0pKR9JI2U9DdJKyQ9btt2b5THApBziQejUeiab0kVUVvS/nOkI67aNVnnnMtycTfekmQRoN+CWc6h7HINRgsTnufR3rP9b0PBa7EsvsZ9OX2bxrLqzog+8zrXr2ET3JdXeyJoA4BCsQ3BaFZZsgz9KTtkMJokVXulpmHBtkUKMvzcQ58KgGQeAyAYLT3DJ0mT3i+98Zuhy1b8VDr6O1JTa/LtioXLc1r7POn5+QH3yzgRAAAAGptt26pWq7L5DhVAwizLUqlUkpXEuyUAAAAAAAAAAAAAUFAEo6XEsqx2ScdKOmbXP4+SNGrAKits254SwXEmSPqKpI9K2tOwzuOSvm3b9h0hj3W2pM9LOs6wykbLsm6TdLlt2+vDHAtAQQQJA7JC3LoodM23OF9UnTBLOvG3Uufr0rDx0rBxby2rG8bHC7T54PdzCvFiot8AR65NGZZyUXRTq9Q8Rup908dGXJMKo+rh2sD1o7G88NWIdlTnHrf3Ke7LK90RtQNAYZiC0Upl83N/dcA2VYLRGkKWA6HpUwGQZB4DCPFDHQivfZ5zMFrvm9Kqu6QDPpp4k0IJMsY9Yt8wBwyxLQAAAJA/tm2rq6tLW7du1datW9XTw4+9AEhXS0uLRo0apVGjRqm1tZWgNAAAAAAAAAAAAADwgZ85T5BlWSdalnWvZVkbJC2R9FNJl0h6jwaHokV1vA9IekHS+TKEou0yU9LPLcu6xbKsPQIcZ6RlWbdKul3mUDTtasP5kl6wLOv9fo8DoICCFJ6WwmR6ZrgIFx5E/PkNn9RXWHfM9X2haM0jpdFvGxyKJtUPQKKAGrUIRisOU3hDkkXRY6b73ICC18KoegifynLACLKrXohQ2xHSO79lXu7l3ATQWKqGYDSrbA43HximFjRw0e4Nth3SkeV+i5dAWgDFZ7xO8VVqqiafITWPdV62tCPZtsSqTlH0u24Ktts4f2wEAAAAyJgdO3ZoyZIlWr58uTZs2EAoGoBM6Onp0YYNG7R8+XItWbJEO3bsSLtJAAAAAAAAAAAAAJAbvM2frCMlvU/uIWWRsCzrREl3Spo4YLYt6Wn1BZj9X0nrazY7V9KtllUvAWbQcZok3SbpYzWL1km6b9exntHghIa9JN1lWdYsr8cBUFBBwoBMRdVxHQ/ZEXUR1yH/U5rxI+mQC/pC0UzqBSBVKcbPB7/nT4hfaPUdjJbhgIBGl4Wi6Kbh/tan4LU4bEPIzKB16NsggKbW+usc+nlzOFqVQiIANUz3rFLZHG4+KBitK9hxeRbLlyw/99CnAiCZrwXevzJDHJpapSnnOC9bfa+0441k2xNawHGb5qC/r5Xh+y8AAAAQoR07dmjlypXq7WXMEEB29fb2auXKlYSjAQAAAAAAAAAAAIBHvM2fDd2SlkS1M8uy9pX0C0ktA2Y/Jmm6bdvH2LY9x7bt90naV9JFkga+EXSGpP/t43D/Kem0AdO9kv6npH1t237/rmMdLentkv4wYL1hku60LGuSj2MBKJpAwWg+A4cGHY8ioHyL+vPzGHxFMFr+dW+QNj6b3PH8FsxShJ9dpvtGkkXRXgKMBiEYrTCqBKMhJiWP15WRU5znV7ojawqAgjDds6yyOdy8SjBa48nwmEzn62m3AEAWZGEMAM6mznWeb1el5T9Oti1xseqMVZeag+2XAH0AAAA0gN2haDb9XwA5YNs24WgAAAAAAAAAAAAA4JGhMg0x6pX0F0l/kvTUrn8uknS8pAciOsZXJLUNmH5c0sm2bQ+qMrRtu1vSdy3LWilp4YBFn7cs6/u2ba9wO4hlWe3qC1Yb6O9t276rdl3bthdblvVeSfdLOm7X7HGSrpD0OQ9/JwBFFCSoLEwhGuEh+Rb1S6z1is3616tzztkU42dWtSI99VlpyU3yHRbl9fxw3NZngCPXpgzLQFG078JXXvgvDJtgNMTEa+BiaZjz/CrBaABqmO5ZVlmyDP2pgdtUCUZrCFkOq+98o+/5sRQijB9AAZjGALg2pG7c30mjp0lbXhq6bNkC6dBLwo3lJSnoGLcVMBiNcSIAAAAUnG3beuONN4aEojU3N2v06NEaOXKkmpubZeXlmQFAYdi2rd7eXm3btk1btmxRb2/voGVvvPGGDjzwQK5PAAAAAAAAAAAAAOCCYLRkdUi6oTagTFJkX25blnWwpIE/nd4jaZ7TMXezbftOy7I6Bmw3TH2BZZ+uc7grJA18E3+BUyjagON0WpY1T31BcC27Zn/Gsqyv27a9tM6xABRRkDCPUMFoGS7ChQdRF3F5DUarU/xIMX52vfQtacmNATdOMhiNa1NmGT+bBIPR0LiqBKMhJp6D0Vqc51d7omsLgGIwBaOVyub+1MD7XIVgtIaQ9eeeTc9K445JuxUA0mS6TiUZjg5nliVNnSv9+UtDl725WNr4dAGu4XXGIn0H5+9GMBoAAACKraura1DYkCSNGjVKkydPJmwIQOqam5s1YsQITZgwQa+//rq2bt3av6y3t1fd3d1qbfX43S0AAAAAAAAAAAAANCDe5k+Qbdub3ALKIvJxSQPTOH5h2/ZfPWx3Tc30HMuyjN+4W5Y1XNLZdfYxhG3br0i6c8CssvraDKARBQrzCPHiIuEh+ZZWETXBaPn11++lc1y/BbNcm7Irj0XRNgWvhWF7uL9w/UAQXoPRmoY5z7crUpVzD8AApjBPq9z3x4kdQTCaKZANGZXxYLQtL6fdAgBpMz5fZXgMoJFM/aR5PGbpgkSbkoqgwWiMEwEAAKDgBoYMSX0hRISiAcgay7I0efJkNTcPfr7fsmVLSi0CAAAAAAAAAAAAgHzgbf7i+VDN9I+8bGTb9ouSnhgwaw9J73PZ5P2SRgyY/oNt2y95auHQNn3Y43YAiiZI0FWYMJq0grUQkaiLuDy+CFvvnCMYLbu2Lw+xcYgXpeuF6dUi2CjDchiMFvm1EqkxhcwMxPUDQXgNRisZgtEkqdodTVsAFIMpoKzULJU8BKMFvabwjJ8vmf+8st4+ALHLYzh6IxkxWdrrZOdlK26VKnl5RjGN29QZiwwajMY4EQAAAAquNhht9OjRhKIByCTLsjR69OhB82qvYQAAAAAAAAAAAACAwXibv0Asy9pb0jsGzNop6TEfu3iwZvoDLuueWmdbN4+or227vdOyrL18bA+gKAKFeYR4gZHwkHyLuoja68uw9UKubILRUMNvMBoF+NmVy6JoCl4LwxQyM2gdrh8IoGm4t/VKLeZl1Z5o2gKgGExhnla570+9bSpdwY7LM36+ZL3fwvkEwDgG4HecB7Fpn+c8v2ej9MavE21K4kbsF2y7rN9/AQAAgBBs21ZPz+DvK0aOHJlSawCgvtprVE9Pj2ybdzwAAAAAAAAAAAAAwCTLFf3w7+0108/btr3dx/aP10xP93GsP3g9yK42LfJxLABFZNsKFN4SJoyGIteci/pFsIiC0aoEoxVSmF+R9nud4tqUXcbi0Qw/RvHSbHGYQmYG4vqBIJpaPa43zLys0h1NWwAUgynMs1Tu+1Nvm6DBaAQM50vWg1my3j4ACchjOHqD2fcsqXm087KlCxJtSnABx2322D/Z4wEAAAA5UK0OfY5rbm5OoSUA4E25PPQ7E6drGQAAAAAAAAAAAACgD2/zF8thNdOv+tx+SZ39DXRogscCUESBC05DhBVRNJ1vkRcpez2X6nSXCEZDrXpherWqBBtllum6k+miaApeC8MUMjNoHa4fCKDkMRit1GJeViUYDcAApnuWVe7746QaQTAaQVY5k/HPi/MJQB7D0RtNebi0/xznZW/8Rupck2x7ouTlRxr2/VCAHTNOBAAAgOKyHX4wygrzA2gAELNSaeg4k9O1DAAAAAAAAAAAAADQh7f5i+WgmumVPrdfUTM9zrKsttqVLMvaU9KeIY9Vu/7BPrcHkHeBgzxCvMRIeEjORfwimNcXYkt1Qq4IRiuoENcav8FoWQ8IaGgEoyFFXu4v9G0QRJPXYLRh5mXVnmjaAiD/ejaZg81KLsFolR3StuW7/j1oMBr3wVzJevAY5xMA03Ug02MADah9nvN8uyKt+EmiTQkkTLHz2MOTPR4AAAAAAAAAAAAAAAAAAAAApIi3+YtlbM30Wj8b27a9TVJtJeIYD8fZYdv2dj/H0tC2OR0HQJEFLTgN8+uuWS/ChbvIi7g8nkv1Qq5sgtGKKUwwms8uNgX42WW8b2T4MYqC1+Kwd3pYh+sHAvAajNbkEoxW6Y6mLQDybftK6bdHm5db5b5wNJNfvU1647chgtF4xs+VzH9eWW8fgNhtes55vu8AfMRq/ExpZO3vRO2ytCPZYh4TLwAAIABJREFUtkTKw1hkc5CvUhknAgAAAAAAAAAAAAAAAAAAAJBPLpVpyKGRNdOdAfbRKWlglfSoGI8zkNNxfLMsa6KkCT43OzCKYwPwK2DBqd/AoYEID8m5tIqU65xzVYLREBLXpuwyhTeEuRfFjoLXwqgSjIaYeA1GK7WYl1UJRgMg6c9flrYvMy+3ynIN+aj2SE98Rpp8ZrDjcx/MmYwHj1U5n4CGt+JWw4IQ4fmInmVJ7XOl5+cPXbb5z30Bd21HJt8uz0KM27QQjAYAAAAAAAAAAAAAAAAAAACgcWS5oh/+1QaWdQXYR21gWe0+kzxOEBdIesHnn7siOjYAP3ZuD7hhiEK01xYG3xbps6Mu4vJ4LllN7ssJRkNYpvAtZEAGgtH8FvNGfq1EamyC0RATz8Fow8zLqj3RtAVAvi2/xX15qdz3x03n36RNzwQ7Pv3ofMn855X19gGIVfdG87ItLyXXDngz9ZPmZUs7kmtHpDyMVTcHCEbL/P0XAAAAAAAAAAAAAAAAAAAAAJwRjFZsQVIRsrwNgCJZ/0Sw7cKE0ax9UNr0XPDtkbKIi7gsgtHgwk7wcyXYKLuMxaMJPkYd+A8+N6CbXRgEoyEuJa/BaC3mZZXuaNoCoNissjz1mzr/FvAABH3kStaDWbLePgDx6lpjXta7Obl2wJs9DpD2mu28bPmPMz5eG2Lcpnl0gMMxTgQAAAAAAAAAAAAAAAAAAAAgnwhGK5ZtNdPDA+yjdpvafSZ5HABFtu7RgBt6DLMyee3OcNsjPZEXcXkNRqvTXUoyQAvJSTLwhWCj7DKFI4QJ6fRrxGTp4AsGzys1u2xAwWtheCnkJsADQTR5DUZrMgfEVglGA+BBqVw/aFqSegIGztCPzpmM91s4n4DG5uV+hWyZOtd5fvc66Y3fJtuWKHj5EY/mMQF2zDgRAAAAAAAAAAAAAAAAAAAAgHwiGK1YCEaT/n9Jb/f558yIjg3Aj54NwbYLG0bzwlfCbY8UGYqoJ8ySWtoC7M9rMFqdwkgvwTXInyQDXwg2yrAMBKNJ0jHXSTM6pCnnSodeKp3yeLLHRzqqO+uvQ4AHgvAajCZJpWHO86s90bQFQLFZ5b6QxXp2bg22f/rR+ZL1zyvr7QMQL4J/82f/j0jlkc7Lli5ItCmJaRlrXjZ6mmEBwWgAAAAAAAAAAAAAAAAAAAAA8qmcdgMQqTdrpif42diyrJEaGli22cNxRliWtYdt29t9HG6ih+P4Ztv2Wklr/WxjefkVdgDRCxzkwf+zDcs2FHGNbJeO+S/p+SukTc9Kex4j2Tul1+9235/X6z/BaI2pkmQwGsFGmWUKR0g6GM2ypPbz+v5IUqXLvK7pWon8sQlGQ0yG7+N93aZhUmXH0PlJ3icB5JdVlhTj8xL3wXzJevAY5xPQ2Nyes5FN5T2k/c92DkF741dS9wZp2LjEm1WXcdzGw1j1yIOk1r2krjWD5zeNkA78B+nZS3wcDwAAAAAAAAAAAAAAAAAAAACyLeGKfsTsrzXTB/jcvnb9jbZtb6pdybbtDZJq5+8f8li1bQdQdFWC0eCXoYjLKkltR0rvuUs6a6X07l9IYw+P7rAEozWmKsFokEt4Q9qPUW73QgpeC4NgNMSh7Uhpj/28r19qcZ6f5H0SQH6VyvWfp8LIetAWBsv855X19gGIFcFo+TR1nvP8aq+0/NZEm5KIUpN02BeHzj/2eqllT8NG3N8AAAAAQJKmTJkiy7L6/zz44INpNwkAAAAAAAAAAAAAANSRdkU/ovVizfRBPrdvr5lenOCxavcHoOiCBnlYBKM1LGMRtdM54aWL4/Fcsursi2C0YqokGYxGgWJmmT6beteF2BGM1hCqBKMhAntMeevfRx4onXCHv+1Lw5znV3sCNwlAA7EIRsNAGf+8OJ+AxkYwWj5NPGHwM89AyxYk2RIfQo7bTLtYmvVzaconpP0+LL37l1L7PPP3JjbjRAAAAAAAAAAAAAAAAAAAAADyqZx2AxCpF2qmj7Asa4Rt2zs8bn98nf3VLps5YPo4SXd7OYhlWXtIOsLHsQAUUtCC07TDaJAeQxGXU0CRl9AiryF79Qr5d7zmbT/Il2qSwWgEG2VXRoPR3K5fFLwWh5fgTa4fqOe059/qq4ye5v/61WQIRksyQBRAfpXK8fabuA/mS9aDxzifgMZGMFo+WSVp6lzpha8MXbbxaWnzC9LYtyffrkB8/CDM/h/p++Npe8aJAAAAAAAAAAAAAAAAAAAAAOQT6TIFYtv23yQ9P2BWWdIsH7s4sWb6ty7r3lNnWzcnaHAo37O2ba/xsT2AIghacJp2GA3SYyyidij68nSeRBSMtuSHUvcGb/tCfiQZ+EIBfnYZrztp34vcrl8UvBaGvdPDOlw/UI8ljTms70+QfnSpxXl+kgGiAPLLKtd/ngol40FbGCzzwWgZbx+AeFU6024Bgmo/z7xsWUdy7fAsrnEbgtEAAAAAAAAAAAAAAAAAAAAAFEvaFf2I3sKa6U952ciyrGmS3jVg1nZJ97lscq+kgZUix+3ahxfzaqZr2wygEQQO8vAYZoUCMhRxOYZ8RBmM5mFfK3/ubV/Ij0QDXyjAzyxTOELqIZ0EozUEgtEQBStk37k0zHl+tSfcfgHkn+2hzxF3MBr3wZzJ+HMP5xPQ2CpdabcAQY1slyac4Lxs2S1S1cOzdRaEfXYzbe+lzwYAAAAAAAAAAAAAAAAAAAAAGZR2RT+i92NJA6u4PmxZ1sEetvtCzfTPbNs2VoLYtr1DUm0KTO0+hrAs6xBJHxowa6ekn3hoH4CiCVpwGrZACPllCihyCgjyElrk9VzyUsj/l//tbV/Ij0qCwWh2lSLFzMpoMJrb9YtzqTi8FG+vffitf7dt6a83SL87UbpvpvTydzkfoNDDPk2GYLQk75MAssn4fDZAKe5gtIwHbWGwrH9eWW8fgHhVXYLRxr3LvAzZ0D7PeX7Xaulvbr8BlYLYntNNY0WMCwAAAAAAAAAAAAAAAAAAAADIJ4LRCsa27b9K6hgwq0XSAsuyWk3bWJZ1pqR5A2b1SPqKh8NdKal3wPQ8y7I+6HKcVkk/2tWm3W60bXuJh2MBKJrABafcuhqXqYgrYDCaV14K+Xesiu54yIZqwoEvFOFnk/FzSfte5BbsSMFrYdgegtEkacsrff/8y39IT50vrX1IWv8H6emLpOfnx9c+5EPYUOFSs/P8aq/zfAANxEP/1SrHGyhLHzpfMv95Zb19AGJVcQlGO+ifkmsHgtn/bKlpuPOyZR3O8zMn5LObqc+V+fsvAAAAAAAAAAAAAAAAAAAAADgrp92ARmNZ1r5y/u++d8102bKsKYbdbLNte73LYa6Q9CFJbbumZ0r6nWVZ/2Db9ksD2jJM0j9J+lbN9t+ybXuFy/4lSbZtL7Us6/+TdMmA2T+3LOvzkn5g23bPgGMdKun/7GrLbhvkLYANQBHZlWDbhQ13QH6Ziricir48Fd97PJfiLORHdiUdjKaqJA8hfEiWn+tOklzvhQSjFYbX4KkVP5Wm/7v08neHLnvlOunwK6USj/6NK+T1yjKcO0H78gCKw0vIRqnsLWg6cBu4FuVK1oNZOJ+AxuYWjDblE8m1A8E0j5b2+4i0/Jahy1bdKfVsklrahi5LRVzjNqaxIsaJAAAAACBJtm3rmWee0UsvvaS1a9equ7tbEyZM0OTJkzVr1iyNHDky7SYG9tprr+mpp57SqlWr1NnZqfHjx+vwww/XMccco1Ip3HeSa9eu1SOPPKI33nhDnZ2d2meffdTe3q4ZM2aE3reTxYsXa9GiRVq3bp22bNmiPffcU5MmTdKsWbM0bty4yI8HAAAAAAAAAAAAAAiG6ujkPSrpAA/rTZa0zLCsQ9I804a2ba+yLOvDku6V1LJr9vGSFluW9bSkpZLGSDpK0oSazX8lab6H9u32RUnTJX1g13SzpP+SNN+yrGckbZXUvutYA9/K75H0Idu2/+bjWACKJHDBKcFoDcve6Ty/1Ow008MOvQajEVbVkCoJB6PZFfV1o5AtGQ1Gc2NT8FoYpvterUVXSJNOlbrXDV3W+6a06Tlp3DHRtg35ETZU2NQP8np+AiguLyFXVtzBaBkP2kKNjH9enE9AYzMFo417l9TU4rwM2dI+1zkYrdojrbhNOvhzybfJl7DfexCMBgAAAABpWr9+vb72ta/plltu0bp1Dt/bSmppadHs2bN15ZVX6l3vepen/c6bN08dHR3908uWLdOUKVM8bfvggw/qpJNO6p++4oordOWVVxrXtwZ8r/ie97xHDz74oCTp8ccf1xVXXKHf//73qlaHjqPutdde+vKXv6wLL7zQd4jZs88+q0svvVQPPPCA47733Xdfffazn9UXv/hFlctlXXnllfrKV976LeYHHnhAJ554oqdjbdiwQd/4xjd0yy236PXXX3dcp1QqaebMmbriiit08skn+/q7AAAAAAAAAAAAAACil+GKfoRh2/aDkj4kaeBbFpakYyTNkfR+DQ1Fu1XSx2zbe1rRrnXnSLqtZtFESadK+ntJR2vwG/lrJZ1p2/YjXo8DoICCBqOFDXdAflUNARyWQ86rl9Air+cSwWj5FDYcqppGMBoyp2r4XLIQjGZsAwWvhWG67znpWm1exvWlwYUNRjPk6ROMBsDL/cVqirnfRJBVrmQ9eIw+E9DYTMFozaOSbQeCm3iSNGI/52VLFyTalFSYxroJ0AcAAACA2N15551qb2/XtddeawxFk6Senh7dc889mjFjhj772c9q587sf9/2ta99Te9+97v1u9/9zjG4TJLWrFmjf/mXf9HZZ5+tnp4ez/v+9re/rWOPPVb333+/cd+rVq3S/Pnz9Z73vEdr1qwJ9HeQpJtvvlnt7e265pprjKFoklStVvXoo4/qlFNO0Sc/+Ulffx8AAAAAAAAAAAAAQPQyUNGPuNi2/RtJb5d0g6RNLqv+UdLZtm1/3Lbt7QGOs8227Y+pLwTtjy6rbpT0PUlvt237Hr/HAVAwgQtiuXU1LFMAh1Nwmafie69BIR72VRrmcV9ITsiiv0rSwWgZDwloWKbPJQv3IlPBK+dSYfgJnurZbF7WNDx8W5BfYQOJTAGxpuBIAA2kTp/DauoL6IgzaJogq3zJej816+0DEC9TMBrPU/lRapKmftJ52YYnpC0vJ9seI8OYZegfhDFtTzAaAAAAAMTppptu0kc+8hFt3bp10PwDDzxQZ5xxhj760Y/quOOOU1PT4LHyH/zgBzrjjDMyHY72zW9+U1/+8pdVqfSNxb/tbW/TBz/4QZ1zzjk68cQT1draOmj9hQsXav78+Z72/a1vfUv/9m//1r/v3Q477DCdeeaZmjNnjmbMmNH/3+3xxx/XnDlzhqzvxeWXX665c+dqy5Yt/fMsy9K0adN0xhln6OMf/7g+8IEPaMKEwb8zfcstt+i0007L9GcEAAAAAAAAAAAAAEVXTrsBjca27SkJH2+tpPMty7pI0vGSDpC0t6Ttkl6X9Kxt28siOtbPJf3csqypko6StI+kPSStlrRC0mO2bfMTagD6BC1gDhvuIEmvXC8dcmH4/SBZpnOm5NSdiTAYzUshf3mEt30hOXbYor+EiwYJdcgmUzhCFPeisKyS4byh4LUwqn6C0VxysDc8KbUdEb49SFfg+1rI4nrHfpb8BfcBKKZ6IVLWrutHrMFoBFnlS8Y/L57JgMZWNQWjtTrPRzZNnSv95WvOy5Z2SEcalhWBMViNcSIAAAAAiMtzzz2n888/X9XqW2OfRx55pK6//nrNnDlz0Lrr1q3T/Pnz9f3vf79/3j333KPLL79cX/ta9p5XFy1apEceeUSSdNZZZ+nqq6/WtGnTBq2zadMmff7zn9eCBQv6533rW9/S+eefrylTphj3/fTTT+uLX/zioHknnniirrvuOk2fPn3Q/HXr1unyyy/XDTfcoIcffliLFy/29ffo6OjQVVdd1T9dKpV04YUX6pJLLtH+++8/aF3btnXXXXfpoosu0sqVKyVJ999/v+bPn6+rr77a13EBAAAAAAAAAAAAANEgGK1B7AokeyChYy2TFEnYGoACC1xwGjLcQZL+9M9S60Rp/78Pvy8kxxQQYzl0Z6IMLSp5KOQvNUd3PEQk40X3tSjCz6YsB6OZ7ocEhBSH3et93d7N5mVP/qO04qfSCbdLLW3h24V0BP1/21gc73V7Qz+I+xaAusFou64fcfabuBblS9b7qVlvH4B4VQzBaKVhybYD4Yw+RBp/nLT+D0OXLbtZOuIqb2O9cQr9Yw4mhj4X9zcAAADAkb1zp7RuVdrNaAwT9pVVLuZryp/5zGfU0/PW7wTPmjVL9957r0aMGPrjihMmTNANN9yggw46SJdeemn//GuuuUbnnHOODj/88ETa7NXGjRslSZdddpmuueYax3Xa2tr0ox/9SJs2bdJdd90lSapUKrrxxhsHhZHVuvDCC7Vz51vvgH34wx/WbbfdprLDeTJhwgR973vfU3t7uy677DKtX7/e899hxYoVOv/88/unhw0bpjvvvFOnnnqq4/qWZemss87SzJkzdfzxx+vVV1+VJH3jG9/QP/3TP2nq1Kmejw0AAAAAAAAAAAAAiEYx3zgAAGRf0ALmsOEOuy2/lWC0vLH9BKN5KHDzfC55KOQfdbDHfSExeSv6y1t7G4bpc8lAMJoxZCSuAlskzhQI6qTHJRhNktbcL/3qMOl9f5BGTgnVLKQkUN85gn6zUz9LMvfLADSOev3XMdP7/unl2SyuNiBbMv95Zb19AGJVNQRTNxGMljvt85yD0Tpfl9b8Xpp0SuJN8iZsqLUpQJ9xIgAAAMDRulWy57wt7VY0BOtnL0uTpqTdjMg98MADeuaZZ/qnR48erdtuu80xFG2gSy65RA899JB+9atfSZKq1aquvfZa3XTTTbG2N4hZs2bp6quvrrvef/zHf/QHo0nS73//e2Mw2lNPPaUnnniif3rSpEm66aabHEPRBrr00kv1u9/9Tvfdd5/H1vcFmnV2dvZPX3vttcZQtIEmTpyon/zkJ/q7v/s7SX1hb9dee62++93vej42AAAAAAAAAAAAACAaGajoBwA0pMAFsRHdulYtjGY/SI4pIKbkUGhvDAwatJK343oKWSNrNnPCFt0fnfQLjRQpZpIpiCjOgA/PTAWvBDoUhp/gqd46wWiS1LVaev5/BW8P0hUkiCyKQOGSKRgtYMgxgAKp0+c48NN9/4y130S/J18y/nlxbwMam58fZEC27T9HKhkC7ZYuSLQpzuIaAzQ9/zHmCAAAAABx6OjoGDR94YUXap999vG07X/+538Omr711lvV3d0dWdui8uUvf1mlUv33r6ZPn64pU6b0Tz/33HPGdW+99dZB0//8z/+sMWPGeGrP/PnzPa0nSdu3bx8UNtfe3q7Pfvaznrc/9thjdcIJJ/RP//KXv/S8LQAAAAAAAAAAAAAgOgSjAQDSEbTg9JALo20H8sMYUORQoJh0MBoF1BkUsuhv8unRNMMrwqyyyfS5ZCEYzXido+C1MEyBoE4qHl+UX/7jYG1B+gL1NSIIRjNd7/ycnwCKya3/evAF0sGf2zUR4/BzleewXMn6M0/W2wcgXqb+LcFo+dMyVtrvQ87LVi2Uet5Mtj2ehX1+IxgNAAAAAJL06KOPDpr+xCc+4Xnb6dOn66ijjuqf7urq0tNPPx1Z26IwfPhwzZ492/P6hx56aP+/79ixQ9u2bXNc7/HHHx80PWfOHM/HmDVrlufwuUcffVSdnZ3902effbankLeBTjrppP5/X7FihVauXOlrewAAAAAAAAAAAABAeASjAQDSESTcYfg+0vjjom8L8sH2U6DooYtjeQ1G87AvwkGyJ2xR+8j2aNrhGUWKmWQMZMzCY5ThGkagQ3GY7nuO6/K5F16QvnMU1ypTEISf8xNAMbldl9520Vv/HmugLPe/XMlCf+Wk+6Qpn3ReRuA50NhM/dsSwWi5NHWu8/xKp7Ty9mTbMkRMY4CmsW6bMUcAAAAAiNqmTZu0ZMmS/umxY8cOCgbzYubMmYOmn3rqqUjaFpUDDzxQLS0tntdva2sbNP3mm87B5H/+85/7/33s2LE66KCDfLXrmGOO8bRebXDdPvvso+XLl/v6U/v3X7p0qa+2AgAAAAAAAAAAAADC441+AEA6ghSczr6fYrRG5qdA0VMQiNdgNA+F/BRQZ1CIovsx06NrhldZCAnAUMZgtDgDPjwyXucoeC2Maq/3df2EVFUrUikD5zD8CdTX8NjXcd2F4Vyh7wPArf86sJ8SZ6As16J8SfuZZ2S7NOkUacWtzsvTbh+AdJl+9MAUFIxs2/sUafgkqfNvQ5ct65AO+ofk21SP1x/xMGKcCAAAAACSsm7dukHTBx98sCyfz3XTpk0bNL127drQ7YpSbdBZPc3NzYOme3uHfte9fft2dXV19U/vv//+vtvldZvXXntt0PTFF1+siy++2PfxBtq4cWOo7QEAAAAAAAAAAAAA/sVYmQYAgAu/BafNY6Qx0+qvh+LyU6CYeDCaj0AaJMMOUfQXZ3iDCUX42WT6XLIQjGa6hnEuFYefe4uvYLRu/21B+tIKRjOFEpv6ZQAaiFsw2oC+kmUpkuuRE/o9OZP257XrOc8Y+pl2+wCkys8PMiD7Sk3SlE86L1v3qLT11WTbM1CYMUs3pgJ87m8AAAAAELlNmzYNmh4zZozvfdRuk7XQrVIp+vdmNm/ePGh61KhRvvcxevRoT+tt2LDB977r2bp1a+T7BAAAAAAAAAAAAAC4441+AEA6fIc7xFRIjfwwnTOORc0RvqDnJSSLYLQMClP0l0Z2cExFkQjHeN3JQL60sQ2cS4XhJ3jKz7qVTqk8wn97kK4gwWhRXKucAmilgEFtAArFLWSj9vpjNcXzzETQR76k/XntDowx3R+5twGNzXSfMvWHkX3tc6UXv+68bNnN0hFfTbY9dYX9/sO0PeNEAAAAgKMJ+8r62ctpt6IxTNg37RZEzq4JvbZMYdU+RLGPrBs2bNig6Z6eHt/78LpNkH3XU/u5AwAAAAAAAAAAAADixxv9AIB0+C04bYAXwFCHqUCx5NCd8RIE4vWccgxeq0EBdfaEKbpPI/Qq7ZAAOPMVyJg0wzWMc6k4/ATI+Fm30uW/LUhfoL5GBP1n0/WOUFgArn2OpILReA7LldT7qbuD0Ux9+bTbByBVprBpgtHya8xh0p7HShufGrpsaYd0+JXZCL6PDMFoAAAAgB9WuSxNmpJ2M5BTe+6556DpN9980/c+ardpa2sL1SYnlUq2xtBr/46bNm3yvY+NGzd6Wm/8+PGDph9//HEdd9xxvo8HAAAAAAAAAAAAAEhXkd74BgDkie8CZoLRGp6fAkVPRW1ezykPxWOmtiE9eQtGo0gxm7IcjGY8TzmXCsNPgIyf+1Cl039bkL4gfY0o7mdOAbQSfR8A7v3t2utPbP1rgqzyJeXPqz8c3XA+ErQHNDY/P8iA/Gif6zx/x0pp7UPJtqWfYdwm7A/DmLa3GScCAAAAgKhNmDBh0PQrr7ziex8vv/zyoOmJEyc6rlcuDx6b2LnT+3d0QYLH4tTU1KTJkyf3Ty9dulQ7duzwtY9FixZ5Wm+vvfYaNB3kMwIAAAAAAAAAAAAApI9gNABAOvyGFoUtDEL+mQoUnYLRPHVxPJ5T1d7661BAnUFhiv5S6CKHCXJDfEyfSyrhebVMBa+cS4XhJ3jKT4hapct/W5C+QH2NCPrPpiBI+j4A3K4DQ4LRYgqVrXItypXU+6m77oumvnzq7QOQKj8/yID8OOBjUqnFednSBYk2JX6m5z+C0QAAAAAgam1tbTrwwAP7pzdv3qwXX3zR1z4ef/zxQdPHHnus43qjR48eNL1582bPx/jLX/7iq01JmDFjRv+/V6tVPfSQ9+DyjRs36s9//rOndWfOnDlo+r777vN8HAAAAAAAAAAAAABAdmShoh8A0Ih8hykQjNbwTOeMU5G9l9Air2F7noLRfATSIBlhitrTCL2iCD+b/Fx3kmYMdKDgtTC83H92617vfd1Kp/+2IH1BgsiiCBY2BUHQ9wEgt/5rQsForm1A5qT+zLM7GM0U+pl2+wCkytS/LRGMlmvDxkmTz3Be9todUu+2ZNsjxTduYxzPZJwIAAAAAOIwa9asQdM//vGPPW/74osv6umnn+6fbm1t1dFHH+247sSJEwdNL1682PNxfvOb33heNyknn3zyoOkf/vCHnrft6OhQT0+Pp3Xf+973qqnprbHgX/7yl1q7dq3nYwEAAAAAAAAAAAAAsoFgNABAOghGg19+ChQ9BVt5DUbz8FJdlXCQzMlbMBpFitmU5WA04zWMQIfC8BM89aaPX/uudPlvC9IXJBgtiiEfYzBakPYAKBS3/nZtXymu/jVBVjmT8ue1OzDUGDDMvQ1oaKbnL1N/GPnRPs95/s7tfeFomRH2+w/D9vSXAAAAACAW55133qDp6667TqtXr/a07Ze+9KVB0x/72Mc0bNgwx3WPOuqoQdN33323p2Pce++9evLJJz2tm6Rzzz1Xo0aN6p9euHCh7r333rrbvf766/rqV7/q+ThtbW0699xz+6e3bdumSy65xF9jAQAAAAAAAAAAAACpIxgNAJAOvwWnFsFoDc8UPuZUoBhl4b2XYDQKqDMoZ8FoFClmk+lzyUIwmjHQgZC9wvATjOZHpTOe/SJeQfoaUfSfTde7uM5PAPnhGoxW00+Jq+/Ec1i+pP7Ms+u8NN7b0m4fgFT5GXdEvkx6v9Q60XnZ0gWJNqVPTOM2xuc/xokAAAAAIA6zZ8/WkUce2T/95ptv6pxzzlFnp/t3sddee63uuuuu/mnLsvSv//qvxvWPO+44jRgxon964cKF+tOf/uR6jL/+9a+aO3duvb9CKkaNGqWLLrpo0Lw5c+bogQceMG6zfPlgP5p6AAAgAElEQVRynXLKKdq8ebOvY1155ZWDAuf++7//W1/4whdUqfj7bmHx4sV6+OGHfW0DAAAAAAAAAAAAAIgGwWgAgJT4LTiNIRiNotd8MQVwlJwKFD10cbyGhVR7669DOEj2hAqHSqOLTJFiJpnCNtIIzxvCdA3j3lYYpsL8sAhGy6dA/dYI+s+O/SzFd34CyJEsBKPR78mVtD+v3WMAxoBhgvaAhuZr3BG5UmqWpnzCednaB6Vty5NsjYuwz2+G7QnQBwAAAABHq1ev1vLlywP92e3GG29US0tL//SDDz6oE044QU888cSQ461fv14XXnihPv/5zw+af9lll+mII44wtnPUqFH66Ec/2j9dqVR0+umn67777huybk9Pj374wx9qxowZWrNmjdra2vz8J0nM/Pnzdfjhh/dPb9myRe9973s1Z84c/fznP9fzzz+vl156Sffdd58uvvhiTZ8+XS+++KJaW1t15plnej7O1KlT9YMf/GDQvK9//euaNWuW7r77bu3caf6+c/ny5br++us1e/ZsTZ8+Xb///e/9/0UBAAAAAAAAAAAAAKHxRj8AIB2+C05jCEar7pSaWuqvh2wwBXBYDt0ZT6FFXoPReuqvQwF1BoUouk8j9CrtkAA4MwajxRTu4Ycx0IGC18KIK3Sz0hXPfhGzAPeJKO5npusdfR8Abv3XIcFoMfWvuRblS+rPPLvHAAznY++bibUEQAb5GXdE/kydK730bedly26WDr88wcbENW5jGutmnAgAAAAAnJxzzjmBt7V3fSd/1FFH6brrrtPnPvc5Vat9459PP/20ZsyYoYMOOkjTp09Xa2urXnvtNT355JNDgrhOOeUUXXXVVXWPd9VVV2nhwoXavHmzJGnt2rV6//vfr4MOOkhHHHGEhg0bpjVr1uiJJ57Q9u3bJUl77723rrnmGs2dOzfw3zMuLS0t+vWvf63Zs2fr1VdfldT33/T222/X7bff7riNZVm6/vrrtXLlSt11112D5rs577zztHr1an3pS1/q/4z++Mc/6oMf/KBGjBihd77zndprr700fPhwbd26VevXr9fixYv7/1sDAAAAAAAAAAAAANLFG/0AgHRUfRYw13mRKRB7pySC0XKj2u083ymwI+lgNFPxJNITpug+jWC0MEFuiJHhc8lCMJrxGsa5VBjV3nj2W+mMZ7+IV6D7WgT9Z1MQRFzBfQDyw/W6VBuMFlffiX5PvqT9ee26L5rOxw1P9J3XqTwPAkidqX9b4mvUQmg7Qmo7Utr03NBlyzqkt8+P5/sHP8IeP+32AwAAAECD+sd//Ee1tbXpU5/6lLZt29Y//9VXX+0P/XLy6U9/WjfccIOam5vrHmPy5Mm64447dNZZZ2nr1q11jzF16lT9+te/1po1a3z+bZKz33776ZFHHtEFF1yghQsXuq47btw4dXR06PTTT9cXvvCFQctGjRpV91iXXXaZjjjiCH3qU5/S6tWr++fv2LFDjz32mKf2trW1eVoPAAAAAAAAAAAAABAtqnwAAOmwfQajRRHsMKQNBDrkxpuLzcucChS9FN57LRbzEkzDuZRBdohtU+gi22Hai9gY71UZeIwyBTZwLhVHXPeWSlc8+0W8ggSjRVEYbwqC8N2XB1A4bteB2n5KXMFoYcKQkby0P6/d90W34LP1TyTTFgDZY3r+MgUFI3+mznOev22ptO7R5NoR27iNy/2NsSIAAAAAiNXZZ5+tJUuW6KKLLtL48eON6zU3N+t973ufHnvsMd14442eQtF2mz17tp588kmdeeaZsgzfAU6YMEGXXnqpnnvuOR166KG+/x5J23vvvfWLX/yiPyDtsMMO09ixY9Xa2qr29nadfPLJ+v73v68lS5bo9NNPlyRt3rx50D7GjBnj6Vinnnqqli1bpuuvv15HHnmk8b/hbs3NzZo5c6auvPJKvfLKK7rooouC/SUBAAAAAAAAAAAAAKHwRj8AICV+C2JjCEarEmaVG0s7zMscCxS9hBZ5PKf2/aD0yn+5r0M4SPaEKbp3K5SPDaEOmVQ1/L8dV7iHL6ZrGOdSYcTVT6l0xrNfxCxIIXsE9zPT9W7zIun5K6XJ/0Mad0z44wDIH7f+9pD+dEz9a57D8iX1YLSmwf908tK3pQm3J9MeANliev4iGK04pnxcevYS5xC8ZR3SxBOSb9MgIb//cCvotqsZGcsCAAAAgPQsX7481v1PnDhR3/nOd/Ttb39bTz/9tF566SWtW7dO3d3dGj9+vPbdd1/NmjVLo0aNCnyMadOm6c4779T69ev10EMPadWqVdqxY4f22msvTZ06VSeccILK5bfGMk488UTZPsKy/axba8GCBVqwYEGgbWfNmqVZs2Z5Wnfx4rd+WNOyLE2cONHzcVpbW3XBBRfoggsu0MaNG/XHP/5Rf/vb37Rx40b19vZq5MiRmjhxog455BBNmzZNI0aM8P13AQAAAAAAAAAAAABEizf6AQDp8FvAXOeXGoO1gWC03Hjx6+ZlTgWKUQZbTXyP1NIm9Wwyr8O5lD1pB6Mde4P01Oe8rx/iBVPEyXAelTJQTGo6TzmXiiOue0ulK579Il5B7mtR9J/dgiBe+Ir0wleld90oHfip8McCkDNuwWhN7tNRSTtoCz6l/Hk1tfb90+15b+vLybQFQPaYnr9KfI1aGK0TpMmnS6vuGrpsxc+ko78rlfNc8Oz2/MdYEQAAAAAkpVQq6dhjj9Wxxx4b2zHGjx+vj3zkI7HtP6u2b9+uZ555pn/6kEMOCRw0t+eee+q0006LqmkAAAAAAAAAAAAAgJhEmBoCAIAPfoPRXAt7AqoSZlUITkX2noKtPJ5TpWbp3XdJ5ZHmdewqYURZEyokIYIu8n4fkvaYMnhe82iXDQh1yCTjvSoLj1GmaxjnUmHE1U+pdMazX8Qr0H0timC0emFGtvTMxVKlJ/yxAOSL63Wppq8UV6is73EFpCrtILuSh2C0OMaeAOSD6fnLLSgY+TN1rvP8nVul1xYm1AjTGHLYexDBaAAAAACAYuvo6NCOHTv6p4877rgUWwMAAAAAAAAAAAAASEIWKvoBAI3IbwGzp6Arv23ojX6fSF7JoUDRy/li+Sg2m3iC9OHV0vR/N69DUX7GhCj4i+J60zpROvkh6aDPSXseLR34j9LJD5vXTzskAM5M/1/XDQpKgOk8JaSxOOLqp1S64tkvYhbgPhHF/cypn1Wrd4u0+v+GPxaAfHHrvw65/sQ0BE0fOl/S/ryadgWjuQbHEIwGNCzbEIzmpT+M/NjndGnYOOdlyxYk2pTIuY11M1YEAAAAAMi5VatWaf78+YPmnXfeeSm1BgAAAAAAAAAAAACQFILRAADp8F0QG0NxatVQ8IZ8sZwKFL10cXyeU+U9pH3+h3k5wWjZEqboPqogxj32l/7ue9Kpf5Le9QNp1MHmdSlQzCbTeZSJYDTTNYyAkMKIq59S6Yxnv4hXoPtaBP1nx36Wg82Lwh8LQM64BaPVXH9i6zvR78mVrASjVbrTbQeAbDIFo3ntDyMfmlqkAz7uvGz1/dL21xJoRFxjgG7Pf4w7AgAAAACy5Y477tC///u/a926dXXXffbZZ/Xud79bGzdu7J/3jne8QyeddFKcTQQAAAAAAAAAAAAAZABv9AMAkpdWsEMtU8Eb8qXk0J3xFGwV4JxyK+i3d0oa5n+fiEkGgtGG7thlGaEOmWQKPIztHPHD0AZC9oojrn5KpSue/SJeqQWjeQwzcuqPASg2Y4CsQx8lrmA0wqlzJivBaITEAnBgCqamn1s87fOkV/7LYYEtLb9Fmv6lpFvUxxiA73V7t7EqxooAAAAAANmydetWXX311frmN7+pU089Ve9973v1jne8QxMnTlS5XNbGjRu1aNEi/epXv9Ldd98te8B7EC0tLero6Eix9QAAAAAAAAAAAACApPBGPwAgeUGKl8MWBjkxFbwhX6yAwWhBzim3YkjOp2wJFCCzW0yhV27nJWFW2WQMRosp3MMP0zUs1LmPTIktGI0wkHwK8P92FCGOXoMgnPpjAIrN+FzvFIwWU/+afk++pP15eQlGi2PsCUD22bb5+Yt+bvG0vVMa83bpzReGLlu6QDrsi/HeD2IbA3Rpc9r3YAAAAAAADHp7e3X33Xfr7rvv9rT+8OHDdfPNN+sd73hHzC0DAAAAAAAAAAAAAGRBTFVpAAC4CBKM5lbYE1RcgSNIlmNAUVzBVi7FkIHOa8QnRJFhXMENrvulQDGTshyMZrzOEbJXGHEFbla64tkv4hWoeD6C/rPX6x2BEUDjMQVsOF034uo7EfKRL2l/XiUPwWhxjD0ByD636xP93OKxLKl9nvOyra9IG55ItDlvCXsPctuesSIAAAAAQLaMHTtWTU3+vjs4/vjj9fDDD+vss8+OqVUAAAAAAAAAAAAAgKzhjX4AQPICFcMSjAaDkkN3xlOwVYBzyq2gn/MpW8IU3ccVjOZ2zqUdEgBnfgI/kmYZzifOpeKo9sazX9cwEGRXgP+3o7ifeQ2CMF2TABSXsZ/kcO2JLRiNcOp8Sbmf2rQrGG3nDpeVuJ8BDcltTM9p3BH5N+Vc6bkvOPclli6Qxs+I8eAxhZS5PZMFCtoGAAAAACA+Z511ltasWaN77rlHjz32mBYtWqQVK1Zo48aN6urq0vDhw7XnnnvqgAMO0AknnKDTTjtNxx9/fNrNBgAAAAAAAAAAAAAkjDf6AQDJC1K8HEfYQpUgq0JwCuyIKxjNrRiSovxsCRUOFVMwmut5SYFiJpn+v44tPM8PUxs4lwojrsDNSlc8+0W80goW9hpmVOkOfywAOeMnGC2mvhOBsPmS9ue1Oxit4hKMZscUTAsg29yevbwGBSNfhu8tTTpVeuPXQ5et+Kl09Hfeum8kJuzzm9v2jBUBAAAAALJn3LhxOvfcc3Xuueem3RQAAAAAAAAAAAAAQEZloaIfANBoAgVIxRCMFlfgCJIVNBgtSNieWzgIQXsZE6LgL7bQK5dzLu2QADgzBqN5DAqKk+kaxrlUHLEFo3XGs1/EK8j/21EEC3sNguC8AhqP8brkFIwWU9+JcOp8Sbuf2h+M5nLP2rk9mbYAyBa3MT23H0lAvrXPdZ7f+6a06q4YDxxTSJnr8x/BaAAAAAAAAAAAAAAAAAAAAADyh2A0AEDyghQvRxHsUIsgq4JwKq720sUJEozmUgxp9/rfH+ITpug+rmA0ChTzx3QeZSEYzXid41wqBLsaX3hIpSue/SJegYLRIrifeQ2CIBgNaDzGfhLBaDDJSDBa03DzOgSjAY3JLZTaa1Aw8mfyGVLzWOdlSzuSbYsUwfcfLs9/aYeTAgAAAAAAAAAAAAAAAAAAAEAABKMBAJIXqBAnhmA0t6I35IdTUbOnIJAA51R5hHlZ7xb/+0N8QgWjxRh6ZTo3KVDMJlPYRlzheX6YCmY5l4ohzqAXAqxyKqX+s9d7IucV0Hj89JPi6jv1bIxnv4hH2v3U0q5gtGn/al6nSuA50JDcfjyDYLTiamqVppzjvGz1vdKON5JtT1j8IAMAAAAAAAAAAAAAAAAAAACAgslART8AoOEECvuIIRjNregN2dI82rysZezQeV4K712LxUzHGifjudi11v/+EKMwwWhxdpEJs8oVY+BHjOF5npnOU4pdCyHOUI5KV3z7RnzSChZ26mc5IRgNaECG65JjMFpMfaeu1fHsF/FI+5mnaVcw2rgZ5nXSbiOAdLj9eEaJYLRCmzrXeb5dlZb/OJ5j2qZxm7DPby7bG48J/D/27jxejqrO//+7+y5JLiEJkIUlkIWwRnYYFtkRdBgEv1+ZEXAUZpRBdBzUUb8wuMCMgqM/BxzRr8go4AiI4yiRr05QJICIgIQlskbMiiRkD1lu7tb1++Nyk7vUOV3bqTrV/Xo+Hnk86KquqqN1uuqc6vt5NwAAAAAAAAAAAAAAAAAAAOAvgtEAAPlLEoyWJMSqbjscho4gW6bi5AM+Hr7cVeF9tUUaNTF8HcFofklV8OdwiGwMXaNA0U+mwA8PgtFM90XCHBqDrTA/LQKsSirBfSKLoM/xs6O9j8A9oPmYxhxh4yRXY6fOFW72CzeKHqcOBKO1tEtH/bvhTczLgKZkm39VCEZraLv9mTTuwPB1i28rWaCY7fuTMv3vAAAAAAAAAAAAAAAAAAAAAIB+BKMBAPKXJBjNWtiTUM1h6AiyVTOE2O3+NsMGUYY4CfvU6MnhywlG80yKovssgmTMOw9fXHRIAMLVDPcrp30kKkL2GlYQSEvudLd/gtHKKdF9IoPxc7VNat+1/vvoV+Xy2n3SEx+S5n9MWv1o/fe/Okd67APS/I9La55w3z6Ug/G6FDZGcTR26l4v9XW52Tcc8CQYTZJ2mh7+HuZlQHOyPSOuEozW0CoVacbF4es2viCtm+/goKbnNinnb7YflilVwBsAAAAAAAAAAAAAAAAAAAAA9POhoh8A0GyKCnYYLiAYrTRM56raFr48SmiRrVjMxhSM1kUwmlfSFLS7DL0y7psCRS+ZgjwrLfm2I7QNhOw1rGf/Sfrd5e7237fN3b7hTpLPdtKxznB7vL3+ewhGK4+F35QefIf0ys3Sy1+T7j9FWn6P+f0v/Kv08LukRd+VXr5R+sWx0qv35tde+Mt0XQob77ocO21b6W7fyFbR49TBwWjGeyRjaaAp2Z4RVwhGa3gz3md+Xrf49nzbkopt/sdzRwAAAAAAAAAAAAAAAAAAAADlQzAaACB/pqAZm6yCHQar9WS/T2QvCMx9Jk0wWtKwvVGTwpdvIxjNL2kK/lwOkQ37LjokAAamwA8fgtEI2WtIXWulF7/s9hi1bqmWYCyGgiW5T2R0P6u2139PL8FopVDrlRZ8ZuiyoFf6/efC39+3Tfr9tSOXP3yutPHF7NuHkokRjFZ1GYy22t2+ka2i5zzVUYNfhL+n6DYCKIbtGbEP83+41bGXNOVt4euW3Cn1dWV8QEfPbWzPw7m/AQAAAAAAAAAAAAAAAAAAACghgtEAAPlLEoyWNMTKhmC0crAWJ7YalrsMRpsYvrx7fbL9wY00BX+R+k/SfRv6HQWKfjLdr7wojKYvNaTF38/nHNa2uT8GspWkX2QVLNwyqv576FPlsOrh8DHrht9LnStHLv/TvVKfIfTu0Yv6A4zRvIzXpZCxtGnelgXm9SVSdDDaoKBP05yPsTTQnGqW4KuW0fm1A8WZeUn48u510ms/y6cNqedvtu0ZtwMAAAAAAAAAAAAAAAAAAAAoH4LRAAD5S1RoGlLY85bPpmsHAQ7lEPSa11XbTCvq7zdpsVnVEA5Ss7QT+fM1GM3YNylQ9JIxyNODaZSxn9KXSm3jc/kch3tW+WQ1fk5icJCMSa8hPAt+6fyTeV3PGyOXbVlmfv/6Z6TVv0nfJpSXMUA252C0osO2EF3RoWPVQf2QsTSAwfosz4gJRmsOU98ltY0LX7fotmyP5SxcmGA0AAAAAAAAAAAAAAAAAAAAAI3Fg4p+AEDzSVAMGxZiNe0iqW18+Punv6/+Pm1Fb/BHrce8zhSMVmlx0xZpaDH1YLYAN+QvVdG9wyGyKZCv6JAAhDOdF5fXmMjoS0iBe1b5JPlsZxX0GSUYrY9gtFKwhVOFhVzVu9+9/LV07UG5GcdJIdce0xwqk3aYgmzhnaLHqZUIwWhFtxFAMUzPiCtVx+Ge8EbrGGmf94Sve+3nUufrOTQiZbC17UdAnIWxAQAAAAAAAAAAAAAAAAAAAIA7BKMBAPKXqNA0pLBn/IHS6fdLU9+1Y1nrTtLsz0jHfbf+LglGKwdbeIupODFSEEjCYjNTGBshM55JUfCXVZBMKNO+KVD0kiloo+pBMJqxn9KXyi1lIXRUNe5Z5ZPks51RfyIYrXHYgs5Cg9HqBIFsfiVde1ByMQJkXYbKEIxWIgWHjg0J6DONpQlGA5qS6RlxdbQ9bAqNZebF4cuDPmnpnRkeyNVzG1tf5VkRAAAAAAAAAAAAAAAAAAAAgPLhp84BAPnLKhhNknY7Wjr5J8naQTBaOdR6zOtMIWW20Icdb0rUHGNRPyEzfkl0nXmTy2A0077TtBfuGIM2fMiXNlzD6EuIgjDP8kny2c7qflYdVf89BKOVg22MXOsaucw01h4QELDQ1EzXpbBrT9VlMBpjn9Io+lwNnsubgo6KbiOAYpieEbeMzrcdKNbEE6Sxs8LDfxfdLh34cccNSBvCRzAaAAAAAAAAAAAAAAAAAAAAgMbiQ0U/AKDpJAl2SFsYFNaMkOJ/+McWjGYKKYsSjJa0T5mOSciMZ3wNRjP1OwrwvWQKRosUvuiYsZ9S7FpqLsY7YbhnlVCGwcJxtbTXfw+Bw+Vgu3+FncN6YVY+3A9RHGOAVMgYxTSHyqQdpiBbeKfo0LEh/dAy5yP0EWg+BKNB6p+Pz7w4fN2GZ6X1z2R0IEf3GdvzzKLvwQAAAAAAAAAAAAAAAAAAAACQAMFoAID8JSpcdhAUQoBDOdjCW6pt4csjhTQk7FOmgIgaITNeSVXw53KIbNg3xfd+MvUjL4JgDNcwil0RBfes8kn02c5o/FyNEozWmc2x4JYtfDFsblQvzMplmCz8ZxwnEYwGg6LHqYPn8oTHABisRjAa3jTjfeZ1i253e+y0QenW7XnuCAAAAAAAAAAAAAAAAAAAAKB8qGAEAOSvyGCHwQhGK4daj3mdMRgtyhAnYZ8yFfXbAtxQgBQFfy5DPkxFihTf+8kUtOFDEIyxDRS7IgLbvRV+SnKfyOpaFTUYjZBP/9lCEZMEo7mYo6E84oyTTOHSmbSDcXR5FHyuKhGD0RhPA83H9IyYYLTms9M0acrp4euW3OH5XNoyNmeuBgAAAAAAAAAAAAAAAAAAAKCEPKjoBwA0nUTBDgSjNS1bwZkprKHS4qYtkrmon2A0v6QJSHAaekWYVakYAz8cXmMiI2QPKXDPKqECx8/VUdHeV+vK5nhwxzauDpsb1Q2z4p7T3EznP2S8WzdkLwXTeA3+KXqcOuSaZpnzFd1OAPkzPSOuEozWlGZcHL68a7X02v+k378xpCzt/M22Pc8dAQAAAAAAAAAAAAAAAAAAAJQPwWgAgPwlKjIlGK1p2cJbqm3hy6OEFiUNCzEV9dcImfFKqmJ2h0NkU+gaxfd+Mp0XH4LRjAF+FLuWm4PxThiC0cqnyPFztT3a+/o6szke3AliBqPVC4u1Ba2h8cUZJ9UN2UvTDoLRSqPoOc/gubz1eQBzM6DpmJ4RtxCM1pT2ebfUOjZ83eLb821LHNZ7G8+KAAAAAAAAAAAAAAAAAAAAAJSPw6o0AABMPAlGqxGMVgq2wIU0wWhJ+5SpqN8WNIECpCj4qxcCkoqp31F87yVT0IYPwWimvlR04ATiqfVJ6+ZL65+Wxh0g9W7O6bgEo5VPgvtaVvezyMFojK29Z/vsh82N6t1TCFlsbsZxUsi1xxQunUk7GPuUh0fBaLYwbPoU0HwIRsNgrTtJ+5wvLbpt5Lo/3St1rZVG7ZbiAK5CyizPugOC0RrS8nukZXdLLR3StPdIe5xVdIsAAAAAAAAAAAAAAAAAAACATBGMBgDIX5Ii04qDYDTCG8rBFoxmKrCPFASSsE+ZjknIjF/SFLO7DEYz7ZsCRf8EgYzFqk7D8yKiL5Vf7xbp1+dLK+bmf2zCjMon0X0to/FzS9RgtM5sjgd3bEG+YXMjU/DVAMa/zW3TK+HLQ4PRHIbK1uun8EfRgWODQ85t4/mi2wkgf6YfzyAYrXnNuCQ8GK3WIy25Szrg7x0cNOX8jXtbc3npa9JTH9vxetGt0nHflWZeUliTAAAAAAAAAAAAAAAAAAAAgKx5UNEPAGg6RQY7DNbXlf0+kT1beEu1LXx5lML7pGF7pmA0Qmb8kqrgz+UQ2dTvKFD0jq0PuQz3iIy+VHoLbyomFE0izKiMihw/VyMGo/USjOY9W+BwWLBd3WA0y/7Q+Fb/Onx5+64jlxGMBqn4UJZKxGA0UzgygMZl+vEMgtGa1+STpJ2mh69bfFu6fTsLtLfN/7i3NZRan/TctcMWBtLv/7n48RYAAAAAAAAAAAAAAAAAAACQIYLRAAAFSFCckTTEytoMQ9Eb/FLrNq8zFdhbi5zfNO7AZO2pGoLRCJnxTIoisCj9J+t9OyuKRGK2kA0fgtHoS+W39AfFHZswz/JJUtyc2f0s4jg8LFgLfrEGo4XMjer1O64lzatns/TGS+HrJp80chnBaJCKD+qoRgxGK7qdAPJnCkarjsq3HfBHpSrNuDh83br50obnHBwz7fcfBKM1jY2/l7rXj1y+ZbG08cX82wMAAAAgV8uWLdNnPvMZnXTSSZoyZYra29tVqVS2/7vtttuKbiIAAAAAAAAAAAAAAJkhGA0AkL9ERaYOgtFMRW/wS19X+PKW0ckLxqZdKLVPSLZtxRCMFlaMhOKkCYcqIhgtTZAb3LAGo/kwjTJd/+hLpbH+meKOTZhRCRU4fo46dicYzX+xg9HqBE5xLWlem18xr5v6rpHLXI6dCLEqkYLP1ZC5vO0eSZ8Cmo7pGXHL6HzbAb/MfL953eLbU+zYUUiZ7Tk5IfqNpWezed3mRfm1AwAAACiZ6dOnDwkQe/DBB4tuUmy33HKL9t9/f33xi1/UI488olWrVqmnx/LdDwAAAAAAAAAAAAAAJedDRT8AoNkkKVx2UUhNMFo51AznqToq+T6Puy35ttW28OV9W6Wudcn3i4ylKGZ3GnplKFIk0MFDlnNSacmvGcY2GPopxa7lYCtizcO2VcUeH/ElGj9nFSwc8brC2Np/QcbBaLagNTS2TX8IX15tl3Y+YORyp8Fodfop/FH0nGdwMJqtTxbdTgD5IxgNYcbOlCafHL5u8felWtYhwWnnb7bteVbUUFo7zOs6X5O2/kl68grplydKT35U2rIsv7YBAAAAcObnP/+5LrvsMnV1GX5ccpgHH3XGYEIAACAASURBVHxwSBDcNddc47aBAAAAAAAAAAAAAAA4QDAaACB/iYpMswp2GITwhnLoM/xRX5rixJb25NsOLqYe7g/fTL5fZCtVMbuD6832XZuG3xQoescWsuFDMJqxnxLkUApblro/xr4flFp3Cl/36HvdHx/ZSnRfy+qRT9RgtM6MjgdnbEFmocFodfpd5mEQKI1NfwxfPnamVA0ZJ7kcOxGMVh5FB44NmYsRjAZgENMz4irBaE1vxsXhy7etlFb8IuFOXT0DJBitadjGvxt+L91/irTw36XVv5EW3iTdf7LUuTK/9gEAAABw4qqrrlIw6EfSLrroIv3qV7/SwoULtXjx4u3/zj///AJbCQAAAAAAAAAAAABAtghGAwDkL1HhcoLinWP+r309wWjlYDpPaYLR0qhagtEWfDa/dsAuTTG709ArQ5Eixff+sQajeTCNMrUhoNi1FPIIRmsZI9W6zeu7N7pvAzKU4LNdySjoM+p1hWA0/9mC0WphwWh15m0BwWhNq3dz+PIxexo2cDl2YhxdHkUHow26L1rH84yngaYTNg6Sinv2CH/s85dSS0f4usW3Z3ustPM3272N546NxRZQ/YdvSJuHhRhvWSot+6HbNgEAAABw6uWXX9aCBQu2vz777LN1xx136PTTT9d+++2n6dOnb/83duzYAlsKAAAAAAAAAAAAAEC2PKjoBwA0nwSFOOufib/NXu+U2saZ1weWYAD4w1ScWB2VbzsGVCzBaPBHogDGN7kMvTLum+J779iKRp2G50VlKpil2LUUet5Itt2U06K/t2WMPQRp7ePJ2oBiJCpkzygYbcKh0d7X15XN8eCOLcgsLIy43njKdo1BYzP1pWpb+HLb2Gm3P0vZlhTjfuTLp1AWwmMADObbjzLAH207S3v/7/B1r94jda/Ptz1Wtvkfzx0bSpKA6vlXZN8OAAAAALl58sknh7w+//zzC2oJAAAAAAAAAAAAAAD5IhgNAJC/JEWmvVvib9Oxl3T6/eb1tQQFJMifKWSjqOLEKsFopZAqGM1h6JWpAJ/ie//Y+pAPwWjGvkSxayn0dSbbbqqhIDtMS50AUYI+SybBfSKrczxuP2ncQfXfVyMYzXu2ILMkwWhJCvLRGExzadN1xxZCdfRN0pE3SlNOl8bOTNAWgtFKw6s5jyU8xqt2AsgFwWiwmXlx+PJat7T07vj7Mz63SRlsXbHd23hW1FAIBgYAAACazuuvvz7k9dSpUwtqCQAAAAAAAAAAAAAA+SIYDQCQv0RFpgkLg3Y7Rjr5HkM7KOQvBVNxYrVO4IsrBMmUg6/BaKZrGcX3/rH2IR+mUab7In2pFGqGe5vNmb+Rdt43+vsrbfb1BH2WS5L7RJbn+IQ7pPZd7e8xjdngD2swWkhgY71+F/QRstCsTHNp03XHFoxWaZEOvEI641fSyT9N0BjGPuXh0bmy9Umf2gkgHwSjwWbyaVLH3uHrFt2Wa1PsbN+fMGZvKHyvBQAAADSdzZs3D3nd1lbne2AAAAAAAAAAAAAAABoEldAAgAIkKDKtJAxGk8xBVjUKSErBt+JEgtHKIU3QmLVIPiXjvilQ9I4tGM1peF5Epr5EQE05xA2QOuEOadIJ0opfRN+mWucP4rmflUuS+1qW53jXI6RzF0mrHpQeflf4e2pd2R0PbliD0UKuS1GCZoM+rifNyDSXNvUF29hp8JgmyTg8TSAy8uVTGLStr/nUTgD58O3ZI/xSbZFmvE96/rqR69Y+Lr3xsjTugBg7dPTcxvr9Cc+KGgrfawEAAABeC4JATz31lF566SWtWrVKXV1dmjRpkvbaay+deOKJGjt2bOx91mo8swQAAAAAAAAAAAAANCcqFwEA+UtSZJqm2NlUnB1QQFIKppCNoooTqwyfSiHVNcNl6JWhSJHie//YzknVg2A0U19KEj6K/MUNRhsYy8QJjKl3v3IZAonsJblPZD1maR8vTT1Pmni8tOa3I9f3EYzmvcBBMFqth/FxMzLNpY3BaLZ7zqAxDcFojc2rOQ/BaAAGqRnmZ1WC0fCmGReHB6NJ0qLbpcMN62JJ8cMwkuz3NoLRGgrfawEAAABeWrNmja677jp9//vf1+rVq0Pf097ertNPP13XXHONjj32WOO+lixZohkzZhjXn3baaaHLb731Vv3N3/xN6Lprr71W1157rXGf8+bN06mnnmpcDwAAAAAAAAAAAABAEaiEBgDkL1EwWorCVFOhPgUk5WAKj6mOyrcdA0zF/vCLr8FoprAHiu/9Y+tDTsPzIjL2JYpdS6GvM977B8YycfpevftVjXFQuSS4T7gas5jGYHED/5C/WsxgtCj9jjlVczKdd2NInuUR9JAxTZJgNMbRpeHTubKG8DGeBpqOaRxb1I8ywD/j9u8PiA6z+HtSLc5zSEf3mYotWM2jezDSIxgYAAAA8M4999yjmTNn6oYbbjCGoklSd3e35s6dq+OOO06XXXaZenv5jgUAAAAAAAAAAAAAABuSPQAA+cu7GNYUChHU+v9ZC2JRuFpX+PKiihONxf5vCoI6hWjIRaoCMZfXBNO+Kb73jrUPeXDfMF1nfAqcgFncAKntY5kYfa9eKBZhRuWSJPSw3pglKdMYzDRmgz9swWi1kOtSlIAHriXNyRSuabr3WIM9B93bkszNCYYoEZ/GqZY5O+NpoPn0efbsEX6aeYm05rcjl3f+SXr9AWmPM9PtP/XzZNu9jeeODYWgewAAgGzUeqWtrxbdiubQMdXdd1Ye+O53v6tLL71UtdrQ54r77ruvDj74YHV0dGjZsmV64okn1Ne343n2t7/9bS1btkz33nuvWlsb9/8fAAAAAAAAAAAAAADS4Bt1AEABci4ytf2BXdBHMJrvTOExRRUnRgmaqbTl0xaYpQlIsAY3pESYVXnYzonLPhIZIXulljQYLU7fq9a5FxFmVDIJ7hP1xixJtYwKX24KlIA/bMFoYdelKOMp2z7RuEz3ENPc2zbnHjw+Jhitsfk057H1NZ/aCSAfYQGxEsFoGGqfv5Ke/IfwQOhFt0UPRnMWUmYLVuNZUUPheQ4AAEA2tr4q/XRG0a1oDuculsZOL7oVTjzzzDO6/PLLh4SiHX744frGN76hE044Ych7V69erc9+9rO6+eabty+bO3euPve5z+m6664b8t6pU6dq8eLF21/feOON+trXvrb99V133aXjjjtuRHsmTpyoU089VZL02GOP6cILL9y+7oorrtDHPvYx4/+W3Xffvc7/WgAAAAAAAAAAAAAA8kcwGgAgf3kXmdpCIWq99YNDUCxjMJohlMO1eiEjfdvoU15IcZ1xGnpFmFVp2EI2fAhGI2Sv3Po6471/IGgmTmBMvV9er1FIWypJPtuuxiNVwxgsLCAAfrEV0IeOuSP0O64lzcl03k1zJevYadC9LVEwGmOf0vDpXFn7mkftBOBerc8c9EowGgZrnyDt/b+kpT8Yue7Vn0jdG6X28SkOYAs2i7K5ZXtnYWwoBMHAAAAAgDc+8IEPqLu7e/vrE088Uffdd586OjpGvHfSpEn61re+pVmzZulTn/rU9uX/+q//qgsvvFCHHHLI9mWtra2aPn369tcTJkwYsq/dd999yPrBxo4dK0lasmTJkOUTJkwwbgMAAAAAAAAAAAAAgK8SVJsBAJBS3sWwtmAQWzgA/GAK2agWVJxYL2TEFOSGfNVSFIglCWSIvG/CrErDGozmwzSKkL1Si3uvqBfKmWQbxkDlkuQ+kaTfRGEKRmMM5D9T6IcUfv6iFNxzLWlOpvNuDEaLOnZKEoxGMER5+DTnsfQ15mYok84V0jP/JN13vDT3z6SXv04AUly2cN+inj3CXzMuDl/e1ykt+6+IO3H1GbUFq3FdaCiEUwMAAABemDdvnp566qntr8eNG6e77747NBRtsE9+8pM655xztr+u1Wq64YYbnLUTAAAAAAAAAAAAAIAy86GiHwDQbPIuXLaFQlDI7z9TyEaLIZTDNVvQnkQoiC/SXGcqLdm1YwTT8Jvie+/YAhGc9pGICNkrt7j3ioFQzjjb1QvFopC2ZDwKRmsxBETYQiXgB2swWufIZVHGU7Z9onGZ5tHGuZLtEfSg61uS8FmC0crDp3Gqta8RHoMS2LxYeuJyac4M6YXrpbWPSet+J83/B+n5LxbdunKxzbFM4140r93PlMbsGb5u8e0pd24LNouyOfe2psF3WgAAAIAXbr996DzwIx/5iPbc0zBnHOZLX/rSkNd33XWXurr4ng0AAAAAAAAAAAAAgOEIRgMAFCDnYlhbKASF/P4zBqMVVJxYL2SEYDQ/+BqMZipSDChQ9I6tD/kQjGacytGXSiHuvWLg3hMWXGQyEKZmQiFtuSQJk6kX5pqUKZy2j4IN7wW2YLRtI8cjUcZTXEuakylc0zRXqlrGTkHaYDSPwrZg59W5soTPeNVOYJiNL0iPvl+6dz/plW+FB9Mu/DrPGOIgGA1xVFuk6X8dvm71I9KmV/JtzxDc25pG0ufe9AMAAAAgU4888siQ13/914b5YojZs2fryCOP3P5627Ztmj9/fmZtAwAAAAAAAAAAAACgURCMBgDIX94FGLZQCFNBN/wRVuQpSVVDKIdr9YLRagSj+SHFdcZpMJqhSJHCNP9Yg9E8mEbRl8otTsCZtGMsEysYrd79ijFQqST5bNcbsyRlGoMRDus/ayh0MHJ9lH7HtaQ5mQLxjPcey9hpyJgrSTBaikBk5MyjcaptPM94Gj5aN1/69buln71FWvKf9mvftlXStpX5ta3sbM/xCEZDmJkXm9ct/l6EHRiCC03PeSKzbU9YYkNJGk5NmDkAAACQmfXr1+uPf/zj9tcTJkzQQQcdFGsfJ5xwwpDXv/vd7zJpGwAAAAAAAAAAAAAAjcRRlSwAABZ5F5naQiGSFpEgP6YAh2p7vu3Yftw6wydCQfyQJiDBaeiVad8UKHrHdq9yGZ4XGX2p1OKGaA6MZcbF+IP6eqFYjIFKJsFnu96YJSlTQIQpzBb+sAajqf/a1DJojB1lPBXU2ScakykQz3TvsY2dBo+5kozDCUYrD58Cx6x9zaN2Aqselp6/TlpxX7ztfPq8+c72HI9gNIQZf7C06zHSupCC9UW3S4dcU0ygvi1YLeBZUUNJGk5d2yZpTKZNAQAAKLWOqdK5i4tuRXPomFp0CzK3evXqIa/3228/VWIGXh944IFDXq9atSp1uwAAAAAAAAAAAAAAaDQEowEACpBzcZ4tFIJQEP+ZCt2LCiaqFzRDMJofUgWjOexbpj+GpWjZP7Y+5EMwGn2p3OLeKwbGMuMPlnaaJm1ZGmGbNvt6xkDlkuSzXanTB5KqjgpfTjCa/+oFo/Vtk9rG7XgdZTyVtCgf5Wa6hxiD0SzhIIP7WaJgNMY+peHTubL2SY/aieYUBNKKuf2BaKsfSbgP+nFkq35tXkcwGkxmXhwejLZ1mbTqIWnKaeZtnYWU2QrwCUZrKL2bEm7XKbXvkm1bAAAAyqzaKo2dXnQrUFLr168f8nr8+PGx9zF8m3Xr1qVqEwAAAAAAAAAAAAAAjaiAn6wGADS9vIvzbEFWFPL7z7tgtDrHJRjNDzVPg9GMw2+Klr3jezCasS9R7FoKfZ3x3j8wlqlUpONuj7eNCWOgckkyfraFA6fRYghG6yMYzXtBhGC0Ie+P0O8IWWxOpvNuuu5EDaFKFIyWYtyPfHkV1EQwGjxU65OW/Uiae5T04NnJQ9H6d5ZZsxreyzea11UJRoPBtAukanv4ukUR5+wj2ILN0m7Ps6KG8uzVybar8b0FAAAAkJVgWOh1xfSjZjFksQ8AAAAAAAAAAAAAABoNwWgAgPz5FIxGIb//TMEtrsI+6qm22dcTjOaHNAEJSQIZ0u47oEDRP5Z7lcs+EpXpD6MJciiHuPeKwfeeKaf0F2HX3abOfZIxUMkk+GzXC8dLqmoKRmMM5L1a3GC0COOpevtEYzLN0UzXnV0ON+9r530HvSAYrbF5NE61FhkyN0POaj39QUo/f4v0yF9K659Ov0/mhdH1bDKvq/cMEM1r1G7SXu8MX7f8R1LPZsvGju4zUYNoUW7b1iTfljk7AAAAkJldd911yOuNGzfG3sfwbXbZZZdUbQIAAAAAAAAAAAAAoBF5UNEPAGg6SQpxJr01+fFswSCmgm74w1ToXmnJtx0DWkZJE08wr69RYOSHFAV/TvuWqQCfAkXv2EI2fAhGM07lCHIohbhBQsODZsbuG/6+4dsc9sXs2oBiJRk/uwqRbRkdvrzW5eZ4yE69uU+SYDRCFpuT6bybrjsdU6Vdjx65fNKJ/cEiAxKNsRhHl0aRoSxHfGXYAsJj4IHeTmnhN6V795Meu0R646Xo2044VDriq+b19OPo2nY2r7OGKKLpzbwkfHnvFmn5fyfYYcr+VqmYn2nWutPtG/74073JtyUYDQAAAMjMpEmThrxeuHBh7H28/PLLQ15Pnjw5VZsAAAAAAAAAAAAAAGhEPlT0AwCaToLivFkfSn644WEig1HI7z/TObKdV9cOu868jgIjP0QJ8jBxGYxmCnsICLPyjm+hjMOZCrQpgC+HuOOP4UEzpmCqIdu0Sfu8J7s2oFhJPtuuxkoto8KX9xGM5r2gTiBikmA0gqabk+m82647J9wpdey94/VO06Xj/3PY9gkeVacZ9yNfRY5TZ/7N0Ne2vsZ4Gq71bJJe+LL00xnSkx+RtiyNvu1ux0mn3Cv9+TPStL+yvJFnDJGZnuPN+rt824Hy2ePt0mhD0fqi2ywbOvx8towJX97X6e6YyFeac8ncDQAAAMjMLrvson333fFDVhs2bNCLL74Yax+PPvrokNfHHHNMJm0bUCHwHQAAAAAAAAAAAADQAAhGAwDkz1RkOuFQadoFI5dP/2tp2oXJjzc8TGQwikH852M40ZRTzOsIRvNDqmA0l0Nk0x+fUnzvnZrp2uPJFMrYDgrgSyHu+GN40EyUYLRKq7TzvuaQGsZAJZPgPmEbA6dRNQSj1RgDea9WLxhtWJF9lHAgQhabU5Lw6nH7Se98RXrbw9KZj0jvXCiNnT7sTQSjNbYC5zyjdhv62jqmZ24GR7rWSgs+L82ZJj3zf6Rtr0ffdve3SWc8IJ31qLTXOW8GZRPwlwnTc7zJp+baDJRQta3/e4swqx6UNi+Jt78sCtZNwWi9BKM1jDT9hLkbAAAAkKkTTzxxyOs77rgj8rYvvvii5s+fv/316NGjddRRR2XWNkkaNWro93ldXfzAEQAAAAAAAAAAAACgfDyp6gcANBVTcV61XTrhDumsx6UDruj/946npONvl6opQrBsxdkUg/jPFNziKuwjqvGzw5cTjOaHVMFoDkP3TAX4FC17yHBOigxlHMJQCElfKoe4448RwWiGYufBBu6Tuxr+iJ4xULkk+WzbxsBptHaEL6fY3n91g9GGjWOjjKfq7RONyXQPqTdHa2mXJp8kTXprf5jIcEkCaAlGKw+vxqkESiFHnSukpz7ZH4j23D9L3eujbzv1POmsx6TTfylNOW1oII7tmkk/js70HC9KGDUw42LzusXfC18eOAy0N83Vhgcgo8RS/GkHz4EAAACATL3//e8f8vqmm27SypUrI2171VVXDXl9wQUXjAgyS2vChAlDXq9YsSLT/QMAAAAAAAAAAAAAkAeC0QAA+TMVLleq/f8m/pl01I39/3Y9Illx9JD9EoxWasb+UnA4kalAkmA0P5QtGE0OiyKRjK/XngH0pXIzhX6aDA+aiVKkPzD+MYXUxG0DCpbgsx0WOpQFUzBf31Y3x0N26oWY1RIEozGfak6me0jaQMZEwWiE/5SGT+eqYggZlsR4GpnZvFh64nJpzgzppa9KvVuibVepStMuks5eIJ18jzTxWPP7jDz6vPlu+PhnAMFoiGKXQ6Vdjghft/j2mCFotntTRMzVGp91DFMHz4EAAACATJ1++uk6/PDDt7/euHGjLrzwQnV22sOpb7jhBs2ZM2f760qloo9//OOZt2/mzJlqb2/f/nrevHnq6eHHbgAAAAAAAAAAAAAA5ZKyWg0AUlj3tNS9tv+/BxeI7DRdGrdfIU1CXkzFeY7yOm2FghSD+M/XcCKC0fyWqujeZXawoXjNp5AA9DOGwfiSLU1fKrW4QULDg2ZMxc6DDYRiVQzhWIQZlUuSz3bagCKTlo7w5UFff/CWq0A2pBfUKXgZPo6N0u+YTzUn0z3EFMYZWZJgtBSByMiZT+NUS6gI42mktfEF6fkvSUvvjHeNqrZJMy6RDv60tPOsKBuYV9GPowkC83M8gtEQ1YyLpfVPj1y+eZG0+hFp8kn5tcUYjGYvykeT4DkQAAAAMMTKlSu1ZMmSRNtOnz5dkvSd73xHxx9/vLq7uyVJDz74oE466SR94xvf0LHHDg27X7NmjT7/+c/rm9/85pDln/70p3XooYcmaodNe3u73vrWt2revHmSpGXLluncc8/Vhz70Ie23337q6Bj6fd/uu++u0aN5HgIAAAAAAAAAAAAA8AvBaACK88yV0spfjFx+8JXS4dfn3x7kx1ScV3UUdFWp9AdDhBV+UAziP9M5chX2EVXV8AeBNYLRvJAmIMHVtUgyBzUODgiFH0z3qqJDGQcYQz/pS6UQd/wxPGgqSpH+wH3SFFLDGKhcfApGazUEo0lS71apfbyb4yK9WtxgtAjjqXr7RGMyBeKlve7YQs1NCEYrD5+CmioV9YejhYydfWonymXdfOn566TlP1GseVnLGGnWZdJB/yh1TI2+XYWAv9Rq3eZ1pud+wHDTL5Ke/mT4HHvx7SHBaKbrg+UzHZUpGK2XYLSGkSaYmlBrAAAAYIgLL7ww8bbBm3/fceSRR+qmm27Shz70IdVq/c9j5s+fr+OOO06zZs3S7NmzNXr0aC1fvlxPPPGEenuHjsvPPPNM/cu//Evy/xF1fOITn9gejCZJc+fO1dy5c0PfO2/ePJ166qnO2gIAAAAAAAAAAAAAQBIJqs0AAEjJWJzn8LY0PFBkAMUg/jMVuhcdTmQKpRkeKIFipAlIcNq3TEWOFC17x9SHXAbnxWLoSxTAl0Pc8cfwoJkoRfoDgWimkBrGQOWS5LNtCsVLy1RsL0l9W90cE9lwEYxGyGJzchVebQv5MbaFsU9p+HaujEF8nrUT/lv1sDTvHdLco6XlP1bkULS28dLsq6XzlkpH3RAvFE2qEyZJP47E9gwvShg1IEmjJ0l7/UX4uqU/7A+PzotprtZHMFrDSPPdA3M3AAAAwIlLL71Ud999t8aOHTtk+SuvvKI5c+bo7rvv1qOPPjoiFO1v//Zv9bOf/UxtbYa/Z8vAOeecoy984QtqafHlbxwAAAAAAAAAAAAAAIiHYDQAQP5MxbDWgr6UTAXaFIP4zxTc4irsIyqC0fyWJhjN5RDZdJ3zLSQA/oYyDjDeMyMW4aM4QU2xz9Pw891qCabavk2dYDTGQCWT4D6RNqDIpLXDvC7Pon/EE+XaM2IcG6HfcS1pTqbzXsQcLdW4H7nybc7D3AxpBIH02v9IvzxJuv8UacV90bcdNUk67Lr+QLTDvtAfqpSI5dkF/TgagtGQlRkXhy/v3SQt/8mwhQ6f2xCM1vhqKb57qBeUDQAAACCx888/X3/84x91xRVXaOLEicb3tbW16ayzztJvfvMbfec733Eaijbg6quv1oIFC3TllVfq5JNP1u67764xYyJ81wwAAAAAAAAAAAAAgAcKThQBgDAEejS+AoLRTAXaFPL7z9dwIoLR/JamCNhl3yLMqjyMfciXbOlK+GIK4P1nCvw0qbRKlWHnuxqhSL/65h/Sm8ZAcduBYiX5bLsKKGqxBKNRcO+vKEXww4vsaxECpyiub06me4irQEYbgtFKxLdxqmk8zdwMFrU+6dWfSM9fJ61/Ot62HVOlgz4l7ftBe9BsVLbnqMwLo7EFDBGMhjj2/Atp1G5S19qR6xbfLs14b/19DJ/3J2G6tjBPaxxpvnvguzAAAAA0uSVLljjd/+TJk3XjjTfq3/7t3zR//ny99NJLWr16tbq6ujRx4kRNnTpVJ554onbeeefY+77mmmt0zTXXJG7bwQcfrOuvvz7x9gAAAAAAAAAAAAAAFIVgNADFyaLQA+VURNiMqUCbUBD/mQp2iii6H4xgNL+lCUhwGrpHmFVp+BrKOICQvfKKW4gaFm4VpUh/4D5pul9SEFsuSe4TrsZKtiCP3q1ujon0ogSY9Q4LTIgynmI+1ZxM9xBXgYw2jKPLw7dzZRxPe9ZO+KHWIy25U3rhS9IbL8XbduwsafaV0vT3SS3t2bWJYLT0bM/wCEZDHC3t0rSLpIVfH7lu5f3SluXSTnv3v3YZwNkyJnw5wWjlEgTSxuekLUulSW+V2nfZsS7Ndw/M3QAAAIBcVKtVHXPMMTrmmGOKbgoAAAAAAAAAAAAAAKVHMBoAPwWB9OL/Jy3+Xn8AyT7nSwdfJVU9CSNBOqbiPFtBX1qmAm1CQfznazhR1VAgWSMYzQupgtFchjQSZlUavl57tiNkr7Tijj3Cwq1Mxc6DDYx9TGOgKCFJ8EiC+0S1LftmSPb+10cwmreCCJ/54ePYKOMp5lPNqXdL+PIiwqvTjPuRL+/GqYa5mXftRKF6O6VFt0ovfrk/oCaOCYdKs/9J2vt8R8+0bc8ueMYQCcFoyNLMS8KD0RRIS74vzb6qzg4y+CEh01yNAOvy6O2UHj5PWvnL/tfVNum426SeTdLax6RFtyXfN3M3AAAAAAAAAAAAAAAAAAAAlAzBaAD8EwTSgs9Jz39hx7INz0obfi+99QdSJYMCERSsgGA0U4F2jWIQrwWBudDdFPSSl1ZDoZmtqBL5SRWM5jL4ijCr0igixDMOQvbKK+7YIyzcKkqR/sDYxzQGoiC2XJLcJ1wFFFWqUnWUVOsauY6Ce39FCUMcMY6N0O8IWWw+G18wrytijkYw4LiqPwAAIABJREFUWol4NucxjaeZm0HqD6D5w7ekl74qbXs93ra7HSe95Wppz79w+xzbNjelH0fT12leZ/pBBMBklyOk8W+RNj43ct2i26SDr3zzmuDwuY0pGM3W1+GX57+4IxRN6p9vPfrebPbNcyAAAAAAAAAAAAAAAAAAAACUjCdV/QCakykcpk965f+OXL7sh9JL/+a2SciHsTivgGA0ikH8ZivkdBpeFYGpQJJgND/4GoxmKlxeMVfavNjdcRGfqQ8Vfe3ZjpC90oo79ggbw5iKnQcbCFQzhdQQDlsyCT7bLgOKWjvCl1Nw768kwWhRxlPMp5rPq/eY17kKZLRZMVda8Hlp5QP9wdrwl2/jVGOolGftRL661vZfU+ZMk575dLxQtClnSGc8IJ31qLTXOe5/3MMa2k0/jsT2DK9lVH7tQGOoVKSZl4Sv27RQWvt4vR2kb4PxhzyYp5XGwpvc7ZvnQAAAAAAAAAAAAAAAAAAAACgZgtEA+Gfbyv4itDBPf1Lq2Zxve5A9UzGstaAvJVMwBIX8frOFMRQdTtRCMJrX0hTdu7wWmYbfW5ZKP50p/ea90YJL4J7vwWimfupb4ARGiluIGjaGMd2DBhvoq4TDNoYkn22XAUWmcL6+re6OiXSSBKP1bIqwX64lTWfZf5nXFRGMJknP/bP0wBnS7y5nLOQz784NQcMYpHOF9NQn+wPRnvtnqXt99G2nnied9Zh0xv3SlNPcB6JtZ3l2QT+OpmtN+PJqu+NnQ2hY099rfm606LY3/8NhkKtxnkYwWmn0bHS375e+KnU73D8AAAAAAACA1Hr7Av36D4F+8Tw/CgYAAAAAAAAAgEQwGgAf1QsVeuPFfNoBd4xhMw5vS6YCbQr5/WYLbSmq6H4AwWh+s4Xq1eMy+KpegfTSO6WF33B3fMRQQIhnHMb7GsF63osbSBZ2riMFo1XN20vS0rvitQPFSvLZNgUDZ6GlI3x5L8Fo3oobjBYE0ron629DyGLz2bDAvK5W8FzolZulNb8ttg2w8CyoyTiup8igqWxeLD1xuTRnRn9gTO+WaNtVqtK0i6SzF0gn3yNNPNZtO01tMCEYLZqnPx2+PMp8CwgzZndpj3eEr1v6A/tz4yxCFY3Pq7vS7xvlt+kP0o8mSIu/X3RLAAAAAAAAAAyyaVug/54f6JJba9rjkzWd8pWarvox3/UAAAAAAAAAACARjAagUIZCj3qhQlEL1OAvU3Gey7AZUzAEhfx+s4VbuQyvisJUaFZ0GAD6+RqMFmX4/fLXHB4fkdVMIZ4FX3sGtIwKX16j2NV7WQSjVdujb28LxyLEqjySfLZdhsi2GoLR+uhT3opy7Rk8jt20MNp+CeRsPrsebV43aqK747buFO19K+931wYkFwT+BTWZnkH51k64sfFF6dH3S/fuJ73yrehjrWqbtO+l0jkvS2+9Q5pwiNt22lhDlOjHkfRuCl9OMBrSmHlx+PKejdKrc9weu8qzIkTw2/dJmxcV3QoAAAAAAAAAku55OtCkT9T0lzfX9L3fBlr7ZonE08ul5ev4QScAAAAAAAAAAAhGA+CfekUa9YLTUAKmYDSHYTOmYAgK+f1mC3CwBb1I0uFfDl9+0KeSt2cwU5Ek1yg/pApGczhEbokQZrRlibvjIzpTH/ImGM10DaLY1Xtxxx7VtpHLKpXo16q2ceZ1656M1xYUJ8lnO6zvZMVYcN/t7phIJ8q1Z/A4dv0z0fZL0HTzGTvLvG787PT7n3pe+PIDroi2fffG9G1A9lzfHw65NsFGBKM1pXXzpV+/W/rZbGnJf0Z/dtAyRjrgY9K5i6Rjvy3tbLkW5soQjkY/jsY0p9q2Kt92oLHs9U6pfZfwdYtu7w8LDWULO4yI59WIatmPim4BAAAAAAAAAElH7CN1G/7s4h/u4vseAAAAAAAAAAAIRgPgn3pF/xRxlJ+xOM/hbckUjEYhv99qlgLVeuFEU88dGdpRaZH2fnf6dklSlUIzr6UKRnMYfGXqN/CPMRjNkymUMZSIYDTv1WKOPVrGhC+f8X7zNnu8Y8d/736m+X29W+K1BcVJ8tkeNTn7dgwwBdTG7d/ITxAlGK1z0H9HHNNyzpuPbZydRSDjwVdKrWOHLtv/o1LHPtG2rzEf81KW8+Th/aw6Ktk83zSuJ1CqMa16WJr3Dmnu0dLyH0syBRMN0zZemn21dN5S6agbpI6pTpsZG/04HdO1afZn8m0HGkvLaGnaBeHrVt4ndb7m7tg8K0JUCz5XdAsAAAAAAAAASJq2W0WHGb5+mvOsVP27Ph16TZ8+cHtNP1sQqFaL+B0XAAAAAAAAAAANwpOqfgBNqVIJX16vWJLQofIzFee5DJshvKGcbEX3prC7AeMOkE65V9p5v/7XO02T3voDaeKx2bSthWA0r6UpAnYZjNZqCDiCh0z3Kof9Iw5TsSvXIP/FDWU13W+O+Ko08YTwdQdfueO/J51k3jf9pTzqhUeHGT0x+3YMIHS4fGpRgtG2hf+3TZTANTQW0+d8vw9ns/+Jx0ln/kY66JPS9PdKx39POuprUoth7DMc9zY/ZXVe2neVTvzRjnn+uAOlU/+fNP7gBDszPJc0zQNQPkEgvfY/0i9Pku4/RVpxX/RtR02SDruuPxDtsC9Ioye5a2caBKOlY7o2TXprvu1A45lxSfjyoCa9/qvwdabvy+IwjZcYH2E4X374AQAAAAAAAIDeeZj9+fBzr0m3/ibQO2+q6Yq7AwUB4WgAAAAAAAAAgOZRJ1EEAApQ79fr+XX7BlBAMBrhDeVkOz9Rwon2OFN650Kpe4PUNj6bArMBBKP5zRaqV4/La1ELwWilYepDvgSjmYpdGSf5L6tgtFG7Smc+Ir3+gPTs1dK6J6V9PyjNulTa9agd76u2SKMnS9tWjdwH96zyqHXHe/++H3TTjgHVtvDlhA77K3YwWmfE/XLOm47pPlYvuDqOXQ6VdvnK0GWmUNjhkgRJwr1aRmOOSlWaem7/v55NUtvO6fYVhkKC8gtq0vIfS89fJ61/Ot62HVOlgz7VP5Zq7XDTvkyZnl/Qj+sKauYxtmkOBkS12zH94Z1vvDRyncvgQuPzasZHGC7D70kAAAAAAAAApHLuYRV94WfRvtv5xrxAHzm1ogP3cNwoAAAAAAAAAAA8QTAaAP/UC/QgwKH8jMU/DsOIqoZbHoX8frOFW8UJJ2qfkL4tw5kKzWrb+gupswxhQ3ypgtEcBl9RXFse3gejUexaWnHHHrbrRqUi7X5G/z/rPgyhjFGDj1C8uKGHO89y044BhA6XT+xgtIjzbs5586kVNEYyhcIOl1UAF7KV1bO8wWFmaULRhu9rCIeBNXCr1iMtuVN64UvhYUQ2Y2dJs6+Upr9Paml30z4XjAF/9OO6bHNnnt0grUpFmnGx9OxV+R7XFCRLiD6G47sLAAAAAAAAwBtHTZMOmCK9/Hq09z+0MNCBe/CMDwAAAAAAAADQHBwm0ABAQvWKJQlGKz9TcZ6xKDUDhDeUk+38mMLu8mIqkgxq9CsfeBuMZggngn+KuFfFYSt2DaL9giQKEvcekcV1wxikx7i6NOKGHlYdhzmYxmGMgfzlKhgtyn7RWEyfc9fzM9PYZzjubX7K7LxkORYnUKph9HZKC78p3buf9Ngl8ULRJhwinXCXdM5L0r4fKFcomkTAXxq2IE2C0ZCFGe+L+QwpgyI24w95dHN/wzAUTQIAAAAAAAC+qFQq+p8roj9PXrvFYWMAAAAAAAAAAPCMJ1X9AJqT4Q/v6xVL2oqWUBIEoyGimiXcymV4VRS2IkmK8YuXptjPh2A0W99HPkzhekVfewa0WMJBCKnxWy1uMFoGRfmmkCzuV+VRixmM1uo4iNM0tub6468gwrkZPNeOOu9mPtV8jGMkx8FotrHPYNzb/JTVeclyLG56BkVwTHn0bJJe+Ir00xnSkx+RtiyNvu1ux0mn3Cv9+bPS9AukqifzvNjox4nZrkuuQ4bRHDr2kqa8Ld9j2oJka935tQP+8+WHHwAAAAAAAABIkqZPrOj1r1Y1fbf6712/1X17AAAAAAAAAADwheOKNQBIoK9O0T9FruVnKs5zWYxRNYU3UMjvNVvQguvC+3psRZJ926S2nfNrC0YyBTZE4vBaFDXgqNYlVTvctQP1+R6MZi123Sa1tOfXFsQTN0Qoi2A00z4IHC6PenOk4VyHOTC2Lp8o52bwXDvqvJtz3nxM9zHXYyTb2Gcwnhn5KbNgtCznaoYfbDCF+cMfXWull78uLfx3qXt9vG2nnCG95Wpp8qlSxdQHSoSAv+Rs16Us5mCAJM28RFr5i4hvzuCaZAuS7euib2OQBrgHAgAAAAAAAA1m0s4VLbq+RUvWBHpllfSub9a0NeQ3LzYQjAYAAAAAAAAAaCIEowHwT88G+3qKXMvPWJznMIzIFKIVN5wE+bKFWxUdTmQrJOM6Vbw0wWguQxpbxkR7X982qZVgtEIVca+Kw3oN6pLa8msKYoobIhT1upFkH72d6feNfNRiBqO5LnhnbF0+QU/99wwJRot4fYiyXzQW033MFJiYFYLRys3HYDQCpcqnc4X04lelV74l9W6Jt+3U86SDr5ImHuumbUUxfibox3URjIY8TH2X1DZO6nkjn+PVfV49Pp92oAQIRgMAAAAAAAB8NX1iRdMnSn99XEXffjgYsX7D1pHLAAAAAAAAAABoVASjAShQwj+8p8i1/EyBRS7DiExF2nHDSZAvW7iG68L7eghG81uqYDSHhWFxgtFQLOO9quBQxgG2cJC4AUrIV9zgqGoGRfmme1aNa00p1Pri39cIRsNwtQgBZrXu/v5WbYk+FmE+1XyMYyTH87OW9mjv497mp8zOSw7BaKKQwDubF0svfFladGu8uU6lKu1zgTT7SmnCIe7aVyjD8wsC/uojGA15aB0j7fMe6Y+31H9vFs8jeVaEqFx+FwcAAAAAAAAgExMMv6u7fmu+7QAAAAAAAAAAoEgEowEoHwo4ys9UnOeyGIPwhnKyhYAUHU5kK5KkGL94aYLRXIpaXEsfKp7vwWgtlmLXPsZKXos79siiKN+0D0IYy6HWHX8b12EOhA6XT5RgNKl/vl3tiH59YD7VfEzn3PUYyRb0MRj3Nj9ldV6yfG5k2heBUv7Y+KL0/PXS0jvjzfGrbdKMS6SDPy3tPMtZ87xAP06OYDTkZebF0YLRsmB9VsQYCYO4/GEQAAAAAAAAAJnYxRCMtoFgNAAAAAAAAABAEyEYDUD5UMDRAEzBaA4LqQlGK6eaLRit4GGMrUiS61TxfC0CbhkT7X30oeIVEeIZhy0chBBZv8UNjiIYDUk+067DHBhbl0/UYLS+bVJrjGC0qPtF4zDdx0yBiVmxBX0Mxr3NT5kFo2X53IhAKW+tmy89f520/CeSgujbtYyRZl0mHfSPUsdUZ83zCsFoydkC6aOGcQJRTDxBGjtL2vxKnTdmEFRVtf2QB8+KvBfEuOel5snzTQAAAAAAAABGpmC09QSjAQAAAAAAAACaCMFoAIqT9BfJKXItP2NxnsNijGpb+PI+CoK8ZgvXcBmkF4WtSJLrVPECS6hekaIG1dCHimfqQ0VfewYQzlhecYOjogYqJtlHX2f6fcO9JONV12EOpgAk+pS/ghjBaFL0c0kYXvMxjpEcP2aOel3rfM1tO5BMZsFoGT43Mj2XJFCqOKse7g9EW3FfvO3axkv7/710wBXS6Elu2uYt02ciz3CdklrzePjy6qjk31sAYSoVaebF0oLPuj+WLUiW70H8l+fzbK5zAAAAAAAAgPd26ago7DuftZulIAhU4TkfAAAAAAAAAKAJ8HPAAMqHsI/yMxWZZlngOpwpvGHpXVLN0wAl2IuBig4nqraai/+5ThXP22C0iAFH9KHieR+MRrFradXiBqNFDFRMsg+uNeVQSxKM1p59OwYzjYGW/1iqRQzgQr6inpfaQDBaxOtD3Gsays8Uhud6jBQn8HHjS+7agWR8DEYzfjVCMFqugkB67X+kX54k3X9KvFC0UZOkw66TzlsqHfaFJgxFk/kzQcCf3bY10rNXha+zzbWBpGa8X1K9ArUMCtgI0S+3XK/dFEwCAAAAAAAAvpsyLnz5G9ukVZvybQsAAAAAAAAAAEUhGA1A+fR1Ft0CpFZAMJopvEGS1j7h7rhIx1R0L/kRTkTQjL8IRkNaxhBPD649kj30aNvr+bUD8W14Nt77swhGqxr2sfy/pV7G1t574+X427gORqu2mdetesjtsZFM1GC0vpjBaFuWjly29TVp4TekJ/9Beu6L0hrmWw3FNEczhZFnJU5Qzas/cdcOJFPLan6T4XMj0zOo136e3TFgFtSkZT+S5h4lPXi2tPqR6Nt2TJWO+pp03hJp9lVS+3hnzfSe8VkqwWhWtgC+njfyaweax077SFNOc3+cSquMgVdJAreRsxyv3bVu6ZVbpF+eLP3XBOmZq7j+AQAAAAAAAJ45aA/zuhdey68dAAAAAAAAAAAUiWA0AOWzZXHRLUBam03nsKBgtJe+6u64SGfFL8KXV6pSxVDklSdTWE1mRd9IzNdgtDGWv1YZjBDQ4pn6kMsQzzgqVXMw0a//l/TGwnzbg2jWPim9+JV420QNVLTuwxKu9tA5Us3TayakjS9K886Kv12cAKEkbGPr5693e2wkEzcYLep4dusy6f7TpO4N/a9X/1b6f/tLT/69tPDr0oLPSL88Xvrjd+O3GX4y3TNch8dWY1zXTPNIFCer4Ocs+5lpXL/iPstzK6RW65EW3S79bLb0yF9K65+Ovu3YWdKx/yG984/SAf8gtXa4a2dpGPqxKegb/Tb9oegWoBnNuNj9MSoV81yQH2HwX57Ps7vXS0/8nbT611LPRumFL0n/NV56g+sjAAAAAAAA4ItJO1c0aefwdc+/FuTbGAAAAAAAAAAACuJJVT+A5pQw1OiNl/v/aB/lVOuRNiwIX+cybKZqCW947efujot0Xrk5fLktjCNPpqAZCs2K52swWtTCbYLRimcMRnMc+hGHLSBk/hX5tQPR/e7y+NvYQs0i78MSrvb6A9Lax9MfA268+OVk28UJEEq0f8tY7PUH3B4byQS90d43MI6NM55d9aD0+Af7//uJv5N6tww7dk166uNSX3f0fcJfpr7keo5mCoQNs+Y37tqBZDILRsvwuZGtz756T3bHQb/eTmnhN6V795Meu0R646Xo2044RDrhLumcl6R9PyC1tDtrZumYPhMEo9n5+swIjW2fd0utY83rs/oRkKrphzy6stk/3PHh2v3kR4puAQAAAAAAAIBB9p8cvnzlG/m2AwAAAAAAAACAohCMBqCc1v6u6BYgqQ3Pmde1jXN3XFvBqy8hWxipfdfw5TVPQhVMhWYEoxUvavjHcLuflW07wuz/9/XfU+tx3w7YGYPRPLpnmK6RkrT6kfzagWh6t0jr5sffbswe6Y9db4z1/PXpjwE3Ft2WbLs2S8F9Fny6FiKaqGOL7cFoMUNa//RTaetr0kbDfK/njWTXQPinqDFSnLCQKae7aweSyWp+k1cw2lOfyO44za5nk/TCV6SfzugPW9myNPq2ux0nnXKv9OfPStMvkKoehVT7wviZ8CBcx2e2Z0aTT86vHWgurTtJ+5zv/jgthpDsPoLRvOdDMNrKX0q9W4tuBQAAAAAAAIA37WR45NvrweNEAAAAAAAAAADyQDAagHJa83jRLUBS3evM6/b8c3fHrVoKXm3rUCxT8XSLIZAsb6Z2EIxWPFNgg02lKu3/4ezbMpwtzGpA0mA3ZMd0Dny6Z0w5zbyud7MUBPm1BfX1bJYU85yMntwfCJHWpBPs69c/lf4YKEZrSADaLkdK7bu4PS7BaOUTNZRo4P4Xdzxb65E2LLC/p29LvH3CT6YxUiWHwKKx+0Z7X8sYt+1AfJnNbzL8OsOncX0j6lorLbhGmjNNeubT0rbXo2875QzpjAeksx6V9jonXjBi0zF8JnwI1/GZ7ZnRnn+RXzvQfGZcYlmZ0bWuagpG43m195I8z3ahZ2PRLQAAAAAAAADwpjbD1/C9njxOBAAAAAAAAADANYLRABQnTVHbWoLRSstWkL/bMe6OawtvyKOAG8nUDAVbR30933aYEIzmr1rEwvsDPyFNOETa4x3SST+Wpp7ntl1StGC/qO2HO6Zz4FMY0BFftq+nGN4vpnvagNadhr4ePVk65WdSNYNxyq5H13kDYROltOc50qFfGLqs2iYdco37YxMmUz5BxGC0WsJgNKl+8BHjm8ZgOo95XBfe8rlo7+vrctsOxJfV57+S4dcZPo3rG0nnCunpT/UHoj13rdS9Pvq2e50rnfWYdMb9/SHQBKLVZ/r/iLmgne2adOAn8msHms/kk6Sdpoevq7ZncwzTc8ca4yPv+XLtZt4GAAAAAAAAeKPV8PVoD8FoAAAAAAAAAIAmQfUPgHJa+7gUBBTIlZGpWH54GEjWrMFo3A69ZQpkGDUx33aYEIzmr3rBHAOO/KrbdoSpjqr/nqjthzumc+BTGNDoydLbHpLuPyV8fdArifBPb/R2mte9a7nUvqu09AfSpoXSTtOkff5KGrVbNseuVKQJh0kbns1mf/DDPu+WZl4i7TxLevUeqXWsNO090sTj3B+b8XP52AKqBwtSBKPVC6NifNMYAsNfWOdxXWgdE+19BH/4J6vPf5bB9j6N6xvB5sXSC1+WFt0a7zNYqUr7XCDNvrI/tBzxGMMCPQnX8ZXpmjT1XVwb4FalKu37QWnBZ0auy+pHY1oMzx0JjvWfaZwtSQdfKb3wpXj7O+DjUuefpGU/jLcdY2kAAEaoVCozJB0uaU9JYyWtkLRU0qNBEPUXKZy0a1dJR0uaIWmC+n8FZ6OkVyX9LgiClUW1DQAAAEA2Wg1fj/byVRAAAAAAAAAAoEnwF/4AyqlrjbRlsTR2ZtEtQVymX5t3XURtK2qj4M1fpkCGlogF8a4Zg9Es4TdwL/D8rz5MBYqDERxSPNM58C0MqKXDvC7olRShvyEfNUvIUOtOUmuHtO/fuju+9d4ZuDsu3Km+OQ7Z6y/6/+V6bM+uhagvTjBarTfZWKR3S502ML5pCMYxUg5hrFXD/Gs4whz8k1kwmikEKsm+CBDOxMYXpeevl5beaQ90Ga7aJs24RDr40/0hr0jI8Jnw/blI0YoM+QQO+sf+oKoNC3Ysm3yytM97stm/abxkeyYBT1iu3XucFT8Ybe93SWNnxQ9G47sNAAC2q1Qq50v6hKTjDW9ZV6lU7pb0uSAI1uTUpoqk90j6iKQT67z3aUnfkvTdIODLZwAAAKCMWqsVhf1dV2+Mr+UAAAAAAAAAACgz/sofQIEq6TZf8zjBaGVk+nvLapvb49oK2yh681NQk2rd4etMgWR5MxWamQLdkA/fQzei9F/f/zc0g6KCPOOyBTrQj/xiuzdEDXpJw5d7J7JT5Dn17VqI+qIGo9V6k49lezfb11N71xhM44s8AhOjXveYj/knq3FppsFo3MtSWTdfev46aflPFCtkt2WMNOuy/mCgjqnOmtc0TJ+JgOBjqyJDPoGW0dLbH5de+Q9p8yvShEOkaRdJLe0Z7d8QkN9HcKz3bKGWSZ4bVUcle27AWBoAAFUqlbGSbpF0QZ237irpckn/u1KpXBwEwX2O27W7pDslnRZxkyMk3Szp7yqVygVBELzirHFAA9i6daueeuop/eEPf9CaNWu0bds2jRkzRlOmTNH++++vI444Qu3t2czdli1bpm9/+9t66KGHtHDhQq1fv149PTu+x7n11lt1ySWXhG77xBNP6NZbb9Wjjz6q5cuXa+PGjarVdswnFi9erOnTp0uSTj31VD300EPb1wU8MwIAoHTaDF9d9PIbOQAAAAAAAACAJkH1DwC/veVz0rL/kt54ceS6tU9I0y/Mv01Ix1SQ77og1VbYRtGbn2zFWr6Eu5jaUaN4qFCB5z+HVzUUKA5GcEjxjEGenk2hbO2hH/mlr9O8Lo/7WtX2h/opA4tRjJYxxR2bMJnyCSIGowUOg9EI7GwMprF2HvPqyMFoBH94J7NxaYbBaL6N68ti1a+l578orYhZ6902Ttr/o9IBV0ijJ7lpWzMyhgVSDWNlupdxXUBeWkZLB/y9m32bnjsSduU/2zPt1gTz/5bRBKMBAJBApVJpkXS3pLOHrVot6WlJGyXtq/7QsYEvV6ZImlOpVN4WBMEjjto1SdI8SQcOW9XzZruWqn8yOFXSUZIGDwSOkjSvUqmcGATBUhftA8qqr69PP/zhD3Xrrbdq3rx56u01P8ccPXq03v72t+uDH/ygzjnnnMTHvOWWW/TRj35UXV3xnmP39vbqwx/+sG655ZbExwYAAOXTagpG8/xPZAEAAAAAAAAAyAp/5Q/Abx17SROPNQejoXwKC5qxFARS9OanogNkojC1g+KhYvkeBtUSIRiN4JDimc6Bb2FAtvbQj/xiujdUR0mVHILJ8jgG8lXkeIjxc/lEvSfUepOH/PZssq/3fYyGaEznMY8xUtTrXo1gNO9kNS7NMoDPt3G9z4JAWjFXev46aXXM+u5Rk6QDPy7t92Gpfbyb9jU1QzBaQDCalXG+z49noAEYf8iD8ZH3bNfuKD+0EbZNku1s38sAANAcvqShoWg9kj4h6dtBEHQPLKxUKgdL+g9Jx7+5aJSkeyqVyiFBEKxw0K4bNTIU7VuSPh8EwarBCyuVygRJ/0fSp7Vj4jhV0s2S3uGgbUApPfDAA7r88su1cOHCSO/ftm2b5syZozlz5ujoo4/WzTffrCOPPDLWMX/+85/rsssuUxAEsdt79dVXE4oGAEATajF8FdTLV0EAAAAAAAAAgCZB9Q8Av43ZS9r1GGnRbSPXbV2We3OQgaKCZmxFuBTD+skWLkYwGmx8D92oRui/vv9vaAaFBXnGZLuH0Y/8Yro3eHFPi//H98hBvUCLIvsOoRHerce7AAAgAElEQVTlU+uJ9r6gN/lYtrdOMFrUNsBfQSAFhp+ezmOMFPW610fwh3eyGpdWDH/5n2hfno3rfRTUpOU/7g9EW/90vG07pkoHfUra94NSa4eb9sH8mSAYza7IkE/ANdMPMjA+8p9pnC0lm/+3jJKqLVK1Ld5cjO82AABNrFKpzJR0xbDFfxkEwZzh7w2C4IVKpXKGpF9pRzjabpI+L+lDGbdruqSLhi2+PgiCfwp7fxAEGyRdValU/iTp64NWvb1SqRwbBMHjWbYPKKNrr71W11577YiAskqlooMOOkhTp07VbrvtptWrV2vZsmUjwtOefPJJHX/88brpppt06aWXRj7uVVddNeSYF110kT7wgQ9o7733Vltb2/blEydOHLLd66+/rhtvvHH76/b2dl155ZU6++yzNWnSJFWrO54RTZ06NXJ7AACA/9oMf57Ta3mcCAAAAAAAAABAI+Gv/AEUqFL/LWP2lHoMxdW17vDl8FtRhWe2ohKK3vxUIxgNCdU8/6sPU4HiYLYwR+TDeL/yLAzIFkJCMJpf+jrDl7eMybcdKI9694Ii+w5hG+UTxAlGM1yv6undXH/fKDfbZz+PMVKUgGHJPpdEMYxj62q8e0qmwWiejet9UuuRltwpvfAl6Y2X4m07dpY0+0pp+vv0/7N35mGyVPXBfk9Vr9OzL3fnLqz3sgUVRcBEEIOiohE3EpKoMaJGE4ggBpMP8YoGUZOg0cQVEp+AfqhB9CPKoiiCiBiQ5V7gwl2469zZZ7qn16rz/XG6Z+mZ6mWmp7t67u99nn6661TVqV8tfc6p5byFHVqa+IRpPP8T0lYrSSMln4Kw1Hi1l6R95H9KtYmsBdSphXsXdrRKMdoCzwcFQRAEYXnwcSA4Y/jm+aRoBbTWSaXUu4AngEKF/R6l1A1a6501jOvCouF+4BMVzPcl4L3AqUV5iRhNOKK5/PLLufHGG2eltbW1cfXVV3PJJZewfv36OfM899xz3HzzzXzuc58jnTbi6Uwmw6WXXkoikeDyyy8vu9xnnnmGxx9/fGr4da97Hf/1X/9VUcy33347mcz0c5LXXXcdH/nIRyqaVxAEQRCE5ibgcUsz68hLMAVBEARBEARBEARBEARBEIQjgxr2JBIEQVgComvM28zno5oH+QX/4LXfvPZzrSglRpNOb/6klFys0g7xS42I0fyJ36UblYj9/L4ORwJeQiK/yTRLxSOCPX/hVTf4QvZZgbBYqD/l6oJGHjul2taCP6n0/NnNLbwtmxUx2rKn1D6sRxup0nLPSS9tHEL1eLVLqz63r+HtDLkWNJdcEp79MvzwOHjoXdVJ0TpPgbNuhTc8Dce8R6RodcPjPyES29J4nu+LMFFYBni9kEHaR01AKQnxAtpAVv5YqPbagdzbEARBEI5QlFJR4K1FyZ8pN5/W+lng9hlJAeBPahgawNFFw3dprcs28LTWGvhhUfJxNYtKEJqQ//iP/5gjRXvFK17Btm3buPrqq+eVogEce+yxXHfddTz++OOcfPLJs8ZdccUV3HfffWWX/cgjj8wafutbi4uc2s973333obWe+giCIAiC0HwEPC4N5uRWkCAIgiAIgiAIgiAIgiAIgnCEIGI0QRD8iwpApE/EaMsNr47US90htdEduIXqKdUBxxcSGbw7cbvSeaih+F3WYnl0UJyJiEMaT6Pqq2opFY8cR/7C12I0wZeIGE2oJZWeP+tFiNFyZcRoIuxsfkr99/0kRnNF/OE7vOq0auuyhUhBPPPyWbu+kWQnYNtn4Y5N8MgHIbGn8nl7zoA/uAMu+B1svBgsEUvVFa//hIjRSuNVJkm5ICwHvK47iuzK/5Rsay+gfi1I8qoV0cqxIgiCIBy5vAZomTH8K611pcbwm4qGL6pNSFPEiob3VTHv3qLhrkXGIghNy7PPPsuHPvShWWlnnXUW//M//8O6desqyuP444/n3nvvZcuWLVNpruvyp3/6pwwODpact7+/f9Zwpctc7LyCIAiCIDQ3XmK0/SOQc0R8KgiCIAiCIAiCIAiCIAiCICx/RIwmCELjUKr0+Ohq07lLxGjLC6/O8Evd8axUpxK/SW4EQ0kxWrR+cZTCqxO3dB5qLH6XQdkViNFEHNJ4GlVfVUupeOQ48hdOcv70utVpZdregv8o9x8WMZpQDZWeP7uLEaNNlB7v9zaaUJ5S+7AeMqRKyz0nDVoeAvcVXnVa1WK0Gh5nci0I0kPw+LXwgw3w2FWQ6i87yxQrz4Pzfgrn/wrWXVj+Oq+wRHhtdxGjlcSrLVvLMkYQGoVX3SriWP9TUmq5gEc6CpK8attbXtevBEEQBGH589qi4fuqmPd+YObFjxcppVYuOqJpDhUNV1PBF087vMhYBKFpufLKK4nHp1/w0tnZyfe+9z1aW1urymfFihV897vfJRQKTaXt37+fT37ykyXnm7lsgGDQ43nIGs8rCIIgCEJzE/S4dfHoXgh9wOWln3L45Q65Ny4IgiAIgiAIgiAIgiAIgiAsX6T3jyAI/iW6xnx7idG0iNGaEq+O1EstmikllvCb5EYweAoZlHe5UG9EjOZP/C5rsSp4Vl3EIY2nUfVVtZQSOshx5C+86oa6ya3kIbimo5zIqpGiWL/XtcJcKj1/1rmFd4TPxkuPP3QPbP7bheUt+INGn1dXXGdqcywrn5w3Ct7t0qrFaDV8z4vf2vX1JHkQnv4n2PFvkEtUN+/aN8JJH4PeM5YmNqE6vP4TJeU6gmd9JsJEYTng9UIGR8RovqfUefZC2kCFMq3aawdyb0MQBEE4cjm5aPhXlc6otU4opZ4AXjQj+SSgCgN5Se4vGn5xFfO+pGj4N4uMRRCakqeffpof/ehHs9Kuv/56Vq1ataD8TjzxRK688ko+/elPT6V94xvf4Nprr6Wrq2veeVx34ddrFjNvLdi2bRtPPPEEQ0NDjIyMEIlE6OvrY8uWLZx66qmEwxW8HHAecrkcDz/8MDt37mRgYIB0Ok1fXx8bN27k7LPPJhJp4EuiBEEQBMEnBMq80+W3e+C1N7o8ea3Fxl55kZEgCIIgCIIgCIIgCIIgCIKw/JCn/AVB8C8FMZpXR1btmk8tO0UKS4+X4GGpRVclO5WUuXMsNIZSAhnlkxv4IkbzJ6WEDX7Aq4PiTPy+DkcCXvIGv3WULiV0EDGav2i4GK0Eyf2NjkCYj3L/4UYeO+XEaHu+A+vf7p82m1BetFfgmRvhhMsXtoyR/y09/sCd8Pg1cOrWheUvNJ6S59V1aCNVs4zhR6H3ZUsXi1AdnmK0KkUdIkZbHPFdsO0G2HkTuFUIcpQF698BJ10NnacsXXxC9XiK0USKXBKv+uxILBeE5Yflcd3RlevVvqeU1HIx97CqvXawUFG2IAiCIDQ/W4qGn6ty/ueZLUY7EfjpoiKa5l7gGeCE/PDvK6VO1Vo/XmompdRa4C0zkrLArTWKSRCaihtvvBE943pJb28v7373uxeV5+WXX85nP/tZsllz/yWRSPC1r32Nq666CoDdu3ezadMmz/nPPffcedNvuukmgJLxKY/7b7t27WLjxo1Tw+eccw4///nPp4Z1FdeM9u7dyw033MBtt91Gf7+35zEajXLuuefyzne+k7e85S3Ydvnzl+3bt3Pdddfxox/9iPHxcc983/jGN7J161aOP/74iuMWBEEQhOVGJdX3ZAaO/pjL3/6hIhqE1vxlYqWgJWSGlYJkBnIudERhPAnpHGQcCNmwrgtetVnR1ybP+QiCIAiCIAiCIAiCIAiCIAj+Qp7yFwShgZS5eday1nyXEma52coEM4J/aJRopmQHbpHr+RKvzlp+EMgUEDGaP/G7DKqSY9jv63Ak4CWn81tH6VLxDP4auotfBC80DK+OpdUKQRZMmbb3vjtg3RvrE4pQGeXqgkaWR+XEaA9cDKOPw+99qj7xCOWpVLqaPACPXbV0cTz5STjmLyG2fumWISwdpcqlegjHq5Et3nUGvOFpaD+h/LTC0uNVBlV9fl9LMVqZY9bN+U+KvFDGtsNT/wh7bilfh8/ECsKmd8GJV0HbsUsWnrAIPK9plpDrCN71mbw8Q1gOeF6vrkKIKTSIUmK0RbSBqm1vPfcVOPUTC1+eIAiCIDQhSqluoLso+YUqsyme/riFRzQbrbWrlPoLjGgtjLlA8l2l1Pla693zzaOUWgncDrTMSL5Oa32gVnEJQjPx4x//eNbwn//5nxMKhRaVZ19fHxdeeCHf//73Zy2nIEZrVrTWfOpTn+KTn/wkmUym7PTJZJI777yTO++8c46YrRjHcbjyyiv5whe+gOuWvn6VTCb5zne+w/e+9z0+97nPcdlll1W7KoIgCIKwLHhiX+Vi03++e3Evzulq0Xz/AxavPEHkaIIgCIIgCIIgCIIgCIIgCIJ/WCY9ewRBWJZE15hvEaMtLxolmuk+3XtcNZ1ChfrhJRfzkxjN8ojFS+om1Ae//6etCuotEaM1nkaJPKulVDyPfAiO/6v6xSKUxu/12mNXiRjNb5QTWVUjCKo1ldS12z4DW66CUMfSxyOUR2cbHcE0z30Nfu+TjY5CWAhuiePIb20kgOe/Di/6bKOjEMC7bV1tO6iW0qJyx6yTAqu1dstrBMO/hac+DXv/G6iiI4QdhWPfB1uugJZ1SxaeUAs8RDlaxGgl8RSj+bAuE4Rq8ZKvJ/fXNw6hetxSL/dZRBuo2vZWqt/UI/JCIUEQBOHIorNoeFJrnagyj8NFwzW9MK61flAp9QbgFqAPI157XCn1DeDHwB7Myf864DzgUqBnRhZfAeSi7AxyjmbfSKOjODJY1wUBu3H3tPbt28fu3btnpZ1//vk1yfv888+fJUZ76KGHyGazBIMlnnX0Mblcjosvvpjvfe97c8atWrWKU045hd7eXtLpNP39/fzud78jHo9XlHcymeSP/uiPuOuuu2alB4NBTjvtNNatW0c4HObQoUM8/PDDTE5OTsV0+eWXMzIywrXXXrvodRQEQRCEZuMlGxU/+N3ihGeVMjIJ7/2Wy/atFrbl3X5zXI2lQDXyuSVBEARBKCKZ0RwYhawDjgbXBVfDxh7oaFlYnZXKalwXoiH/13ta65Ixam22zwvDkMrC6g5zzeaFYbN+azogaIOVbwMk0prJDIRsaI/OXv9EWjM6Cd0xiAQhnYPBOPSPQyxk8g7aZj9obZaXc8HJ7xPHhUPj0BqGgGUuauYcyDhm2tFJaI/AizeArSCVg4NjMDgBqzshmYGJlIn70BhYCk5ZB2s7a7efMjlNOmfi2jNstsO6LhP/gVHzrTWsaDfrEQvPXW4mpwnaJqZsTjOegrH8O9Yd16x3LAQB22yH9ggEA2pqf2Uds/yADaGAv48/QRAEQRAEQRCEpUae8hcEwb9UJEYr/2ZCwWc0quPZUW+GX3mMKyedEBqDk5w/3UtG1gi8OhV5yW+E+lDpf3r925c2Di8qEXpKudR4GiXyrJaSHSM1ZMZESuQXvKSZ9arX1r4BDv7Ye/z4M5AahEhvfeIRyuNnSWbn75WfRjsw8iisPGfJwxEqwE/nzofuEjFas+KkvcdVIv+tBa3HQvy5yqYd/PXSxiJUjlfbutp2UC3FaOXyclIQbFIx2uH74alPwcGfVDdfsB2O/2s44TKI9C1NbEJt8ZLWiBitNF6S31qWMYLQKFqPmT99ch8kXoDY+vrGI1RBibJbWXD8h+DZf60+24UI+Seeh/bjqp9PEARBEJqX4gsAHg8qlKR4nrYFxuKJ1voepdQW4HLgEmBT/vflJWZ7GrhGa31breNRSq3ASNqqwaPBWn/2jcDRH5Pz53qw89MWGxt4+/GBBx6Yk3b66SVerlkFL3nJS2YNJ5NJHnvsMV760peybt06du3aNTXuX/7lX7jxxhunhm+99VZe/vKXz8mzt9dsrHPOOWcq7eKLL+bXv56+3j0z35msW7e4lxxcccUVc6Ror3vd67j22mt56UtfOmd613V56KGH+Pa3v83NN99cMu8PfvCDs6RoHR0dXHvttbznPe+hrW12kZlMJvnyl7/MP/zDP5BKmXvsW7du5YwzzuCCCy5Y4NoJgiAIQnNy+gZFVS9AWiTPHYbg+11OXQfpLDzTP/90loKWkHmno86H19sKtmWEJlkHwgEjRUnljChlfTd0RI0IJJGGgbiRffS2mumzDrRFjFwknjbzn3G04oa3KHpbIZmFyYwRr7RFYF2XQmtNKmukboNxM6+rzXiATM7E0BMzsVmWmSfnGEFLJGhiGU7AUMKsz6p2IyZ5YRj2j0IsbGLOOia9JWTkLLZl4pxIaXpbFas7oLPF5DeaNNuoIHtxXCNUCQfNekWCZl0Oj5v8bMtIT9rCZvp42myzeAo6WmDzKuiOiRBFEARhPh58XnPtHS73bC893dnHwNouRdYxgk/bUqSymkNjpg5J5Ux5nXNMORwKGPlWgaBtPq42ZXpvq6nXNKYu1Jh6J5GeFn31T8AJK0391NkCazsVsXxdNZaE/nEj7g9Ypi4IBUz9YCsYT00LxUYn4fiVZtzopKmTlJqWjOXc6fq4JWTyiwTNZzxlYspW8C7kcnS1QCJj1rOAlY/DL7SG4eKXKSxl4g3aRriWyeU/+d+WAssyAr2sY7ZjPK3Z0W/q/3iJxyTnY0UbrGw3++zgmMkzvcBHwCNBk89M1nVBX6tp44QD5ng9pk8xmX8seGOv2e/94zA6qUlmpsV0WQcOT5h13DVotsExfWacq818sbykLuuYbRgNwVAcJtJwxiZF0DbjtqyGaNAc2zp//A1MmPbQZAZWdShWtBmZ3lDcLCsaNNMVhIXpnDl+V3eYZR6egAOjmo29inDA/Bdslf+e+ck3hQ5PmGMeoNA6Umr6XeOWMulK5X/P+FbMTVvacWr+6a355ys5Tk2vW/E01Y6bE2uNxvldICk0H66rp87hCseX1hrHNeWCHHOCIAiCcGThs179giAIMyiI0VQpMVrWe5zgT7z2mbXEVVKgBWIbILFn7jg/SyeOZLzkYgvpyLNUiBjNn3h1cC3m+A8tbRxeVCKNkHKp8TRK5FktXh3hC2RHRYzmF3Ie/WgC0fosf8MfwyNlyr1cHBAxmm8oJclcVZs32S+Y1a+BQGv+mClBLlGfeITy+Kl9qn30JIxQHW6JJ34qkf/WgrUXwjP/XNm0XrJtof54ta2rPb+v6fWAMg9FeElt/YrWRoL71Kdh4JfVzRvug81/C8f9lZw7NBue54PSsbsknrJGn53vC8JC6D3Te9zAAyJG8zOlrmkrGzZ/GPb9ACb3Tqf3ngmD87wRaP07pn/bC7ju5Mi5vCAIgnDEUSxGW8hFgeILUUtlWy+cuFTSNe9B4FrgniWK5a+Ajy9R3oJQM/bt2zdreOXKlfT09NQk75NPPnne5b30pS8lEAiwcePGqfTOzs5Z061atWrW+GJaW6eLkUhk9nXRUvMtlLvuuosvfOELs9Kuv/56PvrRj3rOY1kWZ511FmeddRZbt26dE2eB2267jZtuumlqeMOGDdx3332e6xGNRrniiis488wzOe+880ilUmit+Zu/+RueeeYZLKvMMxKCIAiCsIz4g+PgpDXw1IH6LvfxfaXHu3quMKScQGTX4Pzpe0emfw8VXZp8pl/zn7/yfsZkppitEgpSj9qztM/BBCz44h8r3vdKaQcJgiDMZNeg5g1fdBmdLD/tA8/D7PK6dNldLLUqSDzBSKvGK7yC+PShmUMLry9m5+NNQZRVaXzVMDLPdvaTFA1Me+Tr99c/qMMT5lMLiqVoYF7ysG9kdtr9Oxa+ns8drmbaapazmG3vs4OpJizHdSpNpUK1+URySzFuqWR44ykjuJzMmLZ6d8xIDR13WlpZ7vtgXsxZ4HNvU6RzJt/WMHRGjQRxJGHmsZSph8ZT5rwmnRc+FtY9aBvJYSEOMBLPgQl45pAmkTGi54EJk09vK8TCakoUaSsjHUykNas6FBt7jUB62wFN1oFNvYpjVxjZZkfULKd/3IgSbWVEiCMJzYFRI/rMOuZcLZeXRIcC05LRcMDUKenctIQ6k8t/O2YZxWVqa14inZhx3rm2E/raTB7pnCk/07np34X5WsPTEu6p3xEjK52THoa2iJo7XwRiISPbFgRBEAShMchT/sKSoJTaBJwGrME87HUQ2AM8qLUWk5WQp8yJQMta822FvKeRw6n58OoMa5UQ4NWK4z4Aj/3d3PRKJUpCfWl2MZrW06+dEOpLpVKxvrOXNg4vrIDpzFaq7CklwxHqg2d91WSnUFo6xPsGL7mGVad6LdwNL/sKPPw+72n8JE4SStdnp36yfnHMhx2Cl34ZfvXnpaeTY8o/LHZfdL8Ejnkv/Ob9NQjmyLvZv2woKUarU3128t/D8MNG7FEOKYP8gy/FaGVoluNHu7D3+0aINvJodfO2rIMtH4Fj/tK8UEBoQjw6P8h5YGm8rsf4TYQuCAsh0gvtm2H86bnjBh6AjX9c/5iEyihZdlvQugnOfwj2fBviO2HlOXDURXDf640ctYAdmf1CkIW0n7zk/oIgCIJw5LCQC5hLftFTKfVe4J+BWIWznAXcBTyplHq/1rqCC2qCsPwYHh6eNdzV1VWzvCORCOFwmHR6+tp58fKaha1bt84afv/7319SilZMsfitgNZ6Vt6BQIA77rijIrlbQbh21VVXAfDcc89x++23c9FFF1UclyAIgiA0Oy1hxY8vs/g/P9D89GnNUV3w8QstbnlYc/OD8uxFte/lWxop2tKTc+ED/6U58xjNqetq/1y662osS5HJaYK2ESB0RMlLEipbntaanANPHYTdgxBPa9ojivaoETQMxY2wYEW7ESfYFrRHze9kFlZ3QHvUxLB3GLpiRhSxe9Dst64YrGo3wpt4Gjb1QEvIyCJSWSOkGIibY2I8CcOTMJHS9LUqzjoGOlpKr0cyoxlOmFiDtslDKSO7CNpGuBAOgFIKrTWuBrdIcFHJb8eFJ/eb70jQbOdUFjpbzIWFTF5w0RYxy48EjRRjNAk5x+QxGIeJFKxsNxKOVNaIIyIBM5+jzT4M2bCuy+xHjRlO5mURXS1mnJJ+DsIi0Fo3/Bj6xA91RVI0QRAEoT5obdoigLzXs0quvK0R53dey5wvvbHnn/OJuPePmk8pUtnZArppSq2P97jYHIlaQaymaJ1HstYagbYZ44rniwSlTS4IgiAIlSJP+Qs1RSn1VuDDgNcryYeVUt8BrtFae7z3RRDyRNeY71LCLFfEaE2Hl+ynHh3PvJYhAiJ/0sxiNLQpn+wSYkdh6ahEdrj6AlANfHuaHYFcwnt8pXI3YeloZH1VS5xKXhgv1AU/1GvHXgodJ8Hdr5h/vJe8TWgMpeqCji31i8OLTX8Gu74Fh+72nqZZpDJHAovZF+0nwKt/YaQ5yoaH31u7uITmolS7wgrXJ4ZwD7zqXhj6DUzsgI4TYejX8NvL5k4rZZB/8GpbN1SMVuZBDb8fP24Wdt8C266fX35TitZj4aS/g41/Jtctmh2v6xoiRiuNVztb2fWNQxCWir6z568bBsWD4WtKld2F8r5lDWz58Oxxf3A7bPsM9N8LLRvguPdD31nT4xci5JfrQ4IgCMKRR3GXiOgC8iieZ95uFgtFKfX3wHVFyY8AXwbuBw5guhmtAl4OXAqcm5/uZODnSqn3aK3/o5ZxCUIzUCwq8xJ4LZTOzk76+/unhoeGhmqafz14/PHHeeCB6XPGtrY2PvOZz9Qk75/97Gc8+eSTU8OXXHIJp556asXzf/CDH+Saa64hlTLnKXfccYeI0QRBEIQlQY+bNoNq725wJHNZ26X45rtmd5Q+bwu89mS44zF4+pCRNAVtI3GKhcyd0KE4jCWNPEopI1JK5yAUgHjKyLaE5uK0rS6v3mL2YzIDARtWtpljZCgOP3tGY1tGhLWhx8gD9o1MS7k25A/vnGs+WcdIuA6Ne0vmWkLTcq9MzhxLazrMuPGUyXsy4xWxH+R9JoZoEE5YBaOTRkKQSMOBMbN+YERilaBU9UI+P/OqzXBMnyKZAatwKyJkyolo0IjU2iJw+gZFNGj2dThgypuJNChgOKEJ2EZOt2sQoiEjfEvnzPQHx4xELhQwx4vjGmFKOAB9rWYPzRTNacxvR5v95LjmmG6LTM+rMMtQysQ5ljTLS+W7liWzZj+lsuZz3EozfTIzXfYl85KMglCut9UI8MBMl8yafFe0wYvXK1683iwjnjYiukKpfGjcbI+sY7adbUE6L6Cb/miSGfOfcbWJbWW7Wa+gbfJ3XHhivxH6jadMmT0yaY5ZxzXyvn2jZrktITO+IMzb0GO2Qzhotlkya7ahxixLY7ZDW8TkN5Y08a7pNLEOxk15ErLNfrItk98je6aPlZPzXfsKZUf/OGQcs91sZdKtvOiwI3+VrLCNCq4PpUy8kxmzXdoiZntEAmY+pfJCRmX+ky0hIwuxlNnug3EjA9zYY2SKL1qv+M9fLaM/pCAIgiAIvieRNp/+8eIxCxOt2da0TG2OUC2iiM2Sr80Wsc2WrzElXwsFRLQmCIIgLE+arFe/4FeUUq3A14CLy0zaDXwAuEgp9U6t9U+WPDihObGjEMzfNREx2vLCs+NZPcRoHp3bKpEoCfXHUyCzkOeQl4hSnbLdlHQwbhSVyA4b/b+3woCI0XyN1z6wmuwUykk2OgKhgNe+qHe91vVi73F+F4AcaZQ61/GLpLH3zNJiNOlM7R8W8/8+6m1GigZw7F9CYjc89alFBCMPJDUtpY4jq47nPnYYVrzCfADGn5l/OimD/INX27qhYrQy+LVd5KTg+W/C9hsgsaf89DPpPAVO/BisfxtYIoBaFngK36UnS0m8rhs12/m+IHjRezY8/4256aOPQ3YCgm31j0koj+f1ajXdY2Q+7DCcco35zDt+Ae0nv7aDBEEQBGHp8LUYTSn1KuCTRcnXAlu1ntMde3f+822l1KXAv3wJIP4AACAASURBVGP6odrAN5RSz2mta2XM/TJwW5XzHAP8oEbLFwRfoEq115uEe++9d9bwn/zJn9De3l6TvO++e/Z9xHe84x1Vzd/S0sLLXvYyfvGLXwBw//331yQuQRAEQQDQrguP/QL931+B+74Pb/pL1JVfanRYFaGU4u2nK95++sLzePQFzUuuk3tKzcY92+dLnfsczv7RuVM9eaD65RVLz7SeP2+/k8zCY3vnpqeq7Iq0nKRoAD99Gn76dCUrtcxWvGqWev0Xl//OwYXNd3Cs8mm9yo8D85QHlYoGx8o83h6f5/2dw4np/P/fE0f6cSkIgiAIQrPjuKZNNH+7aGGytVCgWKI2W6jWOo9QzXyreeeLhcG2mv8+iCAIgtD8yFP+wqJRStnAd4DXFY0aAB4FxjAPNr2Iaen/SuAHSqlXa61/Wa9YBZ9R6sGg6Nrp8SJGW1547bN6dDzzEkiIgMifeHVir2dH6HJYJWJxUhCszYOCQpVU8p9utBjNDpceX4ncTVhavPaBX2RElSIdGf2Dp/CzzvVaqfJHRHr+olRd4BdpQ7njV8ogf6D14gRRgaI+fX4SFQv1xZ3niTMwUrRGdv7yKoukDPIPnhKiKttB1U6/GPx2/GQnYMe/w9Ofh1R/dfP2nAEn/T2sfUNj/6vCEuCxP7V0YimJ1zWhZjvfFwQv+s6eP127MPgQrP7D+sYjVIhH2e0pwayQBYnR5PqQIAiCcMRR3A20RSkV01pX2I0TgBVFw7XsJv4pZp8A/ofW+hPlZtJaf1UpdRTwD/kkG7gRWIQ6YVb+h4HD1cyzHARSQvPR3d09a3hsrIqe3xUwOjr77168vGbgwQcfnDV8zjnn1CzvX/5y9qPB3d3d7N69u6o8Zkradu/ejeu6WNYiz5UEQRCEIxo9dAj+51voH30T9u+cHvGDr+NOJlAf+xoqUKLvQpOjXReGDnJabzuffFOMa+7Qy072JAiCIAiCIAiCIAhHIpkcDOe8ZLULk61FgzOEafMI1WLzithmiNZmzNMahpaQ3DMUBEEQqkee8hdqwfXMlqJlgQ8DX9VaT70jRCl1IvB14Mx8Uhi4XSl1itb6YL2CFZqEljXTv0uJ0bSI0ZoOL2FRPTqeeQkkRIzmT/wikClFqVj81on6SKIS6Vmj//flOvQ3Oj7Bu43RbB2lpSOjf/BLvaYsI7BxM3PHSd3lL0rVBX4pi0SM1hzo3OIEKcXtFj+1x4X64niI0Rp9TIgYzf94ta2rPXbqeawtRihZS9JD8MwX4dkvQGakunlXngcn/z2sOEeEaMsVL1mO9F4pjef1abu+cQjCUtF2HIT7ID0wd9zAAyJG8yuul7RxkWXTQsTW0o4WBEEQjjC01kNKqRGga0byemB7FdlsKBresejAAKXUWuDlRcllpWgzuB64Aig0Cl6ilDpVa/14LeJrZtZ1wc5Pi1ipHqzrKj/NUlIsKhsZqfIaWwlSqRSp1Oz2c09PT83yrxcHD85+dPekk06qWd579+6dNfzylxcXadXhui6jo6NNKaATBEEQfMTPvof+yj/MP+7uW9F334p+218DGoYPm/su0RiMDpjfXStQr/wj1JkX1CwkrTU8+yg89WuYjKOHD6G6VqJTCVQoAoGgiSHaCvFRaGmHzl7IpGBi1KS1dprrjLF2sAPgupBKwNgQemwIDuyEvTvgwC5ITQJwdWsHb1PreaTvVWRPOpvoOa9nMmcxGIeABeMpeHyvJhI0HZ1ftB5cDavaFbZlNodSpuP1QFwTtCESAEfDRApCNhyegMkMhAMQtCEWNt/7RkyH6FgY2iOQysFIvuP2//lBc9zrspTZHoIgCIJ/+MA5imsvVAzG4Z/u1uwd1gQs6IopgrYRcWjAcU0ZHrBgfTes7YSDYzAQN9OcsBLWdiqCARhPQjwNg3FNOgepLNiWeZOBUqY+UMrkFQtDOgs/f9bUk7YFqazm0Dj0tZphS4FtKQI2rGiHFW0m/3QWAjb0tprYfvQ7TTQEK9sVHVH4zW5NNAhvOk2xvluRdUz9e2jM5NvXZmIIWGbYcaE9qmiLmLo3HIDVHeb3YNzUz1lnOibHhXQOBiY0QVsRDZnfh8ZNjB1RRSxk1jEcgIwDyYzZXp0t0BOD4UmIp0z8hW0TC0/HpLUZt6INklkTQ9A2bYGgDaGAme7J/TAwYeZtCUE0ZPIfnYSca6bV2sR/y8Oae7ZrhuJm31oKOqMmn3DA5BkKmHZJKKBwXIinNcmM2baRINi2mW9jDxzTB7GworfVLKM7ZrZLIm2W3R4x+6uw3caTsHdEM5wwca3uMHkentBkcmYZfW2m3dOef/QtYJvjJ5k1271/HJ46oIkEzfZZ3aEIBczynzus2T9qYvjWrzRDCThuBXS1wIYehaWgf1xj5dd3XZci50LOKRwDcFQ3xEJmOVnHHAdtEbMPhxNmfTqiZhtNpOCxvZqHd8GhcRO3paCn1eSRccyx7GpIZOD4FdAZUwzHNWNJk3/OnW7/hQMm/6EErGjVtEYUEymz3FQODoyabfmqE6b/m1MfPXu4sP27Wqb1PVoX/c4fY5oZv4u/fTJOM//0giAIfiOZNZ/DE/ON9Sq4vAs0pYolarOFarE58rXCeOU5XyggsjVBEITljk960grNilLqaOCyouS3aa1/UDyt1nqbUuo84F6m5Wg9wMeB9y9poELzEZ0hRlMlxGiuiNGaDtej41kpAV6t8OpA4tXhRGgsXp1vygml6omI0fyJVzkzk0aLx+xw6fGVrIOwtHjWV012CiViNP/gtS8W0kF1sdhREaM1A6WEDX65aF/u+JUyyB8s9r8dKNrPixUTiayleXE9xGhWmbbtUuNVFkm95h+82tZVi9HqeKw1+vhJHoSn/wl2/Bvk5n11mzdr3wgnfQx6z1ia2AT/4CVGYxFC1COB5XK+LwheKAV9Z8G+ObdqYfCB+scjVIhH2e1Z1lfIQs7f5FxeEARBODLZDpw1Y/hYqhOjHT1PfrXgtKLhnVrrXZXOrLVOKKUeAs6dkXwGcMSL0QK2YmNvo6MQ6sHatWtnDR86dIihoaGaCMyeeuqpsstrBoaGhmYNd3XVzmZXnHctmJiYEDGaIAiCsDjO/2P4t6sh43H/G+C2L5bMQv+/m+FDN6DeUdyNpnp0Love+k742fdmpxd9LwnxMY7lCY6deAJ23giJt6I++hWIxirqUKxzORgfgmTcXJseGTDStY5e82x+Mg72CCQmIBSGjh4jcItEIZeDbGZK3kZyHCYGIZ3i6hMP82x2Jb9yNnOo92RWbd7EsSstOqNGsnFo3Ag0osFpWUosZKQdGiNp0Ri5x/5RIynJ5IxcI5R/7OrgmBGiHLtCsaLNSGgcDU8fhH2jmjUdipcfbZY3OmmEL4NxiATNtCHbSE3AiD0mMzCWNJ2yO6Jm+em88KUrZjx1BZnOSF7qclSXkYU42kw3lJfx/N9HNFt/JM/WCIIgVEuQLFfv/Dg9n9hGz/gIXwmGIBiCYBjiYzA5bn5n0+YZxnDUDA/sh5Y2kx6JmZfQFuyfw/0mcztg2g7hKERbIBQ14zt6INICI4chFMkvL8R7O3pNHsk4tLShNm6BjZtNXZnLwuggenwYUhr6C5YkDUz//nAgb0kayhnLVcCGkSH4wbCpZ7U2FQz572jMxHlgF/SugeFD0N5jrF9ODlYcZUSpuSxrXdesZ3s3tHWCZUMyYerrcBQS4zB0CBJjZl27VsDgAdj3nNker/wjs6zU5PQ2CrewEqC1HeLjRirrZDEKMMz2KnxCUTrau8w2beuEWIcRwSbjkE1zSiBk5k+Mm/bCxAhkUnTlsmZd27uNINbJcW0wzLWtHWYdQxGzXq5jpnNn/nbAcaAlBl0roWcVjMyIDUweKLOP4qP5/DTseMxsg2NOgfFh80mMm22glBHTKpV/ebll8rAsE3sgaI6LwjEUyBvPHCcfm8Nm1+GVuZzJN5UwMtxkHCyb82NtsO5YOOp4Pn/GOujsM/vIyZlPLgt9SdPeau+GFWvNcTYxYtZbKZjIx5PLoUcHYdew2eeZtFmP8WHoWwtdfSafkX7zUtEV7SZ+yzax2gEIKBgahtFBM3wwf8yOHDbrm0mb/R4Mm+PDts12SSXM+EiL+b+5rjlWUklIJ2Gvmt6GSpll9qwyyz3rdai+tWZ9Xcd8a40eGYDBg9CzEtW7xvwfC8dboRWti75n/Z4nrdrpZj0PXSKPUtPNM712NS7K/M0BjcJ1NRplhGpuPq0gVMuna62mZGxT06DQ+XnzJQauzuetFVrr6em0NmkwvXw9+/f08hQaPZ1XPs0sd/Z00zI4NXvczHjzy52afuZ3fvkzpyuOc/Z8am6ezIhz5jrM2H5m+ul8CmlMza/QloUVsAkph925XhI5m82hfgKWNsJES2FbCluBbSssy8gwrfzHthVXbPN+rrM7mKLLThEOaCzbJulYrAoniagsGRXG0ZBzNBuicaIB1+wzRzOSDTGci5JIQzAArrKxlSZsa1ZEUnQF0uQIEM1N0J4bIaMDZCbTuOkUTjCKG4zgpNOMpgOM2e1MEiHkpFin+2kJwZ7QBgZ1B0kVoT/XSjpnDqZowEEDm9rSqEAAhSadcWmxsqyMpNnUMk5YZwjbmmwmSzYYI6kihFSOaEDjBCL0xjSR9lYCTopQNm72w1A/dmqC5+Jt7E628mJnG2sy+4mPJ9keO4XDsY1sWhWkw0oRJkPYSRAeOUCEDOEghMMBtLJIBDuJuyHiToi4EyTuhJjIBc1v1/xOuCEmcoXxQSacEGktzxEuJVobEedEyohpi8aWmtNzTACHVjtDm5Wm1crQapvvoHIYcyKMu1GUbdETyrCqzWFdKM6G4DDtgTSJlhXE3TCZeJJuZ4icCmJForwwbrM5OkRrSLNvRHMwtJZwOEDOVeS0heO4ONrCsYM4KoDjanKOecFLKylaoxYHnQ72JyK0B7O84eVtvPsPgthWZX3BdGLc1IeFdkogBKOHzW87aOroQN7JkBg3v13H1LV2ABWOorWeur6jXdfU+WODpv4NRaC9y7SpEuOm3s5lYfVG094Y6YfJuKmb9z4Lh/aYunzL6Wb8yqNQsfbK1kVrM28wBJSX2OlczrQhtEZZFtpxYOgg9O81bYpA0GyDjm5YdxzKlpciC8KRgNTOwmL5ODDTZnTzfFK0AlrrpFLqXcATQCif/B6l1A1a651LF6bgT0o0XmaK0UoJs0SM1nx4Ch7qUCV5LaPRgiRhfrw6IS9WxFBLRIzmT3QFssNGCxHLySOkXGosunDJfx7qUV/VEimL/IOf6jU7Atk5V5DlePEbXsIGP5VD5Y5fOab8wWL3Q7F0yk/tcaG+OB4PhtdTVjXv8j2OSZ0zZamIbhqP1/lNteWJFSo/Ta1olBAkvgu2fxae/6a3jHA+lAXr3wEnXQ2dpyxdfILP8JDlaBGjlcTrupHXSzUEoRnpPXt+MdrEc/WPRagMz7K7EWI0OZcXBEEQjkieZLYY7Uzgh5XMqJSKAafOk18t6CwaPrSAPIrnER2YcERx1llnzUl75JFHeM1rXrPovB955JFZw9FolNNOK/YZNh+VSFAqJZOZ52Vdi0TLC3gEQRCERaLau9GvfDPc/e1F5aP/9Sr0w3cbCVgwBLE2I3XIZKCzx8gbCvKVvBRDx8dMR07LguHDRsTy9G9rtGY14KffRf/0uwDojl5YvQGOOj4vwQgaQcnooOlEOzpohBtLxPH5zxSBoOmgC/Cqt5mOvsm4EYeEIzA+Mi0dKUhCLJvjV61Hnfgy6F1txtkB07n2qDWolrap7LXW4ORYsTFnOgUnEzBuE0nG6c5mIBOm+7knzDqv2QSbTjQxpJN0h1voDmZZlxyGXbvMfu9eaeJKTcJY2khCsvlPtNUITYbywp10EhLjbOzqgw2bOS0EsG7Jtm29CFguOXeR17gFQRCq4NP9/8Ca7aXlpo2i7mey++a7L/zQwvPb8/Ts4Z/fvvC8asHggdnDowOVzzs2CAf3VL/M+Bjs3VH9fAthbIZofuQw7HseHvpJ/Y+jpSA1aT5Qfr8NHTTfzz1edt2XxbYpotCKkqeZlh/f2XgfD0dfNid9XXYfu7cfP88cQr3JEiBhxZiwWonnPxNWK4n8t0mLMWG1Ebdi86YnrNjUfBNWG46f+gAtQ3LYjDpRRh2Pl60XSABLdymjJHfshEtvcQnoLO06TpsbJ6aTREgzqaIcsvr4/czDdOpxAtkkvzf5v1wy9m263NEFLW9K7znzekqN0a2dRs6rLMhljCw2l4WDu6cnCoWnX06Qv2aj27rMdZ7C9ZvCd0H+O3MZeZkaWe/7TXrDZtQ7r0b94cVzxjmuZjIDbREjGR1PGel9MgPtUSPSH09BT8y8WGs+UlmNAkKBuffQhhMarY0MvyVkhPm2ZfLP5FenJWTSXA2hQF5UpzUTKYjlu+EcHoeV7UawKQjC/EhNKiwYpVQUeGtR8mfKzae1flYpdTvw9nxSAPgT4LraRig0NdEZb08UMdrywmuf1aOjstcyREDkT/wkkPFCxGj+pJL/dKP/9+WOY6nfGouXjAiaT6zRKKGDMBc/1Wtey5S6y1941VV+KocsEaM1BbUWo5Xb72VZjo8gHCF4SZrKSX+XmnLnZVZr/WIR5serfV21GK3ENcKqKVMW1bsOG9sOT/0j7LmlMtl3ASsIm94FJ14FbccuWXiCT1EiRlsQjXxxhyDUi9ZN86dnFvaglFAHlkraKGI0QRAEQaiUHwOXzhg+p4p5f5/Zz2A+qrXur0VQQHEDLraAPIovjsUXGIsgNCXr169n/fr1vPDCC1Npd911V03EaHffffes4TPOOINQqI4vd6gRvb2zfYnDw8OsXbvWY+rq8z5wwHRWjkQiTE5O1lS8JgiCIAgLRb3h3ehFitEAePhuz1FN/2TEWF6A5hdx28xOvD+9rapZvfaFDkXMfTUnB65/7q/1Rs+AjT/zHP++ka+RUC08FTmJntwgMT1JRoUYsHtZn92LjUPYTbMh+wIbs3uYtFoYsrtpcycI6BwBHAI6R1BnyakAe4LrWZnrp88ZZFK18HzoaE7IPEubGyeoM1jaRaOIW61kVRBH2bhYdDmj2OQYszrYFdqIRvGa+N2cnH6KoM4SIEeOAJNWCxkVosMZI6NCOMomo0IcCqxkd3AD98ZehYNNtzPMutx+2t1x1mQPENYZVuUOkVVBFJq41UpEp+h0xngudDRJFSWkM9g4pFSEVbl+VuX6sXFod8e5s/W13B89mwm7nZgbpzfq0umMMKDbcRzNsG4j6k5yWvpxOp1RYm4CR9mEdIZ2ZwJXWUTdJAcDqxgK9BJz41jaxd5wHFasFdvNYY0exhrYi51NYeFiawcL10xH0W/tYuNCIMjqwBjJRIaArXEjbWQDLdihEKHDO7FwGbU7Cegcw3YXw3Y3q3L9tLiTWLiEdIZgKMBgoBflOqBderKDOChSVhS7s4eIypHRNvvUCrI5TXtmiEzWJUmY29rfwuPhU0hYLbS4SVr0JBE3RX9gJQOBPlblDqG05s62C6o6bm2dw8UipDP0usPEnDgtOkmbM06rTuBiYWtnarsM2j2kVRiFxtIuFi6qoxsrGMTKplHZFNFcHEtBVgVIOTbKdQi6GSatKINWj1keWWztgOswYncR1mna3DgOFk9GTkZply5nhHZ3gg53nDZ3HJSF0i5t7gRB5TJutzOouhm0u7G0S1QnCeosI3YXhwKrFvQ/DpAjrHKELdd8qxwdKkHAzZLOap5Ux3jOe3J6G63uBG0kCekMVsAiSYS4asFysvRkB4joFONWO+lgjKy26Qyk6F6/mhUtDrHMKFZmEmXbWJaFApI6iKvBSifIpjKEQhYDVg/doTRHtyXJpTJsy61lx2Q7q9Uo4YBmV6qDDivJCmucdePPEHGTBNZuIKA0oWyCqJVh8vAQWlkETjubiZWbyWVztGRGUW4OtEbnP7ianAOj4xnCbopw2CblBnCwSLs20SC0tEdp7Wgh58BkBsbTCjfn8Mg+m10TUU7uGOfn/T10hh1yLsQzFrGJAwR1lqMzu/irkX/n/MQ9C9pfgiAIglBP7t3zWto2D89Jv2Ts1gZEI8xHkByd7hid7lhN8tNAWoXnCNXM8PTvmSK2uNVKXMWYsNuIq7nytbjVivZ6flTwNTkVZFh1MWx1zRn3w8gfmh9RoP1PuXzVPwGwJb2duNVKtzNCxE2ywhlgwO5ld2gjSms6XHO+vTN09FReR2X3YmsHR9nsDR4FwOnJRwjpDA42WilyBBmz23GwcZTN2ux+1mf3EtUpwjptzke0Q1aFmLRaGLPacZRNSoUZsbuJWzGyKkirmyCjgoR0FgLwwvHrUFozHOgB4NzEz3CwmbRiuFhopViffYHe3BDrsy9g4xDSGRSaiE4zZHezJ7iBcasNWzvsD67hsL2CDdk9HJXbTw6bnAqYDwFyTgDnmza5Bw7htPeRcyHnwKFxeL4Kf27QhlXt5n0GrgtjSSNNK54mGgSlIOdCoop3oAP0tkLAgsG4mb+Y1jC89iQjVTs0Zs6NbMtI2QrLSmRMHK5rfp+yFo5ZoTg0qtk1BPtH4NDnLWyRrAnLDHnKX1gMrwFaZgz/Smv9tNfERdzEtBgN4CJEjCbMJLpm+reyzGe+Dl1axDFNRyM7nnl1IKmmw6lQP7xkPn4So5USALjSeahhVCRGa/D/3i4jj2i0uO1Ip9T2b7aO0tKR0T941mtl3kixFHjVpVJ3+QsviYyfyqFy7TIpg/zBosVoRfs5sNhyq+kf/z1y8ZR8+lyMFhQxWsPxlH1WeX6vailGK0O96rDh38JTn4a9/01V5aMdhWPfB1uugJbmf1u4sEA8H2zxT8cNX+IpH/JRO1sQFkuwY/703Li51yYPxvkPL6nlYvfVQsTW8qIFQRAE4cjkJ0AS85g5wJlKqc0VPgf3rqLh/65hXAeKhk9QSrVorSeryOPFRcOHFhmTIDQdr33ta/nqV786Nfytb32L66+/nmBw4dcbBwYGuOOOO+YspxlZvXr1rOFt27Zxyimn1CTvlStXTonRUqkUL7zwAhs2bKhJ3oIgCIKwKF70Sjj1bHj8gUZHIjSSjD+fa1qV83Zt/37ifr506LI6RrM4guTocMenhkM6O3VbvM8Z5JT0U1wYv7PqfFcky/dsfn38x7w+/uOq8y7m2OzO2Qnb71tchvnHJ1oLv+NzT/F7nSEAOt0xjs7unptHGlanJ2YlBYGIk4SB4anhE3huzqynDDxVcahpFWJ3cAO2dtiY3YONYwR1booAOeJWKy3upBG+LVMG7R6eDJ9IjgCtbpyITk9JByJuiqhO0erGieokCRUzYkKdxqrg+Y9nQsdxd+w8RuwuVucOcW7iPo7J7lp4sDsWPmvFeB0+v6vDsgVBEARhmRDVKe7ffQ5vXncbg4E+AN48fjsfG/xMgyMTlgoFRHSaiJOeausvFhdFUkVnCdUK34ki+dqE1UqiaJppMdt0WtJqKb9goSFsD28BmBKcFXOQ1XPS5pv2kejpJZezN3gUD/HyBURYmp/Fzp2T9mjktKrz2RE+rvQEB5h7d70Ksg7sHSk/TXYR3dIHy7zCLJ6G7/5vdXn2j8M922efg+4fgfU9VQYnCD5HnvIXFkPxkxz3VTHv/ZjLuIVj8EVKqZU1fGOm0AzkEt7jWtbMHlZB0POoU10RozUdXoIHqw6dW706t3nFJDQWz073fhKjBcxxNV8nbxGBNA63grPLRovHynVIk3KpsZQ6PqwmO4WSjoz+wU/1mlcZJHWXv/CUyPioHCp3/Ipszx8sdj8UCxwX0rFeWB64Hq+0afQxUWr5Ug75A686rdp2UD2uHRVY6nbR4fvhqU/BwZ9UN1+wHY7/azjhMoj0LU1sQhPhIcvxkusIBs92tsdLNQShGfESo2kXcnFTnwj+wlPauMiyaSFia7k+JAiCIByBaK0nlVLfBf5sRvJHgXeXmk8pdTzw5hlJOeCWGob2ODACFF4ZHsnH+JVKZlZKvQFYW5T8y5pFJwhNwmWXXcbXvvY1tDadAgYGBrjpppu49NJLF5znjTfeSDY7/dxiLBbjve9976JjbQRnn302t91229Twfffdxzve8Y6a5H3WWWfx6KOPTg3fddddTbudBEEQhOWFUgq23oJ+x2ZIy/N1gr/YlN3Nxsxudoc2zhl3YqYSf7cg1IawznBCZrZtq82Nz/t7udLrDHHO5P0VTduqS/SPm4cTMjvmbF9BEARBEI4Mzkw+zL4dR/O7yKmszB1mXW5/o0MSmgwLTUxPEnMmWekcrkmeDtaULC1eJFcrlqiZ9NnytbjVSkLFmLDbiOe/sypUk9gEQaiOXYMiRhOWHz7qTSs0IScXDf+q0hm11gml1BPAi2YknwSIGO1IIllCvRotei7PCs7fAVfEaM2HV8czL2lZLfGSSDRakCTMj1cH9kZ3ui/GjpjOZMVI56HGUcl/utHiMTtceryUS42l1PFRj/qqlkhZ5A+09pbJNEKMViw5KiAiPX/hVRb5qRwqd/zm5JjyBYutC4rLjMWWW7r8GzEFn+J41WVl2rZLTaljUtpCjUe73pKmqsVodbxBvhTHjtZGhPbUp2Cgyj7I4T7Y/Ldw3F9ByEN2Ixx5KBGjLYhmaGcLwmIJdXqPy4yJGM2XeJTdXmV9pZS8n6KAec7PpA0tCIIgHLlcC1wMFMzs71JK/bfW+o75JlZKRYCbgJkXLL6htX6+1EKUUsUV8Lla6/vmm1Zr7eSFbTMtQtcrpR7QWj9ZZjnrgX8vSn5Aa32w1HyCsBw58cQTueCCC7jzzjun0j760Y/ypje9iZUrV1ad37Zt2/jsZz87K+3d73433d3di461Ebz61a+eNXzLLbdwww030NbWtui8X/Oa1/ClL31pavjrX/+6iNEEQRAE36B6VqHuGUVvfwR9963QxJW0ZAAAIABJREFUv3f2S3lzOdj/PHT2wbZfg1PBC3trybGnglIwOQGTccikjMQtGIZIC8RHIZuZnj7SAqlJM0+0FSIxsCywA9DaAUefhDrqOFh3LDg5OLwf/bVr6rtOQkUo4IuHLufC9bfPGXfJWC1d3IIgCIIgCIIgNIoADi9JPVp+QkGoEzYuHe44He54zfLMECwSqpnfiXnka4X0cvI1d7EvmRSEI4Cdg5pXnqAaHYYg1BR5yl9YDFuKhp+rcv7nmS1GOxH46aIiEpqLkmK01bOHreD804kYrfnw2mde0rJa4nXSo+t8s1qoDK/ONwEPmUujEDGa/6jkP93o/70lYjRfU2r7N1tHaRFd+YNSdYKXpGwp8ZKQSN3lL7RHu9lP5VA5oY2X6FaoL74To0k7p2nxknyWa9suNSJG8zelzr2qFqN5XB9cCmp57GgX9n4fnvo0jFT5IEvLOtjyETjmLyHQUruYhOWBpyxHxGgl8SqX5IEZYTkRLCHRzI4BR9UtFKFCvKSWixajlRDLhrogMzw3Xa4nCoIgCEcoWuudSqkbgStnJH9XKfVh4Kta6ynjgFJqC/B14KwZ0w4Bn1iC0LYCfwoULtR2Ag8qpT4GfFNrPTlzYqVUCPhj4HNAb1FeVy9BfILQFHz+85/nvvvuY3LS/GVGR0e56KKL+MlPfkJra2vF+QwMDPDWt76VTGZaQrJ69WquuaZ5pSInnXQSr3zlK/n5z38OwPj4OFdffTX/+q//uui8L7jgAo455hief944Ix9++GG++c1v8hd/8ReLzlsQBEEQaoXacjpqy+klp9Gui77yQvjNPfWJaeutqHMvKjuddhywLJQyHR11OgmhyNRwWVZvQP/TZUayttRYFrge10EjLRCOQs8qCEXg6d8ufTw+54LEXXx/79u5dPWXGAz00ZMb5LOHr+as5K8bHZogCIK/CUfhlDONSLRvjRGFatfUQeEoKhID24aWNpicQMfHjBg1lwXXQXWtABQ6k0K1dhi5qOtCIGjEo5mUkZamk6A1enQAsmlAmTpMKUjGYegQvPAM7HlmdnwdvRDOPy/V2QfdK8z9QKVMXYkyvwsflIk/k4JwC7R2QlcfKhSenk8p9NgQjI9AcgLiY0aMatkmFq1h7w7zu2cV7N9ptsEr3ggbN8PEKKCNcDWVNL9bWs16B8NmGU7OtINiHSaPzj4IhSGdgvgIdOfF845jpm3tgFgHqrXdbDet8y/U1fntNmiEruPDkMjLV4JhiLbA2LDZJx29qHXHmG3f0Wu2T/9ek38wZPZ1IGjSM2mTlsua9bZts31m/rZtGB00y06MTb/gd+rbNdsuFDHxR1vNsgYOwOB+GD4MG7fAinVm3Q/vN3nG2lGF9dfabDftguugJ0Zh6CC0dUIgZGS33SshYPaPsuzpGC3LxJlMQCQK7T3mWOnfi37+CXj2MXNcoc3+LXyUBYf3zj7OAkFYedS82x5lQXu32cfjI5BKmG2/Yq2JLxwxx1qkxaz/6ICJKdpqtkswbGJuaTX/o0zKbM+OXlRvvi/w2JCZPhCA7lVmmaGQOT7Ghsx+yqSm91t7t5m+EKPron/4Ddj+iDkWIjHIZcz/rqXNbMNQJL/dbBNfenK2NJgZ7eFC23hmG1lVOp2aPd1842a1vRc4XalllptuqfKteF2K56tDbEu9zvNNp5Q51iZGTPkVjppjMhw1//FC+ec607+nhnNFn/w0EyOmbA4ETfp8Lx4PhU0ZOD5slgfm/5mvh4jGTJk8ctjE1bsGYm1wcI/5nxWItZv/YvcK6Flt/p+TcfOfPLQHNmw2/8fEuPmvbzzRlAfBEBzeBz+fK22uiEJ9FgxPxz9zXCUvWw9FTJk2eNBsrwLRVujoMdsvGDLbpVBv9e81ZYvt0e+m1Dmz17iS59kLmGdB42ocd6XXDhaxnBDQrRRzXyszmf8MVpWf1pBSYSZ0lDgR4joy/ZsW4npmWpSEjpDNaXpSB7BzaYacGM+oDfxv5EVopYi5k7TqSRIqyoTVyqjdNWeZvbkBbFzGrHZiboIXZZ8kqDPY2iHgmm9bO9jKxVIwrDoYsToJkOP54DEcDK6eZ00EYWnZ5fHXEoRmxke9aYVmQinVDXPaIi9UmU3x9MctPCKhKUn1e48r7ujn1fFx580w9FDNQhLqwMSO+dPrIXjwWkZuEh79yNIvX6iOxJ75061FihhqjVdH7p03w/Bv6hqKkGf0ifLTNFrIUU4AMLlfyqVGkp1HdligHiLPWnLgTshNNDoKwfEQycDiBUMLwWuZB34snV/9xOiT86f7qRwqd/yOPCb1mR/waldXSvF+Xmy5Je2c5uXwL+ZPt30sRtt2A0RX1i8WYS5uiXOvRorRyj1QceBOyNXgrWfaNXmNP13dfK3Hwkl/Bxv/DOwSQhPhCMdDljP4a6lrS+F1zuMnAbEgLJZQCTHaU/8ILWvqF4tQGWPb509frLSx1EOMwbb5xWgD9y9tPfJ715sH1AVBEATBn/wdcBJwQX44CHwR+D9Kqf8FJoCjgRczu/dBBniz1vpgrQPSWu9TSl0C3AYUKtG2fFw3KKV+CxzAWLJXAacD81me/l5rfX+t4xOEZmHz5s188Ytf5D3vec9U2oMPPsgFF1zArbfeyrp168rmsWPHDt7ylrewfft0+92yLL71rW/R19e3JHHXi2uuuYbzzjtvavhLX/oSmzZt4oorrqho/rGxMcLhMJHI7Gu+gUCArVu3cskll0ylfeADH6Czs5OLLiove5nJPffcw9FHH83RRx9d1XyCIAiCUAuUZcENP4D/+U/0U3kxVTRm5AsFscP4MCQmTOfxsSHTsT0xAQP7zL3JQNBMGwgamUNHD+z43ewF2QHUp/4v6uzXVxaXPfs6mwpX94JO9YcXw9mvh0MvwM4nTcdxrc26ZFLoHb+D/c+bDvMdPSburhWozl7TOb8z/4m1mw7/yjK/hw9DZw+0dZltFGlBKYXO5YyELZMyHdaDIQiGUeG59431ru3w65+gD+9Dda9E73wKxgaNPCASM1KWaMzElkkZmYgdADtovlMJsx92PGYkJ37GDpjO/snZz62+Mf4jLtzxIw4E1rA6dxCL/D3uQNBIQQJB87ED5tgaHSgSgsygs89IS5Q1LWSolIJoINZhvgNBc413T5X3wAvMFCCEwmafFdJdxwgdCkRaoKXd7OOO7rxQKGr2aVsn9K01x2syAYMHpiUrrmOO533PLSwuQRCakze/D+vDX6hqlgVoR6qaThfqVdeFjh7TplgCFqA1aSiNjLeey67VsirJR7uukQ7lMhBtQwWa+xkY9eq3NzoEQagLOjUJgRAqEEAPHjRt0oJsMZkw51Iz6g6t9fS5lVJzzglnTsfAftN271pRuTy7VKwD++HALiN6jMbybfU206ZPjJtzkYK4UlkmXVlG5lnII5c1UriZYsvEGIwOmnPJjh6zDUIRc46TGIfWzqkyTWcz8Nzj0N4Fa46uyXoJzUcs/1ko2nWnxKAq2DcrfTKjsSwLSwHZDKGQBfQaAWe0BXT0/7N35+GWpXV96L/vqTo1dA1d1d3V88xMM2iDE6IQwAkjoBghqKHVaKIxN0aMEUwuiT5ouKKJCRi5EUGJKFeUSeMQEFAwDtgo0LTQDT0ATTc9VHfX0F3je/9Yp6rO2Wfa++xh7eHzeZ71VK111vDutd/zXfu8e+3fTtl05r2UenyhAOL8ljNF648eaQqj7rs0eehADt7xqfz+Xx3KnQc356qdhzM/dyIHj2/OgWOb88DR+Vy//+z87f492VxO5nidyyce3N3Ho4PGLV88kVXvMYcJNdl/4dCmPR3zh2uth3rcxxc75te4S5+ZV1b54OMdv9dMTL5RFHhY7cNt9Xhy42uGf3wGo40CMmtZrVDbF/6gmRhPa304fxTWKx5x9D65NK4m7YPS9/5lMzG+2ij4udq19L6/VtRzEqz2t1Eb1vuA9sHPuJ5Ng03b157v1bH79YtpMzfGhdFuffPo2kHvei6MNsICYff+RTtfxrDnicnjX5Fc/o8UDGF9q93Y88DHm4nejFMBYujXpm3NdfPkCh+Auu0to28PfRjiDUqrvRa7/2PdffnIRj35Z3KmpgsAjJda64lSynck+ZUkL1r0o/OTfOMqm30xyUuHWXSs1vr2Usrzk7whyeJvAdie5OnrbH4oyU/UWl87rPbBpPje7/3eXH/99Xnd6153etkHP/jBPP7xj88rXvGKfOd3fmcuu+yyZdvdfPPNedOb3pTXvOY1OXJk6RdivfrVr15SUGxSPetZz8rLXvay/PzP//zpZT/2Yz+WD3zgA3nlK1+ZpzzlKcu2OXnyZP7yL/8yv/Vbv5U3vvGN+ehHP5orr7xy2XoveclL8t73vje/+qu/miQ5evRoXvjCF+YlL3lJfvRHf3TFfSfJiRMn8tGPfjTvete78ta3vjU33nhj3ve+9ymMBkBryubNybd8b8q3fG9P29Xjx5JaU+ab9zpPfZD91P+bok4Hk/MuaaWARTlrV3L1Nc3U+bON7vTsc8/8f/OZ+5zK5s1NIbVu2nXV45KrHne6Df183L0eeehMMbDjx5MH701u+2TzgfyzdpwppnZq2jzfFLirtfmg/4H9TaGR7TubfTx8uPlQ9LGjpwvdZOv2pkDA7r3N/++7qzn4qUIBW7Y1xeCOH03uuDXZtr05zu5zUrZub/rC/Xcn93yhOfZFVyWHHkw5fjSX1toUBNi6vTnW9p0rFgA4XSRhoTjaqT63bL0TJ5p+d3iheMHe85vHfargwuGDTRu2bG8+3L1GEZ96YH9y+6eaPrzj7KYfbVk4d8eONudr83xy9OGUnWefbmdqTU4cX9bGWmuy/4vJ4QNNu87a1Vexg3rnbcnffaj5QrNjR5u2bdnWPCdbtyVbz0r2XZycd3FzDo481JznA/ubIg0njjUFGT7656m3f6p53stc817+pk1NoYcdu5PHf1my94Jm/VP97NS2Bx9oigRu2doUbjvyUHLk4abQxalibAf3JwcfTPbuS65+QtPegw8kB+5vttt9TvP8nDje9LmjDzdtmJtbaM/Cv4cPNNvVk822u/Y0heW2NEUIc86Fzf4euLcpZpE0+9u2PTlxMjl2pCleePJEctGVzT5Lac7JFz/X7P/Y0eYxPHy4KSZw+EBy1eObgoWb55u+cOhA8/NzL0h27mnO81xJjh1r9n3q92v/F1N/6780bT52pDne7nOaYiD7Lk45+9zUAwvFFE+cSDlrZ1Pk79wLlz7RRx9uzul5FzaP98F7m/mzFurGL/Sl3PXZpr0H7m+Kdmw768zzvlB4JOdf2pzbv/rjpiDj9e9vHtupfnj8WNM/6snmsaQkF13RFO3bu+9Mcb3tO5tz9eB9zbG2bGv2v21H87v38OFm+YkTzeM/+9zkysel7N2X+tmbkh27Uy5e+Nvn5ImmnQ/c0/zs7z6YPPFpTbvf89Yz56GU5rGee1Ezv3nzmd/HUzbPNwUFHz7cFCF56FBTdHLX3iZnjh5p+vauvc05S5rnfv8Xz+z//Eub/dz8sabgw1rmFvpQmTtz/k5lZq1N/6snm3Y8tMaXmq9UuHDnnqaPHTuanH9ZU1T0Rf9q7fa0oJSy9LoIQ1Lm5hayvZ9SMcColW1nnfn/eRct/eFZy78D59Rr4/X+diylNNfsASr7LmleR6zk1OuG9fZxqrjzKVu3NdM5K3wB9vyWZX8/lvktyeOe2m2TYUVlbm7FPlvm5rJj8a1U84s+H7F55WJlze/i0t/HsmVr8/dUkuzam12P2ZsXP6b79h07XvORzyYf+FTNHfcnO7Ym+3Yl9xxMDjyc3H0g2b092b0tufq8ZNt8ctt9yYdvrfnTTyXPflxy1Xklj74geeCh5Of/uOboieTYieTyc5LnPblk17ZmP3c92Gz/mAuTHVuS2+9L7j2UHD+RHDmeHD1ec/xksnVzsm2+ZPf2ZMvCLV/n7EjuPpjcek/NFeeWXLC72W7/4eTSvclr/6Tms/uTay5OHrkvOXdXySV7kpM1+fz+5PP7ax4+3vwpeuJkcuhIUpM8dDQ5d2eyb2dyyd6SLz5Yc+u9TbvO2ZE87sKSreVoNv/v38jmeryZcjybTv//xOnlZ9XD2VKPZf+mPXn0kZtSUnOyzOXiY3ekpGb/pnOS1Jx18nAOze3MgbmdOVq2ZC4nU1JTUnOo7EgtJVcdvSXb6sM5Urbm0NyOnMimbMqJfHHT+dleH8rFx+/I9pMP5ViZT03JWScPZ0uO5XDZnrs3n58Tmcu2+nAOzu3MiWzKyTKXvSf2p6Tm187+7nx4+1Oy7/g9ueD4XTmrHs6ukwdz9on7s60eycNla847cW/u3HxhDs3tyI6Th/K5zZfkZJnLkbI1O04eyomyKXtOPJCrjt2Sq47emid93/+d5BHddzyYAO7yZ6M6X1U/tIF9dG7T3avfNZRSzk/S69fvSfZJMDdGH/5nOEZR4MEHSqfDuBVGG7f20J16ot3jt1EIicHwQWkGrY3rSL9FjWiXHGLUlhVG8zqGDm33ibK5uYGunmy3HfSu17+Lpnl88NyvSK75yeSSf7h6sSvoVHyb10CtV/QXJs2WPcnDnd9RxcQZZjYZHwKAFdVaDyZ5cSnlbUleluQrV1n1viRvTfLKWuvdI2jX75dSHp/knyX5vqx/v9tdSd6c5LW11tuG3T6YFK997Wuzd+/evOpVr2qKLiQ5cOBAXv7yl+cVr3hFHv/4x+eyyy7L3r17c++99+a2227LJz/5yWX7mZ+fzy/+4i/mB3/wB0f9EIbm1a9+dW6//fb89m//9ull7373u/Pud787F198cZ74xCfm3HPPzZEjR3LnnXfmox/9aA4cONDVvn/5l385+/fvz9vf/vbTy97ylrfkLW95S/bt25cnP/nJOffcczM3N5cHH3wwd9xxR2688cY8/PDDA3+cADBqZfPS9zgXF3k6XSxFwZShKls7xkL37kuueGz3O7hgefHcdS0UAVtm0/bkqsctW1xOFRzae/6ZhYuLAKxWgKBzH1m9INrp9TZtas7B3lU+dtVlUYMkKbv2Jtd8xUqNaQocnLJl66IflebnK3wxWimlKYqwUmGEDSgXXpFceEX3G5wqTLH7nKXLL3lEX8X5psKAnpMlrnxcypc+Y81VBnreL3tU9+te8+WtPedrHXfZz17566n339MUSTvngnV//zfq1N/PnYUKa63JPXckn/l481mt8y5JzruoKey2RlHFFY9x+EBy9+ebInC79i4UVCtNsbuF/5dSmmOePNlkGQAATJn5zSVfflXy5VcN5i+Sf/MNA9nNWB231q2pv/WjTZHsKfDNB/9w4PssR74tyucwbXyalo3qLIy2katHZ2G05SWMe/dDSV45gP0wCnuvTfZfv3z5Sh+o3XzW8mVMl1F8kFohoumwecy+wWLc2kN39q33xdlDpt9MLtcSBm3zIP4M6vWYMmiitV2AaLH5PW23gFHozAwZQqe2x2xKSTbtSI539wEsxsj87jS3bdb11mxsXeP7MDbvSI4fWr58tevmrh5ueB2mC56dXPOK5IJ/oCAavZvbuv46dG+cXmfDIGzZqzDaNNjUZ9ZvO3/1n+24Itn/t/3tHwCmWK31bUneVkq5Ksm1SS5OsiPJnUluS/KhWuvRDex3wwMAtdb7kvxskp8tpVya5ClJLkqyJ80gywNJ7k7ykVrrzRs9Dky7n/7pn84znvGM/NAP/VBuuumm08trrbnhhhtyww03rLn9tddem9e//vV56lOfOuymjtSmTZvy1re+Nddcc01e9apX5dixY6d/dscdd+SOO+7Y8L7n5+fzO7/zO/m5n/u5vPKVr1xS8Ozuu+/Oe97znq72sWOH96gAAAAWK4uLKA7rGKvcz1JKaQo3dlG8cd1jnLWrq6KVpZREUTQAAJhZpZTUCy9Pbv9U200ZX5+9af11YML4OnkGpctPr/W9DdPkEd+38vIv/3+XLzvvq4fbFtq3bwTP8TnX+sDgNDjvaW23YKm2C2yxMY97WbvH128m085HJNuH8K1n/XqCusATa/djkm3DvylhGRk02cbpb6MdlzX9mOm154nJlo5vsd12frLr0e20h/E0DteV87+m7RbQq63nJXuekJz7Zd2tv/PqZPcaN0A+9bW9Lb/iRcnc/Mo/G4VLnpd8/V8kz35PcuGzFEVjY8ZtjGySbdrWfJELTJN9X9t2CxiEfrN+z5OT7St8GGXHlcnVq7xPCwAsUWu9pdb6O7XW/1Zr/U+11jfVWt+3kaJoA27X52qt76y1/vJCu3621vpLtdbfVhQN1vec5zwnn/jEJ/Ibv/Ebefazn53Nm9f+jumtW7fmW77lW/LOd74zH/7wh6euKNoppZS88pWvzCc/+cl8//d/f84555w119+5c2de8IIX5B3veEcuv/zydff94z/+47nlllvyEz/xE7niiivWbc+uXbvy3Oc+N6973evyhS98IV/2ZV2OJwMAAAAAADCdvvYFbbdgrFVF45hCpVa1qehdKeVJSf5u0aJ7a609faK/lPIvk/zXRYt+t9b6wj7b9R+S9FUZ4uMf/3iuueaafnZBt47en7znmcn9i7rSOU9NnvP+ZHPHt/s9cGPy3mf6dvtpdfmLkq9+S1JGUK/zhv+U/N3Lh38chuMx/zp5yi+03YqlDt6SvOdrk8Ofa7sldOuyb0+e/tbRZM5qTjycvP+bk7v+pL020JsylzztLU0BhXFz+PPJH3xJcuSetltCL8qm5Kt/M7n8H43+2MceTN77nOS+vx79senPtguT53wg2T1GRaluf1vyoRcl9WTbLaEX83uSbfuSA2t8E0jZnHzN25JLn7/8Z7f9f8mHXhw178k5T0me9d7lBfRG7e4/T973Dcnxg+22g+59+euTR/5AcscfJn/6/OTkGp8lLnPJV/3P5Mp/vPo6K72+Wa9/fuynko+NsMhwmWvGwK55eVN4Evp17EDyJ1+X3PuXbbdk8j35Z5NrfqLtVsBgeV9t8m09N3n2+/p/3fCZX0v+4nty+u+3Mpd81ZuTy16YvP+5ox+jfvHRdgvUzpAbbrghT3jCExYvekKt9Ya22gMApZRrknz81Hy/9+gdP348N920dIz7UY961LoFrmAlhw4dyt/8zd/k5ptvzt13352jR49m69atueCCC/LoRz861157bbZunb0v4zx58mSuv/76/P3f/33uueeeHDx4MDt27Mj555+fxz72sXnSk56U+fmNv76/5ZZbcv311+fuu+/O/v37Mzc3l127duXiiy/OYx/72DzqUY/Kpk2bBviI2iW3AAAAAAAA+lMPH0z99y9O/up/977x1u3Jlm3J9p3JvV9IThxvls/NNV90fuoz58ePDa7Bo7JzT3L5o1Oe9tyUl6qjMQruzxsdhdHYkFLK1Uk+vWjR4VrrjtXWX2UfP57k1YsW/Xqt9aV9tuv8JPt63OwRSd55akZhtBE7cm9zQ/7+65O9X5I86oeSzWetvO7BzyS3vDm598NJfOh+KszvSS58VnLVS5O5Ed7g87l3JZ9/d/LQHaM7Jv3Zui+56BubgkSltN2a5Q59NvnMm5oPYNcTbbeGxcqmZNsFSWpy4mhy/tcmV790PD54dfyh5NNvSL74geSO30vmtiX7ntZ2q1jJzkcml397cv7XtN2S1R2+I/nUf00+sfDy+oJnJ5tm78bsibHzkU1BtPOf3l4bjj3YZNDdH0pOPNReO+hO2dQUkb7qu5OdV7XdmuXu/lBy61uST/+P5jX+ub6tfXzNNX97n+pLn/m15It/2hQs37rvzLVj16OTy78j2fdVq+/qix9MbvvN5KZfaubPeWqy7fyFw8wnB25OHlg0nrvrUc3EdNi0Ldn39OTq70m27Gm7NY37P5bc+hvJ/R+Pon1j7KzLk8u+Lbno684su/evk9vemjx4Y5MjFz832XpeU3yzbO7+tfjRB5LPvDG578NNUbSrr0u27F17m8++vbmGfe4dyY7Lk92P7evhrWhuPtnzJclV35XseuTg989sO/pAMyZ19595Xb8R2y9OLnlecum3tN0SGI6Dn0k+8+vJfX8T76tNkrnknGuTK78r2T2gv6Huel9y++80769c9u3JBc9olp8ao777T5PjhwZzrPV87TtH+57gDHPjFQDjRmE0YNbJLQAAAAAAgP7VkyeT2z6ZfObjydnnJBdcnuy7JNm8JTn6cLJpc/Pv8aPJ/NZkx+7k5MmklJS5pvjZqTpLZYWaBfXwweSu25Pd5yR7z2/uu/vczcntn0wuuKIppPbgfcmhB5PU5OCDTTu27UgOH2imTfPJpk1NWzbPn2nTg/uTXXuSPfuSkyeST/xV6ic/khx6IJnf0rR385Zkfr6Z37I95aydTXtrTdl2VnL2ucm+i5vjbTsrOf+yZM95Kz4Whsf9eaOjMBobUko5N8k9HYt31lq7vmO6lPKaJC9btOi/1lr/1SDa14tB33QFAAAAAAAAANAWN14BMG4URgNmndwCAAAAAACA6eD+vNGZa7sBTKZa671J9ncsvrzH3VzRMX/TimsBAAAAAAAAAAAAAAAAAAAAAAAw9RRGox83dsw/ssftr15nfwAAAAAAAAAAAAAAAAAAAAAAAMwIhdHox8c75r+q2w1LKTuSPGmd/QEAAAAAAAAAAAAAAAAAAAAAADAjFEajH3/YMf/MHrb9miSbF81/pNZ6V98tAgAAAAAAAAAAAAAAAAAAAAAAYCIpjEY//ijJQ4vmv6qU8tgut72uY/7tA2kRAAAAAAAAAAAAAAAAAAAAAAAAE0lhNDas1no4yds6Fv/b9bYrpTw6ybcuWnQ8yVsG2DQAAAAAAAAAAAAAAAAAAAAAAAAmjMJo9Os/JDm2aP66UsrzVlu5lLItyRuTbFm0+A211k8Pp3kAAAAAAAAAAAAAAAAAAAAAAABMAoWi+bsXAAAgAElEQVTR6Eut9TNJfrFj8dtKKT9cSllc/CyllMcleW+Spy1afG+S/zjcVgIAAAAAAAAAAAAAAAAAAAAAADDuNrfdAKbCTyS5Jsk3LczPJ/lvSf59KeX6JAeSXJ3k2iRl0XZHk3xrrfULI2wrAAAAAAAAAAAAAAAAAAAAAAAAY0hhNPpWaz1RSvmOJL+S5EWLfnR+km9cZbMvJnlprfXPht0+AAAAAAAAAAAAAAAAAAAAAAAAxt9c2w1gOtRaD9ZaX5zkHyX5izVWvS/Jf0/yhFrrH46kcQAAAAAAAAAAAAAAAAAAAAAAAIy9zW03gOlSa31bkreVUq5Kcm2Si5PsSHJnktuSfKjWerTFJgIAAAAAAAAAAAAAAAAAAAAAADCGFEZjKGqttyS5pe12AAAAAAAAAAAAAAAAAAAAAAAAMBnm2m4AAAAAAAAAAAAAAHSjlLJsWa21hZYAdGeljFopywAAAAAAAABoKIwGAAAAAAAAAAAAwESYm1t+6+uJEydaaAlAd1bKqJWyDAAAAAAAAICGd1QBAAAAAAAAAAAAmAillGzatGnJsoceeqil1gCs7/Dhw0vmN23alFJKS60BAAAAAAAAGH8KowEAAAAAAAAAAAAwMXbs2LFk/sCBAy21BGB9Bw8eXDK/c+fOlloCAAAAAAAAMBkURgMAAAAAAAAAAABgYuzatWvJ/OHDh3P06NGWWgOwuqNHj+bw4cNLlimMBgAAAAAAALA2hdEAAAAAAAAAAAAAmBg7duxYMl9rzWc/+9kcP368pRYBLHf8+PF89rOfTa11yfLODAMAAAAAAABgqc1tNwAAAAAAAAAAAAAAurVp06bs2rUrBw4cOL3s6NGj+fSnP53du3dn9+7dmZ+fz9yc7w8GRuvkyZM5duxYHnzwwTz44IM5efLkkp/v2rUrmzZtaql1AAAAAAAAAJNBYTQAAAAAAAAAAAAAJspFF12Uo0eP5siRI6eXnTx5Mvfff3/uv//+FlsGsLKtW7fmoosuarsZAAAAAAAAAGPPV+EBAAAAAAAAAAAAMFE2bdqUyy67LJs3+45gYPzNz8/nsssuy6ZNm9puCgAAAAAAAMDYUxgNAAAAAAAAAAAAgIkzPz+fyy+/PDt27Gi7KQCr2rFjRy677LLMz8+33RQAAAAAAACAieBr8gAAAAAAAAAAAACYSFu3bs3ll1+eY8eO5YEHHsgDDzyQY8eOpdbadtOAGVVKyfz8fM4+++ycffbZCqIBAAAAAAAA9EhhNAAAAAAAAAAAAAAm2vz8fM4777ycd955qbWm1pqTJ0+23SxgxszNzaWUklJK200BAAAAAAAAmFgKowEAAAAAAAAAAAAwNU4VJZqbm2u7KQAAAAAAAAAA9MgdHwAAAAAAAAAAAAAAAAAAAAAAAEDrFEYDAAAAAAAAAAAAAAAAAAAAAAAAWqcwGgAAAAAAAAAAAAAAAAAAAAAAANA6hdEAAAAAAAAAAAAAAAAAAAAAAACA1imMBgAAAAAAAAAAAAAAAAAAAAAAALROYTQAAAAAAAAAAAAAAAAAAAAAAACgdQqjAQAAAAAAAAAAAAAAAAAAAAAAAK1TGA0AAAAAAAAAAAAAAAAAAAAAAABoncJoAAAAAAAAAAAAAAAAAAAAAAAAQOsURgMAAAAAAAAAAAAAAAAAAAAAAABapzAaAAAAAAAAAAAAAAAAAAAAAAAA0DqF0QAAAAAAAAAAAAAAAAAAAAAAAIDWKYwGAAAAAAAAAAAAAAAAAAAAAAAAtE5hNAAAAAAAAAAAAAAAAAAAAAAAAKB1m9tuAIyBLYtnbr755rbaAQAAAAAAAADQlxXue9iy0noAMELu0QMAAAAAAAAAJp7780an1FrbbgO0qpTyvCTvbLsdAAAAAAAAAABD8Pxa67vabgQAs8s9egAAAAAAAADAlHJ/3pDMtd0AAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgNaVWmvbbYBWlVLOTvKMRYs+m+ToBnb1iCTvXDT//CSf7qNpAL2SQ8A4kEXAOJBFQNvkEDAOZBHQNjkEjINZzaItSS5bNP+BWusDbTUGAAZ4j94ps3qNB8aHHALaJoeAtskhoG1yCBgHsghomxwC2jarOeT+vBHZ3HYDoG0L4fKufvdTSulc9Ola6w397hegW3IIGAeyCBgHsghomxwCxoEsAtomh4BxMONZ9JG2GwAApwzqHr1TZvwaD4wBOQS0TQ4BbZNDQNvkEDAOZBHQNjkEtG3Gc8j9eSMw13YDAAAAAAAAAAAAAAAAAAAAAAAAABRGAwAAAAAAAAAAAAAAAAAAAAAAAFqnMBoAAAAAAAAAAAAAAAAAAAAAAADQOoXRAAAAAAAAAAAAAAAAAAAAAAAAgNYpjAYAAAAAAAAAAAAAAAAAAAAAAAC0TmE0AAAAAAAAAAAAAAAAAAAAAAAAoHUKowEAAAAAAAAAAAAAAAAAAAAAAACtUxgNAAAAAAAAAAAAAAAAAAAAAAAAaJ3CaAAAAAAAAAAAAAAAAAAAAAAAAEDrFEYDAAAAAAAAAAAAAAAAAAAAAAAAWqcwGgAAAAAAAAAAAAAAAAAAAAAAANC6zW03AKbI3Un+Y8c8wCjJIWAcyCJgHMgioG1yCBgHsghomxwCxoEsAoDp5BoPtE0OAW2TQ0Db5BDQNjkEjANZBLRNDgFtk0MMVam1tt0GAAAAAAAAAAAAAAAAAAAAAAAAYMbNtd0AAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgNYpjAYAAAAAAAAAAAAAAAAAAAAAAAC0TmE0AAAAAAAAAAAAAAAAAAAAAAAAoHUKowEAAAAAAAAAAAAAAAAAAAAAAACtUxgNAAAAAAAAAAAAAAAAAAAAAAAAaJ3CaAAAAAAAAAAAAAAAAAAAAAAAAEDrFEYDAAAAAAAAAAAAAAAAAAAAAAAAWqcwGgAAAAAAAAAAAAAAAAAAAAAAANA6hdEAAAAAAAAAAAAAAAAAAAAAAACA1imMBgAAAAAAAAAAAAAAAAAAAAAAALROYTQAAAAAAAAAAAAAAAAAAAAAAACgdZvbbgBnlFI2JXlkkscnuTjJ2UmOJNmf5NNJPlxrPTTgY84n+eoklye5KMnBJHck+Uit9dZBHmtUSinXJPmSJPuSbE1yZ5LPJflQrfXhNts2SqWUvUmuSfKoJOck2Zbk/iR3J/mbWuunW2zeMqWUq9I8bxcn2ZnkC0luS/LntdZjbbZtlsihwZBDDTnERsmiwZBFDVm06nH0j3XIosHQ1xqTlkWMBzk0GHKoIYeWKqVcluZcXJrkvCTbkxxN8kCS29Ock7vba+H4kEWDIYsasoiNkEODIYcacoiNkkWDIYsasmhl+gfQBtf4wZDhjUm7xrtHZjzIocGQQw05xEbIocGQQw05tOpx9I81yKHB0M8ak5ZDjAc5NBhyqCGHlnKPXvdk0WDIooYsYiPk0GDIoYYcYiPk0GDIoYYcWtlE949aq6nFKU1Q/kiS30vzR31dYzqe5A+SfPMAjrsvyS8luXeN430oyQv7PM7VSV6U5OeSvD/Jgx3HuHVA53FXkp9M8vk1Hs+DSd6c5BEtPt9DOx9J5pN8Q5LXJvn4On2pLpyrn0pyYcu/A9+e5M/XaOe9C331vA3se71zsN50ZZvnZoTPgRwazHmUQ3Jo8T6vHEAGLZ6ua/Mcjeh5kEWDOY+ySBZNfP9o+XmQRYM5jxPR12RRa/1jR5KnJ/nXSX4jyaeSnOw41nVtnYe2Jzkkh+TQ0M7Ho5L8TJL3pXlDY73zUZNcn+RfJNna1jlp8bmQRYM5j7JIFq20/27yZ63pyrbOzYifBzk0mPMoh+TQ4v1eOYAMWjxd19Y5GuFzIYsGcx5lkSya+P5hMpmma3KNn60Md41fsd3u1Wt5kkNySA65V6/tSQ7JITnkPr22Jzkkh2Y5h0bYP9yjt/b5kUODOY9ySA517ts9er2dL1k0mPMoi2TRSvvvJn/Wmq5s69yM+HmQQ4M5j3JIDi3e75UDyKDF03VtnaMRPQ9yaDDnUQ7JoYnvH+s+jrYbMMtTkrf0cSF7d5ILNnjcb0pyVw/H+p9JdvSw/2cm+aN1LgYD+4VM8hVpqm92+3gOJfnBET7PQz8fC+fgvg32pf1JvquF/r8zyW/20M47k3xDj8fY6O/XqenKUZ+XFp4HOSSH5NAQciiD/wP2RaM+PyN+LmSRLJJFQ8iiSeof4zDJIlk0i1k0yv6RZtD4Y2kGo9c71nWjOgfjNMkhOSSHhtc/kvzTPn6/PpnkK0Z1TtqeZJEskkXD7R99/H6dmq4c1Xlpa5JDckgODe18XDmADFo8GbOWRd0cTxbJoontHyaTaTon1/jZyHDX+FXb7F69MZjkkBySQ+7Va3uKHJJDcsh9ei1PckgOzWIOjbJ/xD163ZwjOSSH5NCQ+kfco9fLuZJFskgWDbF/9PH7dWq6clTnpa1JDskhOTS083HlADJo8WSsWg518zsoh+TQRPaPXqbNoU2PXmX555PclCZUN6ep9vfkJHOL1vmHSf60lPKMWuud3R6wlPLMJO9IsmXR4pqmuvpnkuxJ8qVJzlv08+9MsruU8oJa68kuDvMlSb6+2zb1o5TynDRVQLd2/Oi2JB9N88t3aZpf2vmFn52V5JdKKXO11teNoJmjOB/7kuxdYfnRNIPad6aplHpukqcu/HvKniRvLqWcX2v9hSG3M0lSStmU5K1Jntvxo7uTfGShrY9I0xfLws8uSPLOUspzaq0fHEU7Z4Qc6pMcOk0ODc/hNJWsp5ks6pMsOk0WrXycSegf40AW9WlC+posWmpk/SPJS5KcPaJjTSo51Cc5dJocWl9NM8B/c5o3FQ6n+bbcq5JckzP9I2l+N99bSvnmWusHRt3QFsiiPsmi02QRGyWH+iSHTpNDw2PMWhatSxadJotWMCH9A5hOrvF9mpAMd43vMGH3yEw7OdQnOXSaHBqeaR/3kEN9kkOnyaGVjzMJ/aNtcqhPE9LP5NBS7tEbL3KoT3LoNDm0PvforU4W9UkWnSaL2Cg51Cc5dJocGh5j1XJoTXLoNDm0ggnpH91ruzLbLE9JPpwz1fOuT/LDSR6xyrqXJHl9llfd+7MkpcvjXZrl1Q4/mORxHettTfJ/pfllX7zuz3R5nB9ZoZ01ycNpBjIGUqkwTdXUzmqINyf5uhXW3Zvkv3Wse2KldYfwPA/9fKS5gJ/ax4Ekb0jy7CTbV1i3JPnWNKHV2aahn4+FNvxcx3GPLvT/LR3rPT7Jn3ese0+Si7o8zuLt/mKhz/QybR7F+WhzihySQ3JoKDmU5g+u9TJmtemDHcd70yjOSZtTZJEskkVDe000Kf1jHCZZJItmMYtG1T8WjnX/Ksf63Ao/u27Yj30cJzkkh+TQUPvH9yX5+zSvv745yd411t2T5EfTvPmx+PifT3L2sM9J25MskkWyaOiviRbvy5j1yudIDskhOTSc82HMurfzJYtkkSya8f5hMpmmc3KNn40Md41fsb3u1RuTKXJIDsmhoeRQjHv08lzIITkkh4b0emhS+kfbkxySQ7OYQ6PqHwvHco/e+udIDskhOTS8/uEeve7PlSySRbJouK+JFu/LWPXK50gOySE5NJzzYay6+3Mlh+SQHJrx/tHTY2q7AbM8JfnrNFX2ntrDNj+0Qkd/cZfbvqFjuw8l2bbG+i9Y4Rfqii6O8yMLYf+RJP8jyQ8kuTZNpcBnDvAX8jc79nVTkvPX2ebHO7a5IcmmIT/PQz8fC4F9V5KXJdnR5TbnJvlEx/FvTJcvAPo4H1dn+YuB56+x/vYsf4Pxl7s81uJt3j/MxzWpkxySQ3JouDm0gbZdkuR4x7G+ZpjnYxwmWSSLZNHwsmhS+sc4TLJIFs1oFo2kfywc6/4037Lw+0n+48J5umDhZ+/vONZ1w3zc4zrJITkkh4baP+Y3sM2XJDnY0YZ/O8zzMQ6TLJJFsmjor4kW7+v9w3xckzrJITkkh4abQxtomzHr7reRRWeOI4vOHEMWTWj/MJlM0zm5xs9GhrvGLzuue/XGaJJDckgODTeHNtC2mRv3kENySA4NL4cmpX+0PckhOTSjOeQevTGa5JAckkPu0RuHSRbJIlnkHr22Jzkkh+SQe/TanuSQHJJD+kdPj6ntBszylOTKDW73to5O9ftdbPOojgvikSSP6mK7N3Uc61e72GbvaheCAQbU1WkqDS7e19O73PZPOrb73iE/z6M4H/u6DeqO7Z68wnn8siGfj1/rON4bu9jm0Qt99tQ2x5Jc3cV2i4/z/mE+rkmd5JAckkPDzaENtO0nO9r2qWGei3GZZJEskkXDyaJJ6h/jMMkiWTSjWTT087Fof6t+e27cdHXqPFy5we3kkBzq3I8cGlz7fqqjDX8x6ja08Jiv3OB2skgWde5HFq28v8X7ev8wH9ekTnJIDsmh4ZyPPtpmzLq37WSRLOrcjyya0P5hMpmmc3KNn40Md41fdkz36o3RJIfkkBwabg5toG0zN+4hh+SQHBpODk1S/2h7kkNyaEZzyD16YzTJITkkh4ZzPvpsn3v0ut9OFsmizv3IopX3t3hf7x/m45rUSQ7JITk0nPPRR9uMVXe/nRySQ537kUMT2j96meZCa2qtt25w09d1zP+DLrZ5SZJNi+Z/t9Z6Uxfbvbpj/jtKKdvW2qDWur/W+nAX++7HNydL+u9f1Fo/2OW2r+mY/57BNGllozgftda7a62HNrDd3yXpPG/d9KcNKaVsT/LtHYs7+9gytdZPJXnHokWb0/Rp+iSH+iKHlh5DDvWplFKyvC+8YZDHGFeyqC+yaOkxZNFSE9M/xoEs6svE9DVZtOyYo+gfp471hVEcZ5LJob7IoaXHkEOD87865h/ZSitGSBb1RRYtPYYsYkPkUF/k0NJjyKE+GbPeEFkkizqPIYuWmpj+AUwn1/i+TEyGu8afMc73yMwqOdQXObT0GHKoT7M67iGH+iKHlh5DDi01Mf2jbXKoLxPTz+TQsmO6R2+MyKG+yKGlx5BDg+Meve7JIlnUeQxZxIbIob7IoaXHkEN9MlbdMzkkhzqPIYeWmpj+0QuF0SbTRzrmt5dS9qyzzbd2zL+xmwPVWm9M8peLFu1I8vXdbDtkX9sx/0c9bPveJEcXzT+tlHJR/02aWJ396eIhHusbkpy1aP7/1Fr/vsttO/vstw2mSWyQHJJDgySHGs9I8ohF88fTfFMdq5NFsmiQpjGL9I/RkEX62iCNMouYHnJIDg2SHFrqvo75Xa20YjLIIlk0SLKIjZBDcmiQ5FDDmHXvZJEsGqRpzCL9A5hUrvEyfJCm8X1phk8OyaFBkkMN4x69kUNyaJCmMYf0j+GTQ/rZIE3j2CvDJ4fk0CDJoaXco9c9WSSLBkkWsRFySA4NkhxqGKvujRySQ4M0jTk0lf1DYbTJdHyFZVtWW7mUcmGSJ3ds/6Eejvf+jvlv6mHbYbm0Y/7j3W5Yaz2S5OZFi+YyHo+pLZ39adW+NADf2DH//h62/bMsbeuXllIu6LtFbJQckkODJIca39cx//u11jsHuP9pJItk0SBNYxbpH6Mhi/S1QRplFjE95JAcGiQ5tNQVHfN3tNKKySCLZNEgySI2Qg7JoUGSQw1j1r2TRbJokKYxi/QPYFK5xsvwQZrG96UZPjkkhwZJDjWMe/RGDsmhQZrGHNI/hk8O6WeDNI1jrwyfHJJDgySHlnKPXvdkkSwaJFnERsghOTRIcqhhrLo3ckgODdI05tBU9g+F0SbTIzvmjye5Z431n9Ax/9Fa66EejvfnHfPX9LDtsJzTMX9/j9t3rv/EPtoy6Tr70xeGeKzOvvh/ut1woc9+rGPxOPTFWSWH5NAgzXwOlVLOTvLCjsVvGMS+p5wskkWDNI1ZpH+MhizS1wZplFnE9JBDcmiQ5NBS/6Rj/n2ttGIyyCJZNEiyiI2QQ3JokGY+h4xZb5gskkWDNI1ZpH8Ak8o1XoYP0jS+L83wySE5NEgzn0PGPTZEDsmhQZrGHNI/hk8O6WeDNI1jrwyfHJJDgySHlnKPXvdkkSwaJFnERsghOTRIM59Dxqo3RA7JoUGaxhyayv6hMNpk+vaO+Q/XWk+usf7jO+ZvXnGt1X16nf214WjH/NYet+9cfxwe08iVUnYn+bqOxX81xEM+rmN+lH3x8lLKG0spN5RS9pdSjpZS7lqY/5+llB8opXQGPauTQ3JoIGYsh9byj5NsXzT/hSR/MKB9TzNZJIsGYoqzSP8YDVmkrw1EC1nE9JBDcmgg5NBSpZR/keS7Fi06nuS/tNScSSCLZNFAzFgWGbMeLDkkhwZixnJoLcasN0YWyaKBmOIs0j+ASeUaL8MHYorfl16JcY/BkkNyaCBmLIfWYtyjd3JIDg3EFOeQ/jF8ckg/G4gpHntl+OSQHBoIObSUe/R6Jotk0UDMWBYZqx4sOSSHBmLGcmgtxqp7J4fk0EBMcQ5NZf9QGG3ClFJ2Jvm+jsVvX2ezzkqFt/d42Ns65s8tpeztcR+Ddm/H/EU9bt+5/mP6aMsk+2dJzlo0/0CGVFV/4Y/Dzj8Qe+2Lnes/qodtr0pyXZrw3ZNkPsn5C/PfmeT1SW4vpfznhd8zViGHTpNDgzFLObSWzt+pX6u1Hh/QvqeSLDpNFg3GtGaR/jFksug0fW0wRpZFTA85dJocGoyZzqFSyo5SymNKKS8tpXwgyWs7Vnl5rfWjbbRt3Mmi02TRYMxSFhmzHhA5dJocGoxZyqG1GLPukSw6TRYNxrRmkf4BTBzX+NNk+GBM6/vSKzHuMSBy6DQ5NBizlENrMe7RAzl0mhwajGnNIf1jiOTQafrZYEzr2CtDJIdOk0ODMdM55B69jZNFp8miwZilLDJWPSBy6DQ5NBizlENrMVbdAzl0mhwajGnNoansHwqjTZ6fTXLhovn7k/zKOtvs6Zj/Yi8HrLUeTPJwx+Kze9nHENzYMf+V3W5YSrk8ycUdi9t+PCNXSrkyyb/vWPyLtdbOKpCD0tkPD9daD/W4j86+O+jnbUeSH0nyN6WUawa872kihxpyqE9yqFFKeWKSp3YsfkO/+50Bsqghi/o05VmkfwyfLGroa31qIYuYHnKoIYf6NGs5VErZU0qpi6ckB5P8fZI3JfnaRasfTPIDtdbXtNDUSSGLGrKoT7OWRV0yZt0dOdSQQ32SQw1j1hsmixqyqE9TnkX6BzCJXOMbMrxPU/6+9EYZ9+iOHGrIoT7JoYZxjw2RQw051KcpzyH9Y7jkUEM/69OUj70yXHKoIYf6NGs55B69gZNFDVnUp1nLoi4Zq+6OHGrIoT7JoYax6g2RQw051Kcpz6Gp7B8Ko02QUsq3JvnhjsU/WWu9b51NO6sUP7SBw3dus2sD+xikD3TMv7CUctaKay73T1ZY1vbjGalSypYkb83Sx31rkv9niIdtqx8eT/L+JP8uyfOSXJvm25q+NMnzk7wmy1/EPDrJe0opV2ygjVNNDi0hh/owYzm0ns4K1R+otd48gP1OLVm0hCzqwwxkkf4xRLJoCX2tDy1lEVNADi0hh/ogh1Z1V5KfTHJVrfV/tN2YcSWLlpBFfZixLDJmPUByaAk51IcZy6H1GLPukSxaQhb1YQaySP8AJopr/BIyvA8z8L70YsY9BkgOLSGH+jBjObQe4x49kENLyKE+zEAO6R9DIoeW0M/6MANjrwyJHFpCDvVBDq3KPXpdkEVLyKI+zFgWGaseIDm0hBzqw4zl0HqMVfdADi0hh/owAzk0lf1DYbQJUUp5cpJf71j8x0n+exebdwZ2Z1XKbnQGduc+R+3301TxPGVPkv+w3kallMuS/NgKP9pUStk+mKZNhF9J8uWL5k8keekGvgWpF230w3+X5JJa6z+otb6q1vruWutHaq0311r/ttb6rlrrv0lyRZL/lKQu2vbCJL9bSikbaOdUkkPLyKH+zEoOrWnhBfR3dSxW1XsNsmgZWdSfac8i/WNIZNEy+lp/2sgiJpwcWkYO9UcOreyCJP88yQ+WUna33ZhxJIuWkUX9mZUsMmY9QHJoGTnUn1nJoTUZs+6dLFpGFvVn2rNI/wAmhmv8MjK8P9P+vvQpxj0GSA4tI4f6Mys5tCbjHr2RQ8vIof5Mew7pH0Mgh5bRz/oz7WOvDIEcWkYO9UcOrcw9euuQRcvIov7MShYZqx4gObSMHOrPrOTQmoxV90YOLSOH+jPtOTSV/UNhtAlQSrk8TQdcHJK3JfmuWmtdeas1jWqboam1Hkjyix2Lf6yU8q9W26aUcmmSP0xy9mq7HVDzxlop5aeTfHfH4pfXWv90xE0Zej9c+KO1s2r3Sus9XGt9eZJ/2fGja5P8416OOa3k0HJyaONmKYe68Pwk5y6afyDJ2wZ8jKkhi5aTRRs3C1mkfwyHLFpOX9u4McoiJogcWk4ObdwM59CDSa5aND0izTjQtyX5z0nuXljvsiQ/leRjpZQva6GdY0sWLSeLNm6WssiY9eDIoeXk0MbNUg51wZh1D2TRcrJo42Yhi/QPYFK4xi8nwzdujK7x7tWbIHJoOTm0cbOUQ10w7tElObScHNq4Wcgh/WPw5NBy+tnGjVEOMUHk0HJyaONmOIfco9cnWbScLNq4WcoiY9WDI4eWk0MbN0s51AVj1V2SQ8vJoY2bhRya1v6xue0GsLZSyvlJ/neSSxYtvjPJ19Va7155q2UOdsxvpCJf5zad+2zDzyT5ppypyFiS/JdSyrenqYr6t2kqcF68sN4P5sxF73NJLl20r4drrcsqfJZSruy2MbXWW3tqfQtKKT+Sptr1Yr9Qa/25Lre/sttjrXA+xr4f1lpfV0r5+iTPW7T4h5K8ZZDHmTRyaE1yqEdyaJnv65h/S621s3o0kUXrkEU9mrEsGnr/mCWyaE2yqEctZ1QVJ7cAACAASURBVBETSg6tSQ71aJZzqNZ6MsmtK/zoI0neXkr5d0leneSHF5ZfnuQ9pZSvrrV+fDStHF+yaE2yqEeznEXdMGa9Mjm0JjnUIzm0jDHrLsmiNcmiHs1YFhmzBsaaa/yaXON7NGPvS/fMuMfK5NCa5FCP5NAyxj26IIfWJId6NGM5ZMxjQOTQmuRQj2Zs7JUBkUNrkkM9muUcco9ef2TRmmRRj2Y5i7phrHplcmhNcqhHcmgZY9VdkENrkkM9mrEcmrqxaoXRxlgp5Zwk70ny6EWL70nynFrrTT3saioDu9Z6tJTybUn+V5InLfrR0xem1dyb5gXDHy1adv8q697SQ5NKD+uOXCnl+5P8Qsfi/15rfVkPu+nnfExKP/zZLP0D9itLKXtqrav1kakmh9Ymh3ojh5YqpVyW5Os6Fr9ho/ubZrJobbKoN7OWRSPqHzNBFq1NFvVmDLKICSSH1iaHeiOH1lZrPZzkX5ZSjiX51wuLdyf59VLKUzb47UJTQRatTRb1RhZ1zZj1InJobXKoN3JoKWPW3ZNFa5NFvZm1LDJmDYwz1/i1ucb3Zgyu8ZPSD417LCKH1iaHeiOHljLu0R05tDY51JtZyyFjHoMhh9Ymh3ozBjnEBJJDa5NDvZFDa3OP3upk0dpkUW9kUdeMVS8ih9Ymh3ojh5YyVt0dObQ2OdSbWcuhaRyrnmu7AayslHJ2kj9O8sRFi/enqWB5Q4+7e6Bjfl+PbdmZ5YE9Fh241vr5JE9L8vokx7rY5H1JnprkUMfyOwfctLFSSvnuJL+cpSH6xiT/YoTN6OyHZ5VSdvS4j/M75ofRD/8qze/aKZuSPH4Ixxl7cqg7cqg7cmhF12Xpa7G/q7X+TR/7m0qyqDuyqDuzmkX6R/9kUXf0te6MSRYxYeRQd+RQd+RQT34yyR2L5r80yXNaakvrZFF3ZFF3ZFFPjFkvkEPdkUPdkUMrui7GrNcli7oji7ozq1mkfwDjyDW+OzK8O2NyjR+3e2RWY9xjgRzqjhzqjhxa0XUx7rEmOdQdOdSdWc0h/aM/cqg7+ll3xiSHmDByqDtyqDtyqCfu0VtEFnVHFnVHFvXEWPUCOdQdOdQdObSi62Ksek1yqDtyqDuzmkPT1j8URhtDpZRdSf4wyVMWLX4wyTfWWv92A7vsrHp5RY/bd65/X611/4prtqDWeqjW+s+TPCbNQMj7knwuyUNJDiS5Mcmvpame+uxa661JHtexmw+PrMEjVkp5cZpwXvz7/htJ/ukoK+fXWu/N0j8Mk+TyHnfT2Rd7qejalVrrySS3dyzu6UXONJBDvZFDa5NDy5VSSpLv6VisqncHWdQbWbS2Wc8i/WPjZFFv9LW1jUsWMVnkUG/k0NrkUG9qrQ8leUfH4m9soy1tk0W9kUVrk0W9MWbdkEO9kUNrk0PLGbPujizqjSxa26xnkf4BjBPX+N7I8LWNyzV+nO6RWYtxj4Yc6o0cWpscWs64x/rkUG/k0NpmPYf0j42RQ73Rz9Y2LjnEZJFDvZFDa5NDvXGP3hmyqDeyaG2yqDfGqhtyqDdyaG1yaDlj1euTQ72RQ2ub9Ryapv6xue0GsNTCt9D8ryRfuWjxwSTfVGv9qw3u9saO+Uf2uP3VHfOf2GA7hqrWekuSn1mY1vNVHfN/uco+y0rLJ0Up5YVJ3pymOvUpv53kpQt/qPVkAOfjxjSVJU95ZJb3z7V09sVetu3FQx3znZVcp5oc2jg5tJwcWtWzkly1aP5ImhfTLJBFGyeLlpNFZwyjf0wzWbRxsmi5McwiJoAc2jg5tJwc2rBPdsz3+jsz8WTRxsmi5WTRhhmzlkMbIoeWk0OrMma9Dlm0cbJoOVl0hjFroG2u8RvnGr/cGF7jx+UemfUY95BDGyKHlpNDqzLusQY5tHFyaDk5dIYxj+7JoY2TQ8uNYQ4xAeTQxsmh5eTQhrlHTxZtmCxaThZtmLFqObQhcmg5ObQqY9VrkEMbJ4eWk0NnTMNY9dz6qzAqpZTtSX4vydMXLT6c5JtrrX/ex64/3jH/pFLKWT1s/9Xr7G+iLFRTfVbH4g+00ZZhKqU8L8lvZmkBxHckeUmt9UQ7rVrWdzqDcVULL2aetM7+BuW8jvl7hnScsSOHRkMOyaEk39sx/7u11vs2uK+pI4tGQxbJonWOMxP9Yy2yaDRmpa+NaRYx5uTQaMghOdSFYx3zW1tpRUtk0WjIIlnUBWPWcmio5JAcijHrNcmi0ZBFsmgts9I/gNFyjR+NWcnwMb3Gj/370guMe8ihoZJDcijGPVYlh0ZDDsmhdY4zE/1jNXJoNGaln41pDjHm5NBoyCE51AX36MmioZNFsqgLxqrl0FDJITkUY9WrkkOjIYfk0FrGuX8ojDYmSinbkrwryTMXLX44yfNqrX/az75rrV9I8tFFizZn6UVhPc/smP+DftozBp6V5MpF8x+otd7UUluGopTy3DQVK+cXLf79JC+qtR5vp1VJkj/smH9mD9t+TZZefD5Sa72r7xZ1KKWcl+XVW+8Y9HHGkRwaKTnUntZzqJSyJ8m3dSx+Q6/7mVayaKRkUXtaz6IuTH3/WIssGqmp72tjnEWMMTk0UnKI9VzaMT+M115jSRaNlCxiVcas5dCIyKEZZsx6bbJopGQRa5n6/gGMlmv8SE19ho/xNX7s35c27iGHRkQOtaf1HDLusTo5NFJyqD2t51AXpr5/rEYOjdTU97MxziHGmBwaKTnEetyjJ4tGQRaxKmPVcmhE5NAMM1a9Ojk0UnKItYxt/1AYbQyUUrYk+d0kz1m0+EiSF9Ra3zugw7y9Y/57umzbY5N8xaJFh5L88YDa1JZ/2zH/+lZaMSSllK9L8jtJtixa/MdJXlhrPdpOq077oyQPLZr/qoU+1o3rOuY7+/SgvDhLs/GuJDcO6VhjQw6NnBxqzzjk0Hcm2bZo/tYkf7LBfU0VWTRysuj/Z+/Ow2S7ynrxf98QCEMgYQqjJMyDyhiUgJiDgAIKGFBAZAjkyiDOIALXIaAXLj9F8YqCoJAwKoMEZFTEwxAIMo+KTIkQmQmEEDKv3x+7jqfO7urumrqquvvzeZ5+yF6119qrqtZ+O+x+867lWYVYtJkdvT42IhYt3I5eaysei1hR4tDCiUNs5id7xyvxYH+riUULJxaxEc+s9xOHto44tLt5Zr0OsWjhxCI2sqPXB7BYfscv3I6O4Sv+O347/F3ac4/9xKGtIw4tzyrEIc89RhCHFk4cWp5ViEOb2dHrYz3i0MLt6HW24nGIFSUOLZw4xGbk6O0nFm0dsYiNeFa9nzi0dcSh3c2z6hHEoYUTh9jIyq4PhdGWrKoOTvLKJPccar4wyc+11t46x0u9LMnFQ8f3q6obj9Gvv3hf2Vo7b37TWqyqeniSuw81fSRdxccdoaqOTfK6HPgvRm9P98v//OXMar/W2rlJXt1r7q+xNarqJkmOG2q6KMnL5zi1fde5RpLf7TX/Y2utzftaq0QcWixxaLlWJA49snf8wp0eZ8YhFi2WWLRcKxKLNrrOjl4fGxGLFmunr7VVj0WsJnFoscQhNlNVP53k6F7z65Yxl0USixZLLGIjnlmLQ4sgDhHPrEcSixZLLGIjO319AIvld/xi7fQYvuq/47fB36U999hPHNoi4tByrUgc8tyjRxxaLHFouVYkDm10nR29PtYjDi3WTl9nqx6HWE3i0GKJQ2xGjp5YtAhiERvxrFocWgRxiHhWvYY4tFjiEBtZ9fWhMNoSVdWl0gXS+w41X5Tkga21N8zzWq21zyQ5eajpMklOqqrLrtMlVXXfHLjTzQVJnjrPec1q8Atv3HPvl+QFQ00XJXlka+2iuU9sCarqmCRvSHK5oeZ3Jrl3a+37o3stxYnp/qVkn+Or6j7rnTxYoy/KgZU5/7a19rkN+ty0qu49yaSq6prpPr9rDDVfkOQZk4yz3YhDsxOH9hOHNldVt05y26GmS5KcNOk4O41YNDuxaD+xaGRf62MMYtHsrLX9tlEsYoWIQ7MTh/YTh/arqqOr6rjNz1zT7/ZJXtJrfmdr7ePzmdlqEotmJxbtJxbt55n1+MSh2YlD+4lDm/PMejSxaHZi0X5i0VrWB7AsfsfPTgzfbxv9jj8xcvVWhjg0O3FoP3Foc557rCUOzU4c2k8cGtnX+tiEODQ762y/bRSHWCHi0OzEof3Eof3k6E1GLJqdWLSfWLSfZ9XjE4dmJw7tJw5tzrPqtcSh2YlD+4lDa+209TH2m2FLvDDJA3ptT0ny4ao6asKxvjJGhck/SLdzzZUHx3dM8raq+l+ttf/Yd1JVHZLkUUme1ev/rNbaGeNMpqqum9Hr65q944M3eK/ntNa+scmlPl5Vb0zymiTva61dMmIuP5TkyUke3HvpKa21D28y/lxs9edRVbdJ8uYkhw41fzrJ45IcUVWTTPe81tpXJukwidba56vqz5M8Yaj51VX1W0me31q7YF9jVd08yd+kW6v7fDOb/4vDtZK8vqo+nuSlSV47+JeWNarqikkenq6i9zV6L/9Ra+3zY7yt7UwcEofEoc6849B6Tugdv7W19sUpx9pJxCKxSCzqbFUs2hbrYwWIRWLRrotFyeLWR1UdmuRq67zcf5h8tQ2u9aVVerA2Z+KQOCQOHWhe6+O6Sf6hqj6R7o9npyT5dGujd1iqqlskeXSSX+7N67xB204nFolFYtGB5rU+PLMenzgkDolDB5r3+ujzzHo0sUgsEosOtCvXB7Aj+R2/S2K43/H7ydVbOeKQOCQOdeTqLY84JA6JQx15essjDolDuy4OJXL0Vow4JA6JQweSo7ccYpFYJBYdSI7e4olD4pA4dCA5eosnDolD4tCBduX6GFtrzc+SfpK0Of7sGfOae5Kc3+t7SZL3J/n7JG9J8rUR4/9jkktN8N5On8N7OmmM63xj6PzvJnlPupvzZUn+aYN5/OGCv+st/TzS7WQ0r7W0dwGfx6WSvGnEtb+a7hfPK5N8YLA2h18/P8mdx1zn/bG/neTd6R6svSTJawfXuHCdz+Gvlx0jFrQ2xSFxSBzagji0zjUPSZcgMTze/ZcZA1blZ45rRywSi06c41rau4DPYyGxaLusj2X/zHHtiEUrvta2+vPI9otFi1ofx8/pMzlq2fFiC78LcUgcEoe25vP42RHnnz1YH69Pl/zwyiRvS/KVdcY/N8ndlh0nFrQ+xSKxSCzams9jz4jzPbMe/VmJQ+KQOLSF66N3Tc+s1/9sxCKxSCyyPvz48bMDf+YYk/2OX/EYvtWfR7bf73i5eivyM8d1Iw6JQyfOcS3tXcDnIVdvRX7muG7EIXHoxDmupb0L+Dzk6a3IzxzXjTi04utsqz+PbL84tKj1cfycPpOjlh0vtvC7EIfEIXFoaz4POXqTfR9ikVgkFm3N57FnxPmeVY/+rMQhcUgc2sL10bumZ9WjPxdxSBwSh6yPsX9GVZJjB2ut7a2q45KclOTqg+ZKcvTgZ5RXJPml1trFWz/DmRya5JhNzjkryS+31v5uAfNhHa21i6vqAel2VHrg0EtHJLnHOt2+luThrbV3TXnZw5LcaYzzvpfkN1trL5jyOmxCHBKHVsGS4tBxSa4ydPz1dA/4WQKxSCxaBUuKRdbHChGLrDVYNnFIHNrFrpjN18c+pyV5dGvtY1s4n11NLBKLdjHPrFeEOCQO7WKeWa8QsUgs2sWsD2BH8zteDF8FcvV2N3FIHFoFcvV2N3FIHFoF8vR2N3HIOoNlE4fEoV1Mjt4KEYvEol3Ms+oVIQ6JQ7uYZ9UrQhwSh3axbb8+Dlr2BFi81tqbkvxQkuelW6DrOS3Jz7XWHtxa+95CJje5Zyf5cLpqnBv5YpKnJbnhqt6Mu01r7ZzW2oOS/Hy6tbaebyV5bpIfaq29Zczh/z3J05OcmuT7Y/b5zyRPSbezif/zusXEIXFoFWxxHBrlhN7xS1prF84wHjMSi8SiVbCgWGR9rDCxyFqDZROHxKFd4O3pdsR9RZIvjdnn3CSvTnLvJHeUcLX1xCKxaBfwzHrFiUPi0C7lmfWKEYvEol3E+gB2Fb/jxfBVIFdvdxOHxKFVIFdvdxOHxKFVIE9vdxOHrDNYNnFIHNoF5OhtA2KRWLQLeFa94sQhcWiX8qx6hYhD4tAusqPWR7XWlj0HlqiqLpOu2vGRSa6ZrqrxmUk+3Fr7wjLnNomqulKS2yS5froKnZdN939czkzy0dbap5Y4PcZQVddPctsk105yhSRfSXJGklNbaxfMMO5BSW6c5IZJrpPk8OxfH2cl+XKS97fWvj7TG2Bq4hCrYqviENuDWMSq2MpYZH2sPrEIWDZxiN2gqq6R5Obp1vlVk1w+yYVJzk7yzSSfSPLpbbCrz44lFrHTeWa9+sQhYBWIRewG1gewG/kdz6qQq7d7iUOsCrl6u5c4xKqQp7d7iUPAsolD7AZy9FafWMRO51n16hOHgGUTh9gNdsr6UBgNAAAAAAAAAAAAAAAAAAAAAAAAWLqDlj0BAAAAAAAAAAAAAAAAAAAAAAAAAIXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAAAAAAAAAAAAAAAAAAAAgKVTGA0AAAAAAAAAAAAAAAAAAAAAAABYOoXRAAAAAHqq6qiqar2f45c9r0Wqqr2997932XPaiXzO21tVndiPFdvh+tYdAAAAAAAAAMDutl3zXgAAAACA3UFhNAAAAAAAAAAAAAAAAAAAAAAAAGDpDl72BAAAAIDVVFVHJfnCBF3OT3J2ku8k+VySDyc5LcmbW2sXzHt+AAAAAAAAAAAAMKyqKl3e25G9ly5OcmRr7czFzwoAAAAAgEkctOwJAAAAADvGIUmunuRGSX4qyZOSnJLkzKp6ZlUduszJ7XRVdVJVtaGf05c9J2BnqarTe3HmpGXPCQAAAAAAAACg525ZWxQtSS6V5PjFTgXmo6r29PJ2WlXtWeJ85CvCHLmnAAAAYC2F0QAAAICtdrUkT0zyiao6ZtmTAQAAAAAAAAAAYMc6YYPXHllVtbCZAAAAAAAwlYOXPQEAAABgW/leks+u89rlk1wlyVXXef3IJG+pqmNbax/ZiskBAAAAAAAAAACwO1XVVZL87Aan3CDJniT/upAJAQAAAAAwFYXRAAAAgEl8oLW2Z6MTquq6Se6d5PFJbth7+UpJXl1VN2+tXbg1U2QeNvuegaS1dmKSE5c8jYm5vwEAAAAAAACAHeohSQ7ptbUkNXR8QhRGW7rtmncDAAAAACzGQcueAAAAALCztNa+1Fp7bpJbJfmHEafcMMmjFzsrAAAAAAAAAAAAdrhH9o4/k7U5bPerqsMWNB8AAAAAAKagMBoAAACwJVpr30vyi0n+fcTLD13wdAAAAAAAAAAAANihqurodJt5DntxkpN7bZdL8uCFTAoAAAAAgKkojAYAAABsmdbaeUmeMeKlo6vqKoueDwAAAAAAAAAAADvSCb3jluQlSd6c5GubnAsAAAAAwAo5eNkTAAAAAHa8t4xoOyjJTZO8d9pBq+qgJLdJclSSqye5SpKzk3w9yWeTfLi1dsm0489TVV0nyc3SzfWwdLuOnp3kW0n+K8n7B0Xk2AJVdbkkP5LkWkmOSHJokm+mWysfba19bonTG0tVXT3JHZLcIN38v5MuYfN9rbUzljm3rVZVh6V77zdOd/+cl+TMJO+d5L1X1bWT3D7dfXhouvvvS0ne0Vo7e87TnkpVHZLkTkmul+SaSS5O8tUkH0/ykdZaW+L0AAAAAAAAAABW0iA/6Bd6ze/cl1tSVS9P8htDr92uqm7VWvvoFs/r0unylm6R5KqD5q8m+dAk166qK6XLe7lpksOTfC/JV5Kc2lr70lwnvfbaV03yo0lumORK6fKW/jsrmndVVddNcqt0OYVXT1cg7+tJvpzktEXkCVXVjZPcLsl1khySLlftv5O8u7V21lZffyeqqh9KcqN0+X9XTXJuuu/19HT5lxdu8fXdy9Nfd1XuyVsluW663MELkny5tfaSMfvLAd4CVXWZJEenux+uli5enp0uL/Z9E4xzo3T35r41dn6Sb6TLDz2ttfb9OU8dAACABVEYDQAAANhSrbWvV9XZ6RIphl1tmvGq6s5JHpfk7umKoa3nW1X1piTPaK19apprTauqrpbkuCR3S3Jskmts0uWCqjotyXOSvGbcgm5VdXqSI9d5+ciqGqeI0l1aa3tHjL033dz3eUdrbc868/h4kh8aavp6kuvMkmxUVb+Q5OW95se11v5qzP4HJfnFJA9J8uNJLrvBuV9I8sokf9Ja+8Z0M94aVbUnyVOS3DVdQcFR53wqydOTvHySwllVdXySF/War99aO32Kefav+9TW2omb9DkxyR8Mt7XWauj12yf53ST3yjrPMavqHUme1Fo7bYPr3DvJ7yS5Y5IaccoFVfXaJE9srf3XRnOe9D1MMM5RSU5MFzf6sXKfr1TV85I8q7V2zqTX6F1vb8a4vwfz+sIGQz28qh6+2fX2fSaDxL4z0yWX7bO3tXaXTSe9gar68yS/1mu+9VYnLwMAAAAAAAAAK+Pn0hWrGXZy759/o/f6I5P8+jQXG+T0/Guv+X/ysAYb+P3vJA9NcsV1xvjPJH+0UWGeqrpluvyZ+6QrecPL+wAAIABJREFUGDPqnPcm+e3W2qmTvYuNVdWx2Z+3dKl1zvlQkucm+dtJN/ybV97NYKwjkvxmknsn+cENTr2oqt6X5C+T/P2kG69ulCM1yFd7eJLfyoG5dMMuHuTt/O5G+U5D1zsxvc+o51+rNv3ITm6tHb/ZSePYynzFda53y3T37U8lufYGp55TVW9L8sxxPtfeNfZkm9/LY+Thbem9vM54q3BPXiHJryb5pXQb0o4y8jvb7jnAm63rSYyY46YxZbPc1Kr6wSRPTHL/JFcYMcTJSTYsjFZV108Xb++V9b/fJDmvqt6V5M9aa2/eaEwAAABWz8j/mBIAAABgzkYV8Vmv+M9IVXWTQaGzdyZ5YDYuipbB6w9J8vGq+puqWrcw1jwNdhf9cpLnJ3lANk+ISJLLpCve9coknxj80X876ScwXD3JT8845vG94/OTvGKcjlV1jyQfT/LiJD+ZDYqiDVw/XeGsz1fVVMmO81ZVh1TVC9Ilp9w9Gz/Hu0WSlyZ5yyCZZ1urzh8mOS1dIthGmzscm+Q9VfWEEeMcVlWvSfL6JHfK6KJoSXf/PTDJp6rqbjNNfgqDNffJdImRG8XFa6YrnvbJqrrdAqY2d4PdPV/aa95TVTefdszBjs8P6zW/V1E0AAAAAAAAANhVTugdn5vk1fsOWmsfSfKx3jkPqaqRBYpmUVX3S/KpJL+cdQopDdwkyYur6pX9eQzyZ34/yYeS/HzWKaQ0cEySd1XVU2ab+f9c+1JV9Zwke9PlXo0spDRw2yQvSPLOQZGahaqqy1TV05J8PsmTsnEBpqTLQ7pTug07PzooVjWPeVw3ybuTvDDrF0VLus/yrkneW1X/Zx7X3omq6lpV9bIkH0nyiGxcFC3pNmn82XSf6ylVtVlu6bjzcC9Pfs1VuSd/NN1394xsXDRrVN/dmAO8MFX1u+nu7YdldFG0zfpfabCuP53kV7L593vZdDm4b6qqd1XV9Sa9JgAAAMujMBoAAACwCIePaDt73M5Vddd0u3/dc4prH5Qu8e0dVTVOgsKs7piNCzlt5uZJTltGgaYZvDTJhb22R0w72CBRrP/+T2mtnTVG3yckeWO6YmGTumKSZw8K6c3yHc5kUMTvzUn+14RdfzJd8sZGCUzbwfPS7Y457rPLSvLHVfWo/2moOjzJvyS53wTXvUKS11fV7SfoM5NBguOzk1x+gm7XSxfPtmVxtHS7YvY9ZobxfiFrf8c8d4bxAAAAAAAAAIBtpKpulK4gzbBTWmvf7bWd3Du+SrpiSvOcy0PSFWQ7bIJuP5+uoNa+MSpdgaKnZuNCRgdcOsn/qapfmeC6awfprv3SJI+bsOuPpctnmagA0SwGxa/+KcnvZYriOukKmJ1aVfeecR43SLcB5DETdn1KVf3RLNfeiarqVkn+LcmDs/5GmBu5b7r8y5vMOA/38uTXXJV78sfTFYObtgDWbswBXohBQbM/zJSfb1UdmeTUdOv60lMM8WNJ/q2q7jDN9QEAAFi8pf0HngAAAMDuUFU3zOiiP58fs/+9k7wma/+IfUGSt6crmPbFJN9Jt/PfUUl+Ismde+f/SJJTqurHW2v9Il5b5eJ0O/19Msl/JPlmuoJwleRKSW6c5A7pdrwbLgJ1aJK/q6rbtNa+uMH4n0ry7cE/Xy/JlYdeu3Dw+mbOGeOcDbXWvlZVb0qXVLTPvarqiNba16YY8mFZWxTrhaNOHFZV/zfJ74x46VtJ/jnJB5N8Ld2OsIen243wHklu2jv/hHSf6xMmmvX8vDDJXYaOP52uUNp/pHsvhyW5TZL7Z+1uhD+e5DeT/MnWT3P+qurXkzxqqOmMJP+Y5BPp3vvhSX40XRLZlXrdn11Vb00XD/4uyXDhsA8meUuSLyT5brrP7SeS3CcHrrXLJXlBVR3dWrtoTm9rpKr6rSSjdvc8fzDXdyb573RJYtdPd3/t21H2CklOydDOxlvkgiQfHTq+RQ6MxWcl+a9JBmytfbKq9ibZM9T8sKp6cmvt3Cnm+Nje8TeTvGqKcQAAAAAAAACA7emRWVtAqV8ELUleluT/y4EFik5I8vdzmsfRSZ4+NJdvJ3lTuqJZX0uXl3LzJA9Il+M27MFVdUpr7VXp8klOGHrtjCRvSJc/8810+TM/Mhinnz/zzKp6Q2vt9Cnfw+OTPGjo+LtJXpfk/Um+Orj2zdLlLf1Ar+8PJHl7Vd26tfbtbKHBpomnDubS94kk70iXs7dvHkekK1x2r3SbZ+5zaJJXVdWdWmsfnGIqV0yX13WdwXFL8p4kb0uXU3NOkqunyw88Lslle/2fXFX/2Fp73zrjfyX7c3cOTXLD3uufy+b5fxPl9mxiS/MVq+roJP+a7r0OuyTJu9J9tl8YzOFySa6b5Ngkd82B9/WN020wervW2nfGmFOfe3nCe3mF7slrJvmHHHiv/Vu6gm1npPscrpUuD+7nxxhvV+QAL8gv5cBCfeeky+s9Nd2aPCjdPX2XdJ/7AQZF0d6XtTmzSfcdn5ou1/asJJdJ9z3fMd2G3IcMnXuNJG+sqtu21s6Y7S0BAACw1aq1tuw5AAAAACuoqo5Kl0Qy7B2ttT0TjvPEJM/sNZ+V5GqttUs26Xv9dEkFhw81X5Tkz5L8cWvt6xv0vXWSv8mBxZGS5E9ba4/f5LpHZe17f0Rr7aSN+g36/meSj6fbbe/t4yTWDP5g/4wkv9B76Y2ttZ/ZrP9gjJOSPHyo6YzW2lHj9F1nvL3pkob22fC7r6r7pEucGfb41tqfTnHt/0yXMLLPl5IcudF6qarj0iW0DDsryZOSvLi1dt46/Srdzq/PS5dsM+y+rbXXTzj9iYz4nM/L/qScryT51dbayOJXVXVokr9MV0hu2LeTXLu19v1Nrn18khf1mq8/TTJVVfUfMj61tXbiJn1OTPIHvebz0yWhnJsuOesFrbVRSS7XSFcw8U69l56fLrnlWYPjzyd5VGvtX9aZw9FJ3pi13/2DW2uv2Gj+672H1tqmO5VW1U2TfCRrkx3fPJjvl9bpd1yS52Z/cs/30yXaTXr9vZng/h7qd3qSI4eaTm6tHb9ZvxHj3D9ri7qd0FrbtABib5zbJflAr/lPWmu/PemcAAAAAAAAAIDtp6oula7w07WHmv87yQ+MyjWqqjemK8SzzyVJbjBpcZSq2pOugNOwfXkvSfIXSX5/VFGhqjokXW7L43ovfTpdHtB70xWI2Sx/5prp8mfu2Hvp+a21R4/xHk7M2tyd4dylFyX5rXXew0HpNm/8o6zNfzmptfaIaa4/Tt7LoO9r0+V8DXvPYL7rFRnbV7zp99LNffhapye5ZWvtu5tct58jNfx5vS/JL7fWPrRO36PSfV+37b301tbaPTa67qD/nqxdc3dpre3drO9W2IJ8xSunyxXtj/GiJCe21tYt8DbYvPcvk/xU76V/aK3df5Pr7ol7eaZ7eTDOqtyTF2d/kbyPJXlMa+296/S97Ki80p2QAzzPeDFNzuA6uanD383zkvxua+2b6/Q/4LupqsskeXeS2/dOfUOSJ7bW/n2DuVwzyR8neUjvpfcnOWbUPQkAAMDqOGjzUwAAAACmU1XXSvKEES+9YrOiaAMvy4FF0c5N8lOttSduVBQtSVprH0mXKPLPvZd+tar6O9zN0+1ba/dvrb123N0GW2tntNYenOTE3kv3qqpRO+itojel27Vt2PGTDlJVd8qBRdGSLpFio6JoR2RtEsVn0iXGPH+9omhJ0jqvTbfLY78Y1TMGhdMWaV9y0eeT3GG9omhJ0lo7J91n/NbeS4en28lxO9pXFO1urbXnrZd00lr7apKfSbcD57CHJHna4J8/mS5xZWRRtME4H8joz2qshK4ZPDdrE8lemeRn1iuKliSDtXps9r/vy6137oo7JWvvt8dOMU6/T0vy11PNCAAAAAAAAADYju6ZA4uiJclLN8g1Orl3fFCmyHFax75CSr/eWvu1UUWIkqS1dn5r7VeyNufnpkn+cTCnc5L8xCb5M19Jlz/Tz6N7UFVNm1OyL5/l/7bWHrnBe7iktfasJD+fbqPTYcdX1Y9Pef1NVdWjsrYA018l+bGNCjAlSWvt24NNVU/ovXRUkl+eYjr7Pq83JNmzXlG0wbVPT3L3rM2xu3tVXW+Ka+80f5kDi6JdnOQhg3W4blG0JGmtfS5dLOjnEN6vqn50irm4lztj3csrdk/uK7x1apI7r1cUbXDt9fJKd2sO8Fbb9908vrX22PWKoiUjv5sTs7Yo2pNaa/feqCjaYKyvtNYemuSpvZdun+TnNp82AAAAy6QwGgAAALAlBrvwvSXJ1XsvnZtuZ7TN+t89yTG95ke21t4+7hxaaxekS9j4xlDzpZP81rhjTGrcRIh1PC3dLmT7VJJHzjajxWitXZRuh7xhP1xVt5twqFEFqfoJS32/nuSwoeNzk9xjowJTfa21LyZ5UK/5FknuM+4Yc3RhkgeMsxNta61l9Hru7365nfzGRglJ+wyStf6k13z5JFdIt+PlA1pr/cJpo8Z5d7pYNewuVdUvXDYXVfXDSe7Sa/5skoeNUzCytbZvR9Fta5Dk1y9gdnRVHT3uGFV1WNbusPnPrbXPzjo/AAAAAAAAAGDb6BfTSZIXb3D+65L0CwQ9oqrm9d/Yvby19v/GPPf3RrQdMfjfX9+soFCStNbOSvKsXvOV0m0oOq29rbUnj3Nia+0NSf5oxEu/NsP111VVByd5Sq/5La21xw3yqMbSWntRkr/pNf9mVR0y6vxNnJ6ugNe6m3cOXfdbWVuc56B0BdN2raq6aZIH9pr/d2vtZeOOMfj+H52kXyTpSVNOy73c2fBeXtF78jtJHthaO3uKvrs2B3hBXtNa+9NJOlTVlZP8aq/5ea21Z04yTmvtxKzdaHva+AAAAMCCKIwGAAAAzEVVXbaqrlNVP11Vz0/ysSS3HHHqL41ZsOp3esfvaq39/aTzGiQp/Hmv+bhJx1mEQSLIS3rNP7aMuUzphSPajh+3c1VdPskDes3vHOzouF6fQ7N2Z8BntdY+P+5192mtnZrkX3rNy1grL2+tfXDck1trn0rS32100oJ0q+I/szbBaSOvWaf9JYPPZVyv7h0fnOSHJ+g/iceMaHt8a+38cQdorb013a6i29nzk1zQa3vsBP0fnq4Q3rDnzTQjAAAAAAAAAGDbqKojkvx0r/lDrbVPrtdnkJ/Rz0E7Msld5zCli7O2QNC6WmvvT/JfI176dDbfSHJYP+8lSW47Qf++SYuaPTNJPx/wvlV1rRnmsJ4Hpfu+9mlZWzBnXE8b9N/nGlm7kes4njphIaW/S7dWhm3XXK95+e0c+N+5fiFrN8zcVGvtwiRP7zXfc4oNMt3L+212L6/iPfmnrbUzp5zDTHZADvBWuiTJE6bo97gkhw4dn5O1+eXjelrv+NZVddSUYwEAALAACqMBAAAAkzi2qtqonyTfT5cU8YYkv5S1BWvOTfKLrbWXb3aRqrpKkp/oNU9SLKnvjb3jI6vqyJFnLt9nese3rapLL2UmExoUovq3XvODJ9i17/5Jrthr2ywx6G5JDu+1/e2Y1xulv1aOnWGsab1gij79z/0m85jIErxowp0iP59uh8e+SdfAh0e03XTCMcZ1z97xl7N23Y3jr+cwl6VprX0tyat6zQ+qqv79vJ5H947PzPYvFgcAAAAAAAAAjO/hSfp5VSeP0e/FI9pOmH06eVtr7YwJ+3xkRNuk+TOfS3J2r3navJfTWmsfn6RDa+28rC0EdHC6vK55+7ne8d7W2menGai19sUk/fc6aa7Y95Jsmg/Zu+5ZWZsjuFV5SiuvqirJ/XrNJ7XW+sXjxvWm3vEhSX50wjHcy/ttdi+v2j3ZMnqD30XatjnAW+ztrbXTp+jXX2Ovaq3175NxvSfJt3tty8gRBgAAYEwKowEAAABb7bvpiprdbJyiaAN3TlK9tvfMMIcvjGi7zQzjja2qDq2qe1XVk6rqxVX1xqp6V1V9qKo+0v9J8pzeEIek2/luu+gXMrtKkvuM2fcRveNzsrZwUl8/KeHMKZKShvXXylETFGqah+9nbZGzcXyud3ypqjp05Jmr7Z1T9Onvtnlukg9OOMbpI9rm/r0Pdiq+fq/5dVMm8r01XXLldtaPd5dP8rDNOlXVsUlu0Wt+QWvtonlNDAAAAAAAAABYeY/sHV+U5BWbdWqtvSdrC9f87GAzz1lMk/cyKs/pXXMYZ9q8l1Om7PcPI9ruMOVYIw0KaN251zxLTmGyNlds0pzC01prF0xx3X6u12FTjLFT3DLJlXttU3+vrbVvZe1Gm5N+r+7lA428l1f0nvxsa+1LM87hALswB3ir/OukHarqykl+uNc8S3y4JGvvsYXkkgMAADCdg5c9AQAAAGDH+0CSvxjs5jauO41oe01Vjb173hiuNsex1qiq2yX57XRFwS4343CHJ5lrssYWekWSP82B7/n4bFLgrKqOTLKn1/zK1tpmhZ/6a+XKg+SSaY0qJna1rN0lbquc0Vq7cIp+/WSupEuYO2fG+SzaNLtFfrd3fMYUBbL6YyRbk3B4uxFtkxZxS5K01i6qqo8lOWa2KS1Pa+20qvpgDvxcHpPk/23S9bG944vSFeAEAAAAAAAAAHaBqrpTkpv1mt/cWvv6mEO8OMkfDh0fkuQXk/zFDNOaR97LvMaZNu9lqjyWJB9PcmGSSw+1jcqTmcXN023SOezhVfUzM4x5vd7xpDmF/QJ74+rneu3mwmijckX/oqrOn2HMy/eOJ/1e3cvj3cureE9+aIZrH2AX5wBvlWm+m2OSHNRre3JV/coM87hR73hLc8kBAACYjcJoAAAAwCS+l9HJGpdOt2vftUa8dpck76+q41trm+7IOXDdEW23HLPvuK465/GSJFV16SR/lq5wT/8P8tPaNolPrbXvVNVrkzx4qPmnquparbUvb9D1+CTVa3vRGJfsr5XLJ7nVGP0mcdVMl6Q0jW9N2W9UMbVLj2hbdWdN0af/3iceo7V2YbeB5QG24vM7YkTbp2cY7z+yjQujDTwnB97rN6+qPa21vaNOrqojkhzXa359a+3MLZofAAAAAAAAALB6ThjRdvIE/V+S5Gk5MF/phMxWGG0eeS/zGmfavJep8lhaa+dX1elJbjzUPCpPZhajcgqvu077tCbNKZxXrtd2zPOal1HfX7/o4awm/V7dy+Pdy6t4T35t1gvu9hzgLTTNdzNqLd1g1on0bEkuOQAAAPMxr/9jDgAAAOwOH2it3XrEzw+21q6d7g/Ex6cr1jPsMkleUlX3HvM6i/hD86w7uK0xSIh4VZLHZb7PXbZb4lO/oNmlkjx0vZOrq0j1sF7zZ1pr7x7jWv0dB7fC3NfKBkYlSO0arbV5vP9V/gwPH9HW3wF2ErP0XRV/l+SbvbbHbHD+Cel+pwx77lxnBAAAAAAAAACsrKo6NMkDes1nJXnDuGO01s5IsrfXfKuqut0MU5tLzsqc8memNc88llF5MrNYxZzCVc5T2i527Pe6C+7lVfzuzp7lYnKAt9Q0380qrjEAAAAWSGE0AAAAYG5aa99qrZ2c5Nbpit0Mu1SSl1bVUWMMdeU5T21RfifJfUe0n5nkr5I8JMkxSX4gXbLIZVtrNfyT5C4Lm+3W+ZckZ/TaHrHB+cdm7S5u/eJqa1TV5ZMcMtnUYKmuOKLtezOMN0vfldBaOy/J3/aa71dV1+ifW1UHJXlUr/kz6WIOAAAAAAAAALA7PCjJFXptf99aO3/CcU4e0XbCdFPaMeaZxzIqT2YW2zWnkI35XrfGIu7lVfzuLpqxvxzgrTPNd7OKawwAAIAFOnjZEwAAAAB2ntba+VX10CTXyIF/5L9SugI4d91kiO/3jr/dWlvpP3BX1RFJntxrvijJbyd5Tmtt3D/qb/vdx1prrapOTvL7Q803q6o7tNZOG9GlXzTt4iQvHuNS5yW5JAcW/z+ltXbcRBOGxfnuiLZ+ou4kZum7Sv4qyROy/16+dLpE46f3zrtnkqN6bX/dWmtbOjsAAAAAAAAAYJWMKl72mKp6zBzG/oWqenxrrZ+/tltcIcnZM/QdNipPZhajvpOfba29bs7XYbFGfa9Xbq19e+Ez2VkWcS/vqHtSDvBKGrXGbt1a++jCZwIAAMBSHLT5KQAAAACTGyQBPCxrkyt+oqoeuEn3b/SOD6+qw+c2ua1xnySX77X9Tmvt2RMkRCTJVeY4p2U6KUm/WNHx/ZOq6tAk9+81/1Nr7czNLtBauyRJPwHq+uNPkXmoqksvew7byKiEvcNmGG+WviujtXZGkjf0mh9VVf3n14/tHZ+XLtYAAAAAAAAAALtAVd0iyR228BKHJ7nfFo6/6uaZxzLvwlb9nMJErthOMOp7PWrRk9iBFnEv77R7Ug7waMvMD91pawwAAIAJKYwGAAAAbJnW2peS/P6Il56+STGlr45ou+V8ZrVl7t47PivJc6YY5wZzmMvStda+kGRvr/lBVXXZXtsDsnaHwRdNcKn+WrlJVR0yQf/d7MIRbdMksVx11onsIl8b0XbTGca72Qx9V00/Xh6Z5J77DqrqgOOBV7bWvrnVEwMAAAAAAAAAVsYJO+Qaq+om03SqqstkbTGrUXkys9iOOYVszve6NRZxL++0724n5QDPKzc0WW6ht522xgAAAJiQwmgAAADAVntuks/32m6QjRPI/m1EW78gzqr5gd7x+1prF0wxzjHzmMyK6Bc4OyzJcb2243vH30ry+gmu0V8rl0uyZ4L+u9nZI9quNMU4N5p1IrvIB0e03W6agarq4OysJJ+3Jfl0r+2xQ//8qKx9nv3cLZ0RAAAAAAAAALAyBhtxPrTXfEGSj874863emHuqahUK2yzDVHks6XJY+kV3RuXJzOJj/z97dx4maVnei//79KwsAwwwIEsUWdxQYxRUEEVwTfQkaAyuiRijHIInag4aDWFRE40/RJKjxiWK4kE9xBhAcwx4RIgiKuBKxAVcGDZlhGGYYXqmZ6af3x/VM3RXV3VXddd09XR/Ptc1F7zPuzx3VXf1VE3f7/dJsqFp7Lk9noOZtyP2iu4IZuK1PNdek3OpB7gnvaGllAOTNC+GPJO+1WLMzwcAAIB5RDAaAAAAsF2NNAa8vcWu00spS9qc9v9ajL14JAhottq7abu5YW5SpZS9kxw3xfk3N20vmOJ1eulzGd9g8aqt/1NKOSTJU5v2f6rWurGLOVp9r7yii/Pns3tbjE2lqfPY6RYyX9Ra70ryi6bh3y+lTOXfaZ+TZJfpV9WV7fZzptZak/xT0/DvllIeMtLY3Bym+b1a6zd7NT8AAAAAAAAAMOv9fpIVTWMX11ofN50/Sf6m6Zolo3qc5pkTpnjeC1uM9bSvo9a6IcnVTcP7lVKe0ct5ZrHmvp2kvz2CveojuibJ/U1jzyulLJ/i9WjY7q/lOfianEs9wHOiN7TWekuSm5uGn1hKeVg/6gEAAGDmCUYDAAAAZsKFSX7aNHZgkte0OrjWenvGrzL30CQn9byy3mluzmlukujEqZn66mprm7Z3neJ1eqbWuj7JRU3DzyilbF1Z76QWp328y2kuz/hVB19aSnl4l9eZj37SYuyJ3VyglLIgyZ/2ppx54z+atvdP8rwpXKflz8/tbHv/nPlEknWjtgeSvDbJC5Ls23TsB3s8NwAAAAAAAAAwuzUvqpY0+tKm66IkQ01jJ01xobsd3VGllMO7OWFkcdQ/bhrenOTLPavqAZe2GDt7O8wzGzX37ST97RHsSR/RyMK7lzUNL0vyP6dyPbaZqdfyXHpNzqUe4Nsztg8v6bI3dMRrp1FDrzR/jw0kObMfhQAAADDz5uM/0AIAAAAzrNa6Jck7Wux6aymlXRPA37UYe88sXunrzqbto0spu3R68kgTylunMf/qpu09Zsmqic1BZwNJ/mSkcfBPmvZ9v9b63W4uXmv9TZKPNA0vSPLpUspOXVU6z9Ra70pyW9PwiSNhZ506NVNbSXA++1CLsfeUUhZ3eoFSyjOT/EHvSupY88+Znn7ta633JfnfTcOvTvI/msbuS/LpXs4NAAAAAAAAAMxepZQDkjy7aXhVxgcqda3Wek/GL3R3YJLnTPfaO6h/7PL4N6fxfI12aa21uZ+uFz6W5FdNY8eUUv5qO8w12zT37ST97dvqZb9iq17RN5dSjpni9WiYidfyXHpNzpke4FrrcJLvNQ0/r5Sye6fXKKX8fpKnTWX+Hjs34xdPfnkp5cX9KAYAAICZJRgNAAAAmCmfTvLjprH9k/z3VgfXWi9Ocn3T8O5J/qPbley2KqUsK6W8qZTyiqmcP4mvNW3vmuSsTk4spRyU5PNJlkxj/htajP3eNK7XE7XWb2T81/2kJM9I8uCm8fOnOM27Mn61vscnuXiqjSGllIeUUt5XSnn0FGvaUTQ3dT44yRs6ObGU8owk/1/PK5rjaq03JLmyafhhST7eyUrDpZTDMj48bKY0/5x5dCnlt3o8x/ubtvdN0tzkeGGttXlFSwAAAAAAAABg7npVGosljnZRrXVzj65/YYuxV/fo2juaZ5RS/raTA0spv5vkjBa7/ldvS2qotQ6mdYjWO0spr5vqdUspzy2l/NPUK5sRtyZZ0zTWz/7AnvUrjiym+rmm4UVp9P9NKZiplLKklPLaUsobp3L+HLHdX8tz7DU513qAm3tDd0rS6ffDYzN+UeS+GAnm+0CLXeeXUv5wKtcspSwopby4lNLqexcAAIBZRDAaAAAAMCNGViB7W4tdbyml7NzmtJcmuadp7OAk3yqlnN7J6mWllIFSynGllA8lWZlGkNODuii9U59LMtw09qZSyjtKKQsnqO+lSb6RB1ZvvG+K83+zxfznllL+oJSyaIrX7JXmBolDM341wqEkn5rKxWutv0ryyiS1addzkny7lPKKib4GW5VSdhlpdvi3JDcneV2SpVOpaQfy0RZj7y6lnFxKKa1OKKVaAjpkAAAgAElEQVQsHVnR8T/SaORpXo2Pyf15xj9vL0vy+ZEVjlsqpZyQ5Kt54GfY4PYpr61rmrYHkny2lHJEryaotd6Y8cFxzT7Uq/kAAAAAAAAAgNltpIflVS12tQozm6ovZHzo1O+XUlb0cI4dwdZ+ltNLKf/crj9vpCfvDUn+LY0Aq9E+UWv96nas8QNJLm0aG0jyvlLKxaWU3+7kIqWUh5ZS/qqU8oM0+qCmFMA1U2qtNY0+w9GeWUp5Vyllnz6U1Ot+xZOT/KJpbO8kV5RSzimldNTzWUp5Uinl3CS/TPLhJIdMoZa5YCZfy3PlNTnXeoA/kWRL09jrSilva/d4RgLDXp3k6iR7ptGTOzSFuXvtb5Jc2zS2c5J/LaV8tJTS0eu8lPLoUsrbk/w0yf9J0tH3JgAAAP0z6Q2hAAAAAD30L2n8gvrwUWP7phES9J7mg2utN5dSTkzyxSSLR+3aJY2Vy95aSrk6ydeT3Jnk3jR+2b1Hkt9K8viRP3v0/JGMr/WnpZQLk/xJ066/SXJSKeVfk/wgybo0GgYenuT3M7bxZn2Sv0rywSnMf2cp5bKMXSFu3ySXJBkqpdya5P6MDw/7s1rr9d3O16X/neSdGbtq6yObjvlCrfXuqU5Qa/1cKeXMJO9o2vXQkfnfU0q5Ksn1SVal8Vzslsb3xqFJjkjy2Exvxb4dTq312lLKpUn+YNTwgjSCp04tpVycRkjcUJIVSZ6QxvfY6Ga6N0RQVVdqrT8upZye5NymXc9LcnMp5T/SWIHyzjRWajw4ja/RY0Yde3uSz6bx/M+US9MIq9xz1NiTklxXSlmb5I60CMqrtT6uy3k+kOS4NvuurrW2Wh0TAAAAAAAAAJibjssDgTNb3VRr/VavJqi1biylfDbJn40aXpTkFUnO69U8O4Az01h4NGk8FyeWUi5Jcl2Su9LotXpEkj9M8uAW59+S5I3bs8Baay2lvCKN4J7mUJsTkpxQSvl+kquS3JRka0/aHmkEbT02jR6o5u+pHcH5SZ7bNPaWNBanvTONvp7NTfs/X2s9s9eF9LpfsdZ6dynl99P4uo4O8VqY5LQkf1FK+UYai0relmR1Gr1+eyTZL8nvpNEDON/CDNuZsdfyXHlNzrUe4FrrHaWU92V8f+GZSV5eSvlckh+N1LxXGr2Jz8vY74d3p7HA9UO6fTy9VGvdUEp5QRrhcb/VtPvVaXx9rk/yn2mEIt6TRh/sHmn0uj4ujZ8PbRetBQAAYHYSjAYAAADMmFrrcCnlbWkEpI325lLKB2ut97c454pSylOT/GvG/0J7lyTPGfkzG/xFkiem0TAy2oGZPLxoU5I/SqPJYKrelOTYNJ6X0Ran/cqHu05jvo6Math43gSHnd+Def62lHJHGqFKS5t275vkxSN/GOu/Jzkyyf5N44/J2CCuVs6ptX64lCIYrUu11veWUvZO8tamXUuTvGDkTzv3p9E09vztVF5LIw1Gb0xyQYvdy9Jo9uqFS5LcmvE/85MpNI0BAAAAAAAAADu0V7cYu3A7zHNhxgajbZ17PgWjvSeN8JgTR7Z3SyMkqDkoqJXbkhxfa713O9W2Ta113UhP4cfTCHZq9tsZH9A0F3wuyRVJntFi334jf5p9bzvW09N+xVrrf5VSjkzyb0ke3eKax478YXIz+lqeQ6/JudYDfHqSZ2b86+mQJG+epJaLRs5/6STHzYiRoLcnplHX05p2L0hjgdcnzXhhAAAAbFcD/S4AAAAAmHe2rpo22ook/6PdCbXWa5M8Po2miU3TmLumserc16ZxjfYXr3VNGk0E3+zy1DuSPLPW+sVpzn9jkmcluXk619lOJgo+uzPJ5b2YpNZ6fpKjknxlmpfakOT/JFk57aJmuVrrr5Ick+6+b4aSnFZrnaw5hgnUWv86jZU1u2mGui3Jca1WeZwJtdZPptEEvHY7zrElyYdb7FqVRoMnAAAAAAAAADAPlFL2SPLCFrs+tR2m+2rG9wodXkqZN0Ertdaa5OVJul0k8etJjq21/rz3VbVWa11ba31RklOS3D7Ny61MozdxVqu1Did5UZJP97uWZPv0K9Zab0oj3Oi9aSweOR3XJ5lWT+aOqh+v5bnwmpxrPcC11vVJnp7k2m5OSyNY72UjP3NmjZFe12ck+Zsk90zzcj/K+EW+AQAAmGUEowEAAAAzaqTh4uwWu04rpSyb4Lzf1Fr/NMmhafzS/Ydp/AJ+MmuT/N80woceWms9rtb6ra4L71Ct9fY0ViN7XZLJmkNuSXJGkkfUWr/ao/m/kcZqdb+X5J+SXJ1G08W6JP1sUvhCkt+02ffJkSCknqi1fq/W+owkT07yyTSCpDpxZxorv74yyYNqrS+ttd7Vq7pms1rrL5I8Nslfp/E8tDOUxop7v1NrPXcmapvraq3/kOTwJBckuW+CQ+9K8rdJDq+1XjcTtbVTa/1YkgOSvCrJ/07y3TTqG+zhNK2C386vtW7s4RwAAAAAAAAAwOz28iRLm8a+UWv9Wa8nGulraxW49upezzWb1Vo311pPSSMc6CuZuOfsu0lek+SpMxmKNlqt9UNJDh6p48vpbIHC4TRqPyfJcUkO2lF6oWqt99ZaX55Gj+DZSf49yc+SrM70Fp2daj0971esta6vtf7PJAel8RivT9JJf+GGNL5n/zqNHqsjpxtUtSPr12t5R39NzrUe4Frr3UmekkZg3UR/d25J8h9JnlJrfdNsC0XbauT7+u+SPCTJ/0zj+Rnq4NTNSa5J8vYkT6y1PmpkkVgAAABmsdL4N1sAAACAHU8pZUWSJyRZkWSvJLumsUrg2jTCsH6c5Jbax38AKaU8LMkTR2rcZaS+25L8oNb6k37VNd+UUg5N8qg0vk/2SrI4jUaRNUl+keTH8yUErROllMcm+e0keyfZOY3n6SdpNJau62dtc1kpZUmSY5I8OMmD0mhk+nWSHyT53mxtNtoeSimfTvLSUUM1yaH9aqIFAAAAAAAAAJiPSil7p7FA5SFp9Ofdl8bCi9/dHgF101VKWZxGT+GBafQ+LU8jEGdtGgt7/jTJT2utvVwAkO2slLJ7kiOT7JNG/9/uaSziuDaN0KifJPl5Lxdo3VGUUs5OctbosVpraXFcX17LO/prcq71AI88niek8VpalsbX4WdJrqm13tPP2qaqlLJzkiOS7J/Gz4c9kmxM47HdlcbPh5trrZ0EqAEAADCLCEYDAAAAAGDWGAm9vDXJklHDl9Vaf7dPJQEAAAAAAAAAAMw6nQajAQAAAOxoBvpdAAAAAAAAjPKajA1FS5IP9KMQAAAAAAAAAAAAAAAAAGaWYDQAAAAAAGaFUsouSV7fNHxzki/2oRwAAAAAAAAAAAAAAAAAZphgNAAAAAAAZou3J9mnaewfaq3D/SgGAAAAAAAAAAAAAAAAgJklGA0AAAAAgL4qpexZSnlPkr9s2nVLkn/uQ0kAAAAAAAAAAAAAAAAA9MHCfhcAAAAAAMD8Ukr5aJIjRjb3TrJ/ktLi0DfVWodmrDAAAAAAAAAAAAAAAAAA+kowGgAAAAAAM+3QJL89yTGfrLV+diaKAQAAAAAAAAAAAAAAAGB2GOh3AQAAAAAA0OTCJH/W7yIAAAAAAAAAAAAAAAAAmFkL+10AAAAAAADz3mCS25N8I8n5tdar+lsOAAAAAAAAAAAAAAAAAP1Qaq39rgEAAAAAAAAAAAAAAAAAAAAAAACY5wb6XQAAAAAAAAAAAAAAAAAAAAAAAACAYDQAAAAAAAAAAAAAAAAAAAAAAACg7wSjAQAAAAAAAAAAAAAAAAAAAAAAAH0nGA0AAAAAAAAAAAAAAAAAAAAAAADoO8FoAAAAAAAAAAAAAAAAAAAAAAAAQN8JRgMAAAAAAAAAAAAAAAAAAAAAAAD6TjAaAAAAAAAAAAAAAAAAAAAAAAAA0HeC0QAAAAAAAAAAAAAAAAAAAAAAAIC+E4wGAAAAAAAAAAAAAAAAAAAAAAAA9J1gNAAAAAAAAAAAAAAAAAAAAAAAAKDvBKMBAAAAAAAAAAAAAAAAAAAAAAAAfScYDQAAAAAAAAAAAAAAAAAAAAAAAOi7hf0uAPqtlLJ7kmNHDd2aZKhP5QAAAAAAAAAATMfiJL81avs/a61r+lUMAOjRAwAAAAAAAADmCP15M0QwGjQari7tdxEAAAAAAAAAANvBHyT5fL+LAGBe06MHAAAAAAAAAMxF+vO2k4F+FwAAAAAAAAAAAAAAAAAAAAAAAAAgGA0AAAAAAAAAAAAAAAAAAAAAAADou4X9LgBmgVtHb1xyySU59NBD+1ULAAAAAAAAAMCU3XzzzTnhhBNGD93a7lgAmCF69AAAAAAAAACAHZ7+vJkjGA2SodEbhx56aA4//PB+1QIAAAAAAAAA0EtDkx8CANuVHj0AAAAAAAAAYC7Sn7edDPS7AAAAAAAAAAAAAAAAAAAAAAAAAADBaAAAAAAAAAAAAAAAAAAAAAAAAEDfCUYDAAAAAAAAAAAAAAAAAAAAAAAA+k4wGgAAAAAAAAAAAAAAAAAAAAAAANB3gtEAAAAAAAAAAAAAAAAAAAAAAACAvhOMBgAAAAAAAAAAAAAAAAAAAAAAAPSdYDQAAAAAAAAAAAAAAAAAAAAAAACg7wSjAQAAAAAAAAAAAAAAAAAAAAAAAH0nGA0AAAAAAAAAAAAAAAAAAAAAAADoO8FoAAAAAAAAAAAAAAAAAAAAAAAAQN8JRgMAAAAAAAAAAAAAAAAAAAAAAAD6TjAaAAAAAAAAAAAAAAAAAAAAAAAA0HeC0QAAAAAAAAAAAAAAAAAAAAAAAIC+E4wGAAAAAAAAAAAAAAAAAAAAAAAA9N3CfhcA81GtNcPDw6m19rsUgHFKKRkYGEgppd+lAAAAAAAAAABA1/ToAbOV/jwAAAAAAACAyQlGgxlQa82GDRuydu3arF27NkNDQ/0uCWBSixcvzrJly7Js2bIsXbpUIxYAAAAAAAAAALOSHj1gR6M/DwAAAAAAAKA9wWiwna1fvz533HFHNm3a1O9SALoyNDSUu+++O3fffXcWLVqU/fffPzvvvHO/ywIAAAAAAAAAgG306AE7Iv15AAAAAAAAAO0N9LsAmMvWr1+flStXargCdnibNm3KypUrs379+n6XAgAAAAAAAAAASfToAXOD/jwAAAAAAACAsQSjwXayteGq1trvUgB6otaq+QoAAAAAAAAAgFlBjx4wl+jPAwAAAAAAAHjAwn4XAHNRrTV33HHHuIarRYsWZbfddsuuu+6aRYsWpZTSpwoB2qu1ZtOmTVm3bl3uu+++MSvqbv35dsghh/gZBgAAAAAAAABAX+jRA3ZU+vMAAAAAAAAAJicYDbaDDRs2jGlUSJJly5blgAMO0KgA7BAWLVqUnXfeOStWrMjtt9+etWvXbtu3adOmbNy4MUuXLu1jhQAAAAAAAAAAzFd69IAdmf48AAAAAAAAgIkN9LsAmItGNygkjQYGDVfAjqiUkgMOOCCLFi0aM37ffff1qSIAAAAAAAAAAOY7PXrAXKA/DwAAAAAAAKA1wWiwHTQ3Xe22224aroAdViklu+2225ix5p9zAAAAAAAAAAAwU/ToAXOF/jwAAAAAAACA8QSjQY/VWjM0NDRmbNddd+1TNQC90fxzbGhoKLXWPlUDAAAAAAAAAMB8pUcPmGv05wEAAAAAAACMJRgNemx4eHjc2KJFi/pQCUDvLFy4cNxYq593AAAAAAAAAACwPenRA+Ya/XkAAAAAAAAAYwlGgx5rtUJbKaUPlQD0zsDA+LcMVqQEAAAAAAAAAGCm6dED5hr9eQAAAAAAAABjCUYDAAAAAAAAAAAAAAAAAAAAAAAA+m5hvwtgZpRSFiV5SpIHJ9kvybokdyT5bq31lz2e66FJHpdk/yS7JrkzyS1Jrqm1burlXAAAAAAAAAAAAAAAAAAAAAAAAMwNgtH6pJRycJIjkxwx8t/HJ1k26pBbaq0H9WCeFUneluTFSfZsc8w1Sd5ba/3cNOd6UZK/THJUm0PuKaVclOTMWutvpjMXAAAAAAAAAAAAAAAAAAAAAAAAc4tgtBlUSnl6kremEYbWMqSsx/P9bpJPJNlnkkOPTnJ0KeVTSU6utd7f5Ty7JvnnJC+Z5NA9k5yS5IWllFfWWi/vZh4AAAAAAAAAAAAAAAAAAAAAAADmLsFoM+txSZ49ExONhLBdkmTxqOGa5DtJfp5kjyS/k2TvUftfnmS3UsoJtdbhDudZkOSiJL/XtGtVku8mWZPkkJG5ysi+fZNcWkp5Zq316i4eFgAAAAAAAAAAAAAAAAAAAAAAAHPUQL8LIEmyMcnPenWxUsqBSf4tY0PRvp7k8FrrEbXWE2utz05yYJLXJ9k06rj/luRvu5ju7zM2FG1Tkv+R5MBa63NG5npCkkcn+cao45YkuaSUsl8XcwEAAAAAAAAAAAAAAAAAAAAAADBHCUabeZuSfC/JR5OcnOQJSZYl+bMezvG2JMtHbV+T5Jm11h+NPqjWurHW+r+SnNh0/l+WUh4y2SSllIPTCFYb7Y9qre+vtQ41zXVjkmdkbDjaXknOmmweAAAAAAAAAAAAAAAAAAAAAAAA5j7BaDPrgiS71Vp/p9b6mlrrR2qt36m1burVBKWUw5K8ctTQUJKTaq0b2p1Ta71kpLatlqSzwLKzkiwatf2JWuulE8wzmOSkkZq2evVIwBoAAAAAAAAAAAAAAAAAAAAAAADzmGC0GVRrXT1RQFmPvCzJglHb/1ZrvamD897dtH1iKWVpu4NLKTsledEk1xin1vrTJJeMGlqYRs0AAAAAAAAAAAAAAAAAAAAAAADMY4LR5p4XNG1/vJOTaq0/SvKtUUO7JHn2BKc8J8nOo7a/UWv9cUcVjq/phR2eB3PSQQcdlFLKtj9XXXVVv0sCAAAAAAAAAACAHZ7+PAAAAAAAAADY8QhGm0NKKQ9K8tujhjYn+XoXl7iqaft3Jzj2uZOcO5GvpVHbVr9TStm3i/MBAAAAAAAAAAAAAAAAAAAAAACYYwSjzS2Pbtr+Qa31/i7Ov6Zp+/Au5vpGp5OM1HRDF3MBAAAAAAAAAAAAAAAAAAAAAAAwxwlGm1se1bR9c5fn/2yS6432yBmcCwAAAAAAAAAAAAAAAAAAAAAAgDluYb8LoKcObdpe2eX5tzRt71VKWV5rXT16sJSyZ5I9pzlX8/GHdXk+AAAAACM2100ZrsNdnbOoLE4ppaNjh+twNtdNUyltzhkoA1lYFm23628a3pSa8V/LBWVBFpTZ/8+5w3U4A8V6HAAA3ai1dvzefL4aGt7YcnxhWZiBsmC7zdur97db6uZsqVt6UNH2181nxS11S7bUzRMeU1KyaGBxL0oDAAAAgDmr1prUmjLg9+0AAAAAAJAIRptr9mjavqubk2ut60opG5IsHTW8e5LVTYc2z7O+1np/N3O1qG33Ls8HAAAAmPdWbvhZPnvXR/OLwZ9mON3dZL/bguU5Yren5gUrXpkFbYIENg5vyEW//nB+sO66rB9e14uSd3gDWZCH7vSw/NE+f5YHLz2kZ9f9yfobcsmqT2blhp+1DkbLwjx0p4flxfu+NgcsOahn8/bKms2r8+lf/VN+uv6G7L5wzxy3/Pk5dvnv9bssAIBZ7cf3fz///pvP5NaNP88BSx6SF+97ch6ytHktrPnt6/f+v1yx+tL8aui2lvuXDuyUR+78uLzsQX+eXRYs69m83117Tb5497/krqE7ctDSh+VlDzol+y4+oOvr3Lnx1vyfX38oPx/8SbZk4gCx2WKPhXvlybsdn+fv/dK2oXCj3/9vrBsmvN5BSw/Lmx9yzvYoFQAAAAB2eHXD+tR/eGNy9b8nCxakPvcVKa99R8qC7bcgBAAAAAAA7AgEo80tuzZtD07hGoMZG4zWqnu8V/OM1pMu9VLKPklWdHla7+5gBQAAAJgh92xalX+89YwMDq+f0vn3bVmdr6z+fLbUzXnxvq9teczH7nhP/uv+66dT5pwznC352eCP8g+3npEzD3pf9li017SvecfGW/KB296ezXVT22O2ZHNuHrwx/7DyjJz50Pdl2cLmtQv6Z7gO5x9vPWNbWMVdm+7IRXd9JEsGlubJux/f5+oAAGanOzauzIdvf9e2UKlfbrgp5608PWc89H9lr0X79rm62eH6+67Op379gQmP2TA8mO+u+0buvm1V/urB56SUMu15f7L+hnz0jvdsCyy+afC/8t6Vf52zHvqB7Lyg+Vfl7a3bcl/ee+tf5/4ta6dd00y6d/Pdueyez6aU5L/t/fJx+5vf/wMAAAAAU1ffcVLy1UsfGPj0ualJyinv7FNFAAAAAAAwOwhGm1uau7AnXpq5tcEkyye4Zi/nmeiaU/XnSc7q0bVgTqm15jvf+U5+/OMf56677srGjRuzYsWKHHDAATnmmGOy6669ehnOvFtvvTXXXXddbrvttgwODmbvvffOYx7zmBxxxBEZGGi9kn2n7rrrrnzta1/LHXfckcHBwey///45+OCD8+QnP3na127lxhtvzA033JBVq1blvvvuy5577pn99tsvxxxzTPbaa/o32wMAAHPHD9ZdO+VQtNGuve+q/OE+r8rCsmjM+H2b780P7//2tK8/V20YXp/vrvtGjlv+/Glf6/r7rp4wFG20+4fX5gfrrstT9njWtOftlV9u+GnLUIRr1lwhGA0AoI3P/+bCbaFoWw3Vjfn2fV/Ps/d6YZ+qml2uve+qjo9dueHm3DF0Sw5YctC05/3Wmq9sC0Xbau2WNfmv+7+dJ+52bMfXuWHddTtcKNpo31jzlTx/r5eNC5v7xeBPhKIBAEAL+vOmRn8eAPNZ/c0dydVfGL/jsgtT//vf9WQhCAAAAAAA2FEJRpvb6hw7B5iC3/zmN3nnO9+ZCy+8MKtWrWp5zOLFi3P88cfn7LPPzpOe9KSOrnvSSSflggsu2Lb9i1/8IgcddFBH51511VU57rjjtm2fddZZOfvss9seP/qXuscee2yuuuqqJMk111yTs846K1/5ylcyPDw87rx99903p59+ek499dSum6S++93v5k1velOuvPLKltc+8MADc/LJJ+ctb3lLFi5cmLPPPjtve9vbtu2/8sor8/SnP72jue6+++6cc845ufDCC3P77be3PGZgYCBHH310zjrrrDzzmc/s6rEAAABz051Dt/bkOoPD67Nm8+rstWifMeO/Grot1T/hTOhXG3sTBnDn0Mouj+/N175X7tzYup5fzbI6AQBmizs33pofrLu25b47unxvOJf9usvwrTs33taTYLQ728zb7n1v+3p27PfD926+OxuG12enBbuMGZ9tn0cAAKDf9OfpzwOAKfvyRUmLvwdzz6+TdWuSZXvMfE0AAAAAADBL9H4pLfppXdP2TlO4RvM5zdecyXmAabrkkkty8MEH57zzzmvbdJUkQ0NDueyyy/LkJz85J598cjZv3jyDVU7NO9/5zjztaU/Ll7/85ZaNUUny61//On/xF3+RF73oRRkaGur42u9973tz5JFH5oorrmh77dtuuy1nnHFGjj322Pz617+e0mNIkk9+8pM5+OCD8+53v7tt01WSDA8P5+qrr86znvWs/PEf/3FXjwcAAJibNtdNPbvWxuHBjsYYa0OPnqNurzPbvjbt6u/V8wMAMNdcsfrStvtm23u9fhruMqi5V89du/ex3V5/w/D6XpTTV62eC9+jAADwAP15+vMAYDrqrTdNsLP135EAAAAAADBfLOx3AfSUYLTkn5J8tstzDknS/u4D2EGdf/75ec1rXjOuceiQQw7Jox71qOy8885ZuXJlrr322mzZsmXb/o985CNZuXJlvvCFL2Thwtn518R73vOenH766du2H/7wh+fhD394dtlll9x555355je/mQ0bNmzbf/HFF+eMM87Iu9/97kmvfe655+a0004bN/6oRz0qhx12WJYsWZKVK1fmuuuuy5YtW3LNNdfkxBNPzNOe9rSuH8eZZ56Zd7zjHWPGSil5+MMfnsMOOyzLli3L6tWrc/31149pnLvwwgtz55135rLLLpu1XyMAAGD72zzcu5tmBlvc2D4XbuLf3nr1HHUbLDA4y7427erfXDdlc92UhWXRDFcEADB73bv5nlx731Vt9wuXHa27YLRevT9vd51urz8XvpatHsNs+zwCAAD9oj9Pfx4ATNuvVrbfN+r9AwAAAAAAzEd+Wzu3rGnaXtHNyaWUXTM+sOzeDubZuZSyS631/i6m26eDebpWa70ryV3dnFNK6cXUPVM3b05W3dbvMua+FQemzOGGle9973s55ZRTxjRdPe5xj8sHPvCBHH300WOOXbVqVc4444x8+MMf3jZ22WWX5cwzz8w73/nOGau5UzfccEO+9rWvJUlOOOGEvOtd78ojHvGIMcesXr06f/mXf5lPfOIT28bOPffcnHLKKTnooIPaXvvb3/523vKWt4wZe/rTn573v//9Ofzww8eMr1q1KmeeeWY+9KEP5atf/WpuvPHGrh7HBRdcMKbpamBgIKeeempOO+20PPjBDx5zbK01l156aV7/+tdn5crGL8CvuOKKnHHGGXnXu97V1bwAAMDcsbm2Xqn+d3Y9Ks/a8wUt971n5VsznPHNs61u8G8VlpYkyxfundfs/+YuKt3xXb3mS7lmzZfHjfcqeKHdc72oLM6mFl/n2RawMFEwwobhwey6QDAaAMBWV63+92yu7UOOZ9t7vX6qtdtgtN48d+2Cf7u9/uBw61+fH7ns2By3/Hld17W9bKqbct6tp7fc1+oxt3t+Dl76iLxonz8dN754YOn0CgQA6DH9eTNoDvfo6c/TnwcAPfHrW9vvGxaMBgAAAADA/DY3Ow7mr5uath/S5fnNx99Ta13dfFCt9e5Syuoky0cNPzjJj6YxV3Pt89eq21JPfHi/q5jzyr/8JNnvoH6Xsd28+tWvztDQAzdOH1vQ57oAACAASURBVHPMMbn88suz8847jzt2xYoV+dCHPpRDDz00b3rTm7aNv/vd785LX/rSPOYxj5mRmjt1zz33JEne/OY3t11hcvny5fn4xz+e1atX59JLL02SbNmyJR/72MfGrQA52qmnnprNmx+4GemFL3xhLrrooparPq5YsSIf/OAHc/DBB+fNb35zfvOb33T8GG655Zaccsop27aXLFmSSy65JM997nNbHl9KyQknnJCjjz46T3nKU3LzzTcnSc4555y89rWvzUMf+tCO5wYAAOaOTXVTy/Hli1bkoJ0e1nLfTgM75/7htePGW93YvmFL67CrXRfs1vb6c9VNgz9sOb69gxf2WLhnVm36VcfH98tE9WzYMphdF+w2g9UAAMxeg1vW52v3XjbhMYLRpq4XwcXDdbjt16DrYLQ2n6n2Xbz/rPpMVWtNSUnN+CC6Vs9pu+dh+aK9Z9XjAgBoS3/ejJnLPXr68/TnAUBPrLm7/T7BaAAAAAAAzHMD/S6AnmoOJju0y/MPbtqeaHm1Xs/VTagaMIErr7wy3/nOd7Zt77bbbrnoootaNl2Ndtppp+X5z3/+tu3h4eGcd955263O6TjmmGM6Wonx7/7u78Zsf+UrX2l77HXXXZdvfetb27b322+/nH/++S2brkZ705velGc/+9mT1jLaOeeck8HBB24aOe+889o2XY22zz775NOf/vS27S1btszarxEAALD9bW4TjLawLGp7ztIFO7Ucb3XD/sba+mb3pQMTf76ci9o95l6FVrQLcNh94V4tx9sFLPTLRM+DYA8AgAd8fc2XMjhJeFcvwr3milZBXRPpxXvPjcMbenb9dl/rpQtm12eqUkqWDLT+rNjq+7Ht42pzDQAAmGv05z1Afx4ATNPa1e33DQ/PXB0AAAAAADALCUabW/6rafuxpZRuuqqfMsn1Jtp3VKeTlFJ2SfLYLuYCunDBBReM2T711FOz//77d3Tu3//934/Z/sxnPpONGzf2rLZeOf300zMwMPlfYYcffngOOuigbdvf+9732h77mc98Zsz26173uuy+++4d1XPGGWd0dFyS3H///Tn//PO3bR988ME5+eSTOz7/yCOPzFOf+tRt25///Oc7PhcAAJhb2gWjLZogGG1JaX2j+sYWN/gPbml90/9Os+wm/pnQ7gb/XoRWDNfhtuELeyzcc7vN20sTB6PNrloBAPplc92Ur6z+wqTHtXpvPl+1C0ZrFwbdm2C03r23HRy+v+X4TrMwbLr9Z57xz0e750gwGgAA84X+vAfozwOAadqyuf2+4S0zVwcAAAAAAMxCgtHmkFrrnUl+MGpoYZJjurjE05u2/2OCYy+b5NyJPDWN2rb6bq31112cD0zg6quvHrP9ile8ouNzDz/88Dz+8Y/ftr1hw4Z8+9vf7lltvbDTTjvl+OOP7/j4Rz7ykdv+f/369Vm3bl3L46655pox2yeeeGLHcxxzzDEdN7ddffXVY1ajfNGLXtRRE9loxx133Lb/v+WWW7Jy5cquzgcAAOaGdsFo7UICkvahZq1udm9303+7cLW5rJuQgG4N1Y1tAx/2WLhXy/F2QWr9MlFAhGAPAICG6++7OvduvnvS4zYMD2a4Ds9ARbNfu/fJ7YLFevH+fHCC97bdXr/d8TsN7NLVdWZCN89pu8e1dBYGvgEAwPagP28s/XkAMDV1yyTBZ4LRAAAAAACY5xZOfgg7mIuTPHbU9quSfGmyk0opj0jypFFD909y3uVJBpNsvSv0qFLKI2qtP+6gxpOati/u4BygA6tXr87Pfvazbdt77LHHmMajThx99NH5zne+s237uuuuy9FHH92zGqfrkEMOyeLFizs+fvny5WO216xZk1133XXccd///ve3/f8ee+yRQw89tKu6jjjiiI5Wh2xujNt///3zy1/+squ5mh//z3/+8zz4wQ/u6hoAAMCOb9MUgtGWtAn4anXzf7uwq6UL5mMwWusb/DfVoWyumyZ8ziczUbjCHgv3bDk+OLw+tdaUUqY8by9N9BgGBaMBAKTWmi/f0/mvRIfqxiydh4HE49TWwWhLB3bO2i1rxo1PFNjbqYmCfbsJRhuuw22v1S54uZ/afVbsLhht9j0uAADoNf154+nPA4ApWnfvxPsnC04DAAAAAIA5TjDa3POpJH+TZMHI9gtLKYfVWm+a5Ly/atr+l1rrhnYH11rXl1L+NckfN13jVRNNUkp5WJIXjBranOTTk9QGdGjVqlVjtg877LCub5J+xCMeMWb7rrvumnZdvdTcSDWZRYvG3py+adP44ID7778/GzY88CNvKk1MnZ5z6623jtl+wxvekDe84Q1dzzfaPffcM63zAQCAHdPmNsFoiyYI6Wp3o3qrG/bb3ey+U5uQsLlsohv8NwwPZtcFUw9Gmyh4YY9Fe7UcH86WbKpDWVyWTHneXproMUy0DwBgvrjx/u/kjqGVHR+/YXhQyFSS1rFoyU4LdklafBzqxXvPicLPNg4PdhxQvHF4MLXNI9hpwS5Trm97aff91ipsrm2I9jz8rAgAwPyjP288/XkAMEW3/GTi/cOC0QAAAAAAmN8Eo80xtdabSikXJPnTkaHFST5RSnlGu6CzUsofJDlp1NBQkrd1MN3ZSV6SZGtXw0mllItrrS2XZCulLE3y8ZGatvpYrfVnrY6ft1YcmPIvk/ySi+lbcWC/K9guVq9ePWZ799137/oazefMtqaegYGBnl/z3nvHrri1bNmyrq+x2267dXTc3Xff3fW1J7N27dqeXxMAAJj9Ng0PtRxfONA+pKtdqFmrm//bBQLMx4CGicLgNg4PZtcFnX0mbGVwS+tQgSTZfWHrYLSt8y4emB3BaIMThEe0C00AAJhPvnTPxV0dv2HL+mThntupmh1Jm2CxNu/PJ3pf2qmJgtFqajbWDVlaJv9MNDjB++DZGDbdPhitxWfFLa2foyXz8LMiALCD0p83c+Zgj57+vKnRnwcA49UP/83EBwwPz0whAAAAAAAwSwlGm2GllAPT+nl/UNP2wlLKQW0us67W+psJpjkryQuSbF227egkXy6l/Fmt9cejalmS5LVJzm06/9xa6y0TXD9JUmv9eSnlH5OcNmr4X0spf5nkI7XWbXfnllIemeSjI7VsdXc6C2CbV8rChcl+B/W7DHZQtY69QaTb1Shb6cU1ZrslS8beSD401DpcYCKdnjOVa0+m+esOAADMD5vr5pbji0r7YLR2N6q3umm/XaDVfLzZfekEwQWDWwYfWDZgCjZOELywx8LlbfcNDg9mWfaY+sQ9NNFjmChYAgBgPvjl4E25afC/ujrHe6iG2iYYrd37816E8k52jQ3Dgx2FRQ8O39923+wMRmvznDaFoNVa235/7jQPPysCADsm/XlMh/68qdGfBwAt3PLjifcPb5mZOgAAAAAAYJYSjDbzrk7ykA6OOyDJL9rsuyDJSe1OrLXeVkp5YZLLkyweGX5KkhtLKd9O8vMkuyd5fJIVTaf/e5IzOqhvq7ckOTzJ745sL0ryviRnlFK+k2RtkoNH5hrdvTGU5AW11ju7mAuYxJ577jlme82aNV1fo/mc5cvb34Q9VVu2zK5f1DY/xuaVPTvR6cqde++995jta665JkcddVTX8wEAAGyum1qOL5wgGK3dDfytgq3a3+w++27i394mCoObbvhCq1C6JFlSlmangV2227y9sqVuzqba/iaj2VInAEC/fHn1xV2f4z1UQ7tgtHafSSYK7O1Uu/fn3c7RHCg22tIJ3uf3S6dhc5vrpmxJ65DuiQKlAQBgrtCfNzX68wBgrLplS7JukvcRw8MzUwwAAAAAAMxSA/0ugO2j1npVkhckWTVquCQ5IsmJSZ6T8aFon0nyklprxx0RI8eemOSipl37JHlukj9K8oSMDUW7K8kf1Fq/1uk8QGdWrBj7sv7pT3/a9TV+8pOfjNneZ599Wh63cOHYbM3Nm1vfBNHKVBqbtqcFCxbkgAMO2Lb985//POvXd3fT0Q033NDRcfvuu++Y7al8jQAAAJK0DaOaKBitXYBAq+CFdmEM8/Fm90UDi7KwtF5jYrqhFe2CFZYO7DRJINv0Qx96YbI6ZkudAAD9sGroznx37Tdb7jt0p8OzpCxtuc97qIZ2wWjtPpNsrpuzabh1gHSnJgs+G9zS2fv/weH7W44vLIuyaKD9Z7Z+aRei3fy9ONH35kSfXwAAYK7Qnzc1+vMAoMldtyZbJvm7fXh2BZ0CAAAAAMBME4w2h9Vav5jk0Uk+lGSiLodvJnlRrfVltdbWHdoTz7Ou1vqSNELQWnf2N9yT5INJHl1rvazbeYDJLV++PIcccsi27XvvvTc/+tGPurrGNddcM2b7yCOPbHncbrvtNmb73nvv7XiOH/7wh13VNBOe/OQnb/v/4eHh/Od//mfH595zzz35/ve/39GxRx999JjtL33pSx3PAwAAsFWtNZtr6ybZRWVx2/Pa3ajefHP7cB3OxuENLY9td8P8XNcufGFDm+epU+2CBZYu2DkLyoIsLkvanDe9QLZemawOoR4AwHx2xerPp2a45b5n7XlCx2FU81brXLTstKB9WPNkwWaTmey57/T6gztY0HT778X1E26PttOC+flZEQCA+UV/3tTpzwOAUe74xeTHbBGMBgAAAADA/CYYbYbVWg+qtZZp/jmpi/nuqrWekuRBSY5P8qokb03yF0n+MMnBtdajaq2f68Fj+9da61FJDk7yopE53joy5/FJ9qu1/nmtddV05wLaO+aYY8Zsf+pTn+r43B/96Ef59re/vW176dKlecITntDy2OaVKm+88caO5/niF7/Y8bEz5ZnPfOaY7X/+53/u+NwLLrggQ0NDHR37jGc8IwsWLNi2/fnPfz533XVXx3MBAAAkyXC2tA1YWFgWtj2vfbjX2Jv7h+rG1DYpBPM3GK2zoIButQte2BpiN9vDMiarY7bUCQAw09ZuXpNvrLmi5b79Fv9WDt/lCVnaJuBruuFec0W7zyQ7TRAutr3en2/VLvCs0+Mmqr2f2n3uaA7Mnuj5aRfEDQAAc43+vKnRnwcAo6y6Y/JjhgWjAQAAAAAwvwlGmydqrUO11itrrZ+otf59rfV9tdZ/q7V2sNRM13P9otb6uZE5/n5kzitrrZ11JQDT8id/8idjtt///vfnV7/6VUfnvvWtbx2z/ZKXvCRLlixpeezjH//4Mdtf+MIXOprj8ssvz7XXXtvRsTPp5S9/eZYtW7Zt++KLL87ll18+6Xm333573v72t3c8z/Lly/Pyl7982/a6dety2mmndVcsAAAw722qm9ruW1gWt923dGBpy/Hm8IANW9rf7N8uXG2um+lgtJ22BaN1FmbXLxuaghLG75/e8wMAsKP6z3u/mE1tfj36zD1PyEAZaBsk1Wn41lzXPhhtl7bnTPd98mTvXzsNrWv3mWrWBqO1Cekb91lxgsc/X0O0AQCYf/TnTY3+PAAYZaiDf2cUjAYAAAAAtLBhU83f/t/hPPu8LTnqXQ/8ufyHrXsuYUcmGA1gjjn++OPzuMc9btv2mjVr8tKXvjSDgxP/AvW8887LpZdeum27lJI3vvGNbY8/6qijsvPOD9wkcfHFF+f666+fcI6bbropr3zlKyd7CH2xbNmyvP71rx8zduKJJ+bKK69se87/z96dh0lSFXi//53IzKrM3rt6VRqGpUGWEZARQWiYpllGQQFHXhWdYUa9jo6+iuMdF1zxOtdtZoSZC47ggOAyyAVZbNEWkIaWRkAaEBQa6JamAemNql4rMysz47x/FFVdWRUnMqJyz/x+nofHjjgnIk5GllXnZJ7ziw0bNuj000/X9u3bY13r4osvLpvQ9oMf/ECf/vSnVSrF+wL7iSee0KpVq2IdAwAAAKAzFP2wYLSUs8wVslW0RRXGnDMsiMG1YL7T1SugzBW80DsajOYIZAsJr2ukSsERrRLgBgAA0EhDfl73bP95YNnMZJ9eP/1kSXvDcMeLGr7V6VzBaGEBXPUKLo5aPiLr7wncn2nR8ZTrno4fG7rub8r0hI5FAQAAgE7C/LzJYX4eAABj5AlGAwAAAAAAABCf71u96VJfX7zV6s4npQee3fvfy7sJRkPnIRgNAFrMpk2btGHDhkn9N+Kqq65ST0/P6Pbdd9+tk046SQ888MCE623btk0f+chH9IlPfKJs/6c+9SkdeeSRznZOnz5d73znO0e3S6WSzjrrLN1+++0T6g4NDem73/2ujj/+eG3evFmzZ8+Oc0sa5gtf+IJe+9rXjm7v3LlTp556qt7xjnfoxhtv1GOPPaa1a9fq9ttv18c//nEdccQRevLJJ5VOp3XOOedEvs4BBxygK6+8smzfN7/5TS1ZskTLly9XsVh0HrthwwZdfvnlWrZsmY444gjddddd8V8oAAAAgLZXtO5gtJQXPxhNKg9fCAtiCAsh6GTuYLTqghdc93rker2uYLQWCcuoFNrRKu0EAABopN/s+JX2lHYFli2b/dbRPnur9/WaL3iSTtKknCFc1QcXhx8fFiId5Txpb2rsNjWCa5xXsEMq2b0LMF2vy/WzDAAAALQi5uc1D/PzAAB4xVC+cp2YgZ4AAAAAAAAAOt9da6VVzzS7FUDjJJvdAABAufPPP3/Sx1o7vEDkmGOO0WWXXaYPfehD8n1fkrRmzRodf/zxWrx4sY444gil02k9//zzevDBBydM9Dn99NP1la98peL1vvKVr+jmm28efSLjli1b9Fd/9VdavHixjjzySPX29mrz5s164IEHtGfPHknSwoUL9Y1vfKMln0zZ09Oj2267TcuWLdO6deskDd/TG264QTfccEPgMcYYXX755dq4ceOEJ3qGueCCC7Rp0yZddNFFo+/R/fffr7PPPltTpkzR6173Oi1YsECZTEa7du3Stm3b9MQTT8R++iUAAACAzhQWjOYKCJDCQ81y/qCmacYr/w5e7G5k1GvSEVvZWVz3rtrghawzMGH4epmEK5CtNcIysqXwYIhqg+MAAADaTcmWdOfArYFlaS+jJTPPGLPd2n29Zhv53ms8Y4zSXka7SxPHRVUHo1Xo31YKBh6R9fcE7s+0aIBYpRDtKYlpktz3t1VfFwAAABCE+XnNw/w8AACG2XyEzxmtX/+GAAAAAAAAAGgr9zwTPK8S6FQEowFAh/rABz6g2bNn673vfa927949un/dunWjk4qCvO9979N3vvMdpVLuhfQj9tlnH/3kJz/Rueeeq127dlW8xgEHHKDbbrtNmzdvjvlqGmfffffVr3/9a334wx/WzTffHFp3zpw5uvbaa3XWWWfp05/+dFnZ9OnTK15r5Kmf733ve7Vp06bR/YODg1q9enWk9rbq0z0BAAAA1FdhssFoibBgtL0Tb7OOMKteL1NxoUmncgejVRf85QpWGAkmqNd1a6VSMETU4AgAAIBO8eiu3+jlQvD3IEtm/pUyiamj2/UK3+10RiPBaDsnlFXbT65076O+N64A4bQ3NXB/s4WHaI8NRnOPFQEAAIBuw/y8yWF+HgAAkqIEo/ml+rcDAAAAAAAAQFtZ17pfAwJ14TW7AQCA+jnvvPO0fv16XXjhhZo7d66zXiqV0hlnnKHVq1frqquuijTpasSyZcv04IMP6pxzznEujp83b54++clP6tFHH9Vhhx0W+3U02sKFC3XTTTeNTsA6/PDDNWvWLKXTaR144IE67bTTdMUVV2j9+vU666yzJGnCkyJnzpwZ6VpvetOb9Oyzz+ryyy/X0UcfXTFgIJVK6YQTTtDFF1+sp59+WhdeeOHkXiQAAACAtlYMCUZLhQWjhS52Hwz8d9TjO91IUNl4uVJ1oRXue52W5A4YaJVgtErBEEVbVMF3/7wCAAB0Emut7ugPXtSdUFLLZr+1bJ+zj9kifb1ms3I92dDULVSuZsFojvcwkwh+z5vN9bMojR8rhgc7AwAAAN2G+XmTw/w8AEDXG8pVrlMiGA0AAAAAAABAuXVbXfMqgc6UbHYDAKDbbdiwoa7nnz9/vi699FJ961vf0po1a7R27Vpt3bpV+Xxec+fO1aJFi7RkyZJIT1B0OfTQQ3XLLbdo27Ztuueee/TCCy9ocHBQCxYs0AEHHKCTTjpJyeTePzlLly6VtdE7XXHqjnfNNdfommuumdSxS5Ys0ZIlSyLVfeKJJ0b/bYzR/PnzI18nnU7rwx/+sD784Q+rv79f999/v1566SX19/erUCho2rRpmj9/vg455BAdeuihmjKFxSUAAABAtyvYIWdZMiQYLWlSSppUYLDa2AXursXumS5e7O4KXnAFHkTlutcjgWiue15t4EOtRGlH3s8q5UVf5AUAANCunh58XBvz6wPLjp1xsmal5pTtGwnDHS/fIn29ZnMFoxmFhcpVd+8q3fuooXU5f0/g/lYdU4WHaI8dKxKiDQAAgPbD/LzKmJ/H/DwAQIPlI3yO6ROMBgAAAAAAAGAva63WbQkue80C6ah9wx8QBLQjgtEAoEt4nqdjjz1Wxx57bN2uMXfuXL397W+v2/lb1Z49e/Twww+Pbh9yyCGTnsjW19enM888s1ZNAwAAANChgoLNRoQFo0nDAQK7Szsm7I8SjNbbxYvd04ngRTDVhlZUCqFzBQy0UzBazh/UNM1oQGsAAACa646BW5xlp/WdO2Gfq3+dbZG+XrO5g9GM895V00/2bUl5mwutE/X8rvcw402N3a5GSJkeefLky59QFmWsSDAaAAAAwPy8emJ+HgCg4wzlK9fxJ35WBwAAAAAAAKB7bdst7XBMYfzuBZ6OeDXBaOg8XrMbAABAu7v22ms1ODg4uv3GN76xia0BAAAA0A2Kthi4P6GkPBP+kV/aSwfuz/mDgf8uP7Z7F7vXK6CsUgidO/Ah+D1qtCjtaJUQNwAAgHp6IbdBT+x5OLDsz6e+Xq/u3W/C/pEw3PGqDd/tHMHBaDLGee+q6SdHC/2N9t7kSsHtyDgCl5vNGKN0hHuaK7mC0VrzdQEAAADoDMzPAwB0nHyEzxlLpfq3AwAAAAAAAEDbWLfFXXbwgsa1A2gkgtEAAKjCCy+8oC984Qtl+y644IImtQYAAABAtyj4Q4H7kyZZ8Vj3Yve9E29di91d4QPdwHXfslUEL1hrnaEXI/faHfjQGmEZ0cIjWiPEDQAAoJ7uHLjFWXZ639sC97tDcFujr9ds1pWLJqNeZ+Dz5O9drYLRrLXK+nsCy1o5QCxKGDQh2gAAAAAajfl5AICONJSrXMcnGA0AAAAAAADAXs9sCZ5UOa1Xmj+9wY0BGoRgNAAAxvjJT36iz372s9q6dWvFuo888ohOPvlk9ff3j+476qijdMopp9SziQAAAACgoi0E7k95PRWPjRSM5ljs38qL+OstLCTAuhIbKsjbnKyCjx0JyYjyfjVTrcIjAAAA2ll/Yase2vnrwLL90wdrcebwwDJXCG6+ij5mJ3H1lY1MXfrJtQr9HbJ5+fIDy1o5bNo55intfc3usSLBaAAAAACiYX4eAACS8hE+x7TBnzECAAAAAAAA6E7rtgTvXzxfMsY0tjFAgySb3QAAAFrJrl279LWvfU3/9m//pje96U069dRTddRRR2n+/PlKJpPq7+/X448/rp/97Gdavnx52cKknp4eXXvttU1sPQAAAIBuUXAEoyVNquKx7oCvwcB/j9XbxYvdXQEGVr4Kdkg9pjf2OfMhwQvp0WC04Hs+EpbR7C8vwl7DCILRAABAp1s5sFy+SoFlp/e9zdlnc/WvrazyNqe06d7+txQejBYWKjdZkfq2pcrBaNmQ8LRWDpuuKkQ70bqvCwAAAEBrYX4eAACShvKV65SCP3MGAAAAAAAA0J3WO547dPB8QtHQuQhGAwAgQKFQ0PLly7V8+fJI9TOZjL7//e/rqKOOqnPLAAAAAEAqOoLRUlUFo41d7B68kD+T6N5ghrAAg6w/qB4vfjBaWGBYpWC0VgnLcP2slNchGA0AAHSuwdJu3bv99sCyealX6ahpxzmPdfX1pOE+VFh5dwgORpPcoXLZCMFlLmGBZiPyNiff+vKM5z5PaY+zLJOYOqm2NUKUsaIrPI6fVQAAAABxMT8PANDV8hG+Q/cJRgMAAAAAAACw1zObg+dUHjS/wQ0BGsg9WxcAgC40a9YsJRKJWMeceOKJWrVqlc4777w6tQoAAAAAyrmC0ZKRgtGCA77GBly5gqzCwsE6Xa+XdpZFCQcLPi5KMJr7nrdC4FiUNkz2/gAAALSDVdtXKG9zgWWn9p0jz7i/cwgLk3IFUHUT6whGMzLOe5e3k79vUfvXeT/4/Y5ynkwLj6nSjiDssf15V3hcN48VAQAAAMTD/DwAAEQwGgAAAAAAAIBYrLV6Zktw2eJ5jW0L0EjJZjcAAIBWcu6552rz5s1asWKFVq9erccff1zPPfec+vv7lcvllMlk1NfXpz/7sz/TSSedpDPPPFMnnnhis5sNAAAAoMsUqgpGcy12z435N8Fo44UFGEw2oCxXcgeGjQSxhYVl5EqDUrJvUteulWjBaIR6AACAzlTwh3T3wG2BZdMSM3X8jFNCjw/rX2dD+ordzhh3MFquNPm+Z9QwuryfVSYR8t75ewL3e/LUY3on1bZGcIdoD98Xa23IWNE9bgEAAACAsZifBwCApKHwhy9IkkoEowEAAAAAAAAYNjAo7XBMcTx4gWlsY4AGIhgNAIBx5syZo/e85z16z3ve0+ymAAAAAECgYj2C0cYEL+T84BCG9CthXd2oN+S1hwWchXGFCvSatDyTkCSlQwIXmh04VrIlFexQxXrNbicAAEC9PLjzHu0sDQSWLZ11pnq88BCssD5m1JCuTmWtDSk1zn5y1h+UtVbGxJ/ok3WMg4LqzdIcZ7l7PDVlUu1qFHeI9vDPYsEOycqPdSwAAAAABGF+HgCg6+UjBKP5BKMBAAAAAAAAGLZ1l7tsv77GtQNoNK/ZzqQG5QAAIABJREFUDQAAAAAAAAAQT9ERRhUpGM0RIDB28b4ryCrtuUO6Op1nEuo1wcEVkw3+ct/nvaECPaZXRsHhCa7AhUaJGtbR7aEeAACgM/nW150DtwSW9ZhenTz7zRXP4RnP2ceMGtLVqazcwWhGRmkTHMTlq+QMkq6kVv3brCM4ORMSetwKXOO9kXFL2M9kN48VAQAAAAAAgNiGCEYDAAAAAAAAEF3/HnfZnKmNawfQaASjAQAAAAAAAG2m4Acv9E95PRWPHRu6NdbIYveSLargCF7r9sXu7ns3udAK13G9Y67jGU+9Xm0D2WolalhHt4d6AACAzvT47t9q89CLgWUnzDxN0xIzIp3H1cfs9nDZ8GA0KZ0Ivm/S5PvnrkCzieevEIzmB89AyrT4eKq3wngn7GfS9XMMAAAAAAAAIMBQhM9/fb/+7QAAAAAAAADQFlzBaD1JaWpvY9sCNBLBaAAAAAAAAECbKdrgYLSkSVY81hVuNrK4P2yRf7cvdk8nwu9dXHk/+CnQ469T6T1rlqhhHc1uJwAAQD3c0X9z4H5Pnk7tOzvyedxhVN3eh3IHo0kmdGxS6/553PO7ytNeaz+WMVMhpC8scK7bx4oAAAAAAABAVNZaaShfuaJfqn9jAAAAAAAAALSF/j3Bcyr7pkjGmAa3BmgcgtEAAAAAAACANuMKRkuZnorHuhas5/xBWWtZ7B7CFVCWDblnYVzHjb/PYe9ZM2UjBk5EDVADAABoF+sHn9Qfc2sDy46ZfqLmpBZEPletw3c7hQ0JRjMyzr65NPl7F7V/Xale1g9+NGOrj6fc451s2f8GH9varw0AAAAAAABoGUPRHtBAMBoAAAAAAACAEf2OaYt9rf28VqBqBKMBAAAAAAAAbcYVjJY0qYrHuhas+/JVsEPKlsIWu7vDB7qB695NNvjLdVy7BKNFfd3ZUnPbCQAAUGt3DNzsLDut79xY53L39bo8GM2diyZjTGgQ12TvXdTA40r1XP3fjNfaM5B6K4w7XP3/HtMrzyTq1i4AAAAAAACgo+Qjfn5ZIhgNAAAAAAAAwLD+4Oe1EoyGjkcwGgAAAAAAANBmCs5gtGTFY8PCzXJ+NjRsi2C02oZWuO71xGC04Pue8yM+SbpOor7uvO3uUA8AANBZNuVf0OO7fxtYduiUo7Rf+qBY52vVENzmcyejGRklTFIp0xNYPtl7FzX4t1I9V3BaJtHa46mM42exaAsq2oIz8K3bx4kAAAAAAABALEMRv+f3/fq2AwAAAAAAAEDbeHl38H6C0dDpCEYDAAAAAAAA2kzREYzmCgYYyxW8IA0HCLhCBJImqZSXitbADuVa8O8KPqjEFSzWOyEYrTXDMqJeP1ciGA0AAHSOXw3cKusI7Tqt79zY53P19aKGdHUq1z0eZiTVI7g42nGV6uX84EczZlo8QGz8OGSsnJ91/kyGjTEBAAAAAAAAjJOP+PmlX6pvOwAAAAAAAAC0jQHH8p2+qaaxDQEajGA0AAAAAAAAoM0UHMFoSVM5uCw8GC2rnB/8dOKwRfLdotYBZa5AhfGBCa0bjBY9OMLasGALAACA9rCjOKAHdq4MLFvUu78Om3J07HO6w3cJRnMZmcbTqsFo2VJwPz3jtfajGcOC2/J+1vm6CUYDAAAAAAAAYhjKR6tHMBoAAAAAAACAV/TvCZ5T2dfa0xKBqhGMBgAAAAAAALSZoiMYLeVVG4w26AzbcgU2dBPXPah18ML4ELpaX7dWco7Ah/FKKjp/ZgEAANrJ3QM/U9EWA8tO63ubjIn/5D1X/zxPMFpI6fB9rn3/PFr/tlI9Z4BYorXHVGFjvmwpq6xrrNjirwsAAAAAAABoKflon19a369zQwAAAAAAAAC0i/49wfsJRkOnIxgNAAAAAAAAaDNFPzhkKmkqB6N5JqEe0xtYlvOzzkX+mZBAtW6RqXHwgivsYnw4RssGo8W4frPbCgAAUK2cn9Wq7b8ILOtLztNfTD9xUucdH4o79noI5r0SQOe+d9ECziYeF+2eV6qX9YNnILX6mMp1P6Xhexp1/AIAAAAAAAAgxFAuWj2/VN92AAAAAAAAAGgbBKOhWxGMBgAAAAAAALSZgh0K3B8lGE0KD9pyLfJ3HdNNer104P5caXLBC1lHYMPEYDRH4MMkr1sr8YLRmttWAACAaq3efoez/7as72wlTHJS53X29bq8/2StDSkdDkar5b0r2aJznDXx/JWC0Vz9/NaegZTyUko6fo7zISHaBKMBAAAAAAAAMeQjfs9eIhgNAAAAAAAAwDCC0dCtCEYDAAAAAAAA2kzRFgP3Rw9GcwdtuRb597LYPTRQbjLyEUPo3IEPk7turbjaH6TZbQUAAKhGyRZ118BPA8umeNN0wszTJn3uVu3rNZuV7ywzFYPR4t+7WKG/IQHFBb+goi0ElmXaIGzaNe7L+lllGSsCAAAAAAAA1RvKRavnE4wGAAAAAAAAQCr5VtsdUxznTDWNbQzQYASjAQAAAAAAAG2maIcC96eqDUbzs8r5wYv822ERf71lEq5gNHcwgou1Vjk/eMLz+Pcn7bxuc8MyYoVHdHmwBwAAaG8P7bxXA8VtgWUnz3qzs38dRa3Dd7uJ896V6hyMFlI35zseyyj3eKKVuO5p3s86g5EZKwIAAAAAAAAx5AlGAwAAAAAAABDd9kHJ2uCyvqmNbQvQaASjAQAAAAAAAG2mYAuB+5OmJ9LxYUFbrpCvasIeOoXrHgzZvHwbb1LykM3Lyo90HXeQXfxAtlqKc32CPQAAQLuy1uqO/psDy5ImpaWzz6rq/K6+Xt7PyrpmsnQBK/drNxp+wmHYvYurVn3bbEhZxmv9GUiZkLEHY0UAAAAAAACgBvIRP78kGA0AAAAAAACApH7381oJRkPHIxgNAAAAAAAAaDNFZzBaKtLxYUFbuVLwJNy0Fxym1k3CFvzHDf4Kqz/+XtcykK2W4rzmZoe4AQAATNYTg4/oT0PPBZYdP+MUzUjOqur8rn62lVXe5qo6dzsLDUYz4cFo2Un0PXN+9HsdFryW890zkNohQKzXOVbMOvv/rmMAAAAAAAAABCjko9UrEYwGAAAAAAAAQHpxu7tsDsFo6HAEowEAAAAAAABtxhWMlqo6GM292L0dFvHXW1g4XPxgNHdYQ6+Xrtt1aynOtcPCIwAAAFrZnf03B+43Mjq175yqzx/Wz+7qPpQ7F01GrwSjJYL7yZO5b3GCfPM25wwozpbc52mHMZVr7JHzB539/wwh2gAAAAAAAEB0pWJt6wEAAAAAAADoaOu2BE+onDNVmpY2DW4N0FgEowEAAAAAAABtxhWMlvSiBqOFLXYPXsjfDov46y08oCx6kIIUHtYwPlgg7N43MxgtTuBEtptDPQAAQNvamFunpwYfDyw7ctpxWtCzT9XXaNW+XrPZsGS0kWC0kMDnuHIhgWZB8n4ucH82ZDzlmUTsdjVaeIh28GvrZawIAAAAAAAARBc5GC344QwAAAAAAAAAusv6rcH7D5rX2HYAzUAwGgAAAAAAANBGfOuraIMnyiZN1GC0sMXuwSEC6YQ7FKxb1DK0IiworNdLj7tuWCBb88IyXKEPQeKEqAEAALSKO/pvcZad0fe2mlyDYLRgYcFoZjQYzRX4PIlgtNj9+eC+cNbfE7g/rE/fSlw/j1l/jzMMbnywMwAAAAAAAIAQxeAH4U0QNUANAAAAAAAAQEf7oyMYbfF809iGAE1AMBoAAAAAAADQRkqOUDRJStUgGM21wL9dFvLXU8r0yHN8pBo3SMEVFNZr0vJMomxfeFhG9HCyWirZkgp2KHL9ZrUTAABgsrYNbdLDu+4LLDsoc5gOyLymJtcZH4o7FsFo4dzjmkFZW/n48mPi9ueDQ8Jc58l4U2Odv1lc476dxe3O9yRsvAIAAAAAAABgnFIpYj2C0QAAAAAAAABI67YEz907cF6DGwI0AcFoAAAAAAAAQBsJC6NKRg5GC17snvMHnYFdLHaXjDGh9y6ObCm4fm/Afa5lIFutuH5OXFyBewAAAK3qVwM/lZUfWHZ639tqdh3PJNRrgsPRco4+Y3dwB5t5Zrhv7Bqj+PJjhfhK8fu3rv5/trQncH+mTYKmXfd0e/Fl5zFBYxgAAAAAAAAADlEDzwhGAwAAAAAAALqetVaPPB9cdhDBaOgCBKMBAGpi48aN+vznP6+TTjpJCxYsUE9Pj4wxo/9dc801zW4iAAAAAHSEonVPfk2ZnkjncC1231XcId8R/kAw2jDXfXAFnbnECaALD2RrTjBa3OvGDZoAAABopt3Fnbpvx52BZQt6FunPp76+ptdzBUs1q6/XCtyxaHuFjVHi3ru4Qb6u+q796US7BKMFt3N7sd95TLuEvgEAAADtjvl5AAB0CILRAAAAAAAAAET0nXvcsykXzzcNbAnQHMlmNwAAut3++++v5557bnR75cqVWrp0afMaNAnf/e539dGPflT5fL7ZTQEAAACAjle0BWdZ0kT7uM+12H2Pvyv2Md2mVgFlrvqucIe0l9GgvzvgPPECHGol9ustdW+oBwAAaD/3bP+5CnYosOz0vnPlmdo+fyztZbSzNDBhf7P6ei3BuifzGA1P5gkbo+T8Qc3QrMiXi3uvXcG/rvO0S3iYazwSNg51BfsBAAAArYL5eQAAoJXYovuztjIEowEAAAAAAABd7/u/cc+lPGheAxsCNEltZ2wDALrOz3/+c33wgx+MPOnq7rvvLntS5cUXX1zfBgIAAABAh3EFNEhS0qQincO12L3Wx3Qi131wBSO4uILFXKECruvmSs0KRot33bhBagAAAM0y5Od1z/afB5bNTMzWsdP/subXdPcxczW/Vrvw5YeUjgSjuccocfufce+16/xZf0/g/nYPRgvT66Xr0BIAAAAAI5ifBwBAh4kaeEYwGgAAAAAAAND1BkKW7iyY0bh2AM2SbHYDAADt7aKLLpK1e5Nm3/3ud+v973+/9t13X6VSexfkz507txnNAwAAAICOU7TupwenTE+kcxCMNnnpRHCgQbZGQWEZx/nTjiCFZgWOxb1u3CA1AACAZvnNjl9pd2lnYNkps9+qlBctjDiOWvUxu4V55X9docJS/P5nrfrzWUdwsas/32pcP4vO+l5GnuF5fAAAAEA9MT8PAIAOQzAaAAAAAAAAgAhyBaunNweX7TtbMsYEFwIdhGA0AMCkPfXUU3rsscdGt88880z96Ec/amKLAAAAAKDzFXx3MFoyYkjDZBblE4w2zHUf4gYvuOr3muDzuwIK2icYrTntBAAAiMO3Jf1q4NbAsrSX0ZJZZ9Tluq4+Zr6L+1BW1llmXolGS5iEekyvhmx+Qp24/c+499rVn3cHIE+Ndf5mSTvGIy5h4XQAAAAAqsf8PAAAOlDRPeejDMFoAAAAAAAAQFf7+i/c8ygvfw8PNEV34CcdADBpDz30UNn2eeed16SWAAAAAED3KFr3JNmUiRqMFnOxu0nLM4lYx3SqjCNUrlbBC+mEIxjNSzuuGy+QrVbiB0d0b6gHAABoH4/uvl/bCsGP1ztx5hmakphWl+u6wnG7uw8VEow25imH7uDi2gSduesHnz/r7wnc3y5B067xiLP+JEK3AQAAAETH/DwAADpQ1MCzUqm+7QAAAAAAAADQ0q5Y5Z5HuWBGAxsCNFGy2Q0AALSvzZvLFwctWrSoSS0BAAAAgO7hCkYzMvIULbwsnYi3eL1dFvE3Qq2CF7KO4AXX+V2BA80Ky4gfNJGVtbYsxAIAAKCVWGt1R/8tgWWeElo2+611u7YrjKpZIbitwLrn80gaG4w2RTtL2yfUmEx/NVb9kisYLfg9y3hTY52/WeKO/RgrAgAAAPXF/DwAADpQ5GC0iPUAAAAAAAAAdJS1L1mtesZq8053nT6eaYouQTAaAGDSdu/eXbadSqWa1BIAAAAA6B4FRzBa0qQih071mF4ZGVmFpg2M6mWx+yjXvYgbWpH3c4H7XQForReMFvx6jTxZ+RP2+yqpYIfUY3rr3TQAAIBJeSb7ez2Xeyaw7NgZJ2t2am7drl2r8N1OEtSnHGHGBKP1eunAOrlSvP65616nTI8Kdihyfdd1M47+fKtxjTvc9RkrAgAAAPXE/DwAADpQqRSxHsFoAAAAAAAAQDex1uozN1n96y8rr/Xqa49ntQJVIxgNALqEtVYPP/yw1q5dqy1btiifz2vevHnaZ599tGTJEk2bNi32OX3fvSgFAAAAAFAfxZBgtKg846nXS0cOWkgn2mMRfyO4Ag3ihla46ruCBdxhGfECH2rF1f4ZiZnaURoILMv7WfV4BKMBAIDWdEf/zc6y0/rOqeu1Wy0EtxVEi3B237u8jds/D+5Xz0rO0dbCS5Hql2xJeRscgJxpkzFV3KCzuEFqAAAAQCdjfh4AAIikGDznYwKC0QAAAAAAAICucu86RQpFk6SZPNMUXYJgNADocNu2bdNXv/pV/fCHP9TWrVsD6/T09GjZsmW6+OKLddxxxznPtWHDBh1wwAHO8lNOOSVw//e+9z29973vDSz78pe/rC9/+cvOc65cuVJLly51lgMAAABAtynaocD9qRjBaNLwAvaoQQuZmIvjO5k7tCJeQJmrfvxgtOaEZeRKwdedmZrjDEbL+llN16x6NgsAAGBSXsxv0B/2PBxYdsTUv9A+vfvX9fquvl6+i4PRwqLRjMzov12BY1lHfzVIwS+oaIMXGc5K9kUORgt7vzJeezyeMWGSSpkeFRzjzvHiBqkBAAAAnYj5eQAAIJaogWcEowEAAAAAAABd5YY1UR8pK3meqVwJ6ABesxsAAKifW265RQceeKAuueQS56QrSRoaGtKKFSt0/PHH64Mf/KCKRb5IBQAAAIBW5Vqwn4wZjNYbYwG7KwysGzkDymIEL0juQDN3MFptAtlqxdX+Wck+5zHdHewBAABa2Z39tzrLTu87t+7Xd/UBs03q67UCGxaMZvZOc+g1rgDh6PcurJ86KznHcf6Jx2T9Pc7zZNpoTBUn7IxgNAAAAHQ75ucBAIDYCEYDAAAAAAAAMM6a56wuuytaMNqb/7zOjQFaSLLZDQAA1MfVV1+tD3zgA/J9v2z/QQcdpMMPP1xTpkzRxo0b9eCDD6pUKo2WX3nlldq4caOWL1+uZJI/EwAAAADQagr+UOD+uMFomRgL2OOEqHU6ZzCan5W1VsZUfuqKtdYZLOa612HXbQZX0IQrOELq7mAPAADQugYK2/TbnasCy/4sfbAOztR/Bomrr0ewbLCxPe50ovp7F9annpWKEYxWcvd32ylsOu1ltKu0I3JdAAAAoFsxPw8AAExKsRCtHsFoAAAAAAAAQFf4r7t9feR/ooWiSdLHT/MqVwI6BN+oA63GL0qDLzS7FZ1vyiLJ69xfgY8++qj+8R//sWzS1dFHH63LL79cJ5xwQlndrVu36gtf+IKuuOKK0X0rVqzQF7/4RX31q18tq7to0SI9++yzo9uXXnqp/uM//mN0+7rrrtPxxx8/oT1z587V0qVLJUn333+/zj///NGyCy+8UB//+Medr2XhwoUVXi0AAAAAdJeiDZ4km/J6Yp0nzsL8TBst4q83130rqaiiLShlKr8PBTskKz+wzHWvWy8YLfi6U7xpSpkeFezEAD+CPQAAQCu6a2C5fJUCy07vOzdS8G21XH3MnJ+LHL7baXwb3F8etvd+uPrJcUJ5XaG/kjv4N6hvG3bNTKJ9xlRxxortFPgGAAAwivl5jdPBc/SYnwcAACYtauAZwWgAAAAAAABAx9sxaPWxH0cLRdt/jnT133ta+prum1OK7tWZMw6Adjb4gvTTA5rdis539rPStP2b3Yq6ef/736+hob0LkJcsWaJf/vKXmjJl4uKEefPm6Tvf+Y4WL16sT37yk6P7v/GNb+j888/Xa1/72tF9yWRS+++//+j2rFmzys61cOHCsvKxpk2bJknasGFD2f5Zs2Y5jwEAAAAATFS0wZNfkyYV6zy9jgCBIK6wgW6UTrjvRc4fjBRQFxaY4HpfXIEDRVtQwS8o5cV7/6vlCjlLexmlvYwKpYnBaGGBEwAAAM0wWNqte7f/MrBsbmqBjp42cbF5Pbj621a+hmxevSbdkHa0C1MWjBbcT877ucjnC+unzkz2Be4P6tNn/T2BdVOmRwnTPlMz4oz/GCsCAIC2xPy8xungOXrMzwMAAJNGMBoAAAAAAACAV6x8SiqFPUdW0u8v9nT4qwlDQ3fymt0AAEBtrVy5Ug8//PDo9owZM3T99dcHTroa65//+Z/1lre8ZXTb931dcskldWsnAAAAAGByCnZi4JQkJWMutM/EWuwePqbsJmH3IusICxvPFSo2fH5XMJr7/Qo7X73kQoPRgu9RLkY4BQAAQCPcu/125W1wH+XU2efIM4mGtCMstNjV7+p0Vu4nII6d3uPqJ8cJ5XXd46RJalpiemBZwQ6pZEtl+7Kl4GtmvKmR29IKCNEGAAAAwjE/DwAAVCVyMFqpch0AAAAAAAAAbSk7ZPXvt/v66/8KT0VbNFt6zcIGNQpoQQSjAUCHufbaa8u2P/KRj+jVr351pGO//vWvl21fd911yufzNWsbAAAAAKB6RVsI3J8yPbHOEyfsjMXue9UioCwspMEdjOZ+v5oRluG6Zq+XqUk4BQAAQL0V/ILuGlgeWDYtMUNvnHlqw9oS1sfs3j5UWDDa3mkO7r5n9D6yO/R3Smg/fHz/3/VeZRLtFTSdiTVWbK/XBgAAANQC8/MAAEBVihGD0aLWAwAAAAAAANBWhopWp37L1ydvdM+THPH/nmuU8EzFekCnIhgNADrMvffeW7b9N3/zN5GPPeKII3TMMceMbudyOa1Zs6ZmbQMAAAAAVK/gCEZLmlSs8/TGCDsjGG2vsHuRjRhaERbS4Hpf0onWCssIC30gGA0AALSD3+66RztLA4FlS2edpR6vt2FtqUX4bqexIcFoGjPHpxZ9T3cwmjv0N+g413ig3cLDGCsCAAAA4ZifBwAAqlKKGHgWtR4AAAAAAACAtnLLo1b3/zFa3b99I7FQ6G78PwAAOsjAwIDWr18/uj1r1iwddthhsc5xwgknlG3/9re/rUnbAAAAAAC1UXQEo6ViBqNlYizOb7eF/PWUMEmlTE9gWdTwBVfwQo/pVcIkAsvCAxkaGzjm25KGbD6wrNfLOIMUwgLhAAAAGsm3vu7ovyWwLGV6dPKsNze0PeHhu93Zh7KhuWh7k9FcY5Wcn5MNO0lZXVegWSZ0LDT+OGd4cJuNp+KEnaUT7fXaAAAAgGoxPw8AAFSNYDQAAAAAAACgq/3qyWj1PvNmU7kS0OEIRgOADrJ169ay7YMPPljGxOvwHHrooWXbW7ZsqbpdAAAAAIDacQWjJWMGo7HYffJcwQZRg79c9cLek6RJOd/jRgeOhV0v42Xc96fUnaEeAACg9fx+z0PaPPRCYNkJM0/TtOSMhrbHMwn1mN7Asny3BqPJd5ZFCUaz8p1hvuO5++dTYoXWZUudEYyWiTH+izOuBAAAADoB8/MAAEDVCEYDAHSRP261eu/3fHn/UBr9711X+npoQ7QHHAEAAABAJ1q3JdqY6OyjCEYDks1uAIBxpiySzn622a3ofFMWNbsFdTEwMFC2PXPmzNjnGH9Mf39/VW0CAAAAANRWwa9NMFpvnGA0FruXSXtTtLO0fcL+6oPRwgMI0t4U7S7tmPR1ayXser1exvmz1eh2AgAAuNzRf3PgfiNPp84+p8GtGZb2pmioNDHIyxW2hWFhY5Wcn1Wvl654Dlc/tdfLKGV65MmTHxDUNj60LuvvCW5jmwVNM1YEAAAdj/l5jdOBc/SYnwcAAKpWDJ7zMUEpYj0AAFrUn7ZbvfHrvrbuKt///z9k9bPHrH79KU+v249F/gAAAAC6z7oIz036h5ONjjug/m0BWh3BaECr8ZLStP2b3Qq0KWvL02HjPo0ySC3OAQAAAAConaJ1BKN58YLRMjEW57PYvZwrXCEXMbTCVa9SaEPaSzuC0RoblpH3c86ytDfF+fPS6HYCAAAE+WN2rdZnnwwsO2b6CZrbs6DBLRqW9jLaWRqYsH98+Fa3sHI/EdFo73dX4cFog5qp2RWv5eqnZrwpMsYo7U3RoL+74nGugLWMN7ViG1pJpkJg81iVwp0BAABaEvPzUAXm5wEAgKqVirWtBwBAi7p6tZ0QijZicEj6/+6yuvrvGRMDAAAA6C65gtUL293lbzlS+vhpnk55Dd8jAhLBaADQUfr6+sq2d+yYuFi6kvHHzJ5decEIAAAAAKBxCnYocH/KxAtG640RdsZi93Ku++EKQhgvb4PrVbrP1V63VsICztJeJiQYrTtDPQAAQGu5o/8WZ9npfec2sCXl6EONFxKMZrzRf4cHo0W7d656I8HFaS/jCEYrPy7r7wk8T7sFTUcdKxp56jG9dW4NAADtwRiTkLRY0uGSXi1ppqS8pAFJ6yU9ZK0N7ixM/popSSdK2k/SqyTtlvQnSY9YazfU8loA9mJ+HgAAqFrkYLSSrLUsfmwi7j8AVGfF793f90nSD++3uvrv9277/nB9Y1j8j3L8TQYAAEAn2bRDso7h0hNf9nToq+j7AmMRjAYAHWTevHll208//XTsczz11FNl2/Pnz6+qTQAAAACA2iraQuD+pOmJdZ5MjMX5GYLRymQSroAyd2DYWNmSKxgt/D1pnWC04OuNBCOknfenW0M9AABAq9g89KIe2/1AYNlrprxW+6UXN7hFe7nCqLq1DxW+TGKvkfCyINUGo430v52hdaXy/n+2FDweyHhTI7WjVUQNckt7aRYgAAC6mjFmP0l/Lek0SSdJmhFSvWSMuUPSZdba26q87jxJX5b0Tkl9jjr3SfqWtfYn1VwLwETMzwMAAFUrBs/5CFQqSUmWfTXas9usPvIjX6vXSwfPl774Fk9nH81noQAQ15MvhZcXfalYsvoizKhjAAAgAElEQVT6CqtrVlv9cdvw/hlp6dTDpG+/x9OCGfz+7Wbrt1j97+t83ffK3+SLz/b0liP5mQAAAOEefd7q0zf6euBZ6dCF0r/+L08nHUwfAq2jP+SRavPDZh0AXcqrXAUA0C5mz56tgw46aHR7+/btevLJJ2Od47777ivbPvbYY2vSthEskAAAAACA6hRt8NODkybeZFhXyNZ4Rp5SMUPXOp0zGCFiMFreGbxQKRituuvWiut6I8EIrna6XjcAAECj/Kr/VllH5NbpfX/d4NaUc/f1urMPZa3vLDPa+12TZxLqNcHhaOODy1xc/dSRgOiooXWufrIrWLlVRQ3GjjqmBACgExlj/kfSc5IukXSWwkPRJCkh6U2SfmaMWW6MWTDJ675Z0u8l/aMcoWivOEHSjcaYHxpj2iulFWhxzM8DAABVK5Vi1A2eH4L62ZO3OvHrvlb8QdqVkx7eKL3tv3zd/VTUx3kAAKThwLOBCF/VfehHVl+8dW8omiTtzEk3PyKd8m++fJ/fv91qd87qxG/4+uWYv8nnXu7r18/wMwEAANz+tN3qjEt83fHkcL/ywQ3Sqf/u6/EX6EOgdbiC0YyRZkZ7pinQVQhGA4AOs2TJkrLtH/3oR5GPffLJJ7VmzZrR7XQ6rb/4i7+oWdskqbe3t2w7n8/X9PwAAAAA0OmKdihwf9KkYp3Htbh/vLSXYRHNOFGDEVxc9SoFC7RKWIbreiP3xfU6sg0OcAMAABhrR3FA9+9cGVi2T+/+OmzK0Q1uUTlXH6rRIbitImwq2thgNKn6fnLWEaA20r91BYWNP3/WD56xFDVorFXEGSsCANDFDnHsf1HS3ZKul/QTSY9IGp/4+hZJq4wxC+Nc0BizVNItkuaP2W0lrZF0g6Q7JG0bd9h7JF1njGGeKFBDzM8DAABViRN2RjBaw930sNWmneX7rJWuuIcF1AAQx3MvR6t39b3u369rN0m/WlujBqHt3Piw1ZZd5ft8K32Hv8kAACDET39ntW13+b6iL12xij4EWkf/YPDP46yMlPBYuwWMx4QXAOgwF1xwQdn2ZZddpk2bNkU69qKLLirbfte73jVholS1Zs2aVbb90ksv1fT8AAAAANDpirYQuD9lemKdJ+ri/HZbxN8IUYMRXFzhFr1eOvS4VgnLcL3OkfviCkjI+1lZy5eKAACgOe4euM3Zlz5t9rlNDwMO60N1p+j9RndwcbR+sqveyHsSJRjZt35IP3lqpHa0iqiBZ5WCnQEA6CKPSPqopMXW2kXW2lOste+y1p5nrT1G0n6Srhx3zCGSbjARO6HGmEWSbpI09kPg1ZKOsNa+3lr7DmvtGZIWSbpQ0tiO71sl/cukXhmAQMzPAwAAVSEYraX9tyOg5/qHJu7fusvqT9srf5adL1g9tclq7UtWuUJ5/a27rIaKVtsHrZ7dZvV8/3DdzTutNmyzemm7le8zzwJAfWzeOfx7pi7n3lW5ThRrnuN3YD0US1bPbB7+27Qn35r3+KpfB7frugfL92eHrNZtsSrx9xIAAMgdvPvtu4f7DGtfGv5vhyOYCmiEl3cH7+9rr2mGQMMkm90AAEBtLVu2TEcffbQeffRRSdKOHTt0/vnn6+c//7kyGfdChksuuUS33nrr6LYxRv/0T/9U8/YdeOCB6unp0dDQkCRp5cqVKhQKSqVSNb8WAAAAAHSigiPMIWnifdSXMj3y5MmXH1ov6qL4buK6J9GDFxyBCYnwYAHndUuNDctwtX8kMMLVTl++CnZIPaa2i7wAAAAqyflZrdr+i8Cy2cm5ev2MJQ1u0UTpRHAfKtvgENxWYUOC0cy457+lE1PKoz9ekfdzka7lqjfSr3W9N2P7/0M272xzuwWIRR0DVgp2BgCgw1lJt0m62Fr7UGhFa1+U9EFjzO8kXT6maImkd0r6cYTrfVnS7DHb90k6zVpb1pGx1uYl/acxZqOkm8cUfcIYc4W19rkI1wJQAfPzAABAVWz4HI0yBKM13K+fcZetfcnq0FcZrdti9c4rfD3y/PD+g+dLP/q/PL1+//Ls65Jv9c83WF2xyir3ymfYvUnp704w+shSo7+92tdjL0Rr1w/eb/Se47zKFQEggif+ZHX+d309/uLw9qELpf/5gKej963dg6QG9tTmPOu21uY8GGat1TdWWH3tF1a7XvlkMelJbz/G6L//zmhqb3MfJjbW6vXusmLJquRL//gjqx89YFUoSbOmSJ870+j/PoO/lwAAdLNHn3eXHfL5vZ/JGCOdfpj0w/d7mju9dfpA6A79jvHSHILRgEAEowFAi9m0aZM2bNgwqWP3339/SdJVV12lN77xjaOTm+6++26ddNJJuvzyy3XccceVHbNt2zZ96Utf0re//e2y/Z/61Kd05JFHTqodYXp6enTiiSdq5cqVkqSNGzfq7LPP1oc+9CEdfPDBmjKlfHHIwoULlU6zsAIAAAAARhQdwWgpryfWeYwx6vUyyvrhs5B6CUabwBVskHUEho1XKVjMfV1XIENjg9HyjuuNBkeEBD/k/Kx6PILRAABAY923/Q5nv3fZ7LOViBkyXA+uvl7UcK9OE/ZMTjNuLlrGce+ihMpZa5310q8EF0fph2dL7nFVpQDkVhM1GC3TZoFvAADU2P+y1m6Ic4C19tvGmGWS3j5m99+qQjCaMeZgSX83ZteQpL8fH4o27lq3GGOuHXNcr6QvSXpfnDYDnYr5eczPAwCgqUqlGHUJRmukFwbCPpmWDv+Sr9y3PZ1xia8NL+/d/8wW6bRv+Xr+m56mp/d+gP3NX1r9x6/Kz5kvSleusrpyVfi1xvvbq6wOmmd1/IEs1gZQnaGi1Wnf8rVp5959azcN/x7b+HVPU2oUjNW/J97vOZd1m2tzHgz7nwetPntz+T0t+tL1D1lleqSr/749/s48PyD956+srrlv72vZPih98karfft8veP1hKMBANCt9uuT/ritcj1rpdufkN79375u/6dE/RsGjNHvmNbYRzAaEKj5M7wBAGXOP//8SR9r7fAHesccc4wuu+wyfehDH5LvDycYr1mzRscff7wWL16sI444Qul0Ws8//7wefPBBFYvlX5qefvrp+spXvjL5F1HBJz7xidGJV5K0YsUKrVixIrDuypUrtXTp0rq1BQAAAADaTcEPDkZLmlTsc2W8KRWD0VjsPpE7tCJaQJmrXqV7nXYEKuQiBD7UkjM4YjQYzR2kkPMHNUOz6tIuAACAICVb1F0DywPLMt4UnTjr9Aa3KJgrXLbRfb1WYa3vLDMqn5DvChiO0j8v2oJ8BS9ETJvw4N+yYLSQ9yksOLgVeSahXpNW3p21Iqn9XhcAALUUNxRtjMtVHox2SoRj3i1p7Gz8m6y1z0Q47hsqD1R7hzHmw2GBakC3YH5eOebnAQDQYH6MYLRi8PwQ1MdND1cO37l4uS0LRRuxMzd8/N+dsPfz6++trm2YzzX3EYwGoHq//IPKQtFG9O+Rbv2d1flvqM3vmYEafcW5bmttzoNh14T8bfrxb60uf7dVpqf5f2sKxfC/oU9vlr7/m+A61z1g9Y7X16NVAACgHUQNRhtx55PS8/1W+/Y1vw+E7vHy7uD9fVP5OQSCEH0NAB3qAx/4gK6//npNmzatbP+6det066236vrrr9d99903YdLV+973Pt12221KpeIvqI/qLW95i/7lX/5FiQQpygAAAAAQV9EGT3xNTSIYzRUgMFY6UblOt6k2tMIVmlDp/XAFjuUiBrLViitgIlowWmPbCgAAsGbXavUXg2fMnzzrzaF9l0Zqlb5e6wib7F4+Aaia/nlYnZGxUJTzhwWjtWPYdJSxYpQ6AABggkfGbWeMMZWeIvC2cdvfi3Iha+2Tkh4Ys2uqpDOiHAsgGubnAQCASQl5KMQEJXcw2p681d1PWS3/ndW6LXY0wBWTFyV85+u/cN/n372w99+Deat1W2rQqDGuXMV7DKB6j7/o/l1y1b22YiBVVP3hz2qN7E/bh//moTYef9FdlitI61skiG5jf3j5zY9YZ/jefX+sfXsAAED7mDOtcp3x/vCn2rcDCLNhW/AYZ970BjcEaBMEowFABzvvvPO0fv16XXjhhZo7d66zXiqV0hlnnKHVq1frqquuquukqxGf+9zn9Nhjj+kzn/mMTj75ZC1cuFCZDAsoAAAAAKASVzBachLBaFFCIFwhAN0sLLTCrzCJ2VpbMVjMfV1XIENjwzJc1xtpX1hAQtTwOAAAgFqw1urO/psDy5ImqaWz39LgFrkRjFYueixadfcuG1JnpH/rOv/Yfn2uFLy6I6GkUqanYjtaTZSxYoYQbQAAJqMYsM/ZWTDGLJR01LjjV8e43t3jtt8c41gAETA/DwAAxFYqRa+bzwfuvvkRq/mf8LXs332dc7mvQz7v683/4WtnluCYavTvru74S++0emFg+D24/9kaNAgA6uBff+n+W3HXWunAz/p69Pnq/564Qqsmo1XCutrdzqzVll3hdd5xhS/fb35/olJYaVhY6O5cjRsDAADaSjHGxy4j1m1pfv8H3eUZR5j+4vmNbQfQLpLNbgAAdLsNGzbU9fzz58/XpZdeqm9961tas2aN1q5dq61btyqfz2vu3LlatGiRlixZounT48fIXnzxxbr44osn3bbDDz9cX/va1yZ9PAAAAAB0o0INg9EyEULPoiyI7zZhYXF5P6dMwl1esEPyFRyeVjkYzRX4MChrrYwZHxFRH66AiZFAtIRJqMf0ashOnKTdrcEeAACgOZ4cfFQv5DcElh034xTNTM5ubINCuMJlc362oX29VmFDotHMuOe/VRMg7AotHj5vpux/xxsbquYKWMskprTlexdlHNhrGCsCADAJi8dtFyVtC6n/5+O2H7PWBieyBrtv3PYRMY4FOgbz85ifBwBAS6nwsLUyhYnfuW/ZafWuK30Vxi30vf0J6Us/tbrkne33eWSr6N9T/ULoD/3A188+ltDZl8V4n2MY2GM1eyrvMYDJ2bTDakeFr89e3D4cjrX2//HkeZP/fbO9hsFoz2yWjlxUu/N1q3WO8IWx1m6Sfvo76dzX1b89YaoJJ/GtuvL7dQAAMGxoEsFoBPGikXbnrF7aEVy2eD59WCAIwWgA0CU8z9Oxxx6rY489ttlNAQAAAABMUsmWZB2hWqlJBKO5whfGCgsB61ZhwWd5PxtaHhbOMNlgNF++CnZIPaY39PhayZWCZ66NDdpLexkNlQhGAwAAzXVH/82B+42MTus7t8GtCefq69kG9/VaR0gw2rhJ7GkvHVgv51decZENqVMpGG1sqFrOD84nadeg6XTImCZOHQAAMMF547YfsjY0FeHwcdvrYl5vfYXzAagh5ucBAIBI/BgrdAOC0X7ysJ0QijbiugetLnnnJNsF9ceJoXZY8Yfh8LrBoerPFeSZLdIbDqjPuQF0vhvXRAubWrdFeui56n7fbNtdfdjkaHu2WkkEBFRr+D5Wdt2DVue+rrn3O0qIm0u+KGWHpCnd9vU6AACQJA0V4x+zPmI/CaiFDS+7yw6e37h2AO2EYDQAAAAAAACgTRSse+ZkchLBaOlElGC09lzIX09hgXJZf1CzNMdZHh6MFh4sEFae87Pq8RoUjOZ4Db1jAinS3hTtLG2feKwjVA0AAKDWNubW66nBxwLLXjvtWC3o2afBLQoX1tfL+oMN6+u1ijjTzVz3Lkoob95RJ2V6lDDJ0PMX7JBKtqiESToD1jLe1IptaEVRxoEZxooAAMRijJkm6f3jdgcn+e61eNz2xpiXfW7c9hxjzGxr7UDM8wAAAACoFT8sG3mcoYnBaL8ZH388xpZdUv8eq76phMdMxss1CEbzrfTf99ZvQfUzW6zecEC093fLTqtfrbV6erPUk5RSCWlWRlr6GqPF84fPkS9YrXpGevxFK99Ki+cZnfIaaeYUfoaATvTES3HqDv++efIlq1VPW+0a8yfpNQuMlr5Gmp4e/l0xVLRavU569Hmr0iu/An/x+9q1+5kqQrK6zfj36/BXGf3lIVLJly69M9rfpxvWWC34sa/9+vbuGxyS1r4kLZwpvXrW3v0HzDFadqg0u8Z9j2rDSfoHCUYDAKBbDcXIox9RTSgrENeOkCmNY/vaAPYiGA0AAAAAAABoE0VbcJYlTU/s82UqBHFJlcO6ulFYSECl8IWcIzCh0nkrX3dQM9SYb0Jc4RFjf1bGhqSNFSWcAgAAoBbu7L/FWXZ63183sCXRhPX1hvtfsxvXmBZgbfDiQBPwNHjXvYvS93T1z8ees1L/f2piurKOAOB2HU9FCUYLC4wGAACBviZp4Zjt7ZL+u8Ix4z/wizUt31q72xiTkzT2w7qZkghGAwAAAJrAWivZGEEfQ7myzd89b/XDB8KPX7dFesMBk2kd+msQjCZJn7+lfsFoX/mZ1XuOq1zvnqeszv22H7jY1jNWl7/b6O3HGL31Ml8PPDu21Gq/PukXF3o67FWEowGdZt2W6L+fnt4sfWOFr4tuCjrG6uD5w78r5kyV3vZtX3c/Xbt2jnf1vVbf/VsrY/i9FObrv/D12ZvHv19WPUmpWBoO74zqsruiVrZ61Uzp5x/zdNS+tXt/qg0neXqztKi7vl4HAACvGCrGP+aP26SSb5Xw6G+i/nZPfA6CJCnhSb2kPwGB+L8GAAAAAAAA0CaK1v1NTcpLxT5flIXsURbEd5tek5aRkdXECUBhwWfD5e5whkrvR6VgtEZxvYby8IjgAAiC0QAAQCNsG9qsh3etDiw7KHOYDsoc2uAWVdYqfb3WFxSMNvm+Z87PBe6PHow2OByM5gevmMsk2jUYjRBtAABqyRjzNkn/e9zuz1lr+yscOm3c9mQ+XMuqPBht+iTOUcYYM1/SvJiHHVTtdQEAAIC2VyrFq18oXyn5sR8HP1BirGe2WL3hABbyxlXyrbaHjLimj3s2XK4gFWK+nZI0e4pUfOVt3BX88XSopzdLu3JW09Pu99j3rT7wg+BQNGk4GOdjP7Z64FmNC0UbtrFf+ucbfN32sUT8BgJoac/ECJv6+eNWj70Qfq6LbrJ67SLVNRRtxG/+KJ3Ap0tOT2+2AaFowyYTDhLHSzukj17na9WnavN3o+Rb/XFbdee46CZfD3yWv2MAAHSjsL5PKhE8lh8qSi8OSPvNqV+7gBF7HMFo03pFGDTgQDAaAAAAAAAA0CaK/pCzLGnif9QXbbE7wWjjGWOU9jLKBgRUVA5GCy5PmR4lTPhknPBAhsYEjvm2pLydfHgEwWgAAKAR7hr4qXwFLxA7bfa5DW5NNGEhud3YhwoKIZaCYtHcfc+8n5W14U+Pd/XPx46VwsZN2VJWSrnfo4w31XlsK4syDmSsCABANMaYoyR9f9zu2yX9V4TDxwejTWLZvLKSZoecczI+LOlLNTgPAAAA0F1s5WCzMoW9c0Q277T69TOVD3m2yiCRbrVtt2SDP5bWQ5/zdMyfTfyc+R3fKenGh6NfY9mh0p2fiBbS8pmbfH1zRXCD7nhC+utj3Mc+/qK0rkL4UaEkXXOf4wVLWvEHaXfOalpIABuA9pIrWG2sFNE/Rlgo2ohbf2e1dtPk2zTeoQvlPN9tj1mdcBC/k1xuetj9O70R7l0nbdlpNX9G9e/Rph3Vh7k98VLVzQAAAG1qyBFi/p/vMrrgjUazLgz+bGbdVoLR0Bi788F996m9DW4I0EYIRgMAAAAAAADaRMEWnGVJ0xP7fNEWu1cOT+tGvc5gtPDQirwzMKHyffZMQr0mHRhM1qiwjLzvXnuZTlQOj6gUHAcAAFCt3aWdum/HnYFlC3r20WunHdvgFkWTMAn1mF4N2YmPBCQYbS8jb8I+17jGyipvc0qbsNA5VzBa5dBfaW//PuvvCSyP0s9vRYwVAQCoDWPMfpJuU3kY2XOS/sZa15L7UI06BgAAAEA9+OWrc6+c9X5tTO2rPd5U7fGmareZqt3eNL2quEnT/Z3a/ZvXSi/4SnjSrogfE/cHf1SJMX67wepnj1k9/JzVSzukN/250bzp7vr7zA7ef9IhRjfGCKI5aF70sJi/PNg4g9FWPmX1hgOkG9dYPfnS3kGftdKK31u9uD3yZZysldZvlY7at/pzAWgN67e6AyAna6g4HMZYK5843egffhDcyJd21O46neinv2v+R4CHfdHX8o96VQfYvVyDvkx2SMoXrHpThOkBANBtXAGrPUlpRsZo/nRpy66J5Rdc7evhz3s1CXoFJOnOJ6zueNJqYFA6bKH09mOM9ptjtGfi9FBJ0jSC0QAngtEAAAAAAACANlEMCUZLmVTs87HYffIy3hRt18sT9lcKrcg5gsV6I7wXI/XypYnnyJYaEzgW9vqihEe4guEAAABqZdXALwLDxSTptNnnyjMTg7VaRdr7P+zdd3gcxcEG8Hf2Tro7FduSLbnJVZKNjQGbGGyDHQwGU0MnkFBCSyGBQBKSEJJQEkIgdEJIIQQICUn4ANObMbbpBoMpxk2Se5UsyVa705Wd749zke5m9qquvr/n4cE3szc72tvbm72bfdcFb4DBaFaEYu6Z1TmLx3Rbnvfotm3P8bldFMAGOwIInzm3N1hNNx7P1vOpaPrtivIchoiIKF8JISoBzAcwvEfxdgDHSSmbomymI+RxPB/Aoc8JbZOIiIiIiFLFNHs9/FvZ5fjUeYh++fUA1scWdNLKYDRL/3jHxHcelzB7bNZPNuq3cakTqNSEpl0wTeC+NyTW7oxu3bWDo+/n3AP1dX9aKPGnhX0fgHPX6xL/vIwXhBPlirod6e6BtckjgItm6IPRWjrTH/yVqV5dLvHB2nT3AmjtAmbebuLecwV+OCf+3+STEfJqSmB9MzB+SOJtERERUXbxBtTlhXtSdWoq1cFoW3cBQ641seYWAzWVPBemxPxynonfv9L7HOb3r0i8do2BDk0wWnFhCjpGlKUyd9Y3ERERERERERER9WIVjGaPKxgt8sXu0YSn5SPdttsbjKCjq492O6c7cCzqYDSbup/uCNuHiIiIKBFesxuLdr2srOtnK8Ph/Y5KcY9iox9j5l8wmpSmpiZ84pnVWDrSONkTUNe7erwWQgjtOva+NrpxvsuWrcFokc9Pog13JiIiykdCiHIAbwAY16N4J4BjpZR1MTSVqcFoDwKYFON/pyVhvURERERE2c3sfXVusZn83GIGx+i5vRI/fap3KFokNRXB74hVyooF3v9F9Jfl1VREf2G1zRC45Mj0Xoj9ryUSZiwbi4gyWl2j+v1coQl/TNTwAcBXRlkvc/ho4Ku1wPUnCSz+qYFCu8CvTlYf+5IRlpWLpJT46VO631Wj8+JVyb3E/Nr/k9jdFf/nR7Je6/rG5LRDRERE2cUbft9LAEChLfj/6gjn5re/yvNgSsyGZonbFPvRzg7gpudNdGqC0UqcfdwxoixmT3cHiIiIiIiIiIiIKDq+pAejRb6OThdwle90284diBSMpg5eiDoYzVYEKHaDVIVlWK2nZzCCPsDNk/Q+EREREe31QdtCdAR2K+tml52MAiOzb6vnMNSzWzwRxpi5SEI9yUyogtEswsfiHZ+Hhn45bS50muG3C937fLepnqHviiKMOhNFCtE2YEOByOz3ExERUboIIfoDeB3AQT2KWwEcJ6X8MsbmQge3FTH2pQThwWi7YuxDGCllI4CYLi3UBQkQEREREeWVsGC05H/328zgGK0P1gKtMW7y2sHW5zIVpQJ3nC3w06ciXzhdUxnbug8aHtvyfWH1DmDC0HT3goiSYc0OdflXRgKfbgK2tyVvXa4CYOPtBoQQML4T0C73wfW2sLKBJeplGYymtrEF+HJr/M/v5wROOkjguAnA/JXJ6ZPfBN5cDZwxJb7nNycp5LW+SUJ10y0iIiLKbd26YDR7cFxQHeHc/MmlEg9dlOROUV55dbmE1AxpX/0SGKv5xb+YU/GItBiMRkRERERERERElCX8mmA0AzYYIvY790UVjBZlYFe+iTf4y6OZ2BwavBDret19MGFapVsTHCEg4BD7gzx0QQq6v5+IiIgoUaYMYEHLs8o6h3DiqwNOSHGPYqcdY8rUhOBmklimuxcKh7Yu0vhTVx/6WjiE+rXZH4yma6fYcv2ZKtJ5oMsoYrgJERGRghCiFMCrAL7So7gNwAlSyk/jaLIu5PGoGJ8funyLlLI1jn4QEREREVEymGavhyVmR9JXweAYvWBASmyqo4inPv7AyMFoI8piDxibO1Egtm/Lk6+OwWgxkVLivx9JPP8pUOIELpohMKs29u/SPT6J+xdIvN8gUTNY4AezBUYPyszv5KWUePwDiZc+Bxrbg/troQ04bIzANXMEBpVmZr+z3aYWiQcWSnyyQcK/56OlslTg5IOBC6cLCCHg9krc/6bEO3USzgLg6U/UbdUMFujyyqQGox1/YPwh+eWae/cw+DNcQ6PE1/9qRl7QwoUz+uY9etafTRw1Lvhvhx34yigBRwEw7xOJzzbvX276WGBUucDODolCO9DlBRavSU4fEgmMIyLqqaFR4qF3JP7wanCsU1MJPPANA3MP5DiHKBN5dcFoezJ5j58ocNPz+nPtdg/Q2S1R7OB7nKK3fqfEnxZJLNso8eYq/XK+ALBym3r/K9FPgSTKewxGIyIiIiIiIiIiyhK6YLQCURBXey5NeNX+dgthj7PtXBdv8JdHEywW6bXYv15dIFtqwjJ0gQ8Ow9VrQpuun7q/n4iIiChRn3UsQZNvu7Ju5oC5KLJpbi+eQXRjTHcgH8dQ6glABsIDoQ1hwGm4lGPNSONP7fjcVmT5eP/zuyClhEfzGumel+kiBaM5DKdlPRERUT4SQhQDeBnA9B7FHQBOlFJ+GGezK0Me18T4/LEhj1fE2Q8iIiIiIkoGM9DrYbGZ/JQXBqPp1e2I/Tm1gyMvM2m4wGUzBR5+R/29ts0AbjtLwGbEdlH1xGEC3zxc4IkP0xeOFgyT48Xg0bpBxuAAACAASURBVLrheYnfvbT/9XrsPYn/fdfAGVOi34YBU+KEe028tS8qXeLx9yXe/bmB6srMey1+9rTEXa+H76PzV0o8uVTi/esMDCzJvH5ns43NEkfcbmLrrtAaif/7GPhiC3DbmcDce0y82xC5vXGVgNsr8FZd8o41vz4l9hu87hXcX8L70tIZDOLjjXuCVm2TmPUHM6HAuBFlwI+Pi7w9Dx8NfLh+/+OBxcHPtsZ26+f1DDh7fYV6//pgLfDB2vj3vTkHACMHCjzybngbf39b4i/nSxgxfv4SEfW0ZofEUXeY2NEjQLS+ETjhPhP/uFjg4iPi/8wjor7hDajLC/ek6hw+Bpg4FFixTd9GfSNwyIjk941yU0OjxJG3mxHHx3st26QuZxgfkR6D0YiIiIiIiIiIiLKEz/Qqy+1GfOFljogXu1vX5zOnTb1tdMFhe+kCE6Ld1vEGsiWLLoAtNDhBH4yWmn4SERFRfpFS4vWWeco6AzYcXfa1FPcoPukOwc0kUhOMpuNIcjBa6PhcN173mG74pBcBqG83qhu/Z7pI/c7Wv4uIiKivCCFcAF4EMLNHcReAk6WU7yXQ9PKQxwcLIYqklNF+yXZkhPaIiIiIiCiVTLPXw+Koh/bRY3CMXkNT7MErNRXRbce/XSgwd6LAwtUSu3t87TyiHDhzisDhY+J7PR6/LHnBaD87QaDLCzR39C43BPDvJep11DUmZdV5obUzPCDMbwI3v2DijCm2qNt5YyV6hKIFNbYDf1woce+5mfW+bmyTuH+Bfv+sbwQee19GFbxE0XtwsVSEou13/wKJA4chqlA0AKgdLOD2JS8U7duzBKaMjP81Ly9Wl/sCQEc3UMp79wAA7l0gEwpFA4Al1xsY0j/ya/XUFQbeqZN4ux6orgDOnyZQ4gBKrzIjPjeZShzAxUcKNHcAzgLgiGrgwukC97+p338XrgbmTEhhJ4ko5/x5kewVitbTTc9LXDhdxhyATER9R0oJr3oK175gNCEE3rvOwICr9WMZBqNRLP64UEYdigYATZplix3J6Q9RLmIwGhERERERERERUZbwS5+yvEAUxtVepIvZXQxG09IHlFkHL0QbLKZfry6QLTVhGbrgt9B+6YMjPJyETURERElX5/4SGzx1yrqp/WahvKAixT2KT7pDcDOJlOoJ7LpxpNMowm60hJVHCpXTbVtXyGthFfxrFY4c2k62iHR+Eu35CxERUT4QQjgBPA9gdo9iD4BTpZRvJdK2lHKbEOJzAAfvKbIjGL72epRNzA55/Eoi/SEiIiIiogSZgV4Pi80OzYLx85vBCywr+yW96axXtyP259QOjm45IQTOmQqcMzW5cyGEEJhVC7yt/gkkaneeI/Dj4wxtfanTxF8Wh38v39CYvLCkXLdwNeBRTOv6fDPQ0ilRXhzdvvHkUvU2f+gtiXvPTaSHyfdOfTCsysqi1RI/Pi41/ckXC1dZvy99AeB3L0X/3q2tBLp9AojxpkU6cycmdhwcqAlGA4AtrcABQxNqPmc89HZir9dphyCqUDQgGEh23uEGzju8d/nPTxC4/dXUfU5cfKTA/eeFf5bVVgK6/XfRGok5EzhPkYji93ad/ji3sQVoaALGRXnOQER9z29xflLYI6+6n0ugshTaMKu6RgmAYwiKzqLVyRkTlzAEmkiLwWhERERERERERERZwqcJRrOL+L7mKzAKYBd2+KX61jiRgtPymVUwghVdcFr0wWjq1yRS4EOyRBvspguAkDDhld1wCP5yQ0RERMnzRsuz2rpjy05PYU8S4zDUY6RI4bu5SGovvlBPOtOFOluFlgH6bRsa9Ksb33pMt+U5QNYGo9ms+x2pnoiIKF8IIQoBPAPg2B7F3QBOl1IuSNJq5mF/MBoAXIIogtGEEAcAmNajqDOa5xERERERUR8yzV4Pi/vophgNTQxGC2WaEg1NsT9vcL/0Xwh9+mRhGcgQjVMneGE+eDPw4XxgwCCIM6+A+OppkN5uyH/8BjUflgH2H4U9r64xodXmjTa3xNl/MbX19Y3BG8Lc9oqJTzYGAwz3GjYAOG2ywC9OFDAE8Mi76tfa7QOa2iWunyfx1hqJju79deMHA5fNEjh/Wnhg0N/fNvHP9yU2tgBfGQXccIqBQ0ao92uvX+I3L0q89LncFxCwbff++opSwN5jFT3rdF78PPIy1NvOdolfzJN4u06i3RMscxUAR9YITB0NfLQ+chvRHu8KbMDIcqCyFCh1Yt/64lVUCBw3MbE2RpQDQgCqeyjVN+VvMJqUEn97S+JfH0isaVRvn56OqAbea9DXn3hQ9J9vxZp79p4xJbXBaCceqO7znAP0z2ng5xgRJag+wnFkLYPRMsbmVonrn5F4r0HCrb7cgvKA1RjJUdD78WmThTZstj6O7w8o/+w9d/t8c3LaG1WenHaIchGD0YiIiIiIiIiIiLKEXxOMViA0s0+i4DBc8AfUt7uJNqwrH8UbUKYLTYg2WCDeQLZk0Qe7FVk+Dm1DF/pBREREFKut3RuxvHOpsm5i8aGoco5ObYcS4NKMCfMxGE1HN0U/NMhsL6vxuZQy6uBiXfse0w13oFO7DpfN4rb2GaxQOCAgtAF1PFckIiIChBB2AE8COLFHsQ/A2VLK15K4qn8D+BWAvfcxP1MIUSulrIvwvJ+HPH5SSpng5a1ERERERJQQM9DrYYnZkVBzJQ70Ckfaq65RYkZ1+gO9Msm23Yj54vi7zsmMbXj5LIEXP5dYuFpdf0Q1cOsZBmbfqQ7m+u1pAmPvOxf44NV9ZfLjhcBvnoB89V/Aey+juuQkYER4MNrGFqDbJ+EoyIxtkYlMU+LYu/WhaADw1McSf1qoDmjYthv4eEMwuCzSRdCDf6Jez7bdwKI1Em6victn7U8uu+t1Ez99av/3/BtbgPkrTHz0SwPjh4S/phf83cRTn+jX36SeXhbRh+skDh/DfSgaXr/ErD+YWL0jvG7tTonHP0ju+qorALtNoMQGPPANgcsek72C+1TOmALMWxZebjOAP35DoJ8rsdfaWSAwoiy4v4aqb5TQ/1qY2/7wmsQvnok+hOz5Kw2c+1cTC1aF1504CbhgWvTbscCuXvaw0cAP5wjcv6Dvw9GqK4C5B6rrSpwCVWXA5tbwuuA+Q0QUv8p+QJvFLytrd+bvZ1Mm2d0lMeP3JrbsSndPKJMV2no//tXJ+mC0Bo4hKAKrc7d4ja3g5wmRDoPRiIiIiIiIiIiIsoQuGM0uCpTl0XAaRejUBKPpLv4nfRCAO2IwWnTBC8leb7Lo+h+6r1gFn3nMLvRHWVL7RURERPnrjZZntXXHlZ2ewp4kzip8K9/oArkEDGW5LpjXatv5pBcS6qs7QsfdVgHFunUIGHCI7AwENoQBh+FM+PyFiIgoVwkhbAgGlp3Wo9gP4Fwp5YvJXJeUsk4I8RiAS/cUFQJ4VAgxRxd0JoQ4DcDFPYq8AG5OZr+IiIiIiCgOIcFoxQncAG1WLdDhAZZtCq+rb4y72ZxVF8c2uWB6ZlyQWuoUeOVqAwtWAh9vlPDv2Y1sBjBlpMCxE4JBQo13GXjqE4knlkg0tgNHHyDw7ZkCU8yVkLe9GtauvP17QGcbAKDWW69ct5TA2p3AhKF99udlvUVrgKUbrJe58/XIF9X/XXNBfizueE3i8lnBfwdMibvnh7fZ0Q38ZbHEPef23r/XNknLULRE/PZFEy9cZYu8IOH5z5DUC+sjqa3c/+8LZxiYNlZi/gqJq/6j3x+f/K6BhauAjzZIdO+ZyjioBDh2gsABQ5Nz3Kyt1AWjJaX5rOMPSNyjeD/rnDEFKC8WePmHBhasApZuCH52FNiAaWMEjhqnDzuLhRAC954rcO5UiT8vktjRJvGV0QKFtmAg4qtfJryKfRZda8Bm6Pt886nBYL9QDU3J6wMR5SdfwLo+Xz+bMs1/PpIMRaOICkNSdUaUC/zuDIFfzgsfQ8TzHQLllxf64NytuiK57RHlEgajERERERERERERZQlfnwSj6S9od2nCBcgqeMF64nLiwWjq9XanORjNFdJ/q30nVX0lIiKi3LfL14yP2t5S1o10VGNc0UEp7lFidGPC/Bw/6YLR1BPe9cFl+m3nthi7h467rV4bt9mp7ZMQmXHhXDycRpHF+QvPFYmIKO/9A8DXQ8quB7BMCDE6xra26wLOergRwBnAvrsNHAHgDSHE5VLKVXsXEkI4AHwHwF0hz79LShnhMm0iIiIiIupzZu8bNZSYHXE3ddlMgZc+B5ZtCv8ulRfnh6tvjC10qrw4GPSTKQrtAiceBJx4kP4750GlAt87SuB7R/Uul/98Qf2EPaFoADDGtx6GDMAU4eFV9Y0MRrPyfkPigWbJUtcINHdIDCwRaGgCtu1WL7dw9f4+SynR2Q0sWNV3fwePSdF7f21q96fxQ3ofU8YNFhg3WKCx3cRvXwzvy5lTAJshcOxE4NiJffcbWHWlUO6TsR7Lc8W6nUCj+r63ShP2BNQV2AVOmAScMCnya3X5LAPzV4bfUKqyNPL6ZlQLzKjuvY7mDomKH6tvUBWrUicwbID1MtUVAqrfl1u7gJZOifLi7P3NlojSq1s9bX+ftU35+dmULp3dEnLPJrfbggHRALBkbRo7RVlDdY5/6Ej1GGLrruD+VuzgGILUkn3uVmgHRpYntUminMJgNCIiIiIiIiIioizhT3EwGi921wsNAtvLL33wS5/yNZFSJhwsoA98iP9O0rHQrccR0i+H4dS24c7LYA8iIiLqC2+2voAA/Mq648rPyLpQKt2Y0CrAK1dppw5pXtJ4xslWdaHt6V8bt/b1yfag6dAxfk/RBjsTERHlsIsUZX/Y81+sjgawyGoBKeVmIcSZAF4DULin+EgAK4QQHwNYC6A/gEMBhN5L+kUAv46jX0RERERElGxmoNfDYhn5u98fzhG4f0Hvb0xdBcCphwis2q7+JvW/H0k88e34u5mL6mIMZjr3MJF1vzGoyIblkA/dEHE5h/RipG8T1heODqura5TQfjlPeO7TzArDuPF5ifU7Tby8XL/M55uBgClx/TyJf74vsaNNv2wyrN0J+AMSdhv3o0gefz+1+9M3Dle/JucdJpTBaF87JDWvYW2lujxfQ/Zi/bvPnRr763TSQcHxhTtkeuq3jojvNR9YInDsBOCNlXE9vZevT438mVyj2WcAoKEpGHhKRBSPbvWUpH3y9bMplaSUuP9NiXvfkNjQvL9cCGByFXDveQYeS/EYirLPYaOBitLw8URN6K+qPcxbJnHBdJ7DkNoTS5J73DlzikChnfsbkY6R7g4QERERERERERFRdHymV1lekFAwmv5ifaeNF7vrWIUE6MLPfNILEwFlnVV7PekDH9wwZXLusmilWxvs1rtfhrDBIdThaJ5A/gV7EBERUfK5A514Z/dryrqBBYMxuXRGinuUON1Yr9t0Q8r8msQnNWNbobn4ymqcrKMb26ras3pt3JrxbbYHTevCoAEGoxEREaWDlHIRgDMANPUoFgCmAvg6gOMRHor2HwDnSSnVX0oSEREREVFqmb2/5y02OywXH4RduOU0gZMm7S9zFQD/utzAgCJheQHvZ5vy6zvlSBoao98eR1YDvzk1+y9GlW0tkFceE/XyNd56ZTnDHvR2dUks3ZDuXvT24CJpGYq215hfmLjjtb4PRQMAXwDY2NL368l2G5oldlp/LCTVH84WmDJSfaybMFTgvvMEjB7V354lcGGKgiFqKtXrWd8MeP359/lW3xT933z31wUOqor9dSp2CMz7voGiwv1lx00Abjgl/tf8LxcYGDc47qcDAKaPBW49I3IfhvYPjpFU6mMYAxARhYoUjLZ2J2CaPM70pYffkfjR/3qHogGAlMCyTcBRd/T93HnKbiPLgScuV0fqjBoI2DVpOxf9Q6K5g+9vCrepRWJ7Es+lK0qBO8/J/u+hiPqSPd0dICIiIiIiIiIiouj4pfoXVruRSDAaL3aPh8si5MATcKPE1i+s3Cp4wSp0oCercAWv7IZT9O1r5tYGo4X3y2G40B3whJVbhVMQERERRevtXa9pxxXHlp0Gm7CluEeJ042/TZjwSS8KhSPFPUof/bQyXTCaepxsNfbUjW2D7UUXjOYxu+A2O5V1Llt2B6NZhmhneegbERFRtpJSviyEmATgZgDnAijTLPoBgDullE+nrHNERERERBSZ2TuzuFjz3eJe1eZGlDgH4vkrDazaDmxqBaaNAQYUBb8nDQbHqL9N/dMiib9dyIsq96pvUpf/+hSBM6YIrNgqIUQwDOig4YDNyIFtt+BJoGN31IvX+NbiDUU5A2X0/vtR9m6bza3xP/dfl4W/P/q5BA4eDoz+hTqYoq4RGGsR5kjAo+/Ftz9tut3AX96S+N1L+uf//kyBEXu+RSoqFJg2Bhg6wPo4d9UxBs75isQnG4GJQ4HRg1J3XKypVJebMhiOlmjYVraxCqh86CKBdg8waqDAEdXA4H7xv05zDxTYfqeB99cCVWXAAUMAIeJvb2yFwOc3GvhkI7B2T7ibwy7g8QdDGb9aKzCoBPh4A9Dtl6gqExg/BFi2EWjplJgwVODgqug+k4UQqK4Alm8Nr2PAJxElIlIwmscHbN0dPG5S3/jL4vjH3N+aIXDcxCR2hrLO6EECh40CCuzq8YTdJjBmUPB8ReU/H0pceUwOfD9ASfXY+/rj0s9OELj5awKfbgLcPuDXz5p4t8G6vc23G9p9lIiCGIxGRERERERERESUJfzSpyy3i74KRuPF7jpW28ZjdmnK9cELjiiD0azCFTyBrj4Ps9OFu6nW6zRcaAuEz6TUbR8iIiKiaPlMHxbuelFZV2wrxYz+c1Lco+SwGst5TDcKjfwJRtNdzGdog9H0wWU6urFtoXDACAnW07Xvl350BNS3gHQZxdp1ZwOrcxSGaBMRUb6TUqZtZrKUshHAFUKIqwEcCWAUgCEAOgFsAbBMSrkuXf0jIiIiIiILsndg0CjfJsvFJ/lWA5gCwxCYOAyYOKx3/YSh+ueu2pa9gU19oaldXT52EDB5hMDkEblxAaqUEti2DvD7IF96LKbn1njrleUMlFHz+CQeeTf/3mdzJwLfnGZo64f2B7Yp8vjqdkgcf2BuvM+SodsnsWo7EDCBkeXAoFKBZRvj258GlgBH1Qr8TvPbWrED+PGxIq4L7Yf0FzjpoLi6tc9tZwpc90x43y6dqe9PdQUgBCAVf1J9Y/4FozVoAiovmylw2Uz9+zEeJc7kBsgU2gWmjwWmj+35evd+7UcP6l12wqTwZaJRU6kORlurCUclIookYEoE1JmvvTQ0xhaMFjAltu8G7LbEAi1zkZQS65sB0wyG6voDwOeb42/vt6cLVJVxG5O1ScP1wWgfb0htX+K1s11ie1sw2NZuC+7zHp/E6j3nHDWVwTBrSg6rc7cLpgk4CgSmjQ0+PmyMwLsN+uWnWgT3EdF+DEYjIiIiIiIiIiLKEn7pVZYnFoymD9rixe56ViEB8QSjuaIMobNar9vswgAMjKqdeHkC6r9NF4ym0m16ktonIiIiyj9L29/Cbn+Lsu6oASdlbYCYdfiuG/0wIIW9SS+puXhDNwleH4ymH4O7tWPb8NfB6rXZ5W9Wlkc7xs9ULgajERERZTQppRfAwnT3g4iIiIiIYhAI9Ho43L8V07s+wAdF05WLX9D+PwDnaZurKNVfOPlOffCiciF4cSUAdHSry3PpwmC5bDHkD+fG/fxq71pl+caWYIiToyB3tlUiTFPi189J3DVfwutPd29S74Lp1vtBbaUmGI0BewCCx+VbX5b43csSnh73Rz1uAvD5ltjbcxUAzgKB2eMlqsqAzeH3r8Q3Do8vFC1ZTpss8KtnJfwhwTLnfEXfJ2eBQNUAYJPi76lvlIgnNCub6d4/NZWp7UemG1shoLr5Vr0mWI6IKJJu9b3MwyyukzhqvP6zSUqJNTuABask3lwpsXA10LpnusqZU4DHLjVQ7MivzzaVzzZJnPNXc18w84gy4HdniLAxRCwYikbRuHC6gXnL1DvaY+9LzB5v4ltHJDeMNlmaOyS+8ZCJN1YGH5c6gTvPEdjYAtz5mkT3nnNWQwTPCx66SMDJc/uE1e3Q1x0YclODi2YI3PuGfjx64Qy+HkTRyMyjMBEREREREREREYXxS/WMuoKEgtGsLnbP7gv5+1KBUQC7UN93Qhe+YBXKYBV41pPV69Vt0X6y6P4GVf+dNvX+49YExxERERFFw5Qm3mh5VllXIApx1ICTUtyj5LEa6+nCd3OXekKQbiqQ7txFF+wL6LepOvRXf27U6tsZU5+yhdU5CoPRiIiIiIiIiIiI4mAGwoqe2vwNTOta0qus2OzAn7ddiVm734zY5L8v119A+eh7DAIBgkEEumC0kuy8z0oYuWsn5NXHJ9RGrbdeWW5KYJ36a/C89Mh7Er9/JfFQtB8cndkXPw8fANxyusDgfsHHDjtwwykC50+z7nfNYHU9g4mCnlwaDNbzhAStzF8J7GiLvT3fno8Vu03glasN1PYIyhICOGMKcPc56d3Xxg8ReOp7BgaVBB+XOoH7zxM4/sAI+5Im9CvfQvb8Aak9BtdUZPZxJNV0+0xDU2r7QUS5wxt++qZ00/Ph45zNrRKPvWfiW/8wMfLnJibcYOLKJySeWbY/FA0AnlkGXP0/jpO6fRJz790figYEA1Iv+kf82+axS/g5SdE5bTJQVaavv+RRiQ/XZeb79NJH94eiAUC7B/ju4xK/e2l/KBoQPK//9xKJXz6bmX9HNjFNqR1f3nqGCLtBweQRAo9fJlCouOzoR8cJfH82j1VE0VBfuUdEREREREREREQZxye9ynJ7QsFo+ov1ebG7NadRhI5A+Kw0fTCaOnihQBTCJmxRrdMhnBAQkIqgCKvgtWQwpYlu6VHWuRT7kW7/SUWAGxEREeWuLzs/xjbvJmXdjP5zUGrvn+IeJY9VEFVfj/UyjSk1E7GEejKQduwpPTClCUOE3zOu21SPbdXBaPrXptXfrCx3aYKCs4X1uWJ2/21ERERERERERERpYZphRUMCO/DuhqOxzT4EW+zDUCi9mNC9CgUIXsEq/X4Iu/7Sr+ljBXQ3mnjkXYlLjkxKz7NalxfQfeVc6kxtX/rMwqf1f2QIcekNwIwTehe6OzDm6lNgyABMxfyVukbggKHJ6Gj2e/z9yNv5m4cLPPGh9XJ3nSPwp4XqZb4yCnj8UgNjK4C364Dj7gk/dgDAvecKXJPEII1iB7DwJwb6u4IBQ0IIXHdCMJRpeBngLIh8wXatJpioPs/CrHT+GcX+E+rVqw2ccJ96H6go3f/vA4cJrPqtgQ3NwM4OoLoCKCvOjIvsT50ssP1gA+t2AqMGBoPcIqmpFFi4Onx7rW3KrzCHTa2AX/3ya4PA8lV1hXpMtL0N6PBIlDgz4/1ARNmjO4Yg3A/WSmxuBRaskli4SmLNjuifO+8Tib9dIGEY+Xuceu1LoKk9uW3OrM3f7UmxEULgz+cb+NoDmkEXguP4w8dk1j61s13ipS9ie84/35O482wZFt5F0du6G3D71HVzJqi36/nTDJw7VWLVdqDAFvyeavxgoMjB14EoWgxGIyIiIiIioqznNbux1r1Ke2F0shSIQox1HYChhSP4RWAf8ZlerPOsRpt/N8YXTUKpfUC6u0Q5wmd6sda9Clu9G9PdlV5swo4xznEY7hitvFA/lF+qv0UvEIVx98HqAn9e7G7Nabg0wWjqADRdmEUsAXRCCDgMl3IdH7e/s++zUEBgmGMkxjgPQIFhHZy3w7sFDe6V2mCIvfxS/yu/KsRD93et99RhYeuL+x73t5djXNEklNj6Wa6/M9CONV3LsUsTPOE0XKhxTURFofVsXK/ZjQb3Smz3brZcLtUKhSM4znCMiLuNNv8urOlajvbArqifYxcF+45DyR7feEw3Gtwr4TW7Mb7oIBTZSpLa/t6/1ye7Ue2aiMoIrz0Rxc7qM8IuCjDWNR7DCkfx/IhSan7LPGW5gIE5ZaemuDfJZRM2FIhCZSDy0ra3saV7veXzDRgY5hiFMa5xCYUn96WuQAfWdC1Hq19za/M9NnjqleUCmmA0ixCyBa3Pwy7Cp0as6VLPDlO1ZRVa1xHYrW4ny8+nVOHHe2X730ZERERERERERJQWZkBbNdS/HUP928Mr3B1AqX7+1Mhy/eo2t8bSudzV0a2vK3Gkrh99ST7z5+gXPvECiCGjej/fNOEoMDDStwnrC0eHPaW+UQKa7+fzzVt1kZeZNNy6fvIIoNAuMGMs8P7a8PpbTjdwwNDg9p42RsJZAHhCpowV2ICvTxX49XMS7dbTfaJ2+UyBqaN7v86GIVAdQ/hSbaU6mGjdTsAfkFEFYuWyL7bE/pwZ1cDwAcAWxVSgWSGBH0IIjB4EjB4UZwf7UKz70qiB6vJkh6ZkOqu/V7eN8pVVUFxDE3BI/FPyiChPdWuCb1SOuE0fqBRJa1cwhM0V/6UAWe/LbckNPi2wWZ8rE4U6ZETwXp26vPEHF0nMrAm+zwvtAoeNBkaUp/fcZvUOwIzxrdPcCexoA4Zk731n067OIviypkJfZ7eJiN8VEJEeg9GIiIiIiIgoq7X4mnD/phvR6NuasnUeXXYKzqq4NKoQI4pem38XHth8EzbvudDbLuz4zrDrMKlkalr7Rdlvl78Ff9x0E7ZlWChaT4eVfhUXDf0hbIqL9XvyaYLREgk9sA5Giz6wKx/pwgDcmgC0ZASj7V1eFYz27u75YWVVjjG4qupGZdCklBIvN/8PLzX/N6b16/oUShcesd6zBus9a8Ke/73hv8S4oknK59R3rcCDW27Rhs71dGbFxTi2/HRlXTrGDbGaW34mTht0YcwhQ190fISHtv5BG6AYyRH9j8U3B18BQ3H353g0erfi/k03osXfBCAYrHFV1U0Y7RqXlPaXdyzFQ1v/0Cs45vRBF2HuDjrRNAAAIABJREFUwDOT0j4RAa80P4kXdj4Rcbnp/Y7BBUN+kLTjB5GVde7VqHevUNZNKZ0eMSA1GzgNF3yB8GC0d3a/FnUb1a4JuGL4L5MeSpqo9e41eGDzb9BldiS9basx9bymRxNuq8AogF3YLcOCQ1kFi2UDh+HU1vFckYiIiIiIiIiIKA4yjovlIwSj2QyBiUOBFdvC6za2AF6/RKE9v4OIOixCo3IlGA3rV0a33PTjw0LRAEAYBuTwsaj2NiiD0eoaE+xfjmjpjHzVud0Axg9Rh4Pt9d2vBt+T3z1K4P21vZerrgCOnbD/cYlT4PxpAg+/03u58w4TGNJf4OIjBP74pn5dE4cC1xwr8J3HrftuN4DLZiZ+rKjVBBP5TWB9s3VwUa7r6pYxB1YO6QeUOgW+e5TADc+Fv4bfmpG7x/eBxeryls7U9iPdWjVT5WwG0J8/1/Uyoix4LPMrhlsMRiOieHRHPz0kYbowpnyxtim57Y0dFDxXJopWVZnAyQcBL36uX+abf9/7Rg3+/0fHCdxxloCRpn1t3rL4DhwXP2LilasN3gw5TvVN6u0+sBgoK+Y2JeorvIKbiIiIiIiIstpTjQ+nPNxkYeuLWNn1aUrXmQ+e2/n4vlA0APBLPx7eeid8ZnwBL0R7Pdv0WEaHogHAR+1v4cO2xRGX82veDwVGAsFoNv3F+tl+IX9f04UB6MK79MFosW3nWF6Xzd3r8PzOfyvrNnjqkxKKBqj3o1j66THdeGTrXTAVE8GllHh02z1RhaIBwDNNj2J792Zl3dON/8joUDQAeL3lGdS5l8f0HJ/pwyPb7o47FA0A3tv9Bj7t+CDu54f6746/7gtFAwC32YVHtt0NmYQZHH4Z/Ht7hqIBwLM7/4ktPcYSRBS/zZ51UYWiAcAHbW9iafs7fdwjoqD5LfO0dceWnZHCnvSdWMeGKg3ulZjf8mwSepM8wTHdvQmHohmaKQ7JDOrStRXzuN2muWIjS1j9vboQZCIiIiIiIiIiIrIQCMT+HHfk71Sf+Lb6e1NTAhuaY19lruno1teV6u8PkTVkvcWV23sVlQLHnQdxs3r+CACgqga1vgZlVd32OPbdHNQQRWDDmEFAaYTAve/sCUa7aIaB+88TGD0QcNiBuROBhdcaYSEOf/qmwBWzBcqLgbIi4PJZAn+9MLjMnWcL/HCOwKCQe+U4C4CTJgFv/NjAZTMF7jlXYNRAdX8OGg68/EMDk4YnfhF3dYW+rm5Hws1ntWj2n1C1g4P/v/5EgV+fIjCkX/DxAUOAxy8TOPGg3L3wvlwTKtAS3fSxnKELZCwrAsMsQthtAmMGqevqG/M8cYiI4pLKYDQzzw9T63YmdwPsHUMRxeKJy42w8yor98yXeCGK0/G+IKXE3fPje9+8vgJ4uy7JHcojuvNaHneI+pY93R0gIiIiIiIiipcpTazoXJaWdS/vWIoDiw9Ny7pz1ZcdH4eVdUsP1npWYXzRQWnoEeWK5Yp9KxMt71iKGf3nWC6jCz2yiwSC0Xixe9x0204fjKYuj3U7xxrIsLxjqbq8U10eD1V4RKzhFLsDrdjcvQ4jndW9yrd6N/QK2IrG8s6lGOKo6lVmShNfdn4SUzvpsrzjY4yL4bOvwb1CG7wX63oPLT0y4Xa6TQ/WdH0RVt7k246dvu2oKByaUPtr3avg1ryflnd8jOGO0Qm1T0SIOShxdefnOLzfUX3UG6KgRu9WfNaxRFlX65qE0a7aFPeobyQr4OvTjvdxWsUFSWkrGZp825MSUGsIXTBa8kKddW05DRc6Am0xtJPd51MuTYi2XRQkFM5NRERERERERESUt8w4wqU62yMuUlupr2to4sWZ7R59XUmEAKtsIN940nqBc6+GuOL3EDab9XJVNaj+Uh2M1rDZA4DfC0cTrFNbCbgK9fXfPUr0CjO68hgDVx4D+AMSdps65KjQLvCnbwr88bzg+o0ewWkFdoF7zxW45+uy177uKgjW7XX1HIGr5wDtHome97MrsAGuwuSFKxU5BKrKgM2t4XV1jRInIn+DnOIJRqupDG4vwxC4+VSBm74m0eUFih25vx3LNfcf2tUFBEwZFiCYq1o61eW67ZPvqiuAusbw8nUMiiWiOKQyGC3Pc9Gwfmdy29s7hiKKRYlT4P3rDNT+Kvwm7zr//VDitMmp399WbEvs+f/5SOKr4/g+iUdDk/qIXVPB7UnUlxiMRkRERERERFnLK7vhlRa3dOxD7YFdaVlvrjJlAG2abdoZw0XHRKF8pg9dZuS752YC3XugJ18fBKNVOUajQBTCJ729yocWjtBeCE9BLk1ggjugDmzSleva0RntqsU6z+qol28L7IaUMuwukW3+5HyWDS0cqQx9GOMcH3Nb7Yo+xdNP1XO6TU/axg2xiuZ4kMjy2nb8ipmpcegI7IYJ9Q/DHYF2VCCxYDSrfYJjNKLk2OnbHtPyXaZmNi5REr3R8hykZirg3PIzUtybvjPaNQ6butcm3E6zbwdMaWqDxFItWeOMkc4aZbnDcGJo4Uhs825MeB1jnOM05eOx06e57WMIAYHRmnayxShnDQRE2Psu2/8uIiIiIiIiIiKitJEWF9cKgV5pRXt1qH//lJ4uYOkCYO0KOEeOw/D+p2DL7vDvg4MXbObfxZmrt0u8uUpicD8Bv6n+bcFuAIW5cFXdh69bVosTLogcigZAHDgNNS88pqxb31mEbp+EoyD/9qWe6hVhO6GmjRVwWkzj0m1BXShaT4ZFEJQQAv2iuF9LqTP5r6H0eYFPFgFrPgUCftTaL8ZmhCcyqsKK8klzZ+yRJ6HBl0IIFOdAoGM0rIK/WjuBQaWp60s6MRgtSDYsB5YtgqxfDjRuAgYMAiqrIJy9N0TVzuMBTA57/s72fI8cIiIr3b5gwGx7dzBUee9/yzYlfuyYOBQ4ZoLAnAME+jmBOXerzwnN6HOYslqHR2L+SmBHm8RXawUmDguOTdcmORht+tjktkf5Y/QgYEg/YHuUl7B9viW5Y4w2t8T8FcDqHRKThgkcOyEYPh1qVYLBaGu2c2wUrzrN1MGaPL8pAVFfy4WvcImIclpXVxc++eQT1NXVYefOnfB4PHC5XBg8eDDGjRuHKVOmoLDQ4pYyZGn27NlYvHjxvsdS9YNyEixatAhHH330vsc33ngjbrrppj5ZFxERUT7xaAJmUqErwAv/k8ljurV1PtOrrSOKxJNFIR3uKI4rfk0wWkECwWgOw4mjBpyEN1qf7VV+XA6FS/QVpyY4zm1qgtE0+6PLFttMpZn9j8eS3YuiDv2TMNEtPXCK3jMgdf2JlW5fqSk6EGOc42MKcVMF68TTT9VzkvX3pkI0x4NEltdJVpCk1TgpNIQxrvYtXkuO0YiSo9kX66x0TpSgvtXm34UP2t5U1g0rHImJxYemuEd9Z1b/E7C07S3tmDJafulHe2AX+tvLk9SzxCRjLFYgCjF7wMna+rnlZ+Cx7fcltI7BhVU4uORwZd3sspPxWceSqMJ2Z/Sfg372AQn1Jd3628sxrd/Rvd57BgwcW35aGntFRERERJR8nJ/Xtzg/j4iIqIdAQF1uLwCKSoG2lvC6tvCbTsjm7ZA/PRWo+2xf2djat7DFPjVs2YamuHubtR5+x8T3/iURMAGr37BKnAi7wVy2ke++1Gs/CDP1GIiag6Nr7MiTUeO9QVt96t2dePVnxVm/zRIR6f1UVgRccqRAm34qZM79qiq7OiCvPxv4eOG+spohg7Cw7LKwZesbc+2vj01rHD/91Vbm7/ttoMV0upYuBqOV59H9buV/74H803XqupDH5RUGMCg8GE23HYkoO3n9cl94WUdImFl7t+z1uKMb6PAA7Z7w8LO9z/VpTtPiMWogcMwBAsccABwzXmDogP2f5Z9aBK1pspxzytZdEsfdY2LlnkAnmyHxp28KzB4f+3inrEg/tqqpBE6fnL9jKEqMzRD40XECP386ujflym3A7i6J/kWJ73Prd0ocf6/ZI1BaYsoI4OWrDQzu17v9YAh+/KIJ/aZwpim13wvUVKS2L0T5hsFoREQZKBAI4Mknn8QjjzyChQsXwu/3a5d1Op04/vjjcfnll+OUU05JYS+JiIiI0s8qTGtwYRVsCL8LZqw6Am1oC4TfeTPRC5SpN+sAFXUQFFE0rMJzknWciFWX2Yld/mZleSS6QCF7AsFoAHBGxbdQUTgUn3UsgUM4cHi/2TikdFpCbeYDl6GegaUL5NOFQRRp2tEZ6hiBH4+8FYtaX8R6Tx1MGfxV3i/9aPRtVa870Amn4QorUymx9UM/W+QQh8GFwzGt/9Ha4AibsOGqETfh9eZnsKbrC3h6fHY2+rbCL8O/71D1SfcZYYMdTsOFTrM9vB3Ftrb6rBlSWAUjDceD9sButAd2h5XHGhyiO34UiEJUFAwJK+80O7DbHz6pPlmhYp2B8NdkL13AYyysguCyKQCPKJPpgtEEDEiE36JS5twUfso0i3e9pP0MObb8jJy6CKfKORo/GnErFu96CRs8dTCl9W1hJSS2eTcp61p8TRkUjKb+HsWADUMKh1s+VwgDIxxjMXPAXIx1HaBdblr/o+GyFWPJ7kXY4d0cU/8KDQeqXRMwt/wsbXDxGNd4XDPiFry16xVs6l4LqXhtSu0DMKl4Ko4uy43f7C4Y8gMMd4zGl50fo8TWD0f0PxYHFB+S7m4RERERESWM8/OIiIgoLXTf9xoG0K9MHYzWHl4mn7grLAyrumMF3h6gCEbLsyCi1k6Jq/6zNxTNWqmj7/vTl6TfD3n79/QLlA+BuO2ZqNsT9gKM/erhEJtNSBE+f2J+gwtL1gHTx8bT29xgFex11qHALacbqCoTWBfIo/fdS4/0CkUDgBpvvXLRuh2p6FDmao1jOkvt4OT3I1uUWwWj5dHUIF3oS3lx7vw+bkU2bob88/VRLz8woBhLAWjOo32GKBP5Az3CykKDzDyyd7hZSJBZePAZ4NV/lZsy35oh8E69hJTA1NHBILQ5BwiMrdCHL1sdufNh9HjzC3JfKBoABEzg6v9KHDQ8tr9++ABgyfUGrviXiRc+319eXQHMqhW4/SyBQnt+fE5S37h2rkCpE/jXB/tDsHa06Ze/+UWJu7+e+D530wuyRyha0LJNwB2vSdx5TmgwWmLr2tQKuL0SrkK+V2KxdTfg1lwGUTuY25KoLzEYjYgow7z55pu44oorsGbNmqiW93g8eO655/Dcc89h6tSp+Otf/4pDDz20j3sZu9GjR2PDhg0AgFGjRmH9+vXp7RARERHlBI9FONnPR90RFgATj8WtL+N/jX8LK7cK5KDYWYWY6IKgiKJh9V5N1nEiVp+2f4C/bb0trDya44oqSAoA7KIwoT4JITBrwPGYNeD4hNrJNy5DfetFd0D9+aQLndIFL1gZ5hiJbw75fq+yNv8uXNdwsbpPZifKMKh3fzTH3qPLvoYTB54Tc59UnIYLp1acH1Z++4afYoOnLqxc1SddiMZQxwhMKJ6M+S3zwp+jeA2sPmuuH31PwgGD8VjQ8hyebnokrDzWgDLd8aPWdSCuHHFjWPlHbYvxyLZ7wtdrdsS0Xh2roMekBKNZtJ+scDeifOYzfcrwRACoLByKHd4tKe4R5TuP6cbi1leUdQPsAzG138wU96jvVTlH4/whP4hqWSklflR3HryyO6yu2deEMa7xye5eXHTjlYrCIfjVmPuTtp6DSw7XBvcmw2hXLUa7avus/UxjCBvmlJ+KOeWnprsrRERERERJw/l5RERElDaBgLrcsAGl5QAawuvaWsPL3n4urGisd62y6UQvls02r6+Q8ET5k3Sps2/70udWLQVa1Tc7AgBx5/MQjtjmRTknHYqR6zZhQ+EoZf28ZRLTx+bvxb71ms395/MFvnvU/jA5l8X0k1zbevLtF8LKar2KYxmADS2AaUoYRq5thejoAq6s1FQkvx/ZotgBFNgAn+Kj0yqYItc0tqnDYgbEPt0wO737EmBGkXa6hzYYLTlT4ojyRsCUIeFlPQPKZFi4WUdImFlofXcGBJklUz8n8Mglsd+I2WoIFMOhLmu9ujz8M63bDyzdEFs7NZXAsAECz11pS1LPiHoTQuB7Rwl876j9ZU3tEoN/on6jvrUm8WhDKSXmLVO38+wyiTtDLutoaEp8net2AhOHJdxMXtF9JwDk97kbUSowGI2IKIPcfPPNuPnmmyFl70GpEAITJkxAVVUVBg4ciKamJmzcuDFsctbSpUsxY8YMPPDAA/j2t7+dyq4TERERpYXHdCvLBQQcIjkzl4o0YTVWgR8Uu74OUKH8pdu3BIykHSdipTuudEsPAtIPm9B/Zad7P9gtnkN9RxuMptnvdOVFRnJmKun6A8QWFJas/liJZdvpQjRcRjFcmr4q29H8vYXCkZZQNEAfimcV/BXL8rr2i4wSZXlXoANSSu0d66LVFdDPJvOZiQeeWoWfxbrtiChcq78JUnMfyoEFgxmMRin3/u4F2vDOY8q+lrbP8UwhhEB5QQW2ezeH1bX4LGbjpJju3MxqDEtERERERJRsnJ9HREREaSU1V7sbNqB/ufopbS0QAOSS1yGXvA40bga2hV85Xu1TB6Ot2JZfQUQ3PR/9xcFH1mT5Ntlcr68bUAGMnhB7m1OOQs3T9dpgtDtek7j9rNibzXZd3RIPLpZobFfX11T23pecFj9dJX75et+S7buA15+AXL0MCOxJMSkfDHHESRBTvtp72W3rgWWLw9oY5t+qbDtgArvdQFm+BDqF2BVjMNq0MUCRI8uPUyHk9g3AG09CvvQI0NEGFDqAsZMAXzdQVQNRfRBw/PkQRSUQQqCqLBjYECoYBJFb20Zn2SZ1edWA1PYjXeSm6ELt99IGo3E6GeW4gCnR0TO8rFcwmQwJNgvW9woyC6l389INS9PHxvc8wyJLzcz0QWKCpJTYpMj8jsfwAfkxBqDMMkg97R4A8MlG9Jp77w9I/HuJxHsNgNsbPP85/kCBkw5S77td3RJ3zg8ej1XW7gQ8Pglnwf7nf7Q+un4fNwF4c3XwXCxUfSOD0WJV16iZV10MlBXz2ETUl3jFJBFRhrjmmmtw33339SorLS3FL37xC5x//vkYOXJk2HPq6+vx6KOP4s4770R3dzcAwOv14jvf+Q46OztxzTXXpKTvREREROniNtUzBRyGK+FAj710gSseszMpwSEUpAu9AZIToEL5S7dvFRnFaXv/6o4rQDC8qsTeT1vvl+r3Q0Geh0Gkiz7USv35pA340rQTqwKjEHZRoAzQUwVR9HV/rOgCAlV90od+FWmDNFTBWfqAtfSFccQS7GZFFxSma7/Ipv6F1oSJbumBU8R21+jw/lgEoyUh8NRq+zAYjShxzRZBSgPtlcry0IuJiZIlIANY0PKcss5lFOHI/nNT3KPMNLCgUhmM1uzPnGA0q7BbIiIiIiKiVOD8PCIiIko7UxeMZgCl6mA0tLVCPnIL5D9+a9n0WO86bd38lcDxB0bbyez1foPE6h3RL3/VMdk970/e/j1tnbj4eoiCwpjbFGMPRJVzdSLdyjkdHolj7zbx4Xr9MjUhP6G6snQal2xthLzqOGDDqvC6/94DXH03xNk/CD6u+wzyB0cr2xkYaNauo7kzf4PRWrui/029wAb86mSL9JQsJOu/gLzmBGB3SNJZ457fOD9eGAwOfOEfwP2vQ5T0R02FOhitPnN+Au1TO9okdrSp68ZWZPdnWDSklMD/PRDTc8o1xx+PLxg6kmthg5S9TFOi09szvKxnOJlUhJthT/CZ7BVutvffXbzUImUcduC6E+P7jLY6AuX6zLtk7qP5Opak9BJC4PuzBR5cpH63Xv0/ifvPE/AHJE59wMSrX/au/+ObEj8/QeD3Z/Y+frR7JI6LcL4JADN+b+KTXxsQQmBDsz5EraeRzg48dFE/HHOXibWKMXUw5Itjo1jozkNqB6e2H0T5iMFoREQZ4LHHHgubdDVz5kz85z//QVVVlfZ5NTU1uOWWW3DRRRfhrLPOwvLly/fV/eQnP8HkyZMxe/bsvup2Tli0aFG6u0BEREQJ6DbdynKnkViYR08uTXCIX/rhk14UCkfS1pXPrEJMkhGgQvnLKlApXXSBUEAwvKoE6mA0KSX80q+ssxuxT2akxOkCtdyBLmV4piqcLNhO8n6ldRlFaA/sDu+TYt2p6I+Obh2qPulCv4qMYn3AWix/bwqC4HSKtAGsbpgyAEPYompHd6zTbR9dMBoQDDVLdCyl29aAPuAxFlaBqrr9hYiipwtG62cbgELNmEPm/PQsSpdP2t9Fi79JWTdrwAlpHddnknJNaGGLT73t0kF/bsYZi0RERERE1Pc4Py99OD+PiIioh0BAXW7YgH5l6roNqyDn/ydi0zXeBm3d9/9touHW6H57zmY3Pq8JnlO4/iSBScOz9wJgubsZ8Gvm1NkLIM76ftxt26bOBj7V15umhGFk77aL1b+XSMuL1AvtQFVZeFlWeu7vylC0veRDNwInfQuiqATy0d8BbvVvPwMDLdo2mjvCg+TyRatmOsuNXxMYUAQsWCmxqwsYP0Tg4iMEjqzJrfeZfOzW8FA0lbpPgVcfB86+EtWVAvNXhs9FqG/Mj/kJN7+g/zvHDkphR9Ll83djfkp5oFVb19IFFHHKP8VJSonO7p7hZT3DyaQi3Cwk5CykvqM73X8RRWIzgFInUOrY838ncMgIgUuPFDh8THyf0VZDaF2Gdq5oSeK03nJOM6I0+cWJ+mC0B96UOGNyMPQyNBRtrztek/j+bIkR5fsPBv/50Pp8c6/PNgPv1gMza4HrntaPEad1LYFLujHDvQSXe5/CiJJ3UVNZqAxGq8+caYVZQ3ceUpMHocVE6ZatX7UREeWMNWvW4Morr+xVdsQRR+CVV15BSYn+ItWexo0bhwULFmD27NlYuXIlAMA0TVxwwQX49NNPMWhQPnzjSURERPnIbXYpy3VBNfGwasttdqLQ4K+kyWAVYpKMABXKX7p9KxXBTzpW67YKCfRbhATaRZbeajTL6V7LAMLDM00ZgEfzuaULx4q3T8pgtJD3gs/0avepZPZHR7ftPIHwbWQVoqFrRzVG0IVppfV4YBHm4jHdlgFmPcUacmf1GncFOlBeUBHVeq3a0ElG4KlV8JrH7IIpTRgit+6cS5RKzb4dyvKBBYPBO8RRKkkpMb9lnrLOLuyYXXZKinuUuXSf3ZkVjNb33+EQERERERGpcH4eERERZQypudpdGEC/cnXdyo+iarrM3IWyQAtabeHttHRCeXO3XOL1S7ypz3MKc8rBWb4tPlmsr/v6DxNq+uRJwD8sgtGaOoDB6ns+5qRXl1sHMI0ZCNhCUi6s3muHjUpKt/qEXPK69QJd7cCXH0B+5RjAYtlSsx126YNfMZ+tOY/vdbejXV1eUQp8f7aBq+ektj+pJKUEFj0T/fILn4E4+0rUakL06tX3ess5X2zWH3/G5MHXEPKD16JeVvxvFbBrJwZ9/3TtMtt2hwdZUu6SUsLt3RtcFvqf3B9u1qO+w7M/yCy0vqMbkPmRyZi1DLE/wGxvoFnJvmAzEfy3sl70Lt/zn8NuPaaLh1Vzub57JTMYbSCD0ShNhvYHXAWAWzMN/vp5Jg4dpX+jmxKYv0Li0pn7l3nty+jf/a8sl5hZK1BnERL8xsYT4ZKe/QUrPkJ15UxgRfhzGvIkbDiZ6tRTq1EzOLX9IMpHDEYjIkqza6+9Fh0d+y8WHTBgAJ5++umoJ13tVVlZiaeeegpTpkyB1xsMjtiyZQt++9vfht3tkoiIiChXeEy3stxhuJK2DuvgkE70t2smpVFMrMKgkhGgQvlLt28V2dL3q5jTKIKAgFT8jKkLbgKsg9EKGIyWFlahVm6zq1d4pu4zK9hO8vbHIlsxoNhVQt8LVsFSyexPrOtQ9UsbjGYUw6UJDvNLH3ymFwVGYY92NMF0aTweWIWydQU6ow5G04a+af42q3a7TH2oWbSs2vCZiQeeWo0bJCS6TXdK9mOiXNXsU88iHliQp7fuprRZ1fUZNnevU9Yd3m82BvB8fB99MFpjxlzslokhtURERERElB84P4+IiIgyhhlQl9tsEJVVCV8MP1ATjLbbDTR3AINKE1xBBlvfHLzIOFo1id0rrM/JBf8HufBpYOtaoO6zYOHkr0JcfRdEzcHABn0KnJh+QkLrPnqS9Y1iWzvzKxitPsI9aE7ShOydPhl4NiRgrtAOnDM1/b/ZaG1piLiIvPdHEHe/BHTr50EJAOWBFjTaw68Ob+6QyMebcXn9Epta1HUjyvJge7TGmGT2+bswb/02qif9GMC4sOr1zUC3T8JRkFvbzu2VuPN1ifcbJNw+4F2Lt2RZcW797UpRHJMAACPHAUNHA5VVGBhohtN0w6O4jqChUeKw0Xmw3XLYu/USD78j0dQucfyBAt+fLfDC58B/P5RoaOoRdrYnyCyWsSGlnhCh4WU9/xP7ysPrhTL8zFWY/CCzZDMsupfr+2syg9HKOc2I0sQwBE6cBDyzTF2/ZB2wZJ31m/nyf0r87a0AbAZwyAiBeZq2VH7/isQbKwP4ZKN+mV6haACwdS1qKmYql82XsOFkebdeYvlWdV2mf8dElAsYjEZElEarVq3Ciy++2Kvstttuw5AhQ+Jqb+LEibj22mtx66237it7+OGHcdNNN6GsLLdua1BfX4/PP/8cW7ZsQXt7O4QQKCoqwuDBgzFmzBgcdNBBKCrSX6CeLN3d3Vi8eDHWrVuHlpYWVFZWoqqqCrNmzeqT9W/btg1LlixBY2MjmpubUVJSgsrKShx22GEYO3Zs0tdHRESU6bo1ITPOJAajWYVqWIVyUGy6LMKgfDLxABXKX7rwp3RefG8IA07DpQxpsgqrsgpGszMYLS2s9iN3oBP97fvPxa0+M6xCOGPlNNTnoqH7m1UIXzL7E+s6VNvJKkTDpfl7geD7qX+vYLTMOx4hVep3AAAgAElEQVQka5yhDYHU/G02YYdDONEd+gMorD+To9UV0AejWR3LomW1/wLB157BaETx0wWjlRdUwpTqC3ZUga9EiZrfMk9bN6fstBT2JPPpggu7pQedZjtKbOm/Qkk7FuNnNhERERER9SHOz4sf5+dxfh4REfUB01SXGzZgeOKfMw9uuwpzR72irKtrzO1gtLURwqt66ucEBsaWkZtS8om7IP98fXjFp29BXnIY8NB7kA/frG9g8qyE1t9/gAu/bboBv65Qr6NVfU+6nGSaEg0W+1ZNJXDNHHXCxU2nGnin3sTOHtMnbj9LoNSZmYEdsrMtuvCqjWsgz66NuNhAXTBank653diiDzypzoOL6OW/7oj9Sa/8EzWLPwZGfaSs/tvbElcdk5nvp3gETInj7zXxTn3kZX95cu783ZY2RxGMVuiE+P5twTAkewGMybMwtm0dVjgmhi1qdTynzPfqconT/mTCt2fa0ktfSPzwv5yrlGoloQFmex6XOEV43b56dV1RFgSZJZtlMJrmVDFXJPMcojwfwkEpY93wNQPPLEvsDfvh+uD/318b++fYR+v1dbfv+EVYmdyyFjXTBKCY37uxJTfDhvvCGysk5t6rf91rB3MbEvU1BqMREaXRfffdByn3DygHDRqESy65JKE2r7nmGtxxxx3w+YIXmXZ2duKhhx7Cz372s7BlL774Yjz22GP7Hq9btw6jR4+Oaj2LFi3C0Ucfve/xjTfeiJtuusmy/b02bNhg+cXFt771LTz66KNh5d3d3bj//vvx0EMPoa6uzrJ/NpsNkydPxumnn44f//jH2klQs2fPxuLFi/c97vl6WNm9ezduuOEGPProo2hrawurLy0txbnnnoubb74Zw4YNi6pNHZ/Ph4cffhgPPvggvvjiC+1ytbW1uPbaa3HppZfCbudHPBER5QdVqBAAy5CUWBUKBwzYYCI8AEC3fopdl2kRoGImHqBC+UsbqJTmi+9dRrHyGGIV9uNjMFrGsQ616v36WoVNOW3J+9wq0vQpdN+yCt1KxftDtw7Ve0D3eVtkK7YMcQsLp7MIWEsXq3VbBSX2JKXU7l9Wr6XLVoxuvyIYzeIzOVpWwWjJCDyNtG3cgU6Ah0WiuOmC0QYVVKLRu03zLE42pOTa5FmLVV2fKesOLjkcQx0jUtyjzFauCUYDgBZfU4YEo2nGdGkcixERERERUe7j/Dw1zs/rjfPziIgoZUz1DWhgGMCwMbG3d8zZwJtP7Xt4dNdi7aJ1jRIzqnP3Qs2Gpuh/qxo1MHNDGGS3B/Lfd1ovc/OF+sqzf5Dw3yYMA9d1/pnBaAC27AI8mulalxwp8IezBAaWqLf3wVUCS39p4JllEk3twImTBGbWZuZ+BwDYsjapzZUHWpTl+RqMZhXINGZQ6vqRNv/3x7ieNsZdBwETEkZY3S/nSVx1TKIdyxyL1yCqUDQAuOzIDD6WJImUEthiEYxWVglx5hXAUadDjNkfgiYu/RXG/kETjLbVC8DZB72lVPj9K/tD0Sh6xY4e4WW9wskESkLDzRz760LDzUqcQHEhYFgle1FEVsP0XJ9519IZ219oNwC/JoPIHj4sIEqZg6sENtxmYNR1mZdmeMHu/2fvzOOjKPL+/6memUzukxAh4UrCLcopcnqAgoiKJ4L7eK27rLrq7uO6ruu5uu4jK+oPb2VXdF3XY5FLWA9QkUMRYQHlEJJwGK4k5M7kmpmu3x9DQiZT1dMz03Pm+369eJHpqq6q7umjpvtb73rXc+HRAyiUhBWqHDhUCQz0bx6hLsVTn2h/34VdQHZNEOGG3soSBEGEkU8++cTt84033oi4uLiAyszOzsZll12GpUuXutUjCryKJkpLSzFt2jTs3btXV36n04lt27Zh27ZtuP7661FYWGhYW3bu3IkZM2bg2LFj0jz19fX429/+hqVLl2LlypV+17Vt2zZcd911OHDA+4umoqIizJs3D6+88gpWrVqF3Nxcv+slCIIgiGih2dkkXG5VEgyrgzGGRFMSGpyewdZaAiPCN7RlUIELVIiui0z+FO7B94mmZFQ5PCOetGQ/Dg0xmoXEaGHByuLBoIDD82VH52NPU0Rm4PEoK8tD1CZpjwIT4pjVsPbIkLVT1C7ZvktQknyT08nKCaMo0cRMsLJ4tHBPQZnefkYrbxEKXAHta12ikowaVHos15Ka6UVLrqYledSDXW3VvB666qc+GkH4S6vagjpntTAtU1OMRhDGsrZquTRtasasELYkOkg1pcPMzHBwh0dalb0CveMLwtAqdyJVWk0QBEEQBEEQRGxD8Xn6ofg8is8jCIIgQoAqGUipmIBuuUBcPNDq+e5YBPv9K2CX3Qp+/2vg07JcywAMb96JHfFne+QvEs+LEzMcq9Gfd0iPCBY6HNwN1ImFUu0ckYtiWO+BhjSDJSSju6MM5eYcj7TqRg7X0Rb7HK+Vpy24hiEjSXs/9M5i+M3UKNlXWgIiP+jm9IxHAYCj4lfRMc+xGrEMpEcakBAXJceIn/B6Hy7QnbDyVpzhKMNxcw+PtBYH4FQ5TDEi6dlYrE8YE28BemUGuTGRQE0F0FgvTGIvrwMbNk68Xm4B8luXCJMOHG8BidGiE7uDY4O2vz9mSIzrLDBrE5e5RGYeafFAivW0yKxjepIVMXONjBW0vg41xs1oR33sDvx8EsNrX4l3ygDPnygEEVJ6ZTLseETBiCdU6JwHJuikOmvR3Sl48HO0BPndXGJGUVuLy0mM5g2nqt0P6ZYMr88GCIIIHBKjEQRBhIkjR47g0KFDbssuvvhiQ8q++OKL3QKvNm/eDLvdDoslOgfKt7a2Yvr06R5BV5mZmRg2bBhycnJgsVhQX1+P48ePY8+ePbDZgjMAds+ePZgyZQoqK91f1OTk5GDEiBFIT09HWVkZNm/ejKamJlRVVWHmzJl4+umnfa5r1apVmD17Nhob3Qdy9+jRA2effTYyMzNhs9mwZ88etxk6d+zYgbFjx2Lz5s3Iy8vzb0MJgiAIIkpoVsXTD8Yr4tmo/SVBSRSK0Ui6YRxawqBABSpE16ZRNvg+zGI0qbzKT0mgmcRoYYExhnglQXgN63yPkh2LVhYPEzMZ1ia9x5bsWEs0JYVkZmSZsMvB7bCrrbAoroFpTu5EsyoWoSYoiYhjVigwCcVgnnI6cb8h3KLEBFMSWhwCMZrOfobWdUPrWpdoShYulx2rvqBVRqDCU9n36JaH5LUE4TfVjpPStCxLd+k9IkLiO4gYodJejm31G4Vp/eIHoiBhcIhbFPkoTEGGuRsq7Cc80qrskTHaTXYPTzD4GQ5BEARBEARBEEQbFJ+nH4rPo/g8giAIIkSo4gmvwBiYyQQ+8TLgi397L8dkBiZc6lo1MdntPU3/1iKhGK24zI/2RhHV3l8jt3PlyOC1wx/4wT3grz0E7N0KVAX4RU2caUyjEpOQ4awRi9G60Ov4eomnkDEgzbi5eyMCvm+7oeX1aT0sXF5c3jXfLFdJzpvslNC2IyysXxHQ6oNb9grFaHanS7TXOyug4iOGkzrnsZw1nHUN0VFpsTwtT2NSsG49UaCWCpPWH0nGV/s4zhvYBfZfjHFI7NqMCOItHeVlHeVkLpGZu9ysLZ0J5GZAcjyJzCIdzjnw7rPga98Hjov7OpqYcoGe30nKDrBxEc6XP/q2gcPzgHPzgc2d5rIYdAbQtxudJ0T4OSuP4cKBwOc/Gl/22H7AkWrfhIJX1a8Q68v3/RdWC0PvTOCw4H5aXNF1xOf+cqTa9dtDxlUjaf8RRCggMRpBRBhO7kSNxsAjwhjSzd0MHXTsD5s2bfJYNnr0aEPKHjVqlNvnpqYm7NixA2PGjDGkfL0sWLAAjz32GABg4sSJOHr0KAAgNzcXGzeKBzUBQHKy+8DcxYsXY8+ePe2f+/bti5deegnTp0+Hoige63POsW3bNqxatQp///vfDdgSF3a7HTfccINb0FWPHj2wcOFCXH311W5taWhowDPPPIMnn3wSNTU1Ps8IumfPHlx//fVuQVfTp0/Hn/70J5xzzjke+bdv34577rkHGzZsAAAcPXoUc+bMwbp162AyhfdYJwiCIIhgIhWlmIyNOvFHYET4hpZAxRGgQIXo2sjEQgmm8IqQEiX1a4mQHNwhTWuTSBGhJ0FJFH5vna9roToWE0xisURnEYVM7hkqaaDWdjeqNqSdOqZlEtS2MhhjSDAlwub0nCHS4zuQ3GviJfssVCQoSaiB59tGvf0MLVGr1n6WXYcaVZ2RdhJUrmpfy9TAhKd6hHF6pXIEQXhy0i4fbJFp7g4mC4KI9egsIqR8Ub0SKlRh2kWZV4ZE4hqNZFqyhWK0Skf4xWh2tVUqRw23tJogCIIgCILoelB8XugId4wexedRfJ4WFJ9HEARBhAWZGO3UvYTNexx8/3+BIyXyMhQF7J5nwTJPC6vY/a+Cz/8VAKCwVbxuUYzLiPTKuuacw3Dl8Mh5z8DLSsFvPw+weU7a6g8sO9eQcpCQjPRW8SjsKh8kdNFOQ4t4eVIcoMSQuIRzDrzju2jYg/7DgaIdrj/t4mtRcfhfW4UFmRgtM8bnD+LHD4E/9cuAynjl+F0YWLhbmFZSETtitFod11bGgD/Pip1rjxb8kbnihMQUID1buh5TFOSniscWAMAFz6j45g8KxuZ3jf0YK9z5L3H8iD9YzR3lZZ3FZKyT3KztH3MTm3VMN5voWOpK8EWPAm/P93t9ZpbHx6gx/HOtppFjfZH3fB3JTGJ4/nqGy15UUXbqp1JaAvDGzZ7PqgkiXAw4g+FzH6V/enj5BgVldcC1r6mwSX6TdmRIyx48WvGENJ2vX4HC7JliMVoX/X3mC799X94P6ZMFPHwp9QUIIhSQGI0gIowax0k8fGBeuJsR8zyR/xqyLJ6z14SSI0eOuH3OyclBVpYxT2TPPPNMYX2hDrzq1q0bunXrBgAwm0/fcsxmM/r27au7nBUrTs8QYjabsWbNGhQWFkrzM8YwevRojB49Gg8//DBU1ZgHYC+88AJ27NjR/rlHjx7YuHEj8vPzPfImJyfj0UcfxZlnnonrrrsO1dXVuutRVRWzZ892m1Xzsccew6OPPipdZ8SIEfjiiy8we/bs9tlIN27ciHfeeQc33nij7roJgiAIItqQyVLiFWOjBWRSEZJuGIfWvrQHKFAhujYysVBimAffywb/a0kC7apcEmhm9JgvXCSaklDlqPBY3llEFqpjUXpsqfokYaGSBmptd5PThjRzxqm/5VFfbWUkKklCMVrne4vsXhPu64FcUKavn6ElUNPatkQlWbi80RmYGK1ZbQSH/EWvTIqiF63rZHse6qMRhN9U2sWRDmnmTFgUC2Szw2md9wThCw3OOmyqWSNM627pibOSPQcmEy4yLd2Fy6vsnn3VUNO5b9wRmdiXIAiCIAiCIIIFxeeFjnDH6FF8Xl/d5VB8HsXnEQRBECFCds9krsHdrGc+8Pdvgf+uAw7v88yXkg6MOA+sV3/35eNntP/Zv7VYWEVRuUt+FKuTj1Q3it9V3TiOYdpQoKwOOKcfw7n9IktoxVe/aZwU7S4DxFZtJCQjs1ncv6puUAF0DSFBQ4v4uEq2hrghweaHbwIvo89AYODIdjFaoeRadKIOqG/mSImPnPMwFFRLXpVlxvj8QXz1W9oZJlwKmC1A1hlAzUngiyUeWQrsB5FssqPBafFIO3CS4wLZ5G5RRpXNe8xFxbMKMpNiY3u14C1NQOVxcWJugde+TEGOAojdngCAl9dxEqNFEZxzrN3r2zpLfqVI5WcWM333hH/wlmZg2asBlaFoxNfFshhtxQ7fNy4zCRjdl+GHRxV8tR9ocXBcPIShWwqdw0TkUCB3tQIA/vlzhn7dGHYd46iyAXVNwP99rH0+XDkCGNHbdZz/+LiCz3/kOF4ryNhkA958EoNbf8QFtq+QxOWxefzt+Sg47zKhxK0kxiX6gcI5x/Id8vRdjylIstJ1iSBCAY2YJAiCCBNVVVVunzMyMgwrOz4+HlarFS0tp3XAneuLJg4fPtz+99lnn60ZdNUZk8lkyIyMqqrihRdecFv2+uuvC4OuOnL11VfjjjvuwIsvvqi7rqVLl2LXrl3tn6+77jrNoKs2zGYz3nrrLWzcuBHl5a4BjAsWLKDAK4IgCCKmaVbFszpZlQRD65FJRbRkLYRvaIrRAhSoEF0bmRwnVPInGTIRkta54OBiSSADg4ke84WNeMk9ornTdxmqYzFBIgftLM8KtyRMa7s7ijO0zom2MmQyuI7bzDmXCrXCfT2Qtl+n3Et2bJmZBRYlTrpeokkiRgtQKuZNXGaXXMv0ome/aMniCILQpkoiRssyi4VLBGE0G2o+QSsXT3U4NXMWFNY1Btr4g+w8jQwxmkafLsySWoIgCIIgCIIgYheKz9MPxedRfB5BEAQRIlSneLly+l7KElOAiZe5/ukl4/TzYZmMqL4ZKK8HclL1FxtNyKRDA3KAOecE590C5xyorwYSkgHFBOZjn4hzDnzzsXEN6jPQuLJSM5BVUSlMKj1mA5BmXF0RiMPJwbnrvBGRHB/a9gQT7nSCf/0feYZh44EfvvZeUO+BYHkF7bqP/NaD0qxldS5BTSzDOUdlA8ABxFuAasmrsvRYl1zt2SJPO/8qKE+867ZILT8K7PIU9Q22nsB3jb08lpeE/zWoYVR5CXUq7I4uIUUDIJbDttGzn9fV++alwFrVjBZFfKH59iAJQKKJYxqSOxG3TGC4amQXOVeI0HKkGGgQ2Yn0w7TEaC0tAGKzg7S91Pd1sk6FN3dLYbh6FCCbzJUgwsnAHAZIzusHL2WYO9b1LGJcwenj961vnJr3tvEd8uZmMNw4TjKR8Xffglc9p6+hVeUolIT/FsdQfzoYlNfL087Og89SNG6rA1QnWIpx7ysJoqtAkeMEQRBhonMgVHp6uqHldy6vslL8YiraaAsoCjXr16/HoUOH2j+PGTMGM2fO1LXuI488AovFc3YSGc8//3z734wxPPXUU7rXTU5Oxrx5p2e1/eGHH9zaTRAEQRCxRotEjJZgsBhNJkzRKywhtHFyp1RyB8hlUAThDbtql4r1QiV/kuGPCEl2LpiZJWZn9I0G5CIy96hb2XdrtAhC7z1LKgkL0bkRx6xQJI+nO7ZVS9IVf2rf69lmO2+FCnGQecReD3TKvfyV3MnSG50NuuqV0ahqr+8IUHjqTbwGUB+NIALhpL1MuDzLkgNAHmLENQK3CEIvrWoL1lWvFqalmtIxNvX80DYoysi0iKehjAgxmsb9WyZrJQiCIAiCIAiCCBSKz/MPis/ThuLzCIIgiIBQVfHyACWjjDGgu0sY07+1RJrv/62N3fc5MjFahjikI2D4ikXgl/Zw/bswBfz8RKjzbwdvFU/+4rYu5+Bv/xX8it7Aj9uMaVBGd2DkBcaUBYBNvBz97IeEaSXlkuM4Bmi2c9z2DxVZv1WR+VsVd7wjPmdSrCFuWBDgDjvU//db8Jk9gXeeluZjf1wEWL3H47JpNwB5pwXL2c6T0ryVgYWlRDSccyz4TEXufSq636si514VaXereH+r+FjKDNI1KmL4bq00iU2d7bkwr0CYt8D5k3D5km2xc1/zJkabe07XiQ/lbz4pTWPT5npd39qrL66sXyFNP3jSJcAkooMfjvqWv0AcNkEQgVO0M+AiFC7vR6tq7F6XZIJYLfK7Gd8OgjCaqYOBboKwN7MC3CwRml0/Rt6nUxhw7Sidfb493+nLBwDlpShIF8fuHzwJ2B2xe/0JlCJxODUA4PLh+vvnfNuXUH92Fvj0bPAZZ0C9bgD42vcNaCFBdB1IjEYQBBGjxNKg+EGDBrX/XVpaigULFoS8DRs3bnT7PGfOHN3rZmdn4+KLL9aV12azYfPmze2fx4wZg379vM9o0ZELLnB/qblhwwaf1icIgiCIaKJJFUc0xUskNf4ik95oyVoI/TRLvsc2ZGIrgvBGs8Y5KhMphQpZ/VrCH7tUjGY2pE2EfySYJGK0Ttc2mQwi0eBjUSbZsvNWN7meVKYVonODMabrPJDtNyuLh4m5gsP13Kf1CNbChWyfy/o5Hvlkkjsv36VMQhKwGM3L+rJrmV70SM/0yNMIghBTZRcPfM2ytE0ZFzvPnYnI49u6dah3imdXPT/jUliUuBC3KLqQidFsar2mjDwUyPo1DAqsLDZnvCUIgiAIgiAIIvah+Dxjofg8giAIokugiifzAgt8aBd7/F8AgG7Ok0hz1gjzzP+EY/tPsTngVSaUCYYYja9bBr7g10B9tXvCqjfAF/7WewHLXwN//WGg2iAhbVoW2J/fB7MY+B5lxo0olEj2imsTwHlsHkd3vMPxxkaO+mbApuG4S46BVxv8lT8CH74MNIivFwCAzDPA8gpd15cEL/FEky53E6OlqPUwS+JDvAmgopk3NnH8fgnHiTp9+TPDG8IYVPi2L+WJvQe4jplOsFyxGC3f9qNweXE5cKI2Nq5HVRphYleNAH53cew8g9CCb/sS2LBSnmHiZd4LySvAs2W/R7zkHbndCZRWC5OICGTG874JWQu7e89DEP7An7w14DIUyI/nWO1fA0CVzbdt654CpCZ0jfseEd1YLQwf3q64PXewmoHXb2Qo6C4+hh+ZyTB9qOfyODPw1q0MvbP0Hfv8b4/51NZCiE2jThU4XCVMIgAUV8ivXw/O0Pld/bQf/N6ZwOF9pxcePwz+pxu1fzMRBOEGjZokCIIIE5mZmW6fa2vFg338pabG/QVF5/qiiblz52Lp0qXtn++77z4sX74ct9xyC2bMmIEePXoEvQ1bt251+zx27Fif1h87dixWr17tNd/mzZtht59+AZSfn+/zjJJqp9nESkrkM38RBEEQRDTj5A6pMMuqeJ+hzhdkkhmZiITwDW/7MVCBCtF10ZIKyc7rUJEou65oCH8cknPBwkgQEU6k94hO36VMzGX0sahVXpOzESnmtFN/h6Y9WiQqSbA56z2Wd9x3snOio/RLJgBrdp6+Bmjda0Ilg5Mh2+d65V7+HltSMVqA4tdG1YsYTQ1MeKqn/6VHnkYQhJhKr2I0MRyxG5xFhAaVO/F5lXjWZiuLx+T0S0LcouhD6zytspejp7VPCFvjjrRPpyTGlEiAIAiCIAiCIIjIguLz9EPxeYd8qovi8wiCIAi/USUD4RVT4GUPGA4oCpiqon9rCbYmjBJme2MTxwu9Y+u5rKpy1EhChDKSjN9W/tHf5Ymf/gv8rgVg8XIjG1/xN691sJ8/CgweBQweA9ScBPZuBSxxgNninjEtCxg0GsxqrKmLMYbCfqmA4PW+zWnBiVqgR7qhVYad+maOd7foe+eZbA1yY4IMd9iB/7zlNR+b4xL9sfEzgJVHwC/KEGc0mcAUBTw3//S6ADKdVSg353hkr2rkiNUJuRat9+29eUyL0T58WZrG/vwBmCKQguZJxGhVOwDJq9Bl2zluPz+6jyfOuVQY+NJchl+dx7rMO1X+0RvyxPEz9O2H3AJ0d1bgeFEfZAwUx8AUlwP9uvnZSCJk1DX5HotUkN01zhUitHAvQmP25Ae6ylEOHgM2idM6P2+MJXyV4vYnwSERRUzqz3D0aQXfHQKaWoExfbWfQ6QmMKy+W0FxObD7GMABpFiBsflASrxO0dahvT63M//7fwO4T5hWVEZiURlFZeLlo/oAcWad39fHbwNOhzjtozfARl0gTCMIwh0SoxEEQYSJzoFQ1dXGTTfQ3NyM5uZmt2VZWVmGlR9qrrrqKlx11VVuwVebNm3Cpk2uJwGFhYUYP348JkyYgEmTJmHw4MGGt6GszL0H279/f5/WHzBggK58paWlbp/fe+89vPfeez7V1ZmqKlI2EwRBELFJs2QmJ8A1sNZIZMKVQMUhhAtv+zFQgQrRddGSCoVbjOaPcFEmRjMzi3A5ERr0fpdNTnEUrtFSLq3ymlQbUuASo0llWiGUhOnZd7JzoqNcUCYa7LiNWveasF8PTOJ+i165l5595Et6o7MBnHO/A+oandpiNNm1THf5OvaLXqkcQRDutKjNqHeKBwi3CZdYjAaoE+FnZ8MWlNuPCdMmpF8kFXoSp0k3Z4FBARfMMFtprwirGE12bw5l35MgCIIgCIIgiK4Hxefph+LzKD6PIAiCCBGSgZAwBS5GY5Y48JzewPFDGNaySypG21kae5PdHKsFVMlmZRv8eoE7ncCWNfIMLU3A4X3AwBHu69nqgIN7gNZmoOQH7UqsCcCc34JZT00Om5oJ9NbX1zGSvj0SgMPitPL62BOjfX8EaJGcop1JtkbnO1OuqsBP+1yivQYd4uj8oe1/svhE8EtvAVYv9sz3s/tP5+meB5QfAQBkOquFYrRK7bCSqEVVOXYe8W2djMToPJZ0cUJyAQGAnv3Ey3PFYrShth3Son484UujIpP6ZsAp8eGM6hP9UjTusAM/7Qdy80/f2zrnOXkMOPET8LmGXCj/TH0Vdu8FmMxIcTbgDMcJnDCf4ZGluJzjoiHRvV9jlbI6DlsLkJEIvPWNb/1Wi4mESkSQOLBbnjb7HrDJV+gqRkn9XkOMFlu/01SVY1+ZS4q2TyIWkjE0l67PRHQRb2GY5MPrDMYY+ucA/T1/KmnCHQ7g4G7wVYLfZF5I+OCvyD3rf3G0zvP5U0lF7IqrfaG0iqOsDhiWC1gtrv1RLPFi9u/uub8450BpkUtu35Glr8gr3b/d3+YSRJeDxGgEEWGkm7vhifzXwt2MmCfdHH6tf25urtvnEydOoLKy0pAAqd27PX9sd64vmmCM4f3338ejjz6KZ5991iOorLi4GMXFxfjHP/4BwBWI9bOf/Qx33XWXYTNxdg6MS01N9Wn9tLQ0XfkqKyt9KlcP9fX1hpdJEARBEJGAlhgtXhG/OPUXmTikmaQbhqAlggIAOycxGuEfMqkQgwKrYuxMqb4iEwC08GY4uQMm5vnYzmzxXYIAACAASURBVE5itIhELrVq7PRZIoMwWMqlJQft2CZZe7zJtIxEj3hUj8BNj2BNds82wQwLi/Pa1mAibb9eMZqfkjuZYEaFE628BVbm33XSm5QsUDGat34DoH/fEQThTpW9QprWLkaTxj/EVnAWEVo451hTtUyYpkDBhRmXh7hF0YmJmZFuzkS146RHWpVde/baYNO5b9yG0WJ7giAIgiAIgtADxeeFjnDH6FF8nn4oPi8wKD6PIAiC0I1MjGY2KO4jrwA4fgg31ryNxek3CbPIBnVGMyUa25SfbVw9fPMn4A9e5z3fbecC/9gO1m8IuNMJ/uJ9roGwqsR605mps6XimFDSrXd3qRit0hZ7A6c3Fut/35lkDWJDggT/cRv4g7OB8lLvmQGXWGjkBW6L2Iz/Ae8sRlMUsGlzT3/OK2wXo2U4xXLq//6ku9lRxdEa/XK9NjJjdA4hzjlw7KA40WwBs0pikvLEYrTRzdukdVXHQIhQlcY2RPsxwr9YAv7UPKCpwdXfue0xYO697bI3XlcF/vAc4L/rvJbFpt+gq05mNoP36AMcKUFBa4lYjCYPjyHCRF0Tx9xFKv6zy/8yrh7JkJoQW/0TIjLgmz+VprEZ4t9dIhST/PjkMSRG23qI46pXVBzxc56Sm8bReUwQneEbPwJ/8ufeBdeX3Qp89Ibn8iYbCuwHcBSeBreu3i86Uctx9Ssqvjng+hxvAZ67jmHeeQqKysXX5oJOIlZ+YDf4H68Bjh7wrfLSIvAdG8CGT/Kj5QTRtSAxGkFEGCZmQpbFR80rEZWMHz/eY9nWrVsxbdq0gMveunWr2+eEhAQMHz484HLDidlsxpNPPom7774b//znP7FixQps2bIFLS0tHnmLi4vx2GOP4bnnnsNrr72G2bNnh6HF/tHaarz0g/PYeTBCEARBEB1plgyqBYB4gwfW6hG3EP7jbT86uB2c86if9YwIPXIRVSIUpoS4Ne5oyaeanI1INnsO9pDJhEiMFl5kModwidGsSgIYGLhAUNNRKCWTS3mTaRmJ7DxwE5pJJRodxGiSNjfpFKyF+/6SKOtn6BSwyvJ5O7YSFfnU2I3OBr8Fko2q9tS+gQpP9UjPSIxGEP5RaRdPz8jAkGHp1v5JBD2BJAKhpGkPDjXvF6aNSpmETIuBo5ZinExLtlCMVhluMZqf/RWCIAiCIAiCCAYUn9d1oPg836D4PP+h+DyCIAhCNzIxmsmgoV15hcB3n2NS09e4vvZ9vJfmeY8+UQc0NHMkx8dOHFZJhfhenJEIpCcas5288gT4A9cADn0TgfH7ZwHv/QiseB1Y8pL+ii68BuyeZ/1spbGY8/KR6qxFnclTQFu1fTswaFQYWhU8Hliqv0+XEt75OH2Gt7aA/+5yoNbzHZKQgmFgj78DZna/NrGzJgAPLAJ/8fdAfTWQmQP2+1fAenUYXJ9X0C44ynJWCYv/xzcci2+OvXjQIj9ex0W79EpKbSVgqxMmsb8ul67GUjLAUzOBOvdjhwGY1eMnLD/e22OdKlv0/x6LVTEaLy0Cf7SDzMxhB3/1QbD8ocC4S1x5FvxalxQNNz8I1meQ/sp79AOOlKCw9QA2JU7wSC4ui/7jJtb47Qc8ICnarOHAqz+LrfsKERlwzoH3npOms/yhusvS6vuoMSJGa7FzzHhexUntMGIAwPVjGD7dzVF9Kkw8M8klIxpXQOcyQXSEl5W6JO3eZOsJyWC3/wV83TLX77VOFJ74GuvTPMVoJRL5V1fh5sWnpWgA0GwHbn+HY1gel/7G699BjMadTvDfzwLK/DOA87umAp9WgiXKx3UQBAGEdwQoQRBEF6Z3797o3dv9oexnn31mSNlr1qxx+zx27FjExcUZUnYbTqfT0PL0kpOTg3vvvRfr169HbW0tvv76ayxYsABXXHEFkpPdO361tbWYM2cOli+XPzjXS0ZGhtvnujrxQ3oZtbVeTMyn6NbNfabUv/zlL+CcB/TvzTff9KmtBEEQBBEtNDubpGnxirEzJsoG6tp5K+yqvmAnQk6jU/vNBweHEz5OpUcQ0JAFhVD8JEOrDTKBk0NyvTErJEYLJ/GSe0Sz013oFarjUWGK9D7YURbVWdzW3h6D5aJa6BKa6ZBoyO7THbdRJuPQkhSGCln7m9VGqNz7jNEyCZhMuHY6XUOM5kVupoW3+7pdInnUix7pmV6pHEEQ7sjESenmLBKxEkHls6pl0rSLMmeFsCXRT6a5u3B5lSO8UztKJcGm0PU9CYIgCIIgCILoelB8nn9QfB7F5xEEQRDBg8ukWgaJ0VhuQfvfT1Q8Js1XEt5HxoZzsFK8vMDIeVe++LduKRoA4Phh4PtN4J/+S/cq7NNKKH96Bywh/HEMAIDcfGQ6PQdTA0DV1u9C3JjgckAi15ORbA1SQ4LFd2v0SdHSs8GWH4by5law3gOFWdiMG8FWHQNbegBs+WGwCZe6p+cVtv+dKRGjAcCe4/qaHk0U+yEUyIjVV2XHD8nT8s/UXrfDvawjw1mJcHmVfI7tqEEmRmMMSDM2HD6k8DXviZefujfyxgZgw0pdZbHrf+Nb5T37AQAKW4uFycUx1heKduwOjve/038NvWoEcGKBgtL5Cn54TEHNQgVL7zAhNYFkSkQQ2L9DnjbtBnmaAEWRKz14jIjRPt0NXVI0APjNVIaKZxXse8L1r/wZBf8zjrQnBOHB5x94l6IBwMybwVIywG56QJhc2FIkXF4c3vlWw0pZHcdne8Rpz36mwuY5bxAAoH/3Dn2O7zf5LUVrZ9OqwNYniC6AQdOKEARBEP4wffp0vP766+2f3377bTz11FOwWPwfZFZRUYGVK90fDE6fPl2Y19xpBheHQ79sorpa/JIrlFitVowbNw7jxo3Dvffei9bWVixbtgyPPPII9u/fD8BlZb/77rtx+eWXaz488EZOjvtMsUVFRcjO1v+2tK09vtajdz2CIAiC6Io0S4QuJpgNH7QvE5a42mGDRUk3tL6uhh7BiV21w2wiGQPhG1JZUASIkLTaIGu3QyITspCoJKzI5FNNqg2cu2Y3VbkqvW8F43hMUJKE4rM2WZRdbYWdt0rXDRUyCZu7wM27REP6HXSQY8mEgxEhSpTscw6OFrXZqzBEum1evkstcVogYjFvUjWZ5FF3+Tra1qw2QeUqFEZBEgThCzIxWpbltGiJQRxEyHlsBGcRoed4Syl22bYK0wYnDkdefL8Qtyi66Xi+dqTKHplitEj4bUYQBEEQBEEQRGxD8XmBQfF5BEEQBGEwTklfwCAxGvJOy2R62Y/AwlthZ57y1uJy4OxexlQZCcgG3udliJf7Az8oGSmrtc7LfwD2it+BeDDpcrBE+eRmYaH3AGQ69+AQ+nokVVaLY06ilQM+vkYZ0jM47WiDt7YAP24FSsVCHyGWOGDwaLBe/T3L2/ypvjImXgaWdYbXbExRgOxccWIHMdrQFvl5s+sox9CesSWw8UcokBmrr8rqJb9nFQXIzBGntZHTC9jrKV/MbBWfqDKpWDRR1SiOt0hPAEyK9nnCG2qB79YCh/a69q351H0/LRPIHwoc+hGo9vEix5hr3cKzwcy+91E458DhH4HFfxZn+PwD8DFTwYt36pOO5hWAJaX61AY2YAQ4gMJWsVBv3wnAqXKv+7cr4VQ5dpYCPxzlSLIyjC8AeqaHZv8crgIafehajOjN0D3V1bZcA/t7BCFE43cAGzDcp6IYk59TaoyI0XYf178d3VMARWHo76VrQBCxCq+vBr7/GqjpILE2W4DBo4BeA9qvGfzgXl3lsf6nrklX/gr48GUPWbGsX7S/vOv2i37UEHYv3S5P65N1+m++7YuA28G/+QTsout9X8/e6nruVNpJejd8otvkCQQRC5AYjSAIIozcc889WLRoUfugsYqKCixevBi//OUv/S5z4cKFsNtPPxhMSkrCL37xC2He1FT3B4M1NTW669m9e7dP7dL64W4UcXFxmD17NqZNm4YzzzwTR48eBQCUlpZi27ZtGDNmjN9ljx49GitWrGj/vHnzZowfP173+t9++62ufOPGjQNjrP2YWLNmTftAeoIgCIIg3GlWm4TL400Jht87NcUhqg0pIDFaIOgRozl4K4BYnR6PCBYyeU4kiJCsSgIYGDg8XwA2SdotE1kZLYMkfEMm91KhooU3I54loEVtEn7XQHCOxwRTEuDwDGhqu96KpGltaN3zjEYm7up47sra2nHdeMl30MKb4eQOmJhZKqaTfX+hRGufN6k2r2I02TXD27FlZhbEMStaued0Ro1OnVO2CfAmLpNdy/Sip9/AoeqSyhEE4Y5MjJYpES25ExvBWUToWVu1XJp2UeaVIWxJbJBpEQ8YD7cYLZJ/mxEEQRAEQRAEEdtQfJ6xUHweQRAEQQSITP5hNijuo4OQyAwn+rUewn7rAI9sReUckEyGE41US14hZyYbs42cc+CjN3xfUa8UDQCb5X//NFiw+ERksjphWlVtC3iTDSwhNp7zy6REIs5IBS4dFrzzh5eVgv/+CuCAb78H2te/5k6wXz8NZjK5Pv/zaWD5617WcsHyDBg43UHMdl3dEtyf83/CbHMWccwYxpESHzvXopIK39+Zp8QHoSGRQKMk7igxxftvr7RM4eKs1jLh8pgQo8nuY14usXz7evC7LzK+QW0Mnwz85QOwFP3mKe6wg//1DuDjf2jne0r/fY/Nmqc7bzsXXgM8fQcK7AeEySoHtv8EjO7re9GxSF0TxzWvqljb7l3hUBjwwhyG288P/sSkH+3Uf/1MjANuHBc79w4i8uFHxSIhAMBFc3wqS9GQDqkxMinpg8v0bUecGeglvuUTRJeAf7cW/KHrgcZ6cYYrbgN+sxAwmYBP3vZeYEZ34DxXrCWLs4KfMxVY8Te3LAWt4n4R58DWQ8DYfF+2IDbw5zccAGSd6qfzZa8Bb4l/8/rEmnfBC84Eu+F3ulfh5UfA77sCOLDLI4098hZAYjQixgj+rxKCIAhCypAhQ3DJJZe4Lbv//vtRViZ+YOuNPXv24Omnn3ZbdssttyAzU/wrsXt39wFte/bon8noP//5j09ts1qt7X+3tHgOuDWS9PR0XHXVVW7LDh48GFCZEydOdPv87rvv6l63oqICn332ma682dnZGDFiRPvno0eP4uOPP9ZdF0EQBEF0JaRitCAITmTiFgBocsrlMoQ+vAlUAMDOdcwKRhCdkMlztM7pUKEwRXq9apS02yE5DyyC2X2J0KF132k+dY+QfadAcI5HWZltkjEtsVQozw+ZCKNj+2TSr44ysUQd92mpjCMCrgdacjY990jZ96m1X9rzmMQzTjeq/ovRbE7JS9pT2Lm9fcCZP8iOCY98OgRqBEG4U2kXP5fuZjk9LSOTDJKJjdAsItTUOKqwpe4rYVovaz4GJp4V4hZFPzIxWp2zGnY1MDlpIMglteHvixEEQRAEQRAEEdtQfF5woPg8giAIgvATp0O83GQ2pvwe/YAOwhmZDKQ4vHNpGE61TfymKtOoMMIdGwwqqBOMAQXDwB5/F+ycIIptAiBz2FDh8mpTJvgbj4e4NcFDr1jposHAV/cpSE8Mohjtpfv9lqIBAJa8BGx29W/5vu3grz2kf90OckW/yS0AFNdw1V6Oo+hhPy7N+vznsfWWuciPn5kxK2iWCR4SU7yvmyL+fZ3RdEK4vMoGqGp0H0v+iNG4wwH++E3BaVAbO9aDv/1X39ZZ+75XKZovsDv+D7jubt/XS04DLHFSAQgA3PA3NZCmxRRPf8Y7SNFcqBy4818cB08G//y699/66phQ4LoP98qM0WsnEZnIxGh9BoJliGN0ZCgaRg8e5fcyADhSrX8b8rsBJg1RHEHEMry1BfxPN8n7zIBLarZhhffnEdYEYPSFYC9/CZZ4ekwA6+lpOdPqF81Z1DX7RSV+PB9LsgJWCwM/dhD8Wd/7qTL4qw+CF+3Un//lB4RSNIKIVUiMRhAEEWaeeeYZJCaefutWU1ODq666Cg0Nvg1AraiowDXXXIPW1tMDW3r06IFHHnlEus7IkSPdPn/00Ue66vr000+xZcsWn9qXnp7e/vfJkyfdZs0MBmaz+wvijoFf/jB58mT07du3/fPWrVuxatUqXes+/vjjPm3vr3/9a7fPv/vd73w+HgiCIAiiKyAbVBuvJBhel1WJB5P8hCbpRuDo2Yd2Hr4B3ET0IhUqRcjg+0SZFErSbgcXB8iamUEBsoRfyOReQAcRmYbIKRjHo0y01dYOLdmW1vYYjWzbO+4vmVSuo0RD+zuwuf3v0YYQbq+MeC2xm5d7JOdcLn3TsW2y70CPkE2GlggQADhUqHAGrfz2fAFsA0F0VSod5cLlWZbuwuUEEShfVn8EJ8R93Isyr4zdgQBBROt8rXKEb6RbJEtqCYIgCIIgCIKIfSg+LzhQfB5BEARB+IFDcr8yWwwpnsVZgZze7Z/7txYL85WUR/+g+45USeY11RLK+AL/4t/SNPb0CrDbHvOtQGsC2Bf1YF80QHlzK9gFV3lfJ0xkdhNLjMpN2cCWtSFuTfDQI0YbkAN8+lsT+ucEUYpmbwU2rAy8nC8+dP2/bqlvK+YWBFw3s8QBPfq2f766fpk07wdbY+tadLDSt/y56d7zRC1Nkt9XCeIJHDvC0sRitMzGI8LlKgeqo3x+a3/EaNi9GTh5LCjtcePLD33Kzr9YYljV7PevgM35X//jBoaMRZpah2xJLMzBkwhocs9Y4t8a1+Ml24K7j07Uei+/ewpgf1XBhvtNGNWH4kiIEHP8kHj5xMt9LoqZ5EoPVY1+KdGy7fqvF4UUjkh0ZXasB2pPes3GP/+39vOIBSvBPquC8tzHYJ0l14LfdsnchjMcYtnw4aqu2S/6qcr3dbLa+uje+sk3PQD2ZYP7v0ff1lyF6+x7c4cdWL9cV16CiBVIjEYQBBFmBg0ahBdeeMFt2ddff41LLrkER46IH9x2pqioCFOmTMHevaf1/Iqi4O2330Z2ttw8Pm7cOLegr2XLlmHr1q1e67rpJt9nlRg8eHD73w6HA19++aWu9RobG/HCCy+gvl7DftyJhoYGLF3q/hKnY/3+oCiKR0DUvHnzvM50uXTpUrz88ss+1XXjjTdi0KBB7Z/37t2LK6+8EtXV1T6VU1FR4bEfCIIgCCKWaFabhMuDIUZTmCItl8RogaNHXGJXgxu4T8QmUqFSBIiQALkEQNZumSDQzIwJkCX8Q0ts1naP0BI5JZiMmqK4Y5kS4VibqE3SHgUKrCze8PbIkLWz4/6SSeU6yt/0fAfycsJ/PbAoFlhYnDDNWz+jlbdIJWN6pHuJJnHAYaPq/wCwRqf3de3cv/u6XbXrlqVSH40gfKNZbYLNKX4Gm9lBtMQgCzDsekERRGA0ORuxoeZTYVqWpTtGpIwPcYtigwxzN2lalT18YjSZ3D4YfWGCIAiCIAiCIIjOUHyeNhSfR/F5BEEQRAhxiicLgcnACfGGjWv/s6D1gDBLsdgPErXIhDIZRj2C/mm/PG3gKLd9rovhk8AscWDmyJ8IsWe2OIZkVcqlQLm+vnQ0UKkjvGDK4NPvSfm+7eDvPgu+5j3w+hrjGnK0RC5Q9IXP/gV13iTgn3/1bb3c/MDrBtwEjeOaNkuz/XAUUNXYeM/cbOewtfi2zgUDQy/34U4n+OZPoL7xBNRFj4J/uRS8KQjxNY2S2KFEsWzRjRSxGK1nvVj2CQB7j+tpVOQiF6PJjxH+zcdBak0nThwGX/IieFmpq97iH6AuuBPqL8aD/+sZ8JOunc+//xrqQ9cDRrVLUYBzLgqsjNQMAEC2UywecahAhf5HITGL3cFRohFK8KPYn2IY+3SUP7k/YFJIiEaEiVqx+ZRl9/S5KK3DOBa6RL5cL87Np3Oa6MLs/lZfvq+WActfl6cPHgOmSFRBkt923SXCWM6Bsjp9zYol6pp8v/i2yYv5ljWa+djwSWBmi9s/nDkW0JL+vj0f6qsPgf/zafDd7pMn8T3fuZb/6xngX88Cdn3jKQgiViAxGkEQRARw66234s4773RbtnHjRgwZMgRPPfUUSktLhesVFxfjoYcewrBhw/DDDz+4pc2fPx9TpkzRrDclJQWzZ89u/+x0OnHppZfis88+88jb2tqKRYsW4dxzz0VZWRkyMjL0bh4A4IILLnD7fMstt+Dll1/Gtm3bcODAARw6dKj938mTpx86tra24u6770ZeXh5uvfVWfPTRR5pBWFu2bMGUKVNw+PDh9mXnnnsuBgwY4FN7Rdx99904++yz2z8fO3YMEyZMwJIlSzys7DabDY8//jiuv/56qKrq0/4ymUxYsmQJUlNT25etXbsWZ511Fl555RXN7a+qqsL777+POXPmoFevXnj++ed92EKCIAiCiC5kg2rjleAMqk2UyVt0SL0IbfSISxw6JSgE0RGZCEmPLCgUyIRMsnY7JCIhmVCJCA0WFgcFJmFa23cp+06tLB4mZnygq+wYbxe1ySRhpiT/Z1j0A1k77bwVdtUOznm7zK0zHaVqViVBKupp21Z5OZEh45DtC2/9DNmxBeiTvknFaDrkZiJUrkr7aB2xq/7d15t9kJ2RGI0gfKPSXiZN62bxPkUjJzEa4SMbaz+T3jMuzLgcJibuXxHaxClWpJrE08uHU4wmlVZHyG8zgiAIgiAIgiBiH4rPo/i8jlB8HkEQBBE2HBIxmtm4CfHYNadFowWtJcI8R2uAxpbYebdTLXlFrSWU8YkjchkPy8gGhk8GhpyjryyTGWz2Pca0KwQUarwmfNkyG7zeN7FspFLtJbwg2Qrceb7reOLvPQd+27ngLz8A/vhN4PMmgpf9FHAbuL0V/Fadx5Ee9mzxnqcTLMGY9zbs1ofb/76i/iPNvHMWxca1SOsY+uMMz2tRvAX41fmhFYJwhx38kTng910BLP4z8I+nXJ/vmgpeIxZH+V1Xo+Q3VaI4TsmNNLEYrUfNj0iyileZ/LQa1fe1apu47ZqCzyb/J730Fb7wXvCbR0P9863gt4wGVvwN+HEb+Ct/BL+yL9T/nQF+5wUueYdRXDwXLKdXYGWkuJ4TPFzxF2mW97dG73FjFIcqAacqT1+8iQdVYllcoV12nBm4ZyppEIgwUifp76aK71daSAVGALjWiRgllJTru1Z0TwFuGU9iNKJrwo+WgL/xhCFlMa3rUM9+wsWPVjwpXSXWJPp6qG/2fZ2sJIBv/Rz47zp5pkGjgJEXeCxmZ/QBLpqjXcE7T4O/9hD4ryaBL/4zAIAvftL17OG1h1x98EWP+N5wgohyIn96CYIgiC7Ciy++iIyMDDz55JPg3PUjsL6+Hg888AD++Mc/YsiQIejVqxcyMjJQWVmJw4cPY9++fR7lWCwWLFy4ELfffruuep944gksW7YMNTWumWrKy8sxbdo0FBYW4qyzzoLVakVZWRm+/fZb2Gyup/VnnHEG5s+f79PMlNdeey0efPDB9lk2jx075hFs1sZNN92EN998021ZXV0dFi9ejMWLF4MxhsLCQuTn5yM9PR1msxmVlZXYtWuXxyyeiYmJeP11DSuyD1gsFrzzzjs477zzUFnpsr0fP34c1157LXJycjBq1CikpaWhrKwM33zzDZqamgAAaWlpmD9/Pn75y1/qrmvo0KH48MMPcc0116C2thYAcOTIEdxxxx246667MGzYMPTu3RupqalobGxETU0N9u/fr3sWU4IgCIKIBZrVJuHyeCUhKPVJBUYk3QgYLalLG3aJEIogtJCdnwkS0WGokQkXZe22q+LzwMyMC5AlfIcxhgRTImxOz4CuNhlXqI9FmeyrXdQmaU+opYFa29+s2mBRrOAQv+zv2FaFKYhXEoTys3YZXITLOBJMSah1egZQeOtnyLarrUxv+Ctkk9GsNuqSI9n9FJ5qba9HXpLXEoRPVNrFUQ0KFKSbu4W4NUSs4+B2fFktHgSRpKRgfNrUELcotsi0ZKPOWeOxvEoy42OwUblTKsGLFGk1QRAEQRAEQRBdA4rPOw3F51F8HkEQBBEmnCEQow0ZAz7nf4F3n0WhRIwGAAdOAmfmGlZt2HCqHDVSMVrg5fPmRqBcfP9nTy11/a8owHMfg7/xOLDtS8BWK8isAPlngl1zJ9goz8GxkUr/HAZIYgDuPuM5zC35AZnDfRP6RiJVEikRAFw/huH+6QxDejLwk8fBX33IPUNpEfjb88F+91JgjfhqOWDXiKXo0cdz2fHDnssiAHb2xPajJp63YH/xEAwo3CPM++9tHA8e4TgrL7rlGJUaISp3ns8wug/Dog0q9pcBI3sz3D2FYXxBiLd5w0fA+hWey/f9F/zDl8F+buDgeqkYLcX7uhLBA2tpwoBsFduPiKUy737H8fOJ0XkcVflzH6s84V9lomsJALS0AFUaZTbUAJ++I0777nP99Z/RB8L5T9uuZ2ndwK67C7jhPv1lykh13Z+uqV8KmX7invc47row8KqiGT0SlC/3AVMGh77+q0YAv5mqYEJhdJ7bRPTDOQcaJGK0FPGkhVooivxYDqJ/MGRonc99swCrGRibz/DoZQw90um8Jrom/E25sNUX2P8t0U5PTAHP6A5Uu5+YlzfIxdXFFRwT+3etc7Ohxfd1MpMA/txv5BnMFrCFn0plmOyBReC7NwNHD3iti7/xBHDWBNfzJr306APEaxmWCSI6ITEaQRBEBPHEE0/gvPPOwx133IGioqL25Zxz7N69G7t379Zcf+TIkXjttdcwevRo3XXm5ubiww8/xKxZs9xmOiwuLkZxsefsRv369cPq1atRVlamuw4ASEhIwLJlyzBr1iwcPXrUp3U7wzlHUVGR2z4SkZubi6VLl2LYsGEB1deRoUOHYu3atZgxYwaOHz/evrysrAz/+c9/PPKnp6dj5cqVcDqdPtc1depUbN26FXPmzMHWrVvblzudTuzYsQM7duzwWoavM4cSBEEQRDQhkp8AZw13OQAAIABJREFUYRCjOSVvpAnd6JGc+CtQIbo2ES9C8lFI5JAIAi0KidHCTYLiTYwmvlcE61j0JvOUCSlDfW5o1deo2mDRkGJ2ln4lKEkSMdqp7yBCtlmGvJ+hfY/UStcjGkk0iWdibVT9m1W00alvPdn1zBt6ZKrteUleSxA+IROjpZuzYGKm9s+Mda3AByI4bK3bgBpHpTBtcsYlsCrxIW5RbJFpycahZs/3J7LzPNjIxPaAXOhLEARBEARBEAQRLCg+Tx8Un0fxeQRBEESQcEjek5pM4uV+wi6eC/7us+hj/wkm7oCTeQ4dKy6PDTGaTIoGABlGPILWGqjae0D7nywxGezXfzWgwsiif3ft9A+32PGL4aFpSzCpkoQXPDyT4U+XdxjM/O2nYsHhhlVAgGI0vmmVPPHsSVBeXOu5TtlP4Nf0D6jedvqfbUw5bYy6wCUKBJBvP4RsRzkqzOIDasWO6BejyY4hwDVwftYIhlkjjL3W+wrfKJcgYMNKwFAxmiR+KEEcp+RGiliMBgD905ux/Yj44v7RTo6fT9TTuMhDdvxoitGOyOWnUm55CMqtD0uT1asLpDLQQGGfVYElhDZOj6VkgMPlYRvevBM74sXXufpmjpT46L4GBUJxhXcb0/IdHFMGB2cf/VQlXj7nHIZ3bhMLRQgiZDQ1ALJnjim+PxNUJJIcAOCqeBLpaIFzLj2fl96uYNaIrnudJYg2OOeAVp/cF3rp+B2Ym+8hRmMARjX9F9sSRnpk1yNLjTX8EaNloRb4ab80nc1fBqYhhGZmM/DAIvBfT9FVH18gngBJyMjzoSz8VH9+gogiSIxGEAQRYUydOhV79uzBBx98gDfeeANfffUVHA7J7FAArFYrLr74Ytx222247LLL/BqYduGFF2LLli34wx/+gJUrV7bPiNmR7Oxs3HzzzXjooYeQmprqc+AVAIwePRp79uzBu+++i08++QS7du1CeXk5bDabNDApLS0NX331FVavXo3PP/8cO3fu1NwfADBw4EDcdNNNuOeee5CYaPygmuHDh2Pv3r14+OGH8eabb7oFrLWRnJyMa665Bo8//jh69eqFdevW+VVXYWEhtmzZgtWrV2PhwoXYsGEDWlq0e9uDBw/G1KlTcd1112HChAl+1UsQBEEQ0UCLZGBtvBKcQbWJJm3JDOE/eiQn/gpUiK6N7NiSnc+hxtfrikwQaGYkRgs33qRWcilXcO5Z3qR7UmlgiM8NLSlZk7MRTkX++7/zuommJFQ5KgTlnPoOJNscKdcD2b731s+QfZdmZoFFifNab6IiEaPpFJx5tkffev4KT/XIVNvwRaJGEIRcmJRl6RycLn7+LHqmTBAiOOdYU7VcmGZhcTg/fUaIWxR7ZEoGlVTZPftKoUCrPxMpklqCIAiCIAiCILoWFJ/nDsXnUXweQRAEEUJEQiUAMBsc95GbDwCwwIG+9sMoiSvwyFJU3qYKiW6qNcRomkIZvRzxFNkCcMnsevQ1oILIJjWBITEOaJS84n+vqBt+EdomBYVKnVIivvLv4oxVJ8Ab6zUHP4vgqgp89i/wF+4D6iQmCQBs1PnihO69gLxC+XHqA2zuvQGX4caZ49rFaABwoW0d3k+7Tpi1JDyvsAxFJrZKsgJWS4Rca49qiLRKfgDn3LiJ0po8f8MBABJ1iNG6y62dF2aU4gMMFKat3AnYWjiSrBGyv33AVzEaLy0CSn7wuR424jztDCMvAD552+dyvTJ0bMilaADcpEWDWn6UitFKKoDhvULVqMhDjwSlpDx4MUFVNnHZPdL0rc9bW4DVi8F3fQu00GT3hMG0NMvT/BCjMUV+j1KjPPSurglwSNxuuTSvBNHF4ZtWg3/zMXBoL9BQG3iB3fOAPB1itMKzgF2bPRYXtJYIxWi7jkb5hcgP6jUu8zImH/5Anmi2AEPO8V7IwJFAUipgq/Oe1wchMht5vu68BBFtkBitC8EYSwEwEUAegG4A6gEcA7CLcy5XU/pejwXABAC9AfQA0HCqnu2c80NG1UMQsYzZbMbcuXMxd+5c2Gw2bNu2DcXFxaioqEBrayusVitycnIwYMAAjBw5ElarNeA6Bw0ahOXLl+PkyZP46quvcOTIETQ2NiInJwf9+vXDpEmTYDafvm2cf/75fg12S01Nxbx58zBv3jxd+RljmDx5MiZPngwAaGpqwu7du1FSUoITJ07AZrOBMYbU1FT07t0bZ511Fvr06aO7Pf4GRKWlpeH555/H008/jXXr1uHgwYOorq5GdnY28vLyMGnSJCQlnX5w6+/+Alz7YObMmZg5cyaam5vx7bff4vDhw6isrITNZkNSUhIyMjJQWFiIwYMHIysry696CIIgCCLaaJaI0cIlmSH8w8mdaOHenybaVf8EKkTXxcHtaOXiQQuRMvheKtOSiAMcXBwgS2K08ONNahVqEZm8Pa7AD6k0MMTnhlWJB4MCDs+34U2qTVOK2fl+Hy+7T6s22FW7VMQVrH6Dr8j2vTcRmFT4pvO7lB0rvgjI3NbT2S+yq/4JT32Rnfm7DQTRVZGL0XLcPsvCszi6XlAE4R+7bdtwvPUnYdq5aRcixZwe4hbFHp5CQxdhE6M55cHHkfLbjCAIgiAIgiCIrgfF552G4vMoPo8gCIIIIU7Je1KTsUO7WEISeLeewMljKGwtEYrR9EgwogGZTAYwRozG/0+i/erRF8xooV2EYlbkaV/W9g5dQ4KI7DjK6nwMcYntAQCOHgD6i6U7MvifbwXWvOs942U/Fy5mjAG3PQb+xE2ARITsQXI6kJENlBadXjZoFDB5lr71dcKuvh38rb+0f76v8lm5GC2Iwp1QIRP7ZEZGWJILbwPqv1sLnHORMXU1ysRo3uWBLCkVPKM7UO15o5qTsBm/kojRAOD8BSrW/U6JKjka51zjGuS5HXzfdvDbzvW9onOnAcMnaWZhc34L/vVqTVGjz8RZwW592LjyfCE1s/3Pxyv+hPfSZguzPbFKxYe3m0LVqohDzzW4OIihBr6KATvCHXbwe2cCO9Yb2yiC0IMfYjQoChhXwZlnB1uNcjNalZawOpL6QwQRYvjiJ8HfeNy4AhkD+/mjYCbvfRf2P/eDL3/dY3mB/YAw/8qdQLOdIz5SxM4hoEF7jhwPzkn4CTM3/kGazm5+ECzZu92VxScCN/8R/CV5WT7Tsx9w2a3GlUcQEQaJ0boAjLEJAB4GMAWS75wxthPAqwBe435GBjDGsgH8CcBsAJmSPF8DeJZz/qE/dRBEVyQpKckt8CjYdOvWDVdffXVI6vKHhIQEjB49GqNHjw53UwC4ZgSdNm1ayOqLj4/Heed5maWDIAiCILoIsoG1ViUhKPUlmMRP5GVCEkIfegUndg05DkGIiIbB91IhkeS8kEmiSIwWfmRyrXCJyGTtaVYboXJVeu8KlqhNhsIUJCiJaFQbPNKaVBscTHzMW1gcLEqc27JEmQzOaUOzxr061NssQypK9HKflKXr3a5ERTwTa5PT8zvRg80pCWzshEMiqvNG2zmlKy/JawnCJ6qkYjSxYIkg/GVN1TLhcgaGKRlXhLg1sUmmJVu4vMZRCSd3wsRCG9StJSuVPWshCIIgCIIgCIIIJRSf5w7F51F8HkEQBBFEHOIJ8WAKQtxHbkG7GO1TQXJJRXQPvG9DJtMwKUBKfGBl8/pqwFYnTswrDKzwKIJ5GRO9f8dBDBjeLzSNCQJaUqLMzlIiu0asw5ESn8RofN92XVI09qd3wLr1kKdPuRbIOgP8rqm66mVPvAvkDwVWLQYv2QU2YDhw9R1gcYHLoN3qyegO3mcQcPhHAMDwlu9xd+ULeD7rLo+8wRTuhAqZDMQIQaMR8IZaoPakdp6F/wv2zg/GVNgojjtiOsRoAFzXWIEYLalsH9b8VsFFz4klhdsOA+9/x3HrxOiROTS1Ai2S7oHo+OFvP6VZHltSBGxZC771C6C+GkhMARsxGbjiFy6Zota6+UOB1zaAr1oMvLNA7yZol/nSl2CDRhlSls+knJ6ULd9+CMnOejSYPI/BZdsBp8phUqLnuDESPdfgQycBu4PDYjZ+H8nuwRl6Qgm+/g9J0YjwkeLPxI8MClQ44SlG83fCh0gh2MJqgohGeG2l175bG2xJEfg1/bUzXf5zsAuvBRt1gb4yu+eBZ+YAVWVuy/u3FkvXWfpfjrlju0afiHMuFaOlJwLn9D39OTEOGJ9Ti18+PxqJvElaJrvpAd31s+t/C/TqD75+JVBx1CWqDgD26nqwDIr3JmIXEqPFMIwxC4AXAOiZ9u1sAK8AmMMY+xnnvNTHui4B8CYAb1fM8QDGM8beATCPc06j0wiCIAiCIAiC8ItmiRgjPlhiNJmwhMRoAaE1QLoj/gpUiK6L1rkpEyiFGpkUS9Z22XlgITFa2JGK0U4J+mTXumBJuWT3LA6OFrVZ3p4wSAMTTElCMVqj0waLRIwm2t/y+3SjtowjwkWJ3voZgX6XiSaxGK1RbQDn3GtAnN72dMbBJRF9XvCl36W3LQRBuDhpLxMu9xSjdY2gByI4HGraj6Km3cK04cnj0D1OPqiD0I9MjKZCRY3jJLIsOSFtj0xWamXxMDEKVyAIgiAIgiAIgiAIgiAIogvhlEwMaQrCs9K8AmDnBhS0lgiTi8Vz5kQd1Y1igUBGInx+3+3B95vkaSRGa2ftutKoFqPZWgC7U5zWUeLAOQeOH5IXdPKoT/XyDSv1ZRw61msWNnwS8KsnwV990Ht5eQVgmTnAjX8I/pvfM89tF6MBwCW2T4VitLI6oKGZIzk+et9FH6sRL48YEcjRA97z1FYZV1+jZGLFRHGckge5BcAPX3suP1KM4b20V/1sD3DrRH3VRALHa+VpncVQnHPgu8/lKySnA917gV12K9hlt/rVHpZXCParJ6GWHwHWvOdXGe1lPfbP8EnRACA10+3jpKZN+Dh5ujDr/jJgcBcMV3A4OQ5qOxNd+VTgcBVQGATXRnUAYkm+ZY2xjSEIvSSng5n9iN1XFDCIf7+oztgUozEGpAVneBdBRD47N2rLtdvofzaQnQfEJwLN4hsj+81zYFff4XsbzpoArFvqtkj2nAgA1uwB5nr/CRoTNNsBp9i3jNV3KRhX4P77lK/+CFww5qWdWb/0uQ1swkywCTNd5a9fAf7gdT6XAQC49i6SohExD0UaxyiMMTOAjwB0nibNDuBbAEcAJMElROvdIX0ygDWMsQmc80qddZ0PYDmAuA6LOYD/AjgAIB3ACADdOqTfACCVMTaLcy65bRAEQRAEQRAEQchpUZuFyxNMeqYI8h2ZwKhRMsCX0IdewYmdSwIDCUKC1rkZMSIkmchJ0na7RCRkJjFa2In3IrmTXeuCdSxq3QubVJv0GAuHNDBRSYLoIWSTaoOTiY95kURMKqfT2F7XepFxPZCKEp2SyJ/2dMl3GaAYzcEdsPNWxDHfZgRudGq88OuA3U/hqS/9LpLXEoR+Gp0N0nOms0CJScLjuSRoiyA6sqZquTTtosxZIWxJbJNplge5VNorQi9Gk4ntg/T8hiAIgiAIgiAIgiAIgiAIwhv8y6Xgb/759IKak0CVYBKZoWOB0VPA/ud+MGt84BU7JfYlfwbVe4HlFoADKLCLZTg/VQHNdo54S/SKiAD5AHyZTIMf2A3+/kKgaAfQMx9s+g1gEy8TZ9YQCbEJl/rY0ujF2xGy80h0vyes1AgtcDuOPnwZsNXJMzv0xzfympPAW3/xnrHwLKB7nr5CJ1wKeBOj5Z8J5PTWzmMgbPwM8NVvtn8uaJWfUxuLgelnhqBRQaKkXHwe9MkK/jWWf/sp+EeLgdL9rgXJ6cCoC8B6DwD//N/AsQPAAfHkVW7UngQvLQLr1d/3NhTtBP/geaD4e0B1AqVF4oyJKbrKY70KxREIG1chs3Qbzs0fgc2Sw+mDrRwPXcpxZm503N+KNESlvTM7LaipkEvnAGD8jMCloKdg42eAByhGw5gphrTFb1LS3T5e3LBGKkYrqeiaYrTSarkctDPF5caL0VSVS8VoGYnMJQNcsQh8/Qqg8rhnJj3XNoIIBudM9W89xqBwVdjB5jy6+9RVNrmwWlGi455MEEbCm2zgj8zRl3n8DDBFAR93CfDlh+I848R9GK/kFngsGtO0TZq9WPK7JlrhnOPldRwrd3DUNAHn5jM8dClDdgpDQ4t8vWTB8Am+6g3NugJ+TjTyfMCaALQ0+bwqGz8jsLoJIgogMVrsMh+eUrTnATzGOa/uuJAxdjGAVwDkn1o0EMBSxtj53EtvmjGWB2Ap3KVomwD8gnO+t0M+K4B5ABYAaHtrcxmAPwP4ow/bRRAEQRAEQRAEAc65dGCtVQnOlCIiCQtA0o1A0ZLVdMSu+idQIbousnOTQYFVMSBY1QBk15UW3gwnd8DE3B/dOSQiIRKjhR+ZiKz51L0q1CIyLSlWk2pDY4hFbVrIzoNGpw0ORSJGE7RTqxzZ9kbD9cBbP0Mq3dN5bGkdK43OBsQpPorRtGZC6oC/wlNf+l16+xgEQQBV9gppWpZFb1RjbAVEEMZT3nocOxq+Eab1TxiKvgkDQtyi2CXBlIhEJVl4X9Y634OF7P6tV+RKEARBEARBEARBEARBEARhOPXV+kQKu78Fdn8L/v0mYOGngctGJOIkZgrC0K68QgBAYWuJNMtLX3Lce3F0D1L3RYzGD+4Bv+P803Krop3gXy0DHnwDbPoNnvmPyvcdRl7ge2OjFG+H/aK6iXjJ7oTZYgpNgwxGdgwBQOapcCD+wfPgL9ynXZBDHOPSGd7YAH77ZO8ZE5LA7pyv+7rD+g4Gn30P8P5CeXl3/dUwaZIuxrsPDO9tL4WZ2+EQxLrNeF5F+TMKuqVE5zWpWPIKzmiJUGf4F0vAH/sZ0Hn45/eb/HqDz+eeCXxcDpacpn+d/TvAf30h0KQjTkenGE0kcGiv79cXYv793+C8A4OkeSbOV/H1HxQM6Rn5x9P1r6vC5bnpQKLVvf38H0/JC4qLB7vpAeMaNnkWMPZi/H/27jvOjeL8H/hnVtJVt7tz99nYvjPG9GIIzaETOtiUHzgkAUIgJkCAQPgmQAiBFGoghJJAgNA7JmAwmGLAuFKMbTC2z/3cfcXldEXSPr8/dLZ10jyjXZ3q6Xm/XveytTu7O5JGuyvtzGcx6/2EFldX3wPVIzrZLc2itn9x49O4tv+92qLhEJDsby/Jdsck53uKVLxGW1tid187lJcC9OhNwPP690yIjOk9EOrimxNbVllQzBHatnO7753bwGohujKybdA1J/Hh+JGG7w01bgIAQF18C2j+DGDz2o5lfnIj1MDhmoXjU5VVMXudAgQwpnUGPis8LKY8970mV133MuGBD3e9AnNWEN6ZT/jqFgtzVvDLdYsaXkIzJwMLZvILHDUWOPiETtVVdesJTPgL6IHr+BMknWPPDYeqCdHFSTBaF6SUGgXgmqjJvyGi+3Tlieh9pdQRCAea7Tgy/hDA/wMQL9r9NgBlEY+nAzieiFqittEK4B9KqVUA3oiYdZ1S6l9EtDLOdoQQQgghhBBipwC1wYb+R8IiSx9O01lcWIyEbnQOF1YTLZhggIrIX1x4YrFVAktZaa6NnjG8KuRHN2+PDtOCtv5z4LMKtNNF+nDvpb/9GJHuILIiY9tqYo9dGQlGY47bzXYTQqTvNKp7vbn3oMVu2hlQp9t2tuwPuNch3nHS38n30hTO57e3oxcqHK1nV30cBqMlGHjq5rzL6TmGEALYHNignW7Bg17ejh1FVR52BBXJ8WHDmyCmc9/x5WPTXJuur9zXB/5WXTCa4ZbjKcIdv1P1+40QQgghhBBCCCGEEEIk3defAPNnAPse3rn1hJjgJG8KbohXGQ6VGda2AhaFYKvY0Ko/vkX4zYnJ33Q6Nei7A6BM8xM0vfrPXaFokdNfuE8bjIY1y/QrP/0SKCs7+hqkg5Org5Nf/xKn/b9DUl6XVDAFo5WVAhQMgJ67J/6KmODDGB+9AtQaQvfaqSdmQ7UHHDplXXkX6NCTQM/cCSz/LrzP6T0Q6uQLgSNOgxo8wtX6Okt5vaBjzw0/ZwBehDA0sBI1Bfrn9d8ZuRnWaNuEZZkKRnvmTneD5p2Y8gIw9pfO6/DKP52FogFASTdn5Sr5YDS0teKIaX/G05c8i58+oX/uW1uABz8mPPLj7G5P21oIW1v087Rt59WH2HWpV5dAlSWvwamCQuBvbwCf/Q/03Wygrb2izU3A7ClA3Tpg6CjgwKMAKKB+QzgsYo8DoS68EWqvLDgmlPYMp3u2f0a6UROO8H+Oz0uOiClak/7L6Fnhyc9dBKOlICjFeAxW24DXHk5sxf13Aw4/JbFlheAoBTV8r/A5VUX/hNdhQR+ImeO5aHwwmnQNEvlozgfAd7PNZc69Emr3A4AxZ0CVhscMqWGjgMdnhM+/ViwEuvWEOugYqAOOSrwuTODwTevvwEm7TYqZvmFr+By1e1F2n0c7Ubed8MgnsTvXpZuAF+cQnp3J73i7R91Xnp4zBLUO3wvqT88n5XcidfYVwJ6HALPeBzVoTlBXLwmf31ZWA0UlUPscBhx+al79RiXylwSjdU03Aojcg33AhaLtQETrlVKXAJgaMfkvSqlXiEibNqCUGgHgZxGT2gBcFB2KFrWdiUqp/0YsVwjgVgCXmOonhBBCCCGEEJFa7WZ2XrFVnJJtFjPBIa3UghCF4NF0HhPxOQ04CVBiASoif7HBT57sucLG7VeAcKBPN0QFozEhUV7NXTRFenGhDjsCubj2aAql6gyf5YNPFWj3nc22H81MYFSq6mPCB4/6EbL0bb5I8znmPk/+UBMfHpaB58vh6tIcagIRsXfs7ex7WWLxHQ6dhpx1XCa1gaduws4kvFYI57igpHJfb1gOv+fkeN8skWLbgo2YueUj7bwBBUOwV+mBaa5R11fu64Pa1uUx0+uD6b+tYzadewohhBBCCCGEEEIIIUTC5k/vfDAaF5zkSUG/s0HDAQAFCKB/cAPW+gbGFGkLAsEQwevJ3QGvaxr00ytKNc9p6hv6wssWgFr8UEVRfRHW6MOr3IZV5bobT1b47avmq4HTFvhx2v9LU4WSbHWD/rmVlQAeS4FW1YQDf+KgUMBRiBzNmx63jPr94wm3MzX6WKjRxya0bErsNrLDwxFtNWww2rQluRnWWNsAtDK5l1V9Urd/Jf82oGZe8tc7bzqUi2A0zJvmvGwvh8FdldUdAq1itzkdJ16vYOqpMG1J9vdimLuan1fVt2PbIU2w507D9kxqKNoOyusFjhkHdcy4pK87HZRlgcr7h0Pc2u3VupAJRsv+9pJsrQF3z3lpCl4jLuAWAMrWfAO08uNFTNS9b0ENGRm/oBDppiw2GI1yPBmtnvk8l0vXIJGHaL75O5+69n6ocRP08yr6A2ddlrzbFzOBw9UBPqx76SZg/8HJqkDmzF4e/t1LZ9oSoM4wTKJHxLBUCoWABTPYsuqC3yQ1mEyNGg2MGi23sBYiisT/dTEqPELu1KjJDm5NARDRJwDmREwaBuBowyLjAURegXmdiJY42NSdUY/PU0oVOamjEEIIIYQQQgBAsyEYjQun6awSJrgF4Af5ivicBpwEEgxQEfmLa1tcCFMmuN2vcAGBXiX3Psg0NtTKboJNNppt/RXfVLZHbt1bg41sW8rE54MLxGi2m/gQDU09i5njv2k93DKZwO0PbNho5e9D0el9nc8qgE8VuFq3id92FqaWaOCpm7CzZtsPm/SdSIQQHdUF9cFoFb7YjrNcUCNJNJowmNr4DrvvP6H8LFhKLlknW7lX3/G9jglCTKVc+G4mhBBCCCGEEEIIIYQQ8dDcTzu/khAzItOb/BviqZLuQHk/AMDerd9qywRCwKr6pG86ZWybcMckG6NuCaH7VSEcfXcIr3ypv0Y1tHfHx2TbwFbDk23ueK2bgkFg3Up92TwLRjvnwPjDce/aMAahHA1zqGEunQzb0YaWL3S2Ii74MNrU1+OXOfwUZ+vKAeqosR0ej9s6kS375jeprk1q1BjuS1TdJzXbpGAAdNN5qVn5By+5qgc2rHJWuLw/MGI/R0VVaQ/g4OP5AnXr0Mfnx5gRfJFv1wIbt2b3fumxT/n6nXdQ1L63toZf0f5jklSjLujwkzs8rGrTh4C8/x3gb83u9pJsH37vrvySFHQ1qGe6AioF9Hjd0ZD4WMP3BgbvnnilhEglpaCY0M8cPZXeqYH5PJfrAquj0LoVsH93NuxT+sM+rifsCUeBPnZwzixEGtG3s2BffSLsEytgH9s9/HdcT9iXjwF9Ev6OQ8Eg7EdvAv77V35FHg8w5ow01RpAxQCgsDhm8uBALXwqpF3k27U5vkNq9/Vq/nk8M5Pw3Tp2Ngq8EfuujavN3/ejzjeFEKkhvcy7nj0BRP6E3wZgqovlJ0c9PsdQdmzU4yedbICIFgKYFTGpFEAO3tNBCCGEEEIIkSktTMAMABRZsT/aJYNpwK6bkA7RkdPXLtEAFZG/uLaVTYPvC61iKOZeHrr6B5mAQC7USKQPF7DVYjejxfaDmDt8pTQYzaOvUz0TfgPwIWWpxL0GzXYT/NznWFNPbj0tdjOaQvqwrmzaHyR6nsHu61y8l1wom5953UycLpNo4KmbMFqCjVabD5UTQuzCBSWVa4LRWNydmkXea7Vb8GnDu9p5vbwVGN1DOmmnQoVPP8qiPmAYmZEiLaH0hwQLIYQQQgghhBBCCCFE0s18D+Tf1rl1cAMpPSm6Id6gKgDAo+t+xRa57JncudnUzW8S/vAmYdEGoKkV+HQJX7Y6+jLXaw+ZVx4VjIaNq/ggu4HD49a1KxnaW+Gf4xWY+yftdP0ruXm9kAtGG9E3/ITpDxc4W5GDYDRauzy2rUVRN/0HqmeFs23mAFW1d4fH47e+aCz/1crca0c1G/V17tMd6FkSPwwkEXTnBOCLj1KybgCg5d85K7hqUcrpAAAgAElEQVR+JRDSByp0UNId6rZnoSznQ5nVr+81F1izFA+NN69v95vtrA1tnLmM8Owsvm7Hj+r4mP74E7asuuz2ZFWry1G/uK3D4xFMMBoAjH04d86JOmvFZsJpD7p7vss3A8FQcj9P9U369fXyBWDNih7m7kCvPlA3Psre9FGIjLMsWEx/crJzex/EfZ7L4nQNIv920ISjgWlvA9sagLYWYMFM0K3jQZ9PSn5FhUgArfwedPWJwNefhL/PBdrCf20twHezQbecD5rxLujeq4DnzMGe6pr7ofoMSlPNET7/HhT7G4YHNoa36IN3f/Kf7Dx/duvmiYk9jxcv63geQfddzZZV1/0Dqkd5QtsRQrgjwWhdT2XU4yVE1Opi+flRj0/VFVJK9QcQGdMfBPC5i+1MjXoscZhCCCGEEEIIx0zBaIUpCkYzhcU0G+ojzJwGnATtxAJURP7i2lYmgp84lrJQxARq+aPqH6IQbOZiqFcl/87Bwh0u1IFAaAzWsculsj1ydaozhGFkIpyCC/Dyh5rY46suiI57LcPvwWbtvGzaH5iCzEznGey+zsV7WeLppp2eUDCa7WyZYIKBp9H7xnjcBKkJkc+4YLTevn6aqdJ5ULgzfcsHaLL1A8WOKTtdzmVThAs2bAhugk3p7UzJHb/dBLkKIYQQQgghhBBCCCFEUu19KNSv7wPGnOFuuS8/7tx2uaAtb4p+K6+sBgAMCdaigrlu/tH3AOXADXDagoRHP3Fezx2hVjvQS/8wL+CP+i27lg9O0Q0q7uquONrC0j9bOKnfWrbM49MI/tbsb0vRlmzQ17m6H0B1652vyEkw2ltP8DMPOQHq1Rqoky50vs1ccf61O/9bSG2YvvyHbNF7p+ReG+LC9ar19zHqNGrcDEx5odPrUXdN5LfxyoPOVrKG31eqq++B+vV9ULe/CPXyIqj93d0wSw0ZCfXOBr5A7VLsPUhhxV/54dFbW4APF7rabNqYjmnnHAhY1q7jGAXagFp9cAUqq6G69Ux29boMVdYXOPbcnY+rDMFoUxYCS5mgw67mic/dP89ACFjdkNx6NDDdIsuZ89Yd1K/vi/3788tQz8+H2vPg5FZSiGRSig1Gy9IcT8fqma665fG6Bk19HahbFzudCPT2k52ulxDJQG89EQ5BYwsQ6Om/Ae89a17RxTdDnXVZcivnRHtofrSqtmXsImsbc3un9M3qxOt//KiI83AiYOZ7bFk19vKEtyOEcCdFtxURGRQdK9nocvno8oOVUj2JaEvU9L2jHs8jIjejzKZHPd7LxbJCCCGEEEKIPNdiN2unF6hCeJQnJdssMgSuNYckdCNRfoevXSDBABWRv7i2lYngJ5MST6k2uCd6vxIkvvOcT8IkMq7Yow+4A+IFkfHLdRa37nom/AbITDgFF+DVbDchRPpO4brPsemzzQX+ZNP+wNQWuPMMIuL3dS7eSzYYLYFQMadhaoEEA0/dnnP5Q00o96Wop6kQXQQRsfvJcm9ssBIXi0bI7Y4QIjVCFMJHDf/TziuySnBkzxPTXKP8UcEc/4IUxLZQI3p603enQu74ncpzYSGEEEIIIYQQQgghhDBRw/cChu8FHHceaNpbgNNgsGXfug9Ta0dEwIbV+pkpCkZTlVU7r+AMC6xEnbe3tty6LcDAXimpQtIs3QQ0urh3aXXEZS4iArbyN7UDAPijbvKyhhkgXN4fqjh7+hqk09DeCrcf24jJLwzUzm9qBRZtAA4YkuaKdQIRYYkp1GrJXOcrcxCMhsVfs7PU9f+E6jfY+fZySOS+CABGti1myy5mguqy2bJN+jpX9XF20zFq2AgUd4MqcnjtrOYbPmjTqYHDgD1G8/NnTA6HcREBWzYDBUWA1wdV2qNjOW5f2Xsg1LlXda6OAFT3XqDBI4DVS2JntoeyDalQ6N8DWL9Vv45pNYQT98q+G8DNWcG39ZEDouq7lg+tyMewTtcq+u/87/DAchTYrWizCrVFv1oFVOnvQdZlhGzCHZMS29eu3wIM059OJoQLUipr5fu4qstuhzrnV8mrhBDppCwo6I/hdo4mo9k2Ye0WYJP+nplxg9Ho+y/4mUvnJ14xIZJpoaGd7rBgZtwi6tCTklCZBAwdBXwW24dzj7bv8Q5O1i4yd3X2/05kYjrXNlEKKC+NOBevNwQ1j9gvoW0IIRLDR6KLXBU9Ulz/LZ2nK7+ng2lM7DwrOl5dtw0hhBBCCCGE0OKC0YpSOKjWUh42HC2R4BARpguE0gkYQqGE0OHaVkkGgp9MuGCm6P2KKRjNK8FoGWcK2DIFkRWlMJiLC8aqZ4LaLFgoVEUpqw+He+2aQ02uPscJBaMZAu3SzacK4FX6+5hw5xlt1AobIe08LnBOh90POQw528GmEJptZz3REwk8DVIAbdTqahmn5xlC5DO/vR0tzGe3wqcLRsu+DsMie329bTp7HB7T60dZdSzuanTBhjtw70mqcOcHmQjlFUIIIYQQQgghhBBCiEiqrA9wyAmOy9OcDxPaDn3wEmjsMKCtRV/Ao79W3GmDqnb+99ytr7LFlvL3e8saN0+0HZftWQz0jrw/2MZaoDnOtePmjtfHaU30kKd2lVX66XnigAMGYvdWPtTq61W5FeiwcRuwnemGMKKfAmqZdqATdBBUZQg3UgOGOt9WrhnU8XPT02YSrAB8ubI9zDCH1DD70HjhSjTnA9jnjQSdMRh0cl/Yvz0LtK3BvMyqRaBrT0mwphFOuCB8DORsXgs6tjvouB6gccNBpw0EndQH9pXHgSJCPmnGu/rlByVxX8msix69CdT+uRv/A74fwx2TCD9+3EZTa/a0K9smLFzHz7/g4Kjns8gQqnjShUmqVdeleuy6aVgxtWDstjfZslMXZ087STYiwh//Z6P3teZzqkG9gALm1JQLMkvE2kbCzRP1r7cpGA3HnZu8SgiRbkrBIv1nMMdOf0BEuGOSjd7X2Rhyo41FTHZQebyuYW/8i5/X4iIZW4gUobXLgXmfd35FlVXAKEMwcQqpE87XTh+/5SV2mZnLcmynFGXSvMTqf0B0VnnNN2xZdfS4hLYhhEiMBKN1PdG3MRngcnld+ZGaadVRj1e53M7KqMcVSqkyl+sQQgghhBBC5KmWkP5Hbi64LFnY8BYJ3UiY82A09wEqIr9xbcsUnpQJTgOJTOGAEoyWecWGYM76oL73m08VwGel7r3j6tQQ1N8FudhTCqXSH3bDBWK0UguamGAu3efGFKyyJVjveD2ZopRyfZ7RHOKPoW6eW4mnm3a633YXjOY0FA0whz2y62fO/4zLyDmaEHGZApJ6+/qlsSaiqyEiTKl/QzvPAy+OKTs9zTXKL6We7ihQ+vtncUG5qcKG3WbRuZgQQgghhBBCCCGEECJ/qRsfBXY/wFnhbz4LD4p1gebPAN32U6DOkIDiTVHfgYgQr2vqH2SLLd2U3QNeP1xIeIPPhIlR3Rcd+j/QHx2ExkQHp61hAqySGfaTg6xeFXi14TJ2/qVPZ3dbiraECXAAgBF9Aaqtcb6ykLkfBAWDwLrooXRh6ld3Ot9OLhocPQQReLn2Arb4Qx/nTjsiItQwl9yrDcFotGYp6IYzgXUrwhOCAWDGu6Cb9aEFAEBtraCrTky4rjsdczbUT34LAFA3PeFu2W+mgX5zKogIFGgDZr6nL5fMEElN+9mBnvozAOCPp5v7vL0wm/DLZ7OnXf3lXb4uVx6rsOfAjs+Hbr+IX9lx5yWnUl1Zj45Dlh/Y8Bu26CNTCbadPW0lmR6eSvjT24Qt+nvT79SrhA8yqm9KzmtDRDjtQT6grSzUqJ2uLrsdauCwpNRBiIxQFhT0n6Nc2/f8+1PCH94kNMbp1lteyh+j455rN7vrwyxEslEoBPrF4Z1fUf/doP78SkbGaQCAGrandvr+rfPYZe6YlFv7pEitAcKbfJ6Z0fO/6Bi9RNefwRcef31iGxFCJESC0bqe76MeD1JKVbpY/jDNtJ6aab2iHru6tTgRbQcQfbsb3XaEEEIIIYQQIkaLrb8ql7FgNEMwiTCLDn/iBGwJRhPu+JnPJRfClCklTH2iwwOCNt95LpXhWsIZn1UAr9LfJo8Lnkh1EAR3zCLoO5RkKpjCFCpnI8QsE1tXj/KiUBVpyxPTkSDbwjjcnmf4DaFfbvZ1JRYTjOby/MbpMR1ILPDUTfDaDm6fgxD5iAtG88CLHl7d/Wz0nTO4fa3IX4v887C6VT9o6JAeR6GXt1w7TySHUgrlPv1d3tMZjEZEbLip6TxQCCGEEEIIIYQQQggh0kX1GQT1+Ayo5+ZBPTMX6qNtQEl3tjy9+4yr9dPbT8Yv5NH3N+i0iBAvD2wc1PyVthgX6pMtnvjc3XWoEX0jQtGIgAUz4y8UPeh+zVJtMTVouKu6dEV79rdxwvYp7PwNW3PnuuGSjfq69iwGencD4CoYLWiev3E1X2b0sc63k4v6VAIFHW/oc4R/Blv8P9Nypw2t3wL4mS4w1X0MQSCTn9O3h6+mgurW6xeaORmoZ+Y5oK66G+qN5bD+9DxUYXtf6wN+6H5FKxeF96szJ/PbGpi8faUyBVK+/SSICN2KFP453hw08cqXhK3N2dG2np7B1+P2M6JC0bj2AAAHHZOxgI2c0qNj34TeoTpcUf8oW3y6/hQg5z3hcN9aUgCUM10P691339P6ehUwdzU/v9xu0M+44LrkVECITFEKFtOHO9eC0Zx+R+P2JwBAk581L9ziB9l8iKIQKff1J8BW/c3ZHRs8AurFhVDD90pOnRI1boJ28kWNT7OLfLc2t/ZLO0yan9hyxb5wQPoOtE0f1AoA2OMgKG+KfssTQmjJJ66LIaL1SqlFAEZGTP4JgL/GW1YpVQpgnGaW7qpO9Gi5OFnhWs0AIkcr8lePHFJK9QWg7+XPy+9btgghhBBCCJGD2GA0T2oH1fIBRkm60peHTKEukYJkvqOiENGig8V2yNUgJFOIkFdJMFo2KLZKsS20JWY6FzyR6pA+t+vn2mKqccdWE+65FXtK0RqMvheD+/VkSomnFNAc7rhjpSmY1c2+jnsP3ASdAc6P6QAQMIQ9crj9OgD09JZjSzD24rNpGSFEWF1Afxv0cl8fWCr2/kqGrttJq5PoGqbUv8HOO778rDTWJH9V+PpifVttzPS6YPpGuAWoDSHoB/lk27mYEEIIIYQQQgghhBAifymlgCG7huDQqNHAlx/rCz/1Z+Dnf3C0XtqwGnjnv/ELpigYTXXrCerVB2gM91sYHliGL4sPjCm3LH3300jIN6vdXYeqihjIirp1zhaKCEYj2wbWLteXMwX05IvKauz9zbeY0u0E7ewFa4B+PdJcpwRs8RMbwFXdN7xfICYgTysYpx/EWv0NhQAAA4c5304OUpYFGjAMWPn9zml9Q/z1qg1b01GrzmkLEuauBibN5/dP1X3ZWcD3X/Dz1q0AKvrHTl8aZ4T/2MuBN/6ln2dZwAkXQJVFDbnsMygcGuUy8IFeegBoMFxzrNrb1fqMqvfl59WtA7bUAb16Y99BCqZ+C21B4IXZhJ8fCXg9mQsTIyLUMplPANCzJKpuy7/jCw/bMzmV6up6xQ413qd1AVv8m1rCkSO6VuBcyCYsWOus7P6DFRau03+W6pPQFa+5jfDIJ+Zzu+o2TTDpiP0kgETkPsuCxRyriHKn751tE+ascFa2jyk1It65DQC0+IES/c2fI5FtAysWOv/+J/JH/92AyurEwmRr5nV68+rE8VAeT6fX0+l6VO+r3fvsbTgnmr+GsOfA3Dsnmleb2P50x+8AO0V8f40xePeEtiGESJx8E+iangVwe8Tj3yqlniaiNXGWux1AT810J8Fozkcc7tIMoMywzkRcAeDWJKxHCCGEEEIIkcVamCCyIqs4pdvlQmP8hmASYWYKdYlkCoUSQodrW5kKf+KwgURRYT6mcECfKkhqnURiuGC0uoC+E1iq26LbEMDiFIeLsttN4HXgnluxVYJG1KV026nkNChxBy6IzKt88FnO9wslHv3Psn7bZTCaiyC1YALHde51UFAo8/bWB6PJOZoQcXHHqQqfqZd2rNzpmiXSobZlORb652rn7V06GgMKB6e5Rvmp3Kv/HNczn/tUMAWnZtu5mBBCCCGEEEIIIYQQQuxkdW7QKvm3gW69EJg52dkCqRwkW1m1KxitTR/29eIcwvO/SF0VOsO2CUtdBreNiPx5/Ls5zhZqjvg9u24d0Kq/cSsGDXdXma5oUBUu/uRp/L3iGu3s178mHDcqewdPExFue4tw+yQClz8xoq8CNTcBtUkMRlvDBKOV9YUqMSVGdBGDqzsMLFcARjd/iS+KD4opun4r0Ogn9IoOiMoSkxcQLnjMxhZmNwEAPYuBctOlsHUr+XkBfZ8aeukBfpmCIqiLbwYt+xb4Zlrs/CNPjw1FQ3to3Sk/A178u6GyGp/wN8kCAPzgRHfrM9nncKC0B9CkT8yj+66G+tPzOLwKGNkPWKS/NxwAYMJzhD++RZh4hYUfDM9M+3pqOqGF2V2cqMk5I8O5hDr14iTVqovTHLvP3foaJgz4p7b4VS8QfnoYoXtRdu6DErG6HgiEnJUdf4jC3z9ITTDa87NsXPgfcw+jIrsZ47ZOjJmuTr2ocxsXIisoKOYE1LZzp/edKeAzkscCdivXzyMiYNrb8VfS0hQ3GI1Wfg/6v3Huzt1FfqneF7j7f1C9BzhehPzbQA/d2LnterzAiRd0bh3JcszZwF0TYiZfsOVlXN/vLu0iFzxGGHsAocCbW+dEbn9D2mFgr6gJtZqg1nZq7OWJbUQIkbDYW72LruCfACJHYfYC8K5SahC3gFLqOgD6X6UB28E2Eznrzp0zdSGEEEIIIURWyVgwGhMa02wY6Ct4QQqgjVodlQ0YQqGEiBaiIFpJn+FezASRZYrTICRTMJpX+ZJaJ5GYIuYYsTWkvwLMheIli9u2nqlgiiKrBAruLphxr7Xb55B1+wOX5xncdLeheCUWE4zmMlSsyUUwWiLHdS5YpcgqQSkT7ibnaELE5zoYLZE754m8M6U+tpPqDieWj01jTfJbuS92cAMA1AcS7P2TAFNIabadiwkhhBBCCCGEEEIIIcROlnmoFdnmITb0r1uch6IBwFaHI8sTMahq53+r2phgJgDTlmTn8J7aBqA16G6Z6r67rmfRTec5Wob823Y94AKsgHDQXJ5TldXYs+17dv4jUymrgx3e+gb409t8KBoAVPcF6MHr3a04TjAace0qX8L2BsV+dv679hK2+HUvZ2cbqm8ijHvEHIoGhNuQYq6tk20D61bwCwdjg9GofgMbDAYA6v7JUGV9oW5/ETj4+F2Bm14fcNRZUL9/nF/2sj8BZ/4CKExS/+sxZ0B5k9efUVkW1FNf8AU+fg009zNYlsJ711g4Is5uesNW4IyHbLQF09/GNmwl/Py//Hb/87OO5x9EBBgC8VT1PkmrW5fWd3D4sxChl70F+7XMYxe55c3s3AclqsbBvdPKSoCnL1E4aqRCeal+/9XQia54NRspbigaALyz6gwMCdbGzhgXG+YiRM6xLFhMXIPp3DTbLHF4P8ahFYCPC1Sa9Z6zlTSb+yUTEegP4yUUTZjVzAPd9lNXi9Bjt5oL/PiGcHgvZ8BQqHvegho4zNV2U0V16wl1f+zvVP1CG1EWir0x+Q4PfJhDO6d2NRv1dTYGVwPwRv0USKZgtH0Oc1stIUQnSTBaF0REjQCifx3cB8BCpdRdSqljlFIjlVL7K6UuUkp9BuBeYOcIxOhvjo2azUSfTSby61f0Ms5HzgkhhBBCCCHyWout71VQZOkDRZKFDTCS0I2ENIf0AXc6QdLfBU8IHVPbchsYlGpcGED0fsUUIuRV3qTWSSSm2OUxKNVBZK7rk6FgCktZroJNLVgoVEXaeW6fQ9btD1yeZ3BBI65fB6a833b3c62b8oEEjuvc8y3xlLKvHRemJoTYxW0wGhdmSbnUO0ukVF1gI77c9pl23tCi3VFVrLnNtUgJUzBauj6zpt9Lsu1cTAghhBBCCCGEEEIIIXZScYZa1a1jZxERMOVFd9vzFbor74KKDEYL8IPFn56Zndd6ahK410d1+8/j1BonuShS5ID7Nczr1L0MqnuZ+wp1Ne3hcD9tfIYtMmt5uirj3vOz47f1EX0BzHrf3YrjBKNhLfOiDMyPYDRVWR0zbXjbcnhIn3z44cLs3Ce98TWhxcG9AKv7GG44tmkN0Ka/6SsAIKDpU/Pxa2xxdcPDOwfmq7I+sO6bBPXOBqiXvod6dyOsO16CMoQ2KF8BrOv/CfXuRqBvJV8vh9ShJ3V6HTHr7L8bMGI/dj5NeQEAMKRC4bMbPTh2D/P6Nm0DPliYzBo688oXfLsuLQQG9oqauMJQyZMuTE6l8oDyeABNKMl5W19hl3luJnWpfjBLN/HPpeF+C6vutLD57xYuPDR8DlzGXMqvb0r8NXnBwfH395v/hh82fx4zXf32ETZsUoicohQU9J8FO4f2OUuY0KFo1cx9WQGA3uW/S3TQHGe80dIFwLJvna1L5Ld500DbdHEpseL9rqOuvAvWL++AmrQe6uVF4fPuyL+JK2G9vAhq9LHJqn1SqIOOAXr2jpn+ky3Ps8s4OX5nGy4Q9m/jFFoe5n/v229w1LnGaiYY7dhzEqyZEKIzJBitiyKi1wH8GugQH9wdwA0APgLwPYCvATwJ4MiIMv8A8GHU6nIpGO1hAHu7/DszCdsVQgghhBBCpFGmgtHY4BAmqEOYuQmUC9gOepMI0c4UhJOp8CcOFwYQ/RyCTDCaBQ8s5Ul6vYR7boMdUt0W3QavZTKYwk1diz2lbCcX9+F0qT1vcIsN92LOM7h9nfv3vpt2epACaLNbHa/HH3L+8y63TzOu3/B82ZBJOUcTwoiIUM8Go/Vzu7bOV0h0CR83vAWbubvpCeVjpbNqGnEBh63UgiZ7W1rq0GzrOyha8MCnCtJSByGEEEIIIYQQQgghhHDNE6cfxppl/LxVi4BtDe62t/8Yd+XdqNwVjLZPCz9gfPH67LzWU+Nw0P0Ou1UAfbq3PzC9T9EiQoqIWy7itcxrw8I3wRnd8hVb5Lt12dmeAGeBWwcNJmBjrbsVh/QBXzutZdrVoPwIRsMeB8VM8iEILxOMtnk7YNvZ146+43MxO6gyBIFg9WLzwpqQPVr5PV9e89qqku5QA4dBFTnvG6V8BcDR4xyXZ40a3fl16Gie504rF3V4eOwe8a9Jv/dt+tuXqf2M3g2x19JX8O+7GnlgkmqVJwbFHsMPauaPY3VN4f1QV8E9l4OHAj1LFCrLFJRSoFAI9O1slK+coy1f34mueAsd7D9Hc++JtHfRVSgLFtOnqimQO3EfS5jQoWijhxqOx6uXOFtJc5ydcc03ztYjhG0DDQ4bb8NGYEsdP7/9vFR5PFADhobPuyP/KvonocIp0is2GO3A5q/Z4vNrCXaLIdQ5yzQ0EeqY85XqvgoFXoUDBuvnjzsgap+1apG+oCb0WwiRerlzpiRcI6J/ADgZALPn7WA7gF8BuAbAoKh56zXlt0Q91t9ynKGU6obYYDRnUasGRLSRiL518weAv+2NEEIIIYQQIiu1MANri6yilG6XCxppcRHwJXZxEygXIM1d8IRgmEL3Mhn+pMPtV6LDfLgQIZ/yJb1OIjFFHnchW6lui8Uu6+M2TCuZuOBRbVlDPd2GzWVdUCIX7sWc93ChX27bVolHH4wGmIMmY8q6CEYLJBCMxj3fYquUfc5uQliFyEdNoW1oJX2nBS5QiZN9XdJFJvhD2/F54xTtvL6+gdiv2yFprlF+Kzd8jusDm9JSB/Z8xRB2K4QQQgghhBBCCCGEEBmn4gy1WqMfgkKLvgJduJ+7bR1+ClTvAe6WcSNiwGa5zQe21aTnZ2PXuEH3hw4HTtk7dvpVx6pdvz/X1jjfUGvETcOY9xcD8yTAKg5VEk6eu2DLS2yZP72VnVcPX/2SHyS9w/GjgFH1s9yvXBNmtQMRsUF9Kl/aFRNq8/PGp7TTmwPAuuiRi1ng71Octe1q5jIdtfhB155iXjig6Stbyw99VLvv76hOTqjTLwEKOtEPe78joUa4PA46pM78BT/zm2mgiM/gzw5T6B7naTz4EeHfn+rDaVJlqSHs88pjYs896PVH+JWdeEEyqpQ/NOGmx/qnordhOPPYh+3w/rsLqNd3P0RFRJc7am4C/e5s0C/HoOyTZ1ytxwknYbcnb58cO3GPg5K6nxMio5SCRfpjz5WfDMequtzY59RsiF/PkgLgkiP0/YKoxQ8scRho1sKfvNOWOtCff+5sPUIAcNLLlWwbdMOZfIG+lcC+RySxTumlLrg2Ztq4bRPZ8iFSmP/Ln4LqdFEz2Wep4betHd/Rrjw2dt90RBVwwJBdj6nFD9TM065HSTCaEBkhwWhdHBG9D2AvAGcD+A+AhQDqAQQArAEwDcD1AEYQ0cMU/ra+R9RqvtCsOjqOdzeXVYsuX09ELm+LI4QQQgghhMhXzXazdnqR5S4Exi0uNMZNwJfYxU1YCRcKJYQON/heQaHQis5pzywumKmNWju0e+4z4LUkGC1buA0WS3UQmev6ZDAkrMhFXU3HereBYKk+b3DLaVDizunMcdTte2kMRnMRdubquG67Dzzl1l/iKZVzNCEStDmwgZ3HBaMpSJCR4H3a+C4btndc+ZmwlCfNNcpvPTy94FVe7by6gMM7YHYSF7JanGXnYUIIIYQQQgghhBBCCNGBZR5qRZqAGiIC3flLd9s54+dQtz3nbhm3ooJA3lw9TltsbSPQ1Jp9A/G5EJnd+ym8fLmFXx2jUFkG7DMIuP//KVx7fMS1LDfBaIHIYDR9gJUuVCVfqb+9hjK7EaObdcPNgNUNQENTdrWn7S2E8/5lDkG6dIzC6xMs0G0/4Qtd+Fv9dEMwGho3A/5t+nmD8iMYTSkFdcktMdNv2/QndhkuGLlJDh0AACAASURBVDFT5q523qar+zDX1d/6T/yFdcFoXGDjxTc7rpMTaugoqAfeA/b/IVDEXM/zeGP/yvsDp/wM6s43klqfDnUbeSAw/jd8gfdf2PnfQWUK035r4YRR5nX+6nnC2sb07au4ENLRuwFnH9SxzVBbKzD3U/0Cg4ZD9ShPcu26NjUo9hhugTC/7kfsMtOXAp8sTmWt0qeB6UJXXhrR7v73ODDj3fD0UL22fH2CXfGIKO4+ffmSEfAhGDNd3a8JSxMiVykFZQhmumlidp0/c0yf59JC4JiRwCc3WBjWmwlGe+4e5xtrNgSjxVuP7pxF/vLgz9A/0Ung6ZwPgMVfs7PVk3Ny+2agp/wsZlIJNWP28sPZRX4ZvAb0yO9TWauk4YJYi3zAwJ7h/198hIV//0Rhv0pgQE/gosMVJl1tdXhf6dm7+Y1IMJoQGeHNdAVE6hFRCMDr7X9GSqnBACojJq0hojWaogujHrvdi0f/cvudy+WFEEIIIYQQeaw1Q8FoJUzQiJsgELGLm9ctQG0gotz+EVmkDTf4vsgqgRXvrr5pZgpyag750d0b/gU+wIQIeZUEo2ULt+EOqQ4icxuM5jZULJm446vbsm6ec5FVDE+WhbO4Pc/gQr+S+d67CUZzUzaQQOCp6fnKOZoQiakP6nsp+VQBenjKtPP4YLTc6JglUidgt2FqwyTtvO6envhBj6PTWyEBS1ko8/bGpkDsHRvrA4bbIyZRS0h/y+hUhwQLIYQQQgghhBBCCCFEp8TrW6ILqFm7DFjyDb/M7gfA+s/MztUrAap7GahHObA1HHAxqvV7tuzSTcC+lezsjOAG3Vf1AUoKFR68QOHBC/RliAsS0mkPRiMiNoBIF6qStwaPAACctP19fFE8Wltk0nzChYdmT1+/KdGj4KI03G+hZ4kKhxzWrdMXKu8H1b2X/sqoKRhtLRO2B+RNMBoAYPf9YyaV2Y2oCNahzlsRM69mI+HokdnThl790vk18ao++un0cdyhnUCwYz9BCgaADau0RdWI/RzXySm196FQD05J+nqTQZ16Eej5e7Xz6NOJUKf8dOfjfSoV3rvWg7sm2/i/1/XvXcgGJs4lXHF06ttZW5Cwsk4/7+ZTNecdXCgaAPzgxORUKp8w4aZ9Ns7H/vvamLtGf+736pfZtR9KVD0TVloWcdmepu7aP5XZDdryDX7AtgmW5e41qW8CtuiHfuw0OKgZwn7AUVClPVxtS4hsppSCl2IDAHd47SvCUxcTPC4/Y+lERFjBHM9evEzhvNEOxmnMet/5Bv2GfslTX+PnnX8trF/9zfl2RJdB9RtAZw5hZsY/n6ephqDf3Q/I+XBapRSoel+gZl6H6Qe0zEUPTwu2hopilllaMBx47zng5ifSVc2ELWf2T1V90OH85dIxFi4dY1jRFx/y8yQYTYiMyK6RoCIbHBf1eCpTbkHU432VUm5Gfx4RZ31CCCGEEEIIwWqx9QNri6zilG6XG7jbYjfDJvPdBEUsLuCEEzRcCBIiUjPTttyEL6VLiacbOy8y0Idr/z4JRssaroPRUhwGUWgVQbn4+TfVQW3Gbbt4LUxl3TyHVIepJqKIeW7NdlO487Vmuo7bfV2BVciGLLoJFvPbboLR9GGPJqbny7WLZiaMRQgRVhfQjyQp9/VxHUhMEoyW92ZtnYqtoUbtvKPLTkWBVZjmGgkg/HnW4YIRk40Lrc7kuacQQgghhBBCCCGEEELE5Ylzk61aTXDWoq/Ny+x7eOL16ayIgbtDAqvhZW5kNXd1dl3vsW3CUuY+HyP6OljBsu+cb6ytJfzv1npg+xZ9mXwKsIpnYDhg5kj/52yRj/gMvox4fhbfv9PnAXqWtF8f3bwWCIX0Bcv7AV6mr5YpGG0NE4xWXAqUOWnMXQQTLlgV0IcRZlsbenues31kVR+gf09m5nez468gENWnZv1Kvk3m26D8gYb98Hp9eNwR1ea+D1O+Tc+xb0UdYDObqtbtBlYvYdel9sngOUWuMoSbHtGPOe4DWLIhu86NElXPdAEsj7xsH9HmykP6YDSi+AFnOlzQ7Q4XNj6nn5HJ82chUmR061fsvJYAsLo+jZVx4auVhL+8Y+O+KYQW5rS3ssxhf8OFc5xvuD3AOhq1tgDrVrKLKdl/5C9Tv1cnh/XP3uTndZV2pTkvUgBKqUVbfLO3D5pVEYj7TpJF6pihDIN66afTwi9A//0r7Aeug/3oTaDP324Ppl7Nb6RX785XVAjhmgSjiWg/j3r8uK4QEa0DEBkH6gVwpIvtHB31+F0XywohhBBCCCHymE02Wmz9VbWUB6MxA3cJxIa1CZ6bsBUACCYQoiLyEzv4PsVBVIkw1SkyPDDIdErlwoxE+rkNd0h1UJ+lLFfHxZIMfj5cBaMZXjc368nk8+VwdQpSUBsklsx9XYmlD2n0h5yHnbkJPOX2aSbceUORVcK2Cz8TKieECNsc2KCdXuHNo873IilssvFB/UTtvAJViB/2OjnNNRI7lPv0n+f6ADOSLMm447fbUGEhhBBCCCGEEEIIIYRIKxVnqNWapR2uQ1LDJtCtP+bLd+sFNfbyJFXOPXXpH3f+34sQhrct15a76EnC5m3Zc3117Rawg+6r+5oH3ZN/G7BghvONtbUPuNeF3u1gCFXJN8rrBfb/IY71T2XLPDWd8MWK7GlPr/EZFLAim5OhDahf3MYHo4UMN33lgtEGDnd9w6qcNmCYNqhgRFuNtviLcwizlmVHG3pnPmFerbOyvztZad9XWvatuZ3sEIzqI7TGsF8aOMxZpboI5fUCexykn7l2ubaP0OFVwNG78+t88xvg85rUt7N/f6rfhlLAcM29ruj+a/mVjTkzSbXKI/13Y4NvJ9Q/zC5Wk57L6ikXLxiNtjUAW+p2TQ/xyUzfrnW//ZqN/GesxG7C1Q0Pxc7o1Qfq9Oih7kLkvgmNjxnn16TnPoeu/PtTG4f8xcbNEwk3vMp/nsscdAWyH73Z3caZYDRjeFVRCXDYKe62I7oQ0/cr8zkfffxah+NhzJrH/jLBOmWZSv1vG7fY/2EXebP76UCLu/F/mcCd81R003w/e/Uh0OVHgh7/I/DqQ8Bz94D+72zQ/40LB6brnHB+fn2HFyKLSDCa2EkpdSQ6hpstIqKphkXeiHp8scPt7AHgBxGTmgC872RZIYQQQgghhGgj5sdthIMxUskUNNIswWiuuQlbAYBAAiEqIj81M+E82RiMVmgVQTE/0UWGCOhCkQAJRssmbttXOtqjm/A1t8FuyeSqnobXLVeeL8dUJ12oCLuvS+C5ca8dF76m0xTa5rhswHYfdso93xKrlA2VI9hoZe5gJYQA6gP6nlQVvn7sMorpOJId3dFFpszbPhsbA/rOIIf3PAGlnu5prpHYgQs6rGM+/8mWzPMVIYQQQgghhBBCCCGESBsrzlAr/zagcVdSBr3+iLG4emQq1JCRyahZYo49p8PDqgAT0gTgUSa4JROW6O/xAwCojnefnzfNgQMxAu3XsLkAouJSoJy/hpaP1DV/hwXCNXUPsGVuesNOY414yzaZ27Un8iNfqw/pAgB1+CmGYDS+byOtZT5zg4Yb69XVqMIioE9lzPSqNn6f9H+vZ74NERGueclcjz0HAGfuB7w2wcIlR+qPIXTvVc422BbVR5oL6+szCKowtTeTzkbq6nv1M5q3Aw2x10CVUph0tQWfPhMLAHDja6ltZ0SE+6bo90ODy4AiX8d+GNRgSOM66qzwZ0m4orw+YMBQ7bw93v0z/jpW3xdmZR3QFsyec6NEscFoO4ZdRAV4loca2HX94U33nxdT0NPUlSfgwJa5MdPVvz6F6jfY9baEyHaHt87BtOVHsfNr4py3ptv2FsL1rxBsB9WKF4xGm9cCz93trgLR50U71nXHJewi6tWacJiqyE+m0CrDjbYpFALdNYFf7ZV3QQ0xpO3mEMWEvl+0VhNU2u6SAf8On29nuYYm/XscvX+ibQ2gR36vbxOz+MgbdcktnameEKITJBhNAACUUiUAHo2afFOcxZ4DEIp4PE4pNcLB5m6MevwykYxOE0IIIYQQQjjTEuIDyIo9qQ1G40I3AH6wr+C5CVsB+GAoIaLpAoSA1O8jEmEpC8VMqGPk8wgywYA+VZCSegn3uPeR4ybEK1FuwtcyGRzoZtumY3GuPF+O6bn5NecZ3L7OtB5+292Y7Tq/iOnmuJ5I2Cm3/mJPqTFcxW0QqxD5hAtGqvAZRpKwHUeyq1OWSB8iwpT66HsphVmwcFz56WmukYhU7tPcXhxAfSA9t7Zmv5tl4bmYEEIIIYQQQgghhBBC7GQZ0lN2iAyqmf4OX+7Ui6GGjup0lTpDKQVU7bPzcXUbE7ID4O1vsueaDxcK0Lsb0KvEMNgZAM350N3GAu0D7tcwAU0Dh4dfR7FLe6jXAS3fsEU++B5obst8m3pnvrkOE47e9d4SF4w26uDwvx4mGC0Y5DdgaFd5pzJ2EL5pn/TJYmBrc2bb0OIN5lCfaTdaWHCbB2/8yoOxBxj2E5tqnW0w2LFPDXGBjUygQZdnChSc8a52cnGBwvOX8sOopy8F6pkQhWRY08jPq9Jdzv2CP4apkQd1vkL5yvCZOb3/au10m4AVdamqUHoQEeqZoRflpe37rKgAxh72VviYPvtLErgH26p6/fSxWydqQ9Fw1mVQ+XiMFPlBKRzaMgeH+6drZyfyGUulTxYD2/XZZDHiBaOZwoZYgdh9EQUDADEhjQOGQvWscL8d0XUkGIyGpfOB7Vv4+YedlHidso3mOxkAFGxZj+GF+nDUkPIguD37++Pz5zxRE76cCrS5jLbxeID+uyVSLSFEEkgwWhellHIcZ6uU6gZgEoC9Iia/RkSvmZYjoiUA/hsxqQDAU0opNnZeKXUmgIsiJrUBuM1pXYUQQgghhBCi2eaD0Qqt1N79zBSq5DbkS7gPk+OCoYSIlsywoHTgAn0ig5C4ECGv85+ARIq5Dd5LRxiEm7C2Eo8+GCsd3ITEmQKw3DzfbAzjMD23lqjzHyLShqXFWw+He//9trOLmDaFYupoLI8QQhSKXzACd95QbJWaw2vlHE0ILSJig9HKTcFohvWJ/LS0eSGWtyzSzjuo+5Go8PVLc41EJC4YzW9vR4vdnPLtNzPh9tn63UwIIYQQQgghhBBCCCEAAMrBUKv2oCOybWDx1/yqDjk+WbXqnIiBr8c38YErs1cA17xk48uVmb/2s2SDfnq1k0tZa5kgKk77gFg+gEjCOaKpohKgbyWO9n/KliECvlyZxkoxFqw1zz/nwIjB80uYoLfK6vC/Xi4YzdC3kQlGU/nYrjRBN6Y2BABfr0pVZZwxhaJ1KwQOHBJ/HRQMABudBaNRdAAIF6yXr8FoZX2BvpXaWfS3y2E/fhtI81r/cHfzau+bkrrj3uc1/LoPGaYJ76jlwwKRLecVOUjtewQ7b5h/MZujYtoH5AJ/G9DGZHfuDAlZvbjDdAUgwNy0edN2IGS7+7xwwYODgvoDtDpY2rnowtq/a45ggmEf/yzz38MiTZzrrD7FPqDQFye8eqW+f5lRUBPSuG4FYPPBaCLPJRqM1mA44PcbAlSOSLxO2aZiADur0qdP9A0pL1Zv1IempsOGrYTb3rJx5j9DOOWBjn8/ftzGk5/bsG1CPTNkICYYbfUS95XoNwSK+z1ACJFyEozWdV2ulPpIKXWRUkrb410p1U0p9TMA3wM4OmLWCgBXONzOrQAi4z8PB/CBUmqPqG0VKqWuAvBK1PL3ElEW/MwthBBCCCGEyBWmgbtFKQ5G8ygvClShdp7bkC/hPqgkYGfuh1SRW5IZFpQOXChA5GeECwb0MZ0PRPoVuQx3cBPilSinbV7BQiF/r4OUK3IVaMaXdfMZdxPGli4FqhAW9Hcejw5gbaNW2NAHiyUSNMK9Htz+NKZcAuFjbgJPQxRCK+nvzFTiKTV+/uQcTQi9baEtCDB3d+1tCEZTMHdgEvnng4aJ7Lzjy89KY02EToXh81zPhCMmE/e9P1u/mwkhhBBCCCGEEEIIIQQAwIo/1GpHgBZdfzpfSCngSMP8dNoR6gTgpO3vw2u4XvuPDwlH3mnj/W8zOyh/6Sb99kf0jTPgPhgA1rscptTWGv5XAojcGVSFQcG1uLruQbbID++22UCUdAjZhH9/ym//3IMUDhkW/j+1NgNzPtCWU4MTC0aj5iagfr1+mYHD2Hp1Vaoy9rM0MLgO19X9nV3mmHttbPFnrg3VMPsiAPjb2QpFcUJAAAAbVgEhhzcQjA4AYQIbda9lPlBKAceeyxf4719Al48BrVvRYXKf7go3ncq/V395h/DXd5mQlU5Y10i44DG+DV13Qmyd6Ik/seXVyAOTUq+8dNZl7Kyi9UswuEw/76oXkt8u0okLCAF2hYTQE7fHzLtv/fXaZdqCwJoG7SzXdSgLMSs6/BR3GxAil7SHNlUxwWjbWoCnZ2TPfuc/05ydg5XF6QZERMAL9/EFivU3d6Yd39Mi1dawq1FX3WOuiOj6jMFohs/WNn0gGACoy2+HcvA7Uc7oUc7Ouq8v3xf0runMyVKKrWskHP43G7e9RXhrHjD5245/L8wm/Py/hEufdh6MRv++xX1F8jHYXIgs0oX2wiKKAnAMgCcBbFBKLVVKvaOUek4p9YZSagaAOgBPARgUsdxyACcQkaOe8ERUC2AcgMhf3Y4A8J1Sao5S6iWl1GQAqwH8A0DkL8BvA0jgyCGEEEIIIYTIZ61MMJqCSkuoCzd4123Il3AetrJDwEWAishv7OD7BMKC0oHbr0R+RgK2vv17LbnrSLZwE0blUwXwWakPtXPa5kus0nCnsQxx89qZnlOy1pMpSikUe/TBb9HhXqawr0SeW4ml71TgD213tLzbYzoANpBJx3SeVWyVwmf52KDIRELbhMgHdYZAJFOQksSiiUjrWldj3vbZ2nl7lOyHwUXSGSTTenkroJguAab9QLI0237t9HSEBAshhBBCCCGEEEIIIUTCLP0NrTpYsxS07Fs2RAkA1CuLoQr0N+FMNxUR7OWBje+X7mMs3xoE/vhWZgfk1zA/Y1fxl7LC1q3gA4jOv1Y/PdB+/VoCiNxpf13u3XijsdhT0zMXavXet/y8kf2A53+hdvWZ+ehVvnBlYsFoWLucX2c+DqxmQgbv3HiTcbFnZmauDS3dxM+74miHQ3NN7SBaYFd/GgqF+GXzsf20Uyf/xFxg81rQaw/HTL79TPP79Zd3CNtaktvW/mUIZty9XziwLRKtWsyv7NyrklWtvKR6lAPV+2rn0ZqlqGbOL5ZvBprbMhsW2xl1cYLRaPFc7byfbXmWXa7GsF/UYUNKQvWxE48aC8Uda4XoCtrDlaqZYDQAuHkiIWRnfr+zss55HcridQNaMJOfd8zZwP5j9PMCLoPRqs3fc0U+MAWjGdr0Nj71U51wfifqk4W69WJn7R/gv0D/+7v+4ZDDNHtsGmH55vjlnppOWLdFP6+8dFe7oGWGHwlMJDBfiIySYLT8oAAMB3AygPEAzgJwKIDokWL/A/ADIuLPCjWIaCqAsQAiv9IqAKMBnAfgRwD6RC32AoDzicjh7Q6EEEIIIYQQIowbVFtkFacl1IULXeHqJXhuw+TcBKiI/MYFBrkJTUonLsQo8jMSZIIBvcqbkjoJ97hAK23ZNLVFp9txU/dU4MIB3Zb1WQXwKmedYtxsM524/VR0uJcp7CuR51biYYLRbKfBaM7KRQoygY86piC4kvbny56jJRDaJkQ+qAts0E4vUIXo5ulpWFL/nYuQ+c5YIv0+bHiTnXdC+dg01kRwPMqLXl79XR7rAy57KyeAOw5nY0itEEIIIYQQQgghhBBC7GQ56INWuxT48iN+fmkPoO/g5NWps6KCvXYLrEJJnL5bM5cBTa2ZuQZk28QGo1VHj06KxoSbAYAauod+RlsLKBgEGpiNDhwWZ6P5SbWHhSkAP9r+Plvu4+8zdy3xQ8O2/zzWgifi805fTeVXtDMYjemrFWL6QHDt0eMB+g3ht9dVMSGDCsCPCr5hF/sog21o6Ub9ti8d46K/8pplzssGI/rJbqrtEJTWQR4PzFfD9wJG7G8u9OXH2sljD+AXaWoF5qxIvF46prZ7yFBNGzLsh9Tg6iTUKM+NPEg/fXUNqvrwn+m5q1NUnzTgQsmA9iAj5ny2p70VvYP6PgVLN7nbJ/PBaJoQmmF7ulq3ELknvK8Z0cbHONQ28CHR6fTpYuef9fJ43YC+4L87q8NPBbhAcU0wGtUy59cHHh2nEiIvmMYUJhKMNurgztUnCymvF+jG9BFu2IjD/DPYZdczwWOp9NHCzn8X7LCPMv2WZ6DyOJhaiGwgwWhd1zQArwDgI0rDggDeBXACEZ1JRAn1gCeidwDsDeDRONucCeAcIhpPRDIiTQgH/H4/pk2bhieffBJ33303br/9dtxzzz145plnMGvWLLS1JS8cYtWqVbj55psxZswY9OvXDwUFBVBK7fx76qmn2GVnz56NCRMmYL/99kN5eTk8Hk+HZVesWLGz7NFHH91hnhBCCCGEGy1MAFmhVZyW7bMBRhK64Zrb14wLhhIiGhcYlGtBSJGfET4YLTr3XmSKR3nhc/h+pKstOg08y3QwhZvQwnhliy2nzzmzYXAcp+cZxqCwBN5PNpDN4bHaaYBaJDeBp6Yw1R2vGfe5MoXICZHP6gL63lMVvr4J/mYrwWj5ZkuwHrO3TtXOqywchj1K9ktvhQSr3KcfIcbtB5IlREG0Uot2XrZ+NxNCCCGEEELkJ+mfJ4QQQogYysFQq4VzQN9M4+cfeXp2HYejAnQUgNO3TYq72Effp6g+cazbAjQzXcVG9IvzutYyIQN9K4HuZfp5gVagxXBtubv+JiR578jTdv73jG1vs8WWZDDYoWYDfx3z+FFRE7i2A+wKYfIyN+wLMg12LROI1W8IFLeurmz43uys05vfY+e9yWempdy7C/TTq+KFNLajxs2ge69yvsHIIDQu+AMA8nxgvjrzUnOBmnmg5tj9+un7mY8h5/3LRksgef0fphl2K7q6kClE77CTk1Cj/MaGy82cjNP34d/3Cx6z0ZrEdpFOXChZjyLA61EgQ6BsVZu+PboJbCIi1DP3ni/TBKOpiHMLIbokK/xdc9/W+egb1N/YFABe/iLz+5w6F11vh5Sbj6+mfQ1+cCLgZfrf636b587ZmQBekWcs0+85/OeKuGC07r06V59sxf020rgJY/z8b12T5qd/37Rsc+fXsVvETzq0eG5iK8njYGohsgFzmwKR64hoLoDzVPhKyu4A9gRQCaAHwkfuRgCLAcwiom1J2uZGABOUUr8GcASA3QD0B9AEYA2Ar4loeTK2JURXFwqF8PLLL+PJJ5/Exx9/jGAwyJYtKirCj370I1x66aU47bTEf/x57LHHcNVVV6G1NTZF2yQYDOKKK67AY489lvC2hRBCCCHcaLGbtdPTFXAioRvJ4/Y1C9jJG3QgujYuMCjT4U8cJ/sVLhjNp/Kwg1wWK7ZKEQjF31clElyVCKfbKclwMIWbYIx4YW/FVim2heLfjijTz5nDvRbRwWDcMdSrfPBZ7gMTSzzdtNOdBp75Q/pyCgrEXEgOuAg85QLaFBSK2s8BJbxWCHe4QKRyX1/jcgpZNIBHZNTHDZMQJP21ixPKz8quwV55rtzbF0uxMGZ6PXN352RpZoLtgewNqRVCCCGEEELkD+mfJ4QQQggj40DaCJ9MZGepi36fpMokSe+BQGEx0Lqr792tm+/AjJJDsco3hF3szIdsrL3bQv+e6f3d/6aJ/GDb6jhhRMQFCVVWAz5uwH0r0Gy4Pl6cnX0MMk0NGbmzR8CFW57Hrwb8Q1tu2SYgGCJ4Pem/frSYyZsYWgH0KI6qD9d2Dj0Jyts+BNPDDMVkgtHYkKM8DbVSlgU67jzgw5dj5l1Y+zCu3O232uWIgEXrCSP7p7cNza817Yvi14Vam0ETjnK30UBEW+KC9cr6QpX2cLferua0S8LH4TkfsEXokoOB57/tcO36/IMVXp5DmPytfpn6JuCsh2xMvsbT6SpOXcS3n9JC4Mz9NTMMwTGq/26drlPeMwRa/OjNSwE8rp23qh44+xEbb1/d+XaRbvVN+nZYvuPUxhDAWBVYhln4Qcz0ZZuch6L424A25me38lB9zDQ18kDH6xYiJ7Ufkzyw8e91V+Cswa9pi936P8KZ+xP2rcxc/ysuWFFnWO84Bbjjm8cLVdYH5CvUzw9q+uQz61KVTPilyDOGzwwZjl/bGvXTuQCxXNejHFi3InZ642bcWHcv7up9g3axy54hHD+KMLR3evZNLQHCGuatcarIBwzoGf4/hULA5GcTW5EEowmRUQ5/rRe5isIWEdEbRPQgEf2ZiP5CRA8T0QfJCkWL2mYbEX1MRE8R0d/at/u6hKIJ4cxHH32EPffcE+PHj8eUKVOMna4AoKWlBW+++SZOP/10HHzwwfjqq69cb/Odd97B5Zdf7rrTFQDcdNNN0ulKCCGEEGnFBaMVpSsYjdmOhG64E7ADCJC7oDM3ASoif4UohFZq0c7L1iAkLrwqcr/CtX+vBKNlFacBX+kKgnB6bMx0aKCbY3i8ujr9nGf6OXP4/UHHYJHooLR4y8fdLheMxgSeOS3XzcN3wgy6OA/gnm+hVQyr/W7t3HvPLStEvqsL6EcAVMQJRuNwIYiia2oO+fFZ47vaeeXePjiw+xFprpEw4T7X9YEUB6MZfifJ1u9mQgghhBBCiPwg/fOEEEIIEZfVydCLH1+fdYOylWXFBDHt3laD2cuPwJNrLzUu++T09F4HIiI8PUO/zYpSoKw0zgDc2hr99EHDAW7AfaAV8BuGV5Xor6kLQF36RwBAKfkxc/mR2jJBOxwqk27BEGHZZv28u87pOKSStm8BGvXXTtT51+x64GH6ahGFB1lH44LRBuZnMBoAqHOv1E7vi0A0PwAAIABJREFU5t+Iz37ZwC535+T0X5O+YxK/zSonl9Y/mcjvkzgRASBs0GOeButFUh4P1D1vQf32Eb5Q7VJg/vQOk4p8Cv+70kIvQ3e1978Dvl7V+fZ26/9sdt7Xt1go8GqOZ8w+Q13yh07XRwCo5AMtPB88j9P30Pc9BoB3FgDzDGGJ2YoLNtoZjMYdpwBUtenn1ejvxehq+wBQbkft88dNcL5iIXKV2nUOetr2dzEksIot+s+PM7vPcROMNjxOeDUXwqiuvT/8nwJDgHUECgaA9Sv1ZSW0SAA7wwe1TMFoW+r007v36lx9slUPJvCtYSN62luxd8sCdtHHPkvfvmnZJvPb5sTw3oBltbeLLz5MfEUDh3WuIkKITpFgNCGEyCK33XYbjj/+eCxevLjDdKUU9txzT5x44om44IILcPzxx2P33XePWf6LL77AYYcd5roj1O9+9ztQxNnh+PHj8eGHH2Lx4sVYvnz5zr9zzjmnw3IbNmzA/fffv/NxQUEB/vCHP2DmzJlYunRph2UrKytd1UkIIYQQgtNi+7XTC62itGyfC73xS+iGKy0JvF5uAlRE/jIF4GRrEBK3X4l8Llz7l2C07OI08MxpgFpnOQ4Jy3AwhUd5UGQVxy2noOKGqDkPg0tPOJ1bTvYHAB80kuh7yQWqBagNATt+MKnf1gej9fTyd8oKkHmwYYf1M883st7cPl7O0YTQqwvoeylW+PoltL7c6/opOuPzLe+jmfluflz5mfAob5prJEzKffreh/XMfiBZuDYCZO93MyGEEEIIIUTXJ/3zhBBCCOGI1bmhVmqvHySpIknWf7eYSb1DdfjJludx6gj+uurMpem9EmQagF/JX4LeZQ0z6H5QFVDA9DEkArY18usskt+1WREBBKNav2eLLUntZQmtlXVAQJNVBgAjokOtmHYDoGOQjtfQVyuk6QdRt15bVA0Yyq+nqzMER+4VXMLO+359+q9KL95gCEaLFwACgBbMcL/RQEQ/wc3r9GUGyKB8oD3087SLgR7lfKH5se+B16Nw/YnmkM3pSTj21fI5fxhaETuNiIC1TEiVIdBLuDBwuPE8bw+r1rj4G1/nXu8Yrh1WlALU1gps4EOZ2GC0TejwO5eJMRgt1LFyareRjtYpRE6LCm06ZftktuiMNH8Pi9bAd/uJMaIvf1w1BRDv/C5hCrDuUKmNgC6MOHJdIr8lEIxGRMD3X+qX6dk7CZXKQj00J6MAEAyPGdi3dT67aDr3TVMXd35b1RHf/WnBzMRW0nsgVFF2jj0RIl9Ir3QhhMgS11xzDR544IEO07p3747f/e53+PGPf4whQ4bELFNTU4OnnnoK99xzz867Sba1teGyyy5DU1MTrrnmmphloi1atAjz5s3b+fiUU07Bc88956jOEydORFvbrh/d77jjDtxwww2OlhVCCCGESFRLqFk7PV0BJ1xwSCJBX/nMFFLiUwUIaEKgAhQ/mEUILiwIcB4SlW5OwnyCTPv3KeYOSSIjHAejpSkIwul2uGNbOhVZJWix9cf4HQqtYljK3AE9V8LgOFwbij5ucsfRRNtWiYe/u7Xf3o6elrl3ORdc1t3TCwoKpIlMCtrOA0+50MvI95ENlTMcF4TIVzbZqA/qOxtV+My3tVamjiMiLwQpgI8a3tLOK7G64bCex6W5RiIeLhhta6gRAbsNPis13ylMx2AnobhCCCGEEEIIkWzSP08IIYQQjsW5Lh3XISckpx5Jpo45GzT9He28c/svxaQl+2rnvTUPeHG2jfMP6eTr4lCNIUDrR3ubr1VRMACsW6mfOXgEUMAMuAeArfX8PAlG40WE9ZSSHwMC67DONyCm2MkP2Nhwr4U+3dN3vXHBWn5edfRl0VomGK2gEOgTEUJsCkYLBmLb2DYmkabMfF22S+tRDnTrBWyPDSPsuepLAIdoF5vJ5EWlChHhG0NGUvciB235w1fcbzgY0Z9ma52+TJmDVLY8oZQCHXM28KY+wJwevQkY/5uYvg7nHKRw80Q+aOGqFwhXHE0J95FoCxJWMm9f96JwOFuMuvVAC5NCM3B4QvUQHamSbqBDTwKY86Gz6SPcDT688blZhFtPT1XtUmPpJn07H+rZBDprfzYkBkqhKqA/Nja1Ahu3Af16xN++KRitVyjqOPDDM+OvUIhcF/Vd85ytr+HRssu0Rb9dC6xtJAzslZn+enNXOw8kOtR0mPrwZX5epctgtK2G1FE5PxJAQsFo+G4OsFn/5VGNPCAJlcpCcYK6z9n6/9k77/g4irv/f2bvTrrTqctykWRjS7JxwUCwTTEYDDY9ENoTCCEklOQHcRqBhzwQQhzTTBJInAAPIYUaAw8x3RQXsAEXjLGNbVzlLldZvZyku9v5/aHiK/Od25PuTifp+369/LJ2Z3Z37m52dnb3O+95A3OzvqNMW7INqG6UyHHHv236cGP3xWjF+QHlXLWwazth8SLD9DiJeSrNMAzDaHn++efDgq7OOussbNq0Cffcc48y6AoASktL8eCDD2L9+vU44YQTgtLuvPNOLFmyJOKxV69eHbQcOutkPLZdsmQJpJSd/xiGYRiGYaKBkqY4EyRGIwVGLN2ICt33lWlXy1dUsjSGCYWS5wCJk1FFCyVyChQJ+KRiRlEAdsHzHiQTLpu1a1GiJH1W5V/JcG5YkbNZydObZHAqqPKHikUo0UhXP1eaoRGj+Rsibt9kqvOk2dJhF+qg4Giu6x5THfQX+H1Rn113XWCY/kqdv4aUrkYUo4EKZuDnvP2F1XWfocanjuA+J+diFl4lIbrzmpIkxgJK5Oo00mAIW9yOyzAMwzAMwzAMo4Lj8xiGYRiGiQqjG88wx50GkZqkz8qnX0cmXZeyHG6NM+z6f0jMX5+YfgUl8ACA+y+NMPD20B7Ar46xQWEJPeAeoMVoKU4IO8fnkIQMEC5tLSOznv8nM6H90yufMpXrC7MBd2pIXSonyl1QDGEEDL/UidH8inewVL3K1E9Q15cRQgQJ9QKRc+7E0zfQ5/lb6xJXf575hD7WS7dElgDIw3v1wsVCwiDiDRSjqeUfIisv4vH7E+KW+/UZnn8kbNWoQQJ/vlb/Oz6+sOv1bXclYBKb/+c2Ykj3AY39j6ovTNSInz9Gpk14XS/ALzvSJr3rTVDC2ZKlT9DyTiGASdNR2krXSZ3INhBKjJblr4Ed/uDDDiiwtlOG6c2ESJvOafoU5zfQop6Rvzbhpy4ocaTZK7H5oLW8354oYDPU11R5cDfkH3+i3tCRckxATAmsW0PFaJq+VUb/7V8zgej6d+pzSd42RZ3dMIBvnNP9IiUhgrgf6+DShvdQ0krIwwFMfzz+9/YtXomPtqrTzj3e+n5K2p2Jsqke2LSqa4XhvjjD9DgsRmMYhulhtm3bhp/8JPjmbvLkyXj//fdRVFREbBXMqFGjsHjxYowZM6ZznWmauOGGG3D06FHttocPHw5atnrM7m7LMAzDMAzTVZoJMYbTlpiAMlJgxNKNqKC+LwED6Tb1FFI+Uy1vYJhAKOmegEiYQDFaKBFSq2zplJZ4TbVAiBIOMT2DVSlXokRklsuTIFFbd8tgKY/Fz+xMVjEa8RlDxSLUdbSrv2WaTSNGs9DHoeRpaYZOjGb9uk6K4AI+L8trGcY6lV46OjGSGI2CB9j2D6SUWFT1hjLNLhw4J/vSBJeIsUKOfQCZVuWNnxiNen7jStL7MoZhGIZhGIZh+i4cn8cwDMMwTNQYXR9qJf7rpzEsSGwRdjtwylRlmv3Adiy9S/+5n16qlkzFmh3Eo+txBUBaqMwqlP30wF0UFtMD7gGghujXuej36QwgMrKBrGPvIkZ66d9gfTnwGe1NiylH6uj3lyMVr0RlOVHuotLgZZ0YzRccByFbPECLeiJgZObS++kPFNID8c/P3kWmPbYgMe0QAPzlI7oOXTA2shgN771IJolfPU3LKgPrUZ16wioWfwQjcgZCzJhNpss3/gZphtedn00zcPtU+rd8aknX4yB00qgpI4mE/YSEyp0JsAwvZoiCYuCS76vTAJyQR7Tb7by3IQ6FihNen8Ruohkp9RCmEQAYNAwYMRYD/EeR4a9TZtGJbAOpalLny/WHSNmmXmVpfwzT6wm51xQAXt5/I5nd4wUWbY5zmRQs+Np63msm0NdS+T7dH0JBMYStTUouKIG1N2T8BCV0dKVDOFJ0xWT6C0LTT1f0B+VOTWUfPREiPSsGhUpCNPdjAGCDiXf2XUmmr90HrNsX60IFs2wH0NiiTrvuVAv3Y+2U5Lfn/Xhel8siInxfDMPEHxajMQzD9DB33XUXGhqODR7Nzs7GvHnzkJ4e3Qu0gQMH4j//+Q9SUo7dwO3fvx8PPPCAdrvAYwOAw2F9UH13tmUYhmEYhukqpBjNSIwYjRKpePzqcjFqKElJmuGGQ6hfSrRK4qkmwwRAyYKchguGSM5HYTqRU0fb4iMEQg6DX+IlE8kmIrMqnUhLAkmYle/OUh4L361DpMBhJOczDOq3CBWDUdfRrkr3HCIFdqGe4ZqSngXlIdreNBt9XfdJtfAxmv0Hfl6W1zKMdaq8h5XrU4UTbiMjwaVhehObGtfgQOteZdrpmech056d4BIxVkgxUpFpU/82OlFid4l1f4VhGIZhGIZhGKarcHwewzAMwzBR0534kuFjIufpSYqIwZzlZRg1CHDY6E2/3BOfIoVCidFUMqsw9hHWrfxCCGca4KTjKGSV+h0a0vi5dkTyCzr/HNuySZt1zd7ETLj0VTmdNqZAMYi6nKg7oeeMTR1bASBMjIa6KjpvPxejiRFjybShh1aTaftr4lEaNUfULiAAQJ6F20m5bQ2dePIUWt4RKACpI+Qf/bz+KCk9kU6rOgQcPaBM0knudh0Fqhq71maVHVFvNzQHcDrUx5SU3LOwBEIn+WCiRow8iUz78RDNuQvgywRdx2LBzqOAn/BJlrRqZLKDhkEMHwMBoNSrFvbp5H+BVBGhe2FitAyON2H6C+HtebZZiwInLWX890qJOk9i256NB6wf77QRmsStmjY18N6Z6hf5QuKMqf41942YDnR9JtXkv7o6OuHc7pcnWQkVgCsY0bobLmL8JgB8uSe+7dIHG9X7z3IBF58QjRit7X+5bW3XC1NY3PVtGYaJCck5GpRhGKafsGXLFrz77rtB62bPno3Bgwd3aX9jx47FXXfdFbTun//8J6qriYfhaJu5sqt0Z9tYsGnTJrz66qt46qmn8NBDD+Gxxx7DCy+8gC+++AItLV2XZvh8PixfvhwvvfQS/vSnP2H27Nn45z//icWLF6O5uTmGn4BhGIZhmK7QbKof+jstyl+6i066IVUPShkllKTEZUuDQ6gD+ikxFMME0hsH31PtCnDsXPES9d9OnC9Mz+CyJZeIzGp5EiVq06E7DzqwInqz8t0mc3tA/Rah103qOmrle1QhhCC/F0tiNCJPmi2dlNBR7ZqKUDFcB4FlpsrP8lqGCecoIULKcwyMGEwrFMFZTP9hQdUbyvUCAtNzv5Xg0jDRkOvIV66v8hKjy2KA7r6fYRiGYRiGYRgmUXB8Xvfg+DyGYRim32LT2MF0lIwHisfFtiwxRlCDX1ctRLpT4Mpv0O+CDtUBjS3xj4/bQchkivMjv6eSi19TJxS2y610A+YP71Ovd0Un1O2PiGnf7vz723XzYNfEA9zxqoTXF/96tJ2oRwBw4+mKukQIiURhiBjNronVChOj0fcJ/V7ecP61ZJLxwI0Y7PYp03YdBT7fGf/6U90oUUnIfCYcB2uSqs/eJZNEUSkt2TP9AADp9wMNhAkuq5/XHxUnnwO46LgpeXUJZHV4rMRFES7b6zWSRR1lxGvYUp3kc79aQMUihjhw3jVk0jU7/6rd9KH5Ek0J6A91Bykl/rTQxJj76edKxa276B24M4BzrmzPp66XOy2GGlBitBx/iNyov18Xmf6DodZ63HDcbnKTlz6XyP2Ficv+6kdNU2Lan2qLYbdTRwFDcwnhZ+UhYPl75Lbigu8cW6DEaK0hz6BJMVqOrphMf0LbTw8/fyTV/wIgvnlTDAqUpOQN1orjAcABH75dN49Mf3d9fNujD79W73/6GCDf4mMaQwDH5QHS0wi8/nTXC0NNMsAwTMLQTFPAMAzDxJs5c+YEyTMGDBiAm27qXmf5F7/4Bf7whz/A6217qdLY2Ii///3vuPvuuwEAu3fvxogRtIb73HPVFuNnn30WALTlox7u79q1C8OHD+9cnjp1KpYuXdq5HI1AZN++ffj973+P1157DYcPE7MyAXC5XDj33HPx/e9/H1dffTVsFl5Qb968GQ8++CDeffdd1NWpp3dxuVy4/PLLMWvWLIwaNcpyuRmGYRiGiR09LUajpBsmTLTIZjiFKyHl6O3oBCcOQ/1iwytblesZJpBYy4ISgU7S1CF6o8SAlEiQ6RmsXosSJSKzCwccIiVi+5koUZsOK7IyK99brPL0FNRv4ZWt8JreTslYEyUa6cZvmWZLR72/Nmx9k9kNMZqRDrsgruum9eu6lbZdJ5WTUvLMqQwTQBUpRhtkYWsikEkRNML0LXZ7tmO7Z6My7aT00zAwpSDBJWKiIdeRj93N28PWV/ksTuPcBUgxWhL0PRmGYRiGYRiG6T9wfF4bHJ/HMAzDMFEi1IPVI2720KvJ/14yVPIUgFw2H09efwk+3yWxp1KdZ0cFcGJRnMoWcAwVWpkMANnUAGxcoU5sF8KJVBdkihNoVchYj7AYrct855fA3+4DABT4DuI/5dfhiqH0AOqH3pOYeXl8z5UyzSuQ04qDjy0b6wCFMAlAZ93pJCoxGiFuAICM/i1vEAXF2jfM8/ZcjTMHvKVMO2O2ifq/GnCnxq8OUVIrAJh7a+RrhFy9mEwTtz/c9gd1D+Vvl8LVVwPUvVwGC4RCEXY78NQSyJsmkXnkb2+A+MuCoHWpDoGV9xg4/RG1QOrSv5hofDJ6YSol+SwZqKm3lJijgMVosUbkDoLMGahs+3O/fBsfPtGKC58kJD0Afv6qxN9vTN4+35vrgDtfo1vZAu8BuKXGeuR0Q2RkQwIoaVWLQ8s0AtJAKDFarj9YHir6+XWR6UcQ94v3j96I328dQ25mSmD+BuCmZ028MaOLIu8osCJGm3gc8OItdL9I3vtf9MalJwJTLj+27EhV5/MGi9EkJR7mNoTpRHN9VvWtCUE2AIgC+j1Pb0cIAVlYAuzYoM33+OH/xvPZ31Omvf0V4PVJOOyx7xPtr5bYsF+dduE4gVSHgMsBeCLM0T4sF0ixC5iP/rx7BeL+OMP0OF17Ws8wDMPEhA8++CBo+cYbb0RKCv3gzAr5+fm47LLLtMfpjUgp8eCDD6K0tBRPPPGENugKADweD9577z1ce+212LePeEnZjt/vxx133IETTjgBc+fOJYOuOvb76quvYty4cZgzZ06XPgvDMAzDMN2j2VQ/ZXcazoQcXydXomRfTDiU0CXN5oadED15zQhPLRkGvXPwfarhhCAe03V8HkqMRp0vTM9gtZ4lUkRm5VjOJDg/rMgLrXwWK79BMojgKHS/RXNA+0YKRrshfUsz1MHcVvo3lDwtzZZOChypdk25f41QVfV3IB3yWoZhjlFJitEijCbRwGK0vs+i6jfItPNzr0pgSZiukGtXn99VXovTOHcBqg+RzNJqhmEYhmEYhmH6HhyfZx2Oz2MYhmGYAIwuDLVyZ0JopGNJQ6jkKQD51t+Rly6w/UH681PSsljR0CxxiOgqlORHGGz7iVqiBACiKOC3ySSEQoeJPo0zMRO29maEzQYcf0rn8jcb3sfMillk/ueWx//dIiVs+cFkRT0qpwfDoyjkvNaK0XzBy7WEYdCVDuHo3n1Jn+A7vySTTjr6CYTmHfTbX8W3DlH1x+UASvIjby/f+gedOOG8tv9tdnV6hxitjqg/AJDFYjQVovREYAwtRsPapZAHd4etPnWEwNgh6k08XsDTGn19o+SMpbr6c0AtRhOh7RATE8TVPybTph99F898j+53vLxKotmbvHEyzy1Ti/46oGRnnXRIYc/6Jkq8u5RZdALJQKob1d9TrhkiN6L6ZwzT1yAk3C6bD09cH1ku9M564Gh9/NufGuLc/X/nCOx91MDOhw2s+rUNhTnEJKt7twGbVpH7F/f8PVgqnmJNjEb2r7kNYTrQPc9RitEIMe13/zs25UlmLPQxs8w6/KbiITJ9waZYFugYn5XR7dyF49rajhwLIYgl+YBsbgI+eq3rhcnMhcjI7vr2DMPEBOIJCsMwDBNvysvLsXv37qB1F1xwQUz2fcEFF+D111/vXF65ciW8Xi8cjt45YN7n8+G6667DvHnhswYNHjwY48ePx4ABA9DS0oLDhw/jq6++QkODekBuKB6PB1dccQUWLAie9cPhcODkk09GUVERUlNTcejQIaxatQpNTU2dZfrFL36B6upqzJw5s9ufkWEYhmEY6zSbHuV6p5GYACSdcMVjNiIHAxJSjt4OKXQx3HAIddCPT7bGs0hMH4GU5yTx4HtDGHAZaUqxUIcYzctitF6BVclDIkV9TpsbtX5ihqx2kkFOYeU7sXIeuyz0B6zk6Sl0v0WT2YgMtL1YoySQ3ZG+UcempGcd+KWf7J+1idHU13VvFNd18vMGlDmSvNZpuCwfj2H6OpVe9aBWK2K05J3vloknFa0HsbZ+pTKt1DUWI1yjElwiJlqo85sSJcYCDyG2T2ZpNcMwDMMwDMMwfQuOz7MOx+cxDMMwTDDCsNE6ntxBQFX4uxZx3R1xLVPM0MnbDu8FANhtAiX5agnam2slvnUSYBjxeWu08yidFklGJHdupBNLTzz2d2YOcPRAeJ6K/eptXepJxpgQSk8Ctq7pXJzgWUNm3VsF1DZJZKXF7+3jdsLzO3KQYuV+QhCTkgoMHBq8TidG84fEdx3arc6XY8Gs1Q8QpSeSba1TtmCM6yg2edTf1Yb9wHfiVzRSalWSb7H9o+oUAAwd2fZ/JDHaob30PrK5DpEMGwVs/oJOX/cpMGR42OrifGDTQfUmWw8DJw9Vp6nw+SV2Edez0oGEQKa+hpa9FBZbPzhjncC+QQhyxwZMuOgagGilmlqBXUeBMYRQr6fZqOjmBHJSywZ9Bld7fGVGLilRq2psk57luPVtYh0xn2mmvzZ4BV8bmf6CIM4Z08TJQwWodqczm2y7Lg3IiH3RAqki5lPOSQOKCBlaELs0tqQU57H+UAdOIpaosT54+aBa1shtCNMJdY4BhBhNfZ3rF2Jai3L/k5vXk2mf75K49MTY39cfrFWvLx0IDM1tO97ADOBAjX4/JQMFsHcb0NqNCdYHFnV9W4ZhYgaL0RgmyfD5Jcr1Y1WZGFCU0/bCridZtmxZ2LqJEyfGZN8TJkwIWvZ4PFi3bh0mTZqEoqIi7Np17Abwz3/+c9DMii+//DJOP/30sH0OGNAm+Jg6dWrnuuuuuw6ff/5553LgfgMpKupex+/OO+8MC7q65JJLMHPmTEyaFD6bh2maWLlyJV555RU899xz2n3PmDEjKOgqKysLM2fOxC233IKMjOAnBB6PB0899RTuu+8+NDe3dYRnzZqF0047DRdffHEXPx3DMAzDMNHglz5SopE4MRp9HErIxIRDC07SYUA9SwclhmKYQOIhC0oELptbKR/qaFd8RP13sBgtqbB6LXLZEifmslL3k0FOYUmMZuH7tSJ5S2ZRolbA2t4eSCnjIoFMM9TB3E1+/eA2Snbatk83KXCM5rpOte2B5xzLaxnGGqb0o8qrjsDNc6hGAYTCarT+yOLqtyGhnlH4/NwrE1wapivkOtQBgDW+KvilDzYR+7ABsr+SBH1PhmEYhmEYpn/D8XmJo6dj9Dg+zzocn8cwDMMwIRjq2CUAwGU3Ay/MDh5Q60gBLvpu/MsVA0SqEzI9G2hQjB49sAtSSgghUDpQLUZ7caXEJ9slPrvbQKGVAfFRojomANgNYFhuhI0P7KTTJpx37O+MSDsKgcVolhCX3QQ5/9nO5fMbF0NIE1Koz6ftR4CJw+NTFr8pScleab6i3paXqTMPGQER2h5QMisA8AXHQUhqvxYHoPd5zv4WkJVHyqBuTv0Id3muVabNfl/i4Ti+pqTEaEqxXghSSqCcEKM5UiDS2tsUqi511KMDhPgjdzCEM3knhexpxFW3Q374bzqDQm4KAD89z8C769XvxE95wMTa3xg4aai1697eKsCn3hVKqfnqdNewAhajxYXTNPL8Fx/FyT/8HcYXtokYVSzYJDFmSPLF0LT6JPYQjj0AMKQfP6h5Qb+TDkFRZg5KWxeT2XZUABMjvP5vaFGvTw+NByws1e+IYfoKlGC1qQ5nFANjh9Cizg52VEicWRrf9qdaPRcicix2QeRHr9GJ538HwhXSeGTmqPPWV0Oa5rE++X719VJw/5ppRwih0QsGp8j6GqCuSp21H4hpRWFJBBVjGxc3fECmPThfYtQgEzecrnmO1gUoOeOQrGN/l+QD6/bp91MiDkHeclr3CuPO7N72DMPEBBajMUySUV4NFN9LPP1iYsbOhw0M7+GxkOXl5UHLgwYNQl5eXkz2fcIJJyiPN2nSJNjtdgwfPrxzfXZ2dlC+wYMHB6WHkp5+7MWe0+kMStNt11UWLFiAv/zlL0HrZs+ejV/96lfkNoZhYPLkyZg8eTJmzZoVVs4OXnvtNTz77LGXb8cddxyWLFlCfg6Xy4U777wTZ5xxBqZNm4bm5mZIKfGzn/0MW7duhaF7Cc4wDMMwTExoNj1kmtNwJaQMDiMFduFQSoooaQcTThPxXbkMN/zSr0yjpHgME0g8ZEGJIM1wQxWL4DEbIaUkxWiUcIjpGayIu9ryJa4+RiqTgIFUQ33fnEisnKPW5Gm9QwRHkWo4IWAo5TMd185W2QIT6mtldySQaTZCjBahf6OSOgbu02GkKNO8prXrul/6yT5g4OdleS3DWKOR2A7JAAAgAElEQVTWVw0/fMq0PAcVgXsMQcyoJy2FSDC9kXpfLVbUqgNdB6cUYZx7gjKNSS4oMZqEiRpfpUUxYnQ0m+ooyURKghmGYRiGYRhGBcfnJY6ejtHj+DxrcHwewzAMwyggRE4AIEZPAB5+DfKJu9sGZQ8fA3HXExCDj0tgAbuHmD0P8ifTwhOam9qEMXmDUZwvEDpouIM9lcCMuSbenGGLednKjqiPOXyABekuJSK65PsQ9oDhc9Sge4q05I0xSCbEuNMgr/gR8OYzAAA7/Ni64wSMKt2kzL/tsMTE4fEROuytArzqsAql2EpSdWeoQtJi18Rq+UPew1L7LWJxA4A2udcTiyG/d7Iy/ee1T+MuqMVoALCzQra3VbGHaotKrByv+gjgUcfSiD++c2yBEqO11yNJidH6gaShO4ixk7TRC/LIPuV0cOeP1f+23/6biS0PGGTMRCCUWA9oEzgoIUQvSEkF8gsjHpOJHmF3QJ5/HbDwFXWGg7uw8I4RGHyX+jniHa9K/FzRneppdlcCpuYkeL382zi5Zb12H6JdCisy81DgOwCn6UGzYpxG2ZHI1/JGUowW0E4KARSM0O6HYfoOROzdcw/DuOYnWHCHgR88a2LpNro/u5OQSceS7ojRpN8PfPQfMl3c8efwlZmEvFpKoLEWyMiBbGkGDu9V5ytiuSJjARlygdSJafuDbM/ifWkKvLigYSEWpJ+vTL/xXxJnFEuUDIzdvRklRssLeDxTOpB+btVB8YePatPFA69A/uY6fWFCRY4Mw/QI/IaYYRimh6iqCjYJ5+RE+YJNg9PpRGpqqvZ4vYVZs2YFLd92223aoKtQsrOzlYFXUsqgfdvtdrz99tuWgsc6Aro6KCsrw5tvvmm5TAzDMAzDdB1qUC2QODEaQEtHPJry9RV2ebbi5UNP46nyB5X/Xjg4B+vqV0bcj4cQlKTZ3HAY6uAhn6kWQzFMIOTg+yQWIQG0FKrJ3wifVMtLAMBOCIeYnsFKPbMLOxwicb9bJOGYy0iDoQnqThRWhF5pVuRpFvJY2U9PYQiDFHx1tG/UNRToXltHfS9Nflp8Fik9zUiHgxA4UsLHUHT9v8Df22GkkOcWy2sZ5hiVXvXsx4A1MRpJaNAI02dYWvMeKak+P/fKpOhHMJHJtdPnd6U3PhGTOiE6wzAMwzAMwzBMIuD4PGtwfB7DMAzDKNDJOA0bxFmXwXhlM8SiGhgvroM46azElS0WHDeaTmsXs5RS4pZ23lkP1Hli/35oB/HImhTJtCOlJAc1i1OmBq+gBt1TuNSTjDHhiO/eFbRc7N2N8c0blHm3a8RB3SVqKVF5mTqzajC8TSNG84XEQRBiNMHihk7E8DEQ//2UOm1/GZ6/iR5c/8oX8XtHXUa0RaVWXqlTQjwAGDHu2N+kGK3dgnJwtzqd5UGRGTiUTtP8PheMpTfbfgT4co+1w5dVqOvmkCzAnUrUaapcQ0ZAsCQ8bohJ0+nExf/BwEyB6WPoLPuqki9WZu1eukwNmI5vNrwfeSeu9vjFzBwYkChpVfexqLYy6JikGC0gniC/CCK15yf3ZZiEYCPk0rVt06sXZAssuMOGmjkGpoxUZ423GE1KiUoi5DYnzYL4aMNyOu2KH6nP9wzNs/u69ufuh/fQMYosHmYCoUS2ofWH6n+lpAIDCmJbpmQkCvnb+Y2LtOlvrottn4iUM7qP/bZW7s2KDyyjEyeeB+RamEyWnwkxTFLAd8UMwzA9RGggVOjMkN0ldH+VlZUx3X8iWL9+PZYtO9bxzMjIwKOP6g29Vvn444+xcePGzuXvfve7OPHEEy1vP2PGjKCArrfffjsm5WIYhmEYRo/H7yHTnIREJB5Q0hWdqKQvsK5+Jf649x58WvsBNjauVv5bWfcxnjkwG/OPEjNotaMbIE1JTajB+AwTSBNxHib74HuqfB6zET5N3XcIIkCK6RFctsjXIpfhtjRzZKyIVPetiMQSgZVyWDmPU4UTRoTH3onsM3QFnSgRoK+hum2tkGaoX9xFFKMR5TFgwGm4un1d1/WvQoV6VB2hrg0M0x+p9KpHAbiMNKTZIr/Ap65gyRfqycSCVrMFS2veU6Zl2XMxMePsBJeI6SouWxp5ra+KkxhNJ0RnGIZhGIZhGIZJBByfFxmOz2MYhmEYAq0Y7ViaSE3cRJ4xJSsPSMtQpx3YBQA4dYQ+rkFKYBs9H0+X2UnIZIrzI8RZVB0GPMR74dBB8rpB9yp4EKx1FDKi0lb1YPPfvSPjJpTZfkS938GZQIZTUZf2RyEwo2QWQJAYTbY0A0f2qfNFMQC9XzCUEMXVVmLSwHpys2Vl8ak/tU0SFcRhSwdaiPmiRHvuTCB7wLFlUozWPolqLXGPmV8YuQz9HHHVbXTi7i1k0qQI175bXzDxzlcS9c36ukfJGXXyBknIPVFYrD0W003GTiKT5J62unLyULpefPh18kXLfPi1en1JPuAs32xtJx19n5Ent23rJcRoFiSnlBjNLQP6bSw0YvoTjlQySTYdi9V1pQicXqxuf176XMLnj1/7U1EPNBLn7uAsCzvYQ19rxegJ6oSsPHp/ddVt/9donr8PGmahYEy/waoYbT/R/yoo7h9i2ijuKyZ5VmvT1+7tbmGCqWxQt3G5AWGHp0XouwPAqNbtdOKYSYBDPcYhCH4mxDBJQT9olRmGYfoniRxkHS8WL14ctHz99dcjMzMzJvteuHBh0PK1114b1fZpaWk49dRTO5c//fTTmJSLYRiGYRg9LWaSiNEo6YZGVNLb8Us//u/I3yFhWsr/fuVr2sHV1ABpl+GGXahnVfRKr3I9wwTiIc7DZB98Hyr36cDjb4RPU/fthHCI6RmsXIsSLemLJGuj6l6isfK9WJF+CSEi7itZPjOFi6hHHe1bNKKwaKCESJH6N41+dTSoy9YmAezudT0aERwpr+3DfTSGiRZKjJbnsDK1NUCr0Zi+yIraxWQ7f272N+Ew1G08k5zkOvKV66uIdqE7SCnhMdVTNya7pJZhGIZhGIZhGMYqHJ+nh+PzGIZhmF6N0InRNFKkXoIQAigYoUyTL/0eADC5BBgZ4fXR8ytiPxh/BxFuVqp+xH0MakAzABQES2VEZm5UZRKu5I4xSCaEYQDfOCdo3UjNQOTjf2PizbWxr0f//Zp6nyMHha+TjXVtYj0VClGLEAKwE+/IAsRoOLArfOB9B5QIrL+iEcUdv/1dMu39jcAXuxPXDgGR20UAkC88ok4oLAm+j+yiGE1kRdeG9UsuuoFOO7IPslr9I99ypkCGU5kEAFhfDnzrSROTHjKx6yhd93YQcsYSQvIppQTmP6feGYsU44o4bjSd+OG/IU0Tt51DP//50YsScz+3FlefCKSUpKxtWkkLUF9tbUfO9r5PuziuhJCcvrBCwjT17XBDs3q9OzCejwWATD9CXPn/6MQvFgUtFg8g8qHtetTYEh85Wrf7QuXqNgMAcO7V6vVpGbSAuK59ApT6KnV6ihPCybFITACkGC34mi0JQXZ/uS4JwwDGnho5I4AzPSsw0fMlmT53lcTKnbFrk6qIsP9AMdoJhfp3dAWOergk0RFxpUN88wcWxWj8TIhhkgEWozEMw/QQubnBD6Nra2tjuv+amhrt8XoDy5cvD1qeOnVqzPb92WefBS3n5uZi9+7dUf0LDALbvXs3TDN5HmYyDMMwTF+lmRhUaxf2hA7I1gmM+iqbGtegxmd9lnMTfnxet4RMbzIblOvTbG44CNGTT7ZaPj7Tf6HkN4mWUUULJfNpMhu18iBKOMT0DDZhQ6rQREch8ZK+SHXfimwsEVgRelk9jyPJ4JLlM1OQAtb2fgYlCrMLBxxG12WJ9HHV1+xI6W6jbYbx7l7XKakKEC5WIftoLEZjmE4oMVquRTGaIMVoyTcLLtM9/NKPRdVvKdOchgtTsi9McImY7kKJ0Sp9sRejtchmUqye7JJahmEYhmEYhmH6DhyfFxmOz2MYhmEYAkMnRusjw7Cogb57tkB6GiGEwKp79Z/1yY9lm8wlRrT6JPYQ4WmUTKYTakCzOxPIDjEKZOZEVzAnP9eOBnH3U0HLIwmZCgA0e4FbXzDR7I1dPTpcJ+EhQq2U9Ugn1aOERFbEaPvL1HkMAxiiFhP2WwYUAKkuZZJ86Gb8+Vr6/J/x79jfI2wnpFapdqAwW7+tbGqg61RRiBAvkhiNEhhl5ukLwUDkDYZ44BUyXT5xt3L98AECn94d+Tq/7TDwmzfpdquMknxSYRlffUYkAKKfiDl6EvHTP9CJaz5Gcb5Aeiqd5baXJOqbkyNmZsN+4CDx+OvCAeXWd+Rqi8kTQgDX/UJ7Lf94K70bv0lfk9MDxhEIFgAy/YnLf0gmyd99L2hZdw/0/kbg2WXxaXvKiL5QhhPIz7CwA+re7JSpEGnqHQghgAzi+XpHn6iO6hv1vufyTLyhxGghdZvqt/ej65L45V+s5QPw4d5LtXluf8mM2TMiUowWMkTkl+fT7eQruU+SaeLJjyAKigGbhbFYLvXE8wzDJBbiCQrDMAwTb0IDoaqrLVr3LdDc3Izm5mCTbV5e73v4ffDgwaDlcePGxWzf+/btC1o+/fTTu7U/0zRRU1PTKwPcGIZhGKY34TE9yvWphjooIl44CeFKX5ZuLK9dFDlTCCtrP8JFudeEzZbuNVvhI0RPLsMNByF60smhGAZokzc0E+1EsouQdMJF6nwB2sSQTHLhsrnR4iNml0HiJX0uI4IkLEnEFJFkZoB1iUZEGVyE76SnoeR5Hf0Mqr/RXclImk394q5VtsAnvaSIkRK1dXwOSl7rNa1d1ynxrNNwwSaCZ4gjJZN9WF7LMNFCCZAGOBTTo0eBZDFan2Nd/QpUeg8r087KujDp+9dMOLl2daR9lVcz1WsX0Ynjue4wDMMwDMMwDJMoOD4vMhyfxzAMwzAEho1OE31EjKYTM61eDEy5HFlpAplOoI4OgcCmg8C4gtgUaU8lYBKvnEoizPEjqQHNBcVhsWtRD5znQbDRMXh4m/CpXe40snW7NntVI/DJNuCCGHVF311Pv7ccqXolWk4IzBwpwMCh6jRKjNYhtAKAQ3vVeQYNhXB0fdK7vogwDMjCYmDn18r0E/JbAKi/s9V7gL2VEsPyIsgTo6CMmFOoJB8wjAjHWb2YTisKESzYiGtNRz2qq1KnRyt37K+crpnoa8tqMunEIoG7LxL4/Qf6GIg31kqYpgyrE6YpsTNKMZr85E36QCxGiz/FJ5BJcumbEBOn4epTBJ5foa4TDS3Awk3AVafEq4DW+XyXuox2AzjPvt76jgL6PuL4U1Dy9r/IrPPWSEwbo24bmzTzproDJ0sdOtJ62RimlyNsNshho4C928ITva2Qfj9Eex+hWD3/YSevr5H4yXmxL+NuUlaN8HsrFYQYTXzjHP12mTlAjeIi2tEn4r4RYxWqnoaJ0Yi62p/6X1F81iyzDr8dvxW/23C8Mv2rcmDX0chtlxWqiTnVc0LCDieXCDy+UN3/GVWxUr2T6++EGHlS29+OyGI0wc+EGCYp4JGTDJNkFOUAOx/uIy/LkpiiJLjXKSwsDFo+dOgQKisrYxIg9fXX4S8EQo/XG6isDL6LzsmJ3Q8Xuu9YUF9fz4FXDMMwDBNnWgjhkTPBghNKPNJXpRt1vhpsaKADASgqvAex07MFJWljgtZTAhWgTaLiMNRBLF5T84aUYQA0m8QTcHRfGBRvKDmAx9SL0RyCA+WSDZeRhhrQ95yJFkFQkq3O9CQ5N2zCjhSRilbZQuaxIk9ryxdBjEYIwJIFSuzWIRihRCPdrVtpBv29NPkbkWlXT3vb5G9Qru/Yn51op3RtWyCUCE71PZGSyT4sr2WYaKn0qqO4cx0RRpN0EruAciZ5kVJiYdUbyjQb7Dg355sJLhETC/Ic6qijuIjRNNfeZBHzMgzDMAzDMP0Xjs9LHD0do8fxeZHh+DyGYRiGIdAN9tZJ03oR4uSzIF/5kzoxYHDwj84W+OMCWg7z9FKJv34nNu+PdmgeVxcPiLAxMaBZOcg3I8o+T1pyxxgkG8JuD5pU6RvNXyHDX4d6Wya5zfYjEheMi0092qae9wcAcPZIxTHKibpTMKJTShGGjRg87QuIg2iqV+fJ6d6EVX2WolJSjDbBsRuGGEWKE1fvAYbF0FNNtUWU1CoIleSkHXHimcErbMSwXr8PssUDtKjjpZHZ+6TcPYFwptHTu+3dBnP2bYAQEIOGAmddBlE6vjP57JGRxWgeL7CnChgRcn3aXwO0+NTblOYT7dw+QtAIAGMmacvBxIDRE+i0dnnmlJHA8yvobJ9ul7jqlJ6Pp9lOXANPGQZkHt5ibcpDuwM4PsDyVliCic1ryOzry+m9NmjkuulmQMxhYQmdkWH6IvmFdJ/h8F6goE1ifVweMDQH2EfM97GCcEN3l6PqkGBLz/ulaQKUtDpUEhsKJbCua/sCZD3xRWTw82ImBIN6B3jsmiWbm4CjB9TZ+tF1SaRnRTUlcq6s0aa/sEJi5uXd6xNJKVFP9CGyXMH7nno8kGoP73+PHgzkfbxAuQ8R+PtS0vNA0jjWkWGSARajMUySYbcJDI/00obpE0yePDls3erVq3HhhZpZKSyyenWwtMLlcuHkk0/u9n57GktGcYu0tsZeqiFDjdEMwzAMw8QcSnrkMlwJLYdOYNQX+bxuCUz4lWlnZE1DmuHGx9XvwoQZlr6y7qMwMRoldAHaBkjbhfrholWBCtN/iVS3khmqfE1mI7yauk+dL0zPEamuJVpE5oxwvESL2nS4bG60+tRitBSRCpuw9jg72X6DaKFkdp72fhAlGO1uO6eT6DX5G2gxmkmI0doFdA6indK1bcHHtv55I0nlGKa/45d+VBMCpDy7NTEa9YSWn4z2LbZ5NmJvi3oQyKTMKchx8Ius3gglQKz2VcCUJgwROzGEThzvSrDcnmEYhmEYhmFC4fi8/gPH50UPx+cxDMMwjAXIAba9jNMuIpPkk/8Dcd0dAIDbpwo8vlCSQqInP5bIzzBx/ze7/72UHVEfpDAbcKVE6KdQg+9VA5qpAfcUruSOMUhGxM2/hfz7/QAAt2zCnVV/xsz8+8n8P31ZYsa5sTk2VY8AYLKiOkhKqldUSh+EGjwdIEaTHuJdCdcnJeLWmZCfvKVMy6zYhnsuOR4PzVf/ttc8beLQHw0MzIzN/QxVh0oGRt6//Nt9dOKk6cHLdlqMhroqej+ZPWwh703ccDfw0u/VafOfBdAe6/DCI8DMlyDO/hYA4MJxwGkjgM936Xc/+jcm6v9qIMV+rG788zO6DSpRz2NFyz0BiCwW4cUbkZ4F6UwDmhVjFNp/m2sntYlitxxS72POYonbzpE4fnDPydGklKTMdtQgAfmvB6zt6JoZEO4AmWlRCbLMOrjMJngU7/qX7wDqmyUynOGfvVHzaChIjNYugWKY/oL44SzIL6co0+Sbz0D8+BEAgM0Q+PWlAre9pD63W3zAloMSo4fEtu2pJrqxuW4Lx6k8SMtdI8mmCIG1rKtqi1mk+kfcN2LCIOpq4PuFA5qOnkqw3pf51q3AW/+wlDXbp7lPATDrXYlBmSZun9r1Z0StPsAXPjQRAJCeGryc6xb42TSBP3x47LcVAvj1hH0QHxMHCJQ0UrLqQFwZkfMwDBN3+sgTeYZhmN7HsGHDMGzYsKB1CxaoDbTRsnDhwqDl0047DSkpKTHZdyIZMCA4CrGqSt9p7uq+nU4nTNOElLJb/4YPHx6z8jEMwzAMo8ZDiNFSEy1Go6QbRPl6M1JKLK9dpEzLdwzBDYN+gqsH3oxxbvWMWV/Wf4ZWM1hyoxPIuWxuOIS67+qVsQ+eZ/oWlCwI0At/kgFShORvhM+k5UEOg8VoyYbLphc9JFpEFkkClkySMF1ZovneIn2mZJLBqaD7GW1tHCX56u5v2SEyU0HJzwCNuKz9e6au6z6L13Wq36BqN6nfVnd9YJj+RI2vUikzBoA8R3dnJudBqX2JhVVvkGnTc69IYEmYWJLnUEfa+6QPdX79bI7RQj0fsQsHHEbve1/FMAzDMAzDMEzvhOPzIsPxeQzDMAzTBQxbT5cgJgi7HbjoBjJdHj0AABgxQGDbg/qhZw+8K3Gwpvvvinao5/ehRTKBEFIZUaQSo0U5cN5Fv0tnCK78UdDifUdn44X9N2k3OVwXm/eN2w+r199zsVCLgMvL1BvoxA0WxGjwEHEWLEZTIkaMpRMP7MSsy/Uijv9dGrv31duPqNePjDDXmNy7lU781q0QoWJNahC+3wfU6sRoUcod+zHi2z+zltHbCvnE3ZBmWzyFzRBY/EsD939T4NzjNZv5gbfWBa+b9a66LuZnAFlp4fVY+nzAwd3KbcQDr1gpPRMDxMwX1QmH90G2tsCdKvDZr/T9odnv92zczJq9dFqJg+hkdXDSFODMSyHu/l+IH88OShIZOUBmLubu/z65+fPL1Z+9QT1HLgAgvSOeb0ABBF8bmX6GGHcqnfjy40GTQ/zobAN//C+6H/SzVwh7UDeoalSf0zlW5kEsp2WfUN2bBUL1cTqEaHXV0W3H9F+oCWACxWiUmNZmAwYfF/syJTHihrst5/V6miPm+Z/XJRpbut4v0vYfUsPXzb5K4O83Clx+EnD9qQLv/czAdz6g+y1B9/pWxGhp/EyIYZIBFqMxDMP0IBddFDzT0osvvgivlx7wboWKigq8/fbb2uP0FoYMGRK0vGnTppjte9CgYwP9mpubsXev5gkgwzAMwzBJQ7Opnj3EqZiBKJ5Q4hFKVNKb2dW8FYdby5VpZ2RN6wwWOj3rPGWeZtODdQ0rg9ZRchIDBlKFEw6hDhzyyu71lZm+j+4cdCZYoBgtlAipVbagWRIzJwGwwcLDeCahUL+l1fRYk2yiNh2678YVxbU+4mdOcL8hWqjydQjIKFFYd3/LVOGEAXUQf5NfJ0ZTp6UZbS8C7ULdTlm9rlPiNVX/rz/10RimK1R6iQhu0MKkUJSDBQBIFqP1Gcqbd2NT4xpl2gnuiShI7V+BP32JXDs9WqNK0z50BVJsmkRSXoZhGIZhGIZh+gccn6eH4/MYhmEYhkBq3nuEim16MaJ4HJ246thEmsX5AjPOpQfj+01gwabuvyvaWaHeR8lAvRBJ1lcfGywfSmFx+LpoB847+dl2tIiMHCA9O2jd9XWvYtaRmeQ2izbH5n3jXqIqjCsgNiDkDaKolD6InYjXChSjNROT7LJoj2bSdOVqWb4DQgj8YDLdFry3ITb1p8UrcbhOnVaSr2+LsPojMkmUjA9fSYrR/EBdJX0cln9YJ3uA9XPu4G4gQG6Xliow83IDi++04XTFpaSD9zceq3v1zXQ9LMomEo7sC247gjbStENMbKG+a9MEDu4CAOS6BeZcp2mHNvZs3IzuOlpcuZpME3c9AeOJRTBmvw5x2c3quKDCEpS2EiJRAJ9sI8RoGneKuyOmQNVXY5j+wIln0mmVh4IWf3qugI24Dd11NIZlaqeK6MbmWrktomRTmblt9wg6KIF1pxiN6OhH2i/T/7AiRjuiHiOHQcMgKBF2X2XgUMBhbeKf4307I+apbwaW0d2GiEQrRhNC4JazDLw5w4aXbjVw4ThB/74pqUB+4bFlK781C1wZJinoO0/kGYZheiE///nPgx4YVVRU4Nlnn+3WPufMmRMUvOV2u/HDH/6wW/vsKc48M/gGf8mSJTHb9+TJk4OWYzUbKMMwDMMw8aWFEKMlWnBCCVco4VdvZnntIuV6AQOnZ57buTw+fSLctgxl3pW1wQEflJwkzZYOIQTshvqhqk96g2bAYZhQqHPQaaTBEMk9Y69OCFXvq1GutwsHKSdheo5Iss6EX7OSTNSmQyf2iqacurwGbEgRirdiSQT1PXQIRihRWHd/SyEE0mzqYEBdH8djEmK09n1R13Wv2WqpXKRYRfE9RfruGKa/U+lVT4+eZqRHIVfkvkdfZ1H1m2Ta9NwrElgSJta4bRlkP6jKG2GG6Cih7vsTLbZnGIZhGIZhGIbh+Dw9HJ/HMAzDMF3ASO74k6g47UIySX7wUtDyReP074huek6SUgyrlBGPqksize+zXzMwt7AkfJ0rnRYSqXAm92SMSYti8PAFjepYRADYfLD7h/T6JOoICcuQrPA6LJvqgapDitwAihR1pwNq8LQ/QG7kISag40HVNJQcZ9MXAIALNS7HL3YDD8030eztXjtUTYhAAGBIln5bWaMxk5x6fvg6XTtUTTSIaRn9T9TQDYQQ6u+egpC5XKi5Bj63XOIfn5qQUuIoPe8kxhcp2qBDeyDv/S96IxZGJY4hI2iJylfLOv+8YCxdFyrqgdqmnotxr6in06Y1f0InElLKIIpKcHzrNjK5kgjNo8QmDtmKFLRfM/MGRz4+w/RFxkyk0zatClp02Om2Z0cF0NgS27anijinrYjR5O7N6gTVfVkIIoOQvx5tv1Gor1Zvx9JYJhQrYrQ6dX1C7iD1+j6MMAzLz0gmtn6FHAvhfxfNMfH5zq61TVoxmjPy9rLFQ4vR7Cltn7cDK5+b5YsMkxSwGI1hGKYHGTt2LC6++OKgdb/61a9w+LB6gFokNm3ahD/84Q9B62666Sbk5vbOm7vp04Mfrs2dOxf19ZondVFw4YXBL3L/8Y9/xGS/DMMwDMPEF4+pjjpwGokNPqLEIx5/Y58SdzWbHnxZ95kybZz7FGQ78jqX7cKBSRlnK/NubVofNMiakqt0fK8OQQdu+GT3ZnBn+jakPCeJxE8UKsFPB3WEGE13rjA9ByXP7ED3W8eDSKKbRJdHh+5cjaacus+cZnMnvVBQ188AohOFRQv1GzT56ci9RiLN3S5Go9oqq9d06vOqvifqu+uL8lqG6QqV3iPK9XmOgZb3Qbagfec2qF9T5a3A6rpPlWnDnSMx0qUZbcAkPUII8nyn2oeuEs/+CsMwDMMwDMMwTDRwfHkdzi0AACAASURBVJ4ejs9jGIZhmC5g9J1hWKJY89x/7VLIZfM7Fy86AbgowmuCaY+beH1N114amabEzliL0VJSgQEFYauFEEA0g+dTWYzWFcQv/hS2bkLzGjL/w+/Jbsde6qRWeap54nRSvaJSOo0aPO33HfvbQ8QpOPldCYWghBnb10HWV+OKkwXpOACA37wlccGfTPjNrtcjSu4DWJCB1FWRScrPphWjEe/usnrnvWdPIn5wL5A1wFJeOesHyvW3naOPNfvRixIz5kpSJAMA/3NR8D7kgZ2Q/28KsGODeoO8IRAsUkwYIiUVGDRMmSb/8GPIdinP8YMFvnkivZ8nl/Rc8Iyu/g0+tI5MEwUjIu+8sAQGJCZ5vojq2I2E2CQ9cCJWlo0w/RTx3f8m0+Svvw1ZWxm07n+/S1+LTphpwuxG/yeUrorRpJTAq3PUiTrpcAeZRHuwfR2k30/3tajtmH4Mdb4cO09kPVGf+ul1Sdz5V0v5HA1H8ejV1sZhnPNHEws3Rd82NRCycwBIV88JG8yB3WRS2Oe0IkZj+SLDJAV954k8wzBML+Wxxx5DWtqxQdM1NTW46qqr0NCgmSpCQUVFBa655hq0trZ2rhsyZAjuv//+mJU10YwbNw7nnHNO53JdXR3uueeemOz74osvRknJsRvqVatW4V//+ldM9s0wDMMwTPxoNj3K9amJFqPZVFEygB8+eGWrMq03srZ+OVqk+qniGVnTwtadnnWeMq+ExOd1SzqXO8QuoXSIbBwihSxTX/p+mdgTqW4lM5TMBwDq/OoZaewsRktKdL+llfRYkyqcEJrHwIkujw7duRpNOXWCtWT6vBSUMKRFNsMvfREFo907trqPoxOjUWlpRocYTX1dt3pNbyLadtX3RH13fU1eyzBdpSoGYjQKyWa0PsHH1e/AhF+ZNj33yqSXizKRyXWoR48FysxjAXX97g19MYZhGIZhGIZh+h4cn0fD8XkMwzAM0wVEHxuGdeP/kEny+Yc7/7YZAm/NMFCQTe/KbwKz3jW7VIwDtUCLT51WOjDC+4n9O9TrC4ohKJFdNIPnWYzWNSZfErZKALiz8nFykxUaT5kVdFIYpcihvEyd2ZECDBxK78xGxGz5AiaIo8RoLnVcBgOgsJhOm/8cUh0CZQ/p2+DPyoAPv+56EaKuQ4HUqWP8cNEN6vWaQfiyhnh3l8GD8qNFlJ4I8fdlED96ADj/O8D519GZm+ohG2rDVg/KFHjlR/pr0TOfSHy1j46bGDUoeFm+/jRQpZG2WxHIMLFF1wa988/OP9/4Md0O3fdmz8XOVDeqj/3jqYIUgYqf/kG5Pixfu9zxR9X/VKZTbWdDi7pMbjPAZMqyEaafInLygSHD6QzvPR+0+J1T6evQnkpgybbYlMs0adFnrjvCfdlXn9FplAA3EF178MVCuq/F7QgTChXjGBhHXl+jztNPxWg492pr+eqqcOsUA5/ebeCn5+nbhFYf8OD86J8RNRBiVSEAl5XhU/uJ+3wg/HPaLewwK8/CQRmGiTd97Ik8wzBM72P06NH461+DLbPLly/HxRdfjPLyckv72L59O6ZNm4bNmzd3rjMMAy+++CLy8yNNkZTchAaOPfnkk3jssccsb19bW4vm5nCZh91ux6xZs4LW3X777Xj99dejLuOiRYuwc2c338IxDMMwDGOJZr96Sj+XkaZcHy90whUPISvpjSyvXaRcn27Lwvj0iWHrh6YWoyDlOOU2K2s/6hSSUN9Rx/eqF6N5yTSGiacsKN6kGrS8qs6nfvGiO1eYniPSNYmSa8YLIUSvEYXpvrtoyunU7iexfYauoPusHrMprhJISoxGXbv90kdKVDskZZTE0eo1nTq26nuivjsTJllOhulPHI2JGE0dzMBitN5Pk78Bn9UsUKblOwbj5PTTElwiJh7k2tXne5WPmHW+izSbxPMbW/L3xRiGYRiGYRiG6XtwfJ4ejs9jGIZhGBWa9x6GLXHFSABi6Eg6cfNqyAC5k8Mu8OAV+oGv68uBKkLMoaNM85i6JEJ3S5YTYjSdVCYauRCL0bqEsDuUkpnjW7aT2yzZ2r13jpU6qZXqFQVVdwpGQNg05zo1eNoXYPdrVhdGuJInTifpKKLbI/nVMgDA8DzAnarfzWuru16PKBFIWgrgdESQgdRXqddTsg7dIHxKmBWN1JHpRAwZDvG9u2Hc/xyM+58HrvgRnXnLauXqScP1v78pgXe+Ute9XDdgGCHbr1mq3Z8lgQwTW4pKySS59pPOv22GwEgizEYIoNnbM/EzVepX9Mh1+oAj+9SJms8cnK+tPuYSkzxTx6bEJunmsckKBLdrTH/m+FPIpMB2BwDcqQKFGkl1d/vRHTS2tl3TVGRHui0KKXMgwkp7k0PHMMovPwYaWGTFWIQSo5kBkq56QrSXoTnR+jAi1QUMKIicsV1QeGapwJzrDDx0pb6PvKwMaPVF1z5R/Qd3iqJPrYISoA8ZDuEIGX8V6RmfYQDp/bNOMEyywWI0hmGYJODmm2/GjBkzgtZ99tlnGDt2LGbPno19+9QPoMrKynDfffdh/Pjx2LBhQ1Dao48+imnTpsWtzInivPPOw5133hm07q677sLll1+OL7/8UrmNaZpYsWIFfv7zn2Po0KE4dOiQMt/111+Pm2++uXO5tbUVV199Nb773e+S+wYAv9+PtWvX4ne/+x3Gjh2L888/H3v37u3Cp2MYhmEYJlqaTY9yvdNIbPCRTjzSRMhKehuHW/djh2ezMu20zHOUkhMhBM7IOk+5TYX3IHZ6tgCgv6MOmYnDoAM+fLKVTGMYShaUFgNZULwxhEEKm+r96hd5lGyI6Vkiyal0krJ44dQIKJLp/NAJwaKRfuk+UyzkYfFGV36PvzGiYLRbxyb2QV27df2eNKNNsuYw1BJHq9d0UgSnKGuk745h+jtVpBhtkHK9CkGI0Zjezyc1H5ASyWm5V8AQfWugV38l16EePVblJWad7yK9WVrNMAzDMAzDMEzfhOPzaDg+j2EYhmGixOhjw7BOv0ifvj9YHHXJCQKOCK8MbnrWhJ8aTU+wo4KWyWSnRXg/dYAQqBaES7k6iUbCkeK0npcJ5qzLwlZd0vABmf2+NyV2EnXBCpTUKtUOOL31MB//GcwbToT5reNgfus4yGd+o94gkpCIFKMFTBDnaVDnYTEazfDRdNpn70D6fBBC4IqT9W3C8ytk5yS+0UKJHXOt/Gx1armCoMRoNju9r2ri3V1mnoWCMJEQUy4n0+SvrgySgnYw1MJl41PCwRBaf2RTPbB9nXZf4my6jEx80NWLUMHG+EJ1NimBXUdjWKgooK6Bub7KtoKp0ElkA2m/Lub41QLIxhagRSGEayTFaAGFjUZWyzB9DG27s+J9yJbgOK5vafpAD86XuPp//Vhf3j1BWoNm/uGMCLdFcj8hHQaA0y+MfPDxk+m0LWvoNKqvxfRfKDFaIPUs2gujYETkPCEy6Ej3ZqYEdldGV4yGFnU7FqkN6kBuXKlOUPR7hGHon/Nl5LTlYRimx9E8QWEYhmESyRNPPIGcnBw89NBDnQ/h6+vrcc899+Dee+/F2LFjMXToUOTk5KCyshJ79uzB1q1bw/bjcDgwZ84c3H777Yn+CHHj0Ucfxd69e/Haa691rnvnnXfwzjvvoKCgAOPHj0deXh5aWlpw6NAhrF+/HvX19Zb2/fTTT6O6uhpvvPFG57q5c+di7ty5yM/Px0knnYS8vDwYhoG6ujocOHAAmzdvVs5yyTAMwzBM/Gk21VMK6YQv8YCSFwEgZSW9jeW1i8i0yVnnk2mTMs/BGxXPw4QZlray7iOUpI1Bk6kO+umQmdiFWqACAF7TS6YxTG8ffO+yuZXnR52PEqPxo71kRHeNAHpGzJVmuEG9U0qm80MntYpG+qX7TD0hposWXfmbzEZaMBqDupVmSyeOq752U+sD9+UgJI4+6YMpTRhC/8KQFMEpPq/uu/OYjcjBAO2xGKYv45c+VPvUV4M8Bz3bonV6ZsZbJjZ4zVYsqZ6vTEu3ZeH0zHMTXCImXujEaFJKCCuBYRaIRmzKMAzDMAzDMAyTKDg+j4bj8xiGYRgmFM2z0j42IFJkDwB+8SfIP9+hTJcP3wrxr1WdywMzBR7/tsBPX6bfDb2zHrj93xLPfM/6M+cdhAOoVP1YO5hy9QB8oZN9WB08n+KM2bPz/oj4zi8h1ywBtn/VuW6w/zDs0gsfEUtwxmwTG35rYGBm9N87JbXKcwO44yJgCy3nDaKLYjTp8x5rPTzqWFc4+V0JhRAC8vJbgLf/qUyXD98Kcf9z+N3lAv/+XP9++tdvSjx8ZVfqkHq9NTGaWhhEihhtGstktXrSs6ikjgzNRI3kvLUF8u4rgL8sCGr/7bbI9YmsPwHhhFJKyFtO0+/oguuB0yKIS5nYM2k6MKAAOHogPK1iP2RzE4Sz7cecc52B19eGx8kDwIx/m/jorsRPPEfVv5xPX1InGAYweLi1nWcPANyZyPWpBZAAUN0EDM4KXtdAiNHSAuMBuV1j+jNTrwIe+AGZLO+9BuKxdzuX771E4KkldB/ojbXAos0mvvi1gVGDunYP06iZ7zg9NcLGlBjNnQmRFVnuKlKdkMeNBvZsCU/csprekNsRJgyi/geKQom+u8jIjkN5egkFI4D1y/R5PI2QrS0QKW0NwpghAvddKvDgfLpt+ulcEx/eYb1vRAkaI7ZBAGRrC7D0TXUidZ9vdwCtRKfFQtvFMExi6FtP5BmGYXo5DzzwABYsWICRI0cGrZdS4uuvv8YHH3yAl19+GQsWLFAGXZ1yyilYvnx5nwq6AgCbzYZXX30VM2fOhMMR/BLpwIED+PDDDzF37lzMmzcPy5Ytsxx0BbQFqs2bNw+PPvoonM5gZXBFRQUWLVqEV199FS+//DLmz5+PtWvXhgVdORwOuN38gophGIZhEkGz6VGudxquhJYjRaTCgPrBHDX4tzfhlz58XvuxMm2E83gMSR1Kbptpz8ZY9ynKtC/rl6HVbIk4QJoSqACAV2retjD9nt4++J4SNtX5CTGaQUsEmZ4jkhitJ8RcTqJMAgZSjeSZ2Vh3rkYj/dIJ1npCTBctun5Nra8KJvzKtFjUrTSDEKP5CTGapt9zTIxGt1U+qReemtIk+3+q+qI7/3RlZZj+QLX3KKRCXgzERozGWrTezaq6pajzqwNYp2ZfghTDQlQJ0yugzvcW2YxGv/V3K5HwEGL73tAXYxiGYRiGYRimb8PxeWo4Po9hGIZhQtG8+ehjYjQAEFf/mE7c/hWkNzhea8a5BjbM1H8Pzy+XqKi3/gZpB+EAKhmoH9AvPY1A5UF1YkExvWGGxcHzqYmNS+xriLzBEE+GxyH++dBd5DYV9cDzK7r29rGSkhLZGq1L0QCIoaX6DHZiMktfQAyEh5hozqWOy2DaEJffSicufBmyYj+K8wWuVoeodvLUxxJNLdHXI7IOWZm7mRSjEYPpbZpJUSkxGg/MjwnCMICLbqAzrPskqjYjEkFivQ0rSKEnAIhZcyHu+xcE1c4wcUMYBsRfF9IZAn63whyBQZnqbEu2AX4zsVE0UkpajFZGCE4GDe2UmkRCCAEUliDPT7RzULeflBgtPUiMZlFWyzB9EJGSCvHPz+kMqxZC7t7cuViQLfDna/X3R/XNwDOfdL0Nos5bAEiPFG5OCat/PNvy8cUNd6sTmgnpMMDtCBMO9dwmUIxWrx6fY/lZQR9EFIywljHkvmfWtwx88Wv6GdHCzYAZRd+onuo/WOm2LHuXTBKUGE13X0bdyzEMk3D4DplhGCbJmD59OjZt2oT/+7//w7/+9S8sXboUPp+PzJ+amooLLrgAt956Ky677LI+OyOREAK//e1vceONN+KRRx7BvHnzUFVFP1BLT0/H9OnT8YMf/ADDhg2LuO+7774bN954I+bMmYOXX34Ze/bs0W6TkZGBKVOm4NJLL8W1116LvDzu4DIMwzBMvJFSasRoVqIOYocQAmk2Nxr8dWFp1OBfADjcuh+f1XyIvc07lVICp5GGkWknYGr2pXAYtBwscD+DUgpxeta5KHaN7tJnWVO/DOvqV6LGV9m5rtVsIUVMZ2RpZkrrzHMeNjaGz8rSbDbhj3t/haPew8rtOgZId0eg0sEOzxZ8XvsxDrXus5S/g0x7Nsa7J+HUzKnavnWr2YKlNe9je9NGNGt+81AMYcOw1BJMyb4Q+SlDyHx+6cPSmvextXE9PGY0IheBotThOCNrGoY6NcF9UdJserCk+l2UeTaj1Uze2dn3t+xWrtdJkpIJShJACQp0EkGm54gke9C1cfGCOgdcRhoMkTxB27rvLpJwLjhvbPbTUxjCBqeRpry+vH7kOXK7WEggqbqyt3kHHt97b9h6SjZmwECqaIuCsGvaKp/0IgX0m8pmswmSGHSgKqvDSIFDpChFqq8cfrpT1hYtNmHHcOconJNzCbLtHETB9E4qvUTgNIDcKMRogppNT4OUEp/XLcHGxi9Q5yMCSoijDUkdijMyp2G4a2Tk7FHwdeMafFn3KXlvMjClABMzpmC0+6SYHjcZMaWJRdXqWfJSRCrOzrk4wSVi4onufH+i/Hcxk+AdaFG/Y+kJSTDDMAzDMAzDMEwoHJ+nhuPzGIZhGMYihnoyzV7PpOnAF4vUaQd2AscFx6aNKxD4rwkCr32pfp/r9QNr9wIXjLN2+B0V6v0U50fY8MAuOq2IGPQKQGTmWpv4h8Vo3Ua43JCX3gTMf7Zz3fGt4RLiQFbu7JrMoVw9DxAG+CvVCRRDR+nTHcT7lNaAuLoWIqbQyXVKS1Fpm8jAVE/6hS1fAvmFuPlMA/PWEHkA1DUDmw8BE46L7vDlxC3QgAjhJtLTSIvRsog4E60YrUK5WvRjUUOsEceN1l8HNq0CxkwMWnXH+QJ/Whh9+5SXHvAcYZNGgJOeDUy9qs8+d+gVDB7edm76Fc+JysuA0vGdi8cPAg6HDyNoy1oNHJfAxxhHG4AW4tFWHnUNHEhPkq4kvwC5278mk8urgXEFwesaSTFagDyUhUZMf2foSMBmA/zqCZOx6Qtg+JjOxYnDBSJNYbqsrBtiNM0wEbcm/F021AI16v6L7r4sjMIox78IweJhJhyqL9UuRpM+L1Ctjhvt19elSPfBHVTsBwYEj4WbcJzAmSXAMsL/e6AWKLJ4K0O1QxHljADk15q+9nHHq9fr7ssysiMflGGYhMBiNIZhmCTEbrfj+uuvx/XXX4/GxkZ8+eWXKCsrQ0VFBVpbW5GamopBgwZh1KhROOWUU5Ca2vWBKjNnzsTMmTO7tO2SJUsSuh0AjBgxAs888wyefvpprFmzBlu2bMHRo0fR0NAAt9uNgQMHYvTo0TjxxBPDZq+MxODBg/HII4/gkUcewa5du7BmzRpUVFSguroahmEgIyMDBQUFGD16NEaOHAmbrY++2GYYhmGYJMUrW2FC/cDfaSQ+WMRlqMVoTYTE6mDLPjy+715ScNTBxsbV2Ny4Fj8puh+GCO9vhO5nu2cjVtYtxm2Fv8ZY9zei+gwfVL6Gt4/+23L+FJGKCRlnRcx3gnsS3EYGGs3wz1pOiKuAYwOkdQIVlegklK8bvsTT+x+BH/QABh1r6pfjYOs+XJF/ozLdL3342/5HsLlpXZf2v61pA1bVLcEvhz2MgSkFYelSSvz9wO+xvmFVl/Zf5vkaK2oX42dDf4cRLuLhbRR4zVb8dd9M7GrWB6QlM7GQBSWCaMupO1eYniPS79gTgUuUDCySxC3R6EQZ0ZRV1y/oLe1BmuFWitGOeA+Q28Ti96TEYS2yGWWeTVHsJ6OzrutkgJGu6zo5qJP4LV2GG15/+H4PtO7VHisSW5vWY3X9p7hr2CPIYjka0wup9KnFaOm2zKjup+jrGB1Q9UbF86R4KxJlnq+xsvYjzCj6DUaljY+8gQVW1C7Gi4f+GuG4m7Ci9iPcNOQOTMycEpPjJisbGr7A4db9yrTJWdORbiOmOWZ6JZm2bNiFHT4Zfr+8t4WemTxWJFpszzAMwzAMwzAMQ8HxeTQcn8cwDMMwETCSZ/KxWCKmXwtJiNHkK3MgfvW/YeuvnUSL0QBg1rsmLhgX+XoupcQOYgx9aSQx2n7i2bbNBgzSyFszLY7IZYlVTBDTvw0ZIEab0rQMQ7wHcdChnlj0jbVAdaNEjju6GJsdR9T1cUTtBus7cbmBkyO8H6TkC81tMQ5SSqCVsMFQUjUGACDcmZBnXAwsm69MlxtXQky5HOeNBvLcQKVmztk5iyReuCW6OlRGSBpH5EfYz/6ddFrBCPV63QB8T4N6fRYLo2PGuVcBf7uPTJarFkJc/eOgdddO7JoYbcSAgP2u+IDOOO0alqL1MMJuhxwyvE2CFoL8zXXALb8Fvn8PhBC4eoLAJ9vV9WHj/sSK0crouRJR3LpbuV6cdVlUxxDTr0Xqsvko9O7HfkehogwSF44Lrr+kGE0GNN4sfGT6OcLlhjzzm8AnbynT5dqlEJccG9Ny2ghgWC6wl57PAp/vAi79ix//uNHAkOzoriuNREiv3QBSdEYSXV+oMI5itBQnXzsZBRFiXA/toUXMVN+9PzD54rb7YY/mJgtoew4TIhAGgCu+IbBsh7pvdMYjJjbNMpDhjHy+NlD9Byu30tQzIgCYcJ56ve6+LC3DwkEZhkkELEZjGIZJctxuN84++2ycffbZPV2UpMIwDEycOBETJ4Z3oGPBiBEjMGJEP76JYRiGYZgkpNn0kGk9IkazuQFv+HqPX/0QcGnNexGlaB1safoKOz1bUZo2NixtSc38sP34pA8fVs6LSozWarbgw8p5lvMDwCkZk+GyRR7E7DAcmJg5BUtr3otq/x1CFyEE7MIBnwz/gr1mZDHaB1X/6bIUrYPFVW/jwtyrlZKZnZ6tXZaidVDnr8GnNR/i6oE3haWVt+zqshStgxbZjEVVb+GHhXd3az8AsLlpXa+WogFAWpLJnyh0UigVLEZLTigJWU9CCbOirXPxRif2iqashrDBaaQpxWLJJoOjcNncgI+I/CaIxe+ZZsRm5rTAsjgMjfDUVHSmAmgi+lWhxwjEZXOjzk9MA91NKr2H/z979x0eR3WvD/w9s7vSFnW5W66SKwYXwDRjeu+QS8cJkIQQkpAAISGFhNSbC5cEAiGBkHDzIwkhkIQWeu8ldDC4AcY2YGzZliWtpN2d8/tDWlnaPd8zs6vVqvj9PA8P0pyZM8fSaObMzpn34Pktj+Hg2uP7pX6i/rQxYZ7hriY0qiD1a20e0NCaasYjm+7qU90J3YEHG/9VkGA0rTXu2XCLv3Xh4t6Ntw77YDQptE7Bwf7VRxe5NdTfHOWgOjgCnyY+HpD9D5V7MyIiIiIi2r5wfJ4Zx+cREREJnGEa3HnwqcDPv2Auu/sP0Icvgdpxj16Lj5kHnH+AwlUPm58TPbMSuPt1jSN3sr/4urEZ2CIMDaz3DCMSXnodMwkqaBlXU+FzMqwSBqMVxM779fo2iBT+uvZ07Dv5YXGTY6518cTFuf29LReCYerXP++7DnX5nfZjB5CD0dIvkCctYyFKwr7bsr1S3/gVtBCMhr/8L/SXforSkMLfznFw4JVCoAGAm5/XOG8/jd2m+g/LWG5+rI4Gr8fqYkhjEBglhDTaXsCXMECoYNT4euCbv4G+/MvmFZ75N3R7G1Tptr/ZXScDPz9e4ZJ/5BaOlj5+dFsr8PJjcps+f1lO9VI/qWswBqMBgL7xMqhQCXDaRfjSYoXzbzEfC0dd48K9vnh9xuVCMGhZIIFRKeHi+JnzctvJ/v8FXLYE9R0rjcFopmtwc7u5XTGXwWhEPanzr4QWgtFw383Q3/odVLCz3xBwFG75ooOjr3GxQchRBYB73wQOuNLFmz904Dj++0LNbeblsVKPicGF8yZKSoGR2ecMUfUof8FM3fWzb00G0rGaHuO67j1527GTC96coUJFy4Ef3gz9g9OAtux3MLqtMd/7fG1/hW/eZr72r90MnHqDi7u+6t0/koPRfJzLPhTORTvvB1UiJKsFLPf/0r0/ERXd8JyqhIiIiIiIiIYdU7hJWngAQmikMI5W1/yEYWV8aU71S+tLgVnL42+KYQQma9s/QLsWnlwI9qw80Pe6e1QKsylYlAcqu78OCYFPCUNYWk+udrEq3vcQrxSSeL9tubHsvQLUDwAr428bl68Qlheq/lytaC1MPQOpLFAx0E3wpTxYldP6hQowosIqdSJwYH5oMzk8rcit6dTz/NrTYPvbkNoJ5N5WqS7bPgaTXNtZqsIIOSV932+O5yFJRY96gkpuV0LbA0+twbgB8wD0/v4dF+o6TVRsGxPmgY4jChSMJnm/bTlcpPpcT6H6tk2pTWjMIXjyo44PreeioW5l61Lx3nPn8r0womR0kVtExVAbGrjf61DpixERERERERERERGJ1PB8DUsFg8Au8ngvfeeNWcsCjsIvT3Kwz3S53uufkEOL0lZaHt3Uj7Rvq6UwovH19g39hnCUMhitEJRSneF7PSyKP4uHPzhY3OapFcDb6/yPh0y5Gqs2mMsaOoTjJGvFnaDmLvJeLyJMBNPaNeFtQniTG+gMhyArNXoicPTZ8gpvPgcA2H+mQtPVDmxZH79/yv8xtKlFY6OQwdHgFdIohYGMndwdZJIln2A0v6GO5Is6+mzg5K/LKzzVexI4pRS+daiDdZc72H2q//00jOo6fh43T1oGAOrLP4eqGuG/Uuo/ExqsxfqOGwAAoaDCnpbuxqaW3AL0+kLqSzWUbIDx7DVrF+8Q0AzKcYCaMWhIrDK3wRDOJgWbdAejhaO9wgeJtldqVB1w2kXyCi880Ovb3acqvP9zBzd+1t4/eedj4PFlubWlpUMIWvTqwkr3ZeOmdp4/fFJKAeNyuMiG2Lcmg3yD0WrHQoWL/27iYKL2PBzqXx9AXXGXeO+q3zOP5Q0FFXazzIVzzxvAwquqIQAAIABJREFUBxu9+0ctUv/B489dp1LAOnM/RR39eXlD6X4NACLb9/FANJgMz0/kiYiIiIiIaNixBmM4xR+AFBGC0eIpc4Bba8oyJYupHtc8wmJLslHcJpcX9ptTTTm1Z1zJJNRHZvtef0JpPSblEABUqsKoj8zq/j4khKh4B6i0QsN7QJ0f0u8gVYBgBwBoTZnrjwvLc65faH+upJ/DUBFSJZgWnTPQzfBldmx+TuvPjO3UTy2hvnCUgzllOxvLdizbtcit6TQ7tsC4fAdh+UCJBsowOZw9YnpUaBxGhMbkVJfp78mBg5mxuXm3r5hyPR/sUFaY3+XkcANiTnmf6+l5zElhpwCQ9Ag8la77DhwEhXpz/dnlaqhfF2n7JQWj1QRzC0ZT5iGTolzvgyRtbhwpnexzPR2u5SUEgasL0/8fjB7c9E+x7MCaY4vYEiqmuWW7Dch+ywIVmBD2eBGNiIiIiIiIiIiIaLDL4aXuIWfKDnLZ8lfFokPnyM+P7n4d2Nxqf/F15afm8mgJMCZjvg2dTEKvegv63Zeh168B1ppfesV4j5fp/YYLMRitYNTU7ONrfttrCFnGAz6x3H+ozJpNQIfwOLG+QzhOMjX4HFMSFSazjHeNJ+iwPJNkeIMvato8ubDH+agsrPCtQ+Vz0Cur/R9DtpDGaR7zDuk1QhhIneXZWD7BaJUMRis0NW+xWKaFa9+YSoVvHuK/PzC5tqu+Za/IK9Xv6Ls+6l/K1h8CgI/eh966GQAwY4x8/nn7owI2ysNGYWjOxNRac0GdPfxNVFGNeiFsdIVhWJIUbFKWnoSeYY9E3ZStH7ri9axF0VKFJXsolHtkC77yYW4hjWKgodCF1W2t0Mtfg14m3C/a+kKSXLZh6DCZeAWjbTKPpcWYif3TniFGxSqgdjsY+MxXzCv851Fo1/zO3pzx9vHFr37ovf/mNiGgUTjfpc9DWP0ukBA+X7CF5wcCcllEuPcnoqIbxp/IExERERER0XDS5poDx4CBCUaLBoRgNCEsI25pv4kUmmXdxvUfOtCSQzBaLFCO08ec1zkDi09KKZw6+lxUBKo813UQwGljvoISZ9uDCSnsxCtApZBhJdLvQOv+DV4rVKBZUieQcO1Bcn4M5QAYBw5OHX3ugJwj8tEQmY19qg73te78sj2wa4U8KIcG1vEjP4eaYO9pi+sjs7Bv1RED0p4JpVNxSM0JvZbNjM7FXlXyzLsD5eTR56AsUNH9fdiJ4LQcr0EAcFjtiRhfOrn7ewWFkzLqHswWVR2CGVF/A95qQ6Nx7IglBdlvQAVxxtivitdhPxoiO/Q6l0lhp4D3dV0qt9W5T9XhaIh4DFDrg0IFmBIVmxSMVhvKLRgNQjCahnkwQq73QTb53CNlSnicd0zcAgUvDzYft6/BG80vGstmRHfCRAZYDVu7V+6P2dH+DRLNFFQhnDHmqwgoy0AiIiIiIiIiIiIioqHAGb6fc6pDTpMLV74hvvh6yq725/k1X3dx0u9ctLabnyetEMKI6kei11gBfd/N0EeMgf7sAujP7wF9Qj3w0iPGbZXtpVcAqKi2l6eVeiQNkH8HnpS1qMLdimO33ilu8uU/a5x1k4uOpHeggymQJa0+4S8YTU3wFxSjpJej413jNzva5I1D8ngH6mG/E8Qi/cBfe31/+u7yOejl1cAba/wFgixfb14vHALGVRqLtlkrBaNZjql8gtHKGSJUcAsPkstuu1YsOmwOUGseRp5lRBmgt24Cbr1aXmnBfv4qo/637/He66zrvK6cvUg+/3ztr8UbayIFkFXEhYtj3sFoNWgQgtFWbQBSbu/zqBiwlB6XXu6zP0a0PVh0pFik77zRuDzgKJy2m/1e7KancwtGEwMNM/LHdCoF9+oLoQ8dCX3WQuBxYXJOr/syk3EeIdc9MRiNjKS/i86/B93UaC6urO2f5gxRau4ic8GWDcCDtxiLluxhPycd9xsXb661n5ek/oPxPHTNxdCHjYI+ayH0Est4SFt4fkB+Z0KFfXb4iajf5fEJChEREREREVHxtblx4/ISVQpnAF6sjThCMJrhZX1Xp8Rgt7JAJZpTW7LrMYRRpXTK2qbWVLPvYIOW1Fbj8opAFRZXHdb9fXVoBObEdkZ50DvgLNOE8FR8b/LVeLPlJTQmzCPYyoKVmBWdi5ElY3stDznmAUBeQV/xlBy8cEjNCcYglSe33I8tyewPt3MNBKsJjsSelQdmLV+f+AgvND1mrF9rnRX2IwWujC+djPlle2Qtb0414bHN9xi3aXVbUCn8LP2SAigaIrMxM+pzlswBUBaowMzYXIwqGTfQTfHNUQ5OHPUFLKzYFyvibyPhZn+qH1BBTI3MxNTITIYKDGKjSsbhO5N/iXdaX8f6jrWYGG7AtMgO4rmtvymlcMzIMzC/fA+sjL+DsSUT0BCd3afwq/4yMVyP70++Gu+0voakTmJWbD6qgrkP6qsIVuGiif+NZa1vYFNiA6ZHd8SY0rp+aHH/CDsRnFd3KVa0vo3325bBFUI5x5ZOwIzoTogGCjcj0U5lC/GDKddgactraEpu8r2dUg4mhRswLTIHIWfbsWU7zhKWmZ8B+bofdOQ6I4Eovlr3QyyPv4kP2lbkHWi6pv09vNr8XNbyQgWYEhVTwk0Y+7sAMCLkMbW1T2IwmtCXrArWYlFldkBn3G3Fw5vuMG7T6jajHF4jzu2SHucdo9zGhw0ZD2+6Q/y9HVRzXJFbQ8VU6oRxbt13say181rpenzW0FeVwRrMjM3NI4iRiIiIiIiIiIiIaIBoy8MBxyleO4pMzZgPfcKXgdt/Y17hT/8NfO47WYsn1ipcdbLC+bfIP7e//0djZDlwzanZL8musgSjpel3/gP907Ot7e/F9tIrAFT4HIdQOjQmYxwK1OgJ0KURoL33ONDrPvoq/l7xGXG7m57RGFcF/ORY+wvWK4RQq1HJT1DhmsdKZhk72d96EeHl6HQwWkJ4kxtgeINPqrIWevxUYK0h1O6t56Fbm6GinWNlZo1VOP8AhaseNh8Du/zURfOvHYSCXseQeXn9SMBxPCZ0FILRrCGNeQWjMUSo0FSoBHrRUcBTd2UXtsehP/kQavSErKJwSOH+rzvY5af2cUllpUBJUMG94ivySgedDBXka96DhSqvAn7xT+hvWcZNrFkJzFiAPevlc8MrHwL3valx6JzcJoTNR7MQPlvW8rFxuWeArKSiGvUd5rDRRAr4sBGYPKJnu8zVlKXH3/ntjxFtB1Q4Cj13EfDaU9mFn6yG3vQpVPXIrKIrPqOwsbnzfsvkzXXA5laNqqi/c5HfQCLcdg3w92s868vnfKPGT/U/XC/EvjUZSJOxp8Pem4Sx8bwu9TZ/n85g70T2mFv9kzM7+7AZn5HtPU3hd2conPP/5L/iQ69y8f7PHQQD5t+T7/PQP38L/O0q6z8BAFA1EqrMMu7Ydl8m3fsTUdHxjpmIiIiIiIiGBCkYLexEi9ySTpGA+QMuU1iG1HYAGF86Ee+2vpG13BQg4BXUJYWdmTSnmozLR5eMx+EjsmdnzFdZsAK7V+6f83YhIUQloRPW7WxhJUeOOAUBlf1RyLL4m8agCCkQzIV5IENtaJTxZ7cy/o4xGC2pk0joDpSo3p/QSv+G+sgsY/2bk41iMFo81YLKYN8Gw8SFUL/ZsQU4tFYelEb5UUphSmQ6pkSmD3RTqI+igTIsKN9zoJvRy8RwAyaG85ztr4jKg1XYtWKfPtdT6oSxY9muBWjRwAiqEGbG5mJmrPghlLWh0VhUlR1YlA+lFIIqhKThGu51XZfKTUGnvcqdEGbH5mN2zDL7k4dXtz5nDEaTQp6IBrNNyQ1iAFZNjkFFuQ7XlPq2o0vGGfu28ZQlGK0Af38J137eMdFC/38o25LchOebHjWW1ZVOxqzovCK3iIotoIKYFZuHWTH+romIiIiIiIiIiIhy4gzvSezUWd+HFoLR9MO3QhmC0QDg3H0ULrhVI2V5rHLzcxpXnawRyAgYWvWp+TlW/aht6+n7bvZoeYbxHmMjYpWdL0vbQvAABqMV2vHnAn+9steiKncLLtrwv7hixIXiZn96VuMnx9qrXiEF7AkBLkYjx/tbLyJMXhfvep7ZYZmsqSTsvz3bOXXEmdDXf99c+OSdwCGndn/77cPkYLRECnhoKXDYjvb9SSGN0zweqev2NmD9GnNhXQGD0coqGZ7VT9Q+x0GbgtEA4KG/AaddZCxaMEnh+jMUvmgJfqiJAbp1K/CEeRwEAKhFR+XUXup/as/D7aE8PcIQT9xF4daXzGv/6dliBaOZl8cSm80FdXmOIS2vQX3iMbF4xfrewWgtYjBaV5BoBcMeiXpSB5wIbQpGA4BHb+vsS2eIlir87RyFmXe6+PHd5nPR7S9rnL2ob8FosYxAIt/3Z7a+kMQr5Lonhg6TiRSMlr7/bzJPMswQ4t5UJNYZ2PjSI+YVXnsKmL84a/EX9nbw4vsufv+k+Zy0bnPn/dmhc8zV+g1G0/f/WWp6b17nIWswWuEmrieivhm+U5UQERERERHRsNKWMoczhZ2BGXwUdczBaKbwMtsL/FIQgSlAwCuIozX9oNAHKUQtFij3XUd/CgqBJwltGTQE+WdUqsLGUDQAiOTwu7Qzf4AuHSuA+ffcmjL/HqV22uv3f0xIpJ+pbb9EREQ9BaXAU9d+XTeFqQFygGohRYUQ3HbdhpRO9fv+iQppY+ITsaw252C03AZsSn1JqW8bdiJwhMeXhejbet1PmPiegXIIeWzT3UjqpLHswJrjoKTBQURERERERERERERE27th/hm6qqiRC1e/KxYFAwpz6+x1N7UBazZlL/9UmAt0Ys+mrHrLXnmmcZOtxcpxgGofz8n4YnRBqenmCVsWtL1q3W7NJmBLq/2p3cr15vKGjpXG5VnCUWDGAn/rRoUxlq1dzzMTwpvcABBieINvwvECAPq9t3t9P6ocGFclV/Xou95PfT/dal5nYm2PkMZkAvqtF6AfvR163SporYGmjXKloyfJZU6Or/XGKnNbn/ybIU+8qJ+917rp5Fp7v6AmBmD1MiBpmcStYSdrHTRAdj1QLNJrtl1b5k2Qq/jHK7rzPNHPmtvMy8ukcfD5BBUBQM0olLvNGJ00j0NakRF2KwWbRHXXOyFl7GcR9TLdcj1a/rp10/1myNej3z2u0Z7wdy4SAw1Le/aHksAKe3u6jc/jfDMuh2A09q3JROpnp6/JzebgUOvnIdsptfuhcuH7b4tFCyfb6318mXxO8hOMprUG3vmPfSdp0zwmqA9a3kmI8J05osGCwWhEREREREQ0JLS5cePygQpGiwhhGaYX/20BW7VBIRjNEI7lFdTVIgRqmdc1jygrC1T4rqM/SYEnUkBKmvQzkn5fgCXkTghx0DBPbeoIAx9t+87leJECWkKqBAGYQ9+8wvT8MIW3AfZ/FxERUU/5XtelACMpQLWQpNAmIJ/wVKKBtTGx3ri8IlCFEqcwg4O0EB+Wa/9cKSWWSQHCuUh4nHdMpH/bUNXmxvHEZvPg7ergCOxcvleRW0RERERERERERERENIQM82A0AMDCg8zLXRf6jhvEzb60j/fP5oTrXLhu72cvjeb5UlHb9chIJ5PAK4971t1tVB1UqY8xhT5e0lf5BoeQ2d5HAzWjsxYf3Xw3xiQ/tm76qJzLBwBYYX4kivrEKn9tO+Q0KL8vPUvrxZs7X9C2BaOVMLzBt10OkMv+fHmvb5VSOGexfA664gGNXz9iHveZ5nku+vgD6DN3hf7S3tCXngp90izoy78MNAoHHwBUyuEKSikgYB73aRQt878u5URNmS0XvvYU3KsugE6ZJ1Gs9jht1EY19AVHyCvM3wdq4nQfraRiU8d+US6890/dgWdL9pDPPR1J4L9+6yLe0b/jTsQAEdMEhOXVUJW1ee1HdYUV1Quho1c+uO3fmUxptAlDdLrbVcFgNKJeZu8ql939B+hPPhSLF0+TN33pA2D691y8udb7XCQFo8V6BhL9/oee9QDoDBsaZUmPlIya4L+PxL41GUnX5q6/gaZGczGvS9mO+JxYpG/9tVh24i4K1VG52l/cp3HjU+b7MzHwNdzjmzUr5MozqCPPsq9gO98wGI1o0GAwGhEREREREQ0Jcdc86iAcsHxa1o+ksIxWtzlrdidbeEZNyByMZtqm1SPkKpeggOZUk3F5LCDMZlhkISHwRApISRNDvCzhJmLwglCXPHmX+QN0KXhN2ocYHiHUYw2P6GNwi9ZaDFez/buIiIh6yve6LgWnSUFrhSQFkgKFCR4lKiYpGE26F7ESX/bJLRjN1peMOuYB3YUIRkt6nHdMhlsw2tObHxTvrw+oPhoBlcPgeyIiIiIiIiIiIiIiGnbUN68Vy/QVX4Fu/MRYdvYihStPVJhkydp4eTVw31s96tMajcLj15pY13Opf9/k0eIMPgLPfK/nty7yRZVGoK59JGt5WLfj8fcPwOKWJ8Rtj79ODrVyXY2Vn5rLpnVkvzCtLv0/4KizgLIqoGokcMKXoc6/0vsfkBYRAqpSSaCjHegQ3uQGgBDDG/xSgQBwxJliuV69rNf33z3cHs54/i0ab62Tn/3K56Ku/V15PvD+0t6Fd/0B+p+/lXda7hGukFMw2uAY2ztcqS/9VC687VrgyTuNRTUew2irW9YAWzfJ+/3Z3/00jwaAWnwMMMsSUvTGswCAcVUKvz5FPv/84xXg2scGKhjNcGLrS+jrhAYAwDQhGG3FemBLa+e/VQpX6tkuVSGHRxJtj5RSwGnfFMv1VReIZY6j8JX95XPRh5uAz/3RHhILAC3t5vNVOhhNr12ZFVArGjcFKpj7ODQVDAJjJ/lbmX1rMpHGuKZfBGsS+mZeffftkCqrBGbtYi5cswK6dauxqCKi8OTF9hijL/4/jfc2ZJ9zxH5N6bbfq778PGvd3Y79ItT0efZ1bBMghPnOHNFgwWA0IiIiIiIiGhLa3bhxedjxMbtjP5Be5E/qZFbIhxRoVqrCKBOCyOJuS04BawDQkjJ/qJjLuoMlGC3omANPEq4wfVQXMcTLEm4i/S6lujTMD4WUEIwWUiUIwPxQJ24Id5COl0L+G/xK6A6kkDSWSWFsREREmYJCkFlCCD7rLnfNAUYhxxy0Vki2UFUpUIhosNqYML+cUptHMJrU55VIfVvb31g0IASj9TH0F/A+7xjJychDTkon8cgm84DtqFOGPasOKnKLiIiIiIiIiIiIiIgGoVilXKa2g9ewRtYBIcsz2cf/ZVyslMLXD3Tw3s8DmFsnb37LC9uevWxtA1LC+/ndYUQP5xgaM26qr9VUV7iHVZ2PdSgnqq4B6gd/ylpen3gPj6w+FNPCjeK2UlDDR1uAuPAYsL5jVfbCWbvAufg6qLvXQd35IZyv/xLKdsxnkoLRACDe3BmOZhIIQjnbwTmkgNT8xXLho7f3+tZxFH55kv159q0vyc9+NwrzdNXEAN3SBDx/v3mFe24yL4+Wex9XuQSjRThes19JgQ9d9MO3GpdXe8ztXfPpUrlw0VGdYRM0aKkvXiaW9TwmTlnoce55caCC0Qwntr70bboCY+uFYDQAuOv1rmA0y7yF3e2qYAANUSY1Zze58Jl7oOPy+Lm9G+znopdXA8s+sZ+P5ECiri8e/Yd1+176EjLt854OJQxGIwNLMJrWGtgq3HPyumSk9j5GLnxOuEcCMHucwv/+l3xe0hr4e8b9WSKp0W5+fQ2xnrdWK9+Q29SDOvYc75USljRX3oMRDRr8NI2IiIiIiIiGhDYhgCLseDxV7ie2UKjMADMp0CwSiCEivPSfS8Bad7npAaZACkYrC1T4rqM/hZR5QEhSW56UwvKztgQvSL9LqS7pcZAUEqGU8r0PV7visZ7Pv6Gv4RG27W3tISIi6kkKMksKwWdpUoCRFLRWSLbw3b4GjxIV28bEeuPy2tDogu1Dyg6z3QtJpNDfVkOocK6kwEUbLd4BDD0vNT2FTckNxrK9qw4dsOBxIiIiIiIiIiIiIqJBZd/jzGE1E6dvFwEmKhAAZsoBMXr1u5517D9Lfvn15uc1bn3JxeZWjUbLo9d0MBpefsxzfz2pOp8v4O9gCR0AgKqRwLgpOe2bfJq9q1g0q+MdseyqhzXaEtnP7laYH4cCMASjVY8CxkwG0HmsK+mleZuoZdxcvFl+sboknPu+tnc7LBSL9AfZx8oeU+2/zx/frXHNIy6WftT7OHJdjU3CHHm1MQWsWQG4QoqjpKLGe51cwjxsgXzUd9Pm2kNBn7rLuLgiLGdvAMCYphVimZotH980SEybJ5f94zroriDMmpjCNMvchC+vRtZk6YUkB6Nld7T6dNyNGAcA2C3+grjKu5/Y2wQAsfQ4+XIf50mi7c3MneWyVApYawj97bJwiv2aBAD/esV+LmoR/nZjXV0WvXqZfQc9KK/7Ldu2c3b3tyL712Qi/R1oDbRu7fxbMuF1ycxyTwaPc8LuHvdn3/6HxoNvayRTnecm6Z4MAKq6Xh3VHe1Akxyo3q2syl8gbKv53crOOob/Z4BEQwWD0YiIiIiIiGhIiLtx4/KBenE7KgSaAdkBZlJ4RsSJiS/9A/4D1tJafAYFaK3RLASjxQLlvurobyEh8EQKSEmTwuOsoWJS8IIYjGYe4KIsM8LK4Q6999HuxsXgBdsxFxECAr2OGS+24JeoJcyCiIiop3yv61IgqhSgWkiOCogBvH0NHiUqtkYxGM0yKjNHUh82nkfor9TvzSUIWpLMI3BxuASjaa3xYOM/jWVBFcK+1UcUuUVERERERERERERERIOTipYDR3w2e/kJXx6A1gwMdfLX5cLbrvUM9zhnsf3l15Ov19j1py5efF9epzYG6FuvttZjNH6qv/Xm7wPMWCAWqxO/BhXs/0m7tkdqnPw7+s7Ki8Wy7/1L48ArXWxq6X38LV9vPh5rkxtQ7W7uve+TzocKGoIPc2ELqIq3AAlhsqZcQrAIAKBsL7I/eAt0RqjBrpOBxdPsdX7tFo2dLnPx+ye3jQNtagNc4bRWEwP0PTf5a3BP5dXe6+QS5sFgtH6lyquBI8+UV0gmoO/5v6zFjqNQaRnGPm3Tf+TCw87IoYU0EFRlrbVcf+Mw6K2d15mLDpH7Pq4G3lhb0KZtq9vVcpCRaZzNwafkvS/lOMDCg7Bf6+PiOj+9p/Nk2twm11OWbleFj/Mk0XZGjRgHHHSyWK7/fZNYNqlW4cSdvUOIbnhSDnsVgxZLuwIe7/2Ttf5uFTXA4Uv8rWtyePb9uFGI/WsyEZPR7IFavC6ZzVssFukbL7NuuvtUYC+P7PpDfuXi+OtcxDt8hue/8IC9wrTPnAdV6uN+q8USjOYn7JqIioLBaERERERERDQktAkv1EuBFf0tl0AzKTwjGoghYgmXygpYE34G29b3FxTQrtuQQtJYNliC0YJC4ElCCEhJk4LAbCFeUpkUCiYN7LM9RhL34fNYAfILj7AFm/lhC1aztYeIiKinfK/rUnCaFLRWaFJ/r6/Bo0TF1OG2Y0tqk7Esn2A0ZRs0YiD1R639c0cIRutj3xaQzzu2wMXhEoy2tPVVrOv4wFi2W8W+qAxyYA8RERERERERERERUZq64NdQX7gMmLkzsGBfqEtugDr+3IFuVtGoxccAc3aXV3j7Bev200crXH2y/aX8lZ8CX/2rNEElUNH2KfSvv+nZ1izjPd66Te/DcaCuuh847hxg0gygZkznf3P2gLrgauD0PPZNvqkLzKF3u7S9bN3umZXAtY/1fn634lPzuvWJVdkLT73QV/usrMFozUCHkCjB4Ia8qAuukgszXopXSuGerzmo9hhWnHI7A9LSIXu2F/Croxr45+/8NnebSh8v0ecSlhdlMFp/U+f/Elh0lFiu//uL0C1NWcvjluFPDfFl5n395G9QI8bm3EYqPvXTW+XC158G7rgBAPCFvR384gS573PO/5ODiPqi1XL8lWWOcZuxAKqPAR/q67+EA43zGq8T13npfY0WS7ti6XYxbITISH3nRrnw79dYQ6r/dJbCd4+w34ede7POChpOE4MWSwG8+qS1XtSMAcZMAvY7Aeq6x6FGjrevb6FGT4C6NDuQNEuo/ydZpiFICX8DWgNN5rG0AHhdEijHAY6QA4T1R+/L2yqFe893EPBINLr7deCWFzUaLa9MpoPR9I8swYnl1cAOu0Gd/79QZ33fvtO01uz+fbeyKn91EFG/YzAaERERERERDQntbty4POxYptrqRyFVggDMMwdmvvwvhWdEnFhOAWteIVetppmdDJqT8gd3ZYEKX3X0t5BjDjxJCgEpaVJYgi3ESyrr0O3G/cnBCPJDJGkfme21hdvZjhWpzO8xIZGOuQCC1vAIIiKinqQgM6/ruhRgJAWtFZoUYNvX4FGiYtqU3CCWFTYYLVtSJ9ChzaOlbAHXUmia3yBoGylwscSxDTgfHsFoDzb+w7hcQeHAmmOL3BoiIiIiIiIiIiIiosFNBQJQS74N54Zn4Fx1P9ThSwa6SUWnTvq6WKafvNNz+xMWeD9XWr/VvLw6CjjP3+e5vdH4qb5XVbEKOBdcDefm1+Hc8UHnf9c9BnXcOVDSy9RUGJNniUWHNdt/93e82vv53QfCI9H6jt7BaOqcnxTm91oaARzhlcx4M9DRZi5jcEN+LMeKfiL7XBQrVbjrq96vzLYlgAfe7jyWPrG8C1/dZJ58ylO5j4mpSsL+67MF8lFBqEAA6pLr7Su9+HDWolmWfLOGjpXmgoUH5dAyGlATp1uL9RN3dH990cEKEWG+z/fk4Tt90iyEGAE9AsjSFuzb9x2OmQQEAljQ9oq4yl9f1GgWLoUlbjtC6cndyxk2QmSigkFg90PkFdYK1xYAoaDCj49x8MXFcp/X1cD9b5nHw0nnlLJS+z2g+p9/dd5L/X0ZnB/9Bcrj3OnLnod7r5NLyCxtP6R7PtcFtjZU/IhmAAAgAElEQVTK28Qq+69NQ5yaPlcufPpu67ZlYYW7fdyf/esVLQZWlwSBaAmgUymg3fxuKcZOgvPvj+H89gmoz3zF/72/FGyOrlA4IhoUzG9wExEREREREVn8ft3/4JOOdUXd5ycda43LI5YX6vuTUgqRQAzNqS1ZZa1ZgWbmaQsiTgwhVYKgCiKpk1nlmaEbmfVmakkJI8Uy13Pl9WKBcl919DcpdCvhWqaQgiWETghXAOyhafFUK8qDmR9wmx8E2UIixGCVzGPF8juOBORjXapfCorzSzrmIoEYB/8REZFvIUe4rgvBZ2lJ1xxgJAWoFprUR4i7limpiAaZjYn1YllNcGTB9mPqIUv3QYBH6K9wTxLvY+gvACSF806JJXDRNsvmULG6bQXebX3DWLZT2W4YXZL/DJ1ERERERERERERERDRM7bSnXPbnK6BPvxiqTH5xeEwlMGM08O4nue+6JgboD5fnvuH0+VCxwTExKHmYsQAIR4G27GeK+7Y8jnvLDhU3/c8HwLsfa8wY0zl+bWOL+XneuGTGGNe6hvzb24NSCjpSBrQY0rRam4GE8GI1gxvyM2OBXLbS/Ax0Xh1QGQG2CO/Mpy3rOj+t/NR8DMVKgaoNeZyLAGBUnfc6OQSjKQajFYWqqIGu31E8tvSffg4sPqZXSMK+MxRe/TD7GNqpfCOq3c3ZldSOhYrIYyZokBk7pTMsRRo7svTF7i+VUoiVAnHDkLf1W4GX3tfYZXJhx16b9pUW073HgKu6+j7vT4VKoEdPxOJPnxTXue9Njd2nmP+dZT3H/lTU9Lk9RMOV2nFP6OfuNxeuXenZr91vBnD9E3L5n57VOHlh9nI5GE2J10YAwA67WduTDxWrgK4eBWySxz/mFDJL2w/xPScNNG0yF5VVQQUC/dakIW/+PmKRvu47wNFfgLLc7+42BQiHOsOpJc+uAk7Y2dzfqol23Yev/7Az4M5kBMfAEg1njCkkIiIiIiKinK3vWIe17e8X9b+kNn8CVupEivyv30Z6mT8z0EwKu4p2hUtJoRvZAWv2kKvWlL+gAClATcGxhoQVU1CZA08SwnGQJgWV2IMXLMFoht+dziMYTdp/ZnCZFGRWqsIIKDnfvr+CW6RjzvbzJCIiyiRe14Xgs+5yIcBIClAtNKmP0NfgUaJi2pAwv2lSGagWQwvzk91HtvVFbcHFfvvO+ZDOO7bzitT/H0oebPyXWHZQzbFFbAkREREREREREREREQ0Vqma0tVyftx/0lo3y9krhB0cpOHnkf9RE0fnCfy4CQagzv5v7zmhAqGgZ1BnfNpZ9dsvNmNqxyrr9rEtdPL2i8zleo/AYsTbV2HtBAQJhukkhVfEWoEMKRmNwQz5UtByoHmUuXPoitCGgLlqq8J3DvU8+P7iz8xhaLuRtNIwEcP33/Da1FzXex/GWyzERZTBasaizvi8XLn8N+qdn95pg7dx9FEZnZHIGHODSpeeZ6yjkuYj6nSoNA6MmWNfRbz7X/fUvTpDPPQt/5uKRdwo7BiVumZc07GZcj/ycl/wYX48piQ/g6JSxeOlHwNsfmf+dZemwtkBQvpYSEXD058UifeOPPTc/dp69H3TfW9nLXFejVTinRNEGvPyYWJ/qr6BDr2DjEIOHyUQ4/rUGmhrNZeVV/decYUBNmS0XdrRDX3gktHQfDKAqqnDhwfbz0oZm4LU15rLari6D/sd1chu//HNr/UQ0tDEYjajAlCFJVkuJ8EREQ4RrSFE2ne+IiIgGQngAg9Gkl/kzA82kF/jDTrSznj4GrKV16HbPgBEAaE4ZZioEEAuUwVGD46MCKZggKQSkpElBXpFAVNzGFgZn+t2JwWiW/pF0rGT+TqXfsS04AvAf0perzGPZb3uIiIh6yve6LgWiBi1hoYWU7qtl8uqTEQ0mjQnzCO7akP1FFokUBmzqI9v+VuzBxeaBj62uvyBoGylwscSRB0kN9WC0DR0f4+WtzxjL6iOzMDUys8gtIiIiIiIi6juO0SOi4Ybj84iIaLBS379JLlz1FnD3H63bn7zQwYPfcHDmXrld12piANasMBfuegDUH18Ejj8XmLcYmLs3cNRZUFfdD7XoqJz2QwNLLfmWcfmI1EY8/f6+OLv6Bev2l97R2YeSgtFqUpt6LyhUIAwARITnna1bgYQwFoLBDXlT3/qtXHjPTcbF3zzEwW1fcnDqQvv55401GiulYLQRLrD8NZ+tzOAn/Kokh2OCAUJFoxYfA0ybK6/wwF+Ad1/u/nbaaIWnLnbwzUMU9p8JnL1I4aEzN+DYrXeatx83tcAtpn433v4707/6RvfXp+9mP+d871/Z9/990WZ5bSCi470XFCqUr6ue91bMEFf55yvmz2pj6bFEFTX83IPIQlWNACZONxcufRE6aX9nqDTk/ff1xpref6dSKBoAlL16n1imfvQXz33lzaP/rti/JhNHeCdOa2DrZnNZf4X7DSPqnJ/Iha8+ATwp9H27/OhohZvPVphuGbr8ywfN/YeaWNdz4Ft+Jbdvzu7W/RPR0DY43nYmGkYcQ4cpkfAOJiAiGsySyWTWMtP5joiIaCCUBwduZoaIz7AMKRAg2hUuFRUD1nq/+C8FrNm2MWlJbTUujwXKPbctlpAKGZdLASkA4GoXcbfVWGYLPyt1wlDCRySm3530Yo0UEmHbf2bwmBRkZguOAPyH9OVKDGoTjn0iIiKTfK7rgBycFhSC1gpNDB5lMBoNIRvFYDRhRm0vOQxKlPq2CgqlloBrKRitzY0jJcw261dSOO9IAY7A0A9Ge3jTndAwD6w9qOa4IreGiIiIiIioMDhGj4iGG47PIyKiQauuwVqsn3/As4r9Zirc+FkHi+xV9VJtCUZTB58G1bATnG/8Cs6vH4RzzUNwLr4Oau4i/zugweMz5xkXj0xtwG/XnoPysLzpY8uAtoS2BKM1bvumdiyUFGaWDymkKt4MnWg3lzG4IX+WUCL9n0fFsuMXKNz8eQfXnSY/577vLY3VjeZnwvXOR/7bmMnj/AkAKLEc4JkKefySJ3X4Z+0rZFz/6kcp/OIEBw9dEMANSxws3mAJkClUOBUVj0cwGho/6f4yFFSoHymv+twqYEtr4cahxC0fiYZ127ZvSkqBkXUF2afqCioan1yHndpeN67z+hrzttuC0aoL0haiYW32bnLZyjc8N//eEfZxfve91ftc1GIJRosufUou9NPnyZOa4FF3LiGztP2QxrhqDd3UaC4r53XJkxTW2EU/d7+1XCmFU3dz8OJ3c3/uURMFsElIswaAvoSizd/HvLx2bP51ElHB8YkpUYEppVBS0vsFmuZm72ACIqLBLPM8VlJSwpkZiIhoUIg55ZgcnjZg+xcDzVK9r51yuFSs1/+z6/EXsGbbt4kUjFYWqPDctliCjjmYIOHKT1za3TbxhX9bMJqjHN8hd4AcjGALRpPCHTLDIqQgMyn4rLt+Kbgl1SIGufkRT+UeNEdERJRJCjKTAorSEq4UYGQOWis0MXjUR1gt0WCxMfGJcXlNvsFoOZD6tmEnAkfJjyhtocBS2JpfCSFwMeQMz0FSzckmPLPlIWPZ6JI6zIntUuQWERERERERFQbH6BHRcMPxeURENGhNnwfUjJHLX3kc2hDwaXLYjv6vbTWBOBAXngsxUGZYUbsfKpd98C4O38E8HhAAtAYOv8pFU5u5vDq1ads3Iwr8UrMQjKbjLUCHEIxWUpxJ4IaliTPksuftL+ADwKFz5PPPivUQw/XGrHvJs26jYAgYNcF7vVyC0UrlyceoH+x2sLVYewTS6LUr5cI9DsunRTSAlNfv7NO10M1bur/16vOs2lCIVnVqE4bfKe2ipOcYmbFToAoVwN6jL7ZH/PmcNi1LTwBfXlOYthANY2r3Q+TCde95bn/MPPu56Fu3a/ztxW197WahTw0AZa8/LBdOnePZlrxZ7hUAAKN99LdoOyQd+xrYuslcVMHrkqf5i+33L+tW+aqmPJz7c4/qmALWWPrXs3bNuc40dfTZ5uXn/izvOomo8BiMRtQPysvLe33f1NTUpxfRiYgGktYaTU1NvZZlnueIiIgGQokqxVnjLkRABQasDVI4VGaYlhQulQ5Wk0I3surxEYwmhZ711JxqMi6PBQbPNV4KPLEFqNh+PlKIXVouwSd5BaP5PVY8QvTE+oXgtRSSYviDH1J7vH6eREREPYUc83U94RWMJgYYFWewsN/rN9FgtjFhniVtRGh0XvXZhiRkPgeRQszy7dsCQKvbt5fcpcDFEiHAEQBcLb9sMdg9sfle8Vx6YPUx1oA6IiIiIiKiwY5j9IhouOD4PCIiGsxUMAT1lV9Y19HfP9lXXV/cO4dgtOVPyIV1Db7roSFg1wOB0RPF4u8+eypqLY8XH1sml9WmGru/Vhddk0/rZBGhUfFmoENIlQgNz8maikE5DnCQcK5JpaA/eMe6/aRaWzCaxkZhGEjNf+7028Texk2BCvgY25xLMFoJj59iUhOmASedL6/w6O3QScu4J0swmpo2tw8towGxx+Ge4Tx6yfzuzyYvPEhhcq287qV3FG4cSlw4DMO6rfcYn0IGy/boizV0rMhp07L0uLuK6sK1h2i4WnyMWKR/9FnPzXeepHDmXvZ7sFNu0Ljigc5zUovllZOyVvPkrFh0lL8+T57U9Hn2FXhvSCbShCNaA02N5jJelzyp8mqoL1wmr2ALLsvwixNyC0eriQH6ivPEcrXk2znV18vexwALD+q9bOf9gH2Ozb9OIiq44EA3gGg4Ki8vx8aNG7u/TyQSWLt2LcaPH88Z3IhoSNFaY+3atUgken9SWlFRMUAtIiKiweLAmuPEcK1iqAhUY0Z0DsqDVQPWBkB+Yb9nmJarXcRdczBaOhDAT+hGSqfQ5sY92+QnKEAKTxtcwWjmQRy2kC9TiFmaZ/iCE8NGw3JT8IkYjGa535OD15qhte7eVvo3eAa7Wf59ralmlDj5DYrJN8yCiIiop5AQOJRw7eGdUiBqUAhQLTQxvNbS5yAaTDrcdmxNbTGW1YZG5Vmr/2cc+YbsRh1LMFqqj8FoUuCicP8xlHW47Xhs8z3GsopANRZW7FvcBhERERERERUYx+gR0XDA8XlERDQUqINOBpwA9A9PN6/w1F3QH7wDNWmmtZ7aMoV/nOvg+Ou8w0Bq3nzAXFBWBVRakkZoyFGOA9z4HPSR44zls1feiVf/9w1M+P2OOdddk9q0bT8zd867jUZRYaxlvBlwhHCIXEKwKIs6+RvQD95iLNN/+DHUZX+2bv/LkxS+8bfssZ+vfAhsNg/xRU1KCE7Y5zioeXtDX3WBuXy8zwCiXI4JBusVnfOV/4H7wbvAc/eZV3j6HjkwQQqG6EtoAw0YFQwCP78deOAv0D//gnmlT9cCrz8NzF2ESbUKL3zHwagLzX2ee94AXFfDcfr+GWabJRitF7/nJT/GTukMndEaDR2rcto0lh5LVM4AGiIvKlQCvesBwIsPZxcmE9AtTVAx+2eIv1+i8N6n2hom/It7Nb66n0Zzu7xOTBgHqE6/2Lr/gliwL/DyY+ayQp7baPiwBqNtMpdV1PRfe4YRdfLXoZu3AP/3s+zCxo+hW5uhovL437TP7anwrdv9T3ZVE04C771tLqxrgKoa4buuTKo0DPzsNuDpu6GXvgTVsBOw3wlQDKYmGlQYjEbUD8LhMEKhUK+BClu3bsXKlStRUVGBsrIyBINBOI4zgK0kIjJzXRfJZBLNzc1oamrKGnQVCoVQWspOPRHR9m5hxT4D3YRBQQqH6hmE1u62QcP8YDPiRDv/L4ZmbXuA0CaEq2WSQs96kkLtYs5gCkYzB54khIAUQA5eAIBIIGrdn5/fQVp6Rq9s8gNqKfzOhYt23YawigCQ/w1eQWRS+wGg1W1BFfIbENgqtccjzIKIiKgnKchMCj5LkwOMzEFrhZbuq2Wy9TmIBpONifViWU2ewWjK0ufV0L3K8+3bhp0IHDhwDfdRUv/UL+m8U+LI5xUpGHmwe3bLw+K93/7VRyHkFCdkkoiIiIiIqL9wjB4RDVUcn0dEREPSPscCgSCQSprLX3sK8AhGA4AFE/3trmegVS9jJjIIeRhSlbXQlbXAFtPUpsC4lY/g0B12xH1v5VZvd6jV7IV9bKFBTBhr2fgJUCm8lM1gq76pswRfrLakfXSZPkoBhme/UigaYAlGmzzLflxNmObZHgBALv1+BusNCHXCudBCMJp+7SkoQzCa1hpYaw5GU3UNBW0fFY8KBoHDl0D/4cfAJ6vNK732FDB3EQBgRLnCgbOAh5aaV127GZhQgAyWeId5TEvE7R2Mpmzn0BypklLo2rHAhnWo7xBCAAVl6XE/FQxGI/Jl0kxzMBoAvPtyZ2iYhVIKFx7s4LFlcjj1xhbg7Y+A5jZzeQAplGohNa2A5xaJOmwJtCkYbcQ4XwFMtB2yBaNtNffvVVlVPzZoeFGHL4E2BaMBwLpVQMNOnnWMKAOqovZ7sZ6q4x/JhdPm+qvEQpWGgf0/A7X/Z/pcFxH1DwajEfUDpRTGjRuH1atX93phPpFIYOPGjb1mqiQiGkrS5zc+UCYiIuokhV3Fe4Rp2cO6Orf3E7AWNwR0mZiCvDJJ4WllgcEz63RICCZICgEpgPyzLlGlYiBLmvw7MNVpfojsQH6xxhb+EE+1IOx0BqNJv7+oRxCZdCym68+X9DO17Y+IiCiTFGQmBZ+lJbV5UL0UoFpo0vW7zY3D1S4cxZdqaXDbmPjEuFxBoSaU/wxpst79ZKlv6xWyq5RCJBAz3rf4CYK2kQMX5QHnUtD1YObqFB7edIexrFSFsajq4CK3iIiIiIiIqPA4Ro+IhiOOzyMiosFKBUPQex0BPGF+/qDffgnq6M971jOxVmGXScBLH9jXq5aC0eYv9twHDVGLjwHu+oOxSP/mEhx30Sm47y3/kz+F3TiiOt75zfjCBzaoMZPMowg/XAFEhNC0Egaj9YWKlstTWq14HbqpEapCThnaexoQLQFa7UNVeqlxzecite9xwJQdgFETgPUfZpfvc5y/HeQSdsZgtIEx3zKRuBB+hs0bgBbzJGb9cT6iIlt8DPD3XxuL9CuPQy35dvf3h81ReGip+cx1+o0uHrnQQcDp2/1/m5BZG9YZCUeFPvYmTgc2rMPUxHtQ2oX2OY4u5jYDAFR5AVLhiLYDavGx0LddayzTt10L5RGMBgD7z/QOILrxKY0DZpnPR7FUsziVqqqs9dx/n+1xaGc/uiMjnM0QTkrUSTpiNdAkfNZguY+gDKMmAMEQkMyepFjfdzPUV/7HswqlFI6br/DHp/1NWlzTnH3P1V2X33svIhrS+NYOUT+JRqOYOJGz0RDR8KGUwsSJExGNRge6KURERIOG9EJ/a48wKVtQWTpcyk/AWqslYK33vr2DAqQwgVhAGJAzAKQgs6ROwtXmYIJ8gxcAf7+DNC0PrxHZ2tAzfEwKIrMFqwGdQXLSz8zvsWNsWx9+pkRERGlBZZ6jJaGzH4r2LhcCjIQA1UKTgkk1NNpcn9NUEQ2gjYn1xuWVwRrP4GCJ7YlHZi85374tAEQd82yOralmz21tpPNOieW8onPv/g+4V5ufwwYhGG9R1SGIBjhbJhERERERDQ8co0dEwwnH5xER0WCnzv2ZXHjPH6FTKV/1XHuag5Eew9RqUo3mNpx1qa990NCjzvyetfy06/fA0bPbrev0VNMzXK+uH4KIpICZdauAdmE8Qag4Yx2GM/Xt34ll+ox50K486VVZWOH8A3L7/KDGFNJ44ElQDTtBBQJQ3/4tEMl49nri14Ad9/C3g9KI/8YwWG9AqNIIMHNnc6EUjCYtB/rnfERFpc64WC586RHo+LaxMufuK59znlwOnPeXvg9IiQthjxE33ntBgY89dfFvAABh3Y4JyTW+t4vprmtkRXVB20M0bM3bWy578k7olx72rCJSonDDGQ5KzcN4AQC/eUzj0XfN56QyYQygOv9Kz30XgqqshbrgaiAQ2LZw2jyoM75VlP3TECQ9M3RdoMn8WQOvS/6pYBAYO9lc+LeroJe/5quey45W2GGcv31W/+0nciFDEom2CwxGI+pH6YFXoVB+LxgREQ0WoVCIg66IiIgMbGFa6ZnppTAAAAing9GEl9J7BlpJAVWZWnwEBTSnzDORDaZgtJCSBwElhTAD6Wct/Z568hNylyYFoynLxyy2NvQMdJN+z36CC8TjsQ/BaFKomp8wCyIiojQpyCwpBJ91l7vma36+gU65sl3v+nJ9JSoWKRitNuR/JvVs/geKx1PmAf++gtF83CPlI+mazzslSh5EriEPnh+MtNZ4sPFfxjIHAexXfWSRW0RERERERNS/OEaPiIYDjs8jIqKhQNU1ACd/XV7h5Ud91bPrZIW3fmh/na3GNYQRTZoBVVbpax809KiR46G+8COxPNz0EW4b+Vv85jR/zyt7huspKcSsL+oazMsTHcDaVeayEIOt+mwvy7POxk+Alx+zbv7twxTGVPjfXbUhGE199w/bvt71QKi/vAn1/ZugvvErqBufh/PVy30HuKuSsP/GMBhtwKhTLzIXrHvPHAq6RghGi5QB1X0Zr0GDgaoeBfWV/5FXePT27i/DIYWFk+VVb3pGY1NL38LR2oR5ScO6R5hoIAiMmtin/WRS4+uBWOcJtb7DEgaYocztes+hoqag7SEarpRSwMGniuX69t/4queEnRXe/bH9HuyaR6RgNOH9pCKGEakjPgf15zegvn091BV3Ql33GFTtmKLtn4YYqS/e3gZ0tJnLeF3KjeUeW99xva8q6qoVnrvEwV+/4H3vZPyMCAD2PBwqyOfDRNsDBqMR9bNoNIr6+npMmTIFtbW1KCnhDB9ENDSUlJSgtrYWU6ZMQX19PQddERERGUhhWikkkegK+pBCM0KqBCEnZK2nZ8Ca3wCAVo9gtA63vbttmcoCOYz46GchS+CJ1H4pVMxX8IIl5C5T+neSyTaWJeSUiGFvPY+RvgSR2Y6jfCTcDjGELuKwb0hERP5J1/WEEHzWXS5c820BqoUkXVsBOfCJaDCRg9FG99Mee/eTxeBiy99W9zpC/9frfsdLQujfSgGOQ9Hy+Jv4oG25sWzXisWoCY0scouIiIiIiIj6H8foEdFQxPF5REQ0FKnZC+XCpf/xXc+IcoWJlveOawxhRGIQFQ0fM+Zbi52lL2DJ7gpBH29D9gxGQ10/BKNNsByP771lXp5LCBaZVdYClSPk8qUvWTcvDyv87Hif4XrJjQhkTqJVVw8VDPZapEaMhTr4FKjjz4WaPs9X3d1yCTtjsN7Akc4hiQ7gw2VZi/VaISSqrt53aB4Ncpa/db30xV7f7zBe/p13JIHX1/StKXExGC2+7Zuxk7POXQUxZQcAwKz2d31vUuFu7fqiuvDtIRqm1KSZcuHb9r5PTxNrFS46OPfrUEwLY2Vrx+ZcV1+o8fVQR3wWardDoEojRd03DTFCf0s3b5a3Kavqp8YMU5Mt56UcPhuKlSqctKuDPT1u2UckN5gLJs7wvS8iGtr64W6GiDIppRAOhxEOhzFq1ChoreG6rvgyPRHRQFJKwXEcfuBORETkgy2sqtVtQYlTKoZS9XzRX3rpP4UkOnQ7SlVYDBXI2q9HUEBLaqtYFguU+9pHMdiCCaQwA+lnZAs18VrHVKeGEIzmkT8fcWJIpLIDXlq7jhFXp9Dmmh8cScdIZv0mfkP1MsWFtgD+wiyIiIjSgkKQmRR8BgApnYKbOcC0iy1AtZC8+npEg93GpBSMlv8MxAryZ4aZ/eTWvgQXB8qMy1ulGSh9yidwUer/D1YPNv5TLDuw5pgitoSIiIiIiKi4OEaPiIYKjs8jIqIhbfdDxSJ9w6XAqRf6Dt6wddWrUtkvLKtDTvdVLw1hO+8H1IwGGj8xlz/+T0QW/gHHzPscbn/ZXlWvcL3xhQ9GU9FyaKmtrnmsQ04hWGSklII+6CTgtmuN5fr67wOnfAMqKI8rWbK7wu8e13j+Pfu+pibez15Y6IDGXMLyGKw3cMZPFYv0GfOgdz0A6rt/gKod07nwkb8L9fRDSCMNjB33ksv+dT30woOg9j4aAHDyrgp/fFru9Dz3nsY+M/L/fEAMRnPbtn3THwGh6XrffBYnNv0dv6n5kq9NJne83/lFuSUhl4h6O/C/gBsuNZc1fgzduhUq6u89oFMWKlzxQG7PTGKm8Xqj6qAcH2nFRANBCcdmq/wuHSJ8PyoX6sCToG/5lblw2SvQ69dAjarzXd9OdQrPrDSfm0IqhfHJdeZ2HHyK730Q0dDGYDSiAaCUQiAQGOhmEBERERFRH9nCoeKpFlQFa8TQjHCPbW3BAPFUC0qdsBiwlqnFIyigOdUklpUNomC0oCXwJOmawwykn3XE8Z5ZO7dQMSkYzWMfgRiaDLOZpsMdbEFkfsLdxPAIj7A8iS2Mz0+YBRERUZoUZJYUwk4Be2iaFLRWaAEVQKkKo123ZZX57ZsRDaTGROGD0aTZ9ICul1d6FMvBxd7986gj9W379rcnnXdKHPklhKEUjLa2/X281WJ+C2SH2AKML51c3AYRERERERENII7RIyIiIiIqPBWJQU/dAVj1lrFc33Ap1Lk/6/N+gkhlL9zn2D7XS4ObCoaAn/wN+sv7iuvoy7+Mqy+twwcbD8RLH8h11bhd4/TKKoHK2sI2NG18vRziZqBCDEYrBHX2D6CFYDQA0Nd9B+qrl4vljqNwx3kODr3Kxasfyvtp6FiRvbDQwVYMRhsSrEGIAPDiw9AXHgn88UWgqRFYvcy8HoPRhg0VDELv/19iCJ7+7onA9U9DzdwZB84CLjta4Qd3mseeXPIPjW/JubOe2oThd5Ge49366dhT4+uhAewVfxb//cl3cMmon0BLYTRdpia6UikrqvulTUTDkRo3FfrM7wF//ImxXF91IdQl1/uqa/5Ehc/tqXDTM/7Hww03m6sAACAASURBVMUM77ioH/3V9/ZERSeNcY1bxp5GzONVyUzNWAC97/HAY/8wlusv7An8833fAYoNliHNU0saERAmWlfT5vqqn4iGPsaxEhEREREREeXJFg6VDqOSQjOiPba1hV6lg7mk0K/s/VpmsQDQYimPDqJgtJAl8CQhhBlIP2t/oWLmdUx1umIwmv1jlqhwvKT3YQtYkbb1Vb/PYyeTLXTCz8+UiIgoTbquJ3QHtDANeNKVQ9NCjhygWmjSNS/f6ytRsbS5cTEUuTY0Ou96c5mjVgr+9ROyK/XP8w39TUsIIcu2+w/pPDUYPdR4h1h2UM1xRWwJERERERERERERERENV+qos+XCe26Cds0vrGYamctQtYUH+X6hloY2teMeUL9+yLrO6Id+i+cucXDuvvLTy+pUY+cX4+uhLJM/9UldQ27rh4ozCdxwp8oqob7xK3mFf/8fdDJprWNUhcJ/vufg9N3kY6O+Y1X2vusGMhiNwXoDyitYauUbwNKXgIdvFVcp+PFDA0oddJJcqDX0PTd1rqcUvn+kg4Nny6u/tS7/cSlxYe7RcI9gtH479rrqVQAuavwVPlk2AXu3PCmurrSLSYnVnd+UMxiNKBdqySVyoRDSKPnlibn1jcvcjPF6jgNMn5dTHURFJd3/tVretWMwWs7U166QCxs/AV5/2ndd00bJ56WpWGsuOPhU3/UT0dDHT4WJiIiIiIiI8lTilCKozMEc6SAzKTSjZ8iGLfTKT2hWTy0eQQHNQjBaxIkhoAK+9lEMIeHnCnSGqJhIP2s/oWJSOEOHbkcyK4hNeADt8YzIK1jFFn7nJ4hM+jf4PXakdmVy4KBUcfZBIiLyL+jIg3uT2jwYVbreA/YAo0KTrq9+Q2uJBkpjYr1YVhu0TK/WJ9v6ya5OoU0IRvMV+hswDzSJZw60ypEUsmw/rwyNYLRNiQ14sekJY9nEcAOmReYUuUVERERERERERERERDQsTd1BLtuyEfhUeGk1w8WHmgdbHdT8YPbC8VN91UnDRP2OQCAoly97FY6jcPKu8oC9hnSo1chxBW7cNqo+x+dvDLYqnPod5bLmLcB/HvacAEsphf/aRT6Gdmp/I3vh1AI/c/UbjOY49r8J6n+2a1/aK49DL3/dUgef2Q8rXsfEit7nkP1myuebV1bnPy5la5t5eaznmB2vYL98ZdRb427CuZuuF1cfl/wIYd3e+U1ZVf+0iWiYUsEgUC2M+etog+5o911XZVRhQg7ZhOWZ4/XGTIJi4C8NZlIwWlwYe+o4vFfLR+1Ye9DpCku/OMOc8XLZjnHDfRkAjJviu34iGvoYjEZERERERETUB9JL/fHuYDTvMICQU+IZsOY3fCPutsDV8qybLakm4/KyQIWv+oslaAkmkMIMWoUAMCnQxO868VTv36E0YEZ5JKNJx0p3iJ4lwCziRK11A3J4Wr7BLeLPMxDrv1k0iYhoWLIFniaFADTpeg9A7Df1h6gUbJpn8ChRsWwUgtEUHFSHavOu19bn1T0CxNrcuLien9DfqGMORpP6qH6kdAouUsayEkce2KKHSDDaI5vuEv99B9ccxz48EREREREREREREREVxty9gYoaufyNZ3xVc/gchcpI9vJTmm7NWqbGMRhte6LKq4B9jpVX2LAO+pl/Y696YJohHyLituLorXd31nX05/uplQAOPCm39f2GYJG3HfcERsihd/qio6FP3wl69bvWag7ZARhjGDpbm9yAI5rvzS6Yu3euLbXzG8AQKuXz3gGmDlviuY7+7XeBu/8grzBrlwK2iAaaGjcVmLdYXuHNZ3uNNz91ofw3vOQPGs+vym9sSmOLebua1MZt3/RXMFpddr1TE++Jq4d1V4pbWRVUYPBM5k40ZCw+xrzcdYFVb+ZU1ef28t+vqE419l5Q15DTvoiKTzi+W4VgtEgZ+9p5UI4DHHq6WK6vugC6zfw+ZaYpIxT2mW7YhwLOeO9K8/4ZjEa0XWEwGhEREREREVEfSC/1p8MypNCMzCAuz4A1nwEAGhptQhgbALSkthqXxwLlvuovlqCSZ7dLuuYAlbgQACYFmvhdJ7NeKRjBKxhNCl9L/26lALOwE4WjvB8Ai8dQnuER4s/TR9AcERFRT6E8Ak+lwDSv+gpNvH5b+ltEg8GGxCfG5dXBWgQsfW1v/gaA2ALM/IT+Sv3z1swZKHOQtAQulljOK0MhGK011YyntzxgLBsRGo15ZbsXuUVERERERERERERERDRcqUAA6ndPiuX6Mu/wGAAoCys8cqGDGaM7v68Ia/x4w2U4Y8ufs1cez2C07Y26+Dpg8iyxXH/rOKiWzbj3fAc7127pXj6l4z3ct/pIjE51TSS1+6H918baMcCoOv8bhHyGYJEn5ThQ1z5sX2n1MuhLPiNOhAsAJUGFhy5wMKdHxtqs9qV4YPURCOv23isffXbhg3z8huUxVG/AqR0WQn3/JqAyz4noTv46AzeGIfUjQ5+lp0dv7/5yQo1CueVP+fCrXcQ7ch+f0igMz6lJber8wnGAsZNzrtcPVV6d9TdR37FKXF+nxxxVVPdLe4iGO/XVy8Uy/d0Tc6rre4crnLuvv+tSdWpz7wWGUESiQUXqc8WFsadhvh+VL/Wln1rL9Y2X+a7rb190sP/Mbb++0RXA7fPuw6wOIeyawWhE2xUGoxERERERERH1gRSWkQ65ksKuIoFoxvceAWtCPSZS+BkANA+RYDSllBh6khCCUuIpc0CJ9Dvyu05mqEO+wWhSuEN3+F0fg8jEYyiHY6fXdkKYRdhHkAUREVFPIRUSy6TruhSYBgAhp5jBaObrXr7Bo0TF0phYb1xeGzJMmZ4Dv8N0bX1Qqd/aU9QpMy5vc+NI6ZTPVvQmnW8AoMSRX0KwDZQfLJ7a/ADa3Lix7IDqY3wFLRMREREREREREREREfml6hqAOfLELHrzBl/1zJ+osPTHAXx0hYNPL3ofl3z6C/PzqPF8+X57o2IVUH980b7SY//E1JEKL+zzb3y0bCLeXz4Ny1fugL3iz3WW14zp9yAideSZ/lcuYTBaIalxU4G5e9tXWr0MePdl6yqzxym8/sMA1l3u4MO5V+KNVTtjbvsb2fvb7ZC+NNeMwWhDijr4FKg71wAH5BY+AwBq5/36oUU00FT1KKhb3hbL9b1/6vX9OYvla9KmVuDeN3Nvg2cw2uiJUKF+HGuX0UerdjcLKwK7xV/o/KKcwWhE+VClEWDMJHPh+jXQKf9j6kJBhWtPdfD/zvbuK3efT9Lt4L0ZDXbSPWCrEIwWYTBavlRJqT0c7f6/+B5/O6pC4aELAthwpYOVP3Ow7nIHR7/2C3kDBqMRbVcYjEZERERERETUB1JoVXegmRCakRnE5RmwlkP4RktK+MAWcmhaWaDCd/3FEhRCVExBKVprSwid9wfVpU4YSviYJDPUQQ5Gs3/MIv6OvY4VH+231p9vMJoU1OazPURERGlBS5BZUghAS7hygFFQBfvcJr+k63C+11eiYtnYT8FoNj37ydZgNB/Bv9GAORgNyD+YMOlaAheVJRhN6P8PFgk3gUc23WUsKwtUYI/KA4rcIiIiIiIiIiIiIiIi2i5MmiWXrX43p6pGVygEP1olr8AXXrdLKhgCps0Ty/Xffw3d2gw0NWJkagPqkmt7r1BZ088tRG6hff0ZTLO9mrnAe52XHvFV1ZhKhbFrX5BXmDbXZ6NyUOo3GI3HzmChHAdqvxNy35AhMsPX6Ily2XP39woq2lnIM0p75+Pcx6c0mucUR02qsfOLun4+9gzH9oHNDxlXPbnp1s4v3PwmRCQiACPGymUb1splgj3rvYPRqt3ewWiYPj/n/RAVlRiMZn6XjsFofTTDck7YtB5oasypuuqYwpQRqjPk/NN18oq1lvMhEQ07DEYjIiIiIiIi6gMpLCMdBCAFAmRuJ7343x2wlkP4RqtrC0ZrMi6PBcp9118sIWUezJHU2UEp7boNGq5xfSm8ridHOYg4UWNZVjCaNGOFx3MhKVCsO/xO+L35CY6w1R9PtfieZcPUrnzbQ0RElBYSwk6BzkAfEykwTUEhgCIGo0khuAxGo0FODkYb3cea5U5vzwAxKdi5VIURUAHPvdjCeG33OzYJw31EmnTv0WlwB6P9f/buPE6Sur7/+Ptb3T1Hz7E7M8suyy7I5cEGEBGQQwE5lUMFb7zQmBhj1BhjPBOPBHMfaqJREzXRmOQXFcRbUBHxVjyIGg88OVxgZ6+Znt3t7vr+/pjt3Z6e76e6qs85Xs/Hgwc79a2u+k7PTHVNT/Wrv77789rV8M6cNeesvUQDEe88DwAAAAAAAAAAOs894QXmmH/BefJl+28zwdvc8F/hgamNckPh67qw8rnHP98e/Nn35a86Xv7Wm8Lj4z0Io20+Nv26Bf5u12nu0mc3Dc75t79G/qPvTrfBO2+397XxyAwzS2kgbRgt5XrojTMvSY5hNcrlpEObFLGwbLl8IfHr619xxXzEU9JjT3LatNbe1jUfy3Z9SjX22tEsjNbtKF8gvPb87e9ctOzofT/VxTM3zH8ws6O7cwJWMPeUl5hj/o+fmvk1I0etczpxc/I6E43XpT344Zn2AfRe1jCa/Sa+SOHkR0qja8xh//pntPR6Nr93TrrnV+HBLafJRWSSgNWEn3gAAAAAANpgxTJKB4Jm4b84Nsa6rHhX7UX/mcJoVTsUMBOHn8wdXYphtCgcUSkHQilJn7MVr0u73uKoQ/hJ2ajJ0yxmWGX/9q14RFIUYsF6xvZjxdrr96TaRmhejdLenwAA1CQFh0LBU8kOGOVdYf5doHokKTwKLGV2GG19W9tN+/OXNhBtKUb2xSZJ5/5JQr9H1CTFw+IlHEaLfawbpq8LjhXcgM5Ze0mPZwQAAAAAAAAAAFYLd+wJyStYobMAH8fSp/4jPBgIbmD1cJdeLa0/3F5h293SFz8WHhub6MqcFsjy/UncquPcUcfJ/f0npC2nJa7n/+YF8vfembxOHEt3hMNo7uX/3PIcEw2kjOUR1VtSXGFA7p8+K518brobbDhCrknAD8ube9377MGvfEr64FslSUMFp1tebl9rPleW7tud/hoVK4omSZP7Q0auy2E0t35xUemxMx/Rv935HJ2w5zaNV3fq8t0f1U2/uFB5VedX2E0YDWiVO+dx9uAPviF96/OZt/mR30t+DcxkfRjtSS/q6fW7QEusYFa1El4+zOuj2uGiSO5937VX+PpnpNu+lH3Dd/3c3uer/yX79gAsa4TRAAAAAABogxnLiGflvTdjV41BgKRoVtVXtSeeSz2n2arxThYJYyO58dTb75W8EVEpx4tDKXuMAJ1kB8PSrtcYdWg1jGBFIObikmIf2/GIlPNPiky0Eo+w5pP2/gQAoCbv8uaYFSqylidF1rrBPEfLEK0Fem2uOnsgsNxoss0wWpY5hKQ9tx2MhuWMP2OWWvz5s0KMUrNjy9INo/3v7De0dd8dwbEz11yg0fzS+z0PAAAAAAAAAACsIOc90Rzyn/tg+u38+Dv22GFHZ5gQViL3e3/Z2g3HJzs7kQA3Ppk+wEYYrSvcgx+u6O1fkJ72MnulalX6fPgNpw647y5pn/EGtMee2PoEk6T9niCMtuS4DYcretOnpMkNzVfucpgKS8AR908crj8nut+U05ueYkeFrv9O+mtUtieE0Sbi/SGjbgdmN4XP056267/0rZ89TNt+tFHX3vEkHVa5++DgqRd0d07ASnf8GeaQ/+wHMm9uQ5PLyybqwmjuNx6WeftAz2WN9w3x+qh2ualDpWPseH4rxybd+ZPw8iiSNh6VfXsAljXCaAAAAAAAtMF6YX8pntU+v1dx7d2NGjTGpayoVSmeTYx+hW9jR7Bmq7uCy0dyY5n20QsFVwgurwRCKVaATpKG2gyLLd52+I/OVrihxgqKecXaG+8xPwcrvpd2+1Jr8RYz6kcYDQCQUeRyyikcRysboaJQCFWyzw+6xYzgVrOdnwG9tK18jzm2rpDiotwESZeMeH/wPHnO+B0m7blt5CLz/LaV6K8kleNwcFGSCpF9bFm6WTTphulrg8udIp0/8ZgezwYAAAAAAAAAAKw27gT7Rfn6yifTb+hXP7L3cfzpGWaEFWnLadlf3C5J6zZ2fi4hST8HNc5JR23p/lxWMXfimYnj/pufS97AnbfbY0b4p21pw2gDhNGWrBOSv++kJo+VWBHc2IR0vwfZK9zx4wXX1Jx5jP2YdovRAAnZbbQcJWlN7fUCh2xKv8FWPOiUxGNZ6DN1Fz6le/MBVoOk348+/E75PdmubR3IJ59nT9aF0bp2TgR0VMbfHQeHuzON1SbpnPeDb5X/6feybe8O4/ezDUfIFXr7JusA+o8wGgAAAAAAbbBiWnPVGc0lxrqKCz62XvQ/V51N3E7IrBEKqPiy9sRzwbHRJRlGCz9ZGQqoWOGvghtIjBzUs4Jfjdv2VhityfPn1vdKbR/W55A2RJYUgMv6PVSbU3A+KWMWAADUsx6PQ8HTpOX5qLd/zGw8Z6spxbMLLlgDlhIrjBYppzX5dt8VPTGNduBf7Z7bSnZEreUwmhFidHLKKW+Gjr2PW9pft/107v90+9wPgmMPGTtD6wYO7fGMAAAAAAAAAADAqnPxVYnD/v1/m247d/7UHrvgSRkmhJXIbThcuij5ey14u83HdmE2gf08+cXNV7ry+XLF0e5PZjU77SLp2BPt8Vs+Iv/dL9njvzJqRGum5qNH3ZA2wpALvxkh+s896UVSUphhzTrp0qt7Nh/0j3vaH9qDc7PS9NYDH558hL3qe77k9Z1fpbsmbWavPTZae5P18XavE0rmhkekNI+D9U67sDuTAVYJ99jnJo77F14gv3Nbx/a3Jt558IPDCKNhGcga1Say1RHuyucnjvvnnCr/ifem3p63wtWbj8kyLQArBGE0AAAAAADaUIzCF6uU4lmVjBiAtPhF/mZgrcl2gvuu7g4ut4JpkjSyBMNoeRcOqJQDoZSSEf7KFF5IiNPVsyIoVkjh4PbtC5tKCQE8a16NClHBjMll/R6S7JhalvsUAICavBU8jcOhIiuMVjDOD7rFehz2irXXJ7ztJtBH2yrhMNpEYZ1yLtfWtl3Kd9PrxPn5cM76XavVMJoRXHQFOZf2M1s6bpi+zhy7cPKKHs4EAAAAAAAAAACsVm5sQu6vP2yO+7e9Sn57+G9XC9azwmjHnSpXXHrXtaH33CveIfdbb8h2o029ecG0O/lcubfcmLzOi1JGAtEyl883/Tr4f/wje8x84X0XA3uFwZTrEWtYqtyJZ8r9wyelc6+cjzQcdtT8f/d7oPSop8u9/Wa59Zv7PU30gHv0M+Re+hZ7hbpzHeecXnqRfZXKq69N9wZ+M8ala4PxHhVUmf+gy2E0SXK/9fr0Kx9zglzaKCSAILf5WLkX/IW9wv99U7r27R3bX1R7s9Q1U3Jjazu2XaBrCKP1hTtqi9xz/theoVqVf9MfyM+lfG2b9ftZj37PB7C0EEYDAAAAAKANjYGzmrmE0JW0OAhgBQJKcfJ2rNuEzFZ3mbcZyY1n2kcvFKL0AZU543O2gnNZ1m28P72sMFqz7RfNsaQAXpbPIW3cLY25uBTeR4b5AABQk3fhd6+1QkVlHw6mWRHQbkl6HC4lRGeBftpW3hpcvq6wvqv7rT9Pts/P7XPiRta5rRVda6bS5LhihY5jpbvgtJe27rtT3535anDsgcUTdL+hLl6cDwAAAAAAAAAAUO/EhyePf/XTzbdxlxFGO+GM7PPBiuTyeblnvly65Fnpb3R47/5m5k56hHTUlvDgwy+Ti3gJZy+40TVy1/w/e4UffF1+26/DY7/+RXj5YUe3PzGDy+WkfIo3CEyzDvrGnXiWoj/9T0X/+X1F//1/8/+977uKXv2vcoQbVpfH/pZkBV0bznW2bLQ388nvSXvL4WvV683sDS8frb3hYC5nz6eDnHPSlc9Pt/Ihh3V3MsBqcealicP+lo90fp9dPCcCOipzGC1lrBjNnXtl8vjsLunbN6fb1h3hMBrn18DqxLNqAAAAAAC0wQqaxYq1o7ItOJZ3+UVRj6TAWinOFt2Yre4OLp8xlkvSSLT03lmz4MIXc1QCARUrvGDFFLKs2xgVs8NoyU+z5F1BAy78pHmpOmPGy6zvseC6KeNuzVR8Wft8+C/mWeYDAECNFTSzQkVWMC1vnB90S9K5hHX+AfTbtvI9weWTXQ6j1bMiu1nOJYu50eDyrL8f1VjHldrvHVmvh+mnz0x/2Py95ILJK3o8GwAAAAAAAAAAsJq54qi05TRz3L/tVfKVSvJG7gyH0dwmXnyPhdxDH5luxeKYtPaQ7k6mgbvoqvDy857Y03mseieelTz+vfAbUGnXdHh5tyM+A0PN1yGMBiwLzjnJOHfx//yaBedDj3ygfZFK7KUfGA3HejN7w9eNjNauaRubnJ9TD6R+fB4c7u5EgNVi0zHShiPs8R/eKu+bBxYz2UyMCCvUAGG0jjn8AdIhm5LXuTMcPKvny/ukrb8MD3IsAlYlwmgAAAAAALTBCppJdpBgOBpZ9IfG5MCaccGFoVQNhwJmq7uCywfdkArR0rtwwgqolAMBlZIVFUv4+qRdtzF6YgUI2tnHTHWX9vo9wbGk77FF60bheIQVXbPMVcMhC4kwGgCgNVbw1AoVWcG0QhQ+P+iWoaQwWsLjJdBP08bvIVP59sNoTukumLTOPztxbmv9vtNMOQ4fV/IHjivhz62d8/9u2FXZoa/s+lxw7LCB+2lL8SE9nhEAAAAAAAAAAFjt3HNeYw9Ob5V/1RPk4zg47PfOSffdFb4tYTQ0Oudx0nGnNF9v87E9i8EccOnVi1+kfdyp0tmP6+08Vjm3dp30jJeb4/7VT5LfFigO7doe3t74ZKemFpYqjNbba2UAtOEw49xl293yr37igVDRkeucrj7Tfpw6+U9jlYzwWc1M+P2vNVp7w8E1XT5+1TvzknRhmQHCaEAnuFxO7rmvTV7pti91dqfW8Q1YarL+HlggjNYpLp+X+83XJn4NvBHGX+Dun0vGc0jafGxLcwOwvBFGAwAAAACgDUmRqG0VO4zWqJXAmmXWDKPtDi4fzY9n2n6v5DMEVBrjZTXFDBEv62tZaty28e45kWv+NIs1n2nje2X+NuEgRIgVXlv0OTRh3Z9StpgFAAA1eSNoZoWKynE4mGYF1rqlEBXMWGvS4yXQL9573WeF0QoburvvuoCYdf6ZJbI7kjPCaC3+7FWMEGPtuGJF37w3LrDok5u2f8z8XC6cfFzvX+ABAAAAAAAAAABWPfewi6VTL7BX+PInpO98ITx218/s2/HiezRwg8Nyb/q03HNfl7xiH14s7SYOkXvbzfMvBD/viXK/++dyb/603GCK8BU6KvrtNySvcP2/Ll62y3gD47GJ9ieUJFUYbem98TEAQ1LU9Usfl75984EP//VZydd3fODW1sJoI37/dTVjvQujuXxB7r9/2HzFQcJoQKe4Rz1d7rX/bo77t7yss/trDAADS1XG6ycdYbSOcpc+S+7vP2GvcMftzTdyp7GOc9LGo1qbGIBljTAaAAAAAABtGI6K5ti0ESQIxauSAl5Zw2ilePeBd5SqN2OE0UaisUzb7xUrQlLxiwMqc9X2wwtW8Ktx27GsMELzJ9Ct+SR9ja3YWYj1fWTdP5ZSwvpZ7lMAAGqsoJkV9ykHHu8lKW+cH3STGU/N+PgK9MJcPKs9cSk4NlVY34E9JLyTW10YzTr/zBLZLVphNCME3Yx1XKn93mGG0VraW3fsief0+R0fD45N5NfplPFH9HhGAAAAAAAAAAAA89wFT04c91+7MTxgveA1l5MOvV+bs8JK5IZH5J71SmnDEfZKfQo3uLXr5K5+laLXv0/uqX8gN2RfX4ouO/9J5pD/euB4ZIXR1kx1aEKGgRQhBsJowLLhNiU//tSfDznndPb97XVv/H7yvmb2hJePxvuvqxnvctixgVu3URpdk7wSsVCgs85/kh0c3H5v6s2cYvzadc7s5w9+cBgxIiwTWd9YdqD316WvdO6hj5R73p+FB+/6afMNbP1VePkhmwmPA6sUYTQAAAAAANpQiAbMgJcVuwrF1IYSw2hbg8tHc+PB5RVfCb7of7a6K7j+SG6JhtGi8MUc5XhxQKUUG2G0DOEFK3qyz+81oy310jx9bs0nKYyWFM1Lu33r/rHMGes7OQ1GPJEMAMjOOl+yQkXWY68VWOsm6/HVerwE+inpvLITYbTEa0b2F8S895oz4mxDCWHpRsWo02G08HElv/+4YoXRllIa7Us7bjCPPedNXK6cy/d4RgAAAAAAAAAAAPuddqGUS/hbxfv+Krz8TuNFsesPlyvwAmUkOOsSc8ideWkPJ4KlyJ2V8D1w25fkKwf/fuwrZakUfuPhroeFhsN/F1+AMBqwfJx+sRQlvGz/+19b8OGlJ9oX4rzvq1633WFfszKzN7x8tHZdyaEJAdFuaRaTtAJOAFrinJMGjNd2bP2l/O4dqbbzO+eEj0UvmX7zwQ8mOvGmrEAPuIz5nEKKUDGy23R0ePkvfxQOVdfbtT28fGpDe3MCsGwRRgMAAAAAoE1WUGu6HH6XlWIgrlGICpkDa1MF+0m92eriizRCyyQ7sNZv+QwBFSu8kCkqlrDuXPXg9r3i4DouxdMsVtzB+hrPh8jS/xHY+hyyhlus9YeioqKsfygAAEAHw0ONrFCRFUyzzpe6yTqfIIyGpeg+I6qcU15r8pNtb9+Ohx201+8xz5mznJ+Hfm+Sskd/ayrWcSWaP644o/rml0gYreor+uz2jwTHhqOizlp7UY9nBAAAAAAAAAAAcJBbt1Huua9LXMf/198vXnaXEUazXkQL7Oeueqm0+djFA5c9R9pyau8nhKXlnCsS3/nLv/IJBz/YbbzwXpLG2v87e6Jiijc2JowGLBtu/Wa5q19jr3Dr9MQnewAAIABJREFUTfJ7Dl6T/tyHJ1+H8+A3xPreXeHrVuww2vwbDrpNxyRPtgvcy/85eQXCaEDHJf3c+adukY/D1/HVe8qpThcct3DZ43d9SBfP3HBwwXiXz4mATkl8998AwmjdkXAe4v/gUvkvftQe3z0dHhjrcrQawJLFK1kBAAAAAGjTsPGC/X0+/BdHK16VNbqxLjGMNrNo2YwRRhvJpbiwog8GjPBJJRBQmauG7yPraxNihRekhV8DK4uQ5vlzax87K+EnbrOGyKztW/ePpT4El2b7AAA0YwXNrABaOQ4H0/JR7y/2tM4nrMdLoJ+mjeDuZOGQrgduawGxUuB3kZpM5+dGVHhPXFLsq9kmJ/u4UjgQbjTCaH5phNG+ufuLmq6E49tnr320hjIElQEAAAAAAAAAALrBPf1l81Eqg3//38lXGv5mcydhNLTGbThC7u1fkHvFO6QnvlB6xsvl/uZ6uT96q/mmSFg93MCg3L9/y17hK5+U//kP5v+9c5u93niXX3xfDP9dfIFC799EEEDr3LNfLV1unw/ppg8d+OfEiNNHfi/5ep63fDZ83cqsGUbbf814H8JoevAjEocdYTSg8x6W8GaaO7dJ3/xs000UB52u/71IH7joe/rje6/Rtb96gt5/5zNVUOXgSqNrOzBZoAey/i44QBitK5o8p+P/42/twV1GuJpAI7BqEUYDAAAAAKBNVtDMYoXRskQCJGkqIYxWihdH0GaNMNpobjzTfnsl78Lhk3IojGbE44ajYur9WV8XSSrVhcW8D79rjkvxNIu1D2/k1rKGyKztl2I7ThFe37o/CaMBAFpTMIJmFSNUZAXTrMBaN2WN1wL9tM0Io00V1ndoD0kXjcyf0yb9bGT53amYsy8At85Xk1jHlfz+44qzwmhmGrl3vPe6cfra4Fje5XXuxKU9nhEAAAAAAAAAAECYe/TT7cHt90i/+snCZffdHd7OxqM6OCusVG58Uu7SZyl60d8o+u03yD3sYqJoOGjTMVI+4Q34bvvy/P+tF95L3X/xfTHFGxvnev8mggDa4y692hzzt31pwccnHZ68rXfcHL5uZedcePlI7Zrxw3ofmXVRJB15nL3C2nW9mwywSrihorR+sznuv/slc6zeUMHpiqmf6LX3XaPLZz6unOpeMzO6Ri6Xa3eqQI9k/H2wQBitG9zIuDRpv+ZR3//q4nB+za7p8PJuR6sBLFmE0QAAAAAAaFPmeJWxftbo1FhuXENR+J2T6kNeNVYYbSSX4sKKPihE4fBJOV4YNPDeBz9fKVtsbjAaMuNm9XGHdrIIWeN3Wb8nrO9F6/6xzFn3J2E0AECLrKBZJRA8TVpeMMKp3TRkhFazPr4CvXBfeWtweafCaFY8TDp4nmydS0rSUKYwWrpwcVrNjitLOYz2g9K3dcfenwfHHjb+SK3J8054AAAAAAAAAABgidjyMGlNQvTi599f+PFuI0i09pDOzQnAquQKA9JZl5nj/q+er/jFF0vf/Fx4hYGh+dhINxXtNww7ICnuBmBpetAp9tj1/6r4EYMH/tv4lmc33VwcL752Zbtx6cxEdcf8P/oVITv3Snvs1At6Nw9gNTnnCnvsPdfI/+jb6bZj/W42tjb7nIB+yRrKLvT+DbtXjXMTjk3VqvTVT4XHzGMR18kCqxVhNAAAAAAA2pQ5XmWs30pgrRiFL4oIRdBmqruC6y7ZMJoRPin7hWG0fX6vYlWD61r3dUjkIg0b4ZOFYbQ4uE6U4mmWLPORpGIuxUUvC7YfXn9PXFLsw/MOqf98F86HMBoAoDX5lI/rzZZb2+km6/HPerwE+mm6fE9weafCaGnMxaXg8oIbUCFK/zNsndtKUqk6k3le1nGlFm60o2/9D6PdMH2tOXb+xGN7OBMAAAAAAAAAAIBkLp+Xe917zXH/J1ctXLBzW3jFNbzgFUD73Av+InmFW2+Sf9cbwmPjPTgOFZtfv+uINQDLjsvlpIdfnm7lG/5Tf1Z9W+Iqb785EEYLX56jyer+mEifQkbuSS+SHnJOw0In90dvk1u/uS9zAlY698xXJI773ztP/te/aL4hYkRYCbKG0QYGuzMPyF39aumoLea4f8Xj5bffu3jAeJ7IjU90amoAlhnCaAAAAAAAtGm4haBZcHnGaNZwNGKGs0rxwlBA7KtmvGM0N55pv72Sd+GLORqDBnNVO0qS+T41vjalhH10Yvvm+h2av5fX3ngu9XaszzfrfAAAqCmYj+vlTMut7XST9fhXIoyGJcZ7r219DKP5/QGxTp1LDkbDcsafMht/30mjHIePK/n9sTZnXBDj+xxG++We2/XD0neDYyeOnqZDB7loFAAAAAAAAAAALC3ulPOkBzzEHPfbfj3//71z0l7jmqZeBIkArHhu45HSVS9t7ca9eOF9ijCa8r1/E0EA7XOXPiv1ulf+PDmM9g83Lr52Zdq4dG0i3i4Nj8r16djhxtbK/d3H5N56k9wfvFnuNe+W+8BP5C5/Tl/mA6wGbu06uZe+xV5hblb+4//edDveCqMRI8JykjWMlidC3C1uYr3cv3wleaVPv3/xsl3WsYjniYDVijAaAAAAAABtKrYQNAsuzxjNKkYjGjHCaLPVhaGAUnXWfEH/SC7FhRV9UHDhP8hWGkIpSVGSVu7TkPqonPfh+9G55k+zZP1e6dT3lpQt3mJF9IZzxUzzAQCgphBZj+v7wsvj8PK8sZ1uss4nkuKsQD/MVndrr98THJsqbOjIPpySLhqZP0+2zyWzndtGLjLPh0vVFsJoxvHmYHDRCKMZ5/+9cuP0debYhZNX9nAmAAAAAAAAAAAAGZz0CHvs5uvkZ3ZK995przPGC14BdIZ70ENbu2EPjkNuOMXf0XP5rs8DQBcc8cDUqx657xcaiirm+I/vke7a4VXaO38NSxx7bS+F152obpfG+hsxcvmC3AlnyF3xPLmLr5Jbz5v+AV13/wcnj//g6823sWs6vLzPxxQgk6xhtIHB7swDkiQ3MCidcp457n9468KP9+6Rtm8Nr7xmqpNTA7CMEEYDAAAAAKBNSTGqEOvF/ZkjWLkRFaNw1KxU3b3g45nqLnM7SzaMFoXfeaPcEEpJipK0cp+GlOr2YQXm0jx9XswYg+hU2E3KFm8xYxYZ708AAGryznpcL4eX+/DygrGdbrLDqcbVZUCfbKvcY45NFdZ3ZB8uxUUj1rlk1nNzyT5/biWM1hhYrqkFma3PrJ9ZtPv2bdWtu78YHDt66EE6ZvhBPZ4RAAAAAAAAAABAOu6ip5pj/u9eLP/o9fJP/Q17A+O8+B5Ah5z+KGlkPPvt1vQg0FhMcf1uoffXygBonzviAanXHVBZT1j3o8R1Nv9RrNEXxnr826q6c4cUGxe0TFR3SGNrs0wVwEpw3KnSpqPt8a98Sv4D/5i8jd07wsv53QzLSsYwWoEwWre5C+3nh3TDf8nf+N8HP777Z5L1ZsZJxzgAKxphNAAAAAAA2tSp2FUxN5ptv9GIRozblOKFoYDZhlBavdFcCxd89EB+f6CgUWMopWSEF/KuYMbVLFb4qz7uYIfRmj/N0qmInrn9XNEcs+6nECui1krMAgAA6WB4qFHZ78u03NpON1nnbnPVWXnrj69AH2wrh8NoeVfQWK77FzzWfhrmquFo4HBkn6tahlP+vpOGfVyZ/53BOp/3ijPvq1M+u/16xcb+L5y8osezAQAAAAAAAAAASM898OT2NjDGi+8BdIYbHpH7iw9Ja6ay3XBsiYTR8r2/VgZAZ7jnvi71un+34TodmuKS/mu/JT3mH+1rWSaq2zmPAlYhF0Vy1/xP4jr+TS+Vv+lae4Vd0+HloxxTsIxEGfM5hNG67+KnScP2a9H8658pf9uX5z+48/bwSlEkHXpk5+cGYFkgjAYAAAAAQJuyxq6sIEDm7eRGzJjabLUhjBaHw2gFN6CBaGk+kVsLFDSKVVXVVw98PGcEv1qJeFm3qQ+F2WG05u8sYoVVOrV+zuU16IaCY6Vq+niEFVHLOh8AAGqsx/VKQ/C02fK8sZ1uss7dqqqYoSWgH7aVtwaXTxXWK3I9+JPg/lCgdX7eyrmkdX5eMkK+SRoDyzW1ILN9Nt+fAOJMdZe+tPPG4NiGgU06YfTUHs8IAAAAAAAAAAAgo8uf09rthkfkBpbmNW0Alid30iPkrvul3Mv/Of2NxnsQASmmeEPlfO+vlQHQIQ85J/Wqk3N36Vd/le76nu/ckbCd6nZprPtvoAhg6XHHHC/3r19NXMd/7N324O7t4e324pwI6BTX/HVdCwxwrt1tLpeTe+MHEtfxH//3+X/c+dPwChsO53kiYBUjjAYAAAAAQJs6FbsqZtzOUFRUMQpfFNEYwZqp7gquN5JL8W5zfVJw9rvc1cdS5owoQivhBes29aEwM4yW4gn0rPG7VuJu1udgBSqC61r3aQvzAQBAOhgeamSFxawwWtL5QbckPf5ZMVGgH7aV7wkun8qv79g+kmLAtfNkK1rWyrmkFYIuxemjvzWVOHy8KUTzF7Y4Ix7XnyyadPP2T2if3xscu2Dicb2J3QEAAAAAAAAAALTB3f/Brd1w7SGdnQgASHL5vHTBk6WB8JvPLlp/fLLLM5I0sqb5OvneXysDoEOOOV4qpAyu7N6hXOR08hHt7XJNvFNau669jQBYvo54QPK5zlc+Jb93Ljy2e0d4+RhhNCwnGcNoRIh746gtydG6j75LvrxPfjp8HbQOPbIr0wKwPHDFPAAAAAAAbbLiZCGRIg268B8asoQChqJh5VzODJvNVncnflwzuoTDaHlnP8FcH1Gxgl8thReM29SHwryPjVs3fwI953Lm1z+klbhbms8hSdVXtdfvCW+7hfkAACAlhdHCAbRybITRot7/ATrp8S/t4yvQC1YYbbLQuTBamnNe6/y8lXPJtCHoNKzjTbPgon3+3z374r26acfHg2PjubU6bTz9OwoDAAAAAAAAAAD0zXlPlIaK2W+3+ZjOzwUAJLmh4nwcLY3xHkRA1kw1X4cwGrBsuZFx6dzHp1v589dKkp59VsagS5211e3KKZbbxLkUsFq5oaJ04VMS1/EXrJX/zP8sHtg1Hb5BL2KxQKckxbdCONfuCTd1qHTGoxPX8Y85XLrpg+HBNL83AVixCKMBAAAAANCmLC/wH86NyBlPtGYJedXWLeaMUEBDjGCmuiu43khuPPU+e60Q2U8wV+piKSUjSDIcZb+ozgqRWXGHelHKdxbJEjuzImetbL/xe8KS9Lm2EpsDAECyg2aVQAAt9lVVVQmubwXWuinp8S/NOQLQK9vKW4PL1xU29GT/Xl6SNBeXguNDLZyfp/19J436uHK9WpDZGefzPvOe2veVXZ/TTHVncOzcicv6EokEAAAAAAAAAADIyq2ZknvTp6X7PSjbDYl5AOgi9wdvkk46u/mK4z148f1Yivhagb8PA8uZe9k/zQcZBwaT4yvey8/u0u+e6/Tay1uLo01Ud8z/Y/OxLd0ewMrgXvIP0vFnJK7jX/8M+V//4uDHlbJU2h1eeWxtJ6cHdFfWMFou3515YBH3x+9JDpzN7JDu/Gl4rBfRagBLFmE0AAAAAADalCUWlRS6yhRY27+dESMUsCcuqeoPBkVmq+E/UozkxlLvs9cKzr6Yoz5qYAVJsgTIDtzG+PqUqjMH/u0VG7dO9wR6lthZJz+HtOGWOSM0l7RtAACaKRhBs1CoqOLDUbT57fT+Ys+CG1Dehf/wnfS4CfSS917byvcExyYL6zu2nzRnvNbPRSvRX+s29efnaVX84hCjdPD4ZIfRrPP/7oh9VZ+Zvi44NuiGdPbaR/V0PgAAAAAAAAAAAO1wW05V9L7vyH3kzvS3IeYBoIvc4LDcmz7VPJrQixffj082X4dYA7CsueERRa/9d7lP3Cv3yXvnQ2mWL35Mzjm99vJIH31h9pf/T1a3z/+DyCywqrnBYbm33JC8kvfSZ/7n4Me7d9jrpjlfAZYKwmhLlhtdI/eeb7R24zGOQ8BqRhgNAAAAAIA2DeeKqdcdiux1MwXW9gezilE4jCZJpbogwfIMo9nvilWuixpYwa+WwgtGiKxUtw9v3NalfAK9aMTsQloJkVmfQ9pwS1JALUu8DwCAelbQrOzL8t43LFscSzu4nYR3zewS55yGrDhTyvAo0G0z1Z3mz85UR8No9jmv33+mbP1ctBL9tc6dWwmjlePw/VOI5o9Pac/nu+07M1/VveVfB8fOWntRpt8nAAAAAAAAAAAAlgq3dp101UvTrfygh3Z3MgBWPRdF0sia5JV6EAFxA4PScJO/ped7f60MgM5zA4Nyg8PSMSea6/h3/In8T78nSTrzGGkwY6tlbS2MtmFzq9MEsEK4fKHp71X+PdfI/+S78jf+P+nz19orjvUgFgt0DGG0JW1qo7TusMw3c72IVgNYsgijAQAAAADQprwraMANplo3KSyVJbBWC2YlvSi+FB+MBcxUdwXXGc2Np95nr+WNgIokVeqiDyUj+NVKeMEKkZX9PpXj+Rib93FwnaRIRJp9hLQSPbC2nzbcMlctmWND0XDm+QAAIM2fL4V4xYpVXbCsPoDaqBYw6jUruJo2PAp0233le8yxdR0MozXjvTd/LloLFxthtBaihNax5eDxKXw+7800cud573XDdPgis0g5nTdxec/mAgAAACA959zRzrknO+f+2jl3k3Nul3PO1/338za27dv878iOfaIAAAAA0CZ32bObr3T/k6QTz+r+ZADgyt9JHu9VBGR8Knm80J9rZQB0yZZT7bGtv5R/1smK3/xSrRnyeuYZ2eIuk/F2ybnm4UcAq4J7/AuSV9hTkn/2qfKvf4b8377QXo8wGpaTrG+QS4S4p5xzck9ocmwK6UG0GsDSRRgNAAAAAIAOSBvhSopiZQms1fY3khsz15mt7g7+u17S7futENlPMNciZZI0F4dDXlkCZGlus2d/fKHdLELa75VIkQbdUObtW/E9KyC3aD0jMjEUFRW5XOb5AAAgJQfNGmNFlXifsaYdWOs26/G7lTgT0A3bjDBawQ1oNNfJix2TLhrxKvt9qqoSHG0lXGzF1PbEJcW+GhwLqfrqoghjTe24EllhNN+7MNpP5r6vn+/5cXDslPGHa7JwSM/mAgAAACCZc+5c59ynnHPbJN0u6b8k/aGkcyQt3T++AAAAAEAfucPvL/eOL0qHbFo4UBiQJg+VLn6a3Js+KZf1hcwA0AL3tJclr9CrF9+PN4mNEGsAVhTnnPTY30pe6X/+Ubr1Jv3TVU6veHT686KJ6g5pbEIuIh0AQHKPeprcK9/Z3kbyBWk4+3V/QN9kfT4hl+/OPGC76qVyL/jLbLchjAasahypAQAAAADogGI0op2abrpesxjAcG5E+yp7U+1PkgbcoPIur4pfHB8oVWcO/NsKo43mxpvuq19yysvJyQdSZGV/MJgyZwS/rIhCEisqJs2HT8a0Vl5xcDxK2Z9PO6/h3EhLF/lZcbe5lOEWa71W7k8AAGoKCUGzcrxPQ9HwwY8bQmkLt9Ofd8EdjorB5WkfX4FumzbCaFOF9R194UjSprxP/ploJVxczI2aY6V4NvXvM5VUxxUjjNZ2Gjm9G6avNccumLiiZ/MAAAAAkMpJki7q9yQAAAAAYLlxx50i96Gf9nsaACBXHE3+a/BQ+FqRjmv2Iv8cYTRgpXEPPLnp1Sj+pg8pf8p5euMVTq96tNf4i8LXr9ebqG6XxtZ2ZpIAVgR3yTOl9ZvkX3JJaxsYmyBcjeWFMNqS55yTnvL70pop+Tc+N92NxprEpAGsaGSfAQAAAADogLQv8m8WlypG9gv/F+xvf8DLOWfeZnZ/GM17b4bRRnJjqfbXD8455Y2ISn0wpWTEF5pF6IK3Sfj61AJs7WYR0s6r1RCZGUYzAnJp12vl/gQAoCafEDSrD56GPq6XFFjrJiueOlct9XgmQNh95a3B5VOFDR3eU/JFI6WEc85WzieTfj9K2lej5DDa/HHFmZ9bb8Jod+39pf539hvBsS3Fh2jz0JE9mQcAAACAtu2VdHuXtv1VSUdl/O+OLs0FAAAAAABg+TvHeIOqk87uXQSkWRhtmGs3gRXnhDOar/Phdx745+hQuuPRRHV782MKgNXngSdLA0Ot3XacGBGWGZchn+OcXC7XvbkgWZrzoZp1G7s3DwBLHmE0AAAAAAA6IO2L/JsF1KzoxqL16rZTzIVjAaV4Pow2F88qVvhdokaipRtGk6SCEVGp7A+meO/NkFcrYbHBaEjOeLqkFmDzPnxfupRPoKedV9rY3qLtm98P6cIRZmiuxfkAACAlB80qvrLg43JCwCgpsNZNZng05eMr0G3T5XuCy6cK63s4C5/4M9HK+XnS70el/SHoNJKOK4Vo/rhiXdQe9yiMduP0debYhZPGxfgAAAAA+q0s6duS/kXS8yQ9VNKYpJRvbZ3ZHu/9zzP+V2m+WQAAAAAAgNXJPfnFi0MhuZzcU36/d5MgjAasOu7I4zLf5iUXNo+jTcQ7pNG1LcwIwErmxiakK5/f2o3HCKNhmckSN87luzcPNOU2Hytd8OTmK+Zy0sYjuz4fAEsXYTQAAAAAADogdeyqSfgsbXyqfjsjuXDcbLa6W5I0s///IaO58VT76xcrolILG5T9PlUVfk1P2lhdvchFGo6KwTErwFbjlO4J9NQRvRbmL9nfi3vikmJfbXp76/O07hcAANKwYqfSweDpgY/jfcaaUt7154/QZhityfkB0CvbKr0JoyWd83rZ0eKc8onHActQVDT3WQtBp5F8XKn9zmF8br77YbQd5W36+q6bg2NHDB6jBxRP6PocAAAAAGT2b5LGvfcP8d7/lvf+Hd77W71PKDMDAAAAAABgSXEnnCH3lhuli58mHXuidP6T5P7mo3JnXdq7STQNo4XfLBfA8uZe8BdN1/F79xz49ysf1fw69cnq9ubHFACrkvvdP5d76Vuy35AwGpYbwmjLinv1u+R+55rklSYPlcvbb9AOYOXjaA0AAAAAQAcUc+kuPGgWPksdRqtbrxiF912qzocCZhPCaFZUbanIRwNSoOVV3h82mIvtGEna+3LR7XIjwchCbV9ecfB2acNo1tdr8Xqtz9+yJ55r+r1aMu7TVkNtAABIUj6y/yBZbni9cNmHA0Z5V5DL8gfrDrIeB63HTaCXYh9rW9kKo23o2Ty8pLm4FBwbzhVb+vmdDxeHz89LGcKEjceZerVgW2Scz3t1P4z22e0fMYPPF0xe0bdjHwAAAACb9357v+cAAAAAAACA9rktp8ptObV/+x+fTP6rdHFpX+cLoEX3e1Dzde7+mXTkcZKkqVFpzbC0c85efW11uzSWYrsAVh3nnPS435b/9S+l//jr9DckjIZlJ8O1lsS2+s7l89LT/lB6xGPkn2a8gfCRnNsAq13U7wkAAAAAALASpI1wFZvEpZqNH1ivbn8jRuiqFg+Yre4KjkfKaSgaTrW/fim48BPNlf1hg6QYQtr7ctHtjK9lbV9WGCFtGC1tYKzVEFlSUC1NPGLOWKfVUBsAANLB8FBILXh64GMjYGSdF/SC9TiYFGkFemV3dceB8+NGU4X1Hd1Xs3NeM7LbxrmkdV4fiqVZrOCiVH9s6U8Yba46q1t2fio4NlXYoIeMndHV/QMAAAAAAAAAAAAA+mh80h7L5aWCfc0NgGXshDOlweTr+P0zTlL8j38k/7PvyzmnNU0u+5+sbidiBCCRO+2CbDcY55iCZSbLm9Dm8t2bB7LZfKy08X7BIXfahT2eDIClhjAaAAAAAAAdkDp21SQIkDYYUL+/ohFGm63OhwJmqruD46O58fl3flnCrIhKLWyQFCNpNb5gfS1r+zLDaCnvy7SBsU7PX0oXj5iLS5m3CwBAMzmXU2T8SaIx6FQxAkZJcbVuM88PquHHTaCXtpXvMcem8p0NoyXzZmS3nXPJYmSEoKtZwmjhcJwk5fcfW6yz+W6H0b6w41PaE4ffzvf8icco53Jd3T8AAAAAAAAAAAAAoI/WJITRhkeW/HW+AFrjRtfIXf3q5iv+95vkf+ds+e99TW9+SnISYKK6XY6IEYAkJ50tnXlJ6tVdUsAVWIoIoy1LLorknneNlGu4XvaoLdIlz+rPpAAsGRytAQAAAADogE7FrtIGA+r31ywUMGuE0UZyY6n21U95Vwgur4UNrPBCTvmW4ynW16hUC6N5I4xmphTSbb+RFbxrZigqmmPW/bVgHSM2l/Z7HAAAS8ENaK/fs2h5uSGEZgWMrPOCXrAev5MirUCvbCtvDS4fdEMdP+dPOuf18l05l7TOi7OE0SpxOLgoSXk3/+dS58IXj3YzjFaOy/rcjo8Gx0ZyYzpjzfld2zcAAAAAAAAAAAAAYAkYSwiORLyRFrCSuae/TDr2BPmXPTZ5xdJu+ff+hS574wcTV5usbpfGCKMBsLkokq75H+mT75X/zi3SHbdL//tl+wZja3s3OaATsoTR8v27Lh2LufOfKG04XP6mD0n33S33oJOlS58tx3EIWPUIowEAAAAA0AFpg2bDOTtaJWUIrNXtz4od1IJoM9VdwfHRZRBGK0ThuFllf0ClZIQXhnOtv0ue9TWoRcWsMELaMFqxhfhdFjmX01A0rD3x3KIx6/6qZ8XT0n6PAwBgyUcF7a2GwmgLQ2hlI2BknRf0wrARHi37fSrH+/o6N2Bb+Z7g8qnC+s6/c3ST7c1VS8HlaePAIdb5c5YwYWOAsabgBg7cR+ZnZoSRO+Ebu2/Wzsp0cOyctZdoMBrq2r4BAAAALEtHOOfeLek0SYdJGpG0XdJ9kr4l6WZJH/Deh3/RAAAAAAAAwNKzJiGMNhu+/hfAyuFOf5T8Fc+Trn178oq33iTnpAdskH4UeA/F4bikET9LGA1AUy6fly57ttxlz5Ykxa96ovSF68MrJwVcgSUpwzWzOVI7S407/nS540/v9zQALDGcPEZOAAAgAElEQVThtz4HAAAAAACZpI1YNVsvbXxqqC7OUcyNBtepRbBqgbRGVlBtKSm48DtwlOP5gIoV8Wo1KibZX4NaeMEKo6V9An0oGm5rHqlua8XdUsQjzNicEYQBACCtggvHwxpDaBVfMW7fv3fmSgqbzsXhEBTQK1YYbbKwvsczsc83mwWikxSj8O8tpepM6m00Bhhr8guOK+Hz+W5l0WIf68bp64JjBTegc9Ze0qU9AwAAAFjGjpJ0taQtktZKKkhav//jp0l6u6RfOuf+3jkX/uMRAAAAAAAAlpYNR9hj1fA1NABWFnfWZc1XmpuVbr9NV54cvr7l4pkb5q98IYwGIKuNR9pjY2t7Ng2gI7K8mXAu1715AAA6howlAAAAAAAdkCZi5eQ02CSKlSboNRQNK+cOPgFrBc5K1d3y3i/zMJoRUPHzARUz4tVGVMz6GpSqyWE0lzKMFrmchqKi9jSJqFhxszSKuVFtr9y3aLkVkquJfdWcVzvzAQBAkvIu/CeJSkOwqPY4v/j24fOCXkh6HJyLZzUuLv5A/1hhtHWFDR3fV9IZr/c+IbLb3rltSClOH0arGMeV+t83rPN5rzj1frL43uw3dfe+XwXHzlhzvsbya7qyXwAAAAAr3oik35d0iXPuSu/99zq9A+fcekmHZLzZMZ2eBwAAAAAAwErghopde8MuAMvEqRdIF10lffr9iav5Z5+qF39wWp/8dl7fvvvgtXibynfqz+597fwH45PdnCmAFchNHWqfi3BMwXKToYumHKkdAFgOOFoDAAAAANABaV7oPxQVFbkocZ1iiqDXUFRceBtj37Fi7YnnNFPdFRwfzY033Ve/WWG0WkBlzgwvFIPL07Ciagf25Y0wWoZ3FilGI03DaGkieRbr+9EKVdTsiefs+bQRmwMAQGoePK1pDKUdvH2h43NKKym6WmoSHgW6zQqjTRXWd2Fv9jmvlzdDvO2cSzYLF6dRto4r0cHjih1G644bpq8LLneKdP7EY7q0VwAAAADLVEXSLZJulPRdSXdI2i1pVNIRkh4h6ZmS6n8RfICkG51zp3vvf9Hh+fyupNd2eJsAAAAAAAAAsCq5KJJe8y7p0U+XbvuK/LveYK67/usf0M1PP12fePGf6NtDD9YD9/5IF8/eoEOq+99Qe4w3+ASQ0diEPTYcflNTYMmKkl+zt0C+f9elAwDSI4wGAAAAAEAHpIlYpYkBpAmsNe6rmBsz1y3FuzVb3R0cG0m43VKRj8JPNO+L5wMqvQwv1PbljTSCFVII7iM3ounKvYnrJAVY0mw/xLq/apLiEmm+NwEASJI3wmaNwaLGUFqNFVbrhUE3pEiRYsWLxqxQK9ALsY81XQ6fV052IYzW7JzXDhe3c24bvriqFM+k3kY5Dh9X8nXHFWdErL1f/HPfrp/N/VA/mftecOwhY6frkIGNHd8nAAAAgGXrNZLe6b0PV7Glb0u63jn3x5qPlb1cB6vWh0r6kHPuFO+Nd30BAAAAAABA/110lfTp9y9efvlzej8XAH3hnJNOOV865Xz5L39C+sHXg+v5b39BI5uO1uN3X6fH7w68KV9S4AgAQh5ydni5c9L6zb2dC9C29K/rUo7UDgAsBxmSlwAAAAAAwJImYpUmBpBqOw3rjBihAEmarc5oNg6H0UZz40331W9WAKWyP5hS6kJ4wfoa1PbViTBaqgBewte11e03i0ckhV3aCbUBACA1f1yvKcfl4HpWMLUXnHPmY2Gz8CjQTTsr06qqEhxbV9jQ49nYPw/DUbHlbZphtGr6MFrFh48rhbpgY4bLYdp2w/S15tgFE1f0cCYAAAAAljrv/TUJUbT69fZ4718p6YUNQydLempXJgcAAAAAAICOcI/5zfDy0x/V45kAWArceY+3Bz/5XvkXXhAeKwxIQ61fowNgdXKbj5UeePLigRPPkhtb2/sJAe1whNEAYKUhjAYAAAAAQAfkXE6DbihxnTQxgFTxtIZ1hqOiGeXaVdmu2equ4NhIbqzpvvqtPlRQr7w/bGCHF1qPeBWN25b9PpXjspFFyxhGSxEZs+aRavtWGK1JuCUxjNbGfAAAkKSCETZrDKE1htIO3N4Iq/WKdS6X9PgJdNu2sv3a+KnC+o7vL+mM18vb4eI2IrvWefFcXFLsq6m2UU51XAl/dlYYuVX37LtL35n5anDs/sPH68jh+3d0fwAAAABWF+/9P0m6vmHx73Z4N2+VdHzG/x7b4TkAAAAAAACsHCeeJT3rlQuXPeEF0iMe05/5AOivxz2vtduNTchlCcIAwH7uFW+X1m8+uGDDEXKvfEf/JgS0KsvjYL5/b9gNAEiPjCUAAAAAAB0ynBvR3sqexPFmaoG1vd7eTrFhO5HLaTgaUSmeWbTuW+/8M3M7yyGMljcCKLWwwVxcCo433kdZJH2d9sSz8oqDY1n+kNwsepZTvq34i/X5Nwu3WOG0QTeknMu1PB8AAKTmj+sHPy4H17OCqb3SangU6CYrjDYUFbsUtrXPeSu+bAbI2on+FnOj5thcXEr1e411XMnXHVes0LF1/t+qG6c/bMbWLpq8oqP7AgAAALBq/bmk+lfNnu6cW+u939GJjXvv75Fkl7oDeDEeAAAAAACAzTkn99zXyV/yTOknt0nHniB32NH9nhaAPnFDRelvrpf/w4xxxLGJ7kwIwIrnjj1Reu93pP/7huS9dOJZcoX+vpkx0JIsf5PMkdoBgOWAozUAAAAAAB1SjEa0Q9sSx9NoGlgLbKeYC4fRkozmxjOt3w9WAKWyP2xghb7aiUAk3bYUz8poGCgpErFoH03CbcO5kbZeJGR9DnNNwi3m/dlGaA4AgJpmj+s1VljJCqv1SqvhUaCbtpW3BpevK6zv+YvOrWix1N75ZDGyw2iz1Zl0YbQ4fFwpRAePK3YYrXN2VXboK7s+Gxw7bOAIbRk5uYN7AwAAALCKfU3Sdkm1V8HlJG2R9KW+zQgAAAAAAABNucOOlgiiAZCko34j+20IowFogyuOSief2+9pAG0ijAYAK03U7wkAAAAAALBSpIldpdEsoBaKchRTxAAapQkI9Ft9qKBeLWxghb7aCi/k7PDCXHVWseLgmBVSCGkWbksb0TNvb3z+pSbhFvP+bHM+AABIUsEImzWG0Ro/PnD7KBxW6xUzPJoQgwK6bVvlnuDyycL6ruwv6Zy3VLVDze2cT1rnts32Wc88rtQFG+2QXOfSaJ/f8TFzLhdMXtHzmB0AAACAlcl7H0v6ZcPiQ/oxFwAAAAAAAABAdm795uyBonHCaACAVS7LNZiE0QBgWSCMBgAAAABAhzR7sX/aGEDTwFpgO+sKG1Jtu6YYjS6L2FXehQMo5f0xASv01c7nNuiG5IynTOb3Fw4jZAmjJcXXpPbCblJCuMUIn9VY92dSjAIAgLTyRtis7Pct/DjeF1zPCqv1ivX43OzxFeim6XI4jDbVpTBa0ilvt8JoQ1HRPNcuxenCaI3HmZr644q1D+87E0bbE8/p89s/ERxbm5/SKeMP78h+AAAAAGC/uYaPh/syCwAAAAAAAABAS9wfv1s67tT0NxgjjAYAWOUIowHAikMYDQAAAACADmkWj0odRmshsPbQsbNSbbvm5LEzFbml/7SAFUCp+H0qx/tU2R9Ia1RsI7zgnDNvP1edle9EGK3p17iYelvB7Rvfi3v9HlV91bzdXBdCcwAA1FiP6+V44eN52Xh8t4KpvWI9HlphUaAX7jPDaNnCyWklnfNaPwtOkQajoZb3GbnI/vlLGSZMd1wxwmjG+X9WX975GTPkdt7E5X0/xgEAAABYcdY1fHxfX2YBAAAAAAAAAGiJW3eYonfcIveBH8u9+YbmNxgnjAYAWOWyhNHyhNEAYDlY+q+ABgAAAABgmWgWj2oWTku7Xmj8pNEz9Nh1zzCDIzVOTg8ePV1PWP+bqebSbwUjDlD25cQIyXDK+9q+fThMNhfPynsjjJbhCfTm3yujqbeVdftzCfGIuWop8/YAAEjLflzft+DjSsPHB2+ffJ7TbUnhVKAfqr6q7eXw69qn8ut7PBv7Z2E4KrYdZbZ+R7JCY43SHFes6FsnwmhVX9Vnpj8cHBuKijprzUVt7wMAAAAAapxz6yQd3bD4rn7MBQAAAAAAAADQHrfhCLmHnC1tPiZ5vbWH9GhGAAAsUQPD6dfNEUYDgOWAozUAAAAAAB3SLGiWNi5VjJKjWKHtOOd08dTjdd7EY3T3vl+o6uPgbdcPbNRIbizVPJaCQhQOoJT9vsQIiRUuScv6WpWqs2YYwQopBLffLH7X5vyTvhdL8axGNR4cmzNic2mjfgAAJMkbYbOKLy/4uNzw8cHbh8NqvWI9fluPn0C37axMK1Y1ODZV6E4YLemc1/pZaDdaLNV+R9q6aHmpmi6MVo7Dx5VCdPC4YoWOOxFGu3X3FzVduTc4dvbaR5lhZgAAAABo0VO08E1zt0r6QZ/mAgAAAAAAAADohE3HSHfcnjwOAMAq5sYn0l/xmevvdekAgHQIowEAAAAA0CFNg2YpgwBNo1kJ44WooCOGjk21n+XACqBU4nJihKTd+IJ1H8/FdhhNGcJozcJn7c4/KcKXdL+VjNhc2qgfAABJCsbjetnvW/hxvC+4nnX7XjHDqYTR0Cf3lReHwmq6FUZLYkXKhqP2o1/FXPh3rdRhNB8+rtQHG+2z+fbCaN573TB9rbH/vM6duKyt7QMAAABAPefcBkmvaVj8Ee99+9VnAAAAAAAAAED/NAufbV45ryEAAKAl45Pp182R2gGA5SBqvgoAAAAAAEijadAsZVyqaTRrFUWqCnWhgnplv8+MkETKacANtrXfpPCJFUaLMoTRmn2vtPs1HoqKcsZ85oz4mWRH04Zz7ccsAAAoRNbjennBx5WGj5vdvlescOqeaqnHMwHmTZfvCS4vRqNth3Yt1jmmZEcCO/H7S1K4OA3zuFIXXHTGn03jNtsBPyx9V3fs/Vlw7NTxc7Q2n+FCHAAAAACrhnPugc65yzPe5lBJH5W0oW7xPkl/3sm5AQAAAAAAAAB6zx3eJHy26ejeTAQAgKWKMBoArDgcrQEAAAAA6JBmL/hPGwRoGs3qUuRgKaoPFdSLFWumsis4VsyNyLn0kbIQ6z6ej4oZYYQM+2wWv0sb0bNELtJQNKy5eHGoxQpWSAlhtFUU4wMAdE/eeFyvxPsWfFz2+4LrWbfvFevxcK/fo6qvKOf4kwt6a5sRRpsqrO/xTOZZAV4rapZFMRoNLi9VZ1LdvjHAWGOFmBdqL4z26ekPmWMXTDyurW0DAAAA6C/n3GaFr8E8tOHjvHPuSGMzM977+wLLN0q63jl3m6T3SbrWe/9jYx5jkp4l6TVaGEWTpD/z3v/U2DcAAAAAAAAAYLk47lR77IgHyI2u6d1cAABYirKE0Yq8TgoAlgNepQMAAAAAQIc0i1kN54qpttOpwNpKkE8IFeyu7ggu78T9Y30t5+JZxT4cRnBKH0YbjIbl5OSNyEIn4nfF3GgwjGYFKySp1MWYBQAAVoCoMVjUXsCoe4Yj+1xurlrSaH68h7MBpG3lrcHl3Q2j2ee8pTgcKevI+XnOCKMZ+2xUjo3gYnQwuGidz7eTRfvVnp/q/0rfCY6dMHKqNg4e3sbWAQAAACwBt0i6X4r1Nkn6mTH2b5KuTrjtCZL+UtJfOud2SvpfSfdJ2i1pVNLhkh6s8LWg7/De/2mK+QEAAAAAAAAAlrotp0nHny7971cWDbknv7gPEwIAYInJEkYbn+rePAAAHUMYDQAAAACADmkWsxpKiGnUSwqsDboh5Vwu07yWs0JdqKDRrooRRutAxMuKN8yHw9oPo0Uu0nA0YoYcrPBDFubnEIfjZ7GPtScQUkvaFgAAWeRd+HG97BcGiypmGM0+L+iFpHOMUjyrURFGQ29tK98TXN7NMJpzCWE0I7KbNhCdpBgZYbSE6G89+7hyMLjoXBRcxytOtY+QG6evM8cunLyi5e0CAAAAWLXWSDorxXqzkl7ivX9nl+cDAAAAAAAAAOgR55z0tx+Vf+srpK/dKO3eLt3vQXKX/6bcpc/q9/QAAOi/8YnUq7oM6wIA+ocwGgAAAAAAHZIUNBuKhlMHzZKiG52Ifi0n9aGCRruq24PLh1MG6JJY9/NcPCvfgTBabR9mGK0DITI77hbe5954j/m5EUYDAHSCFTarDxZ5782AUT6yzwt6Ienxec4IjwLdZIXRJrsYRkti/Rx04lyyaJyfW+fTjRoDjDX1xyXrbN778DlyM9vK9+ibu28Jjh019EAdM3xcS9sFAAAAsGr8QNIbJZ0j6WRJwylu8yNJ75H0Tu/9fd2bGgAAAAAAAACgH1xxTO4P/6nf0wAAYGkam+zOugCAviGMBgAAAABAhyQGzTLEAJKiG50IZi0neSOgIkm7KjuCyztxH1nbmKt2LoxWjEa0zRjrZjzCClYkBV2sbQEAkEXBCJuV44PBIiuKJtlhtV4ZjIbl5ILnAnNVwmjoraqvaHslfDa5rrChx7OZZ8XHOnJ+nhsNLreiv43KVnCxLsTsFAXXsc7/m/ns9usVKw6OXTh5xfy7+AIAAABY1rz3R3Zx21slvVqSnHORpPtLOkbSJklrJQ1JmpO0XdLdkr7uvb+3W/MBAAAAAAAAAAAAgKXMDQ7Jr5mSdlqv1qozPtH9CQEA2kYYDQAAAACADhmKiuZYltBVYmBtlQWqCi4cUJGkXZXtweWduI+sbZQS4mFZwwbd/jpb33NWuKWUEHTpRKgNAAAreFofLLLCSlLyeUEvRC7SUFQMxkSTAqNAN2wvb5M3oltThfVd22/WGLDUmXPbYhQOo83FJcW+qsjlEm9fMY4t6YKL2cNos9Xd+uKOG4Jj6wuH6cTRUzNvEwAAAMDq5b2PJf1w/38AAAAAAAAAAAAAgJBNx6QLo62Z6v5cAABtI4wGAAAAAECH5FxOQ9Gw9sRzi8aGc3Y0rVGnAmsrQSGyAyg7q0YYrQP3UdHYRlKsRRkjEUnztPafRdEIUOyq7tCuyo5Fy7eVt5rbyvL9CwCAxQqbxaqq6qvKudyCSFojK6zWS8NGGG26fF/w8RXoljv2/swcm1xqYbQunttK0r3lXx/Yx3A0okK0+FhRjsPHlvrfN6zPbW+8J/PP9+d3fFz7/N7g2AWTj20acgMAAAAAAAAAAAAAAAAAAEBGm46Rvv+15uuNre3+XAAAbSOMBgAAAABABw1HI+EwWoYYQFJgLSkIsBIVEgIos9XdweWduI+GW9hG1kiEFT/Lu0JiEC4t63vuh6Xv6hW3X516OwU3sCRCNACA5S/pcb3iy8q5nCoJEVIrrNZLxdyIpiv3Llr+wXvfpQ/e+64+zAhYaDQ3rqFouN/TWKCVc+tGxWjUHHv9z15w4N8FN6DjRk7SMw99kYq5+dvEvqqqKsHb1p/nOhc+n79l56d1y85PtzLtRcZya/Sw8Ud2ZFsAAAAAAAAAAAAAAAAAAAA4yB1+rHyaFdes6/ZUAAAdEPV7AgAAAAAArCS1F98vXp4tBmC98D9LYG0liJSTy/j0RSfuo1a2kTWMZgUirGBaVtb3YubtrLLvOQBA9+QTwmbl/UG0clw21ylE/Q91rrZzMSw/k4X1/Z7CIp04n0x7blv2+/Tdma/pn+9844FlFR+OokkLg4tZz+dbce7EZR2JIAMAAAAAAAAAAAAAAAAAAKDBaRc1X+fYE+XWTHV/LgCAthFGAwAAAACgg6xYRtaIhhnNyhhYW+6ccyq4bBGUTgRLWomKZQ0pWIGI4Q4FzToVbrG+FwEAyCopbFbZH0SrBdKCt08Iq/UKj4tY6qby3Q2jtRIP68R56VBUzLTvn8x9X/ft2yqp2XGl/rjU3TDaoBvS2Wsf1dV9AAAAAAAAAAAAAAAAAAAArFpbTpUufEriKu53runRZAAA7cr3ewLoHefcsKSTJB0naULSkKRdku6RdKukn3jvfQf2U5B0lqQjJG2UNCPpLknf8t7/vN3tAwAAAMBSdsjAofrJ3PcWLy8cmm07hUN1596fL1q+LuN2VoJ1hQ26a98vU69/yED799GgG9JYbo12V3emvs1UIVuE4pCBjeHlHfoaW9vPajV+zwEAumPQDZlje/0eSVLFl8118hljqd3QqcdpoFs2Dh7e1e3nXUHjuQntqm5PtX7BDWg8v7bt/UYu0rrCobq3fHfq29xTvkvrBjaonHBcKUQHg4tZz+ezOmvthRrJjXV1HwAAAAAAAAAAAAAAAAAAAKuVc056zbulsy6T/9bnpS9+TLrvrvnB858k94yXyx1zfH8nCQBILer3BNB9zrkznHP/LWmHpP/P3n2HR37V9+J/n5G0u9JWr73r3gsG22DjRjU2mGJCL+b+CDUECJAfJJcQSiB0AgnhXgiQBLihtwAGYxIw1TYxNhAb27Exwb33trvaova9f2h9V9bOjEZazai9Xs8zz+p7zuec89mir0bSzlu/SPJ/knw4yfuSfCzJ15L8PskNpZR3l1JWT/GcNaWUTya5NcnPknw+yQeTfDzJaUmuKaWcW0p57o7+ngAAAGarY5Y/drux7tKTI5c/cnL7rDhhu7HFZUmOWHbslHubqx6+/NEt1+7cs2v2W3LIDp9ZSskxK7b/u2xk/yUPyqqenSd1xuFLj86SWt9248dO4tzmPR0yLeEOx9b5twgAU9HbtbTh3Mbh/iTJYDXQsGY2BKMdvfwxKSkz3QbUVUstx604sa1nlFJy1CQ+tzly2SOyqLZ4Ws6e7PPS++8rQyOt3VeOXPaItr1/99b68oSdntmWvQEAAAAAAAAAAAAYVWq1lCc8P7W/+Hhq374mtZ9vGX2864tC0QDmGMFo81gppbuU8vEk5yY5NcmiCZbsmeSvk/y2lPKUSZ51SpJLk7wmSbNgtUcl+WYp5UullMavggMAAJijHrz0yLxw19dmadfyJMnq7jV53Z7vyOqeNZPa5+HLH5Xnrnl5emujnzqt6dktr9/73VnWtWLae57tnrLz83PiqqdlUWkeqLDP4gPzhr3ek1qZni93PHvNS/OIFY9vGsJSUsshfUfkT/Z826T37+1amj/b+z1Z27PH6HWtL8/a5SU5dsXjptzzWLVSyxv2ek/2WXzglNZv60cwGgDTY1FZnFqDb0tsGrk/GG2w7nx36Z62j/E7Yr/eQ/Ly3d+YFV2rZroVeICVXTvlT/Z8W9Yu2r3tZz137ctz/IqTmj5PrqUrRy17VF6422un7dyn7nxqHrfqqekpE327a9RE95UkD9jroL6H5CW7vSErunbasUbHWd29Jq/a863ZqWeXad0XAAAAAAAAAAAAAADmq1JV1Uz3QBuUUkqSf03yvDrTv0tyeZJNSdYkOSbJ+Fd5DCR5ZlVVP2jhrBOTnJkHBq9VSS5McnWSVUmOSjL+FR9nJHlWVVUjE53RTqWUwzIa6pYkufTSS3PYYYfNYEcAAMB8MFKNZP3wfVnRtSqjn6JNdZ/hbBhenxXdwjeGqsHcOXBbqmz/tYxlXSuyvHtlW84dGNmSuwZvrzu3snun9HUt2+Ez1g3dm2Vdy1MrXTu8Vz3rh+7LhuF1LdfXSi1renZrWz8ALFxvuvLF6R9ev934H+3+FzlmxWNy0frz86mbP7jd/JJaXz5y8Fc60WJLqqrKXYO3NQ1cgk5ZVFuU1d1rd+jzjqlo9jx5p55dsqTW25ZzB0cGc9fgts8LPnPz3+WWgeu3q3vWLi/Jk3Z+Tq7ffFU+eN0b6+719wd9Ob1dD/w5PtP5/r2otjiru9d0/O8GAC677LIcfvgDfsLt4VVVXTZT/QCA/6MHAAAAAAAAAMwH/n9e53TPdAO0zR9n+1C0c5K8rqqqS8cOllK6k7w4yf9Kcv+ryBcl+Xwp5ZCqqu5rdEgpZa8kp+WBoWjnJnllVVWXj6lbnOTVST6cpGfr8NOTvC/J2yb3WwMAAJj9aqWWld3jM6insk+XULStuktPdlu8V8fPXVRbnN0X793WM9r9d7y8e2XbguMAYDL6akvrBqNtGulPMhqEWk936ak7PlNKKdll0W4z3QbMqE48T66np/bAzwtWdK+qG4y2cet9pVnAWXdZtN2Y928AAAAAAAAAAAAAAJhZtZlugLYZHzZ2TpKTx4eiJUlVVUNVVX02yclJtoyZWpvkTyY4591Jxr7S/xdbz7l8bFFVVVuqqvpYklPHrf+fpZR9JzgDAAAAAIB5oLe2tO74puH7A4wG6s73zLJgNGD26Gt0X7k/cHGk/n0lSbqLnyEFAAAAAAAAAAAAAACzjWC0eaiUckSS/cYNv76qqsFm66qq+s8knx43/PQm5xyc5KVjhgaSvKyqqs1NzvhOks+PGVqc5J3N+gIAAAAAYH7o7aofYLRx5P5gtPpfxu4pi9rWEzC3NbqvTBy4uCillLb1BQAAAAAAAAAAAAAATI1gtPnpgHHXN1RVdXGLa08fd31wk9oXJukac31aVVVXtHDGh8Zdn1pKWdJKcwAAAAAAzF19teYBRkMj9QOMuktP23oC5rbeWl/d8U0TBC66rwAAAAAAAAAAAAAAwOwkGG1+Gv/KshsnsfaGcdc7Nal99rjrz7ZyQFVVlyf55ZihpUme1MpaAAAAAADmrt6uBsFoWwOMhqqhuvM9tUVt6wmY23obBC5uvD9wsaofuNhT3FcAAAAAAAAAAAAAAGA2Eow2P9067nrJJNaOr727XlEpZbckDxszNJTk3Emcc9a461MmsRYAAAAAgDmoYYDR1mC0wYYBRj1t6wmY2yYKXBysBuvO99TcVwAAAAAAAAAAAAAAYDYSjDY//TrJljHXDy6l9La49ug6e9Vz+LjrS6qq6m/xjCT5xbjrwyaxFgAAAACAOaivUYDRcPMAo27BaEADfQ0CF//ffWWkfuBid1nUtp4AAAAAAAAAAAAAAICpE4w2D1VVtT7JF8YMLUnyionWlVK6kohUJLMAACAASURBVPzpuOHPNyh/yLjrK1tucNRVE+wHAAAAAMA809sgwGjjyGiA0VBVP8CoR4AR0EBvg8DFbfeV+oGLPQIXAQAAAAAAAAAAAABgVhKMNn+9Jcm1Y67/tpRycqPiUkpPkk8lOWrM8E+TfKvBkoPGXV8/yf6uG3e9cyllp0nuAQAAAADAHNIoGG3T8GiA0eBIgwCjmgAjoL6+BveVwWoggyODGRS4CAAAAAAAAAAAAAAAc0r3TDdAe1RVdXcp5aQkp2U07Kw3yZmllG8m+WaS3yXZlGSXJI9M8uokDxqzxa+SPK+qqqrBEavGXd8+yf42lFI2J1kyZnhlknsmsw8AAAAAAHNHX1eDYLSRrcFoDQKMugUYAQ30NrivJMnmkf4MVvUDF7uLwEUAAAAAAAAAAAAAAJiNBKPNY1VVXVtKOT7Jy5K8KsnRSU7d+mjkriQfSfJ3VdXglSKjlo273jSFFjflgcFoy6ewxwOUUtYmWTPJZQfu6LkAAAAAAEyst1Y/wGiwGsjgyECGGnxZukeAEdBAo/tKkmwa2ZjBkfqBiz01gYsAAAAAAAAAAAAAADAbCUab/7q2PrYkqZKUJrU3JPnrJF+bIBQt2T4YbfMUetuUZKcme07Fa5O8cxr2AQAAAABgmvV1TRBgVDUIMCoCjID6+roaf3tp43C/wEUAAAAAAAAAAAAAAJhjajPdAO1TSnl0ksuT/GOSR2fiv++9k3w2yfWllD+e5HHV5Duc0hoAAAAAAOao3lqzYLT+DDYIMOoWYAQ0sLgsSWnwLbDR+4rARQAAAAAAAAAAAAAAmEsEo81TpZQnJPlxkv3GDN+U5C1JjkqyKsmiJLsleUqSzycZ2lq3JsmnSymfKqWUBkdsGHfdO4U2x68ZvycAAAAAAPNIb1fjYLSNw/0ZHGkQYFQTYATUV0pJb62v7pzARQAAAAAAAAAAAAAAmHu6Z7oBpl8pZU2SryZZMmb4jCQvqqpq3bjy25KcmeTMUso/Jflekp23zr0yyVVJPlTnmNkajPbJJN+Y5JoDk5w+DWcDAAAAANDE4rIktdQykpHt5jaN9GeoQYBRjwAjoInerqXZOLL9t5k2DvdnqGoQuFgELgIAAAAAAAAAAAAAwGwkGG1++p9J1oy5/l2SU6uq2txsUVVV55dSXpDkx2OG31lK+WxVVbePK79v3PWaTEIpZVm2D0a7dzJ71LO1z/G9TtTLjh4LAAAAAEALSinp7Vqa/uH1281tGu7PoAAjYAr6aktzV53xTSP9GRxpELhYE7gIAAAAAAAAAAAAAACzUW2mG6Atnj/u+kMThaLdr6qqnyT5+Zih3iT/o07pFeOu9229vbr1d1dVdc8k9wAAAAAAYI7pqy2tO75ppD+DVf0Ao+4iwAhorLer/n1lY5PARfcVAAAAAAAAAAAAAACYnbpnugGmVyllaZIDxw3/ZJLb/DjJY8dcH1+n5vJx1wdN8owDxl3/dpLrAQAAAACYg3obBKNtHO7PkAAjYAoa3Vc2jfRnSOAiAAAAwKi7L0yu/2bSf+32c9VQMjKYLN032f2UZI8nd7w9AAAAAAAAALifYLT5Z1WdsVsnucf4+l3q1Fw67vqhpZS+qqo2tnjGoyfYDwAAAACAeai3q3GA0eBI/QCjntqidrYEzHF9jYLRhvsz2CAYrae4rwAAAAALyA3fTs59wWj42UT++6PJQ9+XHP5X7e8LAAAAAAAAAOqozXQDTLt764zVfzVIY8vGXW8YX1BV1S1JLhkz1J3kMZM448Rx19+fxFoAAAAAAOaoRgFGG0f6M1gN1J3rKT3tbAmY4xoHLm7M4Ij7CgAAALDAVVVy0ZtbC0W736XvSbbc1b6eAAAAAAAAAKAJwWjzTFVV/UnWjRs+apLbHD3u+tYGdd8ed/3yVjYvpRya5PgxQ/1JfthaawAAAAAAzGVLuvrqjm8a7s9QVf+Fed1lUTtbAua4RoGLm0aa3Fdq7isAAADAAtF/TbL+ismtGRlIbvlRe/oBAAAAAAAAgAkIRpufzhp3/apWF5ZSdkvyjHHDP29Q/uUkw2Oun1NKObiFY9487vpfq6ra3GKLAAAAAADMYY0CjDY2CTDqKT3tbAmY43q7GtxXhvszWA3UnXNfAQAAABaMW86c2rqb/216+wAAAAAAAACAFglGm5++Pu76BaWUF020qJSyOMkXkywbM7whSd3/EVFV1RVJPj9maFGSz5VSljQ545lJXjZmaCDJuyfqDQAAAACA+aG3QTDahqH7UqWqO9dTFrWzJWCO66311R3fNNKfwYaBi+4rAAAAwAKw/qrk16+d2tprvzS9vQAAAAAAAABAiwSjzU9fS3LxmOuS5AullI+WUnavt6CUclKS85OcPG7qQ1VV3dPkrHcmGTv/qCQ/LqUcOm7/xaWU/z/JN8at//uqqq5rsj8AAAAAAPNIb1f9YLR1w/c2XNNT62lXO8A80ChwcdNwf4aqgbpz3cV9BQAAAFgArvjkjq1fd8X09AEAAAAAAAAAk9A90w0w/aqqGimlPC/JuUnWbh0uSV6f5E9LKZckuTrJpiSrkxyVZLc6W/17kg9NcNaNpZTnJDkzyaKtw49O8ttSygVbz1mZ5OFJ1oxb/r0k75jc7w4AAAAAgLmsr0GA0bqhxsFo3WVRwzmARoGLW6rNKVX9nxPVU3NfAQAAABaA28/ZsfV3/DxZcfD09AIAAAAAAAAALRKMNk9VVXVlKeVxSb6Y5JgxU7UkR259NFye5NNJ/qyqqsEWzjqrlPLsJJ/LtvCzsvXcYxos+2qSV1ZVNTzR/gAAAAAAzB+NAoxG0vjLxT2lp13tAPNAo8DFJKkyUnfcfQUAAACYd4YHkkventx4erLpliRVMrShcf0hf5r8/uPN9/zlK0YfSdK9PBlav21u9dHJ8f+S7PTQHW4dAAAAAAAAAMaq/yPSmReqqvpdkkcmeWmS8zIaeNbMpiRfTvKoqqpeXVXVpkmc9e9JDk/yT0nuaVJ6fpLnVVX1wqqq+lvdHwAAAACA+aFZgFEjPWVRGzoB5otGgYvNuK8AAAAA8875L0su/7tk/e9HA8yahaKtfEjy8I8kB/5x6/uPDUVLkrsvSH74iGT9VVNqFwAAAAAAAAAa6Z7pBmivqqqGknwhyRdKKSuTHJNk/ySrkixOsj6jQWaXJvmvrfVTPev2JK8ppbwhyaOT7JtktyT9SW5K8puqqq7Zgd8OAAAAAABz3FQCjLprPW3oBJgvphK42F3cVwAAAIB5ZOPNyfVfb73+8T9Jaj3JcZ9KDnpV8rMnJwPNfi5yA8Obkgv/PHncdye/FgAAAAAAAAAaEIy2gFRVdV+Sn3TgnIEkP2v3OQAAAAAAzD29Uwgw6imL2tAJMF8srvWmpKRK1fIa9xUAAABg3hgZTm7+t6Qaaa2+Z1WyZNfRt0tJdj42OeYTyS9eOLXzbzojuebLyX7/X1JqU9sDAAAAAAAAAMbw3WcAAAAAAKBj+rqWTXpNd+lpQyfAfFErtSyp9U1qTU/NfQUAAACY40aGkgvfmHxrl+RXr2p93X4vHA1EG2vPpyXdk/+hFv/PeS9Kvrk6ufgdrQe0AQAAAAAAAEADgtEAAAAAAICOWVyWpEzi2xO1dKWrdLWxI2A+6Oua3At3u8uiNnUCAAAA0CH/9e7kdx9JBu9tfc2uT0ge9v7tx3uWJ489LelZMfV+Bu9LLntfcvnfT30PAAAAAAAAAIhgNAAAAAAAoINKKemrtR5g1FN62tgNMF/01vomVe/eAgAAAMxpVZVc9emJ6/r2Sk44ffTxtN8nj/9RsmhV/drdn5Q857bkqA/vWG+t9AUAAAAAAAAATXTPdAMAAAAAAMDC0tvVl/6R9S3V9tQWtbkbYD7onUTgYpL0FPcWAAAAYIpGhpP7LksG70tSTfPmJSm1pHtZUlucbLm9ftmmW5PNt0283WF/lez1jNaP71qSHPjHycVvTUYGW1831vorki13JYt3ntp6AAAAAAAAABY8wWgAAAAAAEBHTSbAqLv0tLETYL7o7ZpcMJp7CwAAADAlt52V/OSkme6iNV19yT6nTn7dopXJ3s9Nrvva1M/+1i7J0R9NHvT6qe8BAAAAAAAAwIJVm+kGAAAAAACAhaVvEgFGPcKLgBb0TTJwsZTSxm4AAACAeWlwXfLTJ8x0F61ZdkDy+B8ni1dPbf1xn0r2enZSuraNrXhwsvKwJC1+XeWCNyS3nzO18wEAAAAAAABY0LpnugEAAAAAAGBh6Z1UgNGiNnYCzBe9AhcBAACAdrvhO0k1MtNdNNe9LHna75K+PXdsn57lyQmnJYMbko03JkvWbgtZG7g3qfUk3UuTr/cmw5sb73PNF5O1J+xYLwAAAAAAAAAsOILRAAAAAACAjhJgBEy3yQQu9ghcBAAAYCEaHkhuPysptWT1scmilTPd0ey28abkjv9IBtdvG/vVK2eun1bt94c7Hoo2Vs+yZOWhDxxbtGrb23v8QXLDtxqvv+ozyc7Hj77dvTTp3SPZdHMy1J+Ukqw8LFl99GjQGgAAAAAAAABsJRgNAAAAAADoqL7JBBjVBBgBE5vMfaVb4CIAAAALzYZrkh8/Ltl4w+h1757JCd9Odj52Zvuara78VPLr1ybV8Ex3MjmlOznoVZ098+DXJjeclqRqXDNRoNwuj0pOOD1Zssu0tgYAAAAAAADA3FWb6QYAAAAAAICFpVeAETDNersELgIAAEBD579sWyhakmy6KfnVq5KqSZjVQtV/ffLr18ytULTSlex8XHLSD5LVD+/s2bs9Pnnst3Zsjzt/kVz2vunpBwAAAAAAAIB5oXumGwAAAAAAABaWSQUYFQFGwMQmE7jYI3ARAACAhWSoP7nj3O3H77koufs/k52P7XxPs9kNpyXVyOTXHfa25KHvndqZ1UjytQm+XvHgNyVHfrDxfJnBn5W997OTZ16bnL7f1Pe4/l+To//3dHUEAAAAAAAAwBw3g98FBwAAAAAAFqI+AUbANOubROBit8BFAAAAFpKBe5NquP7cjd/pbC+z2b2XJpd/OLnwz6e2fp/nj4aTTeVR6052Pan5/mse03yPmda39+hjqjbdkgzcN339AAAAAAAAADCnzYLvhAMAAAAAAAtJrwAjYJr1ClwEAACA+hqFoiXJZR9IRoY618tsdfXnk+8fmfzmTVNbv/tTkp2O3LEeHvympHTVn1v10GSPp+7Y/u1WaslD3rxje/zw+GSkyb9XAAAAAAAAABYMwWgAAAAAAEBHTSrAqCbACJjY5ILRBC4CAACwgIwMNp+/5czO9DFbDW1MLnh98wC5+y07cPQx1kPenJzwnR3vY49TkhO//8AAtBUPTg55fXLyOUmte8fPaLdDXpc88kvJ7k+u/2c1kXX/ndz6w/b0BgAAAAAAAMCcMge+Sw4AAAAAAMwnAoyA6dbX1fp9pVvgIgAAAAvJ8Mbm8zd9N9nzDzrTy2x0+9nJ4LqJ6x53RrLn09rby+5PHH3MZfv/4ejjfnf8IvnRo1tff+N3R0PiAAAAAAAAAFjQBKMBAAAAAAAdNakAoyLACJjYklpvy7UCFwEAAFhQ+q9rPr/+qs70MVsM3Jtc+enkik8m/de2tqa2ONnlUW1ta97a6ahk0U7JwD2t1a+/or39AAAAAAAAADAn1Ga6AQAAAAAAYGHprbUejCbACGhFrXRlSa2vpdoegYsAAAAsJBuunWD+6o60MSsM3JP86DHJRX/ZeihakjzkLcni1W1ra17r7k2OeFfr9RuubFsrAAAAAAAAAMwd3TPdAAAAAAAAsLAsri1JSS1VRias7akJMAJa01dbms0jGyes6xa4CAAAwEIyUQDYxuuTkcFkIXwd7uovJPdd1nr9AS9L9nx6svdz2tbSgvCg1yfLD05uOC3ZeFPSt1ey5fbkxtO3r+2/PhneknQt7nyfAAAAAAAAAMwagtEAAAAAAICOqpVaemt92TiyYcJaAUZAq3q7liZDd0xYJ3ARAACABaX/mubz1fBoGNXyAzvTz0y65czWa4/82+Qhb2pfLwvNHqeMPu533+/qB6OlSjZck6w8tGOtAQAAAAAAADD71Ga6AQAAAAAAYOHp7VraUl1PEWAEtKa31up9ReAiAAAAC8CNZyTfe0hyw2kT1264qv39zKQ7zkt+8aLklu+3vmbPp7WvH5Jl+yelwX9jX39FZ3sBAAAAAAAAYNYRjAYAAAAAAHRcnwAjYJr1tRi42C1wEQAAgIVgcF2y7vLWas9/eXt7mUl3nJv89PHJtV9ufc2hb0xWPrh9PZF0LU769qk/t+HKzvYCAAAAAAAAwKzTPdMNAAAAAAAAC0+vACNgmi2p9bVUJ3ARAAAAxtl0czK0KenunelOpt9/fywZ3txa7eHvSHY9afRB+y0/KOm/dvvx9YLRAAAAAAAAABa62kw3AAAAAAAALDy9tdaC0XpqgtGA1vS1el8RuAgAAADbW/fbme6gPe76ZWt1+zw/eeh7hKJ10rKD6o8LRgMAAAAAAABY8ASjAQAAAAAAHddqgFG3ACOgRb1dLd5Xaova3AkAAADMQfMtjOru3yQ/Pinpv661+r2f195+2N7yBsFot/4w+f5RyTVf7Gw/AACzRVUll/998r2HJF9bkpz5iOSmf5vprgAAAAAAOkowGgAAAAAA0HGtBhj1FAFGQGtaDVzsEbgIAAAA29tw1Ux3MH023pj89OTk9rNaqz/g5cnez2lrS9TRKBgtSe65KDnvJcl1X+9cPwAAs8Xlf5f85i+SdZcnI1uSu36ZnPOM5LazZ7ozAAAAAICO6Z7pBgAAAAAAgIVHgBEw3QQuAgAAwBg7H5sc84kHji3ddzRk4fY6gQrrr+xMX51w6XuTgbub1xz4imTn45Kdj09WPTQppTO9sc2yJsFo9/v9PyT7vqD9vQAAzBZVNfocaLvxkeSKTya7Pq7zPQEAAAAAzADBaAAAAAAAQMe1GmDULcAIaFFvi4GL3QIXAQAAWAhWHDL6GO/WH9cPRttwVft76oT+65OrPztx3RHvTvr2bH8/NLb8wIlr7r5gNASk1NrfD0yXkcFk4w3bjy/ZNRnekqRKUpKelUmtq9PdATDbbb4t2Xhj/bnbftrZXgAAAAAAZpBgNAAAAAAAoONaDTDqqQkwAlrT1/J9ReAiAABMt1JKSfKmJEvGDH+hqqprd3Df/ZO8eMzQxqqqPrwje8KCt/yg+uPr50kw2m8/NBpKNJFFq9vfC811LUlqPc3/voY3J/3XJcv271xfMFUjQ8mFb0yu+kwyvLG1NYf/dXLEu5JS2toaAHPIZR9oPLflztHg2NVHd64fAAAAAIAZIhgNAAAAAADouL6uFgOMigAjoDW9Ld9XBC4CAEAbvDDJB5NUW69P29FQtCSpquqaUsoRSZ5z/1gp5eqqqk7b0b1hwVp2YP3xTTclQxuT7r7O9jOdNt40GkjUiu7e9vZCa0789+SnT2xe84sXJU86tzP9wI649H3J7z82yTXvSZbsmhzy2vb0BMDccssPk9//Q/OaHxyTnLoh6W7t+2IAAAAAAHNVbaYbAAAAAAAAFp7eWmv/UbtbgBHQor4W7ysCFwEAYHqVUmpJ3nP/ZZIrkrx0Go94WZKrtu5dkrx/GveGhWf5QY3nrvli5/poh9/+bTIyMNNdMBk7Hz9xzZ2/SKpq4jqYaVf/y9TWXfV/prcPAOam4YHkP/+0tdobvt3eXgAAAAAAZoHumW4AAAAAAABYeFoNRhNgBLSqt0vgIgAAzJCTk+yf5P7UmrdWVbVxujavqqq/lPKWJN/cOnRIKeXxVVX9dLrOgAVl6b5J99JkqH/7uUvenuz7gmTRqs73tSOqKrnz/OT3H2utfu3j2tsPretZniw7INlwdfO6a76YrDg0WX1UUvO1HWaB4YHknguTgXtHrwfuSTbeMLW97rkwuenfkq4lyepjkuGNSf8NyU5HJl0Nvkey5e7krl8n1dBoIGRtcVJqyaKdktUP934CMNdUVXLB65P1V7RWf+8l7e0HAAAAAGAWEIwGAAAAAAB0XF+LAUY9NcFoQGuW1PpaqhO4CAAA0+5FY96+oKqqb0/3AVVVnVZKuSDJ0VuH/jCJYDSYilpPss/zk6s/t/3cljuT/3pPcvRHOt7WlA3cm/zH85Nbf9z6mv1f0r5+mLwD/zi5+G3Na85/6eivi3dJTvhOsubR7e8LGrnlh8l/nJoM3jd9e579tO3HelYlj/1GstvJ28aqkeTitye//ZvGey1anZzw7WTtCdPXHwDts/mO5IePSjZc2fqaVgPUAAAAAADmsNpMNwAAAAAAACw8vbUWg9FKT5s7AeaLrtKVxWXJhHU9NfcVAACYZk8Z8/b/aeM59+9dkjy1jefA/HfEu5OuBp9D//4fknX/3dl+dsRFb5k4FG3VEUnKaKjWw/4mOeDlHWmNFj34L0cfPSsmrt1yZ3L2M5Lhze3vC+oZuC8551nTG4rWyOC9ydnPTAbXbRu74bTmoWhJMnD36PvJ0Mb29gfA9Ljg9ZMLRUuS9ZOsBwAAAACYgwSjAQAAAAAAHbe4tiRlgm9TlNRSS1eHOgLmg96uiUMXu8uiDnQCAAALQyll3yS7jBn6XhuPG7v32lLK3m08C+a3pfskD35T/blqKLnwjZ3tZ6qqkeS6rzavefj/Tp56SfL8dclzbksOe0tSSmf6ozW1ruSoDyXPvTtZfvDE9QN3J7ec2f6+oJ6bvpsMb+rcecMbkxvP2HZ97VdaWzd4X3Lz99vTEwDTZ2jTaOjlZG24cvS5MAAAAADAPNY90w0AAAAAAAALT63UsqTWm00j/Q1rekpPihcpApPQV1uae3NX05qe0tOhbgAAYEF42NZfqyRXVVV1U7sOqqrqxlLKlUkO2jp0ZJIb2nUezHsPeXNy1b8km+q82978b8nNZyZ7PLnzfbVq8+3JNV9KBtc1rlmyNjnolaNv9yzrTF9MXa0r2fXxyforJq797YeStScmi1a2vS3mgM13JreflVTDo9elNvrvY8ma0estdye3n51snIanDRf/1Y7vMVnnvSgZ2Po1zxu/3fq6G7+T7PPc9vQEwPS48xfJyEDj+X1ekFz/9e3HhzcnG29KlsoLBwAAAADmL8FoAAAAAADAjOjrWjpBMNqiDnYDzAe9XUsnrHFvAQCAabVmzNs3d+C8m7MtGG1tB86D+at7aXLkB5PzXlx//sI/T3a7OKnNwoDxW3+cnPOcZGh987ojP5R093WmJ6bHQa9Orv5s84CQJLnzvOTfDktO+n6y6ojO9MbsdNvZyTnPTAbve+B4z8rkhO8kXb3J2U9LttzZ+d5Kd/K47yXn/WGypfkPc5jQBW+Y/Jprv5QsPyg54p07djYA7XHzD5KzTmk8v/ro5JiP1Q9GS5IbTksOncLHBwAAAACAOaI20w0AAAAAAAALU2+teYBR92x80SUwq010X0mS7uLeAgAA02inMW/f2oHzxp6xqgPnwfy23wuTnY+vP7fu8uSKf+xsP60YGUrOf/nEoWjHfybZ/6Wd6Ynps/qo5PE/StaemHQva1676abk16/rSFvMUtVIcv7Ltg9FS0bHzn9Z8stXdC4UrbZ49NG9NFl7QnLSmckeT06edH6yx9OarGvj1yv/613JPRe3b38ApmZkcPTjVDNP+GmyZG2yeJf68xf+2bS3BQAAAAAwm3TPdAMAAAAAAMDCNFGAUY/wImCS+romCFwsPSmldKgbAABYEBaNebsTP6h17BmLO3AezG+llhz90eSHj6g//1/vSvb7w2Txzh1tq6m7fpVsvLF5zc6PSA58RWf6YfqtPSE5+Wejb//+k8l/Ngk/u+Pnyabbkt5dO9Mbs8vdFyb91zae77+uY63k+M80vu8sPyg58YzGawc3JN/cKamG2tPb9d9MdnpYe/YGYGruODfZfFvj+d1PSXpWjL69/ODGIZ+eBwEAAAAA85hgNAAAAAAAYEZMFGDUUxY1nQcYT+AiAAB03MYxb6/pwHljz9jYsApo3S7HJ/u9KLn2S9vPDdyTXPLO5NiPd76v8fpvSG78TnLxWyeuXfvY9vdDZ7Tyd3ndV5ND/6z9vdA+g+uTG05L7vp1cs+FSe/uyZLdJ153xSfa31urdnn01Nf2LEuO/UTyq1dPXz9jrbu8PfsCMDUbb0wueH3zmrHPgXY6MrnzvPp19/wm6X1K4336r0tu/G4y1J/s+QfJqiMm3y8AAAAAwAwRjAYAAAAAAMyIiQKMugUYAZMkcBEAADru1jFv79uB88aecVsHzoOF4cgPjoYSDdfJG7zyn5KDX5OsOqzzfd3v7guSnz052XLXxLWLd04O/pP290RnrDoi2euZyY2nN6658M+T7r7koFd1ri+mz+Y7k589MbnnopnuZOr2fl6y8tAd2+OAP0pu+E5yy/enp6exbvhWMjyQdPnaKMCMu+ei5KdPSrbc0bimd4/Rjwv3e/Cbkiv+sX7tWackz70rWbx6+7m7fj161uC9o9eXvD151JeTfV8w9f4BAAAAADqoNtMNAAAAAAAAC9NEAUaC0YDJWiJwEQAAOu2qrb+WJPuWUg5q10GllAOT7FfnbGBH9e2ZPOQt9eeq4dHgqarqbE9jXfxXrYWiHfSq5InnJcsOaH9PdM5jvpE87P3Nay78i2SovzP9ML2u+MeZCUVbdcSOP9aemDzsb5JHf3XH+6l1J4/9ZnLEuyfuc+Xh268/4OVJafLSkJu+u+M9ArDjLn5781C0JHnyL5PeXbddL9s/6VnVuP7Kf64//pu/2BaKlow+r//1a5OR4db7BQAAAACYQd0z3QAAAAAAALAw9U4QYNRTW9ShToD5os99BQAAOu3iJANJ7k8hfkaSj7TprGeNeXswyQykqMA89uC/SK76TLLx+u3nbv1RctMZyV7P6Hxfw1tGz5/IYW9PHvbe9vdD59V6ksPeLnWOnAAAIABJREFUltx7WXLdV+rXDK1Pbv95ssdTOtsbO+7m73X+zINenRz3T50/dyLdfckRfz36mIoD/ij58WPrz930vWSf5029NwB23MhgcsuZzWsOf2fSt9f243s8Jbnua/XX3PS95LC3PnBsaFNy+znb1w7cndz2k2T3J7XWMwAAAADADGryY4EAAAAAAADap7drggCj0tN0HmC8ie4r3e4rAAAwraqqGkhydpKy9fGXpZTmT8ynYOueb0pSbX2cs/VsYLp09yZH/W3j+XOemWy5q3P9JMn130h+9JikGpm4VrjD/DfR3/FZpyS//bvRIBBmp4F7k0vfl5z19OSnTxp93PWrzvex+5M7f2YnrD668dw1n+9cHwDUd89FSTXUvKbR851mH7vu/MX2Y8NNng/d99vmPQAAAAAAzBKC0QAAAAAAgBnRV5sowGhRhzoB5ouJ7isCFwEAoC2+uvXXKsmaJE2Slabsg0nWZjR8LUm+0oYzgH1OTdY8pvH8t3ZJhvo708sl70r+49Tk7v+cuHavZzXvm/lhn1OTnY9vXnPRXyY/fUIyMtiZnmjd4LrRoMNL3pHc/L3k1h+NPjpt7YnJnk/r/Lmd0N2brDy88fxlH+xcLwA80MB9yZnHNa/Z+znJLo+sP7fPqc3X3nPx1PoCAAAAAJjFume6AQAAAAAAYGHqFWAETLPeLoGLAAAwA76S5P1JdstocNmflFJuqqrqA9OxeSnlLUlel9HgtZLktghGg/YoJTn6o8kPjsnou1wd1309OfCP2tvHwD3J5R+auO6AlyVrTkj2f8lo78xv3b3JE36W/Gtf87o7z0tuOmM0XITZ49qvJPddNvl1i1Ynu57UvGZw3fYha7s9MelZse26qy9Z86jkgJcntXn8vYeHfyT52ZPqz13y9uSQ1yU9yzvbEwDJtV9qPv+Izyb7vbjxc9ruvuSplyT//tD68xe9OTnpB9uuq6Gp9QkAAAAAMIsIRgMAAAAAAGbERAFGPQKMgEkSuAgAAJ1XVdVAKeWtST6XbeFl7y2lPDTJa6qqumcq+5ZSViX5ZJIXjNm3SvK2qqoGpqN3oI7VDx8NDrr6X+rP3/az9gej3XFeMry5ec1uJ48GSLCwdPcmR34wuegtzetu/algtNnm1p9Mbd0pFyVL957eXuaz5Qc3nquGk7v/c+KgOQCmX7OPg7ueNBr4O5EVh2bbp8Xj9F//wOsRwWgAAAAAwNxXm+kGAAAAAACAhalvggCj7poAI2ByJrqv9NQELgIAQDtUVfWFJKdn26u0S5LnJ7milPK3pZQmKR0PVEo5qJTyt0muyGgoWrn/mCRnVFX1uensHajjYe9vPHftl5KL/yoZ3jK9Z/Zfl5z30uR7hyZn/8HE9Xs9a3rPZ+7Y8xkT11zxieQrJTnjQcndF7a/Jx5o7Pvz6fuNPm745uT32enhQtEma+m+yaqHNp4/51nJ0MbO9QOw0N3yw+Sspyc3frtxTavPa2s9qRuKliTrLk+u+9dt11WzYLQGewAAAAAAzDLdM90AAAAAAACwMPV2TRBgVAQYAZPT29XXdL67CFwEAIA2enGSnyY5JtvC0VYneWOSN5ZSbknyqySXJ7l36yNJViZZleTBSY5LssfW8bGBaCXJBUle1PbfBZD07pbsc2py/b/Wn7/sA8k9lyQnnjE9522+MznzEcnmW1ur3/Xxyf4vnZ6zmXtWPjg54I+Sq/9l4tr1v09+cHTy1EuSVUe0vzcm//7cSM+q5OiPTk9PC0kpydEfS35yYv35wXXJz56SnHz2aC0A7XPzD5Kzn5ZUw83rDnh563s+8ovJeS+uP3fuC5KRgWT/FyUjg63vCQAAAAAwSwlGAwAAAAAAZkRfbaJgNAFGwOR0le4sLkuypdpcd17gIgAAtE9VVRtKKU9I8rkkz85ooFmyLeBsjyTP3PpoZGxCx9j1pyd5aVVVG6atYaC5g1/TOBgtSW7+XnLvZcmqw3b8rGu+0HqI0gnfTXZ/ctLlc/wF7fjPtBaMdr/ffzw57p/b1w/bTOb9OUnWnpjs8sikGkr6r0+WrElWPTTZ45Skb6+2tTmv7fq40T/X28+qP3/Hz5M7z0/WPLKTXQEsPJd/eOJQtJN/nvQsb33PvZ7RfP6/PzYajFYNtb4nAAAAAMAsJRgNAAAAAACYEYtrvSkpqf7f65wfSIARMBW9XUuzZahRMJrARQAAaKeqqtYneW4p5c+TvDdJX7LdJ/5lu4Vbl4+rLUk2JXlnVVUfnu5egQmseNDENXeeNz3BaHee21rdUR9O9nr6jp/H3FdKsvro5O4LWqu/8lOC0Trlzl9Mrv4x30iW7NKeXhay3Z/YOBgtGb1/C0YDaI9q66e1E35MLJN/Lt2zIundPdl0S/35ey4c/XVEMBoAAAAAMPfVZroBAAAAAABgYaqVWpbU+hrOdwswAqagt+l9ReAiAAB0QlVV/yvJvknen+TejIac3f+oGjzG1ty7de2+QtFghvTunqx5bPOaX70yuegtycjw1M4YuC859w+TG05robgk+zxvaucwP+1z6uTqN97Ynj7Y5vpvJDd8q/X6XZ8gFK1d9n5+8/nfvDG55K+TaqQz/QAsBAP3Jb94UfKtnZOv1pLhTc3rd39ysminyZ+zzwsaz1Vbn5dXg01q6v/QMgAAAACA2UYwGgAAAAAAMGP6upY2nOupCTACJq+31uy+InARAAA6paqqu6qqekeS3ZKckOQdSX6Q5NIkNyfZsvVxy9axM5P8dZLHJdm9qqp3VFV150z0Dmx13KeSpfs1r/nth5KL3jy1/c95ZnLdVyauK13Jcf+cLN13aucwPx3yp8mez2i9/rsHJSND7etnobvlh8l/TCKsbtmBybH/2L5+FroVBydH/0Pzmkvfm1zyzs70A7AQnPOM5NovJwP3TFy7/JDkmI9P7ZzD39F8vqo85wEAAAAA5oXumW4AAAAAAABYuJoGGBUBRsDk9TYLXCwCFwEAoNOqqhpM8h9bH8BcsvLQ5A9+m5x1SnL72Y3rrvp08rD3J12LW9/73sua75kkB/1JstvJyZpHJb27t743C0N3X3LCt5P7LkvuvTTpvy65+K2N60e2JLecmez5B53rcSG54p+azx/06mSXR4y+veyAZOfjkq4l7e9rIXvQnyYbrkz++6ONa678p+SIdyW1ro61BTAvrft9cvs5rdWefE6y87FT/zi4eHXyhJ8lPzmp/nw1kowMTm1vAAAAAIBZRDAaAAAAAAAwY5oFo3ULMAKmoK/pfUXgIgAAAExKd29yyOuah5gNrktu/E6y8rBk2YGja+43PJBsuTPp22M0pGHjjcnIQHLNF5qfW7qSIz+QLNppen4fzE+llqw6YvQxMpxc9oFkaH3j+uu+nuxxSjK8Odlwdf2anpWj/6ZTjV737Z0sWjntrc8bg+uS/uuTG7/duKZ0JUf+jffnmbDrE5oHo225M+m/Jll+UOd6ApiPrvtaa3VrHpusfeyOn1dr9n30kaQa2vEzAAAAAABmmGA0AAAAAABgxvR1NQ4w6hFgBExBb9P7isBFAAAAmLQ9njZxzbn/Y/TXWk9ywMuTo/8hufTdye/+VzK8afJn7vl0IUpMTq0r2e+FyZX/3Ljm2i+OPiaj1EbfBx71xaRnxY71OJ8Mrk/Oe0ly03dHQw+b2fNp3p9nyu5PShavSbbc0bjmjIOTo/4+OfTPk1I61xvAfLL5ttbq9n/x9JxXao3nfvy45EFvaLK4mp4eAAAAAADarMlXQgEAAAAAANqrt9YkwKjpT7oGqK/pfUXgIgAAAExed2/ypPNaqx0ZTK78VHL63sllH5haKNraxyXHfXry6+CoDye7PWl696xGRsO/fvXq6d13rvv1a5IbvzNxKNriNclxn+lMT2yva3Fy0veTvr2b1/3mjaP/zgFon+7lyYGvmKbNmrwc8M7ztoUW11MNTVMPAAAAAADtJRgNAAAAAACYMb1dfQ3nugUYAVPQ1yVwEQAAAKbdLo+YXP3m26d2zv4vSU4+K1myy9TWs7D1LEsef2by0PdO/943fCsZXDf9+85FQ/3J9d9orfaZ13l/nmmrjx79e1i8c/O6qz/XkXYAFqwTvp2UaXoZ347sMzI4PT0AAAAAALRZ90w3AAAAAAAALFy9tcYBRoLRgKlwXwEAAIA22f8lyTVfaO8Zezy1vfuzMOz2xOSSd0zvniODyUVvS9Y8KhkZSEp30t3gB3/UFiWrj016d53eHmbawH3JXb9Mbv/56J/BRJYfknT3tr8vJlZKss//SK74ROOaG09Pqmq0FoDJmfDjYklWHt7ydvcN3Z3rN1+VoWpou7me0pMDqi1p/OPHJjCy/Z4AAAAAALORYDQAAAAAAGDG9DUJMOopizrYCTBf9HW5rwAAAEBbHPjK9gajLVmb7PmM9u3PwrHzccmqhyX3Xjy9+17xiebBUuMd/s7kiHfOj6Cpq7+Q/OqPRwPiWnXQq9rXD5N34CuSK/8xqUYaFFTJ2c9IHvP1xqF/ANQ3cHfz+b2f01Jg6kg1ktPv/GJ+dPe3m9aVJM9ee2BOvv2qSTS5VTWJj+UAAAAAADOoNtMNAAAAAAAAC1dv0wCjng52AswXS2qNX7TnvgIAAAA7YO1jksd8Y/r3LV3JLo9KTv550t07/fuz8JSSnHRmsvspM9vHpe9ObvvJzPYwHTZcm5z/stZD0ZasTY54V3Lo/2xjU0za6qOSE85oXnPz95LL/64z/QDMJ/+XvfuOk7uq9z/+OrM7m2TT66YHAqGEFjqEIh0RRRQVudeuV8Verlgv9nrVawWx+1NRwQIoKCJdOtISWgokIWUT0nu2nd8f3113Q+Y7OzM7M7ubvJ6PxzzmO+dzvud8Astk2f1+37Ojm2C0439R0DJztzzYbSgaQAT+OOVgFgweVdC6Oykm5FSSJEmSJEmSepHBaJIkSZIkSZIkqdcMyuQJRsvUVbETSbuL+jzvK7W+r0iSJEmS1DNTXwX/EeHC7fDqDfDK56GuhECGDideBa/eCGfdBcP2K1+f0qAGOPUGOOfR/PMGNsC4F1Wuj0VXVm7tallyNUkESzfGHA8XrIZXNMIhn04C6tS3THoJvGZL/jmLf1edXiRpd7Lj+fRa/VSoTf/dVVf3b7y9qG3njBhf1HwA2lqKP0eSJEmSJEmSekFtbzdQjBDCLe2HEbgoxriqxHUagN90rBVjPL0c/UmSJEmSJEmSpOLU1+QJMArZKnYiaXcxKM/7Stb3FUmSJEmSyqNmQPLIAhPPhUW/LH6NzACY8GKorS97e9K/DT8QBoyBHatz1yeeA5POg1XFBZEU7JmfwdAcoX+DxsP4M6B+cmX2LadC/9lMfAkMGF3ZXtRztfUw4hBYPyd3ffMCaGuFTE11+5Kk/iq2weZn0uuHfKbgpVbsWFLU1huzA4qaD0BsLv4cSZIkSZIkSeoF/SoYDTiFzo+bGtiDdQa2rwUFfXyVJEmSJEmSJEmqhEGZ9ACjulBXxU4k7S7q87yvZH1fkSRJkiSp/PZ7Nyz5HbQ1FXfejIshO7QyPUkdMlnY730w59IctTqY8S4YOQuGzoBN8yvTw6Mfzz1eUw8nXg2TXlKZfcvh+Xtg+fXdz8uOgOlvrnw/Ko8DPgT3pvz7amuGbUth8LTq9iRJ/dW25dC6Lb0+7TUFLdMaW1nVtKKorZtDCSGWbS3FnyNJkiRJkiRJvSDT2w2UIPR2A5IkSZIkSZIkqTzG101hYKZ+l/FRtWMZUjO8FzqS1N8NqRnOmGzDLuMDwkDG103phY4kSZIkSdrNjTkWTrsJJpwNA8ZC3cjkkckTUH7oF+CIb1SvR+3ZDv4UHPF/MOqo5GtzwNjk6/W0f8Doo5PwtDPvgr3fAEOmw/gz4ejLYPL5le2rdSvc/7YkiKovihEeuDj/nEETkn9OZ90D9ZOq05d6bvqb4Kjvp9c3P1O1ViSp31s/N732krlQm/6BPl2tbm6kldyhZTXU5hxvyZRwW2Dso993SJIkSZIkSdIL5P7JqCRJkiRJkiRJUhVkM1lOH3ke16/57U7jZ416JSH4WSmSihdC4KxRr+TKlZfvNH7aqJeRzWR7qStJkiRJknZz405OHlJfFAIc8IHkkWbgWDj+FzuPzbgYHv8SPPrJ/OtfsBpatsK1U4vvbdsKWH0fjDux+HMrbcuzsP7R9PqpN8KEs6rXj8prv3fBnEthx5pda5ufgYZTq9+TJPU3McLjX8hdGzAaRhxU8FIrdjyXczwQOGnE2dy2/vpdas2hpuD1/60td/iaJEmSJEmSJPU1e2owWtc/tz/RlSRJkiRJkiSpF71k9IWMzI7hkU33kgkZjhn2Io4YekJvtyWpHztxxNkMrhnKAxvvoCk2cfiQ45k9/IzebkuSJEmSJEn9zeTz8wejDZ8JdaOgbiQMmZ4EShXrqW/A2BOSALe+ZOO8PMUAo4+uWiuqkCH75A5Ge/xLsPebIFNC4I4k7UmWXAXP35W7Nvq4opZqbFqae5nsOOprhuSsNWcyRe0BQFtz8edIkiRJkiRJUi/YU4PRxnQ53tJrXUiSJEmSJEmSJEIIzB5+hqFFksrq8KGzOXzo7N5uQ5IkSZIkSf3Z8Jkw9TVJ8MkLhQwcfGl7oFlIju99U/F7LL0GHnwPHP39nnZbXpsWpNdmfiwJg1P/NmQ6rLl/1/HNz8Bdr4ETr06+ziVJu2rZBg9fkl7f791FLbeyaVnO8fF1U6gN2dwtlBJgGVuKP0eSJEmSJEmSesGeGox2cvtzBJb3ZiOSJEmSJEmSJEmSJEmSJEmSpD5q9pUw5nhovAka/wEDG2DcKbD362HCmZ3zpr8RBo6DRb/OHSq25r70PeZflgSoDJ9Z9vZLtml+eu2wL1avD1XOkOnptef+CCtvhfGnV68fSepPnvsjbF2SuzbhbJjw4qKWa2xamnN8fN1ksqEuZ62llPDKtubiz5EkSZIkSZKkXtCfg9FiMZNDCFlgAnAW8MkupTnlbEqSJEmSJEmSJEmSJEmSJEmStJvI1MABH0ge3Zl4TvLI5bFLYe7n089d/te+FYy2OUe4G8A+b4UQqtuLKiNfMBrA8hsMRpOkNCtvyT0eauDwbxT1d2WMkZVpwWgDJtOSEmbWnCkhGC22FH+OJEmSJEmSJPWCEn4CWlkhhNa0R9dpwKJ8c3Ocux14FrgCGNZlreuq+MeTJEmSJEmSJEmSJEmSJEndCCEcGUJ4VQjhZSGEfXu7H0mSemxCSmBah4f/G/5xCjz0YdiyuCot5bXixtzjQ2dUtw9VzvgzSW7NSPHUN6vWiiT1O6vuyD2+1+tgxEFFLbW+ZQ3b27blrDXUTSabqctZaw41Re0DQErImiRJkiRJkiT1NX0uGI3kN2tpj0LndfeI7Ws8Bfy+cn8USZIkSZIkSZIkSZIkSZL2XCGEgSGE6V0eee/cDiGcF0JYBNwP/A64Bng6hPDPEMLMKrQsSVJljDkOpr02/5xVtydhVDceB5sXVaWtnDY8BbE1d22IeaW7jcFT4cCP5J/z1Leq04sk9SfbGmHzgty10UcXvVxj09LU2oS6ydSGbM5aS6aE2wJjS/HnSJIkSZIkSVIv6IvBaNAZXFYpAXgQeGmM0Y+6kCRJkiRJkiRJkiRJkiSpMj4MzG9/3Aq0pU0MIbwG+CMwhV0/EHU2cF8I4chKNyxJUkWEALN/DaOP7X7u9kaYf3nle0rz2P+k14bOqF4fqrzDvwp7vyG9/vgXoHVH9fqRpP5g3nfTayX8PZkWjDasZgT1NUPIhrqc9eb8ueO5tXkbnSRJkiRJkqT+oba3G8jhDtKD0V7U/hxJPg1ye4FrRmAHsB54Erg1xnhnT5qUJEmSJEmSJEmSJEmSJEndOp8k2CwCP4kx5rw+MIQwEriC5ANfY/sjtJc7zhkM/DGEsH+MsdDrByVJ6jtCBg7+FNz+su7nrrqt4u2k2vR0em3oPtXrQ9Wx//vh2f+Xu7ZjDWx4HEYdUd2eJKkvW31vem3ofkUvlxaM1lA3GYBsyOasN2cyRe9F09riz5EkSZIkSZKkXtDngtFijKek1UIIbXRe4HRhjHFJVZqSJEmSJEmSJEmSJEmSJElFCSEMAmbRed3fX/JMfy8wnM5AtGXAH4EW4JXAtPZ5k4H3AV+rQMuSJFVew6mQHQbNG/PPW3M/3PlqOPoyGDi2Or0BxDZYPye9Xju4er2oOkbOgvopsPW53PXNCw1Gk6QOLVth5S3p9cHT0mspGnfkDkYbPyAJRqvN1OVuJVOzU6J4QdbPgRghFHWWJEmSJEmSJFVdCR8N0ev8yaskSZIkSZIkSZIkSZIkSX3fIUANyXV/W2KMD+WZ+zo6Q9GeBg6OMb4/xvjh9nUeaJ8XgDdVrGNJkiqtdjAc/QPIZLuf+9zv4aYTobWp8n11eOZn6bVjf1q9PlQ9IQPH/ji9vmlh9XqRpL7u1rPTawd9oqTAsZVNKcFode3BaCH9e4aWkOPWwEkvy79hvr/rJUmSJEmSJKmP6G/BaJ9tf3wOWN/LvUiSJEmSJEmSJEmSJEmSpHR7tz9H4Im0SSGEA4B9u8y9NMa4oaMeY9wMvLfLKfuHEKaUuVdJkqpnr4vg3CeTgLR935l/7qZ5sPwv1ekL4PEvpdemnF+9PlRdE86CEYfmrm02GE2SAFj3GDz/z/T63m8oesmtrZvZ2Jr7FrmOYLRsnmC05kyOWwNP+hOceHX6po98rKgeJUmSJEmSJKk31PZ2A8WIMX62t3uQJEmSJEmSJEmSJEmSJEkFaehyvCLPvJPanwOwCfjTCyfEGO8PISwFJrcPHQo8V44mJUnqFUP3SR4xwuIroXlj+tz5P4DJr0jm1AyAUANtzdDWBLVDoGULSbboCwXIDoMQuu8ntkHzBtj8TO56pg7qRhbyJ1N/Ne5FsP6xXcc3Pg1N6yEzAGoHlXfPtmYItYV9jUpSb1tzb3otUweD906vp2hsWppa6wxGq0ud0xxqgJYX9FIDU18FA8fB9lW7nrRjNWx/HgaOLbpfSZIkSZIkSaqWfhWMJkmSJEmSJEmSJEmSJEmS+o36Lseb8sw7of05AjfHGFtS5s2lMxhtag97kySpbwgBpl4IC3+UPqfxJvhNprT16yfD/h+EAz6YO3yqdQf86/2w+HfQvD59nRGHlLa/+o8h++Qef/5O+P3IJJBv1NFw7I9gxME922vbCrj3LbDyVhgwGvZ/Hxx4iQFpkvq2lben16ZcADXpAWZp0oLRBmYGMaJ2NADZkE09vyWT5/uDcS+CJVfnKER48utw+FeLaVWSJEmSJEmSqqrE345KkiRJkiRJkiRJkiRJkiTl1TXZIv1Obpjd5fjOPPPWdDkeVlJHkiT1RYd9qXJrb10KD38Ynvlp7voDF8OCK/KHogEc/8vy96a+ZWhKMFqH2Apr7oWbToSmbr5e8q4T4ZYzYMXfoG0HbFsOj3wM5l9e+pqSVGltrbD4yvT6Ed8oadnGHbmD0RrqJhPawyJrM+mBa82hJn3xY65Irz35NdixtqAeJUmSJEmSJKk3GIwmSZIkSZIkSZIkSZIkSZIqYVOX44ZcE0II44F9uwzdnWe92q6n9qAvSZL6loFjYPpbKrvH/B/sOta8ERblCXnpUFMPww4of0/qW4Z0E4zWoXkDLLmq9H2e/ydseGLX8QV5AnwkqbetvDm9dtAnYNCEkpZtbEoLRpv07+NsSM8Zb87kuTWwbiTMeHd6ffFvuu1PkiRJkiRJknpLbfdT+q4QwqnAacDhwDhgOPk/VTKXGGMs8Dd4kiRJkiRJkiRJkiRJkiSpQMvanwNwSMqcl3Q53gE8lGe9EV2Ot/SgL0mS+p5pF8IzP63c+msfhOfvgVDTObbmPmjb0f25Iw6BYCbpbm/IdKgZBK3bup+79uHS91ny+9zj6x+D1iaoqSt9bUmqlHV53vdGHFryso1Nz+UcH183+d/H2ZD+vtiSqUmtATDpXJj//dy1dY90258kSZIkSZIk9ZZ+GYwWQjgb+A47f0pkqb9pjT3vSJIkSZIkSZIkSZIkSZIkvcBjXY5HhRDOjjHe+II5b25/jsD9McbmPOtN73LcWI4GJUnqMxpOg/rJsHVp5fa4aXZp501/U1nbUB9VMwCmvRae+Vn3cxf8AI65vLR9NjyeXtuyCIbtV9q6klQpLVvgkY+l1ye9rKRlm9uaWNO8KmetazBabUi//a85ZPJvMv7M9NrCH8OxP8p/viRJkiRJkiT1km5++tn3hBA+AtxAEorWNQwtlvCQJEmSJEmSJEmSJEmSJEkVEGNcCMwnuV4vAJeFEPbuqIcQPgyc0OWUa9PWCiEMYecPU11Y3m4lSeplmVo49UaoHdLbnXTKDICZH4V9397bnahajvwOTHkldBe0A7DhiRI3aUsvbVpQ4pqSVEEPX5JeG3M81NaXtOzKpuXElNvbJgyY8u/jTKihhtzhaM2ZmvybZGphxsXp9XWPdNunJEmSJEmSJPWG9I+M6INCCGcDX21/2RFu1hGOthVYD+T7tEhJkiRJkiRJkiRJkiRJklQ9Pya57i8CewNPhRAeBcYBU+i8DnA78Ks865xC5/WCLcDjFepXkqTeM3wmvGYTbF0KW5fD348tfo1zHoa/Ht6zPoZMh5P+BMP2g5qBPVtL/Ut2CJz0B2jaAFuehaV/hjmX5p777C9h1peL32Pr0vTaZoPRJPUxba2wKM//qk59TclLNzblfj+soZYx2YadxrKZLK1tLbvMbSkkyHLSeTD/8ty1Z34BR87qfg1JkiRJkiRJqrICfvrZp3yl/bnjQqilwHuAvWKMQ2KMk2OMexf76LU/jSRJkiRJkiRJkiRJkiRJu7dvA0+1H0cgCxwJTKUz6CwC34wxPp9nnVd0mftojHFHBXqVJKlvqJ8Mo4+G+inFnTf55TByFkx4cc/2n/5mGHmooWh7srr+2Xo0AAAgAElEQVThydfS9Delz3niK7D+cYhtnWNtzfD8PbDydmjN8e1aWwtsyhN+tvDH0LKt5LYlqey2PgfNG9PrI0sPI21sei7n+Ni68dSE2p3GakNdzrnNmQJuDRx5WHrt6W8lYZiSJEmSJEmS1Mf0m2C0EMI+wGEkFzUB3AccHGO8LMa4pPc6kyRJkiRJkiRJkiRJkiRJucQYm4CzScLROoLQAp3XAgbgj8Cn09YIIQwBLuhyzs0VaVaSpL4kBJjxruLO2fedyfOMi0vft2YQ7P3G0s/X7mVwN+F8NxwMd5wPLVtgyxK4/mC4aTbcfApcNz0JTutq7b/o/JYuh/Vz4M8zYN1jPe1cknqurRVue0l6vX4qjDup5OUbm5bmHB9fN3mXsWzI5pzbEmq632jQhPz1a6bA8hu7X0eSJEmSJEmSqqjfBKMBx7c/d1wQ9YYY46Ze7EeSJEmSJEmSJEmSJEmSJHUjxvgcMAu4GPgr8ATwJEkg2qtijK+OMbblWeJNwDCS6wcDcH1FG5Ykqa+Y+VE49PNQv2tAyr+FGhh2IMy+Eia+OBmbfB4c9wsYtn/he4UaGH0MnH5b92FY2rMc+5P89WV/hqe/A/e/HTbN6xzfthzuvmjnuf98Tff7bVsG97wBYp4ANUmqhmXXwsYn0+tn3w+h9FvzVjYtyzk+vm7Xv4ezoS7n3OZMgfvP/k16rWVT8n7dsq2wtSRJkiRJkiSpCmp7u4EijGt/jsDDMcb5vdmMJEmSJEmSJEmSJEmSJEkqTIyxGbii/VGsnwC/7LLWhnL1JUlSnxYCHPwpOOiT0LYDagbCv7NEQ1KPbblDWaa/IXm0bu9yTr69aqEmd+iK9nAjZ3U/Z+GPYfMzu46vnwObn4UheydBZ1uXFLbn+keTkLViwv0kqdwW/za9NvYkGNRQ8tJtsTU9GG3AroGotSGbc25zpqawDUcemr/etA4ab0rCVSVJkiRJkiSpD+hPwWihy/GCXutCkiRJkiRJkiRJkiRJkiRVTYxxG7Ctt/uQJKnXhJCEosGuIWi5QtG66jhPKtWwAyE7HJrzZNPmCkXr8MhHYfjBUDOouH3XPZI7GK1lG6y4EbY8mwQTjT6quHUlqRDNm2DJ1en1Mcf3aPk1zatoic05a+Prdg1Gy2Zyh5e2dPd9QIch+8KA0bBjTfqcjU8BBqNJkiRJkiRJ6hsK/Olnn9D1YzAK/DgLSZIkSZIkSZIkSZIkSZIkSZIklaR2EOz33tLPX3I1zPk0PHJJcefd9dpdA3y2r4Z/vAjufAU89CG48Wh47DOl9yZJuWxdCjcem3/Ovm/v0RaNTUtTaw11k3YZy4ZszrnNmQJvsaupg/0/mH/OIx8tbC1JkiRJkiRJqoL+FIz2eJfjKb3WhSRJkiRJkiRJkiRJkiRJkiRJ0p7i0M/Bkd+B4TOru+/T39359bzvwNoHdh6b+1nYOK96PUna/T3+Zdj4ZHr92J/C0H16tEVaMNqo2rEMyAzcZbw2LRgtFHFr4EGfgKMvzz9n87OFrydJkiRJkiRJFdRvgtFijHOAuUAAjgwhjOzlliRJkiRJkiRJkiRJkiRJUolCCJNDCCeHEM4PIbw+hPCG3u5JkiRJOYQA+78Xzn0cBoyu3r5L//SC19ekzLu28r1I2nOkvdd0mHJ+j7dIC0YbXzc553g21OUcb8nUFL5pCDDjnUnQZRrfTyVJkiRJkiT1Ef0mGK3dN9qfa4AP92YjkiRJkiRJkiRJkiRJkiSpOCGEaSGEb4UQngEWA7cCfwB+Dvws5ZyTQgiXtj/eW71uJUmStItxp1Zvr/WPwWOfhvWPw4Ifw/o5uec9/oXq9SRp99a8EbYtT6+POAzqRvZ4m8YdKcFoA3IHo9WGbM7x5kwJtwY25Hkf3zS/+PUkSZIkSZIkqQL6VTBajPEXJBdABeCSEMI5vdySJEmSJEmSJEmSJEmSJEnqRgghE0L4IjAfeC+wF8m1gF0faVYDnwE+DXwrhLBPRZuVJElSupkfLe96p9+Svz73c3DDwXD/f6XPad4Iba3l7UvSnidG+OsR+ecc8pkybBNpbEoJRqvLHYyWzaQEo4Wa4hsYcXB6bdOC4teTJEmSJEmSpAroV8Fo7d4IXAfUAteGED4XQhjRyz1JkiRJkiRJkiRJkiRJkqQcQghZ4G/Ax0iu/XuhmO/8GOOTwK10hqf9R1kblCRJUuFGHwUvmVPG9Y6Bly/p+TqNf+/5GpL2bM/fBZsXptfPuB2mnN/jbTa2rmdb25actYa0YLRQl3O8JVPirYGzvpp7fP2j0Lq9tDUlSZIkSZIkqYxyXWDUZ4UQLm0/fBSYDYwBPgl8KIRwD/AEsA5oK2bdGOPnytmnJEmSJEmSJEmSJEmSJEn6t58AZ5AEoEWSgLM7ScLOmoAvFLDGH4BT24/PAj5f/jYlSZJUkBEHw7D9YePTPVsnk4Waeqivh+wwaN5Y+lrL/wYTz+lZP5L2bCtuTK8NOwDGnVyWbRqblqbWxqcEo9WGbM7x5lBTWhPD9s89vn0lPP0dmHlJaetKkiRJkiRJUpn0q2A04DPs/MmQHRdI1QOntT9KYTCaJEmSJEmSJEmSJEmSJEllFkI4HXgdndf7LQD+I8b4YHt9GoUFo10PfK99jaNDCANjjNsr07UkSZK6NfHcngej1Y2EEJLj7IieBaPN+07yGDmL5FtGIFMHo4+GAy+BwVN61quk3d/T306vTTw376mLts3njvU3sGzH4m632dK6Kef44JqhDK0dnrOWDXU5x5szmW73y2nsSRBqIbbsWnvko9CyBQ75NIQS15ckSZIkSZKkHupvwWi5xO6npAo9PF+SJEmSJEmSJEmSJEmSJKX7dPtzABYDs2OMq4tdJMa4OISwHhgBZIEDgEfK1qUkSZKKc8AHYdlfYNO80teoG9l5fMwP4bYX97yvdS/4FnHNffDcH+HsB6B+Ys/Xl7R7euYX0JI7sAxI3vNSLNz2FN957lKaY1OPWhhfNzm1ls1kc46XHIw2YBTs81ZYcEXu+tzPwY7n4ejLSltfkiRJkiRJknqoP35sQyjjQ5IkSZIkSZIkSZIkSZIkVUAIYRQwm+QDTCPw/lJC0bp4osvxfj3pTZIkST1UPxnOuicJNJv+FqgZVMIiXW5pGX9G2VrbxbblsPAnlVtfUv8WI8z9fHp91tegflJq+aa1f+xxKBrkD0arDXU5x1tCTekbHvo5yA5Lry/4IWxbUfr6kiRJkiRJktQDtb3dQJFO7e0GJEmSJEmSJEmSJEmSJElSQU6kM+1iVYzxuh6u1zVUbVwP15IkSVJPDRgF+/5X8jjmCrhqMLQVEQ40bP/O40wNDJ0Bm+aXv0+A5++szLqS+r9ty2HzwvT66GNSSzFG5m+dW5Y2xtdNSa1lQzbneHMmk3O8IAPHwUGfgkcuyV2PrbD6HpjyytL3kCRJkiRJkqQS9atgtBjj7b3dgyRJkiRJkiRJkiRJkiRJKsiE9ucIPFiG9TZ1OR5ShvUkSZJULplamPxyWHL1zuMDxsKQfWDNvbueM+mlO7+un1q5YLTGm+Cq9m8ha4fAuBfBEf8H9RMrs5+k/mPj0+m1TBbGzk4tb2rdwLa2rT1uIZBh1tDjUuvZUJdzvCXU9Gzj/d8HC65ID4a78wKoGwWjj4XDvwojDunZfpIkSZIkSZJUoB58LIQkSZIkSZIkSZIkSZIkSVKqUV2O15VhvUFdjpvLsJ4kSZLKadZXYOiMztc19XDcT+GYK2DQpJ3nTnkV7PW6nccy2cr217IleWxfCUuugptmQ+v2yu4pqe+7/aXptZOuyfve1Ni0tMfbBwIXjH0To7PjUufUhtw9NGd6eGtgzQA45fr8c5rWwoq/wk0nwpYlPdtPkiRJkiRJkgpU29sNSJIkSZIkSZIkSZIkSZKk3dLGLsdDy7BeQ5fjtWVYT5IkSeU0ZDq8+CFYdQc0rYOGU6F+YlI7dy6svA22Pgejj4VRR0KmZufzB4xJX3vmR2Hzs9C8CcadBOPPgBuP6Vm/WxbDc9fAXq/t2TqS+q/mjdC6LXetfgpMekne01c2Lcs5PjBTz7mjL+x2+4GZevatn0lD3aS887KZupzjLaEm53hRhu0P098Mz/ws/7zmjcmcQz7d8z0lSZIkSZIkqRsGo0mSJEmSJEmSJEmSJEmSpEp4vsvxjJ4sFEKoAQ7vMrSiJ+tJkiSpQrJDcgcJ1Y2AKefnP3faa2HRr3Ydr58Cs76y6/iR34Z/vb+0Pjssvx6mXQghQMtWaFrfWcvUwoCxSU3S7mn93PTauBd1e/rKpqU5xyfWTeX0US8vtatdZEM253hzJlOeDUYf030wGsCa+8uznwoTI7RuTf5+qhsBmSy0bIGa+uTvptbtEGqTv68kSZIkSZKk3Yw/9ZIk9Q3P3w3zvpd82tLUVycXNoQy/ZJOkiRJkiRJkiRJkiRJvWFO+3MA9g8hTI4x5r5rvHvnAPXtxxG4t6fNSZIkqY8ZfwYMGA071uw8Pu2i3POnvhoe+hDE1tL3XPQrWPxbiC1JuExs2bk+aBIc9gWY/qbS95DUdz1/Z3pt79d3e/rKpmU5xxsGTCq1o5xqQ13O8bIFo025AP71Pmhrzj9v+Q0w7zLY713l2VfpFvwQ7n9H7lqmDtqakufMAJj+Rjjim0lwmiRJkiRJkrSb6PeJMyGEbAjh5BDCJ0MIPw0hXBNCuDmEcHNv9yZJKtCyv8BNJ8Di38DSa+Du/4RHP9HbXUmSJEmSJEmSJEmSJKkHYoxPAh13iQfgw6WsE0LIAB0Xk0Tg0Rjj+p53KEmSpD6lZgCcdE0SjtZh4kvh4P/JPX/QBDjhd1AzqHNs37fD+c/BqKMK37cjDO2FoWgA25bBvW+G5TcWvp6k/iFGeORj6fXxZ3a7RGNKMNr4usmldpVTNuQOvGoJNcRybDBwLJx4NdTUdz/3wXfDkj+UY1elWXpteigaJKFoHc8tm2De9+CRj1enN0mSJEmSJKlKanu7gVKFEAYDHwTeA4x9YRly/1w3hHAR8MX2l2uBo2OMZfkZsCSpBLENHnzvruNP/m9yYcKQ6dXvSZIkSZIkSZIkSZIkSeXya+ASkuv63hNCuCHGeFORa3wJOK7L6x+VqzlJkiT1MeNOhPOXw7qHYWADDJ4GIaTPn3oBTDwnmT9kehKWBnD2/bDxKdi8MHm9+Hew6Fel97XwxzDx7NLPl9T3rHskvTbtovzvPUBT2w7WNq/KWWuom9STznaRDXU5x2MItIZAbTlujZv8crhgNax9AFbdCY99Kn3uwh8n77+qjAUl/Nhj4U9g1lchU1P+fiRJkiRJkqRe0C+D0UIIhwJXATNILpaClCC0HP4M/AAYCkwDzgT+Xu4eJUkFev4u2LJo1/HYBot+Awd/suotSZIkSZIkSZIkSZIkqWy+BryT5Jq9GuDaEMIHYow/7O7EEMIY4OvA60muEQxAI/DTyrUrSZKkXldTB2OOLXx+bT2MPWHnsRBg+IHJA5LQtJ4Eo617uPRz1f+1NcO6R6Flc/I6ZCBGct7KlBkAIw+F2sFVbVElWPHX9NqIQ7s9fVXTCmLK7WxlD0bLZFNrzaGG2thSno1qB8G4k2HUUfD4F6B1e+55jcXmne/BdqyBDY8n98gUavn1xe/TvB6e/QUM2QdCDQzbDwaOK34dSXu2pvWwfi4MOwAGjoEtz3Xe91c/BbY+B0NnwKDxha23dWnyd8mQfboNHJUkSZIk6YX6XTBaCGEmcDswjOQip46LnQoKSIsxbg4hXA28pX3oAgxGk6Tes+LG9NqiXxuMJkmSJEmSJEmSJEmS1I/FGNeGEN4H/Jzk+r6BwOUhhI8AvweWd50fQjgG2B84CzgPGELn9YGtwJtjjE3V6V6SJEm7jeEzYfSxsOa+0s7fvDD5QOgXBrBp97f0Orj7ddCyqfBzMnVw5LdgxsWV60ula94Id10Ey29In7P367pdZlXzspzjNdQyJttQanc51Ya61FpLJgNFZG4VtmE9TL0wCdrKJbbCbefCiVcnc7WrtmZ44GJY+JPq7XnfW3d+PfXVcNwvksA7ScqnrRUe+iDM+x7d3KKdmPxyOP5XkB2Su960Hu54Bay6LXk9/GA45XoYPLVcHUuSJEmS9gCZ3m6gGCGEgcBfgOFdhucAbwWmAwfSeQFUPtd2OT69bA1Kkoq3fk56beOTyadMSJIkSZIkSZIkSZIkqd+KMf4/4Avs/GGo+wCXAN/qMjUA95CEqP0HMLRjifbnj8cY/SBUSZIklebka2DcKaWff9OJ0Lq9bO2oH9i6HO58ZXGhaABtTfDAu2DNg5XpSz3z8Efyh6INHAf1k7tdpnHH0pzjY+vGUxNqS+0up2zIptaaQ01Z9/q3o78Po45Mry+/AeZ8pjJ77w6e+lZ1Q9FyWXI1PP7F3u1BUv+w8Icw77sUFIoGsPRaePQT6fX739kZigawYS7c+aqedChJkiRJ2gP1q2A04H3AXnT+3/V3gCNijD+LMS4CCv0N0610Xly1dwhhXJn7lCQVakM3wWeLf1OdPiRJkiRJkiRJkiRJklQxMcZLgTfTeZ1fx3WAHWFpHY9A5wekdrxuAt4YY/x61RqWJEnS7mfQeDjjVjjvmdLXWHFj+fpR37f4txBbSz9//uXl60Xl0dYKi67MP2ffdxS01MqmZTnHG+q6D1UrVm2+YLRMhW4PrB0MZ96df86iX1Vm791BX/ln01f6kNS3PVvCe8WiX0PMEaTWugOWXbfr+NoHYMvi4veRJEmSJO2x+lsw2nvpvBjqmhjjB2KMbcUuEmPcDCzqMnRgGXqTJBWrZQts7ubCgqU5fhAqSZIkSZIkSZIkSZKkfifG+AuS6/UuIwlI6whAC+wciNYx1gb8P+DAGOMvq9iqJEmSdmdD9obBe5d27r8+AAt+CMv/Cs2bytuXdtW8CZZdD6vugNam6uy5bSUs+X3y7/nhD/dsrWd+CjvWlKcvlce2pdCyOf+cUUcVtFRj09Kc4w11k4rtqlvZUJdaa87UlH2/f6upg5Gz0uvbVkDTusrt31+1tcL6x3q7i8SWxfD0d2Hdo1D8bZiSdnet22HlbbC6myDMXJrWwtwvJN8zLfwJrP1X8j6zbRm0bst9TuMtPWpXkiRJkrRnqe3tBgoVQpgJdPxkOAIf6eGSC4GO32RNB27v4XqSVB7Nm+CJr8Lzd8HQfeHA/4Zh+/d2V5VRyKc8bHwq+SV2Tfov8iRJkiRJkiRJkiRJktQ/xBiXAO8JIVwCnNj+mAKMBuqA1cBK4G7g5hjj+t7qVZIkSbux/d5TWujVlkVw/zuS40ET4JQb8ocGqXRrHoBbzoLm9v8lGLofnH4L1Jc/dOrflvwe7n4dtO0o35p/GAOn/A0mnl2+NVW6TfO7nzPxnG6nxBhZ1bQ8Z218BYLRajPZ1FpLyJR9v53s9x64723p9TsvgNNuhhDS5+xpHrmktzvY2b/elzxPey0c93OoGdCr7UjqI7YsgdvOgQ1PlL7GnEt3fj3pZTDzY+nzY0vpe0mSJEmS9jj9JhgN6PhNUQTmxhif6eF6XS+WGt7DtSSpPNqa4ebTYO2DyetVt8HCH8NJf4LJ50Glf2FVbVuWdD8ntsDmBTB8ZuX7kSRJkiRJkiRJkiRJUlXEGLcCf29/SJIkSdV1wAeT54U/hI1PJ8fZ4dBwGhz9fbhmCsTW/GtsWwH3vhXO+Vdle90TxQh3vqozFA1g0zx44GJ40XWV2bN5I9zzxvKGonW453Vw/jI/LLwv2LQgf33vN0CeELIO61vWsCNuz1lrqJtcSmd5ZUP6105zpqbs++1kn7dCWxM88K7c9ZW3wqrboeGUyvbRX2xaAE99s7e7yG3xb6HhdNg3T9CdpD3Hw//ds1C0XJb9GWJbngmxvPtJkiRJknZr/SkYbWyX4wI+nqNbXX9TUV+G9SSp51bc2BmK1tWdr4CB4+GE30LDi6rfV6Vsfa6weeseNRhNkiRJkiRJkiRJkiRJkiRJUnmEAAd+KHnkcuS34cH3dL/Ouodg8zMwZHp5+9vTrXsItub4EO5lf4bWpsoEjC27AVq3lnbuec/CvW+EVXfkru9YnQRHTTiz9P5UHt0Fo407uaBlVjYtS6011E0spqOC1IQaMmRoY9ewmeaQ6XxRqfeiGRfD/Mth/Zzc9SVXG4zW4bk/pNcGNsArG8u/Z4zwm0z38wCW/M5gNEnJ91NLr6nM2suvT681b6zMnpIkSZKk3VJ/CkYb2OW4HB+/MrzL8aYyrCdJPbfsz+m17Y1w8ykw9dUw9mTY581QO7hqrVXElhy/rM5l6Z9gr4sq24skSZIkSZIkSZIkSZIkSZIkAYw9ofC51+0Lww+EvV4H098EgyZ01jY8CfO+B6tugxGHJtd/r74Xhh8MB3wQxhxb7s53D6v+mV5r2Qw1o8q315YlyXX8hQTh5VI/GQZPhUnnpQejAdzxcpjxruR44FiY8GIYeVhpe6p0G5/MXx8zu6BlGpuW5hwfVjOC+pohxXZVkGyoY0fcvst4S6am88UR/1eRvQEYc0J6MNr8y+Dwr0PtoMrt3x+0NcMTX0uvF/j1VbQQYMLZsOLG7uc2/gMe+zSMOwkaTk/OlbTnaNkCy/4CS65K3rOq7YmvwfS3QNNaWHY9bH0uGd+8AGqHwIRzYPLLIDus+r1JkiRJkvqc/hSMtrrL8ZgyrNf1IzDWlGE9Seq5Z37e/ZwlVyeP+d+Hs+/r3z/o25b7l4G7WHFj8gk2/sJFkiRJkiRJkiRJkiRJkiRJUqWNnJUEV634WwGTI2x4Ah79RPI45+Hk/MVXwV0Xdk7b8ESX48dhye/gsC/BQR8ve/v9XsjkKcby7bPqn3D7S6F5Q+lrzPxY0u++74CnvwVbU66Rb90GT32j8/Wjn4CjfwD7/lfpe6s4rdth+Q3p9cnnJyGHBVjZtCzneEPdpFI6K0htJsuO1l2D0Zoz7f+9jDgMxp9esf3Z7z2w4Afp9ZtPg1P/CnUjKtdDX9ayDe58RRL2k+aAD1Vu/wP/u7BgNIC5n0ue9/kvOOYK79WR9hQ71sCtZ8Paf/ViD8/DH0an1xf9GoYfBKfdtHPYsCRJkiRpj5TvNwV9TWP7cwAO78lCIYTRQNefVC/oyXqSVDbZ4YXP3fhU/k+S6Q+aCvwFcvNG2Lqksr1IkiRJkiRJkiRJkiSpKkII2RDCySGET4YQfhpCuCaEcHMI4ebe7k2SJEn6t5OvgYM+BaOPhaEzCj/vkU9AaxM8+O7u5z76CdiaO2Bpz5YnpCe2lm+bhz5YWCja0Bkw7mQ44ptwxLdg3Ckw4RyYfSXs1/7vOTsEzn6g8L1jW/v+m0pqXSVYfFV6bdiBcGKe+gukB6NNLrargmVDXc7xlqEzYP8PwOk3Q+3giu3PiIPg0M+n19fcCwt+VLn9+7olV+UPJpv2Whh3YuX2H38GnH4rDNmn8HMW/ghW31u5niT1LfMuKywUbcorYa//hNHHpM8ZOgNqh5avt642PA5PfbMya0uSJEmS+pXa3m6gCHcDbSRhbqNDCKfFGG8pca230Plbki3Ag2XoT5J6rmZAcfOf+Aoc+rluPhGrD2vdVvjc9XNh8LTK9SJJkiRJkiRJkiRJkqSKCiEMBj4IvAcY+8IyEFPOuwj4YvvLtcDRMcaccyVJkqSyqRkAh30+eQDc80Z49v91f17jjfD8HbBjdWH7LP8r7Pu20vvcHYU8wWhtLeXZY9sKWFvA7URHfa8z/KzDAe/PPXfQeDjkszDn04X10LIFVt4Kk88rbL56Ztl16bXZv4RMtuClGpuW5hwfXzep2K4Klg25+2s++BMw4qyK7buTyefDY/+TXl92Hcz8SHV66WvyfX0B7PX6yvfQcAqctyA5bm2CqwYlIYz5LPszjD2+4q1J6gO6e58CGHsCnPSHwtaLEa4emnw/U25Lr4PD/7f860qSJEmS+pV+E4wWY1wXQngAOLZ96PMhhFuLvbgphDAJ+BidF1DdFGN3P+GTpCpoa4XtK4s7J7bCIx+Dw79WmZ4qrXVr4XM3zIVJ51auF0mSJEmSJEmSJEmSJFVMCOFQ4CpgBp0fbFro9X9/Bn4ADAWmAWcCfy93j5IkSVJe488oLBgttsEtZxa+7v3/lQRVhBoYeUQSkjZoQvH9Lb0Olv0F6kbCXv8BIw8rfo0+I08wWmwubcllf0n+GWWHwV4XwbzLCjuv4fTi9hl/RuHBaAB3vBymXghjjk2+BlbfCy2bYcBoGH82TLswf1CcCrf67vTa8EMKXmZ72zbWt6zJWWuoYDBabajLOd4cmyq25y6GHQCDJsK25bnrz/8T5v8A9nkbZPrNbYs9FyM898f0es3A6oeP1dTBuBcl4Yv5PPFl2PgkbJoHgyYnoaBN65L3o2EHwtQLkvc1qVp2rE2+33r+LmjbUd61l/05eR66H0x4MUx77e4bDLj0z8mfd3tj8jrGwgJhG4r47z2E5PukQgLXirVpHlzZ/v1P7WBoOC1PHxkYMQv2eSsMnlL+XiRJkiRJvaa//YTx28CV7cfHkVzo9I5CTw4hNADXASPbhyLwzXI2KEkl27II2kr4Je2T/wv7vh2G7lv2liqupYhgtOV/g5kfrVwvkiRJkiRJkiRJkiRJqogQwkzgdmAYScJBbH8uKCAtxrg5hHA18Jb2oQswGE2SJEnVNuUCePq7sPaB8q/dEdSx9BpY+CM4804YPK3w8+d8HuZc2vl63vfglOuh4ZSytlk1+YLA2lqKX+/xL8Ojn+h8/dQ3Cjtv+pth+AHF7TXmeJh8fvLvslBLfpc8XuiZn8Pqu+Co7xbXg3a1dRlsW5G7NvbEJESqQKuaUkLBgIa6ycV2VrBsyOYcbyk1LLAUmVo49PNw31vT5zxwcRJCeMr1e06o3yPd3Osy8xNJaGW1HfxpWH0ftHZz707H+9WGJ3YeX1BVi9cAACAASURBVHU7LPgBHPU92O/dlelR6qppHdxyOqx7pLL7bJqXPOZfBif8Bqa+qrL7VdvjX4JHP1n8eYP3Tu5RLMZBn4RVt0HzxuL3K1TLls7vldMsvRYWXAFn3AHDZlSuF0mSJElSVWV6u4FixBh/C3T8VCMAbwsh3BlCOCnfeSGEwSGEd7afO4vkIqoI/D3GeFcle5akgr3wFwjF+POM5JPF+pvWbYXPXXVb8qkfkiRJkiRJkiRJkiRJ6jdCCAOBvwDDuwzPAd4KTAcOpDMgLZ9ruxyfXrYGJUmSpELV1sMZt8LhX09C0ipl63NJAFuhmjfC41/Yeax1K8z9XHn7qqp8wWhFhkA1bYC5X+h+Xld7vQ6O+zkc+5PizoMkCOrE38MxV8C0i2DiucmjVPO+D5sXlX6+EnM/n147/H+LWmpl09Kc49lQx6jsmKLWKkY2kzu8rbmtqWJ75rTPW7r/b2PFX2HlrdXpp7dtWwFP5vkamvlxOOR/qtdPVw0vgrPugQM/0rN1HrsUWreXpycpn4cvqXwoWlexJQkQi3k/s6F/KeX7ntHHJqGXZ98L9ROLO3fMMXDWvTDzYzDxpZ3f90w8F8afUdxaPbW9EZ76ZnX3lCRJkiRVVG1vN1CCVwH3AqPbX58A3BZCaAQWdJ0YQrgc2A84HhjAzp80uQx4fZV6lqTubXyyZ+c3/gMmnFWeXqqlpZtPnXmhJ78Os75UmV4kSZIkSZIkSZIkSZJUCe8D9iK5dg/gO8CHYkw+BTCEMK3AdW6l8/q/vUMI42KMq8rca58XQsiSXDc5FZgAbAaWAw/HGBf1YmuSJEl7htrBcOCHk+MbZsH6RyuzT+M/Cp+79FrIFYy08tbkw7dDpnx9VU2eYLTYUtxSq25PguIKNe0imP3L4vZ4oUwN7Pv25NHhqf+Dhz5UwmIRVt4CQ97Ss572dOseTq8NnVHUUo1Ny3KOj6ubSCbUFLVWMWpDNud4cywyLLAc9n4jPHBx7veeDo3/gPGnVa+n3tJdANyB/12dPtKMPBRGfg0mvwJuml3aGk1rYc0DMO6k8vYmdbXuUVhYQiBpT22al4TSDp5a/b0rYfXd0Lqt8Pm1Q5IAxVDI51akGH4gzPpyen3Bj+D+t6fXy6mY76ElSZIkSX1evwtGizE+E0J4KfAnkot6Oi50mgCM7zI1AG/vckyXuUuBl8YYV1elaUnKZfMiWPRr2L4yCTTb8ETP1rv7P+EVyyGT+5ddfVIxv2AGWHwlHPbFnv2wVZIkSZIkSZIkSZIkSdX0XjpD0a6JMX6glEVijJtDCIuAvduHDgR6PRgthDAdOBo4qv35CGBolymLY4x7lWGfscBngQuBUSlz7ga+GWP8Q0/3kyRJUgEmvbRywWjrH4Xbzk2C2Fq2wOaFsPHpzvqw/ZPnrmO5NG+AupGV6bGS8l0v3tYMMcK878LSa2Db8vxrdffP6IUmnVfc/EJNfGmJwWjAfW+FJ78Gww5MwtYmnlPe3vYEa+5Prw0YXdRSK5uW5hxvqJtY1DrFyoa6nOMtMU84WaVkamDiubD0T+lznvgybFmchEmOOqJ6vVXLtkaY+zmYf3n6nLEnwICc/wtffaOPgoHjYXtjaef/42QYfQw0nAoH/0/y95PUU9tXw9zPwvN35Q+wrLRrp3V+bwUweC/Y63Ww9+t6raWiLbse5n0fVvy1uPMmvbTy9+lNOg9q3l9cYFupNi+AthbI9Ltb5yVJkiRJOfTL/7uLMd4fQjgC+CnQ8dP8+ILnnU4hCUQLwE3AG2OMJf4UT5LKYN0jcMsZsGNN8nred9PnHvDh5JMTnvoWbJibPm/H6mTN025JfsnUH7QUGYy2ZTGsuQ/GHFeZfiRJkiRJkiRJkiRJklQ2IYSZwKT2lxH4SA+XXEhnMNp04PYerleSEMIpwMdJwtAqfodzCOEc4OfAuG6mzgZmhxB+Dbwjxril0r1JkiTt0fZ/Hyz+DWx+pjLrL78hvVZo2NeOtf0zGI08AR2xBf71AZj3nfJvO/FcmPKK8q8LMGwGzPx4EhZVio1PJ4+l18KJV8HUV5W3v93ZsuvTa4d9sejlVjblDuNrqJtc9FrFyIZszvHm2FzRfVMd+vnk/o584YSLr4Rl18IZd8Kow6vXW6U1bYC/H5fc45LPrP+tTj+FyGThqO/C3f8JbSWG6a25P3msugPO/CeETHl71J6lZSvcNBs2ze/tThJdv7fa+DSsuBG2r4IDSww1rabFv4O7LiL3rdV51E+BQz5TiY52NqgBZn0N/vU+iu6xFAt/AjPeUfl9JEmSJEkV1y+D0QBijCuBc0MIRwLvB04HJqRM3wDcDHw3xtgrF0JJ0k7mfLYzFK07w2fCPm+Bfd4K8y6DB9+dPnfVHbDolzD9TWVps+LSPulhv/emh8Ut+b3BaJIkSZIkSZIkSZIkSf3DrPbnCMyNMfY0MWJ9l+PhPVyrJ2YBZ1Vjo/YQtmuAui7DEXgIeAYYARwOjOlS/09gWAjh/BhjWzX6lCRJ2iMNHAfnPAJLroanvw2ZATD2xJ3ntDXBqluhbhTM/CjUDoGn/g82zYMxs6GtObn+u1Ka1gL7VG79iskTjLatERb8oPxb7vM2OPpyyFTwVqtZX4KJL4aVtyahHVufK2GRCE98xWC0Yjz2qfTa3m8saqm22MqqlGC08XWTco6XS22oyzneHEsMueqpEQfBix+Cu16T3MuSpmVLcn/IcT+tXm+VtujX3YeiTXstjD2+Ov0UauqrknuUlt8A6x6FRb8qbZ3V98Cq26Hh1P/P3n2Gx1Hdbx//HvXiIhfJlnsvuGFMs2kGbHpvCSShJUAgCSGElCeBEJL8CQmBhJCeECCd3nuzwVSDDTZuYBvj3qtkWVpJ53kxEpLlndnZ3dnZXen+XNde0sxpPxftrmZn7gm2PulYVj7gLxRt8IVQ0COJhSws+U1iQxf9EkZ+wwkWzGQLfo6vwLGR33K+GuM8F/Q9DYrKU1pay9pfd64HXPdcyzWVeSXO++GKI2DJb2H1I7D1vRjzNP0ZGqph6V+i95l/o4LRRERERERE2omsDUZrZq19D7gQwBgzBOgP9MA5CWgzsAFYoJN7RCRjNDbAumf99+8yuuX7EVdBwx6Y+233/p/8IzuC0Rojzt26ohlwrnMgc/Mb+7Ztn5faukREREREREREREREREREREQkKK2vrPNxpWNMta2+LwlgvqDVAqsJKHnCGNMPeJi9Q9FeBy6z1i5q1a8QuAL4FdB8peapwM+AHwRRi4iIiIi4yO/cdBPsS/2P6TW15XtrYe1TTQFmKVCbonlTzXgEo215ywmcC9r4n6U2FK1ZxZHOo98Z8Mz+sftHs/U9qK+BvOJga2uvatZF329yoLhPXFNtjWx2DSLrVdAv3sriku8SzFPfGEnpup6Ke8HEX8FzB3v32/R6OPWEZdOs2H16T0t9HYnoup/zsBbWPAmR7bHHRLPpdQWjSXL8/BxVHAWH3uP9vsDXWq/D1tnxj9uzAaqWQ5eRya2fSpEq2P5B7H4Tb4XR16W+Hi89DnQe0Yz9ofN46xJYfk/0Pn1OgUm3t2yvfDD6e+jITuc5Ltn/NyIiIiIiIpJ2WR+M1lrT3SSTvaOkJMkYkw8cBgwAKoEqYC0w11q7Io2liWSG6k+ccDM/Csuh+6S99w29FObdAA27o4/ZMMP54K64MqkyU67epX5w7vjQ99TowWip+tBfRERERERERERERERERERERIJW1Or7Wtde/nVt9f2uAOZLRgRYALwLzG76Oh/n3LlXAlrjJqBbq+03gGnW2r1OPrLW1gK/NcasBB5p1XStMebP1tpPA6pHRERERIJmjHNT6aV/Ts38M0501rCNLfu6TYQjHoROQ1KzZhCsdW/bsci9LVG9pzkBT2EqGw+dh8OuBDOk7y9xgr0ASofA4C/B2Otb9okjstMJtommuE/coSkb6la7tlUUxBeyFq98UxB1v1tQW2i6T4LSQVC9wr3Pro/gvhIoPxwm3QFdR4dVXWp8+l/v9pwC6HtaOLUkyhgYcA4s+1ti4+fd4DzaKujmBK9NuAUqDk+uRmmf6qvhvWti/98zOXDAbcGEWw04J7FgNICXp8EpS5xr3TKR3/cR/c9KbR1B6X+uezDagHP33u4yKvq1hw01MOdaOOB2haOJiIhIsJb+BT76HexYCHgcuzJ5zu/K43+SuaHZIiJZQke72yFjzD3GGBvQY0Uc65YbY/4ArMc5sete4Bbgdzh3rfzEGPO6MebsVPy5RbLGjJP99x19HeS2+fCqoAz2/7nHIOvc8SDTNdS4t+WWQGH36G3ZetcyERERERERERERERERERERkY5nc6vvewYwX+vkhi0BzJeoe4Eu1tqJ1trLrLV/sdbOsdZGglrAGDMcuKjVrjrg4rahaK1Zax9tqq1ZIXBjUDWJiIiISIqMu2nfm2kHxu4digawbS48dzBEqlK0ZgBsg3vbzoCD0UoHw6TfBjunH8bAofdCYY/E57CNzqNqKcy/MXpIUUc35zr3tsPui3u6DXVrou4vy+tBUU5x3PPFI8/kRd0fCe5X0cSYHJh8rxOI5aWhBta/AM9PgT2bvftmsu0LvNtNHhz8VygqD6eeZIz/qROWGaS6bbDpdSdMasfCYOeW9uG1c/2Fok3+Z3Dvj4ZfBX1OSmzs7tXw6pn7vp/KFG+cH7vPpN9mdiBua31OgBHf2Hf/wPNh4Of33nfo3e7zLPkNLPplsLWJiIhIx7bs7/DOFbB9vnPcqvmYTLRHYx1sfhNeORE2v5PuykVEslr0I6IiLTySi1oYY04E7gEqYnSdAkwxxvwbuMJaW51ceSJZZvGvnTvd+NHjEBh1bfS2kVc7B3dfcLl7ytI/QfkU6Dpu32C1dKhZBzsWQMMe6DwSugyHht3u/fNKoMAlGK1OwWgiIiIiIiIiIiIiIiIiIiIiWWJ901cDJHWlrTGmBzC61a6lycyXDGvtthCWuQDIbbX9sLX2Yx/jfsHegWrnGWOu8gpUExEREZE0K+4F09+ALW/Di0eGs2btFlh5Pwy9NJz14mXr3dt2Lo6+v+JIJzTDfVKoWgG5hVDcx9lVOhjKD4P8TolWmpzyyXDqUtj4GtQ0BW4V9YbOw53z7+u2wuwr/c/38R9h3I8hJz8l5WalZX91b+txSNzTrXcJRutd0C/uueKVZ6JfG1Jv61K+dkwVR8Jpy2DNU/Dml7z7RrbDin/BqGvCqS1oH93p3jb8KhjzAyjpG149ySjuDce9CVvecULMCsogvwxqVjvPl7Ye1j4D2z+If+7GWlj6F5j0m8DLliy2aymse8a7z5CLYf9fQFGsy1TjkN8JjnzcCYetWgb5XZ1r3RprW/p4vd6ufx5W/BsGx3h+C1tjBHYu8e7T42AYGSVoLFOZHJh0Bwz/Kqx62Pkz9j8LysY7obKtdRkBeZ2g3iXsd8mdMPq7+44TERERSYTX74JubD0s/TP0PDj4ekREOggFo0ksD8XqYIyZCjwKtD7CboE5wHKgDOekttZ3/PwC0MUYc4a1mRqXLxIwa2Hx7f765hY5d8zJ8XiaLj/M+cBkwc37tu1YCM8eCHmlMOU/0O+0xGpOVmPEOTC87K699/c4GCbe6j4ut9j9bkGRHdDYADm50dtFREREREREREREREREREREJFO8ATQCOUAPY8wx1tqXE5zrUpyANYBq4N0A6stkZ7bZvtvPIGvtImPM20DzFf6lwHHA4wHWJiIiIiJByy2AiiNg8EXwyb3hrLnoVqg4CkwulA5wgigyhW2If0zliU6IRrYpKIN+p+67v2yM83XtM7DG59v5um1QtRy6jAyuvmwW2eXeVtI/oWsSNtStjrq/V0Hqg7DyTfTAu0hjJOVr+1LQDQZ/Ed7/fkvQn5sts8OpKRV2fOjeNu7GYMOcwpBb6Lz+VBwRvb3PSYmHdi65Q8Fosre1z8buM+7Hqfk5ysmFHgc6j2h2LPQOu3jzQug5BToPDb62RG2dG7vPfv8v9XUEzRjoup/ziKXbBNj0evS2mjWwZ4MTAikiIiKSiMYG2L0SGvbAtvcTm2PlfTD+p1BcqcBWEZEEZNCnFrEZY8YaY15uerxkjIn7CIcxplfT2OZ5RqSi1jS7DhicwOPcNvNY4O9eCxlj+gEPs3co2uvAGGvtgdba86y1xwH9gG8CrY+2nwr8LIE/n0h2qlkHu6N/CLaP3tP9fRjZbX/v9vpqeO0sZ+10+Oj3+4aigXM3mRePch+XVwoF3d3b68K46a6IiIiIiIiIiIiIiIiIiIiIJMNauw1ofbXzT42J/4xvY0xf4Ps457RZ4IX2fENOY0xvYEKrXfU45+X5NaPN9onJ1iQiIiIiIRn0hfDW2rkYnhgGjw+GB3vAotudm4FngkSC0ToPC76OTDD4i/H1f3IULPldamrJNts9Aqz6Rgmj82FDXfTAr1CC0XIKou6P2LqUrx2XQRfE7vPpf+CjP6S+lqBZ6x7AA9kXiuZHzylQOijx8U+Ogi3tPdteYtr2Pjw1Ft77hne/8iOgdGA4NbXl5z3YE8PgscGw4ZXU1+OlagU8PwWeP8S7X0F36HNCKCWlTax/twX/F04dIiIi0r5YC/N/Ag91h8eHwFM+Alvd1FfDo33hsYH+goJFRGQvWRWMBlwBTAWOAuqstRvjncBauwEnnKt5nssCrC8jWGs3W2tXxPsAprWZ6hVr7fIYy90EdGu1/QYwzVq7qE1Ntdba3wLntRl/rTEmTUerREIW2em/b/lh/vp1HRu7j22AlQ/5Xzso1sKS38Y/LqcAckug0CMY7c04P9wVERERERERERERERERERERkXS5o9X3hwJ/imewMaYX8DjOeWrNoWq3B1Naxmp7UtA8a211HOPfaLM9Jsl6RERERCQsvafB/r8Ek+vdb8B5MOXfzg2pgxDZDnO/DSsfCGa+ZDXWxz+mvQaj9T8HxlwPJo5LwN77Bqx+LHU1ZYtXPcLPDrgt7ul2N1Sxs2F71LbeBf3ini9eeSY/6v56G0n52nEZ92Pof3bsfu9+DVY/kfJyArX8bve2yf8Mr44w5eTCUY8nHla1cwm8dDTU7Qi2Lske9dXw0jGwY4F3v7IJMOVf4dQUTc9D4CAfgY3VK+CV42H36pSXFJVthBknwOY3vfsVVcDUpyC3KJy60mXoZTDi6+7tH/0Otsx2bxcRERGJZtlfYf6N8WVDxLJ7Fcw8WeFoIiJxyrZgtNNbfX9vEvM0jzXAmUnM024YY4qBz7fZfVeMMcOBi1rtqgMuttbucRtjrX2Uvf/tCoEb46tWJEvF8+a3p89gNL93XVn0C/9rB2XLbKj+JP5xBd3BGOerm3XPOXe3EBEREREREREREREREREREZGMZq39H/B+06YBvmKMec0Yc4TXOGNMqTHmq01j9wds0+N5a+3rqaw5A7S97fjSOMcvizGfiIiIiGQqY2C/78A522Haq3DMizDtNTivCs7aCMe+Ameuh8Pvg0EXwNlb4IT34JytcOL7cOzLcMxLzrhjXoQeh8a3/vK/p+bPFS/bEP+YTkODryMTGAMTfgpnb4VjZ7T828ayLEP+LdOlMQK1W6K3dd0voaCYDXVrXdt6FfSNe7545ZuCqPszLhgtrwSOeBDOXAtjb/DumynPOX4t/Yt7W4XnYY7sVjYOTlsOJ83z/xzUWn1V5gRvSvhWPQp127z7VJ4AJ86F0gHh1ORm+JVwXjV0P8i7X2MEVvw7nJra2vSGEzjopaA7nLEWesb5PjAb5eTBgXdC6WD3Pl6hliIiIiLRxHNMpfl3pMPvj93XNsKs82D7h4nXJiLSweSluwC/jDFDgObbZzQCTyYx3RNAA5ALDDbGDLDWrkyyxGx3DtC11fY24OEYYy7A+Tts9rC19mMfa/2CvQPVzjPGXOUVqCbSLtTHEYzWfZK/fn4/jNuzwf/aQfn0f4mNK2wKRMvr5Pz5GlyeGjbOhE6DEltDRERERERERERERERERERERMJ0DvAW0KNp+zBghjFmPW1Cv4wxfwRGAJNxbrxpcALRDLAG+FJINafTsDbb8Z7f+Gmb7R7GmG7W2hhXoYqIiIhIxsjvtG/ITl4pFE3de19uIXQ/wPm+oFuUebrAcwf7X3fdc7D2mb33FfSA7hMhJ9//PMmy9fGPye8cfB2ZpKAr9DqqZXvkNbDkN+791zwO9budkKqOqLrtr0WtlCQWvLOhbnXU/YWmiLK8HlHbgpRvov8MRjItGK1ZcSWM+AYsuNk97HD1o1BfA3nF4daWqN2r3NuK+7m3tQcmxwlIa9bnZFj7lP/xC2+BsvHhv55I+m16LXaf/mc7QaCZIK8Ejn4WnhjmHei2YQbs973QyvrM9nmx+wz+EuTkxu7XnvQ6GpZ/Er1t2/vR94uIiEh2amyAxlonf6D5a0MtNDZ9bd5f0h+6jPL/PnP3GtixACK7YMvb/sZUngC9j23ZLukHu6MfO/hM/S6YeQpMutMJeXVT1Mv5s5SNd44TNuxx3teUDobiXv7qExFpB7ImGA0Y2/TVAkustVWJTmStrTLGLKHlLojjiP/Eofbmy222/+0jqOzMNtu+otOttYuMMW8DhzTtKgWOAx73M14ka9Xt8Nev3xn+P9QxBnIKnTfoXhojYG14B4ltI6z0kWwcTfMH8sZA7+mw5ono/SI+/z5FREREREREREREREREREREJK2stcuNMacAjwCVtASdVQK9W3U1wOWtvqdV39XAKdbazaEUnV5lbbY3xjO46RzJPUDruy52xblhqoiIiIh0JN0PdC6g9BOi0WzGSfvuKyyHIx+F8inB1ebFLUTJTd9TU1NHJhtyCXz0W+fcfTcPlsGUf8OAc8OrKxNYC29d6t4+4usJTfvq9mei7q8o6IMJ4VqN/JyCqPsjti7layesqNy5RmbVQ+59HuwGh/0P+p8RXl2JqN0CNWujt3Ud2/FCiIZ+Jb5gtKpl8PwhUFQBRz4GPQ9NXW2SGax1AjyX/tm7X36XzHudKuwOE2+Ft7/i3mfds/DBD2H8z8INddu11Lvd5DjvETqaoV+G5X+P3rb5Tdi+AMrGhFuTiIhIe9McSNY6jKxhz76BZG0Dy9z2N+5xDzXzCj2LJ0y/y0g4+jkoHejex1qY8y1Yckf8fydDv7Lv9vwfxx5X/Sm8epr/dSpPhE2vQn21sz3scjjw997BaiIi7UQ2PdO1frVZFsB8y2gJRkvsVh/thDFmKHBkm913xRjTG5jQalc98Hocy86gJRgN4EQUjCbtXWRn7D5FvZ0DovHILY4djAawbW7L3cBSbdMbULMmsbEF3Vu+H/8zj2C0XYnNLyIiIiIiIiIiIiIiIiIiIiKhs9a+Y4w5APg7zvli4ISetf661xCcQDQDvABcZK1dn/JCM0OnNts1CcxRw97BaJ0TL6eFMaYCKI9z2NAg1hYRERGRBBgDU5+BmafCtjmJz1O7yblg84w1kFsYXH1uGuO4yBXg4L+mpo5M1m28Ey400yMUrjECr58PPadASd/waku39S/Aptfc2/ueHPeUexprWLHn46htvQv6xT1fIvJMftT99Y2RUNZP2KF3w46FsHNR9PbGWph1LpyxGop7hVtbPN65wr3t8AfCqyNT9D8DDvoDzL4qvnF7NsKrZ8AZqyAn+v9paSc2vwFzrvXuUzYeJt8LBV3DqSkeQ7/sBE+89033Pgtuhu6ToP9Z4dVV5RGMVjoQJt0J3Sa492mvyqc4QSTL/ha9fcYJcPrKcEPsREREguIaSNY2QCyeQDKPsUEEkmWKnUtg1nlw/NvufT75R/yhaEUVMOYGGHD23vvHXA/1VbD0L/5yJfxa1yaofelfoGwCjIjz9zERkSyUTcForU/K2RHAfK1fSboEMF82u5SWu2sCzLHWvh9jzNg22/OstdVxrPlGm23FrUv75/UGduyPnDfB/c+J/4OcvGKIbI/db/VjIQajzUp8bOsP5bqNhy6jo38AVl+V+BoiIiIiIiIiIiIiIiIiIiIiEjpr7QbgZGPMJOCbwLFApUv3HcBLwJ3W2pkhlZgp2gaj7Ulgjhqgm8eciboKuDGguUREREQkDCV94MT3nHCPp8dD1fLE5qnd4gRO9T0l2PqisQ3x9S+qSE0dma7vKXBeFdzv8XbfNsDK+2HUt8KrK91W/Me9rfyIhKacXzXbta1XQTihc/mmIOr+iK0LZf2E5Xd2LkJ/wOPyPVsPqx6EEV8Lr654bXw1+n6TB52HhVtLphh+JQz7KtTvcl5jGuudUMI3vuA9bs8GWP8y9Dk+nDolPbyei8EJ8Br59XBqSdTIq53wtpeOdu+z4j/hBqPtcglGG/lNmPSb8OrIRGN+6B6Mtns1bHsfuk8MtyYREcluvgPJ2gSIxRNItk97OwkkyyRb3oGa9VDce982a2HRrf7nOn0lmFworoweuJqTCxNvhQm3QM1a55jMa2cnd7MCN5/+R8FoItIhZFMwWus7HgYRZNY6aC3OT0zaD2NMLnBRm913+Ri6X5ttj6j5qJbFmE+k/Ym4ZDr2nALjb0p83txif/2qP018jXjtWBh9f+Xxzt1+HunjPrbtLxZdRkYPRovsSrw+EREREREREREREREREREREUkba+17wIUAxpghQH+gB1AAbAY2AAustY1pKzKz2JDGiIiIiEh7llcKo74N7yYRPDT7SudG2L2mQkG3mN0TFk8wWu9p0S9G7SjySqHrfu7n8APMuRbIgYKuUHEkdBoSWnlpsf5F97buByY2Zd0q17ZBxSMSmjNe+SY/6v5GGmmwDeSa3FDqSEh+Z+gyCnYudu/zyb9g+FWZ9/NsLWx9F2o3RW/PLYKcbLpEM2DGQH4X5wFgjgQMMQ9LzLkGSu6HsnGprlBSbfdqWPmA8zrUaWjLdW4f/8F7XOX01NcWhLLxkFMAjS4hlKsect4b5UR/jg6UDq4q4AAAIABJREFUbYx+jR041yd2dCX9oaiXE74Yzcd/hAPvhNzCcOsSEZHUsha2fwCb324JEdsnyCyOULPW7Y2RdP/pJCg16/bNL2iohYW3wI4F/uaoPAFK+/vrm5Pb0nf6q/DCEbBtrv96/dj0Oiy+Y9/9jbVNNTS958krdt4rlo0Ndn0RkZBk01G3za2+HxjAfANafb8lgPmy1QlA61uT1AAx4vgBaHsri5Vxrts2oamHMaabtXZbnPOIZI/Izuj785PMevQbjOZ24DNokSpY8c/obWXjnQOMXrq2+VAjr3P0fvUKRhMRERERERERERERERERERHJZMaYzsDgVruWWWurW/ex1i4HlodaWOararPt8wQhzzFt5xQRERGRjmjQ+TD/RqjdHLtvNLtXw2tnQVEFHPUU9EgsZComW++/74irU1NDNhlxNcz+qnefOdc4X00OHPg7GH5l6utKh1WPQM0a9/ZhlyU07aa69a5to0omJDRnvPJMgWtbxNaRaxL51TFEI6+G2Ve5t295C965DA76U+YEjTU2wLtfh6V/cu8z4hvh1ZMNSvrBgHOcoCwvOxfD0+OdwM6Jt2ZeIJ74s/IBmHVe/OMqT4AuI4OvJxUKu8PgC2HZ39z7vDwdjnzMCSBNpQ9+6N7Wue3lvh1QTq7znDzv+ujty/4K296HqU9BUXm4tYmISGrYRuf9+sd/THclkuka9uy9vWejE1a26yOfE5jEf/fLK4WjnoDnDvE+XpGI5mM9foz+Duz/C/3uJSJZJyfdBcShOXjLAOOMMT0Snahp7PhWuwJ+Bckql7bZfshau93HuLI22xvjWdRaWwW0eQdB0kd+jDEVxpgx8TyAocmuK+JLyoLRivz12/IO1Nckt1Ys9dXwzET39q77OR+kehlw9t7b+W7BaDpXU0RERERERERERERERERERCTDnQ/MbXq8AxSmt5yskcnBaH8Axsb5OD2gtUVEREQkWQXd4Li3oO+pUNS7ZX9usXNeevMjlj0bYwdxJcM2+Ot3+APQ79TU1ZEthl8BB//ZX1/bCO9+A3avTW1N6VC/2wnuc7P/L6Hr6ISm3lgX/e/r8K7HkxPrGomA5Ofku7bVN0ZCqSEpw690Qs+8LLsL1j4VTj1+rHvOOxQNYKxLAE9HNvmfMPIaKB0cu+/i22DTrNTXJMGLVMGbF8U/rnQQHPFQ4OWk1EF/hN7HubdvnAlLfpvaGnavgYW3uLd30iWyAIz5gXf71tmw4OZwahERkdRb97xC0cSfxtq9tz/8mf9QtJ6TnfevfU9KfP2SvnDCbBhwHhSW730MrvmRk+KP0RfdCpvfTO0aIiIpkCG3T/DlLaAWKMAJR/sa8JME57qKllC4euD1pKvLQsaYcqDtJ0B3+Rzeqc12ImlLNUDrT8xc0o/ichVwYwDziAQvsiP6/vwkMwGN+4db+5h1jnNXg1RZ+QBULXVvL2vKpKw8EdY9s2/7wM9D6cC99+W1fbppEtmVWI0iIiIiIiIiIiIiIiIiIiIiEpaeOOf7Acy21m5NZzFZpO2JRuXxDDbGdGLfYDQ/N0yNyVq7kThvpGp053ERERGRzNJ5KBz1uHefxXfAnGu8+2x9D6pWQKdBQVXWorE+dp9eR8OAc4JfO1sNu9wJRXl5Wuy+tgHWPOYEVbUnG172bh/0hYSmtdayMbIuatvg4hEJzZmIfFPg2haxdaHVkZThV0BhD5h1rnuflQ9CvwzJ1171oHd7UW/IKwmnlmySWwiTfu08Ft0Oc7/t3X/VQ1BxRDi1SXDWvwgNCVxSevRz2fdzk5MHh98HD3Zz77PqQRh3Q+pqWP2Ye1thORQkeX1ie2GME8y45DfufVY96Dw/iYhI9ov1fl3CZ/Kc3weag75ah37tta8Qcor27btPu58+rfY/3AtslGNKDW2C0Vb5DOrtdgAc90byfy8AxZXOe0ovT42DHR8Gs140Kx+E8impm19EJAWyJhjNWltrjHkNaD5Cf50x5hFr7fx45jHGjAW+A9imXa9ba6sDLDWbXAi0TlRaBsz0ObZtUtGeBNavAVofDXJJPxJpJyI7o+/P75LcvI1x/PitfRrm3wSjv5Oag8jrX3RvK+kP3fZ3vh9+Jax7lpanYqCoAqb8e99x+S6ZifVB3cRWRERERERERERERERERERERFKkOeDLAqvTWUiW+bjN9sCovdy17b/VWrstiXpEREREpKPxG1Az6zyY+AsnpCxItiF2n24HBLtme9B9EuQW+wuqWfBzGHo55OSmvq5Us42w+nGYdbZ7n05DnYuQE1DVsIM9jbujtpXnJzZnIvJMvmtbxEZCqyNpPSeDyXH+3aJZ8S8o6ec8r/Se7oTchK1mHax6BJbf7d2v/PBw6slmfl5PltwBZeOg/9lQUJb6miQ5jQ2w+lGYlUA4aXEldBoSfE1hKChz/p9ud7mcefs853nN5AS/9o5F8O7X3Nv1XLS38sO9g9F2r3b+HcvGhVeTiIikxpZ3011B5ogWSLZPkFg8gWQe4WZec6T7GENuUfT8geYshl1LYcV/oWatv/mGXhpcbX70np7aYLQlv4aBn4eeB6duDRGRgGVNMFqTX+EEo1mcEK1njDHnWGvf8jPYGHMw8CBQinMXSts0Z0d1SZvtv1trbdSesSUyLtG1RLJTqoLR4r27xvwfOx/6Hf0sFMV1M9kYddTCiijBZs0GX9RycLffqXD4/bD411CzBiqOggN+Hf3gb55LMNrmN5OvWURERERERERERERERERERERSaV2r7wvSVkX2WdRme1ic49teYbowiVpEREREpCPqfgD0Ocm5MbeXrbPhpWNgzA9hws+CW9/Wx+4z8pvBrddeFJTByKth4S9i9929ygkSO/xByMm2y8tasY3w+vmw8n7vfmOvTzhga2PdOte2ioI+Cc2ZiHzj/mt1va0LrY6klfSFIV+GZX9177PwFucx8hqY9OvwagPYsRBenuaEo3nJLYbR3w6npmzW/UCoPAHWPevd7+2vwKJfwTEvQUl4P1cSp8YGJxBt9aOJjd/vB9n9mjPmh/D6593bN82CiiODXXPNkzDrXO8+o68Lds1s1/dUKJsA2z9w7/P0eDh2BvQ6KrSyREQkYLVbvZ/rw+IrkMwjZMxP2Nhec2RoIFmmyC2MHozWUAsbXoGZp0Vvj6Z0MAz6QrD1xTLiKljxD6jdkro1nj8UDvo9DL8ydWuIiAQoq44iWGufN8bMAKbihGr1AV41xvwT+DMwu22wlzHGAAcCVwBfAvKbxlrgNWttjE9p2idjzKHAmFa7GoB74pii7St+cQJltB3j812Epz8AD8Q5ZijwWABri3hzDUbrmty89XEGowFsmwOvHA8nzklu7c9qqIaHe3v32e97e28POMd5xJLfyb1t11LoHO95nyIiIiIiIiIiIiIiIiIiIiISkta3tB6ctiqyT9tbgY83xpRYa3f7HH9YjPlERERERGI74hFYdCusfxE2zvDuu+BmGPoV6DQomLVtg3d7UW8o7R/MWu3NhJ9Dp6Gw6mGoWQvb57n3Xf2YE1bU95Tw6gvahpdjh6KV9IchFye8xMbI2qj7i3KK6Zyb5PUgccjPcQ9Gi9hIaHUE4uA/Qd1WWPWQd78lv4Fhl0HX/cKpC2D+T2KHopX0c54jexwYTk3ZzBg48jFY9EuYd4N3352LYckdMNFHuKOkx7pn/YeilY1v+b7TEBh0AQyIEfCV6QZ+zgnkfOOC6O1vXgynLw9uPdsI730LGva49+l/NpRPCW7N9iC3AKa/6jyfL77Nvd/c78AJ74RXl4iIBGvhLd7tFVO9Q8ZyiuIMJHMJN1MgWWbJKYy+v7HWee33E4rWZTT0ng5jf+gE0Iep8zCY/iYs/hUs/UvL/rLxex/f6ToWTE7Lttexn31YmPtdGPRFyO+cdMkiIqmWVcFoTT4PzAEqccLN8oCLmx7VxpglwLamtu7ACKA5Vcc07TfAKuC8EOvONF9us/2MtTb6kfroMjIYzVq7EdgYzxiT4B1fROIW2RF9f36X5OZt9Di46WXbXFh0u3OnrGi/eO1eDVtmQ+0mKCyHvFIwuc4b5dqtTp+cfOi2v5MO7PXLwJT/egecefEKjlv/ooLRRERERNKlvsa542txX+g8NN3ViIiIiIiIiIiIiIhIBrLWfmSMmQeMxwn36mutXZPuujKdtXZdq783cM6TPBx43ucUU9tsPxNQaSIiIiLSkeQWOBeBjv0hvHUpLL/bo7N1wlKGfzWYtWMFo/U+Nph12iNjnCCpYZc52ysfhFkeQTRrnszuYLQ1T8XuM+rapJbYVLc+6v7y/MpQr0nKN/mubZHGutDqCITJgQPvjB2MBs6/cVjBaNbC2idj95v+OpQOSH097UVuAYy9HvqdDk+P9+679kkFo2WyNT5+PgBGXwcTb01tLeky6Hx49+tOuGNbe9ZDQ53zfz4IOz+CqqXefQZ+Ppi12pv8LnDAr5wQWLe/w62zYc9GKKoItzYREQnGptfd285YAyV9wqtFMkduUfT91Z/C1vf8zXHyAufYSrp0GQ4H/9l5+LXoNph7nf/+9VWw8VXoe3L89YmIhCzrgtGstRuNMScAjwODcILOwAk76wRMarPvs6G0hKItBU5vCtHqcIwxpcDn2uy+K85p2iY8lcdZQyf2DUbbHmcNItklsjP6/mSD0eprEh8799vw6X+du6+0/iVv/k9h/o+Sq6u1ZMLLenrctaJuW+LzioiIiEji1r8Ir57ZEo7b9zQ4/D73A8giIiIiIiIiIiIiItKR3Qn8FefcvZ+w7009JbpHaAlGA7gEH8FoxphRwCGtdlX7GSciIiIi4qn3cTGC0YDZV0J9NQz9MhSUJbdeY713e+Xxyc3fkVQcBTkF4BactfTP0OsYGHheuHUFYc9mWPKb2P0qj0tqmY2RtVH3VxSEe6F9DrkYDPazy+Za1NtIqLUEoqg3lI2D7fO9+73/Xeg6OvUBfnXb4YMfOM9jXrqMgpL+qa2lveoy2rkZb41HZv6OhTDjVCifDCOuhvxO4dUnsS39k79+/c9JbR3pVjYeNs7Yd39DDXz8Bxh1TTDrLLjZuz2nACqmBrNWe1V5PHzsES733CEw4WYnYC6dASgiIhKfrXNg8xvu7cWV4dUimSWnMPr+eTf4Gz/g3Ox8T1B5HMyNc8zMU6D3NCjp57x/V0iaiGSonHQXkAhr7Yc4AWj/oyXszLZ6fNaVvQPRGoF/AAdZaxeFWXOGORfo3Gp7A+Azrv8zH7fZHhjn+Lb9t1prlXAk7Ze17sFoBV2Tm7txT3Ljt74Lzx3Usr3+pWBD0QA6DU58rFcqd0OSf3YRERERiV99Ncw8vSUUDWDN4/Dh/6WvJhERERERERERERERyVjW2ruAp3DO4bvYGPPdNJeULf4NNLTaPssYM9zHuO+12b7fWquTbEREREQkOf3PhPLDY/ebex28ciJEqmL39WIb3Nt6Tm7/gStBKiqHMT/w7vP65+ADnxcJZ4o9m+H5ybH7Df0KdN0vqaU21a2Lur88P9yL7Y0x5Jn8qG0R6xJ8l8mMgQk/d4J9Ypl5Kiz2EYKXqLod8PwU+PiP3v1y8p2as/FC+UyQkwf73wImxiWta5+ED34ILx4J9TXh1Cax+f0ZHHAe9Dg4tbWk2wG3ubfN+ZZzbV6y5v0IVvzTu8+YH0BRz+TXas9GfcsJZHRTvQLeuMAJxhQRkeyw4RV4dpJ7+8hr9H69I8t1CUbzK9bxk0xVNg6GXBr/uPUvwvJ7nJC0JXcGXpaISBCyMhgNwFq7zVp7AbAf8Gug+fYQps0D4APgV8BIa+3F1todYdebYdrecfMf1toYt9PZR9tguWFxjh/SZnthnONFskt9FUS5Kw8AeV2Sm7vrOPe2aTOh1EduYc1aWPQr2L0W3vtmcvW01W1/KOyR3Bxud/Rq0AccIiIiIqFb+ww07N53/5rHw69FRERERERERERERESyxfnAIzjn9P3cGPOcMeboNNeU0ay1HwP3ttpVANxjjClyG2OMOR24uNWuOuCmlBQoIiIiIh1LbiEc8wIcFCM0CGDLW7DgZ8mt53WJyzEvQV5xcvN3NONuhOFXevdZdCvUbg2nniAsvxuqlrq353WCKf+Fg/+S1DLWWjbWrY3aVlEQbjAaQL6JHiIWsZGQKwlI35PhuLdgv+/H7vvhT1IXkrXiX7Cz7aVybYz+Lkx/A/qfkZoaOorBX4Rps2DIxbH7bpsLKx9IeUniQ8MemBcjQDOvMxx6Lxz23/YfRtL9AOg61r39w58mN3/tVlj4S+8+Rz3pvL6Lt85D4fh3YvdbfDvs2ZT6ekREJHkfxjjeMOqacOqQzJTj+jGqt2GXw2nLnEyEbHXI32DKf5yA+KGXwWH3wfRZ/sd/eBM01KauPhGRBOWlu4BkWWs/Ar4NYIzpBPQCmhN4NgMbrLXVaSov4xhjRgBtb9NzVwJTfdhme7wxpsRaG+Xq+KgOizGfSPsS2enelp9kMNqY78Os8/bdP/xrUHEknL4CXpwKG2d6zzP3O84jaEc8lPwcuS4fXDfoZrYiIiIioVvicse37fPCrUNERERERERERERERLKCMebvTd/uBHYBnYFpwDRjzC6cG59ubGrzy1pr294gNFTGmH5EPwezd5vtPGPMIJdpqqy1mz2WuRE4E+jWtD0FeNEY8xVr7eJWtRQClwO3tRl/m7X2U4/5RURERET8yy2C4V91gk/e/KJ33yV3OOezl/ZPbC3bEH3/iG8oFC1RI6+Bjz2C7RprYfObTlBVNtjwknf7sS9Dj4OSXmZnw3ZqbfTrFsoL+iQ9f7zyTX7U/ZHGupArCVD3ic6j4kiYcZJ7v7ptsP0D6Hlo8DVseNm7vcfBMPEXwa/bUZVPdv4dVz0Kke3efTe8DEMuDKcucbftfaivcm8/ZTF0GRlePZlg2GXw3jejt216DRrqIDd6mGVMm990Xpdd174ie16vM0FJHxjwOVh5n3ufxjrY/Ab0Oz28ukREJH6NEe9r5XMKoSTB4xDSPuQWxte//9lwxIOpqSVsxsCg851HaxN/BXOviz2+dgtsnw89DkxNfSIiCcqaYDRjTG/g4Fa7Zllr97oVibW2CqgCloVZW5a5tM32LGvtkngnsdauM8bMA8Y37crDCVx73ucUU9tsPxNvDSJZJeJx3maywWiVx0OnoVDV6qkvtxiGtjr3c/R3YgejpcKkO6DTkOTnyXVJaFYwmoiIiEh4ts+Hdc/BptfTXYmIiIiIiIiIiIiIiGSXiwHbatsCpun7Lux7o89YTNMcaQ1GA2YBA3306wt84tJ2L87fT1TW2tXGmLOA54DmKykPAxYaY94DlgNdgQOA8jbDnwRu8FGfiIiIiEh8Ko+HnHzngmQ3DXvgmf0hr5Oznd/ZCT2a8H9Q0M193GfjXcJATNZcBpV5Og+HLqNh5yL3PjNPgWFfdf6dCruHV1s8Irtg3g3OuWxuSvpBtwMCWW5T3TrXtor8ykDWiEdeTgFEyQ2stx4/j9mi4ijI7wqRHe59np8MJQOc63B2fNiyv6gCJv8LKqfHt+bqx53AwHXPevfrd0Z880psxkC/0+CTf3j3++ReJ5Sr8jgYd5PCMcOyZzPMu94J6Kr+1PvnsstI6DwivNoyRb8z3YPRbCPcVwilg6BsHIz6FvQ62t+86190Xo8919ZzUtz6ne4djAbw6hnOa0zpABhwrhPIa4z3GBERCdfG19yD1MF5f2lywqtHMk9OnMFoHSEUte+p/oLRAN66CE78AHJ0/E1EMkc2vbKfBTzS9Pg34BF5LtEYY3KBtrdIuCuJKR9ps32JzzpGAYe02lWN/0A1kezUsNu9La80ubnzu8C0mTD4Qicgrc8pcMxLzh1zmvU9GabG+KAmaAf8GkZeHcxcuS4fXDTUBDO/iIiIiHhbdjc8MxHmfse7X2N9OPWIiIiIiIiIiIiIiEi2s60e4sFaOwM4E9jUarcBDgTOA45n31C0/wKft9br6hARERERkQQV9YSJt9OSd+yibivsXuk8dixwwodeONw7UK3Zumei78/JjbtcaWIMHPg7yOvs3W/pn/z/O4XNNsJLx8KSO7z7HfTHwP6vbIpED0YrzimhU26XQNaIR77Jj7q/XQSj5ZU4/0djBSDuXrl3KBrAno3wynGw1iMwr62VDzkhOLFC0XpOhuFf9T+v+DfuRuc6qFi2fwCLbnXCoqwOJaVcQy28cBgs/TNsn+cdigZw4O87ZnhUaX+Y8HPvPtUrYM0T8PJxsOGV2HOuex5eOcG7z6AvQe84QyAF+p/lL/hk90rYNMsJvfvgB6mvS0RE/KvdAi8f695eWA7jfxpePZKZcov89+1zihOG2t51GQFjf+Sv746F8Ha6700mIrK3bApGK8P51MQAs6211WmuJxudBLS+Hcku4IEk5vs3e99n5CxjzHAf477XZvt+a+2eJOoQyXz1XsFoJcnPX9IXJt8Lpy2FqU9A+eR9+/Q5Hi6wMOzy5NeL5YDfwKhrgpvP7ReRBj11iIiIiKRcZBfMucb7rirN6qtSX4+IiIiIiIiIiIiIiGQjE+Cjw7HWPg2MBf4EbPPo+hZwjrX2Ap1jKSIiIiIpNfLrcOJcmHgbFHTzP27HQljzlHef3Wvd22IFJom33sfAyR/G7rdzkRPkkmk2zICts737HPkY9D0lsCU31kX//1he0AeThiCgfFMQdX/E1oVcSYoM/iKcND/x8Ytv89930a3EzGsf8wM49uX4nufEv05D4ITZMOU/0OOQ2P03vAxb30t9XR3d6sdg10f++nabCL09AkrauzHf99fP1sOi22P3W3y79/nanYY61w8qKDZ+uYVw+EMwNUYYZmsf/d4JChQRkczwyb+8209ZBF1GhlOLZK7cwth9Rl8HU5+GIx+JL0gtm42/CY57G/b/hfN7rpcV/4Lda8KpS0TEh2z6RGBr01cLRL/dhsTSNp7zf8mc/GSt/dgYcy9wadOuAuAeY8yxbkFnxpjTgYtb7aoDbkq0BpGs0eASjGbyICf6HXtSZvjXYOlfUjf/2Bth1DeDnTNHwWgiIiIiaVH9KSy+AyI7/fWvr4KCstTWJCIiIiIiIiIiIiIi2WZwugtIBWvtoJDX2whcaYz5JnAYMBDoDVQDa4C51tpPwqxJRERERDq4bhOcx8hvwJP7QdVSf+M2zoB+p4HJAWuhbbiUV/BVYc+Ey5UmpQPggNthzrXe/TbMgD4nAwZyo4dxhW7jq97tJhd6Tw92ybrol7BV5FcGuo5feSb69ScRGwm5khTqOgrGXA8Lfhb/2PUvNF1nEiO0rrEOtrwdYzIDo7/TcS6UT5eCbjDofKg4Ah7tH7v/5jegx4Gpr6sjW363/74dORStWe9psP7F2P02ztw7ZMvkNYWgNQc0Wue118vwq/Z93yT+5eRCn+Nh0h3wno9rH+t3wa6PoWxs6msTERHn+EBjhM9eG00u5LSKQtn8uvvYXsdCYY+UlidZIidGMFpxH5h4azi1ZJqeBzsPcN6HLvxF9H62ETa+BoM+H15tIiIesikYrfWR5NK0VZGljDG9gJPb7P5bAFPfCJwJNN/6YgrwojHmK9baxa3WLwQuB9reeuM2a+2nAdQhktnqXYLR8krCrQOg23g48lF49YzYfTsNhaFfhg880n97TnE+WCjoBhN+DsMuD67WZnnF0fc31AS/loiIiIg4Hygs+D+Yf6NzQNOvyK7U1SQiIiIiIiIiIiIiIllJ54cFy1pbB7yS7jpERERERD6Tkw8TfwmvneWv/5I7YMlvcS52NlA6EIZdAft9zwn72PWx+9jK44KoWPqfDXO+TUsYSxQf3ek8ADoNg5FXw4ivpyeQZd0L8P73YNtc7359T3O/9iBBmyJro+4vL0hPMFp+TvSQunpbF3IlKTbwvMSC0QDuC+j/QOXxulFsmEr6tVyf5OW9b8Lu1TDh5r2DMiR59bth9pWw7ln/YwZ8LnX1ZIsB5/kLRqvfBfclE7RoYMA5SYyXz/Q/G+Z8y9858k+Pg8n/gMFfSn1dIiIdkbXO8YE51+zblpMPPQ6F8T+BhbfAuufc5xmo9yTSJFawtd6/OgZ8zj0YDeCN853jMEO/AmOvVziviKRVTroLiMNcWo64j0hnIVnqIvYOwvvQWvtOspNaa1cDZwGtj6AfBiw0xsw2xtxnjHkWWAX8Fmh9a5IngRuSrUEkKzS4BKPlpiEYDaDf6XCBhaOfj97e/yw4ayOcthT6nuo+T5fRMH0WfK4GztkKw69IzZvbHJdfRBr3BL+WiASv+lOY+x2YeTosvNU9LFJERDLH5jdg3g3xhaIB1Felph4REREREREREREREREREREREclc/c90brLtm235Wr0CPvh/sPg2Z9eupe7DysYlWKDspXQAHPJXMLn++lcthfeuhmV3pbauaLbOgRknxg5F6zoGJv0m0KWttWyqWx+1rSI/TcFoJj/q/khjJORKUqxsHEy8DUjTxdedR8CBv0vP2h3ZIX9zwjJjWXSrc32CBOvNL8En//Dff8LN0H1S6urJFoMvgkEhhGYd8lfn9VuSV9IXDrkLjM9wxTcvhNWPpbYmEZGOaulfooeiATRGYNNr8NLR3qFoAIMvDL42yU45hd7tY68Pp45M130i7O8RjAaweyXM/xEsuDmcmkREXGRNMJq1diXwFs4RzZHGGIWjxeeSNtuBfRphrZ0BnAlsarXbAAcC5wHHA+Vthv0X+Ly1tiGoOkQymlsIUF6agtGaVU6HkxdC5QnOdnElHP4AHP4gFDX92HrWaJ0gtFgJyslym79BwWgiGW/XMnjuEFj0K1jzOLz/XZh5inNgSkREMteK/yQ2TsFoIiIiIiIiIiICzuejkZ3O3X1FRERERERERKRjGPN9OHM9HH4/HHoP9J4e3/iP/+h8dQtGG/61pMqTNoZ+Gc5YAwPO9T/+PHKwAAAgAElEQVTm4z+krh43S/8KsS49GvQlOGFO4IExOxu2UWujX7NQUdAn0LX8yjMFUfdHbF3IlYRg9LVwxirnGpdD7wlv3WmvwUnzoPPQ8NYUR9fRcPIiOPYV6DLau++yu3RNUZB2r4VVD/vvf/pKGPP/nGvKOrrcAph8r/N/d/K/4JC/B7/Gmeud120JzpCL4cw1cMTDzmtMTvTg0c98lIb3QCIiHUEQv2NOnwW5McKwpOPw+r9w8J+hsHt4tWS6/b4L/c6I3e/jP+r8LxFJq6wJRmtyq8v34sEYcxgwqtWuOuBfQa5hrX0aGAv8Cdjm0fUt4Bxr7QXW2uogaxDJaA0uwWi5xeHWEU3X0XD0M3CBhTPXwoBz9j4wnRsjGC0Mbn9PDTXhrC8iifv4D7Bnw977NrwCG2empx4REfFnwyuJjYvsCrYOERERERERERHJPgt/CY/0hQe6whMjYNOb6a5IRERERERERETCUtzLCdoachFM/GV8Y6uWQ8062DQrenvnYcnXJ3sr7gVjrvfff9tc2DoHts9veVQtT90FsvXV8Mm9sfsNu8wJpgnYxrp1rm3lBZWBr+dHvoke3FJv2+lNq0v6Ote4DLkIRl6T+vUqT4SKwxWskE55xdBrauzXkPpdsPpxhaMFZd0z/vv2nAyl/VNXSzYyBrqOgsFfgKGXQLeJwc3d4xDn9VqCV1QB/c90XmMaY7yOrn8e6naEU5eIdAw1653fp3Z+BFUroPpTaIwRCN3eNNTC9nnJzWFyoMuo2P2k4yjxCEwvGx9eHdmi8vjYfWrWQO2m1NciIuIiq4LRrLWPAn8HDHCKMeb3xpi8NJeV8ay1r1trTatHobV2cwrW2WitvRLoDRwDXAL8P+Bq4GxgiLV2srX2oaDXFsl49W7BaF6hYxnCK7zNNoZUQ1H0/foAQyTzLb49+v4V/w63DhER8a+hFnYuSmxsfVWwtYiIxKt6FSy5Exb8HLZ9kO5qREREREREOp5VD8P734PIdme7ainMOEmB+iIiIiIiIiIiHVHZBCgbF9+YR/pAY230NgWjpUbZOOffyq9nJ8HT41sejw+FR/snfjPOaBpq4a1L4IGy2DdTLx0M5YcFt3YrG+vWRt1fnFNKaU7nlKwZS76JHgAXsXUhV5IGg78YwhoXpn4N8af3cU5okZfXP+c8T8z5dscLEglKQx28fRm8/RX/YwZ/KXX1tBdBPpfo7ztzPFgGM0+HyM50VyIi2azqE3jmAHik0vl96smR8PhgeGwQ/C8Plv413RWG56PfJT9Hn5OhsEfy80j70fcUyIkSKN55uBM4K3sbcC7k+AgG//Cnqa9FRMRFVgWjNbkCuAMnHO2rwPvGmEuMMXrXkiGstXXW2lestfdYa2+x1t5prX3YWvtJumsTSZsGl2C0vCwIRsuEGhWMJtL+rHky3RWIiEg0tVucD1cSpQtcRSSdNr8Dz+wP710NH/wAnj0Qlv8j3VWJiIiIiIh0LPN/su++yHZY8Z/waxERERERERERkfQyBo58NP5wNDedFIyWEsbAkQ9DWRLnjdWsgVdOgJoNwdQ073pYfg/Yeu9+nUfA1KfApObyuE2RdVH3VxT0wRiTkjVjyYt2gTcQaYyEXEkadJ8Eh94NuSm4xiUnH8beCAM/F/zckpjcApj6LJQO8u7XWOvczH3JHaGU1e58eBMs+5u/viYXRn4Lhl6e2pragxFfdx4mN/E5mv++h301uLokeWseh3f0byIiCbKN8PI02DbXvc87l8OGmeHVlC5Vy2HudcnPc8hdyc8h7UvnoXDEw1DQvWVfl1Fw1BPO8Q/ZW2EP57hKYbl3v49+B1s9nrtERFIoL90FxMMY83KrzV1AZ2A/4G9N7auBjU1tfllr7bGBFSkiEo3bXYpS8YFM0Fw+OAPA2nBqyC2Ovr9mLexYCF33C6cOEYlP9Sr3toJu4dUhIiL+LbkTdn2U+Pj6quBqERHxY+0zMO9G2Dp73zZbD3O+5dzFJs/l90oREREREREJztpnYfsH0du2vAPDrwi3HhERyRjGmAsDnM7inB+4A1gPLLY2rBNYREREREQkbp2GwIkfQPUKePNC2DQrwYkMdBocZGXSWqchcNIHULUCaprCwF6YEt8cjXXw6X9h1DXJ1WKtE4oWy7RXofzwlF7YvLFubdT9FfmVKVszlnxTEHV/xNaFXEmaDLkYBn0Btn8IDXtazglqqHWCJhKRkwddx0BeFlzf09F0nwinLYfHBsDu1d59P7kXRl8bTl3tiZ/nW4Dj3nJ+TvI7pbScdiMnDw68Eybc7Fz31vz89O5VsO396GOmvQqm6XJvk6O/70y26iGIVOnfR0Tit+19JxAslk/ugV5HpbyctPrkn8nP0eNQKIoR5iQdU99T4OxNsGMB5JVC6WCFonnpfSyctR52LIKnx7r3++Re53c0EZGQZVUwGjAV58SmZhYwTQ+A/k0Pvyc6mTj6iogkrn539P1Z/8FJSE+hXn9PT42BM9dDca9wahERfxob4AmPO/MpGE1EJHPU18Cm15wP0T+8Kcm5FIwmIiHa+CrMPMX7pMa6rc5J1ZXTw6tLRERERESkI6rfDW9/2b193bPh1SIiIpnoHlJ3kkm1MWY2cC9wn7W2NkXriIiIiIhIokxTqNnwKxMPRsvJh9zCYOuSfXUa5DwA+p4Ka56Ib/z8m6CkPzTWQt02yCmA4sqmC9Z7+ptj2/tQu9m7T1FFykPRADZF1kfdX16QzmC06De+r7eRkCtJo5x8XYzdkRgD/c+FJb/27rd9HuzZ7P+5pqOpXgm7PoZuE6H6Uyesq2at84hl7A3Q85DU19ge5Xfe++/ugNvhpWP27ddtf6g4Iry6JDmNdc7Pk16LRCRe1Sv89Vt+D/Q5BToPh7KxzrU+7c32D5OfY9hlyc8h7ZfJgbJx6a4ie5gcKBsDQy6B5XdH77PkDqg40gnw7TxCYXMiEppsC0aLRsFmIpL51j4dfX9ulgejJXpHnXh13c+7fdnfYOwPw6lFRPxZ/7xzsN+NgtFERDLD9vnw8nTYs8H/mKJezokR0S5mjewKrjYRkViW3Onv99J1zykYTUREREREJNU+/a/3xTORnc7vcO3xhF0REYlHKs6O7oRzw9WpwM+NMZdYa59PwToiIiIiIpKsfmdCYTnUbop/7MDzg69HvA27PP5gtMh2mHVO9LaJv4JR17pfOGsb4f3vw6JbY68z9PKUX4BrrWVT3bqobRUFfVK6tpd8UxB1f8R6nLctku2GXgIf/RZsg3e/h8th/1/Cft8Jp65s0BiB2VfCsrsSn2PwRcHV09FVHOWESOz6aO/9w65ITz2SuJknw+mrICc33ZWISDZpjCPMuPn3qu4HwVFPQHGv1NSUDtbCqgeTmyO/Cww4N5h6RKTF0Mvcg9EAXjvb+Vp5PBx+v/OzKCKSYtl4xqkJ8CEiknqN9e5J3nlZHowWltKBUDbBvX3e9eHVIiL+LLnDuz2sYEUREfH2xhfiC0XrNBRO/MC5g1k09VXB1CUi4offD0TrtqW2DhEREREREYFP/+fdXl8F1Z+GU4uIiGSq1ufr2VYPL9ZH3+b9BqgEnjHGfC2JOkVEREREJFXyimH6a1B+WPxjJ/0m+HrEW99T4NC7oXRQMPPNvQ62zHZvX/1Y7FC0wh4w+rsw7sfB1ORhR/1W6mxt1Lby/MqUr+8mz+RH3R+xcYQsiGSbsnFw1FPQZXTsvu9/F1YmGbTRniy/J7lQtGkzofPQwMrp8EwOHPsy9J4OOQVQXOmE+SkYLfvUrEs+1EdEOp54gtGabZ0Nc64NvpZ0Wv+Cd/v+t8CgL0Fep+jtxZUw/Q3365pEJHHlk2HIpbH7rXsOPvy/1NcjIgLkpbuAeFhrszHITUQ6uk2z3NtyszwYrauPDxWCUjYWtn8Q3noikrjVjzm/2HpRcI6ISPpVrYDt8/33n/BzGHaZc3KZ2wcMen4XkbBEdvrvu+FlqK+GvNJ92+q2tVyYX9AdSgcEU5+IiIiIiEhHsmej87tXLNvnQ6fBqa9HREQy0SVNXzsDPwJ64ASZNQJvAbOBlcBOoADoDowDjgB6N421wH3As0AxUAbs19RnIHsHpP3aGLPIWuvjBUpERERERELVZSRMnwXL/v7/2bvv6Diqu43j36tqybZcZbl3sHHDdIxppvceWmgJCakvCQkpJCSkUtITEkJIAQKh946BgKk2BmwD7r1b7pKtutLO+8dIUZuZnS0zuys9n3P2aHfunTs/GbE7O+W5MOdqf+sU9IWC3sHWJc5GX2U/6neD1diyfPPL9qSc8Vr7IPQ/1KUtxuQL3UfCWSvtUJkQbI1scm0bUJDGYLQc52C0hmh9yJWIhGzwyTB4EUT2wOP9wetvft53YMiZkFsYXn2Zau2D8a9TMg5O/RhyC1Jfj0DxEDhuJjTWQ04+GBN7HQleYT+o2xHfOmsfhBEXBVOPiHROie6zr38covfYnxudwer73dtOfNcOZgKINkCkoqUtrzuQo30UkaDt9x1Y9a/Y/dY+CAfcFnw9ItLlZVUwmohIVlr7sHtbv4PDqyMZo66E1fd2XD7h++HVUFjq3V651D74LiLp98lPY/dpqAq+DhER8bb5Jf99z98BhX1bXue5zKwS2ZNcTSIiflUs8d+3ag080gNGXAqH3AEFvaC+At69DDY917Zvz33hqMftcG4RERERERHxZ/3jYEW9+3QfBY214dQjIiIZx7Kse40x+wDPYIeiAfwd+IVlWevd1jPG5ABnA78BRgGfARZblvWzdv1OA/4IjMEOSMsDfgsckOJfRUREREREUmXwaWBy24ZtuennEqQl4WkfTDfwRDB5YDXEN87SP0D1eiidDrlF9iT0jbXQZyqse8R73cGnhRaKBrC1frPj8u45Peme63L9XAjyjXMIQMSKhFyJSJrk97TfDzY85d6nag08ORjKjrPDjkZ/zv4s6awBVLs+hu3vQPEI+3fc/Sns/BCIQvnr8Y9XdrwCR8Kgf+PMMuUXMPcrHZd77e9seBoW3mJfdzrweAX5ikhs0QT32aN19ntUz32hzwEw4Jjs/RxprIM197m3t76GPyfP3pcTkXD1HOMvNLZ6PSy4sSm0ECjoY38HK9k3+BpFpEtRMJqISJCiEVhxp3v74NPDqyUZ+3zZPtHYWNOyrN+h0H9aeDV0G+Dd/uJUuKjGu4+IBK9uB+yaF7tfw97gaxERkY4ql9oXg9RssS8y8+PoZ9qGogHk93Duq/d3EQlL9br411n7ANRth+Nehrlf7RiKBrBnGbwwGS6shs0vwo73oddEGHZeywkbERERERERactroqiT3rO/V+Wn70ZBERFJP2NMMfAUMA6IAJdblhXjjnewLCsKPGmMmQm8CBwJ3GSMWWdZ1j2t+r1gjHkLeAOY2rR4ijHmRMuyXknpLyMiIiIiIqlRNBBGfhZW/9u7n8mBcd8Ipybxr1spjL4SVv4z/nXXP24/2i/zklsE+ziElQRoW8Q5GK20YFCodbSXb/IdlzcoGE26knHXwsZnvcM163fC+sfs5yv+Bvt8DQ6+vfOFo33yc/jkx6kbLw3vtyIZYei58OnPoWZTy7L8XnD00/Dase7rLfiB/bP7SJjxEpSMC7JKEcl2iQajQdvvXmUz4OinIL8k+ZrCVLcTZp3h3p5brGtLRDJBTj7s+w1/3zMW/rLta5MLh/wVxn4xmNpEpEsKb6oMEZGuaOub7m3DLoCCXuHVkoz+h8Nxr8LwC6HvQTD+W3DcK3bidlhi3YDeWAt7VoZTi4i4q1jor5+Cc0REwrfpZXjxQJj/fX+haH0OgGNfhKFndmzLUzCaiKRZ3bbE1tsy075hf/2j3v0eKYa3zodFt8F7V8BrJ0B9RWLbFBERERER6cyqN7mfE534Q/s8oy5cFRER+BmwH2ABt/kJRWvNsqwq4DxgJ2CAPxtjStv12QNcADQ0bQfgpCTrFhERERGRIB32D/sYUm6Rc3vZcXYYxeBTwq1L/DnkTpj0Y+g1CQr6BndTfkEfOP4N6D0pmPFdbK13DkYbkOZgtDxT4Lg8omA06UrKZtjXtw48wf86y//ifY9XNqpcmtpQtMGnp+X9ViQjFJXBCW/CiIuhx2g7KO2EWVB2DEx/KPb6VWvsa/RFRLykap+9/HVYfmdqxgrT0j/C9vfc2495OrxaRMTbpBvhwD9A34PjO95jNcIHX4e6HcHVJiJdToiJNiIiXUzlcvivx0H2IQ4BE5ms9Aj7kS6WFbvPlpnQUzOTiKRNZC/M8vneFlFwjohIqCwL5n0bGqv99R97DRz6N/f2PJebWSN74q9NRCQRtdsTX/edi+NfZ8dse5bqcf+X+HZFREREREQ6k9pt8MlPYPkd7n1GXBRaOSIikrmMMXnAFU0v64DbEhnHsqztxpi/ATcARcClwB/b9VltjHm0qc0Cpidat4iIiIiIhCAnH/b/hf2Q7JOTB1N+aj+aPWBSv53TF9thJSHbVr/JcfmA/MEhV9JWvsl3XN5g1YdciUiaDTrRftRsgWf38Tex7/on7JCjzmLDU6kba+ptMOG7qRtPJBv1HAPTH+y4fPDp/tbf+Cw01kOuc4ipiAhRl2C0vgfDKXPt568cBdvejj3W+iey77N7w5Pe7T33DacOEYnNGBj/DfsB8Mw+sHeFv3Wj9bDpBRh1eXD1iUiXkpPuAkREOqX6Cnj1SO8+wy8Ip5bOwteMIwGcSBUJS9VaWPcobJ8DVjTd1STmvSsgUumvb2O1+8E8ERFJvaq1ULHQf/8JN3i35/dwXu7nwhIRkVSo2xb+Npf/NfxtioiIiIiIZCLLgtlXeYeilewHvfyc3xMRkS7gSKA/dlDZ+5ZlVSUx1sxWz89x6fNy008DDE1iWyIiIiIiIhKvMVendryScdBtQGrH9CFqRdkW2eLYVlowMORq2srPcQ5biei6bOmqigbCfj5DQZb9CWZ/Dj641g4Tsaxga0tWQxWs+DvMuQZeORoezIPnJ9q/w+zPwfzvp25bQ89O3VginU1+D+h7UOx+ViPsWRp8PSKSvaIuYcat9/EH+Axx3TGnZZ9gwY2wY27y9QUhGoFV98ATg2D3J+79eoyGYp3WE8lYZcfG1/+9K2DOF2HZX+zvNSIiSchLdwHJMsZMBc4CjgLGAH2BnoBlWVaH388Y0xsoaXpZZ1lWeVi1ikgXsv4JqN3q3l48DPKKw6unMyg9Cgr6QP0u9z553cOrRySVVtwFc78GVoP9uux4OObp7PqbXv7X2Kn97dXtsE9EiohI8CrjPMnaY6R3e55LMFpkT3zbERFJVDqC0SoXh79NERERERGRTLT1TXtmTy8jLrJnDxUREYHhrZ5vSnKsza2ej3Dp0/pAXp8ktyciIiIiIiLxGPdNWPnPFA1mYNKP03KccXfDDiKWc2hBaf7gkKtpK8/kOy5vpIGo1UiOyQ25IpEMsN/1UP6qff4illX32D+X3Q6jPweH/yvQ0hJWXwH/PQF2ftB2ecUi+5FKIy6xgyhFxN2kH8Fb59vhZ15emAIXVkNeUTh1iUh2cQszzmm1jz/2Glj1L6jZ7Ny3teb9GoBFt8Lhd8Ooy5MqMaUa6+GN06D8tdh9J/0YTE7wNYlIYsZ9E9Y9BpHd/tdZ+Q/75/K/wknvQn6Jd38RERdZu4dgjJlsjHkV+BC4CTgOGIkdemaaHk5mAKubHsuNMUomEpHUW/uQd3v/w8OpozPJLYCpt3r3aawLpxaRVKre2DYUDeyDPYt/k76a4tVQBXO/Gv966QizEBHpqqrX+u+7/y9j93E7GNlQCVbU/7ZERBJVq31JERERERGRtFn+l9h9hl8UfB0iIpItBrV6nuzsYM3X+hnAbRau1jPuFSa5PREREREREYlH70lw+iIYdEriY/Q7HEZeDjNegpGXpq62OGyrdw8hGFAwyLUtDPmmwLWtofX16CJdSV4RHPMc7H9zfOutuht2fhhMTclafW/HULSUMJDXdIiu32Fw0B9h2n0BbEekkxl6Nhz3Goy+yt5X8bLukVBKEpEs5CcYrftwOGk2jLsOSo+C4mH+xrYaYd533LeRDhuf8ReKNu3fMPrK4OsRkcT1nggnvQf7fh1Kp9v7Q7H2iZpVLISlfwq2PhHp1PLSXUAijDFXAX8BumFf5GS1arZwD0UDeBpYhz1jZHfgfEBHb0QktbbM9G4v6BtOHZ3N2Gvg/S+5t7//RRj7hfDqEUmFdY+2DUVrtvE5mHxT+PVYUaheDzndoKjMu2/1RjuJf92jiW1LYRYiIuHZs9J/36Hnxe7jtj9rRSFSCQW9/W9PRCQR9TvSs91dH0OfKenZtoiIiIiISCaINsY+L9B7f+g1Ppx6REQkG1S2ej4hybEmtnq+16VPt1bPa5LcnoiIiIiIiMSr134w48W2y54cCjUbY697/OtQdmwgZcVjW8Q5GK1HbgnFuT1CrqatfJPv2hax6ilQRrh0Vfk9YeIN0GcqvHGa//U2vQh9DwqurkRtejF2n3icOs/+txGRxJUdYz8AXjseyv/r3G/TCwr4ERFnlktoWft9/O7D4aDfNa0ThUd6QKOPU1615bBzHvQ/NLk6U2X9E7H75PWAkZcFX4uIJK/XeDj49rbLVt4Ncz4fe911j8GkG4OpS0Q6vawLRjPGnA/8k7aBaAY77Gwn4HmExrKsqDHmYeC7TYvOQsFoIpJq+SV2IISbgj7h1dLV7FkJPcekuwoR/z66znl5ILP7xLD7E3jvStg1z3498rNw6F2QV9y2X91OePsCKH89ue3VKRhNRCQ0e30Go429xt9Nq4UeQb/1OxWMJiLBi+xJz3aX/A6m3ZOebYuIiIiIiGSCpb+P3WfERcHXISIi2WRD008DjDbGHGZZ1pwEx7q86afVatz2Brbqo5PSIiIiIiIimWDYebDsdu8+hf2g/+Hh1BPDprr1jstL8weFXElH+TkFrm0Rt6AFka6k9CjILYbGan/9P/4R1O2AcddCj1HB1mZZsOIu2Pxix0nmC/pC6TRoqIbts6H8tdRtt3gY9JqcuvFEBAad4h6Mtu4R2Hsb9BgZakkikgWiLvvrOe7hx5gc+z1nw5P+tjHzMBjzBfvR/7D4a0zWrgWw4m/2farb3o7df/CpYEzwdYlIMAadaL9PWVHvfrsXwMwjAAO5RdB/Gux3PRT0CqXMTqVuByz+DeyYA411Hdsn3gBDzgi/LpEAZVUwmjFmEHBv08vmULQ7gN9alrXaGDMSWOVjqKexg9EMcEyKyxQR8f4iCmCy6u03s4y7zvuGi9X3wpSfhVePSDKq1nq3W1bwB3b2rIB1j8LuT2HtA23b1vwHigbBAb9uu3zO55MPRQOo3Zr8GCIi4s2yYNPzsP7x2H37HACH3Olv3AKPYLS6ndBjtL9xREQS1bA3dp8LdsKz+0Ld9tRtd/W9CkYTEREREZGupbEWVt0L1evsYz7zvhN7HQWjiYhIW7OACPa1iga4wxhzlGVZPu9OtRljLgJOouW6wVdcuh7Y6vma+EoVERERERGRQIz/Fqy62/t6j6m3QW638GpyYVkWb+x+zrGttCD9wWh5xv1elYZofYiViGSo/B5wwK/gg6/7X2fpH+x7KU56L9jrX+d+FVZ4XKe7yfm9Jykmz74fJCc39WOLdGVjrob533Vvn3l403tKwIGLIpJd3PbXPcKPAZj8Y9j2lv9r4lf+A1bfB8c+DwOPj6/GZGyfA/89Hhqq/PUvLIVJPwq2JhEJVvFQmHADLPxl7L7b32t5Xv4abHgKTp4DecXB1dfZ1O+GmdNgz3L3PrpvXzqhnHQXEKcfA8XYF0hFgQsty/q6ZVmrm9ot1zXbmot9sRVAP2OMvl2KSOo01Nhpq166jwinls5o2Hne7Ts/CqcOyX6W392GAG14xrt9zhcSH7v59/P6Pbe9Cy8dBAt+0DEUrdmyP0Nkb8uMBJE9sOkF/3Uc8lfof4RzW50m5xYRCdxH34ZZZ/rre+I7/gM580uwv5o7qN/lbwwRkWT4CUYr6AMDT0z9tiN7Uj+miIiIiIhIJmqosc8jzP0yLLzZ33mLsuMUmi8iIm1YllUJPId9YsECpgIvG2OG+R3DGPMF7AlVrVbj3O/S/eRWzxckUrOIiIiIiIikWI+RcNZKmPwzyCm0J+YsPRK6j7RD00581w4YyQDLaj51bRuQn/5gtHzjHpoQsSKubSJdyr5fgxPegoEnAAb6HR57ndqtsPTPwdVUtR5W3pXaMUddYT/KZgDGfk8ddQWMuNT+OfFGOHm2JrQRCUJhXzjW496q2nJY/tfw6hGR7BB12V/PcQ8/BqDPVDjlA5j6Kxh1pf05H3NbdbDwlvhrTMbiX8cRitbP/p16Tw62JhEJ3v6/gGNfhHHX+Xt/albxKax7NLi6OqM1//EORRPppPLSXYBfxphc4BJaws9usyzr8UTGsiyrwRizBGjeWxoPrPZYRUTEv8rFsfv0nhJ8HZ1V6XTvdreDAyLNKhbD3K/Ajveh5772l64hZ6Snlqo13u2r/mWn3vcY6X/M+t3277f2oZZlpUfCIXd0PFC04AcQqfQer7EWHu1pPy8aAiM/6+//s+KhcPZaMDmw+WXnPrUKRhMRCYwVhfeuhDVu9wS1M+wCyCvyP77JsQOH6nd2bHNaJiKSSlbU/0nTkvGp3/7ml2D4Z1I/roiIiIiISKZZdAtULPLfv/tIOPgvgZUjIiJZ7XrgVKCw6fV0YJEx5n7gUeCDpgC1/zHG7AvMAL4AHEjLjC0W8E/Lsj5pv5GmsLVjabnG8K3U/hoiIiIiIiKSsG4DYPKP7EcGW17tEYxWMCTESpzlG/fQhIhVH2IlIhluwJFw3Cstr7f8F/57vPc6W2cFV8+2t+zr3lKlbAZMuzd144lI/Poc6N0e5HuKiGSnRIPRALqPgAnfaXldNAgW3ea9zra3INoIObn+a92C23wAACAASURBVEzG1jf89z3meeg+PLBSRCRkg0+xHwD5vWHZn/ytt3UWjL4yuLo6m/I30l2BSFpkTTAacDhQ0vS8HvhVkuNtoCUYzffskyIiMe12PxEG2MFE/Q4Jp5bOyBjoexDs/NC53WoItx7JLvW74JUjWwJbdi+AN8+2ZwMqPSL8eiJ7YveZeRiMvhqGnWe/f2x/F2o2w4BjoLjdyfU9K+HZsR3H2PY2vDAFRlwMg04Gcux/g3gPstdshMU+d8Em3miH5gAUljr3qVMwmoiIo8he2DEH6rbD4NMhv0f8Y3x8k/9QNICxX4x/GwV9FYwmIunRUO2/78hL7ZO+jT7WGXEJrH0wdr+3L4SL6/2dhBYREREREckWlgW7P4Zd86HvgdBrIqy62//6Rz5in4PIL4ndV0REuhzLslYbYz4P3AfkYAeXdQeuaXpgjKkE9gAFQK+mn9A2EM0Ac4BvuWzq+03jA9QCr7j0ExEREREREXG0pX6Da9uE7lNDrMRZnilwbYtYmmRexFXpkfZ9DV73MOz6CB7vz/8OR0Xr205EX9i/5bnJgd5TYPy3YPCpbcdpqIHlf4HV90FeD9jnK/Y5mFQaem5qxxOR+BWVQf8j7Pu8nOx4H+Z+DabeCvk9w61NRDJTMsFo7Q09L3YwWrQeHsqz70ua9CPof1j823HTWAsLfgibXoDKJfGtWzwU+h6culpEJLOMusx/MNqqu2HbOzDoJHufKa97sLVlotX3wYq77PsxB58OU34OteUw/3uw9qGWfvm9IbI7fXWKpFE2BaM1p3xYwNz2M0QmoPX6ujJXRFKnYqF729Bz4bC/2+FekrjGWve28v+GV4dkn3WPdgxrsaKw8h/pCUZr2Bu7T+1WWHSL/WgtJx+m3Q8jLrRfL/8bzP2y91hrH2r7RSgoB/ymbcBONwWjiYj4tnc1zDqzZZ8yvxcc9QQMPM7/GNFG+7PNj5LxsP8t9gHEeBX2BaePsrod8Y8lIhKPhir/fXuOhWNfgLlfgcrF7v1GXWHPoDn6KvjoOqhY5D3uxudh2Dn+6xAREREREclk0Ub48P9g+V9blpUeBdXuNwC2MehkGP6ZYGoTEZFOw7Ksh4wxUeAu7Ov1rKam5otoejU9Oqzaqt/LwMWWZbkdJLwPeKTp+V6PfiIiIiIiIiKOyus3Oi7vndeP4twEJjlNsTzjfitgQ7Q+xEpEskxuARz6N3j3Uu97kryuga3b3vb1llfte5iOfbHtdbjzvwvL/tzy2i00KVEDT4LRn0vtmCKSmIP/BC95hPssv8OemOrEt3U/qYiAW5Bxjnv4sat+h/jvu+l5KH8NTpoDfabEvy0nb11gj5uIQ++CnNzU1CEimaffITDhe7HDG5vtWWY/dn8Cx7/etfaZVv4T5nyh5XXFItg1z76vtGZz274KRZMuLJuC0VonaqxPwXjRVs+z6d9BRDJd1Wrn5SM/C0fcH24tnZXXSQiAJ4fC5JtgzBe61g6wxLbkD87LV90Nh/8r3FoAInsSXzcagXcugrJj7RNssULRwjJjJgw6se2ywgHOfWu3Bl+PiEi2mX9D26DdSAXMvhJOXwz5Pi+qqtsGtVv89T3DIyQolnyXjPF4AotERBLhJ2C4tbJj4PSFsO1tWHUPrHuk7RjdBsLEH9jPB51k9y2fBa8d6z7mwpsVjCYiIiIiItmtbid8fGPbMLTWtr3lf6z+01NTk4iIdHqWZT1ijHkX+A1wHi3X7VkO3U2rn6uBX1qW5Xli37Ks2amqVURERERERLqeqBVla/0mx7ZzSq8IuRpnxhjyTQERq2MImtMyEWll2Ln29bhrH4QFP0jNmFYUlv6xJRht72o7CClVymbA2C9BQV87LKBkPAw4GnLyU7cNEUlc34Pg5LnwskdA0fZ3YftsKJ0WXl0ikpmiLsFoJoHPdWOgoA/U7/LXv7HW3kc59M74t9VexZL4QtHGfRP2roT+R9j32XcflnwNIpLZpt4Kw86Hbe/Y9xlueiF2YPTWWbDzQ+jnETrb2Sz+TcdlW16Nf5zBp0P/pn3NvgcmV5NIBsqmQLDWFz+lIga2b6vnikcUkdSpWue8vPuIcOvozKJ13u01G+H9a+xZ7Kf8NJyaJDtUJhH+EoR4Ax2cPFGW/Bip0nuyfeKtvW6lHZeBHdwjIiItrChsfLbj8uoNdojPmM/7Gyes4MmcQufljTH21UREkpXIfrQxMOAo+3HQH2HD07B7ART2t0+wFg9p27/sGCgZB5VLncfbOdd+v8t1eS8UERERERHJZA018OoxUPFpasYrHpqacUREpEuwLGsDcLExZhBwAXAEsD/QH+gN1AG7gLXAbOBVYKZlWU7haSIiIiIiIiIps6thm2u42MCCIY7L0yHP5LsEo7kELYhIix4jYcL3YfGv/QeJxLL55ZaxVt1tXw+cKtPua7m2rf0E9iKSGfocALlF0Fjj3mf7e9kVjBZpuk7X78TuIuJP1CXIONHAUxNnTMjml9z3f/J729fbg70vE6nwHscvkwsH/d5/fxHpPPodYj8ARl4Cz4yJvc7ml+xgL5MTbG3pYllN768W1FdA5ZLUjDvtXijsl5qxRDJQNgWjtU7OGJyC8Sa1er4jBeOJiMDeNbBjjnNb8fBQS+nUGmv99Vvye9jvOzoIJ/401EBeUcjb3BPu9oI2/WHIcdi9LHQLRttp//+c2y3YukREskXDXmisdm77+Ef+g9HqQgpGcwsDcjtZIyKSKskGDOf3gFGfBT7r3a94mHswGtghAifPTq4WERERERGRdNj0QupC0QBKj0jdWCIi0mVYlrUZuL3pISIiIiIiIpJ2W+o3urYNyKBgtHxTQA1VHZY3uIS6iUg7xsCIS2D5HakZz2qEx/qmZqzWBhzdccJPEck8Obkw/DOw+t/ufeZ9G2o2wdRbne+7yhSbXoKPvgWVi+3XJePhgN/CkNPSW5dIZxF1CTJOOBjNxNe/aq37Pku3MhhztX2/59qHILI7sZraG3BMasYRkezWYzT0PRh2fuDd7+MfweLfwshL4cDfQ25BOPUFzbJg0a2w7Hao2Zz68RWKJp1cNkUlrmv6aYADjDEJ7uWBMWZfoPVRoY+TKUxE5H/eucS9rXhYeHV0dhNu8NevYU/snWTpOmIF6lWvD6eO1pINdAjCkY/AyMviX2/fr0Ov/Zzbiga5rGTZB81FRMQW8QjMrNkE9T5PLNT6DEab8nN//dzkuBxcVDCaiAQtEtJ+dKzvEDvmwPqnwqlFREREREQkUTs/ggU/hPk3wPY59kWsb1+QuvGHnQ8l41I3noiIiIiIiIiIiEialNdtcFzeO68f3XJCnoDbQ75LcELEcglaEJGOpvzcDh5Lp4K+cOyLkNejY1vPfeCwf4Zfk4gk5oDfQL/DvPss+S18fGM49SRi1wKYdUZLKBpA5RJ480z7nLOIJC/VwWjEGYzmpbYcFt4MK+5MXSgawPhvpW4sEclu0+6D7iNj94vstkOsP/xG4CWFZtmfYcEPgglFG3VF6scUyTDZFIz2HlADWEAR4JE+FNO1rZ6XW5a1NJnCREQAqFwOO2a7t3cfHl4tnd3Qs/33nf354OqQ7FFfAS/HOMC8Z0U4tbTmFYCTDmeusGcp2efL8a/r9f9lyTgo6OPctvXN+LclItJZxQrM3OAzfMdvMNrQc/31c+MajFaX3LgiIrE0dpzxNhAl42P3mfslO1RARERERETiZ1n2Q4Kz4WmYebh98eqiW+3nj6dwhsj9b4HpD6ZuPBEREREREREREZE0Kq/f5Li8rGBIyJV4yzPOwQkNbkELItJRYV84/nU47VN7cvn2jzDs920YfAqcuxmOe7Vl2yfNgdMXQs+x4dQhIsnrVgonvRs7mGLlPyDaGE5N8Vr5L7AcarOisFJBjSIp4RZk7HZvTmeQX5LuCkQkU/QaD2cug5Pegz4HxO6/+t/QUBN8XWFY8bfgxu6h743S+eWluwC/LMuqM8a8BpzRtOiXxphnLMuKK3bWGDMd+BJ2wBrAEyksU0S6quqN8Ny+3n26DQinlq6g5xg45A6Y+9XYfatWQ/1uKOgdfF2SudY9Crs/9u4z63R7do6D/gT9Dw2nrlgBOGEpGgLHPGv/vwXQ/wiY8H37Jik/9rseyo53b8/Jh0GnwFqHm6Nqy+OvV0Sks4oVmLn2YRh9VYwx9sJH18Xe1tTboPdE36U5yil0Xh6tT25cEZFYwjq5MfKz9kUoXmq3wtI/wZSfhFKSiIiIiEinsOMDeP+LULkUek2E/X8Jg05Kd1Wd0/zvuc84nIzuI+DIx6DfwakfW0RERERERERERCRNttRvcFyeacFo+S7BaBG3oAURcWZy7Gtpna6nLZsB5a8Hu/1ek+yf+T1goMf9GCKSHUwOjLjEDvFwU7cDajZC9+Hh1eWmepN9T1eviZBbANvfde+7/jE4+M9gTHj1+RGNQMUiaKxNdyUi/tTvcl6e47x/3ymYrIkyEZEw5ORD/8Nh8k/hzbO8+zZWw5r/QO/JLct6jLYDaTNBtAH2rIAeoyC33T2WVhQql9j3ijbWQsXC4OrozJ8hIk2ybW/il9jBaBYwBJhpjDnDsqytflY2xswAHgNyAAM0AL8JqFYR6SqsKPzXxwHovJ7B19KV7PMVGHIWvH8NbHrBu+/cr8KhdypdvCvbMtNfvx1z7P+fT18Y/EFmywo+GG3fr0NuEfQ50P5yU/46FA+G3GJ7Fo+8YigeBqVHQUGvlvWMgam32OE7z413H//Qu2DA0VAyLnYt3cqcl0cq4vqVREQ6tVifC5tfgsrlULJPx7ZoA2x8Dt461339HmNhys+g/2H2gcBkuc1Ko2A0EQlaNKQLGEqPgpLx9gkJL2vuh8k3Zd4FHyIiIiIimahqHbxyJETr7Nc7P4A3z4XTFmjW+1SrWmuHz6XawBPgqMd13k1ERFLCGJMPHAqMAfoCPQFjWdbP0lqYiIiIiIiIdEnl9Rsdl2daMFqecb52L2Lp2j2RlBl1VcdgtLzuMP7b8GkKDl0VlsKgk5MfR0Qyy8DjoWiIHX7m5ukRcO4WKHK5zypoNeXw9vmw7R37dW6Rfc9ZpNJ9ndqt8MwoOOoJ6HtgOHXGsvo++57RoO/NEwmDS/BxUgafDpueT/248VJgj4g4GXSyfc95bbl3v/e/6LDuqTD9wbb3xIdt3WMw52p7/ymnEKbeCuO+Yd9TtOW/8O4l9v5TGHKyLTJKJH5Z9VduWdYcY8xDwMXY4WgHA0uMMb8HHgE6HME1xuQCxwJfBD6DHYhG0/p/tCxrTfCVi4gvjXX2QZ9ugyCvKN3V+Ff+X383FeR2C76WrqZ4CBzxgH1A0Ctcae2DsPEZOHW+bqrpqtY/4b9vw167//hvBlcPQGONHawYhMJ+cObKjl/shp8f3zgl42DM1bDyn+0aDJyzDoqH+h8r3+VLpoLRRERaRPbE7vPcvnDqPOgztWVZ7XZ4ZTrsWea97tgvwMhLkquxNbdgtMa61G1DRMRJWDO75eTC8W/AB1+DDU+D1eDcb+9K2Pkh9Ds4nLpERERERLLZmv+0hKI1a6yGT34GR3jMnC3xq9sezLgTvqdQNBERSZox5kjgeuAkoNChS4e7S40xpwAXNr3caVnW9cFVKCIiIiIiIl1NTWMVlY27HNsGFsRxzXQI8l2CExqsSMiViHRioy6HqtWw6Fb7erXi4TD9Ieh3qH3z+/I7Ep9IuOe+cOSjkOt0WExEslpOPhw3E966ACoXu/d77zI47pXw6mqz7StaQtHAvr+tsSb2elVr4fVT4Jz16X//2jXf/j1EOosgwsP2vxm6ldohglZj6sf3S4E9IuIkt8DeF3r7M/FP/Ln5Rfjg63DEfcHUFkvlcnj7Quy4IuxrIT+6DnpNgL4Hw6zTw7vnCcDofVY6v2z8K78aGAccgP1u0Rv4SdOjzdEkY8xiYBTQvEdomtYxwLvA98MoWEQcRBtg/vfsWeGr19k/a7fYbSe+DaXT01tfPDbP9NfPmNh9JH4FveDA38Ocz3v3a6iC+d+Hox7z7heNwKLbYMMz9kG90iNh8k/SNwuDpEZuN/tvwC+vg8+p0lDt3nbqAigZD4/3S2zmitM+TV3a9YQb7Pe56vUtyyb+ML5QNHC/ScprRhERka6mwUcwGsCca+DkOS37lx99M3YoGsCwOAMyY3E7oZnohR4iIn6FGcBYVGZ/j7QsO1TgyUHOJ4fXPaxgNBERERERP3Z/7Lx8zX1w2D/si54kNaIBXNha2A8GHJP6cUVEpMswxnQH7sKeGBVaJjltzXJZfSFwOZDTNNZ9lmUtSHmRIiIiIiIi0iWV1290bSsrGBJiJbHlG+dj6RFL1+6JpIwxMPkm+36K2i1QPKzlut2Dfg9Tb4HKZbgfygK6j4SaTW2vqy3oA92HB1m5iKRbrwlwxiJ4cjDUbHbus+VVu61oULi11WyGLT7vhXVStw02vwxDz0pdTYlYnaYgFJGgBBGMltcdDr8bDrrdngTcyYtTY4/TbQDM8HjfyO8Fz4xyb3cJdRYRofdkOGMJVK2HmYe57zc5WfcoHHoX5BUFV5+bNffj+D1w1b2wd3V8oWinzrd/mjzIKbAnmG2taAg0VsG878K6R5zHCOIzRCTDZF0wmmVZNcaYk4GHgONoedcw2LNHNgefGewAtf+t2qptJnChZaUz4lakizO5sOLvzuEPVeuyJxitsR4W/zrdVciYz0HvSfDyod79Njxt30DvNSvBu5e13Tms+NQ+2Hjqh+7BTpnOikLFQsjrCT1Gprua9CgeBpVL/PePJBBGFq+ox5eb3CL75q/hF8Cqe+Ifu1sKg/x6joGT58L6x6FmI5TNgIEnxD+OW1BbpCK5+kREOpOPb/LXb+dcWPUvGHiiPSvCmv/4W6/n2MRrc5LjcqOygtFEJGhe+9JBMcaeNWvgCfZFHe2Vzwq/JhERERGRbLT2Ife2ysXQZ//wauns/Ibwx2O/7+hiKhERSZgxpgR4C5hEywSnrTVf2+fIsqz1xpgXgDOb+l4MKBhNREREREREUmKLSzBagSmkd16/kKvxludynDYSjYRciUgXkFvgHGSW2w36TIm9fqomvBeR7DPkTFhxl3v7ir9D3wPte9jyiqDf4fZkvkGo2QzbZ8PG55If682zYdq/of806DGmJTQyDFYUKhbBkt+Ft02RMJTsl/oxc5oiRPJ7uF+LM+JSWPuA9zijrkruWp6crIsyEZGwdR8Goz8HC2/2v060Dj75CfSaCLXl9mSfg09NTeisZdnXMe6aD05xRJ/+zHm9tQ/Apjj2tYZd4PP9tb+dOeDG6H1WOr+s/Cu3LGu7MeZE4PqmR2lzU7ufzZqD0nYDvwZ+pVA0kTQzxj4wXLGwY1v1+vDrSUT1Jngqs2b+6dL6HQIzXobXT3bvYzXAnmV2irCTZX9xTszduwI2PAOjLktNrWGqWAKzToe9q+zXZTPgqCegoHd66wpbvAEtDSEEo3mlPud2s38e/Geor4CNT9sHb/0oHpr6g8pFZbDvV5Mbwy1YsF7BaCIiAEQj9j6HX3O+EFwtfrkFozXWhVuHiHQ96XyfGXquczBaxUJ7n93khF+TiIiIiEi2+OSn3u01WxSMlkqpPtcx9BwY/+3UjikiIl3NY8BkWq7tqwceAV4HosA9PsZ4EjsYDeBE4IbUligiIiIiIiJdVblLMFpZwRByMux6kHzjfO1eg6VJTUVERDLGmC/Cyn86B2oAfOIwqfohf4V9vpzaOpb/FT74P/c6EvHeFfbPsV+Gg28PJ/iooQreuQQ2Phv8tkTC1GMslB6R4Moe95D6CcrZ50uw9kE6xnI0ySmAMZ9PqLKWMTT5noj4MPpzsPi3duCZX4t/1XHZgX+A8d9IvI6GGns/Z/1jia0fqfTfN559Pq99LQVQSheQWUdm42DZfg2MAK4GHgI20jJzZOswtOeBa4FRlmXdolA0kQxR7DBjBkDVunDrSERDlULRMtHAE+wDAV52f+q8vH43fPB19/V2vJ94XeliWfDWuS2haADlr8NH16WvpnSJ9+afjc+kZhaM9vausm/8ev9LsPrf7v2ag9HyusPRT8D52+HcLXCMj5oGn5GaWlMt32Wmo8hu+29VRKSra/15HYRxAXz+5xY6L483kFREJF5eIcPNxl4TzLb7HOC8vLEaqtYGs00RERERkc5gw9P2LI1e6raGUkqXEdmTurFGXApHP6kLqUREJGHGmAuAE2i5s+I9YB/Lsq60LOseYJbPoV5qHhLY3xjTI6WFioiIiIiISJdVXr/BcXlZQebdN5JvnMMFIlYk5EpERETEVb+D/d0H1trcr8CelamrYc8KmPu11IaitbbiTlj/eDBjt7f0TwpFk84lr7t9H+gJs4IJD/Mz5oCj4ajHoffktstNDvQ9CI57FUrGJVeHn4A2EZGeY+H416DvwWByEx/no29CxeLE11/xt8RD0fzqNRGOfAQGHu9/HZfjQDHbRDqJrN+bsCyrFri76YExxgB9gAJgh2XpqK5Ixuo+zHl5dYYHo9VXwBNl6a5CnJgcOP0TeLjIvc+2t2DkJR2Xr33Qe+z6XcnVlg67F0Dlko7L1z0Kh/69a9280lAV/zqzzoQpP4dJN6amht2fwGszoG5H7L7NwWjNCvrYP/0cSBp9VdylhSK/xL2teh10HxFeLSIimSjocGCn/Z9k5TjPOqlgNBEJnJ9gtNGfC2bbvSa4t5W/AT1GBbNdEREREZFs5+cC5fe/DKMuD76WrqIhRcFoQ8+GI+5PzVgiItKV/aDV80+BEy3Lqo53EMuythhjtgIDsCeF3Q+Ym5oSRUREREREpCsrr9/ouDwTg9HyjPO1exFL1+6JiIhklMGnwIiLYe1D/tdZ9yhM/H5qtr/2IVrmKwnI2odgxEXBbqN5O7GcPNcOGxHJBjn5wd7f6zeQbNi59qOxDqxo07q5kOtyv1C8ggh9E5HOqXQ6nDIXGuvbhrq+cQpsfdP/OOsegck3JVbD2ocTWy+W6Q/BkLPsHIzcwvjX9/q86EpZEdJlZfxfuTFmf+AkYALQv2nxdmAx8IplWfNa97csywJ2hlqkiCSmeLjz8qq14dYRr9eOg2hduqsQN7ndYPDpsOl55/b1T8JBt0NOu8TgWAfH6rPwo2XTS87LG6qgdgsUDw23nnSxookFowF8/CMYeAL0Pzz5Ohbd5i8UDToGozXrMdp7vUk/hv6HxVdXWPJ7ubctvR0O/E14tYiIZKLq9cGO3++Q1I/pGoymfWURCVis95n9b07NPryT/B7Qcx/Ys7xj27qHYUxAgWwiIiIiItluh4+8ksZqqFwOJfsEX09XsOaB5MfILYZp94MxyY8lIiJdljFmEDC11aL/SyQUrZUl2MFoAPugYDQRERERERFJUqPVyLbIZse2soLMu+Y+3yVcoMGKhFyJiIiIxNTv8PiC0RbcAL0nw6CTkg8U2jUvdp9kbXrBYbsfQ/nrUDTIDofLL0l8/OpN9jZ2f+zdr7Af9J6SujAnkWwXb1BOIkE9fvgNaBMRadb+s3zAjPiC0T75CUQbml5EoWo9FA+BgcdD2XF2OFlrVeth80t2vsmO2clU7szkwoCjIa8oiTE89gn1PitdQMb+lRtjDgR+Dxzp0e0WY8w7wLcsy/ognMpEJGW6uwSjVSyCyB7I7xluPX58cC3s+ijdVUgs477hHoxWuwW2vwsDjmpZVr0Btr7lPWZdFgajNex1b9v5YdcJRmtI5npqYOY0uKgu+QOja/7jr5/Jcf8iYnKg32GwY07HtqFnw5SfJl5f0Ar7ubdteErBaCIiVeuCG3vSj4IZN8flxEdjbTDbExFp5vY+k9cTzlhsn7QI0pCzYMlvOy7f8irUboNupcFuX0REREQkG8W6SLnZ2odgckDHMrqSrW/DtreTH2f0VXZAtIiISHKmNf20gPWWZcVx1bKj1hdweJyIFhEREREREfFnR2QrDVaDY1tZweCQq4kt3zhf1x6J1odciYiIiMQ06jJYfBvUOIewOpp1Bgw8AY5+CvK6J77tXfMTX9evaD3Ubodu/e3XS/8MH16LfUoAKBkHM2a630vsZdt79r9FvY/7Osd9U6Fo0vV4TXLnFaITpmQDHkVExlwNy273tz/QbOEvOi5bdCuMuBim3dcSHln+Brx5NkQqU1Kqo1FX2mGxyfAKu9T7rHQBObG7hM8YczbwFnYommn1+F+XVo8jgTeNMeeEXaeIJKnPVOflVgNsnRVuLX7M+5694ySZb9CJ9o6pmy2vtn29eSb/O9jmZsdssKJJlxaqyB73tjfP6fjv0Fl5BcT59aLL+1UQcgq9D0oNPct5+fhvB1NPqnQb4N62dyWs9vh/VkSkK6heH9zYQ84MZtwclxOH1esh2hjMNkVEwD0YbeQlwYeigX0yxInVCOsfD377IiIiIiLZqHS6v35r7g+2jq5ijc9j7rkeM1FOuAEO+lNq6hERka5uYKvnC1IwXuuLAJTgKSIiIiIiIkkrr9/g2lZWEMK1KHHKcwk5iFiRkCsRERGRmAr7wUmzYdDJ8a235VVYdW/i262vgL2rEl9/v+thwDH++i74gf2zdhvM+xZt7tOsXAoLb06shg+/ETsEpdckOOQOmPjDxLYh0ll5heiEyWRIHSKSvboPg5Pes+/j6TEGiocmPtbah2DTC/Zzy4IPvuYvFM3k2tttfngpGmT36XsITPkFHHpX4vU28wo/0/usdAEZF4xmjBkPPAgUYQefWbR8C2odkGa1enQDHjDG7BdutSKSlF6ToFuZc9vqDLvp4aPrYfGvYvcbdp7z8sk/S209Etuoy2Dwac5t7WdY2LPc35gbnk6uprCt/Id3++zPuwcKdCapCEarXAy7krg+u7HOf9/cbt7tY78MfQ5su2zUFVB6ZPx1hW3wGe5t718DkRT8txIRyVa1W5yXJ/v+PuZq6Htwqo8CRwAAIABJREFUcmO48ZpRaeMzwWxTRLqmHXNh1lnw3ASY80WocbkYNacwnHr6HmSfUHEy9yvh1CAiIiIikm3cAtbb27MMKhYHW0tXULEwdp9TF8AJbzq39RgNU2+GnNzU1iUiIl1Vr1bPUzHVcuswtC5w0YOIiIiIiIgErbx+o+PyvnmlFIR1PUoc8o3zMfcGqz7kSkRERMSX7sPh2Bchr3t86214KvFt7v448XUBhl8IJ7wBl1oxu7Jjjv1z80sQdQhqTeSezJrNsHOud5/CfnD6J7DPV8AY774iXY3JkOs9vMJ8RET8KtkXpj8IZ62Ac9bD4UmExzbvX+1dCRWLYvfPLYaLI/Z2mx/7Xuvc1+TBuZvsPqe8D5N+mJrr77zCzzIlCFMkQBkXjAbciR101hx6ZoAG4D3gEeDRpucR2oakdQP+FnaxIpIEY2DgCc5t6x6GnR+GW4+bpbfDkt/G7jfoFBh/PS1vTU1MnntgmgSraJDz8sjutq+r1/sbb80DydUTpo3PQ2O1d5/q9bDppXDqSaeGqtSM88HXoHZrYuvW7/LfN1YwWmFfOPEtmPZvmHgjHPMcHH5PdhzAHXq2e1tjLWx6PrxaREQyjdtnTO8p8Y/V7zCYeisc8zwc+vfgPiO8Lvja/HIw2xSRrmfXfHjlKNj4rB1YvPIfsO0d576x9qVTxRgYcZF7+7zvhFOHiIiIiEg2sRr99133aHB1dBVu35ua9TkQ+kyxg59LxndsH3FJMHWJiEhX1fqEeS/XXv4NbvV8ZwrGExERERERkS7OLRitrGBIyJX4k2+cwwUilkMQiYiIiGQGY6DsuPjW2fIKzJwOC26E3Z/Et+6u+fH1by+ecNjdH8PbF8J7Vzi3126BBww8tx+881lY/FuoXAaLf2e/fvM8u/0BA2+eY//OL0yOvd0BM/zXKNLVmAyJEPEK8xERSdSgkxNfd9XdsPRPsO1tf/0L+3e8N3P4Z5z7jv5c4nV58QqZ1PusdAEZsldjM8ZMAo6mJRAN4LfAQMuypluWdbFlWRdZljUdGAj8ut0Q040xCdw1LiJpM/h097a1j4RXh5uqtfChS2pre0fcD6XTYNp9UFhqLysaBEc9Dr0nBlejuMvr4bx83aNtU3zX/MffeOsfS76msCz+lb9+G58Nto5M0BAjIM6vbe/AE2Ww5A/xr1u/O3afZjk+whzyimHU5bD/z2HI6dkRigZQEOMa90RmABER6SzcgtH67A89Rsc31thrYML3YMhpwX5G5DjPOgnACuWWi0iKLPkDROv89Q0rGA1gxMXubavuhmgcoQ8iIiIiIl1BPMFoycx6LbbcIu/2o5v+jY2BGS9B30Ps1zmFMPZLMPkngZYnIiJdzrZWz5O6gMYYUwhMbbVoQzLjiYiIiIiIiABsqXf+ellWMDTkSvzJc7l2LxKtD7kSERERicuEGyCve3zrbH8XFv4SXj4Mtrzqf71kg9HivSbXzwRolUtg7QMw73p4bhzM+7b9esOTLX02PG3/znU7vMfKL7HvmRDp0rLgntKc3HRXICKdUVEZjP924ut/+A2Y7TPELM/hOrzS6TD4tLbLCvvD+OsSr8mLV/iZV2iaSCeRUcFowPlNPw12ONq1lmV9x7KsXe07Wpa127Ks7wFfa9Uf4LxQKhWR1Bh2HuT3dm7b+WG4tTh547TYfQCOfhoK+9nPR30WztsC52yAczbC0LOCq0+8uQWjAbxzKVhW/H9nqQrZClK0EXa8769v+WvB1pIJGmvc2077OP7xProOHsiBdy+DVffaf0deGqrgk5v8jx9mmEPY8kpidMiCg3EiIkGwLKhzCUbrVgaTfhzfePk9k6/JD69gNBGRVFl9r/++8cxOl6xek6DHGOe2uh1QtSa8WkREREREskG0wX/fXfMgsie4WroCr+M2n6mA7sNaXncfAae8D+dtgwt2waF3Qo5mkhQRkZT6qOmnAUYaY8YnMdb5QPMHXQMwO5nCRERERERERADK6zc5Lh9YMCTkSvzJN843vTZYkZArERERkbiUToMT34Vx34DiOANYG2tgwQ/99/cKRis7DsZ+2Xv93BCvyY3XuOvsf8d+B6e7EhEREUmXA34N0+5ruSc/r6e9j1N2XGq34zRBqTH2xKQH/RGGXQD7fQdOmg299kvttltvz7VN1/lJ55dpwWhN0xBjAbMty/pLrBUsy7oTeIeWJI1DA6pNRIKQWwhDz3Zus+K4QSIIFYvsh5dh58PJ73cMPzM5UDzEe0dDgucVjLZ7AVR8CsvuiG/MPcuTqykMe1dBY62/vlVroWJJsPWkW6NLmF1uEfSeDAOOTmBQC9b8B2ZfBe9f496toQZeOwHWPeJ/6M4cjFbQK90ViIhkpoa97p/dhQNg9JVw7Esw4mJ/43ntA6WSZhQQkaDFG4QQ5r60MTD2S+7tq+8DKxpePZ1NQ7UdnNFYp39HERERkc7Caoyv/1PD4wtT68yiDfY+coPHRDCtWVGIVDq3TX/YnjnbSbf+zjNcioiIJMmyrNXAilaLbkhkHGNMIdB815cFzLUsqyrJ8kRERERERKSL29tYyd7GCse2sowNRnOeHEPBaCIiIlmgzxQ46A9wznq41LIfF9XQcou8hx3vQ/3u2P2iEfu+SSeH3wPHvwaH/hX6THUfo/Vkxf0Oi73NsIy4BA76HfSemO5KREREJJ2MgVGX2ftRl1pwYaW9j3P8a1A6PXXbcQpGA/u+ynHXwlGPwgG/gp5jUrfNeGgCVOkCMi0YrXUE4r1xrPfvVs+TmVFSRNKhxyjn5TvmhltHe+se926fMROOegz6HeLdT9InVijI5ldg1b/iG7N+V+L1hMXtwKWbpX8Mpo5M0ehyo1Dzl5FD/wElrXYfeu4b3/gr/wGVS53bNjwNO+KcoLozB6O53WzVbO+qcOoQEck0tVvd27oNsH8OPhmmP9hy8vOYZ93XCSsYLRv2i0QkezXWwZsuQepuwt6XHn+de9unP4VHS2DJ78Gywqsp2zVUwdsXw2O94aF8eLgbPJgLr5/i/XkpIiIiIpkv3gmRIrvtY+xdmRWF+d+3940f6Q6PFMMDBj7+iXeAcMNe7KwYB91HBFGpiIiIH3c3/TTAZcaYK+NZ2RiTA/ydttcXxpx0VURERERERCSW8vpNrm1lhUNDrMS/POM8qWnEqg+5EhEREUmJ3G4w8AR/fR/rY583bn48MQg2vdi2T8ViiLrsF7QJQ/OIGMhtFYy279f91RaGIWekuwIRERHJdINTuL+Q6ff85zgfIxLpTDItGK13q+cfxbFec1/TbgwRyQYm13l5YzXU7Qy3ltZW/9u9re9BMOjE8GqRxOTHCAWZ9+34x4xUJlZLmKrXx9d/xZ3B1JEpGmIEo5XsA6d8BKd8CCfMgjMWQ984Aw9fmAJL/wTvXg7vfxnePBdePBDevST+ejP9S1Iy8nt5t++YDdE4b44TEekM6na4txX2d2nwmBHKhJT033Mf7/aGqnDqkM6voRo2PAsf3wQLboQVf4fqjemuSoK26DYofz2+dWLtb6ZaTh4MPs29vaEKPvoWvHwIrHnQnoFPvL13Fax7uOO/1eaX4Q2Hk1ON9bD6P7D0z7D7k1BKbGPXfFjyB1j7cHYcLxARERFJJ6sx/nU2v5z6OrLJotvsR3uf/hQW/8Z9vTX/cW8L+3uTiIhIiz8CW7HTOw3wT2PMzcaY4lgrGmMmADOBzzatbwErgIeCK1dERERERES6iq31ztchdcspoldun5Cr8SffNRhN16aIiIhkrf1/mdh6tVvgjdPs61SbzTrTuW9OPpS0mn/EeEQM5LS6v23Y+TAwA+6lHXgCDDsv3VWIiIhIpht7DfQ5IEWDZUIkUwbcRyqSRpn2V976KlyPO8M72NXqec8U1SIiYXELRgNY+xDs+9Xwamm2+j7Yu8K9few14dUiicuLEYzmJbfYDudrLxtudG50CQLrqtz+PZqD0QDyiqDvgS2vh38Gds71v41oPXz4jcTqa8/lRHWnkF8Su8/Lh9hBdcbji5qISGfj9dnttj/jlebvtX+dSiXjvdtfORJmzIRupeHUI51T/W54/RTYMaft8oI+cPQzMODI9NQlwbKisOz2+NcrOzblpcTe5vGw6QXvPjs/hHcvhU9/Die9CwWa18FRZA9sfNq9fedc2L0Qek+0X9duh5nTWh2/MXDAr2G/BELQE7HkD3bwHZb9umQczHgFug8LZ/siIiIi2cZtUoz8EvdzLyv/Dof8FXJCOtaRaVbf69H2b5jwXee2T3/uvl6BgtFERCQ9LMuqNsZcCTyHfeVwDvA94GvGmBeAda37G2MuAvYFTgKmYV/p23wSuRa4xLIsK6TyRUREREREpBPbUr/BcfmAgiGYDL2eOS+nwHF5gxXBsqyMrVtEREQ89DsEzlwOz8aYvNzNwl/CyEvs8+/V65z79JoIua32I7yC0XILW57nFcExz8KGp2HXPCgaZE+Otmc5OB2qr99hT45ctz2x38XJEQ/A8Au876MQERERASjsCye8CesftycZ3b3Avj8tWh//WJl+jEXBaNIFZNpfeetvUfFMGd26byZELopIPBrr3NsqPg2vjmbVG+C9K7z7jLw8nFokOYkGo426wg5eqFzasS0rgtFqE1invu2Bzc7EKeAOIM9j4umx17R82QlbXvfwtxkWP/9P7poPuz+BPlOCr0dEJFO4BaPl5Lvf+Nv/cLs92m6Gx9wi6D0ptfW5MQZGXwWr7nFu3zUflvwOpt4STj3SOS39Y8dQNID6XfDhtXDKh5l/kDmb7JoPn/4CKpfYM8Id+Lv0hDztXR3/xRD73wLFQ4Opx8s+X7G/O+z6KHbfysXwWB8o7AdFQ2HERTDhe94XlnQle5Z3/Fxrr+JTO4hu8a8c/kYsmHe9/Rh6Lky9DUoSvEAolpotMP+7/C8UDexjCAt/CYfeGcw2RURERLKd5XL6f/z18MmP3df78Fo45C/B1JTJoo3O56maVSy0LzBv/53YsqBms/t6+QpGExGR9LEs62VjzFeBO2i5xq8ncGG7rgZ4oN3r5gMxDcDVlmX5OCAnIiIiIiIiElt5/UbH5QMLhoRciX/5HhNxN1gR8k0nvS9ARESks+s5FnqMbTVhbBwqFtrXV+/62L1P7/3bLfC4frX9ta25hTDiQvvh11sX2IEkyTr8Hjv0TUTa0X0UIiKu8nvA6CvtR7NZZ8HGZ9NXUxAUGitdgO66E5H0K+jj3rbb40BMECwLnopx0/cZy+yUe8l8LjMhxTT+25BX4tzWWYPRUjkDQ6ZxC5vJ9fj/uKAXnPIBTPs3FJYGU5cbr8C2bGcM9PQRTLDh6eBrERHJJIl8VuWXwOAzOi4fek64nyXDzvduX/9EOHVI57XlNfe2XfPcZzST+NVshteOty9AqFgI6x+Dlw60L5II24Yn/fWbcAPsfzOc/D5M/H6wNbnJK4LjZkKfA/yvU7fDDmFe8AOYdWZwtWUbP7PvvHOxHUgW6zvshidh5mFQU56a2jqM/7RziNuKvwW3TRGRMEUbYevbsPTPsPVNe1IFEZFkWQ3Oy4sGwbEvuq+3/A6oWBxMTZmsfkfsPg17Oy6rcb6B73+8jjeJiIiEwLKsvwMnA1tpG3hG0/Pmh2m33ADbgZMty3ownGpFRERERESkK9hSt8FxeVlBGibo88kr+Cxi6dyeiIhIVht+QeLr7lnpfT/uiIvbvg56cuphSfwuzXIKYPDpyY8jIiIiMvVWMHlxrpThIZQ58f4+ItlHwWgikn4DjnRva6gOrw6Aco+b7gF6jIaeY8KpRZLn56ZqJ32mQH5P57ZOG4y2NfV1ZIqGBMJmwP4yMOpyOK/cnm0jLP2PCG9b6bD/LbH7fPJjqFobfC0iIpkikWA0gGn3wtBz7WT/nAIY/hk47B+pr89LXg/v9j3LwqlDOq9YoVy7Pw2njq7gk59C/c62y+q2w+r7w6uhsQ7euRTmfce7X7/D4cK9MPVm/p+9+46Tor7/OP6a3WvcHRz96BwdpEgTsCGCotiNBdQYjTFqNFFjfkl+xlRTTaIx0V+a0TRjb9gbYEeqovQicCDSOeDuuLY7vz/Gy7WZ2dnd2Xb3fj4e94Cb73e+3w/H3d7M7Hzfw8hbocsxyanPSW4XmDGv5Q0jXux40XrqjF3IVltTV+HveDUH4JP7/R2z3rrfObc93QNW/cIK3xcRyUSHN8Jj+fD6ibDsG/D6SfBoHhz4MNWViUimM0P2240gdJ/qvu/6//O/nnRX5eF9G7tzZrfz5C6TE39ju4iIiAemac4HBgPfAbZh3Unc/INGf98H3A4MMk1zQdILFhERERERkVYrZNaxt9b+AWjFOb2TXI13WUa2Y1utqXtQREREMtqI/4l9bdmiq2HZjc7tPU9r+rmR4IiBfhdAyWWx728E4Zg/QV5X/2oSERGRtqvoKDj+4cQfA/nO5Z6/qIPeRDKPvstFJPU6jXNuq9yWvDoAPvyee/uYn2XgwU4b5va95eSoW60/szvYt7fWYLTlt8DUuc6BcJks1rCZeoYBY34KCy8DM+xfXacvhXnTm35PFY2MLUwhk/T9gvWkjh0vuPdbcgNMez45NYmIpFqsv6uy28PUpz4PkglAlsffbX7KKojcJ1ynpw9I7MLV7u0HV0FvPQUsbuE62PgX+7Z9i4BvJKeO9f8HWx9279P3Qjjx8eTUE42cTtYbJAOugDdmRbfvp8/BCyPhzNVt+/Wy9rD/Y664DUZGuNYTi5qDkedd+XMYdDUMu1Eh+yKSWd6dY/PACRNeanSttftUyO9vXcfqfUZSyxORDBaus98eyIKsfBh8rfN5yd73EldXuvIajFbQr+m28k+c+x/9i/hqEhER8ZFpmhXAb4HfGoYxFDgB6At0AXKAvcAu4D1guWkqhV5ERERERET8t6dmJ2HsH+zRI42D0bKNHMe2OjPGh8uLiIhIesjtAjPmW++TV5RCMM+6n8eLshXObSWX2TxIK8HrZAPZcOy/YeiNcHAldBhhraM7tLqhT4cR0HEM7F8KNWXWPQRVuyGnI3Q/CQoHJLZGERERaVv6XQjdtsPOeVC9x9qWVwzvOYW5pvmDSAPO4fkirUU6rrSrv4lpimEYJR736dH4E8MwTiSKVxjTNN/y2ldEEsAIwLSX4Y3TW7ZV77VCnoJ5ia9j15uwf4lze5fJUHJJ4usQ/7Qrhi6TYN9i7/uUXGr96RiMdtC6qJjX3fq+rN5nLYCvPQw5RfHX7IdwDMFouxZYIV2nvGktQGpNQpX226P5d5bMgXY9YetDUHcEtvw7vprO3WotVjpvG6y7Bw58CJ3HW4vmczvHN3a6Mww48Ql4NEJ4z44XoHwLFJYkoyoRkdRyCjX1egzsJZwsUbzMXb3POi4TiUWLUI5myj5OTh2t3aE1zm1bH4bjHkxOHaWPubfn94MTHk1OLbHqdbp1XvX6SdHtd3gDLJgJx/3HOvdoi+rKEzPuxz+F0T/wd0yn88zmfdb/AT75O5y2CIpG+FuDiEgiVO2G/csi99v9+dtqW/4NE+6BYV9PbF0i0jqY9gvLMILWn5P+7ByMdmgNhEMQCCamtnTkNRitsboKOLTWvm92B+gxPf66REREEsA0zfXA+lTXISIiIiIiIm3PzprtttsNAnTLTt/7N7JdFr3WhmuTWImIiIgkRDAXik9u+LxiK3z43fjG7DC85bZhN8Get1tubz80vrkaMwzoOsn6qNfrtJb98s/xb06RtmLUbbDk+pbbO45Jfi0iIpmkXU8Y8MWGz8N1zsFoLYJl04yRjpFRIv5K1+9yA3g4jn3fiKK/Sfp+HUTaDrfgm8pPof2gxNfw8Y/d20d9P/E1iP+OfxhemWyF7EUy4R7oOMr6u1Mw2pYHrQ87XabAhN83vVCXCk7hKpHsXwrbn2kIh2stQkfstwcjBHM1V3yS9QFAGLb8J7Z6htxghaKB9X026rbYxslkwTzrSSORvobbnoIRtySnJhGRVPLrd1UqeAlGq9qlYDSJXajavX3Lg9DlGBj6dSt0W2Jz5DPntrwk/fyGqmHfIvc+E+/NjP/n7lPh/B3w9oXWE/u82rUAnu4FBf1h8gNtL7Sg7nBixv34hzD4Gv9+F5mm8+9uO3WH4aPvw4lP+jO/iEgiVe2Jfp+PboOBV0J2oe/liEgrY9bZb298Y87xj8K7s1v2CVXB4fVtK2y2amfkPtuehuJpcGQXLLwcdr7m3LfXWb6VJiIiIiIiIiIiItJa7K7ZYbu9S3Y3sgM5Sa7Gu2zDubZaM8KDKEVERCTz9J8dfzBa/zktt/U6HbIKWz7YtsQhGERE0kufL8Cym1s+jH7QV1JTj4hIpgqkedyQWzhbutcu4oN0XUloYgWcRfNhNvqIdl8RSbX8Ps5tVbuSU8P+Zc5thYOg1xnJqUP8VTgQzveweOTMNTDs6w2fZxdFP9e+9+GdC6GmLPp9/eQUjJbVPvK+nz7nby3poHqf/fZ4wmaG3gguT9pyFMyHo+K8EN1a9L0gcp/9SxJfh4hIOqjL5GA0D8cXK25NfB3SeoUjBKMBLLvJClSV2LmFoFTvs4KgEu3D/43cp9PRia/DL+16wqnvwKwP4Zg/w3EPQW43b/tWbIX5M6BiW9PtVXth3T2w5i6rT2tTWx65T6w+nevfWLUHIdqnK3/6AtQmKPhNRMRPzW+Q8qL2ELwwEj74Dmy63/pcRCI78CGsvgM2PwjV+6Pbt/aQtd8H34UPvg0rvg/bn03OcXs8zJD9diPY8PfeLuFdXs4ZWpNdCyL3Wf8HOLwRnu7hHooGDQ9sEREREREREREREZH/2lmz3XZ7cY7L+pY0kGU438deZ0Z5T4OIiIikv4L+1n2o8Wg/uOW2rAKY9iJkd2zY1n8OjNT9/yIZoV0xTH3GCjisN+irMOSG1NUkIiLJZSgYTVq/dP4uj+fOba/7KhRNJF0E88EIgBlu2VZXkfj5645AncsC1dOXWPVJZgoEod9FUPq4fXvfC6FoeNNt+b1jm6tym7UAcMS3YtvfD07BaEOugzW/cd936yMw5R8QzPW9rJSo3ucc9paVH/u4XSfB9Nfh49th17ymbUYQRvwP9DkfPv4RHFhhpTF3GgdjfwUFfWOftzXpMSNyn7KVia9DRCQdhDI4GC2nU+Q+O19PfB3SeoU8BKMBrL8X+l2Y2Fpas2qXYLRwjdWe1z1x89cdgXV3u/fpNA7yM+xY2jCsMLf6QLd2vWDeNO/7z+0Hl4Ss6xF7F8OCUxvCZlZ8D054FPqc63vZKeN2XSZen70Cg6/xZ6yq3dHvE66GPe9Br9P8qUFEJFFiCUYDqCxtuO648udw6tuxX18VaQvW3QvLvtHweeEgmP4aFA6IvG/lpzD/VDi0pmVbn/PhxCfdnw6YSk7BaI2fWJiVD52PsX9oxqfPWq8xo25LTH3pxDRh9xve+j43xFu/gv4xlyMiIiIiIiIiIiLSWu2q+dR2e4+c9H6vyy0YrdaM8T0/ERERSW8ll0Cfc2DvIqgrh3fnOK9DaG7Et53bup8IF+yG/R9Afh/I7+VPvSKSHL1mwQX74MBy6x6kPI8P8vaTkQVmXfLnFRFJhmBeqisA3DJO0vR+UREfpVswWinxBaKJSKYyDAgW2C+CTUYwmtsi8BlveAt8kPQ25ufWhb/K0qbb8/vAxHta9s/vF/tcH/wP9DilYfF7sjkFowXzoO8FsO1J9/13vAh9z/evnt1vwYrbrJCrQBC6TIZxv4Gio5z3CVXBh7c2DUfIKrAukhSNhDE/sb7GkTw/zLktr9j7v8FO96kwI0LQy8kvxzdHa5bdwfq/PLjKuc/hdRCuhYDzm/ciIq1CJgejeVls3fjpM36q2ArLvwX7FkHRKBj1feh2fGLmyhShauu469NnIbsIBn3FCsfNZGGPwWj7FlkLx9M1ACDdVe91b685mNhgtJ2vRu4z+ieZ///bfar1c7npfu/7vHsplG+C/Uubbg9Xw+JrrfOirAJ/60yV2vLEje1n6HIswWhgBQYpGE1E0l2swWiNVWyGZ/rAJeHM/90tkgjV+2H5TU23lW+CVb+Ayfe571u+BZ51CU/b/jRsfRRK5sRdZkKEHW6ANIJNP+93kX0wGsBH37faOwz1t7Z0E65tCEX2S+Egf8cTERGJgWEYAWAUcDTQD+gGtMO6X/AIsBvr/sEVwCrTNHUfoYiIiIiIiCSMaZqOwWjFaR6MFjACZBlZ1NmED9SatSmoSERERJIiqwB6TLf+PvBK2PAnb/t1HO3eHsiGrpPiKk1EUiiYA12npG7+SX+FRVe13F5yefJrERGJVZfJ1tq05oZ9M/m1NNd/NnzwrZbb83q0nvVEIi7SKhjNNM2SVNcgIimUlcJgNLdFrZEu/Ehm6DAEZn0An70Mu9+2gkY6jbUOBoO5LfsXxBGMBvDSWJj8NyuQomo3ZOVDj5nJeWqCWzBadlHk/Usfjz8YLVwL+5bC9mdgza+btu140fo4cw0UDbff/91LrUVcjdW/Fux9D+afChPugaE32C+wDNfB8m9C9T7nGr0Eq0liDb4Wlt3o3B6uhcMb3EP0RERaA6dgtKwMCEYDGHgVfPKAc3tdAoJuasrg1ePgyA7r88rtVhjrzPdSF06bDhZebh3L1du/1Pp9OuwbqaspHuEQmCFvfUNVVghH4cDE1tRauYWFQ2J+jusdXAsf3+7eZ/A10OfsxNWQLIZhnSeWXAalT8KG/4u8T+mjzm1Vu2DRNTD+TmjXw786UyWR32eH11u/K/L7xD9WpJ8XJ7vmwdbHoP/F8dcgIpIofgSj1XvlGDj6l9YNV9nt/RtXJNPteBHMcMvtm/5mBaOFQ3DwYziy03poT/lm67yorhyWeAi+XnoD5HW19u00Dgy3JwUmmdP5ndHsloX+F8OH33EeZ+Xt0H+O9R6PH8d36cjvRWtGlsLkRUQkpQzDmApjNpKcAAAgAElEQVRcC8wCPNy0AMABwzBeAO4zTfOdhBUnIiIiIiIibVZ56CCVYft7FYpz0v/6c5aRYx+M5ud7fiIiIpK+BlzpLRgtuwj6xLlOUETETa9ZkNW+ZT6A7pkWkUzSf07LYLT8Pulx311+b+h6nJWv0Fi/i/UQa2kT0uhOaBFp85wSSUNJCEY78IH9diMLcjomfn5JjtzOUHIpTPoTTLgLBn7JPhQNID/OYDSARVfDOxdZC5He/zI80xs++jEk+qHGYYdgtIDHYLStD8Oe9yL3c1K5A149Fl47rmUoWmMvjIBdC1puL/+kZSianWXfgFentAxPrCiFF46C9fc675vXAzpPjDyHJJaXoJODqxJfh4hIqjkFowUzJBit91nu7eEaCPl8s9X2ZxpC0eqFKmHzv/2dJ5NU7YbSJ1pu3/DH5Nfil3B1dP2fHQRVMQYWtXWRvm6JCCwP18Lia63zggPL3ftOzODvYzvFJ8PEe/wZa+tDMLcENt3vz3ipZBeWDzDoKzDaITzv2H/B+Tuhx6ktAzWae6YvbPNwrhmJW7h+JGvvjH9+EZFEclsk0SvCcX9z+5fBgpnw3FDYszC+ukRak89edm6r3gfzT4GXxsEbs6zr3+9dAgu/6C0UDaBmv/VgkZcnWn/Gc+ziN5vFWQAYwaafF/SH7lOdx9nyH3jzbOv47sP/Tfx7LqkQdvhaxWrAF60H+IiIiCSZYRhHGYaxAFgAzAE6AobHj87AF4E3DcN43TCMocn/F4iIiIiIiEhrtrPmU8e2Hjm9k1hJbLKNbNvtdX4/fENERETSU9dJcNzDkNfduU+HETBjAWQXJq8uEWl72vWA6a9Ch2HW53nd4Zg/Rl5rJCKSTobdBCO/B9kdrM87T7COowIR1qkky9S5n6+bCVprTgdeBeN/m+qqRJIiTX4KRURwDkartX8Kj68WX2O/Pa8bGMqQbJNyiuxTyuO18ifQ/UToMcPfcRsLOQSjBfOcg+Cae+NMOGs1tOvprb9pWkEknz4H22wCOZzMmw4XHW56gfWzV7zvv28xLDgNTm30gOhFX4HDG9z3m/RnpSCnA6eFcI2VrYJ+FyW+FhGRVHL83Z0pwWjnQLcTYc/bzn1CFRDM8W/OZTfbb197Z9u9qFf6BGCzGPzQWghVez8OTCfRBqMBvH6SdRwr0Snf5N7++onWRf1Jf4XO42Ofp+agFZ686hfe9zlrPQSCkftlGsOwnhyz5934xwpXw5KvQfeToP3g+MdLlbpK++3BAhjyNfjkfqjY2rC9+zQoucy6bjP9VSvAzwjC4x2s4D07b38BjvoujPqB83UoO4c2wMY/W+ea8fyf7Vucua/JItI2OAWjZbWHac9ZQT2lj8F7X8T22NNO1U7rAQqzq/T6JwKQ7fIwnmU3w+43/Jtr13xY+XOY+Hv/xoyVaTo/KKN5MBrAuN/CK5Mij7v6Dus4uNes+OpLN07Hs7E6+pf+jiciIuKBYRgXAw8A7bCCzsD+RMJL23RgmWEYV5qm+aSvhYqIiIiIiEibtbtmh+32doECCoMeHkaeYtmG/f14tabPDzEVERGR9FUyB/rPhsrSlg8yz+4A7YpTU5eItD1dp8BZa6FqL+R20dpdEck8hgFH/xxG/8TKlsjplOqKmsrraq2bqT0EgVzdky1titJ+RCR9OC1IratI7LxOQRQAuS6J+dL65XVLzLjr74l9X9O0fiZqDkL1fvvFMW7BaHUegwZry2DZTd7r+vB/4f0rogtFq/d4ewg3WhC15Pro9t/zLmyfa/299jDsWuDev8tk6HNudHNIYnh5jT20NvF1iIgkU6gajuxqtu2Ifd9MCUYLBGH6azD06859/A47rj3o73itQc1+5zavx4DpJhRDMNqhNbD1Mf9rac3CdXBoXeR++5fByxNgz3uxzVNXaQXXRROKNukv0GFIbPNlgkFX+zdWuBY2PeDfeKngFIYYzLPexDnjIxj9Y+vJNsf8GU5+uWmYfVaB1bf9UPd5Vt8B80+Fyu3WOTY0nGebdgGT6+G142HtXVYYuNvrrReH18e3v4hIIjkFo9WHHAeyoORSOOUtGHwd9DrD+9gvjIq/PpHWwO1mmS0P+j/f+j9YN8KYJtQccH9PLJHMsHOb3RMVuxwDM97wNnb9+wOtiZeHing1+QHrybwiIiJJZBjGRcBDQD5WuJn5+YdBQ9jZHmA98D6wGNgA7G3Up/F+AAXAw4ZhnJ+cf4WIiIiIiIi0dodD9vegdc0uxsiARfxZRrbt9lrT54dviIiISHozDCjob91v2/hDoWgikgp5XRWKJiKZLZCVfqFojWV3UCiatDkKRhOR9JFVaL89lOBgtL3vO7cVliR2bklvAfunKMVt+1x4cSwc2hDdfuVbYN40eKwQnugIT3aBp3vD5maLpdyC0WoPeZ+v9HE48lnkfjUHYN3vvI9r55Es2PESVGyLbf+3zrP+bVW7wQy5953+amxziP96nwVG0L1Pzb7k1CIikmimCR/eCk90hqd7wPPD4cAKq80xGC0vefXFK5gLI29zbt/+TPJqaavcfqe+PLFlIF8mcArmiGTZTfbhRmKvfLNzIJWdRVfH9vXd/gyUrfDe3whC77OjnyeT9L8Uhn7Dv/FW/9I6P8tUjueyn79pk90BRv8IptwPQ651fjOnaGTkufYuhGf6wuMd4NnB1rn1Ex3huSEtrxOt/z+o3uP93xFJ2Ur/xhIR8VvzJ8fWa36dtPsJMOlPMO0FmO1wPtNc+UYrbFKkrcspSv6cjxfBwwHrmsTcEth4X/JrcLtu73Q+W3xS5NBbgI1/aX2vL3YPxYnVwCv8G0tERMQDwzCGAX/Hui+xcSDaIeBu4Eygq2maPUzTHGGa5nGmaU4xTXO4aZrFQDfgbOAPwGGaBqRlAf80DKMVP01BREREREREkqUiZH9ffftgCq7lxyDbYa1DnYLRREREREREREREpJVQMJqIpI+sAvvtdQkORpt3snPbUf+b2Lml7SpbAQtOhbDDYqBwHWx9FFb+HN77EnzwbXh2AOx+q2m/6j3w/pfhwIcN29yC0fpeEF2de95zbzdNWPULfxbpvHEGvHlW7Pu/Mwdq7Z/c9V8zF1qL6SU95HaGAV9y71O9Pzm1iIgk2oY/wupfQajS+vzQOph/qvV7+8gO+32cjo/TlVPQMcCyG6Hy0+TV0hYZWc5tFVvgnYuSVopvQi5hXYUDnduqdsKB5f7X01pVeQhDbuzQmui/vmUr4b3Lotun74XQrmd0+2SaYA5M/AOcWwqnLbb+jNebGRwm5/QzH4jyaTZFR3nvW1cO5ZsaziXLN1nnprXlDX3W/yG6+SOp3O7veCIifnIKpnV7gEQwD2Z5DD99fhh88B3rgQxmOPr6RFqFFD8RtWoXLL4W9ryb3HnNOuc2t/PZifd4G/+di6z3VVoLt69XNPpfAoZuCRERkaS7F8inIRDNBH4C9DVN8xbTNF8yTdMx3d80zX2mab5gmubNQF/gp5+PUa8Q8HiQICIiIiIiIuKsPHTYdntBMDPuNc82sm231/n58A0RERERERERERGRFNJdsCKSPlIRjFbjeK+lpeuUxM0tUrEV9rzTcnu4Fl47Ad6dAx99H7b8G9b81nkcsw5W/erzv5sNgSvNBfKgeJr7QsbmKre5ty//pntt0Sr7KPZ9d71uhX44mT5PP9PpaNJ9MOanzu2RXqdFRDLF5n+33Fa9xwoEOLTOfp/CwYmtyW9Z+e7tm/+VnDraKiPo3r7nbSj/JDm1+CXsEow2/TX3fXe87G8trZlTAIqbnfO99934V3hxdHTj53SGCb+Pbp9MVtAXuhxj/XnuFve+gWwIurze7nkPjuzytbykcfqZD+ZFN063E+Oro+YAbH04vjHcOJ2zi4ikg1iC0QA6jYGZi6DXGZHnWPMbeOdiePMchaNJ2xTL8Xe9YF7T0Nj8fjEO9PkDT5LJdHhIDLifz/ac6W38so9g5+vR1ZTO/Fq0NvDL/owjIiLikWEYxwMzaAhFOwycZprmT0zTLHfd2YZpmodN0/wRcDpQQUNA2qmGYRznU9kiIiIiIiLSRpWHDtluL8xqn+RKYpNl2L+HV2vG8V6EiIiIiIiIiIiISBpRMJqIpI9UBKOVrXRuK/li4uYVqTdvmhUUALDp7/DSeHgkB/Ytim6c0ketxdsVm50XVuV0guwOMPlvYHg8BFh7pxW2tv6P8OIYeLo3LL7O+rksWwXrkhhWUHIZtOvp3B6utQ+dASs4oMf0xNQl8QkEYdT34YTH7Ntr9ie3HhERv5kmrLvX+Xf7wi85Lw7uGGWQUKoZAedjeoANf/RnHtOM3KdN8vB12fpI4svwk1swWk4XuLDMub3sY//raa1iWXD/4Xesc5fN/7E+rymDhVfAUz3hIaPpx+Jrox9/wOXQrjj6/VqDgv5w3nboNK5hm5EFkx+AS02YUwOzK6CHU0CEaQVsZyKnn/nG4R9edJ8Kud3iq2Xlz+DFsdb3cCzcfoeHjsQ2pohIMsQajAbQdRJMe8H6feXFjhfg4aB1LfTxTlZQWvkWz6WKZKxYA68KSmD2EZhTZf2cXWrCuZsht0ts4+14MbkPpTDrnNsCWe779v2CtznemAUVER72kincvl5eDbwKepwS/zgiIiLRuf7zPw2si9bXmqY5L95BTdN8Hbi20bgAX4t3XBEREREREWnbKpyC0YIdklxJbLIM++vrtaZPD98QERERERERERERSTEFo4lI+gimIBjt4GrntmE3Jm5eyQx9zk3OPIuvhddPgkVXwYEPYh/nic7w7CDn9qKjrD8HXA5nrYMhN0Qes3I7vHEGLL3BCpc4sgM2/gXevgA+e8l7bQOvhBlvwJS/e9+nsY5j4LgH4dyt0P8S5347X7ffnlMU27ySPDmd7bfXHoSwQ2CQiEgmWPs7WPaN6PcLZEOHof7Xk0qV2/0Zp+6wP+O0NqGqyH0qdyS+Dj+FXILRgrnWMd6Ib9u3b3u8IUTv0AYrwGvHS1B7CKr2wva5sPXRzPuaJIJTAEokBz6AhV+E0sdh/kzY/C+o2hl/PVntYfi34h8nk+X3hlPfhpOeg2P+DOdugUFfbtpn5K3O+2/6W2YGyzi9jgWjDEYLZMGoH8ZXS2UplK2Ibd+sQjjlLWjv8Hu8rjL2ukREEi2eYLTGzo/iGCtcC7Vl8Olz1kMk9DoprV2sx99Drmu5zQjA4DjyQN48F3bO93Y+GS+3a7xG0H3fQdd4n+fZEvdzyUwRS4DesQ/CSc/DhN9bx6OT/wZGjEG/IiIiMTAMIxc4Gyu4zASeNE3Tt6d1mKb5MPAkVjiaAZxjGEaUJysiIiIiIiIiDcodgtEKMiQYLdvhtLjOjPG9CBEREREREREREZE0o2A0EUkfWU7BaOWJm/PAcue2Lsckbl7JDAOuSN5cu99K7Pj5fZuGg7UfDEc5hEg099nLNttegV1veJ9/wj1QfJIVkNbnPO/71et9jvVnIBuOf8ha8GXH6fUiW8FoaS+nk3PbtieTV4eIiJ8Ob4IPYgz36TzR+r2XcSIsuPVjcXKk4OT6MKy2JnQkch8/QquSKezy/VIfztFpvH27GYZ3Z8PSm+D5oVaA1xtnwONF8FQ3eOs8eHcOPNMb1t7tf+2ZJJYF9429dznsX+JPLQAnzYWCvv6Nl6myCqD3WTDkWisorbniaZDfx3n/Nb9OWGkJ4/Q7IpgX/VhDr4+vllh1ngAzF0JOR+vvdtbfk9yaRESi4VcwWrue0PO06Oev2Aqf/CP6/UQySbTH37ldYdQPnEOhR/8o9lr2vA3zZ8DLExIfrGvWObcZWe779joNpvzT4zxhePVY73WlK7evl5MBl0HvM60HP3U/UaFoIiKSClOAQhreKLgrAXPc2ejvhUAr+MUvIiIiIiIiqVIesn9AZ2GmBKM53F9YG++9QCIiIiIiIiIiIiJpQsFoIpI+HIPRIgQfxCocgu3P2LcNujoxc0pmKRoBA7+c6ir80Wlsy215xbEtMK+34wVv/fqcC9mFDZ8Puzn6udoPbvr56Nuj21/BaOkvp7Nz27uz4w/sEBFJhXcujn3ffrP9qyOZOk90b6/aFf8ckQLAdr8R/xyZyFMwmg9f/2RyCkkKZDcE5XYc7bx/6eOw/g+R51n+TTiwIvr6Wot4j7PcAuyikdsN5tRC8cn+jNcWnPiUc1vpExCOIUwhlZy+lwK50Y9lBODkV+OrJ1pHfRdOXwodR1mfZ+U7993vEtQvIpJKfgWjAYz9NWS1j36/pTfAS+PgIcP6ePcS2OdjCKtIqjn9nNkpGglf2A1jbnd+WEggC058Or6aDq6GZwfEN0YkZsi5zQhG3n/gl+Bij+8XHvgADm3w1jddRXueNjzGYH4RERF/1YeUmcAa0zTf93uCz8dcbTOniIiIiIiISFTqzFqqwpW2bYXBGN7jSoEsw/49vFozivciRERERERERERERNKYgtFEJH1kFdpvT1Qw2qG1ULXbvq14RmLmlMwz+W9w7IPQ++xUVxKfAV9quS2YBz1nJX7u4bc0/bzbCVBQ4n3/QC70OafptoJ+0dWQnRlP7mrTcjq5t+9+Ozl1iIj4pWoPHIgj9GTAF/2rJZn6nOfeXr45/jnq7G9I+69502HXgvjnyTSRvi7gfP6TrhyDORqFJBWNgHY945+r9In4x8hU6RJAO/xmK9RBvOs80TnsunpP5r0WOoUhBmMIRgPofhLkdom9nmgFmwX+B12C0bbPTWwtIiKx8jMYrdMYOGMFHHUr9P1CdPse+LDh71sfgVePhR0vRV+DSDqK5vh7+C1gGJH79TzNn4eDrLjNua2uAiq2gmnGNrZbMJrX84CsfOtBLF6UPuatX7qKNuQ42tdZERGRxBjZ6O/vJnCedxzmFBEREREREfGsInTYsa0wmBn3nWcb2bbb68w0uRdIREREREREREREJE4KRhOR9JFVYL89UcFoO1+1325kQe+zEjOnZB4jAAMug5OehfF3pbqa2Dktipl8H3RN4EOUx90J3ac23RYIwtSnIb9v5P2zi+Ck51qGZnnZt/k4kt4ihdcd3pCcOkRE4mWa8NEP4anusY8x6kfJDXLx09Cvw6CvOrfPmwYffi/2hdTgLQBszZ2xj5+pQkci9wk7hA6lK6fAgECjm/qMAPSbHf9cq34GK34Q3/dmpkqHmyFLLocR3051FZnHMGDmQuf20keTV4sfwlX22wMxBqMFc+CkF2OvJ1pZ7ZrN386+H8DK2xNbi4hIrPwMRgMoHABjfwEnPglnb4COY2IbxwzBx3rtlFbC6efMzoArvPXLagfTXoDcrg3b+l8CY35qnTN5teoXVvhZY+FaWHIDPF4Ec0vguaFwYIX3MeuZLkFfRtD7OJP+Bl2mRO738Y+9j5mO3M7Txt9tvZcJ1uvzxHuh23HJqUtERMTdoEZ/X5TAeRqPPcixl4iIiIiIiIiL8tAhx7aCjAlGs38Pr9aM4r0IERERERERERERkTTm8fHLIiJJ4BSMFkpQMNryW+y3tx8C2YWJmVMyW7/ZsOa3cGRHqiuJzoz5zoufcrvAzPfg8EbYOQ+WXOfPnIEcOG8b5DmEwnQaC+dshoMfQ05nyO9j1VCxpaFPdhF0GmctZm+uoH909eR0jK6/JJ9hwMCr4JMH7Ntry5Jbj4hIrLb8B1b+NPb9i2fAmB/7Vk7SBYIw+a+w+Z/Oi71X/9IKSBjsEqDmJuQhGG3PO7GNncm8BKNVbIVPX4Res6zfvenOaeG80exy1lHfhXV3xz/fqp9BbmcY/s34x8ok0QQz+OGUt63j/9yuULHZCsiN9vheGnQaC/0ugtLHW7Ztewom/tH+nMovB9dA6RNwZLv1s9lpLPSfHTn4uDkz7ByGGMyLvb6uk+D0pfDyxNjH8Kp5EFpWfuLnFBHxm5dg2li1HwynL4dDaxqury44zfv++96HZbdYD7HoPCH+ekRSxWsw8ZmrrHNsr7odD+d/BmUfQbte0K6HtX3YjbB/OSy7yWqLZG4JzKlp+Llfcyds+GNDe/lGeGkszK6O7jgzHHJua36O5yavK5y2EA5tAMLw/HD7fmYdlK2EjqO8j51Owi7nw8NvgsFXQ9kq6DjS+f1VERGR5Ctu9Petjr3i13jsHgmcR0RERERERFqx8tBhx7bCYPskVhK7LMP+PbzadHhIooiIiIiIiIiIiIgPonhEtIhIgjnduF+XgGC0Rdc4txUd5f980jrk94JT3oJBV0PBgNTUMHVudP3bD4FuJ3roNxiGXAvHPxpbXY0N/TpcuN85FK1eIGgtmi/oZwW3dRgKPWc2fHSd7LywqqAE8qK4x7n9EO99JXUGu7w2V+1JXh0iIvFYe2fkPn3OhROegD7nN2zLKoSR34NpzyeutmTqMMK93S7AxysvAWC1ByHUxp58WechMA7gzTNh4eWJrcUvTgvBmwdztOsB01/zZ87lt0D5Zn/GyhROASiJ0v0EKCyxAsk7jlYomh/6X2q/veYA7F+WuHk/fRFeGgcf/xA2/tUKzFh8Dbx6XPTH724BfYHc+OrsNC6688dYNQ9wC7oEowUSGFYnIhIPp9djv163AkErpKj++t/4KMNt1/0OXpkMn/zTn3pEUsHtXLXTeOg/xwoRjOW9qkAWdB7fEIoGVmBt8TQ4/hHvAWTr7gHTtD423W/f57kor7k7BV8DGFEEwNXrMAQ6DIPJDvUBvDgaQtUN/5ZM4hhU+fn/YVaBFQKsUDQREUkvXRr9PZFPvaof2wA6J3AeERERERERacUqQodst7cL5BOM5oEeKZTt8B5ebbIfkigiIiIiIiIiIiKSIApGE5H04XTzfqjK/Uny0ao5CJvuc27vPNG/uaT1aT8IJt8H534CU/5hBXrV6zQeLtgLvc5MzNwDr4x+7Ml/a1go40Xf8yP3cTN1Lky8J/GLcQwD+l3kvX/H0YmrRfzTdbJzW9Xu5NUhIhKrJTfAgQ/d+wz6Ckx9BvpdAFOfgktN6+Piw3D0z1uGqmSqSAGpO+MIsfIaAFa9N/Y5MpGXwLh6W/4Dn76QuFr84vT0UrubD4unQ25Xf+Z9dmDmLZqPRzKD0XrMTN5cbUmv062ATTvxvN66CYdg6Q0Qrm7ZdnAVPNUd1v/R+3ghm3HqBeMMRjMCcNyDEGwX3ziRNB/fbb5E1yIiEqtEB6M1N/R66Hl6dPuYIXj/SqjcnpCSRBLO6TxnyNdg1jI4/mHoPM7/eYtGwNg7vIWQffAteDhgfZRvtO9TWWqF43plurzPF0swWr2ux7m3P5pn/TseK4QFp8Nhh39PunEKkjOy7beLiIikh8YXcRIZjHaw0d9byZsqIiIiIiIikmzldfbBaIXBDkmuJHbZDteM65zeixARERERERERERHJMApGE5H04RakFKrwb55d893bB17h31zSug28As7eAJMfgJNfhZnvQm4XGHyNff+jfwHTXoQep3obf/zv4LiHYcLvYeZCa55AFAuEzlwN3ad67w8QyIbsouj2qXfeNuhzTmz7xqL/HO99i0Ylrg7x17Cb7bdXJzEYLVwHexdB6eNwZFfy5hWRzLbuXtjgIQCm99mJryUdRApGi0fIazDansTVkI7CVdH1/+SBxNThp7DDQnC74F8jAEOu92/uNb/xb6x0l8xgNKdzJYlPMA86jrFv+/hH/obN11t7J1Rsce+z9AbY+Dfn9rKVsO0ZKFtlheI7CcQZjAbQYwacsxmm/DNxgfgtws7CUfQVEUkTIYdgtGCCgtEC2TDtBZj+Ooy7Ewr6e9/3mb6wa0Fyj2VE/JDsAMLGRtwCZ66CY/8F4++Of7zF11o/h144BX1BdA93aa5ouLd+oUr47BV4bgisvdu6/pvOgdhOr23xfK1EREQSr/FFnEQeqDc+sFBqqIiIiIiIiMSkPGQfjFaQUcFo9u8t1JoO70WIiIiIiIiIiIiIZBgFo4lI+nALRqvzMRjt8Hrntna9oV1P/+aS1q9wIAz6MvQ81VqMDlY42JR/QPsh1uK+4ulWgNrIW6HXLBh6g7exh98MJXNg2I3QdQoYhrf9ukyCWR9A0YiY/knkdo1+n/N3Qn6f2OaLVdcp1tc4kqJRya9NYucUpFOVpICy2sMwbzq8OgXeuRie6Q1bH0vO3CKS2byETOV1h56nJb6WdNDB48LkWNR5DEarSmKoZjpwCrFwsu0p6/deOnNaOG84LAQf9UMY+T1/5t54nz/jZIJEhYnMWGCdCwVyoHAQTLoP+l2QmLkEikY6t+143r95zDC8fRF8+F1v/Tf8yWYME5b/D7w4Gt4+H14cBQu/6DxG/bl2vNoVw8AvwWmLYdQPoF0vyGoP/S6Csb+y36frsVA8w9v4zcPO3MLesvK9jSkikmypCGwyAlaA5YhbrOMHI4q3LudNh9dOhOp9iatPxG+OgVdJyvToMAwGXA7Db4JjH4x/vHnTYckNkcN4S59wbjOieCCMnfO2Rdd/+Tcbrv86BXKnmtP5cLK+T0RERERERERERERaufKQ/X1ThRkUjJZl2F8zrjX1YCERERERERERERFpHfRIYRFJH1mFzm1+BqNVlDq3DbvJv3mkbRt4hfURroNAs1+3XoJC+pzv3Db+Llh+i33bWeuhg4ewMDe5XaB8k/f+PU6xFpgnmxGAiffCgggBM2Pv8B4qJ6mX18N++4EPoaYMcjomdv6VP4M9bzd8bobgvUut7/PczomdW0Qy28FV7u1GACb+0b9wl3TX9djIfXa8DL1Oj37skMdgtOo90Y+dyWK5oe2NWXDK2+l7rOS0QL358fV/twfh6J/DmJ9Z3ydGNoQ/DybKKrR+DtfdC8u+EXnu8o0wbwYc+8/WH7LrFIASj2E3QfE068PunEj812msc9uSr0Gfc/2ZZ+N9sM0l1KK5A8uh5iDkFFmfmya8fyVs/lfTfjtfdx4jmBt1ma4MA8bcDqN/YgW9Be6uLKkAACAASURBVIJQdwS2PgoHPmjo1+1EK6AnELTCNufPhLIVzuPm9236uVswWvMQNRGRdBGutt+eyGC0xgoHwLCbYe1d3vfZtwg+/jFMvCdhZYn4KhUBhE4GXGY9kOKDb8U3zoY/Wg+F6XUmbLoftj1pHcP1+QIcWg3bnnZ/aJFT+LVX+X2s4NuVP41uv21PwKbpMORr8c2fCE4BevF+rUREREREREREREQEgIrQIdvthcH2Sa4kdtkO7y3UmQm4F0hEREREREREREQkBaJ47LqISIJlFTi3+RWMZprWAg0nA77kzzwi9ewCADoMgy6T3Pcb+GXntj7nghFsuX3ivfGHogHkdImuv9sC/ETrORN6ugSqzPoQep+RvHokfkUjnNtePNp5QZhf1vy65TYzBKWPJ3ZeEcl8bq9PA6+CWSug3wXJqyfVIh3rALxxRmyvr6Ej3vpV741+7EwWy+/IPe86B+6mA9MhGM3haacN7YZ1fhnMgewO1ofx+SUwt/PO5nbNh+eHQ80B7/uks3AtlG+BqmY/G34+JXbI9XDi0zD+dw3bFIqWHP0udm478hmURhFm5mbDn6Lf5/nhDa9RH/2wZShaJAGfg9HqGYYVegaQ1Q5mvg8T7oHht8DkB2DGvIb2vO5wypsw5Ab7sdoPgaKjmm5zC1VsK0GpIpJ5nEIdk/m6Nf5OmPosDL7GeoBDQf/I+2y637n2ugrrGKjWfnGLSNI5Bl5FOM9JlGHfaHkcE4stD8OyG2HxV+Gzl2H7XHj/Clh9h3soGvgT9jXmdsjtGv1+S66HPe/BviVQuT3+OhoLVcO+pVD5afT7Op0PB1L0fSIiIiIiIiIiIiLSypQ7BKMVBDskuZLYZTu8t1Cb6HutRURERERERERERJJEKxNFJH0kIxht+Ted24pGQbtif+YRieS4h+Cdi+HA8qbbjQCM+Sn0Pst538KBcMLjsPAKqDtsLYQZ+QMrhMAP0S4e6jTen3ljNfI2a6FVc73Phk5HJ78eiY/bIrzKUtjzDhSfnLx66m15EIZcm/x5RSQzhEOAad826gfW4ty2JtvLkzNNWP0b6HdRdGPXVXrr5zVArbWI9Ya2dXfDyFut0J9047gQPI7LWdmF0fWvq4CVP4fxv419znSw601YdDWUb7RClgdfBxN+b4U+OX3v9DrDCnba+Ff79mA76+cspxOMvwsGXpmw8sWDvK5WoNfau+zbV/0c+l0Y3xwVpVC2Ivr9qnbCjpegeJpzfW6SFcYTzIFhX3duzymCY+6FrpNh8XUQ+vz3UfuhMO0FK2itsT7nwqKv2I9lhvypWUTEb+Fq++2JCql00uds62PSX6zPX58Gu9907h86Aku/AZPva7p987+t9wSq90FWoXXddfjNCStbxJNwjf32YE5y66gXyLYeujJvenzjbH0oxvlz/fu3z1oB7862riFH47XjG/7e+RiY/irkdIyvltV3wMc/abg2UTwDjn/I+7m3Y4Cebu8QEZG0V/9myRTDMEoSNEePBI0rIiIiIiIibYhTMFphBgWjZRn219drTYf3IkREREREREREREQyjO6cFZH0Eci1bui3W/xeezD+8Y/sgnW/d24fdlP8c4h41X4QnLYYqnaBWQt5PeHQGmg/2D0ksF7f863wtINrrLG87ONVbhfvfQM5VmBCKnU73grK2rWgYVsgB0Z8O3U1SeyyO1jfg9X77Nv3LU1NMJoRSP6cIunoyGew9RGo3A7dT7JCKJuHgLRFpksgVc/Tk1dHuhl8HWz8s3uf/Uvgs9fgs1es1//+c6BwgPs+XoPRDnzkrV9rEc+TPrfPhcFf9a8WvyRiIXgwhuPmtXfCztdhzE+g9zmZ9bpnhq3z4OW3NNoWgg3/ZwUgTPid89c5kGOFkQRyYP29TduO+SP0mw3Ve6FdD+sYTlJv7B2w8S/24fJlH0GoGoI2wTZmGEqfsIK783parwdZ+S377V8We2173rECaUIeX8MbC7aLfd5EGHA59L0Qyj62AjPaD7F/XXA7tw45BA+JiKSa0+tTsoPRmjv5VXjhKCjf5Nxn09+sYOqCftbnZSutgMr6Y526ciskbfk34ehfwMCr9KAUSQ3H85zs5NbRWPHJ1vF96aP27Se/Yp2HvXWe9bAWPw38sn9j5feCU96Cii1WqC/Aoqug/BPvY+xfAk90gkFfta5R9IghMG7J161zrsZ2zYOniq3Xn2E32R9vN+YYFJ7C7xMRERHvDODhBM9hfj6PiIiIiIiISEwqQvbXuzMpGC3b4b2FOrf7GUVEREREREREREQyiBIeRCR9GIbzotGqPfGPH+lp9b3Pjn8OkWgEgtZCnYL+EMyBTkdHF3AWyIZOY/wNRQPI7eq9b8llkFPk7/zRMgw46QUYeRt0Pc5awDXjDeh+Ymrrktj1dAnbK0tVyI3uqxfh8CZ4ZZIVrrP2LnjrXFimYFkAdrzk3NaWF6wOuspbvwUzreCpFd+DlydYIZhuvIbqbH0Ids731rc1iOeGtr0L/avDT2GnheBxBKPFGmpWtsIKAVichgFyTswwLDi9aShaY+vutn7ewg5Pia1//ZrwBzjmT1A8wwqGO/5RGPI1yO0MHYYqFC2dBLKgxyn2bWYYDq9vui0csn7O3rkY3p0Nq++A5TfDc0Oh5gCYJoSqPv+ogQMrYq+t/BM4uCr6/bpMie9nPlGy2kHXSdbPgNvryqS/2m8PVSWmLhGReDm9PgXzkltHi/lz4PQlkR9usrHR6+7au5wDqFZ8D14c3fbClCU9OB5/5yS3jubG/9b+vYZ+F0PPmVZA2EVl/s87+Bp/xzMMK3C9+CTr46x1MPbX0O2E6MbZdB/MnwGrfx3dfqt+2TIUrbEV34One0PtIfdxEhEULiIikjz1oWWJ/BARERERERGJS3nI/jptQbB9kiuJXbZh/95CnVmLaZpJrkZERERERERERETEfwpGE5H0ktvNfnu1D8Fo610WIvQ5D9oVxz+HSGvgFFDYXMcxMO43ia3Fq6x2cPTPYOa7cMIj0O3YVFck8eg/27ktr3vy6hCRptb8Giq3N922/h44tC419aQLM+welNSWg9G6HAMlX4xun5oD8PGP3Ps4LSK3s+LW6ObPZE6Lpr2o2uVfHX4yHYLR4lkIboZi3xdg0/2w+634xkiWT5+Dna+591n0FefvnfpgBsOAIdfBjNfhpLnQ/2J/6xR/TX7Aua3s82CyIzvhrS/AI1nwSDZse7JpvyOfwhOd4eEAPNru849cWPkT57GH3uhe17YnYVmEPnaOfzj6fdJJMN9+e1jBaCKSpsLV9tuDucmtw05OJ5hwt/WABCerfg51lVbw55YID0qp3gMrb7f+vul+mDsAHu9oheGWf+Jf3SLNOR5/p/j6QX4fmPpM0yDEDsNh7C8bPjcCcNx//Jtz7K+g8zj/xrMTyIKjvg2nvg0Tfh/9/h9+1zo2Prg2ct/qfZGvaQDUlsHjRbDuD1YYsR3HoPA2fJ1JREQyjZngDxEREREREZGY1YSrqTHt3xcrDGbOAwKzHB66YmISwuE6s4iIiIiIiIiIiEgG0SOFRSS95HWDgzbb4w1GqyiF8k3O7Sc8Ed/4Iq1JbtfIfUb/GEZ+HwLBhJcjbVCvWc5tdZXWn+WfwOYHobIU+nwBesyIf5Gu29PRDOUJi7DjJfvtWx6GMT9OailpZdcCa+GrE6ONL1gdfxdseTC6fT57FUI1ELS/cSuqYLR9i6Fqd9sI1owrGG23f3X4KRHBaPn9nNuyi6DW7oS0mc3/gu5TY68hGcwwrPhe5H5lH0FWoX2bFtxnptzO0H4oHF7fsm3Vz6BmPyy9wd85R/yPFZpdNByWXO/fuAOvgsIS/8ZLhcbBIo0d+cw6n8nvA91OsAI7RETSQcgpGM3h9SwVep7m3v5ERzh9uXPIW2PbnoTXToA97zZs2z7Xuu502lLncxKReDid0zosXkqqHqfAedut8/KcztD9BMgqaNqn1xnxzTHgS9BhGPS9EDoMjW+saA38Mqy+A47siG6/mgPwxulw5mrIcgi+Bdj9ZnTn5stuAiMIQ22Oz02HceI5HxYREUm8UhRaJiIiIiIiIhmgPHTIsS2TgtGyXe5NrA3XkhXUvT8iIiIiIiIiIiKS2XTnrIikF6dApuq98Y279i7ntrG/VriTSGO5Xdzb84ph1A8UFCWJYwSgx6mw87WWbXXlsOHPsORrDds23Q8FJXDaoviCb8yQW1GxjyvSGphhqNxm37bxz207GG37M+7tbT1YKNgu+n3MOji8ATqOtG+PNgDs4Kq2EYzmFCLmRboGo4Ud/k3x/Fx1HA35fVu+phWNhJnvwwsjreBVN5vuh8l/i72GRAtVw8LL4eBqb/33vme/va0HO2aybsfbB6MdXOV/KBpAt8+DAod8Dfa+b4UH+mHQ1f6Mk0puQUILL7f+7HocnPwyZLdPTk0iIm7CVfbbA3GG0fspEIRZK+Clo+3bw7Xw4mjv4zUORatX9jGUPgoDLo+tRhE3Tue06XL9ILcLlFzi3J7T0Qp23fNO9GMfdSuM/UXstcUruz1MnwdLr7d+9qMJXq/YCp/83T7E7L99IpxL2ln6dStsrnBA0+2JOB8WERFJMNM0S1Jdg4iIiIiIiIgXFaHDjm2ZFIyW5XJvT51ZA7g87ENEREREREREREQkAyjRRETSS243++1Ve2Ifc/9yWPd75/Zes2IfW6Q1Khzo3j7+dwpFk8RrP8R+++ENTUPR6lVsgZU/i2/OcLVzm77npa1zC6mtdX56YptwcI17e1tfsBpLMBpYQQROog1GK1sVWw2ZJtqvS2PVu8E0/avFL05hb0YcOf+G8fnxbKMxArlWYHZ2IZy1GoIebgqsijO8OxFC1fDRD+HRPCh9PP7x2vrrVybre2Fy5+txSsPfR97mz5iDr4Nux/ozViq5BaPV2/serPpl4msREfEi5HBtJJ2C0QA6jbFC9RNp62NNPz+0Ht7/CrwyBZbemL7hwpL+ag/ab8/KoMVJY26Pfp+CEhjl07FiPIqGw4z5cHElXLgfCgd533fro+7tTg8ViGTxtS23OQbo6bl3IiIiIiIiIiIiIvEqD9nf82hgkB8sSHI1sct2CUarNeO4l0xEREREREREREQkTejOWRFJL07BaEc+jW28/cvg5YnufYpGxja2SGtV0B+6TIZ9i1q2TboPSi5Jfk3S9mQV2m+3+76st/0ZmPiH2OcM17g0GrGPK9IaVG53bgsdscLRsjPnSYm+OqRgNFeBYGz77XwVSubYt0UbAHZwZWw1ZJp4gtFCVVBXDtnt/avHD4laCN7vAihcDNvnWmP1ORc6jrbasgpg8LWw7nfuYxxcBXknxVeHn0wT3jgDds33b8y2/vqVyZIZKNbvYshqFILZYWj0Y4z4jvUaVLndukbT7TjodaZ/NaaSl2A0sH7v8YuEliIi4olTaLzX17NkGv5N2Pla4sbf8bx1jGUYUP4JvHZ8Q2j4vkXW3KctarvnwhKbULVzMFpu9+TWEo/ik+HsjfDcYOc+2R0AA4ygFZ479Pr0ei0JBCGnE5y5Cj55AJZcH3mfPW/Dzteh4xio/LTh/zJUBbld4cCK2GrZ/aZ1/tv4HMwxKFznaSIiIiIiIiIiIiLxcgpGyw8WEjBivN8tBbKNHMe2WtPtnmgRERERERERERGRzKBgNBFJLwX97bcfWgtmGIyA97F2vQnzprn3OeMja2GTiDR14lPw1nmwf4n1eXYHOOZPUHJpauuStiMrhieuVW6DUA0End/odxVSMJqII7dgNLDChQZcnpxa0knNATiyw72PodPumGx7yjr2COa2bIv2aZZtIRjNNJ0XTXtVtTv9gtEcF4L78HPVeZz1YWfM7dbPdumjzvsfWA7FaRSMtnehv6FooGC0TJbTCfKKoWpX4ufqP7vltgl/gGU3etu/YACMu8PfmtKJ1/CP/csSW4eIiFehKvvtdsflqdZrlhWsX1eeuDnW/AaO+g5s+ntDKFq9Q2th+3Mw4LLEzS+tT/Ue57a8DApGA2g/CGZXwZKvwSf/AEwoGgVT/g5dIjywKJ0Ec2HI16DfbFj8Vet6hJv5p/pfQ7gGDm+EohGNtiUoKFxEREREREREREREHIPRCoOZ9UCcLJd7e2rjecimiIiIiIiIiIiISJrQnbMikl6KjrLfXlcBFaVQWALhEJRvhLKPrKev15RB4QBr4UJWvtW/tjxyKFqf86DjaD+rF2k98nvB6YutIJzqfVA0UgtuJLliCUYDK8SksCS2fcPVzm3RBHOKtEbV+9zbtz7WNoPRKkoj91GwEBQOto7fo1F7ED57Bfqc07ItHOXTLMtWWsFhrTkQ2WsoWn4f56DDt8+HITfAwCvTJ/gi7PDvSvRxaXYhnPAIVN0Lc/vaB4Qsv8U6n+xxSmJr8Wrn6/6PGYgxbFbSQ9HIxAejdT8J+pzfcnuvM7wHo/X9gr81pZtgFOc12+dC77N17iEiqWOazsfagTQ5PmzuvO3wRMfEjf/hd6H3ObDqZ/bta+9UMFprUx86Ha6BULX1Z/1H88/D1daDFhp//t++DtuqdjrPnWnBaGCdO055AMb+CkJHoF0fCARTXVVscjvDiU/Ckc/gzXMbHhrjpy6TYd8i+7b3r4TprzcEltdV2PdL19djERERERERERERkQxSETpsuz3TgtGyDed7e+rMKO+xExEREREREREREUlDSjgRkfTiFIwGsPgaqDkAB1faL0zf+Bc4fbm1iH37M5HnGnxN7HWKtBX5fawPkWSLNRitclscwWhuNwG04jAdES/cggMBdr5iHafldEpOPemianfkPgpGg56nwYYog9EAdr3hEIwW5dMsaw9aC5vze0VfQ6bw+jWZ9SE82dW+rexjWHIdbH0ITn4NgmkQiuUU+GYk6XJWXlcY8V1Y+RP79vmnwvi7YfhNyanHiWnCxz+K3G/MT2HkbfDSOChbEbm/odevjNZ/NuyaH/v+xTOsMIauU6D4ZNj8T9i/DCq2Qo9TodsJMOJb9qGThQOh80TYv9R9DiMIg66KvcZMEM25yVvnwcAvW+EiIiKp4HZdJJiXvDqikVMEU/4O73/ZW//60GYjy3u4cOmjzm0HPvA2Rr1wXdt++IRpWucuruFijcLE7MLFPAWWRRli1rx/KhjBzL6mkomhbk7a9YRT34Kne1nXuvw09Ouw0CEYbd9ieHYQnLnaes11CjnO6+ZvTSIiIiIiIiIiIiJtUHnokO32gmD7JFcSnyyXe3tqzSjvsRMRERERERERERFJQ2347nsRSUvZ7SG/H1SWtmzb+Zr7voc3wOo74OifRl7kPewm6DUr9jpFRCSxsgpj269yW+xzui18LI8h0EekNbELpW0sXAvb58LAK5NSTtrwEoymYCE4+mewb1HkgJzmqj6z3x5tMBpA1U4FowHkdoGC/lawkZPdb8H2p61QpVQLO4RVJDNwsP9s52A0gOU3W+F7o35gHxCVDLsWRO7TrqcVimYYMPNdeLI7hCrd98nv7U99khoDvgQ750HpYy3b8nrA1Lnw6mTn/We83vRzu6BKJ4YBk/4Kb54FR3Y49AnCuN+6B+S3BtEGCX3ydxhwuRVGJyKSbG7nfcHc5NURrY6jvfU7+pcw8n8bPt/0d1jkIaDz4x/HVFYTh9bDoqth70LI72sdOw7yGObmVYvQsUjhYrEEjvkQYib2cruBEUh1FVIvmAcz34fnh/k7biAH+s+BrY/Yt1fvgaciBJ/ltqIQOhEREREREREREZEUcQpGKwx2SHIl8QkaQQIECRNq0VZr6n0ZERERERERERERyXwKRhOR9FN0lH0wmhdb/g1jbod9S5z79DwdJtwd2/giIpIcWQWx7RdPMFqo2rnt8Aaoq4i9rnRlhmHfUjjwAXSeYH2kKtRF0lvY5eej3tq720YwWl0lbH8W6g7But9H7p/MAKd0ldPRWlD8SJSXIGoO2G+PKRjNQ4hdJvPyNSkosf7M7e4ejAaw46X0CEYzHYLRjCRezioaAb3OgB0vOvf5+EfW13fgl5JWVhOfvRy5z4hvN/yOzyqwQq6cFuPX6zkz/tokdYJ5cPzDcNT/wv5lDT9P7XpB96nWa3PP0+CzV1ruWzw9/vk7j4Oz1sDud6xwyk5jrRDBQ+ut78Fux0HhwPjnyQROX2cnn/xTwWgikhpu532BKIMekyk3QohQfZ8h1zXdVnIJfHQbHHEIZPZLxbam4UoVm61AtnV3W+9VxBIu5rRNMle7HqmuQJrrMBTyuvt7PSGQDb3Pjnwu5ibPw2ueiIiIiIiIiIiIiLiqaCXBaADZRjbVZstgtDozhnvsRERERERERERERNKMgtFEJP0UjfS2sNtOxVb49DnY/aZzn3G/jm1sERFJnlgDyCriCEaLtIB0+3NQMif28dNNOASLr4ZP/tGwbfA1cMyfwAikrCxJU27BgfXKVsDWx6D/xYmvJ1XKVsGCmXBkh/d9jGDi6skkgSDkFUPVLu/7VO+33x7LTVutPRjNy9dk1A+tP/O6R+67+Z9w7D/iKskXToFvgSRfzjrmT/DiaKi1vykSgPevgB6nQH6v5NVV7+Bq9/YJ98DQG5pu6z/HfTF+j1OhoH/8tUlqGQEroKzzOPv2wdfYB3aVXOrP/NkdoPcZTbe1xcCvfrOjC0ZLl9dgEWl73M77grnJqyNakYLROo6G4x+1QkEbC+bBzIWw5Hr3EFxXEcLl9y2FV46xbyv7yPoQAeihUOK0dNZaeKKzf+MFcqzzxpxOzmHwkeR6OKcXEREREREREREREVflocO22wsyMRgtkEN1qKrF9lo9VEdERERERERERERaAQWjiUj66eSwYNert851bgvmWwuhREQkvWUVxrZfZTzBaBGCn1bc2rqC0bY/0zQUDWDjX6HXWdDn7JSUJGnM5sYZW+/Ohn4Xts5wvcOb4MVR0e9nRFgo35YE86Lrv3+JFc7QPITBKSzLTTSBbJko0tekeDr0n239PS9CcES9x4tg+Ldg5K0QyI6tri0PW79bdr/RsK3jaOh+Mhz9Uys0yY1ZZ7/dSPLlrIJ+cNzD8OaZ7v2e6Q2XmsmpqTGnYLTcLnDBXvu2nqdDdhHUHrRvn/QXf2qT9NbrLOh1RtMwmO4nWUFe4p+SS2HRVdHts/7/2bvP8LjuOm/j95lRsyT33uM4sR2nOE53qtNJIz2B0GGBZemwLGF3gST0Tlg6+wCBZcMSCJAQ0nvvxenNiXuvkmWVmfO8ODGWpTmj6Wr357rmss6//iRLU6RzvvMj2PNffB4xEKy8GZ7/Lmx5AeiFxwgpH9meUyb6cDBa1ZDs/ac8Ef8atWE6LLwOnroEnr40/717Cox75MPZ+yWAYbNh9sd7uwplUjMSjroa7rkg/vVpPhLVUD0UDvwB3P+OwtbIJexckiRJkiRJkpRVUyrzmyM2JodWuJLiVQWZz+tqL+TNRyVJkiRJkiSpjzEYTVLfM/UceGwstK4t/doLrij9mpKk0qtqKGxeUcFoPbw7WvNrha/dF73wvcztL//MYDR111NwYGdPfBbmfyu/9VPbofl1CJIwdI/85lZCy2q4tg/W1d8UEqbw6CfgkJ/s2lbIu1m2rsl/Tn+SLcRi/2/CrI/sDIxI5fjz3L4FFn0RVt4IJ92beUwYwuZnIExD24Zo7ZoR0c/ys9+ApX/sPmfTouj24g9g4d+BN0IqaobDiHm7Bluk+0gwGsDkU+HYm+D2k7KPe/5ymFPBUIN0e/xzlEN/GT8vWQt7fQae+s/ufeeuh9pRJSlPfVyyBo7+Kyz9E2x8PPoZnHJWzwEzyk+yNgrqT23Lfc4jH4GWlTDvy+WrS+URpqPHxm0rosfQuNddUn+Tb8hxpY05HNbd1729cffcgrsLDaLM9hqnZSWsf6iwddVPBNHjfKIm+l5I1ES3ZJfjRE2ncZ2Pa2HUQdHfxHz+3XdNPRtOeRz+HvOmS/t8Hp7+Um5rJWqif2e8HYbPhRsOzL8eg9EkSZIkSZIkqShhGNIcG4zWw5s89kHVQU3G9o6wgHPsJEmSJEmSJKmPMRhNUt9TNQSO+Rvc9zZoejlqqx0dXaA7Yr/oNnI/uOdCaHolv7XHHF76eiVJpdcbwWipQXYSwNqYkJsV11W2DvUPqe25j33u27D/N3K7+Bxg/cNw70U7n/dNPgOO+D1U1edfZ7k8/+3ermBgSBYQjPbyT2H2R6MLhnfIFgIWp2V1/nP6kzAmQAxgt7ftGnKU68/mDuvug5uPguNu2fX/sHkJ3H0ubHgkv/U6u+PUXY9rR8OC38Gkk6PjuM8r0Uu/zpp4IhxzHdx5WvyYpy+LgugSycrU1LoeCDP3NeyWfe7cz8K2ZfDq/4t+rkbOh8P/x1CGwSZRBdMvjG4qn+F7w4aH85vzwg+in9Pq/veO1IPWlhfgzjNg60u9XYlUeoU8l6+kuRfDXW/u3j7+2BwXKDAYLVtoc9Nrha2pNwQ7w8N2CRTLNXSs0/GO8cma7iFmOc2PW7NCz/nV+0bsAxdsg4feD69fGQWhBskobHrfS2DOp+HBf8ocDt5Zonrnx6MOgPM25TZvh5qRMGyvgj8NSZIkSZIkSRK0htvpiDknqX8Go1VnbG8PCzjHTpIkSZIkSZL6GIPRJPVNYw6BM16Atk3RBdp14yDocnFSw/T8gtH2+CDUTyptnZKk8qhqLGxe67o3LkzLM/QFIN1a2J6qvDANr/4aVt8Br/8vhCmYeg7se2l0oaJKL9+fj3UPwNgcAmnTHXDjIbu2Lb8W/tAAFzT3jXC0MIQlV/V2FQNDoq6wea9dCfO+tPO4kGC07SsL27u/yPY1SXQ5+W3KWfDa7/Jbf+098Px3osCJ138Pa+6Cl3+Wf509aV0P970VTn8R6sZkCUbLfEJfRUw+FY6/DW49LnN/2wb4fRWM2Bc2LYraZn0EZrwTRh9c/P5b+BFGAgAAIABJREFUXooCA1Mt0WNf3fj4sXVjs6+VqIJDfgL7fzU6rh7R/XW3pNIYe3j+wWgdW2HRpdC+aWcI4rK/Rn2zPgb7XQo1I0peqgoUhvC3Ob1dhVQeyfro1pdNPh0mvxmWX7OzrXpYdH+Z0/zTYNEX89831RI9F8/0/HTDo/mvVzFxoWM5BIwlMwSOFRM6FhdiZuiY+pqqIVGQ9ME/joIPh+6x8/dWNcPhqKugdQPc/y5Y8bfMayRqdj3eMa9tI9xwyM43DYgz9+LoZ02SJEmSJEmSVLCmji2xfQ39MBitquvvnt/QYTCaJEmSJEmSpAHAYDRJfVeQgNpR8f1143Jfq2G36GIFSVL/UNVQ+NxUS2Hz022F7znQdDQX939QiHRHFNDSk1Qb3P8OWPKHXduXXh3dTrgbxh1ZnhoHs1SewWiv/1/mYLSOFkjWRWF2iSq4bm78Gn/fD057JrpIupJSrVE4b6IKakbB6tuh+fXK1jBQFfp/ufL6XYPRCjlpa8vzhe3dX+QTjDbxpChsIN/Awxd/GIU7LL06//ry0bYxCm6b8/HosSGToJd/nTX+WJh0evzF7rAzFA2ir91LP4Ejr4KpZxe+79r74JZjdgbGvfSTKIAtTu2Y3NatGVl4TZJyM+0CeOHy/Oc9/53M7S/+AF78Lzh7JQzJEpCoyrn3Lb1dgVQ+E0/K7fV6bwoCOOJKeOWXsPJGqJ8Me30Ghs7Mbf7I+VA/FbYtzX/vts1RqG9n25bDox/tee6oA2HIpBxDx/INGDN0TCqL6mEwcr/MfbWjYNT8LMFoMSHfNSPh9Gfhue/Ak5/LPOaI38P0C/OvV5IkSZIkSZK0i6ZUfDBaY3JoBSspjeog8++e79p0A882PwZAMqhmRt0sjh5xCkOrhleyPEmSJEmSJEkqSh+/kkGSsqjNIxjt+NujoDVJUv+QrC98bnuTwWjF+kMjjD0SDvt17hcRF+qVX8GT/w7bV+1sGzYHDrw8uvh6h1W3wEMfgqaXs6/39GVw3E3lqXUwS23Pb/zSq+DA70cXpwM0vQYPvBvW3LlzTLIu+7pNr8Btx8OJ9+S398v/DQ+9f9e2XALztq+Dh/8Zll+TPWRKlbfhUbh+Piz4TRQCVcj/z7ZlcPPR0RqNu5W8xF6XTzBa9bDoguq78wzoallZ/lC0HR77BOz5QdjyXOb+3g5GAzjyD/CHPJ6vhCl49GMw+YzCgkXCMLqPCruExXUOYOusekT8RfeSKm/MAtj3Ulh0CRCWaNEQnvkqHFRA4JpKq21T9+BmaaAYtlf/ecORqnqY/ZHolq8gET2/u2lB/nNTzUCXYLQXftDzvGOuhcmn57+fpD4uiO9K1GTpq4a9L4bRB8N9F8H2NVH7yPmw8HrDcCVJkiRJkiSpRJpjgtESJBiSqPAbCpdAdZD5d8/r21ezvn31P46fbX6MR7bezaenfo3GqmGVKk+SJEmSJEmSitIHriSVpALV5RiMNvqwgRl+IEkDWSIJySGQasl/bkcTkOVCsY1PwIbHoG48TDplZ3BmLnulU1Ftg8Hae+DWY+HNr5Q+WKV1A6y4Dp77Dmx6snv/lufh9pPh6L9C8+uw9l5Y8n+5rb3q5ig8JshyEaLyl27N3F47GlrXd29vWQmrb4MJx0O6A249DpoX7zoml7C1tffCdXvDuGMhWQvVw6FhGkw8GYZM3DmufQu88kt47JOZ17nlKNjzw92fPza/Bg27wZjD4IXLYcXfe66ps8N+DcPnwo2H5DdvsKrLct889ZzsoVsbn4CbDoezlhQeZLn2brjlmDfu1wbIr0OaX4cVN2T/3s30rqBTz4LzNsCau+GuM8tXXzFuOwm2r87c1xf+/6qGwJFXwT3n5z5n2zJ48Ucw5+P577fxifgQtExqx/Q8RlLlBAHs+wWY8Xa4poTBw0uvMhitL1hzV+5jp50PE08pXy1SKQ2bA6MPGjxhq2MOg/O3wh+HQ5jOfV57U/e25dfGj0/UwLnroHpo/jVK6t8yvT7vasLxcMbL0e/EkkNg3FG+8ZMkSZIkSZIklVBTTDBaY3IYQT8877Qql989v2F123Ie3noXx470zXskSZIkSZIk9Q994EpSSSpQ/eTcxs18X3nrkCSVR1VDEcFoMZ79FjzxWSCMjkcdCCfcHYWbtG/tee10GySG5F9Tf7VtKay4Hqa8uXRrbnoGbj8JWlb0PLbQsJ4dgVwqnVRMMNrU8+Dln2Xuu+0EOOyKKMCsayhaPjY/G906qxkJx1wLY4+AjU/C9fv3vM5LPyq8hkwOuwJ2f2dp1xzoxh8LS//UvX34PlHA1BMXw3Pfip/f0RSFp6XbM/c3zoy+17KFGGxbAqtvh4kn5ld7X7T8b3DPhZDaln1cXIhYzcjo/n3GO2Hxb0pfX7HW3h3f11cuCp90Wv5Bro99Igotm/G2/PZ6/ff5ja8bm994SZXRuDvs/h549VelWa9lJbSsgiETSrOeCtP0Sm7jhu8NR/6hvLVIKk51I+zzBVh0Se5zuv4eKt0BW56LH7/flwxFkwa0LBfNJWtyW6J6KEx6U2nKkSRJkiRJkiTtoimV+VzhhuSwCldSGvXJxrzGv7TtaYPRJEmSJEmSJPUbfeRKUkkqQP3UnsdMOBFmvrf8tUiSSq+qobB51+8Pd5wB6x7c2RaG8NQX4Yl/4x+haAAbHt15sesrv+h57XRbYTX1ZxseKX6NjhZ47ttw/QHw931yC0Urxn1vL+/6g1F6e+b2uvFQPyV+3gPvioLwSq1tIzzyEdj8fG6haKU2cn/Y7a2V37e/m/EuGHf0rm1VDXDg96Kgq/nfhPpp2dfY9AyEqcx9h/43vKUdqkdkXyNbSEF/0boB7jyj51C0INFziFhdmcN09vhnuCiEUx4v3Zotq0u3VjGqhsCUs/Of98hHoG1Tz+NW3QK3Hgf/G8Bz38xvj6Gz8q9LUmXs84XSBjxeMyN6nn33+dFzI1VW6wZ47FM9jxsxD05+uPz1SCpedZ4XvXQNRtv6UvbxI/bNb31JA0dQ3dsVSJIkSZIkSdKg15TakrG9Mdk/39hmTv1+eY2PC4aTJEmSJEmSpL6oqrcLkKSC9RSMduRVMPWc0l5sKkmqnERt4XNX/C26Hf0XmHJmFMr19GWZxz73TRi6B2x5oed10+2F19Rfrc/z4v0wDRsfh0QNDJsLiSQ8+vHcgudKZfsqaF0PtaMrt+dAl2rN3J6sg+F7w7Zlla0HYOMTcN1eld83WQcLfgMJL2bNW3UjLLwBVvwd1j8AQybB5DOi++Adhs6EbUvi11h9a3xfojp67j/j7fDiD+PHLb8Wpp4H9ZPy/xx6S7oj+p5vehWCAO65ILd5uVx0PaTMwWgNb7xuG7k/jDkc1t1X/Jqdv2d629x/gyV/gLAj9zntm+Dxf4M5n4Rhc2DzM9CxDaqHwpbnIbU9eizLJWgnzm4XFT5XUnk17gZnr4bFv4bHP1P8eqnt0fPvjY/D0j/COWugbmzx66pn6Xa45ZjsY+Z8GkbsF4Xq+vxR6h+qh+c3vmsw2uans48fvk9+60saOBI1vV2BJEmSJEmSJA16zbHBaHm+eU4fceDQo3iy6UGebHqw58HEf/6SJEmSJEmS1BcZjCap/8oWjDbz/TDtvMrVIkkqvUQJnqredRZMOAnW3pV93EMfyG29dFvxNfU3K2+Ara9EYUU9aXoVbn8TbH0pOh6xH0w5q7KhaDvccRqcdH8UIKTipbZnbk/UwvjjYeWNla2nNx13C4zYt7er6L+qhsC0c6NbJo0zYfXt8fPrxsX37bjAeP63oH0LLP5N5nGrboG/ToN9Pg/7fKHv309segbuPAOaF+c/N5cAltosX9NSGNcpMOaIK+GBd0f/x4lqmPHu6Ov/8s/zW3PUQaWssDgj50VhiQ99EDryeEfVV35RvsfHIZNh4knlWVtSadSNgb3+NQrWevLfS7v21ePgLR1RQLHKa+VN2QOQRh8KB3y7cvVIKo3qPC96ae8SjPbM1+LHDp0F9VPyr0lS/5HtdwyGpEqSJEmSJElSr2uKCQZr6KfBaNWJav5p0r/x0ranWbz9BTrC6A2gV7Qu5cmmB7qNj/v8JUmSJEmSJKkvMhhNUv9VNQSGTISWld37DEWTpP5vR8BNsVbdVJp1YOAEo6Xb8xv/+Kfh6L/0PO7et+0MRQPY9FR06w3rH4SlV8eHLyk/6dbM7clamP5WePmnUTBeUQLY91JY9IUi1ymTCSfCcSW8P1Fmjbtn79/yQnzfjguMk3Ww4AoggMVXZB4bpmDRJTD2KJhwXCGVVkYYwv1vLywUDbIHye1Q3VjY2rmYeDKMOXznccM0OP426GiBsD0KnWhanF8w2uQ3w6gDS19rMXZ7K0w9F1LN0fH2tdA4A1pWwF93q2wt9VPhtCwhPZL6lslv7jkY7aT7YfsauOvM3Ndd+keYfmFxtalniy7N3j/jHZWpQ1JpVQ/Pb/yO54AArRtg4+PxY/e7rO8HM0sqn1L9vluSJEmSJEmSVLCmVOY3Pmzsp8FoAMkgyZyGecxpmPePtmeaH8sYjNac2koYhgT+zUqSJEmSJElSP5Do7QIkqSjTLujeVj0Mxh1T+VokSaVVNbS3K+huoASjpVryG7/sGmhZnX3MtmWwvvtJFL3qhct7u4KBIxUXjFYHtaPgpAdhWhHhGyPnw5tfhn0/D8fdUvg6mSSHROFXO275GHtUFFhy8I/h2Bvixw2ZWFyN2qmnYLRtS7s1pcIEzal6CKp37WjYref9Xvnv3GvrDZufho1PFD5/4ik9j6kdW/j6mSTrYNLpMP/bcPQ1mYMfqoZEr9sgChA7c0luax/wPTji95BIlq7eUknWQM3I6DZsVhTU1zAdTn6ofHvu/w2Y/QkYfyyMPx72+jc45fGdX1tJfd/wuTBiXua+2R+HM1+HMYfBlDdHAbK58nlw+S3/G2x4OPuY+qmVqUVSaeUbjNbetPPjpX+KHzduoaGV0mBQMzK+L1Ed3ydJkiRJkiRJqojm1JaM7Y3JPnjOchHigt7SpGlJN2fskyRJkiRJkqS+xmA0Sf3bvpdEFxTtUNUIR/8FkrW9VZEkqVT6YqjHQAlG69iW54QQ/jwB2jbGD1mRJTSqHOrGwR4fyD5m7d3w6CchDCtT00CW3p65PfHGc666MXDk7+HQX+a/9ryvwSmP7QzEmnA8jDq4sDp3mHI2vDUNF4Vw4TY48a6dt7emYfYne17j7JXR+GP+Cnt+CIIsL58P+H7m9lkfK6z+waxxZs5DO9JJPvLi5Yy6Zx2j7lnH6b+cyvqmTj/vdeN6XuT1K2HLiwUUWgFhGu4+r/D5QRXs/7Wex406IP/whzhzPwcXNMPCa2GvT0dhYblomBoFLA6Z1L2vbjyccHf08zznE1GoWn8y+mCY9ZHSr5uoju6bDvweHH8bHH8LzP8G1I4u/V6SyicIYMGvoX7azrZhs+GspXDg96GhU/ue/5z7uuvuh+v2hfU9BHepMOl2eOiDPY8zGE3qn/L9fdRrv9v58aan4sft8x+F1SOpf5n+ViBDQPjwuZCoqng5kiRJkiRJkqRdNcUEozXEBIn1V9mC3ppSWytYiSRJkiRJkiQVzmA0Sf1bzQg4/lY49Sk49iY4ZxWMP7a3q5IklUK2C1EX/HbXYMxKSbdXfs9yaM98YkeP4i7+3/gUPPT+wuspxJ4f6TkYDeCF78Nr/1v+ega6uFDArmG0M98DC6/Pfd39vw57X9y9PVsIWU+mvwWOvjoKGskkCODA78Kpi2L6E1Gw05AJue858WRomLFrW3II7P7O3NdQZEdAXg4ufvVr/HjFh9maGkZ7WMPfn2/g7B+ndw4YMjG3hW5/E6T6UPBlGMLa++Dv+8HWIkLbzt8M1Tm8k2myLrf7056cuQT2/2rhP79jDoHTX4DjboHDfxfdjr0JzngJxh1ZfH29af+v5/W9nZP9vpTb/6+kvm/k/nD6c3DiPXDifXDqM1A/pfu4unFQOyb3dTc/DTceAs98FZqXlq5ewapboWVFz+MMRpP6p5o8Q4M3Pgav/x88cTG8+MP4ceOPK64uSf1D3ViYdn739j0+VPlaJEmSJEmSJEm7SIdpmmNCwRqrBlYwWragt+aYcDhJkiRJkiRJ6msMRpPU/wUJGLEvTDwRqhp6uxpJUqlkC0abdEp0q7S4cKj+5oXvFzZv6Z+gZeWubU9/Ga6fV1w9DTNg7BEw51M9jx2xHxzwXdjnP2HUgXD8HVFIRDZPXxoFDalwcaFRQXX3tklvguNuhbFZgoyG7x0FHM79bMy6BbxUrR0DB3wPFvwmt/Ej9omCnKaeB3UTou/DPT8E52+Bqvr89q4ZDifcGYWyNUyHiafAsTdG36PKT83InIalw4D/XfPWbu33vAzLNr7x855r8EDzYlj+11wrLK8whPvfCTcfAZufKW6tfL6P9/86zPsqjJgX/Xzu9yXY78u5z9/zX6ChBOEv1Y0w4XjY7aLoNvHEgRH+VdUAh/6ydOtNfwvM+XTp1pPU+6rqo+fDYxdAIhk/bspZ+a/95H/A3/eB1XcWXp92tfrWHAYFUDu67KVIKoNsv4+Kc+9b4NlvxPfve0lxAeCS+pcFv4W9PgPDZsPoQ+GQn8Hsj/R2VZIkSZIkSZI06G1PbyNNOmNfY5Ygsf6oNqijKtP5nUCTwWiSJEmSJEmS+omq3i5AkiRJyijbhaiJ2ijAaNlfYN39latpIASjtW2EV39d2NwwDX+eBMdcB5NPhY1PwVOfL7yWiSdHa+0IfwhDeP678ePPXgFDJu7aNv4YOGc1PHVJFICWydaXYOMTMGp+4bUOdmFH5vZE5hNnmHBcdCtYkOOwquji0pnvLWybhqlw1FWFzc201hFXlmatwSwIYOxRsPburMM2dYxgVdvEjH1/XxTygaODKLAuV6//Hqadn0+lpZdOwQ3zYdOi4tea/pb8xgcJ2Ptz0W2Hto2w5CrY9GT2ucNmx4ccaqfxx0RhiRseLW6d2R+HAwsMOJXU/+3zn7D6Dmh6Ob957Vvg1oVw4XZI1pajssFlWQ6BqqMOjJ7XSOp/kvVRePb2VaVbc9zRpVtLUt+XrIH534xukiRJkiRJkqQ+I1sgWGNyALx5YydBENCYHMamjvXd+gxGkyRJkiRJktRfGIwmSZKkvmn4PvF9ydookOm4W+HqsdDRXJmaBkIw2sanINVS3Bp3ngYHXg5b8wxkANjr36L/u1EHwpQzozCeHYIAgiSEqcxza0bGrzv9wvhgNIhCjwxGK1y6PXN7XDBasTp/X3R19ipYcV308zjmcBi5X3lqUO+Z+d4eg9G2dMSHZ+6SQTL7E/BCDiFSS6+Gxb+F8cdD/aQcCy2xh/85/1C0fS+DZ77c/fFp5vuLr6dmJJx0Hyy7Bl74HlQNhTmfhEmnwIbHYPWtUD8VJp0KNSOK328w2PcSuPOM+P5Jp0dhR1VDYcxhUNUIw/eKHhfbNkaPnYZqSINbw3R408Ow/FrY9DQQwsu/gPZNuc2/8WA49amyllg2HS2w6Y3aRx/Se6Fjza9Hwcs9mfm+8tciqTyCAHa7KHtwe76y/Y5LkiRJkiRJkiRJFZEtEKwhmeXNnPupxuTQmGC0rb1QjSRJkiRJkiTlz2A0SZIk9U1Tz4lCYrqGeI0+ZGcYU9UQOOTncN/bKlPTQAhGKzYUbYdHP57f+NGHwYIrYNis7OMS1ZCKCUZL1sXPG75XFBiz4dHM/Sv+BvO/kVut2lUYQtiRua9cwWhkCbqoGxsFZ2ngmvEuaFkFT34udsimjvggrsbaTgc1o3Lf9/53Rv/u/R+w35cqG7jSuh5e+e/85w2fA8feCA+8F5oXQ+0Y2P+bMOG40tRVVQ+7vSW6dTb6oOim/Ew+PQoW7foYOvU8OPTn2QNAJWmHmhEw4x07j+d9JbpfeeknPc/dtCgK9mqYXr76ymHD43DvhTsDyUYdCEdf0zthpk9+vucx874Ge3yg/LVIKp/9v17aYLS6saVbS5IkSZIkSZIkSQWJC0arCqqpDbKcn9pPxYW9NWcJiJMkSZIkSZKkviTR2wVIkiRJGVU3wt7/vmtbohr2+eKubVPOhFFdwlkady9PTen28qxbSXEBV+XQMANOfwHO2wAn399zKBpAUETQ1kE/iu/b/GwU8KX8ZfueKeb/K5sgy0vVbH0aGIIA9r4Y9okPHtnYER8g1VjbKdCskKCpZ74Cq2/Nf14xNj5R4MQEjF8IZ74K566Dc9bAzPeUsjKV2uyPwYXbo9uZS+CCZjjqKkPRJBUuUQ0H/xgubIWp5/Y8/q6zIEyXv65SCdPw4Pt2hqJBFIb8yL9Uvo4Xfgiv/Tb7uPM2Rs9jfM4q9W+Japj85tKsNeGE0qwjSZIkSZIkSZKkojSntmZsb0wOI6jkm2hWSGNMMFpcQJwkSZIkSZIk9TVenSNJkqS+a5//hKP+BLu/B2Z9BE64CyafuuuYqgY47hbY/5sw9bwoSOfkh8tTT7qtPOtWUrqCwWinPxeFoeUT9jL6kML3G3MoHPbr+P7FVxS+9mCWLRAwUVWePYfuUZ511b8kh8R2beoYntsahX6PLu4h9KTUmpcUNq/z/Wvt6ChUTn1fsja6NUyFqvrerkbSQJGsgSOvggX/A7Vj4sdtfAIe/Xjl6irW+kdg4+Pd25f9FZperVwd914Ej340+5j9vw41IypTj6TyK1Vw7e7vK806kiRJkiRJkiRJKkpcIFhjcmiFK6kMg9EkSZIkSZIk9XcGo0mSJKlvm3oOHPZLOOi/YMxhmcfUDIe5n4GjroL9LoPaUTD3s6WvZSAEo4UVCkY74c4o9CVfe306c/tu78ht/rij4/se/lD+9aiHYLTq8uy554czt086NXO7BqZE/H3Ixo74kIKOdKeDMFXY3ot/U9i8Qq25I/85VQ0wZkHJS5Ek9WNBADPeBueuhWRd/LgXfwhLrqpcXcVYd19839K/lH//VCvcdiIs+b+exzbuXv56JFVOzaji15j1MZh2XvHrSJIkSZIkSZIkqWhxgWANMQFi/V1DTOBbc2prhSuRJEmSJEmSpMIYjCZJkqSBaca7S7/mQAhGS+cQjDbxlOL2GH0ojD2qsLkTToDhc3dtS9TAnh/MbX7t2Pi+1HbYvrawugazbMFoQZmC0UbuD2OP7LJXAvY03G5QyRLosqljRGxfR+cstNGHFL7/4v8pfG4+0h2FBbHN/ABUDSl9PZKkgeG0Z7L333MBpPrB65t198f3bX66vHs3LYarJ8CqW3IbXz28vPVIqqzaIoPRJp0GB10OiarS1CNJkiRJkiRJkqSixAWjNQ7QYLS4zyvu6yBJkiRJkiRJfY3BaJIkSRqYhs8p/ZoDIRgt7CEYbcR+sPBvsP/XoaaAi4AnnADH3QRBUFh9iWo44S6Y+T4YOgsmnQrH3gBjj8htflVD9v7NzxZW12AWZglGS5QpGC0IYOH1MOsjMGwvmHAiHPUXmHx6efZT35Ssje3a2DEyti+VDncejDoQhkwqbP/73wHbVhQ2Nx8rb8jeP+pA2Otfo/vl0YdGx/O+Bgd8u/y1SZL6r8bdo8eMbFZeX5lairHuvvi+7WvKt+/q2+HaPaB9U+5zqgfmyfLSoFUT/5ojJ3t9ujR1SJIkSZIkSZIkqSSaU1szthuMJkmSJEmSJEl9k29TLkmSJOUqNcCD0apHwEH/BUEC5n4WZn0U/tBD0FhXR/8VquqLq7F2NBz634XN7SmQ7daF0b/jj4W9/z0KclN26SzfM+UKRgOoboy+HzV4JeKD0ban62L7OtKdDoIEHPILuOdcSG2P2urGwfS3wguX91zDXybDOaujOeXy+h/i+w76Icz68M7juZ8tXx2SpIFn+kWw4dH4/rvOgrNXwpAJlaupJ02vwiMfhy3PQVUjbFsWP7ZcwWhhCI9+HMJ0z2M7Sxb5OkhS3zJsduFzZ/4TjDumdLVIkiRJkiRJkiSpaE0dmQPBGpJDK1xJZcQFo21LNZEOUySCZIUrkiRJkiRJkqT8GIwmSZKkgWvIJGhZUbr1Us2lW6u3ZAu5Om0R1E/ZeVxIwFmxoWilMHwubH42+5jVt8Pae2Dh34EAkkNg1EGQrKlIif1K2B7fV85gNCkZH36WCuNPyurommEy+VQ47TlYeWN0HzXhJBgyHvb4Z3j1V/DcN7PXccOBcMYr5bt/WP9gfN+088uzpyRpcJj5Pnj6MmjfHD/mzxPhmL/B+IVQlWcocqk1vQrXzMx9fGuZgtGaX4NNi/KfVzO85KVI6kXjjoH6abBtya7te3wQRh8CYQoe+kD3eVPOgkN+3nNwuyRJkiRJkiRJkiqqKZU5GC0uQKy/iwt8CwnZlmqmsWpgft6SJEmSJEmSBo5EbxcgSZIklc2+l5R2vScuhk1Pl3bNSgtjgtGGzd41FG2HyW8ubz3lMOm03Mal2+G2E+G2E+DmI+CGA6DptbKW1i+lswSjBQajqYwStbFdqZqxsX0dqQyNjbvBnh+EGe+IQtEAhs+B+d+AC1uy17FtGay5o8dyCxKG3YMWdpjzaagbV559JUmDQ81wOO6WnsfdeTr8bS/Y8Hj5a4qz9t78QtEAtq+JHktLrZDXfI17RAFKkgaORDWccAeMPQKCBNSOhXlfg4N/AjPfC3u8H858DcYeFfVXj4B9Pg9H/clQNEmSJEmSJEmSpD6oObU1Y/tADUbL9nnFhcRJkiRJkiRJUl9iMJokSZIGrmkXwMj5pV3z3gtLu16lpWOC0YKqzO17fw6qMr9rXDdTziqsplKb9eHC5m1+Bh77RGlrGQiyBaMlDEZTGSWzBKMlGmP7OtL57lMHx92afczGJ/JctActK+H+d8GVCUhtzzxm2gWl3VOSNDiNPgiO+L+ex21bGgUFh/k+kJZAqhXue0cB81rggffApkXF17DxCXjoQ3DXOXD/2/OfP+/LBiFJA1G/5G7VAAAgAElEQVTjDDjxHjh/C5yzGva+eNef9YbpcOJdUf9562G/y6KQNEmSJEmSJEmSJPUpqTDFtnRTxr6BGozWkIw/99dgNEmSJEmSJEn9gWfnS5IkaeCqGQ7H3wbzvwNTz4Fhs2HKmbDvpXDYrzPPGTEv+5qbn4U195S81IoJ44LRkpnbxxwGJz8Acz8Hu78nClU44yUgw0X/084vWZlFaZgOJ9xd2Nxlf4V1D+4MKkp3wPa1EIalq6+/yRqMFhOoJ5VCsi62K5VoiO3rSBWw14TjYOq58f3tmd8ttCDb18K1e8Li32Qf1zC1dHtKkga3yadB9fDcxt755vLWksnKG6F5cWFzF18BNx0B6x8pfP9Vt8JNC+Dln8KyP0N7nieAj5gH0/t5gLak7KoasocfVjUYiCZJkiRJkiRJktSHbUs1EZL5PNBsAWL9WU2iltog8zl4BqNJkiRJkiRJ6g+8il2SJEkDW80I2OtTwKd2bQ9D2PoiPPPV6DhRCwdeDnt+EG47GVbdFL/mLUdB4x5wxJUw+qCylV4WscFoWV4aDJ8L+39117bDfgUPfQDSbdHxnE/B9LeUpsZSGHtE4XNvOiz6t2G3KBSsZTnUjonC9CafVorq+pdswWhBdeXq0OCTqI3tSsWcsAWQKjTHcMFvYemfMve9fiXM+1KBC3ex6IvQ0Zx9TKIa6saXZj9Jkqoa4Kir4bbjex674rooELS6gid+L/tLcfM7tsLz34Uj/rew+c99e2cwciEmnVr4XEmSJEmSJEmSJElS2WULAmtMDqtgJZXVkBxKa0f3v4c3p0r4RqGSJEmSJEmSVCa+fbkkSZIGpyCAeV+Bs1fBCXfDuWujUDSAZHzgzj80vQy3nQBtm8tbZ6mFqcztiTwzk3d/F5y7Dk68B85ZAwd8B4I+9PIiCGDqucWt0fxaFIoG0LoO7jwDNj1TdGn9TpglGC1hMJrKKJktGG1IbF9HzN1cj6qGxAc8Nr0CTa8VuHAnqTZ46Sc9j6ub0LfuUyVJ/d+E42C3t+c2dsMjpd9/+1p46afw1Bdh9Z279m1+tvj1X7+ysHlhCKtvL27vurHFzZckSZIkSZIkSZIklVVzlmC0hmQF3ziswuJC37IFxUmSJEmSJElSX+FVtpIkSRrchoyHcUdCdacTG2rH5Da3fTOsuqk8dZVLuiNze5BnMBpEX7OxR/TdIIBcgx9yFsKSq0q8Zj+QNhhNvSQRH1KZDuJD0zrSRexZleUktxe+X8TCb7j5iNzGjTum+L0kSeqqblxu40odBrz1ZbjhIHj4Q/D0ZXDrQlh06c7+7WtKs8/Gp/Kf07EV0q09j5v3FahqzNw38ZT895UkSZIkSZIkSZIkVUxTamvG9tqgjppE/Llo/Z3BaJIkSZIkSZL6M4PRJEmSpK7yCfp6+svlq6McwphgtEQBwWh93ZQzYeis0q65ucQhEf1B3PdMkIhuUrkEydiuVBAfmtaRKmLP6mzBaJfDvRfBnyfBldVw7azoMSDMMYlt3QOw4ZHcxk5/a27jJEnKR3XmE5672fx0afd95iuwbcmubYsugRsPi0LYWksUjPbwh/Kfk1MoWwCzPgaH/KJ7MPC+l8HwOfnvK0mSJEmSJEmSJEmqmLggsIZklvPFBoCGmGC0ZoPRJEmSJEmSJPUDAzD9QJIkSSpS7bjcx6a2l6+OckjHhVwNwJcGQQALr4Nr9yzdmsv+Urq1+ot0e+b2oDpzu1QqVQ2xXamq4bF9HTnmlGXeszF7/+tX7vx460vw1Odh4+Nw1J+yz0t3wE0Lcqth7BEw8eTcxkqSlI/q+MfPXTS9CusfgbX3QstyGHskTDo1e5hy81JYdx90NEXHVUNh3NFQNx6WX5t5zvoH4e/75Pc5ZLPuPkinIPFGuGpHM6y5K3qtM/7YzPXnEoxWPRyqG2G3t8Dog2H1rdHrwHELYeR+patfkiRJkiRJkiRJklQWccFojTHBYQNFY1Xm4Lem1NYKVyJJkiRJkiRJ+RuA6QeSJElSkeryCEZL1JSvjnIIB1EwGkD1iNKuF3bAhkdh1IGlXbcviwtGSxiMpjKrnwRDZ8HWF3dtHzKRdM3Y2GmpYoLRqgt4B9ClV8ODH4CDfxT/c5FrqOK4Y2DBb3cGukiSVErVOZ7Qverm6LbDc9+CIAlnvgb1U7qPf+mn8OjHMjxvDGDfS6F1faEV52/dfTDuKFh7H9xzHrSsjNqHzYaFN0DjbruOzyUYraZToNzQmdFNkiRJkiRJkiRJktRvNA/WYLSYzy8uKE6SJEmSJEmS+pJEbxcgSZIk9TlVjbmPHSjBaIkBGoxWMxJi3vGuYHefC2FY2jX7MoPR1Jvmf3PX4MYgAfO+ljX8rKOYYLSgwO/rV34Bv6+BRV+CVGv3/rX3ZZ9/URjdTrgDGqYWVoMkST1JZ3iMylWYioJAu9ryUkwoGkAIi75Q+J6FuOVouPetcPMRO0PRALa8ANfM6D6+NYdgtFwD5SRJkiRJkiRJkiRJfVJTamvG9oYBHowW9/nFBcVJkiRJkiRJUl9iMJokSZLUVe2Y3Mf2t2C0dEwwWjBAg9ESSZhyZua+428rbM3m12Hri4XX1N+kWjK3D9TvGfUtU86Ek+6DOZ+Gvf4Vjr8Tdn8XqSzZhB2pIvaL+37P1aIvwG0ndg9PXH5N/JwDf1DcnpIk5WrIpOLmr7x+1wC0jm3wzFfig3RLbeIpuY17/ffxfQ99aNfjbct7Xq96eG77SpIkSZIkSZIkSZL6pKaYILDGUr/xbh/TGBOMFvf1kCRJkiRJkqS+xGA0SZIkqavRB0GuJzsk+1kwWhgTjJYYwCFXB/0Qxi3ceTx0Fpz2DIw/tvA119xVdFn9wiu/gvvfkbkvUV3ZWjR4jT4YDvg2zP8WjDsSgFQ6fnhHlr4eFRuMBrD2blh9a5d1t8WPL+a+SJKkfIw5AoIi/yTQ0RT9+9JP4K/TYPEVxdeVqyETYPShxa3x8k+joOMdNj/b8xyf90qSJEmSJEmSJElSv9YcF4wWExw2UDQmM58L3ZLeRirufGJJkiRJkiRJ6iMMRpMkSZK6StbB7I/mNjbRz4LR0jEnMgQDOBitZjiccDuc8TKc/jyc9iwMnxv17f7uAtccUbLy+qx1D8GD743vNyBCvahswWgTTihicie3nQh3nwu/r4E/joaWlZnHJethxD6l2VOSpJ7UjYHd31PcGh3bYM098PCHoXV9aerKVaIW5l4MBMWt89fdYNUt0cebn+55fLvvlC1JkiRJkiRJkiRJ/VlTTDBawwAPRmuICUYDaEptrWAlkiRJkiRJkpQ/g9EkSZKkTPb7Mkw8uedxQT8Lh4p7h7eBHIy2w9CZMGw2JJI726ZdWNhayYbS1NSXvfqr7P397XtfA0rWYLRUEQuPWQA1o4pYoJOlV0O6Hdo2xI85/dnS7CVJUq4O/hns/3UYfVhhrwE6tsGzXwPCkpfWo0QNTD0LFv4dJp9R3Fq3nQiPfRq2vtTz2LbNxe0lSZIkSZIkSZIkSepVcSFgjQM8GC3b59ccExYnSZIkSZIkSX3FIEg/UCZBEMwB5gFTgCHAdmAN8DLwZBiGzUWsXQ0cAUwDJgJNwArg8TAMXyuuckmSpAoJAtjni7DyxuzjwvbK1LPD5mfhyf+ENXdC/VSY/y2YeGLu8+OC0RKD9KXBhBNhj3+Gl3+a37x0W3nq6Ut6+pokDEZT78kWjJatr0eJKjj8d3D32ZDaXsRCOagZCfXTyruHJEldJZIw97PRbc09cMtR+c3/26zy1JWLZE3076Q3RbdrZ8PWFwtf7/nv5jau3WA0SZIkSZIkSZIkSeqvOsJ2tqe3ZexrTA6tcDWV1ZDl82syGE2SJEmSJElSHzdI0w8GpyAIRgAfB95LFFoWJxUEwRPAH8Mw/Hoe648FLgUuBEbFjLkP+G4Yhn/KuXBJkqTeUjeu5zGplvLXsUN7E9x5BjS9Gh23bYDbT4YT74Gxh+e2RjomGC0YpC8NEkk4+Mewxz/BY/8Ka+7IbV66taxlldzGJ6FpMQzfC4bN7nl8mEOylMFo6kWpML6vo5hgNIiCVt78Kqy6BWpGwcj5sP6B6Gdo2zIYdQCk2+GF78OmRYXvM3yfKIRTkqTeUtXQ2xXkJ1Gz63H91OKC0XI1453l30OSJEmSJEmSJEmSVBbNqa2xfY3JYRWspPKqgmrqEvUZg+GasnxdJEmSJEmSJKkvGKTpB4NPEATnAz8BRucwPAkcCEwBcgpGC4LgFODXQE/pIYcDhwdB8Dvgg2EYNueyviRJUq/IKRhte/nr2OHln+4MRfuHEF78Ue7BaGFMMFpiEL80CAIYdSAc/jv4yxQgS+LSDum2spdVEmEI974VlvzfGw0BzPsq7H1x/JxUK9xwUM9rG4ymXpTKEn6WrS9nQybCjHfsPK4/p/uY3d8Niy6Fpy8rbI9JpxQ2T5KkUunvwWjD5sDqW8u/77Tzy7+HJEmSJEmSJEmSJCkvYRiypn1F1uAzgHXtq2P7GgZ4MBpAY3JoTDDalm5tqbCDFa1LaA+7nyObDKqYVDON6q5/u5ekCujpPn9E1WhGVY+tcFX9W1u6lfXtaxhXM4lkkCx4nVSYYk3bCkZXj6MmUVvCCiVJkiRJMhhtUAiC4IvAJRm6lgAvAmuBOmAisC+Q1xVxQRAsBP4CdP7tdgg8BrwKjADmA2M69b8NGBYEwVlhGJbisnVJkqTSq2qE6mHQ3v2P//+QaqlcPU/+R+b2DY/kvkY6Jhgt8KUB9ZNg7mfh2RyygVOt5a+nFF75RadQNIAQnvwcTD4DRuzdffza++HmHEP26qeUpESpENnCzzpSFSoiSMB+l0LNCHjsU/nP3+MDpa9JkqR89HYwWtVQGDoTNj6R2/iuJ87NeAe89KPS19XZ9Itg9MHl3UOSJEmSJEmSJEmSlJcl21/h58u/zoaOtUWt05gcWqKK+q7G5LCM4XDNXYLRHtlyN79b9SNaw/g3jK4KqjlrzDs4duQZBEFQ8lolKZNl21/j5yu+ljXoEmC3ull8YPLFjKgaVaHK+qcwDLlxw5+4bt3vSdHBkEQ975zwceYNPTTvtZ5qeogrVl5OS7qZJFWcNuZCTh51no8RkiRJkqSSSfR2ASqvIAg+TfdQtCuB/cIwnB6G4YlhGF4UhuE5YRguAIYBRwLfA9bnsP4U4Gp2DUW7F9g7DMODwjC8IAzDk4ApwMeB9k7jzgC+XOCnJkmSVH5BAOMWZh/TUaFgtHQHpLu/AxsAW1+EdI5JQKHBaFnN+yoccy1MPSf7uHQ/CUZ7/vuZ21+4fNfvmebX4alLcg9FA5h8ZlGlScXIGoxW6ejtOZ+E426F2Z+MwlMmntLznIXXQ+3o8tcmSVI2vRmMtu9l8KaH4U2PwVFXw6yPwv7fzP442vVdp0cfAuOPLX1tiRrY88Nw+JWw4DdRGKokSZIkSZIkSZIkqU9oT7fzo2WXFR2KNiRRT3IQnDvbkByWsb2pUzDaytal/HLld7KGogF0hO38ce0veX7bkyWtUZLipMIUP17+pR5D0QBe2/4iV6z8XgWq6t+eanqIa9b9Dymi60pa0tv4+YpvsL59TV7rbGhfy8+Wf52WdDMAKTq4Zt3veLLpwZLXLEmSJEkavAb+b3AHsSAI5gFf79TUDlwUhuEf4+aEYZgmCja7Nwhy+g3/pcDITsf3ASeE4a6/DQ/DsBX4QRAES4A/d+r6VBAEPwvD8PUc9pIkSaq8cUfB8mvi+1MVCEYLQ3jum9nHtCyHhmk5rBUToJbwpQEQheFNPh0mnQp/ngTbY/6ImuoHwWiLfwtbnsvc98ovYOUNcNgv4YnPwYZHcl83UQ1zPg27v7skZUqFyBqMlgorV8gOE46Lbjusvh0eeB80L951XKIG5n8HJr2psvVJkpRJbwWjzfoo7Pv5ncdTz45uEAX2xukajBYEcNiv4PaTYcsLpatv/rdh9kdLt54kSZIkSZIkSZIkqWSe2/Y4W1Obi16nMSYwbKCJ+zybOrb+4+MHt9yR15oPbrmdvRr2L6YsScrJC9ueYlPH+jzGL2JD+1pGVY8tY1X924Nbbu/WFpLm4S138qbR5+e8zsNb7iKk+wndD265nf2HHlZUjZIkSZIk7WD6wQD1RqjZL9n1//iD2ULRugrDsKOHPfYE3tWpqQ14d9dQtC5r/iUIgis6zasFvgi8N9e6JEmSKqq2hz+KbV8F6RQkkuWrYe298OR/ZB/T9EpuwWjpmKd4g+Bd7/ISJGDuZ+GxT2XuT7dVtp58pVrh/ndmH7NtKdx2Yn7rjj0Cjr2x90I0pDdkyz7LFppWMeOPhdOfj8JdqhuhfQu0bYIR+/jzI0nqOxLVvbPvnv8S35eszdJX072tYXr0mLv1FXjpJ/D8d4qvr35q8WtIkiRJkiRJkiRJkspieetrJVlnYm0O59wOAI3JoRnbm1Nb/vFxvl/TFa1Z3vRMkkpoeQH3NytblxiMlkXc13RF65I813ktZh0fIyRJkiRJpZPo7QJUNucDB3Q6vjUMw1+VeI+LgM4JIFeHYfhSDvO+0eX4giAI6kpXliRJUgnlEmBz2wnQ3hQFpJXDq/+v5zFbX8ltrbjs24TBaN3M+WR839NfqlwdhVh1a3nWPfgnhjqpT8gWftbRF4LRIApvGbYnDJkIw2bDmEP9+ZEk9T3TLuzeVjsGqvN8Z+wZ74JDc3jdMvEUGD4nvj+Z5dfEiSyhaUNnwt7/XprA5waD0SRJkiRJkiRJkiSpr1rVurwk6xw+/ISSrNPXNSQz//2/qVMw2uq2ZXmtubptBemwr5yoJ2kgW9OW/33+6gLmDBbt6XbWt6/O2Jfv1y1u/Lr2NbSn2/OuTZIkSZKkTAxGG7g+2OX4q2XY4+wuxzkFr4Vh+BzwYKemBuCkUhUlSZJUUrmE2Ky5A64aGt3ufDNsK/Ef0179dc9j1t7d85imV2HVzZn7ShEgMBCNPz5ze2obtG2ubC35aMoxKC8f+14CI/Yt/bpSAfpFMJokSf3BAd+NAjx3qGqABf8D7Vvi53RVPw0W/Bomndrz2PHHZO+vGR3fl6jJPrd2FBz2awg6/dljzOEw93O7tmWTrIehs3IbK0mSJEmSJEmSJEmquHxDvLqaVDONd0/8JPs1HlKiivq2xh6C0drTbaxvX5vXmu1hGxs71hVdmyT1ZFUB9/mr21aUoZKBYV37KtJkPtF6TdsKwjDMaZ0wDFkT83UOSbOufVXBNUqSJEmS1JnpBwNQEAR7AJ2vMHsNuL3Ee0wA5nVq6gDuzWOJO4BDOx2fAlxTfGWSJEkllksw2g6pFlh+bXS7oCm/uXHSHbmNW/wbOPT/QSLmKX5qO9x8ZPx8g9EyS9bG9y37K+z+zvj+MITNT8P6R2DkfjByfu6BDMXavqY068z9LAzfJ6p9xN6lWVMqgazBaKnK1SFJUr9XPwlOeQLW3gNtG2Hs0TBkfGFrDZmQw5gp2fuHz43vS23ref0Zb4Pxx8Lq26F+chSMlqyB3d8Nm5+BMA3pVlh9G6y7HzY/22X+O6F6aM/7SJIkSZIkSZIkSZIqLgxDVrdlfvPit43/MIcMW5h1fhBAVVBdhsr6rrhgtObUVgDWtq8kjAnJ+cy0b/CtJZ/N2Le6bTmjq8eVpkhJihF3n3/BuPezsm0pd2+6oVtfIWFqg0Xc1xOgNdzOpo71jKwe0+M6mzs20Bpuz7rPxNqpBdUoSZIkSVJnph8MTMd2Ob41zDWuPXf7dDl+KgzD5jzm39fl2JQFSZLUNxUabvaHRjhnNdQV+Uf/psW5j11zJ0w4PnPf0j9Dy8r4uYlkfnUJNjwaH4wWhvD4Z+D57+xs2+0dcNgv48PrSqk1v3fv62b6W+HgH0PNiNLUI5VY1mC0LH2SJCmDZB1MOKE0ax35B7jngvj++p6C0bL8mjjVmlsN9ZOigLTOhs2KbjvsdhF0tMAzX4FXfgHJeph2Acz7cm57SJIkSZIkSZIkSZIqblPH+tgglkm106hODK7Qs1w0JjO/OVhruJ32dBurYkJyEiSZVjeT4VWj2NyxoVv/6rblzG2YX9JaJamzpo4tNKW2ZOybVDuNkMyXy67JEv412PUUGre6bXlOwWjZAtZy6ZckSZIkKVeJ3i5AZXFIl+P7AYLICUEQ/CoIgmeDINgcBEFzEASvB0FwSxAEFwdBsFuOe8ztcvxynjW+0sN6kiRJfUOywGA0gEWXFr//9tW5j33+e/F9K67PPrdlVe77DCYd2+L7qurj+9bcsWsoGsBrv4UlfyhJWd2k2mDRZXDjArh2Nrz8s8LX2vdSOOJ/DUVTn5bKEv2dLTRNkiTlaM9/KWzemAXZ+4fumb2/fgrUji5s7XxVDYmC0M5ZDWcuhvnfAE+SlyRJkiRJkiRJkqQ+K1vQyviayRWspP9oSA6L7WtObWV1TEjO2JqJJIMqJsR8XXsK15GkYmW/z58Se7+/ObWRllSWawAGsZ5C43INNDMYTZIkSZJUKQajDUwHdTl+7o3As1uAm4F3A3sBw4B6YBpwPPA14MUgCH4UBEGWlAcA9uhyvCTPGl/vcjw6CIKRea4hSZJUftnCr3qy/NrC5jUthqbXoo/bN+c+b8V18OoV0LIS1twNbW/M7dgWhXJl07h7QaUOeB3N8X3JLN8br/wyc/urvy6qnFj3XgiLvgjrH4CtLxa+TpCA3d9VurqkMskWftbWUbk6JEkasKaek/vYsUfs/Lh+Ckw4KfO4cQuhflL2tYIAdn9f9/bG3WHkvNxrkiRJkiRJkiRJkiQNOHFhXMOSI6hPNla4mv6hMUswWlNqC6taM4fX7AhEGxcTPNRTuI4kFSvuPn9Iop5hyRFZAzHXtK8oV1n92uq27F+Xnvr/Ma7dYDRJkiRJUmVU9XYBKouJXY7rgYeBMTnMrQb+BVgQBMFpYRiujBk3osvxmnwKDMOwKQiC7UBdp+bhwMZ81pEkSSq7qobC57asgDAdhU3lNH4V3Hk6bHg0Oh59KOz2tvz2fODdOz8OEjD7kzByfs/zchkzGKWyBKNlC8177X8yt6+6ubh6Mnn2m7DsL6VZ66iroWF6adaSyihbMNq2tsrVIUnSgDXheDjoh/Dkv0P7luxjZ3141+MFV8A958Hae3e2jVkAR1yZ2977fjEKe94R7jx8bzjqz7m/rpIkSZIkSZIkSZIkDUhxQSvZwnEGu/pkIwEBIWG3vqbUFlbHBA+Nr5kCwIQ3/u1qlaE3ksos/j5/CkEQMLJqDNVBDe1h9xOHV7ctZ3rdHuUusV8JwzA2bG6HXEMvewpQW5NjwJokSZIkST0xGG1g6hpa9it2hqI1Az8FrgeWAQ3APOC9wJGd5swH/hQEwTFhGLZn2KPrW6m0FFBnC7sGow0tYI1dBEEwDhib57SZxe4rSZIGsGKC0cIUtG2E2tG5jb/vbTtD0QDWPxjdCt4/Dc9/B5JDso8btxDGHl74PgNZR5ZgtKZXK1dHnPYt8MRni1+nbjyctQwSvkRU/5AtGO1p/5YuSVJpzPowzPwnaH49el1z02Hdx4xbGIWedTZkApx4D2xbAduWQf0UqJ+U+75V9XD4b+DgH0LremicUdSnIUmSJEmSJEmSJEkaGOICXcbHhHcJkkGS+kQjzemt3fqiYLTMITgT3gibiwud29yxge3pFuoSPZyjLEkFirvP33H/lAgSjK+ZxLLW17qNiQt9HMyaUptpSWe5NgL+P3v3HSbJVd/7/3Oq0+Sd3Z2ZnrC7ykI5gIRAIAzYGOk6EJzANjYY44BzIjj8CNe+Nk6P8c/GXCcMBmNjDAZsIRDJgBICIUArIVZC0oaZ7pndyalTnfvHaKXZmTrdVTOd+/16nn12+5xT53ynt7u6e7rqU8oWwgajlR+34i9pubiovvhA6PoAAAAAAAjCWe9txhiTkpTa0nz6N/z3S7rRWntsS/89kt5ljPkNSX+6qf2Zkl4v6fcDltoajLa+g3LXJO0tM+dOvFbSm6owDwAAwAZv61uriNanwwWj5U5J2c/sbi2XUpkM28t+T7roNyQvUZu1W125YLQj75DOf42096ot7e+sbU2bHftwtPE9B6WuUalrWFqbkhL9Uvr50iWvJxQNLaVcMJok3T9pdcm4qU8xAAC0s1hKGrhw498vvFu666ek+W9s3L7sTRvvI40XvG3PeLRAtK0SAxt/AAAAAAAAAAAAAACQO4hl1BHehQ29sf7AYLTjuUeVs8Gng50Om3MFo0kb/x9ndZ1fnSIBYAvXPn9zGOZIcsIRjBYu4KuTZELcJ7OFGeX9nJJlzqEp+HnNFqYrzpXNnyAYDQAAAACwa5z53n5ijvYFBYeiPcFa+2fGmAlJv7ap+deMMX9hrV2usK6NWOdOtwEAAKgvs8tgnfVpac/FlcedvHN36+zE8LOkK95a/3VbSXG1fP833io950NP3i7lpXvfUH4ba3f/uDrtkXeHH2vi0vc9JMWS1VkbaKBShU+Tf/wJq396FcFoAABU1f5rpP/19UZXAQAAAAAAAAAAAADoQOv+muaLpwL70qkDge3Y0Bcb0HRhclv7w2v3O7dJJzcuhLY3PqSESapg89vGZHLHCUYDUBMFv6CThWxg3+bARld4Yza/fZ/X6cKExVlZzRSmNJE62zlmujApG+K04Ez+uM7rCXEeDQAAAAAAZXiNLgDVZa1dleQHdP15uVC0TX5PGyFqp+2TdFPAuK1Bad3hKiy7TaXwNQAAgNaz8li4cTboLVyNnfvq+q/Zas55Rfn+zK1n3p67VyosBI897QsvkXLBB+dEkp+Tsp8NP77nIKFoaBulCrvM99xBDjcAAAAAAAAAAAAAAAAAtItygS6jjmAcbOiLDwS2P7Z+JLB9ILZXPbE+SZJnvCdC0raaLlQO2QGAnZgpTMkGniIbLhhtOj8pvxHnZzSxMMFoG+PKh8qFDZ0Lux4AAMqodT0AACAASURBVAAAAOUQjNaeVgLa3hNmQ2vtiqQPbWl+bsDQZg1Ge4ekyyL+eVEV1gUAAO3s3FcGtz/lV6SeQ1L/he5t7/xJaf5wiEUa8MVb78H6r9lqzvnJ8v3FLW9h83OV5zz+EenmK6Xs53ZcliTpob+PNn7vFbtbD2gilYLRAAAAAAAAAAAAAAAAAADtI5M7HtieMEntjQ/XuZrW0hvrD2wv2mJg+9agoRFH8FAmR+gNgNrI5oP3+Z48DSdHn7jtCsYs2LzmiidrUlurCh+MVn5c2HmmC+EC1AAAAAAAKCfe6AJQE/OSNv/WOmutfTTC9ndKetWm2xcHjFnYcjvStwjGmD5tD0abjzJHEGvttKTpiLXsdlkAANDuLv0dKfNpafXYk21X/qF06Rukp/3Fxu1PXCed+lLw9nf8uHTgxdKJ/5ZSQ9L5r5EOvuTMMbZUm9rL6Tu3/mu2mqHroo0vbH2b7LB2Qvr086Xh66XEXmltUko/V7r8LVKir/L21kr3vi5abRe8Ntp4oIkRjAYAAAAAAAAAAAAAAAAAncMVxJJOTsgzXp2raS19sYFI47cGo40mDwSOCxuOAwBRufYvQ4lRxU3iiduu4MbTc+xPjFS9tlZV72A0XiMAAAAAANVAMFp7+pakg5tuT0Xcfmsc+/6AMUe23D4r4hpbx89aa+cizgEAAFAf/edLL7xbOvERafW4NPoCaeSGM8ck9ri3n7t3489pUx+XznuNdOFrpT2XS15MKq7WpnaXvnOl3nPqu2YrMp501sulx97vHuMXJe/xj1aFxQiTW2nmtidvzt0jnbxDesEXN9YNsj4tLT0s3fXqCOtIGnqmlP7OaNsATSxMMNq/3OXrR6/jgDcAAAAAAAAAAAAAAAAAaHXZ/PHAdldoF54UNRhtdEvQUDo5HjhuujAp35bkmdiOawOAIBlHqNZo6sx9fpfXrT3xfVoozm4bm82f0CW9V9ekvlZT8As6WciGGlsp0Gw6ZODZTD6jki0qZjiFHQAAAACwc5wh3J4Ob7mdi7j91vFdAWMe2HL7/IhrnLvl9v0RtwcAAKiv7rR0/s9IV7x1eyiaVD4YLcjDfyd9/GrpYxdI84el4kp16gxr4kWSMfVds1XFusv3l9af/HdhYXdrnbxj489Wfkm662ekD6WlW6+XFre+Hd/khv+QzvvpJ2+nnyc98583AviANlGylcf87/8KMQgAAAAAAAAAAAAAAAAA0PRcITnpLSFe2C5qMFp6S/BQ2hE+V7QFzRZO7rguAHBxhXMF7fNdrwOVAr46yclCRlYhrkqtjfvN2uBjsK21oe9XX6XQYWwAAAAAALgQjNaevr7l9mDE7beOPxUw5r4tt68wxvREWONZFeYDAABoLYloBw08YeUR6ebLpLt/Ltp2z3iXdPAHdramJO29aufbdhovWb7f35QrXFjc/XoP/8P2tiPv2AjTq2TftdLBl0rX/Z30w6vSSzLSd35G6j9v93UBTcQP8d38g1mpUCQcDQAAAAAAAAAAAAAAAABaWcmWNFOYDOxzhXbhSb2x/kjjR7eEDI0kx51js/njO6oJAFw2wreC9y2jAfv8dIJgtEqi3Bfr/qoWS/OBfUulBa35qzVZFwAAAACAIASjtaePS9p89ve5xpiuCNtftuX2tt8kWWundGYAW1zSsyOs8dwttz8eYVsAAIDmk9hT3/W6J6SJ79v59oNb3/LByV8v31/a1F9Y2P16p+7a3nbsg+G2vWBTwF68W+pO774eoAmVQuadZaqQVQgAAAAAAAAAAAAAAAAAaJxThWkVbTGwb2uIF7bri4W/+HPCJLU3PnxGW5fXrcH4/sDxhN4AqLaF0pzW/bXAvnTAPj+dIhitkkzEEEvXfRf1Ps3mg0NNAQAAAAAIi2C0NmStnZR0x6amhKTvjDDFjVtuf8Ex7sNbbr8qzOTGmIskXbepaUXSJ8OVBgAA0KQS4Q8aqIquEensH5e6x6JvG++XBi6ufk3tqljhqkZ+7sl/F6qQwrRwv5T59Jlt058Pt+25r9z9+kCTs9bKhgxGOz5X21oAAAAAAAAAAAAAAAAAALWVdQS6GBmNJMfrXE3riRKMlk6OyzPbTzcMCiOSpAzBQwCqLJtzh3gFBqM59k/zxVPOgLVOMx1xX+0aHzUYLeq6AAAAAABsRTBa+3rXltu/HmYjY8wNkp6+qcmXdLNj+PsklTbdfqkx5oIQy7x+y+0PWGvXw9QHAADQtJJ76rtealjyYtL174u+7QU/L8W7q19Tu6oUjFba9Fa2sFB+7NmvkF58rPKan7tJmv+GNHmL9M23Vx4vSS8+IQUcjAK0m5IffizBaAAAAAAAAAAAAAAAAADQ2lzhW/sSw0p6qTpX03qiBaMdCGwfdbRHDckBgEoyjjDM/tge9cb6t7WnE8HBaJI0nZ+sWl2tLBvxfnDt26Pu83mNAAAAAADsFmfNt693SXpg0+3nG2PKhqMZY0a0PVDtA9bah4PGW2uPSHr3pqakpH8yxnSVWeNFkl65qSkv6S3l6gIAAGgJsZ76rpcaenzd3ujbXvWH1a2l3ZUqBaPlnvx3ft497uLfkp7xD1LPAam7whUK/YJ08xUbAWn3/GrlGm+6V+rhqofoDNGC0WztCgEAAAAAAAAAAAAAAAAA1FzWEZLjCvHCmbq8HnkhTyFMJ4MDhkaSwceoEnoDoNpc+xXX/mlfYkhxk4g0Vyex1jrD5tz3W3CQmuv+jCke2O4KNgUAAAAAICyC0dqUtbYk6VckbT5l/M+MMW83xuzdOt4Y812SbpN03qbmOUm/XWGpNz0+7rTrJX3KGHPRlvlTxphfkvTvW7b/M2vtYxXWAAAAaH6FhfquF0tu/B2PGMiWGpIMHwMiKVYKRluXvv0e6VPfIWU/Ezzm6j+Rrv5jyXv8y0MvWb36rvpjae+V1ZsPaHKRgtHKZBUCAAAAAAAAAAAAAAAAAJqfK4hl1BGSgzN5xlNvrD/U2FFH2JyrfbE0p7XSyo5rA4CtXCFermA0z8Q0kiC80WW5tKA1P3g/fVFP8DkIrvvN1X5Bz6XOtVdLyyGqBAAAAAAgGIkIbcxae6s2wtE2+2VJWWPM540x7zfG/Kcx5lFJt0o6f9O4vKSXW2sfqbDGcUkvfXz8ac+SdL8x5m5jzL8ZY26RdEzSX0raHCP/X5J+bwc/GgAAQPMZeEpj1o33Rht/4MW1qaOdDV1Xvv/Bt0t3/qQ0/Xn3mIGLz7w98b27r+u0se+u3lxACyjZ8GNPzFUeAwAAAAAAAAAAAAAAAABoXu6QnOCwLmzXFxsINc4VPORqlwgeAlBd7jBM9z7ftY9i/yRlytwHV/RdG9h+qpBV0RbOaCvagk4Vso55nu5cg/8DAAAAAMBuEIzW5qy1fyXptZJWNzUnJN0g6WWSXiTprC2bZSU9z1r7iZBrfE7SSyTNbGo2kq6R9MOSXihpeMtm75f0MmttKdQPAgAA0OxGvkMy8fqs5aWe/HdqKNq2Z/9YdWvpBOe9unz/0X+rPMfgZWfePvendl7PZnsukQavqM5cQIso+eHHHp+LkKIGAAAAAAAAAAAAAAAAAGgqy8VFrZSWAvvKhXXhTL27DEYbjO9X0qQC+wi9AVAt6/6a5oonA/vK7fMJRnNz3Qc9Xp/O674ksM+Xr5l85oy2mXxGvoIP4r6w5zKlTFek9QEAAAAACINgtA5grf0bSVdIeq+k4G8DNmQkvVnSU6y1t0dc42ZJl0l6p6S5MkPvlPSD1toftdauRFkDAACgqSUHpYt/oz5rXf0nT/470R9+u9HvkoZvqH497W7PZdLBH9z59vF+qefQmW17r5IOvGR3dUnSte+UjNn9PEALiRaMVrs6AAAAAAAAAAAAAAAAAAC1lckfd/aNJg/UsZLW1herfLzxvviwkl5w+JlnPI0kxwP7MoTeAKiS6fyks6/cPj/t2D9N5yfl2wgHHrchVzBZOjmhocSojOMU863bueYx8jScGHe+RhCMBgAAAADYjXijC0B9WGsflvQKY0y3pGdJOiBpVFJe0oykr1lrv77LNaYl/bwx5lceX+Osx9dYkXRC0lettY/sZg0AAICmduUfSnsul+56teTnarNGrEs662Xhx1/8W9LSkY1AtAtfK3mx2tTVzoyRnvUv0r9+cGfbp5+7PbzMGOnZH5CO/I30lV/e2bzd49IIQXfoPFGC0U7MS9ZaGQIEAQAAAAAAAABACzLGvFnSm3Yxxbutta+sTjUAAAAAUH+uQJVur1f9sT11rqZ19cUGKo5JJyfK9o8mD+h4bvtpYdOE3gCoEtc+P24S2pcYdm7n2n/lbU7zxVNlt2135YLREl5CQ4kRzRQy2/q3htS5Quv2J4aV8BJKJyd0LPft0OsDAAAAABAGwWgdxlq7JulTNV4jL+mztVwDAACgKRkjnfNjUt+50q3XV3/+WLf0jHdJXRG+mLv6j6tfRyfyElLPQWn1WPRtD7zIMWdcesovSee/Rvrgfqm0Gm3ep/9d9FqANuDb8GNLvrRekLqTtasHAAAAAAAAAAAAAAAAAFAbmfzxwPbR5AEumBlBb6hgtANl+0eS44HtGUJvAFSJK0RrJDEuz7gvEF8u2HE6P0kwWoDT99lIciIwGG3rdu55Dpwx3/Z5ggPVAAAAAAAIw2t0AQAAAEDb6RrZ3faxHuk5H5Ve9Kj0o1b63gel598qvfiYdNaPbB8/9sLgeQ68ZHd14EyFhZ1t139B+f5YlzQcMUhv9AXS+E07qwdocVGC0SRprVCbOgAAAAAAAAAAAAAAAAAAtVUp0AXh9IUIRhutcJ+OOoLTZgqT8m1pR3UBwGbOMMxU+f1Td6xXA7G9kebsBAW/oJOFbGDf6ddRd6BZ2GC08vPMFKZ4jQAAAAAA7Fi80QUAAAAAbSdMMNr5Pyc99M7gvu//ttSdfvL2wIUbf1wu+Hlp6hPb2w/9YOU6EF6sRyosRt+u52DlMc/7hPR+91WsntB7lnTwB6RL3ihxpUN0KBsxGG01L+3rrU0tAAAAAAAAAAAAdfZySXdGGL9cq0IAAAAAoB6yrpAcR0gXgvXG+iuOSafK36eu0JuiLepUYVrDybEd1QYAp7nDtyrv89PJcS2uzYWesxOcLGRk5Qf2VQxGK5woezvsPEVb0GxhRkPJ0VA1AwAAAACwmdfoAgAAAIC2E++Tuit8uX/tX0tX/dGZbXuvll584sxQtDDG/5d06IfObJv4/o0ALVTP0HU72647xFUJjSdd+jvlxyT2SC96VHrqn0ldQzurBWgD/g6C0QAAAAAAAAAAANpExlr7aIQ/JxtdMAAAAADsVMHP62RhOrDPFcCCYH0hgtFGK9ynI8lxZ1+mg4OHAFSHb0uazk8G9oXZ5zsDvjp4/+T62T15Gn48qCzt2LevlJa0XNy4qPxyaVErpaXAcae3L/ca0cn/BwAAAACA3SEYDQAAAKg2Y6SzX1FhjCdd8nrpe+6Xrv5T6fr3Sy/4otTj/kLIyUtIz/pX6bkfl678Pxt/3/BBKZbaWf0Iduhl0bfpHpNiyXBjz6owf2o4+vpAG4oajLZGMBoAAAAAAAAAAAAAAAAAtJyZwpSs/MC+0dSBOlfT2vpiA2X7u7weDcT2lh2T8rq0Nx58Yd9pQm8A7NJs4aQKNvig30rBjZI7GM0VttYJMvnjge1DiVHFTUJS+dC504Fm2TL34entU16XBuP7y84DAAAAAEBU8UYXAAAAALSlK/9Amv+aNPWJ7X2bA7D2XLzxZ7eMJ43fuPEHtXH2y6T1jHTPr4XfZvS7w48dvEyKdUulteD+5J7wcwFtLGow2irBaAAAAAAAAAAAAAAAAADQcjKOIBVPMQ0l0nWuprVVCkYbTU7IGFNxnnRyQnPFk9vaXeE7ABBWtsx+ZGQXwWizxRnl/HWlvK4d19aqXKGVI8nxJ/49ENurLq9b6/72cxiyhRM6Txc7/2+6vO4zQjXTyQnNF09tG+d6PQcAAAAAoBKv0QUAAAAAbcmLS8+7RTr7x89sTwxKF/9mY2rC7l30q+HHJvdKF/16tPmf+W53X/8F0eYC2pQlGA0AAAAAgJb1kXutXvkuXz/zz74+882IH/IBAAAAAAAAAB3FFcQynBxTzMTrXE1r660QjJZOHgg1jyt4KJufjFwTAGzmCs8ajO9Xl9ddcXvX/kmSpjt0H+W6TzffV8YYZ/Bc9vHts86AtTNDNd2vEQSjAQAAAAB2ht8CAwAAALX0zHdL6edLmU9JPQekc18p7bm40VWhlsZukgYvlS78Ran3rGjbHvqhjcfJasDBPAdfWp36gBbnE4wGAAAAAEBL+otP+fr1Dzz5wf4fv2j1z682evnTuZ4bAAAAAAAAAGC7TC44SGW0TPgNgnV53YoprpKKgf3lAoU2G3UEqLlC7AAgLNd+xLXf2Wp/YkRxE1fRbt/PZfOTOth17q7qazXWWmcg2db7NJ2Y0NH1h7aNqxSMlk6c+drhei2ZJhgNAAAAALBDHGEMAAAA1JLxpPNeJT3rfdLVbyMUrR1c8gZ33/c+KD3vZunqP4keinbaC74oDV55ZtvFvyUd/MGdzQe0majBaGuFiBsAAAAAAICqKxSt/vd/nfkZ3bfSWz/G53YAAAAAAAAAQDBXSE46ZEgOnmSMUV+s39kfNnjIFXqzVFrQaml5R7UBgCRlXOFbIYMbPRPTcGIssK8Tg7mWSwta81cC+9LJ8TNuj6aC7+NsfvKMvyvN4/q/WijNaa20WrZeAAAAAACCxBtdAAAAAAC0lHNfKR15h1RYPLP9B05JqX27n7/3LOnGL0vz35DWTkj7rpW607ufF2gTvh9t/Gq+NnU0q3zR6iP3Sg/NWH3HhUbPPHfjoDYAAAAAABrpCw9JcwHHuj+YlU7MWU3s5bMrAABASD9rjPldSRdL2i+pIOmUpMckfVHSLdbaLzSwPgAAAACoCmutso4gm9GQITk4U29sQAulucC+sMFD5ca988Qfqsvr3lFtLgmT1Pk9l+iZe76z6nPX2vH1R3XX4medj+PB+H5d3f9MXdx7VZ0rAxrvq0t36L7lL2uptPBE29H1hwLHhg1ulDb2UVP5Y9vaXc/DdnFk9bC+svRFzRZmnmhzhaJJ2wNGXfv2mfyk3nH89zXjDEabKHt7s3ee+AOlqrwfj5mYDnWdpxsGb1RfbKCqcwMAzrRWWtHn52/RY+tHVLTFbf1JL6lzui7ScwZvVMJLNqBCAADQrghGAwAAAIAoBp4ifefnpMO/vxFetu8a6ao/qk4o2mleXNp3taSrqzcn0CZsxPGdFIy2sGr10r/x9dkHT7dYveYGo//7Ck4uBwAAAAA01ok59yf65VwdCwEAAGh9L9tyOyWpT9JZkp4j6beNMV+W9EZr7adqUYAxZkTScMTNzqtFLQAAAADa13zxlHJ2PbBva6ALwumLD0gBx9N58jScHA01x2B8v1KmK/D/5qG1w7stMdBXl2/XVxa/qF86+GalvK6arFFt31q9T399/K0q2PIHMH5x4RN62cjP6jl7b6pTZUDjfezkv+jjpz4QenzY4MZyYzP546HnaDVfWvwfvXvq7bIKd+XpHq9vW4jYSCL4fvPl676VLzvn2vp6vDc+pIRJBu77jtToNeJry3fpzoXP6DcPvU398T01WQMAOt1aaUV/evSNmsofLTvunqXb9dWl2/Vrh35fMUOECQAAqA6v0QUAAAAAQMvZd7V0w39I3/ct6Vn/IvUeanRFQMfwIyajdVIw2nvvsptC0Tb83ResbrkvapwcAAAAAADVVe6TaX77hWQBAACwO9dI+qQx5g+MMbW4esprJd0X8c9HalAHAAAAgDaWzZ9w9qWT43WspH30xfoD24cSo4qbRKg5jDEaacD9/+31b+oby3fXfd2d+u+T/1oxFO20/zr1fhX8Qo0rAprDUnFBt85+KNI2oxHCMF3BaNP5SVnbfsfS+rakj868N3QomrRxH239leFIckxG0X6NaGQ0khw7o80zXkNeI2YKGX1x4ZN1XxcAOsWdi5+tGIp22rfXv6mvLd9V44oAAEAnIRgNAAAAAAC0DD/8d/eSpLUOCkb75OHggzZ+64MR7zQAAAAAAKqs3HkGy7n61QEAANDCTkj6O0mvkfRsSZdIukjSsyT9kqRPbBlvJP22pP9TxxoBAAAAoGrmiicD2/tje9QT66tzNe1hILY3sN0VJOQSJaSomh5ee6Ah60ZV8PN6aO3+0OOXS4s6kXukhhUBzePI2mEVbfirJqVMl/bE94Ue79qf5ey6FoqzoedpFTOFjGaLM5G2CQoXTXop7UsMR5pnb3xISS8VMH+015Rq+ebKvQ1ZFwA6wTdXvlbT8QAAAOUQjAYAAAAAAFqGH/GCbSsdFIx2833B7YcnpVLUOw4AAAAAgCoqlsnsJhgNAACgrC9JeqGkg9ban7HW/r219jZr7QPW2gettbdba//KWnujpGslHdmy/RuMMS+qe9UAAAAAsEtr/mpge19sT50raR8X914V2H5V/zMizXN539OrUU5kRVtoyLpRzRSmZBXtYqbZ/IkaVQM0l0zuWKTxV/RdJ2NM6PHlQrna8Xm2k5/pir7rAtsv7422b3fNc0WDXiOm8scbsi4AdIKorzft+JoLAAAah2A0AAAAAADQMqLGey2s1aSMplQqcyzVzFL96gAAAAAAYKuVMuFnBKMBAAC4WWtvttZ+0lpb8SsSa+2XJT1D0re2dP2RMSZWxbLeIemyiH8IZwMAAAAQSc4PPvCry+uucyXt45Lep+qa/hvOaLuo50o9rf/Zkea5qv86Xd57bTVLC8W30cLGGiWzgyCIbH6yBpUAzWcyfzT02H3xYX3P0I9Emr8n1qd+R4Bmpg2Ds6IGz1zV9wxd3he8//7ufS9ROnkg1Dzp5AG9YN+LA/uu7rtel/Y+LVJd1bBcWtBScaHu6wJAuyvagk4WMpG2IRgNAABUU7zRBQAAAAAAAITlRzy2aWYxapRa69rbI80FXyhVC2vSKBdLBQAAAAA0SLnws5WclRT+Su8AAABws9bOGmNeLunLevJN1kWSnifpU1VaY1rSdJRtjOH9HgAAAIBo1h3BaCmvq86VtI+YiemVY7+qZ+x5vh5bP6Kx5CFd3netYhGztOMmoZ+deIPuW/mKHl07ooLNV7XO+1e+qqmA8KSSSlVdp1ZcQRB9sT0aiO0JDIbKtmFgExBkKncssP387kt0VtcFkiQjo7HUQV3ee6364gOR10gnJ7S0tj0gqx0DCF37m+HEmK7oe/oTtxMmqXO6L9SlvU+TZ7zAbQYT+/W6Q2/T15fv1onco7IBl7I2MppIna0r+q5Vd6w3cJ6El9DPTfy27lv+sh5dP6KiLezgJ3Mr2aI+N//fgX1T+WPqj3OwNABU08l8Vr6CT+K5tPdpOrzylW3ti6V5rZaW1RPrq3V5AACgAxCMBgAAAAAAWoYfMedseqk2dTSjVJnf8iyu168OAAAAAAC2WirzubRcaBoAAACis9beY4z5pKQXbmq+UVUKRgMAAACAenAFo3V53XWupL14JqZLeq/WJb1X73qeK/qefkbwTrWsZ1YDg9F82yrBaMEhZ+d2P0UHUudo8lRQMFpwuBHQTkq2qGlHONlzBm/SNQM3VGWddHJCD63dv619ug2fZ659x6W9T9MPjLwq8nzdsV5dt+e5u6xqI4jzyv7rdGX/dbueaytrre5e/LxW/O0HiGdyx3Rhz2VVXxMAOlnG8d7WyNMPjfy0Dj+yPRhN2ggkPaf7wlqWBgAAOkRwvDcAAAAAAEATihqMll2sTR3NKF7mwp0Lq/WrAwAAAACArcqFnxGMBgAAUBO3bLl9RUOqAAAAAIAdyhGM1rE8BR8I58uvcyU7k3EEFaWTE0onJwL7pgtTLRP8BuzUdH5KJRUD+8ZSB6u2zojjeZYtdE4w2qjjPmgHxhiNpg4E9k3lj9W5GgBof65Q0/2JYQ0nRpUyXYH9rrBgAACAqAhGAwAAAAAALcNGDEab3n5BsLaVDz5eRJK0EHycIAAAAAAAdbFSLhhtvX51AAAAdJBHt9webkQRAAAAALBT645gtBTBaG3PM8GnO7ZCcJi1VtlccAjEaPKARpPBYT5FW9BsYaaWpQENN5U/GtjuydNIonpBXq5QsNnCjPJ++1yxaaW0pOVS8NWjXSGM7WIsGRykRzAaAFRfxhFwlk4ekDFGI8lxx3btF0gKAAAag2A0AAAAAADQMvyIwWgLa1KuEHGjFpUrG4zWGfcBAAAAAKA5La27P5eu5OtYCAAAQOfYmiBAcgAAAACAluIKRusiGK3tOYPR5Ne5kugWirPK2eArwqSTE87gCEnKEh6BNjeZCw5GG06OK+ElqraOKxTMymo6P1W1dRqt3D6j7YPRUocC2zM5gtEAoNpcrzenX2tcwb+8twUAANVCMBoAAAAAAGgZUYPRJGlmufp1NKP1grtvIfg4QQAAAAAA6mKlzMXXl9vnwuwAAADNZGjL7ZMNqQIAAAAAdsgdjNZT50pQb55ige2+bf5gtEz+uLMvnZxQyuvSYHy/Y1vCI9DephyhVWOOQJWd2p9IK6Z4YN90oX2eZ67AmZTp0p74vjpXU19jyYOB7YuleS2XFutcDQC0L2ut8/Vm9PFgNFcYZ7bM+2IAAIAoCEYDAAAAAAAtYyfBaHMr1a+j2VhrlSu6+wlGAwAAAAA0UrnP88VS/eoAAADoINdtuT3ZkCoAAAAAYIdyzmC07jpXgnrzTPDpjr5t/i8UXMER/bE96o31S5JGHSFQrm2BdjGVPxrYPpY6VNV1YiamoeRoYF87Pc+y+eBf940kx2WMqXM19TWaCg5Gk6SMI4APABDdcmlRq/5yYF/68fe0rmC0mXxGpRZ4/w4AAJofwWgAAAAAAKBl+Du46ONsBwSj5cuEokkEowEAAAAAGssSjAYAAFA3xpgumyZUuwAAIABJREFUSS/d0vy5BpQCAAAAADu27ghGSxGM1vY8xQLbS2r+LxRcoUvpTWForvCIbP54TWoCmkHRFjSdnwrsG0tWNxhNktLJ8cD29gpGC95nuMIX28me2F51e72BfVPsSwGgasq9Pz39njbteN0pqahThWxN6gIAAJ2FYDQAAAAAANAyypxHrd5UcPvcak1KaSrrhfL9i+v1qQMAAAAAgCDlPs8XdxCCDgAAgLJeL2nzWdYlSf/doFoAAAAAYEdyjmC0LoLR2l7MBAej+bb5v1DIOIOKnvyY7g5Gm6xJTUAzmM5PyXeEG46nDlZ9PVc4WDs9z9xBjMH7mHZijNFYMvhxM5U7VudqAKB9uV43u71e9cf2SJJGkmMyMoHjXO+NAQAAoiAYDQAAAAAAtAzfcSa1MdK+nuC+2ZVyp1+3h1yxfP9avj51AAAAAAAQxJb5aF4MPgcCAACg4xljXmGMSUfc5jWS3rSl+Z+stY9VrzIAAAAAqC1rrXJ+8JUgCUZrf57jdEdXqFIzcQcVHdj07+DQosXSnNZKKzWpC2i0qdzRwHZPMY0kx6u+njuA8LhsuS8uW0TJljSTzwT2jXRAMJokjTkC9abywY81AEB0rmCzdHJCxmyEoSW9lPYlhgPHud4bAwAAREEwGgAAAAAAaBm+46KPRtK+3uC+2dWaldM01gvl+9fyrX8gBwAAAACgdZX7VFoo8ZkVAADA4dWSHjHGvNsY8z3GGMc3IZIx5hpjzIck/a02vjY57YSk361xnQAAAABQVTm7Luv4zXKKYLS25xlHMJp1HDzYJNb9Nc0VTwb2jW4KKnIFNkmER6B9TeWPBbaPJMcUN4mqr+cKB1v317RYmqv6evV2qjCtkoKvqJyuQdBcMxpLBgejZXLBjzUAQHSu96ajW15nN4cAh9keAAAginijCwAAAAAAAAjLd5wr7Rlpb09w31wHXERxPfj4hiesVQhOAwAAAACglspdeL3Y3OcxAQAANFq3pJ94/I9vjDki6VFJC5JKkvZLulJSOmDbWUk3Wmsz9SkVAAAAAKoj5685+7oIRmt7nmKB7b6a+wuF6fyks29zGNpgfL+SJqW8zW0bl82f0NndF9akPqCRpnJHA9vHkodqsl65cLBs/oT2xPfVZN16KRc0Uy58sZ2MpoKD0RZKc1otLasn1lfnigCg/bheb7YGkI4mJ3T/yj2htwcAAIgi+BIKAAAAAAAATch1HrXnSft6g/tmV2tWTtPIVQg+IxgNAAAAANBI5YLRbn+4fnUAAAC0OE/SUyS9UNIPS3q5pO9WcCjapyVdaa29r37lAQAAAEB1rJcJRkt5XXWsBI3gmeDTHX1bqnMl0WTzxwPb4yahfYnhJ257xtOII7QpQ3gE2tRk/lhg+5gj3Gq3+mID6o31B/Zly4QYtgrX/mZffFhJL1XnahpjLOl+7Ezlgh9vAIDwCn5BpwrZwL7R5IEzbm8NSjuNYDQAAFANBKMBAAAAAICW4Tsu+ugZabDXBPbNrdSwoCaxXizfv5avTx0AAAAAAER1cll6eLpMchoAAEDnerukf5H0WMjxK5I+LOm7rLXfZa0NPkMSAAAAAJpcrkwwWpfXXcdK0AieiQW2l5o8GM0VajaSGN/2M6Ud4RHThEegDRX8gmYcYWTjqUM1W3draMtprlCxVuIKmnGFLrajwfh+dXk9gX1TjiA+AEB4JwsZ+Qo+eWfre9lRx3vb5dKilouLVa8NAAB0lnijCwAAAAAAAAjLd5wnbSQNOo55W1xr/5Or1wu76wcAAAAAoJYqfTL/wFes3nhTcOA5AABAp7LWflgbQWcyxgxKulTSQUlpST3auDDuvKQ5SQ9I+rq1TX6WOAAAAACEsFYmGC1FMFrbiyk4GM06ghmahStsaTS1PSjCFYzmCjsCWtl04YQzWGU0ebBm644kx/Xw2gPb2tvheZZ1BM259i3tyBijseRBPbL+4La+DMFoALBrrtdLT56GEqNntKUdYaSn5+mLD1S1NgAA0FkIRgMAAAAAAC3DFYzmedKA45i3Bfdxcm2jUOE0pzWC0QAAAAAADWQrJKP9zoet3nhTfWoBAABoRdbaeUm3NboOAAAAAKiHnCMYLWGSipng0Cy0D2O8wPZSk2eBu4OKtgdFuMKLpgtT8m1JHo9ztJGpXHBooKeYRpJjNVs3nWjfAMJpx8/QScFokjSaOhAYjDaZO9qAagCgvWQcob/7E2klvMQZbQOxQXV5PVr3V7eNzxZO6DxdXJMaAQBAZwj+TSEAAAAAAEATcp1I7RlpjyMYbXG9dvU0i1KFi2ESjAYAAAAAaKQKuWgAAAAAAAAAADxh3RGM1u311LkSNEJMwaFgvpo3GM23JU07gtFGA4KKRgPC0iSpaAuaLcxUtTag0abywSFV6eS44iYR2FcNrpCwU4UZFfzWPah2tbSsxdJ8YJ9r39KuxpOHAttdYT4AgPCihHAaYwLf80pSxhGQCgAAEBbBaAAAAAAAoGX4OwhGWwg+Tq6tVAxGy9enDgAAAAAAgriCzgEAAAAAAAAA2MoVjJbyHAeIoa14Jvh0R99WOEiugWYLJ1WwwQfppQOCikaS4865CPRBu5nKBQejjaUO1nTd0VRwSJiVr5nCVE3XrqWsI4RRKr9vaUejjsfQfPGU1korda4GANpLJkIwmiSNONqzjnkAAADCije6AAAAAAAAgLBcwWjGSHu6jaTtAwhGk9Za9+J2kqSFVav33Gn11aMb/9fXnCX91LOMUgnT6NIAAAAAACEQjAYAAAAAAAAACCvnCEbrIhitI3hyBKOpeYPRsmXCzIKCilJelwbj+zVfPBUw16Quq2p1QGNN5Y8Fto8lD9V03aFEWp5i8lXa1pfNH9d4qrbr14orYCZpUhqM769zNY01lnSH603lj+nc7ovqWA0AtA9rrfP1ZjQg9HejnWA0AABQGwSjAQAAAACAluEKRvOMNNAV3Le0Lvm+lee1b4hWpWC09cLGF1TGtN59MLNk9dw/9fXApgv0ves26d23W33+dZ6S8db7mQAAAACg05CLBgAAAAAAAAAIa90RjJYiGK0jeCYW2O7b7eFGzSLjCHzYGx9yBvqNJg84gtEIj0D7KPgFzeSnAvvGahxMFjNxDSXSmi5Mbutr5eeZq/aR5Lg8Exws2a72xoeUMl3K2fVtfVM5gtEAYKeWSgta81cC+9IBob8b7cGBaScLGRVtQXGTqFp9AACgs3TWJ10AAAAAANDSbJlgtD1ljntb2v6dd1txBcZttl6ofR218I7P2TNC0U770qPS336eU+sBAAAAoBW4Ps8DAAAAAAAAALBVzhGM5gqYQnuJuYLRVOHqoQ2UzR8PbE8nJ5zbuPpccwGtKJs/4XzujiUP1nx99/Nse1haq5h2BKOV29+0K2OMxlLBj6NM/lidqwGA9lEuQNQVgOZ6HfLlayafqUpdAACgMxGMBgAAAAAAWobvOJO6UjDaQvCxcm2jFOKYr7UWDUa75T732fP/fCdn1gMAAABAK+DTGwAAAAAAAAAgrHWC0TqacZzuWLKlOlcSXmYHQUXtGNgEbDWVPxrYHlNcI8mxmq/vfp65A1+anav2TgxGk6Sx5KHA9qkcwWgAsFOuoN4er099sYHAvuHEmPN9fCu/7gIAgMYjGA0AAAAAALQM33EmdccHozkC4zZbb8FgNGutDpc5zuvuR6WHpzm9HgAAAACaXYiPrQAAAAAAAAAASHIHo6W8rjpXgkaImVhgu9/EwWjTjrCH0eQB5zauEKPF0pzWSitVqQtoNFc4VTo5rpiJ13z9csFotgW/wPRtSdOFqcC+Tg1GG00dDGyfyhOMBgA7VS6E0xgT2JfwEhpKpCPNBwAAEAbBaAAAAACAUP7nQauX/HVJN7ytpDd+yNfyeut9IYzW5wpGM0Ya7HFvl1msTT3NouRXHrOWr30d1XZ0VlrOlR/z719hXwQAAAAAza4FzysAAAAAAAAAADRIzhGM1uWVuXIm2obnON3RV4iD5BpgtbSsxdJ8YF+5oKJyfYRHoF1M5Y8Gto+lDtVlfdfzbM1f0VJpoS41VNNsYUZFG3yV5E4NRhtzBFDOFU9qrbRa52oAoD1kygSjleMOJD2+65oAAEDnIhgNAAAAAFDR579l9cK3+/rI16TbHpbedovV9/2V35JXy0Jrcz3kPCMl40bpgeD+Y7Pt/VgNFYwWfCxEU3t4pvKYz3+rvf9vAQAAAKAdhPnkVijy+Q4AAAAAAAAAIK07gtFSBKN1BM/EAtt925zBaOVCzEYdgT2SNBjfr6RJRZ4TaCVTuWOB7WPJg3VZv90CCMvVPJIcr2MlzaNcyF6GIB4A2JFpx+tNufe2UrlgtMld1wQAADoXwWgAAAAAgIr+8tO+8sUz2/7nW9LN32hMPehcfplgNEk6uDe4/+hsbeppFmGC0XLFymOazWq+8pjDfE8GAAAAAE0vTLb+SojPgAAAAAAAAACA9pdzBKN1EYzWETzH6Y6+SnWuJBxX8E7KdGlPfJ9zO894ziCjTAsGNgFbFfy8ZgqZwL6xVH2C0fpiA+rx+gL72ikYbTC+v2NfI/fGh5QyXYF9mXxwMB8AwK3gF3SyMB3YVymE0xWclskflw1z4BAAAEAAgtEAAAAAABV91fG94K9/oDmvwIf25QxGe/w3HAcdxxEdm6tNPc3Cdb9s1orBaIUQx7Idm5MWVvmiDAAAAACaWZhPbSu5mpcBAAAAAAAAAGgBawSjdTTPxALbrax823zHrLqCitKpAzLGlN3WFR4x3YKBTcBW2fwJWQU/Z8eSh+pSgzFG6eREYF9rBqMFX0nY9TN2As94SqeC96VTOYLRACCqmcKU8/Xb9d71tLQjOG3NX9FyaWHXtQEAgM5EMBoAAAAAoKJHTga3Hwm+EAhQM77juKbThw8d3Bd8INHx2fYOziqFON4rV6h9HdVWKIX7f/tm8EUFAQAAAABNIsyFX1fyta8DAAAAAAAAAND8co5gtBTBaB3BK3O6oyukoZEy+eOB7aMhgopGHOERmRYMbAK2msofDWyPm7iGk2N1q6OdgtFc+5tODkaTpPHkwcB212MQAOCWdbzWePI0lEyX3TZdJjiN97cAAGCnCEYDAAAAAOxKMWRwEVANrkeb93geWnoguH8++Fi5thEmGC1fqn0d1VYIWfPR2drWAQAAAACovcU2/+wOAAAAAAAAAAhn3RGM1uX11LkSNELMxJx9Jdt8B8G5wpXKBUM8OSY4zGimMCW/CX9WIIrJ3LHA9pHERNnnebW1UzDatHN/09nBaKOuYDTHYxAA4OZ6fRxKjCpuEmW37YsNqNfrd8wbHLgGAABQCcFoAAAAAIBdyS42ugJ0Et+RjOY9/huOPY6Lgrb7ydVh8glzhdrXUW1hg9GOzRHQCAAAAADNzIb42Da/Wvs6AAAAAAAAAADNrWSLKtrgA526PMfBYWgrXpnAJF8hriBaRyVb1Ew+E9gXJqho1BGeVrQFzRZmdlUb0GhT+aOB7eOpQ3Wtw/VcPFXIOl9vmtFaaVULpbnAvk4PRhtLBQejzRZnnGGrAIBgmV2EcBpjNJIcD+xrxUBSAADQHAhGAwAAAACUVSiWP3P1ePB3rEBN+I7jmjyz8fdAV3D/4npt6mkWpRDHe+WKta+j2vIhaz46W9s6AAAAAAC7EybOeoFj0gEAAAAAAACg45ULMCEYrTN4ZU539G3IK23WyclCVr6CaxoNER7hCo6QpEz++I7rAprBVO5YYLsrxKpWXEEuvnxnsGEzmi5MOvvSZfYlnWAs6Q7by+TYlwJAFNO7CEaT3MG/rsA1AACASghGAwAAAACUtZov339ivj51AJLkO86kfjwXTf1dJrC/3YPRXPfLZrkKIYfNqBDyOLbjs633swEAAABAJ7EhPrbNr/HZDgAAAAAAAAA6XblgtBTBaB3BM+WC0UJcQbSOXIE7Rp6GE2MVt095XdobHwrsy+bdIUhAs8v7OZ0sBIeOlQuxqoWhxKgzcDHbQiEtrloTJqm98eE6V9Nc9iWGlTDJwL5MPjigDwCwnbXWGWAWNhjNNS5L6C8AANiheKMLAAAAAAA0t7VC+f7JeasnY6mA2nKdIu09fszCQFdw/0pOKvlWMa89H6ulEMd75Yu1r6PawgajHZurbR0AAAAAgN0JE3k2v1rzMgAAAAAAAAAATS5XJhiti2C0juAp5uw7nntEvcX+Hc07GN+v/vienZYlSVorrZ4R9nRk7XDguKHEiBJecEjPVunkhOaKJ7e1P7L+oI6tf3tnhUrq9nq0P5GWMe15zCQao2SLyuZPqGTLH9w5U8jIOr4hHEsdrEVpTgkvof2JtGYKU9v6Hlo7rP2JkbrWs1MPrz4Q2D6SHC8bKNkJPONpNHlAx3Lb95lH1g5rInX2jufujfVrX6I1g+fCPl8364n1tcxzAqiXki1poTirpJdSX2ygrmv7tqRsflJFW+GkrhDC7M8WS/Na94MP3hlNHgi1jisY7VRhRo+tP+QMK90pI0/p5IQSXqKq8wJAo3116Q5l8sc1mpxQOjmh4cRY6N8zAO2GYDQAAAAAQFmr+fL98+7jkICq8x0BYKfzzgbKHPu2tC4N9lS/pmYQJhgt187BaLO1rQMAAAAAsDs2RDLaAr9jAgAAAAAAAICOt04wWscrF/Dzl8fftKu5L+i+VK8e/y0NxAcjbZf3c3pf5h368tIXZFX5YL10yOCIjbET+ubq17a137N0m+5Zui1SnVvtjQ/pp8Z/U+d1X7SreQBrrT479zF99OT7lLe5Hc8TN3ENJUarWFk46eREYDDaZ+Y+ps/Mfazu9VRTOjne6BKawljqUGAw2h0Ln9YdC5/e1dzp5AG9Zvx1Gk8d2tU89WKt1a2zH9bHT31AObseefuRxLh+evx1OtB1dvWLA1pA0Rb02PrDOrJ6nx5au1/fXntA6/6aPHl6+sBz9WOjr1XM1D6e446FT+s/pt+lVX+5anOOJg/oNeOvd4aUZvPHndu6As+2rZEKfh9s5ettj/1mqDmiSpikru6/Xt839KOEOwJoG19Z+oLuWbr9idtGnvYnhnX9nhfoxv0/2MDKgPrr7ChwAAAAAEBFFYPRgi8IAtSE7ziR+olgtC73tottfIJ1pwejZZekfDHEWfYAAAAAgIYIE4xG+D4AAAAAAAAAwBWMZuQpYZJ1rgaNEFOsZnMfWTusd039eeTtPnryvbp76X9ChaJJ4YMjoo6Naq54Un917M1aK3GgL3bnvpWv6IMz/7irUDRpI2AqZmr3HHev277hYbXch7SSsWRwyE81ZPPH9VfH36KSDXlQc4N9dfl2/efJ9+woFE2SpguTevvx31PBL1S5MqA5Ffy8vrV6n24++W96+7H/T79x5Mf0Z0ffoI+efK/uX7nnic8nvnzdufgZfSD79zWv6aHVw/rnzP9f1VA0ScpU2J9l85OB7b2xfvXFB0KtMZRIy6vh+/kgBZvXlxY/p7c88gv6z5n3aK20Utf1AaAWMrkTZ9y28nWykFXBVjjRF2hDtY+kBQAAAAC0tErBaAuctIo6cgWjmdPBaGUuCnrvMenQ/urX1AzaNRgtH7Jma6UT89I5Q7WtBwAAAACwM2GirBc4JwcAAAAAAAAAOl7OEYzW5XXJnD5IDG3Nq3Fo0oOrX9dsYUb7EsOhxvvW1x0Ln4m0xmjyQOixtQ41ytl1fXX5dl2/57tqug7a250RnwMutQyvKqedw8NGEu37s0UxlqrtY2u+eErfXP2aLu19ak3XqYa7F7+w6zlWSkv65urXdHnfNVWoCGguOX9dj6w9qCNrh3Vk9bAeXf+WijZ8EOAXFm7RtQPP0fk9l9SsxnuX76rZ3HPFk3pw9eu6pPfqbX3Z/PHAbaK8t42ZuIaTo8rmT1QeXGVFW9AnZz+k2xc+pZv2/7CeM3ijYoYoFQCtx7e+ZgpTgX3t/NkGcOHVHAAAAABQ1lqlYLTVMKe2AtVhHQ8373QwWpd72z+6xdf3X1X/K83VQynE07AVg9EKES6udvQUwWgAAAAA0Kxcn+c3W1jjd0wAAAAAAAAA0OnWHcFoKa/MFTPRVgbig+ryup2PhWo4kXssdDDaXPGk1vyVSPMf7Do39NgDqbPlyZOvEFdH3aETuUdrNjc6Q7UeQ2d1XVCVeaI61HVeQ9ath3b+2aI4mDpXRkY21CW7dubE+qMtEYw2kw8O0Yg8jyOMA2g16/6aHl57QEdWD+vI6n16bP0h+YpwkkKA92f/Rm88+88VN4kqVXmm2cJ0TeY97UTuscBgtKncscDxI8nxSPMfSp3XkGC005ZLi/r36b/X/8zdrBcP/4Su7LuOkG0ALWWuOKOCDT6hl2A0dCKC0QAAAAAAZa1WCkar3bEnwDZ+hWC0rjLfLbXzY9UPcUxUvs2D0U7MW0l8YQUAAAAAzSjM4efzqzUvAwAAAAAAAADQ5FxhWF0Eo3WMuEnoaf3P1m0Lt9ZsjWz+uC7XNaHGZvLHI819dtcFOpgKH4zWHx/UVf3P1D1Lt0VaJ4psrnHBFGh9JVvUyUJ21/OkTJeuG3ju7gvagYOp83RW1wV6bP1IQ9avlfO7L9VY6mCjy2gKexNDurzvWn19+Us1W6ORIT9RrPhL1ZmnVJ15gHpbLS3robX7N4LQ1g7r2Pq3ZascQDuVP6ZbZ/9TN+3/oarOe1otA3OljffCQabywcFo48lDkeZ/9uALdffS5yPXVW3ThUn97eQf6bzui/XS4VfpnO4LG10SAISSKfO+k2A0dCKC0QAAAAAAZVUKRptv47ApNJ9KwWjlruRS6bHcykohzjDPtXkw2sxy7eoAAAAAAOyODfG5tZ0DzQEAAAAAAAAA4RCMBkl6Wfpn5ZmY7lm6rSbBLFHCbbK5cMFoCZPUxb1X6cfTv1j2OMYgPzH6y0qalO5dvlPrfvWvJJMttEaYD5rTTD4jXxEO5tzCyNPBrnP1o+mfV198oIqVRajBGL124nf1vuxf64GVe1WwrX1AcdKkdGnvU/Vjo7/Q6FKayivHfk3/mv2/+vryXc73E7sRNSizEay1WiktVmWu5SrNA9TacnFRR9YO68jqYT20dp9O5B6TDXX5vt35+KkP6Gn9z9JIcrzqc/u21sFo298brpVWNF88FTh+NGII5wU9l+qnx1+nj868V9OFyR3VWE0Prz2gPzn6Oj2t/9l60dArNJRMN7okACjL9TuLPfF9/H4MHYlgNAAAAABAWWuF8l8KcNIq6skVjLb5OKI3f7/Rmz+6feDsSo2KagKlEN99tX0wGhcmAwAAAICmFSYYjfB9AAAAAAAAAEDOGYzWU+dK0EgxE9fL0z+nHxn5mV0FhX1k5r36wsIt29qjhNtkHCckX9B9qX524o1P3E55XYqZnZ2qmfRS+omxX9aP21/YVZjPAyv36h+m/nRb+2xhRnk/p6SX2vHc6Fyuk/KNjP7wvHcpXuFxHzeJpnjs9cf36OcmflslW1TOX290Obuym/1NO+vyuvXKsV9VyZac7yfCuHPxs/rg9D9sa8/mT8haGzn8sp5ydl1FG3zA+C8deLPO6jp/W/u/T/+D7lr87Lb2agWsAdW2UJx7PARtIwxtKn+0JuukTJfO675YObuuh9ce2NZftAW9P/s3+uUDb636fsG3wSdRPHfwe/W9Qy8LPc8dC5/Rf8z847b2oNf2cu+Px5LRgtEk6an91+up/ddr3V9z/jzVcM/Sbfqvk+/XYmm+4tivLH1RX1u+U98x+D26af8PqSfWV7O6AGA3srngz2CjyYk6VwI0Bz79AgAAAADKWq1wUaz56l+cDnBynUjtbfou6YbzjRRwlZ+ldalQtErEm/cL6Z0KFYxWqH0d1ZaP8B3YNMFoAAAAANC0wlyLl98xAQAAAAAAAABcoVApr7vOlaAZeMbbVWDBROqswHZX0FMQV0jEeOqsqocpeCa2qzkPdp0b2G5lNZ2f1IGuc3Y8NzqX6/myLzGigfhgnavZvZiJE4TS5mK73JceSAXvK1f9ZS2XFtUf37PjuWutXJjZ/kQ68H7ZE98XOH65xIHZaA6zhRk9tHa/jqzepyOrhzVdmKzJOt1ej87rvkQX9FyqC7ov1cGu8xQzMS0V5/WWR35Rq/7ytm0eXP2GvrT4OV2353lVrcVX8MkhKS8Vaf/meu+3XFrUcmlRfbGBJ9qm8seC1zRd2hsfCr3mVl01/hz37MEX6pqB5+jW2Q/rU7P/qYItfwJc0Rb16bmP6I6FT+um/T+s5wzepISXqGmNABBVthD8GWyEYDR0KILRAAAAAABlVQpcWtj5BZWAyPwQwWj7et3bz69Jw/3VrakZhAlGK9TuQjs1U4xQ88ximNPsAQAAAACN8P/Yu/M4R+oC///vqtzp+0y6p+eCaY7pAeELKKCCoCwKioAiC4uI51fddVdd15/ren69VndlxQtW3eVQEUFALkGRGx0YUI6ZnhnoYRimj+mk73Tuoz6/P4aZ6Zl8PpVKd5KuJO/n4+HjIakcn0lXKpWkPq9Shc4XiiQBwxDQ9doLmhMRERERERERERGRNaowWrkn1FNtCnj6pJdHcxFEsxE0OpulyxcKKcJoQbf8vpdThysAB5zIIZu3bDw9yjAaLYpqUn6Ak/KpRplt30PpEVuH0cxiZo0O+QH0DYrLYwyj0TIQQmAqE8ZQYm8EbSgxiKlMqCyP1aA3YZ1/Pfp9A+j3b8AKz2romiPvek3OVlzQ9T78MvQj6f3cOnEtBhpOsLRfaVVOyCdRyMZnJmjyXh1Kj6HRtyCMltotvV6PZyU0zd7H8Xh1H97ReSne2HI27pq6EU/MPQhR4BSOcSOKWyf+F4/M3oPzuy7H8Y2n2v7fSUT1I5SSfw/Bz2BUrxhGIyIiIiIiIlOqENU+qSyQzAh4XfwSmMpvqWG06Vj9htFS+cc62V4xMbcwf38nIiIiIiKyLStxy7uEAAAgAElEQVQpayGA+STQ4i/7cIiIiIiIiIiIiIjIplIMo1EJmccgRgsGLGK5eczn5qTL7Dgh2aE50O3uwZ70cN6ycFoetyIqJJwek14ecPdWeCREldHkaIFPb0DCiOUtC6XHsM4/sAyjsiaai0gv16HDq8t/iFcF01T3RVRKQgiEM2N7I2jxQQwltmA2O1WWx2pytKDfP4B+3wb0+wcQdK+ErumWbntqy1vwZORh7EgM5i2L5iK4beI6XN7zjyUbq4B8cogDxYXRmh1t8Op+JI143rJQegSH+47a/997lDHglUU95nJqdXXgvcFP4IzWd+D2ieuwLf5swdtMZkL42dh/YK33SFzYdQUO9x9dgZESEaklcnHM5Waky+wYaCeqBIbRiIiIiIiIyJSV4NJcAvC6yj+WepBI750q7HMzNCejCqNpRYTRalGhgCEApDJWpqHbC8NoRERERERE9WU2wTAaERERERERERERUT1LKsJoHobRaBHMYhDj6ZGC4YNxk5hY0GPPSETAvUIaRhtXxC6ICgkpXgcBl/3igESloGkagu4+vJx8IW+Z3bel0aw8ZtbgaFIGoBod8khoLBeBEAKaxjkNVDpCCOxJD2MovgVDiUHsiG9FRBF/WapWZwf6fQN7Y2j+Deh29S56fdY0DZcEPopv7voUcsg/W/0TkQdxcssZOMJ/zFKHDQDICfkkCs1iyO3A9TUE3CvwSnIob9l4auSQ/87ffwSAHs+qoh7TDvq8a/CJlV/B1tgzuC18HcbSrxS8zcvJF/Dd4X/F8Y2n4J1dl6Pb3VOBkRIR5Qtn5GFqgHFqql8MoxEREREREZEpK8Gl2TgQMD9xHhUQSQh88HoDdz63N/J1/nEafnq5hiYvf0xcSCjWR33B0+R3Ay6HPKo1k398U02wEjBM5f8GZ3vprPWYG8NoRERERERE9qX6PH+oOfl8NyIiIiIiIiIiIiKqEylFGM2reys8EqoF++I2u5Iv5i1TxZ4Ovo48gOPVfWhxtC15fOUQcMtjVVb+vUSHiuXmEc3JQ0uqdY2oFgTcvdIwmt23pTFDfjC1Kn5mtiwrskiJJLwa47S0eIYwMJrahaHEIIbig3gpsVX5vrJUHa7uV0NoG7DOtx6drmBJw349npU4u+Nd+N3Ur6XLbxy/Gv+25ntw6e4lP5YB+eQQBxxF35cqjLYwvJM0EpjOTkhv3+PuK/ox7WJ9w/E4as2xeCLyEO6a+CXmLET4noluxHPRTTit9W04p+M9aHRyohwRVdah4cp9XJobbc6uCo+GyB4YRiMiIiIiIiJTVsNotDQfut7ArX898N83Py3g0IFffohhtIVU6+PCMJqmaehoAMYlv5m9MiUA1N5zmrPwOo2nyz+OUpPF7VTmk0AyI+B11d7fl4iIiIiIqNpZDaPxOyYiIiIiIiIiIiKi+pZUhNE8OqMctDhB9wppGG1cET076DqKCckBd19JQxulFFDEK0LpURjCgK7pFR4RVTOzCBTDaFTL1NvSwu8dyymmCE41OJqUtzFbFstF4OU+GBUhJ3IYTu7EUGIQO+KD2JHYioQRK8tjdbt60e8fwDrfevT7N6DdVf5YzNnt78LTkccOiortE86M4ffTt+LtnZcs+XEMIZ9EsZj9uKDi/Xrhfu54alh5+x7PyqIf0050zYFTW96CE5regAem78D907cjJZKmtzGQw8Ozd+PJyIN4a8dFeFPruSUJ3hERWRHOyD+Ddbt7+Xme6hbDaERERERERGQqJz/ZyEHm5McikUXhiMBtz+RffsvTAj+4RKC9wZ4H0CwHZRjtkO/21nXLw2hb8n+DqglWXqczVTi5vJgwGgBMzAMr28szFiIiIiIiIlo8i100fsdEREREREREREREVOdUYTRGOWixlhK3UcXTgor7tANV/CItUpjNTlUkGkK1QxVG82hetDh5sCbVLlX4bzITRsbIwKW7Kjwia6LZeenlDY5m5W0aTZZFc/PocAWWPC6qXVmRwSvJl7AjPoihxCB2JrYp9+eXqse9Eut8A3tjaP4BtC7D+5BLd+OS4Mdw1fAXpcv/MH0rTmx6I4Kepe0rGpBPDtFRfBBHvT0bR1Zk4NRc2JOWh9E8mhdtztrYd/ToXpzTeTFe3/o3uGfyV/jT3B8hFM/zPgkjjtsnrscjM7/DO7suwwlNb2SUiIjKbjwl/wwWcPdWeCRE9sEwGhEREREREZlShagWmk0IAIx3LdamXfLnOWsAz+wG3nx0xYdkW4bit4dD176BFRoe35H/pA6OWp2KXV0YRtsrzDBa3Xlou8DX7zEwMQ8cv0rDdy/S0NnE9yMiIiIiIrsRFj+Oz8b5HRMRERERERERERFRPUsxjEYlZh63ScOlu5W3VUWhVPdpB2ZjC6VHGUajooTS8rMRd7t7oWn8TY9qlyqAKWBgIrMHvZ5VFR6RNTFDclZxAI2OJuVtvLofOnRpiCmak98f1a+Mkcau5BCG4lswlBjEy4kXkBapkj+OBg29ntXo3xdC861Hk7O15I+zGEf6j8HJzWfiiciDecuyIosbQ1fjkyu/tqSAliEUYTTNUfR9qSLBBgxMpkMIevqwJyUPowU8fTUXAmtxtuHS4Mfxpra347cTN2BL7OmCt5nOTuDaPf+FB2buwoVdV+AI/4YKjJSI6pX6ewj7BtqJyo1hNCIiIiIiIjJlJYw2V56TutSNF0PqJ3n7uMCbj+bBA/uonin9kKfoGMWxPdvHSzoc21AF4xaajpV/HKVWdBiNv7/XlWeHBc7+noHsq+v/ljGB258RmP6eDqeD200iIiIiIjuxmimf5XdMRERERERERERERHVLCIGkkZQu8zCMRotUOG6zWro8Y6QxmQkVdZ924HM0oNnRhkhuJm9ZKD2KoxuOW4ZRUbWqxjggUSl0ugPKWFgoPWLbMFo0Ny+9vMHRrLyNrulocDRhPjeXf39ZHphd79JGCjsT2zGUGMRQfBC7ki8iKzIlfxwNOlZ61qLfP4B+/wYc7jsaDSZBv+V2YdcV2Bx7CjHJa25HYhBPRB7EqS1vWfT9G5BPotBRfKSsy9UDDTqEZHs2nh7ZG0ZLy8NoPe6VRT9etej1rMLH+76A7bHncNvEdRhJvVzwNruTO/C94S/g2MbX4vzOyxH02PczARFVJ0PkMJHZI13Gz2BUzxhGIyIiIiIiIlNWgkuz8fKPo5ZtlX9nBQDYIj/ZWt1Shfr0Q37j6e/WIJt2HZ4HUhkBj6u2oklWAobzSSCTFXA5q+ffns4Wd/3QvABQPf8+Wpp/ve1AFG2faAo49/sGfv+p4s+IRURERERE5SMsltEY3yciIiIiIiIiIiKqXxmRlk7YBwAvw2i0SF3uIHQ4pIGJ8fSoMow2kdmjXB/tHEYD9k6YjiTkYTSiYoQZRqM65dRc6HQFEc7kH8g/buNtqSpk1lggMKUKo8UMeWiNalfSSOClxDYMxQcxFN+C3cmXkEORB/RboMOB1d51e0NovgEc5jsKPkdDyR+nXBqdzXhX1wdww/hV0uW3ha/DMQ0nosnZuqj7N4R8H1TXij8+3qW70OnqxkRmPG/Zvn3D8ToMo+1zVMNr8Dn/d/FU5BHcMfkLzGanCt7m+egmbIk+jTe0no1zOy5e9N+ZiOhQ05lJZERauizIz2BUxxhGIyIiIiIiIlM5CxNXI/KTNJJFk/PqJ3lw1OLM4TqhCvXph7SwVrap72NkBji8u3RjsoOchYAhAMwmgC77njwpT0Z+siOlqWh5xkH2Mx0T+P2gfNn924ChkEB/gJE8IiIiIiK7sBpGY3yfiIiIiIiIiIiIqH4lDPWXxAyj0WI5NCe63EFpFCyUHlHeblyxTIcDXe5gycZXDgH3CgwltuRdrvo3EckYIoeJjPzMzwGbxwGJSiHo6ZOG0ewcmYzlVGG0ZtPbqZar7o9qRzwXxY7EVgzFB7EjsRXDyZdgKMKwS+HUnFjjPQL9/gGsezWE5tG9JX+cSnpd85vwZORBvBDfnLcsbkRx68S1uKLnU4u6b1nQFwAciwijAXvft+VhtBEkjQSmMmHp7Xo8tR9GAwBd0/G6ljNwfNOpeHDmLvxh+lYkDfMzOxow8OjsvdgUeRh/034hzmw7D27dU6ERE1GtCmXU+5ndDKNRHWMYjYiIiIiIiEypQlQLRRlGWxKz+NOWMUAIAU1j4AcADMVE6kOfnZXt6vvYPV2/YbSZeG2H0aZj5RkH2c9fXzFffuMmgS+/g9tNIiIiIiK7sJp9nzU/rpCIiIiIiIiIiIiIaljKZPK5V/dXcCRUawLuFdKQzXhKPel4PCWPiHW5e+DQ7D0lM6iYMG3nmA/Zz1QmjKzISpcF3L0VHg1R5XW75Ou5XbelQgjEjHnpsoYCYTTV8mhWfn9UvaLZCIYSg6+G0AYxmtoFYfmIDutcmhuH+Y7EOt8A+v0DWOM9ouaiUZqm4ZLAx/D1Xf+ErMjkLd8UeQSvaz4DRzccV/R954R8EoUGvej7Ava+b2+RzLMIpcdMt2k97voIo+3j1j14a8e78fqWt+B3Uzfjsdn7CoYCk0YCd07+Eo/O3ofzOi/Da5tPh64t7u9ERBRSfA/R4mznCQOortn7WzgiIiIiIiJadqoQ1ULzqfKPo5aZxZ9m48DYLLCirXLjsTPV+qgf8ttBg0dDe4M8lLV7WiA/pVbdclZeqKi+cFixYbSpKvv30eIViiU8vav0P9ITEREREdHiCYu76JE49+WJiIiIiIiIiIiI6lXSNIzGCaC0eEF3H57HprzLQ2n5pOO9y+SRCFV0zE4Cnj7p5bPZKSSNBF9PZIlZKKWbYTSqA0HFtjSUHrHlSc9TIqmMGTY6zM+qrVoezUWWPC5aXnPZGeyID+6Poe1J7y7L43g0Lw7zHYV+/wD6fRuw2rcOTs1Vlseyk253L97WcRHumrxRuvym0DX4tzVXFR2FE0Ie43IsMrgVcMu3Z+PpEexJydcJl+ZGu6t7UY9X7Zqcrbg48BG8qe1c3D5xPZ6P5n+OONRsdgo3jF+FB2fuxIVdV+CohtdUYKREVGtC6THp5dXwPQRROTGMRkRERERERKZy5ie4AABEk+UfRy0rFH96aYJhtH1UE6l1yW/Lq9rlIbAXQ6Udkx3kLM4bnysQk7Ib1WtD0+TrwgzDaHUjlTVf6QflvwcQEREREdEysZo7KxRBJiIiIiIiIiIiIqLaZRZG8zDkREsQVMQgQulRZdxmXBFNU4Ul7CTgUk+aDqdHscq7roKjoWqlCqO1OTvh0b0VHg1R5am290kjgUhuBi3O9gqPyFw0q46YNTiaTW+rWh4z5pc0Jqq8mczkqxG0LRiKDyKcKc8B1V7dj3W+9a+G0Aaw0nsYHFp9JivOar8AT0Uele47TmTGce/ULXhn12VF3WcO8klcGhyLGqMqqJMwYngxvkVxmz7oiwyx1YqAewU+uuLzGIoP4raJ6/BKcqjgbUZSL+P7I1/GQMMJuKDrfej1rKrASImoVoQy8s9g3QyjUZ2rz71MIiIiIiIissywMHM1mrQ6vZVkCoXRdk8LAPY6q9RyUa2PsjDakQENzw7n32DLaO2tr1YChgCQzJR3HKWWVrw2gs3Anrn8y6ditfe3JblUgXVZtk0gIiIiIqLlowqdH2omXt5xEBEREREREREREZF9pRRhNJfmhkNbXASACFDHbVIiiZnsJNpdXQddbghDGYVSRdbspN3VCZfmRkak85aNM4xGFqleAwFOyqc6EXD3KpeNp0dtF0Yzi5g1OppMb6tabhZbo+UnhMBUJoyhxN4I2lBiEFOZ8pxBvkFvwjr/evT7BtDv34AVntXQuX8OAHBqLlwa+DiuHP68dPn907fjpOY3otez2vJ9CiGfHOJYZKjM7L17c/Qp6eU9npWLeqxa1O8fwL+s+jb+Mv847pj4OaazEwVvMxj7C7bGnsGpLW/G2zsvsd17BhHZUyglD7RXw/cQROXEMBoRERERERGZshJGm0+Vfxy1rFAYbXimMuOoBqr1UXLCRmxYAfz66fzLN8uP1ahqVl6nAJDMVFdkT/XaUIXRpmPlHQ/ZRyprvnxkFjAMAZ2FNCIiIiqBTFbg334rcMezAi4HcPkpGv7lbE165ngikrMaRhuXfNYjIiIiIiIiIiIiovqQVITRPLqvwiOhWmMWtwmlR/PCaLPZKaSF/MDYYBVEoXTNgW53L0ZTu/KWqWJXRIdiGI3qXaOjGY2OZkRz+XGwUGoER/qPWYZRqcnGCQA6dPj0BtPbNjqapZfHFPdJy0MIgXBmbG8ELT6IHYlBzGQny/JYTY4W9PsH0O/bgHX+9ehxr4K+yChXPVjnX4/Xt5yFP83dn7fMQA43jl+NT6/6puXnMAf5JAodi4vRNTpa4NcbETeiectUUcWgm2G0hXRNx0nNp+G4xpPx8OzvcN/UzUgY5md/FDDwp7n78XTkMZzVfgHe3P5OeHRvhUZMRNUmkYtjLiefQMrPYFTvGEYjIiIiIiIiUzn5yUYOEk2Wfxy1LFsgjLZ7ujLjqAaqAJisfXTMCg1A/g12TQHzSYEmb+1EDKy8TgEgmSnvOEpNGUZrATCcf/lU/m91VKMKhdHSWWBkBljVUZnxUOkJIfD4jr0BjWP7gFZ/7WyziYio+nzk5wLXbzzw2eJztwnMJYBvXMD3JyKrLHbRsGcOyOYEnA6+voiIiIiIiIiIiIjqTUoRRvNy8jgtkd/RiGZHGyKSScbj6REc3XBc3mUqAXdfycdXDgH3CkUYTf1vI1oolB6TXt5tEhokqjUB9wpEE/lxsHEbRiajWXnErMHRVPDEfw2KMFo0Nw8hBE8cuEyEENiTHsZQfAuGEoPYEd8q3ZcphVZnB/p9A1jnH0C/bwAB9wr+3Yt0Qdf78Hx0E+Zz+WcE3Jncjj/N3Y83tp5t6b4MoQijLTJOp2kaAu4VeDn5guXb9HpWLeqxap1Ld+Os9vNxSsuZuHfqZjw6cx9yMJ/YkBJJ3D31Kzw2ex/e3nkpTmk5E7q2uMgdEdUus4g5w2hU7xhGIyIiIiIiIlOqENVC8/IT45FFqvjTPsNTVqcP1z6hDKPl//B2rMnxR1tGgVMOL9GgbKDewmiBZnn0btr8pDtUQwqF0QBgcIxhtGo1MS/w1u8ZeObVAGJvK3Djh3ScdgQPsiAiosqbigrcuCl/3/Nb9wq892SBo3r4/kRkherz/KEMsTeOtrK9vOMhIiIiIiIiIiIiIvtJKsNovgqPhGpRwL0CkUR+TEQ2+VgVRmtxtsPn8Jd8bOWgmjg9nrJfzIfsJ5GLK+M7nJRP9STo7sNLiW15l4dtGEaL5eRhtEZF9Ozg6zRJL88hi5RIwqtxX6wSDGFgNLULOxJbMRTfgh2JrYgq/q5L1e7sQr9/A/pfDaF1uoIMoS2R39GId3d/ENfuuVK6/LcT1+PYxpPQ4ix8QIwB+eSQpcS0ig2jBd0rF/1Y9aDR0YyLuj+E01vPxR0TP8cz0T8XvM1cbga/DP0ID83chQu734/1DcdXYKREVC1UYTSX5kabs7PCoyGyF4bRiIiIiIiIyJSVMFo0Wf5x1LJCYbTx8vyeVZVU66Mu+R1udQfQ5AXmJevn5lGBUw6vnR/vLIfRLMSk7EQdRpNfHksBqYyAx1U7f1uSsxRG2yPwtmO4LlSjT/xK7I+iAcDYLPDB6w1s/5oOh2yDT0REVEa/HxTK/dJzvm9g57d49kaiUhueYRiNiIiIiIiIiIiIqB6pwmgehtGoBILuPgwltuRdHpJE0MZT8jBasIqCUKqxTmT2wBC5JYU1qPapJuUDDKNRfVFGJhUBzeUUM+allzdYCKOZXSeajcDr5r5YOeREDsPJndiRGMRQfBA7EluRMGJleawuV8/+CNo6/wA6XN1leZx6d2LTG/HE3IPYFn82b1nCiOM34f/FB3s/U/B+DCE/WM2Bxe+/Bd19lq/r0tzo5DpiSbe7Bx9e8Vm8lNiO28LXWorPjaV344cjX8VR/tfgwq4r0OddW4GREpHdhTPyz2Dd7l7oml7h0RDZC8NoREREREREZMpKcGk+Vf5x1LJCYbSw/HfKuqQKo8lOUKRpGjb0Aht35i/bPl7acS03y2G0THnHUWppRfwq2KK+zXQM6Gktz3jIPlIW1uUXQ+UfB5Xe2KzALX/J39i/NAE8PgScfuQyDIqIiOra7mn1sl1TQDgi0N3McCdRIRa6+/uNzAgAfF0BwExs7zPX1sDng4iIiIiIiIiIiGpfShFG8zKMRiUQ8KjiNvmTj2WxNAAIuleWdEzlFFDELzIijenMJDrdgQqPiKqJKozm0txoc3ZWeDREy0cVRpvOTiBtpODWPRUekVo0qwqjNRW8baPJdaK5CDrB94xSyIoMdidfwlB8EEOJQexMbFOGgZcq6O5Dv28D+v17Q2itTp6drhI0TcMlgY/ia7v+ERmRzlv+l/nHcXL0DAw0nqC8DyEEDMgnh2hLCOMUEzYNuFcwolukw31H4TOr/h3PRDfitxPXYzJTeCLD9vhz+NYrn8bJzWfiHZ2XotXVUYGREpFdjafkn8EYpiZiGI2IiIiIiIgKUIWoFoqlAMMQ0HVO0lwMK2E0IQQ0Wf2rzqjWR9Wqt65bw8ad+TeaqLHYXM7iDPNqCqMZhlD+vYMmJy+bYhitLqQU0byFZmPFpBfILm75i4BQ/OmeHRE4/Ui+FxIRUWXF8o9RO8jzI8Bb1ldmLETVTLWPJzMyU75xVItURuAD1wvc8rRA1gBOOQy46SM6VrZzf5iIiIiIiIiIiIhqlyoM4WEYjUogqAiFzWWnkcjF4XP491+mikJV04TkbnevclkoPcIwGpkKZ+SvgW53L/QlRFmIqo0qMgkA4fQY+rxrKzgac9FcRHq5WfRsH5/eAB26NMYUU9wvFZYx0tiVHMJQfAuGEoN4OfEC0iJVlsda4VmDft/eCFq/bz2anDyYfrl0uoM4t+Nv8dvJG6TLfxW6Bl/0/wAe3StdLhRRNABwoDJhtJ4qigHbiaZp+D9Np+LYxpPw6My9uHfqFsQM84lLAgIbIw/g6fnH8Jb2d+Ks9gsZBieqU7XwPQRRuTCMRkRERERERKashNGAvZPFm+TfzVMBWfVvFwCAdBaY2z2Klqd+CxGZgXbK26AdfWJlBmczqonUqjBap+K33In52gomGQXWoX2qKYxmFgwMNGsA5H/D6Vh5xkP2YiWMNleek6hRmd38lHr7vH28ggMhIiJ61WTUfHmh0DUR7VVMGG14unzjqBafvkXgV5sOPGkbdwIXXWPgic/zjLxERERERERERERUu1JGUno5J4ZTKZhNJg6lR7HG1w8AiOeiiORmpddTxdXsyKv70OrswGx2Km9ZKD2KAZywDKOiaqGelK8O7hHVog5XN5yaE1mRf9DqeHrUVmE0VXyn0WFyNupXaZqGBkcT5nNzecuiuRo7G3kZpY0Udia2YygxiKH4IHYlX0RWlP7gfQ06VnrWot8/gHW+Aazzr0eDhQAeVc6b28/DpsgjGEu/krdsOjuBeyZvwoXdV0hvKwsU7qNpiz9mpMsdhA4HDBQ+2C3oYRhtKZyaC2e2n4eTW87EfVO/wcOzd0vfRxbKiDTunboFj8/+Aed2XoLXt5wFxxL+3kRUXQyRQzgzJl0WZBiNiGE0IiIiIiIiMpezGFyaTzKMtlhWJtKH/vE9aJ7+CwBAXPt14DM/hPbOD5d5ZPajDKMpTn7T1Si/fKLGfqPNWZxgXithtAbP3v/FJCfNYhitPqQthNEi8mNlycaiSYEnXlYv//OO2opaEhFRdRidMX//mYoJAIpSMxHtV8yeXKHXXa0TQuC2v+Y/B5t2Ac8NC7xmJbc5REREREREREREVJsSRlx6OcNoVAptzk64NQ/SIv+gs1B6ZH8YbTw9oryPagqjAXvHKwujjSuiV0T7hNLySflmgUGiWuTQHOhy9WBPejhvWcjk/WI5RLMR6eVWg1mNjmZpGC2Wk98vAUkjgZcS2zAUH8SO+CBeSe5ADhYOcC6SDgdWe9dhnX89+n0DONx3NHyOhpI/DpWOQ3Pi0uDH8N3d/wohOWLmwZk7cVLzaVjpPSxvmSHUE7gcUEyasTimTldAGd5ZqMfNMFop+B2NuLD7CpzW+jbcOfkLPD3/WMHbzOfmcFPoGjw8czcu6HofNjScCE3jcUJEtW46M6mMqfIzGBHDaERERERERFSAYXEualQSKCJrrITRwgkX+hf8t/jR/wec/XfQvP6yjcuOVOujrviuv0vxW+4z+b9PVzWrAcNk6X9rLZu0yevC5QA6GuRhNIYp6oOVMNpcovzjoNJ6ZVodwASAzaPAoy8KnHbE8r/G//sRA1c/IhCOAGcPaLjqbzU0+5Z/XEREVHrzBWKrtRZdJioXs/28Qw3PlG8c1SCTA0KKY8uvfkTgmsu430lERERERERERES1KWXID/bw6vV1jByVh67pCLhXYDi1M2/ZwhiaKozm1X1ocbaXbXzlEHCvwPb4c3mX2y3mQ/ZiCANhRRit28VJ+VR/Au4VijCavSKTqoBZo6PZ0u0bFNeL5nhgzD7xXBQ7EluxI74VQ4lBDCdfggGLB/EXwak5sdrbj37fBvT7B7DWdyRDwVXoMN9ReEPr2Xhs9r68ZQYM/Cp0NT6z6t+ha46DluWEehLFodctVtDTZy2M5mEYrZQ63QF8oPefcWbiHbht4jrsSGwteJvx9AiuHv0GjvAfgwu7rsAq7+EVGCkRLZdQRr1f2c0wGhHDaERERERERGTOsPhbTaHJ4qRmJYwWcgYOviARA7Y8AZx4ZnkGZVNW18d9uho1QHKWHQB4KSxweHdtTCa2GkZLyU8gYUtmrwu3A2hvAHZP5y+bipZvTGQfKQthtAjfl6rO7vwT1OZ5038ayFyjw6EqYlbA/z5u4GO/PPDecv1GgZcmBB797NIOOCAiInsqFGSd4P4nkSVFdHAyMRcAACAASURBVNHw0kTZhlEVzCJyL4wX80wSERERERERERERVZekIozmYQiCSkQdRjswCXk8JY+GBdx90LTqOt4woJhAbbeYD9nLTHYSGZGWLlOtU0S1LODuk15up22pEEIZMFMFzw7V6JCfjTyqCK7Vg2g2gh2JrRhKbMFQfBCjqV0QRR39YI1Lc2Ot70j0+wbQ7x/AGu8RcOuekj8OVd75ne/F8/NPYi6Xf4bAXckhPDp7H97Udu5BlwuT2J4OfUnjsfI+7tSc6HQFl/Q4JLfGdwQ+tfIbeC76JH47cYOlSN2L8c3491f+Ga9tPh3ndV6GdldXBUZKRJUWUnwP0ersYByVCAyjERERERERUQGGxd9uogzQLFrWQtRq2Cn5UXXrpvoLoynWR13xG0+X/DdaAMBX7xK44YPVdaCSitXXabJGwmguB9DZKF/GMEV9SGULr/Rz8mNlycaGZ6xtzP64DTh7oMyDMfE/j+eP8/EdwNYxgfW9tfG+QkREB6QLhKwneGJcIkvMYl+HmowC4YhAd3N97luZfcZ/Ybxy4yAiIiIiIiIiIiKqtJQijMZJoFQqQWXcZmTB/5eHbqoxCKX690Zys4jnovA7FAfhUV0ziz1V4+uAaKmCJpFJQxjQtaWFikohJZLIQX7mv0aLYbQGRRgtpgiu1aK57Ax2xAcxlBjEUHwQe9K7y/I4Hs2Lw3xHod8/gH7fBqzyroNLd5XlsWh5+RwNuCjwYfxs7DvS5XdO/gLHNZ6MVlfH/styQn2wmq4t7QTOVt7HA+4+OJb4OKSmaRqOazoZxzSeiMdn/4B7pm6yFKDcFHkEf53/M85sOw9nt18In6OhAqMlokoJpeWhxIC7t8IjIbInhtGIiIiIiIjIlGEh2gUA86nyjqOWmQWg9tntWpl/obv+zgSkmhzsUMyVXtMhvxwA7tkskM0JOFU3riLWw2ilP0tVuRQKo3U1aYDkrFtTDKMtSs4QuPWvAj/fKNDi0/C+UzWctd6+r42UhchfLIWaeY3Xi+H8E6JJPbFT4OyB5fu7bsw/cTAA4EcPC/zoUq5vRES1ptB+x2y8evaxiZZTMWE0ABgcA7qtHZ9dc8w+40/yMy8RERERERERERHVsKQyjOat8EioVqliEBPpceREFg7NifEFkbSFVGEcOzOLX4TSY1jrO6KCo6FqoQqjNTva4HP4KzwaouWn2pamRQqz2Sm0u7oqPKJ80aw6qqMKnh1KFVCzEuypVjOZyVcjaFswFB9EOCOPkiyVV/djnW89+v0DWOcbwCrvYXBozDvUi+MbT8GGhhOxJfZ03rKkkcDN4Z/iIys+t/8yA+oJXDqWFmIMKKK5C/W4JfOWqOQcmhOnt52D1zafjt9P34aHZu5CRqRNb5MVGfxh+lb8ee5+nNNxMd7Yeja3JUQ1QvU9hJXtNlE94LsdERERERERmbIaXJpPCgDFx0BiKYFQBFjbuffsF/UmZwhLk4NHXPlfZonZqUU849VNtT7qit94elo1NHuBSDJ/2Uwc2D4ObKi+45XyWA0YJi3EpOyiUBitQ3Gyyol5hikW41v3Cnzpjn3PncCvnhK4/v0aLjt5+c9kJ5OSn9guz3wSaOMJkarGK5PWrre1PMeeLFlojtsfIqJalC4Qso7I5+cQ0SGK3VN6MSRwxlH19q3HXmbfxWUtfv4nIiIiIiIiIiIiqkaqMJpH91V4JFSrVJOKc8hiMhNCu7Mbk5mQ9DrBKoxEtDo74NG8SIn8AyhD6RGG0UgqnJYfnBVw91Z4JET2YBaZHE+P2COMZhIva1xiGC1WI2E0IQSmMmEMJfZG0IYSg5hSvOcvVYPehHX+9VjnG0C/fwB9njXQNUdZHovsT9M0XBz4CF58eTPSIpW3/NnoE3g+ugnHNr4WAGAI9cFqS12PrLyXBxnhqSifowHnd70Xp7W+FXdO/hKbIg8XvE00F8HN4Z/i4Zl7cH7X5XhN4+vqci4eUS0JK+LUZvuhRPWEYTQiIiIiIiIylbM44TKa/x19gfsV+OdbBH78kEDWAFZ3AL/5qI4TVtfXF7Jm8aeFhiVhNMxOlHYwVSCnmB2sm6w2T39BxxFfkK/Ie+ZqI4yWszjDvJrCaGmT8JXLAXQpw2jlGU8tG50R+NrdB69EQgDfuU/g714nbPlDmdUw2lyCYbRqMjhmbWO2xeL1ykGY1EytrpdERFRdzPZLAXmEmYjyWYnCL1TPr61inysiIiIiIiIiIiKiWpATOWREWrrMyzAalUi3uwcaNAjJKV1C6VHkRA4C8mMNq3FCsqZp6Hb3Yji1M29ZSDHxmki1blTja4CoFHyOBrQ42jCXm8lbFkqPYn3D8cswqoOp4mU6dPh0awfRNijCaNFcdR6YLYRAODOGofggdiQGMRQfxEzW4tl7i9TkaNkfQev3D6DHvQq6Zs8TU9Py6HB14+2dl+C2ieuky28K/TeO8B8Dr+6DAfUEI8cS16tGRzMaHc2mMcUez6olPQYtTrurC1f0fBJntr0Dt01chxfjmwveJpwZw0/G/h2H+47Gu7rejzWMHhNVpUQuLt3PBPgZjGgfhtGIiIiIiIjIlKJDlWe+yAmrP3hQ4PsPHLjzV6aAs/7LwOh3dPjc9ovwlIvVMFrIEci/cCZc2sFUAdX66DD5jWddt4b2BmA6lr8sPC8AVP/6ZlgMGCarKNpj9tpwO4EuxQnMJqLlGU8t++ljQvp8bxkDZuJAuw3DYlYDVBNRYE1necdCpZEzBLaNW7vuzom9B60sR7Qva7JtYhiNiKg2Fdq+13O8iagYxba+iv2eqZZY/S6OiIiIiIiIiIiIqJakjIRyGcNoVCpu3YN2VzemMqG8ZeOpEWSF/MdBHQ50u3vKPbyyCLr7pGG0cYbRSGE8PSK9nJPyqZ4FPH2Yi8vDaHagipc1OpotH2fZ4JAfmB3NRZbteM1iCCGwJz2MHfFBDL0aQosoIiNL1eJsR79vAP3+Dej3DSDgXmH754eW3xlt78BTkUel+2Wz2SncPXkj3t39QRhCPTFEw9KDewH3CkQTJmE098olPwYt3irv4finvv+HLbG/4PaJ65T7ZQu9lNiG7+z+LE5seiPO67wMnW7J3DMisi2z/Ul+BiPai2E0IiIiIiIiMmUIa7Mxo6ni7vdXm/LvdzYO/GEr8M7jiruvamYWWFkoIvuxsR7DaIrfefQCvyUGmhVhNPVvOlXF6qTphPykqrZkFkZzOYDORg2yqfUT1XlismV17xb1CjQxX91htOFp4KQ1ZR0KlcjOCSCZsXbdVHbvutktP0FhWaUZRiMiqjvpQmE09RwdIlrA4tdL+xX7PVMtYRiNiIiIiIiIiIiI6lHSJIzmYRiNSijoXiENo4XSo8hB/uNglzsIh1ad0zBVE6lDFiILVH9SRhKz2Snpsm5Oyqc6FnCtwIvYnHe5XbalsZz8gHhV7Eym0SE/INNADkkjAZ/Dv6ixlYshDIylXnk1grYFOxJbEVU8D0vV7uzaG0HzD6DfN4BOV5AhNCqaQ3Pg0uDH8Z1XPguB/EkxD83cg9c2n2762cehOZY8jqC7Dy8ltsnvH050uYNLfgxaGk3TcEzjiVjfcDz+PPdH3D15I+ZzcwVv9/T8Y3g2uhGnt56Lt3VcBL+jsQKjJaKlUoXRXJobbc7OCo+GyJ6q8xs5IiIiIiIiqpic+oQjB5lPFne/T+2SX/6TRw2887ilf2FfLcziTwtF9GYIAAf9hBa2x1mmKimnmBxcMIzWBGzbk3/5lrGlj8kOrL5O4zUURgsogkjRFBBJCDT7+INzKUzMA0fa8PfNQoGSfYZn8racZFODRW6Ph2eWKYxmsu6lLIbdiIiouhQKX0aK/CxMVK9UYbRmr/x1VOz3TLVEFYXfJ2cIOAp9EUJERERERERERERUZVKG+othL8NoVEJBdx8GY3/Nu3xL7Gm4E17pbVRxsWqgGns4vQc/Hf32ou/XoTmx2rsOp7a8BT6HDc+8SfvNZaexce4BjKR2QQjzH6LMtsXV/DogWqqAR77+70oMLWlbWqxWVweObzwF6/wDB10ezcnPKt2giJ3JNJpE1GK5yEFhNEMYeHr+MbwQfx7JXNzyY5RKSqTwcuIFJAzJWdNLoMvVsz+Cts4/gA5Xd1keh+rPau86nN56Dh6evTtvmYCBn459B12uHuXtdehLHoNZ6DTg7q3aGHAtcmgOvLH1bJzUfBrun74df5z+LTLCfEJQVmTxwMwd2Dj3AM7peA9Oa3sbnJqrQiOuLoYw8FTkUbyY2Lws72Wl5NTcWOPrx+tbzoJb9yz3cKhIqjBawN0LXVv6dp+oFnDvhIiIiIiIiEwZiomrh5pTn7AxTyKtvtPp8vw+ZVtWw2g5zYmY1oBGseAJmh6HyKShudzlGZwNqSYHF5oP3N2sAchf7679k8BP3yugV/mEYquv01gNhdH62tTLR2eBZh4PWRJh+bESy65QoGSf3dPlHQeVzpYxixuyVw1PAyesLtNgTJite1bXSyIiqi7pAp/Z5pOAYVT/ZwqiclPt7TUpwmixVFmHY2uF9ozj6b3PGxEREREREREREVEtSRrqAxA9DKNRCQXcfdLL53NzQG5OuizoXlnOIZWV6t9rIIdnohuXdN9Pzz+GP8/9EZ9e9U00mAR1aPlMpkO4cvjzmM1OLel+HHAyDER1LajYlqZEcsnb0mI9PPM7XBb8e5zS8ub9l8UUYTSz2Fn+ddURtWgugk4cOMvyz8d/gCcjD1m+b7sLuvvQ79uAdf716PcNoNXVsdxDohp2Xtff4dnoRul781QmjKlMWHlbXXMs+fGDJmG0oKd693lrmVf34R2dl+KNLWfjrqkb8cTcgxAFji6KG1H8ZuJ/8fDsPTi/63Ic33gqNI3HNy50w/hV2BR5ZLmHUTJPzT+CpyKP4pMrv8Y4WpVRhdHMQpZE9YaJQCIiIiIiIjJlNbg0EbEeNNkjP3YEAOCos0+qVsNoABA59AdHIYAJ+RdgtUq1PhZab7pMftd9YPvix2MXlsNoVTSxPK0IDDl0QNM09LaobzsyU54x1aqESTAvPF9crKpSrAaoRhhGqxrb9hR3/eGZ5Vk3VdsmgGE0IqJaJIQw3fbvE62i/Wwiu1EFvuaT9vwsUgmFPuNHJSE5IiIiIiIiIiIiomqXUoTRNGjwaDxbBJWOWQyilLexi253DzSUL4KwJz2MP889ULb7p6V5YOaOJUfRAKDLHYSjBDEWomoVcPcu9xD2EzBwx8QvkBWZ/ZdFcxHpdYuJVnp1P3TIX+cL7384ubPqo2i97tU4vfUcfKj3s/j24dfhS2t/iEuCH8VJzacxikZl59V9eE/3hxd1W9VrtBgBk/3aniqOAdeDVlcH3hv8BP519ZU42n+cpdtMZkL42dh/4D93fw4vJWpg4lSJDCd31lQUbZ9dyRfx1/k/LfcwqEiqMJrZ9pqo3jiXewBERERERERkbznD2vXC8hMNSTGMdkAxYbQ5vRm9OKQcEx4BeteWdlA2ppocrBc4bufwLvWys79nYOZ7Olr81XsGlFoMo6leG+5Xf8/zuDR0N8m3PSMzAijjwVy1JpFRL5soYtteSSmTMS8UKiLaSctrKlrc32oqWqaBFJA2ed9mGI2IqPZY/bwWSQLNvvKOhajaCcXuXrNiLls9BweNAt/F1fNzQ0RERERERERERLUrYcSll3t0HzSNxwFR6QTcfRW5jV24dQ/aXV2YyoTL9hjbYs/grPbzy3b/tHjbYs+W5H44KZ/qXZuzCy7NjYwwORNxBUVyMxhLvYJV3nUA1GG0xkNPym5C0zQ0OpoQyc3mLYvlDhxMXKrtSqVo0NHnWYN+/wb0+wawzr++qGAcUTkc13QyXtP4OjwXfdLybXTocGquJT92hysAp+ZEVuQf9NzjYRitGvR51+ITK7+CrbFncFv4OoylXyl4m5eTL+C7uz+H4xtPwTu7Lke3u6cCI7WvrbFnlnsIZbM19gxObjlzuYdBRZjOyj+r8zMY0QF1Nt2ciIiIiIiIimU1uFSqMFrCHr8XVkzWYngO2BtGy7NnV6mGUhVUob5CYbQLjze/wluvMpCzurLbkNWAYdYA0tnq+HeqIhSuBSc66muTX2c0/zd5MmEWRitm215JVgNUE8sUz6LiJS3G7vaZk58ouuzSJuseAxVERLXHbLu/UGSZ3peIqonqk2iTIow2nyzbUGyv0NcT3O8kIiIiIiIiIiKiWpQy5D+4eHWenYZKq8nZgjXeIyxfv8XZjlXew8o4ovI7puGkst5/KD1a1vunxcmKDCYz4yW5r2May7sOEdmdrunY0HDicg/jIHtSw/v/f6wEYTQAaFBcP7ogjGb3bb4OHWu8R+Cs9gvw8RVfwH+u+zn+dc2VeHf3B/Captcxika28Z7uD8OjKQ6akVjrOxIufelhNIfmwPqG/5N3uUtz40j/sUu+f6qc9Q3H4/NrrsRlwX9Ai0MxseYQz0Q34msvfwK3hH+mjGrWA7u/ly1FLf/balFWZJBUfB/W6myv8GiI7IthNCIiIiIiIjJlWAwuhYr4TnTPnHqG59gcIER1hJtKQRV/kplztORdJl7ZXsLR2J9qcrBe4BuOVR0a3neKOo725MvATU9V73pXTNMtViUTqFX/JseCv3VQ8Xu9XWNedhU3CVJO2vS5tBpGm2QYrWoUG0aLLFMow2zdm5gH7ny2et9LiIgoX9ri57VYnQW+iRZD9VVPs2I+Wz3HvxhGIyIiIiIiIiIionqkmgjqYRiNyuDCrvfBq/sLXs8BJ97d9QE4NGcFRlU+b2k/H12unrLd/0x2Eimjjs96Y1MT6XEYKOLszQpH+I/BiU1vLMGIiKrbuZ1/azk8Uwl70gvDaPKDfVWhM5VGRTRsYTxnPD1S1H2Wm1Nz4nDf0Xhr+0X4h74v4z/7f4nPrv4OLuh6HzY0ngifo2G5h0gk1ebqxAd6PwOnVjh25tP9eFfX+0v22O/ovBTNjtb9/61Bw/ldlzMcWIV0zYFTW96Crxx2Nd7ecYml2F4OWTw0cze+vPOjuH/6dmSM+jv4sZbjYeH0WF3Nyax2qn04oPjALVEtq+5v5YiIiIiIiKjscha/D4umgHhKwO9Rx6f2GZ9TLxubBTaPAsf2WRygTaUyAv/zJ4GndwGtfuDC4zW8oT//uSkmjDavS35o2LVt8YOsQspYVuHVDv92robrN6pX6F8/JfB3r1vkwJZZUWG0NNBWBb/xKiN4C/7W3c0agPwr2jXmZVcJk9+ywvP2+1HEMITlbedUdO/1dd3CRoKWVdJi7G6fSGJ51s10gXFe/r8GNn9Fx8p2rnNERLUgZTHcGWekiKgg1fFWTV7557r5Op47U+jYtGgdPzdERERERERERERUu1RhNC/DaFQG6/wD+PzqK/FcdBMmM+PS67Q423FM44lY4VlT2cGVQburC59d/R08O/8ERlO7ICS/zViRNlLYGHlAuiycHsNK72FLGSaVmCr4oEHHaa1vLXh7p+bEam8/jms62VK0hajW9XpW4XNrvovn5p88KEpWbi/Gt2BPenfe5XtSe8cghEBUGUYrLnKkun7s1TCaEEK5bTnK/xoE3CuKerylaHa24TDfUVjrPQJu3VOxxyUqpWMaT8TnV/8XNseewnRmQnqdgHsFjmk8ER2uQMked4VnDT635ko8N/8EYrl5HN1wHNb6jizZ/VPleXQvzum8GK9v/RvcM/kr/GnujxAFArkJI47bJ67HIzO/wzu73osTmt4AXdMrNOLlFU6PSS+v9HvZUsRy83h6/rG8y1MiibncDFqd7cswKirWwvjsoRirJDqAYTQiIiIiIiIyZRRxsrDwPLDGwu9Ke0zCaABw4yaBY/uqNyiSzgqc9A0DWxZ8V3rVAwJX/52Gj5x28BfFxYTRZheclWW/V7YvcpTVSRnLsvD9+2GdgM8FJBRxg7ufr96AUq6I12msSqINhmIm+MK/dZfie147xrzsyjAEUiahp7ANI3PpIrabhgCmY0AnfxOwvaRi29ziA+Ykxz5H5MdDl12h9S+SBH78sMC3Lqy+9xIiIspndb8jVn8nTSQqmupTWpPiRKWROo5/FYqfx7nNISIiIiIiIiIiohqUUobRFF8kEy1RpzuIN7eft9zDqJgGRxNe33rWku7DEDk8Nf8osiL/QJ/x9AjDaDajihd1ugK4OPCRCo+GqDa0ONtxWtvbKvqY903dgjsnf5l3+b5YWtJIIAf5gcCNjuaiHkt1/dir4bVoLoK4EZVe520d70G/f6CoxyMiIOjpQ9DTV/HHbXW24/S2cyr+uFReLc42XBr8ON7U9nbcPnE9BmN/KXib6ewErt1zJR6YuRMXdl2BI/wbKjDS5RPNRhAz5JNk3tpxUdX8+1VhNGDv5wCG0apDTBG3BRhGI1qoPrKdREREREREtGiFJmMuNG9x0uqD283v9Dv3CVz2MwPTseqLG92w0YD34wdH0QBACOBffiMwFz/435QtIvAz5uzJvzA8CqEISNUiVQDMSstM1zW8dq35dXZOFj8mOyjmdVotYTQrf+tuxfe8EzaMedmVKka1jx2fy1SBMR9qQn4MBtmMal1Uvc6XK5SRNgkJ7vPt++rnfZmIqNZZ2e4DjBQRWaH66qKjQX55LAXMJ+tzv6rQZ/xYuj6fFyIiIiIiIiIiIqptSUUYzaP7KjwSIlLRNQe6XZLjWKGOcNHyCaVHpJcH3CsqPBIiWooe9yrp5VOZMNJGyjSo0VhkUKNBEUaL5iIA1NsVAAhy20JEZBu9nlX4+74v4h/7voo+T4FJVK/andyB7w1/AdeMfrOm9+3N/m3VtJ/c4GhSBk1r+e9Xa6KK/Tiv7odTc1V4NET2xTAaERERERERmVLFiWSiBYJLQgjc87zA7unC93XjJoHOTxkYClXPZM+7nhO44lr1eOeTwG+fPXh5pogw2ohLciaYdBKIWHhCa4RqcrCVMBoA/MMZ5l+FvPuaIlZ4GzFK+Dq1Cyt/6y7F7/VhG8a87CpRIDI2GQWMYsp7FZCyGCjZ5/Ed9ho/HWzbHoGfbzSU+waqMNqc/HjosrMayKnXiAcRUa2xut8RZ6SIqCDVq2SVyckph+vn646DFAyjVcnneiIiIiIiIiIiIqJipBRhNC/DaES2EnBLjmMFJ9/b0bjib1JNwQciAno88jCagMB4emR/tEymocgwmiqwsi/aEUqPSZf79AY0OlqKeiwiIiq/oxpeg8+t/i4uD/4TWp0dlm7zfHQTvvbyJ3BT6L8xn50t8wgrL5SR7yN7dT+aHa0VHs3SdLt6pZeHFe/XZD+q/bhi9+GIah3DaERERERERGSqmB6OWXApmRG45KcC7/hhceGpI79o4CePVkes6uqHC4/z7ucXH0YbdioORpionwNKVAEwh8VvON51gobr3q+uqD0/AmRz1Rc1KOZ1Wi0TqFV/64VhtO4m+d9yYh7I2SzmZVfxtPlyQwDTscqMxap0EdtNALh/kOuCXX3zdwYGvmzgfSZR0W75cTaIJMs0qAKsBnLqNeJBRFRrrAYxq2Ufm2g5CcUu34o2DZriY7qVsH4tUj1X+8QKfI4jIiIiIiIiIiIiqkZJRRjNwzAaka0EPfLjWEPpkQqPhMwIIZSxuqAibkdE9tTp6oZLc0uX7UntRkwR1NChw6c3FPVYqgjHvscYV2zrg+4+aKof/omIaFnpmo6TW87AV9b+GOd1XmYpPm7AwKOz9+LLL38M9039Bmmjdg6QVO0jB9wrqu69TBU8ZrS6eqj241SxWqJ6xTAaERERERERmSqmLXT29wz89DEDQjKD8+anBW5+enFxmo/+QuDaP9k7jiaEwKZdha/3/CG/BxYTRhtxKQ5GCNfPASWq9VEv4vvny0/R8eaj1Mt3hIsbU7mkMgJfusPAKd/K4fwf5XD/VvXrJ1fEy6NaJlBb+Vv3KE4uZgjgpYnSj6kWJTKFrxOeL/84ipGyMOaFRmrvREU14ZndAl+6o/B+QXezfAM/Jz8euuzSFuOZwzNlHggREVWE1SBmodgsEam5HUBQcRzP8Ex9Ro4LfRfHbQ4RERERERERERHVIlUYzcqkbSKqnG6XavL9GAxh7+N868l8bg4JQ35GVFVAgYjsSdccytftnvQIoiZBjWIDL42KMFo0N28aXAy4e4t6HCIiqjy37sFbO96Nr669Gqe3ngPdQmYmaSRw5+Qv8JWXP44n5h6qif39WnovU+0fhBlGqxqxnHyylmqfjKheMYxGREREREREpooJLgHA//25wDd+lz+D85ZFRtH2+eD1Ar/bXPkJsUIIbBkV2DMrpMG3fcbngGn5MQQH2TEBJNIH7qeYMNqwsw/SEUzUz5eWqvWxmDAaAHzgDeobbLbJ0/me/zbw9XsEnnwZuPO5veHBu5+Xr4PFBAyjqeqYWK76NzkWfJt1RED9tx8cK/2YalHCwoR624XRLAZK9oksU0CLzP3kMWFp29Wt+E0nlgLm4pXfnqUtrn/D09WxrSUiInNWt/vVEh8mWi5m36doGrCyTb5stE5js4X2k2O1cxJWIiIiIiIiIiIiov1SRlJ6OcNoRPYS9MhP8JsRacxkJys8GlIZT6tPuMwwGlH16XGvlF6+J7VbGdRocCjOUGaiUXEbAzkkjbhJTEZx8nciIrKdJmcrLg58BF9c+wMc2/haS7eZzU7hhvGr8O1XPoPtsefKPMLyCqXlE42qcR+5WxFzm8yEkRWZCo+GFkMVuG1gGI3oIAyjERERERERkaligkv7XHm/OCj+BQD3bF76WD59s2E6mbbUNo8IHPf/DBz7VQMrPmvgwh8bygiL1QiTEMC2PQf+O1tEeC7qaMKc3pJ/n3UURlOtj8WG0f72JPUNLv7J8p/FZNsegbuez7/8vB8amJWsg8W8TqslEmXlb+1zazi8S369zaOMElmRsPB7x0SVh9HmqmSdrydCCFz/Z2uvIQYzYAAAIABJREFU0aOD6mVP7SrNeIphOYxWpxEPIqJaY3U/O84wGpEps69yNAABxfHY0/GyDMf2GEYjIiIiIiIiIiKiepQ05Ad4eBhGI7IVs2CAKphDlaf6WzToTcrwERHZV49HHkYbTw8jqgyjFR/UMLvNbHYak5mQdFk1xmSIiOpdwL0CH13xeXxq5TewyrvO0m2GUzvx/ZEv40cjX8NYaneZR1h6OZHDZHpcuqzbJY+M2Znq/VfAwITi30n2otqP42c2ooMxjEZERERERESmFhNGm40Dmxf8pm4lZnbL/y38EfXFEHDVA5WJHaWzApf9j3HQv+OO54DP/1b++DsnrY9rZEEsJZMr7t8z4pJ8cRmun4NJVOujo8hvODRNw0UnqONoP354eeNovx9Urxf/dFP+slwRw43IT65qO8ow2iF/6wHF7w8vT5R2PLUqZSGMFp63V2Su2DBatazz9WQuASQtnoToyKCGzkb5sk27Kr9uWl3/huTH/xARUZWx+nmYkSIic2YvJU0D2hrkn89nYuUZj90V+hqNMUYiIiIiIiIiIiKqRSlFGM3LMBqRrXh1H1qc7dJlDKPZh+pvEXCvgKYVeSZiIlp2Qbc8jDaZCWEmOyld1riIMJpZhGNX8kUIyA9YZxiNiKh69fsH8NlV38H7ez6NdmeXpdsMxv6Cb+z6JG4c/zHmstVzNvGpTBg5yCcDVON7WacrCE2RC+Jns+oQUwZuGUYjWohhNCIiIiIiIjJVTHBpoc2jB2ZxPjtsft113cAFxwMXn1j4x/ZP3yxw21/LH0K5b8vBcbd9btokpKG33dPW73smfuD2mVxx4xp29uVfGC7wBNcQ1fqoL+I4jQ0m31v/w40COyeWLwb15E71sp8/IZA9JKhXTMBwTn4Moe0YFv/Wazrlf/zhGXvFvOzKyrozIf+ufdlYibktNJ8EcoupfFLZDBfxnulzAa9bK1+26eXK/13TFt+3t4xynSOiyslk5Z9RaOmsPq2MFBGZM3staRrQ5pcvm4nV57at0McXbnOIiIiIiIiIiIioFiWMuPRyr674EpmIlk1QEQ0YT49UeCSkElL8LQKe6gs+EBHQ61klvVxA4KXEVukys8iZilf3Q4dDuuylxDbp5Tp0dLmDRT8WERHZh67pOKn5NHx57Y9wQdcV8Fn4HC5g4PG5P+ArOz+G303+GinD/mezN4uFdbt7KziS0nDpLnS6uqXLwumxCo+GFiOai0gvX8x+HFEtYxiNiIiIiIiITC22JbMwKva5W83ratdeoUPXNfzXxRpeI+l+Herd1xi4YaOBezcLrP9SDu6P5rDhyzn8YbB0E2a/do98zDNxeVhqpIiTXMwuuH2xYbQRl+QJCtVPGE21PuqL+IbjmBXmNbVv37d8E7B9bvPlMwuOAyw2glE1YTTV3/qQP9vKNvn1igkv1TMr2/iw3cJo8pP0mIra/3e2ujJcxHum1wW8dq18e/3ky8VvA5cqbXH9eyG0N1RERFRO8ZTA+6810PZJA+2fNPDxXxpIZrjtKSWrn4fjqfKOg6jamYbRALQ1yJfNyOfA1bxC255Yitt6IiIiIiIiIiIiqi1CCKQM+UFNXt1X4dEQUSHdijBa2CQ0QJU1rvhbBFwMoxFVo05XAE7NJV02mQlJL29wNBX9OJqmKUMcqjBapyuoHBsREVUXl+7GWe3n46uHXYMz2t6ujGUulBJJ3D31K3xl58fw57k/whBFTpKrINXnlXZnF9y6p8KjKQ1V0C2U4WezahBThNEWsx9HVMsYRiMiIiIiIiJTiw2jDYUO3DBkEtWZuFLH69ftDZ4EWzQ8/QUd/3K2ebAKAK64VuDcHxjYPg5kDWDrHuCtVxn45K8NXPWAgWd2L22S6M4J9TJZJGh42vrjzcQO/P9skd/5DsvCaCM7IEK7i7ujJRJjOyHu/BnEY3dCZBdRKVok1froKLzK5Dm2QITvjmeXb6JxOGL+2FPRA/+/2NdopMbCaKva5X/84ZnKB5OqkZX1Z+H6ZgeLCaNVSxCwXhTznul1Aa9ThNFCEWC2wrEMq2G0TA4YCpd3LEREH7xe4PqNAvH03ve6ax4R+OSvuf9TSlb3taOMFBEtmqYBbYqTjE7H5JfXOsP8/AKIMcZIRERERERERERENSYj0jAg/3LUwzAake0E3fKDL1UxLqqsjJHGdEZ+4FLQY+Hs1URkO7rmQFARpVRRBc4KUYU4QqrgYpHjIiIi+2t0NOOi7g/hS2t/iOMbT7V0m7ncDH4x/kN8c9ensTX2TJlHuDiq9zJVXKwaqN6Hw+mxCo+EipUVGSQVJwloZBiN6CAMoxEREREREZGpXIHJmCrD0wf+v9lE1o7Gg2MnDl3Dt9+l46aPLKJ0BeD7Dwh86tcCJ3zdwNfvWeTgAZhNaw9Lgvy7p/MvU5ld8L1Vpsgw2ohT8ePhQ7cVd0dLIH7zQ4hLN0D8x99DfP4iiI+/CWLGpCRXQspY1iK+4VjbCRy3Ur08PA9s37M8gYNC69PUgtdUsa/RuUR1RBushtFWtsuvl8zYL+hlR1ZiH3ZbZxYTRoskSz8OWrzhGevX9bqAo3vUy0eKuK9SKCZGuWXMXq8dIqotsZTAbc/kb2du2Cgwn+T2p1SsdnZnKhzqJKo2Zi8lTQPaG+TL6vW1VWjTE0tXZBhEREREREREREREFZNSTAQFAK/ureBIiMgK1eT7uew0Erk6/YHHRsKZMQjFL04MGBFVrx73qqKu37DIMFqxIQ5uV4iIale3uwcfXvFZ/POqf8da75GWbjOWfgU/HPkqfjD8FYwkd5V3gEWqxchnt2Lsqn8r2UcsN69cttjALVGtYhiNiIiIiIiITKkCIBt6905eVVkYdlJNZP3i29V38J4TdUz919I+tn7pDgH9Izmc+PUcvnGPgWzO2qx2IQSiJhGd8CHfPSXSAi9PWh/X7ILno9gw2p9azpBeLh66tbg7WiTx7GMQV/0zkFsw8G1PQdzyg4o8vioCdmgsywpN0/Af7zZfx9Z/2cBPHjUgrBYRSiCbE3hRfrK+/RYGv4qJ9ADAnPo4QluxGsFb2aa+j2LiS/XKsBDWm7XZsWqqbXmLyQmCq2W9rxfFxMw8TiDYrN7O2zqMxt8TiaiMXgzJP0skM8BD2ys/nlpldbtvFgMnIvPIoAagzS/f2ZuOoaKfx+2i0LYnzjAaERERERERERER1ZikaRjN5IAQIloWZuGA8P/P3n2Hx1EcbAB/Z+9O3VaxrWbZBtPcgNCrqYbQQseU0D8CoQQcSIAAARNqaAFCDxCSEAjNGNMCxpQYDBhjDO69SJYlWb2f7m7n++Ms6yTN7O1e00l6f8/jx7rd2d2529253b2dd33lCawJqehCEAy4MNxTkODaEFGsFKZaPA1cwWnAWdd0zoI4ClNLIloOERH1Hzulj8PvRt+Py4pvtH08ubx1Ee7b+Fv8a8tfUe+riXMN7ansUJ+r9OdgNF3dmwONlsFb1PeaA43acZkRHscRDVQMRiMiIiIiIiJLutCc66YIzLvJwNHj1OMb24GGVgmfX6LFqy5z1G7WaVa5mQKf/y76U9eFm4A/viORc52J/8w38eb3Ep8sk6huUvc0rW8F/BZhQVU9pltR4Swopa6lq7DTYLS1ogR1Rk7vEcvmQ1ZsdDYzG6RpQq5fDjnvA8jP3oL8zRR1wU/+E/Nlq2jDsiIIRgOAo8cLrL3Xehv79csS932YuI7Ya6qADr91mZqQbchOsFWo/hIQpXtfPdd1wVDA41KXDQ1oJDU7bVd9km0zujpnpgIpbvW4HzYNvjCFZFZaa399pLoBj1ugMFs9vqw+sevWyff92q3xqwcRke74BwCWbuH3XqzY/SR1YeBEFGS1LwkB5GWqx/lNoDHJzkcSIdx5vu46GxEREREREREREVF/ZRWMlspgNKKkk+seDo9IUY6r8JYluDbUky4YbURKEVxCc4MdESW9ohRnwWiZDgPOIp2uwNN/w2SIiMg+IQT2HnIw/rjDEzhzxKXIMLLCTiMh8XXjHNyx/kq8W/2K5bl/vLUFWtEYUD+RvV8Ho3mKteOqNEFwlByaLYLrGIxG1B2D0YiIiIiIiMiSVRDVAWMFXrhIf2q5qdY6UCcnI/zyD9tV4O8XR5h61UNrB3De8xJTnzVx7KMmin5v4sGPevc2DRemVNkjlH+hw8Cd0E7zToPRAOCxvGvUI758z/nMLMi6Kshrj4G88GeQN50Geft5+sJbNkK2xv9pErrOwa4ornDsOFxoA/463TZTYlFpYgImlti49lzT0vV3wGG1+kunct376hmMZhgCIxVZgYCz8KXByk7IU7KF6QUsQvPGFarHzVzEbSGZlKp/U+wl3RPcxwFgVK5mXgkOQHQSjFbfyu2OiOLHqj1aznsZYsZuCHFtCyAl230iHavdQwAotLivuqw+5tVJeuGOOVs6ElMPIiIiIiIiIiIiokTxWnSOTmMwGlHSMYSBghR1B3xdKBclToVXvQ4K+3HgAxEBRanOgtGyIgzUcBrEUZDKtoWIaDDxGB4clXcy/jT2GRydewrcNoJ3fbIDH9a8junrrsTc+o8QkBF0pIuS1XlKfw5Gy3bnIVWkKcfx3Cy5tWiC0dKMDLiFJ8G1IUpuDEYjIiIiIiIiS1YBNABQnNM7qKhTaV33ELCecm0EowHARQcbePuq2J/CBkzgprck8qYF4L4iAOPyAHa5NYC97rLu/b5ua/fXMxY66wAfGqzm1ywq02zWTv/q8AuhWqJc/aOjeujI+mqYL/wJ8uRRwI9f2p9w/bKYLN+KVVBfNKafHH77mvyAmZCwg3Vbwy+jJmTzsBvW0Km6uX+ENujel2pdj8pTl7UbvjSY6dr4UPUW7Xhf0LUDLgM45WfqxuCHTf1ju4+Xz1dK/PplE9NeM/Hl6r79HKSUKLO5bw4J+Y2uRBOMZndeseKkze0vQZRE1D9ZheaUNwze77xYsxuI6QsEg7iJSM0yGE0AI3OC/6skOgg3GYRrelq8CakGERERERERERERUcK0a4LR3MLNzqBESaogpUQ5nJ3v+15lR5lyeH8OfCAiYLin0NFxUZbL4gllMZou0zUk4uUQEVH/luHKwhn5l+D2HZ7EvkMm25qmMVCPVyufxj0brsPi5gUJ7d+hO0/xiBTkuIclrB6xJoRAPkOr+6XmQKNyuNOQWqLBgMFoREREREREZMkqgAYA3C6B4hx1mU21El+t0V+ozM20X49Tfibw5q/jcxpb39r1PtdutS4LAEvLu96TlBL/W60uN9oirKnzAq5P86CL/doWaJe/VpRgs1txg8L6pdpprPj8wbpIvw9y/TLIi/cFXrrH+YzWLolo+U6EC+qL1CE7C5yxt3WZFi/w3YbI5t/hl+jw27tobyfMq6al62+7YQ2dvP7+EdbjJARvVK56A0h0YFJ/ZGf78fqBdl/yBKxYtQNHj1NvC3WtwJaGOFYqib00z8RRD5t47n8Sj8+ROOIhE//+1mGiYgxVNgLtPntls1K7/h6p2c831yV223TS5jb0g7aWiPovq3DTGn3GMjnk5FumtiV8GaLBKty+5HELFGrulS5N8PFeMggXxtvaMbiDn4mIiIiIiIiIiGjgaTfblcNTjfQE14SI7NKFbOlCuSgxpJTaAAQGoxH1by7hsr0fG3AhzbD5BPseshyEcRRqQjKJiGjwGJ5SgEuLb8CNox/AzukTbE1T0VGGpzffjcfKbsem9rVxrmFQlU93jFwMQ/TvyB39uRmD0ZJZiyYYjaGzRL3171aaiIiIiIiI4s5OOJEuAGxTLXDHLPUMXEb3wBM7Tt9b4K0rDcfTxdryLYC57YNpbAsGZqlcfaQ6xKXd1xVWoAtGS5E+vF16prYOZW7FEx3WL4P020ybAbC1SeLCF0ykXx1A5hVtmHbe39B60UFAzRbb8wglIwxmc8JJWJZT/7zUwIm7W5c58D4Tt79jImAzGafFK3HBCyZyrgv+O/95E83t1tOW1oafd21zVxmnwWgAUNnkfJpE065rxdWsUZo26NX50tbnOZjZ3X6SKeDJKrBzovphNwCAJYPwdx3TlLhlRvcPzJTAbTOl7XYs1pY5+IrJDPm+H5WrLmMnTDKWnHxsjer7tomIYsKqPaphQFfMhAsnClXXGr96EPV3VhleYtv5vPZ4rzb29Ul2do452zriXw8iIiIiIiIiIiKiRPGa6htT0hiMRpS0dJ3vq3xbYErNjbEUdw3+Wnil+qYlBhgR9X9FKaNslctyDYEQkd1c7ySMg4GLRETUaYf0XfHbUffg8uKbke+x6NQRYlXrYty/8Qa8tOVR1Pq2xrV+upCw/AHwXZafov68qzrKE1wTcqIloO7Y5ySklmiwYDAaERERERERWQpoOoJ3D0ZT/3BWWqvv/JrmQUQ/uJ22l8Daew28c7WBf1wi8OVNBpr+amDujcHXt58Ug4SsMNp8wPrq4N9WAVOH7qyvy6ZtHXt1wWge6cNJzR9op69yF/Qe2N4KfP+pvkIhpJQ47AETL38rYUqBNpmCv+ZcgdtGTLc1vdK6vgtGc8UgGS09RWDWNQZmXGl9ueTu9yUuetFeMs4V/5L497cS7b5gIN4r8yWueNl62vnrw883NOxCt49aqVQ/WCKpOAnB0wWjAcCYm0089bmJz1dKSEWDtGSzxJOfmXh1vgmff/CFqJlWCQUhkikYzep7aViWQKHmnowNNYNv/a7dClQo9veNNcDCTYmvDwAsLY9sPZRYBKOp9u14cRKMlkz7DRENPFbHgNXNiavHQOfkG6Y/HGMT9RWrfanzFE93XsdgNLUWBqMRERERERERERHRANKuCUZLFQxGI0pWupAtv/TFPdSA9Co6yrTjGGBE1P8VpdoLRst0EG7We1r7YRxsV4iIKJQQAj8bciD+uOPjmJr/K9thm/MbP8f09Vdh5tZ/oS0QnycDV2pCwgbCdxlDq/un5oD6puNojuOIBioGoxEREREREZElO0FUus6rm2ol6jWhINHEWI0YIvCLPQUuOMjAwTsJZKYKHLJz8PX0kw3Mu9nAkbsBET7oyJZlW4L/V1l0ft99JOBxqceFC0Zzww8BYJSvVDm+Ml39w6ac96G+QiGue01iZWXv4S/kXIJ2kWprHr2sXAjpi2/PXDtBfdEQQuDUvQSuOcp6hq/Ml7jpLetEstoWidcX9N6BXl8gUdOs3rHmrpbKEKOeakLCLpyE9HTqD6EN+ran97BRudbr65pXJI562MS5f+sejvbgRyb2/JOJ37wq8cvnJfa400Rty+AKzzJtBuvVt8a3Hk6EC80bqQnQqo3Pb2RJrcbiPf+wqW+29aUOHjzkD9k+SzT7eYs3sdunkza3sT2xoW1ENLhYtUftPgzKwNd4sBsiCwCltfzMiXSsdqXOaze6473SusG3b9lpelq88a8HERERERERERERUaJ4NcFo6a6MBNeEiOzKTynWjrMK56L4quzYrBw+xJWNDFdWgmtDRLFWlDLaVrksB+Fmvae1H8YxEMJkiIgo9lzCjSNyT8SdOz6NY/POgFt4wk7jlz58XPsW7lh/Jb6o+wAB6Y9ZfUxpomoQBqMFQ6urE1wbsqs50KQcHs1xHNFAxWA0IiIiIiIishQugAYARmlCaFZU6Dtq/vXc+KWWHThWYM4NLgSedWHzAwZKNPWLxtLy4AdTpb4OhcxUICtNaD+blZXB6f2aUCKP9AEACvxVyvGVYw9VT7h2iXp46LIrJJ74VL1im11DsDJlV/WEE/aH+KQBr1+7EEeN/i9G7rIeR4z5GB9k/jw4vqURmD877PKjod0eY3yF466Tw2+fD34ksdMtASwqVVfq+43q9Rswge82qOd50Yv2UqpCw44iC0ZL/o7lusAuVQieLpyxp9cXSLw6P/jeP18pcdNbsluH85WVwG632UwKGyDsbj/JFIymC0jsDM3L09wTOxiD0Tosfg9c30e/cTkJjfGHhIeOGaYvt6Iiigo5ZDdMEAgGWjQzsIKI4kT3fdhp5qLE1GOgc9Lul9bFrx5E/Z1lMNq2/3XndaW1Ma9O0rNzntYa31x6IiIiIiIiIiIiooRqM9U3pqQa6QmuCRHZlWqkIdc9XDmuUhM6QPGnC0YrSClJcE2IKB6KUtUPVu8pM4pAjUwHwWiFbFuIiMhCuisTp464ANN3fAr7Dz3C1jTNgUa8VvUc7lp/LRY1fROTh5TX+avhk+qbrfI9+sDn/sIqtLrKx3OzZNWiCUZzcixGNFgwGI2IiIiIiIgs6TrchwZRjc5Th0ht1YSGAcBBO8UvGC1UUY7Aij8ZeOZ8gUsPFThnP4Frjxa47USBaVMEdi1QT3fe/gL3nCZQnKMev6oy+H9Vk/oia8G23xPHF6mnX74l+L8voB7fGYyWrwlGq8rRhJetWGB54TdgSoy/3bp3/7LU8b2Gidv/AfHkp3hlUQrOmz0O/8s8DJXuAnyZcShOHv02po78N+alHwD/J29azjtadoL6YiE7w94M11cDe99l4r9LZK/PfWWFfj10BuOFqmiQ2FBjr361Ldi+PKtQjALN9dCKRnvL6UtO1rUugFDl+bkSbR0SRz2s/uBqWoB/zBs84Wh2g9Ea1A/m7RPhto28TPX+W5tE4W6JYhXKtUrRDiXC5nr7ZUPDJUfmAEPS1OWWlCfuvQQcLqoxifYdIhpYwgV2nf2ciR81Ab5kn5NPcNMgDG8isstqXxLbDt9115ZK6xCTG9z6EzvnaS1RBqNVNEh8tkKiqX1wfbZERERERERERESUnLym+sf1NENzowARJYWClJHK4ZUdZQmuCXWq0Hz2hZp1RUT9y3BPIdzCHbZcVhSBGmlGOlwIvwwX3Bjm0XTEICIiCpHnGYGLi6bh5jEPYdeM3W1NU+Urx3Pl9+MvpbdiQ9uqqJavCw8G9Oc0/UmakY5st/qppFbvnfpWc0DdsS+a4ziigYrBaERERERERGRJ1xnTFdJfdfQw5/PNj/xBRI5lpApcfpiB5y808MqvDDx6toE/nWLgkakGVtzlwl/OFsjJCJYdVwh8eoOBly8z8IfjDZy1j7pj7ua64AdTqQmYyt92HWpckXr6ZdtCXPxhgtEKAupgtFJDk7jmbQM+flU9DsA7f/9cO67T0tQJ3V6L2XUQx5wD4fbgL7PVG8SMoafhsB0+w4jSR7BiU/xSYLTbYxyucOw0wn7ZEx43cfITJppDOhQvsXiwxsKNvYctcXC92esHWrd1grbqMF2crR6u226TiZNgtLxM+/P9fBXw3Fzrjt93zOoddDdQ2Q1Gq29Lns9DFwbY2Q7karaHupbkeQ+J0mIRjOakzYmlzXX2y4Z+RwohMFHzMKOlCXyQUbggop6SKVSQiAYWO0GNt7w9eMJe48XusRIAlNYOvmMNIrusTq86g9F0gdftPqC6OfZ1Sma2gtEsjvUt521KTHvNRPHvTRz9iIlh00y8NIjCwYmIiIiIiIiIiCg5tWuC0VKN9ATXhIic0IUIVLDzfZ/RBR8MhMAHIgJcwoWClJKw5TKjCNQQQiDTFb6jx4iUQriEK+LlEBHR4DM6bWdcV/InXDnyNhTa+D4DgDVty/DAphvxYvnDqO6ojGi5VR3qzgZDXblId2VENM9kow+t5rlZsmrRBKPZOQ4jGmwYjEZERERERESWdAE0RsgZ5Wj1gwW0PC4gO4nuWbruaAMVDxloeNzA4ukGjtitK3mpRNMxt6w++P8adW4ZCrZdh9pN8yCk8m3T+7TBaH4AQLFPfQF2zuZctAr1hyjvvgTS7+s9fNMq/GdOjXqBIe4ffuP2v8Xf5kGkBS/01rZILNxkPW2jMRSXPtMct1Ap7faozp+LylVHOJvp+4uBodea+Hxl8L2X1+s/g1k/SnT4u49fUu7sM6vZ1jHcqsN0kSYYraox+UMbnASjCSFwzVH219ctM6zf/6ZahN3WBwq7YR/JFO4UbtvQBeXVtsSnPsms2atfwWu2Am0diW0L2jokahysB3+PNn9CsXo/31CduPfhJCAHANZXx6ceRER2ghpnLwsew1PknJzWVDXFrx5E/Z3VrtR5hGd1bWlVZPe09Vt22p5Ig9FemS/x+JyuBfhN4NKXJFZs4fcFERERERERERER9R1dMFoag9GIkpouzKCKne/7hNdsR51ffbMSg9GIBo6ilFFhy2RFGahhZ3o7AW1EREQ9CSGwe9a+uHWHx3BuwZUY4tJ0euphQdNc/GnD1ZhR9RJaA86esqkPD9Y8tb0fKvAwGK0/8Uuf9lpYtMdxRAMRg9GIiIiIiIjIUs9Qkk6ekAf85GYAman25zliSPBiZjJJcQsMSRNw9UhdGrlqtrJ8WW2ww+iSzeqOo7sVBeczvG61cnxdQ7AHq18TjOZGMBjt0LavlONbfQLf7nKOemIA+P7TXoPMt5/DZ2mT9dOEuOfQNyD++QPEuH0ABMNshv/WRvoCgG+q8/Dt+t7DA6bExhoJnz/yzrZOwrKiNXVfAXcEV06OetjEy9+YqLMI/2lo6x28tdjh9ebOcCGrUIyiHPUHU6l+sERS0a5rzTq56nD7G0Fb79zAXv7z3eDoFG4nVAUA6lvjWw8ndNuGa9u2wWC0Ls0WYQlSJj5g4qcyZ+UnFHV/vcMwdbnS2sjqEwmnwWhLHYZeEhHZFbDRvPhN4J1FbIei4aTdtzr+JxrsrIK+Oi8PFWYDQ9PUZc5+zuaJywBhp+1psRlybJoSm2ok1ldLtHolXv5GPd07P/L7goiIiIiIiIiIiPqOl8FoRP2SLmyrMVDvOKyAolfVoX4QM6APsSOi/qcoNXwwWqZraFTLsDM9AxeJiCgaLuHC5Jyf486xz+D4YVPhESlhp/FLPz6pm4k71l2JT2tnwS9tdAyCVTDawPkuy9eEvFmdI1DfaQnon8ScFeVxHNFAxGA0IiIiIiIisqQN7go5oxRCYFSu/Xnm95PweultR/HmMR5cAAAgAElEQVScJ5XjmrwCNZsqsKJCPe2kbdcUsz//p3J8G1LR/vpT8GkSDTzbLtAe2fIFcgPqxJd3R1+mr/yaxd1eyg//hbXvvI8a93D9NCHurj8R9fnjAQCrKiUyr3HWCfng+7vKm6bE3e+byLnOxI5/MJE7zcS1/zEjCkjThTjFIxhtZK7A3y8RSHE7n/bCFyW+Wmtdpmeo3t+/cvZ51Gy7b8gqFKNI8/CUfhGM5nBdjysSOGPv2C3/4Y8lapoHfsdwu2EfDer7T/tEIMy2wWC0LlbBaEDi24JZDsMWbji2++Vr3bFGaV2kNXLOeTBafOpBRGQ33PTtHwb+8Uw8OWn3a5MoSJYo2VgGo3X+LwQmae41K68HyusHT3tmp+0JF14tpcTjc0wM+62JHf5gYqdbTGRfZ+LjZeryf5gxeD5fIiIiIiIiIiIiSj7tmmC0VMFgNKJkZhUkUMkO+AlX0aF+aqVbeJDnGZHg2hBRvBSmhA9Gy3JF11nDTiBH4QAKkyEior6TZqTjF8PPw507Po2Dhh4NgfCdw1rMJry59UXctf43WNg0D9Lq5jTow8EGUjBagSYYrc5fDa/ZnuDaUDjNAX1Hnswoj+OIBiIGoxEREREREZGWaUptZ0x3jzPK0Xn259tfgtGwehFKGpZrR3905e/g9avHTRopIE0TuSs+005f99R96OhQJ8+5twWjuRHAnu0/Kcs8vnkv+OHCpxmH4/HcqzBjyCkIbDvVl+uWbi8nv/8MSx96CON2XqKtS0++AHD0Iyauf93EuD86C0Xr9PS71ZBvP4u//OUr3P6ORMu2gJ7WDuCJTyXuel9i4UaJB/5r4u73TcxdHb4Trm57dMXpCscvDzCw5UEDH00z8LPwvyM7siTk2rqd995TTUtwGqtQjOIc9fCKRoS9+N/XdOvaKgTvgTNjuyFMeSSybb8/sR2MlkRBH+HagWGZ6o2kohFo9yX3dh9rS9QPN9quqimxn8fizerlDU1DrxDK8UXAkbt1HzYqT71uq5uBxrbEvBenwWgbagbXNkdEiWMVjhvquw3O5rt8i8Qjs03c9JaJ298x8f5PEqbTxm8AcXLI3OIFOiIIfyYa7ETIId6EYv0J3xvfD579y074Zbjg5/d+Aqa9JruFXOtCpomIiIiIiIiIiIj6mq6TbprBYDSiZJbjHoZUkaYcV6kJ6aL4qexQ3yyW7ymCIVwJrg0RxUtx6uiwZewEm1mxE8hRkFIS1TKIiIhC5XiG4YKi3+APYx7BuIw9bU2z1VeB58sfwEObbsa6thXKMh2mF7X+rcpx+QMqGE3/XnTBcNR3mgNN2nEMRiPqzR2+CBEREREREQ1WfosOk+4ev5EHw0rsdVLNHxL+CQ5JYd1SjPKVIc1sQ7viJqvXhp6lnMwQwLhCAFvWI7etQjv7OlcOfPM/BbKO6TXOsy0YDQAmeZfh88wjlPPYY9IqrAoUbX+9X9t3+GLDFKQs3vbUi+YGvHL7i7hgp4XaeugsKgUWlUbe8fjqd3Ox88YZ+P2Yy5Tj735f4p4PZEjYgMRvjxF4+Cx1uJWU+qA+q7CsaOVmChwzAThiVwPT35W478PYdMZeGhIQ9MKXkQSjBf+3yqkoylbvl+0+oKkdGJrE9w7qOmxbresxeUC6B2jz6cs48WMZUFortWFMA4HtYLQEhU7ZEW7b2CVfP93KCmDPGIccJqvXF5h4dX6Ypx/pf0+Ji9Ja9fDf/Vzg4J0EHvzIxJoqYPIuAvefLpDq6b7vleTq533X+xIPnhn/fdVOSEWo6ub41IOIyG57VNkIVDdJDLdxDvaf+SYu+ruEr1t2s8QpewKvX2HA4x64x0Q6TjPh6lqBgujuLSUakKx2pdBgtNN+JvD8XHXp2Uslrjs6tvVKVnbannDBaA9+xBQ0IiIiIiIiIiIi6j/azTbl8FQGoxElNSEE8lOKUepd12tchSaki+JHF4zG8CKigWW4pxBu4YZfap7ujugDNewEqxWkFEe1DCIiIpWStB1x7ag7sazlB8yo+jvKOzaFnWZ9+0o8tOlm7JV1ME4ZcQHyU7r62FmFglmFifU3wzz5cMGNAHofH1R2lGNU2tg+qBXptGiC0dKMDLiFJ8G1IUp+DEYjIiIiIiIiLX9AP87dI7tqdJ79+Y7oJx3F5fqlcMHE+I6V+CHtZ73GvzvkJOV0O48A0jwC8uv/IjdQr51/nSsHPs0FK0/Ixci923/QziM0FA0AvkvfDw8MvwG3bbkf8rA0lHuKcMHOa7XTx9vPx3xgOV726Oz7l9kSFx8ksXtJ79CFnmVDxTMYrZPHLXDPaQL3nAb8/k0TD38cXVDUkpDr6+u26uc1oQhYtqX38JptYTu6kCgAKM7Rj6tsTO5gtEhC8AxDYK/RwLwYbvJv/yBx7dEDNwTEbthHvfr+0z6hq7Nr2/fSzvlAihvoUNzzsaRcYs9RA3d9diqvlzjnufArN+HBaHXq4aPzgKPGCRw1zvrJpGPygMxUoMXbe9yzX0jcfpLEkLT4rl/dd5HHhR5BQkFbE/wZE9HgEXBwKJp/g4mh6od0b9faoQ/GfudHYOYi4Kx97S9zoLA6B1Gpa2EwGpGK1b4UevT284n6cmvVD+4ckOw0PbWt+nEVDRJfOTwvTsR1FSIiIiIiIiIiIiIdryYYLY3BaERJrzClRBmMpgvpovip7ChTDh9IgQ9EBLiEC/mekSjv2KgtYyfYzEpWmGC1oa4cZLiyoloGERGRlQmZe2HcDnvg64ZP8V71K2gIaDoihPiheR5+ap6Pw3KPw/HDpiLLNVR7XuKCG8M8+bGudp8xhAsjUgpRoTgnqOK5WdJpDjQqh4c7BiMarIzwRYiIiIiIiGiw0nWMB4IBIKGcBKPl95frNOuXAQAmeJc5mmxC22LI1mbIx65HpmyBS/NEpnojB36hzix3h0xzRuPbjpb/Qs4lMCHgFSkYbSMULd0TXcBXrL23WF0fqwAnV4KvcDx4poGvbjJw72kCY4ZFNo/KRmBrU/BN6cKCAGjnX9MS/N/qcynKtl5+MtMGo4VZ15dNjm1v7liGrCUj06KdD1Vv0ek+0XRhgJ0d+d0ugXGF6jKrK+NTp2RTcqO9FVuVwHag1StR26IeNyrX3n6b6hGYuq+6bLMX+GJVpLWzT9c26UJwaluAgN0EQiIiB+x+h3dqbLf+Z3XuBwAzFw3OtsxpE24VVEQ0mFntSiLk8M4wBF79lfp4r7QOkE7TCvspO218XYv+s/hmnfNgx9DrKgFT4rsNEl+tkfD5B8dnTkRERERERERERH3HlCa8sl05jsFoRMlPF7qlC+mi+DClicqOcuU4BqMRDTzFqaO14wy4kGZkRDX/zDDBavlsV4iIKAEM4cIhOcdg+tincdKwc5EqwjwhGEAAfnxW9x7uWPdrzK6dic1edZDoiJRCuIT1Q937G/25mfo8gfpOiyYYLdwxGNFgxWA0IiIiIiIi0rLqHO/uFYxmP4yovwWj7de2wNFkJaXzgJnPAgAEgFzNkynqXTnwwaMc55G+7X9nylaMzlaHq6mUekZhYdpeuHP4rWHL5mQAM6+O7GJuRgrw/B5zMXfDERFNr7OxRj1cF4YEhA/LioeDdhK4+XgD6+9z4Y0rIqvAgg2AaUps1gSjvXKZwLBM9b5V2xz83yqsYUgqkJWqHtdvg9HCNDUXHSRw3+kCudH9pr/d6wskzAEcamT3rTWoH8zbJ+xsGztoAgW3Nse+PsnmznftJ+WU1SVu27YKgBzlIFz17lP0jcDS8vi/H932pzu2MSVQpwmEIyKKRiDB4UCvzpfwBwbuMZGO08NAtvlEak6aLN31pdYOoG6QhA/aaXt0ocMAsHiz8/bave2yxuY6id2nmzjgXhOTHzCx060mVlYMvvafiIiIiIiIiIiIEsdrqkPRACCVwWhESU/X+X5rRwUCMpDg2gxedf5q+GSHclxhakmCa0NE8VaYot+vs1xDIER0D5nOcll39ihkMBoRESVQqpGGE4afjeljn8Kh2cdC2IjIaTNb8fbWl/Df2jeU4wdieLA2GM23OcE1oXBaAk3K4eGOwYgGK3dfV4CIiIiIiIiSl9/ingR3j+uITkJNCoZG92NbIsi6rUBtJQDg5Kb3MK3wEdvTDvXXQT79p+2vhwVqUe0e0atcpTsfbZqbt1Klt9vro3b246Xv7Z/GH7jjl2HLjMoFFt1uIMdhgNTJewJP/dJAUTaAwCGoeWO1sxmEUVqr7nBr1TE4XFhWvJ2xj8DH0wwc+6j9QCIAeOsHib1GC20I4a4FAt+uV7/x6ubgcMvPxQAKhgLNW3uPq2iUCEb3JSd9+JV1nYUQuOk4gd8fK1HeADz3P4m73w/fifuWEwTu/UBd7sa3JB46K3k/q2jYDfuoT6IAAl1Ioivke2n4EAGg95urVv9+0O81tUs8+JHE7GUS3663P90Xq4D6VomcjPhv36W1+nElufbnU5QjcOwE4ONlvcctTcBvdrp9psDi4TzVzcDwJP6NasEGiSc/k/D6gTP3EThtLzi6MerL1RL//EaixQucsDtw3v4i6huriCg809lhZ0y8Ol/igoMG1/7tNH+uoS25j7GJ+orVvtRzj7G6vlRaC+RlxqRKSc200fhYBaMtjeAhn50PQLjsnyZWVHQNL6sDzn7OxKLbB9YTUomIiIiIiIiIiMg5KSVqfFXwhzzwMxaaAg3acemuGD0ZkYjipkATzhOAH6taFyPXPTzmy8zxDENalMGJrYFmNPrrlePyPCOQYmieSJskTBlAta8K5rbwufXtK7VlB2LoA9FgV5Q6Wjsu02VxM6NN4eaha/uJiIjiKdudh/MKr8IRuSfh7a3/wNKW7yOe10A8Rta9p6qOzajwloWdfqg7BxmurFhXixSaA43K4bE4jiMaiBiMRkRERERERFq6sCagq8NkJyehJuOLIqtPQm3oSlwZ7S/DKF8pSj2jbE2a3eNmrWJ/OVam7tarXJl7JBqMbOU8cnrMY0R2bDugnrOfwBPnCeRmBrsgb37AwMgb9Sv8uIlAdrrA0eOBSw8RMDqTyNwe5D35DvB47Oq2SROek8zBaAAwZYLAglsNvPiVxFOf20tQmLFQ4iKLcImSXCBfc12zalvAky4kCgBcIhjWs1YRjFapvo6aNHRhH3bXtWEIlOQCP5+IsMFoY4YF9wldMNojsyV+NVlit8Ik2NBizG4wWpMXME3Zte/3IX1oXtffIzS/x3QGCg4kXp/EwfebEYUf+ALAvLXBMKt4K61Tf/YjhgBpHmfb1Z6jBD5e1nt+S8vjv351bVO+JowPAMobgHFJcuzT4g3W0RDB47yv1gAnPN71pv7zncQtJwj8dkowdCRcwNl7P0mc/pS5/Zjx1fnBII57T+v7toJooAv0wVdaMBgt8cvtS3aPlTo1tcenHkT9ndWu1PNwoyg7GHqsOtfdUAPsae/STL9mJ5TRKhhtyWbnXxJuA2hul/hoae9xP5UB67ZKjB3BYzwiIiIiIiIiIqLBakHjl3i96m9otggxi4fUKIOPiCj+8lOKICAgFb8I/bVselyWacDA7ln74cLC6xwHKDb5G/D3LY9gZetPyjoDgFu4sVfWITi/8Gp4jJRYVDmmvqj7ALOqX0abGf5pp9nuvKhD5Igo+RSl6H84z3JF/xTXrLDBaMVRL4OIiChSxamjcXXJH7Gi5UfM2PoSyrwOniy/zUAMRsv3qL+f2802/GnDNWGnFzCwc/p4/F/x7zHUnRPr6lGI5kCTcngsjuOIBiKjrytAREREREREycsf0I9z9zijTPMIFNgIps9MBcbkRVevhFjXvSfoOO8K25MONbtfoCrxbVaWK3cXo0Hzw2G22SMYLcdje/nhPLLPUrzyKwN5mV0dWotyBN69xkBOj3tEJu8CVDxk4IPrXHj1cgOXTTZ6BSOJifvjcP/8mNVvYw0QUCQQWIUSuJLkCsfeYwSeOM+A7xkDlxwSvsNwfSvw6CfqlJ3MVGB4FpCvua7ZGWxmGRhnQLtfJn0wmi78yuG6PmgskB3mvp6PpxnYrQAYkqYv84cZFgl0/ZjdsA8pgcYkCfrQhQGGtgPDNcFoW9W/H/Rrz82VEYWidYokNCESpXXq4aMcBKt2mqS5p2Z5hfr7I5Z0s89IBYZlqsct39L3gXxSStwxy8SQ3wT/ZV5jIvtas1soWqd7P5AYcb2Jfe42MW+tdd3ved/sFaT7l9kSdS19/56JBjqrcNw8TXsUrZWV8ZlvMrMTThSqyRufehD1d1b7Us9gNJchtNeNkuG4KhHsHNLqgtG8PhlRe+0ygM31+vFfrxscnz0RERERERERERH1tql9LV7c8lDCQ9EAMMyHqB9IMVKR5xmR0GWaMPFj87f4d+WTjqd9YctDWNH6ozYUDQD80o/vmr7Am1UvRlPNuFjcvACvVT1nKxQNAAoHYOADEQEjUorggls5LlyomR1Zbut5FKaURL0MIiKiaI3L3BM3j3kYFxZehxz3MEfT6kLE+rNow94kTKxuW4qnN98ToxqRTosmGC0zBsdxRAOR+syHKEJCCA+AQwCMBlAEoBlAOYAfpJQb+rBqREREREQUAZ+DYDQAGJ0XPmxpQhF6BWslI/nTV91ej/euwOysY2xNm93jJrBi/xZluU2eUWgwssPPIzUdxbkCsLgRw67ncT8u+dUflONO3ENg4/0Gvt8INLQBY4cDE4qDnZKtCCEw7UiJL+ZGXT0AQLMXmLsaOGK37sOtwh+SbZNyGQIvXCRw6xGNWPLrCzHKV4YjxsxGk+Ii5ds/qOcxcdu+EgxG673uq5qCQTeWwWgCKBiq3naqGpO7U7PufbkcrmvDELhsssDDH6tn+MhUgV0KgjM9Zz+Bv81Vl5u5CLjrPRPpKcAv9xcoykmyjS5CpoO8t4Y29ApP7Ava0LyQVTJCEyi4tTn29YmFn8okPl0hMWOhxME7C4wdDnj9wNqtwNA04MjdBI4c13ub+7FU4rr/2NuX9ywBfizrPXyZ+isq5kpr1cMjCUabWKxu19p9wLqtwC4Fzudply54zRDAxGLgf6t7j1sSRXBdrFzxssTzmvZNZ1EpMPVZE4vvMJCb2Xv78wckvlU8YMvrB95aKHHZ5IHRThIlK9334eg8YMn04DF9fVtk8z7tKfUBwoYaoNUrkZE6ePZvp3mbzUkSJEuUbKx2JVWLMqEYWFfde/jyBB27RuunMokPFkvkZAC/2ENgZK6zdtNO29PmA9o6JNJTus97ZaX19ROd6mbgznf1C3Zy7khEREREREREREQDy9cNc/ps2Skitc+WTUT2FaSUoMZXlfDlLmr6Bq2BZmS4NE/R7KG6oxKrWhfbnv+CprmYWvAruIQr0irG3NcNnzgqX8DwIqIBySVcKEgpRnnHpl7jMl2aG2gdSBUWT5oGEh6ISUREpGMIAwdmH4m9hxyMT+vexce1b6HdDH/zbLQhYskoyz0UmcYQtJjq0C27NravRo2vCsM8+TGqGfXUHFB3vo1FwC3RQMRgtAFICDEdwB1RzOIfUsqLHS5zBIA7AZwNQPkMbyHEPACPSCnfiqJuRERERESUQH6LTo8exe/8o/OA7zZYz/PQXZK/E70sXwd8+ma3YYe2zcPj+I2t6Yf0uIhY4t+sLLc8dRykUCTMAcg2Qy5ypWXi2AnRB6NdUP8yLnnhaghDvUwAGJImegWS2XHKBQfj7Q+vwBmZf4UZg5tA/rtU4ojdum8r4QLAktGOgVLs0PwhAODUpln4V875tqedODL4pgo01zV9gWBQVbjAON30ldFd6447qQu/0m++WpccLPDYJ7JXm5adDkyb0jXDZ87XB6MBwB2zguP+OFPiw+uMXttof+Qk7KO+FRjj7EE6caENzQvZNkZkqdvM6mbANGVSBXT+Y56Jy/4pt+/LX67pXe+735e4+XiBe0/repP//NrExX+3twK/+L2BWT9K/FjWu/ySzYkJSdxcp15OSZ7zdTG+CBBC3U4s2xLfYDSrYL6JIwX+t7p3gWXlfRtEefMM03EoWqfyeuDFryRuOLb3emqyCP/5fhNwWURLJCK7dMeALgPIShM4PIJj+k4r7zKw2x97L0BKYMFG4LBdI593f+M0GK3JG596EPV3uvM7IHhc19P4IoH3flIcV21J7oBvAHj5m+Bxemf7cccsiQ+vNbD3GPvHvXbbnrpWID2l+7Bojj3/851FMFryf/REREREREREREQUJ2VexROzEiDfUwxDc28dESWXUak7YlnLwoQv10QAW7yl2CljvK3yTtuzNrMFzYFGZLsjePJjnDh9D6NSx8apJkTU10an7awMRotFIKIQAiNTd8Bm74Ze43ZI2wVGEgVGEhERAUCKkYrjhp2JQ7Kn4P2a1/Bl/Ucwob7RNtc9HFnugRlAVZK2I1a2/hT1fBiMFl8tmmC0WATcEg1EvEJMURNCHA9gCYAroQlF2+ZgAG8KIV4WQmQmpHJERERERIOAnPMGzEv2gzk5Nfjv6KEwbz4dcv3yqOdtFYzmVvyeVZIbvpPnGXsnTxiNiqwshTy7900SP2+ejQyzxdY8ss2Gbq9H+3r/6AgADa4c7TxyAvVdL9IzMXyIwLETbC1e63c/NyCG6JcZrZP/9iA6fAdjasMbUc9rsSK8xwwTAJaUKrvW/VmNznLCdy37DNI0kW9xXXPaaxKHP6j/YFyGPhitokE9PFlYhQ85NaFY4O5TRbcO9xOLgQ33db80JoTA4unhL5d5/cD//cOEP9D/e4ZbBev11BD+wTkJoatz6Lah2+4DJlCVRKGAXp/E796QttbD/R9KGJcHtv+zG4p2z2kCk3cRmFSsHr98CxBIQMrB1mb18OIIvpbSUwTGaK5CbmmI73uxDEbTfMZLNgPSKg0kClJK/GW2id2nB5B1TQD73xPAB4vl9nEX/93EA/+NbtnT31VP32gRjNaYJO0F0UBmJyg0UmNHABkp6nEzF/X/4x8nnDbfVqGRRIOZZTCaYtiEInXZ5VuCQcfJqsMvcc0rslsbvbUJuHWmgxMv2G97ahWXqXTH3dFK4o+diIiIiIiIiIiI4qyyo7xPlrv/0MP7ZLlE5NxB2UfDQN+E5FR0lNkuW9mhfsixFV2H9b7gMztQ49tqu3y6kYG9hxwSxxoRUV+anHNcr2EpIhV7DTkoJvM/cOhRyuGHZB8bk/kTERHFwxB3Ds4puAK37fA49sjaX1nm0JyfJ7hWiXNojL6npXR2vxvZ55c+tJvqzhZZDEYjUmIwGkVFCHEEgJkAQiM/JYDvAbwBYDaA6h6T/RLAq0Lw0S1ERERERNGSX70POf18YE1Imn+HF/jqfcjrT4BsqtdPbIM/oB/nVhzRj7aKSt5G17k1GcjWJsgzd1aOy5StOKnpA1vzye5xI8RE7zLHdck2Q+aRlgEAeO83kZ9GTWpfgkn77RTx9HaIzKEQz3+DW84dHvW8vlzTe5hVJ9xYBEDERVXXTTdTWj5FbqDW9qTDvn4N8m93WAaj/fNr657JQggUDFUniVU2xi+oJxZ0QXgiwhC8G48z8OPtBp7+pcBrlxv44Y8GsjN6z2xiscDhu4af3/pq4LOVkdUlmTjp3F4dpw72TumDYLrW5yiL76NN9nfDuPtqLVBjL3PTsYfPElhwq4E/HB9sICcWq3eeNl9we463Gs32MyzCxyfowu/iHXynDUYzgEmaz7iuNX5hlA9+JHHDGxJLy4HWDmDBRuCkv5qYu1riz/+VYb8n7GjxqsPzrMLPGlqT9/uFaKCwExQaKZchMEXzQO0ZC/tm//YHJL5aIzFnuURTe+Lq4DQIqMUbn3oQ9XdWu5LqHG+C5riqtSO5jud7+t8qdXjsR0sBn99+g2K37VEFo9W32l6MI05CtYmIiIiIiIiIiGjgaA40ojmQ2KcvZrqG4Ni8M3DcsLMSulwiilx+SjGuKbkd+R7NUwXjyEnYWSTBaM1JFIy21bcFEuF/tBEQGJU6Fr8ddS/SXRkJqBkR9YUd03fFr4pvQp57BACgOGUMrim5A3meETGZ/1G5v8CJw85BlisbAJDlysZpIy7CwdlTYjJ/IiKieCpMLcGvR96CaaPuxm4Ze8AFNzKMLBybdwZ+nnd6X1cvbvYZeijOzr8c2a7cqOYTgEWHUopKS0Df4SXLpekkQzTIufu6ApQQ5wL4xkF5W91chRAlAGYASAkZ/BWAX0kpl4eUSwVwBYCHAHi2Df4FgLsB3OKgXkREREREFEJKCfnMrfoC1eWQb/wV4tI/RrwMv8Xv527Fw91G5wlYdXfNSgWy0yOuTlzJ0tWQ502yLHNW9o94HeFvuBpqdr8RYrSvFFmBJjQ7SO7PNkNuKEsPpsa4XQJzrjdw9CPOe6Ne4J0J7HaT4+mcEm439jh1CmaMkTj96ch7zTa1A29+L3HmPl2doa064cYiACIeZGXp9r9T4MNxzR/j1exzbE2ba9YDb7+N9Itvxc75Hqypcrbszs+kUHNdtM0HNHuBIWnO5pso2vChKNb1pJECk0aGn8HkXQS+WBW+J/or30ocMyFJNz6bnIR9lNVJAH3/fu0EwQzPAtI8QLuvd7nSWmD/HeNTN6fWbY1PsMsjUwWmTemeGDneIph0aTmwc75+fCyoQhsAYFhmZNuULjRya7yD0Sy2v4kW93YuKQeKcmJbFyklHpuj3oYOfzC2yRVVjb3rrwr96FQXp0AOIuqiDwqNzfxP2F1g1o+9F7KpFnhpnomLD05cMvGWeokpfzGxfEvw9YghwKyrDRwwNv7HJU6/qRMZ2kbUn1hlcquC0cYV6ssv2wLsEH0ee1x8u17/RquagJE27zeLJhitwSK8NhpOgyKJiIiIiIiIiIhoYKjsKNeOu2XMoxjizo75Moe4smGIZH1KJhHpjMvcE9PHPoXWQDN8UnHTVpTerHoB3zd92Wt4RUeZorSaLhhtcs5x+K7xC7SbvX9oaQzq7jUAACAASURBVLbotJ5ouvobcOGusc/CEMEbu1NEKgPRiAaJvYYchL2GHIQO04sUIzWm8xZC4MTh5+CEYWejOdCILNdQiEifbk1ERNRHds2YhF0zJqHD9MIjUgbFd9nhuSfgsJzj0RxogBnmLtg/rrscfsX5m5R8ima8WIVvZzrod0o0mPBK8eBQIaXc4OBftc353gkg9PbteQCmhIaiAYCU0iulfBzA1B7TXy+EGBP52yIiIiIiGuTWLwM2LLcu88lrkFa9T8PwWwT8uxVnlDuG6Zg6Kg9JeRFRShk2FA0Ajr92KrJs/GaYY3Z/SqYBiQkdYdZVD6myo+tFWub2P48cJ3DLCerP8GejgLpHDew6pHve9R7tP+E3U0dCpCYuAevUvQTM51wInP4qtq4sRvOKXFxa/5KjeUx91oTX17X9WnXCNZL1CkdV95tu9mhfbHvS3EAt0NIIOSUbp1S96njRnSFRuvAgAKixFY3eN+IRjGbXniX2FvKPr2W3bbQ/ctK5vbQufvVwwk4QjBACozShA5tqk2edVcbhgaJ7lAC/Prz3NpyZKjBW8z29ZHN8PxOfX2pDtIZlRTbPEUPV+2ncg9Es2qZhWULb5m6sic1nHDAlHptj4uxnTRz7FxNbEvRg7s31vYc1WQSjfbcB+N0bJo57NIAb3zRR3ZQ8+x3RQGEnKDQau1uEyV76ksRB9wUw84fE7NtX/bsrFA0ItvW/fN6M6lzXLl0gpo5V20g0mFntrarWZkiawOg8dfllW5L3uCI9RT/OybG//WC03gXr+zAY7YPFEhe8YOLwBwP4/ZsmSpPo3IuIiIiIiIiIiIgiU6kJHEoz0jEydQyy3bkx/8dQNKL+LcOVFZe2oSRV/SRMXVhYT1JKbYjaqNSxyHKpn0Br1Wk90So073VESiFyPcO3f1YMRSMafGIdihZKCIEh7uyk7ANCRERkV4qROqi+y4Lf3zlhz7NccCmnD8CiQylFxSp8m8FoRGq8WkwREULsAuCikEEdAC6WUmq7fEgpZwL4R8igVAB3xKeGREREREQDi/S2QVaXd+v4LT97K/yEpauBVT9EvFyfxXUsj+La1+4jgbzM3sM76UJq+pr87fHhC514CTIm7YX91fdWbJdmtiHL7J02dXTLZ7brU+Cv7DHT7jcp3H2qgbeuNHDu/l0XZe87XeDrmw1kZwj8cN9QPDS5FFfkfY0H89/BvKsbkXbGZbaXH1M7jEeuWY806cX/1f3d8eQfLe362zIYLVmvT29e1+3lRO8y25PmBbpSqM5a/6TjRXeGRGWn68vogoqSgTbsIwFXs07Y3botCzXhjsQ8CaW5XaKmOfadyp0Eo5XVxnzxEbEbBDNKE6SwoSa29YlGmSJsKhq/miww7yYDaR51ozixWD3dsi3q4bFS26ofZ3df60kXQFbREN/whXChjWOGqceX2QgW3NoksaxcwufXv4dTnjDx29ck3vheYs6K8POMFVX9G9v19fSbwCOzJT5eBjz0scSB95loaGUwBlEs2QkKjYbuO6PTt+uB05828eRn8T0W8geCbUlP66qB+evjumgAzo6VAKDZG596EPV3VjmGuvvNJhSphy8rj74+8aJ6iECnCgd9ZuzmPlYrws51x1zn7CeQ5rFfh56srhECwEvzTJz0VxP//lZi7mrg4Y8lJj9goqyOx4BERERERERERET9mS5wqCClZFB1KCaivleQMlI5vNpXCZ/pCzt9U6ABbWaLclxhykhkaoLRWpIoGE3fJqs/GyIiIiIiIiu6cHpTJqaf1GDUoglGSzMy4BZR3OBHNIAxGI0idR7QLQJ0hpRytY3p/tzj9VQhRFrsqkVERERENLBIbzvMx38HOSUH8rQdIX99GOSaxcGRc2fZm8dlB3VN45Df4jqWqsO9xy1wxt76G57GFSXfzVDy6w+B78OHlonrHwMATCy2fg/5ga1QlTi78Q3bdTqw7dvuA9J7p8actpfAvy8zYD7ngvmcCzcdZyB1WxBOeorA9RfsgKfvPxQ33H06Mg443PayY26H8dt7OR/Q/h0eqrzR0eRvLezqQKsLQwJiFwARK1JKyJcfBJZ83W343u2LbM8jNyQYbZ/2hdipY62jOnSG9Ay1CEZraHM0y4QyNT3BExGCl54iMONKexvV+mrg5W/id9G/okHi8AcDGHqtiaLfmTj/eROt3th1LDcdVH1TbXJ0aNeFBPRsB3Ycrt5YVmxJjvcBAKU1savLKXsCz15gICNVv5NMHKket6g0vp9JrfqeQgDAsAiD0UZkqYf/bzXwweL4vZ9wwWgjc9TjN1uE4FU0SBzzSAAFN5iYNN1E7jQTT33efef0+iQOuDeAD5ZEUGkbDtgRePFi/baj2v8bHXyHrKsGXvo6efY9ooHAblBopIamC+xZEr7cXe9JdFgEOkarsR1o09zD/l4c2/tOTpfQlMTBw0TJStdsjddcf/mpLHmPKazCESsb7dfbbiij6hizXhNKPGYYMOtqwzI83Uq7RX8iKSXu/aB3pTfVAv/6JnnXFxEREREREREREYXHEB4iShaFKeofsCVMbPWFfypkRUeZdlxBSgmyXOqnNDYzGI2IiIiIiAYoo1tcTBcJBqPFi+4cU3dOSkQMRqPIndbj9d/tTCSlXA4gtId/JoBjY1UpIiIiIqKBRj57K/DGX7sGLJsPecm+kJ/NADYstz+fS/aF9Drvoe0PqIe7DGif+Hju/vqe+KfsmVzBaHLzWsgbTw1bTjw+GyIlFQAwKcz9A/n+rcrhk7zLMKkg/FPpAODXdc91H5AWYWpMEhBpGcDIsdtfT6t9AhWrRuHTDcfgzbJz8O36Q7Bl1Wjt9N9v7OpAa9UxOBFhWY58/jbks7f1GlwYqMSBrd/YmkVeSDCaAHB31R2OqmBsu+qT4hZI0zw0IrmD0dTDE7WuD9tVwPuUgUnF4cte+KJESwzDykKd+YyJudui6P0m8Mp8iZtmxDAYzcGsKpLkHi9dEEzPr6XxRepyy8LfB5cQ7T5pK+RqpxHhy4wrBN60Eean256XbwFWVcYvsKCmWT8uL8KvuAL1Q1oBACf91cSG6vi8H23btO3jH5mrbqQ213WfsLFN4olPTdwxy8Qed5qYs6JrXGsHcM0rEsblAdz+jomGVol7PpD4bkMM3gCAL35v4MubDLQ8YeCnO4L/5t1s4OKDDRw0Vj3N7GWKYDSHh5Zvfc9QDKJY0rVHsQwMvum48AdeVU3AUQ+buG2miS9Xx34/b7EIGapr6Ij58npyEiILWIciEQ1munBjoPdxfKcJmuP5hZuAsrrkPK6wOsd2cj5l9zxN9Tno6pCdDkyZIFD1sIELDnR+Ym0VjFbTDKypUo9778fkXFdERERERERERERkT4VXHSRUyBAeIkqw4SkFMDRdYSstQs+6yqhDxTKNIchyDUWmS30zUrO/yX4l40hKyWA0IiIiIiKKKSHU51gByWC0eGnRBKPpzkmJiMFoFAEhRCGAPUMG+QF85WAWn/d4fXy0dSIiIiIiGojk0m+BN55Qj7v9XCDgdza/cyc4roNfcx3LbXE2OXkXdRjNuELgsF0dVyFu5OofIc+x8ZkMKwJ2P2j7y8N2se48OiKgDkYT/1mGY/dICbu4zzZMwTEtn3YfmJYRvp7JbMeJ3V4OD9TgsLavcGrTLOzT/gNGBKpxf+UtyklXVQJeX7ATbX8KRpPv6/PDj235JOz0KaYXGbK127CzmmbgrdKzcXTzHIzp2Igx2dZBe6GfSXa6ukxDW/J2UNaFUCRyXXvcAt/fZuCuU8IvtPj3sb/wv6lGYt7a3sOf+UJia1Ns1p2TYLS61vBlEiFcMFWnCUWagKr65AhSOOwB623mwLHAI1MFlkw3sOpuA788QOCAHYHcjGBY2g7DgkFnvzlK4OubDbhs7ByH7qwv8/qCOAajtaiHp3uA9JTIdupdCqynG3uLCX8g9u8pXNtUkqseX9qVdYn11RI/+5OJa/8jcdd7EtUWwXF3vy+RO83E3e/H7r1M3kXg4J0E0lMEJo0M/usMvD1Es43MXh4McwvV5DAY7cs1EVWXiDR0QaGxPFY6Z38Dz5wffobz1gL3fiBx2IMmHvhvbI+JrILG6j/9CLJOk8QTI05b37b4Z7UR9UtW+5IuGG2yxfWXN5M0cNUqOLbSSTCazaa0rK73sHpNMFrOtktLHrfAMc4vEaLN4hJEk0VbXaqoIxEREREREREREfUPfulDta9COY4hPESUaG7hwXBPoXJchSYwLJRVqJgQAlmaTui6TuuJ1hioQ7upvoGvIKUkwbUhIiIiIqKBwKWJG5IIJLgmg0dLQB2+neUakuCaEPUfDEajSEzq8fonKaWme6PSvB6vJypLERERERENcvKha2I7w62bITetdDSJNhjNpZ/GZQi8eJGBYZldw4ZlAi9ebC+0Jd7kyh9gXnUk5KX7hy+clgHx+ych3J7tg3YrFNjD4h6C/D0mdg8yKxgN8doKiJE7Yfcw94Od0jQLk9t6njIBSEkLX9dkNrbnaWRvxzd/pBzuN4PhaED/CUaTUgLffqwdv7s//H44PFAD1Vs6pfldfFT6C6xdOx5rxz+Ia4/Wv3FXyFUffTBa2Kr0GW34VYLXtcctcOuJBsznXEh168s1tQMnPBaAzx+7Dvpr1DmLCJjAWwvDL2fhRonDHwwg/aoACm8I4Kp/m2jxdp/OSTBafSsQcDJBnOiCYFw9tg2rNveR2Yl9H03tElf8y4RxeWD7vwUb1WVzMwDvUwbm3ezCtCkGUj0CO+cL/Ov/DMy72UD1US9h5bo9sGbZWCxKvRKPHlOF7Ax7O8boYQIHjlWPe/27+H0mtS3qeQ/LinyeExQhrD29+1Pk89fR7QKdbe7oPPX4NVVd+88DH0lsqIl93ey48gjrbeW0vdTjO/zAh0u6v/kWiwAMneb2vm9DiAaKcO1RrFx+mIGXLhHwWJwDhrp9lkRVY+z2dctgNK8L8qV7Y7YsFaeHPq0MRiNSkhE0C7sWCO0x/ds/JOcxRaPFOfaHi+3X2W7J0trew+o1gdY5IdcF8jKdn1i3WwSjWR0XRrLuiYiIiIiIiIiIKDlUd1TChPomDYbwEFFfKExVtz2VHWVhp9WV6Qx61HVCbzbVndYTzSr8rSClOIE1ISIiIiKigUII9U3HARnbhyRTl2ZN+HamJqybiBiMNlhcIYT4RAixWQjRLoRoEkJsEEJ8IYS4Rwgx2eH8ej5Deo3D6deGmR8RERER0aAnm+qBNXFI85j3gaPifk3AvzvM2eQBYwXW3GPgn5cK/PPS4N8Hju375CpZuQnyysOAxYrwsR7E1X+GePkniENO7DXu7P307yV/l9EQry6D+MPfIKa/DPHvxRDFOwIAJo20/gxObPpQPcJlkcbUD4ix4fOwd+1YDY9Upwgs3hzsRasLQwJiHwARlZnPWY6euM+YsLMY5SsNv5zXH0e+RaiQL2T/HarJ1uuXwWh9uK63PmK98P8uBUbdZOLbdTIYkBclq07136xo146rbpJ49gsT+95jYu5qwOsHqpqAZ76QOPXJ7juS07CPZNhm7G4bI3MFJmnu+XpsjsRXaxLTQz9gSoz9g4m/zbW3vJP3FPC4e39fyPZWyDsvhHzwKqBsDVBbAXzwD8grD4M0u9ar9Pshl3wD+dlbkKWrIefOgvzfO5CfzYB852+YmvaNcrlLyoFl5fH5TGo0j1TIy1QPtyMzVWDscOsy7/4Y+/cTLrRxXKH6u97rB9ZXB/9+20awYTy4DODig62PRQ7YESjOUY/7dn33120W4Rg6nyx3Pg0RqemOjeMRInvhQQaW3mnvIKzDD7zvIPwnHKuwnVpXLjDndUi/P2bL68l0eG+H158cQbLU/0i/D/KH/0F+9R5koyLtqp+z2iusmq0z91GPXWTjlLkvNLbp3+nqKtgOjrTbjFQ2AR0h4dxSSn0wWkiYciTH4ZEGo7FJJCIiIiIiIiIi6r8qNCFCAgZGeGw8zYyIKMY6Q8x6sgoNC1emKxhN3Qm9RdNpPdEqNfXPcg3V1p2IiIiIiMiKS6ifmiw1QfkUveaAOnxbF9ZNRAxGGyzOAXA0gGIAqQCyAIwBcBiAWwD8TwjxnRBiis357dzj9SaH9dnY4/UwIUSuw3kQEREREQ1s65fFZbbyyZsdlfdrrmN51Ne9usnOEDj/QAPnH2ggO6PvQ9EAQM54BvCpw7dCiesfhzhnGkTBKOX4c/cT2nC4KeMFxPAiiBMuhDj6LIjUrkSqPUYCRdnq6TI9AZzaNEs90t2/g9EwYb+wRTzwY5x3pXLc4m33c1h1po1HAESk5PPT9SMPPQm73HQHhoXphDzab6OXd0sj9lj+in50SMfk7HR1mWQIudIJFz7UF7LSgmGPVqqagIPuN3Hqk2a3DuqRaGrXT7/06xWQC+b0Gv7ZCon8G0xc+W/1tHNWAI9+0tW4Ow37qNUEXCWSqdk4XIpVc87+6vUlJXDpSyZavfHtpd/QKjHielMbDKZyrqLOct1SyOOGA3Ne7z3Blo2Qt50dLNdUD3nDiZBXHg55+3mQ502CvOUsyFunQt5+LuRD1+CMd86H0DzB57UFcQpGa1YPD9cWhnPSntb740vzJPyB2L6ncG3TbgWA0FRrWTlQ2yJR1QcPkt1xODDjSgP77WD9mRmGwLET1GUe/aT7m48kGO3DJUzGIIoVXXsUr8DgnfMFHplq70Ds//4hUWkz/CecZouwnS3uIqChBlg2PybLUtG9i8xU/TRt4U85ibqRNRWQF+8Lee0xkDefATl1N8hFc/u6WjFllRutO3YCgMm7qEc2tQO+KM+34iHcOfZDH9sMRrN5niYlUF7f9bqtQ38tL/S6QMyD0SzaPauQeyIiIiIiIiIiIkpuuhCe4Z4CeAxPgmtDRAQUppQoh1d6yywfZNphelHrq1LPMzU4z0xNuFizP1mC0dRhlbqwOCIiIiIionAMTdxQQAYSXJPBo1kTvq07JyUiBqNRl30BfCyEuEcIq9vPAQA5PV6rrwxqSCmbAbT3GKyJBiAiIiIiGqQ2RBiMlj8KmHyyZRG5cqHt2fk0YSK6ULCkt9RGh/mTLoU47QrLIjsMF7j1xN6nTiftARy5m346j1vg/tOFMtjpz0dVI8+sU04nXP07GE0UjgHG7xu23ESverv/838lmtulZcfgZAlGk0vnA4216pE5IyDufROu9DScvrd1hUt86ptYejp61pW2yjEYLXbOP9BAbkb4cu/+BKRdZeLGN000tll3fl9UKnHpSyb2uyeAs54JYM7yYPkmiyCQZe5d4P/tSZDLF2wfZpoSF74Yvtf59a9LtPuCy7AKHFSpa3VWPh50OVeG4rvpqiMECjW/D6yuAm6dGd8whV88YaLe4Wd2zISuv6XfD/nui5AX7Q0ELH5cmjsLcvNayNceBRZ+bjn/kf5yHNI2Tznurvek5U2CPUkp8dFSidOeDODMpwN45VtTOb0uUC/aYLTrpwiUhHncwsxF0S2jJ12wQ2fblJEqsMMwdZnlFRLLt8S2Pp2O3A3wP2PAfM6FwLPB/xseN+B/xoD3KQNr73XhF2GC5DpNKNaP+2Jl1/ptjyD4Z+3W5AswIeqvwrVH8XDKz+zPvOh3JozLAzjp8QA2VEe+7zdbBMVu9hTDhADW/hTx/MPRHStlpuinaWUwGjkkH7se2Liia0BLI+Qd50NaHf/1M5bBaBbTWQV4JcO5SU/h6vTG9/aOt52cp5WFXEqqtzjHzwk5j9WdI1mxDEazOHdlm0hERERERERERNR/MYSHiJKNrv3xynY0+DX3bQKo6tgCqXksVuc8szSd0L2yHT6z73/wqOwoVw5nm0xERET/z959x0dR538cf31n0xNKAiQBBAuidAtYaPZ21rOe3tl7OT3b/WznefaznOU8G+odp6fn2bGDDWxYALHQpLcACSQhvezO9/fHgiTZ73d2ZrMp6Of5ePAgmW+Zb7bMzszO9z1CCJEoR4WMy13kbphtpTpSaVxuOyYVQkgw2s/dauAJ4DxgHDAEGASMBS4FJreor4DrgTvi9JvT4vdEplG3bNMlgT5iKKXylVJDg/wDBiRj3UIIIYQQQiSTnvFhYg2790Td+jzsvp+97zee8t1d2DIHN8V83qvz+/YT7/JBI1H/94ivrm46yuHNSx0u3Fdx5hjFU2coXr7QISXkHRZw2miHj//P4cqDFSeNUvz+AMWHVzlcNLplfnQToa3/DpvqgBPj1hlWP8datvttLrUek3BNgUjtTbsu+sLx9gr7HcvmLPKT9/B+nWx74H5w/MWoi+5ATSmFUQcY66XrBnaq/9FY1qdJrHnXTPP6yi1hRZ2BLQgv1Ame61V3+x/EvVM03f/g8vlizfTFmmXrNZEms9xnLNOMu8tl4ueamcvh5Vlw8P0u//rM5XvzjXcBqHWy+Dxzb/T5Y6OBfMCXS2F1ub9xfbgpdyFoMJot4Ko9WV8bhpd59yzF46fZn6+/f6j5ZGHbBDVNmaP5dFGwNsXXrYFF36Eb6tHl69G3nYW+218Aon72Xvj3nb7qnlTxsrXs2Ef8f4n13FeaXz3oMulbeOUbOPUpzc1vmILRzI9xbnbr0nv691B8d5PD0bvY6zz/VXK/lPMT2ji40Fxn/hpYWJzc19sZoxWPnaqYfLmDs2kQmz9rumQoHEeRmhLscR5caK8/4ZMt469tDP63rDJnwAohEmDbHrXlvtL2PRW79w/W5u0fYIfrXYrKAwRvui56+Xz0snmsnjLFWi+sUikO5aOXJhgs7oNtvyM73d7G67hFiJa01vCRYd+sdC18M7Xdx9NWvLYAXrfs8gql7ozBaBuqvMuXb4A1G+P3E2Qva2XZltpeoczdmwSmd81U7NYvwEqAmgb7qKrr7WVV9dEQbyGEEEIIIYQQQgghxNZHQniEEJ2N1/ZnrSXMEaC40XwhXogUeqYWAN6T0G0T19uTPaxym3YeiRBCCCGEEOLnwrHEDbn653NT186mOlJhXJ4dSkrcjhA/SykdPQDRJr4CDgXe0/ZbTn8O/EMpNQp4DhjYpOxapdQXWutJlrYtg9E8Zu9b1QK5Hn0m6mLgpiT1JYQQQgghRIfQNZXw+duJNe6/EyoUgqv/gf7tMHOdqa+hL38QlRL/kDBsmQSe0gmCiYLSX7/vXcFxULe/8FOYiB+HD1ccPjx4qMuYAYoxA5q308Vp9gahrTWJrokDToCHr/GsMrbmc2vZomJ4aaZ9Im0Xj2CCdjP1Fc9idfFff/p5n52gb3d7iNXow3fH2W7klgUHnWwNTPzH2j9wyLbvxCwf0eQaoHzLNTuryjrv5GQ/4UMdJTNN8eX1Dnvd4T9wadxdzet+cZ3Dntsr/jZFU2O4oeQ5/47/3Lza9deMr/0c/ew9qDteZME6/8/nD6s1hw9XCQSjaaLZ+h0nYnttWD6bjtpFcfpoxdPTYxtqDWdPdJn9Z4fs9OT+Xbe86f/1UZAT4ZnKK8k7/YlAIQjNvPFP31WPq3iNywvuxTXc4ef1b6G4QpPf1fvxWFOuOe2p2NHe957mioM03bK2tLcFRPRIwhnB7lmK5851yLnU/HjPXdP6dTRl3TY1ef0N6q14+4fYinPXaAb3Tt7rLPzYljC0ZNpze3vZ699qauo1WemK2gRuhruqLBoAE2R/SwhhFrF8zLT1vtJJoxSzVgT/tNrm/1xf2y393efoW86AdSt4MPcS/lh4j2f9lanbULik7YLRbH9ptsfhm2nfTgirSNhapL+cghp1YDsOpu1Yv7HGOxgtL9te1tmC0bTWrI8TjAawdmPzIHMTWyijSdPg2XKP25l1bxEyd8peim9W+t+eb/TouzrOdq+mAXIyfK9KCCGEEEIIIYQQQgjRCWitrSFDhRLCI4ToINmhLnQJdaMyEnsnmnUNqxmUbb674tp68/asZ1ohIRW9ljrHYxJ6VaSC7qk9EhhxcjS49ZQ2lhjLCtL6tPNohBBCCCGEED8XyhaMRnJvTi+iwrqROtd8IZ7XMakQv3Rb4VR2EY/W+m2t9RSPULSmdWcAewM/tij6q1KGmZGWboKOMcE2QgghhBBC/DJ89hbUe8w29KDGHx39v99ASLPMONy4HmZ95Ks/azDaVpbTpdetQF95hHel4y9B5XfgRVupHsleoa0/11zlbwO7jPOsM672c3arm20tf/1b86FkXnojoQnXo1/6B3q9+U6l7UF/8IK98LBTUZlbZnSHHMWdx5lnfx8wCEZt22Lhob+1dr1/zTSOyPyu2bKQA1cevOW0T/88c9uVqypw77oI/czd6FWL7OPvAJ05GA1gj+0Uq+5O/NTa3ne6/OZxl//NSPwUycyM3aI/fPI6ruvy+DT/fc3Z9FYJGoxW3gnCB2whASGP18b9Jylr+MDiEnj4o+ScqtJa8/pszTUvu3y+OH79I4bD18fPYunXeRww/4mkjMGPwsg69qn5xFr+8qz4j8f4u81PRFU9zFjefFmp5XXTwyPoIoisdMUIy0f4wmKob0zeqUjb66/ptmlwb3OdJSXEDcsYVAi1D8fftqy5t21C0QB6dVHWv6G6Ht76PvpzbWPwvmsaOl+IiRBbK9tneKiNv/n7/f7Kum8Zz8kTXGxfXX27UnPjU6u58NYfuDlyGgf2f4er4oSiASxO2wG+/aRZvx/M05z0WIS0CyPc8KrLkpLEPwdsj7NXwI8Eo4lAwh4fqLXV7TeONub1LvTao8lKg1TLOajSTvbwVNbZz6M1VVwZv06Q47SVTYLRNlr2s1JDkJHafNlF+yq2CzB/x+vxrq73bluZyG3WhBBCCCGEEEIIIYQQHaoyspFa13xisCCtr3G5EEK0hwJLOKMtzBGioWkmhU22Z1lxgtE6UnHDGrTlGzcJqxRCCCGEEEIkKmSJk9FagtHaQnXEfvFgTqhrO45EiK2LBKMJtNalwCk0vyZ9ELC/8qRE5AAAIABJREFUpUnL6XuZCay2ZRsf988WQgghhBDil8EzXMlLtx4w5vCfflVv2L/k1x++5D2GTZPKwxFzeUoCR5M+spvbhF6xAH3CQM866rJ7Ub+/u51GZBHySJvL+nmk/qsDT/QuB54outBa/uM68/L8isXw3/vQD16FPn8ceuXCVowyOO266Po6+HiStY4aNDJm2al7O7x8kcNhQ2GnAthre7juV4o3L3VQqvnUcJWSinrsY3PfwH9/PIabDo+w705w1AiYfLnDQUO29NEv1zzVfHVdFpE3J6In3Ig+dzT6++k+/uL20dmD0QD6dFcsvsPhtL0TG9SLM1u3XZyTPuSnkzkX3buML5cGaFsUbWkLebKpijPhvT1EbK8Nj8+m3GzF46faK7zQioC6ps59WvPrR1zumezd36794D/nKF7LvZ/dbhtHGgkkTLXSeeX/tJa9N9d7/GXVmuWl9vIfipq332A585eXpGA0gOfONT+/Edf++ZEIP9um7XqYtwkbqmGlx+N2yf6KT69xSE9VlD9of70uvM2hoGvbbgy/udG+/imbXh+1CQb/rCqLX0cIEV/ER1BjW8hKV3xxncNJo4Kv6KVZcNnzmnCLD/PXvtHsfmuE278s5Incc7i11w1My97XV5/z0gZFf/j6fQBuedPl4PtdXpoVDSi68x3Njje4fLZIJ3RMamuSnWZvI8FoIpBGjxfMzykYzePtpzw2J0op6z5jWU3nug/XBp9P193vxj8ICxKMtrpsS+XyWnPD7lnEnGfITldMv87h/H0Uu2wD+3ifOvMORouz3esMx5FCCCGEEEIIIYQQQohgvAKGJBhNCNGRCi3bIFv4Gdi3aU1D1kIqRJaTY6xX5TF5vT2ss4w/RAo9UgvaeTRCCCGEEEKInwulLHMwtGVCqWgVr9DtbAlGE8JKgtEEAFrrWcCUFosPs1TvzMFojwDDAv47JknrFkIIIYQQotV0ZRl82XLX3B910R2ojKwtv2d1gYN+Y6788SS0YfKt/uBF3DN2Rx/aA/eaYwmXmdM7Uj0yvGL6XF+Ee+1x6MN6Rft+5xn/jZNAP3q9d4XTr0WdeCnKK1GnPXTJhZ59Ypc7Dow/uv3H0xb2O847AA7Ytf47MnVtoG57hUu2/FKyGv3svYmMLjC9YS3udSegD+uFPqibd+XBexgXH7ub4u0/hJh/a4jp14W4/ViHjFTzrHA1dC/YzRwQkVW1jhvX3sxHV4eY9PsQBwxq3ke/PPOwIiqFtSmF0V+qK9AT/uz9d7Qja/hQJzubtX1Pxb/Pdlh2Z/sPrDyUy5qU3nybPpwnFm0bqO2KTZv3IBPuASrrgtVvC7Ywt1CcfJYjRijOHGOutLC4lYMCHv7I5V+fxX9Al97pMOvGEKdsX4T6582tX3GCTqqwh6R+v8o7rOH71fZAns3lTdlCFHpkJy+9Z2C+PQxoZRKDuPwEo9m2uQCzV5o7+P0BiodOccjb9Jh0zVS8f6VD7pZdO/rnwbxbHAbkt31CZFqK4tzx5vU89emmYLQE8/wkGE2I5LBtj0LtsEtS2E3x/PkO7oQQ7oQQlQ85cQN1Nnv4I03aRS673RJh2gLNizM0xz3qokls2zY/fWcA9F0XUVyh+cvr5gdm/N0ueZe7nPqky8YAYUq2xzktxR4YLsFoIpCwxwumvqb9xtHGPIPR4rRtuj/U1IfzEx5Om1jv89vuqT9CbYP3dihIjmPT4N1yy0umu+Xb/IKuisdOdfjmzyGm/tH7fE2Zx8uxOk7wWWc4jhRCCCGEEEIIIYQQQgRTbAkYyna6kCMTNYUQHahpmFlTtmA0rTXFDUXGspYha7btW7XH5PX2YPvbeqUVElIBLugWQgghhBBCiCZCmI8nXOLf/FME5xW6nR0yB3ULISQYTTT3bovfR1jqbWzxe68gK1FK5RAbjFYepA8brXWx1npOkH/A4mSsWwghhBBCiKT4cgqEE0iZ2GU8HH5GzGK1//Hm+pVlMOODZov09HfQfzkVlsyB2mr4/G0aXplgbG6bAN6SDjeiLz0YPnsLaiphyRz0HeeiP3rFXwcJ0OXr0R+9jP7sLfT0d+DTNz3rq+MvbrOxBKGUgl+dFlsw5ghUbqDDrk5L5ebD0efGrXde6ZOB+s2PlDRf8NbEQO2D0nO/Rj//APrX28Knb0BtnNnPOwyFwaOSsm517xv2wmfvRa9baSzq7xHSsyqlycU9sz9G13Ts3Q03s4Uu2YKPOlr/HoqKv7f/qbYf0ofwdo4t295ufVV0Mn7QYLSqOBPe21plnea9eeYyP6F5Z401v4Aq66C6PuCD0URJpebS/8Zvv10P2LaHQofD6NvPAUNIaVtTN06M/g+8vNIcoLpkvaLG4/H4ocj7b333B4276cVV26CtAVo9kvjdTWqKotCSUbm6PPHntiU/wWjbdLe3X7DOvLyX4bE4YJBi0e0Oz52rePECh/m3Ouxc2H4bwZH97WX3THatARePnar4/Fr7G3JlafKeDyF+yTrTvlJ2uuKDqxzeu8IhO91fm29Xwf5/c/nNhNZdPLE0dfvoD+UlTP7Bu6+NtfDcV5pjH/G/Tq/tflaauUyC0UQgXvuDtZZ02a2Q16e/irPd6pFtXv6vzzSPTg0WdtiWNgS4DdiXS73LgxynNQ2d3WjJme+WyG3OWqhpgLpG88DiBaPZxiWEEEIIIYQQQgghhOi81lpCeArS+kavcxNCiA7SMsxss7Lweurc2C8lysMbqNfmi1xahqxlh7oY61V10mC0AstjIYQQQgghhBB+OMp8zb+rI+08kl+GakswWoaTRYpKbefRCLH1kGA00dSyFr/bZt4vbPH7tgHX07J+qda6zFhTCCGEEEKIX5oDT0I9+QWcciUUeKRRtKAeeNd8wdFeh0KW+Yt6/UXzbGT9evMwKg3ckH65sW2K3xuMfT8dVi2KXffk//jsIBj92Vvokwej//xb9LXHof/v15711SV3ofIK2mQsiVDn/gVOvxbyt4FuPeCIM1E3Pd3Rw0oqdcldcOKl0b/PIs8NdoiYHy6JXykJtNa4t56FvmAc+uFrfLdTD05J2gWBKi0djjjTWq5P2BEdiT0BnZsFqZb3bUlKz+YLllpSp9qZn/ChziYnQ7HyLofDh7XfOuekD2Fu+uCE2q4qAx0wQ8AWhNQeFqzV7HqLPcjEz2ujtyU4C2BNy1sBBPC/r/09kPvspNDr16DPHAmzpia2sp13Rz0yNRq6GEQohHpyOuqQU6DvDgAMrZ9jrKpRzFtr7+rrOEEOReXw6aaP/w0eeR55lpCLRNkCyf79eTsEozU5056VrqwBHja9zLtr5GYrTt7T4fiRiozU9t0ADuljX981L2uWbTCXZabC3jso9t7BXL4qKbfIEELYtkehDvrmL+QoDhysKLnP4ZrD2m979dO+bEMd8xf7+zCf+iPMX+Pvs8G2r+QVjFbb0DlCmsRWIuwRjPbVe+03jjbmddwR73B5+Db2Cpc8p9nhepcP5nX8+25Dtf8x3P+ed0BjkGC0dZVQvymwrNwSQNY9y39/XlZbTtdUxwmELKnq+OdHCCGEEEIIIYQQQggRzLqGVcblBekSwiOE6Fgtw8yaKm4oillmCxWL9tWn2e85oa7Gep03GM3+WAghhBBCCCFEPI4lbsildTc9Fma2Y8scS0i3ECJKgtFEUy0vlbbdO7rlDOkdA66n5ZS4uQHbCyGEEEII8bOllELtvBvOxXeiXlgQDT7Jzfduc99bqJQUc1l6Bow90tzwlcdwL94f99zRuA9eCZ++2az488y9aXDSjU1TfB5N6om3mws+e8tfBwHoqo3ouy6Eap8XIBx2Kupkc/BbR1GOg3PezaiXFqFeX4Vz7eOojCTNXu0kVHomzmX3ot5YjXq/HHbfL6ZObiRYYkrfcOxFH6ZwsNbQ4Ub0abvClOeCNRx3FKp7z/j1AlAHneRZrh+IfV0rpci3nCctCTXPRddP3pTw2JLJtZxH78zBaAB9cxVvXhbCnRAi/JhD9T8cTh/ddoOekz6UOelDrOUnjrSve2VZsAn3AFXF63EvOQB3fHr03wNXoEvXBeskQVe+4LJ0vb3cTxBMofnaNaB1wWizzdcDxzg+8j762O1g+fzgKznqbNSHlThPTkcNH4167BP/bX91Os7UGtTOuwOgnvoS+u/E9o3LyHRrjE2+v+Sc6HN8TH/cyw5Bv/wI2nVpDGsmfRv/hfPCjGidUo9gtKDhYfH0zTUv/3wxhCPJCWPwu23a1p7/adSnW+fbuA3tk9g2NzMt2sgWVGcL1BBCBBPppPtKGamKO49zeOiU9hlIcagXm7fwG0v8f5h/uMDf54JtX0kpyLQEo9XECQgSoplG7xeMrjPvq21tvN5x8bYWx+zqXaOsBs6a6FJd37HhW+ur/Nd94zvv/dMgx2law8Li6M/llpdLd9u3/i3EC7a8/lXzwGrqvfst7ti5QkIIIYQQQgghhBBCiASstYXwpEowmhCiY+Wl9iRVmb+sNYU6rrUEPXYNdScrlNNsmS0YrTpSGXCUyaO19ghG62NcLoQQQgghhBB+OMoSjKYlGK0tVFuC0bItx6JCiCgJRhNNtZypbZtq+kOL30copYLM1B8bpz8hhBBCCCEE0ZAsNXw06sWFsO0gc6VdxqP2OMi7nx2H2wu//xwWzIKXHo4pmpJ9sLVZmjmHLVZFqc+KSTDtVSgr9le393ao659s2/G0glIK5fy8D9mVUqj0TNg+NtCpe8BgtP2rp8UurPF3IYquLEevWIBeNg9dvArdUI9e8SN6ffM7B+qrjkwoyEgdfnrgNnHttp93+WsT0AtmxSy2BaOtS2kRvjjjQ/Sz9yY2tiSyTQTv6LCPIBxHkZmm+NeZikmXOAzpHV2+U4G9ze/2Ulx/uGKXbWDvfo2cUPEy/RtXWOvPytiVH9MGGsuOGeHy/PnKGj61dL22hqrYVM78Cr77bMuClx9BX3E4uiHOTPhW2lijeSfOGSQ/r42cDEWOOfOTNRsTD1JYVRq/7c71Czjk38cm1L+67X+oPz6CSt1yUZ/KzEY98G78xiPGoq6b0Ly/7K6oJ6YT2u/XDK5fYGw2J31w9IfSdfDNNPQDV6DvPJ/5a+2BC009MlVT36hZ4bErkJf0YDT7i2D6kuSsw++2aXBv/xurFAfGBr31RDvIy1YM9M7nNcpMjf5vez5WlXVsaMlmFbWaxcWahnDnGI8QQdm2R6FOsrN06l6Krhltv556J4MqJ3qx+uoi/xejL9/gr5722O5nWYLRqiUYTQQRDnuXz/ywfcbRgVSczdaBllNiTa0qgze/69jP9A0BgtEAvvDYPw0aYD2nKNpgo2U/vVuWv8+Gk0Z515v0rcY1DK4qTihdccfNFRJCCCGEEEIIIYQQQiSgwa2ntNF8HV5h+jbtPBohhGjOUSHyLYFgplBHe6hYbNBjdsh8kWWVZfJ6e9gYLqVe1xnLCtNkmyyEEEIIIYRInEPIuNxFgtHagu3YMsdyLCqEiPp5z7IWQe3V4vciUyWt9RrguyaLUoBxAdazX4vf3wnQVgghhBBCiF8clZ6B+ssz0DWvecHeh6LumRS/g4L+Ca23NJRnLdtjO5+T7V37iTD3+hPR9bVBh2Wk62rQf73Ad311+wuoeDNvRbtQubGJK67ljhM2e9Z9HbuwxvtCFO266Kf/ij68AP27EejTdkUfPwB9YFf074ajj90e97az0TVVuGfvCbOmBhoTKamo82+FcUcFa+eDCoVQj3/qWUefOxr96RvNluVbbiBRHOoV237i7Ul7fybKGj60FZ7NUkpx1C6KH24O4U4IMf/WEP85R9Elo2kd+MOBiolnKW77tcM3fw7x2alLeH71aSxZNIh/Fp1n7Pu7jBHUOZnGsqsHL0IpxYDYpxiAOUXBJ9xXOYYkqyU/wKQJscuT6P158euEfL42enczL1+z0f94WlpZ5l2e6dbwz6LzSSVO8EVLOwxFPTMbte+vjZ9bauT+qCsfhC651i7UDU+Z22bloG5+lqFqqbHdnPShsQvffYblD9/ne/iZl7gc/Q/zvkDXDEgJJfezeOwAe9m+97g0JiEAy28w2pAAN2QdMwB65HTO/ZKpfwy+0c3cFBRke6+VdIJgjLvfdel3jcvAP7n0vMLllVkSjia2PrZw006Si0a3LMUbl7Z+x+2simeomp/L/EXDrHVKQtH7/iwv9f/H1zX6q2fb7iuFNWy1ynxNuhBm4ThJesuCB3R3RraQQYB479yUkGLy5fG3J09+0sHBaNXB6q8ut4/X6/Eymbsm+v/GWnPDbuZDxhi79Vc8c479GWkIw4zlscur4+RkSzCaEEIIIYQQQgghhBBbl5LGNWjM5xtNQUJCCNHebNuidQ2rYpatNSyL9hEbKpYTMl9k2ZHBaLbxg2yThRBCCCGEEK3jWObvuTrSziP5ZaiOmC+ky7YciwoholI6egCic1BKZQDHtVg81aPJq8CIJr+fBUzxsZ5BNA9gq/bTTgghhBBCiF86teMIeLMIipZAfR30KER16+GvcX5idwSrdyyzvIGzx/qccK497hDwyevoh69BXfn3gCNrsYoF36DP3dt/g4NPRg3cpVXrFEmUG5vYNKLue9/Nby++0TyJuqoCCjwaTn8b/cRN3p1PfhY9+VnfY1GX3QuDRkFKajTMKN3nzOMEqCF7oI85FyY9aa2jrzsBXliA6r0dAPldFBguWixJMaRm1dXA0rkwaGSSRhycn/AhXVYM7z2PXr0Ytct42O841KbkNF1dAW9NRK9ciBq6Nxx4Iio1rR1G7s9v93I4fnfN3DVQH4ZBhdA9q8WrefGW98Lomi8CryPvh8lw4GCG9lV8tSz2AZ2zWpOXHSw9pcox34lEv/gP1ImXBh6jXyc+Hv+OM36DYHp3g4WGGxsXlQcc1CYfzdfMW2MvT3PreW716exlCnFs6cCTUNc8Bit+hOwu0HdA3CBPdeyFcOjvYPJz6Psua1548MmoPtvb2zoOQ7bNgHWxZXPTBxvbFP2wEHrH/Uvi6tUGN7U5ehfzdm6zf3ykueLg1iUGWQNyPnoRvWQJ7H88qv9ODOvjPZamdujVSVKMDAq6RgMbz/yX/3SOzNTo/7bnuKQqCQMLIBzR/Hu65qWZmslzYsur6uGEx1wW3e4Efi5cV/PabPh4oaZvd7hwX0WXjM77fIqfF9v2yG9QaHsYP1Ax/1aHQTf6v3Pc3euuZfThI3EO+g07F0JuysmwZBgFWQVwu7lNcagXWW4t34YG+V7PylJ/2zWvfVJrMFqcgCAhmmn0DkbTy+bFDQ7bGgQN+mrp4CGK8QPhk4X2Op8ugopaTdfMjnnENgTcx1nvUT9ogPXcomiDcku+efcs/339bi+HjbUuv3/OPIi5azR7bt/8MY633SuplBBaIYQQQgghhBBCCCG2JusaVhuXh0ihZ6rXBVlCCNE+Cg2hZgBr62O3X7ZtWqEhVCw7ZL7YpSOD0Wzj7xLqRlYop51HI4QQQgghhPg5UViC0fB/3a/wr8oSjJZjORYVQkR1oukRooNdAzQ9oxcB3vKo/+ymOpsdp5Qa6HM9Tb2gta7zN0QhhBBCCCF+2ZRSqL4DUDsM9R+KBgkHozWQaly+53YwqLfPSaZunBNhk58LNqgW9OTnAoWiqQtvR13/VKvWKZKse2wo1/D6H3w3v2rDA+aC6o3WNrqhHv3q477X4ctJl6FOvBQ1fDRq8Kg2DUXbTF31j7h19Ek7o8NhwB5QU5RiTjjSD1+b8NiSwRpCgUbX16LXrURfuA/6oT/CK4+hb/od+s7z0Fqjy0rQF4yLlr02AX372eg///anx6KzSE9V7FrYwF6FVXSjCl1TueXf6sXom0//qe6OjYvpFTakeXnIm/4/tNYMzS41ls9bG3zCfaVjuZhqzTJ0hXk9rXX1i/6+VPEbBNO7m/kzLJFgtAfedznwPvv4tmtYxsyle3NU1dvxO0vLQF10ByozG7XzbqhtdowbiraZyuqCOvYC1IOT4aDfwMj9o33d8M+4bYeOH25cviK1PxWGILxVKcm50+iIxHZPPGWmKY7f3V7+0Ica3cpUDuu26asp6Cf/gj5vDHrWVMbuCCk+X5P981o1pDZ3+miHSZf4/yohc1MGZU/L5qKkklY/D365rubg+13Oe9ocitbU/2YEH9Np/9Sc8JjL3z/QXPOyZrdbXNZVbOknEnQjK0QAtkMtv0Gh7WWnAsXc039gbM1nzZb3aSxieN33P/37dcUk3tZXctXloxl7wcmMHqDIy1ao9AzU4FF07b8NaZbbPZWk9GJ61t5oy53rTFaW+atn21w5StElw1xWKd96iSDiBKOxbF77jKONeX0i+tzl5aDB3hXrwzBpdsd99m6oCrbuEvM1TkACwWibgprLa8zl3QOeorh4P/v2dEVp7D5OvGC04o6bKySEEEIIIYQQQgghhEjA2vpVxuU90woJKcsXNkII0Y4KDKFmAMWNRbh6y3THOreW8vAGcx/psRcv5YS6GutWRyrb7VqXlmzBaLbHQAghhBBCCCH8CqmQcbmrJRitLdhCt7Mtx6JCiCgJRvuZUUqdppQKdAsWpdR5wE0tFk/UWi+3tdFaLwT+3WRRGjBRKWWZBgJKqWOAM5ssagBuDjJWIYQQQgghRAJ69oHM7MDNGlSacfku/QLMtI93IqwmsYsF9FsTcY/dHn3bWf4a9OqLeupL1O+uRqXIxVmdSm5+zCIHzVUb7ovbdEzN56Q0y+zeQl9yAHpx84A1vWAW7vlj0Qd3hy+nJDZekwNPQl1yV/L680kphXrOR4jct58AsE2uuXhB+s7mgtkfoxvizG5uQ7awD/XQVeiDuqNP2BGKljYvfPc/8ONseG0CLF/QvOzTN2D2tLYZbAL0nK9wz9kbfXB39KE9Y/+dPKRZfQWMrv0y0DpyV38LH7zAgOkTjOUlGyPW0B5b0EeVLRgNYLH/UEO/GsKa+97z9znhNwimnyWEav7aYJ9HxRWa61/1bvP5sn0Z3LDAsw4ASqGu/DuqoF+gMcR0s/t+ODc9jfPAu6jfXoUKmb+oamr4yG2tZXPTBsUsK0rt06oxbjZ6QNsk9xw8xN7vsg3w9PRWBqNZtk2hzRdV1lSiJ95BXrZi35389dnZg9EAjtpFUfaAw5gB3vUy3Fp2+F0P3PHp9Lx6H2OdxghsrG2DQW6yslTzm8ddnPMjpFzoMu1Hf+1mLQ/22nj7e81/v2reZsn6aADfd6s0Y/4aIfNilyF/jvDqNxKQJpLPFprjNyi0rWmt0c/fjzs+nZ2u25Npyw8mPC/rp38rFu3IN0v3+unfy2fXc9gTD6L2P87Yn1KKXrbAxVAv1ocChIfjP6TH9jgrBTnp5s+c6o7bhRZbo3CcYLTl89HxQue3Al6nfvwGow3tE7/iCwkEnSbL+qpg9Us86gd9yheuix47WYPRsoL1B3DMLublf3ldk3mxy263RPhgXvTxjrfdq5TtohBCCCGEEEIIIYQQWxVbCE+hhPAIIToJWyhYWDdS2ljy0+/Flu0ZQEFqbB+2YLRG3UCD7pgvPNY2mMMqJRhNCCGEEEII0VqOJW7ItczVE61THTHfTdV2LCqEiJLZ4D8/5wCPK6VeBF4Apmqtq00VlVKjgOuBY1sUrQb+5GNdN21qu3lq9RjgfaXUuVrr+U3Wkw6cD/ytRfu/eYWvCSGEEEIIIZJDhULoPQ+Gaa8FalfvpBuXp6cG6MTPTM5wI6SaQ9hM9NRX0X+9wF/lgbuizv4T7LoPKqeb73WIdpQXG4wGcETlO/ytx5WeTX9f+qhnuT5zJLxZhOrWA11Wgj53dMLDNDr9WtTYI2HwKJTfmdxJpvoNhD/ch37Q47H67jMYuf+mSeSxk8TXphSyPtSDnhHDnRF//AaG7Z28AXtwXc30JTBjuUZr+KHIXM8WhreZfvcZeMX82tAzp6JGHdjaobaKXrMM3vsf+ok/B247pmY6r3c5ylfdbpFyUoigbz6dvMy9YbtrYurUuyGqasKYThF2y4TKuth+Kz2D0b6H3cxBSIn6zxf+gw38BsEMseR6zVsTfR06PhPWXpqlqWu0l+9R+zX5kRJ7hU3U2X+GX52KKrQHlLWl/nmQkw5Vhmv35mQMZe+6r5stK0rpnZT1jmmjYLST91Bc/Ky2BtmcNVFzwkhNtiXMJp6IpV+HJvs830xD19UwsCCDD+bHfw33z+uYz5CgumUppl7t8MlCWLBOc/MbmnUtgoV+U/ESOZtOR+dHiq19lVTGD+ioqdd8sgiKyjUHDFJs2yP+4xRxNSdPcJm+JG7VGLNXBqv/78/Nz+3T0zUPfah/2obOXwvHP+oy7Y8O4wduHc+1iIZ6RdxoKFbExf6zjh7yRLRHnYT60XHbzi0yvwY7aLc01osPoR++1ldVdceLqPFHx62X3wVWl8cuL0npSZqOEy7VQnFl9HmOtx9vC3NyFORYgmQr6yQMUQTQGOe1W1sNxSuhg/YVk8XrXeF3szXMx9yOKXOhrFqTm93+G8Ogwa8bPILRbI/Xdj2iYb8thV34cZ19DN0ygz8e2+SZzyFsXt+3q+CIh1y+ut4xHks0JYGRQgghhBBCCCGEEEJsXWzBaAVp27TzSIQQwiw/zX5jx7UNq+iZVrjpZ/P2LFWlkZfaM2Z5Top9MnpVpIJ0x/IlcRsqbjBfSFko22QhhBBCCCFEKzkqZFzu6q3/Zq6dUXXEfFfnnFCXdh6JEFsXCUb7ecoETt/0z1VKLQSWARuBCNAD2AUoMLQtBQ7TWq+NtxKt9Sql1HHAZGBzisFYYK5SaiawBOgG7A70atH8TeDGYH+WEEIIIYQQIlHqV6ehAwajNShzWFma+ZyXmZ8TYY31voPR9Ia16BtP9r169dQXHRZYJXwq3A5yukNV84SDHHPG90+eKjqfkypfjt//5GfRJ16KPjrJF4GMPxrnvJsxewduAAAgAElEQVST22eijr8YKkrhX7cZi3V9LQoYZr8WiDnpg9m35tPYguXz2yUYrSGsOfVJl5dmxa/brzFOcs3UV+2hjP+9Dy64NfgAk0R/9DL6trOhwZA45sPIOh8P0CY9IqU//ZwXKbPWKy3agOkUUY45G5NaJxONObxAz/0KxSW+xxjPbW+5/HmS/2ARn3lmDOltnuBf0wDLS2H72GvejP73tffYzij/T9w+1N/fQyU5TC4opRRD+8CXS2PL5qQNjllWHDIHWga1e/+kdBOja6Zi3i0OO99o3wd55gvNhfsmtn9g27w0C0YDKCumX56/P7J394SG0iFSQor9B8H+gxTnjHW586wHeSrlWDLcOo6oeps7i7ec8u0VXm/tp6QKBprOTm+ydqPmVw+6fLvpprchR/P02YpT9vROQHznBxIKRYNo0IhfVXWaF2eatwGrLJvcfe9xqXnYISPV32tPxwvGarNArs11dMJtE1l/bFsf60/W42FoawvD2hr4DQptS3rFj+iH/uiv8pjDfYWiAfSyfO9fEupJN9d8sYBNfTgaCtolznXrtqBNpez7S/ECgoRoJuyRtLvZsnlbfzCax3bV72mbgfkwvC98b56/AkBjBF79RnP2uPY/FxS27Cf27gZrNsYuL66wPyi2bc/OhdF9DdO6Zq/U1FpeTvECaU365cav0xCGZ7/UEowmhBBCCCGEEEIIIcTPiNbaGoxWmObjDhZCCNEOMpxMclN6Uma4NmVdw2qGMWrTz6uM7fPT+hgDALI9JqNXRyrpkZqc66b8qnfrKA2bb8yZL9tkIYQQQgghRCs5mC86dom080h+/sK6kTrXfOdTr2NRIYQEo/0SOMDOm/7F8wFwptbafNbPQGs9VSl1LDCRLeFnChi16Z/Jf4HztNbyiSiEEEIIIUR7GXNE4Cb1tmC0IEeStvSQphob4lbRa5ejn7oV3n3G33oLt0U9/omEom0FVCiEHn80vPN0s+U7NCwlpMNEVOwLrujUz8m/IX7gEIBe+B3qIx8BagGpS+9Jep+JUkqhzr4R1xKMRiR6+F3YLToZurwmtsqK1NjwnggOf/8qj3cWRNv/fn+HX+9mfk+9P1fzt/dcqurgsGGKKw5SZKVH606eo3l0qsucouhk+IEF0b6OGLGlr/99rX2FogEMr/vBu0KpR9Z7r/a5GEg3NsCkCegHr9qy0BAAGNSw+rm+6+Y1CUbLjdjXu77SvJ22BX1EVAqNpJKGYcb9e8+j/+9RVEYCs+5beHGGDhSKBv6DYAb3tpfNKfIXjLaqTPPJQnv5uC4rOWfev+wVDjwJddPTneZzakgfxZdLYx/vObudCZOvabZsXUrrL/AbMwDf4VCJGFigmHiW4sx/mV9DL83UXLiv//5qGzSPf6x5cYZmrSV3x2kZBlu+nn65/oLReuX4H0tnoBd9h775dELL5vEn4E9ca6yXravJcGupczJjykoqvddxy5v6p1A0iIZVnTVRc+QITZcM+2snXmChl3Lz94xGb36X2HqyLnEp7OovzEuIRPkNCm0resUC9O9G+Ks8YDjq9hd9992riznctCSlFymNYd/9bFZckXgwmqPsbSsTy8AVv1R+gtHWrmj7cbQxz2A0n30opbjreIcTH3c9g7bOfVpz9rhAw0sK2+d33+7mYLQfi+192U6npadEj6nnrYkt+2qZvb942zqTQYXmbW5L90yOX6c6/qk/IYQQQgghhBBCCCFEJ1Ee3kC9Nn/ZUSAhPEKITqQgra8xGG1tkzA0W9CjbXuW5WSjcNAtb5AIVEWC3awrGYobiqxlElYphBBCCCGEaC1TYDSA23JuhGi16oh9AkVOqGs7jkSIrU8nuG+8SLIHgeeA5T7rVwOvAgdprQ8KEoq2mdb6bWAY8BhQ5lH1C+AErfVvtdbVQdcjhBBCCCGESJxSCvWm/QtykwZLMFp6kGA0r5mvm8UJRtNlxejzx/kPRTvkt6h/fY3KK/BXX3Q4NWJMzLLu7kYOrXovZvkxu0BBxHwHPKNpr6Bff7I1w4uh3ixC9d4uqX0mxZjDzcs3nZBWSrFdD3OVd7IP5bUuRzM1azylTi4AlxY+wB/XHMGH8+HD+XDcoy5nT3SZNFszeY5mZammrFpzw6suhzzgMnkOfLYYbpykOWti9L3/5neaIx9yef1bWFwCS9bD5Dlw1D9cXvtmy/bhpZn+AmZyIpX0D6/0ruQVyNij0Nd6Wks/el3zUDRodSgaQK/IevJT4qQJbZIX2XKKJte1n67ZEMk2LrcFowHUGkKONtMXtD6BoLhC85sJwb9IaRkEo8ON6CVz0PNmoL+fjp7xAbqilC4Ziv4Z5sdxblH0tbihSvPZIs20BZoNVbGvzxdm2F+zVx+ieK//I6RiDmhRtzzXqULRAIb1MS+fU94F9a8ZP/2ugeKUXsa6J230H2xz+UFtf1r6hN3tj+/UBdHXmV9/+J/myhc005fY6zgtL4gsK6ZfbvznWCnosRUFo+mVC9Fn7QHL5sWtq4hut0xKKr0f/8emxZY3hGHKHHub2gbdumA0Q3Cojdc2IJ61FVBcCRuqo+usqIPqeqhrjP6NEoomWivVfI1C0unqCvTiH9AbN2xZtmGt/1C07K6op75Epfg/wOxluSFaSagX1U7wjWmxj90q2yGto+z7S1UegU1CxPATFl8c+OvbTsfrkzPIbvFhwxTf3+Rwx7Hejf42pf0/UG2f4cP6msdaVA5l1eZHxiuUcYgl6Hn2CvujnJlqLbI6dGjwNjbV9aD9nCMUQgghhBBCCCGEEEJ0OFuIEEgwmhCicylM28a4vOl2bG29eZtma+uoENkh83fP1R0QjGbbJqeoFHqktv7mlkIIIYQQQohfNscSN+QSaeeR/Px5hW1nSzCaEJ6CTGcXWwGt9atEg85QSnUHhgL9gAIgi2gYXjnRALN5wHda61Z/Mmmti4GLlFJ/AMYC2wKFRIPXVgPfaK2XtnY9QgghhBBCiMSpbj3goffRd18EKxdCahocfga88ww0xN7l0RaMlhbkSNIroGizxjizxt+cCGXF8fvJzEb94T7UEWf6GZnoTLY3z7adWHQuJw+bzIeNwwA4aDBMON2BqQECptIy4JtpyRgl7DgC9Zdnou+lzsixpGC4Ww77++XCbEOu2AvdTuSFbif+9PslpY/yz+5nxNSb+Llm4ufxJzO/OFNz2SLN/e+51snh17/qcsyuDkop5q6J2yUAu9XNplVRUg1tn1KhVy+GF//RNp0fcALDcrL4cGH8qj0iW0JK0nUDWW41NU5sCFql5QR6Toa97xoni26u5aT8kjnooqWoPtvHH6SB1prCqxMLMWgajKbnfIm+7SxYtTh2HSPGMqTsalbkHBpTNue71dwf6stVLzZ/nd91vOLqQ9RPYWa28KVhfeDuExzc20vNgzz4FNT+x/v8i9rP0D4KU1zF2gpY0nUY24/cH2Z+RJmTS6Nl/+CK0r+zY9dqHsw4k2rLWy0tBW44XHHcbkkcvEVWuuKpMxTn/Dv273I1vPKN5sJ9429Rvl2pefKT+Nu92GC0EkbuHn+cPXMg1DLVrxPTj98YqH6v8HpWpvaLWV5SZW/j2pJAiH6+HD/S/Hi98wOEW5GBUuYzGK0hrHnXI6BNiI62V2IfwYHoN/6JfuS6aPBrSiqccxPseTD6nL38dXDACaj/exQVCpbiZg1GS+lFQXidsey0vRUvzNDUG/JKWxOMphR0sewvVcYeXgthF44fjMa6OOHQWwGvTKygecHb9VRc+yvFQYM1e95h/vB/6EPNVYcE67e1bMe+I8zzagCYUwTjBsYutz1cjoKBBeZ99x/Nm0EgsWC09FTFuB3h00XB27bk6mg4mtdxphBCCCGEEEIIIYQQonOwhfB0DXUnyxIWJIQQHcEW1rh203bM1RGKG803lC5Is9xFkuiEdNOE9aqIvxuaJpNtm9wrtQ+Oaqe7pgkhhBBCCCF+thxlCUbTcqfvZPM6prQFdAshoiQY7WdMa10OfNbO62wAPmrPdQohhBBCCCH8U7uOh6e/gfISyMhG5XRDX/UQ+ozdYencZnUbVLqxj/QgR5J+ToQ1ek8C1t99GrcLddm9cOyFqJQEZnqKjrf9YOPiPLeMKfPHU/zKRtJSIC87OltaV5b573vjhvh1AJRC/ec76NkHMrNh7XKorojO3nYj0L0n5Pf7KRSpU7IFS0SaBKPlmSdQt/Rw3kWtHs74u73f//PXwverYWC+Zsl6f30eXfVm6wZVFeC1kyD93/sTazjuSNSZNxgKFGRmQbeeqG49GPK8y4cL4z+HeZGymN9NwWg22Wn210qNyvRu/PEkOPly3+tq6tkv4/9tNqFN38nouhr0zafDmmXmit99xuD8I3jXEIz2zKI+PLModgzXvKzZewfF+IGwpETztaXr3+yxaRtRaQlG69Ld82/oKMM8bup8zMMu3x9wInrmR6xLsd9ptCC8jlvmX8zV75xJo3bIy4Z1FbChCgb0gtIayM2C7PT2246eOUZx5zuaRYZ81Zdmai7cN34fT37q7zXptHy/lJeQk6H485GKW96099FrK/oOS1dXwLRXA7XpFSkxLi+usD8mpdX2/rLMuXxANHDTy+3HKs4YrXhvruasibHrL6+JhjPG+6xfWQp1jZ5VhOgww/vCUSPadjur534dDdveLNyIfvxP8PiffLVXD7yLGrl/QuvOtwWjhXpSbdnPycmItltp2A0sqdQQJ3bXK5wox3zITFXbZ/GKn5M450QAKF7V9uNoY157VIlutUZuC327w2pDdvqK0uh7vFeX9tv3tGW79s9TdM3QVBhCE5es14wbGDtGW8iao6B/nrnMK+wx02MfysuRIxSfGo6PEnHDa5oHT+7E51SEEEIIIYQQQgghhBAArG0wn5O2BRAJIURHKUwz352mKrKRqkgFdZEawtp8gUeBpS1ATqgLpvvRmMLS2potGM0r2E0IIYQQQggh/HIwz0NzW940XrRateWYMsPJIkXJfFghvEgwmhBCCCGEEEL8wqiU1Gj40+bflYInpqMP6tasXoPlpEpakJuMNQlksgrHSZZYMse7fPAo1ImX+h+T6HRUVhf7JOmGegrWfoPaefefFulVi5I/iEN+i+q/05bfe2+X/HW0Ncfy5nS3vA9tE6g7ygszNCeOVGgf86yz3SpO2fhC61ZY0bbBaHrZPJj0RLBG2+6MOvUaOPS3voL3hvm8pikv0jyYKzdSxqpU+wVdLWVn2MtqnCzPtvqHLxION/j7B4lPui+rAR2JwPv/s4eibTK0fl7g/id8rBk/UPH+PPsYtwSjGdIZALp2sjfhJr27QfesaDBUS3PXQMXo4+nS7UbWNdqD0fI3BWB1ffACnBueBKBP9+g/gCxLeExbUkpx0ijFHW/HPmdTF0TDufK7er9aX5/tMxitRRis3rAGBfzlaIcvlkSYMtfczhby0xnpM0cFbtMrbA5GK/l6JvxmT2PZizPtj3mG5Tu/l2dqfjRdlbrJO39wOHRo9Lke3BtM8Syujm5H8uJkSJZUeZcL4Zejov9CTvRf3J8VOJv+b1knOx322UnxhwMU3bLaLnRGN9SjLxiXWOM+26PueAk1YFjC6++VYw5uLQn1pNIxJ01mp0F+V3MwmleI0Gaux7UdXTLM46k0hB8JYRX2EYy2+Ht0uHGrDoP3OuZLNH9cKcVv9lDc956587++q/nbie0XxGULMws5sH1P+NYwl3ClJU/Z3peiv8/A86YyE3zp9Evi4ct/v9I8eHLy+hNCCCGEEEIIIYQQQrQNewiPBKMJITqXgnT7tXDrGoqojdgv8Mj3CBbLCXU1Lu9cwWj+rwMUQgghhBBCCBtHOcblrvYxH1QEUhUxX7ScE9qKJpQI0UEkGE0IIYQQQgghBCo9A33gSfDBltChBpVmrJseZDKl9nGHgFrzxQdaa3jub1BsvgvlZurSewMMSHRW6p5J6D8eYyzT91+Oeuzj6M9awydvJHflO+2GuvD25PbZESwnpJu+D5M5qTkZ7nhbs3xD/HqZbg2Pr7mEwohH6o0f1RXocBiVktxTYrq+Dv34DfDiP/w3SklFXX4/6pjzAq1rWF9/k+BbBqP1ipjDiWxyPEKsalWmd+PqjYHWtdmSEs2M5Qk1BWDRlE/Qtx7iq+7g+vmB+588J/q4f2++3oxd+8GO+ZuCFyrMCQeqS/fA620PSin23A5reNcbi7vyu+smUHzvq8bybpFyMnR99Jd3n0GfcgVqh6FtM9iAThxpDkZzNZz3tMuk3wdJfLVTLe+KtGzLa+y/5zkUXu3SaPh+cES/9gvraA29fD6sDf4G7RlZb1xeUlSKXjLH+Dq57PngwWhXvWjf55xyucNBQ7Y8zr27Wasyfy2MGWAvByhu/+tc24xjCNgKGsiVeFsVU9/x2U9yxhK7/mQElPlt6yh8BaJ2NvqqIxNqp+5/GzXqwFavv5flu/96J4N1KQXGspzaEvK79DSW+QpGs2ySHMe+v1QfhsawJjVl63uORQdo9BGMVlkG30yDPQ5q+/G0Ec9gtFb0e8ex9mC0+9/T3HC4Ji+7fd6LEdv2QkWPxY3BaJbsbq+QtX65wcdm24eKp19u8BA2m/USLiuEEEIIIYQQQgghxFZhbYP5Wj0J4RFCdDbdQrlkOJnUubUxZesaVlEbMdwhEshN6UmGY7/+zRaMVt3OwWiudiWsUgghhBBCCNGmrMFoLedGiFazHVNmW45BhRBbSDCaEEIIIYQQQogop3kwSL0yz/JOM+SH6OoKmPoqZGTBbvug8jZNSvea+bq57b2/R/3r6+jPGzfAV+9BQz16/gx4bYJ343FHwrC9465DbAVGeUzwXvjtlp9L10F5sIAno+2HoH5zOfTdAYbuhUo1BwFuVUKWcJ8mM6r7dU/OhOZkevZL+5gmFF1Ed7ec0bVf0ju8NjkrLFkFvbdLSld6xY8w80P0fX/wVV9dcBt07wmZOTBsL1RB/8DrHNrbX70eLYLR+jVa0rwssj3eEjUeF4YBULQ00Lo2e2FG616fB859xHfdIQ3zAve/vgoawpo5q83jHLVdk8CFynJzJ107WTphE5cd6DBlrvkLrBdmaE79/ZEUl+0Dr8eWF4SLm/2uz9gdJm9AZeW0xVCNtNbR9+OHL0E4jDrkFBi5PyO2gYH5sLA4ts0b38GfJ7n0z4P9d1ZkpsF7czXrKqLP5/47Q4nPAAen5Zd/S7ekzOVmKy49IDa0Iz0FzhzT+UNz9OxP0H+7NKG2vSzBaBtCPdFT/ou68LZmy+sbtTUIBKAhHLusuEKzwpxFSH4X2G/n5su2yYUuGVBZF1t/TpFmzADv56S4Mti26qL9FEP7RLerzYPIVIcEcm1uq7bSYC7RcfTcr2H2x8EbHn1OUkLRIPqetlmaup1xedbkp+i139VA7L5yiY9gNNs73lHRbYlNVT3kyrewwg8/wWgA82Zu3cFoHmWt+ThKS1GM3gGmLzGX732ny4+3JScINx6vMLNtLAFjq0rNj4xXX/0DHlKkOJASSuxB7mzh6kIIIYQQQgghhBBCiLZV59ZSHjbf4bBQQniEEJ2MUoqCtG1YXrcwpmxt/SrqXHMwWrxQMduk9KqIjy+Yk6g8vIGGzTeqbEG2yUIIIYQQQohkcLAEo2kJRku2KkswWk7I4+JoIQQgwWhCCCGEEEIIITZrEarUoMypOGktjiT1vBnoKw+Hqo3RBXkFcNv/UMNHgxuJv95F36HDjbBsPvqqI6HUZ/jR8Rejzr5RAh1+JlRKCjp/Gyg23HW0oQ4992vUkD3go5eSs74LbkWNPTIpfXUajmWyd5P3Yf+ujUBq+4ynlU6oeJmzN/476f3qs/aA11eh0szhj777efc/6LsuhHCjr/rqn1+hBu7SqnUCdMtS9MuFlWXe9XIjzSts02i+o69NaggyUqHO8OfVqCzvxmuWoetqUBlx6rXw9vf2uISR28LyDTB+IGyshQ/nx9YZU/uF73V1cavYp/pjPs7eJ9AYv1wK36w0lw3rE/1flxVDuSGFC6BL90Dra0+HD1dskwurDK+t9+ZGQ+HWNeZgCnTIj8T+vfrQHvDKElSvtr8QT7su+voT4LO3tix752nY7zjUX/7DiaMUd7xtfn3d9tbm5S3LNYcNNb8HTJyWX/6tL0JXlqG65AJw57GK7HT4zxeatRthr+3hL0c77Nqv8+7HaK3Rd5wL7/4n4T7yIuaNVVmoO3zxLrQIRjO9/pqqNlzvOafIXv/w4SomCESpaFDZF4YAFa++NisOcJ3r9Gsd9tqh8z7HQgShn7s3eKNdxqOueDBpY+jl8d1/peXi9JyNq+hVOh8YGlNW4iPo0LVc26HwEYyWHbd78Qunw43oJ27yV3fZPLbmTxSv3PzWntY5chfF9CXmFSwqhsXFmgH5bf/oeYWZ2QLGbMd1Xn11y1LsVAA/rvM3rsxW5MD36ZZ4WyGEEEIIIYQQQgghROv8UDWDGZWftOs669xaa1lB2jbtOBIhhPCnIK2vMRhtVuVnRDBfvxwvGM02Kb0qbJ7EHsTGcClfVXxMUf1ydMubMAZYX7y/QQghhBBCCCH8cJR5HtrKusVMXHN/O4/GnxSVyvYZOzOq63jSHY8LeTvQ+oa1zKj8hLUNq9k8T2Vp7QJjXVs4txBiCwlGE0IIIYQQQggR1SJUqd4SjJaesmUyqY5E0LefvSUUDaB0HfqhP6ImfGqfRd5S0RL0Q1f7D0U76TKcS+/xV1dsNdSf/om+7BBjmb5gHHxch37wquSsbO9fJaefzsRHMFrv7DAhrYiozn9KaEj9vLbpuLoCPnsT9j8+oea6ohR998Uw7VXfbdS/Z6F2iA3jSNTwvvGD0XpESpv93i8cLBhNvf0vskInU0fsFwW1TqZ3Y61h2TwYNNL3+sIRzawV5rK/Hqf4v8O23IlmcbHm4PtdljW5SfHtxTfSO+zzM2STO4tvZOz20wK1Of9pl42W64CH941+PuqrjoKIJRg0v1+g9bW35893GHdX7Gd3fRiG3uSSZwl4KQibg+D0cTvApBWovIJkDjPa98YN6Ak3wuxPYMWP5kpTX4Fpr3LiyOOtwWhe3p3jv65julhx6VwYMRaA1BTFzUcrbj468DA6zhfvJhaKtu+xUFcNX04hr8W2aLPSUC4snodubEClbtnnjLdtq6yLfR5/KLI/t3870RyCsnOB4gtDgMrajYbKLZT4DEY7e5ySUDTxs6Ary9EPXgnTXgvW8Mizca55NKlj6ZIRDepuCPtvk+NW0Wvl15iC0fwEHdq2MI4DOR45u5V1voYnfuk+ecN/3WVtdHzUCbT20/LCfRQ3vGrfH7j6RZdXL7EcLydAf/Mx+tl7oufChuyJOu9mVGa2PcxM2QPGNlSbl3sFowGcMNIe/NtSZiuy0VNTkrsvE3E1IUf2j4QQQgghhBBCCCGE8GNtwyq+qgh2TUNbSVGp5KX27OhhCCFEjEJLQFhpuMSjjXfQY45lUnp1pHXBaMUNa3hg5Z8oD2+IX9lD11AumSG5S5cQQgghhBCi9Rwc4/KNkbJOc17K5PON7zN94wf8vt9NZMSb39TOVtQt4u8r/0KNW+Wrvi2cWwixReefBSuEEEIIIYQQon20CFVqsASjpTU9kvxmGiw3JNbP+xq9bgX2aeQtVFXArKn+6gLquAt91xVbD7Xbvp6vGH3jKd4djD0CPnsr/npeX4kKJW9SdKfhmE9INw0oTKGRvuESVqT2D9z9/62/h+IRR9I9SzG1vB977JRBWnoK/fPguN0UPXLg4PtdZi5P9A9o7tCq95LTkYG+7SxIS4fC7WD7ISjbYwfoxgb4cTaUl0DVxmjbIM64PqmhaACHDFW8/YP39rUgvK7Z79s0BgtGc9YuJzN3A6TGXjxWq3x8cfDVe4GC0eatgZoGc9kBg5pPnB+Qr/j6qjpeen8tRRsdDnn5dEbXfuV7Xex/POqQU9h70fc88vKlXNz7Id9NF6wzL++aAaMHgH7/f7BwtrlSr76wwzD/4+wAo7aFFAfChiCGxSXRfyb5HhcT6jNGwkuLUOnB78aj62th7tewbgWkZ0Lapj5SUtFXH+Wvj+f+xognjqdrBlS0YUhNvGC0zkY31MPqxdHPiB2GolTz95mur0M/fmNCfatfnQZ7HgyfvUX3mRvBsKu4MdSdSMSlfsliZjuDGFgABV0VK0u9t21V9bHL5hSZ6+65HeRmm4M38i03ViqpjL/vagtG2zEfTt5D0RiB8QMVv+rcb3ch4tLhMCz+Dn3u6MBt1c3PJhxC69mvUuR3gVVxQhSbynZryF/+BRSeGVNW7OO6ddc1bxcU0aA2G9P2SoiW9Cev+6+8bC66oR6V5pHI1wnV1Gu+XgafGwJJkyU3WzHlcodDHjCniU36Fh78wOWsMYquma0L5dLzZqCvOGxLEPKcL9Fzv4JHp2HZXBByIDdLYTpHVl5jbhMvGG2E93ydZjLNp/c6RG0D5HTOm3QKIYQQQgghhBBCCCE85Kf2wVE/w2uthBBbvYI4IWfmNuYwtc2yLcFoVZFKtNYx19j49V7pK60ORQMoSOvT6j6EEEIIIYQQAtiqz/csqZvPrMrPGNPtoI4eSjNvrn/edyga2I9BhRBbSDCaEEIIIYQQQoioUPNgIFswWnqTI0n9xj/t/a1ZDlUbfa1af/62r3oA6q8vo/oO8F1fbGX2PRamvWousy3fRI09Eu0VjJbTHXXHi6jc/FYMsBOzBqNFtvwcDjO+5lOe7fZbazcKF93krh871y/g30XnMKpuFnxw05aKn4C6/x3UqAN+WvTuHxz6XeNS12juOyfdX0jEgIbF7Fn3dfyKiWqoR1+7KaxjwHC46xVUQWxYnJ7zFfr6E6DUkoYVz++uRp31p1YM1OzEkYorXtBoj2yBXpH1zX7vFzQYDZcs1zxLv8bJittef/oG6vRrfdiUhNIAACAASURBVK9v5grzH5MaguEtrkXTH08i97azOK+22nf/QPQ9MvZI1DWPobK7wrijOG/WoTxd+gVfZO0drK8Wfr2bIiNV4b7wd2sddfzFnT6UMS1FsXOhPWjKJj9SbC8sL4F3noZfnx+oT/3xJPQNJwUbiMmCWej7LmPmDQ8wMLGcL18cHZteoZfMoXXRG21DL52L/supsGROdMGIsXDrf1F5BdHyH2ejz9nLX2f7HgtzvoT1RdAlF3X2n1Bjj4iW7ff/7N13eBtVugbw9xs1y73EJY6dnpBeSAiEFEgIEFoKJIHQy3KpCT0ssMCyF7gsnSV0WOrSwtJZem8LJNRU0km105zYjps05/6huGqONJLl/v6eJ0+kc86c+WxLo5E08850dOqpgJutkz0eSTsXV93TCxX7AjznTBRkhrngUbFFuN2STdbbj5Hd9b993Xq22/gOslATnjZ1mOBvU/VBm0RtidqyLrANXvlL5Asfejxk4oyY11RtYG6kwWglcFT5LPt2aQKJ6tIFHRkCxIcIG1q9TWFUj9b4KkCtyocv2B9bVQms+hUYcEDT1RNjLy80ceaTSvv+sFqU547UM2mAoH/nQOCylcteUrjhDYUnzjAwY0T0K1Tz59WGolVb8h3MHz8HMM5yGYcBpGreQu2tBCp9Cm5n/Zp8mo1P9Ud3XdOtg9asxDXyiJB5kwW3vxebYLuyKgajERERERERERERtUXhQoSIiFpKThMEoyVqTkr3w4dyswxeR/hj56wsKf0xquUa4jaZiIiIiIhixSNt+2CuFaW/tqpgNFP5sXzvzxEtk+RIaaJqiNoPnqVDREREREREAUZtWIsJgU9clsPc+4YpXxXww0fa6dSTN9tf99O32homd70NGXOs/XmpzZEzrol+4YkzgO79rfsmnwZ5axNk+Pjo52/tDE3gUt1gNH8VLt1xP5L9waGFTkPhtQsN7LrgZ/y8ZiR+XjMSa1f2weI1wwOhaBbUZUfBPPdgqBU/AQAyEgU3DFpuObbg9zwUdToLjwz9JuyPckfBNSHDhOScGyFvbgCS08POFdbq36DuvDioWfl8UNefFHUomvx7NYzzb2mSIKzOqYJD+uj7E9wK8ZkZ9dryMyL7GNCAiXhVZtm31/CGn2D9iojWt3qbdfugXMDjqn00qF3boG46DYgkFK1bP8g7WyD/KYBx64JAKNo+xp9uxMNbL7Z8TkRixuYnoJZ8ByxbaD3AMIApf2rUOprL4C6RB0Vkdw79ZYy6aw7U3mLb86mt62MTilbt9UfRY0Y8/rfvotjN2YABi/CvdcuabH3RUNu3wHz4L1CnD68NRQOAX7+GmtoV5rxpMG85x34oGgC55lHIq2sgr62FvLkRMqP+9jQtxLGgc3PuQYVZu428/5NAYEkoDcM1lVJYoglAGRTiONDMROv2bTYepoWaMVlhQt2I2hJ1x4XRhaJ5EyB/ujH8uEaYOiyy16kEVYo0v3WSWoUPKKsMvd3R9RoGYBiCRI91/ymPxyZEiKiepd+3dAW2/bFDYfZj4UPRAEBikYwG4N25od/zFJcDsx4x8cqi6J6flZv/wEMbBuL03Cfw105/wSZnbk2f/2f9+1xD9MFoALDb4m2X3zpXFs6aYDQ7FQd4Q4Q42nHe+NiFPJZVxmwqIiIiIiIiIiIiakaDE0e2dAlERJay3V2Q4cq2PT7P0x2pzoyQYxId+gNASv17bK+rrnKzDEW+HVEt29AgbpOJiIiIiChGescPaOkSGmWvaeOq6M1oR1UhfMr6Ys46/eKHNlE1RO0Hg9GIiIiIiIgooE6oUqXoz5p0OwFVVho4Ub7Y+gRzAMCPn8WwOEBufgky6vCYzkmtj/QZGgg4i2bZhGTIA58AZ1wLZHQONB54BOQvT0KufQzidMaw0lbI0HzM468TjOarwvCKX/DF+sNw0c6HMHbvVzh47zc4q+hpfHRGAaYOEyQPPwCDhuVhUMVS5Ps2hQwoAwAsXwT1p4OgPn8d5oPXYN7z++OFjafi+D2v4dDSz3DZjnux9fd8ZPh3Ah+9hHNenIS3/5iqnW7BxtmYUvK2fn0OB3D06ZC0rNgFb/z3/UDgllJQfj+UUsDPnwPbNkU1nVz3BCQr8qtRRuLEA/R/mdJKgfzze+CUK4FDjwdOuxopT3yM5Agu5iJQ8Jp7reeXhNo7Ls3rxd5iqFL7B4Jt0ryc9Mps0PDpK0BlheVYHZk1B5KcXi8QraZvyMEYNG4wvlo3AeftegzH73kNtxf8GYUr7F9ZM82/E5Peuwzq/BDBiwcfA0lKjajuljJ7VBTBaGddBHgTQo5RM/oE9h8AKNMMhA/6fFBm/dQHZZpQM/tGXIMd17wxDgkob5K5LYPRfvwssD1pBdT65VBnjgD+dYd+0LfvAu89Z3/S7K6B114RSKdcy9fZ9NAPi4jtafDnK9gDFFlvqjAwV/9Y7pRo3be9BGH/ZoWaTVsmg9GonVB/rAB++Nje4NmXA0edDgwdB0w9F/LEd5Bu/Zq0vkP6RvY6lWiWIl0TjAYAO0sDz/tKn/Vz39SEE1VX0TCwsa69Fa3jNYBaJ1X3fZrdZdpQMNprPys0925Q1wzB8Pzw42Y9YuLlhSaqfAqmaa9IpRSm/aMKc3LuxfMps3Fz5rUY3f0LrHN1BQD4fvxSu6zDAFJDZEtHEozm2Pe2Pzu5NiQtHK/1dQ9s69FJcPes2ISjldkIyiMiIiIiIiIiIqLWpbd3IPZPGtPSZRARWTLEwAmZZ8Ep4Y8NdYsH0zLPCHvRnkRH8DFm1UqiDEYrrIzuOMSGBiWMxKCEETGZi4iIiIiIqHtcXxyUPLGly4hauWlx8F0L2hrhe79JadPQyW0/7Juoo2rnZwQTERERERGRbY7at4ihgtFc914E9dtT9cOWmtqQMZBDpjXf+qhFyfVPQX3ySnTLJqcHwrJiFZjVltQJN6zHrPNc9QeuPDGoYinuK7ii3jDpubL29vm3QH33QUSrV385seb2zOJXMbP4Ve3YyaUfYteKLByf9xI+TZgAAEj37cATW87HcSXvhFyPXPVQbejYlHOBuy+JqE4dde+lwOL/AoUbgbzewMZV0U106jzI5FNjUlMoJ+wvuOBf1ifxOw1AUjIg599Sr71ruh+LN9ubv5NvBxLMUsu+UiO+9k5ON2DDSstxKNwE9NAfKFbXxl3WP0uXtNoD0dQvX0Hdc6mt+eo57pyQ3TLvIQz4KB0PbK3/WOpXsRzLPeHDXaYXvwk3Qp/hL9c/Gb7OVuKYwcClkwT3fmQ/ySIn3QV5axPUqUOBreutBxXvAl55ACqvN9QNs+v33fYqZMwxgdvvPhtl5fYsXTkI04Z9hZ9Kc2I6r2iSP9T4OOCCW4HZl4c9sLIpqefvBnbH5sqzNQYeGHZIUlwgwEMX7hGprbsDwSTVv8s/durH7hfiO0JdiJnPDISTpMZb95umwnbNhaWyklru70sUK6q4COqUIbbHy7FnQbo2TZilTu/MwL6Oz+Z2JdEsgdfUh2J+vFzh8S8VvloVCHO8dbrg3HFSs53RvRoaNp7y20qAbh57dVIHtGNL5Mss+S72dTSRddvtjYv17tErFxjodW34DcRJjypUP8P/foLgyiMk5L7aJ8uB93Z2r9e22ZWL+9Ln4J6Cq+DfvRPQ7D84DCAlRDCaVchruGA0hyHo3glYVaift5pX/xGfbX2zBfoton3lDEYjIiIiIiIiIiKyLdfTDaNTDmux9TvFhR5xfTEiaRxcRiOvwEBE1ISGJR2Eea478WvJd9jhs/7yJNOVg6GJB6GzJ/xVduKMeBhwwETwMdLRBqPpTo53ihMHJB8Sdnm3eNDT2w/7J42BIZrjRImIiIiIiCJkiIFTcy7G0MQD8XvZb60uaKza1oqNWFu+Iqi9zK+5wnoL0YVie414DEsaXXM/3khEv4ShGBA/vLlKI2rTGIxGREREREREAXVClSpEf/a2e9m3zRuKBgSF+1D7Jk4X1OijgG/ftb/Q4Sc1XUFthS4YTdU5o9oX4ixkR+1BjNJ7CNT4qcAXb8SouGBJZgk++OMYLIwbgd1GMkaW/4hUc3fIZeTNDZC0rNr7Dgfw/GKokwc1vqC6YXwRhqLJdf8EPHHAfsMhuT0bX4sNnZIEo7oD368L7jtuqPUy+emwHYw2oGIpEpUuGC2x9k5WXuD3ZRUKtW0j0KO/rfVt3GXdnpcW+F9t3wJ12VG25qpLnlwYNoxKvAnA1Q9D/f38eu0X7noEc3PuCbuOmXvCBDl27QuJ16QwtUKGIbh7lmDORIWhN5koqQi/THYyIB4v8PKKQBCYhnr0euv2Px8P/OmvwOzLoZ64KbrCAVuhhl18m/H1wv2wsM+JWOvqjp15w3HZhsgfWw3pni8AoB66NrDtOuq0Rq/HLmWagdfRlb9A/fIlsPCT2K7A4YDMuCjsMBFBWjy0YWKRqvABt/5H4aIJQGq8YIMmGC3OpQ8/A0L3/bFTH4xWVKYPY8pqO09zameUUsCvXwOrfg1sB0cdHnUQY92g27DcHqBLr6jW0xgup6BPNrDMZqZUgrkXKSH2Mc98snYfZmcpcP5zCllJgmn7jjUwNTlAdn7Feyvt1UgdVIRB1ACAzWuh9ha3iX1Lu6/9iTEOD+zRSfDgKYILNSHSVq7+t8KjXyicNKr+EzvVC0zsF9jfmPag9Q7AW4nHBILRNq8DelvP7zACYbEi1m+brILRdPsb1cFoADAo12YwWgzOV3TH6PyaMgajERERERERERER2TYgYTgGJPDkSCIiO/LiuiMvrntM5hIRJDqSsMdfFNRX4i+Oas4CzcnxWa4uOC1nTlRzEhERERERxYIhBoYmHYihSeEvmt5Svi760DIYrdxsXcFoWys3WrZ3j+vL935EjWCEH0JEREREREQdgqP2LMdKcWuHeUwbCSkxJHe8ARk8OvxAaldkUGR/cxk3tYkqaUMcmjOV6wYZhgo1dNTPz5e/PAnMvDgGhekJgAPKF2HS3k9Dh6IdfUZQKFrNHPl9II9/23RFhiHn3AiZfApkwgnNFopWbd5k64/2pgy1TurIS7MfkjKgcjmSNAdyFdcNRouLB9KyrSdZv9zWupRS2BAmGA1vPwlURZYuIhfdBuk92N7gQ6YFAl7quHDXI2EX61a5HhNKPw89aMhYezW0Mj06CZ44w97Hx9nJgf9FBHLezVGtTz3+V6jDkoFt1gcChjT1XMj7OyDPL4bMuSPscDeqcPDK53DK0psx54MTULw8HZfvuBc9vNFd1TXRX4zB5YtDjlHvPB3V3NFQPh/UvKlQfz4+EDQX61C0YeMhd75le/8sNzW2q7/+DYWuV5v4YZ3Chl3WoSd5aQgZDJWfBrg0L5vLtuiDVLaGeKliMBq1BKUU1E2nQ118GNS9l0FdeRzUjadAhQrD1c21fQvw42f2Fzj4mEBIbQsY3cv+Pk2iWQKPqkS8qQ+wbGj+p7WJRKYmnMiwUUJp8751pjZGhQoCN0Lsg62zt4/d0gr32AsmG6cJE2uM88YLHjtdkJNsf5nV24Bb3lH1/l31isKIm01tKBoArHN3R4W4Yfr1P6/DCIQPp3it+4ssLrLp16zSWeehMbCLvW1hXAyC0bz6jwkjUsbASCIiIiIiIiIiIiIiagMSHNZfNJX6ozu2qEBzcnyOp0tU8xEREREREXUkXof1Vc/LWlkwmi4UO9vN935EjcFgNCIiIiIiIgowak9qrwgRjOZWzXcWo7y0HHLQ5GZbH7UiE0+IbPzYY5umjrZENB/zmHXC0EKFZDjrny0t3gQYc+8KhI4lpsSgwOgZ1zxqGYpWTfbbH3L1w81Y0T79RgAnX9H8691n+nDglAPrnwx/5EBg5gjrE+Tz0+3Nm+IvQrJZjCSzxLK/2KiT/uN0Abk9LMepr962tb7NRfrgkPy4Eph3XBgId4qEyw1MOdf2cElKg1wdHIS2dmUf9Khca7lMvFmKB7fOgRMhAgcByCFtN7hxkI3vX1K8QIKnzmNu5sVAVn7TFVWXNwFyz7swrpwPiU8MBLPNmguZe2dk06hy3F54LVb+mIM3p68JOfaGlLeQ5qndlooy8diWC+CCL/RK1i2LqKZoqYpyqKn5wHcfxH7yw2dDviiHcf+HkJGH2V4sPy38mEiVVACzHzVx+cvWISTh1ulY9TP6YINl37It+uVWFFi3iwBZEYSvEMXMxy8H/tX16b+hHv9r5HNtDr39qycrD3LODZGvI0Z0+zoNiTLhVYHEoTSLq3nrfLI8EDoHALqoo+pgtNMO0tfy1SqF6Q/4MfQmP2Y/amKTJsyROqjVv2m75NZXAgHEVtYubaKCGqe0QuHSl0z0u96P7n/240Mbuz5ZScCdM2N/uIKI4JyxBjbf6cADJ9sPUozW7+4+8Is+KLJ6e5GqC0bbG7xt0AWjOeoGo3W2V1+8u/G/g+H5sQlYK4s8t5OIiIiIiIiIiIiIiKjZJTqsr45XEnUw2mbLdp4cT0REREREFF6cYX08ZblZVnO8b2uwlcFoRE3C2dIFEBERERERUStRJxgt1b8bNxXehEpxoyKnN6oOnYXKRV+iYt0qJJvFzVPP4bMhmrAdav8kr7c2hCBo7CurIC59mF+HYWhOxK4bjOYPEdzjsP6YSPbbH3hxGfDhi1A/fQ588UYjimxCk08F/n5+069n2Hhgv+GQfiOACTMgDv0J8E1NRPDM2cC54wT/XaPQK1MwbTjgMDTBaDbDiaYVvwUASNAEo5UYCbV3HE5g5ERg8bfBA5cthFIKIqFPxF8aIoRov/tnAcs+DVtzkMNnQ+ITI1pEjpgNDDgA6tWHgFceAJRCvm8TFq4djVeTpmGZZz8oBH6WLr7NOK74HfSqsg5Nq9F/JHDA4ZHX30r0zgTcTqAyxKZjRLf698XjBV5aBjUhst+/HXLjM4DhgPr9Z0h6FjD2OOt9haNOB164B9hm/cVSKEffOgizjt+Kl5cFp1wNK/8F1y47GRc6UvFS8kzsFS+mF7+B3lU2woR2b4eqKId44iKuKRTlqwqErlWUAf0PgDpvLLBnZ0zXAQDyt+eBQ48P+3y2kpcu0EcLRW/Ndn1ffrq+TvXHCqhLjkD/1AexNDk4xG/lH3sBWD9+l2y2/jl6Zih4ln4NlZEDdOkV1e+JKBrq9cesO/51J9SkkyC9B9ufrFKTUgoAh82CzL4cWPgxkJIBjDkWkpYZWbExdJDNt4kJZimqn43p/p3Y5LJ/YMH8TxXmTBSYms1X9dP85AMFz/7XelDd8MbfNil8ukJh1S0GEuO4jejoVFkpsNl6P1Iuug0y5hio7v2B5YuCl123FK3tEaSUwoyHTby/JPzYFC9w2eGC3BRgylBBVnLT/jQXHGoAMHHR80138NNST39k+wq1/dVhZqnxAHYE9+8uC27za8qtG4zWLcPePlZiDHY/4z2C6cMFL3wfvL6DewHfrLY3T1nzXWuBiIiIiIiIiIiIiIgoaokO66vjlfojP37aVCYKtcFoeRHPR0RERERE1NF4NcFoCiYqVQU8EttzNKJR6i9GiX+3ZV8O3/sRNQqD0YiIiIiIiAgAIA5HzemU6eYuXLfj74E7XcbCOPEkmBteBr59vPnqufTuZlsXtU5y51tQVx4Xflx2cKhJh6QL6DLN2tu+Kv3yTpe2S1IygBkXQWZcFJjy1KHA+uXRVNlkxOmCOuAw4IePm24dj/8Xst/wJps/GiKC8X2B8X3DBwrk2wwnenDrHABAkiYYrdioc0VMhxNywCSop24JHlhWApQUAUmhE9mWbrGuqbO3HGk/RhiK5nQBE06AXHpPZMvtI3m9IXPvAubeBfXT51Bzj0CKuQdn7X4muvlufKZFw/May+UU5KcBq7fpx4zqEfzYE6cLmPcQ1O0XxK4Ytwc48AhIUhpk4oyQQyUxBbj5Jag7LwZW/hzxqp54rTuSsu/CE2ln1bT1rFyD5zedBif86OTfgYt2PRzxvNixGcjtGflyGmrTaqgbTwVW/BizOa3Ihf8HmXBC1MvbDWWMpcEhso/Ue/8CSvega8Iflv3b1m0B0Meyb6n1caoYuPEDqIunB+4cPhu46gGIN8F6MFGMqJLdwC9f6vvPGgl8ttf+65BPn1Yjl98HSU4HWsl+UEp84PVpw67Q4xJVac3tbF8BfoP9oLjb3lWYMxHQXUiuOof2yIH2Q50Ki4EnvwkErlEHt26Zvm/clMD/mmC0kMu2kG/XwFYoGgA8e46BY4c073PggkMNxLtNnPVU04SjLfYMxPi9X2n7Hft+3FSvdX+RRTCazx/cVncuAMhPt1dfUoyO+XrsNIHPD7zxi4JSwDGDgafPNpAUJ/jnVyZuekthwy6gZyd9gG1ZlQJaXbQfERERERERERERERFRfQmaYLQS/56I59rl24YqZf19fLbb/sW9iIiIiIiIOqo4TTAaAJSZe+ExWj4YraByk7Yv28NgNKLGMMIPISIiIiIiog7B0Jww7993NuY2TRJEUxh1eODEe+rYho4NP2b81Kavo63QPYfrBqPtDXHFQof9/Hx57BsgM8RBOaOPgnxRDvlwF+SWl/XjTrkS8vp6yAs2z6IPV9eZ1wEezdnmjZ37+cWtLhQtUr0zw48ZXP4bPPsOxErUBKOVGnXCfhxOIKerfsKCDWHXubnIur3vnsgCreSaxyDvbYdxw9MxCSSS4YcAh0yLbuFOuZAPdkK69Gp0HS0tKyl0/4EWwWgAgKNOA/bbP3aFnHQZJEzIXl0y4ADI499C3t8B9BkW0aq8qhyPbL0IxcvTUfB7HnYv74QVqwehb+WqSKuuL8b7Uuq0YbELRcvtYd0++ijgpMsaNXXXFtilmz48RODGL4HgkiyfdeLftj2mZTsArN1uHajSv+TX2jsfvgC8/kj4Iokaa6ONbdIbj9qfr7LCuj0huVW+NxuYG35MglkbjJbv0x9wYGV7CVDlUzA1OUpSZzOTF0EA5NeNfCmhdqJwo3W72wN0DrwmS/f+1mPWtr5gtFcW2Q8cy0xswkJCOONgA29e3DSHRizxDIAf+hBKx77VpuiC0fYGt/k1uyOOOj9C55T693WSPOHH2BHvEbx0noFd9xrYcY+BVy90ICkusDE8e6yB1bcaKL7fwKpbHejZyXqOshBZ7URERERERERERERERK1FojYYLcTxlxpbQ50cz2A0IiIiIiKisLwhgtHK/RYH4LUAXTCaR+KQ4miBK80TtSMMRiMiIiIiIqIAbTCaL/D/1j+ar5Zdhc23Lmq1JC4eMMJ8dJFmI+mpgxDd78oMhBsqXxXUlcdpFhaIQ38id9BwbwLkuV+B2ZfXNu63P3DIdMjVD0NuexUiAomLh4yfCkw/L3gSjxcy5RxIRg4kr7ftdYesa8gYyEOfAydcCBxwGDBrbkzmxZnXQfL7xGauFtQ1Q5AQ5qT4gRVLa24naYLRio06SVkOF5DRGdA9fmwEo+3SfA+RVaYJjLDiTQQmnADxxPZKL/LXfwF5ocPN5KoHIbe9Chx1OnDQkcAZ10Ke+Skm4WytQfhgNOt2cbog8z+GnHtTIFxr/0Nr/0UiNRNy47OQP/01suUQ2C5KfCLk5MvDD7bgVeXI8O9EgtqLEDFbtY45C3Lh/+n7G7EvpSrKoSrKoLZvgdq8FuaD1wBV1leTjYY8uRAy905g3JTA32jcFMgld0FufQUitn56rX45jVs+Ugd0B3pmhlhnSSCNMctvHYxW6Nc/6Dfssm7vXrW+3n31wQshayQKRSkF5fdDVVUGnvdlpVCle6CKd0Ht3gG1qxBq+xZg9eLwc331tv0V67Yprhgl6sTYwC7hty2JnbNrbudVRbBfAaDKD6wshDYYzaiz+gS3/XlfXmg/QIrasSLr1yBk5NS+r+sxwHpMwR9Qm9c0TV1R+na1/cd1lvU5JM3i2CGCH64zMLpn/fZD+wIT+wX+Degc+bxLPf3hD3HYRXV4WWq89XZrt1UwmuZX6qzztsthiK1gxsQYXwzT6xYkxgX/LE6HIMEj+8ZYL1vOYDQiIiIiIiIiIiIiImoDEh3Wx46U+vdEPJfu5PgUZzrijKa5CCwREREREVF7EucIEYxmto5gtK2V1scpZ3vyGn0+BlFH52zpAoiIiIiIiKiVCBGqpPx+YOPK5qtlb+RXVaP2SS65G+qeS/UDUrOar5jWThtuGAhGw6JP9cs6Iv+ISOITAwFAoUKAqsdecg9UaTHwwfOBhoRkyKX3QnJ7hl4wCtJnKOTSe2rum288BlSURT/hlHMgZ/0lBpW1Dl9cZWDEzaa2f0DFsprbiZpgtBKjTuCX0wFxOKA6dQEKLEKfCm0Eo5Van/Wf7tckEDXk9kBufrFJgsjE6QSe/SUQKmj1HHK6gEOmQVIyIGOOifn6W4NOSQLA+m+UkQDkpOi/pJG4eOD0P2tDxVRxEdT1J+m3T937w3j258gKtnLYLGDJd8ArDzR+rhDksBmQAyZBvf88sPq3oH71/nOQI0+OaE5VvAvq3strt59NoecgSHwiMHMOZOacmE/fvzMgAqhmygI68YBwXxwG+jN91qE024x0+HduhyO9U732Kp/Clt3WMwYFLq36FUqpNvslplIqsP+gzEDAqtVtvz9wv+5t06zzf/Vtf/jbNfOb9tcVtN7adSvb6zVD/4wxq9HU/J40t2P5ZPnhI/tjtcFoEaR+NaOBueHHZGQmQi65C2r+1ciPMBgNAH7eoLR/jrrBaPER/or2VijEe9rm9oFiZJcmGK3u+9s+Q/XLf/YacPIVsa2pEbZF8BFOZmLT1WHHiG6Cr/8cOhT834sUzv5nJYqr7L1PXu3qiRJD/4NVB6OlaI7NKioL3tD4NW/ZHA02HT0ygPU7QteX1AL5lnEu6/ay2OX6EhERERERERERERERNZkEh/XVfkqiCUarsA5Gy3F3iXguIiIiIiKijsgtHggEyuK8lrJWEoymC8Xmez+igfUG1wAAIABJREFUxmMwGhEREREREQXogpFMP7BlLVBZYdktVz0I9B8JdO8PNbUrUGwzyCYEmfKnRs9B7cSxZwMhgtEkI6cZi2nldMFoyoRavxzqqin6ZZ2as5ZjRBwOyPVPQp1+NbB7B9CtHyQlo0nXWWP25cBTt0S+XL8RkL8+C+nSK/Y1taDhXQXHDwde/cm6f6CNYLRio84VMatfO7LyLIPR1IL5wJRzIQ59+MDOnWUAgq9+meov0i6DscdCpp4LeLxAv5FNEopWTZwuyL3vwbx+NvDZq/U7T7u6+R7LLSTL+gKoAICMRgZbSFIqcPd/gPeeg/q/c+t3pmZC/vl941ZQvR6RQNDmzIuBpT8ApXuAynKgx0Coh64Fftc8ISLVd3jg/279LIPR8MPHUCW7IYkptqdU913R6FA0ueddwB0H9BsBdeMpwFdv1e+fFfswtLoSPIIeGcCa7U26mhrnjw8TNlQS2LZk+q0L8okLRSt+R8bo+sFom3fr86ryfcGBS+rJm4EeA4E/VkCVFEUfzBUUvKXChJJZ3TbtBXJV326uFDtqXaqs3+819X5itAbl6oM7q3VNF8iMi4EJM9Dtk3XAh5Gt461fAFOzirq5h1sjPPb97d8UZo1kMFpHpnYVWnekZdbclMwuUP1GAMsXBS//0cuQVhSMVqzZfDTkdQEJLRDSZYcyTeDrt6FW/Ijpe0tw6OJn8YN3BPYYgZNeulX9gQSzFEN6/Ri8rBhY6umvnbs6SDE1+C0PAGC3RY63z2891tHgmgb9cwWf/R56W5gU1/zbG68uGK2qeesgIiIiIiIiIiIiIiKKRqLTOhit1F8MU5kwRHMhagsFVdYnx2fx5HgiIiIiIiJbDDEQZ3gtQ9DKW3kwWrY7r5krIWp/GIxGREREREREAbrQGr8fWL9Cv9zhJ9UE0qjJpwAL5je+llFHNH4OahfE7QEe/Rrqf8ZYDzjoyOYtqDUzNAfbLPkO6syRrSLkRLr1a/51jj4KyioY7ZgzgXee0i933s3tLhSt2v+MN/DqT2ZQe5IqwcSDsyF9b4eaP08bjFZhxKEKTrjgqw1GS8+2XtmGlVCXTgbufAviiQvqVt+9j50rsgHP4KC+dP9Oyyll3kPAMWdCdI/5JiI3PA0MHg31n2cC9489E5h2XrPW0BKyrI/zAwCkxyCPTgwDOPp0oHP3QJBU0TZgwIGQc66HuNyNX0HddeX2BHJ71m+c/zHU0dmAr5EpDRmda0LypHs/fVTPe88CMy62NaXavBZ4/1+NKkv+vRqSVefLtJv+BfXYDcC37wEpGZDjzoFMPqVR67BjUJfmCUb74FID8R59+IeqqgQKAyFmWT5NKA2ArSvXI2P0wfXa/rDeJAEA8quCg9Hw5M1hIpuIWhlfpXW7u3WmGA3JA5LigOJy/Zi8tMD/kpGDcdOygQ+D939CeetXhQGdrfuMOpuaLbsjmhbvLQZmjYxsGWpnirZZt6dl1b9/4JGWwWhY+TPUt+9CRh8V+9qisMci2MtKZlIgsLa1UaYJde0M4Ot3atrSABxR+nG9cX4YiDPLUG4EJ5z9FjdIO391mFlqvHV/kcVxWX7NTkTDYDTdNqquxBbYjDMYjYiIiIiIiIiIiIiI2rJEh/UBUyZMlJt7Ee+wfzXJggqLY0oA5PDkeCIiIiIiItvijHhNMJrNAxibkF/5sK1yq2VfNkOxiRqtec8eJCIiIiIiotbL0ASjmX5gZ4F1X2aXmlA0AJCz/gL0HNi4Ok6+AuilP6GUOh7pPxJy8e3B7efeBOncvfkLaq1ChUSFC/wpb/krZMi5f7PumH154ybuPxI44cL6bUPGQObcAfQeYr1MaiYwbHzj1tuKHTFQcM7Y+oEETgO476wkpFz/QE3IWaqpT/nY7uwUuOHYd8Z7WqZ+hT9/Abz7TL0mVVYK8+65UFdOwU4j1XKxdP+uoDZ5bxvkuLObPRQNAMTlhsyaC+OphTCeWgiZcTHEqTnjvx3JTtL3pWnCHaIhw8fD+McHMJ75CcafH4ZkNs8XQOJNgHy4CxgxIbjTmwi5+x1g4szwE+03vPZ232HaYerTV23VpYqLoE5sRJhkXm/Ia2vrh6IhEDhqXPR3GM/9AuOBT5olFA0ABuRGH4KyfNUgHFnyQdhx1x0jmDQgzHpeuKfmZra/EKKsQ5JWrC4ObttqnVCS4i9CirknbH1ELcW88VSoBfdDLfkOqrJCP1DX54xtSGWsuJ2CqUNDP+dz6+xixLkE8yZHti3aWwksXG/d15hsp182MDaxw9ulCUZLrb9PLSE+G1F3XATVCsKvK6oUKnz2xmaF2K9sSWr+VfVC0XQcMNGncpVl3yanft81qmA0TY6js8HboMFdwm+MkoLzqZucV/PSUabJ4CQiIiIiIiIiIiIiImpNEh36L7ZK/PaPESnz78Vui2PgAJ4cT0REREREFIk4w/oAvDJ/aTNXEmxb5VaY8Fv25fC9H1GjOVu6ACIiIiIiImolQgWjFW237kvLqndXktKAR78BvnwDat3yQBhH0Xaox26wXFz+/EggbOT7D4FNq4GhY4EBoyCNOcuc2iU58RJg/0OBRZ8Apgnsfyik34iWLqt10T2H24pDpwNP3QxU1TlT2uGATJzRqGlFBLjkbmDiDGDxf4G83sDooyAuN/DYN1ATgq/eKKdfDXG274/NHj1NMHuU4NvVCgke4PABgoHVwUUSONs+21eoXb7AkYXOvq2AY9/vqcHrQUPqrjko3+8g/OIcgErlwMF3Toax7HsAwC6bwWhyyd2QBOurcVLTyU8XANahG0Y7ebkWpwu46x3gm3egVv4C+KognToDBx8NyekGeOKhPlkQeo4p59TeOfBI/cCl30P5qkKG6imloK45IdIfI+CIkyEHTALGT4XE2786bVMbmBvdcglmCXpXrcHrG2bgxZRZOCv38aAx+2UDT55l4KCeoR+QSimofz9Qcz9OVaBX1RqscvcOGrtkTQmmK1Vvn3TpFut5+1WssPnTELWQTxbUbsNcbqjeQ4EBB0AGjAIGjgJyewYe67ogXben+WqN0NVHCZ77Th8M1T2j/nbh/6YL3vxZYXmDi7J1rtqCCnFjpzPD9rrrvgaeOFLw0kL7AVVLtwA+v4LT0U5eSClyhRssmyW1U/2GHgP0c2zbBKxbDvToH8PCIldcbn9sZisLRlO7dwAfvgAsmG97mWxfAX7D4KD2Lc4c7TLVT/VUr/V+9c4IgtEcDYLRDuwBpHiB3SEuetkiwWgu65+1LExmOxERERERERERERERUWuQ4NAfo1bi34Ms2DsQpqByk7aPwWhERERERET2eTXBaOVmiIPnmonuvZ/AQKarczNXQ9T+tO8zPImIiIiIiMg+hz4YTRVts+5reNIuAPHEAZNORPUp3mrreuCfNwH+Bsn3Q8dBjjkzcPuQaVGVTB2L9BkK9Bna0mW0XrrncBshXfsCt78OdddcYOMqoEtPyIW3xSQAT0SAIWMC/+q2O13Av36DunsusOhTIC4eOPES4ISLGr3O1k5EMLEfMLGfRSCHETjbvpN/OwzlhynBj60CZxZQAWBfgJykZWqiswKWuPvjpNsMLPMIABP9Kh7G664Z6Fq1ASWaK2ymmg2ulskwxBaRn6bvK6lovjqamjgcwLgpkHFTgvuGHAzc+AzUP64EdjUIDEzLgpx9PWTMsbXjnS7gb89D3XBy8Ip8VYFtXHd9iIl6+Drgl68i/xnu+Q9k5GERL9ccBuXqA/ZCeX/9MQAAF3w4bffz6F25Cud2fhjLPf2Q49uKm7t9ibNvPMneZGuWADsL6jUNqFhmHYxWmQus/g3oPaSmbdmq3QCCD3ztX8lgNGpDqiqBZT8Ay36A+veDgbaUTlD9RwKlmqtaO93NV1+EBuYK/n2BgRMeCk4QSvAAB/eq3yYi+OxKA5e+pPDiDwoO5cM5RU/h9oJrMDfnbjyTeprtdSfU+bVM7A+8tNB+3RU+YPFmYFi+/WWo/VBlpcDmtdaduT3q38/vC2R0BnZo0jkLN7R4MNqeCILRundqPWGA6ss3oW4+G9hbHNFymX7rCwdsdWZrl6kOM8vQZNaWVgB7KxTiPbW/H5/NYDSPSzB1mOCZb/X7WS0SjKZ56SivtG4nIiIiIiIiIiIiIiJqTTwSB6e44FPBV30p8Wu+W7egOzneJW6kOYOPvyYiIiIiIiJrcQ7rYLQy0+LKpM1M996vkysLLqP1HodN1FYwGI2IiIiIiIgCDE2okt8PFFmf+InUzLDTSk43qOMvABbMr210uSGX3xdFkUSkpXsOtyEy8jDIC0ug9hZD4q3DsmK+zq59gXveDWzrRALhSB2dBM62d8BEpn87CixO8q9uE0fg48U/XN1wZ/Zd2OLMwaTST3DG7mfhUbVnvc/JuQfLPLWhDcs9/dCv92IMLF+iLaOTb0ftHcMAeg5s1I9F0clN1feVtqNgtHBk0omQSSdCVVYALncg4Gz3DiAjJxC+2NCYYwOBlQ2DYQFg7VJtMJrasxN4/q7I62vFoWgAsF9O5MvEmWUYUf5TvbbRZd9j8Zr9scdIQpJZDMmYDMBmMNrKX4Ka+lcsx5tJxwW1b3LlBsbXCUZb/8ceWAWj7VfBYLSoGEZg36Xm/3C3Q4x3OAKvXfVuG9btjn3LWt42bNcjoWqzrMeqBqm9XW9+Oz+nUX+uz16FeuDP0f0tdm8H/vuevt/Vur+Qnz5c8OU8A+Nur58i9OfJgmRv8PY5K1nw/LmCp89SwI9fw3HFXADA4IrFEa03sU7Q0EzHlzgPYyNafv//NXF4/8Cfst4/ARyGBLcHjQn8c4bptxxTr1+Cx0jwnKHnsBhj0W8IrF8zO5r1ywGlCbFqsL8rDgdw/i1Qt5xtPb5wY4yLi1xxBMFog3Kbrg47VMluqBfuBp65LfKFDz0exv++gKxnSgGL/NpQwWjGvod9Voi3uNtKgG6e2vt+TTCa8f6zUD3GQXJ71rTNGBE6GC0jQb/ephLnsm4vr4o8KJeIiIiIiIiIiIiIiKi5iQgSHckoqnv82j6lfvsX3tGdHJ/tzoUhhmUfERERERERBYszvJbt5a0gGG1rpfWxnFnuLs1cCVH7xGA0IiIiIiIiCtCFKplm4GR5K6n2rlgmc+4EBh4E9fMXgDsOMuMiSOfu0dVJRNba0YEyzRWKVrM+EcDJj8lqGLWPpWxfgXUwmiMrcMPhwrItCqPfm4g96UcAAF5Nno4PEiZhwabZEABrXd3wRcJ4y1UtibMOO3MoH3pXra5tGD+t2R8XFOB06ANMhnfteOEm4t6XWOFyA506hxyn8noD64NDs9SPn0EmnBDcrhTUMfo5tev6x4eQ4dbPsdYiziXYLxtYUWB/mZP2LIALPsu+ZHPfQaYRBMKotcFBjLm+LZZjtzkyodb8B1AKa7cDqVsXY4OvK2DxUtut6g/bNQAADpnWBoK57NyWCNdVf70MR4otNf0CINpgtHBaeTAaAIzpLVhyk4GHPg8E7hwxQHDskNCPMZdTgFEToe59D+rSyRhYsTSidSbVCTBK/uJ53Lf1VVySc3dEc3y4TNfTnMFBzRtSFCo4zSGA09G4foexb4xFwJxhOSbcHHZD6cReaJ0BGL9ug+EZDI+qQO/K1XBiX4iqxwt07hH0O5PJp2iD0dTtF0CO04SmNYJSCjtKgPQEwDBCP5f2RBKM1qXltv2qohzqf8YAG1baX+jAI4CEZMj+hwLHBn7PWZleWD1vCkMEozn27T+EDEYrBrpl1N7XBaM5Fn0MdfolwD+/D4R8Azi8P5DiBXaXBY8f3AVIiW/+37suGK2sqnnrICIiIiIiIiIiIiIiilaiI8kyGK3Ev8f2HLpgNJ4cT0REREREFBmvEW/ZXtYKgtF07/1y+N6PKCZ4xicREREREREF6ILR/D6gyDoYTVJsBqOJAIfNhBw2M9rqiCgch+Y5bMehx8euDmr76oTVZPkKLYcUOKuD0Ry4432FPZX1P2Z8PXkq3is6AkeVfoBfPUMiLqFv5Up4VGXgTr8RkEvuingOip3jhwOv/hTcfupBDDYKqc8wy2A0fPEG1OX/CA6GWvhxZPNn5UOue7zVh6JVG9NHsKIgOEhk1kjBvCMFUx8wsalo39i9X+O2wuvCT2ozGE35qoDng7cjmb5t1tM6M/HmCi/Ov9JEYTEADLAMRQOALvmpkAs+gpozKWwdcs6NkDOvtVUzUUTcnvBjotUGgtEAoH9nwT9Oivx1SUZMAO58EyPnnRHRcklxddb1zlMY6xkc8bo7Ir+pD3yKvdYaMHc40PNwAECqfxeu3f53XL7zH0B2PkT3nm78VOCLN6zXXLABkp0fYb3WlFJ4/CuFy19WKK0A+ncG7j3RwOED9M+tIpvHFCV6gGGxKTMqkYaiyVOLIL0GBbWHCjfTMZZ8C4w4GKnxgcA8n8VzoLC4/n3d88SpfEBFGdTD10FuXQAA8LgE04cLnvom+HF40qiW2V/3MhiNiIiIiIiIiIiIiIjauARHsmV7ZMFo1se15LjzoqqJiIiIiIioo4rTBKOVmxZXFG1GSils1bz3y+Z7P6KY0JzKQ0RERERERB2O7gRc0w/s2Grdl2ovGI2ImoEu3NAGmfY/MSyE2rw6YU3ZfutgtG3OzMANhxMv/mAdBHFc19cxoOfPuKjzfRGXMLBiKZDXC/LMT5BHvoJ0yo14DoqdORMNOBt8kjyyG3Bwr5app62QcVOsO3YWWAZ6qQ9eCD1hfh/IR7shLy6FPPxl4P/9D218oc1k7kRBXIOQjF6ZwPzZgv27CdbcauDbSZ9i8eph+Gz94ejkD77qbpCSIqi9JeHHvfWEZXOm3zoYrciRhuPL/xIUUmIl/+q/QYaNC/xt5n8MuTzENm/YuPATEkVBRICktKaZPCGlaeZtReTAI5Hx7iocVfKe7WUS92XRKTOQXtSvcgUcytcU5VE7VuRIw7zs2/BK0nQgPkTiVojgM/WPK2JWz4dLgfOeDYSiAcCyLcCR95rYsFMf/PbpCnuhcBdNkPqBgs1AlZVCvfYwzCn5wJrFtpeTc/9mGYoGAFlJkf8MxoLAvoGIIMv6/BkUFtf/PVqFpwGAA/7AjS/fhCreVdP+1+MECQ0yMrtnAHMmtFAwmiZTs6yyeesgIiIiIiIiIiIiIiKKVmIjg9FM5Udh1RbLvmw3j4UjIiIiIiKKhFcXjOa3eXXXJlLi340ys9SyL8fdpZmrIWqfGIxGREREREREAQ6ndXtlBbDD+st5ZPEDGqJWI8pgNLnt35ARE2JcDLVpRu1Hhhn+nZZDdhmB8JVFe3NQXqWf6ndPX2x15kRcwgl7XoMcdw6kxwCIwY8wW9oh+wnev9TAsUOAgbmBYIsPLzPgMFomaKHNOGCSvm/dsnp3VUU58N5zIaeTf3wA8cRBuvSCDBwFcWkSJ1qpIXmCL64ycNwQoH9n4Kwxgq+uNtBpX8CIyykY1Xkv+lX+jogeWTaCTtRzd1q2Z/msg9HsEmWiS9eMwG1PHGToWMj084ExxwQPTukEDDywUesjCumwmdoueW0t5MmFkKseBI45E+gxoF4QaigydGyMCmzdJD4Rrx+7yvb4pLh9Nwr+AAB4VCUOKvuuCSqjjuCl5JmAN1HbL2OO1S/8xRswH78pJnU8+bV1yFm3P5vwm8F9pqnwyiJ9MNqBPYCxvYH7Zwtund7MoWjbN0OdPAjq7kuAXdZhz0GS0yFX3A+cNk87pEtq5LU4vn6z5naWJv+usMH5M35tMFqdji/fqrnZNUPw9dUGpg0D9u8KnDFa8OmVBhKbOYyumtdl3V4W4r0jERERERERERERERFRa6ILRiv127jKHoCdVdvgU9ZfjmS786Kui4iIiIiIqCOKM7yW7WVmywajba3cpO3jez+i2NCc9U5EREREREQdji5UqaRIv0xWftPUQkSRiyY8atKJoU+yp45Jah9Laf5dlkN2OgLBaDN/mdwkJUwrfhOIZ2BfazKhn2BCv+gCGDsqSUqF6pQLbN8c3Ll2KdTg0VDz5wFv/TP8XHe9DenU9q8WO7K74I2LQzyO3HH6Pg31+euQQQdZ9/l8UE/cBBRusOzP8jcuGC0nvhIuZ3Dyh5x3C9TKX2vX63JD5j3Y5sLsqG2RU+dB/fd9YOv6+u2X3BXYfnTKBXoPhkw5BwCgSvcAyxcBS76HWvY9sPQHYGdB/UkPmgwcdXpz/QgtznnYdFz46sN4MP38sGNrgtGKa98vP7zlYgzu9VMTVUft2Tp3dyBeH4yG4YeEnuDpW6EGHQg5qP6++derFK551cRXdTL/8tKAw/oJfCbwyXKFHfsuVNglFVi7Xb8K1/kmemcBE/YT3DFDkOwV/HctsNH67QKePFNwxsEtE3CsNq6Cmj0womXk/Fsgp1wZdlx+euT1GDChlIKIIFPzZy5scP6MNhhN+Wtuq08WQI6u3UYPyRO8emHr2F/3anZ5yiqbtw4iIiIiIiIiIiIiIqJoJTisr3hT4ttj2d5QQYiT47Pcbf8YICIiIiIioubkdSRYtpe3cDBaQeVGy/Z4I1EbuE1EkWEwGhEREREREQVEE6qUxeR6olZDF26o4/ZAzrimaWqhts0IH4y2y5GGHY50bCy3/nKhMdau7AMXfIBF2BBRm9Ojv2Uwmlq3DDihd+gA2mp5vYCRhzVBca1QFMFoWPyttks9+b/Ac7dr+9P9O2EIYKrIVwsA+Z2sv2KRHv2BJ78Hfvg48Dc+YBIkt0d0KyGySbLzgad/BH74COqNRyHDDgHGHgvpaR0OJAnJwIgJwIgJEABKqUCo2tIfgN3bgS69gFGHQ0Sa9wdpQZLdFbM6LcWDmkCiuhI9+26U1x5Q0b9yBe7dejkuzbm73tg+FSvx3bqxeDfxSKx094YfDphjpsCnBH7Lf0bNbcsxqO33mwI/IlzexhgTLRNo1VHtFS/g1QejiWEAz/wMdfow7Rh11VTgoyKIJ3BVxFWFCoffY6K8wUXoN+4Cnv42+IUvVChatVWFgXlXFih8cqUDLy+0fgF1O4Gpw5pm26F8VcCiT4GkNKDXoJqft6a/rDTyULSLb4eceImtsZ0SgTgXgn6v2rmVCQGA0j1AYgqykgVA8O9tm+1gNF/tnYWfQO3eAUnJsFdMM/Jq3sqV+6zbiYiIKHoi0gPAMAC5ABIBbAGwHsA3Simbey1ERERERERERNSQNhjNby8YbasmGC3VmYE4w2vZR0RERERERNZ076NaOhhN994v292lQx2DTdSUGIxGREREREREAY4IQ5XikyCJKU1TCxFFLpJgtG79IOffDOnev8nKoTZMaoMw0jXBaDsdafgoYSL8KnahGQMqlmL+lkuQ79NfLZOozenePxCO1dA7T9meQu59LxCI0hFEE4y2dimUUkFfHKrSPcCL94Zc1HHIVAxyA79aX6gprC6aYDQAkOR04LCZ0U1MFCWJTwQOmQY5ZFrky4oAnbsH/nVgY44YjJ5vrsEad8+Q45KqN1cV9Q+ouGjXw6gQD+7JuAS7jWSMLvsvntp8LpLNYpy455XagW/cEuPKY0sBMGHADwd84oRfHPDDEfw/jLD9ftk3R4N+s+a+Ydnvt91fO8aMYZ1166tus65D32+Kvfdoe414IF4fjAYEQjdVn6HAyl/0f7eTBkBeWwsAOPXx4FC0WPnsd+CHdQqvLLIORjtyAJAaH/sDetTKX6Cung5s2/d+oecg4PbXINlda8dM7apZ2oLbA7liPuTo020vIiLISwuExNnhgD9wY1chkJiCTOvzZ1BYXP936dMFo1XPBwB+H/DFG8BxZ9srphnpgtHKKpu3DiIiovZMRGYAuBzAaM2QnSLyEoAblFI2YnCJiIiIiIiIiKiuREeyZXupv9iyvaGCECfHExERERERUWTijHjL9nKzDKYyYUjLnG+he++X485r5kqI2i8GoxEREREREVFAJKFKAJCR0zR1EFF0bIYbykV/B2bN7TghOxS5Oo+NNE0w2i5HGn72DIl6FQ9smYsTil9DwqRpKP7oTcSpciSb9g4aI2pLpPsAWEeG2Fz+7nfqhX20e54ogtFK9wCFG4Hs/PrtX70NVJaHXFTOvA7Tlgp+3RjdXykvjVdxImpvjOPOxj2PzcTxeS/DL/qvUePd+26U1w9GEwBX7LwPl+ycDwf8aKtbCQEQiAYz4VZVaNSLWQdWN2DOLw68knw8zsp9PGhcmcQB8ZrErDpkzh1Qc4/QD9i+GSs+X4SpHw3D7wWNKNyGA2/VJHcBmDmyCULR1i+HOntU/cY1i6HuuRS49RXgg+ehbjnH9nxy6wLIuClR1dItPYJgNLUvyKxoO5DfB1m6YLQ99e/7dcFoyl/vvvpkAaQVBqPFuQRWG46yJgrrIyIi6khEJBHAYwBOCjM0HcAFAI4XkTOUUu83eXFERERERERERO2ILhhtr1kCU/lhhLlIUkGl9VX6eHI8ERERERFR5LyaYDQFhUpVgTjxNnNFAbr3fgzFJoodngFLREREREREAZEGo9k4aZeImpHdq1vsfyhD0Sg0qQ0ySNcEo/nEhe+8oyz7wplS/Bb+p+hxZN72T8Sf/xdk+bdZh6KlZEQ1P1Gr0r1/9MumZgLDD41ZKW2C2xPdcmuX1NxUe3ZCFRdBfbIg9DKnzoP0Hoz9u0Yf3pKfHvWiRNRKicuNY++/Gd+sOyTkOMPYt+2oKLPsd7bhUDSKneqAOTeq4FXlSPUXWY7ba8QD3sTw8w0/BPLQ55Z9CsA33gPR/19NH4oWiscJTBka20e/WvET1KlDrTt/+Ajq9gsiC0X7v1eiDkUDgH6d7f98DgSCzNTrjwKAPhitztshpRRMTRhh9Xw1fvwMatc22/U0F6/bur2ssnnrICIiam9ExAHgJQSHom0D8AGABQB+RP2E0mwAb4jI2GYpkoiIiIiIiIiondAFoyko7PWXhl2+oHKzZXuWO7cKlCbWAAAgAElEQVRRdREREREREXVEcZpgNAAo9+/V9jWlKrMSO6qsr7LKYDSi2OFZsERERERERBTg0py1qBOX0DR1EFF07ISdORxAt35NXwu1bXVC9tJM62A0APgy3vpcumuOEhza13qZY4vfwbPbzofxzhbIQZOBjM5A5+7BAz1e4IBJkVRN1Dr1GhTY9kZj4gkQpzO29bR27rjolluzBMpXBfOOC6GmdYM6Ohv45j/68cedDTnnBgCNCzc7sAdjj4jaI+k9GCMOyMeU4rcs+w/1/1B7RxOMRmQl3rQ++GavkQB49Aft1CWDDoJcdm+9ti+8Y5DXZy3Gd/+00TU21uSBQLI3Nq+Pyu+H+Y8roP50kH5QZQXwzlO255RbF0DGHteougZFcK6KQ+0LMvvgeQBAZpL176awOBCIBgBrt+vncypf/QbTBL5+235BzcTrsm73mYDPr0l9IyIiIjtuA3B0nftVAOYAyFNKHamUmqWUGgFgEIBv64zzAHhdRDo3X6lERERERERERG1bgkN/8egS/56Qy5b5S7FHc0HSHHdeo+oiIiIiIiLqiOIc+mMsyzTHZja1wqrNULA+Hi7Hw/d+RLHCYDQiIiIiIiIKcEYYjOa1d9IuETUTO8E7XXpBPFGGzlDHUSdkL8O/UztMifVHiwf1FHxypQPLT/0Zr285CW9sOB7/+eM4rFvZB6/v/h8kvr8JkhxIIhIRyImXBE8y9VxIHF9nqO2ThGRg2Pjolj3j2hhX0wZEGYym1i4FnrsDePMJoKoy5Fi55WUY8x6COAOJHflpUa0SADC2d/TLElHrJv/7Ii7e+SBcqv42xVB+zNl8J9SaJYGG8hAHUww8sAkrpLYoXukfL2W7Q588UZccfwGQFHgB+yx+HCZ2/xAFzuxG1xcLM0fWBn8ppaC+fhvmw9dBvfM0VMnuQHtFOdTbT8Kc3gPmCb2g3n0Walch1GuPBMZ+/2EgJOzfDwAL5semsKx8yAc7IeOmNHqqQV3sB78ZMGtuq7JSZCdbj6vyA5uKANNUOPUJ03oQAAf8QW3qgxds19NcvCE+Yiyrar46iIiI2hMR6Qmg4QepM5VS85Wq/8ZFKbUUwGGoH46WAeDGpq2SiIiIiIiIiKj9SHRovthB+GC0gspN2r5sd5eoayIiIiIiIuqovIb+/KLyFgpGK6jcbNluwIFOrtZxTCdRe+Bs6QKIiIiIiIiolXB7Ihsfl9A0dRBRdAwbwWhDxzZ9HdT21Qk8S/fvRJxZhnLDa3vxQfuO3eo7fgT6pF4GteB+YPNaYPgMyNnXQxqE+MkJFwIJKVAfPA9UlgfCCmbNjcmPQtQayIQToBZ9Gtky970PSe+AX4ZFGYyGRZ9CffGGvbGjj6p3NyMRiHMqlPvsh5wAwN/2+xEiB0S0DBG1HeJw4LBH7sN/zpuCB9IuwG9xgzCgYhnO3fUEji59H/j5MKDnQH0wWr8RkAc+Bd57FurFe4F1ywLtWfmAg9et6qjiK/VpUeUJmYjkUxZ5dQ1eOv5PODnv2UbX5YAfu+934Y1fFF7+QWHxZmC/bOA/iyObJzMJmDI08HqqlIL6+/nAO08F7gPAK/OBWxdA3XAysHxRzXLq1j/Vm0f9605g5sXAx6804qeq48zrIKdcGbPg5VHdgc4pwJbd4cc6VJ0gs22b0Cerj3bsks3Amm3Af9eEms8iNO2nz6G+fgcy5pjwBTWTeDeQ4AG8LiDOFfjf6w7879fnvhEREVFoNwJw1bn/lFJK+2GIUqpMRM4E8BuA6h3Rc0TkdqVUiD0OIiIiIiIiIiICALfhgVs8qFQVQX3hgtG2aoLR3OJBqjMjJvURERERERF1JG7xQGBAIfgAtLIWC0bbaNme6e4MhzDKiShW+GwiIiIiIiKiABeD0YjaNCN8wIKMm9IMhVCbV+exJAC6Vm3A756+thaNdwPd0mvvy5CDIUMODrucTD4FMvmUSCslahvGTwXunguYNlMgUjKAoeOatqbWKlww2tjjgK/eCm7fpr/Sbj1JaRBX/VAaEcGQPMH36+xNUe2Q3v7wg4ioTZPu/TEhvwQTVswO6lP3XAoMGg1VUWa9sCc+EAZ7zJmQY85s0jqp7UgoUMD11vsDewcegkhOgSgTL+Z2ewiw8XL09h9TMbn0Q7yYPBOndnk6qH9Y2S/wbk7A7FEDMHtUbfuqQoVJd5v4Y6e9mh49zUBi3L6g0WULa0LRaif8FeriSUDhhvCTLZhvb6XhTD8Pxjk3xGaufVxOwXXHCC5+XoUd66j7B9q+GalJqcg1BJvN9KCxR90Xfl/RofmDq4euAQ4+GiKRBb02lYG5guL7bYS3ExERkS0i4gUwo0Hz38Mtp5T6XUReBzBrX5MTwMkAbo5thURERERERERE7VOiIxk7fduC2kv9xSGXK9AEo2W5c2EIL6RFREREREQUKRFBnOFFmVka1FfeQsFoWyus3/tlu3ObuRKi9o2fpBAREREREVGAyxV+TF3e+Kapg4iiY9g46bgTP1wlGxocfJVfZSO4YJ+BuYBhtI6T8YlaC0nLAgaPsb/AUacHwnQ6ogahZQ3JFffbCgLVSu1k2XzKQZFtt4aU/4oxg5Ojr4OI2o4E/XP9/9m78zg587pO4J9fVd9HJgmZZDKTORjmDoxz4XA43AgoDKcjwq4ggopcHii4glyKuoKK4LGisCgil4DHgqICLgvIrhwLyLVyDMcMMzBXkk53ju5n/8gwSbqfqq6qrj7S/X6/Xnml6/f7Pd/fdyaVTlX183ye6lkPSq79Qv3kyOgyNcSJbKzNP3P7d+3uqtbffbrKd2YnFl33rJt/Pw+d+sckyWP3vDOXznyydk0+uDB49JztJZ9/WSM/cNfF+/nqrzfyyEuO/ntaveuP6xd2EorWR+UJP78sdZ9+35KBDl6SNI+9O+WN30j1kh/N7j0f63nfZtUiCe/aLyTfurbnugDAmveQJMf+UO4jVVV9vsNjXz/v8WP60xIAAADA+jfenKwd3ze7p+1xNxz8Ru34KUO7ltwTAADARjXaqL+WdXp2dYLRvPeDlSEYDQAAgCMGh7tbPzK+PH0AvekkGK1NsAPcYV7o0BmH6z+sr7P7VKFoUKe84m86W/j4n0n5qV9b3mbWsFJKcul96+fe8PGUbTuTi67sfYMt22uHn3n/1t+7mtXhXLn/o2lUsxmZm84P7n133vO1q1N2+IElbAjtgir3703e97b6uRFB4izULhht+lDnr6OnDlR5/B9XHa39rRuef8fXgzmcN3/jiXn0nndlaO5ATjv0zfzh9c/ME/f8ZarX/krt8SODJX/7rPanFNz6qkbOuNO8/t/zZx31t5zKq/4h5ZQzl6d2Kbn3OYuvOzbIrPr7NyYfe3/ucugrPe87kMOtJ2+7qee6AMCa99B5jz/QxbEfTI57EXFpKWXHkjsCAAAA2AAmmvXnWy4ejHZd7fj2ITe2BQAA6NVIi2C0mbnpFe4kqaoqNxz8Zu3cjqHTVrgbWN8EowEAAHDEYJsrdGuUUcFosKYIRqNvjg812HWom2C0fvcC60MZGUt55d+1X/PSN6XxjN9MaRfCswGUp70kmfc6szzjN1PO3n3kwV129158y8n1e5aSr1z8O9lx+Ibjxkfn9uefrn1oPnTt/bPnC9tyyxd25K+/8bjsGJlJ8W8qbAydvMauMywYjYXaBqMdXPz42/ZXee7b5jL5rLmO9vvsly7OQGaPG7vLoa/kbd98Qqa+sCXX/se5edqtr7vj1X/1gXfW1iml5FuvaGTXluPHBxrJe57TyKbRtROOXH75T9P44IE0Pngg5bL7LeteF3UQCt089v//x96fpLv3VwvqVbOtJ/fe0nNdAGDNu+u8xx/p9MCqqqaSfHre8BI+XAEAAADYOFoFo021CUabq2bz7UP1wWinDLkJHwAAQK9Gm62C0favcCfJbYdvzoFqpnbOez/or4HVbgAAAIA1YnC4u/UjLvSGNaXRQf69EBc6Me+5tOPwjR0furuDcADYqMr3PjhVuwVnXrBSraxp5W73TF774VT//LZkel/Kld+fcsUDj87feXf7/4/tbN7WcuqMC07PJ97+vXnt5qfkC8Pn5cxDX8sTb/vLXHDwi0mSkerA0cXb/bASNoxmjz9KHR7pbx+sC8MDSSlJVfMP2f5FgtEOHa5yn9+ay6frbzC4wGuv+6mcd/A/Ws7XvWqvXvj45BV/m2w/PTnz/JRj3hds31TyyV9p5I//Z5V/vy7ZtSV5wveW3G3XGnv9f99Hr9hWF+1cfE2jWhhid/pSgtHSLhjt1gVD1W03Jd+5Ptm/N9l5Zsq2pSdZVzffkMzNpWzr4H8AANAvF8573PqFXr0vJbn0mMcXJXnfkjoCAAAA2ADGWwSj7Zvd2/KYmw7dmMPV4dq5HUOn9aUvAACAjWikUX8t6/QqBKN962Dr8wC994P+EowGAADAEV0Ho40vTx9AbxrN9vMjYykDgyvTCye2ecFo22c7D0a79Ix+NwPrzEnbktu+Uz83OLSyvaxh5cwLUp7ywvrJ8y/rve7ue7SePO/SbJ/9dn75pt9cvFC7OsD60mswmiBxapRSMjpYH4K2WDDan/1r1XEo2tDcgTxq799032CS6rmPOPLF1lOSl7wx5ZKr7pjbOl7y/IetsSC0Y5TnviZldOU+q7poZ0kWiWutCzLbdbj3YLS5tAlE33vLHV9Wc3OpXvMLydtec9yS6ooHpPzKG1K2bO9672rvLale8Pjk4x848vjie6f82ltT2gTPAgBLV0rZmmTrvOGvdVlm/vpze+8IAAAAYOOYaE7Wjt92+ObcdKj+nLovTX+uZb3tQ0u/iQ0AAMBGNdoiGG1mBYLRpmb3ZmZu+o7HX5n5Yu26yeZJGWtOLHs/sJEIRgMAAOCIbsM4VvBiU6ADiwWjjZ+0Mn1w4ivHX2x/8uFvd3TYve6S7Ni0doMSYE1oF7Az1GVI7UZ14d2PhLXc/K3uj73q6tZzp5+bnHlBcu3nFy1THvvT3e8NnJh6DUYbGu1vH6wbY0P1IWhTB6okrV9Lv+Bd7QO4jvVTt742W+Zu7aG7Y9z8rVTPelCqxzw95eE/lnLu9yx6SDWzP3n3G1Ld1MO/0f3w4Mev6Ha7O7hupVktDEY781C3OSZHnTzbImA3SfbddvTrv/7jBaFoSZJ/e1+qZzwg5U2f6Xrv6uVPvSMULUnyqQ+leumTUn77f3RdCwDoyuZ5j/dXVTXVZY35V+n6YQEAAABAByaam2rHv37gy3nhl3+iq1pbB07OcGOkH20BAABsSCON+nNzlzMY7eszX84brn9Vrjt4bUfrdwztWrZeYKNqc0thAAAANpSBwe7WjwhGgzWlscjHPOP1dy+EBeY9l3bM1t/dcr4HXyQUDRbVbBNiOSgYrROl2Uwe/uTuj3vzZ1MmWl/3W0pJecRTFi/0mJ9KOeduXe8PnKB6DkbzPZ16Ey2eGvsOtD7mzz4ylxv2LF77fuclv/uA6/LKCz+anHl+/aJzLk55782LF/uud/xhqqfdK9W/vKvtsmr/3lRPvjzV7/xM8me/0Xn9bgy1uVBk4qSUsZV9z7t9U8m529uvaaY+GO3UQ9d1vd/FM5/KttmbWs5Xf/nbR36fm0v1F69sXejr/y/V22tC09qopqeSj7534cTH359q7xJD+ACAxcy/lfR07ar25h+z5BdOpZTtpZTd3fxKcpel7gsAAACwkiYG6oPRerF9qIO77gAAANDSSGOsdnx6dnmC0aZnp/K7X39Bx6FoSXLK0GnL0gtsZILRAAAASHIkDCKDQ50fMFKfsg+skkabsJ0kGW8dBgPHKcd/ZLj98Lc7OuziXYLRYFHtAnYEo3WsPPEXklPv3PkBZ16QcloH194+5unJPR/Wev7+j015zu90vi9w4usxGK34nk4Lky2yvfbO1I9XVZWfe2vVtuZdT02+/puNvO+5zTz78aen+bI3pfHGT6W89sPJ1h1HF95pZ8rz/zhldDzlRX/eedOzh1P9zs+kOnSw5ZLqdS9Lvvnlzmt2qzmQ7Dyz9fz21bnL4mMua/8eaOfh6xeMlSSP2/uOtse9/NElp24++njL7M3579c9tX0zt92UamZ/8pl/TW74Wtul1at+PnOPvzDVezp8Hnzp00ndn//sbPLv/9pZDQCgV/OD0Vq8cmxrfjDa/Jq9+Okkn+ny11/3YV8AAACAFTPe7F8w2ilDq/PzLAAAgPVitFkfjDYz18v9xRb3qX3/J9Nz3YWu7RCMBn3X423OAQAAWJcGh+svdKwzLBgN1pTmIsFoE/07SYd1rnF8MNpJc7dlaO5ADjbaB3zczef3sLhGm3uVdBNQu8GVsYnkTf+e6n71P9xcsP6xT+9s3eBQ8pvvTP7v/zoSALLt1GTztuQ71yfbd6Xc7Z5LaRs4EfUYjOZ7Oq20Ckbbd6B+/PrbkpunWtf7u2c18oALkpHBhQFd5YLLk7/8bPLRfzgSfnzl96eMjh+Ze9A1qT7wjuRf3tlZ4zddn+o1v5Bc/H3JRXdP2XnWHVPVgenkLa/qrE6vtp2ajIy3nl+lYLSfvE/J7/5TlQOH6+cfNPW+2vEf2vP2/N7WZ7as+4sPKfmJ+5R88Lm/nIPXfikP2fePmajaPBG+6/9+MNWH/kcnrSff/HKqlz81ueHryennJrvOSTn/0vq1VZtwviIgGwBWWPvU3P4dAwAAALDhbR/c2bdapw2f1bdaAAAAG9FIo1UwWnfhZZ268dA3uz5m13AXN38HOiIYDQAAgKMGh5Ps7WztkGA0WFMGBtvPjwlGo1NlwaNLZz6Zj45d2fKI7ZPJ2duWuS1YDxptQiwH24cPcrzSbCbvviHVD+yoXzA8mtzplJTHPD151E92XreU5JKrjvwC6DUYbcj3dOpNtHhq7J2pH//GLa1rPesBJT9wt/ahVGVsIrn/Y+vnXvj6VNt3Je/9y+S277StkyR5xx+lescfHQn+e/YrUx71E6lu/U6qRywtIbn8+ItS/elL2i9aLPhs052W1EOvztpW8uKrS37pHQuzRgZzOD984N21x91j+n/nggOfz+eHL1gw99mXNNJolGwdTx5R/a9k70c77qd67tXJ6ETn/wHJcf/vqwc8LuXFbzzyeui4RbJUAGAV7Zv3uJcfzs0/Zn5NAAAAAGpsGdyW88fuli/s//SS6ow0xnLZ5L371BUAAMDGNNKo/3H59DIFo+073OE1trc7eXBnzh2767L0AhtZY7UbAAAAYA0ZHOp87bBgNFhTFvv7O3HSyvTBia+xMFzhcXvf0faQx15e0qg5Dpin2ToYrbSZo16Z3JzyW3+dHBveMTSc8rI3p7z35jTe8vmUH37OwnAPgE71+r1Z2CUtTI7Uj+89UD/+zVtb1/q1Ry3t37cyPJrGs1+R8rffSHnl33V+4KGDqV75rMxdNbzkULQkyZkXpDzzv7Zfc/q57QMHxyeX3kePfv7BJddcsfDP4kWPGsxZ/+MTKa/+pwVhZSXJH17/zAzPHZ+I99qhV+WCncfUmj3cfUPTS8g5ed/bk7/5k4Xj1Vybg7zOAoBltlaD0f4gyV27/PXIPuwLAAAAsKKeeuovZvf45Wmkt58d7xw6Iz97+q9mtDnW584AAAA2ltHGeO34zHIFo83u6WhdScmdR87Ps09/cRpFhBP0W4+3OQcAAGBd6iYYrd0FqcDKG1jk7+/4ppXpgxNfzQfx1+z5q/zi9l9P1eJD+h+5u4vhoSNNH8n3W7nHQ5M3fSbVe/48ZXA4uc8jU87evdptAetFr9+3u3lvzYYyOVKSVAvGp2YWrk2Sb96ycG2SnLIpmRjpz2vwUkqqKx6YnHVh8tXP9aVmV3acnnL/xyTnXZrq2Q+uXVIe/PhUb/291jXGVy8IfKBZ8hdPTR5zWfI/v5gMDSQ/cNeSB110+5/PJVclr/to8k9vTfWta1POuiDVvtty1Rt+PZ/90vfkdZufnENlINfs+atcsmMmyc8dLX740Ir/91Rve01y9VOPD5Y92OIJmvQW3gYAdOO2eY/HSinjVVVNdVFj+7zHbeJ3O1NV1Y1JbuzmGMH1AAAAwIlovDmZZ+x6YQ7MzWTv4fkf1bQ30hjNxIDzNgEAAPphpFF/H7GZuenMVXN9DyVrFYx2n80Py4O2POqOx2PN8Yw1J2rXAkvnKiwAAACO6ubi7eFebkoPLJvF/v4KRqNTjYU/DDjt8HW5//4P5H3jD1gwd9adknvdZSUag3VAMNqyKLvOSXnaS1a7DWA96jkYTZA49cZbPDX2ztQHoH2jRWTFuTv61NDtSqORvPRNqV7yo8mXPt3f4ovZvutID5feJ3nHl1O9+D8nn/rQkbmhkZSn/1rKFQ9I9a4/blmirPL73Waj5JorSq65on6+7DonefJ/yR1RIO97e6okZx7+el7ynZcdXfi1pJqbO/LnkbQOHbv8/snH3t+n7ue59vNHfp114dGxA9Ot1x88sDx9AABJkqqqbiql3JJkyzHDZyTpJtH2zHmP/9+SGwMAAADYYIYbIxkeGlntNgAAADaskcZYy7kDc9MZbY73db+p2b214ycPnpJtQ30+iRNoqb+RhwAAAJzYurl4WzAarC2LBKOt9oXinEBqgtGS5OU3/koGq4MLxv/r4xppNErNEcACjeZqdwBAN3oORusidJwNZbLFtRL7WmRLXXdL/fhpm/v/+rvc+aKUP/1oyruuTXnth/tev9bwaLL16AlC5eTTUl7zzylv/4+UP/lIyntuTHncM49MjrQ+qemECwLfcXrrub/6/aNfHz5Uu6RcdXXL92198YVPHP/4wEzrtTWhaVVVpfrwuzP36l9I9fpfTXXLjX1uEAA2nPkhaOd0efzZi9QDAAAAAAAAgDVttNn6HMLpuf19329qdk/t+Hhzsu97Aa0JRgMAAOCoIcFocMIaWCR8YeKklemDE1+p/8jwipmP50NfvV9++La35pIDn8qjL03e85xGHne5UDTo2FZ3BgI4ofQajNbNe2s2lFbBaHtb5E5989aqdvzUzX1qaJ7SbKbc6ZSUCy5Pzr2kP0W/56rk7g+sn7vq6pR5AV+llJQdp6ecf1nKsX+Xtu1svceJFoy2fVfLqeptrzn6YPZw/aKhkZS3fL7PTR3Tw5c/c/zAwTbBaDVz1e8/L9XzHp289fdSve5lqa4+PdUXP5lq32197hQANox5/zjnnp0eWEoZT3LxIvUAAAAAAAAAYE0babQORpuZW3iDz6Woqir7ZvfWzo03T7DzFeEE1+PZ/AAAAKxLiwUrHWuoxdW8wOoYXOTv75gPXulQo/W9FC6b+WT+4ronJ1t3pPH0r61cT7BOlP/0C6k+8p6FE/d46Mo3A8DiBnr8UWo3763ZUCZaZObtO1A//v4v1I+ftkzBaMcqL/2LVD+ye2lFTr1zynNemew6J9UvPTb52PuPzt35opSnv7zzfrbvSn1MXE68YLStpySbT05u/fbCueu/mur6r6bsPCuZna0/fmAw2XFGMjKWzPT/TpeZH4x2oPVJY9UNX0v18qcl//zWI38Om7Ym1y4Mbat+/Mqk0Uj5l/6egAYAG8TfJ/mJYx7fr4tjr8rx54h+oqqqG/rRFAAAAAAAAACslNG2wWj9PY9uZm46s6m/semEYDRYUYLRAAAAOGqxYKXvGhhMaTaXtxegO81FPuaZ8MErnSqLLxmbWP42YD3afY/krAuTr37uuOHyA09apYYAaKc0B1oHMbUz1CL9ig1vskXG/K01WVGfva71s++0LX1qqI2y65zk51+d6pXP6vygrTtS3vL55GPvOxKov/vKlLHJI3O//e7kMx858jro9HOTi65MGe4idH/rKa3nRsc7r7MGlGYz1b1+IHn3G+oXfOnTyc6zksOH6uebAymlpNpxenJti/S8pbj+q8c9rL755dZr3/DrR78+OJPccmPrtXNzS2oLADawf0gynWT09sf3LKVcUFXVwjTShZ487/E7+9kYAAAAAAAAAKyEwTKURpqZy8Ibjk73ORhtanZPy7mJ5mRf9wLaa6x2AwAAAKwhnQajDY8uvgZYUaUsEmY1ftLKNMKJr9HBR4ajPsiHXpRmM+X33pvc/7HJSXdKzr0k5Zdfl3L/x6x2awDUWSx8uJVBwWjU2zZR/77t23uTqjo+CO3V728djLZrSwdhxv3wyKel/Pyrk9POTrZsPxLW1c5D/1PKyFjKvR+ecvcHHQ1FS1IajZSL751y9VNTLr1vd6FoSbKpTRrcYu+H16DyvD9qPXnLt4/8Plt/x8kMDB75/R4PXXyjU87srrEk2XPLHV9W7/+r5M2/032NOifgnxMArAVVVe1P8vZ5w89b7LhSynlJHn3M0OEkb+pjawAAAAAAAACwIkopGW2M1c7NzPY3GG1f22C0TX3dC2ivx7P5AQAAWJc6vXhbMBqceEYnVrsDThSlg2C0Mc8n6FXZsj3lpW9KVVWLh1oCsLoEo9Fn21vkCx+aTW6bTjYfc87On3+kdTDaOSf3ubEWSinJo34i5VE/sWBu7qVPSv7xzUcHzjgv5Un/ZfmaOf+yI4Fghw8dP95oJHe52/Ltu0xKo5HqvEuTL35i4eR3rjvy+/z/1u+6/XtTuebZqd7yqvb7POLHU73ld5M9N3fe3C03Zu45D0mu+0ryrWs7P24xXvsCwFK8OMnjk9yekJonl1LeWVXV39QtLqWMJHl9kmPviPSnVVV9aVm7BAAAAAAAAIBlMtIczdTc3gXjM3PTfd1nanbhHknSSDMjLcLZgOXRwVWOAAAAbBhDnQajjSxvH0D/jfrglQ41OvjIUNAeLJlQNIATQLPZ23GDg4uvYUNqFYyWJDcecx7N566vsv9gmzqbVv91RHnhf095+duSH3tBynNfk/L6f0tZxgDlMr4puffDF05c8cCUTVuXbd9ltXlb7XD1upel+rf3JfturT/u9u9NZcLK1l8AACAASURBVPuulNf/W/s9xieT+z+m+94+/oH+hqIBAEtSVdWXk8xPRH17KeWZpZRjw89SSrkwyT8nudcxwzclecnydgkAAAAAAAAAy2e0RSjZ9NxUX/fZN7undnyiOek6EFhhPd7mHAAAgHVpYGjxNUkyNLq8fQD9NywYjQ6VDoLRxtokOgAArBfNHn+UOthh6DgbzsntgtH2JOftOPL1L759ruW6d/702rj3WSkluerqlKuuXrk9n/dHqQ7sT/71H44MXHa/lBf92Yrt33cn1QejJUn1sw9rfdzAMeGLd77oyPeq2cP1a0cnUp71ilR7bkn+57uS2dkemwUA1oDnJ9md5LsvFAaTvDrJC0spH0+yN8nZSS5LcuyZ2AeTPLqqqutXsFcAAAAAAAAA6KuRFsFoM3PTfd1n3+ze2vHx5qa+7gMsTjAaAAAAR3V68fbQyPL2AfTfsEBDOtQQjAYAkKT3YLQhwWjUGx8uGR9Opg4snLvx9vNopg9W+cAX648vJbnvecvX31pXJjen/NbfpNp7a3L4YMqW7avd0tIcnOntuEbzji9Ls5lq26nJDV+rXzs2mTI8mvLSN6Xac3PygXek+q1n9LZvj8qffnRF9wOA9aqqqtlSyjVJ/iTJDx8ztT3JQ1scdmOSJ1VV9cHl7g8AAAAAAAAAllPrYLT9fd1n3+ye2vGJpmupYKWtjdtJAwAAsDYMDXW2TsASnHj8vaVTpSy+ZusJHkAAANCJXoPROg0dZ0Pa3uK8mBv3VkmSf/j3+uC0JLnglGTzWAev19e5Mrn5xA9FS1LOu7S3A48JRkuSbN/Veu3o+NH9Nm1NTjmztz17VN6/L+W8S+74BQAsTVVV+6qqenySH0ryr22W3pzkD5Pctaqqv1+R5gAAAAAAAABgGY22CEabnu1vMNpUy2C0TX3dB1hcj2fzAwAAsC4NdBiMNuQibzjRlGZz8UWQJGXxeymshxACAIBF9RyM1uF7azakbRPJV76zcPzmqSO///Unq5bHvuPp7nu2rpzfY1BYY97zYNvO1mvH5iXxXXB50mwms7O97d2praekvPytKQODy7sPAGxQVVW9PcnbSyl3TnJZklOTjCf5VpJrk3yoqqqDq9giAAAAAAAAAPTVSItgtJm5fgej7a0dH2+2uDMusGwEowEAAHBUp4FnvV4cDsDaN/8i+zpbdyx/HwAAq63nYDRh4rS2dbx+/LvBaP/nq/XBaE/43pLzTynL1BWr4vIH9nbc/DDrHWe0XjsvGK1s2prq/o9L/uktve3drq2f/vVkbi45e3dyt3ulTJzU9z0AgONVVfWVJF9Z7T4AAAAAAAAAYLmNNEdrx6f7HIy2b3ZP7fh4c1Nf9wEW50p2AAAAjhoY6nDd4PL2AcDqmX+RfZ0t25e/DwCA1dZrMJr3zLSxZawkWRh+dsv+5NDhKl+8of64h1+8vH2x8srAQPK6/53qKd/b3YHzwqzLaWfXPKNuN7LwRLDyS69NtWV78i/vSm78euf7jk4k0/sWjt/7B1P+y5+kbNraeS0AAAAAAAAAAADowkhjrHZ8pu/BaHtrxycEo8GK6+AqRwAAADaKMjTc2cLBDgPUADjxNDr4yHCrYDQAYAPoJRht+66UUvrfC+vG5vrzcnLLVJX/+HZyeK5+fvepnlfrUTn3e1Ke+uIuD5r3nu3eP5jUfd8ZGkm2nbrw8KHhNJ79ijT+6j9SXvTnne35kCem8d6b0vjggYW/fuMdQtEAAAAAAAAAAABYVqMtgtGm56b7us/U7J7a8YnmZF/3ARYnGA0AAICjOg08Gxhc3j4AWD3zL7Kvs3XH8vcBALDaeglGe8AP9b8P1pWt4/Xjt+xPPnd9/VyjJOd5Cb5ulSf9UvK4Z3R+wLww63Lyack9H7Zw3fc9ImV4tH2t+zwyOe3sxXt8+I913h8AAAAAAAAAAAD02UiLYLSZuf1926Oqquyb3Vs7N9Hc1Ld9gM4IRgMAAOCoToPRmoLRANatxiIfGQ6PJhObV6YXAIDV1Gx2fUj5yZctQyOsJ1vqz8vJzVPJZ6+vaufO2Z4MD5Zl7IrVVp71ipRn/EaHixe+Zyu/9Nrkyu9PSjnyveuqq1Oe90eLlxoaTnn525NzLm695vn/LeWSqzrrDQAAAAAAAAAAAJbBSKP+RqEzs/0LRpuZ25+5zNbOjQtGgxXXw23OAQAAWLcGhztbNyAYDWDdKosELmzflbLYGgCA9aDZ3Y9Sy0v/MsX7ZRaxdbx+/Jb9yeeur5+7aOfy9cPaUBqN5PE/m+rW7yR/8Yr2i2tCG8vmbSmv+NtU+/cls4dSJrd0vvfZu1Ne/39Sfef6ZP/eZOKkpKqSudnkTjuP9AYAAAAAAAAAAACraLRZfwLmgWomc9VsGqX7GyLPt292T8u5iebkkusD3RGMBgAAwFEDQx2u83YSYN0qi1z0vuP0lekDAGC1dROMNrkluedDl68X1o0tYyVJtWD8xr3Jv3xx4XiSXLhTMPFGUe50Ss2zY/6i1u/ZythE73tv25lECh8AAAAAAAAAAABrz2hjtOXczNx0xpq9nz/3Xftm97acG29uWnJ9oDtu7QsAAMBRQ8OdrRsYXN4+AFg9jUU+MtwuGA0A2CA6DUYb35TyK/89ZWRsefthXThtS/34wcPJdbfWz128a/n6YY3Zsn3xNYu9ZwMAAAAAAAAAAIB1ZqTR+jzdmbnpvuyxb3ZP7XgzAxlpE8wGLI8ubnMOAADAujfYaTDa0PL2AfRm95XJv3904fg5F698L5ywSimp2i04+bSVagUAYHUNtzmB4eJ7p/zsq5JbbkguuCJlcvPK9cUJ7cJTuls/NJA8ZHdZnmZYezafvPiaIhgNAAAAAAAAAACAjWW0TTDa9NxUkg7Ov1vEVItgtInmZEpxLiesNGfMAgAAcNTgYGfrBjpcB6yocs2z68d/9JdWuBNOeI3WHxuWiU0r2AgAwCo668LWc+ddknLO3VLu/iChaHRlYqTkzts6X//Q3cnmMSfTbBidBKO1eb8GAAAAAAAAAAAA69FIm2C0mdnpvuyxr0Uw2njTtVSwGpwxCwAAwFGDw52tE4wGa9N9Hpnc91HHj9330cn3PXx1+uHEVdp8bDgyvnJ9AACsojK5Obn8/vVzZ5y/wt2wntz11M7X/tAVQtE2lFPPSoYW+Xyu3fs1AAAAAAAAAAAAWIcGymCaGaidm5nb35c9pmb31o6PNyf7Uh/oTv3feAAAADYmwWhwQisDg8mL35h87P3JFz6RnH9JcvkDUwZ8BESXGo1ktsWcYDQAYAMp/+kXUn3s/ccPjk4k93rY6jTEurD7tJK//VTV0dp7ni0YbSMpY5Op7vvo5B/f3HpRw3MCAAAAAAAAAACAjaWUktHmWPbN7lkwN92nYLS62kky0dzUl/pAd9xKGAAAgKMmN3e0rAhGgzWrDAymXPn9KT/6vJQrHyIUjd6UNhfajwpGAwA2jnLFA1Oe+5pk4qQjA2ecl/Lyt6XsOGN1G+OEtvvUztaNDiZn3ml5e2HtKc/9/UUWOM0DAAAAAAAAAACAjWekMVo7PtO3YLS9teOC0WB1uDIWAACAozZv62ydYDSAda5NMNrI2Mq1AQCwBpRHPi15xI8n+25NJrektAuRhQ5cfFpJUi267vxTkmbD822jKWMT7Z8dDcFoAAAAAAAAAAAAbDwjjfprmqbnpvtSf2p2T+34xMBkX+oD3XHGLAAAAEedJBgNgCSzh1vPjY6vXB8AAGtEaTRSNm0VikZf3PW05OJdi6+7aKfnGzUEowEAAAAAAAAAALABjbYIRpuZm+pL/X0tgtHGm5v6Uh/ojjNmAQAAuEMZHEomTlp8oWA0gPWtXTDaiGA0AABYilJK/vwpi/+o/sKdK9AMJ57iNA8AAAAAAAAAAAA2npEWwWjTs9N9qT81u7d2fLwx2Zf6QHecMQsAAMDxNm9bfI1gNICNa6T+hwgAAEDn7rar5PvOab/mwp1lZZrhxNJornYHAAAAAAAAAAAAsOJaBaPNzO1fcu25aq5lMNrEwKYl1we6JxgNAACA453UQTBaUzAawIY1Or7aHQAAwLpwzvb2wWf3PHuFGuHE0nCaBwAAAAAAAAAAABvPaHP5gtFm5vZnLnO1cxNNwWiwGpwxCwAAwPEmNy++ZkAwGsCGNSIYDQAA+uHsk1vPXXnnZOfm9sFpbFDFaR4AAAAAAAAAAABsPCON+mC06T4Eo+2b3dNybqI5ueT6QPecMQsAAMDxBoc7WDO0/H0AsDaNCkYDAIB+eOju1sFn11whFI0WGk7zAAAAAAAAAAAAYOMZaYzWjs/MTS+5drtgtPHmpiXXB7rnjFkAAACONzSy+JqBweXvA4A1qfg3AAAA+uLyM5OLdi4cHxpIHne5YDRaKE7zAAAAAAAAAAAAYOMZbYzVjs/M7V9y7anZvbXjA2Uww6WDa26BvnPGLAAAAMcbHF58TXNg+fsAAAAAWMdKKfmDJzbSmJeB9oIfLDl9q2A0Wmg4zQMAAAAAAAAAAICNZ6RFMNr07NKD0fbN7qkdH29OphTndMJqcCU7AAAAxxvuIBhtYHD5+wAAAABY5+5zXsmnX9zIH3ygysyh5LGXlTz0rk6goQ3BaAAAAAAAAAAAAGxAo836YLSZuX4Eo+2tHZ9oblpybaA3gtEAAAA43qBgNAAAAICVcuHOklf/iDA0OlQEowEAAAAAAAAAALDxjDRGa8cPVgcyW82mWZo9156a3VM7PtGc7LkmsDTOmAUAAOB4QyOLrxkcWv4+AAAAAIDjNZzmAQAAAAAAAAAAwMYz2hhvOTczt39Jtfe1CEYbb25aUl2gd86YBQAA4HiDw4uvaQ4ufx8ArD3D9XdWAQAAYIUUp3kAAAAAAAAAAACw8Yw0Wl/XtNRgtKnZvbXjE4LRYNU4YxYAAIDjlKGRxRcNCEYD2JBO2rbaHQAAAGxsDad5AAAAAAAAAAAAsPGMNMZazk3PTi+p9r7ZPbXj483JJdUFeueMWQAAAI43NLT4GsFoABvT3R+42h0AAABsbMVpHgAAAAAAAAAAAGw87YLRZuamllR73+ze2vGJ5qYl1QV654xZAAAAjjc0sviagYHl7wOA1fODP1Y7XJ743BVuBAAAgOM0mqvdAQAAAAAAAAAAAKy4wcZgBspg7dz03PSSak/N7qkdn2hOLqku0DvBaAAAABxvcHjxNQP1Hx4BsD6UJ/xcsnXH8YOPeErK6eeuTkMAAAAc0XCaBwAAAAAAAAAAABvTSGOsdnxmbn/PNeeq2UzN7qudG29u6rkusDQDq90AAAAAa8zQyOJrBoaWvw8AVk0547zkv30wee+bU934tZRL7pM88JrVbgsAAIBSVrsDAAAAAAAAAAAAWBWjjbHsm71twfjM3HTPNffPTaXKXO3chGA0WDWC0QAAADje0PDiawYGl78PAFZVOeXM5EefF5fcAwAArB1FMBoAAAAAAAAAAAAb1EhjtHZ8enaq55pTs3tbzo03J3uuCyxNY7UbAAAAYI0RjAYAAAAAAAAAAAAAAAAAwBoy0hirHZ+Zm+655r42wWgTzU091wWWRjAaAAAAxxsUjAYAAAAAAAAAAAAAAAAAwNox2mwVjLa/55pTs3tqxwfLUIZKB9fbAstCMBoAAADHGxpZfI1gNAAAAAAAAAAAAAAAAAAAVshIoz4YbXoJwWj7WgSjjTcnU0rpuS6wNILRAAAAON5I/QdDxxkYWv4+AAAAAAAAAAAAAAAAAAAgyWiLYLSZpQSjHa4PRptobuq5JrB0gtEAAAA43hnnJc2B1vOlpDSbK9cPAAAAAAAAAAAAAAAAAAAb2sgyBKNNze2tHReMBqtLMBoAAADHKWOTye4rWy8YGFy5ZgAAAAAAAAAAAAAAAAAA2PBGWwSjTc/2Hoy2b3ZP7fh4c7LnmsDSCUYDAABgoZ1ntZ4TjAYAAAAAAAAAAAAAAAAAwAoaaYzWjs/MTfdcc2p2b+34RHNTzzWBpROMBgAAwEJDw63nmoLRAAAAAAAAAAAAAAAAAABYOaPNsdrxmbn9Pdfcd3hP7fh4c7LnmsDSCUYDAABgocE2wWgDgtEAAAAAAAAAAAAAAAAAAFg5I436YLTppQSjzdYHo000N/VcE1g6wWgAAAAsNNQmGG1waOX6AAAAAAAAAAAAAAAAAABgw2sVjHaoOpjD1aGeak7N7a0dF4wGq0swGgAAAAsNjbSeGxhYuT4AAAAAAAAAAAAAAAAAANjwRhqjLedm5qa7rjdXzWb/7L7aufHmZNf1gP4RjAYAAMACZXC49WRzcOUaAQAAAAAAAAAAAAAAAABgwxttjLecm5ntPhht/+xUqlS1cxPNTV3XA/pHMBoAAAALDQ61nhsQjAYAAAAAAAAAAAAAAAAAwMoZaY62nJuem+q63r7ZPS3nxpuTXdcD+kcwGgAAAAsNj7SeE4wGAAAAAAAAAAAAAAAAAMAKGm2MtZybmZvuul67YLSJ5qau6wH9IxgNAACAhQaH28wNrVwfAAAAAAAAAAAAAAAAAABseM0ykMFSf43rzNz+ruu1CkYbKsMZarS5zhZYdoLRAAAAWKhdMFpzcOX6AAAAAAAAAAAAAAAAAACAJKONsdrx6R6C0aZm99aOjzcnu64F9JdgNAAAABYaahOMNiAYDQAAAAAAAAAAAAAAAACAlTXSIhhtZrZ/wWgTzU1d1wL6SzAaAAAACw2NtJ4bGFi5PgAAAAAAAAAAAAAAAAAAIMlIs0Uw2tx017X2ze6pHR9vTnZdC+gvwWgAAAAsNDjUem5gcOX6AAAAAAAAAAAAAAAAAACAJKON0drx6bmprmu1CkabaG7quhbQX4LRAAAAWGhwuPXcQJvQNAAAAAAAAAAAAAAAAAAAWAYjjbHa8Zm56a5rCUaDtUswGgAAAAsNjbSeG5tcuT4AAAAAAAAAAAAAAAAAACDJaItgtOm5/V3XmprdWzsuGA1Wn2A0AAAAFhoabj03LhgNAAAAAAAAAAAAAAAAAICVNdIiGG2mj8Fo403X0cJqE4wGAADAQoNtgtHGfKADAAAAAAAAAAAAAAAAAMDKahWMNj3bfTDavtk9tePjzU1d1wL6SzAaAAAACw0OtZwqgtEAAAAAAAAAAAAAAAAAAFhho836YLSZue6C0War2eyf21c7N9F0HS2sNsFoAAAALDQ03HpOMBoAAAAAAAAAAAAAAAAAACtspNEqGG26qzr7Z/e2nJtobuqqFtB/A6vdAAAAAGtQaZOjfadTVq4PAAAAAAAAAAAAAAAAAABIMtIYrR3fP7cvew7f2nGdGw9e13JOMBqsPsFoAAAALHTyacmW7cktNx4/PjSc3P1Bq9MTAAAAAAAAAAAAAAAAAAAb1mhjrHZ8anZvnv+lJ/dlj/HmZF/qAL1rrHYDAAAArD2l0Uiu/vGFEw/+kZSJk1a+IQAAAAAAAAAAAAAAAAAANrSRFsFo/TJcRjLYGFrWPYDFDax2AwAAAKxN5cdflAyPpfqHNyZzc8l9Hpny1JesdlsAAAAAAAAAAAAAAAAAAGxAyx2MNt6cXNb6QGcEowEAAFCrlJL8519M+c+/uNqtAAAAAMCGUZ7/31L9xk8unHjwj6x8MwAAAAAAAAAAALCGbB3clkaamcvsstTfPnTqstQFutNY7QYAAAAAAAAAALjdlQ9JRicWDJf7P2YVmgEAAAAAAAAAAIC1Y6w5kd3jly1b/btvus+y1QY6JxgNAAAAAAAAAGCNKNt2przib5PTzj4ycNKdUn7md1Kuunp1GwMAAAAAAAAAAIA14Mk7fyZ3Hb8ijT5GJ400RvOIbU/IPTY9oG81gd4NrHYDAAAAAAAAAAAcVS6+V8qbP5fq5huSzSenNNz3DgAAAAAAAAAAAJJktDmen971gkzP7s+th29acr1GaWTb4ClplmYfugP6QTAaAAAAAAAAAMAaVLbuWO0WAAAAAAAAAAAAYE0abY5ltDm22m0Ay0AwGn1VShlMcu8kZyTZmWRfkuuSfKKqqq+uYmsAAAAAAAAAAAAAAAAAAAAAAACsYYLRNrBSypuT/PC84Wurqjqrh1onJ3nJ7fW2tljz4SS/XVXVX3VbHwAAAAAAAAAAAAAAAAAAAAAAgPWtsdoNsDpKKVdnYShar7UeluQzSZ6eFqFot7tXkreXUt5YShnvx94AAAAAAAAAAAAAAAAAAAAAAACsDwOr3QArr5SyOckf9qnW/ZK8K8nQMcNVko8n+XKSzUkuTbLtmPknJtlUSnlUVVVz/egDAAAAAAAAAAAAAAAAAAAAAACAE1tjtRtgVbwyyam3f7231yKllF1J3pHjQ9E+lGR3VVVXVFV1TVVV359kV5LnJDl0zLpHJPnVXvcGAAAAAAAAAAAAAAAAAAAAAABgfRGMtsGUUh6U5Cm3Pzyc5FeWUO4lSbYc8/jDSR5UVdXnjl1UVdWBqqp+L8k1847/uVLKmUvYHwAAAAAAAAAAAAAAAAAAAAAAgHVCMNoGUkoZT/LaY4Z+O8kne6x1bpInHTN0MMmTq6qaaXVMVVXvSvKGY4aGk7yol/0BAAAAAAAAAAAAAAAAAAAAAABYXwSjbSy/nuSs27/+cpIXL6HWE5I0j3n8jqqq/l8Hx/3mvMfXlFJGltAHAAAAAAAAAAAAAAAAAAAAAAAA64BgtA2ilHKvJM84Zugnq6qaXkLJR897/PpODqqq6nNJPnrM0HiS719CHwAAAAAAAAAAAAAAAAAAAAAAAKwDgtE2gFLKcJLX5eif9xuqqvqnJdQ7Jcn3HDN0OMmHuijxgXmPH9ZrLwAAAAAAAAAAAAAAAAAAAAAAAKwPgtE2hhcnOf/2r7+d5OeXWO+u8x5/qqqqqS6O//C8x7uX2A8AAAAAAAAAAAAAAAAAAAAAAAAnOMFo61wp5bIkzz1m6GeqqrppiWUvmvf4P7o8/kuL1AMAAAAAAAAAAAAAAAAAAAAAAGCDEYy2jpVSBpK8LsnA7UN/X1XVm/pQ+px5j7/W5fHXznt8p1LKliX0AwAAAAAAAAAAAAAAAAAAAAAAwAlOMNr69vwk33P711NJnt6nupvnPb6xm4OrqtqXZGbe8ElL6ggAAAAAAAAAAAAAAAAAAAAAAIAT2sBqN8DyKKVclOQFxwy9sKqqr/ap/MS8x9M91JhOMnLM48ne2zmqlLI9ycldHnaXfuwNAAAAAAAAAAAAAAAAAAAAAABA7wSjrUOllEaSP00yfPvQx5L8Xh+3mB+MNtNDjekkW9rU7NVPJ3lRn2oBAAAAAAAAAAAAAAAAAAAAAACwQhqr3QDL4jlJ7nH714eTPLWqqtll3K9aoWMAAAAAAAAAAAAAAAAAAAAAAABYpwSjrTOllLOT/OoxQ79dVdUn+7zNvnmPR3uoMf+Y+TUBAAAAAAAAAAAAAAAAAAAAAADYQAZWuwH6p5RSkrw2ydjtQ19O8uJl2GotB6P9QZK3dXnMXZL8dZ/2BwAAAAAAAAAAAAAAAAAAAAAAoAeC0daXpyV5wDGPf7Kqqull2Oe2eY9P7ubgUspEFgaj3bqkjm5XVdWNSW7ssp9+bA0AAAAAAAAAAAAA/P/27jxaurSg7/3vaZqGZupGhmbmZVQGBwheFTC2BlTkCjJcMWhCKw5xSjDxxqWYFTC5eHMdouvGKFeRJohcCWGSOSgNAkHFNAKCSCOgDI0NNGA3NE3Dkz/qvO+ps6tOndpVu2rvqv35rLUX7HprD2ef53zr9PPutV8AAAAAAAAAWIMHo+2Xp079/5cnuayUcuqEbW7TWD97zjYfrrVeO7X+nsaf33nJ8zvu/Z+otV7Zch8AAAAAAAAAAAAAAAAAAAAAAADsEQ9G2y/nTv3/b0vyvhX2cfs5290vyVun1t/V+PO7tzzGXRvr72y5PQAAAAAAAAAAAAAAAAAAAAAAAHvmrL5PgJ30jsb6V5RSbtRi+wedsD8AAAAAAAAAAAAAAAAAAAAAAABGxoPRaK3W+pEkb5t66ewkD26xiwsb669Y95wAAAAAAAAAAAAAAAAAAAAAAADYbR6MtkdqrefXWkubJck3NnbzgTnve+ucw72wsf69y5xjKeXLknzN1EtXJ3n10l8kAAAAAAAAAAAAAAAAAAAAAAAAe8mD0VjVc5J8YWr90aWUeyyx3U811p9Xa72mu9MCAAAAAAAAAAAAAAAAAAAAAABgF3kwGiuptb4nybOmXjonycWllBset00p5ZFJLpp66dokT93ICQIAAAAAAAAAAAAAAAAAAAAAALBTPBiNdfzbJFdOrT8wyWtKKV82/aZSyg1KKT+e5L82tv+lWusHNnyOAAAAAAAAAAAAAAAAAAAAAAAA7ICz+z4Bdlet9YOllEcneVWScw5eflCSd5ZS/izJXyc5L8n9k9yqsflLk/ybbZ0rAAAAAAAAAAAAAAAAAAAAAAAAw+bBaKyl1npJKeVRSS7O4cPPSpIHHCzzPDfJD9Rav7D5MwQAAAAAAAAAAAAAAAAAAAAAAGAXnNX3CbD7aq0vT3LfJL+R5MoFb31zksfWWh9fa716KycHAAAAAAAAAAAAAAAAAAAAAADATji77xOgX7XWS5KUDvbzd0l+uJTyL5I8KMmdk9wmydVJPpTk0lrr+9Y9DgAAAAAAAAAAAAAAAAAAAAAAAPvJg9HoVK312iSv7fs8AAAAAAAAAAAAAAAAAAAAAAAA2C1n9X0CAAAAAAAAAAAAAAAAAAAAAAAAAB6MBgAAAAAAAAAAAAAAAAAAAAAAAPTOg9EAAAAAAAAAAAAAAAAAAAAAAACA3nkwGgAAAAAAAAAAAAAAAAAAAAAAANA7D0YDAAAAAAAAAAAAAAAAAAAAAAAAeufBaAAAAAAAAAAAAAAAAAAAAAAAAEDvPBgNAAAAAAAAAAAAAAAAAAAAAAAA6N3ZfZ8ADMA50yuXXXZZX+cBAAAAAAAAALCWOfc9mwCVcQAAIABJREFUnDPvfQCwRe7RAwAAAAAAAAB2nvvztqfUWvs+B+hVKeURSV7c93kAAAAAAAAAAGzAI2utL+n7JAAYL/foAQAAAAAAAAB7yv15G3JW3ycAAAAAAAAAAAAAAAAAAAAAAAAA4MFoAAAAAAAAAAAAAAAAAAAAAAAAQO9KrbXvc4BelVLOS/INUy/9bZJr19jl3ZK8eGr9kUneu8b+ANrSIWAItAjomw4BfdMhoG86BAyBFgF9G2uHzklyx6n119VaP9XXyQCAe/SAPaRDQN90COibDgF90yFgCLQI6JsOAX0ba4fcn7clZ/d9AtC3g7i8pKv9lVKaL7231voXXe0f4CQ6BAyBFgF90yGgbzoE9E2HgCHQIqBvI+/QpX2fAACc5h49YN/oENA3HQL6pkNA33QIGAItAvqmQ0DfRt4h9+dtwVl9nwAAAAAAAAAAAAAAAAAAAAAAAACAB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9M6D0QAAAAAAAAAAAAAAAAAAAAAAAIDeeTAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgd2f3fQKwh65I8tTGOsA26RAwBFoE9E2HgL7pENA3HQKGQIuAvukQAOwnn/FA33QI6JsOAX3TIaBvOgQMgRYBfdMhoG86xEaVWmvf5wAAAAAAAAAAAAAAAAAAAAAAAACM3Fl9nwAAAAAAAAAAAAAAAAAAAAAAAACAB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9M6D0QAAAAAAAAAAAAAAAAAAAAAAAIDeeTAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgdx6MBgAAAAAAAAAAAAAAAAAAAAAAAPTu7L5PgFmllOsluXuSeye5XZLzknwuyZVJ3pvkLbXWqzs+5vWTPCjJnZLcNslVST6c5NJa6/u7PNa2lFLuk+SrktwqyQ2SXJ7kg0neWGu9ps9z26ZSys2T3CfJPZJ8SZIbJvlkkiuS/Fmt9b09nt6MUspdMvm+3S7JTZJ8JMkHkryp1vr5Ps9tTHSoGzo0oUOsSou6oUUTWnTscYyPBXSoG8bZxK51iGHQoW7o0IQOHVVKuWMm1+IOSW6Z5Nwk1yb5VJK/yeSaXNHfGQ6DDnVDhyZ0iFVpUTe0aEKLWIUOdUOHJnRoPuMD6IPP+G5o+MSufca7N2YYdKgbOjShQ6xCh7qhQxM6dOxxjI8FdKgbxtnErnWIYdChbujQhA4d5f685WlRN7RoQotYhQ51Q4cmdIhV6FA3dGhCh+bb6fFRa7UMYMkkmE9K8tJM/uO+LliuS/KKJA/v4Li3SvKfk3x8wfHemOQxax7nrkkel+QXklyS5NONY7y/o+t40yRPTvKhBV/Pp5M8O8ndevx+b+x6JLl+km9J8p+SvOOEsVQPrtXPJblNzz8Dj03ypgXn+fGDsXrLFfZ90jU4aTnV57XZ4vdAh7q5jjqkQ9P7PNVBg6aXi/q8Rlv6PmhRN9dRi7Ro58dHj98DHermOu7EONOh3sbHjZM8OMlPJHlOkr9K8sXGsS7q6zr0veiQDunQxq7HPZI8LclrM/lLjZOuR03yP5P8aJIb9HVNevo+6FA311GHdGje/pdpz6LlVF/XpofvhRZ1cx21SIum93uqgw5NLxf1dY229H3QoW6uow7p0M6PD4vFsl+Lz/hxNdxn/Nzzdo9ez4sO6ZAOuUev70WHdEiH3J/X96JDOjTmDm1xfLg/b/H10aFurqMO6VBz3+7Pa3e9tKib66hFWjRv/8v0Z9Fyqq9rs+Xvgw51cx11SIem93uqgwZNLxf1dY229H3QoW6uow7p0M6PjxO/jr5PwFKT5HfX+ED7/SQXrHjchyX5aItj/U6SG7fY/4VJXnXCh0JnP5hJviaTp3Au+/VcneSHt/h93vj1OLgGn1hxLF2Z5Ht6GP83SfLcFud5eZJvaXmMVX++Ti+ntn1devg+6JAO6dAGOpTu/0P2cdu+Plv+XmiRFmnRBlq0S+Oj70WHdGiMHdrm+Mhk4vjtmUxIn3Ssi7Z1DYa06JAO6dDmxkeS71/j5+vdSb5mW9ekz0WHdEiHNjs+1vj5Or2c2tZ16XPRIi3Soo1dj1MddGh62dv56uiQDunQ6MeHxWLZz8Vn/Dga7jP+2HN2j94AFh3SIR1yj17fS3RIh3TI/Xk9LzqkQ2Ps0DbHR9yft8w10iEd0qENjY+4P6/NtdIiLdKiDY6PNX6+Ti+ntnVd+lp0SId0aGPX41QHDZpezFXr0DI/gzqkQzs5PtosZ4chuOcxr38oyXsyievZmTz17yuTnDX1nv89yetLKd9Qa7182QOWUi5M8qIk50y9XDN5yvpfJzk/yf2S3HLqz787yc1KKd9Ra/3iEof5qiTfvOw5raOU8pBMngZ6g8YffSDJ2zL5IbxDJj+81z/4sxsl+c+llLNqrb+2hdPcxvW4VZKbz3n92kwmty/P5Impt0jygIP/Pe38JM8updy61vrLGz7PJEkp5XpJfi/JtzX+6Ioklx6c690yGYvl4M8uSPLiUspDaq1v2MZ5joQOrUmHztChzflMJk+03mdatCYtOkOL5h9nF8ZH33RoTTsyznToqK2NjySPT3Lelo61q3RoTTp0hg6drGYyyX9ZJn+x8JlM/sXcuyS5Tw7HRzL52fyDUsrDa62v2/aJbpkOrUmHztAh1qFFa9KiM7Roc/Z9vlqH1qRDZ+jQHDsyPoD95DN+TTvScJ/xDTt2b8y+06E16dAZOrQ55jx0aCEdOkOH5h9nF8ZH33RoTTsyznToKPfnDYsOrUmHztChk7k/73hatCYtOkOLWJUOrUmHztChzTFXrUML6dAZOjTHjoyP5fX9ZDZLTZK35PApev8zyY8ludsx7719kqdn9ul7f5SkLHm8O2T2qYdvSHKvxvtukOSfZ/JDP/3epy15nCfNOc+a5JpMJjQ6eWJhJk9PbT4V8bIkD53z3psn+X8b7/3CvPdu4Pu88euRyQf56X38fZJnJPlHSc6d896S5FGZxKt5Thu/Hgfn8AuN4157MP7Pabzv3kne1Hjvx5LcdsnjTG/35oMx02Y5exvXo88lOqRDOrSRDmXyH14nNea45Q2N4128jWvS5xIt0iIt2tjvRLsyPvpedEiHxtihbY2Pg2N98phjfXDOn1206a99iIsO6ZAObXR8PDHJX2byu9fDk9x8wXvPT/IvM/kLkOnjfyjJeZu+Jn0uOqRDOrTx34em92Wu+vjrpEVapEWbuR7mq5e/VjqkQzo08vFhsVj2c/EZP46G+4yfe77u0RvIEh3SIR3aSIdizqPN90KHdEiHNvT70K6Mj74XHdKhMXZoW+Pj4Fjuzzv5GumQDunQ5saH+/OWv1ZapEVatNnfiab3Za56/jXSIR3Soc1cD3PVy18rHdIhHRr5+Gj1NfV9ApaaJH+aydP2HtBimx+ZM+C/a8ltn9HY7o1Jbrjg/d8x5wfrzksc50kH0b80yW8m+cEk98/kiYEXdviD+dzGvt6T5NYnbPOvG9v8RZLrbfj7vPHrcRDujyb5V0luvOQ2t0jyzsbx35UlfxFY43rcNbO/FDxywfvPzexfNP7Gksea3uaSTX5du7rokA7p0GY7tMK53T7JdY1jff0mr8cQFi3SIi3aXIt2ZXz0veiQDo20Q1sZHwfH+mQm/9LCy5I89eA6XXDwZ5c0jnXRJr/uoS46pEM6tNHxcf0VtvmqJFc1zuGnNnk9+l50SId0aOO/D03v65JNfl27vGiRFmnRZlu0wrmNbr5ah3RIh4wPi8Wyn4vP+HE03Gf8zHHdozegRYd0SIc226EVzs2cx3Lb6NDhcXTo8Bg6tKPjo+9Fh3RopB1yf96AFh3SIR1yf94QFi3SIi1yj17fiw7pkA65P6/vRYd0SIeMj1ZfU98nYKlJcmrF7Z7fGFwvW2KbezQ+GD+X5B5LbHdx41i/vcQ2Nz/uA6HDUN01kycOTu/rwUtu+4eN7b5vw9/nbVyPWy0b7MZ2XznnOn71hq/HsxrHe+YS29zzYMye3ubzSe66xHbTx7lkk1/Xri46pEM6tNkOrXBuT26c219t8loMZdEiLdKizbRol8ZH34sO6dBIO7Tx6zG1v2P/Bd248er0dTi14nY6pEPN/ehQd+f3c41zePO2z2HLX++pFbfTIR1q7keH5u9vel+XbPLr2uVFi7RIizZzPdY4t9HNV+uQDumQ8WGxWPZz8Rk/job7jJ85pnv0BrTokA7p0GY7tMK5mfNYfjsd0qHmfnRoR8dH34sO6dBIO+T+vAEtOqRDOrSZ67Hm+Y3q/ryDr/nUittpkRY196NF8/c3va9LNvl17eqiQzqkQ5u5Hmucm7nq5bfTIR1q7keHdnR8tFnOCr2rtb5/xU1/rbH+jUts8/gk15taf0Gt9T1LbPcfGuvfWUq54aINaq1X1lqvWWLf63h4cmQcv7nW+oYlt/3Fxvr3dnNK823jetRar6i1Xr3Cdn+epHndlhlPKymlnJvksY2Xm2NsRq31r5K8aOqlszMZ06xJh9aiQ0ePoUNrKqWUzI6FZ3R5jKHSorVo0dFjaNFROzM++qZDa9mZcaZDM8fcxvg4fayPbOM4u0yH1qJDR4+hQ915eWP97r2cxZbo0Fp06OgxdIiVadFatOjoMbRoTWOdr9ahtejQ0WPo0FE7Mz6A/eQzfi0703Cf8YeGfG/MWOnQWnTo6DF0aE3mPFrTIR1qHkOHjtqZ8dE3HVrLzowzHZo5pvvzBkSH1qJDR4+hQ90Z1f15iRatSYuOHkOLWIkOrUWHjh5Dh9Zkrro1HdKh5jF06KidGR9teDDabru0sX5uKeX8E7Z5VGP9mcscqNb6riR/PPXSjZN88zLbbtg/bKy/qsW2f5Dk2qn1B5ZSbrv+Ke2s5ni63QaP9S1JbjS1/j9qrX+55LbNMfvobk6JFemQDnVJhya+Icndptavy+RfrON4WqRFXdrHFhkfm6dDxlmXttkh9ocO6VCXdOioTzTWb9rLWQyfDulQl3SIVWmRFnVJiybMV7ejQzrUpX3skPEB7Cqf8RrepX38+2g2T4d0qEs6NGHOox0d0qEu7WOHjI/N0yHjrEv7OPfK5umQDnVJh45yf97ytEiLuqRFrEKHdKhLOjRhrrodHdKhLu1jh/ZyfHgw2m67bs5r5xz35lLKbZJ8ZWP7N7Y43iWN9Ye12HZT7tBYf8eyG9ZaP5fksqmXzsowvqa+NMfTsWOpA9/aWL+kxbZ/lKPner9SygVrnxGr0iEd6pIOTTyxsf6yWuvlHe5/H2mRFnVpH1tkfGyeDhlnXdpmh9gfOqRDXdKho+7cWP9wL2cxfDqkQ13SIValRVrUJS2aMF/djg7pUJf2sUPGB7CrfMZreJf28e+j2Twd0qEu6dCEOY92dEiHurSPHTI+Nk+HjLMu7ePcK5unQzrUJR06yv15y9MiLeqSFrEKHdKhLunQhLnqdnRIh7q0jx3ay/HhwWi77e6N9euSfGzB++/bWH9brfXqFsd7U2P9Pi223ZQvaax/suX2zfd/+Rrnsuua4+kjGzxWcyz+j2U3PBizb2+8PISxOFY6pENdGn2HSinnJXlM4+VndLHvPadFWtSlfWyR8bF5OmScdWmbHWJ/6JAOdUmHjvqnjfXX9nIWw6dDOtQlHWJVWqRFXRp9i8xXr0SHdKhL+9gh4wPYVT7jNbxL+/j30WyeDulQl0bfIXMeK9EhHerSPnbI+Ng8HTLOurSPc69sng7pUJd06Cj35y1Pi7SoS1rEKnRIh7o0+g6Zq16JDulQl/axQ3s5PjwYbbc9trH+llrrFxe8/96N9cvmvut47z1hf324trF+g5bbN98/hK9p60opN0vy0MbLf7LBQ96rsb7NsXinUsozSyl/UUq5spRybSnlowfrv1NK+cFSSjP4HE+HdKgTI+vQIv84yblT6x9J8oqO9r3PtEiLOrHHLTI+Nk+HjLNO9NAh9ocO6VAndOioUsqPJvmeqZeuS/IrPZ3O0OmQDnViZB0yV909LdKiToysRYuYr25Ph3SoE3vcIeMD2FU+4zW8E3v899HzmPfolg7pUCdG1qFFzHm0p0M61Ik97pDxsXk6ZJx1Yo/nXtk8HdKhTujQUe7Pa02LtKgTI2uRuepu6ZAOdWJkHVrEXHV7OqRDndjjDu3l+PBgtB1VSrlJkic2Xn7hCZs1n1j4Ny0P+4HG+i1KKTdvuY+ufbyxftuW2zff/6VrnMsu+6EkN5pa/1Q29HT9g/9IbP6HYtux2Hz/PVpse5ckF2US4fOTXD/JrQ/WvzvJ05P8TSnlPx78nHEMHTpDh7oxpg4t0vyZelat9bqO9r2XtOgMLerGvrbI+NggHTrDOOvG1jrE/tChM3SoG6PuUCnlxqWULy2lPKGU8rok/6nxlp+utb6tj3MbMh06Q4e6MaYOmavukBadoUXdGFOLFjFf3YIOnaFD3djXDhkfwM7xGX+GhndjX/8+eh7zHh3RoTN0qBtj6tAi5jxa0KEzdKgb+9oh42ODdOgM46wb+zr3ygbp0Bk61I1Rd8j9eavTojO0qBtjapG56o7o0Bk61I0xdWgRc9Ut6NAZOtSNfe3QXo4PD0bbXT+f5DZT659M8lsnbHN+Y/3v2hyw1npVkmsaL5/XZh8b8K7G+tcuu2Ep5U5Jbtd4ue+vZ+tKKaeS/JvGy79aa20+DbIrzXH4mVrr1S330Ry7XX/fbpzkSUn+rJRyn473vU90aEKH1qRDE6WUL0/ygMbLz1h3vyOgRRNatKY9b5HxsVk6NGGcramHDrE/dGhCh9Y0tg6VUs4vpdTpJclVSf4yycVJ/uHU269K8oO11l/s4VR3gQ5N6NCaxtahJZmrXp4WTWjRmrRownz1SnRoQofWtOcdMj6AXeQzfkLD17Tnfx+9KvMey9GhCR1akw5NmPNYiQ5N6NCa9rxDxsdm6dCEcbamPZ97ZbN0aEKH1jS2Drk/r3NaNKFFaxpbi5Zkrno5OjShQ2vSoQlz1SvRoQkdWtOed2gvx4cHo+2gUsqjkvxY4+Un11o/ccKmzacVf3aFwze3uekK++jS6xrrjyml3GjuO2f90zmv9f31bFUp5Zwkv5ejX/f7k/w/GzxsX+PwuiSXJPnZJI9Icv9M/tWm+yV5ZJJfzOwvM/dM8ppSyp1XOMe9pkNH6NAaRtahkzSfVP26WutlHex3b2nREVq0hhG0yPjYEB06wjhbQ08dYg/o0BE6tAYdOtZHkzw5yV1qrb/Z98kMkQ4doUNrGFmHzFV3TIuO0KI1jKxFJzFf3YIOHaFDaxhBh4wPYKf4jD9Cw9cwgr+Pnmbeo0M6dIQOrWFkHTqJOY8WdOgIHVrDCDpkfGyIDh1hnK1hBHOvbIgOHaFDa9ChY7k/bwladIQWrWFkLTJX3SEdOkKH1jCyDp3EXHULOnSEDq1hBB3ay/HhwWg7ppTylUn+S+PlVyf59SU2b4a7+XTKZTTD3dzntr0sk6d5nnZ+kqectFEp5Y5JfnLOH12vlHJuN6e2E34ryf82tf6FJE9Y4V9DaqOPcfizSW5fa/3GWuv/VWv9/VrrpbXWy2qtb621vqTW+n8muXOS/ztJndr2NkleUEopK5znXtKhGTq0nrF0aKGDX6S/p/Gyp3svoEUztGg9+94i42MDdGiGcbaePjrEjtOhGTq0Hh2a74Ik/yzJD5dSbtb3yQyNDs3QofWMpUPmqjumRTO0aD1jadFC5qvb0aEZOrSefe+Q8QHsDJ/xMzR8Pfv+99GnmffokA7N0KH1jKVDC5nzaEeHZujQeva9Q8bHBujQDONsPfs+98oG6NAMHVqPDs3n/rwTaNEMLVrPWFpkrrpDOjRDh9Yzlg4tZK66HR2aoUPr2fcO7eX48GC0HVJKuVMmA3E6lh9I8j211jp/q4W2tc3G1Fr/PsmvNl7+yVLKvzhum1LKHZK8Msl5x+22o9MbtFLKv0vyTxov/3St9fVbPpWNj8OD/3htPr173vuuqbX+dJIfb/zR/ZP84zbH3Fc6NEuHVjemDi3hkUluMbX+qSTP7/gYe0OLZmnR6sbQIuOjezo0yzhb3YA6xA7RoVk6tLoRd+jTSe4ytdwtkzmgRyf5j0muOHjfHZP8XJK3l1K+uofzHCQdmqVDqxtTh8xVd0uLZmnR6sbUoiWYr16SDs3SodWNoUPGB7ArfMbP0vDVDegz3j16O0SHZunQ6sbUoSWY81iSDs3SodWNoUPGR/d0aJZxtroBdYgdokOzdGh1I+6Q+/PWpEWztGh1Y2qRueru6NAsHVrdmDq0BHPVS9KhWTq0ujF0aF/Hx9l9nwDLKaXcOsl/T3L7qZcvT/LQWusV87eacVVjfZUn8zW3ae6zD09L8rAcPpmxJPmVUspjM3k66lszeRLn7Q7e98M5/PD7YJI7TO3rmlrrzJM+Symnlj2ZWuv7W519D0opT8rkqdfTfrnW+gtLbn9q2WPNuR6DH4e11l8rpXxzkkdMvfwjSX63y+PsGh1aSIda0qEZT2ys/26ttfkUaaJFJ9CilkbWoo2Pj7HQoYV0qKWeO8SO0qGFdKilMXeo1vrFJO+f80eXJnlhKeVnk/yHJD928PqdkrymlPKgWus7tnOWw6RDC+lQS2Pu0DLMVR9PixbSopa0aIb56iXo0EI61NLIOmSuGhg0n/EL+YxvaWR/H92aeY/5dGghHWpJh2aY81iCDi2kQy2NrEPmPDqiQwvpUEsjm3ulIzq0kA61NOYOuT9vPVq0kBa1NOYWLcNc9Xw6tJAOtaRDM8xVL0GHFtKhlkbWob2bq/ZgtB1QSvmSJK9Jcs+plz+W5CG11ve02NVehrvWem0p5dFJXp7kK6b+6MEHy3E+nskvDq+aeu2Tx7z3fS1OqbR479aVUn4gyS83Xv71Wuu/arGbda7HrozDn8/R/5D92lLK+bXW48bIXtOhxXSoHR06qpRyxyQPbbz8jFX3t8+0aDEtamdsLdrS+Nh7OrSYDrUzgA6xg3RoMR1qR4cWq7V+JsmPl1I+n+QnDl6+WZL/Ukr5Byv+C0M7T4cW06F2dGhp5qobtGgxLWpHi44yX70cHVpMh9oZW4fMVQND5jN+MZ/x7QzgM35XxqF5jyk6tJgOtaNDR5nzWI4OLaZD7YytQ+Y8uqFDi+lQOwPoEDtIhxbToXZ0aDH35x1PixbTona0aGnmqqfo0GI61I4OHWWuejk6tJgOtTO2Du3jXPVZfZ8Ai5VSzkvy6iRfPvXylZk8yfIvWu7uU431W7U8l5tkNtyDGMi11g8leWCSpyf5/BKbvDbJA5Jc3Xj98o5PbVBKKf8kyW/kaEyfmeRHt3gazXF4o1LKjVvu49aN9U2Mwz/J5GfttOslufcGjjN4OrQcHVqODs11UY7+TvbntdY/W2N/e0mLlqNFyxlri4yP9ejQcoyz5QykQ+wYHVqODi1Hh1p5cpIPT63fL8lDejqXXunQcnRoOTrUirnqKVq0HC1ajhbNdVHMVy+kQ8vRoeWMtUPGBzBEPuOXo+HLGchn/NDujTmOeY8DOrQcHVqODs11Ucx5LKRDy9Gh5Yy1Q8bHenRoOcbZcgbSIXaMDi1Hh5ajQ624P2+KFi1Hi5ajRa2Yqz6gQ8vRoeXo0FwXxVz1Qjq0HB1azlg7tG/jw4PRBqyUctMkr0zyD6Ze/nSSb621vnWFXTaffnnnlts33/+JWuuVc9/Zg1rr1bXWf5bkSzOZEHltkg8m+WySv0/yriTPyuQpqv+o1vr+JPdq7OYtWzvhLSulfFcmkZ7+uX9Oku/f5hP0a60fz9H/QEySO7XcTXMstnmy61JqrV9M8jeNl1v9srMPdKgdHVpMh2aVUkqS72287OneDVrUjhYtNvYWGR+r0aF2jLPFhtIhdosOtaNDi+lQO7XWzyZ5UePlb+3jXPqkQ+3o0GI61I656kNa1I4WLaZFs8xXn0yH2tGhxcbeIeMDGBKf8e1o+GJD+Ywf0r0xi5j3mNChdnRoMR2aZc7jZDrUjg4tNvYOGR+r0aF2jLPFhtIhdosOtaNDi+lQO+7PO6RF7WjRYlrUjrnqCR1qR4cW06FZ5qpPpkPt6NBiY+/QPo2Ps/s+AeY7+NdoXp7ka6devirJw2qtf7Libt/VWL97y+3v2lh/54rnsVG11vcledrBcpKva6z/8TH7LPNe3xWllMckeXYmT6k+7b8mecLBf7C10sH1eFcmT5g87e6ZHZ+LNMdim23b+GxjvflE172mQ6vToVk6dKxvSnKXqfXPZfJLNQe0aHVaNEuLDm1ifOwrHVqdDs0aYIfYATq0Oh2apUMre3djve3PzE7TodXp0CwdWtmo56oTLVqHFs3SomOZr15Ah1anQ7N06JC5aqBvPuNX5zN+1gA/44dyb8xJRj3voUOr06FZOnQscx4L6NDqdGiWDh0y57E8HVqdDs0aYIfYATq0Oh2apUMrG/X9eYkWrUOLZmnRysxV69BKdGiWDh3LXPUCOrQ6HZqlQ4f2Ya76rJPfwraVUs5N8tIkD556+TNJHl6Dc7dAAAAPuklEQVRrfdMau35HY/0rSik3arH9g07Y3045eKrqNzVefl0f57JJpZRHJHlujj4I8UVJHl9r/UI/ZzUzdpqBPNbBLzVfccL+unLLxvrHNnScwdGh7dAhHUryfY31F9RaP7HivvaOFm2HFmnRCccZxfg4jg5tx1jG2UA7xMDp0HbokA4t4fON9Rv0chY90KHt0CEdWsJo56oTLdoWLdKimK8+lg5thw7p0CJjGR/AdvmM346xNHygn/GD//voA6Od99Ch7dAhHYo5j2Pp0HbokA6dcJxRjI/j6NB2jGWcDbRDDJwObYcO6dASRnt/XqJF26JFWrQEc9U6tFE6pEMxV30sHdoOHdKhRYY8PjwYbWBKKTdM8pIkF069fE2SR9RaX7/OvmutH0nytqmXzs7RD4eTXNhYf8U65zMA35Tk1NT662qt7+npXDailPJtmTy58vpTL78syeNqrdf1c1ZJklc21i9sse3X5+iH0KW11o+ufUYNpZRbZvYprh/u+jhDpENbpUP96b1DpZTzkzy68fIz2u5nX2nRVmlRf3pv0RL2fnwcR4e2au/H2YA7xIDp0FbpECe5Q2N9E793DY4ObZUOcawxz1UnWrRlWjRi5quPp0NbpUMssvfjA9gun/FbtfcNH/Bn/OD/PnrM8x46tFU61J/eO2TO43g6tFU61J/eO7SEvR8fx9Ghrdr7cTbgDjFgOrRVOsRJRnl/XqJFW6ZFHMtctQ5tiQ6NmLnq4+nQVukQiwx2fHgw2oCUUs5J8oIkD5l6+XNJvqPW+gcdHeaFjfXvXfLcvizJ10y9dHWSV3d0Tn35qcb603s5iw0ppTw0yX9Lcs7Uy69O8pha67X9nNUZr0ry2an1rzsYY8u4qLHeHNNd+a4cbeRHk7xrQ8caDB3aOh3qzxA69N1Jbji1/v4kf7jivvaKFm2dFvVnCC06yV6Pj+Po0Nbt9TgbeIcYKB3aOh3iJN/cWB/E5P4m6dDW6RCLjHKuOtGiHmjRuJmvnkOHtk6HWGSvxwewXT7jt26vGz7wz/hd+PvoUc576NDW6VB/htAhcx5z6NDW6VB/htChk+z1+DiODm3dXo+zgXeIgdKhrdMhTjK6+/MSLeqBFrGIuepDOrQ5OjRu5qrn0KGt0yEWGez48GC0gSilnJ3keUkeNvXy55M8ttb6qg4P9ZwkX5haf3Qp5R5LbNccxM+rtV7T3WltVynlCUkeOvXSWzN58uNeKKV8Q5IX5+gvSH+YyS8Bn+vnrA7VWj+T5PmNl5tjbEYp5Z5JHjX10nVJfrfDUzt9nAuS/Gzj5d+vtdaujzUkOrRdOtSvgXTo+xrrv73vnVmGFm2XFvVrIC1adJy9Hh/H0aHt2vdxNvQOMUw6tF06xElKKQ9P8oDGyy/u41y2RYe2S4dYZKxz1YkWbZsWEfPVM3Rou3SIRfZ9fADb5TN+u/a94UP/jN+Bv48e5byHDm2XDvVrIB0y59GgQ9ulQ/0aSIcWHWevx8dxdGi79n2cDb1DDJMObZcOcZIx3p+XaNG2aRGLmKvWoW3QIWKueoYObZcOscjQx4cHow1AKeV6mQT1kVMvX5fkcbXWl3Z5rFrre5I8a+qlc5JcXEq54TGbpJTyyBz9F2+uTfLULs9rXQcffMu+99FJfnPqpeuSfF+t9brOT6wHpZSvS/LSJOdOvfz6JN9ea/3s/K168ZRMfjk57aJSyiOOe/PBGH1mjj6h8xm11vcu2OZLSynf3uakSim3yeT6XTD18rVJfr7NfnaNDq1Phw7p0MlKKV+V5P5TL30xycVt97NvtGh9WnRIi+Zua3ycQIfWZ5wd2qEOMSA6tD4dOqRDh0opDyilPOrkd85s99VJnt14+fW11rd3c2bDo0Pr06FDOnTIXHU7WrQ+LTqkRSczXz1Lh9anQ4d0aJbxAfTFZ/z6NPzQDn3GPyXu0RsMHVqfDh3SoZOZ85ilQ+vToUM6NHdb4+MEOrQ+4+zQDnWIAdGh9enQIR065P68drRofVp0SIsOmateng6tT4cO6dDJzFXP0qH16dAhHZq1b+Nj6S+GjfrtJN/ZeO1nklxaSjnVcl+XL/GkyX+byb9gc/OD9QcmeU0p5ftrrX95+k2llBsk+cEkv9TY/pdqrR9Y5mRKKXfI/HF2m8b62Qu+1qtqrR874VBvL6W8LMl/S/LHtdYvzjmX+yb56SSPb/zRz9RaLz1h/53Y9PUopdwvySuS3GTq5Xcn+dEkty6ltDnda2qtl7fZoI1a61+XUn41yU9Ovfz8Usq/TPL/1VqvPf1iKeVeSX4rk7F62sdz8i8Qt03yklLK25P8TpIXHvzyMqOUctMkT8jkyd4XNP7439da/3qJL2uX6ZAO6dBE1x06zhMb66+qtf7tivvaJ1qkRVo0sakW7cT46JkO6dDoOpRsb3yUUm6S5JbH/HFzQvmWC471wSFNrnVMh3RIh47qanzcIckLSinvyOQv0F6U5N21zv9Xlkop907yQ0l+pHFe1xy8ts90SId06Kiuxoe56na0SIu06Kiux0eT+epZOqRDOnTUKMcHsJd8xo+k4T7jD7lHb3B0SId0aMI9ev3RIR3SoQn35/VHh3RodB1K3J83MDqkQzp0lPvz+qFFWqRFR7lHb/t0SId06Cj3522fDumQDh01yvGxtFqrpeclSe1wuXDJY16Y5HONbb+Y5E+T/F6SVyb5uzn7//0k12vxtb2/g6/p4iWO87Gp9/99kjdl8kP6nCSvXnAe/27L3+uNXo9M/kWjrsbSJVu4HtdL8vI5x/5oJh9Az0vyloOxOf3nn0vy9UuO8+a+P5nkDZlMsD07yQsPjvH5Y67D0/tuxJbGpg7pkA5toEPHHPMGmdwoMb2/x/TZgKEsHY4dLdKip3Q4li7ZwvXYSot2ZXz0uXQ4bnRo4ONs09cju9ehbY2Pizq6Jqf67sUGvxc6pEM6tJnr8R1z3v/pg/HxkkxugHhektckufyY/X8myUP67sQWvhc6pEM6tJnrceGc95urPv56aZEWadEGx0fjmOar518XHdIhHTI+LBbLHi4dNtln/MAbvunrkd37jHeP3kCWDseNDunQUzocS5ds4Xq4R28gS4fjRod06CkdjqVLtnA93J83kKXDcaNDAx9nm74e2b0ObWt8XNTRNTnVdy82+L3QIR3Soc1cD/fntft+aJEWadFmrseFc95vrnr+tdIhHdKhDY6PxjHNVc+/LjqkQzpkfCy9zHuSHCNQa72klPKoJBcnudXByyXJAw6WeZ6b5AdqrV/Y/Bmu5SZJvu6E91yZ5Edqrf//Fs6HY9Rav1BK+c5M/mWlx0390a2TfOsxm/1dkifUWv9oxcOel+RBS7zv6iQ/UWv9zRWPwwl0SIeGoKcOPSrJl0ytX5HJRD890CItGoKeWmR8DIQOGWfQNx3SoRG7aU4eH6e9OckP1VrftsHzGS0d0qERM1c9IFqkRSNmvnogdEiHRsz4APaaz3gNHwL36I2bDunQELhHb9x0SIeGwP1546ZDxhn0TYd0aMTcnzcgWqRFI2aueiB0SIdGzFz1QOiQDo3Yzo+Ps/o+AfpTa315kvsm+Y1MBupx3pzksbXWx9dar97KybX3K0kuzeSpnIv8bZKfS3K3of5Qjk2t9apa63cl+T8yGWvH+USSX09y31rrK5fc/buSPC3JG5N8dslt/irJz2TyL5z4j9gN0yEdGoINd2ieJzbWn11r/fwa+2NNWqRFQ7ClFhkfA6VDxhn0TYd0aAT+MJN/Ffe5ST645DafSfL8JN+e5IFuutosHdKhETBXvQO0SItGynz1gOiQDo2I8QGMis94DR8C9+iNmw7p0BC4R2/cdEiHhsD9eeOmQ8YZ9E2HdGgE3J+3A7RIi0bAXPXA6ZAOjZS56gHRIR0akb0aH6XW2vc5MACllHMyeerxnZPcJpOnG38oyaW11vf1eW5tlFJuluR+Se6SyZM6b5jJf8B8KMmf11rf2ePpsYRSyl2S3D/J7ZLcOMnlST6Q5I211mvX2O9ZSe6R5G5Jbp/k/ByOjyuTfCTJn9Zar1jrC2BlOsRQbKpD7AYtYig22SLjY9h0COibDjEGpZQLktwrk3F+iyQ3SvL5JJ9O8vEk70jy7h34l332kg6x78xV7wYtAvqmQ4yB8QGMkc94hsI9euOlQwyFe/TGS4cYCvfnjZcOAX3TIcbA/XnDp0XsO3PVw6dDQN90iDHYl/HhwWgAAAAAAAAAAAAAAAAAAAAAAABA787q+wQAAAAAAAAAAAAAAAAAAAAAAAAAPBgNAAAAAAAAAAAAAAAAAAAAAAAA6J0HowEAAAAAAAAAAAAAAAAAAAAAAAC982A0AAAAAAAAAAAAAAAAAAAAAAAAoHcejAYAAAAAAAAAAAAAAAAAAAAAAAD0zoPRAAAAAAAAAAAAAAAAAAAAAAAAgN55MBoAAAAAAAAAAAAAAAAAAAAAAADQOw9GAwAAAAAAAAAAAAAAAAAAAAAAAHrnwWgAAAAAAAAAAAAAAAAAAAAAAABA7zwYDQAAAAAAAAAAAAAAAAAAAAAAAOidB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9M6D0QAAAAAAAAAAAAAAAAAAAAAAAIDeeTAaAAAAAAAAAAAAAAAAAAAAAAAA0DsPRgMAAAAAAAAAAAAAAAAAAAAAAAB658FoAAAAAAAAAAAAAAAAAAAAAAAAQO88GA0AAAAAAAAAAAAAAAAAAAAAAADonQejAQAAAAAAAAAAAAAAAAAAAAAAAL3zYDQAAAAAAAAAAAAAAAAAAAAAAACgdx6MBgAAAAAAAAAAAAAAAAAAAAAAAPTOg9EAAAAAAAAAAAAAAAAAAAAAAACA3nkwGgAAAAAAAAAAAAAAAAAAAAAAANA7D0YDAAAAAAAAAAAAAAAAAAAAAAAAeufBaAAAAAAAAAAAAAAAAAAAAAAAAEDvPBgNAAAAAAAAAAAAAAAAAAAAAAAA6J0HowEAAAAAAAAAAAAAAAAAAAAAAAC982A0AAAAAAAAAAAAAAAAAAAAAAAAoHcejAYAAAAAAAAAAAAAAAAAAAAAAAD0zoPRAAAAAAAAAAAAAAAAAAAAAAAAgN55MBoAAAAAAAAAAAAAAAAAAAAAAADQOw9GAwAAAAAAAAAAAAAAAAAAAAAAAHrnwWgAAAAAAAAAAAAAAAAAAAAAAABA7zwYDQAAAAAAAAAAAAAAAAAAAAAAAOidB6MBAAAAAAAAAAAAAAAAAAAAAAAAvfNgNAAAAAAAAAAAAAAAAAAAAAAAAKB3HowGAAAAAAAAAAAAAAAAAAAAAAAA9O5/AXpnFOxFOo7tAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "from uuid import UUID\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor\n", + "\n", + "\n", + "location_names = {\n", + " UUID('53998a51-60de-48ae-b71a-5c37cd1455f2'): \"Loft\",\n", + " UUID('1bc63cda-e223-48bc-93c2-c1f651779d69'): \"Living Room\",\n", + " UUID('ea0683de-6772-4678-bfe7-6014f54ffc8e'): \"Office\",\n", + " UUID('5aaa901a-7564-41fb-8eba-50cdd6fe9f80'): \"Outside\",\n", + "}\n", + "\n", + "with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 10), dpi=300)\n", + " configs = get_known_configs().values()\n", + " for i, config in enumerate(configs, start=1):\n", + " plot = figure.add_subplot(2, 2, i)\n", + " coros.append(plot_sensor(config, plot, location_names))\n", + " await asyncio.gather(*coros)\n", + "\n", + "display(figure)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9f576f5bb8e34cb8ab1d3c09f770d027", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(DatePicker(value=None, description='Start date'), DatePicker(value=None, description='En…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import asyncio\n", + "from uuid import UUID\n", + "import functools\n", + "from concurrent.futures import ThreadPoolExecutor\n", + "\n", + "import ipywidgets as widgets\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from apd.aggregation.query import with_database\n", + "from apd.aggregation.analysis import get_known_configs, plot_sensor\n", + "\n", + "\n", + "def wrap_coroutine(f):\n", + " @functools.wraps(f)\n", + " def run_in_thread(*args, **kwargs):\n", + " loop = asyncio.new_event_loop()\n", + " wrapped = f(*args, **kwargs)\n", + " with ThreadPoolExecutor(max_workers=1) as pool:\n", + " task = pool.submit(loop.run_until_complete, wrapped)\n", + " return task.result()\n", + " return run_in_thread\n", + "\n", + "@wrap_coroutine\n", + "async def plot(*args, **kwargs):\n", + " location_names = {\n", + " UUID('53998a51-60de-48ae-b71a-5c37cd1455f2'): \"Loft\",\n", + " UUID('1bc63cda-e223-48bc-93c2-c1f651779d69'): \"Living Room\",\n", + " UUID('ea0683de-6772-4678-bfe7-6014f54ffc8e'): \"Office\",\n", + " UUID('5aaa901a-7564-41fb-8eba-50cdd6fe9f80'): \"Outside\",\n", + " }\n", + "\n", + " with with_database(\"postgresql+psycopg2://apd@localhost/apd\") as session:\n", + " coros = []\n", + " figure = plt.figure(figsize = (20, 10), dpi=300)\n", + " configs = get_known_configs().values()\n", + " for i, config in enumerate(configs, start=1):\n", + " plot = figure.add_subplot(2, 2, i)\n", + " coros.append(plot_sensor(config, plot, location_names, *args, **kwargs))\n", + " await asyncio.gather(*coros)\n", + " return figure\n", + "\n", + "\n", + "start = widgets.DatePicker(\n", + " description='Start date',\n", + ")\n", + "end = widgets.DatePicker(\n", + " description='End date',\n", + ")\n", + "out = widgets.interactive(plot, collected_after=start, collected_before=end)\n", + "display(out)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "60091fa7d9ea415985ec53937e422b4a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(DatePicker(value=None, description='Start date'), DatePicker(value=None, description='En…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from uuid import UUID\n", + "import ipywidgets as widgets\n", + "from apd.aggregation.analysis import interactable_plot_multiple_charts, configs\n", + "\n", + "location_names = {\n", + " UUID('53998a51-60de-48ae-b71a-5c37cd1455f2'): \"Loft\",\n", + " UUID('1bc63cda-e223-48bc-93c2-c1f651779d69'): \"Living Room\",\n", + " UUID('ea0683de-6772-4678-bfe7-6014f54ffc8e'): \"Office\",\n", + " UUID('5aaa901a-7564-41fb-8eba-50cdd6fe9f80'): \"Outside\",\n", + "}\n", + "\n", + "start = widgets.DatePicker(\n", + " description='Start date',\n", + ")\n", + "end = widgets.DatePicker(\n", + " description='End date',\n", + ")\n", + "\n", + "plot = interactable_plot_multiple_charts(location_names=location_names)\n", + "out = widgets.interactive(plot, collected_after=start, collected_before=end)\n", + "display(out)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "08a4d937037b45bda2298879df7f80b6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(DatePicker(value=None, description='Start date'), DatePicker(value=None, description='En…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import datetime\n", + "import uuid\n", + "import ipywidgets as widgets\n", + "from apd.aggregation.analysis import Config, configs, interactable_plot_multiple_charts, draw_map, get_map_cleaner_for\n", + "from apd.aggregation.database import DataPoint\n", + "from apd.aggregation.utils import merc_x, merc_y\n", + "\n", + "start = widgets.DatePicker(description='Start date')\n", + "end = widgets.DatePicker(description='End date')\n", + "\n", + "def get_literal_data():\n", + " # Get manually entered temperature data, as our particular deployment\n", + " # does not contain data of this shape\n", + " raw_data = {(53.8667, -1.3333): -1, (53.35, -2.2833): 1, (52.45, -1.7333): 3, (51.5, -0.1333): 6, (51.55, -2.5667): 5, (54.9667, -1.6167): -1, (55.9667, -3.2167): -1, (54.7667, -1.5833): 0, (53.7667, -0.3): 1, (53.7667, -3.0167): 0, (51.4833, -3.1833): 4, (53.2667, -3.5167): 2, (52.0833, -2.8): 2, (52.0167, -0.6): 2, (52.6667, 1.2667): 5, (50.4333, -4.9833): 9, (50.35, -4.1167): 10, (50.5167, -2.45): 9, (50.8333, -1.1667): 9, (56.45, -5.4333): 4, (57.5333, -4.05): -2, (54.5167, -3.6167): 3, (53.0833, 0.2667): 4, (51.35, 1.3333): 7, (50.8833, 0.3167): 8, (58.45, -3.1): 3, (50.1, -5.6667): 9, (58.2167, -6.3333): 4, (55.6833, -6.25): 7}\n", + " now = datetime.datetime.now()\n", + " async def points():\n", + " for (coord, temp) in raw_data.items():\n", + " deployment_id = uuid.uuid4()\n", + " yield DataPoint(sensor_name=\"Location\", deployment_id=deployment_id, collected_at=now, data=coord)\n", + " yield DataPoint(sensor_name=\"Temperature\", deployment_id=deployment_id, collected_at=now, data=temp)\n", + " async def deployments(*args, **kwargs):\n", + " yield None, points()\n", + " return deployments\n", + "\n", + "def draw_map_with_gb(plot, x, y, colour):\n", + " # Draw the map and add an explicit coastline\n", + " gb_boundary = [(-2.6653539699999556, 51.617254950000074), (-2.6937556629999335, 51.59617747600004), (-2.71312415299991, 51.58661530200004), (-2.760487433999913, 51.579779364000046), (-2.7980850899999155, 51.56350332200009), (-2.816395636999914, 51.555568752000056), (-2.8587133449999556, 51.546128648000035), (-2.943348761999914, 51.54254791900007), (-2.9562882149999155, 51.54572174700007), (-2.9641007149999155, 51.552801825000074), (-2.969471808999913, 51.559881903000075), (-2.9746801419999542, 51.56297435100004), (-2.984038865999935, 51.55853913000004), (-3.0102432929999168, 51.53803131700005), (-3.0156957669999542, 51.53164297100005), (-3.0737198559999115, 51.50836823100008), (-3.0764867829999503, 51.50775788000004), (-3.088937954999949, 51.505072333000044), (-3.105620897999927, 51.49721914300005), (-3.1317032539999445, 51.48041413000004), (-3.1350805329999503, 51.47630442900004), (-3.1409399079999503, 51.46478913000004), (-3.1453751289999445, 51.45994700700004), (-3.1524145169999542, 51.45718008000006), (-3.1666560539999296, 51.45600006700005), (-3.1723933579999084, 51.45327383000006), (-3.1727188789999445, 51.453111070000034), (-3.160064256999931, 51.43183014500005), (-3.167144334999932, 51.41046784100007), (-3.1848038399999155, 51.39760976800005), (-3.204009568999936, 51.401597398000035), (-3.218861456999946, 51.402777411000045), (-3.289418097999942, 51.38422272300005), (-3.539173956999946, 51.398504950000074), (-3.557443813999953, 51.40509674700007), (-3.5753067699999406, 51.420436916000085), (-3.6047257149999155, 51.44570547100005), (-3.6631973949999406, 51.476223049000055), (-3.6769913399999155, 51.47703685100004), (-3.695423956999946, 51.47150299700007), (-3.717925584999932, 51.478583075000074), (-3.7376195949999556, 51.49087148600006), (-3.748036261999914, 51.50092194200005), (-3.7494197259999282, 51.50535716400009), (-3.747670050999943, 51.507025458000044), (-3.7445369129999335, 51.50763580900008), (-3.741851365999935, 51.50836823100008), (-3.7493383449999556, 51.52806224200003), (-3.7519018219999225, 51.53306712400007), (-3.758941209999932, 51.54677969000005), (-3.770130988999938, 51.56329987200007), (-3.782215949999909, 51.57664622600004), (-3.7902725899999155, 51.58197663000004), (-3.8077286449999406, 51.589178778000075), (-3.8169652989999463, 51.59650299700007), (-3.8326716789999296, 51.61554596600007), (-3.8416235019999476, 51.621527411000045), (-3.8548884759999282, 51.62384674700007), (-3.8867895169999542, 51.62140534100007), (-3.9623917309999115, 51.61562734600005), (-3.9766332669999542, 51.61188385600008), (-3.989979620999918, 51.60651276200008), (-3.998768683999913, 51.60028717700004), (-3.999908006999931, 51.59088776200008), (-3.9922582669999542, 51.58112213700008), (-3.9818009109999366, 51.571600653000075), (-3.974598761999914, 51.56297435100004), (-4.016184048999946, 51.56297435100004), (-4.016102667999917, 51.56037018400008), (-4.0208227199999556, 51.555853583000044), (-4.026519334999932, 51.554022528000075), (-4.029204881999931, 51.55927155200004), (-4.031971808999913, 51.56313711100006), (-4.0385636059999115, 51.56622955900008), (-4.046457485999952, 51.568426825000074), (-4.0531306629999335, 51.569240627000056), (-4.056304490999935, 51.56704336100006), (-4.065581834999932, 51.55756256700005), (-4.070220506999931, 51.555568752000056), (-4.0768123039999296, 51.55695221600007), (-4.087269660999937, 51.56191640800006), (-4.112131313999953, 51.565619208000044), (-4.121652798999946, 51.56598541900007), (-4.132191535999937, 51.56297435100004), (-4.142730272999927, 51.55695221600007), (-4.156809048999946, 51.54629140800006), (-4.1664119129999335, 51.54254791900007), (-4.176503058999913, 51.544256903000075), (-4.18773352799991, 51.54877350500004), (-4.1967667309999115, 51.54938385600008), (-4.200550910999937, 51.538763739000046), (-4.213368292999917, 51.539129950000074), (-4.272450324999909, 51.554754950000074), (-4.2899063789999445, 51.555568752000056), (-4.293324347999942, 51.55914948100008), (-4.29515540299991, 51.56195709800005), (-4.297352667999917, 51.569240627000056), (-4.278309699999909, 51.578192450000074), (-4.280832485999952, 51.58881256700005), (-4.2897029289999296, 51.601548570000034), (-4.2899063789999445, 51.61701080900008), (-4.255767381999931, 51.62384674700007), (-4.252023891999954, 51.62710195500006), (-4.241281704999949, 51.63934967700004), (-4.234730597999942, 51.644964911000045), (-4.228505011999914, 51.63743724200003), (-4.234730597999942, 51.63743724200003), (-4.234730597999942, 51.631293036000045), (-4.2278539699999556, 51.628119208000044), (-4.22101803299995, 51.62384674700007), (-4.1900935539999296, 51.63027578300006), (-4.139027472999942, 51.63231028900009), (-4.0912979809999115, 51.639878648000035), (-4.070220506999931, 51.66229889500005), (-4.0698136059999115, 51.66893138200004), (-4.070383266999954, 51.67430247600004), (-4.07054602799991, 51.67597077000005), (-4.0754288399999155, 51.677801825000074), (-4.087269660999937, 51.668850002000056), (-4.095448370999918, 51.66510651200008), (-4.106841600999928, 51.66425202000005), (-4.146351691999939, 51.66705963700008), (-4.200550910999937, 51.68585846600007), (-4.214955206999946, 51.679673570000034), (-4.293690558999913, 51.67226797100005), (-4.3152970039999445, 51.67747630400004), (-4.342355923999946, 51.69086334800005), (-4.3664444649999155, 51.70848216400009), (-4.379261847999942, 51.72687409100007), (-4.338042772999927, 51.72333405200004), (-4.319976365999935, 51.72483958500004), (-4.310454881999931, 51.733710028000075), (-4.328724738999938, 51.73297760600008), (-4.3471573559999115, 51.73578522300005), (-4.3625382149999155, 51.74286530200004), (-4.371815558999913, 51.754787502000056), (-4.368763800999943, 51.75698476800005), (-4.362904425999943, 51.76386139500005), (-4.358021613999938, 51.773138739000046), (-4.358225063999953, 51.782131252000056), (-4.365101691999939, 51.789048570000034), (-4.3714900379999335, 51.78595612200007), (-4.379261847999942, 51.77529531500005), (-4.384917772999927, 51.77187734600005), (-4.3929744129999335, 51.763739325000074), (-4.399159308999913, 51.76162344000005), (-4.409331834999932, 51.76316966400009), (-4.417876756999931, 51.76788971600007), (-4.426503058999913, 51.77529531500005), (-4.445790167999917, 51.77326080900008), (-4.449330206999946, 51.76630280200004), (-4.441395636999914, 51.75678131700005), (-4.426503058999913, 51.747300523000035), (-4.460764126999948, 51.73578522300005), (-4.4988907539999445, 51.73484935100004), (-4.574208136999914, 51.74115631700005), (-4.603423631999931, 51.73924388200004), (-4.639230923999946, 51.73318105700008), (-4.6453751289999445, 51.732123114000046), (-4.678212042999917, 51.71743398600006), (-4.680287238999938, 51.692694403000075), (-4.689442511999914, 51.69159577000005), (-4.69163977799991, 51.689886786000045), (-4.69163977799991, 51.685980536000045), (-4.693959113999938, 51.67841217700004), (-4.712310350999928, 51.650091864000046), (-4.721424933999913, 51.652044989000046), (-4.734934048999946, 51.65924713700008), (-4.741851365999935, 51.65607330900008), (-4.759185350999928, 51.644964911000045), (-4.8482966789999296, 51.64630768400008), (-4.86351477799991, 51.64411041900007), (-4.878977016999954, 51.63743724200003), (-4.887806769999941, 51.62995026200008), (-4.8957413399999155, 51.621079820000034), (-4.904774542999917, 51.61383698100008), (-4.923695441999939, 51.608628648000035), (-4.931996222999942, 51.59902578300006), (-4.941029425999943, 51.59650299700007), (-4.946034308999913, 51.59760163000004), (-4.956450975999928, 51.602769273000035), (-5.021595831999946, 51.61603424700007), (-5.0457657539999445, 51.62689850500004), (-5.0366104809999115, 51.63743724200003), (-5.0511775379999335, 51.65692780200004), (-5.100493943999936, 51.66469961100006), (-5.119740363999938, 51.67841217700004), (-5.113433397999927, 51.68528880400004), (-5.0366104809999115, 51.67841217700004), (-5.038726365999935, 51.68183014500005), (-5.04133053299995, 51.68939850500004), (-5.043446417999917, 51.692694403000075), (-5.028675910999937, 51.69293854400007), (-5.002552863999938, 51.68740469000005), (-4.988189256999931, 51.68585846600007), (-4.974598761999914, 51.687933661000045), (-4.941029425999943, 51.70014069200005), (-4.892648891999954, 51.706366278000075), (-4.868275519999941, 51.716782945000034), (-4.8580623039999296, 51.71832916900007), (-4.844838019999941, 51.71381256700005), (-4.844838019999941, 51.720038153000075), (-4.873402472999942, 51.73773834800005), (-4.879017706999946, 51.76203034100007), (-4.8625382149999155, 51.78237539300005), (-4.824330206999946, 51.788275458000044), (-4.824330206999946, 51.79572174700007), (-4.836008266999954, 51.790716864000046), (-4.864979620999918, 51.783270575000074), (-4.921294725999928, 51.78001536700003), (-4.933583136999914, 51.77529531500005), (-4.9172257149999155, 51.77533600500004), (-4.905181443999936, 51.771185614000046), (-4.900542772999927, 51.76211172100005), (-4.906239386999914, 51.747300523000035), (-4.8920792309999115, 51.73940664300005), (-4.895659959999932, 51.728176174000055), (-4.9105525379999335, 51.71820709800005), (-4.988189256999931, 51.70685455900008), (-5.009917772999927, 51.706366278000075), (-5.149240688999953, 51.718085028000075), (-5.166900193999936, 51.71381256700005), (-5.156971808999913, 51.69757721600007), (-5.1686091789999296, 51.68891022300005), (-5.1828507149999155, 51.68927643400008), (-5.180653449999909, 51.70014069200005), (-5.180653449999909, 51.706366278000075), (-5.230132615999935, 51.73004791900007), (-5.2495011059999115, 51.733710028000075), (-5.228138800999943, 51.73395416900007), (-5.213937954999949, 51.73574453300006), (-5.202870245999918, 51.74079010600008), (-5.191151495999918, 51.75104401200008), (-5.176828579999949, 51.75967031500005), (-5.1432185539999296, 51.76386139500005), (-5.125965949999909, 51.76850006700005), (-5.110259568999936, 51.778509833000044), (-5.107085740999935, 51.78807200700004), (-5.112294074999909, 51.81317780200004), (-5.113392706999946, 51.82880280200004), (-5.11750240799995, 51.84369538000004), (-5.125884568999936, 51.85602448100008), (-5.139637824999909, 51.86399974200003), (-5.146473761999914, 51.85716380400004), (-5.16437740799995, 51.86676666900007), (-5.2037654289999296, 51.87018463700008), (-5.221587693999936, 51.87767161700003), (-5.2358292309999115, 51.87103913000004), (-5.2914119129999335, 51.86399974200003), (-5.3109431629999335, 51.86399974200003), (-5.304269985999952, 51.867621161000045), (-5.297352667999917, 51.87018463700008), (-5.297352667999917, 51.87767161700003), (-5.300689256999931, 51.882025458000044), (-5.302561001999948, 51.88523997600004), (-5.300160285999937, 51.888332424000055), (-5.2905167309999115, 51.89199453300006), (-5.2905167309999115, 51.898138739000046), (-5.2983292309999115, 51.91095612200007), (-5.288929816999939, 51.91693756700005), (-5.252837693999936, 51.91864655200004), (-5.234201626999948, 51.923041083000044), (-5.204172329999949, 51.942287502000056), (-5.191151495999918, 51.946600653000075), (-5.16038977799991, 51.94944896000004), (-5.1195369129999335, 51.95892975500004), (-5.088042772999927, 51.97601959800005), (-5.085031704999949, 52.00185781500005), (-5.070790167999917, 52.00185781500005), (-5.070790167999917, 52.00804271000004), (-5.082753058999913, 52.01447174700007), (-5.081206834999932, 52.021185614000046), (-5.070220506999931, 52.02635325700004), (-5.053700324999909, 52.028509833000044), (-5.0266007149999155, 52.027411200000074), (-5.015044725999928, 52.02533600500004), (-4.961740688999953, 52.007513739000046), (-4.942534959999932, 52.007473049000055), (-4.913685675999943, 52.014837958000044), (-4.920521613999938, 52.028509833000044), (-4.9016007149999155, 52.02643463700008), (-4.863189256999931, 52.01699453300006), (-4.841420050999943, 52.014837958000044), (-4.83226477799991, 52.01898834800005), (-4.833851691999939, 52.02875397300005), (-4.8382869129999335, 52.04010651200008), (-4.838002081999946, 52.04901764500005), (-4.83039303299995, 52.05292389500005), (-4.796986456999946, 52.05646393400008), (-4.77757727799991, 52.064886786000045), (-4.7631729809999115, 52.075873114000046), (-4.7386775379999335, 52.100816148000035), (-4.720285610999952, 52.113348700000074), (-4.7065323559999115, 52.11347077000005), (-4.673451300999943, 52.09739817900004), (-4.675689256999931, 52.126939195000034), (-4.637521938999953, 52.13849518400008), (-4.513824022999927, 52.13568756700005), (-4.50226803299995, 52.138373114000046), (-4.495757615999935, 52.14350006700005), (-4.490956183999913, 52.150376695000034), (-4.484283006999931, 52.156317450000074), (-4.454701300999943, 52.16205475500004), (-4.4348038399999155, 52.170355536000045), (-4.415394660999937, 52.18154531500005), (-4.385568813999953, 52.20343659100007), (-4.371245897999927, 52.20929596600007), (-4.3547257149999155, 52.212103583000044), (-4.334339972999942, 52.21283600500004), (-4.315825975999928, 52.21629466400003), (-4.197132941999939, 52.279282945000034), (-4.1390681629999335, 52.33022695500006), (-4.10960852799991, 52.365301825000074), (-4.096262173999946, 52.387884833000044), (-4.0873917309999115, 52.430121161000045), (-4.0789688789999445, 52.45302969000005), (-4.067941860999952, 52.47361888200004), (-4.056548631999931, 52.48786041900007), (-4.0618383449999556, 52.49705638200004), (-4.064035610999952, 52.50918203300006), (-4.062570766999954, 52.52098216400003), (-4.056548631999931, 52.52944570500006), (-4.048491990999935, 52.530462958000044), (-4.0266007149999155, 52.52338288000004), (-4.016184048999946, 52.52195872600004), (-3.998768683999913, 52.52594635600008), (-3.9473363919999542, 52.549261786000045), (-3.9473363919999542, 52.556708075000074), (-3.9744766919999392, 52.55654531500005), (-4.025868292999917, 52.545355536000045), (-4.0531306629999335, 52.54242584800005), (-4.068470831999946, 52.550116278000075), (-4.1141251289999445, 52.58860911700003), (-4.125477667999917, 52.60390859600005), (-4.122222459999932, 52.62872955900008), (-4.105946417999917, 52.653509833000044), (-4.0848282539999445, 52.67267487200007), (-4.067128058999913, 52.68024323100008), (-4.063547329999949, 52.68309153900003), (-4.05882727799991, 52.696600653000075), (-4.056548631999931, 52.70066966400003), (-4.052723761999914, 52.70221588700008), (-4.041981574999909, 52.70465729400007), (-4.001088019999941, 52.72410716400003), (-3.988270636999914, 52.73427969000005), (-4.014719204999949, 52.73232656500005), (-4.031971808999913, 52.723944403000075), (-4.048817511999914, 52.721584377000056), (-4.125152147999927, 52.77830638200004), (-4.144357876999948, 52.802801825000074), (-4.149037238999938, 52.81207916900007), (-4.146229620999918, 52.82021719000005), (-4.128895636999914, 52.82363515800006), (-4.117339647999927, 52.83075592700004), (-4.1197810539999296, 52.84625885600008), (-4.127756313999953, 52.86172109600005), (-4.132191535999937, 52.86831289300005), (-4.131988084999932, 52.882473049000055), (-4.129872199999909, 52.88922760600008), (-4.123605923999946, 52.89325592700004), (-4.064035610999952, 52.919175523000035), (-4.071400519999941, 52.921087958000044), (-4.074574347999942, 52.92279694200005), (-4.0776261059999115, 52.926662502000056), (-4.0891007149999155, 52.918850002000056), (-4.100493943999936, 52.914129950000074), (-4.1105850899999155, 52.915676174000055), (-4.118560350999928, 52.926662502000056), (-4.144398566999939, 52.91478099200003), (-4.171620245999918, 52.91347890800006), (-4.228505011999914, 52.919175523000035), (-4.300689256999931, 52.905585028000075), (-4.317290818999936, 52.89935944200005), (-4.337310350999928, 52.89203522300005), (-4.406605597999942, 52.89252350500004), (-4.4272354809999115, 52.885972398000035), (-4.446197068999936, 52.87592194200005), (-4.4816788399999155, 52.850897528000075), (-4.477935350999928, 52.84833405200004), (-4.475493943999936, 52.84414297100005), (-4.491363084999932, 52.83820221600007), (-4.500965949999909, 52.82680898600006), (-4.501332160999937, 52.81391022300005), (-4.4891251289999445, 52.803168036000045), (-4.501942511999914, 52.794989325000074), (-4.509185350999928, 52.791449286000045), (-4.5164688789999445, 52.789496161000045), (-4.5285538399999155, 52.79047272300005), (-4.5424698559999115, 52.80068594000005), (-4.5639542309999115, 52.80524323100008), (-4.583078579999949, 52.81464264500005), (-4.594634568999936, 52.81679922100005), (-4.606516079999949, 52.81509023600006), (-4.61351477799991, 52.81110260600008), (-4.619211391999954, 52.80654531500005), (-4.626332160999937, 52.803168036000045), (-4.648589647999927, 52.79962799700007), (-4.704497850999928, 52.803168036000045), (-4.719309048999946, 52.79751211100006), (-4.733225063999953, 52.78750234600005), (-4.747425910999937, 52.78343333500004), (-4.762847459999932, 52.789496161000045), (-4.752512173999946, 52.79877350500004), (-4.7514542309999115, 52.80320872600004), (-4.755441860999952, 52.80931224200003), (-4.7492569649999155, 52.81427643400008), (-4.734934048999946, 52.83047109600005), (-4.596058722999942, 52.92841217700004), (-4.580962693999936, 52.93349844000005), (-4.562082485999952, 52.93451569200005), (-4.543527798999946, 52.937933661000045), (-4.523996548999946, 52.944240627000056), (-4.443430141999954, 52.98216380400004), (-4.423695441999939, 53.00263092700004), (-4.358225063999953, 53.02846914300005), (-4.349964972999942, 53.04148997600004), (-4.345692511999914, 53.059475002000056), (-4.343861456999946, 53.10106028900003), (-4.340891079999949, 53.11273834800005), (-4.334339972999942, 53.11676666900007), (-4.3276261059999115, 53.11469147300005), (-4.324696417999917, 53.10789622600004), (-4.320668097999942, 53.10150788000004), (-4.312245245999918, 53.109442450000074), (-4.304758266999954, 53.12099844000005), (-4.303618943999936, 53.12531159100007), (-4.263539191999939, 53.15452708500004), (-4.2523494129999335, 53.159409898000035), (-4.234527147999927, 53.16400788000004), (-4.221302863999938, 53.175034898000035), (-4.200550910999937, 53.20099518400008), (-4.17796790299991, 53.21759674700007), (-4.151519334999932, 53.22809479400007), (-4.122222459999932, 53.23346588700008), (-4.0906876289999445, 53.23517487200007), (-4.08234615799995, 53.23354726800005), (-4.074330206999946, 53.23065827000005), (-4.066883917999917, 53.22907135600008), (-4.054107225999928, 53.234361070000034), (-4.032297329999949, 53.24070872600004), (-4.008900519999941, 53.24445221600007), (-3.974598761999914, 53.261786200000074), (-3.8653051419999542, 53.289129950000074), (-3.8312882149999155, 53.289129950000074), (-3.841420050999943, 53.30744049700007), (-3.870757615999935, 53.32562897300005), (-3.8784073559999115, 53.337591864000046), (-3.859974738999938, 53.33633047100005), (-3.840565558999913, 53.33283112200007), (-3.822987433999913, 53.32656484600005), (-3.8101293609999516, 53.31708405200004), (-3.7905167309999115, 53.323431708000044), (-3.7688695949999556, 53.31915924700007), (-3.748199022999927, 53.307806708000044), (-3.7319229809999115, 53.29287344000005), (-3.7162979809999115, 53.28693268400008), (-3.6022029289999296, 53.28888580900008), (-3.5623266269999476, 53.29441966400003), (-3.372059699999909, 53.350897528000075), (-3.33031165299991, 53.35179271000004), (-3.2923884759999282, 53.34052155200004), (-3.2713110019999476, 53.33055247600004), (-3.262074347999942, 53.32050202000005), (-3.250803188999953, 53.312567450000074), (-3.122222459999932, 53.26227448100008), (-3.107533331999946, 53.25189850500004), (-3.0951228509999282, 53.23932526200008), (-3.0877579419999392, 53.23468659100007), (-3.0845434239999463, 53.23859284100007), (-3.0845434239999463, 53.25857168200008), (-3.0845434239999463, 53.275458075000074), (-3.09593665299991, 53.28713613500008), (-3.1111954419999392, 53.302801825000074), (-3.1354060539999296, 53.33380768400008), (-3.171538865999935, 53.36225006700005), (-3.185210740999935, 53.37726471600007), (-3.186350063999953, 53.39276764500005), (-3.175526495999918, 53.40273672100005), (-3.157297329999949, 53.40875885600008), (-3.1146541009999282, 53.41266510600008), (-3.0942276679999168, 53.41738515800006), (-3.058257615999935, 53.434759833000044), (-3.0355525379999335, 53.43374258000006), (-3.0121964179999168, 53.41669342700004), (-2.9529516269999476, 53.323919989000046), (-2.9351293609999516, 53.309475002000056), (-2.9105525379999335, 53.29633209800005), (-2.8814998039999296, 53.288397528000075), (-2.850575324999909, 53.289129950000074), (-2.849598761999914, 53.29120514500005), (-2.848378058999913, 53.29555898600006), (-2.8449600899999155, 53.300116278000075), (-2.837554490999935, 53.302801825000074), (-2.8286026679999168, 53.302435614000046), (-2.813384568999936, 53.297756252000056), (-2.8061417309999115, 53.296576239000046), (-2.789784308999913, 53.29743073100008), (-2.775502081999946, 53.29987213700008), (-2.7481176419999542, 53.30963776200008), (-2.753651495999918, 53.32245514500005), (-2.750884568999936, 53.33161041900007), (-2.743153449999909, 53.33852773600006), (-2.734486456999946, 53.34442780200004), (-2.7261449859999516, 53.34198639500005), (-2.7174373039999296, 53.34271881700005), (-2.708607550999943, 53.346136786000045), (-2.6997777989999463, 53.35179271000004), (-2.7141007149999155, 53.35236237200007), (-2.764393683999913, 53.34516022300005), (-2.775380011999914, 53.341009833000044), (-2.782378709999932, 53.32636139500005), (-2.799794074999909, 53.32103099200003), (-2.810332811999956, 53.32172272300005), (-2.843658006999931, 53.323919989000046), (-2.886463995999918, 53.33356354400007), (-2.924956834999932, 53.35000234600005), (-2.956939256999931, 53.37055084800005), (-2.980824347999942, 53.39276764500005), (-3.096587693999936, 53.54433828300006), (-3.101918097999942, 53.55805084800005), (-3.0994766919999392, 53.57200755400004), (-3.087635870999918, 53.58771393400008), (-3.021839972999942, 53.65281810100004), (-2.968658006999931, 53.69403717700004), (-2.9603572259999282, 53.69757721600007), (-2.9517309239999463, 53.70807526200008), (-2.9114477199999556, 53.725043036000045), (-2.899037238999938, 53.73541901200008), (-2.9848526679999168, 53.73607005400004), (-3.021473761999914, 53.745794989000046), (-3.049183722999942, 53.769517320000034), (-3.056385870999918, 53.80304596600007), (-3.044911261999914, 53.87848541900007), (-3.056630011999914, 53.90615469000005), (-3.040679490999935, 53.923529364000046), (-3.017567511999914, 53.93195221600007), (-2.925689256999931, 53.95270416900007), (-2.909250454999949, 53.95384349200003), (-2.896107550999943, 53.94773997600004), (-2.8885391919999392, 53.94603099200003), (-2.885365363999938, 53.950506903000075), (-2.881988084999932, 53.95652903900003), (-2.874175584999932, 53.96165599200003), (-2.865142381999931, 53.96548086100006), (-2.8579809239999463, 53.96759674700007), (-2.869252081999946, 53.97882721600007), (-2.8344620429999168, 53.99982330900008), (-2.830067511999914, 54.01601797100005), (-2.8475235669999392, 54.00836823100008), (-2.864857550999943, 54.00429922100005), (-2.895497199999909, 54.00234609600005), (-2.900298631999931, 54.00495026200008), (-2.9160863919999542, 54.026556708000044), (-2.91820227799991, 54.03432851800005), (-2.911284959999932, 54.03998444200005), (-2.9007869129999335, 54.044907945000034), (-2.8920792309999115, 54.050116278000075), (-2.872670050999943, 54.071600653000075), (-2.8588761059999115, 54.08100006700005), (-2.826771613999938, 54.08881256700005), (-2.815174933999913, 54.09878164300005), (-2.795969204999949, 54.12518952000005), (-2.8128149079999503, 54.139878648000035), (-2.8364151679999168, 54.16758860900006), (-2.8509415359999366, 54.18463776200008), (-2.854237433999913, 54.19407786700003), (-2.8328751289999445, 54.19904205900008), (-2.810292120999918, 54.21190013200004), (-2.7952367829999503, 54.22947825700004), (-2.795969204999949, 54.24872467700004), (-2.8028051419999542, 54.24872467700004), (-2.806630011999914, 54.233710028000075), (-2.8208715489999463, 54.22174713700008), (-2.850575324999909, 54.20774974200003), (-2.886382615999935, 54.19627513200004), (-2.904652472999942, 54.18764883000006), (-2.9126684239999463, 54.176988023000035), (-2.9203995429999168, 54.16205475500004), (-2.939198370999918, 54.15509674700007), (-2.9842016269999476, 54.15314362200007), (-2.997710740999935, 54.15957265800006), (-3.011341925999943, 54.17413971600007), (-3.017323370999918, 54.19009023600006), (-3.008168097999942, 54.20034414300005), (-3.015370245999918, 54.21190013200004), (-3.024484829999949, 54.221584377000056), (-3.035755988999938, 54.22597890800006), (-3.049183722999942, 54.22207265800006), (-3.044667120999918, 54.208319403000075), (-3.047840949999909, 54.19432200700004), (-3.053537563999953, 54.181301174000055), (-3.056630011999914, 54.17023346600007), (-3.0610245429999168, 54.16193268400008), (-3.090728318999936, 54.13947174700007), (-3.10765540299991, 54.11855703300006), (-3.117909308999913, 54.10883209800005), (-3.145253058999913, 54.100043036000045), (-3.147450324999909, 54.08869049700007), (-3.1443985669999392, 54.07514069200005), (-3.1453751289999445, 54.063788153000075), (-3.1805313789999445, 54.09284088700008), (-3.1897680329999503, 54.09788646000004), (-3.2057185539999296, 54.098537502000056), (-3.219553188999953, 54.100775458000044), (-3.2311091789999296, 54.105129299000055), (-3.240956183999913, 54.11212799700007), (-3.2381078769999476, 54.12759023600006), (-3.232533331999946, 54.14468008000006), (-3.233143683999913, 54.15916575700004), (-3.248402472999942, 54.16681549700007), (-3.248402472999942, 54.17365143400008), (-3.215199347999942, 54.17983633000006), (-3.206776495999918, 54.20892975500004), (-3.2090551419999542, 54.24274323100008), (-3.207386847999942, 54.263006903000075), (-3.2231339179999168, 54.25763580900008), (-3.231353318999936, 54.24721914300005), (-3.240956183999913, 54.22207265800006), (-3.232167120999918, 54.20254140800006), (-3.247141079999949, 54.19794342700004), (-3.270130988999938, 54.19912344000005), (-3.2860001289999445, 54.19721100500004), (-3.306792772999927, 54.19188060100004), (-3.3285212879999335, 54.204738674000055), (-3.3644913399999155, 54.24249909100007), (-3.394195115999935, 54.26439036700003), (-3.407378709999932, 54.27773672100005), (-3.412912563999953, 54.29376862200007), (-3.41038977799991, 54.30145905200004), (-3.405995245999918, 54.30963776200008), (-3.4041235019999476, 54.31854889500005), (-3.4114477199999556, 54.33274974200003), (-3.4134415359999366, 54.342962958000044), (-3.4163305329999503, 54.344916083000044), (-3.440174933999913, 54.35175202000005), (-3.474273240999935, 54.39350006700005), (-3.497710740999935, 54.40582916900007), (-3.5918676419999542, 54.48309967700004), (-3.608143683999913, 54.488267320000034), (-3.613189256999931, 54.49164459800005), (-3.6236873039999296, 54.50608958500004), (-3.6341853509999282, 54.512884833000044), (-3.6268204419999392, 54.520412502000056), (-3.616200324999909, 54.52757396000004), (-3.61156165299991, 54.52993398600006), (-3.5903214179999168, 54.56464264500005), (-3.5638321609999366, 54.64276764500005), (-3.5301407539999445, 54.68805573100008), (-3.5160212879999335, 54.712876695000034), (-3.5091853509999282, 54.72166575700004), (-3.500721808999913, 54.72597890800006), (-3.478871222999942, 54.730902411000045), (-3.4681290359999366, 54.73529694200005), (-3.455433722999942, 54.745021877000056), (-3.439564581999946, 54.76146067900004), (-3.4309789699999556, 54.780462958000044), (-3.440174933999913, 54.79743073100008), (-3.4075414699999556, 54.85602448100008), (-3.3879288399999155, 54.88336823100008), (-3.3644913399999155, 54.89980703300006), (-3.3449600899999155, 54.90253327000005), (-3.3333634109999366, 54.89728424700007), (-3.3227432929999168, 54.889878648000035), (-3.3064672519999476, 54.88617584800005), (-3.295725063999953, 54.88690827000005), (-3.254628058999913, 54.89980703300006), (-3.267323370999918, 54.905503648000035), (-3.317290818999936, 54.92031484600005), (-3.2914932929999168, 54.93667226800005), (-3.276519334999932, 54.943426825000074), (-3.213612433999913, 54.954413153000075), (-3.2010391919999392, 54.95221588700008), (-3.1936742829999503, 54.94863515800006), (-3.1879776679999168, 54.94448476800005), (-3.1801651679999168, 54.94082265800006), (-3.14281165299991, 54.93353913000004), (-3.122792120999918, 54.93268463700008), (-3.0395401679999168, 54.94717031500005), (-3.021839972999942, 54.954413153000075), (-3.090728318999936, 54.954413153000075), (-3.090728318999936, 54.96124909100007), (-3.0715225899999155, 54.96312083500004), (-3.0562231109999516, 54.968817450000074), (-3.040923631999931, 54.97247955900008), (-3.021839972999942, 54.968085028000075), (-3.021839972999942, 54.97553131700005), (-3.0462947259999282, 54.982123114000046), (-3.0502913779999403, 54.981510325000045), (-3.1354060539999296, 54.968085028000075), (-3.453846808999913, 54.981756903000075), (-3.470692511999914, 54.984442450000074), (-3.486236131999931, 54.989488023000035), (-3.501047329999949, 54.99249909100007), (-3.515288865999935, 54.98920319200005), (-3.5123591789999296, 54.98712799700007), (-3.511463995999918, 54.98688385600008), (-3.510894334999932, 54.985988674000055), (-3.5091853509999282, 54.981756903000075), (-3.5260310539999296, 54.97711823100008), (-3.5418595039999445, 54.98065827000005), (-3.57054602799991, 54.995428778000075), (-3.583607550999943, 54.968085028000075), (-3.5756729809999115, 54.95734284100007), (-3.5706274079999503, 54.937567450000074), (-3.5687556629999335, 54.916001695000034), (-3.57054602799991, 54.89980703300006), (-3.581695115999935, 54.88361237200007), (-3.598378058999913, 54.87799713700008), (-3.691761847999942, 54.88320547100005), (-3.7176407539999445, 54.880845445000034), (-3.739247199999909, 54.859808661000045), (-3.8101293609999516, 54.86627838700008), (-3.8078507149999155, 54.86107005400004), (-3.806792772999927, 54.86090729400007), (-3.803334113999938, 54.85887278900003), (-3.8123673169999392, 54.855169989000046), (-3.8198136059999115, 54.855902411000045), (-3.826079881999931, 54.85993073100008), (-3.8312882149999155, 54.86627838700008), (-3.819976365999935, 54.878566799000055), (-3.815052863999938, 54.87714264500005), (-3.8101293609999516, 54.87250397300005), (-3.8116348949999406, 54.88003164300005), (-3.813221808999913, 54.88312409100007), (-3.8169652989999463, 54.88617584800005), (-3.828846808999913, 54.874986070000034), (-3.8443090489999463, 54.86627838700008), (-3.839751756999931, 54.855902411000045), (-3.8374731109999516, 54.851996161000045), (-3.844105597999942, 54.85097890800006), (-3.8578995429999168, 54.84454987200007), (-3.823841925999943, 54.82469310100004), (-3.833607550999943, 54.82005442900004), (-3.885731574999909, 54.80646393400008), (-3.9641820949999556, 54.771918036000045), (-4.011708136999914, 54.76821523600006), (-4.042876756999931, 54.76947663000004), (-4.042876756999931, 54.77692291900007), (-4.046783006999931, 54.77802155200004), (-4.050200975999928, 54.778550523000035), (-4.053334113999938, 54.77997467700004), (-4.055775519999941, 54.782538153000075), (-4.05296790299991, 54.78546784100007), (-4.050160285999937, 54.78900788000004), (-4.049712693999936, 54.78998444200005), (-4.051747199999909, 54.800034898000035), (-4.0477188789999445, 54.81305573100008), (-4.049956834999932, 54.82322825700004), (-4.063588019999941, 54.82684967700004), (-4.064035610999952, 54.83152903900003), (-4.078602667999917, 54.82412344000005), (-4.09007727799991, 54.809759833000044), (-4.093495245999918, 54.792669989000046), (-4.083851691999939, 54.77692291900007), (-4.122954881999931, 54.77301666900007), (-4.173939581999946, 54.792303778000075), (-4.209136522999927, 54.826239325000074), (-4.200550910999937, 54.86627838700008), (-4.215402798999946, 54.861029364000046), (-4.2397354809999115, 54.843003648000035), (-4.255767381999931, 54.838324286000045), (-4.2707413399999155, 54.83942291900007), (-4.345285610999952, 54.86017487200007), (-4.3569229809999115, 54.86554596600007), (-4.3656306629999335, 54.87250397300005), (-4.375152147999927, 54.88690827000005), (-4.379872199999909, 54.89789459800005), (-4.386789516999954, 54.90477122600004), (-4.402902798999946, 54.90729401200008), (-4.409006313999953, 54.90302155200004), (-4.416818813999953, 54.89280833500004), (-4.423573370999918, 54.88035716400003), (-4.426503058999913, 54.86945221600007), (-4.4172257149999155, 54.84593333500004), (-4.4094132149999155, 54.831244208000044), (-4.402902798999946, 54.82469310100004), (-4.386708136999914, 54.82416413000004), (-4.372425910999937, 54.82184479400007), (-4.35960852799991, 54.81663646000004), (-4.347645636999914, 54.80731842700004), (-4.344471808999913, 54.79450104400007), (-4.353179490999935, 54.78310781500005), (-4.358143683999913, 54.77098216400003), (-4.343861456999946, 54.75641510600008), (-4.356516079999949, 54.741888739000046), (-4.353260870999918, 54.72089264500005), (-4.348133917999917, 54.70197174700007), (-4.3547257149999155, 54.693793036000045), (-4.360340949999909, 54.69159577000005), (-4.365305141999954, 54.68695709800005), (-4.371896938999953, 54.68227773600006), (-4.382394985999952, 54.68008047100005), (-4.405262824999909, 54.682074286000045), (-4.426503058999913, 54.687567450000074), (-4.4518123039999296, 54.69879791900007), (-4.46117102799991, 54.701239325000074), (-4.4967341789999296, 54.70062897300005), (-4.505604620999918, 54.70465729400007), (-4.563628709999932, 54.75641510600008), (-4.596669074999909, 54.77529531500005), (-4.714466925999943, 54.81785716400003), (-4.759592251999948, 54.82534414300005), (-4.781076626999948, 54.83307526200008), (-4.799631313999953, 54.86127350500004), (-4.821034308999913, 54.86664459800005), (-4.859120245999918, 54.86627838700008), (-4.88304602799991, 54.86009349200003), (-4.905873175999943, 54.84979889500005), (-4.925770636999914, 54.83738841400003), (-4.941029425999943, 54.82469310100004), (-4.9496150379999335, 54.81582265800006), (-4.953684048999946, 54.81000397300005), (-4.954823370999918, 54.804754950000074), (-4.954701300999943, 54.79743073100008), (-4.952870245999918, 54.78896719000005), (-4.9479060539999296, 54.777329820000034), (-4.940256313999953, 54.76703522300005), (-4.930165167999917, 54.76264069200005), (-4.923247850999928, 54.75185781500005), (-4.911936001999948, 54.728216864000046), (-4.8959854809999115, 54.70453522300005), (-4.867258266999954, 54.69013092700004), (-4.866932745999918, 54.68146393400008), (-4.872141079999949, 54.663316148000035), (-4.872425910999937, 54.65403880400004), (-4.872059699999909, 54.64923737200007), (-4.859120245999918, 54.63296133000006), (-4.880604620999918, 54.63621653900003), (-4.923491990999935, 54.649725653000075), (-4.944081183999913, 54.652777411000045), (-4.953684048999946, 54.65973541900007), (-4.959868943999936, 54.67552317900004), (-4.958973761999914, 54.69196198100008), (-4.947255011999914, 54.701239325000074), (-4.954823370999918, 54.707464911000045), (-4.958892381999931, 54.714056708000044), (-4.959055141999954, 54.72093333500004), (-4.954701300999943, 54.728501695000034), (-4.973378058999913, 54.729722398000035), (-4.981556769999941, 54.731634833000044), (-4.988189256999931, 54.73529694200005), (-4.992665167999917, 54.74433014500005), (-4.997059699999909, 54.75836823100008), (-5.003285285999937, 54.77130768400008), (-5.0130102199999556, 54.77692291900007), (-5.033192511999914, 54.782416083000044), (-5.1282445949999556, 54.848944403000075), (-5.157134568999936, 54.87909577000005), (-5.175526495999918, 54.91461823100008), (-5.180653449999909, 54.954413153000075), (-5.177601691999939, 54.99054596600007), (-5.170806443999936, 55.008693752000056), (-5.156727667999917, 55.01654694200005), (-5.1356095039999445, 55.01585521000004), (-5.124582485999952, 55.016791083000044), (-5.119740363999938, 55.01992422100005), (-5.115142381999931, 55.03156159100007), (-5.105213995999918, 55.02619049700007), (-5.095529751999948, 55.01508209800005), (-5.091867641999954, 55.00971100500004), (-5.076893683999913, 54.99555084800005), (-5.069488084999932, 54.986029364000046), (-5.064564581999946, 54.97553131700005), (-5.0637914699999556, 54.96458567900004), (-5.065256313999953, 54.940334377000056), (-5.06086178299995, 54.93113841400003), (-5.0475154289999296, 54.92031484600005), (-5.030995245999918, 54.911322333000044), (-5.013091600999928, 54.90961334800005), (-4.9955948559999115, 54.92031484600005), (-4.992298956999946, 54.924261786000045), (-4.988189256999931, 54.927720445000034), (-4.988189256999931, 54.93455638200004), (-5.0240779289999296, 54.97638580900008), (-5.029774542999917, 54.98550039300005), (-5.032500779999907, 54.99371979400007), (-5.033029751999948, 54.99526601800005), (-5.047027147999927, 55.01508209800005), (-5.0502823559999115, 55.02680084800005), (-5.0496720039999445, 55.04897695500006), (-5.047596808999913, 55.05573151200008), (-5.043446417999917, 55.06427643400008), (-5.0257869129999335, 55.08869049700007), (-5.018950975999928, 55.10224030200004), (-5.016184048999946, 55.12262604400007), (-5.007801886999914, 55.14118073100008), (-4.988270636999914, 55.15265534100007), (-4.947255011999914, 55.16791413000004), (-4.882394985999952, 55.21857330900008), (-4.877552863999938, 55.22089264500005), (-4.867258266999954, 55.22247955900008), (-4.865305141999954, 55.22565338700008), (-4.865589972999942, 55.236314195000034), (-4.864816860999952, 55.24135976800005), (-4.841949022999927, 55.275091864000046), (-4.838002081999946, 55.28400299700007), (-4.8372289699999556, 55.293850002000056), (-4.839751756999931, 55.31557851800005), (-4.838002081999946, 55.32501862200007), (-4.832508917999917, 55.33112213700008), (-4.7992244129999335, 55.354722398000035), (-4.781076626999948, 55.36351146000004), (-4.773101365999935, 55.36937083500004), (-4.767160610999952, 55.37905508000006), (-4.758778449999909, 55.40228913000004), (-4.7492569649999155, 55.413763739000046), (-4.71703040299991, 55.43048737200007), (-4.650502081999946, 55.448472398000035), (-4.626332160999937, 55.468410549000055), (-4.617787238999938, 55.49559153900003), (-4.626779751999948, 55.51972077000005), (-4.6507869129999335, 55.53705475500004), (-4.687163865999935, 55.544134833000044), (-4.66624915299991, 55.562201239000046), (-4.666493292999917, 55.56329987200007), (-4.6711319649999155, 55.584418036000045), (-4.692738410999937, 55.60521067900004), (-4.7219945949999556, 55.619208075000074), (-4.776519334999932, 55.632879950000074), (-4.808745897999927, 55.63361237200007), (-4.818104620999918, 55.63719310100004), (-4.810617641999954, 55.646551825000074), (-4.810617641999954, 55.653998114000046), (-4.868560350999928, 55.67560455900008), (-4.900990363999938, 55.69232819200005), (-4.920521613999938, 55.70856354400007), (-4.876332160999937, 55.735256252000056), (-4.861073370999918, 55.756740627000056), (-4.865305141999954, 55.79047272300005), (-4.8717341789999296, 55.802435614000046), (-4.8777970039999445, 55.81102122600004), (-4.882720506999931, 55.82135651200008), (-4.888661261999914, 55.864528713000084), (-4.888824022999927, 55.865301825000074), (-4.892648891999954, 55.89288971600007), (-4.886463995999918, 55.91966380400004), (-4.872141079999949, 55.937201239000046), (-4.849354620999918, 55.94822825700004), (-4.818104620999918, 55.95563385600008), (-4.799387173999946, 55.957912502000056), (-4.7857966789999296, 55.95697663000004), (-4.722320115999935, 55.94009023600006), (-4.705433722999942, 55.93846263200004), (-4.693959113999938, 55.94135163000004), (-4.6725154289999296, 55.93378327000005), (-4.505970831999946, 55.91909414300005), (-4.4816788399999155, 55.92829010600008), (-4.590606248999961, 55.941514390000066), (-4.630034959999932, 55.94627513200004), (-4.673451300999943, 55.96185944200005), (-4.724517381999931, 55.99835846600007), (-4.765044725999928, 56.007066148000035), (-4.78343665299991, 56.017645575000074), (-4.7992244129999335, 56.030951239000046), (-4.810617641999954, 56.04376862200007), (-4.8237198559999115, 56.07367584800005), (-4.824330206999946, 56.07851797100005), (-4.8391820949999556, 56.08063385600008), (-4.844309048999946, 56.07298411700003), (-4.843739386999914, 56.06297435100004), (-4.837554490999935, 56.05060455900008), (-4.790150519999941, 56.010199286000045), (-4.778920050999943, 55.99209219000005), (-4.785308397999927, 55.984035549000055), (-4.803618943999936, 55.982082424000055), (-4.828033006999931, 55.98232656500005), (-4.851551886999914, 55.98802317900004), (-4.862294074999909, 56.00214264500005), (-4.865386522999927, 56.02020905200004), (-4.866851365999935, 56.05833567900004), (-4.865386522999927, 56.06671784100007), (-4.826324022999927, 56.124212958000044), (-4.755441860999952, 56.188381252000056), (-4.750884568999936, 56.20270416900007), (-4.755523240999935, 56.20652903900003), (-4.7662654289999296, 56.20209381700005), (-4.7799373039999296, 56.191473700000074), (-4.837269660999937, 56.12441640800006), (-4.851673956999946, 56.112616278000075), (-4.873117641999954, 56.11200592700004), (-4.880604620999918, 56.11985911700003), (-4.878977016999954, 56.15053945500006), (-4.883168097999942, 56.16400788000004), (-4.893544074999909, 56.174261786000045), (-4.9070938789999445, 56.177069403000075), (-4.920521613999938, 56.16791413000004), (-4.909087693999936, 56.14996979400007), (-4.895253058999913, 56.11473216400003), (-4.8862198559999115, 56.08038971600007), (-4.889149542999917, 56.06484609600005), (-4.901926235999952, 56.06191640800006), (-4.904367641999954, 56.054348049000055), (-4.900054490999935, 56.03412506700005), (-4.900054490999935, 56.01459381700005), (-4.898019985999952, 56.001166083000044), (-4.892648891999954, 55.98973216400003), (-4.906402147999927, 55.98574453300006), (-4.921457485999952, 55.98867422100005), (-4.937489386999914, 55.993841864000046), (-4.954701300999943, 55.99656810100004), (-4.954701300999943, 55.98973216400003), (-4.942005988999938, 55.986314195000034), (-4.928863084999932, 55.98114655200004), (-4.918446417999917, 55.97333405200004), (-4.913685675999943, 55.96185944200005), (-4.917388475999928, 55.94745514500005), (-4.9272354809999115, 55.93768952000005), (-4.9387100899999155, 55.92963288000004), (-4.947255011999914, 55.92084381700005), (-4.952137824999909, 55.90912506700005), (-4.954986131999931, 55.89935944200005), (-4.95921790299991, 55.89012278900003), (-4.96898352799991, 55.87986888200004), (-4.983143683999913, 55.87103913000004), (-4.994740363999938, 55.86981842700004), (-5.026356574999909, 55.87372467700004), (-5.0424698559999115, 55.884751695000034), (-5.056752081999946, 55.91030508000006), (-5.0668025379999335, 55.938788153000075), (-5.070790167999917, 55.958685614000046), (-5.1108292309999115, 55.98895905200004), (-5.116037563999953, 56.00169505400004), (-5.123605923999946, 56.00991445500006), (-5.139637824999909, 56.00275299700007), (-5.123768683999913, 55.986314195000034), (-5.085682745999918, 55.93187083500004), (-5.078236456999946, 55.91095612200007), (-5.086537238999938, 55.901271877000056), (-5.105620897999927, 55.90497467700004), (-5.171538865999935, 55.935532945000034), (-5.180653449999909, 55.948431708000044), (-5.180653449999909, 55.96930573100008), (-5.190825975999928, 55.96173737200007), (-5.1996150379999335, 55.948553778000075), (-5.2057185539999296, 55.93451569200005), (-5.207915818999936, 55.92462799700007), (-5.212635870999918, 55.91714101800005), (-5.242054816999939, 55.89288971600007), (-5.218129035999937, 55.86469147300005), (-5.208159959999932, 55.849269924000055), (-5.201079881999931, 55.83148834800005), (-5.2193904289999296, 55.83144765800006), (-5.2631729809999115, 55.845770575000074), (-5.296701626999948, 55.85268789300005), (-5.307118292999917, 55.86041901200008), (-5.313384568999936, 55.88544342700004), (-5.319325324999909, 55.889105536000045), (-5.327219204999949, 55.89154694200005), (-5.3348282539999445, 55.89667389500005), (-5.3382869129999335, 55.90375397300005), (-5.3391007149999155, 55.91303131700005), (-5.3382869129999335, 55.93138255400004), (-5.336089647999927, 55.93919505400004), (-5.326161261999914, 55.95026276200008), (-5.323963995999918, 55.958685614000046), (-5.325754360999952, 55.967230536000045), (-5.3382869129999335, 55.99656810100004), (-5.313628709999932, 56.01235586100006), (-5.204497850999928, 56.11945221600007), (-5.146473761999914, 56.13312409100007), (-5.104603644999941, 56.15151601800005), (-5.0949600899999155, 56.15737539300005), (-5.0594376289999445, 56.203111070000034), (-5.043446417999917, 56.21629466400003), (-5.013295050999943, 56.22760651200008), (-4.974964972999942, 56.23700592700004), (-4.9400935539999296, 56.25141022300005), (-4.920521613999938, 56.277777411000045), (-4.938099738999938, 56.27098216400003), (-4.975087042999917, 56.24799225500004), (-4.991932745999918, 56.24298737200007), (-5.0327042309999115, 56.24115631700005), (-5.049549933999913, 56.23704661700003), (-5.064564581999946, 56.22931549700007), (-5.0754288399999155, 56.21698639500005), (-5.099436001999948, 56.18195221600007), (-5.1088761059999115, 56.174709377000056), (-5.228138800999943, 56.12921784100007), (-5.3109431629999335, 56.05805084800005), (-5.319935675999943, 56.05491771000004), (-5.338042772999927, 56.05410390800006), (-5.345692511999914, 56.051214911000045), (-5.345285610999952, 56.046128648000035), (-5.350209113999938, 56.03192780200004), (-5.356353318999936, 56.01976146000004), (-5.359364386999914, 56.020738023000035), (-5.3686417309999115, 56.009426174000055), (-5.390288865999935, 56.00568268400008), (-5.415028449999909, 56.00690338700008), (-5.43382727799991, 56.010199286000045), (-5.434559699999909, 56.014960028000075), (-5.434722459999932, 56.02362702000005), (-5.437123175999943, 56.03001536700003), (-5.444406704999949, 56.02757396000004), (-5.4479060539999296, 56.02228424700007), (-5.448231574999909, 56.016058661000045), (-5.447621222999942, 56.009426174000055), (-5.454986131999931, 55.95563385600008), (-5.45140540299991, 55.95343659100007), (-5.436431443999936, 55.94896067900004), (-5.430775519999941, 55.94818756700005), (-5.420806443999936, 55.92829010600008), (-5.416737433999913, 55.91681549700007), (-5.416005011999914, 55.907416083000044), (-5.4125056629999335, 55.899603583000044), (-5.400380011999914, 55.89288971600007), (-5.400380011999914, 55.886704820000034), (-5.407215949999909, 55.886704820000034), (-5.407215949999909, 55.87986888200004), (-5.402943488999938, 55.87872955900008), (-5.39289303299995, 55.87372467700004), (-5.3976944649999155, 55.87156810100004), (-5.402495897999927, 55.868353583000044), (-5.407215949999909, 55.86627838700008), (-5.35179602799991, 55.83242422100005), (-5.326771613999938, 55.808579820000034), (-5.317779100999928, 55.78302643400008), (-5.324574347999942, 55.769232489000046), (-5.3385310539999296, 55.76264069200005), (-5.372425910999937, 55.75641510600008), (-5.3875626289999445, 55.75031159100007), (-5.433461066999939, 55.72101471600007), (-5.4445694649999155, 55.71161530200004), (-5.4539688789999445, 55.70058828300006), (-5.46117102799991, 55.68813711100006), (-5.463612433999913, 55.67983633000006), (-5.466175910999937, 55.662176825000074), (-5.468617316999939, 55.653998114000046), (-5.490101691999939, 55.644598700000074), (-5.488270636999914, 55.640326239000046), (-5.484283006999931, 55.63572825700004), (-5.482289191999939, 55.632879950000074), (-5.4838761059999115, 55.61005280200004), (-5.474761522999927, 55.603949286000045), (-5.462635870999918, 55.60203685100004), (-5.454986131999931, 55.59194570500006), (-5.461089647999927, 55.57880280200004), (-5.476918097999942, 55.57489655200004), (-5.488758917999917, 55.56907786700003), (-5.482289191999939, 55.55027903900003), (-5.503529425999943, 55.52651601800005), (-5.509632941999939, 55.516791083000044), (-5.5106095039999445, 55.51146067900004), (-5.509632941999939, 55.49258047100005), (-5.5109757149999155, 55.484442450000074), (-5.514271613999938, 55.48387278900003), (-5.5187882149999155, 55.48517487200007), (-5.523264126999948, 55.48265208500004), (-5.545521613999938, 55.44916413000004), (-5.561512824999909, 55.435532945000034), (-5.5846248039999296, 55.427435614000046), (-5.5846248039999296, 55.421210028000075), (-5.572132941999939, 55.422308661000045), (-5.562082485999952, 55.41986725500004), (-5.553089972999942, 55.41453685100004), (-5.543690558999913, 55.40692780200004), (-5.527455206999946, 55.38434479400007), (-5.5266820949999556, 55.38027578300006), (-5.5149633449999556, 55.37368398600006), (-5.525054490999935, 55.358628648000035), (-5.557972785999937, 55.33185455900008), (-5.574370897999927, 55.32200755400004), (-5.594105597999942, 55.31313711100006), (-5.616281704999949, 55.30658600500004), (-5.6399633449999556, 55.303900458000044), (-5.649525519999941, 55.30516185100004), (-5.669097459999932, 55.31085846600007), (-5.6808975899999155, 55.31134674700007), (-5.691395636999914, 55.308579820000034), (-5.714019334999932, 55.29913971600007), (-5.725575324999909, 55.29706452000005), (-5.7545466789999296, 55.29734935100004), (-5.772287563999953, 55.30125560100004), (-5.782866990999935, 55.31354401200008), (-5.794667120999918, 55.35639069200005), (-5.796701626999948, 55.37909577000005), (-5.7914119129999335, 55.39862702000005), (-5.763417120999918, 55.41205475500004), (-5.725412563999953, 55.437567450000074), (-5.715646938999953, 55.44790273600006), (-5.7152400379999335, 55.46889883000006), (-5.720122850999928, 55.491522528000075), (-5.7219132149999155, 55.51386139500005), (-5.707753058999913, 55.54336172100005), (-5.712066209999932, 55.55072663000004), (-5.718861456999946, 55.55731842700004), (-5.721831834999932, 55.56460195500006), (-5.718129035999937, 55.57575104400007), (-5.694488084999932, 55.605536200000074), (-5.6733292309999115, 55.640611070000034), (-5.6694229809999115, 55.66071198100008), (-5.6808975899999155, 55.67446523600006), (-5.626535610999952, 55.70062897300005), (-5.61945553299995, 55.71198151200008), (-5.613189256999931, 55.725775458000044), (-5.5982966789999296, 55.74298737200007), (-5.581206834999932, 55.75763580900008), (-5.5678604809999115, 55.76386139500005), (-5.539173956999946, 55.77094147300005), (-5.504628058999913, 55.78937409100007), (-5.4735001289999445, 55.815659898000035), (-5.454986131999931, 55.845770575000074), (-5.551747199999909, 55.783636786000045), (-5.587473110999952, 55.76715729400007), (-5.599436001999948, 55.76422760600008), (-5.6126195949999556, 55.76386139500005), (-5.60578365799995, 55.77684153900003), (-5.6332087879999335, 55.78278229400007), (-5.64671790299991, 55.78750234600005), (-5.66038977799991, 55.79734935100004), (-5.667958136999914, 55.81102122600004), (-5.669016079999949, 55.83783600500004), (-5.67406165299991, 55.845770575000074), (-5.631988084999932, 55.88178131700005), (-5.625599738999938, 55.889837958000044), (-5.61937415299991, 55.90314362200007), (-5.6043595039999445, 55.91364166900007), (-5.586293097999942, 55.92332591400003), (-5.571034308999913, 55.93451569200005), (-5.593495245999918, 55.92796458500004), (-5.6275935539999296, 55.90534088700008), (-5.6537979809999115, 55.89760976800005), (-5.671701626999948, 55.88690827000005), (-5.6808975899999155, 55.886704820000034), (-5.687977667999917, 55.89337799700007), (-5.694162563999953, 55.90497467700004), (-5.696400519999941, 55.91596100500004), (-5.586822068999936, 56.01203034100007), (-5.57843990799995, 56.02448151200008), (-5.5826716789999296, 56.028957424000055), (-5.576649542999917, 56.032538153000075), (-5.571034308999913, 56.037543036000045), (-5.583892381999931, 56.040716864000046), (-5.596424933999913, 56.036810614000046), (-5.609852667999917, 56.03001536700003), (-5.625599738999938, 56.02448151200008), (-5.6317032539999445, 56.005926825000074), (-5.674875454999949, 55.977728583000044), (-5.67406165299991, 55.95563385600008), (-5.690785285999937, 55.93764883000006), (-5.694488084999932, 55.93451569200005), (-5.704497850999928, 55.936753648000035), (-5.707508917999917, 55.942572333000044), (-5.705881313999953, 55.949652411000045), (-5.701975063999953, 55.95563385600008), (-5.696441209999932, 55.98216380400004), (-5.659901495999918, 56.02326080900008), (-5.5846248039999296, 56.08466217700004), (-5.5815323559999115, 56.08828359600005), (-5.580067511999914, 56.09292226800005), (-5.5774633449999556, 56.096991278000075), (-5.571034308999913, 56.09902578300006), (-5.564605272999927, 56.098089911000045), (-5.556548631999931, 56.09589264500005), (-5.550689256999931, 56.09349192900004), (-5.550526495999918, 56.09218984600005), (-5.547840949999909, 56.09003327000005), (-5.5394587879999335, 56.08685944200005), (-5.531605597999942, 56.08633047100005), (-5.530100063999953, 56.09218984600005), (-5.534738735999952, 56.098537502000056), (-5.5414119129999335, 56.10248444200005), (-5.5475154289999296, 56.10488515800006), (-5.550526495999918, 56.10643138200004), (-5.55695553299995, 56.12221914300005), (-5.558705206999946, 56.13080475500004), (-5.554676886999914, 56.13739655200004), (-5.522531704999949, 56.16575755400004), (-5.515736456999946, 56.174709377000056), (-5.509632941999939, 56.188381252000056), (-5.5399063789999445, 56.18341705900008), (-5.562489386999914, 56.16791413000004), (-5.5826716789999296, 56.15058014500005), (-5.60578365799995, 56.139960028000075), (-5.599354620999918, 56.160589911000045), (-5.586415167999917, 56.18113841400003), (-5.569406704999949, 56.20026276200008), (-5.550526495999918, 56.21629466400003), (-5.5594376289999445, 56.22955963700008), (-5.547230597999942, 56.24017975500004), (-5.52562415299991, 56.247259833000044), (-5.50617428299995, 56.24982330900008), (-5.494740363999938, 56.253119208000044), (-5.4928279289999296, 56.26040273600006), (-5.4992569649999155, 56.267645575000074), (-5.512684699999909, 56.27094147300005), (-5.554269985999952, 56.26349518400008), (-5.5631404289999296, 56.26032135600008), (-5.572621222999942, 56.25385163000004), (-5.58234615799995, 56.24876536700003), (-5.592152472999942, 56.24982330900008), (-5.5980525379999335, 56.25861237200007), (-5.595570441999939, 56.26992422100005), (-5.5846248039999296, 56.29075755400004), (-5.57258053299995, 56.32807038000004), (-5.56273352799991, 56.341050523000035), (-5.543690558999913, 56.352850653000075), (-5.525217251999948, 56.34662506700005), (-5.498199022999927, 56.34833405200004), (-5.4481095039999445, 56.35968659100007), (-5.4481095039999445, 56.36591217700004), (-5.4721573559999115, 56.364935614000046), (-5.515370245999918, 56.35683828300006), (-5.5375056629999335, 56.35968659100007), (-5.517323370999918, 56.39276764500005), (-5.509632941999939, 56.40062083500004), (-5.498931443999936, 56.404730536000045), (-5.486073370999918, 56.40810781500005), (-5.4780167309999115, 56.41290924700007), (-5.482289191999939, 56.421128648000035), (-5.457020636999914, 56.44086334800005), (-5.423573370999918, 56.45001862200007), (-5.322865363999938, 56.45498281500005), (-5.242054816999939, 56.44220612200007), (-5.208729620999918, 56.44684479400007), (-5.18187415299991, 56.45966217700004), (-5.118519660999937, 56.50775788000004), (-5.085682745999918, 56.54877350500004), (-5.064564581999946, 56.56513092700004), (-5.086537238999938, 56.55849844000005), (-5.099598761999914, 56.54364655200004), (-5.1105850899999155, 56.52586497600004), (-5.125965949999909, 56.51048411700003), (-5.166900193999936, 56.49005768400008), (-5.190174933999913, 56.46865469000005), (-5.201079881999931, 56.462103583000044), (-5.243763800999943, 56.45921458500004), (-5.350168423999946, 56.47296784100007), (-5.378081834999932, 56.458970445000034), (-5.394276495999918, 56.46548086100006), (-5.4105525379999335, 56.50364817900004), (-5.42414303299995, 56.500067450000074), (-5.4359431629999335, 56.49115631700005), (-5.454986131999931, 56.46954987200007), (-5.468617316999939, 56.47573476800005), (-5.433338995999918, 56.52362702000005), (-5.427642381999931, 56.53782786700003), (-5.4037979809999115, 56.524603583000044), (-5.379261847999942, 56.519191799000055), (-5.3566788399999155, 56.51968008000006), (-5.3382869129999335, 56.52415599200003), (-5.2905167309999115, 56.54466380400004), (-5.265044725999928, 56.551214911000045), (-5.252552863999938, 56.556341864000046), (-5.242054816999939, 56.56513092700004), (-5.27562415299991, 56.553615627000056), (-5.286773240999935, 56.552069403000075), (-5.306792772999927, 56.552801825000074), (-5.3109431629999335, 56.552069403000075), (-5.327707485999952, 56.54466380400004), (-5.338693813999953, 56.542303778000075), (-5.360340949999909, 56.53221263200004), (-5.372425910999937, 56.53034088700008), (-5.384348110999952, 56.53343333500004), (-5.400502081999946, 56.54364655200004), (-5.413929816999939, 56.54466380400004), (-5.410878058999913, 56.552069403000075), (-5.407297329999949, 56.55532461100006), (-5.402699347999942, 56.55744049700007), (-5.396636522999927, 56.561712958000044), (-5.392689581999946, 56.566473700000074), (-5.3893123039999296, 56.57489655200004), (-5.386626756999931, 56.57880280200004), (-5.360707160999937, 56.60626862200007), (-5.351918097999942, 56.612941799000055), (-5.31086178299995, 56.63361237200007), (-5.304514126999948, 56.64016347900008), (-5.298451300999943, 56.64642975500004), (-5.317779100999928, 56.65387604400007), (-5.317779100999928, 56.661322333000044), (-5.309071417999917, 56.66425202000005), (-5.286773240999935, 56.674994208000044), (-5.261463995999918, 56.67332591400003), (-5.248199022999927, 56.67405833500004), (-5.218902147999927, 56.688666083000044), (-5.196441209999932, 56.688666083000044), (-5.153309699999909, 56.68121979400007), (-5.132639126999948, 56.68451569200005), (-5.093373175999943, 56.69904205900008), (-5.012806769999941, 56.70929596600007), (-4.9955948559999115, 56.71596914300005), (-5.1605525379999335, 56.69586823100008), (-5.238270636999914, 56.71662018400008), (-5.23851477799991, 56.72256094000005), (-5.228423631999931, 56.73647695500006), (-5.222075975999928, 56.741522528000075), (-5.154652472999942, 56.78229401200008), (-5.136382615999935, 56.79877350500004), (-5.119740363999938, 56.818426825000074), (-5.179066535999937, 56.78925202000005), (-5.187489386999914, 56.78115469000005), (-5.191761847999942, 56.774644273000035), (-5.202259894999941, 56.76911041900007), (-5.214670376999948, 56.76520416900007), (-5.224964972999942, 56.763739325000074), (-5.233469204999949, 56.76068756700005), (-5.237049933999913, 56.75336334800005), (-5.2389216789999296, 56.74445221600007), (-5.242054816999939, 56.73647695500006), (-5.255238410999937, 56.721584377000056), (-5.268462693999936, 56.71308014500005), (-5.283355272999927, 56.70937734600005), (-5.30101477799991, 56.70856354400007), (-5.3098038399999155, 56.70648834800005), (-5.319162563999953, 56.69749583500004), (-5.34015865799995, 56.693060614000046), (-5.348378058999913, 56.687201239000046), (-5.359364386999914, 56.674994208000044), (-5.388050910999937, 56.65521881700005), (-5.403879360999952, 56.64923737200007), (-5.4242244129999335, 56.64704010600008), (-5.434396938999953, 56.64288971600007), (-5.4487198559999115, 56.62457916900007), (-5.458119269999941, 56.620347398000035), (-5.470773891999954, 56.618394273000035), (-5.482574022999927, 56.613267320000034), (-5.493316209999932, 56.60639069200005), (-5.53343665299991, 56.57290273600006), (-5.599598761999914, 56.52903880400004), (-5.667388475999928, 56.498480536000045), (-5.67406165299991, 56.49689362200007), (-5.683013475999928, 56.50063711100006), (-5.694691535999937, 56.51386139500005), (-5.70539303299995, 56.51666901200008), (-5.721791144999941, 56.51850006700005), (-5.740834113999938, 56.52326080900008), (-5.7582087879999335, 56.52997467700004), (-5.770253058999913, 56.53782786700003), (-5.7551977199999556, 56.554022528000075), (-5.751047329999949, 56.56199778900003), (-5.749134894999941, 56.571966864000046), (-5.756662563999953, 56.571966864000046), (-5.793853318999936, 56.54328034100007), (-5.8543595039999445, 56.550482489000046), (-6.0034073559999115, 56.61871979400007), (-6.009836391999954, 56.62653229400007), (-6.008168097999942, 56.642279364000046), (-5.998036261999914, 56.64988841400003), (-5.983509894999941, 56.65281810100004), (-5.933583136999914, 56.654730536000045), (-5.899037238999938, 56.650824286000045), (-5.866851365999935, 56.64154694200005), (-5.8391820949999556, 56.62653229400007), (-5.831695115999935, 56.633978583000044), (-5.855620897999927, 56.64472077000005), (-5.865589972999942, 56.65143463700008), (-5.865834113999938, 56.661322333000044), (-5.75999915299991, 56.70075104400007), (-5.735503709999932, 56.702337958000044), (-5.672596808999913, 56.68414948100008), (-5.647368943999936, 56.68121979400007), (-5.5941462879999335, 56.68333567900004), (-5.564808722999942, 56.68764883000006), (-5.543690558999913, 56.69546133000006), (-5.636545376999948, 56.688666083000044), (-5.658558722999942, 56.690741278000075), (-5.708851691999939, 56.70856354400007), (-5.749989386999914, 56.714544989000046), (-5.859038865999935, 56.68121979400007), (-5.89679928299995, 56.675116278000075), (-5.907378709999932, 56.674994208000044), (-5.9203181629999335, 56.67796458500004), (-5.942738410999937, 56.686753648000035), (-5.955555792999917, 56.688666083000044), (-6.0248917309999115, 56.68569570500006), (-6.098622199999909, 56.696966864000046), (-6.123850063999953, 56.69562409100007), (-6.143544074999909, 56.684881903000075), (-6.161732550999943, 56.67820872600004), (-6.186594204999949, 56.68109772300005), (-6.2096248039999296, 56.68846263200004), (-6.222767706999946, 56.69546133000006), (-6.228179490999935, 56.70107656500005), (-6.232533331999946, 56.70652903900003), (-6.235340949999909, 56.71238841400003), (-6.236398891999954, 56.71906159100007), (-6.234486456999946, 56.728583075000074), (-6.229562954999949, 56.72907135600008), (-6.222767706999946, 56.72719961100006), (-6.215321417999917, 56.72964101800005), (-6.193470831999946, 56.74852122600004), (-6.1805313789999445, 56.75462474200003), (-6.026966925999943, 56.763739325000074), (-6.0148819649999155, 56.76703522300005), (-5.979888475999928, 56.78156159100007), (-5.965199347999942, 56.784857489000046), (-5.948231574999909, 56.782538153000075), (-5.937977667999917, 56.77692291900007), (-5.928537563999953, 56.769964911000045), (-5.913644985999952, 56.763739325000074), (-5.860910610999952, 56.75079987200007), (-5.8522029289999296, 56.746975002000056), (-5.853342251999948, 56.757879950000074), (-5.858143683999913, 56.768459377000056), (-5.8683975899999155, 56.77586497600004), (-5.886341925999943, 56.777411200000074), (-5.886341925999943, 56.784857489000046), (-5.874012824999909, 56.78571198100008), (-5.861805792999917, 56.78510163000004), (-5.850087042999917, 56.782456773000035), (-5.8391820949999556, 56.777411200000074), (-5.8246150379999335, 56.78758372600004), (-5.8020727199999556, 56.79181549700007), (-5.7766007149999155, 56.787990627000056), (-5.756662563999953, 56.784857489000046), (-5.831695115999935, 56.80536530200004), (-5.8508194649999155, 56.818019924000055), (-5.851185675999943, 56.82892487200007), (-5.837473110999952, 56.83661530200004), (-5.7338761059999115, 56.84479401200008), (-5.692738410999937, 56.85492584800005), (-5.66038977799991, 56.87299225500004), (-5.673573370999918, 56.87653229400007), (-5.692005988999938, 56.87531159100007), (-5.7084854809999115, 56.87055084800005), (-5.724354620999918, 56.85382721600007), (-5.744496222999942, 56.85415273600006), (-5.783924933999913, 56.85993073100008), (-5.775380011999914, 56.86994049700007), (-5.735503709999932, 56.89411041900007), (-5.7805883449999556, 56.89874909100007), (-5.874867316999939, 56.887152411000045), (-5.9211319649999155, 56.89411041900007), (-5.8875626289999445, 56.89911530200004), (-5.8522029289999296, 56.90033600500004), (-5.8522029289999296, 56.90770091400003), (-5.859852667999917, 56.91054922100005), (-5.8801163399999155, 56.92202383000006), (-5.8625382149999155, 56.93374258000006), (-5.851429816999939, 56.95425039300005), (-5.842518683999913, 56.977443752000056), (-5.831695115999935, 56.99713776200008), (-5.814116990999935, 57.00950755400004), (-5.786040818999936, 57.02057526200008), (-5.755238410999937, 57.026556708000044), (-5.729318813999953, 57.02383047100005), (-5.719878709999932, 57.017564195000034), (-5.699940558999913, 56.998114325000074), (-5.688303188999953, 56.98969147300005), (-5.67406165299991, 56.983587958000044), (-5.658558722999942, 56.97947825700004), (-5.625599738999938, 56.976629950000074), (-5.571278449999909, 56.98383209800005), (-5.523264126999948, 56.99713776200008), (-5.523264126999948, 57.003973700000074), (-5.540435350999928, 57.001166083000044), (-5.556507941999939, 56.996079820000034), (-5.571278449999909, 56.99331289300005), (-5.5846248039999296, 56.99713776200008), (-5.607085740999935, 56.98851146000004), (-5.628814256999931, 56.991888739000046), (-5.6498917309999115, 56.999660549000055), (-5.6703181629999335, 57.003973700000074), (-5.685536261999914, 57.00958893400008), (-5.681711391999954, 57.02240631700005), (-5.680043097999942, 57.03620026200008), (-5.701975063999953, 57.044907945000034), (-5.710926886999914, 57.044175523000035), (-5.731353318999936, 57.03900788000004), (-5.742339647999927, 57.03807200700004), (-5.752552863999938, 57.04059479400007), (-5.769602016999954, 57.04975006700005), (-5.780181443999936, 57.05174388200004), (-5.791127081999946, 57.05927155200004), (-5.776193813999953, 57.075832424000055), (-5.734486456999946, 57.10541413000004), (-5.722645636999914, 57.116441148000035), (-5.715646938999953, 57.12006256700005), (-5.703277147999927, 57.120754299000055), (-5.673695441999939, 57.11904531500005), (-5.663482225999928, 57.12372467700004), (-5.645863410999937, 57.12946198100008), (-5.620838995999918, 57.12409088700008), (-5.57843990799995, 57.10639069200005), (-5.558257615999935, 57.10040924700007), (-5.4598282539999445, 57.09979889500005), (-5.454986131999931, 57.10297272300005), (-5.447417772999927, 57.11017487200007), (-5.430775519999941, 57.11074453300006), (-5.41429602799991, 57.10822174700007), (-5.407215949999909, 57.10639069200005), (-5.400380011999914, 57.10639069200005), (-5.400380011999914, 57.11383698100008), (-5.420033331999946, 57.12067291900007), (-5.503895636999914, 57.11269765800006), (-5.527414516999954, 57.107489325000074), (-5.540638800999943, 57.10639069200005), (-5.5477188789999445, 57.11009349200003), (-5.573312954999949, 57.12787506700005), (-5.5846248039999296, 57.133693752000056), (-5.668446417999917, 57.147650458000044), (-5.6808975899999155, 57.157904364000046), (-5.673817511999914, 57.174994208000044), (-5.638824022999927, 57.202378648000035), (-5.625599738999938, 57.21625397300005), (-5.644154425999943, 57.23322174700007), (-5.620106574999909, 57.25214264500005), (-5.578236456999946, 57.26675039300005), (-5.543690558999913, 57.27090078300006), (-5.511586066999939, 57.25763580900008), (-5.480091925999943, 57.23700592700004), (-5.446278449999909, 57.22304922100005), (-5.407215949999909, 57.22992584800005), (-5.407215949999909, 57.23672109600005), (-5.448841925999943, 57.24209219000005), (-5.458119269999941, 57.24664948100008), (-5.47288977799991, 57.26121653900003), (-5.482899542999917, 57.268011786000045), (-5.49250240799995, 57.27090078300006), (-5.501942511999914, 57.27765534100007), (-5.4889216789999296, 57.29242584800005), (-5.464833136999914, 57.306626695000034), (-5.4406632149999155, 57.311835028000075), (-5.4406632149999155, 57.31928131700005), (-5.464995897999927, 57.32493724200003), (-5.4817602199999556, 57.31671784100007), (-5.494292772999927, 57.30442942900004), (-5.50617428299995, 57.298163153000075), (-5.523426886999914, 57.29515208500004), (-5.558461066999939, 57.28143952000005), (-5.57843990799995, 57.27765534100007), (-5.599436001999948, 57.27924225500004), (-5.637440558999913, 57.28900788000004), (-5.656971808999913, 57.29132721600007), (-5.7000626289999445, 57.28359609600005), (-5.720570441999939, 57.284491278000075), (-5.729318813999953, 57.298163153000075), (-5.7252498039999296, 57.30158112200007), (-5.701975063999953, 57.33234284100007), (-5.6937556629999335, 57.337103583000044), (-5.671986456999946, 57.34442780200004), (-5.663482225999928, 57.349676825000074), (-5.654367641999954, 57.353949286000045), (-5.647206183999913, 57.34992096600007), (-5.6414688789999445, 57.34320709800005), (-5.636545376999948, 57.33978913000004), (-5.613189256999931, 57.34198639500005), (-5.5012914699999556, 57.37099844000005), (-5.456654425999943, 57.39354075700004), (-5.4481095039999445, 57.42169830900008), (-5.46507727799991, 57.423895575000074), (-5.492054816999939, 57.40875885600008), (-5.5375056629999335, 57.373928127000056), (-5.563465949999909, 57.36310455900008), (-5.586659308999913, 57.36505768400008), (-5.610910610999952, 57.37140534100007), (-5.6399633449999556, 57.373928127000056), (-5.615589972999942, 57.382473049000055), (-5.607085740999935, 57.389105536000045), (-5.609201626999948, 57.397772528000075), (-5.617746548999946, 57.41010163000004), (-5.619618292999917, 57.41669342700004), (-5.624012824999909, 57.41640859600005), (-5.6399633449999556, 57.40802643400008), (-5.707183397999927, 57.35976797100005), (-5.732411261999914, 57.352769273000035), (-5.784575975999928, 57.34857819200005), (-5.807769334999932, 57.35492584800005), (-5.8248591789999296, 57.39435455900008), (-5.822255011999914, 57.39350006700005), (-5.817372199999909, 57.39520905200004), (-5.812855597999942, 57.398098049000055), (-5.8111873039999296, 57.40119049700007), (-5.813872850999928, 57.40452708500004), (-5.8231095039999445, 57.41233958500004), (-5.8248591789999296, 57.41547272300005), (-5.825266079999949, 57.428900458000044), (-5.821888800999943, 57.435532945000034), (-5.8111873039999296, 57.44220612200007), (-5.8215225899999155, 57.44546133000006), (-5.852528449999909, 57.450384833000044), (-5.859038865999935, 57.45270416900007), (-5.861195441999939, 57.46344635600008), (-5.870513475999928, 57.48078034100007), (-5.872670050999943, 57.49371979400007), (-5.869699673999946, 57.500881252000056), (-5.856068488999938, 57.51780833500004), (-5.8522029289999296, 57.52411530200004), (-5.8510636059999115, 57.538397528000075), (-5.851470506999931, 57.55109284100007), (-5.847075975999928, 57.55890534100007), (-5.831695115999935, 57.55882396000004), (-5.833851691999939, 57.563381252000056), (-5.837025519999941, 57.57477448100008), (-5.8391820949999556, 57.579291083000044), (-5.821400519999941, 57.583197333000044), (-5.803618943999936, 57.581366278000075), (-5.7863663399999155, 57.57518138200004), (-5.732574022999927, 57.54523346600007), (-5.715646938999953, 57.538397528000075), (-5.707020636999914, 57.542303778000075), (-5.68976803299995, 57.52789948100008), (-5.6808975899999155, 57.52411530200004), (-5.650868292999917, 57.51264069200005), (-5.6399633449999556, 57.511053778000075), (-5.645334438999953, 57.51666901200008), (-5.648304816999939, 57.52187734600005), (-5.650542772999927, 57.52680084800005), (-5.6535538399999155, 57.53156159100007), (-5.5815323559999115, 57.538397528000075), (-5.5402725899999155, 57.534491278000075), (-5.5168350899999155, 57.534857489000046), (-5.512684699999909, 57.54148997600004), (-5.543120897999927, 57.55536530200004), (-5.588368292999917, 57.56102122600004), (-5.632720506999931, 57.55768463700008), (-5.66038977799991, 57.544582424000055), (-5.694488084999932, 57.56631094000005), (-5.689198370999918, 57.56940338700008), (-5.6808975899999155, 57.579291083000044), (-5.714222785999937, 57.58270905200004), (-5.7316788399999155, 57.59829336100006), (-5.744252081999946, 57.61798737200007), (-5.762806769999941, 57.633978583000044), (-5.778146938999953, 57.63743724200003), (-5.7936091789999296, 57.63857656500005), (-5.8058975899999155, 57.642645575000074), (-5.8111873039999296, 57.65509674700007), (-5.805409308999913, 57.667181708000044), (-5.785023566999939, 57.67951080900008), (-5.790760870999918, 57.68854401200008), (-5.790760870999918, 57.69599030200004), (-5.753570115999935, 57.707464911000045), (-5.734486456999946, 57.70795319200005), (-5.704986131999931, 57.69013092700004), (-5.692494269999941, 57.691066799000055), (-5.68195553299995, 57.69871653900003), (-5.67406165299991, 57.70966217700004), (-5.685170050999943, 57.71141185100004), (-5.692290818999936, 57.716498114000046), (-5.698841925999943, 57.723089911000045), (-5.708851691999939, 57.72955963700008), (-5.720529751999948, 57.73338450700004), (-5.803822394999941, 57.743841864000046), (-5.80695553299995, 57.75462474200003), (-5.8020727199999556, 57.780585028000075), (-5.803822394999941, 57.792222398000035), (-5.801258917999917, 57.800441799000055), (-5.809925910999937, 57.82062409100007), (-5.8111873039999296, 57.833197333000044), (-5.807362433999913, 57.84393952000005), (-5.799956834999932, 57.85370514500005), (-5.789540167999917, 57.86200592700004), (-5.776519334999932, 57.86790599200003), (-5.751128709999932, 57.87335846600007), (-5.724761522999927, 57.87352122600004), (-5.698638475999928, 57.86908600500004), (-5.67406165299991, 57.86050039300005), (-5.677886522999927, 57.846909898000035), (-5.674794074999909, 57.82709381700005), (-5.667958136999914, 57.80695221600007), (-5.66038977799991, 57.792222398000035), (-5.650542772999927, 57.78180573100008), (-5.6373591789999296, 57.77423737200007), (-5.622141079999949, 57.77020905200004), (-5.60578365799995, 57.77049388200004), (-5.613270636999914, 57.77521393400008), (-5.617909308999913, 57.78021881700005), (-5.625599738999938, 57.792222398000035), (-5.613026495999918, 57.792629299000055), (-5.603260870999918, 57.791083075000074), (-5.5846248039999296, 57.784816799000055), (-5.591175910999937, 57.80442942900004), (-5.587025519999941, 57.81858958500004), (-5.5852758449999556, 57.83144765800006), (-5.598988410999937, 57.846869208000044), (-5.6375626289999445, 57.86635976800005), (-5.650380011999914, 57.87775299700007), (-5.6399633449999556, 57.88784414300005), (-5.6476944649999155, 57.88898346600007), (-5.6507869129999335, 57.89081452000005), (-5.6535538399999155, 57.89468008000006), (-5.643950975999928, 57.90420156500005), (-5.620757615999935, 57.92088450700004), (-5.6126195949999556, 57.92877838700008), (-5.598215298999946, 57.91901276200008), (-5.587310350999928, 57.91510651200008), (-5.550526495999918, 57.91510651200008), (-5.556263800999943, 57.88776276200008), (-5.527902798999946, 57.86758047100005), (-5.487049933999913, 57.85586172100005), (-5.454986131999931, 57.85370514500005), (-5.46117102799991, 57.86050039300005), (-5.449045376999948, 57.869126695000034), (-5.437123175999943, 57.897650458000044), (-5.427642381999931, 57.908270575000074), (-5.4149063789999445, 57.90814850500004), (-5.369496222999942, 57.89752838700008), (-5.355620897999927, 57.89126211100006), (-5.327504035999937, 57.87327708500004), (-5.293853318999936, 57.86204661700003), (-5.221587693999936, 57.846869208000044), (-5.236317511999914, 57.86078522300005), (-5.2475479809999115, 57.86701080900008), (-5.276763475999928, 57.87417226800005), (-5.320668097999942, 57.898504950000074), (-5.384917772999927, 57.914129950000074), (-5.39289303299995, 57.91819896000004), (-5.394398566999939, 57.923895575000074), (-5.396839972999942, 57.926214911000045), (-5.3973282539999445, 57.928900458000044), (-5.39289303299995, 57.935614325000074), (-5.386545376999948, 57.936428127000056), (-5.378977016999954, 57.93183014500005), (-5.3717341789999296, 57.93105703300006), (-5.366200324999909, 57.943060614000046), (-5.3471573559999115, 57.936712958000044), (-5.319162563999953, 57.91474030200004), (-5.297352667999917, 57.908270575000074), (-5.2860001289999445, 57.90875885600008), (-5.266957160999937, 57.91400788000004), (-5.2562556629999335, 57.91510651200008), (-5.2436417309999115, 57.91290924700007), (-5.22101803299995, 57.90403880400004), (-5.211293097999942, 57.90208567900004), (-5.198801235999952, 57.897772528000075), (-5.162261522999927, 57.87848541900007), (-5.1199845039999445, 57.86798737200007), (-5.0911352199999556, 57.84031810100004), (-5.070790167999917, 57.833197333000044), (-5.07648678299995, 57.83852773600006), (-5.083404100999928, 57.84756094000005), (-5.0893448559999115, 57.85724518400008), (-5.091867641999954, 57.86420319200005), (-5.0971573559999115, 57.87091705900008), (-5.197255011999914, 57.91787344000005), (-5.221587693999936, 57.92133209800005), (-5.221587693999936, 57.92877838700008), (-5.201893683999913, 57.92865631700005), (-5.193959113999938, 57.935980536000045), (-5.19554602799991, 57.94765859600005), (-5.204497850999928, 57.960150458000044), (-5.216704881999931, 57.96588776200008), (-5.2488907539999445, 57.96938711100006), (-5.2631729809999115, 57.976548570000034), (-5.292632615999935, 57.98061758000006), (-5.333892381999931, 58.00853099200003), (-5.359364386999914, 58.011379299000055), (-5.357167120999918, 58.01406484600005), (-5.3566788399999155, 58.014878648000035), (-5.351918097999942, 58.01752350500004), (-5.366932745999918, 58.02887604400007), (-5.386586066999939, 58.032538153000075), (-5.427642381999931, 58.03119538000004), (-5.424305792999917, 58.03554922100005), (-5.422352667999917, 58.03896719000005), (-5.419585740999935, 58.04205963700008), (-5.413929816999939, 58.04547760600008), (-5.413929816999939, 58.05231354400007), (-5.447010870999918, 58.08437734600005), (-5.428089972999942, 58.09796784100007), (-5.390044725999928, 58.09218984600005), (-5.366200324999909, 58.06598541900007), (-5.344309048999946, 58.075506903000075), (-5.322865363999938, 58.07172272300005), (-5.300770636999914, 58.07013580900008), (-5.276763475999928, 58.08641185100004), (-5.283070441999939, 58.08641185100004), (-5.278065558999913, 58.09625885600008), (-5.2787979809999115, 58.10537344000005), (-5.283558722999942, 58.11347077000005), (-5.2905167309999115, 58.12055084800005), (-5.276763475999928, 58.12055084800005), (-5.276763475999928, 58.127386786000045), (-5.297352667999917, 58.134833075000074), (-5.284087693999936, 58.14008209800005), (-5.255523240999935, 58.143784898000035), (-5.242054816999939, 58.14789459800005), (-5.242054816999939, 58.15534088700008), (-5.275054490999935, 58.15452708500004), (-5.290842251999948, 58.156317450000074), (-5.304798956999946, 58.162095445000034), (-5.297352667999917, 58.168402411000045), (-5.304798956999946, 58.17332591400003), (-5.313059048999946, 58.17731354400007), (-5.321888800999943, 58.18024323100008), (-5.331450975999928, 58.18203359600005), (-5.3293350899999155, 58.186712958000044), (-5.326161261999914, 58.198431708000044), (-5.323963995999918, 58.203111070000034), (-5.336822068999936, 58.203192450000074), (-5.346791144999941, 58.20685455900008), (-5.39289303299995, 58.24469635600008), (-5.3920792309999115, 58.261379299000055), (-5.375884568999936, 58.26422760600008), (-5.352894660999937, 58.25893789300005), (-5.31078040299991, 58.243394273000035), (-5.293853318999936, 58.24091217700004), (-5.276966925999943, 58.243394273000035), (-5.237294074999909, 58.25763580900008), (-5.2160538399999155, 58.261419989000046), (-5.194325324999909, 58.25999583500004), (-5.173207160999937, 58.25092194200005), (-5.165638800999943, 58.258246161000045), (-5.152251756999931, 58.264837958000044), (-5.138335740999935, 58.269598700000074), (-5.129383917999917, 58.27138906500005), (-5.11156165299991, 58.26825592700004), (-5.0812882149999155, 58.25409577000005), (-5.0676977199999556, 58.25092194200005), (-5.017730272999927, 58.253241278000075), (-5.002430792999917, 58.25092194200005), (-4.933583136999914, 58.22304922100005), (-4.943430141999954, 58.233587958000044), (-4.954823370999918, 58.23981354400007), (-4.982004360999952, 58.25092194200005), (-4.968861456999946, 58.25678131700005), (-4.940337693999936, 58.259466864000046), (-4.926747199999909, 58.26459381700005), (-4.990223761999914, 58.27142975500004), (-5.009917772999927, 58.27138906500005), (-5.018055792999917, 58.26862213700008), (-5.029367641999954, 58.25971100500004), (-5.040028449999909, 58.25775788000004), (-5.0501195949999556, 58.25991445500006), (-5.0707087879999335, 58.269232489000046), (-5.081654425999943, 58.27138906500005), (-5.096424933999913, 58.27676015800006), (-5.125965949999909, 58.30019765800006), (-5.1362198559999115, 58.305568752000056), (-5.137440558999913, 58.30927155200004), (-5.156361456999946, 58.32461172100005), (-5.160145636999914, 58.326605536000045), (-5.167795376999948, 58.33926015800006), (-5.171009894999941, 58.34666575700004), (-5.173207160999937, 58.353949286000045), (-5.153309699999909, 58.353949286000045), (-5.1634008449999556, 58.364569403000075), (-5.162912563999953, 58.37449778900003), (-5.155913865999935, 58.384466864000046), (-5.146473761999914, 58.394964911000045), (-5.145497199999909, 58.400051174000055), (-5.14671790299991, 58.40664297100005), (-5.146839972999942, 58.41242096600007), (-5.143055792999917, 58.41478099200003), (-5.135487433999913, 58.413763739000046), (-5.122222459999932, 58.40957265800006), (-5.116037563999953, 58.40859609600005), (-5.057972785999937, 58.38727448100008), (-5.016184048999946, 58.38812897300005), (-5.043934699999909, 58.400091864000046), (-5.0533748039999296, 58.40664297100005), (-5.0502823559999115, 58.41478099200003), (-5.0570369129999335, 58.42218659100007), (-5.066151495999918, 58.41714101800005), (-5.076161261999914, 58.414496161000045), (-5.086822068999936, 58.41388580900008), (-5.0980525379999335, 58.41478099200003), (-5.0980525379999335, 58.42218659100007), (-5.08812415299991, 58.421942450000074), (-5.085031704999949, 58.42218659100007), (-5.085031704999949, 58.429022528000075), (-5.091786261999914, 58.429754950000074), (-5.09601803299995, 58.43146393400008), (-5.105539516999954, 58.43650950700004), (-5.0501195949999556, 58.45380280200004), (-5.025542772999927, 58.447699286000045), (-4.9955948559999115, 58.43650950700004), (-5.105539516999954, 58.48737213700008), (-5.105620897999927, 58.505560614000046), (-5.103667772999927, 58.51422760600008), (-5.095855272999927, 58.518866278000075), (-5.042795376999948, 58.53546784100007), (-5.0279841789999296, 58.54409414300005), (-5.016184048999946, 58.55939362200007), (-5.0229386059999115, 58.55939362200007), (-5.015207485999952, 58.580064195000034), (-5.011586066999939, 58.60057200700004), (-5.004953579999949, 58.61774323100008), (-4.988189256999931, 58.62832265800006), (-4.859486456999946, 58.61322663000004), (-4.835926886999914, 58.60504791900007), (-4.818104620999918, 58.59292226800005), (-4.817941860999952, 58.587591864000046), (-4.81281490799995, 58.571966864000046), (-4.806752081999946, 58.55841705900008), (-4.803822394999941, 58.55939362200007), (-4.804595506999931, 58.54832591400003), (-4.807240363999938, 58.53961823100008), (-4.811634894999941, 58.53204987200007), (-4.818104620999918, 58.524644273000035), (-4.799794074999909, 58.532456773000035), (-4.791818813999953, 58.54165273600006), (-4.7899063789999445, 58.55174388200004), (-4.790150519999941, 58.562486070000034), (-4.785755988999938, 58.577053127000056), (-4.777088995999918, 58.583319403000075), (-4.771595831999946, 58.59039948100008), (-4.776519334999932, 58.60716380400004), (-4.758859829999949, 58.59910716400003), (-4.7280167309999115, 58.577460028000075), (-4.7113337879999335, 58.57306549700007), (-4.683257615999935, 58.56150950700004), (-4.670399542999917, 58.55939362200007), (-4.660023566999939, 58.555853583000044), (-4.659291144999941, 58.54755280200004), (-4.663238084999932, 58.538397528000075), (-4.6673070949999556, 58.53204987200007), (-4.6790258449999556, 58.52391185100004), (-4.714466925999943, 58.50560130400004), (-4.732411261999914, 58.480454820000034), (-4.751535610999952, 58.46161530200004), (-4.7609757149999155, 58.44798411700003), (-4.74242102799991, 58.44953034100007), (-4.682972785999937, 58.48456452000005), (-4.673451300999943, 58.48737213700008), (-4.6668595039999445, 58.50291575700004), (-4.650502081999946, 58.50995514500005), (-4.630441860999952, 58.514960028000075), (-4.612131313999953, 58.524644273000035), (-4.6010636059999115, 58.54193756700005), (-4.595122850999928, 58.56000397300005), (-4.584950324999909, 58.57416413000004), (-4.560536261999914, 58.57990143400008), (-4.517486131999931, 58.575506903000075), (-4.475493943999936, 58.565619208000044), (-4.426503058999913, 58.54637278900003), (-4.426503058999913, 58.53888580900008), (-4.427886522999927, 58.53530508000006), (-4.428700324999909, 58.53473541900007), (-4.426503058999913, 58.524644273000035), (-4.449940558999913, 58.510199286000045), (-4.464751756999931, 58.49201080900008), (-4.477650519999941, 58.47134023600006), (-4.4953507149999155, 58.44953034100007), (-4.478098110999952, 58.453558661000045), (-4.46117102799991, 58.46246979400007), (-4.43390865799995, 58.483628648000035), (-4.432728644999941, 58.487616278000075), (-4.4339900379999335, 58.49237702000005), (-4.4342341789999296, 58.49628327000005), (-4.430165167999917, 58.49799225500004), (-4.425933397999927, 58.49909088700008), (-4.385365363999938, 58.52240631700005), (-4.382394985999952, 58.524644273000035), (-4.343861456999946, 58.53888580900008), (-4.317005988999938, 58.54572174700007), (-4.306996222999942, 58.54637278900003), (-4.287180141999954, 58.54291413000004), (-4.2573136059999115, 58.52798086100006), (-4.234730597999942, 58.524644273000035), (-4.248931443999936, 58.53204987200007), (-4.238189256999931, 58.536444403000075), (-4.232248501999948, 58.54242584800005), (-4.227691209999932, 58.548163153000075), (-4.22101803299995, 58.551947333000044), (-4.209706183999913, 58.55292389500005), (-4.190785285999937, 58.54783763200004), (-4.1769913399999155, 58.54637278900003), (-4.16820227799991, 58.54938385600008), (-4.1605525379999335, 58.562567450000074), (-4.149322068999936, 58.565619208000044), (-4.111195441999939, 58.565619208000044), (-4.0902400379999335, 58.56207916900007), (-4.081450975999928, 58.561835028000075), (-4.070220506999931, 58.565619208000044), (-4.061512824999909, 58.57282135600008), (-4.048817511999914, 58.58958567900004), (-4.039784308999913, 58.59292226800005), (-4.030629035999937, 58.59406159100007), (-4.029042120999918, 58.59516022300005), (-4.027821417999917, 58.59271881700005), (-4.0092667309999115, 58.57330963700008), (-4.003773566999939, 58.57062409100007), (-3.981434699999909, 58.57306549700007), (-3.8957413399999155, 58.565619208000044), (-3.8101293609999516, 58.57306549700007), (-3.7669571609999366, 58.58372630400004), (-3.6983536449999406, 58.61115143400008), (-3.659901495999918, 58.62083567900004), (-3.597564256999931, 58.62714264500005), (-3.565500454999949, 58.626613674000055), (-3.542591925999943, 58.62083567900004), (-3.552479620999918, 58.61546458500004), (-3.556263800999943, 58.61399974200003), (-3.532053188999953, 58.60211823100008), (-3.504017706999946, 58.60333893400008), (-3.447010870999918, 58.61399974200003), (-3.3914688789999445, 58.60065338700008), (-3.364084438999953, 58.600816148000035), (-3.3508194649999155, 58.62083567900004), (-3.3677465489999463, 58.624701239000046), (-3.3860570949999556, 58.631740627000056), (-3.402251756999931, 58.64203522300005), (-3.412912563999953, 58.655585028000075), (-3.3900447259999282, 58.67177969000005), (-3.3748673169999392, 58.677069403000075), (-3.3582657539999445, 58.675482489000046), (-3.3543595039999445, 58.67015208500004), (-3.35179602799991, 58.66083405200004), (-3.34788977799991, 58.652044989000046), (-3.340565558999913, 58.648138739000046), (-3.3098852199999556, 58.648138739000046), (-3.244252081999946, 58.65900299700007), (-3.204090949999909, 58.66111888200004), (-3.1519262359999516, 58.64126211100006), (-3.118763800999943, 58.64109935100004), (-3.052886522999927, 58.648138739000046), (-3.0191137359999516, 58.640326239000046), (-3.025380011999914, 58.62213776200008), (-3.0444229809999115, 58.601629950000074), (-3.049183722999942, 58.58673737200007), (-3.060454881999931, 58.57843659100007), (-3.0754288399999155, 58.56037018400008), (-3.0845434239999463, 58.551947333000044), (-3.1107478509999282, 58.53864166900007), (-3.1180313789999445, 58.53204987200007), (-3.129261847999942, 58.51264069200005), (-3.1293025379999335, 58.49640534100007), (-3.1187231109999516, 58.484442450000074), (-3.0975235669999392, 58.47748444200005), (-3.0850723949999406, 58.47825755400004), (-3.073963995999918, 58.481675523000035), (-3.064442511999914, 58.48297760600008), (-3.056630011999914, 58.47748444200005), (-3.053334113999938, 58.46576569200005), (-3.0577286449999406, 58.45685455900008), (-3.066761847999942, 58.451157945000034), (-3.077056443999936, 58.44953034100007), (-3.0863337879999335, 58.41421133000006), (-3.129790818999936, 58.36928945500006), (-3.182769334999932, 58.32843659100007), (-3.2205297519999476, 58.305568752000056), (-3.2622777989999463, 58.292629299000055), (-3.34984290299991, 58.27610911700003), (-3.38499915299991, 58.26459381700005), (-3.438099738999938, 58.236029364000046), (-3.447010870999918, 58.22675202000005), (-3.454741990999935, 58.210150458000044), (-3.473459438999953, 58.193426825000074), (-3.515288865999935, 58.168402411000045), (-3.7350154289999296, 58.07217031500005), (-3.809193488999938, 58.05190664300005), (-3.8275040359999366, 58.04205963700008), (-3.8362524079999503, 58.03143952000005), (-3.8460994129999335, 58.01117584800005), (-3.851714647999927, 58.003892320000034), (-3.8605850899999155, 57.998928127000056), (-3.8856095039999445, 57.991400458000044), (-3.9173070949999556, 57.98745351800005), (-3.981434699999909, 57.96356842700004), (-3.990956183999913, 57.96039459800005), (-3.997670050999943, 57.954413153000075), (-4.001372850999928, 57.94611237200007), (-4.001942511999914, 57.935614325000074), (-4.018299933999913, 57.940619208000044), (-4.023060675999943, 57.943060614000046), (-4.016184048999946, 57.949286200000074), (-4.0301407539999445, 57.953192450000074), (-4.055775519999941, 57.95498281500005), (-4.0843806629999335, 57.964178778000075), (-4.0891007149999155, 57.960150458000044), (-4.0863337879999335, 57.95189036700003), (-4.0776261059999115, 57.943060614000046), (-4.062652147999927, 57.93695709800005), (-4.03148352799991, 57.93618398600006), (-4.016184048999946, 57.93219635600008), (-4.009429490999935, 57.92767975500004), (-3.988270636999914, 57.908270575000074), (-4.008941209999932, 57.88959381700005), (-4.013824022999927, 57.879339911000045), (-4.009348110999952, 57.86790599200003), (-4.025135870999918, 57.868068752000056), (-4.054839647999927, 57.874335028000075), (-4.070220506999931, 57.87417226800005), (-4.0793350899999155, 57.87026601800005), (-4.0969132149999155, 57.85736725500004), (-4.1049698559999115, 57.85370514500005), (-4.132923956999946, 57.85415273600006), (-4.190419074999909, 57.87006256700005), (-4.218169725999928, 57.87417226800005), (-4.298898891999954, 57.86277903900003), (-4.3209529289999296, 57.87103913000004), (-4.353179490999935, 57.89520905200004), (-4.3723038399999155, 57.90448639500005), (-4.392404751999948, 57.908270575000074), (-4.339588995999918, 57.86570872600004), (-4.307728644999941, 57.85146719000005), (-4.269398566999939, 57.846869208000044), (-4.229074673999946, 57.85724518400008), (-4.2082413399999155, 57.85919830900008), (-4.190581834999932, 57.85028717700004), (-4.173451300999943, 57.83901601800005), (-4.1497289699999556, 57.82982005400004), (-4.1334529289999296, 57.830145575000074), (-4.1390681629999335, 57.846869208000044), (-4.0750626289999445, 57.82318756700005), (-4.0399063789999445, 57.81818268400008), (-3.9835098949999406, 57.84235260600008), (-3.9514867829999503, 57.838324286000045), (-3.933705206999946, 57.82566966400003), (-3.9473363919999542, 57.81268952000005), (-3.914784308999913, 57.80768463700008), (-3.877674933999913, 57.81671784100007), (-3.8418676419999542, 57.83490631700005), (-3.813547329999949, 57.857123114000046), (-3.798451300999943, 57.866522528000075), (-3.786040818999936, 57.86542389500005), (-3.779449022999927, 57.85565827000005), (-3.782215949999909, 57.83942291900007), (-3.790028449999909, 57.83071523600006), (-3.92601477799991, 57.734808661000045), (-3.948841925999943, 57.72492096600007), (-3.975209113999938, 57.70327383000006), (-3.988270636999914, 57.69599030200004), (-4.00804602799991, 57.693793036000045), (-4.02367102799991, 57.69782135600008), (-4.0286352199999556, 57.70770905200004), (-4.016184048999946, 57.72333405200004), (-4.042958136999914, 57.73729075700004), (-4.077951626999948, 57.73029205900008), (-4.155344204999949, 57.692572333000044), (-4.168568488999938, 57.689439195000034), (-4.1939998039999296, 57.68854401200008), (-4.2592667309999115, 57.67869700700004), (-4.277821417999917, 57.68060944200005), (-4.294789191999939, 57.68016185100004), (-4.302154100999928, 57.66860586100006), (-4.30882727799991, 57.65485260600008), (-4.324045376999948, 57.64826080900008), (-4.33820553299995, 57.64508698100008), (-4.4031876289999445, 57.60952383000006), (-4.412180141999954, 57.60297272300005), (-4.4203181629999335, 57.592962958000044), (-4.428456183999913, 57.57754140800006), (-4.423451300999943, 57.57680898600006), (-4.409901495999918, 57.582464911000045), (-4.379872199999909, 57.58934153900003), (-4.365101691999939, 57.59723541900007), (-4.3510636059999115, 57.60736725500004), (-4.340809699999909, 57.617173570000034), (-4.328724738999938, 57.626288153000075), (-4.283111131999931, 57.64142487200007), (-4.2445369129999335, 57.66303131700005), (-4.201893683999913, 57.674994208000044), (-4.1937556629999335, 57.67552317900004), (-4.182240363999938, 57.67279694200005), (-4.169016079999949, 57.663763739000046), (-4.118723110999952, 57.65770091400003), (-4.096791144999941, 57.65810781500005), (-4.0807185539999296, 57.66498444200005), (-4.068104620999918, 57.672308661000045), (-4.0246475899999155, 57.687201239000046), (-4.009348110999952, 57.68854401200008), (-4.004505988999938, 57.67597077000005), (-4.025257941999939, 57.65521881700005), (-4.0541886059999115, 57.63572825700004), (-4.083404100999928, 57.62335846600007), (-4.118560350999928, 57.592962958000044), (-4.11546790299991, 57.58783600500004), (-4.112294074999909, 57.58413320500006), (-4.1088761059999115, 57.58144765800006), (-4.1049698559999115, 57.579291083000044), (-4.151356574999909, 57.57684967700004), (-4.170643683999913, 57.570746161000045), (-4.187489386999914, 57.55882396000004), (-4.178089972999942, 57.54954661700003), (-4.184925910999937, 57.548163153000075), (-4.207997199999909, 57.552069403000075), (-4.262603318999936, 57.552069403000075), (-4.262603318999936, 57.544582424000055), (-4.233957485999952, 57.54511139500005), (-4.220285610999952, 57.543402411000045), (-4.207997199999909, 57.538397528000075), (-4.226307745999918, 57.51544830900008), (-4.237456834999932, 57.50531647300005), (-4.248931443999936, 57.49746328300006), (-4.212798631999931, 57.492173570000034), (-4.1948136059999115, 57.49160390800006), (-4.173898891999954, 57.49746328300006), (-4.157622850999928, 57.50849030200004), (-4.150054490999935, 57.51504140800006), (-4.149322068999936, 57.51788971600007), (-4.126779751999948, 57.518866278000075), (-4.116200324999909, 57.52179596600007), (-4.097523566999939, 57.53668854400007), (-4.082997199999909, 57.54441966400003), (-4.067290818999936, 57.54995351800005), (-4.0531306629999335, 57.552069403000075), (-4.034982876999948, 57.55687083500004), (-4.046457485999952, 57.56785716400003), (-4.083851691999939, 57.58612702000005), (-4.056019660999937, 57.585150458000044), (-3.9643448559999115, 57.592962958000044), (-3.8682755199999406, 57.587876695000034), (-3.8374731109999516, 57.592962958000044), (-3.6848038399999155, 57.65444570500006), (-3.625152147999927, 57.66193268400008), (-3.632557745999918, 57.65094635600008), (-3.637684699999909, 57.64622630400004), (-3.6456192699999406, 57.64142487200007), (-3.632476365999935, 57.635646877000056), (-3.6196182929999168, 57.63621653900003), (-3.606068488999938, 57.63947174700007), (-3.590972459999932, 57.64142487200007), (-3.61156165299991, 57.66811758000006), (-3.5747777989999463, 57.66111888200004), (-3.55492102799991, 57.659857489000046), (-3.535755988999938, 57.66193268400008), (-3.521473761999914, 57.66779205900008), (-3.5054418609999516, 57.67865631700005), (-3.4959610669999392, 57.69135163000004), (-3.501698370999918, 57.702826239000046), (-3.491851365999935, 57.71312083500004), (-3.4828181629999335, 57.71401601800005), (-3.4730525379999335, 57.711004950000074), (-3.460682745999918, 57.70966217700004), (-3.447865363999938, 57.71246979400007), (-3.4212540359999366, 57.72138092700004), (-3.409169074999909, 57.72333405200004), (-3.2847387359999516, 57.72044505400004), (-3.2100723949999406, 57.69399648600006), (-3.0786840489999463, 57.66941966400003), (-3.034901495999918, 57.66860586100006), (-2.994496222999942, 57.67552317900004), (-2.932687954999949, 57.69961172100005), (-2.9160863919999542, 57.702826239000046), (-2.75804602799991, 57.702826239000046), (-2.7512100899999155, 57.70062897300005), (-2.741118943999936, 57.69086334800005), (-2.731068488999938, 57.68854401200008), (-2.719878709999932, 57.690619208000044), (-2.711537238999938, 57.69399648600006), (-2.7035212879999335, 57.69472890800006), (-2.6929418609999516, 57.68854401200008), (-2.658924933999913, 57.69745514500005), (-2.573394334999932, 57.68146393400008), (-2.541981574999909, 57.68235911700003), (-2.526112433999913, 57.66860586100006), (-2.5181371739999463, 57.67011139500005), (-2.5110570949999556, 57.677801825000074), (-2.497954881999931, 57.68235911700003), (-2.4800512359999516, 57.68121979400007), (-2.4328507149999155, 57.66811758000006), (-2.425526495999918, 57.67572663000004), (-2.4177953769999476, 57.674261786000045), (-2.4087621739999463, 57.669623114000046), (-2.398060675999943, 57.66811758000006), (-2.3865860669999392, 57.671576239000046), (-2.369496222999942, 57.680568752000056), (-2.360503709999932, 57.68235911700003), (-2.3410538399999155, 57.675848700000074), (-2.3289688789999445, 57.67405833500004), (-2.3235977859999366, 57.678941148000035), (-2.32054602799991, 57.68455638200004), (-2.313384568999936, 57.68992747600004), (-2.3040665359999366, 57.69399648600006), (-2.295643683999913, 57.69599030200004), (-2.274322068999936, 57.69383372600004), (-2.230132615999935, 57.67914459800005), (-2.209950324999909, 57.67552317900004), (-2.1840714179999168, 57.67845286700003), (-2.1243383449999556, 57.702826239000046), (-2.108143683999913, 57.70498281500005), (-1.9976700509999432, 57.702826239000046), (-1.9969376289999445, 57.69904205900008), (-1.990834113999938, 57.69037506700005), (-1.982167120999918, 57.68109772300005), (-1.9735001289999445, 57.67552317900004), (-1.961293097999942, 57.674709377000056), (-1.9447322259999282, 57.68256256700005), (-1.9324845039999445, 57.68235911700003), (-1.9256892569999309, 57.678168036000045), (-1.914214647999927, 57.66474030200004), (-1.8294571609999366, 57.61347077000005), (-1.820464647999927, 57.59634023600006), (-1.817005988999938, 57.578192450000074), (-1.8113907539999445, 57.56049225500004), (-1.7960098949999406, 57.544582424000055), (-1.7960098949999406, 57.538397528000075), (-1.8000382149999155, 57.52586497600004), (-1.7895401679999168, 57.514837958000044), (-1.7611384759999282, 57.49746328300006), (-1.7753800119999141, 57.496527411000045), (-1.7821345689999362, 57.48899974200003), (-1.7812393869999141, 57.48041413000004), (-1.7717179029999102, 57.476263739000046), (-1.7593481109999516, 57.47357819200005), (-1.7659399079999503, 57.46743398600006), (-1.7891739569999459, 57.45644765800006), (-1.8301488919999542, 57.42617422100005), (-1.8474828769999476, 57.40814850500004), (-1.849964972999942, 57.39435455900008), (-1.9544978509999282, 57.341131903000075), (-1.9802953769999476, 57.31928131700005), (-2.044667120999918, 57.22650788000004), (-2.068511522999927, 57.17462799700007), (-2.074126756999931, 57.15420156500005), (-2.0714005199999406, 57.13556549700007), (-2.052357550999943, 57.12742747600004), (-2.0493057929999168, 57.118841864000046), (-2.065256313999953, 57.10053131700005), (-2.0658259759999282, 57.09983958500004), (-2.156158006999931, 57.020697333000044), (-2.1869197259999282, 56.98468659100007), (-2.200103318999936, 56.94871653900003), (-2.1971329419999392, 56.94025299700007), (-2.1912328769999476, 56.93414948100008), (-2.186268683999913, 56.92674388200004), (-2.1863907539999445, 56.91453685100004), (-2.191314256999931, 56.90892161700003), (-2.209706183999913, 56.895819403000075), (-2.213693813999953, 56.890692450000074), (-2.219878709999932, 56.87262604400007), (-2.23460852799991, 56.861395575000074), (-2.2689509759999282, 56.84634023600006), (-2.295806443999936, 56.82526276200008), (-2.3198136059999115, 56.80158112200007), (-2.336089647999927, 56.79083893400008), (-2.3918350899999155, 56.771185614000046), (-2.4086807929999168, 56.762925523000035), (-2.4264216789999296, 56.751288153000075), (-2.4359431629999335, 56.74038320500006), (-2.4407445949999556, 56.73484935100004), (-2.4516495429999168, 56.69098541900007), (-2.4637345039999445, 56.67877838700008), (-2.4774063789999445, 56.66868724200003), (-2.487456834999932, 56.65387604400007), (-2.4875382149999155, 56.64606354400007), (-2.481271938999953, 56.63239166900007), (-2.480620897999927, 56.62653229400007), (-2.4861954419999392, 56.619574286000045), (-2.504058397999927, 56.60883209800005), (-2.514556443999936, 56.591498114000046), (-2.530018683999913, 56.58075592700004), (-2.623768683999913, 56.543402411000045), (-2.6409399079999503, 56.522365627000056), (-2.6613663399999155, 56.51422760600008), (-2.6997777989999463, 56.50364817900004), (-2.708729620999918, 56.49599844000005), (-2.7276505199999406, 56.46954987200007), (-2.737294074999909, 56.46702708500004), (-2.74437415299991, 56.46954987200007), (-2.752308722999942, 56.47361888200004), (-2.764800584999932, 56.47573476800005), (-2.819325324999909, 56.47129954600007), (-3.055653449999909, 56.45213450700004), (-3.0606176419999542, 56.45172760600008), (-3.099273240999935, 56.44188060100004), (-3.1339005199999406, 56.426947333000044), (-3.238189256999931, 56.36774323100008), (-3.280181443999936, 56.35789622600004), (-3.3234757149999155, 56.36591217700004), (-3.311512824999909, 56.35651276200008), (-3.294016079999949, 56.352769273000035), (-3.2515356109999516, 56.352850653000075), (-3.230620897999927, 56.35602448100008), (-3.188384568999936, 56.37018463700008), (-3.149566209999932, 56.37555573100008), (-2.950266079999949, 56.43187083500004), (-2.9399307929999168, 56.43854401200008), (-2.930653449999909, 56.44806549700007), (-2.909087693999936, 56.45571523600006), (-2.88499915299991, 56.45799388200004), (-2.867909308999913, 56.45184967700004), (-2.8500870429999168, 56.44204336100006), (-2.8147680329999503, 56.44041575700004), (-2.8028051419999542, 56.42796458500004), (-2.800892706999946, 56.40892161700003), (-2.808257615999935, 56.391058661000045), (-2.8216039699999556, 56.376166083000044), (-2.837554490999935, 56.36591217700004), (-2.8129776679999168, 56.36591217700004), (-2.809193488999938, 56.36286041900007), (-2.8047582669999542, 56.34910716400003), (-2.8028051419999542, 56.345404364000046), (-2.7914932929999168, 56.34247467700004), (-2.7826228509999282, 56.34162018400008), (-2.7752579419999392, 56.33942291900007), (-2.768625454999949, 56.33234284100007), (-2.6771541009999282, 56.32843659100007), (-2.655262824999909, 56.32217031500005), (-2.621205206999946, 56.30442942900004), (-2.613189256999931, 56.30190664300005), (-2.5768123039999296, 56.28392161700003), (-2.5768123039999296, 56.277777411000045), (-2.6301163399999155, 56.24852122600004), (-2.648345506999931, 56.22870514500005), (-2.672027147999927, 56.22239817900004), (-2.7202042309999115, 56.21629466400003), (-2.7835994129999335, 56.19196198100008), (-2.8061417309999115, 56.188381252000056), (-2.8307185539999296, 56.190741278000075), (-2.8920792309999115, 56.20888906500005), (-2.940052863999938, 56.209418036000045), (-2.9643448559999115, 56.20563385600008), (-2.9746801419999542, 56.19830963700008), (-2.982411261999914, 56.189113674000055), (-3.0355525379999335, 56.16791413000004), (-3.0910538399999155, 56.13226959800005), (-3.107533331999946, 56.12689850500004), (-3.127552863999938, 56.12287018400008), (-3.138295050999943, 56.112209377000056), (-3.152251756999931, 56.07851797100005), (-3.1635636059999115, 56.06386953300006), (-3.1783748039999296, 56.05809153900003), (-3.2484431629999335, 56.055975653000075), (-3.268381313999953, 56.05093008000006), (-3.3030492829999503, 56.037543036000045), (-3.342681443999936, 56.02716705900008), (-3.381825324999909, 56.02338288000004), (-3.420969204999949, 56.02488841400003), (-3.5825902989999463, 56.05174388200004), (-3.671498175999943, 56.050848700000074), (-3.710031704999949, 56.05809153900003), (-3.7454320949999556, 56.07221100500004), (-3.7464900379999335, 56.072780666000085), (-3.782215949999909, 56.09218984600005), (-3.8031306629999335, 56.107123114000046), (-3.817005988999938, 56.11225006700005), (-3.8374731109999516, 56.112616278000075), (-3.8374731109999516, 56.10643138200004), (-3.777699347999942, 56.08283112200007), (-3.769154425999943, 56.07514069200005), (-3.7608536449999406, 56.07245514500005), (-3.7264298169999392, 56.03803131700005), (-3.721424933999913, 56.03070709800005), (-3.712635870999918, 56.028998114000046), (-3.693470831999946, 56.03115469000005), (-3.6866348949999406, 56.03070709800005), (-3.6795548169999392, 56.025458075000074), (-3.674794074999909, 56.01870351800005), (-3.6682836579999503, 56.01276276200008), (-3.656239386999914, 56.010199286000045), (-3.599720831999946, 56.017238674000055), (-3.5773819649999155, 56.01703522300005), (-3.405425584999932, 55.98973216400003), (-3.3582657539999445, 55.98973216400003), (-3.340891079999949, 55.99445221600007), (-3.331044074999909, 55.99408600500004), (-3.320423956999946, 55.986029364000046), (-3.303456183999913, 55.97760651200008), (-3.121815558999913, 55.96930573100008), (-3.1147354809999115, 55.966131903000075), (-3.096831834999932, 55.95197174700007), (-3.090728318999936, 55.94818756700005), (-3.078236456999946, 55.94684479400007), (-3.0156957669999542, 55.950506903000075), (-2.9399307929999168, 55.96930573100008), (-2.9166560539999296, 55.98061758000006), (-2.900054490999935, 55.996161200000074), (-2.8828832669999542, 56.00849030200004), (-2.8579809239999463, 56.010199286000045), (-2.863636847999942, 56.02228424700007), (-2.8663223949999406, 56.02676015800006), (-2.8709610669999392, 56.03070709800005), (-2.8527725899999155, 56.03978099200003), (-2.823150193999936, 56.059759833000044), (-2.8028051419999542, 56.06484609600005), (-2.635121222999942, 56.05805084800005), (-2.615956183999913, 56.053168036000045), (-2.587554490999935, 56.030951239000046), (-2.569406704999949, 56.02448151200008), (-2.57835852799991, 56.00800202000005), (-2.583648240999935, 56.00275299700007), (-2.5695694649999155, 55.99994538000004), (-2.5440567699999406, 56.00267161700003), (-2.528960740999935, 55.99656810100004), (-2.5248103509999282, 56.00055573100008), (-2.514556443999936, 56.00576406500005), (-2.507923956999946, 56.010199286000045), (-2.4932755199999406, 56.00153229400007), (-2.4525040359999366, 55.985256252000056), (-2.4143774079999503, 55.97833893400008), (-2.3509415359999366, 55.94818756700005), (-2.307769334999932, 55.93500397300005), (-2.146839972999942, 55.917303778000075), (-2.1380102199999556, 55.91461823100008), (-2.132557745999918, 55.90643952000005), (-2.13109290299991, 55.89720286700003), (-2.1287735669999392, 55.88979726800005), (-2.1209610669999392, 55.886704820000034), (-2.0994766919999392, 55.88178131700005), (-2.080189581999946, 55.86937083500004), (-2.0228572259999282, 55.80548737200007), (-2.009673631999931, 55.79083893400008), (-1.8778376939999362, 55.69489166900007), (-1.8631892569999309, 55.67161692900004), (-1.8530981109999516, 55.65932851800005), (-1.8315323559999115, 55.65070221600007), (-1.8260798819999309, 55.64362213700008), (-1.8216853509999282, 55.636419989000046), (-1.8164770169999542, 55.632879950000074), (-1.8071182929999168, 55.63450755400004), (-1.8007706369999141, 55.63922760600008), (-1.7962947259999282, 55.644232489000046), (-1.7925919259999432, 55.646551825000074), (-1.781402147999927, 55.64565664300005), (-1.768625454999949, 55.641913153000075), (-1.7564998039999296, 55.63361237200007), (-1.7476700509999432, 55.619208075000074), (-1.7679744129999335, 55.619208075000074), (-1.7679744129999335, 55.612982489000046), (-1.7559708319999459, 55.60887278900003), (-1.720855272999927, 55.614569403000075), (-1.6991267569999309, 55.612982489000046), (-1.6308487619999141, 55.58510976800005), (-1.6308487619999141, 55.57827383000006), (-1.6363419259999432, 55.57168203300006), (-1.6346736319999309, 55.56439850500004), (-1.6276749339999128, 55.55711497600004), (-1.6171768869999141, 55.55027903900003), (-1.6308487619999141, 55.544134833000044), (-1.6308487619999141, 55.53729889500005), (-1.6222224599999322, 55.534084377000056), (-1.6029353509999282, 55.52362702000005), (-1.6029353509999282, 55.516791083000044), (-1.6113175119999141, 55.50804271000004), (-1.6063533189999362, 55.503241278000075), (-1.5963435539999296, 55.49990469000005), (-1.5893448559999115, 55.49567291900007), (-1.5849503249999088, 55.483710028000075), (-1.5813695949999556, 55.41665273600006), (-1.5831192699999406, 55.40692780200004), (-1.5882869129999335, 55.39057038000004), (-1.5891007149999155, 55.385199286000045), (-1.5893448559999115, 55.37653229400007), (-1.5833227199999556, 55.354722398000035), (-1.5585831369999141, 55.32892487200007), (-1.5558162099999322, 55.31134674700007), (-1.5570369129999335, 55.306626695000034), (-1.5589900379999335, 55.302069403000075), (-1.5619197259999282, 55.29779694200005), (-1.5657445949999556, 55.29364655200004), (-1.570057745999918, 55.28620026200008), (-1.5682266919999392, 55.27960846600007), (-1.5642797519999476, 55.27326080900008), (-1.5620824859999516, 55.26666901200008), (-1.5564672519999476, 55.25503164300005), (-1.5439346999999088, 55.24388255400004), (-1.5209854809999115, 55.229396877000056), (-1.5291641919999392, 55.21625397300005), (-1.5240779289999296, 55.21010976800005), (-1.514271613999938, 55.204779364000046), (-1.507964647999927, 55.194647528000075), (-1.510812954999949, 55.184759833000044), (-1.5175675119999141, 55.176214911000045), (-1.5221248039999296, 55.16746653900003), (-1.517933722999942, 55.157131252000056), (-1.5007218089999128, 55.141791083000044), (-1.4959610669999392, 55.13458893400008), (-1.492543097999942, 55.112982489000046), (-1.4837540359999366, 55.09170156500005), (-1.4800919259999432, 55.08539459800005), (-1.4762263659999348, 55.083644924000055), (-1.4632869129999335, 55.08030833500004), (-1.459584113999938, 55.07859935100004), (-1.458078579999949, 55.07575104400007), (-1.4547013009999432, 55.067572333000044), (-1.438303188999953, 55.042303778000075), (-1.4291886059999115, 55.033270575000074), (-1.4240616529999102, 55.02435944200005), (-1.4195043609999516, 55.011704820000034), (-1.412912563999953, 55.00031159100007), (-1.4015193349999322, 54.995428778000075), (-1.398182745999918, 54.992621161000045), (-1.3702286449999406, 54.97553131700005), (-1.3626602859999366, 54.96478913000004), (-1.3617244129999335, 54.958685614000046), (-1.3635147779999102, 54.95425039300005), (-1.3640030589999128, 54.94818756700005), (-1.3628637359999516, 54.92593008000006), (-1.3603409499999088, 54.91705963700008), (-1.3531388009999432, 54.91351959800005), (-1.355824347999942, 54.904282945000034), (-1.2967830069999309, 54.77993398600006), (-1.2754613919999542, 54.74843984600005), (-1.2404679029999102, 54.72166575700004), (-1.2250870429999168, 54.71503327000005), (-1.172230597999942, 54.701239325000074), (-1.172230597999942, 54.693793036000045), (-1.1926163399999155, 54.693793036000045), (-1.192453579999949, 54.68927643400008), (-1.1907852859999366, 54.68618398600006), (-1.1851700509999432, 54.68008047100005), (-1.1827286449999406, 54.67206452000005), (-1.1788223949999406, 54.66474030200004), (-1.172922329999949, 54.65835195500006), (-1.1647029289999296, 54.652777411000045), (-1.172922329999949, 54.644191799000055), (-1.1824845039999445, 54.63922760600008), (-1.2062882149999155, 54.63296133000006), (-1.203724738999938, 54.62571849200003), (-1.1988419259999432, 54.62156810100004), (-1.1918025379999335, 54.61977773600006), (-1.1821182929999168, 54.61928945500006), (-1.1793513659999348, 54.62091705900008), (-1.1784561839999128, 54.624212958000044), (-1.1769913399999155, 54.62677643400008), (-1.172230597999942, 54.62612539300005), (-1.1695857409999348, 54.62360260600008), (-1.1654353509999282, 54.61871979400007), (-1.1629532539999445, 54.61395905200004), (-1.1647029289999296, 54.61180247600004), (-1.1526586579999503, 54.61318594000005), (-1.1467179029999102, 54.618475653000075), (-1.1380509109999366, 54.646551825000074), (-1.1205948559999115, 54.63300202000005), (-1.1036270819999459, 54.624660549000055), (-1.0842179029999102, 54.620428778000075), (-1.042062954999949, 54.61709219000005), (-0.9934789699999556, 54.59813060100004), (-0.7879125639999529, 54.56077708500004), (-0.5629776679999168, 54.47736237200007), (-0.5346573559999115, 54.461004950000074), (-0.5228572259999282, 54.44708893400008), (-0.5217992829999503, 54.43805573100008), (-0.5235896479999269, 54.43024323100008), (-0.5204158189999362, 54.42007070500006), (-0.5099991529999102, 54.41156647300005), (-0.47679602799991017, 54.39720286700003), (-0.46275794199993925, 54.38898346600007), (-0.4477432929999168, 54.37319570500006), (-0.43057206899993616, 54.349310614000046), (-0.4184464179999168, 54.32404205900008), (-0.41803951699995423, 54.303941148000035), (-0.4145401679999168, 54.297308661000045), (-0.4090063139999529, 54.29075755400004), (-0.4011938139999529, 54.28563060100004), (-0.39073645699994586, 54.28351471600007), (-0.3948868479999419, 54.273138739000046), (-0.39757239499994057, 54.269191799000055), (-0.3892716139999379, 54.26406484600005), (-0.3704727859999366, 54.247707424000055), (-0.3627823559999115, 54.24249909100007), (-0.3220108709999181, 54.23607005400004), (-0.31191972599992823, 54.231634833000044), (-0.30011959499995555, 54.224676825000074), (-0.2770889959999181, 54.21775950700004), (-0.26960201699995423, 54.20766836100006), (-0.26256262899994454, 54.18109772300005), (-0.2603653639999379, 54.176988023000035), (-0.2338761059999115, 54.16046784100007), (-0.11143958199994586, 54.13157786700003), (-0.07551021999995555, 54.11212799700007), (-0.16392981699993925, 54.08340078300006), (-0.1946915359999366, 54.06232330900008), (-0.2194718089999128, 54.022772528000075), (-0.1974177729999269, 53.99481842700004), (-0.1686905589999128, 53.929348049000055), (-0.1511124339999128, 53.899318752000056), (-0.045155402999910166, 53.801214911000045), (0.13347415500004445, 53.642645575000074), (0.1492619150000678, 53.60960521000004), (0.13689212300005238, 53.57713450700004), (0.13119550900006516, 53.573431708000044), (0.1096297540000819, 53.56289297100005), (0.1313582690000885, 53.59369538000004), (0.1359969410000872, 53.610663153000075), (0.12020918100006384, 53.61810944200005), (0.09945722700007309, 53.622300523000035), (0.056162957000083225, 53.64126211100006), (0.034515821000070446, 53.64606354400007), (0.014821811000047092, 53.64325592700004), (-0.023915167999916775, 53.62885163000004), (-0.04503333199994586, 53.62555573100008), (-0.06940670499994894, 53.626939195000034), (-0.09227454299991678, 53.63104889500005), (-0.11261959499995555, 53.63751862200007), (-0.1300349599999322, 53.64606354400007), (-0.2253311839999128, 53.719916083000044), (-0.2603653639999379, 53.73541901200008), (-0.2956436839999128, 53.738796291000085), (-0.3051651679999168, 53.73969147300005), (-0.4311417309999115, 53.71430084800005), (-0.4496964179999168, 53.71430084800005), (-0.5104874339999128, 53.71430084800005), (-0.5444229809999115, 53.70945872600004), (-0.5515030589999128, 53.71116771000004), (-0.5762426419999542, 53.72565338700008), (-0.5791723299999489, 53.72797272300005), (-0.6370336579999503, 53.73200104400007), (-0.6583552729999269, 53.72797272300005), (-0.7264705069999309, 53.70062897300005), (-0.7173559239999463, 53.69867584800005), (-0.7085668609999516, 53.695746161000045), (-0.7001846999999088, 53.691839911000045), (-0.6924535799999489, 53.68699778900003), (-0.6774796209999181, 53.702826239000046), (-0.6498103509999282, 53.710598049000055), (-0.6195369129999335, 53.71185944200005), (-0.5961807929999168, 53.70807526200008), (-0.5554906889999529, 53.69049713700008), (-0.5447485019999476, 53.683579820000034), (-0.5299373039999296, 53.67767975500004), (-0.5140274729999419, 53.681301174000055), (-0.48631751199991413, 53.69448476800005), (-0.3072403639999379, 53.71426015800006), (-0.27936764199995423, 53.707098700000074), (-0.2603653639999379, 53.68699778900003), (-0.1886287099999322, 53.620428778000075), (-0.1440323559999115, 53.606634833000044), (-0.11318925699993088, 53.58462148600006), (-0.09593665299991017, 53.57713450700004), (-0.06094316299993352, 53.57396067900004), (-0.0466202459999181, 53.570379950000074), (9.199300006912381e-05, 53.53534577000005), (0.0959578790000819, 53.488348700000074), (0.11508222700007309, 53.48322174700007), (0.1340438160000872, 53.48061758000006), (0.15186608200008322, 53.475816148000035), (0.1678166020000731, 53.464504299000055), (0.17090905000009116, 53.457017320000034), (0.1731063160000872, 53.44676341400003), (0.17579186300008587, 53.43768952000005), (0.1814884770000731, 53.43374258000006), (0.1906030610000471, 53.43187083500004), (0.21949303500008455, 53.41950104400007), (0.21192467500009116, 53.41266510600008), (0.2293400400000678, 53.40477122600004), (0.24488366000008455, 53.39093659100007), (0.2561141290000819, 53.375067450000074), (0.26042728000004445, 53.36147695500006), (0.34213300900006516, 53.22630442900004), (0.35621178500008455, 53.18854401200008), (0.3566186860000471, 53.145738023000035), (0.3357853520000731, 53.093451239000046), (0.32984459700008983, 53.08649323100008), (0.31869550900006516, 53.083685614000046), (0.29883873800008587, 53.08120351800005), (0.2824813160000872, 53.07485586100006), (0.19304446700004974, 53.02008698100008), (0.17448978000004445, 53.01544830900008), (0.16081790500004445, 53.008978583000044), (0.08212324300006912, 52.938666083000044), (0.061167839000063395, 52.924994208000044), (0.03760826900008851, 52.919175523000035), (0.022146030000044448, 52.91258372600004), (0.008555535000084546, 52.89862702000005), (0.010264519000088512, 52.88646067900004), (0.04066002700005811, 52.88507721600007), (0.09253991000008455, 52.89252350500004), (0.10564212300005238, 52.88934967700004), (0.13347415500004445, 52.87518952000005), (0.14714603000004445, 52.87201569200005), (0.17090905000009116, 52.86212799700007), (0.22242272200008983, 52.813666083000044), (0.24675540500004445, 52.79572174700007), (0.2644962900000678, 52.80369700700004), (0.2856551440000885, 52.805568752000056), (0.32553144600007045, 52.803168036000045), (0.34180748800008587, 52.79743073100008), (0.36988366000008455, 52.77301666900007), (0.38453209700008983, 52.76837799700007), (0.38453209700008983, 52.77521393400008), (0.37924238400006516, 52.79083893400008), (0.39942467500009116, 52.80951569200005), (0.42554772200008983, 52.827378648000035), (0.4386499360000471, 52.840725002000056), (0.44402103000004445, 52.86505768400008), (0.45671634200004974, 52.89199453300006), (0.47234134200004974, 52.916449286000045), (0.48568769600007045, 52.93349844000005), (0.5202742850000845, 52.95526764500005), (0.5695906910000872, 52.96930573100008), (0.6233830090000652, 52.97565338700008), (0.6718856130000859, 52.97443268400008), (0.6643986340000652, 52.98187897300005), (0.6847436860000471, 52.986395575000074), (0.7067977220000898, 52.98322174700007), (0.7291772800000444, 52.97748444200005), (0.7504988940000885, 52.97443268400008), (0.8357039720000898, 52.97443268400008), (0.8754988940000885, 52.96816640800006), (0.9210718110000471, 52.95465729400007), (0.9684350920000497, 52.94749583500004), (1.013926629000082, 52.960150458000044), (1.0034285820000832, 52.96474844000005), (0.9915470710000704, 52.96747467700004), (0.9790145190000885, 52.968410549000055), (0.9660750660000872, 52.96759674700007), (0.9660750660000872, 52.97443268400008), (1.2746688160000872, 52.92918528900003), (1.3960067070000832, 52.89142487200007), (1.6442163420000497, 52.775824286000045), (1.6733504570000832, 52.75568268400008), (1.6970320970000898, 52.73102448100008), (1.7158309250000912, 52.68374258000006), (1.7341414720000898, 52.65460846600007), (1.747243686000047, 52.62518952000005), (1.7407332690000885, 52.60390859600005), (1.7468367850000845, 52.58852773600006), (1.7487085300000444, 52.568793036000045), (1.7475692070000832, 52.53278229400007), (1.7711694670000497, 52.48590729400007), (1.7671004570000832, 52.47695547100005), (1.7544051440000885, 52.46735260600008), (1.7292586600000845, 52.41559479400007), (1.7301538420000497, 52.405910549000055), (1.7278751960000704, 52.39630768400008), (1.6836043630000859, 52.32453034100007), (1.6518660820000832, 52.289129950000074), (1.6411238940000885, 52.28180573100008), (1.6305444670000497, 52.27045319200005), (1.6282658210000704, 52.24481842700004), (1.6308699880000859, 52.19977448100008), (1.6254988940000885, 52.18036530200004), (1.6074324880000859, 52.14594147300005), (1.6035262380000859, 52.127834377000056), (1.5892033210000704, 52.100816148000035), (1.5875757170000497, 52.08698151200008), (1.582286004000082, 52.08148834800005), (1.5036727220000898, 52.060980536000045), (1.4868270190000885, 52.04901764500005), (1.4720158210000704, 52.05621979400007), (1.4668074880000859, 52.04800039300005), (1.4638778000000912, 52.035142320000034), (1.4558211600000845, 52.028509833000044), (1.4489852220000898, 52.02496979400007), (1.4248153000000912, 52.00185781500005), (1.3548283210000704, 51.95404694200005), (1.3435164720000898, 51.94285716400009), (1.332286004000082, 51.94009023600006), (1.2644149100000845, 51.99437083500004), (1.2348738940000885, 52.00031159100007), (1.1852319670000497, 52.025091864000046), (1.1578882170000497, 52.028509833000044), (1.1578882170000497, 52.02167389500005), (1.1935327480000524, 52.00079987200007), (1.2143660820000832, 51.991441148000035), (1.2602645190000885, 51.984808661000045), (1.2707625660000872, 51.98151276200008), (1.2751570970000898, 51.976996161000045), (1.2744246750000912, 51.96088288000004), (1.2710067070000832, 51.95644765800006), (1.2507430350000845, 51.95962148600006), (1.2389429050000444, 51.958644924000055), (1.2176212900000678, 51.954331773000035), (1.2057397800000444, 51.95343659100007), (1.193207227000073, 51.955511786000045), (1.1652938160000872, 51.96702708500004), (1.1430770190000885, 51.966050523000035), (1.0944930350000845, 51.955959377000056), (1.0691024100000845, 51.95343659100007), (1.0954695970000898, 51.945746161000045), (1.2620548840000652, 51.939154364000046), (1.2819930350000845, 51.946600653000075), (1.278493686000047, 51.92792389500005), (1.1995548840000652, 51.87767161700003), (1.2122501960000704, 51.87164948100008), (1.2278751960000704, 51.86737702000005), (1.2644149100000845, 51.86399974200003), (1.2747501960000704, 51.870306708000044), (1.2822371750000912, 51.880560614000046), (1.2866317070000832, 51.88165924700007), (1.288259311000047, 51.860581773000035), (1.2763778000000912, 51.84479401200008), (1.2192488940000885, 51.811835028000075), (1.167816602000073, 51.790228583000044), (1.1354272800000444, 51.78172435100004), (1.0654403000000912, 51.77529531500005), (1.0466414720000898, 51.777044989000046), (1.0372827480000524, 51.78217194200005), (1.021332227000073, 51.80255768400008), (0.9887801440000885, 51.83026764500005), (0.9798283210000704, 51.84357330900008), (0.9770613940000885, 51.82461172100005), (0.9620874360000471, 51.813788153000075), (0.9251408210000704, 51.80255768400008), (0.8942977220000898, 51.78461334800005), (0.8869735040000819, 51.782131252000056), (0.8864038420000497, 51.776678778000075), (0.8834741550000444, 51.76471588700008), (0.8789168630000859, 51.75275299700007), (0.8737085300000444, 51.747300523000035), (0.8619897800000444, 51.74555084800005), (0.8459578790000819, 51.736761786000045), (0.8357039720000898, 51.733710028000075), (0.8234969410000872, 51.73383209800005), (0.8014429050000444, 51.73969147300005), (0.7917586600000845, 51.74115631700005), (0.7671004570000832, 51.739447333000044), (0.7208764980000524, 51.728176174000055), (0.6985783210000704, 51.720038153000075), (0.7142033210000704, 51.715277411000045), (0.7324324880000859, 51.713771877000056), (0.7492781910000872, 51.70848216400009), (0.7607528000000912, 51.692694403000075), (0.7890731130000859, 51.710150458000044), (0.8530379570000832, 51.71889883000006), (0.8835555350000845, 51.72687409100007), (0.9123641290000819, 51.741522528000075), (0.9300236340000652, 51.74359772300005), (0.9455672540000819, 51.733710028000075), (0.9474389980000524, 51.72524648600006), (0.9445906910000872, 51.71548086100006), (0.9404403000000912, 51.70799388200004), (0.9381616550000444, 51.706366278000075), (0.9401961600000845, 51.698431708000044), (0.9440210300000444, 51.69057851800005), (0.9518335300000444, 51.67841217700004), (0.9417423840000652, 51.673041083000044), (0.9379988940000885, 51.664496161000045), (0.9381616550000444, 51.64126211100006), (0.9347436860000471, 51.63589101800005), (0.9267684250000912, 51.630926825000074), (0.9114689460000704, 51.62384674700007), (0.9384871750000912, 51.624986070000034), (0.9480900400000678, 51.621527411000045), (0.9518335300000444, 51.61701080900008), (0.9244897800000444, 51.588324286000045), (0.8733016290000819, 51.559475002000056), (0.8282983730000524, 51.541856187000064), (0.8162541020000731, 51.537176825000074), (0.7712508470000898, 51.52826569200005), (0.6920679050000444, 51.536322333000044), (0.6643986340000652, 51.53506094000005), (0.6637475920000497, 51.53554922100005), (0.6505639980000524, 51.53579336100006), (0.6466577480000524, 51.53534577000005), (0.6440535820000832, 51.53506094000005), (0.6427514980000524, 51.53351471600007), (0.6233830090000652, 51.52204010600008), (0.6086531910000872, 51.51898834800005), (0.5952254570000832, 51.51862213700008), (0.5822860040000819, 51.51654694200005), (0.5688582690000885, 51.50836823100008), (0.5527449880000859, 51.51797109600005), (0.5472111340000652, 51.51772695500006), (0.5254012380000859, 51.516913153000075), (0.45606530000009116, 51.505560614000046), (0.45085696700004974, 51.49827708500004), (0.44800866000008455, 51.48822663000004), (0.4416610040000819, 51.47703685100004), (0.42847741000008455, 51.46710846600007), (0.41407311300008587, 51.46190013200004), (0.39918053500008455, 51.45840078300006), (0.38453209700008983, 51.453111070000034), (0.4484155610000471, 51.45994700700004), (0.45679772200008983, 51.46312083500004), (0.4614363940000885, 51.47016022300005), (0.46485436300008587, 51.47724030200004), (0.4695744150000678, 51.48041413000004), (0.5348413420000497, 51.49168528900009), (0.6948348320000832, 51.47703685100004), (0.7094832690000885, 51.47052643400008), (0.7219344410000872, 51.456284898000035), (0.7231551440000885, 51.44672272300005), (0.7131453790000819, 51.44122955900008), (0.6923934250000912, 51.439520575000074), (0.6565047540000819, 51.444525458000044), (0.6409611340000652, 51.44415924700007), (0.6093856130000859, 51.425116278000075), (0.5727645190000885, 51.419582424000055), (0.5545353520000731, 51.412176825000074), (0.5622664720000898, 51.40656159100007), (0.5691024100000845, 51.399603583000044), (0.5765080090000652, 51.39362213700008), (0.5859481130000859, 51.391058661000045), (0.6718856130000859, 51.391058661000045), (0.7129012380000859, 51.38422272300005), (0.7049259770000731, 51.39598216400009), (0.7003686860000471, 51.409816799000055), (0.7053328790000819, 51.41950104400007), (0.7264103520000731, 51.41901276200008), (0.7283634770000731, 51.406236070000034), (0.7392684250000912, 51.387925523000035), (0.7534285820000832, 51.371527411000045), (0.7644149100000845, 51.36440664300005), (0.9772241550000444, 51.34918854400007), (1.1009220710000704, 51.37323639500005), (1.4238387380000859, 51.39207591400009), (1.4482528000000912, 51.382879950000074), (1.4391382170000497, 51.35008372600004), (1.4355574880000859, 51.343736070000034), (1.430837436000047, 51.33779531500005), (1.4251408210000704, 51.33295319200005), (1.4186304050000444, 51.32965729400007), (1.3829858730000524, 51.329779364000046), (1.3776147800000444, 51.326239325000074), (1.3806258470000898, 51.304754950000074), (1.387868686000047, 51.28790924700007), (1.4043074880000859, 51.261379299000055), (1.4130965500000912, 51.22174713700008), (1.4047957690000885, 51.18353913000004), (1.3844507170000497, 51.151678778000075), (1.3571883470000898, 51.13100820500006), (1.2903751960000704, 51.116522528000075), (1.2629500660000872, 51.10325755400004), (1.2516382170000497, 51.10252513200004), (1.2299910820000832, 51.10370514500005), (1.2181095710000704, 51.10097890800006), (1.2082625660000872, 51.09467194200005), (1.1997176440000885, 51.087591864000046), (1.1920679050000444, 51.08258698100008), (1.1722111340000652, 51.077378648000035), (1.1067000660000872, 51.07636139500005), (1.0871688160000872, 51.07298411700003), (1.0669051440000885, 51.06439850500004), (1.027598504000082, 51.04165273600006), (0.9764103520000731, 50.99445221600007), (0.9664819670000497, 50.98273346600007), (0.9690861340000652, 50.95685455900008), (0.9798283210000704, 50.91815827000005), (0.9451603520000731, 50.909369208000044), (0.8698022800000444, 50.925116278000075), (0.8022567070000832, 50.93919505400004), (0.7624617850000845, 50.930894273000035), (0.6643986340000652, 50.870306708000044), (0.6241968110000471, 50.858710028000075), (0.4074813160000872, 50.829331773000035), (0.3702905610000471, 50.818793036000045), (0.36524498800008587, 50.81899648600006), (0.35425866000008455, 50.80963776200008), (0.34441165500004445, 50.79905833500004), (0.3422957690000885, 50.79515208500004), (0.3081160820000832, 50.780951239000046), (0.2710067070000832, 50.747381903000075), (0.23389733200008322, 50.74701569200005), (0.2141219410000872, 50.748928127000056), (0.16830488400006516, 50.759833075000074), (0.1573999360000471, 50.761053778000075), (0.12208092500009116, 50.76080963700008), (0.11304772200008983, 50.76414622600004), (0.09555097700007309, 50.775051174000055), (0.07703698000005943, 50.778998114000046), (0.034515821000070446, 50.780951239000046), (0.01754804800009424, 50.784857489000046), (-0.17316646999995555, 50.829006252000056), (-0.20612545499994894, 50.83104075700004), (-0.20889238199993088, 50.83010488500008), (-0.2331436839999128, 50.821926174000055), (-0.2696833979999269, 50.831284898000035), (-0.39757239499994057, 50.802069403000075), (-0.5689591139999379, 50.802069403000075), (-0.7327367829999503, 50.767279364000046), (-0.7415665359999366, 50.769232489000046), (-0.7498673169999392, 50.773871161000045), (-0.7582087879999335, 50.77708567900004), (-0.7675675119999141, 50.774725653000075), (-0.7731013659999348, 50.76601797100005), (-0.7662654289999296, 50.74713776200008), (-0.7709854809999115, 50.73688385600008), (-0.7899470689999362, 50.73004791900007), (-0.8128149079999503, 50.73476797100005), (-0.9041235019999476, 50.77187734600005), (-0.9114884109999366, 50.77781810100004), (-0.9058731759999432, 50.78803131700005), (-0.8924861319999309, 50.794623114000046), (-0.8636368479999419, 50.802069403000075), (-0.8636368479999419, 50.808254299000055), (-0.8736059239999463, 50.812933661000045), (-0.8931371739999463, 50.82534414300005), (-0.9046931629999335, 50.829331773000035), (-0.9095352859999366, 50.82599518400008), (-0.9217016269999476, 50.821600653000075), (-0.9289444649999155, 50.82282135600008), (-0.9190160799999489, 50.83616771000004), (-0.9297989569999459, 50.83999258000006), (-0.9391983709999181, 50.84324778900009), (-0.9707738919999542, 50.846991278000075), (-0.9948624339999128, 50.84707265800006), (-1.0018611319999309, 50.84711334800005), (-1.0207413399999155, 50.84365469000005), (-1.033558722999942, 50.82591380400004), (-1.0426326159999348, 50.80190664300005), (-1.0562231109999516, 50.78302643400008), (-1.0827530589999128, 50.780951239000046), (-1.1030167309999115, 50.79547760600008), (-1.0936173169999392, 50.812933661000045), (-1.0753067699999406, 50.83002350500004), (-1.069162563999953, 50.84365469000005), (-1.0873103509999282, 50.84979889500005), (-1.0881241529999102, 50.84975820500006), (-1.1498103509999282, 50.84666575700004), (-1.1647029289999296, 50.84365469000005), (-1.129709438999953, 50.825100002000056), (-1.1237686839999128, 50.818793036000045), (-1.1212052069999459, 50.79938385600008), (-1.1249080069999309, 50.788723049000055), (-1.1380509109999366, 50.780951239000046), (-1.1511124339999128, 50.78139883000006), (-1.1693416009999282, 50.78587474200003), (-1.1856176419999542, 50.79242584800005), (-1.1926163399999155, 50.79865143400008), (-1.1992895169999542, 50.807928778000075), (-1.231516079999949, 50.81891510600008), (-1.2551977199999556, 50.83193594000005), (-1.288156704999949, 50.839178778000075), (-1.3014216789999296, 50.84365469000005), (-1.3185929029999102, 50.85691966400009), (-1.338937954999949, 50.872707424000055), (-1.4492895169999542, 50.91205475500004), (-1.4664200509999432, 50.91815827000005), (-1.4664200509999432, 50.91193268400008), (-1.4564509759999282, 50.90875885600008), (-1.4379776679999168, 50.90131256700005), (-1.4256078769999476, 50.900091864000046), (-1.4011124339999128, 50.88117096600007), (-1.323068813999953, 50.82575104400007), (-1.3142797519999476, 50.812160549000055), (-1.3172908189999362, 50.80023834800005), (-1.3398331369999141, 50.79515208500004), (-1.4039607409999348, 50.79157135600008), (-1.4186905589999128, 50.788397528000075), (-1.4113663399999155, 50.78489817900004), (-1.4049373039999296, 50.780951239000046), (-1.4049373039999296, 50.774725653000075), (-1.4505102199999556, 50.76935455900008), (-1.4762263659999348, 50.76341380400004), (-1.4875382149999155, 50.75771719000005), (-1.491932745999918, 50.75726959800005), (-1.5247289699999556, 50.761053778000075), (-1.5571996739999463, 50.72329336100006), (-1.559396938999953, 50.71922435100004), (-1.5611873039999296, 50.71898021000004), (-1.5807185539999296, 50.722642320000034), (-1.6021215489999463, 50.731756903000075), (-1.6706436839999128, 50.74005768400008), (-1.672922329999949, 50.74005768400008), (-1.6930232409999348, 50.739935614000046), (-1.7150772779999102, 50.73578522300005), (-1.7535294259999432, 50.72284577000005), (-1.7717179029999102, 50.72011953300006), (-1.7974340489999463, 50.723171291000085), (-1.8350723949999406, 50.72768789300005), (-1.8574112619999141, 50.72695547100005), (-1.8773494129999335, 50.72284577000005), (-1.8963516919999392, 50.71629466400009), (-1.8968806629999335, 50.716050523000035), (-1.9138891269999476, 50.70742422100005), (-1.9291072259999282, 50.69586823100008), (-1.9400121739999463, 50.69082265800006), (-1.9443253249999088, 50.69765859600005), (-1.946115688999953, 50.707912502000056), (-1.9492895169999542, 50.713324286000045), (-1.9877009759999282, 50.72011953300006), (-2.01390540299991, 50.71893952000005), (-2.0219620429999168, 50.72011953300006), (-2.0254613919999542, 50.723863023000035), (-2.026193813999953, 50.72508372600004), (-2.0338435539999296, 50.73712799700007), (-2.038970506999931, 50.739935614000046), (-2.0480850899999155, 50.734808661000045), (-2.0826716789999296, 50.69896067900004), (-2.0695694649999155, 50.700100002000056), (-2.0577286449999406, 50.702826239000046), (-2.046620245999918, 50.70726146000004), (-2.0356339179999168, 50.713324286000045), (-2.0141495429999168, 50.688788153000075), (-2.0025121739999463, 50.681301174000055), (-1.984120245999918, 50.67853424700007), (-1.9674373039999296, 50.67865631700005), (-1.9527888659999348, 50.67658112200007), (-1.9458715489999463, 50.668850002000056), (-1.9529516269999476, 50.65184153900009), (-1.9382218089999128, 50.645819403000075), (-1.9324845039999445, 50.64443594000005), (-1.9672745429999168, 50.61709219000005), (-1.965199347999942, 50.60219961100006), (-1.9837133449999556, 50.59662506700005), (-2.065174933999913, 50.59552643400008), (-2.082183397999927, 50.59784577000005), (-2.1573380199999406, 50.62051015800006), (-2.3426407539999445, 50.63377513200004), (-2.377064581999946, 50.64752838700008), (-2.398345506999931, 50.64557526200008), (-2.435902472999942, 50.63751862200007), (-2.447621222999942, 50.62787506700005), (-2.4600723949999406, 50.60651276200008), (-2.465646938999953, 50.585150458000044), (-2.4564509759999282, 50.575506903000075), (-2.4312231109999516, 50.57025788000004), (-2.428700324999909, 50.55756256700005), (-2.4392797519999476, 50.54181549700007), (-2.45335852799991, 50.52765534100007), (-2.4595434239999463, 50.52765534100007), (-2.4603572259999282, 50.56549713700008), (-2.4835098949999406, 50.59039948100008), (-2.6929418609999516, 50.69281647300005), (-2.8648168609999516, 50.73379140800006), (-2.887318488999938, 50.734361070000034), (-2.94554602799991, 50.725816148000035), (-2.9627579419999392, 50.72329336100006), (-2.998199022999927, 50.708238023000035), (-3.021839972999942, 50.70648834800005), (-3.059722459999932, 50.713324286000045), (-3.071359829999949, 50.711004950000074), (-3.0941462879999335, 50.69896067900004), (-3.099232550999943, 50.69708893400008), (-3.115834113999938, 50.68797435100004), (-3.1254776679999168, 50.68528880400004), (-3.135894334999932, 50.68593984600005), (-3.1551407539999445, 50.69135163000004), (-3.1664932929999168, 50.69281647300005), (-3.1856176419999542, 50.690741278000075), (-3.2191462879999335, 50.68081289300005), (-3.2598363919999542, 50.67454661700003), (-3.271392381999931, 50.664496161000045), (-3.280425584999932, 50.65119049700007), (-3.2955623039999296, 50.63751862200007), (-3.368153449999909, 50.61709219000005), (-3.390736456999946, 50.61782461100006), (-3.4075414699999556, 50.62128327000005), (-3.420969204999949, 50.62946198100008), (-3.433338995999918, 50.64443594000005), (-3.446359829999949, 50.66828034100007), (-3.4504288399999155, 50.672308661000045), (-3.453277147999927, 50.67328522300005), (-3.455433722999942, 50.675441799000055), (-3.458607550999943, 50.67755768400008), (-3.4644262359999516, 50.67853424700007), (-3.467762824999909, 50.67641836100006), (-3.468902147999927, 50.67169830900008), (-3.467844204999949, 50.66697825700004), (-3.45531165299991, 50.657904364000046), (-3.4420466789999296, 50.62352122600004), (-3.433338995999918, 50.610256252000056), (-3.451161261999914, 50.59943268400008), (-3.4672745429999168, 50.585598049000055), (-3.4817602199999556, 50.56854889500005), (-3.494862433999913, 50.548163153000075), (-3.505970831999946, 50.520819403000075), (-3.505034959999932, 50.501206773000035), (-3.487456834999932, 50.459418036000045), (-3.509755011999914, 50.45848216400009), (-3.532134568999936, 50.454779364000046), (-3.549427863999938, 50.446519273000035), (-3.556263800999943, 50.43211497600004), (-3.5493057929999168, 50.41559479400007), (-3.531971808999913, 50.410223700000074), (-3.487456834999932, 50.41156647300005), (-3.487456834999932, 50.40477122600004), (-3.4974666009999282, 50.38735586100006), (-3.49828040299991, 50.383693752000056), (-3.5073136059999115, 50.382798570000034), (-3.5149633449999556, 50.37995026200008), (-3.520130988999938, 50.37482330900008), (-3.5269262359999516, 50.34979889500005), (-3.5388891269999476, 50.34442780200004), (-3.5545141269999476, 50.347642320000034), (-3.57054602799991, 50.35639069200005), (-3.577788865999935, 50.334051825000074), (-3.5991104809999115, 50.325832424000055), (-3.6215714179999168, 50.321926174000055), (-3.631988084999932, 50.31232330900008), (-3.6373591789999296, 50.29539622600004), (-3.6475723949999406, 50.27456289300005), (-3.653309699999909, 50.25104401200008), (-3.6456192699999406, 50.22601959800005), (-3.6606339179999168, 50.22101471600007), (-3.700917120999918, 50.21352773600006), (-3.7180069649999155, 50.21238841400009), (-3.740386522999927, 50.21588776200008), (-3.758615688999953, 50.22174713700008), (-3.774240688999953, 50.22296784100007), (-3.788970506999931, 50.21238841400009), (-3.826324022999927, 50.23419830900008), (-3.8841853509999282, 50.280462958000044), (-3.949940558999913, 50.31899648600006), (-3.9610082669999542, 50.322251695000034), (-3.9702042309999115, 50.320746161000045), (-3.995757615999935, 50.311428127000056), (-4.005604620999918, 50.30923086100006), (-4.011341925999943, 50.30695221600007), (-4.024769660999937, 50.29718659100007), (-4.032948370999918, 50.294907945000034), (-4.044056769999941, 50.29645416900007), (-4.054351365999935, 50.30036041900007), (-4.070220506999931, 50.30923086100006), (-4.067941860999952, 50.31281159100007), (-4.064035610999952, 50.322251695000034), (-4.086008266999954, 50.326239325000074), (-4.1082657539999445, 50.33661530200004), (-4.118723110999952, 50.35187409100007), (-4.1049698559999115, 50.37067291900007), (-4.141753709999932, 50.36904531500005), (-4.1527400379999335, 50.37067291900007), (-4.1655167309999115, 50.37636953300006), (-4.171457485999952, 50.382798570000034), (-4.175770636999914, 50.39085521000004), (-4.18382727799991, 50.40106842700004), (-4.191477016999954, 50.417629299000055), (-4.18390865799995, 50.431708075000074), (-4.1703181629999335, 50.44513580900008), (-4.159535285999937, 50.459418036000045), (-4.179432745999918, 50.45307038000004), (-4.189564581999946, 50.45368073100008), (-4.200550910999937, 50.459418036000045), (-4.203684048999946, 50.45140208500004), (-4.204741990999935, 50.44867584800005), (-4.2123917309999115, 50.441473700000074), (-4.222523566999939, 50.43797435100004), (-4.234730597999942, 50.43829987200007), (-4.234730597999942, 50.43211497600004), (-4.2202042309999115, 50.425848700000074), (-4.2161352199999556, 50.415716864000046), (-4.219715949999909, 50.40509674700007), (-4.228505011999914, 50.397365627000056), (-4.2414444649999155, 50.39468008000006), (-4.2899063789999445, 50.397365627000056), (-4.273019985999952, 50.38190338700008), (-4.216175910999937, 50.38776276200008), (-4.1937556629999335, 50.37689850500004), (-4.228505011999914, 50.37067291900007), (-4.228505011999914, 50.36383698100008), (-4.220122850999928, 50.365301825000074), (-4.200550910999937, 50.36383698100008), (-4.207997199999909, 50.35639069200005), (-4.180043097999942, 50.35639069200005), (-4.180043097999942, 50.35016510600008), (-4.191314256999931, 50.34756094000005), (-4.197987433999913, 50.342230536000045), (-4.199126756999931, 50.33539459800005), (-4.1937556629999335, 50.32843659100007), (-4.1937556629999335, 50.322251695000034), (-4.214995897999927, 50.323146877000056), (-4.225697394999941, 50.33539459800005), (-4.235096808999913, 50.34955475500004), (-4.2523494129999335, 50.35639069200005), (-4.337717251999948, 50.37067291900007), (-4.383697068999936, 50.36749909100007), (-4.456206834999932, 50.33820221600007), (-4.4953507149999155, 50.32843659100007), (-4.659820115999935, 50.322251695000034), (-4.659575975999928, 50.32062409100007), (-4.662709113999938, 50.31777578300006), (-4.667795376999948, 50.315334377000056), (-4.673451300999943, 50.31541575700004), (-4.687163865999935, 50.34271881700005), (-4.694325324999909, 50.343451239000046), (-4.700184699999909, 50.34088776200008), (-4.705555792999917, 50.337551174000055), (-4.7113337879999335, 50.33588288000004), (-4.731556769999941, 50.33466217700004), (-4.752105272999927, 50.33030833500004), (-4.763295050999943, 50.32208893400008), (-4.755441860999952, 50.30923086100006), (-4.755441860999952, 50.30174388200004), (-4.7623591789999296, 50.298041083000044), (-4.771636522999927, 50.29157135600008), (-4.779855923999946, 50.28432851800005), (-4.783355272999927, 50.27789948100008), (-4.7818904289999296, 50.27179596600007), (-4.776519334999932, 50.26508209800005), (-4.776519334999932, 50.26080963700008), (-4.788441535999937, 50.24209219000005), (-4.790150519999941, 50.23655833500004), (-4.800160285999937, 50.22955963700008), (-4.849720831999946, 50.23456452000005), (-4.868723110999952, 50.22943756700005), (-4.887318488999938, 50.21499258000006), (-4.904774542999917, 50.20844147300005), (-4.947255011999914, 50.19936758000006), (-4.960682745999918, 50.19049713700008), (-5.002430792999917, 50.14411041900007), (-5.014556443999936, 50.15656159100007), (-5.0203751289999445, 50.19196198100008), (-5.033192511999914, 50.19936758000006), (-5.05296790299991, 50.19578685100004), (-5.053618943999936, 50.18691640800006), (-5.051869269999941, 50.17552317900004), (-5.064564581999946, 50.16461823100008), (-5.064564581999946, 50.15839264500005), (-5.058501756999931, 50.155462958000044), (-5.043446417999917, 50.14411041900007), (-5.051869269999941, 50.144598700000074), (-5.058461066999939, 50.14272695500006), (-5.070790167999917, 50.13727448100008), (-5.08031165299991, 50.13271719000005), (-5.081613735999952, 50.12539297100005), (-5.080962693999936, 50.117173570000034), (-5.085031704999949, 50.10993073100008), (-5.093902147999927, 50.105536200000074), (-5.125965949999909, 50.09634023600006), (-5.114654100999928, 50.09662506700005), (-5.106068488999938, 50.09511953300006), (-5.091867641999954, 50.089504299000055), (-5.086903449999909, 50.089056708000044), (-5.075347459999932, 50.09048086100006), (-5.070790167999917, 50.089504299000055), (-5.068470831999946, 50.085150458000044), (-5.064930792999917, 50.07184479400007), (-5.06086178299995, 50.06903717700004), (-5.056507941999939, 50.060614325000074), (-5.069488084999932, 50.042181708000044), (-5.0980525379999335, 50.01439036700003), (-5.107289191999939, 50.013006903000075), (-5.127430792999917, 50.01544830900008), (-5.139637824999909, 50.01439036700003), (-5.146473761999914, 50.01056549700007), (-5.176136847999942, 49.987941799000055), (-5.18773352799991, 49.964504299000055), (-5.191151495999918, 49.95913320500006), (-5.200103318999936, 49.961371161000045), (-5.210357225999928, 49.96674225500004), (-5.240386522999927, 49.988348700000074), (-5.245228644999941, 49.99310944200005), (-5.2495011059999115, 50.000067450000074), (-5.253041144999941, 50.01264069200005), (-5.25226803299995, 50.020697333000044), (-5.252674933999913, 50.027777411000045), (-5.259755011999914, 50.03766510600008), (-5.2884008449999556, 50.067694403000075), (-5.304351365999935, 50.08026764500005), (-5.323963995999918, 50.089504299000055), (-5.384185350999928, 50.10797760600008), (-5.424712693999936, 50.11273834800005), (-5.458119269999941, 50.125881252000056), (-5.47484290299991, 50.13043854400007), (-5.495676235999952, 50.12962474200003), (-5.521839972999942, 50.12372467700004), (-5.540923631999931, 50.11347077000005), (-5.540638800999943, 50.09975820500006), (-5.5346573559999115, 50.08234284100007), (-5.5455623039999296, 50.06891510600008), (-5.563465949999909, 50.05963776200008), (-5.57843990799995, 50.054754950000074), (-5.61945553299995, 50.046210028000075), (-5.667388475999928, 50.04287344000005), (-5.705148891999954, 50.05231354400007), (-5.715646938999953, 50.08270905200004), (-5.705962693999936, 50.08348216400009), (-5.698801235999952, 50.08539459800005), (-5.694488084999932, 50.089504299000055), (-5.694406704999949, 50.095770575000074), (-5.697092251999948, 50.10053131700005), (-5.700306769999941, 50.103216864000046), (-5.701975063999953, 50.103176174000055), (-5.707386847999942, 50.12201569200005), (-5.70921790299991, 50.13263580900008), (-5.70539303299995, 50.13727448100008), (-5.7035212879999335, 50.140611070000034), (-5.684641079999949, 50.16152578300006), (-5.676747199999909, 50.16502513200004), (-5.647368943999936, 50.17206452000005), (-5.583607550999943, 50.19586823100008), (-5.549427863999938, 50.20351797100005), (-5.5109757149999155, 50.21946849200003), (-5.4891251289999445, 50.21979401200008), (-5.458119269999941, 50.20075104400007), (-5.437977667999917, 50.19432200700004), (-5.417388475999928, 50.202460028000075), (-5.402943488999938, 50.21735260600008), (-5.395863410999937, 50.22724030200004), (-5.39289303299995, 50.23655833500004), (-5.3875626289999445, 50.240301825000074), (-5.351918097999942, 50.240301825000074), (-5.3148494129999335, 50.253607489000046), (-5.200306769999941, 50.33075592700004), (-5.1635636059999115, 50.34723541900007), (-5.1498917309999115, 50.35016510600008), (-5.146473761999914, 50.35529205900008), (-5.145659959999932, 50.366888739000046), (-5.147043423999946, 50.37938060100004), (-5.153675910999937, 50.39948151200008), (-5.142404751999948, 50.40448639500005), (-5.12726803299995, 50.40521881700005), (-5.119740363999938, 50.40477122600004), (-5.0502823559999115, 50.42869700700004), (-5.0481664699999556, 50.43439362200007), (-5.038726365999935, 50.44790273600006), (-5.029774542999917, 50.486761786000045), (-5.0286352199999556, 50.507025458000044), (-5.025257941999939, 50.52423737200007), (-5.015614386999914, 50.53803131700005), (-4.9955948559999115, 50.548163153000075), (-4.975168423999946, 50.548163153000075), (-4.967844204999949, 50.55158112200007), (-4.954823370999918, 50.56122467700004), (-4.947255011999914, 50.56244538000004), (-4.941477016999954, 50.55695221600007), (-4.937123175999943, 50.54531484600005), (-4.9344376289999445, 50.53164297100005), (-4.933583136999914, 50.52024974200003), (-4.926869269999941, 50.52289459800005), (-4.924305792999917, 50.52448151200008), (-4.920521613999938, 50.52765534100007), (-4.902414516999954, 50.52057526200008), (-4.860951300999943, 50.519191799000055), (-4.844838019999941, 50.51406484600005), (-4.855824347999942, 50.527411200000074), (-4.87328040299991, 50.534084377000056), (-4.906239386999914, 50.54197825700004), (-4.921864386999914, 50.55487702000005), (-4.92023678299995, 50.564154364000046), (-4.915191209999932, 50.57249583500004), (-4.920521613999938, 50.58295319200005), (-4.920521613999938, 50.589178778000075), (-4.895659959999932, 50.585923570000034), (-4.821197068999936, 50.589178778000075), (-4.7924698559999115, 50.59520091400009), (-4.7766007149999155, 50.60984935100004), (-4.765044725999928, 50.62799713700008), (-4.7492569649999155, 50.64443594000005), (-4.755441860999952, 50.659369208000044), (-4.751942511999914, 50.67007070500006), (-4.741932745999918, 50.67487213700008), (-4.728138800999943, 50.672308661000045), (-4.657297329999949, 50.71112702000005), (-4.645578579999949, 50.723537502000056), (-4.637806769999941, 50.74115631700005), (-4.619007941999939, 50.754787502000056), (-4.577259894999941, 50.774725653000075), (-4.5501195949999556, 50.80955638200004), (-4.55492102799991, 50.897772528000075), (-4.543771938999953, 50.93919505400004), (-4.536854620999918, 50.94757721600007), (-4.5226944649999155, 50.972723700000074), (-4.5266820949999556, 50.98037344000005), (-4.530425584999932, 50.99469635600008), (-4.531320766999954, 51.008693752000056), (-4.526437954999949, 51.014960028000075), (-4.437326626999948, 51.014960028000075), (-4.4264216789999296, 51.01268138200004), (-4.4057511059999115, 51.00287506700005), (-4.3957413399999155, 51.00067780200004), (-4.337717251999948, 50.99664948100008), (-4.317290818999936, 51.00067780200004), (-4.302316860999952, 51.007513739000046), (-4.234730597999942, 51.05532461100006), (-4.2291560539999296, 51.06110260600008), (-4.224680141999954, 51.06708405200004), (-4.218495245999918, 51.07245514500005), (-4.207997199999909, 51.07636139500005), (-4.214263475999928, 51.086004950000074), (-4.226307745999918, 51.11322663000004), (-4.228505011999914, 51.120428778000075), (-4.2319229809999115, 51.12669505400004), (-4.249012824999909, 51.14288971600007), (-4.255767381999931, 51.15151601800005), (-4.222320115999935, 51.149725653000075), (-4.214833136999914, 51.15151601800005), (-4.208363410999937, 51.16229889500005), (-4.2098282539999445, 51.17283763200004), (-4.217274542999917, 51.18138255400004), (-4.228505011999914, 51.18622467700004), (-4.228505011999914, 51.19245026200008), (-4.152333136999914, 51.21161530200004), (-3.969471808999913, 51.22239817900004), (-3.931996222999942, 51.231350002000056), (-3.9131973949999406, 51.23338450700004), (-3.840891079999949, 51.23338450700004), (-3.818959113999938, 51.23607005400004), (-3.787098761999914, 51.24677155200004), (-3.769154425999943, 51.247707424000055), (-3.6397598949999406, 51.22638580900008), (-3.559315558999913, 51.22809479400007), (-3.434193488999938, 51.20978424700007), (-3.4043676419999542, 51.19204336100006), (-3.38499915299991, 51.18622467700004), (-3.2707413399999155, 51.18939850500004), (-3.198882615999935, 51.203558661000045), (-3.1627498039999296, 51.206732489000046), (-3.096750454999949, 51.20453522300005), (-3.057525193999936, 51.20815664300005), (-3.029286261999914, 51.220404364000046), (-3.021839972999942, 51.21356842700004), (-3.0355525379999335, 51.199286200000074), (-3.021839972999942, 51.19245026200008), (-3.004790818999936, 51.21312083500004), (-3.0013321609999366, 51.220404364000046), (-2.9995824859999516, 51.23322174700007), (-3.0015356109999516, 51.23969147300005), (-3.0049942699999406, 51.24506256700005), (-3.008168097999942, 51.25454336100006), (-3.0076391269999476, 51.29197825700004), (-3.0106095039999445, 51.310980536000045), (-3.021839972999942, 51.32282135600008), (-3.0024307929999168, 51.31907786700003), (-2.992176886999914, 51.321926174000055), (-2.992095506999931, 51.32204824400009), (-2.988392706999946, 51.33112213700008), (-2.9877823559999115, 51.34666575700004), (-2.9798884759999282, 51.35586172100005), (-2.965972459999932, 51.364935614000046), (-2.959584113999938, 51.374253648000035), (-2.9746801419999542, 51.38422272300005), (-2.9529516269999476, 51.398504950000074), (-2.9210098949999406, 51.39443594000005), (-2.8841853509999282, 51.41697825700004), (-2.816395636999914, 51.47361888200004), (-2.798573370999918, 51.48261139500005), (-2.780873175999943, 51.48908112200007), (-2.7612198559999115, 51.49286530200004), (-2.7376195949999556, 51.49408600500004), (-2.716420050999943, 51.49957916900007), (-2.6961563789999445, 51.51264069200005), (-2.6078181629999335, 51.60736725500004), (-2.599598761999914, 51.611395575000074), (-2.5892227859999366, 51.61424388200004), (-2.580433722999942, 51.61863841400009), (-2.5768123039999296, 51.62750885600008), (-2.57445227799991, 51.63572825700004), (-2.568959113999938, 51.644964911000045), (-2.562245245999918, 51.65338776200008), (-2.556385870999918, 51.65924713700008), (-2.499175584999932, 51.69676341400009), (-2.464995897999927, 51.725897528000075), (-2.4477432929999168, 51.73187897300005), (-2.404896613999938, 51.74115631700005), (-2.3885391919999392, 51.750433661000045), (-2.380767381999931, 51.76190827000005), (-2.3833715489999463, 51.77326080900008), (-2.398060675999943, 51.782131252000056), (-2.4024145169999542, 51.76357656500005), (-2.4203995429999168, 51.753119208000044), (-2.4434301419999542, 51.74843984600005), (-2.4632869129999335, 51.747300523000035), (-2.482085740999935, 51.74286530200004), (-2.495838995999918, 51.73200104400007), (-2.507964647999927, 51.71857330900008), (-2.5221248039999296, 51.706366278000075), (-2.581695115999935, 51.681708075000074), (-2.5911352199999556, 51.67536041900007), (-2.600209113999938, 51.66559479400007), (-2.6653539699999556, 51.617254950000074)]\n", + " draw_map(plot, x, y, colour)\n", + " plot.plot(\n", + " [merc_x(coord[0]) for coord in gb_boundary],\n", + " [merc_y(coord[1]) for coord in gb_boundary],\n", + " \"k-\",\n", + " )\n", + "\n", + "country = Config(\n", + " get_data=get_literal_data(),\n", + " clean=get_map_cleaner_for(\"Temperature\"),\n", + " title=\"Country wide temperature\",\n", + " ylabel=\"\",\n", + " draw=draw_map_with_gb,\n", + ")\n", + "\n", + "out = widgets.interactive(interactable_plot_multiple_charts(configs=configs + (country, )), collected_after=start, collected_before=end)\n", + "display(out)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "apd.aggregation", + "language": "python", + "name": "apd.aggregation" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Ch12/apd.aggregation-chapter12/LICENCE b/Ch12/apd.aggregation-chapter12/LICENCE new file mode 100644 index 0000000..86685d4 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/LICENCE @@ -0,0 +1,31 @@ +Copyright (c) 2019, Matthew Wilkes + + +All rights reserved. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + +* Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + +* Redistributions in binary form must reproduce the above copyright notice, this + list of conditions and the following disclaimer in the documentation and/or + other materials provided with the distribution. + +* Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived from this + software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND +ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. +IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, +INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, +BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY +OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE +OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED +OF THE POSSIBILITY OF SUCH DAMAGE. + + diff --git a/Ch12/apd.aggregation-chapter12/Mapping.ipynb b/Ch12/apd.aggregation-chapter12/Mapping.ipynb new file mode 100644 index 0000000..916e704 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/Mapping.ipynb @@ -0,0 +1,254 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "datapoints = {\n", + " (53.8667, -1.3333): -1,\n", + " (53.35, -2.2833): 1,\n", + " (52.45, -1.7333): 3,\n", + " (51.5, -0.1333): 6,\n", + " (51.55, -2.5667): 5,\n", + " (54.9667, -1.6167): -1,\n", + " (55.9667, -3.2167): -1,\n", + " (54.7667, -1.5833): 0,\n", + " (53.7667, -0.3): 1,\n", + " (53.7667, -3.0167): 0,\n", + " (51.4833, -3.1833): 4,\n", + " (53.2667, -3.5167): 2,\n", + " (52.0833, -2.8): 2,\n", + " (52.0167, -0.6): 2,\n", + " (52.6667, 1.2667): 5,\n", + " (50.4333, -4.9833): 9,\n", + " (50.35, -4.1167): 10,\n", + " (50.5167, -2.45): 9,\n", + " (50.8333, -1.1667): 9,\n", + " (56.45, -5.4333): 4,\n", + " (57.5333, -4.05): -2,\n", + " (54.5167, -3.6167): 3,\n", + " (53.0833, 0.2667): 4,\n", + " (51.35, 1.3333): 7,\n", + " (50.8833, 0.3167): 8,\n", + " (58.45, -3.1): 3,\n", + " (50.1, -5.6667): 9,\n", + " (58.2167, -6.3333): 4,\n", + " (55.6833, -6.25): 7,\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAARS0lEQVR4nO3df4hc13nG8eexYodFuJWDVkq0tiqH2oIksiV3LEJFfshuJNukjiIItPQP0RRUmyTQgJVYFTRtjbGwUtxSSqlKTEOJGlKq3YS6tqTGENM/nGQVyZVCrcQ1SuJdN5JSRFOy9Q/57R9zx9pdzXpmdufee87M9wNmd+7OaF9rtM+ee+4573VECACQn6vqLgAAsDgEOABkigAHgEwR4ACQKQIcADL1tiq/2cqVK2PdunVVfksAyN7x48cvRMTo/OOVBvi6des0OTlZ5bcEgOzZ/lG740yhAECmCHAAyBQBDgCZIsABIFMEOABkqtJVKMBiTJyY0oEjZzR9cUZrVoxoz/b12rFprO6ygNoR4EjaxIkp7T18SjOvXZIkTV2c0d7DpySJEMfQYwoFSTtw5Myb4d0y89olHThypqaKgHQQ4Eja9MWZno4Dw4QAR9LWrBjp6TgwTAhwJG3P9vUauXrZnGMjVy/Tnu3ra6oISEfyFzFZgTDcWu81/waAKyUd4KxAgNR8r3m/gSslPYXCCgQAWFjSAc4KBABYWNIBzgoEAFhYVwFu+6ztU7ZP2p4sjm20/WzrmO3N/S6OFQgAsLBeLmJujYgLsx4/KulPIuJJ2/cUjz/cz+JYgQAAC1vKKpSQ9EvF578saXrp5VyJFQgA0F63AR6SjtoOSX8TEQcl/YGkI7a/qOZUzK+3e6Ht3ZJ2S9LatWuXXjEAQFL3FzG3RMRtku6W9CnbH5R0v6TPRsQNkj4r6UvtXhgRByOiERGN0dErbqoMAFikrgI8IqaLj+ckjUvaLGmXpMPFU/6xOAYAqEjHALe93Pa1rc8lbZN0Ws057w8VT7tD0g/LKhIAcKVu5sBXSxq33Xr+oYh4yvb/SvoL22+T9H8q5rkBANXoGOAR8aKkW9sc/zdJv1ZGUQCAzpLeiQkAWBgBDgCZSrqdLKpF73UgLwQ4JNF7HcgRUyiQRO91IEcEOCTRex3IEQEOSfReB3JEgEMSvdeBHHERE5LovQ7kiADHm+i9DuSFKRQAyBQBDgCZIsABIFMEOABkigAHgEwR4ACQKQIcADJFgANApghwAMgUAQ4AmSLAASBTBDgAZIoAB4BMEeAAkCkCHAAyRYADQKYIcADIFAEOAJnilmo9mjgxxX0jASSBAO/BxIkp7T18SjOvXZIkTV2c0d7DpySJEAdQOaZQenDgyJk3w7tl5rVLOnDkTE0VARhmBHgPpi/O9HQcAMpEgPdgzYqRno4DQJkI8B7s2b5eI1cvm3Ns5Opl2rN9fU0VARhmXMTsQetCJatQAKSAAO/Rjk1jBDaAJDCFAgCZIsABIFNdBbjts7ZP2T5pe3LW8c/YPmP7+7YfLa9MAMB8vcyBb42IC60HtrdK+pikWyLiFdur+l4dhg6tCoDuLeUi5v2S9kfEK5IUEef6UxKGFa0KgN50Owceko7aPm57d3HsZkkfsP1t29+yfXu7F9rebXvS9uT58+f7UTMGFK0KgN50OwLfEhHTxTTJMdvPF6+9TtL7Jd0u6Wu23x0RMfuFEXFQ0kFJajQaIWABtCoAetPVCDwipouP5ySNS9os6SVJh6PpO5LekLSyrEIx+GhVAPSmY4DbXm772tbnkrZJOi1pQtIdxfGbJV0j6cJCfw7QCa0KgN50M4WyWtK47dbzD0XEU7avkfS47dOSXpW0a/70CdALWhUAvXGVmdtoNGJycrLzExfAEjMAw8j28YhozD+eTS8UlpgBwFzZbKVniRkAzJVNgLPEDADmyibAWWIGAHNlE+AsMQOAubK5iMkSMwCYK5sAl7gbDgDMls0UCgBgLgIcADJFgANApghwAMgUAQ4AmSLAASBTBDgAZIoAB4BMEeAAkKmsdmICg4wblqBXBDiQAG5YgsVgCgVIADcswWIQ4EACuGEJFoMABxKw0I1JrrI1cWKq4mqQCwIcSEC7G5ZI0qUI7T18ihBHWwQ4kIAdm8b0yM4NWmZf8TXmwrEQAhxIxI5NY3ojou3XmAtHOwQ4kBBu3o1eEOBAQrh5N3rBRh70FbsJl4abd6MXBDj6ht2E/cHNu9EtplDQN+wmBKpFgKNv2E0IVIsAR9+wggKoFgGOvmEFBVAtLmKib1hBAVSLAEdfsYICqA5TKACQKQIcADJFgANApghwAMhUVwFu+6ztU7ZP2p6c97UHbIftleWUCABop5dVKFsj4sLsA7ZvkPQRST/ua1UAgI6WOoXymKTPSWrfhR4AUJpuAzwkHbV93PZuSbJ9r6SpiHiutOoAAAvqdgplS0RM214l6Zjt5yXtk7St0wuLwN8tSWvXrl10oQDmovc6uhqBR8R08fGcpHFJH5J0o6TnbJ+VdL2k79l+Z5vXHoyIRkQ0RkdH+1Y4MMxavdenLs4odLn3OnevHy4dR+C2l0u6KiJ+Xny+TdKfRsSqWc85K6kx/yIn0G+MOpveqvd6Sn8fvF/l6mYKZbWkcdut5x+KiKdKrQpogzv+XJZD73Xer/J1nEKJiBcj4tbiv/dGxMNtnrOO0TfKxh1/Lsuh9zrvV/nYiYls5DDqrEoOvdd5v8pHgCMbOYw6q7Jj05ge2blBYytGZEljK0b0yM4NSU1N8H6Vj37gyMae7evnzKlK6Y06q5R673Xer/IR4MgGd/zJC+9X+RxR3S74RqMRk5OTnZ8IAHiT7eMR0Zh/nDlwAMgUAQ4AmWIOHOiA3YRIFQEOvAV2EyJlBDhKlfvoNZeeIxhOBDhKMwijV3YTImVcxERpBqEXBrsJkTICHKUZhNFrDj1HMLyYQkFp1qwY0VSbsM5p9MpuwjTlfm2lXwhwlGZQemGk3nNk2AzCtZV+YQoFpcmhYx7yMwjXVvqFEThKxegV/TYI11b6hRE4gKywMugyAhxAVlgZdBlTKACywsqgywhwANnh2koTUygAkCkCHAAyxRQKAPRZVTtFCXAA6KMqd4oyhQIAfVTlTlECHAD6qMqdogQ4APRRlTtFCXCgJhMnprRl/9O68cEntGX/05o4MVV3SeiDKneKchETqAEtUQdXlTtFCXCgBtwsebBVtVOUKRSgBrRERT8Q4EANaImKfiDAgRrQEhX9wBw4UANaoqIfCHCgJrRExVIxhQIAmWIEjoFSVRc4IAUEOAYGm2MwbLoKcNtnJf1c0iVJr0dEw/YBSb8p6VVJ/ynpdyPiYlmFAp2wOaZ8nOGkpZc58K0RsTEiGsXjY5LeFxG3SPqBpL19rw7oAZtjytU6w5m6OKPQ5TMcerjUZ9EXMSPiaES8Xjx8VtL1/SkJWBw2x5Sryj7X6E63AR6Sjto+bnt3m69/UtKT7V5oe7ftSduT58+fX2ydQEdsjikXZzjp6TbAt0TEbZLulvQp2x9sfcH2PkmvS/pKuxdGxMGIaEREY3R0dMkFAwvZsWlMj+zcoLEVI7KksRUjemTnBuZo+4QznPR0dREzIqaLj+dsj0vaLOkZ27skfVTSnRER5ZUJdIfNMeXZs339nFU+Emc4des4Are93Pa1rc8lbZN02vZdkj4v6d6I+EW5ZQKoG2c46elmBL5a0rjt1vMPRcRTtl+Q9HZJx4qvPRsR95VWKYDacYaTlo4BHhEvSrq1zfFfLaUiAEBX6IUCAJkiwAEgU/RCwVBiSzgGAQGO5JQdrjS9qh+/QPuDKRQkpYp+G2wJrxc9VfqHAEdSqghXtoTXi1+g/cMUCpJSRbiuWTGiqTZ/HlvCqzFsv0DLnC5iBI6kVNFvg6ZX9RqmniplTxcR4EhKFeHKlvB6DdMv0LKni5hCQVJaIVr2CgW2hNenqvc4BWVPFxHgSA7hOviG5T0u+3oLUygAUJKyp4sYgQNAScqeLiLAAaBEZU4XMYUCAJkiwAEgUwQ4AGSKOXAA2Rr2roYEOIAs0RaYAAcGzrCMSt9qm/og/v+2Q4ADA2SYRqXD1tWwHS5iAgNkmHptD1NXw4UQ4MAAGaZR6TB1NVwIAQ4MkGEaldIWmDlwYKDs2b5+zhy4NNij0mHpargQAhwYIMPUaxsEOCBpsJbeDfuodJgQ4Bh6w7T0DoOFAK/JII34cseGEOSKAK8BI760DNPSOwwWlhHWIKXNFhMnprRl/9O68cEntGX/05o4MVV5DXUbpqV3GCwEeA1SGfG1zgSmLs4odPlMYNhCnA0hyBUBXoNURnwpnQnUiQ0hyBVz4DVIZbNFKmcCKWDpHXLECLwGqYz4UjkTALA4jMBrksKIL5UzAQCLQ4DPMmxrs9l2DeSNAC8M69rsFM4EACxOV3Pgts/aPmX7pO3J4tg7bB+z/cPi43XlllouVmQAyE0vFzG3RsTGiGgUjx+U9M2IuEnSN4vH2WJFBoDcLGUVysckfbn4/MuSdiy9nPqwIgNAbroN8JB01PZx27uLY6sj4mVJKj6uavdC27ttT9qePH/+/NIrLgm78QDkptuLmFsiYtr2KknHbD/f7TeIiIOSDkpSo9GIRdRYCVZkAMhNVwEeEdPFx3O2xyVtlvRT2++KiJdtv0vSuRLrrAQrMgDkpOMUiu3ltq9tfS5pm6TTkr4haVfxtF2Svl5WkQCAK3UzAl8tadx26/mHIuIp29+V9DXbvyfpx5I+UV6ZAID5OgZ4RLwo6dY2x38m6c4yigIAdEYzKwDIFAEOAJlyRHUr+2yfl/Sjyr6htFLShQq/X6+ob2lSri/l2iTqW4o6avuViBidf7DSAK+a7clZW/+TQ31Lk3J9KdcmUd9SpFQbUygAkCkCHAAyNegBfrDuAjqgvqVJub6Ua5OobymSqW2g58ABYJAN+ggcAAYWAQ4AmRqKALf9GdtnbH/f9qN11zOb7T+2PVXcru6k7Xvqrqkd2w/YDtsr666lxfZDtv+9+Hs7antN3TXNZvuA7eeLGsdtr6i7ptlsf6L4mXjDdhLL4mzfVfysvmA7qbt82X7c9jnbp+uupWXgA9z2VjXvHnRLRLxX0hdrLqmdx4rb1W2MiH+pu5j5bN8g6SNqNi1LyYGIuCUiNkr6Z0l/VHdB8xyT9L6IuEXSDyTtrbme+U5L2inpmboLkSTbyyT9laS7Jb1H0m/bfk+9Vc3xd5LuqruI2QY+wCXdL2l/RLwiNXua11xPjh6T9Dk178yUjIj4n1kPlyu9+o5GxOvFw2clXV9nPfNFxH9EREp37d4s6YWIeDEiXpX0VTUHX0mIiGck/Xfddcw2DAF+s6QP2P627W/Zvr3ugtr4dHGa/bjt6+ouZjbb90qaiojn6q6lHdsP2/6JpN9ReiPw2T4p6cm6i0jcmKSfzHr8UnEMC+j2lmpJs/2vkt7Z5kv71Px/vE7S+yXdrmYP83dHhesnO9T315IeUnP0+JCkP1Pzh70yHer7QzVv4lGLt6otIr4eEfsk7bO9V9KnJX0hpfqK5+yT9Lqkr1RZW/G9O9aXELc5ltRZVWoGIsAj4jcW+prt+yUdLgL7O7bfULMZTWV3WH6r+maz/bdqzuVWaqH6bG+QdKOk54obelwv6Xu2N0fEf9VZWxuHJD2higO8U322d0n6qKQ7qxw0tPTw95eClyTdMOvx9ZKma6olC8MwhTIh6Q5Jsn2zpGuUUJez4n6iLR9X88JSEiLiVESsioh1EbFOzR+w26oK705s3zTr4b2Sur7ZdhVs3yXp85LujYhf1F1PBr4r6SbbN9q+RtJvqXnrRixg4HdiFv8QHpe0UdKrkh6IiKfrreoy23+vZm0h6ayk34+Il2stagG2z0pqREQSvwBt/5Ok9ZLeULNN8X0RMVVvVZfZfkHS2yX9rDj0bETcV2NJc9j+uKS/lDQq6aKkkxGxveaa7pH055KWSXo8Ih6us57ZbP+DpA+reQb/U0lfiIgv1VrToAc4AAyqYZhCAYCBRIADQKYIcADIFAEOAJkiwAEgUwQ4AGSKAAeATP0/KVaoHKMq6aEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "fig, ax = plt.subplots()\n", + "lats = [ll[0] for ll in datapoints.keys()]\n", + "lons = [ll[1] for ll in datapoints.keys()]\n", + "ax.plot(lons, lats, \"o\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJcAAAD4CAYAAADhPXT2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAL9UlEQVR4nO3db6ieZR0H8O/XqXEQa8bOTKfrWOmCUqc9jmikLbOplC4hqFejgpVokNBK8Y0FoTgjehWdSPBFEQZzRWHTNIpeWJ41bTOc2pi2cyTPgoHSUme/Xjz3Wc8Oz3PO/dz3/buvP/f3A2PnPOc8ey7Gl+v/dV80M4h4OCV0ASRfCpe4UbjEjcIlbhQucXNqmx+2atUqm5qaavMjxdmePXuOmNnksJ+1Gq6pqSnMzMy0+ZHijOSLo36mZlHcKFziRuESNwqXuFG4xE2ro8XU7do7ix27D2Du6DGcu3IC2zevw5bL1oQuVrQUrpJ27Z3FHTv34dibbwEAZo8ewx079wGAAjaCmsWSduw+cCJYC469+RZ27D4QqETxU7hKmjt6bKzXReEq7dyVE2O9LgpXads3r8PEaStOem3itBXYvnldoBLFL1iHPrWR10LZUipzaEHClerIa8tla6IuX2yCNIsaeXVDkHBp5NUNQcKlkVc3lAoXyUMk95F8iuRM8dp6kk8svEZyQ9kP1cirG8bp0G8ysyMD398L4Ftm9jDJ64vvP1bmH9LIqxvqjBYNwNuLr98BYG6cN2vklb+y4TIAj5A0AD80s2kAXwOwm+R96DevHxn2RpLbAGwDgLVr19YvsSSjbId+o5ldDuA6ALeQvBLAzQBuM7PzAdwG4MfD3mhm02bWM7Pe5OTQQyKSqVLhMrO54u9XADwEYAOArQB2Fr/y8+I1kROWDRfJM0ieufA1gE8C2I9+H+uq4tc+DuB5r0JKmsr0uc4G8BDJhd//qZn9huRrAL5P8lQA/0HRrxJZsGy4zOwggEuHvP5HAB/yKJTkQVtuxI3CJW46e0Ajtf1kKepkuFLdT5aaTjaL2k/Wjk6GS/vJ2tHJcGk/WTs6GS7tJ2tHJzv02k/Wjk6GC9B+sjZ0slmUdihc4kbhEjcKl7hRuMSNwiVuFC5xo3CJG4VL3Chc4kbhEjcKl7hRuMSNwiVuFC5xo3CJG4VL3Chc4iapbc46JZ2WZMKlU9LpSaZZ1Cnp9CQTLp2STk8y4dIp6fQkEy6dkk5PMh16nZJOTzLhAnRKOjXJNIuSHoVL3FS+Eq94/askD5B8huS9fsWUFFW+Eo/kJgA3ArjEzF4nubrx0kVES0/jq9OhvxnAPWb2OnDiXqAsaempmrJ9roUr8fYUV9wBwEUAPkryTyR/T/KKYW8kua24SXZmfn6+iTK3TktP1ZStuTaa2VzR9D1K8tnivWcB+DCAKwA8SPI9ZmaDbyzuZpwGgF6vZ0iQlp6qqXMl3mEAO63vzwD+C2CVV0FD0tJTNXWuxNuF/lV4IHkRgNMBHBn176RMS0/V1LkS73QA95PcD+ANAFsXN4m50NJTNWwzD71ez2ZmTkyTaXifAZJ7zKw37GfB1hY1vM9fsOUfDe/zFyxcGt7nL1i4NLzPX7BwaXifv2Adeg3v8xd0J6p2luZNmwXFjcIlbhQucaNwiRuFS9woXOJG4RI3Cpe4UbjETVLPishRzhsmFa6Act8wqWYxoNw3TCpcAeW+YVLhCij3DZMKV0Cb3j851uupUbgC+t2zw5+dMer11ChcAanPJW7U5xI3uR9S0STqIm3OmOd+SEXhGhBixjznQypqFgfkPmPeNoVrQO6jt7YpXANyH721TeEakPvorW3q0A/IffTWNoVrkZxHb21TsyhuFC5xo3CJG4VL3NS6Eq/42ddJGsksb8+Q6ipfiQcAJM8HcA2AlxotlWShbrP4PQDfQP9WM5GTVL4Sj+QNAGbN7Gm30knS6lyJdyf6l0wtqQjjNgBYu3Zt5YJ2RU4nsKteiXcVgAsAPE3yEIDzAPyF5LuGvHfazHpm1puczONUi5eF/WSzR4/B8P/9ZLv2zoYuWiXL1lzFNXinmNmrA1fifdvMVg/8ziEAvcUd/hx51ixL7Sdb7jNirPEqX4nnWqpIee9UrbqfLNZnTizbLJrZQTO7tPjzATP7zpDfmepCreW9U7XqfrJYd9Bqhn4M3jtVq+4ni3UHrcI1Bu+dqlsuW4O7b7oYa1ZOgADWrJzA3TddvGzTFusOWu3nGsP2zetO6tsAze9UrbKfrI1yVaFwjSHWnaqxlivoHdeSvqXuuFafS9woXOJGfS5HMc6at0nhchLrrHmbFK4R6tY6ddYJc6FwDdFErRPrrHmb1KEfoom1ulhnzdukcA3RRK2j506oWRzq3JUTmB0SpHFqndhmzUOMXBWuIZpaq4vluROhRq5qFoeoujshVqH2e6nmGiGWWqcJoUauqrk6INTIVeHqgFAjVzWLHRBq5KpwdUSIPqSaRXGjcIkbNYuypDoz+wqXjFR3Zl/NooxUd2Zf4ZKR6s7sK1wyUt2ZfYUrkF17Z7Hxnsdxwe2/xsZ7Ho/yGVx1Z/bVoQ8glcMbdWf2Fa4AUjq8UWdmX81iAF05vKFwBdCVwxsKVwBdObyhPlcAsR3e8KJwBZLTNupR1CyKG9VcNXT9KTbLUbgqSmUiNKRS4SpuyHgVwFsAjptZj+QOAJ8G8AaAvwP4gpkd9SpobEJPhKZQa47T59pkZusHnn/5KIAPmtklAJ4DcEfjpYtYyInQVO4IqtyhN7NHzOx48e0T6F8u1RkhJ0JjvTFjscr3LS7yRQAPD3sjyW0kZ0jOzM/PVy1ndEJOhKayfFQ2XBvN7HIA1wG4heSVCz8geSeA4wB+MuyNuV6JF/J5EqksH5Xq0A/et0jyIQAbAPyB5FYAnwJwtbX5QPtIhJoIjfXGjMWWrblInkHyzIWv0b9vcT/JawF8E8ANZvZv32LKoFSewlP5vkWSLwB4G/rXEgPAE2b2FbeSyklSWD5aNlxmdhDApUNef59LiSQbWlsUNwqXuNHaYoNSWJJpk8JV0nLBiWkhO5aQq1ksocxaXixLMjGtOypcJZQJTixLMrGEHFCzWEqZ4DRxMUITPEJetZlVzVVCmbW8WE70NL3uWKeZVbhKKBOcWJZkmg55nWZWzWIJZY+CxbAk0/SxtTrNrMJVUgzBKavJstbpS6pZlCXVaWZVc8mS6jSzCpcsq2ozq2ZR3Chc4kbhEjfqc3VI27slFK6OCLElSOGKVNO1TIhnWyhcEfKoZUJsCVKHPkIee7JCnNJWuCLkUcuE2BKkcEXIo5YJsSVIfa4IeT0Lou2dHQpXhHJ5lLjC1bCmphBS2j82isLVoJjOLsYgi3DFcgg09EN4Y5N8uGKqLWI5uxiL5Kciqkw4et3SmsrjJNuSfLjGrS08j7vHcnYxFsmHa9zawvO4eyxnF2ORfJ9r3AlH735RDlMITUm+5hq3tlC/qD3J11zAeLVFKo/ZzkH04Wp6DiuXpZUURB0urzks9YvaUarPRfIQyX0knyI5U7z2TpKPkny++PuspgsX04PMZHx1rsS7HcBjZnYhgMeK7xulGe+01Rkt3gjggeLrBwBsqV+ck2lkl7Y6V+KdbWYvA0Dx9+phb6xzJZ5mvNNWtkO/0czmSK5G/66fZ8t+gJlNA5gGgF6vN9bNZhrZpa3OlXj/JHmOmb1M8hwAr3gUUCO7dFW+Eg/ALwFsLX5tK4BfeBVS0lTnSrwnATxI8ksAXgLwWb9iSorqXIn3LwBXexRK8pD8wrXES+ESN2zz3nOS8wBedPyIVQCOOP77KfL+P3m3mU0O+0Gr4fJGcmZgeUoQ9v9EzaK4UbjETW7hmg5dgAgF+z/Jqs8lccmt5pKIKFziJrtwkbyL5GyxJfspkteHLlMoJK8leYDkCyQb3ym87Ofn1ucieReA18zsvtBlCYnkCgDPAbgGwGEATwL4vJn9ra0yZFdzyQkbALxgZgfN7A0AP0N/a3prcg3XrST/SvJ+j1NJiVgD4B8D3x8uXmtNkuEi+VuS+4f8uRHADwC8F8B6AC8D+G7QwobDIa+12geK+lDsKGb2iTK/R/JHAH7lXJxYHQZw/sD35wGYa7MASdZcSyn28y/4DPpbsrvoSQAXkryA5OkAPof+1vTWJFlzLeNekuvRbwIOAfhy2OKEYWbHSd4KYDeAFQDuN7Nn2ixDdlMREo/smkWJh8IlbhQucaNwiRuFS9woXOJG4RI3/wOfdKaAPZfJtAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "fig, ax = plt.subplots()\n", + "lats = [ll[0] for ll in datapoints.keys()]\n", + "lons = [ll[1] for ll in datapoints.keys()]\n", + "# Don't draw lines\n", + "ax.plot(lons, lats, \"o\")\n", + "# This is a map of the UK. Here, 1 degree latitude is \n", + "# 1.7x as far as 1 degree longitude\n", + "ax.set_aspect(1.7)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Set up mercator transform from https://wiki.openstreetmap.org/wiki/Mercator#Python\n", + "# Thanks to Paulo Silva and the OSM contributors\n", + "import math\n", + "\n", + "def merc_x(lon):\n", + " r_major=6378137.000\n", + " return r_major*math.radians(lon)\n", + "\n", + "def merc_y(lat):\n", + " if lat>89.5:lat=89.5\n", + " if lat<-89.5:lat=-89.5\n", + " r_major=6378137.000\n", + " r_minor=6356752.3142\n", + " temp=r_minor/r_major\n", + " eccent=math.sqrt(1-temp**2)\n", + " phi=math.radians(lat)\n", + " sinphi=math.sin(phi)\n", + " con=eccent*sinphi\n", + " com=eccent/2\n", + " con=((1.0-con)/(1.0+con))**com\n", + " ts=math.tan((math.pi/2-phi)/2)/con\n", + " y=0-r_major*math.log(ts)\n", + " return y\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJkAAAEDCAYAAAAm1qYrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAARk0lEQVR4nO2de7BdVX3HP98mgqE8biTgwA1pghNCHTU8LoJaLQ9LgE4bcGhLtUVSbEpB+pgxo4zT6gwzVSd1xjIUMsBYSlVQMI1IlWgLiFMJmAgkPLx4IWO4CZbwCLYh05Lw6x973XBycu6957HW2Wvv8/vM3Mk5a6997u+efGft9fh915KZ4Tgp+ZWyA3Dqj4vMSY6LzEmOi8xJjovMSY6LzElOqSKT9GVJz0t6rM36vy/pCUmPS/pa6vicOKjMeTJJHwD+B7jFzN4xTd2FwDeAM83sZUlHmtnz/YjT6Y1SWzIzux94qbFM0tsk3S1pg6QfSjo+XPpT4B/N7OVwrwusIuTYJ7sBuNLMTgY+AVwXyo8DjpP0n5LWSTqntAidjphZdgCNSDoYeC9wu6SJ4gPDvzOBhcDpwFzgh5LeYWY7+h2n0xlZiYyiZd1hZie0uDYOrDOz14DNkkYpRPfjfgbodE5Wj0sz+yWFgH4PQAWLw+U1wBmhfA7F4/OZUgJ1OqLsKYxbgQeARZLGJV0KfAS4VNKjwOPA0lB9LfCipCeAe4EVZvZiGXE7nVHqFIYzGGT1uHTqSWkd/zlz5tj8+fPL+vVOAjZs2PCCmR3RXF6ayObPn8/69evL+vVOAiT9vFW5Py6d5LjInOS4yJzkuMic5LjInOTktnZZGdY8vJWVa0fZtmMXRw/NYsWSRZx/4nDZYWWJi6wL1jy8latWb2LXa3sA2LpjF1et3gTgQmuBPy67YOXa0b0Cm2DXa3tYuXa0pIjypi2RSfrrkFf/mKRbJb256bokXSNpTNJGSSelCTcPtu3Y1VH5oDOtyCQNA38BjIQ8/BnARU3VzqXI7VoILAeujxxnVhw9NKuj8kGn3cflTGCWpJnAQcC2putLKcwgZmbrgCFJR0WMMytWLFnErDfN2Kds1ptmsGLJopIiyptpO/5mtlXS3wNbgF3A98zse03VhoFnG96Ph7LnGitJWk7R0jFv3ry95VUbqU3EVqWYy2RakUmaTdFSLQB2UOTf/5GZfaWxWotb90tUM7MbKIwijIyMGFR3pHb+icNZx5cT7TwuPwhsNrPtIb9+NYXZo5Fx4JiG93PZ/5HaEh+p1Z92RLYFOE3SQSosRGcBTzbVuRO4OIwyTwNeMbPnmj+oFT5Sqz/TiszMHgTuAH4CbAr33CDpMkmXhWrfoTB1jAE3Ape3G4CP1OpPWzP+ZvYZ4DNNxasarhtwRTcBrFiyaJ8+GfhIrW6UvqzkI7X6U7rIwEdqdcfXLp3kuMic5LjInOS4yJzkuMic5LjInOS4yJzkuMic5LjInOS4yJzkZLGsVDZVy8ytGgMvsqpm5laJgX9cemZuegZeZJ6Zm552fJeLJD3S8PNLSX/VVOcwSd+W9GgwAS9LF3JcPDM3Pe2kX4+a2QnhAIeTgVeBf22qdgXwhJktpjgx5IuSDogdbArcQ5meTjv+ZwFPm1nz3qAGHBKMJgdTHMq1O0J8yfHM3PR0KrKLgFtblF9L4VjaBhwC/IGZvd5caTJzb9l4Zm5a2u74h8ff7wK3t7i8BHgEOBo4AbhW0qHNlczsBjMbMbORI47Ybydup6Z0Mro8F/iJmf1Xi2vLgNVhL4wxYDNwfIt6zgDSicj+kNaPSigMwGcBSHorsAg/XMsJtNUnk3QQ8FvAnzWUXQZgZquAq4GbJW2i2Bfjk2b2QvxwnSrSrrn3VeDwprJGc+824Oy4oTl1YeBn/J30uMic5LjInOS4yJzkuMic5LjInOS4yJzkuMic5LjInOS4yJzkuMic5LjInOS4yJzkuMic5FTWQe5bC1SHSorMtxaoFlHMvaHe6eH645J+kCbcAt9aoFq0c97lKIUDCUkzgK00mXslDQHXAeeY2RZJRyaIdS++tUC16LTjP5m598MUbqUtAGb2fIzgJsO3FqgWnYpsMnPvccBsSfdJ2iDp4lY3S1ouab2k9du3b+801r341gLVou2Of4O596pJPudkipZuFvCApHVm9lRjpVYn93aDby1QLToZXU5l7h0HXjCzncBOSfcDi4GnWtSNgm8tUB1imXu/Bbxf0szg0TyV/U/3dQaUKOZeM3tS0t3ARuB14CYzeyxBvE4FiWLuDe9XAivjhebUBV+7dJJTyWWlMvE1085xkXWAr5l2hz8uO8DXTLvDRdYBvmbaHS6yDvA10+5wkXWAr5l2h3f8O8DXTLsjK5FVYXrA10w7JxuR+fRAfcmmT+bTA/UlG5H59EB9yUZkPj1QX7IRmU8P1JdsOv4+PVBfshEZ+PRAXYlm7g11T5G0R9KF8UN1qkoUc2/DtS8AayPH6FScWOZegCuBbwJJjb1O9Yhi7pU0DFwArNrvjn3rRTH3OtUi1sm9X6I4fnBPi2t78ZN7B5NY5t4R4LbinHvmAOdJ2m1mayLE6FScTkQ2qbnXzBZMvJZ0M3CXC8yZoK3HZYO5d3VD2WUTBl/HmYpo5t6G8kt6D8upE9msXTr1JatlpUGnCpnB3eAiy4Q6Zwb74zIT6pwZ7CLLhDpnBrvIMqHOmcEuskw44/jWy2yTlVcJF1km3PvT1gkDk5VXCRdZJnifzEmO98mc5NTZreWTsVPQzxn4Oru1XGSTUMYMfF3dWv64nIQ6z8D3GxfZJNR5tNdvovguJX1E0sbw8yNJi9OF3B/qPNrrN9OKzMxGzewEMzuB4iS4V9nfd7kZ+E0zexdwNeEkuCpT59Fev+m049/Sd2lmP2p4uw6Y22tgZVPn0V6/6VRkkx2q2silwHe7Cycv6jra6zexDlWdqHMGhch+Y5Lry4HlAPPmzesoUKe6dDK6nMp3iaR3ATcBS83sxVZ13Nw7mEQ5VFXSPAq73B83HwntOFEOVQX+lsIyd11wke82s5Ho0TqVJIrv0sw+BnwsbmhOXfAZfyc5LjInOS4yJzme6pMpdXKTu8gypG5uchdZD6RqbabKZWvn83NrBV1kXZKyteklly3HVtA7/l2SMnO2l1y2HDN6XWRdkjJztpdcthwzel1kXZIyc/b8E4f53IfeyfDQLAQMD83icx96Z1uPuxwzer1P1iUrlizap+8DcTNnu81lSx1XN7jIuiTXzNkc45KZlfKLR0ZGbP369aX8bicNkja0yr7xPpmTHBeZkxzvk/WB3Gbg+00sc68kXSNpLBh8T0oXcrWYmIHfumMXxhsz8Gse3lp2aH0j1qGq5wILw8+pwPXh38rTayvU6zpkHYhi7gWWArdYMVRdJ2lI0lFm9lyUKEsixjpgjjPw/SbKoarAMPBsw/vxULYPVTtUNcY6YI4z8P0m1qGqalG23wRc1XyXMVoh31Mj3qGq48AxDe/nAtt6CSwHjh6axdYWguqkFcpxBr7fo90oh6oCdwIfl3QbRYf/lar3xyDeOmBOe2qUkW8W61DV7wDPAGPAjcDlkeMshV6yIXKljHyzWOZeA66IG1oe5NQKxaCM0a4vKw0YZYx2XWQDRhmjXV+7HDDKGO26yAaQfvcz/XHpJMdbMqctepnAdZE509LrBK4/Lp1p6XUC10XmTEuvE7guMmdaep3AdZFlwJqHt/K+z9/Dgk/9G+/7/D3ZpWb3OoHrHf+SyXEXnmZ6ncB1kZVMVTwAvUzg+uOyZAbBA+AiK5lB8AC4yEpmEDwA7WbGDkm6Q9JPJT0p6T1N1w+T9G1Jj0p6XNKyNOHWjzpm3zbTbsf/H4C7zezC4Fo6qOn6FcATZvY7ko4ARiV91cz+L2awdaVu2bfNTCsySYcCHwAuAQjCaRaPAYeoOL3rYOAlYHfUSDNn0Pe7mIp2HpfHAtuBf5L0sKSbJP1qU51rgV+nsMFtAv7SzF5v/qCqmXvbxfe7mJp2RDYTOAm43sxOBHYCn2qqswR4BDiaYt+Ma0MLuA9VM/e2S9k7Tue+YtCOyMaBcTN7MLy/g0J0jSwDVlvBGLAZOD5emHlT5lxXFVrRaUVmZr8AnpU0MaY+C3iiqdqWUI6ktwKLKHyYA0GZc11lt6Lt0O482ZXAVyVtpHgc/l2Tufdq4L2SNgH/AXzSzF6IH26elDnXVYUVg3bNvY8AzRvONpp7twFnR4yrUpS530WM/TpS4wvkkShrrivHffubcZFVnBx3DWrGRVYDcl8x8AVyJzkuMic5/rhMgK9j7ouLLDI55eznInYXWRdM9Z+XS85+TmL3PlmHTLdWmMsMfE7LTS6yDpnuPy+XnP1cxA4uso6Z7j8vl5z9FGLvNqXIRdYh0/3n5ZKzH1vsvaQUece/Q9pZK8xhBj72clMvAxoXWYdUYa1wgphi76WP5yLrghxaqn7TS0qR98mctuiljxfF3BvqnB5O9n1c0g/aDd6pBr0MaKKYeyUNAdcB55jZFklHdvg3OBWg225CLHPvhyncSltCnec7jsSpLbHMvccBsyXdJ2mDpItbfVBdzb3O1MQy984ETgZ+m8Lo+zeSjmv+oLqae6tGv83A7fTJWpl7m0U2DrxgZjuBnZLuBxYDT0WLdICJmbKT5aGqbZp7vwW8X9LMcADrqcCTUSMdUGI7xMvIzohi7jWzJ4G7gY3AQ8BNZvZYioAHjdiiKCM7I4q5N9RZCayMFJcTiC2KMszAPuOfObFTdspIRXKRZU5sUZSRiuQL5JmTIuuj3wv8LrKExJp6qHrWh4ssETm5hcqmdiLLxWuYizUuB2olspxaj5zcQmVTq9FlNxOXqdbxcrHG5UCtRNZp65FyU99crHE5UCuRddp6pFzHy8UalwO16pN1urVl6n5T1aceYlGrlqzT1sP7Tf2hUi1ZO9MTnbQeVdjUtw5URmQppieqZNStMpURWarJTe83pacyfTKf3Kwu0cy9od4pkvZIujBumN5JrzLttmQT5t7jKQwi++XvS5oBfAFYGy+8N/DJzeoSy9wLhQ/gm8ApEePbi3fSq0s7Hf9Gc+9iYAPFybw7JypIGgYuAM5kCpFJWg4sB5g3b17HwXonvZrEMvd+ieL4wT3NNzfi5t7BJJa5dwS4rTjnnjnAeZJ2m9maaJE6lWVakZnZLyQ9K2mRmY3SwtxrZgsmXku6GbjLBeZM0O5k7IS59wCKY5+XNRh7V015pzPwRDP3NtS9pMeYnJohMyvnF0vbgZ+X8suLfuPAnJHeQOq/+9fMbL8RXWkiKxNJ682suWWuPWX93ZVZu3Sqi4vMSc6giuyGsgMoiVL+7oHskzn9ZVBbMqePuMic5FRWZJI+K2lrOAXlEUnnNVy7StKYpFFJSxrKT5a0KVy7RmGxVdKBkr4eyh+UNL/hno9K+ln4+WhD+YJQ92fh3gP685d3jqRzwncxJql53Tk9ZlbJH+CzwCdalL8deBQ4EFgAPA3MCNceAt4DCPgucG4ovxxYFV5fBHw9vH4LxTLaW4DZ4fXscO0bwEXh9Srgz8v+Tib5nmaE7+BY4IDw3by9nzFUtiWbgqXAbWb2v2a2GRgD3i3pKOBQM3vAim//FuD8hnv+Oby+AzgrtHJLgO+b2Utm9jLwfeCccO3MUJdw78Rn5ca7gTEze8aKhNPbKP7evlF1kX1c0kZJX5Y0O5QNA8821BkPZcPhdXP5PveY2W7gFeDwKT7rcGBHqNv8Wbkx2d/QN7IWmaR/l/RYi5+lwPXA2yi2fH8O+OLEbS0+yqYo7+aeqT4rN0qPNWvfpZl9sJ16km4E7gpvx4FjGi7PBbaF8rktyhvvGZc0EzgMeCmUn950z30Ui8xDkmaG1qzxs3Jjsu+jb2Tdkk1F6GNNcAEwcTjFncBFYcS4AFgIPGRmzwH/Lem00Ke6mOIklYl7JkaOFwL3hH7bWuBsSbPD4/hsYG24dm+oS7h34rNy48fAwjAaPoBiYHNnXyMoe/TTw6jpX4BNFKeg3Akc1XDt0xQjqlHCCDKUj1CI8WngWt5Y8XgzcDvFIOEh4NiGe/4klI8ByxrKjw11x8K9B5b9nUzxXZ1Hcc7V08Cn+/37fVnJSU5lH5dOdXCROclxkTnJcZE5yXGROclxkTnJcZE5yfl/ynbAcPHJPm4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "\n", + "x = tuple(map(merc_x, lons))\n", + "y = tuple(map(merc_y, lats))\n", + "ax.plot(x, y, 'o')\n", + "ax.set_aspect(1.0)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJkAAAEDCAYAAAAm1qYrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAdbElEQVR4nO2de3Qc9XXHP1e7MtixAwa7kZEs/MAvqsY2CGzcJCWhhUDbUMqjhBAeDXWTBkh72iRNe8jpKee0p6Q5BUIDx3XTNqENwYYk9AVpSlLSYgM2tmPFxrGNgywhGRMeMciAtLr9Y2bNaDS7OzP7m53f7M7nnD1azfPu7Hfv/T3vT1SVnJwkaUvbgJzmJxdZTuLkIstJnFxkOYmTiywncXKR5SROqiITka+IyAsi0hfy+CtEZJeI/EhE/iVp+3LMIGm2k4nI+4DXgK+qak+NYxcB9wMfUNWXReTnVPWFRtiZUx+pejJVfQx4ybtNRBaKyMMislVEfiAiS91dvwP8raq+7J6bCywj2FgmWwfcpKpnAn8EfNndvhhYLCL/JyKbReSDqVmYE4li2gZ4EZHpwBpgg4iUNx/n/i0Ci4BzgS7gByLSo6qvNNrOnGhYJTIcz/qKqq4I2DcAbFbVUeCAiOzBEd1TjTQwJzpWhUtV/RmOgC4HEIfl7u5vAe93t8/CCZ/PpmJoTiTSbsL4OrAJWCIiAyLyMeAjwMdEZAfwI+Bi9/BHgJ+KyC7ge8CnVfWnadidE41UmzByWgOrwmVOc5JawX/WrFk6b968tG4fmZ0vHDr2fva0d/Cu6dORKse3Ilu3bn1RVWf7t4cSmYj8AXADoMBO4HpVfcOzX4A7gIuAEeA6VX262jXnzZvHli1bwn+CBrDgzi9W3NfpeX9OWyfr115Ke7GNYlshecMygog8F7S9pshEpBO4GThdVY+KyP3AlcA/eg67EKc5YRGwCrjb/Wsd1YQUxLSBySWKHQxxw7oHWHFGJ5sHDvLAFVeZMq8pCRsui8BUERkFpgHP+/ZfjNP/qMBmETlRROao6pBBW0MRVUR+gkQVxI7+IXb0DzHSNV7X/VqBmiJT1UER+WugHzgKfEdVv+M7rBM46Pl/wN02QWQishZYC9Dd3R3b6HqF5CWsqKqx4M4v8uzNf2jAmuYkTLicieOp5gOv4HT5XK2q93oPCzh1UtuIqq7D6Zukt7e3atuJSSGVMSGooGvm3qw6YcLlLwMHVPUwgIg8iNO/6BXZADDX838Xk0PqJI6OjnL1NzewbTiZqJqEqCqRe7PKhPkW+oHVIjLNrUWeB+z2HfMQcI3bDbQaeDVMeay90Mbqrrm1DgvNtIG2Ca8cOwhTJntCRDYCTwNjwDZgnYh83N1/D/AfOM0X+3CaMK6veV1gtDTO5oGDtQ4NxCYR5SGzOql1K3UtXaqr/vzzoUNlWqKaPvi2eF7rrGxDWWStHDJFZKuq9vq3p9bif3jk9aoCs0FUUci9WWXsiTkeGiWw6YPjk171kkStOOvYNmgxUUyIKCc6VnoyEyThpWpR9sC5N5uIlZ5spGs8cshshIimD45XLfznBGOlyMKQh77skP8sDZOHzMlY68nihMx6mXHg6LH3R+ZPbei9m5nUPJm0px/uZhw4OuHl3xeX3JtNxFpPZpp6ROMlL/xHJ7NPq9YXXc1LNZLcm6UssuIpI1X3Z7mbxqYO/LRp2ieRF9ztIdMiS7psVG+YzSsADqmLrFbItJG8ITgaqYusFkmWy4r7B+mZOYWrfrWHZT2dtU+og1b2Zk3dhHFk/tSqIW9p73z+cuPv095e4MNj43zm5nvZ3Tdo1IZ8nFkGPFkt6imXvXvNYtrbCxSKBYrFNpavPDX0uXFCZqt6s5rfkIgsEZHtntfPROT3fcecICL/KiI73MzUNcf4e0mrKWPbcy8zOlpizH3t2DZ5ln01T5iXzcIRZiLJHmAFgIgUgEHgm77DPgnsUtVfF5HZwB4R+WdVfcu0wSbZ3TfI5y67nXevWcwPH/8xu1+Obm6YHoBWD5lRY815wH5V9f/kFZjhTpmbjpPResyAfXVTq73smS0HuP/OR3hmy4GG2NOKITOqyK4Evh6w/S5gGc6E3p3Ap1R10k9XRNaKyBYR2VL62euRja1EPeWysYX11yrDhM1W7gEI/clFZArwIWBDwO4LgO3AKTih9S4Reaf/IFVdp6q9qtpbeOc7JuzLehdTlPJZq3mzKD+vC4GnVfVQwL7rgQfVYR9wAFgacFwq1AqZZW9W3B/cfBG25T+vCAQTRWQfJjhUgpPK4DwAEXkXsIQGZ6a2ZfhNNaG1asgM9alFZBrwK8CDnm0fL6cqAG4F1ojITuC/gc+q6otRjcliF1MQYTxaK4XMUC3+qjoCnOzbdo/n/fPA+WZNm0ySQ7LHFnZWDJdxqNS00YrNGS3jv20c+tMq3qypRFZvuayaN4sz7CevCDhYJ7IkmzJs8WbekN8K3sw6kaWNicZZL7k3a0GR2eLNWgkrRVZPU4Yt7WW1aKWQmY1vxEdaTQBxx/y3esjMpMjqxZaQ2SrerClFZmPIbGVvZt+34ZL0qAxbvJmXZvVm1oqsXmz0ZkG0Qqd583/CKsTxZvVM+G3VkNnUIsuiN2vGkGn1t5D10bJBtKI3s1pkjSCvACRPaiLrmTmnIffJYshsNqz/ZI0ImVG9Wb3Zflpt5GyqIlvWETQnxTxJeLM0szdmDSNpCtzjznX3/0hE/icJY1d2zOETvWezsmNiqM1aXyYEe7NmDZk1P5Wq7lHVFaq6AjgTZz3LCWkKRORE4MvAh1T154HLTRu6smMO915yOX+w+he595LLJwmtXuJWAJL0aM0SMk2lKbgKZ95lP4CqvhD2gmFCZvGUEVZ3zaW9UKDY1hZrxd8kKwAmhdaM3sxUmoLFwEwR+b6IbBWRa4JO9qYpOHz4cKQbbx44yGipxNh4KXDF3zQqAF6SmgPQDN4sdBI8T5qCz1W4zpk4nm4qsElENqvqj70Hqeo6YB1Ab29vpCWDtw0PcfU3N7C6ay6bBw6GXvHXy2udbS3ZGJo2ptIUDAAPq+rr7qTex4DlJgz0sm14iLu3PBlLYGGxwZv5Q2bWvZmpNAXfBt4rIkV3tvkqYHfYC4ctl9UiTMi0PWN2M2IkTYGq7gYeBn4IPAmsV9U+8+ZmAxNCa6YKQKhPoqojqnqyqr7q2XaPL1XBF1T1dFXtUdXbkzC2UZjoz4witGavAFjzc2mmkFkmD50O1ojMNkyNzqgnt1mzVABykTWAVvdoucgahCmhZdGbWSUy28plQSFzWU8nV350TaxlcmoJrVk7zZt62RvTLOvp5LY7r6a9WGB0rBRrmZwZB45aORo3SbL/M2kgy1eeSnuxQKHYFnmZnHrIegWgpUUWNWTu2PYco2MlxsZKjI2NBy6TE4ZWW0pHVCP1Uxujt7dXO29fHbhv9/C7ap4/9vy0mseEKc+E+VK9oljW08nylaeyY9tzda8oVylsBok/qJz57M1/WNf9TSMiW1W11789L5OFwLuk4e6+QWPLFVYqnwUlNc5yQuOmDpc2tf4nQVbKZqk+4Uu7zmfJjPmTtptqyjBJUjXCKO1nWW3OSNXqj5z6q9zac1Og0EyRVW/WTBWAVJ9uQQoUpEDPCYtind8s3qweshAyUxXZ2HiJkpboe3XvpH0m52Ta7s0qhcxm6QFI1eJ/6f93bun7EnuOxF/QNPdm9nuzVEX2wMB3qgrMVm+WhNCaeaRG9nxvAGmsLtcojxY2ZNrszawXWaPyZZSJUjazMXTaiLFcGO6xZ4lISUQuM29qdUwNAYqKSaE1awXASC4MABEpAH8FPGLaSJu9mU3YGjJN5cIAuAl4AAidB8M0zezNsoyRXBgi0glcAtwz6YyJx03IhfHt99wV8faNI6o3S7p8luUKQOgn6cmFsSFg9+04646Xql1DVdepaq+q9s6ePTu0kWGG/pRJy5tBXhGohKlcGL3AfSLyE+Ay4Msi8hsG7EuVOGWzJCcGZ9WbGcmFoarzVXWeqs4DNgK/p6rfMmBfLNL0ZpB7ND9GcmEkSZRQmQRxa5r1Cq2ZKgDGcmF4tl+nqhtNGRi3+SJtbwbJeLQshsxsNgg1mHrazfLQ2eQis8Gbgfmkx2EHNNrizZpaZCaptxcgaY9mczeTvZYZwqQ3a1R3kzcVQr0VABu8WT4lLiL1JDf2Tq2rRFAqhCdff2nScVmaNtf0niwsUb6cJCsCaaVCSJJMiKyeURhhZprHISmhBaVCyHrIzMOlh5Gu8UgF6HpDJ0yuQe7uG+QzN98bKhVCVkJmJjyZzZiodXpflciyN2tqTxYnVEb1ZqY59VcWcNufXE6xWGBstHYOtCx4s9Q9mc1jysJismnjjNPnUiwWKBbaKLabLfin5c1SF5mNxPECpoT29K6DTqG/5BT8Nw0PH9uX1U7zzITLZR2HIo3ISKpWWQ2/0OJUCvr2DfGZm5yC/6bhYfr2DUGN9jXbQ2buySqQ5mrAu/sGue9rjzsCc6lUG41KGiEzF1kFVnbM4Yb3n8Xy7ngrBMfxYn4BmV46Jy2aUmT1hsryUtQ3XrCG9WsvjS20KIQRVNRO9kq15EZ7s6YUWb1MXIq6wFkLuyKdH9WrVBOYf1+Y/k/byEUWwMSlqEs8tX8g9LmNCFuVPFqUmeaN9GY1a5cisgT4hmfTAuDz3uUGReQjwGfdf18DPqGqO0wa2kjKS1G/d0Y3T+0fYEd/uJWCTZTDKh2T5RG2NUWmqnuAFXAsFcEgk9MUHAB+SVVfFpELcdYZX2XY1sjNGPWwbXiIPVvCd8wnJbBmwEiaAlV9XFVfdv/dDEQqxHxg1jMRzbCLRgjM5JKGZRoVMo2kKfDxMeA/g3b40xTYTJL9l63iwcqYSlNQPub9OCL7bND+amkKTHqzRibFM1mTNHWubd4sSrdStTQFiMi7gfXAhar6UxPG2Y7NDaA2YSRNgYh048wu/6iq/tiEYWliak0mPybCZBKhNmlvZipNweeBk3ESrWwXkS3GLXVpdEK8ILJQk4wSMpMuXhhJU6CqN6jqzHJGxqCVwqrxqaXfjWZ1imRBYLaRt/j7MF2rTEJg9VQAKrF4461xzalJ04osjbTrfmz0YEE/oqTH3lklsrQbZW2e6u8nCQEn5c2y81Qzhi1eLGwFIElvlossAUwLzJsbI8n7JEUmRZZEM4apUJmEwG6782qu+51zue3OqycJLQxpVwAyKTJbScKz1MqNEfeejQyZucjqpOe0OVzzobM5+x0nJXL9oNwYUek5Ldp8BdPezLopcR+Y9QyPvrjUyLWKp4yE+nXGDZU9p83hrvJs74tX15ztHYdauTFqDWb02jhaKnHDugeODcJs1LS53JPVgX+299LzTguV1yIq5SlyUQXmtzHMfIXyj9KkN7POk2WJ8mxvUMbGxnl618EJ+/0iMFVmiyJgr42jpfFI8xVMkVmRmRyKHTfJSt++IW78iw2ccfpcnt51cMJk3CCCxBFVeFE9ZNnGntXB8xWCQubY89OM9phkVmS20LdvqKa4qhHF28UNwZuPHmLz96I3+yzeeCs/vuyWWPf0kpfJLKNSeS6uwGxYuzN9CxLGho7yOIRNjleNsAKr1mZmogJgjci8Y8rS7ihvBmzwYGXssSQDZGVMfxyBJenNcpG5NKJRstw70HNaMglcXutss8qDlTGVpkCAO4CLgBHgOlV92rCtk2jkjHKY6CGierUJvQNjJW78iw111Uqr2WYbNS1T1T3lsfvAmTgi8qcpuBBY5L7WAnebNjQtlncH9/uVvUbYL3dC70CxjTNOn2vMRlMCSypkRm0nC0xTAFwMfFVVFdgsIieKyBxVNfdTTYHl3XNYv/ZS2guT+/28lL/kat6tVu9AXOIKzF88SHJUsKk0BZ2A96kNuNsmECVNgQ0zys9a2OXkKQvZ71eNcsv7uo2PGwmV9ZS/gsqfI13jNXs+4nqz0J7Mk6bgc0G7A7bppA2q63Ay/tDb2ztpv208tX+A0VIJIFSeslorlNTbO+C9T1xqVXCC9tfbzWQqTcEA4C1kdAHPx7bKEnb0D3HDugc4a2FXpDxlSZKkwMIQp6spisgqpikAHgJuFJH7cPKSvdqo8ljSHeU7+oeaXlwrO+awumsumwcOsm04+LPW481CicyTpuB3Pds+Ds5McuA/cJov9uHUPq+PZU0TEGZRr6j5/pMW2L2XXH6scnP1NzdUFFpcTKUpUFX9pKouVNVfUNXEcmFknSDBVCvEJx0eJyZhbmN1V+2mlagVAHtb8AzTyI7yuMLwi60R5a+JSZjH2TxQuWkl7kQTq0XWbB3lYUVTb/NElAJ+OQnz32x+PFKojOLN8kGLDaIR3T5xa4/bhodCiytOBcBqT5YGpjrKG92XmMZaUGG9mVUii5unzPSMctNfWJKCixoe41A8ZeTYKw5WicwmbFnGrxqNstFb4I8jtFxkCZLk+C5bfgRhQqb1Ikuzo9yWL9KPrXZVwnqR5bxNI8pflajWRnbFo18BYMaMGe8I2p+LrAa2eA1b7PCz4qRO/ul9HwVg0aJFi4OOaRqR2ZB6PSlsEViQN1s1ex7tbYXyv0FDvppHZEmS1pecZngMyxOHf8LoeKn8b+AYwVxklmK7uMpsf2mQax/7GgB79+4NXI2m5bqVwuYs8xM3KUsUlnfP4ayFXfzgSH/dw20q2VqPeCvVzre/5KS0OnLkyOuB58W+YwMxmRjPVo5NWikW+N3Sqqqd1Wmkgm/U8OuWJ0lvtuKMTtqLzrguFN47ozvSysFJUu8wqbxMZgEjXeO+cV21J63EJeqPxMQ4vKbyZI2eUW6CchmpPK6rPNZ+T3/6XszUQM+wY/xPxFkwtQenmvrbqrrJs/8E4F6g273mX6vqPxix0DJMhkx/Idw7rmtaykHG5EjisJ/kDuBhVV0KLAd2+/Z/EtilqsuBc4EvuvM0I9PoZQnrGcJSD3HmP5qi1o/E9POoKTIReSfwPuDvAVT1LVV9xXeYAjPcxCvTgZeAMZOGmu4or0dc9QrA5jawJH5wYTzZAuAw8A8isk1E1ouIvyP0LmAZzoTencCnVHXSk4ySpqDRNMqbRRFYUmJstMjDiKwInAHcraorgdeBP/YdcwGwHTgFWAHc5XrACajqOlXtVdXe2bNn12e5hVTKAFTGBg9WzYakfmhhRDYADKjqE+7/G3FE5+V64EF3/uU+4ACQSutpPR3lUR6y/8sqN6beeP4a1q+9dILQ6umDNCnMNAQG4fKTDQMH3WR44KSP2uU7rN/djoi8C1gCPGvQTuuplAGo0d6rkjdNS2AQvp3sJuCf3Rrjs8D1vjQFtwL/KCI7cYZ7fFZVX0zC4KSJ27cZlAHIlMDCNptUyqeWtMCWdRzi4v+9sfI9wlxEVbcDvb7N93j2Pw+cH8fALOP98v0ZgDaNm13IKwxeb1r+v5od9QosbNEkU91KjZpRHvfh7+gfYv33nkpEYGG8YtmbjpXGGS2V+MGR/orHNkpg0GTdSjaQZg3S602rDReqR2BxKla5yOqkHDIbIa4w99g0PsimveZDZD219kyFy7CYGO9fT3OGrcQR2LKOQ3U/z6YUmY1kcY0nU5Nz8nBZhbjNGf5rmLyeCTtqYXrmV+ZElqWh2DZ4rzTFVaalwmWc8kXsZLwVzmuE8OKMMkly3qqVnuxTS7/LHc/8srHr+R9g0iNoi6eMsOKkTlbNnscTh39ybDaPd78tNGJStJUiM0FZSKZqmmHKUmXxlKfut7cVGB0vce1jX5sktDTwCv/NKYmvr3aMphUZJPcrDcp77/VO5an7xbY2QFk1e17qIisLf0qhjbHx93BL38vsOXKgIfduapFVI2rILHuzoLz3O9v2Tzj27an7yuj4OE8c/olZ42PwawtmMaXQRkEKqEDPCYtykdmKN+89KGuWdbBzz0SRlafuVyqTNQK/F+97dS9j4yVUoKQl+l7d2zBbMikyU80YcbzZU2/sZXR8NbW81PaXBhsurmrFgz1HDnBL35foOWERfa/uNe7FlsyYT2dnZ0fQvkyKLE3q8VKmy4hRKzZ7jhxIJEQumTGfW3tu4tGOr09afhJykcVqzojipZJsIrAlJ1vPCYsovp2jbBItL7IksUUESXPNvA8BzhpbQftbqsW/EqbFYGLkQlb49nvuOvb+0KFDgWuc5iIzTKuICyYKDGBwcHA46DgjuTDcY84FbgfagRdV9ZciWx0B0x3lJrqa0hRYpaHpSQwm8IurFmHLZOVcGJe5M5Ym9LG4Ivwy8EFV7ReRn4tkhaWkIRq/WKqJJMychyjXq3X+oy8ujSwwCCEyTy6M68DJhQG85TvsKpzJvf3uMS9EtsQC0vJE1cRievJMNdHVulccgUE4T+bNhbEc2IqT68KbH3Qx0C4i3wdmAHeo6lf9FxKRtcBagO7u7lgGh6X8wGwee2bDep5hbKg301IYkZVzYdykqk+IyB04uTBu8R1zJs4s8qnAJhHZrKoTsiGr6jpgHUBvb29gdbde/A/NtkGONggrCiZSeYURWVAuDH/ClQGcwv7rwOsi8hhOHrPAlNthiDOmzOYv0GbbADqOX0bXtBUMjGxn+I3dRvPE1RSZqg6LyEERWaKqewjOhfFtnEw+RWAKsAr4G2NWhqBWuSYtb2ZaXH4xmLrmb3Z/gYK0U9JR2tuON3LdMkZyYajqbhF5GPghMA6sV9U+o5YGUBaPjV4iCZv8Yniw/9NGhNY1bQUFaadNCrRJ5e6huBjJheEe8wXgC4bsCk3YLzOMN7NRrF68YgCla9qKukTWqNSpLdl3abuYKjEwsp2SjgJKSccYGNke6fxG5+Mt01Iiy6q4ygy/sZsH+z8dqkyWlqCCaCmRNQPDb+yeJC6bBBVELrKMYbuggshFZjFZFFQQucgSJkq7VrOIyk/Liuyi6f72ZPMcP+VMOmfdBjJlUrtWswoqiKYRWSWP0QgxVWLqcecg0o64jZy/Ne9LqdmSJk0hso7jl3F5922ItKN6FYMvXsEbb21NxZZFXYEjkFuaphDZeTPnuB6jCChTjzsnlMiOn3ImU487h6NvboolylxQ4ci8yC6avoujb05F3ZZw1TGOvrmp5nlOeel+1/uN1vR+uaDik1mRectab7y1lcEXr4jkld4uL032frmgzCIVpsolTm9vr27ZsqXmcUFjykwU5suerK1tat3XynEQka2q6h9IkT1PVo/Acg+VDpkRWVRx5YKyB+tF1nvSh+nmW7zhnx/lIxeVvVgvsjWzr53U9pULKlukVvAXkcPAc5X2d3Z2dnR0dHSCk8jj0KFDz1eaBh+SWUAml0dMiCSex6mqOmlJ5tRE1mhEZEtQzadVaeTzyBOu5CROLrKcxGklka1L2wDLaNjzaJkyWU56tJIny0mJXGQ5iZMpkYnIn4nIoIhsd18XefZ9TkT2icgeEbnAs/1MEdnp7rtTRMTdfpyIfMPd/oSIzPOcc62I7HVf13q2z3eP3eueO6Uxn9wsIvJB9zntExF/8hzzqGpmXsCfAX8UsP10YAdwHDAf2A8U3H1PAucAAvwncKG7/feAe9z3VwLfcN+fhJPv4yRgpvt+prvvfuBK9/09wCfSfiYxnmHBfT4LcJLj7ABOT/KemfJkVbgYuE9V31TVA8A+4GwRmQO8U1U3qfOEvwr8huecf3LfbwTOc73cBcB/qepLqvoy8F/AB919H3CPxT23fK0scTawT1WfVSdr5n04zyIxsiiyG0XkhyLyFRGZ6W7rBA56jhlwt3W67/3bJ5yjqmPAq8DJVa51MvCKe6z/Wlmi0udLDOtEJiLfFZG+gNfFwN3AQmAFMAR8sXxawKW0yvY451S7VpZo+OewbhSGqoZKrygifwf8m/vvADDXs7sLeN7d3hWw3XvOgJu87wTgJXf7ub5zvo/TmXyiiBRdb+a9Vpao9KwSwzpPVg23jFXmEqCcaO8h4Eq3xjgfWAQ8qapDwBERWe2Wqa7ByQpZPqdcc7wMeNQttz0CnC8iM91wfD7wiLvve+6xuOeWr5UlngIWuTXlKTiVnocSvWPatZ2INaOvATtxMjo+BMzx7PtTnFrTHtwapLu9F0eM+4G7eLuX43hgA04l4Ulggeec33a37wOu92xf4B67zz33uLSfSczneBFOPt/9wJ8mfb+8WykncTIVLnOySS6ynMTJRZaTOLnIchInF1lO4uQiy0mcXGQ5ifP/zauNAradx70AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "\n", + "x = tuple(map(merc_x, lons))\n", + "y = tuple(map(merc_y, lats))\n", + "\n", + "ax.tricontourf(x, y, tuple(datapoints.values()))\n", + "ax.plot(x, y, 'wo', ms=3)\n", + "ax.set_aspect(1.0)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJwAAAEDCAYAAADA/21vAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOydd3iUVdrGf2dakknvvQEBQm8CAgqKoljAtjbs3V3b2ll33V391rK6a3cVC/aCioiC2EUEgdBBCCGk997LtPP98SaTSTKZzCSTkITc1zVXZk57zyR3ntOe5z5CSskwhtFfUB3rDgzj+MIw4YbRrxgm3DD6FcOEG0a/Yphww+hXDBNuGP2KAUs4IcSbQogSIcQBJ8tfLIQ4KIT4XQjxQV/3bxg9gxio+3BCiJOBOuAdKeWEbsomAauAU6WUlUKIMCllSX/0cxiuYcBaOCnlL0CFbZoQYqQQYoMQYqcQYpMQYmxL1o3AS1LKypa6w2QboBiwhOsCK4DbpZTTgXuBl1vSRwOjhRCbhRBbhRBnHrMeDsMhNMe6A85CCOEDzAE+EUK0Jnu0/NQAScACIAbYJISYIKWs6u9+DsMxBg3hUKxxlZRyip28PGCrlNIIZAohDqMQMKU/OziM7jFohlQpZQ0Kmf4AIBRMbsleA5zSkh6CMsRmHJOODsMhBizhhBAfAr8BY4QQeUKI64FlwPVCiL3A78DSluLfAOVCiIPAT8B9UsryY9HvYTjGgN0WGcbQxIC1cMMYmhiQi4aQkBCZkJBwrLsxjB5i586dZVLKUHt5A5JwCQkJ7Nix41h3Yxg9hBAiu6u84SF1GP2KYcINo18xTLhh9CuGCTeMfsUw4YbRrxgm3DD6FcOEG0a/YphwTsJgMPDaa6+Rn59PU1MTw0eCPcOA3PjtLQwGA7t27WLixIl4e3v3uJ3GxkYyMjIICAhgxYoVPPLIIwCoVCrGjRtHXFwc06ZN49FHH3VX14c+pJQD7jV9+nTZG9x9990SkGq1WqpUKnnbbbdJg8EgLRaLNJvNduukpKTI/fv3SymltFgs8rXXXpN+fn4S6PS6++67ZVJSkgSkVquVJpOpV/0dagB2yC7+tsecXPZevSXc9OnTJSBvvvlmK0kWL14sExISpJ+fn7z//vtldXW1TEtLk88++6xcsmSJtdzJJ58sR48eLQF56qmnyrvvvltGRkbKmTNnSi8vL/nBBx9IKaUsLCyUnp6e8uqrr+5VX4cijivCvf322xKQy5Ytk7m5uZ2s04QJE+xarZCQEHniiSfKOXPmyHPPPVeuWLHCoeW65557pEqlkmlpaT3u61DFcUU4Pz8/GRoaKouKimR1dbVcsGCBlVTBwcHyySeftH6Oj4+XycnJMjc31+XnxMbGSkCmpqb2uK9DFccV4VrJtGTJEimllBs3brSm5eXlSbVaLQG5YcOGHj9DSilvuukmCcgHH3ywV+0MRTginFOrVCHEn4EbWv5w+4FrpZRNNvkCeA44C2gArpFS7mrJO7MlTw28LqV8wrnljOv4/vvvre/Xrl0LQEhICAsXLuTxxx8nOjqa5cuX4+XlxRlnnNFteyOe/4/d9FtnzOT0RYtYsWIF8+bNc0/njxN062IuhIgGfgXGSSkbhRCrgPVSyrdsypwF3I5CuFnAc1LKWUIINZAGnI4SWZUCXCalPOjomTNmzJA98YebOXMmKSlKoNZ1113HG2+80W2drkhlD/o8ZdtyUkw42ateJuPoUX4/fJggPz+X+zqUIYTYKaWcYS/P2X04DeAlhDACeqCgQ/5SFEkGCWwVQgQIISKBBCBdSpnR0pGPWso6JFxP0Uq2DRs2MG3aNGu6K6SyRSvBOuKHT9+nZPNmLrnzAW7c8BWfXXx5j9o/HtEt4aSU+UKIp4EcoBH4Vkr5bYdi0UCuzee8ljR76bPsPUcIcRNwE0BcXJyz/cdsNmMwGBj/2sv4L1pI9bc/sOy1V9BFR6OLiULl4dF9I3RNLlvU5xyhYs8Wag7vxW/sFPZrw2gsKnS6r8NwgnBCiEAUq5QIVKFEvl8hpXzPtpidqtJBeudEKVegSDkwY8aMTmW6slIl73xA/c5d6GKiMeTlA1D+2RqlUzotCU89breeMwSzRcWeLRR+9ylqL2+CTziFsDmLUKaukhHP/4eMO+5xqb3jFc4MqacBmVLKUgAhxGoUyQVbwuUBsTafY1CGXV0X6Q4hgUajkSs+/4Td3VgQoVaIY8jLRz9pIkIlqN+zT2nHYLSWc5VgtjDWVFL4/Wp8EscSe961qDTadu02xFh63PbxBmcIlwPMFkLoUYbUhUDHGf1a4LaWOdosoFpKWSiEKAWShBCJQD5wKdDthEcAWrWK2TGx3RIu8JyzqNuudCfo3LPQhoWiz1PRVFIAAjx7QTQAc1MjeeveR6gEkQsvaEc2WwxbOefQ7V9DSrkN+BTYhbIlogJWCCFuEULc0lJsPYq0QjrwGvDHlrom4DaUyPhDwCop5e/dPhMwmi1szcvtrigafz+EWg1A1ftrrJbMMywKz9Cobus7QnNlKRnvP0djQTbRZy1DFxjSq/aGMUAj72PGjpWzHnm4S+vWSqrGolxyPnsdU0MtAKFzzyBsTvf7a86gLusweWveQahUJJ10FX5hI6mL7vr/s3VYHbZy7tkW6VeUNtR3Ipu9OVhzebGVbAAB40/o8TN98hXCSIuFrB2rKUnfipd/BGPmX4eHT1CP2x1GewxIwtlDQ4ylE+n00YnW98EnnILO33litBLMFlJKio9soSR9K+Gj5xE7ZTFqjUe7Ol1ZueHFg3MYNISzB11AMImX3U7euvcoT/kJc0MdkYv+gErT+WvZI1gr6isLKMvYQXVRGo3VRXj6hRE/7VyESu1yn4YXD44xKAlXdSCFhoIsQmaeSs6aNzE31ivpv6fgkziGaD97moVtMJsMGJtq8fQJBqC6IJWiw78AEDV+IVHjT+0R2YbRPQZVTEO1vozynb+Q//WHVO79jcwPX7SSrRV5X71Hc11FFy0oKD78K3vXPk7m9k8pz95DYEybSHpwwlSkxYKxqd5BC/bROuT39CjteMCgsXDm+gYKnnoWS0ODNc1UV2237J61jzHr8qe7bCsofjK5e9dTkr6VkvSt7fKaakpJ+/kNMFqYctHf3NP5YVgxaCycoaAAS0MDGh9/a5p/8lSiF1/G6Fv/jn/kGMKSTgRA4+njsC1Pn2DGzL/ebt6RTW/TXF9Js6Ea38zGTvmO5oIwbOW6w6CxcCovLwB8RyRTuU+xSqFzz8QjUJEhi7niZnzyLSTMuABpMXfbXqwhgdgTH0VKSV1DETV1+ZjMTRzJ/gaAaeOu7aNvcnxjQBJOaO1YkRap/Mp9W1HpPPAdOR5dQOedfyEEQt3+a9mzVLbla+sLScvegNncDEBS/JkE+Y+wlmmqK6f06HaaastRa3Xop07BJ3GsNd9YV4PF2IxQa9D6BnT5LKPRyKFDhwgJCSEqqnenIIMVA5Jw9qCLirS+txiaiTnnCqfr1iZ6dSKd0dTIkexvKCjZ2S49PHgCcZFzlOdYTFTkHSBv79c0Vhej0wdgMRkoPbodfexI/EZPxlBRQsXuzdg6wai9vFEH+aP/3wrOmzqddevWERsbi9lsJjU1FYAJEybwySefMHbsWI4nDBrCNWfnWN/HLLnKbpm6aFW3cywAKS3sT/uYiuqjnfKSR54HQF5xCqkZa63p4UlzSDjhAixmE9mFm6jav52iH1YDgsDJJ6KPScRQUUJ97lFUHp7UZaZCvoUPU9MAKCsrw9PTk1deeYWvvvqKr776inPOOYeUlBQCAwNd+VUMagxYwmmiGjAV6Ns+BypDlcrHG31kfK/a3nv4QyvZkkecx6EMxX/O3zeOorJ9VFQfpaS8zccgYuzJxE09R3m+WkNizCnUzjwVY1U5Kp0HGm/fTs+oC2tGGo2Yq6vJffwpbG7P4eabb2bLli0sWLCAu+66i7fffrtX32cwYcASriOKX3kdAEtdPWmvPop3XBKBU+bgP2ZyNzXbQ0pJWeVhAEbGnmYlG0B1bQ7VtTkIVIyMO42EqJMQQkVtolendoQQDr1HfEo8aIjRovbWtyNbK+bMmcMll1zSLvDneMCg2RaR5vYrz/qcI+StfRtTQ51T9VtJI4RgytgrmTftHjLzN7Yrc88995Censn1Vz5LYvR8hHDPr6erLZIZM2ZQUFDAwYN9EuIxIDEoCCdNJowlpfgtOBnfObMB0MeMIPqsy1F7tRerceRC1IqQwCQ8PQIICRxtTXvzjTd5+umniY+PZfaJ47ttw5m5YndexieddBIADzzwQLdtDRUM6CHVOo9TqxEaDXXbdxD3r38QdN65CLUaj6PNGCpK8AgO71H7o+PPxM87mqlTZ3LZZcswGc2YzBb27u5S9d2tyMlRFkL+/v7dlBw6GJAOmJ4jo2Xck4ozcevCofClV2lKO0LUvXdR+ML/0IaGYMjLR6XzJPnOx9rVd2R9utqTmxCoY9Kc0ezOruTQgfxO+fbmcdC9RbV1WbL1IjEYDCQmJuLv78+uXbvw9PR02M5gwqBzwLQH76mTaUo7QsHTzwJYI7TUXnpH1ZxG6o5MUndkKh9GRjtdz5GPHNj3k2tsbOSiiy6ioKCAl156aUiRrTsM+DmcJko5rNePG4vaToS7Ru/TaUHhzDyuI0wukKwjnJnPQdviYfny5Xz99de8+uqrnHfeeT1+7mDEgCdcKzQBAUTdc0en9MbCHKfOTvsajkhnu3ioq6vj9ddf58orr+Smm27qj64NKAwawgGo/f0JPGdxp/SG/Eyn2+hqLga9s3LgnKVbvXo19fX13Hjjjb161mBFt4QTQowRQuyxedUIIe7qUOY+m/wDQgizECKoJS9LCLG/Ja9XN7YJIfCdNRMAr3HJaMPDAOzuxfVkWHUERw4AtuiOdLf+92liY2OZO3euO7o16OCMtshhYApAixpSPvB5hzJPAU+1lDkX+LOU0tbt9hQpZVmPO2lzzFW7bTsAXmOS8F9wPV45IFTuI5dpZDSao/m9ntN1JHzr4qE5K4e5ixfbPX04HuDqKnUhcFRK6Wij6jLgw553qWtYmpupXLcBgIrP11LxuXK4HrPkKvzHOI5jsIU975H+gqW5mc9Tth2TZw8EuGoaLsUBmVrkIM4EPrNJlsC3QoidLQpJXdW9SQixQwixw1xjP56g9IOPQUo8k0a1Szc3Ntgtfyxhb2g1FJcgm5vRhtq9u/a4gNMWTgihA5YAyx0UOxfY3GE4nSulLBBChAHfCSFSpZS/dKxoq57kOTK60260tFhoaBGpMdfWkvCfJ5BmM0KnwzvffoSVI3clR1aut4sHe5BSUvXealSeHgSefeZxG07oioVbDOySUhY7KNPJAkopC1p+lqDM/Wa62kmAxsy2YchYVEzWPQ+S968nAfotANnVYdiW7PXZR6jPSSfw7MVojmPFTFcI53BuJoTwB+YDX9ikeQshfFvfA4uAAz3paO3GPWiCAglZdok1zWvsmEEz+a7PTgOVirDYE491V44pnBWV1qPo9N5sk3YLgJTylZak81HUMW0nYOHA5y2k0AAfSCk3uNrJup2HadirOExKg5GE/z4JQji1Ou3psOpumJsawCKtenZwfEbpO0U4KWUDENwh7ZUOn98C3uqQlgG45iFpBw0706zvyz9ZTfknq4l77BHU3u45R+1L+ORbqApsoPboQfTRCS0+dsevBsmgOGkIvf5sPJNirJ9VXp6oPNtr9zbEWDDV11L8yzqnnTLB8cmDOyClJO/LdzE3NRA690yg/VHX8Ra/OmC9Rcy1DRjyS2k6WkDNDzsx5JZY8+Iee6TTcGppbubwy38HwG/0JDT6tmBoZ4NrnIFvZqPTJLWYjWTvWkt9zhEiF/0Bn/gkt/RhMGNAEs5c10jmTU8hTZ0P5QPOPN3u3C3noX8AoPH2Q+sfhNnQhFp3bN1+cvd8TcmR34gYczKBk2a3y7N1Wzqe5nIDk3CVtQrZ1Gq8Z4xBFxlM/c7DGHJLqNrwHVUbvkNotYQuuxT9xPGUffo50qgISJvqazj8oqIJMv6+/1rbPBaLh4rcfQTGTiR++hLqBslquq8xIAmn8vHCXFmLSqehfttB7J07SKMRQ2Eh9fsOUL9rd6f8mCVX931HHaChsgBDQxURY08GunfUPF4wIAmnCfQl9vGbUPvqyb7jeUzlbSpJSZ88QtMhIyqdjtL3P6Zhf9u2XszfluNd4dVu/uYs3G3lKvOVSKyAqK4j64/HYXXA/stpg/1R6bQEXThf2XPz0OJ70iRK31yPxt+fmi1b25HNc9RIzLW11HpVULF7M/ZiNdxlYbojZm1pFsVpm9EHROLp0xa76q6Fy2DGgLRwntq2Cz38T5+ByteL4uc/o3aTcpaqDval8svv0cXGYMjNA6Ap/Sg1v2y2Dq+BU+a4/Fx3WLma4nQO/bgCD30AI0+8zCXXqePByg1IwnWE7+zxeMSGU/zKGppScyh/7zs8EuLx9/OlpIVwan9/mo5mAOAZHtPlkZe7tkhat0ektGBoqKKptoyyjJ2UZe1Epw9g/Bl3ovX07rad402MekCGCQaMDZNh/3e73bzm7CIa9qYz94zL2XjbXVRVVXUqE//04/gUd32pW0/CCDuiojqD9JzvqKnLa5fu4RPM+EV3OCRbx6G9I+EGu5VzFCY4YOdwyRH2nVI84iMIXDKPKdHedskW89ADqLT2rydqhaO5nDObuqUVh9h1cGUnsgGMO/1PTlk2W/TmHrDBhkExpNrDS3c+BEBsbCyp6elcuebTdpeJ2LvXobeoqslmT+p7mMzWy7BJiD6ZhKiT2PL7ixgaqtF5Hb+uR85gUP5rWRqbKdunHOgLX1+nbh10BV1ZOaFSW8kWEz6Tk6bfx6i401GrPfAUylZMyqqHyNj2icPQxe7mkEP5fHVAW7jkiGIOFXXWDWk6ogxlmuAgxDXL2FNc1KlMzebfqMutIWxe57BC6Nniwd8nhtNOfLRTuhCC6eOvI79kBxWUUHp0G0IIEmde5HTbx8viYVBaOEO+EgBmKq+gMTWtXZ6xtIzMO++lfNVnlP72HYDdPbnu4OwBvZQSk6kJlUpDVNh0AqWy72YxGR3WO16t3IC2cF3BZ/Y4St9cB4B+wrh2eYXPv2R9H7T0HEp/+46y7T8x+ua/ovZs7z/X2y0Ss9nAgfTPKK04iE7ri5QWjKZ6fL2jSJz1B5fbOx6s3KAkXNW636zvzfX1aPz8sDQ3U/ruB5hrlNsFA89ZTMUXX7VVcvPhudHUyO5D71BTl0dEyGSaDNUIBIkxpxDoF0+duve/2qG4ETzgCWdvHqcJadFTU6nQ+PkhpSTnb48gmxXZ+9CrloHNMOo/fgZqD+eGSGNjLUc2v0dA1Fiixp1id19OSgs7DrxOQ1MZk8ZcRljQuE5lnPGbOx4P9Ac84exB5aVs6qq9PVFH1lP6+i9WskX/5X504WHtVM9DZixwvnEBtSVHqS05Sk3REaJ9JuDtGYKfTzRCqKirL6KwdA/1jSWMTjjbSrbi8gOUVhzCQ+eHl0cgEaGT8c103aN4qA+rA/akYf7rF1s/21o4Y2kVWX9U/Nz8z5hJ7S97sTQqZAtZdglqPz+8RifR8PshSl5fCYBXRCyJy+7s8lyz4zyusaaUfV892blfvvFU1eYAkvCwaJYuXk5GWiV5RdtJzfwSjdoLi8WIRZoQQsXMibfg6x3ZLemG2slDr04anBSzWSCEqLYp87BN3plCiMNCiHQhxIO9/TKF//nI+r7hQIaVbCpvPU1p6RT/7zXKV6+xkg2Uq8rz13/g9GrVyy+UMQtu6JReVZsNSJYtu4Lly+/nT3fPJzJWQ2rmlwCcOOU2Tpn1MEH+I5HSwrZ9L5Oa8SX6dPuX0HWFoXzy4JKFsxGzmWWrLyKEWADcK6U8x075NJQQwzwgBbhMSulQtrujhYM2K3fkD1Yu43fqNGp+3AWA5+gkmtKOWPM0oSGYSjvr53gEhxN15qXoo9rueuhqpSotFqTFjPZICeVVR6ipy8ciSqmoLMZobNv2UKm0TB5zOcEBigRFs6GOorK9VNZkUlaZhrdXCBGhk9GOGolvaCKqDgsKe/O4wWzl3Cm56oyYjS1mAukt4YIIIT4ClgJu0Yn3HB1rJZwt2QAr2fSTJqLy0FGXolxx1FxeTOW+re0I19X2iFCpECoV5uRoYjOV682TJ0TzxLOXc/jwIVaufIud2wpQmxPx0LVdDuKh8yE+ai7xUXMprzrCkexvOJrzPeR8j3/kWMYsuK6dJP/xtHhwlXCOxGxOFELsBQpQrN3vQDSQa1MmD5hlr3KL0M1NAF7hXXvs+p40mdpNe9FFh+I5ovMFaT6zTqBuW4r1s37ieHxnziB+wTJMjfUYayrxCI5w9B0d4tCBfB686wMmT42Hpsno1SHg4PLo4IAkggOSMBobSMveQGHhbooPbyZi7EkOn9Nx8TBUtkic/reyEbP5xE72LiBeSjkZeAFovd7F3uaX3TFcSrlCSjlDSjlDF9B5kt3qPeIxQrnkLfiyheTc/79O5fxOnkfUfX8m9Brl8jdzba01T+PljVd4DCpN7xbnhw7k89G7W+yqnXcFrVbPuJHnE+g3gsL932M2NbfLP168gd0iZiOlrJFS1rW8Xw9ohRAhKBYt1qZoDIoF7DE84pW5XOHTyuLBZ+5EhEaN18QRRN7xR3RRkXjEROM9ZTLqgAAMecrjuttq6G5Ic0fAtBCCkXELMRjryd3zda/bG4xwi5iNECJCtLjYCiFmtrRbjrJISBJCJLZYyEuBtfbasIWn2oMLYxYxxjexU55+4kjre6/keJpSc5BS4nfyZDxHjrBufVhq65BGA9JkcuEr9j0CfOOIjZhNcdqvlGfvcVi242p1KJyvOkU4GzGb1TZpt7QK2gAXAQda5nDPA5dKBSbgNuAb4BCwqmVu5xDRXmEsiz+bRyfc3o50yRHFNGcVofLxwmt8Ip5JMZiqaon9vxvxWzDVKrEPULdjJ5b6BusthDAwrBxAUvwZ+PvGkbFtFcamtiH/eBhWnSKclLJBShkspay2SXulVdBGSvmilHK8lHKylHK2lHKLTbn1UsrRUsqRUsp/OfM8gUAt1KiFmgn+7eUR6rb+jqWukZCrz6QuJRWPxEg8R3UWEPSZPRNddBQ1GzdR+PIKLE1NncocK6hUGsaNWIrFZGDX6n9SfGRLl3uEQ83KDci1uERispgxSzMHqttvdzQdzUcT7IdHfDjGkipUHu3dyVutnFqvJ+JPN6MND6PpcBoFz76IxWgcMFbOWx/GyNiFAGSlrCbtl5WYTc1D3soNSMLlN5bwQc46/nbgBQ7Xtt3BYGo00rA3Hd95kxTvD7MZU3lNl+2ovb2J+cv9BF14HsbCIhp/P+SW/rmLdIkxCxiz4HoCYyZQlX+Q8qzOCgL2MJit3IAkXJO5mc/yvm1HNgBpsoAEdaAPhrxSAHznd1Yvt53LAWiDFWm7qh9+Ano/lwP3kS4gKtnqO1eaYf8ai6F01DWovolQK9t6Yfoaan5QTg58507stp5+fDL6iRMwlVd0W9YVuIN0vpmNaD28CYqbRGONsuM0lIfVAUm4UT5xdtOrUhWNOGNdM1XrfkPl5YE2Ishu2VYrZzEaKX59JQ37D+A1tu1CXndYOXCfpdPpAxwG3gyVxcOAJJw9mA1mUv66AX20H1HzR6L20CiSXt04H9Tv3E3D/t8JOON0Qi692GHZnqK3pPPNbERaLCi+DgqGqpUbNISTJjPG2mbizkrGNzGIwPHhijeH0cFNgh5FVKxdhzYykoDFi1Dp2q9o3WXl3AGVWoPFbMDYbP9SFHsYjFZu0BBOo9eh9fMg9bVtfHXqK5Ttyif4klM7bYvYonbr71jq6wm98rI+l9fvrZXzC09CWszUlXXtiDMUFg+D6htM/PPJhM9NIOH8CUTc9QcCz3PscWHILUHl5YEuonNsayvcaeV6Qzp9sQEAi8lgTXNmWB1sVm5QxTTEnDaamNOUib+9AGlbGMurqdtyAP2UJITagf+Qm9FTya8A3zg0Ht4UHPyR4HjnL6obbBhUFs5ZmKrrKXpmFdJiIfiyhd2Wd/dcrieWTq3WERg9nqba8nbpHa3cYB9WB3fvu0DpyvU0pecTfstSdJHBnTaC+wM9IZ2+SYfF1Iyxsbb7wjYYTMPqkCOctFhoOpSNzwnJyhGYk+iLFaurpAsNVPSAK3L3OSw3mK3c4O25HZgqa8l7+E1MFTV4Tx/dLu9YWDlwjXR+PjF4e4V28h4ZSouHQbVo6A4Fj79Hc6Yi2yXNrm+c2tOUK9/1K+UpP+EVlYBXWDTeBm80Ht5odHqqCg7h6RdGaOJ0h+06s5BInhDN5KnxyA8y+OnXd6guTCUgKtnl7zDQMaQIZyxri/+sWvcb/gvbE0ET1YCpwLUL4Yp//gJpNmOsqaQm1b43R0jCtG73+RyRLnlCNP9+/gq0GjXnXjiZ0eO+I3vXlw4JZy9CfzAE2gypIVWoVVYZCENuCRaDfcms6p83UbbqM7tOjw0xFppKCzE3N9JUVoRHUDieYdGMu+dpPMNjOpX38g93elO5q+F18tR4tBo1ao2KoKAAZk2Zh6G+0uVhdTBg0Fo4eyI3HvHhGPJK8T9zJtrQAEpeWUtzViEhV52B95Qkq3Wr+Fy5Q9jS1IypooLAcxYr8RBC0JSZReFbL7Zr12/MFKpTd9NUrAgh+owYR8y5V+BbpOoU1NwT7N2djdFkVhxPTRaMzV5YzEYaa4rR+3cd0jgYdUiGlIULOHcupvIazFX1NOzLoHbLfoxFFRQ8/j7lH/1gtXiaoEAA6nfuojkzi8r1G8hZ/jCGwiJK32uLEwqafhLRZ11O5OkXUn1wJ1q/QJJufIi4869DrfOkIU7nch9rE72sr1YcOpDPy89+w+4dWbz87DcYG8IAqMpv7zA6FBYPg9bC2YP35FEEXTifis82AuAzezzBl55K+Uc/UvHZRmo2HiD8xusIOm8JJW++jdfY0TTn5NJ8VHH0zH/iaQA0IcEknn8LuoC2O4nrc9PxHzutXRr0TtSwlXQTRkXyxz+fgVatZq57u7oAACAASURBVOKUOLIyStmTGkFV/kGixp3So7YHKgashfti3ovdF7KDoItPwWviCEAJuNGGBRJ5zyVE3HYL0mCg+LWV6KKVYGqPhHii7r7TqqKpjQgn8OzFxDz0QDtile/ahDSZ8AiNtPvM3nqVTBsXi6ZlDqfRqJg8NZ7QoLHUlmVRmec4yM3entxAtnLuUk9aJoTY1/LaIoSYbJOXJYTY31LXvg+1GyFUKsJuPNf6uWr9VgC8kkYRsuxSTGVl5D36BABqHx+0oSGE33gdic89Tczy+whYtBChapsbmeprKf75S/TRiQQ5uE6pN6TbdTAXk8mMyWzGZLawd3c2cZFzQErSflnZLn51sC8euv0tSSkPSymnSCmnANOBBuDzDsUygflSyknAo8CKDvmntLRhV1HH3dCGByJa3Jbqd7dFfenHjiHi9lvxnjIJj4R49OM7K1d2ROW+rUiziagzLkal6f7CkdaXKziQXsj9t7/H2ys2cttjn7C9vgKtxovxoy4EIH3zezTVlXfTSnsMVCvnFvUk2zhUYCuKpEOfoytZfaFSEXnvpZSs+BKPhIh2e29eo0biNWpkpzr20BBjoS7rMF6RcXgEO/ZO6Q18Mxs5RD6HDuRb53W1iV6Yi9pclfaufZzg+KkExU3G3zSaxvi2264H02rVnepJrbgesBXOkMC3QggJvCql7Gj9gPbqSXFx9mMaXIH3lCQSX74bAFMP1UwmBQWzobyQuBnzXKrnyrDXcTPYVhvYb9Y8koUaU0wAtcVHKc3YQXn2blRqLYHT5hI290xUWtdXyscS7lJPai1zCgrhHrBJniulnIYihvMnIcTJ9uraqieFhoY6260+w9SISE6va6K5sZEX/nY/k+PsLxj6EkKlxm/2PIJiJhA/fSnTLvwHY0+9maDYSZSn/Ez6yqeoy1LuqRgsiwe3qCcBCCEmAa8DS6WU1gmHlLKg5WcJytxvZs+76zpcPcpqxeyYWEJb4ll3bN/OCSOdmyX0xrp1l65SqfGPSGLknMtIXngrQqUi+5NXKN36vdPPPNZwl3pSHIrQzZVSyjSbdG8hhG/re2ARcMBeGwMNW/NyOWfpUi699FIefvhvrF23vts67iCbs/ALH8nIa+7FZ0Qypb99i8VosFtuoFk5d6knPQwEAy932P4IB35tUVXaDqyTUm5wW++dQE/dknYXFXLlmk+ZcvF1+IZHs3HFfzHWdS0r0Z9ka4VKoyVo6jykyUzul+8MCj85d6kn3SClDGzdPmnd/pBSZrQoKk1uUVdySj2pFaeGpLpS3O3YXVTIu78dIHTx5VhMBgq+XWW3XF+QzZlyPvkWfEckE3bSYuqOHqSp1P6NigPJyg38f4lu0NVFvu5Aq8XwCA7Hd9QE6rPTkFJiMRmRFoVkx8KydYT/2KkA1KYfGPBWbmD3bgDBJ3400mSics8WDj3zAGUpP2GsrbJuyJZn7yFrx5puWnENzlo5rb8id1GW8jP1eRlu7YO7MeAJd6yH1VYETJqFLjCUwu8/A6AuM5XcD19l79rHKUnfSvrm9yhO+7XL+n1l3UDRDo6/+FaEWk32x/+jOb/zxuNAGVYHPOGOFToOTSq1hsjT2y7c1WsCaKxWhvPM7Z8CoNP7222rN2Rztq5PfBIjr7obKS1UvL2K+r37rcM+HLuYjo4YJpwL8IlPInKRouVWlqnIhWk9ffGPHINa64W9WwL60rJZ+9Uyj9T6BhB15iUYqsooefNtyj9Z3a7c6E8732bd3zguCOfO/27vuFHW9/6RY5l2wd8Jjp+C2diIPqD9aYS7yOZKO/6jJ6PRK7fiqLzanDx7ugHubgxowt051rkddHevVB2t9DwCQ5l63t8IiBpL3JSzsFjMZKYo87pIG2fJ/rBstmi1cjVp+zBUlhJ73rUELTm7U7ljbeUGNOEGKnR6f8YsuAF9YBRCCKRZuQuipji9z57pLIFFyy07Kp1Hn/WlNxgUhBsoK9WOqCo4xP71/7V+Dh1xAuAe65Y8IZpLr5xD8oTOVwI4gu/I8Qi1hrqjhzpZ6oEwrA4KwvUnXNk4zUr5HGNTLdETFzF+0e14eAe6jWz/fv4KrrlxAf9+/gor6bpr2yffgkqrQx87kpoj+7CY7IdJHsthdZhwvYBQa/ANTSRm4iJ8QuLdNm+zjVNtjXFwBSEzFmCsqaT0t+865R1rK3fcEM5dK9V2R1mmJsaNTmTCqEi3LhJa41RNJjMmkxLj0ApHz5kwKpIbTjmBufMXEDBhJmXbfkTstO99eqys3JAKE+wtXBlOJ4yKpDgsmIaqfOYmGGCED9kZdW7px6ED+dx/x3tMnhrP3t3Z1msybWNZpZQ0VBag1ujw9AtlbHww50zzoaLoCP+55FwMDXWseSSV/K8/JHLyndbFxLGGS1eQ9xdmzJghd+xQPJyeSz0NgB/LxnZbrztVzO6GE2cI12rhrloyE3X1IW65+WYAFi29gmrvNuVKd2+L2JLNYjaxY9VfkNK+40B4eDh3vfQ2L7+/itzP3yR07hn4XHx6uzKtFj/tor+5tZ/g+Ary42ZIdTd2Hcxl1qzZAERERBA+dn67fNsI+46R9q6iY12zobFLsgEUFxfz8v89jHfsSNSeXpRu/gZDgX3Xpf7GoLFw0L2V608LJ6Uk+9fXqasq4twb/kVmcc9uK+zOEnZFVFNzAwgwNtbSVFtGQHQyE5OiyTy4jh8//aBTeZW3nvjHHmmXpolqGLZwxxKuhNpV5u6nOPcwYeMW9ZhsYF9rxDa9K2g89Gh0erz8wwmMGY8QKrY2FlMYPRHvuLYrP0NmnQqApd7+oqm/Fw/DhOshGmuUa5j8I0Z3U9J59Gb4bQ2+Vuk8iL/4ZkJOPB2hVlN9SNG0C52zyG397A2OK8K58xA/OGEqCEHxkd/c1mZP0THSXwgV4fMWE3v+dZibGlF7eqHx6ew61TrF6E8rN6QI15fu5h0hhAApKTz4I2aT/Yip/oAjWQnfxGRGXPVntP7BFH77CXLL0X7smX24S8xGCCGeF0KktwjaTLPJO1MIcbgl78G++BL9jeIjW9jzxWPWz60OmF1hwqhIrloykwmj3BdM7ayGiUdgKHEX3ABA1sf/Q5pMbutDT+AuMZvFQFLL6ybgfwBCuR7vpZb8ccBlQojuFWS6QH8c4tfnHKFky7cYqtvuVpUWC9WHdpP5wQsc2PIaJUV7AUg66WoAyrN2UZK+lW0f3Meu1f/E0NCmNTxhVCQv/uUP3HTRXF78yx/cQjpXxXK0Pn7ELLkKAPOvae3y+ntYdYuYDbAUeEcqeyxbhRABQohIIAFIl1JmAAghPmope9DZB9459vt2WyN9CSklOWtXYmlsonTzBoJnnoIQAkP2YWqK8vENjaChvBhzkzIXLC7Zi3/yVIWMLVbO2FSLStOm99Gq/aZRqwDJtHGxHEjv+Z5YT2TBGmIs+JonoPLwpPbIfgIX9Ph/vtdwtfddidlEA7k2n/Na0rpKHzCQUmIoLqE2ZScF//4vlkZli0Oo1ZRv/4mKHRtJjAjlw48+ojAnizPveQRdkCKJWnN4D0FT5rVTVkpeeCsaXdsqs532m8nCroO59AQ9kQFriLFYt3qa4lXoJ42n5uiBTsNqf1o5py2cjZjNcnvZdtKkg3R77btVPakrdJTOL1/1GbVbFNFCta8vIcsuISRkMiqtBxZDMzedMY/bz5iLRq3CZLZw2txZZNTfTd6696k9sh+Nty8jr70fLBZ8izp/3QPphdz22CdMGxfLroO5PbJuPbVqHeE9ZTJ1KTtpPHwE/fhjcweEK0OqIzGbPCDW5nMMUADoukjvhBYZrxWgnDS40K8eozZlJ7VbtuJz4iy8J07AM2kUKp0WdcuJg9rDkx0Z+RjNyiXARrOZlKN5qLQ6Ypdeg6m+Bm3rdoNaDdjfOD6QXtjjYdRdZAPwGjsaodXSmNY14UZ/+mifnD60whXCdSlmA6wFbmuZo80CqqWUhUKIUiBJCJEI5KMMyZf3psPdoSuRwo4o/3wtNT//gkdCPMEXnodKa1/dcm9OITes+IwTRsaQcjSPvTkKcYQQbWRrQXcC063kcTZa351kA5gSEUm+SkWYXk/He7RNBfp+CSV0inA2YjY326TdAorGCLAeOAtIR1nFXtuSZxJC3AZ8A6iBN6WUjlWS+wk1P/8CQPiN13ZJtlbszSm0Es0d6I547iYaKOKKfLoGY3Mz/7zyaj5TWdhd1P8H+u4Ss5FSyj9JKUdKKSdKKXfYlFsvpRzdkueSmI09uGNrpDUy3W/+Sah9fHrdni26Iou9dHsLgb4gm7mhkf3/fY41n3/OPffcwwUXnM/smNhO5fpj8TAwvPL6Ec2ZhRQ+9yYqb298T5xlt4y9S976Er1RQO+ObNJiofSd92hKS+etd95h2bLLMZotbDqSRs2vW6j44it0UZF4xMeh9vFGHQL1u9LYM+pcJk6ciNrNt2kfN4SzNBspe/cban7ajcrLi8g7/ojQaqnffwBjUQlIif/ppzp9b5Yr6O09DvbgjGeLlJKq736g8dBhgi86n7Ueakq2bmFT2mE2PPAXjCWlADRnZWMoLEIaDNDirjZ16lQCAgKYN28eF110EcuWLUPjBq/h44Jw0myh6LlPqU85hPfMZFQeWkreeg9DXr71FwzgPWMq2qCgXj/PdvFwrMgGULdjF1XrvwHAIy6W3UWF7C4qpPqnjRhLSgm/6fp2q1VTVRX1u/ag8jWgDvBhSXMwP/74I9dccw2PPfYYK1euZM6cru+qcAZD6vC+FbaH+FJKSt74ivqUQ4ReexYqTx21m/Yh1Gr8F55C2LVXAqCfPLEd2Ww3TQcSXOmT2scbtb8/Ki9PCp59kaYs5YCo4WAq2sjIdmTTRDXgOU6H/6kLCFw6D7/5U/h5USxHjhxhzZo1mEwm5s+fz7PPPmv3FkZnMeQtXOPvmdR8p6xhKlZvxFxdj1dyPBG33K7kH1YuDtH2gXK6u62bq/8A+uSxxD3yN8z19eT/+xkKn3nBmue/aKHdOh23RoQQLF26lPnz53Pttdfy5z//mV9//ZU333wTPz8/l7/DoLRwrqxULY2K65A2OgRdVAjCU4f/4tnWfG1YKAhBY9oRGg+ntZO4Atf/yK1wJ9l6a23V3t6EXbUMj5GJ1rSARa6dTwcEBLB69Wqeeuop1qxZwznnnIPF4nqfBnxMA2D38N6V+AZLswGVR/sLNGyPt6p/3mS9QzXmoQcUEtrgWMqYuntYN1VWYSwpxWtMUqc8exu/U4KiWXXqde3S3njjDW644QY2bNjAGWec0anOcR/T0JFsnWBR9t31kyZ0Ihu4/4/uLPriuZrAALtks4cpQdG8ffKVndIvvvhihBBs3brV5ecfF4Szh9b/ZmmxUPXdj3iOTiLs2quOca8UDJQFy6zQBLSqzvtwvr6+jB8/nm3btrnc5qAgnLM6cT2HxFxVRc0vm2nKyOzjZznGsSRaxzDKbaVZGC0dT10VTJ8+nT179tjNc4RBQbiewNn4BqFSEXDG6RhLSqn4/Auqvv3Bbrn+IMJAsGq22FORz9W/vGs3z9/fn7o616Uthvy2iDPQxbT4hKpUhFx8Yb8+e3JcJCeMjGFTbU6PDtO7WtD0hLz2Fg17KvLtlg0NDaW2tpbCwkIiI513mx+0hDs1JNUpvRFnYMhTfqmx//grGv+u95bcfcY6OS6S12++EK1azc3mWVzx+SftSNefq2NXXZNycnLQ6/Uu78UN2SHVFRgKClH5eDskW19gyrRotGo1GpUKrUrNSb5x6PNU1ld/oTuydfQesVgsrFu3jrPOOgtvb2+XnnXcE87c0Ej9nn14jXYugt5d86yGGAtb83Ixms2YLGaMFsWb2F1wlrA9cbrctWsXBQUFLFmyxOW6g3ZIdQfUkfWU/PsLpMGA/8IF/fbcVtLuLirkis8/YXZMLFvzcjmc03+B3NBzJYKnnnoKT09PzjrrLNef2aMnDhI4cje3NDZT8tpX1O/YS8CZi/CeGQg09LkkaUcL2erBAUCMe+dt+jxVlxa5p2QrKSlh1apVLF++nOCWC4xdwZAmXFeo35VG0bOfYGlsJvjShQReMNel+j1dPPT3toe7yQZQVVUFwPjx43tUf1ATztmVqpSS+h2HMRSU0rgvg4Z9R/FIiCDkmsXoxye2K9sxjNBZtG5v2Aba2MJZsrlrJdwXZAMoLFS+W0BAQI/qD2rCOQOL0UTGNY8jDS0S8kLgv3gWIZefjsqzmzNWB7AlxuS4SF6/SdneMJrN3LDis3akG2gbur3BunXrUKvVzJs3r0f1hyThjLXNaLx1NBTWUPCvdUiDEeGpI+7JW9AE+6PycByl5SpOGBmjbG+oVdbPe3MKe0w0Z61cV1bVXdbN1sumurqa2bNnk5qayoIFC/D3t39zYndwNkwwAHgdmIASOX+dlPI3m/z7gGU2bSYDoVLKCiFEFlALmAFTV24r7sKuR78j79v2gi2BS+cRcoXzgnyuDqspR/M6BUv3tVXryqq6i2yNh7LJe/gNhFZDwgt38cQTT5CamsqVV17Jk08+2eN+O2vhngM2SCkvapF8aPfXkFI+BTwFIIQ4F/izlLLCpsgpUsqyHvfSCUgpKd6STeEvyo3IAclhVB8pI/CC+QRdOL+b2j1DqyXqGCz9m8X+cVBP2u4K9qxqV891lWzG0ipKXl0LgDSayLzlaZ4Arr76at566y2X2urUl+4KCCH8gJOBawCklAbAkQKfowj9PkF1ehl7//0TVYdK0PjomPnEWUTMbVsMHCpyfRLuqpVrDZbur/laR6u6qTbHbrmeLBKCivaTlV/aLm3hwoW8+uqrrne0A5z5S4wASoGVQojdQojXhRB2zzNaIvTPBD6zSZbAt0KInS2CNXYhhLhJCLFDCLGjtLS0q2J2kfX5fqoOKZq7QeMjCJvVd2I4juBusjlqr9WqPrNtM1es+cTuwX9PyDYmuICIkxJZ+PGV+I5o22dbt24dHh69v6HQGcJpgGnA/6SUU4F6oCsly3OBzR2G07lSymkoYjh/EkKcbK+ilHKFlHKGlHJGqJ2Alq584k4NScU7tm2JXrIth9KUNkksU5P9C86cgTN/sFZnyb6ybLbtd3z9Zsnnfzu2u4VsyRHFjA7MZ/Mda1h/+go8g/WETm9TVnMH2cA5wuUBeVLKVvfOT1EIaA+d9OOklAUtP0tQlDNn9qyrXWPUpVNZsulPzHxCuZC2NrOCgp/SWXvSS6w/fQXG4jb+m6rryfvnStKXPUpzVpG7u9IOhoJCCp5/CUNh3z6nI1whW3JEsdV3cOcj31F5QOnrdxe9Q8an+/AM8WbB25e6r2/dFZBSFgkhcoUQY6SUh1FUMDspWAoh/IH5wBU2ad6ASkpZ2/J+EfBIx7ruwO8vbeboR4oHanNlI1lr2zRzVHpPCv+7isbfMzHX1FvTi15cTfzTf3TYbk83gmu3p1D2/scANGXvRhe52OU2egJnydZKsubKBjbfvoa67EprXtSpozDVG/AfE8qoy6ai9XHfZb/OrlJvB95vWaFmANd2UE8COB/4VkpZb1MvHPi8RT5BA3wgpdzglp53gErX5nvfSjwABFSs/oW63w7gPWMsKi8PDLnFNGcVYcguIv//3kYXF4Ha25PApfMQmt5radRs2Ur5x4oEq35qEoFL5mEu6XWz3cJVsgHU5VS1IxtA2Ox44ha7x9ewI5winJRyD9Bx/+yVDmXeAt7qkJYBTO5595xH8o2zkWZJ+vu72qWrdRqqvtqCytuLyHsvRahVjA0v4si7O0l9bRsNe4/SsFeRk/cYFY2pogZMFvxOnYpoEXJxxcpVfPU11d8pbuqBF5xMyGWnudyGK3B1+OyI4MlRzH/zYqrTyxFCsPtf36PS9p3X2pA6aRh3y4nEnjmGjdevwmJQtgwiTkpE6+uB5cSTEGpVyy9dED4ngdTX2kcdFfzfO9b3xpJKQpa1v4HPHsz1DQidFqSk+vufrGQLiYtmwR+vYm9lm+Bnfwj+2UN38R3+SaH4J4Wy5S4lNtfc1HfS+kOCcLaH+L4JQZy26kryvk3DO9qfyJNHAEpgtO0vvrnS/qVqwZctxFBQTuWaTfjNn4IuRlkx21qoqRGRzI6J5dvffuPHRx9TjoA8PbE0tBHq5w3fMSJpFFf/8m6XcQF9hSlB0cwKTWBbaRbNul12yzSW1lFztJyyXflIiwVTnYHyPfn4jggi+jTn4lZ7giFBuI7wDPZm1GVT26V1/C8PnRHDpHvnk/7+bsye3niNS0AbFoj/GSdgqqyjduMeil74jOiHr0Ht7WmtNzUikvfO/wPvv/MOm//2DyyNTXiNT0QaTRgKJJa6Rh76618Zn5yMyWJmVmhCvxKuNXhZp1ZhsszjbwcqOVzbPvTxwIu/kvHx3nZpKp2auLOTGXfrHDSe7j1rtsWQJJwzEEKQsHQCCUsndHLS1Ib4o5+aRMPuI+Tc+xLRf70aXXQImqgGZkfF8stPP3HjDTcwZ+4cFv7zTt7L3Enug6+ClCRdcBr3PvhAi9u4hW2lWf3yfVr/oc6JmYxOrUIt1EgBE/yT2hGu8JeMTmQDmPnE2YSd0FkV0904bglnC3uewVH3X07dtoOUvrGO/Effwmt8Imp/H1Z67SPva0Vz7elnnuHer98h++mVyGYjMY9eDyOiuGnbKuuQ1pfWzd7c7ED1EUwWM1KAWZo5UH2kXb53tD8BY8OIXpjE7y9ttqZnf3HASjgpJfW5VTQU1dJc0YBvnSf3fH4P8+bN4/zzz+9VnweFmE0rHN1I09uQwa5c0Rt+z6T8w+8xVdRirqpDGk14R4Uxae4som9eymeLb0EaTUQ9uAzv6WPsttHTS+fs9cmZtsb4JjLBP4kD1Uc6DaetMDUa2XTTJ9RmtW2J6CP98ArzobGklobC2k51AgMDqaio6JTeEY7EbIYtXAu6in/Qj09E/383Asp/vmwyIDx1lAlB5rpvkUYT/mfOsku23t5u2NP6h2szuyRaKzReWk55V7nBoD6/muwvD9JYUktjcR2+I4JJumI6PglBLB2/CP3vJm77021MmTKlR/1p99xetzCEYDGaaD6aj6mqDkNuCZ4jo9HFhKLy8kDtq0cIgfDqvOvuO29iu8/9eY2mO+Ad7c+4W060m1fqW8fCkRMAuPXWW3v9rCFDuJ5E4pubTRx5dyfFW7JoKq+nuaoJLPanGNrIYPxPm442MhhDTjFNGYXUbz8EgDS1Cb4MNrI5whfzXgSgaYxy/1hqau+vLBgyhOsJDr26lYxP9qLSqYk9YwweQXpqw0ejCfJFGx5Ec0YBxtIqzHUN1O9Mo+zdb611tdEh1vceccpQ3N9kc6fcRUe0kg0gKysLgCA3CG4PKsK5+yrLpnLl2PfkFX/Ab2Sb71frXE4/aaQ1LXDJPJozFDcgbVgAal9lE1gaTQitpt/I1lFu1p78bE9IaEveVrKlpqbywgsv8O677+Lt7d3rFSoMMsK5G6EzYin4MZ2mioZ2hOuSPJGtB/u1La/eoa8uHO7YbkcCdvXcVqKtXbuWu+++m6NHlTPmSy65hHvvvZeoqKhe9+24IFzrL/ir36M59OpWVGoVAePCOPLeLjxDvfEb0fuhoif9GUjPa3Vw3b59O+effz6TJk3iL3/5C7feeisxMTFu68uQJ5ztLzs0LYXvv1MiunI3pKL19WDO8+fhGeyaAlBv+zHQcOfY72lubkan03HfffcRGRnJzz//3ONQQEcYUoSznYfY+wNX5DeBSrD4q+tpLK3DK8zHrc6FXfXJFfz6YR71lUZOvyUBlcq91zBFeCYTo59CXsMeipoOcefY75FS8tBDD/Hkk08SFxdHZmYmCxcu7BOywRAjXCu6+iPnp9YSnuiF1tcDre/AIlorPn3kMABfv5DBI7/MIy54PBRH0OCVTUnTEfzDPXp0H1iEZzIXxD2FWmgxSyOGRjObNm3izTff5K233mLp0qU0NzeTk5PDpEmTetR3ZzDkCOfoDy0QqNR9L4nXm+HziR3zeXDGRgAePvlX4NfOZVLm4+mjwWKWFKTVYWwyYzFLjmyr5OAv5Qhg9IlBTF4URnSyD0IIYvRTUAst69d9zd///nf27t2L2WxGrVbzwAMP8Pjjj/fJxXYdMeQI1xWa6kyUZjWg06s77V8NlPlVSWYD37+e1W251/64Fw8vNdn7a6ivbItKEwLCR3gjkXz/WhbfvZpFbGwsc+bMIeGyEF7O/R933HEHo0ePZvny5cyaNYtZs2ZhL0qur3BcEE5Kycq79lOS1cA1zyjHNL0lmZSS9JQqSjLqOfBjGSqNYPKiMCYuDMXLt+tf69qn0/nxjWxOuS6OploTCEjfVoneX0tFQRO1ZUqM+UlXxHDNfYv5/V0fnnvmeR78ywOU+23jlft+4GiKIpk1/Zxwkk8OwSdIy/mxTzJu3DjrirKsrIwvvviCb775hrVr1/Lxx0pAz7x58/jqq6/6bI7WHQaVtwg49hixB2OzmZV37ufgxnKW3DuKU6+Pd7k/1SXNbHwnl0W3JlCe28j65zLI3F1FQ7Xiih0a74XJIKksbEKjU7H49hGcen1cpyHKZLBw7+Sf2qV5+mqIHuuDxSwpTKvjgofGcMLSCGvdjhP9zN1VZK+K5YorruDCC51TXK+vr2fr1q3k5uZy/vnn9znZjmtvkd9/KuPgxnJmLInglOt6FpGfuauKH9/I5sc3svH01SAEjJkTRNwEP0ZMDyBukh9CQPa+Gn58I5sv/5NO5p4qAiM82fFlEZFJ3kSM8iEw0pOz7xrJumeVDdUL/zqak5Y5dnosajrEJQlttwAyFkVMwwV4e3uzcKH92wP7G+5ST1oAfAG0+sSsllI+0pJ3JooYjhp4XUr5hNt67wDb1xTy89s5VBU24Req4+J/jO3xpDg0oS3aKiDcg6v/O4HIJJ9O5RIm+3PtH3pWHgAAB5VJREFUcxP55d1cPn+8zfHR0qRj77cl7eZbAJNOD+vURt/funNs4Rb1pBZsklKeY5sghFADLwGno0Twpwgh1kopOwVSuxPfvJzJ1y9kWD/f+cEMdF7dx5ue5dPWrfV146zvf3hdsWx3fTiD8BF6h8QVQjD/qjhGJiTx9M3rAUjbl8PqnPs4kreHlC+KqKs0kjjVn4dP3tSTrzeo0RfqSbaYCaS3xKcihPgIWIqdyH13YvtnbVHH/uEeJE5tP2exJVZjozKH9fISXZZ5fGcpJ8/Tcd3kbKf74H3+Laz9Tzq33HILaqFRhsUEoGfCkUMGzlg4W/WkycBO4M4OEfYAJwoh9gIFwL1Syt+BaCDXpkweMMveQ1qUlW4CiIvrufqRJT+C8oI6/vnPf3DZZRdRWn0HoT72+Z2TZeK0k0rx8RXsOhhht8zmTc0UF1nIPOp8rGZSjBKLevjww65/gSEOd6kn7QLipZSTgReANS3p9sYeu8vi7tSTnMHWTwu4+7T38fHx4YILLmTUqNGMTuo8WTY0S77b0MRpJymyYHW1EkzX4amb3qlsWqoy78rKtE+4pJiCTq9hdA1nLJw99aR2hJNS1ti8Xy+EeFkIEdJS13YZFoNiAXuMrnzijM1mNn2gGNP9+3cSH5+IlCbKKjbxyku1HEkzsfRCL3JzzLz1Wj15ue2vZbzxmk28+OIzmNXL0fvuB8BikWz/TZk9XHSJfphMboBb1JOEEBFAsZRSCiFmoljOcqAKSBJCJAL5KHJel7v7S5iNFtbf+xsFqc3c9xdf1Pp7KK85kcbm33j15V957j/KNYvrv1RcpceO0/DsywH8fsDIay8rM4ONG39h4sTpREb58cpKHcnjtKz9+G5++O5+AJ5+8oj9hw/DJTi18SuEmIKyLWJVTwIuAUU9SQhxG3ArYAIagbullFta6p4FPIuyLfKmlPJf3T3P0cYvKJu/UkrKchopyWhgxxsH2b3TyCOP+3HpFW2uRjtTDFx2QTkBgYKnngvA319FaJiKqGi1daVZXDCWCaM/5JZb7kQIwcaNGzGbzbz99tvcc889aLVadu/e3S/njEMFjjZ+ldC3AfaaPn26dITb35km4yf7SZT5oATkI0/4y7TcSPnb7jC5+BxPGRunliqVknftjd4yLTfS+nKEffv2tWv37LPPdlh+GJ0B7JBd/G0H3UnD8uXLeeGJXYSE6Bg1WkNdrYU33wti1GhFD+PD9xr4+itl6LzoEi/++9RhoqOjUamc8xKZOHEiBw4cYNWqVcTFxbnFj38YNuiKicfy5cjC6XQ6GRISIq+66goJSJUKOWOmTn7wWbCsqamxWqZp06ZJs9nc23/WYfQAOLBwg+q+VCklBoOBsrIyPvjgI8aOHctf//owxYXhXH9FA/v27bOW/fbbb522asPoR3TFxGP5cmThHnjgARkcHCznz58vd+/eLaWUMjc3V2q1WqnX6yUgExISZHNzc2/+SYfRC+DAwh1zctl7dbdosIezzz5bAnLmzJkyJSXF5frDcB8cEW7IjDkrV67krrvu4uOPP2bGjD69zmsYvcCgW6V2hdDQUJ555plj3Y1hdIMhY+GGMTgwTLhh/H875/NSVRDF8c8XJVtVaptoURptXAVF1C4K1NxY0MJVUruifyDc+A+0iSApCKpNVqsIQoxqF1mL/LExn7QxXBRWtAqC0+KeV7fHUyx17n15PjAw78ycYWbel7kz3DsnKSG4ICkhuCApIbggKSG4ICkhuCApIbggKaW8eS/pI7D6K1J/z07g0wa2XyaKGOseM6t7MaWUgttoJL2x5b5I/c8o21jjkRokJQQXJGWzCu5G0R1ISKnGuin3cEFxbNYVLiiIEFyQlIYVnKRhSR8kvfXUlyu7LKkiaVZST85+UNK0l12V326W1CJp1O2vJO3N+QxKmvM0mLN3eN05992SZuSrR1Kvz0FFUm08mGJY7tvzsidgmCxKU629C5gEWoAOYB5o8rIJ4ChZkJ0nwEm3XwRGPD8AjHq+jSzSQBvQ6vlWL7sPDHh+BLhQ9JzUzEOTj72TLGLCJNBVdL8adoVbgX7gnpl9N7P3QAU4LGkXsM3MXlr2j9wBTuV8bnv+IXDCV78eYNzMlszsMzAO9HrZca+L+1bbKgu/YvNZFtOvGpuvUBpdcJckTUm6JanVbfVi0u32tFDH/oePmf0AvgLtK7TVDnzxurVtlYXl+l4opRacpKeSZuqkfuA6sA84ACwCV6pudZqyFez/4rPquHcFUso+lvrWlpmtKka+pJvAY/+5XEy6Bc/X2vM+C5Kage3AktuP1fi8IHsZvkNSs69ya457twGse2y+9aDUK9xK+J6symlgxvOPgAE/eXYA+4EJM1sEvkk64nuws2SR16s+1RPoGeCZ7/PGgG5Jrf7I7gbGvOy518V9q22Vhdd4bD4/QQ+QjbNYij61rOEUdheYBqbIJnJXrmyI7IQ2i59E3X6ITJjzwDV+v2nZCjwgO2BMAJ05n/NurwDncvZOr1tx35ai56TOHPUB73y8Q0X3x8zi1VaQloZ9pAaNSQguSEoILkhKCC5ISgguSEoILkhKCC5Iyk/jxQq/5JK0ZgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "gb_boundary = [(-2.6653539699999556, 51.617254950000074), (-2.6937556629999335, 51.59617747600004), (-2.71312415299991, 51.58661530200004), (-2.760487433999913, 51.579779364000046), (-2.7980850899999155, 51.56350332200009), (-2.816395636999914, 51.555568752000056), (-2.8587133449999556, 51.546128648000035), (-2.943348761999914, 51.54254791900007), (-2.9562882149999155, 51.54572174700007), (-2.9641007149999155, 51.552801825000074), (-2.969471808999913, 51.559881903000075), (-2.9746801419999542, 51.56297435100004), (-2.984038865999935, 51.55853913000004), (-3.0102432929999168, 51.53803131700005), (-3.0156957669999542, 51.53164297100005), (-3.0737198559999115, 51.50836823100008), (-3.0764867829999503, 51.50775788000004), (-3.088937954999949, 51.505072333000044), (-3.105620897999927, 51.49721914300005), (-3.1317032539999445, 51.48041413000004), (-3.1350805329999503, 51.47630442900004), (-3.1409399079999503, 51.46478913000004), (-3.1453751289999445, 51.45994700700004), (-3.1524145169999542, 51.45718008000006), (-3.1666560539999296, 51.45600006700005), (-3.1723933579999084, 51.45327383000006), (-3.1727188789999445, 51.453111070000034), (-3.160064256999931, 51.43183014500005), (-3.167144334999932, 51.41046784100007), (-3.1848038399999155, 51.39760976800005), (-3.204009568999936, 51.401597398000035), (-3.218861456999946, 51.402777411000045), (-3.289418097999942, 51.38422272300005), (-3.539173956999946, 51.398504950000074), (-3.557443813999953, 51.40509674700007), (-3.5753067699999406, 51.420436916000085), (-3.6047257149999155, 51.44570547100005), (-3.6631973949999406, 51.476223049000055), (-3.6769913399999155, 51.47703685100004), (-3.695423956999946, 51.47150299700007), (-3.717925584999932, 51.478583075000074), (-3.7376195949999556, 51.49087148600006), (-3.748036261999914, 51.50092194200005), (-3.7494197259999282, 51.50535716400009), (-3.747670050999943, 51.507025458000044), (-3.7445369129999335, 51.50763580900008), (-3.741851365999935, 51.50836823100008), (-3.7493383449999556, 51.52806224200003), (-3.7519018219999225, 51.53306712400007), (-3.758941209999932, 51.54677969000005), (-3.770130988999938, 51.56329987200007), (-3.782215949999909, 51.57664622600004), (-3.7902725899999155, 51.58197663000004), (-3.8077286449999406, 51.589178778000075), (-3.8169652989999463, 51.59650299700007), (-3.8326716789999296, 51.61554596600007), (-3.8416235019999476, 51.621527411000045), (-3.8548884759999282, 51.62384674700007), (-3.8867895169999542, 51.62140534100007), (-3.9623917309999115, 51.61562734600005), (-3.9766332669999542, 51.61188385600008), (-3.989979620999918, 51.60651276200008), (-3.998768683999913, 51.60028717700004), (-3.999908006999931, 51.59088776200008), (-3.9922582669999542, 51.58112213700008), (-3.9818009109999366, 51.571600653000075), (-3.974598761999914, 51.56297435100004), (-4.016184048999946, 51.56297435100004), (-4.016102667999917, 51.56037018400008), (-4.0208227199999556, 51.555853583000044), (-4.026519334999932, 51.554022528000075), (-4.029204881999931, 51.55927155200004), (-4.031971808999913, 51.56313711100006), (-4.0385636059999115, 51.56622955900008), (-4.046457485999952, 51.568426825000074), (-4.0531306629999335, 51.569240627000056), (-4.056304490999935, 51.56704336100006), (-4.065581834999932, 51.55756256700005), (-4.070220506999931, 51.555568752000056), (-4.0768123039999296, 51.55695221600007), (-4.087269660999937, 51.56191640800006), (-4.112131313999953, 51.565619208000044), (-4.121652798999946, 51.56598541900007), (-4.132191535999937, 51.56297435100004), (-4.142730272999927, 51.55695221600007), (-4.156809048999946, 51.54629140800006), (-4.1664119129999335, 51.54254791900007), (-4.176503058999913, 51.544256903000075), (-4.18773352799991, 51.54877350500004), (-4.1967667309999115, 51.54938385600008), (-4.200550910999937, 51.538763739000046), (-4.213368292999917, 51.539129950000074), (-4.272450324999909, 51.554754950000074), (-4.2899063789999445, 51.555568752000056), (-4.293324347999942, 51.55914948100008), (-4.29515540299991, 51.56195709800005), (-4.297352667999917, 51.569240627000056), (-4.278309699999909, 51.578192450000074), (-4.280832485999952, 51.58881256700005), (-4.2897029289999296, 51.601548570000034), (-4.2899063789999445, 51.61701080900008), (-4.255767381999931, 51.62384674700007), (-4.252023891999954, 51.62710195500006), (-4.241281704999949, 51.63934967700004), (-4.234730597999942, 51.644964911000045), (-4.228505011999914, 51.63743724200003), (-4.234730597999942, 51.63743724200003), (-4.234730597999942, 51.631293036000045), (-4.2278539699999556, 51.628119208000044), (-4.22101803299995, 51.62384674700007), (-4.1900935539999296, 51.63027578300006), (-4.139027472999942, 51.63231028900009), (-4.0912979809999115, 51.639878648000035), (-4.070220506999931, 51.66229889500005), (-4.0698136059999115, 51.66893138200004), (-4.070383266999954, 51.67430247600004), (-4.07054602799991, 51.67597077000005), (-4.0754288399999155, 51.677801825000074), (-4.087269660999937, 51.668850002000056), (-4.095448370999918, 51.66510651200008), (-4.106841600999928, 51.66425202000005), (-4.146351691999939, 51.66705963700008), (-4.200550910999937, 51.68585846600007), (-4.214955206999946, 51.679673570000034), (-4.293690558999913, 51.67226797100005), (-4.3152970039999445, 51.67747630400004), (-4.342355923999946, 51.69086334800005), (-4.3664444649999155, 51.70848216400009), (-4.379261847999942, 51.72687409100007), (-4.338042772999927, 51.72333405200004), (-4.319976365999935, 51.72483958500004), (-4.310454881999931, 51.733710028000075), (-4.328724738999938, 51.73297760600008), (-4.3471573559999115, 51.73578522300005), (-4.3625382149999155, 51.74286530200004), (-4.371815558999913, 51.754787502000056), (-4.368763800999943, 51.75698476800005), (-4.362904425999943, 51.76386139500005), (-4.358021613999938, 51.773138739000046), (-4.358225063999953, 51.782131252000056), (-4.365101691999939, 51.789048570000034), (-4.3714900379999335, 51.78595612200007), (-4.379261847999942, 51.77529531500005), (-4.384917772999927, 51.77187734600005), (-4.3929744129999335, 51.763739325000074), (-4.399159308999913, 51.76162344000005), (-4.409331834999932, 51.76316966400009), (-4.417876756999931, 51.76788971600007), (-4.426503058999913, 51.77529531500005), (-4.445790167999917, 51.77326080900008), (-4.449330206999946, 51.76630280200004), (-4.441395636999914, 51.75678131700005), (-4.426503058999913, 51.747300523000035), (-4.460764126999948, 51.73578522300005), (-4.4988907539999445, 51.73484935100004), (-4.574208136999914, 51.74115631700005), (-4.603423631999931, 51.73924388200004), (-4.639230923999946, 51.73318105700008), (-4.6453751289999445, 51.732123114000046), (-4.678212042999917, 51.71743398600006), (-4.680287238999938, 51.692694403000075), (-4.689442511999914, 51.69159577000005), (-4.69163977799991, 51.689886786000045), (-4.69163977799991, 51.685980536000045), (-4.693959113999938, 51.67841217700004), (-4.712310350999928, 51.650091864000046), (-4.721424933999913, 51.652044989000046), (-4.734934048999946, 51.65924713700008), (-4.741851365999935, 51.65607330900008), (-4.759185350999928, 51.644964911000045), (-4.8482966789999296, 51.64630768400008), (-4.86351477799991, 51.64411041900007), (-4.878977016999954, 51.63743724200003), (-4.887806769999941, 51.62995026200008), (-4.8957413399999155, 51.621079820000034), (-4.904774542999917, 51.61383698100008), (-4.923695441999939, 51.608628648000035), (-4.931996222999942, 51.59902578300006), (-4.941029425999943, 51.59650299700007), (-4.946034308999913, 51.59760163000004), (-4.956450975999928, 51.602769273000035), (-5.021595831999946, 51.61603424700007), (-5.0457657539999445, 51.62689850500004), (-5.0366104809999115, 51.63743724200003), (-5.0511775379999335, 51.65692780200004), (-5.100493943999936, 51.66469961100006), (-5.119740363999938, 51.67841217700004), (-5.113433397999927, 51.68528880400004), (-5.0366104809999115, 51.67841217700004), (-5.038726365999935, 51.68183014500005), (-5.04133053299995, 51.68939850500004), (-5.043446417999917, 51.692694403000075), (-5.028675910999937, 51.69293854400007), (-5.002552863999938, 51.68740469000005), (-4.988189256999931, 51.68585846600007), (-4.974598761999914, 51.687933661000045), (-4.941029425999943, 51.70014069200005), (-4.892648891999954, 51.706366278000075), (-4.868275519999941, 51.716782945000034), (-4.8580623039999296, 51.71832916900007), (-4.844838019999941, 51.71381256700005), (-4.844838019999941, 51.720038153000075), (-4.873402472999942, 51.73773834800005), (-4.879017706999946, 51.76203034100007), (-4.8625382149999155, 51.78237539300005), (-4.824330206999946, 51.788275458000044), (-4.824330206999946, 51.79572174700007), (-4.836008266999954, 51.790716864000046), (-4.864979620999918, 51.783270575000074), (-4.921294725999928, 51.78001536700003), (-4.933583136999914, 51.77529531500005), (-4.9172257149999155, 51.77533600500004), (-4.905181443999936, 51.771185614000046), (-4.900542772999927, 51.76211172100005), (-4.906239386999914, 51.747300523000035), (-4.8920792309999115, 51.73940664300005), (-4.895659959999932, 51.728176174000055), (-4.9105525379999335, 51.71820709800005), (-4.988189256999931, 51.70685455900008), (-5.009917772999927, 51.706366278000075), (-5.149240688999953, 51.718085028000075), (-5.166900193999936, 51.71381256700005), (-5.156971808999913, 51.69757721600007), (-5.1686091789999296, 51.68891022300005), (-5.1828507149999155, 51.68927643400008), (-5.180653449999909, 51.70014069200005), (-5.180653449999909, 51.706366278000075), (-5.230132615999935, 51.73004791900007), (-5.2495011059999115, 51.733710028000075), (-5.228138800999943, 51.73395416900007), (-5.213937954999949, 51.73574453300006), (-5.202870245999918, 51.74079010600008), (-5.191151495999918, 51.75104401200008), (-5.176828579999949, 51.75967031500005), (-5.1432185539999296, 51.76386139500005), (-5.125965949999909, 51.76850006700005), (-5.110259568999936, 51.778509833000044), (-5.107085740999935, 51.78807200700004), (-5.112294074999909, 51.81317780200004), (-5.113392706999946, 51.82880280200004), (-5.11750240799995, 51.84369538000004), (-5.125884568999936, 51.85602448100008), (-5.139637824999909, 51.86399974200003), (-5.146473761999914, 51.85716380400004), (-5.16437740799995, 51.86676666900007), (-5.2037654289999296, 51.87018463700008), (-5.221587693999936, 51.87767161700003), (-5.2358292309999115, 51.87103913000004), (-5.2914119129999335, 51.86399974200003), (-5.3109431629999335, 51.86399974200003), (-5.304269985999952, 51.867621161000045), (-5.297352667999917, 51.87018463700008), (-5.297352667999917, 51.87767161700003), (-5.300689256999931, 51.882025458000044), (-5.302561001999948, 51.88523997600004), (-5.300160285999937, 51.888332424000055), (-5.2905167309999115, 51.89199453300006), (-5.2905167309999115, 51.898138739000046), (-5.2983292309999115, 51.91095612200007), (-5.288929816999939, 51.91693756700005), (-5.252837693999936, 51.91864655200004), (-5.234201626999948, 51.923041083000044), (-5.204172329999949, 51.942287502000056), (-5.191151495999918, 51.946600653000075), (-5.16038977799991, 51.94944896000004), (-5.1195369129999335, 51.95892975500004), (-5.088042772999927, 51.97601959800005), (-5.085031704999949, 52.00185781500005), (-5.070790167999917, 52.00185781500005), (-5.070790167999917, 52.00804271000004), (-5.082753058999913, 52.01447174700007), (-5.081206834999932, 52.021185614000046), (-5.070220506999931, 52.02635325700004), (-5.053700324999909, 52.028509833000044), (-5.0266007149999155, 52.027411200000074), (-5.015044725999928, 52.02533600500004), (-4.961740688999953, 52.007513739000046), (-4.942534959999932, 52.007473049000055), (-4.913685675999943, 52.014837958000044), (-4.920521613999938, 52.028509833000044), (-4.9016007149999155, 52.02643463700008), (-4.863189256999931, 52.01699453300006), (-4.841420050999943, 52.014837958000044), (-4.83226477799991, 52.01898834800005), (-4.833851691999939, 52.02875397300005), (-4.8382869129999335, 52.04010651200008), (-4.838002081999946, 52.04901764500005), (-4.83039303299995, 52.05292389500005), (-4.796986456999946, 52.05646393400008), (-4.77757727799991, 52.064886786000045), (-4.7631729809999115, 52.075873114000046), (-4.7386775379999335, 52.100816148000035), (-4.720285610999952, 52.113348700000074), (-4.7065323559999115, 52.11347077000005), (-4.673451300999943, 52.09739817900004), (-4.675689256999931, 52.126939195000034), (-4.637521938999953, 52.13849518400008), (-4.513824022999927, 52.13568756700005), (-4.50226803299995, 52.138373114000046), (-4.495757615999935, 52.14350006700005), (-4.490956183999913, 52.150376695000034), (-4.484283006999931, 52.156317450000074), (-4.454701300999943, 52.16205475500004), (-4.4348038399999155, 52.170355536000045), (-4.415394660999937, 52.18154531500005), (-4.385568813999953, 52.20343659100007), (-4.371245897999927, 52.20929596600007), (-4.3547257149999155, 52.212103583000044), (-4.334339972999942, 52.21283600500004), (-4.315825975999928, 52.21629466400003), (-4.197132941999939, 52.279282945000034), (-4.1390681629999335, 52.33022695500006), (-4.10960852799991, 52.365301825000074), (-4.096262173999946, 52.387884833000044), (-4.0873917309999115, 52.430121161000045), (-4.0789688789999445, 52.45302969000005), (-4.067941860999952, 52.47361888200004), (-4.056548631999931, 52.48786041900007), (-4.0618383449999556, 52.49705638200004), (-4.064035610999952, 52.50918203300006), (-4.062570766999954, 52.52098216400003), (-4.056548631999931, 52.52944570500006), (-4.048491990999935, 52.530462958000044), (-4.0266007149999155, 52.52338288000004), (-4.016184048999946, 52.52195872600004), (-3.998768683999913, 52.52594635600008), (-3.9473363919999542, 52.549261786000045), (-3.9473363919999542, 52.556708075000074), (-3.9744766919999392, 52.55654531500005), (-4.025868292999917, 52.545355536000045), (-4.0531306629999335, 52.54242584800005), (-4.068470831999946, 52.550116278000075), (-4.1141251289999445, 52.58860911700003), (-4.125477667999917, 52.60390859600005), (-4.122222459999932, 52.62872955900008), (-4.105946417999917, 52.653509833000044), (-4.0848282539999445, 52.67267487200007), (-4.067128058999913, 52.68024323100008), (-4.063547329999949, 52.68309153900003), (-4.05882727799991, 52.696600653000075), (-4.056548631999931, 52.70066966400003), (-4.052723761999914, 52.70221588700008), (-4.041981574999909, 52.70465729400007), (-4.001088019999941, 52.72410716400003), (-3.988270636999914, 52.73427969000005), (-4.014719204999949, 52.73232656500005), (-4.031971808999913, 52.723944403000075), (-4.048817511999914, 52.721584377000056), (-4.125152147999927, 52.77830638200004), (-4.144357876999948, 52.802801825000074), (-4.149037238999938, 52.81207916900007), (-4.146229620999918, 52.82021719000005), (-4.128895636999914, 52.82363515800006), (-4.117339647999927, 52.83075592700004), (-4.1197810539999296, 52.84625885600008), (-4.127756313999953, 52.86172109600005), (-4.132191535999937, 52.86831289300005), (-4.131988084999932, 52.882473049000055), (-4.129872199999909, 52.88922760600008), (-4.123605923999946, 52.89325592700004), (-4.064035610999952, 52.919175523000035), (-4.071400519999941, 52.921087958000044), (-4.074574347999942, 52.92279694200005), (-4.0776261059999115, 52.926662502000056), (-4.0891007149999155, 52.918850002000056), (-4.100493943999936, 52.914129950000074), (-4.1105850899999155, 52.915676174000055), (-4.118560350999928, 52.926662502000056), (-4.144398566999939, 52.91478099200003), (-4.171620245999918, 52.91347890800006), (-4.228505011999914, 52.919175523000035), (-4.300689256999931, 52.905585028000075), (-4.317290818999936, 52.89935944200005), (-4.337310350999928, 52.89203522300005), (-4.406605597999942, 52.89252350500004), (-4.4272354809999115, 52.885972398000035), (-4.446197068999936, 52.87592194200005), (-4.4816788399999155, 52.850897528000075), (-4.477935350999928, 52.84833405200004), (-4.475493943999936, 52.84414297100005), (-4.491363084999932, 52.83820221600007), (-4.500965949999909, 52.82680898600006), (-4.501332160999937, 52.81391022300005), (-4.4891251289999445, 52.803168036000045), (-4.501942511999914, 52.794989325000074), (-4.509185350999928, 52.791449286000045), (-4.5164688789999445, 52.789496161000045), (-4.5285538399999155, 52.79047272300005), (-4.5424698559999115, 52.80068594000005), (-4.5639542309999115, 52.80524323100008), (-4.583078579999949, 52.81464264500005), (-4.594634568999936, 52.81679922100005), (-4.606516079999949, 52.81509023600006), (-4.61351477799991, 52.81110260600008), (-4.619211391999954, 52.80654531500005), (-4.626332160999937, 52.803168036000045), (-4.648589647999927, 52.79962799700007), (-4.704497850999928, 52.803168036000045), (-4.719309048999946, 52.79751211100006), (-4.733225063999953, 52.78750234600005), (-4.747425910999937, 52.78343333500004), (-4.762847459999932, 52.789496161000045), (-4.752512173999946, 52.79877350500004), (-4.7514542309999115, 52.80320872600004), (-4.755441860999952, 52.80931224200003), (-4.7492569649999155, 52.81427643400008), (-4.734934048999946, 52.83047109600005), (-4.596058722999942, 52.92841217700004), (-4.580962693999936, 52.93349844000005), (-4.562082485999952, 52.93451569200005), (-4.543527798999946, 52.937933661000045), (-4.523996548999946, 52.944240627000056), (-4.443430141999954, 52.98216380400004), (-4.423695441999939, 53.00263092700004), (-4.358225063999953, 53.02846914300005), (-4.349964972999942, 53.04148997600004), (-4.345692511999914, 53.059475002000056), (-4.343861456999946, 53.10106028900003), (-4.340891079999949, 53.11273834800005), (-4.334339972999942, 53.11676666900007), (-4.3276261059999115, 53.11469147300005), (-4.324696417999917, 53.10789622600004), (-4.320668097999942, 53.10150788000004), (-4.312245245999918, 53.109442450000074), (-4.304758266999954, 53.12099844000005), (-4.303618943999936, 53.12531159100007), (-4.263539191999939, 53.15452708500004), (-4.2523494129999335, 53.159409898000035), (-4.234527147999927, 53.16400788000004), (-4.221302863999938, 53.175034898000035), (-4.200550910999937, 53.20099518400008), (-4.17796790299991, 53.21759674700007), (-4.151519334999932, 53.22809479400007), (-4.122222459999932, 53.23346588700008), (-4.0906876289999445, 53.23517487200007), (-4.08234615799995, 53.23354726800005), (-4.074330206999946, 53.23065827000005), (-4.066883917999917, 53.22907135600008), (-4.054107225999928, 53.234361070000034), (-4.032297329999949, 53.24070872600004), (-4.008900519999941, 53.24445221600007), (-3.974598761999914, 53.261786200000074), (-3.8653051419999542, 53.289129950000074), (-3.8312882149999155, 53.289129950000074), (-3.841420050999943, 53.30744049700007), (-3.870757615999935, 53.32562897300005), (-3.8784073559999115, 53.337591864000046), (-3.859974738999938, 53.33633047100005), (-3.840565558999913, 53.33283112200007), (-3.822987433999913, 53.32656484600005), (-3.8101293609999516, 53.31708405200004), (-3.7905167309999115, 53.323431708000044), (-3.7688695949999556, 53.31915924700007), (-3.748199022999927, 53.307806708000044), (-3.7319229809999115, 53.29287344000005), (-3.7162979809999115, 53.28693268400008), (-3.6022029289999296, 53.28888580900008), (-3.5623266269999476, 53.29441966400003), (-3.372059699999909, 53.350897528000075), (-3.33031165299991, 53.35179271000004), (-3.2923884759999282, 53.34052155200004), (-3.2713110019999476, 53.33055247600004), (-3.262074347999942, 53.32050202000005), (-3.250803188999953, 53.312567450000074), (-3.122222459999932, 53.26227448100008), (-3.107533331999946, 53.25189850500004), (-3.0951228509999282, 53.23932526200008), (-3.0877579419999392, 53.23468659100007), (-3.0845434239999463, 53.23859284100007), (-3.0845434239999463, 53.25857168200008), (-3.0845434239999463, 53.275458075000074), (-3.09593665299991, 53.28713613500008), (-3.1111954419999392, 53.302801825000074), (-3.1354060539999296, 53.33380768400008), (-3.171538865999935, 53.36225006700005), (-3.185210740999935, 53.37726471600007), (-3.186350063999953, 53.39276764500005), (-3.175526495999918, 53.40273672100005), (-3.157297329999949, 53.40875885600008), (-3.1146541009999282, 53.41266510600008), (-3.0942276679999168, 53.41738515800006), (-3.058257615999935, 53.434759833000044), (-3.0355525379999335, 53.43374258000006), (-3.0121964179999168, 53.41669342700004), (-2.9529516269999476, 53.323919989000046), (-2.9351293609999516, 53.309475002000056), (-2.9105525379999335, 53.29633209800005), (-2.8814998039999296, 53.288397528000075), (-2.850575324999909, 53.289129950000074), (-2.849598761999914, 53.29120514500005), (-2.848378058999913, 53.29555898600006), (-2.8449600899999155, 53.300116278000075), (-2.837554490999935, 53.302801825000074), (-2.8286026679999168, 53.302435614000046), (-2.813384568999936, 53.297756252000056), (-2.8061417309999115, 53.296576239000046), (-2.789784308999913, 53.29743073100008), (-2.775502081999946, 53.29987213700008), (-2.7481176419999542, 53.30963776200008), (-2.753651495999918, 53.32245514500005), (-2.750884568999936, 53.33161041900007), (-2.743153449999909, 53.33852773600006), (-2.734486456999946, 53.34442780200004), (-2.7261449859999516, 53.34198639500005), (-2.7174373039999296, 53.34271881700005), (-2.708607550999943, 53.346136786000045), (-2.6997777989999463, 53.35179271000004), (-2.7141007149999155, 53.35236237200007), (-2.764393683999913, 53.34516022300005), (-2.775380011999914, 53.341009833000044), (-2.782378709999932, 53.32636139500005), (-2.799794074999909, 53.32103099200003), (-2.810332811999956, 53.32172272300005), (-2.843658006999931, 53.323919989000046), (-2.886463995999918, 53.33356354400007), (-2.924956834999932, 53.35000234600005), (-2.956939256999931, 53.37055084800005), (-2.980824347999942, 53.39276764500005), (-3.096587693999936, 53.54433828300006), (-3.101918097999942, 53.55805084800005), (-3.0994766919999392, 53.57200755400004), (-3.087635870999918, 53.58771393400008), (-3.021839972999942, 53.65281810100004), (-2.968658006999931, 53.69403717700004), (-2.9603572259999282, 53.69757721600007), (-2.9517309239999463, 53.70807526200008), (-2.9114477199999556, 53.725043036000045), (-2.899037238999938, 53.73541901200008), (-2.9848526679999168, 53.73607005400004), (-3.021473761999914, 53.745794989000046), (-3.049183722999942, 53.769517320000034), (-3.056385870999918, 53.80304596600007), (-3.044911261999914, 53.87848541900007), (-3.056630011999914, 53.90615469000005), (-3.040679490999935, 53.923529364000046), (-3.017567511999914, 53.93195221600007), (-2.925689256999931, 53.95270416900007), (-2.909250454999949, 53.95384349200003), (-2.896107550999943, 53.94773997600004), (-2.8885391919999392, 53.94603099200003), (-2.885365363999938, 53.950506903000075), (-2.881988084999932, 53.95652903900003), (-2.874175584999932, 53.96165599200003), (-2.865142381999931, 53.96548086100006), (-2.8579809239999463, 53.96759674700007), (-2.869252081999946, 53.97882721600007), (-2.8344620429999168, 53.99982330900008), (-2.830067511999914, 54.01601797100005), (-2.8475235669999392, 54.00836823100008), (-2.864857550999943, 54.00429922100005), (-2.895497199999909, 54.00234609600005), (-2.900298631999931, 54.00495026200008), (-2.9160863919999542, 54.026556708000044), (-2.91820227799991, 54.03432851800005), (-2.911284959999932, 54.03998444200005), (-2.9007869129999335, 54.044907945000034), (-2.8920792309999115, 54.050116278000075), (-2.872670050999943, 54.071600653000075), (-2.8588761059999115, 54.08100006700005), (-2.826771613999938, 54.08881256700005), (-2.815174933999913, 54.09878164300005), (-2.795969204999949, 54.12518952000005), (-2.8128149079999503, 54.139878648000035), (-2.8364151679999168, 54.16758860900006), (-2.8509415359999366, 54.18463776200008), (-2.854237433999913, 54.19407786700003), (-2.8328751289999445, 54.19904205900008), (-2.810292120999918, 54.21190013200004), (-2.7952367829999503, 54.22947825700004), (-2.795969204999949, 54.24872467700004), (-2.8028051419999542, 54.24872467700004), (-2.806630011999914, 54.233710028000075), (-2.8208715489999463, 54.22174713700008), (-2.850575324999909, 54.20774974200003), (-2.886382615999935, 54.19627513200004), (-2.904652472999942, 54.18764883000006), (-2.9126684239999463, 54.176988023000035), (-2.9203995429999168, 54.16205475500004), (-2.939198370999918, 54.15509674700007), (-2.9842016269999476, 54.15314362200007), (-2.997710740999935, 54.15957265800006), (-3.011341925999943, 54.17413971600007), (-3.017323370999918, 54.19009023600006), (-3.008168097999942, 54.20034414300005), (-3.015370245999918, 54.21190013200004), (-3.024484829999949, 54.221584377000056), (-3.035755988999938, 54.22597890800006), (-3.049183722999942, 54.22207265800006), (-3.044667120999918, 54.208319403000075), (-3.047840949999909, 54.19432200700004), (-3.053537563999953, 54.181301174000055), (-3.056630011999914, 54.17023346600007), (-3.0610245429999168, 54.16193268400008), (-3.090728318999936, 54.13947174700007), (-3.10765540299991, 54.11855703300006), (-3.117909308999913, 54.10883209800005), (-3.145253058999913, 54.100043036000045), (-3.147450324999909, 54.08869049700007), (-3.1443985669999392, 54.07514069200005), (-3.1453751289999445, 54.063788153000075), (-3.1805313789999445, 54.09284088700008), (-3.1897680329999503, 54.09788646000004), (-3.2057185539999296, 54.098537502000056), (-3.219553188999953, 54.100775458000044), (-3.2311091789999296, 54.105129299000055), (-3.240956183999913, 54.11212799700007), (-3.2381078769999476, 54.12759023600006), (-3.232533331999946, 54.14468008000006), (-3.233143683999913, 54.15916575700004), (-3.248402472999942, 54.16681549700007), (-3.248402472999942, 54.17365143400008), (-3.215199347999942, 54.17983633000006), (-3.206776495999918, 54.20892975500004), (-3.2090551419999542, 54.24274323100008), (-3.207386847999942, 54.263006903000075), (-3.2231339179999168, 54.25763580900008), (-3.231353318999936, 54.24721914300005), (-3.240956183999913, 54.22207265800006), (-3.232167120999918, 54.20254140800006), (-3.247141079999949, 54.19794342700004), (-3.270130988999938, 54.19912344000005), (-3.2860001289999445, 54.19721100500004), (-3.306792772999927, 54.19188060100004), (-3.3285212879999335, 54.204738674000055), (-3.3644913399999155, 54.24249909100007), (-3.394195115999935, 54.26439036700003), (-3.407378709999932, 54.27773672100005), (-3.412912563999953, 54.29376862200007), (-3.41038977799991, 54.30145905200004), (-3.405995245999918, 54.30963776200008), (-3.4041235019999476, 54.31854889500005), (-3.4114477199999556, 54.33274974200003), (-3.4134415359999366, 54.342962958000044), (-3.4163305329999503, 54.344916083000044), (-3.440174933999913, 54.35175202000005), (-3.474273240999935, 54.39350006700005), (-3.497710740999935, 54.40582916900007), (-3.5918676419999542, 54.48309967700004), (-3.608143683999913, 54.488267320000034), (-3.613189256999931, 54.49164459800005), (-3.6236873039999296, 54.50608958500004), (-3.6341853509999282, 54.512884833000044), (-3.6268204419999392, 54.520412502000056), (-3.616200324999909, 54.52757396000004), (-3.61156165299991, 54.52993398600006), (-3.5903214179999168, 54.56464264500005), (-3.5638321609999366, 54.64276764500005), (-3.5301407539999445, 54.68805573100008), (-3.5160212879999335, 54.712876695000034), (-3.5091853509999282, 54.72166575700004), (-3.500721808999913, 54.72597890800006), (-3.478871222999942, 54.730902411000045), (-3.4681290359999366, 54.73529694200005), (-3.455433722999942, 54.745021877000056), (-3.439564581999946, 54.76146067900004), (-3.4309789699999556, 54.780462958000044), (-3.440174933999913, 54.79743073100008), (-3.4075414699999556, 54.85602448100008), (-3.3879288399999155, 54.88336823100008), (-3.3644913399999155, 54.89980703300006), (-3.3449600899999155, 54.90253327000005), (-3.3333634109999366, 54.89728424700007), (-3.3227432929999168, 54.889878648000035), (-3.3064672519999476, 54.88617584800005), (-3.295725063999953, 54.88690827000005), (-3.254628058999913, 54.89980703300006), (-3.267323370999918, 54.905503648000035), (-3.317290818999936, 54.92031484600005), (-3.2914932929999168, 54.93667226800005), (-3.276519334999932, 54.943426825000074), (-3.213612433999913, 54.954413153000075), (-3.2010391919999392, 54.95221588700008), (-3.1936742829999503, 54.94863515800006), (-3.1879776679999168, 54.94448476800005), (-3.1801651679999168, 54.94082265800006), (-3.14281165299991, 54.93353913000004), (-3.122792120999918, 54.93268463700008), (-3.0395401679999168, 54.94717031500005), (-3.021839972999942, 54.954413153000075), (-3.090728318999936, 54.954413153000075), (-3.090728318999936, 54.96124909100007), (-3.0715225899999155, 54.96312083500004), (-3.0562231109999516, 54.968817450000074), (-3.040923631999931, 54.97247955900008), (-3.021839972999942, 54.968085028000075), (-3.021839972999942, 54.97553131700005), (-3.0462947259999282, 54.982123114000046), (-3.0502913779999403, 54.981510325000045), (-3.1354060539999296, 54.968085028000075), (-3.453846808999913, 54.981756903000075), (-3.470692511999914, 54.984442450000074), (-3.486236131999931, 54.989488023000035), (-3.501047329999949, 54.99249909100007), (-3.515288865999935, 54.98920319200005), (-3.5123591789999296, 54.98712799700007), (-3.511463995999918, 54.98688385600008), (-3.510894334999932, 54.985988674000055), (-3.5091853509999282, 54.981756903000075), (-3.5260310539999296, 54.97711823100008), (-3.5418595039999445, 54.98065827000005), (-3.57054602799991, 54.995428778000075), (-3.583607550999943, 54.968085028000075), (-3.5756729809999115, 54.95734284100007), (-3.5706274079999503, 54.937567450000074), (-3.5687556629999335, 54.916001695000034), (-3.57054602799991, 54.89980703300006), (-3.581695115999935, 54.88361237200007), (-3.598378058999913, 54.87799713700008), (-3.691761847999942, 54.88320547100005), (-3.7176407539999445, 54.880845445000034), (-3.739247199999909, 54.859808661000045), (-3.8101293609999516, 54.86627838700008), (-3.8078507149999155, 54.86107005400004), (-3.806792772999927, 54.86090729400007), (-3.803334113999938, 54.85887278900003), (-3.8123673169999392, 54.855169989000046), (-3.8198136059999115, 54.855902411000045), (-3.826079881999931, 54.85993073100008), (-3.8312882149999155, 54.86627838700008), (-3.819976365999935, 54.878566799000055), (-3.815052863999938, 54.87714264500005), (-3.8101293609999516, 54.87250397300005), (-3.8116348949999406, 54.88003164300005), (-3.813221808999913, 54.88312409100007), (-3.8169652989999463, 54.88617584800005), (-3.828846808999913, 54.874986070000034), (-3.8443090489999463, 54.86627838700008), (-3.839751756999931, 54.855902411000045), (-3.8374731109999516, 54.851996161000045), (-3.844105597999942, 54.85097890800006), (-3.8578995429999168, 54.84454987200007), (-3.823841925999943, 54.82469310100004), (-3.833607550999943, 54.82005442900004), (-3.885731574999909, 54.80646393400008), (-3.9641820949999556, 54.771918036000045), (-4.011708136999914, 54.76821523600006), (-4.042876756999931, 54.76947663000004), (-4.042876756999931, 54.77692291900007), (-4.046783006999931, 54.77802155200004), (-4.050200975999928, 54.778550523000035), (-4.053334113999938, 54.77997467700004), (-4.055775519999941, 54.782538153000075), (-4.05296790299991, 54.78546784100007), (-4.050160285999937, 54.78900788000004), (-4.049712693999936, 54.78998444200005), (-4.051747199999909, 54.800034898000035), (-4.0477188789999445, 54.81305573100008), (-4.049956834999932, 54.82322825700004), (-4.063588019999941, 54.82684967700004), (-4.064035610999952, 54.83152903900003), (-4.078602667999917, 54.82412344000005), (-4.09007727799991, 54.809759833000044), (-4.093495245999918, 54.792669989000046), (-4.083851691999939, 54.77692291900007), (-4.122954881999931, 54.77301666900007), (-4.173939581999946, 54.792303778000075), (-4.209136522999927, 54.826239325000074), (-4.200550910999937, 54.86627838700008), (-4.215402798999946, 54.861029364000046), (-4.2397354809999115, 54.843003648000035), (-4.255767381999931, 54.838324286000045), (-4.2707413399999155, 54.83942291900007), (-4.345285610999952, 54.86017487200007), (-4.3569229809999115, 54.86554596600007), (-4.3656306629999335, 54.87250397300005), (-4.375152147999927, 54.88690827000005), (-4.379872199999909, 54.89789459800005), (-4.386789516999954, 54.90477122600004), (-4.402902798999946, 54.90729401200008), (-4.409006313999953, 54.90302155200004), (-4.416818813999953, 54.89280833500004), (-4.423573370999918, 54.88035716400003), (-4.426503058999913, 54.86945221600007), (-4.4172257149999155, 54.84593333500004), (-4.4094132149999155, 54.831244208000044), (-4.402902798999946, 54.82469310100004), (-4.386708136999914, 54.82416413000004), (-4.372425910999937, 54.82184479400007), (-4.35960852799991, 54.81663646000004), (-4.347645636999914, 54.80731842700004), (-4.344471808999913, 54.79450104400007), (-4.353179490999935, 54.78310781500005), (-4.358143683999913, 54.77098216400003), (-4.343861456999946, 54.75641510600008), (-4.356516079999949, 54.741888739000046), (-4.353260870999918, 54.72089264500005), (-4.348133917999917, 54.70197174700007), (-4.3547257149999155, 54.693793036000045), (-4.360340949999909, 54.69159577000005), (-4.365305141999954, 54.68695709800005), (-4.371896938999953, 54.68227773600006), (-4.382394985999952, 54.68008047100005), (-4.405262824999909, 54.682074286000045), (-4.426503058999913, 54.687567450000074), (-4.4518123039999296, 54.69879791900007), (-4.46117102799991, 54.701239325000074), (-4.4967341789999296, 54.70062897300005), (-4.505604620999918, 54.70465729400007), (-4.563628709999932, 54.75641510600008), (-4.596669074999909, 54.77529531500005), (-4.714466925999943, 54.81785716400003), (-4.759592251999948, 54.82534414300005), (-4.781076626999948, 54.83307526200008), (-4.799631313999953, 54.86127350500004), (-4.821034308999913, 54.86664459800005), (-4.859120245999918, 54.86627838700008), (-4.88304602799991, 54.86009349200003), (-4.905873175999943, 54.84979889500005), (-4.925770636999914, 54.83738841400003), (-4.941029425999943, 54.82469310100004), (-4.9496150379999335, 54.81582265800006), (-4.953684048999946, 54.81000397300005), (-4.954823370999918, 54.804754950000074), (-4.954701300999943, 54.79743073100008), (-4.952870245999918, 54.78896719000005), (-4.9479060539999296, 54.777329820000034), (-4.940256313999953, 54.76703522300005), (-4.930165167999917, 54.76264069200005), (-4.923247850999928, 54.75185781500005), (-4.911936001999948, 54.728216864000046), (-4.8959854809999115, 54.70453522300005), (-4.867258266999954, 54.69013092700004), (-4.866932745999918, 54.68146393400008), (-4.872141079999949, 54.663316148000035), (-4.872425910999937, 54.65403880400004), (-4.872059699999909, 54.64923737200007), (-4.859120245999918, 54.63296133000006), (-4.880604620999918, 54.63621653900003), (-4.923491990999935, 54.649725653000075), (-4.944081183999913, 54.652777411000045), (-4.953684048999946, 54.65973541900007), (-4.959868943999936, 54.67552317900004), (-4.958973761999914, 54.69196198100008), (-4.947255011999914, 54.701239325000074), (-4.954823370999918, 54.707464911000045), (-4.958892381999931, 54.714056708000044), (-4.959055141999954, 54.72093333500004), (-4.954701300999943, 54.728501695000034), (-4.973378058999913, 54.729722398000035), (-4.981556769999941, 54.731634833000044), (-4.988189256999931, 54.73529694200005), (-4.992665167999917, 54.74433014500005), (-4.997059699999909, 54.75836823100008), (-5.003285285999937, 54.77130768400008), (-5.0130102199999556, 54.77692291900007), (-5.033192511999914, 54.782416083000044), (-5.1282445949999556, 54.848944403000075), (-5.157134568999936, 54.87909577000005), (-5.175526495999918, 54.91461823100008), (-5.180653449999909, 54.954413153000075), (-5.177601691999939, 54.99054596600007), (-5.170806443999936, 55.008693752000056), (-5.156727667999917, 55.01654694200005), (-5.1356095039999445, 55.01585521000004), (-5.124582485999952, 55.016791083000044), (-5.119740363999938, 55.01992422100005), (-5.115142381999931, 55.03156159100007), (-5.105213995999918, 55.02619049700007), (-5.095529751999948, 55.01508209800005), (-5.091867641999954, 55.00971100500004), (-5.076893683999913, 54.99555084800005), (-5.069488084999932, 54.986029364000046), (-5.064564581999946, 54.97553131700005), (-5.0637914699999556, 54.96458567900004), (-5.065256313999953, 54.940334377000056), (-5.06086178299995, 54.93113841400003), (-5.0475154289999296, 54.92031484600005), (-5.030995245999918, 54.911322333000044), (-5.013091600999928, 54.90961334800005), (-4.9955948559999115, 54.92031484600005), (-4.992298956999946, 54.924261786000045), (-4.988189256999931, 54.927720445000034), (-4.988189256999931, 54.93455638200004), (-5.0240779289999296, 54.97638580900008), (-5.029774542999917, 54.98550039300005), (-5.032500779999907, 54.99371979400007), (-5.033029751999948, 54.99526601800005), (-5.047027147999927, 55.01508209800005), (-5.0502823559999115, 55.02680084800005), (-5.0496720039999445, 55.04897695500006), (-5.047596808999913, 55.05573151200008), (-5.043446417999917, 55.06427643400008), (-5.0257869129999335, 55.08869049700007), (-5.018950975999928, 55.10224030200004), (-5.016184048999946, 55.12262604400007), (-5.007801886999914, 55.14118073100008), (-4.988270636999914, 55.15265534100007), (-4.947255011999914, 55.16791413000004), (-4.882394985999952, 55.21857330900008), (-4.877552863999938, 55.22089264500005), (-4.867258266999954, 55.22247955900008), (-4.865305141999954, 55.22565338700008), (-4.865589972999942, 55.236314195000034), (-4.864816860999952, 55.24135976800005), (-4.841949022999927, 55.275091864000046), (-4.838002081999946, 55.28400299700007), (-4.8372289699999556, 55.293850002000056), (-4.839751756999931, 55.31557851800005), (-4.838002081999946, 55.32501862200007), (-4.832508917999917, 55.33112213700008), (-4.7992244129999335, 55.354722398000035), (-4.781076626999948, 55.36351146000004), (-4.773101365999935, 55.36937083500004), (-4.767160610999952, 55.37905508000006), (-4.758778449999909, 55.40228913000004), (-4.7492569649999155, 55.413763739000046), (-4.71703040299991, 55.43048737200007), (-4.650502081999946, 55.448472398000035), (-4.626332160999937, 55.468410549000055), (-4.617787238999938, 55.49559153900003), (-4.626779751999948, 55.51972077000005), (-4.6507869129999335, 55.53705475500004), (-4.687163865999935, 55.544134833000044), (-4.66624915299991, 55.562201239000046), (-4.666493292999917, 55.56329987200007), (-4.6711319649999155, 55.584418036000045), (-4.692738410999937, 55.60521067900004), (-4.7219945949999556, 55.619208075000074), (-4.776519334999932, 55.632879950000074), (-4.808745897999927, 55.63361237200007), (-4.818104620999918, 55.63719310100004), (-4.810617641999954, 55.646551825000074), (-4.810617641999954, 55.653998114000046), (-4.868560350999928, 55.67560455900008), (-4.900990363999938, 55.69232819200005), (-4.920521613999938, 55.70856354400007), (-4.876332160999937, 55.735256252000056), (-4.861073370999918, 55.756740627000056), (-4.865305141999954, 55.79047272300005), (-4.8717341789999296, 55.802435614000046), (-4.8777970039999445, 55.81102122600004), (-4.882720506999931, 55.82135651200008), (-4.888661261999914, 55.864528713000084), (-4.888824022999927, 55.865301825000074), (-4.892648891999954, 55.89288971600007), (-4.886463995999918, 55.91966380400004), (-4.872141079999949, 55.937201239000046), (-4.849354620999918, 55.94822825700004), (-4.818104620999918, 55.95563385600008), (-4.799387173999946, 55.957912502000056), (-4.7857966789999296, 55.95697663000004), (-4.722320115999935, 55.94009023600006), (-4.705433722999942, 55.93846263200004), (-4.693959113999938, 55.94135163000004), (-4.6725154289999296, 55.93378327000005), (-4.505970831999946, 55.91909414300005), (-4.4816788399999155, 55.92829010600008), (-4.590606248999961, 55.941514390000066), (-4.630034959999932, 55.94627513200004), (-4.673451300999943, 55.96185944200005), (-4.724517381999931, 55.99835846600007), (-4.765044725999928, 56.007066148000035), (-4.78343665299991, 56.017645575000074), (-4.7992244129999335, 56.030951239000046), (-4.810617641999954, 56.04376862200007), (-4.8237198559999115, 56.07367584800005), (-4.824330206999946, 56.07851797100005), (-4.8391820949999556, 56.08063385600008), (-4.844309048999946, 56.07298411700003), (-4.843739386999914, 56.06297435100004), (-4.837554490999935, 56.05060455900008), (-4.790150519999941, 56.010199286000045), (-4.778920050999943, 55.99209219000005), (-4.785308397999927, 55.984035549000055), (-4.803618943999936, 55.982082424000055), (-4.828033006999931, 55.98232656500005), (-4.851551886999914, 55.98802317900004), (-4.862294074999909, 56.00214264500005), (-4.865386522999927, 56.02020905200004), (-4.866851365999935, 56.05833567900004), (-4.865386522999927, 56.06671784100007), (-4.826324022999927, 56.124212958000044), (-4.755441860999952, 56.188381252000056), (-4.750884568999936, 56.20270416900007), (-4.755523240999935, 56.20652903900003), (-4.7662654289999296, 56.20209381700005), (-4.7799373039999296, 56.191473700000074), (-4.837269660999937, 56.12441640800006), (-4.851673956999946, 56.112616278000075), (-4.873117641999954, 56.11200592700004), (-4.880604620999918, 56.11985911700003), (-4.878977016999954, 56.15053945500006), (-4.883168097999942, 56.16400788000004), (-4.893544074999909, 56.174261786000045), (-4.9070938789999445, 56.177069403000075), (-4.920521613999938, 56.16791413000004), (-4.909087693999936, 56.14996979400007), (-4.895253058999913, 56.11473216400003), (-4.8862198559999115, 56.08038971600007), (-4.889149542999917, 56.06484609600005), (-4.901926235999952, 56.06191640800006), (-4.904367641999954, 56.054348049000055), (-4.900054490999935, 56.03412506700005), (-4.900054490999935, 56.01459381700005), (-4.898019985999952, 56.001166083000044), (-4.892648891999954, 55.98973216400003), (-4.906402147999927, 55.98574453300006), (-4.921457485999952, 55.98867422100005), (-4.937489386999914, 55.993841864000046), (-4.954701300999943, 55.99656810100004), (-4.954701300999943, 55.98973216400003), (-4.942005988999938, 55.986314195000034), (-4.928863084999932, 55.98114655200004), (-4.918446417999917, 55.97333405200004), (-4.913685675999943, 55.96185944200005), (-4.917388475999928, 55.94745514500005), (-4.9272354809999115, 55.93768952000005), (-4.9387100899999155, 55.92963288000004), (-4.947255011999914, 55.92084381700005), (-4.952137824999909, 55.90912506700005), (-4.954986131999931, 55.89935944200005), (-4.95921790299991, 55.89012278900003), (-4.96898352799991, 55.87986888200004), (-4.983143683999913, 55.87103913000004), (-4.994740363999938, 55.86981842700004), (-5.026356574999909, 55.87372467700004), (-5.0424698559999115, 55.884751695000034), (-5.056752081999946, 55.91030508000006), (-5.0668025379999335, 55.938788153000075), (-5.070790167999917, 55.958685614000046), (-5.1108292309999115, 55.98895905200004), (-5.116037563999953, 56.00169505400004), (-5.123605923999946, 56.00991445500006), (-5.139637824999909, 56.00275299700007), (-5.123768683999913, 55.986314195000034), (-5.085682745999918, 55.93187083500004), (-5.078236456999946, 55.91095612200007), (-5.086537238999938, 55.901271877000056), (-5.105620897999927, 55.90497467700004), (-5.171538865999935, 55.935532945000034), (-5.180653449999909, 55.948431708000044), (-5.180653449999909, 55.96930573100008), (-5.190825975999928, 55.96173737200007), (-5.1996150379999335, 55.948553778000075), (-5.2057185539999296, 55.93451569200005), (-5.207915818999936, 55.92462799700007), (-5.212635870999918, 55.91714101800005), (-5.242054816999939, 55.89288971600007), (-5.218129035999937, 55.86469147300005), (-5.208159959999932, 55.849269924000055), (-5.201079881999931, 55.83148834800005), (-5.2193904289999296, 55.83144765800006), (-5.2631729809999115, 55.845770575000074), (-5.296701626999948, 55.85268789300005), (-5.307118292999917, 55.86041901200008), (-5.313384568999936, 55.88544342700004), (-5.319325324999909, 55.889105536000045), (-5.327219204999949, 55.89154694200005), (-5.3348282539999445, 55.89667389500005), (-5.3382869129999335, 55.90375397300005), (-5.3391007149999155, 55.91303131700005), (-5.3382869129999335, 55.93138255400004), (-5.336089647999927, 55.93919505400004), (-5.326161261999914, 55.95026276200008), (-5.323963995999918, 55.958685614000046), (-5.325754360999952, 55.967230536000045), (-5.3382869129999335, 55.99656810100004), (-5.313628709999932, 56.01235586100006), (-5.204497850999928, 56.11945221600007), (-5.146473761999914, 56.13312409100007), (-5.104603644999941, 56.15151601800005), (-5.0949600899999155, 56.15737539300005), (-5.0594376289999445, 56.203111070000034), (-5.043446417999917, 56.21629466400003), (-5.013295050999943, 56.22760651200008), (-4.974964972999942, 56.23700592700004), (-4.9400935539999296, 56.25141022300005), (-4.920521613999938, 56.277777411000045), (-4.938099738999938, 56.27098216400003), (-4.975087042999917, 56.24799225500004), (-4.991932745999918, 56.24298737200007), (-5.0327042309999115, 56.24115631700005), (-5.049549933999913, 56.23704661700003), (-5.064564581999946, 56.22931549700007), (-5.0754288399999155, 56.21698639500005), (-5.099436001999948, 56.18195221600007), (-5.1088761059999115, 56.174709377000056), (-5.228138800999943, 56.12921784100007), (-5.3109431629999335, 56.05805084800005), (-5.319935675999943, 56.05491771000004), (-5.338042772999927, 56.05410390800006), (-5.345692511999914, 56.051214911000045), (-5.345285610999952, 56.046128648000035), (-5.350209113999938, 56.03192780200004), (-5.356353318999936, 56.01976146000004), (-5.359364386999914, 56.020738023000035), (-5.3686417309999115, 56.009426174000055), (-5.390288865999935, 56.00568268400008), (-5.415028449999909, 56.00690338700008), (-5.43382727799991, 56.010199286000045), (-5.434559699999909, 56.014960028000075), (-5.434722459999932, 56.02362702000005), (-5.437123175999943, 56.03001536700003), (-5.444406704999949, 56.02757396000004), (-5.4479060539999296, 56.02228424700007), (-5.448231574999909, 56.016058661000045), (-5.447621222999942, 56.009426174000055), (-5.454986131999931, 55.95563385600008), (-5.45140540299991, 55.95343659100007), (-5.436431443999936, 55.94896067900004), (-5.430775519999941, 55.94818756700005), (-5.420806443999936, 55.92829010600008), (-5.416737433999913, 55.91681549700007), (-5.416005011999914, 55.907416083000044), (-5.4125056629999335, 55.899603583000044), (-5.400380011999914, 55.89288971600007), (-5.400380011999914, 55.886704820000034), (-5.407215949999909, 55.886704820000034), (-5.407215949999909, 55.87986888200004), (-5.402943488999938, 55.87872955900008), (-5.39289303299995, 55.87372467700004), (-5.3976944649999155, 55.87156810100004), (-5.402495897999927, 55.868353583000044), (-5.407215949999909, 55.86627838700008), (-5.35179602799991, 55.83242422100005), (-5.326771613999938, 55.808579820000034), (-5.317779100999928, 55.78302643400008), (-5.324574347999942, 55.769232489000046), (-5.3385310539999296, 55.76264069200005), (-5.372425910999937, 55.75641510600008), (-5.3875626289999445, 55.75031159100007), (-5.433461066999939, 55.72101471600007), (-5.4445694649999155, 55.71161530200004), (-5.4539688789999445, 55.70058828300006), (-5.46117102799991, 55.68813711100006), (-5.463612433999913, 55.67983633000006), (-5.466175910999937, 55.662176825000074), (-5.468617316999939, 55.653998114000046), (-5.490101691999939, 55.644598700000074), (-5.488270636999914, 55.640326239000046), (-5.484283006999931, 55.63572825700004), (-5.482289191999939, 55.632879950000074), (-5.4838761059999115, 55.61005280200004), (-5.474761522999927, 55.603949286000045), (-5.462635870999918, 55.60203685100004), (-5.454986131999931, 55.59194570500006), (-5.461089647999927, 55.57880280200004), (-5.476918097999942, 55.57489655200004), (-5.488758917999917, 55.56907786700003), (-5.482289191999939, 55.55027903900003), (-5.503529425999943, 55.52651601800005), (-5.509632941999939, 55.516791083000044), (-5.5106095039999445, 55.51146067900004), (-5.509632941999939, 55.49258047100005), (-5.5109757149999155, 55.484442450000074), (-5.514271613999938, 55.48387278900003), (-5.5187882149999155, 55.48517487200007), (-5.523264126999948, 55.48265208500004), (-5.545521613999938, 55.44916413000004), (-5.561512824999909, 55.435532945000034), (-5.5846248039999296, 55.427435614000046), (-5.5846248039999296, 55.421210028000075), (-5.572132941999939, 55.422308661000045), (-5.562082485999952, 55.41986725500004), (-5.553089972999942, 55.41453685100004), (-5.543690558999913, 55.40692780200004), (-5.527455206999946, 55.38434479400007), (-5.5266820949999556, 55.38027578300006), (-5.5149633449999556, 55.37368398600006), (-5.525054490999935, 55.358628648000035), (-5.557972785999937, 55.33185455900008), (-5.574370897999927, 55.32200755400004), (-5.594105597999942, 55.31313711100006), (-5.616281704999949, 55.30658600500004), (-5.6399633449999556, 55.303900458000044), (-5.649525519999941, 55.30516185100004), (-5.669097459999932, 55.31085846600007), (-5.6808975899999155, 55.31134674700007), (-5.691395636999914, 55.308579820000034), (-5.714019334999932, 55.29913971600007), (-5.725575324999909, 55.29706452000005), (-5.7545466789999296, 55.29734935100004), (-5.772287563999953, 55.30125560100004), (-5.782866990999935, 55.31354401200008), (-5.794667120999918, 55.35639069200005), (-5.796701626999948, 55.37909577000005), (-5.7914119129999335, 55.39862702000005), (-5.763417120999918, 55.41205475500004), (-5.725412563999953, 55.437567450000074), (-5.715646938999953, 55.44790273600006), (-5.7152400379999335, 55.46889883000006), (-5.720122850999928, 55.491522528000075), (-5.7219132149999155, 55.51386139500005), (-5.707753058999913, 55.54336172100005), (-5.712066209999932, 55.55072663000004), (-5.718861456999946, 55.55731842700004), (-5.721831834999932, 55.56460195500006), (-5.718129035999937, 55.57575104400007), (-5.694488084999932, 55.605536200000074), (-5.6733292309999115, 55.640611070000034), (-5.6694229809999115, 55.66071198100008), (-5.6808975899999155, 55.67446523600006), (-5.626535610999952, 55.70062897300005), (-5.61945553299995, 55.71198151200008), (-5.613189256999931, 55.725775458000044), (-5.5982966789999296, 55.74298737200007), (-5.581206834999932, 55.75763580900008), (-5.5678604809999115, 55.76386139500005), (-5.539173956999946, 55.77094147300005), (-5.504628058999913, 55.78937409100007), (-5.4735001289999445, 55.815659898000035), (-5.454986131999931, 55.845770575000074), (-5.551747199999909, 55.783636786000045), (-5.587473110999952, 55.76715729400007), (-5.599436001999948, 55.76422760600008), (-5.6126195949999556, 55.76386139500005), (-5.60578365799995, 55.77684153900003), (-5.6332087879999335, 55.78278229400007), (-5.64671790299991, 55.78750234600005), (-5.66038977799991, 55.79734935100004), (-5.667958136999914, 55.81102122600004), (-5.669016079999949, 55.83783600500004), (-5.67406165299991, 55.845770575000074), (-5.631988084999932, 55.88178131700005), (-5.625599738999938, 55.889837958000044), (-5.61937415299991, 55.90314362200007), (-5.6043595039999445, 55.91364166900007), (-5.586293097999942, 55.92332591400003), (-5.571034308999913, 55.93451569200005), (-5.593495245999918, 55.92796458500004), (-5.6275935539999296, 55.90534088700008), (-5.6537979809999115, 55.89760976800005), (-5.671701626999948, 55.88690827000005), (-5.6808975899999155, 55.886704820000034), (-5.687977667999917, 55.89337799700007), (-5.694162563999953, 55.90497467700004), (-5.696400519999941, 55.91596100500004), (-5.586822068999936, 56.01203034100007), (-5.57843990799995, 56.02448151200008), (-5.5826716789999296, 56.028957424000055), (-5.576649542999917, 56.032538153000075), (-5.571034308999913, 56.037543036000045), (-5.583892381999931, 56.040716864000046), (-5.596424933999913, 56.036810614000046), (-5.609852667999917, 56.03001536700003), (-5.625599738999938, 56.02448151200008), (-5.6317032539999445, 56.005926825000074), (-5.674875454999949, 55.977728583000044), (-5.67406165299991, 55.95563385600008), (-5.690785285999937, 55.93764883000006), (-5.694488084999932, 55.93451569200005), (-5.704497850999928, 55.936753648000035), (-5.707508917999917, 55.942572333000044), (-5.705881313999953, 55.949652411000045), (-5.701975063999953, 55.95563385600008), (-5.696441209999932, 55.98216380400004), (-5.659901495999918, 56.02326080900008), (-5.5846248039999296, 56.08466217700004), (-5.5815323559999115, 56.08828359600005), (-5.580067511999914, 56.09292226800005), (-5.5774633449999556, 56.096991278000075), (-5.571034308999913, 56.09902578300006), (-5.564605272999927, 56.098089911000045), (-5.556548631999931, 56.09589264500005), (-5.550689256999931, 56.09349192900004), (-5.550526495999918, 56.09218984600005), (-5.547840949999909, 56.09003327000005), (-5.5394587879999335, 56.08685944200005), (-5.531605597999942, 56.08633047100005), (-5.530100063999953, 56.09218984600005), (-5.534738735999952, 56.098537502000056), (-5.5414119129999335, 56.10248444200005), (-5.5475154289999296, 56.10488515800006), (-5.550526495999918, 56.10643138200004), (-5.55695553299995, 56.12221914300005), (-5.558705206999946, 56.13080475500004), (-5.554676886999914, 56.13739655200004), (-5.522531704999949, 56.16575755400004), (-5.515736456999946, 56.174709377000056), (-5.509632941999939, 56.188381252000056), (-5.5399063789999445, 56.18341705900008), (-5.562489386999914, 56.16791413000004), (-5.5826716789999296, 56.15058014500005), (-5.60578365799995, 56.139960028000075), (-5.599354620999918, 56.160589911000045), (-5.586415167999917, 56.18113841400003), (-5.569406704999949, 56.20026276200008), (-5.550526495999918, 56.21629466400003), (-5.5594376289999445, 56.22955963700008), (-5.547230597999942, 56.24017975500004), (-5.52562415299991, 56.247259833000044), (-5.50617428299995, 56.24982330900008), (-5.494740363999938, 56.253119208000044), (-5.4928279289999296, 56.26040273600006), (-5.4992569649999155, 56.267645575000074), (-5.512684699999909, 56.27094147300005), (-5.554269985999952, 56.26349518400008), (-5.5631404289999296, 56.26032135600008), (-5.572621222999942, 56.25385163000004), (-5.58234615799995, 56.24876536700003), (-5.592152472999942, 56.24982330900008), (-5.5980525379999335, 56.25861237200007), (-5.595570441999939, 56.26992422100005), (-5.5846248039999296, 56.29075755400004), (-5.57258053299995, 56.32807038000004), (-5.56273352799991, 56.341050523000035), (-5.543690558999913, 56.352850653000075), (-5.525217251999948, 56.34662506700005), (-5.498199022999927, 56.34833405200004), (-5.4481095039999445, 56.35968659100007), (-5.4481095039999445, 56.36591217700004), (-5.4721573559999115, 56.364935614000046), (-5.515370245999918, 56.35683828300006), (-5.5375056629999335, 56.35968659100007), (-5.517323370999918, 56.39276764500005), (-5.509632941999939, 56.40062083500004), (-5.498931443999936, 56.404730536000045), (-5.486073370999918, 56.40810781500005), (-5.4780167309999115, 56.41290924700007), (-5.482289191999939, 56.421128648000035), (-5.457020636999914, 56.44086334800005), (-5.423573370999918, 56.45001862200007), (-5.322865363999938, 56.45498281500005), (-5.242054816999939, 56.44220612200007), (-5.208729620999918, 56.44684479400007), (-5.18187415299991, 56.45966217700004), (-5.118519660999937, 56.50775788000004), (-5.085682745999918, 56.54877350500004), (-5.064564581999946, 56.56513092700004), (-5.086537238999938, 56.55849844000005), (-5.099598761999914, 56.54364655200004), (-5.1105850899999155, 56.52586497600004), (-5.125965949999909, 56.51048411700003), (-5.166900193999936, 56.49005768400008), (-5.190174933999913, 56.46865469000005), (-5.201079881999931, 56.462103583000044), (-5.243763800999943, 56.45921458500004), (-5.350168423999946, 56.47296784100007), (-5.378081834999932, 56.458970445000034), (-5.394276495999918, 56.46548086100006), (-5.4105525379999335, 56.50364817900004), (-5.42414303299995, 56.500067450000074), (-5.4359431629999335, 56.49115631700005), (-5.454986131999931, 56.46954987200007), (-5.468617316999939, 56.47573476800005), (-5.433338995999918, 56.52362702000005), (-5.427642381999931, 56.53782786700003), (-5.4037979809999115, 56.524603583000044), (-5.379261847999942, 56.519191799000055), (-5.3566788399999155, 56.51968008000006), (-5.3382869129999335, 56.52415599200003), (-5.2905167309999115, 56.54466380400004), (-5.265044725999928, 56.551214911000045), (-5.252552863999938, 56.556341864000046), (-5.242054816999939, 56.56513092700004), (-5.27562415299991, 56.553615627000056), (-5.286773240999935, 56.552069403000075), (-5.306792772999927, 56.552801825000074), (-5.3109431629999335, 56.552069403000075), (-5.327707485999952, 56.54466380400004), (-5.338693813999953, 56.542303778000075), (-5.360340949999909, 56.53221263200004), (-5.372425910999937, 56.53034088700008), (-5.384348110999952, 56.53343333500004), (-5.400502081999946, 56.54364655200004), (-5.413929816999939, 56.54466380400004), (-5.410878058999913, 56.552069403000075), (-5.407297329999949, 56.55532461100006), (-5.402699347999942, 56.55744049700007), (-5.396636522999927, 56.561712958000044), (-5.392689581999946, 56.566473700000074), (-5.3893123039999296, 56.57489655200004), (-5.386626756999931, 56.57880280200004), (-5.360707160999937, 56.60626862200007), (-5.351918097999942, 56.612941799000055), (-5.31086178299995, 56.63361237200007), (-5.304514126999948, 56.64016347900008), (-5.298451300999943, 56.64642975500004), (-5.317779100999928, 56.65387604400007), (-5.317779100999928, 56.661322333000044), (-5.309071417999917, 56.66425202000005), (-5.286773240999935, 56.674994208000044), (-5.261463995999918, 56.67332591400003), (-5.248199022999927, 56.67405833500004), (-5.218902147999927, 56.688666083000044), (-5.196441209999932, 56.688666083000044), (-5.153309699999909, 56.68121979400007), (-5.132639126999948, 56.68451569200005), (-5.093373175999943, 56.69904205900008), (-5.012806769999941, 56.70929596600007), (-4.9955948559999115, 56.71596914300005), (-5.1605525379999335, 56.69586823100008), (-5.238270636999914, 56.71662018400008), (-5.23851477799991, 56.72256094000005), (-5.228423631999931, 56.73647695500006), (-5.222075975999928, 56.741522528000075), (-5.154652472999942, 56.78229401200008), (-5.136382615999935, 56.79877350500004), (-5.119740363999938, 56.818426825000074), (-5.179066535999937, 56.78925202000005), (-5.187489386999914, 56.78115469000005), (-5.191761847999942, 56.774644273000035), (-5.202259894999941, 56.76911041900007), (-5.214670376999948, 56.76520416900007), (-5.224964972999942, 56.763739325000074), (-5.233469204999949, 56.76068756700005), (-5.237049933999913, 56.75336334800005), (-5.2389216789999296, 56.74445221600007), (-5.242054816999939, 56.73647695500006), (-5.255238410999937, 56.721584377000056), (-5.268462693999936, 56.71308014500005), (-5.283355272999927, 56.70937734600005), (-5.30101477799991, 56.70856354400007), (-5.3098038399999155, 56.70648834800005), (-5.319162563999953, 56.69749583500004), (-5.34015865799995, 56.693060614000046), (-5.348378058999913, 56.687201239000046), (-5.359364386999914, 56.674994208000044), (-5.388050910999937, 56.65521881700005), (-5.403879360999952, 56.64923737200007), (-5.4242244129999335, 56.64704010600008), (-5.434396938999953, 56.64288971600007), (-5.4487198559999115, 56.62457916900007), (-5.458119269999941, 56.620347398000035), (-5.470773891999954, 56.618394273000035), (-5.482574022999927, 56.613267320000034), (-5.493316209999932, 56.60639069200005), (-5.53343665299991, 56.57290273600006), (-5.599598761999914, 56.52903880400004), (-5.667388475999928, 56.498480536000045), (-5.67406165299991, 56.49689362200007), (-5.683013475999928, 56.50063711100006), (-5.694691535999937, 56.51386139500005), (-5.70539303299995, 56.51666901200008), (-5.721791144999941, 56.51850006700005), (-5.740834113999938, 56.52326080900008), (-5.7582087879999335, 56.52997467700004), (-5.770253058999913, 56.53782786700003), (-5.7551977199999556, 56.554022528000075), (-5.751047329999949, 56.56199778900003), (-5.749134894999941, 56.571966864000046), (-5.756662563999953, 56.571966864000046), (-5.793853318999936, 56.54328034100007), (-5.8543595039999445, 56.550482489000046), (-6.0034073559999115, 56.61871979400007), (-6.009836391999954, 56.62653229400007), (-6.008168097999942, 56.642279364000046), (-5.998036261999914, 56.64988841400003), (-5.983509894999941, 56.65281810100004), (-5.933583136999914, 56.654730536000045), (-5.899037238999938, 56.650824286000045), (-5.866851365999935, 56.64154694200005), (-5.8391820949999556, 56.62653229400007), (-5.831695115999935, 56.633978583000044), (-5.855620897999927, 56.64472077000005), (-5.865589972999942, 56.65143463700008), (-5.865834113999938, 56.661322333000044), (-5.75999915299991, 56.70075104400007), (-5.735503709999932, 56.702337958000044), (-5.672596808999913, 56.68414948100008), (-5.647368943999936, 56.68121979400007), (-5.5941462879999335, 56.68333567900004), (-5.564808722999942, 56.68764883000006), (-5.543690558999913, 56.69546133000006), (-5.636545376999948, 56.688666083000044), (-5.658558722999942, 56.690741278000075), (-5.708851691999939, 56.70856354400007), (-5.749989386999914, 56.714544989000046), (-5.859038865999935, 56.68121979400007), (-5.89679928299995, 56.675116278000075), (-5.907378709999932, 56.674994208000044), (-5.9203181629999335, 56.67796458500004), (-5.942738410999937, 56.686753648000035), (-5.955555792999917, 56.688666083000044), (-6.0248917309999115, 56.68569570500006), (-6.098622199999909, 56.696966864000046), (-6.123850063999953, 56.69562409100007), (-6.143544074999909, 56.684881903000075), (-6.161732550999943, 56.67820872600004), (-6.186594204999949, 56.68109772300005), (-6.2096248039999296, 56.68846263200004), (-6.222767706999946, 56.69546133000006), (-6.228179490999935, 56.70107656500005), (-6.232533331999946, 56.70652903900003), (-6.235340949999909, 56.71238841400003), (-6.236398891999954, 56.71906159100007), (-6.234486456999946, 56.728583075000074), (-6.229562954999949, 56.72907135600008), (-6.222767706999946, 56.72719961100006), (-6.215321417999917, 56.72964101800005), (-6.193470831999946, 56.74852122600004), (-6.1805313789999445, 56.75462474200003), (-6.026966925999943, 56.763739325000074), (-6.0148819649999155, 56.76703522300005), (-5.979888475999928, 56.78156159100007), (-5.965199347999942, 56.784857489000046), (-5.948231574999909, 56.782538153000075), (-5.937977667999917, 56.77692291900007), (-5.928537563999953, 56.769964911000045), (-5.913644985999952, 56.763739325000074), (-5.860910610999952, 56.75079987200007), (-5.8522029289999296, 56.746975002000056), (-5.853342251999948, 56.757879950000074), (-5.858143683999913, 56.768459377000056), (-5.8683975899999155, 56.77586497600004), (-5.886341925999943, 56.777411200000074), (-5.886341925999943, 56.784857489000046), (-5.874012824999909, 56.78571198100008), (-5.861805792999917, 56.78510163000004), (-5.850087042999917, 56.782456773000035), (-5.8391820949999556, 56.777411200000074), (-5.8246150379999335, 56.78758372600004), (-5.8020727199999556, 56.79181549700007), (-5.7766007149999155, 56.787990627000056), (-5.756662563999953, 56.784857489000046), (-5.831695115999935, 56.80536530200004), (-5.8508194649999155, 56.818019924000055), (-5.851185675999943, 56.82892487200007), (-5.837473110999952, 56.83661530200004), (-5.7338761059999115, 56.84479401200008), (-5.692738410999937, 56.85492584800005), (-5.66038977799991, 56.87299225500004), (-5.673573370999918, 56.87653229400007), (-5.692005988999938, 56.87531159100007), (-5.7084854809999115, 56.87055084800005), (-5.724354620999918, 56.85382721600007), (-5.744496222999942, 56.85415273600006), (-5.783924933999913, 56.85993073100008), (-5.775380011999914, 56.86994049700007), (-5.735503709999932, 56.89411041900007), (-5.7805883449999556, 56.89874909100007), (-5.874867316999939, 56.887152411000045), (-5.9211319649999155, 56.89411041900007), (-5.8875626289999445, 56.89911530200004), (-5.8522029289999296, 56.90033600500004), (-5.8522029289999296, 56.90770091400003), (-5.859852667999917, 56.91054922100005), (-5.8801163399999155, 56.92202383000006), (-5.8625382149999155, 56.93374258000006), (-5.851429816999939, 56.95425039300005), (-5.842518683999913, 56.977443752000056), (-5.831695115999935, 56.99713776200008), (-5.814116990999935, 57.00950755400004), (-5.786040818999936, 57.02057526200008), (-5.755238410999937, 57.026556708000044), (-5.729318813999953, 57.02383047100005), (-5.719878709999932, 57.017564195000034), (-5.699940558999913, 56.998114325000074), (-5.688303188999953, 56.98969147300005), (-5.67406165299991, 56.983587958000044), (-5.658558722999942, 56.97947825700004), (-5.625599738999938, 56.976629950000074), (-5.571278449999909, 56.98383209800005), (-5.523264126999948, 56.99713776200008), (-5.523264126999948, 57.003973700000074), (-5.540435350999928, 57.001166083000044), (-5.556507941999939, 56.996079820000034), (-5.571278449999909, 56.99331289300005), (-5.5846248039999296, 56.99713776200008), (-5.607085740999935, 56.98851146000004), (-5.628814256999931, 56.991888739000046), (-5.6498917309999115, 56.999660549000055), (-5.6703181629999335, 57.003973700000074), (-5.685536261999914, 57.00958893400008), (-5.681711391999954, 57.02240631700005), (-5.680043097999942, 57.03620026200008), (-5.701975063999953, 57.044907945000034), (-5.710926886999914, 57.044175523000035), (-5.731353318999936, 57.03900788000004), (-5.742339647999927, 57.03807200700004), (-5.752552863999938, 57.04059479400007), (-5.769602016999954, 57.04975006700005), (-5.780181443999936, 57.05174388200004), (-5.791127081999946, 57.05927155200004), (-5.776193813999953, 57.075832424000055), (-5.734486456999946, 57.10541413000004), (-5.722645636999914, 57.116441148000035), (-5.715646938999953, 57.12006256700005), (-5.703277147999927, 57.120754299000055), (-5.673695441999939, 57.11904531500005), (-5.663482225999928, 57.12372467700004), (-5.645863410999937, 57.12946198100008), (-5.620838995999918, 57.12409088700008), (-5.57843990799995, 57.10639069200005), (-5.558257615999935, 57.10040924700007), (-5.4598282539999445, 57.09979889500005), (-5.454986131999931, 57.10297272300005), (-5.447417772999927, 57.11017487200007), (-5.430775519999941, 57.11074453300006), (-5.41429602799991, 57.10822174700007), (-5.407215949999909, 57.10639069200005), (-5.400380011999914, 57.10639069200005), (-5.400380011999914, 57.11383698100008), (-5.420033331999946, 57.12067291900007), (-5.503895636999914, 57.11269765800006), (-5.527414516999954, 57.107489325000074), (-5.540638800999943, 57.10639069200005), (-5.5477188789999445, 57.11009349200003), (-5.573312954999949, 57.12787506700005), (-5.5846248039999296, 57.133693752000056), (-5.668446417999917, 57.147650458000044), (-5.6808975899999155, 57.157904364000046), (-5.673817511999914, 57.174994208000044), (-5.638824022999927, 57.202378648000035), (-5.625599738999938, 57.21625397300005), (-5.644154425999943, 57.23322174700007), (-5.620106574999909, 57.25214264500005), (-5.578236456999946, 57.26675039300005), (-5.543690558999913, 57.27090078300006), (-5.511586066999939, 57.25763580900008), (-5.480091925999943, 57.23700592700004), (-5.446278449999909, 57.22304922100005), (-5.407215949999909, 57.22992584800005), (-5.407215949999909, 57.23672109600005), (-5.448841925999943, 57.24209219000005), (-5.458119269999941, 57.24664948100008), (-5.47288977799991, 57.26121653900003), (-5.482899542999917, 57.268011786000045), (-5.49250240799995, 57.27090078300006), (-5.501942511999914, 57.27765534100007), (-5.4889216789999296, 57.29242584800005), (-5.464833136999914, 57.306626695000034), (-5.4406632149999155, 57.311835028000075), (-5.4406632149999155, 57.31928131700005), (-5.464995897999927, 57.32493724200003), (-5.4817602199999556, 57.31671784100007), (-5.494292772999927, 57.30442942900004), (-5.50617428299995, 57.298163153000075), (-5.523426886999914, 57.29515208500004), (-5.558461066999939, 57.28143952000005), (-5.57843990799995, 57.27765534100007), (-5.599436001999948, 57.27924225500004), (-5.637440558999913, 57.28900788000004), (-5.656971808999913, 57.29132721600007), (-5.7000626289999445, 57.28359609600005), (-5.720570441999939, 57.284491278000075), (-5.729318813999953, 57.298163153000075), (-5.7252498039999296, 57.30158112200007), (-5.701975063999953, 57.33234284100007), (-5.6937556629999335, 57.337103583000044), (-5.671986456999946, 57.34442780200004), (-5.663482225999928, 57.349676825000074), (-5.654367641999954, 57.353949286000045), (-5.647206183999913, 57.34992096600007), (-5.6414688789999445, 57.34320709800005), (-5.636545376999948, 57.33978913000004), (-5.613189256999931, 57.34198639500005), (-5.5012914699999556, 57.37099844000005), (-5.456654425999943, 57.39354075700004), (-5.4481095039999445, 57.42169830900008), (-5.46507727799991, 57.423895575000074), (-5.492054816999939, 57.40875885600008), (-5.5375056629999335, 57.373928127000056), (-5.563465949999909, 57.36310455900008), (-5.586659308999913, 57.36505768400008), (-5.610910610999952, 57.37140534100007), (-5.6399633449999556, 57.373928127000056), (-5.615589972999942, 57.382473049000055), (-5.607085740999935, 57.389105536000045), (-5.609201626999948, 57.397772528000075), (-5.617746548999946, 57.41010163000004), (-5.619618292999917, 57.41669342700004), (-5.624012824999909, 57.41640859600005), (-5.6399633449999556, 57.40802643400008), (-5.707183397999927, 57.35976797100005), (-5.732411261999914, 57.352769273000035), (-5.784575975999928, 57.34857819200005), (-5.807769334999932, 57.35492584800005), (-5.8248591789999296, 57.39435455900008), (-5.822255011999914, 57.39350006700005), (-5.817372199999909, 57.39520905200004), (-5.812855597999942, 57.398098049000055), (-5.8111873039999296, 57.40119049700007), (-5.813872850999928, 57.40452708500004), (-5.8231095039999445, 57.41233958500004), (-5.8248591789999296, 57.41547272300005), (-5.825266079999949, 57.428900458000044), (-5.821888800999943, 57.435532945000034), (-5.8111873039999296, 57.44220612200007), (-5.8215225899999155, 57.44546133000006), (-5.852528449999909, 57.450384833000044), (-5.859038865999935, 57.45270416900007), (-5.861195441999939, 57.46344635600008), (-5.870513475999928, 57.48078034100007), (-5.872670050999943, 57.49371979400007), (-5.869699673999946, 57.500881252000056), (-5.856068488999938, 57.51780833500004), (-5.8522029289999296, 57.52411530200004), (-5.8510636059999115, 57.538397528000075), (-5.851470506999931, 57.55109284100007), (-5.847075975999928, 57.55890534100007), (-5.831695115999935, 57.55882396000004), (-5.833851691999939, 57.563381252000056), (-5.837025519999941, 57.57477448100008), (-5.8391820949999556, 57.579291083000044), (-5.821400519999941, 57.583197333000044), (-5.803618943999936, 57.581366278000075), (-5.7863663399999155, 57.57518138200004), (-5.732574022999927, 57.54523346600007), (-5.715646938999953, 57.538397528000075), (-5.707020636999914, 57.542303778000075), (-5.68976803299995, 57.52789948100008), (-5.6808975899999155, 57.52411530200004), (-5.650868292999917, 57.51264069200005), (-5.6399633449999556, 57.511053778000075), (-5.645334438999953, 57.51666901200008), (-5.648304816999939, 57.52187734600005), (-5.650542772999927, 57.52680084800005), (-5.6535538399999155, 57.53156159100007), (-5.5815323559999115, 57.538397528000075), (-5.5402725899999155, 57.534491278000075), (-5.5168350899999155, 57.534857489000046), (-5.512684699999909, 57.54148997600004), (-5.543120897999927, 57.55536530200004), (-5.588368292999917, 57.56102122600004), (-5.632720506999931, 57.55768463700008), (-5.66038977799991, 57.544582424000055), (-5.694488084999932, 57.56631094000005), (-5.689198370999918, 57.56940338700008), (-5.6808975899999155, 57.579291083000044), (-5.714222785999937, 57.58270905200004), (-5.7316788399999155, 57.59829336100006), (-5.744252081999946, 57.61798737200007), (-5.762806769999941, 57.633978583000044), (-5.778146938999953, 57.63743724200003), (-5.7936091789999296, 57.63857656500005), (-5.8058975899999155, 57.642645575000074), (-5.8111873039999296, 57.65509674700007), (-5.805409308999913, 57.667181708000044), (-5.785023566999939, 57.67951080900008), (-5.790760870999918, 57.68854401200008), (-5.790760870999918, 57.69599030200004), (-5.753570115999935, 57.707464911000045), (-5.734486456999946, 57.70795319200005), (-5.704986131999931, 57.69013092700004), (-5.692494269999941, 57.691066799000055), (-5.68195553299995, 57.69871653900003), (-5.67406165299991, 57.70966217700004), (-5.685170050999943, 57.71141185100004), (-5.692290818999936, 57.716498114000046), (-5.698841925999943, 57.723089911000045), (-5.708851691999939, 57.72955963700008), (-5.720529751999948, 57.73338450700004), (-5.803822394999941, 57.743841864000046), (-5.80695553299995, 57.75462474200003), (-5.8020727199999556, 57.780585028000075), (-5.803822394999941, 57.792222398000035), (-5.801258917999917, 57.800441799000055), (-5.809925910999937, 57.82062409100007), (-5.8111873039999296, 57.833197333000044), (-5.807362433999913, 57.84393952000005), (-5.799956834999932, 57.85370514500005), (-5.789540167999917, 57.86200592700004), (-5.776519334999932, 57.86790599200003), (-5.751128709999932, 57.87335846600007), (-5.724761522999927, 57.87352122600004), (-5.698638475999928, 57.86908600500004), (-5.67406165299991, 57.86050039300005), (-5.677886522999927, 57.846909898000035), (-5.674794074999909, 57.82709381700005), (-5.667958136999914, 57.80695221600007), (-5.66038977799991, 57.792222398000035), (-5.650542772999927, 57.78180573100008), (-5.6373591789999296, 57.77423737200007), (-5.622141079999949, 57.77020905200004), (-5.60578365799995, 57.77049388200004), (-5.613270636999914, 57.77521393400008), (-5.617909308999913, 57.78021881700005), (-5.625599738999938, 57.792222398000035), (-5.613026495999918, 57.792629299000055), (-5.603260870999918, 57.791083075000074), (-5.5846248039999296, 57.784816799000055), (-5.591175910999937, 57.80442942900004), (-5.587025519999941, 57.81858958500004), (-5.5852758449999556, 57.83144765800006), (-5.598988410999937, 57.846869208000044), (-5.6375626289999445, 57.86635976800005), (-5.650380011999914, 57.87775299700007), (-5.6399633449999556, 57.88784414300005), (-5.6476944649999155, 57.88898346600007), (-5.6507869129999335, 57.89081452000005), (-5.6535538399999155, 57.89468008000006), (-5.643950975999928, 57.90420156500005), (-5.620757615999935, 57.92088450700004), (-5.6126195949999556, 57.92877838700008), (-5.598215298999946, 57.91901276200008), (-5.587310350999928, 57.91510651200008), (-5.550526495999918, 57.91510651200008), (-5.556263800999943, 57.88776276200008), (-5.527902798999946, 57.86758047100005), (-5.487049933999913, 57.85586172100005), (-5.454986131999931, 57.85370514500005), (-5.46117102799991, 57.86050039300005), (-5.449045376999948, 57.869126695000034), (-5.437123175999943, 57.897650458000044), (-5.427642381999931, 57.908270575000074), (-5.4149063789999445, 57.90814850500004), (-5.369496222999942, 57.89752838700008), (-5.355620897999927, 57.89126211100006), (-5.327504035999937, 57.87327708500004), (-5.293853318999936, 57.86204661700003), (-5.221587693999936, 57.846869208000044), (-5.236317511999914, 57.86078522300005), (-5.2475479809999115, 57.86701080900008), (-5.276763475999928, 57.87417226800005), (-5.320668097999942, 57.898504950000074), (-5.384917772999927, 57.914129950000074), (-5.39289303299995, 57.91819896000004), (-5.394398566999939, 57.923895575000074), (-5.396839972999942, 57.926214911000045), (-5.3973282539999445, 57.928900458000044), (-5.39289303299995, 57.935614325000074), (-5.386545376999948, 57.936428127000056), (-5.378977016999954, 57.93183014500005), (-5.3717341789999296, 57.93105703300006), (-5.366200324999909, 57.943060614000046), (-5.3471573559999115, 57.936712958000044), (-5.319162563999953, 57.91474030200004), (-5.297352667999917, 57.908270575000074), (-5.2860001289999445, 57.90875885600008), (-5.266957160999937, 57.91400788000004), (-5.2562556629999335, 57.91510651200008), (-5.2436417309999115, 57.91290924700007), (-5.22101803299995, 57.90403880400004), (-5.211293097999942, 57.90208567900004), (-5.198801235999952, 57.897772528000075), (-5.162261522999927, 57.87848541900007), (-5.1199845039999445, 57.86798737200007), (-5.0911352199999556, 57.84031810100004), (-5.070790167999917, 57.833197333000044), (-5.07648678299995, 57.83852773600006), (-5.083404100999928, 57.84756094000005), (-5.0893448559999115, 57.85724518400008), (-5.091867641999954, 57.86420319200005), (-5.0971573559999115, 57.87091705900008), (-5.197255011999914, 57.91787344000005), (-5.221587693999936, 57.92133209800005), (-5.221587693999936, 57.92877838700008), (-5.201893683999913, 57.92865631700005), (-5.193959113999938, 57.935980536000045), (-5.19554602799991, 57.94765859600005), (-5.204497850999928, 57.960150458000044), (-5.216704881999931, 57.96588776200008), (-5.2488907539999445, 57.96938711100006), (-5.2631729809999115, 57.976548570000034), (-5.292632615999935, 57.98061758000006), (-5.333892381999931, 58.00853099200003), (-5.359364386999914, 58.011379299000055), (-5.357167120999918, 58.01406484600005), (-5.3566788399999155, 58.014878648000035), (-5.351918097999942, 58.01752350500004), (-5.366932745999918, 58.02887604400007), (-5.386586066999939, 58.032538153000075), (-5.427642381999931, 58.03119538000004), (-5.424305792999917, 58.03554922100005), (-5.422352667999917, 58.03896719000005), (-5.419585740999935, 58.04205963700008), (-5.413929816999939, 58.04547760600008), (-5.413929816999939, 58.05231354400007), (-5.447010870999918, 58.08437734600005), (-5.428089972999942, 58.09796784100007), (-5.390044725999928, 58.09218984600005), (-5.366200324999909, 58.06598541900007), (-5.344309048999946, 58.075506903000075), (-5.322865363999938, 58.07172272300005), (-5.300770636999914, 58.07013580900008), (-5.276763475999928, 58.08641185100004), (-5.283070441999939, 58.08641185100004), (-5.278065558999913, 58.09625885600008), (-5.2787979809999115, 58.10537344000005), (-5.283558722999942, 58.11347077000005), (-5.2905167309999115, 58.12055084800005), (-5.276763475999928, 58.12055084800005), (-5.276763475999928, 58.127386786000045), (-5.297352667999917, 58.134833075000074), (-5.284087693999936, 58.14008209800005), (-5.255523240999935, 58.143784898000035), (-5.242054816999939, 58.14789459800005), (-5.242054816999939, 58.15534088700008), (-5.275054490999935, 58.15452708500004), (-5.290842251999948, 58.156317450000074), (-5.304798956999946, 58.162095445000034), (-5.297352667999917, 58.168402411000045), (-5.304798956999946, 58.17332591400003), (-5.313059048999946, 58.17731354400007), (-5.321888800999943, 58.18024323100008), (-5.331450975999928, 58.18203359600005), (-5.3293350899999155, 58.186712958000044), (-5.326161261999914, 58.198431708000044), (-5.323963995999918, 58.203111070000034), (-5.336822068999936, 58.203192450000074), (-5.346791144999941, 58.20685455900008), (-5.39289303299995, 58.24469635600008), (-5.3920792309999115, 58.261379299000055), (-5.375884568999936, 58.26422760600008), (-5.352894660999937, 58.25893789300005), (-5.31078040299991, 58.243394273000035), (-5.293853318999936, 58.24091217700004), (-5.276966925999943, 58.243394273000035), (-5.237294074999909, 58.25763580900008), (-5.2160538399999155, 58.261419989000046), (-5.194325324999909, 58.25999583500004), (-5.173207160999937, 58.25092194200005), (-5.165638800999943, 58.258246161000045), (-5.152251756999931, 58.264837958000044), (-5.138335740999935, 58.269598700000074), (-5.129383917999917, 58.27138906500005), (-5.11156165299991, 58.26825592700004), (-5.0812882149999155, 58.25409577000005), (-5.0676977199999556, 58.25092194200005), (-5.017730272999927, 58.253241278000075), (-5.002430792999917, 58.25092194200005), (-4.933583136999914, 58.22304922100005), (-4.943430141999954, 58.233587958000044), (-4.954823370999918, 58.23981354400007), (-4.982004360999952, 58.25092194200005), (-4.968861456999946, 58.25678131700005), (-4.940337693999936, 58.259466864000046), (-4.926747199999909, 58.26459381700005), (-4.990223761999914, 58.27142975500004), (-5.009917772999927, 58.27138906500005), (-5.018055792999917, 58.26862213700008), (-5.029367641999954, 58.25971100500004), (-5.040028449999909, 58.25775788000004), (-5.0501195949999556, 58.25991445500006), (-5.0707087879999335, 58.269232489000046), (-5.081654425999943, 58.27138906500005), (-5.096424933999913, 58.27676015800006), (-5.125965949999909, 58.30019765800006), (-5.1362198559999115, 58.305568752000056), (-5.137440558999913, 58.30927155200004), (-5.156361456999946, 58.32461172100005), (-5.160145636999914, 58.326605536000045), (-5.167795376999948, 58.33926015800006), (-5.171009894999941, 58.34666575700004), (-5.173207160999937, 58.353949286000045), (-5.153309699999909, 58.353949286000045), (-5.1634008449999556, 58.364569403000075), (-5.162912563999953, 58.37449778900003), (-5.155913865999935, 58.384466864000046), (-5.146473761999914, 58.394964911000045), (-5.145497199999909, 58.400051174000055), (-5.14671790299991, 58.40664297100005), (-5.146839972999942, 58.41242096600007), (-5.143055792999917, 58.41478099200003), (-5.135487433999913, 58.413763739000046), (-5.122222459999932, 58.40957265800006), (-5.116037563999953, 58.40859609600005), (-5.057972785999937, 58.38727448100008), (-5.016184048999946, 58.38812897300005), (-5.043934699999909, 58.400091864000046), (-5.0533748039999296, 58.40664297100005), (-5.0502823559999115, 58.41478099200003), (-5.0570369129999335, 58.42218659100007), (-5.066151495999918, 58.41714101800005), (-5.076161261999914, 58.414496161000045), (-5.086822068999936, 58.41388580900008), (-5.0980525379999335, 58.41478099200003), (-5.0980525379999335, 58.42218659100007), (-5.08812415299991, 58.421942450000074), (-5.085031704999949, 58.42218659100007), (-5.085031704999949, 58.429022528000075), (-5.091786261999914, 58.429754950000074), (-5.09601803299995, 58.43146393400008), (-5.105539516999954, 58.43650950700004), (-5.0501195949999556, 58.45380280200004), (-5.025542772999927, 58.447699286000045), (-4.9955948559999115, 58.43650950700004), (-5.105539516999954, 58.48737213700008), (-5.105620897999927, 58.505560614000046), (-5.103667772999927, 58.51422760600008), (-5.095855272999927, 58.518866278000075), (-5.042795376999948, 58.53546784100007), (-5.0279841789999296, 58.54409414300005), (-5.016184048999946, 58.55939362200007), (-5.0229386059999115, 58.55939362200007), (-5.015207485999952, 58.580064195000034), (-5.011586066999939, 58.60057200700004), (-5.004953579999949, 58.61774323100008), (-4.988189256999931, 58.62832265800006), (-4.859486456999946, 58.61322663000004), (-4.835926886999914, 58.60504791900007), (-4.818104620999918, 58.59292226800005), (-4.817941860999952, 58.587591864000046), (-4.81281490799995, 58.571966864000046), (-4.806752081999946, 58.55841705900008), (-4.803822394999941, 58.55939362200007), (-4.804595506999931, 58.54832591400003), (-4.807240363999938, 58.53961823100008), (-4.811634894999941, 58.53204987200007), (-4.818104620999918, 58.524644273000035), (-4.799794074999909, 58.532456773000035), (-4.791818813999953, 58.54165273600006), (-4.7899063789999445, 58.55174388200004), (-4.790150519999941, 58.562486070000034), (-4.785755988999938, 58.577053127000056), (-4.777088995999918, 58.583319403000075), (-4.771595831999946, 58.59039948100008), (-4.776519334999932, 58.60716380400004), (-4.758859829999949, 58.59910716400003), (-4.7280167309999115, 58.577460028000075), (-4.7113337879999335, 58.57306549700007), (-4.683257615999935, 58.56150950700004), (-4.670399542999917, 58.55939362200007), (-4.660023566999939, 58.555853583000044), (-4.659291144999941, 58.54755280200004), (-4.663238084999932, 58.538397528000075), (-4.6673070949999556, 58.53204987200007), (-4.6790258449999556, 58.52391185100004), (-4.714466925999943, 58.50560130400004), (-4.732411261999914, 58.480454820000034), (-4.751535610999952, 58.46161530200004), (-4.7609757149999155, 58.44798411700003), (-4.74242102799991, 58.44953034100007), (-4.682972785999937, 58.48456452000005), (-4.673451300999943, 58.48737213700008), (-4.6668595039999445, 58.50291575700004), (-4.650502081999946, 58.50995514500005), (-4.630441860999952, 58.514960028000075), (-4.612131313999953, 58.524644273000035), (-4.6010636059999115, 58.54193756700005), (-4.595122850999928, 58.56000397300005), (-4.584950324999909, 58.57416413000004), (-4.560536261999914, 58.57990143400008), (-4.517486131999931, 58.575506903000075), (-4.475493943999936, 58.565619208000044), (-4.426503058999913, 58.54637278900003), (-4.426503058999913, 58.53888580900008), (-4.427886522999927, 58.53530508000006), (-4.428700324999909, 58.53473541900007), (-4.426503058999913, 58.524644273000035), (-4.449940558999913, 58.510199286000045), (-4.464751756999931, 58.49201080900008), (-4.477650519999941, 58.47134023600006), (-4.4953507149999155, 58.44953034100007), (-4.478098110999952, 58.453558661000045), (-4.46117102799991, 58.46246979400007), (-4.43390865799995, 58.483628648000035), (-4.432728644999941, 58.487616278000075), (-4.4339900379999335, 58.49237702000005), (-4.4342341789999296, 58.49628327000005), (-4.430165167999917, 58.49799225500004), (-4.425933397999927, 58.49909088700008), (-4.385365363999938, 58.52240631700005), (-4.382394985999952, 58.524644273000035), (-4.343861456999946, 58.53888580900008), (-4.317005988999938, 58.54572174700007), (-4.306996222999942, 58.54637278900003), (-4.287180141999954, 58.54291413000004), (-4.2573136059999115, 58.52798086100006), (-4.234730597999942, 58.524644273000035), (-4.248931443999936, 58.53204987200007), (-4.238189256999931, 58.536444403000075), (-4.232248501999948, 58.54242584800005), (-4.227691209999932, 58.548163153000075), (-4.22101803299995, 58.551947333000044), (-4.209706183999913, 58.55292389500005), (-4.190785285999937, 58.54783763200004), (-4.1769913399999155, 58.54637278900003), (-4.16820227799991, 58.54938385600008), (-4.1605525379999335, 58.562567450000074), (-4.149322068999936, 58.565619208000044), (-4.111195441999939, 58.565619208000044), (-4.0902400379999335, 58.56207916900007), (-4.081450975999928, 58.561835028000075), (-4.070220506999931, 58.565619208000044), (-4.061512824999909, 58.57282135600008), (-4.048817511999914, 58.58958567900004), (-4.039784308999913, 58.59292226800005), (-4.030629035999937, 58.59406159100007), (-4.029042120999918, 58.59516022300005), (-4.027821417999917, 58.59271881700005), (-4.0092667309999115, 58.57330963700008), (-4.003773566999939, 58.57062409100007), (-3.981434699999909, 58.57306549700007), (-3.8957413399999155, 58.565619208000044), (-3.8101293609999516, 58.57306549700007), (-3.7669571609999366, 58.58372630400004), (-3.6983536449999406, 58.61115143400008), (-3.659901495999918, 58.62083567900004), (-3.597564256999931, 58.62714264500005), (-3.565500454999949, 58.626613674000055), (-3.542591925999943, 58.62083567900004), (-3.552479620999918, 58.61546458500004), (-3.556263800999943, 58.61399974200003), (-3.532053188999953, 58.60211823100008), (-3.504017706999946, 58.60333893400008), (-3.447010870999918, 58.61399974200003), (-3.3914688789999445, 58.60065338700008), (-3.364084438999953, 58.600816148000035), (-3.3508194649999155, 58.62083567900004), (-3.3677465489999463, 58.624701239000046), (-3.3860570949999556, 58.631740627000056), (-3.402251756999931, 58.64203522300005), (-3.412912563999953, 58.655585028000075), (-3.3900447259999282, 58.67177969000005), (-3.3748673169999392, 58.677069403000075), (-3.3582657539999445, 58.675482489000046), (-3.3543595039999445, 58.67015208500004), (-3.35179602799991, 58.66083405200004), (-3.34788977799991, 58.652044989000046), (-3.340565558999913, 58.648138739000046), (-3.3098852199999556, 58.648138739000046), (-3.244252081999946, 58.65900299700007), (-3.204090949999909, 58.66111888200004), (-3.1519262359999516, 58.64126211100006), (-3.118763800999943, 58.64109935100004), (-3.052886522999927, 58.648138739000046), (-3.0191137359999516, 58.640326239000046), (-3.025380011999914, 58.62213776200008), (-3.0444229809999115, 58.601629950000074), (-3.049183722999942, 58.58673737200007), (-3.060454881999931, 58.57843659100007), (-3.0754288399999155, 58.56037018400008), (-3.0845434239999463, 58.551947333000044), (-3.1107478509999282, 58.53864166900007), (-3.1180313789999445, 58.53204987200007), (-3.129261847999942, 58.51264069200005), (-3.1293025379999335, 58.49640534100007), (-3.1187231109999516, 58.484442450000074), (-3.0975235669999392, 58.47748444200005), (-3.0850723949999406, 58.47825755400004), (-3.073963995999918, 58.481675523000035), (-3.064442511999914, 58.48297760600008), (-3.056630011999914, 58.47748444200005), (-3.053334113999938, 58.46576569200005), (-3.0577286449999406, 58.45685455900008), (-3.066761847999942, 58.451157945000034), (-3.077056443999936, 58.44953034100007), (-3.0863337879999335, 58.41421133000006), (-3.129790818999936, 58.36928945500006), (-3.182769334999932, 58.32843659100007), (-3.2205297519999476, 58.305568752000056), (-3.2622777989999463, 58.292629299000055), (-3.34984290299991, 58.27610911700003), (-3.38499915299991, 58.26459381700005), (-3.438099738999938, 58.236029364000046), (-3.447010870999918, 58.22675202000005), (-3.454741990999935, 58.210150458000044), (-3.473459438999953, 58.193426825000074), (-3.515288865999935, 58.168402411000045), (-3.7350154289999296, 58.07217031500005), (-3.809193488999938, 58.05190664300005), (-3.8275040359999366, 58.04205963700008), (-3.8362524079999503, 58.03143952000005), (-3.8460994129999335, 58.01117584800005), (-3.851714647999927, 58.003892320000034), (-3.8605850899999155, 57.998928127000056), (-3.8856095039999445, 57.991400458000044), (-3.9173070949999556, 57.98745351800005), (-3.981434699999909, 57.96356842700004), (-3.990956183999913, 57.96039459800005), (-3.997670050999943, 57.954413153000075), (-4.001372850999928, 57.94611237200007), (-4.001942511999914, 57.935614325000074), (-4.018299933999913, 57.940619208000044), (-4.023060675999943, 57.943060614000046), (-4.016184048999946, 57.949286200000074), (-4.0301407539999445, 57.953192450000074), (-4.055775519999941, 57.95498281500005), (-4.0843806629999335, 57.964178778000075), (-4.0891007149999155, 57.960150458000044), (-4.0863337879999335, 57.95189036700003), (-4.0776261059999115, 57.943060614000046), (-4.062652147999927, 57.93695709800005), (-4.03148352799991, 57.93618398600006), (-4.016184048999946, 57.93219635600008), (-4.009429490999935, 57.92767975500004), (-3.988270636999914, 57.908270575000074), (-4.008941209999932, 57.88959381700005), (-4.013824022999927, 57.879339911000045), (-4.009348110999952, 57.86790599200003), (-4.025135870999918, 57.868068752000056), (-4.054839647999927, 57.874335028000075), (-4.070220506999931, 57.87417226800005), (-4.0793350899999155, 57.87026601800005), (-4.0969132149999155, 57.85736725500004), (-4.1049698559999115, 57.85370514500005), (-4.132923956999946, 57.85415273600006), (-4.190419074999909, 57.87006256700005), (-4.218169725999928, 57.87417226800005), (-4.298898891999954, 57.86277903900003), (-4.3209529289999296, 57.87103913000004), (-4.353179490999935, 57.89520905200004), (-4.3723038399999155, 57.90448639500005), (-4.392404751999948, 57.908270575000074), (-4.339588995999918, 57.86570872600004), (-4.307728644999941, 57.85146719000005), (-4.269398566999939, 57.846869208000044), (-4.229074673999946, 57.85724518400008), (-4.2082413399999155, 57.85919830900008), (-4.190581834999932, 57.85028717700004), (-4.173451300999943, 57.83901601800005), (-4.1497289699999556, 57.82982005400004), (-4.1334529289999296, 57.830145575000074), (-4.1390681629999335, 57.846869208000044), (-4.0750626289999445, 57.82318756700005), (-4.0399063789999445, 57.81818268400008), (-3.9835098949999406, 57.84235260600008), (-3.9514867829999503, 57.838324286000045), (-3.933705206999946, 57.82566966400003), (-3.9473363919999542, 57.81268952000005), (-3.914784308999913, 57.80768463700008), (-3.877674933999913, 57.81671784100007), (-3.8418676419999542, 57.83490631700005), (-3.813547329999949, 57.857123114000046), (-3.798451300999943, 57.866522528000075), (-3.786040818999936, 57.86542389500005), (-3.779449022999927, 57.85565827000005), (-3.782215949999909, 57.83942291900007), (-3.790028449999909, 57.83071523600006), (-3.92601477799991, 57.734808661000045), (-3.948841925999943, 57.72492096600007), (-3.975209113999938, 57.70327383000006), (-3.988270636999914, 57.69599030200004), (-4.00804602799991, 57.693793036000045), (-4.02367102799991, 57.69782135600008), (-4.0286352199999556, 57.70770905200004), (-4.016184048999946, 57.72333405200004), (-4.042958136999914, 57.73729075700004), (-4.077951626999948, 57.73029205900008), (-4.155344204999949, 57.692572333000044), (-4.168568488999938, 57.689439195000034), (-4.1939998039999296, 57.68854401200008), (-4.2592667309999115, 57.67869700700004), (-4.277821417999917, 57.68060944200005), (-4.294789191999939, 57.68016185100004), (-4.302154100999928, 57.66860586100006), (-4.30882727799991, 57.65485260600008), (-4.324045376999948, 57.64826080900008), (-4.33820553299995, 57.64508698100008), (-4.4031876289999445, 57.60952383000006), (-4.412180141999954, 57.60297272300005), (-4.4203181629999335, 57.592962958000044), (-4.428456183999913, 57.57754140800006), (-4.423451300999943, 57.57680898600006), (-4.409901495999918, 57.582464911000045), (-4.379872199999909, 57.58934153900003), (-4.365101691999939, 57.59723541900007), (-4.3510636059999115, 57.60736725500004), (-4.340809699999909, 57.617173570000034), (-4.328724738999938, 57.626288153000075), (-4.283111131999931, 57.64142487200007), (-4.2445369129999335, 57.66303131700005), (-4.201893683999913, 57.674994208000044), (-4.1937556629999335, 57.67552317900004), (-4.182240363999938, 57.67279694200005), (-4.169016079999949, 57.663763739000046), (-4.118723110999952, 57.65770091400003), (-4.096791144999941, 57.65810781500005), (-4.0807185539999296, 57.66498444200005), (-4.068104620999918, 57.672308661000045), (-4.0246475899999155, 57.687201239000046), (-4.009348110999952, 57.68854401200008), (-4.004505988999938, 57.67597077000005), (-4.025257941999939, 57.65521881700005), (-4.0541886059999115, 57.63572825700004), (-4.083404100999928, 57.62335846600007), (-4.118560350999928, 57.592962958000044), (-4.11546790299991, 57.58783600500004), (-4.112294074999909, 57.58413320500006), (-4.1088761059999115, 57.58144765800006), (-4.1049698559999115, 57.579291083000044), (-4.151356574999909, 57.57684967700004), (-4.170643683999913, 57.570746161000045), (-4.187489386999914, 57.55882396000004), (-4.178089972999942, 57.54954661700003), (-4.184925910999937, 57.548163153000075), (-4.207997199999909, 57.552069403000075), (-4.262603318999936, 57.552069403000075), (-4.262603318999936, 57.544582424000055), (-4.233957485999952, 57.54511139500005), (-4.220285610999952, 57.543402411000045), (-4.207997199999909, 57.538397528000075), (-4.226307745999918, 57.51544830900008), (-4.237456834999932, 57.50531647300005), (-4.248931443999936, 57.49746328300006), (-4.212798631999931, 57.492173570000034), (-4.1948136059999115, 57.49160390800006), (-4.173898891999954, 57.49746328300006), (-4.157622850999928, 57.50849030200004), (-4.150054490999935, 57.51504140800006), (-4.149322068999936, 57.51788971600007), (-4.126779751999948, 57.518866278000075), (-4.116200324999909, 57.52179596600007), (-4.097523566999939, 57.53668854400007), (-4.082997199999909, 57.54441966400003), (-4.067290818999936, 57.54995351800005), (-4.0531306629999335, 57.552069403000075), (-4.034982876999948, 57.55687083500004), (-4.046457485999952, 57.56785716400003), (-4.083851691999939, 57.58612702000005), (-4.056019660999937, 57.585150458000044), (-3.9643448559999115, 57.592962958000044), (-3.8682755199999406, 57.587876695000034), (-3.8374731109999516, 57.592962958000044), (-3.6848038399999155, 57.65444570500006), (-3.625152147999927, 57.66193268400008), (-3.632557745999918, 57.65094635600008), (-3.637684699999909, 57.64622630400004), (-3.6456192699999406, 57.64142487200007), (-3.632476365999935, 57.635646877000056), (-3.6196182929999168, 57.63621653900003), (-3.606068488999938, 57.63947174700007), (-3.590972459999932, 57.64142487200007), (-3.61156165299991, 57.66811758000006), (-3.5747777989999463, 57.66111888200004), (-3.55492102799991, 57.659857489000046), (-3.535755988999938, 57.66193268400008), (-3.521473761999914, 57.66779205900008), (-3.5054418609999516, 57.67865631700005), (-3.4959610669999392, 57.69135163000004), (-3.501698370999918, 57.702826239000046), (-3.491851365999935, 57.71312083500004), (-3.4828181629999335, 57.71401601800005), (-3.4730525379999335, 57.711004950000074), (-3.460682745999918, 57.70966217700004), (-3.447865363999938, 57.71246979400007), (-3.4212540359999366, 57.72138092700004), (-3.409169074999909, 57.72333405200004), (-3.2847387359999516, 57.72044505400004), (-3.2100723949999406, 57.69399648600006), (-3.0786840489999463, 57.66941966400003), (-3.034901495999918, 57.66860586100006), (-2.994496222999942, 57.67552317900004), (-2.932687954999949, 57.69961172100005), (-2.9160863919999542, 57.702826239000046), (-2.75804602799991, 57.702826239000046), (-2.7512100899999155, 57.70062897300005), (-2.741118943999936, 57.69086334800005), (-2.731068488999938, 57.68854401200008), (-2.719878709999932, 57.690619208000044), (-2.711537238999938, 57.69399648600006), (-2.7035212879999335, 57.69472890800006), (-2.6929418609999516, 57.68854401200008), (-2.658924933999913, 57.69745514500005), (-2.573394334999932, 57.68146393400008), (-2.541981574999909, 57.68235911700003), (-2.526112433999913, 57.66860586100006), (-2.5181371739999463, 57.67011139500005), (-2.5110570949999556, 57.677801825000074), (-2.497954881999931, 57.68235911700003), (-2.4800512359999516, 57.68121979400007), (-2.4328507149999155, 57.66811758000006), (-2.425526495999918, 57.67572663000004), (-2.4177953769999476, 57.674261786000045), (-2.4087621739999463, 57.669623114000046), (-2.398060675999943, 57.66811758000006), (-2.3865860669999392, 57.671576239000046), (-2.369496222999942, 57.680568752000056), (-2.360503709999932, 57.68235911700003), (-2.3410538399999155, 57.675848700000074), (-2.3289688789999445, 57.67405833500004), (-2.3235977859999366, 57.678941148000035), (-2.32054602799991, 57.68455638200004), (-2.313384568999936, 57.68992747600004), (-2.3040665359999366, 57.69399648600006), (-2.295643683999913, 57.69599030200004), (-2.274322068999936, 57.69383372600004), (-2.230132615999935, 57.67914459800005), (-2.209950324999909, 57.67552317900004), (-2.1840714179999168, 57.67845286700003), (-2.1243383449999556, 57.702826239000046), (-2.108143683999913, 57.70498281500005), (-1.9976700509999432, 57.702826239000046), (-1.9969376289999445, 57.69904205900008), (-1.990834113999938, 57.69037506700005), (-1.982167120999918, 57.68109772300005), (-1.9735001289999445, 57.67552317900004), (-1.961293097999942, 57.674709377000056), (-1.9447322259999282, 57.68256256700005), (-1.9324845039999445, 57.68235911700003), (-1.9256892569999309, 57.678168036000045), (-1.914214647999927, 57.66474030200004), (-1.8294571609999366, 57.61347077000005), (-1.820464647999927, 57.59634023600006), (-1.817005988999938, 57.578192450000074), (-1.8113907539999445, 57.56049225500004), (-1.7960098949999406, 57.544582424000055), (-1.7960098949999406, 57.538397528000075), (-1.8000382149999155, 57.52586497600004), (-1.7895401679999168, 57.514837958000044), (-1.7611384759999282, 57.49746328300006), (-1.7753800119999141, 57.496527411000045), (-1.7821345689999362, 57.48899974200003), (-1.7812393869999141, 57.48041413000004), (-1.7717179029999102, 57.476263739000046), (-1.7593481109999516, 57.47357819200005), (-1.7659399079999503, 57.46743398600006), (-1.7891739569999459, 57.45644765800006), (-1.8301488919999542, 57.42617422100005), (-1.8474828769999476, 57.40814850500004), (-1.849964972999942, 57.39435455900008), (-1.9544978509999282, 57.341131903000075), (-1.9802953769999476, 57.31928131700005), (-2.044667120999918, 57.22650788000004), (-2.068511522999927, 57.17462799700007), (-2.074126756999931, 57.15420156500005), (-2.0714005199999406, 57.13556549700007), (-2.052357550999943, 57.12742747600004), (-2.0493057929999168, 57.118841864000046), (-2.065256313999953, 57.10053131700005), (-2.0658259759999282, 57.09983958500004), (-2.156158006999931, 57.020697333000044), (-2.1869197259999282, 56.98468659100007), (-2.200103318999936, 56.94871653900003), (-2.1971329419999392, 56.94025299700007), (-2.1912328769999476, 56.93414948100008), (-2.186268683999913, 56.92674388200004), (-2.1863907539999445, 56.91453685100004), (-2.191314256999931, 56.90892161700003), (-2.209706183999913, 56.895819403000075), (-2.213693813999953, 56.890692450000074), (-2.219878709999932, 56.87262604400007), (-2.23460852799991, 56.861395575000074), (-2.2689509759999282, 56.84634023600006), (-2.295806443999936, 56.82526276200008), (-2.3198136059999115, 56.80158112200007), (-2.336089647999927, 56.79083893400008), (-2.3918350899999155, 56.771185614000046), (-2.4086807929999168, 56.762925523000035), (-2.4264216789999296, 56.751288153000075), (-2.4359431629999335, 56.74038320500006), (-2.4407445949999556, 56.73484935100004), (-2.4516495429999168, 56.69098541900007), (-2.4637345039999445, 56.67877838700008), (-2.4774063789999445, 56.66868724200003), (-2.487456834999932, 56.65387604400007), (-2.4875382149999155, 56.64606354400007), (-2.481271938999953, 56.63239166900007), (-2.480620897999927, 56.62653229400007), (-2.4861954419999392, 56.619574286000045), (-2.504058397999927, 56.60883209800005), (-2.514556443999936, 56.591498114000046), (-2.530018683999913, 56.58075592700004), (-2.623768683999913, 56.543402411000045), (-2.6409399079999503, 56.522365627000056), (-2.6613663399999155, 56.51422760600008), (-2.6997777989999463, 56.50364817900004), (-2.708729620999918, 56.49599844000005), (-2.7276505199999406, 56.46954987200007), (-2.737294074999909, 56.46702708500004), (-2.74437415299991, 56.46954987200007), (-2.752308722999942, 56.47361888200004), (-2.764800584999932, 56.47573476800005), (-2.819325324999909, 56.47129954600007), (-3.055653449999909, 56.45213450700004), (-3.0606176419999542, 56.45172760600008), (-3.099273240999935, 56.44188060100004), (-3.1339005199999406, 56.426947333000044), (-3.238189256999931, 56.36774323100008), (-3.280181443999936, 56.35789622600004), (-3.3234757149999155, 56.36591217700004), (-3.311512824999909, 56.35651276200008), (-3.294016079999949, 56.352769273000035), (-3.2515356109999516, 56.352850653000075), (-3.230620897999927, 56.35602448100008), (-3.188384568999936, 56.37018463700008), (-3.149566209999932, 56.37555573100008), (-2.950266079999949, 56.43187083500004), (-2.9399307929999168, 56.43854401200008), (-2.930653449999909, 56.44806549700007), (-2.909087693999936, 56.45571523600006), (-2.88499915299991, 56.45799388200004), (-2.867909308999913, 56.45184967700004), (-2.8500870429999168, 56.44204336100006), (-2.8147680329999503, 56.44041575700004), (-2.8028051419999542, 56.42796458500004), (-2.800892706999946, 56.40892161700003), (-2.808257615999935, 56.391058661000045), (-2.8216039699999556, 56.376166083000044), (-2.837554490999935, 56.36591217700004), (-2.8129776679999168, 56.36591217700004), (-2.809193488999938, 56.36286041900007), (-2.8047582669999542, 56.34910716400003), (-2.8028051419999542, 56.345404364000046), (-2.7914932929999168, 56.34247467700004), (-2.7826228509999282, 56.34162018400008), (-2.7752579419999392, 56.33942291900007), (-2.768625454999949, 56.33234284100007), (-2.6771541009999282, 56.32843659100007), (-2.655262824999909, 56.32217031500005), (-2.621205206999946, 56.30442942900004), (-2.613189256999931, 56.30190664300005), (-2.5768123039999296, 56.28392161700003), (-2.5768123039999296, 56.277777411000045), (-2.6301163399999155, 56.24852122600004), (-2.648345506999931, 56.22870514500005), (-2.672027147999927, 56.22239817900004), (-2.7202042309999115, 56.21629466400003), (-2.7835994129999335, 56.19196198100008), (-2.8061417309999115, 56.188381252000056), (-2.8307185539999296, 56.190741278000075), (-2.8920792309999115, 56.20888906500005), (-2.940052863999938, 56.209418036000045), (-2.9643448559999115, 56.20563385600008), (-2.9746801419999542, 56.19830963700008), (-2.982411261999914, 56.189113674000055), (-3.0355525379999335, 56.16791413000004), (-3.0910538399999155, 56.13226959800005), (-3.107533331999946, 56.12689850500004), (-3.127552863999938, 56.12287018400008), (-3.138295050999943, 56.112209377000056), (-3.152251756999931, 56.07851797100005), (-3.1635636059999115, 56.06386953300006), (-3.1783748039999296, 56.05809153900003), (-3.2484431629999335, 56.055975653000075), (-3.268381313999953, 56.05093008000006), (-3.3030492829999503, 56.037543036000045), (-3.342681443999936, 56.02716705900008), (-3.381825324999909, 56.02338288000004), (-3.420969204999949, 56.02488841400003), (-3.5825902989999463, 56.05174388200004), (-3.671498175999943, 56.050848700000074), (-3.710031704999949, 56.05809153900003), (-3.7454320949999556, 56.07221100500004), (-3.7464900379999335, 56.072780666000085), (-3.782215949999909, 56.09218984600005), (-3.8031306629999335, 56.107123114000046), (-3.817005988999938, 56.11225006700005), (-3.8374731109999516, 56.112616278000075), (-3.8374731109999516, 56.10643138200004), (-3.777699347999942, 56.08283112200007), (-3.769154425999943, 56.07514069200005), (-3.7608536449999406, 56.07245514500005), (-3.7264298169999392, 56.03803131700005), (-3.721424933999913, 56.03070709800005), (-3.712635870999918, 56.028998114000046), (-3.693470831999946, 56.03115469000005), (-3.6866348949999406, 56.03070709800005), (-3.6795548169999392, 56.025458075000074), (-3.674794074999909, 56.01870351800005), (-3.6682836579999503, 56.01276276200008), (-3.656239386999914, 56.010199286000045), (-3.599720831999946, 56.017238674000055), (-3.5773819649999155, 56.01703522300005), (-3.405425584999932, 55.98973216400003), (-3.3582657539999445, 55.98973216400003), (-3.340891079999949, 55.99445221600007), (-3.331044074999909, 55.99408600500004), (-3.320423956999946, 55.986029364000046), (-3.303456183999913, 55.97760651200008), (-3.121815558999913, 55.96930573100008), (-3.1147354809999115, 55.966131903000075), (-3.096831834999932, 55.95197174700007), (-3.090728318999936, 55.94818756700005), (-3.078236456999946, 55.94684479400007), (-3.0156957669999542, 55.950506903000075), (-2.9399307929999168, 55.96930573100008), (-2.9166560539999296, 55.98061758000006), (-2.900054490999935, 55.996161200000074), (-2.8828832669999542, 56.00849030200004), (-2.8579809239999463, 56.010199286000045), (-2.863636847999942, 56.02228424700007), (-2.8663223949999406, 56.02676015800006), (-2.8709610669999392, 56.03070709800005), (-2.8527725899999155, 56.03978099200003), (-2.823150193999936, 56.059759833000044), (-2.8028051419999542, 56.06484609600005), (-2.635121222999942, 56.05805084800005), (-2.615956183999913, 56.053168036000045), (-2.587554490999935, 56.030951239000046), (-2.569406704999949, 56.02448151200008), (-2.57835852799991, 56.00800202000005), (-2.583648240999935, 56.00275299700007), (-2.5695694649999155, 55.99994538000004), (-2.5440567699999406, 56.00267161700003), (-2.528960740999935, 55.99656810100004), (-2.5248103509999282, 56.00055573100008), (-2.514556443999936, 56.00576406500005), (-2.507923956999946, 56.010199286000045), (-2.4932755199999406, 56.00153229400007), (-2.4525040359999366, 55.985256252000056), (-2.4143774079999503, 55.97833893400008), (-2.3509415359999366, 55.94818756700005), (-2.307769334999932, 55.93500397300005), (-2.146839972999942, 55.917303778000075), (-2.1380102199999556, 55.91461823100008), (-2.132557745999918, 55.90643952000005), (-2.13109290299991, 55.89720286700003), (-2.1287735669999392, 55.88979726800005), (-2.1209610669999392, 55.886704820000034), (-2.0994766919999392, 55.88178131700005), (-2.080189581999946, 55.86937083500004), (-2.0228572259999282, 55.80548737200007), (-2.009673631999931, 55.79083893400008), (-1.8778376939999362, 55.69489166900007), (-1.8631892569999309, 55.67161692900004), (-1.8530981109999516, 55.65932851800005), (-1.8315323559999115, 55.65070221600007), (-1.8260798819999309, 55.64362213700008), (-1.8216853509999282, 55.636419989000046), (-1.8164770169999542, 55.632879950000074), (-1.8071182929999168, 55.63450755400004), (-1.8007706369999141, 55.63922760600008), (-1.7962947259999282, 55.644232489000046), (-1.7925919259999432, 55.646551825000074), (-1.781402147999927, 55.64565664300005), (-1.768625454999949, 55.641913153000075), (-1.7564998039999296, 55.63361237200007), (-1.7476700509999432, 55.619208075000074), (-1.7679744129999335, 55.619208075000074), (-1.7679744129999335, 55.612982489000046), (-1.7559708319999459, 55.60887278900003), (-1.720855272999927, 55.614569403000075), (-1.6991267569999309, 55.612982489000046), (-1.6308487619999141, 55.58510976800005), (-1.6308487619999141, 55.57827383000006), (-1.6363419259999432, 55.57168203300006), (-1.6346736319999309, 55.56439850500004), (-1.6276749339999128, 55.55711497600004), (-1.6171768869999141, 55.55027903900003), (-1.6308487619999141, 55.544134833000044), (-1.6308487619999141, 55.53729889500005), (-1.6222224599999322, 55.534084377000056), (-1.6029353509999282, 55.52362702000005), (-1.6029353509999282, 55.516791083000044), (-1.6113175119999141, 55.50804271000004), (-1.6063533189999362, 55.503241278000075), (-1.5963435539999296, 55.49990469000005), (-1.5893448559999115, 55.49567291900007), (-1.5849503249999088, 55.483710028000075), (-1.5813695949999556, 55.41665273600006), (-1.5831192699999406, 55.40692780200004), (-1.5882869129999335, 55.39057038000004), (-1.5891007149999155, 55.385199286000045), (-1.5893448559999115, 55.37653229400007), (-1.5833227199999556, 55.354722398000035), (-1.5585831369999141, 55.32892487200007), (-1.5558162099999322, 55.31134674700007), (-1.5570369129999335, 55.306626695000034), (-1.5589900379999335, 55.302069403000075), (-1.5619197259999282, 55.29779694200005), (-1.5657445949999556, 55.29364655200004), (-1.570057745999918, 55.28620026200008), (-1.5682266919999392, 55.27960846600007), (-1.5642797519999476, 55.27326080900008), (-1.5620824859999516, 55.26666901200008), (-1.5564672519999476, 55.25503164300005), (-1.5439346999999088, 55.24388255400004), (-1.5209854809999115, 55.229396877000056), (-1.5291641919999392, 55.21625397300005), (-1.5240779289999296, 55.21010976800005), (-1.514271613999938, 55.204779364000046), (-1.507964647999927, 55.194647528000075), (-1.510812954999949, 55.184759833000044), (-1.5175675119999141, 55.176214911000045), (-1.5221248039999296, 55.16746653900003), (-1.517933722999942, 55.157131252000056), (-1.5007218089999128, 55.141791083000044), (-1.4959610669999392, 55.13458893400008), (-1.492543097999942, 55.112982489000046), (-1.4837540359999366, 55.09170156500005), (-1.4800919259999432, 55.08539459800005), (-1.4762263659999348, 55.083644924000055), (-1.4632869129999335, 55.08030833500004), (-1.459584113999938, 55.07859935100004), (-1.458078579999949, 55.07575104400007), (-1.4547013009999432, 55.067572333000044), (-1.438303188999953, 55.042303778000075), (-1.4291886059999115, 55.033270575000074), (-1.4240616529999102, 55.02435944200005), (-1.4195043609999516, 55.011704820000034), (-1.412912563999953, 55.00031159100007), (-1.4015193349999322, 54.995428778000075), (-1.398182745999918, 54.992621161000045), (-1.3702286449999406, 54.97553131700005), (-1.3626602859999366, 54.96478913000004), (-1.3617244129999335, 54.958685614000046), (-1.3635147779999102, 54.95425039300005), (-1.3640030589999128, 54.94818756700005), (-1.3628637359999516, 54.92593008000006), (-1.3603409499999088, 54.91705963700008), (-1.3531388009999432, 54.91351959800005), (-1.355824347999942, 54.904282945000034), (-1.2967830069999309, 54.77993398600006), (-1.2754613919999542, 54.74843984600005), (-1.2404679029999102, 54.72166575700004), (-1.2250870429999168, 54.71503327000005), (-1.172230597999942, 54.701239325000074), (-1.172230597999942, 54.693793036000045), (-1.1926163399999155, 54.693793036000045), (-1.192453579999949, 54.68927643400008), (-1.1907852859999366, 54.68618398600006), (-1.1851700509999432, 54.68008047100005), (-1.1827286449999406, 54.67206452000005), (-1.1788223949999406, 54.66474030200004), (-1.172922329999949, 54.65835195500006), (-1.1647029289999296, 54.652777411000045), (-1.172922329999949, 54.644191799000055), (-1.1824845039999445, 54.63922760600008), (-1.2062882149999155, 54.63296133000006), (-1.203724738999938, 54.62571849200003), (-1.1988419259999432, 54.62156810100004), (-1.1918025379999335, 54.61977773600006), (-1.1821182929999168, 54.61928945500006), (-1.1793513659999348, 54.62091705900008), (-1.1784561839999128, 54.624212958000044), (-1.1769913399999155, 54.62677643400008), (-1.172230597999942, 54.62612539300005), (-1.1695857409999348, 54.62360260600008), (-1.1654353509999282, 54.61871979400007), (-1.1629532539999445, 54.61395905200004), (-1.1647029289999296, 54.61180247600004), (-1.1526586579999503, 54.61318594000005), (-1.1467179029999102, 54.618475653000075), (-1.1380509109999366, 54.646551825000074), (-1.1205948559999115, 54.63300202000005), (-1.1036270819999459, 54.624660549000055), (-1.0842179029999102, 54.620428778000075), (-1.042062954999949, 54.61709219000005), (-0.9934789699999556, 54.59813060100004), (-0.7879125639999529, 54.56077708500004), (-0.5629776679999168, 54.47736237200007), (-0.5346573559999115, 54.461004950000074), (-0.5228572259999282, 54.44708893400008), (-0.5217992829999503, 54.43805573100008), (-0.5235896479999269, 54.43024323100008), (-0.5204158189999362, 54.42007070500006), (-0.5099991529999102, 54.41156647300005), (-0.47679602799991017, 54.39720286700003), (-0.46275794199993925, 54.38898346600007), (-0.4477432929999168, 54.37319570500006), (-0.43057206899993616, 54.349310614000046), (-0.4184464179999168, 54.32404205900008), (-0.41803951699995423, 54.303941148000035), (-0.4145401679999168, 54.297308661000045), (-0.4090063139999529, 54.29075755400004), (-0.4011938139999529, 54.28563060100004), (-0.39073645699994586, 54.28351471600007), (-0.3948868479999419, 54.273138739000046), (-0.39757239499994057, 54.269191799000055), (-0.3892716139999379, 54.26406484600005), (-0.3704727859999366, 54.247707424000055), (-0.3627823559999115, 54.24249909100007), (-0.3220108709999181, 54.23607005400004), (-0.31191972599992823, 54.231634833000044), (-0.30011959499995555, 54.224676825000074), (-0.2770889959999181, 54.21775950700004), (-0.26960201699995423, 54.20766836100006), (-0.26256262899994454, 54.18109772300005), (-0.2603653639999379, 54.176988023000035), (-0.2338761059999115, 54.16046784100007), (-0.11143958199994586, 54.13157786700003), (-0.07551021999995555, 54.11212799700007), (-0.16392981699993925, 54.08340078300006), (-0.1946915359999366, 54.06232330900008), (-0.2194718089999128, 54.022772528000075), (-0.1974177729999269, 53.99481842700004), (-0.1686905589999128, 53.929348049000055), (-0.1511124339999128, 53.899318752000056), (-0.045155402999910166, 53.801214911000045), (0.13347415500004445, 53.642645575000074), (0.1492619150000678, 53.60960521000004), (0.13689212300005238, 53.57713450700004), (0.13119550900006516, 53.573431708000044), (0.1096297540000819, 53.56289297100005), (0.1313582690000885, 53.59369538000004), (0.1359969410000872, 53.610663153000075), (0.12020918100006384, 53.61810944200005), (0.09945722700007309, 53.622300523000035), (0.056162957000083225, 53.64126211100006), (0.034515821000070446, 53.64606354400007), (0.014821811000047092, 53.64325592700004), (-0.023915167999916775, 53.62885163000004), (-0.04503333199994586, 53.62555573100008), (-0.06940670499994894, 53.626939195000034), (-0.09227454299991678, 53.63104889500005), (-0.11261959499995555, 53.63751862200007), (-0.1300349599999322, 53.64606354400007), (-0.2253311839999128, 53.719916083000044), (-0.2603653639999379, 53.73541901200008), (-0.2956436839999128, 53.738796291000085), (-0.3051651679999168, 53.73969147300005), (-0.4311417309999115, 53.71430084800005), (-0.4496964179999168, 53.71430084800005), (-0.5104874339999128, 53.71430084800005), (-0.5444229809999115, 53.70945872600004), (-0.5515030589999128, 53.71116771000004), (-0.5762426419999542, 53.72565338700008), (-0.5791723299999489, 53.72797272300005), (-0.6370336579999503, 53.73200104400007), (-0.6583552729999269, 53.72797272300005), (-0.7264705069999309, 53.70062897300005), (-0.7173559239999463, 53.69867584800005), (-0.7085668609999516, 53.695746161000045), (-0.7001846999999088, 53.691839911000045), (-0.6924535799999489, 53.68699778900003), (-0.6774796209999181, 53.702826239000046), (-0.6498103509999282, 53.710598049000055), (-0.6195369129999335, 53.71185944200005), (-0.5961807929999168, 53.70807526200008), (-0.5554906889999529, 53.69049713700008), (-0.5447485019999476, 53.683579820000034), (-0.5299373039999296, 53.67767975500004), (-0.5140274729999419, 53.681301174000055), (-0.48631751199991413, 53.69448476800005), (-0.3072403639999379, 53.71426015800006), (-0.27936764199995423, 53.707098700000074), (-0.2603653639999379, 53.68699778900003), (-0.1886287099999322, 53.620428778000075), (-0.1440323559999115, 53.606634833000044), (-0.11318925699993088, 53.58462148600006), (-0.09593665299991017, 53.57713450700004), (-0.06094316299993352, 53.57396067900004), (-0.0466202459999181, 53.570379950000074), (9.199300006912381e-05, 53.53534577000005), (0.0959578790000819, 53.488348700000074), (0.11508222700007309, 53.48322174700007), (0.1340438160000872, 53.48061758000006), (0.15186608200008322, 53.475816148000035), (0.1678166020000731, 53.464504299000055), (0.17090905000009116, 53.457017320000034), (0.1731063160000872, 53.44676341400003), (0.17579186300008587, 53.43768952000005), (0.1814884770000731, 53.43374258000006), (0.1906030610000471, 53.43187083500004), (0.21949303500008455, 53.41950104400007), (0.21192467500009116, 53.41266510600008), (0.2293400400000678, 53.40477122600004), (0.24488366000008455, 53.39093659100007), (0.2561141290000819, 53.375067450000074), (0.26042728000004445, 53.36147695500006), (0.34213300900006516, 53.22630442900004), (0.35621178500008455, 53.18854401200008), (0.3566186860000471, 53.145738023000035), (0.3357853520000731, 53.093451239000046), (0.32984459700008983, 53.08649323100008), (0.31869550900006516, 53.083685614000046), (0.29883873800008587, 53.08120351800005), (0.2824813160000872, 53.07485586100006), (0.19304446700004974, 53.02008698100008), (0.17448978000004445, 53.01544830900008), (0.16081790500004445, 53.008978583000044), (0.08212324300006912, 52.938666083000044), (0.061167839000063395, 52.924994208000044), (0.03760826900008851, 52.919175523000035), (0.022146030000044448, 52.91258372600004), (0.008555535000084546, 52.89862702000005), (0.010264519000088512, 52.88646067900004), (0.04066002700005811, 52.88507721600007), (0.09253991000008455, 52.89252350500004), (0.10564212300005238, 52.88934967700004), (0.13347415500004445, 52.87518952000005), (0.14714603000004445, 52.87201569200005), (0.17090905000009116, 52.86212799700007), (0.22242272200008983, 52.813666083000044), (0.24675540500004445, 52.79572174700007), (0.2644962900000678, 52.80369700700004), (0.2856551440000885, 52.805568752000056), (0.32553144600007045, 52.803168036000045), (0.34180748800008587, 52.79743073100008), (0.36988366000008455, 52.77301666900007), (0.38453209700008983, 52.76837799700007), (0.38453209700008983, 52.77521393400008), (0.37924238400006516, 52.79083893400008), (0.39942467500009116, 52.80951569200005), (0.42554772200008983, 52.827378648000035), (0.4386499360000471, 52.840725002000056), (0.44402103000004445, 52.86505768400008), (0.45671634200004974, 52.89199453300006), (0.47234134200004974, 52.916449286000045), (0.48568769600007045, 52.93349844000005), (0.5202742850000845, 52.95526764500005), (0.5695906910000872, 52.96930573100008), (0.6233830090000652, 52.97565338700008), (0.6718856130000859, 52.97443268400008), (0.6643986340000652, 52.98187897300005), (0.6847436860000471, 52.986395575000074), (0.7067977220000898, 52.98322174700007), (0.7291772800000444, 52.97748444200005), (0.7504988940000885, 52.97443268400008), (0.8357039720000898, 52.97443268400008), (0.8754988940000885, 52.96816640800006), (0.9210718110000471, 52.95465729400007), (0.9684350920000497, 52.94749583500004), (1.013926629000082, 52.960150458000044), (1.0034285820000832, 52.96474844000005), (0.9915470710000704, 52.96747467700004), (0.9790145190000885, 52.968410549000055), (0.9660750660000872, 52.96759674700007), (0.9660750660000872, 52.97443268400008), (1.2746688160000872, 52.92918528900003), (1.3960067070000832, 52.89142487200007), (1.6442163420000497, 52.775824286000045), (1.6733504570000832, 52.75568268400008), (1.6970320970000898, 52.73102448100008), (1.7158309250000912, 52.68374258000006), (1.7341414720000898, 52.65460846600007), (1.747243686000047, 52.62518952000005), (1.7407332690000885, 52.60390859600005), (1.7468367850000845, 52.58852773600006), (1.7487085300000444, 52.568793036000045), (1.7475692070000832, 52.53278229400007), (1.7711694670000497, 52.48590729400007), (1.7671004570000832, 52.47695547100005), (1.7544051440000885, 52.46735260600008), (1.7292586600000845, 52.41559479400007), (1.7301538420000497, 52.405910549000055), (1.7278751960000704, 52.39630768400008), (1.6836043630000859, 52.32453034100007), (1.6518660820000832, 52.289129950000074), (1.6411238940000885, 52.28180573100008), (1.6305444670000497, 52.27045319200005), (1.6282658210000704, 52.24481842700004), (1.6308699880000859, 52.19977448100008), (1.6254988940000885, 52.18036530200004), (1.6074324880000859, 52.14594147300005), (1.6035262380000859, 52.127834377000056), (1.5892033210000704, 52.100816148000035), (1.5875757170000497, 52.08698151200008), (1.582286004000082, 52.08148834800005), (1.5036727220000898, 52.060980536000045), (1.4868270190000885, 52.04901764500005), (1.4720158210000704, 52.05621979400007), (1.4668074880000859, 52.04800039300005), (1.4638778000000912, 52.035142320000034), (1.4558211600000845, 52.028509833000044), (1.4489852220000898, 52.02496979400007), (1.4248153000000912, 52.00185781500005), (1.3548283210000704, 51.95404694200005), (1.3435164720000898, 51.94285716400009), (1.332286004000082, 51.94009023600006), (1.2644149100000845, 51.99437083500004), (1.2348738940000885, 52.00031159100007), (1.1852319670000497, 52.025091864000046), (1.1578882170000497, 52.028509833000044), (1.1578882170000497, 52.02167389500005), (1.1935327480000524, 52.00079987200007), (1.2143660820000832, 51.991441148000035), (1.2602645190000885, 51.984808661000045), (1.2707625660000872, 51.98151276200008), (1.2751570970000898, 51.976996161000045), (1.2744246750000912, 51.96088288000004), (1.2710067070000832, 51.95644765800006), (1.2507430350000845, 51.95962148600006), (1.2389429050000444, 51.958644924000055), (1.2176212900000678, 51.954331773000035), (1.2057397800000444, 51.95343659100007), (1.193207227000073, 51.955511786000045), (1.1652938160000872, 51.96702708500004), (1.1430770190000885, 51.966050523000035), (1.0944930350000845, 51.955959377000056), (1.0691024100000845, 51.95343659100007), (1.0954695970000898, 51.945746161000045), (1.2620548840000652, 51.939154364000046), (1.2819930350000845, 51.946600653000075), (1.278493686000047, 51.92792389500005), (1.1995548840000652, 51.87767161700003), (1.2122501960000704, 51.87164948100008), (1.2278751960000704, 51.86737702000005), (1.2644149100000845, 51.86399974200003), (1.2747501960000704, 51.870306708000044), (1.2822371750000912, 51.880560614000046), (1.2866317070000832, 51.88165924700007), (1.288259311000047, 51.860581773000035), (1.2763778000000912, 51.84479401200008), (1.2192488940000885, 51.811835028000075), (1.167816602000073, 51.790228583000044), (1.1354272800000444, 51.78172435100004), (1.0654403000000912, 51.77529531500005), (1.0466414720000898, 51.777044989000046), (1.0372827480000524, 51.78217194200005), (1.021332227000073, 51.80255768400008), (0.9887801440000885, 51.83026764500005), (0.9798283210000704, 51.84357330900008), (0.9770613940000885, 51.82461172100005), (0.9620874360000471, 51.813788153000075), (0.9251408210000704, 51.80255768400008), (0.8942977220000898, 51.78461334800005), (0.8869735040000819, 51.782131252000056), (0.8864038420000497, 51.776678778000075), (0.8834741550000444, 51.76471588700008), (0.8789168630000859, 51.75275299700007), (0.8737085300000444, 51.747300523000035), (0.8619897800000444, 51.74555084800005), (0.8459578790000819, 51.736761786000045), (0.8357039720000898, 51.733710028000075), (0.8234969410000872, 51.73383209800005), (0.8014429050000444, 51.73969147300005), (0.7917586600000845, 51.74115631700005), (0.7671004570000832, 51.739447333000044), (0.7208764980000524, 51.728176174000055), (0.6985783210000704, 51.720038153000075), (0.7142033210000704, 51.715277411000045), (0.7324324880000859, 51.713771877000056), (0.7492781910000872, 51.70848216400009), (0.7607528000000912, 51.692694403000075), (0.7890731130000859, 51.710150458000044), (0.8530379570000832, 51.71889883000006), (0.8835555350000845, 51.72687409100007), (0.9123641290000819, 51.741522528000075), (0.9300236340000652, 51.74359772300005), (0.9455672540000819, 51.733710028000075), (0.9474389980000524, 51.72524648600006), (0.9445906910000872, 51.71548086100006), (0.9404403000000912, 51.70799388200004), (0.9381616550000444, 51.706366278000075), (0.9401961600000845, 51.698431708000044), (0.9440210300000444, 51.69057851800005), (0.9518335300000444, 51.67841217700004), (0.9417423840000652, 51.673041083000044), (0.9379988940000885, 51.664496161000045), (0.9381616550000444, 51.64126211100006), (0.9347436860000471, 51.63589101800005), (0.9267684250000912, 51.630926825000074), (0.9114689460000704, 51.62384674700007), (0.9384871750000912, 51.624986070000034), (0.9480900400000678, 51.621527411000045), (0.9518335300000444, 51.61701080900008), (0.9244897800000444, 51.588324286000045), (0.8733016290000819, 51.559475002000056), (0.8282983730000524, 51.541856187000064), (0.8162541020000731, 51.537176825000074), (0.7712508470000898, 51.52826569200005), (0.6920679050000444, 51.536322333000044), (0.6643986340000652, 51.53506094000005), (0.6637475920000497, 51.53554922100005), (0.6505639980000524, 51.53579336100006), (0.6466577480000524, 51.53534577000005), (0.6440535820000832, 51.53506094000005), (0.6427514980000524, 51.53351471600007), (0.6233830090000652, 51.52204010600008), (0.6086531910000872, 51.51898834800005), (0.5952254570000832, 51.51862213700008), (0.5822860040000819, 51.51654694200005), (0.5688582690000885, 51.50836823100008), (0.5527449880000859, 51.51797109600005), (0.5472111340000652, 51.51772695500006), (0.5254012380000859, 51.516913153000075), (0.45606530000009116, 51.505560614000046), (0.45085696700004974, 51.49827708500004), (0.44800866000008455, 51.48822663000004), (0.4416610040000819, 51.47703685100004), (0.42847741000008455, 51.46710846600007), (0.41407311300008587, 51.46190013200004), (0.39918053500008455, 51.45840078300006), (0.38453209700008983, 51.453111070000034), (0.4484155610000471, 51.45994700700004), (0.45679772200008983, 51.46312083500004), (0.4614363940000885, 51.47016022300005), (0.46485436300008587, 51.47724030200004), (0.4695744150000678, 51.48041413000004), (0.5348413420000497, 51.49168528900009), (0.6948348320000832, 51.47703685100004), (0.7094832690000885, 51.47052643400008), (0.7219344410000872, 51.456284898000035), (0.7231551440000885, 51.44672272300005), (0.7131453790000819, 51.44122955900008), (0.6923934250000912, 51.439520575000074), (0.6565047540000819, 51.444525458000044), (0.6409611340000652, 51.44415924700007), (0.6093856130000859, 51.425116278000075), (0.5727645190000885, 51.419582424000055), (0.5545353520000731, 51.412176825000074), (0.5622664720000898, 51.40656159100007), (0.5691024100000845, 51.399603583000044), (0.5765080090000652, 51.39362213700008), (0.5859481130000859, 51.391058661000045), (0.6718856130000859, 51.391058661000045), (0.7129012380000859, 51.38422272300005), (0.7049259770000731, 51.39598216400009), (0.7003686860000471, 51.409816799000055), (0.7053328790000819, 51.41950104400007), (0.7264103520000731, 51.41901276200008), (0.7283634770000731, 51.406236070000034), (0.7392684250000912, 51.387925523000035), (0.7534285820000832, 51.371527411000045), (0.7644149100000845, 51.36440664300005), (0.9772241550000444, 51.34918854400007), (1.1009220710000704, 51.37323639500005), (1.4238387380000859, 51.39207591400009), (1.4482528000000912, 51.382879950000074), (1.4391382170000497, 51.35008372600004), (1.4355574880000859, 51.343736070000034), (1.430837436000047, 51.33779531500005), (1.4251408210000704, 51.33295319200005), (1.4186304050000444, 51.32965729400007), (1.3829858730000524, 51.329779364000046), (1.3776147800000444, 51.326239325000074), (1.3806258470000898, 51.304754950000074), (1.387868686000047, 51.28790924700007), (1.4043074880000859, 51.261379299000055), (1.4130965500000912, 51.22174713700008), (1.4047957690000885, 51.18353913000004), (1.3844507170000497, 51.151678778000075), (1.3571883470000898, 51.13100820500006), (1.2903751960000704, 51.116522528000075), (1.2629500660000872, 51.10325755400004), (1.2516382170000497, 51.10252513200004), (1.2299910820000832, 51.10370514500005), (1.2181095710000704, 51.10097890800006), (1.2082625660000872, 51.09467194200005), (1.1997176440000885, 51.087591864000046), (1.1920679050000444, 51.08258698100008), (1.1722111340000652, 51.077378648000035), (1.1067000660000872, 51.07636139500005), (1.0871688160000872, 51.07298411700003), (1.0669051440000885, 51.06439850500004), (1.027598504000082, 51.04165273600006), (0.9764103520000731, 50.99445221600007), (0.9664819670000497, 50.98273346600007), (0.9690861340000652, 50.95685455900008), (0.9798283210000704, 50.91815827000005), (0.9451603520000731, 50.909369208000044), (0.8698022800000444, 50.925116278000075), (0.8022567070000832, 50.93919505400004), (0.7624617850000845, 50.930894273000035), (0.6643986340000652, 50.870306708000044), (0.6241968110000471, 50.858710028000075), (0.4074813160000872, 50.829331773000035), (0.3702905610000471, 50.818793036000045), (0.36524498800008587, 50.81899648600006), (0.35425866000008455, 50.80963776200008), (0.34441165500004445, 50.79905833500004), (0.3422957690000885, 50.79515208500004), (0.3081160820000832, 50.780951239000046), (0.2710067070000832, 50.747381903000075), (0.23389733200008322, 50.74701569200005), (0.2141219410000872, 50.748928127000056), (0.16830488400006516, 50.759833075000074), (0.1573999360000471, 50.761053778000075), (0.12208092500009116, 50.76080963700008), (0.11304772200008983, 50.76414622600004), (0.09555097700007309, 50.775051174000055), (0.07703698000005943, 50.778998114000046), (0.034515821000070446, 50.780951239000046), (0.01754804800009424, 50.784857489000046), (-0.17316646999995555, 50.829006252000056), (-0.20612545499994894, 50.83104075700004), (-0.20889238199993088, 50.83010488500008), (-0.2331436839999128, 50.821926174000055), (-0.2696833979999269, 50.831284898000035), (-0.39757239499994057, 50.802069403000075), (-0.5689591139999379, 50.802069403000075), (-0.7327367829999503, 50.767279364000046), (-0.7415665359999366, 50.769232489000046), (-0.7498673169999392, 50.773871161000045), (-0.7582087879999335, 50.77708567900004), (-0.7675675119999141, 50.774725653000075), (-0.7731013659999348, 50.76601797100005), (-0.7662654289999296, 50.74713776200008), (-0.7709854809999115, 50.73688385600008), (-0.7899470689999362, 50.73004791900007), (-0.8128149079999503, 50.73476797100005), (-0.9041235019999476, 50.77187734600005), (-0.9114884109999366, 50.77781810100004), (-0.9058731759999432, 50.78803131700005), (-0.8924861319999309, 50.794623114000046), (-0.8636368479999419, 50.802069403000075), (-0.8636368479999419, 50.808254299000055), (-0.8736059239999463, 50.812933661000045), (-0.8931371739999463, 50.82534414300005), (-0.9046931629999335, 50.829331773000035), (-0.9095352859999366, 50.82599518400008), (-0.9217016269999476, 50.821600653000075), (-0.9289444649999155, 50.82282135600008), (-0.9190160799999489, 50.83616771000004), (-0.9297989569999459, 50.83999258000006), (-0.9391983709999181, 50.84324778900009), (-0.9707738919999542, 50.846991278000075), (-0.9948624339999128, 50.84707265800006), (-1.0018611319999309, 50.84711334800005), (-1.0207413399999155, 50.84365469000005), (-1.033558722999942, 50.82591380400004), (-1.0426326159999348, 50.80190664300005), (-1.0562231109999516, 50.78302643400008), (-1.0827530589999128, 50.780951239000046), (-1.1030167309999115, 50.79547760600008), (-1.0936173169999392, 50.812933661000045), (-1.0753067699999406, 50.83002350500004), (-1.069162563999953, 50.84365469000005), (-1.0873103509999282, 50.84979889500005), (-1.0881241529999102, 50.84975820500006), (-1.1498103509999282, 50.84666575700004), (-1.1647029289999296, 50.84365469000005), (-1.129709438999953, 50.825100002000056), (-1.1237686839999128, 50.818793036000045), (-1.1212052069999459, 50.79938385600008), (-1.1249080069999309, 50.788723049000055), (-1.1380509109999366, 50.780951239000046), (-1.1511124339999128, 50.78139883000006), (-1.1693416009999282, 50.78587474200003), (-1.1856176419999542, 50.79242584800005), (-1.1926163399999155, 50.79865143400008), (-1.1992895169999542, 50.807928778000075), (-1.231516079999949, 50.81891510600008), (-1.2551977199999556, 50.83193594000005), (-1.288156704999949, 50.839178778000075), (-1.3014216789999296, 50.84365469000005), (-1.3185929029999102, 50.85691966400009), (-1.338937954999949, 50.872707424000055), (-1.4492895169999542, 50.91205475500004), (-1.4664200509999432, 50.91815827000005), (-1.4664200509999432, 50.91193268400008), (-1.4564509759999282, 50.90875885600008), (-1.4379776679999168, 50.90131256700005), (-1.4256078769999476, 50.900091864000046), (-1.4011124339999128, 50.88117096600007), (-1.323068813999953, 50.82575104400007), (-1.3142797519999476, 50.812160549000055), (-1.3172908189999362, 50.80023834800005), (-1.3398331369999141, 50.79515208500004), (-1.4039607409999348, 50.79157135600008), (-1.4186905589999128, 50.788397528000075), (-1.4113663399999155, 50.78489817900004), (-1.4049373039999296, 50.780951239000046), (-1.4049373039999296, 50.774725653000075), (-1.4505102199999556, 50.76935455900008), (-1.4762263659999348, 50.76341380400004), (-1.4875382149999155, 50.75771719000005), (-1.491932745999918, 50.75726959800005), (-1.5247289699999556, 50.761053778000075), (-1.5571996739999463, 50.72329336100006), (-1.559396938999953, 50.71922435100004), (-1.5611873039999296, 50.71898021000004), (-1.5807185539999296, 50.722642320000034), (-1.6021215489999463, 50.731756903000075), (-1.6706436839999128, 50.74005768400008), (-1.672922329999949, 50.74005768400008), (-1.6930232409999348, 50.739935614000046), (-1.7150772779999102, 50.73578522300005), (-1.7535294259999432, 50.72284577000005), (-1.7717179029999102, 50.72011953300006), (-1.7974340489999463, 50.723171291000085), (-1.8350723949999406, 50.72768789300005), (-1.8574112619999141, 50.72695547100005), (-1.8773494129999335, 50.72284577000005), (-1.8963516919999392, 50.71629466400009), (-1.8968806629999335, 50.716050523000035), (-1.9138891269999476, 50.70742422100005), (-1.9291072259999282, 50.69586823100008), (-1.9400121739999463, 50.69082265800006), (-1.9443253249999088, 50.69765859600005), (-1.946115688999953, 50.707912502000056), (-1.9492895169999542, 50.713324286000045), (-1.9877009759999282, 50.72011953300006), (-2.01390540299991, 50.71893952000005), (-2.0219620429999168, 50.72011953300006), (-2.0254613919999542, 50.723863023000035), (-2.026193813999953, 50.72508372600004), (-2.0338435539999296, 50.73712799700007), (-2.038970506999931, 50.739935614000046), (-2.0480850899999155, 50.734808661000045), (-2.0826716789999296, 50.69896067900004), (-2.0695694649999155, 50.700100002000056), (-2.0577286449999406, 50.702826239000046), (-2.046620245999918, 50.70726146000004), (-2.0356339179999168, 50.713324286000045), (-2.0141495429999168, 50.688788153000075), (-2.0025121739999463, 50.681301174000055), (-1.984120245999918, 50.67853424700007), (-1.9674373039999296, 50.67865631700005), (-1.9527888659999348, 50.67658112200007), (-1.9458715489999463, 50.668850002000056), (-1.9529516269999476, 50.65184153900009), (-1.9382218089999128, 50.645819403000075), (-1.9324845039999445, 50.64443594000005), (-1.9672745429999168, 50.61709219000005), (-1.965199347999942, 50.60219961100006), (-1.9837133449999556, 50.59662506700005), (-2.065174933999913, 50.59552643400008), (-2.082183397999927, 50.59784577000005), (-2.1573380199999406, 50.62051015800006), (-2.3426407539999445, 50.63377513200004), (-2.377064581999946, 50.64752838700008), (-2.398345506999931, 50.64557526200008), (-2.435902472999942, 50.63751862200007), (-2.447621222999942, 50.62787506700005), (-2.4600723949999406, 50.60651276200008), (-2.465646938999953, 50.585150458000044), (-2.4564509759999282, 50.575506903000075), (-2.4312231109999516, 50.57025788000004), (-2.428700324999909, 50.55756256700005), (-2.4392797519999476, 50.54181549700007), (-2.45335852799991, 50.52765534100007), (-2.4595434239999463, 50.52765534100007), (-2.4603572259999282, 50.56549713700008), (-2.4835098949999406, 50.59039948100008), (-2.6929418609999516, 50.69281647300005), (-2.8648168609999516, 50.73379140800006), (-2.887318488999938, 50.734361070000034), (-2.94554602799991, 50.725816148000035), (-2.9627579419999392, 50.72329336100006), (-2.998199022999927, 50.708238023000035), (-3.021839972999942, 50.70648834800005), (-3.059722459999932, 50.713324286000045), (-3.071359829999949, 50.711004950000074), (-3.0941462879999335, 50.69896067900004), (-3.099232550999943, 50.69708893400008), (-3.115834113999938, 50.68797435100004), (-3.1254776679999168, 50.68528880400004), (-3.135894334999932, 50.68593984600005), (-3.1551407539999445, 50.69135163000004), (-3.1664932929999168, 50.69281647300005), (-3.1856176419999542, 50.690741278000075), (-3.2191462879999335, 50.68081289300005), (-3.2598363919999542, 50.67454661700003), (-3.271392381999931, 50.664496161000045), (-3.280425584999932, 50.65119049700007), (-3.2955623039999296, 50.63751862200007), (-3.368153449999909, 50.61709219000005), (-3.390736456999946, 50.61782461100006), (-3.4075414699999556, 50.62128327000005), (-3.420969204999949, 50.62946198100008), (-3.433338995999918, 50.64443594000005), (-3.446359829999949, 50.66828034100007), (-3.4504288399999155, 50.672308661000045), (-3.453277147999927, 50.67328522300005), (-3.455433722999942, 50.675441799000055), (-3.458607550999943, 50.67755768400008), (-3.4644262359999516, 50.67853424700007), (-3.467762824999909, 50.67641836100006), (-3.468902147999927, 50.67169830900008), (-3.467844204999949, 50.66697825700004), (-3.45531165299991, 50.657904364000046), (-3.4420466789999296, 50.62352122600004), (-3.433338995999918, 50.610256252000056), (-3.451161261999914, 50.59943268400008), (-3.4672745429999168, 50.585598049000055), (-3.4817602199999556, 50.56854889500005), (-3.494862433999913, 50.548163153000075), (-3.505970831999946, 50.520819403000075), (-3.505034959999932, 50.501206773000035), (-3.487456834999932, 50.459418036000045), (-3.509755011999914, 50.45848216400009), (-3.532134568999936, 50.454779364000046), (-3.549427863999938, 50.446519273000035), (-3.556263800999943, 50.43211497600004), (-3.5493057929999168, 50.41559479400007), (-3.531971808999913, 50.410223700000074), (-3.487456834999932, 50.41156647300005), (-3.487456834999932, 50.40477122600004), (-3.4974666009999282, 50.38735586100006), (-3.49828040299991, 50.383693752000056), (-3.5073136059999115, 50.382798570000034), (-3.5149633449999556, 50.37995026200008), (-3.520130988999938, 50.37482330900008), (-3.5269262359999516, 50.34979889500005), (-3.5388891269999476, 50.34442780200004), (-3.5545141269999476, 50.347642320000034), (-3.57054602799991, 50.35639069200005), (-3.577788865999935, 50.334051825000074), (-3.5991104809999115, 50.325832424000055), (-3.6215714179999168, 50.321926174000055), (-3.631988084999932, 50.31232330900008), (-3.6373591789999296, 50.29539622600004), (-3.6475723949999406, 50.27456289300005), (-3.653309699999909, 50.25104401200008), (-3.6456192699999406, 50.22601959800005), (-3.6606339179999168, 50.22101471600007), (-3.700917120999918, 50.21352773600006), (-3.7180069649999155, 50.21238841400009), (-3.740386522999927, 50.21588776200008), (-3.758615688999953, 50.22174713700008), (-3.774240688999953, 50.22296784100007), (-3.788970506999931, 50.21238841400009), (-3.826324022999927, 50.23419830900008), (-3.8841853509999282, 50.280462958000044), (-3.949940558999913, 50.31899648600006), (-3.9610082669999542, 50.322251695000034), (-3.9702042309999115, 50.320746161000045), (-3.995757615999935, 50.311428127000056), (-4.005604620999918, 50.30923086100006), (-4.011341925999943, 50.30695221600007), (-4.024769660999937, 50.29718659100007), (-4.032948370999918, 50.294907945000034), (-4.044056769999941, 50.29645416900007), (-4.054351365999935, 50.30036041900007), (-4.070220506999931, 50.30923086100006), (-4.067941860999952, 50.31281159100007), (-4.064035610999952, 50.322251695000034), (-4.086008266999954, 50.326239325000074), (-4.1082657539999445, 50.33661530200004), (-4.118723110999952, 50.35187409100007), (-4.1049698559999115, 50.37067291900007), (-4.141753709999932, 50.36904531500005), (-4.1527400379999335, 50.37067291900007), (-4.1655167309999115, 50.37636953300006), (-4.171457485999952, 50.382798570000034), (-4.175770636999914, 50.39085521000004), (-4.18382727799991, 50.40106842700004), (-4.191477016999954, 50.417629299000055), (-4.18390865799995, 50.431708075000074), (-4.1703181629999335, 50.44513580900008), (-4.159535285999937, 50.459418036000045), (-4.179432745999918, 50.45307038000004), (-4.189564581999946, 50.45368073100008), (-4.200550910999937, 50.459418036000045), (-4.203684048999946, 50.45140208500004), (-4.204741990999935, 50.44867584800005), (-4.2123917309999115, 50.441473700000074), (-4.222523566999939, 50.43797435100004), (-4.234730597999942, 50.43829987200007), (-4.234730597999942, 50.43211497600004), (-4.2202042309999115, 50.425848700000074), (-4.2161352199999556, 50.415716864000046), (-4.219715949999909, 50.40509674700007), (-4.228505011999914, 50.397365627000056), (-4.2414444649999155, 50.39468008000006), (-4.2899063789999445, 50.397365627000056), (-4.273019985999952, 50.38190338700008), (-4.216175910999937, 50.38776276200008), (-4.1937556629999335, 50.37689850500004), (-4.228505011999914, 50.37067291900007), (-4.228505011999914, 50.36383698100008), (-4.220122850999928, 50.365301825000074), (-4.200550910999937, 50.36383698100008), (-4.207997199999909, 50.35639069200005), (-4.180043097999942, 50.35639069200005), (-4.180043097999942, 50.35016510600008), (-4.191314256999931, 50.34756094000005), (-4.197987433999913, 50.342230536000045), (-4.199126756999931, 50.33539459800005), (-4.1937556629999335, 50.32843659100007), (-4.1937556629999335, 50.322251695000034), (-4.214995897999927, 50.323146877000056), (-4.225697394999941, 50.33539459800005), (-4.235096808999913, 50.34955475500004), (-4.2523494129999335, 50.35639069200005), (-4.337717251999948, 50.37067291900007), (-4.383697068999936, 50.36749909100007), (-4.456206834999932, 50.33820221600007), (-4.4953507149999155, 50.32843659100007), (-4.659820115999935, 50.322251695000034), (-4.659575975999928, 50.32062409100007), (-4.662709113999938, 50.31777578300006), (-4.667795376999948, 50.315334377000056), (-4.673451300999943, 50.31541575700004), (-4.687163865999935, 50.34271881700005), (-4.694325324999909, 50.343451239000046), (-4.700184699999909, 50.34088776200008), (-4.705555792999917, 50.337551174000055), (-4.7113337879999335, 50.33588288000004), (-4.731556769999941, 50.33466217700004), (-4.752105272999927, 50.33030833500004), (-4.763295050999943, 50.32208893400008), (-4.755441860999952, 50.30923086100006), (-4.755441860999952, 50.30174388200004), (-4.7623591789999296, 50.298041083000044), (-4.771636522999927, 50.29157135600008), (-4.779855923999946, 50.28432851800005), (-4.783355272999927, 50.27789948100008), (-4.7818904289999296, 50.27179596600007), (-4.776519334999932, 50.26508209800005), (-4.776519334999932, 50.26080963700008), (-4.788441535999937, 50.24209219000005), (-4.790150519999941, 50.23655833500004), (-4.800160285999937, 50.22955963700008), (-4.849720831999946, 50.23456452000005), (-4.868723110999952, 50.22943756700005), (-4.887318488999938, 50.21499258000006), (-4.904774542999917, 50.20844147300005), (-4.947255011999914, 50.19936758000006), (-4.960682745999918, 50.19049713700008), (-5.002430792999917, 50.14411041900007), (-5.014556443999936, 50.15656159100007), (-5.0203751289999445, 50.19196198100008), (-5.033192511999914, 50.19936758000006), (-5.05296790299991, 50.19578685100004), (-5.053618943999936, 50.18691640800006), (-5.051869269999941, 50.17552317900004), (-5.064564581999946, 50.16461823100008), (-5.064564581999946, 50.15839264500005), (-5.058501756999931, 50.155462958000044), (-5.043446417999917, 50.14411041900007), (-5.051869269999941, 50.144598700000074), (-5.058461066999939, 50.14272695500006), (-5.070790167999917, 50.13727448100008), (-5.08031165299991, 50.13271719000005), (-5.081613735999952, 50.12539297100005), (-5.080962693999936, 50.117173570000034), (-5.085031704999949, 50.10993073100008), (-5.093902147999927, 50.105536200000074), (-5.125965949999909, 50.09634023600006), (-5.114654100999928, 50.09662506700005), (-5.106068488999938, 50.09511953300006), (-5.091867641999954, 50.089504299000055), (-5.086903449999909, 50.089056708000044), (-5.075347459999932, 50.09048086100006), (-5.070790167999917, 50.089504299000055), (-5.068470831999946, 50.085150458000044), (-5.064930792999917, 50.07184479400007), (-5.06086178299995, 50.06903717700004), (-5.056507941999939, 50.060614325000074), (-5.069488084999932, 50.042181708000044), (-5.0980525379999335, 50.01439036700003), (-5.107289191999939, 50.013006903000075), (-5.127430792999917, 50.01544830900008), (-5.139637824999909, 50.01439036700003), (-5.146473761999914, 50.01056549700007), (-5.176136847999942, 49.987941799000055), (-5.18773352799991, 49.964504299000055), (-5.191151495999918, 49.95913320500006), (-5.200103318999936, 49.961371161000045), (-5.210357225999928, 49.96674225500004), (-5.240386522999927, 49.988348700000074), (-5.245228644999941, 49.99310944200005), (-5.2495011059999115, 50.000067450000074), (-5.253041144999941, 50.01264069200005), (-5.25226803299995, 50.020697333000044), (-5.252674933999913, 50.027777411000045), (-5.259755011999914, 50.03766510600008), (-5.2884008449999556, 50.067694403000075), (-5.304351365999935, 50.08026764500005), (-5.323963995999918, 50.089504299000055), (-5.384185350999928, 50.10797760600008), (-5.424712693999936, 50.11273834800005), (-5.458119269999941, 50.125881252000056), (-5.47484290299991, 50.13043854400007), (-5.495676235999952, 50.12962474200003), (-5.521839972999942, 50.12372467700004), (-5.540923631999931, 50.11347077000005), (-5.540638800999943, 50.09975820500006), (-5.5346573559999115, 50.08234284100007), (-5.5455623039999296, 50.06891510600008), (-5.563465949999909, 50.05963776200008), (-5.57843990799995, 50.054754950000074), (-5.61945553299995, 50.046210028000075), (-5.667388475999928, 50.04287344000005), (-5.705148891999954, 50.05231354400007), (-5.715646938999953, 50.08270905200004), (-5.705962693999936, 50.08348216400009), (-5.698801235999952, 50.08539459800005), (-5.694488084999932, 50.089504299000055), (-5.694406704999949, 50.095770575000074), (-5.697092251999948, 50.10053131700005), (-5.700306769999941, 50.103216864000046), (-5.701975063999953, 50.103176174000055), (-5.707386847999942, 50.12201569200005), (-5.70921790299991, 50.13263580900008), (-5.70539303299995, 50.13727448100008), (-5.7035212879999335, 50.140611070000034), (-5.684641079999949, 50.16152578300006), (-5.676747199999909, 50.16502513200004), (-5.647368943999936, 50.17206452000005), (-5.583607550999943, 50.19586823100008), (-5.549427863999938, 50.20351797100005), (-5.5109757149999155, 50.21946849200003), (-5.4891251289999445, 50.21979401200008), (-5.458119269999941, 50.20075104400007), (-5.437977667999917, 50.19432200700004), (-5.417388475999928, 50.202460028000075), (-5.402943488999938, 50.21735260600008), (-5.395863410999937, 50.22724030200004), (-5.39289303299995, 50.23655833500004), (-5.3875626289999445, 50.240301825000074), (-5.351918097999942, 50.240301825000074), (-5.3148494129999335, 50.253607489000046), (-5.200306769999941, 50.33075592700004), (-5.1635636059999115, 50.34723541900007), (-5.1498917309999115, 50.35016510600008), (-5.146473761999914, 50.35529205900008), (-5.145659959999932, 50.366888739000046), (-5.147043423999946, 50.37938060100004), (-5.153675910999937, 50.39948151200008), (-5.142404751999948, 50.40448639500005), (-5.12726803299995, 50.40521881700005), (-5.119740363999938, 50.40477122600004), (-5.0502823559999115, 50.42869700700004), (-5.0481664699999556, 50.43439362200007), (-5.038726365999935, 50.44790273600006), (-5.029774542999917, 50.486761786000045), (-5.0286352199999556, 50.507025458000044), (-5.025257941999939, 50.52423737200007), (-5.015614386999914, 50.53803131700005), (-4.9955948559999115, 50.548163153000075), (-4.975168423999946, 50.548163153000075), (-4.967844204999949, 50.55158112200007), (-4.954823370999918, 50.56122467700004), (-4.947255011999914, 50.56244538000004), (-4.941477016999954, 50.55695221600007), (-4.937123175999943, 50.54531484600005), (-4.9344376289999445, 50.53164297100005), (-4.933583136999914, 50.52024974200003), (-4.926869269999941, 50.52289459800005), (-4.924305792999917, 50.52448151200008), (-4.920521613999938, 50.52765534100007), (-4.902414516999954, 50.52057526200008), (-4.860951300999943, 50.519191799000055), (-4.844838019999941, 50.51406484600005), (-4.855824347999942, 50.527411200000074), (-4.87328040299991, 50.534084377000056), (-4.906239386999914, 50.54197825700004), (-4.921864386999914, 50.55487702000005), (-4.92023678299995, 50.564154364000046), (-4.915191209999932, 50.57249583500004), (-4.920521613999938, 50.58295319200005), (-4.920521613999938, 50.589178778000075), (-4.895659959999932, 50.585923570000034), (-4.821197068999936, 50.589178778000075), (-4.7924698559999115, 50.59520091400009), (-4.7766007149999155, 50.60984935100004), (-4.765044725999928, 50.62799713700008), (-4.7492569649999155, 50.64443594000005), (-4.755441860999952, 50.659369208000044), (-4.751942511999914, 50.67007070500006), (-4.741932745999918, 50.67487213700008), (-4.728138800999943, 50.672308661000045), (-4.657297329999949, 50.71112702000005), (-4.645578579999949, 50.723537502000056), (-4.637806769999941, 50.74115631700005), (-4.619007941999939, 50.754787502000056), (-4.577259894999941, 50.774725653000075), (-4.5501195949999556, 50.80955638200004), (-4.55492102799991, 50.897772528000075), (-4.543771938999953, 50.93919505400004), (-4.536854620999918, 50.94757721600007), (-4.5226944649999155, 50.972723700000074), (-4.5266820949999556, 50.98037344000005), (-4.530425584999932, 50.99469635600008), (-4.531320766999954, 51.008693752000056), (-4.526437954999949, 51.014960028000075), (-4.437326626999948, 51.014960028000075), (-4.4264216789999296, 51.01268138200004), (-4.4057511059999115, 51.00287506700005), (-4.3957413399999155, 51.00067780200004), (-4.337717251999948, 50.99664948100008), (-4.317290818999936, 51.00067780200004), (-4.302316860999952, 51.007513739000046), (-4.234730597999942, 51.05532461100006), (-4.2291560539999296, 51.06110260600008), (-4.224680141999954, 51.06708405200004), (-4.218495245999918, 51.07245514500005), (-4.207997199999909, 51.07636139500005), (-4.214263475999928, 51.086004950000074), (-4.226307745999918, 51.11322663000004), (-4.228505011999914, 51.120428778000075), (-4.2319229809999115, 51.12669505400004), (-4.249012824999909, 51.14288971600007), (-4.255767381999931, 51.15151601800005), (-4.222320115999935, 51.149725653000075), (-4.214833136999914, 51.15151601800005), (-4.208363410999937, 51.16229889500005), (-4.2098282539999445, 51.17283763200004), (-4.217274542999917, 51.18138255400004), (-4.228505011999914, 51.18622467700004), (-4.228505011999914, 51.19245026200008), (-4.152333136999914, 51.21161530200004), (-3.969471808999913, 51.22239817900004), (-3.931996222999942, 51.231350002000056), (-3.9131973949999406, 51.23338450700004), (-3.840891079999949, 51.23338450700004), (-3.818959113999938, 51.23607005400004), (-3.787098761999914, 51.24677155200004), (-3.769154425999943, 51.247707424000055), (-3.6397598949999406, 51.22638580900008), (-3.559315558999913, 51.22809479400007), (-3.434193488999938, 51.20978424700007), (-3.4043676419999542, 51.19204336100006), (-3.38499915299991, 51.18622467700004), (-3.2707413399999155, 51.18939850500004), (-3.198882615999935, 51.203558661000045), (-3.1627498039999296, 51.206732489000046), (-3.096750454999949, 51.20453522300005), (-3.057525193999936, 51.20815664300005), (-3.029286261999914, 51.220404364000046), (-3.021839972999942, 51.21356842700004), (-3.0355525379999335, 51.199286200000074), (-3.021839972999942, 51.19245026200008), (-3.004790818999936, 51.21312083500004), (-3.0013321609999366, 51.220404364000046), (-2.9995824859999516, 51.23322174700007), (-3.0015356109999516, 51.23969147300005), (-3.0049942699999406, 51.24506256700005), (-3.008168097999942, 51.25454336100006), (-3.0076391269999476, 51.29197825700004), (-3.0106095039999445, 51.310980536000045), (-3.021839972999942, 51.32282135600008), (-3.0024307929999168, 51.31907786700003), (-2.992176886999914, 51.321926174000055), (-2.992095506999931, 51.32204824400009), (-2.988392706999946, 51.33112213700008), (-2.9877823559999115, 51.34666575700004), (-2.9798884759999282, 51.35586172100005), (-2.965972459999932, 51.364935614000046), (-2.959584113999938, 51.374253648000035), (-2.9746801419999542, 51.38422272300005), (-2.9529516269999476, 51.398504950000074), (-2.9210098949999406, 51.39443594000005), (-2.8841853509999282, 51.41697825700004), (-2.816395636999914, 51.47361888200004), (-2.798573370999918, 51.48261139500005), (-2.780873175999943, 51.48908112200007), (-2.7612198559999115, 51.49286530200004), (-2.7376195949999556, 51.49408600500004), (-2.716420050999943, 51.49957916900007), (-2.6961563789999445, 51.51264069200005), (-2.6078181629999335, 51.60736725500004), (-2.599598761999914, 51.611395575000074), (-2.5892227859999366, 51.61424388200004), (-2.580433722999942, 51.61863841400009), (-2.5768123039999296, 51.62750885600008), (-2.57445227799991, 51.63572825700004), (-2.568959113999938, 51.644964911000045), (-2.562245245999918, 51.65338776200008), (-2.556385870999918, 51.65924713700008), (-2.499175584999932, 51.69676341400009), (-2.464995897999927, 51.725897528000075), (-2.4477432929999168, 51.73187897300005), (-2.404896613999938, 51.74115631700005), (-2.3885391919999392, 51.750433661000045), (-2.380767381999931, 51.76190827000005), (-2.3833715489999463, 51.77326080900008), (-2.398060675999943, 51.782131252000056), (-2.4024145169999542, 51.76357656500005), (-2.4203995429999168, 51.753119208000044), (-2.4434301419999542, 51.74843984600005), (-2.4632869129999335, 51.747300523000035), (-2.482085740999935, 51.74286530200004), (-2.495838995999918, 51.73200104400007), (-2.507964647999927, 51.71857330900008), (-2.5221248039999296, 51.706366278000075), (-2.581695115999935, 51.681708075000074), (-2.5911352199999556, 51.67536041900007), (-2.600209113999938, 51.66559479400007), (-2.6653539699999556, 51.617254950000074)]\n", + "fig, ax = plt.subplots()\n", + "\n", + "x = tuple(map(merc_x, lons))\n", + "y = tuple(map(merc_y, lats))\n", + "\n", + "ax.tricontourf(x, y, tuple(datapoints.values()))\n", + "ax.plot(x, y, 'wo', ms=3)\n", + "ax.plot(\n", + " [merc_x(coord[0]) for coord in gb_boundary],\n", + " [merc_y(coord[1]) for coord in gb_boundary],\n", + " 'k-'\n", + ")\n", + "ax.set_aspect(1.0)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "apd.aggregation", + "language": "python", + "name": "apd.aggregation" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Ch12/apd.aggregation-chapter12/Pipfile b/Ch12/apd.aggregation-chapter12/Pipfile new file mode 100644 index 0000000..32814fd --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/Pipfile @@ -0,0 +1,26 @@ +[[source]] +name = "pypi" +url = "https://pypi.org/simple" +verify_ssl = true + +[dev-packages] +pytest = "*" +pytest-cov = "*" +pytest-asyncio = "*" +mypy = "*" +flake8 = "*" +black = "*" +pre-commit = "*" +wheel = "*" +twine = "*" +sqlalchemy-stubs = "*" +yappi = "*" + +[packages] +apd-aggregation = {editable = true,extras = ["jupyter"],path = "."} +apd-sensors = {editable = true,extras = ["webapp"],path = "./../code"} + +[requires] + +[pipenv] +allow_prereleases = true diff --git a/Ch12/apd.aggregation-chapter12/Pipfile.lock b/Ch12/apd.aggregation-chapter12/Pipfile.lock new file mode 100644 index 0000000..e3c4287 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/Pipfile.lock @@ -0,0 +1,987 @@ +{ + "_meta": { + "hash": { + "sha256": "1c3bf4b1b80582f2eba10739c2798bff13bb3d7662a9e5def7a2be63683711e8" + }, + "pipfile-spec": 6, + "requires": {}, + "sources": [ + { + "name": "pypi", + "url": "https://pypi.org/simple", + "verify_ssl": true + } + ] + }, + "default": { + "aiohttp": { + "hashes": [ + "sha256:173267050501e1537293df06723bc5e719990889e2820ba3932969983892e960", + "sha256:438f1f1555c02c50894604d94944cff188fe138b46467b7fa99fdceb51ab5842", + "sha256:90bed250d1435aef33a1f8c439c5056d5d25a44fe6caf33fcafafed805bad4dc", + "sha256:93c3b14747413f38f094a60e98f55e73831f0c9a23ae7faa3dc97d8963e13021", + "sha256:a6e70a38d883185b1921d8122759661c39ade54949770394412a9e713fec6fa7", + "sha256:b5036133c1ba77ed5a70208d2a021a90b76fdf8bf523ae33dae46d4f4380d86f", + "sha256:c138451a82cdbf65cddf952941d5c7a1a2cac8ce3bc618dee8d889e5251ec7a5", + "sha256:c94770383e49f9cc5912b926364ad022a6c8a5dbf5498933ca3a5713c6daf738", + "sha256:ea26536ae06df6dac021303a0df72c79e55512070e6a304ba93ad468a3a754dc" + ], + "version": "==4.0.0a1" + }, + "alembic": { + "hashes": [ + "sha256:035ab00497217628bf5d0be82d664d8713ab13d37b630084da8e1f98facf4dbf" + ], + "version": "==1.4.2" + }, + "apd-aggregation": { + "editable": true, + "extras": [ + "jupyter" + ], + "path": "." + }, + "apd-sensors": { + "editable": true, + "extras": [ + "webapp" + ], + "path": "./../code" + }, + "async-timeout": { + "hashes": [ + "sha256:0c3c816a028d47f659d6ff5c745cb2acf1f966da1fe5c19c77a70282b25f4c5f", + "sha256:4291ca197d287d274d0b6cb5d6f8f8f82d434ed288f962539ff18cc9012f9ea3" + ], + "version": "==3.0.1" + }, + "attrs": { + "hashes": [ + "sha256:08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c", + "sha256:f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72" + ], + "version": "==19.3.0" + }, + "backcall": { + "hashes": [ + "sha256:38ecd85be2c1e78f77fd91700c76e14667dc21e2713b63876c0eb901196e01e4", + "sha256:bbbf4b1e5cd2bdb08f915895b51081c041bac22394fdfcfdfbe9f14b77c08bf2" + ], + "version": "==0.1.0" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:8a18b4ea89d8820c5d0c7da8a64b2c324b4dabb695804dbfea19b9be9d88c0cc", + "sha256:e345d143d80bf5ee7534056164e5e112ea5e22716bbb1ce727941f4c8b471b9a" + ], + "version": "==7.1.1" + }, + "colorama": { + "hashes": [ + "sha256:7d73d2a99753107a36ac6b455ee49046802e59d9d076ef8e47b61499fa29afff", + "sha256:e96da0d330793e2cb9485e9ddfd918d456036c7149416295932478192f4436a1" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.3" + }, + "decorator": { + "hashes": [ + "sha256:41fa54c2a0cc4ba648be4fd43cff00aedf5b9465c9bf18d64325bc225f08f760", + "sha256:e3a62f0520172440ca0dcc823749319382e377f37f140a0b99ef45fecb84bfe7" + ], + "version": "==4.4.2" + }, + "flask": { + "hashes": [ + "sha256:4efa1ae2d7c9865af48986de8aeb8504bf32c7f3d6fdc9353d34b21f4b127060", + "sha256:8a4fdd8936eba2512e9c85df320a37e694c93945b33ef33c89946a340a238557" + ], + "version": "==1.1.2" + }, + "idna": { + "hashes": [ + "sha256:7588d1c14ae4c77d74036e8c22ff447b26d0fde8f007354fd48a7814db15b7cb", + "sha256:a068a21ceac8a4d63dbfd964670474107f541babbd2250d61922f029858365fa" + ], + "version": "==2.9" + }, + "ipykernel": { + "hashes": [ + "sha256:003c9c1ab6ff87d11f531fee2b9ca59affab19676fc6b2c21da329aef6e73499", + "sha256:2937373c356fa5b634edb175c5ea0e4b25de8008f7c194f2d49cfbd1f9c970a8" + ], + "version": "==5.2.1" + }, + "ipython": { + "hashes": [ + "sha256:ca478e52ae1f88da0102360e57e528b92f3ae4316aabac80a2cd7f7ab2efb48a", + "sha256:eb8d075de37f678424527b5ef6ea23f7b80240ca031c2dd6de5879d687a65333" + ], + "version": "==7.13.0" + }, + "ipython-genutils": { + "hashes": [ + "sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8", + "sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8" + ], + "version": "==0.2.0" + }, + "ipywidgets": { + "hashes": [ + "sha256:87b30e4dfd68a7c4e3c6462eedb95ac7d1a776cc182f87168d960151151de31c", + "sha256:9cb5590e583b8ea309a2d8e88fb02e44d054df2a77891f7d3356b0b883b99d3d" + ], + "version": "==8.0.0a0" + }, + "itsdangerous": { + "hashes": [ + "sha256:321b033d07f2a4136d3ec762eac9f16a10ccd60f53c0c91af90217ace7ba1f19", + "sha256:b12271b2047cb23eeb98c8b5622e2e5c5e9abd9784a153e9d8ef9cb4dd09d749" + ], + "version": "==1.1.0" + }, + "jedi": { + "hashes": [ + "sha256:cd60c93b71944d628ccac47df9a60fec53150de53d42dc10a7fc4b5ba6aae798", + "sha256:df40c97641cb943661d2db4c33c2e1ff75d491189423249e989bcea4464f3030" + ], + "version": "==0.17.0" + }, + "jinja2": { + "hashes": [ + "sha256:c10142f819c2d22bdcd17548c46fa9b77cf4fda45097854c689666bf425e7484", + "sha256:c922560ac46888d47384de1dbdc3daaa2ea993af4b26a436dec31fa2c19ec668" + ], + "version": "==3.0.0a1" + }, + "jsonschema": { + "hashes": [ + "sha256:4e5b3cf8216f577bee9ce139cbe72eca3ea4f292ec60928ff24758ce626cd163", + "sha256:c8a85b28d377cc7737e46e2d9f2b4f44ee3c0e1deac6bf46ddefc7187d30797a" + ], + "version": "==3.2.0" + }, + "jupyter-client": { + "hashes": [ + "sha256:3a32fa4d0b16d1c626b30c3002a62dfd86d6863ed39eaba3f537fade197bb756", + "sha256:cde8e83aab3ec1c614f221ae54713a9a46d3bf28292609d2db1b439bef5a8c8e" + ], + "version": "==6.1.3" + }, + "jupyter-core": { + "hashes": [ + "sha256:394fd5dd787e7c8861741880bdf8a00ce39f95de5d18e579c74b882522219e7e", + "sha256:a4ee613c060fe5697d913416fc9d553599c05e4492d58fac1192c9a6844abb21" + ], + "version": "==4.6.3" + }, + "mako": { + "hashes": [ + "sha256:3139c5d64aa5d175dbafb95027057128b5fbd05a40c53999f3905ceb53366d9d", + "sha256:8e8b53c71c7e59f3de716b6832c4e401d903af574f6962edbbbf6ecc2a5fe6c9" + ], + "version": "==1.1.2" + }, + "markupsafe": { + "hashes": [ + "sha256:06358015a4dee8ee23ae426bf885616ab3963622defd829eb45b44e3dee3515f", + "sha256:0b0c4fc852c5f02c6277ef3b33d23fcbe89b1b227460423e3335374da046b6db", + "sha256:267677fc42afed5094fc5ea1c4236bbe4b6a00fe4b08e93451e65ae9048139c7", + "sha256:303cb70893e2c345588fb5d5b86e0ca369f9bb56942f03064c5e3e75fa7a238a", + "sha256:3c9b624a0d9ed5a5093ac4edc4e823e6b125441e60ef35d36e6f4a6fdacd5054", + "sha256:42033e14cae1f6c86fc0c3e90d04d08ce73ac8e46ba420a0d22d545c2abd4977", + "sha256:4e4a99b6af7bdc0856b50020c095848ec050356a001e1f751510aef6ab14d0e0", + "sha256:4eb07faad54bb07427d848f31030a65a49ebb0cec0b30674f91cf1ddd456bfe4", + "sha256:63a7161cd8c2bc563feeda45df62f42c860dd0675e2b8da2667f25bb3c95eaba", + "sha256:68e0fd039b68d2945b4beb947d4023ca7f8e95b708031c345762efba214ea761", + "sha256:8092a63397025c2f655acd42784b2a1528339b90b987beb9253f22e8cdbb36c3", + "sha256:841218860683c0f2223e24756843d84cc49cccdae6765e04962607754a52d3e0", + "sha256:94076b2314bd2f6cfae508ad65b4d493e3a58a50112b7a2cbb6287bdbc404ae8", + "sha256:9d22aff1c5322e402adfb3ce40839a5056c353e711c033798cf4f02eb9f5124d", + "sha256:b0e4584f62b3e5f5c1a7bcefd2b52f236505e6ef032cc508caa4f4c8dc8d3af1", + "sha256:b1163ffc1384d242964426a8164da12dbcdbc0de18ea36e2c34b898ed38c3b45", + "sha256:beac28ed60c8e838301226a7a85841d0af2068eba2dcb1a58c2d32d6c05e440e", + "sha256:c29f096ce79c03054a1101d6e5fe6bf04b0bb489165d5e0e9653fb4fe8048ee1", + "sha256:c58779966d53e5f14ba393d64e2402a7926601d1ac8adeb4e83893def79d0428", + "sha256:cfe14b37908eaf7d5506302987228bff69e1b8e7071ccd4e70fd0283b1b47f0b", + "sha256:e834249c45aa9837d0753351cdca61a4b8b383cc9ad0ff2325c97ff7b69e72a6", + "sha256:eed1b234c4499811ee85bcefa22ef5e466e75d132502226ed29740d593316c1f" + ], + "version": "==2.0.0a1" + }, + "multidict": { + "hashes": [ + "sha256:317f96bc0950d249e96d8d29ab556d01dd38888fbe68324f46fd834b430169f1", + "sha256:42f56542166040b4474c0c608ed051732033cd821126493cf25b6c276df7dd35", + "sha256:4b7df040fb5fe826d689204f9b544af469593fb3ff3a069a6ad3409f742f5928", + "sha256:544fae9261232a97102e27a926019100a9db75bec7b37feedd74b3aa82f29969", + "sha256:620b37c3fea181dab09267cd5a84b0f23fa043beb8bc50d8474dd9694de1fa6e", + "sha256:6e6fef114741c4d7ca46da8449038ec8b1e880bbe68674c01ceeb1ac8a648e78", + "sha256:7774e9f6c9af3f12f296131453f7b81dabb7ebdb948483362f5afcaac8a826f1", + "sha256:85cb26c38c96f76b7ff38b86c9d560dea10cf3459bb5f4caf72fc1bb932c7136", + "sha256:a326f4240123a2ac66bb163eeba99578e9d63a8654a59f4688a79198f9aa10f8", + "sha256:ae402f43604e3b2bc41e8ea8b8526c7fa7139ed76b0d64fc48e28125925275b2", + "sha256:aee283c49601fa4c13adc64c09c978838a7e812f85377ae130a24d7198c0331e", + "sha256:b51249fdd2923739cd3efc95a3d6c363b67bbf779208e9f37fd5e68540d1a4d4", + "sha256:bb519becc46275c594410c6c28a8a0adc66fe24fef154a9addea54c1adb006f5", + "sha256:c2c37185fb0af79d5c117b8d2764f4321eeb12ba8c141a95d0aa8c2c1d0a11dd", + "sha256:dc561313279f9d05a3d0ffa89cd15ae477528ea37aa9795c4654588a3287a9ab", + "sha256:e439c9a10a95cb32abd708bb8be83b2134fa93790a4fb0535ca36db3dda94d20", + "sha256:fc3b4adc2ee8474cb3cd2a155305d5f8eda0a9c91320f83e55748e1fcb68f8e3" + ], + "version": "==4.7.5" + }, + "nbformat": { + "hashes": [ + "sha256:049af048ed76b95c3c44043620c17e56bc001329e07f83fec4f177f0e3d7b757", + "sha256:276343c78a9660ab2a63c28cc33da5f7c58c092b3f3a40b6017ae2ce6689320d" + ], + "version": "==5.0.6" + }, + "parso": { + "hashes": [ + "sha256:158c140fc04112dc45bca311633ae5033c2c2a7b732fa33d0955bad8152a8dd0", + "sha256:908e9fae2144a076d72ae4e25539143d40b8e3eafbaeae03c1bfe226f4cdf12c" + ], + "version": "==0.7.0" + }, + "pickleshare": { + "hashes": [ + "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca", + "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56" + ], + "version": "==0.7.5" + }, + "pint": { + "hashes": [ + "sha256:308f1070500e102f83b6adfca6db53debfce2ffc5d3cbe3f6c367da359b5cf4d", + "sha256:5690c85948dfb283382aa73357c3d5a333e8c7d818be7d8643db18e07597dd99" + ], + "version": "==0.11" + }, + "prompt-toolkit": { + "hashes": [ + "sha256:563d1a4140b63ff9dd587bda9557cffb2fe73650205ab6f4383092fb882e7dc8", + "sha256:df7e9e63aea609b1da3a65641ceaf5bc7d05e0a04de5bd45d05dbeffbabf9e04" + ], + "version": "==3.0.5" + }, + "psutil": { + "hashes": [ + "sha256:1413f4158eb50e110777c4f15d7c759521703bd6beb58926f1d562da40180058", + "sha256:298af2f14b635c3c7118fd9183843f4e73e681bb6f01e12284d4d70d48a60953", + "sha256:60b86f327c198561f101a92be1995f9ae0399736b6eced8f24af41ec64fb88d4", + "sha256:685ec16ca14d079455892f25bd124df26ff9137664af445563c1bd36629b5e0e", + "sha256:73f35ab66c6c7a9ce82ba44b1e9b1050be2a80cd4dcc3352cc108656b115c74f", + "sha256:75e22717d4dbc7ca529ec5063000b2b294fc9a367f9c9ede1f65846c7955fd38", + "sha256:a02f4ac50d4a23253b68233b07e7cdb567bd025b982d5cf0ee78296990c22d9e", + "sha256:d008ddc00c6906ec80040d26dc2d3e3962109e40ad07fd8a12d0284ce5e0e4f8", + "sha256:d84029b190c8a66a946e28b4d3934d2ca1528ec94764b180f7d6ea57b0e75e26", + "sha256:e2d0c5b07c6fe5a87fa27b7855017edb0d52ee73b71e6ee368fae268605cc3f5", + "sha256:f344ca230dd8e8d5eee16827596f1c22ec0876127c28e800d7ae20ed44c4b310" + ], + "version": "==5.7.0" + }, + "psycopg2": { + "hashes": [ + "sha256:132efc7ee46a763e68a815f4d26223d9c679953cd190f1f218187cb60decf535", + "sha256:2327bf42c1744a434ed8ed0bbaa9168cac7ee5a22a9001f6fc85c33b8a4a14b7", + "sha256:27c633f2d5db0fc27b51f1b08f410715b59fa3802987aec91aeb8f562724e95c", + "sha256:2c0afb40cfb4d53487ee2ebe128649028c9a78d2476d14a67781e45dc287f080", + "sha256:2df2bf1b87305bd95eb3ac666ee1f00a9c83d10927b8144e8e39644218f4cf81", + "sha256:440a3ea2c955e89321a138eb7582aa1d22fe286c7d65e26a2c5411af0a88ae72", + "sha256:6a471d4d2a6f14c97a882e8d3124869bc623f3df6177eefe02994ea41fd45b52", + "sha256:6b306dae53ec7f4f67a10942cf8ac85de930ea90e9903e2df4001f69b7833f7e", + "sha256:a0984ff49e176062fcdc8a5a2a670c9bb1704a2f69548bce8f8a7bad41c661bf", + "sha256:ac5b23d0199c012ad91ed1bbb971b7666da651c6371529b1be8cbe2a7bf3c3a9", + "sha256:acf56d564e443e3dea152efe972b1434058244298a94348fc518d6dd6a9fb0bb", + "sha256:d3b29d717d39d3580efd760a9a46a7418408acebbb784717c90d708c9ed5f055", + "sha256:f7d46240f7a1ae1dd95aab38bd74f7428d46531f69219954266d669da60c0818" + ], + "version": "==2.8.5" + }, + "pygments": { + "hashes": [ + "sha256:647344a061c249a3b74e230c739f434d7ea4d8b1d5f3721bc0f3558049b38f44", + "sha256:ff7a40b4860b727ab48fad6360eb351cc1b33cbf9b15a0f689ca5353e9463324" + ], + "version": "==2.6.1" + }, + "pyrsistent": { + "hashes": [ + "sha256:28669905fe725965daa16184933676547c5bb40a5153055a8dee2a4bd7933ad3" + ], + "version": "==0.16.0" + }, + "python-dateutil": { + "hashes": [ + "sha256:73ebfe9dbf22e832286dafa60473e4cd239f8592f699aa5adaf10050e6e1823c", + "sha256:75bb3f31ea686f1197762692a9ee6a7550b59fc6ca3a1f4b5d7e32fb98e2da2a" + ], + "version": "==2.8.1" + }, + "python-editor": { + "hashes": [ + "sha256:1bf6e860a8ad52a14c3ee1252d5dc25b2030618ed80c022598f00176adc8367d", + "sha256:51fda6bcc5ddbbb7063b2af7509e43bd84bfc32a4ff71349ec7847713882327b", + "sha256:5f98b069316ea1c2ed3f67e7f5df6c0d8f10b689964a4a811ff64f0106819ec8" + ], + "version": "==1.0.4" + }, + "pywin32": { + "hashes": [ + "sha256:300a2db938e98c3e7e2093e4491439e62287d0d493fe07cce110db070b54c0be", + "sha256:31f88a89139cb2adc40f8f0e65ee56a8c585f629974f9e07622ba80199057511", + "sha256:371fcc39416d736401f0274dd64c2302728c9e034808e37381b5e1b22be4a6b0", + "sha256:47a3c7551376a865dd8d095a98deba954a98f326c6fe3c72d8726ca6e6b15507", + "sha256:4cdad3e84191194ea6d0dd1b1b9bdda574ff563177d2adf2b4efec2a244fa116", + "sha256:7c1ae32c489dc012930787f06244426f8356e129184a02c25aef163917ce158e", + "sha256:7f18199fbf29ca99dff10e1f09451582ae9e372a892ff03a28528a24d55875bc", + "sha256:9b31e009564fb95db160f154e2aa195ed66bcc4c058ed72850d047141b36f3a2", + "sha256:a929a4af626e530383a579431b70e512e736e9588106715215bf685a3ea508d4", + "sha256:c054c52ba46e7eb6b7d7dfae4dbd987a1bb48ee86debe3f245a2884ece46e295", + "sha256:f27cec5e7f588c3d1051651830ecc00294f90728d19c3bf6916e6dba93ea357c", + "sha256:f4c5be1a293bae0076d93c88f37ee8da68136744588bc5e2be2f299a34ceb7aa" + ], + "markers": "sys_platform == 'win32'", + "version": "==227" + }, + "pyzmq": { + "hashes": [ + "sha256:0bbc1728fe4314b4ca46249c33873a390559edac7c217ec7001b5e0c34a8fb7f", + "sha256:1e076ad5bd3638a18c376544d32e0af986ca10d43d4ce5a5d889a8649f0d0a3d", + "sha256:242d949eb6b10197cda1d1cec377deab1d5324983d77e0d0bf9dc5eb6d71a6b4", + "sha256:26f4ae420977d2a8792d7c2d7bda43128b037b5eeb21c81951a94054ad8b8843", + "sha256:32234c21c5e0a767c754181c8112092b3ddd2e2a36c3f76fc231ced817aeee47", + "sha256:3f12ce1e9cc9c31497bd82b207e8e86ccda9eebd8c9f95053aae46d15ccd2196", + "sha256:4557d5e036e6d85715b4b9fdb482081398da1d43dc580d03db642b91605b409f", + "sha256:4f562dab21c03c7aa061f63b147a595dbe1006bf4f03213272fc9f7d5baec791", + "sha256:5e071b834051e9ecb224915398f474bfad802c2fff883f118ff5363ca4ae3edf", + "sha256:5e1f65e576ab07aed83f444e201d86deb01cd27dcf3f37c727bc8729246a60a8", + "sha256:5f10a31f288bf055be76c57710807a8f0efdb2b82be6c2a2b8f9a61f33a40cea", + "sha256:6aaaf90b420dc40d9a0e1996b82c6a0ff91d9680bebe2135e67c9e6d197c0a53", + "sha256:75238d3c16cab96947705d5709187a49ebb844f54354cdf0814d195dd4c045de", + "sha256:7f7e7b24b1d392bb5947ba91c981e7d1a43293113642e0d8870706c8e70cdc71", + "sha256:84b91153102c4bcf5d0f57d1a66a0f03c31e9e6525a5f656f52fc615a675c748", + "sha256:944f6bb5c63140d76494467444fd92bebd8674236837480a3c75b01fe17df1ab", + "sha256:a1f957c20c9f51d43903881399b078cddcf710d34a2950e88bce4e494dcaa4d1", + "sha256:a49fd42a29c1cc1aa9f461c5f2f5e0303adba7c945138b35ee7f4ab675b9f754", + "sha256:a99ae601b4f6917985e9bb071549e30b6f93c72f5060853e197bdc4b7d357e5f", + "sha256:ad48865a29efa8a0cecf266432ea7bc34e319954e55cf104be0319c177e6c8f5", + "sha256:b08e425cf93b4e018ab21dc8fdbc25d7d0502a23cc4fea2380010cf8cf11e462", + "sha256:bb10361293d96aa92be6261fa4d15476bca56203b3a11c62c61bd14df0ef89ba", + "sha256:bd1a769d65257a7a12e2613070ca8155ee348aa9183f2aadf1c8b8552a5510f5", + "sha256:cb3b7156ef6b1a119e68fbe3a54e0a0c40ecacc6b7838d57dd708c90b62a06dc", + "sha256:e8e4efb52ec2df8d046395ca4c84ae0056cf507b2f713ec803c65a8102d010de", + "sha256:f37c29da2a5b0c5e31e6f8aab885625ea76c807082f70b2d334d3fd573c3100a", + "sha256:f4d558bc5668d2345773a9ff8c39e2462dafcb1f6772a2e582fbced389ce527f", + "sha256:f5b6d015587a1d6f582ba03b226a9ddb1dfb09878b3be04ef48b01b7d4eb6b2a" + ], + "version": "==19.0.0" + }, + "six": { + "hashes": [ + "sha256:236bdbdce46e6e6a3d61a337c0f8b763ca1e8717c03b369e87a7ec7ce1319c0a", + "sha256:8f3cd2e254d8f793e7f3d6d9df77b92252b52637291d0f0da013c76ea2724b6c" + ], + "version": "==1.14.0" + }, + "sqlalchemy": { + "hashes": [ + "sha256:083e383a1dca8384d0ea6378bd182d83c600ed4ff4ec8247d3b2442cf70db1ad", + "sha256:0a690a6486658d03cc6a73536d46e796b6570ac1f8a7ec133f9e28c448b69828", + "sha256:114b6ace30001f056e944cebd46daef38fdb41ebb98f5e5940241a03ed6cad43", + "sha256:128f6179325f7597a46403dde0bf148478f868df44841348dfc8d158e00db1f9", + "sha256:13d48cd8b925b6893a4e59b2dfb3e59a5204fd8c98289aad353af78bd214db49", + "sha256:211a1ce7e825f7142121144bac76f53ac28b12172716a710f4bf3eab477e730b", + "sha256:2dc57ee80b76813759cccd1a7affedf9c4dbe5b065a91fb6092c9d8151d66078", + "sha256:3e625e283eecc15aee5b1ef77203bfb542563fa4a9aa622c7643c7b55438ff49", + "sha256:43078c7ec0457387c79b8d52fff90a7ad352ca4c7aa841c366238c3e2cf52fdf", + "sha256:5b1bf3c2c2dca738235ce08079783ef04f1a7fc5b21cf24adaae77f2da4e73c3", + "sha256:6056b671aeda3fc451382e52ab8a753c0d5f66ef2a5ccc8fa5ba7abd20988b4d", + "sha256:68d78cf4a9dfade2e6cf57c4be19f7b82ed66e67dacf93b32bb390c9bed12749", + "sha256:7025c639ce7e170db845e94006cf5f404e243e6fc00d6c86fa19e8ad8d411880", + "sha256:7224e126c00b8178dfd227bc337ba5e754b197a3867d33b9f30dc0208f773d70", + "sha256:7d98e0785c4cd7ae30b4a451416db71f5724a1839025544b4edbd92e00b91f0f", + "sha256:8d8c21e9d4efef01351bf28513648ceb988031be4159745a7ad1b3e28c8ff68a", + "sha256:bbb545da054e6297242a1bb1ba88e7a8ffb679f518258d66798ec712b82e4e07", + "sha256:d00b393f05dbd4ecd65c989b7f5a81110eae4baea7a6a4cdd94c20a908d1456e", + "sha256:e18752cecaef61031252ca72031d4d6247b3212ebb84748fc5d1a0d2029c23ea" + ], + "version": "==1.3.16" + }, + "tornado": { + "hashes": [ + "sha256:0fe2d45ba43b00a41cd73f8be321a44936dc1aba233dee979f17a042b83eb6dc", + "sha256:22aed82c2ea340c3771e3babc5ef220272f6fd06b5108a53b4976d0d722bcd52", + "sha256:2c027eb2a393d964b22b5c154d1a23a5f8727db6fda837118a776b29e2b8ebc6", + "sha256:5217e601700f24e966ddab689f90b7ea4bd91ff3357c3600fa1045e26d68e55d", + "sha256:5618f72e947533832cbc3dec54e1dffc1747a5cb17d1fd91577ed14fa0dc081b", + "sha256:5f6a07e62e799be5d2330e68d808c8ac41d4a259b9cea61da4101b83cb5dc673", + "sha256:c58d56003daf1b616336781b26d184023ea4af13ae143d9dda65e31e534940b9", + "sha256:c952975c8ba74f546ae6de2e226ab3cc3cc11ae47baf607459a6728585bb542a", + "sha256:c98232a3ac391f5faea6821b53db8db461157baa788f5d6222a193e9456e1740" + ], + "version": "==6.0.4" + }, + "traitlets": { + "hashes": [ + "sha256:70b4c6a1d9019d7b4f6846832288f86998aa3b9207c6821f3578a6a6a467fe44", + "sha256:d023ee369ddd2763310e4c3eae1ff649689440d4ae59d7485eb4cfbbe3e359f7" + ], + "version": "==4.3.3" + }, + "typing-extensions": { + "hashes": [ + "sha256:6e95524d8a547a91e08f404ae485bbb71962de46967e1b71a0cb89af24e761c5", + "sha256:79ee589a3caca649a9bfd2a8de4709837400dfa00b6cc81962a1e6a1815969ae", + "sha256:f8d2bd89d25bc39dabe7d23df520442fa1d8969b82544370e03d88b5a591c392" + ], + "version": "==3.7.4.2" + }, + "wcwidth": { + "hashes": [ + "sha256:cafe2186b3c009a04067022ce1dcd79cb38d8d65ee4f4791b8888d6599d1bbe1", + "sha256:ee73862862a156bf77ff92b09034fc4825dd3af9cf81bc5b360668d425f3c5f1" + ], + "version": "==0.1.9" + }, + "werkzeug": { + "hashes": [ + "sha256:2de2a5db0baeae7b2d2664949077c2ac63fbd16d98da0ff71837f7d1dea3fd43", + "sha256:6c80b1e5ad3665290ea39320b91e1be1e0d5f60652b964a3070216de83d2e47c" + ], + "version": "==1.0.1" + }, + "widgetsnbextension": { + "hashes": [ + "sha256:cb6181b4037da02deeabab39d5cb1113a7390aee7468b1f8237c2abbd6df6107", + "sha256:fee3b6ec261393db5b4ec7c4fc96bf85c146cc6e5f38069c27d54fb7892bbb15" + ], + "version": "==4.0.0a0" + }, + "yarl": { + "hashes": [ + "sha256:0c2ab325d33f1b824734b3ef51d4d54a54e0e7a23d13b86974507602334c2cce", + "sha256:0ca2f395591bbd85ddd50a82eb1fde9c1066fafe888c5c7cc1d810cf03fd3cc6", + "sha256:2098a4b4b9d75ee352807a95cdf5f10180db903bc5b7270715c6bbe2551f64ce", + "sha256:25e66e5e2007c7a39541ca13b559cd8ebc2ad8fe00ea94a2aad28a9b1e44e5ae", + "sha256:26d7c90cb04dee1665282a5d1a998defc1a9e012fdca0f33396f81508f49696d", + "sha256:308b98b0c8cd1dfef1a0311dc5e38ae8f9b58349226aa0533f15a16717ad702f", + "sha256:3ce3d4f7c6b69c4e4f0704b32eca8123b9c58ae91af740481aa57d7857b5e41b", + "sha256:58cd9c469eced558cd81aa3f484b2924e8897049e06889e8ff2510435b7ef74b", + "sha256:5b10eb0e7f044cf0b035112446b26a3a2946bca9d7d7edb5e54a2ad2f6652abb", + "sha256:6faa19d3824c21bcbfdfce5171e193c8b4ddafdf0ac3f129ccf0cdfcb083e462", + "sha256:944494be42fa630134bf907714d40207e646fd5a94423c90d5b514f7b0713fea", + "sha256:a161de7e50224e8e3de6e184707476b5a989037dcb24292b391a3d66ff158e70", + "sha256:a4844ebb2be14768f7994f2017f70aca39d658a96c786211be5ddbe1c68794c1", + "sha256:c2b509ac3d4b988ae8769901c66345425e361d518aecbe4acbfc2567e416626a", + "sha256:c9959d49a77b0e07559e579f38b2f3711c2b8716b8410b320bf9713013215a1b", + "sha256:d8cdee92bc930d8b09d8bd2043cedd544d9c8bd7436a77678dd602467a993080", + "sha256:e15199cdb423316e15f108f51249e44eb156ae5dba232cb73be555324a1d49c2" + ], + "version": "==1.4.2" + } + }, + "develop": { + "appdirs": { + "hashes": [ + "sha256:9e5896d1372858f8dd3344faf4e5014d21849c756c8d5701f78f8a103b372d92", + "sha256:d8b24664561d0d34ddfaec54636d502d7cea6e29c3eaf68f3df6180863e2166e" + ], + "version": "==1.4.3" + }, + "atomicwrites": { + "hashes": [ + "sha256:03472c30eb2c5d1ba9227e4c2ca66ab8287fbfbbda3888aa93dc2e28fc6811b4", + "sha256:75a9445bac02d8d058d5e1fe689654ba5a6556a1dfd8ce6ec55a0ed79866cfa6" + ], + "markers": "sys_platform == 'win32'", + "version": "==1.3.0" + }, + "attrs": { + "hashes": [ + "sha256:08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c", + "sha256:f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72" + ], + "version": "==19.3.0" + }, + "black": { + "hashes": [ + "sha256:1b30e59be925fafc1ee4565e5e08abef6b03fe455102883820fe5ee2e4734e0b", + "sha256:c2edb73a08e9e0e6f65a0e6af18b059b8b1cdd5bef997d7a0b181df93dc81539" + ], + "index": "pypi", + "version": "==19.10b0" + }, + "bleach": { + "hashes": [ + "sha256:cc8da25076a1fe56c3ac63671e2194458e0c4d9c7becfd52ca251650d517903c", + "sha256:e78e426105ac07026ba098f04de8abe9b6e3e98b5befbf89b51a5ef0a4292b03" + ], + "version": "==3.1.4" + }, + "certifi": { + "hashes": [ + "sha256:1d987a998c75633c40847cc966fcf5904906c920a7f17ef374f5aa4282abd304", + "sha256:51fcb31174be6e6664c5f69e3e1691a2d72a1a12e90f872cbdb1567eb47b6519" + ], + "version": "==2020.4.5.1" + }, + "cfgv": { + "hashes": [ + "sha256:1ccf53320421aeeb915275a196e23b3b8ae87dea8ac6698b1638001d4a486d53", + "sha256:c8e8f552ffcc6194f4e18dd4f68d9aef0c0d58ae7e7be8c82bee3c5e9edfa513" + ], + "version": "==3.1.0" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:8a18b4ea89d8820c5d0c7da8a64b2c324b4dabb695804dbfea19b9be9d88c0cc", + "sha256:e345d143d80bf5ee7534056164e5e112ea5e22716bbb1ce727941f4c8b471b9a" + ], + "version": "==7.1.1" + }, + "colorama": { + "hashes": [ + "sha256:7d73d2a99753107a36ac6b455ee49046802e59d9d076ef8e47b61499fa29afff", + "sha256:e96da0d330793e2cb9485e9ddfd918d456036c7149416295932478192f4436a1" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.3" + }, + "coverage": { + "hashes": [ + "sha256:00f1d23f4336efc3b311ed0d807feb45098fc86dee1ca13b3d6768cdab187c8a", + "sha256:01333e1bd22c59713ba8a79f088b3955946e293114479bbfc2e37d522be03355", + "sha256:0cb4be7e784dcdc050fc58ef05b71aa8e89b7e6636b99967fadbdba694cf2b65", + "sha256:0e61d9803d5851849c24f78227939c701ced6704f337cad0a91e0972c51c1ee7", + "sha256:1601e480b9b99697a570cea7ef749e88123c04b92d84cedaa01e117436b4a0a9", + "sha256:2742c7515b9eb368718cd091bad1a1b44135cc72468c731302b3d641895b83d1", + "sha256:2d27a3f742c98e5c6b461ee6ef7287400a1956c11421eb574d843d9ec1f772f0", + "sha256:402e1744733df483b93abbf209283898e9f0d67470707e3c7516d84f48524f55", + "sha256:5c542d1e62eece33c306d66fe0a5c4f7f7b3c08fecc46ead86d7916684b36d6c", + "sha256:5f2294dbf7875b991c381e3d5af2bcc3494d836affa52b809c91697449d0eda6", + "sha256:6402bd2fdedabbdb63a316308142597534ea8e1895f4e7d8bf7476c5e8751fef", + "sha256:66460ab1599d3cf894bb6baee8c684788819b71a5dc1e8fa2ecc152e5d752019", + "sha256:782caea581a6e9ff75eccda79287daefd1d2631cc09d642b6ee2d6da21fc0a4e", + "sha256:79a3cfd6346ce6c13145731d39db47b7a7b859c0272f02cdb89a3bdcbae233a0", + "sha256:7a5bdad4edec57b5fb8dae7d3ee58622d626fd3a0be0dfceda162a7035885ecf", + "sha256:8fa0cbc7ecad630e5b0f4f35b0f6ad419246b02bc750de7ac66db92667996d24", + "sha256:a027ef0492ede1e03a8054e3c37b8def89a1e3c471482e9f046906ba4f2aafd2", + "sha256:a3f3654d5734a3ece152636aad89f58afc9213c6520062db3978239db122f03c", + "sha256:a82b92b04a23d3c8a581fc049228bafde988abacba397d57ce95fe95e0338ab4", + "sha256:acf3763ed01af8410fc36afea23707d4ea58ba7e86a8ee915dfb9ceff9ef69d0", + "sha256:adeb4c5b608574a3d647011af36f7586811a2c1197c861aedb548dd2453b41cd", + "sha256:b83835506dfc185a319031cf853fa4bb1b3974b1f913f5bb1a0f3d98bdcded04", + "sha256:bb28a7245de68bf29f6fb199545d072d1036a1917dca17a1e75bbb919e14ee8e", + "sha256:bf9cb9a9fd8891e7efd2d44deb24b86d647394b9705b744ff6f8261e6f29a730", + "sha256:c317eaf5ff46a34305b202e73404f55f7389ef834b8dbf4da09b9b9b37f76dd2", + "sha256:dbe8c6ae7534b5b024296464f387d57c13caa942f6d8e6e0346f27e509f0f768", + "sha256:de807ae933cfb7f0c7d9d981a053772452217df2bf38e7e6267c9cbf9545a796", + "sha256:dead2ddede4c7ba6cb3a721870f5141c97dc7d85a079edb4bd8d88c3ad5b20c7", + "sha256:dec5202bfe6f672d4511086e125db035a52b00f1648d6407cc8e526912c0353a", + "sha256:e1ea316102ea1e1770724db01998d1603ed921c54a86a2efcb03428d5417e489", + "sha256:f90bfc4ad18450c80b024036eaf91e4a246ae287701aaa88eaebebf150868052" + ], + "version": "==5.1" + }, + "distlib": { + "hashes": [ + "sha256:2e166e231a26b36d6dfe35a48c4464346620f8645ed0ace01ee31822b288de21" + ], + "version": "==0.3.0" + }, + "docutils": { + "hashes": [ + "sha256:0c5b78adfbf7762415433f5515cd5c9e762339e23369dbe8000d84a4bf4ab3af", + "sha256:c2de3a60e9e7d07be26b7f2b00ca0309c207e06c100f9cc2a94931fc75a478fc" + ], + "version": "==0.16" + }, + "entrypoints": { + "hashes": [ + "sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19", + "sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451" + ], + "version": "==0.3" + }, + "filelock": { + "hashes": [ + "sha256:18d82244ee114f543149c66a6e0c14e9c4f8a1044b5cdaadd0f82159d6a6ff59", + "sha256:929b7d63ec5b7d6b71b0fa5ac14e030b3f70b75747cef1b10da9b879fef15836" + ], + "version": "==3.0.12" + }, + "flake8": { + "hashes": [ + "sha256:45681a117ecc81e870cbf1262835ae4af5e7a8b08e40b944a8a6e6b895914cfb", + "sha256:49356e766643ad15072a789a20915d3c91dc89fd313ccd71802303fd67e4deca" + ], + "index": "pypi", + "version": "==3.7.9" + }, + "identify": { + "hashes": [ + "sha256:2bb8760d97d8df4408f4e805883dad26a2d076f04be92a10a3e43f09c6060742", + "sha256:faffea0fd8ec86bb146ac538ac350ed0c73908326426d387eded0bcc9d077522" + ], + "version": "==1.4.14" + }, + "idna": { + "hashes": [ + "sha256:7588d1c14ae4c77d74036e8c22ff447b26d0fde8f007354fd48a7814db15b7cb", + "sha256:a068a21ceac8a4d63dbfd964670474107f541babbd2250d61922f029858365fa" + ], + "version": "==2.9" + }, + "keyring": { + "hashes": [ + "sha256:197fd5903901030ef7b82fe247f43cfed2c157a28e7747d1cfcf4bc5e699dd03", + "sha256:8179b1cdcdcbc221456b5b74e6b7cfa06f8dd9f239eb81892166d9223d82c5ba" + ], + "version": "==21.2.0" + }, + "mccabe": { + "hashes": [ + "sha256:ab8a6258860da4b6677da4bd2fe5dc2c659cff31b3ee4f7f5d64e79735b80d42", + "sha256:dd8d182285a0fe56bace7f45b5e7d1a6ebcbf524e8f3bd87eb0f125271b8831f" + ], + "version": "==0.6.1" + }, + "more-itertools": { + "hashes": [ + "sha256:5dd8bcf33e5f9513ffa06d5ad33d78f31e1931ac9a18f33d37e77a180d393a7c", + "sha256:b1ddb932186d8a6ac451e1d95844b382f55e12686d51ca0c68b6f61f2ab7a507" + ], + "version": "==8.2.0" + }, + "mypy": { + "hashes": [ + "sha256:15b948e1302682e3682f11f50208b726a246ab4e6c1b39f9264a8796bb416aa2", + "sha256:219a3116ecd015f8dca7b5d2c366c973509dfb9a8fc97ef044a36e3da66144a1", + "sha256:3b1fc683fb204c6b4403a1ef23f0b1fac8e4477091585e0c8c54cbdf7d7bb164", + "sha256:3beff56b453b6ef94ecb2996bea101a08f1f8a9771d3cbf4988a61e4d9973761", + "sha256:7687f6455ec3ed7649d1ae574136835a4272b65b3ddcf01ab8704ac65616c5ce", + "sha256:7ec45a70d40ede1ec7ad7f95b3c94c9cf4c186a32f6bacb1795b60abd2f9ef27", + "sha256:86c857510a9b7c3104cf4cde1568f4921762c8f9842e987bc03ed4f160925754", + "sha256:8a627507ef9b307b46a1fea9513d5c98680ba09591253082b4c48697ba05a4ae", + "sha256:8dfb69fbf9f3aeed18afffb15e319ca7f8da9642336348ddd6cab2713ddcf8f9", + "sha256:a34b577cdf6313bf24755f7a0e3f3c326d5c1f4fe7422d1d06498eb25ad0c600", + "sha256:a8ffcd53cb5dfc131850851cc09f1c44689c2812d0beb954d8138d4f5fc17f65", + "sha256:b90928f2d9eb2f33162405f32dde9f6dcead63a0971ca8a1b50eb4ca3e35ceb8", + "sha256:c56ffe22faa2e51054c5f7a3bc70a370939c2ed4de308c690e7949230c995913", + "sha256:f91c7ae919bbc3f96cd5e5b2e786b2b108343d1d7972ea130f7de27fdd547cf3" + ], + "index": "pypi", + "version": "==0.770" + }, + "mypy-extensions": { + "hashes": [ + "sha256:090fedd75945a69ae91ce1303b5824f428daf5a028d2f6ab8a299250a846f15d", + "sha256:2d82818f5bb3e369420cb3c4060a7970edba416647068eb4c5343488a6c604a8" + ], + "version": "==0.4.3" + }, + "nodeenv": { + "hashes": [ + "sha256:5b2438f2e42af54ca968dd1b374d14a1194848955187b0e5e4be1f73813a5212" + ], + "version": "==1.3.5" + }, + "packaging": { + "hashes": [ + "sha256:3c292b474fda1671ec57d46d739d072bfd495a4f51ad01a055121d81e952b7a3", + "sha256:82f77b9bee21c1bafbf35a84905d604d5d1223801d639cf3ed140bd651c08752" + ], + "version": "==20.3" + }, + "pathspec": { + "hashes": [ + "sha256:7d91249d21749788d07a2d0f94147accd8f845507400749ea19c1ec9054a12b0", + "sha256:da45173eb3a6f2a5a487efba21f050af2b41948be6ab52b6a1e3ff22bb8b7061" + ], + "version": "==0.8.0" + }, + "pkginfo": { + "hashes": [ + "sha256:7424f2c8511c186cd5424bbf31045b77435b37a8d604990b79d4e70d741148bb", + "sha256:a6d9e40ca61ad3ebd0b72fbadd4fba16e4c0e4df0428c041e01e06eb6ee71f32" + ], + "version": "==1.5.0.1" + }, + "pluggy": { + "hashes": [ + "sha256:15b2acde666561e1298d71b523007ed7364de07029219b604cf808bfa1c765b0", + "sha256:966c145cd83c96502c3c3868f50408687b38434af77734af1e9ca461a4081d2d" + ], + "version": "==0.13.1" + }, + "pre-commit": { + "hashes": [ + "sha256:487c675916e6f99d355ec5595ad77b325689d423ef4839db1ed2f02f639c9522", + "sha256:c0aa11bce04a7b46c5544723aedf4e81a4d5f64ad1205a30a9ea12d5e81969e1" + ], + "index": "pypi", + "version": "==2.2.0" + }, + "py": { + "hashes": [ + "sha256:5e27081401262157467ad6e7f851b7aa402c5852dbcb3dae06768434de5752aa", + "sha256:c20fdd83a5dbc0af9efd622bee9a5564e278f6380fffcacc43ba6f43db2813b0" + ], + "version": "==1.8.1" + }, + "pycodestyle": { + "hashes": [ + "sha256:95a2219d12372f05704562a14ec30bc76b05a5b297b21a5dfe3f6fac3491ae56", + "sha256:e40a936c9a450ad81df37f549d676d127b1b66000a6c500caa2b085bc0ca976c" + ], + "version": "==2.5.0" + }, + "pyflakes": { + "hashes": [ + "sha256:17dbeb2e3f4d772725c777fabc446d5634d1038f234e77343108ce445ea69ce0", + "sha256:d976835886f8c5b31d47970ed689944a0262b5f3afa00a5a7b4dc81e5449f8a2" + ], + "version": "==2.1.1" + }, + "pygments": { + "hashes": [ + "sha256:647344a061c249a3b74e230c739f434d7ea4d8b1d5f3721bc0f3558049b38f44", + "sha256:ff7a40b4860b727ab48fad6360eb351cc1b33cbf9b15a0f689ca5353e9463324" + ], + "version": "==2.6.1" + }, + "pyparsing": { + "hashes": [ + "sha256:67199f0c41a9c702154efb0e7a8cc08accf830eb003b4d9fa42c4059002e2492", + "sha256:700d17888d441604b0bd51535908dcb297561b040819cccde647a92439db5a2a" + ], + "version": "==3.0.0a1" + }, + "pytest": { + "hashes": [ + "sha256:0e5b30f5cb04e887b91b1ee519fa3d89049595f428c1db76e73bd7f17b09b172", + "sha256:84dde37075b8805f3d1f392cc47e38a0e59518fb46a431cfdaf7cf1ce805f970" + ], + "index": "pypi", + "version": "==5.4.1" + }, + "pytest-asyncio": { + "hashes": [ + "sha256:6096d101a1ae350d971df05e25f4a8b4d3cd13ffb1b32e42d902ac49670d2bfa", + "sha256:c54866f3cf5dd2063992ba2c34784edae11d3ed19e006d220a3cf0bfc4191fcb" + ], + "index": "pypi", + "version": "==0.11.0" + }, + "pytest-cov": { + "hashes": [ + "sha256:cc6742d8bac45070217169f5f72ceee1e0e55b0221f54bcf24845972d3a47f2b", + "sha256:cdbdef4f870408ebdbfeb44e63e07eb18bb4619fae852f6e760645fa36172626" + ], + "index": "pypi", + "version": "==2.8.1" + }, + "pywin32-ctypes": { + "hashes": [ + "sha256:24ffc3b341d457d48e8922352130cf2644024a4ff09762a2261fd34c36ee5942", + "sha256:9dc2d991b3479cc2df15930958b674a48a227d5361d413827a4cfd0b5876fc98" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.2.0" + }, + "pyyaml": { + "hashes": [ + "sha256:06a0d7ba600ce0b2d2fe2e78453a470b5a6e000a985dd4a4e54e436cc36b0e97", + "sha256:240097ff019d7c70a4922b6869d8a86407758333f02203e0fc6ff79c5dcede76", + "sha256:4f4b913ca1a7319b33cfb1369e91e50354d6f07a135f3b901aca02aa95940bd2", + "sha256:69f00dca373f240f842b2931fb2c7e14ddbacd1397d57157a9b005a6a9942648", + "sha256:73f099454b799e05e5ab51423c7bcf361c58d3206fa7b0d555426b1f4d9a3eaf", + "sha256:74809a57b329d6cc0fdccee6318f44b9b8649961fa73144a98735b0aaf029f1f", + "sha256:7739fc0fa8205b3ee8808aea45e968bc90082c10aef6ea95e855e10abf4a37b2", + "sha256:95f71d2af0ff4227885f7a6605c37fd53d3a106fcab511b8860ecca9fcf400ee", + "sha256:b8eac752c5e14d3eca0e6dd9199cd627518cb5ec06add0de9d32baeee6fe645d", + "sha256:cc8955cfbfc7a115fa81d85284ee61147059a753344bc51098f3ccd69b0d7e0c", + "sha256:d13155f591e6fcc1ec3b30685d50bf0711574e2c0dfffd7644babf8b5102ca1a" + ], + "version": "==5.3.1" + }, + "readme-renderer": { + "hashes": [ + "sha256:1b6d8dd1673a0b293766b4106af766b6eff3654605f9c4f239e65de6076bc222", + "sha256:e67d64242f0174a63c3b727801a2fff4c1f38ebe5d71d95ff7ece081945a6cd4" + ], + "version": "==25.0" + }, + "regex": { + "hashes": [ + "sha256:08119f707f0ebf2da60d2f24c2f39ca616277bb67ef6c92b72cbf90cbe3a556b", + "sha256:0ce9537396d8f556bcfc317c65b6a0705320701e5ce511f05fc04421ba05b8a8", + "sha256:1cbe0fa0b7f673400eb29e9ef41d4f53638f65f9a2143854de6b1ce2899185c3", + "sha256:2294f8b70e058a2553cd009df003a20802ef75b3c629506be20687df0908177e", + "sha256:23069d9c07e115537f37270d1d5faea3e0bdded8279081c4d4d607a2ad393683", + "sha256:24f4f4062eb16c5bbfff6a22312e8eab92c2c99c51a02e39b4eae54ce8255cd1", + "sha256:295badf61a51add2d428a46b8580309c520d8b26e769868b922750cf3ce67142", + "sha256:2a3bf8b48f8e37c3a40bb3f854bf0121c194e69a650b209628d951190b862de3", + "sha256:4385f12aa289d79419fede43f979e372f527892ac44a541b5446617e4406c468", + "sha256:5635cd1ed0a12b4c42cce18a8d2fb53ff13ff537f09de5fd791e97de27b6400e", + "sha256:5bfed051dbff32fd8945eccca70f5e22b55e4148d2a8a45141a3b053d6455ae3", + "sha256:7e1037073b1b7053ee74c3c6c0ada80f3501ec29d5f46e42669378eae6d4405a", + "sha256:90742c6ff121a9c5b261b9b215cb476eea97df98ea82037ec8ac95d1be7a034f", + "sha256:a58dd45cb865be0ce1d5ecc4cfc85cd8c6867bea66733623e54bd95131f473b6", + "sha256:c087bff162158536387c53647411db09b6ee3f9603c334c90943e97b1052a156", + "sha256:c162a21e0da33eb3d31a3ac17a51db5e634fc347f650d271f0305d96601dc15b", + "sha256:c9423a150d3a4fc0f3f2aae897a59919acd293f4cb397429b120a5fcd96ea3db", + "sha256:ccccdd84912875e34c5ad2d06e1989d890d43af6c2242c6fcfa51556997af6cd", + "sha256:e91ba11da11cf770f389e47c3f5c30473e6d85e06d7fd9dcba0017d2867aab4a", + "sha256:ea4adf02d23b437684cd388d557bf76e3afa72f7fed5bbc013482cc00c816948", + "sha256:fb95debbd1a824b2c4376932f2216cc186912e389bdb0e27147778cf6acb3f89" + ], + "version": "==2020.4.4" + }, + "requests": { + "hashes": [ + "sha256:43999036bfa82904b6af1d99e4882b560e5e2c68e5c4b0aa03b655f3d7d73fee", + "sha256:b3f43d496c6daba4493e7c431722aeb7dbc6288f52a6e04e7b6023b0247817e6" + ], + "version": "==2.23.0" + }, + "requests-toolbelt": { + "hashes": [ + "sha256:380606e1d10dc85c3bd47bf5a6095f815ec007be7a8b69c878507068df059e6f", + "sha256:968089d4584ad4ad7c171454f0a5c6dac23971e9472521ea3b6d49d610aa6fc0" + ], + "version": "==0.9.1" + }, + "six": { + "hashes": [ + "sha256:236bdbdce46e6e6a3d61a337c0f8b763ca1e8717c03b369e87a7ec7ce1319c0a", + "sha256:8f3cd2e254d8f793e7f3d6d9df77b92252b52637291d0f0da013c76ea2724b6c" + ], + "version": "==1.14.0" + }, + "sqlalchemy-stubs": { + "hashes": [ + "sha256:a3318c810697164e8c818aa2d90bac570c1a0e752ced3ec25455b309c0bee8fd", + "sha256:ca1250605a39648cc433f5c70cb1a6f9fe0b60bdda4c51e1f9a2ab3651daadc8" + ], + "index": "pypi", + "version": "==0.3" + }, + "toml": { + "hashes": [ + "sha256:229f81c57791a41d65e399fc06bf0848bab550a9dfd5ed66df18ce5f05e73d5c", + "sha256:235682dd292d5899d361a811df37e04a8828a5b1da3115886b73cf81ebc9100e" + ], + "version": "==0.10.0" + }, + "tqdm": { + "hashes": [ + "sha256:00339634a22c10a7a22476ee946bbde2dbe48d042ded784e4d88e0236eca5d81", + "sha256:ea9e3fd6bd9a37e8783d75bfc4c1faf3c6813da6bd1c3e776488b41ec683af94" + ], + "version": "==4.45.0" + }, + "twine": { + "hashes": [ + "sha256:c1af8ca391e43b0a06bbc155f7f67db0bf0d19d284bfc88d1675da497a946124", + "sha256:d561a5e511f70275e5a485a6275ff61851c16ffcb3a95a602189161112d9f160" + ], + "index": "pypi", + "version": "==3.1.1" + }, + "typed-ast": { + "hashes": [ + "sha256:0666aa36131496aed8f7be0410ff974562ab7eeac11ef351def9ea6fa28f6355", + "sha256:0c2c07682d61a629b68433afb159376e24e5b2fd4641d35424e462169c0a7919", + "sha256:249862707802d40f7f29f6e1aad8d84b5aa9e44552d2cc17384b209f091276aa", + "sha256:24995c843eb0ad11a4527b026b4dde3da70e1f2d8806c99b7b4a7cf491612652", + "sha256:269151951236b0f9a6f04015a9004084a5ab0d5f19b57de779f908621e7d8b75", + "sha256:4083861b0aa07990b619bd7ddc365eb7fa4b817e99cf5f8d9cf21a42780f6e01", + "sha256:498b0f36cc7054c1fead3d7fc59d2150f4d5c6c56ba7fb150c013fbc683a8d2d", + "sha256:4e3e5da80ccbebfff202a67bf900d081906c358ccc3d5e3c8aea42fdfdfd51c1", + "sha256:6daac9731f172c2a22ade6ed0c00197ee7cc1221aa84cfdf9c31defeb059a907", + "sha256:715ff2f2df46121071622063fc7543d9b1fd19ebfc4f5c8895af64a77a8c852c", + "sha256:73d785a950fc82dd2a25897d525d003f6378d1cb23ab305578394694202a58c3", + "sha256:8c8aaad94455178e3187ab22c8b01a3837f8ee50e09cf31f1ba129eb293ec30b", + "sha256:8ce678dbaf790dbdb3eba24056d5364fb45944f33553dd5869b7580cdbb83614", + "sha256:aaee9905aee35ba5905cfb3c62f3e83b3bec7b39413f0a7f19be4e547ea01ebb", + "sha256:bcd3b13b56ea479b3650b82cabd6b5343a625b0ced5429e4ccad28a8973f301b", + "sha256:c9e348e02e4d2b4a8b2eedb48210430658df6951fa484e59de33ff773fbd4b41", + "sha256:d205b1b46085271b4e15f670058ce182bd1199e56b317bf2ec004b6a44f911f6", + "sha256:d43943ef777f9a1c42bf4e552ba23ac77a6351de620aa9acf64ad54933ad4d34", + "sha256:d5d33e9e7af3b34a40dc05f498939f0ebf187f07c385fd58d591c533ad8562fe", + "sha256:fc0fea399acb12edbf8a628ba8d2312f583bdbdb3335635db062fa98cf71fca4", + "sha256:fe460b922ec15dd205595c9b5b99e2f056fd98ae8f9f56b888e7a17dc2b757e7" + ], + "version": "==1.4.1" + }, + "typing-extensions": { + "hashes": [ + "sha256:6e95524d8a547a91e08f404ae485bbb71962de46967e1b71a0cb89af24e761c5", + "sha256:79ee589a3caca649a9bfd2a8de4709837400dfa00b6cc81962a1e6a1815969ae", + "sha256:f8d2bd89d25bc39dabe7d23df520442fa1d8969b82544370e03d88b5a591c392" + ], + "version": "==3.7.4.2" + }, + "urllib3": { + "hashes": [ + "sha256:3018294ebefce6572a474f0604c2021e33b3fd8006ecd11d62107a5d2a963527", + "sha256:88206b0eb87e6d677d424843ac5209e3fb9d0190d0ee169599165ec25e9d9115" + ], + "version": "==1.25.9" + }, + "virtualenv": { + "hashes": [ + "sha256:5021396e8f03d0d002a770da90e31e61159684db2859d0ba4850fbea752aa675", + "sha256:ac53ade75ca189bc97b6c1d9ec0f1a50efe33cbf178ae09452dcd9fd309013c1" + ], + "version": "==20.0.18" + }, + "wcwidth": { + "hashes": [ + "sha256:cafe2186b3c009a04067022ce1dcd79cb38d8d65ee4f4791b8888d6599d1bbe1", + "sha256:ee73862862a156bf77ff92b09034fc4825dd3af9cf81bc5b360668d425f3c5f1" + ], + "version": "==0.1.9" + }, + "webencodings": { + "hashes": [ + "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", + "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923" + ], + "version": "==0.5.1" + }, + "wheel": { + "hashes": [ + "sha256:8788e9155fe14f54164c1b9eb0a319d98ef02c160725587ad60f14ddc57b6f96", + "sha256:df277cb51e61359aba502208d680f90c0493adec6f0e848af94948778aed386e" + ], + "index": "pypi", + "version": "==0.34.2" + }, + "yappi": { + "hashes": [ + "sha256:5650e28b53f624cccc4fd0f8697e7a0a823424197fc8da9ce6770e3d0bc1e392" + ], + "index": "pypi", + "version": "==1.2.4" + } + } +} diff --git a/Ch12/apd.aggregation-chapter12/README.md b/Ch12/apd.aggregation-chapter12/README.md new file mode 100644 index 0000000..604f0e4 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/README.md @@ -0,0 +1,128 @@ +# APD Sensor aggregator + +A programme that queries apd.sensor endpoints and aggregates their results. + +Generic single-database configuration. + +# Database setup + +To generate the required database tables you must create an alembic.ini file, as follows: + + [alembic] + script_location = apd.aggregation:alembic + sqlalchemy.url = postgresql+psycopg2://apd@localhost/apd + +and run `alembic upgrade head`. This should also be done after every upgrade of the software. + +# Defining endpoints + +Endpoints to collect from are managed with the `sensor_deployments` CLI tool. After installation +there will be no deployments defined + + sensor_deployments add --db postgresql+psycopg2://apd@localhost/apd + --api-key 97f6b3e5ceb64a6ba88968d7c3786b38 + --colour xkcd:red + http://rpi4:8081 + Loft + +The optional colour argument is the colour to use when plotting charts with the built-in charting +tools. This uses matplotlib's colour specification system, documented at https://matplotlib.org/tutorials/colors/colors.html + +The sensors can then be listed with `sensor_deployments list`: + + Loft + ID 53998a5160de48aeb71a5c37cd1455f2 + URI http://rpi4:8081 + API key 97f6b3e5ceb64a6ba88968d7c3786b38 + Colour xkcd:red + +The ID is the deployment ID, as set by the endpoint. It is only possible to add endpoints if they can be +connected to at the time. + +# Collating data + +Data can be collated from all defined endpoints with the `collect_sensor_data` command line tool. +Although you can specify URLs and an API key to explicitly load data from a one-off endpoint, running +without specifying these will use the configured endpoints from the database. + + collect_sensor_data --db postgresql+psycopg2://apd@localhost/apd + +# Viewing data + +You can write scripts to visualise the data from the database. I recommend using Jupyter for this, as it +has good support for drawing charts and interactivity. + +All configured charts can be displayed with: + + from apd.aggregation.analysis import plot_multiple_charts + display(await plot_multiple_charts()) + +More complex charting can be achieved by passing `configs=` to this function, consisting of configuration +objects as defined in `apd.aggregation.analysis`. Iteractivity can be achieved using the +`interactable_plot_multiple_charts` function with Jupyter/IPyWidgets' existing interactivity support. + +More control can be achieved using other functions from this module, such as getting all data points from +a given sensor with: + + from apd.aggregation.query import with_database, get_data + + with with_database("postgresql+psycopg2://apd@localhost/apd") as session: + points = [(dp.collected_at, dp.data) async for dp in get_data() if dp.sensor_name=="RelativeHumidity"] + +These can be called from any Python code, not just Jupyter notebooks + +# Analysis and triggers + +The aggregator allows for a long-running process that processes records as they are inserted to the database +and apply rules to them. + +This is configured with a Python-based configuration file, such as the following to log any time the +Temperature fluctuates above or below 18c: + + import operator + + from apd.aggregation.actions.action import OnlyOnChangeActionWrapper, LoggingAction + from apd.aggregation.actions.runner import DataProcessor + from apd.aggregation.actions.trigger import ValueThresholdTrigger + + + handlers = [ + DataProcessor( + name="TemperatureBelow18", + action=OnlyOnChangeActionWrapper(LoggingAction()), + trigger=ValueThresholdTrigger( + name="TemperatureBelow18", + threshold=18, + comparator=operator.lt, + sensor_name="Temperature", + ), + ) + ] + +This is run with: + + run_apd_actions --db postgresql+psycopg2://apd@localhost/apd sample_actions.py + +The optional `--historical` option causes the actions to be triggered for all events in the database. +If it's omitted then the default behaviour applies, which is to only analyse data that is added to the +database after the actions process has started. + +The possible actions are: + +* `apd.aggregation.actions.action.LoggingAction()` - Log data points +* `apd.aggregation.actions.action.SaveToDatabaseAction()` - Save data points to the db + +These can be wrapped with `OnlyOnChangeActionWrapper(subaction)` to only trigger an action when +the underlying value changes and/or with `OnlyAfterDateActionWrapper(subaction, min_date)` to +only trigger if the date on the discovered objects is strictly after `min_date`. + +The possible triggers are: + +* `apd.aggregation.actions.trigger.ValueThresholdTrigger(...)` - This compares the value of a sensor with threshold, using the specified comparator. + Any records that don't match the `sensor_name` and `deployment_id` parameters are excluded. + + +# Tips + +The `--db` argument to all command-line tools can be omitted and the `APD_DB_URI` environment variable +set instead. \ No newline at end of file diff --git a/Ch12/apd.aggregation-chapter12/Yappi Profiling.ipynb b/Ch12/apd.aggregation-chapter12/Yappi Profiling.ipynb new file mode 100644 index 0000000..153122f --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/Yappi Profiling.ipynb @@ -0,0 +1,3140 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAEwsAAAmZCAYAAABbjid3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdd5RkVdWw8WcPM+TMkNMgIAiISBSUJAgoiqAEBcQhmMWE8XsNmHPEHMiCooKBFzGg6IsEQVCRoIiAgkgacmZmf3+cGqm+fau7UndVM89vrV5w973nnF1xrened5/ITCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNn2mDTkCSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJElSPZuFSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSUPKZmGSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEnSkLJZmCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkjSkbBYmSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDSmbhUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJElDymZhkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0pCyWZgkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZI0pGwWJkmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA0pm4VJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJQ8pmYZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSdKQslmYJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSNKRsFiZJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNKZuFSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSUPKZmGSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEnSkLJZmCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkjSkbBYmSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDSmbhUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJElDymZhkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0pCyWZgkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZI0pGwWJkmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA0pm4VJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJQ8pmYZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSdKQslmYJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSNKRsFiZJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQNKZuFSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSUPKZmGSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEnSkLJZmCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkjSkbBYmSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDSmbhUmSJEmSJPUgIrLyc/Sgc5I0dfmdIkmSJEmSJEmSJEmSJEkLlog4ulo7NpHjBiUiZtXUyM1eUNaXJEmSJKlX0wedgCRJkiRJemKLiOnARsBTgGUbPwsB9wP3ATcC1wPXZ+bDA0pTkiRJkiRJkiRJkiRJkiRJkiRJkiRJGko2C5MkSZIkSX0XEYsA+wCHAc8CFmtj2KMR8RfgYuA3wM8z8/aJy1KSJEmSJEmSJEmSJEmSJI0nImYB13Uw5GHgHuBu4FrgMuBC4KeZ+Ui/85svIp4NnFNz6meZuUef1tgJ+PUYl+ycmef2YZ1DgBPGuGSdzLy+13UkSZIkSZI0dUwbdAKSJEmSJOmJJSL2Av4OnAo8h/YahQHMAJ4OvBL4NnBLRHxhQpKUpD6JiOsjIpt+jh90TpIkSZIkSZIkSZIkSdKALQKsCKwH7A68E/ghcFNEfDwilpygdQ9vEX9ORKw1QWtWHTZk80iSJEmSJOkJwmZhkiRJkiSpL6L4MvAjYI0+TDkNmKziHEmSJEmSJEmSJEmSJEmSNLFmAm8H/hIR2/Zz4ohYFnhRi9PTgNn9XG8ML46IpXuZICKeBOzQp3wkSZIkSZL0BDF90AlIkiRJkqQnjK8Cr2xx7p/Ar4ArgNuA+4ElgeWA9YEtgKdRdhOUJEmSJEmSJEmSJEmSJEnD7X7g7y3OLQ4sD6zQ4vzawNkRsWNm/rFP+RwELDrG+UMj4oOZmX1ar5XFgQOAb/Qwx2FA9CcdSZIkSZIkPVHYLEySJEmSJPUsIvamvlHYpZRdAH81XoFNRCwO7AHs0/hZot95StKwy0yL/CRJkiRJkiRJkiRJkjQVXJKZO411QUSsAbwAOApYt3J6aeD7EfGUzHy0D/kcXjlORjbcmgXsAvyyD2tV3UnZPHW+w+iyWVhETANeXgnPoTRf0xNUZh4NHD3gNCRJkiRJ0pCbNugEJEmSJEnS1BYRAXy25tTpwHaZeU47O/Fl5gOZeXpmvgxYHXgzcE1/s5UkSZIkSZIkSZIkSZIkSZMhM2/MzK8AT6PUFFatC7yq13UiYjPg6ZXwZ4FHKrHDel2rhe8Ac5uOnxERT+lyrt2BNZqO7wJ+2m1ikiRJkiRJeuKwWZgkSZIkSerVdpQd95rdBMzOzIe7mTAz787Mz2Xm23pNTpIkSZIkSZIkSZIkSZIkDU5m3g8cBFxVc/plfVjiiOqSwOeBMyvxF0XEcn1Yr+rfwM8rsW4bk1XHnQI81OVckiRJkiRJegKxWZgkSZIkSerVc2tix2fmvZOeiSRJkiRJkiRJkiRJkiRJGjqZ+RDw0ZpTW0bE8t3OGxGLAgdWwudm5j+BEyrxRShNyybCsZXjl0XE9E4miIgVgL3GmVeSJEmSJEkLqI5+2SRJkiRJklRj7ZrYHyY9ixYiYiVgS2Clxs9c4FbgFuDCzLxngOmN0Mh1Q2BdYFlgCeBeYA5wE/D7zLxvknJZFtiqKZdpjTx+mpk3TFIOawGbA6sBywH3AdcBF2fmzZOUw2LA1sCqlPfPksAdwG3AnzLz2knIYRngGcD6wDKU5+E24NLMvHoC190EWI/yuFcAHmisez3lNXh0otZurL8QsBmwEbAysChwP/DnzDynzfFPonymVgeWBhYC7mz8XA1cnpnzJuQBDImICOCplPfPisDywN2U78HrKO+jCX8OBvU+liRJkiRJkiRJkiRJ0lA5uyY2DdgAuKDLOV9EqS9rdmLjv2dRalRWbDp3OPDFLtcay4+B24GZjeOVgec14u06GFi46fjPmfmHUgI0HBbEuqyIWJ3yeGdRap8WA+6h1FT+k1JP99DAEuyTiFiYUjO4IbAK5bWF8jjnUF7Xv05SLtMptb8bUz5T84CbKTVvF2bm3MnIo13DUGsqSZIkSVow2CxMkiRJkiT1aqWa2P2TnkWTxh/dXw8cQGk21apS5rGIuAA4HjhhsosHImIpyi6AuwE7AWuNM2RuRFwGfA04MTMf6WLN44GXN4VuyMxZTeefC7wF2JlSwFN1KOX5mhCNxkYvB15LaVZWJyPid8DHM/PMprHXM7J53QmZObuLHKZRdo88GNiB0qSq1bXXAacBn8rM2ztc53jGfi02A95NeY/MaDHHDcCnga/2o3lXRGwKvAnYndKkrZX7IuKXlNfgwg7X2An4dSW8c2ae2zi/FvB2ym6f1SI+gN8Atc3CImJ9SvHfs4FnUhrujeXuiPgF5fW7qM38Z1EKjlp5eUS8fIzzAGRm7fdSRGQl9P7MPLqd3CrzPJnyPD6PUoDUyh0R8TPKc3BZF+scz5C9jyVJkiRJkiRJkiRJkjScMvO2iLiHx5sQzTez7vo2HV45fgD4fmO9xyLiFOCNTec3i4ind1MrM5bMfCQivl1Z6zA6axZ2WOX42J4T64PJqMtqrHM5sElT6DZg9V5qiiLipcAplfDrMvPLY4yZCewD7ArsSGn8NpZHIuJCShO6H3TTKC0ijgbe1xxrVWPWT436rr0pNaPbAIuMc/1twJmU1/bKCchnZeCdwGzKRrd1bo2I04APZOZt/c6hXZNVaypJkiRJUrNpg05AkiRJkiRNeXW7oa1dE5sUEXEAcA3wCWALWjcKg9JIfXvgW8CfImKHic+wiIhPALcCJwOHMH6jMCjNu7YEvgFcGxHb9zGfJSPi+5SdFHelvlHYhGo0YfotcBytG4VBeU2fBfwkIr4bEYv3MYc9gMspO0vuxhjFGw3rAO8A/hERbxzn2nZzmBYRHwQuAV5MiwZLDWsDXwAuioi6xn3trrlqo1Dtj5SGcGM1CoOy693ewAUR8cOIWL7btSt5HA5cBbyO+kZhrcatEBGXAn8DPkZ57cYrSIOyy+O+wIUR8aOIaFVcNGVExOIR8WXgCkoh5FiNwgBWoDRm+0NEnBQRbT/v4+Qx6e9jSZIkSZIkSZIkSZIkTQn31cSqzcPaEhHrUJocNTs9M5vXOKFmaLXBWL98q3K8Z7v1MBGxJbBpU+gRSn3hwAygLuu4yvGKwJ7t5tvC7Mrxw8CprS5uNJe7Gfg6sD/jNwoDWJjSLOo04C8RsXFXmU6iiNgwIv4KXEZpUrYD4zQKa1iRUmP4l4j4RkS0M6bdnJ4HXEnZ8HSs98xKlA2Fr4qIl/Rr/U4MQ62pJEmSJGnBZLMwSZIkSZLUq//UxPaf9CyAiHgP8B1g9S6Gbwz8IiIO7G9WLW3N+MUBY1kDOCciXtZrIhGxBHAOpaHPQETEupRGYc/qcOj+wE8jYuE+5PBW4H+BjboYvhTwuYj4ZkRM7yGHaZTikXfTWcO2pwO/jYglu1jzacDvKQ2jutmJ8IWUoq4ndzG2OY+3Ad8Eumn+thTlOejFXsDvI2KNHucZmMaOlr8CXkNphtjRcMoOh+dFRDvNC8fKY9Lfx5IkSZIkSZIkSZIkSZoy6poA3dPlXIcxuubpxOaDzLyM0tSn2UER0Uv9Xq3MvBz4Q1NoOtBujd9hleMfZ+YdfUmse5Ndl3Uy8Ggldmi3CzfW3LUS/mFm3jnGsO3ovPaq2VMo9XTVdYfNKkAvNX8BHEGp9+qq2d+IySJeAPwI6GTj0hWAUyLilb2u34lhqDWVJEmSJC24/MekJEmSJEnq1flA9Q/tu0bEkZl5zGQl0WgU9oGaU48BvwZ+CdxE+X3ImsDzgGcwslBoYeDkiHgsM0+b2IxHSEox0uXAVcBtlOKnuZTCgCcBW1F2QJzRNG4G8I2IuCIzL+1h/a9TmpfN92/gLODPwK2UXRvXphTt9F1ELENpcLRmzel/AD+k7Ex4J2VXuqdSGlSt0rhmB+AzPebwMcqubVVzgF9QCrhuBR6gFKttDOwBbFC5/nDgLuCtXabyYeCgpuN/UYpKLgduB5akFBO9mLLTXLMNKLs3vr7dxRq7Uf66MW+zecD/UT7f11Ee02KUJnU7ArswsgnU+sBZEbFFZt7d7vpNdgPe2XT8cCOvcykNCR9rrL1NTa517gMupnyergHuBu6lfMaXoxTp7Ex5LputD3w3InbMzMdazP0I8Kem440Y+bm8E/hnGzn2VUQsRnnONqk5fTtwBo9/plfg8ffRapVrN6I0DNssM+d0mc6kvo8lSZIkSZIkSZIkSZI0NTQ2lazbTPAfXcw1DZhdCd9E2Tiz6kTgk03HywIvAk7pdN02HAts0XR8GPDpsQY0Gpe9tGaeYTORdVlk5q0RcRalPnC+50XESpl5axf5HgJMq8Q6eV7nApcCVwBXA3dQajuDUle5PqUO9ZmVdZYEvhMRT8/Mf3WR9yDcyeOv7bWUx3kfpW5wJqVmcjeguhHl1pRNQnvZZHgd4Bgev985KbWLZwE3No7XBJ5Lea6b634D+GpE3JGZP+ghh7YMUa2pJEmSJGkBZbMwSZIkSZLUq7OABykFAc2+EBHPAT6RmedNZAIR8UzgfTWnzgMOz8y/1Zz7UERsSyn82LB5OuDrEXFRZt7Q/2z/ax7wc0oR0s8z87bxBkTETOC9lCY684sdFgFOoDTQ6sYawIGN/38QeBfw5cys7s4H8O6J2E0R+CyjC0jupRRBfCMzszogIt4AvA04mvI7rtdSmjh1LCL2YXTxxp2U5lUnZuZDLcYFsDfwVWClplNHRcRvM/PHHaayalMe9wJHAcdm5tyatf8fpTneOyunXh0RH83Mm8ZbLCKWA77H6OZbxwFHZ2arhlcfaRTtfQnYvSm+LuXz9OLx1q7xdh5/T/8AeHOrIqkx3oN3UXaW/D5wfov3cHWu7YDPA1s2hbcD3gR8qm5MZv4b2KxpjuspzfTm+3Fmzh5v7QnwWUY3CpsLfBz4YN37OCLeDLwF+CDlu2S+NSkFXC/qIo9JfR9LkiRJkiRJkiRJkiRpSqmrLbqT0qCoU7tT6t+anZyZ82quPZmygV3zBomHMzHNwk6hNAebX+e0UURsk5kXjTHmRZTGQvPdRKkvHAaTUpfV5FhGNgubDhxMdxuKzq4c30jZeHYsjwCnUx7zr9rZPDMi1gY+ysiGbysAXwGe326yA/Af4HjKRpSXtPjs/FejZvK5wOcojdLm2y8i9s3M73eZx9t5/PNyNTC7xeflIxGxdSPn5oZ0AXwlIn6Tmbd3mcO4hqjWVJIkSZK0AKt2RZckSZIkSepIo8nVF1ucfgHwfxFxY0QcGxGviIinRUTfGpg3/oj+LUYW8UBpYrZLi0ZhAGTmBZRdxi6vnFqG1o+pX/bJzN0z89vtNAoDyMzbM/MNwKGVU5tExG5d5jH/ebsf2CMzPz9WMU+rYoZuRcQzGP147mvk8vW6RmGNPB7JzA9TGp3NpRR7LFJ37Tjrr0RpjtXsGmDTxvotH28WZ1AKmm6snP5o473ZiYUpj2MOsH1mfqOuwVJj7Ucz813ANyqnFmL089nKl4BZTcdzgYMz87AxGoXNX/9aStFP9bl7UURs0+b6zea/D48B9htrN8UWr8m/gdUy88jM/E07BWmNuc4HtgfOrpx6Qz+/pyZao2HiqyrhecChmfk/rd7HmTk3Mz9JKTasPmf7REQ3jd8m+30sSZIkSZIkSZIkSZKkKSAiVqVsIFl16nhNilo4vCZ2Yt2FmfkfRjff2jki1uli3TFl5l2U5kvNxquFqT6WE1rV3EyyQdRlnQXcUonNbmfdZo2aqvUr4RPaeK9tlZkvzswz2mkUBpCZN2TmgZTNT5s9LyI2rBkyDH4PrJmZ78rM37fzGWzUTJ4FbANcVjn9lh5ymd8o7ArgWWM11svM31PeW1dUTq1I2VhzQgxZrakkSZIkaQFmszBJkiRJktQP7wUuGOP86pRil68DfwTujYiLIuILEbFvRKzcw9p7AhtUYv8E9s/MR8YbnJlzKLvQPVidNyKq8/ZNu0UkLcaeQNmlr9kRvWXEOzPztz3O0Y3X1cTe1igWGldmfo+yA2G33khpDjffA5RGZdWCjLFy+Bfwkkp4I2CvLnM6NDP/1Oa17wSqRSa7jzeo8d4+oBL+n8z8dpvr0mjk9ipG7+r5znbnqPg98OZWDeLGyeWRzKx+htsd+xDwcsprP9+aQLcN+AbhzTWxz2XmSe0MbhRwvafm1FE95DTh72NJkiRJkiRJkiRJkiRNDRGxLqVx1IqVUw8AH+1ivpmUzUybXZKZV44x7ITqNEzchnbHVo5fEhGL1V0YEbOAnSvhalOigRhEXVZmPgacXAk/NSK26DCFutd23Oe1l9pO4APAxU3HARzWw3wTJjMfaDzX3Yy9EzikEt42IjbqIaVHgBdl5h1trH8HZYPMao3wQY3vhokwjLWmkiRJkqQFkM3CJEmSJElSzxpFHc8DftLmkEWBrYEjge8BN0fEuRFxWEQsOvbQUV5fE3trZt7f7gSZeR2jdxQL6htZDYvqDojP6mGua4Ev9TC+KxGxLLBfJXwVpalcJ94H3NXF+ksCr62EP52Z/+h0rsz8HXBOJbxPp/MAv8nMH3ew7hzKTorNNouI8X7v9zZG/m7wOuBT7a7btP6jwEcq4ed28TmG0iRuILthZuatjN7FspfP1KSJiNWBvSvhWylNHDvxGcpOh822jYjNu0hrst7HkiRJkiRJkiRJkiRJGkIRsWhErB4Re0bE14E/A5vWXPqKTprtNDkEWLgSq9bUVf0IqDaCmj1BNSrnADc0HS8DvLjFtYdS6hXn+21m/n0Ccpp0PdRlVZutAcxud92IWBzYvxL+bWZe2+4c3WhslFnd4HFK1KF1KjP/AlxaCffyWI/JzL91sP7fgGMq4UXo4H3SriGtNZUkSZIkLaC82UqSJEmSJPVFZt4FvJBShNNpoUoAOwLfAv4aEQe1NShi4ca4Zv8BzuhwfYCvAdVd0p7TxTyTpdrUZ9WIWKvLuY5rFKlMtmdSijOquczrZJLMvA/4bhfr7wosW4l9q4t55vvfynH1vdmOb3Qx5veV4yWB1VtdHBFB2VWv2fE9NOqqNnlaBNimwzmuyczfdrl+v1Q/U88YSBadezawUCV2YicNE+G/jd/q3n/dfA9O+PtYkiRJkiRJkoZd48b4XSLi8Ih4R0S8MSL2i4inDTo3SZIkSeqTHSMi636AB4EbgTOBVwCLV8Y+AByUmad0ufZhleNHgVPHGtDYFPW0SnhNYLcucxhrrQSOr4SrOdNoVPbySriuUdZU1nFdVmZeyeh6ogMjolpv2MqLgaUqsePaHNur6uPdPCJmTNLak62fNXfd1JzVbUz73B5yaGUYa00lSZIkSQuo6YNOQJIkSZIkPXHM3xUtIk4F9gAOBPYElu5gmrWAkyNiV+DVmfnwGNduDixaif0wM6tNv8aVmf+JiPOAnZrCG0TECpl5R6fzdapRxPIs4GnAJsCKlOdtSUY3AoLRuyJCee7+2cXyv+5iTD/UFYZUG0+160zgVR2OqRZY3JSZN9Re2Z7rKsezImLZRiO9dv2mi3XrdjtcBvhXi+s3BZarxM7vYl0AMnNORNzdWHO+p9PZYzm32/VbiYjVge0oj/fJlPyWBhZj5E6c861SOe62+d5ke2ZN7PtdznUa8Ik25h/PZLyPJUmSJEmSJD2BRMSTgK2ALRv/3ZyRN/XekJmzBpBaxyJiE+C9wAsY/Xes+ddcQ7lJ+dOZ+cgkpidJkiRJg3YvZWPID2RmV3UhEfEMYONK+KzMvL2N4SdQmpc1Oww4u5tcxnEc5d+H82uVdoqIdTKzuc5sV2DtpuN76b72Z1JMYl3WccDWTcfLA3sB32tj7KGV4/vaHDdKRCwJ7EB5vBsBK1Ae7xLAtJohS1aOFwFWpjTPG2oRsS6lrnNTYF3K41ya8hjqXtvqa9ltzd3VmfnXTgdl5t8i4gpGfh9sFRHTOt20dhzDWGsqSZIkSVpA2SxMkiRJkiT1XaNZ15nAmRGxELAZpRHWlpSbOzagvgFWs9mUYor9x7hm85rYJZ3m2+RiRjYLC0rTo1/2MOeYImI94J3AvoxsttSN6s5l7Ujgjz2u262nVo4fBK7ucq7LuhhTbYK0XET08lxUi3wAZgLtFnA8lJndFATdXRMb671U1/zpmIgYqzHfeKo7f87scPylPaw9QkTsC7yWUqBTV4zVrm4+T4NQ/R58DPhTNxNl5g0RcSuw0hjzj2ey3seSJEmSJEmSpriI2Al4F+XvR8sPNpveRUQA7wGOpv4G2mbrAx8BXhoRB2bmXyY4PUmSJEkaFpcAx3TbKKzh8JrYie0MzMzfRcTfgfWawi+MiJltNhtrW6MW51fALo1QUOoi39d02WGVYd/NzPv7mUe/DKAu61TgM5QmZPPNZpymXxGxNiPrQAFO6/R5jYgtgLdRGpQtNs7l41mWIW0WFhHTKJ+pV1AauPei25q7P/Sw5qWMbBa2FKWJXbe1qHWGrdZUkiRJkrQAs1mYJEmSJEmaUJk5l/KH/P/+MT8iFge2AXYG9gM2bDF8v4g4MjOPaXG+riHRVT2ke2Wba/RFRLwX+H+UXdf6oZvGOvdl5gN9Wr9TK1SO/9V4v3QsM2+KiEeBGR0MW6NyvDjwtG7WH8MKwN/bvHZOl2s8WhMb63moPm5o/RnsVvW1Hc+tvS4YEasBJwHP7nWuhqnSqKr6HXVdZj7Uw3xXMbJZWKffgZP1PpYkSZIkSZI09W0G7DboJProG4y+YX0e5Ub464GFgY0oN6zO91TgnIjYNjP/MRlJSpIkSVIf3U99bdQMYDlg1ZpzOwMXR8TszDy10wUjYgnggEp4DmVz03adCHyg6Xhh4GDgc53m04ZjebxZGMDsiHh/Zs6LiOWAvWuuHyqDqsvKzLsj4gzgwKbw7hGxambePMbQ2Yxu4n1cu8lFxAzgs8Br6K0pWrOhrEWLiKcA36ZsqtsP3T7Ov/awZl1TsJVaxLs1bLWmkiRJkqQFWL9+WSFJkiRJktS2zHwgM3+dme/NzKcAewBXtLj83Y3mYnWWq4n1srPWnTWxCdnJPiK+BLyf/jUKg+4a69zTx/U7VX397u5xvk7HT8hrW9HJjoJ1zZImQqeNvLrR6U6KPb0PI2J14Fz6V5AGU2ejhernqNfdBavfg4uM8R1cZ7Lex5IkSZIkSZKeuB4Grh10Ep2IiCMZ3SjsO8BamblNZh6Qmftk5gbA1sBlTdetBPw0IhadpHQlSZIkqV8uyczNan42zszVKHVKsxndtGdh4KSIeEEXa+4PLFWJfSczH+lgjhOBrMSq/6brl9MZWc+zFo83DzuIkfWDV2fmBROUR1eGoC6r2uRrIeBlrS6OiAAOqYSvyczz2lms0Sjse8Dr6O+9t0O3aWJEbAL8hv41CoPuH2cvtaN1Y5ftYb46w1ZrKkmSJElagNksTJIkSZIkDVxm/gzYCvhpzemVgL1aDK0W/UDZrbBbdWPr1uhJRBwMvLbm1BzgW8BhwPbALEojoMUyM5p/gHX6lM5jfZqnG9VGaZ0UbNV5uN0LG82P+tmobSqpa7I3aL2+D48H1q+J/xH4KLAPsDmwCrA0sHDNZ+r9PeYwKNXvqF6+A1uN7/v3oCRJkiRJkiQ1PEr5Xe43gVcBW1B+J3nEIJPqRESsAHykEj4mM1+ambxgrjgAACAASURBVDdVr8/Mi4EdgN83hZ8MvGnispQkSZKkyZeZczLzBGAzSkPlZgsBJ0fErA6nrWvqdWKHed1AaZLUbJOI2LrDXNpZ6yHg1Er40MZ/D6vEj+33+n1wPIOtyzoHuKESO7TuwoYdgSdVYtWGY2N5B/DCmvhNwJeBg4FtgTUpDakWrXm8O3ew3kA0mqKdBqxYc/p3wNHA84GnUWp4lwKm1zzWE/qU0tDW/S7gtaaSJEmSpCHUSRd2SZIkSZKkCZOZD0bESyg7xc+snN6F0cVCAPfWxJboIY26sXVrdK1RZPGJmlMfAz6QmQ+2OdUTYRex6o5uvRZoLN3BtQ8B8xjZTP+HmblPjzlMBXXvseUy866a+NCLiD2BXSvhW4FDGo0I2zVVP1P3MnInxF6+A1uN7+v3oCRJkiRJkiQ1nAB8tXHj9AgRMYB0unYksGTT8VXAUWMNyMz7IuIg4EpgRiP8roj4WmbeOTFpSpIkSdJgZObDEfEyYGVGNlJamrK55i7tzBMRGwDPrDl1YZ/+HXkYIxs798txwGuajveJiJ2BpzfFHgNOmoC1uzYMdVmZmRFxAvDepvCGEfGMzLywZki1kdhc2mwmFxErAe+qhB8D3gZ8MTPb3RBzKtShvRJ4SiV2LfCSzLykg3n69ViHue53Qa41lSRJkiQNoWnjXyJJkiRJkjQ5MvMeyk50VRu0GFJ3s8SyNbF21Y2d08N8dXYEVq3EjsnMd3XQKAxg+T7mNCjV12+FbieKiIUZeSPOmDJzHlBtjrVOt+tPMbfXxGZNdhJ99NLK8VzgBR0WpMHU/UxVP0e9fAfWjX84Mx/ocU5JkiRJkiRJGiUz76xrFDYFvaBy/PnMfHS8QZn5d+CHTaGlgRf1MzFJkiRJGhaNRkuHAPdUTj07Ig5oc5rD+5vVKC+NiMX7PWlmXgxc3hRaFDi5ctlZmfmffq/do2GpyzoeyEpsdvWiiFgSeHEl/PPMvKnNdfYCqq//OzLzcx00CoOpUYdWfW3vBXbtsFEY9O+xLtPnsX3bOHUBrzWVJEmSJA0hm4VJkiRJkqRhU7cz38wW195WE6vudtaJjWpidY2VevGcyvE84MNdzPOkPuQyaP+qHK8eEct1OddTgU63h7ylcvzkiFiky/WnkurjBth00rPon+pn6uzM7GaHz6n6map+D67T4/u4+j3Y7+9ASZIkSZIkSRq4iFgyInaPiEMj4u0RcVREvCwitoyItmtrI2IpYLNKuJObps+uHO/bwVhJkiRJmlIy80bgvTWnPhIRM8YaGxHTKc3GJtLSTNy/y46rHK9WOT52gtbtxVDUZWXmdcC5lfBLImLRSmx/YIlKrPq8j6X6eO8EvtjB+PmGug6t0VRt20r4xMy8vovp+vVYn9zD2LrNiG/tYb46C2qtqSRJkiRpCNksTJIkSZIkDZu7a2KtdmW7tCa2ZQ9rb1U5zhZr9GLNyvHfMrOuedN4qsUaU1Fd4dAzupyrm3HV9RcDdupy/amk7nl/7qRn0QcRsTCwUiX8f13MsxCwdV+SmnzV76jpjL4xrS0RsRajn88/dDOXJEmSJEmSJA2jRoOwXwFzKI26jgU+DnwKOBG4GLglIj7W5gYnqzGyFvf+Dm+uvbxyvIs3m0qSJEl6gvsK8I9K7EnA4eOMez6wciX2H+BPPf5UjZdHt04CHmlx7lbgfydo3a4MYV1WtenXMsA+ldjsyvEc4McdrFGt7bwoM1u9ZmMZ9trO6u8yoLvXdiX61yxsiz6OvRf4Ww/z1VlQa00lSZIkSUPIZmGSJEmSJGnYVAt6YPSuXPNdCjxUie3dKDDpSESsDGxfCf81M+d0Otc4ZlaOO56/sYvi3v1JZ6AuqIkd2OVcB3Ux5hc1sYO7XH8qOR+4vxLbs82bnoZN9fMEXXymgOcBS3aZQ7WZYcffPz06vybW7Q6n+7U5vyRJkiRJkiRNKRExMyJ+QWkQtjMwY4zLZwLvAK6JiB3GmXr5yvFdHaZWvX4GsGGHc0iSJEnSlNFovvSBmlP/M07z5LomXodm5ma9/DC6CdAOEbFet4+vlcy8HTizxemTMrPVhqqDMgx1Wc1+ANxTiR06/38iYl1G139+OzMf7mCNftR2zqT83mGY9eu1PaDXRJo8JSI26HRQRDwZ2LgSvjgz5/Unrf9aUGtNJUmSJElDyGZhkiRJkiRp2Dy7JnZt3YWZ+Sjw60p4FbprpPVKYHol9vMu5hlPtUlTXeHFeA4EVu1DLgOVmX8Crq6E942IdTqZJyKeRXe78f2M0c3mXtpN0clU0ii4O7sSXgo4agDp9Kr6eYLuPlNv6SGHeyvH/Shu68Q5wNxK7GURsUQnk0TEdOAVNacm4ntQkiRJkiRJkiZN4ybvi4BdK6fuBc4Fvgt8H7gEaL6ZdAXgFxGx+xjTP1I5HuvG9jp112/U4RySJEmSNNWcDPytEluD+toVImJV4LmV8C3UN/DpJpeqw/owb51jO4wP0jDUZf1XZj5A+fd7s10iYs3G/8+uGXZch8v0o7bzdcCiXYybTD2/to0Nb4/sTzr/dUQXY+q+M37aayI1FshaU0mSJEnScLJZmCRJkiRJ6klEvKDT5k5jzLUusH/NqVY76gF8qSb2qYhYvIN11wbeWQlni7l7dXPl+MkRMavdwRGxMvCpfiY0YF+tHC8KfDUiFmpncEQsWTNHWxq7NX69El4IOCUiFutmzinkwzWxtzcar00ZmXk38EAlvFsnc0TEEcBOPaRxZ+X4ST3M1bHM/DdwRiW8MvC+Dqd6E1AtXvpdZl7WbW6SJEmSJEmSNGiNvxedwcjf3f4V2BdYLjN3zsyXZOZ+mbkV5eb0bzRduzBwckSs3mKJOyrHy0VEJzcF120O442mkiRJkp7QMnMu8MGaU+9q8W+q2ZS6rmanNubp1XeAxyqxl7dbv9ahsyj/Dmz+WTkzr5yAtXoyJHVZVdXmX9OAQyJiGnBI5dyfuqh7qtZ2btfJho0RsTHwrg7XHITq44QOX1tKbdr6fcil2ZGNhu9taVxbbVj2MHB8P5OCBb7WVJIkSZI0ZGwWJkmSJEmSerUn8LeIOC4iNux2kohYjXKzRrXJ123AL8cYehZwdSU2i/JH+OltrLsc8KOadX+SmdXdC/vh/2piH29nYEQsT2mc1s2OdcPqWODGSmw34ISIWGSsgRGxLOX52LiH9T/K6J3yNgfOaLw3OhYRa0fEMRGxSQ95TahGIdQPKuEZlMe9QzdzRsQiEfHKiHhzzwl25rzK8U4R8bx2BkbEHsAXelz/8srxJk07Vk6Wz9bEjoqIl7QzOCJ2p76B3Kd7ykqSJEmSJEmSBu+TQPPv638KPD0zf1B3U3lm3pyZrwSOagrPpP4mdih/47iv6XghYMsO8tu2JrZMB+MlSZIkaao6hdF1f6sBr6659tCa2Mn9SCIzbwN+VpPHc/sxf2WtzMz/VH5u7fc6fTTouqwRMvMCRr9nZgO7AGtV4sd2sUS1tnNJ2tywsbFh7I+BMWseh0HjPVetjT0oIp7WzviIOJSJaYq2CHB6O3WbjWtOZ/TzfUqjsddEWCBrTSVJkiRJw8dmYZIkSZIkqR+mU4ouroqICyPi9RFRtxP6KBGxeES8GrgMeGrNJW/LzIdajc/MBA4Hqjd0vBD4+Vg7jUXENpSClmqRw12M3nGsX84G7q3E9o+Ib461C11E7AZcyOM3mNwzQflNqsy8F3hlzamDgL9ExMsiYsRNMRGxSkS8nlL4s2MjfB1wSxfr/wd4OZCVU7sDf4iIg9tsOrdERBwQEacDfwdeD9TtcjlMXkV53prNBM6JiE9GxCrtTBIR20TEp4Hrga8B6/Y1y/GdVhP7bkTs22pARCwaEe+lNAqcv7Nft5+p8yvH04DvRUQnN4P1JDPPB75Sk8dJEXF0RCxcNy4iFoqItwA/BKrXnJGZZ/Q/W0mSJEmSJEmaHI2Nao5oCl0P7JuZD443NjM/Q9mwZr6D6n5vnpmPAb+rhF/WZn4BHFxzaql2xkuSJEnSVJaZ84D315x6Z0T8d+PPiNgRWL9yzdWZ+Yc+plPXeOzwPs4/VQ26LqvOcZXj9YDPV2KPAN/uYu4fAPMqsbdFxAfHqiGMiJcCFwBPaoSmQm1n9bWdAZwdETu1GhARy0bE54Fv8fh9yf16rPNrhJ8KnBcRW4+Rx1aUxm7VeuPbgHf0KZ9RFvBaU0mSJEnSEBn3H5+SJEmSJEkd2qbxc0xEXA9cBFwJ3A7cQflD+dLA2sCmlF3dWjXJOi0zTxhvwcw8PyLeD3ygcmpn4MqIOAf4FXATZUf3NYHnAdsBUZ0OeFVm/nO8dbuRmXdGxGeB91ZOHQ7sHRHfAy4F7gSWpRSQPJ+RhQ1zgTcyuvBlSsrMn0bEh4H/qZxaDzgRmBsRt1CauM0EVmTk6/YIcAiji7aqDeRarf+DRoHSByun1gFOAj4VEecCl1AKSu6nvIeXbeS4JeW9PPS7AjbLzDsiYi9Kw7zmhmzTgbcCb4iIC4DfAjdS3pOLUB73qsDTKY99xcnMu8aJlJ0Km5uULUlp2HUp8BNKUc2jwErAFpTP1ApN11/ZuK6bYqEfAXOA5Zti2wAXR8S9wL95vJjpvzJzsy7WGstRwPZA8y6D0ym7W74mIs4A/kz5Ll4O2Ah4EbBGzVz/YuQNdJIkSZIkSZI0Fb2akRslvD8zH+hg/Kcpf0+iMc8ewPE1151MuTF0vkMj4iuZ+cdx5j+S0Te8g83CJEmSJC04TgPeDWzcFFsZeC3wqcZxXdOuk/qcx48oTY+WbortGRErZeatfV5rKhl0XVadk4CPUOpA53tK5ZqfZOYdnU6cmX+LiJMptYjN3g3MjojvU+qv7qPUim0A7MXI5+cBymOtbvw4bD5LaVK1bFNsFeDXEfFb4GeUpuvzGvHtgOdSXv/5zqHU5Fafr258AnhLY/6NgAsj4jzgp5RaNih1v3tQauTq6n5fk5m39SGXlhbUWlNJkiRJ0nCxWZgkSZIkSZpIsxo/3TiBDnbny8wPNnZgr+42OINSILBHG9M8ChyamXU74vXTh4AdGz/NVqDcuDKWpBRDndv/tAYnM98dEUkprKlaCFit8VP1MHBQZp5Xsytb27vWZeaHIuLfwJcYvUvbysABjZ8nlMz8S2OnvdMZ2WQKyo1Pde/ToZKZj0bEfpSmZ4tXTm/e+BnLTcCewOwu138oIt5M+c6qWopSFDbhMvPBiHg2cCZQ3VlxJeBVbU51FbBHZs7pZ36SJEmSJEmSNADPafr/ucD3Oxx/HvAYj9fabk99s7DvAEfz+M3BM4CfRMQemXlF3cQRcQCP3/heNa/DPCVJkiRpSsrMeY1NQqv1em+PiK9Q6sZeXB0GfLvPeTwYEaczsn5oBqUJUqt/uz3hDbouq0VON0fE2Y15Wzm2hyXeQKm92rASXwN40zhjHwX2ozQMG2qZOSciDgJ+zMjGawA7NH7G8hfKY/1sn1K6DjiIUse4EKUZ2PaNn/Ek8OrM/EGfchl7sQW01lSSJEmSNDymDToBSZIkSZI05Z1EKb65q0/z/QN4YWbOzsy5nQzMzA8ALwX+3cW6VwLPycy+FhLVycxHgRdSmvp04i5g/8z8ev+zGrzMfA+wG3BNm0P+CDyrqchjucr5uztc/1hgW+BXnYyr8RDlxqB/9jjPpMjMa4BtgM9QdrLrxSXAWT0n1aHMvAzYHbi5w6EXAs/IzOt7XP9E4Ajg3l7m6VVjZ8Sdga9SbmDraDhwCvDMzJwS711JkiRJkiRJaiUiFgW2aAr9C5gZEbPa/aFsYtL89691qZGZj1FuaH2kKbwGcGlEfDkido+IDSPiqRFxQEScSfk7wozGtTdWpuzX39wkSZIkaSr4PvDnSmxF4EjgQEY3qTovM2+YgDxOrom1vdnpE9Wg67JaGKsZ2M3Az7qdODPvBnal5N+JfwO7Zuak1851q5HrfnSwKWvDmcD2mXlnn/P5MbA3nf1eZA5ls9lJraldUGtNJUmSJEnDwWZhkiRJkiSpJ5n5u8w8GFgJ2AX4AOUP4Pd1MM0tlIZjewIbNP7o320+3wHWA94OXEppgNPKY5Rd744ANs3M33S7bqcaRSV7UW4eqRY7Vd0KfJLy3HS66/2Ukpm/ADYGng8cB1wO3A7MpTT/+hPwdUoB0uaZeQlARCzF6MKwOV2s/8fM3AV4BnAio2/QaeVmSsHYy4FVMvOlmXlrp+sPSmY+kJlHAbOAoylNv9pp1vcQ5fP+/4CNM3OrQRU8ZeZ5wNOATzB+wdAllNfqmZnZ7ms83vrfAlYHDqU0UbyM8tl9sB/zd5DHA5n5GmATSmHcf8YZMgc4FdgiMw/qdxGXJEmSJEmSJA3IKjzejAvK77+v6+JnZtMcy7daLDMvAg6m/N58voWB1wBnA1dR/h70Hcrfw+b7IXB8ZTqbhUmSJElaYGRmUuqVqt4KvKomXtfUqx9+DdxUiW0YEdtN0HpTxqDrsmr8hFJTWOfETjeprcrMm4AdgNdTNr8dyw3Ae4ANM/O3vaw7CJl5BrAp8DXGrnObB5xL2Qj4BZk5Ib+7yMwzgY2ALzF2E7PbgC9SnvdTJyKX8SyotaaSJEmSpMGL8vs0SZIkSZKk/oqIoDTOWR9YC1gaWIrSvOse4F7KH70vz8zxmtn0ksfKwFaUZmYrUhog3UZpoHNho2nXwEXEWpSdxlamPFcPUXabuwL4c/pLnDFFxHOAn1fCu2Rmrzu3ERHrUQpQVmj8LExphnc35Uahq5+IxRoRsQyPf3ZWAJahFATdS3lv/hX4R6/FVRMhIhYCtqQ0npsJTKfkfR1wyUR+5wybxnfxppTv4pWAZSnfwbfx+PMxb3AZSpIkSZIkSdJoEbET5Ubt+W7IzFkdjN+CcoNyP12fmeuMs+6WwJcpv18fy6PAR4APN64/ouncmzLz870kKkmSJEnSRFgQ67Ii4snA1pT60yWA+ymNof6cmX8dZG79FBGLANsAG1DqBadRmsNdC1ycmR1v3tpjPjMov1/ZuJHPPErN8XXABUNat7hA1ppKkiRJkiaXzcIkSZIkSZI05UXE54A3NoXmActl5li7y0mSJEmSJEmSpCHUh2Zh2wLn9zmttnNobHKyF7A9sBplI4c5wA3A/wInZeZ1jWvPA57ZNPxZmfm7PuYtSZIkSZIkSZIkSZKeAKYPOgFJkiRJkiSpFxGxPHB4JfwnG4VJkiRJkiRJkrTAur1y/PPM3H2yFs/MXwC/GO+6iJgBbNEUegy4dKLykiRJkiRJkiRJkiRJU9e0QScgSZIkSZIkdSsiAjgBWLJy6usDSEeSJEmSJEmSJA2HWyrHTx5IFuN7JrBo0/FFmfngoJKRJEmSJEmSJEmSJEnDy2ZhkiRJkiRJGriIOCQidu1wzNLA6cDzK6fuAk7uV26SJEmSJEmSJGlqycx7gCuaQrMiYv1B5TOGwyvH3xxIFpIkSZIkSZIkSZIkaejZLEySJEmSJEnDYDvgFxHx14j4WETsHBHLVy+KiBkRsVVEfAi4Dti7Zq7XZ+Z9E52wJEmSJEmSJEkaaj+rHL9iIFm0EBHrAvs2he4CvjugdCRJkiRJkiRJkiRJ0pCLzBx0DpIkSZIkSVrARcRXgVfVnLqdcnPMw8CywExgkTGm+lZmHtH/DCVJkiRJkiRJ0mSJiJ2AXzeFbsjMWR3OsR5wFTC9EXoI2DIzr+hHjr2IiIWAs4Fdm8JvzcxPDyglSZIkSZIkSZIkSZI05KYNOgFJkiRJkiRpDDOB9YCNgdUZu1HYh4BXTEZSkiRJkiRJkiRpuGXm34HjmkKLAmdFxEadzBMR/5+9e4/zqq7zB/46A8NNQJCbF0xESRMvZWqIeMPc7LJlZZZZZrVl6u5qrt1+ZdjWau5WWqubm5tJWayleasWTYW8kPdKE68p4pWLiIJchsv5/TEwzgwzw3dgmO/APJ+Px3nwfX/O5/I+MwzyePD2fXoXRXHieub0bOt+s7m1SX6Wpo3C7k5yQXvyAgAAAAAAAAC6F83CAAAAAOgK7kgyawPX3pTk0LIszyrLsuy4lAAAAAAAgE2pKIqRRVGMan4l2bbZ1J4tzVtzDW3jiDOSPNAofkOSe4ui+LeiKHZsI6++RVG8vSiKHyR5Jk2bjrXkqKIo7i2K4pTW9l3TdOz9a/I5rtGtl5OcUJblqvWcAQAAAAAAAAB0Y4X/fxIAAACArqIoir2THJzkgCS7pP5/2hmUpG+Slan/H2ZeSvJokluT3FSW5czqZAsAAAAAAGyMoihmJdlpI7eZXJbliW2csWOSG5Ps3sLtJ5M8kmRhkp5Jtk4yKsmuSXo0nliWZdHGGe9Jcn2joWeTzEyyIEltkhFJ3pJkq2ZLX0ry7rIs72ptbwAAAAAAAACApL6wAQAAAAC6hLIsH0jyQJKLqp0LAAAAAACw+SvL8pmiKPZPcnGS45vdHr3mWp+F7Tx25JqrLXckOaEsyyfbuTcAAAAAAAAA0A3VVDsBAAAAAAAAAAAAANhUyrJcXJblx5Lsk+TyJC9XsOz5JD9P8qEk265n7kNJJid5cX2pJLl1zZ4HaxQGAAAAAAAAAFSqKMuy2jkAAAAAAAAAAAAAQKcoiqImyd5J9kiyTZJBSZYleTXJrCQPl2X5zAbuPSrJXkl2TLJ16l/s+2qSvyW5qyzLlzYuewAAAAAAAACgO9IsDAAAAAAAAAAAAAAAAAAAAAAAALqommonAAAAAAAAAAAAAAAAAAAAAAAAALRMszAAAAAAAAAAAAAAAAAAAAAAAADoojQLAwAAAAAAAAAAAAAAAAAAAAAAgC5KszAAAAAAAAAAAAAAAAAAAAAAAADoojQLAwAAAAAAAAAAAAAAAAAAAAAAgC5KszAAAAAAAAAAAAAAAAAAAAAAAADoojQLAwAAAAAAAAAAAAAAAAAAAAAAgC5KszAAAAAAAAAAAAAAAAAAAAAAAADoojQLAwAAAAAAAAAAAAAAAAAAAAAAgC6qZ7UTgGorimLrJIc2GnomSV2V0gEAAAAAAAAA2Bi9kuzYKP5DWZavVCsZAFCjBwAAAAAAAABsIapan6dZGNQXIV1b7SQAAAAAAAAAADaB9yW5rtpJANCtqdEDAAAAAAAAALZEnVqfV9NZBwEAAAAAAAAAAAAAAAAAAAAAAADto1kYAAAAAAAAAAAAAAAAAAAAAAAAdFE9q50AdAHPNA6uueaa7LrrrtXKBQAAAAAAAABggz3xxBM5+uijGw8909pcAOgkavQAAAAAAAAAgM1etevzNAuDpK5xsOuuu2bs2LHVygUAAAAAAAAAoCPVrX8KAGxSavQAAAAAAAAAgC1Rp9bn1XTmYQAAAAAAAAAAAAAAAAAAAAAAAEDlNAsDAAAAAAAAAAAAAAAAAAAAAACALkqzMAAAAAAAAAAAAAAAAAAAAAAAAOiiNAsDAAAAAAAAAAAAAAAAAAAAAACALkqzMAAAAAAAAAAAAAAAAAAAAAAAAOiiNAsDAAAAAAAAAAAAAAAAAAAAAACALkqzMAAAAAAAAAAAAAAAAAAAAAAAAOiiNAsDAAAAAAAAAAAAAAAAAAAAAACALkqzMAAAAAAAAAAAAAAAAAAAAAAAAOiiNAsDAAAAAAAAAAAAAAAAAAAAAACALkqzMAAAAAAAAAAAAAAAAAAAAAAAAOiiNAsDAAAAAAAAAAAAAAAAAAAAAACALkqzMAAAAAAAAAAAAAAAAAAAAAAAAOiiNAsDAAAAAAAAAAAAAAAAAAAAAACALqpntRMAAAAAAAAAALqOsiyzevXqlGVZ7VRgi1EURWpqalIURbVTAQAAAAAAAACADqfuDKiW7lSfp1kYAAAAAAAAAHRjZVlm2bJlWbRoURYtWpS6urpqpwRbrF69emXAgAEZMGBA+vTp0y2KkwAAAAAAAAAA2PKoOwO6mu5Qn6dZGAAAAAAAAAB0U0uWLMnzzz+fFStWVDsV6Bbq6ury0ksv5aWXXkptbW2233779OvXr9ppAQAAAAAAAABAxdSdAV1Rd6jPq6l2AgAAAAAAAABA51uyZElmz56tYAuqZMWKFZk9e3aWLFlS7VQAAAAAAAAAAKAi6s6AzcGWWp+nWRgAAAAAAAAAdDNrC7bKsqx2KtCtlWW5RRYkAQAAAAAAAACw5VF3BmxOtsT6vJ7VTgAAAAAAAAAA6DxlWeb5559fp2CrtrY2AwcOTP/+/VNbW5uiKKqUIWx5yrLMihUrsnjx4rz66qtN3qy69mdyl1128XMHAAAAAAAAAECXpO4M6Kq6U32eZmEAAAAAAAAA0I0sW7asSSFEkgwYMCA77LDDFlEIAV1VbW1t+vXrl2HDhuW5557LokWLGu6tWLEiy5cvT58+faqYIQAAAAAAAAAAtEzdGdCVdZf6vJpqJwAAAAAAAAAAdJ7GBRBJfYGEgi3oPEVRZIcddkhtbW2T8VdffbVKGQEAAAAAAAAAQNvUnQGbgy29Pk+zMAAAAAAAAADoRpoXbQ0cOFDBFnSyoigycODAJmPNfzYBAAAAAAAAAKCrUHcGbC625Po8zcIAAAAAAAAAoJsoyzJ1dXVNxvr371+lbKB7a/6zV1dXl7Isq5QNAAAAAAAAAAC0TN0ZsLnZUuvzNAsDAAAAAAAAgG5i9erV64zV1tZWIROgZ8+e64y19DMKAAAAAAAAAADVpO4M2NxsqfV5moUBAAAAAAAAQDfR0lvRiqKoQiZATc26ZTtbwpsLAQAAAAAAAADYsqg7AzY3W2p9nmZhAAAAAAAAAAAAAAAAAAAAAAAA0EVpFgYAAAAAAAAAAAAAAAAAAAAAAABdlGZhAAAAAAAAAAAAAAAAAAAAAAAA0EVpFgYAAAAAAAAAAAAAAAAAAAAAAABdlGZhAAAAAAAAAAAAAAAAAAAAAAAA0EX1rHYCNFUUxe5J9kkyMknfJMuSzE3yRJK/lGX52kbsXZvkPQtRGwAAIABJREFUoCRvSLJdksVJnk/yp7IsZ21c5uuctXOSNyfZPkn/JC8keTrJjLIsV3TkWQAAAAAAAAAAAAAAAAAAAAAAAFsqzcK6gKIoBiU5LcmnUt/IqzWriqL4c5Iry7L8djv2H5bkG0k+nGSbVubMSPK9siyvqjjxlvc5JskZSQ5sZcqCoiiuSPL1siznb8xZAAAAAAAAAAAAAAAAAAAAAAAAW7qaaifQ3RVF8aEkTyQ5O203CkuSHknemuT0duz/ziR/TXJyWmkUtsb4JFcWRXF5URRbVbp/o3P6F0UxJcmv0nqjsKzJ4eQkfy2K4h3tPQcAAAAAAAAAAAAAAAAAAAAAAKA70SysioqimJTkl0mGNLs1O8lNSaYkuTrJnUle24D9D0tyTZLhjYbLJPelvqnX75PMb7bs+CRTiqKo+PdGURQ9klyR5CPNbs1LcuOas+5fc/ZaI5JcWxTFhErPAQAAAAAAAABor9mzZ+drX/taDj744IwYMSK9evVKURQN12WXXVbtFAEAAAAAAAAAALYIo0aNalKfNX369GqnBFuMntVOoLsqiuJfkpzdbHhKknPLsnywhfk1SQ5M8sEk76hg/5FJfp2kV6PhO5J8pizLhxvN653kpCTfSVK7Zvjvk3wryf+r8HG+neRdjeIVSc5I8qOyLOsanbVHkv9Z8xxJ0jvJNUVR7FWW5QsVngUAAAAAAAAAdIJRo0bl6aefboinTZuWww47rHoJbYBLLrkk//RP/5Tly5dXOxUAAAAAAAAAAACADVZT7QS6o6Io9kl9g621ViT5UFmWH22pUViSlGW5uizLO8qyPCPJPhUc840kgxvFM5K8vXGjsDX7Li/L8gdJjm22/oyiKHaq4FlGJzmt2fCHyrK8sHGjsDVnzUxyRJI/NhoekmTS+s4BAAAAAAAAAGiP3/3udznppJMqbhQ2ffr0Jm+0PPvsszdtggAAAAAAAAAAAAAV6lntBLqboih6Jrk0Tb/2J5VleWWle5RluXI9Z4xJ8olGQ3VJTizLclkbe15TFMXkRut6p76J16fWk86kJLWN4svKsry2jXOWFkVxYpIHk/RaM/zpoij+vSzLJ9dzFgAAAAAAAABARb7yla+kLMuG+KMf/Wg+/elPZ8cdd0xt7eulDkOHDq1GegAAAAAAAAAAAAAV0yys830oyb6N4pvLsvxJB5/x0SQ9GsW/Lsvy8QrWnZemTcaOLYrilNaajBVF0TfJMS3s0aayLB8riuKaJMeuGeq5JudvVZAjAAAAAAAAAECbHn300TzwwAMN8bve9a78/Oc/r2JGAAAAAAAAAAAAABuuptoJdEMnNYvP2QRnvL9ZXFEzsrIsH05yV6OhrZL8XRtL3pGkX6P4j2VZPlJRhuvm9IEK1wFdQVkm8+9KHv1BMvfWZPXKamcEAAAAAAAA0ODee+9tEh9zTPN3oQEAdBOrVyR/+0ly/5nJnOnVzgYAAAAAAAAA2EA9q51Ad1IUxa5JDm00NCvJtA4+Y9sk+zQaWpnkjnZsMT3J2xrF70xyXStzj2phbaVuS31ua38PvqUoihFlWc5pxx5ANZSrk3v/MXn8h6+P7fjB5KApSU1t9fICAAAAAAAAWGPOnKblByNHjqxSJgAAVfTa08m1o16PH/lu/a9HP5P08/cjAAAAAAAAANicaBbWuQ5vFt9clmXZwWfs2Sx+oCzL19qxfkazeGw7zvpjpYeUZflaURQPJnlLs7M0C4Ou7sWbmjYKS5Jnrkpm/SIZ/Ynq5AQAAAAAAADQyOLFi5vEtbVefAQAdEONG4U1ds2OyUc7unwVAAAAAAAAoPOUZZn7778/jzzySObOnZvly5dn2LBh2WGHHTJhwoT079+/2ilusGeeeSb33HNPnn322SxdujRDhw7NXnvtlf322y81NTUbtffcuXNz22235fnnn8/SpUuz/fbbZ/To0Rk3btxG792SmTNn5sEHH8y8efPy6quvZptttsl2222XCRMmZMiQIR1+3pZOs7DOdUCz+I9JUhRFkeSIJMcneVuSHVL/vZmf5PEkNyX537IsZ1Vwxh7N4ifamePf1rNfY2/qgLMaNwvbI8kt7dwD6Gwz/73l8QfP1iwMAAAAAAAAaLdNUbS1evXqTZApAMBmZPmCtu8vfjLpP7pzcgEAAAAAAADoIPPnz88555yTyy+/PPPmzWtxTq9evTJx4sScffbZedvb3lbRvieeeGImT57cED/11FMZNWpURWunT5+eww8/vCGeNGlSzj777Fbn17caqnfooYdm+vTpSZIZM2Zk0qRJueWWW1qsgRsxYkS++tWv5tRTT213Y68//elP+cIXvpBp06a1uPfIkSNz0kkn5ctf/nJ69uyZs88+O9/4xjca7k+bNi2HHXZYRWe99NJL+Y//+I9cfvnlee6551qcU1NTk/Hjx2fSpEl5+9vf3q5n6c46vp0bbdmvWfxwURSjUt8M7PdJTkx9A66BSfoleUPqm4idm+SxoiguKoqi33rO2LVZPLudOT7dLB5SFMXg5pOKotgmyTYbeVbz+WPauR6ohjk3tzz+2qxOTQMAAAAAAADYvM2fPz9nnHFGRowYkf322y8f+9jHcsYZZ+QrX/lK/uEf/iHvfOc7M2TIkLzzne/MXXfd1eZes2bNSlEUDVfjIqUkOfzww5vcX3tddtllDZ8bF2slyTe+8Y0W16y91hZoAQB0SS9Mbfv+s9cnZdk5uQAAAAAAAAB0gGuuuSajR4/O+eef32qjsCSpq6vL1KlTM27cuJx00klZuXJlJ2a5Yc4555wccsghuemmm1p9WeacOXPyz//8zznmmGNSV1dX8d7f+973sv/+++fmm29ude9nn302Z511Vg499NDMmTNng54hSX76059m9OjROe+881ptFJbUvxD09ttvz5FHHpmPf/zj7Xqe7qxntRPoZrZrFvdLck+SoRWsrU1ySpIDi6J4d1mWL7Qyb1CzeG57EizLcnFRFMuS9Gk0vHWSl9dzzpKyLF9rz1kt5LZ1O9cDAAAAAAAAAJuha665JieccEIWLVrU5ry1RVtTp07NZz/72Vx00UXp2VO5CwDAej33m7bv3396Mv+PyX7/mfQekpSrkxp/zwIAAAAAAAC6pksvvTSf+cxn1ml2tcsuu2SPPfZIv379Mnv27Nx9991ZtWpVw/0f/ehHmT17dq6//vouW3v2ne98J1/96lcb4t122y277bZbttpqq7zwwgu58847s2zZsob7V199dc4666ycd9556937u9/9bs4888x1xvfYY4+MGTMmvXv3zuzZs3PPPfdk1apVmTFjRo499tgccsgh7X6Or3/96/nmN7/ZZKwoiuy2224ZM2ZMBgwYkJdffjn33ntvk2Zvl19+eV544YVMnTq1y36Pugpfnc7VvMHWT/J6o7DXklyc5P+SPJtkqyT7JPlUkgmN1rwlyVVFURxaluWKFs7o3yxeugF5Lk3TZmEDNuE5jbV0TrsURTE8ybB2LttlY88FAAAAAAAAACqzJRdtAQB0CatXJs//3/rnzb6i/mpsx2OSXf4hGXFosmJR0rN/svT5pN+OSY9e655TtyDpM7zjcgcAAAAAAABo5s9//nNOPvnkJjVnb37zm3PRRRdl/PjxTebOmzcvZ511Vv77v/+7YWzq1Kn5+te/nnPOOafTcq7Ugw8+mNtuuy1JcvTRR+fcc8/N7rvv3mTOyy+/nDPOOCOXXXZZw9h3v/vdnHzyyRk1alSre99333358pe/3GTssMMOy4UXXpixY8c2GZ83b16+/vWv5+KLL86tt96amTNntus5Jk+e3KRRWE1NTU499dSceeaZecMb3tBkblmWufbaa3Paaadl9uzZSZKbb745Z511Vs4999x2ndvdqJzsJEVR9E7Su9nwyDW/zkxyVFmWzzS7f3+SnxRF8S9JvtNo/MAkX0ryrRaOat7Ea1kLc9ZnaZLBbezZkee0teeGOCXJpA7YBwAAAAAAAIDmVq9Mljxb7Sy2fP1GJjVbZknHpiraGjlyZJ566qmG+IILLsj3v//9hnjKlCkZN27cOvkMHTo0hx12WJLkzjvvzHHHHddw77TTTsvpp5/e6rNsu+2263laAIBqKZJDrkme/03y8HfWP72xZ66sv9pr6IHJyPcng9+cDH5L0mfo+tcAAAAAAADQLZQrVybz1J1tcsNGpthCX8L46U9/OnV1dQ3xhAkTcsMNN6Rfv37rzB02bFguvvji7LrrrvnCF77QMH7eeefluOOOy1577dUpOVdqwYIFSZIvfvGLOe+881qcM3jw4PzkJz/Jyy+/nGuvvTZJsmrVqvz4xz9u0qCruVNPPTUrV65siD/wgQ/kiiuuaPFlncOGDcsPf/jDjB49Ol/84hczf/78ip/h6aefzsknn9wQ9+7dO9dcc02OOuqoFucXRZGjjz4648ePz0EHHZQnnngiSfIf//Ef+exnP5udd9654rO7my3zJ7xr6tHK+CtpuVFYg7Isv1sUxQ5JPt9o+PNFUVxQluXi9ZxbtjPPrr4GAAAAAAAAgGpZ8mxynSKMTe69TyX9R1U7i01iUxVt9ezZs8kbEgcNGtRkr2233bbVNyj271//brNZs2Y1GR80aFCbb10EAOiyanokIw6tvx79QbK6bv1rNtb8P9Zfrfm7u5KhB2z6PAAAAAAAAOh65j2b8tjdqp3FFq/45aPJdqOqnUaHmzZtWu6///6GeODAgbniiitarDlr7Mwzz8wf/vCH/OY3v0mSrF69Oueff34uvfTSTZrvhpgwYULOPffc9c77t3/7t4ZmYUlyyy23tNos7J577sldd93VEG+33Xa59NJLW2wU1tgXvvCF3HTTTbnxxhsrzL6+ydfSpUsb4vPPP7/VRmGNDR8+PL/4xS9ywAH1/5a8atWqnH/++fnBD35Q8dndTU21E+guyrJckmR1C7e+11ajsEbOSn1jsbW2SfLOFuY1bx7Wt7IM21zTUkOyzjoHAAAAAAAAANgCbEzR1nve856GeG3RFgAAFdj7X6udQb0b35b8okhWLl3/XAAAAAAAAIA1Jk+e3CQ+9dRTs/3221e09tvf/naTeMqUKVm+fHmH5dZRvvrVr6amZv1toMaOHdvkBZh//vOfW507ZcqUJvE//uM/Zuutt64on7POOquieUny2muvNWnANnr06Jx00kkVr99///1z8MEHN8TXXXddxWu7I83COtdrLYz9tJKFZVm+luTXzYYPa2Fqd28W9l9J9mzn9b4OOBcAAAAAAAAAaEN3KNoCAOhy9vhStTNo6pdtN4oFAAAAAAAAaOz2229vEn/sYx+reO3YsWOz7777NsTLli3Lfffd12G5dYS+fftm4sSJFc9/05ve1PB5yZIlWby45XY9M2bMaBIfe+yxFZ8xYcKEimv7br/99ixd+vpLo4455piKGp81dvjhhzd8fvrppzN79ux2re9OelY7gW5mYZIBjeI5ZVnOasf6O5N8slH8phbmvNIsHtaO/VMURf+s28RrYQXn9CuKYqs1Tc0qNbyCc9qlLMu5Sea2Z01RFBt7LAAAAAAAAACwHh1RtHX//fcneb1oa/z48R2aIwDAFumYl5MrB1c7i9e9+ngycEy1swAAAAAAAAC6uJdffjl/+9vfGuJBgwY1aZZVifHjxzfUnSXJPffc06XqznbZZZf06tWr4vmDBzf9t99XXnkl/fv3X2feX/7yl4bPgwYNyq677tquvPbbb79cd911653XvC5w++23z6xZs9p1VvPnf/LJJ/OGN7yhXXt0F5qFda7HkuzYKH6hneufbxYPaWHO483indp5RvP5C8qyfLn5pLIsXyqK4uUkjf8EeUOShzfirOa5AwAAAAAAAABbgO5QtAUA0GX1GpQctyqZ0qPamdT7zRtf/7zzCck+5yZ9RiRFkaRY8ysAAAAAAADQ3c2bN69JPGbMmBTt/PfE3XffvUk8d+7cjc6rIzVv/rU+tbW1TeIVK1asM+e1117LsmXLGuINabxV6ZpnnnmmSXz66afn9NNPb/d5jS1YsGCj1m/JNAvrXA8lOaJRvLyd65vP79PCnObNutrX1i8Z3Sye2cbch5M0rrrdtYXz23NWe9YCAAAAAAAAAJuJ7lC0BQDQpRU1yQ5/nzx3fbUzaeqpn9ZfzQ3aOxlzSjL0wGTgG5MeLZXMAgAAAAAAAFuyl19+uUm89dZbt3uP5mu6WiOqmpqaDt9z4cKFTeIBAwa0e4+BAwdWNO+ll15q997rs2jRog7fc0uhWVjneqBZPKid65vPb+mn5a/N4r2LouhXluWSCs84aD37Nb/XuFnYgUkqqiIpimKrJHu34ywAAAAAAAAAqq3fyOS9T1U7iy1fv5HVzqDDdYeiLQCALm+PL3W9ZmGtWfhAcs/n2p5T0ys54EdJ0TNZtbS+sdigsZ2THwAAAAAAAJUbNjLFLx+tdhZbvmFbXt1ZWZZN4va+oLIlHbFHV9e7d+8mcV1dXbv3qHTNhuy9Ps2/77xOs7DO9X9JyiRr/9QYXRRFn7Isl1W4fs9m8bPNJ5Rl+UJRFA/k9UZcPZNMSHJjhWcc1iz+vzbmTk3y2TbWtuXgNP3996eyLOe0Yz0AAAAAAAAAna2mZ9J/VLWzYDOkaAsAoAsYMi4Z8rbkpbuqnUnHWF2X3Hli6/ePmJ6MOLSzsgEAAAAAAKAVRc+eyXajqp0Gm6FtttmmSfzKK6+0e4/mawYPHrxRObVk1apVHb7nxmj+jM1f9lmJSl/mOXTo0CbxjBkzcuCBB7b7PCpTU+0EupOyLJ9P8sdGQ7VJjmjHFkc1i29rZd7VzeJPVrJ5URS7J3lbo6HX0naTsRuSLG0UH7hmj0qc2CxunjMAAAAAAAAAsIXYXIq2AAC2aDU9kok3JrudlgzaJ9nxA8lOH6l2VpvOzYclvyjWvWZfWe3MAAAAAAAAgAoMGzasSfzYY4+1e49HH320STx8+PAW5/Xs2bNJvHLlyorP2JBmXJtSjx49ssMOOzTETz75ZJYsWdKuPR588MGK5o0YMaJJvCHfIyqnWVjn+0mz+IxKFhVFcXCSAxoNrU7yu1am/zxJ45aDHyiKYkwFx3ypWfzLsiyXtTa5LMslSZpXTDTfYx1FUbwxyfsbDa1M8osK8gMAAAAAAAAANkOdWbQFAEAbagcmb70gedefk4OvSg6akhy3Ktn1c0nR4/V5/XZMxk9J3rOev7ft+73kwMuTnltt2rw70u0fWreB2C1HJi/dW3+/LJMVryarWi2hBQAAAAAAADrB4MGDs8suuzTECxcuzMMPP9yuPWbMmNEk3n///VucN3DgwCbxwoULKz7joYcealdOnWHcuHENn1evXp0//OEPFa9dsGBB/vKXv1Q0d/z48U3iG2+8seJzaD/NwjrfT5I0/lNnYlEUbTYMK4pieNZtMvbLsiz/1tL8siwfTzK50VCvJJcVRdGnjTPel+TERkN1Sb7RVl5rnJ1kRaP4xKIo3tvGOX1S/yy9Gg3/uLVnAQAAAAAAAAA2f51ZtLWhiqLo0P0AADYbRU1ywA+TD76UvOvB+uZhR89ORn2k/l5rxl2W7P75ZOfjk/e/kBxyXTJiYn2jsZreSb+RnfYIG+3Fm5Ib9q9vHDalJvnV1skVfddtKvaLIpkzPVld+VvEAQAAAAAAgA03YcKEJvHPf/7zitc+/PDDue+++xriPn365K1vfWuLc5u/vHLmzJkVn/O73/2u4rmd5e1vf3uT+JJLLql47eTJk1NXV1fR3COOOCI9erz+Yqrrrrsuc+fOrfgs2kezsE5WluWqJKclWd1o+LtFUXy/KIrBzecXRfH2JHck2aXR8MtJ/t96jpq0Zt5a45PcVBTF7s32710UxT8l+VWz9d8ty/Lp9ZyRsiyfTPL9ZsNXFkXxj0VRNG4IlqIo3pTk5jW5rPVSKmtKBgAAAAAAAABsxjqraGtD9e7du0m8fPnyDt0fAKDL67V1MmjPpg3C+oxoff6QA17/XDsgGfn3yRE31zca+8iy5Ohnkh0/uOnyrZabD0/+t7blRmIz/z2pq/wN4wAAAAAAAEDbTjjhhCbxhRdemBdffLGitV/5yleaxB/5yEfWqRNba999920SX3/99RWdccMNN+Tuu++uaG5nOv744zNgwICG+Oqrr84NN9yw3nXPPfdc/vVf/7XicwYPHpzjjz++IV68eHHOPPPM9iVLxTQLq4KyLH+f+oZhjf1zkjlFUdxaFMWUoiiuKYpiVpLfJ9m10by6JMeVZfnUes54NskH1sxf66AkM4uiuKcoiiuKopia5JkkP0hS22jeb5Kc1Y5H+nKS/2sU1yb5zyTPFEXxf0VR/LIoinuTPJSmjcLqkry/LMsX2nEWAAAAAAAAALAZ6qyirQ01aNCgJvELLyhnAABIbf9k27evOz5wt2TrN61//c6f6PicurI/fym5cnDLjcSuHpnccmTy7LXJkueTsqx2tgAAAAAAANDlTZw4MW9+85sb4ldeeSXHHXdcli5d2ua6888/P9dee21DXBRFPv/5z7c6/8ADD0y/fv0a4quvvjr33ntvm2c8/vjj+cQnuua/iQ4YMCCnnda0vdGxxx6badOmtbpm1qxZOfLII7NwYftekHT22Wc3qef72c9+li996UtZtWpVu/aZOXNmbr311nat6W40C6uSsiwvTHJKkiWNhmuTHJzkI0nel2SnZsvmJDm8LMv1t+mrP2N6kvcnmddouEiyX5Jjk7wjybBmy6Yk+UhZlhX/tK2Ze2ySK5rdGp7kqCQfSvLWNWevNTfJ+8qyvK3ScwAAAAAAAACAzVdnFW1tqNGjR6dXr14N8bRp07JixYoOPwcAYLNzwI+SrUa9HvcemoyfUtnakX+fHPjTTZLWZmfpc8mLNyW3Hp1cs0Mypaa+idivt01mfDx5/IfJsvnVzhIAAAAAAAA61IsvvphZs2Zt0LXWj3/84ya1XdOnT8/BBx+cu+66a53z5s+fn1NPPTVnnHFGk/EvfvGL2XvvvVvNc8CAAfnwhz/cEK9atSrvfve7c+ONN64zt66uLpdccknGjRuXOXPmZPDgwe35knSas846K3vttVdD/Oqrr+aII47IsccemyuvvDIPPPBAHnnkkdx44405/fTTM3bs2Dz88MPp06dP3ve+91V8zs4775wf/ehHTcb+/d//PRMmTMj111+flStXtrp21qxZueiiizJx4sSMHTs2t9xyS/sftBvpWe0EurOyLH9YFMWNSc5OfXOwAa1MfTHJxUkuKMvylXae8buiKPZM8o0kH07S2p8udyb5TlmWV7Vn/0bnLE7ykaIorkzyL0nGtTJ1Qeqbik0qy3JeK3MAAAAAAAAAgC5mbdHWhhg1alSS+qKtAw88MHV1dUleL9q66KKL8ra3va3Jmvnz52fSpEn5r//6rybj6yva2lC9evXKQQcd1PDmxNmzZ+e9731vPve5z2XMmDFN3hqZJNtuu2369OnT4XkAAHQ5/XdO3vNwMm9Gsnp5MmxCUttayWsLdv54ss1+yS1vT5Y+v+79okdy4OXJgnuSR77XcXlvLpbNSWZdXn/dc8q694e8Ldl6bLLdO5IBY5IVC5NBeycpktqtk5oenZ4yAAAAAAAAVOq4447b4LVlWSZJ9t1331x44YX53Oc+l9WrVydJ7rvvvowbNy677rprxo4dmz59+uSZZ57J3XffvU5zqiOPPDLf/OY313veN7/5zVx99dVZuHBhkmTu3Ll5xzvekV133TV77713evfunTlz5uSuu+7Ka6+9lqS+juy8887LJz7xiQ1+zk2lV69e+e1vf5uJEyfmiSeeSFL/Nf3Vr36VX/3qVy2uKYoiF110UWbPnr3OSz7bcsIJJ+TFF1/MV77ylYbv0Z133pn3vve96devX97ylrdkxIgR6du3bxYtWpT58+dn5syZDV9rKqNZWJWVZfm3JB8viqJvkoOSjEyybZK6JPOS/KUsywc28oy5SU4uiuK0NWfstOaM15I8l+RPZVk+tTFnNDrryiRXFkWxc5J9k2yfZKvUNzx7OskdZVnWdcRZAAAAAAAAAEDn2ZyKtjbUGWec0dAsLEmmTp2aqVOntjh32rRpOeywwzZZLgAAXUqPPsm2Ezd8/dZvSt77ZPLSXUlZJjW1yaqlSd2CZNghSd8RyU4frm+K9dz1ycK/Jouf6Lj8N2cv3VV/PXlp63OGH5r06Jvs8PfJtkckA3erHy/LZD1F+xWrW5jMvyvpt0P996mj9gUAAAAAAIAKfOYzn8ngwYPzyU9+MosXL24Yf+KJJxoaYbXkU5/6VC6++OLU1tau94wddtghV111VY4++ugsWrRovWfsvPPO+e1vf5s5c+a082k6z4477pjbbrstp5xySq6++uo25w4ZMiSTJ0/Ou9/97nzpS19qcm/AgPW/UGrti0A/+clP5sUXX2wYX7JkSe64446K8h08eHBF87orzcK6iLIslya5aROfUZdk2nondsxZTyXpkAZkAAAAAAAAAMCWozOKtjbUe97znnzrW9/KpEmTsmrVqk12DgBAt9SjdzL8kNbvF0Wyy6fqrySZMz159AfJoseSZXOT7d+V9OyXDNor2XrP5N5Tk4UPdkrqXd7cP9T/+kLLjW5zwCXJTscmq1fWfw1ffSxZ8mwydFzSe5u2965bmFy9Q7JqSdPxYxcnPbfa+NwBAAAAAACgQsccc0wOOeSQnHPOOfn5z3+e+fPntzivtrY2hx9+eCZNmpTx48e364yJEyfm7rvvzpe//OVcd911DS/KbGzYsGE58cQT87WvfS0DBw7s0s3CkmTbbbfNr3/969x+++2ZMmVKpk+fnueffz7Lli3L9ttvn9GjR+dDH/pQPvzhD2frrbdOkixcuLDJHmvH1+eoo47KU089lUsvvTSXXHJJ/vKXv7T4NVyrtrY2+++/f/6JHjndAAAgAElEQVTu7/4uH/3oRzNmzJgNf9BuQLMwAAAAAAAAAAA6VWcUbW2or371q3n/+9+fn/3sZ5kxY0Yee+yxvPLKK1m6dGmnnA8AwBojDqu/WvPOvySLn0x69EmKnsk9Jydzbk5WvNrxuQx4Y33Tss3V3Z+pv1pz4E+TnT9e/7ksk5RJUZOsWJxc2cqbu3/zpuTo2R2eKgAAAAAAAJu3WbNmbdL9hw8fngsuuCDf+973ct999+WRRx7JvHnzsnz58gwdOjQjR47MhAkTMmDAgA0+Y/fdd88111yT+fPn5w9/+EOeffbZLFmyJCNGjMjOO++cgw8+OD17vt626bDDDmuzIVZz7Znb3GWXXZbLLrtsg9ZOmDAhEyZMqGjuzJkzGz4XRZHhw4dXfE6fPn1yyimn5JRTTsmCBQty55135oUXXsiCBQuyYsWK9O/fP8OHD88b3/jG7L777unXr1+7n6W7KjbmNw9sCYqiGJvkr2vjv/71rxk7dmwVM4Iu7hdF6/c+6r8pAAAAAAAAXdnKlSvz+OOPNxkbM2ZMk6IV6GyrV6/eZEVbXdmm+nl86KGHsueeezYe2rMsy4c2alMA2Ahq9OhUZZk88aPkns+te2/bv0vm3JSUq9u/74Qrk7/9T/LC1I3PcUty3Kr6pmIAAAAAAMAWTd0ZdC+vvfZahg8fniVLliRJdttttzzyyCNVzqp9ttT6PH/qAgAAAAAAAABQNTU1Ndl///2z//77VzsVAAA2d0WRjDkpKVclT/x3smxOst1RyX7/mdQOSOZMS2ZflaxenvQekjzyvWT1irb33OPLyY4fSOpebrtZ2G6nJ289v/7z6pXJH96TvHBDxz1bV7T0xaTf9tXOAgAAAAAAAOhAkydPbmgUliQHHnhgFbOhMc3CAAAAAAAAAAAAAIAtxxtPqb+aG3F4/bXWm7+dzJmePP7D5NVHk3JFssP7km32rW8mtvWeSZ9h9XN3+XSy+Mlk5rnr7tujb7LzCa/HNT2TPSdt+c3CVi+rdgYAAAAAAABAB3r22Wdz1llnNRk74YQTWplNZ9MsDAAAAAAAAAAAAADonkYcVn+tT1Ekbz4n2fOsZN7t9Q3GXrqzvqHYnl9LtnlL0/lDDkgGjEkWPd50fK+zkwfP7pjcq63ulWpnAAAAAAAAALThqquuyn333ZfPf/7zGTZsWJtz//SnP+WDH/xgFixY0DC2zz775PDDD29jFZ1JszAAAAAAAAAAAAAAgEr07Jtsd2T91ZaaHskRtyR3fjKZe2vSe2iy22nJm76QzPr5uk3ENkdzpq3bJA0AAAAAAADoMhYtWpRzzz033/nOd3LUUUfliCOOyD777JPhw4enZ8+eWbBgQR588MH85je/yfXXX5+yLBvW9urVK5MnT65i9jSnWRgAAAAAAAAAAAAAQEfrNzKZ+Ptk1fKkpldSFPXjB1ySTD8qWbWsPu7RN+nRJ6l7+fW12+yXDB2XPHZh5+ddqaenJG86o9pZAAAAAAAAAOuxYsWKXH/99bn++usrmt+3b9/89Kc/zT777LOJM6M9NAsDAAAAAAAAAAAAANhUevRuGo84NHnPY8kzV9U3Edv+XfWNxZ69Jpl/ZzJoz2THDyRLX0yeujxZsbA6ea/P0PHVzgAAAAAAAABow6BBg9KjR4+sWrWq4jUHHXRQLrjgguy3336bMDM2hGZhAAAAAAAAAAAAAACdaasdk91Pbzr2hmPqr7VqByZvn548dE4y+5edml5Ftt59/XPK1UndwqRuQbLVzklNj6b3lr6Y9N02KWo2XZ4AAAAAAADQTR199NGZM2dOpk6dmjvuuCMPPvhgnn766SxYsCDLli1L3759s80222SnnXbKwQcfnHe961056KCDqp02rdAsDAAAAAAAAAAAAACgKxq8TzLhiiRX1Mer6pIeveo/z701eeGGpM92yeC9k+d+mzz6/WT18s7J7Z5T6q+1dvj75OBfJ4seT24/Nnnlr+3bb5d/SIZNSHptk2y9RzJgl47NFwAAAAAAALqhIUOG5Pjjj8/xxx9f7VTYSJqFAQAAAAAAAAAAAABsDtY2CkuS4YfUX43jt5xX/7ksk1ceqr+GjkuWvpjcOG7T5vbc9cn/1m74+r/9T/3V2H4XJqM/mSybm/TdLunRe+NyBAAAAAAAANhMaRYGAAAAAAAAAAAAALAlKYpk0J71V5JstVPy0bL+8/KXknl3JDW9kxWvJPNuS17+U/1YV3PvP9ZfbXnjPyf7fb9z8gEAAAAAAACoEs3CAAAAAAAAAAAAAAC6i95DkpHvfT3e6dim95c8lzx3XbJsbrLdO5K7Pp28MrNzc2yPx35Qf6018ffJiIlJUVO9nAAAAAAAAAA6mGZhAAAAAAAAAAAAAADU67dDMubk1+Nhh3TtZmHN3XJk6/d6D0kOuTYZdlDn5QMAAAAAAADQATQLAwAAAAAAAAAAAACgZXt8MXni4mpn0TGWv5T8fkLL9/rtmLz520nRI1n0ePLKQ8keX04G79O5OQIAAAAAAAC0QLMwAAAAAAAAAAAAAABa1n/npHZgsuLVameyaS15JplxfNOxp//39c87fiDpsVUy/OBku3ckfUYkPXp3bo4AAAAAAABAt6VZGAAAAAAAAAAAAAAA/5+9O4+zs6zvh/+5Z8+QyR4SIEAgIRA2WWURbEBFpZS60J+ASou4L5VWXKi2ICLV1uen+KB1eRRtpWjdwFJErQ1UREA2EQ0JWwhhCdmTIclklvP8cZPMnCSTdTIny/v9en1fZ67ruu/r+t6RoM6Z85n+7fWaZM5/1LqL2nrqR+Xr7H/b9LUjjkym/VfSOiHp6Uqe/kmy8tlkz5cnww5J6hq3b68AAAAAAADALkdYGAAAAAAAAAAAAAAA/Zv4FmFhW2LJg8kN+27+9Xu9OnnZ9Ul9a1LfvP36AgAAAAAAAHZawsIAAAAAAAAAYDdRFMV6c5VKpQadAD09PevNbejvKAAA7BD2OiNpHJZ0Ltv6PYYdkkx+d3L/3yaV9f/38G7t2Z8lPxi1/vzolyaHX1b++fesTuqHJP5/AwAAAAAAAOyWhIUBAAAAAAAAwG6irq5uvbnOzs40NjbWoBvYvXV1da03t6G/owAAsEOob05e/pPktj9LupZv/n0TXpd0r0pGHZNM+etkyLhkr1cnz/0iaRia/O5jyarnt1/fO7uFdye3/Wn/62fNSoYdNHj9AAAAAAAAADUjLAwAAAAAAAAAdhNFUaSpqSmrV69eO9fe3p7W1tYadgW7p/b29qpxU1NTiqKoUTcAALAZxv1J8obnkgV3JkP2SoYdnCx5MFn6cLLgN8msL1ZfP+q45NQfJev+79zhh5SVJBPPS+b8IFl0TzLy6GS/v0ge+XJy/4cH55l2djdN2fD88MOTgz+QjDwmGXlUUudjAwAAAAAAALCz864fAAAAAAAAAOxG2trasnDhwrXjZcuWZezYsUKKYBBVKpUsW7asaq6tra1G3QAAwBZoaE3Gn947HnlUWfu/KWkelTz61WT10mT8K5MTv7l+UNi66luSA95S1hpTL0kaRySPfSPpXJysfC5pHpu0P7rl/Y49NZn/qy2/b2e39KHk7ndt+rqDL06O+kxS37z9ewIAAAAAAAC2ibAwAAAAAAAAANiNrBsW1tnZmaeffjr77LOPwDAYBJVKJU8//XQ6Ozur5ocNG1ajjgAAYAAURXLEZcnh/5BUupK6xm3bb/Lby+qrp7Pct9KTLP5dUtQnIw5Pnv1Z8r+vT3o6qq8/+p+T8a9KfnbC+muUZn6hrP7sf14y6phkyIQyDG7J75OxpyRjThi8HgEAAAAAAIAkwsIAAAAAAAAAYLfS0tKSxsbGqqCi5cuX57HHHsuwYcMydOjQNDQ0pK6uroZdwq6lp6cnXV1daW9vz7Jly9YLCmtsbExzc3ONugMAgAFUFEmxjUFh/VkTQFbUJaOO7p3f+7XJ6+Ymz99Wnl/XUoZZNY8u16fdlDzwd8mSB5NRx5YBYg99cgsOfjEI7feXD9ST7DyevL6sTalvTca/Mpn0tmTcaUmjMGQAAAAAAAAYaMLCAAAAAAAAAGA3UhRF9t5778yZMyeVSmXtfGdnZxYuXJiFCxfWsDvY/az5O1kURa1bAQCAnVfLmGS/N254bfwrk9e8Mqn0lEFjSdLYljz4D0n3iqRxRLLH/uXX3SuTFXN77y3qkhOuTfb50+ShK8o9WF/3iuTpn5S1xoTXJ13tZUDbonuTjgXJnn+SHPWPSX1L7XoFAAAAAACAnZSwMAAAAAAAAADYzbS2tma//fZbLzAMGFxFUWS//fZLa2trrVsBAIBd35qgsCSZ+qFkygeSF2YnbZOr13q6koW/Ldf2PDVpnVDOv/RryV1vH8yOd25zf1y+PveL3rnF9yczv9A7nvKBpG1KsvdrktZ9k/rmwe0RAAAAAAAAdiLCwgAAAAAAAABgN7QmMOyZZ55JZ2dnrduB3U5jY2P23ntvQWEAAFAr9U3JsCnrz9c1JGNPKquvSRclY09JHvpUMvu6welxVzfr/y1f793INQdemEy9JBl+6KC0BAAAAAAAADsqYWEAAAAAAAAAsJtqbW3NpEmT0tHRkWXLlmX58uVZvXp1rduCXVZTU1Pa2toybNiwNDc3pyiKWrcEAABsiWEHJyd/p6w1Vj6XLLqv/LpjQTL2ZcmQvZMFvy7XRh+fPPCxZO4NG97zuGuS5rHJHecllZ5N93DsF3uv3x08fm1ZfZ35UDLisNr0AwAAAAAAADUiLAwAAAAAAAAAdmNFUaSlpSUtLS3Zc889U6lU0tPTk0qlUuvWYJdRFEXq6uqEgwEAwK5oyPhknzPXnx//yt6vX/7jpLM9ee6/k2duSrpXJ/u+Idn3db3XNLYl93wgaX+s/7P2fWMy+V1JepKmUcnqRQP2GDuVmw9PXn13GcQGAAAAAAAAuwlhYQAAAAAAAADAWkVRpL6+vtZtAAAAwK6lcWgZDtY3IKyvvV+bnP1osvLZ5JmfJk/9KOlantS3Jq37JFM+kIw4IinqyutP/+/kV69PXnhy8J5hR/KzlybnCzoHAAAAAABg9yEsDAAAAAAAAAAAAAAAdgRD9komva2sjRl1dHL2E0n7Y0nLuKSoT373iWTm57dPX+csSppGJj8al6x6fvucsSWK+qSnK6nzkQgAAAAAAAB2D3W1bgAAAAAAAAAAAAAAANhCRZG0TU4a25KG1uTY/5ucsyQ56jNlsNeII5IjLk8OvywZc1Iy7hXJidcm+5+3ZedMfGu5X5Ics53CyLZUpTvpXlnrLgAAAAAAgF3UnDlz8olPfCKnnnpqxo0bl6amphRFsba+9a1v1bpFdkN+jQ4AAAAAAAAAAAAAAOwKmoYnh360rL6OvLz364lvTcacmDzxnWTRb5P6luTAC5N9z0me/PfksW/0Xjvm5OS4L/aO9/mzZNRxyaJ7Nnz+UZ9N/vDppHPZgD1Sv3o6t/8ZAAAAAADAFpk4cWKefPLJtePp06dn2rRptWtoK3z961/PBz7wgXR0dNS6FahSV+sGAAAAAAAAAAAAAACAQVJXnxz818lr7k7OryRvWpkc/+Vk/OnJCf9fcm5XcsZdyVkzk1fdnjSN6L23sS05/b+Tl/zj+vvu9xfJwRcnk94+OM8hLAwAAAAAABhgN998c971rndtdlDYrbfemqIo1tbll1++fRtkt9ZQ6wYAAAAAAAAAAAAAAIAdRF19Mual/a83DU8O+1hZncuSBXcmQyclQw9MiiJ5yaeT9ieSuT/etj6GHZyc+uPkvw7d8Hr3iuSZnyY9XcmeLy/7AgAAAAAA2AaXXnppKpXK2vH555+fiy66KPvuu28aGxvXzo8ZM6YW7bGbExYGAAAAAAAAAAAAAABsucZhyV5nVM/VtyQv/1Gy8rlkxVNloNjK55LRL03uvyR5+iebt/dB7y/36s9PDtz0HsMPS15+Y9I2qf9rulf19g0AAAAAAOy2Zs6cmQcffHDt+Mwzz8x1111Xw46gmrAwAAAAAAAAAAAAAABgYA0ZX1Zff3JjGRzWsTAZfmiy4DfJHW9JXnii95oxJyUHvi2Z/PZkxdxt62HpH5L/nLx5145/VXLaz5Ki2LYzAQAAAACAndI999xTNT7nnHNq1AlsmLAwAAAAAAAAAAAAAABgcPQNERt7cnL2Y8kLs5OWcUlDa/W1dc2D19dzv0iur6ue+/M5yR77Dl4PAAAAAABAzcybN69qPGHChBp1AhsmLAwAAAAAAAAAAAAAAKiNokiGHrDhteYxg9vLum7cr/frqZckR302Ker6vx4AAAAAANhptbe3V40bGxtr1AlsmLAwAAAAAAAAAAAAAABgx1MUyb5vSJ76Ua07SWZ8rqy9Xp2MPiEZc2L52jyq1p0BAAAAAMBup1Kp5L777svDDz+c559/Ph0dHRk7dmz22WefnHLKKRk6dOgW79nT07MdOoWBIywMAAAAAAAAAAAAAADYMZ3yg+T6ulp30evZn5W1RtuUMjhsTXjYiCOSusba9QcAAAAAALuwBQsW5Kqrrsp3vvOdzJ8/f4PXNDU15fTTT8/ll1+eE044od+9Zs+enQMOOKDf9dNOO22D89dee20uvPDCDa598pOfzCc/+cl+95w+fXqmTZvW7zpsjLAwAAAAAAAAAAAAAABgx1QUte5g45bPKuuJfy3H9UOSUcdVB4i17lPbHgEAAAAAYBdwww035IILLsjy5cs3et3q1atzyy235JZbbsk73/nOfOlLX0pDg5gldn7+KQYAAAAAAAAAAAAAAHZcR/8/yf0fqnUXm6d7ZTL/V2Wt0TohGX1ib4DYyGOShiG16xEAAAAAAHYy3/zmN/OOd7wjPT09VfOTJk3KoYcemtbW1syZMyd33313uru7165/7Wtfy5w5c/Kf//mfAsPY6fknGAAAAAAAAAAAAAAA2HHt+4bk95cnXcu3/N7D/z6Z+ObkpkMGvK3NtmJusuIHyVM/KMdFQzLyJdUBYkMnJUVRux4BAAAAALaXnq7y+6RsX60TkrpdM0rogQceyHve856qoLCjjjoqX/rSl3LyySdXXTt//vz8/d//fb761a+unbvlllvyD//wD7nqqquqrp0wYUKeeOKJteMvfOELufrqq9eOr7/++px44onr9TNmzJhMmzYtSXLnnXfmvPPOW7v2wQ9+MBdffHG/zzJ+/PhNPC30b9f8Gw4AAAAAAAAAAAAAAOwahk5MTv95cu/fJAvv3Pz7msckB1yQtE1ORh6TLL5vu7W4RSpdyaJ7y3rkS+Vc8+je8LDRJySjX5o0Da9tnwAAAAAAA2HF3OQnB9S6i13f2U+U30/fBV100UVZvXr12vEpp5ySn/3sZ2ltbV3v2rFjx+YrX/lKJk+enA9/+MNr5z/72c/mvPPOyxFHHLF2rqGhIRMnTlw7HjFiRNVe48ePr1rva+jQoUmS2bNnV82PGDGi33tgWwkLAwAAAAAAAAAAAAAAdmxjTkxe/ZukpzvpWp7M/3Wyx8SkZVxyx5uTeb9MKt3ltSOOTEYdk0z9cBkUliSH/E3ym7cOTC9D9kpWPjswe63RsTB55r/KSpIUyfCp1QFiww9L6uoH9lwAAAAAANiBTZ8+Pffd1/vLQIYNG5bvfe97GwwK6+uSSy7JbbfdlptuuilJ0tPTk89//vP55je/uV37he1JWBgAAAAAAAAAAAAAALBzqKtPmkYk+/xp79zpP0s6lyd1zUl904bv2+//JHNvSJ764badP+4Vyem/SFbMTRbemSy4q3xddG/SvWrb9q5SSZb+sazHX/zgUsPQZPTx1QFiQ8YN4JkAAAAAALBj+fa3v101ft/73pe99957s+79zGc+szYsLEmuv/76/Mu//Euam5sHtEcYLMLCAAAAAAAAAAAAAACAnVtj28bX65uSl303mX97sviBZMSRybCDk9Z9kse/ldzzgaSrvQziWnhn//sc/vdJUSR77FvWfn9RznevTpY8mCy4szdErP3RAXu8JGV/86aXtcYeE5MJr08OuzRpGZsseyR57hfJ0APKYLP+wtMAAAAAAGAncPvtt1eN3/KWt2z2vYcddliOOeaY3HfffUmSVatW5d57783JJ588oD3CYBEWBgAAAAAAAAAAAAAA7PrqGpJx08rq68C/KmuNjkXJ/56dzP919XXDD0vG9vMBovqmZPRxZeX95dyq+cnCu3sDxBbenXQuG5BHWeuF2cnMz5c1ZJ9k5dPV63XNSU9H7/gln04OvbQMPAMAAAAAgB3Y4sWL89hjj60djxgxIlOnTt2iPU4++eS1YWFJ8tvf/lZYGDstYWEAAAAAAAAAAAAAAABrNI9KXnV7MvfG5OH/m7Q/nuw5LTnm80ld4+bv0zI22edPy0qSSk+y7OEyPGxNgNiSh5JUBqbvdYPCkuqgsCT53cfLWmPopORl1yejjks6lyaNw5KibmD6AQAAAACAbTB//vyq8UEHHZRiC38ZxiGHHFI1fv7557e5L6gVYWEAAAAAAAAAAAAAAADrmvDnZQ2Uoi4ZfmhZk95WznUuTxbdUx0gtmoQP6jU/ljys5dueG3I3smJ3yr7qqtP9j0nGTZl8HoDAAAAAHYNrROSs5+odRe7vtYJte5gwC1evLhqPHz48C3eY917Fi1atE09QS0JCwMAAAAAAAAAAAAAAKiFxrZk3GllJUmlkrwwu0942F3J4vuSns7B723lM8n0M3rHv/t4+Tr5ncnYlydjT0r2OCApisHvDQAAAADYedQ1JEMn1roLdkKVSqVqXAzA96MHYg+oFWFhAAAAAAAAAAAAAAAAO4KiSIYeUNbE88q57lXJ4gd6A8TmfK+2PT76tbKSpGXPZMxJvTXquKShtbb9AQAAAACwSxg1alTVeOnSpVu8x7r3jBw5cpt6gloSFgYAAAAAAAAAAAAAALCjqm9JxpxYVpJ0fzv5Xktte1pj1fPJ3BvLSpKiIRn5kmT0iWV42NiTkj0OKEPQAAAAAABgC4wdO7ZqPGvWrC3eY+bMmVXjPffcc5t6gloSFgYAAAAAAAAAAAAAALCzqG9O3rgw+eHoWneyvkpXsujesh75UjnXMu7FsLOTyhp1XNLQumX7rpqf/GgzP8B11GeTSncy7JBk/CuS7tXJiifLPlonbNm5AAAAAADUzMiRIzNp0qQ89thjSZIlS5ZkxowZmTp16mbvcccdd1SNjz/++AHtsfDLMhhEwsIAAAAAAAAAAAAAAAB2Js2jkvMrveNljyQ3TaldPxuzal4y98aykqRoSEa+pDc8bMxJyR4Tk/4+UFXp2fygsCR54KP9rw07OHnZd5O2KcmCO5NfvynpWJAceGFy2MfLPrpfSCqVZPH95fVD9tr8swEAAAAAGFCnnHLK2rCwJLnuuuty5ZVXbta9M2bMyL333rt23NLSkmOPPXZA+2tubq4ad3R0DOj+0JewMAAAAAAAAAAAAAAAgJ3ZsIOS8Wckz/1809c2jkg6l2z/nvpT6UoW3VvWrGvKuZZx1eFho45LGoaUa8/+YuDOXjYz+enR688/fm1Zm7LXq5OjP5eMOHzgegIAAAAAoF8XXHBBvv3tb68dX3PNNXn/+9+f8ePHb/LeSy+9tGp87rnnrhfuta1GjBhRNX722WcHdH/oS1gYAAAAAAAAAAAAAADAzu7lNyT3vG/joVcHvS85/precWd70tOR/HivpKdz886pb026VyapbFO7VVbNS+beUFaSFA3JyKPK4LDnbx24c7bVsz8r66xZZUAbAAAAAADb1emnn56jjjoqDzzwQJJk6dKlOe+883LzzTdnyJAh/d73+c9/PjfeeOPacVEU+Zu/+ZsB7+/AAw9MU1NTVq9enSSZPn16Ojs709jYOOBngbAwAAAAAAAAAAAAAACAnV3DkOTEbyYHXJD86o3J6kW9a+Nflez7hmTyO6vvaRyaZGhywjeT37x102ccflly5OXJ6qXJwruSBb95se5KOpcM3LNUupJF95S1I7ppSnLqj5J9X1/rTgAAAAAAdmjPPfdcZs+evVX3Tpw4MUnyjW98IyeddNLaQK5bb701p556ar70pS/lhBNOqLpnwYIFueyyy/LlL3+5av4jH/lIjjzyyK3qY2Oampryspe9LNOnT0+SzJkzJ2effXbe/e5356CDDkpra2vV9ePHj09LS8uA98HuQVgYAAAAAAAAAAAAAADArmLctOQN85Ilv0/22D9pHrXpe/Y6IykaypCu/tS3JPv/n/LrpuHlPXudUY4rPcmymX3Cw36TLP1jksq2Ps2O61dvSF769WTy22vdCQAAAADADuu8887b6nsrlfJ7zMccc0yuueaavPvd705PT0+S5N57782JJ56YyZMn57DDDktLS0ueeuqp3H333enqqv5e96te9ap86lOf2vqH2IS//du/XRsWliS33HJLbrnllg1eO3369EybNm279cKuTVgYAAAAAAAAAAAAAADArqSuIRl19OZf37JncuoPkl+fm3SvKuda90uaRiZL/5CMfEly9OeS4Ydu+P6iLhk+taxJbyvnVi9NFt7VJ0DszqRz6bY9147m7nckky5KiqLWnQAAAAAA7NLe8Y53ZOTIkbnwwgvT3t6+dv7RRx/No48+2u99b3vb2/KVr3wljY2N2623s846K1deeWUuu+yydHd3b7dzQFgYAAAAAAAAAAAAAADA7m7CnydvXFgGfA2dlOyxXznf053U1W/5fk3Dk73OKCtJKj3Jsof7hIf9Jln6x4Hrv1aW/C4ZeVStuwAAAAAA2OWdc845efnLX56rrroq1113XRYsWLDB6xobG3Paaaflsssuy8knnzwovX384x/P61//+vzbv/1b7rjjjsyaNStLly7NypUrB+V8dg9FpVKpdQ9QU0VRHJbkoTXjhx56KIcddlgNO4IdUOey5IG/S+b9snyDvr6oUUkAACAASURBVD/n++8UAAAAAAAAgFr6wx/+kMMPP7zv1OGVSuUPteoHAPyMHgCwUauXJAvv7hMgdmfSubTWXW2Zk/41OeCtte4CAAAAALabrq6uPPLII1VzBx10UBoaGmrUESQ9PT2599578/DDD2f+/Pnp6OjImDFjMmHChJxyyilpa2urdYvU0Pb691atfz7Pv3UB2LhKTzL9tcmCO2rdCQAAAAAAAAAAAACwK2kakex1RllJ+bPLyx7uEx72m2TpH7ftjOOuSaa8r/z634tt22tDls4Y+D0BAAAAANiourq6HH/88Tn++ONr3QoMGmFhAGzc4gcEhQEAAAAAAAAAAAAA219Rlww/tKxJF5Vzq5ckC+5KFt6ZtD+RLJuZ7H1mMv6VydiTkvbZyW/fkzx7y/r7HfXZ5KD39o4P/Wjyx88OcNM9A7wfAAAAAADA+oSFAbBxD11Z6w4AAAAAAAAAAAAAgN1V04hk71eXtSFDJyan/TSZ/e/Jk99LKj3Jvq9PDrwwKYrqa/c/P5l5ddK9auD6W3R/+Qua2w5KGvYYuH0BAAAAAAD6EBYGwMZ1zK91BwAAAAAAAAAAAAAAGzfx/LI2ZuSRybSfJg9+Iln8YDLq2OSAt5ZhX/NvTxbfv+XnPvfz5Kc/r5477ppkyvu2fC8AAAAAAIB+CAsDAAAAAAAAAAAAAABg9zBuWvKq25NKJSmK9de7VyW/+0TyzM1Jy9jk+f/d8jPueX9Z/Wk7qOyhaVRS6UrqmjfcCwAAAAAAwIuEhQEAAAAAAAAAAAAAALB76S+cq74lOeZzZSXJynnJ9DOSJQ8O3NnLH0l+NK7/9SF7J6+5L2keldQ1Dty5m9LTmSy4KynqkuGHJUV90jh08M4HAAAAAAD6JSwMgE2o1LoBAAAAAAAAAAAAAIDaGDIuee0DyU0HlyFfg2HlM8mPx294bcLrkpf8Y9K5LBk2JWkaMTBnLvl9cvOR/a+PPTWZekky7OAkdcns7ySL70+6VyYHvi3Z/9z+A9gAAAAAAIBtJiwMAAAAAAAAAAAAAAAA+lMUyRGXJ3e8udadJHNvKGtzTHxzMu4VyZ4vL0PFmkdv+LpKJbn1Tze+1/xflbUhz/13csf5veOhByYHvScZe0pS1Cfzb0+WP5a0HZQ8/Z/JvF+W4WN7vybZ+6xkxBGCxgAAAAAAYBOEhQGwCd50BQAAAAAAAAAAAAB2c/u9KXniO8mzP611J5tv9nVlrWvvs5I99k+KuqRjYTL0gGTFUwN3bvvjyf0f3vg1a8LHfvfxDa+3HZSMOjZ5/n/L4LFDP5bU+RgUAAAAAAC7L98lBwAAAAAAAAAAAAAAgI2pq0+m/VfyzM3JspnJE99OljxY6662zjM31bqDTVv+SFlJ8uDfl9W6bzLutGTYIb01dFJS31TbXgEAAAAAYBAICwMAAAAAAAAAAAAAAIBNKYpknz8ta+rfJt8fmXQuqXVXu48VTyVP/Gv1XNGQtE2qDhAbdkgy7OCkaWRt+gQAAAAAgO1AWBgAm1CpdQMAAAAAAAAAAAAAADueKe9N/nBVrbvYvVW6kmUzy8qN1Wst4zYQInZIssd+SVFXk3YBAAAAAGBrCQsDAAAAAAAAAAAAAACALXXghcLCdmSr5pX1/G3V8/VDkrYpveFhw6eWr20HJQ2ttekVAAAAAAA2QVgYAJtQ1LoBAAAAAAAAAAAAAIAdT9vk5JgvJPddXD0/+Z3JS/4x+elRyYqnatMb/etemSz5XVlVimSP/XtDxPpWy55J4WfrAQAAAACoHWFhAAAAAAAAAAAAAAAAsDUO+WCyz1nJ/F8lbVOS0S9N6l78uM4r/ieZ/tqk/dHa9shmqiQvzC7r2VuqlxpHlKFhw9cJERt6YFLXWItmAQAAAADYzQgLA2ATKrVuAAAAAAAAAAAAAABgx9U2qaz15icnZz+SvPBkMu+2ZPF9SeeyMlRs3LRkjwOSBz6SPP+/ZUBVwx7JmJOSoZOTp36YdMwf7Cep1jQyWb1449cM2SvpWZ10LOz/mjPuSsa8tHru34ut72vo5OSFx5NKz9bvsaU6lyQL7yyrr7rGsp9h64SIDTs4aRo+eP0BAAAAALDLExYGAAAAAAAAAAAAAAAA28se+ycHXpDkgvXXTvr2hu85/BPJ3BuSe97fOzfq2KRlXPLMzdulzSoH/00y+R3Jr9+ULPn9hq8pGpJj/9/k+VuTWdds+JrWfZPRx68/P+Wvk1lf3PK+Xv9MGVDW3ZEsfzRZ9nCfmlG+dr2w5fturZ7OF8+dsf7akL02ECJ2SNI6ISnqBq9HAAAAAAB2CcLCAAAAAAAAAAAAAAAAYEfSuk8y5X1ldXckncuTljFJpZI8+/Pk2VuSJ7+bNI9KRrwkmfc/yap56+9T1CXNY5JVz2/+2XVNyaEfTYaMS858sLx30f3J4vuThqFJV3tS6U72OSsZ+ZJk79cm7bOTZ26q3qdhjzIMrSjWP+OwS5N5v0yW/mHz+9r/3DKAK0nqm5MRh5XVV6WSrHy6DA1b+nB1mNjKpzf/rIGw8tmy5k2vnq9vTYYdnAybWoaHDX8xRKztoKS+ZXB7BAAAAABgpyEsDIBN2MAbswAAAAAAAAAAAAAADI765rKSMnhr71eXdezne6/p6UrmfD+Z/+skPUldc9LYlkz482TkMcnyWcmi+8rwqgc+mlS6+j/v6H8ug8LWaNmz98wNaWhNpv1nsuKZpP3R8ozuVcn4V5ahZxsyZHxyxh3JM7ckv37Tpv8Mjrg8OezvNn1dUSStE8oa/8rqtc7lybKZ1QFiyx4u/2x6Oje990DpXlEGry2+f52FIhl6QBkctm41j9lw6BoAAAAAALsNYWEAAAAAAAAAAAAAO5GiKBqSHJPksCRjkzQlaU/ydJJZSf5QqWws/QEAgF1OXUMy8byyNmTYwWUlycijkse/WQaLVbqTlnFlWFbLnskBb00mvmXremjdu6zN1Tgs2f//lNWxKHlhdhmWtWJuMuzQlKFnjVvXywbPa0tGH1dWXz1d5dlLZ6wTJDYjWb144M7fpErS/nhZz9xcvdQ0qjc4bPjU3q/3mFj+Zw8AAAAAwC7Pd4MB2IRKrRsAAAAAAAAAAIDtriiKA5Mcn+S4F1+PSdLW55InK5XKxBq0tlZRFAcl+XCSNyUZtpFLVxZFcXuSf6lUKj8elOYAANh5jD+9rB1J86iykqRp5IuT9YNzdl1D0ja5rPxZ73ylknQsWCdA7MVqfyKD+rP2qxclC+4oq6r3pqTtoN7wsLV1cBmOBgAAAADALkNYGAAAAAAAAAAAALBbKopiWpJLUwaEjaptN/0riqIhyT+k7HVzfvZzSJJXJVmURFgYAABsjaJIWsaWteep1WtdK5P2R8vgsKUPJ8tmvBgkNjPpXjF4PfasTpb+oax1DdmnOkBs+CHJsKnJkL3LZwMAAAAAYKciLAwAAAAAAAAAAADYXR2V5IxaN7ExRVEMSfKDJGeus1RJ8ockc5IsSTI0yYFJDomfDwUAgO2rYUgy4oiy+qr0JCvmvhgctk6tfHZwe1z5dFnzflk93zC0OkRsTbVNTuqbB7dHAAAAAAA2mx8GAWAT/MYgAAAAAAAAAAB2Ox1J5iaZVMsmiqIoknw31UFhq5L8U5KvVSqVpzdwT2uSVyU5N8nqwegTAAB4UVGX7LFfWXutk0u8emmybOY6IWIzkuWPJpWuweuxqz1ZdE9Z6/V+YBkcNnydILHm0YPXHwAAAAAAGyQsDIBNqNS6AQAAAAAAAAAA2J46k/whyT1Jfvvi6++TvCzJ9Br2lSTvTXJ2n/GzSV5RqVRm9HdDpVJZkeTGJDcWReHnRAEAYEfRNDwZ89Ky+urpTNofrw4RW/pikFjn0sHrr9KTtD9a1jM3Va81j3kxOGxqb4DY8EOS1v2TuvrB6xEAAAAAYDfmh0AAAAAAAAAAAACA3dW3k3ylUqmsWnehKIoatFN1/n5JPtNnalWSV24sKGxdlUqla8AbAwAABlZdYzLs4LLy573zlUqy6vnqELE19cLswe2xY0Ey//ay+qprToZN6Q0QW1sHJw17DG6PAAAAAAC7OGFhAAAAAAAAAAAAwG6pUqksrnUPG/HxJEP7jD9dqVT+WKtmAACAQVYUyZBxZY37k+q1rhXJ8keSpTOqQ8SWz0y618tC3n56OpIlvy9rXa37VgeIDZ9avraML58NAAAAAIAtIiwMgE3wJhwAAAAAAAAAAAymoijakpzfZ+qFJFfXqB0AAGBH09CajHxJWX1VepIX5lQHiK2pVfMGt8cVT5X13C+q5xuHVYeIramhk5L6psHtEQAAAABgJyIsDAAAAAAAAAAAAGDH8qYkQ/uMf1ipVJbXqhkAAGAnUdQlQyeWtfdrqtdWL06WzewND1s6o3xtfyypdA9ej53LkoV3l9VXUV8Ghq0bIjb8kKRp5OD1BwAAAACwgxIWBsAmVGrdAAAAAAAAAAAA7G5OW2f8i5p0AQAA7DqaRiZjTiyrr+7VZWDYmhCxvtW5bPD6q3Qny2eV9fRPqtdaxq0fIjbskGSP/cqANAAAAAB2KitWrMh9992XRx55JAsWLMiqVasyZMiQjBs3LlOmTMnRRx+dpqamATlrzpw5+drXvpbbbrsts2bNyuLFi9PZ2bl2/dprr81f/dVfbfDeu+++O9dee23uuOOOPPXUU1m6dGl6enrWrj/xxBOZOHFikmTatGm57bbb1q5VKrI6GHjCwgAAAAAAAAAAAAB2LC9dZ/ybJCmKYkiS1yc5N8lhSfZO0pFkQZL7U4aKXV+pVJYPXqsAAMBOrb4pGT61rL4qlWTVc73BYUv7hIitmDO4Pa6aV9bzt1XP17ckbQdXB4gNPyRpm5I0tA5ujwAAAABsVHd3d/7jP/4j1157baZPn56urq5+r21pacmrX/3qvP3tb89ZZ5211Wd+/etfzwc+8IF0dHRs0X1dXV1573vfm69//etbfTZsD8LCAAAAAAAAAAAAAHYQRVGMSDK5z9TqJI8XRfEnSa5NcsA6t7QkGZ5kUpJzklxVFMUVlUrli4PRLwAAsIsqimTIXmWNO616rbM9WT6rNzxsbc1Kerbsg5fbpHtVsuR3Za1rj/2TYVOrg8SGHZK07Fk+GwAAAACD5n/+53/ynve8J7Nmzdqs61etWpUbb7wxN954Y4477rh89atfzTHHHLNFZ958881517velUqlssX9fvzjHxcUxg5JWBgAm+BNMAAAAAAAAAAAGETj1xk/k+QNSf4jSd1m3D86ydVFURyf5MJKpdL/r2MGAADYGo1Dk1HHlNVXT3ey4slk6bohYg8nHfMHt8cXnizr2Vuq5xtHlKFhw9cJERt6YFLXOLg9AgAAAOwGPvnJT+aTn/zkeqFdRVFk6tSpmTBhQkaPHp358+dnzpw56wWK3XPPPTnppJNyzTXX5B3veMdmn3vppZdWnXn++efnoosuyr777pvGxt7vA40ZM6bqvnnz5uULX/jC2nFTU1M+9rGP5cwzz8zYsWNTV9f7tv2ECRM2ux8YCMLCANiELU9JBQAAAAAAAAAAttqIdcZDk3wnvUFhTyb5UpLbkyxMMirJKUnel2Rin/vekmRekksGqrGiKPZMMnYLb5s0UOcDAAA7uLr6MnRr6IHJPmdWr3UsrA4PWxMo9sLjSaVn8HrsXJIsvLOsvoqGpG1ynwCxqS++Hpw0DR+8/gAAAAB2IRdffHGuvvrqqrm2trZceumlefOb35z99ttvvXseffTRfOtb38rnPve5dHR0JElWr16dd77znXnhhRdy8cUXb/LcmTNn5sEHH1w7PvPMM3PddddtVs833HBDVq9evXZ85ZVX5sMf/vBm3Qvbm7AwAAAAAAAAAAAAgB3HumFhfX+N8feT/GWlUlm5zjV3FkVxTZJ/TfIXfeY/VBTFjZVK5VcD1Nt7k1w2QHsBAAC7k+bRydiXldVXd0ey/NHqILE11dU+eP1VunrPXdeQvfqEiPWp1glJUbf+9QAAAADk29/+9npBYaecckquv/76TJgwod/7Jk+enCuvvDIXXHBB3vjGN+ahhx5au/ahD30oRx11VKZNm7bRs++5556q8TnnnLPZfW/tvbfeeutmnwFbS1gYAAAAAAAAAAAAwI6jv0+a/zbJ+ZVKpWtDi5VKZVVRFOcnmZjk+D5Ln0jy6gHtEAAAYKDUNycjDiurr0olWflMb4DX0hm9X698enB7XPlsWfOmV8/XtybDDl4/RKztoKRhyOD2CAAAALADmTVrVt7//vdXzZ188sn56U9/mqFDh27WHlOmTMkvf/nLTJs2LTNmzEiS9PT05C1veUseeOCBjBkzpt97582bVzXeWDjZQN4L25uwMAAAAAAAAAAAAIAdR3s/85f0FxS2RqVS6SqK4m+T/KrP9BlFUexZqVSeH7AOAQAAtreiSFr3KWv8K6rXOpcny2b2hoetqeWPJD2rB6/H7hXJ4vvLqlIkQw9YP0Rs2CFJ85jy2QAAAAB2YZdcckna23vf+h4xYkR++MMfbnZQ2Bp77rlnfvCDH+Too4/O6tXl932efvrpfOpTn8rVV1/d7319z06SxsbGzT5zW+6F7U1YGACb4E0oAAAAAAAAAAAYRBsKC3uyUqn87+bcXKlUbi+K4vEkB/aZ/pMk3x+A3r68FftMSnLjAJwNAABQamxLRh9XVl89XckLs9cPEVs6I1m9aBAbrCTtj5f1zM3VS02jNhwiNvSApM5H/QAAAICd38MPP5ybbrqpau4zn/lMxo8fv1X7HXroobnkkkty1VVXrZ37xje+kcsvvzwjR47c4D09PT1bdda23jsQ/vjHP+b3v/99Fi5cmMWLF6elpSVjx47N1KlTc+SRR6a5uXmr9u3q6srdd9+dxx9/PPPnz09HR0fGjh2biRMn5mUve1laWloG+EnYHnwHEYBNqNS6AQAAAAAAAAAA2J0s2cDcnVu4x12pDgubuvXt9KpUKs8neX5L7ikKv6wQAAAYJHUNSdvksvY5q3pt1fz1Q8SWPZy0P5FB/dzE6kXJgjvK6quuMWk7KBk2dZ0gsYPLcDQAAACAncTVV1+dSqX3+y1jxozJhRdeuE17Xnzxxfnnf/7ndHZ2JkleeOGFfP3rX89HPvKRJMns2bNzwAEH9Hv/aaedtsH5a6+9Nkk22l9/73k/8cQTmThx4trxtGnTctttt60d9/0z2JSnnnoq//RP/5Tvf//7mTdvXr/XDRkyJKeddlr+8i//Mm984xtTX1+/yb1nzJiRK6+8MjfddFOWLVvW775nn312rrjiikyZMmWz+2bwCQsDAAAAAAAAAAAA2HE8maQjSd9fB/zsFu7xzDrj0dvUEQAAwM6uZWxZe55aPd+9Kln+SBkctnSdILHuFYPXX09nsvSPZa1ryD7VAWLDX3wdsk8ioBkAAADYwdxyyy1V4wsuuCBNTU3btOfYsWPzZ3/2Z/nRj35Udc6asLCdVaVSyac//el86lOfyurVqzd5/cqVK3PzzTfn5ptvXi+sbF3d3d255JJL8sUvfjE9PT2b3Pd73/tefvjDH+Zzn/tcPvjBD27pozBIhIUBAAAAAAAAAAAA7CAqlUp3URQzkxzZZ7pjC7dZ9/qWbesKAABgF1Xfkow4oqy+Kj3JiqdfDA6bUR0itnJL85y30cqny5r3y+r5hqHJsIOrg8SGTU3aJif1zRveCwAAAGqgq7uSuYtr3cWub8LIpKG+tsHic+fOzezZs6vmzjjjjAHZ+4wzzqgKC7vzzjvT2dmZxsbGAdl/sHV1deXcc8/ND3/4w/XWxo8fnyOOOCJjxoxJR0dH5s2bl9/97ndpb2/frL1XrlyZ173udfn5z39eNd/Y2JijjjoqEyZMSHNzc5577rncfffdWbFixdqeLr744ixevDiXX375Nj8jA09YGAAAAAAAAAAAAMCO5cFUh4WN2ML7171+4ba1AwAAsJsp6pI99i1rr1dVr61emiybWR0gtuzhZPkjSaVr8Hrsak8W3VvWer0fWIaHDT+kOkysefTg9QcAAAAvmrs4OfDvemrdxi7v8avqMnFMbXv49a9/vd7ccccdNyB7H3vssVXjlStX5oEHHsjxxx+fCRMm5Iknnli79oUvfCFXX3312vH111+fE088cb09x4wp/8CmTZu2du7cc8/NXXfdtXbcd9++JkyYsFXPscaHPvSh9YLCzjzzzFx++eU5/vjj17u+p6cnd955Z7773e/mW9/61kb3ft/73lcVFDZ8+PBcfvnlueiii9LW1lZ17cqVK/PlL385n/jEJ7Jq1aokyRVXXJETTjghr33ta7fy6dhehIUBAAAAAAAAAAAA7FhuTvKWPuPDtvD+w9cZz922dgAAAFiraXgy5qVl9dXTmbQ/0SdAbEay9MWvO5cMXn+VnqT90bKeual6rXlMdXjYmtpjYlJXP3g9AgAAALukuXOr35oeN25cRo8emPDyww9f923w8rzjjz8+DQ0NmThx4tr5ESOqf7/W+PHjq9bXNXTo0LVft7S0VK1t7L6t9fOf/zxf/OIXq+Y+85nP5KMf/Wi/99TV1eXkk0/OySefnCuuuGK9Ptf4/ve/n2uvvXbteP/998+tt97a73MMGTIkH/rQh3LSSSflFa94RVatWpVKpZK//uu/zsyZM1NXV7flD8h2IywMAAAAAAAAAAAAYMdyU5KOJM0vjo8vimJUpVJZtKkbi6IYmWSdT6znVwPcHwAAAOuqa0yGTSkrZ/fOVyrJquf7hIj1qReeTFIZvB47FiTzby+rqvfmpO2gZPjU6hCxtilJ49AN7wUAAACwjkWLqt/SHjly5IDt3dLSkubm5nR0dPR73s7iiiuuqBq/+93v3mhQ2LrWDUNbo1KpVO3d0NCQn/zkJ5sVeLYmhOwjH/lIkuTRRx/NDTfckDe84Q2b3Rfbn7AwAAAAAAAAAAAAgB1IpVJZXhTFD5K8+cWp5iTvT3JF/3et9f4kfX+F8JNJHhrYDuH/Z+/Oo/Q66zvBf28tqpKqSqXVsmVb3m3JZgvtDvsS4gScNGEC6ZCGE5qQrUn+4EySSRqGxk13pwNZZoYJ9GShIRmm4QRCEyAhwUBiNpMQMInBlmR5lW1ZtqylqlSlUm3P/HEl1XtLJVmySm9p+XzO+Z2q+zz33uf75nBkVHF9AQAATlhVJUvX1bPuZc29qbFkZNs8RWJbk+kD7cs4czAZ+l49cy27tFkgdniWXlR/NgAAAIBD5pZ3HavU6ulasWJFHn/88SPXu3fvXtD3t8Odd96Zr3/960euBwYG8t73vndB3v13f/d3+d73Zn++88Y3vjHPetazTvj5X/7lX8673vWujI+PJ0k+85nPKAs7wygLAwAAAAAAAAAAADiNqqoqc5Z+oJRy21M89h+S/OskSw5dv6Oqqi+UUr5xnHNekOSdc5Z/q5Qy93wAAADOBF3LkpXPrqdVmUlGt89TIrYlGX98/nedLmMP17PzC831roHZ4rDBTbPf91+VdC6Z/10AAAAAp6A6B4rLv/SlLzWu3/CGN2T58uUL8u4vfKH585vXv/71J/X8smXL8v3f//35yle+kiT56le/uiC5WDjKwgAAAAAAAAAAAIDzVlVVl2T+f5/ywjnXXVVVXX6M1+wvpTy5kLlKKQ9UVfXbmS3/6klya1VVv57kg6WUycP3VlXVleRnk/xuZsvFkuSbST68kLkAAABog6oj6b+8nvWvau5N7E2Gtx5dIjZyb1Km25dxaiTZ84/1tKo668Kww+VhRwrFNiZLVrYvHwAAANB2q1atalwPDQ0t6Pv37dt33PPOBrfffnvj+uUvf/mCvftrX/ta43rVqlV58MEHT+odrcVlDz74YGZmZtLR0bEQ8VgAysIAAAAAAAAAAACA89nXklx2AvddnOSBY+z9aZI3L1SgFu9Kcl2Sf33ouj/Jf0vyX6uq+vske5KsSvL8JCvmPPtokteVUiZOQy4AAAAWy5KVyZrn19NqeiLZf39Lgdjm2e8nh9uXr0wnI/fU8+hnmnu9FxxdIrZ8U9K3oS5IAwAA4Jx0ycrk/v/q732n2yVnQEf33PKuvXv3Lti7x8fHMz4+3lhbvXr1gr2/XR577LHG9Q033LBg73744Ycb189//vOPceeJmZmZyb59+87KUrZzlbIwAAAAAAAAAAAAgDNQKaVUVfXTqUvBfrFla0WSVx3n0W8m+fFSyo7TmQ8AAIAzSOeSZHBjPa1KScZ3zhaHDW2Z/X5se3szjj9RzxNfaa539iYD1zVLxAY3JgPXJl3L2psRAACABdfVWeXyNYudgna4+OKLG9c7d+7M7t27F6TU66677nrK884Gu3fvblyvXLlwLW9z370QRkZGlIWdQZSFAQAAAAAAAAAAAJyhSikHk/y7qqo+keQ3krwiSecxbv9ekt9N8v+VUqbbFBEAAIAzWVUlSy+qZ90PNPemRpPhe2bLw4a3JMOb67WZg+3LOD2e7Pvneubqu6xZInZ4etfVnw0AAAA4Y7zwhS88au1b3/pWXvnKV57yu7/1rW81rpcuXZrnPOc5p/zexVYt4M83JiYmFuxdh5VSFvydPH3KwgAAAAAAAAAAAIDzVinl8jacccr/dm8p5UtJvlRV1dokz09yUZI1SUaSPJ7k9lLKI6d6DgAAAOeRrr5k1ffV02pmOhl7KBnaMqdIbEtycFd7M44+VM9jn2+ud6+oS8MG55SI9V+ZdHS3NyMAAACQJNmwYUM2bNiQ7du3H1m79dZbF6Qs7Atf+ELj+nnPe16WLFlyyu9ttzVr1jSu9+zZk4svvnjB3r1jx44kSW9vb8bGxha0jIzFpywMAAAAAAAAAAAA4CxRStmV5LOLnQMAAIBzWEdnXbrVf2Vy8Y809w7uToa3Hl0itv++pMy0L+PkvmT339fTqupKBq5uFogdniWD7csHAAAA56lXtXYQhwAAIABJREFUvepV+aM/+qMj1x/5yEfynve8J93dT7/ce9euXfnMZz5z1Dlno4suuqhxfffdd+eZz3zmgrx73bp1R8rCxsfHs3379lx22WUL8m7ODMrCAAAAAAAAAAAAAAAAAICn1rM6WfvCelpNH0xG7j26RGx4SzK1v335ytTsuXP1XjhbHDa4afb7ZZckVUf7MgIAAMA57G1ve1v++I//OKWUJHXR14c//OH8wi/8wtN+5/ve975MTk4eue7r68vP//zPn3LWxfCiF70on/jEJ45c33bbbXn961+/IO9+4QtfmO985ztHrm+99daz9v9OzE9ZGAAAAAAAAAAAAAAAAADw9HX2JCtuqKdVKcmBHfOXiI090t6M4zvreeK25nrnsmT5dbPlYYdn4Jqka2l7MwIAAMBZ7vrrr8/NN9+cz33uc0fWfuM3fiOvec1rsm7dupN+3913353f+Z3faaz9zM/8TFatWnXKWRfDTTfd1Lj+6Ec/mt/+7d/OwMDAKb/7la98ZT7wgQ8cuf7gBz+oLOwcoywMAAAAAAAAAAAAAAAAAFh4VZUsu7ieC3+wuTc5kozckwxtSYY3z5aIjWxLZibal3F6LNn7nXoaqqTv8tnysMHDRWKbkp419WcDAAAAjvJ7v/d7ue222zI2NpYk2bdvX1772tfm85//fPr7+0/4Pbt27cpP/MRPZGJi9ucEF110Ud71rncteOZ2ueGGG/Kyl70sX/7yl5Mkw8PDefvb3573v//9p/zum2++OVdddVXuu+++JMk3v/nNfOhDH8pb3vKWU343ZwZlYQAAAAAAAAAAAAAAAABAe3UPJKv+RT2tZqaS0Qdny8MOz9DmZGJPGwOWZPSBeh776+bWklWzJWKt039F0uHXNgEAADi/bdy4Mb//+7+fn/3Znz2ydvvtt+fmm2/Oxz72sVxyySVP+Y5t27blda97XTZv3nxkraOjIx/5yEeydu3a05K7Xd71rnflB39wtlT9Ax/4QK644or86q/+6gk9PzQ0lJ6envT29jbWu7q68p/+03/KG9/4xiNrb33rW7NixYq89rWvPamMX/ziF3PllVfmyiuvPKnnOL06FjsAAAAAAAAAAAAAAAAAAECSumxr4Ork4n+VbPq15HkfTH7oa8lP7E5euyu56avJ9/9xsvFXk/U/mvRflVRt/lXJiT3Jk7cn938o+adfT77yY8lfXpt8fFnyVzckX31d8s//e/LAR5Ld/5hMDrc3HwAAACyyt7zlLfnlX/7lxtrXvva1XH/99XnPe96Thx9+eN7n7r333rzzne/MM5/5zHz3u99t7L33ve9tlGydrV7xilccVQz2a7/2a/mxH/uxfPvb3573mZmZmXzjG9/I2972tlx66aXZuXPnvPe94Q1vyFve8pYj1xMTE3nd616XN77xjcd8d5JMT0/nO9/5Tt797nfn+uuvzw/90A9l+/btT+PTcTqpqAcAAAAAAAAAAAAAAAAAzny9a5LeFycXvLi5Pj2ejGxLhrckQ1vqr4dneqx9+WYmk6G765lr6fpk+aZk+cZ6Bg99XXpxUlXtywgAAABt8v73vz8rV67Mb/7mb6aUkiQZGRnJ29/+9rzjHe/I9ddfn0svvTQrV67M7t2789BDD2Xr1q1Hvae7uzvve9/78ta3vrXdH+G0ee9735vt27fnE5/4xJG1z372s/nsZz+b9evX55nPfGZWr16dgwcPZufOnbnzzjszMjJyQu/+gz/4g+zduzef+tSnjqx99KMfzUc/+tGsXbs2z372s7N69ep0dHRkeHg4O3bsyObNmzM+Pr7gn5OFpSwMAAAAAAAAAAAAAAAAADh7dfYmK55ZT6syk4w92iwPOzwHdrQ344Ed9Tz+peZ6V99sgVjrDFyTdPa0NyMAAAAssP/8n/9zXvayl+WXfumXsm3btiPrpZTcddddueuuu477/HOf+9z84R/+YW688cbTHbWtOjs782d/9me54YYb8pu/+ZuZnJw8srdjx47s2PH0f27R3d2dT37yk/md3/md3HLLLY0SsF27duWLX/ziCb2jr6/vaWfg9FAWdp6oqqo7yYuSbEhyUZL9SXYk+U4p5cEFPuuKJM9Jsj5Jf5LHkjyU5PZSyuTxngUAAAAAAAAAAAAAAACABVF1JH2X1nPRDzX3JoeToXlKxEa2JWWqfRmnRpM9367nqOxX1MVhg5uaRWI9q9uXDwAAAE7RTTfdlLvvvjsf//jH86EPfShf/vKXMzV17L979/T05Id/+Ifzcz/3c3n1q1+dqqramLZ9qqrKLbfckje96U35rd/6rXzyk5/Mnj17jnl/f39/brrpprz5zW/Ohg0bnvLdv/7rv543velNed/73pePfexjeeihh477zMDAQF7ykpfkR3/0R/P6178+q1f7+cOZpiqlLHaG80ZVVf8xyS2n8Io/LaW8+STPXJvk3Ulen2TVMW67Pcn/UUr55ClkS1VVP5HkV5K84Bi37EnyZ0neVUp58lTOWkhVVd2Q5HuHr7/3ve/lhhtuWMREcIa59UXJk7ef2L1v8M8UAAAAAAAAgMV011135RnPeEbr0jNKKcf/n98EgNPIv6MHAADAWWdmMtn/wNElYkObk8l9i52u1rOmWR52ePouTzo6FzsdAABwjpmamsq2bdsaa9dcc026uroWKRFnu9HR0Xz729/Ovffem127dmViYiI9PT1Zt25drr322jz3uc9NT0/PYsdsu5mZmdxxxx3ZsmVLnnzyyezfvz99fX254IILsnHjxjzrWc9Kd3f3037/Aw88kDvuuCO7du3K3r1709HRkYGBgaxfvz4bN27MNddck87Oc+PnCqfrz63F/vfz/Kl7Dquq6uYkf5Lkgqe49YVJXlhV1f9I8oullNGTPKc/yR8n+amnuHVVkrcmeW1VVf+2lPL5kzkHAAAAAAAAAAAAAAAAAE6rju5k+bX15Mdm10tJDu5qlocd/n70oSSlfRkPPpns+lo9jew9ycA1zQKxwU3JwLVJd3/78gEAAMBx9PX15aUvfWle+tKXLnaUM0pHR0duvPHG3Hjjjafl/VdccUWuuOKK0/Ju2kNZ2DmqqqqXJ/mLJEtalkuSO5Lcn2RFku9LsqZl/41JlldV9b+UUmZO8JzOJH+W5EfmbO1K8p0kQ0muOnRWdWhvXZJPV1V1Uyllzk8jgTNOVT31PQAAAAAAAAAAAAAAAHAuq6qk94J6Lpjzy8xTY8nIttnysCOzNZk+0L6MMweToe/VM9eyS5slYodn6UV+fwgAAADgLKAsbHH9myR/fxL37z+Rm6qquiTJ/0yzKOzrSX6+lLK55b6eJL+Y5HeTdB9afnWS/5LkHSeY6T1pFoVNJvmVJH9USploOev6JB9M8oJDSz1J/qKqqmeWUh47wbMAAAAAAAAAAAAAAAAA4MzStSxZ+ex6WpWZZOzhZKi1QGxz/XX88fZmHHu4np1faK53DcwWhw22lIj1X510Lpn/XQAAAAC0nbKwxbWzlPLgaXjvu5OsbLm+PclNpZTx1ptKKQeT/N9VVW1P8qmWrV+pquoPSykPHe+QqqquTPK2Ocv/upTy6bn3llLurqrqB5N8KbOFYauT3JLk353AZwIAAAAAAAAAAAAAAACAs0fVkfRdVs/6Vzb3JvYmw1tbSsQOzci9SZluX8apkWTPP9bTyN6Z9F+ZLN80WyB2uFBsycr53wUAAADAaaMs7BxTVdU1Sf5ty9JEkjfPLQprVUr5i6qq/rTluZ7UJV5veYrjbknS3XL9J/MVhbWcc6Cqqjcn+W6Sw/+TAj9bVdVvl1Luf4qzgMVSymInAAAAAAAAAAAAAAAAgHPLkpXJmufX02p6Itl//9ElYsObk8nh9uUr08nItnoe/Uxzr/eCZoHY4em7rC5IAwAAAGDBKQs797whSWfL9f8spWw7gefem2bJ2E9WVfVLxyoZq6pqaZKfmOcdx1VKuaeqqr9I8pOHlroOZf4vJ5ARAAAAAAAAAAAAAAAAAM5dnUuSwY31tColGX+8Lg0b3pIMtRSJjW1vb8bxJ+p54ivN9c7eZODalgKxTfXnGLg26VrW3owAAAAA5xhlYeeeH59z/eETeaiUsrmqqn9I8rxDS31JfjjJZ47xyCuTtP507hullC0nmPHDmS0LS5LXRlkYnLmqarETAAAAAAAAAAAAAAAAwPmtqpKlF9az7geae1OjyfA9s+VhR2ZrMnOwfRmnx5N9d9YzV99lLSViLdO7zu8vAQAAAJwAZWHnkKqqLkzy7JalqSRfP4lX3JbZsrAkuTnHLgt71TzPnqivps52+D9/31dV1bpSyuMn8Q4AAAAAAAAAAAAAAAAAoKsvWfV99bSamU7Gts+Whw1tnv3+4K72Zhx9qJ7HPt9c7x48ukBscFPSf2XS0d3ejAAAAABnMGVh55ZnzLm+s5QyehLP3z7n+oaTOOsbJ3pIKWW0qqrvJmn9yeMNSZSFwZlo6sBiJwAAAAAAAAAAAAAAAABOVkdn0n9FPetvbu4d3J0Mb50tDzs8++9Lykz7Mk4OJbv/oZ5WVVcycPXRRWLLr0uWrGhfPgAAAIAzhLKwxfWLVVW9M8mmJKuTTCbZneShJF9L8jellK+exPuun3N970nmue8p3tdq0wKc1VoWdn2Svz3JdwDtsPeOxU4AAAAAAAAAAAAAAAAALKSe1cnaF9bTavpgXRh2uDxsqKVIbGqkffnK1Oy5c/VeeHSJ2ODGZNmlSdXRvowAAAAAbaQsbHH91JzrniT9SS5L8tIk76iq6ltJ3l5K+eIJvO/qOdfbTzLPQ3OuV1dVtbKUsrd1saqqVUlWneJZc++/5iSfBwAAAAAAAAAAAAAAAAAWUmdPMnh9Pa1KSQ7smC3wap2xR9qbcXxnPU/c1lzvXJYsv+7oIrGBa5Kupe3NCAAAALDAlIWd+W5McmtVVb+V5J2llHKce1fMuX7iZA4qpeyvqmo8SW/L8mCSvXNunXvOWCll9GTOmifb4Ek+DwAAAAAAAAAAAAAAAAC0Q1Ulyy6u58IfbO5NjiQj9yRDc0rERu5JZibal3F6LNn7nXoaqqTv8tnysMGWIrGetfVnAwAAADjDKQtbHI8m+VySbybZnGRPkpkkq5M8N8m/SvLKlvurJO9I0pHk7cd5b/+c6wNPI9uBNMvCBk7jOa3mO+ekVVV1QZK1J/nYVQtxNgAAAAAAAAAAAAAAAACcd7oHklX/op5WM9PJ6APNArHhLcnQ5mRiTxsDljrH6APJY3/d3FqycrY4bPnGZPmm+mv/FUmHX8EFAAAAzhx+UtFe30xdAvaFUko5xj23J3l/VVU3Jvlokmta9v59VVV/X0r59DGenVviNf40Mh5IsvI471zIc473zqfrl5LcskDvAgBgoY1uT/bdmaz6l8nSdYudBgAAAAAAAAAAAACA06WjMxm4up6L/1Vzb/zJo0vEhrfUhV5lpn0ZJ/YmT36jnkb27mTgmjlFYhuT5dcl3cvblw8AAADgEGVhbVRK+dxJ3Putqqqen+QbSa5t2XpPVVV/WUqZPpHXnGzGM/wZAADOVqUkd/yvydb3za4957eT6/+3xcsEAAAAAAAAAAAAAMDi6F2T9L44ueDFzfXp8WTk3maB2NDm+uv0WPvyzUwmQ3fXM9fS9fOUiG1Mll2SVFX7MgIAAADnFWVhZ7BSyp6qqv5Nkm8lOfwToo1JfiDJF+d5ZP+c66VP49i5z8x9ZzvPAQDgXPHwnzeLwpLkn349ueAlyZrnL04mAAAAAAAAAAAAAADOLJ29yYpn1NOqzCRjjzZLxA7PgR3tzXhgRz2P/21zvatv/hKxgavrzwUAAGepap5S3FLKIiQBODHz/Rk1359lZxtlYWe4UsodVVXdmuSVLcuvirKwY/lvST5xks9cleTTC3Q+AADz2fJ/zb++7f9RFgYAAAAAAAAAAAAAwPFVHUnfpfVc9EPNvcnhZHjr0SViI9uSmcn2ZZwaTfZ8u56jsl8xf5FY75r25QMAgKepo6PjqLXp6el0d3cvQhqApzY9PX3U2nx/lp1tlIWdHf4mzbKwZx3jvqE512tP5pCqqvpzdInXvhM4Z1lVVX2llNGTOO6CEzjnpJVSnkjyxMk8cy60/gEAnPGevH3+9Qf+3+QFf9reLAAAAAAAAAAAAAAAnDu6lyer/2U9rWamkv33H10iNrQ5mVyQX2k8MWUm2X9fPTv+qrnXs/pQcdimZolY3+VJR2f7MgIAwHFUVZXOzs5G+c6BAwfS29u7iKkAjm1sbKxx3dnZeU50DCkLOzs8OOf6WCVg2+ZcX3aS58y9f08pZe/cm0opu6uq2ptkZcvyhiSbT+GsudkBAAAAAAAAAAAAAAAAAJ6ejq5k+bX15Mdm10tJDu5qKQ9rKRIbfTBJaV/Gg7uTXV+vp5F9STJwbbNAbHBjMnBd0t3fvnwAAHBIX19fhoeHj1yPjIxk5cqVx3kCYPHs37+/cd3ff278XVpZ2NnhwJzrpce4b25Z19Unec6Vc67vPs69m5O8cM5ZJ1MWNvesk3kWAAAAAAAAAAAAAAAAAODkVVXSe0E9F7y0uTd1IBnZlgxvni0QG96SDG9Npuf+qudpNDORDH2vnrmWXdIsEVu+qf669KL6swEAwGkwMDDQKAsbGxvLxMRElixZsoipAI42MTGRsbGxxpqyMNppzZzrJ49x39yf+jyrqqplpZSxee8+2oue4n1z91rLwl6Q5LMnckhVVX1JnnUSZwEAAAAAAAAAAAAAAAAAnF5dS5OVz6qnVZlJxh5OhrbMKRHbkozvbG/GsUfq2fnF5nrXwGyB2GBLmVj/1UmnAgcAAE5NX19f47qUkocffjiXXXZZurrU1wBnhqmpqTz88MMppTTW5/4Zdrbyp+3Z4XlzrnfMd1Mp5bGqqu7MbBFXV5IXJ7n1BM95+Zzrvz7OvX+T5BeO8+zxvCTN/+x9p5Ty+Ek8DwAAAAAAAAAAAAAAAADQHlVH0ndZPetf2dyb2JcMb20pENtcfx25NynT7cs4NZLs+cd6Gtk7k/4rZ8vDWqdnVfvyAQBwVuvs7MzAwEBGRkaOrE1MTOS+++7L8uXLs3z58nR3d6ejo2MRUwLno5mZmUxOTmZ4eDjDw8OZmZlp7A8MDKSzs3OR0i0sZWFnuKqqepO8ds7ybcd55FOZLQtLkp/JCZSFVVW1Mc1SstGneO7zSQ4kWXro+gVVVW0spWx5qrOSvHnO9adO4BkAAAAAAAAAAAAAAAAAgDPLkhXJmufV02p6Itl/f0uJWEuZ2ORw+/KV6WRkWz2Pfra517M2Gdx0dInYsg1Jx7nxi9QAACyciy66KBMTEzl48OCRtZmZmezbty/79u1bxGQA8+vp6clFF1202DEWjLKwM99vJLm45Xo6yV8d5/7/keSdSQ7/FOa1VVVdU0rZdgLntPp4KWX8WDeXUsaqqvrzJD895x0/c7xDqqq6NsmPtyxNJfnoU2QDAAAAAAAAAAAAAAAAADh7dC5JBjfW06qUZPzxeUrEtiSjD7U348FdyRO7kie+0lzv7E0Grj26RGz5tUlXX3szAgBwxujs7Myll16aBx98MFNTU4sdB+C4uru7c+mll6az89wpw1YW1iZVVf10kltLKY+fxDM/n+SWOct/Uko55k97Sinbqqr60yRvObS0JMmfVFX1g8cq/6qq6jVJ3tyyNJHk3ScQ8T8m+akk3Yeu31xV1adKKZ85xjm9ST58KNNh/72Uct8JnAUA55epsWR0e/3/RKk6FjsNAAAAAAAAAAAAAAAAC6GqkqUX1rPu5c29qdFk+J55isS2JjMH25dxejzZd2c9cy3bUBeHDW5qFon1rqs/GwAA57Tu7u5s2LAhjz/+eEZHRxc7DsC8+vr6sm7dunR3dz/1zWcRZWHt87NJ/rCqqk8k+XiS20op8/5Tr6qqG5O8I8mPz9l6NMk7T+CsWw49u/LQ9QuTfLGqqp8rpWxpOacnyS8k+b05z//e8QrJDiul3F9V1fuS/FrL8p9XVfUrSf6olDLRctamJB88lOWw3TmxUjIAOH+Ukvzz25Mt/2cyM5H0XpC86OPJupctdjIAAAAAAAAAAAAAAABOp66+ZNX31dNqZjoZ2z5PidiWZPyJ9mYc217Pzlub692DzfKwwzNwVdJxbv1yNgDA+a6npycbNmzI5ORkhoaGMjQ0lMnJyZRSFjsacJ6qqird3d0ZHBzM4ODgOVcSdpiysPZamuRNh2amqqptSR5MMpRkOsnqJM9Osm6eZ/ckeVUpZedTHVJKeaSqqtcm+XySJYeWX5Tk7qqqvp3k/iSDSZ6bZO2cx/8yyX84ic/075PckOTmQ9fdSX4/yX+oquqOJCNJrjx0Vmsl/ESSHy+lPHYSZwHAue++/57c/d7Z6/Enktt+JHnNg0nv3H9sAwAAAAAAAAAAAAAAcM7r6Ez6r6hn/c3NvYN7kuGth8rDNs+WiO2/PynT7cs4OZTs/od6WlVddWFYo0RsU7L8umTJivblAwBgwXV3d2fNmjVZs2ZNSikppWRmZmaxYwHnmY6OjlRVlaqqnvrms5yysMXTkeS6Q/NUvpTkzaWUR0705aWU26qq+vEkf5LZQrAqyY2HZj4fS/LzpZz4T39KKdNVVf1kkg8meX3L1gVJXnWMx55I8m9LKV890XMA4Lxx3wePXpseSx75dHL1z7U/DwAAAAAAAAAAAAAAAGeunlXJ2hfU02r6YLL/vtnysKEts99PjbQvX5k6VGa2Ncmnm3u9F84pEduYDG5Mll2aVB3tywgAwCk7XNTT0eG/xwGcLsrC2ud9SR5N8qIkl53A/aNJbk3ygVLKl57OgaWUz1VV9Ywk705d5LXyGLf+fZLfLaV88mmesz/JT1VV9edJfjXJ849x654kf5bkllLKrqdzFgCc8+b+r6cc9t1blIUBAAAAAAAAAAAAAABwYjp7ksHr62lVSnLgsdnisOEtyfDm+uvYI+3NOL6znidua653Lk2WX3d0kdjAtUnX0vZmBAAAgDOEsrA2KaV8KsmnkqSqqhVJbkhyaZJ1SZYl6UiyL8neJJuT3FlKmV6Ac59I8taqqt6W2aKyC1OXkT2a5DullAdO9ZxDZ/15kj+vquqKJM9Nsj5JX5KdSR5K8vVSysRCnAUAAAAAAAAAAAAAAAAAwEmqqmTZ+noufEVzb3IkGbknGdrSLBMbuSeZaeOvh04fSPb+Uz0NVdJ3+Wx52GBLkVjP2vqzAQAAwDlKWdgiKKXsS/L1Np85keTv2nTWA0kWpIAMAAAAAAAAAAAAAAAAAIA26B5IVv2LelrNTCejDzYLxIa3JMObk4O72xiwJKMP1PPYXze3lqycLQ5rnf4rkw6/Tg0AAMDZz99uAQAAAAAAAAAAAAAAAACA+XV0JgNX1XPxjzb3xp+cp0RsS13oVWbal3Fib/LkN+ppZO9O+q+ui8MGN7UUiV2XdC9vXz4AAAA4RcrCAAAAAAAAAAAAAAAAAACAk9e7Jul9cXLBi5vr0+PJyL3zF4lNjbYv38xkMry5nkc+1dxbur6lPKxlll2SVFX7MgIAAMAJUBYGAAAAAAAAAAAAAAAAAAAsnM7eZMUz6mlVSnLg0bo0bGhzs0TswI72Zjywo57H/7a53tWXDFw3Wx42uDFZvikZuLr+XAAAALAIlIUBAAAAAAAAAAAAAAAAAACnX1Ulyy6p58KbmnuTw8nw1maB2PCWZGRbMjPZvoxTo8neO+ppZO9I+q6YLRFrnd417csHAADAeUlZGAAAAAAAAAAAAAAAAAAAsLi6lyer/2U9rWamkv0PHF0iNrw5mdjbvnxlJtl/Xz07/qq517N6/hKxviuSjs72ZQQAAOCcpSwMAAAAAAAAAAAAAAAAAAA4M3V0JcuvqSevnl0vJTm4a7Y8bKilSGz0wSSlfRkP7k52fb2eRvYlycC1zQKxwY3JwHVJd3/78gEAAHDWUxYGAHBWqBY7AAAAAAAAAAAAAAAAAJw5qirpvaCeC17a3Js6kIxsmy0Pa53pA+3LODORDH2vnrmWXdIsETs8S9fXnw0AAABaKAsDAAAAAAAAAAAAAAAAAADOHV1Lk5XPqqdVmUnGHk6G5ikRG9/Z3oxjj9Sz84vN9a7+Q8Vhm5LBlhKx/quTziXtzQgAAMAZQ1kYAAAAAAAAAAAAAAAAAABw7qs6kr7L6ln/yubexL5keOvRJWIj9yZlqn0Zp/Yne75VTyN7Z9J/5Wx5WOv0rGpfPgAAABaFsjAAAAAAAAAAAAAAAAAAAOD8tmRFsuZ59bSamUz23z9bHja0efb7yaH25SvTyci2eh79bHOvZ+3RBWKDm5JlG5KOzvZlBAAA4LRRFgYAAAAAAAAAAAAAAAAAADCfju5k+XX15DWz66Uk44/PFoe1zuhD7c14cFeya1ey66vN9c7eZODao4vEll+bdPW1NyMAAACnRFkYAAAAAAAAAAAAAAAAAADAyaiqZOmF9ax7eXNvajQZ2ZYMzSkRG9maTI+3L+P0eLLvznrmWrZhtjxssKVIrPfC+rMBAABwRlEWBgBwNjjw6GInAAAAAAAAAAAAAAAAAE5EV1+y8jn1tCozyehDzQKxwzP+RHszjm2vZ+etzfXuwdnisNYZuCrp6G5vRgAAAI5QFgYAAAAAAAAAAAAAAAAAAHC6VR1J/xX1rL+5uXdwTzK89egSsf33JWW6fRknh5Ld/1BPI3tXXRg2X5HYkhXtywcAAHCeUhYGAAAAAAAAAAAAAAAAAACwmHpWJWtfUE+r6Ym6MGx4c10eNtRSJDY10r58ZepQmdnWJJ9u7vWuaykP21R/HdyYLLu0LkgDAADglCkLAwAAAAAAAAAAAAAAAAAAOBN1LkkGN9XTqpTkwGOzxWGtM/ZwezOOP17PE19urncuTZZf11IkdmgGrk26lrY3IwAAwFlOWRgAAACjH0ltAAAgAElEQVQAAAAAAAAAAAAAAMDZpKqSZevrufAVzb3J/cnIPXVx2NDm2RKxkXuSmYn2ZZw+kOz9p3oaqqTvsmaB2OCm+mvP2vqzAQAA0KAsDAAAAAAAAAAAAAAAAAAA4FzR3Z+sem49rWamk9EHZ8vDWufgk20MWOocow8mj/1Nc2vJymaJ2OHpvzLp8KvxAADA+cvfiAAAAAAAAAAAAAAAAAAAAM51HZ3JwFX1XPyjzb3xJ5ORrbPlYUNbkuHNyegDSZlpX8aJvcmT36inkb076b96niKx65Ilg+3LBwAAsEiUhQEAAAAAAAAAAAAAAAAAAJzPetfUs/ZFzfXp8WTk3tkSsdaZGm1fvpnJurxsePPRe0vXz1MitjFZdklSVe3LCAAAcBopCwMAAAAAAAAAAAAAAAAAAOBonb3JimfU06qU5MCjdWnY0JwSsQOPtjfjgR31PP63zfWuvmTgutnysMFDXweuqT8XAADAWURZGAAAAAAAAAAAAAAAAAAAACeuqpJll9Rz4U3NvcnhZPieZHhzs0RsZFsyM9m+jFOjyd476mmokv4rZkvElm+a/b53TfvyAQAAnARlYQAAAAAAAAAAAAAAAAAAACyM7uXJ6hvraTUzlex/oFkgNrylLhWb2NvGgCXZf389Oz7X3OpZ3VIi1jJ9lycdfjUfAABYPP5GAgAAAAAAAAAAAAAAAAAAwOnV0ZUsv6aevHp2vZTk4JPNArGhzfXX0QeTlPZlPLg72fX1ehrZlyQD18xfJNbd3758AADAeUtZGAAAAAAAAAAAAAAAAAAAAIujqpLetfVc8JLm3tSBZGRbs0hseEsyvDWZHmtfxpmJZOiueuZadsn8JWJL19efDQAAYAEoCwMAAAAAAAAAAAAAAAAAAODM07U0WfmselqVmWTskXlKxLYkBx5rb8axR+rZ+cXmelf//CViA1cnnT3tzQgAAJz1lIUBAAAAAAAAAAAAAAAAAABw9qg6kr4N9Vz0w829iX3J8NajS8RG7k3KVPsyTu1P9nyrnqOyX5kMbjq6SKxnVfvyAQAAZxVlYQAAAAAAAAAAAAAAAAAAAJwblqxI1jyvnlYzk8n++5sFYkNbkuHNyeRQ+/KVmWT/vfU8+tnmXs/aowvEBjcmyy5LOjrblxEAADjjKAsDAAAAAAAAAAAAAAAAAADg3NbRnSy/rp68Zna9lGT8ibo0rLVIbHhLMvpQezMe3JXs2pXs+mpzvaMnWX7toQKxTS1lYtcmXX3tzQgAACwKZWEAAAAAAAAAAAAAAAAAAACcn6oqWbqunnUvb+5NjSUj9yRDc0rERrYm0+PtyzhzMNn33XrmWrZhtjxscOPs970X1p8NAAA4JygLAwAAAAAAAAAAAAAAAAAAgLm6liUrn1NPqzKTjG5vKRDbPPv9+BPtzTi2vZ6dtzbXu5fPFoe1Tv9VSeeS9mYEAABOmbIwAAAAAAAAAAAAAAAAAAAAOFFVR9J/eT3rX9XcO7gnGd7aUiR2aPbfl5Tp9mWcHE52f7OeVlVXMnDV/EViS1a0Lx8AAHBSlIUBAAAAAAAAAAAAAAAAAADAQuhZlax9QT2tpifqwrC5JWJDm5OpkfblK1OHysy2Jvl0c6933fwlYn0b6oI0AABg0SgLAwAAAAAAAAAAAAAAAAAAgNOpc0kyuKmeVqUkBx47ukRseEsy9nB7M44/Xs8TX26udy5NBq6ts7eWiA1ck3Qta29GAAA4TykLAwAAAAAAAAAAAAAAAAAAgMVQVcmy9fVc+Irm3uT+ZOSeeYrE7klmDrYv4/SBZN8/19NQJX2XNQvEDk/vBfVnAwAAFoSyMAAAAAAAAAAAAAAAAAAAADjTdPcnq55bT6uZ6WTsoWRoSzK8uVkkdvDJNgYsyeiD9Tz2N82t7hV1adjg4QKxTfXX/iuSju42ZgQAgHODsjAAAAAAAAAAAAAAAAAAAAA4W3R0Jv1X1nPxjzT3xp9MRrbOlocNHfo6en9SZtqXcXJfsvvv62lk7076rz5UINY61yVLBtuXDwAAzjLKwgAAAAAAAAAAAAAAAAAAAOBc0LumnrUvaq5PH0xG7p0tERvekgxvrr9OjbYv38zkoXM3H7239KJ5SsQ2JssuSaqO9mUEAIAzkLIwAAAAAAAAAAAAAAAAAAAAOJd19iQrbqinVSnJgUfr0rChLc0ysQOPtjfjgcfqefzvmutdfcnAdbPlYYOHvg5ck3T2tjcjAAAsEmVhAAAAAAAAAAAAAAAAAAAAcD6qqmTZJfVceFNzb3IkGd7aLBAb3pKM3JPMTLYv49RosveOehqqpP+K2RKx1ulZU382AAA4RygLAwAAAAAAAAAAAAAAAAAAAJq6B5LVN9bTamYqGX0wGdo8p0hsczKxt40BS7L//np2fK65tWRVXRo2uKlZItZ3edKhZgEAgLOP/xYLAAAAAAAAAAAAAAAAAAAAnJiOrmTg6nry6tn1UpKDT84pEDs0+x9IUtqXcWJP8uTt9TSyL0kGrmkWiC3fmCy/ri5HAwCAM5SyMAAAAAAAAAAAAAAAAAAAAODUVFXSu7aeC17S3Js6kOy/ty4OG9qSDG8+VCS2NZkea1/GmYlk6K565lp6cbNAbHBjsnxTsnR9/dkAAGARKQsDAAAAAAAAAAAAAAAAAAAATp+upcmKZ9bTqswkY48cKg6bMwcea2/GA4/W8/iXmutd/c0SscMzcHXS2dPejAAAnLeUhQEAAAAAAAAAAAAAAAAAAADtV3UkfRvqueiHm3sTQ8nw1jklYpuTkXuTMtW+jFP7kz3fqueo7FfWxWGDc4rEela3Lx8AAOcFZWEAAAAAAAAAAAAAAAAAAADAmWXJYLLm++tpNTOZ7L+/WSI2dKhIbHKoffnKTLL/3np2/GVzr2dtszzscKHYssuSjs72ZQQA4JyhLAwAAAAAAAAAAAAAAAAAAAA4O3R0J8uvqyevmV0vJRl/olkidnhGH2xvxoO7kl27kl1fba539CTLrz26SGz5dUlXX3szAgBwVlEWBgAAAAAAAAAAAAAAAAAAAJzdqipZuq6edS9r7k2NJSP3JENzSsRGtibT4+3LOHMw2ffdeuZadmmyfFNdHjbYUiTWe2H92QAAOK8pCwMAAAAAAAAAAAAAAAAAAADOXV3LkpXPqadVmUlGtzcLxA7P+OPtzTj2cD07b22udy+fLQ5rnf6rks4l7c0IAMCiURYGAAAAAAAAAAAAAAAAAAAAnH+qjqT/8nrWv6q5N7E3Gd5aF4cNbZ4tEdt/X1Km25dxcjjZ/c16WlWddWFYa4HY4KZk+XXJkpXtywcAQFsoCwMAAAAAAAAAAAAAAAAAAABotWRlsub59bSanqgLww6Xh7XO5HD78pXpZOSeeh79THOvd12zROzw9G2oC9IAADjrKAsDAAAAAAAAAAAAAAAAAAAAOBGdS5LBTfW0KiUZ3zlbHDbUUiI2tr29Gccfr+eJLzfXO5cmA9c2C8QGN9ZrXcvamxEAgJOiLAwAAAAAAAAAAAAAAAAAAADgVFRVsvSietb9QHNvcn8ycs9sediRuSeZOdi+jNMHkn3/XM9cfZclyzc1i8SWb0x6L6g/GwAAi0pZGAAAAAAAAAAAAAAAAAAAAMDp0t2frHpuPa1mppOxh5KhuSViW5KDu9qbcfSheh77m+Z694q6NGxwTolY/5VJR3d7MwIAnMeUhQEAAAAAAAAAAPz/7N17lOZ5XR/497eq+t5VNZeenivMfbp7QBCUcI2LghG8EDWGuCbnQOK6BE1Wj3E37m4UyHGzm2w0u+we4yUq7K4aL1EwKqKgrCDKIoKCdPf0MDM9MNMzPZeequpLdXdVffePXzX1PNU1/VT1VP+e56l6vc75nHp+3+/v9/u+q2GKGWjeDQAAAAAAANC2kdGmdGv3HcnN39i9d/ap7vKwC4Vipx5I6kJ7Gc8/kzz1Z810KmPJ+F2L5WEHOorE9iVbJ9vLBwCwSSgLAwAAAAAAAAAAAAAAAAAAABgk265Nrnt1M53mzyYz93cXiV2YuZPt5atzS+fmfd17O27sKA/rmJ23JGWkvYwAABuIsjAAAAAAAAAAAAAAAAAAAACAYTC6LbnqBc10qjU582hT3jV1sLtE7Mwj7WY8c6yZx/+oe310ZzKxb6k8bPJA83X87mR0e7sZAQCGjLIwAAAAAAAAAAAAAAAAAAAAgGFWSrLz5mZueF333vmZZPpwd4HY9KFk5kiycK69jPOnkxOfbqZLSXbfvlQi1jnb9jTfGwDAJqcsDAAAAAAAAAAAAAAAAAAAAGCj2jKeXPvVzXRamEtOPdRdIDZ1MJk+mJw70WLAmpx8oJlHf7d7a+s1K5eI7b49GVGZAQBsHv7OBwAAAAAAAAAAAAAAAAAAAGCzGRlLxu9q5uZvXlqvNTn7ZHeJ2IU5+WCS2l7Gc08nT368ma7sW5Pxu1coEtvXlKMBAGwwysIAAAAAAAAAAAAAAAAAAAAAaJSSbL+umb1/s3tvfjaZOdIUh00tKxKbP91exoVzydRfN7Pcjpu7C8QmF7/uuLn53gAAhpCyMAAAAAAAAAAAAAAAAAAAAAB6G92eXPUVzXSqC8npRxaLww52l4idOdZuxjOPNPP4h7vXx3YnE/sWS8QOLJWJjd+VjG5rNyMAwBopCwMAAAAAAAAAAAAAAAAAAADg8pWRZNfzmrnx67v3zk0l04e7C8SmDyUzR5I6117GuZPJ059q5qLsdzTFYZP7l0rEJvYn265tLx8AwCUoCwMAAAAAAAAAAAAAAAAAAADgytg6mez5G810WjifnHywo0DsYDK1+Pn8M+3lqwvJyfubefS3u/e27ekuD5vYn0weSHbemoyMtpcRANj0lIUBAAAAAAAAAAAAAAAAAAAA0K6RLcnEPc3kTUvrtSazxztKxDrm1NEktb2MZ59MnvhYM13Zty1mX1YkNn5PsmV3e/kAgE1DWRgAAAAAAAAAAAAAAAAAAAAAg6GUZMf1zVz/X3TvzZ1OZo6sUCR2OJk/017GhbPJM59tZrmdz7u4RGxif7LjxuZ7AwC4DMrCAAAAAAAAAAAAAAAAAAAAABh8YzuTq1/cTKe6kJx6eIUSsUPJ7OPtZjz9xWYe+4Pu9S0TK5eI7b4zGd3abkYAYOgoCwMAAAAAAAAAAAAAAAAAAABgeJWRZPdtzdz0hu69cyeS6cMXl4jN3J/U+fYynp9Onvr/mulURpvCsOUlYpP7k61Xt5cPABhoysIAAAAAAAAAAAAAAAAAAAAA2Ji2Xp3seUUznebPJScfWCwPO9hdJHZ+ur18dT6Zua+ZR36re2/73sXysAPdRWK7nt8UpAEAm4ayMAAAAAAAAAAAAAAAAAAAAAA2l9GtyeT+ZvKtS+u1JrOPLRWHTXWUiJ1+uN2Ms8ebOf7H3euj25Pxfd0FYpP7k/F7krGd7WYEAFqhLAwAAAAAAAAAAAAAAAAAAAAAkqSUZMeNzVz/td17c6eS6fuWysOmDyXTB5u1hbPtZZyfTZ75y2aW23Vrd4nYxIHm6/a9zfcGAAwlZWEAAAAAAAAAAAAAAAAAAAAA0MvYruSalzTTaWE+OX00mTq0rEjsUHL2iXYznjrazLEPdq9vuaopDZvc310mtvuOZGRLuxkBgDVTFgYAAAAAAAAAAAAAAAAAAAAAl2tktCnd2n1HcvM3du+dfSqZPnxxidjJLyR1ob2M559JnvqzZjqVsWT8ru4CsQuzdbK9fADAJSkLAwAAAAAAAAAAAAAAAAAAAIArYdu1yXWvaqbT/Nlk5v6LS8SmDyVzJ9vLV+eWzl1u+w3J5IGLS8R23pKUkfYyAgDKwgAAAAAAAAAAAAAAAAAAAACgVaPbkqte0EynWpMzj65cInb6S+1mnH2smcf/qHt9dGcyse/iErHxu5OxHe1mBIBNQlkYAECSLMwnI6P9TgEAAAAAAAAAAAAAAAAAwGZWSrLz5mZueF333vmZZOa+ZOpgd4nYzJFk4Vx7GedPJyc+3UyXkuy6bak8bPLA0udte5rvDQC4LMrCAIDN7Yu/kXz2nc1/EXLtK5KX/WRy1Qv7nQoAAAAAAAAAAAAAAAAAALptGU+u+apmOi3MJace6i4Qmz7UlIqde7rFgDU59WAzxz7QvbX1mqXisM7ZfXsyov4EAHrxn5YAwOb1+P+bfOzNSZ1vrp/4aPLhr0u+6a+T7df1NxsAAAAAAAAAAAAAAAAAAKzGyFgyflczN39z997sk8tKxA42X08+mKS2l/Hc08mTH2+m08iWZPzulYvEtoy3lw8ABpyyMABg8zr6y0tFYRecfSI59vvJ7X+/P5kAAAAAAAAAAAAAAAAAAGC9bN+TbH9Nsvc13evzs8nMkaY4bOpQd6HY/On28i2cT6Y+38xyO27uLg+bXPy64+aklPYyAsAAUBYGAGxe9//0yuuf+IfKwgAAAAAAAAAAAAAAAAAA2LhGtydXfUUznepCcvqR7vKwC3Pm0XYznnmkmcc/3L0+tjuZ2NddJDaxPxm/Oxnd1m5GAGiJsjAAhtP8bHL/zyRHfyW5623Jbd+VjPiPNdbJwvl+JwAAAAAAAAAAAAAAAAAAgPaVkWTX85q58eu7985PJ1MrlIjNHEnqXHsZ504mT3+qmYuy394Uh00e6C4S23Zte/kA4ArQqgLA8Dn7dPKfOv5h7MmPJ3/2luTNp5OxHf3LBQAAAAAAAAAAAAAAAAAAsFFtmUj2/I1mOi2cT04+eHGJ2NTB5Pwz7eWrC8nJLzTz6O90723b010edmF23ZaMjLaXEQAuk7IwAIbPx//ByuuffUfykn/TbhYAAAAAAAAAAAAAAAAAAIDNbGRLMnFPM3nT0nqtydknusvDLnw+dTRJbS/j2SeTJz7WTFf2bcn43d0FYpMHkvF7ki2728sHAD0oCwNg+Bz7wMrrB/9XZWEAAAAAAAAAAAAAAAAAAACDoJRk+95m9n5N997c6WTmyFJ52JfncDJ/pr2MC2eTqc81s9zO53WXiF2YHTc23xsAtEhZGAAAAAAAAAAAAAAAAAAAAADQnrGdydUvbqZTXUhOfzGZ6iwQO9h8nX283Yynv9jMY3/QvT42vlQcNtlRIrb7rmR0a7sZAdg0lIUBAAAAAAAAAAAAAAAAAAAAAP1XRpJdtzZz0zd07507kUwf7igRW5yZ+5M6317GuZnk6U8205V9NNl951J5WGeh2Nar28sHwIakLAwAAAAAAAAAAAAAAAAAAAAAGGxbr072vKKZTvPnkpMPXFwiNn0wOT/dXr46n8zc18wjv9W9t33vxSViE/ubUrQy0l5GAIaWsjAAAAAAAAAAAAAAAAAAAAAAYDiNbk0m9zfTqdZk9rGl8rCpjiKx0w+3m3H2eDPH/7h7fXR7Mr6vu0Bscn8yfk8ytrPdjAAMNGVhAAyXcyf6nQAAAAAAAAAAAAAAAAAAAIBBV0qy48Zmrv/a7r25U8n0fUvlYV+ew8nC2fYyzs8mz/xlM8vturW7ROzCbL+++d4A2FSUhQEwXJY3JQMAAAAAAAAAAAAAAAAAAMBajO1KrnlJM50W5pPTDy+Vh00dXPp89ol2M5462syxD3avb5nsLg+bPNB83X1HMrKl3YwAtEZZGAAAAAAAAAAAAAAAAAAAAADAyGiy+/Zmbnpj997Zp5Lpw0vlYRfm5BeSutBexvNTyVOfaKZTGUvG7+ouEpvYn0zsS7Ze1V4+AK4IZWEAAAAAAAAAAAAAAAAAAAAAAJey7drkulc102n+bFMYdqE8bKqjSGxupr18dW7p3OW233Bxidjk/mTn85Iy0l5GAC6bsjAAhky59PbcqWRsVztRAAAAAAAAAAAAAAAAAAAA2NxGtyWT9zbTqdbkzKNLBV6dc/pL7WacfayZ4x/pXh/dmUzsu7hIbPzuZGxHuxkBuCRlYQAMmR5lYeeeURYGAAAAAAAAAAAAAAAAAABAf5WS7Ly5mRte1713fiaZuS+ZWlYiNnNfsnCuvYzzp5MTn26mS0l23bZUHjbZUSS27brmewOgVcrCANhg/EMFAAAAAAAAAAAAAAAAAAAAA2zLeHLNVzXTaWE+OfVgd4HY9KFk6mBy7ukWA9Ymx6kHk2Mf6N7aevVicdiBpQKxif3J7tuTEVU2AFeKn7AA9FCS1H6HWNKrYbiMtJMDAAAAAAAAAAAAAAAAAAAA1tPIaDJ+VzM3f3P33uyTF5eITR9qCr3qQnsZz51InvzTZrqyb0nG7+4uEJvYn0zsS7ZMtJcPYINSFgbApZWRpM73O0WHHmVhPfcBAAAAAAAAAAAAAAAAAABgyGzfk2x/TbL3Nd3r87PJzP1L5WFTB5c+z59uL9/C+WTq880st+OmjvKwA8nk4ucdNydFRwDAaigLA+DSBq4srAf/IAAAAAAAAAAAAAAAAAAAAMBmMbo9ueqFzXSqC8npR5aKwzrnzKPtZjzzaDOP/2H3+tiujhKxjhm/q/m+APgyZWEA9DBs5VvDlhcAAAAAAAAAAAAAAAAAAADWWRlJdj2vmRu/vnvv/HQyffjiErGZI8nC+fYyzp1Knv5UMxdlv/3iErHJA8m2a9vLBzBAlIUB0MOglW/Vfgdgo6j+vQQAAAAAAAAAAAAAAAAAAGxCWyaSa1/WTKeF88nJBy8uEZs6mJx/pr18dSE5+YVmHv2d7r1tey4uEZvYn+y6LRkZbS8jQMuUhQFwaWWk3wnWSAEUq3T0P/Y7AQAAAAAAAAAAAAAAAAAAwOAY2ZJM3NNM3rS0Xmty9omO8rCOIrFTD6XV/5//2SeTJz7WTFf2rcn4Pd0FYpP7k/F9yZbd7eUDuEKUhQFwaYNWFjay9dL7VVkYq3To3/U7AQAAAAAAAAAAAAAAAAAAwOArJdm+t5m9X9O9N3cmmTmSTB9cKhCbPpRMH07mz7SXceFcMvW5ZpbbectigdiB7jKxHTc23xvAEFAWBkAPA/Y3tjNHetygLIxVevqT/U4AAAAAAAAAAAAAAAAAAAAw3MZ2JFe/qJlOdSE5/cVk6tCyErFDyexj7WY8/aVmHvtQ9/rY+FJx2GRHidjuu5LRre1mBOhBWRgAl1ZG+p2g2+zxHjcoCwMAAAAAAAAAAAAAAAAAAIC+KiPJrlubuekbuvfOPZNMH14sDzu4VCI2c39S59vLODeTPP3JZrqyjya771gqD5vYn0wcSCb2JduuaS8fQAdlYQD0UPodoNvWqy+9X5WFAQAAAAAAAAAAAAAAAAAAwMDaelWy5+XNdJo/l5x8YKk87MtzMDk/3V6+Op/MHGnmkf/cvbd977ISscXZ+fxkZLS9jMCmoywMgOFSF3rd0EoMAAAAAAAAAAAAAAAAAAAAYB2Nbk0m9zfTqdZk9vGLS8SmDianH2434+zxZo7/cff66PZk/J4VisTuScZ2tZsR2JCUhQHQQ+l3gGWUhQEAAAAAAAAAsP5KKXckeVmSr178+tIk4x23HK213taHaM+qlLIzyWeT3LFs67211re2nwgAAAAAAADgCigl2XFDM9e/tntv7lQyfd/FRWLTh5OFs+1lnJ9NnvmrZpbbdesKJWL7k+3XN98bwCooCwNguNQeZWFVWRgAAAAAAAAAAKtTSnltkv8+TUHYNf1Nc1n+p1xcFAYAAAAAAACweYztSq55STOdFuaT0w+vUCJ2KJk93m7GU0ebOfbB7vUtkyuXiI3fmYxsaTcjMPCUhQEwXHqVhUVZGAAAAAAAAAAAq/aVSf5Wv0NcjlLKK5L8N/3OAQAAAAAAADCQRkaT3bc3c9Mbu/fOPp1MH06mD3aXiJ38wio6DdbR+ankqU8006mMNYVhEweWFYntS7Ze1V4+YKAoCwNgyCgLAwAAAAAAAADgijub5EtJ7ux3kJWUUrYm+bkkI4tLM0nG+5cIAAAAAAAAYIhsuya57pXNdJo/2xSGXSgPm+ooEpubaS9fnVssMzt88d72G5YViO1PJvcnO5+XlJGL7wc2DGVhAAyXXi28VVkYAAAAAAAAAABrcj7JXyf58ySfXPz62SSvTvJHfcx1KT+a5N7Fz0eT/FqSH+pfHAAAAAAAAIANYHRbMnlvM51qTc4cWyoOmz6UTB9svp7+UrsZZx9r5vhHutdHdyQT+5YViR1Ixu9Oxna0mxG4IpSFAXBppfQ7QbdeZWHptQ8AAAAAAAAAAF/23iQ/VWudXb5RBu33zSwqpbw4yT/vWHp7kpf3KQ4AAAAAAADAxldKsvOmZm74uu698zPJzH3J1KHuMrGZ+5KFc+1lnD+TnPhMM11Ksuu2pQKxyY4ysW3XDV6nBPCslIUBMFx6lYXV2k4OAAAAAAAAAACGXq31RL8zrEUpZSzJz2fp93/+cq31A6UUZWEAAAAAAAAA/bBlPLnmq5rptDCfnHqou0Bs+lAyfTA5+1SLAWty6sFmjn2ge2vr1UvFYZ2z+45kRC0RDBp/VQIwZHqUhUVZGAAAAAAAAAAAG9Z/m+Sli5+fTvIDfcwCAAAAAAAAwLMZGU3G72zm5m/q3pt9coUSsUNNoVft1amwjs6dSJ7802a6sm9Jxu9eoUhsX7Jlor18QBdlYQD0UPodoFuvv7GtysIAAAAAAAAAANh4Sin7kryjY+mf1VqP9ysPAAAAAAAAAJdp+55k+2uSva/pXp+fTWbuX7lIbO5Ue/kWzidTn29muR03rVAitj/ZeUtSBqyfAjYYZWEADJeeLbjKwgAAAAAAAAAA2FhKKSNJfi7JtsWlP6y1vqd/iQAAAAAAAABYd6Pbk6te2EynWpMzjzSlYVMHu0vEzjzabsYzjzbz+B92r4/tSsb3NcVhkweWSsTG72q+L+A5UxYGwKUNXHOrsjAAAAAAAAAAADadf5Lk1YufzyR5Wx+zAAAAAAAAANCmUpKdtzRzw+u7985PJ9OHuwvEpg8lM0eShfPtZZw7lZz4i2a6so8ku25fKg/rnO172ifL/oMAACAASURBVMsHG4CyMACGS+1RFlaVhQEAAAAAAAAAsHGUUm5L8q86lt5Va72/P2kAAAAAAAAAGChbJpJrX9ZMp4W55OSDF5eITR9Mzp1oL19dSE5+oZlHf6d7b9u1K5SIHUh23ZaMjLaXEYaEsjAAhkud73VDKzEAAAAAAAAAAKAlP5tk1+Lnv0zy4/0KUkrZm+S6NT5255XIAgAAAAAAAMAljIwlE3c3k29ZWq81OfvEUnnYVEeR2KmH0mpnw9mnkif+pJmu7FuT8Xu6S8Qm9yfj+5Itu9vLBwNGWRgAw6Uu9LqhlRgAAAAAAAAAAHCllVK+O8nrFy8XknxPrXWuj5G+N8k7+ng+AAAAAAAAAM9FKcn2vc3s/ZruvbkzycyRpfKwzpk/017GhXPJ1OeaWW7nLd0lYhdmx03N9wYbmLIwAIZLr7KwqiwMAAAAAAAAAIDhV0q5Kcm/7Vh6d631k/3KAwAAAAAAAMAGN7YjufpFzXSqC8npLyZTK5SIzT7WbsbTX2rmsQ91r4/tXiwOO5BMdpSI7b4rGd3abka4QpSFAdDDoDWn9igLi7IwAAAAAAAAAAA2hJ9MctXi56NJ/kUfswAAAAAAAACwWZWRZNetzdz0Dd17555Jpg9fXCI2c39S59rLOHcyefrPm+nKPprsvmOpPKxztl3TXj5YB8rCABguVVkYAAAAAAAAAAAbWynlO5P87Y6lt9daT/UrT4efTPJra3zmziTvvwJZAAAAAAAAAOi3rVcle17eTKeF88nJB5risKmD3UVi56fay1fnk5kjzTzyn7v3tl3XXR42eaD5uvP5ychoexlhlZSFbRKllC1JXp3k+UluTHIyyaNJPl1rfWidz7o9yVcmuSnJ7iTH0vyphh+vtZ5fz7OANpR+B+jWqyysKgsDAAAAAAAAAGB4lVL2JHl3x9Iv11o/0K88nWqtx5McX8szpQzY7z8CAAAAAAAA4Mob2ZJM7Gvmlo4/K6vWZPbx7vKwC3PqaLsZzz6RPPFE8sRHu9dHtyfj93QXiU3sTybuScZ2tZsROigLG0CllP+Y5O8tWz5aa73tMt51XZJ3Lb7vmme55+NJfqLW+p/W+v5l7/mOJD+Y5JXPcsvTpZRfSfKjtdYnn8tZwGbWoyys5z4AAAAAAAAAAAy0dye5bvHz00l+oI9ZAAAAAAAAAGD9lJLsuKGZ61/bvTd3Kpk5kkx1logdTGbuS+Zn28s4P5s881fNLLfz+UvlYZMXSsQOJNuvb743uIKUhQ2YUsqbcnFR2OW+641J3pNkb49bX5XkVaWUX0zytlrrqTWeszvJzyb5zh63XpPk7Um+vZTyllrrB9dyDkCSpPYoA6u1nRwAAAAAAAAAALDOSin7kvyXHUv/W5KdpZTbejx61bLr3cueWai1Pvxc8wEAAAAAAADAFTO2K7n6K5vptDCfnH64o0CsY2aPt5vx9MPNPPb73etbJpdKxDpn/M5kZEu7GdmwlIUNkFLKVUn+/Tq967VJ3pdka8dyTfIXSR5I8xuDXpJkT8f+308yUUr51lp7tfF8+ZzRJL+S5BuXbT2R5NNJppLcuXjWhfrD65O8v5Ty+lrrx9bwbQH0LgvLqn58AQAAAAAAAADAINqx7PpfLs5a/Z3FuWAqFxeKAQAAAAAAAMDgGxlNdt/ezE1v7N47+3QyffjiErGTX0jqfHsZz08lT32imU5lrCkMW6lIbKv/GZ+1URY2WH48yU2Ln2eSjF/OS0optyT5jXQXhf1Jku+ptR7suG9bkrcl+bdJLlQQfkuSH0vyP6zyuP8l3UVh55P8YJKfqbWe6zjr3iT/IckrF5e2JXlfKeUraq3HVnkWQHqWga2u6xAAAAAAAAAAAAAAAAAAAACAYbbtmuS6VzbTaf5ccvL+pfKwqY4isbmZ9vLVucUys8NJ3t+9t/2GiwvEJvcnO5+XlJH2MjI0lIUNiFLK65P8o8XLuSQ/muTfXebr3pXk6o7rjyd5fa11tvOmWuvZJO8upTyc5Dc7tn6wlPLTtdajPTLfkeT7ly3/3Vrr+5ffW2v9fCnldUk+nKXCsGuTvCPJP17F9wT0Syn9TtCtVxmYsjAAAAAAAAAAAAAAAAAAAACAzWt0azJ5bzOdak3OHFsqDuuc019sN+PsY80c/0j3+uiOZGLfxUVi4/ckYzvazchAURY2AEopu5L8bMfSTyT5zGW+6+4kb+lYOpfkrcuLwjrVWt9XSnlvx3Pb0pR4/aNne2bRO5Js6bh+z0pFYR3nnCmlvDXJZ5NsXVz+7lLKv6m1PtDjLICGsjAAAAAAAAAAADaoWutnkqz5T/crpbwzze/pu+C9tda3rlMsAAAAAAAAANgYSkl23tTMDV/XvXf+ZDJzX1McNnVwqURs5r5k4Vx7GefPJCc+00yXkuy6tSkOu+alyW3/IJk80F4u+k5Z2GD4n5Pctvj5gSTvTPLyy3zXdyUZ7bj+jVrrkVU896/TXTL25lLK9z5byVgpZUeS71jhHZdUa72vlPK+JG9eXBpbzPxjq8gI9MWaf+/hldWzDExZGAAAAAAAAAAAAAAAAAAAAABrsGV3U8J1zUu71xfmk1MPLZWHdc7ZJ1sMWJscpx5Kjv1e8tf/KrnlW5N7fzjZc7lVRQwTZWF9Vkp5VZLv61h6W631TCmXXc7zbcuuf2E1D9VaD5ZSPpGlkrJdSf5Wkt96lke+IcnOjus/rbUeWmXGX8hSWViSfHuUhQGr1qMMrGeZGAAAAAAAAAAAtKuUUpctfW2t9SP9yAIAAAAAAAAArMHIaDJ+ZzM3f1P33uyTyczhpfKwqUPJ9MHk1IPt9F986X3NfP3Hk+teeeXPo6+UhfVRKWVbkp9PMrK49N5a64eew/tuSPLijqW5JH+yhld8JEtlYUnyxjx7WdgbVnh2tT6aJtuFf/+9pJRyfa318TW8A9isev3NkLIwAAAAAAAAAADWoJRyS1b+/ZQ3LLseK6Xc9iyvOVlrbfOPCwYAAAAAAAAA+m37nmaue3X3+vxsMnP/UolY58ydWt8MV7042fOK9X0nA0lZWH+9M8m+xc9PJPlnz/F9L1x2/Ve11rX8dPj4susXrOGsP13tIbXWU6WUzyZ5ybKzlIXBQCr9DtCtzve4QVkYAAAAAAAAAABr8rEkt67ivpuTPPgse+9N8tb1CgQAAAAAAAAADLHR7clVL2ymU63JmUea0rCpZSViZx65vLPu/eGkDFg3CFeEsrA+KaW8NMkPdSz9QK31qef42nuXXd+/xue/0ON9nQ6sw1mdZWH3JvnDNb4D2IymPnfp/aosDAAAAAAAAAAAAAAAAAAAAIABU0qy85Zmbnh999756WT6cHeB2PShZOZIsnB+5fftviN5/ndc+dwMBGVhfVBKGUvy81n69f+9WusvrcOr71p2/fAanz+67PraUsrVtdYTnYullGuSXPMcz1p+/91rfB7YrKYPX3pfWRgAAAAAAAAAAAAAAAAAAAAAw2TLRHLty5rptDCXnHywKQ575i+Th381eeazzd6B/y4ZUSG1WfhXuj9+OMmLFz+fSvL2dXrvVcuuj6/l4VrryVLKbJLtHcuTSU4su3X5OadrrafWctYK2SbX+PyKSil7k1y3xsfuXI+zgQGhLAwAAAAAAAAAgDWotd7WwhnlCr//nUneeSXPAAAAAAAAAAD6YGQsmbi7mVu+JXnB/5gc+2By/88kd7yl3+lokbKwlpVS7k3yLzqWfqTW+tA6vX73suszl/GOM+kuCxu/gud0Wumcy/G9Sd6xTu8ChpKyMAAAAAAAAAAAAAAAAAAAAAA2oFKSm97QDJvKSL8DbCallJEkP5dk2+LSp5K8ex2PWF7iNXsZ71he4rX8nW2eAwyCckX/UNP1V5WFAQAAAAAAAAAAAAAAAAAAAAAbh7Kwdn1/klcsfp5L8l/VWuev4Hl1gz0Dm8fCXDK3vFOPJMmOGy+9rywMAAAAAAAAAAAAAAAAAAAAANhAxvodYLMopdyR5Mc6ln6i1vqZdT7m5LLrHZfxjuXPLH9nm+dcjp9M8mtrfObOJO9fp/PhuVmYS/78nyYP/WKycC656Q3JK96bbJ3sY6jSx7NXMNrrR46yMAAAAAAAAAAAAAAAAAAAAABg41AW1oJSSknys0l2Li49kOSdV+CoTV8WVms9nuT4Wp5p/uWBAfHpH0ru/6ml6y+9P/no30le96H+ZRo0tUcZWK99AAAAAAAAAAAAAAAAAAAAAIAhMtLvAJvE9yT5uo7rt9Vaz1yBc6aWXV+3lodLKbtzcYnXM6s4Z2cpZddazkqydxXnwOZSa3L0Vy5ef/zDyewT7ef5sgEr1FMWBgAAAAAAAAAAAAAAAAAAAABsImP9DrBJvKvj8+8mub+UcluPZ25Ydj22wjOP1lrPdVwfWbZ/6yrzPdv9T9daTyy/qdb6VCnlRJKrO5afn+TgczhreXbYfM4+mcw+tvLew7+a3PN97eYZWLXHvrIwAAAAAAAAAAAAAAAAAAAAAGDjUBbWjh0dn78xyYOX8Y6bV3juJUk+03G9vKzrrjWeccey689f4t6DSV617Ky1lIUtP2stzwKbWe1RBrYw304OAAAAAAAAAAAAAAAAAAAAAIAWjPQ7AOvqc8uuX1RK2bmG51/d432X2nvlag8ppexK8qI1nAWbRO13gCHRoyys5z4AAAAAAAAAAAAAAAAAAAAAwPBQFraB1FqPJfmrjqWxJK9Zwyteu+z6A5e49/d6PHspfzNNtgs+XWt9fA3PwyZU+h1gcNQeZWC99gEAAAAAAAAAAAAAAAAAAAAAhoiysBbUWq+qtZa1TJKvXfaaoyvc95kVjvvNZdf/cDUZSyn7k7y8Y+lUkt+/xCMfTHKm4/qVi+9Yjbcuu16eGTanWvudYGVl0IrKevw6KQsDAAAAAAAAAAAAAAAAAAAAADYQZWEbzy8mme+4/vZSyt2reO6fL7v+1Vrr7LPdXGs9neTXe7zjIqWUe5J8W8fSXJJfWkU+2NwGrrCrj3qWgSkLAwAAAAAAAAAAAAAAAAAAAAA2DmVhG0yt9UiS93YsbU3ynlLK9md7ppTyt5O8tWPpXJJ3reK4dyY533H91lLKmy5xzvYkv7CY6YKfq7V+YRVnwSZQ+x1gOPQqC+tZJgYDbGG+9z0AAAAAAAAAAAAAAAAAAAAAbCrKwjamdyQ50XH9qiQfKqXs77yplLKtlPJPk/zasud/vNZ6tNchtdYHkvzvy5Z/vZTyT0opnYVgKaUcSPLhxSwXPJXVlZIBKZv07BUoC2Oj+sIvJL+xt98pAAAAAAAAAAAAAAAAAAAAABgwY/0OwPqrtX6plPLtST6Y5EJp16uTfL6U8qkkDySZTPLSJNcte/y3k/zIGo774SQvSPLGxestSf6PJD9SSvmLJDNJ7lg8q7Nx6FySb6u1HlvDWQBJepWBKQtjCB3/4+QT352k9jsJAAAAAAAAAAAAAAAAAAAAAANGWdgGVWv9SCnl25K8J0uFYCXJVy/OSn45yffUWufXcM58KeXNSf5Dkr/XsbU3yRue5bHjSd5Sa/3oas8B+qn0vqVNtUeZUlUWxhB66JeiKGyNjv1B8uD/lZx7Jrn5m5O7/uukDNjPKwAAAAAAAAAAAAAAAAAAAIB1MNLvAFw5tdbfTfLCJD+V5MQlbv2zJN9Ra/2uWuupyzjnZK31O5P83cV3PZunk/z7JC+stf7eWs+BjU9R0Or0KANTFsYwuv+n+51guHzxN5OPvDF56P9JHv3t5JP/OPmLH+x3KgAAAAAAAAAAAAAAAAAAAIArYqzfAVhZrfUjSco6vOd4kreXUr4/yauT3JrkhiSnkjyS5NO11gef6zmLZ/16kl8vpdye5KVJbkqyK8ljSY4m+ZNa67n1OAs2n+f842Dj6FUGpiwMNr7P/+ukznev3fd/Ji96V7Jloj+ZAAAAAAAAAAAAAAAAAAAAAK4QZWGbxGJJ1x+1dNaDSdalgAw2lVr7nWA49CwDUxYGG95Tn7h4rc4lD/7fyT3f134eAAAAAAAAAAAAAAAAAAAAgCtopN8BAFiFUvqdYID0KFXrWSYGbFhnHu13AgAAAAAAAAAAAAAAAAAAAIB1pywMYGD0KMHql0ErKutVBqYsDDa2eomflf76BwAAAAAAAAAAAAAAAAAAADYgZWEAQ2HACrv6qlcZkLIg2LTqfL8TAAAAAAAAAAAAAAAAAAAAAKw7ZWEA9DBgRWW1RxlYr31g41IWBgAAAAAAAAAAAAAAAAAAAGxAysIAGB61ruIeZWGwsV3i54C//gEAAAAAAAAAAAAAAAAAAIANSFkYwMBYRRHWpreaXyNlQbBp1fl+JwAAAAAAAAAAAAAAAAAAAABYd8rCAIZC2aRnL1NXUQS2mnuA4VUvURo4c197OQAAAAAAAAAAAAAAAAAAAABaoiwMYFBcqgCHhrIw4FKOfbDfCQAAAAAAAAAAAAAAAAAAAADWnbIwgGFQSr8TDIjVlIXNX/kYAAAAAAAAAAAAAAAAAAAAAAAtURYGMDBqvwMMvrqKX6O6ikIxYIj5WQkAAAAAAAAAAAAAAAAAAABsLsrCAIZC6ePRfTz7IqspAlMWBgAAAAAAAAAAAAAAAAAAAABsHMrCABgedRVFYKu5Bxhi9dm3dt/VXgwAAAAAAAAAAAAAAAAAAACAligLA2B4KAsDLmXnTf1OAAAAAAAAAAAAAAAAAAAAALDulIUBDIza7wDPovQ7QIfVFIEpC4NNqw7qz1EAAAAAAAAAAAAAAAAAAACAy6csDGAoDFJhVx+tpgioKguDDU0hGAAAAAAAAAAAAAAAAAAAALDJKAsDGBQKcHpbTRGYsjDYvIpiRQAAAAAAAAAAAAAAAAAAAGDjURYGMAz6WoAzSCVmysKAS/xMUroIAAAAAAAAAAAAAAAAAAAAbEDKwgAGhpKbnlZVBKYsDAAAAAAAAAAAAAAAAAAAAADYOJSFAQyF0u8Ag2E1ZWGrKhQDAAAAAAAAAAAAAAAAAAAAABgOysIAGCJ1FbcoC4ONbRU/BwAAAAAAAAAAAAAAAAAAAAA2EGVhAAyPVRWBKQsDAAAAAAAAAAAAAAAAAAAAADYOZWEAA6P2O8AQWEUR2KoKxQAAAAAAAAAAAAAAAAAAAAAAhoOyMIChUPodYDCspghMWRhsbFWxIgAAAAAAAAAAAAAAAAAAALC5KAsDGBQKcFZhNb9GysIAAAAAAAAAAAAAAAAAAAAAgI1DWRjAMCil3wkGQ11FEdhq7gGGmGJFAAAAAAAAAAAAAAAAAAAAYHNRFgYwMAa0AKcOUC5lYQAAAAAAAAAAAAAAAAAAAADAJqMsDGAolH4HGAzKwoBLGqByQwAAAAAAAAAAAAAAAAAAAIB1oiwMgCGymiIwZWGwsSkEAwAAAAAAAAAAAAAAAAAAADYXZWEADI+6ipKgOn/lcwAAAAAAAAAAAAAAAAAAAAAAtERZGMCgWE0R1qa30PuWuop7gOHlZyUAAAAAAAAAAAAAAAAAAACwySgL4/9n786jZb3LOtF/n5MTkpAEAoEACZBAQAkgo4hMymCDaBuGRsb2ggyXi63Sja2t12aU5dWG9iIoglcFlBaQeWgmm0FGRSE0JIQxkDRNIIYEQkLGk+f+UXU8lWIP7z577xr2/nzWqlXv+3t/w7Orzq6z16rf+r7AUqh5F7AYhgSBCQtjJ/v+N5Krr5x3FQAAAAAAAAAAAAAAAAAAAADMkLAwgIXR8y5g8Q0KAhMWxg72lhOSNxybfPa5SfvMAAAAAAAAAAAAAAAAAAAAANgNhIUBLIOqeVewIAaEIw0KFIMldtX3ks8+JznrFfOuZE6EpAEAAAAAAAAAAAAAAAAAAAC7i7AwgIUhAGddQ4LAhIWxW3z1r+ZdAWydS7857woAAAAAAAAAAAAAAAAAAABgYQkLA1gKNce1FyjETFgYHHDeB+ddwZws0GcSW+fir867AgAAAAAAAAAAAAAAAAAAAFhYwsIAWCJDgsCEhQEAAAAAAAAAAAAAAAAAAAAAO4ewMACWRw8IAhvSB9ihet4FAAAAAAAAAAAAAAAAAAAAAGw5YWEAi6KF3KxvwGskLAx2Np+VAAAAAAAAAAAAAAAAAAAAwC4jLAxgKdS8C1gMg4LAhIUBAAAAAAAAAAAAAAAAAAAAADuHsDCAhdHzLmAJDHiNBgWKAcvLZ+XO5H0FAAAAAAAAAAAAAAAAAACA1QgLA1gGVfOuYDEMCQITFgYAAAAAAAAAAAAAAAAAAAAA7CDCwgAWRs+7gCUw5DUSFsZWENAHAAAAAAAAAAAAAAAAAAAAwGIQFgawFAQXJUl6QBDYkD6wLuF9i8t7AwAAAAAAAAAAAAAAAAAAAOwuwsIAWMciBfMMqEVYGAAAAAAAAAAAAAAAAAAAAACwgwgLA2B5DAkCExYGO1svUoAhAAAAAAAAAAAAAAAAAAAAwPYTFgawKATgrG/QayQsDAAAAAAAAAAAAAAAAAAAAADYOYSFASyDqnlXsCAGBIG1sDDYtYQuAgAAAAAAAAAAAAAAAAAAADuQsDCAhSHkZl1DgoCEhbElBPQtLp+VAAAAAAAAAAAAAAAAAAAAwO4iLAxgKQguGhkSFrZv+8sAAAAAAAAAAAAAAAAAAAAAAJgRYWEAC2NAENZu11cP6DSkD6zH7+PCau8NAAAAAAAAAAAAAAAAAAAAsLsICwNYCjXvAhbEgJCgQYFiACwWIXAAAAAAAAAAAAAAAAAAAACwGmFhACyPIUFgwsIAAAAAAAAAAAAAAAAAAAAAgB1EWBgAS6QHdBEWxlaoeRfAqgZ8DgAAAAAAAAAAAAAAAAAAAADsIMLCABZFL2gAziLVNSgITFgYAAAAAAAAAAAAAAAAAAAAALBzCAsDWAZV865gQQwILhsUKAYsrwUKMAQAAAAAAAAAAAAAAAAAAACYAWFhAAtDAM66hgSBCQsDAAAAAAAAAAAAAAAAAAAAAHYQYWEAy+CC0+ZdwYIYEqgmLIytILxvOXnfAAAAAAAAAAAAAAAAAAAAgJ1HWBjAwlgj5OYLL5pdGYusBwSBDekDLK8WCAYAAAAAAAAAAAAAAAAAAADsLsLCABZF71v92lUXz66OhTYgJEhYGFui5l0AAAAAAAAAAAAAAAAAAAAAACQRFgawOK6+at4VLL5BQWDCwmBnGxAaCAAAAAAAAAAAAAAAAAAAALCDCAsDWBS9b94VLIEBIUGDAsUAAAAAAAAAAAAAAAAAAAAAAJaDsDCARdFXzbuCxdfCwgB2pCGf7wAAAAAAAAAAAAAAAAAAALBLCQsDWBRXXznvClaxSAEuA4LAhIXBDrdIn0kAAAAAAAAAAAAAAAAAAAAA209YGMCiuPqqeVew+HpISJCwMAAAAAAAAAAAAAAAAAAAAABg5xAWBrAoWljY+gYEgbWwMNjRBoUGAgAAAAAAAAAAAAAAAAAAAOwcwsIAFoWwsPUNCQkSFgYAAAAAAAAAAAAAAAAAAAAA7CDCwgAWxdXCwtY3JAhMWBjsWkMCBVlQ3jsAAAAAAAAAAAAAAAAAAABYjbAwAJbHkCCg3rf9dQBzJFQKAAAAAAAAAAAAAAAAAAAA2F2EhQEsiqp5V7AErl6/Sw/oA8CC8X8gAAAAAAAAAAAAAAAAAAAArEZYGADLo3tAH2FhbAHhfYtr36XzrgAAAAAAAAAAAAAAAAAAAABgpoSFAbA8BgWB9bBQMViLf0OL65zXz7sCAAAAAAAAAAAAAAAAAAAAgJkSFgbAOhYpNGloLYtUM7ClvvPZeVcAAAAAAAAAAAAAAAAAAAAAMFPCwgAWRQu4WldfvbX9gOVT/nzdmfwfCAAAAAAAAAAAAAAAAAAAAKuRtgDAEhkYJiMsDHawWuOawCkAAAAAAAAAAAAAAAAAAABg5xEWBsASGRoEJCwMdqxa489XQYEAAAAAAAAAAAAAAAAAAADADiQsDIDlMTQISGAQm1U17wpY1Vrvjd99AAAAAAAAAAAAAAAAAAAAYOcRFgbAEumB3QQGsUk98N8as7dWkJvffQAAAAAAAAAAAAAAAAAAAGAHEhYGwPIYHAQkMAh2LmFhO5OAPgAAAAAAAAAAAAAAAAAAAFiNsDCAhSEoZX0DXyOBQbCDrREWJigQAAAAAAAAAAAAAAAAAAAA2IGEhQGwPIaGgAkLg52r1vjztffNrg622FohcAAAAAAAAAAAAAAAAAAAALC7CQsDYG3d865gwsBahIWxWSW4aHGt8d743QcAAAAAAAAAAAAAAAAAAAB2oL3zLmA7VNWtk5ya5BZJLk9yZpI3dveFcy0MgM0ZHAQkMAh2rLWC3ISFAQAAAAAAAAAAAAAAAAAAADvQwoeFVdVJSe4/0fTq7r5ilb6V5AVJnp5kz9TlP6iqX+3uV25DmQDMQvfAfgKDYOcSFgYAAAAAAAAAAAAAAAAAAADsLgsfFpbk3yf5lfHxJ7v7L9bo+7tJnjFxvj9VppIcleTPq6q6+xVbXyYA229gEJDAIDZraDAds1fTebCT/O4vL79zAAAAAAAAAAAAAAAAAAAAsJq10hYWxc9mFPaVJKuGfFXVDyX59YySBiZDwvaP7fHxS6rqhO0pFWAzBKWsa3CAk8Ag2Llq9UuCAgEAAAAAAACWRlXdoKqOnncdAAAAAAAAAACwDBY6LKyqbpDk5Immd67R/Rm55s/zjiT/JslDkrwpo2SJTnJEkt/Y2koBmI2BYWECg2AHExYGAAAAAAAAsKyq6sSq+suq+k6SbyX5TlV9vaqeX1VHzLs+AAAAAAAAAABYVAsdFpbkdhPH/9zdZ6/UqaoOySgYbH+KzHu7+9TufnN3v727H5Hk1RmlS1SSR1bVGkkTACwmYWHMiD8TFlet9eer330AAAAAAACAWaqqx1fVOePHGVV12Bp975DkH5M8Lsl1cmA/3/FJfivJP45vMAoAn/UGzgAAIABJREFUAAAAAAAAAExZ9LCwE8fPneTMNfr9aJJjM9o4lCTPX6HPb+dAysxxSU7ZigIBmKEeGha2b3vrAObn0Ousfu2Qa8+uDgAAAAAAAACS5DFJbprkhCQf7O7LV+pUVXuTvC7JDTLa59dTj0py2yRvnEHNAAAAAAAAAACwdBY9LOzYieNvr9HvPhPH53b3R6c7dPf/yjUDx26/ydoAmLmhYWFXb28ZwPwc+2OrXzvmR2ZXB1traBgkAAAAAAAAsDCqak+Se080vXmN7v9Hkh/OgXCwJDk9yaen2u5dVY/a4lIBAAAAAAAAAGDpLXpY2BETx5es0e+e4+dO8t41+n1x4vhGB1sUwO6ySAEuQ2sRFgY7Vi36n68AAAAAAAAAu8Ztk1x7fHxlkr9bo++Txs+V5LtJ7tHdd+zuuya5S5Jv5cDGkKdtQ60AAAAAAAAAALDUFj1t4aqJ4yNW7XUgLCxJPrJGv4snjo86qIoAtksvUijXghr6GrWwMNixfFbuTFXzrgAAAAAAAADYuJPHz53kS9195UqdqurGSX583K+TPL+7P7H/end/JsmvZhQkVknuXVXX287CAQAAAAAAAABg2Sx6WNhFE8c3XalDVZ2S5LiJpo+vMd9k4Ni+TdQFwFwICwPWIkgMAAAAAAAAYIZOmDj+6hr9fiIHgsCuSvIXK/R5c5Lvjo8ryZ22okAAAAAAAAAAANgpFj0s7KzxcyW5Y1UdvkKfh0wcX9jdZ64x3/Unjr+32eIAmLWhQUDCwgAAAAAAAAAAttlRE8cXrdoruff4uZN8vLu/M92hu/clOW2i6VabLw8AAAAAAAAAAHaORQ8L+3RGG4Q6yeFJnjh5sar2Jnny+LSTfHid+W4zcfz1LaoRgFnpgWFhLSwMdq41PgeGfkYAAAAAAAAAsBUOHdjvHhPHH1yj3zcnjq+z4WoAAAAAAAAAAGAHW+iwsO4+L8nHxqeV5Per6heq6tpVdVKS1ya55cSQN6w2V1XdOMlNJpq+tLXVArD9hIUB7EiC3gAAAAAAAGAZXTxxfL2VOlTVkUnuNNH00TXm2zdxfNgm6gIAAAAAAAAAgB1nocPCxl6UUVBYJzkyySuTfC/JV5I8LAeSY87NGmFhSX564vjiJF/Y6kIB2G5Dw2SEhcHOtdbngMApAAAAAAAAgBk6f+L4lFX6/FSSQ8bHneQf1pjvmInj72+iLgAAAAAAAAAA2HEWPiysu9+Y5E05EBhWE49MtP9ad1++xlQP3z9lkk90tzQJYMH4WFrX0I/uFhYGAAAAAAAAALDNTh8/V5ITq+r2K/R59Pi5k5ze3RetMd8JE8ff3oL6AAAAAAAAAABgx1j4sLCxxyb58xwICNuvklye5D909+tWG1xVN0vy4BxI4nnPdhQJwDYbGgImLAx2KaGLAAAAAAAAADN0ekahXvu/rP2Dqjp0/8WquneSR0xcf9dqE1XV3iS3nWj66taWCgAAAAAAAAAAy23vvAsYoruvSPKUqnphklOTnDi+9Pkkb+rub6wzxYNz4C6GSfL2ra8SYKdapPCdgbUIC4OdqxfpMwkAAAAAAABg9+rufVX1miS/nNGmjgck+UxVvT3JcRkFhe3J6KagneSv1pjubkmuNXF+xrYUDQAAAAAAAAAAS2opwsL26+4vJHnBQYz70yR/uvUVATBbQ0OChIXBjvW9L6x+TZDYEvPeAQAAAAAAwJJ6fpJfSHKd8fkPJ/mh8fH+kLBO8sbu/twa8zx0/NxJvtzdF25DrQAAAAAAAAAAsLT2zLsAABhsaBBQCwuDHevs1867AgAAAAAAAADGuvu8JP8myWU5EA72L5fHbV9J8rTV5qiqPUkeOTH2g9tRKwAAAAAAAAAALDNhYQAsEWFhsOtd+Ok1Lg78jGAB1bwLAAAAAAAAAA5Sd78/yR2TvC7J9zP6ArCSfDvJHyX58e7+9hpTnJrkxBz44vCd21ctAAAAAAAAAAAsp73zLmA9VXXW+LCT3Ke7v3GQ85yQ5MP75+ruk7eiPoAt00Ju1jf0NRIWBgAAAAAAAAAwK9395SSPSZKqusG47fyBw7+a5GET5+/Z2uoAAAAAAAAAAGD5LXxYWJKTxs+dzdW7d2ouAJbN0EC1FhbGZtX6XVg8QhcBAAAAAAAA5m4DIWH7+//PJP9zm8oBAAAAAAAAAIAdYc+8CwCA4YSFMStCpwAAAAAAAAAAAAAAAAAAAABYDMLCAFgiwsKAtQh5W17eOwAAAAAAAAAAAAAAAAAAAFjN3nkXMEOHThxfObcqADh4PTRMRlgYAAAAAAAAAMAiqKpjkhydpLr7nHnXAwAAAAAAAAAAy2g3hYXdaOL4e3OrAoBNGBgW1vu2twxgQQ0NFAQAAAAAAABgu1TVQ5OcmuQ+SU5Ksmd8qbPCnsWqOinJzcenl3T3J7e9SAAAAAAAAAAAWDK7KSzsQePnTvL1eRYCsFR6kcJ3hoaFXb29ZbAL1LwLAAAAAAAAAIClUlUPSvLiJLfa3zRw6MlJ/jajjSFXVNXx3X3hNpQIAAAAAAAAAABLayHCwqrq5uv3SpKcULWh8I7DktwkyQOT/NpE+6c3MgnAbCxSKNeCGhpcJiwMdqeFCjcEAAAAAAAA2D2q6llJnpVRQFjlmhthOmsEh3X3+6rqzCSnJLlWkkcledn2VQsAAAAAAAAAAMtnIcLCknwt66fkVJKPbGKNyc1Gb9rEPADMzdAgIGFhAMtF0BsAAAAAAAAsq6r61STPGZ/u//Lv8iSfSHJRkn89YJrXTczxsxEWBgAAAAAAAAAA17Bn3gVMqRUe610f8kgObEL6eJJ3bNtPAMA2Ghgm08LC2CzBRcvJ+wYAAAAAAAAwS1V16yQvzOgL284oJOw3khzb3fdN8isDp3rb/imT3KeqpvcOAgAAAAAAAADArrZoYWHbZf/GoTcm+bnuliQBsIyGfnwLCwNYMvb5AwAAAAAAwJJ6XpK9GX3pd1mSB3T3C7v70g3O85nx+CQ5Osmtt65EAAAAAAAAAABYfnvnXcDYq9a49vjxcyd5U5KLB865/y6F30lyZpK/6+6zD7pCABaAsDBgLfJgAQAAAAAAAGalqg5LcmoOfFn7n7v74wczV3dfXVVnJrnzuOk2Sb64+SoBAAAAAAAAAGBnWIiwsO7+xdWuVdXjc2Az0a919zmzqQqAxTM0CEhYGJtV8y4AAAAAAAAAABbdvZIcMT6+JMlLNznfN3IgLOz4Tc4FAAAAAAAAAAA7yp55FzCQxA5gFxgahLWL9cDXqIWFwa7kdx8AAAAAAABglk4aP3eST3T35Zuc76KJ46M3ORcAAAAAAAAAAOwoe+ddwAC/OHF8/tyqAGABCAsD1vDNv513BRw0gZkAAAAAAACwhG44cfzNLZhvzyrHAAAAAAAAAACw6y18WFh3v2reNQDsbgsU4NJDaxEWBrvWvsuTQw6bdxUAAAAAAAAAu8HlE8db8UXtsRPHF27BfAAAAAAAAAAAsGMsfFhYVT1r4vRF3X3RQc5z3SRP33/e3c/bbG0AzNrAELAWFrai7qRq3lXA9jr33clNHzLvKgAAAAAAAAB2g3+eOL7pFsx3x1XmBgAAAAAAAACAXW/hw8KSPCdJj49fmeSgwsKSHDM1l7AwgGXTvX6fRFjYtC+8OPnyy5PLz0+O/5nkri9ODj163lXB9rjyYP9UBAAAAAAAAGCDzho/V5I7VdWR3X3JwUxUVXdJcsOJpk9ttjgAAAAAAAAAANhJ9sy7gIFqQecCYKYGhoVFWNi/+OJLk08+Pfnu55LLzkvOemXyoYfMuyrYRv7UAwAAAAAAAJiRT2R0889OcmiSJ25irmdMHJ/d3WdvpjAAAAAAAAAAANhpliUsDGDn66FBWLvZwNeohYX9i7P+4gfbvvWB5OKvzbwUgFX5PxAAAAAAAACWTnfvS/LfM7qrUyV5blXdbKPzVNXDkjw2o40hneQ1W1knAAAAAAAAAADsBHvnXcAM1cTx3FNkquqIJLdJcmKS45McndHdFS9K8u0kpyc5o7uv2qL1Dk1yryQ3T3KTJBcn+UaS07r7a1uxxsRat0hyp4x+rqOSnJvk7CQf6+4rt3ItYJcZGiYjLOyACz65cvun/kPyE2+ebS0wE7V+FwAAAAAAAAC2yu8keVRGX9Yek+SDVXVqd58xZHBVPSHJn2QUElZJLk3yh9tTKgAAAAAAAAAALK/dFBZ23Ynj78+jgKr6xST3T3L3JCcn2bPOkIur6m+SvKS7P32Qa94wyXMz2pB1/VX6fCzJH3T3Gw9mjYl5HpHkGUnusUqXC6rqdUme1d3nb2YtYLcSFrZlvv6WeVcAcEAJeQMAAAAAAIBl1N2fr6qXJHl6Rhs7bpHkU1X16iR/k+SC6TFVdbMkD0zy5CQ/lgN3heokz+7u82ZROwAAAAAAAAAALJPdFBZ2p/FzJ5lXUNXvJDlhA/2PSvLEJI8fb6j69e6+aujgqnpwklcmOW6drvdMcs+q+m9Jntrdl2ygxlTVUUn+vySPXqfr9ZM8LcnDq+rx3f2ejawDMDgsLMLCAAAAAAAAAABm5NeS3DbJv8poc8ehSZ4wfmTcVklSVZckOXxibE1cf3N3v3AmFQMAAAAAAAAAwJLZFWFhVXXrJL850fS5edUy5ftJvpLknCQXJdmTUaDWjyS58US/Q5L8+yQnVdUjunvfehNX1X2TvCXJtSaaO8mnkpyV5Jgkd05yg4nrj0tynap6aHcPStqpqkOSvC7Jz0xd+uckpyX5bpKTx2vtvwPkjZK8tap+qrs/MmQdgCRJDwwLG/YRBuxEVev3AQAAAAAAAGDLdPfVVfWQJC/NKCBs/waP/V/g9kTbEZNDJ/r9RZL/a3srBQAAAAAAAACA5bUQYWFV9f6BXV9bVZdtYOrDktwkyYlT7e/bwBxb6ZIkb0vyriQfS3L6aqFcVfXjSZ6f5AETzQ9N8owkL1hrkaq6aZI35ZpBYR9N8pTuPnOi32FJnprkhRndzTFJfm687v898Gf6vVwzKOzKcY1/2t1XTKx12yR/luQe46bDkrylqn6ku88duBYwFwMDumZCWBiwHmFhAAAAAAAAALPW3ZcleWJVvSvJM5PcfrWu4+caP76S5Fnd/Zrtr3K5VdURSU5JcpskN0xyVJKLk1yQ5PQkn+3uq+ZXIQAAAAAAAAAA22khwsKS3DfrJ8BUkrsfxNyTdydMku8kefVBzLMVbt/dVw7p2N1/X1UPTPKqJP924tJvV9WLu/vyNYY/N8n1Js4/luSnxhuyJte4PMmLq+qcJG+euPSMqnp5d5+9Vo1VdcskT59q/vnufusKP8/nquoBGQW17Q8MOzbJs+OOkDC2SKFci2poWNi+7S0DgK3V/g8EAAAAAACAnaC7X5/k9VV1vyT/Ksm9k9wso71i10pyfpJvZbSn7T1J3tW9OBs9xnvi7pbkR8fPd0ly9ESXs7v7pBnWc5eMbjJ6/yQ/lgM3BV3JJVX1uiR/2N2fmUV9AAAAAAAAAADMzqKEhW2nzoG7EH4vyWO7+/y5FDIwKGyi/9VV9e+SPCzJkePm6ya5X5J3rzSmqm6d5PETTVckecJ0UNjUOm+pqldNjDssoxCvJ65T4rNzzc1Hr1wpKGxinUur6glJPpvRxq8keVJV/ZfuPmudtQA2ECZz9baWASyyWr8LAAAAAAAAANuquz+Q5APzrmOIqrpvkt/KKCDs+vOtZqSqDk9yRpJbbmDYkRnt+Xt8Vb0wyTM3umcRAAAAAAAAAIDFtWfeBUyoVR5D+qz2uCLJeUk+mFGw1W26+z3b/HNsqe6+KMlHpppvtcaQxyY5ZOL8Td39pQFL/f7U+SPHG45WVFVHJHnEOnP8gO7+YpK3TDTtzahmgAEGhoW1sDAAAAAAAAAAAAa5U5IHZkGCwsb2ZuWgsE7y+STvTfLXSd6WZPpGnYck+U9JXltVu+GGsgAAAAAAAAAAu8JChIV1957VHvu7jB8nrdV3hccR3X2T7r5/d/9Od587xx9zMy6YOj96jb4Pmzp/xZAFuvvMJP8w0XRkRhugVvOgJNeeOP94d39+yFor1PTwgeOAXU9YGAAAAAAAAAAAM3F5kq/Mu4gk+5K8K8mjkxzX3ad094O6+3Hd/ZDuPjnJjyb50NS4hyd5zmxLBQAAAAAAAABguyxEWNgANe8C5uzEqfNvrNSpqm6c5I4TTVcl+egG1vng1PmD1+j70+uMXcuHM6ptvztX1Y02MB7YrVpYGLOy2//0WGLlvQMAAAAAAACYlap6//jxvqo6bhPz3Ghyrq2scaArk3w6yZ8leWqSu2Z0U88nz6GW/S5P8scZ3WT1Z7r7dd19/kodu/uTSe6f5DVTl369qqb3HwIAAAAAAAAAsIT2zruAAT6UZH86zGXzLGQequqHktx9oqmT/N0q3W8/df6Z7r5kA8t9bOr8dmv0nV7r40MX6e5LquqzSe48tda3hs4B7FYDw8IiLIzNGvpvjcUjLAwAAAAAAABghu6bA1+yH76JeQ4fz5XM/kv7VyV5WXf/wP7Emt8Nqy5Lcqvu/vrQAd29r6qelOTeSW42br5WkkcmecHWlwgAAAAAAAAAwCztmXcB6+nu+3b3/caP8+ZdzyxV1U2SvD7JIRPNb+jur60y5LZT51/e4JJfWWe+SafMcC3YJYQTrasHvkYtLAwAAAAAAAAAYEaW+q5O3X3hSkFh89TdV20kKGxi3KVJXjHVfL+tqQoAAAAAAAAAgHnaO+8COKCq9ia5XkZBXP86yVOTXGeiy1lJfnmNKW41dX7OBks4e+r82Kq6XndfOFXn9ZNcf5NrTfe/9QbHA7uSsDBgHfO7qzMAAAAAAAAALILTps6Pn0sVAAAAAAAAAABsKWFhc1RVL0ry9IHdP5DkF7r7vDX6HDN1vlbfH9DdF1fVZUkOn2i+bpILp7pOr/P97r5kI2utUNt1NzgemJUeGNA1E0NrERYGAAAAAAAAALBEJvcyXjW3KnaG6dfvWnOpAgAAAAAAAACALSUsbPG9Lckfd/d7B/Q9aur80oNY79JcMyzs6G1cZ9JK62xYVR2X5IYbHHbyVqwNzMDQ4LIWFsZm1bwLAAAAAAAAAIDd5AYTxxu9cSXXdKup83PnUgUAAAAAAAAAAFtqacPCqurYJKckuV6S6ybZs5Hx3f2X21HXNnhwkkOq6rLu/tA6fadDvC47iPUuzeg1XW3OrVxnrTkP1i8lefYWzQUsHGFhwHoEvQEAAAAAAAAsoZ8YP3eSb8yzkB3gEVPnn5hLFQAAAAAAAAAAbKmlCgurqhtkFAb1uPzg3e82ahHCwp6X5EUT50ckOTbJnZI8LMn9kxya5GeT/GxV/XGSp3f3voHzD0zVWZoxwK439KNDWBjsXsLClpM/DQEAAAAAAGAH2NAXf1V1aJKbJHlgkt+euPTZrSxqN6mquyW511Tzm+dRCwAAAAAAAAAAW2tpwsKq6uFJ/iLJ0Tn4FIgej12INILuviDJBStc+kiSP6qqeyd5dZITx+3/LqNAsSetMuXFU+dHHERZ02Om55zlOrC79EJ8NC22oa9RCwtjs/w+AgAAAAAAAECSVNWQm1tWkq9VHfQNniYHvu1gJ9nNxuFrL59q/nB3f2Ie9QAAAAAAAAAAsLWWIiysqh6X5C+zckjYZJrH9PXpawe9E2keuvsjVXW/JP+Y5Nhx8xOr6m3d/dYVhggLS16a5PUbHHNykpVeT2DhDAwBExYGAAAAAAAAALBVhu6728z+vP03Av18kjdsYp7d7AVJ7jxxfmWSX93qRarquCQ33OCwk7e6DgAAAAAAAACA3Wbhw8Kq6hZJ/jSjjUD7NwR9Jsmbk1ya5PfGXTvJLya5TpLjk9wzyb2S7BlfOy/J85N8b4blb1p3f7WqnpfkDyeafyMrh1t9d+p8Qxtyquqo/GCI13cGrHPtqjqyuy/ZwHLHDVhnw7r7vIze68E2cTdLYNa61++TCAuD3cz/6wAAAAAAAADbYf/eve1SSf4pyaO6+8ptXGdHqqonJnn6VPNzuvvT27DcLyV59jbMCwAAAAAAAADAGhY+LCzJf8wowGp/Qsxzkzyvu7uqTsyBsLB096smB1bVrZL8lyQPzSg466lJHtjd586i8C302lwzLOzHq+qY7p4O2PrS1PmJG1xnuv8F3X3hdKfu/nZVXZjkehPNN09y5ibWmq4dYAUDw8IiLIzNEjgFAAAAAAAAAGMfyuqbNn5y/NxJPpHksoFzdpLLM7rJ5JlJPtDdH95MkbtVVf10kpdNNb8jyf8zh3IAAAAAAAAAANgmCx0WVlV7kvzbHNho9Prufu7Q8d395SQPr6rnJnlmktsmeXtV3WOZ7j7Y3edNhXPtSXKLJKdNdZ0O67rVBpe65dT559boe2aSe06ttZGwsOm1NjIW2LUGhoW1sDDYvQS9AQAAAAAAAGyl7r7vateq6uoc2NDxqO4+ZyZFkSSpqnsleWOSQyeaP5LRezH0rnwAAAAAAAAAACyBhQ4LS3KHJEePjzvJ8w5mku5+dlX9SJKHJrlzkl9N8l+3pMLZmQ43O2yFPqdPnd+hqq7d3d8fuMa91plv+tpkWNg9krx9yCJVdWRG7+3QtYC5WqB9g0P3MAoLAwAAAAAAAACYlcpCbTDZHarqrkn+e5JrTzR/IsnPbmDP4MF4aZLXb3DMyUneug21AAAAAAAAAADsGoseFnb78XMnOae7P7dW56qqNe6G91sZhYUlyZOyRGFhVXV4khtMNX9rul93n1tVn8mBIK69Se6d5L0Dl7rv1Pm71uj77iT/5xpj13KfXPPf3mnd/QM/D+w+9kyub+hrJCwMAAAAAAAAAGAGnjtx/J25VbHLVNUdMtoXeN2J5tOSPKi7L9rOtbv7vCTnbWRMVW1TNQAAAAAAAAAAu8eih4Vdf+L4jBWuT6fGHJ7k0pUm6u4vVNWZSU5J8sNVdbvuXmnORfSAJHsmzr+f5H+v0vfNORAWliS/mAFhYVV1myR3n2i6ZJ1x78notT5ifH6PqrpNd39+vbWSPGHq/M0DxgBkcFhYCwuD3csGYwAAAAAAAIBZ6e7nrt+LrVRVt03yP3LN/ZWnJ3lgdwtsAwAAAAAAAADYofas32Wujp44vnCF65es0X8lX5w4PuWgKpqxqtqT5JlTze/u7itWGfLfkuybOH94Vd16wFL/aer8b7r7stU6d/f3k7xhnTl+QFX9UJKHTTRdleSvB9QHkPTQsLB96/cBAAAAAAAAAGBTxvvbmJGq+uEk70tyw4nmzyf5qe4+fz5VAQAAAAAAAAAwC4u+UWcyDOzQFa5/b+r8hHXmu3ji+MYHVdFBqqpfqaqbbHDMoUn+PMndpy798WpjuvtLSV410XStJK+sqsPXWOchSZ4w0XRFkiF3fHxOkisnzp9QVaeusc7hSV4xrmm/P+/urwxYCyDJ0LCwq7e3DGBxVc27AgAAAAAAAIDd5JyqenZVrbd3j02qqlsleX+uuffxS0nu393fmk9VAAAAAAAAAADMyqKHhU3e6e460xe7+4qpPrdfZ77JsK6jNlHXwXhSkq9U1aur6ueq6ujVOlbVEVX1mCSn5ZohXknyV939/nXWenaSCyfO75nkf1TVbabWOayqfiXJ66fG/9fuPnudNdLdZyX5w6nmN1TVL1fVZCBYquqUjO5oeM+J5m9nWCgZwJiwMICdaeDnOwAAAAAAALBojk/yrCRfrao3VdUD513QTlRVt8goKOz4ieazMgoKO3c+VQEAAAAAAAAAMEt7513AOr44cXzrVfqckeQnx8cPSPJXK3WqqiOT/NhE04Ur9dtmRyR53PjRVfXlJF9L8p0kVyQ5OsmJSW6b5NAVxr8jyVPWW6S7v15VD0/yniT7Q7vuleRzVfXJjDYJXTfJXZLccIU1nrmBn+k3k9wuyYPH54cmeUmSZ1bVp5J8L8ktx2vVxLgrkjzMRiVgQ3pomIywMAAAAAAAAACAGdqb5CFJHlJVX03y8iSv6O7z1x7Geqrq5hkFhd1sovnsjILCvj6fqgAAAAAAAAAAmLVFDwv7XJJ9SQ5JcouqunZ3f3+qz4czCgurJD9fVc/u7rNXmOs3kxw1cX7GdhS8AZVRANpqIWiTLk3y/CQv6O4rh0ze3R+sqocleWUOBIJVkh8dP1bymiRP6e59Q9YYr7Ovqh6Z5M+SPGri0nFJfnqVYecleXx3f3joOrA7rBOE9fW3J994Z3LYDZITH50cc7vZlLVQBoaFtbAw2L1q/S4AAAAAAAAAbJUrMrqh5f5NHZXRzSV/L8nzquqNSV7W3R+ZU31LraqOT/K+JCdNNP/vjILCVtonCQAAAAAAAADADrVn3gWspbsvTvKp8WklecAK3V63v3uSI5K8t6p+Yv/FqrpuVT0/yW/nwIakC5L8w7YUvbqnZBT49fEklw8c8/kkz0zyQ939u0ODwvbr7ncmuX2SlyW5cI2uf5/kEd392O6+ZCNrjNe5uLsfneTnx3Ot5oIkf5Lk9t397o2uA7veh05Nvvyy5IznJ+/98eSfPz7vin7QvivmXcGIsDDYxYSFLaUrL553BQAAAAAAAMDBOT7JbyT5cg58Ydvj48OSPCbJ31XVZ6vql6rq6PmUOX9V1VOP+67T/7iMgsJuNdF8bpL7dfdZ21gqAAAAAAAAAAALaO+8CxjgPUnuNj4+NcnbJy929xlV9dYkD8lok9Gtk3ygqi5JclGS45IcMu5e4z5/tNHgrc3q7n9M8o9JnllVhyY5JaM7KJ6Q5Kgkhya5eFzz15Kc1t1rBXwNXfe8JE+rqqcnuVeSE5PcOMklGd1h8LTu/upm1xmv9YYkb6iqWyS5S0YbwY5M8s0kZyf5aHcvSJIQLLmrLk5O/53kfu+cdyXX9L0vJcfcbvvm716/T5JEWBjAUvnii5ObPXTeVQAAAAAAAAAb1N0XJHlhkhdU55f/AAAgAElEQVRW1QOSPC2jfX57c+DmnpXkdklekuT3q+qvk7y8uz+1wpRzUVU3zcr7KW88db63qk5aZZqLu/v8LarnmCR/m+Q2E82XJHlSkivXqGFF3f21ragLAAAAAAAAAID5WYawsNcl+c8ZbRh6TFX9x+7+7lSfpye5e5Ib5cBdCY8aP/bb3/5PSX53u4teyzio7DPjx6zWvCLJB2a01leTbEkAGbCGc981o4WGBnTNwsBaWlgY7FpV6/dh8XxrJn+mAgAAAAAAANuou9+X5H1VdaMkT0ny5CQ33385o/17R47bn1xV/5TkT5K8trsvm0PJkz6S0Y0413NCVt8b96okT9iieu6U5A5TbUcmOdg7C/oyHQAAAAAAAABgye2ZdwHr6e4zktw1yd2S/GSSfSv0OSfJA5Kcnmtuaulc8+6E70rywHFYF8APuuR/JX//xOQdt00+8ujkwk/PuyKuQVgYAAAAAAAAAMAi6+5vdffzk9wiyakZBVzt3/QxuZ/vbkn+PMk3qur/rarbzLxYAAAAAAAA+P/Zu/NoSfO6vuOfb3cP0w0DDIszAyIQBwiBsKOIAs4YZBGNgQCuOUE5xrhEj+YPj0aDmgWXRLMARlyiqEQBESOKgjoDxEFwDqMITAQGwYVpBpjNgXtn6fvLH7c6XV1zl1ruU/U8t16vc+r0rarnqef7PPfWr/ucrvO+AAADcWzVA0yjtXbVFNtcXVWPT/K8JF+Z5KFJzk9yQ5I/S/JrrbU/7HRQYNhuvT75g0uSWz68ff/mq5OTb06e8Y7kHn9/paMxK7EwWFs3vje5/3OS8kuRAQAAAAAAAFaptdaSvDHJG6vqc5J8c5JvSHK/05tkOxp2fpLvSPIdVfW2JK9I8huttTuWPzUAAAAAAAAAAPTTymNhVfXGJJeNbleNPiA0l9baqSSvHd0AZvOx3zkTCjvtthuSj7w6efQPdX/8+Ze//ug6zjPtNWpiYbC2/ux7kw+9MvmSNyd3f8iqpwEAAAAAAAAgSWvtr5N8f1W9JMlzsx0O+5KxTU5/6ORpo9t1VfVzSX6mtfbRJcz34CUcY+oP1rTWLs+ZawIAAAAAAAAAADmy6gGSfFmSH0vyJ0k+VVVvqKrvqKpHrXguYN2888U7P/7eH17uHEPWefBMLIwl6Tp8R7c+/ZfJW//xqqcAAAAAAAAAYEJr7VRr7XWttS9N8rAk/znJp7L9oZCW7UBWJbkwyfcm+VBVvb6qnrKqmQEAAAAAAAAAoA/6EAs7rZKcn+Qrkvxkkj+tqk9U1Wur6lur6uGrHQ849LZuW/UE7EssDJjSzVcnN75v1VMAAAAAAAAAsLt7JLlnkuNjj7WxW5IcTfKVSd5aVW+qqouXOyIAAAAAAAAAAPRDn2Jh4x/wOf3bAe+T5HlJ/nuS91XVtVX16qr6pqp6yIrmBGA3VaueYEQsjAW1KcN09Nu1b1r1BAAAAAAAAACMqaoTVfWNVfXOJFcmeXGSu45vkuSOJBujr8c/U/jMJH9WVc9Z4sgAAAAAAAAAANALfYiFfU+SNyX5u5yJhCU7x8MuTPJVSf5Hkr+oqr+qql+sqhdV1YOWOzYASzdtwKmJhQGxFgAAAAAAAAD0RFU9oqr+W5KPJfmZJE/Mmc8Knv584LVJfjDJg5LcP8m3J3lfzkTDWrbDYq+pqouXOT8AAAAAAAAAAKzaymNhrbUfb619eZJ7J3lSzsTDbsn+8bAHJPn6JD+X5MNV9eGq+tmq+rqquv8STwOApRALA2Yx5ZoBAAAAAAAAwIGrqruMPsv39iR/nuTbktwzZz4TmNHXlyd5YZIHtdZ+uLV2srV2c2vtFa21Ryd5TpKrx/Y7nuS7lnUeAAAAAAAAAADQB8dWPcBprbWtJH8yuv14VR3J9m8PvCTJpUm+KMl547uMfX36Q0APTvINo1uq6kNJLkvyh0kub61d190ZACyqp1Gb1qe5pp1FLAxIz9YvAAAAAAAAgPVQVQ9N8s1J/nm2f4losv0Zv9O/MLSy/ctEfynJy1trV+/1eq21N1XVZUn+T5LHj/b/0m6mBwAAAAAAAACAfupNLGzSKB72rtHtx6rqaLbjYZdmOyD2RUnuNr7L2Nen42EPTfKQJN+UJFV1dbbjYZe11l7f5fwArFATC2NBVftvwwBYCwAAAAAAAACWYfT5vucm+ZfZ/oxfcuZzfG3s/vuS/FSSV7XWbpn29Vtrm1X10iSvHT30OQsPDQAAAAAAAAAAA9LbWNik1tqpJO8c3X6kqo4l+bxsh8MuTfKFSe46vsvY16c/dPSI0e1bMqBzB2Cktf23ScTCgG3TrhkAAAAAAAAAzKWqHpTkXyT5xiQXnH4425/fa6OvTyV5Q5KXt9beusDh3j/29bkLvA4AAAAAAAAAAAzOYINZrbU7krxjdHvpKB72+dkOh12S5MnZOR5WORMPA2BQpg3/iIUByfRrBgAAAAAAAABzuiZnfyZv/HN61yZ5ZZJXttauPYBjfWbiGAAAAAAAAAAAsDYGGwubNIqHXTG6/YeqOifJk5K8IMk3xW8SBFiCrluMU37Wc+tUt2MMRfPZ2Lm5doeD7yMAAAAAAABA145k+wMdLWeiYW9L8vIkvzH6XN9BqwiGAQAAAAAAAACwZg5NLOy0qrpXki9OcmmSS5I8Mt3XawDola1VD8DQtTuST/1Jcv6jkqPHVz0Nc7MWAAAAAAAAACxBJbklyS8leUVr7X1dHKS19tFsx8kAAAAAAAAAAGDtDD4WVlXnJ3lazsTBHpWd42Djj/mtgkAPzbE0tZbUGvUQ25TXqAkEcQB+7/O3Q2FPfHly8TeuehrmMe2aAQAAAAAAAMC8rk7yiiSvaq393aqHAQAAAAAAAACAw2pwsbCqukfOjoM9JmeHwCrbxZ3JONh7krx1dHvbMmYF4KBNGf65/srkxj9Pzn9Ut+Nw+J3aTN754uRej0nu/YRVT8PMxMIAAAAAAAAAutRae+SqZwAAAAAAAAAAgHXQ+1hYVd09yVNzJg722CRHxjfJznGwq3ImDvb21toNy5gXYLkml7/Dbobwz5sel3zhryQP+qruxuk9oaQD8+FfEAsbJO8BAAAAAAAAAAAAAAAAAAAAYPh6Fwurqrvl7DjY45IcHd9kh922krw7Z8fBbu52UoAeaG0JrbCBxnbaqeRd/zL5nOcnR47uvz3s5QMvS57431c9BbNqA12/AAAAAAAAAAAAAAAAAAAAAMasPBZWVXdN8pSciYM9IfvHwW5PcmXOxMH+qLV2S7eTArBys4Z/br8xOfnm5P7P7mYeYPnu/cTk+iun3FgsDAAAAAAAAKAPquo+SV6Q5ElJLkyykeRvkvx+kt9rrd22wvEAAAAAAAAAAKD3Vh4LS3Jj9o+D3ZbkXTk7DraxhNkAem4JIZyZAl07LeEHaY7zvelqsTA4TI6emH7bttXdHAAAAAAAAABrqqrum+TRST4rya1JPpzkva3d+T9pq6qSfG+S70uy03/4fnuSj1bVt7bWfre7qQEAAAAAAAAAYNj6EAs7lu36y3hhZjPJH+dMHOyPW2ubK5gNYHlminL9/50OfIyzbN2R3H5jt8eYyRznW0cOfgxgIJYQVAQAAAAAAABYE1X12CQ/nuSSJJMfyLiuqv5Lkv/UWjs12r6S/GKSr8vZnw88/Z+5px97cJLfqqoXtdZ+pZvpAQAAAAAAAABg2PoQCxvXkvx+kh9N8rbW2h0rngdgvX3452fcoY9hntp/k8NqrgAd9N0sP9feAwAAAAAAAAAHoaq+OsmrkhzNzh/GuDDJf0zytKr6itbaVpLvTPL12f7P2/FA2On9x/9T92iSn6+qq1pr7+/gFAAAAAAAAAAAYNAmf7vfKp3+4M/Tk7wlyU1V9ftV9f1V9dSqOmeFswH0U9cxqPe9tNvXn9U851t9+qsOWCrBPAAAAAAAAICFVdXnJfmlbP9y0srZ8a+M3a8kz0ryr6vq7kl+MGdHwq5N8sYkr07yu0luyNnhsXOS/NeuzgMAAAAAAAAAAIbs2KoHSHJ1kofnzr9t8ESSS0e3JNmsqj9O8tYklyf549babcsaEqCfOg7hfPojM+6w0y+OPUhiYcAstlY9AAAAAAAAAMBh8FNJjubs8NcNST40+vriJPfKmWDYdyW5Kck9Ro99KsmLW2u/Nf6iVXUkyYuT/Jckx0f7fklVXdxau6bjcwIAAAAAAAAAgEFZeUGltfbIJBcmeWG2P1R09djTNXY7keSSJC9JclmSG6vqsqr6waq6pKrOXergACxfmyeO1nXAbKBE1BisGdaBudYMAAAAAAAAAE6rqicleXzOhMA+meR5Se7bWntSa+3zk9w3yXOTXDfa7sIk3z16iduTPH0yFJYkrbWt1trPJPma0Wuf/k/eF3R3RgAAAAAAAAAAMEzHVj1AkrTWPpnkdaNbquqCbIfBTt8ePtp0vPhyPMnTRrcfSHJbVb0ryeVJ3prkitbaZufDA6yUEM6+RLFgjVkjAQAAAAAAABb0T0d/VrbDX89orf3Z+AattZbkN6vqL5P8SbY/l/iwbP+n7S+31t6z1wFaa/+7qi5Lculonyce7CkAAAAAAAAAAMDw9bKg0lq7rrX2mtbat7bWHpHkftn+7YE/neQDY5vW2O3cJE9J8v1J3pLkxqp6e1X9u6r6R1V1YrlnAbCGqvbfZiFzhH/WOhYmlMSaa1urngAAAAAAAABg6B4/+rMlec1kKGzcKAr2qzn7l4L++pTHGd/ukTNNCAAAAAAAAAAAa+DYqgeYRmvt40l+bXRLVV2U5JJs/ybBS5I8dLTp+IeM7pLkC0e370tye1VdmeStSS5vrb1lGbMDTG+OsFPrWQyq83nmef2uA2bAUs20zvRsjQQAAAAAAAAYnoeNff3GKbb/nST/bOz+e6Y8zukIWSW5z5T7AAAAAAAAAADA2hhELGxSa+1ktn8D4a8mSVXdL2fCYZcmuXi06WQ87Mmj2/dkoOcOcLY1C+HMFSMTC9tR30Jz0AU/5wAAAAAAAACLuufY138xxfaT23xqyuN8cuzre0y5DwAAAAAAAAAArI1DEcxqrV2b5NWjW6rq/tmOhp0OiH1uzhR1VGMA1kkdWfUEwMpsrXoATmu+FwAAAAAAADBQ5419fdMU2988fqe1tjnlcca3O2fKfQAAAAAAAAAAYG0ciljYpNbax6rq/UkuSHJhkvsnOXe1UwF0oe2/yTJV1z3Gnp1v77leHEYz/Fw374HeeNc3r3oCAAAAAAAAYD7jHwY5NcX202wDAAAAAAAAAADM6NDEwqrqMUkuSXJpkqcmOX+lAwEsw9qFcOY533W7RsAZ3v+98JmPJdf87KqnAAAAAAAAAAAAAAAAAAAAgMEabCysqh6VM3GwpyW51/jTY1+3XR4H4KB1HS+b5/Xb1sHPAQyEWFgvfOBlq54AAAAAAAAAAAAAAAAAAAAABm0wsbCqemTOjoPdZ/zpsa9bzpQhauy5v0ly2dgNoGfmidr0LIRz89XJPR++6ikm9OwaAYuZJRooFtgPt1yz6gkAAAAAAAAAAAAAAAAAAABg0HobC6uqf5AzcbAvTnLf8afHvt4tDnZtksszioO11lQKgEOoZyGs9/9o8jnP7fAAc5zvLGGhteK6sA78nPeCaBsAAAAAAAAAAAAAAAAAAAAspDexsKr6+zk7DnbB+NNjX+8WB/tEzo6D/UWH4wKwk42PdXyAecI/axwLEkpj3V3/7lVPQJJELAwAAAAAAAAG7vQHEL6gqh68z7YXjd+pqqfm7M//TbUfAAAAAAAAAABwtpXHwqrqV7IdCRv/sM80cbDrk7w1Z+Jg7+t2UoAe6lsMqnUchJnrfHt2jYAFzfCevv7K7sZgen37uwoAAAAAAACYRyX5X3Psc/kM27dMFxYDAAAAAAAAAIC1s/JYWJKvydkf8tktDnZjkrflTBzsPcscEqCf+hZg6XqeOV7/Lvc5+DEAmEHHIUkAAAAAAABgGWYJeY1/wGOW+FffPggDAAAAAAAAAAC90YdY2GmnP0x0+sNBf5fk7RnFwZJc1VrzYSCAPmunVj3BnR2/YNUTAKy3JhYGAAAAAAAAh8Q8n9/zmT8AAAAAAAAAADgAfYmFVZJPJ/mjnImDXdmasgCwRubqIfbt85Rdz9O38+0714vDyM/14Oj9AgAAAAAAwJD9VfxHLQAAAAAAAAAArFwfYmE/kO042Ltaa3esehiAQelbgKXreQ5FUA1g3ViHAQAAAAAAYKhaaw9e9QwAAAAAAAAAAEAPYmGttf+w6hkAOChbHb++4AzA4LSu/24AAAAAAAAAAAAAAAAAAACAw+3IqgcAYBE9i2cJwgBdaz1b95iCvxsAAAAAAAAAAAAAAAAAAABgEWJhAEPWt2hO57Gwnp0v0G/3fsKqJyDp399VAAAAAAAAAAAAAAAAAAAAMDBiYQAcoI6DMPMEZ9Y6UrPO5w6Jf+r2RdchSQAAAAAAAAAAAAAAAAAAADjcFBQAemOesFPPYlCt6yBMz84XWIFZ1gFrRi90/ncDAAAAAAAAAAAAAAAAAAAAHG5iYQCD1rMQjiAM0Cs9WyPXlu8DAAAAAAAAAAAAAAAAAAAALEIsDIAD1HUQZp7XF6kBWCkhSQAAAAAAAAAAAAAAAAAAAFiIWBjAkLWehbC6DsL07Xz7zvXiUJrh59p7oB/EwgAAAAAAAAAAAAAAAAAAAGAhYmEAg9a3EE7X8/TtfIF+s2b0g1gYAAAAAAAAAAAAAAAAAAAALEIsDICD0/oYhBELAlipZh0GAAAAAAAAAAAAAAAAAACARYiFAfTGPDGVngVY2qmOX79n5wssn3UAAAAAAAAAAAAAAAAAAAAAWDNiYQAMiEgQMAtrBgAAAAAAAAAAAAAAAAAAADB8YmEADMgc4Z+2zrGgdT53yJq//3ukatUTAAAAAAAAAAAAAAAAAAAAwKCJhQEMWd9COIIwQOd6tu4BAAAAAAAAAAAAAAAAAAAAdEwsDIDh6FscDeg5awYAAAAAAAAAAAAAAAAAAAAwfGJhAIO2biGcec533a4RcEategAAAAAAAAAAAAAAAAAAAACAhYmFAfRFE7Xan2s0G9eLw2iGn+tjd+tuDAAAAAAAAAAAAAAAAAAAAIAlEQsDAOBwOnLOqicAAAAAAAAAAAAAAAAAAAAAWJhYGMCgtVUPsFxtjvOdZx/gkPD+BwAAAAAAAAAAAAAAAAAAAIZPLAyAARH+AWYgFtgTteoBAAAAAAAAAAAAAAAAAAAAYNDEwgCGrHchnK6DMH07X2DpZlr3rBkAAAAAAAAAAAAAAAAAAADA8ImFAXCAhHl6pXcxOViytrXqCQAAAAAAAAAAAAAAAAAAAAAWJhYG0BvCTvuaK37lusL68v4HAAAAAAAAAAAAAAAAAAAAhk8sDGDQ1i2Es27nC9zZDOtA2+puDAAAAAAAAAAAAAAAAAAAAIAlEQsD4ABVx68vFgbM4PabVj0BAAAAAAAAAAAAAAAAAAAAwMLEwgAGTTxrf+t8jdb53CHJxslVTwAAAAAAAAAAAAAAAAAAAACwMLEwAA5Qx3GqJn4FzLAO3H5jcmqzu1GYUq16AAAAAAAAAAAAAAAAAAAAABg0sTAABkQsDJjR5sdXPQEAAAAAAAAAAAAAAAAAAADAQsTCAPqizRHCmmefTlXHr38YrhGwVBsnVz0BAAAAAAAAAAAAAAAAAAAAwELEwgAAGI5ZA4CbYmEAAAAAAAAAAAAAAAAAAADAsImFAQzajNGcoZs1ErT2XC/IhlgYAAAAAAAAAAAAAAAAAAAAMGxiYQAMyDzxK8EsOFxmfE9vioUBAAAAAAAAAAAAAAAAAAAAwyYWBsDOmsgWcAhsiIWtXNWqJwAAAAAAAAAAAAAAAAAAAIBBEwsDGLQug15iYUAfzbg2bYqFAQAAAAAAAAAAAAAAAAAAAMMmFgbQGz2Lc7V55unwHOaaJ+nddV2mua8ZHCIbYmEAAAAAAAAAAAAAAAAAAADAsImFAQxZpzGorQ5fex7CV0BmX/c2xcIAAAAAAAAAAAAAAAAAAACAYRMLA2BnnYbI5tC3eYBh2LjW+gEAAAAAAAAAAAAAAAAAAAAMmlgYALsQ1wEOga1bk9tvWvUUAAAAAAAAAAAAAAAAAAAAAHMTCwMYtA6DXm2ru9eey5zn2kTP4HCZ4z29cfLgxwAAAAAAAAAAAAAAAAAAAABYErEwAHYxR5Cn0zCX6NfsXDNIkmyKha1WrXoAAAAAAAAAAAAAAAAAAAAAGDSxMIDeEOfaU6fnCgzHHGvBhlgYAAAAAAAAAAAAAAAAAAAAMFxiYQDsrG2teoIDIjIGa29TLAwAAAAAAAAAAAAAAAAAAAAYLrEwAHbRt8hW3+YBVqLNsRaIhQEAAAAAAAAAAAAAAAAAAAADJhYGMGgdBrTmCfJ0qm/zDIFrBkmSDbEwAAAAAAAAAAAAAAAAAAAAYLjEwgDYxdYc+/QxXiaYBYfLHO/pzSXGwrZOJTf/RXLDn55Zt1pL/u5Dyc0f7GGIEQAAAAAAAAAAAAAAAAAAAOi7Y6seAIBF9DHO1TMf/OnkAV+56imAVdpYUizsM3+TXPbs5Kb3bt+/12OTJ74sufI7khvePXrsccklb0pOXLicmQAAAAAAAAAAAAAAAAAAAIDBO7LqAQAY6V2c65DMc+2bko/86sGOcljcdtOqJ4DZzbNWbi4pFnbF158JhSXJDX+avOUpZ0JhSXLDVckVX7uceXqjVj0AAAAAAAAAAAAAAAAAAAAADJpYGAA7a1urnmDCAvGyj/zSwY1xmPz161Y9ASzHrZ9Itk51e4zbbkg+8fbptv34Hya3Xt/tPL3St/gkAAAAAAAAAAAAAAAAAAAADItYGMCQtS4DLD2Luyxyrh/7nYObY0j2u2bX/Pxy5oBVa1vbwbAubX5itsjiDVd1NwsAAAAAAAAAAAAAAAAAAABwqIiFAbCzTkNkAPOac23aPHmwY0yaJRSWJLVO/wyvVQ8AAAAAAAAAAAAAAAAAAAAAg7ZOlQKAQ6jLoNeM4ZvOiZcduBLwYY1sXNvxAWZdM73/AAAAAAAAAAAAAAAAAAAAgOmIhQGws9a3OFff5gFWY861YOPkwY4xqYmFAQAAAAAAAAAAAAAAAAAAAN0QCwPojb7FsHo2z17xsme8Y3lzDMp+30OxItbIZsexsFnXzPL+AwAAAAAAAAAAAAAAAAAAAKYjFgYwaB0GvdpWd6990I6cm5xz/qqnGCCxIgZor3DgXjY6joXNvGau0ftPGA0AAAAAAAAAAAAAAAAAAAAWIhYGwC46DJHNZZ95xGiAvWyKha3MvIE3AAAAAAAAAAAAAAAAAAAAIIlYGMCwdRlgmTl807U9zlUoDNbInOte17GwzLhmWrcAAAAAAAAAAAAAAAAAAACAKYmFAbCLDkNk89gzjCa6A+xjo+NY2MyBxTVat4TRAAAAAAAAAAAAAAAAAAAAYCFiYQDsomexsD0J0exoz8BaBHwYqDnXpk2xMAAAAAAAAAAAAAAAAAAAAGCYxMIABq3DoNfM4Zuu7Xeuwjuzc81YI7ffnNzxme5ef9Y1U6wPAAAAAAAAAAAAAAAAAAAAmJJYGEBvdBj+mkcb0DyiO8A0Nj/e4YvPGlhcp3Vrnc4VAAAAAAAAAAAAAAAAAAAADp5YGAC76FksbM95pgjR9C1+1gsCPgzQIu/ljZMHN8ekNmMsrNbpn+HWXwAAAAAAAAAAAAAAAAAAAFjEOlUKAA4hAZZtlZTwFbCPzQ5jYTOvx9YsAAAAAAAAAAAAAAAAAAAAYDpiYQAMxKJhtHUMq63jOXP4LfBz3WUsrG3Ntr3AIQAAAAAAAAAAAAAAAAAAADAlsTCAIWtrFIPa61ynie6s07WallgR62ajR7GwrNP7b53OFQAAAAAAAAAAAAAAAAAAAA6eWBgAu+hbXGuveSpiNLAuFlibNq49uDHuRCwMAAAAAAAAAAAAAAAAAAAA6IZYGEBftL7FuYZkmuiO63tnYkWsmc2T3b12mzEWVt5/AAAAAAAAAAAAAAAAAAAAwHTEwgAGbZ0CWOt0rgfFNeMQWiSsuNGjWNhaxfrW6VwBAAAAAAAAAAAAAAAAAADg4ImFAbCzRYI8XdhrnqrsH6Pp2fkAy7fZYSxsZusU0LL+AgAAAAAAAAAAAAAAAAAAwCLEwgAGbZ0CLHud6zpFdw6S68aa2TzZnxBief8BAAAAAAAAAAAAAAAAAAAA0xELA+AQmCK605dAUJ+IFTFIC7yXt25Pbrvh4EZZyDq9/9bpXAEAAAAAAAAAAAAAAAAAAODgiYUBMBD7BIKEr1hHIniz2zy56gkAAAAAAAAAAAAAAAAAAAAAZiIWBpD0JLgzxwydzt2HazJmr3OdKhTWs/NZhn1/PgTWGKIF38sbYmEAAAAAAAAAAAAAAAAAAADAsIiFATAQewWCxMKAKW32JRZmTQIAAAAAAAAAAAAAAAAAAACmIxYGMGhiM0mSmiYWBhwKbcF1b6MvsTAAAAAAAAAAAAAAAAAAAACA6YiFASQR3RqC/b5H+wTDFg0MHUoia6yhza5iYTOuMdYkAAAAAAAAAAAAAAAAAAAAYEpiYQDsomchmz3DOqJXO+vZ95AOrOP3eMFz3ugqFgYAAAAAAAAAAAAAAAAAAADQDbEwgEHrYSjo5g909MKLxsJ6eK1WrUTWOMSOnLvz45t9iYWt0ZpkrQEAAAAAAAAAAAAAAAAAAICFiIUBJEnrQ7SlDzMcgA//wvKPWZXpgmHA8E25Vp64386P9yYWBgAAAAAAAAAAAAAAAAAAADAdsTCAIetF5GzC+1/a0Qsveq49vFZAd3aLhW1cu9w5dmVNAgAAAAAAAAAAAAAAAAAAAKYjFgbAzvoWIttznlraGIeL68Yhtlss7NZPJlu3L3eWtWetAQAAAAAAAAAAAAAAACDdzXUAACAASURBVAAAgEWIhQEkSXoWxmIH+8TCap8YTd/iZ0ux3zkL+AzeOv5cT3vOx3eJhSXJ5nUHM8si1up7t07nCgAAAAAAAAAAAAAAAAAAAAfv2KoHWFdVdTTJQ5I8Isn9k9wzya1JbkhyTZIrW2ufPuBjnpPki5I8MMn9ktyS5GNJrmqtfeSAj/X3kjw22+d2XpJrk3w0yRWttdsP8liw3gRYkuwfCkviWsGaObFXLOxkctfPXt4sAAAAAAAAAAAAAAAAAAAAAAsQC1uiqnpgkucleXqSpya5xx6bn6qqtyR5WWvttxc87mcl+aEkX5Xk3rtsc0WSn2it/fqCx3p+ku9O8uRdNrm+qn4tyb9trX1ykWMBa6aJfR24qSJr0DdTrgXn3jepo0k7defnNk4e7EgAAAAAAAAAAAAAAAAAAAAAHTqy6gHWRVW9OslHk/xkkudk71BYkhxN8qwkb6yq36qqC+c87rOTvDfJt2SXUNjIFyZ5XVX9clXdbY7jnFdV/yvJa7N7KCyjGb4lyXur6pmzHge604MQ1TwxrE4DWj24JmfZa54a3ebdHzh06mhyfJd/Pm12EAubeT1epzVJmBAAAAAAAAAAAAAAAAAAAAAWcWzVA6yRh+3y+N8m+WCSj2f7+/G5SR6Ts0NuX57kbVX1xa21qesWVXVJkjckucvYwy3Ju5N8OMn5SR6X5L5jz39dkntU1T9prW1NeZyjSX4tyZdNPPWJJFcluSnJxaNjna5FXJjkN6vq6a21/zPtOQHrbL9YGHfSaUwOVmXKn+s6mhy/KNn42J2f2+ggFgYAAAAAAAAAAAAAAAAAAADQkSP7b0IHrkryr5I8pLX2gNbapa21r26tPb+19vgkD0zyyol9HpbktVU1VRGnqh6Q5PU5OxT2R0ke2Vp7Ymvtha21ZyR5QJLvTHL72HZfkeTfz3A+P5KzQ2G3j87vAa21Z46O9YQk/zDJO8a2OzfJG6rqfjMcCw4xYae5TbM0rmU4a79zFlkbvnX8uZ5SHUlOXLTzc5t9iIX53gEAAAAAAAAAAAAAAAAAAADTEQtbnpbkt5N8Xmvt8a21l7XWrtlxw9b+trX2zUm+beKppyT5qimP90NJ7jV2/4okT2+tXT1xrFtba/8tyQsn9v/uqnrQfgepqs/Ndmxs3AtG53fbxLHen+Qf5exg2H2SvGS/40DnBhuSGurcc9j3eyR8dSdta9UTwMGbdr2uo8nxXWJhG32IhQEAAAAAAAAAAAAAAAAAAABMRyxseV7QWvvy1tqV0+7QWntFkl+fePif7bdfVT00yT8fe+i2JC9qrW3ucaw3JPnFsYfOzXQRr5ckOWfs/i+01n5zj+NsJHnRaKbTXjyKjsGa61v4a0jzTBMK69v5LMN+sTCBNQ6xOpqc2CUWttmDWNhgI5UAAAAAAAAAAAAAAAAAAADAsomFLUlr7SNz7vryifuXTrHP1yY5Onb/9a21D06x349O3H9hVR3fbeOqOpHk+fu8xp201j6Q5A1jDx3L9szAzNYpNiMWNrO2TyysxMIYoinfy3UkOX6/nZ/b6EEsDAAAAAAAAAAAAAAAAAAAAGBKYmH9d9XE/RNVdf4++zx34v7/nOZArbWrk7xz7KG7JXnGHrs8M8ldx+6/o7X2f6c51g4zPW/K/aAjPQhJtR7MMFRVwlc72S8WBodZHU1OXLTzc5t9iIVZ8wEAAAAAAAAAAAAAAAAAAIDpiIX13x07PHaX3TauqouSPGZi/z+a4XiXT9x/9h7bPmuffffy9px9bo+rqgtn2B9YN4vG1NYxxiYWxjqro8nxXWJhd9yS3H7LcudZa2KOAAAAAAAAAAAAAAAAAAAAsAixsP57yMT9O5J8co/t/+HE/fe01j49w/GumLj/yBmO9Y5pDzKa6c9nOBasgTliVl0GsHoX19prHiGaHbVTq56AzvXtfboE065NdSQ5sUssLEk2Tx7MPPPq3RoLAAAAAAAAAAAAAAAAAAAA9JVYWP89f+L+la21rT22f8TE/Q/NeLxr9nm9cf9giceCjvUh2tKHGfps0VjYOl7fvf66SETWONTqaHJ8j1jYxkHHwtZxjQEAAAAAAAAAAAAAAAAAAACWQSysx6rqvCQvnnj4N/bZ7SET9/9qxsN+dOL+farqXjvMdu8k917wWJPbP3TG/eHg3HbTqieYkzhNkqQqwlc72LMtmdF1g6GZct2ro8k55yXH7rbz85sHHQsDAAAAAAAAAAAAAAAAAAAA6IZYWL+9NMlFY/dvTPKz++xz/sT962Y5YGvtliSbEw/fc4rjfKa19ulZjpU7z7bTcWA5/u9PrHqCpAl/7WnR67OO13e/WBgcaqN/5h6/aOenN1YdC1vDNQkAAAAAAAAAAAAAAAAAAACYy7FVD8DOquq5Sb594uF/01q7fp9dz5u4vzHH4TeSHB+7f/cOjzNup+PMpKouSPJZM+528aLH5RC4+sdWPUEP9S1ks9c8tbQphmW/WJjrxhBNuTYdObr954mLkluuufPzm6uOhQEAAAAAAAAAAAAAAAAAAABMRyysh6rqMUleNfHwm5P81BS7T0a8NucYYSPJvfZ4zYM8zl6vOY9vTfKSA3gdWIF54lx9C3p1aY9zrcr+4at1ulYjbb9YGIPX1vDnelo1ioUdv2jn51ceC1uj710JEwIAAAAAAAAAAAAAAAAAAMAijqx6AM5WVQ9M8ts5O5z10SRf39pcRZDDtg+wrvZcAqcJ0azhknPLNaueAA7etP8cOnpi+8/dYmEbq46FAQAAAAAAAAAAAAAAAAAAAExHLKxHquqCJG9J8tljD59M8qWttU9M+TK3TNw/Mccok/tMvuYyjwPrY54e4FwNQdbGR391nw2miazBQJ1zz+0/T+wSC9tccSzM+g0AAAAAAAAAAAAAAAAAAABM6diqB2BbVd07ye8nedjYw59M8vTW2gdneKl1j4W9IslrZ9zn4iS/eQDHhkOmbyGbveappPYJX61jmOevX7/38/tdM+ilKd/Lx87b/vP4LrGwjRXHwgAAAAAAAAAAAAAAAAAAAACmJBbWA1V1zyRvTvKosYdvSPKlrbX3zfhyN03c/6wZZzkvd4543TjFce5aVXdrrX16hsNdMMVxZtJauy7JdbPsU2I59MYaxqxmssf18T4GJtWR7T9P7BIL2/x40rbObLd01nwAAAAAAAAAAAAAAAAAAABgOquqIzBSVXdP8rtJnjD28M1JntVa+9M5XvKDE/cfNOP+k9tf31q7YXKj1tqnsh00G/fABY81OTuwrzWKzbS9znWaWNgaXSvWiJ/r3Y3WhRP32/npdkdy6/UHeDzfCwAAAAAAAAAAAAAAAAAAAKAbYmErVFV3S/I7Sb5g7OFbkjy7tfauOV/26on7D5lx/8+duP/+JR5r8vVgzfQsNLNnnKtvKtMFw4Dhm3JtqtE/c49ftPs2mycXH2duQ1pjAQAAAAAAAAAAAAAAAAAAgFUSC1uRqjqR5I1JnjL28GeSPKe1dsUCL/3eifuPrqq7zrD/F+3zens99+RpDzIKpT16hmMBO1qn2Myi57pO12paAmscZqOf7+MX7L7JSmNh68RaAwAAAAAAAAAAAAAAAAAAAIsQC1uBqjqe5H8nuWTs4c0k/7i19rZFXru1dm2S94w9dCxnB8n2c8nE/Tftse3v7rPvXp6a7dlOu6q19vEZ9ofDp4lZ7Wmv61NCNPNx3RigadfKGv0z98g5ybn33XmbjRXGwqz5AAAAAAAAAAAAAAAAAAAAwJTEwpasqu6S5PVJnj728K1J/klr7Q8O6DC/MXH/G6ac7eFJnjT20KeTvHmPXX4vycbY/SePXmMaL5q4PzkzwIS9wjqVfcNXwjywZsbWhOMX7bzJxrXLGQUAAAAAAAAAAAAAAAAAAABgAWJhS1RVx5K8Jsmzxx6+PcnzW2u/d4CH+pUkp8buP6+qHjrFft8zcf81rbXN3TZurX0myev2eY07qaqHJXnu2EN3JHn1FPPBITdHzKrTANaQ4lr7hMKSDOt8lqSmuW702zr+XE95zjX2z9z/x969B9121oUd/z0nJ8negRASSXICVK6xVRiVi1WD7dDWqnTGIgwC9VKZqdZRp+OUdjq1U4vM+AetlQ7VWm+tYNVKvcF4Kdh21EGitQLekTuoJIcjJAEC7z45532f/nHek7zZZ6+911p7XZ691+czk3mz195rrd+67JUzk3e+Z14RC1uc3X4cAAAAAAAAAAAAAAAAAAAAgJ6JhQ0kpXRVXIp4Pf/E4osR8ZKc8y91ua+c83si4nUnFl0TEa9NKc3WzPf8iHjZiUUPRMQra+zuu+JS8Oyyl6WU/v6a/cwi4seOZ7rsv+Sc31djX8CkTTGKBLR2MoY3q4iFHYwZC/NMAwAAAAAAAKCdlNIzU0ovSSm9/Pifl6SUnjH2XAAAAAAAAAAA9Of02ANMyH+NiBcvLftXEfGOlNITG27rbM55seEzr4iIF0TEjcev74iI/51S+sac859e/lBK6dqI+McR8b1L639vzvlDmwbJOb8/pfSaiPjnJxb/bErp5RHxwznnB07s67Mj4kePZ7nsY1EvSgYT0CYcM6HYTF5zrCejQNUb6GwUYEx1v8snngvziljYYsxYGAAAAAAAAAClSSk9OSK+ICKeffzzmRFx/YmPfCjn/MQRRouU0tUR8c8i4hsj4ikVn3lvXPodvVfnnC+s+gwAAAAAAAAAALtJLGw4/3DFsn93/E9Tfysifn3dB3LOf5FSemFEvDkirjle/JyI+JOU0tsi4v0RcUNc+mWmm5dW/6WI+M4G8/zLiHhaRDzv+PXVEfF9EfGdKaW3R8QnI+LJx/s6WfR5ICJekHO+u8G+gMlaFwhKNYNhPJxzxh5Lpx7699kAsbB1QcPVK3S3bwAAAAAAAABaSyk9NyK+Iy4Fwm4ad5rVUkq3R8RPx6XfwVvnqRHxqoj46pTSS3PO7+19OAAAAAAAAAAABiEWtsdyzr+eUnpBRLw2HgqCpbj0S03Prljtv0fEN+WcDxvs5zCl9OK49DcSvuTEW7dExFdUrHYuIr4h5/yWuvuBvdc4NNO30uZZp0b0qrjzC/TrxHOhKhZ20GEsjDWECQEAAAAAAICifX5EfNnYQ1RJKZ2JiP8VEU9Yeuu9EfHHcel/yj4tIp5y4r1nRcSvppS+KOd8bpBBAQAAAAAAAADo1amxB6BfOedfiYinR8QPRsS9az762xHxopzz1+ScP9ViP/fnnF8aEV99vK0q90TEf46Ip+ec39R0P8CyHgNYFxs/Cnom9tU9AZ+dN8UIXt1jTif+mDuviIU9cE/E4fntZ2pjitcOAAAAAAAAYLecj4j3jTlASulURLwhHh4KuzsivjznfHvO+atyzs/POT81Ip4XESf/1qwnRcQvpJT8gggAAAAAAAAAwB44PfYAU5FzHu0Xbo7/ZsBvSSl9e0Q8Jy794tCZiPhURHw4It6Rc/5AR/v62Yj42ZTSkyLimRHx2Ih4RFz6JaQPRcRbc84PdLEv2D+FhWM+8mtjT/Bw68I6KcXm8FVh5xfo2YlnwqwiFhYRsTgX8Yi/0v84AAAAAAAAAJTsQkT8cUT8bkT8v+OffxiXft9uzF+i+dqI+MITr++JiDtyzh9c/mDO+U0ppTsi4m0RcePx4jsi4iUR8dM9zwkAAAAAAAAAQM/EwibkONI1yC8uHcfHOgmQASP5w+8ae4Il62JfdXqME4uF3fXmsSeAntT8LqdTD/37fF0s7OxIsbCJPZMAAAAAAAAAyvW6iPjBnPNi+Y2URvs7QiOldFVEvHJp8ctXhcIuyzl/IKX08oj4sROLvzul9D9yzkc9jAkAAAAAAAAAwEBObf4IAMNoEY7JYjOXjPeLmcV69/dv/syIv9AK/Ttxf19zU8Spq1d/7ODsMOMAAAAAAAAAUKSc872rQmEF+JKIeNKJ1x+OiJ+osd5/O/7sZU+JiDs6nAsAAAAAAAAAgBGIhQGwIzaF0TaEr6YWVrvrl2p8SCyMXVTzu5xO/DE3pYjZmdWfW4wVC5vYMwkAAAAAAACApl6w9PrHc86Hm1Y6/sxyVOyFnU0FAAAAAAAAAMAoxMIAStEqZjWh2My685NEr5iqCT0DGlt6LlTFwg7GioUBAAAAAAAAwFpfsfT61xusu/zZ5201CQAAAAAAAAAAoxMLAyiG6M96685PnViY83slkTV2UO2w4tL9Pa+IhS3Ewnon6AgAAAAAAADQSErp2oh46tLi326wiTuXXt+eUrpmu6kAAAAAAAAAABiTWBgAuy8lMZqTaseUYI+lpT/mzvqOhTX83k3pezqlYwUAAAAAAADoxl+NiKtOvD6Xc/5E3ZWPP/vRE4uuiojP6mg2AAAAAAAAAABGIBYGUIw2MZUpBVimdKxbOjo/9gTQo5rPguWA4LwiFnZw93bjAAAAAAAAAED3nrr0+s9abGN5ndtbzgIAAAAAAAAAQAHEwgDYDVksrLZ8WO9zyzEl2GezqljY2WHneNCEnmmeNQAAAAAAAABNPXrp9bkW21he54aWswAAAAAAAAAAUIDTYw8AwLE2MaxJBbSqjjUt/Wy6PjAJ84pY2OLspWepoBUAAAAAAAAA5Xjk0uuDFttYXuf6lrM8TErploi4ueFqT+li3wAAAAAAAAAAUyYWBsBuE/i5Uu2InHO3+6YYwWt5zLOKWNjhQcTFT0Zc/aj2I7UyxWsHAAAAAAAAQE3LsbBFi20sx8KWt9nWt0bEKzraFgAAAAAAAAAANZ0aewAALhOOWc/56Z5YGBMyr4iFRUQcnB1ujknyrAEAAAAAAADYUptfnPHLNgAAAAAAAAAAe0QsDGCnTeh3+nLVsR5HaNKGGE3l+sBOaftdnt1a/d5ihFiYZxIAAAAAAAAA1e5fej1vsY3ldZa3CQAAAAAAAADADjk99gAAXCYcs96GWBgnuJfgCqcfEXH6+oiLn7zyvYMRYmGT4pkEAAAAAAAA0FDJsbAfiIifabjOUyLijR3tHwAAAAAAAABgksTCAHZZFmCJJBbWmnPHTqrx3Dv9yNXL52ciPrkiFrYYIxbm+Q0AAAAAAABApY8vvb65xTZuWXp9X8tZHibnfC4izjVZJ/kdFQAAAAAAAACArZ0aewAAjgl/ref8wJV8LypU/JLx7Mzq5QddxMJci2p+6RsAAAAAAACgofcsvX5Ci20sr7O8TQAAAAAAAAAAdohYGAA7oirEk5Z+Nl1/H9U9VgEf9lSq+CPu/LbVyxddxMIAAAAAAAAAoDPviojDE69vSSldX3fllNKjIuIxJxYdhlgYAAAAAAAAAMBOEwsDqOMjvzHATtrErASwBK+AK1U8F2ZnVi8/GCEWlqf0/AYAAAAAAACgiZzz+Yh439LiL26wiTuWXr/neJsAAAAAAAAAAOwosTCAOt75PWNPQJUkFtaac8euqRvYqrq35xWxsMUIsbBJ8awBAAAAAAAAaOFNS6+f22Dd5c/+z60mAQAAAAAAAABgdGJhAHXc9cv976NuBOfhK3U+RrE2np8NMZpW53dHTelYYaWK58GspFjYlL6nUzpWAAAAAAAAgM78wtLrr08pXbVppePPfN2GbQEAAAAAAAAAsGPEwgDYEVWxmQ2RMNhrIkwrpYrnwrwqFnYu4uiwv3kAAAAAAAAAoLm3RMQHTrx+fFwZAVvl6yLicSdevy8i3trhXAAAAAAAAAAAjEAsDKCufNT3Dnre/q4TC+vc4tzYE0BDdZ+TFc+FWUUsLB9GnP9oq4nam9Iz33MaAAAAAAAAIKWUl/557rrP55wPI+IVS4tfnVJ64pp9PDEi/sPS4n+dc++/+AQAAAAAAAAAQM9Ojz0AwM44PB9xej72FA+XpxSbqZDSw38StSNEd/1Kv2PAaCqeB/OKWFhExOJsxPzWfsYBAAAAAAAAoGgppcfH6t+nXP4fzafXxLruzzl3/TdV/WREfFtEfOHx65si4s6U0styzr968oMppS+PiNdGxI0nFt8ZEa/veCYAAAAAAAAAAEYgFgZQ19EiIvqMhQl/rbV1GM35hZ1X9zlQFQ+89ua4FBJbsZ2DsxE3fl7byZo/o8QeAQAAAAAAAErymxHxhBqfe1xEfKDivddFxMu6GigiIud8lFJ6QUT8dkR85vHi2yLizSml90TEH8el/xH+tIh46tLqH4yIF+bsf1ADAAAAAAAAAOwDsTCAuo4Ox55ghSn9Ll/VsVZEgYAJq3gunDodMbs5YnHuyvcWZ/sdCQAAAAAAAABayDnfnVL6uxHx0xHxjBNv3X78zypvj4iX5Jw/0vd8AAAAAAAAAAAM49TYAwDsjNxzLMxf4rnBpliYaNhD3EvTMbVrXfN405o/4s7OrF4+eCxsQtcueT4DAAAAAAAAbCPn/O6I+MKI+I6IeP+aj77v+DNflHN+7xCzAQAAAAAAAAAwjNNjDwCwO47GHoBVakdoJhTmqevWvz32BNCTNc+F2ZmI+IMrlx8MHQubEDFMAAAAAAAAoHA55ycOsI+t/qalnPOFiHhVRLwqpfSsiPisiHjs8dt3RcS7c85v225KAAAAAAAAAABKJRYGUFfuOxbWJqYyoQCL2Ez3rnn02BNAQ3WfA2t+v3p+ZvXyhVgYAAAAAAAAALvhOAomDAYAAAAAAAAAMCGnxh4AYGfkw7EnmLiqSFBa+kntsFrvATwYSVrzPJhVxMIOho6FTSiAuO56AAAAAAAAAAAAAAAAAAAAABuJhQHU1XtYqUU4pm4Uai9sioXRmFgYu6b2M2/Nc2F+2+rli6FjYQAAAAAAAAAAAAAAAAAAAAD1iIUB1NZzWGlS4a8OpZqxMOd3Bedk57mvK6x5LszOrF5+MHAszLUDAAAAAAAAAAAAAAAAAAAAahILA6gr9xwLYz1hnQZqniv3NPtqXURwXhELu3BfxOGin3kAAAAAAAAAAAAAAAAAAAAAtiAWBlBXPux7BwOts6uqjvU4CrQuDsRqYmHsnLrPvDXPg1lFLCwiYvGRRtM8XNPn8ZSe3wAAAAAAAAAAAAAAAAAAAMA2xMIA6hJWGllFWKd2JEyY50ruafbVmufCfE0s7OBs96MAAAAAAAAAAAAAAAAAAAAAbEksDKCu3mNhbWJWAlhro0BTlWveF3U/B8Woec+uiwhefUPEqWtXv7cYMhbm+3eFowtjTwAAAAAAAAAAAAAAAAAAAABFEgsDqK3vWBhrbQxbiYY1557efYJTq615HqQUMT+z+r2Du/sZZ/JqPp/f/2P9jgEAAAAAAAAAAAAAAAAAAAA7SiwMYGOE6vLnDsuYY7Kqzo9IWGtZLIwdU/c5mTb8EXdWFQs722yebXjmX+mPvnvsCQAAAAAAAAAAAAAAAAAAAKBIYmEAlRGq5Y8VGFaaUmym6lhT3VjYhM7VLt/T0IUbnr7+/XlFLGwxYCyMK336z8eeAAAAAAAAAAAAAAAAAAAAAIokFgZQN7jVe1hpSjGrLqWln9TnnmPX1Lxnn/6d69+fiYUNqnbUEQAAAAAAAAAAAAAAAAAAAFhFLAygbnwmH/Y8RpsY2ZRiT1M61oH0HsCDETz++RE3ft76z1TFwg6GjIVN6JlWN8oJAAAAAAAAAAAAAAAAAAAArHR67AEAxldKxES4ab2q65Rqrl7KdR5C3WN1z7FH5o+N+Ox/EXH7t0SkDT3ceUUsbDFkLAwAAAAAAAAAAAAAAAAAAACgHrEwgNoRqZ5jU1m4aa2q65TSw39Sn3tuD0wpghex9nj/xi9EPOav19vMrCIWdnD20rOm1fOk6bWY2rUDAAAAAAAAAAAAAAAAAAAA2jo19gAA4ysk2JIP26zU+Ri7RySstYufHnsC6E6TwNf8ttXLj85HXPh4N/PwEDFHAAAAAAAAAAAAAAAAAAAA2IpYGEDd4FbuOcyVj/rd/s4TRqut7r36wD39zgFd6+o5PD9T/d7B2W72sUnf/00BAAAAAAAAAAAAAAAAAAAA9oZYGEApwZY2sbBSZh9E1bGmpZ9N15+ww8XYE0CHNj0DTpjdWv3eYqBYGAAAAAAAAAAAAAAAAAAAAEBNYmEAtSNSPcem8mG/2991VWG01CAQxBIBNXZNR/fsVbOIqx+9+r2DoWJhvn8AAAAAAAAAAAAAAAAAAABAPWJhAMUEW47GHmBHiYVdqZR7mt5VRfSmqGk4cH5m9fLFULEwAAAAAAAAAAAAAAAAAAAAgHrEwgBqx3Z6jvLkwzYrdT5GuTYd66ZQ0JTOVV3OCbumw3t2NnYszPcPAAAAAAAAAAAAAAAAAAAAqEcsDKCUYEs+GnuCwlVdp02RMCrVDuXBLmj4LJhXxMIOhoqFTYnnNAAAAAAAAAAAAAAAAAAAAGxDLAygbiys77BSq1jYhGJPVec/idBcqe59MaH7h/3Q5XN4VhULu7vd9sT3AAAAAAAAAAAAAAAAAAAAgJ6IhQGUEnjJh2NPsKPEwlor5d6HTjR8FswrYmGLs9uPUofvHwAAAAAAAAAAAAAAAAAAAFCTWBhA1A229Bx2yUf9bn/nbTj/aUMoSJhnBedk97mGrc1GjoUBAAAAAAAAAAAAAAAAAAAA1CQWBlBMbKdFLGxSAayqY90QCZui2vfFlO6fJZP67uyTDq9bZSzsLyOOLna3n0ruQQAAAAAAAAAAAAAAAAAAAKAesTCAUsJK+bDf7e+6quuUxMJam3Qwa8rHvqeaPgvmFbGwyBHn/3LrcQAAAAAAAAAAAAAAAAAAAAC6IhYGUEo0aNLhpm2kpZ9VpnR+ax7rxU/2O0bJfN92VIfXbVYVC4uIg7Pd7aeKexAAAAAAAAAAAAAAAAAAAACoSSwMoG6wpciwS4kz9WVKx7qle3+v/mcvHvQ3R9HcT/tnUzBwybWPiUgVfxReDBALm5SG1wYAAAAAAAAAAAAAAAAAAAB4GLEwgNrRoL7jQuJF61WdHxGaK9z5aN2G+QAAIABJREFUdfU/+5Ff62+Oou3J963IiGGPujzeU1dFzG5d/d7BELGwiV07AAAAAAAAAAAAAAAAAAAAoDWxMIBdDrace8vYEwynKhKULsfCRMMiIuL+90dcuK/+5z/2O/3NUrKpRbYmocUzYHZm9fLFELEwAAAAAAAAAAAAAAAAAAAAgHrEwgDe+e9rfrDAuNAHfnzsCQpQNxBU4PXrw8ffOfYEO2Ii98Pe6fi6VcXCDtrEwprO5h4EAAAAAAAAAAAAAAAAAAAA6hELA6btL34x4p3fM/YUx1qEYy5+svsxiiWsU0/deNrUuZ/2Tmpx788rYmGLNrEwAAAAAAAAAAAAAAAAAAAAgH6IhQHT9oHX1f9sFhcaV8X5vxwIahMKwnljt3T9HJ6JhQEAAAAAAAAAAAAAAAAAAADlEwsDpu3Pf27sCairMhJUM3Yl9sZJe3M/7MtxdKFF+G5eEQs7GCAWtjf3IAAAAAAAAAAAAAAAAAAAANA3sTCA2noOuwjHtNQiEAQiW0REzCpiYYsBYmFTkjynAQAAAAAAAAAAAAAAAAAAYBtiYQDsiE1xJzGaiBDlqU0sbDd1fN3mFbGwC5+IuPjpbvd1BfcgAAAAAAAAAAAAAAAAAAAAUI9YGEBtfYddhGPWyhXnRxyLNqruJ3ZYi2fBrCIWFhGxONt+FAAAAAAAAAAAAAAAAAAAAIAOiYUBsCOq4k51A0HiUJzkfthNHV+3+ZpY2EHfsTD3IAAAAAAAAAAAAAAAAAAAAFCPWBhAXVnYpUx1Y2FT4XzUsy/f5305jg6kFvf+6esjrpqvfm/RdywMAAAAAAAAAAAAAAAAAAAAoB6xMIBiiP6st+n8iGRd4jzUIv63m7q+bilFzM6sfu+gaSys4WzuQQAAAAAAAAAAAAAAAAAAAKAmsTCA2oRdRlUV1kniWNuZ6vnzfd4/Le/leUUsbNE0FgYAAAAAAAAAAAAAAAAAAADQD7EwAHZEVdypbiBoInEo8bSaJnI/7J0ertv8ttXLD/qOhU3pHvRcAgAAAAAAAAAAAAAAAAAAgG2IhQHUlXsOu/S9/b11HKEpKZJ1//sj7npzxIVPjD1JDe479kXLZ8DszOrli75jYQAAAAAAAAAAAAAAAAAAAAD1nB57AACoZweiVkcXIu78+og/e/2l16eujrjjpyI+80XjzrXOVCN1Uz3undfDdauKhR2IhQEAAAAAAAAAAAAAAAAAAABlODX2AAC7Q1xoVFVxp5S2W79L73rNQ6GwiEvxsLe+NOLTH+5/361N9b7ek+MWPXtI3WfBsnlFLGzRdyzMtQMAAAAAAAAAAAAAAAAAAADqEQsDKEaLcMxNz+p+jGJVnZ+09HNE7/zeK5flw4gP/uSAQzQ9DxMNFolscdlsTSzMfQIAAAAAAAAAAAAAAAAAAAAUQCwMoLYCozHXPX7sCQpQQCTsssXZ1cvf/X3DzkENBX6f2ayPeNe8IhZ2dCHigXu7399lQmQAAAAAAAAAAAAAAAAAAABATWJhALtsUrGZXT7WgoJmyyZ1D5001ePeZy2/Z7OKWFhEdQBwlcl+l+oo+BkIAAAAAAAAAAAAAAAAAAAAO0AsDKCu3kMwbbbf40y3Pa+/bbdRdf5TevjP6g10Ok6xNp6HZRM5L8uEnXZUD9dtdkv1ewcNYmGNuQcBAAAAAAAAAAAAAAAAAACAesTCAHZZn8GjW76kv223UnWsTeNYYyh5xqkGi/bluPflOLrQ8nt21bUR19y0+r2Du9uPwwnuUwAAAAAAAAAAAAAAAAAAANiGWBhAbT3HTlqFv/qcaVf+E1FyiGsH3PO2sScYiXjRburpus3PrF6+ONvP/iLCPQgAAAAAAAAAAAAAAAAAAADUtSslGABWmlJsZtOxboiGtYqxdSQNGTRruK+739zPGKUb836gH9t8z2ZjxMKmRNQRAAAAAAAAAAAAAAAAAAAAtiEWBlBbgXGhXoNHhR1v1bEOGuJqq+BYGOySvp55VbGwgx5jYYJ1AAAAAAAAAAAAAAAAAAAAQE1iYQDFaBOOmVJspupYxbFoY0rfnanY4lkwr4iFLXqMhQEAAAAAAAAAAAAAAAAAAADUJBYGUFcWFxrXplhYydGwgme74WljTzCSffk+78txjGxWEQs7EAvrRCr4GQgAAAAAAAAAAAAAAAAAAAA7QCwMoLYSozwlzlSqEc/VkKGcpvv6jC/oZ47Sif/tqJ6u2/y21csXfcbC3IMAAAAAAAAAAAAAAAAAAABAPWJhAKVoEy+aUvCo6liHDHHto3w09gQjmdB3Zyq2eRbMz6xefv6jEUcXam7EPQUAAAAAAAAAAAAAAAAAAAD0QywMoLYSQzB9zlTa8VbNswuxsIJnFAtjp/R03WYVsbCIiMW5fvbpHgQAAAAAAAAAAAAAAAAAAABqEgsD2GkTis3kimNN6eE/qzfQ6TjNDBkLa7ivqcbCqu4ndtgW37O1sbCz7bcLAAAAAAAAAAAAAAAAAAAA0AGxMGC6msaCeo8Ltdi+4BHbyodjTzCSPfnuTO0Z0NfxXntTRDq9+r2DnmJhU7t2AAAAAAAAAAAAAAAAAAAAQGtiYcB03feHY0/QgSnFZqqONQ06xf45GnuAkezLd2dfjqMLWzwL0qmI2a2r31v0FAsDAAAAAAAAAAAAAAAAAAAAqEksDJiuxUcartB3lKfN9qcUCtoUCys4GpYKni0fjj0BNNDjM29+ZvXyg75iYVN6fhf8DAQAAAAAAAAAAAAAAAAAAIAdIBYGTFfag0dg7jE20+e226iaJ9WMhY16PEOGchruKx/1M0bpSru/W9uX4+jAtlG+WVUs7O7ttku4TwEAAAAAAAAAAAAAAAAAAGA7e1DKAWiraVimxNhJiTMN7fg6bhsK2hsN74mpxsL25buzN9Gzuno83nlFLGxxtqcdTu3aAQAAAAAAAAAAAAAAAAAAAG2JhQHTVVpcqlX0Z0qxmU3HWtj1PKm0e+2kfDj2BOPYm8jWvhxHF7b8ns2GjoVNScHPQAAAAAAAAAAAAAAAAAAAANgBYmHAhDV8BO5NXGhXVZ3/tPSz6fpDKDiUk4/GnmAkvs8sqYqFHdSMhflvBAAAAAAAAAAAAAAAAAAAANATsTBgulLBAae6phSnqTrWy9dxH67nKMTCdtu+HEdNfT7z5hWxsEXNWFhTU3p+AwAAAAAAAAAAAAAAAAAAAFsRCwOore+wS5vt9znTroRs0tLPEg05W8Prlg/7GaN0+xJq2pfj6MSW37NZRSzs4qciLty/3bYBAAAAAAAAAAAAAAAAAAAAtiAWBkzYPjwCpxQK2nSsJcfCCpaPxp5gJPvy3dmX46irx+Od31b93uJsDzuc0rXzfAYAAAAAAAAAAAAAAAAAAIBt7EMpB6Cd1DBect8f9DPHNvKUYjNVx3p8HTdezxHPVdN7bRtN7wmxMPbFtt+z2a3V7x30EQubEt83AAAAAAAAAAAAAAAAAAAA2IZYGDBhDcMy7/2hfsZ4UJuYyoQCLFURrAcDQQMGuRobcramsbDDfsYo3d6E9vblOGrq87pd/ciI049c/d6ih1jY3tyDAAAAAAAAAAAAAAAAAAAAQN/EwoAJaxhwWpzrZ4xtiM3EQ9ex5FhYyY7GHoBteAac0MEzYHZm9fKDHmJhk+L5DAAAAAAAAAAAAAAAAAAAANsQCwOmK+1DvKTHUFBxEaJN82x4f9TjGfJea3icR4f9jFG80u7vtvblOOrq+XjnFbGwRR+xsKldOwAAAAAAAAAAAAAAAAAAAKAtsTBgwgqLhbWKWU0pNlN1rGnD+xPT+D466mWM8rlf9k8Hz/TZNrEw9xQAAAAAAAAAAAAAAAAAAADQD7EwYMIKi4W10SowtqOqjjUdX8dccPQqFXyvlXze+rQv3519OY7aej7eeUUs7KBOLKypCV27kp+BAAAAAAAAAAAAAAAAAAAAsAPEwoDpSqU9AtuEYwqNzQwaMLocoSn0XAyu4XnIh/2MUbx9uV/25Tg60EWQalYRC1v0EQubkMlF7QAAAAAAAAAAAAAAAAAAAKBbpZVyAIbTRViGAW2IzWyM0YwZqxnwXmsa5clH/cxRvILiRZ/+8BYrF3Qc+2BeEQs7uHvYOQAAAAAAAAAAAAAAAAAAAABOEAsD2Gl9hoK22XYfc1VtM214vwRDhukanof7fr+fMUrXNKrWp3t/b+wJdkff121WEQtbfKT7sF5J9yAAAAAAAAAAAAAAAAAAAABQNLEwYMJKewS2CMdMKTZTdaxpF2JhhbvwibEnGEFJ98sWMbkpPQM26iDKN6+IheXDiPMf2377U5WGDCYCAAAAAAAAAAAAAAAAAADA/imtlAMwnKbxkutv72eOrRQaCho0YHR8HfPRhs+NeK4GDeW0OM6z/6f7MYpX0HcnbfPHsYKOYxA9H++sIhYWEbE42/HOpnbtAAAAAAAAAAAAAAAAAAAAgLbEwoDpahq0etxX9jPHVkqNzfQx16ZtlnouIh4Mmg2hTajtrl/ufo7SDRq022TImNw+6+A8zm6p3s5B17EwAAAAAAAAAAAAAAAAAAAAgHrEwoAJaxgLOnVtP2Nc1iZeVFTwqGeVx5o2vM9GD9w39gTTlrb549jU7vuej/fU1RHXPmb1e4uuY2FTu3YAAAAAAAAAAAAAAAAAAABAW2JhALWVGHbpc6Zttt3HXBXbTKnHfXYlbf5IZ0o+DyUp6DylLe4PkbyHbHMeT5qfWb38YFMszLUAAAAAAAAAAAAAAAAAAAAA+iEWBkxY07BLiSGYEmcaWs1YWN9RpXXb7ypiVIt7opaiIlvb/HGspOMYwBDXbVYRC1tsioU1VNQ9CAAAAAAAAAAAAAAAAAAAAJRMLAyYrqahlt7DLi22X2psppe5Ro6BbTT2/o+1Og9DxsxKUcj1ihg4JrfPOjqPVbGwg45jYZPiHgcAAAAAAAAAAAAAAAAAAIBtiIUB1FZQXOhBJc7Uk6oI1uXQUj4abpZVRo+VbWGSsaqSrtc2fxwr6TiGMMDxzitiYYuuY2FTu3YAAAAAAAAAAAAAAAAAAABAW2JhwIQ1DbX0HXZps/1SYzN9zFW1zbTh/U3rd2VdrGzIGFep90RhSoq7bRNrK+k49sVsqFgYAAAAAAAAAAAAAAAAAAAAQD1iYcB0NY3slBjl6XOmEo93pbqxsJ6tPV9iYeUp6Txtc3+UdBxj6+h7Nq+IhR2IhQEAAAAAAAAAAAAAAAAAAADjEAsDqE2Up74+ztWGbY4eNxt7/9sYMmZWipKuV0mzlG6AczWriIU9cE/E4fkOd+S6AwAAAAAAAAAAAAAAAAAAAPWIhQET1jDU0neMqtX2JxSbqTo/6XLoauRzkY+q30sDxrha3UcTjIWNHpfryr4cRwe6+p7NK2JhERGLc93sAwAAAAAAAAAAAAAAAAAAAKABsTBgwppGdkqM8pQ4U/QUYqraZt1YWN/nat32h4xxFXpPFKeg87TN92Vvomc1DXG8szWxsIO7u9vP1K4dAAAAAAAAAAAAAAAAAAAA0JpYGDBdjUMtBYZdxGbiwRBXPhp3jBLvj7rSkDEzurXD913nOrqPr7kx4tTVq99bnK1ez/N4Dc8YAAAAAAAAAAAAAAAAAAAA2IZYGEBdvYdgWmz/4K7ux3jQNsfbx7natM2RQz1rY2VDhnIEi+op6TyVNEvpBjhXKUXMzqx+b10srDHXHQAAAAAAAAAAAAAAAAAAAKhHLAyYsKahlgLDLhfvHyBiVoiq40xp/fub1u9MIdeh1XEOGTMrxN58b/blODqQOryPq2JhB13GwgAAAAAAAAAAAAAAAAAAAADqEQsDJmwPYmEREff9wdgTrNDHuaraZtrw/kDWxae6jBhtJBZWT0nf5y1m2ZvoWV0DHe+8Iha26DIWNrVrBwAAAAAAAAAAAAAAAAAAALQlFgZQV+9Rnpbb/9NXdzvGzjkOXY0eTTta896AMa73/kjzdQaNmZViX0JN+3IcXejwPp7ftnr5QZexMAAAAAAAAAAAAAAAAAAAAIB6To89AMNIKV0dEc+JiM+MiNsi4v6IuCsi3pFz/mDH+3pSRHx+RDw2Ih4ZEXdHxIci4s6c84Uu9wVbaRz/KjTKk9dFqkbSS1htwzavvz3ik+/pYb81HV0cb98nnf3V5uvMbu1+jtL1Hv9roKRZuGR2ZvXyRYexMNcdAAAAAAAAAAAAAAAAAAAAqEksbCQppSdHxBdExLOPfz4zIq4/8ZEP5Zyf2MF+bo6IV0bESyLiporP3BkRr845/9yW+3pRRLw8Ir644iP3pJReHxH/Juf80W32Bd3Yk1hYb3MVdrxVYZ2ULv284ekbYmE9H8+536h+76jwTuKpa8eeYASF3d9tTS04NdTxzitiYQcdxsIAAAAAAAAAAAAAAAAAAAAAahILG1BK6bkR8R1xKRC2MtzV8f6eFxGvjYhbNnz0joi4I6X0kxHxzTnnTzXczyMj4kci4qUbPnpTRHxLRLwwpfQNOec3N9kPjK7vSE3b7RcZC+pjpqptph721cK9v1/93mGjx+oIjsYeYAQlfW+2maWk4xhbh8+CWUUsbHH20jM3FfLcAQAAAAAAAAAAAAAAAAAAACZBLGxYnx8RXzbEjo7DZG+IiGtOLM4R8faIeH9EPDoinhERjznx/tdGxKNSSl+Vc65VjkkpXRURr4+Iv7f01l9GxDsi4uMR8ZTjfV0ua9waEW9MKX1pzvk3GxwWdKxpZKfUKE+pcw2lkGjPVbPq9y5+erg52qj3yN8vRUb22tiX46hroOOtioUdHkRc/GTE1Y9a8ea+/DcFAAAAAAAAAAAAAAAAAAAAKM2psQcgIiLOR8T7utpYSunxEfHz8fBQ2Fsj4mk552fnnF+cc/6yiHh8RHx7RFw48bmvjIjvbrC7V8XDQ2EXIuKfRMTjc85ffryvZ0XE0yPit0587tqIeENK6bYG+4JuNY4F9R12abv9EoMzfcy07TZ7Pk+nr1uz64v97ntrJd5DU+L8dyJ1GA6cV8TCIiIOzna3HwAAAAAAAAAAAAAAAAAAAIAaxMKGdyEifi8ifjQivjkinhUR10fEN3a4j1dGxI0nXt8ZEV+ac37nyQ/lnM/nnP9jRLx4af2Xp5SesGknKaUnx6XY2ElfnXP+/pzzA0v7+pOI+Dvx8GDYZ0TEKzbtB4rROC42kL7m+tjv9LPdtqqO88FA0MjX54anV793898cbo428tHYE4yg0O9zU0elh+i6NtB1m91a/d6iq1jYntyDAAAAAAAAAAAAAAAAAAAAQO/Ewob1uoh4VM75GTnnb8o5/3DO+e055wtd7SCldHtEfMOJRQ9ExMtyzouqdXLObzie7bJro17E6xURcfWJ16/NOb9xzX4OIuJlxzNd9o+Oo2Mwgn0JtfRwHIeLiLvf3H79XgJmVdtMFcsHdup09XunrxtujjamGAsrKf63zSz3vK27OXZeh8+C09dFXP2o1e8ddBULAwAAAAAAAAAAAAAAAAAAAKhHLGxAOed710W7OvI1EXHVidc/n3N+T431/u3S6xenlGZVH04pzSPiRRu2cYWc87sj4g0nFp2OSzPDCJoGevqOC7Xdfg9z3fWm7rfZm0JiYWuDTwWFqVaZYiys9GtS171vH3uCYQ0ZeZudWb180VEsrKRgXe+mdKwAAAAAAAAAAAAAAAAAAADQPbGw/fOCpdc/VmelnPM7I+L/nlj0iIj4sjWrfHlEXHfi9W/lnP+01oRXzvTCmutBtxqHWgqNnfQRnHnvD225gT7O1aZtboiG9R7mKfT+qGWXZ2+rpGPeYpZHfXZ3Y+y8jsOB84pY2MHd3e4HAAAAAAAAAAAAAAAAAAAAYAOxsD2SUjoTEZ93YtHFiHhrg038+tLr56357FdsWHedt8Sl2S57Rkrp1gbrwzh6j021VepcHas6/6njQFBra65DsffOsXw09gTDK/2a1HXd48aeYGADXrdZRSxscbajHezJPQgAAAAAAAAAAAAAAAAAAAD0Tixsvzx96fUf5Jw/1WD9O5deP63Bvn6r7k6OZ/rDBvuCnjQNtfQcdmkdL+pjrm23OeRMacP7A1l7/UqPAk0wFlbSNdkmXLYv0bMudB0OrIqFHXQVCwMAAAAAAAAAAAAAAAAAAACoRyxsv3zO0uv3Nlz/fRu2d9JnD7gv6ElhsbC2ph4L6joQ1NoOX4dJ3kNTPGYamVfEwhYdxcIm+b0DAAAAAAAAAAAAAAAAAAAA2hAL2y9PXXr9Zw3X/9DS689IKd24/KGU0k0RcdOW+1r+/O0N14fhFRt2KXCuPs7V1tvs+Tzlo/H2vbV1s++por7P28xS0nEMYMjrNr9t9fKDqljYxK4FAAAAAAAAAAAAAAAAAAAAMBixsP3y6KXX55qsnHO+PyIWS4tvqLGfT+ecP9VkX3HlbKv2A/1qHJ3pOwTTdvtTCdRUHWcadIpqa65DUWGqFdaGzvbUhY83X6fI61jiTGPp+FkwO7N6+flzEUeH3e6Lhzi3AAAAAAAAAAAAAAAAAAAAcIXTYw9Apx659PqgxTYOImJ24vX1Pe7npFX7aSyldEtE3Nxwtad0sW92UcPITpGhoOhnrq232ce5KjwWtvacFXrvPKj0+XrwrteMPcEJEzz/bT1wz3D7mlfEwvJRxPmPRsxv3XIHrvtKP3064h8cRiRNYwAAAAAAAAAAAAAAAAAAALhMLGy/LEe8Fi22cRARN67ZZpf7WbfNtr41Il7R0bZgSc9hl9aBrokHZ9JxLOyGz4n4izdUf6732NsOX4d8NPYEw7vnd1uslKOYON1lpUYM+/LBn1rzZsfXZlYRC4uIWJztIBZGpXe9JuKv/dOxpwAAAAAAAAAAAAAAAAAAAIBinBp7AHrVpiBS8jrQrcPlZt0GH/yJfubYVomxoD5m2rTN27+1+302sma+Eq/RSVOMhZWk9PujJB/+xeH2de3NEanij8oHZzvYgete6e0vH3sCAAAAAAAAAAAAAAAAAAAAKIpY2H65f+n1vMU2ltdZ3uaQ+4F+nf/o2BN0ZCrBmarjTJd+XPe4iNu/bbBprrA2+FT6NSp9vkIUGfUqcaYepdTuvTZOXXUpGLbKootYGAAAAAAAAAAAAAAAAAAAAEA9p8cegE6JhUX8QET8TMN1nhIRb+xo/+ySw/NjT7CkbfSnxFhQHzNtiIVFRDz7+yLe85962HcdOxwLy0djT7Aj+rqO22y38Hura2ngzu3sTMTiI1cu7yIWVmR8DgAAAAAAAAAAAAAAAAAAACiRWNh++fjS65ubrJxSemRcGfG6r8Z+rkspPSLn/KkGu7ulxn4ayzmfi4hzTdZJKW3+EHtqT0ItvQRndujcnPwOpxRx6pqIowdWfLDvY9qhc7ZMLIydsS4W1sN/z+dnIu77/SuXH3QQCwMAAAAAAAAAAAAAAAAAAACoaV1xgd3znqXXT2i4/vLn78k537v8oZzzxyJieflnbrmv5dmB2kqMVPUwU+0o2kgBwHXz9RJ061Lp85Wir/O0xXaLv7c6NnTgc3Zm9fJFF7GwiV07AAAAAAAAAAAAAAAAAAAAoDWxsP3yzqXXT224/pOXXv/JgPta3h70r7jITtt5SjuOvlQd50hxsCusuw6FX6N8NPYEUNO6P7r28CyYV8TCDlbEwor7bwoAAAAAAAAAAAAAAAAAAACwL8TC9ssfLb3+3JTSdQ3Wf86G7a1774vr7iSl9IiI+NwG+4Ke7EnYpcRATS8zbRsL6/s8FXgdahMLq6Wv79pW293l+66FNHAccFYRC1vc3cHGJ3btAAAA+P/s3XmcW1d9///3kWbRjD2O7Ti2Yzv7bjshJJCNAGEPhS8Uyg79krIV+m2hv/JtS6Bl+9JC+4PyZSlbCVspEAiEQCgJJBAITsKSOHHikMRZsOPE+zr7jKTz/UOzSBpd6epenXuPRq/n4yHP3HPvPfdzF8ka6egtAAAAAAAAAAAAAAAAAAAAAAAAIDLCwuYRa+0OSZvKmrokXdxEF5dUTf+4zrLXNVi3nqeqVNu0jdbaXU2sD6DcyFYHnbZRiE11eFDSYULT6gY+eX48fQyc85KPx8nHmlxK+KlrUFjY6M5k62h7nXadAgAAAAAAAAAAAAAAAAAAAAAAAAAAAADQWoSFzT9XV03/WZiVjDGnSzq/rGlY0k/qrHK9pNGy6Qun+gjjsqrp6pqBhHgWXhI1sOnw/a2toyUcHFvvA63q1Od97cW0C+hwvl8fHjH1nro6OI59AWFhk4ek/GjteQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC1GWNj881+SCmXTLzXGnBJivb+vmv62tXYsaGFr7Yikqxr0MYcx5lRJLylrykv6Roj6AHS8oCAgk2gVweoEFW27Utp7W3KlNMsWGi8DeRnq5X0QXYstPSd4nsm2fnt9RwfPG9sVr+9OO3cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAywsLmGWvtFklfLWvqkfQVY0wuaB1jzIslXVbWNCHpAyE2935Jk2XTlxljXlRnOzlJX56qadoV1tqHQmwLaD2CWhxycWxjhoW5Pt+N+v/Zc6T9G93WALecXUM8FoW24pnB8zJdrd9ebmXwvLGdrd8eAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABADYSFJcwYs8YYc3z1TVJ1GkVXreWmbssabOZ9kg6UTV8k6QZjzOlVtfQaY/5K0neq1v+YtXZro32x1j4s6RNVzVcZY/7SGFMeCCZjzBmSbpyqZdo+hQslAxzxLaDHt3rahKkOCwsZHtZyDc5ffkh6+EvJlNIsgvPaWKedu4D7d6andntc3YukbEDe6mjcsLBOO3cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCqrrQL6EC/knRciOVWS3okYN5XJV0WtKK1drsx5qWSrpc0nZ7xFEn3GmNul/SwpCM/q+KTAAAgAElEQVQknSPpqKrVr5X0jyHqm/YuSeskPX9qulvSpyT9ozHmDkmDkk6c2lZ5wseEpJdYa3c0sS1gnvMoOCZueJSL8CnfA63C1PfAp6Unfcp9LU3z/Nh6w9FxinVtd9q5C9jfRae52ZwxUm6lNPyHufPG4oaFAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhENY2Dxlrb3JGPMSSV/RbCCYkfSkqVst35T0ZmttoYntFIwxr5D0RUmvLJu1XNKlAavtlvR6a+3NYbcDuOFZyI7vYVipCzo+JqA97Pqt0sbnj2sP7cIWA2Zk3G0zKCxstDosrNn7Efc7AAAAAAAAAAAAAAAAzD/5gtXeIWn3oLRnULrkNCmbCTvODwAAAAAAAAAAAAAQhLCwecxa+9/GmPWSPqBSkNeSgEVvk/RRa+13I25nSNKrjDFXSXqnpAsCFt0v6UpJ77PW7omyLWB+m0/BMS72JWxYWEqDigJDjNrBfLr2XHJ1nGL023FBbwH7axze7/tW1m4fqw4LAwAAAAAAAAAAAAAAADrTll1Wf/yZonYflvYNV87b9bGMjhpIpy4AAAAAAAAAAAAAmE8IC0uYtfb4hLe3W9LbjDHvkPQUScdJWilpWNJjkjZaax9p0bauknSVMeYESedIWiVpgaSdkrZK2mCtnWjFtoCW8C5kx7d62oTLkKCmtPP5a+faE+TdY0YHCgzly7jbZs5RWBjXEwAAAAAAAAAAAAAAAOaJ/h7p9ztqz9s9KMLCAAAAAAAAAAAAAKAFCAvrEFMhXT9PaFuPSGpJABngVoSglslBqdvRqBWvgmPi1uJgX7w6PrX4Xl8d3h/b+S7O8e+0cxewvy5DA/sCwsJGY4aFAQAAAAAAAAAAAAAAAPNEvTCwXYeldauSqwUAAAAAAAAAAAAA5qtM2gUAQFvZdZPDzjst9KdZQccnbEiQ4+MbNnBrbLfbOiLh2gvHw+PUaUFvgfvrMCwsFxAWNhY3LKzDzh0AAAAAAAAAAAAAAADmrZ4uo8X9tec9+9+Ksp02zgkAAAAAAAAAAAAAHCAsDEAHizD45I6/bn0ZM+bRYBgXA3vChgQZh6FBdYXc5xue7raMSObRtRdWpiftCmYxEK4JxdrNxuFT2r6AsLDRnZy7sDhOAAAAAAAAAAAAAAAA897ygeB5X7uV8SMAAAAAAAAAAAAAEBdhYQDQDFtw2HfEwTC55a2to92kFg5WLeT5O3yf2zKi6MQgn4FTI6zk43HysSaHwoYGtlIuICysOC5NHnK3XQAAAAAAAAAAAAAAAKCNPLAreN7VGztsnBMAAAAAAAAAAAAAOEBYGIDO5V1AUtR6fAnLKufi2Mbs0/X59u56akY7154gZ+eY4x9eCmFhfQFhYZI0uiNGxx103r0JdQQAAAAAAAAAAAAAAIAr739R8BiRHXwnHwAAAAAAAAAAAADERlgYgA7mW1CLT2Fhvh0bKXxIUFqhNJ4cs+5FaVfQJjw5X7HNl/0IyRZrtxuHT2lzK4Lnje10t935pK3DFAEAAAAAAAAAAAAAABDGuy4NHrs3nk+wEAAAAAAAAAAAAACYpwgLA4CmOAyiihqmYtIKx6rHQTBM0PHxZv99CcOJ8l+7L7X7ztVxitFvx4UwpfA4kM1J3YtrzxstDwtr8lx03LkDAAAAAAAAAAAAAADAfNbTZfTRl9cexzM+mXAxAAAAAAAAAAAAADAPERYGoINFCWpxGe4StW9fwrLS4sn+exP8E6EOb2pPUifu8zwQeK06fhzoO7p2+9jO2u0AAAAAAAAAAAAAAABABzqir3b7eD7ZOgAAAAAAAAAAAABgPiIsDAC8MY/Ci5yET8Xt0/Xxbefz1861J8nRcYp1f+m0c1es3WwcP6XtW1m7fTROWFgnnbtO2lcAAAAAAAAAAAAAAIDO1dtVu52wMAAAAAAAAAAAAACIj7AwAJ3LSaBVDD7V41MtM4JqMg2mk+LLMYtShy+1JyjKNd5W94t5KvAcOL7f5wLCwsbihIUBAAAAAAAAAAAAAAAA80tvV+1xPBOEhQEAAAAAAAAAAABAbISFAehgvoXs+FZPHA72JSgkyKQVDlbFyyCpkNq59nmB4x9eMaA9pbCw0ThhYZx3AAAAAAAAAAAAAAAAzC89XbXbxwkLAwAAAAAAAAAAAIDYCAsDAF9EDmzyJCwrNWH333UwjyfBP5GuI09qT9Q8OU6dFvQWGBro+CltX0BY2FicsLBO0mHXKQAAAAAAAAAAAAAAQIfqJSwMAAAAAAAAAAAAAJwhLAxAB/MtvMS3euJwsS8h+zRphae18/lr59rngU4L/Iol6Fg5vt/nHISFcd4BAAAAAAAAAAAAAAAwzwSFhU0WpGKR8TIAAAAAAAAAAAAAEAdhYQDQDKfhLgyEqS+lkKCwvAn+iVCHN7Unab4cJx9rcsgWa7e7DgnsCwoL2yMV+drThry87wAAAAAAAAAAAAAAAKDVeruD500WkqsDAAAAAAAAAAAAAOYjwsIAdK5I4SUOA0+ihqk4CcmJuZ8ugmGC+nQdEhSaL2E4nl3XvvLq/h+n3047d0H76/gpbS4gLExWGt/jdtsAAAAAAAAAAAAAAABAm+jJBs8b5zv5AAAAAAAAAAAAACAWwsIAoCkug3k6LfSnVUKGhbkIMEuyf6fauXZ0lpRCA/uCwsIkje4s/Wz6MYD7HQAAAAAAAAAAAAAAAOaXTJ1hPG09xA4AAAAAAAAAAAAAPNCVdgEAkJ4II09cjlaxxYgrOg7JicTFcQrbZ1rHI+r5azFGVIUU5Ti5OrYx+h15rHVltIPAx0nH9/ueIyWTlWxh7ryxnW63PS/wuAQAAAAAAAAAAACg/RhjTpB0tqRVkhZK2iFpq6RbrLWTKda1VNKTJJ0gabFKb5ofkrRd0m+ttbyRDSA19b7zjxEkAAAAAAAAAAAAABAPYWEAOlekUCWHw1UKI+76nheCjr0nYWntHNLVzrV3ukevks79eNpVJCjgWjUZt5vNZKXccml0x9x5oxHHWHO/AwAAAAAAAAAAAAAvGWNeJulvJF0YsMh+Y8yVkt5rrd2bUE1G0isl/S9JFzdYdqOkz0n6krU2n0B5ADAjU2c4X5HhMgAAAAAAAAAAAAAQi+NkBQCYbxyNVikWoq/bvah1dcyIuZ8uQnCC+qz3VYSVHbSslHT6DytCHYWx1pfhuyjXqKtwpzj9jmxvXR3tIPBYJRAamFtZu32sRoAYAAAAAAAAAAAAAKDtGGMWGmO+Kek7Cg4Kk6Slkt4m6R5jzPMSqGulpBslfVMNgsKmPFHS5yXdZow52WVtAFCt3nA+vlsPAAAAAAAAAAAAAOLpSrsAAEhPlLCgYuvLkKR9v4m+bqa7dXW0perRRQmEBtXky0imCHUcuKMUGJbNtb6cecXVOfbl2mkDgY/BKYaFje6M2GEnnfdO2lcAAAAAAAAAAAAA7cgYk5V0paQ/qpq1R9JGSYcknaRSENf0m9QrJF1jjHm2tfZXjuo6StLPJZ1eNWtyqq6tkoqS1kg6V1L54I9zJf3cGHOxtXari/oAoFq9UTyEhQEAAAAAAAAAAABAPJm0CwCAtuIqLKw45qbfyEIE7/QdXWemi1E9no8UaveRTNu+m3YFCfPpfPlUi+8CjpVJ4Clt0GPeWNSwMAAAAAAAAAAAAACARz6iyqCwSUl/JWmNtfZ51tpXWGvPlbRe0q1ly/VK+r4xpt5Amjj+r+YGhX1uqq7zp+p6lbX2YklHT+1H+QCnNZI+76g2AJjD1Bl6yCgpAAAAAAAAAAAAAIiHsDAAHSzK0BNXw1ViPBw7CakK0eczfupgu/UE1RQi2CwRngxlino93PXu1tYxLzk6x+0eNJekoMDGeqMMW6VvZe320ahhYZx3AAAAAAAAAAAAAPCBMeZESe+oan65tfbT1tqJ8kZr7b2SnqXKwLAjJb3PQV3HS3pNVfOHrbVvs9burl7eWnvQWnu55u7L84wx57e6PgCopW5YGMNlAAAAAAAAAAAAACAWwsIAdK5II08cjVYxcR6OUxpB07OkzkwHNQWdr9AhQa6PU5uPZBrZlnYFCfPpfPlUi+9SDA3MBYSFjUUNC+sgjPQEAAAAAAAAAAAA4Lf3Seoum/6KtfaaoIWttaOSLpNUHiT2xqnQsVb6H1XTuyR9IMR6/y5pU4O+AMCJTJ1hPEWGkAAAAAAAAAAAAABALISFAUAzXAWe+BYWFmY/Q4d0uVZVR1p1eROG40sd85A357iTBYUGJvCUti8gLGx0OiysyeuD6wkAAAAAAAAAAAAAUmeM6ZP0sqrmf2m0nrX2AUnfL2vqkvSaFpYmSdXhYz+x1o43WslaayX9sKr5lJZVBQB11Bu9x3AZAAAAAAAAAAAAAIiHsDAAHSzKyBNXo1ViPBz7OILGSU0e7mcFX+rzpQ7PRbpGXR1bzllothgwI4GQwFxAWFh+UMoPu99+W+MaBwAAAAAAAAAAAOCt50nqL5u+1Vp7X8h1v1w1/dLWlDRjQdX09ibWfbRqeknMWgAglHrf9ckIEgAAAAAAAAAAAACIh7AwAGiGq2CueiNkGkprCE0C4TwVgvYzZB3OQ9UYytRePDpfPgb+eSvgWJkEntIGhYVJ0tgu99sHAAAAAAAAAAAAALhwadX0TU2se7OkfNn0E40xK2JXNGtn1XSuiXWrl90fsxYACKVuWBjDpAAAAAAAAAAAAAAgFsLCAHSwKCNPii2voiTOw7GPI2gc1BQ0UmjO6KKkQ8ym+DKSyZc65iVXx5ZzFlrg9Z3A/b6vTljYaPX47DA47wAAAAAAAAAAAADggfVV07eGXdFaOyzp7qrmdbErmnVz1fQ5Tax7btX0b2PWAgChZOoM47mf7+MDAAAAAAAAAAAAgFgICwPQuaKEKrkKYjIxHo5TC4dKOpQrxZCgUAj+aS8+nS+favFdUGBjAo8DXQulbH/teWNRwsI6SRtc42O7pb23SYWJtCsBAAAAAAAAAAAAkKwzqqYfbHL9h6qm18aopdqNku4vm36qMeasRisZY1ZL+pOypklJ32xhXQAQqN4onlf/R1EHhq0Gx6wsX4oJAAAAAAAAAAAAAE0jLAwAmuJhWJiXISw+1uSaL/vsSx3zkKsBagx8Cy/oWMV6DA3JGKlvZe15o1HCwjjvXigWpNveKH1vhfSTC6XvHik9fn3aVQEAAAAAAAAAAABIgDFmqaSlVc3bmuymevlToldUyVpblPQGSeNTTRlJVxljjg9axxizQtL3JZV/G9aHrLWPt6ouAKinWGdIzJ5B6cj/r6gj3l7U2vcW9Y1fB31xIAAAAAAAAAAAAACgFsLCAHSwKEEthIXNMPW+A9CBwJCgsHU4Pk7eBD75UofnIp0vV8eWcxZe0ADBhB6PcgFhYWNRwsLghQc+KT38pdnp/JD0yxdLY3vTqwkAAAAAAAAAAABAUhZXTY9Ya4eb7GN31fQRMeqZw1p7i6QXStoz1XSKpE3GmI8bY55njDndGHOaMeZZxph/lrRZ0pPKuvi8pP/TypoAoJ5Do+GWu3+X9KdfsvrJZsZOtZNivTS4Jvsp1OjLlo3rKxSt9g1ZWVu6HRypve1C0VasV95XrXYAAAAAAAAAAACgnXWlXQAAtBUfBw4UCw46jbmfTo5TUJ9VIUFJh5jN8PDaQGtZF/c1iWunCbFDA2PqCwgLG90pLTi+ub58/P/EFZ/39cEvzG0rjkuPflc65c+TrwcAAAAAAAAAAABAkhZWTYeMuKm7zkDEWgJZa28wxpwh6a8lvVbSCVO//3Wd1e6T9F5r7XdaXY8xZrmko5pc7aRW1wHAT8cfGX5Za6VLPxH05YElX/yfRi95otHopNSTlY5cKI3npV2HS8FkB4al3YPSCctKy69aLO08JGUz0pbd0gUnSmuWpDWmcH7Yus/qvddYXbvJ6sBI2tW48+rzjMYnrb63sbL9lOXSW55mdP8u6UebrC67yOj4ZVJ3tvxmZn7vyVbPC771dJV+ZjOSSW3sKwAAAAAAAAAAANoJYWEAOliU8BJHgSdxglTsZOvqaErSAxNChoWlxZcwHF/q8F6E41QYb30ZcR2xNu0KEhZ03jLJbD4XEBY2tjOZ7aP1Dt9Xu/33HyUsDAAAAAAAAAAAAJj/qsPCxiL0UR0WVt1nq0yP9QwzeOEWSe+XdIOjWv5C0vsc9Q2gzS0bMDrnWOmOba3p701fs3rT1+KNiXvTU40++1qjbMaTsYZtZN+Q1dP//6K27U+7Eve++Zva19mW3dLfXjU778M/rrVc/HGbYYPFqm9ZI930gDQyMdvXqSukB3ZV9n/RSdKqI6Sr7qhsX9wvHYwQAnfOsdL61UbrVknrVxmduUZavZjQMwAAAAAAAAAAANcICwPQuaKEKtn632IXXYyBAsWJxss0Le7AhQQDq0IPLHBdEyFd856T+5riBbz1LG1dHe0g6DE4qQFGQWFhozvU/GMAjxl+4/wAAAAAAAAAAAAAHcijbx6cZYx5s6SPS1oQcpWLJP1E0j3GmLdaazc4Kw4AavjaGzJa/35XYy2b98WbrU46Svpfl0iHRqWurPSbR6ShcatzjzPaPyz9/XeLunmL9NrzjR47YHVgRNozJI1PSksWSEcukJ58gtF5x0snLDPa/LjV9gPS4Jj0snONFvRK126y+vptVo8flC45TbrkNKOf3mu1cpHRMUulE4+S7nxUOmaJ9OrzjFYtTidUaXzSqmhL4VPZjNH4pNXwhLQoJxWKUjYjjU2WhmR98me2I4LCfDBZKN1aoTooTJJueaj2slGCwqRSIOAd26afBpV+HtEnrV8lrVtttH5VKUxs/apSiCAAAAAAAAAAAABag7AwAGiKq/F9ccLCJltXRlMSfvM+dKBSWoMKfAmW8aWOKjtvkB79npTpkXqWSKM7JZOVjn25tOLpKRQU4Ti5CguLdc48Pd/OBO1vQvf7vqNrt4/tTGb7basNr1Nn4aAAAAAAAAAAAAAAPDJUNd0XoY/qdar7jMUY8x5JH6pq/p2kz0i6WdLjkoqSVkq6QNJbJD1jarn1kn5hjHmjtfarrawLACTJTo3pM1Vf9Ld2ldHgpzK66CNF3f1YGpXNdfn3rC7/Xq0xLJVt//XrucvsG5YelPTrR2zNdT5x49x1rt1UCg+rtbwk/e1VtcfTLFsorVsl9XWXAp8e3ltzMUnSS58o3b5N2rqvNP28daVj/+uHbWAwFODSoVFpw0PShocqr/0ViypDxM5cbbR2lTSQI0QMAAAAAAAAAACgWYSFAehgHn0ZaOggrBqcBRjF4eI4pRwS1Mj2a9KuwF8P/of0m7fUnrfl36WLvikd/6pka4rCx7CwOI8d7Shof00mme33razdPrYrQrhUh527dmPzaVcAAAAAAAAAAAAAwD2vw8KMMc+U9H+qmt8v6YPWznkD/Q9Tt28ZY94i6XMqDarJSrrCGPOgtXZDi0r7jKTvNLnOSZIYXAO0KTs+Kl33ddnd26XvfU4aOjgzz3z9Lum40+ess6DX6K73ZTWZt7rxPum6zVafrBGqhUp7h6RfPBBu2e9trJy+frN0/WaOMfyz63DpduN9lSFixx8prV8trVtltH61tH6V0ekrpd5uT8YFAwAAAAAAAAAAeIiwMABohrNgnjhhYZOtK6MZJuk34z0PCzuwsfEyncgWpbveXX+ZW16dfFhYlPuyq7CwTgv8iiUokCuhx4FcQFhYcVKaOJBMDUjGyKNpVwAAAAAAAAAAAADAvUNV0/3GmAXW2uEm+lheNX2w5lLR/JMq3xD/qrX2A41WstZ+wRhzjKR/mGrKSvqEpCe1oihr7W5Ju5tZxyQ+zghAaxnZj/5l7Vm3/HfNsLBp3V1Gl66XnrdOOq3wkP7qpuNVVEJfDAjAa3/YV7pdu2k2RCybkU5ZLq1fJa1fY7R+KkjspKOkbIbnEwAAAAAAAAAAAISFAehgEQJ6bKH1ZUjxwoLSCgurJ8nwo7CDCV3WNLbXXd/N8DF0as8GaTzE8TmwSVpylvt64rBBQVWxO05p3TYUdI2bhAYQ9gWEhUnS6M7m+vLx/upKJ+0rAAAAAAAAAAAAgLZhrd1njDkgaUlZ87GSft9EN8dVTW+JXZgkY8xqSRdUNTcMCivzEUnvlNQ3NX2uMeYsa+2mVtQHoLOY3lzgKCX7mctlr/68zD99W+aUJ8he/w3ZD/1ZzWX/XNL5vWfpqkUv1UeW/d1Me3+PdPYx0i0Ptb52uLVGuzWpLu3S0qbWy6qggrIz0xdrk4rW6szhu3TRwGM63L9cWrZKO7NHqW/sgD7y6AUayg5U9NFvxnXhkt3aPdqjx4Z7VLBGq7sO6YxDt+u0ZZO60TxZvx4/sSX7OS1jrE5ZbpQvSpOFWjeryQKBVnEUitJ9O0u3q+6wmh4jmeu2OmOFtG6V1cpF0vC41Xkndem81RM6ZqnRiO3WQ3ukvh6jPYPSeF46YZm0bhXnAwAAAAAAAAAAzC+EhQHoXF6Fl8QJIUprPxJ+Az30+Urhjf3CSPLbbBdju8It9+DnpCd/xm0tFaLcbxzd1+I8Fnn1OJaEgMfKpMLCequ/ELrMWJNhYQAAAAAAAAAAAAAAH/xe0kVl0yerubCw6hSSZtat5+yq6YettY+EXdlaO2yMuU3SM8qaz5dEWBiA1tvxB9k3nCd75kXS3bfUXfTs8U06e88mfWjP+2cbc/3SXbNj8ArK6EcL/0hfP+LV2tB/kd574F+16JnPV1dxQrcOPFWHM4u0b8jqzNXSCUdM6PgVXVKmS2OT0jd/Y/WN33TamKpkZW1e27ecqKMKyX3J6ruaXeEx6YMhFy3KyMiGH3l679RPY2qO37OS8urSpOmuvJW1TZieOW3Tt/xU+8wyNdaf7adbkyqt85mlbw27BzOOyu9WVkXt7Ar+Es2szatgZj9y8rqD/6WnjfxK9/eeos2963RP7zpt717T9LabNTZptHG7tHH77Jn67M1WUvfUlK36OeuikVv07r3/omcO36QeteALmi99nczL/0rm1OqnawAAAAAAAAAAAO4RFgYAPogV+OPjwBYXNQX1ybd+zfLxWgh5frZ8tnPDwhCeDQpWTCgsLNsj9R4pje+bO4+wsDq47wAAAAAAAAAAAADw1j2qDAu7UNIPw6xojFkg6awa/bXC4qrpKG9KV6+zLGItABBOg6CwQGOVX9aZVVEvGrpWLxq6drbx25+VJL28QVfjAy/SN9Z8K1odDnXbCU2anrTLaIl/3XV5okFhrmWijm0KGPdrJHUrr26bl+xo9MKa9MldfyNJ+soRf6o3rfr8nPnPG/qJfvToHzvZ9sHMEdrce4Y2967T5t61uqd3re7pXad9XX489bil/yK98NhrAucfmd+r1x36hn654Gn6fc9pGsv0zcx79tANGs4s0DGT2/XDgRfouMltum/r6dJHJalQd7snL5ce3F173jueZXTno1a/eCDcPgzkpOeulYpWunrjbPvbLjG6/PlGh0el4Qnp8Kj02EGrOx+VfvuI1eolRodHrRb3G73yyUZnrpZ+t9Xq6jukK39n9eInSEsWGC1bKD37DKM/7LM6OCKtWSKN56Xv3m5192PSkgXS196Q0VlrSmOCrbWaLJSWGRyTlvRLGVPK0Bsck/7xGqvP/aJ0H+nKSPmi9JSTpPt3SXuHpGOXStv2V+7fkn7pWWcYvfv5Rictnzv2OF+wslbq7mLcOAAAAAAAAACgsxEWBqCD+RReEqOWWEFjMfo0Sb/Z6nNYmA81wDkX97VSxymt24aCwsJMQmFhkpRbWTssbLTZcdkddu4AAAAAAAAAAAAAwE/XSXpL2fQlTaz7VFWOwdxord3ViqIkHayaXhChj4VV00MRawEA6ZxLpDtuSruKhgoNvnTwbfs/r+cO36Dt3au1Ir9L3XZSB7OLlbUFPWf4Rh1V2Ktb+s7Xzq6VWlgc0tNHbtawWaCRTL9uz52jXV3L1WMn1GdHdenQTzSS6deEurWoOKh+O6IeO1ExmnDc9KjXTkiSijL6Wf8l+vTSv9C1Ay8IrHHt+L166sgGjZte3d27Xrf3nRNq31fmd2pn18rA+aeN36+37/933dd7mv7ziNfoYHaJjszv1QuHfqwXDP23rIzypkv7s0v1i/6nasT069d9T9a+rmU6dfwBXTp0vV46+H1dPHprqHqQjlcd/rbevvLfNJKpfOrwnr0fdrbNxcVDesrobXrK6G0zbVbS7uzymeCwzbl1uqd3rTb3rtVwpvopSrr2dS3TJ458e815Nyx8tiRp+qq/r/f00P0GBYVJ0idubG784OCY9N075rZ/9iarz95Ury878/Nbv5273DV3zS7z0Z8E9/PoAensDwZ92Wt9+anVNjw021YeFCaV9m9wTPryBqsvb2h8bJYPlG5dWSmbKQWSdWWmfs+W/V72sytrZn7PzLTVXj9rAvrJVvc5vawJ109A3+V1zO1bMomP2QcAAAAAAAAA+IywMADwwnwLC0qwptBvgDqsyZc3YZ2FWcXgy7GpFulY+RgW1mk8CQs7tHlu+1iUL3EGAAAAAAAAAAAAAKTsekmjkvqmpi80xpxurb0vxLqXVU1f3cK6Hq+aPs0Y02+tHWmij+p0Gd7YBhCZefcXZV92ctplNHTqxJbAeQ9vOVXH5rc37OOi0V9XTPfaCS0tHtCaocfmLHtE8XDdvqaDwiQpI6tnj/xczx75ecMa4phUl37fe7qWFA7omPzcmiXp47v+tm4fbzvwBRelIQE5O66HHjxDly//kH7Vf5FOmXhQ79z38TnXtWtG0orCbq0Y2a1njdw0016U0bbuY0oBYtNBYr1rdV/PaZrI9CZaI9rX7sHSrTkux+q6HQdsTNhAtPqhY7XDz0xFWzZE380Fq5k5ddSqLXzoW2UbQWoAAAAAAAAAOhFhYQA6WIQ35ly9oeRjyFNDCb+5FvYYdYV4/e0AACAASURBVPSbfj5eR/PofLi6n8bq18dz7pAN+ma6BMPC+gK+fXPiQJMdddK566R9BQAAAAAAAAAAANBOrLUjxpirJP1pWfPfS/qzeusZY06V9JKyprykb7SwtE2SDkhaMjWdm6rx82FWNsa8UNLqquZftaw6AB3HrDhG+ti1su98Ydql1LV+fLPOGtukTbmzKtpPnHhYx4QICpsPupXXWeP3pF0GUnRUYa++uOOtaZdRU0ZWx09u0/GT2/TCoR/PtE+qSw/2nFQRILa5d60e7DlJRZNNsWIgfdZKk4XSzUHvLjpNrP+MCRtaFiVYzcwJNKvXd6Pws7k1muB+6tQWJliNIDUAAAAAAABgfiMsDEDnihLQ4yzUKygAJyRr/QrJcnKcgvr0Yb99qMFXvh6bKNeoq/t/jH7bMmgwhqCwMJNgWFguICwMAAAAAAAAAAAAANCu3i/pVZK6p6YvM8Zcba39Qa2FjTE5SV+W1FPWfIW19qF6GzHGVL/J/wxr7U21lrXWFqZCzN5c1vwRY8wGa23dBBhjzLGSPlfVvMFau6PeegDQiDnvOdIvx6SbfyD7nlc0t/L6C6R7bnNTWBkj6eO7/rf+ZM2VOpgt5S3miqP6wo63eTuSbV7IZqWCkxQbdIhu5XXGxP06Y+J+vWzw6pn2UZPT73tPnwoRW6vNvet0V+9Z2tF9dIrVAvBF0UoT+amJyVb33t5BanPCzQJDy6IEq5k54WTN9N04WM2ED1FrMlgtYwhSAwAAAAAAQPsjLAwAfBA78MeqtaFMYepJ+k2SmGFhHRGq1An7mCYPw8I6jQ9hYX0tCgvriMckAAAAAAAAAAAAAPCftfZhY8wnJP3vsuarjDF/I+kL1tqJ6UZjzBmSvijporJl90n6gIPSPijpdZL6pqYXS7rFGPNuSV+y1o6UL2yM6ZH0akkflbSsqq/LHdQHoAMZY6SnvVj695/JXvFB6Y6b6i9/zTaZpStmpu01/yH70b+cXaB/oDSOZnSoNP30P5aWrZK++5nINT595Fe68+HzdP3C52jM5PTiwR9qTf6xyP2hyilny1xxm2StTGZ23Ja1VrrtOmnXo9LYsLR0pdS/UFpzsnT0CVJ3j7R9i/TYw9KS5dIJ60orjo9I+3ZJx5wsZbtkjCn1NTkhZTIyXd0BhUxt8+BeqbdPpn/hTFt5CIjdv0t6YKP0yL2y2x+UOfkJ0pkXlbabyUrHnV76st6enEw2W9n/4f3S3bdKgwekxVP/tWayUiYjyZR+GlMav2ZM1e9TPxsuoxr9BfRTvkz574W89OiDpeN+1Bppcly6+xbZ266TbrteOvZU6YlPl0aGpN/eIPXkpEteIrP+QmnFMaVl7/yltPGX0vDh2QOw/gJp305pxx+knl7pRW+SWXmcdPbTpurR3HFwFdM2oL1qOuh3Sf2yOlfSueXzittUvOfbuvUHt+kruZfpW12XavXk43pd/od64znD+umdo/pQ9o16qOckAUCnKhRLt4nGi0bQ/kFqzYSONResZmZ+z9QNRIsarGbq99NU6Fvl+pkMIWoAAAAAAADtgrAwAB3Mp6CWmLVYm3x2V10JHts53+zi1YGAt9+8E+EadRXuFKtfnx7HkuBBWFiuRWFhnYRgNAAAAAAAAAAAAAD+e5ekdZKePzXdLelTkv7RGHOHpEFJJ0o6R5WDUyYkvcRau6PVBVlrtxtjXivpO5Km00sGpur6V2PM7ZIeV+nN9JWSniRpYY2u3mOtvbnV9QHobOasp8h84npJki0Wpftul73hSmnLXVI2K/OMPykFC1WNHzMvfrPMi99cWm90WMr1z1lGkvTXHy8tMzEu09MrOzYi/fIa2Xt/UwqdmpyQbvyOdHDP7DpPuLgUivTDL2nN6cfqTecfJzs6JI29SCpMStsfkk5cJ7P6JGnRUinXL/XkZL/zKenXPyn1ceI6mZe8VcotkIYPSd290jNeKm3bIvvNj5XGKfUPSHu2S7+9sRTANDkhyUojgzLPfLnsF99fuS9HHi0duVJauqIUinbXr+Id/N4+aXw0Xh9RXfRHMn/32dI5qz63xkgXPj9gxSnHnla6levNlc5HdV89vQ3LMcZIS46a21Y+vXSFdMGl0gWXNj261CxaKj3lBU2ulZIlyyunTz1b5k/+Ity6a58s88p3tL4mh7JnXaSLXyNdrFKKq7RI0umSpNdP3STpunus/uiTAeMOHTph4hGdPXaXrl70xzXnrx2/V9u7Vutw9oiEKwMATAepudHeQWqtCB0LDj8zsyFndQPRGgerza3DNO6nRlvYfSRIDQAAAAAA+IawMADwQtwX7VMIYkk6BMrrsBlPavPyGM2nN0Z8PL4dxga9M5tgWFhfq8LCuJ4AAAAAAAAAAAAAwBfW2oIx5hUq5U28smzWckmXBqy2W9LrXQZxWWuvNsa8WNIVklaUzepTKR+jnmFJ77LWftpVfQAgSSaTKYUNrX1yc+v1LWi8zFRglMn1S899tcxzXz07cypQbI6/++zs+mHqOP+5jRdad57Mh64M0ZtkXn95qOVawebz0v6d0uS4tGy1TG9u7jKFgnTf76RMthSG1ttXCngbPixlu6R9O6RfXy/lJ6UT1pVC1JYdLW17QDq0XxrcL62/UDrlCTJd3YntG9AKl643Kn4hO6d9dMJqcExavqj2o8T4pJ0KEjEaPzwo+4KjVTQZ5ex4cwU8JhVllGnheMFRk9Nvc+fqRwPP10BxSEfnd+r4iT/omPx2HVE4rKMKe7Q7u1wHsot18sRDuju3Xv95xGv1pcWv12sOXalTJx7Q+aO/UY+d1FBmgQrKaqA4pHt7z9CWnpN13OQ2veHgV9SlgiTpq0e8Tl854k+1tHhAp4/fr3PGNmpx4aCsjH7T92RNmm4NFAf1dys+MlPjx3e+U2878AVlVah4HLaSRk2f+u2o8sqqSwWNmx7d23OGPrH0L/X9gRdpKDsQuO9Zm9c/7v1nLXvuC5U/9VzlpwJ/Zn4WNLdtqr28rTDTZkvzy9vs3H6q189XLTvTVlUHALSb6cey8byL3l2OnXc7Lt+YsIFotUPHGoWfZafCzkrBZOGC2cIHq5lw/YQOfav8SZAaAAAAAADpICwMQOfyKVgpdi0e7YskN/UE9enBi8uBAUZJ8+06kLw4P7VEus+5Or5x+vXxnDsUdF8zCYaF5VoVFpaQ4a3Sls9LhzZLyy6QTnu71NV4oGVHaPTYbW3ywZgAAAAAAAAAAAAAUmOtHZL0KmPMVZLeKemCgEX3S7pS0vustXsSqOtHxpi1kv5c0hslndRglV2S/lPSp621W13XBwBIj+nqkpavqb9MNiutO7+yLZORBhaXJvpPkY45Ze6Kqxv9dwO0r74eo76e4Pm93bPjxnoGFsoeuawUrBdBK4PCJKnPjulpoxv0tNENgcusLOzSysIuSdI5Y3fqnLE79fFdf1u33/PGflez/fWHvq7XH/p6zXnPHvn5zO9/s/+TjUqXkdRvRyVpJoys107oieN36Ss73izteHPDPiRJhVFlntVcQGUailNhZHFDx4ID0WzNvhuFn9XqO1+QihV12Ia1xQlWA4B2Yq2Uty4fv9o7SC0oiKw1wWpmpi0bGIgWNVjNhOunTt/19tHwOQQAAAAAgEOEhQHoYBFe9HT2Yl3MF2BTCT5L+oXLuGFhDo/Rls82XqYcATTtydn9LEa/PoUeJsKDsLC+o1vUUQLnbvhR6adPlUYeLU0/9gPp8R9Jz7xBys79FlF3PL1O7/2X+vMf+Zp04uuTqQUAAAAAAAAAAACAN6y1V0m6yhhzgqRzJK2StEDSTklbJW2w1k5E6DfyYBFr7X5JH5b0YWPMGknnSjpa0mKVBs8ckrRH0kZr7YNRtwMAAIBKxhjZ57xS+tb/TbsUTJsYS7uCUDIZox6nw1vbcyy6tVZFWycQLUToWP3QMhu677DBaoWK9W2oQLS6oW8B+1ggSA1Am7FWmiyUbo624Kpjx31LGRM2EC1KsJqpWD8Tsu/wwWomuI5IoW+zbQSpAQAAAEBrEBYGAM1wFcxj476z0+K64u5nkgFGc14kTPhFw6GHpXs/0uRKVm7q9DCQx9cXcYtNj9mVs+PbcYFfMQQ+ViYYFtazRMp0S8XJ5LYZ1UNXzAaFTduzQdp5o7T6BenU5JOt36o//7bLCAsDAAAAAAAAAAAAOpi19hFJj6RdRzVr7XZJ29OuAwAAoFOYt/6zbH5S+sEVbRNUNa8VSVRqZ8YYZacCVHqcfKLN07HrIUwHqQWFljUVrFYzEM2G6rtR+Fn5vMpt2qZC35oJVisy3B5AmylaqTgdpNbyj564flB0H6QWN3QsKLysK2sq5levX6vvRnVUBquZ8P00uY8ZQ5AaAAAAgPAICwPQwXx6xyBuLWnsS8IvQPkaqLT9B82vY207vw/ZJA931Fpp8nCUFVteSvx+Pb1fuBIUFmYSDAszGSm3Qhppg3HX93ygdvvGdyYcFubpdXpwU9oVAAAAAAAAAAAAAAAAAAA8Z7JZmXf8m+zbPyaNjcj0LZizjLVWKhSkTEYyRsYY2ccflh68Wxo8KC1aImW7pLOeIvUtlPKTMr052fFRSWb2y3lHBqVNG6RtD0jnXCLdc6vsT78ljQ5JW+8vLbNslXTymdKBPVKuX1qwSOaCS6XBg7K3/lg67YnS0CHp+v8qLT+wRLr0ddLvfyuNj0n9C6U1J8s851VSfkLasVVad77Um5OGDksDi0t1ZLJSV7d0+89k798oHdonHdxb2sfD+2We+xqpu0fq6ZV94C7puv+Uslnp4v8hc+ZFsvt3SVvukk59olTIS9sflGSlX107e+CWrZKWHS3dd3vZATf1x43H/pJuwE/lQWq9brbgpNckWGvnhpPFCFabG1pmawaiRQ1WK87px0YLfQsRrEaQGoB2U7TSRF6acNJ7ewepVQeL1Q5Eqx9+FhysZuaGqNUMRIsarGbq99NE6Ft13wSpAQAAAHMRFgYAPogbhOVdkJaLeoL6DPtij6NjtPVbEVYqSsq2uhIPrwPJyzcV88OKdD04O76EhYXnQViYJOVWxg8LS/P+evj+9LYNAAAAAAAAAAAAAAAAAEAbMsZINYLCZuZ1VX48x6w6UVp1Yu3OsqVxxKa3r7K9p1d62otnp9c+WeYVbw9f4//8+9mJf/hS6PXqOmFtw9HARpLe88W5bTEUP/h66ac1xmmTjAN0HGNMKUgkS5BatekgtTChY6GC1eYEotm6oWW1+q5XR6EQvu8owWrl7V5+vAYA6pgOxnSjvYPUwgWiRQ1WMzNtmRp9xwtWM437aSr0rbItk2nf5zAAAACIh7AwAJ3Lq1d+49aSwjckJZ7IHnCMqutIuq7iePPreBk61UEmD0Vc0dHx9eqxyHOB3waXQlhYu7M2hcdxAAAAAAAAAAAAAAAAAACAEIK+SDZwLCkAdJ7yIDV1O9mCi04TUSzaOcFitULH6oaf1Q1bs4GhZVGC1YoVbcF9hwp9qxOslue/UQBtaPoxdTzvoneXn+tz/5nBVoSOBYefmZm2euuHDVarXMc0308T+0iQGgAAmO8ICwPQwSL8se0sWCXmH/7FCUm1v6kqFYmGH6X8h3txovl1bKH1dfjKxzCiycMRV/Qw1KvTgsaCBngEDQhxpa8VYWEpn7u7PyCd9f5ktuXjdVoYS7sCAAAAAAAAAAAAAAAAAAAQJGgMcpGUEwBAY5mMUSbjKENNUuqfZYqhWBVGFjZ0rCL8rG4gmm0YWtZMsFrlNsP3HWUfAaDd5J0+frVvkJoxYQPRgkPH6oefmdl5DfpuPljNNAx4ay70rXKe8fHzvgAAoGmEhQFAM1Y+x02/cb/haPs10omXtaSUkjB/bCf8R6GPYTOSVIgQFnbgTumoC1tfS9rhQzV5+OJBlIA3yeE16ON585QvYWG5VoSFpey+f5PWv0fKuHv702uPX5d2BQAAAAAAAAAAAAAAAAAAIEjQ2NC44+4BAOhwmYxRj9OPYHj4OaIQrLUq2uDQsqaC1WoGotm6fUcKVquow4aqLWqwGgC0E2ulyULp5mgLrjp23LeUMa0JHasdfmYq2jKBgWiNw89qB6uZ4H6a6LvWPmYzBKkBANoLYWEAOliEP5q6FrS+DEmx/4DbvzGFsDCX6zfTZ8g/wFwFPdkIrxg8fIWjsLAYjKunBD7+gRz1WvAxLKzTgsY8CQvra0VYWMrnLj8o7bxBWvX8dOtIy+ShtCsAAAAAAAAAAAAAAAAAAABBMkFhYZ02dhYAACTBGKPsVIBKj5OPWPn4+apwpoPUAkPLQoaOBYeW2ab6DhOsVlmHjRb6FmIfCVID0G6KVio6C1Jz/fe6+yC1uKFjweFlpmL9bHU/sYPVTHAdIUPfgvYxYwhSAwAfERYGAM1w9U1EbfmmZcJP7oOO0Zw/MhKuy6c/cuJcRz2LW1dHOZ+Oz7TIx8lV4BxhYaEFPgYnHBaWa0VYmAcmDia0oQ67TgEAAAAAAAAAAAAAAAAAQDxBXyRbJJEBAAAgSeVBao624Kpj56y1c8PJIoSOBQei2cBAtOq+G4WfFWrUUSjaOX23KlityEeJALSZopUm8lMTk63uvb2D1CrCzRqEjjUKP5vbj5kbolYzEC1qsJqp209zoW+V6xOkBiBNhIUB6FyRAnpcPWGO22+L64odXubiOAX12YZPpNMMh1v3D9LmD81tdxWE5+X5iXj8nZ03Xv0MLeg6DRoQ4kpfC8LC2jIkEgAAAAAAAAAAAAAAAAAAIAGZgDHIzsY8AwAAAM0xxpQCRLJSr5stOOk1CdNBanUD0eqEn80JL5vTZmsGokUNVivM6cfGDn0LClbjI2UA2s104OSEk97bP0gtbuhYcLCamWnL1A1Eqx+sVrsO07ifWvWG3MdM0Ot6AFqGsDAAHSzCEzxvw4JSeIXAm7TbsHV0wqsoIfZx6TkBq3bSG+dRrwVH11Ccx5WOe3XQk7CwXAvCwgAAAAAAAAAAAAAAAAAAAFBbJmBsaLGTxjwDAAAA7ak8SM3RFlx17FyxWApSCxs6VjP8rG4gmm0YWtZMsFqxyb6jBKtNTwNAu5kOUhvPu+jd5efH3X82PVwg2tzQsUbhZ6WfZqYtG9B39GA103w/TQSrEaSGViEsDACa4iosKOZfsi0PDIrZn5MAo7B9tsOTpBRD5wJDlVy9muJhmJV3AVtx6vFtXxwLfKxMOixsRQs66aRz10n7CgAAAAAAAAAAAAAAAAAAYgsa89xRX5AMAAAAYL7JZIwyGalbmvqn1drh87W1TQepxQkdqx+IZmsGojUbrDbdXqjox9atLW6wGgC0m+nHOTfaN0jNmNpBZK0KVnvTUzN67rr2fS6A8AgLA9DBIvxn7SxkKG6/aQSxJPxEIejYG56wNCfhN87D3mdWvdDN9muKeH/x9v7fQYKu08AQPEe6F0pdC6X8ULLbbTmuPQAAAAAAAAAAAAAAAAAA4KFMwNjQIp+SBgAAAID5qCJIzYn2/SxycTrorCL8LFzoWGD4WUWbbdh3M8FqxYo6bPOhb03sIwC0E2ulvHUXpPasM6za+f87hEdYGAA0xVGwStwQopYHPfkYXhbUZ9pPWNLefpkw11Hi37IVst9sztH2a4h8f/MxWMnHmlzyJCxMkvqOlga3JL/dduQsaA8AAAAAAAAAAAAAAAAAAMxLiY95BgAAAADAT5mMUU9G6nGWDOLR56SbYK1V0bYmdKx2IJoNDlsLGX5WHaxWqGizoUPfmt1HgtSAzpRN4eP2SAdhYQA6V5TwEmdvLvoYztVI0n/8xQ0L8ymsJsVaAt84L7jZnpchQZ6FhXl5jDwV9BicRlhYbmW8sDDOOwAAAAAAAAAAAAAAAAAAQG0mYIx4kU+7AgAAAAAAyRijrCmF47gJUmvPEDVpNkitZsBYnfCzmuFlNdryRRsYiBYlWK0wpx8bLfQtRLBakY/2Yh7ryqZdAZJCWBiADhbl2ZyrZ4CehYXFDrFJ8Jly9RvBQW8Md4QQx90EPctLOwgvyb+uIm7LWbhTjH47LXAqMLAxhbCwvpXJb7PleLwEAAAAAAAAAAAAAAAAAAAeCvyCZMLCAAAAAAAA6ikPUut1swUnvSbBWjsnWKxW6FjoYLU569vA0LIowWrFOf3YhoFoYYPVqusgSK39daXwcXukg7AwAGiKo2c53gX+hAmdSviJvHfHKIY0Q6cSf+Pcw7CwyMffw7Aw3wOPhh6R7vmQtPcWafFZ0rr3SEvOit5f0HUadF27lIsbFub5uWspD/d1Pv2fAgAAAAAAAABpsUUpPyxNDkqTh0u3/OHZ6Uy3dOR50sDJaVcKAAAAAACAdpMJGBu64UfJ1gEAAAAAAIB5wxijrqzUlXW2BVcdO1ecCiKLGzoW3GZrrh82WK26jkL5Ok303Wyw2mQh7TMTXpawsI5BWBiADhYhKMRVuEjcoCbfQk+c1BPUZ8gnzc6OUbs9aU84LMzLb+/yLCzMt/tvq4ztln72bGno4dL04fuknT+VnnubtOjUiJ16FBbWFzcsDOmap/c7AAAAAAAAAGjEWqk4XhnwNXlYyldNT8/PV01XLDuoUK+3PuGfpLWXJ/9lRAAAAAAAAGhfo0OBs+zPvyctGJAWLJL6F0n9C0u/9y2UyTr7pCcAAAAAAAAwb2UyRpmM1C1N/dNq7Tt2bDpIrZnQseYC0Wxg3830c8ry9j3GaA5hYQDQFFfhInH7bXVdYfqr92QhzbCwdngSk2LoVGCoki2t3/IPaYTc10QDsyJuy1mNcfr1OPBo03tng8KmTRyQtn5LOvO90foMDJ9LISwsFzcszONz1wm8DDIEAAAAAAAAgDqKhdqBXvkaAV9B4V/TyxYnk639rvdIK54lLTs/2e0CAAAAAACgfT14d+As+95XB8/rWyD1DZTCxPqnA8Wmfy/9NOUBYwumfi9v6x8oBY9lUhifCgAAAAAAAMArFUFqTrRDPgZ8QlgYgM4VJfjHWbiIb2FhHgo6X+34DeSJBmNVCQwLk0rXUYuPZ+h9TfCYRD7+HoaFpXkt1TP4oPTQFbXnHdgYvd+gx+C617UjscPCOomP16mPNQEAAAAAAACYd6yVCiO1w7waBXpVL18YSXtv4tlxPWFhAAAAAAAACG/wQLT1RodLt/07AxcJPbq5KmRsNnRsNoDM1Aobq2gbkPoWyLTjmHcAAAAAAAAAgHcICwPQwaIEhTgKF4kb+NPqwKBQ/dV7wzLJEBbeOJ0V5rjXCVWyBQehSz4G8vgWFjYPbXqvZPMBM+OEoxVqt6cRFtYXMyzM16A3F3zcV2fhnwAAAAAAAADmhcLEVJhXyICvoPn5QV6PnDaxP+0KAAAAAAAA0E76B9KuQBoZLN32Bi8SaoRkJiPbNxUkNv1zJoBsNmTMVISRLawIJZtp7+0jeAwAAAAAAAAAOhhhYQDQFFeBJ3H7TSGIJfE3GdvwGCUtTCBPvVAlJx9W8fG4R6zJVeBRrH49PL4H7pK2fjN4fpz9HX0sYEYKYWG5mGFhXkjq+vHwOj20Oe0KAAAAAAAAALRasSDlhxoHejUMABuUiuNp7838Q2gaAAAAAAAAOlWxKA0fLt3qCDXaMpuV7asKFJsJIJtq618kExQ2Vh5S1tNL8BgAAAAAAAAAtBnCwgB0sAjhJc7CguIOjm91XTH7c3KcgvqsfoOSNyzrMtngeS4+pBG6zwTDhCJfn76GBXrmrvckv816IXiu5I5S6fHGt+vJRx7u68NfaryMyZYeLxgIAwAAAAAAALhjrVQYnQ3pygcEfNUK9JoJ/ppedyjtvUFdHr5WDAAAAAAAALSbQkEaOli61REueKxLtjxQrCKAbGAmWMwsmAoX659tKw8m04JFMt09Ldk9AAAAAAAAAEB9hIUBQFM8DQvqXdaaMmaEqSfh8JSggKd2DHHJ9jrqOMR5qxuq5OIb3UNe266C+GpvLOH1HPab6HELYc8G6fEfNVgoYs2TdT7kNfpYtD7jyHSXHnvH9yS/7XbjIogwrvxw42VsQSpOOHzMBgAAAAAAANpYcTJaoFetZW0h7b2BJGVzUvciqWtR6Wf3wNTPqVtX1fT0/Orlb7tMevR7c/v38bViAAAAAAAAtKf+AWlsWCrymlMshbx0eH/pVkeYkb+2u2cqUGwqbKxGAJmZbqsRNla+nunqbs3+AQAAAAAAAMA8RFgYgM4VKWTHw7AgSRo4pTVltIyL4xTUZ9iwMEfnLkpY2VEXt76OsOqFhbn4kIZvYVaSIl8LrvYlVr8eHV9rpTsvd9h/nQ+LLT7L3Xbr6VtJWFgoHl2nzbJ5SYSFAQAAAAAAYJ6wRSk/VBnala8K8Kob/lU2XRhLe28gSSZbP9ArKOBrzryB0pdktKqmmtr4tWIAAAAAAAB4JXP9XllrpbERaWRQGj5c+jnz+5A0Uvpphw9XtQ1Kw4OVy48OeTrmuY1MTkiH9pZuAcIeYduTmwoUG5gKIJv+fepn34DMgkWzbdUhZWXrmWzQ65UAAAAAAAAA0J4ICwOAZrj6xuu4by6m8U3cUUKynKiqI+m6ohz7wA9JxBXmOko4LCz827oOth20qajb8jQs0Bc7rpP23Nx4ucjHv871mVsRsc+Ycisl3R1xZcfnPdRxrvN40ErtPIAmjf9fAQAAAAAAgHLWSsXx4ECvfIiAr+n5+cG09wbTuhZGCPSamtdVNp3NefSe3bSAeni9FQAAAAAAAC1kjJH6FpRuR64MXi5EX7ZYlMaGK8PGagSQ2eHD0mhZ2FjFMlM/R4dat5OdamKsdDsY/IW+oUeo5/qnAsWmw8YWzQSOTYeNmQVTYWP9c8PGZgLJ+hYSPAYAAAAAAADAC4SFAehgdd4iMlnJFppbx1UtoVZv8eD62MEuLo5TQJ9pfwCieyDCSikG5/w/9u48zJX0oO/975XUi6TuPsucM3Nmxp7xzHiZzTM2xjE2PYR4lgAAIABJREFU+2IDDiFsF3ggYQ1c58YJD6uNjcGOsTEQdq6Bm7AEEogDuSwBYt/EBmMDIcF4Vo/tGY/twZ7xzJk5S3dL6kXSe/8oqVUq1VsqlWpT6/t5Hj2nJVWV3pJK6tMl1VcmKg6UwUEacbfNXGNCxykWVpIIk+1Ld78m+9twidyuM7Tu/nBJ4eI893J7/SzJdpoEB68BAAAAAAAgqX43EO2KCnpNiX/ZbtFrA0mqrE0GvWqBuNe0+NfKllRtSpVjfFCZa589+1sBAAAAAABQUqZSGcWkzlzjni7Gsmyv54XHWtujgFh7MkBmhz+3dtwBsr12eiu5rPba3unC485JYofH6k0vItbcnAyQDWJjR+Gx5lZgms3RZetNb5sDAAAAAAAAgASIhQFYYo63dU6/QHraV0j3vC5kloyCJ/N+OD71D9eXMOySa0xqBvVrpYt3zTZPZttRjOVGRZX6YYG8ecVd1zwPEEl4/5d1GyyDR353hudB0vs/ahsp6A3z+tXJ5818e4rznMopFrbQzx0OXgMAAAAAAFgq1krdVnTQqxsn/rUt9TpFrw0k732RWYJeNUfgq7YpVVeLXpsF4dpnv8j7igEAAAAAAIB4TLXqRaGaW9HTxViW7Xalzu5kbKw1DJB5P9tgkCwsUnawl84KLrNOyzs99Zhzklh7QY2RrW+MRcZGgbHRz2YYGasHYmP+SNl6Q6boL18HAAAAAAAAkCtiYQAQdOI2ud9+y+pD7PMut2Qxk0zCMK5lxnxzq1SxmgK3IxP1TfUZbEdx7/c8H5/Et1Vg5C2LedPSPwyPK6YtKhYWFcHLUv1cMbcbR5yIZG4fDijZ76hZpB7jBAAAAAAAQCZ6++HBrmlBr8MdX/xrW+rusk+oLGrN8KBXLSTwFRUAqzZy3BcKSe77m+cWAAAAAAAAMBNTq0mbJ71T1HQxlmW7h4O4mC8g1tkZhcUGITI7MU1IpOzwIJ0VXFbWDmJuO9GTxVlWpSLb2AwEx4YBslFkzBzFyQaXDedp+sJjq+uExwAAAAAAAIAFQCwMQHEuvF86eGry8sb10tazsr/9qMiO80PsJY2Fpf7h+rjjMTNMOy/H7Uw8Vnm/QZXk9ooMPEVElTI5SCPuuuZ5n5QsFjbXcksQC3v4N6SdB2eYIemYSxgLW58nFpbxYxfn+ZxXbK4MUbukOHgNAAAAAAAgO/3eIN41JegVFQDrDs73OTCpFCorg2jXDEGvsfODn2sbUoWPMiwu1z579rcCAAAAAAAARTG1FWnrtHeKmi7GsuzB/ih21fbFxobhsfa27DA21t71AmNhkbLWttTrprOCy6rfl3Yve6cIsT7JW63KNoJBsc1RZGxwMs2Qy4ORstU1wmMAAAAAAABARviELYDi3P2D0mPvmLz81ldJz3tL/uM5YuT+EHtGwZN5Qyqli5nkGYYp+k2kBOtaZHQuKqqUxXYUd5l5bsNJ7/+sHrdFDil1O9K9b8jntiK3kYJiYfV5YmFZi/OcKjj2uAhK9/sVAAAAAACgYNZKvfb0wFdY0Cs4bbdV9NpAkmTGg161aYGviOuqa0WvDMog9y9lAgAAAAAAAJAns7omra5JJ8+4p4mxHGutdLDvxcTaO6PYWGtb6gzCYq1BeKzti435A2X+AFmvl95KLqNeT9q56J0ixNrTW1uRDQbEjgJkW0c/m2BsbCJAtimzsprK6gEAAAAAAADHBbEwAEss4m0K54fYs4qGzPvh+JTHFffD+sbk98F+5+3EjYVlFXpKct8XeDBEVCwsk290j7uued4nSW+rwMhbJvOm4MFfkjqfdFxpFDq+xLG2iO0zcrvO0Po8sbCMH7s4r025HZi1yAeAEQsDAAAAAADHRO/AHfTqhgW+IqYlsF4O1Xq8oNe0+FetUdw+VhxPru2J1w4AAAAAAAAAPsYYaW3dO5260j1djGVZa6X9znhErL09HhRr78gehcZ2JiNl/ggZX34wn+6hdPkp7xQhzr1sV9ekui82NhYUG0bHfLExZ6RsU6a2ks76AQAAAAAAAAUiFgZgebnewDFG7reUyhgLUgYfrp93PbO4n+IuM248LC1J1jWrcFmM5UYd8JPJQRrHKBaW2Zu+cyy3yDeiD7elD7w5/LrKqvS0r5Ae+c8p3mAJY2H1eWJhGYv1fC469rgALN8yBwAAAAAACmT7Und3MtgVJ+gVnL6/X/TaQJJMbTLoVQsJfE3Ev4IBsE2pwlv9KCvXPvsF3lcMAAAAAAAAoNSMMdJ6wzudvso9XYxlWWulTmsQDxuPjY0iY7uyw8v8kbGjSJnvcsznYN87XX7SOUnsIxbW6qOAWH1zFBbzBciMKzbmj5Q1NmWq1XTWDwAAAAAAAJgRnyAGgFA5x8LmjTQV9k3cOYa5IuNuBUpy3xcanYqKhWUQxYm7rnluw4nv/wIjb2X0wE9L+45ve3rmK6TqmmPGpLG2EsbCVk56YbT+wezzZv64lygWtsgHgBX2+xUAAAAAACwsa6Xenjvo5Qp8hV3f3S16bTB0FO6KEfSqOQJfK1tSZa349zWArLm2cfa3AgAAAAAAAFgAxphBLGpD0tXu6WIsy/b70l4rNDbmv8wOw2T+yFgwQNZppbaOS2u/450uPuGcJHZ4bL0xCIoNYmNjkTHvMtMIhMaOImW+y+sbMpWCPgsPAAAAAACAhUQsDMASc+3GNxEfYi9rLKhkH67P5H6KeLwKlWRdCwznREWVMjlII+4y87xPShYLm2u5BW1Le+elD/5U+HW1pnT7a6UHHNcnFbl9FvQGqTHS+jmp/Ugxtx+l254+TV6hukU+AGyRxw4AAAAAAGbTPxyFu2YJek2c35Fst+i1gSRV18ODXmGBr8j410ZxX1gALCTX84X9rQAAAAAAAACWi6lUvChUYzN6uhjLsr2e1NkdD4gdBchGsTEbjIwdhcl8P+930lnBZbbX9k4X3JPEDo/VN0axsUFALBggMw1fZCwYIGtsepGyetOL3QEAAAAAAOBYIxYGoHw+8OPSHW+UKisFDcDI/XZLGWNByiBmEnc8ZXgjIe4YyvTYFTgWU42YPYODNOLGiPKKFnk3lnC2AiNvZXP/j0nd3fDrnvPd0vqVETMnvf8jts8iD9SrlzAWdvkD0p8+N8aEeW3Ti/zc4eA1AAAAAABKzfalbms86NWNE/jy/dwdnO9xUEQpmGp00KsWiHs5A1+bUnW16LUBlpNrnz3vswAAAAAAAABAYqZalTZOeKeo6WIsy3a7UmdnFBtrDcJjw9MgNmaDkbGJSNm2dLCfzgous86ud4oQaw+7MbKNYFBsGCAbhcXMMDTmj40FI2VrdcJjAAAAAAAAJUUsDEA5/a//U/qMX8v4RiJ2lzvDM2UKTvlnTzlmMveH9bO4nxzLDL4BkfcbEknu+yIPhoiMKmURxYn9fTgZ3LbDwcWEM5bx+V/AttT6e+nBt4Zft3pauuX7vJ9Tfy6WNBa2fi7hjBk+du/92pivTcTCpsoioggAAAAAwLKzVurvxw96Rca/drTQ+x6Ok1rTF++KGfQKm75az38/P4CUuZ7D7G8FAAAAAAAAgDIwtZq0eco7RU0XY1n28MAXGRsGx7ZHP7e2pc4wPOafJhApa21L3cN0VnBZWevdj63t6MniLKtSkW1sjQfFjgJkvvBYMEzW2BqPlDU2pdV1wmMAAAAAAAApIhYGoJw++pvSHT8qNa7J7jZcwSZj5HxbI6toyLzxqKJiJsbk2Jop6wFfScaV0brEuo8iokqZbEcx1zXPbfhT70w4Y5GPWwbzJnXfG7yDOcPc+mppNfrbqhKPOXIbKTAWVk8aC8vI9oPS5fvjTZvX865sr9+zjIdYGAAAAAAAI/3uKNDlD3p1tycDX6HxL9/5Ph/0L4XK6vSgV80R+PJPX9uQKtWi1wZAWbi+4IP9rQAAAAAAAABw7JiVVenEFd4paroYy7IH++Gxsfaud1l7R7Y1eVlogKzXTWcFl1W/L+1e8k4RYn0qu1qT9YfGxgJko7CYCblsNK33s1ldS2X1AAAAAAAAFhmxMADlZHvSw78m3f5DBQ3A9VZEVsGTeT8cn/aH6+dcz86j6QxjjGtMMb9hJKtYTaLlZrUdxViu6wANKZuDNGLfPznGhD7675PN9+G3Sjd/d7pjkZTrus9r+0PSw78efl39GunZr8zutqO2z6jtOmvrCWNhWR0UdeF9swwimzEUdjtxzTCenQelrWdnNxQAAAAAALJmrdRrjwe74ga9gtP32kWvDSRJZnrgy3n9MO41+LnKh+kBZCHv91kBAAAAAAAAAMeBWV2TVtekk2fc08RYjrVWOtgbj421tgdxsd2joJg9CowFQmNjAbJtL5yF5Hpdaeeid4oQ510Eu7I6Co4dBcg2vJjYIDZmmltSPTw2dhQpa27J1FbSWT8AAAAAAICcEQsDUF6X78/4BiLiU8bxFkKpglP++Yt688FxP/3Pb5Vu/JaUbytuLMwVDSpR6O1wN/1hSJo7FpZ6dG6WZS7AASK7D0kHF6XVUykveJ51z/l+u+d17teb239YqtV9F6R8MNDBBfd1RcbC6gljYVk9dq7fX2EuvC+D1+oQhf2Octh/Kv607/4y6Ss/JdWvym48AAAAAACE6R0Mwl0xA1/+67uBn8v2t/myqjbCg1614Pkp8a9qY7Z9QACQN9c+e34fAQAAAAAAAAByYIyR1ure6dSV7uliLMtaK+13vJBYa1vqjGJjo6DYjqz/sk4wUjaaLrNjkpbF4YF0+Snv5BD76+5X18YiY15QbGMsQGaa/ssCkbLhfPVNmRqH6AIAAAAAgPywJwJAeRUawMr7G69LFguL+wZE/8B93eGOdxBT1oIHRTlDbxltT0nerPnkH0m3fn8xY4mKKtleemM5WmbM+yfP53utKXVbyeb95J9IN/yTdMcz1xt+Ob5ZeOHvpEd+N/y6jWdKN31btre/94T7OlPgf2nXr042X2bb/AwHin74F6VP/4WMxuFXsje1P/622aZ/9I+lm749m7EAAAAAAI6Xfk/q7k4PenVjxL+i9r0iP6YmrZ6YLegVnHZlS6ptSBXelgWwJJzvRZVsXzEAAAAAAAAAAFMYY6T1hne6wv0l07HCY/2+tNeW2oHYmD8o1tqRbe8MptkNiZTtjs5jPgf70sF56dJ55ySxw2Nr9bHI2NjPg9iYaWx6gbF6IDbmj5TVN2Sq1XTWDwAAAAAAHFt8Kh1AiWX9gfGo5S9YLExpR2dSWM/230snbp1/OUPOoFIwFpb3AQgJ7vt6wrjQVHHGEhULyyJeFDcWluMBIs98hfTBn0o276V70h2LpIU5OObu17ivu+NfS5WVwIVpv45GzLeylXCZKai73/SNltHj7gomurQflRrXZDOWIyXbxh/6pdmm/5t/RiwMAAAAAI4za6VexxHtmhL0OtwZhL+G1ycM1CNlxot1uYJetZDAlysAVlmbfX8LACy9nL/YBwAAAAAAAACABWAqlUFAaiN6uhjLsv2+LyA2CI91JgNk9ujn3ckA2fCyvXY6K7jM9jve6cLjzklih8fqzfGAWGNzdGp6cbGj8FhjMxAp81223vS2OQAAAAAAcOwQCwOwvFxxImPcwamsgkZxlrt2Vtp6jnT+vSHzl/DD9amPKe5973rsMrqPkmwT60njQlPEWcfIA9sy2L5j3z85xoTWzrivu+YfSo/+SX5jmVdekbXH3y099o7w607eKV3/ddmPwbV9V9eLPWAz6fM5s9ftGe+Li+/PPhY263ZqMv4TJc84IQAAAAAgO/3DZEGvsOltr+i1gSRV64PIV0jgKyroFZy+1oz4UgkAQOac77OW8P1MAAAAAAAAAAAWkKlUvCBUM/pLt2OFx7pdLzzW3hmdWtuj8NggMmaHYTJ/gKy1PR4p2++ks4LLrNPyTk+5J4l9lM5YZMwfFxudN67Y2PCyxqZUb8rwJVsAAAAAAJQGsTAABSrxjkLnTsysPsQ+ZVftqedLL/4t6a5XOWYv44fr046xuJYXeKxyPwAhwXpmFi6Ls9yI510mAZ2Y65rrNuxYzyteJH32f5Hetp7jWKRcQ2lJWCvd/YPu6+98U/jzLu03g1zbyMqJdG9nVutXJZuvLLGwXMy4jdca2QzjSMmfcwAAAABwnNm+1N2NF/hyXT/8ubdX9NpAkkw1EO8KCXqFBb4mrtuUKitFrw0AIA3OYCP7ZgEAAAAAAAAAKBtTq0mbJ71T1HQxlmW7h76g2HhszAuQDcJj7e3ANIFIWWdHOthPZwWX2fB+fdI9Sax3byqVUXhsIkA2ioyZRiA21twaBMc2RpGytTrhMQAAAAAA5kQsDMASi4pPOXY8ZhJTkjsac/qF0hf8d2l1EMPJLYSVwnqmfV+5lhfcSew8AKHIQFdQkeGyqJ3qGWzfsbeDPA8QiXjuV9ekjRul3YdzHM48657D/fbJP5ae/Ovw685+pnTNy2dbXuL1dTxvnM/5nNTqXrDs8PKMM2b0OjDzG2c5vNE262Oe1e/a0Q1kvHwAAAAAOGas9cJcrqBXNyTw5Zx2p+i1wVBtI0HQK+R8dT39aDwAYMG53mct45cfAQAAAAAAAACAtJjairR12jtFTRdjWfbwYBQQa+960bGWLzzW3pEdC5MFA2SDaXcvS71uOiu4rPp9737cjT5mItan9KtV2XowKBaIjDW2ZIbXNbekum86f6RsdY3wGAAAAABgKRELA4AJEbGwzAIjrhBWZRQKG54PlfKH61MJteQVMAs+VnkF1Y4WnGCWAsNlUTvCMwn0lDAWNi08l3moKKjEsTDbl+55rfv6O38sYptK+U0X5/ZdcCxMkurnZo+FZfaaVIL7Y0LJDgDL/TkOAAAAAAXpdwPRrkDAa5b4l+WDs6VQWZsMetVC4l5T418bxQfYAQDHl/N3DPtmAQAAAAAAAABAPGZlVTpxhXdyTRNjOdZa6WB/PCA2iI2NYmQ7skeRsfHLJwJkvV56K7mMej1p95J3ihDrXaXaiuwwIDYRIBv9bAYBsqPYmD9QNoiUmZXVVFYPAAAAAIA8EAsDUF6Zxzwilu+K32Q2prKGsOaQW4wlcB85H7sCA11pzJPacqPeDikwFpZrvGfa822RYmEZ+9jvSJfuDb/u6i+VrvzsBAtNuL6u7bsMB7aun5O2PzTbPFm9Dsz6zTh5fJNO6eJcZRsPAAAAAPhYK3Vb0UGvbkjgK2z6XqfotYHk7buYJehVcwW+NqUqH04FACyCnN+rAwAAAAAAAAAAcDDGSGvr3unUWfd0MZblhcf2RiGx1jBA5guKtbZlO4MgmT8ydhQp2/XOt7ZL+Dn7BdM9lLYveKcIce5lu7I6FhhTc0uqb4wFyIwvLiZnpGxTpraSzvoBAAAAAOBALAzA8nLtVDVG7t28Ge2IjRyL//wCxcJSv69i3keuoJqyuo8SrKfN6ptEShgLi71t5rgNT3u+5f18mucNnizfHOodSPf+sPv6O980ZQFpR6hKHgubWVbbWQ7xr5nNup1m/KYnb6oCAAAAyEJvPzrw5Qp6TZzfEZHjkqg1w4NeYYEv5/WbUrWRT6wbAICyWKj3MwEAAAAAAAAAAOLxwmN173T6Kvd0MZZlrZX22qPwWHsUG1NrR+p4ATI7vMwfGRv+PAyQdXb5jPy8Dg+ky096J4e497BdXR8FxBq+sJjvMjO8rLE5GSnzzWeq1XTWDwAAAABwrBALA4AwuX+I3RUvqkSfP5L2uFLYSZz2fRV3x7Xzscs59BYpo+0ozliiDkzM5D6Kucxc35hw3ZaZcn1WSvqmzMO/Ku0+HH7ddV8nnX5+wgUnXF/na0oJYmH1BLGwzLb5WQ8+zuNg5bJt42UbDwAAAIDC9Hu+UJcv2NWdFvgKmbZ/UPTaQJIqK9LKieigVy14PmTa2qZU4QOXAAAk49pvz75ZAAAAAAAAAAAAaRAeqze9k652TxdjWbbfl/Za47GxYICsvSvb2h6PjI1Ns+Nd12mlto5L62DPO118wjlJ7PDYemMQFBvGxgaRsfooNmaGlzc23ZGy+oZMpQTH3gAAAAAAUkEsDMASiwoGuXanZhWcckVwguPIK2KWxnqmfV9NCzwNz+YVVJtjuZlF5+IsN+qtggy279hBpDIdIFKmsUyT0Vi7bem+N4ZfZ6rSHY7rxqZLOULlet44n/M5Wk8QC8vqNWnm+z2H7X3mMFrWY1qk5zgAAACACdZKvfZktCtO0Cs4bZcPOJaDGQ961cICXxHxL//11bWiVwYAALj2U2f2/hgAAAAAAAAAAMDyMpXKKBZ15hr3dDGWZXs9qbPrC4gNImL+n4/CY4NpOoN/gwGyvXZ6K7ms9tre6cLjzkliH7VV3xgFxBwBMjOMjYUFyIaXrTcJjwEAAABAwYiFAcCEAmJh84aw0v5w/cxhl4yWMb7A8IsnDjjIK6g2XG6C9cxsLCWMhcVdZq4HiEx5vqW+7U4zz+1lNNYP/4LUeSz8uhu/Tdp6VvJlJ75/SxwLqyeIhWW2zaccaUtFyQ4Ay/05DgAAAECS1DtwB726IYGviWkH13e3CU2URbURL+gVFv/yT19rph8dBwAABcr7i30AAAAAAAAAAACQBlOtShsnvFPUdDGWZbvdQXjMFxtrebExLzrmRcZsa3sUHHNFyg720lnBZdbZ9U5POY4VUswjlIzxwmNjQbFhgGwUFjsKjzVcAbJNab0hw2eGAAAAAGBmxMIALLGIXVjOb7zOKDDiWm5wHM4oThk/XJ/XmAoKqo0WnGCWAscStRM1i+079rrmGO+Z+nzLOSRUtnDRwSXpAz8efl1lTXruD8dcUMo77F3bUhliYeuLHAvL4Y2VWbfxzJ8TJXvOAQAAAGVm+1J3dzLYFSfoFZy+v1/02kCSTG0y6FULCXxNDYBtShXeYgIAACGc79WxbxYAAAAAAAAAAGBZmFpN2jzpnaKmi7Es2z0cj421tgfBseHPXlTMTkwTEik7PEhnBZeVtaP7NWqyOMuqVGQDkbHxoNggPOaPkzWH0/siZc0taXWd8BgAAACApcGRHABKLOMPjEcGg1w7h7Iak2u5wXHkHcKaQ9of+Hcur+BYWKLlFjmWqB2fWWzfcZeZ5wEi07alqLFkseN4jnXP4sCaB35SOrgYft2zXyk1njbnDSQcs3P7LkEsrF6iWFgp39wo2wFgZRsPAAAAkDJrpd6eL+YVM/AVdl13t+i1wdBYtGtK0MsV+FrZ8kLgpfzbEQAAHB+u/2uU8P1MAAAAAAAAlBfvaQEAgAFTW5G2TnunqOliLMse7A9iV4GoWGvn6HI7/Lm1I3UiAmS9bjoruKz6fWn3sneKEOsIkGpVtrE1iow5AmQmeNkwNtbclOqDaVbXUlk9AAAAAMgKsTAACOMKTuUdCwuOI7cQVhrrmfZ9FXd5eR+AkGA9Cw2XlTQWlmvwbkosLO9vtp/r9lIea+dT0gd/Nvy62qZ066tnWFjKH9JwbSPO1+scrV+dYKastvlZ7488Pkwz63ZaUCwUAAAAKFr/0B3tigp6hZ23vaLXBpJUXR/Eu2IEvvzXT8S/muX4+xcAACAO5/uZ7JsFAAAAAADADNifBAAAMmBW16TVNenkGfc0MZZjrZUO9gfRsUFYzB8TGwTFbHt3PEzW2pY6u+MBss6O1OPzXnPp9aSdi94pQpz/Ydraynh0bCxAtumFxRqbMsHYWGNzIlJmVlbTWT8AAAAA8CEWBmCJRQWDHLv12p/IaCiuaExgHIsUC8sr/hT81qjc7qM5llvkWKK+ZSuLccV+oz7HN/RdYzq6byLGcvm+1IeT67pPc/+bpF47/Lpbvk9ad78ZEl/C9X38neGXX74/+VDSsnbGe+2Z5TmU1etAGb9Jr3Qf2CnbeAAAALDQbF/qtsaDXt2QuFdU/Gs4fW+v6LWBJJlqdNCrFhL3ck1bWSl6bQAAAPLn2k+d6xfHAAAAAAAAAAAAANkxxkhr697p1JXu6WIsy1or7XdCY2NHQbH2jqz/smCkrDOarnzHcCyY7qF0+SnvFCFWeGx1bSIgdnRqenEx4wuQhUbKmltSfVOmRg4AAAAAgIe/DgAUqIRBE0mRsbDMRIXL/GcdISyV8cP1Ke5YjNxJGfc+ymhHZ/8wyUypD8MTZx0jtu0L75Ou+ry0BjMQ837f/pD06H+Trv6SHGJH055vEWN+9E/THkz07U1zEP2NFzPZ/aj00K+EX7d2Vrr5u2dbXtqP4yf+IN3lpalSldaulPY+NcNMWb35MuP9fhD95kU6Zn3NK+EbU9aWM8QGAACAZKyV+vvxg17dkMDX0fS7KuX/YZdRbSNZ0Gtla3z6ap3//wMAAMxlkd7PBAAAAAAAAAAAAIpljJHWG97pinPu6WIsy1ordVqD4Ni2FxObiIztyvrDZBORMt/PmM/BvnRwXrp03jlJ3E8f2rX6WGRM/sjY4GRcsbFGYLpqNZ31AwAAAFAIYmEAyitRhGkWEbtSLt/rvm7nIWnzmekOZfvD4ZdPHJjo+HB9Kb+JO68DZWPeR7sPZ3Pzuw/NPs/f/7/pj0OSDi5MnybqYNcPvEW65XvTG48027b55y+XnvXPpRe+Nd0xTJgSC1vWb9C49/Xu193bXuMdMJ2G43r/1s/NFgvL6nV71gPa/+obpau/WFq7IpvxSCV8zBOM5+++R3rBz6Q/FAAAAMym3x3EvGIEvqKu7+7ksN8JsVTWpge9XIEv//W1DS/kDAAAgOK5vtindPuKAQAAAAAAAAAAgOPFGDOIRW1Iuto9XYxl2X5f6uyGxsbU2j66zLa3JyNjLd9lnR0vYIb57He808UnnJPEDo/Vm1LdFxsbi4wNgmKNQGzsKFLmu6y+IVNxfZkUAAAAgKwQCwNQXpWMX6JcH0g3RupEBF/2zqcfC3vs7Y4rArvenB+uTzk6k8aH9VMdU8R4gmEc1330sf8oveQ/pDckSdqPEedysXYsv57tAAAgAElEQVT2qM8097xuvvn3n0xnHGNm3JYe/CXppu+QTj8/g7EMRD33vQmyu+0w8z7f9p+aP/R06X7po78Vfl3j6dKzXpFgoSlv32W37v72llCZRR4T3O9/9qXSl/yv9IdypGQHgCV5zn3oZ4mFAQAAJGWt1G1FB726wfOOaXvtotcGkrfvZZagV80R+FrZlKprRa8NAAAAUufaT13GLz8CAAAAAABAaaX9OWsAAADMxFQqXhSquSWdvdY9XYxl2V7PC4/5o2MtX3is44XFrD80NhYg802730lvJZdVp+WdLriPoY0fHhvEw4bhscZkgMy4YmNH82xJ9aYXuwMAAAAwFbEwAOV1uJvt8vccOzOq69HzZbHT4dxLpU/8/uTlF94XuG1XaT3tD9dP2Z3zzO/0/q1tegfwJlnGTMOZYVnG8att5WQ6Y/G7fF/yeS/dK526I72xSNLFu6KvP5VhgMslSZTn8XdlGwtzbpuD53Ym0bQocz5Xnni39PSvmm8Z9/yQexzPff3018WZlCwclZb6jLGwrA6KqtZnn+fC/05/HGNmfMzTCFZGOftZ0iNvy/Y2AAAAjoPevhfp6obEvaKCXsH4V3cnw1guZlJthAe9aiGBr4kAmO/naoMP5gMAAMAtry8/AgAAAAAAAAAAALAQTLUqbZzwTlHTxViW7XYHcTFfQOwoLrZ9FBmzwcjY2DSDYNnBfjoruMw6u94p4nC8WEcJVSqj8Njw36Ow2OhnMxYk2xyFx/yRsrU64TEAAAAca8TCAJTX4Xa2y+86YmT1a6WOu4oeb7fTjFw7HyYuz+vD9VN2wdz47d6/znhZ2qLGE7iPXPelPUxtNEe6c3wTgTOylqHnvSX/20wShtr9SPrDGDMlFhbl7GelOhLPnGGkecNKT/6N9Ik/CL9u62bphm+ab/lpOXGrdPkDk5evbOU/ljDrM8bClumgqKzjX7PaenbRIwAAAMhOv+ft75gW9IoTAOsfFL02kKTKyuxBr7BpaxtShbcDAAAAkAPn+4cl21cMAAAAAAAAAAAAYOGYWk3aPOWdoqaLsSx7eOCLiA3jYsOfB2Gxzq5sa3t0mStA1s3g2MVl0u9792Mr+pjiWO86V6uy9c3x4NhRgGwQGWtseuGxsNiYP1K2ukZ4DAAAAKXD0UEAyqubcSzMFS8xFXdwypsgg7E4ojHXf2PgpkvyTdxn/oH3r6m6p0k1DjNDLOymfyY9+qcZj2co4n6/8vO8g3I/+V8zuN0Ezr1MuvJz87/dRQwiXfEi6am/Cb9u7Uz6tzf3tjnn/He/xn3dHW+c42By12tlwvGuXxUeC3v2K5MtL231q2ebfhGfG4k5HvOTd0qX7o4/fVrKFi8DAACwVup1pge+XNf7z3dbRa8NJEnGF+4KxL1WNn0xr2nxry2pulb0ygAAAAAzcn2xzzLtFwcAAAAAAMDc+KwfAAAAMmZWVqUTV3inqOliLMse7A/iYoHYmC8oZo8iY7tedMz/89F121Kvl84KLqteT9q95J0ixAuP1WQngmKDqFjdFx5rDq/fOrrsKDzW8OY3q3weFAAAAOkgFgagvA4zjoU5/5yfsvsmixK468PxwRiX85u4C/pwvXM8eY4h8HhUVh0TZvCGcdRBDV/w/0l/9U/Tv82kPvcPCzrAuIRv1DtDgUVV/guMhX3qf0iPvyv8utMvkJ7+1cmXnTbn4xYRLczTuZeFX26qkg3bSZ/V63YZn3OOdT3zYkcsLGslvI8AAMBi6h8mC3qFTRv6f0bkrlp3B76igl5j5zelWrMc+0wAAACAIjj/L8y+WQAAAAAAAAAAAADHk1ldk1bPSqfOuqeJsRxrrXSwNwqNDcNjY0GxHdmjGNnueJTsaJ7BZX2+1Gkuva60fcE7RYjzbrhdWfUFx0ICZI1NGf/lgdjYUaSssSlTW0ln/QAAALCQiIUBKK/DnYxvICIYFPlNRHnGwoIfpnd8uD7tb+KO+01MeR34OtPj4Xp8coyF1Takykq5Dgyurhd0w2U88CNhKDD2NLOa8z5K+s1p1kp3vcZ9/Z1vni+g5po38Te9zfO45eDEzdIzXyE99MujyxpPl274p9L9b56cPqtvvCvlN+nNGujLeB1cr90n75Au3ZPtbQMAgOLZvtTdjRH4ihH/6u0VvTaQvEDvyonxoFdtWuAr7LpN7295AAAAAHNyvT/Ah9ABAAAAAAAAAAAAIIoxRlqre6fTV7mni7Esa6201x4ExLalziAsNoyMDQJkdixMFoyU+U6lPGZpgRweSJef8k4Oce9hu7o+FhlTY2v0c3NTqg/DYxuDwJj/Z9989U2ZGqkJAACARcP/4ACU1+G2twNhnlhNFOfOiSICTzFjYa74VOofro8bC6vOv4xYZoiFpR4oijLlcStTLKwopdwJWLLo1Nz3UcL5P/H70oX/HX7dlZ8nnXtp4hFlo2SPW5gXvlU690XS+fdIzeul679e+uSfhE+7TAdFler3reSOl0X9TgMAAIWy1gtzBYNdw6BXN2bg63DHuwzlMAx0xQl6RcW/quvZ7TsCAAAAMLvc3s8EAAAAAAAAAAAAALgYY6R60ztdcc49XYxl2X5/EB7zxcaGkbHhqbXjhcc6vtjYWKRscFlnN72VXFYHe97p0nnnJLHDY2v1UUSssTn4eWMsMGbGLnNEyuobMlWOzQIAAMgDsTAAJWalbkta2chu+WGMiT7INIsDUF0fji8sFhZXXqGXWWJIrscng2iV836vBP5dZiU88MMVLlrUg8uTxMb6PenuH3Jf/7wfS+H+SPm5uAiPmzHSdV/tnfyXhcrqubFAgb5c445jNxB+8bRYWJYBUwAAjqt+1x34igx6hUxvu0WvDSQvzBUMetW2wgNfE/Ev3/W1DQLbAAAAwHHl/L9+GfdfAwAAAAAAoLT4vB4AAABQGqZSGcSiNqQz17ini7Es2++PAmLtYVhsMkBmh7Gx9u4gUuYLkA0v22unt5LLar/jnS487pwkdnis3hyLjIUFyMwwNua/3h8ga25J601vmwMAAEAoYmEAChQjlHK4nV0szBkjmbZLIoM/Mm0v3m05P1xfUJAprwN7o8IxE28ElyAWNrxfOPA5h+hPEkmf+1mZ9z5KMP/HfkvafiD8umu/XDrzGfMNKRNle9ziKlvksQgle+ycr91T/jSy/elBMQAAjgM7CHdHBb2iAmD+63qdotcGkve36SxBL2fga1Oqrha9NgAAAABKz/VFEcu0XxwAAAAAAAAAAAAAEMZUKl4QqrkVPV2MZdlu1wuPBWNjw7DYIDJm28Eg2fBf388He+ms4DLrtLzTU+5JYh0JaYxsfWMsMhYWIDsKj9UDsTF/pGy9IUOMGgAAHDPEwgAUp38wfZpuK8MBRMVLIv74y+IPw2nRqSN5RWdixociY1h5RaICj4fr8ckkWkUsbLoSxsIShwKlbNYn51hYb1+650ccVxrpzjfNOZ7hotJ+LpYsOBWX63Ugs4Oiyvici/s7Li+O+6gyLQTWl0QsDABQYr39ZEGvifM7KuX/KZZRrTl70Cvs+mqdb1wGAAAAkB/nvl/+1gQAAAAAAAAAAAAApMfUatLmSe8UNV2MZdnu4SAwNoiNtbalji88NoiM2fZ2YJpApKyzIx3sp7OCy8ra0WMRNVmcZVUqssN42FFMbBggG0XGjD80NgyPBSNla3XCYwAAoBSIhQEoTpxYWKYfGncse+ofa1n8MRczpJJXdCZ2zCevP2yjxhMcg2tMGWxL0wI4xMKU6H7PJOw2dgPhF8fZUZNF4Gne9Z11/od+RWo/En7dM75ROnn7fOPJims9y76Dzfk6kFEsLPPnTxKuMRV0wJjztXtKCCyzwBsAYKn1e5OhrsNtqRuIe0XFv7qD8/3DotcGklRZkVZORAe9aiGBr4kY2EaMmCkAAAAAlFHeX6IBAAAAAAAAAAAAAMB8TG1F2jrtnaKmi7Ese7A/il21x2Nj3r/bskc/70oTATLfz71uOiu4rPp9afeyd4oQ62i2alW2EQyK+SNkg/BY03dZfRAbC0bKVtcIjwEAgMSIhQEoTi9GLCzLD407gyoFxMKc6xkzFpZ6dGaBYmHBP4idfyDnGAsbPm7TwjPLYKHCRbF21aU5kJSWOcP8h7vSfT8afp2pSXe8Yc6xjC3QcXnS9Z3ncSsSB0W5Q28FBRWd45nyp9EyPWYAgGjWSr32eLArbtArOH2vXfTaQJJkxoNetZDAV1T86ygAtilV14peGQAAAAAoluu9OvaxAgAAAAAAAAAAAACWgFldk1bXpJNn3NPEWI61VjoKj217AbFheKwzjI3tyLaCUTL/+Z3R/L1eeiu5jHo9aeeid4oQ6+jJ2orsUXQsGCAbhMWaWzLDwFhzdFkwUmZWVlNZPQAAsDiIhQEoTj9GLCyTMM+0ZRcQnnF9OH4ipFKy6ExU6CXNSNRMy3IdgJBFLMyxc+QoEhaxLZUyopWBJNtm1kV0Zygoxu1m8lzLMRb2oZ+V9s+HX/fM75Q2bpxzLAUoe0Hf+TqZ1WtAGV9bZn3OZb0OCWNhqYc5AQC56x24g17dkMCXKwDW3eEA57KoNuIFvVzxr+H0tWb5/18JAAAAAAsj7/3iAAAAAAAAOJaW5bPWAAAAAOBgjJHW1r3TqbPu6WIsy1or7Xd8QbFdLyA2DIoNw2NhkTF/jGw4P3+zzad7KG1f8E4R4tzLdnVNqvtiY80tqT4Iiw0uM41AbCw0UrYpU1tJZ/0AAECmiIUBKE5/P8ZEGf7B6Ax0GUX+eZzJAcQxY2Gu6EzqB6rHvd/zOpg6ajzBMeQYn5kWeYuKqS2NMu70mSMUmEUUYt4dY3Hn339KeuAnw6+r1qXbf2i+cUxI+bm4qDsQc3vdLjPXY1fQa6Tztbsafvm0+QAA2er3pO5ueODLGfRyxL9i/Q2KzJlaIOblCHxNu762KVXYtQkAAAAApeN6L5V9rAAAAAAAAAAAAAAAFMIYI603vNPpq9zTxViWtVbaaw8CY4PwWMsXHut4/9r2KEI2GSnzzYP5HOx7p8tPOieJe2SmXV0fRcbqg/DYUWRsQ2psybhiY75p1NiUqU45Vg8AACTGEXUAitOLcaB2pnGYpMGgDAJZccMlzvhUyh+uj/th/chwWk5hn+AYMom5uUyLvBELK2csbB5lPJAl5n38gR/3IhlhnvNdUv3q9IaUiTkib0XKPRZWwuec63e5877Jeh0cy58WG+FANgCIz1qp1xlFurrT4l6B6/3Td3eLXhtIkoxU23AHvWoxA18rW1JlLee/2wAAAAAA+crp/UwAAAAAAAAcb3y2AAAAAABKyRgj1ZveSe5jEmOFx/p9aa81Hhsbi4v5wmPByFgwQNZppbaOS+tgzztdfMI5Sezw2HpjEA4bxsb8kTHvMtMYhMaGsbGjSJnvsvqGTIVjtQEA8CMWBqA4/YM4E2U4gIjwTN5vLjpjYZXo89PmT3s8EyLup1RjL1HLCo5hypjSfGyd99PgcQrG3pZRku3g0r3pj2PMHNGpTGJB8z5XYszf/qT04V8Iv27lpHTrD8w5hhCu51ri14YFjYU5x5fR77fMQ1tJxPwdlxtXvGzaazYHsgFYAv3DQLQrZtArbHrbK3ptIEnVdV/Ma4agVzD+VWsW+LsbAAAAALBQCvuiCAAAAAAAAAAAAAAAsEhMpTKKRUVNF2NZtteTOru+6FgwQOaFxWxrezwyFhYg2++ks4LLbK/tnS64J4kdHqsPg2MbRwGxsQBZfVNmGBsLBsiOYmVbUr3pxe4AAFhwxMIAFKe/P32aLD807lr21P/oZzCmadEp5/lp8ycUd3mR91WK91PkdlDgH2bTIm9RB9Pbw/THU0oJts3z701/GH6Jn/uSPvXf0x2LNP/rXJz573uj1NsLv+7WH5BWT803hjzM87gVKa/IY5k5t1HXY5fxAWPO1+4psbBleswALBbbl7qt8aBX1xH4cgXAhtO7/r+AfJlqdNBr7PyU6yorRa8NAAAAAGDp5PwlGgAAAAAAAAAAAAAAYOmZalXaOOGdoqaLsSzb7UqdnfHYWDAoNgyPdQbTjAXIfPMdcJzG3Dq73ilCrCMSjZFtBINig6hYffMoNmaGkbGGL0AWjJStNwiPAQAKQywMQHF6MWJhmQZDIuIlJ58XMVsWY5oSnXKdHyosYJJTLGymZUWMyfYkk+avvjliYZ/4I+mqz09xLCmx/ehxz7y8Mn5L/JRw0bSgQr8rVdLcjua9j6bMv/OQ9JFfDb9u/SrpOf9qztt3STsENWtwqiRcAap+VsHABXrOpflaM5OE49l5SFq7Iv3hAFhO1nrx5LhBr7Hzwet2Vc7X/yVU2xhFumpbMYNeIdNX18sfRAUAAAAAwMX5fib7LwAAAAAAAAAAAAAAQPmZWk3aPOWdoqaLsSzbPRwFxoYBsfYgLOYLkNlWIDLWDkTKWttSN6tjEpeEtYPHYTt6sjjLqlRkG1uj4NhYgGwQG2tuyQQv888zDI+trhMeAwDMhFgYgOL0D2JMVFAs7OlfJb3vX8443zxDmTMWluc3cZ/6tNHPUWGVVD/wH7Gs4B9AUdvV438mXf3SdIYkTX/czn6m9MGfds2c3jjStPtRafOmFBdYwvV0Pm6DqNP1Xy+df697/t2Hpa1npzmgbOe/54cl2w2/7vbXSbXmnLeflwWNhdU2wi/vttKP883j4JK0ejL95Ub+LijosXMGNqeM54M/LX3W21IfDoAF0+/6wl2zBL1CzmcWjsRMKmuTQa9azMCX/3y1KVUckVAAAAAAAJaKa19rUV9+BAAAAAAAAAAAAAAAUAxTW5G2TnunqOliLMse7E/GxlqDn9vbg+jYji86FhEg6zmOOUU8/b60e8k7RYh19HC1JhsMih0FyPzhsY3BNKPLjsJjdW9+s7qWyuoBAMqNWBiA4vT3p0/jDHqkwBUwMUaqrkfNmMFYXOsZjMi4vok7xw/XP+sVvjNRf37mFYkKjKHXcU966Z58YmHDx+maL3PPW1lNbxxDpirZ3uTls8SgYkX8ZpDnthnblFDQuSnbiCu8ldS8Yb2o+S/eLX38d8Kva94g3fQd8912pJRDUFGv2WW2csJxhfVCMquu65NKuD31YvxOTiQq9lhUUCVheO7yfamPBEBOrPUijcFglz/o1Y0R+DrckXrtotcGkhfbnCXoVQsJfNU2vfNV3ggBAAAAACBVri/JKOV7RgAAAAAAAAAAAAAAAIvBrK5Jq2vSyTPuaWIsx1orHeyNwmHD8FggKGbbO+Oxsda21BlGynZG4bI+nwmZS68r7Vz0ThHiHDlqayujiFgwQDYIi5nmllQPxMaGYbKjnzdlVjI4Dh4AkApiYciEMeYGSc+TdI2kDUmPSfq4pL+y1h4WOTYsmiyDUxGxkKj4zLxhn1COP4SCH6Yvw4frN27wnckpFhZ5nwfHkGPAzHW/Dx+nasQfQlk8Zmc/U3riLyYvnykIlfb2XcI/8qc9blvPlm57rXT/m2abP/mAspv/7te6r7vjDdHbaGaSrm/CwFPRnLEwSYeX04+FJf4dldFzNer54vqdljVneK4ifeG7pHd+gWO+Er6eAcddb98LdHUdgS9X0Oso/jU4393hOVwWtWZ40Css5hUV/6o2yh8MBQAAAABgWTn3/eb1RUMAAAAAAAAAAAAAAABwMcZIa3XvdOpK93QxlmWtlfY747Gx4c+tUXzMDi9v7UidQKSs44uVZXIM/xLpHkqXn/JODnHvYbu6NoiMDcNi/p+9AJkZxsb8gTJ/pKy5JdU3ZWpkbQAgTbyqIlXGmK+R9D2SXuyY5IIx5m2Sftha+2R+I8PCyvQ/9VHhmRyDU9L0eJHr/JEc4wf+xyQq9JLqYxexrGAkIM/Qm+2FX26qo5+v/UfSJ/9ryLxZPGaOdV/ZGj9/4lbp8gfCp017XEmXZ/sZhoQiQkFDN39PjrGweTnW5/xfSo/+Sfh1J26Trv+G7IYkZRDwWNBYWFQM7PByfuOYJqvtOjIWVnVfZ22GERjXmIzUuM49W+me+0BJ9XtSd3d60MsVAPNP2z8oem0gSZWVQbhrhqBXLSTwVduQKuyGAgAAAADg+HPs22UfKwAAAAAAAAAAAAAAwLFijJHWG97pinPu6WIsy/b70l5bagdiY8OwWNuLjdn2zmCa3ZBImS9Ahvkc7EsH56VL552TxA6PrdXHImMaRsZ8cbGj8Fg9EBvzR8rqGzLViONSAWBJcJQmUmGM2ZD0byV9/ZRJT0v655K+yhjzzdbad2Q+OCy4DGNhrnCUKXEsTI54UmEfrs/pfpop8pXnYxfjccs18BY3phQVeVuCWJhzTHEeNyn9x27O7TLs+WGtdNcPuue5801SpaA/iJNG+yJfs0tsJSIWdpBFLCzp/ZvV75GoWFhWQcAporalyIAZB7LhGLNW6nWmB75c1/nPd1tFrw0kSWY86hUMeoUFvlzXV9eKXhkAAAAAALBIXPt++eZXAAAAAAAAAAAAAAAAOJhKZRCT2oieLsaybL/vBcOGEbHWjtSZDJDZsTBZIEA2nKfDsVJz2+94pwuPOyeJHR6rNwdBsWFUzB8d8/41ja1RjGwsUjaIjjW3pPWmt80BwAIiFoa5GWOqkt4m6eWBq85Ler+ky5JukvR8jf7/dZWkPzTGfJG19r15jRULKNMwR0RYKSo+k8kH2WPEi6SID9fnGTDxrX9kpCfN+ylqWcExRE2b8mMXJzqVZ+Atbkwp1xDWHLGwrMSJ80XdR6kH1ebdLkPmf+zt0vn3hE9+xYuka798ztssQtwYXslU16TKmtTfn7zuMItYWFIZPeeini9RYS5ZZffYuralSs6vj0AKegeBcFfMoNfEtNsE8cqiWo8X9KpNCXzVGsVFGQEAAAAAwHLL9Yt0AAAAAAAAcGz9g5dKH3xf0aMAAAAAAAALyFQqoyjU2Wvd08VYlu12R+Gx9nhszPt3EB4bRsaOphlM54+U7XfSW8ll1Wl5pwufck4SOzwWiIyNomOjCJlxxcaOLtuU6k2ZyOYCAKSLWBjS8BaNh8IOJX2PpP/HWnswvNAYc6ukfyfpxYOL1iT9gTHmudbax/IaLBZNlt8wHRVWyvk/ZHHiRWHnj+T44fqxsFHeUbUwgTFE3W7aY5onOpVJkCNmTCnXEFbS5RURC/PfTzneR3O/zgXmt33p7te4J7/zzVNCf2lx3UbS9V3QWJjkRVv2z09enkUsLOnrXFaRoMjlFhSxiXoNyPP1EcvL9qXu7mSwK07QKzh9WIgQ+TO1yaBXLSTwNREAC7muwm4aAAAAAACw6Bz77dnHCgAAAAAAgBmYf/wdsr/5lskrvuZf5D8YAAAAAACwtEytJm2e9E5R08VYlu0eeuGx1vYoINb2h8e8sJgdXt7aCY+UtbelA44rm9vwfn3SPUmsI3YrFdn6xlhkbBQgG0XGzFiMLDD98PK1OuExAFNxFCrmYoy5UdJ3BS7+P6y1fxic1lr7AWPMF0p6p0bBsCsk/YikV2Q6UCyuLINTzmVPi4VlMKZ5Y2G5frg+Ziws1fspYlkT/+GNut20H7s5YmGZxLDixpQWIBaW6TbtWnacx03li4UFX8se+V3p4l3h0577IuncF8x3e0VxvWYvwh+9Kyfyi4Ul3Z4ye85FLNdU3ddZm2EHzrUtVZRvKBALxVqpt+cOenUdga+w6bu7Ra8Nho7CXTGCXlHxr+r6Yvw+AgAAAAAAyIPzPZa8vmgIAAAAAAAAx4G58mnSK94k+8uvHV34jFtkvunVxQ0KAAAAAABgDqa2Im2e8k5R08VYlj08mAyIDWJjw/CYPYqM+cJkYZGy7mE6K7is+v1BAG47crJYn56qVmXrgaDYMEQ2vKyxJROMjQ1/9kfKVtcIjwHHFLEwzOtHJK34zv9GWChsyFrbMcZ8i6R7Ja0OLv52Y8xPWGsfzm6YWFxZxsJc0Q8TfbB/FgEz51iCH6Z3xcJ6aY5mSuzAt/5xp5tX5H0+QywstxBWxfFzhmOR4seU8gxhlTEWFifOF3UfpR16m/s1xTd//1C653XuSe9885y3NQvX60Par6EL8Ifqylb45YclCgZl9ZyLWm7k8yxDkb//c3zuIx/9w0HMKyTw5Qx6OeJftlv02kDywlzBoFctEPCKjH8Nrq9tFPc6BAAAAAAAcKw59tvzhQwAAAAAAACYkfnG75Ne8PnS+/5MuvoZ0oteJtN0fCYTAAAAAABgiZiVVenEFd7JNU3MZdmD/UFgzBcQG4bGBkEyG7x8LFK2O5q/l3LzYNn0etLuJe8UIV54rCbb3PICYhMBslFYzDQHcTF/bMwXJlNzy9veAJQGsTAkZoypS/qawMU/Pm0+a+2HjTF/IOlrBxfVJH2DpB9Nd4Q4FjL90LgrrFRR9H9/swiYxYgXhZ0fyvPD9WNho6joVJr30wyxsMjbTfmxmyc6lclj5lq/GWJhqcdwki6vqOf+UI5BtXm3S/82//BvSDsPhk/39K+SrnjhfLdVqJjbdxlVHH8EZxIeSro9FRELq0bNmPpQpi97SiyMA9nyY/tStzUe9OoGAl9x41+9TtFrA8l7vkcFvWpxA1+bUpUdiwAAAAAAAKVWhvczAQAAAAAAcGyYm18g3fyCoocBAAAAAABwbJnVNWn1rHTqrHuaGMux1koHe6OoWGsYHNse/dzalu3sjmJjE5GyYYBsR+rzeaO59LrS9gXvFCHO0bx2ZXUQFBvExhqBqFhzS2Z42fDysEhZY1OmtpLO+gFLjFgY5vHFkhq+839trf1gzHl/XaNYmCR9lYiFIVRBsZC8Y2FxolNh56fNnwnf+pu87qdZlpXlNhO8qTixMFcMJ4PHzBVKm3iccozhJF1eltu0c9kxIm+R8yc17zY7GE+3I937hvBJTEW6I+dfs67Xh8QhwRyf22mrOP7L3c8iFpZQVs+5yFhYVLgwQ87XyoryDSTe0mUAACAASURBVAUeQ7398GBXWNArGP8am35HC/2cP05qzdmDXmHTV+tT/t8IAAAAAACA48O1n5V9fgAAAAAAAAAAAAAAAMBxZYyR1ure6fRV7uliLMtaK+21R+Gx9ig2NgqK7cq2ticjY63A9J3dOY5thiTp8EC6/KR3coh7D9vV9VFArDEIjzU3ff8OwmPDy4KRsubm0Xym6uo4AMcbsTDM40sC5/98hnnfI6mr0Tb4fGPMVdbax9MYGI6TDP/jFTusFHO+ucYSI14Uen6ooFhYXlG1qPs8+HhFxVxSf+xcsTDffyxzDbxFBfD8Z4mFhfJvS5ERo5IFg4br8+Bbpc4nw6e54ZukE7fkN6YsJH3NLgPj+C+3zSAWlvR1LrPnXFQsrKg/wl1jMov13E9LvxeIeu34Yl5RQS/f9cNp+4dFrw0kqbI6PehVcwW+/D9vSBV2lgEAAAAAAGBGzi8TOab7WAEAAAAAAAAAAAAAAACkyhgj1ZveSVe7p4uxLNvvS3ut8diYP0LW8oXHOoPY2ESkbPBvZze1dVxaB3ve6eITzklih8fWG4Og2DA2tuXFxOqj2Jjxh8lckbL6BuExLBRiYZjH7YHzfx13Rmttyxhzr6Tn+y6+TRKxMIzLtNIaEVaKjM9kEQvrOYZSiT5/NH+OH673PyaR0am8CrvBxyrqdlMekzM6VQn/Oc68c0kjFubYFpNKurxMt+k4cb6I14DU76M5t0vb9yI9H/ix8Osrq9JzXz/fbSTiug+Trm/M7buMKjnGwhLfvxk956KeL5FhroJioXm+Ps7DWqnXngx8xQl6BafttYteG0iSzPTA17TraoOfq2tFrwwAAAAAAACWmXM/K9/OCQAAAAAAAAAAAAAAACBfplIZxaTOXOOeLsaybK/nBcP8AbH2ZIDMDn9u7YwCZO1AhGyPYzvnttf2ThfcmZrY4bH6xnhAzB8gGwTGjsJjza3ANJujy9ab3jaXA2utdPEJmdNX5XJ7KA9iYZjHLYHzD804/0c0Hgu7VdK75hoRjqEsg0FR4ZmcY2Gu9SwsFhZ3/fO6n6KWVWQszBWOqTh+jjPvHKICOOMXRCwk7W0p6fIyfO7HirwNXwdC7tPUn2/zbpd96YGfkvafCr/6ma+QmtfPeRtlEHf7LiHj+C93P4tYWEJZhbAiny/5/LE7yfWcq0yJhaXw3O8dDGJe0wJfU+Jf3Z18Q6FwqzYmY15hQa+o+NfKlrecRXg9AwAAAAAAAKYqwZcfAQAAAAAAAAAAAAAAAEDKTLUqbZzwTlHTxViW7XYH4TFfbKw1+Lk9io3ZYZDsKDgWEik72EtnBZdZZ9c7PfWYc5JYRQBjvPCYLzI2CpCNYmPmKEzmCpBtSesNGcdxp9Za2Z//XunPf1/6uXfIXPfsZOuNhUQsDIkYY05LOh24+JEZFxOc/lnJR4Rj68Fflh7902yW3dsPv9xMiYV9+BelT/xBumM53HGMJfhheseH6w8vS+///hTHczniSt9/Y6KiFh/9D9KFv01pPI77J2wMrmCWJH30N6XubjpjkqQn3uMYUyX8Z78Lf5vuYyZJbdfLcOA+inrcHvyldJ9zl+5LNt+9r5dqzfTG4Xfp3vDLw+J8YQGlB39Zeuzt6Y1n9yPzzf/If5EuO+7nWlO6/bXzLT8xx3bWeTTZtr/3xGy3UyamGn754+9K/3VgJ+H29MBPS/UMytGRr9+O+0WS3v8qqRJx/Twu3uUYj1FkwOzgYvTjZftSt+UOfB3uSH3H/z2QL1OTVk/MFvSqhQXBNqQKf1IDAAAAAAAAY5zvQ2XxhUwAAAAAAAAAAAAAAAAAsHhMrSZtnvROUdPFWJbtHg5CYr6AWMcXFmt58TE7MU1IpOzwIJ0VXFbWDmJuEcdXK+an6SoV2UYwKLbhxcTePeqd2H/1Munn3yFz3XPmGzsWBkc2I6ngb5y2tbY14zKC1Y/ofCaW0yP/uYAbNdExpY//p/yGEoyWuMJTvY70wL/JfjhSIMYVcT89+sfeKXcR/zXafTif+ylOLGz7g94pFzPElB753eyGMYsHf6mAG40ZC/v738tnOHE99T/d1z3nu6X1K/MbSxz7T6b8PFyAWJgrJnThb9OLKs7rY7+V/226Xh8l6UM/k984jkz5/S/l97sWIYwX63IFvWohga+JANjg58ra9McaAAAAAAAAQEIR+36tZd8cAAAAAAAAAAAAAAAAAKTI1FakrdPeKWq6GMuyB/uj2JUvNHYUHmtvyw5jY62dQZQsJFLW2pZ63XRWcFn1+9LuZe8U5anHZP/ly6Sfe7vMM27JZWgoFrEwJLURON9JsIzgPJsJx3LEGHOlpLMzznbTvLeL48aoNPGZYEglKqxSiDLcT4Ex2DJ8K3nF8XNBOOginon7qQSP3TxWT0u3fF9xt5/XdrcI27fhv9yhTLXoEYwr3e/YY6JaH0S+QgJfUUGvYPyr1uQxAgAAAAAAABZB1H572y/fvmEAAAAAAAAAAAAAAAAAgCTJrK5Jq2vSyTPuaWIsx1orHexL7UBsrLUtdYaxsUF4rO2LjY1FynwBsl4vvZU8ji58Sva7vlj62XfI3EAw7LijXICkgrGwvQTLCMbCgstM4v+S9CMpLAfLrLrqxShMVbIF/6ehshZ9vgjrV45+Pv3p0vn3FDcWSaqsjp+vX13MOPyqa+E/FyV4H518nvTEXxQzljILPr+qa1J/v5ixpOHWV0urJ4q7/eB2t+i3M4/qetEjKKeVuTux6aqsEnYbMtXxmFcw6FULxL6c8a9NqbJS9NoAAAAAAAAAyFVU9L8viVgYAAAAAAAAAAAAAAAAABxnxhhpbd07nbrSPV2MZVlrpf2OLyIWEhRr78j6LwtGyvzzWpveipbJ9gXpUx+TiIUdexwNj7QkeTU8pq+giO15PyHd9QNFj2KcqUqnX+jFws68WDr/3iIHI5150fhFZz7Du7zIp8+Zzxj9fMM3Sh/6meLG0niad/K78rOLGYvfmZeM//yhnytuLMMx+N38XdKHf76YsZTZ2c8cP3/mJdJjby9mLPOqXyM9+5XFjuHMi3O6nZdMn6ZoZz9T+th/LHoU5dJ8hnTuZVKtKXVbRY/Gc+Yl5Qg8zqO2kSDoFXK+ui6ZOLtYAAAAAAAAACDARMTCjuuHrAAAAAAAAAAAAAAAAAAAmTDGSOsN73T6Kvd0MZZlrZU6rUFAbDw25oXFvMusP0o2ESnzXV4WtRWZN/6OzIu/tOiRIAfEwpDUbuB8PcEygvMEl4nj7sZvlh7+NWn7g0WPZOS210qrJ7yfn/t66d1fJvX2ihnLra+S1q4Yv2z9rHTL90sP/EQxY3rhL49/wP/U86Wt50jbHypgMEa6882TMRNTkZ71L6QH/+8CxiRp62Zv2x669h9KZz+ruPDcdV8rnf608cs2bpRO3CZdvr+YMZXRuS/yTn63v046/57yhIziqq5LL/ltqZbkV3OKTt4hXf8N0sd/O7vbuPHbpM1nZbf8tFz/9dKDvyJduruY269teNvEXa+Sth8oZgx+puK9fldXpTveKP3d9xQ9IunKz5GuGfwB/KJfk/7m2/K77craZNCrFjPw5b++thF9EB4AAAAAAAAA5CLqI1f93EYBAAAAAAAAAAAAAAAAAICfMUZqbHgnXe2eLsaybL8v7bW8kFhrEB4LCZDZ9vZkZOwoQDaYpzNHz2B1TeZHfkvms/5R8mVgoRALQ1JljYW9VdLvzjjPTZL+MIXbxqzWr5S+6N3Sw//eC6hU61K1Ie0+VMBYznlRp6d95eiyc18ovfQvpY//p3yjSutXSte8XHr614Rf/7y3SKdfID3236S9J7Idy/n3SofbkqlKn/NH0rUvH7/eVKSX3yfd/RrpgZ/0LmtcJ528PdtxNW+Qrvtq6arPD7/+hb8onbhF+ttXeudXTkpnX5LtmCqr0pkXSzd+i/cYDtWa0uf9qfTwb0hP/IXUa2c7jqGVE942fMM3h8djXn6PdNerR4/b5rOyjS71D6RP/Y/R+eu+Vrp4l7Tz4fHpGk/zIlN5qTWls58j3fRtUnVt/LqzL5Fe+lfSx39HunSvpBy+7X734fGA4vN/yosGPvHnUv1a6fCy9OFf9K5bv1I6/enj85+4Xbr+6yYDcUUwRnrxb3oRtsffKR1cTG/Zq6elcy+Vbvgnk8HAMlo9JX3hu6SHf106/5dSfz+nGzbe8+kZ3+C9Lp95kfc79yP/Tmp9TDrzEqnWyGksAxs3SU//aumqz/XO3/zd0uZzpE/+odT+RL5jkbz/d1z5udJN3zq6L276VmntjPQXXz6a7pqXh88fVGuGB71qrsDXphdNAwAAAAAAAIDjYvWUdO5l3vtTpiLJjP6N9REqAAAAAAAAAAAAAAAAAADKzVQqUmPTO5291j1djGXZXk/q7AaiY4PAWGtb6gzDY77I2F5LOnedzFd8p8x1z0lvxVB6xtocwhc4dowxV0h6MnDxhrU2dq7QGPNvJH2v76Kft9Z+Vxrjm4Ux5jZJ9w3P33fffbrtttvyHgYAAAAAAAAAAAAAAMDc7r//ft1++9gXPN1urc3xG7IAABjHZ/QAAAAAAAAAAAAAAMBxUPTn8yp53RCOF2vtU5IuBi6+bsbFXB84/2DyEQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABw/xMIwjwcC55854/w3TlkeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUiMWhnncFzj/4rgzGmOaku6YsjwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIClRiwM83h74PznzTDvZ0uq+c6/31r7+NwjAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOEaIhWEe75DU8Z1/sTHm5pjzfkvg/O+nMiIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBjhFgYErPWtiX9XuDiV02bzxjzbElf6buoK+m3UxwaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAsUAsDPN6vaRD3/lvMcZ8uWtiY8y6pF+XtOq7+FettR/JZngAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACLi1gY5mKtfVjSzwUu/j1jzCuNMf4gmIwxt0h6p6SX+C5+StIbsh0lAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAYqoVPQAcC6+WdJukLx2cX5H0C5JeZ4z5O0k7km6U9GmSjG++A0lfaa19LMexAsD/z969R0+XlfWB/+6maRoaBASaq9BcjYASiJmIkrFjAEEnIEqUkGToGDUTk0xwNJlBzZpoMiYzGiauxAuJCo4XRkVBEATGxEaEeAEbRSAKSKMYGrkLLU1z2fNH1dtv1fndqn5VdersXZ/PWnuxTr116uxn1342dZ7zW7sBAAAAAAAAAAAAAAAAAAAAAJphszA2Vmv9VCnlq5P8UJKvWfinK5M84YTT/iTJM2qtr951/wAAAAAAAAAAAAAAAAAAAAAAAFp1yb47QB9qrR+ttT4tyV9P8munvPUDSX4gycNrrS8fpXMAAAAAAAAAAAAAAAAAAAAAAACNunTfHaAvtdYXJHlBKeX+SR6V5F5JrkhyQ5J3JnlNrfXmPXYRAAAAAAAAAAAAAAAAAAAAAACgGTYLYydqre9I8o599wMAAAAAAAAAAAAAAAAAAAAAAKBll+y7AwAAAAAAAAAAAAAAAAAAAAAAAMDxbBYGAAAAAAAAAAAAAAAAAAAAAAAAE2WzMAAAAAAAAAAAAAAAAAAAAAAAAJgom4UBAAAAAAAAAAAAAAAAAAAAAADARNksDAAAAAAAAAAAAAAAAAAAAAAAACbKZmEAAAAAAAAAAAAAAAAAAAAAAAAwUTYLAwAAAAAAAAAAAAAAAAAAAAAAgImyWRgAAAAAAAAAAAAAAAAAAAAAAABMlM3CAAAAAAAAAAAAAAAAAAAAAAAAYKJsFgYAAAAAAAAAAAAAAAAAAAAAAAATZbMwAAAAAAAAAAAAAAAAAAAAAAAAmCibhQEAAAAAAAAAAAAAAAAAAAAAAMBE2SwMAAAAAAAAAAAAAAAAAAAAAAAAJspmYQAAAAAAAAAAAAAAAAAAAAAAADBRNgsDAAAAAAAAAAAAAAAAAAAAAACAibJZGAAAAAAAAAAAAAAAAAAAAAAAAEyUzcIAAAAAAAAAAAAAAAAAAAAAAABgomwWBgAAAAAAAAAAAAAAAAAAAAAAABNlszAAAAAAAAAAAAAAAAAAAAAAAACYKJuFAQAAAAAAAAAAAAAAAAAAAAAAwETZLAwAAAAAAAAAAAAAAAAAAAAAAAAmymZhAAAAAAAAAAAAAAAAAAAAAAAAMFE2CwMAAAAAAAAAAAAAAAAAAAAAAICJslkYAAAAAAAAAAAAAAAAAAAAAAAATJTNwgAAAAAAAAAAAAAAAAAAAAAAAGCibBYGAAAAAAAAAAAAAAAAAAAAAAAAE2WzMAAAAAAAAAAAAAAAAAAAAAAAAJioS/fdAZiAyxYP3va2t+2rHwAAAAAAAAAAGznm7x4uO+59ADAif6MHAAAAAAAAADRv33+fV2qtY14PJqeU8qQkP7/vfgAAAAAAAAAA7MCTa60v3ncnADhc/kYPAAAAAAAAAOjUqH+fd8lYFwIAAAAAAAAAAAAAAAAAAAAAAADWY7MwAAAAAAAAAAAAAAAAAAAAAAAAmKhSa913H2CvSil3TPLFCy/9UZKb99Qd2KUHJvn5heMnJ3n7nvoCjEv+w+GS/wDtsXbD4ZL/cNisAXC45D+wC5cl+ayF41fVWj+8r84AgL/R40C4v4PDZg2AwyX/Adpi3YbDZg2AwyX/4bBZA4Bt2+vf51061oVgquYJ9+J99wN2rZQyfOnttdY37aMvwLjkPxwu+Q/QHms3HC75D4fNGgCHS/4DO3TdvjsAABf4Gz0Ogfs7OGzWADhc8h+gLdZtOGzWADhc8h8OmzUA2JG9/X3eJfu6MAAAAAAAAAAAAAAAAAAAAAAAAHA6m4UBAAAAAAAAAAAAAAAAAAAAAADARNksDAAAAAAAAAAAAAAAAAAAAAAAACbKZmEAAAAAAAAAAAAAAAAAAAAAAAAwUTYLAwAAAAAAAAAAAAAAAAAAAAAAgImyWRgAAAAAAAAAAAAAAAAAAAAAAABMlM3CAAAAAAAAAAAAAAAAAAAAAAAAYKJsFgYAAAAAAAAAAAAAAAAAAAAAAAATZbMwAAAAAAAAAAAAAAAAAAAAAAAAmCibhQEAAAAAAAAAAAAAAAAAAAAAAMBE2SwMAAAAAAAAAAAAAAAAAAAAAAAAJurSfXcAgNG8N8l3DI6BwyD/4XDJf4D2WLvhcMl/OGzWADhc8h8AAKAP7u/gsFkD4HDJf4C2WLfhsFkD4HDJfzhs1gCgK6XWuu8+AAAAAAAAAAAAAAAAAAAAAAAAAMe4ZN8dAAAAAAAAAAAAAAAAAAAAAAAAAI5nszAAAAAAAAAAAAAAAAAAAAAAAACYKJuFAQAAAAAAAAAAAAAAAAAAAAAAwETZLAwAAAAAAAAAAAAAAAAAAAAAAAAmymZhAAAAAAAAAAAAAAAAAAAAAAAAMFE2CwMAAAAAAAAAAAAAAAAAAAAAAICJslkYAAAAAAAAAAAAAAAAAAAAAAAATJTNwgAAAAAAAAAAAAAAAAAAAAAAAGCibBYGAAAAAAAAAAAAAAAAAAAAAAAAE2WzMAAAAAAAAAAAAAAAAAAAAAAAAJgom4UBAAAAAAAAAAAAAAAAAAAAAADARNksDAAAAAAAAAAAAAAAAAAAAAAAACbq0n13AGhHKeVWSR6U5KFJ7pXkjkk+nuSDSd6e5HW11hu3fM1bJ/miJPdNcs8kH03y35JcV2u9fpvXGksp5WFJ/nySuyW5TZIbkrwryWtqrTfts29jKqXcOcnDkjw4yWcmuTzJh5K8N8nra61v32P3jiil3D+z7+1eSW6f5N1J3pnktbXWT2zxOvdL8hcym+93TPKJzMblrZmNy0e2da01+yX/t0D+z7SW/4dO/m+H/J9pIf/HnPMtjAdt6nHt7jGmbRnrXqUVhz4ePeZKjzFty6HP96FDr93M+9ZdvvQY07ZYA1jUY670GNO2yH/1GwAA+uVeaDs8n59p7X5GjdcasC3WgJnW1oBDJ/+3Q/7PtJD/ary0rsd1u8eYtsWzuWXGo8986TGmbTHnlx16/abHXOkxpm2R/wz1mC89xrQt1gD1G5i8WqumadqJLbMfW89M8gtJPpykntI+meQXk3z5Fq57tyTfn+T9p1zvNUm+asPrPCDJ1yT57iTXJvnTwTWu39I43iHJtyX541Pi+dMkP5bkgXv8vnc2HkluneRLk/z7JL97xlyq87H6ziT32HMOPDXJa0/p5/vnc/WuG1zjdkn+aZLfP2NMPpXkpUkeP1Ls8n874yj/G8z/Xc+PFcbgrHbVjuOX/9sZR/nfSP6PNedbGQ+tzdbj2t1jTFv+zse4V7kiyWOSfFOSn8jsnuXTg+tcs+/5f+jj0WOu9BiT+d78eEyydjPvW3f50mNMDc75JtaAqN90lys9xrTl7/yg83+s+RH1G03TNE3TNG3k1vu9UDyfH208Wr2fiRqvNWA742gNaHAN2PX8WGEMzmpX7Th++b+dcZT/jeT/WHO+lfHQ2ms9rts9xrTl7/ygn80ZjyN96y5feozJnG9+PCZZv+kxV3qMqcH53kT+58BrN/M+dpcvPca05e/8oNeAseZH1G80beO29w5omjbdluQnN/iR/ZIkdz/ndZ+Y5D1rXOvHk1yxxudfneQVZ/yg3MrNyvx6fymzXW1XjefGJH9/xO955+MxH4MPnHMufTDJ39rD/L99kuev0c8bknzpOa7z6CR/cI5x+ckkt9th/PJf/h9c/o85PzbIrwvtqh2Og/yX/weV/2PN+VbGQ2uzjTWPj7nuztbuHmPa4ve983uVzB5evDGz4v1Zn3/Nnuf/QY9Hj7nSY0zme7vjMb/OJGs3veZLjzG1NOdbWAOiftNtrvQY0xa/74PP/7HmR9RvNE3TNE3TtJFbr/dC8Xx+9PFo8X4marzWAGvAQa4BY86PDfLrQrtqh+Mg/+X/QeX/WHO+lfHQ2mtjzeFjruvZnGdzNQfw9zlTH48e86XHmMz5dsdjfp1J1m96zJUeY2ppvreQ/1G76Tpfeoxpi9/3wa8BY82PqN9o2lbapQE42UNOeP2Pk7w1sx9ml2a2O/Ajklyy8J7/IcmvlFK+uNZ6w6oXLKVcneRFSS5beLkm+a3MbvjvlOSRSe668O9/M8lnlFK+otb66RUu8+eTPH7VPm2ilPLYzHZPvc3gn96Z5Hcye+h4n8x+2Nx6/m+3S/L9pZRLaq3fN0I3xxiPuyW58zGv35zZD9sbMtth9i5JPn/+vxfcKcmPlVKurLU+e8f9TJKUUm6V5KeSfNngn96b5Lp5Xx+Y2Vws83+7e5KfL6U8ttb6qyte59FJXpnZTcSijyT5zcxy7DZJHpTk4VnOsb+R5MpSypfVWm9eMbR1yP8Nyf9btJT/o82PiZP/G5L/t2gl/8ea862MB23qce3uMaaNjXWvkuTpSe64eY93y3gk6TNXeoxpY+b7MrWbW/SYLz3GtDFrwBL1m5kec6XHmDYm/2+hfgMAQK96vRfyfH6Z5/MDary3sAZsyBpwi5bWADXeGfm/Ifl/i1byX42X1vW4bvcY08Y8m1tmPG7RY770GNPGzPll6jdJ+syVHmPamPxfonZzUY/50mNMG7MG3EL9Blqy7d3HNE3rpyV5XS7utPlbSf5hkgee8N57J3lOju7Q+eokZcXr3SdHdwL91SSfM3jfbZL8z5n9n/7ie79rxes885h+1iQ3JXnb4LXrNxi/q3J09+S3JXncMe+9c5J/N3jvp4577w6+552PR2Y/8i58xkeS/HCSv5rktse8tyR5SmYPa4d92vl4zPvw3YPr3jyf/5cN3vfQJK8dvPd9Se65wjUuP2Z8/2w+ty8/5v0PTPLiY8bkWTsaA/kv/w8u/8eaH/NrLX7Wr83nzDrt0h2Og/yX/weV/2PN+VbGQ2uz9bh29xjTlr7rnd+rzM//0DHjWZO865h/u2aPc//gx6PHXOkxJvO9zfHIxGs3veZLjzG1Mufn509+DYj6Tbe50mNMW/qu5f+I8yPqN5qmaZqmadrIrdd7oXg+P/p4tHY/EzXeC9e0BlgDDm4NGGt+zK+1+FlqvPJf/vsbvcmMh9Ze63Hd7jGmLX3Xns0Zj4PIlx5jMufbHI9MvH7TY670GFMr831+/uTzP2o3XedLjzFt6bu2Bow4P6J+o2lbaXvvgKZp022Z7bz9C0k+f41zvvGY/7N92orn/vDgvNfkmJv6hfd/xeD9NyW53wrXeeb8h9p1Sf5jkm9I8qjM/qtBVw8+8/oNxu/5g896a5Irzzjnnw7OeVOSW+34e975eMx/uL0nyTcnuWLFc+6S5M2D67/lrB+JWxiPB+ToDcWTT3n/bXP0x/0PrnCdawbnfDrJl55xTknyM4PzPpzBDceWxkH+y/9DzP9R5sf8Woufde0u4zpH3+S//D+o/B9rzrcyHlqbrce1u8eYtvA9j3KvMj/3Q5n91zhemuQ75mvY3ef/du3gM6/Z07w3HrXPXOkxJvO9zfHIxGs38+t1ly89xtTKnJ+f28IaoH5T+8yVHmPawvcs/0eeH1G/0TRN0zRN00Zuvd4LxfP50cejpfuZqPEuXs8aYA04xDVAjbfKf/l/ePk/1pxvZTy09lqP63aPMW3he/ZszngcTL70GJM53+Z4ZOL1mx5zpceYWpnv83NbyH+1m4v96y5feoxpC9+zNWDk+RH1G03bStt7BzRNm25LctU5z3vB4P9sX7rCOQ9O8smFcz6e5MErnPe8wbV+ZIVz7nzSj8ls78HbAzL7rw4tftZjVjz3Pw/O+9odf89jjMfdVv3BNjjvblCzNwAAIABJREFUEceM41/c8Xj86OB6z13hnIfM5+yFcz6R5AFnnPOzg+u8cMX+3SNHbzweu4NxuOqc58l/+T/8nJbyf+fjsfB5i5917S7jOkffrjrnefJf/g8/p4n8H2vOtzIeWputx7W7x5i28D2Pcq8yP+/E/7JJJvAQwngsXf+qc5432VzpMaYtfM/m+x7GIxOv3cyvddU5z5tsvvQY0xa+Z2vAcj/Ub2qfudJjTFv4nuX/yPMj6jeapmmapmnayK3Xe6Ex7t/j+fzwc5q5nxnrfjdqvMNzrAEXz7UGXDzP3+jtqcl/+X9o+T/WnG9lPLT2Wo/rdo8xbeF79mzOeJzUh6vOed5k86XHmLbwPZvzexiPTLx+02Ou9BjTFr5n+b/cD7Wbi/276pznTTZfeoxpC9+zNWDk+RH1G03bSrskACeotV5/zlO/b3D8V1Y45+lJbrVw/HO11reucN7/OTj+6lLK5aedUGv9YK31phU+exNfniytsb9Wa/3VFc/9nsHx39lOl443xnjUWt9ba73xHOf9dpLhuK0yn86llHLbJE8dvDycY0fUWn8/yYsWXro0szl9mgcMjl9yZgdn17ohyW8MXn7wKueuQ/5vRP4vX6OJ/J9fc4z5MXnyfyPyf/kaTeT/WHO+lfGgTT2u3T3GtImR71VSa333Wh0cmfG4qMdc6TGmTZjvy9Rujlzr+nOeOtl86TGmTVgDjlK/mekxV3qMaRPyf5n6DQAAver1Xsjz+WWez1+kxnvkWtef81RrgDVgeI0m1oD5NdV4I/83JP+Xr9FE/qvx0roe1+0eY9qEZ3PLjMeyHvOlx5g2Yc4vU79Zus715zx1srnSY0ybkP9Hqd1c1GO+9BjTJqwBy9RvoC02CwN24brB8W1LKXc645ynDI6fu8qFaq1vSfLrCy9dkeTxq5y7Y//94PgVa5z7nzLb2fyCLyyl3HPzLjVrOJ/utcNrfWmS2y0c/5da639d8dzhnP3KM95/xeD4XSteJ0n+aHB85zXO3TX5L/+3acz8Z3PyX/5vUwv5f545v61rTXE8aFOPa3ePMSXj3qu0wHhsrsdc6TGmxHwfUrvZjh7zpceYEmsA29djrvQYUyL/t0X9BgCAXvV6L7QOz+e3x9/nHaXGO2cNOAhqGm2R//J/m1rIfzVeWtfjut1jTIlnc0PGYzt6zJceY0rM+SH1m831mCs9xpTIf3ajx3zpMabEGrAt6jewBzYLA3bhk8e8dtlJby6l3CPJIwbnv2aN6107OH7iGufuyn0Gx7+76om11o8nedvCS5dkGjHty3A+nTiXtuAJg+Nr1zj31Vnu6yNLKXc/5f03DI7X2dl4+N4PrHHursl/+b9NY+Y/m5P/8n+bWsj/teb8lq81xfGgTT2u3T3GlIx7r9IC47G5HnOlx5gS831I7WY7esyXHmNKrAFsX4+50mNMifzfFvUbAAB61eu90Do8n98ef593lBrvsmsHx1PIF2vA9qhptEX+y/9taiH/1XhpXY/rdo8xJZ7NDRmP7egxX3qMKTHnh9RvNtdjrvQYUyL/2Y0e86XHmBJrwLao38Ae2CwM2IUHDY4/meR9p7z/4YPj36m13rjG9V47OH7YGufuymcOjj+05vnD93/uBn1p3XA+vXuH1xrOxf+y6onzOfvGwcunzcVXD44fteq1jnnvb65x7q7Jf/m/TWPmP5uT//J/m1rI/3Xn/DavNcXxoE09rt09xpSMe6/SAuOxuR5zpceYEvN9SO1mO3rMlx5jSqwBbF+PudJjTIn83xb1GwAAetXrvdA6PJ/fHn+fd5Qa7zJrQN/UNNoi/+X/NrWQ/2q8tK7HdbvHmBLP5oaMx3b0mC89xpSY80PqN5vrMVd6jCmR/+xGj/nSY0yJNWBb1G9gD2wWBuzCUwfHr6u1fvqU9z90cPy2Y991sref8Xn7cPPg+DZrnj98/xRiGl0p5TOSPG7w8m/s8JKfMzje5Vz8oSzPk68tpdz2rAuUUp6S5L4LL72p1vr61bu4c/Jf/m/FHvJ/n+5bSnluKeVNpZQPllJuLqW8Z37846WUbyilDP/AZYrkv/zfiobyf905fy4NjQdt6nHt7jGmZNx7lRYYj831mCs9xpSY70NqN9vRY770GFNiDZgS9ZuZKc7BHmNK5P+2qN8AANCrXu+F1uH5/Bb4+7yj1HiPZQ3o1IHVNNR4Z+S//E/SVP6r8dK6HtftHmNKPJsbMh7b0WO+9BhTYs4Pqd9srsdc6TGmRP5PSS+1m6TPfOkxpsQasC3qN7AHNgsDtqqUcvskf3fw8gvPOG24i+cfrnnZdw6O71JKufOan7Ft7x8c33PN84fv/+wN+tKyv5fkdgvHH07yy7u40PxGcXizuO5cHL7/wSe9sdb6jiTPWnjps5I8v5RyuxNOSSnlL2ZWBLvg00n+0Zp93Bn5fwv5vx2j5f8E3D/JNZkVA+6U5NZJrpwf/80kz0nyh6WU/3ueZ5Mj/28h/7dj8vl/zjl/XpMfD9rU49rdY0zJ+PcqU2c8NtdjrvQYU2K+D6ndbEeP+dJjTIk1YILUb2YmlSs9xpTI/21RvwEAoFe93gudg+fz2+Hv85b7qMZ7PGtAvw6ppqHGOyP/5f8Fk89/NV5a1+O63WNMiWdzQ8ZjO3rMlx5jSsz5IfWbzfWYKz3GlMj/CWq+dpP0mS89xpRYA7ZF/Qb2x2ZhwLb9qyT3WDj+UJZvvo9zp8Hxn6xzwVrrR5PcNHj5jut8xg68ZXD8BaueWEq5b5J7DV7edzyjK6VcleSfDV7+3lrr8L8ItS3DefhntdYb1/yM4dw99XurtT47yT9J8on5S09O8uZSyv9WSnlMKeXBpZSHlVK+opTy3CSvycWbj08k+dpa65R+yMr/Gfm/oT3kfwuuSPLMJK8vpTxs3505hvyfkf8baij/zzPn19bQeNCmHtfuHmNK9nCvMnHGY3M95kqPMSXm+5DazXb0mC89xpRYA1qkfjMg/89N/m+H+g0AAL3q9V5oXZ7Pb8jf56nxrsoa0Cc1jWOp8Q7I/z41lP9qvLSux3W7x5gSz+aGjMd29JgvPcaUmPND6jeb6zFXeowpkf8tmnrtJukzX3qMKbEGbIv6DeyJzcKArSmlPCXJPxy8/G211g+ccepwF9+PnePyw3PucI7P2KZXDY6/6rQdzQf+x2Ne23c8oyqlXJbkp7Ic9/VJ/q8dXnYv87DW+j1JHpHkR5J8MMn9Mvtx/Ookv5/kdzPbRfeazHbDTpJfSvIFtdYfPUcfd0L+L5H/G9hT/u/LJ5Ncm+TbkzwpyaMy2z38kZkVt78nRwsGD0nyS6WU+43XzdPJ/yXyfwOt5P8Gc37d6zQxHrSpx7W7x5gWtNDHMRmPDfSYKz3GtKCFPo5J7WZDPeZLjzEtaKGPh0D9Ztlk5mGPMS1ooY+Tpn4DAECvOr8XWpfn8xvw93lqvOe4vDWgIwdW01DjXSb/j9p3PKNqJf/VeGldj+t2jzEtaKGPYzIeG+oxX3qMaUELfRyT+s0GesyVHmNa0EIfD0EXtZukz3zpMaYFLfRx0tRvYL9sFgZsRSnlEUn+n8HLr0zyAyucPvxBNdztdRXDH1TDzxzbSzPb/fSCOyX552edVEr5rCTfcsw/3aqUctvtdK0JP5Tkv1s4/lSSZ5xjV9517HMeXprk07m4A/5pfjTJN9Vaf2udju2S/D9C/m9mH/m/D9+e5N611r9Sa/0/aq0vqbVeV2t9W631DbXWF9da/0lmBe5/naQunHuPJD9XSin76Pgi+X+E/N/M5PN/wzm/rsmPB23qce3uMaYzPm+KfRyT8TinHnOlx5jO+Lwp9nFMajcb6DFfeozpjM+bYh97p34z0XnYY0xnfN4U+zhZ6jcAAPTqAO6F1uX5/Gb8fd7J1HiPZw3oy6HUNNR45f8t5P8tJp//ary0rsd1u8eYzvi8KfZxTMZjAz3mS48xnfF5U+zjmNRvzqnHXOkxpjM+b4p97F0XtZukz3zpMaYzPm+KfZws9RvYP5uFARsrpdw3swdviz9i3pnkb9Va6/FnnWqsc3am1vqRJN87ePlbSin/+KRzSin3SfLyJHc86WO31L1JK6X8iyR/e/Dys2qtvzJyV3Y+D0sptyml/Lskv53k65JcucJpz0jyxlLKi+dzZq/k/1Hy//wmlP87Ny9gDXe1P+59N9Van5XkHw3+6VFJ/sZOOrci+X+U/D+/FvJ/B3P+tGtNfjxoU49rd48x7eh6Pf//ifFYQY+50mNMO7pez/Nd7WZFPeZLjzHt6Ho9rwE7p35zrL3Pwx5j2tH1DjL/1W8AAOjVgd4Lncrz+fOb0P2MGu+KrAFHWQPOb0JrwM6p8R5L/p/wsVvq3qS1kP9qvLSux3W7x5h2dL2e/7/EeKyox3zpMaYdXa/nOa9+s4Iec6XHmHZ0vZ7zf+d6qN0kfeZLjzHt6HoHuQao38A0XLrvDgBtK6VcmeT/S3LvhZdvSPK4Wut7V/yYjw6Oz/Nf5xmeM/zMffiuJE/Mxd1KS5J/W0p5apIfTvKGzHaNvdf8fX8/F38YvSvJYqHiplrrkV1pSylXrdqZWuv1a/V+D0opz8xsN+hFz661fveK51+16rWOGY9R52Ep5dIkL0ryhMVuJXlhZrvbvy7J+5LcJsl9k3xJZjezD56/968leXQp5XG11jeco68bk/+nkv9r2nP+T16t9ftKKY9P8qSFl78xyU/uoz/y/1Tyf00t5P+W5vyq19poPOAkPa7dLcXU0r3KGIzHuFrKlVW1FJP5vqyl8eihdpO0lS+raimmlub8GHq7nx1SvzmR/D+D/F+mfgMAAMtauhfaA8/n1+Tv89R456wB1oBFk/obnX1S4z2R/D9DC/O9hfxX46V1Pa7bLcXU0r3KGIzH+FrKl1W1FJM5v6yl8eihftNSrqyqpZhamu9j6O1edmhqtZukrXxZVUsxWQOWqd/AYbFZGHBupZTPTPJLSR6y8PL7kjy21vrWNT6qux9USVJrvbmU8pVJXpbk8xb+6THzdpL3J/m7SV6x8NqHTnjvO9boUlnjvaMrpXx9kmcPXv6BWus3r/Exm4zH2PPwn2W5kPWxJE+ttb5s8L6bk7wpyZtKKf8hyfcn+dr5v901yS+UUh5Ra33/Ofp7bvL/dPJ/PRPI/1b8qywXs76glHKnWutJc2Qn5P/p5P96Wsj/Lc75Va61jfGAI3pcuxuMqaV7lTEYj5E0mCtnajAm831ZS+PRdO0maTJfztRgTC3N+TF0cz97CvWbo+T/2eT/MvUbAACYa/BeaFSez69nAs/n1XjXZA04nTVgPRNYA1qhxnuU/D/bpOd7C/mvxkvrely3G4yppXuVMRiPETWYL2dqMCZzfllL49F0/abBXDlTgzG1NN/H0M297CkmUbtJmsyXMzUYkzVgmfoNHJBL9t0BoE2llDsmeWWSz114+YOZ7fz5pjU/7sOD47ut2Zfb5+gPqtF/2B+n1vrHSb4wyXOSfGKFU345yecnuXHw+g1b7tqklFL+dpIfzPKPy+cm+QcjdmM4D29XSrlizc+4cnB87Dyc/yAe/iD9xmMKWUtqrR9P8vVJXrXw8r2TfOua/dyI/F+N/F/NRPK/Fb+RWa5dcKskDx2zA/J/NfJ/NS3k/5bn/FnXmvx40KYe1+4eYzrDaPcqjTAeK+oxV3qM6Qzm+zK1mzX0mC89xnQGa0Cb1G+W+yL/z0f+r0H9BgCAXh3gvdC5eD6/moncz6jxrsEasBprwGomsga0Qo13uS/yv3Et5L8aL63rcd3uMaYzeDa3zHisocd86TGmM5jzy9RvVtRjrvQY0xnkf5v2XrtJ+syXHmM6gzVgDeo3MD02CwPWVkq5Q5KXJ/kLCy//aZIn1FrfcI6PHO4Wer81zx++/wO11g8e+849qLXeWGv9n5J8dpJvy+xh47sy2+n8I0nekuRHkzwuyV+ttV6f5HMGH/O60To8slLK0zL7kbb4/0k/keTraq11rH7Md44fzpv7rvkxw7l40k64X5Zk8abhHZnNgTPVWj+d5DsHLz+jlDLKTt7yfz3y/3RTyf9WzPP/Dwcvr1Uo2YT8X4/8P10L+b+DOX/atSY/HrSpx7W7x5jOMvK9yuQZj9X0mCs9xnQW832Z2s3qesyXHmM6izWgTeo3R8j/c5D/q1O/AQCgV4d4L7QJz+dPN5X7GTXe1VkD1mMNON1U1oBWqPEeIf8b1kL+q/HSuh7X7R5jOotnc8uMx+p6zJceYzqLOb9M/WY1PeZKjzGdRf63ad+1m6TPfOkxprNYA1anfgPTdOm+OwC0Zb4r6suSfMHCyx9N8sRa62+c82PfMjh+0JrnP2Bw/OZz9mOnaq3vSPJd83aWRw+Of/2EzxztD1B2oZTyVUl+LLPdmy/4mSTPmN+0rWUL4/GWzP4rUxc8KEfn52mGc/Gkcx8xOP7lNX+k/kqSm5NcNj++S2Z93emNhPw/P/l/1ATzvxUfGxwPd0jfCfl/fvL/qBbyf0dz/qRrbXU84IIe1+6WY2roXmUUxmO3Ws6Vk7Qck/m+rKHxaLJ2k7SdLydpOaaG5vwoWr+fXYP6zUXy//zk/xnUbwAA6FXL90L75vn8URN8Pq/GewZrwPlZA46a4BrQCjXei+R/o1rIfzVeWtfjut1yTA3dq4zCeOxey/lykpZjMueXNTQeTdZvWs6Vk7QcU0PzfRSt38uuYS+1m6TtfDlJyzFZA5ap38BhueTstwDMlFJum+QXkjxm4eU/S/LltdbXbvDRvzs4/rxSyu3WOP+Lzvi8psx3MP+Swcuv2kdfdqmU8qQkz8/yxpUvSvL0Wuun9tOrI3Nn+ED4RPMfvJ93xuddcKfB8Q2rXidJaq2fTPL+wct3Xecz1iX/xyH/95r/rRjm+vt2fUH5Pw75P5383+GcP+5akx8P2tTj2t1jTGsa616lFcbjBD3mSo8xrcl8X6Z2c4oe86XHmNZkDWiT+s1F8v/85P8p1G8AAOiVe6FxeD7v7/POosZ7hDWgQRNdA1qhxnuR/G9QC/mvxkvrely3e4xpTZ7NLTMep+gxX3qMaU3m/DL1mxP0mCs9xrQm+d+m0Ws3SZ/50mNMa7IGnEL9BqbNZmHASkoplyd5cZKrF16+KcmTaq2/ssln11rfneR3Fl66NMs/HM5y9eD4FzfpzwR8SZKrFo5fVWvd+X+RbkyllC/LbDfXWy+8/NIkXzMv1OzLywfHV69x7l/O8o/Q62qt7znhvR8aHF+xxnUuuP3g+KPn+IyVyP9RyX9OVEq5a47uNv7fdnxN+T8e+T8Bu5zzx1xr8uNBm3pcu3uM6RzGuldphfE4Ro+50mNM52C+L1O7OUGP+dJjTOdgDWiM+s0RVw+O5f/q5P8J1G8AAOiVe6FReT6/P2q8J7AGjMoawInUeI+4enAs/yeuhfxX46V1Pa7bPcZ0Dp7NLTMeJ+gxX3qM6RzM+WXqN8foMVd6jOkc5H9j9lG7mV+3u3zpMaZzsAacQP0Gps9mYcCZSimXJfm5JI9dePnjSb6i1vqftnSZFw6O/86KfftzSf7Swks3Jnnllvq0L//r4Pg5e+nFjpRSHpfkZ5NctvDyK5N8Va315v306havSPKxheNHz+fYKq4ZHA/n9KLhzecjV7xGkqSU8uAkdxi8vNbu+WtcS/6PS/5zmqdl+ff7e5K8ZVcXk/+jk/97NtKcv3CtyY8Hbepx7e4xpnMa616lFcZjoMdc6TGmczLfl6ndHH+97vKlx5jOyRrQHvWbi32T/5uR/8dQvwEAoFfuhUbn+fz+qPEefz1rwLisAZxGjfdi3+R/Y1rIfzVeWtfjut1jTOfk2dwy43GMHvOlx5jOyZxfpn5z9Frd5UqPMZ2T/G/PqLWbpM986TGmc7IGHEP9BtpgszDgVKWUS5P8dJInLrz8iSRPrbW+YouX+okkn1o4/sr5DftZhg/tfrrWetP2ujWuUsozkjxu4aU3ZLYbahdKKV+c5OeTXL7w8n/O7Afix/fTq4tqrX+W5AWDl4dz7IhSykOSPGXhpU8m+clTTrl2cPxFpZSHrtLHub83OP69Wut71zh/JfJ/XPKf05RS7p7k2wcvv6TWWnd0Pfk/Ivm/fyPO+SbGgzb1uHb3GNN5jXiv0gTjsazHXOkxpvMy35ep3RzVY770GNN5WQPaon5zhPzfgPw/Sv0GAIBeuRcal+fz+6XGe5Q1YFzWAE6jxnuE/G9IC/mvxkvrely3e4zpvDybW2Y8juoxX3qM6bzM+WXqN8t6zJUeYzov+d+WsWs382t2ly89xnRe1oCj1G+gIbVWTdO0Y1uSWyX5qSR1oX0iyVN2dL0fHlzrNUkuP+X9Tx68/+NJ7rdhH64efOb1G37epWu89yuT3DwY60fueQ5sbTySPDrJRwaf96okt9tnjMf08wGD76EmedIp7798PlcX3/+DZ1yjJPm9wTmvT3KHFfr3hGP69y93MA7yX/4fXP6PMR5JPjvJX1vznHsk+c1j5vwDdhSr/Jf/B5X/Y875FsZDa7P1uHb3GNMW+rjze5UV+3Ht4DOv2WXcxuPM63eXKz3GtIU+mu8jj0caqN3Mr9VdvvQYUwtzfsV+TGINOKOPVw/6eP05P0f95uj15L/832v+jzk/on6jaZqmaZqmjdgO8V5oW/fvC5/n+fzFz2rifmaM+92o8Z50PWuANWDSbVvjETXe464n/+X/XtuYc76F8dDaaz2u2z3GtIU+ejZnPE7qQ3f50mNMW+ijOT/yeKSB+k2PudJjTC3M9xX7MYn8P6OPVw/6eP05P2fytZv5NbvLlx5j2kIfrQF7mB9Rv9G0jdulATjZjyT56sFr35rkulLKVWt+1g317J1b//fMdlK98/z4C5P8Uinl62qt//XCm0opt0nyDUn+zeD8f1NrfecqnSml3Cc5dg28x+D40lNi/Wit9X1nXOqNpZSXJvnZJL9ea/30MX15eJJnJXn64J++tdZ63RmfvxW7Ho9SyiOT/GKS2y+8/HtJ/kGSK0sp63T3plrrDeucsI5a6x+UUr43ybcsvPyCUsr/kuQ/1FpvvvBiKeVzkvxQZnP1gvcn+Y4zrlFLKc/KbF5c8Kgkr59f56W11rp4TinlLkn+cWZzZfG7en+S71k1vjXIf/l/cPmfjDI/7pnkxaWUNyb58SQvrLW+9YS+3CHJMzLb8f7ug3/+l7XWPzjhGpuS//L/0PJ/lDnf0HjQph7X7h5j2sgY9yoL598+yV1P+OfLB8d3PeU7eVet9ZOrXHNdxuMWPeZKjzFtxHxfpnazpMd86TGmjVgDjlK/SdJnrvQY00bk/xL1GwAAetXtvZDn80f64Pn8nBrvEmuANeDg1oBEjXdO/sv/Q8t/NV5a1+O63WNMG/FsbpnxWNJjvvQY00bM+WXqN7foMVd6jGkj8v8otZtb9JgvPca0EWvAEvUbaEmdwI5lmqZNs2V5N85N29UrXvPqzHZ6XTz305nt+PtTSV6e5E+O+fyXJLnVGrFdv4WYnrfCdd638P6PJHltZgWMn0jyylP68S9G/q53Oh5J/vkW59K1I4zHrZK87JhrvyezH6A/neR187m5+O8fT/KX17jOs0+I8X1JXjGfJz8zn/+fOOZ9NyX5Evkv/+V/U+Nx9THv/1CSX03yoiQ/luSFma0xx+V9TfKcHY+B/Jf/B5X/Y835VsZDa7ONNY8H17w6O1y7e4xpS9/1WPcq12xp7K8yHrsdjx5zpceYzPemx2OytZte86XHmBqb89dsaex3vQZcv4U+Pu+MOTF8v/qN/Jf/e8z/seZH1G80TdM0TdO0kVvP90LxfH7U8WjtfiZqvNYAa8ChrwG7Ho+rj3m/Gq/8l/97zP+x5nwr46G118aaw4NrXh3P5taKaUvftWdzxuMg8qXHmMz5psdjsvWbHnOlx5gam+/XbGnsd53/12+hj887Y04M3z+p2k2v+dJjTNaA9uZ81G80bSvtuF09Afam1nptKeUpSZ6X5G7zl0uSz5+34zw/ydfXWj+1+x5u5PZJHn3Gez6Y5Btrrf/vCP3hBLXWT5VSvjqzHX6/ZuGfrkzyhBNO+5Mkz6i1vnqNS33z/LzvSHLZwut3SfL4M859Z5Jraq3XrnG9SZP/8v+A3THJF63wvhuTfFOt9T/uuD+jk//yH2hPj2t3CzGNeK/SBOOxHy3kyrpaiMl8X6Z2sz8t5Mu6WojJGjAJ6jcN5Mq6WohJ/gMAANvWwr3QBjyfb4Qa7/5YA6wBB0yNV/7Lf6ApPa7bLcTk2dwy47E/LeTLulqIyZxfpn6zHy3kyrpaiEn+T8LB126SNvJlXS3EZA0AWnTJvjsAMFRrfVmShyf5wcwezJ3k15I8tdb69FrrjaN0bn3/Nsl1me0We5o/SvKdSR7oIeQ01Fo/Wmt9WpK/ntlcO8kHkvxAkofXWl++5jVqrfVfJ/ncJP8+p8/3C96cWRHs4T0Vsi6Q//L/ALwlyXcleU2Sj614zu8n+dbMdvzuspCVyH/5D7Sos7U7SRsxjXGv0hLjsR8t5Mq6WojJfF+mdrM/LeTLulqIyRowKvWbE7SQK+tqISb5DwAAbFsL90Jr8Hy+UWq8+2MNsAYcADXeE8h/+Q+0pbN1O0kbMXk2t8x47E8L+bKuFmIy55ep3+xHC7myrhZikv+jUrs5RQv5sq4WYrIGAK0ptdZ99wHgRKWUyzLbDfh+Se6R2a6/f5zkulrrO/bZt3WUUj4jySOT3D+znW8vz+wm5o+T/Hat9c177B4rKKXcP8mjktwryRVJbshs9/nX1Fpv3tI1SpI/l+QRSe6a5DOSfDLJhzKbK6+rtb5nG9dqgfynd6WUS5I8OMkDk9w7yZ1ycX58MMm7k/xmrfW9e+vknsh/gPb0snYvaiWmMe5VWmI8xtdKrqyjlZjM92VqN/vRSr6so5WYrAHjUL85WSvjoXbWAAAgAElEQVS5so5WYpL/AADANrVyL3QWz+fbp8a7H9YAeqfGezL5D9CWXtbtRa3E5NncMuOxH63kyzpaicmcX6Z+M75WcmUdrcQk/8ehdnO6VvJlHa3EZA0Aps5mYQAAAAAAAAAAAAAAAAAAAAAAADBRl+y7AwAAAAAAAAAAAAAAAAAAAAAAAMDxbBYGAAAAAAAAAAAAAAAAAAAAAAAAE2WzMAAAAAAAAAAAAAAAAAAAAAAAAJgom4UBAAAAAAAAAAAAAAAAAAAAAADARNksDAAAAAAAAAAAAAAAAAAAAAAAACbKZmEAAAAAAAAAAAAAAAAAAAAAAAAwUTYLAwAAAAAAAAAAAAAAAAAAAAAAgImyWRgAAAAAAAAAAAAAAAAAAAAAAABMlM3CAAAAAAAAAAAAAAAAAAAAAAAAYKJsFgYAAAAAAAAAAAAAAAAAAAAAAAATZbMwAAAAAAAAAAAAAAAAAAAAAAAAmCibhQEAAAAAAAAAAAAAAAAAAAAAAMBE2SwMAAAAAAAAAAAAAAAAAAAAAAAAJspmYQAAAAAAAAAAAAAAAAAAAAAAADBRNgsDAAAAAAAAAAAAAAAAAAAAAACAibJZGAAAAAAAAAAAAAAAAAAAAAAAAEyUzcIAAAAAAAAAAAAAAAAAAAAAAABgomwWBgAAAAAAAAAAAAAAAAAAAAAAABNlszAAAAAAAAAAAAAAAAAAAAAAAACYKJuFAQAAAAAAAAAAAAAAAAAAAAAAwETZLAwAAAAAAAAAAAAAAAAAAAAAAAAmymZhAAAAAAAAAAAAAAAAAAAAAAAAMFE2CwMAAAAAAAAAAAAAAAAAAAAAAICJslkYAAAAAAAAAAAAAAAAAAAAAAAATJTNwgAAAAAAAAAAAAAAAAAAAAAAAGCibBYGAAAAAAAAAAAAAAAAAAAAAAAAE2WzMAAAAAAAAAAAAAAAAAAAAAAAAJgom4UBAAAAAAAAAAAAAAAAAAAAAADARNksDAAAAAAAAAAAAAAAAAAAAAAAACbKZmEAAAAAAAAAAAAAAAAAAAAAAAAwUTYLAwAAAAAAAAAAAAAAAAAAAAAAgImyWRgAAAAAAAAAAAAAAAAAAAAAAABMlM3CAAAAAAAAAAAAAAAAAAAAAAAAYKJsFgYAAAAAAAAAAAAAAAAAAAAAAAATZbMwAAAAAAAAAAAAAAAAAAAAAAAAmCibhQEAAAAAAAAAAAAAAAAAAAAAAMBE2SwMAAAAAAAAAAAAAAAAAAAAAAAAJspmYQAAAAAAAAAAAAAAAAAAAAAAADBRNgsDAAAAAAAAAAAAAAAAAAAAAACAibJZGAAAAAAAAAAAAAAAAAAAAAAAAEyUzcIAAAAAAAAAAAAAAAAAAAAAAABgomwWBgAAAAAAAAAAAAAAAAAAAAAAABNlszAAAAAAAAAAAAAAAAAAAAAAAACYKJuFAQAAAAAAAAAAAAAAAAAAAAAAwETZLAwAAAAAAAAAAAAAAAAAAAAAAAAmymZhAAAAAAAAAAAAAAAAAAAAAAAAMFE2CwMAAAAAAAAAAAAAAAAAAAAAAICJslkYAAAAAAAAAAAAAAAAAAAAAAAATJTNwgAAAAAAAOD/Z+/Ow2S7qrrxf1cYwhBImAeBhEFAUEBmBEwi+DIpo4LMgQiC4MiMiAFRX15BfV9EUJQZFBAZZPKnYJhnZVCUmQgBZCYJQ0LI+v1x6krf09VDVVd3V/f9fJ6nn9yzz9l7r6pzdt0nXeuuDQAAAAAAAAAAAAAAsKQUCwMAAAAAAAAAAAAAAAAAAAAAAIAlpVgYAAAAAAAAAAAAAAAAAAAAAAAALCnFwgAAAAAAAAAAAAAAAAAAAAAAAGBJKRYGAAAAAAAAAAAAAAAAAAAAAAAAS0qxMAAAAAAAAAAAAAAAAAAAAAAAAFhSioUBAAAAAAAAAAAAAAAAAAAAAADAklIsDAAAAAAAAAAAAAAAAAAAAAAAAJaUYmEAAAAAAAAAAAAAAAAAAAAAAACwpBQLAwAAAAAAAAAAAAAAAAAAAAAAgCWlWBgAAAAAAAAAAAAAAAAAAAAAAAAsKcXCAAAAAAAAAAAAAAAAAAAAAAAAYEkpFgYAAAAAAAAAAAAAAAAAAAAAAABLSrEwAAAAAAAAAAAAAAAAAAAAAAAAWFKKhQEAAAAAAAAAAAAAAAAAAAAAAMCSUiwMAAAAAAAAAAAAAAAAAAAAAAAAlpRiYQAAAAAAAAAAAAAAAAAAAAAAALCkFAsDAAAAAAAAAAAAAAAAAAAAAACAJaVYGAAAAAAAAAAAAAAAAAAAAAAAACwpxcIAAAAAAAAAAAAAAAAAAAAAAABgSSkWBgAAAAAAAAAAAAAAAAAAAAAAAEtKsTAAAAAAAAAAAAAAAAAAAAAAAABYUoqFAQAAAAAAAAAAAAAAAAAAAAAAwJJSLAwAAAAAAAAAAAAAAAAAAAAAAACWlGJhAAAAAAAAAAAAAAAAAAAAAAAAsKQUCwMAAAAAAAAAAAAAAAAAAAAAAIAlpVgYAAAAAAAAAAAAAAAAAAAAAAAALCnFwgAAAAAAAAAAAAAAAAAAAAAAAGBJKRYGAAAAAAAAAAAAAAAAAAAAAAAAS0qxMAAAAAAAAAAAAAAAAAAAAAAAAFhSioUBAAAAAAAAAAAAAAAAAAAAAADAklIsDAAAAAAAAAAAAAAAAAAAAAAAAJaUYmEAAAAAAAAAAAAAAAAAAAAAAACwpBQLAwAAABipqmOqqkc/J+x2XDupqk4evf6Tdzum/cj7vLdV1Unjz4q9ML/nDgAAAAAAAADg0LZX814AAAAA4FCmWBgAAAAAAAAAAAAAAAAAAAAAAAAsqXPvdgAAAADAcqqqY5J8eoYuZyY5Lck3k3wyyb8meVeS13f3WYuODwAAAAAAAAAAAFaqqsqQ93b06NT3kxzd3afufFQAAAAAAFt32G4HAAAAAOwbhye5RJKrJLlVkkcneWWSU6vqyVV1xG4Gt99V1XOrqlf8fGa3YwL2l6r6zOhz5rm7HRMAAAAAAAAAwMgts7pQWJKcK8kJOxsKLEZVHTfK2+mqOm4X45GvCAtkTQEAALBZioUBAAAA2+3iSR6Z5N+q6ia7HQwAAAAAAAAAAAD71onrnLt/VdWORQIAAAAAsEDn3u0AAAAAgD3lW0k+sca5CyS5aJKLrXH+6CRvqKpju/sD2xEcAAAAAAAAAAAAh6aqumiSO65zyZWSHJfkn3ckIAAAAACABVIsDAAAAJjF+7r7uPUuqKrLJfnZJA9LcuXR6Qsn+duq+pHu/t72hMgibHSfgaS7T0py0i6HMTPrGwAAAAAAAADYp+6V5PBRWyepFccnRrGwXbdX824AAAAAYDcdttsBAAAAAPtLd3+uu5+R5NpJ/m7KJVdO8ks7GxUAAAAAAAAAAAD73P1Hxx/P6hy2O1fVkTsUDwAAAADAwigWBgAAAGyL7v5Wknsm+Y8pp++9w+EAAAAAAAAAAACwT1XV9TNscLnS85M8b9R2/iT32JGgAAAAAAAWSLEwAAAAYNt093eT/MGUU9evqovudDwAAAAAAAAAAADsSyeOjjvJC5K8PsmXNrgWAAAAAGDpnXu3AwAAAAD2vTdMaTssydWSvHPeQavqsCQ/nuSYJJdIctEkpyX5cpJPJPnX7j5n3vEXqap+KMnVM8R6ZIbdKU9L8rUk/5XkvZPCamyDqjp/khsmuUySSyY5IslXMzwrH+zuT+5ieJtSVZdIcuMkV8oQ/zczJDG+u7tP2c3YtltVHZnhtf9whvXz3SSnJnnnLK+9qi6b5AYZ1uERGdbf55K8ubtPW3DYc6mqw5PcNMkVklw6yfeT/HeSDyf5QHf3LoYHAAAAAAAAALCUJvlBdx81v+VAbklVvTjJr684d72qunZ3f3Cb4zpPhrylayS52KT5v5P8yyxzV9WFM+S9XC3JUUm+leSLSd7e3Z9baNCr575YkhsluXKSC2fIW/p8ljTvqqoul+TaGXIKL5GhaNyXk3whybt2Ik+oqn44yfWS/FCSwzPkqn0+ydu6++vbPf9+VFU/muQqGfL/Lpbk2xnu62cy5F9+b5vnt5bnn3dZ1uS1k1wuQ+7gWUm+0N0v2GR/OcDboKrOm+T6GdbDxTN8Xp6WIS/23TOMc5UMa/PAM3Zmkq9kyA99V3d/Z8GhAwAA7CrFwgAAAIBt1d1frqrTMiQXrHTxecarqpsneUiSn85QIGwtX6uq1yX5g+7+yDxzzauqLp7kTklumeTYJJfaoMtZVfWuJH+a5OWbLXJWVZ9JcvQap4+uqs0UFjq+u0+eMvbJGWI/4M3dfdwacXw4yY+uaPpykh/aSgJOVd09yYtHzQ/p7j/bZP/Dktwzyb2S/GSS861z7aeTvDTJU7r7K/NFvD2q6rgkj01yiwxF9qZd85Ekv5/kxbMUk6qqE5I8Z9R8xe7+zBxxjud9QneftEGfk5L8zsq27q4V52+Q5HFJbps1fo9ZVW9O8ujuftc68/xskkcl+YkkNeWSs6rqFUke2d3/tV7Ms76GGcY5JslJGT43xp+VB3yxqp6Z5Kndfcasc4zmOzmbWN+TuD69zlD3rar7bjTfgfdkkux2aoaEqwNO7u7jNwx6HVX1f5P86qj5Otud0AsAAAAAAAAALI2fy1DAZaXnjf7866Pz90/ya/NMNsnp+edR8//kYU02tfutJPdOcqE1xvhYkietV6ymqq6VIX/m9hmKqEy75p1JHtHdb5/tVayvqo7ND/KWzrXGNf+S5BlJ/mrWTfAWlXczGeuSSX4jyc8mueY6l55dVe9O8vQkL5l1M9L1cqQm+Wr3TfKbOTiXbqXvT/J2HrdevtOK+U7K6D0a+eeqDd+y53X3CRtdtBnbma+4xnzXyrBub5XksutcekZV/VOSJ2/mfR3NcVz2+FreRB7etq7lNcZbhjV5wSS/kuQBGTZpnWbqPdvrOcAbPdezmBLjhp8pG+WmVtU1kzwyyV2SXHDKEM9Lsm6xsKq6YobP29tm7fubJN+tqrcm+ePufv16YwIAAOwVU/+BIQAAAMCCTStss1ZBnKmq6qqT4l9vSXK3rF8oLJPz90ry4ar6y6pas1jUIk12ofxCkr9IctdsnCSQJOfNUNDqpUn+bfJF+F4y/lL/Eklut8UxTxgdn5nkrzfTsapuneTDSZ6f5H9lnUJhE1fMUEzqU1U1VwLgolXV4VX1rAwJGz+d9X+Pd40kL0zyhkmCy55Wg99N8q4MyVHrbXhwbJJ3VNXDp4xzZFW9PMmrk9w00wuFJcP6u1uSj1TVLbcU/Bwmz9y/Z0gWXO9z8dIZCor9e1VdbwdCW7jJLpAvHDUfV1U/Mu+Yk52B7zNqfqdCYQAAAAAAAABwSDlxdPztJH974KC7P5DkQ6Nr7lVVU4v2bEVV3TnJR5L8ctYoLjRx1STPr6qXjuOY5M88Psm/JPn5rFFcaOImSd5aVY/dWuT/M/e5qupPk5ycIfdqanGhiesmeVaSt0wKt+yoqjpvVT0xyaeSPDrrFyVKhjykm2bYxPKDkwJOi4jjckneluTZWbtQWDK8l7dI8s6q+r1FzL0fVdVlqupFST6Q5H5Zv1BYMmxceMcM7+srq2qj3NLNxmEtzz7nsqzJG2W4d3+Q9QtJTet7KOYA75iqelyGtX2fTC8UtlH/C0+e648meWg2vr/ny5CD+7qqemtVXWHWOQEAAJaNYmEAAADATjhqSttpm+1cVbfIsEvUbeaY+7AMyWBvrqrNfGm/VT+R9YsbbeRHkrxrN4oWbcELk3xv1Ha/eQebJE+NX/8ru/vrm+j78CSvzVBAa1YXSvInk+JyW7mHWzIpbPf6JL84Y9f/lSGhYb2knr3gmRl2Udzs7y4ryR9W1QP/p6HqqCRvTHLnGea9YJJXV9UNZuizJZOkvz9JcoEZul0hw+fZniwYlmH3xLEHbWG8u2f13zHP2MJ4AAAAAAAAAMAeUlVXyVCkZaVXdvfpo7bnjY4vmqHA0CJjuVeGImVHztDt5zMUmTowRmUo2vOErF/c56Cpk/xeVT10hnlXDzLM/cIkD5mx680y5LPMVJRnKyYFof6/JL+dOQrOZCjq9faq+tktxnGlDJsi3mTGro+tqidtZe79qKquneQ9Se6RtTeHXM8dMuRfXnWLcVjLs8+5LGvyJzMUSJu3KNShmAO8IyZFvn43c76/VXV0krdneK7PM8cQN0vynqq68TzzAwAALItd+0ePAAAAwKGhqq6c6YVwPrXJ/j+b5OVZ/cXuWUnelKGI2GeTfDPDDnHHJPmpJDcfXX/DJK+sqp/s7nFhq+3y/Qw7wv17kv9M8tUMRdIqyYWT/HCSG2fYGW1lYaQjkvxNVf14d392nfE/kuQbkz9fIclFVpz73uT8Rs7YxDXr6u4vVdXrMiTaHHDbqrpkd39pjiHvk9WFop497cKVqup/J3nUlFNfS/KPSd6f5EsZdg49KsOudbdOcrXR9SdmeF8fPlPUi/PsJMevOP5ohuJh/5nhtRyZ5MeT3CWrd637ySS/keQp2x/m4lXVryV54IqmU5L8fZJ/y/Daj0pyowyJVRcedf+TqvqHDJ8Hf5NkZTGt9yd5Q5JPJzk9w/v2U0lun4OftfMneVZVXb+7z17Qy5qqqn4zybRdIM+cxPqWJJ/PkDh1xQzr68DOoxdM8sqs2AF3m5yV5IMrjq+Rgz+Lv57kv2YZsLv/vapOTnLciub7VNVjuvvbc8T44NHxV5O8bI5xAAAAAAAAAIC96f5ZXVRoXBgsSV6U5P/k4KI9JyZ5yYLiuH6S318RyzeSvC5DIakvZchL+ZEkd82Q47bSParqld39sgz5JCeuOHdKktdkyJ/5aob8mRtOxhnnzzy5ql7T3Z+Z8zU8LMkvrDg+Pcmrkrw3yX9P5r56hryly4/6Xj7Jm6rqOt39jWyjyUaCb5/EMvZvSd6cIWfvQByXzFDM67YZNpQ84IgkL6uqm3b3++cI5UIZ8rp+aHLcSd6R5J8y5NSckeQSGfID75TkfKP+j6mqv+/ud68x/hfzg9ydI5JceXT+k9k4/2+m3J4NbGu+YlVdP8k/Z3itK52T5K0Z3ttPT2I4f5LLJTk2yS1y8Lr+4Qybbl6vu7+5iZjGrOUZ1/ISrclLJ/m7HLzW3pOhiNkpGd6Hy2TIg/v5TYx3SOQA75AH5ODidWdkyOt9e4Zn8rAMa/r4DO/7QSaFwt6d1TmzyXCP354h1/brSc6b4T7/RIZNqg9fce2lkry2qq7b3ads7SUBAADsjuru3Y4BAAAAWEJVdUyGxIqV3tzdx804ziOTPHnU/PUkF+/uczboe8UMX7QftaL57CR/nOQPu/vL6/S9TpK/zMEFg5Lkj7r7YRvMe0xWv/b7dfdz1+s36fuxJB/OsCvbmzaTbDL5EvsPktx9dOq13f0zG/WfjPHcJPdd0XRKdx+zmb5rjHdyhkSaA9a991V1+wzJJCs9rLv/aI65P5YhieKAzyU5er3nparulCHJY6WvJ3l0kud393fX6FcZdgh9ZoYElJXu0N2vnjH8mUx5n7+bHySqfDHJr3T31IJQVXVEkqdnKK620jeSXLa7v7PB3Cckec6o+YrzJBhV1fiXjE/o7pM26HNSkt8ZNZ+ZITHj2xkSlp7V3dMSPy6VoYjgTUen/iJDwsdTJ8efSvLA7n7jGjFcP8lrs/re36O7/3q9+Nd6Dd294Y6WVXW1JB/I6gTA10/i/dwa/e6U5Bn5QcLLdzIkn806/8mZYX2v6PeZJEevaHped5+wUb8p49wlqwudndjdGxYFHI1zvSTvGzU/pbsfMWtMAAAAAAAAAMDeU1XnylAM6bIrmj+f5PLTco2q6rUZitMccE6SK81aMKSqjstQ1GilA3kvSfK0JI+fVminqg7PkNvykNGpj2bIA3pnhqIpG+XPXDpD/sxPjE79RXf/0iZew0lZnbuzMnfpOUl+c43XcFiGDQ2flNX5L8/t7vvNM/9m8l4mfV+RIedrpXdM4l2r8NaBgka/nSH2lXN9Jsm1uvv0DeYd50itfL/eneSXu/tf1uh7TIb7dd3RqX/o7luvN++k/3FZ/cwd390nb9R3O2xDvuJFMuSKjsd4TpKTunvNomeTDW2fnuRWo1N/19132WDe42Itb2ktT8ZZljX5/fygcNyHkjyou9+5Rt/zTcsr3Q85wIv8vJgnZ3CN3NSV9+aZSR7X3V9do/9B96aqzpvkbUluMLr0NUke2d3/sU4sl07yh0nuNTr13iQ3mbYmAQAAlt1hG18CAAAAMJ+qukySh0859dcbFQqbeFEOLhT27SS36u5HrlcoLEm6+wMZkif+cXTqV6pqvBPaIt2gu+/S3a/Y7K503X1Kd98jyUmjU7etqmk7rS2j12XY3WulE2YdpKpumoMLhSVDcsF6hcIumdWJBR/PkCzyF2sVCkuSHrwiw26A4wJNfzApJraTDiTcfCrJjdcqFJYk3X1Ghvf4H0anjsqw499edKBQ2C27+5lrJWJ0938n+ZkMOzWudK8kT5z8+d8zJHNMLRQ2Ged9mf5ebSrJaQuekdXJVS9N8jNrFQpLksmzemx+8LrPv9a1S+6VWb3eHjzHOOM+neTP54oIAAAAAAAAANiLbpODC4UlyQvXyTV63uj4sMyR47SGA8WFfq27f3VaYZ4k6e4zu/uhWZ3zc7Ukfz+J6YwkP7VB/swXM+TPjPPofqGq5s0pOZDP8r+7+/7rvIZzuvupSX4+w+afK51QVT855/wbqqoHZnVRoj9LcrP1ihIlSXd/Y7LR6ImjU8ck+eU5wjnwfr0myXFrFQqbzP2ZJD+d1Tl2P11VV5hj7v3m6Tm4UNj3k9xr8hyuWSgsSbr7kxk+C8Y5hHeuqhvNEYu1PNjUWl6yNXmgGNXbk9x8rUJhk7nXyis9VHOAt9uBe/Ow7n7wWoXCkqn35qSsLhT26O7+2fUKhU3G+mJ33zvJE0anbpDk5zYOGwAAYPkoFgYAAABsi8lubW9IconRqW9n2EFro/4/neQmo+b7d/ebNhtDd5+VIYnhKyuaz5PkNzc7xqw2mxywhidm2K3qgEpy/61FtDO6++wMO6mt9GNVdb0Zh5pWpGmcxDP2a0mOXHH87SS3Xq/o0lh3fzbJL4yar5Hk9psdY4G+l+Sum9mxtLs705/n8S6Je8mvr5ekc8Akgekpo+YLJLlghp0R79rd42Ji08Z5W4bPqpWOr6pxMa+FqKofS3L8qPkTSe6zmSKK3X1g58k9a5L4Ni7qdf2quv5mx6iqI7N6J8Z/7O5PbDU+AAAAAAAAAGDPGBeYSZLnr3P9q5KMi+bcr6oW9W/sXtzd/2+T1/72lLZLTv77axsV2UmS7v56kqeOmi+cYZPNeZ3c3Y/ZzIXd/ZokT5py6le3MP+aqurcSR47an5Ddz9kkke1Kd39nCR/OWr+jao6fNr1G/hMhqJWa25ouWLer2V1wZrDMhQRO2RV1dWS3G3U/Fvd/aLNjjG5/7+UZFw46NFzhmUtD9Zdy0u6Jr+Z5G7dfdocfQ/ZHOAd8vLu/qNZOlTVRZL8yqj5md395FnG6e6Tsnrz6Xk/HwAAAHaVYmEAAADAQlTV+arqh6rqdlX1F0k+lORaUy59wCaLOD1qdPzW7n7JrHFNvrj/v6PmO806zk6YJEe8YNR8s92IZU7PntJ2wmY7V9UFktx11PyWyc5/a/U5Iqt3kHtqd39qs/Me0N1vT/LGUfNuPCsv7u73b/bi7v5IkvGulLMWaVsWH8vqpJ/1vHyN9hdM3pfN+tvR8bmT/NgM/WfxoCltD+vuMzc7QHf/Q4bdJ/eyv0hy1qjtwTP0v2+G4nArPXNLEQEAAAAAAAAAe0ZVXTLJ7UbN/9Ld/75Wn0l+xjgH7egkt1hASN/P6qI5a+ru9yb5rymnPpqNN1dcaZz3kiTXnaH/2KyFvp6cZJwPeIequswWYljLL2S4Xwd0VheR2awnTvofcKms3tx0M54wY3Ghv8nwrKy0V3O9FuUROfjfuX46qzeR3FB3fy/J74+abzPHppHW8g9stJaXcU3+UXefOmcMW7IPcoC30zlJHj5Hv4ckOWLF8RlZnV++WU8cHV+nqo6ZcywAAIBdo1gYAAAAMItjq6qn/ST5ToZEgdckeUBWF3H5dpJ7dveLN5qkqi6a5KdGzbMUEBp77ej46Ko6euqVu+/jo+PrVtV5diWSGU2KM71n1HyPGXZ3u0uSC43aNkqWuWWSo0Ztf7XJ+aYZPyvHbmGseT1rjj7j9/2qiwhkFzxnxh0FP5VhJ8CxWZ+Bf53SdrUZx9is24yOv5DVz91m/PkCYtk13f2lJC8bNf9CVY3X81p+aXR8avZ+ATUAAAAAAAAAYPPum2ScV/W8TfR7/pS2E7ceTv6pu0+Zsc8HprTNmj/zySSnjZrnzXt5V3d/eJYO3f3drC6Oc+4MeV2L9nOj45O7+xPzDNTdn00yfq2z5op9K8mG+ZCjeb+e1TmC25WntPSqqpLcedT83O4eF1TbrNeNjg9PcqMZx7CWf2Cjtbxsa7IzfdPbnbRnc4C32Zu6+zNz9Bs/Yy/r7vE62ax3JPnGqG03coQBAAC2RLEwAAAAYLudnqHQ19U3Uyhs4uZJatT2ji3E8OkpbT++hfE2raqOqKrbVtWjq+r5VfXaqnprVf1LVX1g/JPkT0dDHJ5hh7S9Ylzc66JJbr/JvvcbHZ+R1cWExsZf1J86R6LOSuNn5ZgZihctwneyuvDXZnxydHyuqjpi6pXL7S1z9BnvyvjtJO+fcYzPTGlb+H2f7Gh7xVHzq+ZMbvuHDAmHe9n48+4CSe6zUaeqOjbJNUbNz+rusxcVGAAAAAAAAACw9O4/Oj47yV9v1Km735HVxVzuONngcivmyXuZluf01gWMM2/eyyvn7Pd3U9puPOdYU02KSt181LyVnMJkda7YrDmF7+rus+aYd5zrdeQcY+wX1+6QKh4AACAASURBVEpykVHb3Pe1u7+W1ZtPznpfreWDTV3LS7omP9Hdn9tiDAc5BHOAt8s/z9qhqi6S5MdGzVv5fDgnq9fYjuSSAwAALNK5dzsAAAAAYN97X5KnTXb92qybTml7eVVtepe1Tbj4Asdapaqul+QRGQplnX+Lwx2VZKEJDNvor5P8UQ5+zSdkg6JfVXV0kuNGzS/t7o2KIY2flYtMEi7mNa3A1sWzejex7XJKd39vjn7jBKdkSCI7Y4vx7LR5dhU8fXR8yhxFo8ZjJNuThHe9KW2zFjZLknT32VX1oSQ32VpIu6e731VV78/B78uDkvy/Dbo+eHR8doailAAAAAAAAADAIaCqbprk6qPm13f3lzc5xPOT/O6K48OT3DPJ07YQ1iLyXhY1zrx5L3PlsST5cJLvJTnPirZpeTJb8SMZNq5c6b5V9TNbGPMKo+NZcwrHRec2a5zrdSgXC5uWK/q0qjpzC2NeYHQ86321lje3lpdxTf7LFuY+yCGcA7xd5rk3N0ly2KjtMVX10C3EcZXR8bbmkgMAAGwHxcIAAACAWXwr0xMYzpNhd7fLTDl3fJL3VtUJ3b3hzo0Tl5vSdq1N9t2siy14vCRJVZ0nyR9nKGYz/pJ6XnsmGai7v1lVr0hyjxXNt6qqy3T3F9bpekKSGrU9ZxNTjp+VCyS59ib6zeJimS9xZx5fm7PftAJj55nStuy+Pkef8WufeYzu/t6w0eFBtuP9u+SUto9uYbz/zB4uFjbxpzl4rf9IVR3X3SdPu7iqLpnkTqPmV3f3qdsUHwAAAAAAAACwfE6c0va8Gfq/IMkTc3C+0onZWrGwReS9LGqcefNe5spj6e4zq+ozSX54RfO0PJmtmJZTeLk12uc1a07honK99mKe16JMu3/jQoBbNet9tZY3t5aXcU1+aasTHuo5wNtonnsz7Vm60lYDGdmWXHIAAIDttKj/WQUAAAAODe/r7utM+blmd182w5emJ2QoYLPSeZO8oKp+dpPz7MSXr1vd6WuVSZLAy5I8JIv9vcteSwYaF/k6V5J7r3VxDVWa7jNq/nh3v20Tc413ptsOC39W1jEtaeiQ0d2LeP3L/B4eNaVtvFPoLLbSd1n8TZKvjtoetM71J2b4O2WlZyw0IgAAAAAAAABgaVXVEUnuOmr+epLXbHaM7j4lycmj5mtX1fW2ENpCclYWlD8zr0XmsUzLk9mKZcwpXOY8pb1i397XQ2AtL+O9O20rk8kB3lbz3JtlfMYAAAB2nWJhAAAAwMJ099e6+3lJrpOhAMxK50rywqo6ZhNDXWTBoe2URyW5w5T2U5P8WZJ7JblJkstnSKA4X3fXyp8kx+9YtNvnjUlOGbXdb53rj83q3b7GBcdWqaoLJDl8ttBgV11oStu3tjDeVvouhe7+bpK/GjXfuaouNb62qg5L8sBR88czfOYAAAAAAAAAAIeGX0hywVHbS7r7zBnHed6UthPnC2nfWGQey7Q8ma3YqzmFrM993R47sZaX8d6dvcX+coC3zzz3ZhmfMQAAgF137t0OAAAAANh/uvvMqrp3kkvl4C++L5yhKMwtNhjiO6Pjb3T3Un/pW1WXTPKYUfPZSR6R5E+7e7NfdO/5Xaq6u6vqeUkev6L56lV14+5+15Qu40Ji30/y/E1M9d0k5+Tggviv7O47zRQw7JzTp7SNk1dnsZW+y+TPkjw8P1jL58mQfPv7o+tuk+SYUdufd3dva3QAAAAAAAAAwDKZVtDrQVX1oAWMffeqelh3j/PXDhUXTHLaFvquNC1PZium3ZM7dverFjwPO2vafb1Id39jxyPZX3ZiLe+rNSkHeClNe8au090f3PFIAAAAlshhG18CAAAAMLvJF+P3yeqEg5+qqrtt0P0ro+OjquqohQW3PW6f5AKjtkd195/MkCSQJBddYEy76blJxgV8ThhfVFVHJLnLqPn/6+5TN5qgu89JMk4KuuLmQ2QRquo8ux3DHjItie3ILYy3lb5Lo7tPSfKaUfMDq2r8++sHj46/m+GzBgAAAAAAAAA4BFTVNZLceBunOCrJnbdx/GW3yDyWRRd7GucUJnLF9oNp9/WYnQ5iH9qJtbzf1qQc4Ol2Mz90vz1jAAAAC6FYGAAAALBtuvtzSR4/5dTvb1Bg6L+ntF1rMVFtm58eHX89yZ/OMc6VFhDLruvuTyc5edT8C1V1vlHbXbN6J7rnzDDV+Fm5alUdPkP/Q9n3prTNk9hxsa0Gcgj50pS2q21hvKtvoe+yGX9eHp3kNgcOquqg44mXdvdXtzswAAAAAAAAAGBpnLhP5lhWV52nU1WdN6sLPE3Lk9mKvZhTyMbc1+2xE2t5v927/ZQDvKjc0GR3i5/tt2cMAABgIRQLAwAAALbbM5J8atR2payfVPWeKW3jIjHL5vKj43d391lzjHOTRQSzJMZFv45McqdR2wmj468lefUMc4yflfMnOW6G/oey06a0XXiOca6y1UAOIe+f0na9eQaqqnNnfyW+/FOSj47aHrzizw/M6t9nP2NbIwIAAAAAAAAAlsZkc8p7j5rPSvLBLf58bTTmcVW1DMVedsNceSwZcljGhWim5clsxYeSfHfUdusFz8HO24u5onvBTqzl/bYm91MO8EJyQ6vqcknGGwTvpHdPafP5AAAAHPIUCwMAAAC21eTL8idOOfVbVXX4Gt3+cUrb3SbFcZbVxUfH4ySyDVXVxZMcP+f8Z4+OzzXnOIv08qxOOrjfgT9U1ZWT3Hx0/kXdfeYMc0x7Vu41Q/9D2TemtM2T6HjsVgM5VHT3l5J8etR8+6qa5/e0t0pywa1HNZNt+5zp7k7yZ6Pm21TV0ZNk33GByQ9097sWNT8AAAAAAAAAsPRun+QSo7ZXdPd1tvKT5HGjMSsrcpwOMXecs9+dp7QtNK+ju7+b5G2j5stU1S0WOc8SG+ftJLubI7ioPKJ3JPnWqO12VXWROcdjsO1reR+uyf2UA7wvckO7+5Qknxg137Cqrrob8QAAACwLxcIAAACAnfDCJB8btV0uyQOmXdzdp2b1bmRXTHLCwiNbnHHCyjhxYDMekvl34Tp9dHzEnOMsTHd/O8lLRs23qKoDO7CdMKXbc2ac5h+yene6u1fV1WYc51D00SltN5xlgKo6V5L7LyacQ8brR8eXTXK7OcaZ+vm5zbb7c+a5Sc5YcXxYkgcmuVOSS42ufcaC5wYAAAAAAAAAltt4o7FkyEvbqpckOWvUdsKcm7/tdTepqmvO0mGyYei9R81nJ/mnhUX1A6+a0nbSNsyzjMZ5O8nu5gguJI9oshntG0bNF0rysHnG43/s1FreT2tyP+UAn5qD8/CSGXNDJx64hRgWZfyMHZbk8bsRCAAAwLI4FH9pCQAAAOyw7v5+kt+dcuoxVbXWF+O/N6XtKUu8I9QXRsc/UVUX3GznSWLGY7Yw/9dHx0ctye564+JfhyW5zySZ7j6jcx/s7n+dZfDu/kqSvxg1nyvJi6vq/DNFeojp7i8l+dyo+a6TAmCb9ZDMt+PcoeyZU9qeUlXn3ewAVXXLJHdYXEibNv6cWei97+7Tkrxg1Hxikl8ZtZ2W5MWLnBsAAAAAAAAAWF5V9UNJ/teo+ctZXWRoZt39taze/O1ySW611bH3qP874/WPzPB+rfSq7h7n0y3CXyX54qjtZlX1qG2Ya9mM83aS3c3bWmS+4rRc0UdW1c3mHI/BTqzl/bQm900OcHefk+QDo+bbVdWRmx2jqm6f5CfnmX/BnprVGwrfs6ruthvBAAAALAPFwgAAAICd8uIk/zlqu2ySB027uLtfkeR9o+Yjk7x+1h3PDqiqC1XVI6rqXvP038BbR8dHJPmdzXSsqmOSvDrJ4VuY/8NT2m67hfEWorvfmdX3/YQkt0hyhVH7s+ec5g+yele36yZ5xbzJElV1dFU9rap+dM6Y9opxouMVkvz6ZjpW1S2S/J+FR7TPdfeHk/zzqPmqSZ6zmR1pq+qHs7qg1k4Zf878aFVdfsFz/Ono+FJJxol/L+zu8c6HAAAAAAAAAMD+db8MGwiu9JLuPntB479wStuJCxp7r7lFVT1pMxdW1W2S/PaUU/9vsSENuvs7mV5Y6ver6qHzjltVt66qP5s/sh3x2STfHLXtZn7gwvIVJxuMvnzUfJ4M+X9zFSuqqsOr6oFV9Rvz9N8ntn0t77M1ud9ygMe5oedPstnn4VpZvVHwrpgUq3v6lFPPrqq7zDNmVZ2rqu5WVdOeXQAAgKWnWBgAAACwIyY7VT1hyqlHV9UF1uh29yRfG7VdKcm7q+q3NrPLVVUdVlXHV9Uzk/xXhuJGl54h9M16eZJzRm2PqKrfrapzrxPf3ZO8Mz/Y5e+0Oed/15T5n1pVd6iq88w55qKMkwauktW71p2V5EXzDN7dX0xy3yQ9OnWrJO+vqnutdw8OqKoLThIA/i7JJ5I8NMn55olpD/nLKW1Prqpfqqqa1qGqzjfZ+e/1GZJbxru2sbFfzur37R5JXj3ZCXeqqrpjkrfkB59h39me8Nb0jtHxYUleVlXXX9QE3f2RrC6mNvbMRc0HAAAAAAAAACy3SQ7L/aacmlbga15/n9WFmG5fVZdY4Bx7wYF8lt+qqmetlZ83ycn79SR/l6Go00rP7e63bGOMT0/yqlHbYUmeVlWvqKprb2aQqrpiVT2qqj6UIQ9qrqJUO6W7O0Oe4Uq3rKo/qKpL7kJIi85X/KUknx61XTzJG6vqD6tqUzmfVXWjqnpqks8k+fMkV54jlv1gJ9fyflmT+y0H+LlJvj9qe2hVPWGt1zMponVikrcluWiGnNyz5ph70R6X5D2jtgsk+duq+suq2tQ6r6ofraonJvlYkr9JsqlnEwAAYNls+I8kAQAAABbopRm+tL3mirZLZSic85Txxd39iaq6a5LXJTnvilMXzLDD1WOq6m1J3p7kC0m+keEL4KOSXD7JdSc/Ry38layO9WNV9cIk9xmdelySE6rqb5N8KMkZGb5Ev1qS2+fgZJRvJ3lUkmfMMf8XquoNOXgnsUsleWWSs6rqs0m+ldUFtX6xu98363wzekGS38/Bu3v+yOiav+/ur847QXe/vKoen+R3R6euOJn/KVV1cpL3JflyhvfiwhmejaskuX6Sa2VrO7vtOd39nqp6VZI7rGg+V4ZiTA+pqldkKJx2VpJLJLlehmdsZYLZr0fxppl0939W1W8leero1O2SfKKqXp9hp8IvZNjR70oZ7tGPrbj21CQvy/D+75RXZSjgeNEVbTdK8t6qOj3J5zOleFx3X2fGeZ6e5Pg1zr2tu6ftoggAAAAAAAAA7E/H5wdFWA74eHe/e1ETdPeZVfWyJL+4ovk8Se6V5I8XNc8e8PgMm3Emw3tx16p6ZZL3JvlShlyrqye5S5IrTOl/SpLf2M4Au7ur6l4ZitmMC73cMckdq+qDSU5O8vEkB3LSjspQfOpaGXKgxs/UXvDsJLcetT06w4atX8iQ13P26Pyru/vxiw5k0fmK3f3Vqrp9hvu6srDVuZM8PMmvVtU7M2y0+LkkX8+Q63dUkssk+fEMOYCHWoG/tezYWt4va3K/5QB39+er6mlZnV/4+CT3rKqXJ/mPScwXy5CbeLsc/Dw8OcOmz0fP+noWqbu/W1V3ylBQ7fKj0ydmuD/vS/LmDIUCv5YhD/aoDLmu18nw+bDmRq4AAAB7iWJhAAAAwI7p7nOq6gkZioat9MiqekZ3f2tKnzdW1c2T/G1Wf8l7wSS3mvwsg19NcsMMSRQrXS4bF/T5XpKfz/DF+7wekeTYDO/LSufN2jvkHbGF+TZlRRLD7da57NkLmOdJVfX5DIWGzjc6fakkd5v8cLAHJblBksuO2n8sBxenmuYPu/vPq0qxsBl19x9V1cWTPGZ06nxJ7jT5Wcu3MiRS/cw2hTfVJOnmN5I8b8rpC2VIgFqEVyb5bFZ/5idzJFIBAAAAAAAAAHvaiVPaXrgN87wwBxcLOzD3oVQs7CkZCqrcdXJ84QyFc8bFc6b5XJKf6u5vbFNs/6O7z5jkFD4nQ7GjsWtnddGi/eDlSd6Y5BZTzl1m8jP2gW2MZ6H5it39b1V1gyR/l+RHp4x57OSHje3oWt5Ha3K/5QD/VpJbZvV6unKSR24Qy0sm/e++wXU7YlL87IYZ4vrJ0elzZdj09EY7HhgAAMAuOGy3AwAAAAAOOQd211rpEkl+Za0O3f2eJNfNkEjwvS3M3Rl2J3vrFsZYe/Dub2b4Yv1dM3b9fJJbdvfrtjj/R5L8dJJPbGWcbbJeMbAvJPmHRUzS3c9OcpMkb9riUN9N8jdJ/mvLQS257v5ikptltufmrCQP7+6NEkZYR3c/NsMOjLMkCH0uyfHTdgPcCd39/AyJsadv4xzfT/LnU059OUPSIwAAAAAAAABwCKiqo5LcecqpF23DdG/J6lyha1bVIVN8pLs7yT2TzLpx4NuTHNvdn1p8VNN19+nd/XNJHpzk1C0O918ZchOXWnefk+Tnkrx4t2NJtidfsbs/nqHgzx9l2FBxK96XZEs5mXvVbqzl/bAm91sOcHd/O8lxSd4zS7cMxebuMfnMWRqTXNdbJHlckq9tcbj/yOqNrwEAAPYExcIAAACAHTVJQjhpyqmHV9WF1un3le6+f5KrZPgi+t8zfCm9kdOTvDZDQZ4rdvfx3f3umQPfpO4+NcOuVQ9NslHCxClJfjvJ1bv7LQua/50ZdjW7bZI/S/K2DIkIZyTZzS/u/z7JV9Y49/xJcaCF6O4PdPctktw4yfMzFFfajC9k2CH0vkku3d137+4vLSquZdbdn05yrSSPzfA+rOWsDDuz/Xh3P3UnYtvvuvtPklwzyfOSnLbOpV9K8qQk1+zu9+5EbGvp7r9K8kNJ7pfkBUn+NUN831ngNNOKoT27u89c4BwAAAAAAAAAwHK7Z5Lzjdre2d2fXPREk7y2aUXITlz0XMusu8/u7gdnKJjzpqyfc/avSR6Q5OY7WShspe5+ZpIrTeL4p2xu075zMsT+h0mOT3LMXsmF6u5vdPc9M+QInpTkNUk+meTr2dpGrPPGs/B8xe7+dnc/LMkxGV7j+5JsJr/wuxme2cdmyLG6wVaLN+1lu7WW9/qa3G85wN391SQ3zVDEbb2/O7+f5PVJbtrdj1i2QmEHTJ7r30tydJKHZXh/ztpE17OTvCPJE5PcsLuvMdk4FQAAYM+p4feYAAAAAHtPVV0iyfWSXCLJxZIckWE3udMzFIj6zySn9C7+AqSqrprkhpMYLziJ73NJPtTdH92tuA41VXWVJNfI8JxcLMl5MyRPfDPJp5P856FSGGwzqupaSa6d5OJJLpDhffpohmTLM3Yztv2sqg5PcrMkV0hy6QzJPf+d5ENJPrCsCTjboapenOTuK5o6yVV2K7EUAAAAAAAAAOBQVFUXz7Bp45Uz5OedlmEzwn/djqJtW1VV582QU3i5DLlPF8lQJOb0DJtdfizJx7p7kZvisc2q6sgkN0hyyQz5f0dm2Njw9AyFlD6a5FOL3LR0r6iqk5L8zsq27q4p1+3KWt7ra3K/5QBPXs/1MqylC2W4D59M8o7u/tpuxjavqrpAkusnuWyGz4ejkpyZ4bV9KcPnwye6ezNFxQAAAJaeYmEAAAAAACyNSSHIzyY5fEXzG7r7NrsUEgAAAAAAAAAAwNLZbLEwAAAAYH84bLcDAAAAAACAFR6QgwuFJcnTdyMQAAAAAAAAAAAAAAAAgGWgWBgAAAAAAEuhqi6Y5NdGzZ9I8rpdCAcAAAAAAAAAAAAAAABgKSgWBgAAAADAsnhikkuO2v6ku8/ZjWAAAAAAAAAAAAAAAAAAloFiYQAAAAAA7KqqumhVPSXJb45OnZLkWbsQEgAAAAAAAAAAAAAAAMDSOPduBwAAAAAAwKGlqv4yyfUnhxdPctkkNeXSR3T3WTsWGAAAAAAAAAAAAAAAAMASUiwMAAAAAICddpUk197gmud398t2IhgAAAAAAAAAAAAAAACAZXbYbgcAAAAAAAAjL0zyi7sdBAAAAAAAAAAAAAAAAMAyOPduBwAAAAAAwCHvO0lOTfLOJM/u7pN3NxwAAAAAAAAAAAAAAACA5VHdvdsxAAAAAAAAAAAAAAAAAAAAAAAAAFMcttsBAAAAAAAAAAAAAAAAAAAAAAAAANMpFgYAAAAAAAAAAAAAAAAAAAAAAABLSrEwAAAAAAAAAAAAAAAAAAAAAAAAWFKKhQEAAAAAAAAAAAAAAAAAAAAAAMCSUiwMAAAAAAAAAAAAAAAAAAAAAAAAlpRiYQAAAAAAAAAAAAAAAAAAAAAAALCkFAsDAAAAAAAAAAAAAAAAAAAAAACAJaVYGAAAAAAAAAAAAAAAAAAAAAAAACwpxcIAAAAAAAAAAAAAAAAAAAAAAABgSSkWBgAAAAAAAAAAAAAAAAAAAAAAAEtKsTAAAAAAAAAAAAAAAAAAAAAAAABYUoqFAQAAAAAAAAAAAAAAAAAAAAAAwJI6924HALutqo5McuyKps8mOWuXwgEAAAAAAAAA2IrzJrn8iuM3d/c3dysYAJCjBwAAAAAAAADsE7uan6dYGAxJSK/a7SAAAAAAAAAAALbBHZK8ereDAOCQJkcPAAAAAAAAANiPdjQ/77CdmggAAAAAAAAA+P/Zu/M4u+r68P/vc2cmCYEAARJkUUIAQVMBqXxlCciiaLVfpZQv1dKitl9LhbZYv4D6tQjqryp1a79fqNStxKXWrwsgasEqi0DKIovSAipLCGDINpOQfe7c+/n9QWaYmdzlnJububM8nzx4mHPO55zPmZuc65B88roAAAAAAAAAAAAAAMWIhQEAAAAAAAAAAAAAAAAAAAAAAMA41d3pG4Bx4KnhG9dee20cfPDBnboXAAAAAAAAAICWPfroo3H66acP3/VUvbEAMEas0QMAAAAAAAAAJrxOr88TC4OI/uEbBx98cCxYsKBT9wIAAAAAAAAA0E79zYcAwA5ljR4AAAAAAAAAMBmN6fq80lhOBgAAAAAAAAAAAAAAAAAAAAAAAOQnFgYAAAAAAAAAAAAAAAAAAAAAAADjlFgYAAAAAAAAAAAAAAAAAAAAAAAAjFNiYQAAAAAAAAAAAAAAAAAAAAAAADBOiYUBAAAAAAAAAAAAAAAAAAAAAADAOCUWBgAAAAAAAAAAAAAAAAAAAAAAAOOUWBgAAAAAAAAAAAAAAAAAAAAAAACMU2JhAAAAAAAAAAAAAAAAAAAAAAAAME6JhQEAAAAAAAAAAAAAAAAAAAAAAMA4JRYGAAAAAAAAAAAAAAAAAAAAAAAA45RYGAAAAAAAAAAAAAAAAAAAAAAAAIxTYmEAAAAAAAAAAAAAAAAAAAAAAAAwTomFAQAAAAAAAAAAAAAAAAAAAAAAwDglFgYAAAAAAAAAAAAAAAAAAAAAAADjVHenbwAAAAAAAAAA2iGlFNVqNVJKnb4VgBGyLItSqRRZlnX6VgAAAAAAAAAAAIAJSCwMAAAAAAAAgAmpUqnEhg0bYt26dbFhw4aoVCqdviWAhqZNmxazZs2KWbNmxYwZM8TDAAAAAAAAAAAAgFzEwgAAAAAAAACYUCqVSixbtizWrVvX6VsBKKS/vz9Wr14dq1evjp6enth3331j5syZnb4tAAAAAAAAAAAAYJwrdfoGAAAAAAAAACCvcrkcTz75pFAYMOGVy+VYunRpbNy4sdO3AgAAAAAAAAAAAIxzYmEAAAAAAAAATAhbtmyJJUuWxJYtWzp9KwBtkVISDAMAAAAAAAAAAACa6u70DQAAAAAAAABAHsuXL4+BgYER+7Isi5kzZ8asWbNip512iq6ursiyrEN3CFBbSinK5XKsX78+nnvuuSiXyyOO/eY3v4mDDjrI+xcAAAAAAAAAAABQk1gYAAAAAAAAAONeuVyODRs2jNg3bdq0ePGLXxzTpk3r0F0B5NfT0xMzZ86MOXPmxDPPPBPr1q0bOlYul2PLli0xY8aMDt4hAAAAAAAAAAAAMF6VOn0DAAAAAAAAANDM2rVrR2yXSqU44IADhMKACSfLsthvv/2ip6dnxP7nnnuuQ3cEAAAAAAAAAAAAjHdiYQAAAAAAAACMe6NjYbvuumt0d3d36G4Atk+WZbHrrruO2Ldu3boO3Q0AAAAAAAAAAAAw3omFAQAAAAAAADCupZSiv79/xL7RkR2AiWaXXXYZsd3f3x8ppQ7dDQAAAAAAAAAAADCeiYUBAAAAAAAAMK5Vq9Vt9vX09HTgTgDap7u7e5t9td7vAAAAAAAAAAAAAMTCAAAAAAAAABjXUkrb7CuV/HE3MLHVeh+r9X4HAAAAAAAAAAAAYPU0AAAAAAAAAAAAAAAAAAAAAAAAjFPdnb4BxkaWZT0RcXxEvCQi9omI9RHxm4i4P6W0pM1zHRgRR0bEvhGxS0Qsi4gnI2JxSqnczrkAAAAAAAAAAAAAAAAAAAAAAAAmM7GwDsmybH5EHB0Rr9r6v0dFxKxhQ55MKc1rwzxzIuLDEfEHEbFHnTGLI+IzKaXvbOdcZ0bEeyPi2DpDerMs+2ZEfCiltGp75gIAAAAAAAAAAAAAAAAAAAAAAJgKxMLGUJZlJ0XEB+L5QFjNcFeb5/udiLg6IuY2GXpcRByXZdnXI+LclNKGgvPsEhFfiIi3Nhm6R0S8OyLOyLLs7SmlG4vMAwAAAAAAAAAAAAAAAAAAAAAAMNWIhY2tIyPitLGYaGuY7NqImDZsd4qI+yLi8YjYPSJeGRF7DTt+dkTsmmXZ6Smlas55uiLimxHxxlGHVkbE/RGxNiIO2jpXtvXY3hFxXZZlr00p3V7gywIAAAAAAAAAAAAAAAAAAAAAAJhSSp2+ASIiYktEPNaui2VZtn9EfDdGhsLuiIgFKaVXpZTOSimdFhH7R8QFEVEeNu6/R8T/V2C6T8TIUFg5Iv4yIvZPKb1+61y/HRG/FRH/MWzc9Ii4NsuyfQrMBQAAd3Xq+gAAIABJREFUAAAAAAAAAAAAAAAAAAAAMKWIhY29ckQ8EBFfjIhzI+K3I2JWRPzPNs7x4YiYPWx7cUS8NqX08PBBKaUtKaX/ExFnjTr/vVmWHdBskizL5sfzsbHh/kdK6YqUUv+ouR6KiFNjZDBsz4i4tNk8AAAAAAAAAAAAAAAAAAAAAAAAU5VY2NhaFBG7ppRemVJ6V0rp8yml+1JK5XZNkGXZIRHx9mG7+iPiHSmlzfXOSSldu/XeBk2PfBGvSyOiZ9j21Sml6xrMsyki3rH1ngb96dboGAAAAAAAAAAAAAAAAAAAAAAAAKOIhY2hlFJfo2hXm/xhRHQN2/5uSunXOc67fNT2WVmWzag3OMuynSLizCbX2EZK6VcRce2wXd3x/D0DAAAAAAAAAAAAAAAAAAAAAAAwiljY5PN7o7b/Oc9JKaWHI+KuYbt2jojTGpzy+oiYOWz7P1JKj+S6w23v6Yyc5wEAAAAAAABAU/PmzYssy4b+veWWWzp9SwAAAAAAAAAAAADQMrGwSSTLshdFxBHDdg1ExB0FLnHLqO3faTD2DU3ObeS2eP7eBr0yy7K9C5wPAAAAAAAAAAAAAAAAAAAAAAAwJYiFTS6/NWr7FymlDQXOXzxqe0GBuf4j7yRb7+nBAnMBAAAAAAAAAAAAAAAAAAAAAABMSWJhk8vLR20/WvD8x5pcb7iXjeFcAAAAAAAAAAAAAAAAAAAAAAAAU1J3p2+Atjp41PbSguc/OWp7zyzLZqeU+obvzLJsj4jYYzvnGj3+kILnAzBBlKv9kSJFREQpK0V31rN1fzlSVLfr2l1Zd3RlXXXnnFaanus61VSNUqahSnu169fV4LPSk02LLMtGHEspRYo0Yp5KGohKquS6dlfWFV1Z99Z5XnhWt0cWpegp9Wy9l0pU0kDNcc2ez5RSlFN/3WvnUU2VGBg1//D3jeE/R8Pfk4rOAwAAAAAAAADAC1K1GlnJeiwAAAAAAACAdhILm1x2H7W9osjJKaX1WZZtjogZw3bvFhF9o4aOnmdjSmlDkblq3NtuBc8HYJy7c+3N8e+918Sy/hf6kKXoimpUohRd8XziaPtiYdOzGXHozofHH+59XuzavXvctfbm+NGwOef07BMn7v47ceoeb655/qMb/yuuWfmVeGrL4/Hi6fPjjDnviINmvmy77omprZqq8YPV/xp3rr0pNlc3xhG7vDrO2vvPYkZpp8LX+uXGB+O6lV+JJzc/FimqsVvX7HjVrifG7805JyKyuG7VV+Pu526NShqIw3f5b3HK7DfHt1d8KR7b9PA2ka16urOeGEjl6Mmm5T4nj126dov1lbUxLZse/WlLzTF79uwdC3c7LU7b44wREbRqqsQ1KxfFz567LdZWRn4bmkUpXjLjoHjLXn8Uh+18RN35N1TWxTeWfy4e2vBAbK5uHHGsJ5sWA6kcu3TtGpuqG2MglSOLUsTWd6Xn58nixTMOijfvdXa8fOdXtvgqAAAAAAAAAABMLemGr0X6+qcili2JdOQJkV14RWQvOqDTtwUAAAAAAAAwKYiFTS67jNre1MI1NsXIWNisHTjPcLXmKSzLsrkRMafgaQe1Y24AXvDAujvjK8/+wzb7q1EZ8b/ba0vaHL9Yf3es7F8W/32vs2PRqDlXlpfFd1Z+OXpK0+LE3d8w4tizW56OK57+yFDI6InNv4wrnv5wvH/ep2Pvafu15f6Yen6w+hvxb6u/NbR953M3x/rKujhv/78pdJ1ntiyJf3z6oyMCXmsrffGTvuuiGpXoiu74cd+1Q8cWr/1xLF7748L3O5DKERFtDYVFRKyvrI2IqBsKi4hYXV4e1636anRn3XHqHm8Z2v/tFV+OW9b8oOY5Karx5OZfx+ee+du46CV/F/vPmLftmJTiyqc/Eks2/7rmNQa/1nVb73HwuiPnSbF086Nx1TMfiwtf8ol4yQzfLgIAAAAAAAAANJJ+el2kv/3TF3bc9aNIf3VaxFcfiGx68Q/aAwAAAAAAAGAksbDJZXTEa3ML19gUEbMbXLOd8zS6ZqvOi4hL23QtAFp0z3O3jul8y/qfim+v+FLd43etvXmbWNj96/9jm5DRlrQ5fr7urjhtzzN2yH0yuVVTNe5Y8+/b7P/PDT+LdQNrY1b3brmvdf+6/6gb8Lp77a2RZVnL9zne3PXczUOxsEqqxN053j/KqT/uX39HzVjYivJv6obCihpI5bhv3R1iYQAAAABAXSmluO++++KRRx6JFStWxJYtW2LOnDmx3377xcKFC2OXXdr1R+Fj76mnnop77rknnn766di0aVPstdde8YpXvCJe9apXRalU2q5rr1ixIm677bb4zW9+E5s2bYp999035s+fH8ccc8x2X7uWhx56KB588MFYuXJlPPfcc7HHHnvEPvvsEwsXLow999yz7fMBAMBUlG78+rY7ly2J+MUdEUe/dqxvBwAAAAAAAGDSEQub3NIkOweACeLZ/mfGfM7egZV1jz3b//Q2+65fVWNxWkRcu+orYmG05LnKmniusqbmsRXlZYViYbV+zQ7aUF1X+N7Gs2VbXvha11fWxsbq+lznPbul9mtUb3+rGv1cAAAAAABT16pVq+JjH/tYfO1rX4uVK2v/GcW0adPilFNOicsuuyxe/epX57ruO97xjli0aNHQ9hNPPBHz5s3Lde4tt9wSJ5988tD2pZdeGpdddlnd8cM/mOI1r3lN3HLLLRERsXjx4rj00kvjpptuimq1us15e++9d3zwgx+M888/v3DY6/7774+LLroobr755prX3n///ePcc8+N97///dHd3R2XXXZZfPjDHx46fvPNN8dJJ52Ua67Vq1fHJz/5yfja174WzzxT+8+uSqVSHHfccXHppZfGa18rXgAAANvlp9fV3J2+/NHIxMIAAAAAAAAAtlv7P46VThpdVtiphWuMPqdWrWGs5gFggkqx7V/u6KTxdj9MTn3lVXWPpVQZwzuZWKrDns9KgdepOkbPdTV5/wAAAAAARrr22mtj/vz58dnPfrZuKCwior+/P2644YY45phj4txzz42BgYExvMvWfOxjH4sTTzwxfvzjH9eMeUVELF++PP7qr/4qzjzzzOjv78997c985jNx9NFHx09+8pO613766afjkksuide85jWxfPnylr6GiIivfOUrMX/+/Lj88svrhsIiIqrVatx+++3xute9Lv74j/+40NcDAADktGlDp+8AAAAAAAAAYFLo7vQN0FZiYRH/GBHfKnjOQRFR++PMAGhJitTpWxhB7Iex0DdQ/y+EjVXYaiJKUY2UUmRZVuhZLRIW2x5+7gAAAACA4b785S/Hu971rm1iVwcddFC8/OUvj5kzZ8bSpUvj7rvvjkrlhd/H/PznPx9Lly6N66+/Prq7x+dSjU996lPxwQ9+cGj70EMPjUMPPTR23nnnWLZsWdx5552xefPmoePXXHNNXHLJJXH55Zc3vfanP/3puPDCC7fZ//KXvzwOOeSQmD59eixdujTuueeeqFQqsXjx4jjrrLPixBNPLPx1fOhDH4qPfvSjI/ZlWRaHHnpoHHLIITFr1qzo6+uLn/3sZyNib1/72tdi2bJlccMNN4zbnyMAAJiQuns6fQcAAAAAAAAAk4LVjZPL2lHbc4qcnGXZLrFtxGtNjnlmZlm2c0qpyEd/zc0xT2EppRURsaLIOVmWtWNqAIZJqVgs7NW7nhyv2f13co394m8+Gb0Noky1VGNsokJMbb3lBrGwwsG69gT3Xjx9frxt7z8fse9fV3w+lm5+tOF5r519ehw167jc89z93K1xy5oftHSPEc8Hubqiq9CzWi/i1e5YYXWMomQAAAAA7FhpYCBi5dOdvo3Jb87+kU3iyNIDDzwQ7373u0eEwo488si48sor47jjRv6e6sqVK+OSSy6Jf/qnfxrad8MNN8SHPvSh+NjHPjZm95zXgw8+GLfddltERJx++unx8Y9/PA477LARY/r6+uK9731vXH311UP7Pv3pT8e73/3umDdvXt1r33vvvfH+979/xL6TTjoprrjiiliwYMGI/StXrowPfehDcdVVV8VPf/rTeOihhwp9HYsWLRoRCiuVSnH++efHhRdeGC95yUtGjE0pxXXXXRcXXHBBLF26NCIifvKTn8Qll1wSH//4xwvNCwAANCAWBgAAAAAAANAWk3eV7tT061HbBxQ8f/T43pRS3+hBKaXVWZb1RcTsYbtfEhEPb8dco+8dgAks1Yn41LNHz14xb6eX5ho7vTS6a9lc8VATFNc3sKrusXphqx1t565Z2zxbO5d2aXre3Gn75H4mIyIe2/RI4Xsbrpqq0ZV1FXpWxyri1amfOwAAAADabOXTkc46tNN3Mell/++XEfvM6/Rt7DB/+qd/Gv39/UPbCxcujBtvvDFmzpy5zdg5c+bEVVddFQcffHBcdNFFQ/svv/zyeNvb3haveMUrxuSe8+rt7Y2IiIsvvjguv/zymmNmz54d//zP/xx9fX1x3XXXRUREpVKJL33pSyMCXaOdf/75MTAwMLR9xhlnxDe/+c3orhGWmzNnTnzuc5+L+fPnx8UXXxyrVtX/vffRnnzyyXj3u989tD19+vS49tpr4w1veEPN8VmWxemnnx7HHXdcHH/88fHoo89/0MYnP/nJ+LM/+7M48MADc88NAAA0IBYGMKaeXJ3iqltTvPmILI6Z78PVAQAAAABgMil1+gZoq9GxroMLnj9/1Hajj+ht91xFQmMAjHPVSIXGZwW+JSllxb99qUY1Uip2T1BUb7lBLGyMwlajlbKuGvuaP0NFnsm812xkMDBYjfyvU2WsYmEd+rkDAAAAAMaXm2++Oe67776h7V133TW++c1v1gyFDXfhhRfG7/7u7w5tV6vV+OxnP7vD7nN7LFy4MD7+8Y83Hfe3f/u3I7ZvuummumPvueeeuOuuu4a299lnn/jyl79cMxQ23EUXXRSnnXZa03sZ7pOf/GRs2rRpaPuzn/1s3VDYcHPnzo1/+Zd/GdquVCrj9ucIAAAmJLEwgDGRUoqFl1fiwA9U4/IbUhx/eTW6zq3G5rL1swAAAAAAMFmIhU0u/zlq+/AsyxqvTB7p+CbXa3Ts2LyTZFm2c0QcXmAuACaYlKqFxnfVCBrVU2rx25fBGBHsKH3llXWPVQv++mtX267W85InBFY0/tUVzZ/h7qz+X/waDH8VCYAVCYttj2rB9zMAAAAAYHJatGjRiO3zzz8/9t1331znfuITnxix/Y1vfCO2bNnStntrlw9+8INRKjX//eEFCxbEvHnzhrYfeOCBumO/8Y1vjNj+i7/4i9htt91y3c8ll1ySa1xExIYNG+LLX/7y0Pb8+fPj3HPPzX3+0UcfHSeccMLQ9ve+973c5wIAAE30TOv0HQBMCd+9L2LxY9vuf/3fWwMHAAAAAACThVjYJJJSWhYRvxi2qzsiFha4xEmjtv+twdgbmpzbyAnx/L0Nuj+ltLzA+QBMMnniRYNKBcJiwxWNNUFRfQOr6h7rVHCqVvQrT5yvlCP+1Wye0bqz+p8SOxjzK/KcjtVrOlZRMgAAAABgfLv99ttHbP/RH/1R7nMXLFgQRx111ND25s2b4957723bvbXDTjvtFKecckru8S972cuGfrxx48ZYv359zXGLFy8esX3WWWflnmPhwoW5g2y33357bNq0aWj7zDPPzBU+G+7kk08e+vGTTz4ZS5cuLXQ+AABMZanSYH1Fd/01IwC0zx9+sfaautt+PcY3AgAAAAAA7DDdzYcwwVwTEYcP235nRPyo2UlZlh0WEa8etmtDk/NujIhNEbHT1u1jsyw7LKX0SI57fMeo7WtynAPABFI0zJUnXjSo1GLrtJqqEVlLp0JT/dUtsa6ytu7xTgWnumpEv/I8Q3niXyPHN3+Gn4+Fbap5rJKef32KBMDGKgDYqdAbAAAAADB+9PX1xWOPPTa0vfvuu4+IZeVx3HHHxX333Te0fc8998Rxxx3XtnvcXgcddFBMmzYt9/jZs2eP2F67dm3ssssu24z7+c9/PvTj3XffPQ4++OBC9/WqV70qvve97zUdNzrmtu+++8aSJUsKzTX663/88cfjJS95SaFrAADAlDXQX/9Yl1gYQD2VaorFj0X8/KkUR8/L4r8dGJFlrS12LftcTAAAAAAAmPTEwiafr0fE30QMlSHOyLLskJRSs8+Ded+o7f+XUtpcb3BKaWOWZd+OiD8edY13Npoky7KXRsTvDds1EBH/0uTeAJhgUqRC44sEwIpGjAaNVViIqWnNwOqGx4sHp4o9Q/XUinjlCXsVCfhFRJRqRMlGez4WVtvg81lN+Vcr1Rtb9P2n6TwdCr0BAAAAAOPHypUrR2wfcsghhf/S5mGHHTZie8WKFdt9X+00Ov7VTE/PyN/zLZfL24zZsGFDbN78wrKDVsJbec956qmnRmy/5z3vife85z2F5xuut7d3u84HAIAppdwgFtYtFgZQS/9Aij/6YjW+PdSXT/Huk7L4v2+NKJXa++m4/QMppnX7xF0AAAAAAJjoxMImmZTSr7MsWxQRf7J117SIuDrLslPrxb+yLHtLRLxj2K7+iPhwjukui4i3RsTgn+K/I8uya1JKNT/WN8uyGRHxz1vvadCXUkqP1RoPwMSVUsFYWIEwUZ4oUS1FIkRQVF95VcPjnYrV1Xpe8sT5sgIBv4h8Eb/urP5/eqStMbVKgTBXZYye6eKhNwAAAADGpTn7R/b/ftnpu5j85uzf6TvYIfr6+kZs77bbboWvMfqc8RaiKpVa+7CWRtasWTNie9asWYWvseuuu+Yat3p14w/1aMW6devafk0AAJi0Nm+sf0wsDKCmf70nDQuFPe9zt6Q445VZnPqy9s91zrFiYQAAAAAAMNGJhY2xLMv2j9qv+4tGbXdnWTavzmXWp5QaFSkujYjfi4jBj/49LiJ+nGXZ/0wpPTLsXqZHxJ9FxKdHnf/plNKTDa4fEREppcezLPuHiLhw2O5vZ1n23oj4fEpp6GPCsix7WUR8ceu9DFod+aJkAEwwqWAYKU+8aGhsjihRLYI/7Ei9AysbHu9UrK7W85InztdVIOAXkS/i15XVX/g5GAkr8jpVC4TFtkelQ6E3AAAAANor6+6O2Gdep2+DCWr0h6Rk2fb/xcp2XGO8mz59+ojt/v7+OiPry3tOK9dupuiH4wAAwJT25CP1j02bXv8YwBT2Dz+u/XsP/3hLNU59WWsfrFvPvz8Ucc6xbb0kAAAAAADQAWJhY+/2iDggx7j9IuKJOscWRcQ76p2YUno6y7IzIuLGiJi2dffxEfFQlmX3RsTjEbFbRBwVEXNGnf79iLgkx/0Nen9ELIiI39m63RMR/zciLsmy7L6IWBcR87fONXy1c39E/F5KaVmBuQCYIFIU+8sTeeJFg7pyRIlqqYxRWIipqa/cqOMaUe1QcKpmLCxHnC8rEPCLiOjKEfHryer/p0faGvMr8jqNVQAwCQ0CAAAAwJS3xx57jNheu3Zt4WuMPmf27Nl1RrauUhlffxYy+mvs6+srfI3e3t5c4/baa68R24sXL45jj/U3YAEAYMwMlOseyvY5cAxvBGD8uv3XKb7/YIqerojTj8zi/qdqj7vm/vbP3btBFB0AAAAAACYDsbBJKqV0S5ZlvxcRV8cLQbAsIl619d9avhER70op5V5BnFKqZFl2VkR8MSL+YNihuRHxhjqnrYiIt6eUbss7DwATS9FPWs8TLxqU5YgS1SL4w47UN9AkFlbw11/R4F49teJ6tQJirYwZLk9crDvrqXtsMOZXzf9taIMAYHsXNQkNAgAAAABz5oz8DK5f/epXha/xy1/+csT23Llza47r7h65jGNgYCD3HK3EuHakrq6u2G+//eKZZ56JiIjHH388Nm7cGDNnzsx9jQcffDDXuL333nvE9q9+9SuxMAAAGEv9m+sfy7L6xwCmiKturcZ5X39hbdvl/9b+eNfuMyPWbKx97N/+s+3TAQAAAAAAHdBabYMJIaX0w4j4rYi4KiIarQq+MyLOTCn9YUppQwvzrE8pvTUi/sfWa9XTGxGfi4jfSindUHQeACaOahQLIxUJExUJiw0n+MOO1Fte2fB4kQhWO5WyGrGwGgGx0WpFxhqOrzHPaI1iYYMxtSLvHWP1mgoNAgAAAACzZ8+Ogw46aGh7zZo18fDDDxe6xuLFi0dsH3300TXH7brrriO216xZk3uO//qv/yp0T2PhmGOOGfpxtVqNW2+9Nfe5vb298fOf/zzX2OOOO27E9o9+9KPc8wAAAG2wpUEsrOAHTwJMNlvKKS7+9sj3woEdsCytXigMAAAAAACYPMTCxlhKaV5KKdvOf99RYL4VKaV3R8SLIuKUiHhnRHwgIv4qIn4/IuanlI5NKX2nDV/bt1NKx0bE/Ig4c+scH9g65ykRsU9K6byUUuOaBgCTQLEFXkUCYLXiR3kI/rAj9Q6sani8aECvXWo9W3nifFmBgN/z19y+WFja+vpUCgTAxioWJjQIAAAAAERELFy4cMT217/+9dznPvzww3HvvfcObc+YMSN++7d/u+bYuXPnjth+6KGHcs/zwx/+MPfYsfLa1752xPYXvvCF3OcuWrQo+vv7c4099dRTo6vrhd+r/t73vhcrVqzIPRcAALCdylvqHxMLA6a4Ox6LWN/gbbJdsqzx8d4N3o8BAAAAAGCiEwubIlJK/Smlm1NKV6eUPpFS+r8ppe+mlJ7YAXM9kVL6ztY5PrF1zptTSvlW8QIw4aWisbACYaIiYbHhBH/YUVJKsabcJBZWMGzVriU5tSJeeZ63roLPWVc0j4V1Zd11jw1Gwoq8TvUCbO1eziQ0CAAAAABERJxzzjkjtq+44op49tlnc537gQ98YMT2W9/61pg+fXrNsUcdddSI7euvvz7XHDfeeGPcfffducaOpbPPPjtmzZo1tH3NNdfEjTfe2PS8Z555Jj7ykY/knmf27Nlx9tlnD22vX78+LrzwwmI3CwAAtK7aaH2FOA0wtT27dmzeB2fV/u2mIes3j8ltAAAAAAAAO5BYGADQdqngp0GWcoSGBnXViB/lURX8YQfZWF0fW1LjVTT1wlY7Wq24Xp7gXlbwOctyBMi6s566x9LW16fI6zRWz7TQIAAAAAAQEXHKKafEkUceObS9du3aeNvb3habNm1qeN5nP/vZuO6664a2syyLv/7rv647/thjj42ZM2cObV9zzTXxs5/9rOEcv/71r+Ptb397sy+hI2bNmhUXXHDBiH1nnXVW3HzzzXXPWbJkSbzuda+LNWvWFJrrsssuGxFh++pXvxrve9/7olIp9vu8Dz30UPz0pz8tdA4AANBgvVjBtWQAk82m8tjMM9BkSd1zYmEAAAAAADDhiYUBAG1XNIxUyhEaGpS1+O1L6lCsicmvt7yy6ZhOxepqxfVKOUJgXQWfszzjexrEwipbX59qyv8XtsYq4iU0CAAAAACTw7PPPhtLlixp6d9BX/rSl2LatGlD27fcckuccMIJcdddd20z36pVq+L888+P9773vSP2X3zxxXH44YfXvc9Zs2bFH/zBHwxtVyqVeNOb3hQ/+tGPthnb398fX/jCF+KYY46J5cuXx+zZs4u8JGPmkksuiVe84hVD288991yceuqpcdZZZ8W3v/3t+MUvfhGPPPJI/OhHP4r3vOc9sWDBgnj44YdjxowZ8Za3vCX3PAceeGB8/vOfH7Hv7/7u72LhwoVx/fXXx8DAQN1zlyxZEldeeWWccsopsWDBgrjpppuKf6EAADCVCYIB1HXTI2MzT7nJkrofP+y9GgAAAAAAJrruTt8AADD5pEafFFlDKZrHiwZ1FQiLDVcpECGCIvoGVjUdUy0ctmrPopxaIb5SjrBXkYDf8+ObP8PdWf3/9BgMDBYJDdYPi7V3QVORgBkAAAAAMH697W1va/nctPUvvR911FFxxRVXxJ//+Z9Htfr872fee++9ccwxx8TBBx8cCxYsiBkzZsRTTz0Vd9999zZxqte97nXx0Y9+tOl8H/3oR+Oaa66JNWvWRETEihUr4vWvf30cfPDBcfjhh8f06dNj+fLlcdddd8WGDRsiIuJFL3pRXH755fH2t7+95a9zR5k2bVr84Ac/iFNOOSUeffTRiHj+Nf3Wt74V3/rWt2qek2VZXHnllbF06dK47rrrRuxv5Jxzzolnn302PvCBDwz9HN15553x5je/OWbOnBmvfOUrY++9946ddtop1q1bF6tWrYqHHnpo6LUGAABaVG2w5kNIDJjiXrRb8XNSSk1/H2S0gSbL79ZsLH4fAAAAAADA+CIWBgC0XSq4wKtImChrMRaWCkSIoIi+co5YWOrMr79aIb48z1uWIyg2cp7m47uznrrH0tYgV5GoX/EAW2uKBMwAAAAAgMnvXe96V8yePTve+c53xvr164f2P/roo0MhrFr+5E/+JK666qro6an/e6WD9ttvv/jOd74Tp59+eqxbt67pHAceeGD84Ac/iOXLlxf8asbOi1/84rjtttvivPPOi2uuuabh2D333DMWLVoUb3rTm+J973vfiGOzZs1qOtfFF18chx9+eLzzne+MZ599dmj/xo0b44477sh1v7Nnz841DgAAGNRgvZhYGDDFlVtY6tY/EDG9+W8jDalUU9O32498P8UZR6U4fP9iETIAAAAAAGD8aK22AQDQQNEwVynbNmhUT1eN+FEelQ7Fmpj8egdWNh3TqeBUrWerVkBstK4Cz2S9eba9Zv1OcWXr61PkdRqrZ1poEAAAAAAY7cwzz4zHHnssLrjggthrr73qjuvp6YnTTjst7rjjjvjSl76UKxQ26JRTTom777473vKWt0SW1f4LnHPmzImLLrooHnjggXjZy15W+OsYay960Yviu9/97lA07OUvf3nsvvvuMWPGjJg/f3689rWvjX/6p3+Kxx57LN70pjfQQVaJAAAgAElEQVRFRMSaNWtGXGO33XbLNdcb3vCGeOKJJ+LKK6+MI488su5rOKinpyeOO+64uOyyy+JXv/pVXHDBBa19kQAAMFU1LNSIhQFT26b+Fs4pFxs/kDNIduRHqvHYCu/LAAAAAAAwUdX/G/sAAC1KBRd4lQr0S7OstdZpp2JNTH595VVNx1Q7FKurFdcr5XiGsoJN4bwBsixKNeNbaevrU035P0IxRTWqqZrr69keQoMAAAAAMDEtWbJkh15/7ty58fd///fxmc98Ju6999545JFHYuXKlbFly5bYa6+9Yv/994+FCxfGrFmzWp7jsMMOi2uvvTZWrVoVt956azz99NOxcePG2HvvvePAAw+ME044Ibq7X1j2cdJJJ0Vq+Bf0RyoydrSrr746rr766pbOXbhwYSxcuDDX2Iceemjox1mWxdy5c3PPM2PGjDjvvPPivPPOi97e3rjzzjtj2bJl0dvbG+VyOXbZZZeYO3duvPSlL43DDjssZs6cWfhrAQAAtmrw3xcppWic7wWY3DYXDH9FPB8Y273Ab1WU8y+9i6/fneJDv+udGQAAAAAAJiKxMACg7QrHwrLmoaFBteJHeRSJEEERfQM5YmEFY3VFn6F6asX18oa9isgzvhRdUYpSVGq8FpV4/vks+pw+Hx4b+TVuz19uqzdHSimyzOIoAAAAAGBbpVIpjj766Dj66KN32Bx77bVX/P7v//4Ou/54tWHDhrjvvvuGtl/60pe2HF/bY4894o1vfGO7bg0AABit0XqNNq/lAJhoNvUXfx/cVDAwtmUg/9jLvpfiQ79b7PoAAAAAAMD4sG09AABgO7QS6ikV+JakVCN+lEfRWBPk1Vte2XRMp2J1XTWerTzPUJFnMvc1s1LdcdX0/PNZKyTWSGWMXlfvHwAAAAAAY2/RokWxcePGoe1jjz22g3cDAAA0lKytAKinaPirlXNamQMAAAAAAJh4xMIAgLZKLUR1SllX/rGRf+xwnYo1MblVUiXWDPQ2Hdep2FStZyvPM1TkmXz+mnkCZF11xw2+bxR9Tsfqda1a0AoAAAAAMKaefvrpuOSSS0bsO+ecczp0NwAAQFONPmCyhQ+fBJhMNvYXP2dTwXOKjgcAAAAAACYmsTAAoK1SFF/clSc0NDQ2a+3bl07Fmpjc1g705grkdSpWV+vZyvMMFXkmn79mngBZqe7cla2vT9HntNbruiOWl1ZDbBAAAAAAYHt85zvfif/9v/93rFy5sunY+++/P0488cTo7X3hwzqOOOKIOPnkk3fkLQIAANujYRBMLAyY2loJeW0q79jxAAAAAADAxNTd6RsAACaXagufBNlVIABWiuZRolqqSSyM9usrr8o1rlOxuloRrzwhsKxglC/PNUtRqhsVGwyuFY2qjdVz7f0DAAAAAGD7rFu3Lj7+8Y/Hpz71qXjDG94Qp556ahxxxBExd+7c6O7ujt7e3njwwQfj+9//flx//fWRhv1507Rp02LRokUdvHsAAKC5BmvGWlhPBjCZbBkofk7RwFgrcwAAAAAAABOPWBgA0FaphShSliM0NKhUMGI0aHiEqFn4J6UUWZa1NA9TS+/AylzjOhWb6qoVC6sT7BpxXsEoX55rlrJS3ahYZevzWY1isbBKwfGtKnpfAAAAAADUVi6X4/rrr4/rr78+1/iddtopvvKVr8QRRxyxg+8MAADYLo2CYGJhwBRXbmH52aZysfH9BWJh8/Ysdm0AAAAAAGD8aK22AQBQR2r0KZF11Aoa1VMvNtRMdVjErFn4p5XgGVNTX3lVrnFFY1OpTYskaz0veZ6holG+PHGxUnTVjYoNxtQqBaNqwyOAL2j/AtNOxd4AAAAAACaL3XffPbq6in1QxfHHHx8//elP48wzz9xBdwUAALSNWBhAXf2txML6i713FomFVb0tAwAAAADAhNXd6RsAACaXVmJhWYEAWNGI0aDhUaFm4Z9KqtaNGsFwfQM5Y2Edik3Vel7yPENFf/3nu2apbqhsMNBXO/5VX9EIW6vGah4AAAAAgMnq9NNPj+XLl8cNN9wQd9xxRzz44IPx5JNPRm9vb2zevDl22mmn2GOPPeKAAw6IE044Id74xjfG8ccf3+nbBgAA8qo2WBsjFgZMceVWYmHlYuOLBMmKXhsAAAAAABg/xMIAgLZKLSzu6ioQJipFaxGvalRr/riW1OQ4DOotr8w1rlOxqVrPS71gV9ExI8bneIZLUaobFatsjYQ1eza3PW9sntVOxd4AAAAAACaTPffcM84+++w4++yzO30rAABA2wmCAdTTP1D8nMKxsAJzrN0UcesvU/zsyRSbyxFvOjyLQ+ZGLH7s+bDZCYdEzJqRFbsBAAAAAABgTIiFAQBt1Upoq0iYqF5sqJlqqtT8cS2VJsdhUN/AqlzjisamUpsWUNaKeOUKexV8znIFyLKuurG/wfeNZs/maLXGt+u1GzFPh2JvAAAAAAAAAAATQsMPmBQSA6a2cgvLzzYXjIVtKRAL6x+IOPnTL6xpvOS6ke/TO0+PuP4vSnHSoYJhAAAAAAAw3rRW2wAAqKOVUE9WIExUJCw2XHVYxKzaJGjWSvCMqamvnDMW1qFfU121YmF5wl4Fn7Na89S6Zr0I2WCgr1IwyjVWr2vR2BsAAAAAAAAAwJTSKBbWMCQGMPn1Fwh5DdrUX3SO9r3XbtgSccbnqlFu4zUBAAAAAID2EAsDANoqtbC4qyuah4YGlXJEiWoZHvtpFv4RBiKPLdXNsaG6LtfYamrhowHbIKvx7X69YFez87Z3fCkrRanOsz4Y/UoFn72xel07FXsDAAAAAAAAAJgQxMIA6iq3sMxtU7nY+P42L6VbszFi8WPtvSYAAAAAALD9xMIAgLZKLUR1shzxokGlFr99GR77aRb+qURnwk5MLH3lVbnHdio21VUjrlcv2PXC8VJkWVZonlJWiiwan1PKuuqGygYjYUWfveoYPasCggAAAAAAAAAALRILA6a4VkJehWNhA8XnaGb5Ou/fAAAAAAAw3oiFAQBtVY3iiwO6msSLhivViB/lUU2Vmj+uJQkDkUPvwMrcYzsVm6oV16sX7Mp7vP5czSNk9WJ/la0xtaKvU6Xm+PYvUKo0ec8AAAAAAAAAAJjSqo3WfIjNAFNXtZqi0sLyweVri43/xL+1/732hv9s+yUBAAAAAIDtJBYGALRVamFxV5E4Uasho2q8sNqiWZCoEsJANNdXXpV77PBff2OpVlyvWXCvWfSr/lzNImRddeceDPQ1C/mNVnR8q1KHfv4AAAAAAAAAACaEJAgGUEu5xSVu/3J3/vfVzeUUS1a3Nk8jVy9Okby/AwAAAADAuCIWBgC0VWoS4qqlWbxoxNgWQ0bDA2HNwk2tfA1MPX0DBWJhYxS1Gq1U49v9WvtGHG8xyNf0ulv/qWUw0Fc01DdWYb9Kh37+AAAAAAAAAAAmhgYxGaEZYAprNRZ2wJ75x97yy9bmyGNp7467NgAAAAAAUJxYGADQVqnRwq86mkWGRoxtMWRUHRYVahZuahYTg4iI3vLK3GOL/ppq5TmqpatGiK9ZnK/VIF/T62ZddZ/fwUBf0VBfrWd5RywvTd4TAAAAAAAAAADqaxQEEwsDprD+FmNhs2fmH/vL5Tvuffbx/MskAQAAAACAMSAWBgC0VUuxsAIBsFZDRtVhEaJm4aZKk5gYRET0DRSIhRWMYLVLrYBXszhfq0G+ZueVtv5Ty+AzWYliz95Yhf28JwAAAAAAAAAANCAWBlBTucWlZwMFzutpbVltLo+v8h4OAAAAAADjiVgYANBWqYXFXc3iRSPGthgyqg6LEFWbhH/SGAWImNj6yqtzj232a25HqfVsNY2FtfifCF1NQn6lrFT3+R2McRWNqo1VxGusomQAAAAAAAAAABNSwzVjQjPA1NU/0Np5AwWWrHXvwL8V9MSqHXdtAAAAAACgOLEwAKCtWgltZUViYS1++zI8QtQs/DNWASImrpRS9A6szD2+eGyqPYska8W5SlmzqFdrHzPY9LpRilKdoNjg+0bRqFqt95tWgoXNdCr2BgAAAAAAAAAwEaRGHxC3A9ZyAEwU5RaXnhU5r6e1JX+5LBELAwAAAACAcaW70zcAAEwuqWDkqBSlyLIs//ga8aM8qvHCyolqo8Vp0VrwjKllfWVtDKRy7vHFY2HtUSvO1ewZajXI1+y8UtZVd+7BQF/R12mswn6d+vkDAAAAAAAAAJgQBMEAauofaO28gQJL1hotwZ2/V8Tj2xH8enxV+97fH/pNiv9zU4p7nkgxc1rESYdl8b7XZ7HLjPxriAEAAAAAYKoTCwMA2qpwLCwr9pFmXTXiR3kMD4QND4fVUmkSE4O+gWKrZ6pjFLUaravG89U86tViLCxHhKxWvCzihUBf0fjXWL2unfr5AwAAAAAAAACYEBrFwoTEgCms3OLSsydX5x+7en39Y+efnMX/+lbr78NPbEdobLhHlqV4zSersXrDC/vueCzFzY+kuPl/laKnWzAMAAAAAADyaK0EAABQR7VgaKtZuGi0rMWQ0fAIUbN7rIZYGI31lovGwjrza6pWnKt51Ku1IF+z80pZqe7cg69Ps5DfNucVHN8q7wkAAAAAAAAAAI2IhQHU0t9kidsBe27/HN//Re332cNeFLH7zO279vLnIjZs2f738S/enkaEwgYtfizitke3+/IAAAAAADBliIUBAB1VyoqFibpaDBmlYbGfZoGhlMYmQMTE1TuwstD4olGrdi2RrBXnyhP1akVXk2e5FF1144CVra9P0ahapeb49i8w7VTsDQAAAAAAAABgQmgYBBMLA6au/oH6xzZcUYqPviWre7xvQ773z5fuXfsay9ZGvGyf+tfPa8nq7b5E3P1E/a/lrgbHAAAAAACAkcTCAIC2Gh7lyqNePKierMWQUXV4LKxJ+KdS8Gtg6ukrF4yFdSg2VSvG1ywGVvSZHJQ1Oa+UlerGAdPW16da8NkrGmFrVdH7AgAAAAAAAACYUhrFwhqGxAAmt03l+sdm9EQs2Ld+zGtjf745Buosb1u7KeLoeRF77pzvOvW84rJqnPvVaqzf3Nr7+eZyitsfrX8879cJAAAAAACIhQEAbVYtuLirXjyonq4oNn7Q8FhTs/BP6lDYiYmjb2BVzf1Z1F64UzSi1y5dNb7dbxYDaxYTqztXk2e5tPWfWipbo1/VVCz+VXR8q8ZqHgAAAAAAAACACanaYG2MWBgwhW2qE8Ka0RORZVnDkFej0Nhw/3xH7ffZtx6dRVcpi2+eu/1/begLt6U4/R9bWwc58/zG5/30V/5/AgAAAAAA8hILAwDaqmgUqVm4aJvxLYaMRsTCmoR/BsNFUE9vuXYsbLfuPWrurxSNTbVpkWStGF+zQF+pxSBf0+tmXXXHDAb6ir5OtcbviGVDzQKDAAAAAAAAAABTm9ALQC31gl879Wz932kNzq0TGhuuUq3//rvH1hDZKYdlcdaran8QahE3PRLx6Ipi7/fPrm0+/rZft3pHAAAAAAAw9YiFAQBtlQou/Coa/2oWJKqnOiwA1iz8MzwsBrX0lVfW3L9Xz94193cqNlUrxtcs0NdqkK/pdbf+U8vg61MtGOobq9fVewIAAAAAAAAAQAONPhivTR+aBzARbeqv/R44GAkbjIbVPLdOaGy436ypf6x72HLbc47d/lhYRMQvni42/l/vaf7/ASce0uLNAAAAAADAFCQWBgC0VeFYWMFvR4qOHzQ89tMs/JM6FHZiYhhI5XiuUnuFzZ71YmEdik3Vius1C+6VorUgX7PIWCnrqjtm8PUp+jqN1etaNGIGAAAAAAAAADClNAyCiYUBU1e94NdgJGwwGlbz3P7Wrx8R8Tu/9UIg7ORDI2bNaH695vMVe09ftrb5mLLleQAAAAAAkJtYGADQVqlgvKdZYGi0rMVvXyrDYj/VJjGwSrLygPrWlHvrRvH27Jlbc3+zX3OjFY3u1VMr/NUsuFf0mWw01+h5640ZjHEVjXLVHt/+Baadir0BAAAAACxdujT+5m/+Jk444YTYe++9Y9q0aZFl2dC/V199dadvEQAAoHEsrGFIDGByu2dJ7f2DsbCuUhY9dZbeNQqBDVqyqv6xVx0wbL5pWfzwr0qxx87Nr9nIxhwBs+G+dmfz/w/ot2QXAAAAAABy6+70DQAAk0vRyFGzwNBoXVmx8YOGR8yahX9SwbATU0vvwMq6x+rFwopG9NqlVvir2TNUavEZy3PdeiGyytbXp2iUa6zCflUBQQAAAACYcObNmxdPPvnk0PbNN98cJ510UuduqAVf+MIX4i//8i9jy5Ytnb4VAACAJsTCAGp54Kna74E7TRv2456Ico0lanliYTf8V/332MEg2aDjD87i2U+V4v6nIubsEvGWK6vx4DPN5xhxTwVjYcvWNh+zJcfXCQAAAAAAPK/239YHAGhR4VhYnXhQu8YPqsQLKymq0Tj8M1YBIiamvnLtj+LbqbRz7FSq/bF7lSa/5naUUo1v97Mm/wlQ65xW5xp9vN7zOxjoK/o6jVXEqyogCAAAAACMsR/+8Idx7rnn5g6F3XLLLZFl2dC/l1122Y69QQAAgOGqDdZWaIUBU9iCfbOa++9Z8sKPh4fDhtvU3/wNdHp3/WO1rtvdlcXR87KYt1cWf/jq2vfWyJaBYuMPqf35qyP0W7ILAAAAAAC5NfijAQCA4lLBT4IsRdf/z96dx8lRFXob/53unp4t24QkhFV2IewoFwRUQPG64MJVr+KC2wuu9+rF5b4uiKgv6n3d8IrbVVwRdwFRQPQNICACSQCFsAVC2JMhk2XWXuq8f/T0TC91TnXVdPdMZp6vHz7prlPVVd1T1cLk9NMx108WMrJ2ckJaYP3hn6hxzG0DhU2hyxd3LHXHsGKeU3Gje2FSSsmY+sk8UcG9xLEw47+WUyblfOzyNRc3/hUW8WrGa1e3HwKCAAAAAAAAANrsox/9aNXfubzhDW/QO97xDu2xxx7q6OiYWL5kyZLpODwAAAAAqOabMxZzPhkAzCbDY+HvgcvmT97u7ghdRSP56McfyrnHwuYPVjrtSKNzL7fKxQiAxVlXkjINTBGO+5gAAAAAAAAAAMxlxMIAAEBT2ZB4j09UuGiq65cVNRn7CeQP/0SNY27bnO8PXd6XWaK0I35XnIZzyhXvigr0RUW/3NtFRMhMWsYZCyu9PmHxL59imyJecY8LAAAAAAAAAKbi3nvv1Z133jlx/6UvfakuvvjiaTwiAAAAAIhCEAwAwvxqdfjylx46GfLqzoavM9pALOyb14a//776qOhtD9jZ6HfvS+k9Fwdat0nqyUrDnviYJOVjTtlrZP0cU3YBAAAAAAAAAGgYsTAAANBUQcyJX3HDRFGhI5fABqG3o9YFag0UwmNhizuWyjiCWdNxTqUcYa7oqFeyIJ9rf5Xjacf1Xo5xBTHjX+0K+/GeAAAAAAAAAKCdbrvttqr7r3nNa6bpSAAAAACgQdY3Z4yQGADUuuGByffG7o7wdUYaiIVlUlIxZHrb/C5TvzDEKSuM7v8/aT21zWqnXin7bv9cubhhr1yhOesAAAAAAAAAAICSZCUAAAAABxs3FhbzX0eShoysKmJh8k9msBHjmNsG8ptCl/dllijtiNlNxznlCvE1EvVq5v4mx1PO67c4HgmLG+VqV8SrXVEyAAAAAAAAAJCkp556qur+7rvvPk1HAgAAAAAN8sXCvCExAJibHtg4ebvLFQvLRT/OQbuEL7/z0XjvvTsvMMqkowNjccNe+Qam3hELAwAAAAAAAACgccTCAABAU9mY8Z50RGCoVsoRY4pSjhFJUmD9sw+KEeOY2zYX+kOXL+5YIuOIYVnZtoWtylzhMmOMjOc/A5IG+Vz7m3hcpZzXbzmmVnREuTImE7q8XRGvdv/sAAAAAAAAAMxtg4ODVfc7OhyfGAUAAACAmYJYGADUGR5r7P2v2xULy0dv6wqKveCg6PBXErmYU/YaiYWNEQsDAAAAAAAAAKBh4Z+6BwAASMgq3uQuX7QoTNKQUTlGJEmB/OGfqHHMXSPFIY0Gw6FjfZml3m1L52D7Wr2+ayVtUio4AlhJg3ypiPBfyqSdx1SOcbmiXBmTVcHWzwhqV8SL9wQAAAAAAAAALtZarV69Wvfcc482btyosbExLV26VLvttptOOOEEzZs3L/ZjBgG/kwQAAACwg/HN4SAWBmCO+uI1DcbCsuHLXSGwqnUcQbEDlze069gaiX9VyjUQAssVS79jM6Y1gTMAAAAAAAAAAGYTYmEAAKCp4sbC0jHjX0lDRsWKCWk2IjDUrgARdjwDhX7nWF/HEm0rDDjHAxso3ca5LClPmMwX6Usa5PPtrzzu2m+goqy1ChQ+k6jDdGg0ZHnRxpx5lFC79gMAAAAAAABgx9Hf36/zzz9fP/nJT7Rp06bQdbLZrE4++WR96lOf0jHHHON8rPXr12vvvfd2jp900kmhy7///e/rbW97W+jYeeedp/POO8/5mCtXrtSJJ57oHAcAAACAWLxBMGJhAOamK//eYCyswyjsvdIVAmtkne6OhnYdWyPxr0qNxMWslQpFqYNPNwEAAAAAAAAAEIlfpwMAgKaKGwvzRYvCJA0ZWU0GwKLCP4GIhSHc5nz4B76MUlqUWaztha3ObYsqqtH5N3GvozAp4w7r+cJeUdEv9/4iYmEmpbTjmAIbVF2jtTIm/JULi4s147Wrf0zeEwAAAAAAAABMuvTSS3XGGWdo+/bt3vVyuZyuuuoqXXXVVTrrrLN04YUXKpNhmgYAAACAWcgbCwOAual/0D32s7Mmv3m0Oxu+zmgjsbBc+PLubLJvNj3jOUY/+qv7PT3fgliYJI0W3LGw0bzV7++UVm8oHde8Lqk3K83rLN82FberxzsybfyGVwAAAAAAAAAA2oBZqAAAoKmsjRfVccWDXFKKt35ZZSAsKgYW9zlg7hgoPB26fGGmT2mT8Z7P7T6vvLEwk3Z+aatvu6T7k0rXritEFqioouf1ccbCIsJ/zRIVGAQAAAAAAAAwd1x00UU688wzFQTVv9Pcd999tWLFCvX09GjDhg265ZZbVCxO/m7xO9/5jjZs2KDf/e53BMMAAAAAzEKeWBghMQBzUBBYrQv/blJJ0ssPm4xYdTm+hdQVAqs0OBa+vLvRbzat8e7nG/1qldWwY9+Nxr8kyVqrQoPTJkdy0vyu+uWDo1avvDDQynu9e3KOZDO1YbHS7d5OaV6nUW9deKx6fPL25J9EyAAAAAAAAAAA04kZqAAAoKmsb+JXCOOIB7mkTLz1yyoDYVGBoaIIAyHc5nz47J2+zBJJ/vO53edV2hPW811HrqBXlKjtUiblDIoFNlDgeX06HLEwX2CsmWxEYBAAAAAAAAA7gKAgDT863Ucx+/XsLqVm7zSE22+/Xe9+97urQmFHHHGELrzwQh133HFV627atEnnnHOOvv3tb08su+qqq/TJT35S559/ftW6u+++ux566KGJ+1/96ld1wQUXTNy/5JJLdOyxx9Ydz5IlS3TiiSdKkm6++WadfvrpE2Pvf//79YEPfMD5XJYvXx7xbAEAAAAgBl8QjFgYgDnohgfcY99+s1F3djI25Qp7jeT975+5gnu8O+vd1OmYfYz+3wdTOvZz4XPmcsXG39PjhMVG8uHLf3SzjQiF+eUKpX8GhsNGo56Le7wjPRkOq4+JGfV0+sd7HeNZImQAAAAAAAAAgAizd5YuAACYFnFjYWlHPMglacioMhAWRIR/bJsCRNjxDBTCY2GLO5ZK8ke44p1XU58kaTzH4g+JxbsmJx7Ts11qfH+u6zdQoMDz+mRS4TOXwgJjtgUTTIsRgUEAAAAAAADsAIYflS7fe7qPYvZ7xUPSvL2m+yha5h3veIdyudzE/RNOOEFXX321enp66tZdunSpvvWtb2m//fbThz/84YnlX/jCF3T66afr0EMPnViWyWS01157TdxftGhR1WMtX768arzSvHnzJEnr16+vWr5o0SLnNgAAAADQdMTCAKDKO37ong+3R191EMoV9hrJhS8vW/uEe8wVIGvEP+1tdPYpRl++pv79e8wR9QoTKxbmeK4r75mZ/x+SL5YCZK2KkIXHxExIeKx6vHYZETIAAAAAAAAAmH2IhQEAgKbyBX/CxI1/GWNklJKNCH7VqjyuqG2LIQEiQJIG8v2hy/sySyT5g1lRkbpmS3uuLV9ILGmQL+UNkKW8+w1sEBr+Kusw4TOXgjZFvNr9swMAAAAAAAAw86xcuVKrV6+euL9gwQL9/Oc/Dw2FVfrQhz6k6667TldccYUkKQgCfeUrX9FFF13U0uMFAAAAgLYKfGGUmRl6AYBWWhf+vaSSpOfsU33fFfYaiQhzDXliYgcu928bpctxTKOFxh8jKnZWta7juW4fbfwxZoNWRshCA2NZaV5XKULmG3cFyoiQAQAAAAAAAED7EQsDAABNZWNO7kp54kouaZNSIWaUrDIQVozYNm7wDHPH5oIjFtZRioUZT2ir2KawVZnv2kp7w17xr8nSdu7nXt6fa7+Bit7wV8YVC2tTxKtdUTIAAAAAAAAAM9cPf/jDqvvvfe97teuuuza07ec///mJWJgkXXLJJfrmN7+pzs7Oph4jAAAAAEwfz5wxSywMACot7KkOLHVnw9eLim35xnun+GsnVyys0QCYtVav+07j8/vWPy0duWf98jxT95oiX5S2DJf+qZc8QpZJSfO6KsNi1ZGxnrplNZEyxzgRMgAAAAAAAABwIxYGAACaKnYszBNXcvEFmVwqQ01R4R/bpgARdiyBDbQl/3To2OLMUkmlkJ1Lu88rX/TLeI4zyTVZ2i56f66gWGADFT2vT4cJnw3VrgBbu6JkAAAAAAAAAGauG264oer+m970poa3Pfjgg3XUUUdp9erVkqTR0VGtWrVKxx13XFOPEQAAAACmDUEwAG5Gt0gAACAASURBVJjwxJZ474ndrjBX3r+da7y7QzJmarGlpMdUdvsj0sp7G9/ft64NdNqR9XMQC46pezv1lsJSg6PS4Jg0Vmh8X2ieQtDaCFlvthQPq7zd22nU2+kfr11Wvp3NTP3aAAAAAAAAAIDpRiwMAAA0lbXxojq+oJFL2qSVjzm/rDLUFBX+aVeACDuW7cUtKip8RsnijlIszBeyK8a4NpoxfdIX/fKOeUJi3v01ECBz7TdQ4I34dZjwmUftingFMd/XAAAAAAAAAMwuAwMDWrdu3cT9RYsW6aCDDor1GMcdd9xELEySbr31VmJhAAAAAGYPXyyMkBiAOeamddHrVEoa5hp1jHc6Hi+O7vDv99RIrrHtv/bneO/916wNX553TCv8j1OMPvbSyfmIhaLV0FgpHDaUK0XEyn+WltmK25PjQ2PS4KitWXdy3PUao7VaGSHr7RwPiHXW3i5FyHzj9ctKfxIhAwAAAAAAANBOxMIAAEBTxZ3a5YsWufiCTC6VAbCo8I9tU4AIO5bN+X7nWF9miSR//K7d51Xacyy+40wpfsCv0f25gmKBDbzXZcYVC2tT2I9YGAAAAAAAADC3bdq0qer+/vvvH/vDXwceeGDV/Y0bN075uAAAAABgxiAWtsMbyVk95/OB7ny0dH+/ZdLqT6Q0r4v4CRDXcM79vrfrovplrjDX0Jh/P/li+H6yyaYAVkkaMCu77r7mvPcXHFMEO2qeYyZttLBHWtjjeqRk72XlCNlQrhQSq4yQlZbZitvVEbKhMVu9zZgmgmZEyKZHIZC2jpT+qdecCFl9TKw6QuYaDwuUESEDAAAAAAAAEIZYGAAAaKq4QSRXPKjZ2wQVxxV1jMU2BYiwYxkobApd3mGy6k3PlySlPSG7dgenfCE+71iC60vyR/zK+zOOEFmgogK5r7tMKnzmUbuuVd+xAQAAAAAAYAfRs7v0ioem+yhmv57dp/sIWmJgYKDq/sKFC2M/Ru02mzdvntIxAQAAAMDM4gtsEAub6ay16n1f9dymBzZKC/49UP5bKaVThEqAOHKe6WY3fKR+nl13h1HYe2X/oH8/+QZDWkm4YmEbGvyV1vqnp34MknTbw+HLM8mmOcbWygjZcDkwVhERK/85OGYrbk8uHx4fq16XCNl0a1WELJ1yBcaqI2S+8bDtO4mQAQAAAAAAADs0YmEAAKCpbMzJXSlHPMgnnWCbylBTVGAoiBk8w9wwkO8PXb64Y+nEX5obT2grTtjKNuEbVVPGfZ2kPcfpC4n5pD37KwfIXPsNbOB9fTImfOZRWMQr7ntQI9odegMAAAAAAEALpDLSvL2m+yiwg6r9nW0zPkjFh7EAAAAAzCqBZ25FE+bBoLX+/ph77Nb10rH7tO1QgFkhVwhfvmSetNeS+t8JdWfdj9W/3WrJ/PDfIxVaGAvrcgTMJCkIrFLTHBFsxnOcTpm00YJuaUG3a41kr28xsCHhscoYmQ0NlA15AmVDY9IIEbJpUWxThKw3K83rqrxt1FO3rHzbaF5X2DZEyAAAAAAAAIB2IRYGAACaysaM6qQ80SIXX5DJpTIAZiNiYEGMqBPmjs2FTaHL+zJLJm77QnZR512z+aJfxjOW5Jos7c8TCxvfn2u/gYre16fDhM+GalfEKyxKBgAAAAAAAGDuWLx4cdX9rVu3xn6M2m36+vqmdEwAAGDmMMakJe0naYWkXSUtlDQmaUDSOkm3WWuHmrzPDknHS9pT0i6SBiU9LmmNtXZ9M/cFAA3xBcFaFAuz1hKkaJJLbnH/jL5/o9Wx+0zv68zPGrVm+jmRc0w322Vh+PJl892PtXqD9KKDw8fyLYyF+R7j0QFpz53c40m/LDXOz3VgONEuZr10qrURMldMbHA8QlY7PuQIlBEhm17+CJnkD5H5I2TlcFhvthQSq749GSGrH6+OkFWOEyEDAAAAAAAAqhELAwAATWUjv6moWpIwkS/I5FIZACtGxMCCNkedsGPYnO8PXd7XMRkL84Xsos67ZksZ93WS9oz5ol/+/bmfe3l/rv0GNvC+PhnTEbq82KaIV7uiZAAAAAAAAABmpqVLl1bdv++++2I/xr333lt1f9myZVM6JgAAML2MMXtK+hdJL5T0XEkLPKsXjTHXSPq6tfb3U9zvUknnSXqdpMWOdW6S9GVr7a+nsi8AiKc1QbAwT2yxet8lgVbeK+29k/TBFxm94ZhkX46Hkg2b3WP/8xerdz3f6sg92xvpsNbqi3+0uugGq4Fh6dTDjS54nVFvJ7GQueyBjVb/8fNAf7lfOmgX6RMvS+llh828cyJXCF+edXx65/Dd3Y/liym1MhZ2mOeYhnP+bQfHku0zV5A6K6YKBoH7/1tW7DLzfu6zWSsjZMM5aXB0PCBWeXs8QjYUMl4ZIQsbJ0I2PYqBtG209E+4ZBGylKkPj/V2ji/rlHo7Tel+6LiZvF0z3tVBhAwAAAAAAAA7JmJhAACgqWLHwhR/opYvyORSGQCLioFZwkAIMZDfFLp8cWbyQ2K+89nGitBNfQKlLwhmPMeZJOAn+Z97eX+udYLx/7l0OGJh4ddq8yefBm2KkgEAAAAAAACYmfr6+rTvvvtq3bp1kqQtW7Zo7dq1Ouiggxp+jJtuuqnq/tFHH93UY+RDTQAAtI8x5qeSTo+xSVrSiyW92BhzhaT/Za19KsF+XyLpB5KiqqPHSTrOGHOxpHdaa4fi7gsAYrOe+Rq+sZjyBauTvhTovvF30TXD0pu+Z9XbafXKI/jvoqTyBf/P6AVfDnT7OSntuVP7XuMvXWP1n7+ePK6LbrB6fMDqD+9vQgUJO6Qtw1YnfynQowOl+397SDrtG4H+/MGUnrv/zLr+nbEwx+mbSrmP/5HNVq4QkysWlmnCZTKv0z02FBELW3Z2sjm4I/nqWFjB8zC7LEq0C8ww6ZTR/C5pfpdrjalHyIZypZDYxO1RaShnq5eN3y5tY+u3GSNCNp0C29oIWW9nWIBsMjQWPm5q1p38kwgZAAAAAAAAWo1YGAAAaKogZmgr5QkauaQVf5vATs6KiIqBFYmFIcRAoT90eV/HkonbvkBX3GtjqnzxLl8QLEnAT/I/9/L+XKG/wBarrtFaHSYburzo2aaZ2v2zAwAAAAAAADDznHDCCROxMEm6+OKL9dnPfrahbdeuXatVq1ZN3O/q6tKznvWsph5fZ2f1JzjHxsaa+vgAAKDKAY7lj0m6X9JTKs3N3EfS4VLVX8KeKul6Y8zzrbVPNrpDY8yJki6VVPmXp1bSakkPSlok6UhJSyrG3yhpgTHmVZZvTQPQat4gWPNiYTc8oIlQWKXv3xjolUcQkUrKFRwq2zIs/WaN1Qde2L7wxff+Un/eXHWX9NiA1W59BDjmomvu1kQorKwQSD++2c68WJjjmur0fHpnz8XShs31y1fea/W+k8O3cV27HU14O+wOn7InSfrrOqtnPSP8Nd8ybDXmiKVFGclJi3om7/vem5rxHDF7tTpCNjQ2HhAbq7hdESGrHR8aq46Q1Y4PRwT40BqtjJDVh8cqlxn1OMeNM2BGhAwAAAAAAABlxMIAAEBT2ZiTu5KEiVzBIZ9Ak/Nei/LPbrJijiyq5YIxbS9uDR1bnFk6cdt4zueo867Z/EEwX9gr2Swa33bl/blCf4ECb/grk+oIXR606TVt134AAAAAAAAAzFxnnHGGfvjDH07c//rXv673ve99Wr58eeS2H/3oR6vuv/71r6+Le03VokWLqu4/8cQTTX18AADgtEbSRZKutNauqx00xuwm6ZOSzqpYfICkXxpjnmett65TfozdJf1G1aGwGyWdaa1dW7Fep6R3SvqipPJfsr5c0mclfSzOkwKA2HxvZ9FvdQ37wlXh87ouv0MKAqv1T0uLe6V1m6StI9KRe0h9vUQVag2OWuWK0uLx1yYqFiZJazY0b/+5gtWjA9JeO0mpVP3PpxhY3RsShZOkn95i9eF/5mc6F/3v34Rf/9/9i9V33tzmg4mQc8Sysp5P74SFwiRpn6Xu872VsTBf2KwrfDqfJOnKfyR/zx/JV98veN6bMsm+ExWYklZFyILxCFldgGzitg0NlJVCZOGBskEiZNMmsNL20dI/4aYeIZv4MyvN6yovM55xU7Pu5Hh3lggZAAAAAADAjoZYGAAAaLKYsbAEYaJ0gsBYUPEluVFfmOuLFmFu2lJ42jnW1zH5xcy+QFecL2puxhRJfxDMFxJLNovGt115f77QX9G6v04wYxyxsJDXtHnTS/37AQAAAAAAADC3nHzyyTriiCN0++23S5K2bt2q008/XX/4wx/U3d3t3O4rX/mKLrvsson7xhj9x3/8R9OPb5999lE2m1UuV/oE2MqVK5XP59XR4fn0JgAASMpK+r2kT1lrb/OuaO1jkt5pjLlD0oUVQydIep2knzWwv/Mk9VXcv0nSC621VR89ttaOSfqaMWaDpN9WDJ1tjPm2tfbhBvYFAMn45lY0MRb25Db3WOZd7mPYckFKC7qJIGwftTrje4F+/3epaKXj95V+flaqoVhYoQnTZ4LA6oO/tPruDaXoyZJ50mdeafTO51fPKRrxxE3+89dWb/gnq936+HnONZu2u8fuftxqxa4z55zIOa4pXyzMZWjMPdbKWJgvHLNlxL3doOd4oxzx6UD/+FRKe+4UHTJsxnMEZopUypQiTi2MkIXFxCojZJXjw+NjtWGyQSJk06pVETJjQsJj47dLf5YiZOHjRvM6K9clQgYAAAAAANAOxMIAAEBTBXFjYQnCRL7QkUugyVkDRflnNwUiDIRqA/l+51hfZknV/ZTSVedbWdR512y+EF/aGxJLNovGt115zLffgs2HLjcyypjw/2xp12vKewIAAAAAAACw43vyySe1fv36RNvutddekqTvfe97es5znjMR5Lr22mv13Oc+VxdeeKGOOeaYqm36+/t17rnn6hvf+EbV8o985CM67LDDEh2HTzab1fHHH6+VK1dKkjZs2KBXvOIVete73qX9999fPT09VesvX75cXV3OT58BAAC/11pr18fZwFr7DWPMyZJeXbH4zYqIhRlj9pf0lopFOUlvrQ2F1ezrUmPMDyu265R0rqS3xzlmAIjFFwRrYizszkeTbbfo/YGC71CWedv3A112x+T9Gx6QXvbfgRa5G9gTRvNT/zl+7kqrC/48+Tj9g9K7L7bac7HVSw6djElERUhefEGgO89NEaCYYzoz7hDVSV8K9PDnU+rqmBnnRM7xvZlZz9vQ6482+tmt9dfZt66z+sYbw7dpZSxMkg7aRVr7RP3yj/zK6kMvCt/m6UH/Y552pPTbNeFjg2PSi74aaO2nS9e3L1KYSfadqMCc0s4I2VBOGhwtL7P1y3LS0GhNoKx2fAqxQSRnKyNkoWHe5BGy3qyqY2KdUm9neZlRj3Pc1Kw7OU6EDAAAAAAAgFgYAABoMuv7lsgQScJEKU9wyCewgVImpSDiGC1hINTYXNgUunxeeoGyqc6qZaVzrH4WTtxrY6p8IT7jCe4lifGV9ueJhY0fi++x845YWEpp53MJe51bIeo9AwAAAAAAAMDMd/rppyfe1o5/sP2oo47S17/+db3rXe9SEJR+b7hq1Sode+yx2m+//XTwwQerq6tLjzzyiG655RYVCtWfDD3llFP0mc98JvmTiHD22WdPxMIk6aqrrtJVV10Vuu7KlSt14okntuxYAACYzeKGwipcqOpY2EkNbPMGqeovY39jrb2/ge2+oOrI2L8aY97ji4wBwJR4g2DNi4VNxdZhq4U9czcsMDhqdcXf65ff/oi0bH709iMRAa9G/OK28HPhl6uqY2Ej4dOIJtz1eClgtGLXqR8TdhxdHe6xTdullfdILzm0fcfj44yFZdzvQT2dziEnV0yrWbEwV4xMkgpFq0y6/vn8/TH3Nh98kdHnTjPKvts9H+++p0rvS0fu6d9/s54jgPhaHSErR8SGxoNkE7dHqyNk5fGhUWkoZ6vCY1XjRMimhbXjP78xtSxCNhETq7jd22kqbteOm9BtiJABAAAAAIAdDbEwAADQVDbm5C5f0Mi5TcKYUaCiUkpFxsCKbQoQYccxkO8PXd6XWVK3LK20CqqfsRa0OUKX9oT4fGNJY3y+67K8P+O53gs2fIZUyqScUcG2xcIICAIAAAAAAAAYd+aZZ6qvr09ve9vbNDg4OLH8gQce0AMPPODc7u1vf7u+9a1vqaPD88nWKTr11FP12c9+Vueee66KRf6uAwCAGWhNzf1uY8wia+0Wzzan1dz/fiM7stauNcb8TdIx44t6Jb1I0uUNHSkAxBY+Z2xraoFuzR2iA/qt9loy9Q/fr9hFuvuJZNvetG7mhISmw2Nb3AGjjdujt48KeDXCFRH68c1WF721Yl8NhMlueMBqxa4EHeaSZfNL57HLg/1WSQM1zeaKXPkCV09vD38f7ck2dz9xPLDRPfbEVmmPxfXL91/m3ub1R5vQwFit7/zF6ptvNBr1vO9k+SQUMOtURsh2XhC2RvII2Ui+Jjw2HhErLbP1y8ak4TFpcMyGb0OEbNpURcjC1/Bt7RwpR8hcMbFyhCx83B0o6yFCBgAAAAAAWoBfkQMAgKaKHQvzRIuc2ySMGQU2kEx0DMxawkCoNlBwxMI66mNhxqRC/y4xXoRu6t+o6rtOfNGupDE+X/ivvD9fpKxgw2f2pJRyPpdiSMQr7ntQI9oVJQMAAAAAAACwY3jNa16j5z3veTr//PN18cUXq78//HfIHR0dOumkk3TuuefquOOOa8uxffzjH9dpp52mH//4x7rpppt03333aevWrRoZGWnL/gEAgFdYosWZfzDGLJd0eM32N8bY37WajIVJ0ktELAxAq9j6+Rpf63uPPrzz51XcnpE+Fuilh0i/eGdKPZ3JPyy/z9LksbBi86eU7FB80Z1GNBLw8rEh50hZsWYKUDPCZJh9jt/faM0j7vNoJp03Bcd0s4xn6us/H2J02R31z28kX7p+wkIjrY6F+bgu6TFHlFCSjtqzscceGCr9OfzwQ5KeEbpOd+t6/ABmmVRqMvLUqgjZ0FhYTMxWhcXKfw6NR8hqw2OVf6L9KiNkT4Wv4dvaOWJMKRgWHiArhcZ6PIGy8G2IkAEAAAAAMNcRCwMAAE0VN7TlCww5t0kYMwrGw0I2JDBUqSjCQKi2Ob8pdPnizNK6Za5zOuq8azbfdeK77pJck5I/BFY+Fl+krGDDZxSmTFppx3NpV8QraPPPDgAAAAAAAMDUrV+/vqWPv2zZMn31q1/Vl7/8Za1atUr33HOPNm3apLGxMS1ZskS77767TjjhBM2fPz/2Y3/qU5/Spz71qcTHtmLFCn3uc59LvD0AAGiZ/WruFySFV0dLDqm5f6e1dijG/m6quX9wjG0BIJ6aasyN3cfq7OVfrFr2h39I51xu9aXXJv9QuyuMg2hPbZva9lMNMcX52TWyr0yyKU7YgUXFoaYatGumgmO6me+8PXQ3o7DYiLWl6ycb8skfdyysOfGQpfOlTdvDx7aNhi93Xb/PfsZk1OSNxxhd/Dd3WOUXt1ldcqbV8AUfk3ovDl2nx5ncBYD2qIyQhZtahMwdE7MhYbLyP+GBssExaSjnDj2idayd/Pm0KkLWm5XmddXenoyQ1Y8bxzalf99KpYiQAQAAAAAw0xELAwAATWW9f2FRL0n4K+WJEvmUw0LFiKBZEDN4htlvcyF8fnZfR0gszHF+Rp13zea7tvxhr2TXVyMBMt9+8zZ8llDapJVS+Hbtini1K0oGAAAAAAAAYMeTSqV09NFH6+ijj57uQwEAADPfa2ru32b938i2oub+AzH3ty7i8QCgeWrezn4372Whq/3uDqsvvTb5boiFJbfmkanVIYanGGKKCjn1b7daMt80tK4kpYmFzTlRgZOpBu2aKV8MP9gOz9Q8XwxtJBcvFtasmN4Ru0vXrA0fW7PB6pDd6mMirut3n6WT6zYU+nrobo3090u94cNdEfE4ANhRVUbIloWukSzkZK3VSM4VICtFyMICZcM5aXA0PFBGhGz6VEbIHGv4tvY+dm85INZZiohV3zbqrVtWvj0ZIasd78kSIQMAAAAAoJmIhQEAgKaKHQvzBIaauY00GQGzEYGhQMwqwyRrrbbkw2NhizNL6pa5zk8b47yKex2FcQW2JMk0EPaKvb8GAmS+gFnBFhzHk3Y+dmjEqwV/49yuKBkAAAAAAAAAAACA2ckYM0/SO2oW/zZis/1q7m+IuduHa+7vZIzps9YOxHwcAIhWM1/jR4veFLraAxuntpvCFKZ1feHKQJ+/UnrmcqO9l0iH7mZ00jOlBd1z40PrDcV5PKYaYrrnSf/4O38S6DOvTGnFrka58GlEVWgNzD1BVCxsikG7ZnK9V2U8sTBf/GokLy2MsR9flCyO952c0jVrw+fOpRxTAUcd7xWVMbQj9ojed3Dz1Rox3aFjnRlLcAQAYjLGqKdT6mlhhGwoJw2O1sbE7OSyivFyhKxqm/HbQ+OPR4RsepQjZBu3h402J0LW2zkeE5u4XR0hqx43dWGy8jgRMgAAAADAXEUsDAAANFXcyFHaExhy8UWJfMrBn8D7xbzR45hbhoNBjdnR0LG+jpBYmCOI1e7zyndtpT3RLl/Qy8cbCxsPkPkiZQUbPksoZVLO59KusF9olAwAAAAAAAAAAAAAGvc5Scsr7m+R9N2IbRbV3I+V2LHWDhpjRiV1VSxeKIlYGIDmq/kk/8bMzp5VrYxJ9oHu/BSmcNy4rvTnTevKx2q1e5/0p7NTOmDn2f8B8+EphpQe35J82x//NdBbvu+fV/jbNdJv1wT65KlGR+wR/fOYyrmAHVPUzNSpBu2ayXV++iJe3Z6gn+u5ufbji5LF8YID3WOu95SRXPhPqqvi+b3qCKNPX2H11Db34w/ZLn1i2adDx7o9YTUAQHtVRsgcayR63HKErBwOm4iITcTEbFVYrHy7FLqy1duMESGbCVoVIetxBshKEbKeumWTgbLK5ZXjRMgAAAAAADMdsTAAANBUNubfnvjiQS6pBNtIk7GwYkRgyIpYGCZtzm9yji3OLK1b5jo/gzafVym5Z/wYXyws4fWVbmA7X6TMGQsb/1+YYpsCbO3+2QEAAAAAAAAAAACYPYwxp0l6X83ij1trN0dsOq/m/kiC3Y+oOhY2P8FjVDHGLJNU/5flfvtOdb8AZrgYc8ZyBakzYeil2YGoRwek914c6Jqzm1TWmcFGphgLS2pgyOrtP2z8/Pj0FVYf/ufo9a6/X3r7CVM4MOxwgogpXKMzKBZWcBxrxjPFzhfAcl2/+WL4teWLksXR02m0uFfaPFQ/dsUdVmc+t365K2xW+fx2WWR03YdTOvW/Az3gyOF+ZN0JuqPrYMdjUXkBgNmuMkK2NPQ3GckjZKP58YDYeLyqOiZmJ5dVjFdGyMLGiZBNn+HceMS0xRGy6tiYqVteGSgLC5f1dkq9RMgAAAAAAE1CLAwAADRV3KhO2sSflZDyBId8AluaLWYjAkNFy9cOYtJAoT90eUppLcjUfpGz+/wM2hS2ijoOSUp7QmKpBNekJJkGtvPFAfNB+IymtEk7j8kqUGCDqudqI79DMj7eEwAAAAAAAAAAAAAkYYw5XNKPahb/UdI3G9i8NhY2muAQRiT1eR4zifdIOrcJjwNgNqn4ZHzBMy9FKoVkZkosTJL+fI80krPqzs7uD227Aj5xPLXNaucF8V6nlfdKxZjTpq64M3r+z+AoNYa5JuonPl1BvDCu9ypfxMsbC3Ncv0n2E9fufeGxMNfPw3WsPdnq+wfsbPSHf0/pgE+Ev0F859HwUJgk9RALAwAkZIxRd1bqzrYuQhYeG7OhgbHhMXegrHw74P/2pkUrI2QTAbGsNK+r8nYpNBY+biZv14wTIQMAAACAuYdYGAAAaKq4oR5fPMgllWAbaTLWFBX+sTGDZ5jdBvLhsbBFmcWhEauUY8JjUe0NTvmuE+MJiSW9vtINbOeLAxZsIfx4TNp7TKXrNdkxNyoqMAgAAAAAAAAAAAAAtYwxe0r6vaoDXQ9LepO1NslHPdu1DQAkYPWBnb+ogsnonuwB3jVz4VNEIo3lre54NNm2UbaPloIBs9lwE0JKA0PSzgvibdM/GP//ip7YGr3Ozgv5MPxcExXKGMnPjH/t2TxktfLe8LGMLxbmeQ9yhdAKbYiF3el4310yL/wadB1rWAxt7yXJjqk7w3w+AMDM0uoImTsmZkMDY0M1EbKw7YmQTY9yhGxTkyNk3R214bHxPztLEbKeujBZedxM3q4Z78lKaSJkAAAAADAjEQsDAABNFTeqk/JEi5q5jSQF47GmqBhYkTAQKmwubApdvrhjaehy1/nZ7uBUWMhsYswT10p6ffn218h+Czb8KwVTSnsjY0VbVNq09j9rigQEAQAAAAAAAAAAAMRgjFkm6RpJu1UsflLSKdba8L+ErjdYc787waHUblP7mADQHEGgb/adpWIDczhyCb5vbzRvtezs1s3faEZIa6YbCZ+aE0uSn93DT8ffZstw9DquIBFmr6jU6hV3tuc4fB7fYvXCL7vfq3wRr460lDLh4Y4tI+Hb5NsQCzt+X+nGdfXL/7ou/Afieq8Ji6GlU0bZTPyIJLEwAMBcURkhW9LkCNlYQRocHQ+I5Spul0NjufrxocpAWcg4EbLpM5Iv/dOqCNlkeGzydm+nUW/dsvH1ymMh472dRMgAAAAAYKqIhQEAgKayMb+U1hcBckkp2UyGYDzWFESEf6LGMbcM5PtDl/dlHLEwx/kZ57xK9iXS1ZJcW1Ly68sXAisznhCZMxZmUt4QWTuu13aH3gAAAAAAAAAAAADsuIwxiyX9SdIBFYv7Jb3QWnt/jIeaqbGwb0j6Zcxt9pV0WRP2DWCmslZpW2wsFhYzCiNJl91e+kB6qzy2RdprSesefyZoRlwryc/uy9e0phZALGzuaSQ8cCqoSgAAIABJREFUMTBk1dc7feGBC/5sdc+T7vGMZ4pdOQYyFPJe9+tVVqceVv+82hELO+oZRjeGhMHufSp8fde12d0RvvyjLzE673fx3ieKTOcDAGBKjDHq6pC6OloXIRvKleJhE7dHqyNklePDOWlwtDpCVjlOhGz6TETIQkenFiGbDItN3u6tCI2Fj5u6ZUTIAAAAAMxFxMIAAEBTxY2FmQYCQ7VSnuCQT6DSzIjA+r/ikDAQKg0UHLGwjvAZgq7zM+q8a7ZG4l2h2yW8vnxBr7K0J0TmjIWN/8+lHa9rUe392QEAAAAAAAAAAADYMRljFkr6o6RDKxYPSDrFWntXzIfbWnM//But3McyT/WxsC0xj6GOtXajpI0xj2WquwUw41mlG5xfkSQ4ddENrf1k+LpNVsfvN7vfq0ZyU38NxxL87PZeIm88KamRPLWAuaaRQMS3r7f63y+Zvmv50jX+g4yKeLkiWCPhU+vaEgvzhbmstXX/nuc61u5s+PL5XfGPafUTnfE3AgAALVcVIQtfI9HjhkXIhsYqY2S2Okw2Pj40VoqQ1W1TcZsI6fQoR8j6Q7/WIHmErKujPjBWGSHrCQmQVUbIXAEzImQAAAAAZhpiYQAAoKnixsLSDQSGaqU8wSGfYDwCFsj/G33CQKi0OR/+PSiLM45YmCNsFXXeNVsj8a7Q7RJeX41cy8YTIss7YmFpk/Y+dtCGuB8BQQAAAAAAAAAAAABRjDHzJV0l6VkVi7dJerG19vYED3l/zf1nxNy+dv3N1tqBBMcBANGsVbrBL3zLJZiadc3a+Nu0i7VWl9xidcWd0sIe6c3HGi1fIH3nL1b3PWl1wv5G7znRqKsj/MPFdz1uddGNVrdvsNpnqdEb/snopAOb80HkymO7NMn/E9VIEnprVS9yJNeax93R9G+3OuUrge54tHT/+281estxyb4scqazDUxNvfouq//9ktYfi8v9ETnVTMSPZtQR2so6ps+5YmGZJsbClsxzj+UKUmdHY8fkeg7PP8AoKvoAAADmtlZHyIbGXDExW7W88k/fOBGy6TOaL/3TqghZeEzMVIXFagNlvVlpXlf4OBEyAAAAAEkRCwMAAE1lG5mRUcE4wko+KU9wyCcYj4AVIyamEQZCWdEWtbWwOXSsryP8S5tdka6o867ZXNGyyO0SXl++a7kcEUx7QmRFGz6bMKW0N2DWjrgfAUEAAAAAAAAAAAAAPsaYXkl/kHRsxeJBSS+x1t6S8GFr0zj7xdx+n5r7dyc8DgCIZq3SDc6vSBKcarWphKfOuczq/D9Mzpn79nXV8+cuvd3q6n9Y/f7fU8qkqz8IvPphqxd8OdDWkdL9lfdaff9Gq5+eafSvz5568OkTl1p97srmRXjiht6KgdXaJ5q2+yozOSDXLgNDVss+WD3X8W0/sNo0GOhDL5p9wbCggVN5OiNyNz4QfYAdERGv5+0vXV+bi5X0k79Z/egd9ctdYa6o/cTx0kONPn1F+HMbGJaWL6xe5nqP70iHhxCO2nMqRwcAAJBcZYRsp9BAavIIWa5QGx6rjIlZZ6BsyDNOhGz6tDJCVhUTqwqLlSJk4eOTEbLa8d5O1f3uAQAAAMDsQywMAAA0lVW83z6nHWElH184yCcYj4BFxcAIA6Fsa2GzAsc53ZcJ/14aV6QrzrVhm/BNeUmuLSn59ZVuIDLmC5EVbPjXIqZMyhlgk6SgJsLWjNeufh/8rRoAAAAAAAAAAACAcMaYbklXSDqhYvGwpJdZa2+awkP/o+b+YcaYHmvtcIPbHx/xeADQPNbKNDhnI25wqhEvOURa1GO0Yhdpxa5Gr/5mvLkeI+HTViJtH7X64h+jn/c1a6UbH5Ce/8zq5Rf82U6EwsoCK33mCqt/fXayYyrbNtLYscURN/R284NN3T1q/PSW8J/vR35l9aEXtflg2qCR77FNei03w/+9Ovp9JxMxNe9Zexldf3/4Ew0Cq1Sq+kP/7YiFze9yj112u9U7nz+1YzLG6JWHS5fdkfAAAQAAZhhjjDo7pM4WRsgmYmI5aXC0vMzWB8rGx4c849tHiZBNl3KE7OmhsNHkEbLOTCkeNhETq7zdZdRTu2zithkPldWPEyEDAAAAZhZiYQAAoKnihnpcYSXvNg1EicKUo0+u+FNZVEwMc8dAvt85trjDEQtzhK3aHZwyCa4tKfn11UhkzHdMeRv+tY4pk/aGyII2xP3asQ8AAAAAAAAAAAAAOx5jTJekyyWdWLF4VNIrrLXXT+WxrbVPGGPulHTY+KKMSkGyPzb4ECfW3L9yKscDAF7Waku6r6FVx1oQ8/nv01PaZ2npQ6uPb4kfyBoOn7YS6derbcMBrc9fFej5z6yeX/O7O8OP9a7Hpa3DVgt7kn8Qd9XD7mhPUnFjYede3rr5UobPKOvfLnGf69tGrBZ0z64XKWjg0t5/WeuPw+XyBmJXmYipeV2eT/c8sEk6YOfqZe2IhS3udY/d82T9siTH1NtpFBU8qHTSblslLW54fQAAgNmg1RGyqvBYOTKWkwZHbX2YbPz2cMj4UK60zuCoVOCjWdNirFD6p1URsomYWFVYbDJCVj9eHSGrHSdCBgAAAMRHLAwAADRV3CBSkjBRI1GiMIEtjv/pP8aomBjmjoFCeCysK9Wt7lT4LBjXOd3u4FTaES2LkiTgJ7kjaSV2fJ2UjExoVLBgw2cTppTyRsaKbYqwBTZIHFIDAAAAAAAAAAAAMPsYY7KSfiPphRWLxyS9ylr75ybt5reajIVJ0tvUQCzMGHOgpGMqFg01sh0AJGYbj7zkEkyh2X+ZdP9G9/jeFd/5t+sioxW7SHc/0fjjjyQMmK3b1Pi6V98lpc4q6sg9StttG/WvP5STFvYkO67NQ1ZnXNT8OTW5olWcD6D/v3uafggTrC19qN1QDQs1mpcWdDf3Ma+/z+or1wRatUEqTsMUyy3D0esctOvMPh+6s/7x5x9g9Lkrw99Ph8bql7niC82Mhe28wP2ajoVM+UsSC4t7vB858hERCwMAAGiOyghZeCg2+b9j5wp2IhxWjogNjZVjYrYqLFY5PuQZJ0I2fdoVIauOiRn1ugJl42OugBkRMgAAAMxmxMIAAEBThUWAfJKEiZIGe8oRsKhoU9G2N+qEmWtzPnxGX19miXOimeucjhvSmyp/vKsF2zV4LRulZEOuwYINn3WZNmlv+CyouV7jvgc1KlAxcUgNAAAAAAAAAAAAwOxijMlI+oWkl1Qszkt6jbX26ibu6mJJn5AmvlXtX4wx+1tr74/Y7j9r7v/CWhuRpQGAKYgTCwv/PjmvqJBM7Tye75yR0ksvCCKDXGUjufjHJEl/ezD+PJU1jzS23nDCYxrLW530xUCPbUm2vfexY/zstgy3Zg5PpdF8dHxprhpNGMBzuWmd1T9/NYh1DkyHZj/vRj2xpbHzvbvD/2H15x3gHhsMiYUlCXMlsc8S6cGQ71391nVW33jj5H1rrTPckPV8cikd83hfuOxJSYfH2wgAAABtl80YLc60LkI2ER6ruD00ZuuWVUbIwsaHxqTtRMimTSsjZO6YWHWELGw8LGDWm5U6MkTIAAAAMP2IhQEAgKaKHQtLECZKGuwpx5qiok1W/IYXJQOFkBkukvo6ljq3cZ3T7Y7QpdTa6FctX9Crdr3awJfkjoUZpbzPJSr+1yyBDaby91EAAAAAAAAAAAAAZgljTFqliNcrKxYXJL3OWntFM/dlrb3fGPNDSW8fX5SV9ANjzAtc8S9jzCslvbViUU7Sec08LgCo19pY2EjMANBx+xqt/XRKf7zbas0j0tf+7D++kZG8pM7Yx/WntbE3adjtj0j7LYu/3cp7pb8/1vzjkeL97H7/99bHwkaIhTnFvWai/M/1dsaHwqTk4b+p+uktjcbC/OOdnk/3XH+f1XP3r57A1q5Y2IkHGj14Q/hz3DpstbDHeI8n6piGYiRtu4IRmTtukI7958Y3AgAAwKzSyghZeIBMGhxzB8qGI8Z9/56M1ilHyDbHjpD5x7OZ2rBYKSI2r6sUGeupW1Y9Xr5dO06EDAAAAHEQCwMAAE0VN7SVJEyUJDAmScH4sQURx9juqBNmLlcsbHFmiXMb1znd7ghdyiSLfiXfrrHr0vX6uGJhaZP2hsjadb1GvW8AAAAAAAAAAAAAmDMukvSvNcs+JmmNMWavmI/1pCv6VeFcSadJ6hu/f5ykPxlj/pe19p7ySsaYTklnSfpSzfZfstY+HPO4ACAe23gYaqxgFffDu75I0aG7hS/fZZHRW44zOiMI9OWv90iS3rLrd3XxwjfUrTu8eauk+GWuxb2uD51O3Wg+/uskSas3tC7SFScWtXpDyw5jwkhOUuiHw9HsWNhtD7c+/tYMzX7ejbrr8cbW23mBf9wY9zXfExLGa1csbNl899idj0nP3d9/PFHHdPkdjZ9fn+j/nMy8vugVAQAAgJiyGaNsRuprYYSsPiYWHiirjJC5xomQTY9cQdrcwghZVUyss3zbqLfLPz55u3qcCBkAAMDsRCwMAAA0VYx5X5KShb/SCWNG5ahQYP3Rn3ZHnTBzbc5vCl3e1+GJhTnOzzixKRvj21adx5EgxCclj/H59lf5bIxJhf5+Ox+Ez9RKKe09pnZdrwERQQAAAAAAAAAAAAAlZ4Qs+6/xf+I6SdK1vhWstY8aY/5F0tWSypmI4yXdbYxZJelBSQslHSVpac3mV0g6J8FxAUA8MSaNJYn5+D4Ae+phER96zE02GbuD8D7jSC7ZXJ2ghf2k0YTRo+Fcc4+j0kiMx27lcZRNVxhqpnjBgdKf7wkfi/Oz8hnNW/37z2zDMazp1qzn3ar9HuKIGzZitCbWd++TVv2D4etmUs39MPjLDzP6/JXhb3iVzz1pLCzOtfzabb+WCm9pfAMAAABgmrU6QjaUkwZHq2NiQzk7uaxyPCcNjfrHczFC4WieVkbIqsNi49GxTmleZylC5hufvD35JxEyAACA6UcsDAAANFXccE+SoJFJGEEqH1sgf/SnGBETw9wxkO8PXd6XqZ1fPcl1TkdF6potnTD6lU4cGWtsu7TCj6tgw2f8pE3a+z7Rruu13T8/AAAAAAAAAAAAACiz1l5rjDlN0g80GQQzkp49/k+YSySdaS3fjASgDWLMq7jj0fgP7wvQfOJlER9OfGL9xM1uOxK6ykjC6tSW4USbNSRpCOuPd7WuYBYnADbqWffnZ6V05o8CbRtvtx2/r/TF16b0nM/Hm58zXWGomWJRj3usWSG1t//A6me3trCK12Q/u9Xqp2e2f78/v62x18iY6A9TH757+Pvk//m91UdfUrq9ddjqxC+6rxdfmCuJ5+zrPu7Ht1qVAwdJY2GNygZj2jf/kOzqa2Xe8tGpPyAAAACwA2tVhCxfsKWA2FgpIlYdE7OTyyrHx6ojZGHjRMimR65Q+mcg9HdYySNkHenJcFh9TMyop9M/3usYzxIhAwAAaAixMAAA0FQ28hdF1VIJgkZJI0hFW1Rgg8hjtApkrW1oYgZmr7FgVEPB9tCxxR1LnNu5olntjk0lubYkyTQY/arbnyMC1ujju2JhRinvNR+0aV57EDOECAAAAAAAAAAAAADNZK39gzHmEEnnSXqdpD7HqjdL+qK19tdtOzgAsI3PGfvLffHDQwXH9JDL3ptSdzZijte1v5m42RU4YmFbtsU+pmLQ2oBS0hDWqg2NrdfVIa36REqPDpQ+4Hnyl6LnxsQJULnWffsJRq99ttGph6X01welZfOlg3ctRZRGv5HSdfdJ514eaPuo9MKDjP5pb+mN3w1/rZsVxJqNRpvw2mwbsfr1av95ftqR0quPav88y/N+Z3X/xrbvti12WRgeC6uM9V11l9VTnretZsfCJGnpfGlTyHTK6+6V3npc6bbvw/9ZzyeXlsyT+gejj+GdW75burH2tuiVAQAAACTSkTFalHEFqpsTIRsaq42J2cllleNj0vCYf5wI2fTIF0sBslZFyMJjYiYkPFY9XruMCBkAAJitiIUBAICmsjEmfklSSvHDRCbBNtJ4BKzB4I9VINNg/Aiz00C+3znWl/HEwhznTaD2fllzkmtrStv5ImMV7wtpx+O7YmFpk/Je88U2va7tipIBAAAAAAAAAAAAmNmstdP2qRJr7UZJ7zbGvF/S8ZKeIWm5pCFJj0laY619aLqOD8AcZq1eNHiN/jjvlMhVD90t/tto3jFto5Egjt0+MHG7xzpiYane2Me0MX5fLJbhhLGw5+wj3bQuer33nWR00C5GB+0iDY81NucvTpxrNB/+mL3Z0p/dWaOTD6wey2aMTlkhnbJi8gdbDKw7FpbwNZotfL26gWGr9f3SbotKH/ROYt0m97VX9uZjU3rVke3/V6Ob1gW6f2P4C1AoWmXS4ceUL1g99LSUMqVzcZdFzTn2nRfIG++SStdmI7aNhi9PGU18Ce7aJ/yP0YpYWFgoTJJ2q8jX+s4X3zH928lG514e/T60R/6R0o0VR0euCwAAAGBmaXWELDwmNhkZqx0fihgfI0I2LVoZIQsNjGWleV2lCJlv3BUoI0IGAACmC7EwAADQVI3GuMpSJv6shHSCbSSpaIsKbGPHV7RBomPD7LG5sMk5tsgXC3NEsxo990qm/s2jSc/fVp/3xvX6ON47UiatlEnJyMiGvC61Ea+wdZrBdXwAAAAAAAAAAAAA0G7W2pykldN9HAAwwVq9avvlDcXChnLx53a4AjSZiO/Es9ZKv/z6xP3uwBELK8b/cr2hFoeq4oS5yq640zYUCpOkfzlq8sOMPZ1Gpx0p/XZNxDHFeM45x4dqO2N+eiGdMupIh58DSV6j2STwTGd68/esJKvlC6QLXp/Sa58d78Or1lp97LfR86WO2jPWwzbNSc80+sa14e8lo3lpXsgUuC/+MdBHflW9zdF7Sb95d0q79U3tw72NXBvnvryx95kXHGR007qweXKl6yCbiT73WxELc7nh/sljTRoLe/VRjcXCXr7996UbTz/Z6OEBAAAAmOXaFSGrj5HZquVDVSEy69iGCNl0yRelLcOlf+olj5BlUtK8rsqwWHVkrKduWU2kzDFOhAwAAEQhFgYAAJoqbqgnpfgTrZJsI5ViTY0Gf+JGzzD7DOT7Q5cvSPepI9Xh3M51frY7NpVOeJ0kvb5a9fgppSf+LKr+t+Ltel1ro2QAAAAAAAAAAAAAAAAoszpzy/e0vmNPfW3x+zSa6nauGRWkqhUEVoFjSlpkEOfHX6i6221HQ1cbKcYv63zystZ8oV1Z3BDWfU9Z/cs3GptH8/23Gh27j6lZltLQWKBr1krW8dRixcIcU22yCT690N1BLCxMI2fgk9ukN30v0IpdUzp418Y/aPqjv1pdfVf0er2dDT9kUx2ws3vsnielZ+9Vvey3a2xdKEySbl0vveLrgVadM7W6VtS5ePYpRi86uLHX/xWHG33mivCf7g9usjrreUYX/83/029FLMwVFLz+fmn7qNX8LpM4FvbM5dH7P2pkjfbPj9cQ16+N3gAAAAAApsAfIZOShsgKRTsZFstJg6O1MbLw8eGcNDhaEyirGCdCNj0KQWsjZL3ZUjys8nZvp1Fvp3+8dln5djYjGUOIDACA2YBYGAAAaKq44Z6USRALM8lmMlgFDQd/ioSB5ryBQngsrK9jiXc71/nZ7thU0usknXC7Vj1++T0iZVIqhvwetF3XartjbwAAAAAAAAAAAAAAADsMa2Uknb/pXH2y/3zdl91fP174Bn1lpw9M+aELnikbmYhpKPZ/zq263x2MhK43Uow/pf5nt7Y2FjYcI8wlSZffYb2vVdmX/9XoLcfVz9lb0G101QfSenrQ6r0/tfrFbfXPbyTf+HPOOT6kmigWlpW2hXTeRnJWST+cOxu4Inq18kXpijttrFjYb1Y39uDd7u/cbKnurHvs8jusnr1X9XP99Sr381nziLRuo9W+y5J/0NsVyfrEy4w+eapRJt34Y/te01/cZnXW86TNQ/7HaEUsrDdr5Pog85/WlmJirkhg1DGlU0Yd6fAoYNmrt/+m6r4d2ibTu8BzxAAAAAAw82TSRgt7pIVtiJBVxchytuL25PjQWClCVr3u5PjoHA+1T5dWRsh6O8cDYp21t0sRMt94/bLSn0TIAABoP2JhAACECGygx8ce1oOj96po62etpE1G+3Q9U7t2PiNR7CqMtVaP5x7Wo6MPaa/uA7SsY9cZ8x/JG3OP6/7hu5SzY971jIweGL675ceTUrLXfHN+k1Zvv6mhdZ/KParHcxs0FoxqXnqB9u0+SP35p/T42MOyEb9U6Up164CeQ7RTx84aDUZ0//A/1J9/amJ8WXZX7de9Qp2pLklSPsjpwZF7NBQM6oCeQzQvvaBq+dbigA7oPkSLOnZK9LxnolwwpnUja/Vk7lGlTUZ7dx2g3Tr3atr11Ayb85tCly/ORMTCHOfnrduv14kjL9OeXfs5g1mBLerRsYe0fvT+eAcb4ziimITb+VReM3EfP6XSa5U2aYXNN6yNsBWC1vwm+uatKzU/szByvfnpRXr2ghNacgwAAAAAAAAAAAAAAAAzUjBZqeqyYzps7B96Oh0+12np/HgP7YvHxA3i9NjQT9hpJJh5U+pHY8bCbri/sbjTiw/2z0ncaZ7R7n3hjzUWY1qOMxaWIGLkiieNzPEPrAYxvvvw8S3xHvt3dza2Xtc0xcJ273OPbQ8Jy/30Fv/18fBmad9lyY7Fdx6+/PB4oTBJeoZnmui28d7hEXtINz/oXq8VsbBnLnePre8vhft879dR1/6By6W/P+bZf65mTuXTT0jEwgAAAABAUusjZEO58ZDYeJBsIkY2ZituT44PjUlDY7Zm3clxImTToxBIW0dK/9RrToSsPiZWHSFzjYcFyoiQAQDgNvP+ZhMAgGlWtEX96IkLdOv26yPX/acFz9cZy/9dKUf4p1GBDXTJU9/UjVuvmVh2yuLT9KolZ0zrf9Baa3XF05foyqd/MW3HEMYkDEpd8fQlDa/7Xxs+kmgflY5b+ELdOXirBotb68b6Mkv0/j0+o85Up776yCf1VO5RSVKHyeo9u5+jnbO76YJHztFTudLsB6OUzlj+bzpm4UlTPq7ptjm/SRc8co425Z+sWn7U/OP0tl0+6AxptdtAITwW1tex1Lud7/3g/274Tz2z51C9a7ePT8TiyvJBXt99/L/096Fb4x9szOPwb9faYFvcn296/HjK0bBagSZnvQ0WtunS/h8lPziPqzb/sqH19uzcl1gYAAAAAAAAAAAAAACYW2z9h8WeN3yDfrTozXXLR2JGsApNjIV1ByEVIUnDwfQUj1KmFOBZ+0T92EjYt+p5+F6nsmc/wx/8Kcs6PmGQa2AfUeu6HtunOxu+PO65NNvEO0NaI5WanvmtXR3u/V7wZ6v/fLHV8oWNH9tUziXftq7QnU9vp/u4b3s4ep9Sa2Jhr3mW0TmXhZ9128bfWqcSdzzjOUYf/pX7rH7h4J+rF4yGfrIZAAAAANBErYyQDY8HxGojY6VltuL25PLh8bHqdYmQTbdWRcjSKVdgrDpC5hsP276TCBkAYBYgFgYAQI1btl3bUCistO51OrDncB278OQp7XPN9puqQmGSdM3m3+qgniN0YO/hU3rsqXhw9N4ZFwqTpLQjGjTT3LT1T86xgUK/Ln7yQs3PLJwIhUlS3ub03cf+Swf0HDIRCpMkq0A/evJrWtF7pOZnFrX0uFvtFxv/py4UJkmrt9+kA3oO0/MWvXgajqreQP7p0OV9mSXe7VLyx7buHf67/rT5Ur1syeurll+/5cqmhcJKxzEzrxMT8frUKkfPXPGzwE7OMGpVKAwAAAAAAAAAAAAAAAA+9R/q2rXweOiaIzE/tOeLz2Rifidelw2Py4zYeEWfYjD1TNPBu0rnnGq06mFp7RP1jzfc5BBWT1a68v2phj4Il3VMO8oVGt+fa13XY/u4gkujMY5nNopzGs6EsFizvf5oo5/dGv7M3vWTQJe+t/GT7TdrrF52WLIPifre05LEwiTpv083+rdLwp/bowM28n0004Kpg89cbpQy4efd56+0OvflUt5zTUbFws4+xWg0L33m97bu/eOeBw7RPDtUvXCMWBgAAAAA7KgyaaMF3dKCbtcayf4bvRjYuvBYdVTMhgbKhjyBsqGx+L/PRHMU2xQh681K87oqbxv11C0r3zaa1xW2DREyAEB7EQsDAKDGPUN3xFp/7dAdU46F/WngstDl1225clpjYWuH1rR8HxkTfzZEysSc5TVDrRtZq0D1s9mGgu1aM/jXuuVWVv8YWqXnLHxBOw6vJQJb9F5j9w7dOSNiYdZabS5sCh1b3OGPhaVN9L9i3z20pi4Wtnb49sYPsAFpR1xLkhZldmrqvqIs6Zj8StJMA69PpfT4f7KkHZGxymso7vs3AAAAAAAAAAAAAAAAmsDWf/iqOwgPuRQDKV+w6sg09sEpXyzMF5+xY6MNH1PBdKhQtMqkGzum0QY/IBh8J61iYJVOGW0fterNSrli6TXo7Szt6+7Hg9BtR5ocC7vy/SntNK+x59fpmNKX8/wsGl03m+DTC67gUrNfox1NEH7qzBnuDxRLf7xbyhWsshmjoIGq2rqNyXNqvvOwO5vsMRf1uMeu+oeNjAkmifI14pQV0tV3ucdd79cpI6VS/vcfY4w+/jKjj73UatvL95fdvkWddkyd1vFkiYUBAAAAAGqkU62NkLliYoPjEbLa8SFXoCwnDY4SIZsu/giZ5A+R+SNk5XBYb7YUEqu+PRkhqx+vjpBVjhMhAwCEIRYGAECNoWAw1vrDwfYp7/Ph0ftDl98xePOUH3sqhovxXou4ds7upgWZRbG3SzmiQTuasFBYlLt28FhYzuaUs2PO8ZFgyDnWToPFrSrY8N+49WWWerd9Rtf+kY8/VKx/3xgOWZZUd6pHy7K7OsePW/hCXd7/E9maX1Dt333NATelAAAgAElEQVTwlPZ7xLxj/z97dx4fZXXof/x7npnJCoGEJSI7IgUVVAQV3FBUXNC6VdzqdttaW6ve6rX1tu61P62296JevdRata219irudVeoaIGCogJa2fedAMlkMttzfn9MZjLLOed5ZklmknzfffkiedYzk8yUhPN8HixRvG+dVHdW4uOhFQdifXCV62MOq4w9n5YmfhaVbbPeVM9r3EFVh2N5szmAOKBsMCQktoY2uh4fERERERERERERERERERERUbenioXJzFhXXCAM+FzOYo8YgkheUxCnsSFjUZXUx2UCYaCny8BONpEqT2sgp2dF7M+KtKlvld4ooJgPl+3Fgk49pKosokW60FAo4v4Yum2ziYXJSBh4688o/3x/oDrzhq7d/YJKFw2sBMVLVCsSdbfx1NHuj9kexg/Rr2sJxy74LPNIvPKZ8+Pp2yP3cZi+D3WhOyfjhwjoLj7dus/8HtSnGhhcl9t5nSzfrF4eP58uEmgKO6YTQqBnlQXsNc+nlH+4D1izDPB4AcsT+zP+sTd5mSd1vSdtW0/atqr1imXC6hrzmImIiIiIiMhZe0bImlvDYckRMX9imUz6uG15bB+ZsowRsuKL2sC+lth/arlFyCyRGR6rLm9dVh67KUW1dr1o+zhtfYWPETIios6MsTAiIqI0tswu4BTNcvvOJJpDzCobp9Sdm9N+umgQlb6I3Tl+29QQ2aldV+czx8IOrh6P/cuGYnNonXabsOJud4V8Lzm57hx4DK+Tnt5emNzrZHy0953EMgsWptZ9M6/zTqmdjmX+T1Ie36E9jkJ/X1u47Lje07Co8e8I2M2OxxtSfgC+UTUuNj7N40mO7tnQzw79Zr9vo2p3Dyxq/FC7zSl150JC4o9bH3YcGxEREREREREREXVuzc3N+OSTT7BixQrs3LkTLS0tqKysRH19PUaNGoXDDz8cZWVZXElNKaZMmYK5c+cmPpfZXJWchTlz5uDEE09MfH7HHXfgzjvvbJdzERERERGRgSoWZpvDXPqL61L95h39zxPGAE0wc26KaUzNIaBnhbsxNWcRCzORwQAq3ngawHfzPkfYYepRNtEiXdCrILEwl1P/ZDAAeXLsRqSVg55XbpNNtK2zC0cklm0BFq+TWLwO+GSdxKcbCn+eYFjiwlmGQl+Sfz+luLGkcw4T+P6f9O8PyzcDVz1lY+0u52Pl85o27ZtNpC/Z6P306z74Shov+r12ikhECgvtkqME7n8z8zlfuT0WmdO9D2UTCQQAbNHPvUz4dC7kp3Odt2snUgh1hCwlXGY5rE+Ok5kiZl7AY6nXe70Q6WEzx3G5OK9Xsa0hnpa8LS80JiIiIiIicsdjCfSsMP1OMv8ImT8UC4klR8j8IZm6LJgaIcvYJ8gIWTHZsn0jZNXlqgBZW2hMvV6kbdv2JyNkREQdg7EwIiKiNKbYTCG270x04bQKqwp13r4AgIDdbAwrxR3X6zQMqTgAS5rmo0yUYWLNCTis59E5jcsUQcrW2OqJ+ML/z5z27ePrj3IR+23MrvB2BA13w6QYVSSrFO0Oq7+nvcKLHp4a476VnircOPgevL17Nt5teEm5TURm/nbM9F5yZM0J8MCLTcG1iX09wot+ZQMQlVHsjexCyA6iztcfh/echEm9phrHCAAX138fA8oGY6l/MXp4ajC518kYXX2o434mo6oOwfWD7sK8vW9jT2QnvlF1KE6u+2bKL3gGVQzHjYN/gb/veQPrWlbAlpmPu9yqxIFVh+DUunNRbsVeY5biDqpA6vuULrj2zb7fxuCKEbhiwI0YXDECy/2foMrqgZAMAZAoExU4suYEHNrzKABApVWNf+77O7aFNmb9HPQtM8zUIiIiIiIiIiIioqKKRqP461//iieffBIffPABIhH9Vc4VFRWYNm0avvOd72D69OkdOEoiIiIiIqJOSDH/o1Lqw1wtLi8s29QgMfO9HGNhyzPnhJnGtHRtEPXj3NXCCnZh3GtPomrtZ8AAxTkKHQvLIlqkC3qFsrgXom7bMq/LC8X+9nTiQ93XLRBqnzB1sYUiEss2t4bB1sfCYJ9vBIJZxNpy9dTHEq9+7rzdK9dZOGNscS/6618j8OEtFo77lXrendtQGJBfLEz3WhUih0hWYl+BqaOB977KXPfBv2LHVpk+Drjr7Pb7uhw2WL9u9qcSlmZgxvfqNHLX1ixHVSRSAtFI7L9iD6XYA0gjk4Nl6TExb1rQTBU2yypS5jGuF7o4mnJcSdsax5U+Rs36tHMJq7iBRSIiIiIi6j7aO0LmD7YGxIJtH8f+lCnL4h/H/pMZ+8Q/LtSNGSg77RkhywyPJS8TqNKuF5pwGSNkRETpGAsjIiJKowrXAICAgFT8EKMLanUFuudiXI+JuHLAvwMAPm9aiP/d9EvHYwkhcEzvU3BM71PyHpeFwsTCvMKHawf9DO/sfhEv7njaeYc0397vRxhVNRYA8MjGu7Hc/0lBxtWVhRWRrFK0O7JDubzW2xeWcP4H+x7eGpzX/0ocUDkGszb/v4z1qudB915yYf/vYkrtmY7nzJYlPDip7mycVHd2QY97QNUYHFA1xrjN4IoRuHS/H2Z1XEsTCYwHwqSUsKF+DodVHAggFho8pe5cnFJ3rvFch/U8OueYIREREREREREREZWm999/H9deey2+/vprV9u3tLTg5Zdfxssvv4wJEyZg1qxZGD9+fDuPMnvDhg3DunXrAABDhw7F2rVrizsgIiIiIiLqnmTmvLpKw40X3Yaw/jjfnEApN8yEl6u+yGpMj762B1PHubtJXKFiYfKj11Fp9ynIOZxiYdXZxMI0z2s2sSrdtm6jQfIP9yc+rrQ1sbDdDQD6uh9UCQpFJJZuAhavl1i8rjUMtgkIFbg/pHiJKpnifHHHHABMH1caF+Ydsr9+ndtQGJBnLEzzWq3M8wLGXpX6dbqv509Os9r1osnqcgHdxaDvLAdOGq1el00sDIs/yH5gVFqi0dh/4eJf7V1KITUphHOEzLIc1ivCZ8qImRfwWNqImUhZ5iKO5ua8HsW2hnha8ra82JuIiIiIqHNorwiZ3Roh08XEmoJSGyjzawJlTYyQFY0tgcaW2H9q+UfI1DEykbG+ugzoURGLkLV9nLq+sowRMiLqnBgLIyIiSqML9niFD2GZ+RNitAvHwqKa8E5yrMuCuzsdiRx/2Fee30WsyQ1P6+PINT6Wy/PQ3YVlsNhDcKUhvFO5vNbXL6vj+Cz1LLtIFu8lukhWd+PRvMZsxKKGEuq4IcDnkIiIiIiIiIiIqLu76667cNddd0GmXUkphMCYMWMwaNAg9OnTBzt27MD69eszgmKLFi3CpEmT8Mgjj+C73/1uRw6diIiIiIioc1CUaypsQyzMZQjrL/80Zz769DDMSbMy54tU2c3azV9c635ekNvYmY5c/y9gzovAP99Fec9zlNtkG4syxcJG9gf69XQxLv8+yJvPgm/9UGDgk3mNqcUQUHJl5+a2fTSRt0CgwEWtdhYMSyzdDCxe1xoGWy/xRTuEwfLx1VbnbawSmirZq6ow81L9ecXC1O9Trr/XNcbsL4BPs0sdVWURBczFUcP16/Y0S4Qi6q9HVrGwfVlU3og6EymBaCT2X7GHUuwBpJHpwbLkSJlXETSzdOEyN5EyTRytdZlwE0dLjEt3XlPIrXVfyzDW1uWilP4Pl4iIiIioHVmWiEWc2jFCpo6NSWWgrNkQKGOErHjaK0ImRHpYrO3j2J+xCJl6vYhFyyoy1zNCRkTtjbEwIiKiNLYmOKOLhem27wp04TRPUnjHbYRHFDCm5XER9/KJMuXXK1k8OpZrfCz5efAwRuRK2DbP9JMl8k/QDZEdyuW13uzuROkV6r9uR2QEtrRTvvdsTZzPzfd7d6B7r4m/T0UlY2FERERERERERESU6cYbb8TMmTNTlvXs2RO33norLr30UgwZMiRjn5UrV+Kpp57Cgw8+iGAwdhOMUCiE733ve/D7/bjxxhs7ZOxERERERESdR+acn0oZ0G7tNha2Lp9mzNZ1GYsqbf2YsvHZxtznOMnPP4a8+Swg0AQA8El1NCSU5T1MTbGw284UjhcmycYGyDP2AwCU9RygHpPLvkk4IhHVTOWpzCFmVKH5ugVCpTHXTCUYjoXAFq+TWLwe+GRd7HPT16k9FfKZsrrgNW75XOSpiwfm8r2e7OpjBO59PbuvXL6BMif9euq/+C98AhypiYllEwuTG1dlOSoi6vSi0dh/4eJfcV9Kf7OQQhhjYpnxM12kzHIRMfMCXo82YiaMUbYcz+tRbOv0eFvPzwvuiYiIiMiN9o6Q+UNAU0trTCz549YIWfp6f0tqhCxjfTDnh0p5kMkRsn3KLUx7a9cI0RoQS46JlQPV5fFlAlXa9SJt27b1jJARURxjYURERGl08S+f8EE15UQX1OoKdPEiKyle5DZkZBXwBxDhIu6li7sliweEco0xJQeILAadXIk4fE1Kxe7wTuXyOl92sTCf0M/4icgwykR54nNbE7vKNWbX1WhjYa3v2br3KwDwFDBWSERERERERERERJ3H008/nREKO/bYY/Hss89i0KBB2v1GjhyJX/ziF7j88stx/vnnY+nSpYl1N910Ew477DBMmTKlvYbdJcyZM6fYQyAiIiIioo4kMy+KKZdBCGlDKua+LF4nMfkA5/lkew1tr6mjHXZ+5y8Zi3xwWSlzcNerecTCfndnIhQGAD7NfKpwNLtz6CJU08cB357kYu7MC48lPiyT6ufJbcCs0XBhWy4xo0rZolweaNgLQB0260gtyWGwdbEw2NLNHRcGK/MCYwcCFxwh8MFXEm8vb9/z5RXxaweH7A8s3ZzfMfKKhWneVqryjIUNqct+n3wDZW7cerrA/3tD/f70m3fUy8uymV77wqP6dYceB0RCgB0FIhEgGol9nPiz9ePEn0nr4x/bXfcG0UTUxUjZ9v5V7KEUewBpZEokTRUZc1qvC5+pImUe43qRfiynOJrTeTPG7QG8msBb+lgszpcnIiIi6gjJEbL6GtUWhYmQ+UOxkFji45bUCFl8vb8F8Iekep8gI2TFImXr1yKIdouQJWJiSR9Xl4ukj9PXC+U+jJARdU6MhREREaXRxb+8Qj1LJdqFY2FRF/EiXcAnncjxh1wVN3EvnyhDAH5Xx3H7GNJZSQEiT47H6G7CmolkpaYhoo6F1Xr7ZXUc3fsG0BoLQ1IsTBMqZIguRve6j78Hm8KNub7GiYiIiIiIiIiIqPP6+uuvcd1116Usmzx5Mt544w306NHD1TFGjRqF9957D1OmTMGXX34JALBtG5dddhmWLFmCvn2zu8EEERERERFRl6WIhQlAGQoDzBEwtxzjQAeMBVZ9kTEmnTIrCricp5NrBEpGIsCnc1OW+XRhriy7ELoxnTnW3bw9+cRdSWNSl5OCLsf09Tb9uupy/brEWNK+nyql+hsmIHMoj+WpJSzx+cbWMNj61jDYJiDSQf2hMi9w6CBg/FCB8UOAI4YIHDIQKPPGvs6L16q/ERQv0ZytLbFYWE1l/sfIJxam2zeXMF4yj5X9nNuaivzO6UYvw/O9TXnhoz6opjRoJLBxZebyg46E9ci7WRxITUppjollxMbsto9V+6XsY1qfvH8UsKOQ6cszxhJ1WJ/NeZ2OUfwYERGRa/H3tXDxb2JeSiE1KYQxJpZY5hgps1xEzLyAVxdla42oaeNomqBa/LzJcTRtqM1Snld3XEYPiIiIqDNozwhZINwWDosHrBIft8iUsFh8fXMQaArKjPBY8v7U8VIiZOotTHtr18QjZLqYWDxCpl6vD5RVMUJG1G4YCyMiIkpjawJZuuiPja4bC9PFd5LDWO5jYYW7U4mbc/osH5y+NPHj5Br6Sn0eeCcWN8KaiWSlJCLD2BdpUK6r9WV34ZdP6G/Vl/5cuHm9dWe611j8eYsaXvAMrhEREREREREREXU/N998M5qamhKf9+7dGy+88ILrUFhc//798fzzz+Pwww9HKBT7ve6mTZtwzz33YObMmQUdMxERERERUaelmXOn43U51WpAL2DLXvU6XRxLSgk8998ZoTAn5+y/CcBwV9uWuZiKcuPJigtgQpnRqzLNfCpbCkRt6ToYpHs+fDlMm9HFuUIRuBqTKQY3qt7FAEItqeOx1Qdskfq5WYWyfLPE/3tD4pkFHZ+CKE8Kgx0xFDhiqMDBAwCfV//8xy68KqVsRfvbqnmPyEZzKPbekcuFawFdLKz9vz0z1Fa3/4V3J47O/nts/e4sNtZ9DRq2Z3VO/eFFLELiLf6lVKV0maSUMhZGS4+JRfKNlLXF0bTBNUUcTWrDZhEgauvDZ5G0MSaPK6I6r+08LruDapBERPmSEoiEART/5u6l9rdRmR5Jy4iQpcXJnCJl2vXOcTSRETwzjSub8yad3+t1eLytY7F4DRQREVF3YFltkSe1wkXIUmNiMiNM5k98LJXhMr8xgkXtKTlCpr4XSO4RsqoyXYAsFhqrMgTK1PswQkYEMBZGRESUQRf/0sbCspzo1Jnonovk8I7HZYSnkH/xdhML8xoiTYnjtAbMrBxDZsnPA2NE7kQ0d8IsJXvCuyE1P6DWeftldSyfpb89YNhOfS50sSu3Qb6uTvcasxF7Dza9FzO4RkRERERERERE1L189dVXeO2111KW3Xfffdhvv/1yOt5BBx2Em2++Gb/85S8Ty5544gnceeedqK2tzWuspWblypX4/PPPsWnTJjQ2NkIIgaqqKtTX12P48OEYO3Ysqqqq2n0cwWAQc+fOxZo1a7B79270798fgwYNwnHHHdcu59+yZQsWLFiA7du3Y9euXejRowf69++PiRMnYsSIEQU/HxERERFRlyM1c20iu7Db2ydjebPL+w3mMuVM/uZ64KXfatcf3rIEn1YclrG80nI/ryniMGXwwP7ATacoBh90HwsDYgEwj8upbQWNhdkt2nUtYdOFZbGLxE6faZjH4yZ+lvY8VUr1eALR9p0TtGyzxPh7bO1zW0gVvqQw2JBYGOwghzAYxdw2XeCqp/JLUkgJBCOxr0O2nl+sPndlDsfqDI4Ykv0+3z8hi+/jDSuUi8V538/+xOSaEKItluIrQukufTzFHkASmYioKYJoecfRTOuT42exY8qMc6WH2gp03qjLx0tE1FnE39fCxb/xfSmF1KQQxphY4nPHSJnlImLmBbz6aJvwpAXPHMeVdF5tHE2xrcvjMjxBRETkrL0jZOoAWSw0pgqM+Q2BsqYg4A9p/xmD2pGUbZG49oqQVZcBPSrSP26LkGWuF5p9Yr/TtVzewIWo2BgLIyIiSqMLzvgs9T9+6gI/XUFUOseL3EZ4RI5BLhWPi2P5NHG3lOO0jj3XGFMuz0N3F7Kd/oGl+D9xN0R2atfV+vpmdSxTtC49nGbrXm8FfO10ZpZQPw/x9ynd82fal4iIiIiIiIiIiLqmmTNnQibN8Orbty+uuuqqvI5544034oEHHkA4HPvdrt/vx+OPP45bbrklY9srr7wSTz/9dOLzNWvWYNiwYa7OM2fOHJx44omJz++44w7ceeedxuPHrVu3zjh5/YorrsBTTz2VsTwYDOKhhx7C448/jhUr1Bdkxnk8Hhx22GE455xz8OMf/1gb7poyZQrmzp2b+Fy6nHG3d+9e3H777Xjqqaewb9++jPU9e/bEjBkzcNddd2H//fd3dUydcDiMJ554Ao8++ii++OIL7XYHHnggbr75Zlx99dXwejnNhoiIiIhISfN3/okti/FWj1MzlgdcdrkChqlGqus1pH+fMRQG6GNhIdv9/BJdPOrA/sBNpwqcd7hA357uYmE+RLTnCWURLypoLExmjjNueyMw3BALW7JBv65XpcsBpMfCbPV4Anb7/oz22BzZLqGwCh9w2GBg/BCBI4bGwmBj9mvfMFjxZ+W1n8kHCBTiETaHcouFfbZRvbyjY2FnHNIx57EsgW/UA/9SX92nNLK/u+3k5tX6lX3z+z0QUa6EZcUCI97iFwBL6VJVKSWQCKklxcQiqohZJItIWXpwLWIIl7VtL9OPlbK/rYmrJQfZ3J7Xzlyffly7696Inoi6GCmBSBiA+3B2uw2l2ANII9MjYhmBMVVkzG2kLH0fcxxNmOJo2pCbm/MmxeC0wbW0sVi8LoeIiNpfcoRM/Sul3H46llIiEEoPjyXHyKQiTBb7nWFTi9SEyxghK5bkCJlmC9PexmNXxwNi5bGIWOrHAtUZy+Ift0XI0tdXlTFCRoXHWYxERERpbE38yyvU/7dpCtR0djbU/1jlSQrvuI3wFPKvsW7iXj5DpCn9OLmGvlKeBzAW5kbEcCfMUrE7vEO5vNKqRoXldsZajClaF057LnShQoboYjya11j8PVv3fmXal4iIiIiIiIiIiLqmN998M+Xzyy+/HGVlzv9uYNKvXz+cddZZmD17dsp5VLGwzmTDhg2YNm0avvzyS1fbR6NRLF68GIsXL8ZFF12EkSNHFmwsn332Gc444wxs3rxZu01jYyN+97vfYfbs2XjllVdyPtfixYtx4YUXYvVqw0WorVasWIFrrrkGjz32GF577TUMHDgw5/MSEREREXVZmqthquxm5XJTBCxZi+Ga5e8dr5iR9vUSx2P6pPqg2UShdNv++kIL08cZZsopYmFlhvlUhRiTz5P9zL2+0V3adat3AMMN91t87Qv9hTZ79Q2yVOmxME28LGC3b7jl0Tn5X+VVGQ+DDW0Ngw0RGDMA8ObwdXHD0BAvmO8eV1oXNQ3tU5jjNIeAuurs9jHF0d1GEU2+c5zA7z509324y5//+dzq1zO7WJjr75hlC/Xraurcn5CI2p0Qoi2W4svvd+8FGU+xB5BEJiJqmphYRmws+ziaNrgWSd1WZoTYdPEzU8jNxXmTo2za9V33mhsi6oLikcsSUErtESmEQ6TM0xYg0673pm2jiZRZHsDr0UbMhCqO5va8ruJoquCa5riWZbyhFxERlQYhBKrKgap2jJD5Q0BTS9ufsWUy6eO29f5gLEKWum3S/kFGyIolHiHb3qhaW5gIWXV5a0ws8XFqhCx1vcgIk8XXM0LWvTEWRkRElEYX7NHFp7p0LEzz2JLDWG4jWQKFu4OA5eJYHk3cLfU4npQ/sx9H0vPgMprW3YU1k+1KSUNEHQur8/XL+limaF0k7bmIakKFbuJ43YHueYi/T5nei/kcEhERERERERERdR8bN27E2rVrU5adeuqpBTn2qaeemhILmz9/PsLhMHy+9r04ub2EQiGcdtppGaGwuro6jB07FvX19fD5fGhsbMSWLVuwfPly+P3tc+Xp8uXLMXXqVOzalXpBen19PQ4//HD07t0b27Ztw/z58xEIBLB7925Mnz4dDzzwQNbneu211zBjxgw0N6dGCwYMGIBDDz0UdXV18Pv9WL58OVasWJFYv2TJEhx11FGYP38+Bg0alNsDJSIiIiLqstQXQegiT80uY2GmWJYyyrVrq+MxdXGusO3+goqI5p52XqcpZC3ZxcJCEddDQkgbC3PeV0ZST7R/ZEvOY1q4ugBXMKU9T5V2i3KzBrsq/3MVUFVZUhhsCHDEUIHR+7VfGCxOvv0s5Cu/A1Yvg6x7DKg6O3ObAl5Y9m/HltbFR2XewozHH8x+H9N71Kj98h/Xz89wHwvb3YGxsFMOEpi30v031dEjXD4XAcODGHeM6/MRERWTsKxYYMRb/H83KKX/x5ZStsXJkuNpkTwiZclxNGWITR9Hk9o4WlL4TLU+kjZGp/PatvO4WAAgos5CSiASBlD868JK7Z1TJiJjmkiZcX0WkTJLc6ykiJmw0o6ljaMpgmvG86YF11KCaep9hMVrLYmo60uOkGm2yOm48QhZPByWHCGLLZMpYbHkCJk/KFP3CTJCVgraK0IW/3eJ604UuOhI/n9vd8JYGBERURob6pk8XqH+B5uoZvuuIKqLhSWFdzwuIzyFrOS7Cf94hAcWPLA1AabYNlbr8XL7C3Auz0N3F7ZdzvQrooaw+s6YtV7DLTE1TNG6cNpEP13sypNjzK6r0b1Oo62BR11sLbYvn0MiIiIiIiIiou4uKqPYE9lZ7GF0eb29fYv++/KPPvooY9mECRMKcuwjjjgi5fNAIIAlS5Zg4sSJBTm+Ww8++CDuvPNOAMCxxx6LTZs2AQAGDhyIefPmaffr0aNHyudPPvkkli9fnvh82LBh+J//+R+cdtppsBQTd6WUWLx4MV577TU88cQTBXgkMeFwGJdeemlKKGzAgAGYOXMmzj///JSxNDU14de//jXuvfde7NmzB7fccktW51q+fDkuuuiilFDYaaedhrvuugtHHnlkxvaffvopbrjhBnz44YcAgE2bNuHiiy/GnDlz4PHwd89ERERERAmaaxV0kacWF9eVSim1Ua5JI4Cjhqdtb9uQd33b8bheSz3YkJtBtdIFghzDXM2ZV4H4DDdfNIWICjYmAAg2O2/TKuDwNA3pI6D7hvjmoW5P0pTyaYUmOhcu8qUQxxzQGgYb2hYG81gdm+WQb/0Z8hdXJT4XPTXFq2AAQHXe5/vZmQITh+V9mJLkNmKYLGDY58pJ+X8vDOkjMKAXsGWv87ZXTO64770bTxa44xX3VxUOqXO3ndy4UrtOVJRWHJCIiLIjhGiLpZSAkgqp2XZaIE0XMUv60zFSpgiuZaxPC65FI5Cq4yqDa3me1ynKFt+fiKiziEZL5n2rlPovUgiHSJkqfqYJm8U/9moiZZYH8KYtT1ovHONohvO6iaMlj1ETckNSyK2Q19kSUdeUHCHr11O5RU7HlVKiJdwaEGuNV6XGxGTbsqT1zcHWQFnyPkkf+4OAXUr/J9SNNIeAj1cBH6+SEMLGjIkMhnUXjIURERGlsaV6hpFPEwvTBX66Al04LTleZLkMGYkC/pOKmwuNPPDAEpbx6xMfe64xplyeh+4uYpjcVip2R3Yol4DrUf4AACAASURBVNf6so+FWcKCV3gRkZm31AwnPRdSSu3rTeQYs+tqdK9T2fq86d67Y/vyOSQiIiIiIiIi6u72RHbittXXFHsYXd49I2ahj6++qGPYuHFjyuf19fXo06dPQY59yCGHKM/X0bGwvn37om/f2O+svd62aR9erxfDhg1zfZyXX345Zd933nkHI0eO1G4vhMCECRMwYcIE3HbbbbDtwtxQ5+GHH8aSJUsSnw8YMADz5s3DiBEjMrbt0aMH7rjjDhxyyCG48MIL0dDQ4Po8tm1jxowZ8Pv9iWV33nkn7rjjDu0+hx9+ON5//33MmDEDs2fPBgDMmzcPzzzzDC6//HLX5yYiIiIi6vI0Px9USXWEqrklCjjM54gYpuXdf77iorqvPzUeL65MM80rvMfdzxe2LSE1F704hrmWfJg5HsN8qlBHxcI+zwxv7xfZiq3e/TKWt4QlTBci7d9bf5peVS7nEKaNp9JWx8IAYNV2iQP6F/4CS6n7Irf6/gkCj15a/DlJ8qVZ7jbcth7AGOMmURdXc919tujUF7T++67/xn/1uVG5LpdY2Lrd+nU9K7I/nsr/fd/Csfc7/w6mUOdzo2eFQH0NsG2fu+29bqfXLnxHvXz0EerlREREXYCwrFi0xKu+XqlDx1LsASSRUrbFyRwjZrnF0TJDbPo4mtSeNxL74VUVRLOjsXOmj9F43qjzuBx+ViEiKhlSApFw7L9iD6XYA0gjMyJp6ZExy2F9NpEyxbGS1gtVHM3pvMrgmiYGpwquaUJtnfl3TkSdhRAClWVAZVn7RcjUMTGZGShLipCp9mGELHuPzZGY0bHTGKmIGAsjIiJKY0M9a8YryrLavivQhbaSY12Wy5CRVcBYj5tjWcIDDzyIQP8LJav1cVgu4mPq/a2kjxkLcyMsc5hR08EawupYWJ23X07H84oydSzMbnsudKEwgKGrON1rLNr6PhU1hQH5+iQiIiIiIiIiIuo2du9OvUqztra2YMeuqKhAeXk5gsGg9nydybp16xIfH3roocZQWDqPxwOPJ//fvdq2jYcffjhl2W9/+1tlKCzZ+eefjx/84Ad45JFHXJ9r9uzZWLp0aeLzCy+80BgKi/N6vXj66acxb948bN++HQDw4IMPMhZGRERERJRCfbVGhSby1NwYAGC+GF4XvwJSA1gyHIpddLjiM6dBAr4y+Fr2AYqLYEKV7n5+NI3LMYhTnXlinykWljnlSCmaT8AMAHZsylhUYbcoNw3kcX3neYe7vNCooirl0/0jW7SbfrEJOKB/7mPS2dlkXl9eKldhrPzc1WZyr/PvLza66OWV6kWbRwwFFq8zb1NpN+Pe7XdgZt2PYCvmk+USCzPFsvpXRSFbQhBp38/Z2r+Xu+0qC9QXkY17gB69HL/WbkNhgMv3IQD4xnhg1ReZy79a7P5kRERE1CUIIVrjIaVxHUAp/S1Y2nZmUEwZMcs1jqZbnxw/i20rVSG3lFCbbV7v9rzRCBC1HdZ33Wv7iKgLikZL5n2rlBo8UgiHSJkn7WPV+rSImi5+Znliv8zVRMxENnE0VXDNMY7mcYyntY1VceMMohLT3hEyfUxMKgNjfkOgLP5xV4yQfbqh2COgjlQq/0xFRERUMmypjvb4LPW/pJsCNZ2d7rElh3c8LiM8hfyB1E34xxJWLOZl+Au7J+9YWPLz0DFBp85+ExCnWFgpPLyGyE7l8jpf35yO5xM+qKbORZIm+unCfABDV3EW1M9DPNhoCjfq9iUiIiIiIiIiIqKuJz3e1bt374Iev3fv3ti2bVvi8127dhX0+MUSj2B1tL///e9Yu3Zt4vOJEydi+vTprva9/fbbMWvWLITD7q5Uf+ihhxIfCyFw3333uR5njx49cM011+Cee+4BAHzxxRdYu3Ythg0b5voYRERERERdmmZSU6VUB6f2BJznkjnFwqR/H+RpWd78b8JU+L5W/wwRlu7mt21vNI/LRG5albGszDCfyvQcJPt8o2FMbq4WCGZG3SqlOvQWcAgqmcZ84mgXY1GM54Dwau2mgbBEe1y67xSOKoXr86SUQEtzyjKRxww8t99vpWj6OIHF68yPfVrTOyhDGFV2M5o8mVes5RILM70e6i4aANnSDHnI0RC3/hZi4AHZnwDAsL7uvtkq1fdDdk2+8jvIP/0K2LIO6D8YuPhGiAuu024/oBewZa+7Y3vdTq9N+34mIiIiokzCsmLREm+BarH5jKXYA0gipWwLjzlGzJIiak5xNGVwTRdqawuaSe15I0AkqgmepR/XzXmjzo+3s1+IRkTdh5Sxm0JE8rhbQaGGUuwBpJHKiFhyuEwRNFOFzVxFylRxtLb1wimO5nRe5fq0GJwqCqfYjxG1ri85Qta3wBGyYARoamkNiIWSPg4CTUGZuqz14+QImWp9sSNkjS2xm8t4LL42ugPGwoiIiNLogjNeof5Fqi4u1hXongsLVtLHLmNhBfw1sMfFOT3wOEaW4o/Dg9xCX8nj6KgYkY3O/f0Wtov/yxqTQNSPgK2ecFLrzTUWpp6FkxxOizJ05UgX5IuH1kzBNbdRQyIiIiIiIiIiIiInXWmi2ejRo7F8+XIAwIYNG/Dggw/i5ptv7tAxzJs3L+Xziy++2PW+/fr1w6mnnorXX3/dcVu/34/58+cnPp84cSKGDx/ufqAATjzxxEQsDAA+/PBDxsKIiIiIiOI0F55WaebhLNpW5XhIx1hYtqGwkeMgfjoLZb+aB+zOXB223f28N+VB/fwtUyxMRqPA7P/NWG6KhYVcxJv2BSSOvT+3MSXGtmxhxrJKWx16W7jGfKyIYcw9K9w9x/LtZ1M+N+3lFC/LlT9oXl8S11qHHAaZxM14TV+7UvfT0wSWbpJ44RP1+iMCn+B/t8bCV9WyGU1QxcKyD8/FYnUa/n2xPz+bB/mjU4Bnl0OUV2R1/LiTRgPvf2XeptKX+++s5NyXIB/4YduC7RsgZ94E9KyDmHaJcp/bpwtc+4y7F4Kb9yEAwPv/p15+0rdcHoCIiIiIuishRGs4pDSuHSmlf1GWtp0aF9NGzHKPo6nXtwbXkraV6aGzjGBa1GG9y/Mm1jmsJyLqLOLvaXD/+8D2Ugq/Fo2TQhhjYinxM6dIWXy91xQpUxyr9WORaxxNFVxT7qcJvSWPN/Gn1aXmt7UHIQQqfECFr/0iZP5QLB6W+LglNUKWvL45BDS1pEbIktdnEyFrbAF6O/8THHUBjIURERGl0cW/fLpYmCHy09npnovk8I7bCI/IMcil4hQBi2/jFBWLH8fN8ZzGkesxsmUKInUGYcPktlLQENmpXVfry3KCYStdaDAiI4mPGbpypnuNRVvfp6KGkJ6lCY0RERERERERERFR11NXV5fy+d69ewt6/D179hjP15lccsklmD17duLz//iP/8BLL72Eq666CmeccQYGDBjQ7mNYtGhRyudHHXVUVvsfddRRrmJh8+fPRzjcdkOTESNGYO3atVmdy7ZTfw+9atWqrPYnIiIiIurSNCWiSqkOTgFAc1Ciqlx/wYUplOVt1M/xURFPfwIMPwhCCPjK1HNQwrbz/JI1OyXWGE7tNR3iy38qF/uk/uaLpmBa3FvLgIDh/o2uIj1ff5qxqEIGlJv+c635ihTdmKcd7GIccau+yFg0OvgVviofnbHc9NjzsWid+XF6S2FK17b1GYtEHpfrOX2/9e2R86HbXblP4P++78G6XRIrtwNHDo9dYPXPtcDwbfMx+u4picu7dBHD5hymNur2GRJO+9rs2AR8Ogc4+rTsTwJg7ECB978yf20r1dMUXZFv/1m9/K1ntLGwmkr3x3cVLWxu1K9UvEcREREREZE7wrJioRRvHj80FGosxR5AEillanisEJGytDiaMrimiaNJ7Xmjsbq3MniWflw3542a10fa6RctRETtQcrY+1YJvHeVUkQNAGRGmCz9Y8thvSJ8poufWZpjta4XVtqxjHE0p/MqgmvK5ZqxtHNELSVCpt4ip+PGI2T+YCwc9tVW4PSZ6uup9wYYC+suGAsjIiJKo4t/6YI/EhK2tLtkjCaqeS5yiWSJAv5Kz3IRHrPgcRxbPCZmOUTF3IzDKUxWKJ09ThcxTG4rBQ1h9Ww+AQu9vbld8OWzypTLk8NpujAfwNBVnO51H39NmIJrub7GiYiIiIiIiIiIqPNJj3c1NDQU7NgtLS1oaUm90L1Pnz4FO35HO++883DeeeelBMM++ugjfPTRRwCAkSNHYvLkyTjmmGNw3HHHYcyYMQUfw7Zt21I+P/DAA7Paf9SoUa6227BhQ8rnf/nLX/CXv/wlq3Ol2717d177ExERERF1KZpYWI29T7vLhgbgG/vpD2kKF/nWL3M7MuCUiyBGtJWqynzqOShuYmHPLDBf8mMM4mxYod4H+vlUoYh2VcLnm/IYU9yBh2aMb0HlkcpNDxtsngcY0UyDcjUOALJhO1BZDQT8Kct14bn2ioU5zXY8bmQJXOK8Z4frTd1crKb72sVdfWwJPGYHQ/sIDG39VU3PCmD6OEB+tCvl8RcyFtai+f6rsDO/X+WSeRA5xsKGq68sy3obrb+/rF7+z3e1u4zoK+D2MkiP4u1VhoKxMODWdUB1DbB5jf4AG1e6Og8REREREZFbQojWcIgHQHmxh1NaITXbdhFPa42jxQNkbuJoquBayvrM4JrUHVcRXMvrvIl1hscb7dzXdBJRNxN/T0Ow2CMpqZCatCxjTEwfP9NEyuLxM21QTXGs1j+FLo6mGVe55UG5x4M6jxeVoQoAJygf4171fWCoC2IsjIiIKI0u2qOLhQGxWI2bgFVnE5Xq2UbJ4R23j7uQxV038SSPsBzHFo+JeVwGz1L2hZXymDoq6BQ1BJE6g+RAVinaHVHHwnp5a+ERuf3V2ad574jYbTOFdGE+gKGrOF38Lx4J08XCBASDa0REREREREREhN7evrhnxKxiD6PL6+3N56rEwhg4cGDK51u3bsWuXbsKEvVatizzYvT083UmQgg899xzuOOOO/Cb3/wmI4S2cuVKrFy5En/4wx8AxOJhl112GX70ox9lRNlylR5zq6mpyWr/Xr16udpu165dWR3XjcbGxoIfk4iIiIio09LMuTvZ/752F7/DNSrGWJjt/gIXccpFqftqqlUhF7Ewp5iQKYglF76jXC4AeGUYEcUcIzexsKhD4MlVpCuaeaLB4Y1YWzYsc0xR86U9uq+b0zhkcyPkbRcDmuepwlZf4RJoh+loti1xxZPmxzm18D3t7AULe9XPp+vNj/mC8aV06bJ7cumClM8rpfp5c3pPSvfVFokf/ln9nJVLxcFC6uCdG2cfKnDjc+avjym+mA/7p+dB3PkniIqqlOUTh7k/Rvr8Yfl/D0M+dHMBRkdERERERESFJiwrFkrx6q+l7bCxFHsASaSUqeExY8QstzhaZrxMsaz1Y6k9bxSIRDPPpRyLm/OqomrJ52qnkj8RUXuw7dh/JfDelU9ErQY+YMxe5TrGwroPxsKIiIiSSClhQz17xifKtPvZ0s75tw+6OFkp0I3NkxTecRvaEgX89YwuGpS+jdPY4gGhXEJC6WNwM6ZC6PyxMPMPUVJzl9GOsjusvttibR4XuHk17x3J4TRpeB/IJWbXFemiafHQmi64xtgaEREREREREREBsd+z9fHVF3sY1AEmT56csWzRokWYNm1a3sdetGhRyueVlZU47LDD8j5uMXm9Xtx77724/vrr8ac//Qkvv/wyFi5ciGAw86LWlStX4s4778R//dd/YdasWZgxY0YRRpybUKjwV48X+980iIiIiIhKiubvx30i+nCvU3jLFAvzvvg/bkYFABCTTk/53FemnksSDjvP41uxzfxzgFczDU3u2w28+5x2vzIZUsbCNjZIOE1MDDoExVzFwhQXxpzb+BL+q8+NGcudAmYRzdPotcyPQ/76em0oDNAHngLtcE3PIx+Yv86f3mahurwELlfduCpjkcjxEqNwROI7f9Dv+4erBSYMK4HHnCUZCgJ/+lXKsiq7Wbmt03tSMtuWmPbf+veMMtU8yZdmAdc/6P4kSYb1FaitAhrUQ8fg2sLe0DfFR69DPnQTxC2PpSy2LIFD9geWbjbvfstpaaGwhe8wFEZERERERESdjhAC8Hhi/6G82MMprZCabbuIp8XjaNHM5S7iaOr1yctj20pjHC2aef5cz5sIqTmsJyJqB2UIo8IOoMWqzFjHWFj3wVgYERFREqkJhQGAV+j/bzOfgJOtCdyUAt3YkuM7Au5CW263c8PjIv5jweMY8IofJ5eYkJX2eNyMqRBK+fvFjXAWd/UshoaIOhZW5+uX8zF17x3J4TRd6Apg7CrOo4n6xaOGtuZ9OJcYIBEREREREREREXVeQ4YMwZAhQ7B+/frEsrfffrsgsbB33km9aPmoo45CWZn+ZjO5iBZpsmB9fT1uuukm3HTTTQgGg/jkk0/w8ccf48MPP8R7772HpqamxLZ79+7FxRdfjPLycpxzzjl5nbe2tjbl83379qFfP/e/k9+7V32XxHR9+6beFOSXv/wlbr31VtfnISIiIiIiB5pYWBnC8MqwMoTlzyMW5vt6kX5lspq6zDHpYmGKMaZbrZ5alKANcxkiWEAsFtaM6ozli9cDVzuMKeDwPLqKhUUzC2DK2BGc42S6r5tpHDISAT56zXjcSrtFuTwQtIECzk0EgNte1kezJg4DDh1cGpdjylWfu9/WoSH2j9Xm9ZccWRqPOWufz8tYVKUJz2UTC1u8HtjQoF/vk4qDhfMLmZ85VuBPC9RfyGG53wsVcrPDFx8A/v4K5H88mhEkO3h/gaWbzd9cNRVp5/v7y9kOkYiIiIiIiIhKmLAswLIAr/PvV9t9LMUeQBIpZWp4zClSZtsOEbPkEJvtsD4zfCa1540CEU3gLafzOjxexe+iiSh7vex9mliY801oqGtgLIyIiCiJbYqFWfqLPfIJOMVDNyqFDGzlQhdBS45wWcKCgGUMrQGFvWuZUwQMADzC4xhZih/H4+J4TmNwM6ZCMH2/dAZhzSSyUtEQ3qlcXuvNfTaNT6jfOyJJE4J0oSuAsas43Wss/r6te//O5fVNREREREREREREndtpp52G3/72t4nP//jHP+K+++6Dz5f7xMQdO3bglVdeyTiPitebOhUjEnE/0a2hwXClaQcpLy/HpEmTMGnSJNx0000IhUJ48cUXcfvtt+Prr78GEJvUeP311+Pss8+GZeX+e+z6+vqUz1esWJFVLCw+nmzP43Y/IiIiIiJySx+LqbKbsc/TK2O53+Geg8ZYWM8aYM8u52ENPyhz37A6FBQSPshoFMKjn2syql7g0w36x9q/JvantG1gxWfAqi8AKSGf/bVxmHs8tcrl+9UYdwPQfrGwcqn+AoUcfsTVNbA9Kz+F/bP7gX4DIUYcDHhaf0YfcTBQ1x/w7zMet0o2K5cHAhHkcklES1hi/mpgTzNw/CigrrptfmOjuksGIBZHKhm19RmLhOG1aPKvbeb9LKuEHrdLsmkv5IuzMpZX2ervpWxiYXO/Nj9fZapY2MARkJvXAMsWAHX1wCGTIMorMrfTMJ1xjXraozvbNjpvs3cnEAwAFVUpi/fLfGvPUJn+67htG9yPjYiIiIiIiIiokxJCAF4vYr+7LC/2cEoqHSRt20U8LQpEUoNn2cTREIk4hNpi28qM46afS3EO1T7GcSUdSzeu+Hoil3pF92KbN/PfCPY0RlHoG6xQaWIsjIiIKIkpxOQz3DlQF9Vyw7SvKPKPYLqAUXp8xyMsRBwiVoV8LJaLv6hawoLHIbIUj4k5RcVUPGn7uBlTIUTzCNOVgohqEkwJ2R3RxMJ8ecTCLPV7R9huC6eZQoWMXcXoXqfx9ylt3DCH1zcRERERERERERF1bjfccAMef/zx2F06EQt9Pfnkk/je976X8zFnzpyJcLjt97rV1dX47ne/q9y2pib1au49e/a4Ps+yZcuyGlchb9aiU1ZWhhkzZmDatGk45JBDsGnTJgDAhg0bsHjxYkycODHnY0+YMAEvv/xy4vP58+dj8uTJrvdfsGCBq+0mTZoEIUTie+Kdd96BlLJDnj8iIiIiom5B6jM21ZpYWHPIfHdzYyxs71ZXwxJnXpmxrGz4gcCXivMJXyyGU9VDezyvwzQUjyUg/fsgf3Iu8Nk8V2M02dnkvE3A4d6NrmJhisi1MnYEIOQwfU33dfOtXgJsif38l/Hd0sO5OFRpqyNvu5qyv/nmim0SU39jY2Nrr9trAX/+roULjnD+GfHbR5fQz5ER9zfulA7zNw0v4U5JLnwH8j+/FXtNp9HFwpzCe8mcvguUr59NqyFnjG77vM8AYOabEENHZ26rMGOiwDML1F+obx6Wx/dlUP18ZAj4M2Jhl08SmPme+ZunMv1eq599mMXgiIiIiIiIiIioqxGWBVgW4M39po8FG0uxB5BESmmIozlEylzG0fTrM+NoUnveCBC1NcGzXM6rOFbyesXNTgiosdU3YNm7cy+A3K+Hp86DsTAiIqIkpmCP1xAL00W13J1Tv69V5AsUdM9HehgrFuMx/4W7kDEtIQQsWMavlwWPYyQoHhOzHKJiyuOn7dNRQad8vtdKQVi6n6DU0WxpY09YfcfROm+/nI/rFemzXWLCSROCTNFAxq5idK+x+HOne21YjK0RERERERERERF1OwcddBBOP/10/O1vf0ss+8lPfoJvfvObqK/PvKOek+XLl+OBBx5IWXbVVVehrq5OuX3//v0z9p8wYYKrcyWP2Y3y8ra7jwaDwaz2zVbv3r1x3nnn4eGHH04sW7NmTV6xsGOPPTbl82effRY//vGPXe27Y8cOvP3226627devHw4//HB88sknAIBNmzbhjTfewBlnnJHdgImIiIiISM0UC5N+5XK/w48wxliYyzlI4vRvZ+5bVancNiTKgECTORZmmGZ2wfjYn/KJu7MOhZ3Z+De83jPz55OH35eYeZF530DIHOpxFQtTXGyjjYU5XJcT0Uzp80rDjk17zQcFUClblMtf+KJcudzkiifbQmFAbMwXP27jxG9Y6NPDPGfzxNEldPlYJPNrJDJTbK3M3ydvfNF1amEyGID8+QxlKAwAqqU6jtWcRSzM6XVV7uamqru2QN51BcTv3YXQD+yvX3f0CFeHUAuqX1sZAk1Abeo8ykMHOe9WlTR9UkoZi44RERERERERERFRCiEE4PUilgDK/vfehVZCvwmHzAiKmSJluuCaJo6mCq4ZjitNx00Lrrk6r+7xxLdTjaulGb2iqf+u0iPaiF72PpQHQmAsrHtgLIyIiCiJKcRkioVFDcGvfM4pChjYyoUuYJQe37GEx2kuScFZwoIt9bEwj/A4RoLi63MJfSmfgw7Q6WNhdhYzajpYY3QPoproXa0v9x+OfJr3jkjSpEXT17WjQnSlThccjAcXdeHFQoYKiYiIiIiIiIiIqPP49a9/jTlz5qC5OXYB6J49e3DeeefhrbfeQo8e+gu/0+3YsQMXXHABQqG2328PGDAAt99+u3af8ePHp3z+6quv4vLLL3c811tvvYWFCxe6HhsQC3jF7dy5E+FwGD5f+9150+tNnWaSHCvLxfHHH49hw4Zh7dq1AIBFixbhtddew/Tp0x33vfvuuxEOu79JyXXXXYerr7468fnNN9+M448/PqvvByIiIiIi0jDM46qy1WEev8M0IlMszOtwY0sAwAnnKBf7KtQ/M4VEGbBqPtBnP+0hLcM0lBH9Wy+dmf+m89jSlMvc488Bhx+LygocCws6PPXhqHoiodvAm47uObJEdhMXd/sl5q/OXB61gTeXSZw1LpfRFUm4cHPxsglllbzP5hmDVJWa96Rmh/BeMqdYmO71k2HFEshdWyEM7ztxmrcuAEBtVR6X7mmiahlaMp83yxLweczv1+XJv0pavSy7sREREREREREREVG3JywLsMqcN+wApRJRm3X2RMit16FXdB9q7H3wtl5fLWY8AWBkcQdHHYJXzhMRESUxxad0wZ/YfrkHnKLQn1MU8a+NUkptfMcDj/FzFSEK+9cOy+GcFjyOkaX4MZyOpZL+mHM5Ri5M3y+dQcRx0lfx7lC4O7xTu67O20+7zolPqH8IDSfHwgzBwY4K0ZU6S/MeEn/fjmrev3X7ERERERERERERUdc2evRoPPzwwynLPv74Y5x++unYuHGjq2OsWLECU6dOxZdffplYZlkW/vjHP6JfP/3vjSdNmoSqqqrE5y+++CIWLVrkeK4rrrjC1biSjRkzJvFxJBLBBx984Gq/5uZmPPzww2hsbHR9rqamJsyePVt7/lxYloXrrrsuZdk111yDNWvWGPebPXs2Hn300azOdfnll2P06NGJz7/88kuce+65aGhoyOo4O3bsyHgeiIiIiIi6Pamf86OLhTnFiXTxGa8lXc2qE6MnKJdX9FdHeaLCi0jQPLfJ8DBxweBNsQ8atrsYXar1vsHK5fvVOO8bMDyPh+wPlPvani0ZDkH+4w3IJ38B+cFsSP++2IpI5uMu18SOQo6xMPVyj3QReDNY5RuhXD64Z3YRsh2GH4M/3wjs1jem8I36rE7V/iLuC19Or5r9e+vXXzBeu6o07Ta/BqukOo6VTTCtzOuw3m0sDIgFw179PeRzMyHXLNduNqQu9l+66nLgpNGZy11zGwvTBNhMoTAAqKlI+t5q2OZyUERERERERERERESkM6yvwPDwOtTZDYlQGABg6/riDYo6FK+cJyIiShI1BHu8plhYHgGnqGESTFFjYYbHlB4vchPjsQr8WJwCSpawIBz+qhOPiTlFxXTHTz1Wx/y1Kp8wXSkIZzMJpoM1RHYol/tEGao9PXM+ru69I5L0XOhCVwBg8a/sAPRBvvj7tjZuyNgaERERERERERFRt3X11Vfjhz/8YcqyefPm4aCDDsJ9992HDRs2KPdbuXIlfv7zn2Ps2LH4e1hguAAAIABJREFU4osvUtbdf//9mDp1qvG8PXv2xIwZMxKfR6NRnHnmmXj77bcztg2FQnj88cdx9NFHY9u2baitrXX78AAAJ554YsrnV111FR599FEsXrwYq1evxtq1axP/7dzZdtOMUCiE66+/HoMGDcLVV1+NV1991RgOW7hwIaZOnYp169Yllh199NEYNWpUVuNVuf7663HooYcmPt+8eTOOOeYYPP/887Dt1N+f+/1+3H333bjoootg23ZWz5fH48Hzzz+Pmpq2q+3fffddjBs3Do899pjx8e/evRvPPfccLr74YgwePBgPPfRQFo+QiIiIiKgb0FW0DjkaVVIdC/MHzYfUBWh8lou5enX1wMkXKldVV+jn4gQC5qCVKYpz+E8Phvz4b0DTXufxpbl077PK5Vv3Oe8bMLSybjg5KRQWDED+9DzIW86B/P09kLdfDPmDKZC7twHRzMetix2tcGihRXRfN2QX9Up3ZtMbyuXr9qlv5Khjer5awkDI8DW+55wSm8cVznwwQvdadLiHp+lxXzulxB63kz3qeYBxuoCh03tSMt33eVw2sTD5H9+E/NW1kI/cAnnlEZBv/FG5nRAC/35K5jzca08QqPDlMT/XbSysRR0L+7FiTMnGDEj6pMnFmxoRERERERERERERmdWrb0Ijt6nnQ1LX43BPEyIiou5FGoI9PqGfVBLNI+Bkij+JDgpQqRjjRWnxHY9w/iuFU7grWx5NOCixXngcA17x4JdTeEy5b9r5dSGjQtMFkTqLko6FhXcql9f5+kGI3CfT+Cz1e0dYtk3WMr0PuInxdQe66Ff8udM9hx312iQiIiIiIiIiIqLS9Mgjj6C2thb33nsvZOsFs42Njbj11lvxn//5nzjooIMwePBg1NbWYteuXVi3bh3+9a9/ZRzH5/Nh5syZuPbaa12d95577sGLL76IPXv2AAC2b9+OadOmYeTIkRg3bhzKy8uxbds2LFiwAH5/7GLL/fbbD/fffz+uuOIK14/vW9/6Fn72s59h48aNAGKhrfRAWtwVV1yBp556KmXZvn378OSTT+LJJ5+EEAIjR47EiBEj0Lt3b3i9XuzatQtLly5NHD+uqqoKv/3tb12P08Tn8+GZZ57BCSecgF27dgEAtmzZgm9961uor6/HEUccgV69emHbtm34xz/+gUAgdhFrr169cP/99+N73/ue63MdfPDBeOGFF3DBBRdg797YBfwbN27ED37wA/zoRz/C2LFjMWTIENTU1KC5uRl79uzB119/nfH4iYiIiIgojS5QNOwgVC/RhHkcphFpY2HCUD0aMgo4ZBLEpTdD7DdUuUmloS21crcH43MY06V7/wwRCkLeeZlhb70DQyu16wIhicoy/dwlXfzq2JHAvx2bNO/orWeAhe+kbrR6GeQzDwKRzIOYYkdSSu18Kt1z5M1jjqV47kvU/9stOe+fLGD4vvvLPyW+d7z+uT7+wIIMoXDCWQSpnA4VUW8xZgBw4uji3fQ2F/L5/zGu18XCmrOY2mgKBwJAmcwxjmfbkA9eB5x4PkRFVcbqG6Za6F1p488LJIIR4NzxAteflOfXJ89Y2GVHC/zmHf13WFnS9GL59p+124n7X4T8ybnuxkJERERERERERETUndUPif3pKwP6D4p93n8wxKHHFndc1GEYCyMiIkoSNYSYvJZPu84U+nFiwxDlKnBgKxumKJUnbVxuxplPbEnFKaBkweMYCYqvz+V5Tg8X5RIcy0U+Ybpis6WNiDTffbOYdkfUdxSs9fbN67heoX7vCNtts4tM7z2MXcXoXmPx91/da6OjXptERERERERERERUuu655x6ccMIJ+MEPfoAVK1YklkspsWzZMixbtsy4//jx4zFr1ixMmDDB9TkHDhyIF154Aeeccw4aGxsTy1euXImVKzMvAh8+fDhef/11bNu2zfU5AKCyshIvvvgizjnnHGzatCmrfdNJKbFixYqU50hl4MCBmD17NsaOHZvX+ZIdfPDBePfdd3HGGWdgy5YtieXbtm3D3/72t4zte/fujVdeeQXRaPb/bnLyySdj0aJFuPjii7Fo0aLE8mg0iiVLlmDJkiWOx6itrc36vEREREREXZsmFFNRiWpbHZhpDprzReGoer3P0sy3q66B9cwXxmMCQKV+GiBmfj0STxv2jWjG1Cu6L/ZBQP1YzQPqgR52k3b1P1YDJ43W766LX105OXW+nvzwVfWG814FPJmXFJhiYf/aCoweoF4X0Xx5fDnEk8R/vwlxxIkAAK/hqodt+yTqa9zNT9TF1QBgVH9zBMpXatOQIplfI+GYBVMLaR73yWM6VygMAFDVw7xaquNYhYyFVWrO4UqoBVj0HnDsWcrVV0y2cMXk3A+vPJ8bmve3HuXm3VLec3Vhsl59ISafkeN3LxEREREREREREVH3Ir79E+CyW4C6egireC0KKh7GwoiIiJJIqQ93+TTBH8Ac1nJiij8VOrCVDVMALT2+kx7OUhEodCzMIQQmPI7bxMftZvxO58/lGLmwDd+jpS6S693yOsju8E7l8lpffrEw3XtH8vOhe70JCMcwXnehi/rFg4u68GJ63JCIiIiIiIiIiIi6p5NPPhnLly/HX//6V/z+97/H3LlzEYnob3BRXl6OU089Fd/5zndw1lln5fRvNieddBIWLlyIn/70p3jllVcgZeYlj/369cOVV16Jn//856ipqck6FgYAEyZMwPLly/Hss8/izTffxNKlS7F9+3b4/X5tTKtXr16YO3cuXn/9dbz33nv47LPPjM8HAHzjG9/AFVdcgRtuuAFVVVVZj9PJYYcdhi+//BK33XYbnnrqqZTIWlyPHj1wwQUX4O6778bgwYMxZ86cnM41cuRILFy4EK+//jpmzpyJDz/8EMFg0LjPmDFjcPLJJ+PCCy/EMccck9N5iYiIiIi6LMXPOwCAimptmMffYgOGm+jpYjw+oVlR7u7nlDLD7PkXNg81xsJ0Y/LmMS9K3PE0xt96mXb9nmbz/rrAUWVZ2oL5b6o33LwG2H94xuIjWj7RnrPBMCbtc4QcbjI5pi3aPUJu1m62pxmor3F3SFMQqqYSCBmG6fnv62EHtrs7UUdYuqBgh9J93Uyvl5LVuMe4uspWfwNnEwvTRfHijmn+2P3BVNZ+pY2FFZrUBbzSaWJhI/oCfaqBXZpWYu/yKOTf/gz50izgy0Xqjfaq524SERERERERERERUSbRZ79iD4GKrDP+8w3lSAjRE8CxAAYB6AugEcBmAEullF8X8Dw+AMcAGAJgAICm1vN8KqVcW6jzEBG1h6gh+uU1xMKieQScTFEuUcTIjem5sNImaTlFuYDCPxZdOCjOA8sx4BV/HLmMLf38TuMplHzCdMXmJhZWzDvDNUTUE07qvP3yOq5PpM+8iwkn3X1TF7pKf611Z7rXczygp3svdfP+RERERERERERERN2D1+vFJZdcgksuuQR+vx+LFy/GypUrsWPHDoRCIZSXl6O+vh6jRo3C+PHjUV5envc5R48ejZdeegk7d+7E3LlzsXHjRjQ3N6O+vh7Dhw/HcccdB6+3berGlClTlFExJzU1NbjmmmtwzTXXuNpeCIHjjz8exx9/PAAgEAhg2bJlWLVqFbZu3Qq/3w8hBGpqajBkyBCMGzcOQ4cOdT2eXCNevXr1wkMPPYQHHngAc+bMwZo1a9DQ0IB+/fph0KBBOO6441BdXZ3YPtfnC4g9B9OnT8f06dPR0tKCBQsWYN26ddi1axf8fj+qq6tRW1uLkSNHYsyYMejTp09O5yEiIiIi6hZs9dwXUVmNaltdkGluiQLQz8nTxsJ00anyCtMI2/Y3TCVptvXjAfSBoJxCWABw9GnAUdO0QTUACIQlYLhRZ0AzJavSl0X0WhGPHhper918k6HFFNF93XIIqomqnomP64X+pLrnQLmtIQgVCOm/7wCg7M0nAZT2DTN1nH5y1kXSTK+XUiTXfw3s1IflAGhfb1v3uT+P6fvk6Ob5OKNJE+dzK8ffdeRk4yp327Wo38stS+C+8wW++4fMMf/6AkDeeRkw90XzsSdOdTcGIiIiIiIiIiIiIiJiLKw7EEIcA+A2AFOh+ZoLIT4D8L8AZskcZ9IKIfoBuAvADAB1mm0+BvAbKeULuZyDiKi92YbolykWZgp+OZ7TGOXK/i71hWJ6LtKjPW6CRqLAj8UpAGQJj2PAyxJW4k8BC1ITbFLJeA46KEgUzeN7rdiS41ilqCG8Q7m81tc3r+Pq3jvCSRPgdF/X+Pco6V9j8bCh/jnsZDPWiIiIiIiIiIiIqENUV1enxLLaW9++fXH++ed3yLlyUVlZiQkTJmDChAnFHgoAoLy8HNOmTeuw81VUVOCEE07osPMREREREXU9mqnH5ZWospuVq5pbzNOVtbGwlkbtudzw5jEdRzsmmVssTPzy/yC8PsiyCgwPrcGasuEZ25jiVqb1ler7G6pFMgNYAkCFHUCLlfm8/n6ejQuOUM/J0T9H+UW2Ki39/l9slDhssLv5ibH4mlqzQyzM1wlCYSLH23XqHndZJ5t6Jf/6kOM2VZqAIQDYtoRlOX8v6cKBAPDGhrNRLdXveyXJKeQVF9A/pn871sKQOomrn7ITMcFnviNwUeUCSDfHP/hod2MgIiIiIiIiIiIiIiLGwroyIYQPwMMA3Nw6+FAAjwG4WAhxmZRyQ5bnOh3AUwD6O2w6GcBkIcQzAK6RUur/tY2IqAhMsSifIRYWNQS/nEQNUa5CB7ayYQqgpQeMPC6CRkIU9rF4HAJllvA4RoKSg18eYSFi+FpkHD/t/E7jKZR8wnTFFrZLd7JU2A6hMbpXua7O2y+vY/ss9cy7iN02U0/3dU2P0nVnuihh/LnThRc76rVJRERERERERERERERERERE1G3p7lNcUYUqe5dylT+YYyzMq5mHFnQX5/HlMZVENyZvrrEwX+u8olALKmVAuU3AMOUqEpXaaFGlfrpjpt1blYtVoTAAiBqm2RX6OYqr8OpPujuLLpMpvhYIAyHNMD0yUsTZnPlzSohpX2+dberVkg8dNymXQe26lTuAUfXOp9E9X1P8c9DTbnI+gJMCz7c1GjkOWPm542ayxW98DZxykMCGX6V+w8g/zXM1BNGjl6vtiIiIiIiIiIiIiIiIsbAuSwjhBfAqgPRb7YYBLACwEUA1YpGwIUnrjwfwjhDiGCml+l/nM881BcBLAJJLGBLAJwBWA+gN4HAAfZPWXwqgRghxjpRZlFmIiNpZ1BBi8ggvBASkYtpEPgEn077CRYSrvZgCaOnxHV3EJ1mhw2fpwbJ0ntb/GY+RtD72sfsJSekhMqcwWaHYhqBdqQtLh9tcFlFDRP/XnlpfX+06N3ShwUjSBDjd19XNa6u70EUJE7EwzV8pnd4riIiIiIiIiIiIiIiIiIiIiMhMvv405F9nAmu/BOykORrjjoF48FV9LKy8CtWa+wo3h3KMhTVp5vlsWWc8XmL/PKbjRHRjQg43UTzylJRPK+0W5WZOcSudytZZ3bJhB+QzD2Q7OiNTx0g3pkqZ9PhOOAf4+8v67xsA4mdPpH7uKcw8KtNzFgjrv+/KSnjuWzLtl8ahFhbSPe7OdrXJXufLHw4Ofqld16R+GabYskfi3tfVT2i+UbwEuwNvKut2fl0g+wiabG50t+ERJ2V9bCIiIiIiIiIiIiKi7opXzndd9yMzFPYQgHop5XFSyoullGdLKYe2brc6abtvAJgthPMtaYQQgwDMRmoo7CMAB0spJ0gpL5RSngpgEIAbgJR/DT8LwC+yfWBERO1JGkJMlvBowz35BJxMUa5iMkXMcglliQL/tcMpomQJy3FcyeuzjX2lh4t0IaNCMwXtSl1Jx8LCO7Trar35xcK8oky5PPn50L3eOipC1xkIzWs+2vr+q3svZXCNiIiIiIiIiIiIiIiIiIiIKE97dwKrl6WGwgDg848gT60DIpoCU0UVqu1m5Sp/0DxNWR9t0pzrhHONx4vz5jHNSxsw043JQPzkf9s+GTgCFTKg3O7DFfrKkykkVukDZNNeyB+dDDw3M+vxAcAle59VLn97uX6fVZppWJV22+MTF/07xDUOU8hPnpH6uceH8hyCaulWbtevC4QK+zUuJdLhZq/ax92Jpl5JKYE9+nmAcT1tfcDKFJMDgF1NEic8qJ8v7Eu+Ye3gA4HpVzuOR0V+Mien/XISUr/3ZAio38uNFrztvM23rgMOOCT7YxMRERERERERERERdVOd7V4v5IIQYgyAG9MW3ySl/I1qeynl20KIY/D/2bvzOCnqO3/8r0/fPczAzDAICCIioigRLzxQsxgTr9yJWf1pbnOfZmNi3Li/VWPcJJrdmDXZ7JosmsMcRk2MV/Ai660EFRXEA5BD7hkG5uqrPt8/unumj8/7U1V9TQ+8nnnkQVd9qurzmeqqcqDf/fpkQ75m5Va/FcB5AH7n0t2VADoKlh8H8HatddGnsVrrBIAfK6XWA7ijoOmflFL/rbX2Np0XEVGdZbQlLAwBBFQAGUPtTTUBTrZQrtFkC0ArDTAKegg0CrhnUPri1mcAQQRcAryCBQFmQZ+BQqUBRI0KJHKQgdYaHjI9m07KU8GUyxSGddKdNhcJtQbHIxKIVnXssAob16d0avi9dISgqyCzfYdJgXz5Z6gjPL+9PJ+IiIiIiIiIiIiIiIiIiIiIqA7iLWiRwsJSlYUXhSDUIE0+wNOQQlWUkohj0mlzQ95HvwX88nvZ18eeBnXVLVDjO0faZ81DfJ05sOfuF+TD2oKN4mEAj98DvPGyfWwW8xIviW19QxqtseL3UGu59qtFF1wH4zugLrwEmH8K9M3XAE/+daTtY5dBffxyqFDJ1xyCIRw/+AweGXdq2bHdAp4K3bbcEr6WApKmAlEIYWEf+Lz3juutpQ3q6LdC/SYEeMx+KpQULuGxFBaG1y03y0GHQ33uu9Arn0Hk5mugtANtqEdzC56741ltDZwrehaceCbUl64FFr0f+ol7gdt+6vIDFPj7w963rdaQxwtmqN//sV951t5+/tegvvBvY7IeloiIiIiIiIiIiIhotDAsbO90KVCULPGAFBSWp7XeopT6JIClBauvUUrdqrU5xUYpdQiAjxWsSgL4eGlQWEk/f1JK3VywXxTAvwKobNocIqIaswdkBRBUQaQMtSDVBH7Z+tSjFJwE2APQSgOMAh4CjZTLzHR+lQaWlQqqoGsAWOEx3ILF3Pp3G08taThQDQonq6W042MKxwbrSe0wru8IdVV97LCKGNdrOHCQQRAhMaiwkddVs5MC+fJBa1LgGs8hERERERERERERERERERERUZUsIVBWwTDGKXNZ8UDKXq+VEAKgjKFNABCNexpSNaE0SaGkThxTvs/3fw7q01fKG/RsQ3dworFp9n7ybrZgo3gE0C89ZR2Xm85Mj9i2YhOw8ODidVt65WMVnfXx2Z9VzTsR6to7vQ1m2wbEu8zXklvAU6GTDwZuF/KLBpNyIFyk9D0+80IEvvYj7x03ym+kkCn7PSz+3GPp2yYrnxGb1Df/C2reicDalQCAuB7EgBpXtp1b8NzNj9vP4+bQ1JGFoQGoQAA44QyoE86AnjEH+j9K54MXTD3Q23a1kPAYFta/2/+x2ycBu8wTuQKAOvcLDAojIiIiIiIiIiIiIvLJXyoGNT2V/bTknSWrr/Oyr9b6bwAKPyU7CMAiyy4XAEWpDbdrrV/10NX3S5b/USkV8zJGIqJ6s4V+BRBwDauphC2UyzbTXr1Zz0UFQVmqxr92uAWUBVTQdVzFYWH+AoWCJduXLteTFCzV7FK6icPC0kJYWLj6sLBQICy2pXJFZAy6ciedi/wzVHpmeQkzJCIiIiIiIiIiIiIiIiIiIiKLSsNclEJLMG1s2p0KWevjbn7C3BZ3zME2ymNYWDWkUKoWbQ/bUV1Tre1IJdHmmIN4kubTlx2PJdioJQJgaMDer4uz+paIbQMJwzpLedhbhl4Yfq3aK6jJGuxHi2P+edwCngplLKV3gyn5fIdR3Ik64QzvnTaScK9ql8lepZ879JNvwDl/LpyffAs67eNEN5DeugHO5edDX/sFeaPDjsv+Gc1+ZUG+luw1u4+9bh/LnkDr8Gt10OHFjX6eUanKz7W+55dwPr0Qzunj4bznADhXfhS6Rw7s8hwW1rfL/2D2yIGDOGQ+1OQZ/o9JRERERERERERERLSP4zfn9z6HAyj8BDUJYKmP/e8rWT7Xsu37S5YXe+lAa70KQOFUVeMANOknpkS0r3EgV4IoBCxhNZWHN9lCubRlPPVmC0ArDU0LCiFqhZRLsYlfAeUSFmYJd8srHLeXn6H0+LbleqomnG40pVxm0BxN3SlzMUxnaFLVxw4rS1iYk62Qk54Dfq/LvZkUyJd/TkrP4UYG+RERERERERERERERERERERFRAaXQEpJr4KSAoj89q/HGTnObGMwV9T5v8e/OXC22JYbkGicplEoKMAMAfODzruNRb/9HfHLXzca29d3yfrZwrngYwD3mY3o1Pb1JbHtpc3mo0rY98rHGO5ZGLy68BHHhvf/Z37xPyvrn5+3te4bM68OFtW9nfxR424c899lICsK5cDlFKaEkMbJnG7BpDfC7/4D+gSWMa5TogT7oL58O/O0O63YqFMq+iGQDu+La/EavsWRqefHR3l+PLBx5SnGjn7AwrwFeJfRfb4H+t08DL/8dSCaAnm3AA7+H/so75LC3pMe+dlseRpKMnHaovv2//o9HREREREREREREREQMC9sLTS9ZflVrbZi7SfRCyfI7TRsppaYAmF+wKg3gMR/9LC1ZPtvHvkREdSMF9gQQgFIKQeE/ndWEN9n21W4VGnVkC0ArDd+RQtQKqUpnlxS4BoGpIIIugWKFP4db+FhZ/xWcg1qxBcw1s5S2VKeNsp70DuP6jnD1YWEhFRHb8uckIz17fF6XezMpkC//rJKepW7PCiIiIiIiIiIiIiIiIiIiIiJycezbKttPKYwLy3VoUhDWzx+R9xGDuXwE8cyaJNeyPf6yXHYthoVJAWYA1FGnug8oNg6tTr/YnM6Y6wgHhXIspYAw5JAePyYKdVV3LC8f090vyPWOw+doyoEVjUO1tosBTxmPc7I6jns95m4hLCySr31beA7UZf8DFWzWmiTzte32kyeFksSikLQHfgc9KF+no2LZg8DmN+zbHP0PI69zzwnpOfLAqupqdscV3seRkgDD0mWbSsPC/vILc8O6VcALT5Rvn04BGY/1qLt7/I1l42tim/rebVAHz/N1PCIiIiIiIiIiIiIiymL6wN6ns2R5l8/9S7c/QCk1wbBd6aczK7TWfj79e7xk+Qgf+xIR1Y0Dc9VIPghKCoSqJrzJFsql9eiFhdl+ptIAIy+BRkooQqlUaWBZqYAKQrn8qlP4fvoNFAqWbF+6XE+ZKsLpRlPKac6wMK01elJCWFioq+rjh1VYbEvniqnEZw9/XR8mPX81HDjaEZ9Zbs8KIiIiIiIiIiIiIiIiIiIiIrJThx7tK4xrZMcA9g/1is1vClXO97woH1IKjELE+/imdcj1JG9sExLBAAwI5U9igBkAKbypSKwFYctEjJuE8ySGl4U11LqV7v16sFOon5reUf5zBS2lTi3OQPbFFpdgJ0kojJ5Au7GpNertEOt2um+zR7i8hkOzZsyp+cSptaQqnKA2JZQkRgrDwlJJYMOrFR2/bl63PCxMcvW6r0TnGJsPnVLde9sfGDeyMHFycWPARy1gcqiy+mHb+Xi9dE55+Asl29Ptb0xrLc+gGYd6Pw4RERERERERERERERVh+sDep/STYo8ff1q3P9zDOnnqF7PXPfRBRNRwUthMPrBHCqvJVBEW5liCn6QAoUawBVKVBmt5CcqqdViY9F7kBRF0DxQrGLffQKHS/t3GU0uOJWCumaW1XEiXpyssVqrGgNOHhFBE2BmuRVhYRGwbDguTnj0Muhpme85oOOIzy0uYIRERERERERERERERERERERHZqQu/UcFOCpOjQvoS5LArGzGYy0eY2ZSJ8uR/Q0Np4/qMo5E0NyGuLYE7c+a7Dygax5EJOeRnUMgRG0yZa63ig93QnzzevV9JMOS6yWvbyvuWxgkAwWprIcMRHDu03NjUl/B2COn9KyQFwoV1dmc1/xRvnY0hGUeLIWmh0po/p7kmOtWJAddt1AlnjCzMOdq67ZDLM8ktmO6YoWdH+h1fMge835C5pPzsFPVZ5pk3Hc9PWFgmAwzs8b59Qh6/OuAQ78chIiIiIiIiIiIiIqIi/Ob83qd0zqOpPvc3bW+aumV2yfJ6n/2UTgs1USnV4fMYREQ1J4Uw5QN7pLCaakK9pJAgYHSCk/KkcSmosvAdL4FGqsaBPQGXX2MCKuAeKFYwJr+hTOXnoHG/VtmumWaWssx+OZp6UjvEts7QpKqPHwrIxYWpXDGVFDjIsLARtnssozPy89tDmCERERERERERERERERERERERufjIN/3vo5Q1xMsUFqa1vWYuroVwoGjM+7iicbRneoxNyzaYa01sIUJxxxLqE291H08khnFOv9i8Wzi8FM4lBqp5VRBy9JXuG4ybPL2u/L26bbn5vTut/+GRhXecX9mYwlEsHHhCbE5n3Gstf/yQ+zY/edi8TThf+3bgYa7HaEbaMtnrVXfJ5yVSWvOXabLaxVt+6L7NmReOvB43HgDw8V2/NG66+DH7NeK4XEL7pbe7j8crn2FhOm1Pw9PP/q18pZ+wMADY3e19Ww9BbkRERERERERERERE5B/DwvY+L5csT1NKTfex/0mGdRMM69pLlrf56ANa6z4ApZ9gmfohImooB0JgT+4/mVJYTTXhTVJIEABoIfymEaQANFPwjpcwHmUpNqmEWzhXAEEx3K1wm5HX/n4tKj22W1+1lBGu02aXKp1lsEl0CwU6AQQxPlT6K49/YRUR21L/JOT3AAAgAElEQVROtphKevY08rpqdrbgNAeO+BwOMnCNiIiIiIiIiIiIiIiIiIiIqGoqFAbe9iF/O2UyQDSGyemtxuahVHnyzqrN9kOKwVyWULIysRYcknzN2LT8TfPEgFIwFwC0SAFmXscVjSOu5dCeJ9eYE4pMYWtADcLC2kZqptoye8TNlpdMNb2udMrrnMnpgjLz+LjKxhSOIK7l8KQN5uy3In/8e+WTt4bztW9+rrNRoMQyTfln//WTclsYJReZ02S1iy7hggCK37Pca1s4n9yVFu+5vOH7ePKM8sZgyF+HfoO8Xnjc3r7mper78BUWJhz7QNM89kRERERERERERERE5JXPTxyo2WmttyilVgMo/BTlIwD+zW1fpdQ4AB8wNLUZ1pVOc1XJp8qDAAqn8TL144tSaj8Ak3zudnC1/RLR3sMRwrnyITVSKFY14U22fbWlQKPepBAzU0hX0CW4C/AfxuXGLUQpqILugWIFIUJ+A4VKg4tsQUa1Vk043WhKl84y2CR6UjuM69tDnTV5X4MqiAACxgC+dK6ITH72MNs3z/YMcXRGfJZ6CTMkIiIiIiIiIiIiIiIiIiIiIg8eutXf9lveyAZhCeFVpgCuV12mLxZDtfyEOEXjeCa+wNh0eEc/TCXNA5bSJ2s4l8ewsKhOiM0xc36ZGGBmCx7zZP0rwy+lUDUAeH27xrEHjqRTHT8TeGpt+XaronNHFja+XtmYwhHsn5aT5LbuBg7qsh8iWEUp1pbQlOyLjv0qP8go0tqcIqa1xlpz+RwAIOqUXJevvwA95D9oq+YiMeCwY4EJXUCv5QeY0AWMGz+y3NYBAHg9Msu4+aGT5UMl0+7ZZC35Z8HW9eWNb1lo37mU3yCv7Zvs7YfMN/QhB/AZDfR531Yaf6S5A/eIiIiIiIiIiIiIiJodw8L2Tr8G8J2C5W8qpX6ptXb5BAjfATDBsN5LWJjPT4oAZMPCOizHrMQXAPxrDY5DRPsoRwybyVaJSIFS1YQ32fY1hQs1ijQu0znwEqikIE5ZVxG3PgMq6BoSVPiz+A0UKt2+kYFEo3ldVCPpNGlYWNpcLNQZ9ps/KgupMJKGgr5ULkCNQVfubIF+GZ0Rn1kMXCMiIiIiIiIiIiIiIiIiIiKqEaXc03IKaQ1E44hpc5nxYMqwLmk/fkaqp/ERFqZCYcxIrcX68Iyytt1CRfQuS25PXPj5EAgAQQ/l+tG4tbrOdJ4A4DdPmc+VdL49a50A9PUCAM7qXyJuVhoytXqrebujh54bWZhrDmlzFYpg//SbYrMtzC0vVcUcnWf23w8AUOFI5QdpAOVzgtoh4drKK7229Q+/7HdI9ROJAkk5ZA8AcPqHoAIj9WMqGIQGcNzg33Ff65llm0vXMCDfh4VsQX1q3Hh/747fIC+3cDFTu99AsqSPMUnj9xPsSEREREREREREREREZfjN+b3TDQB6C5bbAdyrlJom7aCU+icAFwvNXhJJ/H2yWPk+RER15WjzIy8fNiMFVEn7eetTrkDRfgqrakwOTjOEhXkINFKqxmFhLn0GELCGC+W3GX7tIfCsULAkgKh0uZ4yVYTTjaa09lAtMwq6U9uN6ztCLlNN+hBW5iKxVO6c+Ann21fZ7nkn9z8TnkMiIiIiIiIiIiIiIiIiIiKiGvEb8uJkgEhcDNNa8lJ5fZxbIM/m8NSajO2DA3cZ19+13jzB4KW3yTWCcUcI3InGvdXNxbJjP2bwWWPzfS+Wn6c12zWWrzcfrsUZcO/T5owLgH94PwCgK7NT3Oyy24vHtUvo9vjBZ4Zfq4PnVTamcNgaqPbgKvday2S6sq4B4D17/gLMO6nyA4wy6ey4haxVfS3Vk1tQ2Ds/AfXla8vXH/8OzE2+LO4m1e0OegikG34WnPVh8wYtpjncBT6DvPTypS7HMzyHkz7DwnyMST/we3NDjGFhRERERERERERERETVYFjYXkhrvQvAJ0tWvwXAKqXUD5RSpymlDlVKHaWU+rhS6hEAPwSGP0PdWLLvLkM3fSXLlXxqU7pP6TGJiBpOCpvJh0oFhP90ZoRgLS8ylkxG7SmvsT4yQgCaKXjHSxiPqvGvHW7hXEEVdA0AK2z3G/ZV+vPU+uezsQXMNbOU9lAtMwp60juM6zvC5sK/SoQCYeP6lJM9J1IAnN8Qu72Z7Vw4OiOfQw9hhkRERERERERERERERERERETkgd+wsHAUiMURE8K0NveWr3MLC5ua2iyMLeZraC1BfxMfPiRnCyGuhQCdiMfzlTuv4xxzKfXW3eXr7n5BDscaCLR469c2nnjr8OL8oRXiprsGsuPY0iuPp+j8RPy9T8NC2ckaOzLdxubl693DwlJVlN3F9SDQOqHyAzSI3zld3e43Keiv2anr/4rAt34GFTLU7bVOQNyRf65Xt5nXu50rAIjlz5f0rGxtdz9Ins+wMGwr/QqIh+P57cMtoK3QkBA05/e/I0REREREREREREREVIRhYXsprfXtAL4KFKXMtAH4BoCHALwM4FkAiwGcUrDNjwE8WHK4sRQW9lMA83z+/7016JeI9hKOEJAVyAVJSaFY1YQ32fbV4nxu9ecIAWimwB5vYWG15RoEhqAY7pYXLAgR8hsoVPozK6UaFkokvTfNLuX4K7BrlO7UduP6zlBXzfoIK3NYWFpnz4kUDOh2De9LbIF+DjLis5SBa0REREREREREREREREREREQ14jfk5eR3AtE4nmg5ydg8a1J5Vdmgy3yE5/TdZ27wGsyVsyndYVw/MWQOuImG5GPFpEAlr+dr4v4AgEfGnWpsnm2Y8/C5DfLhegOWUKs5R7sOR82aB+waSUyamDFPxgiMBJltMlWb58xIrR9ZiFUYFBSJAgB6gp3G5q5W9wrFZBVld4clXgE2vFL5AZpUwi2cLy2E8zW72UfKbauW4YjES2Lzph7zerewsCOGXkIgX/Mr3fvbLDduKb9BXlMO9H+8hM8wOD9jmn6wef2LT/nrk4iIiIiIiIiIiIiIijB9YC+mtf4xgLMBrPaweR+ALwK4GMC0krYthu1L5/IyfAwtU0q1ojwszPIxsTda621a65f8/B/A69X2S0R7D0cM7MmGzUihM9WEN9n21dDQenQCw6TgnaAhEMtLSJaq8a8dbn0GVNA1xKzw/fQbKFRpaFotZIRQu2aX1i6VfKMgozPoTZtnm+wI1zIsLGJcn8qdE+k9bdQ1NRbY7vmMdsRnqS1kjIiIiIiIiIiIiIiIiIiIiIh8iMR8ba5aJwDROE4YMIfDDCbLa+NsgTzHDS7DUYnnzY0+g8xO73/IuH5nuqVsndYafQnhOH0PyhNpRr2dLxXKJpGdPPCYsd10ToYqnLdRffJy+wZd+wMLz4Z66/uGV32u50Zx8/7cebGFvJ04+PTIwsy5XoZZLhcG154xJzm9stVeZ5lxNKopxexwdgEF52SseT1lLvW3Bah9ZNevERRqapudGm8OlQMAHP92HJxaKzYPCA8htyDDT+3635EFv8GKJn7Dwl560t6eNIWF+eyjv/QrJBab15nXH3uavz6JiIiIiIiIiIiIiKgIvzm/l9NaLwFwBIAPAvgFgFUAugGkAGwC8CiASwAcorX+qc4m0hxWcphlhkO/WrLsMhVNmdLtu7XWwjw8RESNIwVkBXJhM6agLKC68KaM0GeexuiEhUnjChiCd7wEbSnlPnOfH6ZxFAqqgOu4CkOE/IYymUPTGvOrlXSdNruUrrBCrY56091iSGBHyFcWqlVIhY3r07lzIgVdeQni21fY7mdHZ8TncK2DComIiIiIiIiIiIiIiIiIiIj2WT4CcNRDe7J/RuNYNPB/xm1MmTwDlkCee9a/1xLM5S+cZ78jDhHbSif47LXk6Vy+49/kRj9jmjwDp/oIC/vt0xXWFbbvB3XHOnPbKe+CuuGBbNDSjDnDq8/u+6t4uFty47CFvEUKJ5mMVBiilDuXn9h1s7H5mXX23ZPpyrotpOYuqP4gdSbdH8uSM43rbefl2m2XuXcYDDXu/15NsX+tQc2aBwAIC5OfPrvE9NUJ+zV+3dZv4ss9/zXSR6w8dBAA8I7zrWMrkhzyvi0AbFpjb0+UH08/tcRXF/qPN3jf+E1zIJs67BhffRIRERERERERERERUTEfn5rQWKW1zgC4Pfd/K6XUAQCmF6zapLXeZNh0VcnybJ/DmlWyvNLn/kREdSGFBuUDe6SwmmrCmxyXoLHRCgtzOxeFgi7BXUDtA3vcQpQCCHraZuS1v/GJoWkNeLsyQrBUs0tpYXrNUdST2iG2dYa7atZPWEWM6/MBatIzxG+I3d7Mdo86yPAcEhEREREREREREREREREREdVbJOptu/d+Giqcq5cJhRHXu42bmYLBBoWwsHfuuQedjjAvsVJA2FyfI4kF5UKvNduBg/cbWf7DMnnbFm1JEovEfAwojpa+AWOT6Tzt1wZs22M+1GHJ1XI/0ThU11SoR1xquQrGHtNyaNGLm3JhYcL7Ns7pKw6w8hnqNrJfdjwRy4SV6YxGKGiOy0rVouQuVuHYG0jLcXoYTGrEI8XtSct5iTkuYVWdUxD48xt+hlcV57sXAff92n1DKagrL3cNdmR6sC00uax504pXACwsWy9d40GdxsXdJSFaIfPkoq5jK5SwPFtK6G0bKzveUL/38QCAU4MCWZ/PaiIiIiIiIiIiIiIiKlbb1A7aG5xesrxU2O7FkuUjlVI+Pr3CyS7HIyIaFVLYTD4YSgqdcaoIb3LbVwuhXfXmJ3jHLZQLAJSlCKUSbgFlARX0tI3ptRfm0LTGhBJVE043mlKOZWq9nNJZOeutJ20OC4uqGOKBcTXrJxwwF/+kc7MTSgFwplC6fZXt/srojPgs9fJ8IiIiIiIiIiIiIiIiIiIiIiIvvNWAqa79RxYSg4g75tAbU/jOoFBiFLeFckXjUMpffdrBbzwotvWUZHb9+klLWJhjDvjKj8uzSFz8GU3nacoE+VAf2n2bZUweA8ymjcwLbTuz8VxZ1GDKfI5K33vV0uqt/1K5c2kLLjOFquUl05V1CwCtmVwq22HHVn6QBmkNyOdnt6HJFqIW0ZYTCgDdWzyOqsHWlc6JXiJ3LZmCwgCgfdD8c4nPJsPzTQ+aQ7jU3AX2sRXyERaG3p2ej6cTQ9BL74Dzk28Bj93tvQ8A6NzPfRsAOmO5sGxtRERERERERERERETkiukDVOqikuWfmzbSWm8GsKJgVQjAKT76WVSyfK+PfYmI6sYRgrnyQVIB4T+dmSrCm9z2bXR4Ul5Gm6tjTKFaXoK2Aj6LsdyPZ+8ziKBrSFBh+FDQZ6BQpaFptSAFSzW7lFvx0CjoTm03ru8MT/JdQGgTUuawsHyAmqOFZw+DrobZ7nkHjvgs9RsESERERERERERERERERERERERVOu0DI6+PeiviQsDTsxvK1w35COQZ5ieUK6frH04T23pLutplyQOzh5h5DOYCgGgcccd8np7fWL5uhWFd3jl991n78aS1vWjxoORa42YPrc7+uUfIqJLee99y47b9bFKYE2APxXLzlZ6fAABUh7egpNF0Xssysc0UOnftffJktmG4TA7qJ/iqkd52rr09kr0vh0PgSmwOTTGuH0wKgXiGZ4A66lRz3299LzD9YPv48vyEhXnZNp2C7t8N/c33Qv/L+cDv/sP78fNWyddXkaTlvp93ov9+iYiIiIiIiIiIiIhoGMPCaJhS6hQUB36t1lovtexyR8nyJzz2cxiAEwpW9QNY4mVfIqJ6E8Nmcv/JlEJnpKAfLxyX4CeNUQoLk4LTDL8+eAnaUjX+tcMtRCmgAq4hQYU/i99AIXNoWmN+tXKqCKcbTWntUjw0CnrSO4zrO8KTatpPSEWM6/MBatJ7agql21dJYY1A9vxJYY9B/pWHiIiIiIiIiIiIiIiIiIiIqLE6C8J2WlqtQV+lk2maAo0AoMUayuU/LCw8dQZCQj3T7c8Wj+nFNy3HESbl9D2uaMwaPOY42vi61A+2fgvjHXMIkp8xqUAACI/UPH249xbjdvmQsD89KwQpFb73h8z31LdRbtwdmR5xE+naAaoLCztx4KnmDcYqMS1oOT8ll3t3v8afnzdvG9ZJuE61efw7fI2tUZRbGFWsBQBwVr/56wu/bP+Icb0URmcMxIu3msc2YSLUfz4IfOhLwKHHAEecYNwOAJDwEbS35kVv2935c2D5UvftIlHvfZsM2J5BLdUdm4iIiIiIiIiIiIhoH8dvzhMAQCnVAuBnJau/7bLbb4CihJsPKKUO8dDdpSXLf9C6VtNGERFVR0thM7nAHikUyy3wy8YtaEwKwKk3P+FFXkKylHvpiC9uIUoBFbSGC+W3GXnt79ciY2hag4KdpFC7ZpcPxmomUlhYZ6irpv2EVdi4Ph+glhGeIbUO2RvLbPeXox3xmeU3CJCIiIiIiIiIiIiIiIiIiIiIqhQrCIOJxBGzlAm/uq14eSBpDp2KWQLHEIn5GV2WJTSrp794ucU8TyAAYJzTLzdG/ISFxa2haqu2jLx+eYu4GQ5IbXTtx8+Y8gKWOsY9QxptMXN9oC6sG3SqqIXMvcctlnMkhTkBQLKKkjvb9dtsWoLySSgNU/vNU3LoXMRTrV+jJ8L1WIPqVguau661cLzDEi8b14thYaZr0nKfqa6pCHzlhwj8/AkEfvZ/wDGLjNvphOWZV6p7m/s2APTtpV8XEVgCvXQy4b7/G+ZzCABoGedtDEREREREREREREREZMT0gb2UUirkY9tWAHcDOKJg9W1a69ts+2mtXwVwc8GqCICblFLiJ+5KqfcC+HjBqiSAK72OlYio3qQQpnxgjxQ6U014k9u+pTMnNooUgBYwBKZ5C+OpbViYWxBYEEHXcRWGv0lBcOK+ptA0n8eo1GgFyFUrJczEOZq6U9uN6zvCtQ4LM1cM5gPU/ITz7atswWkZZMRnKcPCiIiIiIiIiIiIiIiIiIiIiGrFWy2bChfUykRjWDC4TNx210DxshjIYwts8hOAVbBPWpgAMFJShf2uI+Xat3antzbjisZxwuDTYnNvQW7QLkuGkO0YAPwFq02YOPxyVnKtuNnuQSAuBKq9Gi2Yh/r1F7z3XUIFsrVDcS3/8AOWfKtUFWFhYZ0CVj1T+QEaKK7kGr3S8/Pwy1WGhfmcoLVhZh1hbw9HAQCvRmYbm03Pmjue1fjSLebzZXw2RX3cZ9Jzwk9YWNiSaFio25I0WGjaLLltyBKQmJeyXD9TD/I2BiIiIiIiIiIiIiIiMmrST2ioBj6rlHpIKfVxpdQk0wZKqVal1McAvAxgUUHTOgBf8NjPvwLoKVheCOABpdRhJX1FlVJfBnBryf4/1Fq/4bEvIqK600IIU1Dlw8LM/+mUgrW8cNtXGlO9+Qne8RK0FVA1DgtzKTQJqKBr0FLhz+I3UMi0faNCiaRgqWaXctwLiHSDZxvsSe0wru8IGX99qlgoYC4sTDnZ4iwpAM7tOt+XBFRADAxzdEZ8lvoNAiQiIiIiIiIiIiIiIiIiIiKiKrROKF6OxnFQap24+d0vFNcLDQolRnHHEpxTUVhYDMcOLjc2/fm54jE9s85c0xRymzwxEvUxnjhmpDeIzdv3jLyWzhEAHJDeaB1PPnTLk84pwy9PGXhM3GzrbuCuFeZzdHrfgyMLb32v974FtuvAFhaWTFfeZxAZ4IwLKj9AA4WVg4BQX7i9r3h5tyV/L+JhYlA1/2Q/Q2ucAw+zt+eCtc7f/Qdj87Oxo4qWv3OXgw/+l1zHGzNdkz6DAo3WrfR8CL3F49cxkglv2x38FrnNS4jZwB6xSdW4lpiIiIiIiIiIiIiIaF/D9IG9lwJwGoDFALYqpV5XSt2jlPqNUuoOpdQTAHYCuAnAtIL91gJ4h9Z6m5dOtNYbAXwAQOHHqycDWKmUekYp9Xul1H0ANgD4MYDCpIy7APxLZT8eEVF9ZLT5A/18QI0UOuMI+3nhFvzU6PCkPOlnChrCi7yEZEkhP5UKuAQABXL/s25T8LO4Hc9L/8EG/WolBbk1u5SX2QYbKOEMod8xF6V0hrtq2ldYmWfuS+eKqsRwPgZdFTE9f4Bs2Jr0zGLgGhEREREREREREREREREREVGteAh5WfjO4uVoHEE4CAu1Q9+5qyQsTMgoiusah4XFWnCyEIDVW9LVWvN8hPhK9w32PnwFBsWgAMSdAWPz758ZOU/iOXIG7O9QxOd56pw8/LLFcv5veVpjR5+57fDkyyML02f767/U/FMQRkoMw3pqrVxrmaqi5C6kM8DUmZUfoIGUku+VPzxTfH4eetm4GQAg46UWMjbOz9AaJxiyt4eytXyT0sKNXaBvSOO799hreI3nuxZhYc88aF5vcs8vvW/rRVuH3LbNEkiYo5+4z9xQ8EwhIiIiIiIiIiIiIqLK8Jvz+wYFYBaAswFcAOB9AE4EUJpacSeAE7TWr/k5uNZ6KYD3A9he0udxAP4RwJkAJpXs9lsA52s9RtNOiGivJQV3BXNhWFIoVjXhTVJAWZ7WoxQWBu/hRW6hXACgvBSK+RC0BJQFEIBSyjXErDD8TQohkvuvLDStFqT3pplprYeDsZpFT0ou9ukI1TosLGxcnw9Qc3v2UJYUOpjRGWR8PLOIiIiIiIiIiIiIiIiIiIiIqE4SJWFXsRYAQEqYbA8orpEbFOYjjOshuc9I1PPwRvaJI6PkUKF0ZmRME4VMpIGAS1hSJOZ9PAP9AIDBQIuxOVhQNiOeI8cSqAb4D1WbOBLs0yZMyggAb+6SD5EsfN8HhUQxryLZQDVHquO0lGImqyi5CyJTfl03sf5Aq3F9pORynztVPsaOUGnpv0HMfK3WjfJYg+oWFhbO1vI5lprRgUT2/v/7G0AybT9c3DE8m/zca9J9ceBh3o8x70Tv23phG//WDe77t7Wb1w/IzxEiIiIiIiIiIiIiIvKGYWF7r0cB3Aqgx2W7NIB7AbxDa/1erfV2l+2NtNb3AJgH4GcufT4J4Fyt9QVa6/5K+iIiqicNc7VIPqBGCp2pJrzJbV9pTPUmBaCZArG8BBopr4UaHtmCufJtQZeQoMJj+A36MoamNSoszCVgrhllkIbG6ATfSbrT8q897TUPCzMXO+YD1PyE8+3LpGeNozMMXCMiIiIiIiIiIiJfBgYG8Oijj2Lx4sW49tpr8Z3vfAfXXXcdfvWrX+Gpp55CMil887oC69evx+WXX45TTz0VkydPRiQSgVJq+P833XSTuO/TTz+Nz3/+85g/fz46OzsRDAaL9l23bt3wtosWLSpqIyIiIiIiGhVtnUWLKhQGgkEclFwr7pIoCOMZEP461uJYwprcwoFMDpqLg5Ovi82DBfMiSlVPLY69FFr5CTHzURM2mDKPyBqoBgBRH+FlANTCc4Zfx3RC3G4gKdeFFb3vfsPKSlURTpVyCXyyCek0VKsQftRsLP8eUDpv7RGWsDBP/IThNVLIPLHnsHC2lu+QxKviJv2551CffNkPi2tDSJ+fczPYfF+pULOPlBsdD/XS0iTJQ2MndI+IiIiIiIiIiIiIqFlV8MkojQVa6+cA/KPKVgDPAXA4gOkAxiP7mfUuAK8AeEprXZMpWrTW2wB8Xin1VQAnAzgQwBQA/QA2AXhWay1/0k9E1AQyQsFNIDeDWFCYSUwK1vJCCrgZbh+lgCUpvMgUvOMlJEvVOKM0YDlePiTMbVyFQUx+Q5mMoWkNCnbKVBFON1pSTsp9owbrSe0wrh8f7EA44FIw5FNImY+XyoWFuT17KMsW2OgIwYqNCvEjIiIiIiIiIiKi5pfJZPCHP/wBixcvxsMPP4x0Wv6mcCwWw5lnnolPfepTeNe73lVxnzfeeCO+/OUvI5Hw8O3SAul0Gl/4whdw4403Vtw3ERERERFR7bnXsqlF7ytfGYnjB9v+GR+a/lvjPgNJIJYrr9kgTFkcdwyBPHmBCupDYuNw2sDfxObBJNAWGxmfyVsHHrX34RZaVECdeBb0A7/HO/fcg7vbzilrv/uFkXO/vtt8DGNoUSG/YV3Hvb1o8dT+R/DIuFPLNrvzefkQp/c/PPxaHXmyv/5L5cY/LbUJm8LTypr/9U6NS88y75qsouQuiAww97jKD9Bg5+y5F/e0nV22/tdPafzyopHlUFDByz0tqjb8rV7cwgND2bCw/dObxU12DwKT2opDAyVlz6Zo3FeIu3rre6GfeaC8IekS/ldo+VLv23oxbZbYpJc9DPX28+z7J4VnUbXPACIiIiIiIiIiIiIiqnFqBzUdnbVaa32H1vo/tdbf1Vpfo7X+qdb6gVoFhZX0mdRaP6y1vklr/b1cv7czKIyIxgIthM24hU9JITVeuAU/6dEKC5PCiwy/PngJ2gqgtjPYm0LLhvtyCXcbOUag4LW/gjFzaFpjfrVyC5hrRmktVMyNop60OSysI9xV875CQvhYysmeF/HZw6CrItIzOKMd8b6wBQsSERERERERERHRvuOhhx7C4YcfjgsuuAD333+/NSgMAIaGhvDnP/8Z7373u7FgwQIsX77cd5/33HMPPvvZz/oOCgOAb3/72wwKIyIiIiKisSneVr4uGsfcxCpxl0dfzf7pOHKtXFxbgnMC/utDVCCAcUE5CSgfEuQ4GkPCZi3OgL2TcMT7gOLjAACHJlcbm3cVdHXnc+bzZA1UA3yHO6lgEGjrGF4+cfApX/sDQIsuGHisxff+RXLj78rsNDYnLX/VT1UTFqYzzRuMVUZhTvIVT1umM1XWpjb6nHgN4HILC8vdl7ZnygOrsudmMOl+jsqO4/e8tBiemQCQ8BEWVmvRGHDgYea2uxe77y+Nff+DKh8TEREREREREREREREBAFw+CSEiItq3ZISwGZULgZJCsTLa/oWSSvrM00JoV71J4zKF9biFcmXVNixMWQKA8mN0CzErPIbfQKFKQ9NqYSyGhaW0hyn2Gqw7td24vjNU+7CwsDIX/uicLboAACAASURBVKVz50W83xp0TY0VQeE+1ciIAYcMXCMiIiIiIiIiIqIrr7wSV155JbQu/oKnUgpz587F9OnTMXHiRGzfvh3r16/HK68Uf6l22bJlOOmkk3DDDTfg05/+tOd+L7vssqI+L7jgAlx00UU44IADEA6PTDLR1VX879Jbt27Fj370o+HlSCSCb33rWzjnnHMwadIkBAq+BD99+nTP4yEiIiIiImqI1gnl63Ztx6SgXPO0vlsDUNjQIx82aKvRC1RWHxK3VNIP5OZGlILCAA9hYSEfYWG5gKHu4ERj87T2kdfzpikse6M8xGhjeJq9j0jM+3jy9oy8KS3aJYzMoCjYq9pwqf7dAIDnY0f63jVReYknQjoNxFsrP0CDJVVUbktrRELZWs5qAtQAVHY91VswmA25s8ndlx0Z+YHTk7u1+zzkv8dL7wu/17m0fdLH/RYMApka1pVGW4Bd5slYMX22+/4JYezRJrxmiIiIiIiIiIiIiIjGGIaFERERFdAQwmZygT1S6Ew14U1u+2pUOXtbhRyYxxU0hBd5CTRSXmd188gWAJQfoynYTBqT27alzKFpjQklygjXaTNL6eRoD6FMT9pczNIRnlTzvsIqbFyfPy/Sc8Dvdbm3k85HRjvICM8snkMiIiIiIiIiIqJ928UXX4zrr7++aF1bWxsuu+wyXHjhhZgxY0bZPq+99hpuuukmXHfddUgkst8KTSaT+MxnPoP+/n5cfPHFrv2uXr0aK1asGF4+55xz8Jvf/MbTmP/0pz8hmRz5d/Wrr74a3/jGNzztS0RERERENOpmzDGunpjpFnfJBzkNWEqMjky8KDdWGhZmyfIazI1l0BIWFtdD9g7C/sPCpqU2GZv7C85NUgi+6gl22vsImWuYvDqj7wFcOelffO1T9L5XGxYmXFuFUmmNcKi8VnEwWXkdZhAZYPrBFe/faMcN/V1sG0wCkdw3SNLVliFG5FCyUdPa7r5N7r60hd/ln0nd/e6HizmlYWE+A7Gk7ft6Pe2uM5naBoUB2Xu1vQvoNdRYbjc/o4pIYWGRKp8BRERERERERERERESEgPsmRERE+46MENijVPY/mQHhP51OFeFNUihXnhRgVm9+wou8hPEo1DYszNZnvs1PeJffoC9jaFqDQomqCacbLSmnCcPCUkJYWKir5n2FlLnwL6Wz1YRyOB9/XS8k3WMOMuJ9YbpXiYiIiIiIiIiIaN9w8803lwWFnXLKKVi5ciUuu+wyY1AYAMyePRtXX301VqxYgXnz5hW1ff3rX8fSpUtd+162bFnR8rnnnut53JXuu3TpUmith/9PREREREQ0GpQpkGrB2wEAXentxn3+/f7s32EGLSVGrU6f3BisfVjYk2uzY7IFmLU4A/YOQv7Dwo4bWm5s3lXQ1S1Pm//O96me/7X34Se8LO+9nxp+efTQc/73LxTxGaJUQh13uus2UribLfTNTVBngGB1QWsNoxSOG5TDwnoLMpzufkE+zPiMh6CqYBPOW9/mISys4Bk1J/GKcZNfP5m9x7pdbnHAEBroNxDLEqKnvYSAScFc1YjGoT78TbE/13FJY6o2MJCIiIiIiIiIiIiIiJg+QEREVEgK/cqHzUhBNVLImBcZbQ8DG60vc0jjCqjyXx+8BG1JQWuVClgCgPJ9+enTdjzj9qbQtAb9auUWMNeM8qFYzUJrjZ60OSysM1z7sLCwMheLpXPnRb7fGHRVSAr+yuiM+Pw2PbOIiIiIiIiIiIho7/fKK6/gS1/6UtG6hQsX4t5778X06dM9HWPOnDl48MEHMXfu3OF1juPgwx/+MHbsMP8bc97WrVuLlr32We2+RERERERETal9EgDgLYkXjc2bc7lEtkCnuLYE4lRYHxKJhqCEup3f5QK5XtxkG9OQ3Aj4C+fKhejELD/nYNJeSzjecQl4MgW5ucm9dwAQRgoBH7WSBybfKF4RrS4szEvQ0Frhr+u2IDo3IWQqO3ejxHavLFnprR416FajGAxBqdpOIOvKS39tHR4Oo4bfz0OT5rCw13O5ht2WjMK8uFNyvv0GYtnCxXq2ym15Wzf468+LaBxoHS+3r3rGvn8yYVytGBZGRERERERERERERFQ1fnOeiIiogCMUsuTDZqRQLGm/avocbsfohIVJgVSmsB4pwKdQrQtDgpYCr/z75CdoyW+gkOnYXkLTaqGacLrRktJVVFvVQV9mtzimjtAk4/pqhAPmwr90bgzS/cawsGJKuE/TljA6v0GAREREREREREREtHe45JJL0Nc38o3O9vZ23HbbbWhtbfV1nP322w9//OMfEYmM/Dvvpk2b8J3vfMe6X2HfABAOe/9ScTX7EhERERERNaVcQMzuwARzcyj7pxTopLSDiK3+KFBZfYhauxJaqEeZkMu0sQWYdWXsQdK+wsIm7Q8AaHXkdKJ1O7N/Tms3t28NTbb3EfIxnjxnJExNAXB81DO16IHiFbZQJC86snVd//Pm58VNtu8xr7e9j26COgMExs7XLiant4ltewry7aaab0cAwA+3XmrvxM+13UhvrPa2XTgKANgcmmpsntGZ/bO7371+tyw0MBL1Noa8Dsvkpls3uu/vJVDMj3AEKhAAJs+Qt1m70n6MhBBYV21gIBERERERERERERERITTaAyAiImomDsyzBObDZqTQGSnox1uf9n21MKZ6k4PTys+Bl0AjVeOMUlsAUH48XkLM8vxsm92+/OdpVCiRI8xm2cxsYU6FdIPC8XrS28W2jrCl+KZCIWX+Ildap+FoR7zf/F6XezvTfQcAKUcuBm1UiB8RERERERERERE1j5dffhl33XVX0brvfe97mDJlSkXHO/zww3HJJZfgmmuuGV73i1/8AldccQU6OjqM+zhO5f+WX82+tbBy5Uq88MIL2LlzJ3p6ehCLxTBp0iTMnTsXRx55JKJRn196zUmn03j66aexZs0abN++HYlEApMmTcLMmTNx8sknIxbjF0aJiIiIiPZauYCYUwcewd/jx5Q1J9KA42gx0CmuB2GdqjJY+/qQnf3ZPweScj1TTCfsBwl5D39WbR3QAOYm5LCjfJjagFAqc+TQCzUbz/C4jlkE/avv+94PAOJOSYhStMqwsFx40bl7bsdn8F/GTaRraJsQIuZFMKRqPllq3SigRQtBTQCeL8ieSlv++eHMvvvt/VRwLTVEqyUBrVA0Dgz24eih57AsfmxZcz50rrvf/VBxp+R8B31+RWfKTLktKb+Xw6Rgrkrl79PZR1bep9Qe4b/9EBERERERERERERFVi2FhREREBeSArEDRn6UyVYQ3ZYQ+87RuTHhSqYwQYmYKxPIWFlbbYhnpvQBGApaUZZvy4/krGDNt36hQomrC6UaLLcxpNHSnzLN6hlQIbUGPBUM+hJU8k2Jap8TngO063xdJ96ktjM7vvU1ERERERERERERj3/XXX1/0+UpXVxc+8YlPVHXMiy++GNdeey1Sqey/R/b39+PGG2/EN7/5TQDAunXrcNBBB4n7n3baacb1ixcvBgDr+KQvJK9duxYzZ84cXl60aBH+9re/DS/7+Yxpw4YN+MEPfoBbb70VW7duFbeLx+M47bTT8LGPfQwf/OAHEfTwhfxVq1bh6quvxl133YXdu3eLx33Pe96Dq666CnPmzPE8biIiIiIiGiNiLQCAc3ffjh9N/Kpxk6EUMJgy/z2mLIynVKU1Nu//LP750e/hmq5vlTU9uSb7pxQ+1Zne6X78sFwzJIlbgp5efFPjmAOVOKbDknLQGIDKAp6mzSpa/MiuX+NX7R/2tGus9GepMixMBQLQAMY7cvLXw6s13j2//O/RP1xSeR1maAyWcM0fWoHnY+VhT798QuN/PqIRCSmkhTLEz3f/NyZnttk7CPm/tqvnoQb1jAu8HSp3LZ7d91fc2HFRWXP+HusecD9U2T3r8z7LX9dGXoLANq3x1Z+raPZ5rZSCbmkDBsrvN73iMahzvygfQwo5qzYwkIiIiIiIiIiIiIiIMAY/uiIiIqofB+bQr3xgT9AQlJXdr/LwJqnPPC2XAdSVIwSgBQ2FVUEPv1LUemY9WwBQvk16v0z8Bn2ZQ9Ma86uVW8BcM0rp5goL60mbw8I6Ql11eR9DSs7oTeuU/Ozhr+tFpPvedn3xHBIREREREREREe177rvvvqLlj370o4hEqvsS66RJk/Dud7/b2s9YpLXG1VdfjdmzZ+OGG26wBoUBwODgIO655x6cd9552LBhg3XbTCaDr33ta5g3bx5uueUWMSgsf9zf//73OOKII3D99ddX9LMQEREREVETGDfeuFrlAmLiekjcdTAFDAolILb9AADBCutDoi2YkOkVmxMpLY5panqL+/H9BipNmoaITkIJtXsPrsr+PW5ICAtzDVWrJOCpJNxngiP/3c46HqUqCk8r09oOAJie2mhsfvTV8nrLvqHqajCDlV5foyFXpzk1vVnc5NHXsn+mhdLVM/ofcO+nkuC5BlBew6iiMQCGQLsCfUMa3f3uhyp7PgXlWkFRqzDBacLl2QdAv/x3c8PEqVD//aj/seTODQDg4LeYt1m70n4MadwMCyMiIiIiIiIiIiIiqloFn0QQERHtvaSArHzYjBRU41QR3uS2r3YJE6sXaVymc2AL7spTXmZ188EWBJYfj5/QJ7+BQqZwMVOAWD1UE043WpotLKw7td24vj3UVZf+wkoudEvppK/7bV8m3fdpLVRAwn8QIBEREREREREREY1tGzduxLp164rWnXHGGTU59hlnnIHbb799ePnJJ59EKpVCONycX5B1k06ncf755+O2224ra5syZQre8pa3oKurC4lEAlu3bsXzzz+Pvr4+T8ceHBzE+973PixZsqRofTgcxlFHHYXp06cjGo1iy5YtePrppzEwMDA8posvvhg9PT244oorqv4ZiYiIiIiosdSXrzOu1zuzwUVxSzDPYCr7fxPXEKxAhfUhqQRiQs0gAGzbAwyIAWYuYwKASNTfeLZvggKghbq3thjEoDBPYwpV8NWB8ROLFteED/K8a1GIUjRemwlH+3YBADaGpxubD+gsX/emnAfnSTA09uqP5iRfxX0409i2docGoJASyhCDOu3eQbP+W0hh0JV1uxYAwPiMHH73Zq8cYFgoVvp8qiRILRIHYLhQEx6eM11Tzet3bpbbbN5cO/J65VPmbWbOtR9DGjfDwoiIiIiIiIiIiIiIqsawMCIiogKOEMyVD+yRQmcyVYSFue3r6OpmtatURgikMgVieQnJqnVYmC0IzC3czXw8fwU9pv4bFUokhdo1s5QlzGk09KTNYWGd4Ul16S8ckAuAUk5KvN8YdFVMuu9t11ejQvyIiIiIiIiIiKi5pTMaG3tGexR7v+kdQChY288D/HrsscfK1h133HE1Ofaxxx5btDw4OIjnnnsOCxYswPTp07F27ciXKX/0ox/h+uuvH17+7W9/ixNPPLHsmF1d2UksFi1aNLzu/PPPx1NPjXwZs/C4haZPN38x2quvf/3rZUFh55xzDq644gosWLCgbHvHcfDkk0/id7/7HW666Sbrsb/4xS8WBYVNmDABV1xxBS666CK0tbUVbTs4OIif/vSnuPzyyzE0lP0i+VVXXYUTTjgBZ599doU/HRERERERNVxrO7DQ/Du8OvIU6D//3Br61Z+Qg3lcQ7AqDAtTJ52Fd/zln8T2qgLMAP/BOIceA6xeLjb3JeTxZMc0JDcCQFie8FCiQiEUVjAuHHwC97R5+7ta0ftW45CgrvR27AiV13rtNGRcewl8sglFmjQYy+K83lvx484vGdvy5yMtlK6G4CEsLNik58TrdZbbbnZqjbjJYBJIeyjVLHs+BSv4io4UcuYlLMy2Tdf+/scy5cCR1zMPB15/oXyb5Uvtx+gXQti8hrkREREREREREREREZGIYWFEREQFHCG4azh8CuagGilkzFOfQkhQnq7i2NWQzoUpvMhLoJESzl2lbAFA+WCyoI+QIL+hTKZjNyqUqJpwutGSdqqsuKqxntRO4/rOcFdd+gspudAupZOWZw+DrgpJ5yOl5evLbxAgERERERERERHtnTb2ALP+eexNxDDWrLkmgJn1+WdWzzZu3Fi0PHnyZEycOLEmx543b56xvwULFiAUCmHmzJnD69vb24u2mzJlSlF7qdbW1uHXsVjxFydt+1VqyZIl+PGPf1y07nvf+x4uvfRScZ9AIICFCxdi4cKFuOqqq8rGmXfrrbdi8eLFw8sHHnggli5dKv4c8XgcX//613HSSSfh9NNPx9DQELTW+MpXvoLVq1cjEKjtZ0xERERERFQf6vq/QnXsZ26cOAUAENdymNU//cHBybPNAdQxy34AgEr/3jDlQHSlzXVEADCQtAWYuYwJ8B2Qpd73Gejvfw6f2HUzFrd/rKz9l09ofPd9cki3a6haqPqAp0OSr3netihQrVZhYae8G3j0L/hsz8/x3UmXlTX/36vlu9gC1rwIRv2HrI0alb0+Thh6RtxkMAVorcUgrJD2EBZWQfBc1ZSHgHrPYWHZf9Owhf7d/qxGxktYWGlIXyX3mTBuvXwp1Ls/ad9XCgt724egAgH4na5YvesTIwsLzzGHhe3uhk4loQzXgc5Y6lsjtQ0NJCIiIiIiIiIiIiLaF7GikoiIqIAU+hVQubAwIXRGCvox6U13496df8DPNl2Dn268GjtSW63ba98f1deGeC4Mvz7kz4+N8lKo4YOXcC8/IUF+Q5lMx/ZyHmrBLWCuGaW014qrxlzv3entxvUdofp8iy2s5AKgtE7B0fZnD2VJ933aka+vIM8hERERERERERHRPqW7u7touaOjo2bHjsViiEaj1v7Giquuuqpo+XOf+5w1KKxUe3u7MSxMa1107FAohDvvvNNT4Fk+hCzvtddew5/+9CfPYyIiIiIiotGl5hwlN+aCcFqcAXGTe1+UQ51ipWE8pQIVTiYXjaNFy2MaTMpjcg3myh3fl1gLAPt5GrDM2WgLPgIAhKoPeHLto3DbwkC1iDlw2rfcOfV0/nNs58yLMRUWVmDhwOPG9YMpWEOwPIWF1SB4ri48h4Vlt7MFET75uhyoVqjsWgyGvI3BMJ4y3fb6YgDAkHAv5I/Z2m5uF8cycq+q3DPJaMVj5vWbXpf3qfQ50D6psv2IiIiIiIiIiIiIiPZC/OY8ERFRATGwJxckJQXVZDyGN/WkduC69d/CX3bcghV9T+PF/mWu+4xWWFhGCEAzhWQFPQRtmULGquElCMxPn35DmUzH9hJgVgt+wumaRUpXWXFVQ2mdwu50j7GtI1yfopKwkgvG0jolPkO83Fv7Eum+t11ffoMAiYiIiIiIiIiIaGwrDe9qb/f5hUgXpcfbuXNnTY/fCCtWrMBjj418obOtrQ3f//73a3Lshx9+GC+++OLw8oUXXogjjzzS8/5f/OIXi0LI7rzzzpqMi4iIiIiIRpnHgKchMZirTmFhk6YjqhNQQt3gQFIOmrIFeg3zGxaWC9J5OTLH2Dx7Pzm8DPBwnmoQ8HRk4kX3jXJihcFifs+F5OVszeX2oHlSyBZDmdYuD2+VJKAzULUaeyO8umL4pRTsNpSS7zUAiOmEez81CJ6rC69hVLmgq6AwqS4AjIvaQ9XyDk6uKV5RyX22erl5/X4HuO/bt8u8vnV89s9D5vsby+yC7Q9+i7zdzi3m9bstwfr7z7T3/aEvGVerr/+nfT8iIiIiIiIiIiIion0Iw8KIiIgKSCFM+SApKXTGa3jTo71/xc7UNl9j0kIhUr1JP5MpEMtLcJeCqnpMRX16+DVGKe99+g1lMv3MjQolyozSNVGNZgoL25XqFkP4OkP1CQsLKbkAKKWTlmcPg64KSfd9SsvVa36DAImIiIiIiIiIiIhs/Hz20KwefPDBouULLrgA48ePr8mx77///qLl8847z9f+LS0tOP7444eXH3nkkZqMi4iIiIiIRlkkCgCuFWSDQomRFHo0rMKwMBUMQkEOMVu3U2NLr7nOyDWYC/AfkJXb/qz+Jcbm17bJ5whwP0+q0rCwk84efjk9vcnzbkXnqFaBW7mxnDbwN2PzQBLQuvg96+6vfMLWIDK1G3sjLHj78Esp9Gvlm9oldM7lfgNqEjznm5d/kvH6Xh1/xvDLuBD899wGb4dqKT1fwQqeR7OOMK9fv9p93z3miVNVW2f2z/d9xt9Y5p8y8vq4t8nb7dxsXp+wXD/t9vpMdeaHgVhL8cpps+zjICIiIiIiIiIiIiLax/Cb80RERAUcYZawfAiUFDrjeAxvemXA+6x6eVKoUb05EMKLDIFYnsLCavzlmVoHAPkNZTL136hgJ+m9aWYpx1Jd1GA96R1iW0fYPONktZRSYmBYyknKzx6GhRWR7vu0JYyuUSF+RERERERERERE1Bw6OzuLlnt7e2t6/F27dln7Gwsef/zxouVFixbV7NiPPvpo0XJnZyfWrVvn6/+FwWXr1q2D44y9SVSIiIiIiKiExwAfKcDINbwoUEUt2eQZYsjW136vca9Q8ucaYAYAkZi/seTO0wGpjeIm/bawMLfzVGHAk1pwetHyMYPPetqv6BzVKHBLzTgUANCRMQckAeUhT939lfcX0ukxFRamps0afi1dD3c+X13oHAAgHPE7tMbw+F6pQ+YPv75o103GbdbtrHAMldxnxywyr1/5tPu+u7vN68d3AADU286FuuLXwPxTgdYJ2f9bqIL3VkXjwISJxu30z680H0AKCwuFXeuI1aFHQ133l2wo4NQDgXf8f1A/vh/KZcxERERERERERERERPuS0GgPgIiIqJk4WgjIygXUBIXQmYzH8KbetPChvG1MoxQWlhEC0ExhPUEP+aOqxhmltQ4A8hvKZLoWgjUOMJNI12kzs4U5NVp3artxfTwwDrFA/Qq7wiqMtC6vaEwKMzgC3u6tfYn0DLaF0QUZuEZERERERERERLRPKQ3v6umRvzzs19DQEIaGhorWTZxo/sJkM9u8eXPR8hFHHFGzY2/YUPyN7BNPPLGq4zmOg127do3JUDYiIiIiIioQG+dps10D5lq5uB4yrh8WqKI+JBxGGGljU18CiIaAhKE5IEwOOCwShfIbYpYLF2txBsRNnlxjPkdhnUTQbUwVhoWV7teR8VYH2aILfo5gjWp4cmMZZzlHf31J4+gZI6FEPfKmroI64z/0bTQVvFchbb6uAWCPXLKGmKWebViwSb+G4jXYreB6fLTl5NqOoZJzY9lHO479WbJnl3l9W8fwS3X6h6BO/9DwsvP5RcCLT3gbW9f+QK+P5LSE8LxuafO0u5p/CtT8U7z3R0RERERERERERES0j2nST2mIiIhGhyMUy+SDqaRAKS/hTVpr9Kb9fyFFC6Fd9eYIAWimsB4vQVv2+cD8q3UAkN9QJtPPXOsAM4nXcLpmkjKEZJk0IhqvJ20OC+sMT6prvyFlLrZLOHIxo98Qu72ddD5SljA6nkMiIiIiIiIiIgKA6R3AmmsYzl9v0zvct6m3adOmFS1v2bIFO3furEmo10svveTa31iwc2fxFzw7Omr3xpUeuxb27NnDsDAiIiIiorFuwsjfyd695y78pe1dxs227TbvHncGrYdX1QRRbXwdew5tNfcbBrpagQ2Gsr+NIZe/DwYrCOY64BAAwIKhv4ubvCnkAsUsNUjDwhH/YwLKfpYTB5/Gg62nu+4WLxzTiscq67tULnDo8MQqcZO+kqyr/irmuQwiA0SilR+g0QrutTanT9ys13JLRbxMDFpp8Fy9eQ0LS48Eqa2Izqu4uw/uvr18ZSVhYSHLvZlK2H+uoX7z+hbzcw0A1Mcvg77kPeUNF15Svm7bRvNBYi3m9Qnh4vL63hARERERERERERERkRXDwoiIiApIoV8BFcj9KYSFwYHWGkrJkVhDzoA10EaiGxKfVE4+F5WFZCmfYVxuah3M5TdQyNR/o0KJnFEKkKtGJdd+vfSkzF9U6gh11bXfsDIX9FjDwhoUQDdWSOcjbZkFM1DjZw8REREREREREY1NoaDCzPr+EyA1iYULF5atW7ZsGc4888yqj71s2bKi5Xg8jqOOOqrq44422+dbfiWTtf88QOvR+ayMiIiIiIgMKvz9XCk1XAX3zzu+L4aFbe417x/T9rAwqCrqQ2YdgUt3XIf/f78rypoGU0BCKEs5p+8++3EDFYypdQIAYFJmh7jJll7ze1DXgKfDji1a/HjvL/HdSZe57hYvfN9OP6+yvkvNygY7RSBPXrnyzeJztHZ75X+vDOl0ZcFvo2X67OGXF/beghs7LjJutseSLRf0MplppcFz1fDy7xfRmLdjzT95+GVYp5CooPazxenHV7pvKG+o4HpRJ78T+jfXmhuTQ2LQlta6snCuoxcB804CXnxiZF3HflDv/Hj5tud+EVh8dfn63d3QA3ugcgF+wxIDwng8vjdERERERERERERERGTFb84TEREVcGAOYcqHzQQt/+mU9s3rTRumF6xiTPWWEcLCgoaiCNO6UrX8ogkwEuBWs+P5DGUKGvoPNijYSQpya2ZpLRdnNVp3ertxfUe4vt8UDClzEZAtLMzLvbUvMd13AJC2FDvyHBIREREREREREe1bZsyYgRkzZhStW7JkSU2Off/99xctn3DCCYhERuHLsVXq6ir+9/Du7u66HDsWi8FxshPuVPP/mTNn1mx8REREREQ0ig44BAAwLf2muMkaISMrbqmvAQAEqqgPOeIELBr4m9jcK+TwtDtCslleBfVtSikgkg3UmZg2n4zbnzXvG/FSn1Vp6FVJyM9BqTfQ4vS77hZ3Rk6emjGnsr4tY/nA7juMm/zpueLlu1+ovLsgMkBwDM3PXhAQNT29SdzszV1ygFrQS31ipcFz9WYLyCrarmX4ZQjyRJWShQOP48E3zsLJg0+WN4YquF7Gd8hteyy1x+kU4Ag1xpZzoSJRqB/eBfXJfwEWvB04XzcwwQAAIABJREFU94tQNzwIlXtOF2176NFy/w/8vnydFF4W8fjeEBERERERERERERGRFcPCiIiICjhaCAvLhc0ELKEzbgFOvZnKwsK0MKZ6k4PTys+BW3CXqsOvHLb3ohJ+A4VMP1OtA8wkGS8z9zWZpJMY7SEM60mZw8I6Q5Pq2m84YP7CWMIy82mjrqmxQrrvU5Zix3o8f4iIiIiIiIiIiKi5nXXWWUXLv/rVr5BKVTepxfbt23HnnXda+xkrpk6dWrS8cuXKmh178uTJw6+Hhoawfv36mh2biIiIiIiaQDUTRjrZmqc2Z4/vXeOW+hoAQLCKWrJMBi2OfPyEkCMUtkxuBwAIVFizkgv4yfisZ4u4jQeoPOCppa1s1YzUBn/HKAkcq1hBAFJamUOZxpd0dVAVc0gGtVNZ+NNoibcOv2xz+sTNVm2WDxHSHsKzKg2eqzevYWEtI+fp/bv/7Lub/9n8BSwY+ruxTVUSLjduvNy2/hW5LWkJUnQ5F6qlFeoTlyPw73cj8NV/lwP9WuSx6eWGoMWEMCav7w0REREREREREREREVnxm/NEREQFHCGEKZD7T6YpKCvPLcBpd7qyWdk15Bnc6kkKPzOFatnOCwAoVFEkJgjW+NcYv6FMylD4VusAM4lbMF0zSnuZubJBeoRZNzvDVVSFeRBW5gKphCVIze3e2tdI5yMlFDsqBBi4RkREREREREREtA/66le/WvTv+Nu3b8fixYurOub1119fFDg2btw4fPrTn67qmKPl5JNPLlpeunRpzY69cOHCouUlS5bU7NhERERERDTGbVoDwB5gJIlbwrwAVB7MBQA923BYcrXv3VzDuSqtWckF6uwKdvjbTXuYzLHSsLCu/YFps4pWvRw9zHW3Wam1Iwu1CgoqOE5CRc2blPyYLeY5Hj0JIV35eRsFqiAEa2JGrllNWUoQg14mM60kEKtaXsIKQx7f7Omzh19e3P2fvodiDVSrJEht4lS5LWPpK2F5NkZqFNA39zi5rb+3bJWWxsSwMCIiIiIiIiIiIiKimuA354mIiAo42jGuz4fNmIKyRva1F0j0pnsqGtNohYVJ4WemQKyAClgDwQLVzCgpHrO2IUq1CGUKNijYyYH5Om1mqSYJCxvM9GPQGTC2dYTqGxYWUuZCpISlmJFBV8Wk85F2zNdXkOePiIiIiIiIiIhon3T44Yfj7LPPLlp36aWXYuvWrRUdb+XKlbj22mv/H3t3Hh/XWd97/PucZUarZcmWt3iJ7cRxHDv7QkIWSJzQLCQsCSmhZUnZUmhpC5d7oZQEKAVK6S0tbSlQblkulLbABUoplFKgQIA2LAkhIXscssq2vEi2pJk55/4haaSRzjpzziz25/165ZWz/M45j+acGVvWT9+nZtvLXvYyDQ0N1T3GVtq5c2fN+qc+9SkdPHgwk3M/61nPqln/yEc+ksl5AQAAABwBzpr7XmTL5D2pDu32J6ILGugRMec/O1nQ1gKxYWH1BpgVpwN+rjn4xWzHI9Ud8GSMkfnNd9ds+909fxZ73HB5ZG6lkH1Y2K/t/1RgyciCb3HDgrEKEZM8zrL9SkeFhSX1iyfC+1LtJJOZNhLQl6eE92p+yPwpk7env4yiwsLS95EGTV5b9eQj4fuiwsKK2YSFma4eqXdJ8M7vfzX5mDIaDwAAAAAAAAAAR7s2/SkNAACtERbCNBskFRXcExY0NqvusLCY8+YlLPzMCvnrQ1TYlsnhrxzR10sfThYVBJdU1gFmYSpJmnHaTMlL0Iym/MPxRsu7Q/cNusO5Xts1wY1Ik154M2OzAug6Rdj7vhTS7JhFCCAAAAAAAACAzvS+971PPT091fV9+/bpec97nsbGxlKdZ2RkRNdee62mpub+HXL16tV661vfmtlYm+2kk07SRRddVF0/cOCA3vSmN2Vy7ssvv1ybN2+urv/whz/URz/60UzODQAAAKAN+A309qw7vrp45di/pDq0O2IyPkl1hfNU9Q3ISOr10n2/GBvOVW+A2UwY1skTd6QcT4LJHBt4ncyF19Ssb556MPYYd36gUjGjsDDHrQZVLavsCS3zvLlntRzSbnds6eH4y6nceWFhm7ZXF8OC+f71zvDDI4OwZllt2pdVx70yShZ+N19koFqdoXxasTZws/+VT4QfExUWllVAnyRzwxtC9/kLxzAVFhaW3XgAAAAAAAAAADiaERYGAMA8oQFZM407UcEzFUUHOB2oMyzMyzk8KfS6ISFlYaFaUUFq9YR3xcki3Gu+LEKFwoLUshb2nLazcpJmtCYYLQWHhRlZWuoM5Xpt1yoEbo8KC2tWAF2nsEM+Z0KDHnn9AAAAAAAAgKPW1q1b9Rd/8Rc12773ve/p8ssv1y9/+ctE57j33nt1ySWX6K677qpusyxLn/jEJzQ8nO8EFHlbGHb2l3/5l3rf+96X+Pj9+/drYmLxv287jqO3v/3tNdtuuukmfe5zn0s9xq9//et64IEHUh8HAAAAoE2V58K1hirpeum6/ZiwsEaCi5ZM9wyNW32pDivGhYVZdfaSje2XJPkpe+7cuPFI9YcYzVq9obq4zx6ILa8JVFsy2Ni1ZxhjJG+6V6grou/qvpG55VJIu12vfyj2erZf6bywsJlnSEp2nxaykvSs2m34ayi2M/181GG4Ej4JaRAnql/YqfN9dnBf8PZlq8KPmQx/D2QaztUf8Rzd+9Pa9bAxERYGAAAAAAAAAEAm2vCnNAAAtE5Y4MxsMFVUQFVcgNOBlA1Os/yQMeUtLPwsLHzHNuENDnmEhUWFk7XqfFkHmIXxYoLp2lEpSTNaE+wtBzf1DDiDkc9wFpyQ80/6hIUllfb1sDMIAQQAAAAAAADQuW688Ua95jWvqdn2ne98R9u2bdO73/1uPfLII4HH3XfffXrLW96iHTt26I477qjZ9573vEeXXHJJbmNulosvvlivf/3ra7a94Q1v0NVXX63bbrst8BjP83Trrbfqda97ndatW6cnnngisO6GG27QjTfeWF2fmprS85//fL3oRS8KPbckVSoV/fjHP9bb3vY2bdu2TZdeeql27dpVx1cHAAAAoB2ZYzZXl3eOfyPVsV0R/TWSGgsL23FuXYcVYsPC6hzTU9MB16dP/CTb8UiNh4U9/nB10Uvwawju/Akmt9f3OkfZNnV36L7xybnlckgLZo83HnsNWxUZu8PCwvbP9cg95axMdajtl5MVZty/mfCi0bsbCHVL+5lkR/UL1/s+OzwWvN2L6CGejAhSzDKc6+xLw/dNLHgfhY2pQFgYAAAAAAAAAABZyDcRAQCADlMJ+QG+mWlsiQwLiwlw2l+uMyzMTzBLWw7Cws/CwneiQnnqna0tipVxCFAWQV/NCnaq+K0JkGtE24SFlUYCtw86y3O/tmMKgdsnI2a4tMn2rZH2fZ91qCAAAAAAAACAzvOBD3xAg4ODeuc731n9mcvBgwf1pje9SW9+85u1bds2rVu3ToODg9qzZ48efvhh/eIXv1h0Htd19f73v1833XRTs7+E3LznPe/Rrl279I//+I/VbV/60pf0pS99SWvWrNGOHTu0bNkyTU5O6oknntDtt9+ugwcPJjr3Bz/4QY2Ojurzn/98ddunPvUpfepTn9Lw8LBOOeUULVu2TJZl6cCBA3rsscd01113aWIiJgAAAAAAQOc64+Lq4pkT4UHCQboi+mskSVb9PSKm2C1f0qkTP9VPuk5JfFx8WFidY/qVX5P+9ZM6tR3Dwq58qfTlv0tcPn9MptjV2LXnO+OZ0m3/oT4vJFxJ0liisLBDsZdy/HJDIVStYF70BvkffYck6Y2736s/Xv4/Eh/rJA0LaySgLy8N3KfTUr7fIl+net9n17xc+sJHFm+/9Svhx4ztC95ujOQG9yvWwxyzWWGdzP7t35M5c16wflhYWBdhYQAAAAAAAAAAZIGwMAAA5vEV3BVizQT2RAXVxAU41R0WFvoj9vz4vi8v7LUICd+JCuUxcTO61SHrEKAswseyDjALU0nakNNGSl57hIWNlncHbh9yh3O/tmuCm5EmvfDZ/ZoVQNcp0ob68foBAAAAAAAAkKR3vOMduuiii/Sbv/mbuvfee6vbfd/XnXfeqTvvvDPy+NNPP11/8zd/ozPPPDPvoTaVbdv6zGc+o5NOOknvfOc7VSqVqvsee+wxPfbYY3Wf23Vdffazn9V73/te3XzzzTUhYCMjI/r617+e6By9vb11jwEAAABAm5kXFGMkbZx6UA8WNiY6tNsP76+R1Hhw0fZztWn0gWzDwuqdYHPpdB+THdK/FzoeleKLGg0LW5puQkbXnxnTxdc1dt2F1m+RbvsPFf1JGd+TH9BL+K17fF1w/PQ9KIXMA9ubICzMlifZHdaDtHSuF25V+clUh9oxk+ZWNRDQlxun/nAsI2nL5D26p7gl2aWUfViYGV6bulvY//G3g3cUu7Of5HdgmbR/z+Lt//x/pBv/YG49LCysSFgYAAAAAAAAAABZICwMAIB5vJDAr9nAmajgmT/Z9b90THG91hQ3yPM97Sk9peHCKp27ZKckX4e98brG9LHH/0zfGN1UXR9yV2iZu0KHKmN6dPJhaaY9oNdeokFnmSSjRycfrIaMdVu9OqH3ZF249FfkGFdPTj2q7+77Nz08cV9oOFpUQFlYIFbUa2PUho0hC6QNIQo+R3O+zr3lEf3prjeraHXp+O7tumjwChWtDGdezEHJT9CMJmnXxH36011vljQdMreua7POG9ipNcX18n1f3z/wDf1s7DYdrOxTl9WjE3p26MKll8u1kjX6jJZGArcPOuka2erhmuAx7i6FN2Q1K4CuU1gpP0tsXj8AAAAAAAAAM3bu3Kmf//zn+od/+Ad99KMf1be+9S2Vy+G/2FksFnXZZZfp5S9/uZ797Gdn/wuWbcIYo5tvvlkvfvGL9a53vUuf/exntXfv3tD6vr4+7dy5Uy996Uu1fv362HO/8Y1v1Itf/GK9//3v16c//Wk9/PDDkcf09/frggsu0JVXXqnrr79ey5Ytq+vrAgAAANCGBlfUrD7hrEx8aLc3EV3QaFjYk7tUKgZPBBimGBcWVm+Y0tT017q8EjwpYuh4vMn4ogbDwkx3X7Wz8Fnj/6a36pbwWt+bC546GP59Zl1mQoeMFBgUJkm981q1pkK+/e/143s6bb8iOemejZbrngveXl1+ItWhTtKJTBt9z9Uj7t9m0t6ncy6TfvC16upD7obEh9p+RKhane8zf2x/8I7u8CB1s3R5cLfvRHwQXmpBQWGStHx17fpkyOc1YWEAAAAAAAAAAGSCsDAAAObxQmZFs2YaSqKCZ8Yq+/WLQ3foF4fumNs4Lv3H6D83NKZJf0L3Hf753Ib5ywndMf5fuufQHbp6+a/pzx55i8YqB+oeT1ioVtRr0wm/QBMVdpb4HE0KJir7peozcef4j3Tn+G167dpb5Frt2ZRU8Suh760g85/3ew/fqVv3/7t+Z9079IMD39Q3Rr9YU/uz8f/W3Yd+qlcf8/uJAt/2loOb6Abd/MPCHBN8f8oRQWpZhNgdSdK+T60mBfgBAAAAAAAA6AyO4+iGG27QDTfcoPHxcd1222267777NDIyoqmpKRWLRa1cuVJbtmzR6aefrmKxWPe1brnlFt1yyy11HfvNb36zqcdJ0saNG/WhD31IH/zgB/WjH/1Id999t3bv3q2xsTH19vZqxYoV2rp1q04++WS5brqfR6xatUrvete79K53vUsPPvigfvSjH2lkZESjo6OyLEv9/f1as2aNtm7dquOPP162zb+NAwAAAEcis2SoJtRmTflx3V/YnOjYbv9wdEG9wVyzDo/rvMqt+lL/VYkP6fZixlRn34rZdrb8z/11fBjZwvHEvUZSw2FhetqzpI/cIkk6feLHkaWuX1K1a3Ddlsauu1CC0KGJmcwr3/d1KOSlHEjQR2n75c4LCzv9GdXFnePfSHWonbTPrxVhYXFS3idzwdXy54WFTVnJ/x3IUUSoWp3vM3PsicHBX4cjQu284AmDc+EWpFLAm2nPgslSp4I/iwxhYQAAAAAAAAAAZIKwMAAA5vH84B+czwZhdXLwzO1jP9TB8v6GgsKk8LCeqNfGqLmvWz3hZEaNB5plEThWj3sP36l7D/9M23pPa8n140SFYSVx2BvXl/f8ve4Y++/A/XeO/0gPTdyrzd1bI8/j+Z72lYJntxtyhhsaYxKuVYgvWqCTP3PykDY8rVkBfgAAAAAAAAA6T29vry688EJdeOGFrR5KW7EsS2eeeabOPPPMXM6/ceNGbdy4MZdzAwAAAOgsb979Hv3Gmg8lqo0N5mo0uOiaV+iaf/y83rTynYkPyS3AbMup1cU37n6v/nj5/0g4non4IqfBXx3YvKO6aCRdc/CL+kL/1YGlhXlhZ+bpVzZ23QVMsacaqnTqxE/1k65TFtX85z2+3nS5NBmR6bTESxAWpkrnhYUNrphb9PZpSWW/DtgDiQ61/aRhYW3Y15Yy3FxX3Sj9yWurqy/Z9wl9bOmvJzrU8bMPC9Pa8PBEv1ySCXoOyyG9mcedXN8YIphXvkP+X/7PxTueeqR2fTLks7HYlfmYAAAAAAAAAAA4GrXhT2kAAGgN3/flKTgszMwE9rQqDCorD078ouFzdFs9Idt7I47JZ0awsLGc3Hd2dXmJvTSw5sz+C2rWHdN4hmrYeJrhwcON39u8lFLOchnk9rEfyg95f0rSQ4fviT3Hwco+VUJm9Bt0l9c9tqR6rL5U9a4pEHa1gJXy25e04WIAAAAAAAAAAAAAAADI0eoN1cWBBEFNs2KDsOzGekRMd6964gLJ5tf7nor+ZExRnW368wJ1jp+6P/FhsYFqUv0hRjOM49a81ucdujW0dszun1spZtw/OO81WlV+IrDkBw9O//9wROvaQGV/7KVsvyLZHRYW5rg1YV7XHvx88kOVNCysDfuyUt4nY9vSxm3V9SThcbOsiF7Gul+bqPfJU78M3OxXQkLL+gfrG0OUJUOhu/xd8/o3Jw4FFxXy6SMGAAAAAAAAAOBoQ1gYAAAzooKI7Jk/Mu2jPLhn0FmuYXd14L4TesJnItvSsyN0XyNO7jsncPsp87ZfvuwFgTXPHLyqZt02jrb1np7ous8aujZw+7Hdx6towmc/u2jpFYnOX49y1Ex1LVb2Qmavy5CXoElpb2l36L4hZzjL4QQ6sXfxDJZRTug5WVa9TYNHqLSBjZ0e8AgAAAAAAAAAAAAAAHBEefzh6uL60q7Eh3XFhYU1GFzk79+j4cpIqvGYuCKrzr6foVXVxQEvPsxqbkz5h4VJkipzfVrHlB9LdkxEyFBdCnM9ej8vnhhYcvbG6f9PRbSVLfEOxl7KUXk6fKuDGGMkb64fNixQLYjtJwwLazCgry4m5l1Xz33qnpsAtNsLCblaeBm/FP3+r/e9v2xV+L69TwZvDwsLczJ4ry80L+xxkV3zJrsthST0FcJ7awEAAAAAAAAAQHKkDwAAMKPih4eFmZnAmayDZ1YW1mZ6vjwVTFEvWf266UaSAM9a9nytL25etH11YZ2evfxFuYzpmuW/phXumpptz1n+Yq0ozG07b2CnTloQAnbp0HN1bNeWRed7wYqXa6mzrLruGFfbek6rqTm2a4suG3pu4Hgc4+olq39HVkCo3LkDl+jaFb+hC5b+SvwXVockYVmtMuVHTM/YRKPl4LAw1xTUO38my5ysLqzXlct+NVHtoLNc1634jZxH1HmslN++pK0HAAAAAAAAAAAAAABAjnqXVBdPm/hJ4sNcP2aywgYn5DPbzlIxRY9Tt5cgmKvOMZmunuryRYf+M/Fx3V5MoJqUecDT5WNfTVa4ZlOm19WZF1cX15Z+GVjy1IHp/1fC20LV543FXsr2Kx0XFrbQdQc+m7jWTtqH2I6TYLqF9McsGawuPnvsy4kOceImdq03LGz5mvB9EyFBZuWQz8YsggEX2nFe+L7ReWGLYWOq5/4AAAAAAAAAAIBFcvgpAAAAnclXeFeIPRM4k2XwzLXDN+qiwSt076E79dDEvfri7k9mdu60Tu47OzDoa9agu1wn9pyqpe6y0Jpeu1+/t/6PdO+hn2nX5P3yfV9ruzZqS88OdVndeQxbS91l+l/Hvk/3HLpDe0pP6fju7VrbdWxNjWsV9Opj3qz7D9+lRycf1qburVpf3BwYeraisEZvOfb9uvvQ7ZrwDmlrzykacof12OQu3XvoZxourNZx3dtUsIqhYzq1/2m6ZeNf6e5DP9GB8j65VkGbu0/UsV1bZBlLv7riVXrakot13+Gfq+RN6sGJe3Tn+G2Jvt6rlr1Q/3Xw23py6tFF+7ykM/q1QLkJYWG+78fWjJaCZ/8cdJaHhuBlyRijK5f/qk7uO1v3HvqZJkKaBlcV12lrz8nqsfsC9x/N7JSBjWnrAQAAAAAAAAAAAAAAkB9z/e/I/+jbp5dTHBcbFtZoCNbwMZKkcw79QD/oOSe2vNtPEMxVb2CQJPX0S4cOaknlQOJDuv0EAWZZBAidcr700+9Ikga8hOMrhPfb1WXpcHXxyrGv6Hs9i0OMfvzI9P+9iLayPm889lK2vM4MC9txnnTH96YXJ+9MfFhsENYMY7VhX1Y996l/qLq4ffLnyS4TGxZW32tjjFHY4+p/8o9l5oXkVVVCxpLDM2scN3x8f3yTzLNvnF4phfSLduL7CAAAAAAAAACANkRYGAAAMyoRYUvWzCxoxhhZsuRFBIsl1WsvkW0cbe09RVt7T9F3939Ne0pPNXzeepza9zQ9bSCgkSClglXUSX1n6KS+MzIYVTJdVrdO7js7ssY2jrb07NCWnh2x5+ux+3R6f23z0Jrieq0prk88puWFlTq/8KzAfcYYbezeoo3dWyRJDx2+N1FY2NaeU3TF8uv1yOSDgWFhFb/xZzIvpbhmvSbZWw4OCxtyhwO352Vd1yat68p4tsyjhJUy/MtSGzalAQAAAAAAAAAAAAAAHK26aiedXFV+Qk84q2IPsxUzkWIjwVySVOiSJK2oBPcXLZQomMs0MKahFdKhg3JVluOXVDbxITvdIRMX1sgiLKw75QSIxe7sJ3Iszj1HXV54cNvhKV+ViLa6Hj8+LMzxy42H0bVCb3/N6mBlr0btoZDiOXbSSUsbfc/lwa4jjGpg7jVJ9B6S5CgmLKyR56V/UDo4unj7T/4zuD4sLCyL93qQdcdLj9wbuMufnJApdkmVkH5Rh19dAgAAAAAAAAAgC234UxoAAFrDjwgAmx84kzasJoxtan/wbVLNlZitrL4mpGclbISafT7skCYyL64hroVKXshMcU02WtoduH3QXd7kkaBeacO/+GwDAAAAAAAAAAAAAABoH/6B2hAcP0HPXMGbjK9y6ggJmm/tZknSQGV/ovJEoUKNhCn98v7qYpKgMEkq+gl6tLIIELo7fmLMGpPJAphSmXe/eyKC20YOSp4ffpo+byz2UrYqjT9frXDXf9esJgkKkxIE882yWtCXFddrWU8Y1RO75g5P+LU7fkxYWCOvTVBQmCQNrgjePjUZvN0p1D+GKDPBioH2zYQtlkI+i/IaEwAAAAAAAAAARxnCwgAAmFGJmBHNmhfQZKcMqwljLwixMS38YzltAA+yk/S+m5lnMOxeeUln9GuBsh8yU1yT7S2HhIU5hIV1irCwvKzqAQAAAAAAAAAAAAAAkB9z6vk16y/Z9/HYY1wl6D0qdtc7JEmS6R+UJL3owKcT1XdHBFRVNRIWFhXIE6Loh4QGzZdFWNhJZzd+jgaZeaFRO8f/PbTucEmqhM8hq17vUOy1HL/cmWFh2+q7T7FBWLMaeb7z4qYPozJnXpz6mNhQsUbCws7aGbx992PB28PC+Lp66h9DBHPVS0P3+Z94t3zfl8ohn9md+D4CAAAAAAAAAKANteFPaQAAaA1P4V0h8wOarIzCZxaHhcXPkpgXAnVaJ+l9n62zTHAjSSXpjH4tUEoya2UTjJZGArcPucNNHgnqlTbYkCBEAAAAAAAAAAAAAACANtI/VLP6yn1/G3uIm2SiwkJjYWGSpLMu0bmHfpCotNtLEBbWSE/epS+sLr589KOJDkn0OmUQFmZ2nJfugOe+quFrBtp5vSRpoHIgtOSLP/Xl+eGn6PPGYi9jqyLZnRdyZE5+es361Qe/lOg4O6KPtkY7hoXVE0a1cl3N6pt2vyf+MnGBag28Nua614bu80cD+h+nQj6LiukDBxOZ99m0yBc+It3xvfD9dYS5AQAAAAAAAACAxdrwpzQAALSG54eHLc0PCAsLa0rLNrWNN6aFgV0E6rTO/FkOI+tmwsLskHvl+QmbdFqgHcLCSt6UDlb2B+4bcggL6xRpwxqz+rwGAAAAAAAAAAAAAACApGWrGju+WBvq1ZMgdCtRCFYxg7Cw/kF1+wlCwCR1+xPxRY2EKRWL1cWuJNeSVEjSo5VBWFjq17qQU2jRzDh6/EOhJd9/wFcloq0uyX20/Up9IVStVijWrHZ5yZ4jO6KPtobVir6smF7LekLdFjyfPV748zQrPiysgdemqyd83w//bfG2yZDPrCwCFINEjU+S/63/F76zA0P3AAAAAAAAAABoR4SFAQAww4uYEc2a90dmWFhTWgvPY8U1MuSIQJ3WMQn/OjYbkhQWlhQVdtdqJS//sDBfEVNAShot7wndN+guz3o4yEnaYEOLb3cAAAAAAAAAAAAAAAAyY176+8E7Lr422QnWHlezOlwZiT3EjQvm6e6V1h2f7PpR7vpv2RE9hPMV/cn4okYmD911T3VxZfnJRIe4inmdpGzCwraclq6+nCDsrR4P/EyS1BVxL4qOkRfRVpYkGMvxy50ZFrZkWc3q5tIDiQ6zkzxHkmS3Yc9pPfdpaGXN6vbJn8ceYivmuWkkLGzzjvB9e5+oWfVLU9L3vxpcm0WAYgATd96vfCJ8n1vIdjAAAAAAAAAAAByl+O15AABAJkwjAAAgAElEQVRm+H5EWNi8MK2sgrUWnse0MCzMJiysZZLe99m6sOevEteA0kKlJLN75my0FN5YOOgQFtYp0n7+EoQIAAAAAAAAAAAAAACQoeNPlXacV7vNcWWe/RuJDjfFrtr1BMcU/JiJCq9++aLz1uX8qxKXukn6oaz62/TNeVdUl6898LlEx7hxr5OUTVjYSeekKjcXXN34NYPOe96V1eWCFxwY9tAeX5WI/LfY0CdpOkCuE8PCTr+oZvXF+z6Z6LAkAWqSGgvDy0s9z/eKtTWrl43/W+whTlyAYQNhYWbJUOg+f/fjc8uHx+W/4dnh58kpLEySVIj4vD04Gr6vE99HAAAAAAAAAAC0oTb8KQ0AAK0RFbZkzfsj08roj0/b1DYmmBY2T2T1NSE9K+F9r4aFhdwrL2mTTguUkjSiNchXxBSQkvaWg8PC+uwlKljFPIaEHKQNNrTbsSkNAAAAAAAAAAAAAACgQxnblvmTL0rXvVbatF16+pUy7/m8zJkXJz/JltNqVq88+C+R5YHBXKs2SNvOlrnpj2Re857k145g1m2RJD390Hdja2MDzKSGAoO0/Jjq4jHlxxIdkijALIOwMGPb0WFBCw2taviagVZtqC7+9t4PBJZ8/wHJi2grs3xPF45/O/IytiqdGXLU3Vezelzp/kSHzQ9QMze+Nbywkec7L/U83wtCtYoJ3tvxYWEN9qyddlHw9n/487nlL3xI+tE3w8+RRYBimGteUd9xnfg+AgAAAAAAAACgDWUwPRAAAEcGzw+fQs6aF1CTNqwmjK3a85hE8yTmI2lgFbKX9L6bmZCwsOfPU8QUiC1WTtKIlrPR0u7A7YPO8iaPBI1IG2xoqQ2b0gAAAAAAAAAAAAAAADqY6emX+e331X+CBYExvd54ZLmr2t4j89aPyVz6q/VfP0xhesLB2CAgSa5fng7MmpoILzIN9APacz0vXX7ENeZJFmCWUZ/gkiFp93SI2erS43rcXb2o5NxDt04v5BVaNC/kyY7onatEtNXZqqg75vV1/HLN/egYXT01q0mfxurzv/3c6HvXitck7j1VT4CZu3ii0b7KQY3Z/aGHOBETE9c9jpoLhIRq9S2tLvr/N+YzeEEIWqZ6wl+bSISFAQAAAAAAAACQCcLCAABHlf/c91V9e99XAveVvPBmmfkBNVZWYWGmjcLCCNRpmcRhYTONLmH3quLHNKC0UNR7q1lGyyFhYS5hYZ0k7edvVp/XAAAAAAAAAAAAAAAAyMjPf1izet7hW/UPA9eFlrsLw7t2nJvHqKTjTpEkbSjtii0t+FNS75LosLBGgrlWbZg7jXwNl5/SiLMi8hA3bkJH26n2oDVsJihMkl544O/1p8t+d1HJjfs+Nr2QV2jRvCCrffbSwJKlPZLnh5/C8j3d1nVa5GVsv9KRIUfGLSjiSw9lzwZh/exW6dLrIy7QhhPUOul7xYxlLXqdev1DGlNEWFhcoGCjQWpPhnwG9S6ZW943En2OHMPCzBnPkP+xP0p/YAe+jwAAAAAAAAAAaEdt+FMaAADyc7C8T49OPhT431Olx0KPs+Y1NmQVrGWb2sxO08LmiYXBZWgek/CvY7OBdWHhR147h4UlmbWyYdGtTXtLwc0xQ85wHoNBTuyUn79p6wEAAAAAAAAAAAAAAJCzi55Ts3r9gX+KLK8JwbriJTLzgrQytekkSdJNox+KLXX9ktQbHiYkqbEwpeE1NatvG3lH7CGFBGFhmTlrZ3XxlaN/q9Wlx2t275i4Q889+IXpldzCwubOe9nY1wNL9h2SKl74KWxV9Ov7/2/kZWxVJPvoCTmyZ/sQL3lB9L2z2rAvK6Nn/C273xV9GcWEhTXYC2yuelnwjid3ya8k7BPNMSxMO86T3EL64+o5BgAAAAAAAAAALEJYGAAACcwPaLIzCvVaGNBlKaNZ++oQFkCF/CWdrdHMPB9hz5+ndg4Li2lEa4LR8u7A7YPu8iaPBI1I+1llteMMlgAAAAAAAKhL0L+lel7Eb3sCQAcI+hxL+rMjAAAAoGNt2FqzOlzZrb7KwdByd3aiwrXHyfzPD+Y3Lmc6EOr4qftiS11/SupZEl1kNdC3siDo53kH/1/sIYW4CR0zDAszO86tLh9XekDfevgSvXH3e3XFwa/olpG36+u7LtdSb/90QV6hRfOCh/q9A6FlP3kkfBJKS552TN4ZeRnbL1efjY5z4lmpD3Fm+xDXb4kJC2tBX1bc98v1PuOnnF+zesn4NyLLHT8mLKzR12bNpvB9d3wv2TkKXY2NIYJxXJm/+mb6Azv1fQQAAAAAAAAAQJvJcIogAACOTK4pyDVzP6S2lE2wlr3gj2HTwgxPi/zQljEJQ+JmfzEk7Pmr+O37S3GluEa0nPm+r9FSSFiYM9zk0aARacMaCUIEAAAAAAA4clgBv2RXKpVUKBQCqgGgM5TLi3/BOOjzDgAAADiSmGKPFsY3DXr7NGb3B9a7MxMVmhf8lkyOf182xsiX1OuNx9a6fik+uKiRSe4KtSFNfd5YsjFFsTPso+nqqVndVHpIfzRyc3BtXgFBvQPVxYGIsLBv3BUeFmbL06Affux0TaVzQ46mJlIfYvszYWGlqehn+FB4wF/L1BsWVq597wxUop+J2LCwgWX1jWNWb0QQ4Y+/LX/b2fHnyCukb9bgivTHOPw7LgAAAAAAAAAAWaDDEACAGMf3bJdt5poIsgqfsRecJ2loVB4WjgXNkzSobTZMLuz582abdNpQ2YtpRMtAeEuXdMgb06Qf3Pg05C7PZ0DIRdpQRTujcEcAAAAAAAC0njFmUTDYgQPRv7gHAO1ubKz2F/4LhUJ1AhkAAADgiHXqBYs2PeKuCy2vhmAVcg6/mb2eYoKAJBVUklZtiC5qINjMOLWhR13+ZPyY4iZ0tDLsozntosSluX2Ps3FbdfGUidtDyw5GvHR2saAeO/p+234Hh4Xdf0fN6rmHbo09ZDYIy3T3SWuPCy8s598TmFq9YWE9tUGFKytPRZY7UZ8RW06TGVpZ3zhmnXRO6C7/o2+XDo7GnyPvsLAVa9Mf06nvIwAAAAAAAAAA2gxhYQAARFjmrtALV76qZltWwVoLQ59a2fhvEajTMknv+2yYXFj4kaf2DQsrxTWi5Wy0tDt035Az3MSRoFFpP3+zCncEAAAAAABAexgYGKhZP3DggMrl+F/gBYB25Pv+otDD/v7+kGoAAADgCLL9aYs23bT3b0LLq+FdeYffSNWQnvMPfSeyzPVLNWFVgRoIC6tHNVQtTJb9iSecnqzOLcTX1MlYVjUcyononbv7iYhzFLvV7URNUzlz7k4NOfqVX6tZ/cORm2MPqQZhnXS2tKzB0KtmqzMQzzzv1anqnfkTu84PKOvqkXnte+oaQ814unsj9/uvvyr+JDl/XhpjpOtfl+6gTn0fAQAAAAAAAADQZuqcPgUAgM50Yu9p6rJ7EtWuKqzV5u4TVbS6arZbGWVtLgy9MS3M8CRQp3WS3vfZUDHLBNdX/HYOC2vtLIJ7yyOB2y3ZWuIsbfJo0Ii0wYZZfV4DAAAAAACgPQwMDGhkZO7f+zzP08MPP6x169apUMjvl08BIGu+7+vRRx9VqVT7M5QlS5a0aEQAAABA8xjLkl/okqYmqts2lR4IrX/A3Ti9UOwKrcnMCadLd/5Azxj/tr7Tc35oWcGfkukdVmTMVEifV2Lbnyb97PvV1TMO/0i3dYeHdBUUFxaWXR+NMUZ+V480cSi6cPu5mV0z0PWvkz71PknSs8a+pq/2Xbao5OE9wYfaflkq9sSGhdl+RbI7NORo+Zqa1eFy+KSbsxx/Jiysq0cqNOE9l0Zc4J1d56/GLFu9aNOxUw/pocKxgeXV1+i618pc8RLpu1+eDsY7/yqZ9SfUN4aFdl4vff0zwfvuvyP++K78wxXNM54n/zPvT1ZsOy2dUBkAAAAAAAAAgCMJYWEAgKPKxu4t2ti9paFzZBWsZS/4Y9iodT8ItzNsBEI6Se/7bOhR2PPnyctsTFkr+VNNuEp409ZoKbjJaakzRFBeh0l7vxaGMgIAAAAAAKCzua6r3t5ejY+PV7dNTU3pgQceUE9Pj/r6+tTT0yPbtvnlMwBtx/M8lctljY2N6cCBA4uCwlzXVbFYbNHoAAAAgCabFxQmScsrIYlOku4pzvT71RsElMbU5Mx4okOVXL8k9cSE/VoN9uTtr31Ner2x+DHlOZ6F4oLCJKmYc2BRaa4vbY+9LNWhljyp2KXu/U9IA+F1jsqS3aE9SIcO1Kwuq+yNPcTWzKSlvUuk7r7wwpPOaWRkuTD1fkZ0LZ6A2Ivoqa2+Rgf3yxx3snTcyfVdN8qSocaOz/u9J0kDKd5zLhM9AAAAAAAAAACQFcLCAABIyVZGYWELQmysFv7ikpXR14T0kv7C2myoWNjz5/mVzMaUtZLXjLCwcKMhMyIOucNNHgkalTbYkDA4AAAAAACAI8/KlSu1a9culcvl6jbf9zU+Pl4TIgYAncQYozVr1hB0CAAAgKPWzvFvxBdt3p77OMz64+VLunT83yPrCv7UdJhS5MkaDOd67MGa1Q2lXfFjih5QY+OpR86BRWbz9uoUk0856XrBbL8iFbvVfSg6QMs2fsd+r2aWDtdMwbmy8lTsMc5sH+K6LTK2Lf+cy6QffK22aNlqadvZ2Q00K/WGhRW7Fm06buo+7XLXB5ZPmJmg7/6IlLkGmbN3yv/cX9d/gkITwsLWHpe8thnhZQAAAAAAAAAAHCUyniIIAIAjX1bhM7apbUwwLfxjmUCd1rES3vfZ5yPsXlXaOCysHDdrZc72lkYCtw86y5s8EjQqbbBhVuGOAAAAAAAAaB/FYlHHHnusisViq4cCAJkwxmj9+vXq6elp9VAAAACA5rn42prV1eUn4o/piQnnysLpz5QknTB1b2SZ65el3v7oc1kN9gM+/zdrVo+buj9mTDE9Wo2OZ6ETTo+vyTsgaNs51cWX7vt4qkMteVKxWz1nXxBZZ3dmTti0rWcs2nTlwX+JPMTxpwP6jT3dd2V+98+klfNCs7p7ZW7+mEzWz1MiMTfDrrNXLCBY64+eemto+UFr+r1vTr2wvuslce4VjR3fhHAuY0yyzwFJcgr5DgYAAAAAAAAAgKMIYWEAAKRkNTrj3+x5FvwxbFoxc98MAnVaJ+l9n52dMCxczFP7hoWVYmetbJzv+6H7Rsu7A7cPuulmk0TrpQ02zOrzGgAAAAAAAO3FdV1t2LBB/f0xv5QLAG3OdV2CwgAAAHB0mh8+lFQTwm9U7Koubp/4WWhZwZ+Suvuiz9Vg34rpW1qzfvzUfZH1BX9KWrs54oQZ9yeuSnAP572euZh3/n7vYKpDbb8iFbvVPTQQWedY4X1pba9r8fea5x7+fuQhjspS39xrYo7ZLPOx22Te/VmZt35M5u/vkjntosyHmgmrzj7YgM+WDaVdoeVj1sx7P8fnu+EwtmZ8XkrSmRcnq9vzeL7jAAAAAAAAAADgKOK0egAAAHSaLIK1bDnV8KdZpoWhNgTqtE7S+z4bKmaHhCV5vpfZmLJWipu1MmejpeCwsCFneZNHgkal/fy1CEIEAAAAAAA4Ytm2rbVr16pSqWh8fFxjY2MaGxtTpdK+EysAgCQVCgX19/dryZIlKhaLi35mCAAAABwV9j6Z/hi3kP04FhpaWV2csMKDgHzHldxi9LkaDftRbUjViVN3R1bb8qRTL5J+eX9wQdY9goUEYUR5BxYtnZsscnX5iVSHWvKkQpd6uqJ/naKjw8KWrV60ySj663H8sjS2v/aY3iXS06/KdGi5cOr81ZiA4L+Byv6AwmmHrZnnOu4zoFFn7ZT+6+vpj1s6LGM3p2/OLF8d80QBAAAAAAAAAICsERYGAEBKVkhYUxpBgU+zYVCtkMXXhPokve9G081aYfeqovb9BbiyP9Wya1f8ivaV9wTuG3QJC+s0aYMNw8L1AAAAAAAAcOSwbVtLlizRkiVLJEm+78vzPPk+v6YGoL0YY2RZFuFgAAAAgCSz7vjUATPN+Lu0WTJUHdf5h76n+wrHBdZVnC6pqyfmZA2Gc516Yc3q9sk744/pjhhTw+FlCyQJAss5LMz09FXv12Vj6UKVbL8iFbtlFbs0UNmn/fbSwLpu09qJMhuy7vhFm54x/u3IQ+w27kOMZdf3qzHGcRZ9HhWU4L5v3FbX9ZIy518lv56wsGYGu517ufT+1zfvegAAAAAAAAAAgLAwAADSsnTkhYXZGXxNqE/S+27NNLuFPX+e375NOiWvdWFh+8t75ckL3DfoDAduR/tKG2xIECIAAAAAAMDRxxgj2+bfhQAAAAAAaGubt6er33BCPuMIcuqF0k++rdft/Qv93dIXB5ZU3C6p2BV9nkbDuY7ZVLOaqMusqzd8X9btiXFfvySTc1iYpOmAqEpZQ95oqsMseVKxW6bYrQ8/fpNesPbTgXVdppzFKFvCGLMoBGtDaVfkMbZfls66JL9BNSIuMLDOsDBJ0o7zpDu+l+6YvJ/va14pfeHD0gMJggJnnXqhzG/9cX5jWsAcs1n++c+WvvOlpl0TAAAAAAAAAICjXcZTBAEAcOSzG53xT8EBNlYG560XgTqtYxL+dWw2VCzs+fP84ECsdlDyWxcWNlreE7pvyF3exJEgC1bKb1/S1gMAAAAAAAAAAAAAAKAJCvFBUzUGV+YzjiDrjpMk9XljoSXGceKDghrtBww4/8kTt0dfMjIsLOM+miRBSWnvcz1WH1tdXFl+MvFhtrzpwLOubq0qPxFaZ9mtmwQ2Exu21qx2+4cjyx2/LPUP5jmi/DQSFja8JnlpeWR6oZBvWJixbZk/+LvkBzz9Spk//5pM75LcxhTEXPmSpl4PAAAAAAAAAICjHb89DwBASlkEa9la3JRgMp+6LzkCdVrHipvtbsZsqJil4OevokpmY8payS+17NqjpZHA7UXTpW4rojkObclO+fmbth4AAAAAAAAAAAAAAABNsGbjok0v3ffxwNK/evy3pkOdmsVxJUmryk+qywsOVjr/sS9KAzETFVoN9q30LV206RX7PhpYeuH4t6cXlkWEqiXsU0vKBNzDhfyDo5leM9DjD1UXn3SSh8pZvjcdeFbsVrc3EVHY4f1HD99ds9rvHYwsd1TJPQQrN42EhY08tmjT2Yd/GFh6476PSbY9HRqYt5XrktcOrpTJ+H2eyJpN8TXPe3X+4wAAAAAAAAAA4ChBMggAACmFhTWlERRg06rALktWaxoEICl5SNzsPQoLq/P89gwL831f5SaEhfnyA7fvDQkLG3KHee47kEn5OZlFuCMAAAAAAAAAAAAAAACyZdYet2jb8w58ftG2bu+QLh/71+lQpyYxF1w9fW1/Qlcf/OdF+0+cvEvbpu6ScQvRJ7Ia600y9uK+l6sOfjkwwOwFBz47vdAVMXmiybg/8bwrYkvMSedke80gJz+9rsNclebCwvzgUDhJ8q0mBELlaUGPnBXSZzfL9ivNDedLI67fr5Fgt1MvWLTpBQf+adG2Xm9MV4z9a9MC1Uz/YPLasy7JcSQRNm6b/i+CecbzmzQYAAAAAAAAAACOfISFAQCQUlDQVxbnaFVwEWE6rZU0/Gi2Luz589SeYWHNCAqLMlreHbh90B1u8kiQBctYqQLDsgh3BAAAAAAAAAAAAAAAQA4WhGFdMf5VfeDx12l5eXpywI1TD+rLu67RuvKjTQ0L0/GnVhc//PhNes6BL8iZ6YE659AP9JVdV8tcfN10wfAx4eexMmjTP/vSmtV15Uf1z488RxumHpYk9VcO6M27361X7fuwNLAsOkwpi/HMY4aPiT/n0MpMrxk4jue8srr8/AOfS3yc45dlij1SsXs6ICvMnscbGV7rXf0bizb97ydeH1ruqNzc91uW7PqD3cwpi0PnXrf3A3rD7vep1xuTJG2aekD/sutqrao8KRWaF6hmXvPuZIXrT8h3ICGMMTJ/8iVp+9OC97/pwzKnXdjkUQEAAAAAAAAAcOTq8KluAABoPiuDGfZss/iP4DQBOFmyCdNpqaQhcUbTdVbIc1LxvczGlKWSP9XS64eGhTnLmjwSZMU2lsoJn3c76xlRAQAAAAAAAAAAAAAAkI3VG6Vf3lez6dX7PqxX7vuInrJXTAfyzCo0Mbyoq6e62Osf0j89+kKNmV5NWkUtq+yd3uG40//vH5RGHg0+TxZ9K/2DizY949B/6v77T9SjzhqtLD8pZ3aSyYFl0dfMYzLTs3ZKP/ha+P5mhE4V50KberxDiQ9z/PL0sYWu6YCsEN2V8YaG13LFnkWbBrwDoeX7rAGp6Oc5ovw0EBYW9DoZSe8e+QO9Y+RtGnGGtaY8LziumYFqy1Ynqys2L8BsIbNircxff0v+/j3S6FPTn0dTk9KKtS2bSBkAAAAAAAAAgCMVYWEAAKRkZRCuFRTQNRsG1WxZhJ+hMUaWfEWHH1kzDROWCX7+fHnyfK/t7mezwsJ8BTco7S2NBG4fcofzHA5yNP0ZHN6gt7gWAAAAAAAAAAAAAAAAbWdBUNgsS35tUJjU3BCcgBCgPn9cffNDo2ZDiaICg6zG+7jMxm0hXVHSMeXHajfsuif6mnn0lbnF6P3NCFTq6q0u+il6MB2VpUKX5HnaUNql4fJTGnFW1NS4/pQuHf/3zIbaEo89sGjTqvIToeW77eXSk3fkOaL82A30im04IXSXq3JtUJgkPfVI/ddKa+O2ZHXNDDALYQaWTQeFAQAAAAAAAACA3LRXmgQAAB3ANo1nbQadw7Toj+Ww8Ck0T5KguNnnIyhoblZc4FgrlLxSS68/Wt4duH3QISysU6X5zOLzDQAAAAAAAAAAAAAAoE119yWvLTQvLMyYBIFTToKwsCzCuZ75/OS1/YNS1NiTfF0pmct/PbqgGeFF80Kerjv42cSHOX5ZcguSmZ7q86X7Pr6o5toDn9MS72Amw2wVc8YzF2078/CPwuvlBx7TFuKeYbv+3l4zuCK+qFU270hW1wZhYQAAAAAAAAAAIH+EhQEAkJKdQROPHRBgk6jJKAdR4VNoDivBvZ8NFIsKP6r4lczGlJWSP9Wya096ExqvBDdrDbrLmzwaZMVK8S1M0GctAAAAAAAAAAAAAAAA2sAlL0he2+wQnIuvjd4/G0rUFTEuq/E+Q7N+S/LiZz4vJiwsh18b2HFu9P5m3Ld519g2eVfiw1y/LDmF6mv2zpGb9fsj79LGqQe1pvSYXrP3r/W3j70q8+E23Yp1izbZCu8zNPKlZavyHFF+GggLkyQtW5289tIXNnatFIwxMu//anwhYWEAAAAAAAAAABwVGvyJCAAARx8rg3At2yz+I9hSa8LCosKn0BwmQfjRbFhYVFidJy+zMWWl7Jdadu3R0u7QfUMOYWGdKs1nVpL3FgAAAAAAAAAAAAAAAFqgUEhcatzktZkoxITuzIYSucX8x7J+i7Trnvi6Ynd0QFkG4WWB12xkfyZj6Kku9niHEx9mqyy5BalvQJJkydfbdr9Db9v9DvlSi7o5c9DVs2iTHTEpqZE6N3TKbrAXtm9A2vN4stpmv0bL18TXFLryHwcAAAAAAAAAAGg5fnseAICUsgjXCgoca1WojcVfB1rOJGgtMjMhYVFhdV5EE0+rlPypll17tBweFraUsLCOZaf4zLIJQwQAAAAAAAAAAAAAAGhPh8YTl/oH9uY4kMXM5pOiC2ZDeSrl8Jrxg9kM5tH7k9W5RSliIkqZ7OOvTE+/tO744J3HnigTEFSV+RgKc4FtKypPJT7O8WfCwnact/icmYysTRx/6qJNtqLCwvw2DguLuTNRz38SD9+dvLbY5GCuNZuk/sHw/SecLpNHICAAAAAAAAAAAGg7/EQAAICU7IiwpsTnCAiwMTk04yRBmE7rJQoLm6mJCqurtGVYWKkp1/HlL9q2tzQSWLvEXirXcvMeEnKSJrCRMEQAAAAAAAAAAAAAAID2ZJ7x3OS1Zzwzx5EEuPSF0ftnwpTMpb8aWmLOvjSbsVzzymR1jhsdCNZokFLYaa9/Xartuejpn75mikMcvyw5roxbiC68KPlz2o7M4PCibXZEn2F7h4XFaLQH97wrktc2+TUyjiNz3WvD97/gt5s4GgAAAAAAAAAA0Er89jwAAClZGTTNBIaFtWg+ujTBO8iHSfBMzYYeRYW7eREz/rVK2Ztq2bVHy7sDtw+6ixug0DlShYXx+QYAAAAAAAAAAAAAANCelq9OXts3kN84Aphlq6L3d/VML6xYF16U0ZiTBqUZx5WsiD60qH0NMNe8Qubmj0tPe5a0ZqP0tF+RueWTMle9LJfrBXruq6qLm6YeSHSIo7I0GxR24pnhheu3NDKy9rC0tl/OjugznA4L68p7RPlosLfXnHZh8uJWBKq99Pdl3vAB6fRnTL/X1myUzrtC5g8/I3NZTMAhAAAAAAAAAAA4YjitHgAAAJ0mi/AZ2yz+I9i0KMPTEmE6rZYkKM7MzHpnRTwnlYgZ/1plym9dWNje0kjg9iFneZNHgizZKT6z0tQCAAAAAAAAAAAAAACgibp7k9cWWhBeVChKU5PB+2bDlAaGwo9fmtGEhklfJ9uNDksy+U1manZeL7Pz+tzOH3v9Yrf8lMc4fkVyCrNnCC+0joD+I7u2X9WSF1pqfL8177csNPqMd/clv1QLwsKMMdI1r5C55hVNvzYAAAAAAAAAAGgfrUklAQCgg2URPhN0DpNjM04Uu8HZ1NC4qACwWbOBYlFhdZ4f3sTTKuWmhYUtbvcaLe8OrBx0CQvrZFaKz6wswh0BAAAAAAAAAAAAAACQg7XHJ69tQTBPaFCYJBVmxrP+BGnVhsX7l6+RtpyazThOPCtZnetGhyUdyX2C88KtHihsSnSI45cldyYs7JF7wgutI+B12/N4zWpsp2o1RK3NxPXYNtqDe/LTk9cWOzRQDQAAAAAAAAAAdLwj4KdXAAA0V1XeIS0AACAASURBVBbhM7ZxFm1LEhiVByuD8DM0JklQnJl5PqLC6jxVMhtTVkp+qWXXHi2FhIU5Gc3aiZZI85lFGCIAAAAAAAAAAAAAAEB7MmlCmFoRzPOiN4TvmwkvM8bIvPyW2pCimW1ZTR5q+gaSFTpudCBYiyYzbYp5YXI37P90okMcledCsZ776tA6cyT0H133W4lLLXnTz1InavReHXti8tpiT2PXAgAAAAAAAAAAqNMR8NMrAACaK4tQr6DAMRM/X1susgg/Q2OS3PvZ5rGo+1Xx2zAszJtqyXV939doOTgsbMhd3uTRIEtWiqYuwhABAAAAAAAAAAAAAADa2Lazk9UVuuNrMmZOuzB857xwKvOsG2Te/1Xpua+SrnmFzJ/+i8yVL8l2MMtWx9c4rhQVwHYkhF6FmXc/Tpm4PdEhjl+W3OmwMLP2uPDCNKF2bcqceGbyWvkdHBbWWA+uMUY66ZxkxcXmfyYBAAAAAAAAAABIktPqAQAA0GnsDMK1gs6R1UyCaWXx9aAxJkEA3WygWFRQkqf2Cwsr+6WmXMf3a9fHKgdU8oODygYdwsI6WZqAQ8IQAQAAAAAAAAAAAAAA2tjURLK6Yle+4wjStzRi30DNqjntIpnTLspvLJOH4mtsNzoQrEX9iU0x717ZCXvo5oeFLWo+m8efPNyiaWBb46zD/y05L2v1MOqTRbBbV0+yukILPpMAAAAAAAAAAACkBMkUAACgRhbhM3ZAXmeSwKg8WPx1oOWSBMXN3idb4c+f53uZjSkrYYFdeRstj4TuG3SHmzgSZC3qPbColrAwAAAAAAAAAAAAAACA9tXVm6zOLeY7jiAnnC71Llm8vdAlbX9ac8cytj++xi0c2YFgUU69oLp4+uEfJzrEUXkuhG7dceGFk4cbGVl7WL9l0abnHfj8om0Fb1IvOPBPkuM2Y1TpxT7fGTz/xe5kdbNBcwAAAAAAAAAAAE1GOggAAClZKYJqwgQF2JgWzT+XRfgZGpPk3s/WRN2vip9sVsRmalVY2N7S7sDtjnHUbw8E7kNnsKJmQF1Yy7c7AAAAAAAAAAAAAAAAbctc99pkhU7zg3mM48r83p9L1rz+E2Nkfud/y3T1NHcwl784vsZxa8d6FDGDc5NHnjR1V6JjHL8sFWaCoZavDi8st6b/LVNLF0+u+YcjN2tN6bGabX/+5O+p15pMNPlpW8pi3EnDwto1UA0AAAAAAAAAABzxnFYPAACATmOnCKoJP0f7hIXZGYSfoTFJAo3MzHMXFVbnqQ3DwrxSU67jy69ZHy0Hh4UNOstThU2h/aQJbCQMEQAAAAAAAAAAAAAAoI0NrYyvMUayW9MDYi57obRpu/SDr0qVinTOZTInnNb8cazdvKA7KoDjSlF9UX7sGTrb+i3SrnvU7R1OVO6oMhcMVYgIiCodAWFhAQFYW6bu0389eJ6+3He5nnKGden4v+uMiR9Lha4WDDAjWYTlJQ0Lc5sfYAgAAAAAAAAAACARFgYAQGppgmrSnKNVAUaE6bRekpn4ZsPkosLqPL8Nw8L81jRL7S2NBG5f6ixv8kiQtaCwxdBawhABAAAAAAAAAAAAAADa19IEvTxuIVF/VV7McTuk43a07PqJ2c50sNrRas8TkqQufyJRueOX54Kx+gZC68zWMxoeWsv19AduXll5Sjfu/1jtRsdtwoDqFPd8Z/H8e16yunZ+nQAAAAAAAAAAwBGtNakkAAB0sCzCtWyzOK9zNgyq2VoVUoY5Se79bI2J+OtbRQkbVZqo7Jdact3RcnBY2JA73OSRIGtpPoMJQwQAAAAAAAAAAAAAAGhjG7bG1ziF/MfR7k46J77GcaWjuRdw/IAkyZKfqNzxy5I7/WyZrh7p9GcEF559aRajaylTKCYv7ugQrMZ7cM1JZycr5HMJAAAAAAAAAAC0yFH8E0EAAOpjZxIWtvgcUSFQebJFmE6rJbn3s6FuxhhZIffM8yuZjisLJX+qSVeqbfIaLe0JrBpyE8xGirZmpfisJAwRAAAAAAAAAAAAAACgfRmTINzHJZRHG06Ir3ELknUU98rsvD5VuaOKzLzXy7zxr6SV6+cKjJH5nx+UWbUhqxG21qaTktV1clhYFs//069MVtfJrxMAAAAAAAAAAOhoTqsHAABAp0kTVBPGNov/CE7U+JQDK4PwMzTGJJjRbn6NbezAYLC2DAvzSi257t7ySOD2QYewsE6XJrCRMEQAAAAAAAAAAAAAAIA2t2m79MDPwvc7hIWp2B1f47hHd1hYktdoHtt4NevmmM3SJ38q3f5dad9u6bQLZYaPyXKErbVhq/TAnfF1nRyClUUPbiHhc0SIIQAAAAAAAAAAaBHCwgAASCmLcK2gAJskgVF5sAjTaTlj4pu05j8fYYF1FbVhWJg/FbjdMY7KfjmXa5b9kg6URwP3DbrDuVwTzZMmsJEwRAAAAAAAAAAAAAAAgDb38N3R+wnlkbr742tsV2pRD2JbuP27qcrdBWFhkmS6eqSzL81qRO2lFNzHt4jdzr9eEvd8Z/D89y9NVtfWrxMAAAAAAAAAADiSHcXTBwEAUJ+goK/U5zCLGwXSBOBkyU4QVIV8WQmaVOYHioUFIHn+4gamVgsLC3NNtk18/rzl/eW98mu2zBlyCAvrdGkCwAhDBAAAAAAAAAAAAAAAaHOVmAkHHbc542hjxnGk3iXRRY4rWUdxL+DwMdXFy8b+LbbcCQgLO5KZM56ZrLCT328ZPP8m6ddPiCEAAAAAAAAAAGiRo/gnggAA1CdNUE0YO+AcxrRmVr8svh40xiQJC5tXE/T8SJKnSmZjykrZLwVud00xt2vuLe0O3TfoLs/tumiONAFghCECAAAAAAAAAAAAAAC0uee9Ono/oTySJPOmD0cXuAXpaO6V2bituvjGPX8SW+5YwZNRHrHOuSxZXSeHhWXVg7v93PiaTn6dAAAAAAAAAABARzuKfyIIAEB9sgifsY2zaFuSwKg8pAneQT5MgmfKzPtrW9g9q/jtFxZW8qYCt7tWfs0ye0sjgdu7rV51Wd25XRfNkeYz2PDtDgAAAAAAAAAAAAAAQHsr9kTvdwgLkyQNrYze77gxYUlHeDhWca4vrNubiC0/6sLCign75to5BCs2DCyjHtxlq+Jr+FwCAAAAAAAAAAAtwm/PAwCQUhbhWlbAH8GtCrWxDWFhrZYkKM6a1+hihYQlee0YFuaXArc7JutmmbnmrdHy7sCKIXc442uiFayEn1mWbJmsZosEAAAAAAAAAAAAAABALsza46ILCsXmDKTdrdkYvd92JDuir8bzsh1PmzGX/3p1eVPpwdh652hrKxpckayuncPC4lgZ3dTJw/E1nfw6AQAAAAAAAACAjkZYGAAAKSUNqoliG2fRtiSBUXkIC55C8yS59/NrwgLePLVfQ1fZnwrc7pr8mmVGS8FhYYPO8tyuieZJGthIECIAAAAAAAAAAAAAAEAHOO+K6P3F7uaMo82ZZauiCxxXciMmcKyUsx1Qu9mwtbo4XAnuH5vPsdqv1y5PJurZmM/u4BCsjCaWNBdcHV+U9PUEAAAAAAAAAADIGOkgAACklEUATdA5TItCu5IG7yA/Se69mffXtrB7VvErmY0pK1OhYWH5NcvsLY8Ebh90CQs7EiT9DLb4VgcAAAAAAAAAAAAAAKDtmeWrowsIC5szENH/5BamA8PCHOFhYcYYmY/cmrjeORpbiy5/cXxN1DPU9jKasPfk8+JrOvp1AgAAAAAAAAAAnexo/DEXAAANySKAxjZOwHkzalRIKYvwMzQmyb0382qskHvmtWFYWNkrBW53rWzDwnz51eXRUvDMkEPOcKbXRGtYCYMVw94nAAAAAAAAAAAAAAAA6CCEhc1Zuix8n+NKTkRP1hEeFiZJGj4mcelRGRbWNxBfY7dxz5WJ6bO0MrqpST5z7MU9wAAAAAAAAAAAAM1wNP6YCwCAhmQRQGNr8TlMi8LCrICxoLlMgr+SmXmNLnZIfUXtFxZW8qcCt7sm27Cw+UbLI4HbB92ImTXRMZIGNhKECAAAAAAAAAAAAAAA0BnMjX8Qvm/T9iaOpM09/IvwfY4ruUd5WNjSuckkP/7oyyJLHcuP3H8kMpt3xBc5bv4DyUtcmFhScaFzjlvTzwkAAAAAAAAAANBMhIUBAJBSUNBX6nMEhNgY05o/lq0WXRdzkgTFzQ8UCwus83wvszFlwfd9lfxS4D7X5NNUdLhySIe9Q4H7hhzCwo4ESQMbCUIEAAAAAAAAAAAA0AzGmE3GmOuNMe81xnzTGHPAGOPP+++hBs7tN/jfsZl9oQCQp+e8KnzfJdc1bxztbtNJ4ftsNzro6SgICzPWXI/dlWNfiax1jsa2yadfGV9DWJhM3GsQFcoHAAAAAAAAAACQs6Pxx1wAADQkaVBNFNs4i7YlCYzKQ1BwGZorySxz1rznIzQsTJXMxpQFTxX5Cg4wc022DTO+Pz3T42h5d2jNoDscug+dI2kIGEGIAAAAAAAAAAAAAPJijHmGMearxpg9ku6X9PeS3iDpIkn9LR0cAHQgMzgs83/+q3Zjd6/Mh74rs35LawbVjjZsDd/nuJIT0ZP1/9m783DJrrpe3J+1q04P6e70nAlCEkKCkESmACIqiKgggoCACCh4nQAFnO69zvycxevwu15UFBTBCQWDAgp4AZFJFBGRUTJA5jkd0un0cIZ9/+gmOX26dlWd0zV11fs+z3ly9lprr/U9u6rr7Dy9+rMXJ2tv2dCcflaSZOvSHTnr0JWNw9ozuG2ybOvjYZuTHBbWa5/lAPeLle/9+ebO/fsGtg4AAAAAAMBqHZtUAgB0NYgAmk4BXeMKC+s3eIfhKX3kt5Zl77tWw2u2WE/Whq75er6xr10NZ1PRnvmbO7aXlGxr7xjKmoxWvwGHlVxkAAAAAAAAYHgenOQbxl0EwDQp9/vylPcfHHcZk+3e92vu6xXytNC8l2uq3Hrj3d+ed+jSXLnurI7D2rO6tejU+yQ3XtXc35rgsLBe+nhoa99O2jS4uQAAAAAAAAZIWBgArFJTUNPq5jj2V3AZ4FPNVqPqM3iH4eknKG75mKbAuqVJCwtbat68N1e6PMXyONy2cEvH9q3tHWkVt77ToN8QsH5DxQAAAAAAAAAG6GCSa5KcO4S5/yXJs1d5zjVDqAOAMSmPe0bqP3nFsR0PuDilOrynpm46eWlpaHVNlEMH7v72nzZ9TeOwmQ0LO7Cve3+v0LlJNsiwsAc8fHBzAQAAAAAADNCs/jUXAKzZIMK1OoXYVH0ERg1Dy+3A2FV9bFI5KiysIbBuKZO1oWu+bn4a5bDCwvbMdw4L297eNZT1GL1+P4MFIQIAAAAAAABDNp/kP5K8Jsn3J3lYki1JvmdI6x2o6/oLq/xaGFItAIzDuRclj/yGo9uqKuXZP9z73Hqy9paNwjPv+OvGvnZrPPs1x63ne+WEDgsb4F7YL7t4cHMBAAAAAAAMUHvcBQDAiaYpqGlVc3QIsSljCu0SqDN+/bz2ZdlGlk5hc0myWC8OrKZBmK8PNfatq4YTFnbbws0d27fPCQubFk3v/5UG8VkNAAAAAAAA0OB1SV5V1/WBlR2ljweGAcBalFKSX35T8ue/kfrf3pPsPDXlCc9LedQTe5+8NFl7y4bmlHsnN12TJHnAwc82DmvP6taihz62e397gv95Sa97rAHeg5VWK/XAZgMAAAAAABicCf7bHACYTK0BPH2sU9hNNcinmq2CsLDxK+m9SWX5mKbXbCmTtaFrfmm+sa9dBhsWVh/ZmrNnvnNY2I727oGux/j0GwI2iM9qAAAAAAAAgE7qut4z7hoAmE1l3frkBT+Z8oKfXN2JS0vDKWjSPPhrkn/48yRJ3WVfXqs1o+GeJ23u3n/DVaOpYxgGHdj6qCcm//z2Y9vvdd/BrgMAAAAAALAK/gU9AKxSGcCvz1aHvM5+AqOGodVn8A7DU/oINaqWh4U1vAeX6skKC1uoDzX2zZW5oax528ItHdu3z+0aynqMXr/Biv2GigEAAAAAAAAAwNRbmqy9ZcNSHveMu7/fWO9vHNduz2hY2H3u373/YPM1m3gDfrjk8vfSUR73zIGuAwAAAAAAsBrCwgBglcoAnj7WKseG2IwrLKzf4B2Gp5/XfnlIXaf3T5Is1pP19Mf5er6xb66sG/h6S/VSbp+/tWPf9rawsGnRFJZ3zLiGPycAAAAAAAAAADBzliZrb9nQPPzxd3/7iP0faRy2VA3nYZeTrlRVyo/+n+YBiwujK2bVeuyzHMDe3qN8zVOTCx91dNsZ56Q89fsGuw4AAAAAAMAqtMddAADMolY59ldwGVNoVxWBOuPWV1jYso0sTa/ZUibr6Y/z9aGO7VVaQwhyqrN38fYspvNmpR1zuwe8HuPSFJa31nEAAAAAAAAAADD1liZrb9mwlHXrU2/eltx5ezbUBxvHLVTrR1jVZClP/b7Uv/GSzp2LJ/D7ZMBhYeWkzclvvC1555+m/vRHUu57QfINz0nZedpA1wEAAAAAAFgNYWEAMAadQmz6CYwaBoE641f1ERRXcs+YptdsqZ6sjTrzS53DwubKcJ7KeNv8LY19O9rCwqZFv0FzVcYTwAgAAAAAAAAwJPcppbw2ySOSnJFkU5I9SW5J8rEk70vyprqubxtfiQBMrBkJC0uSbN2R3Hl7diw2/0o8de7OERZ0Alns/LDOE8IQHthbTtqcPO2FKU974cDnBgAAAAAAWAv/gh4AxqDVIa+zjOnXcr/BOwxPP0Fxy8c0hYstZrI2dM3X8x3b56p1Q1lvz0LnsLC5si6bWluGsiajV6XPsDCfbQAAAAAAAMB0OSfJC5I8MMm2JHNJTjly/Nwkv5/kqlLKb5VSNo+rSAAm1NLSuCsYnYd9bZLk7Pkrc+6hy4/p3rFwax62+YZRV3ViOJFD5cp4HtgLAAAAAAAwSsLCAGAMWh1CbKoxbVSo3A6MXT9hYcvfH01hSUv1ZG3oWqgPdWyfK4MPC6uT7Jm/uWPf9vauFBuBpkarzydAtvoMFQMAAAAAAACYIpuS/FCSj5ZSLhjGAqWUU0opF6zmK8m5w6gFgFU4kUOgVql8188c/m+S373+JTlpad/dfXP1obzm+helNXfsA19Jsrgw7gqa9doDaI8gAAAAAAAwA/wtFwCMQasc+yu4n8CoYegUXMZolT4C25aPaXrNlurJ2tA1X893bB9GWFiS3LbQOSxsx9zuoazHeDSF5R0zzmcbAAAAAAAAMB0WknwgybuS/GeSa5LsTbI5yX2SfHWS70xyyrJzzk/yrlLKV9R1feWA63lxkpcPeE4Ahq2ux13ByJRdp+dLP+3X3fXe/OcVD8s7N31DFko733jnP+R+81ck7R8ba40Ta5LDwnrp8yGUAAAAAAAAJzJhYQAwBlWHTQn9BEYNg0Cd8St9PNFueZhcU1jSYiYtLOxQx/Z2mRvKenvmb+nYvn1u11DWYzz6/czq9DkLAAAAAAAAcIL56SSvruv6pob+/0jyllLKz+RwgNf/TO7eYHBakktKKRfX9QwlxADMurPun1z5X8e2P3d2w7HOnr8q33/7a45ubA9nD9sJY+vO5Iu3HtNcnvbCMRQzIH3swwQAAAAAADjR+Rf0ADAGrQ55ncvDoEap1RA8xehUfdySLQ8UawpBWqonKyxsYWm+Y/tctW4I7/Y6ty00hIW1hYVNk1afYWE+2wAAAAAAAIATXV3Xv9QlKGz5uAN1Xf9Ekpes6Hpokm8fSnEATKTyzJW/Co60f+NzR1zJZCut2Q4LK8962bGNVZU89umjL6ZfvcLAhIUBAAAAAAAzQFgYAIxYleqo4Kcv6dQ2Ck3BU4xOP0FxZdltW1NY0lKWBlbTIByqD3ZsnyvD2Wi1Z/7mju075nYPZT3Go/T5vzBVn6FiAAAAAAAAANOiruvfSfKWFc0vHvAyv5vkwlV+fcuAawCgyZO+K1kRDFZ+5H+nnPPAMRU0Jk/4ju797dkOC8u3vSx59JPuOW61Un7mj1N2nT6+mo6XvbAAAAAAAMAMaI+7AACYNa3S+ddvvwE4g1ZFoM649RMUtzxQrOk1W6wXB1bTICzU8x3b20MIC5tfms/exS927NvRFhY2TZrC8lby2QYAAAAAAADMqF9J8pRlx19RStlW1/Xtg5i8ruubkty0mnPG9QA9gFlU2u3kp/4wef5PJF/4THLBI1N2nDruskZvZ4+fuT3b/4yirN+Q/MpfH36PXHt5ctFXpmzdOe6yjo/7DQAAAAAAYAbM9t9yAcAYNAXdVBnPRoV+g3cYnn6C4qplT72rGl6zpQkLC5uvD3VsX1etH/haexZuaezbPrdr4OsxPlWfwYotT4oEAAAAAAAAZtO/JtmTZPuR41aSByb50NgqAmCkSinJmecd/ppR5dQzU3cb0B78Ay9PNKWU5JwHHv6aBsLCAAAAAACAGeBf0APAiLUasjrLmIJtmoKnGJ3SR1Dc8jFNIUhLmbCwsKX5ju3tMviNVrfN39zYt70tLGya9PuZ5bMNAAAAAAAAmEV1XS8luWpF8+5x1AIAY/OV39S9X1jYCaf0CgPzcEkAAAAAAGAG+BsRABix7XM7O7b3Exg1DJXbgbHruYklR78/qnQOQVqslwZW0yAs1Ic6ts+VdcmA3+97Fm7p2L65dXLWVesHuhbj1Wp4/6/U9OcEAAAAAAAAYAbsX3G8cSxVAMCYlFPvk1z4Fc0DWp0f+soJrI99mAAAAAAAACc66SAAMGIP2tx5A8q4wsJaRaDOuPUT2FaWjakaXrOlenFgNQ3CfD3fsX2uDP6pjPuX9nVs397eNfC1GK+m9/9KPtsAAAAAAACAGbbyL8s7P4ELAKZY+Zpvae5sDX4PG2MmLAwAAAAAAJgBHokDACNSpZVHbX1cnrDzmR37SxlPhmcVgTrj1k9QXFm2kaXV8JotZdLCwg51bG+XdSOrYfucsLBp0+rzs7Ia02cqAAAAAAAAwDiVUnYlue+K5uvGUQsAjNX6jc1969aPrg4Go9Xjn77YLwYAAAAAAMwAYWEAMGQP2vwV+cYdT89p68/Mhqp580k/gVHDUBVhYeNW0nuTyvL3R1MI0mI9YWFhS53Dwuaq0T2VcUd798jWYjT6DTgUhAgAAAAAAADMqGcnR21EuDHJZ8ZUCwCMT7ewsG59TKZ2j32HZTx7cAEAAAAAAEZJWBgADNk5G87P2RvP7zmuGlNYWMvT1Mau9LFJpVq2j7cp4G0pSwOraRDm6/mO7XNl3chq2D63a2RrMRpNYXkrtQQhAgAAAAAAADOmlHJqkp9e0fzWuq7rcdQDAGPVNSxsw+jqYDDmeuw7FBYGAAAAAADMAOkgADAhyph+LVcRqDNupY+guOWBYq2G12ypXhxYTYOwUB/q2D7SsLD27pGtxWj0+5nlsw0AAAAAAAA4UZVS7l9KefIqzzktyduSnLqs+VCSXxlkbQBwwljXJRBsXZcgMSZTW1gYAAAAAABAe9wFAACHlTFtVKiKQJ1x6ycobvmYptdsccLCwubr+Y7tc2Wur4C0Qdgxt2sk6zA6/X5mVUUuMgAAAAAAADA8pZR7p/MezNNWHLdLKWc3THNnXde3dGg/PclbSimfSPKnSd5c1/WlDXVsSfL8JD+do4PCkuQX67q+omFtAJhu5z+4c3urlZx74Whr4fjNdQkLq6qx7cEFAAAAAAAYJWFhADAh+gmMGoZWhIWNW9XHJpXl4VpVw3tlKRMWFrZ0qGN7u+rxhL8B2t4WFjZtWn2GgDX9OQEAAAAAAAAYkA8kOauPcfdK8vmGvtcleUGXcy9K8ookryilfDHJJ5PckmRvks1JzkzyoHTeC/oHdV3/Qh/1AcBUKqedlfpRT0z++e1HdzzuWSkn7xhPUaxdu8u+w6Wl0dUBAAAAAAAwRsLCAGBCLA+DGqWqz+Adhqef1375U+9apXPA21I9WRte5uvOYWFzZW4ktVapsrW9fejrMFpVnwGHVcOfEwAAAAAAAIAT1NYkj+5j3L4kP1zX9auHXA8ATLzyC29I/fs/nXz4HUmrnXzVk1O++2fHXRZrMTe6h5QCAAAAAABMKmFhADAhqjKusDCBOuNW0juwrVo2puk1W8ziwGoahPl6vmP7XFmXg/WBoa+/rb3T+3sK9fuaNoXqAQAAAAAAAJwAPpPkl5M8JslDk2zs45zPJfnjJK+u6/qW4ZUGACeOsn5Dykt/PXnpr4+7FI6XsDAAAAAAAABhYQAwKfoJjBqGVgTqjFvpIyiu5J4xVcNrtlRPVljYQn2oY3u7zOVghh8Wtn1u19DXYPT6/cxq+nMCAAAAAAAAMAh1XZ89xLlvTPJTSVJKqZKcl+TcJPdKsi3JhiT7k+xJcn2Sj9R1ffOw6gEAGDthYQAAAAAAAMLCAGBSLA+DGqWqCNQZt36C4g7v/T2sVTqPX6qXBlbTIMwvzXdsX1etz77FvUNff0d799DXYPSqhvf/WscBAAAAAAAATLK6rpeS/NeRLwCA2SQsDAAAAAAAQFgYAEyKUsYUFtZHUBXD1U9Q3PIxVToHvC3U87lj4faB1XU86ixlMQsd+9plbiQ1bJ8TFjaN+g04bDX8OQEAAAAAAAAAAOAE0xYWBgAAAAAAICwMACZEGUNoV5VqbCFl3KPq4zU4KiysISzpYH0gP375CwZV1tDMldFs2tne3jmSdRitfgMO+w0VAwAAAAAAAAAAYMJt3DTuCgAAAAAAAMZu9KkkAEBHy8OgRkWYzmToJyhu+ZjWCf66zZW5kayzY273SNZhtPp9/5/of04AAAAAAAAAAAA44tyLmvta7dHVAQAAAAAAMEbCwgBgQlRl9L+WWxGmMwn6CYqryj1jqhP8Fm6uWjeSdba3hYVNo37C9ZIT/88JAAAAAAAAAAAAh5X2XMoP/lrnvtd+ZMTVAAAAAAAAjIdHqMyQUsrGJA9OrtH0bgAAIABJREFU8oAk25NsSHJHkpuS/HuSy+q6rgewzlySRye5T5LTk9yZ5LokH6vr+gvHOz/AJHjmKd+TN970mr7GXnzyV/c1bmt7R1ppZzELHfvbpZ2FunNfJ5taW7JvcW/XMTvmTul7Poann6C45YFiu+ZOHWY5Q9Uu7Wxt78jOHu+9k1vbc8finuNaZ9e6E/c60awqVXa0d+e2hZu7juv1HgMAAAAAAAAAAODEUb7tZcnZD0j9Y0++p+0vP5tyxjljrAoAAAAAAGB0eidTcMIrpTyqlPKXSW5P8qEkf5jk15P8YpLfTvKGJJ9LcnUp5edKKTvWuM7uUsrvJrkhyT8meV2SX03yyiSXJPl8KeWDpZRvPd6fCWDcLtr08MyVdT3Hnb3hvOyY293XnBuqjXngpod07KtS5XmnvSStVeR8Pnnnc3LK3Bldxzxsy6P7no/hqdLqOaYsu23bte60nLn+vsMsaWgu2HRxNlQbc+7GB+Tk1raOY7a3d+Xpp7zguNZ58OZHZUO18bjmYHI9tMdn17b2zpyz8f4jqgYAAAAAAAAAAIBRKI/8hlTvP3j3l6AwAAAAAABglggLm2KllHYp5ZVJPpjkWUl6pdrcK8nPJvl0KeUJq1zriUk+meRFSbqFjX1lkjeVUv60lLJpNWsATJJd607Ni+71U9nRPhwEtrm1Nc8+9YX5ipMfl3aZS0nJeRsvyIvu9VOrmvcFp/9wLtx08VHhUdvaO/PdZ/z3POLkx+R77/U/sq298+6+KlUeuOmh+dH7/GrOWHdWksOhY9+089vy1duekJec+f/l7A3nHbPOurI+j932zXnCzmeu5cdnwKrSR1hYKUcdv/jeP5P7bXxgSkrDGZOlSpWLNj08zz/9ZUmSuWpdXnbmL+Re688+atyZ6++bl535C3nEyY/JBZsetqZ1HrT5K/Kc0148iLKZUN+y+3l59Nav7xjaeOb6++aHzvyFtEr/4YoAAAAAAAAAAAAAAAAAAAAwyUpd1+OugSEohxNF/irJMzp0fzbJZ5LsT7I7ycVJtq8YcyjJt9R1/Y4+1npsknfm6DCyOsm/J7kiybYkD0mya8Wpb03y1Lqul3qtMUyllAtyOOgsSfLJT34yF1xwwRgrAk4kdV3njsXbs6W1NVU5nMF5aOlgFur5nNTavOZ59y/eldsXbs1cWZedc6ccFRRV13VuW7gph5YOZVt7Rza27sle3LvwxZzU2pzWivCpOxfuyN7FLyZJSkp2rTs17TK35voYrPfc9pa86eY/auwvqfI797+kY9++xb25Y+H2YZU2MNvndmVDtbFj3x0Lt2ff4t5sbm3Jlva2u9svu+tT+c2ruwfu/bfTf/SowLFu6zB95pcO5Zb5G+8+XvkeAgAAAACAWfSpT30qF1544fKmC+u6/tS46gEAe/QAAAAAAAAAgGkw7v157VEtxMh9T44NCntfkh+o6/qTyxtLKe0k35Hkt5JsPdK8LsnrSinn13X9xaZFSin3TnJJjg4K+2CS763r+jPLxq1P8v1Jfj3Jl9JpnpzkF5P85Op+NIDJUUrJ1vbReYvrqvVZl/XHNe/G1knZ2Dqpcc2dc6d27NvS3tqxfXP75Gxun3xcNTE81Ypwt5VKSmPfptaWbGptGXRJI3Vye1tO7hDw1Ou6JMnp68/M6evPHEZZnADmqnVefwAAAAAAAAAAAAAAAAAAAKZeNe4CGJqVAVzvS/L4lUFhSVLX9UJd169N8vgkB5d1nZLkhT3W+bkky1NyPnRknc8sH1TX9cG6rn87ybNWnP8jpZSzeqwBAFOtVyhWVZrDwqZZld5hYcXtLAAAAAAAAAAAAAAAAAAAADDlpCtMoVLKRUnOXtH80rqu57udV9f1vyV59YrmJ3dZ57wkz1/WdCjJC+q6PtBljb9J8rplTeuTvLxbXQAw7Vo9QrFmNRCr1SNELUlKZjNIDQAAAAAAAAAAAAAAAAAAAJgds5k8Mf3uu+L46rquP97nuX+74vi8LmOfkxyVbnJJXdeX9rHGK1YcP6uUsqGf4gBgGlWl+y3ZrAZi9bou/Y4BAAAAAAAAAAAAAAAAAAAAOJFJV5hOm1YcX7OKc69ecby9y9inrTh+bT8L1HX9mST/sqxpU5Jv6OdcAJhG1VHZm8ea2bCwHtclSYrbWQAAAAAAAAAAAAAAAAAAAGDKSVeYTjesON6winNXjr2t06BSymlJHrSsaSHJB1exzntXHD9xFecCwFRplR5hYWU2b9l6XZckqWY0SA0AAAAAAAAAAAAAAAAAAACYHbOZPDH9PpLk4LLjB5RSNvZ57sM6zNXJhSuO/7Ou6319rpEkH1pxfMEqzgWAqVL1Cgub0UCsKr3DwkqZzWsDAAAAAAAAAAAAAAAAAAAAzA5hYVOoruu9SV6/rGlDku/udV4ppZXkB1c0v65h+ANXHF/Wd4GHXd5jPgCYGVWPW7Je/dOqKr1/7jKj1wYAAAAAAAAAAAAAAAAAAACYHdIVptePJ/nCsuNfK6U8vmlwKWUuyR8keciy5vck+euGU+634viqVdZ35YrjnaWU7aucAwCmQqu0u/aXUkZUyWRplVbPMSWzeW0AAAAAAAAAAAAAAAAAAACA2dE9mYITVl3Xt5VSvjbJJTkcALYxyTtLKW9K8qYkn02yP8muJI9K8v1J7r9sin9N8oy6ruuGJbatOL5plfXdWUo5kGTDsuatSfasZh4AmAa9QrFmNRCrSh9hYUX2LQAAAAAAAAAAAAAAAAAAADDdhIVNsbquv1BKeWSSFyT5viQPS/KsI19Nbk3ym0n+V13X813GbV5xvH8NJe7P0WFhW9Ywx1FKKack2b3K08493nUB4HhU6R54VXr0T6teIWrJ7AapAQAAAAAAAAAAAAAAAAAAALNDWNj0ax35OpikTromalyd5GeTvKFHUFhybFjYgTXUtj/J9i5zrsWLk7x8APMAwMhUPUKxSpnNQKxe1yVJKmFhAAAAAAAAAAAAAAAAAAAAwJSrxl0Aw1NKeXSSzyT5vSSPTu/X+8wkr01yVSnle1a5XL36Ctd0DgBMnVZ6hIXNaCBW1cetanE7CwAAAAAAAAAAAAAAAAAAAEw56QpTqpTydUneleTsZc3XJvnxJA9Jsi3JuiSnJXlCktclWTgybneSV5dS/qCU0pROcueK441rKHPlOSvnBICZUJXuYWH9hGZNo1aP65IkzbcqAAAAAAAAAAAAAAAAAAAAANOhPe4CGLxSyu4kf5Fkw7LmtyZ5Xl3Xd6wYfmOSdyZ5ZynlVUnelmTnkb7vTXJ5kld0WGZSw8J+N8kbV3nOuUn+dgBrA8CatEr3MLBZDcQqfYSklczmtQEAAAAAAAAAAAAAAAAAAABmh7Cw6fQjSXYvO/5skmfVdX2g20l1XX+4lPJtSd61rPnlpZTX1nV904rhX1xxvDurUErZnGPDwm5fzRydHKlzZa29ajneZQHguFRp9ejvHZo1japSpaRKnaXGMf0EigEAAAAAAAAAAAAAAAAAAACcyKQrTKdnrjh+Ra+gsC+p6/rdSd6/rGljkmd3GHrpiuOz+i+v4/jb6rres8o5AGAqVKV7WNgsB2K1SvefXegnAAAAAAAAAAAAAAAAAAAAMO1mN3liSpVSNiU5d0Xzu1c5zbtWHD+yw5jPrDi+3yrXuO+K40+v8nwAmBqtXmFhMxyIVaX7tanczgIAAAAAAAAATLab3pf8+48mb1iX/HlJ3vukZP/1464KAAAAAAAAAE4o7XEXwMBt69B2wyrnWDl+V4cxn1xx/OWllJPqur6rzzUe3WM+AJgZvQKvSmY4LKy0krq5f5avDQAAAAAAAADAxLv095KPvPjotuv+PnnzGclTPp9sPnssZQEAAAAAAADAiaZ7MgUnots7tG1a5RybVxzfuXJAXdfXJ/nPZU3tJF+1ijUeu+L47as4FwCmSlVaXfvLDN+ytdLj2hRhYQAAAAAAAAAAE2nxUPKx/9nc/6lfGl0tAAAAAAAAAHCCm93kiSlV1/W+JHesaH7IKqd52IrjGxrGvXnF8Xf1M3kp5cuSPHJZ074k/9BfaQAwfXoGYmV2A7FagtQAAAAAAAAAAE5Mez6WLOxt7r/8NaOrBQAAAAAAAABOcNIVptN7Vxx/X78nllJOS/KUFc3vbxj+Z0kWlx0/vZRyXh/LrHxM3F/VdX2gzxIBYOpUPQKxqjK7YWG9rs0sB6kBAAAAAAAAAEy0bkFhAAAAAAAAAMCqCAubTn+54vjbSinP63VSKWV9kj9JsnlZ851J3tlpfF3XlyZ53bKmdUn+uJSyocsa35LkBcuaDiX5uV61AcA0q0r3W7Iyw7dsVY+fXVgYAAAAAAAAAMCE2nfVuCsAAAAAAAAAgKkxu8kT0+0NST6+7LgkeX0p5X+XUk7vdEIp5WuTfDjJ41d0vaKu6z1d1np5kuX9X5nkXaWUL1sx//pSykuSvHHF+b9R1/WVXeYHgKnXSqtr/ywHYrVK87UpKSlldq8NAAAAAAAAAMBE+/zreo+p6+HXAQAAAAAAAABToD3uAhi8uq6XSinPSPLBJKccaS5JXprkB0sp/5nkiiT7k+xI8pAkp3WY6u+TvKLHWteUUp6e5J1J1h1pfnSST5dSPnpkna1JHppk94rT35bkZ1b30wHA9Km6BGIlSSmzm+/a7drMcogaAAAAAAAAAMDEW39K7zEHbko2njr8WgAAAAAAAADgBCcsbErVdX1ZKeUxSf4kycXLuqokDz7y1Xh6klcn+aG6ruf7WOu9pZSnJfnj3BMIVo6se3HDaX+R5Hvrul7sNT8ATLsqPcLCZjgUq9u1KZndEDUAAAAAAAAAgIl39Zt6j3nzacnTb0w29BEsBgAAAAAAAAAzTMLCFKvr+rNJHpXk+Un+OYdDwLrZn+TPknxlXdffX9f1/lWs9fdJLkzyqiR7ugz9cJJn1HX9nLqu9/U7PwBMs1bpfks2y2Fh3a5NKbN7XQAAAAAAAAAAJtpnf6v/sZecmiwtDK8WAAAAAAAAAJgC7XEXwHDVdb2Q5PVJXl9K2Zrk4iTnJNmWZH2SvTkc7vXJJJ84Mn6ta92U5EWllJcleXSSs5KclmRfkmuTfKyu688fx48DAFOp9MhvrXqEiU2zKq3GvlkOUQMAAAAAAAAAmGiX/t7qxl/zt8l9vnU4tQAAAAAAAADAFBAWNkPquv5iknePYJ1DSf5x2OsAwLQopaRKK0tZ7Nw/w6FYVWkOC6t6hKwBAAAAAAAAADAGC3cley9d3Tkfeq6wMAAAAAAAAADoQsICAMAEaHUJxZrlsLCu16XM7nUBAAAAAAAAAJhYC/tWf87SwcHXAQAAAAAAAABTRFgYAMAEqLrclpUyu7dsXa/LDIeoAQAAAAAAAABMrI//1NrO23/9YOsAAAAAAAAAgCkyu8kTAAATpCqtxr5ZDsXqfl3cygIAAAAAAAAATJzPv35t51371sHWAQAAAAAAAABTpD3uAgAASFrCwjpqpct1KbN7XQAAAAAAAAAAxmr/9cn1/5BsOjtZvodj35XJ0sG1zbn30oGUBgAAAAAAAADTSFgYAMAEqLqEYlWpRljJZKm6hqjN7nUBAAAAAAAAABiLpfnkDeuGM/cd/zWceQEAAAAAAABgCkhYAACYAFVpvi0ry5++OmO6XZcqs3tdAAAAAAAAAADG4t2PW/u5j3lrcurXNfdf+9a1zw0AAAAAAAAAU05YGADABGiVVmNfmeFbtla6XRdhYQAAAAAAAAAAI3XzB9Z+7ub7JV/3ruTMZzSP2Xfl2ucHAAAAAAAAgCk2u8kTAAATpBKK1VHVLUStuJUFAAAAAAAAAOiqrpPbP5lcfUmy//rjn2ut2puSzWcf/n7nw5vHXft3Sb209nUAAAAAAAAAYEpJWAAAmADdQ7FmOCxMiBoAAAAAAAAAwNosHkre/63J3190+L9vvldy2avXNtfSYvKv37f2Ws5+XtLacPj7s57dPO7ffiB531OTxYNrXwsAAAAAAAAAppCwMACACdDqcltWZviWrVW6XRdhYQAAAAAAAAAAjS79neSaNy9rqA8Hft35+dXPddVfJpe/Zm11PODHkotfec/xpvt0H3/tW5P/+u21rQUAAAAAAAAAU2p2kycAACZIVVrNfTMcitXtupQuQWIAAAAAAAAAADPvitc2tP/x6ue67u1rq2H3VycP+V9J1T66ff3uHuu9bW3rAQAAAAAAAMCUkrAAADABuodizXBYWISoAQAAAAAAAACsye2f6Nz+mV9f/Vz7r11bDee9sHP7zod3P++m961tPQAAAAAAAACYUsLCAAAmQKtLKFaZ4Vu2VrcQtRm+LgAAAAAAAAAAa7Z41yrHH0hu/MfuY05+QOf2M57Uuf38l66uBgAAAAAAAACYcRIWAAAmQFWab8tKyggrmSxdr0uZ3esCAAAAAAAAADAyV72xe/8z9iRP+mRy5tPvadtwWvK0G5J1Wzufc8Y3Jid/Wfd5lxZXVycAAAAAAAAATLH2uAsAACCp0mrsKzOc79r9uggLAwAAAAAAAAAYuhve3dx38SuTddsOf//Vf726ec95fvLxn2ju/+Inku0PXt2cAAAAAAAAADClhIUBAEyAVukSilVmNxSr63WZ4RA1AAAAAAAAAICRufatzX27v3rt857xTd3Dwg7dvva5AYDVufZth78O3JBUG5LdX5Xc9zuTuZPHXRkAAAAAAHCEsDAAgAlQdQnFqjK7YWFVuoWFze51AQAAAAAAAAAYiav/Jjl0W3P/tovWPve2i5Kzvj258i869y/ctfa5AYD+fepXko//5NFtV/1l8oU/Sx73D8nclvHUBQAAAAAAHKUadwEAACRVl9uyMsO3bFVp/tmrIiwMAAAAAAAAAGCo3v+05r4LfzY5nv0bpSSP+pPm/sX9a58bAOjP/J3JJ17eue/WDydXXzLaegAAAAAAgEazmzwBADBBWqXV2FdmOBSr63VxKwsAAAAAAAAAMDxL89371+04/jWqVrLx9M59wsIAYPhu+2j33/k3f3B0tQAAAAAAAF1JWAAAmABVuoVizW5YmOsCAAAAAAAAALAG17y1e39d955j4a7u/ac9vv96umlt7NwuLAwAhm/xwPH1AwAAAAAAIyMsDABgArRKt1Cs2b1lq7pdlzK71wUAAAAAAAAAoKv527v3Lx3qPcfNH+jev/WB/dfTjbAwABijpe7d9eJoygAAAAAAAHqSsAAAMAG6h2KVEVYyWVpdbldLZve6AAAAAAAAAAB0tTTfvf/gLb3n+Oxvdu8f1J6W1kmd24WFAcDw1cLCAAAAAADgRCEsDABgArTSHBZWzfAtW9cQNWFhAAAAAAAAAACdlXb3/juv6D3H/uub+879ntXV0017Y+f2hbsGtwYA0JmwMAAAAAAAOGH02AkAAMAoVKU5EGyWQ7G6hYV1u2YAAAAAAAAAADOty56LJMnSwd5z3HlZc9/9X7q6erppNYSFHbx5cGswWy591eGv/dckpz4uedhvJxtPG3dVAKN317XJ39z72PaNpyenPzF52P+fpEdY2NKhoZQGAAAAAACsnoQFAIAJ0C0Uq5TZDQtrpct1meEQNQAAAAAAAACA47Kwv3v//N5kab5zX2kl2y4aXC1NYWGX/t7g1mB2XPr7yUdelNz+8eTgrclVb0ze9ZhkUdgNMGMW9ncOCkuS/dcnV/xR8k9PSerF7vNc+5bB1wYAAAAAAKyJsDAAgAnQPRRrdm/ZqtL8swsLAwAAAAAAAABosPPhycW/09y/dKD7+Ve9qbnv4leuraYmi12Cy+64dLBrMf0uf/WxbXs/l9z8vtHXAjBON76n95ib3pvc8V+9x/UKGQUAAAAAAEZidpMnAAAmSFW6hYXNbihW1S1ErUuQGAAAAAAAAADATDv5/OT8Fycn3btzf6/Qjxv/sblv31Vrr6uT69/Z3LfnY4NdaxgW9iV3XpHc9tHk4G3jrobbPtq5/co3jLYOgHH7tx/ob9w1f9N7zJ2XHV8tAAAAAADAQLTHXQAAAEnVJcN1lsPCWkLUAAAAAAAAACZeKaUk+e9JNixrfn1d1184znnPSfIdy5ruquv6149nTpg5rY2d2xd7hIXddWVzX72w9no6WbcjOdQQsrU0P9i1Bmn+juRD35Fc+5Zj+552fbLxtNHXNOuWFpv79l09ujoAJsG+Lr/Ll7v1X3uP+fsvTx72f5L7/+Dx1QQAAAAAABwXYWEAABOgWyhWVZqDxKZdJSwMAAAAAAAA4ETwnCS/mqQ+cnzJ8QaFJUld158vpVyU5OlfaiulXFHX9SXHOzfMjLWGhR24qblv0AFeux+dXPvWzn23fzzJcwe73qB88DnJdX/Xue/NpyfPqTv3MTwLdzT33fAPo6sDYNwW7hr8nB99SbLtwuTUxw5+bgAAAAAAoC+zmzwBADBBhGJ1VnW5Xe3WBwAAAAAAAMBolFKqJD//pcMklyZ5/gCXeEGSy4/MXZL80gDnhunXGBbWJUSkrpO7rm3urwb8rOL2pua+Wz8y2LUG5dCe5Pp3dB9z5xWjqYV7XNMQOgcwa258z3DmvfT3hjMvAAAAAADQFwkLAAAToJVuYWGze8vW6haiVmY3RA0AAAAAAABggjw+yTlJ6iNfP1HXdZcUotWp63pfkh9f1nR+KeVxg5ofpt667Z3b913VfM6hPcnC3ub++37X8dW00vkvbe7bcr/BrjUod34hqRe7j/n0ryX/+qLkitcn83eMpKyZt+/K5r71u0ZXB8C47b1sOPNe9VfDmRcAAAAAAOjL7CZPAABMkKo035bNcihW1S0szK0sAAAAAAAAwCR43rLvP1rX9ZsHvUBd15ck+eiypucOeg2YWpvP7dy+99Lmc7r1rd+VnPyA46tppZ2PaO67/DVJXQ92veNVLyX/8t29x132+8llr0o+/PzkjVuTT/z88Gubddf9XXNfaY+uDoBxWlpM/v2Hhzd/vTS8uQEAAAAAgK4kLAAATIAq3UKxZjcsrNXlunQLWAMAAAAAAABgZJ6w7Ps/HOI6X5q7JPmmIa4D02XLeZ3b936u+ZyPvKi574kfTwb94LuqlZzxzc393QKgxuGyP0j2fGz1533i5cl1bx98PRxW18mt/9Lcv7h/dLUAjNMX/nS481/26uHODwAAAAAANJKwAAAwAVqlSyjWDN+yCQQDAAAAAAAAmFyllLOS7FrW9LYhLrd87lNKKWcOcS2YHief37n9rmuShbs69x24oXP75nOTk84YTF0rnXz/5r5r/nY4a67V8dQzaT/LNOkWgJcICwNmR7ewsM33Tb59KXnqNcnXvGVt8/tdBgAAAAAAY9MedwEAACRVl7CwMuinsZ5AqjRfFwAAAAAAAADG7kFH/lsnubyu62uHtVBd19eUUi5Lcr8jTQ9OcvWw1oOpseW85r47L0+2XXRse73Uefz+6wdTUyfbvry5766hfbR0t7AvufyPkuv+7nB9G89ISpVc/461z3nrRwZXH0fr9T5ZOpQsLSaV/UjAlLv5A819d16RlJKcdK9k3faktSFZPLC6+a9/ezK/N5nbcnx1AgAAAAAAqyYsDABgAlSpGvtKZjcsrNUlRG2paWMqAAAAAAAAAKOye9n3141gvetyT1jYKSNYD058m85OSjupF47t23vpsWFhSwvJgRs7z3W/7x14eXe71zc3913/9uGt22TvZclblwWtXf/Owcy7598HMw/HOnRb7zGL+5Nq8/BrARiXxQPdw792f9U937dPSs75zuSyP1j9Om88OXnSZ5KtX7b6cwEAAAAAgDVrTqUAAGBkuoVilRm+Zau6XJc69QgrAQAAAAAAAKCD7cu+v2EE6y1fY9sI1oMTX9VONp/TuW/vpce2XfkXzXOd/oTB1NTJ+h3Jud/d3H9oz/DW7uSdjxze3LU9L0Px6Vf0HrNw5/DrABinmz/QvX/rhUcfX/w7yQN/ItlyflKtT1obDweKfWWX+4Ev+fuLeo8BAAAAAAAGqj3uAgAA6B6KVVJGWMlkqboEpQkLAwAAAAAAABi7dcu+H8WTsJavsX4E68F02HJe52CwTm3XvaN5nvZJg6upk61dQkdueHdyn2cMd/0vmd+bHLptePN/8dPJtguGN/+sOnBj7zG3/2ey8bTh1wIwLnd8bnXjq3by4F8+/NWp7wPPbD63XkgO3pqs37m6NQEAAAAAgDUbxeYcAAB6qNIlLKzM7i1bq0uIWl0vjbASAAAAAAAAADq4a9n3u0ew3vI17mocBRxty3md2zuFhe2/pnme7Q8eTD1Ndj6iue/gLcNdO0nuuiZ539OTN5483HVG8bPMormtvcf8x48n17w1WVoYfj0A47Bw5+Dm2vnw3mP2XTW49QAAAAAAgJ5mN3kCAGCCtLoEglUpI6xksnQLUatTj7ASAAAAAAAAADq4Ydn3Z41gveVr3DiC9WA6NIWF3fG5o48X9ic3va95nrkhh2h1Cwvb8/Hhrr3n48nfnJlc8+a1nX/Wc5JNfX4MLso6HLi6Tr74yd7j9nwsed9Tkg89V2AYMJ1u/cjg5tp0VnLWt3cfc+3bBrceAAAAAADQk7AwAIAJ0C0Uq8xyWFjpFha2NMJKAAAAAAAAAOjg8iP/LUnOKqXcb1gLlVLOTXJ2h7WBXrac37n9wA3J/N57jq9+U/McD37FYGvqpGol2x7Uue+yVw137fd9y+rGz52cbLsoOfVxyYN/LXnU65KnfD6591N7n3vT+9dWI832/Mfqxl/1V8n17xxOLQDj1O13+Vo86vXd+z/xs4cDGwEAAAAAgJFoj7sAAAC6h2KVMrv5rq0uP/uSDSYAAAAAAAAA4/bxJIeSzB05fkqS3xzSWssTeOaTrDIZBmbYlvOa+/Zelux4yOHvb3xP87i5LYOtqUlrw2jWWa6uk31Xru6cp1yRrN95bPvXvPme7//q5GRh77FjFvcZzLkWAAAgAElEQVSvbi166/bebfKJlyf3etLgawGYJlU7uc+zDocsNrnzimTLuaOrCQAAAAAAZpiwMACACdDqFhaWMsJKJkuV5utSR1gYAAAAAAAAwDjVdX2olPJPSb7+SNP/KKX8fl3X+wa5TillU5L/ntz9F8Xvq+v60CDXgKl20plJtS5Z6vDHZu+l94SFHbi5eY5THjOc2lYax0P1OgV6dbP1gs5BYf3OO45AtGl36PbVn3PbRwdfB8A4LS0OZ96znt09LGzf5/sLC7v5n5Mr/zy547/uaSutZMdDk/v+N4FjAAAAAADQhzH8jToAACtVXW7LZjosrEuIWp2lEVYCAAAAAAAAQIO/OPLfOsnuJL82hDV+Nckpyd1/gf7nQ1gDplfVSjY3BHBcfcnh/y4tJtf9XfMcJz9g8HV1cv4PNvftu3Lw6y0tJu/9ptWd86Bf6W/cprM7t9/8/tWtR283f2DcFQCM32rDL/t1xhO797/n65NDe7qPufbvknc/JvncK5Mb/u89X9e/I/nULyf/99FHh4gBAAAAAAAdCQsDAJgA3UKxyjiemDohWukSFlbXjX0AAAAAAAAAjMyfJ7n+yPclyQtLKT85qMlLKT+e5AdyOIwsSW6MsDBYvS3ndW6/6i8P//fWf2k+98KfScqIHnbXFLCVJB//qcGvd+uHk5s/2N/Y81+SfONHkns/ub/xOx/Rub3f9ejfTe8ddwUA43fdO4Yzb+v/sXfnYXKVdfr/70/1np3ubEAgIWEXlEUWQSSICCKLgCO4IO6jP7dxwXFGR8d1FGf8juio46AiKir7IqAghLBKCEsgYUnIQvZ97XSnt3p+f1R1urr7nFPnVJ2qU1X9fl1XXVX1rJ8qYldMPX2fZuldHcFjXr0huH/hN6V0j3//ng2ZIDEAAAAAAAAAABBo5CZPAAAAVJCgUKyUynTYsgKlAoLSnAgLAwAAAAAAAAAAAICkOee6Jf2LMkFhLnv/LTP7o5ntU+i6ZjbBzK6X9J2cdZ2kf83uCSCKuhbv9jEHZ+43PeI/t7E1/np89wr4sbHi9/HvF/S6JWnSqdJ7XOb2+qultteHX7vXJ1ilYUL4NRBO0J8bABgptj+Xf8ykUwtbu74l+Gdt0OdpX5e0ZV7+PfJ9JgMAAAAAAAAAAMLCAAAAKkHK/MPCRnIkVvD7ki5jJQAAAAAAAAAAAAAAP8656yTdrsGBYf8gaYmZXWVmh4Rdy8wONrOrJC2RdGl2LWXXvdM5d22ctQMjhl/AR/srmftdi/3nTj0r/nr8jDu8fHtJ0vLrgvtnfazwtRvGebf37Ch8TXjr3pZ0BQCQPNcT3J9qkg64pPD1p77Fv2/F76Te3d59254Nt37YcQAAAAAAAAAAjGCEhQEAAFSAwFAsN3JDserk/76kR3SMGgAAAAAAAAAAAABUnMslzdfgwLBWSV+Q9JKZrTazW8zsO2Z2pZl9NHv7opl928xuNrNVkl7OzmkbstbTkt6XwOsCakNQwEf7cmnpL/37xx8Zfz1+zIL7194T314rrpd2vODf39gqTb+08PWnX+bT4aR0nkAXhLfz5aQrAIDK0Nvp32cp6eRfSfUtha//uv8I7r9hjDT0vOvuldK9J4ff44kiQjoBAAAAAAAAABgB6pMuAAAAAFJdQIarG8GhWISoAQAAAAAAAAAAAEB1cM61m9mZkq6VdJG098vu/uSf/SRdmL35yU0Jyp1/u6QrnHPtsRUMjDT1o/z75v2jf9+0i/IHeJXT3POld/fGs9ZL/x3cf/F6KdVQ+PoNY/37Nj4kTT2z8LUxYNmvk64AACpDX0BY2LmLpPGHF7f+2FnSIZ+UlvyP/5itT0ltJww8f/UP0fZY+n/SSb8orD4AAAAAAAAAAEYA/1QKAAAAlE1QKFZaIzcUK0WIGgAAAAAAAAAAAABUDefcLufcJZK+IKlTmaAvl3NTts3rpiFjTdIeSV9yzl3knNtZrtcB1KTmKf596+8rbF4SXF9M6zhp21P+/Yd8origMCn4vdv6dHFrYwDvJQBk9Prk6s76SPFBYf3GHxHcv/LGwc+3BnzW+unaEn0OAAAAAAAAAAAjBGFhAAAAFSAl/7CwkRyKZQFXph3J7wsAAAAAAAAAAAAAVDLn3P+TNF3SdyRt1+BQMOdzyx2zPTt3unPuP8tdP1CT9jmmsHn7nRtvHWG87jul3yPdLbmAC/jF8brHBQSz+AW6ILqgsDsAGEn8QrYaW+PbY99zgvuHhoP1dkTf4+aJ0q6l0ecBAAAAAAAAADACEBYGAABQAeosICzMEYrlxQUd2AQAAAAAAAAAAAAAJMo5t8U592+Spkp6k6R/k/QXSQslrZXUlb2ty7b9VdLXJJ0uaV/n3L855zYnUTtQkywljT00+rz9z4u/lnyOuLL0e+xe6d835Uxpv7cXv4eZf0DLwm8Wvz6kNX9OugIAqBzdW73bm9ri22PsLGnGe/37Nzww+Pnauwrb586DpZ6dhc0FAAAAAAAAAKCG1SddAAAAAKSU+We4OhGK5cWJEDUAAAAAAAAAAAAAqHTOuR5Jj2RvAJI05Qxp1+Lw4w/9dCbwqtxSDcH9neullqnF7bHqJv++1/8kvtc98RRprU+gVV+3VNcYzz4j1Su/SLoCAKgcfmFhfsGVhZr1YWnF7/37d6+SRh9Q/D7r7pUOfGfx6wAAAAAAAAAAUEP8UykAAABQNnWq8+0jFMtbmvcFAAAAAAAAAAAAAAAgvK5N0caPiiHoo1AHXOzft+xXUpdPIEpYXVv8+1r2LW7tXHXN/n2dq+PbZ6Rac2fSFQBA5fD7bGxqi3ef1uOD+7cvGHhcP8Z7zPgj8+/z7JfD1wQAAAAAAAAAwAhBWBgAAEAFSFlAWJgjFMuLc+mkSwAAAAAAAAAAAAAAAKgerSdEGz/tgtLUEcbR3/DvW/AV6eY26a6jpD2bC1t/xe/8+xrHF7aml2nv8O/r7YxvHww35uCkKwCA8unrlnp3efc1tsa7V8O44P6550vpnsxndG+795gjrsy/T+ea6LUBAAAAAAAAAFDjCAsDAACoAEFhYWkRiuXFiRA1AAAAAAAAAAAAAACA0Ma/Jtr4cYeVpo4wJhyVf8yORdIj74y+9rZnpT0bvPv2PSf6ekGmne/ft/SaePfCEJy5AjCCdAWEZzbFHBYmSZfkCetc8FXpsXf794+ZKZ31SPAafXui1wUAAAAAAAAAQI0jLAwAAKAC1AX8tYxQLG+OA30AAAAAAAAAAAAAAADhpRrDj23Zr3R1hNU8Nf+YjXOlzvXR1l11i3/fqGnR1sqnrsW/b82d8e6FwdqXJV0BAJTPlnn+fY1t8e/X1CYd/HH//pd/JK3/m39/XYs06VTp1D/FXxsAAAAAAAAAADWMsDAAAIAKkLI63z7nCMXyQogaAAAAAAAAAAAAAABABJNODT923GGlqyO0kGdDlvxc6t4Wftn25f59Yw8Nv04YqQb/vvpR8e6FvXospcVj2vTMhH318piJ6jGOzAOocX2d/n3Nk0uz5z7H+Pelu4LnjpmVua+Iv28AAAAAAAAAAFA96pMuAAAAAFJKAWFhhGJ5co73BQAAAAAAAAAAAAAAILSGMeHHzri8dHWEddD7pRd/kH/cwm9IC78pHfN96cgrg8c6J634nX//ARdHqzGM5qnSnvXD27c/H/9e0EtjJ+l/Z52orrqBY/JNfb366NJ5OnLXpgQrA4AS2vSwf1+qRL82NP1S6cmPR5+3/wVSU2vm8YTXBo91aYnARwAAAAAAAAAA9uJfzQEAACpAnREWFlVa6aRLAAAAAAAAAAAAAAAAqC7v6gg3btYHS1tHGId+KsJgJz37JWnjQ8HDVlzv39d2kjR2VoQ9Qzrme/59fV3x7zeC7UnV62cHDw4Kk6Suunr9/OCT1FHHdbYB1KB0n7TkZ959Yw8p3b6NE6STfxN93qk5n8Vm0huu8x+7+rbo6wMAAAAAAAAAUMMICwMAAKgAqYArnzlCsTwRogYAAAAAAAAAAAAAABBRfYt04KVJVxFO3ajoc9b8OU//nf59U8+Kvl8Y9aP9+zY9Upo9R6iXx05UT8o7EKw3VafFYyaWuSIAKIOtT/r31Y8t7d4TT442fsblwz8XR8/wH7/i95FLAgAAAAAAAACgllVVWJiZPZC93W9mk4tYZ0ruWnHWCAAAUIiU6nz70o5QLC+O9wUAAAAAAAAAAAAAACC6fY4J7g8KtyqnpjapZf9oc179g5Tu8e/fs86/r/XYaHuFFfR+dwbUg2AeZ4d2NDQHTmlvaCpVNQCQnKDPklJ9tvULCvryMmq/4W0TjvIfv3NxtPUBAAAAAAAAAKhxVRUWJmm2pNOz98Hf5gZrzq7RfwMAAEhUyvz/WjaufkIZK6keU5umJV0CAAAAAAAAAAAAAABA9Zl+qdTY6t//xhvLV0sQM+nQT0ab07FaevBcqXe3d//Gh/znTj0r2l5hjT3Yv69vT2n2HAnS3cOaulP+F2yUpLSsVNUAQHL6Ov37Zn6otHvXNUr1Y8KP96qncR/J6r3H71gouXRhtQEAAAAAAAAAUIOqLSxMEt/SAgCA2nRQ82HD2kwpnTRudvmLqSBvmvA2z/Zz2y4tcyUAAAAAAAAAAAAAAAA1YMxB0lselPY7b3jfG66T9vM+q5GII78sHX+11HZi+Dnr/yYt/knEff5ZahgbbU4Uow/ybg8KeEEwj/euuy44LMxxCh1ALQr6LJl0Sun3P/7q8GNbpnq3vyUgzHPNXdHqAQAAAAAAAACghlVjWBgAAEBNekvrhbIhfz1744S3alRdhKuu1aA3jn+rWlKjBrUd3HKkZrYMD1cDAAAAAAAAAAAAAABACBOOlmbfKb3HDb4ddHnSlQ1mJh32aensJ6TzXg4/b929w9s61vqPHz0jcmmRNLV6t/ftKe2+taxn57Cm7lR94BTHNasB1CK/z5JxR5Rn/4YIZ1zrWrzbxx/uP2fbs9HqAQAAAAAAAACghgV/I1q7cl93b2JVAAAA5Dh27Cn6/6Z9VX/f8YB29+3S0WNO0OkTzk26rMRNaz5InzvgO5q7/W5t6F6rQ0YdqbNaL1a9NSRdGgAAAAAAAAAAAAAAAMpl7CHhx3ZtGd7W7dHWr9SBKn7hKH2dpd23lrUvHdbUnaoLnEJYGICa5PdZ4vfZE7e2k8ONaz1BSvmc+2zcx39e767oNQEAAAAAAAAAUKNGaljYxJzHuxOrAgAAYIjXjD5Orxl9XNJlVJxpzQfpvVM/mXQZAAAAAAAAAAAAAAAASIqZdNwPpac/n3/s9gXD23oDgrlajy+8rjDqmr3bNz5U2n1r2a4lw5q68oWFkRUGoBbt2eDd7vfZE7fRB0gzPyAtu9Z/jNVJr/lyYeu/+APpmO9n/h4AAAAAAAAAAMAIN1LDwt6UvXeS1iZZCAAAAAAAAAAAAAAAAAAAAIAQDv+c1Ngm/f2K/GO7tkhNbQPP+wLCwupaiq8tiN/6G+4v7b61zCMsrCdfWJgImgFQg165xru91J9tuU68Rmp9vbT2L1LXpsF944+QZlwuTX1z8BrTL5Ne/aN33/bnpH1eF0+tAAAAAAAAAABUsWoOC3NRBptZg6R9Jb1V0ldyup6PsygAAAAAAAAAAAAAAAAAAAAAJTLz/ZmbJK26VXr4Yu9xGx+SDrho4LlfWFiqQcoTMlU01xfQl5YsVdr9a1HH6mFN3Xn+O6bJCgNQi/Z5beYzbyjXU74aUnXSoZ/M3ArVMM6/b8McwsIAAAAAAAAAAFAFhoWZWcC34QPDJK0wK/gb29yJdxS6CAAAAAAAAAAAAAAAAAAAiJ+ZHS/pIEldkl50zr2ScEkAKtGk0/z7urYMft7X4T2ublR89fhpnurf17dHqi9DDbWmd/ewpq5U8NF4J9LCANQg8wlK3PpMeeso1uTTpVd+4d3Xs7O8tQAAAAAAAAAAUKEq8TJUFnALOy7fzWXXeEnSTaV7KQAAAAAAAAAAAAAAAAAAjFxm1mxmM3NuPmkGe8dfYGYrJM2T9CdJt0l62cweMbMjy1AygGrSPNG/b95HJecGnndt9h5X1xJvTV5mfci/r9cnxAzB1t49rKk7FfgRQ1gYgNq0YY53+6yPlLeOYk17h3/fyhvKVwcAAAAAAAAAABWsEsPCpIEwr1IxSfMlneec6ynxXgAAAAAAAAAAAAAAAAAAjFRfkLQke5sjKe030MzeJekWSQdo+EVCT5H0hJkdX+qCAVSZCa/179v2zMDj1bd7jylHWFjTZP++zY+Xfv9a5PqGNfXkCwsjKwxArdm11L+vZd/y1RGH+lHS1LO8+3YsKm8tAAAAAAAAAABUqPqkC/DwkPzDwk7P3jtlrhq4J+SaTlKXpO2SXpQ0xzn3cDFFAgAAAAAAAAAAAAAAAACAvN6hTNiXk/RL55zn+UAz20fS/ypzEVSXvfXHuvTPGS3pFjM7zDkX9vwggFrX1Obft+kxqfW4zOPR073HdG+Lv6ahmlr9+9oDgl7gr65Z6hv8UdCdLyxMpIUBqDFbnvDvC/rsqVSW8u9L90l5fs4DAAAAAAAAAFDrKi4szDk326/PzNIaOPRzqXNuZVmKAgAAAAAAAAAAAAAAAAAAkZhZi6RjNHDu788Bwz8tabwGQsLWSLpFUq+kiyX1p/xMk/QZSVeVoGQA1WjqWdKGOd59fbsHHqd7vcf0bI+/pqGCAs3SPaXfvxb1Dc+M7MoXFpabFdayX8wFAUAC+rr8+6aeVb464jL2MGndX737etulxvHlrQcAAAAAAAAAgAoTcNmNisUlnQAAAAAAAAAAAAAAAAAAqHxHS6pT5tzfbufc0wFj36eBoLCXJR3lnPusc+4L2XWezI4zSR8oWcUAqs+hn/Lve/bLA4/X3eM9Zto74q3HT12zd3tfZ3n2ryU+wW/decLC0rnH0DvXxlkRACTjxR/4940+sHx1xGXmFf59j723fHUAAAAAAAAAAFChqi0s7BvZ2zclleEyXgAAAAAAAAAAAAAAAAAAoEAHZe+dpBf8BpnZ4ZIOzhn7Nefcjv5+51y7pE/nTDnMzA6IuVYA1aphrDTpVP/+dF/mvmO1d3/LvvHX5GXSG73bCQuLbut8z+aePGFhjmtWA6glzkk7X0y6ing1jPPvW3uX1Lm+fLUAAAAAAAAAAFCBqioszDn3jZzbzqTrAQAAAAAAAAAAAAAAAAAAvqbkPF4XMO607L1Japd069ABzrl5knKTfl5bdHUAasemRwP6Hpb69khjD/XuL1fwSF2Ld3vfnoHHLj0QbgZ/OxcPa+qTqTdfWNjQrLC+7hiLAoAy66nBX6lpmiRZwK85bX2qfLUAAAAAAAAAAFCBqiosDAAAAAAAAAAAAAAAAAAAVI1ROY93BYw7NXvvJN3vnOv1Gbcw5/GBxRQGoMYEBYvcf4b0pxZp1/CAKUnSqGmlqWkov7CwZb+W0r3S/M9Kt0yRbp4o/f1DUm9neeqqRuk9w5q68wSFSZLTkLSw7q1xVQQA5de7O+kK4tc4Xpr0Jv/+uedlgjUBAAAAAAAAABihCAsDAAAAAAAAAAAAAAAAAAClkJvK0hAw7pScxw8HjNuS83hcQRUBqE0zLi987qRT84+JQ12zd3vPDunuo6XFV0tdm6We7ZkAsb9fUZ66qtG254Y1hQoLsyFhYZ3r4qoIAMrv+a8lXUFpvOE3wf1PfLg8dQAAAAAAAAAAUIEICwMAAAAAAAAAAAAAAAAAAKWwK+fxFK8BZjZV0sE5TY8FrFefO7WIugDUmoYi8gPrWuKro9B9dr40vG3VrVL3jtLVU802D/+oCBMWlh7asPGheOoBgCQs+3XSFZTG6AOlmR/07192bdlKAQAAAAAAAACg0tTnH1K5zOwMSW+WdKykyZLGK/jqg16cc25W3LUBAAAAAAAAAAAAAAAAADDCrcnem6Sjfcacm/O4S9LTAetNyHm8u4i6ANSagz8qLf5xYXNHz4i1lNj2cb3ShjnSAe8oSTlVbfxR0rZnBjWFCQtzQ3MmjetuA6hSLp251aoJrw3u3/yElGrM/hw3yUxSyvt+75jsvTzacu8HrZFn7N69AQAAAAAAAAAoj6oMCzOzsyVdrcFXEyz0X9hd8RUBAAAAAAAAAAAAAAAAAIAhnst53GpmZzvn/jpkzAez907SPOdcT8B6M3Mer4+jQAA1YvxRhc+d4JdlGLNp75AW/Eu0Oemu0tRS7bq3Dm9K5T8W74aeNu/rjKkgACizlTcmXUFpTb9Mevpz/v33nly+WkLJE1gWKXwsIADNb2zsAWghQtiSek2lqKHY9cKODXwNhQbVxfF+AgAAAAAAAKgmVRcWZmZXSvpe/1MNhH0VEvrFv2oCAAAAAAAAAAAAAAAAAFACzrmlZrZEmQuDmqSfmtlbnHPLJcnMviDp1Jwpt/utZWZjNPgCo0tLUDKAamUmnXSN9MRHos076ZflC0kYf7i079ukdfeUZ79atvauYU3ddXV5p7mhR8fX3Ckd+aW4qgKA8uhcLz16WdJVlFbL1KQriMhJzklKF/abTUCihgaPxR2+VuYAtEoOyQsbKBcqWC6m1xT2/RxUU6X8Gel/DgAAAAAAMLJUVViYmZ0t6fvZpy576/9XnQ5J2yUFXVUQAAAAAAAAAAAAAAAAAACUzzXKnPtzkg6S9JKZLZA0WdIBGjgHuEfS7wLWma2B84K9khaVqF4A1WrckQXMOTz+OoJMv5SwsGK5tGdzdypEWNjQMIGO1XFUBADltdo3XxcACkDYHapc1EC5UoavJRWSV5bXFHG9sGPLGZJXcaGDhN0BAAAAAApTVWFhkr6Xve8/HLRKmUNEf3bOrUysKgAAAAAAAAAAAAAAAAAA4OVHkj4o6TBlzv41SDpe2hv81X/h0B865zYFrHNRzvgFzrmu0pQLoGqNjxgWZilp7KGlqcVXxAQGR2LDML27PZtDhYUNbYj6ZwYAKsGi7yZdAQAAlaM/TNj1JVsHUJCI4WNRw9eqISSvEl9T2EC5YkPyShHUV7bQQcLuAAAAgCRVTViYmc2S9DoNfE/7hKS3Oud2JVcVAAAAAAAAAAAAAAAAAADw45zrNrOzJf1F0hHZZtPARUNN0s2Svu63hpmNkXSJBs4P3l+yggFUr8bx0tSzpPX3hRu/33lS88TS1jRU24nRxu9ZX5o6qllvh2dzmLCwtIb8Muvau+OoCADKq2Nl0hWUx0m/kp74UNJVAAAAlJAbCLojKxxVJ2KgXKQQtgoPlCv3aypFoFyxIXmJhw5GCOrzrB0AAKC6VU1YmKQ3ZO9NUlrS+wkKAwAAAAAAAAAAAAAAAACgsjnnVpnZMZI+JOkCSdOzXS9Jut45d0ueJT4gaVzO87tiLxJAbTj9Dum+06St8/3HNLZK0y6UXv+T8tXVr25UtPFPf046/J9KU0u1al/q2dydyn8s3nn9LmDPLqlhbJFFAUCZpHuSrqB8Zn1Q2vmC9OJ/Jl0JAAAAgGEIu0M18wswSzJQrogAtEoOyQu7d6hwvJheU1Hva8J/Rgi7AwBkVVNY2OTsvZP0jHNuSZLFAAAAAAAAAAAAAAAAAACAcJxzPZL+N3uL6peSfpuz1o646gJQY+qapXOelFw68wuLVpf5JZq+bsn1DoyxVDL11UcMC5Mk5/gloFwb53o2d6fq8k518ngfN8yRpl1QbFUAUB6bn0i6gvI69geZ297PcZf5jB9675yk/nufMYPuc8fnuw+zXs66Ycd61l5MDQHz/faO7f2M8r4WuV6+9zPp1wQAAACgCuT+XT/pWoACRA2UK2X4WlIheeV4TWED5QbVVGEhebG8r3H9GenvBxCHagoLy/1f/iuJVQEAAAAAAAAAAAAAAAAAAMrGOdcpqTPpOgBUEUtpUCBYXaOkxsTK2atpUvQ5q26R9jtHqh8dfz3VyKU9m0OFhXn9Isqe9cVWBADl07km6QqSUSmf40A+ecPIYghAK0Wg3NBawgaqRQ1fK0dIXkUGylXJawIAAABQHfr/jdz1JVsHUIiogXJhA8uqKSSvlK9p//Ok1uNL9B8PlaSawsJyv9XI/20uAAAAAAAAAAAAAAAAAAAAAFQKM6ntRGnLvPBzHnmntM9x0pvvlZraSldbtdi+wLO5K0xYmFdjz87i6gGAcunrlh69LOkqAAQZ9MueQJXZGyoWV/CZRwBa2EC5UMFyRYa6RQ1fKzQkrxID5Urxfib9mgAAAABUh9y/v5NbHb+W/QgLGyGqKSxsUc7jAxKrAgAAAAAAAAAAAAAAAAAAAAAKcdS/SXPPjzZn29PSC1dJx36/NDVVk5U3ejb3jJ2Zd6qTDW9c/jvpiC8WWxUAlN6qm5KuAABQy/aG3UlS/iBeoKJ4ht3FHYAWcb2wY0OF4yUUklcxgXIR3teqDMkjJQMAAABx8fgeDDWpasLCnHPPm9lCSUdJOt7M9nHObUu6LgAAAAAAAAAAAAAAAAAAEJ2ZTZM0U1KrpLGSzDl3XbJVAUCJ1Y8pbN6LhIUNuuL8EN2W/xcg0l5jmlqLqQgAymf938KPrWspXR0AAACVhrA7VLugILQkAtAKCparkEA5v9dQCYFyYd/PqgrJI+wOAICKYqmkK0CZVE1YWNZ/Sfq1Mv+P/QuSvppsOQAAAAAAAAAAAAAAAAAAICwzmy7pc5IukDTdY8iwsDAzO03SGdmn25xzPy5dhQBQYq3HJ11B9erb49vVVdcgqS9wuuevLzaML6okACibbc+GH3vCT0tXBwAAAIB4mUlG0B2qVOgQshBhbn4BaKUIlIslWK5CQvLCjiUkz2MdAKg1+S+sg9pQVWFhzrnfmNl5ki6R9CUze9Q5d0/SdQEAAAAAAAAAAAAAAAAAAH9mlpL0LUlXKnPBUK+Tqn4n8zdL+vf+fjO72zm3tARlAkDpNYxNuoLq1dfp29U9+gCpd0XgdGceHz0BawJAxdjxksNsAmcAACAASURBVLTtmXBj9zlGmvaO0tYDAAAAAICUCbuTSZZKuhIgumFhYiUIQAsbwhYqHK/IULdYQtiqJFAu0vtapa8J8OL1PRhqUlWFhWVdIalBmasK3m5m35P0Q+fc9mTLAgAAAAAAAAAAAAAAAAAAQ5lZg6S7JJ2pTEjY0FAwp4DL3DrnXjSzOZLOyI59jzLBYwCAkWTbs75dPan8x+I9EykJCwNQDV78fnD/vmdL9aOl1uOlgz8uNU4oT10AAAAAAADVirA7VLO9QWclDEALGyhXcLBcmHC8MofkFV1DCQLlorz+5qlF/9FCdaiqsDAz+1r24QJJp0iaKOkrkj5vZo9LekHSNkmRohCdc9+Ms04AAAAAAAAAAAAAAAAAALDXLyW9RXtPvcokPSxpjqRuSd8OscbNyoSFSdJbRVgYgGqWapDSPdHnda6TWvaNv55qsWORb1eX+vJOd165lF1bi6kIAMpjw1z/vuN+KB3+ufLVAgAAAAAAACBZe8PuJKku4WIAlFtVhYVJ+ncNvqhT/6GhUZLenL0VgrAwAAAAAAAAAAAAAAAAAABiZmZnSnqfBs77vSLpPc65+dn+6QoXFnaXpJ9k1zjBzJqdc3tKUzUAlNjR/y4t+Er0eUt+Jr12BB97TvcOa3p57EQ93nagVnQvzzvdmUdY2I6FmautWyqOCgGgNHYH/IybUuiv0QAAAAAAAAAAgGpTC99q9l9psBAe3/gCAAAAAAAAAAAAAAAAAICYfD17b5JelXRKf1BYFM65VyVtzz5tkHR4POUBQAIO+URh8xZ+S1r03XhrqSZb5g16+tz4qfrxIW/QvLYDQk1P+3Vsf764ugCglDrW+veNmiZNeG35agEAAAAAAAAAAImqxrAwi/EGAAAAAAAAAAAAAAAAAABKwMxaJZ2igYuCftY5t7mIJV/IeXxoMbUBQKIa9yl87gs/kNI98dVSTVb+adDT+6YcrLSFPw7vzOf4+NJriqkKAErr1T/49514jeT3sw0AAAAAAAAAANSc+qQLiOiMpAsAAAAAAAAAAAAAAAAAAAChvFEDFzXd6Jy7o8j1coPGJhe5FgAk65BPSkv+J/q8nu3SzsXShNfEX1OlG/8aacciSZkEyuVjooWuOb+O3vaiygKAktr8d/++5onlqwMAAAAAAAAAACSuqsLCnHNzk64BAAAAAAAAAAAAAAAAAACEsm/23kmaH8N6u3Iej4lhPQBIzqwPFhYWJklbnhiZYWHpnr0P+8yUtlTA4OGczLtj3X3FVAUA8du+SHruq9LW+VLHav9xE44pX00AAAAAAAAAACBx0b4hBQAAAAAAAAAAAAAAAAAACKc15/G2GNZryXnc4zsKAKpB6/HS0d8obO4TH5baV8RaTlXYtXjvw+5UXeTpznzCwjrXSNsWFFoVAMRr9yrp/jOk1bcFB4VNPEUq4GchAAAAAAAAAACoXoSFAQAAAAAAAAAAAAAAAACAUtiZ83hsDOtNyXm8NYb1ACBZR39NOu8l6fgfR5+78ob466lkLj3oaXeqPvoSQZ3Lfxt5PQAoidW3Sl2b8o/b/+2lrwUAAAAAAAAAAFQUwsIAAAAAAAAAAAAAAAAAAEAp5KYcHFLMQmZWJ+nYnKZ1xawHABVj3GHSYZ+Sznwg2rwtT5Smnkq1Z+Ogp92pOt+hJ4w93bM9bea//rZnCyorUM8uqWtL5t4FRpUBwICnPhtuXMt+pa0DAAAAAAAAAABUnOiXVAKAWtO+XFr8E2nHC1LbSdIRX5QaxiRdFQAAkKSendJDF0sb7s88n3G59IbfSEGHNwEAAAAAAAAAAABUiuez9ybpMDOb5pxbXeBab5M0KvvYSfp7scUBQEWZdJrUNFHq2hxu/KpbpLkXZs5RNE4obW2VoK9j0NOgsLCmVLNnu1PAeZOOVQWV5al9uXTHzOHtx18tHfbp+PYBMLLt+7akKwAAAAAAAAAAAGVW9WFhZtYg6Q2STpM0S1KrpLGS5Jw7M8HSAFSD9hXSfadKndkLja77i7T2LumsR6S6pkRLAwBgxOvtkG4cP7htxW+lLX+Xzl+cTE0AAAAAAAAAAAAAQnPOvWhmayTtr0xg2BckfS7qOmaWkvSv/ctKWuCc2x5boQBQCVL10ux7pAfPlbo2hZuz5g7p4YulMx8obW2VoGfX4KcFhYUF2BXTWRSX9g4Kk6SnPiM1T5GmvyuevQCMbC1Tkq4AAAAAAAAAAACUWSrpAgplZqPN7KuSVkmaI+mbkq6QdL6kMyTN9pn3bjNblr3NN7OAS0QBqHlLfzkQFNZv63xp7T3J1AMAAAas/5t3+64lUveO8tYCAAAAAAAAAAAAoFC/z96bpE+Z2VkFrPFdSSfnPP+/oqsCgErU9nrporXS2fOkC1dIl/VI+54TPGfDHKljTVnKS9Tmvw962h0QFtaY8r5YrMt3bHzXK5HLGmbz48H9K34f3A8AYRxwSdIVAAAAAAAAAACABFRlWJiZvVbSU5K+IWmyMoeIwrpTUpukGZKOlVTIwSMAtWLRt73bX/iP8tYBAACGW32rf9/KG8pXBwAAAAAAAAAAAIBiXCVppyQnqU7S7Wb2sTATzWyimV0r6crsfElaL+lXJagTACpDql5qO0EaPT3zePpl+ee0Ly19XUP1dkjr7pOW/lra8KDUsba0+6XqBz31CwtrsEbVybvPebbm2LWkgMJytK+Q/nZ68Jg1dxS3Ry1pXy4tu1Z64fsDF/5tXyZ1rE60LKAqjJmZdAUAAAAAAAAAACAB9fmHVBYzO1LSXEnjlAkJc9n7/sCwwO9xnXPtZnajpA9lmy6RdG9pqgVQtbbMS7oCAACwfaF/34YHpYM/WrZSAAAAAAAAAAAAABTGObfVzD4j6Vplzvc1S/qZmV0p6SZJg9JlzOxESYdJequkCySN0cD5wD5JH3TOdZenegCoAPudm39Mb2fp68i16D+kBf86vH3qW6XTbpIaxsa/554Ng576hYU1pppk5n0daufTvldvR0GlqXODNPc8aev8cOM3PyFNPKmwvWpB5zrpzsOk3l0Dbc9+efCYyadLb7pNapxQ3tqAanHgPyRdAQAAAAAAAAAASEAq6QKiMLNmSX+WND6n+XlJH5Y0U9IRGjgUFOT2nMdnxlYgAAAAgPi4tH/fq9dLc86Vdr1SvnoAAAAAAAAAAAAAFMQ5d52kb2vwBUJnSfqSpP/OGWqSHlcmWOw9kvrTZvovIvovzjkuDgpgZGmelH/Mhr+Vvo5+q+/wDgqTpPX3SvM/XZp9F3xl0FO/sLAma5b5HCdP5ztm/vKPCipNj707fFCYJN17spTuK2yvWvDIuwYHhXnZOFd64iPlqQeoRm0nJF0BAAAAAAAAAABIQFWFhUn6jKQZGjj4c7Wk45xzv3bOrZC0J+Q6czRw4OggM5scc50AAAAAitU8Jbh/3T3SfW+UureVpx4AAAAAAAAAAAAABXPOfU3SBzVwzq//HGB/gFj/zTRw0dD+592SrnDO/WfZCgaASjL5TcH9WyIEVRVr9a35++MOwkr3DGvyCwtrSDXJfI7I93/waPRB3vtsXxC9tq6tmWCrqLY8EX1OLdizUdr0SLixq26W+sL+egAwgow7POkKAAAAAAAAAABAQqotLOzTGvie9jbn3D8559JRF3HOtUtakdN0RAy1AQAAAIjTuMPyj9mzIXPFWgAAAAAAAAAAAAAVzzn3G2XO6/1UmdCw/lAw0+CQsP62tKTrJB3hnPttGUsFgMoy+fTg/uZJ8e7X0y6tuVva+JDU1z24r315nrk747/wW+e6YU1+YWGN1igb9HEywFm2fbfPa2jZv4Da1kjRj7NLL18dfU4t6FgTbfzulaWpA6hmuxYnXQEAAAAAAAAAAEhIfdIFhGVmR0rq/wbWSbqyyCWXSuq/LNRMSQVc0glARXBOeuV/pTV3Sg3jpYOukPY7O8S8Ag5nAACAMnL5h0jSU/8kzbyitKUAAAAAAAAAAAAAiIVzbqWkT5nZlyS9MXs7QFKbpEZJmyVtkPSYpPudc9uTqhUAKsb0y6QX/0vq6/DuX3mj1Nsh1Y8qfq8t86UHzpJ6sj9+xx4qnTlHGrWf1LVV2hjiyHXXJql5YvG17DX8DEmPX1hYqklm3tfTdv0hYvufnzlzOtTOF6OX1tsZfY4krb+3sHnVroPwL6BoB16adAUAAAAAAAAAACAh3t+EVqZjsvdO0kLn3LIi18s9QDS+yLUAJOnpz0tPfkJae7f06h+kB8/JHHzJJ91bXD8AAIiPc9LOJVJfV05byGDPnhh+N6BzvbT+AcJEAQAAAAAAAAAAgDJxznU45+51zn3NOfdB59wFzrlznHPvc859wTl3M0FhAJA1/kjpzXnCpV64qvh9nJMevnjwWYxdi6UnP555vOBfwq2z+CfF15Krb8+wpu6U9zWzG61Jqf5QsCFcf/P0y/z3ciEvbtdv44PRxvfr3ial+wqbW82e/GTSFQDV74BLkq4AAAAAAAAAAAAkpJrCwiblPF4Sw3o5KQSK4TJaABLRvUNa/OPh7Y+8K/9clycMrLe9sJoAAEA06++Xbt1P+vOh0k0TpIXfyR68jHj4shC9u6XrTbp1X+mBM6U/1Emv/F/p9wUAAAAAAAAAAAAAAIhi0qnS0d/w7193T/F7bHlS6lg1vH3NnVK6R1obco8dLxRfS66+zmFN3ak6z6GNqSaZX1hYf3tdi/9eUWvfvtC73VLS+a8Ez936VLS9akHnmqQrAKpfPb/+AgAAAAAAAADASFVNYWHNOY+7fEeFNz7n8a4Y1gOQhNW3Ss7nympr7g6emy8srIcfDQAAlFzHGumBt0h71mee9+2RnvuqtPIGKZ3nszoOt88Y3jbvY1LH6tLvDQAAAAAAAAAAAAAAEEXbCf59W+ZlLpg25xypc11h629+1L+vt8M7SMxLe56QrKh6I4SFWZPMvI/IpyXp+Kul1tf779W1MVptDWO8211aGjMzeG7UvaqdK+DCgc9+OfNnD8CAfY5LugIAAAAAAAAAAJCQagoL25zzeGIM6+V++7olhvUAJGF3wMGTuW/PHLbw4xcy1q+3vbCaAABAeEt+5t2+/DrplZ+HX2f3yuh7u7TUtdm77/H3R18PAAAAAAAAAAAAAACglKackX/Mur9Kt+4nbV8U795hg8KkzEXaVt0S3959EcLCUk0ymWefSzVKB75TGn2A/15Rg9bW3efdXtcimUkz3uc/d8Xvo+1V7Xa+FH3O6lulG0ZL3TvirweoVi1Tkq4AAAAAAAAAAAAkpJrCwtZn703SscUsZGZtko7IaYr58lUAysbn6m97bQq4yl26N3huz67o9QAAgGgWfce7fe3d0daZe370vf2CwiRpw5zo6wEAAAAAAAAAAAAIxcwazOxNZvYVM/uVmd1mZveb2f1J1wYAFa2uWTrpl+HG3n1UARt4h2xJkp77WrSl5v2jlM5zUdewtswb1uQXFtZgAWFhY2ZILftmntSP8d7rpf8XrbZ2n2Po/SFhp/zWf+6rf4zvPaoGz3yp8LmLvhtfHUA1O/DSpCsAAAAAAAAAAAAJqqawsMckpbOP28zszUWs9SENfJu9W9L8YgoDkKBUY3D/ypv8+1yesLBewsIAAJBLS1vmS8t/J7UvS7oaf9ufk/Zsijana2tpagEAAAAAAAAAAADgycxGm9lXJa2SNEfSNyVdIel8SWdImu0z791mtix7m29mAWk2AFDjRk1LZt+oF17r2pw5zxGH7m3Dm3zCwhpTTTKfC9G6VP3AE/Oer9728HXtCbhQXe764w7zHxfXe1QNNgdcADifF6+Krw6gmjWOT7oCAAAAAAAAAACQoKoJC3PObZP0ZE7Ttwo58GNm+0v6siSXvd3nnEsHzwJQsfJ94bn6Fv8+l+dqbFEOfAAAUIv6uqSHLpL+eoL0+OXSHbOkF/8r6ar8PfvP0cb3dZSmDgAAAAAAAAAAAADDmNlrJT0l6RuSJmvggp9h3CmpTdIMScdKOivu+gCgarSdFH5szy7p5R9Lj71feum/pe7the/bU8DcF6+S+roL37NfXfPwcvzCwqxRKZ+PGOdczgI7vPdKNYWvK+g9GXf4wONJp/mPe+AtnmFoidv4iDT/M9LcCwZuc86VrrfM7U+jpA1zw6/X21n863zio9Kq24pbA6h2k96UdAUAAAAAAAAAACBBVRMWlvWjnMcnS/p5lMlmNkXSHZL20cBBox/GUxqARPR2Bvd3rPbvS/cGz+3ZFb0eAABqyZKfS2vuGNz2zBel7YvCr7FlvvT4B6T7TpMWfEXq3R1riYMs+3W08X15/h4Rx2FVAAAAAAAAAAAAADKzIyXNlXSIMmf3+tNaTCFCw5xz7ZJuzGm6JO4aAaBq5LvIaq4bx0lPfUZa8Vvp6c9lg6l8QrJK4dU/Sg9fLKV7ilunfemwpm6/sLBUk8zniLxTzvWlZ33Ye6/tC6Sw16H2CxyTpAMuHnh8+Of9x3VvlW5qrazAsBXXS/efLi3+sbTmzoHbunsGxvR1SvfPll69If96fXukuW8vvq6l10gPXyQ99/Xi1wIq1a5XgvunXVieOgAAAAAAAAAAQEWqqrAw59wfJT2bfWqSPmJmD5tZwOWWJDMbbWYfz849RpmDRk7Svc65R0tZM4ASyxfyEcTlCQvzOFwCAMCI8vKPvNuXXhNu/pb50v1nSMt/I216RFr0XWnO2VK6L74ah9qzKfzYvj3B/UEHOgEAAAAAAAAAAACEYmbNkv4sKTfd5nlJH5Y0U9IRChEYJun2nMdnxlYgAFSjKWcUNm/rU9LKGwMGhPlxPMTsu4P7194lbXw4+rq5Vvx+WJNvWJg1ycz7daT3ZlVKmniK/35b5oera81d/n1NrQOPxx+Rf60Vfwi3Z6m5tLTgX8MHpj16af4x6/4qbZjj33/6ndLk08PtJ2XOIJUz9A4oJ78ze5J02GelhjHlqwUAAAAAAAAAAFScqgoLy3qnpC0auLLgqZIeNLM1kq7LHWhmPzOz+yVtkvQ/kqb0d0laK+nyslQMoHT6OvKP6Wn3bnd5gkpe/VP0egAAqCW7l3u3v/zf4eYv+ZnUO+RzeNOj0sbs4b90nuDOQtwyOXwYWb7Q0bV5DrMCAAAAAAAAAAAACOMzkmZo4Mzf1ZKOc8792jm3QlKeq/zsNSe7hkk6yMwmx1xnVTCzBjObbWbvN7N/NrNPmtlFZjYj6doAlNH+FxY+9+nPxVeHJDW2SaMPCh6z7i/F7dF6wrAm37CwVJPMJ/TM5QZgNU7w32/TQ+Hq6t7q31fXMvh5vvdo/ifD7Vlqu16Rdr8abU5XwPsg5Q+LG32QdMz3w+/neqXNj4cfD1SToP+9NE8tXx0AAAAAAAAAAKAiVV1YmHNumaTzJK1X5tBP/+GffSW9MWeoSfqYpNmSmoeMXS3p7c65zWUrHEBp7FqSf8zOl7zb8wWUjD8yej0AAIwUq+/IP2bZr7zbHzgrc7/5sfjqybX46nDj8oWFLfl58bUAAAAAAAAAAAAA+LQGgsJuc879kxuU1hKOc65d0oqcpiNiqK1oZjbTzC41sx+Y2YNmttPMXM5tRUz7TDKznypzdnKOpN9I+p6kn0i6RdJyM3vUzC6JYz8AFW7mBwqfO/TCb8VqPVaaembwmC1PxLun8oWFeR+Rd3s/jiRNPj1g8R3hiujr8u+zITVMfXO4NZO288Xoc9bfF9zfscq/r3mqNP4IqfU4qbE1/J5x/zkGKsX2Bf59U2aXrQwAAAAAAAAAAFCZqi4sTJKcc/MkHSfpHmnvpZ9czr3LeZ7bZ5Luk3Sic+65MpQKoJR2LpZe/WP+cbuXe7e7PGFhXVui1wQAwEjxUPYKtek+ybnh/em+/Gus/1u8NfV7+vNSmN8t6MtzgfLenfHUAwAAAAAAAAAAAIxQZnakpP01cM7vyiKXXJrzeGaRaxXMzGab2V/NbEu2pj9K+qKk0yWNLcF+b5O0UNInJAUlqZwi6SYz+52ZjY67DgAVpHF8cYFhfszyjxkq1SAd9W/BYzY+JO1eWVhNkrT1yWFNfmFhDdYkk/frGBQW1tTmv9+ib4er6xWfC9GN88izzPceSdLOl8PtW0oPvSP6nEcvkzb5XDSwt1NaeYP/3BN/nglWSzVIJ/w0/J6d66PVCFSDbQG/4tIwXmo7qXy1AAAAAAAAAACAilSVYWGS5Jzb4Jx7u6QTJP1Omavlmc9tpzJXzjvDOXe2c45vB4Fa8OJV4ca9/CPv9rxhYRuj1QMAwEjz8D9IN02Qbp8hLfru4NCweR8Lnnu9SQu/VbraNjyQf0xfZ3C/CxF4BgAAAAAAAAAAACDIMdl7J2mhc25Zkettz3k8vsi1inGMpLcqOLgrFmY2W9JtkibnNDtJT0m6UZkLqG4eMu29kv5gZlV7RhRACCf/WnrT7dLog5KrYfp7MvejD8w/dsX1sW2bltSTqvfsa0w1KeUTeuaGXnxuWkAwVue64CJ2Lvbvm3jy8LbR04PXk6Rl1+YfU0rtRXxML/EJ+tpwv/+cKWdI0y4ceD79UuncheH2W3NH+NqAavHKL/z7TrqmsEBHAAAAAAAAAABQU6r+IIhz7inn3Pudc/tLOljSGZLeKek9yhzGeZ2kNufcO51zcxMsFUDclv4y3Li+Pd7t6TwBIF1botUDAMBIs+omqbdd6lgpLfiK9JfjpI410sobpWW/Sra2J/KElUlSX1dwfyVcrRUAAAAAAAAAAACobpNyHi+JYb3cL/lGxbBe3LokLY1rMTObpsyFUhtzmh+V9Brn3Oudc+9yzr1V0jRJn5XUkzPufEnfjqsWABVq2gXShcuk9zhp/FHl379l6sDj1hOCx26ZV9geHmdAe63Od3ijNcl8jsg7ucENzZM9x0mStswPrivo9TRN8m5vO7HwNcthcxH7+9X+0g/954w7fHjbhNeE+7M89pBwdQHVJOhnQNDPKwAAAAAAAAAAMGJUfVhYLufcMufcXOfcLc65Pzrn/uace94NuwwUSsnMGsxstpm938z+2cw+aWYXmdmMpGvDCOUXFuZ6g+ele4L7AQDAYNuele6YJT3yrqQrkXYvzz/G5QkOlaQdLxZfCwAAAAAAAAAAADByNec8znM1n1DG5zzeFcN6xeiR9KykayT9o6TjJY2V9JEY9/iGpH1ynj8m6S3OuUFfZDrnupxzV0sa+mXt581seoz1AKhkU84IP3brM/Hsuf953o+9rL41/4XdvPR2DGvqTgWEhaUaZTLPvvTQsLB9z/Hft3trcF19w+vaaz+fdfc/P3jNDQ9I8z8tORc8rlSCXtNRXwueu3uFd/uGB/3nTDrNu/2kEBcT9jsbjJFpzZ+le0+R/tgo/aFOumGM9MDZ0rbnkq4smq6N/n1tJ5evDgAAAAAAAAAAULFqKiwMGWZ2rZm5mG4rIuw7ycx+Kmm9pDmSfiPpe5J+oszVDZeb2aNmdkkpXjfga4/PF6f5wsLy9QMAgOHScZzvL5MwYWHzPlr6OgAAAAAAAAAAAIDatTnn8cQY1puZ83hLDOsV6jeSxjnnjnXOfdQ59wvn3NPOudiuTmhmh0i6IqepW9IHnHO+6SjOuduytfVrkvT1uGoCUOFe85XwY/9ynLRnk0eHd8iWpyO+JE2enfP8i9LUs4LnPP7+8Ov36+sc1hQYFmZNMvM+Iu805PrT0y703/fvHwiua/si/77c9yXX4V+QJhwdvO7in0gLIvy3jNPzAR8ZR39dmnG5f3+6R0p7ncUJCD6b8mbv9oknSvue7T9Pkpb9KrgfI8eGB6WH3iFtfjzz59Clpd7d0vp7pftnS7tXJV1heLtf9W4/8B+kusby1gIAAAAAAAAAACoSYWHIZ/g37B7M7G2SFkr6hKTWgKGnSLrJzH5nZqNjqA8jVU97+LFdmzNf/A6VzhMGlo7t7B4AAEiCx5VlB/H6+8GwNUL9dRgAAAAAAAAAAACAt/XZe5N0bDELmVmbpCNyml4pZr1iOOe2BYV2xeQ9knLTcG5xzi0JMe/7Q56/y8ya4ysLQMVqCjq+62HJzwvb54gvSectlo79vmQ54WL1o6TZ92RCbfysulnq2hptv+0LhzUFhoWlmmQ+oWfODQmuspQ05mD/vTvX+/dt+Jt3e+sJg9+XXPUt0jnPSAflCU174T/CnWuJk3NSx2rvvn2Oy7xXp1wnHXOV/xob7o+2Z12Tf98Zf5He9kzw/HzngDEyLLvW/6KR3dukVbeUtZyC7XzZv2//88tXBwAAAAAAAAAAqGiEhSGfm/MNMLPZkm6TNDmn2Ul6StKNku7T4CtEStJ7Jf3/7N15nFxVnf//96nurl6TdBKSdMhOQsK+KvsOggiKKCIyoIgC44o6+B39OeMyo6Mzysyo48Io7gqoA4qIsu/7JmsCIQnZ973Xqu46vz+qOl1dfc+te2/t3a/n41GPrns/Z0tTqW4edfI+NxjX0V1APhscmyw8Wakv5yDR3a9L956epxubCAAAY5jnSZ81pneTf921SSzb+IXFWQsAAAAAAAAAAAAwNj0qaTDtZLIx5rQCxrpc2pP+0iXp6UIWVgPOz7n+aZBO1trFkp7IutUq6cxiLQpAFYs1SE3Tgrd/8Yvh55hzUTokbPy+jjXUSTPOc/e3A9KuJeHmHOgaccs3LMw0ucPC5BHA1TrLPffOl921iY4MzF2L3X2k9PfIL1BtUNeq/G2KacDnQL1U39Dz6T4/UrZ5/GiO+4TY1Y/zX9PEw6RFV7vrvT5hbhg7drzoX9+Zp14tPIIR92ieUb51AAAAAAAAAACAqlZTQU3GmIOMMfdmHvcYY6bm7zVijGmZvoPjjMZ//X+NpHkRHrmfPFtJP/GbyBgzU9LNkuJZtx+RdKC19k3W2guttWdKminpaknJrHZvl/TVCH8+QOpdH679PTn7DP/k2KiSLZVMn5QGAMBYlL3Jr1blQO51gwAAIABJREFUCwvz2gCaa+WNRVkKAAAAAAAAAAAAMBZZa7dLeirr1r8aY7wTXHwYY2ZI+pzSe9qspLustQE+8KtNxpgOSYdm3epXel9eUPfnXJ9d6JoA1IiZ7wzXfsQeyTxv0XXN+cfc+61SrNFd9wul8tLfPeKWb1hYLK6Y4yxjK489oX7fM7+19o8MMZMkGffa9pgWIDszyCF4xTTQ6651vGXoefsh7nZe+2wS29ztff477jHd50dYf8jXEkafVFLa/qx/mzW3lmcthervdNemnFC+dQAAAAAAAAAAgKpWU2Fhkq6SdIqkkyUlrLX5/vX/CNbajUoHVg2Oc0UR11cVrLVbrLVvhH1IOiNnqPustcvzTPcVSROzrh+VdEbmdMLsNfVZa78j6cKc/p8xxsyJ8MfEWJdK5m+TbWfWaUu7lwXvN3r3FAIA4C/sz9pSOfI70v7XSB1nSAd+QZr17uB9d7zgX+fnPAAAAAAAAAAAAFAO3856foykH4bpbIyZJulWpfepDabY/Gdxlla1Dsq5fsFa60il8fRozvWBBa4HQK044lpp77cFb7/0B+HGr2vJ36ZxsnTKn931V74Rbk6P/R+usLA61avO1Ms4Qs+s1wGyCz/unnv5z921NX/wvr8gwNb0+hbp1Dv826z+ff5ximnZj9y1ff9+6Lkx7tfYjhelvq1D1zuXuMc8/FvB1jX5Te5aZ4j9wBidnvts/jZ9m6WulaVfS6H8/ix1cXcNAAAAAAAAAACMKbUWFnZe1nOfT1/zGuxrJJ1fwDijhjGmWdJFObevz9NnX0kfyLqVkHSZtdZ5tJS19g8a/t+uUdKXwq0WULQT0wY3eezy2XyQq3d9+HkAABgNbH+lV5DejLnw49Lh35ROu0s69KvS0ddLk48J1n/Jtf71oL9P9G4O1g4AAAAAAAAAAADACNbaGyX9LXNpJH3YGPOQMeZEv37GmFZjzN9n+h4myWYed1prHynlmqvAATnXr4fsn5uekjsegNGqvjUd1PXOtdJJt0qn/NW//ZISZS92nC41tHvXNtwdbqxtz4y45QoLi8fSgTqusLCUPA6WMzGpZab33BvvCbbGbEEC1SRp2mn+9ZW/DT93Id64wV2rax5+PeNcd9t1fxl6vuZmd7umqcHWlTt3tvV5AtcwutmUtPLGYG1f/3Fp11IMfY49ahNyM2QBAAAAAAAAAMBYVl/pBQRljNlH0uAnsSlJtxUw3J8kDUiqkzTPGDPbWruqwCXWugskTci63i7J5xNaSdLFSn8PB91srV0aYK5/1/CQsQuNMR/1CxkDRogUFtYvmQYpsSN4n61PujeBAAAwmqUqGBY27XTpqOukcfNH1uITpLc8LC3/ifTklf7jNO7lX7ceG0C9bH9Omn5msLYAAAAAAAAAAAAAvFwg6XFJkzPXx0u63xizQTlBWMaYH0haKOlYpQ+jNEqHhBlJayVdWqY1V9KCnOuw+xtX5lxPNsZMtNZuL2BNAGpJy97pRz6dudmCeay9VXrz/wRrm3Ts1WycEm7OcQukjfcOH9oVFmYaJUnGeJ+nbWW95+he432/ZZZ7XfGJUsLjbbUn4CG1sTzb+B1/hpJJ+Wzjbpo2/Lr9UHfb7NfUbp/XV1vujzoHv7CwusZgY2B0sFbq2yp1r5b6u6TmDql3Y7C+L39VGr+fNPEwacIBkvEOFKwYv31s/bsjDdlvk1rZu0y9A10ji8ZoZuNcTaifFGlsAAAAAAAAAABQOTUTFiZp8EgUK+lVa21n1IGstZ3GmFc1dFrewQq/mWa0+VDO9a8DhHedn3P90yATWWsXG2OekHR05larpDMl3RqkPyApWljYQJ8Ua5D6NgXvU8mgFAAAKskmyz9n2wJp0dXSoo/7t4vVSZOOyD9eYpt/PejvE7tfJywMAAAAAAAAAAAAKIC1drkx5lxJt0iarqHwr+mSOrKaGklXZj1XVts1ks611m4py6Irqz3nOsSGpz17JHslNWXdnqD0IaIAxpqD/ll66V/d9ac/IR357XQ4Vb4Anb2OCT5vxxnShrtH3u/bHHwMSeod2T7hCguLZcLC5P3nsNYRFjbpTdK2p0fe3/GCe11eQWGSNOUEd59ck4+Rtj7uXdv2dDocqVyhRrtedddyQ7n2OtbdtmfD0POBHne7yUcFW5ffnz/M4cGofgO9UtdqqXuV1LUqHQq253nmq99rKp/HLkl/bZwsvfVZqXV2cdZdDAM+/2xj1gWhh3u561ldv+6b6k35f7+OHHeCPjD9atWbhtBzAAAAAAAAAACAyqilsLA5Wc9DHmPlaZmGwsKq6JOe8jPGzJd0Us7t6/P06ZCUfSxUv6RHQkx7v4bCwiTpbBEWhjAihYX1SA1t7g0axZoHAIDRoJyBmft/Vjr8P8L1mXCQVNciDXS72/idTir5n8iY7cUvSQs/GnxtAAAAAAAAAAAAAEaw1j5pjDlC0k+U3i8mpYPAsr8O66J0SJiRdJekD1hrN3i0G43acq6jJGP0aHhY2LjoyxlijJkqaUrIbvOLMTeAiA75F/+wsNf+R2o/VFrw4fxjte0TfN79rvEOC5Okbc9Ik44MNs6aW0bcWjx+qmfTBpMOtYop5lm3cuwVWfhx6fHLvGtdq0aGCrlCxySpZaa7lustD0s3+mznf+M30ry/Cz5eVP0++2+O+dnIe8ak//tte2Zk7fUfSkf9IP3cFew087z0YYFBzbpAWv17j7muk476YfBxUDk2JfVuGh781Z0JBBt83hsqGzW6vq3SIxdJZz5anvmC2PGSuzbv0lBD7e7fqevW/pv6bf79f8/sflgd8Zk6Z6+LQs0BAAAAAAAAAAAqp5bCwrI3quwswni7sp6PL8J4texyadgRWs9aa/+Wp89BOdcvWGu7QsyZ++nagSH6AtECTHYtkZqmSIkQbyEBPigFAGBUKufPQBNi89+gukZpxtulVTe526T6pGRnOizUu0GwufrGwsHkAAAAAAAAAAAAQOlZazdKOscYc6SkqyWdLmm6o/lOSfdI+q619oEyLbFa5H7I2RthjB5JE33GjOqjkr5UpLEAVIs1fwwWFtbUEXzM+maf+W4NHhbmYVdDo+f9eCwuSTLDtkUPsZ7ZlJLqfNa67i/SvlcNv9e10t2+rsldyxWrk479lfTYJd71tX8sT1jYxnvdtfhE7/ttC7zDwqR0MJSJucPCxi0Mtz7n3h9UjWTn8OCvEaFga6RUotKrHLLlMalnvdTs+jW0zNb92V3ze3/y8ErXc4GCwga90PkkYWEAAAAAAAAAANSQWgoLy/60sBjhXtnhYwNFGK8mGWPqJH0g5/b1AboekHP9esipl+UZD/BnI/y1TSXTX/t3+bcrdB4AAEaDwZ+b5RAlLEySjrleSvWmN6y6rLtdmnOhdy3Mz3lr06eiAgAAAAAAAAAAACiYtfYZSe+XJGPMPpJmSZosKS5pi6SNkl621gY8AWjUc6TbFL0PgNGq/WBpx4vuevfqzJM8eyPmvC/4nBN8zhHuXhVsDMfBshMT3iFUb/QulSQZxx4PKytr7cj6xEPda+hZN/Je7yZ3+9Y57pqXsHOXwqYH3bX2Q7zv+4UR9XenA75cYWEhw4/U7fg+NLSHGweFSe5Ov1Z2viR1rR4eBpbYXunVhffg+dIJv5NaZ1V6JdJAt7vWOjfUUDv7t4Vqv71/a6j2AAAAAAAAAACgsmopLGxL1vOQn6J6mp31fCx/wvFWSTOyrnsk/SZAvwU51wE/td8j90itycaYidbaGvykEBURKSysL/01sbO08wAAMBqEOF2wYHufHa1ffat00h+kxA7p945TTHvWuvuH+XcFvZuk5mnh1gcAAAAAAAAAAACMccaYcZLmZd1aZq3tym5jrV0uaXlZF1b9OnOuQ6aqePbJHRPAWHLgP0mPvNdd3/G8NJDIP06YvRONk9215T+TjvxuOlDKjyNsKhHzPphuVuM+kiSjmHNIKyuTG4o2bqF7DbsWj7zXu8Hdvink/hK/ULXNj5T+gLsl/y0t/qa73jbX+/68S6XV/+ddG+hJ/7fd+qR3PWxY2Kx3SRvuHHk/uYMDAMtl12vSPaf578WqNVufkP44Wzr2l9K8Syq7lpU3umt18VBDJWxfuPap3lDtAQAAAAAAAABAZbk/Ca0+g2FURtLBxhifT5D9ZfpmH3M0ij61Cu3ynOv/s9buCNAv9ygmnyOyRrLWdkrK/WRpQpgxvBhjphpjDgzzkDS/0HlRAVFCvPoz+93W3FLaeQAAGA1SyfLM0zRN2uvYwsaI+5wSuuUJdy3Mz/mBrvxtAAAAAAAAAAAAAOR6n6TnMo8nJTVWdjk1o5rDwr4v6aCQj/OKNDeAqOZcKB3zU/82y6/3rzdOCT/vgivdtcXfyt+/K/ds4rSkIyxsUUt6e/iIMLAsVnbkTWOkjjO8O6z63ch7z3/BOb5iIc/yNkY69Ovu+uaHw40XRn+P9Oyn3fX2g901v5CzDfekvw44QojChoWN29dd23R/uLEQzZNX1U5Q2P6flY6/KXj7xy6V+raVbj359PdI3Wu8a3MuCj1cIhUyLMz2KRXm0E0AAAAAAAAAAFBRIT+NrKjHJfVJiisdGPYxSf8ScayPaigorV/SIwWvrgYZY6ZIenvO7Tyf9O+Re5SX99Fd/nokNWVdj4swRq6PSvpSEcZBtYsS4rX+TmnWu0s/DwAAo0Gqv7jj7XWc1LtJ6nx9+P2T/ySZImQYTznBe3PkqpskOU5eDLPJaceLUts+kZYGAAAAAAAAAAAAjGF7SXsSW56y1lYwiaGm7My5DpXQY4xp08iwsCCHiOZlrd2kkIeLGuMO7QFQRvtclg5pesQRPrP+DqnjTHf/+tbwc8Ynumvr75AO+bJ//80Ped5OOMLC4rF0JqXx2YtilZLk0d9vramkFGsYuu5c7t0ubAjWoOYOd239HdLUE6ONm8/qm/3rcZ+zvf1eD1secYevSVJd3H/eEXO1uGvrbpemnRpuPITT3+X8u1gyjVOk1tlSy+zM11nS2tuChcO1zkkHJG56QFr6/WDzbbxHmv2egpYcmd/3tj73n2zkl7DeYWHt9ZO1o3+rZ63fJhU3ZPoCAAAAAAAAAFALaiYszFrbZ4x5SNLgJ4fXGGNusda+GGYcY8xBkj4r7TkW6hFrbVcRl1pL3i8p65NrLZP0QMC+uZ88OY5+8tUjKfuT9fCfZmHsihLitfE+affr+dtlSxEWBgAYo2yRw8IO+Jw04xxp+9/Sp4dO2F+adrpUH3GTZK62+e6TVK1Nn8I64n6IsLBH3ie9tzva2gAAAAAAAAAAAICxazD0ykpaU8mF1JilOddzQvbPbb/NWru9gPUAGC0mH+Wu9Wz079v1RoT5jnbX+rbk7z+Q8LyddISFNZh0CFVM7pBCa608y37hV/1dUrx96Np4z6+BKGcvq/DvU1Rv/Mq/vtcx7lqTT8CZTUkJ71AiSVLrPP95c7Uf4q4l+PFWcontxT18ua45Hf41LAwsKxSsZZb3nrLdrwcLC5vzvvTXee8PHhZWyr9nhczt93fQIZHyDgtrqxvvDAvrS/XuCVsEAAAAAAAAAADVrWbCwjK+pXRYmFU6WOovxpgLrLWPB+lsjDlK0u8ltSr9Ma/NjDlWfTDn+ifWWuvZMr8o/aLOBUT70LlzWXrDRhgp740mAACMeqlkccebfJRkYtKkI9KPYvP7Gb/1Ce+NU2F+nxjoSW9k9Dl5FgAAAAAAAAAAAMAI67Oexyu2itqzOOd6Qcj+++Rcv1LAWgCMJm0+IU1bH5fmXuyu+wWNuUw/y13rDHD46/KfeN52hYUNht0Yv7Aw1/bleZdJy3/mXdvymLT32ZnJd0n9u73bLbjKOa+v8fu5a69fJx31w2jj5rP+r/71fS5317wO7hvUuUzqXOGuh30t1be4a2v+IB3943DjIZz+MAcsGql5eib8a5ZHGNhsqXGy/+vHOXTAPo2T0l8nvzn42Ovvkvb9SPg1FcPmR921me8MPVzCusPC3H16JU0IPRcAAAAAAAAAACi/mgoLs9beaYy5X9IpSgdN7S3pQWPMLyVdJ+mp3LArY4yR9CZJV0m6VFJDpq+V9JC19vay/QGqiDHmGEkHZt0akPSzEEN05lx7HN+TV26f3DGj+L6k34XsM1/SH4swN8op1R+t39YnwrVfd5u0/2eizQUAQC2zEX/WurhOVC2WRZ+QVv/eu/bsP0hnPuJRSIWbI7lr+CmxAAAAAAAAAAAAAPJ5Keu5T0INcryUc32IMabFWhs0reP4POMBGMuO+G/p2U951zbe4+7nF2jlUt8iHfUj6ckrvOs9G6TmDu9aql/a8YJnKdHQ6nm/waRzKY3PYXAp136RtrnOPnr200NhYa5AMUmaeb675seYdDCXIxxN3WullhnRxnbJd770KbdL4/f1bzP/CmnZj0beX3+HNNDr7ucX/uWy78ekpd8beb9va/ixEE7XG+7afv8gTTx0KAyseYZUV6p82ACHPO517NBzE5Mu7JbuOUXa+qR/vzW3FLSygni9riUpPikdrBZS0nFQtl9YWF/KO2AMAAAAAAAAAABUn5oKC8u4SNKzkqYrHfhVL+myzKPLGPOqpO2Z2iRJCyW1ZfqazH0jabWkC8u47mrzoZzrv1hr14XoX5VhYdbaTZI2heljopxMhMqzA9H6PRXy1Ke6CBsSgCAG+qStT0lN06RxC6KdkgYApbT0B8Udr2SbwDKmnOCubXlUWnubNOPc4ffD/j6R2EFYGAAAAAAAAAAAABCCtfY1Y8wLkg5ROvBqhrV2baXXVe2steuzvm9Sep/kCZLuDDjEKTnXfynS0gCMBvGJ7trmR921tgXR5muZ5a5tvE+a+z7vmiMoTJKSjjCwPWFhcu/Hs66QrPpxzj7a9Wo6XMsYaeO97nYNPmPk4xcKtPE+ad4l0cf20r3Gvz7pTfnHiDV432/qSAecOfs15h97RB+fvUelCFPDkM7l7tqhX5PqIvz3jMInBHCPaacNv65vls7KHDR9y0ypx+d1mdxd2N/hKPxC+5qmRhoyYb2Dv9rqJrj7pHzC/QAAAAAAAAAAQFUJ8IlJdcmEQb1V0koNhX8p87xN0pGSTpd0Rub5uExNGgoKe13SWzNjjTnGmFZJ7825fX3IYXbmXE8JuYY2jQwL2xFyDRjLooaFhcXmAZTC5kelmzuku0+Ublso3fdWqT/owa8AUCar/694Y008TGpwn0xYFPk2gz3w9pH3rOOkWJe1t4ZrDwAAAAAAAAAAAECSvpv5aiT9SyUXUmNuybn+YJBOxpj9JB2ddatLwUPGAIwFU09y1/z2Zs46P9p8ex3jriVztyMHqyVi3udlx2MBwsLk2C/SOMm9FklKJTOTb3e3mXSE/xh+/P67+H2fokrm2bbdFGBreK9jK74x/nt5ohyuOvFQd60U3x9k8fnvVa6gMClYWNiiT7prs/OcM5/cHW49xTDgE9IVNSws5QoLcweh9TkCxgAAAAAAAAAAQPWpubAwSbLWvqR0ENiNGgoAs1mPPU2zHkZSStIvJL3ZWru4nGuuMu9ROkRt0EZJt4UcY2nO9ZyQ/XPbb7PW+nx6DuQoV1hYuebB2DGQkO4/Z/hGmw13Ss9/oXJrAoBiudhKh/7b8HumTjroi5VZT67ckxjDhoUl2FgIAAAAAAAAAAAAhGWtvV7Sn5Xew3eZMeb/VXhJteLXkrI3L73LGLNvgH7/mHP9W2utTxIFgDGnba67ltjmrk04MNp88Qnu2sob3LVdrzpLSUfYVNykg4uMzxZ5K+us6eCvuGtdK9N7TzY96F1vmibVNbn759PxFnft6Y9HH9fFL/Ts8G8FG2P2e7zv96yXdr/mXZv/oWBj59r7HHdtw93RxkQwG++r9AoyAvzTF7+ALb8gMUl6+qPhllMMAz3u2n7XRBoy6Qj+aow1q8HEPWuJFL8qAgAAAAAAAABQK2oyLEySrLXbrbUXSzpA0n9JejFTMjkPSXpe0rckLbLWXmatHev/yj/3U9ZfWGv7Q46RG7a2IGT/fXKuXwnZH2Nd2cLCQoaIAPlsuNP7RL7X/qf8awEAl1TYXw2zHPh56cSbpXkfkPb9iHT6fdFPli22dbcPPe98Q+pZF67/RjYWAgAAAAAAAAAAABG9T9ItSu/p+7ox5g5jzKkVXlNVs9YulfTzrFtxST8zxjiTaIwx50m6LOtWQpJP8g2AMWvBleHaN06WHAFdgUw+2vu+K3hLkl79juftlKR+ee9taYilg3BiPmu1uYfNZXOFX0nSsh/5BpjpgM+5a0HUNUqTjnTXu0Puc8lnzR/dtUWfCjZGc0f4eaedEb6PJDWMd9de/HK0MRHMqpu8708+qrzrMHn+6cvJf/Kvt82Vzv6bu77mj1Lf1tDLKsh2n/WMXxhpyEQq4Xk/HmtUPNboWetLeQeMAQAAAAAAAACA6lNf6QUUylr7mqR/kCRjTJukaZImZ8pbJG201nZVaHlVxxizUNIJObevjzDUSznXhxhjWqy13QH7H59nPMAfYWGoVW/82vt+6MxGACihKJt/9rl86Pms86snICzbA+dKJ/1RevC8aP39NqgCAAAAAAAAAAAA8GSM+Unm6S5JuyWNk3SGpDOMMbuVPgx0U6YWlLXW5h6aWVbGmJny3oOZm5xSb4yZ6xim01q7xWeaL0k6X9LEzPVxku42xnzYWrskay2Nkq6UdG1O/2uttSt9xgcwVsUnhexQ4PnUfnsx+7uk+taR9+vbPJsnY+7t7w0mHYRjfNZr5bOW+ER3becr0pZHovUNqsknfGvLI/5hZmEN+OwPitUFG6NpWvh5o36fYg3uWn/Q7euIpL41/fc0V7m/7/kCC4O8tsYvkkydex/6lsekGeeGX1tUu3LPb8/S0B5pyIT1/rsdN3E1miZ1efzKnbC9keYCAAAAAAAAAADlVzNhYcaYDknZx888bK3dlt3GWtspqVPSsnKurcZcnnP9sLXW55grb9ba9caYFyQdkrlVr3QI2Z0Bhzgl5/ovYdeAMc71IW0sLjlORIo2D2FhKDJeUwBqQWJn+D4LP1b8dZRC1KAwSWqbX7x1AAAAAAAAAAAAAGPHZZJs1rWVNJj2MF4jD7/Mx2TGqGhYmKSHJc0J0G6GpBWO2s+V/v54stauMca8S9IdkuKZ28dLesUY84yk5ZImSDpC0pSc7rdJ+ucA6wMwFnWcIb3yjeDt84X05NN+sLTtKe+aKywssW3kPUlJ4w4CazDpt0oj93pTw34k5Wj2Ceta92epy/V2rvT3tFAdZ6Tn8RJlP4+f9UXYuj1uYfg+U8P+2M8wRqprkgY8Qo1SfZK1hb9O4c0VCtaU+6tHqeUJLZz05vxD1DVJU06QNj3gXfcKRSulVNJda44Qxicp4TgotCHWqHis0bPWlyIsDAAAAAAAAACAWlHgMU9l9S5Jt2Qev5bkc5wRvBhj6iS9P+f29QUMeUvO9QcDrmM/SUdn3epS8JAxIM32e9/f53Lp2F+mP8gNY+6ljgLBTiiyVb+t9AoAwF9ip3Tn0fnbZVtwpTTpiNKsp5r4bc4CAAAAAAAAAAAAEIbNesCHtfZ+SedL2px120h6k6QLJZ2lkUFhN0i6yFrXiYwAxrxpp4bsUGAI06Kr3bV1t4+8l0pKnd5nRyf2+4RzqMEgHOMTGmXz/ejpeIu7tvMVd61lhv+4QSy4wl170qcW1ro7pM7l3rXJIfYNRQnn8gqGC+rI77prz302+rhwsz6/rvn9vS4Fn6BATT9bqou769mO/La7tuGucGsq1MtfLfqQCev9z2ziJq54rMm7jyNgDAAAAAAAAAAAVJ9aCgtrV/qTZiPpKWttmY9tGRXeJml61vVuSb8rYLxfS8reTPQuY8y+Afr9Y871b621HEeDcFz72GL10rxLpLc8FG68Ou8PP2UJC0MRJTsrvQIAyO+5z0rda4K3n3m+/0a80YR99AAAAAAAAAAAAEBUpoiPMcdae7ukgyT9UNJ2n6aPS7rAWnsxeywB+DIx6eAvl2++xr3ctSX/OfLeJvce0GTrLGctbtJhQcZni7zNty+043T/upepJ4fv46W+VRq/n7veva4487zydXet/eBwY00MccDgxMPDjZ2r/RB3bcm10kCisPEx0o4X3bXGqeVbhyT1+/xqM891aLSHiYdK8YnetWWFnMMekrVS31bvWsT3lJRNqd96H4gZjzWq0TR61hL8Uw4AAAAAAAAAAGpGfaUXEMK2zFcraX0lF1LDPpRzfWMhG4KstUuNMT+XdHnmVlzSz4wxp7vCv4wx50m6LOtWQtJXoq4BY5grrMPUhR/rqOukbc865iEsDEW05pZKrwAA/PVtlZb9yL/NzPOkRZ+Stj4lTTo8vTEp1lCe9VUcvxcAAAAAAAAAAAAAEcyr9AJKwVo7t8zzbZL0EWPM1ZKOlzRHUoekLklrJT1nrV1RzjUBqHF+oVS5ejcWNpcrmEeSkrtG3tv2jLN5It4u9XjXGmLpsLCYT7aklXWvRZKaOvzrXhqnhO/j0jpH2rXEu7b9Wall78Ln2PSAu+YX7OalucM/xjLbQIGBRM15/tvsfk1qP6iwOTDczpfcteZp5VuHJO1a7K41Ti7OHOMXFWecIPo2F33IpHUH5sVNo+Ix78O1E6m+oq8FAAAAAAAAAACURi2FhWUHhLVWbBU1yhgzTdI5Obd/XIShvyTpfEmDn+IfJ+luY8yHrbV7Pqk2xjRKulLStTn9r7XWrizCOjDWpAKEhZ2/Xrplev6x5l8hbf+Ya6LQSwOcXv/fSq8AAPwt/WH+Ngf/izTxEGnaKSVfTtXpWZ8OEjXu02cBAAAAAAAAAAAADMf+sOKy1iYk3VfpdQAYBfZ+W/nmqm9217pWSv1dUn3W9vDeDc7myYmHSD3eB3fGTaMkyRi/sLA8+0Knn+Vf9zLj3PB9XPZ+m7Tja2WdAAAgAElEQVT+Du/agCMlrZjC/ln2fpu07vZgbSe/Ofx6srXOlpr3lnrWeddtf2HjY8hAr3STz99bSWrbpzxrGeQXNjf1pHBjNU2VEh4pd7teDTdOIRI73LWpp0Qb0if0Kx5rVGOs0bPWR1gYAAAAAAAAAAA1o5b+lftz0p6jnBZWciE16gMaHg73krX2yUIHtdaukfQuSdnH0Bwv6RVjzFPGmJuMMX+VtFrSdyQ1ZLW7TdI/F7oGjFE2QFhYc0ewE56MkfPt0I7ysLANd0tPfFh69BJptffmGRTR5of96zbPiYUAUGov/FP+Nu0Hl34dUR385eKMM/Fwd23JfxVnDgAAAAAAAAAAAAAAgEpqGCcd/ZNgbaedXvh8R37HXXv4vcOvl/yns2ki5r3f08io3jRknru3yNt8+/SaO6QFf+/fJte8S8O197PvR9y1l75a+Pjda/zrU44PN96Cq4K33e8z4cb2csLv3LVVPjWEky8orBL8wsLqmsKNdcDn3bUN94QbK6pH/85dW3BlpCET1icszDQqbry/Twnr870FAAAAAAAAAABVpWbCwqy1qyQ9LslIWmSMITAsnA/mXF9frIGttfdLOl/S5qzbRtKbJF0o6SxJU3K63SDpImtdiU9AHkHCwiTpnMXBNheYMRgW9sZvpHvPlJZdL73xa+mhd0mLr630qkavno3524zm1xuA6rfmT8Ha+Zy8WnFz3qf0r6EFmnKCu/bcNdLuZYXPAQAAAAAAAAAAAAAAUGlzLgrWrnGvwuca57P1e92fpZ4N6eedy93tZp6npE14lupNg0xmX4vx2T+SUoBDPfe5LH+bQU3T3HtQo4g1SOP29a7teKHw8V/+RuFjZIvVS4s+Haxtw7jC52s/xF1bVrTt8WNbYnv+Ns0zSr+OXGEDwfzE2921Fb8o3jwuyU5p29Puen1rpGETKXdYWEOsUY0x7+9hn08/AAAAAAAAAABQXWomLCzjm47n8GGMOV7Sflm3EpJ+Vcw5rLW3SzpI0g8l+X1C+LikC6y1F1tru4q5BowxQcPCjJGOCBCAldtvj1Ec3vTSv0q5m15e+lcp1V+R5Yx6O54P0GgUv94AVDebkh58R/52M99Z+rUUYvxC6bgCf8096jopPtG/zas+J90CAAAAAAAAAAAAAADUiqDhO/XNhc/VOtu/vmtJ+uvOV9xtWmY7w8LipnHPc+MT3mWD7NNrmZW/TZS2QSV3ed83MckGCDvzs/R77lp8UrQx8/23laRYPB2sVijnfl9JvQEOdR1LOpdLa2+XUiHP9l57e/42PWujrakQ++SenZ7Rfmj4sVp8XrN+70HF0rXCXTMxqb4t0rBJ6w79ipu44rFGz1oi1RtpPgAAAAAAAAAAUH41FRZmrf2DpJ9IMpLONcZ8zxhTX+FlVT1r7SPWWpP1aLTWbinBPJustR+R1CHpNEkflPR5SZ+U9G5J+1hrj7XW/l+x58YYFDQsLCjXxhA7SsObutcObazJltwpbXqg/OsZC4J8cO96XY9lyd3SGzdIL35F2nB34RudAHh76iP525h6ad+Pln4thZp7sXRhxEza0++VFlyZ/2TG1wgLAwAAAAAAAAAAAAAAo4Ax0rTT8rerK0JY2Pj9pPH7u+v3nColdki9m91tZp2vRMo7LKwhFt/z3Mg4h7BB9qC17C01z8jfTpJmvTtYuzA6zvC+b1PSQAlDffb/bLR+M96e3lvkZ/pZ+ffkBBF1n/BYsuUJ6TdGunW+9MA50o310r1vCd5/oErPA59+lnfA4ewLwo818TB3rXtN+PHCevIqd23WBVIs2us8kfIJC4s1qtF4B0QmfELGAAAAAAAAAABAdampsLCMqyR9W+nAsL+X9DdjzAeNMZMruywMstYmrLX3WWt/Zq39hrX2u9bam621PkfgACHZfu/7RQ8LG6XhTa5T5yT/jTaIrr8zf5vR+nqLqm+rdPcp0qMXSy9+Ob1Z5ZmrCQwDSuH1/83f5uTbpOkhNo1VUn1L+MCwU++Upp2afh4kLHS0BooCAAAAAAAAAAAAAICx5c0/zN+mGGFhxkin/Nm/zaN/Jz1xubs+7VRnqE3cNO55HvMLC1PA/Wdvfcq/buqlBX8fPWDLz6JPuWsv/FP0cfPtvYv6Zxk3XzrxZv82x/482ti58u0T3vRwceapVX1bpTuPGXl/w93Ssp8GG2PbM/nbtM4Jt65iaJkhnfwnqWlq+trUSfOvkA74fPixjJH2/3/etd4N0dcYxBs3Slsec9eP/nHkoRPWO0wxpjrVmXo1xBo9632pEoYQAgAAAAAAAACAospzhE91Mcbcm3W5W9I4SQdI+nGmvkbSpkwtKGutPb1oiwRQHq5QpVjUtzVHWFgqGXG8KucXShXxNCrk8ZxjU0E2gmeGu+9safuzw++99l1p/uX+p7oBKL4D/0na+6xKryKc+pZg7c5fJzVPz7kZ4P246w2pbZ+wqwIAAAAAAAAAAADGHGPM+4s4nFV6f+BOSRskLbGWU8cAoCCNk/K3KUZYmCS1zZOaOtxhPOtu9+m7QJKUTHmH4TTE4nueG5/ztG2QfSFSej/JxVbqWiWtvllqP2To+2Bi0oQDpIZxwcYKy+/7vfIG6Yhro427a4l/vZD9ozPf7q7NukCKT4w+djbX4cCDVv9emnpCceaqRRvucdeeuFya/8H8Y2x+JH+bptz9VmXScYZ0/vr0a7llVmF/B9sPdtd6NkrN06KP7Wfxf7hrsYaC/kyJlCNMMRMS1mi8w8Jc/QAAAAAAAAAAQPWpqbAwSadIw45zspJM5iFJszKPoJt/TIi2AKqJK+wq34lhLq5+G+6KNl61S+xw16J+D+Fvx/P52/iFuI01256RtjlOZlz6A+mo68q7HmA0S+zM32a+z4mtta6hfeS9VID3423PERYGAAAAAAAAAAAABPMzlW6fXpcx5ilJP5d0k7WWpAMACCtIiFP3muLNN36ROyzMT32rJCnpeKtvMFlhYcZ4tpGkVNiMydbZ0n6fCtenUK1z3LUge31cdr8WvW8QU06UNj808v5+ny7eHD7/bSWlDwAcy4rx33ji4dLOl/3bHPb1wueJajCsr1Ats9y17lWlCwvb/py7Nm5hQUO73h/jmZCweKzJs95newuaFwAAAAAAAAAAlE+eo3VqgvV4ABjtejd7348adOV3CtPAKNxDuP6v7pqptRzJGjDgfZLhCISFDXnhy+7ail+VbRnAmJBvY9e4fdOnutaieJ6Tb2Nxqc5jA1SQ9+Ntz0RbEwAAAAAAAAAAADB2mRI82pQ+hPSnkpYbY84s258GAEYLE2A7+dSTijffvPdH65c57C5pvffjxWONe54buQOlrFLR5i+nhjapaap3baBbCht4Jkk7XpQefKe7fuS3w4+Zy+u/7bh9pclHFz52UJ0ryjdXNcq3BziVzD9GMkAg3ZQTg62nmk05zl3b/Ghp5sy3J33eBwoaPpFyvT+mwxQbs94nh/cjLAwAAAAAAAAAgFpRi2FhxdwoBKBWdTk+zI8aFuZ36t2WEn3gW0l+36e65vKtY6xY8q1g7WwNbEIql3W3+RTJBQWKKt/Jr6feUZ51lMLh3/Svx9u9TxuddX7+sV+p4OmYAAAAAAAAAAAAQO3J/mAu6MGgQQ4RHbxvJE2X9BdjzMcKWCcAjE0Hf8W/3jyjeHPNvzz/ng4vmRCdRMo7bKfBxPc8Nz5b5G2t7D877jfu2oa7wo1lrXT7If5tFn0y3JheFnxYOvxaqWVW+hC/jjOl0++TYhH39kax44XyzVWLlvxn/jZr/+Rff8eK8v43LZVYg7v27KdKs6f3lW/41/e/pqDhE9b7/TFu0iFh8ZjHwZqS+hzvqwAAAAAAAAAAoPrkOTqmulhrazHcDEA5hQ0La5mdv19yd/T1VKsNd1d6BWPL818I1s4OlHYdo8VAT/p0O7+NGgCC693krtU1S23zyreWYtv7HP96wwTv++2HSG3zpc5l/v0TO9KBYwAAAAAAAAAAAAD8fDDzdZykL0qarHS4V0rS45KekrRK0i5JcUmTJB0s6URJHZm+VtJNkv4qqVlSu6QDMm3maHho2H8ZYxZba+8t6Z8KAEaTpmn+9foiH0K6/zXS8/9feh9YUJmDUBM24VmOZ4eFeR0el1EzYWHxSe7ail9J088MPtaO5/3rbfODj5XP/p+R9vt0+r9tXTx/+1Lo7yn+a7Zm5Hl9r71NOuAfow2932ekI66N1rdaNYyXkru8a9v/Jk06orjzrfU7SFfeB1+G4AxTjKXDwhozoWG5UhpQv02q3rAvFwAAAAAAAACAakf4FoDa43dSU3+39/39P+t9/8hvp7/Wt7nHTHlvLKlpWx5112x/+daB4QgLC+73k6SXvpY+8RBAYfp8wsLOebl86yiF5mnStNPc9clHed83Rjrlz1LrXP/x+7ZGXhoAAAAAAAAAAAAwVlhrfy7pUUkfUzooTJJ+JGmetfZ4a+2nrLX/aa39sbX2+9bar1pr3ytppqR3S1qhdAjYeyTNsdb+0Fr7DWvt+6218ySdK2l5po1V+hDVUZZkAQAlNvsC//qEg4o/Z/th4dpngqeSjj2dDbGhYKqYzxZ567cHtZqMX+SubXkk3Fiv/Lt/vbnDvx6WMaUNCtvrOP96Ynvp5q52+V7fuxbnH6Npqvd9v0Mpa9VEn/ehfAdNRtG9xl0rQmhfwnqHhQ2GKcZjTe6+jqAxAAAAAAAAAABQXQgLA1B7Bnrctakned/f5zKpoX34vQkHSR1npJ/H6t1j7loSank1L0VYWMXUyiakatDfKb3wT+kHgMK4NnHNfKfUNq+8aymFY38pNU4eeb+uSdr3o+5+4xdJ71guTTrS3YYNUgAAAAAAAAAAAEBexpgWSX+QtEhSv6T3WWuvstau9utnrU1Za2+RdIikh5Xe7/glY8xlOe1ul3SEpOeybh9ijHlL8f4UADDKNU6Wmmd41ya9WWqcVPw5F34seNv2Q/c8dYfhNO55bmScQ1nVyAGV9S3uWudyacPdwcZ5+RvSyhv92yy6Ovi6qkG+187Ge8qzjqqU5/Xdt1Xa9Zp/G9d+sulnRltSNfPbP/bwhVLv5uLNNZCQeje464MHYBfAFfgVj6XfHxsJCwMAAAAAAAAAoOYRFgag9uxe6q41jPe+P+EA6Yz7pLmXShOPkBZ+XDr9XqmhLf98626Pts5aZQkLK6oN9wZvawdKt47R6uV/k9aOsb+jQLG5Nnc1TSvvOkqlZW/prCfTwaHjF0lt+0iz3yOdepc0Jc8po8ZIB3/FXR9ggxQAAAAAAAAAAAAQwL9I2l/p9Ip/t9b+Nkxna22XpHdJ2ibJSPofY8yUnDa7JV2gdBjZYErGKEy0AIASOm+F1H7I8HvTz5bOfLQ08+3zgeBt9/v0nqfJVMKzSUMsvue5Me6wsFSthIVJ0sl/dtfuDZCJ2bVSev7z+dvNeHvwNVWDuRdLR37HXX/s/eVbS7WxAV7fT3/CXeta6a6Nlv1k2ea817/+4peLN9fK37hrcy+VZpxT8BRJ6/3+OBimmB2qmKvP9hY8PwAAAAAAAAAAKL36Si8AAEJL7HDXWue4axMPk477Rfj5tjwWvk81y7cRgMCq4rr39OBt+d5H88wnpRlvq/QqgNq15RHv+01Ty7uOUmrbRzrmp9H6TjvVXRtggxQAAAAAAAAAAADgxxhTL2kwsaNP0r9HGcdau8UYc52kz0tqlnSxpG/ntFlhjPldpmYlHR913QAwJsUapLc9X+lVeKtv3fPUFYbTkBWCY3zO07Y2Vbx1ldr4hf71rtVS6yx3fXnAPbMxd4BQ1Zr/ofTeQZeuVVLr7PKtp2oEeH1vuk8aSEh18ZG19Xe5+9W1RF9WNRu3UNr9mndtg8/3I6z1d7pr8y8vyhSJlPfhlw2Zv+ONsabQfQEAAAAAAAAAQHVxfxIKANXK78PShnHRxhy/f7R+1aK/K/19WfdXqb87T9tO/3qqv3jrGuuSu8O1r6VNSNWkc5m0c3GlVwHUpsR2qXeTd61xFIWFFaLOvUFKia3lWwcAAAAAAAAAAABQm06QtJfS4V1PWmu7Chgre9PQOx1t7sh8NZJmFjAXAKAcDvpSsHZ7HbPnqSssLG6Ggo+MjHMoqzwHrlaT1nn+9c7l7lpiu/TiF4PNY9zfr6pV3yK1+ISB9Y3RfT35DhSWpFTSvZc4sc3db9Lh0dZU7fY61l3bvbR48/h+b48szhTWO/ArnglTjPsEA/alODgTAAAAAAAAAIBaUPNhYcaYw4wxXzTG3GWMWW6M2WGMGTDGeKbdGGPajTGzM49p5V4vgCJY9uPijznTtX+wBuxcLP1poXTfWdL9Z0u3zvcPTlr1O//xLGFhRZPcFa69HSjNOsaC7jWVXgFQm1bf4q41ERYmSTIx98bCJ64o71oAAAAAAAAAAACA2pP9Ydu6Asdan/V8jqNN9qaZiQXOBwAotf0+lb/N+P2klqH8x0TKOwynISsExz8srIYO9YzV+ddf+Gfv+72bpN9PCjbHcTeEW1M1OfSr7lpyZ/nWUVUChuE9/THv+3/7R3ef+tbwy6kFiz7pX9/yZHHmWX+Huxb1sOwcrvfHwZCwetOgmLzfV1xBYwAAAAAAAAAAoLrUbFiYMeZgY8zdkp6R9CVJp0maK2m80qcCuj7lPVXSisxjqTGmpfSrBVBUfZuLP2Z9c/HHLJfHPyj1ZO2l7N0gPXapu/0TH/Ifj7Cw4gkb/kVYWHS1eLIhUA2e/ri7RljYkAn7e9/v3SB1rijvWgAAAAAAAAAAAIDaMj3reaEJE4N7/YykDkeb7VnPGx1tAADVIt4unfJX/zZHDz9gNmET3kOZ+J7nxhhnYJi1AcOUqsWiq921zQ9JPetH3l96XbCxT7pVmntRtHVVg7mXuGtr/li+dVQTGzAMb+WNI/c9da1yt+84I/qaqt2kI6Qj/stdd4XyhTHg/b4lSTr064WPn5F0BH41ZL0/Nsa8f0XuS/UWbR0AAAAAAAAAAKB0ajIszBhzmaTHlQ7+yv0kN98nuH+UtCrTr1XSu4u9PgAom+510tYnRt7f9ozUs2H4PZuSdr2Wf8wUYWFFMxD2lK0aOrGw6hAWBkQy0OOuERY2pNHne7H2tvKtAwAAAAAAAAAAAKg9u7KeH1DgWAdmPe90tGnKeu7zgSgAoGq0H+hfbxqeD5lMOcJwYvFh186wsLxbzavM5KP865seHHlv+fXBxp759vDrqSZ+h4wmd5RvHVUlxOt7433Dr1/2Ca0yddGWUyumnOCubbw7eAiby/Zn3bWGcYWNnSWRcoQpZgWExY13WFiCsDAAAAAAAAAAAGpCfaUXEJYx5t2Srlc6FWTw0yyjdADYNkmH+fW31qaMMTdJ+n+ZW++Q9MvSrBYASmzXYp/aq1JzZpPMur9Kj10i9W3NP6YlLKxo/EJ4vNiB0qxjLNj+nNRxeqVXAYwufgFZY43fz9tVN0mLPlG+tQAAAAAAAAAAAAC1ZU3mq5G0jzHmaGutx8l4gVya+Wqzxs3VkdVmc8R5AADl1DLTvz5u/rDLpHWE4eQE4BjF5HWAZ6rWDvWc+U7/ejIrl7N7jfTa96SulfnHnXpSYeuqdqbm/plEkYQIC0vkBKqtvMHdtv3QaMupFRN9/nw2JfVulJqnRx8/++9prmmnhhqqN9Wj+7b/SSt6XlNHfKZOnni2NiXW66ldD2hF76uefbLfH+OxJslju/LtW2/SQzvu0NT43jpq/Mma0ThH9+/4s5b3LFEylZQk1Zk6zW1eqJPaz9bkBvYXAgAAAAAAAABQCTX1KZgxZrqkn2cuBz/J+r6ka621K4wxcyUtDzDUH5UOCzOSTi7yMgGgfBLb3bXBU/K610j3nx18TAKrimcg5ClbfO/TbISTG1/9trT/NcVfCzCWNU6q9AqqR8fp0ranvWsD3qfVAgAAAAAAAAAAAJAkPSApqfReRSPp+8aYE6213WEGMca8V9KZGto3eJej6RFZz98It1QAQMUc9b/Sk1eOvH/syPOgdw/s9ByiwcSHXRtjPHOTbJgwpWpQ3yLNe7+04hfe9Rf+WVpwhdS9TrrrRKnrjWDjvun7RVtiRU08PH3YaK5lP5aO/lH511NpYfZfPvcP0v6fST9P9UtJ779bkqQFHn8/R5NYg3TgF6SXv+Zdv/M46e1LpVjEf37z+v+6a+P3DzxMMpXQd1d/eU8o2EtdT+vu7X/I2y8eGwoLa4w1erbZnNygzckNWt67RI/vutc51tKel/XUrgd1zexvaFLDlMBrBwAAAAAAAAAAxRGr9AJC+qKkFqU3DaUkXWit/bi1dkWmHvTTraeU3oAkSZONMfOKu0wAKDLXh/c7XnD3MbF0vz/MCjdXKpm/DYLZ+WK49rbGTiwslSjfh27XgcEAnFb9n3/d1Nr/KpRQ8wx3je8TAAAAAAAAAAAA4GSt3SXpNqX3/FlJh0m6wxgTeEOLMebDSh8yarPG+ZWj+VlZz5+PsmYAQAUsuEI67Z7h9854SJp3ybBbKZ8DORtiOWFhMp7tbC3u0zv25+5a70ZpIJEOEwsSFNa2QDpvpdR+YNGWV1F7HeuuRTm4tOaFfH13vpH+uuUx/3bNHZFWU1P8DqztekPa8mj0sVc79uo1TpGM93uVl8Xdf9sTFBZGPCtMMW6aQvfPtaN/qx7beU/+hgAAAAAAAAAAoOhq5l+2G2PqJL1P6Y0+VtK/W2vzJBx4s9b2S1qSdWu/wlcIACWwa6l075nSb9ukvxwhrb55eL1hgrvvncdIN0R4m7f94fvA2zOfCtfeZyPTmML3ASg9a6UnPuSuH/zlsi2lJkw7xV3L2WgKAAAAAAAAAAAAYIRrJPVmXR8v6RVjzA+MMacZY8bndjDGLDTGXGWMeUrSdZLiGgoKu95aO+IEt0wA2SkaOnT0oeL+MQAAJdVxmnSxHXpMPWFEk83JDc7uDWb4Ho6YY5u8DXw2dZWZdqq7tvPl/GFPg972gtQ6uzhrqgamzl3rWV++dVSLsAFpg6+bfK+fWOEBU1WvYbxU5/Pn3BwxLCyxPVo/D7dv/W2kfi114/Y8b6sf8at3JMt7luRvBAAAAAAAAAAAiq6+0gsI4RhJg59MJCT9R4HjrZF0cOZ54FMKAVRYyidEaP4V5VtHOSR2SvecIvWsS19vf056+D3SqXelN8VI/pscokolij/mWJEakLY+LnWtTJ9W198Zrj8hWRk1eHIjUGt2viwld7rrsy8s31pqwYSD3LXkTim5W9ryuNS5LL1pLD5RamiX4oOPif4byQAAAAAAAAAAAIBRzFq7whhzuaRfKn3AqZXUKunKzEPGmF2SdisdCjYh81VKB4Qp08dIekLSZxxTfU5DB6j2SrqrqH8QAEDFJVJ9ztrejcMDsIwx8soFq9mwsI4zpY33edf+ekSwMSa9SapvLt6aqsFex0mvfde7NtBd3rVUhZCv776t6a+r8oRQxUqwX7namJg0/WxpzS3e9e414cZLDUgv/5v04hfdbSYdGWrIVb2vh1uDpHpTr31bDtxzvX/LYXqh88nQ4+RKWPf7MQAAAAAAAAAAKJ1aCgtbkPlqJT1lrd1V4HjZ/YtzPAqA0vPZ6KH5HyrfOsphw11DQWGDbEp645dZYWHeJ98VZICwsEj6u6T73yZtejD6GISFpVnCwoCSsinpgXf4t6lrLM9aaoUx0uHfkp67ZmRtx4vS7YdKXSv8x4g1DoWHNUzMep4JExt23T4ycCzWUJo/GwAAAAAAAAAAAFAG1tobjTEpSf+r9H69wSSLwTCwCZnHiK5Z7e6QdJG1tssxzS8lDSZddPq0AwDUKL+wsKbY8BAss+dHzHCpWt2ftuiT0vOfL2yM435VnLVUk47T3bVND0njFrjro1HY1/czn5DaD5S2PeNu87aXCltTLTn8m+6wsKXfk478bykW8J/gPPMJaekP/Nsc9vVw6wspppgu7fjEsPfH4yacoZe7ntVLXU8XNLbf+zEAAAAAAAAAACidWgoLm5L1fHURxsv+JKyWvg/A2Ob3weJoCzbxCiSRpOU/k475afq5LcEJdynCwiJ5+RuFBYVJhGQNIjQNKK3X/idYsBWGG7evu5bv+ymlf4fp3Zh+RFHfOjw8LG/gWNZ1/fixcbonAAAAAAAAAAAAqpq19rfGmEclfUvSuzS0b89rA4zJ+rpC0testT/JM/7jxVorAKA6Jaz3HtKY6lRnhm8HN/I+jNV6/tipAfUt6T09UQN6DvuGNH5RcddUDeqa3bWlP5Dmf7B8a6kKEV7fj73fXWs/OB0mNlaMmy9NO13aeI93fcuj0tST8o/T3yUt8/3VNa1lVrj1hfCOvS7RkeOO15T49GH3G2JxXTXjc1rWs0Rv9LymAQ3oz1tuVErh9u663o8BAAAAAAAAAEBp1VJIVvYnV8X4l+6Tsp7vKMJ4AMoh1e+umYbSzbv+Lmn6W0o3vpfezQEalSBcirCwaNb8ofAxCMlKIzQNKJ3eTdIzV+dvV9dU+rXUmvik/G1Kqb8r/ehZG61/w4SsILGsMLGGAIFj9W2S8T5tFwAAAAAAAAAAAAjDWrtG0kXGmOmSLpB0nKRDJe0lqV1Sn6TtklZKelzS3ZLutLYUJ+oBAGpNwhGUFfc4GM849jrUbFiYJLXOlnYvjdZ3/P7FXUu1qG9x14Lsd+nvSe+VGi17Y6L8ytS9xl3b8WL0tdSq8fu5w8K2PRssLGz9ncGC/erHhVtbCKdNfLvne6Mk1Zl6LWw5SAtbDpIkPbj9du0c2B5qfNf7MQAAAAAAAAAAKK1aCgvLTs3ZuwjjHZT1fGsRxgNQDtYnLCxWwre0F79U/rAw432q3TClCFUiLCyanS8VPgZhYRkRX9epASlWjDxRYBRbfG2wdpUOxqpGjZMrvYLCJHemH1oZvq+py4SNTfQPHItPzHqeFTg2mjZUAj/c87UAACAASURBVAAAAAAAAAAAoCisteslfTfzAAAgkIR1hIUZj7Awee/BtLV8mOXe50qv/lf4fnXN0rTTir+eauC313aHz77OLU9IT39c2v6s1NQhLbhSOuiLo2CPSw2/vqvFjHOlpd/zru1+PdgYb/wqWLu6eLB2ETSY4GO31U8IHxbmeD8GAAAAAAAAAAClVUthYasyX42kw40xDdbaZJSBjDELJc3IuvVCoYsDUCY969y1WENhY8+9xP3h7JbHChs7ikBhYSUIlyIsrHJqeRNSMaUivq53vypNOKC4awFGm8X/kb9Ny+xRsOmtBMZygJodkBLb0o8oYvHh4WFhA8dKuCkOAAAAAAAAAAAAAADUjkTKERYWG7m3ICbv/S9WtqhrKqtD/zV9sOmGu8L1O/lWqaGtNGuqBod+TXr+CyPvD3RL/V1Sfevw+12rpHvPkPo709c966QXvyzVtUgHfLbkyy0pW+TX95QTizteLZh+lru29HvSkd/2P9h261PS6puLv64Q4qZRJsQewLa68aHncL0fAwAAAAAAAACA0qqlsLDHJPVIapLULOl9kn4RcaxPZj3faK19tcC1ASiXlTe6a6bAt7R9PxL8JKdySO7K36YU4VKEhVVOKcLfalLE1/X6uwgLw+iR6pdiRf5VffG1wdqdfGtx5x0tGsdwWFihUgmpd1P6EUVdy/DwsCCBY4PXDRP8N+cBAAAAAAAAAAAAAICakbCOsDDTOOKecYaF1fChnvWt0ql3SDcEOIx20JmPSXsdU7o1VYPmGe7ahnukme8Yfm/NH4aCwrKt+EXth4UVOwxvLB46aYw0/a3S+r9617c8Jk09wd3fb697mcRjI98T/YyrmxB6jqRNKGVTigU5HBsAAAAAAAAAABRNzYSFWWv7jDH3SDo3c+trxphbrbU7woxjjDle0lUa+iSssse2AAhn8bfctULDwqYcV1j/SihFuBRhYaUXa5BSyZH3CQtLixqC1xcxhAaoJt1rpSeukDbeKzXvLe3/D9LCjxU+bn+X9LfPBWs78dDC5xuNYg1S4xSpb3Ow9mc9md6ImNwhJbZLiR3pR/Z1MnMv9zq5ozSBoLVqoFvq6U6f4hpFw/isILFMmFiDR/iYV+BY/bixuekRAAAAAAAAAAAAAIAqlHTsb/QKxjGOAJuULXKYUrkZI005Qdr8cIC2MWncwtKvqdLa5rlru18bec8V5rTzJfc4A4l03WvvZzXpWV/pFYwOvq+pV91hYclOad3tpVlTCF4Bin5a68ZFmqffJkPPBQAAAAAAAAAAClMzYWEZX1M6LMxKmiHpTmPMudbaQOkgxphTJf1eUkySkdQvySd5CEBNiZX4LS2xIx0aUQ75NhNselCaelJpgkQICyutqf8/e/cdJslR2P//U5M2717Od7rjlFBC2coCBSRAIgiQCBLYxkYm88P4azBgE43BYBvbyCQbY0ASAgMmCCEhFJGEUECghHQn6aIu3+2FTRPq90fvamZ3u3q6e3p2Znbfr+fpZ6e7q6prZmd7d6erP/VCafcDjrAwgmEkxQ9N27cm2X4AU61UkG4+pzxA7cDT0n3v9MKKnvem2tped51kC7X3cabrO1Ladmu4spkuqXOJpCXRj2NL3uylfgFjYQLH8nujH3M6y+/1loH10eualJTtGx8wFipwbHQ93UHYGAAAAAAAAAAAgIMxJivpZEmrJc2R1CPJWGs/3tCOAQCa1ogd9t2e9QmrMfK/Xm/V4mFhkrTi0nBhYQvPldrm1L8/jTbvVPe+kf7x6wObpR13u8uXilIqPX7b41+Qfvchb8JGzAzLXyM9+R/++379Z9KyV43/2SoVpfvfLT151dT0r4psKhepfE+6L9ZxRkrDvmGNAAAAAAAAAACgfloqLMxa+2tjzLWSXicvMOxESY8bY/5Z0nWSJiXcGGPSkl4o6c8lvVZ67sqvlfQFa+0z9e85gERUm80tla39GMsvkTZ833/f4JbmCQt75prRsLCQoUqzjvZmqzrwdIhjExZWV7vuc79X44ZkTTfVQtOWvNR/5rXh7fXpDzBVdv7afybLtV+rPSys/5Ha6sPTtSJCYf/ZaUMxKSnb6y2RjjmqVJTy/RVBYqNhYq71iYFjxYH4fZ9ubGn0ddkdr34qWxEyFjVwbJaUZjAdAAAAAAAAAACYfowxZ0h6v6QXS/K7IDIpLMwYc6GkS0dXd1lr31+/HgIAmtVIyT8szC+sxh0WNg0m9Tz0ndLARumxz7rLLDxXOv3aqetTI6WyUucy7zWZ6JFPSi/4RHn9jkuC29r6S2nx+eX1zT+THnhvMv1E61h0TvD+u6+QXvjT8vrj/9Q0QWGSlPMJUAzSne6NdRxXgCMAAAAAAAAAAKiflgoLG/UWSYdJOk5e4NcsSR8dXcYl3BhjHpO0StJYKosZrWMk3SXpA1PRYQAOd79Z2v1bqTQsFYek4ujXoz8qHf6eyeUdgzyeYxI4pR39MXdY2E+fL80+Tlp4jnT030nZntqP51ItLGnNl6ST/0MKO2hlpF866YvSHa+uHgZWJCysrgr7pbZ5/vsICxtV5X296Dz/sLChrfXpDjBVnvqG//btd9TetvEf/IiIDqwPX7aRr3kq7c1cGXdm2OKIFzY2Fh6WDxs4NhqqVS30dCYp5b0wy7iBlumOyWFirsCxSQFkfVKqFf/lBwAAAAAAAAAA05UxpkvSV+RNFirJN8XFNZvgI5Ku0OisPcaYb1prH0q8kwCApuYKpvELxjHGf6I36/xV00KMkY77jHTMx6XhHZKsNLxTKg56Y2m7V0ltcxvdy6k161j/sLBKAxu9CR2DPPqZ8WFhrjHFmP7mny5t/5X/vmdvlPJ7vckgJWnD/9a9O7bapNsV/AIUg3Rn+qJ2R5I7wBEAAAAAAAAAANRPy905bK0dNMZcIOlaSeeoPDjIyJtlcCwMzMgLFXuuasW+GyVdai2pLEBD7XtS2vO7ydsL+/zLFw4Et5dEWFjXQcH7dz/oLTvuks67vXoAw/BO6cAz0qwXRAtrCHt6CltuYL209CLpwgekTT+STEraea//IIZqYWKonWMQUtWQuJmi2vu6bYH/9qFtyfcFmEr5Pe59paIXABVbyOCqRedXLzOTzT1J2nZryMKOc30rSOek9HypfX70utZ64a+VAWORAsf2EJ5ZqTgoDQ5Kg8/Gq5/pKQeJ+QaOBaxne9x/swAAAAAAAAAAAERkjOmVdIeko1Se9LPS2Ng+X9baDcaY6yVdPFr2dZIICwOAGcYVTOMXjJNy/FqJErjT9NJtUudS73Hnssb2pdEKe937rPUC1vofq97O1pvHr0eZXHA6mk4/L1H1HuEOC7MFaXCLFxZWHKoeQpeAvA0/vjtrcpHa7k7Hm0DbFeAIAAAAAAAAAADqp+XCwiTJWrvDGHO+pPePLmN3sdsJX8eMhYftkfSPkj5LUBjQBFyzFhUdFw73/qFKewmc0rIhL3buuFvacY+04Az//aWidN87pDVfkWS9wIUzvyctOjdc+6HDwiKGS8060lsk6fcfJywsKVG/D8YR+MOvJk+11zM32397vr88qAdoSQHv3dKIlOqoT9uVTvt2DceYAXoOCV92pp6LjJEyHd7SsTh6fWulwv6K8LDd5WCxUIFj/ck/p1ZW2OctAxtiVDZStq8cIBY1cCzdOXN/DgAAAAAAAAAAgJ/vSTpa5bF9I5Kuk3SLpJKk/w7Rxg/khYVJ0vmSPphsFwEAzc4VTJMzk8ejGsdEb1ZM6jktrbhM2na7/7673iidfrW07bZwbVVO7LjlxmT6h9az6gpp7Vfd+39ymDeJ8y0XTEl3hktDocv6BSgG6U73Re2OJHeAIwAAAAAAAAAAqJ+WDAuTJOtN6/SPxph/k/R6eYN/zpC0RBp3dXe3pLsk/VzSN6213D0ONIt0u/9218XMoAuukmSm+JS2+Xp3WNgT/y6t+XJ5Pb9Huu0i6ZWbpLY51dsOGz41+Gy4cn4XfVOOWaMIC4tu35rwZYNm7yMszFM1LMwxKKGU92Zoy9QSqAQ00Prr3PtKI5JqeG8b/8GPk7TPr15mJttxV/iyYV9zjGeMF96a7ZG0PHr9UtGbKXZcwNjEwDHHen6PVDiQ+FNqXdZ7TfJ7pDgvi8mUw8OeCxKbEDgWFECWjjZoEQAAAAAAAAAANC9jzGsknadyUNjdki6z1m4c3X9QyKZuGGtS0guMMd3W2v2JdhYA0NRcwTQ5n/GQxjHBVSnq5KBoDfNOde9bd410yNukRz4Vrq21X5UO+Qup/9Fk+tYoJi3NPdmbINkl1Sap5I2/9G1jBk8Ut+BM6bRrpLte7y5zw/FT1h1XWKIfvwDFID3p3qjdkRStTwAAAAAAAAAAIBktGxY2xlo7JOnro4uMd2V3tqScpJ3WWseVKwAN5woAKDouHD7138HtTfUF6QNPu/c98+3J24pD0qafSM97U/W2w4RGDWyWnv5G9XKSdMQHJm9zhYXt/HW4NlFmC+HLLnmZtPlnjp0MQpIU/P4//C+lbMAMZvm9hIVhenINxgptBg/aSlK6M0JhXvOGSKVHg6dmx6tfyksj/V6AWD5q4NhuQlcr2YI0vMNb4ki3jw8PqwwcCwogy87ygkVT2WSfDwAAAAAAAAAAqMXfVDx+WNL51tqBqI1Ya7cYY7ZJWiBvQtHnS/pNMl0EALSCvCOYJuczoapxjN2wz2VXYlpJVxk3eOtLwrf12w94YWGbr3eXOfYz0qHvCt9mI5i0lM5JP1whDWzwL3PpfklWutYxpnimO+iy4LCwKeQKS/Tjd04M0pnukZGJfH6M0icAAAAAAAAAAJCMpg8LM8a8QNKLJR0had7o5h2SHpN0k7X2wcry1loradeUdhJAPKl2/+3Focnb7BQOzlhwtrTtturlula59+1yjEN85JPhwsLChEY98N4Q7Yxafsnkba6wMEQXJtxtTPsibwBGre1MZ0EzNx7+vuDXKd8vdSxMvk9Aow1tldrnVS/nEiZQM+34vYyylW+UnrwqXFmTqm9fUB+prPezFvfnrTg0GiK2uyJILELgGH8LlBWHpOIWaWhLvPqZ7orwsBCBY5Xr2V5+hgEAAAAAAAAASIgxZrGkYys2vStOUFiFx+WFhUnSISIsDABmlBHHJF5Z4xcW5n/dt8SkntNTz+rg/YUD4dvK90tD26TBgDEL88+cHhObppr+dpLGMkaac4K06/5G90TDJZ/x9Q45n3NikLRJqzPVrQOlfZHquQIcAQAAAAAAAABA/TTt1R1jzPGS/lnSGQHFPm2M+ZWk91lr75uangFIjCuUpOgzHvDA0/XtS6WD3xouLKzaLGS1CBMUsf674dtr9wlPKkYY+IBgfgF3LnNPkp75tv8+AkJGBQzGSrcHD04ZIS8U09T666RZH4tff2eIP5VXXhG//Zmi9/AIhUMEtGH6SbdLHYu8JSprvYGpYwFjEwPHqgaQ9UvMflxW2O8t2hijspGyfeUgsaiBY5mucCGNAAAAAAAAAADMDKeOfrWSNlhrb6+xvcqBAXNrbAsA0GJGHME0uZRfWJj/dVvLtfXpKZVNtr2fHiUNb3fvn3tyssdD8zrsPdLdYSaKrq8RG36scjbGhNLdmV4dGIkWFuYKcAQAAAAAAAAAAPXTlGFhxphXSLpaUrvG32U/dnW2ctsZkm43xrzBWvvDKeoigCTkZvlvH9k9eduar9S3L5XmnBSuXGF/9Lb3PxWuXJKhUXNOlDp8wsLaFwcc3xJwEEUxwsxYC8+RM8ijlE+kOy0v6P1vUlKmR0rlJL9BBkMBg3OAVratxvHyW26sXoYBbNW5gk598XsUERkjZbu9pXNZ9Pq2JOX3BgeM+a2PPY7zt+20Zb3XJb9HipOva9KjIWOzJwSOTVx3BI5FOtcAAAAAAAAAAND0KmdZeSiB9iovanQn0B4AoIWMlBxhYWZyWFjKMQbSWsLCpq2lF0ubfpxMW0FBYUtfLqXSyRxnSjCOqSarrqgtLCzT5U0gWCPX+c+P3zmxmu50r7ZqU6Q6rgBHAAAAAAAAAABQP00XFmaMOVzSNfKCwqTxAWF+wWEaLXu1MeYEa+1j9e8lgETkZvtv9wsLe/QzwW3NekHt/RmT6wtXbu1XpeOq9GuisCFgthStXZdMj3T8P/vv636eu97ARqlreTJ9mAnCzoy15KVSpkPav9Z//8YfSoe+I7l+taqhbe59JuWFqbQv8N6nEw0H1AVa2exj63+MpRfX/xitLt0RvqxJ1a8fgB+TKgdOxVEqSPn+cAFjfoFjxfCzl057tigN7/SWOFJtFaFi1QLHZk8IH5uV/GzJAAAAAAAAAADUpnIgzt4E2qsMCOMCBQDMMK5gmlxqcjCOkf/YDauExmei+fQcMjXH6VhUvUxTISCvYRIcwxElmMvvnFhNdzrk+PkKUQLMAAAAAAAAAABAMpouLEzSl+SFf1WGhOUl3Sdpw+j6MkknSMqNlrOjdb4s6awp7i+AuHJz/LcPbY3e1orX1taXSibkbF9+oWaSVG3WOWu9sKPAMiFDxYKc8AVp6UXuULBUwK+AtV+TjvlY7X2YKcJ+v573p8H7t/yi9r60usKgdMsF7v1jP59tjrCwZ2+SVr+lPn0D6q1tvntGyqRCJF0WnCV1LKzvMaaDar+/xxeuWzeAukhlpLa53hJHcUga6S+Hh43sqQgVCxE4ZgvJPp9WVhr2/ieK83+R5M1IWxkeFjZwLDdLyvS22OzHAAAAAAAAAIAWUDnAJnoCwWRLKh7vSqA9AEALcQXT5IxfWJj/2A1LcNL0teyV0uP/VP/jzD+j/sdAcznig9Kjn45e77h/kh76QCJdGC6Fz8n1OydW053uiVwnSoAZAAAAAAAAAABIRlOFhRljjpIX9mXl3V1vJX1e0t9ba3dPKDtL0gclvb9i8+nGmGOstb+boi4DqEXncv/tB56RiiNSOuet5/cHt3PYe6QjP5hcv8KGhbkMbAjen98r5aqMfaw1LOyg10uHvTu4TNDzXP8dwsKiCPv9ihQyM0NtualKgdHZHtsX+O9+9oZEuwNMrYCBiMPb6nfYhedIp3+nfu3PVMZ/dlpg2kq3Sx3t8YIHrZWKA+WAsYmBY5XrleFjlYFjDOYuKxzwlsFN8epn+yqCxCrCxLIhAscy3fzNCwAAAAAAAACYqHLGpCNracgY0ybp2IpNPrOMAQCms7wjmCaX8gkLc4zdsNUmhEXrmneqN2an3hMzLntFfdtH8znir6KHhfUdIR30OumhZMa4u8IS/fidE6vpTkfP9Y3SJwAAAAAAAAAAkIymCguT9OrRr2NBYe+21n7Rr6C1do+kvzbGPC3pKpXvDL5EEmFhQCvofp7/dlvyAgDGgga2/MLdxvJLpBP+Jdl+1RoWtm9N8P58f4iwsBoHKoQJKDEBvwJKNYaVzTRhw8IYZFTdQx8K3j/23h7e6b9/1tHJ9geYUgHniKEaw8LmnSrtuHvy9gVnSefeXFvbM83y10gbvheiIGE5QGjGSJkub+lcGr2+LUn5fe6AsWqBY4V9yT+nVpbv9xati17XpEfDxmYHB47lZlc8rggcS7cTNgYAAAAAAAAA088Do1+NpJXGmMOttY/HbOvVkkZnH1RB0j21dg4A0DqKtqiCLfjuy5ncpG3GMXajpDoHSaFxUhnp0gHpO+31O0bnCinbW7/20Zxys6VLtkvfnx+u/DGfkA6+Umqfl1gXRhxhiX6yJnpYWE86+vs6Sp8AAAAAAAAAAEAymi0s7KTRr1bSPa6gsErW2i8ZY94o6fTReifXsX8AkpTKBuysCExZf5272KnfSqw7z6k1LKywP3h/mGCpsOFTLmGeQyrgV0Ctx59peL2S0/9w8P6x97ZrsE3hQDL9KBzwvq8M6sFUCgoU3PrL+O2O7HGfpxa8KH67M9Wso8OFhYUJ7gSQDJPywnhzfVLXQdHrlwpeONZzQWIRA8eKg8k/p1Zli9LILm+JI5UbHx4WNXAsPfkGAAAAAAAAAABAY1lrnzbGrJF08OimD0p6c9R2jDFtksZmILOSfmOtTWiQAACgFYyU3KE0udTkYBxXWJgNmtAPrS/dJvUdIfU/Wp/22xfWp100vyjBX0d9OPHDD5eGQpfNpaKPn+jOVJkI20c+4LwMAAAAAAAAAADqo9nCwp5f8fgbEer9j7ywMEk6PLnuAGgK665x78t0JH+8sGFhXav8t1cLK9r7uNTtqDum5rCwEAElQc/TMfseHAgLmzpj7+3ll0hbb568f/eDtbU/uEX6weLx2158tzTvlNraBUKpMhDRWsn4D2L0tfUW6eZzgssEBUfCX6YrZMEI3ysAjZXKSG1zvSWO4vBo2NjucrBYZZhYtcCxUj7Z59PKSiPS0DZviSPdOT48LEzg2Nh6tk9K1RgcDQAAAAAAAABw+bqkT8m7iHa5MeaX1trQ4wONMSlJX9X48YVVJyIFAEwvI9YdSpM1k8PCUo5xlNaWEusTmlUdx+3MP716GUxfR31EevgTDTl0UGDiRDmfc2I13enok+sGnZcBAAAAAAAAAEB9NFs6wKyKxw9EqDdW1kxoA0BTC7oYXxGYkspO7Q30YcPCrKNPxcHgeo//i7TkJVXarnUwSpiwsIBfAQMbajz+DDPdwtUGt0rP/lwaWO8NbJl/VhMFJ4yeN7IBgxK23CwtOjd609ZODgqTpBtPlU66Slr1ZinTOb78zl9L238l9R7uHTPdHv24QFiDm6TOZeHKDmyqHhQmhf+dh7L8vnDlwgR3Apge0m1SeoHUviB6XWu9/x8mBow5A8cmrOf3JPC/wzRSHJAGB6TBzfHqZ3srgsRGw8SyPuFjfoFjmZ5ooZ4AAAAAAAAAMLN8QdJ7JM2Xd+H/P40xh0n6pLV2IKiiMeYISf8q6UUqDyhaI+na+nUXANCM8gFBObnU5GAc4xijaqtN6IfWt/ot0gPvq0/bz39/fdpFazj8fTHCwpI55wzbodBlsz7nxGpihYWVRiLXAQAAAAAAAAAAtWm2sLC+isc7I9TbXfG4J6G+AKi3oBup+x+VOkZDe7pWSfuemJo+SeGDU1wBZtVu1t95T/W2bTFcH1x23FW9TKrZfgW0sFKN369msvt30i/PlYZ3lLcd9Abp1P/2gvvqqdrr2LG0fN7oO9Jd7pfnSW+IMbhi7x/c+37zdmnt16UXXi+1z/OCPX77Aemxz5bLzD9TeuFPpSx/iiAmW+V9m98bvq113wlXrv+R8G3CE3aGRgJjAIRhjBdGmumUtCR6fWulwj7/gLEwgWNRfrfMBPm93jKwPnpdk5KyfeMDxkIFjo2upzv43QEAAAAAAABg2rLWDhhj3izpJ/JmwEtJ+mtJ7zDGXC9p3AezxpjLJB0q6cWSTpUXMDb2IeqQpNdbW+0CKwBguhmxAWFhhrAwVMjWce7xjhjX9huOa9GJyc2SzvqhdPsrp/zQQYGJE+VMLnL7scLCAs7LAAAAAAAAAACgPpotKSZV8ThK8kpl2ZSzFIDmUjjg3rf5Z9Kic73HrqCwJS9Nvk9S+Bu0XWFhqhIWFiYIrFrgWDV7H69eJt1R2zFQFuZ7ajLSovO8x4e+S3ri3xxt2caGBNz3zvFBYZK07mrpoMukZS+vvf0n/0N6+ptSYUBa/irpyA9LqdGAvonHneicm8qPZx0TXHbzz6UlF0Tr27prgvfv+o103zukM74j7XlofFCYJG2/Q3ryKumIv452XOA5VQYi7lsr9R0RrqkH/zJcuWe+LZ32rXBl4QkbnMi9CQCmgjFSttdbulZEr18qSvn+iiCx0TCxyvWgwLHiQPLPqVXZ0ujrsrt6WT+pbEXIWNTAsVlSOvqswAAAAAAAAAAwlay1PzfGvF3SVSqP8euRdOmEokbS1RPWxy6+FSS9xVr7QD37CgBoTiMBQTm5lE9YmPEfUm6rjfFE65tzQv3aZhIozD6+IYcdjhIW5nNOrKYn3Re5TtB5GQAAAAAAAAAA1EezhYUBmEnSne59Y0EcpYK7TO/hyfYnKldYWLWgrzBBYGHCp4I874+rl2mbV9sxUBbm+7X4QikX4kL67t9Kc46rvU9xFIe8wCs/679be1jYY5+THvyr8vqeh6TBZ6WTvzR6/MHg+n3PLz9OpaVMj1TY51/21gulV++U2uZE6GCIYJ/110kHPic9cZX//kc/S1hYWPufktb+l7TsFdKcExlEJanqe3DzT6VlFyd7yHoOjJuuekMGtpl0ffsBAElIpb2/lyL9zVShOOKFjfmFibkCyCrLlEaSfT6trJSXhrd7SxzpjslhYq7AsUkBZH1Sio8IAQAAAAAAANSftfarxpi1kr4taaHGXyStfFwZEGZH13dIusxae8tU9BUA0HxGrDuUJmtyk7YZ+Y9HKjEB3PQ36+j6tLvy8vq0i9bStdwb87jrvpAVkhkbOWKHQpfNmehhYdlUTm2mXcMRjkNYGAAAAAAAAAAAU487AQE0Tu+h7n19R3pf+x91l8nFvKE9KdYRZFY1LCxEsFStYWELz6teZiyQDbUL+n6lstLil0infau8bWSXu/zexxsbFuay897a2rZWeuLfJ29/6uvScZ+Tst1Sfq+7/unf8dl2tXRbQHDS09+UDn9P+D5mesKVW3+dtPZr/vuCvrfwWCv99PnS3j946498yvt62ZCUjj5AZVqpNhBxxz3JH/PgK5Nvc7pbcmH1Mtm+cAGRANDq0jkpPV9qnx+9rrXe35+V4WFRA8dq/b9pOikOSoODXhhvHJmecpCYb+BYwHq2R3LMyg4AAAAAAAAAE1lrf2mMOVjS2yS9U9IKR9GxVIUdkq6S9HlrrWNGMQDATOAKpcmanFI+16tcYWE2zKSSaG3GSOf/Srrp9Gj1Xni9dOtL3fuP+2xt/cL0cfKXpBtOnNJDDkcI5sql4o3F7M70ajgfPiwsHxDiCAAAAAAAAAAA6oOwoFmIogAAIABJREFUMACNE3QzcWnE+/rUf7vLLAm4ID8VSnn/7UmEhalKG0HmnCQte0X8+mOKQ1K6vfZ2ZgJXcFzHEuniJ6RM14QdAbOEpRr5qzlgEFRhf21ND22VDqybvL00Im2+XjroUumJf3XXX3zB5G3VzgEPvDdaWFi2O1y5x/5Rga/V4LNSx+Lwx51p1n6tHBRW6Tvt0utL3kCtGavKQMTuVckfct4pybc53aU7q5c58Yv17wcAtDpjpEyHt8T528la72/UiQFjoQPH+pN/Tq2ssM9bBjbEqGxGgzJnxwscS3fO8L8BAQAAAAAAgJnHWntA0uckfc4Yc6ikMyQtlzRXUk5eQNhWSXdJesDaajMvAQBmghE74rs9Z/xDcVLyH6NqaxmfidYx/7TodRZfKL1qi/TkF6Udd0v7n/bGfx71EWnJy7zr24AkzTlhyg85EiGYy3VerKY73aed+W2hy7tCHAEAAAAAAAAAQP00Y1jY2MCeU4wxK0PWWVS5Yow5U4FJLBMOaO3tYcsCSFjvYf6hMWMXD3fd666bCRHWUU+24N2gPumm5gTCwkIFijmc8/PwoUdBnr1JWnZx7e3MBK7vV6bLJyhMCvwVZRr4qzko6K7WsLCS/0AtSVJ+r/d17X+6y2R7Jm8zKannUGnfE7X1bUwm5M/N0Nbg/T8+VLqUyYyd7nuXe9+dr5HO/N+p60vTqTK+PUqoyaLzpC2/qF4uTPAVxgsKOx2z6o317wcAzHTGeH8jZnvk3T8WUakoFfaWg8TyFWFjYQLICgcSf0qty3qvSX6PFOdlMZlyeNhzQWITAseCAsjS8QY5AwAAAAAAAGgO1tonJCV04R8AMJ25QmmyqZzvduOYsIYMSjgZI3UslI75eKN7kqwj/p903zsnb+85dOr7Mp1kuqZ07MBIaShUOSOjjMnGOkZ3ujdS+SgBZgAAAAAAAAAAIBnNGBYmeSkq19RQ99YI5a2a93UApr+U46be4ujFw/1Puet2H5x8f8Z0LJUGN1Uvd01Kes0u7wblMUGBS2HFDQs76Uvj+1KLTf9HWFhYru+XM/gr4D1i0jV3J7agQVBjgV5xlfLufY5BWePLOMJ5Xny39L9z3fW2/0qaf3r19iX3+Siqwn4vSCI3K5n2ppugmeQ2fF86sE7qOmjq+tNMqg1EjPJzmA05aCfNbJeRhQkLAwA0v1R6NHgq5v9Ppbw00l8OD3MGjvmt7w4O051pbEEa3uEtcaTbx4eHVQaOBQWQZWdJuT4pFW+QNAAAAAAAAAAAAKaWK5QmZ/zHfRn5j/Gw1SaExfSx8grpmW+GK/u8P6lvXxpp+WukB943+Tr1oe9oTH+miyTGi0fgCkycKGtyzrDEanqihoUx9gEAAAAAAAAAgCnXrCFZVl7oV9Q6Y+Jd3QAw9VzhPGMXNOeeIm38gaNuHUOVDr5S+v3fhiv7vTnSGypOQWEu/g5skjqXuvfHuYDcsURa/upodboPlvav8d83sid6H2YqZ1iY4z1aKrjbyu+rvT+xVQkqsjZcsJefYtCMZjUE77TNkRacLW27zX//TWdIF94nzTmheltxQ/r87Pi1tOSC5NqbSbbdLq26otG9iK84JD17k9T/e+932NyTpGdvkHbdL/UcIi15mdSxKF7bI/0R+hFyEE6GsLDoqpwHV1w6Nd0AADRWKiu1z/OWOIpD5RCxOIFjSf7t2uqKQ1JxizS0JV79THdFeFiIwLHK9WwvQaIAAAAAAAAAAABTJO8Iysk5xqEaxxgPW22cHKaPU/4rXFjYwhdJJ3yh/v1plI6F0ln/J935Wm8yVEla/efSoe9sbL9a3tSeS4Zt0DjcMtc5MYyuiGFhRRVUtAWlnZMrAwAAAAAAAACApDXzp/K1XD0JW5dQMaDRUo7T0NiNz65ZkLLRLkZGtvpPwoeFSdLglorwlxBBX4WB4P2umZZSbdLh75Me/fT47SteKx372eg3qq9+i/TQB+P1EWVRw8JsQFjYrvulVW+svU+xVPn1ufu30pzj4jVdChikYExwgFo1R37IHRYmSTecKB3/z9Lh7w1uJ8lZ3oa3JdfWdGPSweEWd79JWvnG1gxdKAxIt10kbb3FXaZ9oXTOTdKso312VvkZdIU7+hnZFa5cmrCwyKqFJs4/c2r6AQBobel273/IOCGi1kqFA+WAsbEwsefWqwWQ9WuqBy03tcL+0QHxG2NUNlK2rxwkFjVwLNMVP5AZAAAAAAAAAABghhmxjrAw4wgLc1yHKVmulc0YqYy08nLpmW+5y7z8aal75ZR1qWGWXCi9eqe0+wGpe7XUPr/RPZoGpvZa74hrTP0ErnNiGD3pvsh1Rkoj6kg3821JAAAAAAAAAABML832qfx6cbciMLO4wpRKY2FhjtCs5/1JffozpnOZdPBbpTVfCVd+w/elQ9/uPQ4TODSyU9ozLP32g9LOX0vdq6Sd91avl+6Qjv17b0lCzyHufcXBZI4xE7iCruKEhXUs9m7+f+KL0tPfkAr7pGWvlI75hJTKRuvXvrVeGNyOe7xgoqM+Is07xV2+2nt3w/fih4UVAt5PJiMN1RCutejc6mUe/Ctp1RVS29yAQgmGhRG257boPOnZnweX2X6ntOCsqelPktb+V3BQmCQNbfXO/S/8ic/OEH8GD++s8j4eFfYcXsMsgnBY+rJG9wAAMN0ZI2W7vaVzWfT6tiTl904IGJsYODZhvTJwbGymaUiy3muT3yMdiFHdpEdDxmZPCBybuO4IHEu3J/6MAAAAAAAAgHoxxqQkHSXpBZJWSJovqUPehdJBSdvkjR98SNIj1pLkAgAYzxWUk3OMfzHyn6zQJjlODM2ve7V734IXzoygsDHpnHsM6YKz/SdtPfqjde1SSzv5y97kqBMd9IbJ5e7ymUT4oNdVPUS+lNeG4bXKl0aUt44x9RNkaxgT2J2JPpn35uF1Wt35/NjHBAAAAAAAAAAA0TRVWJi1dmWj+wBgijnDlKqEhWVn1ac/lU7+srTiMun2V1S/GXrTT6KFhf3hC9K6a8vrw9vD9altXrhyoQWMqywSdhTa2Pt1Itf7e9ax0sb/c7f1+Oe9cKsxj35GGtgsnfY/4fs0tEO6+UXSwAZvfWCDtO126cV3ecFh/gcPbjNfQyhAaci9z6SkQsCd9cteEdy28R/UNY4tSBt+IB38ZwFlHN/HOLbeIh1yZXLtzTQP/rV0wd2N7kV0D380XLnNP/VCBlMT/hQPM9Z9yy+kgy4LcZCQ4+YdM6iiBt2rGt0DAACCmVQ5cCqOUkHK91cPGPNbz++RigH/G8w0tuiFwQ7vjFc/1VYRKlYtcGz2hPCxWdEDqQEAAAAAAIAYjDFnSbpS0ksk9YWsttsY81NJX7XW3lm3zgEAWsqIjRYWlpL/uBjLvNYzy4pXS498yn+S15Wvn/r+NKuDLpscFtaxRJp3WmP60woWXyBle73JuioddOn49UXnS9k+7zp7pRWvDWz+zj0/13e3/WfokLAxOZOLVL5SZ6o7cp3Pb/iglrWt1NuX/a1mZebEPjYAAAAAAAAAAAinqcLCAMxAxnEaGrsoP+QI0ZqqG1oXnSO95EHpx4cEl3v2Z9KWm6VF50phZp2rDAqLYv+aePWcAga9FAgLC80VMjUxCGjM6rdID3/M3daTX5u8fd3V0on/JuVCjpvdfH05KGxMYb/0zNXSsZ92HLvKIKhawuoKg+59tiTtX+ve/4J/iH/cSg9/okpYWIIzRq7/jqSYP+fTXZhArJ33eOVaLcgqSsjDrgekeSdP2BjitVnz5XBhYUyy3RiLL2h0DwAAqL9URmqb6y1xFIekkf7RELHRQLHnQsVCBI75DeKfqUrD0tBWb4kj0zU+PCxs4FhulpTplVKOgGwAAAAAAABAkjHmCElflHTW2KYI1edIulzS5caYWyS93Vr7RMJdBAC0mJGSIyzM+IeFGccklJZxNTPLrKOlM78v3fdOaWC9ty07Szr8/5NW/3lj+9ZMDv4LaXCrNxlyfo805wTptKultP/PFyS1L5BedJN0z5ulvY9760f93eQJctvnS+f8wivX/6jUNl866iPS8kucTT81+Liu3vofsbrlClAMoy3VHqvexuFn9NVNn9FfHfSZ2McGAAAAAAAAAADhEBYGoLGM48bSsfClvY/570/Fn/UosrDH+uV50utLyQYOTTT3j5JtL2jQS5GwsNBcYWGu93fXcndbwzv9g7NsUdrwfWn1n4Tr071v9d/+6D+4w8KqBd098gnp6I+EO/5ExaCwsIJ060vc+3uqhPVJ0vPfLz32ueAyYwN9nP2o488uKoR8nbfcJC1+cX270kg3/pH0honn4BADEbfeIg3tkNqrhfcxqLEhaglVBABgpki3Sx3tUsfC6HWt9f5XHakID3suSCxk4Bh/J5UVDnjL4KZ49bN9FUFiFWFi2RCBY5nu1gsHBgAAAAAAQGjGmEsl/ZekDpVDwvw+nAuz7xxJ9xtj/tha+7+JdhQA0FJGSiO+27PGf4xnSo6wsLDjlzB9LLtYWnqRNLBRKo1IXSuZGGciY6RjPuqFWOX7pbY5je5Ra5h3snTRY97Y39wc9zXQuSdKL3tktNxsyRFmOOb3+++L3SXXOTGMrnR37LpPD/1B+wr96smEnBQZAAAAAAAAAADEQlgYgMaqFhbmksom35ckjrXjbu9Cbr0se3my7WUCLuqWCskeazqLGhYmSQvOkrbdPnl7achdp3AgfJ8csygGqjZjYikfvc0xQX2/p0oAWphBOUtfXj0sTJL2PyN1r/TfV+28g2SEDWV78P9N77AwyQuuyM0ur4edtXTTj6TVf1qlUIi2OpaGOx7CY+ZZAADqyxgp0+UtnTH+lrElKb9vfMDYxMCxyvXK8LGRPVJhX/LPqZXl+71F66LXNenRsLHZwYFjudkVjysCx9LthI0BAAAAAAA0KWPMayVdLT2X0DJ2Ea0yGGy7pN2jS0rSLEmzJc2vaKqyXpeka4wxl1lrf1C/3gMAmlnB+o9fyzjGeBr5X0uwTC4zMxkTPNErPKk0QWFxtM1NtFx/YVfsrixpO6imuh2pLg2Wxo/5zZqc2lMd2lfsD6zfX9hNWBgAAAAAAAAAAHVGWBiAxko5TkOlQnDgRpTQpFqlIsywdNPp9euHJK16U7LtLTrXvS/Ojdcz0f6npIc/7r8vKCzMON77xYCQr7rPZBdiEJS18W7ILg5ErxPFgjPDlRvY4A4LY8bIKRJysN2eh+rbjWbwh3+Xjv5IxYaQr80T/149LCxMaFXYnxsAAIDpwqSkXJ+3dMUYIF0qSPm9wQFjQYFjxcHkn1OrskVpZJe3xJHKjQ8Pixo4lo4/mzYAAAAAAADcjDGHSfq6vACwyrCv/tHtN0m6x1q721F/rqRTJJ0v6Y8l9Va0k5H0DWPMw9baJ+v1HAAAzaso/wlQ047h8MYxzq3EODEATS9eqGHGZHVy79mxj5oxWZ3Wd65u3v2jcdtP7j1bc7IL9OMd347dNgAAAAAAAAAASAZhYQAayxWmZIvBN9EuiH8hM7IoYWH11rks2fbSbe59QaFV8NiS9Mvz3ftdgWCSVPKf5VBP/VdAe3UOC7MhBkENbJC6VkRvuzgUvU5UL75HuvGU4DLb73AHJIV5/qgdr3PZ7/9WWnW51L1qdEPIAT67HwxRKERbiy8MdzwAAAB4UhlvFu24M2kXh6V8fzk87LkwsZCBY67/I2ei0og0tM1b4kh3lsPDKsPEggLHxtazfVMQ5g0AAAAAANCy/l1Sp7wLlkberF0fl/R5a+3+apWttTsl/VTST40xH5H0fkkfGm1Lkrol/ZskLnYCwAxUtEXf7WnHuDqjlO92G2YSPgBooGpnqXnZhdqV36552UXalt+stDJa1XGoXjbv9VrRvrqmY79q/h8rl2rXfXvvUMHmdXzP6Xrl/CuUUloppXTL7h9rb3FPzJ4DAAAAAAAAAIBaERYGoLGCwsL2/sFdL9tbn/74SWWn7lhBeg+vT7snfEG6/z2Tt5emINyp1e26X9r/lHt/psu9b/sd0Y+XVFhY/+NSn9/7KcRF+qFt8cLCpiIgau7JUts8aXiHu8yu+937HIPJkLAo74Vd90tzTqhfX5rB+uukI/66Dg2H+Hle8Zo6HHeGS/HvFQAACJBuk9ILpPYF0eta64WqV4aHRQ0cI7i3rDggDQ5Ig5vj1c/2VgSJ+QWOzS7vmxg4lumRjKl+DAAAAAAAgBZjjDld0rkqB4Xtk3SJtfbmOO1Za/dJ+jtjzB2Svi+pa7Td840xp1lr70qm5wCAVlG0Bd/taceknkb+n8dbwmwANDnXeeqU3nP0psXvruuxUyali+e9QRfPe8OkfRfMfbXOnHWB3r/mct+6nF8BAAAAAAAAAKg/7mYH0FiOQRqyheDAn+6VdemOL9MkYWHpjqlttzhcn+NNJ2u+Erw/053s8ZIKC3vq69Jxn/HZEeIifd41G1g1MW9Kf8Gnwpc1Rjrz+9Ltr5RGdvmXCfqeJHnjfKYnubamnQiDQW44UbpsyAtVmK5++4FyWFiSs5ZWez+f8o3gQEMEm3uytPPeydsP/8up7wsAAJgZjJEynd6iJdHrWysV9k0IGJsYOLZ7QvhYReBYfm/iT6ml5fd6y8D66HVNSsr2jQ8YCxU4Nrqe7iBsDAAAAAAANKu3j3418i4MXxk3KKyStfYXxpgrJX1b5QvOb5NEWBgAzDBFx2SQace4OuP4PN3GHcsGAFOG0C0AAAAAAAAAAOCPsDAAjeUKP7JF7yZWl2xvffrjJ5VQQFOtXMFqtUo5QnhKhIVVtfGHwfsTD+JJJdNMacR/e5igorVfl+aeImUjBqHFDUFa/WfRyi84U3rp76UfLvXf//T/SKd+w39fkmFhDChzi/o633W5dOZ369OXphPh58TaKgEBVdp63pvCHwuTrXzj5LCwvqOkWUc3pj8AAADVGON9lpLtlbpWRK9fKkqFve6AMWfg2Oh6cSD559SqbGn0ddkdr34qWxEyFiNwLJ1L9vkAAAAAAABIMsa0SbpY5QuV/2utvTap9q211xhjLpH06tFNLzfG5Ky1jgEQAIDpqCRHWJj8x3imHOPtbJIT+gFAHbhOU0aNn1QoqA+WkDMAAAAAAAAAAOqOsDAAjRUUFpbf778vN6d+/WlmqTqdstOOsLCBjfU53nQyvCN4f9u8qelHVM6wsBAhTuuu9pbz75LmnxrhoDEHALQviF6nc4l0zCel3304YsUEA74KB5Jra7qJGha24XvS4FapY2F9+pOk7oOl/Wui17MlyUQMA9z6S2nRuQFtMuimrg59l5TfJz15lTS8U1r4IumUr1cJcAMAAGhhqfRo8NTsePWLI1K+3z9M7LnHAYFjrv9jZ6JSXhre7i1xpDsmh4lVho+NW58YQNZXv8+nAAAAAABAqztF0tisY1bSP9XhGJ9XOSysW9Kpkm6rw3EAAE2qaAu+29OOiVhdgTaE2QBofs60sCZQwySnAAAAAAAAAACgZtzZA6CxXDcYlgpSYZ//vvb59euPyxnfk+58zdQft5IrWK1W6fb6tIvg8J++o6T+h6euL5WcN1lHuEh/xyulVz0bPuAoakCUJPUeHr3OmFTWva+U999v/WeeRNJiDAZZ8xXp6I8k35WkdSyMFxa2+Xppycui1fnDF4LDwoJe57l/FO1YmMwY6agPSUf+jXdOdQVvAgAAwJPOSen58T7TsVYqDo0PD4saOMb/e2XFQWlwUBp8Nl79TE85SCxU4FjFerYnelAyAAAAAABoFWOzjVlJj1lr70n6ANbae4wxj0o6ouKYhIUBwAxSdHzen3aMrTTy/0y6lOSkkgAwhVwhiFPah4AJNYkKAwAAAAAAAACg/ggLA9BYrgAsW5TyjrCwTE/9+uOy+MVTf8yJHLPf1Sy/371vYJPUubQ+x211w7uqlwkK5Fl+SfSwsL2PRyvvkkRY2NA2afdD0pzjQlaIMQTg4Cuj1xkz7zT3vuEdUsfiydvjBJoF2fOwNOuoZNucDuK8zr//Wy8Ya37A97UZxH0P3f4q6bKhaHWq3WBvA37mVl4e7VhwM4agMAAAgHozRsp0eIvf/3LVWCsV9k8OGAsKHKtcz/cn/5xaWWGftwxsiFHZSNm+coBY1MCxdKf3fgAAAAAAAM3oyIrHv6rjce5UOSzsyKCCAIDpp2gLvtvTjrGVrkAbGzSuBgCagHWMuW2GsLAgnF8BAAAAAAAAAKg/wsIANFZQWFjBERaWbUBYWCOOOVGqTqfsA0+79+1+kLAwl6Gt1cssPNu9b+nF0sMfj3bMNV+Wjv37aHX8uC7GRw062vdk+LCwqAMA+o6SDn1ntDqVeg5x7xvaNjVhYTvuJizMl+N1Puy90h/+xV3tV5dJr4xzM/oUijvQxRakHy6JWKlKWJgroC+VlQ59e8RjAQAAAC3MGO9znWyPpOXR65dGP6PyCxgLE0BWOJD4U2pd1ntN8nukOC+LyZTDw54LEpsQOBYUQEbQLwAAAAAA9bS64vGv63icX0t6q88xAQAzQFFF3+1p+Y9DdYXqWNf4JQBAVc0eWAYAAAAAAAAAwHRHWBiAxnLM6CZbkNb+p/++TIOCu1b/mbT2a/Vpe/lrpIMuk+58rbuM67Wq1YKAQKtsb32OOR088cXg/YsvkDJd7v2pXPRjjuyKXseXa7BTxKCjdddIB11a4zEdXvSz2gLy2uZKMvJ9TkPbRrtUkDb+QNr+K6ljidT/aPzj+WJAhC9XoFbnMmnhOdLWX/rvH9hYvz4lJuB9fsFvpJ+f5N4/9r4Ma+MPqhRwvM4nXiWZakFjAAAAAJ6TSpdDqOIo5aWR/nJ4WNTAsdJwss+nldmCNLzDW+JIt48PD6sMHAtaz86Scn1e+DIAAAAAAHBZWPF4XR2PU9n2ojoeBwDQhIq24Ls97RhbaRyT8dmo4+QAYIq5zlPNH9TF+RUAAAAAAAAAgHojLAxAYxn/Gd1ki9LQVv992QaFhZ38lfqFhZ32LSndJs0+Ttr9oH+ZoOCpWsw7pT7tTndrv+ret/Jy6dT/Ca5f7xtMUzmpNOK/79kb/Le7QpxcNv4wfNmobdc6oCGVkdrmScPbJ+8b2ioVR7xwvk0/qu04gRj04M8VqGWkpRe5w8IkKb+vcb8DwnC9z5//fmnOCc3RF9Psg4UAAACAaSaVldrneUscxaHR4LA9PoFju8v7XOu2mOzzaWXFIam4RRraEq9+prsiPCxq4Fgvwc0AAAAAgOlubsXjPXU8zljbRtKcOh4HANCEio7PvNOOcagpxzgZwsIANDv3earx4/+CAss4uwIAAAAAAAAAUH+EhQForKCwMJc9v6tPX6oxRjrvdukXZyXdsBcUJnk3D7rUKywsKLSqOFyfY04HriAuSTrtm9Xrp3LJ9cVPutPdx+Gdjkr1vEwfoe1Mt9SxuPZD5mb7h4UV9knP/jx8UNi8U6Udd8foAMMefFlHWJhJSQf/ufTA+9x1110jHfzW+vQrEY7vedsC73fImd+X7rgkucMNPhvws+IKZePmdAAAAKClpNuljkXeEpW1UuFAOWBsYuBY1QCyfvG/bYXCfm/RxhiVjZTtKweJRQ0cy3QR/gwAAAAAaHZtFY/rGRbWX/G4vY7HAQA0oahhYa5Am5Jr/BIANI1WvUbXqv0GAAAAAAAAAKB1EBYGoLFSjtNQfp+7TmGwPn0JY8GZ0oUPSDccn1ybR3yg/Lgw4C4XFOpVq3SnVPQ5dnGo4vGItPMe76bRBWcHB5tNd0kMFqp3WFi1C+77n5G6V06oEuN5HdggdS0P0Z0IbR98pRccVStXwN7O+yTzQPh20p3S8f8UHGLlh0FlDo73pklVD0W898rmDgtzBqGNDjxc/qpkj/eDJdLrClLKZ8Cjdb3O3FwOAAAAzBjGSNlub+lcFr2+LUn5vRVBYhEDxwr7k39OLct6r01+j3QgRnWTHg0Zmz0hcGziuiNwLM290wAAAACAuqsMC8vX8TiFisd1HEgDAGhGxXG/BsrSxn8cqnFMqmcJswHQ5JzD/xwhiFMpqA+cXwEAAAAAAAAAqD/CwgA0lmNGNxUCwsKqhcnU25zjpAvvl244IZn22heWH4/scpfrOzKZ4/lJt/uHhZWGva+DW6Sbz5H2PuatZ7qkF/7MC0+biXbc7d4X9vuU7Yl+XMegJn9VLrgPrJ8cFhbnIv3WW6Tnvan2/oxJd0jHfiZ6P/y4zhVbbpIGNoRvx6Skw94rPfNtadf9yfRtJnOGqI0OIDnu89KDfxlQ3zZx4JXrfV7R3wVnSdtuT+6Qj35aOurD8foCAAAAAEFMqhw4FUepIOX7y+Fh+YpwsaAAsrHAscoQ+5nOFqXhnd4SR6qtIlSsWuDY7AnhY7PqO4kBAAAAAAAAAIRUtEXf7Sn5j0M1jjFGhNkAaFlNMfwvKCwMAAAAAAAAAADUG2FhABrLGRbmE1w15uC31qcvUcw5Xjr7x9JtF9feVmWg0YrLpEc+6V9uxWtrP5ZLus1/e3E0LOz+95SDwiSpcEC64xLpVVuklON7OJ3tW+ved+IXw7WRiREW1j4/fFnXtGJjCgf8KkXqjiSpFPbG3ZBtv2pzcu8pV/jerKOjhYXtut8LpzrvDum2i6StvwxZkWEPvlxhYWZ0Js/VbwkOC9t6s7TovOT7lQjXdH4Vs5TOPi7ZsLDffUQ68kM+AWqEhQEAAABosFRGapvrLXEUh6SR/nJ42MiEMLHAALLdki0k+3xaWWlYGtrqLXFkusaHh4UNHMvNkjK9M/PzQwAAAAAAAACJKzo+9804JuE0Svlut87JDgGgWfiP/zNNMP4vcK7XamOXAQAAAAAAAABAzQgLA9BYjkEa/kFGo5olJGbhi8KV61gsDT4bUKBi4EnvYe5iuTnhjheHY8Y97fuD93X9dZP3De+Qtt0qLTq3bt1qXgGDhRaeHa4uWQfwAAAgAElEQVSJODdJlqLc5FplQNO226QlLxm/Lc4gqHuvDBfgF6bvp/6PdxNpUkzWf/vm66O1MxY6lumQzv6JtO5a6dd/GuL4/Jnlr0qgVq5POv070q8u8y/36D9KC8+tMuKkQZw/QxV97VoVvd0FL/TOty57fifNfoH3eP8zXgCka9BNM75uAAAAAOAn3S51tEsdC6PXtVYqDvgHjIUNHCMEvKxwwFsGN8Wrn+2rCBKrCBPLhggcy3TzvywAAAAAAAAASVLRMc4x7QwL8/9s0fL5L4Am5zpPNUVYWEAfOL8CAAAAAAAAAFB/pFgAaCzjCEwaWO+uk+2tT1+iynRJL75buvFU//0mLR3yDql9gfS7D7vbqQxRWvZyKZWVSvnxZWYdLWU6a++zy9A2/+1rviId/TF3va23zsywMFcIT8oRTtWMHv2MdOw/TNgY8yK9tcE3bW7+mfTYZ4Pb6DlEWnl5vOO7HPIX0m/elmybmQ5p9Z9IK14t3fFaacuN7rJt85M99nQRJlBr6UXu+ltulH58sHTWD71zY1Nx/QxVPLfOZdGbPfYfpBtPce+/963S6ddIt71c6n+kSmONHywEAAAAAHVnjPfZXaZL6lwavb4tSfl9FUFiEQPHCvuSf06tLN/vLVoXva5Jj4aNzQ4OHMvNrnhcsZ5uJ2wMAAAAAKbO2AXTU4wxK+t0jEV1ahcA0OSstSrJFRbmPw415fhs0FabiBMAGqy5I7eCrrs0d88BAAAAAAAAAJgOCAsD0FgpR1hYkGYJC5OkeadIry9Kux6QioPeuklL/Y9KXSu8vj76meA2FpxZfpztlQ5+m/TEv44vc/j7k+97GENbFXjhthVvtCsVpI0/kLbfJfUeLh10mXcDYSSO16Qjxs2nSRzXt2iMC+5x6kjS4Gb3jbcHNki3vjS4fucy6cX3JP9+Snck216lbK90zs+lgc3SDx3P3TGT5YznCgszqfLjauGI+5+Srj9Gel1eSjXRn7Nhntvck6K323uodPGT0o8P8d+/817pR6tDNtaC520AAAAAmGomJeX6vKXroOj1SwUpv9cLD6sMHAtarwwcKw4m/5xalS1KI7u8JY5UriJULGLgWHaWlM4l+3wAAAAAYPozkq6p8zGsuPAJADOOKyhMktKO4fBGKd/tpbjj5ABgyvifpwx/BgMAAAAAAAAAMOM1UboCgBnJxDgNVQuRmWomJc09cfy2WUdVrPgPOHlO31Hj10/4F6lntbTxR1K2R1r1Zmn5KxPpaizTaWBMqSjdfYW07trytievks75hdQ+P3w7hf2O9odr6181wzsiFI4TFhZzxsQ1X5WO+aj/vjsuqV7/gt9IbXPiHTvInOOTaadjsXtf5xKpbZ7/94awMAfXe3PCufKEf5Xuf3dwU3e9QTrjukR6lQzXc6sYoNO1Qpp/hrT9zvDN5mZ7S7pdKg7V1MOWDHkEAAAAgFaTynifdcT9vKM4LOX7y+FhE8PEAgPHdkulfLLPp5WVRqShbd4SR7qzHB5WGSYWFDg2tp7tizdZBgAAAAC0tqkI8ppGA1kAAGEVbMG5L238P4dzhepYfpUAaHLu81Tjx/8F9YCzKwAAAAAAAAAA9UdYGIDGcgzSmFZMlbCwicEtxkiHvdtbmkLMAKlmtONX44PCJGnP76S1X5OO/GD4dtZ/13/74LPR+nPwldKaL0erM7LHu+GwqjiX3GNepn/4Y+6wsF33Bddd8lKpY1G841bTvjCZdpZcFLzfFXoYMEBtRnOF0k08F4YJhlz/XW9Z8dra+5UEV7jixN8DJ/6bdNvF0sDG6m1ecG/58fLXSM98K37/JFUNsAQAAAAANF66TUovkNoXRK9rrVQcnBwwFiVwLG6g/HRUHJAGB6TBzfHqZ3srgsT8Asdml/dNDBzL9BD6DQAAAKBVkREAAEhcMTAszH/8ljssjM9AASA+97ULwhgBAAAAAAAAAKg/wsIANFbUsLCulXXpRl0FhYXNOnrq+hFk6culTT/y3zedbg588j/8tz/0N9HCwrbfmUx/0iHCkCZ66hvS4e+pXi7W962Gi/TFISndPn7bSH+IinW84THTk0w7C18YvN91HrPFZI4/7bjemxPOlQvPCdfcnZdKL7pRWnx+Tb1KRsggtNnHSi/9vfS92dWbnHtS+fHqt9QeFsZNxgAAAAAwvRnjBXBnOiUtiV7fWqmwrxwklq8IGwsTOJbfm/hTamn5vd4ysD56XZOSsn3jA8ZCBY6Nrqc7+BwAAAAAwFRaL0LCAAB1VAwYi5V2jN8yjrGb1jUhIAA0uWb42N8VxOjh/AoAAAAAAAAAQL0RFgagsRwzujktf3V9+lFPQYFoR/zN1PUjyJzj3WFhPz54avtST+uubXQPxtv7WPQ6O3+dfD/G1DIIaniH1Lls/LYwN4cGhenVKt3utV9r4N3Si4L3u37GN18vrbqitmNPR6732cT3Qvui8G2u/c/mCAtz/gz5DI7JzZJO+7Z01xvd7WW6xq9XC64LpQlGCwEAAAAAmpcxUrbXW7pWRK9fKkqFvT4BY471iYFjxYHkn1OrsqXR12l3vPqpbEXIWIzAsXQu2ecDAAAAYFqz1q5sdB8AANNbUUFhYf7jUF2BNpYwGwBNzhVqGBzUNTVMQGIZZ1cAAAAAAAAAAOqPsDAAjZUKCNLyUxysTz/qacHZ7n3VQoimSlBo28DGqetHvaVyUmmk0b0oe/aG6HVKwyELxrnkHhCq1bFUGtzk3j+ye3JY2MYfhDhmHQcuGCNleqR8f/w2jviAd3Ns4HEc57F110qnfIMbKydxvc8mvBcyHeGbXP8d6emLpFWXx+5VIlwzmLreIysuDQ4LO/+uydsufEC64fjofXuuL40fLAQAAAAAmMZS6dHgqdnx6hdHvM9yxsLD8lECx3Y312d/jVbKS8PbvSWOdMfkMLHK8LFx6xMDyPqkFJcgAQAAAAAAkJyiLTj3peU/Nicl/4ksbdA4OQBoAu5QwyYf/1fLpMUAAAAAAAAAACAURuoDaKygkCo/s4+tTz/qadYxUvdqaf/a8duXXixluxvTp4lcQTbVKybajbpLtbX+DYPFkGFhNsaApqCL9BfcI936UmnP7/33j/gEct3/nurHrHdwUaartrCwYz9dvUzQjY/bbpMWnx//+NOR671p/AfnhXb3FdLwTunwEO+7enGdX1KOwLhURjrk7dKTV03e9/Knpe6Vk7fPOS529zwtdt4GAAAAAMws6ZyUni+1z49e11qpODQ+PKwyTCxM4JgrCHwmKg5Kg4PS4LPx6md6ykFioQLHKtazPbV/VgQAAAAAAIBppRjw2V3KMf7ROMamlWJNxAkAjdcso/+MjG+gmTvkDAAAAAAAAAAAJIWwMACNlW6PVn7uSfXpRz0ZI73o59LtL5f6H/W2LTxXOvWbje1XpdhhYS0m3SYV9jW6F2V+IXLVFIdCFgxxwd2WJtx0F1CnfbH0koekaxw36U0M5BrcWv34kuSYvTExATNKVjX3j0IeI+B123ITYWGTOF4vvxtAOxZHuyH18c9Jh727/iF0LqW8/3ZXWJgkHfc5aXi7tP57kqzUd6R01v/5B4WNOeaT0u8+HLOTzTJcCAAAAACAhBkjZTq8pWNx9PrWSoX948PDJoaJjeyueDwxcKyGwPrpqLDPWwY2xKhspGxfOUAsauBYurNxnw8BAAAAAACgLooB48DSjklrjWOcjI0zEScATCF36FazfPZtFGqcMgAAAAAAAAAASBxhYQAaK9MVrXzH0vr0o956Vksve0Ta/4yU6ZTaFzS6R+OlZsivg0yXNLzDf19h0LuRcCod9h7p/ndHq1MaDlcuKMDqubbyXoDac3UCBkEZ4y1t871go4km3gy58Yfh+llvvUdIQ9vi1V3yknDl9q9x74t6jpsJnO8zn0Esh7wjWijWwEZp35NS76GxuhZZYVAa2uIFmg0+6w4jTGXdbWQ6pDOuG72xuD84JGzMoRFfl0p+oWwAAAAAAMD77Cvb4y1aHr1+qeh9NuAXMBYmgKxwIPGn1Lqs95rk90hxXhaTKYeHPRckNiFwLCiArPIzUwAAAAAAADSFoi0696Udk6Uax0SW7hAeAGgW/ucpVwjiVCMqDAAAAAAAAACAxpkh6TAAmla6M1r59vn16cdUCRMC0wiOwTIhKibajbrLzZUOrPPfN7xNyhw0tf1Zfkn0sLBiyLCwMHY/JM07uWJD0KX70e91ts8/LGzTT6WVbyiv73syXB923huuXFxLXiptuzVe3WWvqP34/Y/V3sZ04woL8wux6j0sevuFfV5Ynol5frLWu0m3MgTM9XhiSJ5LKle9TG62t4SR7QtXLm5fAAAAAABAdKl0OYQqjlLeCxLPhwwYm7gedpKBmcAWvEkjXBNHVJNuHx8eVhk4FrSenSXl+oKD4wEAAAAAABBLSQXnvrRjOLxxjB8iLAxAs2vVsxTnVwAAAAAAAAAA6o+wMACNlelqdA8g1RAW1mKCwuaGtkldUxwW1rk0ep2AGRInFKxe5JFPSWf/X7g6YwOnOhZJ+9dM3r/uaun0b5fX+x8J1UsNbgpXLq7D3iVtv0Pa9GN3mb6jpP6Hx2879h+kWS+o/fjrvyPp2trbmVYc7zO/sLA456YbTpQ6l0uHvE064gPl926pIA1tHR/2NbhFGpr4eEvyN9cmfYNo3CA0ibAwAAAAAACaVSortc/zljiKQ6PBYaPhYWNBYqECx3ZH+NxxBigOScUt3udIcWS6K8LDogaO9fp/TgYAAAAAADDDFQM+v0o7xhgZx2So1jXZIQAgJMIYAQAAAAAAAABoFMLCADQWYWHNwca8OBv2ZqmRfmnrLVLhgLToPKljYbzj1Srb6943tG3q+lGLsDftdSyRBjcHl9n0owltu94HFRf1u58nbb/Tv9j/z96dx8lV1Xkf/56qruolSWcP2QMhCWEzggEEFFAQQVGBccUNnRkZdRSXURmXB/FRZ1HRcXdGRceFeUZxXEaQxQ0EAWUHWQIhbAlZyNpJumu55/mj0unq6ntu3Xurbq2f9+tVL/res/2qursqdJ36Xq8gpfb90yJs8Nrc08L1iyvdJ530U+nKVRMDwUadeaf0zK3S2sukgYXSQW+UJh+UbF3dzLnZzm/zSMxQrD1PSHd9uHSbtqoUAja8WU273l7P5Oas66fewWUAAAAAAKA1pPtKQf/9c6OPtbb0t9v9QWIVgWO+AWTbxtryO9S0v7u0osJQ6aYnYww2UmbqWJBY1MCxnkm1Bc0DAAAAAAC0qKItONvSxn87fEr+oeyE2QBoeY79vKZF/v7rCmMEAAAAAAAAAADJIywMQHNFCQtb+tbk6uh2cd88Xv/L6n12PSxdd4q096nScc8k6ZQrpTknxVszKXtCfnBrkyMoq1HChoVNWVE9LGwCR4hT+c/HpIAQrad+IS06Z98Y/41WExxwarh+tTAp6bhvSdccN7HtyE9IqbQ0+/jSLQmF3QQjlnOFhfn9zIT9OQqy/a7a56hFqleasbr+8x7+Eem+T8WoJ1v/WgAAAAAAQHszRspMLt0GFkYfbz0pvys4YCwocKwwVP/71LZs6bHJb5d2xxhu0vtCxqZXBI5VHjsCx9J9db9HAAAAAAAA9VAM2DfnCgVzhdl4hIUBaHGuUMNWCekyRr7XECGMEQAAAAAAAACA5BEWBqC5+ueXgku8XPW+81+SfD1dK+abx2ECtv70jrGgMKkUnHTj66Szn4wfUhaXK6RIkh78vLT8girjrXTd8+tbU2QB92GckG+473pY+sXyKp3Kvk8r3inde4l/twf/bSwsrDgSbv3lbw/Xr1YzV0sH/630yH+MnZu2qk7rO3Y9jGpEWNiWW6QHPidtvT18oFyz5Hc4GhIKC2u21V+SevrrP+8hF8YMC8vUvxYAAAAAANDdTErKTi3d4vAKpb8ZjYaHRQ0cKw7X9/60M1uURp4p3eJI9ZaFilULHJteET42jb89AQAAAACAxBTlvycqrR4Zxz5E49h7ZIP2EQJAC3CHbrVGWJizDktYGAAAAAAAAAAASSMsDEBzZaaUQsCe/Gm4vkhGUoE8xWHp6Wsnnt+7XtpyszT7+GTWdQp4E3rng6XgLC8vDa70DzLbdntypYUV9o30sBuaqgaFafzPR99sd79Nvx/72gsRFjb/rPgfIIzKpKRjvy4tfIW0+UZp8BBp4dn1Wb9nslTY5W4fWif1zal9HZett0nXPDe5+RvF73cuO7PxdcSV7pf650l9c0v/nXywtPhVpaC6JPTNLr1+rr8yYp19ydQDAAAAAAAQV6pH6p1ZusVRHJZyO8bCw3IVYWKBAWTbJFuo7/1pZ96INLyxdIujZ9L48LCwgWPZaVLPoJRK1/f+AAAAAACAjlF0/A0nbdx/TzCOMBt3CA8AtLbWiQrj+RUAAAAAAAAAgGYhLAxA8z33O9KNr5M2XBXcb0ZCgStQYm8f53e627bd3viwsGoBWqPBWYMrpVOulCYfNL79L/+STF2RhH0jvZ5XP4zx81EMCgsz0rzTpRO+H7uiWExKWvDS0q2egoLCJGnd96VZx9Z3zVFeXvpVpzw3+oQWzjxW6p0ljWxpfDmjsjPGh4CN3sqP++ZKmUH/wLMknXi59IfXVn/9LDe4Mrl6AAAAAAAAmiHdJ/X3Sf0HRB9rrVTc4x8w5gwcqzjmw09jCrtLt71PxRufmVoWJFYWJpYJETjWM7nxf58DAAAAAAANU7RF3/PxwsLqubcOAOrPHbrV2n8D5a/lAAAAAAAAAAAkj7AwAM2XnSq94Erph1XewOyd0Zh6upHxCempBxv0tq/j+22tdP+/SndeVDpedoF0zFfrVGPIt6F3PiD9/izppfeNP5+ZVocaahXyPgQ+9lFVfK8Wv0Z6/P/5dx15RuqdKa2/0r996fnSUZ8t9ekUz/5X6c4Putsf+pK08j3S5KX1X7slAuzqxO9nIpWWDv+IdPt767uW6ZH6DggRAnaAlO6t79r1lBksvX7+7CBp97pwY1KZREsCAAAAAABoK8ZIPZNKt4EF0cdbTyoMuQPGqgWOVbsQQbfJ7yjd9Fj0sSa9L2xsenDgWHZ62ddlx+k+wsYAAAAAAGhhRVvwPZ827q3wKceeQ3cIDwC0Cv/nKVcIYqO56+D5FQAAAAAAAACApBEWBgBILiws6E3fyg/dWFv6YNTvXyFt+t3Y+Ye/IT3yLem1udo/qGMjXBFwx1+k7fdJgyuk4oiUmVz6AFe7iHJfq6l83Be8zB0WdsUs6YiLpeIe//a+AzorKEyS5r04OCxMkn5+sHTWA9LgIfVd++6P1Xe+ZslMk2Ye49+28j3SwELp8R+VPvD32OXR5l71TxNDwHpnJvi81wTZ6eHCwk5xhPgBAAAAAAAgHpMqBbpnBqVJS6KP9wpSfmfpb8/7g8S2Tzx2BY4V99b/PrUrW5RyW0u3OFLZslCxiIFjmWlSOlvf+wMAAAAAAMYpquh7PigszBVm80x+k4q2EDgWAJrpwT33+J5vlesduJ5ft+Q3hhq/o7BNf9h+tZ4aWacD+1bopOlnqi/VX88SAQAAAAAAAADoWLzLCQCQErvSVEBYWKHsQ0wPfkm67d0B0xSknfdLUw+rsZyIV6y68oja1kvC8KaQHet5da6KUCVXqNOoey8JmKq39nJazfRnhet3/TnSWX+p37pRf55bVc8k6eSfSamMu8/iV5ZuUunDd2u+Fm7upedLh19Uc4kd4dAPSPPOaHYVAAAAAAAAKJfqkXpnlG5xFEek/I6x8LDKMDFXANlo+JiXr+/9aWdervT399B/g6+QHhgLDysPEwsKHBs9zkyVUun63h8AAAAAADpM0RZ8z6fl/n9qV5iNJH1z/Wf1t/M/qFQnXXAQQEf45Zb/anYJsf1o0zd12KSjdEB2gbPPzsJ2ff7xj2hTfr0k6c6hm3Xn0M26cNEn1Jvqa1SpAAAAAAAAAAC0LcLCAABSUhtegsKM7ni/dOj7pPVXBweFjbr9H6QXXFlrQTWOT8DAImnPE+H757aVPgCWrhK6VdxTW11Bc/XNiT9Xtbo72c776zvfjnuD24/+fOlDZq2s7wBpzklSZnL4MdOPCt83Mz16TZ3m+T+Rpj9bmnxQsysBAAAAAABAvaV7pfSceH+ztVYq7p0YMBYlcMx69b9P7aq4R9q7R9q7Pt74zGBZkJhf4Nj0sbbKwLGeKZJJ6qIwAAAAAAC0hqIt+p5PG/dWeBOwL/KuoZv15MhaLe5bVnNtAFAvI96wrt56RUCP1v874PXbr9Kr5vyNs/2Wnb/bHxQ2at3wQ7pv9206esqJSZcHAAAAAAAAAEDbIywMQHs47tvNrqDDNenqeLnt0u/OCNd3w1W1r9eKH1ya/1Lp4a9HG7Ppemnei9ztue3S9ntqqytILQFUqQ4NC5uyXNq1prFrDm8Obl/5nsbU0WhRfoa8keTqaBeLzml2BQAAAAAAAGhFxkg9A6Wb5kcfb61U2DUWJBY1cCy/s+53qa3ld5Zuex6PPtakSn+3Lw8YCxU4tu843U/YGAAAAACg5RVtwfd82qSdY/pS/YFzPrL3AcLCALSUx4cfUcHmne3VntcapS89oJHCsG/bI3sfCBz7P5u/43v+F1suJywMAAAAAAAAAIAQCAsD0DpMWnJc/U0Hvr6xtXSbxD4EUiWc66GvJLSui23weiEc8RHp6eukoYfDj9m1Jjgs7KEv115XkFp+Xly/4+3u1N9IP13U2DV7Btxtx/574+potIANfhNkpiRXBwAAAAAAANDNjJEyg6XbpMXRx3tFqbBzLFxsf8BY5bEjcKy4p/73qV1Zb9/jti3e+FRmfHhY1MCxdLa+9wcAAAAAAB9F+e87Sxv3Vvhl/YfJKCXr2McYFMgDAM0w4u0NbF/ef0SDKgm2ov8I/WnX9b5tI55/iFg1G3NP1lISAAAAAAAAAABdg7AwAK3DpNxBQnzQIGGpZKa1VcLC7v5oMuu6VKunGQYWSi++RbpiZvgxXpVNSnd/rLaawljxbumhL0YfN+uE+tfSCgYWhuv30FekFe+sz5rb73W3LX1LfdZoRakI/3wdPCy5OgAAAAAAAADEl0rvC56aHm98MSfld0wME/MNHNs2MXzMy9X3/rQzLy+NbC7d4kj3TwwTy5SFjQUGkE2N9jdfAAAAAEDXKtqC7/m03BceHEhP1nkHvF0/2Oh/UVPXnADQLDnr/rvl6TPO1ZK+ZQ2sxu0Vs9/oDAvLeyMNrgYAAAAAAAAAgO7CzlsALSShwCpUZ5IKC3OEvzWNbXYB/npnSIOHSDsfDNd/+53utk3+b77X3dGXSht/I+0ICKzyM+u4ZOppF3/+e2n5OyRjap/rkW+62zr5w1UBVwOdYNE5ydUBAAAAAAAAoHnSWSk9W+qbHX2stVJxuCw8LEbgWMu9/9FExb3S3r3S3g3xxvdMGQsSCxU4VnacmZLce1wAAAAAgJbiDAurspfoxGkv0s+2fE9DxZ0+c/L/9wBaS1DQ1itmvVGmHntP62BGZrZed8DbdfnGr01oy1nCwgAAAAAAAAAASFIHJ0kAaDuHf1i65+KJ56etanwtXSehN4+tl8y8cbVaPeVMJnzftd+Rjvv2xMApryBdd3Jdy5Ikrfa5smIqLb30HumHEX52jv68lIpwP9tNZqqU31G9X26r1Duz9vWeuaX2OdqRcV8NdILMlOTqaCmtsQEIAAAAAAAAaAvGSD39pVv/vOjjrZUKQ+PDwyrDxHLbpbwrcCzE35G7SWFX6bbniRiDTelv86MBYlEDx9ID9bm4BwAAAAAgca5gr3SIvUQLepfowT33hJ4TAJolZ3O+5+dk5rdMUNioqT3Tfc/nAgLPAAAAAAAAAABA7QgLA9A6DnqDdM/HJdnx55e9rRnVdJekrrpe7800uR1SdmoNE9jqXZrFJ0TLs0Z7igOa3LN7Yv+d90tTDxt/bvONydS24h3utrkvkp6+Ntw8K99Tn3pa1bK/le7/bPV+W26WFrw0+Xo6VcHn98HPlBXJ1tFK+mY3uwIAAAAAAACgexhTulBBZoqkRdHHe8VSONaEgLEqx6OBY2H/RtoVbOlxyW+X4jwspmcsPGx/kJjPsSuALN1b93sEAAAAAPBXS1hY2rFdvqhCTTUBQL25grayqWyDK6kua/z/NpazI7LWtly4GQAAAAAAAAAAnYKwMACtY/JS6fjvSje/ZSxk6qA3ScsuaG5d3SBuWJhPwNU41os3r8vep2oLC6t3PZVWvCv+WDP2kmyt9InHPqavPPUObc3P0AlT/6jvHfomLel7fKz/hmsnhoVt/E389SXpkPdKD35+7HjSgdILqwSBZaeFm3vF38cuq20c+XFp253S09cF98vvrH0t28LBd0nbtSZkv4eSraOVHPlxacPVE88v+quGlwIAAAAAAACgilR6LIQqDi9furhKPkTAmN+x4wOHXckWpJEtpVsc6b7x4WFBgWPlx5lppfe7qr3PBgAAAADYzxXs5QoCK5dyBIq5AsgAoFly1v9vdxlHMFczZVPumvI25wwTAwAAAAAAAAAAtSEsDEBrOeiN0oKXSVtulgZXSpMPbHZF3SFuWNiMY4Lb672ZZsM1EwOyIkkwYCndXwq3iys19pL85afeqUvWXbz/+A87nqdT77xWDx53qNJmX+DZjnsnzrH+qvjrS9JzLpUOfV/p969/vjTzmOofVBlYHG7ubggL65kkveAaadsd0q+e4+53+3ulA19X21o7769tfDtLhfzn68CiZOtoJTNWS9OPlrbdPnbOpKWD/6Z5NQEAAAAAAABIRioj9c0q3eIoDu8LDtseI3BsW/3f+2lnxWGp+LQ0/HS88T2Ty8LDogaODcZ/fw8AAAAA2pAr2MsVBFaux/jvNypa/wAyAGiWnCPoP5vKNriS6oLCwPI2p6wICwMAAAAAAAAAIAmEhe2U5bsAACAASURBVAFoPdlp0vwzml1FlzExh1XZaFPvzTQPfF5a+Z74460Xf+yKd0vrr5R6+qUl50kHvl668yJpy43S4GHS4RdJM1fHnz89sP/L/7fpNROa1w4frD/vWq3jBm8tndh0/cQ5tv4p/voLX1H678BCafErw4+btCRcv8FDotfUjoyRZhwtzTnJ/3skScMbSx8gSvfFX2f3E/HHtrt0f7h+C16ebB2tJNUjnXqddMcHpKd/I00+SDrkQl5LAQAAAAAAAEyU7pP655ZuUVkrFXaXBYntCxArPw4MINuhRC/s0m4KQ6Wbnowx2EiZqWNBYlEDx3omld7TSMqWm6VNv5fmv1SaeniyawEAAADoCq5gr7QjCCxMH1cAGQA0S976h4VlAoK5miWbcteU80Y0KT1lwnmP510AAAAAAAAAAGpGWBgAQLHDwqp9oGP3upjzOux5vMYJHPUe+Qnpnv/jHnb6zdKs4yT92/jzJ/6gxnrKHH6RtPHXkqSbdp7g2+WfHrtIPz3y3NLBpMXjG4cerb7GjGPcgWKr/jlspeMtOke67d3BfU5zhGZ1sqMvlX4VEB736H9Ky97WuHo6yeJXSnf8Q/V+Ia4a2lGy06XjvtnsKtqS51n901VWV9xulU1LrzvO6N0vNDJ8eA0AAAAAAAAYzxgpM7l0G1gYfbz1pPyuiQFjQcfl4WOFofrfp7ZlS49Nfru0O8Zwk94XMja9InDMcVwZOFbtgiiPfl9a85XShXcGFknzX1IKDpv7wlJQGQAAAABE5Ar2SofYI+TqU1SdL4YKADXKeTnf80HBXM2SDQgwyzlCz3LW//4BAAAAAAAAAIDwCAsDAEh9B8QbZ73g9qG18eZNiqveaoEws46rfy2VZp9UtYstD3XLbRvfeOdF1ddYer50+k3SA58b63/UZ6WD3ij1zQlfa7mgDwPNe7F07L9PDDbrBjOeUwoDe/jf/dtvvaB6WFh+p/TMrdKU5dKkJePbinvd42YeG63WdlP5WLhsviHZOtAx3vcjqy/+eixM8tZ1Vjv3Sh87i7AwAAAAAAAAoK5MSspOLd3i8ApSfkf1gDFX4FhxuL73p53ZojTyTOkWR6q3LFSsMmBsWikobNSeJ6SHv1G6HfgG6YTv1ec+AAAAAOgqrmCvdIit8K4+rgAyAGgWV8hWUDBXswQFmOU8//uRd5wHAAAAAAAAAADhERYGACiFYfUdIA1vjDau2mYZLx+/pkRY/9Mm1dgy/KSzVbuMCwvbelsp/Gy09sf/O3hwZpq0/O2lYLTDPlS61ctfPSNdMXP8udOul+Y8v35rtKNjvuYOC6vm0R9It7xl7Hdo6VulY78hpfb90+2JK9xjT7ky3pqdZtsdza4AbWAkb/XNGya+Nnz991YffamVqRYmCQAAAAAAAKBxUj1S78zSLY7isJTbMRYelisPE6sWQLZNsv4fTO9K3kjpfcWo7y3OPzOZegAAAAB0PFewV9qkq4519fEICwPQYlxhWkHBXM2SCQgwy9mc43xwWJhnPaVaYU83AAAAAAAAAAAtjLAwAEApcOpZn5BuvSDaOOtV6xC7JF89U2ob76y3PcJgrK2o89H/lJaeH27wkReXgsKS0DtDOs9Khd2lK9BPWpzMOu3GpKT+edLeDX6NkrX+35OhddIf36hxvz9rvy3NPFZavu93dN333evG/ZBUpznqc82uAG3gNw9Ie3z2JW3YIT20UTpkbuNrAgAAAAAAAJCQdJ/U3yf1HxB9rLVScU9FwFjEwLF6v2/WbkxKmvfiZlcBAAAAoE25gr3ChYX5b5cvEgoNoMW4wrQypvoFiRutx/TIKCWriXuzXaFnOc8/RGx/ux1Rn+mvS30AAAAAAAAAAHQqwsIAACXL3iYNLJaeuEJ65JshB1UJC7N1/tBDYVeNEzjqaZOrUNnKULMHPh8+LCwzte71TNAzqXTDmNVfkW4416fBSvkdUnbaxKb1v5Tvz+pjPxwLC0N1S9/c7ArQBvyCwkaNsB8UAAAAAAAAwChjxt4HGVgQfbz1pMKQT8CY47gycKzm98hawMzncsETAAAAALG5gr1cQWDj+/gHihUICwPQYnKOkK1sqrfBlVRnjFHWZDVihye0uULPXOdH5b0R9aUICwMAAAAAAAAAIAhhYQCAMfPPKN1WfUr6SYirqjuu1lfWoS5ljVPMSemYV8iyrnAzIx33TemWv5nYdOQl8dZqhO13h++7+K+SqwNu01e52574iXTwWyeev+di//6bri/918vXXlc34ANHCCEVkBXpJfASBgAAAAAAAKBLmZSUGSzdJi2JPt4rSPmdwQFjzsCxbVJxb/3vU1QLXtbsCgAAAAC0saL89yq6gsDKpeTfxzUnADRLzvpf/TJrWi8sTCqFmI0UfcLCHKFnrvP726uEiQEAAAAAAAAAAMLCAAB+emeF6+cM39rfoeZSJtj4a2n+mTEHO+oxKWnBy6WBRdKeJ8bOZ6dLS14Xc636szLxBi59a+nDJ2i83jnutlv+2j8srJo1X4tfD4BxUgFPq5awMAAAAAAAAACtItUj9c4o3eIojkj5HWPhYZVhYvu/9gsc21b7hUz65kgr3lHbHAAAAAC6WtEWfM+nQ2yFTxv/Pq45AaBZ8o4wrWyqdcPC/HIXXaFfOW9isNj4dv+wNAAAAAAAAAAAMIawMADARCYVrl+1sLAoSSun3SA99kNp42+lnQ+4+w09Gn7OCfW46jVS32zptN9Ld39MeuZWafqzpcM/LA0uj79enfmGhVlPCnpzfNqR0rHfSK4oBOuZFH2MV2UT2m0XxqsFwARBYWEeYWEAAAAAAAAAOkW6V0rPKYV2RWWtVNw7MWAsTOCYJE0/WjrqM1zYBgAAAEBNitYnjUbuILDxfdKR5gSAZnGFbGVNa4aFZUzW93zOEXrmun9h2wEAAAAAAAAAAGFhAICaVAkLU4Sklf550jFfLX299rvSzef799u7IfycYesZDUebfJB0wvdrmD9Z1vqk2ux5IjiU7ehLS1ebR3OYgCQil/yO+tfRaeadKW24yt0++lwCVBEUFlas9hIHAAAAAAAAAN3AGKlnoHTT/GZXAwAAAKBLFa3/BRhdQWDj+/jvn3PNCQDNknNcPDib8g/lajZXiJkzLMxxPmw7AAAAAAAAAACQUs0uAADQxqpdWS8oxKpSz8DY1wML3f3u+6Tkxbyin3Ulv8QIdGoVa78rFYbc7VOPbFwtqN36q4Pb9zzZmDpa3YHnudvSfdKBb2hcLWhrQWFhXoSXMAAAAAAAAAAAAAAAACSn6Nir6AoCG9dH/oFiRcXchwgACclZ/7CsjCOUq9myKUdYmON+5Kx/GFq1cQAAAAAAAAAAYAxhYQAAf31zq/fZ+WCVDhGSVtL9Y1/POTm4723vCj/vOI56THu8HFq/ULP1v5QKu92DMpOTKwjhrP6yu23H/eOP/3RB8FzDm2uvpxMc9AbpqM9NfJ6asVp68Z+lzJTm1IW2kwp4+icsDAAAAAAAAAAAAAAAoDW4gr1cQWDj+jgCxTxbqKkmAKi3nOcfluUK5Wq2rCPEzHU/XOfDtgMAAAAAAAAAAMLCAAAuz/tRuH42KE0lZNKKSUs9ZeE+qSpX+1vzNWloXbi5x5XjuQqIPlcT+IaF9c4ODgsrD2FDcwwsdLf9/uVjX1tP2v1Y8FwjW4Lb2yT4ri4OfZ909pPSq/dIr/OkVw9JZ/xJmnZ4sytDG0kFPP0HvrwBAAAAAAAAAAAAAACgYYqOYC9XENj4Pv6BYkXrH0AGAM1QtAV5jmDErMk2uJpwMo4Qs7zN+Z7PWcLCAAAAAAAAAACoVRclSgAAIpnzPOnMO6r323Gvuy1s0sqS10qp6lf4G+fxkGFm4zjqaZOAJd+wMFuUfnOqe1Cb3LeOdkDA92fo4bGvt91Zfa7fnh7cPmlpuJo6RSot9fRLxkg9k5pdDdpQUFiYR1gYAAAAAAAAAAAAAABAS3AFe7mCwMb38Q8UIywMQCsJCsrKOkK5mi1r/Oty3ZdqYWD5KmFiAAAAAAAAAACAsDAAQJDpz5bOeii4z4arAxpDJK3MPlFa/eVIZUmS7vygtD0gqMy3HM/REJAW00Ks9alzZEvjC0E0mcnB7fldpf9uv6f2tYp7ap8D6CImKCzM9ZIBAAAAAAAAAAAAAACAhiragu95VxDY+D7+gWJF+c8JAM2QszlnW8YRytVs2VTW93zOEfpVLQysWpgYAAAAAAAAAAAgLAwAUM3gcmnVp93td3wgYLAjLGzOSdIZt0svWyOddoOUnRavtmueKxX2RhjgqCcoLaaFWL9Qs61/bnwhqK8df5GslZ7+de1zHfzXtc8BdJFUUFhYiLxLAAAAAAAAAAAAAAAAJM8V7OUKAhvXR46wMFusqSYAqKd8QFBWNtWqYWH+deUdwWfVwsBcIWMAAAAAAAAAAGAMYWEAgOq8KlfQs57jvCucKy3NOEqasswd1DX3RdXrKuyWNv+her/99Tjq5OUQzVTYLd35QWnd92qfa8l5tc8BdJGgsDCywgAAAAAAAAAAAAAAAFqDK9jLFQQ2ro/pccxZZV8kADRQUFBW1rRoWJijLlco2Ei1sDDPP2QMAAAAAAAAAACMIR0FAFBdtTdfR7Y6GlxRKwHpLKPmv7R6H0la++1w/aSA8LIQ9bQAG+ZxQ/vZdrt0/2drn2fVp6WpK2ufB+giQWFhRVe+JAAAAAAAAAAAAAAAABrKFezlCgIb38c/UMwVQAYAzeAK2JKkTCrbwErCy6aihYUFBaKFaQcAAAAAAAAAAISFAQDCiH2lphrCwsJetc8VAObLlfzSKi+HwY9L5LCwU66soRY0zB0fqH2OqUdIh/9j7fMAXSYd8PTvRXl5AQAAAAAAAAAAAAAAQGJcwV6uILDxffwDxVwBZADQDEFBWVnTomFhxhEW5rgv+YBANCk4MA0AAAAAAAAAAJS0SjoKAKCVxX3z1RXkZUKEXhWHw62RGWxMPY1w9KWBzdZGrHP+mTUUg7YyZVmzKwDaUtDTv+fKlwQAAAAAAAAAAAAAAEBDuYK9XEFg4/rIP1CsKP8AMgBoBldQVo/JKBUiGLEZMilHWJjjvgQFooVpBwAAAAAAAAAAhIUBAMLwclU6OEK4nOdDhF4tOrd6H0l64opw/SS562mRl8OD3iRNW9XsKtCOimyQAOJwZUhKkhfQBgAAAAAAAAAAAAAAgMZxBXu5gsDG9XEEihUtYWEAWkfe+u/Vzhr/QK5W4KrNFfrlChEblY97cWsAAAAAAAAAALpIi6SjAABaWt+84HbnppkawsIGV0qTl1Xvl9tavc/+cjxHOSHqaYTeGdKpv3E22zCP234tcp/QGGyQAGIJygMjKwwAAAAAAAAAAAAAAKA1uIK9XEFg5VLGP1DMypPn2lMIAA3mCtLKplo4LMxRW95xkWpXiFjYdgAAAAAAAAAAQFgYACCMg98S3O4KC7OOqJUw4VzGSKf8snq/KPY87mhooZfD3hnOpkhhYYd9qA7FoG6WvDbZ+QkLA2JxvUxJksdeUAAAAAAAAAAAAAAAgKbzrCcr/40criCwckGBYq4QMgBotJz1D9jKmhYOCzNZ3/Ou0C9XIFrYdgAAAAAAAAAA0FLpKACAljWwMLjdFlwNjvMhQ68GV0jP+WK4vtUMb3G3hQkvawGRwsIWnJVcIYhu+TuSnb84nOz8QIcKDAsLaAMAAAAAAAAAAAAAAEBjBAV6BQWB7e8jd6BYUa69jwDQWK6grEzKP5CrFWRT/kFmeZuTZyeGPLoC0UaNOELGAAAAAAAAAADAGMLCAAC189uMY61qDguTpANfH6eiiTZcFdDYHi+H1kZ43LIzkisE0c15frLzF9kgAdRb0f+CtAAAAAAAAAAAAAAAAGigoECvoCCw/X2Mu48XEEQGAI2UcwRlZY1/IFcrCKot7xMMlncEooVtBwAAAAAAAAAAUvXLKaEjGWNWSlolaaGkfknDkjZJeljSXdba3TXMnZF0oqTFkuZJGpK0XtId1tp1tVUOoCV5ZRtmnviJdO8npaFHpPxO//4mQuhVb51Cr+74oLstSj1NZCcfHL5zz6TkCkHrYYMEEIsr0lKSvKBGAAAAAAAAAAAAAAAANERQoFdQENhYH/d2+YJ1B5EBQCPlHPtAs6lsgysJL5tyh4XlvBH1pvr2H1trnYFo+8dUaQcAAAAAAAAAAISFdRVjzDRJF0p6q0pBXi5FY8ydkn5srf3nCPPPlnSJpNdI8k33McbcJOlSa+0VoQsH0PpGN+NsuFa64ZUKjl+RpIjhXAe+UVr3vTiVScObpc1/kIafDuiUijd3o/XPlV7+iPTzEKFhmcHk60HrmHtasysA2pINeLmysor8egUAAAAAAAAAAAAAAIC6KgYEegUFgY3qCegTNDcANFLe5nzPZ4w7kKvZMsYdZFYZ/JW3uX178txcgWkAAAAAAAAAAGAMYWFdwhjzKklfkzQzRPe0pOdIWigpVFiYMeZMSd+RNKdK1xMknWCM+YGkC6y1u8PMD6DFjYaFPfIfqh4UJkUOX1nymnhhYU9fJ11/jlQYqlJOe4TBWCtp8lLpFeuknx0Y3Dk7rQEVoWUs+7tmVwC0paCwMM9rXB0AAAAAAAAAAAAAAADw90x+k7MtKAhsVNqknW0P7/2LDksdpUnpKbFq6wZDxZ3alFuvlFKa37tE2VTtwUUFm9fm3NOak52///uzq7BDBZvX9MysmucH2lHOG/Y9X4/fuaQE1bZ27wPaUdi6/3jY21t1vmFvr9bufcDZPik9RQdkF0QrEgAAAAAAAACADkNYWBcwxlws6eM+TY9LekjSZkl9kuZJOlLSpIjznyLpp5LKLw1jJd0uaa2kaZKOklT+7u3rJQ0aY8621hLFALS70bCwx38Urn/UcK65L4rWX5K8vHTjedWDwiSpvz3eON6faTNpiXTg66V1P2hmOWgl045sdgVAWwqKt/TCZF8CAAAAAAAAAAAAAAAgETsK2/SNpz6tdcNrnH2CgsD29wnYLn/ZhktlZHTUlOP15rnvUSaVdfbtNjlvRJdtuFR3D90qu2+XTY/p0Qumv0xnz3qTTMyLtN6w/Wr9ZNNlGrHD6ksN6NzZb9ZdQ7fovt23S5KW9C3X3y34R03tmVG3+wK0uvUjj+sPO67xbcuaFg4LC6jtsg2XRp4vb3P67OMXOdtXTX6uLljgbgcAAAAAAAAAoBukml0AkmWMeb8mBoVdLulZ1tol1toXWWvPs9aea609XtKgpOdJ+rykZ0LMv1DSTzQ+KOxGSYdba1dba19trT1d0kJJF0rKl/V7maRPxrxrAFrJaFhYaBE3iaRjbMDZcK00sjlc31nHRZ+/CWx5cM3x33N3PO5bideCFnL4R6IH8AGQVPG8WqFInC0AAAAAAAAAAAAAAEDTfHP9vwYGhUnBQWD7+1QJFLOyun3XTfqfzd+NVF+n+/Gmb+uuoVv2B4VJUsEWdO3W/9GNjlCjatbsuU+Xb/yaRuywJGnY26Mfbvza/qAwSXpseI3+/al/qa14oI0UbVFfeuJiZ3srhxhmU60bZAYAAAAAAAAAQKciLKyDGWNWSfrnslN5Sa/aFw52j98Ya61nrb3RWvs+SatCLHOJpOllxzdJOs1ae3/FvCPW2i9KenXF+PcZY5aEWAdAK7OFaP3jBBtlpkbr/9TPwvdNZaLN3QqMkc5ZP/H80rdKS89veDlootz2ZlcAtK2ArDAVCAsDAAAAAAAAAAAAAABoih2FbXpk7/1V+1ULAiv1qR4oJkl3DP0xVL9uYK3VnUM3O9vv2BXvsboz5GP86PCD2l7YGmsNoN08uvcB7Shuc7ZnTesGcqVNj1Kq/jwMAAAAAAAAAADqh7CwDmWM6ZH0bWncJbMusNb+OOwc1gan/xhjlkt6c9mpnKTzrd13uSf/OX8qqfzSW72S3JfCAdAebFEq5iIMiBEWdvDf+J8fWOx//okrws277O+i19IktjLVpn+edJ6VznpQOuln0qt2Ss/9lmR4eW9J/fOSmbewK5l5gS6XLza7AgAAAAAAAAAAAAAAgO60Lb+lap/J6UFNSg9W7ZcKESgmSTsKW1W0bBiRpLzNaai4w9m+tVD9++Pnt9v+N3Tf+3ffEWsNoN08k98c2D6vd1GDKomn1esDAAAAAAAAAKDTkCbSuV4l6eiy419bay+r8xrnSeMuBfMTa+2aEOP+peL41caYvvqVBaDhinulzX+IMCBGWNjgCv/zex73P1905haOt/yC6LU0SWVW2H6DK6SFL5cyUxpZDqJa+f5k5s3OSGZeoAtMCGEsQ1gYAAAAAAAAAAAAAABAc+TsSNU+xw2eolSIC2umx113OVjeRrloaueq9vjnverfn1pZ945JoKMEPe9MTg/qyEmrG1hNdCdMPa3ZJQAAAAAAAAAA0FUIC+tclek3n05gjXMqjkOFkVlr75d0S9mpSZJOr1dRABISdHW9v/yL9OAXIswVIywsqoGF4fpNf3aydQCjVvy9lB6o/7wHvbH+cwJdgrAwAAAAAAAAAAAAAACA1hMURjW9Z5ZOn3Guzpn95lBzpYP2PlbINSAEqx1UexxyDQhVM3EuSgu0oaBwvvcs+qSm9ExrYDXRnTLtpTp39vmak5kfadxgerokaUp6ahJlAQAAAAAAAADQscJfKgltwxizTNLJZafWSfptndeYK2lV2amCpBsjTPE7SceVHZ8p6ee1VwYgMSYtWUdyyoarpVnHh59rZGv09Tdd72578IvSgpdJkw8aOxdmg89rhqPX0URBoTZoA+le6cTLpetfEW98/3xp7/rx56atIvAOqEHQ0yphYQAAAAAAAAAAAAAAAM3hCs/Jml59cul/yES4YGnKpGSUkpVXfV3CwiRJ+SphYEFhbgCicT3vHNi3QvN7Fze4muiMMTptxtk6bcbZynv50ON6TI+MMbLWqmALocakGnGxagAAAAAAAAAAWlyq2QUgES+oOP61tXWPmDmi4vhua+3uCONvqjg+vMZ6ADTblj+G77vpd9HnH1rrbrvtQunnS6U1Xx87Vy0srH9eKbypjZAV1gEibISY4JynpGO+Kg2ulDKD0qJXSi+8VjL8cw6IK+hfyIXq+0MBAAAAAAAAAAAAAACQAFd4zkB6cqSgsFHpMBcflTukrNtUC03L2RHVf2v6eJYdk+gSeVc4Yqq99jhLUiaVCX0bfS43xoQekzY9Tb6HAAAAAAAAAAA0H38t70zHVhz/UZJM6R2VUyW9XtJxkhao9DOwRdIaSddJ+i9r7boQaxxWcfxwxBofqTIfgJbT5I0XYTaW/Ont0vyXSJMWS9vvCe7bN7c+ddVZ0AaahPfWoBHmnBxv3LwzSv9d/vbSzVqJK6QBNQt6Ws0XG1YGAAAAAAAAAAAAAAAAyuRszvd81sQLz0krrYKqX+ixWkhWt6j2OFhZFWxeGZNNrIaCLSQ2N9BKXL9vSf5+AQAAAAAAAACA9kVYWGdaXXF8vzHmQEnfkvRCn/6L991OlfQJY8x/SPqAtXZPwBrLKo4fj1jjYxXHM40x06212yLOA6BrhEzKWnuZNOM51fvNfn5t5SSEQLAO1zcr3riFZ48/JigMqIug51zCwgAAAAAAAAAAAAAAAJrDFZ6TTcULz0mbnlBbEPOOkLJuk7PVQ9NydkQZJRdmlCe4DV0i59U3HBEAAAAAAAAAAHS2VLMLQCLmVRwPSPqT/IPCKmUkvUPSH4wxlfOUm1ZxvCl8eZK1dkjScMXpqVHmANBodQwnWnZB/eaq9Oh/Sn9+d/V+qz6VXA0JIUisQ7z8keD2gYVS78zS1+k+6dAPSsvelnxdQBciLAwAAAAAAAAAAAAAAKD1uMKqMjHDc9ImXdO63cYV1ha1T0018L1Al3D9rGdThIUBAAAAAAAAAICJeppdABJRGeR1maRZ+77eLenrkq6S9KSkSZJWSXqrpOeVjTlK0hXGmJOttXmfNSZXHO+NUedeSX1lx1NizDGOMWaOpNkRhx1c67oAIlrxrhiDIiRl7X40uP2wi6RM5dNYawi6l2SFdYjJS6VpR0rb75nY9sptUnZaKcFoaK3UP1/q6W98jQAICwMAAAAAAAAAAAAAAGiSnFd5PeKSuOE5aRNuy3zSAVjtIkxQV9QwLxvxaql8L9At8q6wsJjhiAAAAAAAAAAAoLMRFtZhjDG9kirfGVq4779/kXSGtfaJivbbJV1mjHm/pM+WnT9e0ockfdJnqcqUHf935YPtlTQ9YM443iHp4jrMA2CCOkZVTTs8xvIh1x9aG9w+63hp1aejr98gQXdz/fbG1YGEnXmXdNMbpMd+WDqed6Z0yv9KJlU6NkaaQpYlkLSgVxbCwgAAAAAAAAAAAAAAAJrDFUQVNzwnbdLh1iWgSlK4xyHqY1XwvXZ1wPwRw8iAdpXzcr7ns6lsgysBAAAAAAAAAADtgLCwzuN6N3uH/IPC9rPWfs4Ys0DSe8tOv9cY8wVr7VCVdeOkCNUxeQhA56vTU8ayt5WCmFpUUFjYpl2NqwMJM0Y68QelG4CmCXrOJSwMAAAAAAAAAAAAAACgOVxBVNlUzLCwkFvm8wRUSQoX1JWz/gFHtcxZLu8IUAI6jTMcMebzHQAAAAAAAAAA6GypZheA+rLW7pHk+TRdGhQUVuZjKgWLjZoh6UyffpXhYf3hKgwcUy2QDEAzLTy7PvMMrow3bvaJ9VkfAIB9gmIoCQsDAAAAAAAAAAAAAABojpwjKCprYoaFGde1mCvXJSxMCvc45CM+VlEf26jhYkC7cv1uZGI+3wEAAAAAAAAAgM5GWFhn2u1z7j/DDLTW7pb0k4rTp/h0bdWwsK9KOiLi7RV1WBfofCv/oT7z9EyKN+6gNzV3/QYJCq4BANSX5xexu0+BsDAAAAAAAAAAAAAAAICmcAVFZVMJh4URUCUp3OMQ9bGK3J/gdyRnaAAAIABJREFUNnQJ18963Oc7AAAAAAAAAADQ2XqaXQASsV3SlLLjjdbadRHG3yzpLWXHh/r02VFxPDvC/DLGTNbEsLDtUebwY63dJGlTxFpqXRboDjNXS8v+Tnr467XNY2K+9PTOrG1dSTIpac4ptc+TIEtaGAA0jBfwnJsnLAwAAAAAAAAAAAAAAKAp8nUOz0mF3LeY83Kx5u80YYK6oj5WUcO/cpbvBbpD3hWOaLINrgQAAAAAAAAAALSDVLMLQCIeqjjeEHH8+opjv4SeNRXHSyKuUdl/q7V2W8Q5ADSSSUnHfFVa9ana5nnmlpgD6/CSNfd0qS9StiEAoIMF5TPmCqQ3AgAAAAAAAAAAAAAANEPOGZ4TLywsrXRN63abMI+DK+DIPWey4WJAu3L9rGdiPt8BAAAAAAAAAIDORlhYZ7qv4jjqu6WV/ft8+txfcbws4hpLK47/EnE8gGYwRlrwsiatXYeXrBN+UPscCSOaBgAax/PcbblC4+oAAAAAAAAAAAAAAADAGFd4TjYVMyzM9NS0brfJh3gcoj5WYeYcNz/BbegSriC9uM93AAAAAAAAAACgsxEW1pnurjieFnF8Zf9nfPrcW3H8LGPMQIQ1TqwyH4BWFXLTTP3XrfEl65ALpd4Z9aklQbZKWtj2PcSJAUC9eAFPqbli4+oAAAAAAAAAAAAAAADAGFdQVNbEDQtL17RutwnzOER9rKL2jxouBrSrvOv5jrAwAAAAAAAAAADgg7CwznSVpPLog6XGmL4I44+oOH6ysoO1doPGh5L1SHpehDVOqTi+KsJYAM2UyjRr4dqGDx5SnzKaLFdodgUA0HzWWg3naw9P9AISGnm+BQAAAAAAAAAAAAAAaI6cIygqbnhOOuRFUgmoKsl5uRB9IoaFRe1PcBu6QNEWVbD+G9XihiMCAAAAAAAAAIDORlhYB7LWrpf0x7JTGUmnRpjijIrjGxz9/qfi+C1hJjfGrJR0XNmp3ZKuCVcagKYLuWnGafGrY65b40vWwnNrG98gAbk1kqSC15g6AKBVfe4aT4s+5GnwXZ5O/kxR67bEDw3zAoaOEBYGAAAAAAAAAAAAAADQFDnrH1aViRmek1Y65LoEVEnhHoeoj1Xk/gS3oQvkHc91UvxwRAAAAAAAAAAA0NkIC+tcl1Ucvy/MIGPM8yUdW3bKk3Slo/sPJBXLjs81xiwPscyHKo7/21o7HKY+AC0gVWNY2IKXxRtXa1hY/wG1jW+QapE3hNcA6GbfucnTB35stX57KTzxhjXSyZ/xlC/ECwwLCgvL8XwLAAAAAAAAAAAAAADQFHlHUFQ2lY01X9qEDAsjoEpSuMch6mMVtX9QiBLQKYJ+L7IxwxEBAAAAAAAAAEBnIyysc10m6f6y4xcaYwIDw4wxczQxZOy/rbWP+PW31q6R9N2yU1lJ3zHG9AWs8QpJ55edykm6JKguAC3GZGob3zurPnV0KFsl72Yk35g6AKAVXX7LxCfJJ7ZJv3kw3nye527LFd1tAAAAAAAAAAAAAAAASIa1VjnrCAuLGZ6TNuEukpojoEpSyLAwx/eoljkr+9tqGyqBNhf0e5Ex8cIRAQAAAAAAAABAZyMsrENZa4uSLpRUHoHwOWPMvxljplf2N8acJulGSQeXnd4m6cNVlrp4X79RJ0i6zhizsmL+XmPMuyT9qGL856y1j1VZA0AnsTHTV7xCfetoUyM8DAC62LX3+5//6E8DUr8CeAH7CXM83wIAAAAAAAAAAAAAADRc3uZk5b+pozflvJ5xoLRJh+oXNdCqU+VDBIHlvWjBavmIQWyePBXFBh50tqDQvWwqXjgiAAAAAAAAAADobOEuk4S2ZK291hhzoaQvlZ1+t6S3G2NulvSUpH5Jz5a0pGJ4TtLrrLWPVlnjSWPMuZKuljR6+ZoTJf3FGHObpLWSpko6WtLsiuH/K+ljke8YgOZK13ilqt6ZzVm3TVS7Dh5hYQAw0cad8cYRFgYAAAAAAAAAAAAAANBagsJzMiZeeE7ahNsyH7R2NwkTmhb1sYrz2Oa8EfWkM5HHAe0iKESPsDAAAAAAAAAAAOCHsLAOZ639sjGmKOmzkgb2nc5Ien7AsI2SzrXW3hRyjd8ZY86R9B2NBYIZSav33fxcLulvrbXFMGsAaCHZ6fHHZgalmcc2ft0FL48/tsFslbQwwsIAYKKiF29cYFgY/0oFAAAAAAAAAAAAAABouKCgqrjhOemQW+bzIUKyukGYYK8wgWK19C/Vkdu/+R3oREG/FxnTHRdZBgAAAAAAAAAA0aSaXQCSZ639mqRnSfq+pF0BXZ+W9HFJh4QNCitb40pJR0j6uqRtAV1vlvRKa+151trdUdYA0ELihm8961OSacJLz/yXNH7NhIzkm10BALSeRMLCCGcEAAAAAAAAAAAAAABouLzNOdtih4WZdKh+YUKyusFIiGCvoO+TnziPbZyAMaCduH4vekxP6OctAAAAAAAAAADQXcJdJgltz1r7iKQ3GmP6JZ0oaaGkuZJykjZLustae3eNa2yS9HZjzIX71liyb43dkp6SdIe19tFa1gDQIha+XHrq59HHHfL3ta1rUpKNkQgzaUlt6zaQDQiukaQRwmsAYIKg0K/AcQEvKXHnBAAAAAAAAAAAAIB6McZ8XNLFNUzxXWvt+fWpBgAaIyggKmuyseZMm3Bb5nPeiKy1MsbEWqcTFG1BnopV+0UN8sp70cLF4qwBtBvXz3jGxAtGBAAAAAAAAAAAnY+wsC5jrd0r6bqE18hJ+m2SawBoMi/fnHXjBIVJ0pzn17eOBFXLpinEfAgAoJMVYz43BgWCxZ0TAAAAAAAAAAAAAAAA8QWGhaXiBeikTTpUP0+eiiqoR5lY63SCsAFdORstyCtqf0nKxxgDtBPX71vc5zoAAAAAAAAAAND5Us0uAADQhmJc4a1p+udLPZOaXUVotkpaWKH6BfsAoOsEhX7FHRd3TgAAAAAAAAAAAAAAAMTnCpVKKaV0zOtkRxkXNiyrU4UN9Yr6OMV5XHO2jfaqAjG4AvGyhrAwAAAAAAAAAADgL947pgCALhcja/LA19e/jDBWf7k56yakaK0k0+wyAKClJBEWVvTizQkAAAAAAAAAAAAACXqdpJsj9B9KqhAASIorVCqb6pUx8fbOpU06/Po2p4FYq3SGsKFeYUPFos5b6xignbh+xjMm2+BKAAAAAAAAAABAuyAsDAAQ3aKzpdveFdD+SumJKyTtS2GZdKD0rP9b+7pzT5Oevi7amFR7XV2rWt5NodiQMgCgrcQNC7OEhQEAAAAAAAAAAABoL09ba9c1uwgASJIrhCpr4u8FjBQW1uUBVWFDwKI+TlHDxSQpH2MM0E5yNud7Pttme58BAAAAAAAAAEDjEBYGAIhuYKG7bcYx0vN/JG2/R9pwrdQ/V5p3htQ7o/Z1F78meliYSdW+bgMFBddIhNcAgB8v5nNj0FNu3AAyAAAAAAAAAAAAAAAAxOcKoaolPCdtwm+Z7/qwMM8/vKhS3ubkWU+pkHs04zyu3f69QOdzBeIRFgYAAAAAAAAAAFwICwMAxLPktdJj/zXx/LFfL/132pGlWz3NXB19TMiNK+2iSHgNAEwQ97kxKKCRcEYAAAAAAAAAAAAAAIDGy7nCc0z88Bxb7SqeZVzhPd3C9fj7Kdh86O9LlHn3jyEsDB3OGY5Yw/MdAAAAAAAAAADobOEu5QMAQKUjL5H6Dhh/btErpenPTm7NYozgr8FD6l9HgqrtSSoUG1MHgOZYt8Xqoz/19KqvF/WF6zwN50kIDMNLINjL46EHAAAAAAAAAAAAAABoOGd4Tip+eE5RhZrX7xZR7n+UALB8jAu/xgkYA9pJzvF7kU1lG1wJAAAAAAAAAABoFz3NLgAA0KYGV0in3ySt/Y6062FpzsnSwX8tmQRzKNMR3/yefLA0ZUUytSSkWjZNMYFAHACtYe1mq5M+42n99tLxFbdbXXOf1c/emVKmxzS3uBZXjBnsFRTQ6NnSVWWN4bEHAAAAAAAAAAAAAABoFFdAVMbUEBZmw1+ls9sDqvIR7n/OG5HSIfvGeFy7PbgNnc/1e5Gt4fkOAAAAAAAAAAB0NsLCAADxTV4qPesTjVtv6pFSdoaU2zqx7awHpd+9RBp6pHTcP186+edSm4W8BAXXSFKBsDCgY33jers/KGzUr+6TbnpEOvmQ5tTULqo9dzrHhZi3zV5GAAAAAAAAAAAAAAAA2porICqbqiUsrFDz+t0iyv3P21yofp71QvcdV0uMMUA7cf2+ZWp4vgMAAAAAAAAAAJ2NsDAAQPtIpaUV75Tu/b/jzx92kTS4ohQYtv1OyStIM54jpTrvZa4YISzMWqub10q/fsDqoFnSWUcaTR0g9QZoVZ+52j+66uO/8PTbQ0JegrNDbd9j9ct7YiaCBagWMlb0pFSq7ssCAAAAAAAAAAAAQFwXGGM+KulQSTMl5SU9I+kxSX+Q9Ctr7Q1NrA8AapazjrAwU0tYWDF036u3/li37Pxdac1Ur5b3H67jp54aGFbm2aJu3vlbPbj7Hu31dmtKeqoOn3y0jpp8gkybXaluzZ77QvcNGyy2Ob8hVi237bpB60cekySlTEpL+pbr+KmnalrPjFjzwd+GkSd0687f6amRx5QyKS3qXarnTn2BZmYOaHZpHafyueKx4TW+/bIm2+DKAAAAAAAAAABAu+i8FBUAQGc78hIpO0N67HJJRlr8Kmnl+0ptqXQpJKyNVYvCKUQIC/vE/1pd8ouxGQ+fb3X1e1KaP629Nh8B3e6WR5tdQXNt2G71ws95enBj49d+Zrc0d2rj1wUAAAAAAAAAAAAAh9dWHPdKmixpiaSTJH3YGPNnSf9orb0uiQKMMXMkzY447OAkagHQmfKOAKqgsK5qiiqE7vvkyDo9ObJu//Htu27UXUO36O0LPqpMKjOhv7VW39nwBf151/isxj/u/LVOn3Guzp79pth1N9p9u2/XH3f+OnT/MGFhz+Q36tPr3hurnmfym/RMftP+47uHbtVNO67Texd9UjMyUV+K4OfRvQ/pS09+XMPenv3n7h66VTdsv1rvXfxJHZBd0LziOozrucJPLc93AAAAAAAAAACgs6WaXQAAAJEYI618j/TiW6QX3ywd+v7SuQ5hq6SFFUOGhT2yaXxQmCTdt176wnXV4sgAoLV86kqbWFBYtWfETbuSWRcAAAAAAAAAAAAAErRa0jXGmE8Zk8immndIujfi7WcJ1AGgQ+WsIyzM1BAWZouxx0rSA3vu0kN77vZte2pknTP859qtP9VQcWdNazfSL7f8V6T+ru9Vueu3/0p5+//Zu/c4ucrC/uPfc2ZnZi9JNhdCQhIQQQXBe1ER8ALipRb9obX2Z2uprVVLEduiUH+lXKzlVi8UikKtoiCKWBVQqqhAQBFUkItUsIpCLiSQJdnsJrs7c2bmPL8/NruZ2T3PmefMfXY+79drX2TPfc7OORuyz35OUOshzbO98JR+PPaDhm2v131vx9crQmEzxkujun30v9twRAvXE/kNTqEwSUrXcb8DAAAAAAAAAAALG7EwAAC6iGss7MYHoxM4n/g+sTCg2yycHGJtPnN78+5b1QKNhfrGiQIAAAAAAAAAAABAozwh6T8lvVfSMZIOk3SopKMlnSrpe3OW9yT9o6TzW3iMANAQQRgdlkr7mZq3efDAoTWvO+O3U7+KnP7o1MPWdYxC/c6yXqcphAU9nvt1onWCsHos7NFJ+/mp1aOTv2z4NnvVbycfsc6Le28jud8mOJ+D/lATjwQAAAAAAAAAAHSzvnYfAAAA2KtauKboGAv75n1EwQCgmmr33KDYmuMAAAAAAAAAAAAAAIufSXqDpB8YY/0J512SLvM87whJX5H07LJ5H/E87yfGmBubfJwA0DChogfJ+XU8I/sFi16uPq9PRVP7YJCiKUROz4VTsevlw1zN+2ylvIl/HVECUz0Wlq9yfmpR7ZzDXdy55Dw3VpLzeejQC5t4JAAAAAAAAAAAoJsRCwMAoINUS3yVHGNhSwfqPhQA6HmFUruPAAAAAAAAAAAAAEAvM8Z8J8Gy93qed6SkuyU9p2zWhZ7n3WSMadRPQD8j6b8SrnOwJIJlAJyElttVykvVvM2s3693rjpZ1zx5mcyeUXr9/qBSXkoTpV01b1eSClWCWUFYPajVCWo5Tpd1XIJiifdrgoZvsxeVTFEl2QN6hS5573YL12vh91f8kfbNrGny0QAAAAAAAAAAgG5FLAwAgC5SdIyFeV5zjwMAFoJqgUZiYQAAAAAAAAAAAAC6iTFmh+d575R0r6SZ0SOHSjpW0i0N2sc2SduSrOMxkAVAAkbRg+R8z69ru68Yfq0O6D9YD088oMWpYR0+9BJl/KwenrhfG3K/UWlPpOyB3Xdre2H+bc5YRppUC2Y1I5bVDPkwZ52X9jIqRAS6XF5bEEaHvY4aPl5rswdqR2FEKa9PB/Y/W77na0Pu0dlzujXYpIcn7ovYpv1Y4W6hvHe7he1875NepRcuOlID/qAOGXyBDh58bouPDAAAAAAAAAAAdBNiYQAAdBBTpVxTakAszBjDIEwAUPV7bmB/cCYAAAAAAAAAAAAAdCRjzH2e531f0hvKJr9RDYqFAUCzlUz0IDlP9cXCJGlt9kCtzR5YMe3Fi1+hFy9+xeznTwabI2NhtsfS2WJYMwpV5neKuDDUsr59tK2wZd50l9dm2+7zho7QixYfOW/6Cxa9bPbPPx+/0xILI2LVCNViYEGYZ7xpA9nO9/7Zg/WH+/5Fi48GAAAAAAAAAAB0q/p/agoAABqmSrdGxZLbduKGZoTVdgIAkCQVHO+5AAAAAAAAAAAAANBhbp7z+QvachQAUAOj6FhYyku1ZP+eZfSdbdhd1eBSlfmdIi7ANZRaHL2Ow2uzbTfjZ6uum/H7I6fnTa7quqiuWnQtVKiSeNpioxTquBYAAAAAAAAAAABmEAsDAKCDmCohr5Jj6CvuQW6l6LFUANBzqt1SA2JhAAAAAAAAAAAAALrT43M+X9mOgwCAWoQmeoCb16HD3qsFl6rN7xRBGB3gSqlPA6khyzrxr61kigoVPQAn42WqHlPWElEqmoJCw8CeeuUd3pvd8v7tBra4XsYjFgYAAAAAAAAAANx15k9NAQBAJNfQV0wrTKFjcAxAZ4iL/6E+1QKNBddCIwAAAAAAAAAAAAB0lqk5nw+05SgAoAYlS1zKb9Gwd886+i56HIktAOQ6v1PkbSEjP2sNexVMELvNuNBUxhICq1gmJqIUVNk3qis4vDc5z40ThNHnMuNXD+cBAAAAAAAAAADMIBYGAEAHqR6uqX8frsExAJ2h2n0B08IaSoituOcCAAAAAAAAAAAAQBvsM+fzp9tyFABQA2OiB7ilvFRL9u9ZnuxnbLGwmCCWy/xOEYS5yOlZv98a9qr62mNiVOmYENiMjN9vnZe3HC/cubw3C13y/u0GtuvBJZwHAAAAAAAAAAAwg1gYAAAdpFrqxjX0ZRmvlGgbANBuW3a6B8C2TzR+/0Gx8dsEAAAAAAAAAAAAgBZ4+ZzPt7TlKACgBqGiB7h5XnuHvdseSleICWJJ8cGsTmKLb2W8rDKWsFe111YIA+s8l0BSNmYZIlb1y5vqwbVuef92A1uczSWcBwAAAAAAAAAAMINYGAAAXaRILAzoOe65rIXn4QTD1TfuSL79aue2UEq+TQAAAAAAAAAAAABoJ8/z+iW9bc7k29twKABQk9BED3DzWzTs3ZNt8F30SBNbAMh1fqcITHTYK+v3W8NeVV97TGjKFiCrXKbfOs8ldIV4QUzMLckycGO7XlzCeQAAAAAAAAAAADOIhQEA0EFsTx+cUXQM18S0woiFAV2m2n1hIQsTvPZa7m3Vzi2xMAAAAAAAAAAAAABd6B8krS37vCTpv9t0LACQWKjoARutioXZGFssLCaIJUmFKvM7RRBGx7cyflZpLxO9TpXXFhcTcwkkxS3TLRG2Tuby3qz2NYY72/l2CecBAAAAAAAAAADMIBYGAEAHqdbFcY6FxdTCksR3AKCdktyvagl7Vdt8QCwMAAAAAAAAAAAAQJt4nvdnnuetSrjOeyWdM2fyF40xGxp3ZADQXKGJfmKc76VadARxj+qcLwiDuuZ3irwtFuZlrdGuasGuuNCULUDmugyxsPrZvublOM+NYzuXLuE8AAAAAAAAAACAGcTCAADoIKZKuaaWGM5cpeixVAA6VC/3/ZLEwlxjikk04p4LAAAAAAAAAAAAADV6j6THPM+7yvO8P/A8b8i2oOd5R3ie901Jn1Vl5eYJSf/U5OMEgIYKZYuFtWbYuy0VZiyjeAITH1yKC2Z1EttxZvx+ZbzomFGhymuzxZHSXsbp6+l7vnXf+SrnHdW5hMCqfY3hLm+7xizvcQAAAAAAAAAAgCh97T4AAADgruhYzol7tmGpl8tDQBeqFhFcyBLFwmoIIbYi0AgAAAAAAAAAAAAAdRiQdNKej9DzvN9IelzSmKSSpBWSXihpVcS6OyS90RjzZGsOFQAaIzTRAzb8Fj0j27OMvouKhRljqgaXXIJMnSAIo+NbWT+rtB8dMwrCIH6bJnp+kjhSxs8qKM0/h91yXjuZS8iO89w4tnOZsVxfAAAAAAAAAAAAUYiFAQDQQaqFa4qO4Rrf9yTLkwxLNQR1ALRPkmDWQhMmuF81IxYWFJNvEwAAAAAAAAAAAACaxJd0yJ6Pam6V9G5jzObmHhIANF6o6EEgvpdq0RFYHtUZMc6kpKL1eGe4BJk6Qd4WMvL6rXGvaq/NFkdK+xnn47LtO2+Jm8GdSwiMWFhjlExRoaIHACeJ5wEAAAAAAAAAABALAwCgg1RrAhUcY2GW4UqSiIUB3aaXr9kkoTTXmGK5Rt1zAQAAAAAAAAAAAKAJLpH0hKSjJT3DYfkJSd+X9GljzK3NPDAAaCZjLLEw+S3Zvxc3+G6OhRRbsoW/sn5WGT86ZlQIg5q2mSSOlPX7E20b7lzOIee5MeLuA7brCwAAAAAAAAAAIAqxMAAAukjRMRoUN2ApSXwHANopUSysCVG1oNj4bQIAAAAAAAAAAACAC2PM9ZKulyTP85ZKOlzS/pJWSRqU5EvaKWlU0iOSfmGM4ZFIALpeSdG3Mt9rTSzM9qhOE/FYusDEx7IkqeCwTCcIwlzk9Izfr4yXiV6nSkiqYAkkZfzo7UVJW0JK3RJh62QLKXbX6eKulSTxPAAAAAAAAAAAAGJhAAB0EFMljFNwHNIZFwsrNSGoAwDNkCQWVkvYq9o9d2wq+TYBAAAAAAAAAAAAoNGMMTsl/bjdxwEArRCa6AFuvlIt2b9niYUpKhbmEFIqmoJCU5Lvteb4a5W3xIwyXlYZS7CrYAKFJrSG3GwxtXSCOFLWsmxgouNmcOdyDl2CeKgu7l5hu74AAAAAAAAAAACitOoRSwAAwEG1Lk7RMRbmEwsDsACE1WpeZfLFBGWxPaqtsW08+TYBAAAAAAAAAAAAAABQOyNLLMwSpGo0WyzM1BgLk7ojuBSE0eGojJ9VJibuVYh5bbbzkySOlPH7E20b7oKw+vuS89wYgSXGJyn2+gIAAAAAAAAAAJiLWBgAAB2kWhen6Bj6IhYGYCEIE9yv8sXG7/+pXY3fJgAAAAAAAAAAAAAAAOxKJvqJml4HDnsvxASAKpbrguCSLQqV9ftj415xMSnb+UkSR8pa9p3vgnPa6eICVjNc3+OIFxdmSxLPAwAAAAAAAAAA6Gv3AQAAAHeF6HFQ86RixkWVqgTJRnYZXXeP0YObpRcfIL3zpZ6WDcXUxwCgScIq96tytcTCqgUaRyeSbxMAAAAAAAAAAAAAAAC1M4p+upzvtSYW5il6rJzR/IEmcaGsiuW6ILiUN7nI6RmvPzbuFffabOcnSRzJtu/AcrxwF4TVz6Hrexzx4q6TPi/dwiMBAAAAAAAAAADdjlgYAAAdpFq4phg9DiqRMGYbT4wavfZToX791N5pl99udOtpvvZdQjAMQGsliYUFTYiFuQYaAQAAAAAAAAAAAAAA0BihiR7gllKqRUeQIBbmGAELwqCuI2oFWxQq62eV9jOJ15Ps5ycuPjZvWb8/8X7hxuUcdkPorhvYznXay7QshAgAAAAAAAAAABYGfrIAAEAHqdbFcQ3X+DHf4UsxO/n07aYiFCZJv9wife7OBMUeAGiQJLGwfC2xsCrzA2JhAAAAAAAAAAAAAAAALWOMUajoWJjXoqCOZ3umZsRAE9dgVacHl0ITqmCig2YZvz827lWIeW2285PxE8TCLPsmFlY/l/cl57kxbNdJkmsBAAAAAAAAAABAIhYGAEBXKTqGa1K2AUuSStFjqSRJ3/uf6HTO1+4lFgag9ZodC6smaMI2AQAAAAAAAAAAAAAAEM1YQmGS5Lds2Hv04DsTUQtzjYB1enAp7nVkvGxs0CjutQWWAFnayzgfm23feZNz3gaiBWH016dimQ4P3XULazgvJsQHAAAAAAAAAAAQhVgYAAAdxFQJ4xRjQl/l/Jjv8HGxsPs3RU//xWa3/QJAI4WO9zxJyheSb7/aPTdwDDQCAAAAAAAAAAAAAACgfmFcLMxLtfBIokTEwhwjYJ0eXIp7HVk/q5TXJ1/R598WBIvbblx8bP7++xNtG+4Ch+Aa57kxGnEtAAAAAAAAAAAASFJfuw8AAIBWGtlldOHNRnf+xujQ1Z7OeKOnw9dEPwmwHap0a1RwDNf4MS8pLhYGAJ0krHZTLJMvJt9+tc0HNWwTAAAAAAAAAAAAAAAAtQlNTCysRc/I9hQ9+C5qnIlrBKzTg0tBaI9GZbzpWFfGzyoXTkasa39ttvOT8dwDSbZlOz3A1umMMU7vy7gYHNzlG3AtAAAAAAAAAAAASMTCAAA9ZCJv9PqLQz24efrzex43+vYvjH78D76eu1/nBMPiFNsYCyuFRqm4DQNGdf0JAAAgAElEQVRAgzU9FlZl+4XS9MA4z+PeBwAAAAAAAAAAAAAA0GyhYmJhXqtiYe5cI2CdHgvLG3ssLOtPx4wyXlY5zY+FFWKiXYUwOjSV9jPOx5bxo2NK+ZjAGaorqRh7vc0odPh7t1vYzqPt/Q0AAAAAAAAAAGDTmp+aAgDQAW55RLOhsBk7J6XP3ZmgRtNkLuGaeiWJ75Sb4gFxQNuEtV64XS7Jyw5qiIW5aMR9FwAAAAAAAAAAAAAAANWFxj5Qw2/ZsPfoXJjR/IEsQUwoq1xcUKsTBJaolyRl/P49/40OfMWtazs/Gc89kJTds//5++3sc9rpnEN3Hf7e7Ra285j23MN5AAAAAAAAAAAAErEwAEAPuey26KegXfyDzonwVIuFFas/yK3qdmqOhRVqWw9A/UqO1/5C0+xYWLV7bq3bBQAAAAAAAAAAAAAAQHKh7INkfK81w949SyxMUbEw1+BSh4etgjBnnTcTM7IFvuJiUgXL68747rGwWvaL6hbKe7db2M5jkmsBAAAAAAAAAABAIhYGAOghP9/Y7iOorlq3xjkWFjOv1lhYjlgY0DalzmkatlSYIJKWryUW5rBMYH9gLQAAAAAAAAAAAAAAABooNDGxMKVacxCWVljUQ+lcg1WdHrbKm+hYWNrLzEbabFGjuJiU7XXbAmCRy/r9kdOLpqDQMLCnVkneu8bliYyI1YhrAQAAAAAAAAAAQCIWBgDoIYsWwM/UCw0Y25IkvlNuilgY0DbFHh3XliRumC82Z1BaUEOEDAAAAAAAAAAAAAAAAMmFiomFea0Z9u7ZamERj6UrhIHTNgPH5drFFvzKloW60paokS2CZIyxbtcWHotcNiamlI8JlSFePowOxEUpmM5+/3aDRlwLAAAAAAAAAAAAErEwAEAPSbfowYL1qPYANtdgUNx2SjX2dKYY7wG0TanGyF+3SxQLqyFo6PLQyzyxMAAAAAAAAAAAAAAAgJYIjX2AnN+iYe+2WJiJiIXZQlm1LtcutnBUeagr42cil7FFkEoqWuNvcQGwucqDZfP23eHntZMFCQJgnOf62c5hxrO/vwEAAAAAAAAAAKIQCwMA9Iy+LviuV61bExopdKjnxC0R1hgdmqohxAOgMWqN/HW7RLGwGqJeLpsPiIUBAAAAAAAAAAAAAAC0hLHEpSTJ9zpvAKAtlFXrcu1iCxmVh7psgS/bunGvOW0Jj0XJ+PawWGCJnKG6QoL3ZKe/f7uB7RzGvb8BAAAAAAAAAACidN5PTQEAaJK+VLuPoDGKNca+ZsTFd7J99nlT7g+SA9BgpTqv+25lmh0Lc9h+YH9gLQAAAAAAAAAAAAAAABqoZOyDZLwWDXv35EVONxGPpXONKBVMZw++s4eM9sbC0paokS06FcS8Zlt4LOmyeSJWNcsnCK11+vu3G9jOYcZzD+cBAAAAAAAAAABIUkwSBACAhaWvCxKZLuGaYknKVPkOHreduOiQFz3OSZI0VYjfJ4DmKfZosCoubjhXUEMsrJ3bBQAAAAAAAAAAAAAAQCUj++C2lNeqp4VGD6KbLO3WptzvtLRvuRb3LZUkBcYtuDRW3KFNud9pwB/SivS+8uIG6rVYaErakPtN5LzykJEt2jVWHNWm3O/mTd9Z3G7dZ8YSHouSLQuWzbU5/5iMQu2bWRO7XLmJ0i7tKIzMfr48vVJDqcXOx9OJcuGUSqaofn8w8jrJhVMaCbZWTNuQe9R5+5tyv5sNymX8rFamV8tv2fW4MNjibEmuBQAAAAAAAAAAAIlYGACghyyUWFjBIRoUt524+E7cPJf9AmiOUoJo1kKSJBaWryHq5XLPJRYGAAAAAAAAAAAAAADQGqGxx8J8tWYAoGeJhT0y+YAe2fCAJOmZ/Yfo+OX/R5vzjztt81eTD+qCDadJklak99V79vuwDhx4TkOOtx537vy+rh+5SlPhROT8TFmAyxY1Kj8vrmzhsSjpsmDZXFc/eYkkKaU+vXTJq/Snq/9GKS/61yOmShP6/JZP6JHJB2S0d9CQJ0+HDr5Qf7XmdA2khpyPqxOEJtQPdlyv7+34hnLhpJb17aM/W32qDh16oSSpEBb0pScv1X277lKo2geAXrn1kxWfL0kt05/td6oOH3pJXcffKzbkHtXm/GOR85JcCwAAAAAAAAAAABKxMABAD0nHPMgsDI18v/1P63Pp4hTt46GchMbI9vTDuHAOwRygfUp1XvfdqumxMIdlAkKJAAAAAAAAAAAAAAAALVEy9oEanteip4U6DCN8LPe/+s8t/1rT5rcXtunSzefovIM+19Y41f9OPqSvPPWZ2GWyZYGwRkaNbOGxKJ7nKeNlFZi8dZmSivrJ+G1a3Dest67888hlvrj13/Tw5P3zphsZPTL5gK568hL99dp/dD6udgtNSV968jL9dHz97LTR4tO64onzdd7Bn9NQarG+PvJ53bvrRw3f93hpVJ974l/1T8+8VCvS+zZ8+wvJVGlSl2w62zo/ybUAAAAAAAAAdAJjjMIwlIn7hXQAaAPP8+T7vjyv/c2QZiMWBgDoGX0xsbBCScq2aCxRvVxiYXH/ixUXHYqNhZXskTEAzVXs0WBVmCCSVlMszOHfo/KF5NsFAAAAAAAAAAAAAABAckb2wSK+WjPAz2vBGLlcOKVHJh/QSxYf3fR92dy/666qy2S8/r1/9jMN23efl060fMbvV1Cyx8Jm3LfrrshYWC6c0sMT80Nh5X65+z7lwin1+wOJjq0dSqaoq7ZeEhkCC0xePx1br2OXvVkP7vpp044hb3K6ZccN+uNV72vaPhaCX00+oFw4aZ1PLAwAAAAAAADdoFAoaGxsTGNjYyoUCoTCAHQsz/OUTqc1PDys4eFhpdPJfibVLbokiwIAQP36Yr7rBR0S4nH5/6Oxqfr2EcbsI273QQ0hHgCNUerRfzuJu1/NVUsszEWnfH8AAAAAAAAAAAAAAABY6MK4WJgX87TQBto3s6Yl+9le2NaS/dSz/1WZtZF/rse+6TXyvWS/wrA6s85puR2FbZG/pDZe3KmS4gcXlVTUeHFnouNqh6Ip6HNbPhEZCpuxOf/49OspjTb1WO4eu1W7S+NN3Ue3q3ad7ZtuzHUFAAAAAAAANEM+n9fGjRv16KOPamRkREEQEAoD0NGMMQqCQCMjI3r00Ue1ceNG5fPVH0jTbYiFAQB6Rl/MWKFCh8RgXP4X6XcjDtuJ2VBcfCduHrEwoH1K9nGQC1qiWFgh+fZdNv/rp/jHKwAAAAAAAAAAAAAAgFYIjX0gn9+iYe8vGHqZ+v2Bpu8nCNv7iwnV9p/xsnrx4qNmP3/u0Iu1JLW07v0eOXxs09YxMiqa+YOISsZt8KPrcu1SCAN99omL9ODun8Qu92Sw2enBtfUKTF4/HP1u83fUxeKus/2zB2lt9hktPBoAAAAAAADAXaFQ0MaNGzUxMdHuQwGAmk1MTGjjxo0qFGr4JfQORiwMANAz0l0QC2uUuHEecfGduAEiwQI7R0A3Kfbo9ZckFlbLPcplUNxpXzP6zkMEwwAAAAAAAAAAAAAAAJotNPYn6vlea4a975NZpVPXnasD+58jr4ah9qcfcJGePfA8pdQXu1xg2hsLK8Ts/4D+Z+nUdedq38x+s9P6/QH9/QHn6VkDh1d9bVGG+5brTSv+WG9Y/vbE6x41fLzevu97tCK9b9Vlo85rKSZCV8ty7RCEeV3xxPn6n4l7qy77VLBZbo9RjLa8b6Xzsrfv/I4KYVDzvha6wNjPzanrzpXneS08GgAAAAAAAMBNqVTSpk2bVCx29gMWAMBFsVjUpk2bVCp17s+Bkkr+kzoAALpUX8y4nU6JhbmEa/J1/r9VyTKeylTZecD/0wFtU+rRVlWSWFgt90bXJ2ie8O+hilf48n0GZwEAAAAAAAAAAAAAADRLqJhYmGKeFtpgzxw4RGc8418VhHkVTUEfe+xUjZVGq653xOJX6pkDh+jvD/gXFcJABRPoi1v/LTLwFITtjYXZ9v+Wfd6lN66IDnqtyqzVaQecN/vakhjwh+oKIx237M06btmbNVWa0EjhSV244UORywVhXkOpxRXTQrkNLHJdrtXyYU6XP3Gefj35kNPyU+GkxorV369RXr7kWJ20+oPKhZMyZcGx9aM36b+3f3Xe8rtLY/rp+Hods/QNNe1vobNdZy9Y9DIt6lvS4qMBAAAAAAAA3GzdulX5fOW/bfm+ryVLlmjJkiVKp9Py/dY84AMAXIVhqEKhoPHxcY2PjysM9/7cMZ/Pa+vWrVq3bl0bj7BxiIUBAHpGXCysU0JYLuEal2ON244tvlNt30GHBNWAhcrz7NehLfK30IUJXndQnI4eVhtUaJ7cIG3bLB16hKS08/YvvsXoQ68nFgYAAAAAAAAAAAAAANAsobEPUvO91v/iUcbPKqOssv6A5BALy/r9s39O+xmlldGAPxS5bGDaHAuz7H9RqnrAaOa1tcNAakhLzDLr/KjXVYp5X9WyXCtNlSb1mSc+pt9OPZJova3Bppr2l/Gz8jxPA6nK9+2xy07QLTtuUN7k5q1zy44bddTw69pyjXa6guU6y3jZFh8JAAAAAAAA4KZUKmnXrl0V0zKZjJ7xjGeor488DYDOlslkNDQ0pJUrV2rDhg0Kgr0Pv9m1a5dKpZJSqdY9oKhZ+IkMAKBnpGK+63VKiMehFaagVH2p2FiY5bVW22qnBNWAhSouaFjsvHFoLWGLG9rE3adMkFd45jtk/ug5MqccJ/PmtTIjTzhv+/SvJzwYAAAAAAAAAAAAAAAAJBIqenCb3+Yh7xnfLYyVjggA2dYthEHk9FYJLPvP+J0fMcp49q9HEEbFwtwGP7ou1yqTpd36983nJg6FSdKTweaa9mmLWA2mFumopcdHzttW2KKHdt9T0/4Wuqj3o9Qd1xkAAAAAAAB608TERMXnnudp//33JxQGoKv09fVp//33l+d5FdPn3uO6FbEwAEDPSPmedV6xQ2JhLvKF+ta3tcbiAmMSsTCg2WKDhj3YqTLGKHzsV4nWycfFwq6+UPrhjXsnTO6Suftm5233pxMdCgAAAAAAAAAAAAAAABKyxsK89j7hOyoCFiUqAGSLAuXDXF3HVK+CsUSMHF9rO8WFlqJjYW5PanRdrhV2l8Z1yaaz9Xju19ZlFqWWaGV6v8h5T+Y31bTfuHN73LI3W8N9t4zeUNP+Frqgi68zAAAAAAAA9KZdu3ZVfD44OKhMxu2BGgDQSTKZjAYHByum7d69u01H01jEwgAAPSMuxFNs0BiPXMFoKqi96lMt2CVJQZ3HGlrCaGG1WFjnjIMBFqSYnqFKXRQ0bBTzmY/I/PimROvExcL0navmTyu5VxBzdYYaAQAAAAAAAAAAAAAAEC80llhYm4e8xwWUKpbz5v/ClC0KZIsItUoQBpHTXV9rO6XUZ31PRJ3XkhxjYY7LNduu4k5dsulsbcr/zrrMktRS/d3+/6JDBp8fOX9rUFssLOv1W+etSK/SSxYfHTnvt1OP6HdTyR4M2Qui4nVSd1xnAAAAAAAA6E0TExMVny9evLhNRwIA9Vu0aFHF58TCAADoMnGxsEKdYzwm80Z/8p+hlv/d9Mcf/0eoiXzyaJjLGrExnJntxGzIFgWrFioL3Js6AGrQiqBhtzCjI9J1l8h4MQW1CLH3qZEn5u9HybZvXIqOAAAAAAAAAAAAAAAAqEloogfJ+F57h7xnfXtAqVxUAMgWBbJFhFqhZIoqKXqgTToieNZpPM9LdF5Lxm3wo+tyzTRW3KGLN/2Tnsg/bl1muG+5/v6A87Qme4BWZdZFLvNksLmm/af9+K//8ctPtM67ZccNNe1zIbNFAbvhOgMAAAAAAEDvMcaoVKr8d/qBgYE2HQ0A1G9wcLDi81KptCB+V5xYGACgZ8SGeKIfSOjsvV8y+uo9RrnCdMzrv35u9BdfqHOjFvVGu6yxsGr77bFYEdBqcdmqUnNuJ53re1+uXjCM4BJTLJc0Fra7vQ90BQAAAAAAAAAAAAAAWNBCRQ+S8do85D3jRYepXJazrVuwRIRaIQgD6zxbhKvT2M5rVJypZInQ1bpcs4wWntbFG/8pNvS1vG+lTtv/PK3KrJUkrc5Gx8Jy4WRNx1DtvX5A/8E6ZPD5kfMe3P1TbQu21LTfhcoWBeyW6wwAAAAAAAC9JQzn/xt9KpVqw5EAQGNE3cOi7nXdhlgYAKBn+DFNmHpiYZN5o+vvnx+1+dYvpN25ZLEblzaOSwwnbjO26FC1v9fUGykDULt6g4bdxjz28PR/E8a8mh0Lu+PXybYPAAAAAAAAAAAAAAAAd8YSC0t57f1lpLSfcVou4/dHrGuJWsUEu5otKqg1wzWM1m728xoVC3MbVOS6XDNsLzylT206U9sK9tjWPulV+vsDztPKzH6z01bviYY1SjbiPTzX8ctOjJxuZHTrjm819Hi6XWCir/Nuuc4AAAAAAADQW0zEL7l7XrLfwQSAThJ1D4u613WbvnYfAAAArZKKSWQW63gg3P2bpFxh/vSgKN3zuHTsoe7bcvm7Rb3RrtCyj2q7LrR4HMxPfmf0sZtCPbxVOupgT+e/1dMzVvA/lVi44q7BXouFqcbafNJYWFJfu8fohBdU3oeMMbpsvdFXf2b02xFpyYC0dEAaHpCWDkpLBjwtHayctnTA2/vnwenpS/olP65qCQAAAAAAAAAAAAAAsMCVTPRAPr/Nz8d2DftkIgJWtnXjgl3NVogIas3IOIbR2i3JeS3JbYCo63KNNhJs1SWbztaO4oh1mX3Ta/S3+/+zlqX3qZi+rG+l0l5GBUuUKqmo9/Bchw29RGsyB2hLsHHevJ+M36YT9vm/Wty3tCHH0+1s15rLeQYAAAAAAAAAAIhCLAwA0DPiGiz1hHgKMeNDSk0I/LjEcOKiY9ZYWJVaWNDCcTAPbjJ67SdDTe2JsG3YbnTXb43uP8vX0kFiOug99UYCu44/HQszSna95yPCjXGSbj+Tnj/twpuNzrx+7w102675e4na81yeJy3OVgbElg5ISwe96QBZRXCsLDZWFiHL9HF/BAAAAAAAAAAAAAAA3Ss00QPuPK/NsTDHsE/Gmx/asq0bxAS7mi2ICUu5htHazXZeC+H811YyboOvXJdrpKeCJ/Rvm87SWHGHdZn9Mvvrg/t/VMN9y+fN8z1fqzJrtTn/WEOOx+Xr73mejl9+oq5+8tJ58wom0B07v6sT9nlnQ46n29migOkuuc4AAAAAAAAAAEDnIRYGAOgZcS2sYh0hLFt8S5L8hGOUqvS6JEk5hxhOXPjLFjCrtu+g6HJ0jXHlj81sKGzGhu3Stx40OukVxHDQe6avvx5676dq+98UW0zRhNE3vqSxsGDOfckYo/+4ozH3RmOk8dz0x8aKsX9usTFJGkjvDYftDY6VxcbmRMjmBseGstOD+QAAAAAAAAAAAAAAANrBKHqMR0qpFh9JJdeAVlTAKiogJtkjQq0QFypLO4bR2i3JeS0ZtwGirss1ypb8Bl266RyNl3Zal1mbPVAfXPdRLe4bti6zOrOucbEwx6//EUteqRufviYycnbHzu/o9cvf5rythcx2rWX86PcvAAAAAAAAAABANcTCAAA9Iy6gVbQEtOrdri3MVcu2ZrjEwuLY4maWls6soIUPzfv326IP8t1fMDrpFa07DqBTBK0dh9Z+e2JhiWNetvtUMfrGaRKGscamKu9NOyfnhr3aa6ow/fHkePlU2zeW+dNTfnlMbG94bHjAi4yQzZ02PCClfGJjAAAAAAAAAAAAAACgNrZYk+clfGpng7lGj6KiYrZ1i6ag0JTke60PocWFymwRrk5jO69RcaaScRv86LpcI2zOPaZLN5+j3aVx6zL7Zw/Sqfufq0WpJbHbWp1Z17Djcg3j9XlpHbv0BN3w9NXz5k2UdunusVv16mVvathxdSNjjPVacz3PAAAAAAAAAAAAcxELAwD0jLgOV7GOEE9c4GsqaNy2ZuQdxqPEbcYWC6u260KvxYqAFou7/lsZ6+sIqdoGQVrvU5ZYWFLjucrPbffTblUKpR0T0x+Vol5o9Itf3B8VHPO0JCJCFhUc608TGwMAAAAAAAAAAAAAoFcZRT/x0lebY2GOYZ+M359o3cAE6vcGaj6uWhUiglqS1Of1tSVeVgvbeY2KM5XkNvjRdbl6bcg9qn/fdK4mw93WZQ7sf44+sO5sDaYWVd3e6mwDY2GOYTxJeuXSN+jmHf+lXDg1b95to9/SK5e+oWveT81QMPYBxEnOMwAAAAAAAAAAQDliYQCAnhEX4ilGjzFy227MvKmCkdTY8EnOoXkT91pLltdaLVRGLAxon6DXrr9UWpJkEt4/rfep/GTk5KTbH5s/rg1z7MpNf2weLZ9q+wYzf3q2rywoNrA3NjY8GB0hmzttcb/keQTHAAAAAAAAAAAAAADoRqGxxMLaHBxyDftEBazi1i2EefX7rY+FRQW1JCntGEXrBGnLeQ0iQmgl4xgLc1yuHr+b+pUu2/zPyoXR45kk6eCB5+qUdWc7vzdWZxoYC0vwHhhIDeno4dfr1tEb580bKTypB3f/VC9efFTDjq3b2K4zKdl5BgAAAAAAAAAAKEcsDADQM+JjYbVHveK2O2l/MFj0thyWyRVclrILLavbps/ouVgR0EGCYruPoMVKDlXECHNjYSafk7n8/0nf+Ezk8kljYTsm5qwfc99891GesmlpbFLaOWk0NiXtnJJ2Tk5Hx5J+f+gV+aL01Pj0x17usTHfm46GDe8JiJUHx5ZETFsaESHrSxEbAwAAAAAAAAAAAACgHUqKHqTmy2/xkVRyDftEhcHi1o2LCTVTVFBLco+idQLbeY06pyXjNvjKdbla/Wbyl/rM5o8pb3LWZQ4ZfL7+eu2Zyvr9zttdmV4jT76M6nhq7h5J3wPHLjtB60dvUhhx7f5gxw160aJX9OyD/2zXmdRd1xoAAAAAAAAAAOgsxMIAAJBUrCOEFdfYShwLc+iA5RwaOnGbCS3jQarte26EB0Dr9Nz1F0wPlEoa8yoPP5rJ3TJvWNHQw9q4QzLGOA1gO+11np631r5cUJwOiI2VBcR2Tko7p0zZn6XxqenY2Owye9YZm3L7ntFrQiONTk5/aHv5nKiTFX0Ch7LzA2JLBz1rhGzutIGMenaQIwAAAAAAAAAAAAAA9TAmenCb77U5FuYY9olaLh2zbhC252lzBRO9X9coWiewfU2iAk2hcRt85bpcLX418aCueOL82EDcYYMv1vvWfiRxSCrtp7VPepVGClvrPczE+16eXqkjlhyjn43fMW/e47lf67dTj+hZg4fVfVzdyHadSd11rQEAAAAAAAAAgM5CLAwA0DPioirFOh6oFrfdKYewV1JOsbCYYwot86o1Z3ouVoSOZozRJbcaXX230a6c9JYXebrgrZ4yfd0b6Im7BoPmPrSy80zurmm1mfuUGd0m85b9qy6fNEYmSU/vllYunlm/dpk+TysX793WXm7HFIbT7/2ZgNje4JiZDYrNTBubM21mee7r0Sby0x9bdpZPtX21509Pp8oiY2XBseGZsFh5hGzAKwuSTc9b3C/5fvfeywAAAAAAAAAAAAAAqFUoSyxMbY6FOYZ90l4m0bpx4ahmigpqSclDUe1kO6+FiHNaktvgK9flkvrlxH367BMXxsajnjd0hN675gyl/fnvIRerMmvrjoX58pWq4ddLjl92YmQsTJJuGb2hZ2NhtutM6q5rDQAAAAAAAACiHHjggdqwYcPs5+vXr9drXvOa9h0Q0EOIhQEAekZc1KVYRzDFFt+SpMmED/5zCc+4xMLilCxhtLjXIfVOVMYYo0e3SY9slY48SNp3CcGWTvSJ7xv9wzf2vmkv/oHRk2PSl/9qYX69gh65/mbd/KXp/3rJvp6FkmSKBZm/fpXT8rXEvu59XPr951dfLuGhJ+b7noYHpeFB6YDKPTutb4xRrlAWGZsqi41NVkbIxi0Rst3tGa/a8QolaWTX9EelqHfc/GmeJy3prwyOTcfE9nzNK4JjXmV8bM9/uzmcCAAAAAAAAAAAAADoXaGxxMK8VIuPpJJL2KfP61Mq4jgzMfGnuJhQM9kiZa5RtE5gO69BOH/QZsm4Db5yXS6JX+z+mT635V9VNPYQ2YsWHam/XPMh9XnpmvezOrNO/zNxb83rS1LG75dXw6Cndf3P1HMHX6RHJh+YN+8Xu3+mJ/ObtTq7rq5j60Zx13e6i641AAAAAAAAAADQWYiFAQB6hompwtQTworb7lTSWJhDuSbn8PC6uO3YomDV9h0056F5HaVYMnrv1UZX3T19MjxP+vSfePrrV7f3yZSoZIzR5bfPf8Ne+zOjy95ptGxo4UVyeuH6a4RCSdIt10lbHnNa3jiGtcptnzCaCXK53LM7led5GshIAxlpv6UVc5y3USwZjZUFxGzBsXFLhGxsqnqoshcZo9nzOmdO1NKR2xhIVwbEpoNj07GxqAjZ0jkRssGMahr8CQAAAAAAAAAAAABAPUJFD+Tz1d7xWy5hn4zXHzk95fUppT6VNH8AkC3a1WxRQS1JSseEzTqNLWwWdU5LMaGuWpZzdd+uu3Tllk9a39eSdMTiV+rP9/u7yNBcEo2IcdUTizt++YmRsTBJunX0Rv3p6lNq3na3sl3fnnz1efwaDwAAAAAAAAAAqA0/ZQAA9Iy4qEsx+oGEbtuNmTdVSLgtl1hYwm3OVWssrJ6gWrf4wl17Q2HS9Dn5my8bvfo5Rs/dj2hKp9iVkx7fHj3vwpuNLvrDhfe1Cnrg+pthcpN7/5ww5lUoSea89zT6kCqcdKXRSVeWtGxQuva99oGoC+9dOF9fytOKRdKKRXPnuL16Y4x25/eGw/bGxEzFNFtwbGyq/u+JC9VUQZoak7aOlU+1faOfPz3l7w2HDZf9d3jAi4yQLZ0TIVsyIKX8XrgKAAAAAAAAAAAAAACNFL1YBTAAACAASURBVJrogXy+195YWMZ3iIXFLJPxM5oKI2JhYZtiYZaIUT2xqFazne+oc1qyvK/mL9e4QVr3jN+hq7ZeolD2fR+55Fi9a/UH5NcZCpOk1ZkGxMLqiMUdOvhCrcs+U5vz8x/y+NPx9Tphnz/RcN+yeg6v6xRMdJQv42V4iB8AAAAAAAAAAKgZsTAAAFRnLCwmstWMwJZLGCWu+1WyvFZbRGxGL8TCvvjj6JPwtXuNznkzgzM6Rdx78Yo7jC76w9YdSyPF3UuCGh9aWSgabdslrVmq7hlgtHOk5lULu3YlWj5pjKzc6KT0xkvs3zy65XS3k+d5WtwvLe6X9q+c47yNXMFobKosLGYJjo1bImS7co1+VQtDKZS2T0x/VIq6UUXfvBb3z8TEVBYT8yriY3sDY/MjZNk0FxEAAAAAAAAAAAAA9BpbWMlXe2NhWZdYWExoK+NlNaXJedPbFguz7LeeWFSrpS3nOyqEVpLb4KtGxcLuHrtV1zx5mUzMSM6jh1+nd646uWEhvIbEwrz+mtf1PE/HLz9RX9x68bx5RVPUHaPf0VtW/mk9h9d17NdZ90T5AAAAAAAAAABA5yEWBgDoGXEtrGIdYzwaGfip0uuS5BgLi9mQLQpWbd+dEgsrhUYpvzkBkbt/Fz39o982OufNTdklahB3XS3U8E8tsbB/+e9QH/+e0a6cdOAK6dr3+nr5QV0Q39n5dM2rBvfdmWh5Q9Gr6/WnPfWnpVVL5s5x+9qWQrMnJLY3Ijb9X1MxbTo4Nj2tPDg2NlVfcHQh25Wb/tg0Wj7V9reN+dOzfXvDYXvDYp6GB6MjZEvnRMgWZbsokggAAAAAAAAAAAAAkCSFxhILa1BQqVZxIbDZZWJCWxk/K0WMvytEhK1aoWCCyOkur7NT2IJLUYGm0DEC5hoVi3Pnzu/pK09dHrvMq5e+SX+071819H09mFqkJamlGi/trHkb9Uasfm/x0bpx5EsaLc4f//XDnd/V61e8Tf3+QF376CZR4TqJWBgAAAAAAAAAAKgPsTAAQM+IC2jVE/qwxbckKZiYlLTIeVtxxzjDJRYWxxoLq7LvoENiYUFRGuieBxiiCfL1j8nqOkljfdf8JNTZN+69qB/fLr3u4lAbLvS1bKjD4zmj22b/aByDTzMKD9xddZmtfav17UV/oK19q3X3wJGJD89Vh59l7JHyPS0bkpYNzZ3j9hU0xmgyKAuIzUbEzHRkrCw4Nm6JkE3V+X19ocoXpafGpz/2co+N+V55ZExlMbH5wbHhAS8iTCb1pbiSAQAAAAAAAAAAAKCVQkUP5PPU5liYQ9wnHRPass2LClu1gm2/6S6KGNm+JlEBtpJxG3BWcoyK2awfvUn/te1zscu8dtlb9LaVf9GUB6CtyqzV+FT7YmEpr0/HLXuzvjHyhXnzJsPdunvsVh277IS69tFNbNdZN0X5AAAAAAAAAABA5yEWBgDoGXEtrGIdYzzithvcfYvMmw6V94xDa9/BHDmHcSsmpvxli4XFRc+k5LGiZiEWhnqDed0oSBhI++Z98y/o3Xnp278wOukVHR6/GR2pedWCl46d/5urRvTajxe0pbS05n0A5TzP01BWGspKa5dVzHHeRlA0s/Gwiv/uCY7NRMjGbBGynFtstNeERhqdnP6oFHWyok/gULY8MrYnJjboWSNkc4Nj/Wk1ZXAvAAAAAAAAAAAAACxUoSXWlPJSLT6Sufvvk6+UQtkH0cWFlmzzgoiwVSvY9ttNESPbsRZNUSVTqnjPuEbAXKNiUX6w4wZdP/LF2GXesPztess+f9q0sQSrM/vrN1O/rHn9Rnz9j176en1n+3WaCucN2NBto9/Sq5b+ftuv51ZZCFE+AAAAAAAAAGg3Y4zuu+8+/epXv9K2bduUz+e1cuVKrV27Vsccc4wWLVrU7kOs2aZNm3TPPfdo8+bNmpqa0j777KPnP//5OuKII+T79T1IZ9u2bfrRj36kLVu2aGpqSmvWrNFBBx2kI488su5tR3n44Yf10EMPaWRkROPj41q+fLn2228/HXPMMVqxYkXD99friIUBAHpGXEijGP1Awrq3GwQlmSs/Ju+jX3bblsMyQVEKQyPftw8YidtOyfJaq4VGOiYW1iHHcc/jRmdeH+rnG6Tfe4Z04dt8veQZBEFaobRAozix95Jishd9wwPR00/7mtFJr0i0qdYb3Tb7R5MguCTFx8K8f/yc/vm2RdrSojcQfSC4yvR5WrlYWrl47hy3N1EYGu3KVQbEds6ExSriY9L45PxpOyc753t8p5nIT388UfHQXds9ZP70dErzAmJLB6Qlg978CNlMbKxs2uJ+xf59DwAAAAAAAAAAAAAWmlDRg9s8Nf6XFpLK+FnlIgJIM7J+f+y6UYIwqPu4amGLGGX87nmKZ1ycrWACpbyB2c9LcouAuUbF5vru9v/St5+OHyN6wop36vdXvKOpDx1blV1b1/px59RVvz+gVy59o76/45vz5m0vbNP9u+7WEUuOqXs/3WAhRPkAAAAAAAAAoF2efvppnX/++brmmms0MjISuUwmk9Fxxx2nc889Vy9/+cudtvvud79bV1111eznjz32mA488ECndW+//XYde+yxs5+fc845Ovfcc63Ll/9M4NWvfrVuv/12SdJdd92lc845R7fddpvCcP7PxlatWqUzzzxTp5xySuKw1/3336/TTz9d69evj9z2unXr9P73v18f+chH1NfXp3PPPVcf/ehHZ+evX79er3nNa5z2tX37dn384x/XNddcoyeeeCJyGd/3ddRRR+mcc87R8ccfn+i1wI5YGACgZ7QlFuZlpNu+LrnGwhwbNvmiNFDjuJzQso9quy6Upuu7zRys4iKo/eF9sYzryZf06Daj118camxq+vNbHpGOvzjUvWf6OmglUY9mS/ClWjByDXrfT7ZnfKETk5uU/udumZuvqXkbOctAKu/SH8h78at07fsoImHh8X1Pw4PS8ODcOW7fj4wxyhX2RMbKgmNjUyZimjQWERybaM+DjjteoSSN7Jr+qBT1jWz+NM+TlvTPD44ND0x/zSsjZN7eP+8Jjg0PTMfoAAAAAAAAAAAAAKBbhCZ6IJ/vdUAszMsqJ3ssLC4AZJtniwk1W8Gy33QXRYzizncQ5tXvl8XCHCNgrlGxGcYY3bT9Wn13+9dilztxn5P0+hVvS7TtWqzOrKtr/UZFrF6z7ATduuNbkefzlh3X6/cWH932caitYI/ydc91BgAAAAAAAADtcMMNN+ikk07Srl3zfjGvQhAEuvnmm3XzzTfrfe97nz796U+rr6+zM0rnn3++zj77bJVK9p9dPPXUU/rgBz+o9evX66tf/aoyGbeoxKc+9SmdccYZsdvevHmzzjrrLH33u9/VN785/8Efrq6++mqdeuqpGh8fj10uDEPdeeedet3rXqd3vetd+vznP+/8emDX2e9yAAAaKK4vVKyjHxO33cBLJ9uWYwTpsaelw9bUtp2ICKzTvo2RSqHUl6p+fM2Ub1IsrNp2y0Np37jPzIbCZuyclK6/3+hDr1/4g1jarRdjYY2KfOUKjdlOo5lNv5H50B9IWzdUTneMHc14OrVP5HTvxa+q+dhq1QPj2bBAeJ6ngcx0hHS/pRVznLdRKBqN5yoDYlHBsbGYCJktZtrLjNlz3qakuXfHiKUjtzGQrgyILR2Qlg56WjIwP0K2NCJCNphRTwzQBQAAAAAAAAAAANAZjCyxMHVALMzPSDHjDNO+/RcbbHEgW0yo2RZCxCjuWOe+PudYmONy0vR4whuevlo/2HF97HJ/uPIv9drlb3Hebj3qjYVl/f6GHMfSvuV66ZJX6Sfjt82btzH/W/1m6n/0nMHnN2Rfnaxgogf9pT1+CQoAAAAAAAAAbK688kq9973vVTgniHDwwQfrsMMO0+DgoDZu3Kif/exnFVGsz372s9q4caO+/e1vd2ww7BOf+ITOPPPM2c8POeQQHXLIIRoaGtLWrVv1k5/8RLlcbnb+9ddfr7POOksXXXRR1W1/8pOf1Ic//OF50w877DA9+9nPVjab1caNG3XPPfeoVCrprrvu0jve8Q696lXJf//67LPP1sc+9rGKaZ7n6ZBDDtGzn/1sLV68WKOjo7r33ns1MjIyu8w111yjrVu36uabb+7Yr1G34OwBAHpGXGCoaAlouQhjNhzs+aF+eWiqETaPVomFxaxri3G4RDoKpdpjYcYYXX230Y0PGPX50p+9wtebX5j8nARNioXtysXPH5+Shgen//z/vhl9sk7/utGHXt/gA0MimQX6t9uJ9owLbBnzJ89ryHZ2+Ysbsp1GIK2DXpLu87RikbRi0dw5bleCMUa789PhsPLg2GxYrHyaJTjWrJhot5sqSFNj0tax8qm2v/TNn97nl8XEyoJjw4Pe7PTyCNnwnAjZkgEp5XNHBAAAAAAAAAAAAODGFmvyvTY/4VJSxosPKWU8e7zKNi8wbYqFWfYb9xo6Tdyxzn19JeM2qMB1OWOMvj7yea0fvSl2uT/e93169bI3OW2zEZb17aOs16+8qTIY0qKREavjl58YGQuTpB/suKEnYmHWKF8XXWcAAAAAAACAK1MsSiOb230YvWHlOnkLNLT0wAMP6OSTT64Ihb3oRS/Spz/9aR111FEVy46MjOiss87Sf/zHf8xOu/nmm3X22Wfr/PPPb9kxu3rooYf0ox/9SJJ04okn6oILLtChhx5asczo6KhOO+00ffGLX5yd9slPflInn3yyDjzwQOu2f/7zn+sjH/lIxbTXvOY1uuyyy3T44YdXTB8ZGdHZZ5+tK664Qj/84Q/18MMPJ3odV111VUUozPd9nXLKKfrwhz+sAw44oGJZY4xuvPFG/e3f/q02btwoSbr11lt11lln6YILLki0X1RamHcAAAAimJioV7EkbdlpNJCWlg0lCxrERchmYmEqFqR09YEUDr0uSdLTu41qTdGEljBa3OuYUShJAzXtVTr320Yfu2nvTr5+X6gvvNvTnx+V7KmPgfvD+xLZXWXc1VRBGm7OrpFQ3Fv12ENadhgNF/e6FnIsLPzEKdZ5JuF9ruCl503zTv904mMC0Fqe52lxv7S4X9p/ecUc523kCmY2HDbz351Te6fNTB+zRMiqRUN7VTGUtk9Mf1SK+q4V/Z1sSb8qw2KD0tIBT0vmRci8imVmImTZNLExAAAAAAAAAAAAoFcYRQ9u85VsjFkzZPz4wE/cfNu8giUm1GyFMIicXu01dpK4Y50baSrJbdChLVZXLjShrnvqs/rR2M3WZTx5+pNVf6Ojl77Oab+N4nmeVmXWamP+tzWt38iv/5rsATp86CX65cR98+b9cuLn2pLfqDXZAyLWXDisUT6/cVE2AAAAAAAAoGOMbJZ5Rxf/gm8X8b72v9J+B7b7MJriPe95j4Jg788wjjnmGH3ve9/T4ODgvGVXrlypK664Qs961rN0+umnz06/6KKL9M53vlPPf35nPbRix44dkqQzzjhDF110UeQyy5Yt0xe+8AWNjo7qxhtvlCSVSiV9/vOfrwh0zXXKKaeoWNz7QJS3ve1tuu6669QXEZVbuXKlLr/8ch100EE644wz9PTTTzu/hg0bNujkk0+e/TybzeqGG27QG9/4xsjlPc/TiSeeqKOOOkpHH320Hn30UUnSxz/+cb3vfe/TM5/5TOd9oxKxMABAz4gL8Vxyq9Eltxp5nvSWF0hf/itfg1m3MEFcZKswEwsr5N1iYY61sFyh9u2Elnkuuy7UGOqazBtd/IP5e7jgu0Z/flTECjHybg/vS6xaJGSqyjlHZ0gt0J5IrddepzPFonTj5xq2vSAiFqYT/rJh20/CW6DvRaBT9ac99aelVUvKp7pfiKXQaHxPOKw8ODY2ZSKnzY2Q7ZySSpYga68bz01/bBotn+oeG+tP7w2H7Y2JeRoeiI6QDc+JkC3KTv/DIgAAAAAAAAAAAIDOFxpLLMzr/FhY1uu3r+tFr2uLCTWbNWJkOc5OlPbs4zHnvr6ScRt0GFaJioWmpC8/9RndPXardRlPvk5afapePnys0z4bbVVmXe2xsAZ//Y9f/tbIWJgk3brjRv3Zfqc2dH+dZm60bkY3RfkAAAAAAAAAoFXWr1+v++7b+2/KS5Ys0XXXXRcZCiv34Q9/WHfccYduuukmSVIYhrr44ot15ZVXNvV4a3HMMcfoggsuqLrceeedNxsLk6TbbrvNGgu755579NOf/nT28/32209XXnllZCis3Omnn65bbrlF3//+9x2PfjryNTU1Nfv5xRdfbA2Fldt33331la98RS972cskTQfQLr74Yl166aXO+0YlYmEAgJ7hEuIyRrrxQekD1xpd+W7HWFjMvNlwTT4nDS522p6LoI5wkC0WFjoELoIaQ13//ZC0O2Lcw6+fknZMGC0fcg841HoM1UQdX7mp6Icpog3iruXiAg21dGsszOwaldZ/Q+axh+U996XSq98qL1s2MHLzb+LXTxh3KcyJhXn/fos8f3qwqHGtMQLoSSnf07IhadnQ3Dmu8VijyWBPQGxKZTExMxsTmwmLjVkiZIRJo+UK0x9PjZdPtd3T50/3vfKYWNmfBz0tiYiQLZ0TIRsekPoWao0UAAAAAAAAAAAA6DChLLEwpVp8JPNVCymlYwJAtjiQLSbUbEEYPRgu7Vd/IGqn8D1faS+jgpn/Wgrh3FiY2+CruKhYyZT0pScv1c/G77Afk3y9e7/TdMSSY5z21wyrs+ukXbWtm/Ia+6slzxl4ng7IHhwZL/vZ+B1688o/1dK+5Q3dZydZCFE+AAAAAAAAAGiVq666quLzU045RWvWrHFa98ILL5yNhUnStddeq8svv1zZbGf9e+yZZ54p36/+gJzDDz9cBx54oB5//HFJ0gMPPGBd9tprr634/AMf+ICGh4edjuess85yjoVNTExUBNgOOuggvf/973daV5Je+tKX6pWvfKV+9KMfSZK+9a1vEQurA7EwAEDPSJKJuf5+o/88ySjlVw8DxPVngpmn1xXcBvW4HmO1cFDcMZUsMSWXfdcaLPrtiH3rtuOxaVosLBc/n4BH54h7ryZ9P3WLboygmae3ypz2Jumxh6c/l6TvXi1d+E152YHphSZqHJlmEZQ9MdS76Hp5L3rl7Oetfm+QlQF6i+d5GspKQ1lp7bKKOc7bCIpmb2RsT1RsOjxmKiJkY7YI2VT1ffSi0Eijk9MflaL+RhH9t4xF2ajgmKfhmcjYnAjZ8JwIWX96+j0CAAAAAAAAAAAAIF5oiTr5XvVfnGi2TJWQVsazz7fFgYKI0FWzlUxRJUUPwuu2iFHGy0bGwuZGmuIiYJXLRb//SqaoL2z9lO7bdZd13ZT69J41H9aLFh/ptK9mWZ1Z29b9l/M8T8cvf6uu3PqJefNKKur20Zt04sqT2nBkrWGLAdrigQAAAAAAAADQy+68886Kz9/1rnc5r3v44YfrJS95ie677z5JUi6X089//nMdddRRDT3GegwMDOi4445zXv65z33ubCxscnJSu3fv1qJFi+Ytd9ddlT+7eMc73uG8j2OOOUZr1qzRli1bqi575513ampq7y8wvv3tb3cKn5U79thjZ2NhGzZs0MaNG3XAAQck2gamEQsDAPSMuIDWXGNT0vbd0r5Lqi8b/n/27jxOjrLA//j3qb577iQzOUgg4QiXnCZyQ0K4YQMIihhFQEHlJyusLoKLogvi6rrKroAskYVwihgCxCCHyn0IhACBAOHKTc65p++u5/dHT09f9VQ9fc3R/X2/XvPKdD1V1dVnZnqqPlXJWJjmNjoFs+xjStajOtddaizMLtKTKHKd0SrFwpzWG2EsbEyo1VhYqa+94SalBO64HvIvi4BP1xbO8NrfgeceAY47J3U5bB8Lk0Umt+LCM/S9OPyUnLFafW4QUe3wugXam4D2pvwRvffCpCnRF8FQcCwTHsuLkIWBnpDMzBPOzDtW/r8Zbv3R1NfG7uypqh+eC6d73blBsaHAWDoslhcha82LkDX5AUMjYkxEREREREREREREREQ01pmw3sHDwCiIhTmEtOwCQB5FaGxLbCMWbvwFPIYPuwf2wSHNc5TzVsKqgRV4tfdZ5fhYixh5DC+snjJPdC7Ba73PDV1eH/1Ya33rox9j4cZfFEzfkdiGdZEPlcu5hQcXTfkB9mucpXU91TTJO63kZavxV+mDmg7D+O0d2BHfWjD2XPdjOGn8F+A3AiWte3VoJd7qfwVd8e1FLRd0NWLvhgNxUOPhVT3xV1wqYmFjLMpHREREREREREREVG1dXV346KOPhi63trZi7733Lmodhx9++FAsDABeffXVURUL22233eD16v8NqK2tLedyT0+PZSzszTffHPq+tbUVu+++e1HbNWvWLDzyyCOO8+XH3KZMmTIUM9OVf/s//vhjxsJKxFgYERHVjWJiYQCQ0AzL2K13KBYW04uF6XrHOdCqpLpddtGztFIDEm6X/jqlwwPlFEorlVNIKDz8J3EkBbuniO7rdjSqidt1x88g/+9a21nky49DpGNhof6KXv2rgdmIww2PxdlPh/s+rOJ+ZEREllxGKjLVGgR2GZ89oveGJKVEOJYJiGWCYzInKNYTzkzPj5ANVPZH3poRSwBb+1Jfuaz+8y+cJkQqGpYOiA3FxAZjY7kRsqzYWFaEzOPmf0xEREREREREREREREQ0+plSEQsTNjugDROPQ0jLLgCkGouYIazofwkA8Erv03i97wV8e6er4TE8lvOX42+dj2Dxtv+znWesRYxU27s28gHW4oOS1pl+PHR5hBff3Okq7NNwUEnXV2nt3kkwYCjDe8PNJVw4tm0+Htj6+4KxsBnCC91PYt64+UWv9/nuJ3DvlptL3q4Xep7EnNbT8MWJ3yh5HU5ipvVOp07vJURERERERERERET1Ztu2bTmX99hjj6JP9rDXXnvlXN66tfAkFiMpP/7lxOPJ/VtRPB4vmGdgYACRSGTocinhLd1l1q9fn3P5sssuw2WXXVb09WXr7Owsa/l6xlgYERHVjSJbYYgU/sxU9HpjYvAHMc1YmG7Q7PF37Ge0W48qiqVz3bESY2Eem3218gM+TttR6jY4cQoJhTWfD1R9pTy/x7pElZ73lSSlhFxqv0MhAODxe4CrB+cLFVRTctdZwvkqT9n5YTz4jQRa8qaPhfuQiGgkCSEQ9AFBHzC5NWdEex3xhERvJDcg1h3KCosNXu4NF05LR8h0Arb1Rsr0/QiszR2xmttyHUFvdlAsKzYWtIiQ5QXHWgKp5at5RmUiIiIiIiIiIiIiIiIiADBhvYOHAWOYt6SQT/htx702ASC7sWzvhd7Ee6E3sF/j7KK2zUnMjOKR7Xc7zuc19M9oPxro3q/V4hN+fHvqv2FmcL8R3Y5sbuHBBM8kbI2XcUbaCjusZR6Wbf8DQmbhiSX/3vUI5rSdApfQP6wlKZN4ePtdZW/X091/xrxx8zHe01H2uqzEpPV+w2MtykdERERERERERKSlfSrEH98f6a2oD+1TR3oLKq6rqyvncktL/hHCzvKXGW0hKsOo/N+6uru7cy43NTUVvY7m5mat+Xbs2FH0up309dkfY05qjIUREVHd0A1xpenGoezWGxODO8/ENWNheleJ2dNLX48qiqVz3fESYzsum59f89fptB3RhEQx0QpdSYcyRTRR8aukKnCKvo1Vpb72hlVfF7BtY3HLOMTCSvFUw1zc0Gvimrzpwx38Y0+FiOqRxy0wvhEY35g/ovemaJoS/dGsyNhQcEwWTOuxiJB1h4EYf2azFIqlvjblfAas+vm3cLrbQE5ALB0cawkKywhZawBoCWYiZM1+wDD4nyMRERERERERERERERHZM6X1zj+GGPlYWMDVYD9uqMeDNmP5Pgi9U/FY2LrIh4jLmON8fiNY0eutNrv7vNr8RgD/b6cfY7fg3iO2DSqTfFNLioVN8e1Sha1J3VdHt56MxzofKBjrSmzH8r4X8LnmY7TX92l0PQaSldnv7MPQOxjfUp1YWNy0fs2NtSgfERERERERERGRDuF2A5Onj/Rm0Bgl82INogIH6FZiHaOdz5d7copYzPlvQfl0lyll3U7yH3fSx1gYERHVjWJ/XAhr/sxit96hWFgsorcuzY185E29+awkFNEhh1YWgNLjC26bfbWKjTtVK5qUdNiOVEys9n8xGAtsY3hjIapVgjERQduxRW++9p2GvpWfrLKdVZb4mvvTCgPXnJ47rVfvbRgA0CoG8JW5jdhvJ+Clj4A7Xiz+F06+WxARFc8wBJoDQHMAmDYue0T/XTUSl+gOZYJjqZhY7rTuMNA7GCHLzJP6t6+I/y/qScIEtvenvnJZ/R9p/f9ms98qOCbQYjGtNYiCCJnPw/9diYiIiIiIiIiIiIiIap0J651kBEY+FrZncD8sVYz5jQB28e+hXHbXwN5wwY0knHfAi5jhErewvHVO8+2KBlfxZ5wfSXsG98MH4beH/XoDRhDfmfoTzAjMHPbr1rFfw2y81f+K5dhU33T4jQZ8GH4nZ3qDqwl7BD9TtW06pu0U/LVrCRKy8DXw186HMLvpaO0Dt6IVfI1U4/WWlpDWZ7d08RAeIiIiIiIiIiIiohzjxuUcSIaenp6i15G/TFtbW1nbZCWZHF0Hseffxq6urqLX0dnZqTXfhAkTci6/+OKLOOyww4q+PqoM/qWBiIjqRrFx0Yj13+kLmDYRn6FYWDxa3JVrGIhKNPisd46wu63lRIdKjYW5bPbVyo9/OT1OpW6DE6f7ZUzEmuqE3XNEJ3o3WtlterUieRX14jK9+ZpaM98/9WBVNuUdixNj9haxX9dXdizC/3zpUgDAqfvJkmJhREQ0MvwegUktwKSW7Kn6kalEUqI3khUWUwTHesJAj0WErCfsHKGtV70Rq3infmzM78mEwzIxMTF0OeffweBYdoSswVcfZwUhrnALzQAAIABJREFUIiIiIiIiIiIiIiIay0xpvZOMS7iGeUsKTffPxBEtx+OFnidzpgsY+GLHRfAYHuWyAVcQZ3VcgD9uXeh4PTFZ+X0NY9L+zKk+4cdZHRdW/Hqr7ei2k/Fm/z+wPvrxsF1ns6sNl0y9Gjv7dxu26yzW7Oaj8UrvMwUhNZ/w4wsdF8EjPPjthp8ibA4AAAwYOKfj4qq+zlrcbTikeW7B6wcANkQ/wfuht7BXwwFa66rka8TptVGOJEbv+xkRERERERERERHRaNLe3p5zefXq1UWv4/3338+53NHRYTmf252bWUok9MMFpcS4qsnlcmGnnXbCxo0bAQAff/wxQqEQgsGg9jpWrlypNd/EiRNzLq9evZqxsBHEWBgREdWNYmNhYY1Y2FPvSXz/T+oVJ4QHJgRcMb2dE4rZxKfeB07bX7EemxWp4gU690+kxFCXewzEwpyiDow+jA21+jglTUBKOaoDF/KPv9WbMTyQ+X6f2cBLf1Gvs4i4S8GyefdXYZzEnnmUD3C5MPkH/4sLjliA218o7j+RUfxQERGRDbdLYFwDMK4hf0TvjV1KiYFoJhyWiYnJnGndoVTI0ipCpvN7SD2KxIHNcWBzb/ZU1f/PhdNdRjoklhcWC6aCY/kRsta8CFmzP/X8ICIiIiIiIiIiIiIiouoxYb3zj4DNDmjDxBAGzp34bRzYeCg+CK9C1Ayj2d2GzzR8FtP8uzouP6ftVEz374FVAyvQl+zBB6F3sCm2tmC+uFmFWJjNOs9uvxD7Nc5Gu3dyxa+32hpdzbhs2nVYOfAq1kY+gCkzz5+oGcHLvX8ved2zm45B0JX7h+MO7xQc0jwHQVdjyesdDl7Dh0unXYMVfS9hbeRDJGUC7d7J2K9h1tDj/MPpv8Fb/a8gZkaxb8NnMdU/verbNa/tdMtYGAA82blEPxameD674MaRrSdYjr3R/zJ6Ep0F06vxektLKuOHPISHiIiIiIiIiIiIKFtbWxt22203fPTRRwCA7u5uvPvuu9h777211/Hiiy/mXJ49e7blfM3NzTmXu7u7ta/jnXfe0Z53uBx66KFYvHgxAMA0TTzzzDM4+eSTtZbt7OzEm2++qTXv4Ycfjt/85jdDl5944gl87WtfK36DqSL4lwYiIqobRbbCEHI4YdivnzTx/Qec1xoXHv1YWBEbuaFLQjdakC1RRkwpWmK4wGNzIrREfizMYV0x6/0nyuYUmcrfTpUNXRJT2xgRqCa750iy2Bf6GJI0AfdoPqlg52a9+UL9me+j4epsC4BoAvBnnbC1t4irEulnWTIJef03cMtJz2HfL9yi9Z5PRET1TQiBRj/Q6AemtuWMaK8jGpfoSYfF8oJj2dN6VRGyIgOZ9SJpAp0Dqa9cVv+/W/+f3+jLCogFMmGxlqB1hKw1L0Lm9/D3BCIiIiIiIiIiIiIiIjvZsadshhj5WBiQ2o59Gz+LfRs/W9Ly0wMzMT0wEwDw4NY7LGNhMVmFWJhinR2eKTh23PyKX99wCriC+FzzMfhc8zE50/uTvWXFwk5v/wrGedrL3bwR4xYezG4+GrObj7YcH+/pwNy204Z1myb5pmK/htlYOfBqwdi7oTewIbJGK1qmej4HXQ04Z+LFlmNbYhstY2Ex6bCjcIlMaUIq4ocuMZp3AiQiIiIiIiIiIiIaGUceeeRQLAwA7rnnHlx33XVay7777rtYvnz50GW/34/Pftb6bzkdHR05l1etWoVZs2ZpXc+jjz6qNd9wOu6444ZiYQCwcOFC7VjYokWLEIvpfU4+b948uFwuJJOp4MIjjzyCrVu3FtyfNDwYCyMiorpRTIgLALb3q2Nc/RGpHY2JCS/8scofsR/0qsfstkwVvdK5f6IJ53msuGz21Yrnx8IctiNW4jY4cYqo6UbWnlwlccERjABUk91zxCn6NpbFk6M8FqYrnIqFyY0fAa8/bTurVLwHHxxegdcDB9ku2x/JjYVF4vr/CYi8d1HXY4tw+bevxYHTOnDcr/WeZHwXICKiUvk8Ah0eoKM5f0Tvf5ekKdEXyY6MpcNjMuv7dHAsNS0/OFZOYLiW9UdTXxu6sqeqfsYonO51Z0fG0t8LNBdMS0XIWvMiZI0+wDD4UwYREREREREREREREdUuE9Y7t7lQCzvN5PIaPsvpMbPysbC4Yp2qbagFPuEva/lavm9G0vHjzrCMhQHAX7sewvmTL3Nch+o1YveYDefrDQCSUn12WhcP4SEiIiIiIiIiIiIqcN5552HRokVDl2+88UZ85zvfwaRJkxyXveqqq3Iuf+lLX4LPZ/258MEHH5xzeenSpTjvvPMcr+Pxxx/HK6+84jjfcFuwYAGuuOIK9PX1AQCWLFmCxx9/HCeeeKLtchs3bsS///u/a19PW1sbFixYgDvvvBMA0N/fj+9///tDl2l48S8NRERUN4psheGy+yW+fqT12A1/019bTHiBaFhr3mKCZu9v1p83WzkH/qdiO8UfnC5sFsnfHqe7ID8uVilOkSndCFVf5btwVASz2Bf6KOL0+h/N0Q75ybv6M8cikAO9kF/ap+Trmxlb7RgL64sCE5oyl4t677B6MB67Gx3H/EsRKyEiIhoZLmMwMhXMH9H7OV5KiXCsMCDWE5ZDkbF0cKw3DHSHCiNkoeqcfHnMiyWArX2prwz92JghkAqLZQXEWgNAS1AMXc6OkOVPawkAHjdjY0RERERERERERERENHqZ0noHGSFszlY5RnmFIl4kK//HtphUxJUU21AL3MIDAQFZ9J6jKbV834yk3QL7YLp/JtZEVheMvdb7HOZPWIBxnnbbdcQVrxG7x0w1Fle8NsqlCh8CgEvUXvyQiIiIiIiIiIiIqFzHHnssDjzwQLzxxhsAgJ6eHpx77rl49NFHEQgElMv95je/wcMPPzx0WQiByy+/XDn/YYcdhmAwiFAoBCAV13rttdcwa9Ys5TIffPABvva1rxV7k4ZFU1MTvvvd7+K6664bmvbFL34RDz30EObOnWu5zJo1a3DKKaegu7u7qOv6yU9+gvvvvx/RaOqz9bvuuguTJ0/G9ddfD5dL/7PvVatWYfv27Tj66KOLun7KYCyMiIjqRjEhLgAYiKYOlBcWpas/La9SLEx7rcCzq9Vz291WVfRK57qjCY2ZrNZts/L8gI/T4xSrUizsmkfsr1g31KQbFaPSlfL8rgWJKj33K0H+pcjy82N3661XURoUkPhq9924q/UrymX788J95YYG5cqX0GQf0s5hF0kkIiIazYQQCPqAoA+Y0pozor2OeEIOxcN6sgNjIVkwrSdUGCHrCRf/+1s9MGUm3pbL6s6yvgOD3qzIWDo4FhTWEbJAJjyXDo4FvLD8HZmIiIiIiIiIiIiIiKgSJKx3/jFQg7EwQxELMysfL1KtU7UNtUAIAa/wISpLO/unR3grvEUEpB6X48edgYWbflkwZiKJp7uW4fMd59uuQ/V89tg8n4fz9QYASane2dYleAgPERERERERERER1Z7NmzdjzZo1JS07ffp0AMBtt92Gww47DLFY6qQRTz/9NI466ijcdNNNOOSQQ3KW2b59O6655hrcfPPNOdOvuOIK7L///srrampqwjnnnIPbb78dAJBMJnHqqafirrvuwgknnJAzbywWw6JFi3DllVeis7MTbW1t6OrqKuk2VtOPfvQjPPzww1i5ciUAoLe3F/PmzcPZZ5+NL37xi5g5cya8Xi/WrVuHRx99FAsXLkQoFILf78eJJ56YE1uzM2PGDNx666054bRf/vKXePbZZ/HDH/4QJ598Mtxu68/A16xZg2XLlmHx4sV46qmncM011zAWVgb+pYGIiOpGKQeb//Vd4Ph9CqdPbQXe2qC3jhg8QFRvh5NitnHPyYUHaK/vlLj+LxKPvaNeTjd6ZWVUxMJK3AY72/skOgfs59ENNSUZNRhRtRwLKzd2VVX3/bqo2eUN6iq3rhnxNbbjfXn7cRVz/wmbuAYRERE587gFJjQBE5ryR/QiU6Yp0R/NDYilvpepWFZWcKzXIkLWHa7O7w21IBRLfW3KOfmH6peYwukeVyYolg6ItQaB5nRYLCc4JnLnDQLNfsAwGBsjIiIiIiIiIiIiIiJrplTEwoT+2cjHCmW8SFYhFqZYZy3HwgDAZ/gRTRYfC/MKH0+gU0UHNB6Cds8kbItvLhh7vudxnDz+Cwi4GpTLK5/PQv18VsXfqvF6A4CkVO+s5qrB9zMiIiIiIiIiIiKic889t+Rl5WBc4OCDD8aNN96Ib33rWzDN1N+Mli9fjkMPPRS777479t13X/j9fqxfvx6vvPIKEoncg4eOP/54XHvttY7Xd+2112LJkiXo7k4dXLN161aceOKJ2H333bH//vvD5/Nhy5Yt+Mc//oGBgVSAYNKkSfjFL36RE8oaLbxeL5YtW4Zjjz0WH374IYDUffrAAw/ggQcesFxGCIGbbroJ69aty4mFOf195LzzzsPmzZtx1VVXDT1GL7/8MubPn49gMIiDDjoIEydORCAQQF9fH7Zv345Vq1YN3ddUGYyFERFR3Sil4XTab01Ef5f7h/nNPRIvf6K/jpjwQkZDmofF6xvI24dlW5/EnF+Z+GS7/XKq6JVOqCwS19u2YuhGuNKqcdD/46ucb7xuaMis4VjVaGH3aJk1HGsb1bGwYSYg4XPYUWtbX+7lYkKJlrEwIdBQRCyM+wsSERGVzjAEmgNAcyB/RP8/2Eh8MCyWFRwbio1lT1NEyPqrs0/4mBdPAtv7U1+5rH4QL5wmBNDkG4yJ5QTHUo95/rRMeCwTHPO6+YMWEREREREREREREVGtMmG9g4wBY5i3pPpUYaO4WYVYmGKddnGlWuA1fFA8pZyXo6oxhAvHts3H/VtvLRiLmGE83/MEjh93pnJ55fPZ5nFTjcXNmMPWliZp88RzCR7CQ0RERERERERERKRy0UUXoa2tDRdccAH6+zMHr3z44YdDISwrF154IW655RZ4PB7H69hpp52wePFinHHGGejryxyMrLqOGTNmYNmyZdiyZUuRt2b4TJs2Dc899xwuueQSLFmyxHbe8ePHY9GiRTj11FPxgx/8IGesqanJ8bquuOIK7L///rjggguweXPmxCChUAgvvPCC1va2tbVpzUfW+JcGIiKqGzoxrHzZcZ5wTOLLC008/GZx64gJLxANa80ri0iafdqTO++SFdIxFAYAyTJiVtESQ112tyo/gOR0D8SqEEy66Snn+103FlDLsarRwu61XM7ze6Q5vUfVXSysrQPycycAq62HnWJhf3lb4vQDMyGJYu6/uNWZJHfeE0GffpiCCQsiIqKR5fcITGoBJrVkT9X/HzqRlOiNZIXFQtbBsR5FhKw7xN8NrEgJ9EZSX+s6c0as5rZcR8CTCYdlYmKZ2JgqOJae1uBzPtMJERERERERERERERGNDFNa7/xjiBqMhSniRTGHfWJKEVMEkTxGEWfOG4NKjaHVekRtNDisZR6W7fgD+pO9BWNPdf0Zc9tOg1tYH9AVl4rns9U+X4NUj2k1Xm8AkJTqnW1dcCnHiIiIiIiIiIiIiAg4++yzcfTRR+P666/HPffcg+3brQMKHo8Hc+fOxTXXXIPDDz+8qOs49thj8corr+DKK6/EI488AmlxkHd7ezvOP/98XH311Whubh7VsTAAmDRpEh588EE8//zzuO+++/D0009j06ZNiEQimDJlCnbddVd84QtfwDnnnIOWltQBV93d3TnrSE93ctJJJ+GTTz7B//3f/2HhwoV48803Le/DNI/Hg9mzZ+OEE07Al7/8Zeyxxx6l31BiLIyIiOpHqcdpSykhhMBVS2TRoTCgyFhYERv57Ae5ly+7X2/hhCKmpLN0ybEwm5UnTInsg/ad7oNYidtgZ8YEgZc/tr/ivojeutgDGFljORbmpBqhvFHJH4S44zVgyq7AnRJYXfiqEpDwO5xFtT0vXl1MLOxt3z6FE92pX53OPAhYskJ/XURERDQ2uV0C4xqAcQ35I3qRKSklBqKZcFjP0L/SYpp1cCwSr/jNqgnheOprc85xA6rfxAqnu4zsmFh2eExYRsha8iJkLQHAZTA2RkRERERERERERERUDSYUsTDUYCxMFS8yo0P7LFaKKohU61Esr+EvaTmPIuRGleM1fDi69WQ8uuP+grHuxA681vs8Dm2Za7lsTLHfmN3zWRnnc9gHrVRJqd5ZzRCMhREREREREREREdHYt2bNmqquv6OjAzfccAN+/etfY/ny5Xjvvfewbds2RKNRTJgwAVOnTsWRRx6JpqYm55Up7LXXXnjooYewfft2PPPMM9iwYQNCoRAmTpyIGTNm4KijjoLbnckyzZkzxzaIla+YefPdcccduOOOO0pa9sgjj8SRRx6pNe+qVauGvhdCoKOjQ/t6/H4/LrnkElxyySXo7OzEyy+/jE8//RSdnZ2Ix+NobGxER0cHZs6cib322gvBYLDo20LWGAsjIqK6UerPUzv6gQlNwL3/KG0FqViYZmmqSKYpYQwepKx7ILkyFqZx80o9WN1u1fkBH6fNSFQhmLTnJOd5ejUfwlqOVZXKNCWSJuBxV2YHNrvniFnDtbZqhPIqQSYqW7EQX/8xxE67pdZt88bkczirYyjvBJKq9z4rM2MfFk5MpB6AS481sGSF88oquL8mERERjUFCCDT6gUY/MLUtZ0R7HdG4HAqHpcNiVsGxHkWETPd3mHqTNIHOgdRXLqufPa1/Hm3yZ4JjmZiYQLNFhKzVIkLm9/CHRSIiIiIiIiIiIiIiK6ZUxMJqMK6jClKZMJFEAm54KnZdcVVcqcajWL4Sb59XeCu8JWTlmNZT8GTnEsRlrGDsr50P4ZDmOZbRPGX8zlA/bso4n8M+aKVKSvXOfq4afD8jIiIiIiIiIiIiqhbDMDB79mzMnj27atcxYcIEnHXWWVVb/2g1MDCA119/fejyzJkzS46vjRs3DqecckqlNo0cMBZGRER1o9RYWMf3TIRuMrC9v7TlY8IDRMNa8xa7jWt2ALu2F7dMObGtaImxIrvbVRALc7gPYlWIhelE0PrCmQ2b3AJ82lP6uuqFlBJXPyRx2/MS/VHghH2A275moK2hvAPj7Z4jtRxrG62xMKx9v7Lr8zqf0VNICb+0r1/kx8Ly32vsfL5vSeHEZOrFPa5Bfz1ERERE5fB5BDo8QEdz/ojez9NJU6IvMhgZG4yKpcJjMjMtHRgLZcJk2cGxYoKr9aQvkvra0JU9VfWLSuF0nzs7Jpb+XqAlaB0ha8mLkDX5YXlgBBERERERERERERHRWGfCegcPA8Ywb0n12QWpYmYUblflYmHKuJIioFQrvMJ5PyTL5Wo8ojZaNLlbcGjzsXiu57GCsU2xtVgVWoF9Gw4uGLOKiwH2j5tHERJTratcSaneWc3FQ3iIiIiIiIiIiIiIaBRYtGgRQqHQ0OXDDjtsBLeGisG/NBARUd0osRUGADjtt6UfIR0TXiCWGwuT6z8AVjwLjOsADp4LEWwsaRtXfVp8LEwVU9IJlVUjFpYfL3OMhSXKeSSthTX29+jL2l/qwGmMhem4bpnEz/+SebweegPY1mfiuR9U78x4YzkW5vTMrkYoryLWrVaPNbUBfV3qcSsz9tWa7YjQi7bjobx9HIuJhc0deKZwYjL1BtikuQ8h0w1EREQ00lyGGIxN5Y/o/aQipUQ4VhgQ6w7LrO9T03tC1hGy/IArpUQTwNa+1FeGfmzMEKloWEtWQKx1MDjWbBEhy50n9b3bxZ9YiYiIiIiIiIiIiGj0MaX1zj+GqMFYmE3YKGZGEXQ1Vuy6oqb1SflqPYpV6u2r9YjaaDJv3Hw83/M4pMXfxP7a+ZBlLCxmFh+/U42p1lUuE+qdbV2ievtPEhERERERERERERHp2LBhA370ox/lTDvvvPNGaGuoWIyFERFR3dCJYan8/b3Sl40JLxDNxMLkY3dD/sfFQHKwXLPLXsANf4GYMKXobeyPSBSbpEmUEVOKViGElR/wcQwmlRgss6NzAHt2BMzuHmcsLOPefxQ+mi98BHy8TWLX9tIPTLd7nZiVb8mNGtV47leCfH+5ckx877eQP/mK/sqCTcABRzrOJiDRkdxmO8+HW3OfDMXEwtxWZ6nt7wUANHFfQCIiIqoTQggEfUDQB0xpzRnRXkc8MRgWywuO9YRlzrTUdIsIWbi83+VrlSmBrlDqCzuyR6zuLOs7sMFXGBBrDYqcCFl2cCx/WsCbeo4QEREREREREREREVWSCUUsDDUYC7MJG8VkZQNGMWm9g1ytR7FKjoXVeERtNOnwTsH+jYfgzf6XC8beD72FdZGPsLN/t5zpyliYzeOmGqtWLCwp1TuruQQP4SEiIiIiIiIiIiKiylq8eDGWL1+Oyy+/HO3t7bbzrlixAmeddRY6OzuHph1wwAGYO3dutTeTKoR/aSAioroxUscXx4UX6N+c2oZQH+TPvp47w9r3IH//U4gr/7fodf/lbeBLnytuGVUsTOf+KTWEZbfu/O1xOhA8VkTwR5fO7cqex24TI6M06DQS3t9iPf3W5yT+4/NlxMJsxpJlxPBGu9EaC8M9v1KPjZ9U1KrElbdCGJmdO+3eD/wOO0W+9HHu5YTme8e0+Hrrgb/cCfxwIZr8euthN4GIiIgI8LgFJjQBE5ryR/R+WDJNif5obkCsO5QVFssOjllM6woVF42tJwPR1Nem7uypqh/AC6d7XFmRsazgWEs6LJYdIQuIrCBZaqzJDxgGf2gmIiIiIiIiIiIiolymVMTCRA3GwmzCRpUOGMVLiCvVAp/Q3NEnT61H1Eab48edYRkLA4C/dj6EC6d8L2eaKqbnEV7ldage05iMQUpZ8ZPkJKV6Zz+XcFX0uoiIiIiIiIiIiIiI+vr68POf/xy/+tWvcNJJJ2HevHk44IAD0NHRAbfbjc7OTqxcuRJ//vOfsXTpUsisA7i9Xi8WLVo0gltPxWIsjIiI6oZThKpaulytQNfK1IUliiDYE/cCV/5v0UGzu16WWHRhccvoBnOshGKl3Yl2933+gdtO1xC2PslhWXRuVzRr3w272xMtMahWT3rD1Vt3cqSqgMOgGqG8ckm7F8MhJwC77FXU+sTcz+vNV0L+UTcS8fXu260HJkwBAPg8ejuGMRZGREREVD7DEGgOAM0BYOecEb0ftqSUiMSzImNDwTFZMK1HESHrr87JxMe8eBLY1pf6ymX1s3rhNCGAZn9uQCz1vUBLQYRMpMaDuREyr5s/dBMRERERERERERHVGhPWsTCB2ovr2AWpVDGkUqnjSrUdxSo1hlbrEbXRZtfAXtgtsDc+Cr9bMPZ63ws4Pf5VjPd0DE1TxfTsXlOqkJiEiYRMwCM8RW61vaRU76xm1OD7GRERERERERERERGNDvF4HEuXLsXSpUu15g8EArjzzjtxwAEHVHnLqJIYCyMioroxUrGwR5pOw9e2LYY0Tchb/s16pniqgFXKNsYTEp4iDpBNWu9PpXXdpYa67FatG/BJ2zFQ2jbY0bldkawImN3ticZruFZVIaEyg292z1VT8fweC5xegzH1yQZHzkCveswfhGhr1896feawgklOy57ffSfuaD3PcsxtAKYpYRip90fd95pd4uusBzyZHcaEGLn/U4iIiIhInxACAS8Q8AKTWnJGtNeRSEr0RgbDYoMBsW6L4Fjv4LTsedLjJn92LCDlYKQtDKzrzBmxmttyHQFPJhw29G8gKzaWFyFrzYuQBb2o+FniiYiIiIiIiIiIiKg8Ulrv/GMIY5i3pPrcwgMBAWnxObgqhlQqZVzJsA4o1Qq7eJSdWo+ojUbHtZ1hGQszYeKprqU4u+PrQ9NU8Tu7yJvdWFxG4UGFY2Gw3lnNgIt/nyIiIiIiIiIiIiKiimttbYXL5UIyqR9uOOKII3DDDTdg1qxZVdwyqgbGwoiIqG6M1LG5O8fXA9EwsPQ22/lkPIZS/mt+51PgwGn68ydMQEpZ0g4HpUae7KI6ibz9u5wCPF2h4q//6fclFr8u4TKAsw8WOHKP3NsejisWzBLRmAcAIqMx6DTKlBqdS7N7jiRr+CD8WFKimKjBsOjaqhwSX/xuwbSQCGBR61fxin8W9ou+jfN67sGE5I7U4LaN2lebvhcu7bxJGQtLmMBADGjypy7rxsKO3NMFvGIx8OmaoW99buf3hFH2SBERERFRidwugXENwLiG/BG9n/iklOiPZsJhmZiYLJjWYxEh6wnr/z5ab8JxINwDfNqTPVX1S2HhdJeRHRPLBMdaAiInQtaqmNYcAFwGf/InIiIiIiIiIiIiqiR1YKf2YmFCCHiFD1EZKRhTxZBKIaVUx5VqPIrlM/wlLWcXlqLq2K9xNjo8U7A1vqlg7IXuJ3HK+HMQdDUCAOKm9Q6IpcbCYjKGYJHb6yQprXckdQlXha+JiIiIiIiIiIiIiAg444wzsGXLFjz22GN44YUXsHLlSqxduxadnZ2IRCIIBAIYN24cdtllFxx11FE45ZRTcMQRR4z0ZlOJGAsjIqK64RShqpZOVxsAwPzVdxASQTRIRe0q1Acp24pe/wsfSszsKG4ZUwKuvONZde4enaiWFbv7Pj/g4/Q4DRS5H9RdL5k4/w45tN6bnpK480KBcz+X2YFMJ4KWfXC23TbyIG5n8SoWvaQsPYY32sVGY4iua5t6bI8DUv82tQF9XYgIH+ZPW4ynG+YMzbKo5av427qTUsGwSOF7o9P7wQHRlbh/w5dxztR7LccHoplYWNL6xLMFdj32KMhX7rIckwO9EA3N8Lr4WiciIiIiPUIINPlTP5dOzfmVX/93lmh8MCAWzoqNhQqDY72KCFlv4TFGhNTvCDsGUl+5rH4Rsf7lpMlvFRwTg9Gx3AhZa15wrCUA+D2197srERERERERERERUTmktN7BwxC1FwsDAI/hQzRpEQtTxJBKEZfqddV6FMtbaixMeCvnkyHBAAAgAElEQVS8JeTEEAaOG3c67t3yu4KxqIzg2e7HcNL4swGoY3oem/idx+YxjZmVi/OlJaV1+NAlePgOEREREREREREREVXH+PHjsWDBAixYsGCkN4WqjH9tICKiujFCrTD0G434XdvFuH78D7DZPRGzIstx26ZvYp/Ye7kzhvogYR0Lm9oGbOiyXv+l90lcfn9xty5pAq4S9p/a3Fv8Mk4S+bEwh/n7o/oxKCklrloic4JDSRP40UMSX5qdWYdOgCySFWpiLKw85UavnJ4jVjG8WjAqY2HdiliYPwgRaEh9f8bFwF2/wOMNJ+SEwgDgHf++uLvlXFzWeSNw2vnaVyuyngWfjbyunG9dJzCpJfV9fphQKdioHJJ3/RLiW9ch6HUOLtRgr46IiIiIRojPI9DhATqa80f0fuhMmhK9YVgExwojZD0hie4wCoJjCc34br3pi6S+1ud8ZqP6rbVwus+dHRPLio0FrSNk+dMafajJWDYRERERERERERHVLxOKWBhqMxamilLFFTGkUqjCSqnrr/FYWInRr1qPqI1WhzTPxdLt96Iv2VMw9nTXMsxrOx0u4VIG8OweN7ux6sTCrHf2cwlXxa+LiIiIiIiIiIiIiIjqC2NhRERUN+wCT9mO3gO4+lQDJ9xQmSNhH26aj4eb5g9dfjUwG/N2eQyrP/oMmsz+zIyhfoulU5wO+yz2oN1EEvDm/RSgc/9s6gZuf8HESfsKTG7VPxjVbtX5AR+n7UiaqWXyt9/K2xtT25zv4+3Au58C+0xJXR7QOBFjdgTMbhMZC0uRNg9kTDfapFy3/XgiWVoMb7Qr936rBvmPx60H2tqHvhVePySAqzqutZz1+xN/ics6b4TwBQvXr/G+1Ja0eJEP+mS7xOdmpN6rdGJhXz1UAAcerZ7hnv+EPPI0eGN7AigoNRARERERjUouQ6CtAWhryB/R+71eSolQLCsgFgZ6QkB3WGbCY4NjvYMRsuzgWE8YCGn83l2PoglgS2/qK0M/NmaITDzMKjiWP601L0LWEgDctVjbJiIiIiIiIiIiojErKa138DBqNLCjChhVMl5kt65aj2J5DX9py9V4RG208hheHNN6Cv68476Csd5kF17tewazmo5SLm8Xh7N7TCsZ50tLwvq9zMXDd4iIiIiIiIiIiIiIqEz8awMREdUN3VjYmh3AcfsI/PM8gf/5m+ZCRdrm7sBfG+bhzL6HMxMHem23ca9JwHubK3P9xcbFsn19kURbUGLZPxs4dFfdA4vVYwWxMI31xRJ6sbDOAfXY5t6sWJjGvh7RROoAaSHsbzNjYSnFPOaVFk8CPk91r6ManJ77MeuTDY6s1W9YT2/tyHzf1Jqa1TfTfl1e/Z3sRNa91WL2KufrCWe+jyed310Wnicg3O22j4X89jFYt3dIYxuJiIiIiGqDEAINPqDBB0xpzRnRXkcsIdGTFRDLRMZyg2NDsbH8CFlE/3OdemJKoCuU+spldWdZ34ENvtyAWGsAaAkKZYQsf5rfA8fPSoiIiIiIiIiIiIh0SVjv2GagBs8cCHXAKFbBeFFcqs/oUetRLF+psbAaj6iNZke3nYwnOh+0fA38tfMh7NcwS7msx+b57BbqHQpjNq+RUiWl9c5+rhoNHxIRERERERERERER0fBhLIyIiOqG7jGlXzk0dYDjz8+sXiwMAL4w9T7MHXgKl3TdmoqGhfuU2yhE5UJhgHUsrJiDbrtCwAW3m3j3Wr0dF+xWnb8tOtsR04xN+W2CUeGs/TvCGoEvKVMRKq/bfhsjozHoNMqUG71yjGpVOUY2Uip1u0xTwjAqdCB36wTr6V1bM98fNR+44XLndQUaCibpvC2Ji34KPG89dvPTEhcfnfo+YXP/uQ1g0YUCXrfe/fKV7ntwd+sCrXmJiIiIiAjwugXam4D2pvwRvZ/BTVOiL5KKh6WDYz3psFh2hCwM9FpM6w5VP1w9Vg1EU18bu7Onqn4bK5zucWVFxrKCY81BkRUZS4+nYmPZ05r8qNzvqERERERERERERDSmmdKEVHw+aYgajYUpolQxs3KxMLt11XoUq9QYWq3fL6NZo6sZh7XMwzPdjxaMbY5twIq+l5TL2j1uhjDgEV7LeF4lX29pSWn9hynGwoiIiIiIiIiIiIiIqFyMhRERUd3QjWE1DZ5MLuAViNxsYMHvTSx+vTrb9FTDXDzVMBf3b/gyzu7vhVScyE4IwOcGohUKUdlFc3S9vwXY1C0xpdX5gE67+z7/YF2tWJjm/eCziYVFsgJhIc0Tw0Xig7Ewm3miGuGxemB3H730cXWvu1YPAC83spYWTwIr10l43cB+OwFClHFQdvd26+kTpw19Kzqm6sUaW9u1r1YccCTEaT8FDp4D8ZlDsfdHSbz7aeF8rqybtvQt63W5DWDFjw3sO0X/fjgk8iruhn0srJy7lYiIiIiIchmGQEsQaAnmj+j94C2lRCSeFRkbCo7Jgmm9igjZQOWPE6kJ8SSwrS/1lcvqN8HCaUIAzf7C4FhLIPWY50bIRNZ45l/d8DMRERERERERERGNbhIWZ8AcZKA2AzuqmFVMDk8szFNiTGusKDX6Vev3y2g3r20+nu1+zPI94fHOxcrlnB5vr+FDPFm4s2i8gq+3tKS03tnPJXj4DhERERERERERERERlYd/bSAiorqh2QqDN2u/Iq9b4IFvufDntyTm36jeGalc50y9F7GuW4HJ1uMCqYMftxYceFkaq5iS7v2TbdlKiYuOKi8WVkq4rBIxqEhCAhCIJySSmg9tJA40B+xvT6RCQaexTjfOV411VyqqNdpU6nbt+kMTn/akvt9/KvD4ZQYmNpd4YPV7yy0ni3lfzJ3wueMBp/evtsJYmPKxnrY7xHlXDl20CoUBeoHFfz1RFITCxO2vQV4wS7nMuT3349JJN9iul7EwIiIiIqLRQwiBgBcIeIHJrTkj2utIJCV68gJiPemwWFZwrCcrQpYdHOsJA2YVf1ceq6TE0P26NnfEam7LdQQ8gzGxdEQsALQGBZoD+dNSEbL8MFnQW2ZIm4iIiIiIiIiIiCrClDaxMGEM45YMH48ibmQX+CqWKjwmYMBd4+Ein6E4e6uDUiNjVBkTvJNwUNOheL3vxYKxroTi5JYAvMJru16PYrySr7e0JKx3cnXVaPiQiIiIiIiIiIiIiIiGT23/hY+IiCiLbrzIY/G3+NP2F/iPzwtc+WD1jur82TszMW2SevxHpwlcel9lrj9mFQsrYdW6kS07+bEwnc3QjSbZbV8knvo3HNdbV/YytrGwItZXz6SUJR+I6/RcrURMbiQ43a5KhejSoTAAeGsD8PU7TPz5nyu8E1JjS85F8d1fA9c5LNNaGAvT9fUjBW57vvAOXJUVEZvUDGzuLVx2i0XETOy+n+17UavZgwU99+Keli8Xv7FERERERDQmuV0C4xuB8Y35I3q/20op0R/NhMMyMbHBsFhWcKzXIkLWHdILItejcBwI9+T+vqv+hKlwutvIhMPS/7YGgOZ0WCwvQtaSFyFrDgAug7ExIiIiIiIiIiKicpmwiYWhNmNhXqGIhSkCX6VQhZC8wlvzJ1JQ3b/VWo4q57i2My1jYXacIm/q11usqOvRkZSKWFiNB/qIiIiIiIiIiIiIiKj6+NcGIiKqG7oxLK/if8dGsw9AwRGhFfPTjXOwUDEmBHDmQRWMhVXo4NKtFpEdK3ZbnR920nmcrGJnVuxiYeHB/TuKioVp3G+MhaU4PY494dSBtdVQqef3aPPW+urECh99GxiISjT4itv5T67/QD3ozj0Lo9h5JqA4W+KQrFiYlKmD4lW3OH9LD94ZuE0x7yNvSMw/UCgPqp8xXnEdP/w95PXfUG7uHZu+YRsLq+1dKYmIiIiIqFhCCDT5gSY/MC13RHsdkbgcCo3l/BuWBdOsImR9kUrfqtqQMIEdA6mvXFa/lVr/ptrkT8fEsoNjAs3p74fiYpnYWHZwzOfhb5FERERERERERESmIq4DAIao0ViY4bWcHjcrFy9Shcecwkq1oNTbqHpcaPhMD+yBPQL74oPwO1rzCxhwORwao3o+xBVBvXIkpfXOai5R4ZN6EhERERERERERERFR3WEsjIiI6oZuZsej+Ft8w/svAjihUptj6aI7rbdSAJjSKjB9PLBmR/nXYxXN0Y2pZdvcozef3boTZu6gzmboxqDsYmHpSFm4iP2q0iEwp/hZ0pRwGTzI0862vtJjYU7PkfwAXa14TG+/p5Js6AL2nFTcMvLWH6sHw/3Fb0RTGwDgoRUS33vAxCfb9Rf1e9RjZ9xswrzVhZDitX7QzorX6glfBmxiYQLARV23YWHb1/U3lIiIiIiIqAx+j4DfA0xszh/R+wwiaUr0DobD0mGxVExMojsvQtZrMa07bP9ZSz3ri6S+1ndlT9WPjfk9mXBYJjg2GBuziJDlB8cafakgHRERERERERER0VhmQv0BpIHaDOyo4kWqwFcpYooQUl3EwoS/xOVq/74ZC44bdyY+2Ki305xXeB0/J1c9rpV8vaWp4ocuwcN3iIiIiIiIiIiIiIioPPxrAxERUR6v4n/Hho9eRbVjYU6e+r6BGVeVf1SmbmzLyS3PSNy8wHk+p7hWzrwatbCYZgzK7gDW9DrCcb11AZnImtM2RuNAsM73F3J6GH/zV4nxjRKHzBA4fm/A59E/oNXp/td9fow1MydWb90lHU/89IPqsZkHFb8NbjdWrJM451bTMfiWv73H7S1g96z71ROmZSQRAAKK0JhwuYDLfgN5w+XK9boVZ4C02kYiIiIiIqKR5jIE2hqAtob8Eb1fYKSUCMUy4bCecFZsLH+aIkJWzOcw9SQST31t6c2eqvo9t3C6IbJjYlnfWwbHREGYrCUAuF38RZaIiIiIiIiIiEaWKW1iYcIYxi0ZPsp4kSLwVQpVCKkegljuEsNM9RBSGwv2bTgYk7xTsTm2wXFencfMY3gtp1fy9ZaWhPV+ZbUaPiQiIiIiIiIiIiIiouHDWBgREdUNnQgVAHgUf4tv+PAfwM6V255ipKMzu4yvzEF7VjElzbunJHb3faKUWJhm7Gwg5ryOsM08Besb3CfEaRMjCcbCnB7HW55JzyBx/N7AkksMBH0Ven5XKIY32vRFqrfuYu95aTpEC3f7TEnbsWSFdAyFWZk2zv4WXPEn9RMyaL0PWMqZ3wJsYmEu1GiZjoiIiIiIyIIQAg0+oMEH7NSWM6K9jlhCZkXGssNjucGxHkWErDei/xlfPTEl0BVKfeWyurOs78BGn1VwbDA2ZhEhyw+O+T2p5wgREREREREREVGpTKj3RxGo0ViYInBUyXhR3LTeQc5TB0GsUj+zrIeQ2lhgCAPHjTsDd2++0XFenViYMs6nCOqVIymt9ytzCcbCiIiIiIiIiIiIiIioPIyFERFR3dA9jtDrst5BpNHsr9zGFCl7n5XV1xmYebVDqMdBpWJKHhcgpXTcqcbuIM78MJDO46S7/b98TH0/RdOxsLjeugDgo20Sc/YUjgelRotYJwFPvgvc/Q+Ji4/W2znL6TlSSmxqLKhqLKzY/eK22Z+tsdQd7a5bpvdObbX20w8AHn6z+OsM2MTChGFA7nkw8P7rluMuqX4z4uHRREREREREhbxugfYmoL0pf0TvtyjTlOiLpAJi2cGxnrDMnRYGekIyL0iW+r5WPzcoV3809bWxO3uq6vf0wuleNwoCYq0BoCUdFsuLkOVPa/IDhsHfpomIiIiIiIiI6pmpiOsAtRvYGY54kWpdDGKp6YSnaHjMbjoGj2y7B73JLtv5dJ7PqsdVFdQrR1KxX5lL8PAdIiIiIiIiIiIiIiIqD//aQEREdcMp8JTmUexX1NAcrNzGFCn7MLndO8o/aM4qtqV7/2SLJ1MBo+ZA6dtSEAvT2I6Y5kGdT72vHktHwsJF7Ofx0Ta9+SIVirGNZcU+nZa9JXHx0Zrrdlh5pWJ4o004rhfnK0XRr//3V6jHDp5TzqaUbNGFBlq/W3xIMWgTCwMANLcph1zgEeZERERERETDyTAEWoJASxDYZXz2iGaAXEpE4oUBse50WCwrONYzGBzLj5ANVO4YvZoSSwDb+lJfuaw+dCicJkQqGlYQHAsKNBdEyETWeCY45nEzNkZERERERERENJaZUO/3YcAYxi0ZPh5FvChmVjAWplgXg1hqDDqNHh7Dgzltp+KR7XfbzyecdgIbnjhfWlIRP6zV8CEREREREREREREREQ0f/iWLiIjqhm4Mx6v437HRPXoKRPdfbOCcW4uP4qTpxrZ0DESdY2F2d30yb1DnYapEDCodCQsVEQvrH9wnxOm5FImXtk21pNj41NK3Knfd+QG6WpE0U7dN9R6VTYjiHoNDfm7ig+sMjG/UPKi2T32mRnHDY/pXnPaly4ua3aqX1hwQ+MJnBR5YXtyTL+BxmGHGvsCrf7Mc8kr1i70KTTciIiIiIiIqkxACAS8Q8AKTW3NGtNcRT0j0RgqDYz1hmTOtxyZCZpYQ7a91UqbDbcDa3BGruS3XEfQWBsRag4OBOYvgWEswd1rQi6pE2omIiIiIiIiISI+U6v3hhKjNWNhwxItU6/JqxJWIRoOjW0/C4zv+hKiMKOfRid+p5qlknC9NGQvj4TtERERERERERERERFQm/rWBiIjqhu4xeF7FibsaIjuA5optTlHyj1H7pwPKW59VbKvUYxQ7Q/kHV1qs22bliRLCTjqxMOlQSkoHvaJFhMcG0rEwh/lUsbCPt0n87hmJD7dIHLGHwPwDBBa9KPHupxKH7Cpw6VyBoI8HJDpximCNxViY0/M1LRzTi4UZojDEZ6c7BFx6n8S9F2k+/7q2KYdKOahWnHlx0ctY+d1XBN5YL/HBVv1lgg77PYrTL4L84/9YjvlsdszkscVERERERES1yeMWGN8IjG/MH9H7RVBKif5oJoyViYnJofBYdnAsP0LWFapMSL8WhWKpr097sqeqPiApnO42smJiWcGxlqCwjJC1BpATHGvyAy6DHwgQERERERERERWjL9GDgWQfAGBHQr3DhwuKnfrGOFW8KGqGsTm6Yehys7sVQVfmQ8nu+A5EzDCa3C1ocDXZXocqhKQTVyIaDYKuRhzRejz+3rVUOY8qvJfNowjkbYyugSmTMETl3meSsP4g31XB6yAiIiIiIiIiIiIiovrEWBgREdUNzRYPGv2K6WF1HKfa8g8x83sEfrdA4Nv3lJb4iiWkxVpL8+QqiX2n2K/LbisTeSeE1HmcYknn7f/FY/YrCsdS/8aLKCqF0rEwh0WsYmGrt0js82MT5uCyD78pccWfMit66A2Jv6yUePwyAz7P2D+oUPf1VtK6HcaLiWSNNeE40KIxn8sAkuqTrVr6w6sS93xDasW+ZJdi58xDTrCcvL3P/kERU3Z1vM6c+RWbOK5B4KWrDEy4XP/GB5xOkjp5unLILhZGREREREREZEUIgSZ/Kiw1bVzOiPY6IvGssNhQcKxwWo8iQtYXqfjNqgkJE9jen/rKZfW5hvVnHc3+rNhYOjwWEGgpiJAJyzBZLXwuSERERERERESkY1vsU/x+039iffRjrfmFMKq8RSPDq4gXhc0Q/n3Nd4YuCwjsHtgHx7bNx4Pbbse2+Oah6TP8e+IbU/4VrZ7xBevpSXTi5d6/K66bsTAaO+a2/ROe7loGE9b7hXk04neqQN62+Gb864fn4fhxZ+Kk8WeXtZ1pSWl9xlOX4OE7RERERERERERERERUHv61gYiI6oZuP6jBYv8bKSWC4R0V3Z5yXXRUGbEwi/0QSo07PbpS4rLj7OexW3cib1u0YmHWJ13L8cMl9isaiKXG49b7ZNgu4yQ/FrapW2KvHznHi579AHh6NXDivvrbNFqV8nRKJCXcrvIPiCw2kjWWhC1CdFZKvRuTJuDWOXlhlyKe2NpuOfn+14av4DauQWDLfxmY+D29J4LP4Tci4fFCTt4F+HRt4bKKM68Cxb23EBERERERERXD7xHwe4CJzdlT9T8MSJoSveFUPGwoNhZSBceswmS1/flLOXojqa/1XdlT9WNjfk8mHJYJjgm0FExLRcjyg2MNPmiF4ImIiIiIiIiIRpIpk/jv9T9GZ0L/5J0GajQWphE4AgAJiQ/C7+CD8DsF0z+OvIcbN/wU/zb9vws+G7ppw7U21604qyrRKDTe04GDm47Aa33PWY7rxO/s5gmbA3hk+91odY/DoS3HlrydaUlpvZOrS+jsnEdERERERERERERERKTGWBhVlBDCA+AIADsDmAygH8AmACuklGtGcNOIiLRjWA1W+wNEw3DJJAJmCGEjWNZ23HrKZvz2wW1Y6d9Pexmr47vEQA++t2Mh/mv8vxS9DVGN2JaucQ3OB5/Z3ffJvDGdh8kqdgYAL30kcex/mVq3ry9ivy4rA4NdIKdtzI+FTb1C/+jJKxebOHHf+twhpD+aOrDRidNrOWlKFHOA7FgSjqnHXvxI4u/vSewyTj8qlk87Fta91Xp6m3Us7NL7KhsLc3p025sE4rcY8HzL/rXXFtQ7gFZ85QrI//x/BdMPiryhXCbgcVwtERERERER0YhwGQJtDUBbQ/6I3ucpUkoMRDPhsExwTBZM61FEyEr97KLWReLA5jiwuTd7qupzlcLpLiMdEstExFL/WgXHBFpz5gGa/ahIzJ+IiIiIiIiIyM4n4dVFhcIAwBA1GgvTCBzp2BRbhy2xjZjkmzo0bUtsIzZEP6n6dRMNl+PHnamOhRkWZwnO49GY5/W+FysUC7PeMdXFw3eIiIiIiIiIiIiIiKhM/GtDDRJC/ATANWWsYpGU8vwir7MdwE8BnANgnGKeFwH8Wkq5uIxtIyIqWVmxsPAAAKDR7C87Fnb+nAD27N+CY54tLxaGeBTjk50lbUPMIqale//k++NrEgvPk2jyl3YQWSJvnwid7YhaHEz427+b+O4f9G9EOhYWLyUW5nA12bGy19cWd8e+uaGo2UetUp5PfRHNWJjDeFK/zTZq6N5fIUUs7No/m7jmkfKDXNr33at/s5wsWq1jYZWms50uQ6DrBgP/9pDEzU9b3zcn7qv3viXmfwPw+CCv/0bO9KPCL2BKfBM2eabkTJ8zEwh4eWAtERERERER1SYhBBr9QKMf2KktZ0R7HbFEVkBsKCpWGBzrVUXIwhW/WTUhaQKdA6mvXFafjVh/XtLoywqIBTJhsZagdYSsNS9C5vfwMxEiIiIiIiIisrc9vrmo+RtdzQgYBeX7mjDBMwkCBiTK3+FpR3xLTixse3yL7fwd3sllX+dYcMr4c/DojvsLphswYFrc759rPmY4NotKMM2/K/YM7o/3Q28VjHV4d3JcvsM7xXGezrjiJJpFMqGIhYn6PJEsERERERERERERERFVDmNhVDYhxMkA7gDQ4TDr4QAOF0LcA+CbUsqCQxWIiCpBSgn5i28Dy24fmiZueAwSR2st32B18rCP3wYAtJi92Ob4dmfP1diMA0+fAzxb1moqHgsrxz3/kPjWMeqDwOwSRom8/W10ckfRvO1PJGVRoTAA6B8MfxUTCwsPRsqcwk6RuAQgsPRNidNvGoPlqgooJVuVDriVayzGwnSFLUJ563bIioTCACCpsRoZi6oH28p7f5w9HXh1jfN8a3fo3d6WoMCNXxb4z7MlzrnVxJ+z9hPbdQLw88/rH7wqTv4q5KZPgDt+lpkG4LZPL8bnp/5xKCQ5sRm4aUFtns2WiIiIiIiIqFK8boH2JqC9KX9E73f1pCnRF0EmODYYEesO50XIwkBPSGaNZ+bP/1ySUvqjqa8NXdlTVZ/FFE73urMjY5nAWEtQWEbIWvMiZI0+wDAYHCMiIiIiIiKqZTGpOFuewqymo2CI2twXo9HdjH0aDsI7A8vLXlcyL04UM9X7+ASMBuzb8Nmyr3MsOLjpCDzRuRgJmdnp0C08OG/Sd3Hn5v9GQubukDW7SW8/UxoZp0/4Kn69/qqcx9MjvDio8VDHZWcG9kOLexx6Eur9biuzFx6QlIyFERERERERERERERFRdTAWRmURQswB8BCA7LSOBPA6gI8BtAI4CMCErPEFAJqFEGdIKXkoBhFVnLzhspxQGADIy06CPLwLgM9xea/F/45y2SIAQHtiGz707l7W9gm3G01NbkBx5jDLZawmRiOlx8Isrlq1k4PLAJZfbeDMm018st16nuuWSXzL5oR6dnGtRN62OIW4gMJg0ssfOy+TLx2mKiYWlo6UOW1iJAE8uUri87/jf3PF6M/bP60vIvHcB8CkZuCAaYBr8CBBp+eITvBqrApb7Cu58PnK3WCt0NqqV9Rjbe0Fk3pC+tvn9+jNt2K99ioBAAGvwIPfNvDMauCVNRIzOwSO2zt1kGoxRENzwev/+IG/452PDsTfvvkYgrvuhhP2ERjfyANaiYiIiIiIiKrJZQxGpoLALuOzR/R+J5dSIhzLDYilImNyKDKWDo71Dk7Pj5AN2PTU61ksAWztS33lsvqMqHCaELmRsaGYWFAMXc6MZ54H2ct43PxshoiIiIiIiGg0s4tYZQsYDZjVfBTO6riwyls0sr4+5fu4e/Nv8Xb/csRk6R86JWXuGTjt7ufLpl2LJndLydc1lkzx7Yxv73Q1Htj6e2yObcBk7844q+MC7NNwEIKuBizeejs+ja3DeE8HTh3/JezbWB8RtbFqemAPXDj5+1i6/V5sjq3HJO80LJh0CSZ4Jzku6zE8+JdpP8Odm/8HH4XfVcxVqZN2Wp/R1yV4+A4RERERERERERHRaLJu3TrceuuteOaZZ7B69Wp0dXUhHs+EDG6//Xacf/75I7eBRBb414b6cC6Al4uYv19nJiHEVAAPIjcU9gKAi6SU72bN5wPwTQC/ApBOQPwTgOsA/LCI7SIiciQTCeDBW6zH+roBTHRchxAWBxI9eR8AoCO5rZzNwz/7lgGYDwAYuPQNNPz2QK3lrDYJ8ZnPwowAACAASURBVBjGJXaUtB0xi/0QVAEmAWD/qQL/eqLAJfdYz7Sp2/767HafSOTFiXRiYZG8WNjKjcXvoJEOU5USC3MSiQO3PS/1wks1SudxzNcbznz/9/ck5t9oIjQYxzp8N2DZpYZW3KmW7/f8UB4APPb2MMfCOreox/Y7POfioyslzioimpcfD1Rpcu4+FnC7BObtDczbu4yDRVsnWE7eObEBF7z9Ixhf+kPp6yYiIiIiIiKiYSOEQNAHBH3A5NacEe11xBOpgJhVcCx7Wq8iQtYTLu0ztFon5eB9FCoYsZrbch1Bb1ZkbCgwJtAStIiQWQTHAl7F3wmIiIiIiIiIqCJUQaydfbvh21OvHrrc5GqGIVzDtVkjxm8E8I0pVyAh4xhIZnbh/sXa76O7iP0DkzJ3x5u44n5u90zGNP+upW3sGLV3w4H48YwbETOj8BqZHY/2aTgI+8w4CBEzDL8RGMEtpGIc2HQoDmg8BAkZh8fwOi+Qpd07Gd/b+ed4YseDeGj7nQXjslKxMMXJhF118J5GRERERERERERE9WH69OlYu3bt0OWnnnoKc+bMGbkNKsHChQtx6aWXIhrlGYRpbGEsrD5sllKuqcJ6fwqgLevyiwCOk1JGsmeSUkYB/I8QYh2AJVlD/yKE+F8p5VoQEVXKp58oh2SoH/A6x8IKlss6Yqs9sb2kzQKAqYmN+M7Xdh667G9uwKzwcrwWcD4TneVhSbEIxic7S9qWWBGBrLSpbQKlnjXN7qC3gliYxvryg0kTGovftv5o6rEtJhaWjpQ5HcQXiQN/fK2+j/Qr5UDHe1+ROG4fgWhc4sybM6EwAHjxI+CqJRI3LxCO6x6LsTDdu6s/KpH/jmBU8LjFE28wcdw+At+ZKwZf8xa6tiqXF42ZM472RyTOvsXUiuxJKSGE0H7sfnjKCB2sOXGaeuyZJeoxIiIiIiIiIqo5HrfAhCZgQlP+iN7nFqYp0R8tDIh1h2QmPOYQHLM6KQQBoVjqK/ckF6pP4Aqnuw0UBMRag0BzOiyWFyFrDWTNGwSa/YBRyQ/tiIiIiIiIiGpMzLQ+4CLgakCLu81yrB64hSfn9vuKjFclZe6HRar7OTuWVW9Ut52hsLFHCAGPKC4Uls1n+C2nV2qvz/zXY5qLh+8QERERERH9f/buPEyOqtAC+LnV+8xkZpJMhiQECCRhCQJ5yBIgSAIiyuMhID5AAWUHQREQnoBAEAVFEURZREB4GlaVHQMICY/VmEREMGFNCIRAtslklt7rvj9quqeq+t7qqu6e/fy+r7901V3qTk3PpKf63lNEREREg8KTTz6JM844w5Ej4WXhwoWYM2dOcfuKK67A3Llz+2h0RN74aQNVRAgxDcA3bLsyAL7pDgqzk1I+LIS429YuBuAKACf32UCJaOTpbNcWSZ+LtEqseqv4tNHU9+/lh5MW4BtHbIOtdp3Ru7NuFK799Fs4cPIzlY0rm648LEwxD0H3Vlb0nLYDdwjSv8Qn7cBWY6xJGV7vkysJdkpmnNuxCt7RSGktGAuyoK4QelTubf8tC6ubMrJohcRe2468xWR3vSxx5zeBp/8NdCjeUdz6vMTNXy9//odiWJhfqvNSy1fK0lXA0lUSDy6WePEiAxOaS3uXr7+sbvyZfRybzy3vDdgrJ5cHIuHS8ECVSAg4fLcB+vnYddbAHJeIiIiIiIiIhh3DEGhMAI0J6zpqL//XPVJZW7BYMXDM2mcPHNusCSHr5I3QlHImsL7TejiprkyW7hMCGBUrDRxrSgg0lYSQiWLImD2ELBoeedeHiYiIiIiIaOTISk2IlRi5IVYq0YBBSHk475qZ4Xkm0hLa67C1iQvLS/VdbA0Rqkn/RERERERERERERFSdiy++2BEU9rWvfQ2nnHIKttpqK0QikeL+lpaWgRgekSeGhVGlvgbA/mnVn6WU7/ho91M4Q8b+WwjxLa+QMSIiv2TXZsjT99OXVxipI//w8+Lzpvxm3+3O3XAjrjNugfHg2wA+X1qhbhQ+l3wJJ2z6A37ffLxnX0I19EwaY2oYFlbu2HUx7/O3ZpPEhGaBnz1l4sdPSGxOAROagHtONTzb5VxzIvwE8LoDiNIBvh67jhSQVc/JUNrUbf1bbozvrK1sPAU3Pivxh1OH9mKwSqfMrNog8dA/qptwM5zDwjYnS/cZ3j9iFVmxHrhnkcQFX1C8Dp97UN1o9DjH5jPL/H8fsz1hYeW+dw0x4L7TDbSMGpifDxEK1ezukURERERERERE1YpHBMY3AeOb7Hv9XzfJ5a3ruPbAMStMTJbsa0+qgsmG97W4SkkJbE5Zj1WOS/j+wsYAIB4phInBFiZmBcypQsjc++pj1o08iIiIiIiIiAajjKkJsTIYYmUX9Hy4w4kyZkZZL2oECyEjGpY0186knwmsPuSlelJrSHD5DhEREREREREREdFAe+utt/D6668Xtw899FDMmzdvAEdEFAw/baBKHena/p2fRlLKZUKIvwHYu2dXPYAvAHi0hmMjohFKXnOad7mPRVIH7ajYuWxR8Wmj6T8s7Oub7wNGe1RINAAAfrfm9IrCwuSCPyKKLAyZhxnwbmMZRUCWnzkOd50k8M3fqSs+s0yiPgr8z596y9e0A4f80sTpn9Of+5xrMZmfqRbusLDOdGUTNDrTwcLCAGsBXY3mg2jds0jiD6f27TEG0oQm67Wh8tJ7EqEy4Vflzn9+GKc5bVbEq/bVkr8L/yhxwRcUBTvtASxbXLo/4xzca6v8fyMKvwfcvw8KzjtY4Jg9BHabBMQiXORIRERERERERFQL4ZDAmHpgTL27xN/1FyklutK9wWGbugvhYrJk32ZFCNmmZOm1XrKkssAnWeATx0cSuuttpftDRm9wmD1wrCkhbM97Q8iaXCFkTQkgZPA6HBEREREREfWNjNSEhQmGhdkFPR/ucCLdeY7wPBNB9NmsO4s7vK8gFHCuLxERERERERERERHV3uLFzjXSRx999ACNhKgyDAujwIQQ4wHsZtuVA/BSgC4WojcsDAC+BIaFEVGVZLILeP5h7zo+Ptw/bi9FnQ/eKj5tMLt8j2m7zApAjNGWC8OATNQDyS7s3/UCXqjf33ffAIAlCwAAMZlGUtQFappR37RMyX5GTpipDwt7/J8SEcU7i0wO+ONifWhQSViYj3yhZMZZafkn5duobE4GDwt74l+VHWuk8fo+3nCMgWNuU6dCnXufxNGf9QiXy8uygXJ5TeDUcNCeLN3X72v2ujvV+12phi+957/Lwu8B3fduyjhgr225OJGIiIiIiIiIaDARQqAhDjTEgUmOG2f4v46Tzkq0F4LFkrCFiTkDx9ptIWT2wDFVuD5Z19k2dlkPJ9XVVfUV14ZYIUzMFixWJ9CoCCFrVoSQxRn6T0RERERERBoZUxMWZjDEyi7o+XCHE/E8E+n19ZWrPDRhYWBYGBEREREREREREdFA+/TTTx3bkyZNGqCREFWGYWFUic+4tl+XUvpPzwFedm3vXOV4iIiAJc+VrSKF98f7R/4H8LW9nXWk6UyuqQ8QFtZobgbEWO9KiVFAsgv1stuzmnLko1uB1e8jKjNIovqwMD8hXcLjHP5xKaBbVPTJZn2fOdecCD/jaLOdLiklfvaUutGB6RfxF+MixCMvKcPiNnYFDwv79r0mWhqCtRmJvL6N22+hL1vfCaxu07dObdwIQB/CBwzNsDA/r3sA2KDI6TKM2o6lrJT695XY/8sVd1n4OdR978L9/TV6EKfOhbx9bmnB+G36eyhERERERERERENeLCLQGgFaG90l/pbr5U2JjpQzQMwKGZO25z3BYop9m7pLb2hBls609fiozb5XdyGzdH8sbA8TKzwXaCoEirlCyJpcIWQNMcDo9zslEBERERERUX/IyIxyf0RE+3kkg1tUBA0Lc04KzEhNWFjAfolGkvK3MvXHlOo7+oYEl+8QERERERERERERDbTOTudi7UgkMkAjIaoMP20YGc4QQvwAwE4AxgLIAtgA4AMALwKYL6V8IUB/013b7wYcz3tl+iMiCkw+/3D5OprFRftsB/z0Kwb2mQKE3AtP7r/BsTkx97Gv8YRkDgYkUCagDHX1wMbyIWTKbt54FQAQ1Uye8qIKCwt07BpyhwP5mWqxamPv84sf0rcYnV6L0OrXMHbaeqwPjyspX9shA4eFTR3nDCvrK1JKz3C2oUwIKzDs7U/V5c/82wSgTodKLfo/yAlHePY/GMLC5MfvA8uWANvPACZNrdn3ckNn6eu9318l3R3q/fW9Kzql3/SzHoXQQN3CzNAgCgvDuC3V+z/5oH/HQURERERERERECBmiJ2zKXeLvqpmUEsmMFSBmDxxrT0rnviTQ3q0OIesOfol+REjngLUd1qOX/7AxQ1ihYU22ALHmnsCxRlUImWtfUwKIhIfnNXYiIiIiIqKhLmNqQqwMhljZBT0feTgnwmV5nok86K4b1SYsLC/VE1NDIlST/omIiIiIiIiIiIhGCiklli5diuXLl2Pt2rVIp9MYN24cttxyS8yaNQsNDQ2B+zTNQbAQnagKDAsbGY51bccANADYBsDnAFwihFgM4GIp5V999DfVtb0q4HjcSQpjhRCjpZRtytpERH4s+FPZKrqwsDMOEJg1TV0m//cnju29kosxOr8RbaExnsc6ZvOD1hNRJuEmYk28aSgXFuYely2IJyqz3sdQyORLJzT4neJw0I7As8sDH1IrZzqDsfxkDK3cAHSmJBriAtfO1zf4MDIJANCaX6cJCwOyAYLTACAeqdV0EG/ZPBAdwu/Uyn0fdUFhAJDK6X9u0p9+Ajneu++BDAuTUkLeeilwz3W9O7/6beDbP6tJYFhK8Xrtz0w5mcsCHZq3bE1ji0+XrQnWbyG0b8V6dfmgCgsL6X8wpWlCGINpsERERERERERE5EUIgboYUBcDJjY7Snz3kc3J3kCxngAxVeBYexJo71aEkCX9XRcfaUxp3bijrRvWbbCKVCdLfQLrY/aQsd5gsUb3Pk3gWCKKYXtTDyIiIiIiooGUkZoQK8EQK7tIwPORl86JRTzPRHpCc/1P1iwsTD0x1QDDwoiIiIiIiIiIiIj8WL9+Pa6++mr84Q9/wLp165R1otEoDjzwQMydOxd77723tq+VK1di22231ZbPmTNHuf93v/sdTjrpJGXZlVdeiSuvvFLb54IFCzB79mxtOVE1hnAEBdXYHgCeFkJcA+AHUnpOSW92ba8NciApZacQIgUgbtvdBIBhYURUuVn/BTz7gGcVXViY5zKPznbHZhRZXL32cpw14dfaJuNya3Hhhl/0dF5mEUk4CgCoLxMWViLZWXyakMlgbQFkAgRkub+Cs2YbeHZ5bdOYTAmEeg7kd6rFsk+ALZu9a39n400AgHG5dVZUpsslD0mkAmatzX8T2HVSsDYFVx8pcMlD/r7CZGb4hoVVs7QqlVbfcc9OkYXXfxY94wwKA4AHfwV8djaw32FVd59WvF67M1V369+nHhmxo1uLT29aGOybsLELmPuY/vdKeDDlb0Wi+rL29Y7zQEREREREREREw18kLNAyCmgZ5S7xdyXUNCU6084AsWLYWLczhKy9W7rqWM+DXPMfSbrS1uPjTfa9umuXpfsjIZQEiDXXAU2FYDFH4JiwBZJZ/zbGAcNg2BgREREREZFb1tSEWBkMsbILej7y0jmvKsPzTBRYraYe5qGe5xgSQ3hSKBEREREREREREVE/efjhh3HiiSeio6PDs14mk8H8+fMxf/58nH766bjpppsQDvM6LA1/fJUPb6sBPAlgEYBlADYCMAGMBbA7gMMAHGKrLwBcAsAAcLFHvw2u7eApNVYbe1hYyfT5SgghWgGMC9hsSi2OTUQDbMLkslW0YWEB12mctulObJ95G4+d8gwMAXx+J4GVF5+NVxN7YVrmXRy3+X5Mzq7y13lP6ExdmbCwkm46ele2fCb1Jt6NTg30NagWDnnGRNr8166BDuVLLg+EAoYBvfmxxPw3vOsc0fEoAKA1r04MDhoUVuD3XLlNbRXwO52kOwM01VV2nMEu6M+cXSqdL3sG87XNsgtEPnybev8Dv4LwCAvz+5pKK352+3Wt2dP36ctG974F61LPNdTa48fe37TIYLqh4k576Mva1jEsjIiIiIiIiIiIAjEMgcYE0Jhwl/i/8JfK9gSLOQLHZDFkrBA41q4JIesMeD1vpMjmgfWd1sNJdUG3dJ8QVmBYaeCYQFMxZKx3X3PC+lzAHkIWDTNsjIiIiIiIhp+MZIiVH1HhcUM7hbx0TizKSPUdCKOC55lIaCcx1iYuzP3zWBASg2kiHBEREREREREREdHgc+edd+K0006DaTrXHU+ZMgXTp09HXV0dVq1ahUWLFiGf771xw2233YZVq1bhscceY2AYDXt8hQ9Pi2CFgD0jpTZ64mUAvxZC7AHgHgDTbGXfF0K8KqV8RNPWHRaWqmCMSQCjPfqs1LcAXFGjvohoKGlfX7ZKrcLCAOAA/BNz/rs33crcdAdO33SHovMyCVg9YWETc2s8q4Xd3Sx+rvj0qx1/wsONX/Y+jktGfdMyJff5ifTBwpScCRSmIPkNTXpjNfD0m/rKZ7bdhnjPxLLWnDosrBKj6yoLCzvjAIEtGv3X71bP1Royyp2im78u8K15wU9kKp0re/7NWt3erxIvPqbev3RhTbpXBdztNEHgbyv654uW836mL7SFZO2xDfC/r9TuuLtNGkQL4lomaovkafsAj62GqKtJDi4REREREREREZEv8YjA+CZgfJN9r/9rarm8xOYUSgLHisFiPfvaNSFkm7oH+LrsICVl73lbtdFRoqqt7CMR6Q0OK/6bsIWNuULIml0hZPUxr8WvREREREREAyNjasLCGGLlEDQ8zYRzUqDuPEeMYCFkRMOR0Fw70y+9CCYv1ZN0GRZGRERERERERETDlpkDuj8a6FGMDHWTAGN4RgW99tprOOussxxBYTNmzMBNN92Efffd11F33bp1uOyyy/Cb3/ymuG/+/Pm4/PLLcfXVVzvqTpo0CStWrChu33DDDfjlL39Z3L733nsxc+bMkvG0tLRg9uzZAIBXX30Vxx13XLHs3HPPxXe/+13t1zJ+/PgyXy1R5Ybnb4ARTkr5ZIC6i4UQMwG8AmB7W9FPhBCPS6n5pMrVTdAxVtiGiEivrXwYlNQshtDeHyyv/xUovv49P6MCjDJhYeEIAGBSbrVntajIAeidJCAf6H0DeljHk9gxvRzLYzv6GxOATCbv6A8I9ov5ssMErnq8dr/K87ZwX79zLf79scSUccAbH6vLf/LppcXnEc1dEr1MbQXeXVu6vzNd2X9i3zs4WFhYUhEKNZR4fR+FAE6cWVlY2J7vfRdX7+rdLm96Fg9pacUNB2s0P8nnAJLaIvuCs1CZX31B7Thh8CxmE5Eo5KjRQEdbaWEmDXlIC+Sx3wViCYhoHIjGgGjc9YgBsYRzX6y0nij3fwgREREREREREVENhEMCY+qBMfXuEn/X5aSU6Epb4WHFsLFuYFPSFixmCxxzh5BtSqpvlEDWZwXJdmBNu32v7qJw6f6QYQ8T6w0ca0oIZQhZsyuErDEBhIzBc32WiIiIiIiGB21YWMBwrOEuasQD1c9J58SijGQoG9FA0YeFcfkOERERERERERENU90fAY9uO9CjGBkOXwE0TB7oUfSJU045BZlMbybArFmz8NRTT6Gurq6k7rhx43Drrbdi6tSpuPDCC4v7f/rTn+K4447DLrvsUtwXDocxefLk4nZzc7Ojr/HjxzvK7RoaGgAAK1eudOxvbm7WtiHqa/y0gSCl3CiEOA7AYvTO+N4RwBwAf1U06XRtJyo4rLuNu08iomDaFKlOLlKzqEUIayFLyZ3V//mCvrOZX/Q3rkSDd/nYCQCAPZJLPKuF3/sHZNt2EKNbrR3vv1ksq5fdWPjBwfhxy/fxUmJfbJX7EN/Y9AdMyK3BPtuqv4bMirch2ydANI0t+yWoMtYur3FYWM4eFuazzb9WA6s36csbZFfx+dbZDwOPaUKTOiwsm1cHNnmZMg6Y0iogpUTYcH69Ot3B882GDAGgLiaw8hoDky8Onux1yUMMC7Pz83rqb0F/Roac0ePUYWEF990AoPp0XBmJloaMOQLG4p6BYyKWUISVufvoqePuKxwp/X+RiIiIiIiIiIhIQQiBhjjQEAcmjXaU+O4jnZXF4DB74Fh7Ujr2tWtCyDanav5lDQt5E9jQZT2cVFcv1Vc0R8WdgWPWv6IndMwZQqYKHItFeJ2RiIiIiIh6SSmR0dz4kSFWTkHPR94VFpZlKBuRlghw3SooKSXyUE+gC7lu8ktERERERERERERElgULFmDp0qXF7cbGRtx///3KoDC7733ve3j++efx+OOPAwBM08T111+PO++8s0/HSzSQGBZGAAAp5VIhxNMADrHt/iKGXljYzQAeDNhmCoBHanR8IhoovsLCNG65BPLyOyB3nw1x/o0QLVaAl3zwV/rOJk1xbu9/OPDCoyXVxGlXeo5J7Hso5NP3oF52e9aLdm8CHv4tcNKlPTtiQKZ3Mk9LfgOu//TCknbXf3IBzht/Xcn+TDoHPP474OvfK+6TAVJtan0X+ZztJmp+x+EVFHbR+p85tvdLvhJ4TGM8/nboDLDoaItG4I9nGgCsBVOtjcDHHmMvSA7xsDA/38atx/bNhJuhGBbm98evSzGHL6e+CWHNyW6Pt2vT93Js1jIs7Mu71a6vmln1dv8cJ5uxHl2bK2peVViZEJDFMDFFyFhhOxYHoomSsDLhqJNQh5XFXP8WHpEYRIgT44iIiIiIiIiIRpJYRKA1ArQ2ukv8XUfOmxIdqZ4AsWKoGLCpuzSErF2xb1P34Lwxw2DQkbIeHzrun6C7+ujcbwhg3ynADccY2H0bhoYRERERERGQkzlIqP8AizDEyiFoqFdeOicRZaQmLIyhbETQXXOSVd8eEjA1v+MAICS4fIeIiIiIiIiIiIhI5e6773Zsn3322Zg4caKvtj/5yU+KYWEAcO+99+KWW25BLMbPRGh44qcNZDcfzrCwXTX12l3b44IcRAjRgNKwMB+xKeVJKdcCKJ8Y5BxPLQ5NRAOtbV3ZKlLz4b74dJUVxPLCo5Cr3gLuWgIRjgDppLYvUTfKuX3I1yHdYWETtwV22dd7UPseCgAIS+9knYjMQt75Q4iTLoVcscwRFFYiXgekrPCxqMwqq2REFPKV+RA+wsJ0vyVv+brAWfOqnxgBOBfg1KLHMXnHihXUm12B+xhdL7Sj6fA4/Xb7TQEe+7aB5rres1gf9de2e6iHhXl8I+3/9T53gYEDr6vtCqyhGBbm12ZFUF02X5ufw7LWfaQtEid+37Fdy7CwvgqVq8rus4GlCwd6FH1LSuv/QY//Cz2bV3v4cMQZIOYOFIvGnPtc5UIVcObuI+YOL+sJNQtH+DcCEREREREREdEQEzIEmuuA5pIbgfi7ziOlRHemNzisN3BMOvcV9isCx4b6df2+YErgxXeBOdeZWP5DAxOaed2NiIiIiGiky2oCrAAgKnxOrBohgp4Pe1iYlBIZUxMWxlA2Iq1ahIXlPeYDhwRvoEhERERERERERESk8uKLLzq2jz/+eN9td955Z+y+++5YunQpACCVSmHJkiXYd98yOQ9EQxTDwshupWtbFwL2jmt7m4DHcdffKKVsU9YkIvJB5rLAVtOAt//hWW9duFW5X9g/3P/gLeDff4dsmQD8/VnfYxAHHAFc/FvI+28A1qwEdtsf4sKbIKLeE2tEoh7yy6ch/Og8z3pR2bvCRJ44Q1/x8FOsca9ZWdLOLi1iwD9f8DxmOWccYOC8B/JIqfPIAsnZbmrY5TOIy0tLfoNju7KwMH2Z3zF+dQ/hCAoDgHqfc62G86Ii+xnZb0rt+++v7KyB8ulmiS0ae89irr/C0bxCGfc40LGZrsHvhYLYIPyLRezzJcjhHhY20HJZ69HdUVHzqn4NCAHpDiazh4kVt9V1lEFlxYCzhKttaT0R4qRAIiIiIiIiIqL+JoRAfcy6hj+x2VHiu49srjRAbJMicGxz0hY2Zg8hS3rfiGMo60gB9yySuOALDAsjIiIiIhrp0qbiTnk9GGLlFPR85JFzPDehnlQUFTzPRH15hcIe3OcWEoNwMhwRERERERERERHRAGtra8N7771X3G5ubsZOO+0UqI999923GBYGAH//+98ZFkbDFj9tILukazuhqbfMtT014HG2c23/O2B7IiIHEY5A3PEqzNn1QF59Ry6vtRXCVSrv/CFgGPoGR5yu7ufQEyEOPRHSNCG82rvbTdkFEemdrFMnu62xrXD/Cnb1NX4yZNfm4rYuLCyjuOug7hwJj1kRG28wUHd29UlFuRXLgbHWm/Ybn62+vwm5NY7terM7cB+j66oeBuoUN3dc5zP3JpmV6NspKX3L74KmSLj2X2O+v8KzBsj5D0jMO7X3vGX1c4tqSxcWlmiAiDnfNqb1N0cMLB6pXV81wzCn4U1KIJ20HpU0r/bw4UhpyJg7nEwVVFYIG4slFCFkMVd7VZ04EIlCeP3HT0REREREREREWpGwQMsooGWUu8Tf9RbTlOhIQRE4VhpC1t4tiyFjhcCxTd39eL24Av9YNdAjICIiIiKiwSAj9XdpZIiVU9DzYQ8oypj68xwxFJPaiEYc9fUaWfXMH2dwn1sInHdGRERERERERERE5LZunXP98rRp0wKvc9xxxx0d22vXrq16XESDFcPCyK7Ftb1eU+8N1/auQog6KaXfJJb9yvRHRFQR8YM7Ia88UVm2IjLZf0ddm4HlS/TH2cU7RTZIUBgAIFGPsMfkAAAYk28DAMgTZ3j39bnDgXuuK27qw8L8p+94vZWORwTabzTQ9J3q0pmyF30F8n8fhZg0FQ+/VlVXAIDdU85O6mVX4D6aElZQmt/QK5Vxo0rPXs7n7zmaLQAAIABJREFUqepWfOuklHh3LdBcp+57qOjrHJqhGBYW5HV27yKJeaf2buf6a/HXJk1Y2OhxJbtS3vmHgXTobyg7cEI+/oz6zEzr33QKyBQeaevfdNL6l0gll7Ue3T7TJV2qDisrhom5gshi9uCxhDKsTDjCzRL6sLKSwLOe9gziIyIiIiIiIqIRzDAEmuqApjpga0eJv4vqUkqkss4AsULYWDF4rKdssyaErFO/lrxq76ytfrEtERERERENfV4hVlGDYWF2Qc9HXvbOQcxo5g0CDGUjAqBfZFbNhNEe9uA+t5Dg8h0iIiIiIiIiIhqm6iYBh68Y6FGMDHWTBnoENdfW1ubYbmpqCtyHu83GjRurGhPRYMZPG8hub9f2x6pKUso1QojXAezasysMYBaAp30eZ7Zr+y9+B0hE5EV8/hjI5x8GFv65pKwtNFrbbnp6mXPHxk+9D/QZ96/LKsXrYZSJ9vg01Fq+n6POgthmR8g5RwGP3QkAiGnDwqy7A8q2dRA9QT+VznEYFRdYfKmBo24xsarC9805EYa87tsQ19fmv4RxeWfeZVRmEJI55ANMtIiGgPpodQtjRsVL9/38qwIn3FH+ZGdc+XFvfixx+K9NrFhvhW199bMCd58kEIsMztAwr6/QPc/mmqMELv5z7RYJDcWwsGr4DaCrmjYsrPT3U9o7/zCQT9pr11fNGOUDjcRV90G0TNCWSymBbMYWJGYLFEungExPoFjaFjJmqyMLgWPuIDJHm6QtrMzVR66GiW40vBReIxWoOqgsFFaHicVKg8lUgWNCF3BWEkxmr9MTahaJBr7bABERERERERHRYCKEQCIKJKLAeMe8J//XPHJ5K0BMFThm37dZE0LWngRMzUWid3mjRiIiIiIiQrkQK8VkqxEsaKiXaQsoYigbkTfd1ZJazGK0B/e5hQRvpEdERERERERERMOUEQYaJg/0KGiIkq6Qg1qs8+NaQRrOGBZGAAAhRBzAUa7dCz2aPITesDAAOAk+wsKEEDvCGUrW5acdEZFfxlX3QmbSwN+eglzwZ+CZewEAJgxtm62zHzp3rP3I8xhi4nZVj9MhUVe2yhEdj5atI87+qfXv7KMge8LCImXCwvDsA8DRZ3v3m+yAecHxEPv9J3DQf0M0jS2ps/s2AiuuMbD8rBOws3l32bG65UQYWPxc4HYqJ276fck+AaDe7MLmkP8k4VgEaIhVFxYWU7zT+sruPsPCbDeXy+QkdpnbmwglJfDAYonGBLDbJIl/rwH23hY4dk+BaHhw/PESJHzunDnDKCwsHOmXECYpZfEP1az+RoS1PaYuLKy5pWSXO+yuGolo7fqqme0+U75OOOJZLIToCSyKAQiecl7tT7rM59VBZcWwsRSQTiqCynrCyjKaOu5wsmKomaufGtyFk4ahfA5IdlqPClQdVuYIIisEiiX0YWWF7ViiNKisGFIW6w0kU4WVFYLOwrw8Q0REREREREQDLxwSGNsAjG1wl/i7IimlxF/eAA77VemF+rZuYEOnxNiGwfE5BhERERERDYysJsRKwEA4wI0gR4JIwFCvPHon7HiGhQUMISManvouLswe3OfGsDAiIiIiIiIiIiKiUmPGjHFst7e3B+7D3Wb06NFVjYloMOOnqlTwPwC2tG3nATzhUX8egB8AKHxidZQQYpqU8h0fx7F7QEqZCjRSIqIyRDQG7H845OsvFfdJj0UMBvwnC4kzf1zV2JQSJSsuSozJbyxbR0R7JvHM+FxxX7RMWJj8YHnxzGinOJh5YNEzkIueAR76DfDLpyDGbFF6fCGww5sPYvT216MtNEbRkV6u5y1JMlP9RIuvdDzUO6Z5r0M+egewfCnqu7oDhYU1xgUa4hLYXPlYoop3WvGIwJwdgAVvebcthC3lTYn4t9Sv0dtf6D1ftywEHvi7xJ+/ZQyawDAd9+jqkhvwydu7Yvz2HyrrB2UOZAbRqNFA21plkcxmICK1Sb5qTwLNPTmDuf4KR3tlvnp/c2vJrnQNw8JKF6UNAjvvXb5OmbCwgSZCISBRbz0qaV/FsaWUVqieI3CsJ1AsrQgwK5a7gspKAsoKz90BZ64++iHQj4aowmukAlUHlYXCpSFjJcFj+sAxEUs496kCztx1bH3xTglEREREREREVAtCCPzHVvorJe+sHaTXfImIiIiIqN9kpDrEKiqi/NzSJWioV94WUJTVnGcAiAYMISMajkTVt2rUy8MjLIzLd4iIiIiIiIiIiIhKjBs3zrH99ttvB+7jrbecC/dbW0vXPhMNF/y0YZgRQpwA4Gkp5acB2pwG4ArX7ruklB/o2kgp3xFC3A3g5J5dUQB3CSEO0oV/CSG+DOCbtl0ZAFf6HScRUWCxuuJT0+ODfREk3uHos6sZkVq8fFDL9Mxyz3Lx4wd6n0djxa9IFxZmihDyMBDaWP6/C8f5WbkMeOxO4BsXO+rI9Wsgf3I6AKDB7AocFpbvuVvaP2qQFTUq31F8LrbeAeKcawEA9d9PAeUz14qaEsCK9dWNJaZ5p/WHUwxseZF3wlOmZ77ITQv8vz6ffAPY88cmll5mIGQM7OS5QKEpb/4NLfkNyC3r/Zk9aOu/4Pn6Ayo6dr6/wrNU4gl9WbITiKh/NoKGzKzt6A0Ly+rnFtXWmpXq/c0tJbvS2dolth35H4NvIqgIhcp/z+ob+2MoQ5IQAohErUcF56naV4TM54FsWh04lnaFjDnqJEvDytJpKEPP3GFl9nI5kImGNGjlc9b/E8nOippXHVYWjQHRRE+omDpQzAobKw0hE8XyuK0PReCZMvQsDhHmpSkiIiIiIiKi4WR8E1AfA7oU69LfXycxc7vBd82XiIiIiIj6T8bUhIUxwKpE1Ah2U0J7WJjuPANAWAzuG+AR9Q/19QlZ9QwMIC/1d9oMiZC2jIiIiIiIiIiIiGikGj16NKZMmYL33nsPALBp0yYsW7YMO+20k+8+Xn75Zcf2nnvuWdMx8qY3NJhwRebwcwqA3wghHgTwAICFUsouVUUhxB4ALgFwpKtoNYAf+DjWFT1tR/ds7wvgr0KIU6WUxVQbIUQMwOkArnO1v84rkIyIqGrZ3gkv0uMNmAH/yUIi5hEEVKl4XdkqE3NrvCvsvLdyd1RmtU0yIorE6N6kXV3AkjtMTd4+F8IWFiZNE/KUmcDGTwAAo8wOBJWDNQHigw3VT7QYn7cC0MRV9zn219dFAoWFjYoDs7cHnvXOafMU1czrmNAscPkeH+KHi7fStp33qsQ2Y0x89/5g5+Rfq4GL/yxx7dF9+0eHlBLpHNCdsRb8FP7tyljPP9yoH7f7x1F+/6iSOnGPu1uWM6BhYTGPn+dkF9AYLEhPZ+1mYPstrOe5fggLk1ICoRCQLz2YUIQ9pfXznQKZPgHYe9va9NWvEvX8w38QE6EQEKrz9f+vsn0Vx5ZSArmsIqjMFSimCR2TjnJXWFlJ2Jmij6w6RJTIeq1U9n9v1UFloVCZQLGYZ7kzrCxuCzVzh5XZtm11+PuaiIiIiIiIqLaEEDhyhoApgamt1mNaq8C0LYAx9fw7nIiIiIhopMto5gQxLKxUSIQRQhh5+JuIYw8o0p3niIjCEEZNxkc0HNXiFoD24D63kODyHSIiIiIiIiIiIiKVWbNmFcPCAGDevHn40Y9+5KvtsmXLsGTJkuJ2PB7HZz/72ZqOLxZzfpaVTle+Dp6oWvy0YXhKADix52EKId4BsBJAO4A8gLEAdgOwhaLtRgBflFJ+Uu4gUsqPhBBHAXgKQOH2VfsB+LcQYgmA9wE0AdgdwDhX88cBXBbsyyIiCsjsTQwyoZ/gYkifyUL/+c0qB6SRqK+6CzF2vHPHrMOAFx9HVOpDQTIiioS0pjZIKXHe/erzkDBT3gd//M5iUBgANJid/gZtk+uZAPHeusBNS0zLvGs9OeAIx/76gPPJQgZw8iyBZ5dXPv0j6vFO67L2nyG2tgmXtl6lLH9nLXDSXZUd++dPS1xzlEQ62xvepQr06kpL619bnUI96yEd7Qp1C8/NCk+NfSmQ1ATXxIZqWJhX+FBKmd9akbW2TL5aTFAqK9mpDAoDAIxpLdmV0ucU+rbNWOC5CwyEjKG3eEyczLe5pCaEACJR66EI2ivbvsrjS9N0hYmpAseSiqCynrCyYiBZsrSdPZysGGqWdvYr++U3Fg01+bwVqJms7P/JqsPKVKFixTAxj9CxWKI0qEzbhzusLA5EExBhXpYjIiIiIiKi4el/T+HCcyIiIiIiUsuYmrAwwbAwlagRRdL0GRaG3rk92vPMUDYiAF5zcKqf22IP7nMzhOYOtEREREREREREREQj3Iknnoi77767uP3rX/8a55xzDsaPH+/RynLxxRc7to899tiScK9qNTc3O7bXrFlT0/6JguCqxOHPALBDz6OcZwF8U0r5kd/OpZQLhRBHArgLvYFgAsAePQ+VewGcJqXHbXOIiGpAfPUcyPuuB+AdFiZ8frgvvnFx+UqViFthYae33Y7bRp9aUnz12h94t9+m9Fe82OMgyDJhYS3bf4zJ76/HitO9fx3Xm/rgBrluNeTPznbsqyYs7PJHqptosWV2tTWJY/peViCLTX1U2URrhy2ADZ0C1Uz+iHm80xKP3o7/AfBqYm88Nuqwio+hEzlzIBOzAnjzb8rd1YWFDWAYTcwjLKzCEBSVtR0S1ccGBfDRe/qy3WaV7Er7m6Po6c9nGWhtHHpBYQAA3oGVBilhGFaooVewoVf7Ko4tpQTyOWeYWDqlDSbrDRzrrSPT9lAzTVCZrg9NOCWR9dpJw8pXD6bqoLJQSB8oVgwVUwSR9ZSJaEIfVtYTaKYOKosDkZj1O4GIiIiIiIiIiIiIiIioH+lCrCIMsVKKGnEkzW5fde0BRRnN3CuGshFZ3PNLC2RNwsL0c3JDXL5DREREREREREREpHTggQdixowZeO211wAA7e3tOO644/Dkk08ikUho211//fV45JFHittCCJx33nk1H992222HaDSKTMZap7hgwQJks1lEIpGaH4uoHH7aMPz8EsBqAPsB2MZH/S4ATwO4SUr5bCUHlFI+KYT4DIArARwDYLSm6qsAfi6l/FMlxyEiCkq0ToLcdT/g9ZcgPeItDPgLVRITJtdoZC4JKyzsiI5HSsLCwjKLIzc/omrVO66LbindGbL+i/cKC5PCwIp8a9nh1cmkun1nO+RR25XsH1VJWFiN3pKcuulOAIA44IiSsvoA85ymTwAa4gIzt6tu4kdU82XJ1b3BS17fo+EqbLs5nnzsTmWduJmquP/8QOakxeL6Mo+wMBnwpfbsMokzD6isbUXe/oe+rKmlZFctwsLCQzm/hOErRCWEEEA4Yj3qRlXWRxXHl6YJZNPOoLGSwDFX6FgxbCwN6aivrqPsp1BuDpEQT+pf+bz1/qDCQNGqw8oiUVugmCKsLBrTlotY+TrK0LPC81BYO/maiIiIiIiIiIiIiIiIhi+GWAUT5LzYA4p0oWxRhrIR9dB8Xl2DuXh56CfPhURIW0ZEREREREREREQ0lH3yySdYuXJlRW0nT54MALjjjjuwzz77FAO5Fi5ciP333x833XQT9t57b0eb9evX44orrsDNN9/s2H/RRRdh1113rWgcXqLRKPbbbz8sWLAAALBq1SocfvjhOPPMMzFt2jTU1dU56o8fPx7xuMeac6IqMCxsmJFSPgTgIQAQQjQD2BnAVgC2AFAHwACwCUAbgGUAXpfS4/Y1/o+7FsBZQohz0RtUNh5WGNlqAP+QUq6o9jhEREGJH94DecQ2MIU+uEX4+XT/2O/WcFSu44cjkOEIvtD1LH71yXfxg3Fz0R5qRktuHW5fcyamZd/Ttz3/Rohd91MUWBMZYprJVUGEdP9N/PlW5e6GCsLC8iKEDaExgdu5bZFbaz0Jl6bw1scE/M7keOl/rNfLqCrfg8d0YWHXnFF8PtLCwsaNArbqiRWVC/4EPH2Psl6sivOS74/wLB2vkKhUZUEgKo+/3vu8X8LCkvqfazGquWRfTcLChvK8KIafEA06wjCsQKNYAqggq6yqoDIpgXxOEVDmChRThY711JeqdvZtrz4y1b8fpGEqm7EeaA/ctOq3H4YBWQwQS6iDyhyBY7Y6sTiEu04xsEwVVhZz1onErN8JRERERERERERERERE1O8YYhVMkPOSl70TdjKauVcMZSOy6OaByBqkheU1c24FDBgec5mJiIiIiIiIiIiIhrLjjjuu4rayZ6H07rvvjl//+tc488wzYZomAGDJkiWYOXMmpk6dip133hnxeBwffvghFi1ahFzOuZj54IMPxlVXXVX5F1HG+eefXwwLA4D58+dj/vz5yroLFizA7Nmz+2wsNLIxLGwYk1JuAvBSPx8zA2BB2YpERP1EjB0PXHUf5DU36+v46eeLJ9RuUCq5LADgrLbbcFrbHVgV2QqTsx/A8Jh4IOavg6hv1BRaX1VUZqse2s7pN5X75W8vV+4fVUFYWE6E8VT9wYHbubXk11tPItGSsrrSXSWebrkWn7/64uK2EAJbjwFWbaxsPFHdO61/vtBbpwbfo6Hk0kMFDENAfvw+5OVf09aLy1TFx8ibFTetnulx8GTtwsJ237pmXXkyTWl9v/54E56sPwTzGw7BmPxGHLP5QeyUeUvbriZhYYN9XtSBXwWee1BdtosixJGIRiwhhBVkGo4AdRUklaHKsDLTBLJpfVhZMbBMFVSWhvSqoww9c/Xr9X8jjVymCaS6rUcFqp2eLSPR0nCyYuCYKqwsBkStchHT1Cnpo7DPFXoWClu/F4iIiIiIiIiIiIiIiEagrDbEysfkrhEoSLhXHr0BRVmGshGVof7MtjZhYerJcyExlO+eSURERERERERERNQ/TjvtNIwePRonnXQSOjt7MwveffddvPvuu9p2J598Mm699VZEIpE+G9thhx2GH/3oR7jiiiuQz6tvHEHUHxgWRkREw9+4iTChTp0R0md4wZjWGg7IWxh5bJdd6V1ppz31QWEAChMZoprJVUEc3vlEoPoN+Y7Ax8gjjCXx/wjczq0p3249CZW+ka/3Mc9p0rK/ALjYsW/cqCrCwnzM7ajF92iwCRvW+a6LWv/WR4HtxgHH7mngq3tYr015/42efUQnbQ1Ulh0xsGFh0mOyUA3Dwl5533bImvVaavknwPSJwDXxM3BZ03eK+3855hz8ZdV/YeZeE5XtMrUICxvkc6PEEadB6sLCtp/Rv4MhIvIgDMMKKIolgAqyyqqNNJK5nCtMLKUPHbPXcYeVlYSdafpxB6IRqWQz1qNrc+CmVb/3MgxId6CYPUysJISsEFYW7wkr09Qp7LMHlsVK6wljsCeyEhERERERERERERHRcJZhiFUgUcN/iFpe9i5KyUj1eY4wlI0IACCqng2hZ/9ZtAthkE+IIyIiIiIiIiIiIhokjj76aHzuc5/D1VdfjXnz5mH9+vXKepFIBHPmzMEVV1yBfffdt1/Gdumll+LII4/E73//e7z88st4++230d7ejmQy2S/HJwIYFkZERCOBMGAK9YJoAz5ThZpaajgghc/MBN541Xd1cdnvylSoXVjYlzseDVR/lNlZvpJLToQgazD5osnsWewfKZ3UtMlH8FS0fU3JvtYKQjUAYPoEwDDKf00DERYWC9vCvKK9oV694V4CCdc+Z13hCAJz14mEfXwv/3yLZ3Fi+gxgcWVf38CGhXkcPFW7sDDHIfswLeyRf0psNQb4Yewsx/6OUCOuGncpnnj/AmW7moSFDfYcixmfA/7rZOCxOx27xe2vQoi+m0xGRDTUiHAYCDcAdQ2Vta/i2NI0rUAoR5hYUhEylrYFjSXVQWWOeklNWFna1kcSMAfyTQkNWqYJpLqtRwWqfesnwxFnoFhJ8FjMM3BMRONATBNUVmzj+rfwCEf4PomIiIiIiIiIiIiIaITThVhFBcPCVCIBzkte9k7YYSgbUaWqn4yXhyYsTHDpDhEREREREREREQ0fK1eu7NP+W1tbccMNN+AXv/gFlixZguXLl2PdunVIp9NoaWnBpEmTMGvWLIwaFTwIYO7cuZg7d27FY5s+fTquueaaitsTVYufOBAR0fAnhDaIyldYWDQGYfRxak2iPlB1sdW0MhWsrzcuU5WOCABw8fqfwlBMfpBt67RtmrYYHXi+RA5hrAuPCzq80mPn260n4UhJ2cHTgbte9m4flVnHtjRNtGx6F8DUwGM5ZZb6NSc//dB1TPXErGpccqjAgTsKZRBYXRQI+QgxG2ixiVuh0ok3AxsW5jHmpD4srJLAr86URENc1GB6kp4hgHl/k8ii9GfqqYYvANMPUbbLqOc7BVI/yOcmCiEgLroF8vgLIf98K8SkqcAXj4eI1w300IiIqIcwDCusKBavrH2Vx5e5nCtMTBU4Zg8Zs4eapVxhZemS8pK+0646RCq5rPXo2lxR86reewoBWQwUS6iDyhwhYwlHWJlwB5MVQ81ipUFlxb566kRiECHeqZuIiIiIiIiIiIiIaKAxxCqYIOfFlL0TdhjKRuRNaGYE1GIunv1n0S4k+HklERERERERERERUVCGYWDPPffEnnvuOdBDIRo0GBZGRETDnxAwoQ77Ej4SesQ5P6v1iEqtWVnb/nrCwsKaO5T5VW+qw43kGbO0bZr23AdYFOw4eRHC2lANwsLMngXv4WhJ2fQJAuWmcsRkGvKjdyEmTYXMZSHnNGBc64+Bsef5HsNu8Y9x0pe3xHcO0gTMffi2Y9MdUFYLVxwmEAkP3kAwmcuVrRMrzabyLd+X6VnlrHpbWyRTXVWHjti9/B7whZ1r2KGCIYB/faQ/oWLKLsr96fLfYk/xCDCmfvC+hu3ExO0gzrl2oIdBRESDkAiHgXADUNdQWfsqji2lLA0Yc4eOpZO28DJnHemoowgrKwk9cwWe5at8M0DDk5TWayadBDragjev9vDhSGk4WTFwrLCtLy8JK1P1EVPUiSWAcARCDI33t0RERERERERERERE1ejIteNP6+7Uln+Qele5P8IQK6Ug4V555NCea8OSjhfxcvtf1f0xlI3IU8ZM464112vLoyKOaXU7Y/dR+yIk1EtxPs2sVu7X1SciIiIiIiIiIiIiIgqCnzgQEdHwJwSkZqm9AbN8+/Fb13hApcSh34S87TJ/leN1fnqsajwFo8xOdcGaldo2TTvtFDgsLCfC2BxqDNZIdWyz3XpSV19SNtZHRkNUZiD/dDPEub+AvOtqAEAe/u/mdtfqU3D87DoYB92srSNv/UHJMWvp118b3EFhAIBNa73LjzwD8WrCwnz8WPeZdeqJPgCApDp8r1LrOyXk2tWQ6wBgQk37LjAEkEtnAJQG8AGADEWUv20yVeaD/OU7mrA9IiIi8kUIYYUWxeKVta/y+DKXA7JpW5iYInAsXQgZS5YEkcmSeqqgMo86RCq5rPXo7qioeVVhZUJAukPG7GFihW13WFkhqMxepySsLA5EE7a2pfVEiHcpJyIiIiIiIiIiIqL+kZEpLNr8fOB2DLFSC3JecjKHn6/6H2zI6udmBQkfIxrOdDf6MZEv+zvsxfan8FrHKzh54vcQEs7P4Val3sMTG+5TtnPXJSIiIiIiIiIiIiIiqgTDwoiIaAQQMIU6eEb4We6758E1Ho9Cc4vvquLbP+/DgTiNy60L3Ka5pRHwE8Jmk0MYKaEOMtgh/Ra+s/EmnD3hRs8+mvKbECsEb42bVFJer846cojKDPDHmyCPPhu42woL2z/5Mn6J75RvjJ7XU7JbWy67O4C3lpYes4ZO3m+QB4UBwJKFnsVi9zmIVZEVNVBhYTKT9q6Q1ITvVej/3kzh2GtnQzY8CsT6JiysMQH89lX9D4+580y4v1VSSmTzlR/znR8ZmNI6BF7HREREpCXCYSAcBhKlIb6+2ldxbCklkM24gsmS+rCyYrkiqCyjruMMKHOV56tMTaXhSUrrNZJOVta82sOHwj2hZK5AMXvAmKq8EDZWEmRmDyqzPUrqxIFIVLvYgoiIiIiIiIiIiIiogCFWakHPi1dQGMBQNqJa+UfnK3in+w3sWL+bY/+TG+7Xtglx6Q4REREREREREREREdUAP3EgIqLhTwiYJXE2FsNHqJUI98N/l4kG/3UPO6l8HdtC3MM6nsDjo/6zgkEB+yVfCdZgdCvGVpAHkBNhdBt1yrLvbvwVjmu/H99v/RE6Qo3aPlrtwWatirAwH/OcIjILAJDHTi/um9O1sHzDHmkRA1JtyjL50K2QN36vZH+tw8JiQ+DdnfxRmdfw7gcg/mbl/W/S57X1rXSZA6f05Wvagx/utldjuHnth0CAXx9BbTNGwCuaIDdmYskfFJkq8jGO31swKIyIiIiqIoToCTqKAWgK3r7K48tcDsimSwPHimFjrqAyV4CZVAWVOcLJXM8ddSoLoqIRIJ8DujusRwWqDisrhoklnEFkMUU4mauOUJZrwspKQs/iECHeoZ2IiIiIiIiIiIhoKEiE1HPHRrpan5e4Zo4e0UhTi4DCd5P/LgkLe7v7DW39mKG+oS4REREREREREREREVEQQyBOgoiIqEpCQLfk25Dlw8L6xR4H+qt34vchDHXwmYMtLOyCDdfjufrZ6DZ6U7xCModb15yDc8bfgLTHBIQtcx/7G1fhsN+5Dq36PC+tnAgjKRLKsoSZRIPswoUbfoHLW+dq+xiX7w0LEw2loQDRsPey/7DMwlAsgW4yN3u2s2sLNQOpj0r2y2WLIX9xrrJNLcPCYuGecIRBTHaow9SKjjkXonEMYuHKfzbf+rTiptXJZb3Lk53aokNu0H+9iQiQ1HT9YmIfvBXbwc/oKrJivXcsgBktnUCYyVd+vEM+U3lbIiIiosFAhMNAOAwkKkhRRnVhZVJKIJspDSHLpG0BY0lNWFnaCiqzh5qVhJWle0PJ3OWZVPn3wzRyFV4jnZsCN606qCwUdoWTxYBoQh1Upggsv1z7AAAgAElEQVQcKw0rcwedafqJJYBIdND/jU5EREREREREREQ0WGyf2GWghzAo1fq87FDH80wEAJMT2yOEMPKo/M6YGTPt2JZSImXqbyg6rW7nio9FRERERERERERERERUwLAwIiIa/oSACXXAlii37LR5XB8MSDGO5payC2DF+TdCHHmGzw57F6Pun3wZz31wCO5uOgHLYjtgz+RinNn2W2yT+xDT08tw85gzMK/payVdnL/h+gBfQeFgh2NsBe8ucgih21CHhdVJa/LEJRuu9QwLa82t05b54RXadXrb7bht9Kll+1gXagGSpZM95FkHeBy3dgvqY0Phnd1LT3oWi7N/CgCIRwSqXxbezzIp7/Jkl3J3R0ri/fX6Zl5nYfbkZ8uPqwqvvu9dnlNknGUqnz+F5gQX0hMRERFVSgjRE1gUA1AaoFy2fZXHl/k8kE2rA8fS7vCypDqszBFO5n7uCidz9JkC5BD7+4H6Rz5nBTd7hDd7qTqszBEgFnOGienCygpBZbGEIoTMVscWalbaT9wKLyQiIiIiIiIiIiIaAj4/+gi0RLcY6GEMStsmdsBejbOxaPPCqvua2XggtolPq35QRMNA3EjgqNZv4sG1t1fchwnn5LlsmRvHHjT6yxUfi4iIiIiIiIiIiIiIqICrRYiIaAQQkEK97NmAIunG3vLi2/piQGqGAZj68fgOCrNqO7b2SC3FHqmlJbX2Tv0de3/8dxzb/gCOmTQP3UY9AODArudw2fprAhwPwDcugYjFK3pzkRNhJIU6LCxu9gYwbZ1dhVWRrZX1WvM9YWGGOhgOAOadKvD129VLfUMyr23347WX+wsLC7cCb7zi2Ce7O63FyRpeIWVBxSM166rvrFnpWSx6flarDT6TUhb76jeZtHd5Sn3XwPVl1qyfM0fg508PTPDB3a94H7c9CTS6fnTb9DdHLGtIvIaJiIiISEmEQkCoDojXVda+imNLKYFc1hUmluwJJkuVBJP1liuCyjIpIF0IJkv2tE9795GrXQg0DTOF10wFqg4qC4XVIWP2gDGPwDFRbGfvQ9FPLF4SVIZorP//JiciIiIiIiIiIqJBISYS2KfpIF9164wG7FQ/AzvVzejjUQ1dhjBw4vjvYEbDTLyTfAMpM4lkvguvdb7qu4+xkVZ8ZdzJ2LVhLxhCP7eOaKSZM/owbBXbDm92LcXmfJu23ltdr2Oj4ma2pmvOaUbq5w9+Z9KVGB1pqXywREREREREREREREREPRgWRkREw58QMDXLjkW5pZd7H9IHA9KQNQwDCrgg80tdT+Ojd7bDy4mZ2DL3MXZO/xtGwGWp4vBTAtW3y4go0kZcWVYne5OHDu58FneMPklZb3zuE+uJR+DajuMFdMttuw39gvbR5ib8bcV+2Hvbl7R1AOCgrucAAHL9GoiWCdbORc94thnuYWGyuxNY/CzwyQfA7rMh7/yhvrLtdZuo8mvJm0A4VF0fgSW7ypSrU8Gy+pw6AMAJMwcuLKycJ/4lceYBzt8375XOi/JtW86HIiIiIqIKCCGASNR61DcGb1/l8WU+D2TT6sCxYiiZKnQsBaRTzrCytLufpD6srFBey+sJNHzkc9bfoZq/RcupOqysGCqWAGLuoDJb6FgxsCzmDCqLxmxBZAlN4Jkq9CwOEeZHX0RERERERERERAOlIdyIE8Z/e6CHMawYwsCMUTMxY9RMAMDazMeBwsK+tsW3sFM9A9mIVKbWTcfUuumedW7/+Fps7FCEhbluVpwx9WFhYyKtlQ2QiIiIiIiIiIiIiIjIhSsmiIho+BMCUrP015D6YCkAEKF+TBsawLAwAGg0O/DFLu9gK89Dtk4qPr/oiwLXzvf/9XQYo7RlCTNVfH7+xhu0YWFf7Hy67HFGqfPIAAB54f226LOpf3iWC2nikML5e/lJoCc8TV52rGe74RwWJtvWQl5wGPDOP33VFyddVnw+tqG6Y5sDsVZ+U5mULE2YWLmwsJ0nAluPAVZtrHBcfei1D0v35b1/rWrtsiWw3bhqYxqIiIiIiPqfCIWAUB0Q14dQe7av4thSSiCXLQkgKwkUU4aVWdvSHmjmDivLuEPPXOXZ2v1NS8NMJm090B64adVBZaFQmUAxRehYLO4RVlYINXO3i7naW3VEBdfliIiIiIiIiIiIiPwKiWBzGqMi1kcjIRoZDKh/5kzpnPiX9ZgLGjP4c0hERERERERERERERLXBsDAiIhr+hIAJQ1lkoMJUm8Gunxclimsfdmx/9yCB+W9IvP6Rv/ZdRr22LC57w8J2yLyDi9b/DNe2XOioc2bbbdgztdja2OtgbV/1UX/jqcQvP70AY/NWmpN85zUIAHLlsrLtojJbszEMurCwe67zHRQGADjqzOLTlirDwjZ1A62N1fURWHend3mqW7m7PalvcsvXBQxD4NbjDRx64+D7fbVti3PbNCXmPhp8nA0x4JfHqn9PExERERGRnhACiEStR31lfwRVFVZmmkA2bQsTUwWO9YSM2ev07JPFcDPbv6qwsmJgmWu7lsHrNHzk81Zgtya0u5yqw8p0oWLFwDJ9uTKoTNmHKqwsDhEeZBeHiIiIiIiIiIiIqOZCAaf/RxlSRFQVQ6jnteXhDAvLmGltHwztIyIiIiIiIiIiIiKiWmFYGBERDX9CYIfM27hw/c9hCgMSVniYhECd9Ejpmb5X/42xnDFbBKvf32Fh+3zJsT2+SeCFiww8+S+J435bfollt6jTlsWkcwLF1euuwKGd87Gw/gDkEcL+3S9iTvfzxcXN4qiztH3VVznf4q8fHILPb/NUyf4vdD6Db7X9pndHz/mXvzi3bJ8Rj7vJBRUfbO/s7rvBd1Vx5o8hmsYWt0fFqzv0wdebeO1yw1o431+y+sk+AICkOkzsv36lD9c6fqY1/i9Mr3hUWtNagXfWVtdHl+tLPv9BicUf+G9/+WECWzQCX/yMwLYt/ft7i4iIiIiIqicMwwoviiUqa1/FsaWUQD7nDBpzB4q5Q8eKgWXWtkyXr6Mtz9bu73kaZjJp64H2wE2rDioLhdQhY/ZtR+CYPYgs3hNWFteHlRUDy0qDyhCJWb8TiIiIiIiIiIiIqE+FRChQfYaFEVXH0NysWErnvD/PsDD+HBIRERERERERERERUY0MtkgJIiKi2hMCu6bfwK7r3gjWbsb+fTMenc/OAZYsUJftNitgZ/0YuqMZ26i4wDF7Ctz9ch7z3/TuosvQh4VF7WFaXz4NeOS3mJV8BbOSr6gbzPyitq+YxzufqMdEjYLZ3S/g0nXX4MfjLi7u26/7JTzx4ZedFXNZyHWrgX88X7bPaA3DwmIfvwWZmwYRjtSsz34zdRfHZl20uu7+tRpY8gGwx+Tq+gkkU+Y1lOqGNE3Hwtl3PpVo69Y3ifTM7TOM2v9MH7qLwM4TgfMekCWhX36t7eh93pWWuPFZ/8ua559r4As7MyCMiIiIiIgqI4QAwhHrUTeqsj6qOL40TSs02h5W5n6uCh3rKZeOuu46qtCztLPc1AdP0wiWzwPJLutRgarDyiJRW6CYJqxMUy5i5esoQ88K7ULh/g2NJyIiIiIiIiIiGiAhEWz6f0RUORGLaIQzNAF9eXdYmFRPwjMQCvxzS0REREREREREREREpMNPHYiIaPirdJFYtnYhTr7UN+rLwgEn7PTjwjjxlW95lm9Klu+j2zMsLNt7rP/+NuQjv9WP5fwbIUL6OydGPd75xGXKe5A9rlx/FeauvwpvR6dhauY9hKBYnJtJQ/7oZF/9RT//FeAdX1XLim9cBfzxKeDY82rTYX8Szrvv1WJx5+9elthjcj8uEs34eA2lk0Civri54C3vZbgR28v5iW8b+M9f1W4xeMgATt3fwCmzJKJnmchX0PUmW9DZ/73tXXeHLYC/XWJgYxcwuYWLd4mIiIiIaGgThmGFFcUSQAVZZdX+VSRzWUU4mStQTBtWloYslivqFLZ1fZQLy6aRK5uxHl2bAzetNqgMhgFpDxSLKQLG3KFjsd5/hapOLKFp5wo0i8Qc4fBERERERERERER9SRdcpBM1Yn00EqKRwYD6Z0665o5mNDes5c8gERERERERERERERHVEsPCiIhoBKg0LKyfFz5O3FZfFjQ4qR/DwrDfYZ7F9jAhnS6hDwuLFe62NmkKxNY7eC4cFEee4XkcrwCqmOaubsp+AOyQ8Uj42rQOWLrQV1+xo04Bflr1ckgAQFymIZ9/BGIQhIVJGfBr6oMFle9+Wpvz6puf3xndHY6wsM4yTeyv2S/tIvDs+QYO+kVtAsPCod5jtI4C1rQH7+OBxRL3nW49X/yB9/lubQQaEwKNieDHISIiIiIiIicRjgDhCFBXQVIZqgsrk6ZpBUJlkvqwssK2PZSsEFRWEl7mfrhDz1zbZu2CtGkYMU0g1W09KlDtVSQZiarDyQqBYiVBZIXtBERMF2jm7qNnnzsILRypSfA+ERERERERERENDaGA0/+jgkFFRNUwhHpuY17mHdsZzRxU/gwSEREREREREREREVEtMSyMiIiGv0oXSmWztR1HGeKI0yHvu0FTWPuwMPGrv0LM2B/yvushb/p+sP4Lxm8DEfWeyHD8TIEfPOy93K7b0IeFRWUGACBue9na8dk5wJIFJfXEFb8vM1hvRiSi3C/OvxHyibuAt5b67+xvT/uqJm79P8TCAtUvR7TEZBp44xVfdWU+by2wTXX1LqRMdVvbyS6rLNkFpLuBZBekvTzlbqfoI/DCzNovaExEa96lt2ymfJ32DcDY8cXNhoDzgObsKGDeFsK8/zwBJ2x5V7DGLiHbKTdqcPpvWuD9Ov6PrblolYiIiIiIaDgQhmGFFcXiQAVZZdX+dShzOWe4mDtQzBFWlrJCzXRhZYV2xVAzRT/pdG8fmX6+uQANHdmM9ejaHLhp1VcGDQNSFTJWDCZzhYs5wsriELo69n4KgWUxd6BZ3PqdQERERERERERE/SYkQoHqR0R/T6IiGl4MqH/mTLjCwkxNWJjBn0EiIiIiIiIiIiIiIqodhoUREdHwV2FYmNj9gBoPpIyJ22mLxK77BuzMx9fcs4hLHHse5IplwJN3BzwGgHFblq3y/+zdd5xU1f3/8fe5U7YvLG0lIE1EQFFQEEHBRsQaEQtijC2JRBPLT42mfCMYS/SrJl9LTGxfMMao+SqimMRoTDCWoIFILJgIikRQKUtfts/5/bGw7MzO3LnTd2dez8djH+w999xzPjPM3YWZc9/3oP7xw7Dq4oWFTTxRpqK7JMlc8hPZb02SmtuFufUdKB1+kqeSYwmVVEiBYHjgU+9+0pSz5Jw2S6FJab6724ix0ohxKvoifUMWh+olSaGbLooR+rWzLfxLjfXpmzgdMnBRYXlRlsOpvDynW2vCNm2SV4PO3PZbPVl5pp6vSP5172v3lKcSFlbbYPXvL6T122P3KSuSvn44YWEAAAAAgNQZv1/yl0ul5ckdn8LcNhRqfe+oQ6BYlKCyyPaG+oigsohwsqihZw3txqiTWlriF4nCEwrtCfFPQqphZdYfCA8UiwwrCxbtCiOLHjhm2h8Ta4yi3eOUhLf7AzLJ3iwEQMbY2m2yN10klXeTyiql8m4ypRWt20efLlNRlesSAQAAAKBLc4wjI0dWobh9g6aI90+AFDkm+trGkA0/BxttjLAwk+a1pwAAAAAAAAAAoKARFgYAyH/JLnY54pT01hGHMUb2kKOlpX/puPPwkxMdzEunPd9W9Uls/N169Y3b5ZjhUkWxtN0lR2mnKYm5L2gbZb4+u23b7DdGuvsl2Udvk/7zb2nkeJlLb5EpKUuo9Egh45e5b5HsI7dIH78vjRgn862b2i5aMbc9I3vdaSnN0ebUb8p862YZx1FpMNXL8fYo3r3Y5I+PpW3MrImxoCYVxVm+IZ9tjL7YJ8z2zWGbjUlc42vn3ixJ6tucWtJc+1deKlltOxulb/3affHhy1c5GtWfhYcAAAAAgK7NOE5raFFRcXLHpzi/bW7uGFTWIXAsMmRsTz/btr8+ejBZ2Bj1UkNEHyCa5qbWr50uSfIuUnp31BjZDqFiEUFlke1FMYLK2vaXhLcVRY61K7AsUCTj86VSPZC/ttZIry0Ma9p9rptDjpYICwMAAACAlPmMT83WQ1iYQ0gRkCpHMcLCFL74rzEUIyyM8xAAAAAAAAAAAKQRYWEAgPyXRFiY+cFDMqXlGSgmzrxX3SV7+VSp5vM9bZffIdNzrwQH8vKY91yGZU65UPax2zt26bO3NGR/afEL0ac55aK4s5QEje77qtEF/xtSi41eV60TPejLsS3yKST1HRg+76gJMv+9IO7ciQhZyQw/ROYnT0fvcOhx0nHnSC/+JqV5zILVYX+fZWkMtCq2XfiizQzcwXJHtp+OpvhhYfbFx2Umn9q23dic2BS2fqfs//5YklQS2pnYwREamvZ876Tw9Nc2SEtWx95/55lGhw4mKAwAAAAAgFQZv1/yl0tJvm+Zyv/OrbVSU2N4mFi00LGGiD93B5WF9alzCSurlxrrOgaetST4JgoKg7Wtr6eGuuQOT3V6fyBGOFnJnu2i2PujhpW1HVPSLqwssk+xFAjKZOA9VSAt3MIDSyuzVwcAAAAA5DGffGpWU9x+QUNIEZAqn4l+04AWGxEWZqOvHwxwHgIAAAAAAAAAgDQiLAwAUACSCAs74WsZqMPDvAP2k+Ytkf7+J6nmC2nsMTJDD0xiIA+PuXFPkpLpt4/siLHSB0vC+5zwNZnzvy97w9ekVyLCufrsLY05ylM5Xx3v6ODGd7X/owdE3b/ViX5xSNA2tn6ThYtH4l0YZvx+6YcPS6MmyN55WdLzRAa/laVxHUhRVw4LczrefW/aaGnBsuSH3FaX6uV+CfIQFhbZp6klRr9YXlvY9m1RjMVFXjW0u8Y2lbCwv3/ivv/MsVy0CAAAAABAV2eM2RVYlNybWam+O2Cbm1vfV3ELHGtoHzpWFzusrEOf9kFl7fq0HwOIprmp9cstGMlFSu9eGiMbLaisLWAsyvft+pgO+yLDyiJCzyL6GV/0CyQBSdKOrbH3lXfLXh0AAAAAkMd8xu/pzYWAQ0gRkCrHdFzbKElWobDtxlD09XxBzkMAAAAAAAAAAJBGhIUBAPKfl+Cs9t2v/FmGCvE4f/de0pfPzvxEDXXh8962QPamC6V/LJKKy6QTz5O56EcyjiPd+IT06G2yv71b2r5ZGjFO5vp5rQFaHg3v0aBZmx/U/VXf7LBvh68i6jG7w5CyceFRSyh+H+M40rSLpX5DZK86KfFJ9h3doakkEP+w/evfV7/mz/Ri+Zdd+xXHWGzSJURZUPPgeY4WLPPwFxPDtmxfx9nUGL9PcWnYZmOCYWH24Rv2DJViWFhdu5uLphIWdv5c97+j/lWEhQEAAAAAgNQYv1/y+6WSsuSOT2Fua23r+z5hgWOR4WIRYWXt2mzkcY0xQs8aouxvrG8NowIiWdv6+ol4n9/z4alO7/NHDxQriggmixE4ZtqCyUqiB5WFtZWEtwWCrQGG6LxqY4SFBYtlAsHs1gIAAAAAecpnvK2nCxr+HwakylH0863FRoSFxVjPFzSEhQEAAAAAAAAAgPQhLAwAkP8SuWhkyP7ZCerKNC+PuSE8SclU9Za583nZ+p1SoCgsoMsYI533Penca6X6nTKl5UmV5bfNCfUPWg/hS2kSSuDqKDNuisyrDbKrlsueN8b7cdf9skOb4yGladmqcfqv3jfEDwuzaUrHCha3XnhZVCqVlLaGxxWXtvsqk4pL2tpN2P52+z56V/bea73N6XQMC+tZbnTd8Ua3vZDcpWtvfCRd/GhIFcVSeZHa/mz93rT7fld7sVRRJAX8SV5o1uzh9d0YviCoMYFTwlorrfmobbsoxbCw+nanVyphYfUu16tO3jf5cQEAAAAAADoDY8yuoKMiSd0SPz7F+W1zs9TUED1wrKFeaqyLHlS2q59tqIsRVNauLWaf5IKoUABamqW6Ha1fSUg5rKx9eFhRtO/Dw8na9zFR95fEDisLCz0rzsrNTbq82u3R28sT/xkKAAAAAIjOZ7xdAhB0CCkCUuVEuRGqJFmFh4U1xbjZK+chAAAAAAAAAABIJ8LCAAD5z0tw1pfPlhlygHTqN2QqqjJfU2dQVBK12RSXxjzEOI6UZFCYJPkSDAsrD9VKx5yR9HyJ2LdPEgf1+pL3vn32ltnPe7DYbhdueURG3oKhwsLCuvWSTjxvV5hX+yCviNCvkrLW18LucLDi0ta/5zSwMV5j0UU/T38y3dHBA6z+uNyqqqhZd76c2IVYD70a67Kz2JejBf3RwsX2hIyVxQgZK90+QuWlk1QR2qH+TWtV3bK+4+Bvv9L27c4Gqy+2eX8s9qeXh22nGha23157vk/TX3kHj1yUoYEBAAAAAAAKhPH7Jb+/9f27ZI5PYW5rrdTcFBEmtjtgrD48VKxDWFmDbKNLn8iAs2hjNLuk1KOw7X6NJCHloDKfPyKELDJQrMg1cKxDWFlRx0Cz6OO0tplEbpCTK7Vbo7eXVmS3DgAAAADIYz7jbQ1V0BBSBKTKUfTzrcW2hG03xljPx3kIAAAAAAAAAADSibAwAEABiHPhxAET5Fz/SHZKyRYvF4uMPSbzdbRnjAJK7OKuslCtzPceSGsZlxxl9ItFHS8HumlaEqFGJd6D08zPfh9z33EjpReXd2wvDdXqznXXSpKCtjHuHMXtFpuYK+6U+fLZnuvLiG013vu6pFWdOdbozLFGUlB3vtwSs1+6NDZLm5qlTbXR9rpdSnaFNPCKtq2JO9/Q42vPU7/mz/Z0qd2m5harb//G6tHFVvUup8T/+3LEebwg/FwoTjEsbMa4PeM7Gbi+rEeZNLBnF7hwDQAAAAAAAFEZY6RAsPVL3RI/PsX5bUuL1BQjUKwhIrysbX+ssLIGqbEu4tiOAWdhY9hUY6WQl1qapbodrV9JSDmsrH14WFFEoFhRSeywst1BZZGhZEWR4WWxQs+KW8MLvdgR4y4Z5Yn/HAEAAAAAROfzeAlA0CGkCEiVEyOcLxQZFhaKvsYz6ATTXhMAAAAAAAAAAChchIUBAPKfSwiRpNYLHvKNh7AwU1SShULC+W1iQU+OQlJxaVpruOhwo1/9zaq2Xc7SAV+SjhqW+FjG72+9MKexPn7fAbEn+PbRjv70QUihdlcJDWj6jz5aObztgroiD8FQRaF2fQaPjNs/4wbs571vSZmnbqcU/UMLGw5OsqDseqN0ok7d+2n9fdWEPRdGFpXo+uesHnw1/iVhF0zYcx7brR2D18L+vhN0yoHS0D6ZDQt74ptJBPABAAAAAAAAuxifT/KVJv0ecSpveVlrpeam8DCxhvooQWVRQsca6sODytrCyqKEnkUbo6GudW4gmt2vkySkHFTm80nBkughY+0DxtZ+FH2AssoUKwAAAAAA7OYzHsPCTB6ujQSyzFH0dXAhhcK2G2Os8SS0DwAAAAAAAAAApBNhYQCA/BcvOMuXj78OM5D8kypj5LfNCR3yTvGBMh6CzxJxyECjF6909NOXQvrXF9LhQ41uPNWotCjJeUrK41+YEycI65SDjBZ829E9v1qhjeu368jaV3TjhhvC/haDNv7FYcV2Vx17DZT2GRW3f8b1H+qtX7denoPFpnT/RAvXdY2wMElaVnyQPgoM0dCmj1sbGur0f0tCineOHjpIGtW/XVjY//y/Dn28BMhFc+3xRjecEj5/JsLCJu2b/jEBAAAAAACAbDDGSIFg61cSAUepvt1mW1qkpsgQssjAsShBZbvabNv+iOPah5O17xMZVmZTjZVCXmppkep2tH4lg7AwAAAAAEgbn/F56kdIEZA6x8QIC4u4eW5jjJt/BgjtAwAAAAAAAAAAaZSP6SgAAEQowLCweAFb0y/JTh0R/EosLOz2dddJuiPtdUzYx+j/9vG2YCqu0nJp60bXLuYbc+IOc/KBRicOf1x685ao+70EQxXbeqmkTOYHD6U9ZC0Zxhhp9qOyN3wtdqdAUOZH/yvjRF9QE6mqMiCtS1OBWbI6MED9m9dqxD7v6NPA3tKG+MecMKpdUJi10p+e7NCnLRwuAa+tOlITTvmzTCAY1p7usLDD95GKArl/DQIAAAAAAABdkfH5JF+pVFya3PEpzG2tlVqaw8PEGmIEkzVECSFrrJdta6+LElYWGXoWsb+pMYXq0amVdct1BQAAAACQN3zG25pHQoqA1DmKvraxRaGw7VhhYYT2AQAAAAAAAACAdMrDdBQAACLEC03y5+GvwziP2Uy7OEuFtJ/UKGCbEjrka1t/o0yEhaVVSXn8Pl8+29tYLoFZnsLCjjtD5tz/ken1JW/zZYGZcpa03xjZ+74nbd8ic/GPpSEHSK8skJoapCNOkenV1/N41d29hYp9qekzHV/0jrbvNVw7WgKqbfZre3NAO5r92rH7+5ZAsg8rIS3Gpz7D1minU+b5mD4VrX/apkbp2Qei9gnaxC+aM5K0tUaKeM49ZrV59ocr0jwgAAAAAAAAgKwwxkj+QOtXWWVyY6Qwvw2FWt87bgsjixY41i50rH2oWWODbFiIWfQ+HcbZvb+hTrI2herhqqJ7risAACDvGGMGSxot6UuSyiV9Lmm1pDesTXCBBgCgS/HJ240yCSkCUucz0c83a8PDwppirPEMEtoHAAAAAAAAAADSKA/TUQAAiBAvLMyXh78O44WFDR6ZpULC+W2z575LPj5MvVpqMlhNmpRWxO1iqvp4GsoYR7EuQ6pq2Rz3+OIjpsr06uZprmwye+8r85OnwxtPOj+psQ4baKW/x94/oOk/+m7NT3XJ5l0BW+/H7huS0U5Tqh1OuXY4ZdruVGiHU7Zru7xDe61Tru272nf/Wdtu/wZ/9L/ntf5+CQWFSVKfCiNb84XstdOkD9+O2sdLgFxU2zZ1DAtL5eq9CPMvcVRenMYBAQAAAAAAABQM4xfCeVIAACAASURBVDhSUUnrV/y33zsen8Lc1lqppbldUFl9x+9jhY7t6mMbYvRpqIseVNZ+f1PiN4joSszBR+a6BAAA8oYx5gxJV0maEKPLJmPMk5Kut9ZuzF5lAIBsiRVeFCloghmuBMh/TozzrUUtYduNoRhhYYT2AQAAAAAAAACANMrDdBQAACIQFhZu4H7Zq6M9Y+SXt7Cwyzfdq9EN72S4oDQpSSwEyo1tif389PQQnFZcHEhbLZ1V+YTJ0lOx93+0crjni8EcWZXbWpW31Cpi3U5Suu23XrVOeYf25ypOTnisPpWS/fl1MYPCJKk4VJ/wuEZW2trxtZTOsLBpYwgKAwAAAAAAAND1GGMkf6D1y8ONQqKOkcL8NhSSmhqiBJQ1tAscixVU1iDbWNfuuMhgsl1tbWNECSsLhVKoPo5DjpbGfTlz4wMAUCCMMeWSHpR0dpyuPSRdImm6MeZ8a+0fM14cACCrfMbbmkdCioDUOXKitlsb/l5KY4ybfwYN5yEAAAAAAACAwrNz50794x//0IoVK7Rx40bV19erpKRE1dXVGjZsmMaMGaNgkJueJOuoo47SK6+80rZtrc3IPIsWLdLRRx/dtj179mzNmTMnI3PBuzxMRwEAIFIBhoW5PeaybtkrI4LfegsLO3frbzJcSRolecFQVMtejbmrOMZd59orKsn/sDBTUaXKlk3a5uv4Oq5uXpfShVip8tnoiWMLkwgL61VupZeecO1TZBsTHtfISts2dWhPZ1gYAAAAAAAAACBxxnGkopLWryQ+ekj1bV7b3CyFBY5FCyarcwkri9InEJTZf7x04vkyQS6MBQAgFcYYn6QnJZ0YsWuDpLclbZW0j6Qx2vNPg2pJzxpjplhrX8tWrQCAzPMZn6d+hBQBqXNinG8tEXcobQxFX89HaB8AAAAAAACAQtHS0qLf/va3mjt3rv7yl7+ouTl2rkBxcbGmTp2qb3zjGzr55MSvwwYKWT6mowAAEM4UYFiY22Muq8xeHWGMAh7Cwu5Yd60Orl/WujFuSoZrSoOKqvSN9c/YYWFFMe46196+fb0tAuvqLtt0n27u/f0O7Zdu+mUOqtnDaxieF31WvRG3j5fXRCQjK22t6dCerrCw+75K6hgAAAAAAAAAdEXG75f8FUnfJIV3hwEAyLhbFR4U1iTpKkkPWLvnTlPGmJGSHpI0YVdTkaQFxphR1trPs1UsACCzfMbbmkdCioDUOYq+LjPU7uaiLbZZLYq+fjBoghmpCwAAAAAAAAA6kz//+c+65JJL9OGHH3rqX19fr2effVbPPvusxo4dq/vvv18HH3xwhqtM3KBBg7R69WpJ0sCBA/XJJ5/ktiBAkpPrAgAAyDjCwsKVd8teHRH8MRZD7Hbz+h/pyk33tm74fDKnX5qFqlLUvZf7/sEj0zKNl2Co7qWF8U+7c3ssU8/mjWFtvZvXa+a2J3NUUStfxJ0CU9HtuvhBeWVjJyY8bsywsARfOv0qop/L5xzK5WAAAAAAAAAAAAAAkE7GmCGSrohoPtNae2/7oDBJstYul3SspL+1a+4paXZmqwQAZJMvRnhRJMLCgNQ5JvriupBCbd83hhqj9pE4DwEAAAAAAADkvxtuuEFTpkzpEBRmjNHIkSN13HHHaebMmZoyZYqGDRvW4fglS5ZowoQJevDBB7NVMtCl5WE6CgAAEeKGhXlbONOluD3mqt7Zq6M9Y1Qcqnft0rf5C2ngftKA/WRO/YbM+KlZKi55pnsvWbcOoya47fWsyMZeTFJohh05Ti//6njd2eNKvV08WofUv61ran6qIU2f7OlUUhY/yC3NfO0W/6TKcX9VSZIGnjhVvt9ILQlMa2Rl33ldkT8h1m9LrL7Fl27S9xdV69dvttbZo0x6b46jyhLCwgAAAAAAAAAAAAAgzWZLCrTbnmetfTZWZ2ttnTHmAknvSgruav66Mea/rbUfZ65MAEC2+Iy3SwAChpAiIFWOYoSF2T03F210uRks5yEAAAAAAACAfHbllVfqrrvuCmurqKjQ97//fX31q1/VgAEDOhyzcuVKzZs3T3fccYcaGlrfX21sbNTFF1+s2tpaXXnllVmpHeiqCAsDAOS/uGFh+fjr0OUxl1Zmr4wIJbbOdX+3Gx+WM6aLhQ0Fi113m5Mv8j5WVR9p8/qou6qb17keOq5pmaRDvM/VlZWW6YCG5Zr7+cXR91f2kPO7z7NbkyT/rC/kIeMrrplbn/DUr2j0YRrwgrRqY4ITLH6hQ9N/NiU2RKC4SL/6uqNffT3BuQEAAAAAAAAAAAAAnhljSiSdEdF8W7zjrLUfGmMWSDprV5Nf0jmSbkpvhQCAXHCMtxukBk0wficArhwTKyxsz10+m0Kxw8KCDmFhAAAAAAAAAPLTI4880iEo7IgjjtDjjz+u/v37xzxu6NChuummm3Teeefp9NNP13vvvde27+qrr9bo0aN11FFHZarsvLBo0aJcl4Aciv7JBQAAeaUAw8LcAtJy9XiNUXGo3rVLRVdcEzH2GPf9+x3sfawjTo65K6Bm10PPb4x50+A8FOecjrE4J9N8JaVpGefizQ956mcqe6jSPauu4zE2eppZXVOC4wS74skKAAAAAAAAAAAAAF3OVEntP4z+m7X2Xx6PnRuxPT09JQEAcs3nNSyMkCIgZT5FP99C2hMW1mhdwsIM5yEAAAAAAACA/PPhhx/qO9/5TljbxIkT9Yc//ME1KKy9YcOG6eWXX9aIESPa2kKhkM4991xt3LgxrfUC+YSwMABA/nPi/LorsLAw4/O2UCgTim2csLAEg486hf5DXXebeK+/9n2nX+q6/5JN90dtn7jzDc2y8z3P0+W5heFJ8c/5DPGVlqVlnAl1b8btY+b+XZJUnuA6ohaPCwXjzh/siicrAAAAAAAAAAAAAHQ5x0dsL0rg2FelsDuTjTHGVKdcEQAg53zytuYxQEgRkDInxpq7FtvS9n1jyCUsjNA+AAAAAAAAAHnommuu0Y4dO9q2u3fvrqefflrl5eUJjdOnTx899dRTCgaDbW1r167VjTfemLZagXyTh+koAABEiBcsVGBhYXJyFBZmjEpsnWuXrhgWZoyRTddg+xwgnXSh9LvIm/u2umrT/+h3FSfoP4EBbW3H7nhZz605XaZ3Aa3njXdOm9yEhfkTOLVKQ7W6c911uqTvvW1txob04OeXyK8WlyN36bePpMTPmTqTnpPM5ydzGAAAAAAAAAAAAACy4ICI7b95PdBaW2uMeVfSmHbN+0tal47CAAC54/N4w0BCioDUOYq+Vs4q1PZ9o40dFhYwwZj7AAAAAAAAAKAr+te//qXnn38+rO3WW2/VXnvtldR4I0eO1DXXXKNbbrmlre3hhx/WnDlzVFVVlVKtnc3KlSv1zjvvaO3atdq+fbuMMSotLVV1dbUGDx6sUaNGqbS0NON1NDQ06JVXXtGqVau0adMm9enTR/3799ekSZMyMv/nn3+uN998U+vXr1dNTY3Ky8vVp08fjRs3TkOGDEn7fPkuD9NRAACIFCdYyB/IThlZ5fKYcxSkJEnFLndPk7pmWFg6GWOka++T9fukZx/qsH9w02q9/slRerzyLH0YHKZD6/6ur257XEW2UVr/aQ4qzpF4YWFObl7jvgSmPXX7Qn1zy/9qv4Z/a2HFSTKyOnX7Qh1et9jT8aakTJJUUWykBOLqap3W42xjg0ywqO37RP9bEO+vAAAAAAAAAAAAAACQFiMitlcmePxHCg8LGynpzylVBADIOZ/xttaHsDAgdU6McD4rq5ANyTGOGmKsjQ2YoJwcrtkFAAAAAAAAgEy46667ZO2ea5t79eqlCy+8MKUxr7zySt1+++1qamqSJNXW1urBBx/Utdde26HvBRdcoEceeaRte9WqVRo0aJCneRYtWqSjjz66bXv27NmaM2eO6/i7rV69ujULIIbzzz9f8+bN69De0NCgu+++Ww8++KBWrFjhWp/P59Po0aM1bdo0XXXVVTGDu4466ii98sorbdvt/z7cbN26Vddff73mzZunbdu2ddhfUVGhGTNm6IYbbtCXvvQlT2PG0tTUpIcfflj33Xef3n333Zj99t13X11zzTW66KKL5PcTg+UFzxIAIP/FS7Xx5eGvQ7fHnKMgJcmoxNa59ij0sDBJMo4jnfIN2ShhYZLUt/kLXbXp7ixX1cnEWzyTo9e4P4FpL9/0c0nS5LrXNbnu9aTnLE/wnKlzWv9TaI+tlD1tlkz1ANm5N0lDahIah6wwAAAAAAAAAAAAAMgsY0wPST0imv+T4DCR/fdNviIAQGfhixFeFCloghmuBMh/jmIvDAypRY4cNdnoYWFBQ2AfAAAAAAAAgPzzwgsvhG2fd955CgZT+0yid+/eOuWUUzR//vyweaKFhXUln376qaZOnaoPPvjAU/+WlhYtXbpUS5cu1dlnn62hQ4emrZZ//vOfOvHEE/XZZ5/F7LN9+3Y99NBDmj9/vp577rmk51q6dKnOOussffzxx3H7rlixQrNmzdIvfvELPf/88+rXr1/S8xaKPExHAQAgQpywMFNoYWHxwtMyqNjWu+4nLGyX3kkk7R5xSvrr6KzivYZzdCc+XwLTHlL/j7TMWZ7gWqID6t/bs/HM/fKWE91RzjIHAQAAAAAAAAAAAKBwdI/Y3mmtrU1wjPUR291SqAcA0En4PF4CEHQIKgJS5biE84VsSI22QQ99dnvU/QGHwD4AAAAAAAAA+WXNmjX65JNPwtqOO+64tIx93HHHhYWFLV68WE1NTQoEAmkZP9saGxt1/PHHdwgK69Gjh0aNGqXq6moFAgFt375dn3/+uZYvX67a2kSXBHizfPlyHXvssaqpqQlrr66u1pgxY9S9e3etW7dOixcvVl1dnTZt2qSTTz5Zt98e/f1vN88//7xmzJihnTt3hrX37dtXBx10kHr06KHa2lotX75cK1asaNu/bNkyjR8/XosXL1b//v2Te6AFIg/TUQAAiBAvWMjxdpe9vOHL0eM1RiUh97Awn5O7ILPOxPSoTjjEyXxjTgYq6aTintO5eR15DQt79tPpcpKO6QqXSMDe0MaV2rfpo7TMy5kKAAAAAAAAAAAAABlXHrFdl8QYkcdUJFlLG2NMH0m9Ezxsn1TnBQDs4XMJL9rNkeM5VAxAbD6Xm5eGFNLjX/wi5v6gIbAPAAAAAAAAhaHFtmhL88Zcl1EQuvt7efqcIFNef/31Dm1jx45Ny9iHHHJI2HZdXZ2WLVumcePGpWV8r+644w7NmTNHknTEEUdo7dq1kqR+/frptddei3lceXn4R/xz587V8uXL27YHDRqkn//85zr++OPlOB3fe7bWaunSpXr++ef18MMPp+GRtGpqatJXv/rVsKCwvn376q677tLpp58eVsuOHTt055136uabb9aWLVt07bXXJjTX8uXLdfbZZ4cFhR1//PG64YYbdOihh3bo//bbb+uKK67Qq6++Kklau3atZs6cqUWLFsmXq0yMLoBPAAEABSBesJDHhJ+uxC1MKYfhaMXWPSwMSZp5lcw+B+S6iiyKc067LM7JJL/HaU/Y8ce0zdmjzHvfx9aen7Z54+W1AQAAAAAAAAAAAABSFhkWlsyii8iwsMgxk3GppNlpGAcAkCQvFwEFnSIZFvkAKTOKvTCwIVSvZTsWx9wfdAgLAwAAAAAAQGHY0rxRP/p4Vq7LKAg3DrlfPQPVOZt/zZo1YdvV1dXq2bNnWsY+4ICO18qvWbMm62FhvXr1Uq9evSRJfv+eWCa/369BgwZ5HufZZ58NO/all17S0KFDY/Y3xmjs2LEaO3asfvSjHykUCiVefBT33HOPli1b1rbdt29fvfbaaxoyZEiHvuXl5Zo9e7YOOOAAnXXWWdq8ebPneUKhkGbMmKHa2tq2tjlz5mj27NjLC8aMGaM///nPmjFjhubPny9Jeu211/TYY4/pvPPO8zx3ocnDdBQAACLEW/CSj2FhbmFKuXq8xqgklMxNbgvUvgfF3GWuuFP6ytelky6UmbdUzqU/yWJhnUAnPad9HqYd2rhSjmza5tz/S94W9I2r+7sOqX87bfM6rCMEAAAAAAAAAAAAgGxL5sPm9H1ADQDoNHoF+sbt09tDHwDxuYXzbW7aqCbbGHN/78BemSgJAAAAAAAAAHJm06ZNYdtVVVVpG7u4uFhFReE3YYicrytZvXp12/cHHXSQa1BYJJ/Pp0AgkHINoVBI99xzT1jbAw88EDUorL3TTz9dl156aUJzzZ8/X++9917b9llnneUaFLab3+/XI488oj59+rS13XHHHQnNXWjyMR0FAIBw8YKF8vHueW6PyeTu139ATTmbu6sx/zU3+o6+g2TO+I6c794n53u/lNmnY0py3ot7TnfesLCVQe//kfPiiKFS99L4/R7+LL2J7Pn4YxMAAAAAAAAAAAAAOpkdEdslSYwReUzkmACALmhk2WiVOuWufcZWTs5SNUB+My6X3DS7BIVJ0tjKSekuBwAAAAAAAAByKjK8q3v37mkdP3K8mpqatI6fK+vXr8/JvH/961/1ySeftG2PGzdOJ598sqdjr7/++oQCy+6+++62740xuvXWWz0fW15erlmz9lwL/+6774bVjXCEhQEA8l8nDRbKKLfH7OTo8Roj8oW8M0P2l77y9fDGfkNk7n05NwV1JvHO6Ry9xv0epp1+UEta5ywrMvrJacb1KfnW5gc0svFfaZ2XcxkAAAAAAAAAAAAAMq6zhoXdJ+mABL9OTcO8AIBdSn3lunLvG9WvaFCHfSVOmab2OF1TqvjRC6SDz/hi7mt0CQs7oedZGlMxMRMlAQAAAAAAAEDeMvGuIe9Chg8f3vb9p59+qjvuuCPrNbz22mth2zNnzvR8bO/evXXcccd56ltbW6vFixe3bY8bN06DBw/2PJckHX300WHbr776akLHFxJ/rgsAACDz4oWF5c8/Gtu4PaYch6NVtmzVNl+3Du3TRuegmE7OXPNzafxU2Xdel+k3RDrqdJmq3rkuqxOIc862pDeQyyufh1NrQG+/VNlD2rYpfmePZh3paFR/q4X/tPL9+ieasHOxPg4O0arAQE3e+bpO2fF82ubazcnDH5sAAAAAAAAAAAAA0MlsjdguNcaUWWtrExijT8T2lhRrkrV2vaSEbnucTwu6AaCz6F88WD8c9D/a0bxN9aE6Sa3LBqv8veS4hBsBSIyj2OdTUyh2WNgxVadkohwAAAAAAAAAyKkePXqEbW/dGvmxdmq2bAn/SDtyvq7knHPO0fz589u2v/vd72rBggW68MILdeKJJ6pv374Zr2HJkiVh2+PHj0/o+PHjx+t3v/td3H6LFy9WU1NT2/aQIUP0ySefJDRXKBQK2/7oo48SOr6QEBYGAMh/8RYcOrkNz8oMl8fs5HYh0KnbF+rR7ud2bB/NwtBIxhhp8qkyk7nLY5h453RLk/v+DPESFlbkl8y9L8ueNyatc0/cx2jiPkahRx+Saj+TElkangTWcQMAAAAAAAAAAABAZllra4wxmyVVtWseIOmDBIYZGLG9IuXCAACdSrm/UuWqzHUZQN5yXG7Q22Rjr1X0GS7VAQAAAAAAAJB/IsO7Nm/enLax6+vrVV9fH9bWs2fPtI2fbdOnT9f06dPDAsNef/11vf7665KkoUOHauLEiTr88MM1adIkjRgxIu01rFu3Lmx73333Tej4YcOGeer36aefhm0/8cQTeuKJJxKaK9KmTZtSOj6f8QkEACD/xQ0Dy8PUG7ckn5yFo7XW9O3Nv9QzFadqh6+ibc/wphU6bcx+OaoLXU4nTaryewwLU/+hmSsiEMzc2O100r8CAAAAAAAAAAAAAMg3H0ia2G57qBILCxsSZTwAAAB45JjYN+htsg0x9/mU2xv7AgAAAAAAANnU3d9LNw65P9dlFITu/l45nb9fv35h21988YVqamrSEur1/vvvx52vKzHG6Mknn9Ts2bP105/+tEMQ2sqVK7Vy5Ur96le/ktQaHnbuuefqsssu6xDKlqzIMLfKysRuQNOtWzdP/WpqahIa14vt27enfcx8QVgYACDvGWNk3TrkLDwrg9ySfFzucpYNY+v/ob+sPk739fiW/hUcpvF1b+l7TXNVWfJuTutCFxIvqcr1hM8cn5ewsIBkAsHMlRgsztTIYRzCwgAAAAAAAAAAAAAgG95TeFjYBEkLvRxojCmTdGCU8QAAAOCRT7EXBjbZptjHuYSMAQAAAAAAAPnGZ3zqGajOdRnIgokTJ3ZoW7JkiaZOnZry2EuWLAnbLikp0ejRo1MeN5f8fr9uvvlmXX755fr1r3+tZ599Vm+99ZYaGjrejGLlypWaM2eOfvazn+n+++/XjBkzclBxchobG9M+prU5CgzoAvIwHQUAgChcw7PyMPXG7THlKhytXUljGv6pBz+/RK+uPlZ3rP++ejldPNn17CujNpvvPZDlQgpEvH/ch0LZqSOCp7Cw3VG9Bx+VmSJW/ysz40Yw+fhzEwAAAAAAAAAAAAA6nxcito9K4NhJCr+h7NvW2nUpVwQAAFBAjMsNeptC0S9+MjJyCAsDAAAAAAAAkIcGDBigAQMGhLW9+OKLaRn7pZdeCtseP368gsFgWsberaWlJa3jeVVdXa2rr75af/3rX7V161a98cYbuuOOO3TqqaeqvLw8rO/WrVs1c+ZMLViwIOV5q6qqwra3bduW0PFbt2711K9Xr15h27fccoustSl9zZs3L6FaCwlhYQCAwuAWkOXyQX6X5RqO1gkfr69rL4owU2ZIweLwxh7V0oTjc1NQvosXFmZzExbmd+IHaO0OCzNfv961n/n2bckV0X+fpA4b0fBBcvMBAAAAAAAAAAAAADLpj5Lq2m1PMMYM93jsBRHbz6SlIgAAgALiU+z1rU22IfoxBIUBAAAAAAAAyGPHHx9+/fyjjz6qpqamlMbcsGGDnnvuOdd5dvP7/WHbzc3NnufZvHlz4sWlWVFRkSZMmKCrr75aCxYsUE1NjZ544gkNGzasrY+1VpdffrlCodSuma+urg7bXrFiRULHf/jhh0nN4/U4JKcTpoUAAJABjssH727BWl2Wy2NyC07LJLfnuauHhe13sMxtz0gHHSGVd5PGHydz1x9lelTHPxiJixcWluJ/fJLl83BqtYWFHXh462smmr33lWZckVwRR56W1GFzNtzoua+HTDQAAAAAAAAAAAAAQBpYa3dKeiqi+bp4xxljhklq/wFys6TfpLE0AACAgmBcbtDbZKNf/OaTP2o7AAAAAAAAAOSDK664QqZdbsCGDRs0d+7clMa86667wgLHysrK9M1vfjNq38rKyrDtLVu2eJ7n/fffT6guk4UcimAwqBkzZujNN99Uv3792to//fRTLV26NKWxx44dG7a9ePHihI5/8803PfWbMGFC2HP10ksvycbLA0DSCAsDABQGlw/rXfd1VW7/8HQLTsuVzlhTgszYY+Tc+7LM79fJuWOhzKARuS4pj8X5z4HtvGFhDe3Cqc3EE2VufVoKFu1pDBbLXHZ763+ITrow6hjm27fGnsAf8FhtuJN3/F4nbf+9p755ma8IAAAAAAAAAAAAAJ3XHEntkyguMMZ8JVZnY0yxpLmSgu2aH7bWfpSZ8gAAAPKXT7HXtzaFGqO2O6brr4kFAAAAAAAAgFhGjhypE044Iaztuuuu07p165Iab/ny5br99tvD2i688EL16NEjav8+ffp0ON6r3//e27XUuxUV7bkGvKGhIaFjE9W9e3dNnz49rG3VqlUpjXnEEUeEbT/++OOej92wYYNefPFFT3179+6tMWPGtG2vXbtWf/jDHzzPhcTkYToKAABROG5hYXmYfOMaFpajX/9uNfny5y5q2UgILnihOGFg8fZniN/DqXXo4PDXhzn8ZJmHFstcfKPMrJtav5/Q+h9kc9S0jgMEgtKkmGu+ZXzJhYUV2Ub9du05+u2amXH78goHAAAAAAAAAAAAgOyx1n4s6a6I5qeMMd8xxrQPBJMxZoSklyVNbNdcI+mGzFYJAACQn9yCv5ps9LAwn8mfNbEAAAAAAAAAEM2dd96p0tLStu0tW7Zo+vTp2rFjR0LjbNiwQWeccYYaG/e839q3b19df/31MY85+OCDw7YXLlzoaa4//vGPeuuttxKqr3v37m3fb9y4UU1NTS69U+f3h7+/3D6sLBmTJ0/WoEGD2raXLFmi559/3tOxP/7xjxN6vN/5znfCtq+55pqEXw/whrAwAEBhcFzu0pWr8KxMcgusMp3w8br9/QCRrI2zPzdhYV5+lPQo7dhmBo+U+dq1Mud+V2bwiD3thx0vc+XPpPJuuw6ulvnJUzL99ok5vt2yPtGy2xTZRk3f/mzcfvn4IxMAAAAAAAAAAAAAOrnvSWp/292ApHskfWqM+YMx5rfGmCWS3ld4UFijpNOstZ9nr1QAAID84bhcchM7LIw1sQAAAAAAAADy2/Dhw3XPPfeEtb3xxhs64YQTtGbNGk9jrFixQscee6w++OCDtjbHcfToo4+qd+/eMY+bMGFCWFDZM888oyVLlsSd6/zzz/dUV3sjRuy57ru5uVl/+ctfPB23c+dO3XPPPdq+fbvnuXbs2KH58+fHnD8ZjuN0CPGaNWuWVq1a5Xrc/Pnzdd999yU013nnnafhw4e3bX/wwQc67bTTtHnz5oTG2bBhQ4fnAeG41B8AUBhc021cgrXyUc6SflyeZx93UUMi4oSFhXITFubzcGr1Kk9sTHP6pTILP5P57b9lFqyWGT/V/YCXnkxsgiQU2E9MAAAAAAAAAAAAAMg5a22LpLMkRX4o3EfS8ZLOlHSIwj/SXS/pVGvtq1kpEgAAIA8ZY2RiXHbTFIoRFibCwgAAAAAAAADkv4suukjf/va3w9pee+01jRw5Urfeeqs+/fTTqMetXLlS//Vf/6VRo0bp3XffDdt322236dhjj3WdTJBsJAAAIABJREFUt6KiQjNmzGjbbmlp0UknnaQXX3yxQ9/GxkY9+OCDOuyww7Ru3TpVVVV5fXiSpKOPPjps+8ILL9R9992npUuX6uOPP9Ynn3zS9rVx48aweS+//HL1799fF110kRYuXOgaHPbWW2/p2GOP1erVq9vaDjvsMA0bNiyheqO5/PLLddBBB7Vtf/bZZzr88MP11FNPKRRxTX5tba1+/OMf6+yzz1YoFEro+fL5fHrqqadUWVnZ1vanP/1JBx54oH7xi1+4Pv5NmzbpySef1MyZM7X33nvr7rvvTuARFh6SOQAAhcFx+eA9Z+FZGeQWlmQ6YdSPP5DrCtCV2DhhYfW12akjgt/Dj5JupYmff8bvl/oO8tY5WJzw+JFGNizX8qKRsevphD9CAAAAAAAAAAAAACDfWWt3SDrbGPOUpKslHRaj6ya1horNttZuyFZ9AAAA+cqRoxZ1XJfbZGOEhRku0wEAAAAAAABQGO69915VVVXp5ptvlt11/ff27dv1/e9/Xz/4wQ80cuRI7b333qqqqlJNTY1Wr16tf//73x3GCQQCuuuuu3TJJZd4mvfGG2/UM888oy1btkiS1q9fr6lTp2ro0KE68MADVVRUpHXr1unNN99UbW3rded77bWXbrvtNp1//vmeH9+ZZ56pH/7wh1qzZo2k1qCtyIC03c4//3zNmzcvrG3btm2aO3eu5s6dK2OMhg4dqiFDhqh79+7y+/2qqanRe++91zb+bqWlpXrggQc81+kmEAjoscce05FHHqmamhpJ0ueff64zzzxT1dXVOuSQQ9StWzetW7dOf/vb31RXVydJ6tatm2677TZdfPHFnufaf//99fTTT+uMM87Q1q1bJUlr1qzRpZdeqssuu0yjRo3SgAEDVFlZqZ07d2rLli368MMPOzx+uONTCABAYTAuKT75mHxjXcLCchWO5vY8B4LZqwNdX7ywsKboC3AyLRDnZoDdSrJQxNRzpN/cmdIQ39j8v7pqrzti7nfy8EcmAAAAAAAAAAAAAHQV1tqnJD1ljBks6WBJX5JUJukLSaslvW5tjOQKAAAAJMwxjlqiLFuMHRYWZzEhAAAAAAAAAOSRG2+8UUceeaQuvfRSrVixoq3dWqv3339f77//vuvxBx98sO6//36NHTvW85z9+vXT008/rWnTpmn79u1t7StXrtTKlSs79B88eLB+97vfad26dZ7nkKSSkhI988wzmjZtmtauXZvQsZGstVqxYkXYcxRNv379NH/+fI0aNSql+drbf//99ac//UknnniiPv/887b2devW6fe//32H/t27d9dzzz2nlpaWhOeaMmWKlixZopkzZ2rJkiVt7S0tLVq2bJmWLVsWd4yqqqqE5y0kOUoLAQAgy3wuH7y7BYl1VW7/8HI64SIEXyDXFaArcQvDy6FgnBjeg/pnvgbz5Zkpj1EUZ814PuYrAgAAAAAAAAAAAEBXY61dZa192lp7j7X2VmvtPGvtXwgKAwAASK9Y4V+NoVhhYXEWEwIAAAAAAABAnpkyZYqWL1+uxx57TMcee6z8fvf3SYuKinTKKafo2Wef1ZIlSxIKCtvtmGOO0VtvvaVTTz1VJsbFz71799Z3v/tdLVu2TCNGjEh4DkkaO3asli9frl/+8peaNm2ahg4dqsrKSvlc8iu6deumV155Rddee60OOeSQuM+HJO2333665ZZb9OGHH+rQQw9NqlY3o0eP1gcffKDLLrtMFRUVUfuUl5frggsu0DvvvKNJkyYlPdfQoUP11ltvaeHChZoyZYqKioriHjNixAhddtllevXVVzV//vyk5y4EfAoBACgMboFg+Zh84xam5Baclkluz3OAsDAkwEa5RV8nUBTnX9YVxVkoYp8DUh7Cd/l/S/8Xe38e/sQEAAAAAAAAAAAAAAAAACAqo+hrkJttU9R2nzrhTX0BAAAAAAAAIMP8fr/OOeccnXPOOaqtrdXSpUu1cuVKbdiwQY2NjSoqKlJ1dbWGDRumgw8+2FOAVDzDhw/XggULtHHjRr3yyitas2aNdu7cqerqag0ePFiTJk0KC+o66qijZJO4Tr2yslKzZs3SrFmzPPU3xmjy5MmaPHmyJKmurk7vv/++PvroI33xxReqra2VMUaVlZUaMGCADjzwQA0cONBzPYsWLUr4MUitIWZ33323br/9di1atEirVq3S5s2b1bt3b/Xv31+TJk1SWVlZW/9kny+p9Tk4+eSTdfLJJ6u+vl5vvvmmVq9erZqaGtXW1qqsrExVVVUaOnSoRowYoZ49eyY1TyEiLAwAUBjcArIclyCxrirkEhbmFpyWK37CwpCAThoWFowbFpb5mC1jjFJ5dswLGxRYViK5jLKjIYUJAAAAAAAAAAAAAAAAAADoQnwm+hrkJht9MZ3PcJkOAAAAAAAAgMJWVlYWFpaVab169dLpp5+elbmSUVJSorFjx2rs2LG5LkWSVFRUpKlTp2ZtvuLiYh155JFZmy/fdcK0EAAAMsA1ICvzAT5ZF2qJvS9X4WjG5Xn2sTACCYgXFlZcmp06IgTj3AywLPWAa29mXJH0oaasUj7+hwAAAAAAAAAAAAAAAAAAgCTJiXHZTZNtitoeK1wMAAAAAAAAAAAgVUQBAAAKg+MSVJWr8KxMCoVi73MNTssRfyDXFaBLiRMWNnladsqIUBQn866iODt1mKPPcO/QZ+/ox/1hvSTJ3wl/RAAAAAAAAAAAAAAAAAAAkAtOjPCvplBj1HbCwgAAAAAAAAAAQKbEiTQAACBPOC4fvBuXILGuyrqEhbk9F5nk9jz7+CcJEuAWhifJHBMnLCtDgp0kLEzBItfdztMrJUl25w7prZek0ZNkuvdq2+8jLAwAAAAAAAAAAAAAAAAAAEmSo+iL6hptjLAwLtMBAAAAAAAAAAAZwqcQAIDCYFzSb9z2dVVuYUpOJ3y8uQowQ9dkrfv+8cdlp44I8cLCyt0zvNLHH/TUzZSWS0ed1qH9gH5GUpznGAAAAAAAAAAAAAAAAACAAuDEWGfcHCMszDGsiQUAAAAAAAAAAJnRCdNCAADIAJ/LB++dMTwrVdYlLCxn4Wgm9i4f+aVIgEtYmJn9qIw/kMVi9iiK8zKuKs1OHQqk9viH75WmOgAAAAAAAAAAAAAAAAAA6OIcRV+D3BiKHhbmM6yJBQAAAAAAAAAAmZGH6SgAAESRs4CsHKkeEHtfn37Zq8Mrh7uoIQHGJXhu9BHZqyNCMM7LuLrSpe50CgRTOtznZKlOAAAAAAAAAAAAAAAAAAA6OSfGGuSQWqK2+wxrYgEAAAAAAAAAQGYUWHIKAKBguYVROfn369AMGCbtvW/HHUMOkNlrYPYLktwDnnzcRQ0JqKiKva+xIXt1RAj63UO2+lRkqRAR9gUAAAAAAAAAAAAAAAAAQDo4Siz8yyfWxAIAAAAAAAAAgMzIv3QUAACicQsEcwux6sLMd++Tikv3NJSUy1x9d+4KcuPjnyRIwMQTo5/TpRVSn/7Zr2eX4oD7/h5l2alDPffK0kQAAAAAAAAAAAAAAAAAAOQ3n0kwLCzB/gAAAAAAAAAAAF5xyxIAQGEwbmFh+RlUZcZMln71trT4hdbHeNhUmb0G5rAgl1A2H/8kgXemey/Z8VOlv/0hfMfkaTL+OIldGVQWjLO/KDt1GH9ANjtTAQAAAAAAAAAAAAAAAACQ10yC64wJCwMAAAAAAAAAAJlCMgcAoDD4XD54dwux6uJM30HSad/KdRnxOSyMQGLM9Y/I3nyR9LcXWs/vI0+TuebenNYULwysNE6YGAAAAAAAAAAAAAAAAAAA6Fx8SmyNq89wmQ4AAAAAAAAAAMgMPoUAABQGt7t6OYnd8QtJcgtl8/FPEiTGlHeT+cnTsg11UigkU1KW65LUt5v7/rIuFBZ2wUSjeW/YXJcBAAAAAAAAAAAAAAAAAEBOOW5rkKPwExYGAAAAAAAAAAAyhHQUAEBh8Lnd1cslxArZQVgYkmSKSjpFUJgk9aty/1kS8HednzUnjopd6//M6DqPAwAAAAAAAAAAAAAAAACAVDgJXnbjyG3NMgAAAAAAAAAAQPIICwMAFAa3u3o5/DrMOYeFEUBnctqY2PsunkxYGAAAAAAAAAAAAAAAAACgMDgmsTWuPsMNdAEAAAAAAAAAQGaQjgIAKAxuYVSG4JvscHmefSyMADoTn2P0gxM7nrPXHm9UHOBnJgAAAAAAAAAAAAAAAACgMDgJXnbjSzBcDAAAAAAAAAAAwCuSOQAAhcFx+aDekJ2Za8bHwgigs7nxVKOqUunxt6z8jnTGWKOrv0xQGAAAAAAAAAAAAAAAAACgcDgJhn/5DJfpAAAAAAAAAACAzOBTCABAYTAuATdu+5A+bs+zj3+SAJ2NMUZXH2d09XG5rgQAAAAAAAAAAAAAAAAAgNzwJRoWJm6gCwAAAAAAAAAAMsPJdQEAAGSFa1gYvw5zjrAw5Ikxe0dv71mW3ToAAAAAAAAAAAAAAAAAAEDqTIKX3fgMa2IBAAAAAAAAAEBmkI4CAIBbkBjSx+159nEXNeSHy46N/jq/ZTo/ZwAAAAAAAAAAAAAAAAAA6Gp8Cd6U2GdYEwsAAAAAAAAAADKDsDAAQGFwC6py+HWYcw4LI5Afpo8xGjswvG303tJZhxAWBgAAAAAAAAAAAAAAAABAV+MosTWuPuPPUCUAAAAAAAAAAKDQ8SkEAAAixCcr3ALb/IHs1QFkUGWJ0Uv/z9HcN6yWrpYO7C/NmmxUWcLPGQAAAAAAAAAAAAAAAAAAuhrHJHZTYp/hBroAAAAAAAAAACAzCAsDABQGt6AqJ7EP8ZGkUCj2PsLCkEe6lRpdOYVwMAAAAAAAAAAAAAAAAAAAujpHiYV/+RLsDwAAAAAAAAAA4BXpKAAAuAWJIX1ammPv8xEWBgAAAAAAAAAAAAAAAAAAgM7FMYldduMz/gxVAgAAAAAAAAAACh1hYQCAAuESCJbgh/hIUnNT7H1+wsIAAAAAAAAAAAAAAAAAAADQuTjyJdTfZxLrDwAAAAAAAAAA4BXpKAAAGJcgMaRPc3PsfYSFAQAAAAAAAAAAAAAAAAAAoJNxErwpsc/4M1QJAAAAAAAAAAAodISFAQAKg1sgmMOvw6woq4i9r3e/7NUBAAAAAAAAAAAAAAAAAAAAeODIl1B/X4L9AQAAAAAAAAAAvCIdBQAAuQSJIW1Mn/7SwP067ujZVxo1IfsFAQAAAAAAAAAAAAAAAAAAAC58JrHLbnzGn6FKAAAAAAAAAABAoSMsDABQGIxLIJjDr8NsMbNuknztFkEYI/Otm2Tc/n4AAAAAAAAAAAAAAAAAAACAHDAJXnbjGF+GKgEAAAAAAAAAAIWOW5YAAEBQVdaYSV+R7lsk+8ozUkuzzKSvyBx0RK7LAgAAAAAAAAAAAAAAAAAAADrwJRj+5TNcpgMAAAAAAAAAADKDTyEAADCJ3fELqTEjx8mMHJfrMgAAAAAAAAAAAAAAAAAAAABXTqJhYUqsPwAAAAAAAADkm//P3r2HSVbV98L/ru65MTDIAMPNAUa5HAW8BqKir2JQCJxovJ3ogTyJlxDjJZG8GJXEEwHR4zVHjJqL0dHXiDFGRTQmQY34KsQQRINc5CIgIELGYbgMMswMs88f3TRdNTM9XV3VVbV3fT7Psx5m7dpr7bV2rd+i96rq1b/4xS9y2WWX5brrrsvPf/7zbNiwITvttFP23nvvHHrooXnSk56URYsW9eRaN998c/76r/863/rWt3Lttddm3bp12bRp09Trq1evzstf/vJtlr3kkkuyevXqXHzxxbnlllty9913Z8uWLVOv33jjjVm1alWS5Jhjjsm3vvWtqdeqqupJ+6FTNgsDgFIG3QIAAAAAAAAAAAAAYMiMpbM/Sjze4eZiAAAAAABN8OCDD+bv//7vs3r16nzzm9/M5s2bt3vukiVLcvzxx+d3fud38mu/9mtzvuZHP/rR/P7v/34eeOCBjspt3rw5r33ta/PRj350zteGQensUwsAaKLif4cAAAAAAAAAAAAAQKuxDjf/Gi8L5qklAAAAAADD6V//9V9z2GGH5aSTTsrXvva1GTcKS5INGzbkS1/6Up73vOflqKOOymWXXdbxNb/61a/m1a9+dccbhSXJn/zJn9gojNryKQQAo6GUGV7rXzMAAAAAAAAAAAAAgHoYS2d/lHi8w83FAAAAAADq7Mwzz8yZZ56ZqqpajpdS8tjHPjYrV67MHnvskTVr1uTmm2/Otdde23LepZdemqc97Wn50Ic+lFNOOWXW1z399NNbrnnSSSflVa96Vfbff/8sXLhw6viee+7ZUu6OO+7IBz7wgan8okWL8pa3vCUnnnhiVqxYkbGxh9eEV65cOev2QL/YLAyAETHDjmBjnX2IDwAAAAAAAAAAAAA031iHm3+N+zUdAAAAAGBEnHrqqTnnnHNaji1btiynn356Tj755BxwwAFblbn++uvziU98Iu973/vywAMPJEk2btyY3/3d3819992XU089dYfXveaaa3L55ZdP5U888cR8+tOfnlWbzzvvvGzcuHEqf/bZZ+eP/uiPZlUWhoHdUQAYDcuWz/DiDBuJAQAAAAAAAAAAAAAjabzDX7sZ73BzMQAAAACAOvrkJz+51UZhz3jGM3LVVVfl9NNP3+ZGYUly8MEH5+yzz87ll1+eI444ouW10047LRdeeOEOr33ppZe25F/ykpfMut1zLXvhhRemqqqpBINiszAARsMuu27/tTH/OwQAAAAAAAAAAAAAWpXS6WZhC+apJQAAAAAAw+Haa6/N61//+pZjRx99dP7pn/4pK1eunFUdhx56aL7xjW/ksY997NSxLVu25Dd/8zfz85//fMayd9xxR0t+ttfstiwMA7ujADAaStn+azYLAwAAAAAAAAAAAADajGe8s/NLZ+cDAAAAANTNG9/4xqxfv34qv9tuu+Xzn/98dtlll47q2WuvvfIP//APWbRo0dSxn/70p3n7298+Y7np106ShQsXzvqa3ZSFYeBPlgBAZthIDAAAAAAAAAAAAAAYSWOlsz9KPF78mg4AAAAA0Fw/+tGP8pWvfKXl2Lve9a7ss88+c6rvsMMOyxvf+Ma8853vnDr2sY99LGeccUaWL1++zTJbtmyZ07W6LdsLV111VX74wx9m7dq1WbduXZYsWZIVK1bksY99bB7/+Mdn8eLFc6p38+bNueSSS3LDDTdkzZo1eeCBB7JixYqsWrUqT3/607NkyZIe94RB8SkEAIx19iE+AAAAAAAAAAAAANB8Y2W8o/PH09n5AAAAAAB1cs4556Sqqqn8nnvumVe84hVd1Xnqqafmve99bzZt2pQkue+++/LRj340b3rTm5IkN910Ux71qEdtt/yzn/3sbR5fvXp1kszYvlLKNo/feOONWbVq1VT+mGOOybe+9a2p/PR7sCO33HJL3vOe9+Rzn/tc7rjjju2et9NOO+XZz352fvu3fzsvfvGLMz6+4/Xmq6++OmeffXa+8pWv5J577tluvc9//vNz1lln5dBDD511uxlOdkcBgO38AAcAAAAAAAAAAAAAjK6xDjf/Gu9wczEAAAAAgDr553/+55b8b/3Wb2XRokVd1blixYo873nPm/E6dVRVVc4+++wcfPDB+dCHPjTjRmFJcv/99+erX/1qXvrSl+aWW26Z8dwHH3wwf/iHf5gjjjgi55577nY3Cnuo3s9+9rM5/PDDc84558ypLwyPBYNuAAD0xwwbghV7ZwIAAAAAAAAAAAAArcY6+J5xScmYzcIAAAAAgIa69dZbc9NNN7UcO+6443pS93HHHZcvfOELU/nvfve72bRpUxYuXNiT+vtt8+bNednLXpbPf/7zW722zz775HGPe1z23HPPPPDAA7njjjvyn//5n1m/fv2s6r7//vvzghe8IBdccEHL8YULF+aJT3xiVq5cmcWLF+f222/PJZdckl/84hdTbTr11FOzbt26nHHGGV33kcGwWRgAlBk2EgMAAAAAAAAAAAAARtJYZr/517iNwgAAAAAYQZsfrHLrukG3YjSsXJ4sGB/c3ggXXXTRVseOPPLIntT9S7/0Sy35+++/Pz/4wQ9y1FFHZeXKlbnxxhunXvvABz6Qc845Zyr/mc98Jk996lO3qnPPPfdMkhxzzDFTx172spfl3//936fy0+udbuXKlXPqx0NOO+20rTYKO/HEE3PGGWfkqKOO2ur8LVu25Lvf/W7+7u/+Lp/4xCdmrPt1r3tdy0Zhj3jEI3LGGWfkVa96VZYtW9Zy7v3335+PfOQjeetb35oNGzYkSc4666w85SlPyQknnDDH3jFINgsDYDTMtCFYB3/xCwAAAAAAAAAAAAAYDWMdfM943K/oAAAAADCCbl2XPPqPtwy6GSPhhneOZdWeg7v+rbfe2pLfe++9s8cee/Sk7iOOOGKb1zvqqKOyYMGCrFq1aur4brvt1nLePvvs0/J6u1122WXq30uWLGl5baZyc3XBBRfkgx/8YMuxd73rXXnzm9+83TJjY2M5+uijc/TRR+ess87aqp0P+dznPpfVq1dP5Q888MBceOGF2+3HTjvtlNNOOy1Pe9rTcuyxx2bDhg2pqip/8Ad/kGuuuSZjY/baqBvvGADMtJEYAAAAAAAAAAAAADCSxjr4tZuxMj6PLQEAAAAAGKw777yzJb98+fKe1b1kyZIsXrx4xuvVxVlnndWS/73f+70ZNwprt9tuu21zs7CqqlrqXrBgQc4///xZbXj20CZkD7n++utz3nnnzbpNDA+bhQGA3U4BAAAAAAAAAAAAgDbjHWwANl4WzGNLAAAAAAAGq33zrt12262n9bfXt3bt2p7W3w+XX355Lrrooqn8smXL8u53v7sndX/zm9/MFVdcMZU/+eST8/jHP37W5V/3ute1bEJ2/vnn96Rd9JfdUQAgZdANAAAAAAAAAAAAAACGzFgHv3bTycZiAAAAAAC0KqX++z584xvfaMmfdNJJ2XXXXXtS99e+9rWW/Etf+tKOyi9dujS//Mu/PJX/9re/3ZN20V/+bAkAo2GmHwzH7J0JAAAAAAAAAAAAALQa62ADsPHYLAwAAAAAaK7dd9+9JX/33Xf3tP677rprxuvVwcUXX9ySP+aYY3pW93e+852W/O67756bbrqpozqmb1x20003ZcuWLRmz30at2CwMABqwwywAAAAAAAAAAAAA0FsdbRZW/IoOAAAAANBc7Zt3rVu3rmd1b9iwIRs2bGg5tscee/Ss/n752c9+1pI//PDDe1b3Lbfc0pJ/6lOf2lV9W7ZsyV133VXLTdlGmU8iABgNM20IVux0CgAAAAAAAAAAAAC0Gsvsv2c83sHGYgAAAADQFCuXJze80+/r98PK5YO9/iMf+ciW/O233561a9f2ZFOvK6+8cofXq4O1a9e25Jcv792b1l53L9x77702C6sZm4UBwEwbiQEAAAAAAAAAAAAAI2msgw3Axotf0QEAAABg9CwYL1m156BbQT8cffTRWx279NJLc/zxx3dd96WXXtqS32mnnfLEJz6x63oHrfRwL4uNGzf2rK6HVFXV8zqZX7ZmBGA0PPjg9l9bsLB/7QAAAAAAAAAAAAAAamGsg1+7Gc/sNxYDAAAAAKibAw44IAcccEDLsQsuuKAndX/ta19ryT/lKU/JokWLelJ3P+25Z+vOeXfeeee81L1kyZJs2bIlVVV1lVatWtWz9tEfNgsDYDQ8uHn7r9ksDAAAAAAAAAAAAABoM1462CysLJjHlgAAAAAADN6v/uqvtuQ/9alPZdOmTV3VuWbNmpx//vkzXqcu9t1335b8VVdd1bO6995776l/b9iwITfffHPP6qY+bBYGwGh48MHtvzbug3kAAAAAAAAAAAAAoNVYxmd97niZ/bkAAAAAAHX0hje8IaWUqfyaNWuyevXqruo855xzWjYc23nnnXPKKad0VeegPP3pT2/JX3jhhT2r++ijj27JX3DBBT2rm/qwWRgAo2HL9jcLm/7DKAAAAAAAAAAAAABAkoyV2f/ajc3CAAAAAICmO+yww3LCCSe0HHvzm9+cO+64Y071XXXVVXnve9/bcuwVr3hFdt999zm3cZCe85zntOTPPffc3HvvvT2p+/jjj2/J/83f/E1P6qVebBYGwGiYYbMwAAAAAAAAAAAAAIB2Y5n9BmDjWTCPLQEAAAAAGA7vf//7s3Tp0qn8XXfdlRe96EVZv359R/WsWbMmL3nJS7Jx48apY/vuu2/+9E//tGdt7bfDDz88z3rWs6by99xzT04//fSe1H3CCSfkoIMOmspfcskl+fjHP96TuqkPm4UBMBp2ecSgWwAAAAAAAAAAAAAA1MhYmf2v3YyV2W8sBgAAAABQV495zGPy53/+5y3HLr744pxwwgm59dZbZ1XHddddl2OPPTZXX3311LGxsbF86lOfyooVK3ra3n5r3+zswx/+cN7//vfPuvzdd9+dDRs2bHV8wYIFOeuss1qOveY1r8kXvvCFjtv49a9/PTfccEPH5Rg8m4UBMBLKC1+97Ree8Iz+NgQAAAAAAAAAAAAAqIWxzH4DsPGyYB5bAgAAAAAwPF75ylfmda97Xcux73znOznssMPyrne9K7fccss2y11//fV561vfmsc97nH54Q9/2PLau9/97hx77LHz1uZ++ZVf+ZWcdtppLcfe+MY35vnPf36+973vbbPMli1b8m//9m95wxvekP333z+33377Ns876aST8spXvnIqv3Hjxrz4xS/OySefvN26k+TBBx/M97///Zx55pk57LDD8tznPjc333zzHHrHoPkkAoDRsP+hyRP+n+Q/v91yuPzaK7dTAAAAAAAAAAAAAAAYZWNlbNbnjpfZbywGAAAAAFB3H/rQh7J8+fK84x3vSFVVSZJ77703p59+ev74j/84hx12WPbff/8sX77r4kpmAAAgAElEQVQ8a9euzU9+8pNcc801W9WzcOHCnHPOOXnNa17T7y7Mm3e/+925+eab87nPfW7q2Je//OV8+ctfzn777ZfHPe5x2WOPPfLAAw/k9ttvz+WXX5577713VnX/5V/+ZdatW5cvfvGLU8fOPffcnHvuuVmxYkWe8IQnZI899sjY2Fjuueee3Hbbbbn66quzYcOGnveT/rNZGAAjoZSSvOeLqf78TcklX0v22CflBb+b8qsnD7ppAAAAAAAAAAAAAMAQGutgA7Bxv6IDAAAAAIyYt7/97XnWs56V1772tbnuuuumjldVlSuvvDJXXnnljOWf/OQn56/+6q9y5JFHzndT+2p8fDyf/exnc/jhh+cd73hHNm3aNPXabbfdlttuu23OdS9cuDCf//zn8973vjdve9vbWjYBW7NmTb7+9a/Pqo6dd955zm1gcGb/J04AoObK0mUZe/NfZOzz12fsr7+TcuJvDbpJAPPjf7x+m4fLKWf2uSEAAAAAAAAAAABQX7uML8vismRW5+6xcK95bg0AAAAAwPB5znOek6uuuiqf/vSnc+yxx2bBgpn/sMLixYvzvOc9L1/60pdy6aWXNm6jsIeUUvK2t70t11xzTU455ZTsvvvuM56/yy675AUveEHOO++8HHDAATus+01velNuvPHGvOUtb8mBBx64w/YsW7YsJ554Yj784Q/nZz/7WY466qiO+sNwKFVVDboNMFCllMOTXPFQ/oorrsjhhx8+wBYBAHSnuvziVK//lWT6z/oLF6V87JKURz12cA0DAAAAAADm3ZVXXpkjjjhi+qEjqqqa+U90AsA88h09AKDuVt/2f/If935rxnPGMpY3HfieHLDk4D61CgAAAAB6Z/Pmzbnuuutajh1yyCE73PQJtuW+++7L9773vVx//fVZs2ZNNm7cmMWLF2fvvffOoYcemic/+clZvHjxoJvZd1u2bMlll12WH/3oR/n5z3+e9evXZ+edd85ee+2VxzzmMXn84x+fhQsXzrn+G2+8MZdddlnWrFmTdevWZWxsLMuWLct+++2XxzzmMTnkkEMyPj7ewx4Nt/ma1wb9/TyzMgAANEx5/NHJW1en+vBbkjtvT/baP+W0D9ooDAAAAAAAAAAAADp08j6vzeZqYy5f/x95MJu3ev0R48vzP/Y+xUZhAAAAAABJdt555zzzmc/MM5/5zEE3ZaiMjY3lyCOPzJFHHjkv9T/qUY/Kox71qHmpm+FhszAAAGigctz/TJ77suTOO5Ld904pZdBNAgAAAAAAAAAAgNpZNLY4pzzyzXlgy4bcuWlNy2sLy6LssXAv39EDAAAAAADmnc3CAACgoUopyR77DLoZAAAAAAAAAAAAUHuLx5Zk38X7D7oZAAAAAADAiLJZGD1VSlmY5OlJDkiyb5L1SW5L8v2qqm4aYNMAAAAAAAAAAAAAAAAAAAAAAABqx2ZhI6yU8ndJXtp2+CdVVa2aQ10rkpw5Wd/u2znn4iR/VlXV5zutHwAAAAAAAAAAAAAAAAAAAAAAYBSNDboBDEYp5fnZeqOwudZ1QpIrkrwm29kobNLRSf6hlPK3pZSde3FtAAAAAAAAAAAAAAAAAAAAAACAJlsw6AbQf6WU3ZL8RY/qOibJeUkWTTtcJbksyQ1JdkvypCR7Tnv95CS7llJeUFXVll60AwAAAAAAAAAAAAAAAAAAAAAAoInGBt0ABuL9Sfab/Pe9c62klLIyyRfSulHYRUkOr6rqyKqqfqOqquOSrEzyhiSbpp33vCRnz/XaAAAAAAAAAAAAAAAAAAAAAAAAo8BmYSOmlPKcJK+czG5O8qddVHdmkuXT8hcneU5VVVdPP6mqqgeqqvpgkt9oK///llIO7OL6AAAAAAAAAAAAAAAAAAAAAAAAjWazsBFSStk5yUenHfqzJD+YY12HJPntaYc2Jnl5VVUbtlemqqrzknxy2qHFSd42l+sDAAAAAAAAAAAAAAAAAAAAAACMApuFjZb/nWTV5L9vSHJGF3WdlGR8Wv4LVVVdN4ty727L/0YpZUkX7QAAAAAAAAAAAAAAAAAAAAAAAGgsm4WNiFLK0UleN+3Qq6uqur+LKl/Yll89m0JVVV2d5N+nHdo5yXFdtAMAAAAAAAAAAAAAAAAAAAAAAKCxbBY2Akopi5N8PA+/35+squrrXdS3T5InTDu0OclFHVRxYVv+hLm2BQAAAAAAAAAAAAAAAAAAAAAAoMlsFjYazkjy3yb/vSbJaV3Wd0Rb/vKqqu7roPzFbfnDu2wPAAAAAAAAAAAAAAAAAAAAAABAI9ksrOFKKU9O8sZph06tqmptl9Ue1pa/vsPyP95BfQAAAAAAAAAAAAAAAAAAAAAAAMRmYY1WSlmQ5ONJFkwe+ueqqs7tQdUHt+Vv7rD8T9rye5RSlnfRHgAAAAAAAAAAAAAAAAAAAAAAgEayWVizvSXJEyb/fV+S1/So3t3a8v/VSeGqqtYn2dB2+BFdtQgAAAAAAAAAAAAAAAAAAAAA6EgpZatjVVUNoCUAvbFly5atjm1rrqubBYNuAPOjlHJYkrdOO/S/qqq6qUfV79KWv38OddyfZMm0/LK5N+dhpZS9kqzosNhBvbg2AAAAAAAAAAAAAAAAAAAAANTJ2NjYVsc2bdqUhQsXDqA1AN3bvHnzVse2NdfVjc3CGqiUMpbkY0kWTx76XpIP9vAS7ZuFbZhDHfcnWT5DnXP12iRv61FdAAAAAAAAAAAAAAAAAAAAANBYpZQsWrQoGzdunDq2fv36LF26dICtApi79evXt+QXLVqUUsqAWtM79d/ujG15Q5KnTv57c5LfqarqwXm8XtWnMgAAAAAAAAAAAAAAAAAAAABADy1btqwlf88996SqbA0C1E9VVbnnnntajrXPcXVls7CGKaU8OsnZ0w79WVVVP+jxZda35XeaQx3tZdrrBAAAAAAAAAAAAAAAAAAAAADmWftGOps2bcpPf/pTG4YBtVJVVX76059m06ZNLcd33XXXAbWotxYMugH0TimlJPlokqWTh25IcsY8XGqYNwv7SJLPdVjmoCRf6tH1AQAAAAAAAAAAAAAAAAAAAKA2lixZkoULF7ZssHPvvffmxz/+cXbdddfssssuWbBgQcbGxgbYSoCtbdmyJZs3b8769etzzz33bLVR2MKFC7N48eIBta63bBbWLKck+ZVp+VdXVXX/PFzn7rb8ik4Kl1J2ydabhd3VVYsmVVX1X0n+q8P29OLSAAAAAAAAAAAAAAAAAAAAAFA7pZTst99+ufnmm1NV1dTxTZs2Ze3atVm7du0AWwcwNw/NbU3ZX8hmYc1y5rR/fzXJ9aWUVTsos09bfsE2ytxWVdXGafnr2l4/cJbt2975d1ZVta7DOgAAAAAAAAAAAAAAAAAAAACAHli6dGkOOOCArTYMA6ijUkoOOOCALF26dNBN6RmbhTXLTtP+fWKSG+dQxyO3Ue5JSX4wLX912+sHd3iNR7flr+qwPAAAAAAAAAAAAAAAAAAAAADQQw9tGHbbbbdl06ZNg24OwJwsXLgw++23X6M2CktsFsbcXNGWf3wpZWlVVb+YZfmn76A+AAAAAAAAAAAAAAAAAAAAAKDPli5dmoMOOigPPPBA7rnnntx7773ZuHHjoJsFMKNFixZl2bJl2XXXXbN48eKUUgbdpJ6zWRgdq6rqZ6WUy5M8fvLQgiTPSHLBLKs4pi3/Tz1qGgAAAAAAAAAAAAAAAAAAAADQhVJKlixZkiVLlmSvvfZKVVXZsmVLqqoadNMAWpRSMjY21sjNwdrZLKxBqqrardMypZRjknxz2qGfVFW1ahZFv5iHNwtLkldkFpuFlVIek+Qp0w7dN5tyAAAAAAAAAAAAAAAAAAAAAED/lVIyPj4+6GYAjLSxQTeA2vp0kgen5V9USjlkFuXe3Jb/+6qqNvSuWQAAAAAAAAAAAAAAAAAAAAAAAM1hszDmpKqq65J8ctqhRUk+UUpZsr0ypZRfT/LyaYc2JjlzXhoIAAAAAAAAAAAAAAAAAAAAAADQADYLoxtvS7JuWv7oJF8vpTxm+kmllMWllN9P8rm28u+vquon89xGAAAAAAAAAAAAAAAAAAAAAACA2low6AZQX1VV3VpKeVGSf0myaPLw05NcVUr5XpIbkjwiyZOTrGgr/pUk/6tfbQUAAAAAAAAAAAAAAAAAAAAAAKgjm4XRlaqqLiylvDDJJ/LwhmAlyZGTaVs+k+SUqqoenP8WAgAAAAAAAAAAAAAAAAAAAAAA1NfYoBtA/VVV9dUkRyT5yyTrZjj1u0leUlXVSVVV3deXxgEAAAAAAAAAAAAAAAAAAAAAANTYgkE3gMGqqurCJKUH9fxXkteUUt6Q5OlJDkyyT5L7kvw0yferqrqx2+sAAAAAAAAAAAAAAAAAAAAAAACMEpuF0VNVVW1M8s1BtwMAAAAAAAAAAAAAAAAAAAAAAKAJxgbdAAAAAAAAAAAAAAAAAAAAAAAAAGDbbBYGAAAAAAAAAAAAAAAAAAAAAAAAQ8pmYQAAAAAAAAAAAAAAAAAAAAAAADCkbBYGAAAAAAAAAAAAAAAAAAAAAAAAQ8pmYQAAAAAAAAAAAAAAAAAAAAAAADCkbBYGAAAAAAAAAAAAAAAAAAAAAAAAQ8pmYQAAAAAAAAAAAAAAAAAAAAAAADCkFgy6ATAEFk3PXH/99YNqBwAAAAAAAABAV7bxvYdF2zoPAPrId/QAAAAAAAAAgNob9PfzSlVV/bweDJ1SyvOTfGnQ7QAAAAAAAAAAmAe/XlXV+YNuBACjy3f0AAAAAAAAAICG6uv388b6dSEAAAAAAAAAAAAAAAAAAAAAAACgMzYLAwAAAAAAAAAAAAAAAAAAAAAAgCFVqqoadBtgoEopj0jyrGmHbkmycUDNgfl0UJIvTcv/epIfD6gtQH+Jfxht5gCAejFvw2gzB8DoEv8wusQ/MB8WJdl/Wv5bVVXdPajGAIDv6DEiPN/BaDMHwOgS/wD1Yt6G0WYOgNEl/mG0mQOAXhvo9/MW9OtCMKwmA+78QbcD5lsppf3Qj6uqunIQbQH6S/zDaDMHANSLeRtGmzkARpf4h9El/oF59P1BNwAAHuI7eowCz3cw2swBMLrEP0C9mLdhtJkDYHSJfxht5gBgngzs+3ljg7owAAAAAAAAAAAAAAAAAAAAAAAAMDObhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADKkFg24AAH2zJsmZbXlgNIh/GG3mAIB6MW/DaDMHwOgS/zC6xD8AAEAzeL6D0WYOgNEl/gHqxbwNo80cAKNL/MNoMwcAjVKqqhp0GwAAAAAAAAAAAAAAAAAAAAAAAIBtGBt0AwAAAAAAAAAAAAAAAAAAAAAAAIBts1kYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADCmbhQEAAAAAAAAAAAAAAAAAAAAAAMCQslkYAAAAAAAAAAAAAAAAAAAAAAAADKkFg24AUB+llPEkByc5LMl+SR6R5IEk65L8OMmlVVXd1+NrLkzy9CQHJNk3yfoktyX5flVVN/XyWv1SSjk8yROTrEiyOMntSW5NclFVVRsG2bZ+KqUsT3J4kkOS7J5kSZK7kqxJ8r2qqn48wOZtpZTyqEy8b/sl2SXJz5L8JMnFVVVt6uF1DkzyS5kY749IsikT9+W6TNyXe3t1rQ7bJf57QPxPqFv8Yw7oFXPAhDrMAf0c83W4H9RPE+ftJvapV/r1rFIX7kcz46WJfeoVY76V9ZvmxUoT+9Qr4p/pmhgrTexTr4h/azcAADSXZ6He8Nn8hLo9z4z6+u5k28wBPWAOmFC3OWDUif/eEP8T6hD/1nipuybO203sU6/4bK6V+9HMeGlin3rFmG816us3TYyVJvapV8Q/7ZoYL03sU6+YA6zfwNCrqkqSJGm7KRM/bJ2a5CtJ7k5SzZA2J/mnJP+9B9ddkeQjSdbOcL2Lkry4y+s8OslLk7w3yYVJ7mm7xk09uo/LkvxJkp/O0J97knwqyUEDfL/n7X4kWZjk+CQfSnLFDsZSNXmvzkqyz4Bj4CVJLp6hnWsnx+qeXVxjaZI3Jbl2B/fkwST/mOS4PvVd/PfmPor/Gsb/fI+PWdyDHaVVfbgH5oDe3EdzQE3mgH6N+brcD6l+qYnzdhP71OP3vB/PKjsneUaSP0zy6Uw8s2xpu87LBz3+3Y9mxksT+2TM1/5+WL9pva74b/Z4r0X8Z8TXb5oYK03sU4/f85GO/36Nj1i7kSRJkiRJkvqcmv4sFJ/N9+1+1PV5JiO8vjvZNnNAb+6jOaCGc8B8j49Z3IMdpVXz3H/x35v7KP5rEv/9GvN1uR9S/VIT5+0m9qnH7/lIfzbnfmzVtsbFSxP7ZMzX/n4M5fpNE2OliX2q4XivRfxnxNduJtvYuHhpYp96/J6P9BzQr/ER6zeS1HUaeAMkSRrelOTcLn7I/nKSved43ROS3NHBtf42yc4d1H9Mkn/ZwQ+UPXlYmbzeUzKxq+1s+3Nfktf08X2e9/sxeQ/unONYWpfkNwcw/ndJ8pkO2nl7kuPncJ2nJblhDvfl3CRL57H/4l/8j1z893N8dBFfD6VV83wvzAHmgJGaA/o15utyP6T6pX6N4W1cd97m7Sb2qYfv97w/q2Tiw4sfZmLxfkf1v3zA43/k70cT46WJfTLm63s/Jq9j/aZPsdLEPtVpvNch/mP9prGx0sQ+9fD9Hvn479f4iLUbSZIkSZIkqc+pqc9C8dl83+9HHZ9nMuLru5NtMweYA0ZuDujn+Ogivh5Kq+bxPoh/8T9S8d+vMV+X+yHVL/VrDG/juj6b89lclRH4bs6w348mxksT+2TM1/d+TF5nKNdvmhgrTexTncZ7HeI/1m4aHS9N7FMP3++RnwP6NT5i/UaSepIWBGD7Dt3O8Z8muS4TP5gtyMTuwE9IMjbtnF9L8v+XUp5VVdXts71gKeWYJOclWTTtcJXkskw88O+W5ElJ9pz2+slJdi2lvKCqqi2zuMwTkxw32zZ1o5TynEzsnrq47aWfJLk8Ex86rszEDzYLJ19bmuQjpZSxqqo+3Idm9uN+rEiyfBvHN2biB9vbM7HD7B5Jjpz870N2S/KpUspeVVX92Ty3M0lSShlP8tkkJ7a9tCbJ9yfbelAmxmKZfG3vJF8qpTynqqrvzPI6T0tyQSYeIqa7N8l/ZCLGFic5OMkRaY2x/5lkr1LKiVVVbZxl1zoh/rsk/qfUKf77Nj5qwBzQJXPAlLrMAf0a83W5H9RPE+ftJvapa/16VklyUpJHdN/i+eV+TGlivDSxT10z5ltZv0nSzFhpYp+6Jv5bWL+Z0MRYaWKfuib+p1i7AQCgqZr6LOSz+VY+m29jfXeKOaBL5oApdZoDrPFOEP9dEv9T6hL/1nipuybO203sU9d8NtfK/ZjSxHhpYp+6Zsy3sn6TpJmx0sQ+dU38t7B287AmxksT+9Q1c8AU6zdQJ73efUySpOakJJfm4Z02L0vy+iQHbefcRyb5q2y9Q+e3k5RZXm9ltt4J9DtJHtt23uIkf5CJ/+lPP/eds7zOqdtoZ5VkQ5Lr247d1MX9W5Wtd0++Pslzt3Hu8iR/3nbug9s6dx7e53m/H5n4Ie+hOu5N8rEkxybZaRvnliQvzMSHte1tmvf7MdmG97Zdd+Pk+F/Udt5hSS5uO/fnSfadxTWWbOP+/mJybC/ZxvkHJTl/G/fk9Hm6B+Jf/I9c/PdrfExea3pd350cM52kBfN8L8wB5oCRmgP6Nebrcj+k+qUmzttN7FOP3ut5f1aZLH/XNu5nleTWbbz28gGOffejofHSxD4Z8/W8H7F+0/dYaWKf6jLeJ8sPffzH+k1jY6WJferRey3++zg+Yu1GkiRJkiRJ6nNq6rNQfDbf9/tRt+eZWN996JrmAHPAyM0B/Rofk9eaXpc1XvEv/n0/b2juh1S/1MR5u4l96tF77bM592Mk4qWJfTLm63k/MuTrN02MlSb2qS7jfbL80Md/rN00Ol6a2KcevdfmgD6Oj1i/kaSepIE3QJKk4U2Z2Hn7K0mO7KDMa7fxP9uXzbLsx9rKXZRtPNRPO/8FbedvSHLgLK5z6uQPat9P8tEkv5vkyZn4q0HHtNV5Uxf37zNtdV2XZK8dlHlTW5krk4zP8/s87/dj8ge3O5KclmTnWZbZI8lVbde/ekc/JPbgfjw6Wz9Q/PoM5++UrX+4/8tZXOflbWW2JDl+B2VKks+1lbs7bQ8cPboP4l/8j2L892V8TF5rel0Xzme/5tg+c4A5YKTmgH6N+brcD6l+qYnzdhP71IP3uS/PKpNl78rEX+P4xyRnTs5fe0++dmFbnS8f0Lh3Px5uX+PipYl9MubreT9i/abvsdLEPtVlvE+WrUP8W7+pmhkrTexTD95n8d/n8RFrN5IkSZIkSVKfU1OfheKz+b7fjzo9z8T67vTrmQPMAaM4B1jjrcS/+B+9+O/XmK/L/ZDql5o4bzexTz14n302536MTLw0sU/GfD3vR4Z8/aaJsdLEPtVlvE+WrUP8W7t5uH2Ni5cm9qkH77M5oM/jI9ZvJKknaeANkCRpeFOSVXMs9w9t/7P9x1mUOSTJ5mllHkhyyCzKfaLtWh+fRZnl2/thMr374O3RmfirQ9PresYsy/5rW7lXzvP73I/7sWK2P7C1lXvCNu7jUfN8Pz7Zdr3Vsyhz6OSYfajMpiSP3kGZz7dd54uzbN8+2frB4znzcB9WzbGc+Bf/7fXUKf7n/X5Mq296XRfOZ7/m2L5VcyxnDjAHtNdTizmgX2O+LvdDql9q4rzdxD714H3uy7PKZLnt/mWTDMGHEO7HVm1YNcdyQxsvTexTD95nY34A9yPWb6aXEf9z7FMP3mfx39oO6zdVM2OliX3qwfss/vs8PmLtRpIkSZIkSepzauqzUD+e3+Oz+fZ6avM806/n3Qz5+u7ktVbNsZw5wBzQXk+d5gBrvJX4F/+jF//9GvN1uR9S/VIT5+0m9qkH77PP5tyP7bVh1RzLDW28NLFPPXifjfkB3I8M+fpNE2OliX3qwfss/lvbYe3m4fatmmO5oY2XJvapB++zOaDP4yPWbySpJ2ksANtRVdVNcyz64bb8s2dR5qQk49PyX6iq6rpZlHt3W/43SilLZipQVdW6qqo2zKLubvz3pGWO/W5VVd+ZZdn3teVf0ZsmbVs/7kdVVWuqqrpvDuX+M0n7fZvNeJqTUspOSV7Sdrh9jG2lqqprk5w37dCCTIzpmTy6Lf/lHTZw4lq3J7mk7fAhsynbCfHfFfHfeo1axP/kNfsxPmrBHNAVc0DrNWoxB/RrzNflflA/TZy3m9inbvT5WSVVVf2sowb2mfvRqonx0sQ+dcOYb2X9puU6N82x6NDGShP71A3xvzXrNxOaGCtN7FM3xH8razcAADRVU5+FfDbfymfzD7O+u9W1bppjUXOAOaD9GrWYAyavaY034r9L4r/1GrWIf2u81F0T5+0m9qkbPptr5X60amK8NLFP3TDmW1m/abnOTXMsOrSx0sQ+dUP8b83azcOaGC9N7FM3zAGtrN9AvdgsDJgP32/L71RK2W0HZV7Yll89mwtVVXV1kn+fdmjnJMfNpuw8e2Zb/l86KPuNTOxs/pCjSyn7dt+k2mofT/vN47WOT7J0Wv7fqqr60SzLto/ZF+3g/J3b8rfO8jpJcktbfnkHZeeb+Bf/vdTP+Kc3zAHmgF6qwxwwlzHfq2sN4/2gfpo4bzexT0l/n1XqwP3ojSbGSxP7lBjz7azfdK+JsdLEPiXin95rYqw0sU+J+O8VazcAADRVU5+FOuGz+d7x/bytDfP6bmIOSMwBvWRNo17Ev/jvpTrEvzVe6q6J83YT+5T4bK6d+9EbTYyXJvYpMebbWb/pXhNjpYl9SsQ/86OJ8dLEPiXmgF6xfgMDYLMwYD5s3saxRds7uZSyT5IntJW/qIPrXdiWP6GDsvNlZVv+itkWrKrqgSTXTzs0luHo06C0j6ftjqUe+NW2/IUdlP12Wtv6pFLK3jOcf3tbvpOdjdvPvbODsvNN/Iv/Xupn/NMb5gBzQC/VYQ7oaMz3+FrDeD+onybO203sU9LfZ5U6cD96o4nx0sQ+JcZ8O+s33WtirDSxT4n4p/eaGCtN7FMi/nvF2g0AAE3V1GehTvhsvnd8P29rw7y+m5gDEnNAL1nTqBfxL/57qQ7xb42XumvivN3EPiU+m2vnfvRGE+OliX1KjPl21m+618RYaWKfEvHP/GhivDSxT4k5oFes38AA2CwMmA8Ht+U3J/n5DOcf0Za/vKqq+zq43sVt+cM7KDtfdm/L39Vh+fbzH9dFW+qufTz9bB6v1T4W/222BSfH7A/bDs80Fr/dln/ybK+1jXP/o4Oy8038i/9e6mf80xvmAHNAL9VhDuh0zPfyWsN4P6ifJs7bTexT0t9nlTpwP3qjiQNOiPoAAB9ASURBVPHSxD4lxnw76zfda2KsNLFPifin95oYK03sUyL+e8XaDQAATdXUZ6FO+Gy+d3w/b2vDvL6bmAMSc0AvWdOoF/Ev/nupDvFvjZe6a+K83cQ+JT6ba+d+9EYT46WJfUqM+XbWb7rXxFhpYp8S8c/8aGK8NLFPiTmgV6zfwADYLAyYDy9py19aVdWWGc4/rC1//TbP2r4f76C+QdjYll/cYfn284ehT31XStk1yXPbDl8yj5d8bFt+Psfi36R1nLyylLLTji5QSnlhkgOmHbqyqqrvzb6J8078i/+eGED8D9IBpZTVpZQrSynrSikbSyl3TOb/tpTyu6WU9i+4DCtzgDmgJ2o0B3Q65uekRveD+mnivN3EPiX9fVapA/ejN5oYL03sU2LMt7N+070mxkoT+5SI/2HSlPWbJsZKE/uUiP9esXYDAEBTNfVZqBM+m+8B38/bWg3WdxNzQGIO6IkRW9OwxjtB/Iv/JLWKf2u81F0T5+0m9inx2Vw796M3mhgvTexTYsy3s37TvSbGShP7lIj/YdKUtZukmfHSxD4l5oBesX4DA2CzMKCnSim7JHlV2+Ev7qBY+y6eN3d42Z+05fcopSzvsI5eW9uW37fD8u3n/7cu2lJnr06ydFr+7iTfnI8LTT4otj8sdjoW288/ZHsnVlV1Y5LTpx3aP8lnSilLt1MkpZSjMrEI9pAtSX6/wzbOG/E/Rfz3Rt/ifwg8KsnLM7EYsFuShUn2msyfnOSvktxcSvk/k3E2lMwBU8wBvTH0c8Acx/xcDf39oH6aOG83sU9J/59Vhp370RtNjJcm9ikx5ttZv+leE2OliX1KxP8Qqv36TRNjpYl9SsR/r1i7AQCgqZr6LDQHPpvvDd/Pa23jUK/vJuaAacwBvTFKaxrWeCeIf/H/kKGPf2u81F0T5+0m9inx2Vw796M3mhgvTexTYsy3s37TvSbGShP7lIj/IVT7tZukmfHSxD4l5oBesX4Dg2OzMKDX/neSfabl70rrw/e27NaW/69OLlhV1fokG9oOP6KTOubB1W35p862YCnlgCT7tR0edH/6rpSyKsn/ajt8TlVV7X8Rqlfax+Evqqq6r8M62sfujO9bVVV/luSPkmyaPPTrSa4qpbyllPKMUsohpZTDSykvKKWsTnJRHn742JTklVVVDdMPsuJ/gvjv0gDivw52TnJqku+VUg4fdGO2wxwwwRzQpRrNAXMZ8x2r0f2gfpo4bzexT8kAnlWGnPvRG02Mlyb2KTHm21m/6V4TY6WJfUrEfx0N+/pNE2OliX1KxH+vWLsBAKCpmvos1CmfzXfJ9/Nqub6bmAMeYg7okjWNbbLG20b8N1ON4t8aL3XXxHm7iX1KfDbXzv3ojSbGSxP7lBjz7azfdK+JsdLEPiXiv46Gfe0maWa8NLFPiTmgV6zfwIDYLAzomVLKC5O8vu3wn1RVdecOirbv4nv/HC7fXmbZHOropW+15V88047mbX5rG8cG3Z++KqUsSvLZtPb7piTvmcfLDmQcVlX1viRPSPLxJOuSHJiJH46/neTaJFdkYhfdl2diN+wk+XqSp1ZV9ck5tHFeiP8W4r8LA4r/Qdmc5MIkb03y/CRPzsTu4U/KxOL2+7L1gsGhSb5eSjmwf83cMXNAC3NAF+oyB3Qx5ju9Ti3uB/XTxHm7iX2apg5t7Cf3o0tNjJcm9mmaOrSxn6zfdKGJsdLEPk1ThzaOgkas3zQxVprYp2nq0MahZu0GAICmavizUKd8Nt8F38+r3/puYg5oYw7owoitaVjjbSX+tzbo/vRVXeLfGi9118R5u4l9mqYObewn96NLTYyXJvZpmjq0sZ+s33ShibHSxD5NU4c2joJGrN0kzYyXJvZpmjq0cahZv4HBslkY0BOllCck+f/aDl+Q5C9mUbz9B6r23V5no/0HqvY6++0fM7H76UN2S3LGjgqVUvZP8sZtvDReStmpN02rhb9J8svT8g8m+e057MrbiUGOwwVJtuThHfBn8skkf1hV1WWdNGw+if+tiP/uDCL+B+GtSR5ZVdWzq6p6R1VVX66q6vtVVV1fVdUPqqo6v6qqP8rEAve7klTTyu6T5AullDKIhrczB2zFHNCdoZ8DuhzznRr6+0H9NHHebmKfdlDfMLaxn9yPLjQxXprYpx3UN4xt7CfrN3PUxFhpYp92UN8wtrHpGrF+08RYaWKfdlDfMLZxaFm7AQCgqUbgWahTPpvvju/nbd//be/ug6a96vqAf09IQwpBsMRIxYGI4tsgDNSZGtHpM9Q4YEcUpEqZOklb6AtOx7Y604G20/oytDOtjE5rBVtbOhZfUAtFiYHaGmhxquIESyGlzkhooQZJhJZEkvBy+sfeT7K79+69e+29e+11zv35zFx/7HXv7nV+5zm/X+7rdz3PyeT6u4kasIIacD4Xpaehxyv/HyL/HzL5/NfjpXU91u0eY9rwfVMc45jMxzn0mC89xrTh+6Y4xjHp3+yox1zpMaYN3zfFMfaui95N0me+9BjThu+b4hgnS/8Gjs9mYcC5lVKelNmDt/lfYj6Y5M/XWuvqT51prM8cTK31E0l+ZOn095ZSvnvdZ0opX5jk1iSPXfe1exrepJVSfiDJdy6dfkWt9R0jD+Xg67CU8shSyj9N8ttJXprkui0+dlOS95RS3nyyZo5K/p8m/3c3ofw/uJMG1vKu9qved3+t9RVJ/vrSj56V5M8dZHADqAGnqQG7a6EGHGDNn3Wtyc8H7emxbvcY04Gu1/N/S8zHlnrMlx5jOtD1el7z+jdb6DFXeozpQNfrOf8Prof+TY+50mNMB7rehcx/vRsAAHp1Qe+FzuTZ/O4mdD+jv7slNeA0NWB3E6oBB6fHu5L8X/O1exrepLWQ/3q8tK7Hut1jTAe6Xs//LTEfW+oxX3qM6UDX63nN699socdc6TGmA12v5/w/uB56N0mf+dJjTAe63oWsAfo3MA1XHnsAQNtKKdcl+Q9Jnjh3+q4kN9ZaP7rl19y79HqX/zvP8meWv/MYXpXkeXl4t9KS5IdLKS9K8hNJ3p3ZrrFfcPK+v5aHfzH6UJL5RsX9tdZTu9KWUq7fdjC11jsHjf4ISil/I7PdoOe9utb6j7f8/PXbXmvFfIy6DkspVyZ5U5Lnzg8ryRsz293+XUnuTvLIJE9K8pzMbmafevLeb05yQynlxlrru3cY67nJ/zPJ/4GOnP+TV2v90VLKNyZ5/tzplyf5qSMNSQ04mxowUAs1YE9rfttrnWs+YJUe63ZLMbV0rzIG8zG+lvJlWy3FZM0vamk+9G8eMql12FJMLa33MfR2L7tsav2blnJlWy3FJP8X6d0AAMDuWroXOgLP5gfy9/Pa6u8masAGasBALfz9nGPS411L/m/QwnpvIf/1eGldj3W7pZhaulcZg/kYX0v5sq2WYrLmF7U0Hz30b1rKlW21FFNL630Mvd3LLpta7yZpK1+21VJMasAi/Ru4WGwWBuyslPLHkvxKki+dO313km+otf7OgK/q7heqJKm1PlhKeWGSW5I8fe5HX3dyrHNPkr+U5K1z5z6+5r0fGDCkMuC9oyulvCzJq5dO/1it9XsGfM155mPsdfj3stjI+mSSF9Vab1l634NJ3pvkvaWUH0/yz5P8xZOfXZvkl0opz6i13rPDeHcm/88m/4eZQP634h9msZn1NaWUx9Va162Rg1EDzqYGDNNCDdjjmt/mWvuYD1jQY91uMKaW7lXGYD5G1GC+bNRgTNb8opbmQ/9mZjLrsMGYWlrvY+jmXvYMk+jfNJgrGzUYk/xfpHcDAAA7aPBeaFSezQ8zgWfz+rsDqQFnUwOGmUANaIUe72nyf7NJr/cW8l+Pl9b1WLcbjKmle5UxmI8RNZgvGzUYkzW/qKX5aLp/02CubNRgTC2t9zF0cy97hkn0bpIm82WjBmNSAxbp38AFcsWxBwC0qZTy2CRvS/JVc6c/ltnOn+8d+HX/d+n15w0cyzU5/QvV6L/Yr1Jr/XCSr03y2iSf2uIjv5rkq5Pct3T+rj0PbVJKKd+Z5DVZ/OXyXyf5rhGHsbwOH1VKefTA77hu6fXKdXjyC/HyL6QvX9HIWlBrfSDJy5K8fe70E5O8cuA4z0X+b0f+b2ci+d+K38gs1y57RJKvHHsQasB21IDttFAD9rzmN11r8vNBe3qs2z3GtMFo9yqNMB8D9JgvPca0gTW/SP9mSz3mSo8xbSD/23T0/k2PudJjTBvI/wH0bgAA6NUFvBfaiWfz25nI/Yz+7gBqwHbUgO1MpAa0Qo93cSzyv3Et5L8eL63rsW73GNMGns0tMh8D9JgvPca0gTW/SP9mSz3mSo8xbSD/23T03k3SZ770GNMGasAA+jcwPTYLAwYrpTwmya1J/sTc6f+X5Lm11nfv8JXLu4U+eeDnl9//B7XWj6185xHUWu+rtf7VJF+W5O9k9rDxQ5ntdP6JJHck+TdJbkzyp2utdyb5iqWveddoAx5ZKeXFmf2SNv/fpNcneWmttY41jpOd45fXzZMGfs3yWly3E+43JZm/afhAZmtgo1rrZ5N8/9Lpm0opo+zkLf+Hkf9nm0r+t+Ik///X0ulBjZLzUgOGUQPO1kINOMCaP+tak58P2tNj3e4xpk1GvleZPPOxvR7zpceYNrHmF+nfbKfHXOkxpk3kf5uO3b/pMVd6jGkT+b89vRsAAHp1Ee+FzsOz+bNN5X5Gf3d7asAwasDZplIDWqHHe4r8b1gL+a/HS+t6rNs9xrSJZ3OLzMf2esyXHmPaxJpfpH+znR5zpceYNpH/bTp27ybpM196jGkTNWB7+jcwTVceewBAW052Rb0lydfMnb43yfNqrb+x49fesfT6SwZ+/ilLr9+34zgOqtb6gSSvOjk2uWHp9a+v+c7R/gLKIZRSvi3JT2a2e/NlP5fkppObtkH2MB93ZPZ/mbrsS3J6fZ5leS2u++wzll7/6sBfUt+R5MEkV528fnxmYz3ojYT83538P22C+d+KTy69Xt4h/WDUgN2pAae1UAMOtObXXWuv8wFJn3W75ZgaulcZhfk4vJbzZZ2WY7LmFzU0H/o3D5P/p8n/HbR+LzvAUfo3LefKOi3HJP8X6d0AAMD2Wr4XOjbP5k+b4LN5/d0N1IDdqQGnTbAGtEKP92Hyv1Et5L8eL63rsW63HFND9yqjMB+H13K+rNNyTNb8oobmo8n+Tcu5sk7LMTW03kfR+r3sAP595SI1YHdqwAb6NzBdV2x+C8BMKeWPJvmlJF83d/oPk/yZWuuvneOr//vS66eXUh414PPP3vB9TTnZwfw5S6fffoyxHFIp5flJfjqLG1e+KclLaq2fOc6oTq2d5QfCa538wvv0Dd932eOWXt+17XWSpNb66ST3LJ2+dsh3DCX/xyH/j5r/rVjO9bvHuKgaMA41YDo14IBrftW1Jj8ftKfHut1jTAONda/SCvNxhh7zpceYBrLmF+nfrNFjrvQY00Dyv02j9296zJUeYxpI/p9B7wYAgF65FxqHZ/P+ft4mx+jvJmrAWNQAPY0t6PE+TP43qIX81+OldT3W7R5jGsizuUXm4ww95kuPMQ1kzS/Sv1mjx1zpMaaB5H+b/PvKRWrA7tSAM+jfwLTZLAzYSinl6iRvTnJp7vT9SZ5fa33Heb671vp7Sf7b3Kkrs/iLwyaXll7/8nnGMwHPSXL93Ou311oP/n+kG1Mp5Zsy2831j8ydfkuS7zhp1BzLrUuvLw347Ndn8ZfQ22utH1nz3o8vvX70gOtcds3S63t3+I6tyP9RyX/WKqVcm9O7jf+fEa6rBoxHDZiAQ675Fdea/HzQnh7rdo8x7WCse5VWmI81esyXHmPagTW/SP9mhR5zpceYdiD/G3OM/k2PudJjTDuQ/2vo3QAA0Cv3QqPybP549HfXUANGpQawlh7vKZeWXsv/iWsh//V4aV2PdbvHmHbg2dwi87FGj/nSY0w7sOYX6d+s0GOu9BjTDuR/Y/z7ypUuLb1WA7anBqyhfwPTZ7MwYKNSylVJ/l2Sb5g7/UCSb621/sc9XeaNS6//wpZj+/Ikf3Lu1H1J3ranMR3L3156/dqjjOJASik3JvmFJFfNnX5bkm+rtT54nFE95K1JPjn3+oaTNbaNm5deL6/pecs3n8/c8hpJklLKU5M8Zun0oN3zB1xL/o9L/nOWF2fx9/ePJLnjkBdUA0anBhzZSGv+8rUmPx+0p8e63WNMOxrrXqUV5mOFHvOlx5h2ZM0v0r85fa3ucqXHmHYk/9szav+mx1zpMaYdyf8V9G4AAOiVe6HReTZ/PPq7q6+nBoxLDeAserwPj03+N6aF/NfjpXU91u0eY9qRZ3OLzMcKPeZLjzHtyJpfpH9z+lrd5UqPMe1I/rfHv69cHJsacD5qwAr6N9AGm4UBZyqlXJnkDUmeN3f6U0leVGt96x4v9fokn5l7/cKTG/ZNlh/avaHWev/+hjWuUspNSW6cO/XuzHZD7UIp5U8l+fdJrp47/Z8y+wXxgeOM6mG11j9M8vNLp5fX2CmllC9N8oK5U59O8lNnfOS2pdfPLqV85TZjPPFXll6/v9b60QGf34r8H5f85yyllM9P8neXTv9irbUe8JpqwIjUgOMbcc03MR+0p8e63WNMuxrxXqUJ5uO0HvOlx5h2Zc0v0r9Z1GOu9BjTruR/W8bu3/SYKz3GtCv5f5reDQAAvXIvNC7P5o9Lf/c0NWBcagBn0eM9Rf43pIX81+OldT3W7R5j2pVnc4vMx2k95kuPMe3Kml+kf7Oox1zpMaZdyf+2+PeVK6kB56AGnKZ/Aw2ptTocDsfKI8kjkvxskjp3fCrJCw50vZ9YutY7k1x9xvu/Zen9DyR58jnHcGnpO+885/ddOeC9L0zy4NJcP/PIa2Bv85HkhiSfWPq+tyd51DFjXDHOpyz9OdQkzz/j/VefrNX5979mwzVKkvcvfea3kjxmi/E9d8X4fvAA8yD/5f+Fy/8x5iPJlyX55oGfeUKS31yx5p9ywHjVADXgQtWAMdd8C/PhaO/osW73GNMexnjwe5Utx3Hb0nfefMi4zcdWY+guX3qMaQ9jtOZHno/o36y6nvyX/0fP/w1jvLQ0xjt3/J7J9296zJUeY9rDGOX/EdZH9G4cDofD4XA4HCMeF/FeaF/373Pf59n8w9/VxP3MGPe7aaC/e3ItNUANuHA1YIz5iB7vquvJf/l/1GPMNd/CfDjaO3qs2z3GtIcxejZnPtaNobt86TGmPYzRmh95PtJA/6bHXOkxphbW+5bjmET+bxjjpaUx3rnj90y+d3Nyze7ypceY9jBGNeAI6yP6Nw7HuY8rA7Dev0ry7UvnXpnk9lLK9QO/6666eefWv5/ZTqqfe/L6a5P8SinlpbXW/3H5TaWURyb5y0l+aOnzP1Rr/eA2gymlfGGysgY+Yen1lWfEem+t9e4Nl3pPKeUtSX4hya/XWj+7YixPS/KKJC9Z+tEra623b/j+vTj0fJRSnpnkl5NcM3f6/Um+K8l1pZQhw72/1nrXkA8MUWv93VLKjyT53rnTP19K+VtJfrzW+uDlk6WUr0jyLzNbq5fdk+T7NlyjllJekdm6uOxZSX7r5DpvqbXW+c+UUh6f5LszWyvzf1b3JPkn28Y3gPyX/xcu/5NR1scfT/LmUsp7kvzbJG+stf7OmrE8JslNme14//lLP/7BWuvvrrnGPqgBasBFqwGjrPmG5oP29Fi3e4zpXMa4V5n7/DVJrl3z46uXXl97xp/Jh2qtn97mmkOZjwU95kuPMZ2LNb9I/+YhPeZKjzGdi/w/Tf8mSZ+50mNM5yL/F+jdAADQq27vhTybPzUGz+ZP6O8uUAPUgAtXAxI93hPyX/5ftPzX46V1PdbtHmM6F8/mFpmPBT3mS48xnYs1v0j/5iE95kqPMZ2L/D9N7+YhPeZLjzGdixqwQP8GWlInsGOZw+GY5pHF3TjPe1za8pqXMtvpdf6zn81sx9+fTXJrkt9f8f2/mOQRA2K7cw8xvW6L69w99/5PJPm1zBoYr0/ytjPG8QMj/1kfdD6S/IM9rqXbRpiPRyS5ZcW1P5LZL6BvSPKuk7U5//MHknz9gOu8ek2Mdyd568k6+bmT9f+pFe+7P8lz5L/8l/9NzcelFe//eJL/kuRNSX4yyRszqzGr8r4mee0I86AGqAEXqgaMteZbmQ9He8dYa3jpmpdywLrdY0x7+rMe617l5j3N/fXm4/Dz0WO+9BiTNd/0fOjfyH/5P738v3MPY3zdhjWx/P5J9W96zJUeY5L/7a356N04HA6Hw+FwOEY+er4Ximfzo85Ha/cz0d9VA9SAi14DDj0fl1a8X49X/sv/I+b/WGu+lflwtHeMtYaXrnkpns0NimlPf9aezZmPC5EvPcZkzTc9H5Pt3/SYKz3G1Nh6v3lPc3/o/L9zD2N83YY1sfz+SfVues2XHmNSA9pb89G/cTj2cqza1RPgaGqtt5VSXpDkdUk+7+R0SfLVJ8cqP53kZbXWzxx+hOdyTZIbNrznY0leXmv9mRHGwxq11s+UUr49sx1+v2PuR9clee6aj/1+kptqrf95wKW+5+Rz35fkqrnzj0/yjRs++8EkN9dabxtwvUmT//L/Antskmdv8b77kvzNWuu/OPB4jkINUAOAtvRYt1uIacR7lSaYj+NpIV+GaiEma36R/s1xtJArQ7UQk/yfhAvfv2khV4ZqISb5DwAA7FsL90Ln4Nl8I/R3j0cNUAMuMD1e+S//gab0WLdbiMmzuUXm43hayJehWojJml+kf3McLeTKUC3EJP8n4cL3bpI28mWoFmJSA4AWXXHsAQAsq7XekuRpSV6T2YO5df5rkhfVWl9Sa71vlMEN98NJbs9st9iz/O8k35/kiz2EnIZa67211hcn+bOZrbV1/iDJjyV5Wq311oHXqLXWf5Tkq5L8s5y93i97X2ZNsKf11Mi6TP7L/wvgjiSvSvLOJJ/c8jP/M8krM9vxu8tG1mVqgBoAtKWzup2kjZjGuFdpifk4nhbyZagWYrLmF+nfHEcLuTJUCzHJ/1Hp36zRQq4M1UJM8h8AANi3Fu6FBvBsvlH6u8ejBqgBF4Ae7xryX/4DbemsbidpIybP5haZj+NpIV+GaiEma36R/s1xtJArQ7UQk/wfld7NGVrIl6FaiEkNAFpTaq3HHgPAWqWUqzLbDfjJSZ6Q2a6/H05ye631A8cc2xCllM9J8swkX5TZzrdXZ3YT8+Ekv11rfd8Rh8cWSilflORZSb4gyaOT3JXZ7vPvrLU+uKdrlCRfnuQZSa5N8jlJPp3k45mtlXfVWj+yj2u1QP7Tu1LKFUmemuSLkzwxyePy8Pr4WJLfS/KbtdaPHm2QR6QGALSll7o9r5WYxrhXaYn5OI5W8mWIVmKy5hfp34yvlVwZopWY5P849G/WayVXhmglJvkPAADsUyv3Qpt4Nt8+/d3jUAPonR7vevIfoC291O15rcTk2dwi83EcreTLEK3EZM0v0r8ZXyu5MkQrMcn/cejdnK2VfBmilZjUAGDqbBYGAAAAAAAAAAAAAAAAAAAAAAAAE3XFsQcAAAAAAAAAAAAAAAAAAAAAAAAArGazMAAAAAAAAAAAAAAAAAAAAAAAAJgom4UBAAAAAAAAAAAAAAAAAAAAAADARNksDAAAAAAAAAAAAAAAAAAAAAAAACbKZmEAAAAAAAAAAAAAAAAAAAAAAAAwUTYLAwAAAAAAAAAAAAAAAAAAAAAAgImyWRgAAAAAAAAAAAAAAAAAAAAAAABMlM3CAAAAAAAAAAAAAAAAAAAAAAAAYKJsFgYAAAAAAAAAAAAAAAAAAAAAAAATZbMwAAAAAAAAAAAAAAAAAAAAAAAAmCibhQEAAAAAAAAAAAAAAAAAAAAAAMBE2SwMAAAAAAAAAAAAAAAAAAAAAAAAJspmYQAAAAAAAAAAAAAAAAAAAAAAADBRNgsDAAAAAAAAAAAAAAAAAAAAAACAibJZGAAAAAAAAAAAAAAAAAAAAAAAAEyUzcIAAAAAAAAAAAAAAAAAAAAAAABgomwWBgAAAAAAAAAAAAAAAAAAAAAAABNlszAAAAAAAAAAAAAAAAAAAAAAAACYKJuFAQAAAAAAAAAAAAAAAAAAAAAAwETZLAwAAAAAAAAAAAAAAAAAAAAAAAAmymZhAAAAAAAAAAAAAAAAAAAAAAAAMFE2CwMAAAAAAAAAAAAAAAAAAAAAAICJslkYAAAAAAAAAAAAAAAAAAAAAAAATJTNwgAAAAAAAAAAAAAAAAAAAAAAAGCibBYGAAAAAAAAAAAAAAAAAAAAAAAAE2WzMAAAAAAAAAAAAAAAAAAAAAAAAJgom4UBAAAAAAAAAAAAAAAAAAAAAADARNksDAAAAAAAAAAAAAAAAAAAAAAAACbKZmEAAAAAAAAAAAAAAAAAAAAAAAAwUTYLAwAAAAAAAAAAAAAAAAAAAAAAgImyWRgAAAAAAAAAAAAAAAAAAAAAAABMlM3CAAAAAAAAAAAAAAAAAAAAAAAAYKJsFgYAAAAAAAAAAAAAAAAAAAAAAAATZbMwAAAAAAAAAAAAAAAAAAAAAAAAmCibhQEAAAAAAAAAAAAAAAAAAAAAAMBE2SwMAAAAAAAAAAAAAAAAAAAAAAAAJspmYQAAAAAAAAAAAAAAAAAAAAAAADBR/x+Xhcjgi63IuAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from apd.aggregation.analysis import interactable_plot_multiple_charts, configs\n", + "from apd.aggregation.utils import jupyter_page_file, profile_with_yappi, yappi_package_matches\n", + "import yappi\n", + "\n", + "with profile_with_yappi():\n", + " plot = interactable_plot_multiple_charts()\n", + " plot()\n", + "\n", + "with jupyter_page_file() as output:\n", + " yappi.get_func_stats(filter_callback=lambda stat:\n", + " yappi_package_matches(stat, [\"apd.aggregation\"])\n", + " ).print_all(output)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r\n", + "Clock type: WALL\r\n", + "Ordered by: totaltime, desc\r\n", + "\r\n", + "name ncall tsub ttot tavg \r\n", + "..futures\\thread.py:52 _WorkItem.run 7 0.000092 3.204091 0.457727\r\n", + "..tion\\analysis.py:373 run_in_thread 1 0.000053 1.844382 1.844382\r\n", + "..38\\Lib\\threading.py:859 Thread.run 2/1 0.000025 1.839877 0.919939\r\n", + "..rrent\\futures\\thread.py:66 _worker 2/1 0.000022 1.839852 0.919926\r\n", + "..lectorEventLoop.run_until_complete 1 0.000027 1.839745 1.839745\r\n", + "..ndowsSelectorEventLoop.run_forever 1 0.000088 1.839611 1.839611\r\n", + "..WindowsSelectorEventLoop._run_once 17 0.000408 1.839497 0.108206\r\n", + "..alysis.py:327 plot_multiple_charts 1 1.643447 1.839309 1.839309\r\n", + "..py:635 ThreadPoolExecutor.__exit__ 1 0.000005 1.837286 1.837286\r\n", + "..py:230 ThreadPoolExecutor.shutdown 1 0.000009 1.837281 1.837281\r\n", + "..8\\Lib\\threading.py:979 Thread.join 1 0.000006 1.837272 1.837272\r\n", + "..:1017 Thread._wait_for_tstate_lock 1 0.000011 1.837263 1.837263\r\n", + "..gation\\analysis.py:291 plot_sensor 1 0.000000 1.407986 1.407986\r\n", + "..query.py:88 get_data_by_deployment 1 1.397146 1.397188 1.397188\r\n", + "..d\\aggregation\\query.py:41 get_data 1 1.283592 1.375576 1.375576\r\n", + "..lchemy\\orm\\query.py:3232 Query.all 6 0.004333 1.362649 0.227108\r\n", + "..ctors.py:319 SelectSelector.select 17 0.000177 1.362418 0.080142\r\n", + "..tors.py:313 SelectSelector._select 17 0.000069 1.362216 0.080130\r\n", + "..y\\orm\\query.py:3400 Query.__iter__ 6 0.000054 0.958316 0.159719\r\n", + "..:3425 Query._execute_and_instances 6 0.000073 0.956631 0.159439\r\n", + "..ine\\base.py:916 Connection.execute 9 0.000062 0.740051 0.082228\r\n", + "..:589 PGDialect_psycopg2.do_execute 11 0.000042 0.738361 0.067124\r\n", + "..y:1159 Connection._execute_context 9 0.000307 0.734166 0.081574\r\n", + "..:291 Select._execute_on_connection 6 0.000047 0.731436 0.121906\r\n", + ".. Connection._execute_clauseelement 6 0.000127 0.731389 0.121898\r\n", + "..b\\asyncio\\events.py:79 Handle._run 29 0.000071 0.476528 0.016432\r\n", + "..lchemy\\orm\\loading.py:35 instances 10836 0.002535 0.400000 0.000037\r\n", + "..esult.py:1257 ResultProxy.fetchall 6 0.000339 0.363463 0.060577\r\n", + "..py:1217 ResultProxy._fetchall_impl 6 0.000013 0.359396 0.059899\r\n", + "..query.py:3440 Query._get_bind_args 6 0.000028 0.225079 0.037513\r\n", + "..419 Query._connection_from_session 6 0.000021 0.224996 0.037499\r\n", + "..session.py:1057 Session.connection 6 0.000029 0.224975 0.037496\r\n", + "..:1136 Session._connection_for_bind 6 0.000016 0.224937 0.037489\r\n", + "..onTransaction._connection_for_bind 6 0.000041 0.224921 0.037487\r\n", + "..py:2248 Engine._contextual_connect 1 0.000009 0.224836 0.224836\r\n", + "...py:2282 Engine._wrap_pool_connect 1 0.000003 0.223656 0.223656\r\n", + "..pool\\base.py:354 QueuePool.connect 1 0.000005 0.223653 0.223653\r\n", + "..alchemy\\pool\\base.py:770 _checkout 1 0.000011 0.223648 0.223648\r\n", + "..lalchemy\\pool\\base.py:490 checkout 1 0.000034 0.223632 0.223632\r\n", + "..pool\\impl.py:112 QueuePool._do_get 1 0.000011 0.223585 0.223585\r\n", + "..y:305 QueuePool._create_connection 1 0.000003 0.223563 0.223563\r\n", + "...py:434 _ConnectionRecord.__init__ 1 0.000013 0.223560 0.223560\r\n", + "..py:644 _ConnectionRecord.__connect 1 0.000043 0.223547 0.223547\r\n", + "..egation\\analysis.py:313 4 0.000024 0.186344 0.046586\r\n", + "..184 clean_temperature_fluctuations 4 0.000000 0.186293 0.046573\r\n", + "..gregation\\query.py:116 subiterator 4 0.000000 0.186226 0.046557\r\n", + "..sycopg2\\_json.py:164 typecast_json 10822 0.016073 0.181846 0.000017\r\n", + "..n38\\Lib\\json\\__init__.py:299 loads 10822 0.032198 0.165773 0.000015\r\n", + "..regation\\query.py:24 with_database 2 0.000043 0.140628 0.070314\r\n", + ".._GeneratorContextManager.__enter__ 141 0.000202 0.140299 0.000995\r\n", + "..ngine\\__init__.py:85 create_engine 1 0.000022 0.138392 0.138392\r\n", + "..s.py:52 PlainEngineStrategy.create 1 0.000087 0.138370 0.138370\r\n", + "..lib._bootstrap>:986 _find_and_load 10/2 0.000144 0.134169 0.013417\r\n", + "..strap>:956 _find_and_load_unlocked 10/2 0.000091 0.134084 0.013408\r\n", + "..lib._bootstrap>:650 _load_unlocked 10/2 0.000096 0.131844 0.013184\r\n", + "..>:777 SourceFileLoader.exec_module 9/2 0.000063 0.131659 0.014629\r\n", + "..y\\engine\\strategies.py:106 connect 1 0.000007 0.125748 0.125748\r\n", + "...py:488 PGDialect_psycopg2.connect 1 0.000005 0.125741 0.125741\r\n", + "..es\\psycopg2\\__init__.py:82 connect 1 0.000015 0.125737 0.125737\r\n", + "..rap>:211 _call_with_frames_removed 14/2 0.000022 0.122924 0.008780\r\n", + "..\\decoder.py:332 JSONDecoder.decode 10822 0.046535 0.121966 0.000011\r\n", + "..es\\psycopg2\\extras.py:686 10830 0.021009 0.119481 0.000011\r\n", + "..s\\postgresql\\psycopg2.py:735 dbapi 1 0.000004 0.113976 0.113976\r\n", + "..es\\psycopg2\\__init__.py:1 1 0.000046 0.102701 0.102701\r\n", + "..on38\\Lib\\uuid.py:130 UUID.__init__ 10830 0.069266 0.098473 0.000009\r\n", + "..lection.exec_once_unless_exception 1 0.000007 0.097685 0.097685\r\n", + "..y:316 _ListenerCollection.__call__ 2 0.000017 0.097680 0.048840\r\n", + "..ListenerCollection._exec_once_impl 1 0.000016 0.097677 0.097677\r\n", + "..ion\\database.py:77 from_sql_result 10822 0.019580 0.089918 0.000008\r\n", + "..ngine\\strategies.py:183 on_connect 2 0.000008 0.075679 0.037840\r\n", + "..tgresql\\psycopg2.py:847 on_connect 2 0.000013 0.075669 0.037834\r\n", + "..tgresql\\psycopg2.py:815 on_connect 2 0.000012 0.075598 0.037799\r\n", + "...py:903 PGDialect_psycopg2.oneshot 1 0.000013 0.075586 0.075586\r\n", + "..02 PGDialect_psycopg2._hstore_oids 1 0.000026 0.075573 0.075573\r\n", + "..ycopg2\\extras.py:909 type.get_oids 1 0.000038 0.075520 0.075520\r\n", + "..gregation\\analysis.py:63 draw_date 4 0.000031 0.072437 0.018109\r\n", + "..\\matplotlib\\__init__.py:1535 inner 4 0.000037 0.072405 0.018101\r\n", + "..axes.py:1651 AxesSubplot.plot_date 4 0.000035 0.072294 0.018074\r\n", + "..xes\\_axes.py:1412 AxesSubplot.plot 4 0.000082 0.071675 0.017919\r\n", + ".._collections.py:121 result._asdict 10826 0.061631 0.063835 0.000006\r\n", + "..nal>:849 SourceFileLoader.get_code 9 0.000243 0.063569 0.007063\r\n", + "..._bootstrap>:1017 _handle_fromlist 20/18 0.000074 0.061614 0.003081\r\n", + "..nal>:969 SourceFileLoader.get_data 9 0.000317 0.060499 0.006722\r\n", + "..b._bootstrap>:549 module_from_spec 10/9 0.000052 0.059592 0.005959\r\n", + ".. ExtensionFileLoader.create_module 1 0.000007 0.059071 0.059071\r\n", + ".._base.py:1842 AxesSubplot.add_line 4 0.000108 0.055449 0.013862\r\n", + "..68 AxesSubplot._update_line_limits 4 0.000106 0.053296 0.013324\r\n", + "..tlib\\lines.py:1018 Line2D.get_path 10 0.000046 0.052416 0.005242\r\n", + "..lotlib\\lines.py:664 Line2D.recache 10 0.001214 0.052370 0.005237\r\n", + "...py:168 AxesSubplot.convert_xunits 48 0.000078 0.048491 0.001010\r\n", + "..b\\axis.py:1562 XAxis.convert_units 12 0.000042 0.048443 0.004037\r\n", + "..s\\matplotlib\\dates.py:1911 convert 6 0.000028 0.048202 0.008034\r\n", + "..s\\matplotlib\\dates.py:401 date2num 6 0.000082 0.048174 0.008029\r\n", + "..on_base.py:2063 vectorize.__call__ 4 0.000117 0.047604 0.011901\r\n", + "...py:2154 vectorize._vectorize_call 4 0.003677 0.047487 0.011872\r\n", + "..\\figure.py:1259 Figure.add_subplot 1 0.000035 0.043835 0.043835\r\n", + "..ubplots.py:18 AxesSubplot.__init__ 1 0.000041 0.043601 0.043601\r\n", + "..tplotlib\\dates.py:210 _to_ordinalf 8467 0.029289 0.041988 0.000005\r\n", + "..oder.py:343 JSONDecoder.raw_decode 10822 0.037424 0.037424 0.000003\r\n", + "..\\_base.py:378 AxesSubplot.__init__ 1 0.000143 0.036550 0.036550\r\n", + "..chemy\\orm\\loading.py:83 6 0.013648 0.033343 0.005557\r\n", + "..\\psycopg2\\extensions.py:1 1 0.000186 0.025350 0.025350\r\n", + "..\\axes\\_base.py:948 AxesSubplot.cla 1 0.000154 0.024886 0.024886\r\n", + "..lchemy\\util\\langhelpers.py:1506 go 1 0.000010 0.021983 0.021983\r\n", + "..ne\\strategies.py:194 first_connect 1 0.000039 0.021972 0.021972\r\n", + "..:715 PGDialect_psycopg2.initialize 1 0.000026 0.021725 0.021725\r\n", + "..2456 PGDialect_psycopg2.initialize 1 0.000048 0.021698 0.021698\r\n", + "..l\\psycopg2.py:747 _psycopg2_extras 2 0.000024 0.020241 0.010120\r\n", + "..:779 PGDialect_psycopg2.on_connect 1 0.000012 0.020232 0.020232\r\n", + "..:307 PGDialect_psycopg2.initialize 1 0.000057 0.019880 0.019880\r\n", + "..53 _process_plot_var_args.__call__ 8 0.000061 0.015955 0.001994\r\n", + ".. _process_plot_var_args._plot_args 4 0.000148 0.015865 0.003966\r\n", + "..\\axis.py:884 XAxis.set_tick_params 8 0.000121 0.015507 0.001938\r\n", + "..\\axis.py:687 _LazyTickList.__get__ 6/4 0.000042 0.013303 0.002217\r\n", + "..tplotlib\\axis.py:56 XTick.__init__ 6 0.000433 0.013213 0.002202\r\n", + "..n\\query.py:76 get_deployment_by_id 4 0.010913 0.013115 0.003279\r\n", + "..function__ internals>:2 atleast_1d 24 0.000048 0.012936 0.000539\r\n", + "..y\\core\\shape_base.py:24 atleast_1d 24 0.000157 0.012825 0.000534\r\n", + "..b\\cbook\\__init__.py:1320 _check_1d 8 0.000033 0.012712 0.001589\r\n", + "..mpy\\core\\_asarray.py:88 asanyarray 72 0.000061 0.012631 0.000175\r\n", + "..xes\\_base.py:2716 AxesSubplot.grid 2 0.000022 0.012290 0.006145\r\n", + "..matplotlib\\axis.py:1456 XAxis.grid 4 0.000042 0.012264 0.003066\r\n", + "..ages\\psycopg2\\extras.py:1 1 0.000066 0.010984 0.010984\r\n", + "..chemy\\orm\\loading.py:84 10830 0.010873 0.010873 0.000001\r\n", + "..otlib\\lines.py:269 Line2D.__init__ 30 0.001371 0.010610 0.000354\r\n", + "..on-68gteq6k\\lib\\re.py:287 _compile 85 0.000336 0.010565 0.000124\r\n", + "..q6k\\lib\\sre_compile.py:759 compile 12 0.000126 0.009982 0.000832\r\n", + "..es\\_axes.py:299 AxesSubplot.legend 1 0.000023 0.009283 0.009283\r\n", + "..tlib\\legend.py:306 Legend.__init__ 1 0.000569 0.009178 0.009178\r\n", + "..ct_psycopg2._check_unicode_returns 1 0.000050 0.009017 0.009017\r\n", + "..portlib._bootstrap>:890 _find_spec 10 0.000165 0.009003 0.000900\r\n", + "..thon38\\Lib\\uuid.py:231 UUID.__eq__ 10834 0.006940 0.008965 0.000001\r\n", + "..y\\util\\_collections.py:112 __new__ 10830 0.004995 0.008821 0.000001\r\n", + "..my\\engine\\default.py:415 1 0.000011 0.008803 0.008803\r\n", + "..ngine\\default.py:378 check_unicode 2 0.000053 0.008793 0.004396\r\n", + "..bootstrap_external>:1334 find_spec 10 0.000027 0.008728 0.000873\r\n", + "..bootstrap_external>:1302 _get_spec 10 0.000084 0.008701 0.000870\r\n", + "..ib\\axis.py:967 XAxis.set_clip_path 2 0.000036 0.008564 0.004282\r\n", + "..e.py:1134 Connection._execute_text 3 0.000057 0.008541 0.002847\r\n", + "..es\\matplotlib\\pyplot.py:427 figure 1 0.000053 0.008060 0.008060\r\n", + "..xternal>:1431 FileFinder.find_spec 17 0.000331 0.007932 0.000467\r\n", + "..ion-68gteq6k\\lib\\re.py:248 compile 10 0.000012 0.007849 0.000785\r\n", + "..d_bases.py:3325 new_figure_manager 1 0.000026 0.007841 0.007841\r\n", + "..tlib\\figure.py:275 Figure.__init__ 1 0.000636 0.007679 0.007679\r\n", + ".._psycopg2._get_server_version_info 1 0.000022 0.007530 0.007530\r\n", + "..end.py:727 Legend._init_legend_box 1 0.000729 0.007464 0.007464\r\n", + ".._bootstrap_external>:80 _path_stat 40 0.000085 0.007435 0.000186\r\n", + "..py:1293 Connection._cursor_execute 2 0.000014 0.007370 0.003685\r\n", + "..8gteq6k\\lib\\sre_parse.py:937 parse 12 0.000138 0.007321 0.000610\r\n", + "..ation\\analysis.py:191 datapoint_ok 10826 0.007280 0.007280 0.000001\r\n", + "..rrent\\futures\\thread.py:158 submit 7 0.000144 0.007162 0.001023\r\n", + "..6k\\lib\\sre_parse.py:435 _parse_sub 59/12 0.000420 0.007081 0.000120\r\n", + "..s.py:129 AxesSubplot.update_params 1 0.000018 0.006972 0.006972\r\n", + "..ec.py:586 SubplotSpec.get_position 1 0.000379 0.006954 0.006954\r\n", + "..gteq6k\\lib\\sre_parse.py:493 _parse 75/14 0.002524 0.006897 0.000092\r\n", + "..dPoolExecutor._adjust_thread_count 7 0.000109 0.006843 0.000978\r\n", + "..kages\\psycopg2\\_json.py:1 1 0.000022 0.006798 0.006798\r\n", + ":1 Select. 8 0.000037 0.006789 0.000849\r\n", + "..sql\\elements.py:405 Select.compile 8 0.000033 0.006752 0.000844\r\n", + "..l\\elements.py:470 Select._compiler 8 0.000041 0.006719 0.000840\r\n", + "..y:527 PGCompiler_psycopg2.__init__ 8 0.000111 0.006678 0.000835\r\n", + "..otlib\\axis.py:1944 XAxis._get_tick 3 0.000021 0.006665 0.002222\r\n", + "..otlib\\axis.py:2231 YAxis._get_tick 3 0.000021 0.006593 0.002198\r\n", + "..y:274 PGCompiler_psycopg2.__init__ 8 0.000058 0.006562 0.000820\r\n", + ":1 DataPoint.__init__ 10822 0.006522 0.006522 0.000001\r\n", + "..py:349 PGCompiler_psycopg2.process 8 0.000029 0.006504 0.000813\r\n", + "..rs.py:86 Select._compiler_dispatch 97/8 0.000331 0.006475 0.000067\r\n", + "..5 PGCompiler_psycopg2.visit_select 8 0.000210 0.006430 0.000804\r\n", + "..ib\\axis.py:334 XTick._apply_params 14 0.000333 0.006152 0.000439\r\n", + "..\\artist.py:731 XAxis.set_clip_path 26 0.000415 0.005825 0.000224\r\n", + "..\\Lib\\threading.py:834 Thread.start 2 0.000033 0.005717 0.002858\r\n", + "..ib\\threading.py:270 Condition.wait 4 0.000112 0.005571 0.001393\r\n", + "..egation\\analysis.py:212 8613 0.005513 0.005513 0.000001\r\n", + "..tplotlib\\artist.py:1095 Line2D.set 70 0.000373 0.005507 0.000079\r\n", + "..38\\Lib\\threading.py:540 Event.wait 2 0.000027 0.005495 0.002747\r\n", + "..otlib\\axis.py:825 XAxis._set_scale 16 0.000049 0.005371 0.000336\r\n", + "..ap_external>:90 _path_is_mode_type 13 0.000052 0.005363 0.000413\r\n", + "..ootstrap_external>:99 _path_isfile 12 0.000029 0.005197 0.000433\r\n", + "..et_default_locators_and_formatters 16 0.000126 0.005196 0.000325\r\n", + "..base.py:553 AxesSubplot._init_axis 1 0.000047 0.005155 0.005155\r\n", + "...py:89 HandlerLine2D.legend_artist 4 0.000047 0.004979 0.001245\r\n", + "..lib\\artist.py:974 Rectangle.update 140 0.001036 0.004733 0.000034\r\n", + "..y:229 HandlerLine2D.create_artists 4 0.000094 0.004674 0.001168\r\n", + "..s\\matplotlib\\axis.py:841 XAxis.cla 12 0.000087 0.004533 0.000378\r\n", + "..my\\sql\\compiler.py:2127 8 0.000069 0.004473 0.000559\r\n", + "..iler_psycopg2._label_select_column 29 0.000356 0.004404 0.000152\r\n", + "..hes.py:260 Rectangle.get_transform 18 0.000077 0.004024 0.000224\r\n", + "..plotlib\\axis.py:744 XAxis.__init__ 2 0.000070 0.003973 0.001986\r\n", + "<__array_function__ internals>:2 dot 67 0.000177 0.003854 0.000058\r\n", + "..\\transforms.py:1986 Affine2D.scale 13 0.000153 0.003812 0.000293\r\n", + "..ib\\axis.py:229 XTick.set_clip_path 6 0.000032 0.003711 0.000619\r\n", + "..:776 Rectangle.get_patch_transform 18 0.000038 0.003626 0.000201\r\n", + ".. Rectangle._update_patch_transform 18 0.000235 0.003587 0.000199\r\n", + "..se.py:2873 AxesSubplot.tick_params 2 0.000242 0.003572 0.001786\r\n", + "..tlib\\artist.py:217 Rectangle.stale 171.. 0.002093 0.003507 0.000002\r\n", + "..sSelectorEventLoop.run_in_executor 6 0.000084 0.003206 0.000534\r\n", + "..\\__init__.py:1640 normalize_kwargs 74 0.002561 0.003200 0.000043\r\n", + "..icker.py:2848 AutoLocator.__init__ 16 0.000044 0.003190 0.000199\r\n", + "..icker.py:2051 AutoLocator.__init__ 16 0.000061 0.003118 0.000195\r\n", + "..t.py:1240 ResultProxy.process_rows 9 0.000037 0.003098 0.000344\r\n", + "..y\\engine\\result.py:1253 9 0.003062 0.003062 0.000340\r\n", + "..ker.py:2126 AutoLocator.set_params 16 0.000144 0.003058 0.000191\r\n", + "..gine\\base.py:908 Connection.scalar 2 0.000026 0.002811 0.001405\r\n", + "..es\\numpy\\core\\_methods.py:32 _amin 2 0.000005 0.002705 0.001352\r\n", + "..10 PGCompiler_psycopg2.visit_label 29 0.000329 0.002675 0.000092\r\n", + "..ges\\numpy\\core\\_methods.py:47 _all 1 0.000018 0.002555 0.002555\r\n", + "..matplotlib\\text.py:170 Text.update 65 0.000382 0.002549 0.000039\r\n", + "..b\\patches.py:42 Rectangle.__init__ 7 0.000199 0.002508 0.000358\r\n", + "..teq6k\\lib\\sre_compile.py:598 _code 12 0.000055 0.002475 0.000206\r\n", + "..ation-68gteq6k\\lib\\re.py:186 match 70 0.000140 0.002414 0.000034\r\n", + "..ages\\psycopg2\\_range.py:1 1 0.000042 0.002367 0.002367\r\n", + "..tplotlib\\text.py:121 Text.__init__ 24 0.000320 0.002354 0.000098\r\n", + "..ent\\base.py:295 dispatcher.__get__ 10 0.000075 0.002312 0.000231\r\n", + "..yncio\\events.py:756 new_event_loop 1 0.000022 0.002309 0.002309\r\n", + "..ib\\axis.py:485 XTick._get_gridline 3 0.000044 0.002301 0.000767\r\n", + "..ctorEventLoopPolicy.new_event_loop 1 0.000014 0.002285 0.002285\r\n", + ".._WindowsSelectorEventLoop.__init__ 1 0.000031 0.002271 0.002271\r\n", + ".. _GeneratorContextManager.__exit__ 142.. 0.000276 0.002267 0.000016\r\n", + "..arkers.py:222 MarkerStyle.__init__ 38 0.000106 0.002225 0.000059\r\n", + "..alect_psycopg2.get_isolation_level 1 0.000009 0.002224 0.002224\r\n", + "..otlib\\axes\\_base.py:363 4 0.000021 0.002202 0.000550\r\n", + "..\\orm\\session.py:1554 Session.query 6 0.000028 0.002200 0.000367\r\n", + "..1 _process_plot_var_args._makeline 4 0.000055 0.002180 0.000545\r\n", + "..y:930 AxesSubplot._gen_axes_spines 1 0.000012 0.002176 0.002176\r\n", + "..my\\orm\\query.py:164 Query.__init__ 6 0.000024 0.002172 0.000362\r\n", + "..lotlib\\axes\\_base.py:945 5 0.000015 0.002164 0.000433\r\n", + "..lib\\ticker.py:2103 _validate_steps 16 0.001337 0.002151 0.000134\r\n", + "..plotlib\\spines.py:517 linear_spine 4 0.000037 0.002150 0.000537\r\n", + "..m\\query.py:193 Query._set_entities 6 0.000089 0.002148 0.000358\r\n", + "..init__.py:791 RcParams.__getitem__ 1343 0.001641 0.002147 0.000002\r\n", + "..sSelectorEventLoop._make_self_pipe 1 0.000029 0.002112 0.002112\r\n", + "..\\numpy\\core\\_asarray.py:16 asarray 176 0.000180 0.002109 0.000012\r\n", + "..psycopg2\\_range.py:290 RangeCaster 1 0.000006 0.002101 0.002101\r\n", + "..py:133 GridSpec.get_grid_positions 1 0.000057 0.002062 0.002062\r\n", + "..lchemy\\event\\base.py:87 5 0.000156 0.002010 0.000402\r\n", + "..hon38\\Lib\\socket.py:579 socketpair 1 0.000134 0.001971 0.001971\r\n", + "..kers.py:289 MarkerStyle.set_marker 42 0.000327 0.001957 0.000047\r\n", + "..lib\\sre_parse.py:254 Tokenizer.get 1519 0.001009 0.001919 0.000001\r\n", + "..lotlib\\spines.py:36 Spine.__init__ 4 0.000116 0.001912 0.000478\r\n", + ".._axes.py:147 AxesSubplot.set_title 4 0.000101 0.001903 0.000476\r\n", + "..ap_external>:578 _compile_bytecode 9 0.000053 0.001885 0.000209\r\n", + "..ray_function__ internals>:2 cumsum 3 0.000009 0.001882 0.000627\r\n", + "..alchemy\\engine\\url.py:221 make_url 1 0.000009 0.001880 0.001880\r\n", + "..ine\\url.py:234 _parse_rfc1738_args 1 0.000020 0.001870 0.001870\r\n", + "..py\\core\\fromnumeric.py:2358 cumsum 3 0.000009 0.001860 0.000620\r\n", + "..y\\core\\fromnumeric.py:55 _wrapfunc 3 0.000014 0.001851 0.000617\r\n", + "..my\\util\\deprecations.py:115 warned 21/20 0.000099 0.001850 0.000088\r\n", + "..ery.py:4539 _ColumnEntity.__init__ 32/7 0.000771 0.001838 0.000057\r\n", + "..mpy\\core\\fromnumeric.py:42 _wrapit 3 0.000024 0.001835 0.000612\r\n", + "..otlib\\artist.py:74 Figure.__init__ 88 0.001132 0.001813 0.000021\r\n", + "..pg2\\extras.py:1007 CompositeCaster 1 0.000009 0.001811 0.001811\r\n", + "..py:1960 Affine2D.rotate_deg_around 18 0.000105 0.001796 0.000100\r\n", + "<__array_function__ internals>:2 any 76 0.000151 0.001772 0.000023\r\n", + "..q6k\\lib\\sre_compile.py:71 _compile 111.. 0.000776 0.001769 0.000016\r\n", + "..nContext_psycopg2.get_result_proxy 9 0.000073 0.001769 0.000197\r\n", + "..ib\\axis.py:603 YTick._get_gridline 3 0.000039 0.001746 0.000582\r\n", + "..ttr.py:227 _EmptyListener.__init__ 77 0.000409 0.001742 0.000023\r\n", + "..b\\axis.py:459 XTick._get_tick1line 3 0.000093 0.001732 0.000577\r\n", + "...py:1247 BboxTransformFrom.__add__ 78 0.000260 0.001679 0.000022\r\n", + "..result.py:767 ResultProxy.__init__ 9 0.000119 0.001671 0.000186\r\n", + "..ction__ internals>:2 unravel_index 1 0.000005 0.001658 0.001658\r\n", + "..s\\matplotlib\\colors.py:157 to_rgba 51 0.000440 0.001653 0.000032\r\n", + "..nction__ internals>:2 column_stack 12 0.000039 0.001614 0.000135\r\n", + "..forms.py:817 Bbox.update_from_path 4 0.000067 0.001561 0.000390\r\n", + "..ery.py:3929 Query._compile_context 6 0.000129 0.001552 0.000259\r\n", + "...py:793 ResultProxy._init_metadata 9 0.000094 0.001552 0.000172\r\n", + "..t.py:49 Spine._stale_axes_callback 302 0.000583 0.001530 0.000005\r\n", + "..s.py:880 memoized_property.__get__ 99/89 0.000358 0.001519 0.000015\r\n", + "..lib\\shape_base.py:597 column_stack 12 0.000149 0.001496 0.000125\r\n", + "..e\\fromnumeric.py:73 _wrapreduction 85 0.000478 0.001495 0.000018\r\n", + "..4 PGCompiler_psycopg2.visit_column 37 0.000844 0.001478 0.000040\r\n", + "..numpy\\core\\fromnumeric.py:2189 any 76 0.000191 0.001477 0.000019\r\n", + "..ycopg2\\extras.py:805 HstoreAdapter 1 0.000007 0.001458 0.001458\r\n", + "..ult.py:269 ResultMetaData.__init__ 9 0.000173 0.001445 0.000161\r\n", + "..res\\_base.py:517 Future.set_result 7 0.000077 0.001440 0.000206\r\n", + "..ger.py:619 FontProperties.__init__ 23 0.000332 0.001434 0.000062\r\n", + "..unction__ internals>:2 concatenate 29 0.000060 0.001405 0.000048\r\n", + "..y:2462 composite_transform_factory 78 0.000261 0.001376 0.000018\r\n", + "..sql\\operators.py:358 Column.__eq__ 10/5 0.000033 0.001365 0.000136\r\n", + "..sql\\elements.py:740 Column.operate 5 0.000015 0.001345 0.000269\r\n", + "..ansform.contains_branch_seperately 4 0.000037 0.001339 0.000335\r\n", + "..b\\axis.py:574 YTick._get_tick1line 3 0.000036 0.001315 0.000438\r\n", + "..teGenericTransform.contains_branch 4 0.000029 0.001287 0.000322\r\n", + ":1 Comparator. 5 0.000021 0.001285 0.000257\r\n", + "..\\sqlalchemy\\event\\api.py:34 listen 3 0.000015 0.001278 0.000426\r\n", + "..\\type_api.py:64 Comparator.operate 5 0.000039 0.001264 0.000253\r\n", + ".. QueryEventsDispatch._for_instance 8 0.000024 0.001262 0.000158\r\n", + "..se.py:325 Future._invoke_callbacks 7 0.000055 0.001261 0.000180\r\n", + "..b\\axis.py:589 YTick._get_tick2line 3 0.000027 0.001250 0.000417\r\n", + "..116 QueryEventsDispatch._for_class 8 0.000031 0.001238 0.000155\r\n", + "..ine\\base.py:69 Connection.__init__ 2 0.000042 0.001217 0.000608\r\n", + ".._comparator.py:41 _boolean_compare 5 0.000056 0.001207 0.000241\r\n", + "..py:77 QueryEventsDispatch.__init__ 8 0.000082 0.001206 0.000151\r\n", + "..cio\\futures.py:364 _call_set_state 6 0.000042 0.001206 0.000201\r\n", + ".. _ClsLevelDispatch.update_subclass 77 0.000399 0.001202 0.000016\r\n", + "..sycopg2\\extensions.py:146 make_dsn 1 0.000017 0.001179 0.001179\r\n", + "..ib\\axis.py:1504 XAxis.update_units 14 0.000096 0.001168 0.000083\r\n", + "..cbook\\__init__.py:1933 _setattr_cm 280 0.000727 0.001165 0.000004\r\n", + "..ctorEventLoop.call_soon_threadsafe 6 0.000037 0.001160 0.000193\r\n", + "..t\\registry.py:193 _EventKey.listen 4/3 0.000077 0.001157 0.000289\r\n", + "..xesSubplot._set_title_offset_trans 5 0.000122 0.001149 0.000230\r\n", + "..er.py:72 HandlerLine2D.update_prop 8 0.000034 0.001139 0.000142\r\n", + "..__init__.py:2073 _check_isinstance 94 0.000869 0.001139 0.000012\r\n", + "..offsetbox.py:783 TextArea.__init__ 5 0.000093 0.001137 0.000227\r\n", + "..MetaData._merge_cursor_description 9 0.000098 0.001134 0.000126\r\n", + "..py:1240 Line2D.set_markerfacecolor 30 0.000106 0.001118 0.000037\r\n", + "..5 CompositeGenericTransform.__eq__ 12/8 0.000035 0.001090 0.000091\r\n", + "..es.py:341 Rectangle._set_facecolor 20 0.000067 0.001055 0.000053\r\n", + "..ms.py:1639 TransformWrapper.__eq__ 4 0.000010 0.001052 0.000263\r\n", + ".._psycopg2._get_default_schema_name 1 0.000004 0.001048 0.001048\r\n", + "..y:163 TransformedBbox.set_children 149 0.000873 0.001042 0.000007\r\n", + "..rms.py:2093 BlendedAffine2D.__eq__ 4 0.000027 0.001042 0.000260\r\n", + "..\\sre_parse.py:233 Tokenizer.__next 1696 0.001032 0.001032 0.000001\r\n", + "..wsSelectorEventLoop._write_to_self 6 0.000028 0.001026 0.000171\r\n", + "..t_comparator.py:359 _check_literal 5 0.000066 0.001021 0.000204\r\n", + "..s.py:1709 IdentityTransform.__eq__ 9/8 0.000612 0.001013 0.000113\r\n", + "..\\spines.py:226 Spine.register_axis 4 0.000008 0.001009 0.000252\r\n", + "..b\\axis.py:470 XTick._get_tick2line 3 0.000027 0.000999 0.000333\r\n", + ".._api.py:527 NullType._dialect_info 26 0.000128 0.000985 0.000038\r\n", + "..matplotlib\\spines.py:238 Spine.cla 4 0.000004 0.000982 0.000246\r\n", + "..9 PoolEventsDispatch._for_instance 2 0.000005 0.000975 0.000488\r\n", + "..:116 PoolEventsDispatch._for_class 2 0.000007 0.000971 0.000485\r\n", + "...py:77 PoolEventsDispatch.__init__ 2 0.000046 0.000963 0.000482\r\n", + "..lements.py:4145 Column._bind_param 5 0.000049 0.000942 0.000188\r\n", + "..pe_api.py:450 VARCHAR.dialect_impl 34 0.000097 0.000924 0.000027\r\n", + "..arkers.py:244 MarkerStyle._recache 80 0.000208 0.000923 0.000012\r\n", + "..nsforms.py:1972 Affine2D.translate 36 0.000172 0.000893 0.000025\r\n", + "..ents.py:942 BindParameter.__init__ 5 0.000112 0.000893 0.000179\r\n", + "..6k\\lib\\abc.py:96 __instancecheck__ 141 0.000157 0.000879 0.000006\r\n", + ".._function__ internals>:2 full_like 4 0.000014 0.000867 0.000217\r\n", + "..ist.py:358 Rectangle.set_transform 85 0.000295 0.000867 0.000010\r\n", + "..umpy\\core\\numeric.py:341 full_like 4 0.000030 0.000839 0.000210\r\n", + "..GIdentifierPreparer_psycopg2.quote 105 0.000165 0.000838 0.000008\r\n", + "..tplotlib\\artist.py:1006 140 0.000107 0.000834 0.000006\r\n", + "..piler_psycopg2._setup_select_stack 8 0.000088 0.000830 0.000104\r\n", + "..ib\\transforms.py:727 Bbox.__init__ 41 0.000282 0.000827 0.000020\r\n", + "..text_psycopg2.get_result_processor 30 0.000083 0.000823 0.000027\r\n", + "..otlib\\axis.py:544 YTick._get_text1 3 0.000044 0.000805 0.000268\r\n", + "..ry.py:4056 Query._simple_statement 6 0.000093 0.000802 0.000134\r\n", + "..sforms.py:1940 Affine2D.rotate_deg 18 0.000166 0.000798 0.000044\r\n", + "..\\patches.py:704 Rectangle.__init__ 2 0.000027 0.000793 0.000396\r\n", + "..threading.py:394 Semaphore.acquire 7 0.000100 0.000787 0.000112\r\n", + "..function__ internals>:2 empty_like 4 0.000014 0.000772 0.000193\r\n", + ":1 select 8 0.000064 0.000770 0.000096\r\n", + "..otlib\\axis.py:559 YTick._get_text2 3 0.000038 0.000762 0.000254\r\n", + "..CompositeGenericTransform.__init__ 69 0.000255 0.000761 0.000011\r\n", + "..ernal>:1479 FileFinder._fill_cache 1 0.000077 0.000740 0.000740\r\n", + ".. NullType._cached_result_processor 30 0.000178 0.000739 0.000025\r\n", + "...py:978 Rectangle._update_property 42 0.000194 0.000726 0.000017\r\n", + "..my\\engine\\result.py:463 6 0.000119 0.000720 0.000120\r\n", + "..lib\\transforms.py:782 from_extents 20 0.000102 0.000710 0.000036\r\n", + ":1 Select.__init__ 8 0.000126 0.000706 0.000088\r\n", + "...py:3065 Select._get_display_froms 8 0.000363 0.000704 0.000088\r\n", + "..hon38\\Lib\\contextlib.py:238 helper 141 0.000235 0.000704 0.000005\r\n", + "..arse.py:164 SubPattern.__getitem__ 707 0.000520 0.000702 0.000001\r\n", + "..tplotlib\\ticker.py:2118 _staircase 16 0.000089 0.000697 0.000044\r\n", + "..ok\\__init__.py:2108 _check_in_list 449 0.000565 0.000690 0.000002\r\n", + "..lines.py:1143 Line2D.set_linestyle 34 0.000284 0.000683 0.000020\r\n", + "..orm\\session.py:1002 Session.commit 1 0.000010 0.000682 0.000682\r\n", + "..ult.py:924 ResultProxy._soft_close 9 0.000043 0.000679 0.000075\r\n", + "..n.py:500 SessionTransaction.commit 1 0.000042 0.000673 0.000673\r\n", + "..xternal>:1265 _path_importer_cache 19 0.000032 0.000670 0.000035\r\n", + "..sSelectorEventLoop._read_from_self 6 0.000062 0.000662 0.000110\r\n", + "..otlib\\axis.py:427 XTick._get_text1 3 0.000032 0.000661 0.000220\r\n", + "..hreading.py:249 Condition.__exit__ 61 0.000614 0.000660 0.000011\r\n", + "..b\\sre_compile.py:536 _compile_info 12 0.000120 0.000648 0.000054\r\n", + "..1254 Line2D.set_markerfacecoloralt 30 0.000080 0.000645 0.000021\r\n", + "..93 vectorize._get_ufunc_and_otypes 4 0.000076 0.000640 0.000160\r\n", + "..sql\\type_api.py:546 NullType.adapt 13 0.000055 0.000638 0.000049\r\n", + "..Preparer_psycopg2._requires_quotes 22 0.000133 0.000636 0.000029\r\n", + "..otstrap_external>:1252 _path_hooks 1 0.000024 0.000636 0.000636\r\n", + "..1333 Connection._safe_close_cursor 9 0.000021 0.000635 0.000071\r\n", + "..transforms.py:1924 Affine2D.rotate 18 0.000301 0.000632 0.000035\r\n", + "..ms.py:986 TransformedBbox.__init__ 21 0.000147 0.000625 0.000030\r\n", + "..hes.py:348 Rectangle.set_facecolor 12 0.000023 0.000619 0.000052\r\n", + "..>:1010 SourceFileLoader.path_stats 9 0.000024 0.000617 0.000069\r\n", + "..egation-68gteq6k\\lib\\re.py:201 sub 5 0.000024 0.000614 0.000123\r\n", + "..ray_function__ internals>:2 hstack 16 0.000025 0.000608 0.000038\r\n", + "..ing>:1 PGDialect_psycopg2.__init__ 2 0.000012 0.000593 0.000296\r\n", + "..\\matplotlib\\transforms.py:763 unit 19 0.000080 0.000585 0.000031\r\n", + "..nghelpers.py:1167 constructor_copy 13 0.000121 0.000583 0.000045\r\n", + "..ase.py:3767 AxesSubplot.xaxis_date 4 0.000017 0.000583 0.000146\r\n", + "..sion.py:3236 sessionmaker.__call__ 1 0.000014 0.000579 0.000579\r\n", + "..qlalchemy\\orm\\base.py:222 generate 6 0.000049 0.000578 0.000096\r\n", + "..nd.py:558 Legend._set_artist_props 9 0.000085 0.000576 0.000064\r\n", + "..iler_psycopg2._compose_select_body 8 0.000089 0.000575 0.000072\r\n", + "..otlib\\axis.py:1812 XAxis.axis_date 4 0.000045 0.000566 0.000141\r\n", + ":1 Session.__init__ 1 0.000005 0.000563 0.000563\r\n", + "..velDispatch._assign_cls_collection 77 0.000249 0.000561 0.000007\r\n", + "..atplotlib\\lines.py:632 Line2D.axes 42 0.000206 0.000552 0.000013\r\n", + "..rm\\session.py:655 Session.__init__ 1 0.000024 0.000551 0.000551\r\n", + "..y\\orm\\session.py:893 Session.begin 3 0.000013 0.000548 0.000183\r\n", + "..b\\artist.py:336 Rectangle.pchanged 373 0.000436 0.000548 0.000001\r\n", + "..selectable.py:2760 Select.__init__ 8 0.000175 0.000540 0.000068\r\n", + "..ansforms.py:1701 Affine2D.__init__ 165 0.000352 0.000537 0.000003\r\n", + "..py:220 SessionTransaction.__init__ 3 0.000029 0.000535 0.000178\r\n", + "..tist.py:804 Rectangle.get_animated 1714 0.000533 0.000533 0.000000\r\n", + "..nsforms.py:126 Affine2D.invalidate 76 0.000275 0.000533 0.000007\r\n", + "..38\\Lib\\socket.py:285 socket.accept 1 0.000037 0.000532 0.000532\r\n", + ".._psycopg2._setup_crud_result_proxy 3 0.000016 0.000524 0.000175\r\n", + "..\\patches.py:436 Rectangle.set_fill 7 0.000032 0.000523 0.000075\r\n", + "..nits.py:197 Registry.get_converter 24/14 0.000201 0.000520 0.000022\r\n", + "..otlib\\axis.py:444 XTick._get_text2 3 0.000025 0.000517 0.000172\r\n", + ".._bootstrap>:477 _init_module_attrs 10 0.000100 0.000517 0.000052\r\n", + "..is.py:1670 XAxis.set_minor_locator 16 0.000092 0.000517 0.000032\r\n", + "..py:663 PGDialect_psycopg2.__init__ 1 0.000027 0.000515 0.000515\r\n", + "..k\\lib\\abc.py:100 __subclasscheck__ 85/14 0.000067 0.000514 0.000006\r\n", + "..:382 WeakKeyDictionary.__getitem__ 248 0.000508 0.000508 0.000002\r\n", + "..\\lines.py:730 Line2D.set_transform 38 0.000085 0.000508 0.000013\r\n", + "..ckages\\cycler.py:349 Cycler.by_key 10 0.000223 0.000505 0.000051\r\n", + "..\\asyncio\\futures.py:351 _set_state 6 0.000023 0.000503 0.000084\r\n", + "..umpy\\core\\shape_base.py:285 hstack 16 0.000116 0.000487 0.000030\r\n", + ".._base.py:3093 AxesSubplot.set_xlim 1 0.000060 0.000483 0.000483\r\n", + "..artist.py:695 Rectangle.set_figure 95 0.000217 0.000482 0.000005\r\n", + "..es.py:2396 FancyBboxPatch.__init__ 1 0.000023 0.000480 0.000480\r\n", + "..on__ internals>:2 broadcast_arrays 10 0.000034 0.000478 0.000048\r\n", + "..e_parse.py:174 SubPattern.getwidth 138.. 0.000375 0.000478 0.000003\r\n", + "..lalchemy\\event\\base.py:243 _listen 3 0.000010 0.000476 0.000159\r\n", + "..__.py:138 CallbackRegistry.connect 33 0.000252 0.000473 0.000014\r\n", + "..ler_psycopg2._truncated_identifier 34 0.000151 0.000470 0.000014\r\n", + "..is.py:1654 XAxis.set_major_locator 17 0.000121 0.000470 0.000028\r\n", + "..gine\\default.py:753 _init_compiled 6 0.000166 0.000470 0.000078\r\n", + ".. _GeneratorContextManager.__init__ 141 0.000401 0.000469 0.000003\r\n", + "..istry.py:246 _EventKey.base_listen 3 0.000082 0.000467 0.000156\r\n", + "..:903 AxesSubplot._set_artist_props 7 0.000135 0.000464 0.000066\r\n", + "..py:913 AxesSubplot._gen_axes_patch 1 0.000004 0.000464 0.000464\r\n", + "..\\futures.py:315 _copy_future_state 6 0.000106 0.000461 0.000077\r\n", + "..lib\\transforms.py:82 Bbox.__init__ 306 0.000454 0.000454 0.000001\r\n", + "..ore\\numerictypes.py:365 issubdtype 4 0.000025 0.000451 0.000113\r\n", + "..lotlib\\colors.py:123 _is_nth_color 51 0.000107 0.000451 0.000009\r\n", + "..ansforms.py:1831 Affine2D.__init__ 49 0.000156 0.000449 0.000009\r\n", + "..offsetbox.py:175 TextArea.__init__ 16 0.000049 0.000449 0.000028\r\n", + ":1 Query.order_by 1 0.000002 0.000428 0.000428\r\n", + "..r.py:63 HandlerLine2D._update_prop 8 0.000011 0.000425 0.000053\r\n", + "..re\\numerictypes.py:293 issubclass_ 8 0.000019 0.000425 0.000053\r\n", + "..53 _ListenerCollection.__getattr__ 45/24 0.000285 0.000424 0.000009\r\n", + "..e_compile.py:276 _optimize_charset 34 0.000263 0.000415 0.000012\r\n", + "..HandlerLine2D._default_update_prop 8 0.000010 0.000414 0.000052\r\n", + "..y\\orm\\query.py:1856 Query.order_by 1 0.000007 0.000413 0.000413\r\n", + ".. Line2D._split_drawstyle_linestyle 64 0.000256 0.000413 0.000006\r\n", + "..ide_tricks.py:206 broadcast_arrays 10 0.000179 0.000412 0.000041\r\n", + "..s.py:424 Spine.get_spine_transform 28/24 0.000181 0.000406 0.000014\r\n", + "..query.py:329 Query._adapt_col_list 1 0.000003 0.000405 0.000405\r\n", + "..b\\lines.py:1327 Line2D.update_from 8 0.000061 0.000403 0.000050\r\n", + "..lchemy\\orm\\query.py:330 1 0.000009 0.000402 0.000402\r\n", + "..ine\\default.py:981 _init_statement 3 0.000233 0.000401 0.000134\r\n", + "..sql\\elements.py:4087 Column._label 10 0.000026 0.000394 0.000039\r\n", + "..y:4564 _literal_as_label_reference 3 0.000009 0.000390 0.000130\r\n", + "..es.py:315 Rectangle._set_edgecolor 20 0.000076 0.000387 0.000019\r\n", + "..array_function__ internals>:2 diff 16 0.000028 0.000387 0.000024\r\n", + "..pg2\\extras.py:303 NamedTupleCursor 1 0.000019 0.000382 0.000382\r\n", + "..py:120 ThreadPoolExecutor.__init__ 2 0.000074 0.000374 0.000187\r\n", + "..xis.py:1525 XAxis._update_axisinfo 13 0.000026 0.000368 0.000028\r\n", + "..elements.py:4099 Column._gen_label 10 0.000123 0.000368 0.000037\r\n", + "..rtist.py:937 Rectangle.set_visible 69 0.000142 0.000366 0.000005\r\n", + "..hreading.py:222 Condition.__init__ 13 0.000311 0.000361 0.000028\r\n", + "<__array_function__ internals>:2 all 9 0.000071 0.000355 0.000039\r\n", + "..zipimport>:63 zipimporter.__init__ 1 0.000016 0.000350 0.000350\r\n", + "..\\langhelpers.py:301 get_cls_kwargs 35/16 0.000206 0.000348 0.000010\r\n", + "...py:399 _ListenerCollection.append 3 0.000007 0.000345 0.000115\r\n", + "..atplotlib\\path.py:96 Path.__init__ 14 0.000076 0.000344 0.000025\r\n", + "...py:1624 FigureCanvasBase.__init__ 2 0.000173 0.000339 0.000170\r\n", + "..ry.py:267 _EventKey.append_to_list 3 0.000231 0.000338 0.000113\r\n", + ".._bootstrap_external>:62 _path_join 82 0.000138 0.000338 0.000004\r\n", + "..ap_external>:294 cache_from_source 18 0.000119 0.000335 0.000019\r\n", + "...py:1626 XAxis.set_major_formatter 17 0.000066 0.000330 0.000019\r\n", + "..ase.py:1731 RootTransaction.commit 1 0.000019 0.000326 0.000326\r\n", + "..._bootstrap>:376 ModuleSpec.cached 19 0.000049 0.000324 0.000017\r\n", + "..mpy\\lib\\function_base.py:1147 diff 16 0.000281 0.000320 0.000020\r\n", + "..er.py:512 ScalarFormatter.__init__ 16 0.000165 0.000317 0.000020\r\n", + "..422 WeakKeyDictionary.__contains__ 387 0.000313 0.000313 0.000001\r\n", + "..l\\selectable.py:3036 Select._froms 8 0.000141 0.000313 0.000039\r\n", + "..9 PGCompiler_psycopg2.visit_binary 5 0.000029 0.000312 0.000062\r\n", + "..tlib\\axis.py:1951 XAxis._get_label 1 0.000030 0.000311 0.000311\r\n", + "..base.py:563 AxesSubplot.set_figure 1 0.000026 0.000308 0.000308\r\n", + "..fierPreparer_psycopg2.format_label 29 0.000027 0.000306 0.000011\r\n", + "..py:1765 RootTransaction._do_commit 1 0.000012 0.000304 0.000304\r\n", + "..5 Rectangle._stale_figure_callback 134 0.000139 0.000303 0.000002\r\n", + "..otlib\\lines.py:645 Line2D.set_data 30 0.000098 0.000302 0.000010\r\n", + "..asyncio\\futures.py:377 wrap_future 6 0.000060 0.000301 0.000050\r\n", + "..tlib\\axis.py:2238 YAxis._get_label 1 0.000024 0.000300 0.000300\r\n", + "..py:4442 _anonymous_label.apply_map 7 0.000252 0.000300 0.000043\r\n", + "..ons.py:971 lightweight_named_tuple 6 0.000162 0.000300 0.000050\r\n", + "..my\\engine\\result.py:496 3 0.000020 0.000296 0.000099\r\n", + "...py:543 NullType._gen_dialect_impl 13 0.000038 0.000295 0.000023\r\n", + "..chemy\\orm\\loading.py:59 6 0.000037 0.000293 0.000049\r\n", + "..ase.py:746 Connection._commit_impl 1 0.000022 0.000292 0.000292\r\n", + "...py:1640 XAxis.set_minor_formatter 16 0.000053 0.000286 0.000018\r\n", + ".._init__.py:1610 safe_first_element 24 0.000070 0.000285 0.000012\r\n", + "..tionContext_psycopg2.create_cursor 9 0.000085 0.000276 0.000031\r\n", + "..ootstrap_external>:424 _get_cached 10 0.000043 0.000275 0.000027\r\n", + "..py:2408 CompositeAffine2D.__init__ 9 0.000044 0.000273 0.000030\r\n", + ".._.py:1309 _to_unmasked_float_array 34 0.000116 0.000273 0.000008\r\n", + "..py:3730 Select._columns_plus_names 8 0.000046 0.000270 0.000034\r\n", + "..y:542 PGDialect_psycopg2.do_commit 1 0.000014 0.000268 0.000268\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..hreading.py:388 Semaphore.__init__ 2 0.000014 0.000267 0.000134\r\n", + ".._psycopg2._generate_generic_binary 5 0.000033 0.000264 0.000053\r\n", + "..s.py:1398 Line2D.set_dash_capstyle 30 0.000145 0.000262 0.000009\r\n", + "..\\cbook\\__init__.py:1938 140 0.000205 0.000262 0.000002\r\n", + "..nal>:1520 path_hook_for_FileFinder 1 0.000022 0.000261 0.000261\r\n", + "..hes.py:330 Rectangle.set_edgecolor 12 0.000025 0.000260 0.000022\r\n", + "..es.py:768 Rectangle._convert_units 18 0.000084 0.000258 0.000014\r\n", + "..y:4696 _ColumnEntity.row_processor 27 0.000176 0.000257 0.000010\r\n", + "..k\\lib\\encodings\\utf_8.py:15 decode 48 0.000188 0.000257 0.000005\r\n", + "..PGDialect_psycopg2.type_descriptor 13 0.000030 0.000257 0.000020\r\n", + "..:136 Affine2D._invalidate_internal 90/76 0.000214 0.000256 0.000003\r\n", + "..:395 WeakKeyDictionary.__setitem__ 97 0.000253 0.000256 0.000003\r\n", + "..chemy\\orm\\query.py:4625 27 0.000065 0.000250 0.000009\r\n", + "..tplotlib\\lines.py:59 _scale_dashes 83 0.000123 0.000249 0.000003\r\n", + "..24 AxesSubplot.get_yaxis_transform 29/15 0.000047 0.000249 0.000009\r\n", + "..numpy\\core\\fromnumeric.py:2277 all 9 0.000041 0.000249 0.000028\r\n", + "..atplotlib\\artist.py:192 Spine.axes 831 0.000248 0.000248 0.000000\r\n", + "..b\\sre_parse.py:96 State.closegroup 27 0.000035 0.000243 0.000009\r\n", + "..s.py:266 MarkerStyle.set_fillstyle 38 0.000124 0.000241 0.000006\r\n", + "..ger.py:810 FontProperties.set_size 27 0.000167 0.000241 0.000009\r\n", + "..s\\_base.py:31 _process_plot_format 4 0.000033 0.000239 0.000060\r\n", + "..chemy\\sql\\elements.py:4327 __new__ 17 0.000109 0.000239 0.000014\r\n", + "..py:2644 ScaledTranslation.__init__ 17 0.000081 0.000238 0.000014\r\n", + "..r.py:774 FontProperties.set_weight 27 0.000211 0.000237 0.000009\r\n", + "...py:180 AxesSubplot.convert_yunits 48 0.000064 0.000233 0.000005\r\n", + "..units.py:58 _is_natively_supported 12 0.000072 0.000232 0.000019\r\n", + "..my\\sql\\type_api.py:1475 adapt_type 13 0.000077 0.000227 0.000017\r\n", + "..s.py:2544 BboxTransformTo.__init__ 20 0.000076 0.000226 0.000011\r\n", + "..48 AxesSubplot.get_xaxis_transform 29/15 0.000037 0.000223 0.000008\r\n", + "..b\\sre_parse.py:249 Tokenizer.match 311 0.000150 0.000222 0.000001\r\n", + "..py:1137 Text.set_verticalalignment 33 0.000098 0.000222 0.000007\r\n", + "..il\\_collections.py:775 unique_list 41 0.000166 0.000221 0.000005\r\n", + "..x.py:690 DrawingArea.get_transform 4 0.000006 0.000220 0.000055\r\n", + "..>:147 _ModuleLockManager.__enter__ 10 0.000027 0.000219 0.000022\r\n", + "..tlib\\text.py:535 Text.set_clip_box 15 0.000057 0.000216 0.000014\r\n", + "..sre_parse.py:172 SubPattern.append 182 0.000164 0.000209 0.000001\r\n", + "...py:523 YTick._get_text1_transform 3 0.000015 0.000208 0.000069\r\n", + "..800 AxesSubplot._update_transScale 2 0.000024 0.000206 0.000103\r\n", + "..indowsSelectorEventLoop._call_soon 23 0.000097 0.000204 0.000009\r\n", + "..xis.py:1969 XAxis._get_offset_text 1 0.000012 0.000204 0.000204\r\n", + "..b\\threading.py:761 Thread.__init__ 2 0.000128 0.000203 0.000101\r\n", + "..manager.py:855 FontProperties.copy 3 0.000012 0.000199 0.000066\r\n", + "..ootstrap_external>:104 _path_isdir 1 0.000003 0.000198 0.000198\r\n", + "..re_parse.py:160 SubPattern.__len__ 261 0.000148 0.000197 0.000001\r\n", + "..on.py:579 SessionTransaction.close 2 0.000022 0.000197 0.000098\r\n", + "..ib\\artist.py:719 Text.set_clip_box 23 0.000038 0.000195 0.000008\r\n", + "..xis.py:2258 YAxis._get_offset_text 1 0.000013 0.000195 0.000195\r\n", + "..lines.py:1092 Line2D.set_linewidth 30 0.000090 0.000192 0.000006\r\n", + "..sSubplot.get_yaxis_text1_transform 3 0.000033 0.000192 0.000064\r\n", + "...py:2266 blended_transform_factory 8 0.000033 0.000190 0.000024\r\n", + "..s.py:749 MarkerStyle._set_tickdown 3 0.000018 0.000189 0.000063\r\n", + "..xis.py:325 XTick._set_artist_props 30 0.000038 0.000188 0.000006\r\n", + "..til.py:368 surface_column_elements 54 0.000119 0.000185 0.000003\r\n", + "..setbox.py:661 DrawingArea.__init__ 4 0.000023 0.000184 0.000046\r\n", + "..lors.py:193 _to_rgba_no_colorcycle 8 0.000103 0.000183 0.000023\r\n", + ":1 __new__ 91 0.000108 0.000181 0.000002\r\n", + "..\\offsetbox.py:356 HPacker.__init__ 7 0.000017 0.000180 0.000026\r\n", + "..WindowsSelectorEventLoop.call_soon 17 0.000051 0.000178 0.000010\r\n", + "..lines.py:1058 Line2D.set_drawstyle 34 0.000088 0.000178 0.000005\r\n", + "..yncio\\futures.py:335 _chain_future 6 0.000060 0.000177 0.000029\r\n", + "...py:1352 Line2D.set_dash_joinstyle 30 0.000088 0.000176 0.000006\r\n", + "..y:4713 _ColumnEntity.setup_context 27 0.000148 0.000173 0.000006\r\n", + "..b._bootstrap>:157 _get_module_lock 18 0.000077 0.000172 0.000010\r\n", + ".._bootstrap_external>:64 82 0.000128 0.000171 0.000002\r\n", + "..pool\\impl.py:35 QueuePool.__init__ 1 0.000011 0.000171 0.000171\r\n", + "..y:2175 XAxis.set_default_intervals 1 0.000018 0.000170 0.000170\r\n", + "..y:949 Text.set_horizontalalignment 28 0.000075 0.000170 0.000006\r\n", + "..ib\\sre_parse.py:286 Tokenizer.tell 171 0.000133 0.000169 0.000001\r\n", + "..text.py:240 Text.set_rotation_mode 24 0.000106 0.000169 0.000007\r\n", + "..539 PGDialect_psycopg2.do_rollback 2 0.000010 0.000169 0.000085\r\n", + "..:220 Spine._ensure_position_is_set 28/24 0.000023 0.000169 0.000006\r\n", + ":1 Query.filter 5 0.000016 0.000169 0.000034\r\n", + "..\\lib\\function_base.py:257 iterable 97 0.000125 0.000168 0.000002\r\n", + "..68gteq6k\\lib\\weakref.py:44 __new__ 33 0.000135 0.000168 0.000005\r\n", + "...py:407 XTick._get_text1_transform 3 0.000009 0.000166 0.000055\r\n", + "..xesSubplot._set_lim_and_transforms 1 0.000026 0.000165 0.000165\r\n", + "...py:1412 Line2D.set_solid_capstyle 30 0.000083 0.000165 0.000006\r\n", + "..uture.set_running_or_notify_cancel 7 0.000124 0.000165 0.000024\r\n", + "..y\\util\\_collections.py:822 to_list 14 0.000064 0.000164 0.000012\r\n", + "..xternal>:1426 FileFinder._get_spec 10 0.000056 0.000162 0.000016\r\n", + "..sql\\elements.py:4451 _as_truncated 10 0.000028 0.000162 0.000016\r\n", + "..\\axis.py:1605 YAxis.set_label_text 5 0.000022 0.000161 0.000032\r\n", + "..es.py:375 FancyBboxPatch.set_alpha 1 0.000006 0.000160 0.000160\r\n", + "...py:526 YTick._get_text2_transform 3 0.000012 0.000159 0.000053\r\n", + "..GCompiler_psycopg2.visit_bindparam 5 0.000043 0.000159 0.000032\r\n", + "..045 AxesSubplot._process_unit_info 6 0.000020 0.000159 0.000026\r\n", + "..reading.py:246 Condition.__enter__ 61 0.000111 0.000158 0.000003\r\n", + "..py:1367 Line2D.set_solid_joinstyle 30 0.000079 0.000158 0.000005\r\n", + "..er.py:1712 AutoLocator.nonsingular 2 0.000009 0.000157 0.000078\r\n", + "..sSubplot.get_xaxis_text1_transform 3 0.000040 0.000156 0.000052\r\n", + "..asyncio\\tasks.py:653 ensure_future 2 0.000023 0.000154 0.000077\r\n", + "..axes.py:256 AxesSubplot.set_ylabel 4 0.000017 0.000150 0.000037\r\n", + "..q6k\\lib\\sre_compile.py:423 _simple 45 0.000051 0.000150 0.000003\r\n", + "..atplotlib\\legend.py:813 1 0.000026 0.000149 0.000149\r\n", + "..otlib\\axis.py:1579 XAxis.set_units 12 0.000039 0.000148 0.000012\r\n", + "..lib\\transforms.py:2779 nonsingular 2 0.000031 0.000148 0.000074\r\n", + "..b\\spines.py:381 Spine.set_position 4 0.000023 0.000147 0.000037\r\n", + "..sSubplot.get_yaxis_text2_transform 3 0.000019 0.000146 0.000049\r\n", + "..s.py:729 MarkerStyle._set_tickleft 3 0.000015 0.000146 0.000049\r\n", + "..\\lib\\enum.py:828 RegexFlag.__and__ 12 0.000068 0.000143 0.000012\r\n", + "..ts.py:724 ColumnClause.__getattr__ 9 0.000082 0.000143 0.000016\r\n", + "..lalchemy\\orm\\query.py:4148 __new__ 32 0.000063 0.000141 0.000004\r\n", + "..\\offsetbox.py:489 HPacker.__init__ 5 0.000012 0.000141 0.000028\r\n", + ".._base.py:2048 _process_single_axis 12 0.000029 0.000139 0.000012\r\n", + "..lib\\lines.py:1282 Line2D.set_xdata 39 0.000084 0.000139 0.000004\r\n", + ".._base.py:3484 AxesSubplot.set_ylim 1 0.000020 0.000137 0.000137\r\n", + "..ib\\path.py:188 Path._update_values 14 0.000068 0.000137 0.000010\r\n", + "..e-packages\\cycler.py:371 20 0.000137 0.000137 0.000007\r\n", + ":1 QueuePool.__init__ 1 0.000002 0.000136 0.000136\r\n", + "..er.py:755 FontProperties.set_style 23 0.000065 0.000136 0.000006\r\n", + "..tures\\_base.py:316 Future.__init__ 7 0.000034 0.000135 0.000019\r\n", + "..orm._iter_break_from_left_to_right 8 0.000027 0.000134 0.000017\r\n", + "..34 new_figure_manager_given_figure 1 0.000007 0.000134 0.000134\r\n", + "..ches.py:458 Rectangle.set_capstyle 11 0.000066 0.000134 0.000012\r\n", + "...py:1423 Figure._add_axes_internal 1 0.000015 0.000134 0.000134\r\n", + "..s.py:2221 BlendedAffine2D.__init__ 6 0.000039 0.000133 0.000022\r\n", + "..book\\__init__.py:1296 is_math_text 30 0.000081 0.000133 0.000004\r\n", + "..tlib\\lines.py:31 _get_dash_pattern 41 0.000103 0.000132 0.000003\r\n", + "..chemy\\sql\\base.py:38 _from_objects 21 0.000045 0.000131 0.000006\r\n", + "...py:410 XTick._get_text2_transform 3 0.000011 0.000129 0.000043\r\n", + "..py:1225 Line2D.set_markeredgewidth 30 0.000057 0.000129 0.000004\r\n", + "..033 PGCompiler_psycopg2.visit_cast 2 0.000013 0.000128 0.000064\r\n", + "..pool\\base.py:63 QueuePool.__init__ 1 0.000050 0.000128 0.000128\r\n", + "..re_compile.py:249 _compile_charset 34 0.000098 0.000127 0.000004\r\n", + "..plotlib\\scale.py:718 scale_factory 16 0.000053 0.000126 0.000008\r\n", + "..ib\\sre_parse.py:84 State.opengroup 27 0.000072 0.000125 0.000005\r\n", + "..ffsetbox.py:187 VPacker.set_figure 16/1 0.000045 0.000124 0.000008\r\n", + "...py:792 FontProperties.set_stretch 23 0.000090 0.000124 0.000005\r\n", + "...py:735 MarkerStyle._set_tickright 3 0.000013 0.000124 0.000041\r\n", + "..chemy\\sql\\elements.py:4279 __new__ 17 0.000095 0.000123 0.000007\r\n", + "..\\Lib\\socket.py:219 socket.__init__ 3 0.000122 0.000122 0.000041\r\n", + "..hes.py:402 Rectangle.set_linestyle 7 0.000053 0.000122 0.000017\r\n", + "...py:3168 BinaryExpression.__init__ 5 0.000064 0.000121 0.000024\r\n", + "..otlib\\text.py:1227 Text.set_usetex 24 0.000053 0.000120 0.000005\r\n", + "..ngine\\base.py:863 Connection.close 1 0.000008 0.000119 0.000119\r\n", + "..selectable.py:2169 Select.__init__ 8 0.000024 0.000118 0.000015\r\n", + "..lib\\sre_parse.py:295 _class_escape 30 0.000080 0.000118 0.000004\r\n", + "..ib\\artist.py:1037 Spine.set_zorder 18 0.000045 0.000118 0.000007\r\n", + "..ib\\lines.py:1196 Line2D.set_marker 4 0.000008 0.000117 0.000029\r\n", + "..sSubplot.get_xaxis_text2_transform 3 0.000017 0.000117 0.000039\r\n", + "..ndowsSelectorEventLoop.create_task 2 0.000057 0.000117 0.000058\r\n", + "..ide_tricks.py:185 _broadcast_shape 10 0.000112 0.000116 0.000012\r\n", + "...py:765 FontProperties.set_variant 23 0.000054 0.000115 0.000005\r\n", + "..lib\\text.py:1042 Text.set_fontsize 4 0.000013 0.000115 0.000029\r\n", + "..r.py:742 FontProperties.set_family 23 0.000047 0.000115 0.000005\r\n", + "..uery.py:4762 QueryContext.__init__ 6 0.000109 0.000115 0.000019\r\n", + "..\\sql\\selectable.py:3746 6 0.000021 0.000115 0.000019\r\n", + "..\\matplotlib\\dates.py:1893 axisinfo 2 0.000024 0.000114 0.000057\r\n", + "..umpy\\core\\getlimits.py:365 __new__ 2 0.000023 0.000113 0.000057\r\n", + "..teq6k\\lib\\sre_parse.py:355 _escape 30 0.000088 0.000113 0.000004\r\n", + "..essionTransaction._remove_snapshot 1 0.000037 0.000113 0.000113\r\n", + "..forms.py:1669 TransformWrapper.set 2 0.000009 0.000112 0.000056\r\n", + "..my\\util\\langhelpers.py:963 oneshot 21 0.000055 0.000112 0.000005\r\n", + "..ase.py:1009 _ConnectionFairy.close 1 0.000008 0.000111 0.000111\r\n", + "..\\result.py:1362 ResultProxy.scalar 3 0.000010 0.000110 0.000037\r\n", + "..threading.py:441 Semaphore.release 7 0.000035 0.000110 0.000016\r\n", + "..yncio\\events.py:32 Handle.__init__ 24 0.000093 0.000110 0.000005\r\n", + "..Subplot._validate_converted_limits 4 0.000026 0.000109 0.000027\r\n", + "..hes.py:382 Rectangle.set_linewidth 12 0.000039 0.000107 0.000009\r\n", + "..ndowsSelectorEventLoop._add_reader 1 0.000026 0.000106 0.000106\r\n", + "..b\\cbook\\__init__.py:2090 type_name 94 0.000106 0.000106 0.000001\r\n", + "..alchemy\\event\\api.py:23 _event_key 3 0.000022 0.000106 0.000035\r\n", + "..bootstrap_external>:68 _path_split 18 0.000082 0.000105 0.000006\r\n", + "..plotlib\\text.py:933 Text.set_color 24 0.000056 0.000104 0.000004\r\n", + "..ers.py:743 MarkerStyle._set_tickup 3 0.000012 0.000104 0.000035\r\n", + "..e.py:853 _ConnectionFairy._checkin 1 0.000008 0.000103 0.000103\r\n", + "..gistry.py:67 _stored_in_collection 3 0.000028 0.000103 0.000034\r\n", + "..y:556 String.coerce_compared_value 5 0.000019 0.000103 0.000021\r\n", + "..py:2249 BlendedAffine2D.get_matrix 4 0.000017 0.000103 0.000026\r\n", + "..lib\\legend.py:938 Legend.set_title 1 0.000008 0.000102 0.000102\r\n", + "..ql\\elements.py:895 Cast.anon_label 2 0.000018 0.000102 0.000051\r\n", + "..lib\\lines.py:1294 Line2D.set_ydata 39 0.000054 0.000101 0.000003\r\n", + "..e\\result.py:1335 ResultProxy.first 3 0.000030 0.000100 0.000033\r\n", + "..tstrap_external>:493 _classify_pyc 9 0.000056 0.000099 0.000011\r\n", + "..otlib\\artist.py:197 Rectangle.axes 117 0.000099 0.000099 0.000001\r\n", + "..:2165 FigureCanvasBase.mpl_connect 7 0.000012 0.000099 0.000014\r\n", + ":1 cast 2 0.000004 0.000098 0.000049\r\n", + "..\\artist.py:1074 Line2D.update_from 8 0.000065 0.000097 0.000012\r\n", + "..lotlib\\dates.py:1921 default_units 8 0.000033 0.000096 0.000012\r\n", + "..\\orm\\session.py:1288 Session.close 1 0.000011 0.000096 0.000096\r\n", + "..y\\pool\\base.py:667 _finalize_fairy 1 0.000012 0.000096 0.000096\r\n", + "..tist.py:1017 AxesSubplot.set_label 5 0.000025 0.000095 0.000019\r\n", + "..sql\\elements.py:2489 Cast.__init__ 2 0.000010 0.000094 0.000047\r\n", + "..compile.py:461 _get_literal_prefix 19/12 0.000068 0.000094 0.000005\r\n", + "..logging\\__init__.py:2003 getLogger 4 0.000010 0.000094 0.000023\r\n", + "..ql\\selectable.py:3735 name_for_col 27 0.000047 0.000094 0.000003\r\n", + "..ines.py:1268 Line2D.set_markersize 30 0.000057 0.000093 0.000003\r\n", + "..317 VARCHAR._has_column_expression 12 0.000092 0.000092 0.000008\r\n", + "..ernal>:629 spec_from_file_location 10 0.000070 0.000091 0.000009\r\n", + "..Context_psycopg2.should_autocommit 9 0.000058 0.000091 0.000010\r\n", + "..ngs\\__init__.py:70 search_function 1 0.000030 0.000089 0.000089\r\n", + "..Compiler_psycopg2._bind_processors 6 0.000020 0.000089 0.000015\r\n", + "..syncio\\base_futures.py:13 isfuture 37 0.000051 0.000089 0.000002\r\n", + "..nes.py:1035 Line2D.set_antialiased 30 0.000046 0.000089 0.000003\r\n", + "..ements.py:1946 ClauseList.__init__ 1 0.000012 0.000088 0.000088\r\n", + "..\\threading.py:341 Condition.notify 15 0.000069 0.000088 0.000006\r\n", + "..-68gteq6k\\lib\\enum.py:278 __call__ 26 0.000057 0.000087 0.000003\r\n", + "..e_parse.py:111 SubPattern.__init__ 135 0.000087 0.000087 0.000001\r\n", + "..\\axis.py:618 YTick.update_position 3 0.000022 0.000086 0.000029\r\n", + "..lalchemy\\sql\\base.py:39 21 0.000053 0.000086 0.000004\r\n", + "..lib\\artist.py:923 Line2D.set_alpha 7 0.000019 0.000085 0.000012\r\n", + "..piler_psycopg2._truncate_bindparam 5 0.000012 0.000085 0.000017\r\n", + "..ession.py:1333 Session._close_impl 1 0.000012 0.000085 0.000085\r\n", + "..y:2463 FancyBboxPatch.set_boxstyle 2 0.000023 0.000085 0.000042\r\n", + "..my\\sql\\compiler.py:2252 6 0.000017 0.000084 0.000014\r\n", + "..__init__.py:1272 Manager.getLogger 4 0.000024 0.000084 0.000021\r\n", + "..38\\Lib\\asyncio\\tasks.py:717 gather 1 0.000016 0.000083 0.000083\r\n", + ":1 VARCHAR.__init__ 9 0.000026 0.000083 0.000009\r\n", + "..\\core\\getlimits.py:398 finfo._init 1 0.000044 0.000082 0.000082\r\n", + "..\\legend.py:1215 _parse_legend_args 1 0.000010 0.000082 0.000082\r\n", + "..bootstrap>:58 _ModuleLock.__init__ 10 0.000026 0.000082 0.000008\r\n", + "..tlib\\axis.py:864 XAxis.reset_ticks 16 0.000077 0.000082 0.000005\r\n", + "..t\\futures\\_base.py:381 Future.done 6 0.000031 0.000082 0.000014\r\n", + "..bootstrap>:194 _lock_unlock_module 8 0.000018 0.000081 0.000010\r\n", + "..\\result.py:777 ResultProxy._getter 27 0.000037 0.000081 0.000003\r\n", + "..123 ConnectionEventsDispatch._join 1 0.000078 0.000080 0.000080\r\n", + "..ections.py:361 OrderedSet.__init__ 8 0.000050 0.000080 0.000010\r\n", + "..ges\\numpy\\core\\_methods.py:44 _any 4 0.000009 0.000079 0.000020\r\n", + "..elements.py:4692 _literal_as_binds 2 0.000005 0.000079 0.000040\r\n", + "..sSelectorEventLoop._process_events 17 0.000043 0.000079 0.000005\r\n", + "..otlib\\figure.py:111 _AxesStack.add 1 0.000033 0.000079 0.000079\r\n", + "..session.py:1588 Session._autoflush 6 0.000022 0.000079 0.000013\r\n", + "..xt.py:1214 Text.set_fontproperties 1 0.000004 0.000079 0.000079\r\n", + "..copg2\\extensions.py:171 1 0.000005 0.000078 0.000078\r\n", + "..e-packages\\cycler.py:227 110 0.000078 0.000078 0.000001\r\n", + "..qlalchemy\\inspection.py:38 inspect 16 0.000051 0.000076 0.000005\r\n", + "..py:1210 Line2D.set_markeredgecolor 30 0.000040 0.000075 0.000003\r\n", + "..tlib\\transforms.py:773 from_bounds 1 0.000008 0.000075 0.000075\r\n", + "..b\\text.py:1059 Text.set_fontweight 4 0.000009 0.000074 0.000019\r\n", + "..__init__.py:1632 sanitize_sequence 8 0.000015 0.000074 0.000009\r\n", + "..alchemy\\log.py:174 instance_logger 3 0.000011 0.000073 0.000024\r\n", + "..init__.py:1677 Logger.isEnabledFor 5 0.000041 0.000073 0.000015\r\n", + "..8gteq6k\\lib\\sre_parse.py:432 _uniq 22 0.000044 0.000073 0.000003\r\n", + "..g2\\extensions.py:180 _param_escape 3 0.000005 0.000073 0.000024\r\n", + "..ase.py:971 _ConnectionFairy.cursor 6 0.000013 0.000073 0.000012\r\n", + ".._range.py:297 RangeCaster.__init__ 6 0.000022 0.000072 0.000012\r\n", + "..y:2444 PGDialect_psycopg2.__init__ 1 0.000008 0.000072 0.000072\r\n", + "..lib\\offsetbox.py:199 TextArea.axes 16 0.000042 0.000072 0.000004\r\n", + "..emy\\orm\\query.py:1790 Query.filter 5 0.000032 0.000072 0.000014\r\n", + "..b._bootstrap>:222 _verbose_message 90 0.000071 0.000071 0.000001\r\n", + "..py:366 GridSpec.get_subplot_params 1 0.000011 0.000071 0.000071\r\n", + "..artist.py:841 TextArea.set_clip_on 16 0.000026 0.000071 0.000004\r\n", + "..\\orm\\session.py:2462 Session.flush 9 0.000021 0.000071 0.000008\r\n", + "..s.py:1642 _fix_ipython_backend2gui 2 0.000025 0.000071 0.000035\r\n", + "..alchemy\\events.py:328 _accept_with 3 0.000026 0.000071 0.000024\r\n", + "..re_parse.py:267 Tokenizer.getuntil 7 0.000040 0.000070 0.000010\r\n", + "..figure.py:199 SubplotParams.update 2 0.000018 0.000070 0.000035\r\n", + "..b\\cbook\\__init__.py:2088 188 0.000070 0.000070 0.000000\r\n", + "..\\axis.py:501 XTick.update_position 3 0.000018 0.000069 0.000023\r\n", + "..hemy\\sql\\compiler.py:650 6 0.000010 0.000069 0.000011\r\n", + "..\\core\\fromnumeric.py:74 85 0.000069 0.000069 0.000001\r\n", + "..my\\sql\\elements.py:1955 1 0.000009 0.000069 0.000069\r\n", + "..ist.py:371 Rectangle.get_transform 31 0.000050 0.000068 0.000002\r\n", + "..ctions.py:933 LRUCache.__setitem__ 3 0.000026 0.000068 0.000023\r\n", + "..lib\\lines.py:1047 Line2D.set_color 30 0.000032 0.000068 0.000002\r\n", + "..bootstrap>:103 _ModuleLock.release 18 0.000061 0.000068 0.000004\r\n", + "..t_manager.py:1043 get_default_size 22 0.000028 0.000067 0.000003\r\n", + "..lib\\axis.py:922 _translate_tick_kw 8 0.000058 0.000067 0.000008\r\n", + "..otlib\\axis.py:666 Ticker.formatter 33 0.000048 0.000067 0.000002\r\n", + "..p>:151 _ModuleLockManager.__exit__ 10 0.000020 0.000066 0.000007\r\n", + "..re_parse.py:224 Tokenizer.__init__ 13 0.000043 0.000065 0.000005\r\n", + "..aggregation\\query.py:82 4 0.000013 0.000065 0.000016\r\n", + "..eading.py:364 Condition.notify_all 7 0.000022 0.000065 0.000009\r\n", + "..\\lib\\sre_compile.py:411 _mk_bitmap 5 0.000029 0.000065 0.000013\r\n", + "..ImmutableColumnCollection.__iter__ 5 0.000030 0.000064 0.000013\r\n", + "..gure.py:168 SubplotParams.__init__ 1 0.000009 0.000064 0.000064\r\n", + ".._WindowsSelectorEventLoop.__init__ 1 0.000024 0.000064 0.000064\r\n", + "..plotlib\\text.py:1151 Text.set_text 46 0.000052 0.000064 0.000001\r\n", + "..k\\lib\\sre_parse.py:81 State.groups 80 0.000048 0.000064 0.000001\r\n", + "..ghelpers.py:281 _inspect_func_args 18 0.000064 0.000064 0.000004\r\n", + "..tstrap_external>:51 _unpack_uint32 27 0.000044 0.000064 0.000002\r\n", + "..GCompiler_psycopg2.order_by_clause 1 0.000003 0.000063 0.000063\r\n", + "..yEventsDispatch._event_descriptors 46 0.000040 0.000063 0.000001\r\n", + "..__.py:185 CallbackRegistry.process 26 0.000047 0.000062 0.000002\r\n", + ".._bootstrap>:78 _ModuleLock.acquire 18 0.000056 0.000061 0.000003\r\n", + "..py:834 XAxis.limit_range_for_scale 2 0.000019 0.000061 0.000031\r\n", + "..pes.py:2997 _resolve_value_to_type 5 0.000017 0.000061 0.000012\r\n", + ".. SessionTransaction._take_snapshot 3 0.000027 0.000061 0.000020\r\n", + "..tableColumnCollection.__contains__ 10 0.000041 0.000060 0.000006\r\n", + "..ib\\axis.py:529 YTick.apply_tickdir 3 0.000024 0.000059 0.000020\r\n", + "..ures\\_base.py:443 Future.exception 6 0.000042 0.000059 0.000010\r\n", + "..schema.py:1640 Column.get_children 27 0.000049 0.000059 0.000002\r\n", + "..hemy\\sql\\compiler.py:652 11 0.000017 0.000059 0.000005\r\n", + "..emy\\util\\langhelpers.py:1188 _next 7 0.000036 0.000058 0.000008\r\n", + "..futures\\_base.py:412 Future.result 7 0.000034 0.000058 0.000008\r\n", + "..\\session.py:2508 Session._is_clean 10 0.000041 0.000057 0.000006\r\n", + ".. interactable_plot_multiple_charts 1 0.000009 0.000057 0.000057\r\n", + "..matplotlib\\patches.py:1818 __new__ 2 0.000037 0.000057 0.000028\r\n", + "...py:1623 TransformWrapper.__init__ 2 0.000009 0.000057 0.000028\r\n", + "..ging\\__init__.py:1412 Logger.debug 2 0.000008 0.000057 0.000028\r\n", + "..ager.py:936 _normalize_font_family 46 0.000041 0.000057 0.000001\r\n", + "..elements.py:4483 _select_iterables 8 0.000017 0.000057 0.000007\r\n", + "..Python38\\Lib\\threading.py:81 RLock 8 0.000056 0.000056 0.000007\r\n", + "..packages\\psycopg2\\tz.py:1 1 0.000016 0.000056 0.000056\r\n", + "..se.py:392 Future.add_done_callback 6 0.000030 0.000056 0.000009\r\n", + "..ericTransform._invalidate_internal 4/3 0.000013 0.000055 0.000014\r\n", + "..py:193 PGDialect_psycopg2.__init__ 1 0.000024 0.000055 0.000055\r\n", + "..til\\_collections.py:779 41 0.000042 0.000055 0.000001\r\n", + "..Compiler_psycopg2.visit_clauselist 1 0.000004 0.000054 0.000054\r\n", + "..eral_and_labels_as_label_reference 3 0.000012 0.000054 0.000018\r\n", + "..my\\engine\\result.py:372 6 0.000054 0.000054 0.000009\r\n", + "..ResultMetaData._merge_cols_by_none 6 0.000022 0.000054 0.000009\r\n", + "..plotlib\\axis.py:653 Ticker.locator 33 0.000047 0.000054 0.000002\r\n", + "..rm\\query.py:418 Query._bind_mapper 6 0.000024 0.000054 0.000009\r\n", + "..s.py:1247 AutoDateLocator.__init__ 2 0.000023 0.000054 0.000027\r\n", + "..plotlib\\transforms.py:177 39 0.000031 0.000053 0.000001\r\n", + "..\\offsetbox.py:410 VPacker.__init__ 2 0.000003 0.000053 0.000027\r\n", + "..se.py:593 _column_stack_dispatcher 12 0.000030 0.000053 0.000004\r\n", + "..EventLoop._asyncgen_firstiter_hook 10 0.000023 0.000053 0.000005\r\n", + "..ation-68gteq6k\\lib\\re.py:323 _subx 3 0.000008 0.000052 0.000017\r\n", + "..on\\database.py:107 from_sql_result 4 0.000025 0.000052 0.000013\r\n", + "..t_psycopg2._use_server_side_cursor 9 0.000044 0.000052 0.000006\r\n", + "..hes.py:475 Rectangle.set_joinstyle 7 0.000030 0.000052 0.000007\r\n", + "..e.py:516 _ConnectionRecord.checkin 1 0.000008 0.000052 0.000052\r\n", + "..elements.py:724 Column.__getattr__ 3 0.000026 0.000051 0.000017\r\n", + "..e._process_projection_requirements 1 0.000008 0.000050 0.000050\r\n", + "..y\\orm\\base.py:353 _is_mapped_class 7 0.000026 0.000050 0.000007\r\n", + "..lEventsDispatch._event_descriptors 36 0.000030 0.000050 0.000001\r\n", + "..\\lib\\_weakrefset.py:81 WeakSet.add 14 0.000040 0.000050 0.000004\r\n", + "..Compiler_psycopg2.visit_typeclause 2 0.000008 0.000049 0.000025\r\n", + "..ernal>:526 _validate_timestamp_pyc 9 0.000023 0.000049 0.000005\r\n", + ".._.py:118 CallbackRegistry.__init__ 19 0.000049 0.000049 0.000003\r\n", + "..tgresql\\psycopg2.py:800 on_connect 2 0.000007 0.000049 0.000024\r\n", + "..quoted_name._memoized_method_lower 21 0.000041 0.000048 0.000002\r\n", + "..py:436 prefix_anon_map.__missing__ 7 0.000034 0.000048 0.000007\r\n", + "..ion\\analysis.py:367 wrap_coroutine 1 0.000014 0.000047 0.000047\r\n", + "..eq6k\\lib\\_weakrefset.py:38 _remove 11 0.000037 0.000046 0.000004\r\n", + "..kages\\numpy\\ma\\core.py:666 getdata 8 0.000036 0.000046 0.000006\r\n", + "..ib\\threading.py:505 Event.__init__ 2 0.000008 0.000046 0.000023\r\n", + "..emy\\sql\\compiler.py:1000 4 0.000005 0.000046 0.000011\r\n", + "..y:208 _arrays_for_stack_dispatcher 28 0.000026 0.000045 0.000002\r\n", + "..b\\transforms.py:909 Bbox.intervalx 3 0.000024 0.000045 0.000015\r\n", + "...py:2680 AxesSubplot.set_axisbelow 1 0.000010 0.000045 0.000045\r\n", + "..\\elements.py:4610 _literal_as_text 16 0.000021 0.000045 0.000003\r\n", + "..tras.py:657 UUID_adapter.getquoted 4 0.000022 0.000044 0.000011\r\n", + "...py:311 RangeCaster._create_ranges 6 0.000040 0.000044 0.000007\r\n", + "..b\\function_base.py:2164 4 0.000006 0.000044 0.000011\r\n", + "..gteq6k\\lib\\re.py:313 _compile_repl 1 0.000010 0.000044 0.000044\r\n", + "...py:235 SubplotParams._update_this 12 0.000021 0.000043 0.000004\r\n", + "..sult.py:700 ResultMetaData._getter 27 0.000043 0.000043 0.000002\r\n", + "..lib\\functools.py:33 update_wrapper 2 0.000026 0.000043 0.000022\r\n", + ":176 cb 10 0.000031 0.000043 0.000004\r\n", + "..is.py:197 XTick._set_labelrotation 6 0.000026 0.000043 0.000007\r\n", + "..ib\\axis.py:413 XTick.apply_tickdir 3 0.000017 0.000042 0.000014\r\n", + "..base.py:375 QueuePool._return_conn 1 0.000003 0.000042 0.000042\r\n", + "..:486 String._cached_bind_processor 5 0.000027 0.000042 0.000008\r\n", + "..b\\scale.py:97 LinearScale.__init__ 16 0.000035 0.000042 0.000003\r\n", + "..ycopg2\\extras.py:664 register_uuid 2 0.000027 0.000041 0.000021\r\n", + "..CompositeGenericTransform. 16/8 0.000035 0.000041 0.000003\r\n", + "..external>:1394 FileFinder.__init__ 1 0.000023 0.000041 0.000041\r\n", + "..init__.py:882 Grouper.get_siblings 6 0.000022 0.000041 0.000007\r\n", + "..iler.py:399 PGTypeCompiler.process 2 0.000006 0.000041 0.000021\r\n", + "..emy\\sql\\compiler.py:1002 4 0.000006 0.000041 0.000010\r\n", + "..tors.py:180 SelectSelector.get_key 1 0.000010 0.000041 0.000041\r\n", + "..s\\_base.py:597 AxesSubplot.viewLim 2 0.000005 0.000041 0.000020\r\n", + "..mpiler_psycopg2._add_to_result_map 29 0.000032 0.000040 0.000001\r\n", + "..ation-68gteq6k\\lib\\copy.py:66 copy 1 0.000013 0.000040 0.000040\r\n", + "..ib\\stride_tricks.py:262 10 0.000024 0.000040 0.000004\r\n", + "..654 _WindowsSelectorEventLoop.time 17 0.000028 0.000040 0.000002\r\n", + "..process_plot_var_args._getdefaults 4 0.000018 0.000040 0.000010\r\n", + "..tplotlib\\legend.py:1253 1 0.000006 0.000040 0.000040\r\n", + "..my\\sql\\elements.py:4488 8 0.000029 0.000039 0.000005\r\n", + "..ttr.py:269 _EmptyListener.__bool__ 17 0.000039 0.000039 0.000002\r\n", + "..l.py:103 QueuePool._do_return_conn 1 0.000005 0.000039 0.000039\r\n", + "..y:3229 BinaryExpression.self_group 5 0.000009 0.000039 0.000008\r\n", + "..r.py:234 _EmptyListener.for_modify 2 0.000013 0.000038 0.000019\r\n", + "..til\\_collections.py:981 3 0.000020 0.000038 0.000013\r\n", + "..util\\langhelpers.py:1175 46 0.000038 0.000038 0.000001\r\n", + "..arse.py:168 SubPattern.__setitem__ 48 0.000030 0.000038 0.000001\r\n", + "..y\\engine\\default.py:796 6 0.000020 0.000037 0.000006\r\n", + "..p>:867 _ImportLockContext.__exit__ 30 0.000026 0.000037 0.000001\r\n", + "..mportlib._bootstrap>:800 find_spec 10 0.000013 0.000037 0.000004\r\n", + "..tplotlib\\figure.py:1959 Figure.sca 1 0.000008 0.000037 0.000037\r\n", + "..ib\\figure.py:1070 Figure._make_key 1 0.000006 0.000037 0.000037\r\n", + "..pe_base.py:219 _vhstack_dispatcher 16 0.000014 0.000037 0.000002\r\n", + "..cbook\\__init__.py:1868 Text.method 5 0.000009 0.000036 0.000007\r\n", + "..ray_function__ internals>:2 copyto 4 0.000014 0.000036 0.000009\r\n", + "..ib\\figure.py:778 Figure.set_canvas 2 0.000008 0.000036 0.000018\r\n", + "..ql\\elements.py:2428 literal_column 2 0.000010 0.000036 0.000018\r\n", + "..y:583 AxesSubplot._unstale_viewLim 2 0.000010 0.000036 0.000018\r\n", + "..owsSelectorEventLoop._add_callback 6 0.000025 0.000036 0.000006\r\n", + "..38\\Lib\\socket.py:512 socket.family 1 0.000006 0.000035 0.000035\r\n", + "..768 IdentityTransform.is_separable 8 0.000031 0.000035 0.000004\r\n", + "..tplotlib\\figure.py:1651 Figure.clf 1 0.000016 0.000035 0.000035\r\n", + "..es\\numpy\\core\\_methods.py:28 _amax 2 0.000003 0.000034 0.000017\r\n", + "..ib\\sre_parse.py:969 parse_template 1 0.000016 0.000034 0.000034\r\n", + "..owsSelectorEventLoop.create_future 6 0.000031 0.000034 0.000006\r\n", + "..:4707 _interpret_as_column_or_from 29 0.000022 0.000034 0.000001\r\n", + "..tions.py:946 LRUCache._manage_size 3 0.000029 0.000034 0.000011\r\n", + "..b\\legend.py:701 get_legend_handler 8 0.000028 0.000034 0.000004\r\n", + "..ngine\\base.py:1869 Engine.__init__ 1 0.000005 0.000034 0.000034\r\n", + "..legend.py:1169 _get_legend_handles 5 0.000016 0.000034 0.000007\r\n", + "..lib\\lines.py:743 Line2D._is_sorted 3 0.000015 0.000034 0.000011\r\n", + "..py:2538 FigureManagerBase.__init__ 1 0.000012 0.000034 0.000034\r\n", + "..alchemy\\util\\queue.py:92 Queue.put 1 0.000018 0.000034 0.000034\r\n", + "..ib\\socket.py:97 _intenum_converter 2 0.000010 0.000034 0.000017\r\n", + "..ures\\_base.py:371 Future.cancelled 6 0.000017 0.000034 0.000006\r\n", + "..b\\sre_compile.py:65 _combine_flags 39 0.000033 0.000033 0.000001\r\n", + "...py:900 AutoDateFormatter.__init__ 2 0.000016 0.000033 0.000017\r\n", + "..m\\state.py:328 type._detach_states 2 0.000020 0.000033 0.000017\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..ession.py:1339 Session.expunge_all 1 0.000012 0.000033 0.000033\r\n", + "..lections.py:316 OrderedDict.values 5 0.000018 0.000032 0.000006\r\n", + "..\\core\\getipython.py:17 get_ipython 2 0.000022 0.000032 0.000016\r\n", + "..m\\query.py:345 Query._adapt_clause 35 0.000032 0.000032 0.000001\r\n", + "..y:528 Text._update_clip_properties 15 0.000032 0.000032 0.000002\r\n", + "..94 QueryEventsDispatch.__getattr__ 8 0.000027 0.000032 0.000004\r\n", + "..._bootstrap>:389 ModuleSpec.parent 14 0.000022 0.000032 0.000002\r\n", + "..etaData._colnames_from_description 6 0.000030 0.000032 0.000005\r\n", + "..\\elements.py:688 Column.self_group 13 0.000031 0.000031 0.000002\r\n", + "..ompat.py:61 inspect_getfullargspec 2 0.000019 0.000031 0.000016\r\n", + "..compile.py:492 _get_charset_prefix 10 0.000024 0.000031 0.000003\r\n", + "..ticker.py:224 AutoLocator.set_axis 67 0.000031 0.000031 0.000000\r\n", + "..kref.py:436 WeakKeyDictionary.keys 1 0.000015 0.000031 0.000031\r\n", + "..tbox.py:739 DrawingArea.add_artist 8 0.000023 0.000031 0.000004\r\n", + "..l\\sqltypes.py:412 Unicode.__init__ 2 0.000013 0.000031 0.000015\r\n", + "..s\\matplotlib\\axis.py:342 70 0.000031 0.000031 0.000000\r\n", + "..6k\\lib\\sre_compile.py:595 isstring 24 0.000025 0.000031 0.000001\r\n", + "..ase.py:867 _ConnectionFairy._reset 1 0.000012 0.000030 0.000030\r\n", + "..n-68gteq6k\\lib\\enum.py:557 __new__ 26 0.000030 0.000030 0.000001\r\n", + "..ool\\base.py:235 QueuePool._creator 1 0.000005 0.000030 0.000030\r\n", + "..s\\numpy\\core\\multiarray.py:707 dot 67 0.000030 0.000030 0.000000\r\n", + "..\\lib\\sre_compile.py:413 5 0.000030 0.000030 0.000006\r\n", + "..owsSelectorEventLoop._check_closed 34 0.000030 0.000030 0.000001\r\n", + "..hemy\\orm\\query.py:537 Query._clone 6 0.000021 0.000030 0.000005\r\n", + "..portlib._bootstrap>:35 _new_module 9 0.000030 0.000030 0.000003\r\n", + "..\\sql\\selectable.py:3079 8 0.000014 0.000029 0.000004\r\n", + "..sql\\operators.py:1497 is_precedent 5 0.000018 0.000029 0.000006\r\n", + "..\\log.py:59 Engine._should_log_info 2 0.000006 0.000029 0.000015\r\n", + "..py:69 _SelectorMapping.__getitem__ 1 0.000022 0.000029 0.000029\r\n", + "..iler.py:410 _CompileLabel.__init__ 29 0.000029 0.000029 0.000001\r\n", + "..:221 Query._set_entity_selectables 6 0.000025 0.000029 0.000005\r\n", + "..per._iter_break_from_left_to_right 8 0.000010 0.000029 0.000004\r\n", + "..:94 PoolEventsDispatch.__getattr__ 12 0.000023 0.000029 0.000002\r\n", + "..ne\\result.py:956 ResultProxy.close 3 0.000008 0.000029 0.000010\r\n", + "..ngine\\base.py:590 Connection.begin 1 0.000006 0.000029 0.000029\r\n", + "..l\\_collections.py:910 LRUCache.get 6 0.000018 0.000028 0.000005\r\n", + "..\\cbook\\__init__.py:1737 74 0.000028 0.000028 0.000000\r\n", + "..ion-68gteq6k\\lib\\weakref.py:51 _cb 2 0.000007 0.000028 0.000014\r\n", + "..y:4590 _expression_literal_as_text 5 0.000009 0.000028 0.000006\r\n", + "..b\\function_base.py:2144 4 0.000013 0.000028 0.000007\r\n", + "..romnumeric.py:2185 _any_dispatcher 76 0.000028 0.000028 0.000000\r\n", + "..n38\\Lib\\socket.py:496 socket.close 1 0.000004 0.000028 0.000028\r\n", + "..ors.py:298 SelectSelector.register 1 0.000009 0.000027 0.000027\r\n", + "..array_function__ internals>:2 tile 1 0.000003 0.000027 0.000027\r\n", + "..ts.py:4056 ColumnClause._get_table 49 0.000027 0.000027 0.000001\r\n", + "..:513 Figure.set_constrained_layout 1 0.000010 0.000027 0.000027\r\n", + "..it__.py:1323 Manager._fixupParents 3 0.000018 0.000027 0.000009\r\n", + "..reading.py:261 Condition._is_owned 11 0.000017 0.000027 0.000002\r\n", + "..>:863 _ImportLockContext.__enter__ 30 0.000019 0.000027 0.000001\r\n", + "..ib\\figure.py:104 _AxesStack.bubble 1 0.000009 0.000027 0.000027\r\n", + "..8 SessionTransaction._prepare_impl 1 0.000013 0.000027 0.000027\r\n", + "..q6k\\lib\\sre_parse.py:921 fix_flags 12 0.000024 0.000026 0.000002\r\n", + "..compiler.py:419 _CompileLabel.type 29 0.000026 0.000026 0.000001\r\n", + "..is.py:1048 XAxis._set_artist_props 4 0.000005 0.000026 0.000007\r\n", + "..utionContext_psycopg2._log_notices 9 0.000026 0.000026 0.000003\r\n", + "..ents.py:3947 ColumnClause.__init__ 2 0.000010 0.000026 0.000013\r\n", + "..\\core\\getlimits.py:239 _get_machar 1 0.000013 0.000026 0.000026\r\n", + "..s.py:302 Rectangle.set_antialiased 8 0.000012 0.000026 0.000003\r\n", + "..io\\coroutines.py:18 _is_debug_mode 1 0.000010 0.000026 0.000026\r\n", + "..ages\\cycler.py:225 Cycler.__iter__ 12 0.000021 0.000026 0.000002\r\n", + "..ine\\url.py:161 URL._get_entrypoint 1 0.000006 0.000026 0.000026\r\n", + "..orms.py:1652 TransformWrapper._set 4 0.000023 0.000025 0.000006\r\n", + "..e.py:1907 Figure._set_artist_props 1 0.000007 0.000025 0.000025\r\n", + "..\\cbook\\__init__.py:1742 74 0.000025 0.000025 0.000000\r\n", + "..etbox.py:303 TextArea.get_children 33 0.000025 0.000025 0.000001\r\n", + "..240 QueuePool._should_wrap_creator 1 0.000005 0.000025 0.000025\r\n", + "..\\elements.py:709 Column.comparator 4 0.000019 0.000025 0.000006\r\n", + "..rl.py:152 URL._instantiate_plugins 1 0.000007 0.000025 0.000025\r\n", + "..base.py:321 _inspect_mapped_object 4 0.000025 0.000025 0.000006\r\n", + "..b\\function_base.py:2120 4 0.000024 0.000024 0.000006\r\n", + "..urceFileLoader._check_name_wrapper 9 0.000020 0.000024 0.000003\r\n", + "..xt_psycopg2.should_autocommit_text 3 0.000008 0.000024 0.000008\r\n", + "..y\\sql\\elements.py:4594 _literal_as 16 0.000016 0.000024 0.000001\r\n", + "..y:355 _ListenerCollection.__init__ 2 0.000018 0.000024 0.000012\r\n", + "...py:343 WeakKeyDictionary.__init__ 13 0.000024 0.000024 0.000002\r\n", + "..b\\socket.py:492 socket._real_close 1 0.000009 0.000023 0.000023\r\n", + "..llections_abc.py:72 _check_methods 14 0.000023 0.000023 0.000002\r\n", + "..\\__init__.py:43 normalize_encoding 1 0.000017 0.000023 0.000023\r\n", + "..ase.py:3227 AxesSubplot.get_xscale 4 0.000017 0.000023 0.000006\r\n", + "..gging\\__init__.py:214 _acquireLock 7 0.000015 0.000023 0.000003\r\n", + "..e.py:1757 RootTransaction.__init__ 1 0.000008 0.000023 0.000023\r\n", + "..lalchemy\\util\\compat.py:148 raise_ 12 0.000023 0.000023 0.000002\r\n", + "..\\encodings\\utf_8.py:33 getregentry 1 0.000010 0.000022 0.000022\r\n", + "..langhelpers.py:344 get_func_kwargs 1 0.000003 0.000022 0.000022\r\n", + "..y\\log.py:221 echo_property.__set__ 1 0.000001 0.000022 0.000022\r\n", + "..tlib\\axis.py:2166 XAxis.get_minpos 1 0.000011 0.000022 0.000022\r\n", + "..my\\util\\queue.py:43 Queue.__init__ 1 0.000009 0.000022 0.000022\r\n", + "..rms.py:1632 TransformWrapper._init 2 0.000008 0.000022 0.000011\r\n", + "..b\\asyncio\\futures.py:269 _get_loop 8 0.000018 0.000022 0.000003\r\n", + "..ok\\__init__.py:2125 _check_getitem 4 0.000018 0.000022 0.000006\r\n", + "..ery._adjust_for_single_inheritance 6 0.000019 0.000022 0.000004\r\n", + "..psycopg2\\_json.py:94 register_json 2 0.000010 0.000022 0.000011\r\n", + "..sion.py:3188 sessionmaker.__init__ 1 0.000021 0.000021 0.000021\r\n", + "..y:102 WeakValueDictionary.__init__ 1 0.000013 0.000021 0.000021\r\n", + "..l\\sqltypes.py:141 VARCHAR.__init__ 9 0.000021 0.000021 0.000002\r\n", + "..syncio\\tasks.py:751 _done_callback 1 0.000012 0.000021 0.000021\r\n", + "..29 _process_plot_var_args.__init__ 2 0.000005 0.000021 0.000011\r\n", + "..y\\sql\\operators.py:1409 is_boolean 6 0.000011 0.000021 0.000003\r\n", + "..dates.py:1496 YearLocator.__init__ 2 0.000012 0.000021 0.000010\r\n", + "..ok\\__init__.py:601 _AxesStack.push 2 0.000011 0.000021 0.000010\r\n", + "..157 CallbackRegistry._remove_proxy 2 0.000017 0.000021 0.000010\r\n", + "..nts.py:709 ColumnClause.comparator 4 0.000012 0.000021 0.000005\r\n", + "..mn._render_label_in_columns_clause 10 0.000014 0.000020 0.000002\r\n", + "..alect_psycopg2.create_connect_args 1 0.000009 0.000020 0.000020\r\n", + "..\\matplotlib\\transforms.py:768 null 1 0.000004 0.000020 0.000020\r\n", + "..\\lines.py:547 Line2D.set_markevery 30 0.000020 0.000020 0.000001\r\n", + ".._json.py:133 register_default_json 1 0.000003 0.000020 0.000020\r\n", + "..lib\\stride_tricks.py:266 30 0.000020 0.000020 0.000001\r\n", + "..58 PGCompiler_psycopg2.visit_table 6 0.000012 0.000020 0.000003\r\n", + "..ctions_abc.py:271 __subclasshook__ 5 0.000009 0.000020 0.000004\r\n", + "..\\numpy\\lib\\shape_base.py:1155 tile 1 0.000007 0.000020 0.000020\r\n", + "..patches.py:491 Rectangle.set_hatch 7 0.000011 0.000019 0.000003\r\n", + "..idspec.py:200 GridSpec.__getitem__ 1 0.000011 0.000019 0.000019\r\n", + "..tlib\\axis.py:2466 YAxis.get_minpos 1 0.000017 0.000019 0.000019\r\n", + "..range.py:449 RangeCaster._register 6 0.000011 0.000019 0.000003\r\n", + "..pg2\\extras.py:790 _solve_conn_curs 1 0.000005 0.000019 0.000019\r\n", + "..59 WeakValueDictionary.__setitem__ 1 0.000013 0.000019 0.000019\r\n", + "..7 BlendedGenericTransform.__init__ 2 0.000007 0.000019 0.000010\r\n", + "..hon38\\Lib\\uuid.py:271 UUID.__str__ 4 0.000019 0.000019 0.000005\r\n", + "..tlib\\legend.py:569 Legend._set_loc 1 0.000007 0.000019 0.000019\r\n", + "..otlib\\axis.py:662 Ticker.formatter 65 0.000019 0.000019 0.000000\r\n", + "..lements.py:2553 Cast._from_objects 2 0.000005 0.000019 0.000009\r\n", + "..book\\__init__.py:833 Grouper.clean 8 0.000016 0.000019 0.000002\r\n", + "..tlib\\transforms.py:274 Bbox.frozen 1 0.000003 0.000019 0.000019\r\n", + "..ments.py:4065 Column._from_objects 10 0.000013 0.000019 0.000002\r\n", + "..ib\\axis.py:819 XAxis.get_transform 4 0.000005 0.000019 0.000005\r\n", + "..my\\engine\\result.py:322 9 0.000019 0.000019 0.000002\r\n", + "..er_psycopg2._get_operator_dispatch 5 0.000015 0.000019 0.000004\r\n", + "..elpers.py:355 get_callable_argspec 1 0.000004 0.000019 0.000019\r\n", + "..g\\__init__.py:1392 Logger.__init__ 3 0.000013 0.000018 0.000006\r\n", + "..\\gridspec.py:246 GridSpec.__init__ 1 0.000008 0.000018 0.000018\r\n", + "..s.py:1096 _importlater.__getattr__ 1 0.000005 0.000018 0.000018\r\n", + "..m\\query.py:3551 Query._select_args 6 0.000018 0.000018 0.000003\r\n", + "..ns.py:738 PopulateDict.__missing__ 5 0.000010 0.000018 0.000004\r\n", + "..my\\engine\\result.py:460 6 0.000018 0.000018 0.000003\r\n", + "..bootstrap_external>:36 _relax_case 17 0.000018 0.000018 0.000001\r\n", + "..ors.py:234 SelectSelector.register 1 0.000009 0.000018 0.000018\r\n", + "..Compiler_psycopg2.construct_params 6 0.000017 0.000017 0.000003\r\n", + "..rm\\query.py:398 Query._entity_zero 6 0.000013 0.000017 0.000003\r\n", + "..nctools.py:524 decorating_function 1 0.000005 0.000017 0.000017\r\n", + "..ctions_abc.py:392 __subclasshook__ 40 0.000017 0.000017 0.000000\r\n", + "..bootstrap_external>:1508 1 0.000012 0.000017 0.000017\r\n", + "..tplotlib\\text.py:554 Text.set_wrap 24 0.000017 0.000017 0.000001\r\n", + "..:171 DynamicClassAttribute.__get__ 4 0.000015 0.000017 0.000004\r\n", + "..packages\\cycler.py:138 Cycler.keys 12 0.000017 0.000017 0.000001\r\n", + "..ler_psycopg2.escape_literal_column 2 0.000013 0.000017 0.000008\r\n", + "..utableColumnCollection.__getattr__ 10 0.000017 0.000017 0.000002\r\n", + "..y\\sql\\type_api.py:1465 to_instance 9 0.000013 0.000017 0.000002\r\n", + "..\\matplotlib\\figure.py:1089 fixlist 1 0.000007 0.000017 0.000017\r\n", + "..ents.py:180 _run_until_complete_cb 1 0.000012 0.000016 0.000016\r\n", + "..ocess_plot_var_args.set_prop_cycle 2 0.000008 0.000016 0.000008\r\n", + "..56 WeakInstanceDict.check_modified 10 0.000016 0.000016 0.000002\r\n", + "...py:258 Condition._acquire_restore 4 0.000012 0.000016 0.000004\r\n", + "..ollections_abc.py:657 _Environ.get 1 0.000004 0.000016 0.000016\r\n", + "..d_inline.py:59 draw_if_interactive 1 0.000010 0.000016 0.000016\r\n", + "..lib\\sre_parse.py:76 State.__init__ 12 0.000016 0.000016 0.000001\r\n", + "..nghelpers.py:248 PluginLoader.load 1 0.000004 0.000016 0.000016\r\n", + "..ections.py:396 OrderedSet.__iter__ 8 0.000012 0.000016 0.000002\r\n", + "..ib\\figure.py:70 _AxesStack.as_list 2 0.000012 0.000016 0.000008\r\n", + "..ql\\elements.py:4475 _expand_cloned 6 0.000013 0.000015 0.000003\r\n", + "..ts.py:4059 ColumnClause._set_table 2 0.000007 0.000015 0.000008\r\n", + "..bootstrap>:342 ModuleSpec.__init__ 10 0.000015 0.000015 0.000002\r\n", + "..registry.py:154 _EventKey.__init__ 4 0.000012 0.000015 0.000004\r\n", + "..WindowsSelectorEventLoop.get_debug 33 0.000015 0.000015 0.000000\r\n", + "..276 PGDialect_psycopg2._type_memos 1 0.000009 0.000015 0.000015\r\n", + "..ler.py:161 HandlerLine2D.get_xdata 4 0.000011 0.000015 0.000004\r\n", + "..s.py:1059 AutoDateLocator.__init__ 4 0.000005 0.000015 0.000004\r\n", + "..tableColumnCollection.__contains__ 10 0.000015 0.000015 0.000001\r\n", + "..til\\_collections.py:317 5 0.000015 0.000015 0.000003\r\n", + "..type_api.py:60 Comparator.__init__ 8 0.000014 0.000014 0.000002\r\n", + "..uery.py:698 Query.is_single_entity 6 0.000012 0.000014 0.000002\r\n", + "..matplotlib\\text.py:1115 Text.set_y 6 0.000006 0.000014 0.000002\r\n", + "..gging\\__init__.py:223 _releaseLock 7 0.000010 0.000014 0.000002\r\n", + "..e.py:117 LinearScale.get_transform 4 0.000005 0.000014 0.000003\r\n", + "..elements.py:4056 Column._get_table 20 0.000014 0.000014 0.000001\r\n", + "..tionContext_psycopg2.no_parameters 4 0.000012 0.000014 0.000003\r\n", + "..ncio\\coroutines.py:177 iscoroutine 2 0.000011 0.000014 0.000007\r\n", + "..nal>:939 SourceFileLoader.__init__ 9 0.000013 0.000013 0.000002\r\n", + ".._api.py:436 Unicode._type_affinity 2 0.000009 0.000013 0.000007\r\n", + "..\\rcsetup.py:163 validate_axisbelow 1 0.000006 0.000013 0.000013\r\n", + "..\\__init__.py:631 _AxesStack.bubble 1 0.000006 0.000013 0.000013\r\n", + "..lib\\figure.py:453 Figure._get_axes 1 0.000004 0.000013 0.000013\r\n", + "..19 ResultProxy._cursor_description 9 0.000013 0.000013 0.000001\r\n", + "..:3361 PGTypeCompiler.visit_VARCHAR 2 0.000008 0.000013 0.000007\r\n", + "..:2053 IdentityTransform.get_matrix 23 0.000013 0.000013 0.000001\r\n", + "..n\\Python38\\Lib\\typing.py:255 inner 1 0.000007 0.000013 0.000013\r\n", + "..py:1202 ResultProxy._fetchone_impl 3 0.000008 0.000013 0.000004\r\n", + "..rs.py:330 MarkerStyle._set_nothing 30 0.000013 0.000013 0.000000\r\n", + "..tlib\\dates.py:174 _get_rc_timezone 6 0.000006 0.000013 0.000002\r\n", + "..b\\function_base.py:2115 4 0.000007 0.000013 0.000003\r\n", + "..es\\thread.py:46 _WorkItem.__init__ 7 0.000012 0.000012 0.000002\r\n", + "..ib\\transforms.py:969 Bbox.mutatedx 2 0.000012 0.000012 0.000006\r\n", + "..-68gteq6k\\lib\\codecs.py:94 __new__ 1 0.000011 0.000012 0.000012\r\n", + "..Figure.set_constrained_layout_pads 1 0.000006 0.000012 0.000012\r\n", + "..y:154 to_unicode_processor_factory 1 0.000012 0.000012 0.000012\r\n", + "..ctions_abc.py:349 __subclasshook__ 5 0.000007 0.000012 0.000002\r\n", + ".. SessionTransaction._assert_active 8 0.000012 0.000012 0.000002\r\n", + "..base.py:707 Connection._begin_impl 1 0.000010 0.000012 0.000012\r\n", + "..\\_internal.py:830 npy_ctypes_check 4 0.000012 0.000012 0.000003\r\n", + "..py:210 WeakInstanceDict.all_states 2 0.000011 0.000012 0.000006\r\n", + "..lib\\os.py:668 _Environ.__getitem__ 1 0.000005 0.000012 0.000012\r\n", + "..b\\figure.py:66 _AxesStack.__init__ 1 0.000006 0.000012 0.000012\r\n", + "..matplotlib\\text.py:1104 Text.set_x 6 0.000005 0.000012 0.000002\r\n", + "..lotlib\\axes\\_base.py:232 8 0.000009 0.000012 0.000001\r\n", + "..208 _EmptyListener._adjust_fn_spec 4 0.000008 0.000012 0.000003\r\n", + "..ib\\threading.py:1110 Thread.daemon 2 0.000010 0.000011 0.000006\r\n", + "..chemy\\orm\\query.py:4634 27 0.000011 0.000011 0.000000\r\n", + "..ql\\base.py:1142 TIMESTAMP.__init__ 1 0.000006 0.000011 0.000011\r\n", + "..ib\\sre_compile.py:453 _get_iscased 29 0.000011 0.000011 0.000000\r\n", + "..200 BinaryExpression._from_objects 5 0.000011 0.000011 0.000002\r\n", + "..\\psycopg2\\_ipaddress.py:1 1 0.000011 0.000011 0.000011\r\n", + "..core\\multiarray.py:145 concatenate 29 0.000011 0.000011 0.000000\r\n", + "..b\\threading.py:1306 current_thread 3 0.000009 0.000011 0.000004\r\n", + "..tions.py:906 LRUCache._inc_counter 6 0.000011 0.000011 0.000002\r\n", + "..ments.py:765 Cast._select_iterable 29 0.000011 0.000011 0.000000\r\n", + "..y\\dialects\\__init__.py:24 _auto_fn 1 0.000006 0.000011 0.000011\r\n", + "..plots.py:214 subplot_class_factory 1 0.000006 0.000011 0.000011\r\n", + "..\\__init__.py:1837 _str_lower_equal 4 0.000008 0.000011 0.000003\r\n", + "..elements.py:4080 Column._key_label 10 0.000010 0.000010 0.000001\r\n", + "..:536 ScalarFormatter.set_useOffset 16 0.000010 0.000010 0.000001\r\n", + "...py:193 URL.translate_connect_args 1 0.000006 0.000010 0.000010\r\n", + "..ql\\operators.py:1386 is_comparison 6 0.000010 0.000010 0.000002\r\n", + "..ger.py:835 FontProperties.set_file 23 0.000010 0.000010 0.000000\r\n", + "..ages\\psycopg2\\compat.py:1 1 0.000010 0.000010 0.000010\r\n", + "..set.py:26 _IterationGuard.__exit__ 1 0.000009 0.000010 0.000010\r\n", + "..stry.py:169 _EventKey.with_wrapper 5 0.000006 0.000010 0.000002\r\n", + "..py:2606 BboxTransformFrom.__init__ 1 0.000004 0.000010 0.000010\r\n", + "..artist.py:1052 Line2D.sticky_edges 32 0.000010 0.000010 0.000000\r\n", + "..m\\session.py:1429 Session.get_bind 6 0.000010 0.000010 0.000002\r\n", + "..Compiler_psycopg2.bindparam_string 5 0.000010 0.000010 0.000002\r\n", + "..my\\engine\\result.py:319 9 0.000010 0.000010 0.000001\r\n", + "..ler.py:396 PGTypeCompiler.__init__ 1 0.000010 0.000010 0.000010\r\n", + "..lements.py:365 Column.get_children 27 0.000010 0.000010 0.000000\r\n", + "..ist.py:605 FancyBboxPatch.set_snap 1 0.000007 0.000009 0.000009\r\n", + "..__init__.py:60 _StrongRef.__hash__ 6 0.000006 0.000009 0.000002\r\n", + "..ure.py:487 Figure.set_tight_layout 1 0.000005 0.000009 0.000009\r\n", + "..tion-68gteq6k\\lib\\re.py:268 escape 1 0.000005 0.000009 0.000009\r\n", + "..on._memoized_attr__exec_once_mutex 1 0.000003 0.000009 0.000009\r\n", + "..pes.py:295 String.result_processor 5 0.000009 0.000009 0.000002\r\n", + "..b\\gridspec.py:31 GridSpec.__init__ 1 0.000007 0.000009 0.000009\r\n", + "..\\elements.py:232 Table._cloned_set 2 0.000008 0.000009 0.000005\r\n", + "..:3418 PGTypeCompiler.visit_unicode 1 0.000004 0.000009 0.000009\r\n", + "..gistry.py:263 _EventKey._listen_fn 16 0.000009 0.000009 0.000001\r\n", + "..\\futures.py:357 _call_check_cancel 6 0.000008 0.000009 0.000002\r\n", + "..CompositeGenericTransform. 3 0.000009 0.000009 0.000003\r\n", + "..\\figure.py:152 _AxesStack.__call__ 2 0.000005 0.000009 0.000005\r\n", + "..teq6k\\lib\\copy.py:257 _reconstruct 1 0.000005 0.000009 0.000009\r\n", + "..on.py:159 _create_json_typecasters 2 0.000006 0.000009 0.000005\r\n", + ".._.py:1663 Logger.getEffectiveLevel 3 0.000009 0.000009 0.000003\r\n", + "..y:980 _ConnectionFairy.__getattr__ 2 0.000005 0.000009 0.000004\r\n", + "..lib\\patches.py:2146 Round.__init__ 2 0.000009 0.000009 0.000004\r\n", + "..abc.py:816 WeakKeyDictionary.clear 1 0.000005 0.000009 0.000009\r\n", + "..ttr.py:257 _EmptyListener.__call__ 8 0.000009 0.000009 0.000001\r\n", + "..ing.py:255 Condition._release_save 4 0.000007 0.000009 0.000002\r\n", + ".._base.py:20 _atleast_1d_dispatcher 24 0.000009 0.000009 0.000000\r\n", + "..ctions_abc.py:367 __subclasshook__ 4 0.000005 0.000009 0.000002\r\n", + "..ler_psycopg2.get_select_precolumns 8 0.000009 0.000009 0.000001\r\n", + "..extensions.py:103 register_adapter 12 0.000009 0.000009 0.000001\r\n", + "..tgresql\\psycopg2.py:807 on_connect 2 0.000004 0.000009 0.000004\r\n", + "..tplotlib\\pyplot.py:612 get_fignums 1 0.000005 0.000009 0.000009\r\n", + "..lchemy\\util\\queue.py:135 Queue.get 1 0.000007 0.000008 0.000008\r\n", + "...py:284 WeakValueDictionary.update 1 0.000007 0.000008 0.000008\r\n", + "..ors.py:293 SelectSelector.__init__ 1 0.000003 0.000008 0.000008\r\n", + ":1 Deployment.__init__ 4 0.000008 0.000008 0.000002\r\n", + "..tplotlib\\path.py:197 Path.vertices 16 0.000008 0.000008 0.000001\r\n", + ".._memoized_property.expire_instance 2 0.000006 0.000008 0.000004\r\n", + "...py:299 NullFormatter._set_locator 31 0.000008 0.000008 0.000000\r\n", + "..mportlib._bootstrap>:725 find_spec 10 0.000005 0.000008 0.000001\r\n", + "..ure.py:155 _AxesStack.__contains__ 1 0.000002 0.000008 0.000008\r\n", + "..p>:143 _ModuleLockManager.__init__ 10 0.000008 0.000008 0.000001\r\n", + "..uery.py:505 Query._no_limit_offset 6 0.000008 0.000008 0.000001\r\n", + "..\\util\\_collections.py:771 5 0.000008 0.000008 0.000002\r\n", + "...py:1689 TransformWrapper. 6 0.000008 0.000008 0.000001\r\n", + "..\\Lib\\threading.py:944 Thread._stop 1 0.000006 0.000008 0.000008\r\n", + "..py:275 SelectSelector._key_from_fd 6 0.000008 0.000008 0.000001\r\n", + "..romnumeric.py:2273 _all_dispatcher 9 0.000008 0.000008 0.000001\r\n", + "..ty.py:17 WeakInstanceDict.__init__ 2 0.000008 0.000008 0.000004\r\n", + "..lotlib\\figure.py:78 _AxesStack.get 2 0.000006 0.000008 0.000004\r\n", + "..chemy\\orm\\query.py:4642 27 0.000008 0.000008 0.000000\r\n", + "..my\\sql\\compiler.py:2125 8 0.000007 0.000007 0.000001\r\n", + "..xesSubplot._request_autoscale_view 8 0.000007 0.000007 0.000001\r\n", + "..\\base.py:364 Connection.connection 11 0.000007 0.000007 0.000001\r\n", + "..py:4065 ColumnClause._from_objects 2 0.000005 0.000007 0.000004\r\n", + "..on38\\Lib\\socket.py:518 socket.type 1 0.000002 0.000007 0.000007\r\n", + "..\\matplotlib\\axis.py:372 14 0.000007 0.000007 0.000001\r\n", + "..artist.py:827 Line2D.get_clip_path 4 0.000007 0.000007 0.000002\r\n", + "..on38\\Lib\\uuid.py:259 UUID.__hash__ 4 0.000006 0.000007 0.000002\r\n", + "..axis.py:215 XTick.get_tick_padding 6 0.000007 0.000007 0.000001\r\n", + "..py:4335 _truncated_label.apply_map 27 0.000007 0.000007 0.000000\r\n", + "..b\\transforms.py:914 Bbox.intervaly 1 0.000005 0.000007 0.000007\r\n", + "..otlib\\transforms.py:394 Bbox.width 1 0.000006 0.000007 0.000007\r\n", + ".. HandlerLine2D.adjust_drawing_area 4 0.000007 0.000007 0.000002\r\n", + "..b\\_pylab_helpers.py:109 set_active 1 0.000006 0.000007 0.000007\r\n", + "..rtist.py:350 Text.is_transform_set 15 0.000007 0.000007 0.000000\r\n", + "..60 ScalarFormatter.set_useMathText 16 0.000007 0.000007 0.000000\r\n", + "..n-68gteq6k\\lib\\os.py:738 encodekey 1 0.000004 0.000007 0.000007\r\n", + "..rms.py:1284 TransformWrapper.depth 24 0.000007 0.000007 0.000000\r\n", + "..215 SelectSelector._fileobj_lookup 2 0.000003 0.000007 0.000003\r\n", + "..\\matplotlib\\axis.py:361 14 0.000007 0.000007 0.000000\r\n", + "..esql\\json.py:177 _PGJSONB.__init__ 1 0.000005 0.000006 0.000006\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..teq6k\\lib\\copyreg.py:99 _slotnames 1 0.000004 0.000006 0.000006\r\n", + "..lotlib\\axis.py:822 XAxis.get_scale 5 0.000006 0.000006 0.000001\r\n", + "..\\matplotlib\\axis.py:383 14 0.000006 0.000006 0.000000\r\n", + "..ckages\\psycopg2\\_range.py:36 Range 1 0.000006 0.000006 0.000006\r\n", + "..:493 Query._no_statement_condition 6 0.000006 0.000006 0.000001\r\n", + "...py:56 QueuePool._should_log_debug 1 0.000005 0.000006 0.000006\r\n", + "..b\\artist.py:819 Line2D.get_clip_on 3 0.000006 0.000006 0.000002\r\n", + "..b\\scale.py:43 LinearScale.__init__ 16 0.000006 0.000006 0.000000\r\n", + "..ycopg2.py:741 _psycopg2_extensions 1 0.000003 0.000006 0.000006\r\n", + "..otlib\\__init__.py:1267 get_backend 1 0.000002 0.000006 0.000006\r\n", + "..json.py:146 register_default_jsonb 1 0.000001 0.000006 0.000006\r\n", + "..otlib\\rcsetup.py:123 validate_bool 1 0.000005 0.000006 0.000006\r\n", + "..my\\engine\\default.py:855 11 0.000006 0.000006 0.000001\r\n", + "..y\\util\\_collections.py:140 __new__ 1 0.000005 0.000006 0.000006\r\n", + "..ngine\\url.py:299 _rfc_1738_unquote 1 0.000005 0.000006 0.000006\r\n", + "..ping.py:717 _GenericAlias.__hash__ 1 0.000004 0.000006 0.000006\r\n", + "..f.py:385 WeakKeyDictionary.__len__ 2 0.000005 0.000006 0.000003\r\n", + "..ib\\__init__.py:1285 is_interactive 2 0.000002 0.000006 0.000003\r\n", + "..07 ExtensionFileLoader.exec_module 1 0.000003 0.000006 0.000006\r\n", + "..ib\\cbook\\__init__.py:1575 10 0.000006 0.000006 0.000001\r\n", + "..ates.py:593 DateFormatter.__init__ 2 0.000002 0.000006 0.000003\r\n", + "..:687 Legend.get_legend_handler_map 1 0.000005 0.000006 0.000006\r\n", + ".._init__.py:44 get_projection_class 1 0.000005 0.000006 0.000006\r\n", + ".._init__.py:573 _AxesStack.__init__ 1 0.000003 0.000006 0.000006\r\n", + "..tion_base.py:1143 _diff_dispatcher 16 0.000006 0.000006 0.000000\r\n", + "..ig\\configurable.py:426 initialized 2 0.000003 0.000006 0.000003\r\n", + "..bootstrap_external>:1400 8 0.000005 0.000005 0.000001\r\n", + "..y:202 _broadcast_arrays_dispatcher 10 0.000005 0.000005 0.000001\r\n", + "..ng.py:1177 _make_invoke_excepthook 2 0.000005 0.000005 0.000003\r\n", + "..idspec.py:508 SubplotSpec.__init__ 1 0.000005 0.000005 0.000005\r\n", + "..ent\\registry.py:165 _EventKey._key 3 0.000004 0.000005 0.000002\r\n", + "..s.py:697 _GatheringFuture.__init__ 1 0.000005 0.000005 0.000005\r\n", + "..eq6k\\lib\\sre_parse.py:978 addgroup 1 0.000004 0.000005 0.000005\r\n", + "...py:112 PoolEventsDispatch._listen 3 0.000005 0.000005 0.000002\r\n", + "..s\\_base.py:386 Future.__get_result 7 0.000005 0.000005 0.000001\r\n", + "..qltypes.py:2793 TIMESTAMP.__init__ 1 0.000004 0.000005 0.000005\r\n", + "..ors.py:209 SelectSelector.__init__ 1 0.000004 0.000005 0.000005\r\n", + "..k\\__init__.py:827 Grouper.__init__ 2 0.000004 0.000005 0.000002\r\n", + "..elpers.py:1079 _importlater.module 1 0.000004 0.000005 0.000005\r\n", + "..is.py:1412 XAxis.get_major_locator 2 0.000004 0.000005 0.000002\r\n", + "..68gteq6k\\lib\\weakref.py:345 remove 2 0.000005 0.000005 0.000002\r\n", + "..esql\\base.py:1226 _PGUUID.__init__ 2 0.000005 0.000005 0.000002\r\n", + "..PGTypeCompiler._render_string_type 2 0.000005 0.000005 0.000002\r\n", + "..matplotlib\\colors.py:225 4 0.000005 0.000005 0.000001\r\n", + "..entifierPreparer_psycopg2.__init__ 1 0.000005 0.000005 0.000005\r\n", + "..oop._set_coroutine_origin_tracking 2 0.000005 0.000005 0.000002\r\n", + "..onfig\\configurable.py:381 instance 2 0.000002 0.000005 0.000002\r\n", + "...py:96 _AxesStack._entry_from_axes 1 0.000003 0.000005 0.000005\r\n", + "..ile.py:432 _generate_overlap_table 2 0.000004 0.000005 0.000002\r\n", + "..ry.py:390 Query._query_entity_zero 6 0.000004 0.000004 0.000001\r\n", + "..copg2\\tz.py:36 FixedOffsetTimezone 1 0.000004 0.000004 0.000004\r\n", + "..py:352 PGCompiler_psycopg2.__str__ 8 0.000004 0.000004 0.000001\r\n", + "..lotlib\\axes\\_base.py:321 12 0.000004 0.000004 0.000000\r\n", + "..packages\\psycopg2\\_json.py:47 Json 1 0.000004 0.000004 0.000004\r\n", + "..ctions_abc.py:252 __subclasshook__ 1 0.000002 0.000004 0.000004\r\n", + "..plotlib\\gridspec.py:382 1 0.000003 0.000004 0.000004\r\n", + "..process_plot_var_args._setdefaults 4 0.000004 0.000004 0.000001\r\n", + "..9 _ConnectionRecord.get_connection 1 0.000004 0.000004 0.000004\r\n", + "..et.py:20 _IterationGuard.__enter__ 1 0.000003 0.000004 0.000004\r\n", + "..py:155 HandlerLine2D.get_numpoints 4 0.000004 0.000004 0.000001\r\n", + "..se.py:2960 AxesSubplot.set_axis_on 1 0.000002 0.000004 0.000004\r\n", + "..f.py:463 WeakKeyDictionary.popitem 1 0.000003 0.000004 0.000004\r\n", + "..elpers.py:1381 parse_user_argument 2 0.000003 0.000004 0.000002\r\n", + "..ore\\numerictypes.py:239 obj2sctype 1 0.000003 0.000004 0.000004\r\n", + "..:964 SourceFileLoader.get_filename 9 0.000004 0.000004 0.000000\r\n", + "..ib\\artist.py:1013 Line2D.get_label 8 0.000004 0.000004 0.000000\r\n", + "..ges\\psycopg2\\extras.py:157 DictRow 1 0.000004 0.000004 0.000004\r\n", + "..teq6k\\lib\\codecs.py:952 getencoder 1 0.000003 0.000004 0.000004\r\n", + "..xtras.py:650 UUID_adapter.__init__ 4 0.000004 0.000004 0.000001\r\n", + "..8gteq6k\\lib\\weakref.py:323 __new__ 1 0.000003 0.000004 0.000004\r\n", + "..y:886 AxesSubplot.set_axes_locator 1 0.000002 0.000004 0.000004\r\n", + "..tenerCollection._memoized_attr_ref 2 0.000004 0.000004 0.000002\r\n", + "..reading.py:1095 _MainThread.daemon 2 0.000004 0.000004 0.000002\r\n", + "..chemy\\util\\queue.py:199 Queue._put 1 0.000003 0.000004 0.000004\r\n", + "..k\\__init__.py:626 _AxesStack.clear 3 0.000004 0.000004 0.000001\r\n", + "..tlib\\artist.py:1201 Text.mouseover 7 0.000004 0.000004 0.000001\r\n", + "..lotlib\\axis.py:645 Ticker.__init__ 4 0.000004 0.000004 0.000001\r\n", + "..py:357 String._has_bind_expression 2 0.000004 0.000004 0.000002\r\n", + "..py:140 _AxesStack.current_key_axes 2 0.000003 0.000004 0.000002\r\n", + "..s.py:1355 AutoDateLocator.set_axis 1 0.000003 0.000004 0.000004\r\n", + "..se.py:1699 RootTransaction._parent 1 0.000004 0.000004 0.000004\r\n", + "..ib\\function_base.py:2116 8 0.000004 0.000004 0.000000\r\n", + "..kers.py:286 MarkerStyle.get_marker 8 0.000003 0.000003 0.000000\r\n", + "..xecutionContext_psycopg2.post_exec 6 0.000003 0.000003 0.000001\r\n", + "..ansaction._is_transaction_boundary 4 0.000003 0.000003 0.000001\r\n", + "..ker.py:2004 _Edge_integer.__init__ 2 0.000003 0.000003 0.000002\r\n", + "..til\\_collections.py:991 3 0.000003 0.000003 0.000001\r\n", + "..Lib\\selectors.py:21 _fileobj_to_fd 2 0.000003 0.000003 0.000002\r\n", + "..WindowsSelectorEventLoop.set_debug 1 0.000003 0.000003 0.000003\r\n", + "..b\\cbook\\__init__.py:886 6 0.000003 0.000003 0.000001\r\n", + "..b\\cbook\\__init__.py:836 8 0.000003 0.000003 0.000000\r\n", + "..lchemy\\orm\\query.py:4795 6 0.000003 0.000003 0.000001\r\n", + "..strap>:397 ModuleSpec.has_location 10 0.000003 0.000003 0.000000\r\n", + "..ylab_helpers.py:29 get_fig_manager 1 0.000002 0.000003 0.000003\r\n", + "..s.py:263 MarkerStyle.get_fillstyle 8 0.000003 0.000003 0.000000\r\n", + "..ckages\\psycopg2\\extras.py:698 Inet 1 0.000003 0.000003 0.000003\r\n", + "..ctable.py:1982 Table._from_objects 6 0.000003 0.000003 0.000001\r\n", + ".._weakrefset.py:36 WeakSet.__init__ 1 0.000003 0.000003 0.000003\r\n", + "..ctions_abc.py:302 __subclasshook__ 6 0.000003 0.000003 0.000001\r\n", + "..__init__.py:51 _StrongRef.__init__ 3 0.000003 0.000003 0.000001\r\n", + "..gine\\default.py:295 get_pool_class 1 0.000001 0.000003 0.000003\r\n", + "..lectorEventLoop._process_self_data 6 0.000003 0.000003 0.000000\r\n", + ".. _ClsLevelDispatch._adjust_fn_spec 4 0.000003 0.000003 0.000001\r\n", + "..ogging\\__init__.py:189 _checkLevel 3 0.000002 0.000003 0.000001\r\n", + "..hemy\\engine\\url.py:56 URL.__init__ 1 0.000003 0.000003 0.000003\r\n", + "..\\matplotlib\\axis.py:153 6 0.000003 0.000003 0.000000\r\n", + "..ections.py:151 immutabledict.union 6 0.000003 0.000003 0.000000\r\n", + "..b\\path.py:251 Path.should_simplify 4 0.000003 0.000003 0.000001\r\n", + "..774 SourceFileLoader.create_module 9 0.000003 0.000003 0.000000\r\n", + "..copg2._check_max_identifier_length 1 0.000003 0.000003 0.000003\r\n", + "..y\\sql\\selectable.py:2987 6 0.000003 0.000003 0.000000\r\n", + "..g2.py:558 _PGUUID.result_processor 2 0.000003 0.000003 0.000001\r\n", + "..stgresql\\psycopg2.py:711 4 0.000003 0.000003 0.000001\r\n", + "..\\Lib\\threading.py:513 Event.is_set 5 0.000003 0.000003 0.000001\r\n", + "..ython38\\Lib\\inspect.py:80 ismethod 2 0.000002 0.000003 0.000001\r\n", + "..d_bases.py:2556 notify_axes_change 1 0.000003 0.000003 0.000003\r\n", + "..b\\weakref.py:328 KeyedRef.__init__ 1 0.000003 0.000003 0.000003\r\n", + "..ffsetbox.py:240 VPacker.set_offset 1 0.000001 0.000003 0.000003\r\n", + "..ath.py:230 Path.simplify_threshold 4 0.000003 0.000003 0.000001\r\n", + "..y:330 _ListenerCollection.__bool__ 1 0.000003 0.000003 0.000003\r\n", + "..tlib\\transforms.py:400 Bbox.height 1 0.000002 0.000003 0.000003\r\n", + "..tlib\\units.py:81 AxisInfo.__init__ 2 0.000003 0.000003 0.000001\r\n", + "..on38\\Lib\\inspect.py:158 isfunction 3 0.000002 0.000003 0.000001\r\n", + "..i.py:279 NullType.result_processor 4 0.000002 0.000002 0.000001\r\n", + "..lib\\transforms.py:931 Bbox.minposx 1 0.000002 0.000002 0.000002\r\n", + "..hemy\\util\\queue.py:195 Queue._full 1 0.000002 0.000002 0.000002\r\n", + "..ExecutionContext_psycopg2.pre_exec 6 0.000002 0.000002 0.000000\r\n", + "..n-68gteq6k\\lib\\os.py:732 check_str 1 0.000002 0.000002 0.000002\r\n", + "..gure.py:2059 Figure.add_axobserver 1 0.000002 0.000002 0.000002\r\n", + "..py:843 TextArea.set_minimumdescent 1 0.000001 0.000002 0.000002\r\n", + "..e.py:1694 RootTransaction.__init__ 1 0.000002 0.000002 0.000002\r\n", + "..teq6k\\lib\\copyreg.py:90 __newobj__ 1 0.000002 0.000002 0.000002\r\n", + "..6k\\lib\\enum.py:659 RegexFlag.value 4 0.000002 0.000002 0.000001\r\n", + "..dConnectionEventsDispatch.__init__ 1 0.000002 0.000002 0.000002\r\n", + "..vents.py:719 get_event_loop_policy 1 0.000002 0.000002 0.000002\r\n", + "..68gteq6k\\lib\\functools.py:63 wraps 1 0.000002 0.000002 0.000002\r\n", + "...py:1006 Legend.set_bbox_to_anchor 1 0.000002 0.000002 0.000002\r\n", + "..ng\\__init__.py:772 Logger.__init__ 3 0.000002 0.000002 0.000001\r\n", + "..ycopg2\\extras.py:65 DictCursorBase 1 0.000002 0.000002 0.000002\r\n", + "..mpl.py:143 QueuePool._inc_overflow 1 0.000002 0.000002 0.000002\r\n", + "..postgresql\\base.py:2708 1 0.000002 0.000002 0.000002\r\n", + "..meric.py:337 _full_like_dispatcher 4 0.000002 0.000002 0.000001\r\n", + "..idspec.py:67 GridSpec.get_geometry 3 0.000002 0.000002 0.000001\r\n", + "..plotlib\\gridspec.py:204 _normalize 1 0.000002 0.000002 0.000002\r\n", + "..my\\sql\\elements.py:4480 6 0.000002 0.000002 0.000000\r\n", + "..\\matplotlib\\path.py:211 Path.codes 4 0.000002 0.000002 0.000000\r\n", + "..mpy\\core\\multiarray.py:1043 copyto 4 0.000002 0.000002 0.000000\r\n", + "..set.py:16 _IterationGuard.__init__ 1 0.000002 0.000002 0.000002\r\n", + "..nit__.py:1220 PlaceHolder.__init__ 4 0.000002 0.000002 0.000000\r\n", + "..e.py:3867 AxesSubplot.set_navigate 1 0.000002 0.000002 0.000002\r\n", + "..tlib\\axis.py:1559 XAxis.have_units 2 0.000002 0.000002 0.000001\r\n", + "..b\\sre_parse.py:98 State.checkgroup 1 0.000001 0.000002 0.000002\r\n", + "..ib\\weakref.py:73 WeakMethod.__eq__ 1 0.000002 0.000002 0.000002\r\n", + "..g2\\extras.py:405 LoggingConnection 1 0.000002 0.000002 0.000002\r\n", + "..\\psycopg2\\extensions.py:109 SQL_IN 1 0.000002 0.000002 0.000002\r\n", + "..2.py:540 _PGJSONB.result_processor 1 0.000002 0.000002 0.000002\r\n", + "..g2\\extras.py:538 ReplicationCursor 1 0.000002 0.000002 0.000002\r\n", + "..\\transforms.py:939 Bbox.get_points 3 0.000002 0.000002 0.000001\r\n", + "..hemy\\util\\queue.py:183 Queue._init 1 0.000002 0.000002 0.000002\r\n", + "..nit__.py:1974 _OrderedSet.__init__ 1 0.000002 0.000002 0.000002\r\n", + "..ase.py:3618 AxesSubplot.get_yscale 1 0.000001 0.000002 0.000002\r\n", + "..end.py:666 get_default_handler_map 2 0.000002 0.000002 0.000001\r\n", + "..plotlib\\patches.py:1833 2 0.000002 0.000002 0.000001\r\n", + "..\\psycopg2\\extras.py:132 DictCursor 1 0.000002 0.000002 0.000002\r\n", + "..ib\\_pylab_helpers.py:99 get_active 1 0.000001 0.000002 0.000002\r\n", + "..\\sql\\selectable.py:3751 2 0.000002 0.000002 0.000001\r\n", + "..e.py:737 _ConnectionFairy.__init__ 1 0.000002 0.000002 0.000002\r\n", + "..:1088 ExtensionFileLoader.__init__ 1 0.000002 0.000002 0.000002\r\n", + "..ib\\axes\\_subplots.py:229 2 0.000002 0.000002 0.000001\r\n", + "..lotlib\\axes\\_base.py:586 4 0.000002 0.000002 0.000000\r\n", + "..plotlib\\axis.py:649 Ticker.locator 3 0.000002 0.000002 0.000001\r\n", + "..ec.py:93 GridSpec.set_width_ratios 1 0.000002 0.000002 0.000002\r\n", + "..lib\\transforms.py:935 Bbox.minposy 1 0.000002 0.000002 0.000002\r\n", + "..ib\\widgets.py:34 LockDraw.__init__ 2 0.000002 0.000002 0.000001\r\n", + "..610 _WindowsSelectorEventLoop.stop 1 0.000002 0.000002 0.000002\r\n", + "..sqltypes.py:2182 _PGJSONB.__init__ 1 0.000001 0.000001 0.000001\r\n", + "..nsaction._iterate_self_and_parents 1 0.000001 0.000001 0.000001\r\n", + "..matplotlib\\axis.py:1486 4 0.000001 0.000001 0.000000\r\n", + "..numeric.py:2354 _cumsum_dispatcher 3 0.000001 0.000001 0.000000\r\n", + "..q6k\\lib\\functools.py:486 lru_cache 1 0.000001 0.000001 0.000001\r\n", + "..Python38\\Lib\\inspect.py:260 iscode 2 0.000001 0.000001 0.000001\r\n", + "..hon38\\Lib\\inspect.py:285 isbuiltin 1 0.000001 0.000001 0.000001\r\n", + "..types.py:256 String.bind_processor 1 0.000001 0.000001 0.000001\r\n", + "..ements.py:1315 TypeClause.__init__ 2 0.000001 0.000001 0.000001\r\n", + "..y\\core\\multiarray.py:77 empty_like 4 0.000001 0.000001 0.000000\r\n", + "..copg2\\extras.py:233 RealDictCursor 1 0.000001 0.000001 0.000001\r\n", + "..indowsSelectorEventLoop.is_running 2 0.000001 0.000001 0.000001\r\n", + "...py:635 Legend._approx_text_height 2 0.000001 0.000001 0.000001\r\n", + "..matplotlib\\figure.py:97 1 0.000001 0.000001 0.000001\r\n", + "..copg2\\extensions.py:164 1 0.000001 0.000001 0.000001\r\n", + "..s\\psycopg2\\tz.py:108 LocalTimezone 1 0.000001 0.000001 0.000001\r\n", + "..matplotlib\\figure.py:74 2 0.000001 0.000001 0.000001\r\n", + "..WeakKeyDictionary._commit_removals 1 0.000001 0.000001 0.000001\r\n", + "..lotlib\\axes\\_base.py:588 4 0.000001 0.000001 0.000000\r\n", + "..ctionRegistry.get_projection_class 1 0.000001 0.000001 0.000001\r\n", + "..as.py:472 MinTimeLoggingConnection 1 0.000001 0.000001 0.000001\r\n", + "..sycopg2\\_range.py:242 RangeAdapter 1 0.000001 0.000001 0.000001\r\n", + "..psycopg2\\extras.py:261 RealDictRow 1 0.000001 0.000001 0.000001\r\n", + "..sycopg2\\extras.py:643 UUID_adapter 1 0.000001 0.000001 0.000001\r\n", + "..matplotlib\\figure.py:1073 fixitems 1 0.000001 0.000001 0.000001\r\n", + "..ycopg2\\extras.py:456 LoggingCursor 1 0.000001 0.000001 0.000001\r\n", + "..3883 AxesSubplot.set_navigate_mode 1 0.000001 0.000001 0.000001\r\n", + "...py:113 GridSpec.set_height_ratios 1 0.000001 0.000001 0.000001\r\n", + "..copg2\\extras.py:125 DictConnection 1 0.000001 0.000001 0.000001\r\n", + "..plotlib\\patches.py:1832 2 0.000001 0.000001 0.000000\r\n", + "..matplotlib\\figure.py:76 2 0.000001 0.000001 0.000000\r\n", + "..opg2\\extensions.py:133 NoneAdapter 1 0.000001 0.000001 0.000001\r\n", + "..opg2.py:548 _PGUUID.bind_processor 1 0.000001 0.000001 0.000001\r\n", + "..365 _ListenerCollection.for_modify 2 0.000001 0.000001 0.000000\r\n", + "..y:632 ThreadPoolExecutor.__enter__ 1 0.000001 0.000001 0.000001\r\n", + "..:505 Figure.get_constrained_layout 2 0.000001 0.000001 0.000000\r\n", + ".. LinearScale.limit_range_for_scale 2 0.000001 0.000001 0.000000\r\n", + "..38\\Lib\\urllib\\parse.py:624 unquote 1 0.000001 0.000001 0.000001\r\n", + "..ib\\threading.py:1095 Thread.daemon 1 0.000001 0.000001 0.000001\r\n", + "..b\\cbook\\__init__.py:828 2 0.000001 0.000001 0.000000\r\n", + "..util\\langhelpers.py:1500 only_once 1 0.000001 0.000001 0.000001\r\n", + "..sqltypes.py:786 TIMESTAMP.__init__ 1 0.000001 0.000001 0.000001\r\n", + "..chemy\\util\\langhelpers.py:906 memo 2 0.000001 0.000001 0.000000\r\n", + "..rs.py:63 _SelectorMapping.__init__ 1 0.000001 0.000001 0.000001\r\n", + "..emy\\engine\\url.py:129 URL.password 1 0.000001 0.000001 0.000001\r\n", + "..b\\gridspec.py:532 SubplotSpec.num2 1 0.000001 0.000001 0.000001\r\n", + "..y\\dialects\\__init__.py:52 1 0.000001 0.000001 0.000001\r\n", + "..ages\\psycopg2\\errors.py:1 1 0.000001 0.000001 0.000001\r\n", + "..y\\lib\\shape_base.py:1227 2 0.000001 0.000001 0.000000\r\n", + "..6 PGCompiler_psycopg2.default_from 2 0.000001 0.000001 0.000000\r\n", + "..ions.py:145 immutabledict.__init__ 1 0.000001 0.000001 0.000001\r\n", + "..emy\\util\\queue.py:191 Queue._empty 1 0.000001 0.000001 0.000001\r\n", + "..tors.py:272 SelectSelector.get_map 1 0.000001 0.000001 0.000001\r\n", + "..extras.py:296 NamedTupleConnection 1 0.000001 0.000001 0.000001\r\n", + "..y:512 LogicalReplicationConnection 1 0.000001 0.000001 0.000001\r\n", + "..ist.py:961 Rectangle.set_in_layout 1 0.000001 0.000001 0.000001\r\n", + "..py:536 PGDialect_psycopg2.do_begin 1 0.000001 0.000001 0.000001\r\n", + "..opg2\\extras.py:526 StopReplication 1 0.000001 0.000001 0.000001\r\n", + "..b\\gridspec.py:528 SubplotSpec.num2 1 0.000001 0.000001 0.000001\r\n", + "..:519 PhysicalReplicationConnection 1 0.000001 0.000001 0.000001\r\n", + "..s\\matplotlib\\dates.py:225 2 0.000001 0.000001 0.000000\r\n", + "..b\\_pylab_helpers.py:115 1 0.000001 0.000001 0.000001\r\n", + "..2\\extras.py:226 RealDictConnection 1 0.000001 0.000001 0.000001\r\n", + "..extras.py:500 MinTimeLoggingCursor 1 0.000001 0.000001 0.000001\r\n", + "..py:2459 AxesSubplot._get_axis_list 1 0.000000 0.000000 0.000000\r\n", + ".. FontProperties.get_size_in_points 1 0.000000 0.000000 0.000000\r\n", + "..ool\\base.py:231 QueuePool._creator 1 0.000000 0.000000 0.000000\r\n", + "..sycopg2\\_range.py:457 NumericRange 1 0.000000 0.000000 0.000000\r\n", + "..re\\multiarray.py:990 unravel_index 1 0.000000 0.000000 0.000000\r\n", + "..ib\\artist.py:800 XAxis.get_visible 2 0.000000 0.000000 0.000000\r\n", + "..2\\_range.py:486 NumberRangeAdapter 1 0.000000 0.000000 0.000000\r\n", + "..ec.py:549 SubplotSpec.get_gridspec 1 0.000000 0.000000 0.000000\r\n", + "..py:117 AxesSubplot.get_subplotspec 1 0.000000 0.000000 0.000000\r\n", + "..hape_base.py:1151 _tile_dispatcher 1 0.000000 0.000000 0.000000\r\n", + "..n\\Python38\\Lib\\typing.py:1146 cast 1 0.000000 0.000000 0.000000\r\n", + "..ycopg2\\_range.py:471 DateTimeRange 1 0.000000 0.000000 0.000000\r\n", + "..lib\\legend.py:918 Legend.get_frame 1 0.000000 0.000000 0.000000\r\n", + "..e\\interfaces.py:901 engine_created 1 0.000000 0.000000 0.000000\r\n", + "..opg2\\_range.py:476 DateTimeTZRange 1 0.000000 0.000000 0.000000\r\n", + "...py:101 State.checklookbehindgroup 1 0.000000 0.000000 0.000000\r\n", + "..chemy\\engine\\url.py:156 1 0.000000 0.000000 0.000000\r\n", + "..s\\psycopg2\\_range.py:466 DateRange 1 0.000000 0.000000 0.000000\r\n", + "..\\interfaces.py:856 get_dialect_cls 1 0.000000 0.000000 0.000000\r\n", + "..ion\\utils.py:58 profile_with_yappi 1 0.000000 0.000000 0.000000\r\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACdsAAAUsCAYAAADFYdzDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdeZhkVX0//vcZhhmQRVDBDRQV0a8YURGMkQhGTdyCRBOXaCIuWYxmMcZoXNFo8jOJ+s3XJXvcSUjcFZfEfUHAFTdQZFdAZWeG2fv8/rjVTnd1VdfaXTU1r9fz9NNd5957zumqe6qYmTefU2qtAQAAAAAAAAAAALpbM+kJAAAAAAAAAAAAwLQTtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAACYMaWUU0opdeHX7jQ+AAAAAMBKELYDAAAAAAAAAACAHoTtAAAAgF1GaVzcXjWtlLK9lHL7Sc8PAAAAAIDZJWwHAAAA7EoemuSOHdr3SHLy6k4FxqOUckKHAOkJE5zPW9vmcvGk5gKzwJoCAACA2SFsBwAAAOxKnrHMsaeXUsqqzQQAAAAAgN2KsB0AAACwSyil3CLJScuccuckJ6zObAAAAAAA2N0I2wEAAAC7iqckWd/WVtseL1f5jlVSaz2l1loWfk16TgAAAAAAoxK2AwAAAHYVT297fH6S97a1PbaUcvNVmg8AAAAAALsRYTsAAABg6pVS7pfkqLbmtyd5W1vb3kl+c1UmBQAAAADAbkXYDgAAANgVtG8PW5O8I8lHk/ykx7kAAAAAADCytZOeAAAAAMBySil7J3lSW/Pnaq2XtI6fmuRPFhw7upRyVK31nBWe155Jjk1yjyS3bDX/OMnXBhm7lLJ/kmOS3C3JAUk2JrkyyRdrrT8c66SXjn3LJPdPcpck+ye5PsnlSc6ptV6wkmMPo5RySJoKhwe1vmqSnya5IsmZtdYbVmEOd01ydJLbJ1mf5Oo0z9kXaq3XrvT4s6iUcs8khyc5OM1auinN63pxki/XWret8PjW8vDjTsuaPCrJIUn2TbI1yRW11nf0ef3tk9w9yWFJbp6mQuoNSa5Jcmmae3Dz+Gc+20op65LcL816uFWa98sbkpxVaz1rgH4OT7M25++xLUmuSvLDNPfYpjFPHQAAAJYlbAcAAABMu19PE4BY6G1tP/9J2/GnJ/njYQYrpZyQ5NNtzQ+utX6mdfx2SV6c5LeS7Nelj+8nedVyYY9Syr2SvCTJiWlCCJ3O+VKS59davzjYb7G8UsrxSV6U5CFJ9uhyzteS/EOSf6u11gH7PyXJyxe21VrLkHM9OMlzk/xqkiOXOXV7KeWsJG9KclqtdW7Acdp/x1fUWk9pHVuT5KlJ/jTJPbt0saOU8pkkL6m1ntnHeKek7Tlq8+lSej5lb6u1ntzrpH6UUi5Ocscuh+/Y4fnp5GfrpI/x7pVm3f5Kktstc+qGUsonkrymn+e1bYwTsouv5V5raaXXcpf+pmFN7pPkD5P8TpI7d+mi42tWSrlVkl9L8tAkxye5dY+pbC2lnJnkjUne0+/vsVJrqtd9PYgOc+z5nlJKOTnJW9qa71Rrvbh1/Mgkf57kcUn26dDF25IsG7YrpdwpzfvtI9P99U2SzaWUzyd5fa31o8v1CQAAAONiG1kAAABg2rVvC3tTknfPP6i1fiPJN9vOeUoppWPoZRSllMcm+W6SP0iXcE7LEUneXkr5r/Z5lMbLknwtyW+kSzin5QFJPl9KedFoM//Z2HuUUt6Y5DNJfjldwjkt903yL0k+1wo+rKpSyrpSyiuTXJjkhVk+1JM0/1PpA5OcmuScVgBqHPM4JMkXkvx7ugftkua5fEiSL5VSXj2OsWdRKeW2pZR3JflGkqdl+aBd0lQqOynN8/r+UsotxjQPa3nwMadlTd4/zWv311k+iNXp2lPTVN375ySPT++gXZKsS/KgJP+V5NutMBkdlFJekmZt/3Y6B+16Xb9/677+XpLnpPfru1eShyX5SCnl86WUOww6JgAAAAxK2A4AAACYWq3t4x7U1vz+WuuNbW1va3t8izQBnXHO5SlpQn7tVfaW8xtpQlrzfZQ0oZdXZPlwzKKhk7y6lPKcAcZd2kkz9juTPHvAS49L8tlSykChllG0AlX/k+SlGSKwkSYU98VSyq+OOI87JzkzTVBqEC8qpbxqlLFnUSnlqCRnJ/nNNPf1oB6T5MxSyhEjzsNaHnzMaVmTD0oTMBw2VPULGW23l/+T5h586Ah9zKRWSO4vM+TzW0q5Y5Ivprmv9xyii+OSnF1K+flhxgcAAIB+2UYWAAAAmGZPz9JQTnuwLkneleRvsjj08owkp41pHvdL8lcL5nJdko+kCWL9JMneaUIYj09yWNu1v1lKeX+t9b/TbPe4sFLfJUk+nOTbSa5OckCSY1v97N/Wz2tKKR+e36pvCM9L8sQFj29M8oEkX07y49bYd0+z9d+hbdcemuRTpZR711qvG3L8vpRSDkgTuLh7h8PfTvLZJN9J8xokycFpwnCPzOIKZfsm+e9SygNrrV8dYir7Jfloktu3HtckZyT5RJJLk2xIclCayl2/lqbC0kJ/UUr5UK2123aJVyY5Z8Fc79J2/ILWGMu5tMfxQXw3O5/TOyQ5cMGxba3jvXSdbynlfmm2vty37dBcks+neW4vas1h7ySHpNnis3171LumqWJ1dK31+j7m1M5aHnAtT9GavE2S92bxWjs7TQjwkjTPw22T3CNNOLKXHWmqEn4nyXlpXrcb0twb+6e5134+zRpf+D+t75vkP0sp96m1XrZM/yu6pqbM72Rx+HNDkv9Nc9/8OM3zd0iSB6d53hdpBe3OSudKg2e3+vlekmvTVBq8bZrg5COyuKLkrZOcXkq5b631ktF+JQAAAOis1FonPQcAAACAJUope6QJEy3cZvLyJIfWWuc6nH96mnDHvLkkdx70H9xLKSekCQUttCU7/0H/DUle1imo0tpm8rVZWnHqe2m21ftSmtDBTWkCM/9Sa+0UPLhNkvekCRMs9M+11t/r43c4JcnL25o3Z2dI5S1J/rTL77AmyXOTvCpLA2RvrbU+bZjxa619VTIrpbwvS6sSntGab7fg2nwg6KVp5r5wrIuT3KtDNcT269v/kmzh83VWkj+otX6ty7WHpXm97tt26OO11ocvN27r+hOy9J57cK31M72uXQmllLcmeeqCpktqrYeN0N+BaUJN7X28JckptdauocFSyl2SvCnJr7Qdem+t9XE9xj0h1vJIa7nVz7SsyR3ZGbz8ZpLfr7V+qcu1e9VaN3do/36Sb6WpDPipfgKbrSDYXyd5Utuh02utj+51fauPt2ZMa2qc7xellIuT3HFB09tqrSf3uObkNPfdQgtfm39M8pJa69Vdrl/02pRS1qXZqvuYtlM/nOTPa63nLjOX2yT52yRPaTv05SQP6LQmAQAAYFS2kQUAAACm1SOyOGiXJO/sFLRraa94tybJyWOay3w4549rrX/UrSJUrXVLrfU5ST7eduhuST7UmtOGJL9Ua/3HbkGAWuuVSR6d5Kdth55YStl7yN9hPmzz/9Van77M7zBXa31tmspQ29sOn9zaxnFFlFJ+N0tDPW9OctxyoZ4kqbVeV2t9XhZXG0uagNcfDDGd+efrw0lO6Ba0a419cZKHpangtNDDSinDbnc5S96UxUG7HUme0roPl63OV2u9IM17QXu457GllPsPMRdrudHXWp6yNTkf5vpikl/sFrRrjb0kaNdyTK31cbXW9/VbGbHWekmt9TeTnNJ26JGllE7V/nZH86/N82qtz+oWtEs6vjanZGnQ7oW11l9dLmjX6uvKWutvpdnOeaFjkvx672kDAADA4ITtAAAAgGnVHtBIkrcvc/4HsnPLvnlPa1V3GodTa63/r89zX9qh7eDW9z/uFVJJklrrtWkqay20f5ZWyBrEZ2qtf9HPibXWD6epiNXuj0YYv6tSyto0W3Mu9LFa67PrAFsz1FrfkuRf25qf26pUNqiL04TCugV3Fo57TZYGPtakCeHttkopd0vyhLbmF9da39VvH63X//eStAdvXjjktKzlxrJreUrX5PVJnlBrvWGIazPk1sPzXpmmYtq8kmarcxrvqbW+bpALWlUv/7Ct+R9rra8ZpJ9a6ylptq1daNj3BwAAAFiWsB0AAAAwdUopByd5VFvz12qt3+l2Ta11S5LT2prvmOQhY5jSjiwNnXRVa/1ymi1w230vSyt0LefdHdratyodxKBBudck+WFb22NKKbcdYQ7dPDGLtzOsWRrC6NcrW9fPu3WSBwzRzysGDOf8Z5p7ZaGjhxh3ljw/i/8O8qIkfzdoJ7XWbUn+qq35EaWU9u1Re7GWd+q1lqdxTb6u1vqjIecwklbA8B1tzcdNYi5TaC7Jnw1x3bOT7Lvg8YYkLxhyDq9se3zv1hbfAAAAMFbCdgAAAMA0emqSPdva2reJ7aRT5btOFfIG9Yla6yUDXvONDm1vGbAi1AVJ2is43W3Aecw7s9b6rUEuaFV0aw+XrE3y0CHnsJz2Lf8+U2v9wTAd1VovS9L+ux4/YDcbk5w64LjXJjm/rXnY12uXV0opSR7b1vzWbluu9uEjbY/XJxl0K1lreadea3na1mRN8u/DjD9G7ev7vqWU9s+q3dGnWttpD6r9HvvvYasWJjkjS6vbDnqPAQAAQE/CdgAAAMA0at+ab3uS/+h1Ua31jCwNQ5xUSrnFiPP53BDXdAr0fH4M/RwwRB9J8v4hr3tvh7afH7KvjlqhrF9saz5jxG4vant8nwGvP7PWunWIcS9oe3zzIfqYFfdKcmBb29Cva2ur3vZKg4O+rtbyYh3X8pSuyR/UWtur842klLJvKeWRpZQXllLeXko5vZTy+VLK10op32j/SvLGti7Wp6nSt7v79KAXtLaQ/bm25lHeH+aydI0Neo8BAABAT2snPQEAAACAhUopD0xy97bmj9Zaf9pnF29P8pcLHq9P8uQkbxhhWsNUc7pxhfoZNrz11SGv+1aSbVlcaXDcW6P+nyTtgcinllIePUKfd2h7fKsBr28PbfarPQy2O4ftHtih7Q2llC0j9HmztseDvq7Wcn9reRrX5NdGGHuRUsrRabY4PjHJ3iN2d0CWbtG7uxnmtXlAlhYD+ItSynNGmMfhbY8HvccAAACgJ2E7AAAAYNp02va1ny1k570jySuTlLY+RwnbXTvENdtWqJ9htyz83jAX1Vq3lFIuTnLXBc0HDzmHbg7p0tapfVi3HPD8a4YcZ1yv1yzo9Pq1B2lHNejrai33t5ancU3+ZNQBW1u+vj7JszK+XV9250DtvGFem0730p1HnUibQe8xAAAA6Mk2sgAAAMDUKKXsm+Txbc3XJvlwv33UWi9J8pm25qNalYyG1SlsM7Ba61j6GVJ7xbVRrh12+8tuViMQMWj1qkm+VrNiZl/X3WAtT+Nrd8Mog7WCdv+d5NkZ79+L786B2nnDvDbTeI8BAABAT8J2AAAAwDR5YpJ92tpOq7UOuu1kp0p4nSrm7U42jvHa/UaZSAcHjrk/poPXdWWsxlqextdu+4jXvyDJYzq0/yjJm5M8Jc3WpoemCSHuVWstC7+SPHjEOcyqYV6babzHAAAAoCfbyAIAAADTpFMg7vdLKb8/hr6fVEp5Xq110xj62hXtk+ErQ7UHIG8ccS7tOr0mJ9VaPzDmcVhdnV7XA2ut1636TGbLaqzlmVqTpZSDk/xFW/P2JM9P8sZaa79hMZXSxqfTPXbvWus5qz4TAAAAGIDKdgAAAMBUKKXcI8nPr+AQByR57Ar2P+1uPsZrxx2WuqpD253GPAarr9PrethqT2IGrcZanrU1eWKSm7W1vaDW+n8HCNolyS3GOKdpMMktcGftHgMAAGA3IWwHAAAATIvV2OZ1d95K9ohhLiqlrMvSgNRPRp7NYj/u0HavMY/B6vO6rozVWMuz9to9rO3xtUneOEQ/dx7DXEa1rUPbsKG5SYYHZ+0eAwAAYDdhG1kAAABg4kopeyb5rbbmrUnOHbHrQ7M4THBCKeXOtdYLR+x3V3R0kk8Ocd29sjTI8dXRp7PIN5NsTrLXgraHj3kMVt/ZHdoekeTtqz2RGbMaa3nW1uShbY/PqrVuHaKfB4xjMiPqtIXw/oN2Uko5JItf39V2Voe2RyR55WpPBAAAAAahsh0AAAAwDU5MclBb2/tqrfce5SvJS9r6LEmetiq/0fQ5acjrOm29e+YoE2lXa92c5AttzbctpTxknONMsU7bWO6x6rPYqX0+w87ljCQb29oeVUo5cMj+aKz4Wp7BNXmrtsfXDNpBKeVWSR485PjjWlNJ561/h6m4d/wIcxhZrfWSJD9oaz62lDJU5UYAAABYLcJ2AAAAwDTotL3rO8fQ72lpKuQtdHIpZXf8O5EHlFKOHOSCUsr6LK04uD3JJ8Y2q50+0KHtlBUYZxrd2KFt31WfxU7t8xlqLq3KYR9ra94vyfOG6Y+fWa21PEtrsj302R6+68ezM3wluLGsqZYfJdnQ1nbsEP387ghzGJf2e2xNkpdNYiIAAADQr93xL5YBAACAKVJKuX2SX25r/mmWhnQGVmu9JslH25oPSfIro/a9i/r7Ac//8zTP10IfqLVeMab5LPRvSa5sazuulPKCFRhr2lzboW2YSlXj0j6fA0aoRvfqDm1/Xko5bsj+aKzGWp6lNdn+e/5CKWWffi9uhRv/YoTxx7amaq1zSb7R1vyoUsrN++2jlHJikgcNM/6YvTbNdsULPbmU8oRJTAYAAAD6IWwHAAAATNrTsnRLvdNqrZ221hxGpwp5nSrp7Q4eUkp5VT8nllIekeSlHQ79v/FOqVFr3ZTOway/KqU8Z9h+SykPL6W8efiZrYrLklzf1vbISUyk5Vsd2oaaT63160ne09a8Z5L3lVKGCvuUUtaXUn63lPLcYa6fESu+lmdsTX6+7fG+SV7ez4WllMOSfDDJ+hHGH9uaamkPke+dpN/74V5J3jLC2GPTCnu+qcOhfy+lPG6YPkspe5RSnlBK6XTvAgAAwMiE7QAAAICJKaWUNGG7duPYQnbeh7I0yHRiKeWgMY6xK5ivHvTiUsq/dKuCVEpZU0r5kyTvTROKWuittdbPreAc35TO2wq+oZTyvlLKUf10Ukq5UynlBaWUb6YJpUxDBaeuaq01yZfamh9aSvnrUsrBE5jSmUnm2tpeW0p5TCml/Z7ox+8luait7VZJPllK+dtSym366aSUcv9SymuTXJzkn5LcZYi5zILVXMuzsibfk6X39PNLKX9ZSlnb7aJSypPSrM35SpM3DDn+uNfUW5PsaGt7TinlFd1+n1YI7RlJvpDkFklqlm6zPgkvSXJ2W9vNkry7lPKvpZS+1nkp5Z6llFcm+X6S/0zS170JAAAAg+r6FwkAAAAAq+DBWbpd5vm11rPGNUCtdUsp5b+TPHNB855JnpLk9eMaZxfwsiR/0/r5mUkeX0p5f5IvJ/lJkgOS3D3J45LcocP1lyRZ0UpitdZaSnlKmjBIe1DipCQnlVLOSfKZJOcnubp17IA04a17JTk6k92CdVj/nuThbW0vTPLCUsoVSa5J0l7t8YO11peNeyK11itKKR/L4spbt07y/iRbSymXJdmYJqyz0DNrrV/p0N/VrW0rv5BkYTBsbZI/S/JHpZQvJflckh+m2XJzfZrX9bZJ7pPkfkl2t4BsN6u2lmdlTdZav19KeWeS32479JIkJ5dS3p3km0k2pAmi3S3JiVkc6LwpyQuS/MMQ4497TV1eSnlDkj9pO/SyNNuwvifJua053zLJzyV5VBbfD69J8qQkdxz09xmnWuvmUsqvpQkkHtp2+BlpXp+vJPlsmqDtNWmq4R6Q5OAk907z/nD71ZozAAAAuzdhOwAAAGCSOm3nOs6qdgv7fGZb2zOye4Xt/i5NIOHxrcf7pwmetIdPOvlhkl+qtV63QnP7mVrrhlLKL6bZ5rDTNoJHZTYrFr0nySeTPKTDsdu2vtp9YwXn8/wkxyfZp619XbpXlNu3W2e11m+XUo5JU2Xtnh36PL71RW+rupZnaE3+UZJj0wQRFzokS0Nr7bYl+Y004bVhjXVNJXlxkodm6Xq6S5I/7zGX01rXP6nHeauiFR48Ns282qse7pHk/q0vAAAAmDjbyAIAAAATUUo5IMljOxx61woM97kkl7a1HVlK2W3+8b61VemTk/zjgJd+McnxtdYLxz+rzmqtN9Zafz3Js5L8aMTuLk0TEppqtda5JL+e5NRJzyVJaq3fTfKwJD8YY5/npwnMvC5NFa9RfCXJR0ae1C5oEmt5FtZkrfX6NOG0Mwe89PIkD621jnS/jXtN1VpvSnJClm7BuuxlacKav9l6z5katdYr04SNX5Kmet0ozk3yXyNPCgAAADoQtgMAAAAm5clJ9mpr+1Kt9YJxD9QKp3QK8XWqrDezaq3ba63PShM4+VSS5cIWX0/yO0l+cTWDdgvVWv8xzfaTv5PkE+mvqtRcmrn/bZptig+rtb52xSY5RrXW62qtT05TeeuUJB9OckGabVW3TWA+X2rN5ZFJ3pxmK9HL02y1OVRQp9Z6U631eUkOS/M7fiXJjj4u3Zzmnn1RkiNrrceMGn7alU1qLe/qa7LW+qM0ldOek6TXc3FJkpcmuXut9XNjGn+sa6rWenWSB6YJQS732bkjyUeTPLDW+vxpC9rNa93Xr06zte3z0jw/W/u4dHuSM5K8MsmxtdZ71FrfvnIzBQAAYHdWmr9rBgAAAGB3U0q5VZKfT7Pt4L5JbkhyRZKvr0TocVSllHVJjk6z7eOtkhyYJmRxY5Krknw/yfdrrZsmNkkGVkq5eZJjkhyc5JZJbp5kU5rX9fIk30tyYa21n1DeTCmlnJLk5Qvbaq2lw3kTWcu7+pospRyRZmvZg9Js77oxzVa736y1fm+ScxtG6/c5Os1a2i/N63BBkjNqraNWi5uIUsrN0mybfLs07w8HJNmS5nf7SZr3hx/UWvsJ5QEAAMDIhO0AAAAAAKZQv2E7AAAAAFaHbWQBAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAeSq110nMAAAAAAAAAAACAqaayHQAAAAAAAAAAAPQgbAcAAAAAAAAAAAA9CNsBAAAAAAAAAABAD8J2AAAAAAAAAAAA0IOwHQAAAAAAAAAAAPQgbAcAAAAAAAAAAAA9CNsBAAAAAAAAAABAD8J2AAAAAAAAAAAA0IOwHQAAAAAAAAAAAPQgbAcAAAAAAAAAAAA9CNsBAAAAAAAAAABAD2snPQHoppRy8yTHL2i6LMnWCU0HAAAAAAAAAACYvHVJDl3w+LO11utXY2BhO6bZ8Uk+MOlJAAAAAAAAAAAAU+sxST64GgPZRhYAAAAAAAAAAAB6ELYDAAAAAAAAAACAHmwjyzS7bOGD97///Tn88MMnNRcAAAAAAAAAAGDCfvCDH+Skk05a2HRZt3PHTdiOabZ14YPDDz88Rx555KTmAgAAAAAAAAAATJ+tvU8ZD9vIAgAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAbDbqFs2pZ7zhdSf/mjSUwEAAAAAAAAAdjHCdgDsFuoXT0991G1Tn/OQ1MfeOXOvenrq9u2TnhYAAAAAAAAAsIsQtgNg5tVrf5r6kickWzbtbPz4u5J3v2FykwIAAAAAAAAAdinCdgDMvk+elmzftqS5nv62CUwGAAAAAAAAANgVCdsBMPPqf/595wMXn7u6EwEAAAAAAAAAdlnCdgDMvg5V7QAAAAAAAAAABiFsB8Ds27510jMAAAAAAAAAAHZxwnYAzL5twnYAAAAAAAAAwGiE7QCYfbaRBWiT9noAACAASURBVAAAAAAAAABGJGwHwOzbIWwHwGIf/VbNmt/d8bOvr15SJz0lAAAAAAAAppywHQCzb8eOSc8AgCny6fNqHvWGuUVtx7x6Lt+7UuAOAAAAAACA7oTtAACA3cpj3jTXsf05p3ZuBwAAAAAAgETYDgAA2M1s2NK5/ZPnre48AAAAAAAA2LWsnfQEAAAAuvnxDTXv/VrNpdckv3T3kofdo0x6SgAAAAAAAOymhO0AAICpdPFVNb/02rlcfHXz+DUfq3nRI0teddLKFejesq1m/Z4CfQAAAAAAACxlG1kAAGAqvebj9WdBu3l/9ZGaS6+uKzbmh7+5Yl0DAAAAAACwixO2AwAAptI/fbZzqO5fv7ByYbtPf2/l+gYAAAAAAGDXJmwHAABM3I65mq9cXPOhc2qu3bh84O0T565cIO6GTSvWNQAAAAAAALu4tZOeAAAAsHu7ekPNr/zfuXzt0ubx2jXJqb8zmf8v6MKrVLYDAAAAAACgM5XtAACAifrT/6o/C9olyfa55PH/NDeRuZxxwUSGBQAAAAAAYBcgbAcAAEzUh765etXkrumxRW2SbN2uuh0AAAAAAABLCdsBAAATs31HzXU3rd54V2/ofc6GLSs/DwAAAAAAAHY9wnYAAMDEbNq2uuNt29H7nE1bV34eAAAAAAAA7HqE7QAAgIm5aYhg25kXDj9eP2G7y64dvn8AAAAAAABml7AdAAAwMd+4bHXH2z7X+5z/+W5d+YkAAAAAAACwyxG2AwAAJmbjlsGvucMthh+vn8p2ZfjuAQAAAAAAmGHCdgDMtFpVJwKYZpu2Df4+vaOP6nTd9BO2e/kHa07/ps8PAAAAAAAAFhO2A2C27egjVQHAxGzaOsQ124Yfb3ufHwu/+sa5fPw7AncAAAAAAADsJGwHwGybE7YDmGbDBOeGCejN66ey3bxXfGiEEnoAAAAAAADMHGE7AGZbFZQAmGbDVrYbdpvwrQOE7c68cKghAAAAAAAAmFHCdgDMNtvIAky1YbeE3bJ9yPFGqIoHAAAAAADA7k3YDoDZZhtZgKl205Dht2FDczdtHa4iHgAAAAAAAAjbATDbhO0Aptqwle1W67pht6sFAAAAAABg9gjbATDbbCMLMNU2DxuaG7Ky3aDjbR1yu1oAAAAAAABmj7AdALNNZTuAqbZtyDDbsJXtBg3PDTsOAAAAAAAAs0fYDoDZJmwHMNW2Dfk2PWwIbsugYbshK+gBAAAAAAAwe4TtAJhtwnYAU23r9jrUdcOG4LYO+LGgsh0AAAAAAADzhO0AmG07hO0Aptmwle0220YWAAAAAACAVbZ20hMAgBVV5yY9AwCWMWiluXnDhuAGDtttTS66qmbbjmRNSQ67ZbJ2j5IbNtVctSG5062SUspwkwEAAAAAAGCXImwHwGxT2Q5gqg1b2W7T1ppk8JDboOG+Y/+qc2h7jzXJjrnk0AOTdzxjTR50hMAdAAAAAADArLONLACzbU7YDmCaDVppbt5qVbbrZkcrg3fZtckj/n4uV15fx9MxAAAAAAAAU0vYDoDZNmcbWYBpNnRluyHDdsOOt5xN25LTvyVsBwAAAAAAMOuE7QCYbSrbAUy1Qbd1nbdp65DjjamyXbtPnrsy/QIAAAAAADA9hO0AmG07hO0AptlqV7Y788KVqUD3kxtVtgMAAAAAAJh1wnYAzDaV7QCm2rCV5s4aIjR30VU1F1893Hi9fOq8pFaBOwAAAAAAgFkmbAfAbBO2A5hqw1a2+/h3Br/m37+4smG4z5+/ot0DAAAAAAAwYcJ2AMy2ubnux9b4GASYtGEr2x1/xODXvPr0lQ3bffp7KtsBAAAAAADMMikDAGbbcpXt1uyxevMAoKNhK9vtWCZLPSmXrNAWtQAAAAAAAEwHYTsAZttyYbtSVm8eAHS0dciw3bAhvW6OuPXofVxxvcp2AAAAAAAAs0zYDoDZtmPMaQwAxmrY0Nz2MVe2WzuGPxldes3ofQAAAAAAADC9hO0AmG3LVbarKhABTNrW7cNdN+6w3eOOHr3a6UVXJdVnCwAAAAAAwMwStgNgtgnbAUy1oSvbDXHdfe/Q/dhjjho9bLd5W3Ll9SN3s8S1G2ve/dWav/7oXN7yxblcdo3PLwAAAAAAgElYO+kJAMCKWnYbWWEFgEnaMVczN+Rb8XlXDn7NjZs7t5/8CyX3WSaIN4gLr0pue8B4+kqS866oecjr5nLFghDfurU17/79NXn0vUYPCAIAAAAAANA/le0AmG3LVbYDYKJ6VbW7y0HJSx7VOVC2ZYjtZ8//SfdxShlPcO2iq8Yb5H7OfywO2iXN1ru/9W9z2bZdaBwAAAAAAGA1CdsBMNuW2yrWNrIAE7V1mcDc2S9ak/NfvUduv0yVuO07xvM+Ps5PgwuvGl9fm7fVfO77nY9dvyn58iXjGwsAAAAAAIDehO0AmG1zc92PCdsBTNTmbd2P7b2u+b7P+u7n3LR1sPH23KNz+3yVvF+7z2D9dfKuM2uuunE8ny83bEq2L/MxdvWGsQwDAAAAAABAn4TtANh9CdsBTNSm5cJ2ezbf73OH7tu7Lnd9ux1zteu2tScc0Yzx3IeO/sej83+SHPy8uTz2zTuyaetonzMnvnGZpF2STdt8jgEAAAAAAKwmYTsAZptAHcDU2rRMZbr5sN3890Gvb/ftH3U/tt9ezffj7lpy1ovG80ek938j+bN3D/8Z9F9fmcvZFy9/zpd7HAcAAAAAAGC8hO0AmHHLBx2qMB7AxCxb2a61jexyYbvltqFt94Fzur/fLxzjmMO6V9Ib1Pu+NvxnzB/+R+9rz7vCZxgAAAAAAMBqErYDYLb1CtMJ2wFMTD/byM6H7ga9vt11N3U/dueDFj9+3H3773c5V96QbNs+3OfMT2/sfc6htxhfMBAAAAAAAIDehO0AmG3CdABTq9s2sKUk69Y2P++13DayA4Ttljt3n/WLQ2tP/YU1KWPKsQ0yx0Ft3bFyfQMAAAAAALCUsB0AuzdhPICJueL6zu/Be++ZlFbabf3adA2+dQvrdfJPn+081hOPWdr5o+9V8q5nlNzn0GYuD75b/+O0W8mw3bbtK9c3AAAAAAAAS62d9AQAYEXZRhZgan3qvM7tC6vZlVKy19rOobVxBNn226tz+xOPXZMnHpvUWlNKyTGv3pGvXjJ4/4MEAued/+P+Ppu2CtsBAAAAAACsKpXtAJhxvQILwnYAk3L7Azu3X7Nx8eO913U+r98gWxOY63xs45blr52vsPfY+w63r+zmIQKB37m8v/O27vAZBgAAAAAAsJqE7QCYbSrbAUyt7Tv6O2/vPTu3b9rW33v4lu3d3+6Pu2t/czjxqNI1sLecbX3+jsNcs2UFt6gFAAAAAABgKWE7AGabsB3A1PrWDzu/Bz/k7osfj1rZbrnz7n+n/hJ0R96u5J3PKNlnfX9jzts6RNiu34p1w/QNAAAAAADA8ITtAACAifjItzu3f7ttG9Xule36G+dH13U/1q3vTp507Jpc/fo1OetFa3LF363J0x7YO6i3dXv//c/rt7LdMH0DAAAAAAAwvLWTngAArCiV7QB2OT++YfHjUcN2F/60+7Fb7NNfH/PWrS055rDm5xs2zfU8fyW3kVXZDgAAAAAAYHWpbAfAbOsZphO2A5h2o24ju1x47eD9+9tGtpN+8trDVJ/r9xqV7QAAAAAAAFaXsB0AM05lO4BpdNWN/b//jlrZbtO2lXmv76fXYarP2UYWAAAAAABgOgnbATDbbCMLMJX+7n8HCNuNWNmuWyjvLgf1PYWO+vkIsY0sAAAAAADA7BC2A2D3JmwHMBGfPHeQynadt3rtt7LdTV1Ced0q5vXrqEN7b0G7ktvIblHZDgAAAAAAYFWtnfQEAGBF9QzTCdsBTMK1G7sfe/0TFofY9upS2W5zv9vIdgvbdem3X888ruQVH1r+c2TrjpqkdyhvoX4r2/Vb2W/jlpqvX5psn0v2XZ/ss37x93VrB5sfAAAAAADA7krYDoDZpnIdwFS68Krux57+wMXhr24V6DZt7e89vlsFvFEr293+wJJnnVDyD5/pPo9hKtv1HbbrI2z4z5+by7NPrdkx1/2cPffYGbxbFMZbl+y7V8k+65c/vm+X40J8AAAAAADArBG2A2DG9QhiCOMBrLovX9z9vfffnlqy3159hu36rGz3li92Hm/UynZJ8sYnldz/TsnJb+k8Rr/BuWGu6VXZ7uyLan7/nb0/57btSK67qflaavgKsWvXJPvutTCYtzikd7Mlba3v61shvy7H161NShHkAwAAAAAAVp+wHQCzrVeYTtgOYNW96L3dy6zdZv+lIapuobh+t1HtFl7bawx/Giql5LcfUPI3H9uR716x9PiWISrbbe0zbLd9Ltm2vWbPLhXkPvzNyX7GbZ9b2RDfzmDezp/3Wd9U4lvueHubEB8AAAAAANAvYTsAdm/CdgCr7pPndT/2c4csbRu1st0Rt05+fMPS9rMu6u/6fqzv8ierzX3OcaFBquFt2pbs2WXsy68ffOxdwUqG+Dpth7swxLfc8e7b6QrxAQAAAADArBC2A2C29QzTCdsBTJNDDhx/Zbtu5z38nuMLQHWb46Bhu+07av7hM/1/Nm3aluy/d+djO4bYwnZ3tn0uuX5T87XU8P89sceabgG9ZN+2EF+3452uF+IDAAAAAIDVJ2wHwGyzjSzAVLl24+Dvu6NWtusWeLv3oQNPpatR5zjvj08b7Pn5+qXJw+/Z+dggFfJYOTtWOMTXOYy3M8S33PFO168X4gMAAAAAgK6E7QCYccJ2ANPk499Z/bBdt/P26tLvMEatvpck27bXnHrWYM/PO86sXSv0bZ/rfM1T7l/y0keXbNiSbNySbGh9bdxSF/y883vzc207d+f3QQOFjMdqhfj2WZfsu9fCn0tutqRt/ueSfffqdI0QHwAAAAAAs0HYDoDZJkwHMFXOu3Lwa/ZeV9IpHNRvkG3r9s7tYw3b7dlljgME0c67sltwqrv/OLvmXc/sfGzbjs6fgQfsk9z11p1CT8MFoXbM1QWhvKVhvA2tEF/78Y3dAn5bkw2bhfgmZfkQX7J8kG/5EN988G6fda1qeot+3hniW3p8cYhv4XEhPgAAAAAAVpOwHQCzzTayu50zLqg57jU7yzm99Wklv/2ANROcEbDQ1mW2Nn3xozoHZrpVtrtxc39jdttOdc89+ru+H90q23XbwraTbpXohrW9y++9dsxviXusKdl/72T/vbudMXyI76ZW8G5hCG/jz9rqgp93tjfX1EVtQnyTt2MuuWFz89XZcCG+NWVpcG/x1ritLXM7Ht+5nW778b32FOIDAAAAAGApYTsAdm/CdjPl7IsWB+2S5OS31GzaOpffO17gDqZBtypzSfLKE7uE7boE2bbPJbXWnoGYbmG7tWvGF6TpViXvE+f2/zlzydVjmkzL/57buX2cIcOVtMeakv32Svbbq9sZo4f4Nm5tVdvbvDDMVxe3bVkc4ltyzRYhvkmaqysb4vvZdrqLAnw7g3qdj5e2c3d+F+IDAAAAANi1CdsBMNt6humE7WbJs0/tXBbqWe+q+b3jV3kyQEfdKtuddO/uAZRule2S5LtXJEfebvkxV6WyXZc5Xn5d/3386+fHW9quW1W9cVe229WsdIhvXNvpzv98U5/bJTNeKxniWxrcW1xt72Zdj5cuwT8hPgAAAACA1SJsB8CMs43s7uSrl3Q/tmVbzfo9/SM0TFq3ynbr1nZfn7fat3t/X7+05sjbDVfZbpxhu+s3dW6/zf799zHubWQPuFly3U1L239843jHobFSIb65+Up8XcJ4G7bUrgG/jV0CfhuE+CZmrjZbYHffBnv0EF/nMF9Zcnyfdc32ufuuLwt+Xnx873VCfAAAAAAACwnbATDbeoXpVihsV2vNJ85NPn9+zRG3Tk48qmT/vf1D5SR97DvJY+496Vkk126s+eA5NRf8NDn+iJJfurt/xGY4l19X84Fv1FyzMfmVI0vud9iucR91DdstE3w7/ODux7pVb1toNcJ2B+032NidnHfleOYyr9suube7+XjHYWWtWVOaENQKhvg6h/U6V9u7aZmAnxDf5KxUiK+U9mDezp+b763tdDseb22nu9fS40J8AAAAAMCuSthuQkopeyQ5PMk9ktwuyc2TbElybZILknyl1rpxzGPumeSBSe6Q5LZJNiS5PMnXa60Xj3MsgKkxgbBdrTV/fFrNGz+1s++jDqn5n+euyUH7+UfFSfm1N8/lxY8q+cvHTG7/xCuvr3no6+by3Suax686veZ5v1zyt7/uvmAw515R8+C/m8tPWhXKXvbBmn94csnvPmj69wftGnxb5k8mywUyru1QuW2hWmvXinHjDNsdd3jJ33586WfK1X3+F/0ZF9Rces1wY++Yq9mjQ7Ku23N99B2957DyIb6NW5MNm1thvIU/z1fbazu+cfPiEN+S41uG/lUZQV0Y4ruh4xnLXd31SCmtAN7CMN76xSG+m3U93rad7oLjQnwAAAAAwEoTtltFpZQ7JHlskocm+cUky20qtaOU8r9J3lhrPX3EcQ9K8ookT0hyiy7nnJHkdbXW94wyFgDJOT/MoqDdfNubPl1zyon+8W+SXn16zTOPq7njLSfzOrz+E/VnQbt5r/2fZk53u417g/696L07g3ZJE4b4k9NqnnL/mputn+57acu2zuGL9T3+ZHL0HTtvFX3qWTXP///Zu/Mwuaoyf+DfU11dXdWdfSUJkJAQVtmRHVlF0BHBDUVRQUZHBweH8aeijsLM6LggboMO4AKKouiALLIkskPYCQGSACEhCQnZ916qqqvr/f1RXd236p5z7rlVt5bu/n6ep59U33PvubfWdN361vu+y7xdzlJZLsqwXarVPCYigeGPE75XeQ/Znqw+MGW67lFeb6Jy3hDfVO073mhCfF3F1rrFy+nSEF9xvCsNdGXFF/zr8lT1o/oTGayGWKsQn2s73cHLSrsNQ3xERERERERERETkxbBdnSil/gDgoyE2aQFwJoAzlVJ3AbhYRDZUsN+zANwAwNJ8CwBwHIDjlFK/B/DZqKvqERE1TGDluugr213zoH7O/7hLcMXZke+OQrp/qeCiExrzYamu6hUA/O/Dgh+dxw9wyd3ti/zL0r3Azc8IPt2gx7errCEAlgh4Z5I3ZNGmj7NvZ2vjGmXorM0StnttA7Dvbubxnmx1/xf19OrDdqbrHm/+AohEPrUM8fX0lgX3vK1x0+Jf5mmnq92GIb6GKQnx6dewbW0cKYb4TGG8YohPP24O+LUzxEdERERERERERDTkMGxXP/sYlq8FsAzABhTuj9kADgHg/QjsHwA8opQ6SUTWu+5QKXUygL8CSHgWC4DnAawAMA7AYQAmecY/BmCMUuocEam8vAYRUdOofxvZPz9rnnNnj+DZVcCWTmDRGsGtzwtaYsBPPxLDyfvywzZXmV7BkysK4ZYjZwLxFvfbbUdPtMciIli+CVj0JnDw7sDeU8Lfj9c+IvjRedEeF41MC5YDnz6h0Udhl83plycCgm8L39Qvb0/olxeZWsgC0Ybt9reE6Xal7dtWG8pZtwOYPLp0Wb3a5xINdbHYYEiqViG+rowujCclwbziv12Z0na6uu2p/rwhPv23IKMJ8emq7bVbAn6mCn4M8REREREREREREdUOw3aNsRDArwHcIyLLyweVUjMAfBPAZzyL9wHwZ6XUO0SCkyFKqd0B3IrSoN3jAP5RRJZ61msD8FkAVwEo1uN4L4D/AvC1MFeKiKgpBb1k1iBs12eZctyl+uTDaVcXlu/6WQwdTd4CstGeWyU488d5bOmvwbrXJGD+v8Ywe7Lb7dbTG92xZHoFH/tlHrcuHFx29iHAHz8TQ7LV/X5M9wKX35rHd85V/GCUqvKbxwVXni3YfXzzPo4qrWz3kbcr/PEZ/wvs8k327WyV7eIRhs7Gpsxjmzvt26YNAUQv0/UHgEP/I48bLlT4xLGD39fps4QMo7zeRKTnDfHpVRfiM4fxRBvQ67IE/IrtdWvwZzEFqGWIr73YTjdRqAhZenkwxOcfLw3xecdTrYXHNhERERERERER0UjGsF39CIC/AbhCRJ61riiyFsBnlVKLAFzjGToBwHkA/uiwvysBjPf8vgDA6SJSUldDRDIAfqqUWg3gNs/QZUqpa0VklcO+iIiaVwPCdtVUKDrpB3k8+w2mIEzyecE51wwG7QDgjc3Ax3+Vx6NfduuLGGXY7qp5UhK0A4A7FgHfvUdwxdnhPoj83r2CY2crnH1odMdHI9Onb8jjvn9t3tcRY2W7gHcme03SL3/BUPGuqF5tZG0Bto9en8e2n5hX2N5tn/sv/xTDKfvCGLYDgAtvEJywtwwEj+tV0Y+I6ssb4puiXaOyIJSIoCdrrqZnqrbXnS202tW10WWIr3FEBislGtawbW2duzyE19Ef6itcVuhImsaVNvjXkSgEAxniIyIiIiIiIiKioYJhu/r5kIisDLOBiPxcKXUqgA94Fl+AgLCdUmougE96FmUBfKo8aFe2r78qpW70bNcG4FsALgpzzEREQ09zffr3/OpGH0FzW/gmsHa7f/mTK4C3NMt1erLRHc9dL+ofP3e9KLji7PDz/e0lwdmH8oNGqs4DrxaqFzVrlUxT2C4oAJZsNY91ZwTthutbr7CdrSplUPvq51eb/y86Zjbw/sMVMr32/69EgD89K7j8rMJxWCv6uWWTiWgEUapQ6ay9hiG+rizQmS4P48ngMs94McRXsk3ZZYb4GqOWIb5iME/XTrcjaRpXnrCfv50uQ3xERERERERERBQ1hu3qJGzQzuMalIbtTnHY5nwA3o8ObxWRZQ7bfQ+lIb0PK6U+bwvpERE1PcuncAJga5eCoVhSxca3A9sCqhRRZV5aa74/12xzm6M7wrDdU2/ol+tCkw5d4HH9o4JrL6jyoGjE68sDW7tsrQsbyxQCSwQE30YnzWNbuwsBkTD7A5qnwpstBnDZOwvJuDaH1tRX3CG4/KzC5bSliqctuEhEFCVviM+wRkXzFkN8XcVqfOnBMF5hmXguDy4vaaerGe/MMMTXKMUQ38ZdutHKQ3zFdrolrXEHwnqD7XT948oQ/GOIj4iIiIiIiIhopGPYrvmVNadDSik1TkRs9XvOLfv9Ny47EpGlSqmnABzdv6gDwBkA7nA6UiKiZqT5tEwAfHfi/8PPJnweG787FXMm9+H7H4zh3MOi+cBkzmTgWTbhrgnbPRTUhrHIFkCppYyhmhdRWC7BzShDpVEzhd+Cgm/vOUjhslv0191WsXIohO1s99e7DnSfx3tduzdtBTBOu16KYTsiGuK8Ib7Jo7VrVDSviCDd62+H6w3xadvlekJ8unGG+BqnO1v4qVWITxfG62hTvmCfN+Cn36ZQmY8hPiIiIiIiIiKi5sewXfPTfTSfMK2slNoNwCFl2z8eYn8PYTBsBwBngWE7IhrS/B+SXDfuYvz7lCsHfl++CfjwtXk8/pUYjtqr+g83bMEOp+1zgtY4P2TRWbnFPHbFnXmnOaJsI2sjIiVtJeu1Xxr+XD6s72lQqNRFzvBUjQcE38a3m8ds17dZwna5PkG8Rf/abjr+yaOB0cnBbT51nMINC9zSGl3fvQTATdqxlPHdBBHRyKaUQipReJ2sVYhPH8aTkuBecbw7Yw74FS/nGeJriGKIDzUI8WnDeAlgVLIQ1NOPK4xK6gOADPEREREREREREUWLYbvmt3fZ7zkAmy3rv63s9xdFpCvE/haU/R6ilgYRURPSpFJ+P/YjvmV9eeBPz0okYTtTkMRVTy/Qyv+htZ5+w/zh1DMr3ebo6a3PJ5KL1gCH7uHdb112SyOAyyO4mcOdlVa2swXEhkJluzc2A3On6sdMrw97TSz93aX965ptghndK9CzYjkwW78OK9sREdVXrUN85jCevtpelyXgV7zMEF9jFEN8myIO8aVaMRjGS5RfVoVKfdrxQojPvw1DfEREREREREQ0cvGj/Ob3wbLfnxURW4zjgLLfXw+5v+UB8xERDXkL2o/TLv/N44Iffqj6+autbNfTC4xJVX8cw9FekxTcokZmUYWQcn3243h9Y2nYjm1kKSp5h0BvM4c7jZXtYvbtbAGxZqlsZ6s8t36nJWxneF0qDxjOmRx8DMs3AtMfvhE9saRxnXZWtiMiGha8Ib5JNQzxdWULrXQ7PUG9kja6/eMl7XS923guM8TXGD29hZ9ahfg6+tvqei8PtNPVjnva6ZaNtyeAFob4iIiIiIiIiKiJMWzXxJRSowB8umzxbQGblVfCWx1yt6vKfp+olBovIttCzkNE1Bxc+i32294dzS5zVYbtpn2pNIkyZzLwrgMVvvVehcmjR/aHDt0RBOWimGPjTsGX/8/+2PrwtXnMmgh851yFjxwVQ9YhbHfUrOqPjYa/kVrZLhZTSMShfS7Zrq+t2mhQwC+sfz7FHLZLWwKBprBgecDwfYcqfOOvYg3vdmcB5PN4PVH+tqBAKSDBd4FERGRRyxBfJtcfzMv2V9NLe8N4Mhjc84x3Z4HOdGmIzzvOEF/jDIT4tKPVhfh07XK9IT79+GCIz9dOt40hPiIiIiIiIiKKBj9maW7/DWA3z+/bAfwyYJtxZb9vDLNDEelUSqUBeEthjAVQVdhOKTUFgEMtjhJzqtknERGAUGG7qFRb2a7c8k3Azx8SPPSq4MnLYxiVHLkfENjCKq4eL6/hGtKutOCUH+axdF3wuiu3AOf/UtCZyeNohxbFT6+s7thoZHD5MLmpK9sZXiNdgm+pVkPYzlbZzhJMi7qy3REzzc/zLZ0CUzjBtbLd3lMU7rwkhs/elMcbm/Xb3LBAcGS+AxdNv14/Z6tAqZH7/wgRETWOUgrJ1kJb9En6NSqaVxfiG2iNmwa6slIa7PO2002LP/jn2b7PoaIwRa8Y4tvcqRuNJsTnUFNSuAAAIABJREFUD+uVhvjKA376bRjiIyIiIiIiIhqJGLZrUkqpcwFcUrb46yKyNWDTUWW/91Sw+x6Uhu2032MO6fMAvhXBPEREVVmc2L/m+4g6bFe0ZB0wfylw7mG1mX8o6M42vmTFvS/DKWjn9eO/C268iB/AUDRcMsQ9WXOwq9HMle2CjzfVCuzQ/HXb02u+vqb9xVShWl7UJo3SfzB872LgI0fptzFXtvMf3+kHKCz/Tgtin9FfsT8/J3jXXub/62zteImIiIaiWof4BoJ73ta5una6mbIgn2GcIb7GqVWIL9lqCvAVQnztloBfeXBvFEN8RERERERERE2PYbsmpJQ6BMBvyxbPA/ALh83Lw3bpCg6hB8B4y5xERENHWSrlheQhxlWjOo+drVHYDgAee11w7mEj94R7VK0x+/JS8QcXz64KH/hbss6tTTGLTZGLIV/ZzvDhctyhylx5pbci22tDpW1rK6X/8BaYNta8jalqZ9JwfQFgTBLYqflLXyng31a/07hdqrXxoWUiIqKhwBvim6g9M1Z5iC+bMwX4+tvpGgJ+XZZxhvgaJ91b+Kl1iK8jAYxKlrbT1Y+rsnUHxzvagLjDl1yIiIiIiIiIyIxhuyajlNoTwN9QGnBbBeDjIhX1QqzXNkRETeumMR/FIx0nog8tuHHcBcb1Zk2sfl9vbhVs7ap+HpNMEwdo6qE7orBdNmcO7dTqGHTVuMqJVBcEpJFhKIftnlgu2GX4KohL+M1Ulc3aRrbOYbuwxwEUKxH62arQHbw78Njr/uUiwI6+pH+gXzvDdkRERA2llEJbK9BWwxCfPqwn2oBe18CPf7wrC+xKM8TXKLUM8RXDeB2J/mp6xcvJ/na62nFVtu7gOEN8RERERERENJIwbNdElFJTAMwHMMOzeD2Ad4rIJsdpyk+/pCo4lPJtDPU5Qvk5gD+H3GYOgNsj2DcRjWQieKz9ePx63KcCV622/esr6wQHfKu2n0K8sXlkhySiChBVE7Z7/PXK7oMHXnHbLt1b+KCCyMTl6xdXzxNcelrtjyWMXz+Wxz/+znzw8VjwHKbn7WsbzNvUO2x3xgHAvCX+5U+/Yb7uphCvLWz3X+fEcPJV4f/PScVH9v8jREREw1WtQ3xdWaAzPRjC60wX/5WSZd7L3QHjporHVFvFEN8W7RcFKw/xtcXLgnve1rhJhfbyYJ+hnS5DfERERERERNTsGLZrEkqpCQD+DmAfz+LNAE4XkWUhpmrKsJ2IbASwMcw2ir30iCgKImiBW4qu2vavX7ut9p8U3PNyzXfR1CIL21VxX7/wZmXb/fwht4BLT5ZhO7JzqWz35rbaH0cYuT7Bl/4i1qCgUxtZQ/jsmgcFP/uofqy3T7/TWoXtJo9W0H0QqatCV2R6bbOFgidpP0QPlnd5ABERERH184b4JnRo16h47myuv5peMbiXKQ3x+ZZlSkN8pnGG+Bojkyv81CrENxDG87bG1bXTHVhPGbYp/MsQHxEREREREVWKYbsmoJQaC2AegIM8i7ehUNFuccjpdpT9PjnksYyCP2y3PeQxEBE1EUGLOIbtctXt6a8vVLe9i5kRtLodyqJsI9usorqONHy5VLYDgOUbBXOmNMcHSC+uAbZ329dxCb+ZqtTZ2oDXu7JdJVVS06awnaWy3dhKvlID4KUNlkmJiIiI6igRV5gQr12IL6p2ugzxNVYtQ3zmMF5/O13LuC4A2JEAWuPN8R6MiIiIiIiIaodhuwZTSo0GcC+AIzyLdwI4U0QqiW2UV8GbGXL78vW3ikiT1UYhIgqhjpXt6iGqcIiI4NX1wEtrgaP3AvacqCAiWPwW8Mp64Lg5wPRx9hPExfWfWSmYOkbhxLnA6GT0J5XzecFLa4HnVglWbYlmzkyFYbucoUJWlKKq3jecpXsFNy4QPP46cNkZCofuMbI+zHAtTLZxFzBnSm2PxdWOnuB1XNrIbjbUW7a9NprCby6V9CoxKmnYn+X6mQLACcu7tenj3I+JiIiIaCSpZYhPF+Dzhvj0AT/z+C6G+BqmGOLbGjrEZx9PxP0BPW9Ir10T4CsJ+SUK7ylKAn4M8RERERERETUVhu0aSCnVAeBuAMd4FncCOEtEnq5w2qVlv+8dcvvZZb8vqfA4iIiaRqxOle3Cmj4OeCtk7dCeCKqe9eUFn71J8OvHBk8Of+u9CovXCv7y/OB615yv8LmT9emQbE7w8V/mPesLxrUD914aw1F7RXcCON0rOO/aPO58MbIpAVR+X3dmoj0OHYbt7F7fKNjnG4OfRt30lODY2cBjX4mNmBb0rpXtmqlZ6HWPBB+NS5j4n09RuOwW/1zLNpq3MX14WavKdh8+QpW8vnqPI9cn2nZVlVTfU0rhohP0+yIiIiKi6CXiCok4ML6GIT5/WE98wb3ieHf/uCkAWEnFZapeNgdsrWGIrySM13+5I6HQkbSPj2orXi4dZ4iPiIiIiIgoPIbtGkQplQJwF4ATPIu7AbxHRBZUMfXLZb8frJRqF5GAxl0Djg+Yj4hoaAlR2a63r1CtrZLATp9DqakrzlZYvRWY2AGceaDC9h7gA78I9xX2KFqM3vy0+MIZV97pP/5//oPg9P0Fc6f6b4//fbg0mAcUWkR++No83vjv6EJPP71fIg/aAZVXMbzmwdqHWlZvAQ7do+a7GbK8QbuiJ1YA85cAZxzYgANqANfKdvkmqZDx1nbBn54NPmiXSnMzximYPoDasLNQZbNcvdvI6j98LXh0GXDKfv7llR7jhwzBPiIiIiIaOmod4uvKFtrglobxPAE/73gW6Erbx+v9RUUqqGWIryOB0jBeW2mIzzZeUqHPM84QHxERERERDWcM2zWAUioJ4A4AJ3sWpwGcLSKPVDO3iKxTSr0I4OD+RXEUAn3zHKc4uez3e6o5HiKihhNBi2NlO6AQeLC17TNxqTh32ekKozxtVu9bHD4gEUXVs1+FCGbc9JTgyrP9J0jveVk/x+qtwNJ1wAHTKz68Ene/VJsQSaUfDvz77bUPtSxeJzj7UJ6U1tnZY779L7oxjzXfr1F6qsm4hu2apTW262udSxvZ9oR5bN5iwQXHNj5sZzvGexcLTtnP/RgTAceYag1xYP1aY3kAI+O5QkRERDSS1SvEVxrGk5Jg3sB4phDis40zxNcY2VzhZ5v2q/rRhPi07XKTAeOGdrsM8RERERERUTNg2K7OlFIJALcCON2zOAPgHBG5P6Ld3IbBsB0AXAiHsJ1Saj8AR3sWdblsR0TU3AQtcC/vlM1VGLZzCMF5g3YAcPiegFLuLSEBIN1befW9oodfc1/3P+8SXPFewdrtwPSxQCymsGGn4L7F5m027gIOqPjoSi1dH9FEZTJNfBK/kvDMSLGjxzwWtiVzJUQEq7YUnoeNtKnTbb0o2k5HYeMut/WSDo/9w/cMv596h+3mTjGPmaqTVnqMlfx/9ZOTVwOYE35DIiIiIiLULsTXm5OB4J03xFdYJqXBPU07XdM4Q3yNUasQX2uLKaBXCOm1awJ63vEOw3iCIT4iIiIiIgqBYbs6UkrFAdwC4CzP4l4AHxSR+yLc1e8BfAODJSver5SaKyLLArb7Stnvt4hIOsLjIiKqOxFBLEzYrsJKUJWEWiaPVvjksQo3LAhXLS3dC6QslZOi1vLZcL0oowj4bNwpOO+6PDY5hnTCquRke961nFiVoqheOFzV6S7Q+utCwSU35+sS6otKszyWXG8zl6DptHHmD0BM17feYTvbhzSvrdc/iE3/9wQdYyXX4QOzNoFhOyIiIiJqNq1xhXFxYFy7bjSaEN9Aa1xNO93y8a6A8Wb+Et9w1ttXCPDVOsRXGsbzh/TKx8uDfcV/GeIjIiIiIhqeGLarE6VUCwohuPd5FucAnCcid0W5LxFZppS6EcBF/YsSAG5QSp1mCs8ppd4H4FOeRVkAV0Z5XEREjRKmjWyl33gOCrXEDOfWrv+Ewr67AX97UfDY62776s5WHraTMGX0KvTqBsFZB1V3MvGcn+fx5IqIDkijklDlD+bVKWzXJNXImlEdHr5ai94UfOjaPPrC5U4bricrqOZDqaj87AG3O86lsh0AnLSPvkLnnYsE33iPf3m9w3YAcOHxCr953H+95y/VVyc1H6P9/nNpves1O7sCk3Kbwm1ERERERDSE1TrEZwrjdWbEV2Wva+BHDNswxNcotQzxDQTwEsCopPdyIcRnGx9lGGeIj4iIiIiosRi2q59fA/hw2bKvAViolJoVcq71DhXnvgXgXADj+38/DsDflVIXi8grxZWUUm0APgPgh2Xb/1BEVoU8LiKi5iOCFrgnqyo9qRkUtpugba8CtMQUvnKmwlfOLPye/8HngTt+hdcSe+OAOS9WtC+bF96sfFtX1YbkVm2RmgbtACBTwW14yzOsbNdojapsd+tCGXJBO8DcsrSeNu1yv9NcWyiPatMvX27IkDUibNduCUS/8CZwWFk7XNMxBrWJDXsd5mSXQ15+EuqE94bbkIiIiIiISthDfEClQb5cn7manq0aX3cW6EzrA34M8TVObx+wvbvw41d5iC8eKw/m9f/bVgjptfuCe6Xj/mBf4d9EHL4vhxERERERkR/DdvXzCc2y7/f/hHUKgIdsK4jIGqXU+wHch0JlOwA4HsASpdRzAFYAGAvgcACTyza/C8C/V3BcRETNRyRUZbt0hUGnoPDW+w93PFF1x68AAKl8j3GVaiqfrahDQaPp46rbvh7HmM6Fr/i1YnNtjqUcK9uZNSpst7JO933UmiG4uXKL+7quFTsXGkLDh+yuX24KsoWtChfGPlPNYys2uYftgsJ08ZBhuy9v+SHU2LPCbURERERERHUTb1EY2w6MrWGIrysLdKbLwnxZGVzmGS+G+Eq28VxmiK8xcvnahvgGg3mDlwfa6ZYs07TT1YwzxEdEREREww3DdsOYiDyklDoXwA0YDNQpAEf2/+jcDOAfRUIkU4iImlq4ynaVhlNyAVWvPvr2cCeU2sUStqsiQNPTW/u0UrUBn3oEhCoJtNmOa9IoYHNn6bKT9wEWrwM27YpuPyOdLWxnqnZWjb684D/vEvzuyQal/KrUDI+lMM811xPvR84E7tjuX761y7+sNyf4wX36+6+Wle3ed4jCpX/U77fwOuzaRta+n7DX4fjuJ4DMKeE2IiIiIiKiIa/WIb6ubH81vfRgGK+wTDyXB5eXtNPVjFf6ZViqTi1DfKXBPO+/pe10deP+YB9DfERERETUWAzbDXMicrdS6m0ArgRwHgbbypZ7EsBVIvJ/dTs4IqJ6CFnZbldQk24DU1ACAP5wscJJ+4Y78WOrbFdNa0hTm8UopauszLZ2e7hg07SxwIadwFF7ubewDRtC6ssLsoZvax+9F/Dol2P44p8ENz8tyOSA9xyk8MtPKqzfAbzjB3ls2Om+L55QNhPLQyNshS8X/3ST4FePDc2gHQDctUhweYOLmJWHUE3OPNB9znfso3DHIv/9smiNf91P3WC+/2oZtttzovk1v7xKZl9ejI/twMp2IarzXbblR0igF/LyExV+jEZERERERFSqliG+7qy/Ha43xGdqt1sM8enGec6lMXJ5YEdP4cev8hBfS8wfwDOF+Ezjuu0Z4iMiIiKiIAzb1YmINOwvcxHZCOBzSqlLUWglOxPAbgC6AKwFsFBE3mjU8RER1VqYynYPvCI4cW74l+ycYRcxBXzkKLc0hKx5feByUsypv2rajN6pCahErZowIADc/aL7Mf7tCzGc+bbCydJUQiH2Gbf7OuxtaDsZ+5OPxBBvUfif8xV+8hFBXx5IxAuPodFJYN1VLehMF070JlsLp5njLcBXbxVc86D/uvZkh264q9Zsle2CWjmHtbNH8Nsn7PfFhccrfPucxp98/cSv8/j7Uv/yJxzDp7V072K3x3NHiMqEqVbz2OsbBXtPKdwnm3YJ/viMLWxX2/vuwOnA4rf8y//2ouCb/zD4uynIC0Rb2e6AzCuFC0/Nc9+IiIiIiIioAeItCmNSwJiUaY3K3s/15aUkmOcL82X0490Zc8CPIb7G6atxiE9bbS8BjEpaqvElFEYl9du3McRHRERENGwwbDeCiEgWwIONPg4ioroSwdTcRufVwwQ+vCptAVhi2aKBizEI2vJpZGJJ32rVtIY8aIbC86trG+aqtlXtrEkKwSfECqaNK5ykSiUKv196msJP7g/eNuxtaDtpmvQEf1piCi2abOWoZOFEm1eq1dRiMtyxjSTWsJ0lsFSJJevsFSuBwjeddxvb+JOkWwzV42ZPqu9x6Ewd47beOYe5347TxppfI55fPRi2e3GNvRpiLSvbAeZKogdOd2shCxQeYzZjjR88+U3NbShcOPh4942IiIiIiIiGkZZYbUN8pjCeqdpelyXg15XhOaJGsYf4APt5S3uIrxDW8wb3SkN87cbxwrlF3fYM8RERERHVH8N2REQ0vIng1K6HEJde5JSlHFK/Sr+JGknYbmNpD8SU9CADf9iuO50DEHxddHb01L5qWjWV9zK9gp8+4HaMe4wHDtm9dNlFx9cmbGerPNVW4V9TxYBguWpuv+HOFpzKC/Dde/JYthE4YibwiWMURiUrP9H45Irgx9EB0yqePlJ7TQIWvulfHlRlcuNOwW+fFPz33YJt3cC5hwHnHqZw/lEKsVg0J2ldH89nHui+v9P2d9tf0PWvddjO9P/J5s7Sx5YtbBd0jKmE++12UvejhQvZCvulExERERERkVa9Qnxd2UIr3U5PUK9TM+5tp6sbZ4ivMfrywM504Uev+hBfR6K/ml7J5cEQn3/c0063bJwhPiIiIiIzhu2IiGh4E8HUvo24Zc3H8NEZv9VWivN6Y3Nlu8nl9cvjjmEO2b4Z8j9fLlnWnu/B9pbxvnW7u3pRSdgumxP89YXQm4VWaRvZbE5wzs/z1kBV0eTRwO2XxHwnfA7aXeG6CxQ+9/tCO1eTsIG2bBWVp0xMrTB5wtPMVtkOAL52W2GF3zwO/PFpwbx/jSHZGv6k4EOvCi67JfiBeNCM5jjh+JGjYrh1of8Bv34nICLaE6PrtgtOvqoQTiy6bSFw20LBA68Av/pkNCdUXR7PN31aYeIo932NtoQor54v+ORxhcvbu+33oevrc6U+d7LCLx7yH8NdLwK70jJwPaoJ2wHA+Ucp/OFp+3X9r43fRLv0fyX/leeCJyUiIiIiIqKGq2WIr9sb3CuG9AaWSemyTOFyYRvxb5NhiK+RahXiiylzO93CZXM7XW+Ir3w82coQHxEREQ19DNsREdEwVzhhcHbnXdj02gwsSB2DpKTx7UlfxfxR7/St/ZvHBb/6ZPi99PbpT0y4Vk6SX13pW5YSfa+Cnp4sgHbXQxvw4KuhN6lIpSfWHngFuG+x27pvfi+GRFx/UubiE2P48JGCZ1YCV9yRx+PLqz9GW2W7RIWBHVa2Cy8obOf12OvArc8Lzj86/Mm7K++0JDU9TIHJerMdx4trgEP28C+//jEpCdp53bBA8KUzFA6YXv2x2R7P/3O+wiePVehoC38fHbx74bqVe2kt0JsTtMYV7lhkf8DUurLdKEtb8tsWCj5xbDRhu1kO7YLP7JxX8rvkclBxvhUkIiIiIiIaiVpiCqOTwGjjd5KrD/EVQ3gDrXHTQFdWPJfL2ummpSS45x2v9Iu9VJ281CfE5w/rlYb4ygN+5cG+4r8M8REREVE98RMWIiIa3jxl0tqlB6d3PwgA6DW0lD16r8p2Y6ps5xzm+Ot1vkWpvD5sl+6xJL8sbnk22hayx8wGnlzhX15pWGz+UrfjO+ttMAbtisakFE7bH7hxgcLjy/3zNnNlu3Rld++IkHfLwA14dhVw/tFh9yF4+DW3dU2ByXobZ8nePrJMcMge/ufLn56xP98eWSY4YHr1JyhNrVQvPlHh8yfHKp7XFmR7aS1w+ExgQoeC7eRurSvb2e8X4BPHFi5XG+a17adobH5H6YI3FgNzDwnekIiIiIiIiMhRrUN8A8E9b2tcTTtdb4hP2063/1+G+BqjliE+c4CvEOJrtwT8TAFAhviIiIhIh2E7IiIakVa37qldHqvwfbOpMlG88iwJkqI/49BTYRrrnpeiDdu95yCFJ1f456z0RNX2brf13nuI+53UavhLx1ZJSqcmle1MbWR5os8o7CPYdr+ZhHlsNEtluyNnmsfe3KpfvnSdfc7OTOXH49Wd1d9r1d52p+6nsEATpAUGjz3oPGitK9uduq857NfleXmvtrLdafvZQ4UzetdiVu+q0oXdu4InJiIiIiIiImoCtQrx5YuV+AxhvM6MaAN+3ZaAH0N8jZMXYFe68KMXXYivIwGMSpa209WPq7J1B8dTCYb4iIiIhjKG7YiIaHgT/RvlT27/Hb415Vu+5ZW2QDWFJaoJc7Tn9emz7p6QSbEauPJshb2n6McqvQ0Nd1WJU/cDLjjG/SSEqepc2BCWNWxXaWW7hD4gU+ntNxKEaSMLhA/nAfYqhuXam6SyXVur+Tlx1TzBBccIDto93Mm7dTuC13FhCo9WWxXw0tMU/utv+nt4xWbBO/ZRxqp6RbUO2719lnnspbWDx15t2O7QPYAvnKrwswf0t8e16z7v/9gho6+cSkRERERERDRSxGKqEIKqYYhPX43PX23PG+LTbcMQX+PUKsSnlCa413+58G9/O13vsrbiZeW5XDrOEB8REVF9MGxHRETDmyHBNSG/Tbu80qpiuRqE7VKmynbbdwCYUfnEAa67QGHlFuCt7cCYFLClE9jZI9hzosLEDuD0/RVOmKtw5yJBlGGxTEAA7oS9gTsvifWH1Ny0GcN24WJYtWgjm2Rlu9DCtpGtRJggZrO0kQUK7ZXveVk/dvFv83jqa+FejH40X/DDD1V/XKbXg2or200cpaCU/iX+0j8KPnVc8HOp1mG7WEzhS2coXDXPf5BLPJUFqw3bKaXw4/OAsw9RuOdlwZ/uXoO1rTPwye2/w1e2/AD7ZF/3b8SwHREREREREVFN1DrE15UFOtP9Ybz+y4V/pWRZ8XJXGujKim+bgfGIuhtQOOIN8e3UrmHb2jiiVHkwr6w1blKh3TiuytZliI+IiMiEYTsiIhrmDC0M8/qgQdSV7VzayIohEGg8xu2drodVIuZwLBM7gItPdOt9awrLdGcL1ynsm+8eQ7vJovOPVqGCdoC5xWuY6mWAOYAVU4VWFpUwtpHtrez2GwmibYSsF6aNbLNUtgMKJ75MnlkJbO0STOgoPKZcwqbVtMD2qlXYDgDGtwNbu/zLi9807um1X8+orqONLYyb7hUkW5X1Meca5lVK4bT9gVNnZ/D9n84N3oBhOyIiIiIiIqIhxRvimzpGt0blIb6e3v4KesXgXqY0xOdblikN8WnHGeJrCJHBaoi1CvENhPG8rXE17XS9IT7dNgzxERHRUMawHRERDW+mIJtEG7bLGSpuOVVO6tWXXzIeo2pzPKpSc6cUqtXZhAkzmap6iRTCaW0hwzRBFcUqCefUuo1spVXtJJ9Hcu0rAPbVjmdy5sp3I1noNrIVpPNcHxuzJgJJS/vWejt6tsJfnjdf4a1dwISOwuXFbwXPN3l0NMdlqi4XRVDRFoIVkcDKdsfNqf39N77dPLYrXXie28K/oavvde9yWk2WPgvMPQSItQAt8f6f/sveZQOXW3jik4iIiIiIiGgYisX625W21S7EF2U7XYb4GqMkxKdfw7a1caQY4tMH+AaDeqaAny7A19FWOPfIc1lERFRLDNsREdGIlMobWrRW0MIznxd86c/6N4xOQQlDhaF2Q2W7LZnKUlhRv7VMPXs3gDO1Yz294cN2QRXF2kNWtQMsYbuwle0M65sq59nIgrshXzkXybZDgNlPaNfpyTJsV5TpFby0FnhulWD+ktrWttvRLTjlh269ar9zbnOdrDn/KIUr7xTjCa/uLLBsg+Ccn+exdJ1+nfL1o2CaJ4oWvJe/W+Hrt/kfE3kpvJ7YwtPHzwHe4VAArlrvPkjh//1F/7jd0VMINdpe+1rCVt/LOlasu+WnkFt+GmpqicXMYbx48XJZYC/WUhgrC+65hfxajOPKO1eL5nh8x1W+X12gsGxd3XFptlMuZWOJiIiIiIiIRhhviE+vuhCfOYwn2oBeV1mIT7c91Z83xLdBv4Zta+OIUhhsl2uottduqLbXUd5O13OZIT4iIipi2I6IiIY3Q2mrZISV7X58v/lNXdwljLXhTe1iU2W7O7bpq6EFqbRqn44seQbJX14OzNaH7bqzwDhLRSedoLBdJeEcYxvZkJXtMoa2m2Er28n6VZCvnAvAfP8ChftqfLiph4V0r+DFNcDzqwXPrQKeXyV4+a1wrV29wkbzLv5tHm9sDl7vb1+I4ayDmuukyrRxCs98PYb9v6kPC27YCXz2d3ms3OI2X1Rhu1q2kT3jAH3YDgBufd5c2a6jDbj70hja6lCZcGzKPPalP+fx139uMT6+W1sqOHn3zP3h1g8jnwfyET0wqlSPltKuBLCG8QqXYw4hP0Nw0Bf4M4Qe43GoksBhzOG4HPZrDCwa5mU1RCIiIiIiIqohb4hvinaNaEJ8/jCelFXm8wb5/FX6Bv7NVtZ9g6ojMhiyrFWIryNRaOtcenkwxOcfV4ZtCudKYzGeRyEiGkoYtiMiouHN1EbWUDWuLw/05gStcfc3Nv/3nPnNl1Nlu6fnaRdvbplo3KQvL2gJ+eYr0rDdI7cj1ddt3lcFeYzAsF2EbWQzjWoju+DugYumxyBQ2e031PRkC8G65zzBusVvmVsy11q6V/C3l4LX++hRqumCdkVz9WcYAQC/eMg9aAcUno9hXwt1TI/lVAWVKn1zWF4T/vycGF/zvvcBhdHJ+tyHtmO888XCv7awXVjieY2hOurLFX4arNnO3Ys38GcM8VkqCIYO+ZkrFwZWQwwTLgyqhuhbzmqIREREREREza5WIT6RwhdCTWG8kmp7WaAz3d8jHaF4AAAgAElEQVRONwt0psUX3CuOM8TXGN4Qn2EN29bWuTuKAby2Qgiv9LJCh29Z8fJgiK98vD3BEB8RUa0wbEdERMOcIWwn+jayAJDOAa0h/od8YoV5bIlDu0bk9ImQv3ecatxka1eh/WAYLgEu57ddzz+IpJhr64dt0woEh+322y38nFFVtksbQjttYSvbPXHvwGXbYzDKYGQz6MkKFq0ptIJ9blWhct3itwrh1mbx6nrz/exVSevgerGdOHl+dfj5urPA2CrfLdSyst0scx4Zu9KWFrZ1bNFsq2zX0n93mV77Qod5gUI1M6JmUayG2Nv4BHkzff4gSjm0NNZUJgzRallbDVHT4lmVBwOdWi0H7DeuWddxXlZDJCIiIiKi4UapQqWz9hqG+IohvNIwnpQE84rjXZlCiK88uDewfYYhvkYphvg27tKNRhPi07XT9Yb4dO10R2nGGeIjImLYjoiIhruQle2AQihtdDKa3b/7bcFvOCSjPxZbmK2StprLNgavY33Lls1AfnE58PhdwLpVSMTGGdcNG2YD7NfpnfsDM8a7vXkTEchX3w8suBuJcRcC067xH1/I288Uwgod2ukdvE+D2sgOVd2ZwWDd86sL/y5Z15hgXZgTQ04tn1FhAKoJrN4afpvuLDA2ZDtor1yfGJ/X7RW0hfbN0WZ+TXjgFSBpeH7WM2wXiykcNwdYsNw/lssXbyP9A7WSynbo6apgIyKqKxFWQzQIrIboDQRaqx06VEMMCBeqksBgQDXEMPt1qbJYFlJkNUQiIiIiIirnDfEZ1qho3mKIrxi884b4CsukJJinbaerGWeIr3FqFeJrNwb4ytrpagJ+3uXecYb4iGgoGaIfFxIREVUnGVFVMQl4h/jOAxwmef5h7eIo24yu3Vb9O1n5z08BD9068HurmG+oqCvb/eVz7h8yyhUfH2jXmhD9DRU2DPjiWv1yU5jH6LkHBy4Ohzay3RnBC8Vg3arCv0vX1y9YN74duORUhVfWFdqGViPu+BBr9rDdyfsAD70WzVymynCubK+lqQjCdgDw7XMVvn6b/77Pi6WyXQQtbMP44YdiOPa7+ifFMyvNVQcrCts9Pb+CjYiImgSrIWqVVkM0VRXUVEMM0Wo5sBpi/3bmaoghqjBqqiyaqyHa52U1RCIiIiKiaHlDfPrOOpWH+NK9bu10vcu7+8fKg3ve7fPN9AZuBOnO9p9/rXGIr7zaXvlyb8BPF/wrVvZjiI+IotbkHxcSERFVyVTZzhK2e+FNYKalPaHX4rfs406hjpef0G8bYeWz2xZW945Ttm0CHr6tZJkpyAZUVnnPtM015yuMTjpWtcvngQf+MvB7VGG7+UsMj6MqKmTF0Ye49CKn/JM0Y2W7rozghTdLK9YtXVe/kxmpVuDQPYDDZyocMRM4Yk+F/acB8RaFj16nDzKF+bak6/VYv6O5z95EFWIDIgjbWbaPqrrcmAqqkNazsh1QOKFj8qvHBQ+9Ek1lO8mZX9jUZ/4T+PC/AH29hWpauRyQ7ytcLv7blyskZYuXvcsHLnuXedbt08xVsk3hsvSZ9tvnn8M3rtlvvq/0ugxs1xd8XPkm6mNNRGTDaohGYqp2qKuGaG1p7NLy2B4uVKZwYYStlgOrIfYvZzVEIiIiImo2SimkEoVzl7UK8enDeOJb5g3xmQJ8nQzxNUwtQ3wDAbxEoT3u4OVCUE8/rgYvl40zxEc0sjFsR0REw5shbTOhz9xTsTsrcH1z9/Ja+x/wTqGOtx0DvPykb/GXt/wQH59xo3YTU1tTk5cDQoFF3/wHw/VeucR3W7bCUtkuwjayoQIna0t7NbYZwnbpkMf39pnAqi3+5a9uCDcPdp8DrBk8xlS+B7ta/A+S7p4+NPLPtM50f7Bu9WDFulfW1+8EQ3vCE6zbEzhipsJ+uxWCdTpRFDVxDYi+ur76fdVSRdXQDGpa2S6iwNvu4xXCfvQ/Y3w0+3Y1bax5bN12wb67ASs2+8d0rzlWW9aZx1paoNqSACLqkV6hZjr1JCJlIT7HkF8x4OcQLtSPe0OA+dIQonHePv2xVrTfvuDjIiIaKoqva6yGWMJYDbGkqmBANcSSdWwhQIdqiKFaPDvstySk6NJamtUQiYiIiIarWof4zGE8fbW9LkvAjyG+xiqG+DZFHOJLtZYH9/r/bSuE+Np9wb7iuBq8XDbengBaGOIjanoM2xER0TCn/0M4KRnjFmGCbEGhLVugRDJpyC+/pQ3aAcCZnfOM24atHOeyfiIOfPAIwx/wGX+VPQUYK7M1LGxX9kFb0tCqNWyb1kdf1y9vCVs0oq/0SqakB7swxrdaT08W9fozTUTw+6cE37m7EKgDCuG1MFXhqtGeAA7zVqzrD9bV+81kzvE51dfkJ0P23U0Bi6I5yJpWtouoAt9p+4Xf5oBp0ezb1cRR5sfy6xuB3Q3hv9CvL5rX6QFHnhZysuFPKVWoLhRv/FviZjp1JiL9rTzLgnvaCoIu1RD94UJ/kLE8JGiohhgqXBhQDdG3X9125dUWWQ2RiIYIVkM0ElO1w8BqiCFCfkHVEIsVCOvQahnx8sAhqyESERERufCG+CZFHOLL5IDOdH8AL+u5XKy2l/WPe0N8unGG+Bqnp7fwU6sQ32Bwb/DyQDtd7binnW7ZOEN8RNFq/CcLREREtWRJDE3JbcDG+FTf8jABk6DQlilQIrleyKePBla9Ytx29NEnAtv1Y2HDdkFBotFJ4OZ/jGH6OFPYTt92t9UQtouyjWyosF3ZB+GmVryZHJDPi1OJ7wdeEWzYqR+76PiQb0zKbsdUXn+79tSxj+z/+4vg6vmlz5NaBe062jzBuv6KdfvWMFgX5mq4PmZdQ3mN8i+nKvzgvuYI2+mqtRW1RxS2G+XYYtqrERVNPneywi8e8t8vyzYWfnT+3VRp1OStFeax3fYMNxeNWEqpwVaFrRH2pa70eBp9AB7GaohhWi0HhAuDqywWKhNKYAtnh1bKzvt1aPFMRDRUsBqilijl0NK4JWDcUDFRF16MG1pA66ohOrVa7t+vU7gw5lYNsX9dVkMkIiKiKCmlkGwFkq21C/F1Zfur6aW9YbzBEJ93vDtb6HLj2ybDEF+jDYT4tKPVhfgGwnje1rhtg0E9/bjyLSte7mhjiI9GJobtiIhoxJqRW6cN24XJOQWta6xst+gxa9AOAFo6OhDb1oe88qfNoqps98HDgS+fGcMhuwOtccsfw4aKSQnJogftvuXZSMN2If5IX/Fyya+mMBsAbOsGJo4KnvLrt5kr2YQODGVLb0dTGDAdts9thbZ0Cn7899q8Wx7VBhy2J3D4noMV6/aZWps3XVF8/pFzLFjU7CcXbC1Lw6o2bHfdI+YbNao2smEdOL0x+917cvhtRreFW19uv9482JYKfwBEVILVEPV81RC9FQSrbbVc0vbYFnR0qYboqcSoG/ceb1A1xJJ1LMfFaohENFSIALleAPX70pfxUBp9AGWM1RAHQnoO1RCdQ34O1RBr3Gq5JLBoCTqyGiIREVFzKQnx6deoaN5iiE/XDrcQzDO30/WG+HTb9/Etc0MUQ3ybO3WjlYf4kq3+gJ43xNeuCfB5Q3ymACBDfNTMGn+WmIiIqJYsJbpS+W7t8jABk6CWs+M7DAMvPh48uVJolV5kNGG7sG1ac4bel5PHKBw5y+GPVUvYTqe3TxD2DVwkle06S0sBjssbSgMCWLIOOHFu8JRPvWEeM96/JpnysJ2psl19wna/e1IiCY+NTpa1gt2zEKxzqRxYS2Eq9Lk+p857e3O/uYvyNu/Khn8el2xv7taNRIPeheywdFqtpQlhXytQKPgRSrf2DElBIhn+AIiIHLAaopkMhBAdw4VB1RA14cLgKouGaoiVtFJ23q9Di2cioqGC1RC1/NUQQ7RSDqqG6AsBllVDLJtDhW7xbKiGaAwXxgLGWQ2RiIiGL2+IT1+4IJoQnz+MVxri6yoP8mVEHwBkiK9h0r2Fn1qF+EzV9josAb+ORKF9rm6cIT6KAsN2REQ0vFnDdvrURVBrWC9bhbn9dgN2H6//g012mUNgRWrOQWhd1YsM/CGJbMgwW9VBtow+mNgq+g/LwoYBgdq0kd0nu8y4aiaCL+2/c3/3+0A0J+iTpsdguj69SpeuC7/N6CRw+J6lrWDnTql/sE5WLgWefQCycyuw/GwAb6tqPteKlhceN3LehFVb2c4W5IzyA4j3HQLcvsht3TXbItttKKftrxD247FjZ4e8jSz/3/EDHyKi+lOxWOED+niDyrl6j6XRB+BhrYYYUatlf5DR3GpZrPPmzfvNlR1j4H41YUpWQySioYrVEI2kPNynq4ZoHQ8T8rO3WvZVQ4y01XJ/ANIYWCwNOrIaIhERedUyxJfNmavpeUN62mp8hnGG+BqnliG+kjBeSTCvv51uovB52LGzFU7dD2hrbaazK9QMGLYjIqJhzvwHVbuhhWeYNrK2sN21F+hPJEm6G/jzz4InnzzDWDkum80DcD9RZTrOuOsUnTu1i43H16CwnWxaW/K77U9fl06t+YCyb3OnhvjjWlMd0NRGdtW2+pyEdKlqd8q+wGGeVrB7T26CinV3/BJy1SWD4aLps4Gx/rCdhCht5xIs+/a5CnOmjJw3VNWG7V5co1/+iWOjvQ1/c2EME77odrbj40c35v7bfbzC9HHAW8E56wGzJobcyYrF+uVnXhByIiIiotphNUQzXzXEUOHCoGqItvChNzzoUA3RtZWyUzVET6jRVv2RiGioKL72NYFmCiJaqyE6tlL2V0w0VRhscauGGCZcGFgN0Rsu1AUlzVUW+eU4IqLoKKXQ1gq01SHE15UttNItLBNfsK843mUZ35VmiK9RiiG+LV260fK/ogQnzgXu+kIMo5P8f5sGMWxHRETDWwWV7cIETEwBsQOnAyfONfzRdeev3CZvH4VW6BNhvb19CPPfeM7wB7trkE3u+o1+e9EnE20hRO38IlUfIwDgDz/0LZqQ24KtcX9qxaWCoemYKtLtDyym8vo2sr9eMhm/jHDXJvMW20+9PvP1GI6Y2VxvHmTnVsjV/+LWI3bTWgB7Os07f4l9vjMOAC4/a/h9E/s/Nl6Bb065QjtWbdhO/0YVOHj36uYtN65d4WvvVvjO3cGPid3GRrvvML7+boV//oP7xx2hXvsAYMdm7WI19+CQExEREVEjsBqinnM1xDAhv7JwobWFc1A1xJLLmmqI3uMNqoZYst+A1tKshkhEQwmrIRr5qiH6qhUGjduqIZaH/Oytlq3VEKtuteyphhhU3ZHVEImoydQ6xFcS3CuG9LJAZ1r8yzKFy90B45F+tkV4dBnw84cEXzmzmd4tU6MxbEdERCNWSvRBp56Me9U4U6jMVpFInrnfaW50jDFXjtu0EcAebvPAUtnONcwxYSqwYbVvsfH4Qobtcpb1QwVORo0DOktLRxnv597gVrxhQ4NWy1/yLWqBfgetsTyAsEmb8Eb7OxSXaG98sRG/5x/2fUtcmU6VblkP17BdUDXGt+81dN5EnbA38NjrwetdtP0GfG3L9/FI+wn4+6jTfePVhO1sVQVrURhx8mi39VINfEyPagu3vvPrc5Bc4z/MICIiIqoUqyGaWash+toxV9ZqObiVcuF3Cayy6NBK2aUKY1CLZ1ZDJKKhhtUQtZyrIbqG/FyqIRpCgNpqiGHChUHVEL3H6FBlkdUQiYYPb4hvQod2jYrnzuZkIHhXDOENtMZNS0kwzzveZRkf6SG+eYsFXzmz0UdBzYRhOyIiGt5MgY9YDO35bu1QT9q9apxr61NZ/Rrw0gLglA8Cu7YFTzz3UGCfw9AqG/T7TWecji/scRqN0peDShi+kRo2pGZbP1zYbqwmbKevYJh2yJ/YQoD7TwtxXADQ608ubW7RpzLHtfYCqH1Fi8P2VFiyznwqLdn4ohp+O7c6ryo5937GY9vt46lmvC0M3neowmOvB58iPa77CQBAh+hfC6sJ29meX+3xPOSVhcCY8VDTZ1e+E4/j5ii4nBaO8n6UTA/w6kJg8nSoabMC13c9xqLQle1MUtozNUREREQ0xLEaot5ANURTC+ZqWy1rg4zmVsvWaoi5Pn1g0Fe90aEaoktraZcK8UREzYDVEI3s1RDjQIumPXIlLY8dWi2rmrZaNlRD1AUdWQ2RyCcRV5gQr12IbyC4522Nq2mX6w3xadvpZgrtdIdCiG/TrkYfATUbhu2IiGh4M70bnnMQkjv0Iaw1W93fQptCYol44Y9V2bUN8u7dBge++9ngSVtaoD55OdA+Gq2yRr/frPuJhk27xFjlyiXMISLAM3/XjsUNbWSDqoSV+8kD5ts8VOBk/SrfIlO74B6Hm9AWAgxdLjrjr7D3qe2/w4L243zLe/rqc3KgM21/rDdlwCzrvz+Nle1CCAqINuVtYfDxYxSufUTw+kbzOgenX8Q5u+4AAGPwuJqwne35deTVZ0C2PQ4AkP2PhPreX6HGT658ZwCOcCtgGFm1Rrn9eshP/w3IFoLPcuDRUN+7DWqsuazpnCnhXjPiIV4GbJUEMWv/UPslIiIiIhrKSqohNoGmCiK6VkOsotVycCvl8mqIpqCjQytll/0GtXhmNUQiGmpYDVFroBqiteqgvX2xr9KgKTyoq4bouRxcDTFEuDCoGmJQlUVWQ6SI1TLEpw/wAZ0Zc8CvO2A8yu5Vho+UaQRj2I6IiIY3UwChrd3YXvTpNe6pmqCKcXLR0c5zAQDecyHUu86HOuwdAIAE9Km13oz7X4gX/sb8lRCnMMejdxiHomgj+9gywddviyhsp9Em+iqAdy4SXHqafVvbH+JHzQr3xkHm3+xbtntOH6bs6avPhwK3L7KPN2PATBbc7b5uiHltVQyBQin3oWLqGIWHvxTDtY8InlslOHh3hfEdwMLVwLYuwXETN+Ofrj8L4/I7AADtpkBqNWE7y7btXZ6KnUufhXz7Iqir7qx8ZwBiMYWj9wKeesO+XhRtZGXxU5CrLilduPgpyH//I9R3b7Vuu/80YOm64H3EVOE6OXvlOcsgT6gRERERERGrIZoEVkMME/ILrIYYHC4Ua5XFPv1yXTXEwCqMDq2lWQ2RiIaKYjXEHKshlnOuhhgm5BdUDdEQAlS6cGFkrZZdqiEObscQYnNJxBUScWB8DUN8/jCePuD3yjrB/KX+uRi2o3IM2xER0TBneGuTTBmrOQGFcsYdbcF/wJkCOq0tgPRmtZXWTNTl10O9+xOl8yj9Dnodv46xKy24+2XnQ9CSx+4yjrUaKtuF+bbI7Yvsbz9dw3bSuUO73FTZbuPO4DltpatDhwBXvepbZDq2PomhNydojTf2DV8UwaTIbfG3VlYRnPwNesxG1tKzTqaNU7jibP3jR+67H5IfbGfdbmgj25Wp/Ha1VbbzPe6ffQDSvQuqfXTF+wOAMcngdaIIkIopgPz0fEi6Gypp7knc4ficiod8vMkjt4fbgIiIiIiIiACwGqLNYDXESsOFQa2WLS2cc6Xraqshhm2l7GnxHFjt0BZ6bJKqYkRETlgNUUtfDTFcK+WSkF9gK2Vzi2cVusWza7gwoBqi93iHaTXESkJ8f18imL/U/+HgzjTQlxe0hPmSPA1rDNsREdHwZgrhJDswOt9p3GzTLqCjLXh6U0An3gKgc3vwBF5z3uZbZArbZR1Lxy15yz6+3Zw3HLTxTeNQIoI2sg++Ek3YDlv9ISwAeLTjRO3yuVODp7QFsMKEYUQEmDwDWFPaz7ddzF+F6ekFWmv8l9qEDmBrl3k80eCwn9aM2cAKxwRpiHfvQZXtjpzZhLdFpcreLKdq0EY2Y3kNSJZXm+zLAds2AlWG7d62u8L8pfY7/aAZEdyPix7TL+/NAju2AJawnWuANeg1VHK9hf/fiv/H/fU688rD6OQIERERERER1Q+rIeqFqoboGvJzqYZYEnTUVEPUBiEN1RB9QUeX/Tq0lmY1RCIaKlgN0Ui0LYkDqiGGCfmFaLWsrYYYWavlsuX9643NtwHQf1axKw2MM5/+pxGGYTsiIhrejGG7dpzVeS8uxdXaYVtVJq9sTj9/awuATMiawvsc5p9H6UuruVa2C/ojPebSRva5B41DUVS2ywccpHPYzvDtrBO6H8Nj7Sf4lrsEAqutbCddOyFXXwo8cQ+wa5tv3FTZDigEncakgvdRqZfXijVo9+1zm+k0pkeI51WYN6k3PWVe+4iZwKF7hJisycmyF0p+N4U+Kw3bdaYF519vfvJo209n9G29w/j40Qo/mm+/1w/everdFE4eG8gXTgd+fA/U9Nna8c+8Q+HRZcGPzNmTDPM//FfIr//TPXBKRERERERERJFiNUSzwGqIYcKFQdUQja2U+6shRtFK2aUKY3k1RF3osUmqihERORmohpgJXLXWGhFEHNM6B9j7Je3Yjh6G7WgQw3ZERDS8mcJ28VZMgLmPaI9jyMQUKmttARCmrd/7/0lbmrk1pg+sZLZscpo2ExAaDKrmJXf/1jquDc0AmLc4uj+B3cN2+it7fPcTFYftbKFBp7Dd5R8EFj5sHE8FVLarlQ07BQdfaQ5DHTUL+OqZzXSqzuPp+b5Fqsq3XDc9aUlVApj3xeFTOl12bAH++OOSZaaW2pWG7T7wizxeWmse175urHkdmH1gZTvsd9ie9vtozwmI5n5c+qx5bN1KyCWnAzct0rbFPeMABZdTBF883X+c8tyDkG9+tHCiN4xh8tglIiIiIiIioubGaoh6JdUQa9RqObjK4mC4UFsNcWDesv0Z53XZb0Br6SaoKEZEVG5s3vzZ8Y6QNVZoeGPYjoiIhjlTqEEh1Wp+y+0adLKF7eTOG9wmAaAmzdAuTxjCdr3r1znN+9Qb9lBHUAbDGrbbcx8kcvo0zhK3w3PiHrbTp+fayltW9rO1uSyyhRHjAVUB5a03rEE7AEjlzdW8XAOflbhzkf1xcfV5wyNc5hrBu2GBec0vnKowvmPo3xYDnrjHt6jdUGGxkrDd2m2C+Uvt6+jCdvLI7VDveF/4HZZ55/4w7n/6uKqnL3xDO8imtcAz9wMnneMbSjmea27XtJuVe38fPmhHREREREREREQNVVoNsa3Rh9NcQcQw1RC91QhDtFo2zttXuq4YxwOqIYbZb1A1RG9QkYgaYmx+h3GMYTvyYtiOiIiGN1NlO6WQaGuBkjxE+VNTkVS2C2OKvrdha9dWoEOz3/HTnKbVBTa83rl/wFvrRY+ax8ZMxLLOudqho2bZp/WKBRyC822Z06fnTNX3sg7vV6upbCf33hQ4f6Mq233hZnsMbY/xtdt31RJJIFsaUqy2st0Dr1h2N8z+WpY3lviWdYi+n3AlYbsFy+3jLZJDCzSBsWQ0tddtz5uN5i+kudux2W29lUu1Ybug1+SilG69lf77zskwCM4SEREREREREdHww2qIeuZqiNG1Wg6e11sN0VZlMajFsm2/QdUQy/bLaohUB22SRVs+jUws6Rtj2I68htnHh0RERGVMYbtYDKothZT0oFv502xRVLZDJsRfXUefYZ5Ht1+HqmyAPSwGAMfvPXhZFj8FuesGYPlLcKoJNmY89tr2Bp5PHeYbSjseHwCkA27ratvIGsN2VbaRjZ0xFvli1bxYDNj38MLlyTOgTnwf0Lk9cP6UoaIYUF1lu7XbBD+5X/D0G4J9dlO4+ASFo/YaPF0QVNVvjwnNdGqhjKGaYq24ViJrdrJyKeS2a4Fbf+Ebi7KNbF/e/tphej5i1zbIb78HWfgQoBTUEacCH/oCVCLct31P21/hsdf1x3DM7Age146v65Lp0Z6gi8UU4jEgF1CgTlt5tXuX076JiIiIiIiIiIho6GI1RLPSaohBrZb7HEKAusqFAdUQ+9c1VkP0hgdDtHgOrHaY01VJZDXEWhib34GNmrDdti5Bcz0jqJEYtiMiouFNTIkGBbQl0Z7vRndMF7Zz+4PJGrZbu8LpENWX/gdq3CTtWGLaDGCbZr/r1zrNHRToSMQL11EWPgz50tm+imFWYybi1K6H8H9j3u8benGN+zRBwcZq28hWE7az3X6t4jnwfB5Y+mzh8tJnIY/cHjw5gFb0IiZ9yCv/ldwZ4q7w2rBTcNIP8ljRX4DrkWWC3z8puPeLMZw4N/gx/efPBvTHbSDp6wvVRrO6encF2gpjQ4y8sRTyhdOAHVu046bQZyVhu9YWBdstbwzbPfAXyAN/GfhVnrkfeOER4Pu3h2pp/J6DFK68U7//Dx1Zv7Cdbb1rL1D49I32R2f5405EgNWvue3bh2/+iYiIiIiIiIiIaOhjNUQ9ESkN7kUR8itrtRw8r6Eaoq/Koq0aYoj9BlVDLP5UYGzfTmyMT/Ut37m9G8CoKu8tGi4YtiMiouHN0kYWiRRSok80uYZMjGG7MHklQ1U7AGht0U+UVW5vJIIq2xXJH38cLmgHAKPHISVbjcM9WUEqEfx2I6iCW7zqsJ0+zRdU3Q0IqGyna4UZkkKhlWyX8v9xPm+J4N0HhX+7dvPTMhC0K+rpBX7y9zxOnBt8Y86ZEnqX9WOoalfNm9qebEDoqfHv2asmd1xvDNoBQLvoK9ulewuV6lqCej17BOXijGE7nSfvA15bOFg1skqRnPzIOL5OWl5PJ3bYA4mA5nG3ytLrOAjbyBIRERERERERERENW0opIB5HIf7DaohexmqI2lbLfcC2Dfje17+OXhXH2L4dGJvfibH5HRjbtxMTZt0F4JBGXyVqEgzbERHR8GYM2wHo3IZUSl99yLWFpzFs1xPcQrRwHAoYPd44nDCEATMtKafpbZXZLjnV8+fu4qed5isxaizG9b1hHF60BjhmdvA0tsp27Qm4V7XK6SdqK7Z6LZN1CCLmTPevZCN7s9AV038LZrS/QrWTm5/WP+ZvXei2/UR/ocfm0Ruu1JpI8L306gb7+KTh8CWlxU9Zh9sD2hmPCvFYzAW0kW0LE7YDgJefDBW227Yof1sAACAASURBVHOCeeyA6eF2reVc2c4StnN4TPme/5W8RhMRERERERERERERjWBhqyHKnvvg7J73aAt8qM2rwLAdFTVvnzAiIqIo2CrbQRkr2wW1Ni0yhu369AEvnwOPgeoYYxxOjdKH6tJoK5SFDmCrzPae1ucKbTkBIN0VOFc5tc+hOLn7YeN4l+NNYLut3/02/zLZuRVy3x+Qv+6bkEduhxRDLTVoI2u8fw3V8kLb/0jjkCnoF+SZlcHr2IJ8e0xopu8clTGE7VQVDWMzAXfl6fs38e3hqsf+/DZVtgPCt5INetyGqmwHAOluyKsLITf9AHLb/0LWr7KuPmWMwtF7+ZcfMA3Ye0pztJE9albw5geWBwMreI0ewMp2RERERERERERERESBVEsLMGWGfnDDm/U9GGpqDNsREdEwZw7bqY98EUlDRadqK9vFXQIlE6ZCffnn1lXaJ+qr3v294xRjJTcvW9jutB+fCPn2pyG5nHuAxGv0eIzJ7zIOb3XIhvTlxRp6u/q80j9VZMObkM+eAPmvC4HffQ/y9Q9DvnIOpKerUOJZwxTuWbcj+PhMlQHj4pDUC7LXAVCnfABH9egrVr3lWByxEmMNhRE/d3KTh3IMbWSrYXuO/M/5CruNbfLbxMXKpdbh9nx0Ybug1tVhw3Zyy88gFx8DufYbkKsvhXzqSMhLT1i3ue6CGKaMHvx9fDvwmwsjetvj+lqZNa/XGlc4aR/75ol46eNO1q82rzxtltsxERERERERERERERGR3dSZ2sXCsB15sI0sERENb8bqbwoYMwEpMYTtqq1slzcHStTFVwCz9gcOPwnK0kIWAFJt+oBIV2wUkOkEWhPW7U1Vps7qvBcxCDD/ZuDQE61zGCXbgVgME3JbsDU+0Td844I8PnRki3WKtOV2vv+yGHYfXxY4+e1/A2uWl6743IPAvD8Y2/EmLFXoMr2CtlZzmKomle0OPxnq/MuAt78TuP16zOxdjadTR/lW+92Tghsvqnw3Or05QWtcGa/XCXtHu7/IhW0j6zKlJRz2uZOGftBOHEK5tjayoSvbWVpXAxVUttu6vvT3rp2Qn1wG9Utz4O6g3RWW/kcMD74K9PYJTttPYdLoiO7LrLk9bImAUN4HDld4+LUQFRn/+CPjkLrhOWDhQ5CvfsCwwtB/HBMRERERERERERER1cVh7wDGTgCm7AE1dQ9gt5nA1D2AGbMbfWTURBi2IyKi4c0UtovFgESyhm1kDYGMWAz4xFehHMMPK3a1G8fe2pTBjFEVHp8nLCY/+LzTsfiMmWAddrkNbUGeSbrr9uid2nXl0Tug3vUx7VjKUrXrmZXACXPNx5Dr0z9+4qiwxyuA2E/uG7gsbYYScwBmT6p4F0aL1wGH7mFuodva0uShHENlu2rayGYNd2UiDufnaVN77YXAVTrEXIYy6sp2KUuwz9mrz0N2bbOGlcd3KLz/cACI+D5Mm19PSmTsoTxbK2et8VOAbRv9yw86Dqp9FESxYDkRERERERERERERUbViF/17ow+BhgCG7YiIaHgTQ5klpYC2FFL5ndrhatvItuYz+oG2VKgAz5pOc+W6dVuymLGXffuatUGduS/UtFmQfF5b1Q4A2u1F9wDYb+eUbntd2AQAnpoHnPZh7dBR6WeN+9gekPupSWU7r3grlrfO0Q51tFU25R7jgTe36cc6+/M/xuvVvRXy2AIgH1CerFE2WFppahgLW3oYbwt7UcahozO4H7EtABe6sl1A2O6EnsfDTWjStdNYzbKmXNvIBqx34lyFoNqLIlJoAbz8JfNrX3nlP61hEBolIiIiIiIiIiIiIiJqEgzbERHR8GZrI9uWQko2aEd7MnkAwZWCzJXtTGE7c6U6nWTC0uI0Exz4qlVYTF18ZeFC+2i8Z9fd+Nvod/vWcalsZ1sn1RryoPr0AcIx+V3GTTrTAlsQxXT7VRxWPPPjZRO14rydt+D51GG+Vd/YXNkubFnOYnDKeL2+/SlI17zKdtxAVVW2M9yViWEStpP7/xy4Thx9SOQzyMb8Cc8oK9vt2bsan9t2XbgJTVxDb1Fz3e+GN63DsycrfOYdCtc94n/sPvhvMcj2zZAvvRd49XnrPOqcz7odDxEREREREREREREREUWC/YaIiGh4M4Xt+ivbtRsqOvVk3NqEmoIliVUv6wcsbUN1Um3mxM/WTZ2B25uqTMVRRWW7Uz8EdfK5hcuHn4Sjep7RruZSHdAatiurbCdBZcpy5slm9K7VLr96vn1OU2VAX1hxt5nWeYrUgUeXLmiJY0rfJu26nYa8ZhDbbVocM7VOjaxiX5MQh4pevYZWwcOhsp1sWQ/cfaPTuu2ib4/67KpwQUbTcwYAHl55Gmb1hqtOaJRuTNhOHrndbcXt+ue11y8+pvC7Tysk+4PFo5PAU1+L4aR9FeSqSwKDdgCA6QHlTQF7ApeIiIiIiIiIiIiIiIhCYdiOiIiGN1vYLtmOlOgDG93p6sJ28R36inlIhOsN2p40/1f90qvB7SFNYbvWKtrIqqNOH/wlkTLehk6V7WxtZMsr2/UGpPcMle0AIClp7fIVAdXjjPdvWVhRnX+ZfaKiUWPLJopbW3h2ZcJXbLPdpj1ZQV9ejE+LhIQsYzYMGCvbDYf6z0+5VylM5fXPkWWGlzIT03Pm6O6nsEdOH3qtSKMq23WbK2WWk6w9MauUwseOjqH7mhbkr2vBjp+24O2zFCTXCzx1n9tO2pLOx0NERERERERERERERETVY9iOiIiGNNmxpdBur/izbRMk503P2CrbJZE0VrZzCzkZ27S2G9rFvrnMad6iNktlu9FtwcdYkzayR5wyePm1hUgZgmzVVrZLloft0l32ybL64wCA5Yk52uXTxmoXD+7ScHxt5aG0A44CZu5rnwwAjj2r9PeWODry5uu1NeAqlxMRa9vPnl57m89WDM3Kdiqo6qGF8TkyDCrbYct651XXtU7TLp80OtwujdUgyx9b73hfuInLZRsUtnOsYgkA6AwORGt17QTS+kqDPnMOrmwfREREREREREREREREVBGG7YiIaEiT898Gee+MwZ+zd4ec0oH8xw+GZNKWynax/qps+oBWt0PYri8vyBtWa33mHv3A1D0D53WVyVr6NfbLGQ4wXmllu0QSyhs2Oe7dxspsb+0Ins4UDEu1Fqo+AYD09SH/0y9B3qMPAxXJzT8yjn1w5/9ply9dZz8+UxjQF9Lc5zCoc//JPlnHGKiOMaXL4q04KLM49P5NevtgfEwW5zNVcgOAxHBrI+uQwTO21B0GYTtxqcIWK7wdaDNUtnMJzRbduCCPK+5we81R/3IVMNH+nLZqVGW7MPu1BIAj2cdJ50BNquI2JCIiIiIiIiIiIiIiotAYtiMiouFp1auQfz0LyBsCaUoBbSljUOyJtanAXVgrhJlCS8eeGTivq4dWVX6MLhXM1P9n776jJbnKc/8/+3Q4fc7MmZyzRqNRlkYRJZRFkJAsIcAiWbbwxTY22NjGXF/jCzZOF9YPJ0zwta9tAbYMNhhMEkgIAUIBhAIKKI3izGjyzMmhu+v3R/fp06H2rl1d3X3CfD9rsaa6au+q3dXVrfGax+/7yx+q3bFsjczXa3tKmo3HWdvIDnjkTGxBnp7s1HbwqT+QvvC30Sc7uMd66OqBr4XuLwbSeN6eyPr2Y+HHat7z0tUyxshc/y6Z930i/EQbj5X5akiyL5W23j8pXtDJZ/zIeBPP7fxFM/d/J50r8/5PyazbHO9GVbHdj+wcCNvpsx+xH9t4nPSW35H58C2SpDcMfDF0mK26Y72v/zTQL/2z/btU82yl0jIrN8h8/Dbp0jf4XaBO8OAPmpqXWJwAXbOBwL0e7XZveK/M/765ufMDAAAAAAAAAACgaenpXgAAAIm4Wov+9IfStgvDj02G7SyV7aRSS87J6mph3KElS/mw7uiAXDX71aUfj0ZXybOtMeVT2e7t71fXjb/vHpPNqcdSEUuSntkT6OgV9ncxMmEJs5VbyAbFovStf4tcahRXoO17T0qXnxB+7IEXLOerfs9LVlQ2zTXvkLnmHf4LS2XUW7S3i4xb2e7Z/e7jUZXt6sN25sO3yFx8XbxFTIfbvxO626e5rO1+zPbKdoEtaCxJF12nrj8pheyC+++QJPXaWmp7Bj7/9V733U6r6sdo5XpJklm3ReaPPif90ecU7N2h4PUxQpP33ir9+l/4j2+VOAG6seYq2wV3WyqjVumajvcOAAAAAAAAAAAAKtsBAGa58TH38d3PWw4YKZPVSJc9/OYK00nSmCMIlQ0sCZWYYbtfv8QeVDut+8XI+WOWIJFPu1DT5fHXBGO0aeI56+End1sPSfKobDc8IB14OXodEY4af8567Mk99pDQ2UeF73+s+/ipF0891OSqJK3aoJwj8Glrs2tzwJE9laIr2zU8t6s3xVvANHGFUqNYK9vN9v+XlMFD9mNBVRCv/JtkC6QOj/tEFqV/vc897pHuE6de7Hy2cUDM38ZWtuSOJU7Ybqi/uWu4gpKSdPVN8c7nCI0DAAAAAAAAAAAgntn+z4gAALiNWoIRxsgYo3PyD1qnjoy7AzeuKmK2amUmZqDk1HX2Y8PF6P+M28JsrmpqkqRM1n180vFn6OSxR+zXj8j02Y5PVrZrug1jnW1j9kCcq3KX7dgx409NvZi/qMlVSWbFOhlJueKIRkOCn3HbyEYFREcmYrSRXXe0tHVbvAXMQuOW+5F+ebuKN71NWrtZ5qobZc5pXQvodgqGBxXc/BfSt/7VOsa88pqpF+XfpJytsl3M6oo2R41XBeyWrGocEDdsF6edq0XwtX9RcMd/SLuekxavKH3GN7xXJu34bR2N+O2sNnCwuYVF/O6ZS66Pd77ALzAJAAAAAAAAAACAaFS2AwDMbbbKQuVKP0vT9lCDq6rYwaFAr/gze/Uha3vabM5+0hDGGP3yyvCg2J3FUyPnW8NsjraqkmT+792R5y6daL6zqtjOQ+6QR2TYbsczfuuIYCStndgReuz2x+1rvHt7+P4rhm6fenHVjQlWJqm3z/p5PLE7XkjmyYjxIxP2cJkkZVQuhXjs6TIf+7qzjfKMYllm4FHzzlrZbt/z0lMPSt/9ooL3X6fge19OsMDOCPJ5Bb/zOulzH5X2hj/vkqTTLpra7i79Jtl+s257vDVre+3grZVt88bfaBwQ87cxaRA3+MxHFPzFO6V7vyW98KT00A8UfPoDCv4sog10nNawzYbt7vhP6yHzvr+TOevy5s4LAAAAAAAAAACAxAjbAQBmt20Xuo/bqh+VQ0SVUFeIp/faj335IXeoyRpmi1u9SdLxC+ytCPMF9zpsgUFrGHBS7/yoZZXkeiVJm8fDU2lfibhP1sp75cJ6wddv9luHzY2/X9k8dvyJ0CHffDR86kTevvaa+9fEZ1pj+Vr1FMM/j5vvjhe2+6e7ou+3TxvZrn+4W2aWtJCVHG1kPSp6jVtaLWeCqgPFooLP/23sdXXcI3eX/hel+pmdbCNrqWznI/C4zzW/id2NwbrYwc4EYbugUFDw738dfvDbtyhwBRXHY1y3/0C8hU2yXf+KN8tc88vNnRMAAAAAAAAAAAAtQdgOADCrmbf8dpMTS/8JXJKxh8522zNu+pcfRoTtbMGVJoJZuaz9P9fPOAKBUoI2sguWRKyqLFt6P7vSIW0hJW1e7g7QWMOAk11sBw/7rcPC9C2ubB9ILQ0dsyl8t57aYz9vzeebcI3KZLUzsyb00PrFobutHnzRfXx0wh4uk+rayM4BiSrbBXUP50Pfb8GK2uzxH/mN6+2b2u4rfdeHu3qbvuyegegxY6Z76sX4WNPXmjphgsp2u56VDu+zH3/8xy25btDfZGU7W5W/0SH7nNlShRIAAAAAAAAAAGCWI2wHAJjdmm2nVw4mLOi2t4Idd1Q2u/NJ9+lztspxTYTtLlltr45ka8MadTyqipWZtyBqWSXZbskYjViCOq5gl2RfX27PdhX/7v3SnV/yW4dNVWhwWT48mThoyf242ghfPHxnZdus3tjU0ioyWeshVxW6ZuQLgVdlu9nGKF4FwGqHLLnTWRk8HI0I0ZaZ7FTwzZSrWJ4wZu8X66ryKLm/K5NOGqsqIXnUCdETosRp51pvNCIwZ6mIGhQK0kSM78hA/Mp2QRBIE5YfpQ1bY58PAAAAAAAAAAAArUXYDgAwq5l0RuYvv97ExHIVIEf4LSrIZpMrjqjLFv4JaZ8YZeNieyDQVrmuctwWtotqI+vJGCNlc3rz4VtCjz++q7k2sj1P3Svd8ldJlyctmCoNd9Ohfwkdsm9QGp1oXKcrQLR2YufUiy2nNr08SVI6q/fuD3+vd4d35w01FvIe6uWL7ipkmWBCuvad/hed5fpHAv2zpUrlbAweBk8/HDnG3PSHofs3TTxvnTMaFZr1uFXrJqpao67cED0hSpLKdoOHIo5bqlXa2pLbNFPZbmLc2v7YnHdV/PMBAAAAAAAAAACgpQjbAQBmPXPmZfEn9ZcrDnX36HhLRSefAEkYa1W78vXi6u7pth77yQv2gFUQBNb3kAscQZW4Vae6e7SssD/00L3PuqeOWivvtSYMONkiU5LmFwetw74aklG6Z3v4vU0HE8qoKn2Ua779piQpk9XyQnhLy4EYt+ErD0WPmShIf/+98PCmCYpKqSizdLX/RWeM8BaaUfHDm++2jwirbBdYQlAzxve+HD1mw7GN+zaf5Kx2edDRvVSSntwdfdme6t+cXPzfwQZxg29VgoiKmcEd/xl+IG7Arz9+ZTvnNZr47wcAAAAAAAAAAABai7AdAODI9PVylbNszhrsslWFi6ogdii12H6wibCEcQRT9tvzYxrPS0XLUnuLjnaT2ZjV97p7lFc69NCiiBzayHj4AntcYcA4lq6sbC4o9luH3fFE4zr6LVmevMnU7sjNa2ppFemMii34K9mdT3pUtivYn5nAlNfQNfv+ethsG9kvPeAI2ymknFvRXmVyRsjag7kVPSHPayGvvqK95OFju9ynfOFA9P2vqabZ2xc5PtJ4gt+IwxEhuIVLw/fHDdsNRFTQi3uNJiqjAgAAAAAAAAAAoLXC/2UcAIC5bnys9Geu11rlzRa2GxxLcN1mKhM55pQCQdnQY642uM42snHX2J3TaCE8BNId8TeNIVvlPUeVrVjWbK5snjn6E+uw/pDLZVKe19h0fMxF1V8oq0UFS9tKSYVioFRXeOW2akMez+VEQerORAxK+n6mg7FVtnPftzuesB8LrfT28F0Kdr8QZ2WdsXqTdMLZUjo79dsWJpWSTj6vcf+u57Q+b/9NyEdkDD0ez5r7aRaviJ4QpVBQkJ+QSUc90CFSET9MGUtoMW7YrplWt64QYbOV7WZ6RUYAAAAAAAAAAIBZhLAdAODI1t1jbZ84aMmeuEJskbLNhe3mFwY0mGqsBjU4bA/bvWzPbzlbRsaunpTt0av3fkv/tOjGhkO77cXkNDQW6LbwDr7qbVFlO2OMgoXLpMP7lAvsIaTP3RvoM++o3bfHUuhreX5P7TXSCf86lc7q9NEHrIdHxqX5Hh/JeCF6zERBuuuZ8GPX93+xtHHC2dEnmmGarWznEhbCDd5zRcuv0zIr1kvD9up0kmRu+qBM36LGAzf8lszNf2GdNzQWyNaqV/L7TXRW05z02l+QvnFz9LhJYyNSM2G7w+Ftm2vOGyZu69pmWt2OOeYkbVkNAAAAAAAAAACAxGZfnzAAAFqpO2et8vbxO8IDPCOWamy+12tmzvkjd4ce+uRd9qDJez9vL0flbNMat3pSrlfzi45+thZ/8jV7QMoZBpSkVRujL7ByQ+nPV7yqsuu9+//KOvyJl2vX88nvhq/v3JF7p170OVoG+8pk1RvYg0jPRuSCJk3kowNntqCdJF0wfFdpYy4FehJU9LK1l56x9rxoP3bs6TIf+5rML7w/9LBZe7Qkae3EjtDj/3SX+z76hO0yKg/aeJx90Mr10Seq1kzlOEm6+xvNnTd2ZbsmnqG94Z+BpOYr2wEAAAAAAAAAAKBlCNsBAI5s3T3qtlQ8W2TJNUQFSzKBI43XTFgi16ucJRDY12Wv1nbnk/ZT9rrCbHGr72W6reuTpB0Hw4M6X33YEbZzhQHXbpa59p3R65oMNmanAo6u9/2NR/yCWTXPi63dZBzprLPq1+0/81uXT2U7l+7J5zbbRCB02jXXRtbF+QzOMuZ3Py5z1uX2AdnSc2z7Ldx5yH1+nwBy5ZNw/AaaqPau9ZoN20WxVaSLez1XS1ibpx+2H2umMioAAAAAAAAAAABairAdAOCIZD58S2kj26P7c6eHjtmwJHzucESw5F0HPmU/2EzYbvk6/Th3Ruih9fPsYQ5XUa/lhb32g3HX+ND3tXHiBethWzvWR3faT2mrNihJ2rFdOu2i6HUdW75nY1NBtjMc7Vrr17nAkjnbk1o+9eLAy9HriNLd7bx/43m/00wkDNsdO/6EJMlkWxAg7DB7G9nmK9udMfqTpufOOJuOdx/vLbWo3p7dHHp45QL39LGIZ/TCoe9NvXBUTgwO7rEeC79wk2G7hUubO2/ssF0Tle0c37/ELasBAAAAAAAAAACQGGE7AMCR6ZxXS5JMd4+uHfhy6BBbBTtXFaf5hQH90uGb7QOaCNuZri5dZ1nj4bFU6P5iMbAGYF438DV3va+4YasLrtbqvD105tNisp6zjezqTdJxZ0y1iQ2T7Za59n9Iksxlb6zsvnzoduuUQ3XF5Wzrfkv/v0+9aEVbx2yPUrK3/PW9f76hPJtzRu5LdoLpZHmghwL3s7x6of3YRUPfT7CgmcVEtQbefKIk6fLB20IPDw65E8auZ68rKOjdBz85tcPRStucdZnzOg2aadMqSYf3R5zXFraLeb3xMQVF+3e7JdeYZJqv4ggAAAAAAAAAAAB/lEcAABxxzFdemgqfdOe0dfzp0HHWsJ0j/HTbC6/VSWOPhR/s6pLSmRgrnXJsbl/o/kf7w9NC/Y68xv/c9xH3xWIGyMyxp6v7B/9tPe7TYrKes7LdWZfJdHVJNz+g4ENvk+7+Ru3xi66VecNvyJxyfun1ivWVQ73BiC4e+q6+O+/ihtN+6s5An3hrabtQDKyV4rZUPy8XXO3xbiKU7/flg7fptvmNrT4/9u1AH/S4TNLKdtlgXLryxmQnmSa2mNGtoyc75+UtOahP7Hq3svJIOWZz0qLl0eNarZCX9u/yG7v1tOgx5WfwiqHbQ5/Be1/MKggCGUugy9XC+D9fukFXD36t4VqhFljKido0UdkuOLC7+fM+93js62moX+pb5D08uO/b4QdOvSD+tQEAAAAAAAAAANByhO0AAEeW86+SWVwVjsn1qicID1bYQmK2/YsKB3Wmq/Vkd481rBKlN2VPsxSKgVJdtef95iP29pm9lvdbEbdaW3dORlJvcUjDXfMaDoeFE3f3u9t79hSH7QfL6zO982U+8l9e66u2fuIl69CJfKBM2jgDgj3FqiBgCyrbme4eBbJ/LgOeha5cgSevdUjOqmOz1fBYoN5uS0jMUpFtZd6vnan56k6ZnsZnvt2CPS8puP5ov8E+6ys/x86Q67OPVSrg1Zuw3Me3H/psbdBOkrKO70zc79N4E21kHcHgCkt1ueDRe+Nf78e3S5dc7z/eFujLzr3vJgAAAAAAAAAAwGxEG1kAwJFloi5FNTZibVk6Mh4eCBuZCN9fE8IK4wqZRAj229u0Hg5Z/of+2x5mc7ZoVSn8FctkUMdy3uGQ+/jCAfcpjx7fbj8Y9z4uX1fzMi17Km3fYOlPV/XCmnDmi0/FW0uYcsBtR3pt6OFVC/xOk7SynSRpnqOv6gzWa+zpyJ2H7fNsYbtM4FmOMao960zg84yWv1NDxv5+Jv7jk9ZjtqBnNgj5Ij1nqfwpSas2liqA+mqmst3uF5s/7+qNsa+nQ+FVSa22nBK+/8kH418bAAAAAAAAAAAALUfYDgBwRDEXXVe74+TzlLNUczowHF4NyxbEslXIq0hQBe3s4k+tx8KqsE2GxsI4q1dJ8aubRVTFClufq3LcttGHdMzEM9bjccOA9ZXHruu3V8Ob/Gzdle2qPucTzoq1llDl93Pp0Heca4piC475WFeu9mfiVOCaQa6Z97D1mO2zLBYD673Neobtmq1U2VHbXhk5xKTTUiqtc0fusY4Zyaesx8bz4eHe0Pt47Bn2dSxcKp39KvtC61kq0DmNe8wZm6qsGXzlH1X8jctVfP1m6Uufjn+9uIHA8bHw/UefFP/aAAAAAAAAAAAAaDnCdgCAI8vpF9W+nr/QWektCBpDJLbwTq+r9amUqEVn38WvsR7bGxKsOzBkP1fLQ4ERle3uCsnNPb3HXnnv6y9cE3G9Ju5jb19l84zRB6zDdveX/nRXtpsK65hjtsVfS73y/btw+Aehh33Ddkkq231g35+XNjYd3/xJptHJ2Z3WY7b79+5b7M+gV9juihuix8wA5oKr/QZ292hR0V4GcKTgCtuF7w+rEGhOPNu5DPOhz0gX/pyU7S7tmO+otthEZTs9FP49qzFa+i0PbvlLBR99l/TQ96W9O+zjX3eTtcVu8Mwj8db34PdCd5uzLo93HgAAAAAAAAAAALQFYTsAwJGlPkjW3eMMnz30UuO+YUsOx1Yhz3rtGHpyaeuxrzxkDw2FniuijayyMcNs5fG2+/jZexrX92/3ha+5r9CvFYW97us1cx8XLqlsuj7vLz1QWtePn/dswxv3XoWpVAYMX9d4XioUoz/jJJXteovDkjFSJtv8SaZRT5c9kRgWjh0aC/TJ7yYM2/XO91lae8SpqOf7fcn1On8bnhpfZj1mbyMbch8j1mPmLVDXn35e5uu7Zf7jKZmv7pLWbQkf3EzY7vEfew0LBg8r+MLf+Z2zOyctWh5+7Af/7bmwCJPhQwAAAAAAAAAAAEwrwnYAgCNL3+La1909WpXfbR3+dhpawwAAIABJREFU05dCKtvZ2shGhdgShO0W9NjDNWMh61m5wH6ulocCy5XmdqTXhB4+ZW3jvhULwt/PQMqx8Mr1mriPualWsvOK9rJ/k5k2V3Ctrzgw9SJlr/blzZT+OtbreH5GParbJals1x2MSUEwO9qihkiZQNliePvNsO/rNyOKjWXlccMPRoRCZ4rFK/zGZXNaXthnPbw3P896zPZ9Cb2Pnt9f090js3KDTCpln9NM2O6YU/3GPXqPtOdFv7G5Xmn3C+HHTnqF3zkUXkm1YjSicioAAAAAAAAAAAA6grAdAOCIYnK9tTu6e7R54jnr+NGQEImtjWxPGyvbdffYqxqFrfHE8NybJKlLEVXSYle2K72vvmJIP1tJYyHrG52IV42vRjP3sSpwlFLROmwy1OYKt2VU9Ya2nBJ/LfW2llrRuiru2aopVrNVF/ORDhJMngmM/f6F3buDw+7nLxN4hO2WOb5kM8nxZ/mNy2S1oDpIWmes2Bgs3XUo0Me+XdQdT4TPCa1s10yFNtt3fjw8YOk0HvE7Pan/oPcpTXePVLR8h+Ks0bW2o0/2P0+DBL+3AAAAAAAAAAAAqEHYDgBw5Dj29MZ95RCHCcIDWB+9NUZlO0dYSlKylqO5Hp03/MPQQ997snGN3/lZ+GnefcCjLWLsynal8b914G9CD4e14rUFFn/l4P/1vl4sS1fVvLx88LbQYZ8pt7z92cvhp1mVrzvQ2xd/LfXmL5Tkroxou1/VklS2SynfmuDgNLKFXV862Pj9KNjzlpL82siaba/0Wtd0M2l7C+oaES2EDxRqg8ov7A90wUeK+t0vxGzH28z31/LbGdiqybk8b0kG1p/76Yf9z5nNyVz5i+HHfvJd//O4KvWtWOd/HgAAAAAAAAAAALQNYTsAwJFj7dENu0w6I6XSOmP0gdApT+9prMI2HW1kle3RUZYKfPc/73+a9RMebRGbDNvZKttJ0kTe7x4uy9vbWE5dr4nQYl0rzQ35kASgpIHRUivHv/1OeIBo43jdzU4SoJxUvn+uyogvehTZcrW+jZIKCg2BxNnG9v371J2Nn+Xd293n8gnbteSzb5Zvu99ykNNLuhS2O3YsPIz2hZHaCnl/e0egZyO+ruGV7Zr4HbR95//7H+Ofy9e//n/+Y7t7pFyC3/dJB+wtzZv63QMAAAAAAAAAAEDLEbYDABw58pYATXePFhQPW6fVh9lGLafpbWdlO0kTyniNCwJ7pam88ahyFXed5UDPfEfY7uEdta/trXgj7qHUVFjHLFtd89rVJvTFA9LmZeHHxrrq7k2SAOWk8vtZUOy3Dnl2X3QbyGSV7QrNteScKYzRmAlvT7o8pPjggoiPLevTRrYVn327pTyr2kmVyna2+7imqzbxGVZRs17ofWzmvtmeTd8WuWXBIY8wbzOKBalg/wK6fpNrvPCk/di8GMFJAAAAAAAAAAAAtA1hOwDAkcPW8rO7R5cM3WmdNlBXcGx4PDw4EVnZLk7wpd7azVpesAdFisWpNY06ckJrJ3ZGXysbHraxKrc3vHD4B9Yh/XW3punqgFJzYZ2zX1Xz8qyRH1uHDoxJKcvfkPq7ap8hk0rFX0sdk05LqbSzMqBPVmc8QdguHeSll55u/gQzwM7MmtD9qZAicAsi8qQ5R5XBqUG90WOmW5zfnHJlu+eym8JPFdQ+YPW/i2FyxZBBzVRosz2bcX9ThwfiX9vHqo3SsvDnT5J/kNUR2DOzvPIkAAAAAAAAAADAXEHYDgBwxDCXvTH8QHeP3nnI3o6wPlTywoHwcbmoqmxdCf6zu3qjru//ovVwdcDOFmSTpBPHHou+Vtqvgt4kU25p6QoD1q/ppzvCx7laqVY0EbYzR59U8/qaga9ax/aPSE/tCT/2Gwc+EfvaXiLe00uH3NMLxcArkGeTUkG68sbmTzDdjNGvH/hk6KG7nmncly+6T9e20GfLeLaRjfNdzpTGXtf/X6GHf1aoDZO5Qr2TQitVNnPfrvrF8P1jHp9TkvG+1h8jHXWC/fi453WTrM+3tTAAAAAAAAAAAAASIWwHADhy9C0O39+d09LCAc2zVBb7f3fVJnN+8kL4aXrCqjhV60pQBS3bo4WONqPVYbZhS4tWSeoNhqOvVW4nGcvKDZKkxYXwJOI92/2SYF4VxZqpjCVJ2y6sbLpatn7qTvta1+R3Tb04+bzm1hGmHEDaPL499PAffMl9/8bzyS6fCgoyi5YmO8k0s927sPa6US132/ocdlKcyovlynYbJ54PPXx/YUvNa1eod1JoeLaZsOxCy7MZN5y215LyTao7534e7rvN7zy2UN7azfHXBAAAAAAAAAAAgLYgbAcAOHLYQh7lkMlSS1Bsn727Z41s4Ei5SfbepD66e8KrRJVVB19GHMvwqtiVbiJsVw6aZIPwBM6uw1PbQ2P24FjkPZSaryiWmarylVZBJggvb3bX0671Vb2/VoatygHH7dnmQjVR4bEo6SCfLAw6A+QCe6vO5/fXfqZR96tLHuHQaa1s5ylOm9XyM+j6Do5NTN0X1+/MpFzY700z9802J27Y7rnH41/bR7ZHys2zHg4esLcpr2F7P7PhWQMAAAAAAAAAADhCELYDABw5Nh4Xvv+Zn0qSXshsCD28pLf2dcaSSRrqsoctJCULM3X3OINy1cEXV8Wp3qhWt1Jzle3KYZDd6ZWhhxdV3cODjuJ6y/L2VrQVme44K5uyq7ZiV2DC/xo06qgStzZfVRmrlQGYPS8lmu5TZcwlpWLz93VGMDp+zB6kqg/M5hOGEyXNjvvV0+c/tvy9X1AcsA6ZbKmdLwTq9yj+17I2stawncciqjXz2+aju0davtZ+vOj5wNneT9LfmiQ9pgEAAAAAAAAAAFCDsB0A4IhhbEGLk86VJL1q8Nuhhx+t6hxaKAbWqliXDt0RsYAE/9nNZNXraG3p20bWq7JdU2G7UppuSX5/6OGaMKBjfceNPxl9rXQmekwIc9Uv1rx+xfC9oeN2HrKfY+NEVQ/hVobtTr84ckjgCMz4VBlzSakgbd2W7CTT7JyR+6zH6u9P0kqAktoX3PJhjN+4vkX+5yxXtLxq8BvWIZO/M4c8ulFLIa21UymZZr6/tu/agZfjnSduOM9Xrlemy/H77tm+NrBVtstS2Q4AAAAAAAAAAGCmIGwHADgyLFxqP3bi2ZLsYbmdh6RisRR0coWa+ooR/WZTzVe2M8aox5Ht+a8Hp4JYLx20j8s5AnsVCdrIvnooPLD499+bWp+rsp2rVW5FsyGnTbWVDW/o/3zsU/QWqxbfwgCMOePSyDHjjop7SSvbpYO8lGouxDhTZGW/CT+oaw38zz9sQaWv2XC/+hb7jy1/r5YU7D8gT+8p/bl/yO+UDd/nZr8zLWrZHNwX/vuUSFfXVAD4ul8JH3PPrX7nsraRbWHLagAAAAAAAAAAACRC2A4AcGQ4HF5xTVKlalKPI4j2k3JBM1eoKTIolqSNrKRc1l7N6puPTIWH7tkeHiTKFUfUJY+QUYI2srlgLPRwvji1bVuf5Fl5r9mQU111LNfnbVMTVmxlACYb3ZL0qT32Y4kr2wUFKZVOdpLpVK70Nr8Q3gL1zidrn7lCMXRYPE1WWOyoOGG78vtxfQdvfax0Hw/4hu3qz9VsNUjHvODgXv/zvPR0c9d36e6Rmaw06FrnIY8W2dawHZXtAAAAAAAAAAAAZgrCdgCAI54pBxmOHXvCOua5clbPFWqKDIolaSMrqeuwPawxvyqrtbg3fMxol2dgo5nQ1ZMPSpKeyB4TeviE1VPbWcfpIwOLxjRfIXDD1pqXayZ2xpreXRytDSu2MAATDJdCYn+36z3WMfschROTVrZLqZCo8uJMMZjqC92/dF5tUHXbevs5fm/fR/0uNp1hO982sju3+5+zHPhcVLT3Ue4qX9Y7bFcfaPUIlYZastJ+zLNFqyRp0/HNXd+lqlqfWbrKPm7PS9HnsrW5Tfpb4/u8AAAAAAAAAAAAIBJhOwAAsqUKZRcO/8A6ZGS83EbWWdkuolJaC8JM3cXwawxVFZRLFLzKZKeqNMVRbsV7wfBdoYcPVWXoXIHFyCunM82tT5JZuaHm9SXDd8aa3xAEbGHYzpx6gSTp5/u/YB3jum9JK9ulg/zsqNRmE/FM/PCZ2sp2EwX72Df1/2f09VIpma6Z/9don/bEFd2llK6r+uXkc3ZgyK8Nb0MAudnqias22Y/ZqsElHeur+nfgouvs48Y9KmmOt6myXdCCtskAAAAAAAAAAACQRNgOAHCk2Hyi/ViuFDLJakKZIDy1NBlgc4btoirbJWwjq0vfoA/t/XDooburCljZ1vjawW9GXyPdRAtZSebk8yRJJ489Gnp8Z1WxLNv6zhz5cfSFmlxfxcKllc1czDayPXVBR9PK1o4LlkiSFhUPW4c8+JI9MPOpO5P1RS1VtpvFbWTLfnv/X4buf26/9NTuqfuXt4Ttfm7gK9o29nD0hZI+h52yPrzSZJjq5/m6/v8KHfPtyTayw37nbPiONfuMuSrixQnQ/eS7obvNOz4ovfV98dY0KVf1O7Bqo31c/4Hoc1nbyLawZTUAAAAAAAAAAAASIWwHAEBVyOTYsSdDh4xOhu1cbWSjWqAmDdtle5zXGJ0oBWGGLWvsLXokZDJNhojK99BV3W/XIXd1wPlFR5/USUmrrx3eX9k0kub5XLOs4d432xIzTFWYZlX+5dAhn/+RPWz3xQeSXT4VFGZ3Zbuy+kBktVuq7l/ekk187eCtfheaLfcqTkiraqztu/jYrtKf+z2/Ng1huybvmzHGXt2tFdXqcj3q+tU/aa6CXNUcY0ylUmq94P47os9ley/ZFgZ7AQAAAAAAAAAAkAhhOwDAEcG8+XfsB4tTyZtcMBY6xKeyXWSltKRtJ4f71ecIhz2zt/TnqCVsF1l5T2q+Ytey1ZKk1RO7rEMe3lH60xYGjGzDKzUfBrQY6prvPbbh/rWyst3ilZXNl9OrQodsWGKfnk1YlC6tWR62K7eRXZO3P38PvRgdtksHeb/rTXdlO99WynGe0aqxL2TWhw45dV3pzyHPtsUNLWmTVE+0vRef9qySAlcr1ZGh0p/NBPdefsFrPaaqqqbVmOW9tPK3BgAAAAAAAAAAAIkQtgMAzH3Zbun8K+3Hjz2tspmzVI6brGg3agnb5Yojioq/mISV7cwJZ+uyIXt1pMk12gKBXmG2ZtsVnn6JJOnM0futQyrrSxQGnL5AWMP9a2EAxvQtihxje/YKxUDjnhkxm1RQmBOBHler5Or7N2FpI5sJHGnaarMlmNhk2G5dfkfokMnfFlsb3khJ7lu53XcD34DceHiQWpK09TT7sShLVngNC3xCgZb30tKW1QAAAAAAAAAAAEiEsB0AYM4zf/6fMn2L7QPmL6xs2gJff/zVcgtUa1U2j8BH0jayp11kbTEqTVWMGxkPr+DktUZboCWC6S1ViEvJUjJM0oGh0rpsoTGv9SWpjBXissHbvcc2BDHbFID5n/s+Err/24+Hj7fdzzhSKljbX84OpajrhvxLOm7sZ6EjqkOotrBYWr6V7eZ22O6SoTtDhzy5u1QhzlYZMFKS76/t+Tyw22/+uOP3Zfna0p+nXxxrSZJkrv/12h3bLgwfePNfRJ/s8R+F7/cKQXtWOwQAAAAAAAAAAEAihO0AAHOeOfsK94CqkImr+tt4PtDIhCXIVvSoWpS0jWyuV2kVlAnCE3+TYSJrm1afynFJAmSbT5QkbRp/LvTwlx6ICCz63MMWt5FdUjzoPba3/v61Opy27mhJ0qLCoVjTbPczjnQmJZP0+Zwh3nL4ltD91aHExG1kM7MkbJft9h9b9d13tcR+eo9UaDZslySkaPltCm7/gt98VwW8yTDbAkevZpueulbUtnaxQaDAVV3Phcp2AAAAAAAAAAAAM8bc+FdVAACSqAoy7E7ZWwJ+6zFXi1afynYJ/7NbbjVqC80NR7aRbXPYrjx3sGte6OGVC0uVl6yBRZ/1Ja0odvTJNS9NEL6WMA3ra3UAZnhIkjRu4gUKh1oQtktlWxti7LiBqYCi7Tka8Wgjmw48+6Ompjts51nFLM4zWlV1zhX4vOuZaapsNzwQvn/9MZ7zB+3HJit6erRzbtC3sPb1vAX2sU89ZD0UuMKARY/ncvVG+7Hla6LnAwAAAAAAAAAAwAthOwAAslOBFFcbyef3B9YqYjmvynbJ2siacqtDW/W9yfax9spxHmG2JNXayvdxX3q5c5j9HvqE7ZKFwswNv1XzetuYPfxSr+H+tTpsd6DUInh9/iXrkIl8YzjwwFDyS8/6sN341HciF4RXD6t+7qzPoE/gU2p5hcW2ifOMbjq+snn+yN3WYSPjUrHpynYJwna7nmt+rlQTyGxQbjNuzrws/nlPfWXNS3OW4xyjji/riOPY+q2RyzAbjpXWbWk8sPkkmZUbIucDAAAAAAAAAADAD2E7AMARz6TTUqoUhHtT/39axwWBq2qcR9gulSxsN6m3OBy6/0fPlf584MXweV5rnKzw1IxyK8bXDXwt9PCjO8phQMs97O1EZbtTzqt5+fOHPVtQKuT+tTpsd9G1kqTjx35mHRLWIni/o2CXr3R3ghDUDGAuuLqybQuVPrG79Ge+YK/MZvtuNUj6HHZKnGe0qqpbX9H+UO0blPKeBQAbJKls9+q3hu9/8gG/+f37w/en0lOtYF95TeV76MvMr6tsd9F19sGH9tmPuSrbrVzvt5bf+2Ttb3hvn8zvftxrLgAAAAAAAAAAAPzM7n9ZBQCgVbI90sigsoG9J+ePnpOOWhZ+zKsilmlBxn3VRmubzL++PdBf/rx9qldluyQBsnLIY8NEeNrv3mdLf1oDiz7rS1pRLFfb4nZB0dKaMkTbK9utWBd+nSpfeSjQ28+tbSF6YNi/Fa5Nqrs78TmmVc/U55pzhEr3DgTKOXJyXoFUKXGFxcSMZxvZbIxn1HPsn3490OtP87x+vSQhxaWrwve/+JTf/P6D4fsXLJEp30+TyUof+px0/3cU/PRuaXxUZsESBZ/+gPcyTSaroGe+NNIYWAw+91GZy94YPtEVtvP8rTGnXSh95kHp7m+W2paf8xoZz6AeAAAAAAAAAAAA/BC2AwBAqlRcWp3fZR0yNBZoZCI8ZOIVFGtFZbtUSpnA3up2T789eJWSRzmqJG1ky/fQ1Yq3ULS34vWrDpjwry51YbvewLOSmUIClbkWh+3K722+o6rYD56W3n5u7b6DLWgj2zXbw3ZV7UnnOarT3f54oMuOtwfFXEG92uvNgsp2qXSpaqevrN8zMJ6XCh5tZLeNhrRoTvL9dbThDsZGZKICaQO2sN3impcmnZZe8SqZV7xq6vy2sF25tXeDbC40bKfDlup6Uk0r5AYxgr1m1Ubpul/xHg8AAAAAAAAAAIB4aCMLAIAkDR6SJF0xdLt1yFHLTbI2so6wiLcd27Umv9N6+EVLnkSSVuT3RJ8/Tjin3jM/leRuxTkyLo1bMn/dwVj0NRKGnEzv/LprjmtlfrfX3J5i3We8alOitTQ4uFeStCFv6QMsaSLk3oW1lpWkBYXDXpdNBXmZOBXQZqLVR1U2zx75kXXY/qHwezjJVdmyRmYWhO1iVl40vtXyJOWL0dUUP7j3Txp3ppq/b2aRpayoJA17VKi0VY7rmR++v/rav/4X4ft/9U/DJxy2tIudt8B+kRZUtgMAAAAAAAAAAED7EbYDAECSFiyRVApf2ew4KHtVNp/Kdq1oI3vMNv3m/r+1Hj7sWMaW8Weiz59gjebyUg/bawa+ah0zMlGqjBXGK+iUtI1siD/a+8de4+rb95qu1v41ypz72tKfjjEHhhpDTrYA6KaJ572umwoKUneCioYzwbLVlc2VBXuodGTCXZUtFXhUf5QShcY6po0BrXzEbTp75D5dHhZcTlLZrqrSXANXUK0ssI3xuU9XvFlac1Ttvi2nSOdfFT7+yhvD9z/7mP0arveQpOIoAAAAAAAAAAAAWoqwHQAAknTmpZXNNx++JXTILT8KNJqksl0r2siecJa2jT1sPbzb0UbWq3JckgBZuaXiksIB65Dn9ktjScJ2rWjfufW0mpdvsXze9WoClSvWJ19Hvb5Flc3fOPCJ0CFfCenM+YUfh3/miwqHvC6bVl7K9XqNnbHqAlPnDN8TOuzLDwTKu8J2Pq2WpelvI+tTha6ZsN2WU7yG7Xe0Lv7Q3j/WrS+8Lvw3Mcl9m7/QfmwoQWU7jyCbWbpK5uO3S299n3TOq6Vf/AOZv75VxlKpzpx+sfVcwT3fjL2+Vgd7AQAAAAAAAAAA0LwE5SUAAJhDqtpo9jqq1O0dCA82eVW2a0Ub2WzOea0fPO2YGliSgtWSVN8rh3t6A/v6vvVokKyyXSsqitWFa3I+QUnVBSrbUQmuKvDW42jFWywG6uqaClsdsASfeoMRdRdHNdblXmupst0sb1NZ95nOK4bflJf73ZXt0r6V7aY7bOejmWc00+017IeWIpm/t++j+sC+8JarkpJVtnM9oz+7Xzr6JPf8JJXtJJnla2V+NaQ1bsxzBnd+Weac1zQeGE22PgAAAAAAAAAAAHQGZRIAAJCk7Y9UNhcW7RXBntsfvj/nCJhVtCJst3O7egN7EMvFK8yWpIJSORSyMr/bOiRflMYteaaMTxiwFW1kjzq+5mWX7NUAq42YqvBSOwIwVeecMPYwV33b2ONXh4/7fu/5kUE7qVzNzTNkNVOZukpvd/eeEzpu68qINrKzpbKdj2Y+08d/VNm8vv+Lsaen5Li5kpROELabv8h+zKdq6JglVNuO73Ldb0yNPS+G708YBgQAAAAAAAAAAEBnELYDAECSzriksnlD/xesw2xVxLzayLagFaA54xK5Gkj2OzJ/XmG7JJXtsqVwjytwc3BYCSvbJS/Ka1791qbmnTty79SLdgRgqqorvm7w69ZhI3W3acKSD7t46Htel00H+da0OJ5BXjl8V+j+wTG528j6VrZL8j1pBZ82ss0EAk85v7L5vv0fiz09HVi+3JMSBI7rA5U1bEE1nzHt+C5vONZ+7ODe8P3jtvW1oYomAAAAAAAAAAAAmkbYDgAASWbTVCWirWNPWcftGwzf37E2sis3SJLOGPlJ6OG7nrZXaetUZTtJumogPCz2N7cH1nCYX9gu+T00p14gveZtNfveefAfIufVtJttS2W7qVDN2omd1mH1le1s4bEzR+/XJUN3RF42peLsqNQW5bSLKpsXWMJ2338qqo1sRFhs0mwIJ6abqAJ5wtmVzTNHw39jnJeMun9J79vmE0N3B/fcGj23g2E2Y4z0tt8LP/jUg+H7qWwHAAAAAAAAAAAwKxC2AwBAqgk09Pi0hK3jNacVYbvyOnssrWRtbW5NUFRaHkGiRJXtpu7hvKKlBKBreocq20mSufj1Na8HuuZHzqlZX7YN1aZqnkF7pcQH67pQ2sKL6SCvrEdr3lRQaNl9nVZVoSnX93FozH4K7zayrfgut1szAcq64JktNGsTef+S3rfu3vD9P/xa9NwOh9nM0pXWY8GLIYHuTra5BQAAAAAAAAAAQNMI2wEAIEkr1lU2XW1QbXqKnWkjqxXrJUlPZLeGHs5aMlPZYNzZfrYiSeWpZasqmy9k1see3t3BsJ165tW8fC6zMXJKpjq4Nn9ha9ZRbcGSyuaywj7rsJGJ2uqFeUu+KRNMeAUY08rPjcp2+3ZVNuc7wp7P7LVXf5w1bWR9pON/V0xdiHRpwZLetV0yqrJd0vv28vPh+4/ZFj133JKybFeYbYXjN/DZxxp2BbYwYJawHQAAAAAAAAAAwEwyC/6lEACADqhqnyhJS/P2sFMYv8p2LfjP7qbjJEkLi/2hh8ctWRevqnFSsjBMVbhk29jDsad3srKdNp8Ue0r1+uor47WCyUy1/cwF9vJrI3W3yVrZTnmvezpnKtttObWyecXgbdZhA45crFf1R0lKTfNfoY1HdLaZAGW2u+bl6wf+K9b0yPuX9Ddw7ebw/bagmscY064w25mXxluL7T3kCNsBAAAAAAAAAADMJITtAACQZOoquv3N7t+ONb+n2Jk2ssYYaeOxesvhW2LN8w7bJQjDmKoA0HnDd8ee39GwXc7SjtIhU12164KrW7OOeqdeUNlcnt8TOmTn4drXtrBdJvAM26kwJyrbmQuvqWyvLITfO0n6lx+2oLLdrGgjm40eU6+ust1Vg9+INT3y/iW8b+bKG8MPPPd49ORH7w3fXxcwbBXT22c9Ftx/R+PODre5BQAAAAAAAAAAQHMI2wEAMGn52srm4sLBWFNzgUcb2SQtWqsddaJfuK9KtroFqkvSNo8LlzU9taNhu7pQkdeUyfWlMw3hzJZZsrKyuTr/cuiQz/+oro2spetxOsh7fe7pIC8zFyrbVYWSuoMxmSD8xtz3nP0UKfmG7WbBX6GbCVBmaoNnRlKvoyVvwyWj7l/S740jeBYE9hBls+dMbONx4fu/9s+N+8Ys/w0hbAcAAAAAAAAAADCjzIJ/KQQAoEMGpgJ2SwsHYk31Cr8lDbJNGjwUe32dqGwnSRos3cOTxh6NPdUrENiiUJipe59v6P9i5JyMyuvLewYXm1EVrDmYWhw65PjVtS1Eba2DM8FEjDays7+ynRYurWwaSUHM75sJiuqSZ2BrVlS2a+IzXXd0w67hrnne0yMr2yX9DXS1zz1kb/0d5B3tbX1a0DZrxBJUnL+ocd+4ZR3tanMLAAAAAAAAAACAphC2AwBg0uhwZXPb6EOxpvYEHoGNVlVDGxvV5UO3x5ritT5JJmkYplAK25w89kjsqT5rbFcFtjf3fz5yTMa3OmASVWG7FzPrQ4cU6gq2jViW1ROM+LeRbVelvk7acmrNyxNH4wU+vavaSTMgbOcInU1qpo3syefFn1Ml6jtikt63zSfZj406KvDlHd+DDVubX0+URZZKn8WQZ63qvz81uuMrzsapAAAgAElEQVRX4QQAAAAAAAAAAED7ELYDAGDSua+tbKZk6c1pkQvGoge1KKBjLn+TNuRfijWn17ftbNLKdlffJKkUBTp19OFYU72qA7YybPf6X6tsrijsjRxeCRJddG3r1lCvKmz3joP/FDrkid211ddGLDminmBUGY+wXTooNFcFbYapb+37l7t/N9b8yKps1eZoG1mTztR8LyTpzJH7/S8pRwU5KXmos6p6YQNXhbqCY11LVzW/ngjmbe8LPzA80Nj21rZ+2sgCAAAAAAAAAADMKLPgXwoBAOiQ5WtqXl7b/2XvqR1tI9vbJ0k6evwZ7yk5z8p2SddoVm6obN9w+N9jzc0Fo9GDWliBzWw8tub17+z/mH1sUJwKYK5tbLXZMlXBmmWF8LaYD9flLG2V7XJFv8p2XSq0NsQ4nTafWNk8dvypWFMjg2LVpr2ynYd0c5+pueT6mtdHTTzrf8kg4h4mvW+u4NnLz9uPucJ27WyhvGi5/dgzP619PWb5/SNsBwAAAAAAAAAAMKMQtgMAYFJd0MwosAxs1NE2suXASqz1daqyXdU9zMi/7Wp3cVRdPu+nlaGwus87V7RXJwyqxxqPFp7Nqgoj+Xy+xWKgCUtBtlIb2ejPIDVHKtuVTH0284uDsWbGq2w3zWE7n2ew2c+0LtwVGaCrEnkPk353cr32Yy86wpXOsF0bg6a98+3H7vt27evx8LCdIWwHAAAAAAAAAAAwoxC2AwBg0rwFNS+HuxzBjjo+oaaWBXRWrJMkPZ3d4j2lx6dqnJQ8DFMVKDxu7Anvab3BsN/AJqt1haprSXn26I/85llCMa1gVm+sbE+Y8Pfam53aLji6HaeDvFe1wLTyc6ey3fZHKpsLi/2xpqY019rIZqPHhJm/sOblxokX/C/Z5jayJuN4T65nOO/4fW5htcwGm0+yHgqG68KgeUsVStd7BgAAAAAAAAAAQMfNgn8pBACgM8yFP1fz+hcOf9Z7bqaTYbvVmyRJ/+PgP3pP8aq8JyUPEZ18XmXzFSOe4TVJPUXPAFsrQ2FVLUcl6YrB272mmTMva90a6p1xSWXz0qHvhg4ZHpeCoFT1ruAofpcKCl4VDedUZbvzr6p5eenQd7ynxqngNu2V7Xw0+5kuWFLz8q2H/83/klGV7dp434Jdz9kPuirbtfHZd4YDf/Ld2tcTlrDdXPluAgAAAAAAAAAAzBGE7QAAmNS3uObl6old3lOzgSUoUa1V1bDKbQVPHX3Ye4p3G1mTcI1VbR69A35xxrYybFfXnjHr2/a2t691a6jXM9V20tUGtb98u4qOynZdCrwqGs6pynabjq95+dbDt3hPTclxM+uYuRy2m7+o5uWq/G7vqamoynatuG8nnRu+/5a/ss+ZrjaykvTKa8L3//SHCsaqvp+26nuE7QAAAAAAAAAAAGYUwnYAAEyqC195t15VhyvbldcZL8zm+V6SBgK7c1ObwZj3NO8wYBvDdm2f5yM7df9cn9l3yh16nZXtVFBvMbo971yqbGfqv8O+z5XK98HXdLeR9Wj37Kyq5pqXStW0ko3zOxNZHbAV9y3bbT0UDFlaBzvbyLY5bOf6vXjwzqlta9iONrIAAAAAAAAAAAAzCWE7AAAmLVtT8/K48Se8p3qF7ZoMvzQoV487ZfSn/lN8Q0dJwzCrj6psRseBpnT7VAaUWhuMWbS8uXkbj23dGupVVQY8duxJ67CDQ6WUnbOyXVD0CkqlVJwzle2CA7VV2FoaFKs2GyrbJflMBw9XNnMxQrPRYbsW3Le6Nrc1Du4J3z/ueA+O8F4rmKNPth/cV1U9lcp2AAAAAAAAAAAAswJhOwAAykyqNgjS52jjWS/j04K0RRXRjDFSOqNtYw95z/GubJewjaxpMriSmYawnWkyWGja2EbWVFUsmxfYq9KNlB+3qMp2OZ82skFeSs+NsJ056/Ka13FaLac0iyrb+WhhSMs3rJvuQBtZc/VN9oNjlud9zLH+dlaqlKRL32A9FHzqAwqC8pd4wvIb2KqQNgAAAAAAAAAAAFpiFvxLIQAAHbTmqJqX/7jznZFTUkHer4pbC0Md5sb/JSPpssHbvcZ7t9NsRYhoyarK5q8d+LTXFK/KgFLrK7BtPC7e+C2ntPb6YV791srmKZaw2P/5ZnRlu1RQ8PrcUyrMmcp2Wri05mVvjMp2c62NbKKQVl1A7Pf3fcRrWmRlu1QLKtudfJ792P3fCd/vCttVtW5uB7PmKPvzcmiv9NmPlrYLVLYDAAAAAAAAAACYDQjbAQBQrS4Q11cciJziHRRrZQWlXOlcqwq7IwaW9AQj0vpjogcmrGxXuthUK9ScZ9gpOx1tZKWatq1e2ljVrqJ7Kvwz31Jd8aWDpT9dle265NlGNijMnUBP3XfMO2Qqj6ps1WZDG9kkn2m27j56fo/TUYHFVvy+OH5Hg9s+H37AFrbr7qmpJtk2J7zCeij4xs2lDVtlu7ny3QQAAAAAAAAAAJgjCNsBAOaGay0V6N72e/HO88KTNS83TrwQOcUrKLZgidQzP95aHILhUgjrmcxmr/G5YEza+Wz0wFZU7NqxvbK5vLDPa0rWpw2v1JrKWNUO74833uceJvXy1DN3MLU4dEhPOX/jrGynglbnX468XDrIz53KdivX17z0DYlJMSvbtfo5bIckn+nO7TUvN0087zWtI21kXb9RPfPC99vay7a7heykwUP2Yy8+paBYlPJUtgMAAAAAAAAAAJgNCNsBAOYEc8UNja0VUymZy94Y70Qbtta8PG30wcgpXpXtLrxWpoUBHXPi2ZKkE8Z/5jU+G4xLm0/yOHFr/2pwXf+XvcZNWxvZ0y6KN37rttZeP0xVq9rLhu4IHTIyIQVB4K5sFxS9wqKlNrJzI9BjFq+oed2lQD3FYa+5acUI27X4e9IWST7To46veXn5kKU9a52OtJF1GW8M1QWH9yv4698OH9+psN1Zl7mPj49KBcu9I2wHAAAAAAAAAAAwo8yCfykEACCaOeV8mfd/WuorVwJbuEzmg5+RqQoueZ2nrkJelxxpprJMWDWnbLkVaFeXdNF1Mr/1sVjriLSoFCo6b/hur+GZYELmmndEh11a0R7zdTdVNrdMPOM1ZbrayJorfyHe+Mve1NLrh15j62mV7Tf1f8E6bjwfXdnOnHRO5PVSQWHuVLaTpOVra15+4uX3eE2rrmxn/uqb0tU32QdPextZj9an6eY/U3P82TWvF3i005bKwU3niVvzf3qYd344/MAj99S8DIYHFLznVdL+XeHjq1o2t5O57OfdA1yV79LZ1i4GAAAAAAAAAAAAicyhf1kFABzpzFU3Sq95m7T7BWnVRne7QZvu3oZdG8ef1/PZjdYpYVXZzDf2SC88UVrH/IXx1xElV6rI1OtZtSsbjEu53lKoquAIxLSijWxuqlqUkTS/MKDBVJ9zyrRVtss1ft5OnaiEVRUAygVj1mF7BhRZ2U59i7V4/wEdTC2xjkurMLeqZ61cL+3dUXm5qOAIMlXpmgyKGSOdfrF0z632wbOhjWySQGDIc755fLu2Z91tqyMr27Xi90WS5i+wHgryEzKTz/Pd35S2P2I/T7ZDle2ifjd+7KgcOJe+mwAAAAAAAAAAAHMAle0AAHOKSaVk1hzVXNBOkoLGUmHzgiHnlIag2Dmvlsl2y2w5pT1BO0lasFSStLSw32t4JpgoBT6iwmqtqDw1UBtuWuaxxux0he0WLq15eamlXeYvHfqX0kYnKmFVBXOW5fdZhz21Ryo4K9sVpQVLNGrca55zle0O7K552e0ILFarBMWCQMYYd0BqVrSRTfCZ1rfkll+wNzps16KQYm6e/djzT1Q2g09/wH2eTrWRXbTUeTh44Un7wQyV7QAAAAAAAAAAAGaSWfAvhQAAdFBI29krBm9zTqkP25nzrmzpksKYxcslSeeP+LWRzfqG7VpReWrRspqXrxpy3z9p+irbmdWbal6/ZvBboeOuGfjv0kZHKttNXWND/iXrsLEJqeiqbKeitGCxRrrc1ftSKiRqOTrj7NtZ8/KUUUdlsyr1LVCN67Oe9jayHpJU39tycsOuS4fuiJyWDmupXa1Vle1Ov9h+bLQqFLjrOfd5OhS2M8vWSJtPtA8YdQS6qWwHAAAAAAAAAAAwoxC2AwCgWl1QTJL+974/c07JBuNTLy66VnrdTa1eVbiFy5QLxrQkH105Lt3BsJ055fya13+8948i59TcQ5c2V2B718FP68qBb9Ts+9WDf6+rBsv7OtF20jMA9MzewF3ZLijILFiq6/u/6DxPOsjPrcp2r39Xzcu+4oDXtFRQDtttOr70p6uK4XS3kQ2pPNcgyWfat7hh1x/u+/PIaenA0aJaat19W77WfuzZR/3P04lKlWXmD/6f/eAXPm4/RtgOAAAAAAAAAABgRiFsBwBAtZCg08Jiv1KO9oiZyWPrtsj80b/KdKrt3/FnSpLeOOAOU0nlMFun2sjW3cNlhf1aXDjgnJKerjayklQVDswFY/rSS2/U3c++Un+/89f04PYz9bcv/5a6VC4hl3NXiWuJuvu3Kv9y6LA//XrgVdnu6PFnnJcrVbabO4Ge+tbNPcGI17xKC9TJaodHchvZkPe+uHgoZGCtyDayLbpvpqvL2l41+PQf+p+oU21kJZmt26STzo0/cQ59NwEAAAAAAAAAAOaCOVTGBACAFuiZH7o7FRRUMOH/2UyrHBQ79QKZTla8CkplzbqLo5FDM5qQcvM600Y22914/YgwnX9luzbc32JtebiUijpr9H6dNXp/49je8OejpXr7al4WZa9iFlXZTguWaknhOefluoLC3KpsV/d5VoKSEVIqzyt/r5zV4/Ke4dDplChsFx4q7QoKKhr7dzCyjezS1c2vqV7R8vAPHfY/h+V9ts2KdfHnELYDAAAAAAAAAACYUWZBWQ4AADrHWCqXjXc1BsgmVYJkHWxJKEmaKAXUQkNhdbLBuHTUCZ2pbDfZhrPKnvRK55RMVEhnUlcbwnZxAnSrNrb++vXqWmTa7l1PRl6V7eYFw87LpZWfW4GekLCnj0pVtud/VvrTFYwqeD6v7eLTRjbBd8Wkw38nXEE7KaKy3Yr10tZtTa+pQWAJ202MK7AF8ep1sLKdJJltF8SflO5QpVQAAAAAAAAAAAB4IWwHAEC9485o2HXR0J3W4ZWwXbbDwY2rflGSdPXA1yLHZoJ8qepeVOW6VlS261vcsOuMkZ84p3hXtvMJGcVkXv+r/mPbcP3Qa6w/pvL6D/b+eei45/ZHVLZTQVqwRD1FdxvV1FyrbHfC2Q27Lh+8LXJapSrba95e+nPdllauqvOSfqanXdSwa2l+n3PKZNjOvPujtdfv6pL5tT9r6ffHvOND1mPBL5+j4PD+6JN0OiB9+Q3x58ylICwAAAAAAAAAAMAcQNgOAIA65vzXNew7Z+Q+6/gxU66k1eEqSVpSqng2LxiKHJrtLa8tsrJd8jCMSWca2r2eOvawc05Um9mpk7ch7LZyg9+4Fetbf20Lc/27KtvbHPfOWdkuKFW26wkiwnYqzq1AT0h1yp8b/GrktFRQkCSZ8vdKmVleUSxh2M684lUN+84fuds5pxJYvOIGmU98V3rL70g3vFfm49+RufxNidbT4ORz7ceeekjBx94TfY5OV7brWySdcUm8SbP9OQQAAAAAAAAAAJhj5lAZEwAAWiSkDWVv0d6K8+7eUujDZDtcJakcFDGSeotDGu6aZx2ayZbDb1EBnFZUtpOkbE4amQoBuu6fFKOyXavWV3Nxz8+tk1WwqtbUXRy1Dts3YD9FSgWpb4l6HPOlcjWyuVTZLiRAFfX8SVVBsUz5++9q39m3qJmVdZalFay3kPvoVSWxPNeccJbMCWclW4NLVFDuO/+R/BztsMTdUrvBXArCAgAAAAAAAAAAzAFUtgMAoF5IGOK00QcjpwWDh9qxGrvNJ1Y2XUE7ScpmyhXhIivbteivBiO11faWFdztJ70r26kNle3WHOU3rpPBnHVHVzZXFPZah73cby9t15XJSPMXKhdZ2a4wtwI9a49u2OXz/Z1sgVqpJLZkpbR6Y+PAbLd0zmuSrDA5nwqPSQOUIc/7ttGH3JdUuTpgb1+ya/vYdHziU5hpCNuZrdv8B3d1za0gLAAAAAAAAAAAwBxA2A4AgHpnXtaw65LhOyOnmbMa57WTmbegsn3joc84x2YzHa5sV2fL+DPO41nfsF0b1md8g2adDOaceE5lc/P4s9ZhQ2P2U6SyWRlj/KqRzaFAjwmpQHjy2COR8yphu+POKJ3HGJnXv6tx4JU3yvS4w60zQhvCdj/f/wXnlC45+hq3mOmdn7zFaierVU669I3+Y7t7ZNrROhsAAAAAAAAAAABNI2wHAEC9qhDbpJ7A3YqzNG9hGxYTYeNxkqS3Hf6cc1imuxwo61RluwuurnkZFbarVLarqtYXql3Bk2Vrosd0MmxXFSLqcVSm++Yjjsp23aV2qD3rNjgvlTbFuRfo6Vtc89JIes3grc4pKRVLG1Wfs7nht2Te93fSqRdIx50h8z/+WOa9f93q1bZHKpVsfsjzviH/UvS8clixE8z7P53sBNlpqGy3Yl2c0W1bBwAAAAAAAAAAAJozd8qYAADQKs2GqqahJaF650tSZPWybLbDle3q7sUx4087h2eDcen0i2Vu+kMFv+GoENiqMGC9nMdnl+1cFSxjjIKeedLIkHKOoOfXLQXbTFCsVHjryUqTObIwKdO5amQdk+uVBg7W7FqWd7cyrlS2q3t2zTW/LHPNL7d0ecl5hLC6kobtmnzeO/k7mLTCYNLKeM1aulravyt63Mhg+9cCAAAAAAAAAACAWKhsBwBAHdNs4CxWxaIW6T8gSTpq4nnnsEx3OWQXFS5pVZjt0N6alwuL/c7h3cFYKaQTdf02tbn1qnDV6TDlyJAkd6zKVpAupUIpcCZpfbf73meMI4k3W+3d0bDrQGqJc0pa5bDd/EXtWFHnJW0ju/bo5ub97P5k141jzeZk89cf05p1xLWuyXsLAAAAAAAAAACAaUfYDgCAFjF90xDSOfe1kqSVhT3OYdnJNrJR1apaFGYzZzZWpztr5EfW8blgtBy2i6jY1a52pz5BuumoXBghsBSl6wqKlfUuiPjIe8x4i1c1Ayxc2rDr8qHbnVMmK9uZ9Bwp/JwwbGeaDaKtOSrRdWM5+iRp0/HNzV29STr+rJYux5e57I3Tcl0AAAAAAAAAAAAkR9gOAIAwJ50bb3y2uz3riGAue1Nl+5TRh63jMt3linZRgbFWVbY76ZyGXX+094+twythu6iwX7vayHqF7TrXRlaSdN6Vlc0/3fOHsaamVJiq1tfdo5t3/JJ1bE9XvqnlzWTmTe9p2HfmqLviWirIT1+ls3ZIWtlOktKZ+HMu/Lnk1/VkjJH52NfiTzzhbJm/vlUmlbDVbrOu/ZXpuS4AAAAAAAAAAAASI2wHAECYnnnxxi9a0Z51RKkKia3I26vbdU0GxaLapbaqTWtIeC0b2CuopYJCKcwWFaZrW2U7jyBdpyvbldvAStL84lCsqV0qTr2n7l4tK+yzjp2Tle2yjZ9nT3HUOSWlwuxpIevzPWhF2G7VxthTjE9L5hYyy9dKb32f/4TTLlLXp78vs3pT29YUxRgjvfHd03Z9AAAAAAAAAAAANI+wHQAAYQ7vb9h1+sgDoUPfc+Djna96Nmnx8srmGwa+FDpkeX6PtOfF0ouDu93n62pRpacljeHDdRM7rMPX5XdIB/dOX2W7xSujx4Q8E50yZrKxxpfCi5OV7XLqKY5Yx6bn4t8GxxuDdVGtltNBfka2Cm5aK8J2+3Y27PrN/X8TOvSVQ98vbUxDlU8T8ntjH9ymwG5MZonHb86lb2j/QgAAAAAAAAAAABDLXPznVQAAklu2umHXrx38dOjQXzx0c2glrU4wy9ZUtq8a/IZMUGwY89rBW6XF5TDKvIXuE7aosp1ZuaFh39ET27V17MmG/VvGn9Yx40+XAnpRQZg2BWXMOa+OHrRiXVuubWNOOb+yfcroT2PNrQmOdfcoF4zZB7eqmuFMsvnEhl1r8rucU9IqTF9oth1a0SI1CBp2XTX4jdChlf3TEVj0+f5OWrO5feuIw2PN5twrI8cAAAAAAAAAAACgs+bgv64CAJCcufLGhn2/cPizuvHQZ2r2/eXLv6NTxh6Z3opYJ5wtSVqdf1n/svMdSgX5yqHTRx7QR/f8vsxpF0qSzHkR4Y1WVo6ruydG0r/teLuW5fdW9i3L79UtL71NRpI5/ZLo67crGHbJ9ZFDzImvaM+1bS78ucpmVFCsXlq1YTujxtDUpLCA5qwXEvaUpLcc/jfrFCrbNTI3/q+GfZcM36kP7P2zmn3X9n9Z7znwd6UX03APzYZj/cde8vo2rsSf2XKKzLs/ah/wupukV725cwsCAAAAAAAAAACAlxb0lwIAYA7K9TbsSqmof9j1K/r9ff9Hj3afqFeM3KdVhXJb1ukM6WzdJj12nyTpLf3/rlcN3aYf9J6vtRM7dProA0qpKKUzfutsZZjtuDOkh35Qs+vUsZ9q+9PH6a7ecyVJ5w/frd6g3OK0OzdtbWRNV5eCo06Qnn3MPijkmWirqs+qJ7C3gQ2TDqaqtJmIzzw4uC/+2mY6S4W600Yf1L8uDA8w1bTenel8Kjy2oo3s/MZKmEbSh/b9id5x6J90T88rdOLYYzp+/GeqrGi67uFr3iZ987PR4zr9PXYwb3qPdOkbpYfvkoYHpInx0v075Txp7dEyM6TlLQAAAAAAAAAAAKYQtgMAIEy2O3S3kbRlYru2TGyvPTCd7SfrKpMtK+zXtQNfqR0zGbyJWmcrw2zzFoTu7g1GdMXQdxoPpDPR129n+CSkZWaNToeIcvMqmwuKA7GmZoIJKVtab/DS01qZ320du37ixebWN5NZ2iWngoJ1ysvpVdLEU+1aUed1taCNrOOZX5/fofUDX2w8MF0BMcvvTYMZFqg0y1ZLl75hupcBAAAAAAAAAAAAT7SRBQAgzKYT4o2fxgCHWbY2etA0VLabbF3rbdMJ0UGddrWRlaS1m93HO/wZm6rA59LCgVhz08pPBUYP79f6/A6dOPpow7j1Ey9q29hDidY5E5mlq0L3nzb6oHXOuMlKB/daj88qXV0yrfiunHJe/Dkbtia/bhPMaRf5DczOrLAdAAAAAAAAAAAAZhfCdgAAhOlbFG98dhor2513ZfSYSmW7iBaKraxsd+WN8cYvWOJx/fZVzTI3vNc9YJpDOpvHt0cPKksHeZl0tvSiHBL8yJ7fV644UjVmQh/b/XttvKMzz9bxp63HjAKZS6/v4GoSiAqltqKFrCStiQighlmysjXXjuvc1/qNm84qpAAAAAAAAAAAAJj1CNsBABDCpDNSKkYbxukMYs3rix5TCdt1sLLdgiVS32L/Cd09Utc0VrZbvcl9fDpCOsefWdl83cDXvKelg7yUqQ3bvXroNt377AX68J4P6oN7P6x7nn2lrhv4ckuXO6OEVCpMyd5G1iiI97zOZC0K25muLmtLbatcRKC3TUy2W+aDn4keOMPayAIAAAAAAAAAAGB2aVHZCwAA5qBMt1QY9hybae9aXKKq1UlSuvyf/FznwnaSpEXLpIGD0eMyWZmuLgVRFbtaWXmvXlRIaDpCRJmpoFN3MOY9La1CpXWw2bBVQXn/ieOP68T9j7dyhTNXpjEk1hUUrcONgrkTxOqKERSOkumWxv2fvWkNHvctjB4zTWFAAAAAAAAAAAAAzA1UtgMAwGbUM2gnSTuead86oixdFT1mMgCz9mj3uHVbkq+n2p6X/MZNBqOiwnRRYbwkFiyxV7dbsV5avKJ917YZ6q9s7sis9Z5WU9nuyl9o9apmh+caQ4WRle3mSovRVoZmq57BSKm0THoa/395tp7m/o1Yf4zMvAWdWw8AAAAAAAAAAADmHMJ2AADYrFjvPdSc/7o2LiTi2sZ4tEAthe1M2l2BL+p4bNe/y2/c5HWjQkJtbCNrjJF583vDj93wm6X73GHm2ndWtl8z+C3veSlNhe3MsjXuwRdM37PbVpe+oWFXKogI22VnS9gu6lls4bO6Yav/2GmuDGgWr5Be83b78Z//zQ6uBgCA/5+9Ow+z9KrrBP49VdV7d/ZOOk12spBASAiLgbAm7MhiDMIICo4OoojKICMgIIoo4jrOiKKjgDqgoiCLgmwyLBKWsCRsIfva2ZdOr9VV9c4f1Z2u6rrvvbdu3aXq1ufzPPepW+d33vf8qrq6q5L7rXMAAAAAgGEkbAcAdZ50YftzDz+6d320obz4Nc0nDCgEU855YnsT94XtWh4T29vAW/mRl6e86T3JuU9Pjnlgcu7TUt7wrpTnv7Kn69Y69WH3Pz1s8q62LxurJpKxlfsHmu3Kd/zpnXS26JWHnjdnrOnOdlU12CNQu6mbodTHP6/9uYvgGN7yq3+e8vK3Jg89b/rv8DEPTB79jJRf/9uU5/63QbcHAAAAAADAEjfAc54AYJGbT3Bk0MdPtgoJDaq/dj+H+4JhrXaP6+HOdvuUp7ww5Skv7Pk6bZmx09qaamfbl806RjZJ1qxL7q6Z3IfP6UA0+NprubPdIgiLdUUXd2Esq9akanfyIvj8ldHR5EW/kvKiXxl0KwAAAAAAAAyhIX11FQC6oOUuazMMOmRy7CnN66vX3v+0vOqPG8+58OVdbGivY05ub97Y3vx/q+DXfP5MhsGMkOQp41e1fdlYDtjZ7uZr6iePjHbS2eLX4O/ESKaaX7NyZfP6YtEyTNfFHSBb/dsy06BDxwAAAAAAANBjy+wVawBoX3n009ufPOiw3emPaF6f2d9jn52sWT+7PjKScsELut5WOaLN43XbPUa2izt2LQkz/tw2T2xp+7KxanJ2cOy4U+snD+vOdg8+d85Qs2NkRzK1/+twqevmn+kPPbX9uavWtp4DAJMLjsUAACAASURBVAAAAAAAS9iQvroKAF1w5DHtzx1w2K6MjDQPCs04ZrYceUzKH30sOeWs6fDaMSenvPn/pjz0Mb1prp3P4/1hu8EfI7uoHPB1tWnilrYuG6tm72xXnvXS2rllSHcLLGNjybqDZo81m58qGR2SsF03j5Fdf/D0McTtGHToGAAAAAAAAHpsOF9dBYBuWD2PXZpWLoLjE486tr62ctWsd8uDH5WRv/5Kyifvycj7vpPypAt719dhR7Wesy8Y1iL4VZbxznZJsmni1rYuG8tEsmLGznbNvpaHOcDYbEe/A5RUw7OzXTePkU2SU89pb55jZAEAAAAAABhyQ/zqKgAs0JoN7c9dDCGTJ13UePywTbUhtdKPvm+7qfWcfSGnYQ5+deKAEOcNYw9o67IDd7bL+K7audXkREetLQk3Xd321Ofc95GlE7br9w6Q7f47sRhCxwAAAAAAANBDXtEGgBplbKz9yStWtZ7TY+W8ZzUunPfM/jZyoEM3tp5z/zGyfjSZqRwQmjps8u62rhurJmbvinfqw+on7xnvpLWlYee2OUM/ffe75owdNXFrHrfji0snbNdKt3eAbPd42Jm7KQIAAAAAAMAQ8oo2ADTz7P/a3rxFEDIpDzk35RfePjtoc9ZjU17xu4NrKkm58OdaT7o/bLfMjoltx/Nfef/TX7z7T9u6ZCwTs3cjO7TJUb4TQxy2a/C193u3vTaP3fGF+98/fOKOfPiGCzOaKWG7Ou2G7UaH5PMHAAAAAAAANeaxZQ8ALD/lyGNTtTNxbPBhuyQpL/il5Bk/kXzny8nmE5PjTqs9QrZv1qxrPccxsrXKxs33fw2un5q7U1sjc3a2W9Vk58Xx3Z03t9itXjtn6KCp+/If1z01P1h5Su4YPTyP3HlJVmbPdHFYwmLd3iHSznYAAAAAAACQRNgOAJobGW1v3iIKmZSDDkse/YxBt7HfuoNaz3GMbL2JiXlfMpbJZOWMne3WHVw7t2w+sZOulojGQdOS5LTxK3JarphdGG3z7/ugtQrQdjtg2+7nZVh2BgQAAAAAAIAaXtEGgGZOe1h780bl12ud9djWc+xsV++Io+9/etruH7R1yVg1MSsAWg4+PDn5oY0nn/u0BbW3mJW6j7mRsRWD3wWyW7r8YZQHPaK9iWP+HQQAAAAAAGC4eUUbAJo57ZzWc1asHJ6QTg+Uee1s5/M4xwmn3//06IktbV2yotozZ5ex8kt/mKxZP3vii16THHfagltctB78qPbnDtOubN3eIfJxz2lv3iI5ThsAAAAAAAB6xfYTANDMqjWt5wiYtHbokcndt9XX930OHSM714yvwTXVrrYuGa0mktEDwnZnPy5591eT//xYqnvvTDnnicnZjxvuoOjqte3PXUJhu1JKquYTurvg2g3tzVtCn0MAAAAAAADohLAdADTTTthuhbBdSytWNa87RrbejMDY6qn2wnZjmWgYfCqbT0ouekW3TxldvFbNI2w3TEdBdzts1+6/cYLHAAAAAAAADDmvaANAE6Wd8JeASWvHtziqdGxf0GnZxMDat+n4+5+ur7a3dclYNSG4mKSsbBHynGl0iHZl6/IOkW3vfmhnOwAAAAAAAIacV2EBYKEETFoqL35N8wl2tqvVVuDzAGOlGu7jYefj2FPamzdMf4978Wd/0GGtl7XLJwAAAAAAAEPOK9oA0Mo5T2xeXzFEIZ1eOfvxzev7dgfs8o5cw+jNt/9myzljI1UfOlkayjN+sr2JY46Rber8i1rPGabAIgAAAAAAADTgFW0AaGXl6uZ1x8i2VEZGkmZHetrZrm1rpna2nDNWhO3ut6rF3999hiko1ovQ6qo1reeMDlFgEQAAAAAAABrwijYAtHLCg5rXm4XI2G98d31tX9DJ0aeNPe459z990PjlLafb2W6GE05vb95Qhe26//eoHHpk60mOkQUAAAAAAGDICdsBQAvlyS9oPmHV2v40stRtPrG2VPbuDliE7RoqT3/x/c/P3/7ZlvPtbDdDqyOM9xldYmG7Zn9XevH36Ek/2nrOMAUWAQAAAAAAoAFhOwBooZx2TvMJ7R5TucyVH391fVFIp6ny+Ocme3cWW1Ptajnfznb7lZWr2jueeJi+BntxjOym41vPcaQ2AAAAAAAAQ07YDgAWatWaQXewNDT7PI2O9q+PpeqZL2l7qrDdAY45ufWcoQrb9eAY2ZGR1kdmD9PnEAAAAAAAABoQtgOAdpxydn1t4+b+9bGUTU3Vlqqd2/vYyBJ15y33P/2hHV9uOnVMdnG2yYnWc4YpKNar45jHdzevr7CzHQAAAAAAAMNN2A4A2lBe+fb62mOf3cdOlrBmx/FOTfavjyWqnPCg+5+/4Y7faTp3rEdZqyXrEee3njM21vs+uqlZoK4Xx8gmybGnNK8PU2ARAAAAAAAAGhC2A4A2lIc9IXnWS+eO/+xvpZz79P43tBStP6i+Nils19KJZ9z/9BnbP9F0qmNkZysvfFXrSaNDFBTr0c525ZW/13zC6BILLAIAAAAAAMA8eUUMANo08tp3pvrF308++ffJxgckZz8uZe2GQbe1dKxcXV+zs11rB3z+ztj93Xx31RkNpzpG9gCr17WeM0y7svXqGNkNhzavO0YWAAAAAACAISdsNyCllJOSPDLJI/a+PSfJzMTGdVVVndDhvRe6nc2JVVVdu8B7AAylsnZD8tz/Nug2lqYmwcRy6tl9bGSJWjM7MLZ1pH6nwLER58jOsq7Jror7DFXYrkebVx/UImw3TJ9DAAAAAAAAaEDYro9KKU9M8rpMB+wOG2w3ANBfZdWaVGc/Pvnm52YXRkaSRz1lME0tJSc+eNa7N644pnaqne1mK2vWpeVvIiy1oFiz3et6tbPdsac2r69a05t1AQAAAAAAYJHo0bYX1Dg7yVMjaAfAMlV+6Q+TQzbOHnv1/0o5yLfGllavnfXui+59b+1UYbsGfvTnm9dHh+h3UHoUtiulJI98cv2EVWvrawAAAAAAADAEhuhVxSVtd5IbkzywB/f+cpIXzvOaG3vQBwCknHxm8jdfT778yeS+u5JHXJBy4hmDbmtJKCMjs3Zn2zRxS+3cMb9OMUd58A+l+ud31E9YajvbNdOrY2STlEdekOqrn2pcXLW6Z+sCAAAAAADAYiBs1397knwnydeSfHXv28uSnJfkP3qw3q6qqq7twX0BoCPl0COTp79o0G0seaPVZG1tbLRHx4guZWvWNa/fc3t/+uiaARwjmySHbaqvtfocAwAAAAAAwBInbNdf70ny51VV7TqwUHr5oigAMHS2jWyorY2N+blijgf/UPP6zu396aMfevlz5aOeMn3/qpo9fvTxyeFH925dAAAAAAAAWAQcMtZHVVXd3ShoBwDQlp96w/1Pn7z9M7XT7Gw3Vzn0yOT8i+onTNbvFLjk9PIY2UM3Jhe94oDBkvJTb/TLIwAAAAAAAAw9O9sBACwR5REXpHrXbyVJ1lQ76ueNjvarpSWlvOFdqT7zT42LkxP9baaXehx6K6/8/eSUs1Nd/PFkzfqU8y9KedRTeromAAAAAAAALAbCdgAAS8WqNfc/XT1Vv1luNbKiH90sOWXFylR1xakltrNds0Bdr8N2pSTP+ImUZ/xET9cBAAAAAACAxcYxsgAAS8WxJ9//9KG7v52xas+cKaPVRM5au6WfXQ0HO9sBAAAAAAAALQjbDb/jSinvKqV8p5RydyllvJRy6973/66U8rJSymGDbhIAaK2s3ZAcMx24O3hqa16w9f1z5ly09QM5eOUS26VtMRC2AwAAAAAAAFpwjOzwO3HvY6Yj9z7OSPKiJH9YSvnLJG+sqmpbL5oopRyZZOM8L3tgL3oBgKWsvPHdqX72sUmSv7z553LExB350IbnpErJc7d9JG+79deSsZ8bcJdLkGNkAQAAAAAAgBaE7UiSdUl+OckzSykXVlX1nR6s8fNJfr0H9wWA5WXdhvufrsye/MFtr80f3Pba2XPGVvS5qSFgZzsAAAAAAACgBcfIDq+JJJ9N8oYkz0lyTpJTkjwsyXOT/H6S2w645tQknyqlHN+/NgFgtvKytzQuPP3F/W1ksTr86NZzhO3qPfS8hsPlZ36jz430UPEjPgAAAAAAAPSCV+KG0xuSPKCqqidVVfXWqqo+UlXVN6qqurKqqm9WVfXhqqpek+T4JG9LUs24dlOSD5RiSxQABuSJP5KMzt18tzzxwgE0s/iU9Qe3niNsV6s8+QVzB9esTx7+pP430yt+jAMAAAAAAICeELYbQnsDdgfuWtdo3q6qql6X5JUHlM5J8l+63NY7kjxkno/ndrkHAJaAcuwpKW95X7Lh0OmB1WtTXvG2lPOeNdjGFpOTHtK8PipsV+t5L0te+Kr9u/8dfnTKH3w0ZcMhg+1rvpoF6oTtAAAAAAAAoCfmbhvDslNV1Z+WUp6a6eNm9/n5JO/t4hq3Ze6xtU3ZXA9g+SqPe07ymGclN16RHH1iyspVg25pcTnyAcnV366vj/kRr04pJeUVb0v1029KbrsxOfaU4fuZwzGyAAAAAAAA0BNeiWOf3zng/XNLKUtsixcAhkkZHU05/kGCdo0cfETzumNkWyqr16Ycd+rwBe0SO9sBAAAAAABAjwjbsc9Xktw94/3RJGcMqBcAoInyyCc3nyBst7wJ2wEAAAAAAEBPCNuRJKmqairJ9QcMbxxELwBACxc8v3l91DGyw69JoM4xsgAAAAAAANATXoljpp0HvL9mIF0AAE2VsRXJC3+5foKd7ZY3O9sBAAAAAABATwjbMdMRB7x/x0C6AABaW72uvjYqbDf0mgXqhO0AAAAAAACgJ4TtSJKUUo5IctIBwzcPohcAoLWyem19cZXNaYdes90LHSMLAAAAAAAAPeGVOPZ5YWZ/Pdya5HsD6gUAaGXV6s5qDIexlfU1O9sBAAAAAABATwjbkVLKUUnecMDwR6qqqgbRDwDQhpXNwnZ2tht6K4TtAAAAAAAAoN+E7YZIKeW0Usqz53nNpiQfTXLUjOHxJL/Tzd4AgC5rtrOZsN3wW9HsGFlhOwAAAAAAAOiFsUE3sNyUUo5J48/7pgPeHyulnFBzm21VVd3RYPzoJB8upVyW5O+SfLCqqitq+tiQ5CWZ3tHuqAPKv1VV1dU1awMAi8Hpj2g8PrYiOfGM/vZC/zULW476ER8AAAAAAAB6wStx/feFJMe3Me8BSa6pqb0nyUubXHtmkt9N8rullHuTfDvJHUnuS7I+ybFJzkrjP/+/qKrqLW30BwAM0gmnJ2c/Pvnm52aPP+1FKesOGkxP9E+zY2RHm+x6BwAAAAAAAHRM2G74HZzkvDbmbU/yqqqq/rLH/QAAXVBKSX73g6ne+YbkK59IVq5OHvfclJf+2qBbox9WrKqvjY72rw8AAAAAAABYRoTthsv3kvx2kickOSfJmjau+UGSdyf5y5qjaQGARaqsXZ/yqj8edBsMwrZ76muXf71/fQAAAAAAAMAyImzXZ1VVndDDe9+a5NeSpJQykuSUJA/M9JG0hyRZnWRnkruTbEny1aqqbu9VPwAA9MhNV9fXrry0f30AAAAAAADAMiJsN6SqqppKcvneBwAAAAAAAAAAAAswMugGAAAAAAAAAAAAYLETtgMAAAAAAAAAAIAWhO0AAGCpueDH6muPfkb/+gAAAAAAAIBlRNgOAACWmPLEC+trL39rHzsBAAAAAACA5UPYDgAAlprHPzd55AVzx897VspJD+5/PwAAAAAAALAMjA26AQAAYH7KyEjyB/+aXHlpqrf9bLJzW8pb/j7lgQ8ZdGsAAAAAAAAwtITtAABgCSqlJKeclfJXFw+6FQAAAAAAAFgWHCMLAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALYwNugGArtt9Z7LjxmRqT7LhlGTlwYPuCAAAAAAAAACAJU7YDhgeu+9MPn9RcttnZ4+v2Zw8+4pkbO1A2gIAAAAAAAAAYOlzjCwwPL7wgrlBuyTZeXPyxRf2vR0AAAAAAAAAAIaHsB0wHHbdkdz6mfr6TR+ZPlYWAAAAAAAAAAA6IGwHDIcdNySpWsy5sS+tAAAAAAAAAAAwfITtgOEwuXPQHQAAAAAAAAAAMMSE7YDhsPX7redMjfe+DwAAAAAAAAAAhpKwHTAcrvuH1nPu/Frv+wAAAAAAAAAAYCgJ2wHDYfXG1nOqyd73AQAAAAAAAADAUBK2A4bDTR9tPefilyS3/2fvewEAAAAAAAAAYOgI2wFL35X/J9lzb3tzP3lecvPHe9sPAAAAAAAAAABDR9gOWNqqqeTSN87vms8+oze9AAAAAAAAAAAwtITtgKVt29XJrlvmf1011f1eAAAAAAAAAAAYWsJ2wNK2577OrttxY3f7AAAAAAAAAABgqAnbAUvblo93dt11f9/dPgAAAAAAAAAAGGrCdsDSVVXJt17f2bXf/NXu9gIAAAAAAAAAwFATtgOWrq2XL+z6nbd2pw8AAAAAAAAAAIbe2KAbAGhq27XJHf+ZrD0mSdk/PjWeXPkXC7v3+F3JmqMWdg8AAAAAAAAAAJYFYTtgcdqzLXn/hs6vf9jvJZe9OZnYXj9nYlvn9wcAAAAAAAAAYFlxjCywOH1w08KuP/1XkqdenJz4k/VzLvuNha0BAAAAAAAAAMCyIWwHLD7VVPMd6VpZdfj020Mekpz77sw6fnamWz/T+RoAAAAAAAAAACwrwnbA4rNn68KuP/jB+5+XkqRqPG/FAo6pBQAAAAAAAABgWRG2AzpXVcn3/yj56BnJBzcnF//0wnak23fP775tYfc46b/Ofv/IJzSet+u25J+PTLZ8YmHrAQAAAAAAAAAw9ITtgM5d/ifJ1/97svV7yc4tydV/nXzuwgXe838m3/3dzq5dcVDyqHcmJ71k9vgZr6u/ZvftyX88Lbnjy52tCQAAAAAAAADAsiBsB3Tu6r+aO3bLJ5Lt13V+z6v+T+fXPvuK5OSXzR0fW9P62mv/rvN1AQAAAAAAAAAYesJ2QOfuuazx+JV/0dn9qiq59zud97PikMbja49tfe2tn+18XQAAAAAAAAAAhp6wHdB9u+/o7LrJXa3nPPxPGo8f+fhkdGXj2voTk0POWvjaAAAAAAAAAAAsW8J2QPdtu6az6675m+b18z+ZnPoLydFPm1t7/IebX/uEDzWvb7uyeR0AAAAAAAAAgGVtbNANAEPolk92dt2lb6ivPet7ycEPmn7+pI8ne7YmN/1rsvG8ZN1xre+97vhk3QnJ9mvr50yO1++OBwAAAAAAAADAsmZnO6AzU5P1tZWHzv9+E9ubHz+76vDZ7684KDnhv7QXtNtn87Oa1+/9Tvv3AgAAAAAAAABgWbGzHdCZqd31tTI6//vt2VZfG1mRrN44/3se6AHPTq740/r6xPaFrwEALA+7bktu/niy9XvT7x90WnL0M5I1Rw22LwAAAAAAAHpG2A7ozOSu7t2rmkr+9fT6+mP+b3fWOfopyckvT67888b1yZ3dWQcAGG73fjf59PnJrltnj6/amFzw6eSQMwfTFwAAAAAAAD3lGFmgM90M2932+WT87vr6xsd2Z50ykjzyHfX1yR3dWQcAGG6XvGpu0C5Jdt+efO0X+98PAAAAAAAAfSFsB3RmqlnYrprfva55T/P62Lr53a+ZUqZ3nWlkws52AEALU5PJ7Z+rr9/xxWRyvH/9AAAAAAAA0DfCdkBn7vhKfa2aZ9ju6nfV18Y2JCsOmt/9Whld03jcMbIAQCvVRPMdfqf2JFO7+9cPAAAAAAAAfSNsB3Tme79bXxu/q3vrPKzJOp0aE7YDADpUTbUxZ7L3fQAAAAAAANB3wnZAZ5rt6DIfu+9sXj/+x7uzzkx2tgMAOiZsBwAAAAAAsFwJ2wGdWXV48/rE9vbuc8unmtdHV7V3n/kQtgMAOtXWznZtzAEAAAAAAGDJEbYDOnPQg5rXd9/R3n12bmleH13d3n3mQ9iOxWZqcvoBwOBNTSYTO5LJ3cmercme+2bXHSMLAAAAAACwbI0NugFgSE20GVzbc2997YzXdqeXA42ubTx+3xW9WQ/qTOxMvvYLyY0fnA5mPODZySP/PFmxftCdASw/E9uTf6z593f9Sclpr0pO+4U4RhYAAAAAAGD5ErYDOjOysnm93V3iLntzfe3s32m7nXkZq9nZ7vr3J1N7kpEVvVkXDnTxS6a/7va59v8mu+9MnvSxwfUEsFzVBe2SZNvVySWvnA5DP+DZre9173eTtQ/oXm8AAAAAAAAsCo6RBTrzyHckL2gSqGsnbLfrtu71Mx/Njn+7/Qv964Plbfze5IYPzh3f8vFk5y397wdgOWv3Z5Kr39PeMbLX/f3C+gEAAAAAAGBRErYDOjeyKklpXGsnbHfvd7raTttu+VR97Y4v968Plrf7rkiqica1u77e314Alrsb/6W9eVu/194Rsde8e0HtAAAAAAAAsDgJ2wGdKyUZXd24Nrmr9fXbru1qO23bcHJ9bWq8f310w84tySX/PXlvmf349lsH3RmtTO2ur7UT5ACge/Zsa2/erluTfzuz9bxqKvn3RycTbfzyAQAAAAAAAEuGsB2wMKNrGo+3s7Pd9mu72krbDj27vrb9uv71sVC770w+9YTk8j+aW7v0Dcmlb+p/T7Rv+/VNatf2rQ0Aknzj1e3P3X1He/PuvDj5x7XtHTsLAAAAAADAkiBsByzMUgzbNXP9+wfdQftu+Ofpo0jrfPst/euF+bvyz+trV7+rf30ALHe72gzPderOr/T2/gAAAAAAAPSNsB2wMCvWNx7fdWvra5vtInfkEzrrpx2bf7i+tvExvVu329p58b7dY/Hov7qgapKs3tS/PgCWu7su6e39v/v23t4fAAAAAACAvhG2AxZm3QmNx5vtuLbP1u/V105+WUfttGXzM+prO27s3brddvO/tZ7zyfOS95bpx1denmy/ofd90Z77rqyvVXv61wfActfOLwgshJ3tAAAAAAAAhoawHbAwG05pPN4qbDd+T7Lrtsa1VYcnx71gYX01M7oqOfxRjWv3fie576rerd0tl/56snNL63n3XLr/+ZXvTD50XHL3N3vXF+2Z2Jlsa/J11s4xzAAs3K47kotf0ts1dt6UTO7q7RoAAAAAAAD0hbAdsDCdhu2++7v1tfM/k4yMdt5TO5qF+b79lt6uvVDbr0++/ZudX//N13evFzpz1f9pXp8QtgPoiyv+rHn9se9PzvuH5Jw/Tk55Refr3Pihzq8FAAAAAABg0RgbdAPAElcXtttxYzKxIxlb27jeLIy3/oQFt9XSioPqa7d+uvfrL8St/7Gw67d8LKmqpJTu9MP8bbumeX1yR3/6AFjubvpI8/pxF+1/vvOW5Io/7WydWz6dHN/DXXsBAAAAAADoC2E7YGHqwnbJ9DGZh5zZuLbnvvrrmgXhuuXIx9fXxu/t/frt2LMtue59ycT25KDTk/G7p8evfOfC7z01Pn2cLoOxp8XXmGNkAfpj25Xtz12zafrnnla79zZy3XuTR74jGfGfXwAAAAAAAEuZV3uAhVl3QlLGkmpibm3rD+rDdrd8ovH4EY/pWmtNHXRqsu74ZPt1c2sT9w1+57cbP5x87rm9u//kTmG7Qbr7683rjb4uAeiu8bv3B9kbWfOAuWNnvy35wgsa/9zTzMT25O9XJD/8g+SgJr+oAAAAAAAAwKI2MugGgCVuZCxZf2LjWt3OL7d/qf5+xzxn4T2169z31Ndu/GD/+jjQ+D29DdolyS2f6u39ae7ubw66AwC21AT/91l/0tyxYy9MnvLF5IxfTY69aPpxxuuSp301ecGu1mv+64M66xUAAAAAAIBFYaA725VSSpLXJFk9Y/hvqqq6doH3PTHJT8wY2lFV1e8v5J5AE3VHqtWF7W7+aP29Rtd0p6d2jK2rr93wL9MvqA/CTR/p/RpbPpEcd1Hv12Gudnet23V7snpjb3sBWM46OQ42SY541PSjkTN/M7nsTfXXVlPJ9huSdcd2tjYAAAAAAAADNehjZH88yduSVHvf/8BCg3ZJUlXVNaWUM5Pcn5QppVxdVdUHFnpvoIENpyb5t7njdS9i79xSf6/DHt6Vltpy8On1tWbHyvXSrtuTb76us2uPe35y/fvbm1vt6WwNFm7nLe3N23Z1suqIwR5nDDDMJnZ0/56HndN6zl1fFbYDAAAAAABYogZ2jGwpZSTJb+57N8kVSV7SxSVemuSqvfcuSd7axXsDM204pfF4Xdjuhia518PPXXg/7Wq2s92O6/vXR5Jc/e7kvSX5wJHJzpvmf/2Kg5Mzf6P9+RM7578G3THZZrjjE+cmHzouueKdve0HYLnac0/373nU+cnBZzSfs6OD7/MAAAAAAAAsCgML2yV5cpITM72rXZXkdVVVdW17iaqqtid57YyhU0sp53fr/sAMdWG7Xbcke7bOHrvnsmTPvY3nn/iTychod3tr5cw3Nx6/59L+9XDb55KLf2p+16w+Mll9VLL2mOTYi5ILPjO9U98Ldidrj2t9/fX/0FmvLNxlv9l6zj47bky++vLpY40B6K4r/qz79xxbk1zw2eZzLvnF6eNkAQAAAAAAWHIGGbZ78Yznl1RV9cFuL7D32NhLZgy9qNtrAKkPc8IFfwAAIABJREFU2yXJfVfOfv/6f6qfu3pTd/qZj2a72239QX96uPrd85s/ujq58NbkwluS592QPO79+4+tG12ZPO+65Mer6ccZv9r1dlmg2z47/2uEIwG6a3K8d/devTE58onN59x1SfM6AAAAAAAAi9Igw3ZPn/H8r3q4zr57lyTP7OE6sHytPTYZWdm4duBRsnVHyybJhgd2r6d2rW+y5oFBwV65+l3zm9+s5wPt3NJ4fPWR81uT7hldM/9rrvv77vcBsJzturW39z/mec3r/foZAwAAAAAAgK4aSNiulHJ8kiNmDH20h8vNvPeRpZRje7gWLE8jo/UBsAPDdduvrb/P5h/uWktt2/SU+trk9t6vP7l7/tcc/8L25x7x6Mbj43fPf10WrqqSyZ2D7gKAdv4tLqXz+x/z3Ob1+exYOrkr+davJR9/RPKhE/c/PvzA5PMXTR9HDwAAAAAAQF8Mame7s/a+rZJcVVXVTb1aqKqqG5PM3Dri7F6tBcta3VGyl75x//M9W5M7vtR43sbHJms3d7+vVlasr6994cd6v/7nL5rf/NNelTz49e3PX39S4/GpPfNbl+4QtANYHLZ+v7f3X39Ccv6n6+s3fii5/v2t71NVyecuTL7z29NHz26/dv9j29XJDf+cfOapAncAAAAAAAB9MjagdTfOeH5zH9a7OcnJe587OxF6oS5sN9PNH6+vHXVB93qZr1Ubk923N65N7kpGV/dm3a1XJDe32Njz6ZckZTQZW5esOz4ZWTG/NZodWXrvd5ODz5jf/ViY2z4/6A4ASJKr/qr3a2w6Pzn0Ycnd32hcv/xPkuOe3/weWy9Ptnys+Zyp3ckVf5Yc+fjO+gQAAAAAAKBtg9rZ7tAZz2/pw3oz1zikD+vB8tMs1DU1Of32rq/Vz1k9wBxsXdAumQ6k9cpdl7Sec9g5yaFnJRtOnn/QLklWH9Vk/ZoX/+mdbVe2ngNAH1Stp5zwEwtfptnPN3d+tfX1zX52mu+9AAAAAAAAWLBBhe1W9rmHmWus6sN6sPwc8ej62tSu6bc7mpwYvfnp3e2nWyZ39e7e93yreX3zMxe+RrMdB6d6+LHRWC+/ngBo39R48/rIita7zrXj6Gc06WF3sv265tff3uaOqNuuar8nAAAAAAAAOjaosN2OGc831s7qnplr7KidBXRu3bH1tW3XJrtuT657b/2c9Sd1vaW2Hf6o+tonz+vNmndcnHz3bc3nnPvuha9TSpMevrTw+zM/l75p0B0AkCSTO+trIyuSx/5TsvLgha9z6s8na4+rr3/ohOTe7zeuXf/PyZV/0f5a3/jVebUGAAAAAADA/A0qbDfzWNfj+7DezDVu7cN6sPw0O0b28j9OrvrL+voDf6b7/czH6Orm9Z09OO36W29oXn/hnmR1l7LIhz288fhVf9Wd+9Oe8XuSSXlvgEVhoiZst/G85MLbkmOe0511RlYkT/hQ8zn/+aK5Y1WVfOPV81vre29Ppibndw0AAAAAAADzMqiw3b5zjkqS40spJ/dqoVLKA5Oc0GBtoJtWHFRfu+ey5NbPdnZtPxx1fvP65X/c3fWqqeS2/1dfP/KJychY99ab2tO9e9G527846A4A2Gdye+PxY5+frDyku2utaLFD3t1fnzu2/brWR8w2cttn538NAAAAAAAAbRtU2O5bScaTVHvf79LWEQ09b8bzPUm+2cO1YPlafWR9rZpM9mytrx/1pO73Mx8P/Onm9S3/3t31Jncl1UR9vdufj7owY+lioI/Wmv0dAKC/xu9uPL7y0O6vte6E5kfJNtLp94yr/trudgAAAAAAAD00kLBdVVXjSf5fpne2K0n+RyllXbfX2XvP12Q61Fcl+dzetYFe2PzMxuN3fS2588v11216am/6adfaY+qPWk2S3Xd1d72JFkeJnvLy7q532i83Hq8m7HrXT5f9+qA7ACCZPqJ1952Na6sO6/56pSQP/5/N5xz4s8FkzTG3rVz33uRfNid77uvsegAAAAAAAJoa1M52SfK+vW+rJBuTvL0Ha7wtyZGZDvQlyXt7sAawzzE/Mv9rHv6/ktGV3e9lvp7w0frajuu7u9bNTdZ62lea7xLYibXH1teu+ZvurkVjd38zue+KxrW1xw5+d0eA5WRyRzJV8/s3Kw/vzZrHPq95/Yo/n/3+fT+on/uw32t+r123Jd9+S3t9AQAAAAAAMC+DDNu9N8mWvc9LkpeXUl7frZuXUl6b5BXZf1TtrRG2g94aXTP/a1Ye3P0+OjHSx8DfrZ+tr63Z3P31xtbW127+ePfXY66r/qq+trIHuygBUK9uV7ukNzvbteO6981+f+v3G88rY8mGU1rf73stAnkAAAAAAAB0ZGBhu73Hub4u00G7au/bt5RS/r6Ucmin9y2lHFJKeW+St864b5Xk9Y6QhR5rdhRr7TWP7H4fnWj14vpdlyTj93ZnrWqyvtaLsN2GU+trE9u7vx5z/eB/19fu+Vb2b8AKQM+NNzkevpcB6Ic0OU78vitnvz+2rvG8aiLZ9NTu9QQAAAAAAMC8DHJnu1RV9TdJPpTZgbvnJ7milPL2Ukob2zZMK6WcXEp5e5Irkrwg+5MLVZKPVFX17m72DjRw8IPmf81Bp3W/j06taLLL3scfkfzTIcmnnpCM37Owda79u/pa6UHoqtkxvXd8qfvrMT8n/dSgOwBYXnY3C9t1/Ds/rZ38M/W1Pfck3/md6edVlVz2G/Vzx9Ykh5zV3d4AAAAAAABoy0DDdnv9RJKvZXbg7rAkr07y/VLKjaWUD5RS3lpKeU0p5b/tffxKKeW3Sin/XEq5Icnle685/IB7fT3JiwfwcQGtbP7h3oTLOvXIP2s957bPJV98YedrXPu++tppr+r8vq2c9dbG43vuSfbc17t1aW3jeQsPcALQvjv+s/H4ioOTkbHerbv2mOSCz9bXv/X65OaPJdf9QzJVsyH30U+ffvuMbySbn9V8vakmO+kCAAAAAADQkR6+mtSeqqq2lVIuSPLuJD+S6ZBcsn9nus1Jnrv3UWdmWmfm9R9K8pKqqrZ1rWGge1YeMugOZhtd0968Lf8+vStOq6NnG7n+H+prY22u34nRtfW1LZ9IjvvR3q1Nc6Nrkru/PuguAJaPu2r+zV11eO/XPvJx0//uT+5sXL/+H5OdW+qv3/ezSinJEz6SvK/J707defF0oBsAAAAAAICuWQw726WqqvuqqvrRTO9MtzP7d6bb98jesUaPHDC3JNmV5H9UVfUjVVVt7dfHAczThlMH3cFsB82jnx3Xd7bGtqvra738fDS7d7Oe6L31Jw26A4DlZdURjcf78f2wjDQ/Anbb1ck9l9bXZ/6sUsr0bnx1tl83//4AAAAAAABoalGE7fapquqPkhyf5K1J7snsUF1V85g555691x5fVdXv97t/IMkZr21/7nEX9a6PThx0evtzP/aw5NPnJ9e/f35r3HNZfW3zM+d3r/k46kn1tbrddei5Las35C93/7+87syn5jVnPT1vOeNJ+cADzsiesqi+PQMMl7suaTzebBfYbjr5ZfW127/YfGe7435s9vunv6Z+rmPiAQAAAAAAum7RvZpfVdWdVVW9McmmJI9P8sYkH0/y7SQ3J9m997Fl79i/J3lTkickObqqqjdWVXXHIHoHkpz9O0kZbW/uwfMIt/VDKcnpv9L+/Fv/I/nCjyXX/WN78y//3/W1016VrN7Y/trzNbYmWXdC49r3fq9361LrzpVr8oennZdvbPtS7l25JtvHVmXLmoPyqU2n5K9PfMSg2wMYTtuvqz+6+6SX9KeHk16arD22ca2arL/u4f8zOeyc2WMPfn39/K++fN6tAQAAAAAA0NzYoBuoU1XVniRf2PsAlpInfSL5zAWD7qIza4+f/zVXvCM5/sfamNckbLfxMfNfd74OOTPZfu3c8YltvV+bOS459AHZPraqYe1bhx6de1asziF7dvW5K4Ah1ywg36+d7UpJHvKG5Cs/O49rxpJTfr7xvQ57eP1ufTu3JGuO7qxPAAAAAAAA5lh0O9sBQ6CdF3XPfnvv++hEJy9I3/2N1nMmdyVbL6+vr940/3Xna3J3k5pQV7/dsPbgpvUb1xzUp04AlpFm37PX9OF78T6r5/nzRjWRjNT8nlSze91Vs4sfAAAAAAAAHRG2A7rvoAcl609qPuekn+pPL/O16cnJSOPdxmrt2Zrc8MGkqurnTOxofo8jzp3fmp3Y+Nj62uTO3q+/nB0+9893fKT5cctVKb3qBmD5avb9bvOz+tfHpvPnN3/9A+trD/jh+tp9V85vHQAAAAAAAJoStgO6r5Tk8R+q363tEf87WX1Ef3tq18qDk8f/y/yPkvv8hcmlb6ivT2yvr537nvrdarrpuOfX1yaE7XqqQbBuvMWfeRVhO4CuqwvbrdqYHHx6//oYW5cc8tD25z+kyc8YD/yZ+tp3f7v9NQAAAAAAAGipD+kOYFk65CHJ865P7vxactclyR1fSg59aHLKK5IV6wfdXXObn5786B3TPU/cl3zuee1d9923JQ/678mqw+fWbvts/XVHPbGTLudvbE19bcoxsj3VYGfDVjvbTfWqF4DlrC5sd8rP9bePZHonvXsubW/uygY/W+wzMpqc/LLkyr+YW9t12/TOu3ZLBQAAAAAA6AphO6B3RlYkGx89/TjtFwbdzfyMrZk+4m1yHiG0aiq5/T+TY549t3bfFfXXrTh4/v11YmR1fc3Odr01ftfcIcfIAvRf3fe70SaB9F5Zecg85rb4WWH1UfW1nVuStZvbXwsAAAAAAIBajpEFaGZ0dbJmHi9QT9zXeLyarL+m1Qvo3WJnu8GY3JVsv37OcMuwXa/6AVjO6na2G0TY7qjz25s3ti45/FHN52x8XH1tYlv7PQEAAAAAANCUsB1AK0/4cPtzG4SqktTvpLNiHrvaLFSzIMH43f3rY7nZdnUaRefGR5pvLmtnO4AeuPfbjcebBdJ75bCHJ6e22Pm3jCSP+NPp8H/Te51TX7v9C/PvDQAAAAAAgIYcIwvQymEPT553Q/KN1yQ3/1uy6anJDf/UeO63Xpc8+LVzx+t20tn05O712UoZm37RvpqaW/v+H/e3l+Wk5gjh1jvbCdsB9M0gdrYrJXn4nyTHPC+59bNzd8ddvSnZ/PTk0LNb36tZ/1/+6eSB/3VBrQIAAAAAADBN2A6gHWuPSc573/73/+2s5J5L279+MRxbV0pSViTV7rm1bVf3r4/lZvt1DYfHRx0jC9BXe2qOek+mA+mDUEqy6YLpx0K02vlux43TP8sAAAAAAACwII6RBejEnq2Nx8fWNx6f3FEzf213+mnXVIOgXVLfNws3sW3O0GRKJkvzb8FTjpEF6K7xe+pra47uXx+9UEaSDafU13ff2b9eAAAAAAAAhpiwHUAnTvulxuMT25Lxu+eO1+2m0+9j6zY/s/H4tqv628dyMjF3V8NWR8gmjpEF6Lq64HuSbDi5f330ypm/UV+baPKxAwAAAAAA0DZhO4BOHPaI+toX/8vcsS0fbzy332G7Y57beHz8rv72sZxc+7dzhtoK28naAXTX5X9SX+v39+NeOP6F9bVr/qZ/fQAAAAAAAAwxYTuATow1eVF+y78ne+YeHdpQv1/cb7be9hv618dy0uDoPjvbAQzAzR+rrw1D2K6UZHR149pt/9HfXgAAAAAAAIaUsB1AJ9a3OG5u1y2z3x9b13je7tu600+7mvW94/r+9bGcHHLmnKHdo2MtL6t60QvAcja6skltCMJ2STK5q/H4ikP72wcAAAAAAMCQErYD6MTKg5Ojzq+vT+zY/7yqkontjecd9aTu9tXKET9UX5vc2b8+lpM9984dausY2QN2tqumutURwPK09fLG4+uOn94VbhisO7Hx+J0X+z4CAAAAAADQBcJ2AJ167Pvra9//g/3Pp8br560+qnv9tKM0+Wd/QtiuJ+797pyhdo6RnTrwGNm63YoAaG3nlvraWb/Tvz567Yz/UV/7RpMaAAAAAAAAbRm6sF0p5eGllItKKc8upbQ45xFgAVYeUl+75m/2P9/e5HjWQRxbt+rwxuN2tuu+8XsaDu9ua2e7Awa2XdWFhgCWqRv/pb5Wd9T7UtTs54or/0KwHgAAAAAAYIEWbdiulLK6lHLSjEfTZEIp5TmllGuTfCXJPyT5lySXl1K+UEo5ow8tA8tNs13iZtp5U31tzdHd6WU+6l6It3Na9937vYbD7exsVx24s92OJl9HADR3zd/W10ZW9q+PXlt7TH1t4r7kviv61wsAAAAAAMAQGht0A028Oslv7n1+Y5IT6iaWUn4syXuTlL2PmR6T5MullCdWVXVJD/oEaOy9JTn83GRqd/2cxRS2237N9Nvxu5Mr/iy565Lk0IclJ788WX1E//obJlONA4x7Rlp/+50Tthu/qxsdASxP93y7vtb8d3qWlo2PTVYclOzZ2rh++R8l576rvz0BAAAAAAAMkUW7s12S52V/cO6vqqqqGk0qpRya5J3Z/7HMnFftfaxL8oFSyuoe9QrQ2J0XJ3d/Y9BdzDZa80/hZW9Otl6efPr85Fu/ltzwgeTSNyafflKyW9CrIzVhh46Okb33O11oCGAZ2rN1ele3Ou3uVLsUjK5Kzv9Uff3qd08/AAAAAAAA6MiifGWplLImydnZH5z7aJPpr0xy8N65JcnNSf5Xkj9Kcn32B/aOSfKLvegXoCOD2NUuqd/ZLkk+9yPJ3d+cPXbvt5Pr/7G3PQ2rLZ9oODy+Yn3LS+fsbHe1nYgAOnLDB1tMODDdvMQd/shk05Pr6xf/VP96AQAAAAAAGDKLMmyX5Mwko5l+5Wt7VVVfbzL3xdkftLs8yUOqqvqlqqpevfc+X907ryR5ac86BpanQ87s/NqVh3avj3mte1h9bev3Go9//dW96WXYrdjQcHi8Gm956dSB2Y9DzupCQwDL0O1fHHQH/bfh1Ob13Xf2pw8AAAAAAIAhMzboBmqcuPdtleS7dZNKKQ9KcnL2Hxf7pqqq7t1Xr6pqWynllUku3jt0Winl2KqqbuhN28Cy84h3JJ96XGfXbnpKd3tpe90nJ1s+Pr9rJnf0ppdhV001HB5v5xjZA3damtzVjY4Alp+7vtp6zrA55nnJFe+or3/r15K1xyalJBlp8bbsPWq3nbcNrq+bW3efbq5d10u792t37Vm9AwAAAAAAw2yxhu2OmvF8S5N5+xIuJcl9SeacEVVV1VdKKTdm+hjZJHloEmE7oDs2ntf5tQ9+fff6mI+Tfzb5xq8MZu3lZuvlDYfH125ueemcsN2Bx/sC0No1f7s8//3cdEHz+pXv7E8fy1Kr4N8ggoMLCBA2DEEu5TBkN8KlbXwM7X4svfja6PjPZ99bAAAAAACaWaxhu7Uznt/XZN6+lEuV5NNVVU3UzPt29oftjltgbwD7lZKc+ebksjfP77ojHp2sPrIXHbW2Yn1y1lund7Wht276cMPh8ZUHJZlseml14Gude+7pTk8Ay8XURPKlnxx0F4NRRgbdwTJWJVWVZGr6v1JhqVmMQcyFBhIXtMPmIglDzvfPpR9/PvMN/fb8a0NYFAAAAID+WKxhu5n/h2xFk3mPmfH8803m3Tnj+UEddQRQZ+0xreccaPVRref00uja1nPomfE2Xgeas7NdMn0srQAFQHvu+NKgOwBYeqqpvW+b/2IILE49DmJ2uitl13fYnMfHNNAwZJc/lnmFS7v8sfTq8zlrPgAAALBULNaw3czd7BomUkopm5KcPGPoP5vcb+bH6f9eAN21+Znzv2Yhx892w+iawa6/HFRVUkYbvlA5XlpvdTNnZ7skmdyVjAlKArRl2zWD7mCwNpya3PeDQXcBAH1U7f/vL7uLsuS0Cv51KUA43+BguztsDnIH1Hl9TB18LIsxKNvTHWXne799bwEAAJaPxRq2u2nv25LkzJo5M9Mtu5N8vcn9DpnxfPsC+gKYa83RyYkvSa55T3vz15+cnPDi3vbUyuGPGuz6y8HUntodQcbXHJVMbml+eaNs+MQOYTuAdu24YdAdDNZj35987KxBdwEAQFscRc8StxiDmI6ib39uP/98OgqX9vJrQ1gUAID5W6xhu0tnPD+slPK0qqr+/YA5P7X3bZXkK1VV7Wlyv5NmPL+lGw0CzHLuu5JDH5Z8/Zdnjx/28GRs/fTzkZXJEY9OTnl5smZT/3ucqZOd7e79XnLw6d3vZVjtqv92M15GWl7e8BjZq/4iefDrF9IVwPJx6RsG3cFgHfrQ5Bnfmh24G12bHHZOpl/Mndr7gu7e5+28nXVd3dt53K/VfQAAgKXBUfQsaT0OYna6K+Vi3mGzb2HIJR6U7dXnc9Z8AGAQFmXYrqqqq0opV2T6mNiS5B2llCdXVXVNkpRSXp1k5hmMH6q7VyllfWYfN3tVD1oGlrtSkgf90vRjKRjrIGx300eE7eZjyydqS+P5/+zdd5xkVZn/8e+pzmF6ch4mAkPOSJYM4ioIKiAmzO4aWVdXXVcU/RlWMaBiREURQQyYkBwEhjggzMBEYHLOMz2d6/z+qO7p6up7Tt1bdau7wuftq19ddc655zxdXV09Uk8/T/b/8BjYRnbNX0m2A4AwOraFX1vO/2Fy9BHSFSWctGYDEv2yJe/FmjgYJYEw4LpsZ2d+jvPsuJIhoz6eeX8tEb6mqM+NbN+XuL8/AAAAAEqEFa3oUbqyJf7FlAwZNXGwIBU2SzEZssgSZWlFDwCxKcpku14/k/R1pf5pO0vSYmPMc5ImSNqvd9xIapd0k2efM3rXSVK3pBcKFC8AlI6GqdGvqfR2fFF173ZOdSqZ9fLAynb8dTAAhNO2Lvxay39JL1rGSKZquKMAcrMvGW8YkyFDJQzGlAwZNXkx1wqbsT+eMXwtxZgom+1ryroPAAAAgNKQ/v8BhjsWIAexJGLGnTiY575DVmGzgMmQsSbKxvS15JRcGvPjaKp61wPFnWz3XaVaxc5V6p8HNZKOlfZlH/T+10F9y1q72bPPxWnrn7PWdhQmXAAoIYlqqWWutGtJ+GuWfl/a+pR05FekSWcVLrZy0b3XOdXp7XyeYoP+oqenNZ+IAKBybLh3uCMAUOn2/Qc9SSJpFCVmQLJokSRDDnlyaYivIVKFzQhnh/oahisRM+LXEulriuu5xrvMAAAAQMno+4Mvik2gFJz+d2nqa4c7ChSJok22s9Z2GmPOl3SnpL6+hUap/2LS+1+t9QdJV7v26G0h+0b1/1eW+woWMACUmmO/Jz1wXrRrtj4hPfha6fwnpNFHFiaucvH854LHx5+mzhB534H1JHa+mFdIAFARdi6Wnrkq/HraFQAAMNCAZFGgBJV6MuSQVdiMkigbcb+oiZhD+bVEfW6E/Zri+v4AAAAAKE68l4A0RZtsJ0nW2tXGmKMkvVvShZJm9E4tlnSztfaPWba4UlJL2v2/xx4kAJSq6qbcrkt2SCtvIdnOx9OS0NaMUGeyPfsWrne2kj1SguooAOC06tbhjgAAAADDiVb0KGWDkvGKIBmSVvTh9i2HRNm8vz8AAADljBay6FfUyXaSZK3tkvTj3o+obpD067S9dsYVFwCUvKbpuV/74teko74aXyzlpsfdQranp0NJ1WTdwrr+OKJzq1Q/IcfAAKACRK0COvqYwsQBAAAAAFHtqy7KG3koQbSiD/c1Ra2wWRaJmDl+LaG+Lzk+N2hFDwCIisp2SFP0yXb5sNa2SWob7jgAoCg1ThvuCMpXt/tXT+eU8yTNy7qFs7JdD7/WAMBr3R3h105+jVQ7snCxAAAAAABQKWhFj1JXrq3oIyWXxpzYGenxzCERM7ZE2bi/lghfk/e5FeFrAVB4/EEM0pR1sh0AAMOie5dzqnPy2dLGEMl2rr+O8CTyAUDFW/MXqXtPuLUTXi2d/JvCxgMAAAAAAIDSQCt6lLJcWtEXOhmykFUp86qwGXMiZlm2oh/q70+p4C8K0I9kOwAA4rb+HudUZ8i/enD+HRKV7QDA7cWvu+dmXymd8HOpfaMkKzVMHqqoAAAAAAAAAKBwaEWPUjagFX2RJEMGzY06bGgfFxS1kky2M8ZMkzRb0hhJIyQZa+2vhjcqAChBM66QVt483FGUn/aNzqnO6rpQWyRdfx3RvimXiACg/FkrbX3cPT/muNR/dGqYNHQxAQAAAAAAAAAAtwGt6KkwitJQMsl2xpgZkq6SdKGkGQFLBiXbGWNOk3Rm793t1trvFS5CAChB09+Ue7Ld9uek0UfGG0+5SHYNGuoyCb3QMkH3bw3XstC6KhHvWS7p/NxjA4Bylezwl5yfdN7QxQIAAAAAAAAAAICyVPTJdsaYhKQvSfqkUmmsQekHrm57WyR9oW/eGHOHtfalAoQJAKVp6oW5X/uPo6RTbpFmXBZfPOVi1+IBdzsSVfrRnBO0pGW81PZCqC2sq7Ld8h9LB34o3wgBoPzsecU9N/NtUssBQxcLAAAAAAAAAAAAylJRN+02xtRIulPSpxWcGOhKsktNWrtI0gPqT9C7ItYAAaDUJaqkA/JI3Hryg4FV3Cre6t8PuPvUmGmpRLsIrHEk2+1YkGtUAFDeFnzBPXfoZ4csDAAAAAAAAAAAAJSvok62k3SDpHN6b1ulkuYelnSNpM8puMpdpj+k3aZ3FABkGnV47td27ZC2PRtfLOXCVA24u3hEtEQ7KUs2+d61kfcDgLK39Un3XHXz0MUBAAAAAAAAAACAslW0yXbGmLMlvU39SXYvSXqVtfZ0a+0XJP0m5FZ/79tS0vHGmPq4YwWAkjbjskHJYZF07YgvlnKRkdSxt7om8hbONrKS1MljDgCSpGSPtPVpaccL/kqrjdOGLiYAAAAAAAAAAACUraJNtpN0de9nI2mlpJOttU9H3cRau1JSX1ZCjaSD4gkPAMpE7aj82uv98yKppzO+eMpB184BdzsT0ZMZk642spK0/q7I+wG0xh1nAAAgAElEQVRA2dm9XPrrHOmu46U7DpPaHFU/p10s+V5TAQAAAAAAAAAAgJCKMtnOGDNG0slKVbWzkj5mrd2Sx5Yvpt0+MJ/YAKAsHf5F6bQ/SdPfLFU1RLu2p11a/M3CxFWKkj2DhnJJtvO2kX32E6nHHQAq2cNvlFpXZl83592FjwUAAAAAAAAAAAAVoSiT7SSdqlRsRtJma+1f8twvPVFvQp57AUD5MUba7w3Sqb+TLtsb/fo1f40/plK1e+mgoc5EdeDSyyd+UKeMPDdwzmarwrTpn5FDA4Cysfslacfz4dZGTSIHAAAAAAAAAAAAHIo12W5y72crKXLr2AC70243x7AfAJS3w6+Jtn7X4sLEUYo6tg4aclW2qzV1Mo5fxd7KdpLUtj5iYBH0tEtde6TutsBKfQAw7KIkHI86onBxAAAAAAAAAAAAoKIUa7LdmLTb22PYL72cRVcM+wFAeZv5FqlmVPj1XTukvx0krf5T4WIqFT2DKwN2uZLtEnUyjgp2Vlkq2wWck7e2jdLNRrq1QbpthPS7RumWaumJ90vJ7vjPA4ChUD9+uCMAAAAAAAAAAABAmSjWZLtdabdHxLDfxLTb22LYDwDK24j9pXMekKZdLDXNkiZfIE06x3/NriXSI2+WNj82NDEWqz0vDxpyV7arVcJV2S5bG9mFX44cmpe10p8mBc+99FPp2U/Gex4A5CPba2Sfo68tbBwAAAAAAAAAAACoKMWabLc57fYB+WxkjKmSdHTaUAH77gFAGRl9lPTqP0oXvSydeYd01j3SGXf6r7E90srfDk18xWrTQwPuJpWlsp2jgl2y78bYE4PPaVuXW3wuO1/0zy//ES1lARSRkMl2NS2FDQMAAAAAAAAAAAAVpViT7Rb0fjaS5hpjpuWx1wWSGntvW0mP5xMYAFS05tnZ1+xaUvg4ilnjwF9ZrkQ7Sao1njayfeOdjoKsibqcwnNa/hP/fE+71L4x3jMBoNCaZw13BAAAAAAAAAAAACgj1cMdQBBr7SJjzFpJU5VKuPuEpKui7mOMSUj6bN+2kp6z1u6ILVAAqDQtIYqN9rQVPg6fjQ9Kj18pta7sH5vyWmnmW6WZVxT+/K49A+66WshKfZXtHG1k+25MPl/avXTwgmSHZJOSySNvvnNHqh3tpoekbU9nX7/9WalxSu7nlbuND0gPvEZKdvaPjTpcmniWtPWpVLLqgR+SxjmqFQKI3/jThjsCAAAAAAAAAAAAlJFirWwnSb/p/WwkfdgYc24Oe3xFUvo72j/NOyoAqHSHftY/v/nhoYkjyIZ7pfvOHJhoJ0nr7pDmvVVacl3hY1j+owF3vcl2xt1G1vaNz3iL+6z2ze65bHo6pPvPkRZfGy7RTpIeep20Z0XuZ5azDfdK9501MNFOknYskJZ8V9oyT1pxk3Tf2dIWiuwC+QvRRnbaG6Sq2sKHAgAAAAAAAAAAgIpRzMl2/ydpl1LFfaok/dkY8/4wFxpjxhljfinpk+ovDrRB0s8LECcAVJbmOdnXJLsLH0eQbMl0i76RqgZXKG2D26z6ku1qEp5ku742stUN7vPW/DFSeANsfEDaNj/6df/6VO5nlrPF3w23rmevtOyHhY0FQMroo4c7AgAAAAAAAAAAAJSZok22s9Zuk/RRpcpWWEn1kn5ojFlmjPmqpAvT1xtjXmWMebsx5teSXpL09t5rjaQeSe+y1maUmwEARFY/IfuaPS8VPo4g6+/yz+9dI7WtK9z5K349aKgrS2W7hKMN7L42snWex3vXkgjBZdj6ZG7Xrbot9zPL2aYHw6995VcFCwOoGCZEZbv68YWPAwAAAAAAAAAAABWlergD8LHW/soYs7+kzymVd2AkzZGUWVbHSHos475Nu+Yz1tq7Cx8xAFSACWdIiTop2eFe091amLO3PJ5qCVs7JtUesHnmwPnMFp5BOrZJjdMKEp5aVw8a8raRTdQ6K9sl+xJJGqe4z+vxfA+y6dmb+7UYrHvPcEcAVJgQyXaTzy98GAAAAAAAAAAAAKgoRVvZro+19vOS3iWpvW+o93N6Ql1fUp1JW2MkdUp6p7X2m0MWMACUu5pm6dRb/WvmvS3+dq3LfyLdfZK08EvSM1dJdx4jbXs2bf5n4fbZ8Xy8cWXhSrarUrWqTLWM41exTU8kGX1U8Oab/5l7YLm0kO3TviX3a8tR24bhjgBAkObZwx0BAAAAAAAAAAAAykzRJ9tJkrX2RkkHS7peqaS7vgwEo4FJdn1jSUm/knSwtXZwTz8AQH6mXSRdstk9v2uRtO2Z+M7raZfmf2zgWOd26bnP9s53SE9/ONxez38uvrhC6EgEF5GtTdRKkoyjFaJNvzP2hODNd76Ye2Ab7nXPjTjAf+1LP8393HK0+NvDHQGATA2ThzsCAAAAAAAAAAAAlKGibiObzlq7StKHjTGfknRq78d+ksZKqpW0RdJGSfMk3Wet3TFcsQJARagfJ9WMlLp2Bs9vfEAae1w8Z63+YyrhLtP6O1Oftz3tb2ubztTEE1OQgMQ6V2W7WlOXCsfRCtEaI1U3997xVAm0ScnEmDu/35uk026Tbva0aNz4gHToZ+I7s9RtenC4IwCQyfYMdwQAAAAAAAAAAAAoQyWTbNfHWrtX0t29HwCA4TThdGntX4Ln/vUpac3t0kFXSdMulhxJZ6HsWOCf79oVfq/2jbnHkU3duEFDXa5ku0Qq2S7hbCMr6djvpu7UT3Sf2dMhVTdEiTIlURecoFhVn/o8533uCnauBMtK1d0a/ZotT0pjj5cclQ0BZJPlZyfg9RgAAAAAAAAAAADIV0m0kQUAFKnDr/bPb5knPfJm6ZZqqX1L4eLwtUTN1L1bWv6TwsTRvWfQkKuyXU1fZTtXG9makdL0S1N3pl3oPrOnLVqMUqoanqsS4Iy3pD4f9VX39VuflHo6o59bjnrapZ0vRL/u7hOk34+Wkl3xxwRAOuzzwx0BAAAAAAAAAAAAyhDJdgCA3I05Rhp1ZLi1f55emBiS3dLib0W75skPSLuWxB/Lsh8NGnK2kU3428gmRx4i1fS2ka1pcZ/Z10o3ii2Pu+fqxvR+Hisd9TX3uqXfj35uOVr0zdyv7dqZ3/VAJctWFXLUEUMTBwAAAAAAAAAAACoKyXYAgPyMOizculwqsO3jSarY+kRuW677R27X+dSMGDSUPdnO0UY2PZGkqtF95ob7wsfXZ90d7rmqtJa0DVNz26OS5Ps4PPfZeOIAKk6W/xtTlUN7bQAAAAAAAAAAACCL6uEOIApjTI2kkySdJmmOpDGSRkiStfbsYQwNACrXmGOlFb8JtzbZIyWqUq0ze9oDk9MC+SoYtW0It0emvWtyu86ncZrUunLAkDPZzvgr21nZtH09SW+2O1qMktS1yz3XMrf/9phj3et2vRj93OHUtUvqCGhlnOySqkdIjVNy2zfX51+6vWtSiY3ZKnUB6FdV556rGy817jd0sQAAAAAAAAAAAKBilESynTGmSdJVkj4saXzmtJSekTDgurdI+n+9d7dJOt5aG7gWAJCj6ZdKz/xnuLWbHpRW/0l65cZUpbsJp0sn3yw1TMz9/Mff5Z5rmCy1rQ+eW3yt1L1HOu77UiKmX4cBSWzuyna1kiRjHJXtbLL/jmONJGnnC+Hj69O9xz1XVd9/u+Ug97q29dLNRjr/KWnscdFjGCptG6V5b5U2PSClP6ZBzn5Qmnh6+L3X/FlqfSWv8CRJt++XStQ8+pvSjMvy3w+oBJseds/N/WgqsRsAAAAAAAAAAACIWdG3kTXGHCFpvqQvSpogby/BQf4qaaykmZKOlnRu3PEBQMXzVV3LdP850rIfpJK9bI+08X7poX/L7/zu3e65i1b5r13+Y+lfn87v/HQ7Fgwa6nQk8vVVtkuEqWwnSXM/HnzmtvlSMmJ1u5d/ETw++8qB942RXvUT/153HS+1B1SMKxYPXyxtvC97op0k3XeG1JrlOdNn+7+kh9/knj/5t9JJvw63l5SqbjfvCmnL4+GvASrV3rXSkm+75w/9n6GLBQAAAAAAAAAAABWlqJPtjDGHSHpI0gEaWMHOKETSnbV2j6Tb0obeGHeMAIA8bZsv7X4p/n1bDk5VrJv1Tv+6lbdIcRQ9dSRzdTmqK9UksrWRzdivutF99uZHs8cXRlXT4LHaMdmvW3dHPOfHbeciactj0a5Z85dw61b9wd/Ct3akNOtt0nE/CH+2TUorfxd+PVCp1v7VPVc3npbMAAAAAAAAAAAAKJiiTbYzxtRL+pukkWnDCyS9R9JsSQcrXJW7P6fdPju2AAEA/ea8J7/rX/5lLGEM0Lkt9XnE/v51bWulZEf+5wW0kJU8bWR7K9u52sgmMxMAmz1fx54IyYrJLvdcT+vgsWyPnyQ9+4nw5w+lHc9Hv2ZtyGS7Pcv9833fr5YDo50f5XsJVKrdnp+/5jlDFwcAAAAAAAAAAAAqTtEm20n6qFLtX/uyDa6TdIy19hfW2hWS2kPu80DvHkbSLGPMhJjjBAAckmcrVtuTZUEOVYqmvDb1eb8QRU07d0bfP1NPW/DWrmS7rJXtMpLtpnra7ToS/QI54pQkTQk4Y9QR2ffsKNI2shvuzeGae6T2zdnXbX3KPTfmOKnlgNTtCadLjdPCn+/7/gBI2bXYPTfj8qGLAwAAAAAAAAAAABWnmJPtPqL+RLvbrbUft9bRo8+jt5XsirShg2OIreQYY2qMMWcYY95hjPlvY8yHjDEXG2NmDndsAMrAiP2lU24p4AE5JNvt/4HU55EHS+NP9a99+OLo+2eKmmxnIraRrffkij9zVfb4+qy6zT3XEvAr0hjpjBBtYvesCB/DUGjfJL30s9yuve8MqXuve37Py/4KdGf8vf92okY65yFp7Inhzt5wT7h1QKVq3yyt+7t7fu5Hhy4WAAAAAAAAAAAAVJyiTLYzxhwiaar6sys+meeW6e+Iz85zr1gYY2YbYy4zxnzDGPOgMWaXMcamfayI6ZzxxpjrJW1QqsrfjZK+Jun7kv4o6RVjzKPGmBClnwDAY8Zl0hVWuniddNHK8MlFUiqhK241aV3Ip17oX7vlMWnvmvzO2/Zs4HDWynaONrKDKttJ0riT3Oe3rffH12fRN91z1Q3B480hfnWu/G2484fK6j+652rH+K/d+aK04T73/LIfuecOu3pwYmTzbOn8x/xnAghnzZ/dc3PeW5jfJwAAAAAAAAAAAECvoky2k3RU72craaG19uU899uRdnukc1WB9VaWu8sYs1WpBMBbJP2XpNMljSjAeRdIWijp3yX5MgtOlvR7Y8xNxpimuOMAUGEaJktN0/2JYUMSx8S025Oyr9/2TH7n9QRXQstW2S7hqmxnA5Lt6j1fhyPZb5D2Te65unGO8fHZ9902P9z5Q8X3/TzgP7Jfv91z/aJvuOdcj6EkHfW17Oc6ki8B9PL9bPpeIwEAAAAAAAAAAIAYFOs7uunv6i+LYb+OtNuNMeyXq6MknSd/4lssjDFnSLpdUnp5HStpvqTbJN0jaUvGZW+V9FvjKrMEAFFM/bfwa1/4ihSUXJarCWdItaP77086TzLBSW/75J1s1x443JWtsp3jV/GgNrKSNPV1nvOD29gOXhccpySppiV4vG6MNO5k/76r/yBtuDdcDEPBkfwoSZr7sRDXh3w8M/m+R3Pem/16m5SSXbmdDfTp3CktvV6a93bpkcukRy5Pvc7uyffvV4qAr8XzlNcOXRwAAAAAAAAAAACoSMWaVFWfdrvDuSq89Gp2u2PYL24dGtjqNi/GmGlKtYitTRt+VNKh1trjrLWXWmvPkzRN0sckpb+r/3pJX44rFgAVbOJZ0dbfdXw855pq6cRfDBxrmCidcov/uoVflDbPy/3ctg2Bw52J6sDxvsp2xtHyMBnURnbWO93nPxui47q17iS0E27wX3vyTdn3v/9cacl12dcNhRW/CR6vGyfVj5NetzjL9Tm2xW2e6Z6rGysd853se3TuzO1sQJI6t0v3nSU9/SFpxU3Sqt9Jq26Vnvsf6a4TpB0LhjvC/Lxyo3tu/DBXVAUAAAAAAAAAAEDZK9Zku/SKa55+bKHNTru9NYb98tEl6V+SfibpA5KOVaqFbIhyN6F9UVJaSSfNk3SOtXZR+iJrbYe19jpJl2Zc/5/GmBkxxgOgEhkjNe8ffv22+c6EtVDmflw69xHpsrbghKfpb5LetGPweLoFV+d+fkACiJWnjey+ynauNrIBle0SVVLz7MHjktT6itSeWbA0g6/aW8tc/7XNs6TLO6VJ5/rXzf+Y1BNHnnwefM+jvoTFlrnSZR1S7/dhkL2r4q222Oegj0lv2iZNv8y9Zu2f4z8XleOVm9ytVju2SC98dWjjiVPQ62KfMBUrAQAAAAAAAAAAgDwVa7Jd37vkRtLR+WxkjBkr6eC0oeX57JenGyW1WGuPtta+z1r7E2vtM9ba2PrFGWMOkJRe+qhT0pXWWmffQGvt7b2x9amTlEfGCQD0ap4Vbf3SHwSPO6q/7TP2BOnYb0vjT5EcleQkSbUjU2tdNj2Ue4JVQLJajzFKOmLfV9nO2UbWEUfNyOBxSdryqD/GHQvdc9XN/mslKVEjTbso+7r1d2ZfU0ibH3bPpT9+VbXSrHe417aujC+mdLWjpWOudc/n29IYlW3TQ1nm/zk0cRTCbs8/4xO17jkAAAAAAAAAAAAgJsWabDdPUl/pirHGmIi9CAd4t7SvbFCrpKfzCSwf1trtvqS3mFwhKb2M0h+ttctCXPf1jPuXGmPqA1cCQFhT/i3a+vV3OSayJNtVNYQ/Y+KZ7rlkl5TsDL/XAIN/pbqq2kkhKtu5ku188Xdl6ZTe0+aeG3mo/9ow5/fZtSTcXoXiexwmZfyTYuyr3Gv3BCT2JHtyiylT41T3nO2O5wxUpvaN+c0Xs27Pz/b4U4cuDgAAAAAAAAAAAFSsoky2s9Zul/RU2tCXjMlW1mgwY8xUSZ9WqpOflXSPDezLV1Yuzrj/izAX9baYfSJtqEnSeXEFBaBCzb5SGndS+PXbnpK6Pa1OXaIk22VrNdi1K/r5ktS6YtBQp6fKXl+yXcLx68356+qgT7hj2LvKPSf5H1tfRcB0LQdnfwz3rg23V6FsuNc9l/l8nPV299plPxo81rHJvf7k3/rjylQ/MXh819Jo+wB99rwibX7Ev8Z2S61ZXiuKle+1ZTL/bAUAAAAAAAAAAEDhFWWyXa/vpt0+UVLAO95uxpiJkv4iabT6SyJ9K57QipMxZpKkI9OGuiVl6Sk4wIMZ9y/INyYAFa52pHTm3dLJv5FGHRHumkWe9pou1RGS7RomSefOc88v/X708yVp5+AWrb7KdjUm1fIwchvZxilSw5Tguef+xx/jlsccwYzyX5fOGOmYb/vXLL0u/H5xs1Za6Uh6G3WkZDIe76o6aczxwetX/0FKZlSZ8z3GIw8JH6ckTcvMj++16cFo+wB9nvr3cOue/VRh4yiUf/23Y8JIVRRkBgAAAAAAAAAAQOEVbbKdtfYWSf/qvWskvdcY87Ax5jTfdcaYJmPMB3uvPUr9Ve3uttZGSTwrRYdl3H/eWtsa4frM7JOQPQUBwKOmWZp5hfTa56QrrHRJlhaGrkQpn90vRVvva+EZY6JTPm1kk65kO0mqn5RbQG3rgseraqPtE6bYrPXEX0gBSY/7VDcGj/uS5LY+OfD+xvuj7++S8DzucbWrReXo6ZA2PhBu7apbpZ5cW2YPoz2O13oS7QAAAAAAAAAAADBEQvaMGzZvkvS4pLG990+R9KAxZoOk5ekLjTE/lHSgpJMk1SmVoGd7P6+V5OkTVzYyswWWB65yy3wHM2KJHgAIoX6Cf37Xouh77ngu2vrGae45m0OSk7WpimkZrV+7fMl2pjfZLrPSWt+W8nQ9d7W6zZZwUuuoYNfuaY2aq2TH8CTAtG92z409IXh8/KnSKzcGz3VsGXi/p8O9f9Msf2yZfEmOPW1Sojnafqg83W2pJNqaEZKMlIyQQLfsemm/N6ZeF2pGFCzEWFU3S53bB4/3tOW1rbVWm7s2qCMZvE9jVZPGVE+QCZNoDAAAAAAAAAAAgLJW1Ml21tqXjTGvk/QnSZPVnzw3WVJ6WR8j6f1pt5W2do2k11lrM94tL0v7Z9xfFfH6lRn3xxpjRltrA97VBIA8zLhCWnmze/7pj0jHfEfal6yWJcGheXa0800i1Yo1qNLb5hyKoCa7BiXaSWHbyAZ/bdZXGW7uR6X5Hx083tPem/jneLxcCSl149xnuZz8G2neW93zHVv8SY2F4ku62f99weMzLpeedMx1ZxSIde0/9sS052tI0y6RFn0zeK6nLVUVEpXLJqW2DdLe1dLeVVJr78feVamx1lVShye5NJtnrkp9SNL0N0sn/ar4K8QFJdpJ0gEfynnLJXsX6Mb139GO7q3edeNqJuo9Uz6pGfWZ/9wGAAAAAAAAAABAJSnqZDtJstY+aYw5RtLPJV3QN5zxecAlSmVlGEn3SHqntXZDwQMtDpkliyKVKrLW7jHGtEtKf6d1pKS8k+2MMRMkjY942Zx8zwVQpI77nj/Zbun3U8lwh34mdT9bNaGmGdFjOOQz0vyPBM+1bZAaIrRq7QxO0thc1xQ4Xmvq9lVIcibb+SrbjTnOPbf+TmnKBcFzy34YPD7Zsd5n5hXSriXSwmuC5x97p3T2fdH3zdeS69xzrnaxNc1SVaPUs3fw3ItflWa+pf++K9nu8M+Hj7FPvefXYts6/zxKX9fuwclzffdbV0lta1KJvENh1W1S7WjpVT8emvNy0bbePTf9jTltuaNrq65f8yV12ewVAbd0bdR3V39eX5lzg+oTDTmdBwAAAAAAAAAAgNJX9Ml2kmSt3Sjp34wxx0r6mKSzlapuF2SnpPskfc9a+9AQhVgsMkvg5NJTq00Dk+3i6iv2H5KujmkvAKUuTPWkVbf1J9tlUz8x3hjW/V2a857we62/J3B4ZWNw29baRN2+2wlnG1lPZTtf7CtvcSfbuVTnmDgy573uZLuN96cShRI1ue2dq82PBI83TPFf17RfKnkw044F/beTPe42nVWN4eIbcI3ncV9/tzT6yOh7ojgku1MJk+nJc3tXSa1pVeq6dgx3lAOt/oN0/A9TlT+L0Zo/u+d8P0seC1qfDpVo16c9uVeLWp/V0SNOzuk8AAAAAAAAAAAAlL6SSLbrY62dL+kdkmSMmS1pP0ljJdVK2iJpo6QXrA3o5VcZMpPt2nPYo03SaM+eAJC/MIkRrSvC73fwJ6PH0HKQe25PhLMlZ9JMc3dwEseenl37bufURtbXNrfD0zW9ZW5wQlnQWBjZqv91bJMackiEzEfDFGnP8sHjQS2D07U6Oq83pOX2+1rU5pLs40sStd3R98PQsDbVzjQzeS79c9u6wNbSRa1jq9S1M1Xhrhj5foabc2vturUrUhFoSdKWHK4BAAAAAAAAAABA+SjKZDtjzAhJs9KGXrLWtqavsda+LOnlIQ2s9HgyNWK9BgCiMUY67H+lhV9yr+mM0MF69NHRYxh3kntuxW+kIz2xZXIkYXUlsleIciXbJX1tZGtHuud8j5srqW7C6e5rfBI10uTzpfV3Bc8HtWUtpKc+HJxoJ0kTz/ZfO+3i4NbG6a0rfcl2uVQHTHj+Gda9J/p+KKyVt0pLvydte8b/XCg2Iw5MJW/uCfHP5t+PkSaeKR3/I6nlwMLHFkXbBvdc/bictuxMdkS+piuHawAAAAAAAAAAAFA+irRPlN4i6dnejycl1fmXo1fmO/O59NTKvCaud/uvl3RYxI+LYjobQDE6/AvS/h/wr1n+sxAbmVTyXlSJKnfCXesr0tq/hd9r1W2Bw52NwR3Pj0lrQWhyaSMrSYd+Nnh8y2PB475ElZaD/Wf5nOD5Hi25Lvd9o3r2U9KyH7jnD/ig//pZb3PPdfcmVnV62n7m2MZSk84JHn/hK7nth8JYdZv06OXS5kdLK9FOko7+pnT2/dkTTvtsfEC69zSpbWNh44rCJqWXfho8N/n8nLftstET5zpsLoWjAQAAAAAAAAAAUC6KNdlunCTT+/GUtXbbMMdTKoo22c5au8la+0KUD0kvxXE2gCJlEtKrfiSdO8+9Zsl3su/TPCv7GpcRB7jnljsSO4Jsmx843FVVHzheY/pzyHNqIytJtWPcc60rB4+t+ZN7vSPOUGpa3HNLhzDZbtE3/PPZkuF88xvuTX1e/4/c93ep9nRr79qd256I37IfD+/5VQ2pNtCTzpXmvCda62yTkJpmSGffG/6a9k3Smtujx1ko255xz9XlVtVOcle2O37E6Tqs6bhI1wAAAAAAAAAAAKAyFGUbWUk7ez9bSWuGM5ASszPj/vgoFxtjmjU42c5TxgcAYtA41T23r+2pp3JdmNaILg1T3HM7ngu/T9OMwAS3rmS7pKZB47VpyXYJR9679bWRlfyxb38+FdOAsX/ltlc2VYO/vn2sTX3kUnkwbtm+Rt/8zgXStNdL3a3uNb7kR5+6se65XUukscEJPxhiUV4PIjOp51/TdKlxv97P0wd+rh0z8OeofUv2BNM+Y9KeQ2NfJW19Mtx1Bf2aIyrQ61eno7JdY1WT82WrI0llOwAAAAAAAAAAgEpWrMl269Nu1w5bFKVnWcb9GYGr3DLXb7PWbs8jHgDIrmm6e852S8keeZPt8jH1QunFrwXPRakqFlRJTlJnzQgpIGmuJtH/q81Z2S5bG9nJ57nnevYGBJOZj51mzLH+s3wSVamEoL2rAiatlOySqgr8qzzZ5Z9v3E8afaR/ja/KYV8bWV/70OocK9tNu1h66YbguVJrV1rOugN+psKqHpFKft2XPLffwGS6xqlSoibano7204EaJvbfPuQz0sMXh7uumJ5/vlimXpjztl3JzsDxGlOrHtMTONdJG1kAAAAAAAAAAICKVqzJdgvTbufRH7DiLMq4v3/E63EHdDMAACAASURBVGdn3H8xj1gAILyTb5bmXRE8t/UJ/7Wz3pH7ueNPkiaeJW28f/Bc5zbJJrMntbQGJZmldDVMlJLrB43XmLRkO0f5JCsra61z3lsR7Yn3STMu67+f7JJW3Rq8duyJqYS5fJx4g3T/ucFzW5+QJpyW3/7ZZKvUdfrfsn8fjZGaZwdXStzdW2Hxha8EXzv6mOwxukz9N/fczoWFf+yQnbXBCax9mmZkVKLLSKarHRl/TGGT7U769cD70y6S9nujtPoP2a99+ZfSib+IHFpBvORp6z3h1Jy3dVW2q03UOauLdtBGFgAAAAAAAAAAoKJFKIsxdKy1SyU9r1QpoyOMMZ4eg0izMOP+EcaYxgjXn5JlPwAojFGHu+cWftl/bVWOFcX6HPLf7rmtT2W/fvmPnVOdJrg6Xe2AynbuX8VZq9u1zA0e794t7V3Xf3/Tw+49xp/sPyOMBs+v6YVfyn//bLI9R0YfEW6f0UcHj6+6TerplGxwpatBLXujqh4RPL7o2vz2RTy6PFUhz3lYumiFdO4/pZNvko76inTAv6eSKEcdXphEOyl8sl3jfhnXGem030uXbJaODtGGtm1j9NjiZq20Y0Hw3PjcE+0kqdOROFdr6lSbqAuc66SNLAAAAAAAAAAAQEUrymS7Xt/r/WwkXTOcgZQKa+16pZIU+1RLivIu5BkZ9/+Rb0wAEErtaPfcjuelak/ecMtBhTt7sydJbd+aR5xTXY7KSLWmP4nD1UZWCpFsV+OL/ZHg24P2GOU/IwzfY7jzhfz3z8aViCNJs94Zfh8b/P3S6KOknZ4zqpvDnxGke0/weKLA7XcRzk5PoV/fc7+gQv4T3tWmu36cdPB/SZMcFSn7bHk0WliFsHeNe87kV5XTV9mu1tQHznU4rgEAAAAAAAAAAEBlKNpkO2vtDZL+rlSy3ZXGmE8Nc0il4k8Z998V5iJjzEGSTkgbapV0d1xBAYBXo6cyWk+bP6Fl2kX5ne2qZiZJXY4kqHTdrc6pzkRwt/aBbWR9le0cyV99Jp3tiSst9u7dnj3O8Z8RRsMk95yvKlhckp3uucOvDr9Pu6OKV0+H1OV5DCefF/6MQI6kSlclPQytnjb33MiDhy6OdGEr2zXP8s9ne/3sHIKf32xcyaiSNO6kvLZ2VrZLUNkOAAAAAAAAAAAAwYo22a7XW5RKHjOSvmqMucsYc+Ywx1TsfiMp/d35S4wxB4S4LrOP4u+stbybCGDoHPjR4PHObf5Ep2zJJNk4EuIkSetDFPjcNj94fMLp6rLBSWA1aRXLEr7KdjZLZbuDrnLPbXm8//bqP7rXjTvBPRfFXEcs3a1S24Z4znDp2Oyei/L8mPPu4PFdi/xnTH9z+DOCHPb54PHdS6VkV357I3++52/YpLe4hTn3lFuzr5l9pTTxLPf8E+8e/uegL9nxwA/ltXWn4zW61tSpLhFc2c6VoAcAAAAAAAAAAIDKULTJdsaYn0u6TtIuSbuVSrg7R9K9xpgdxpiHjDG3GWN+HuHjhuH8moaCtXaZpBvThmol/dIYRy8sScaYiyRdmTbUKemLBQkQAFymXOCee+mnweNNeSba9XFVd9r6pORLePNVfZr5NmeyXWxtZOvGSiMODJ7re8yS3dKel4PXzLgivmShyee7557/XDxnBPFUFtSZd0Xbq95Toe+5/wker26SqoIrYIXWMtc9t+Lm/PZG/hY6/klUO2Zo4xjA/bqxz4xLs6+pbpLOuMO/Zrifg+s9hZbrxue1dZevsp2zjSx/iwIAAAAAAAAAAFDJPOV8ht2VGthXzar/ncUWSadG3M/07vGevCPLgzFmmoIf98x3+KuNMTMd2+yx1m7xHHO1pIsl9fVdPFmpJMX3WmsXp8VSJ+n9kq7NuP5aa+1Kz/4AEL/qJvfczheCx02IhJMwqhrcc7sWSSMPCZ7b+ID7uuomdXYGJ3KkV7bztZFNZmsjK/lb7HZsk3Yvd8/7HvOofHv5kmXytemf7rmoX58veWr3suDxKmcue3i+ODfcI81+Z/5nIHed24PHfVUxCy1bkmyU535VXaod65bHgufX3z28z8HdS91zaa+lUVlrnZXtakytTCL49wuV7QAAAAAAAAAAACpbMSfbBclS4qckPCJpRoh1UyW94pi7UQMr0Q1grV1jjLlE0l1KVbaTpFMkvWiMmS/pZUkjJR0jKbMkyN8k/W+I+AAgXqOPzuGimJLtxp4grbwleK5jq/u6TvecHXuiutb9LnAudGW7bG1kJalpprT1ieC5ji3eGDX+5Oz7hzXG8/3r3BbfOYP2diRCSdGfU6OPjH6+7/kR1lhPK9849kd+qkekfpYytW8a+lj2yZJsN/ZV0bbzJdv5XkOGQsJTOTKPhOtu2y3rSGiuNXVKmKrAuS7bqaTtcc4DAAAAAAAAAACgvBVtG9leJsaPimKtfVCp6nab04aNpOMkXSrpfA1OtPutpMuttT1DESMADFDTLI05LuJFMb28z3yre65tnXtu7xrnVHfTNGcb2JpE2DayISrbzf2oe+5vc6VnPuGen/aG7PuHVd3kTvDpbpV6CtB60VrpMU/FrerGaPtFXS9Js98d/ZpMDZ72tevvlLr25H8Gctfq+NuHAz8ytHGky1bZ7lBH22OX/T/gntuxINpecds2P3jcV9UzhC7rrlBXm6hTnXEn+bkq4gEAAAAAAAAAAKD8FXOy3awCfMwe0q9gmFlr75B0mKQfSfKU/tHjkt5krb3CWts6JMEBQJBTHNXlXOJqI1ufmXuc5tHL3XMLvhA8PvoofyKHSWsj6/lV7ErWG2DU4f75XYuCxxM1Uu2o7PtHcXRmV/I0vqS/XL38c8l2B8+1HJTbnqOOiLZ+4lm5nZPpyP/nnnv6Q/GcgeisJ+F14hlDFsYg2V77Jp0dbb+WA92Jo23rUomtwyHZI217Knhu+pvz2trXDrY2UafahLtFNK1kAQAAAAAAAAAAKlfRtpG11q4c7hgKwVo7c4jP2yTp340xH1OqlewMSZMktUpaK+lZa62rXS0ADK2m6ZKpkkIX2IyxcGndeKljc/Bc997BVc981caqm7yVj2rSku0SnqSZUG1kqxqyrwnSMC2363x8leFW3Sod/4N4z1txs3su18cl6nXVOZ4z6Nwm99yav6SSjhK0rRxy2591z+X6HCtWvkTTnQuzJ/YWgivRTsr78e/0JETXmFpVG3eiZWeyAJU6AQAAAAAAAAAAUBKKNtkO8bLWdkp6YLjjAACvRI006khp+zPh1u9eGt/Z1c3uZLv2TVLzzIyxDe69akapy1P5qCYRtrJdiDayiWqpZa60a0n2tekaC5BsN2J/91zH1lR1rLiqEUrSxvvdc2mPcSQjD5W2PhFtfRxGefbp2iH17JUSI+I5C+G1rnLPxfW9Lxa+52Dr6uFJttu72j038rC8ts5W2c6X7NxhSbYDAAAAAAAAAACoVMXcRhYAUIkOjNAys8pTSS3yuf/hntv86OCxnjb3+jnv9VZNqjV1+24bT3W+ZJg2sr3nRRblcQ6rpkVqmuWeH8rWi/u/L7frZr0j2vqWubmdk2n8q/3zoas9IhatK6WbjfTwJe41TdOHLp6h4HsOtm8cujjS7XjBPTf19Xlt3eWpPlpr6lRHG1kAAAAAAAAAAAAEINkOAFBc5rxbqp8Ubu2My2M815Ow9tjbpD0ZHbef/1/3+knnqCvpaSObXtnO10Y2bLLdQZ8Ity7d9EujXxPGKb91z218KL5z2rIk/0x5XW77TjxdGndyuLVTL8ztjCBVtdIZd7jnN9wb31nw62mX/jzTv6Zu/JCEkpMxx+d2XZWnGuQT785tz3x07pQWftE93zAxv+191UdN7YB235k6aCMLAAAAAAAAAABQsUi2AwAUn4OuCreuqiG+M7PttfoP/betldb82btXp7dqUsg2sjZEG1kp1Zp19FHh1kpSdVO87VzT1Yx0z730s/jOWf4T/3x1Hs+NsImI9fkl+wzSuJ977uVfxHsW3NbdmX2NqSp8HLmqac792ubZ7rmorarztd7zfYihpa2r+miNqZUxRsaYAVVIw1wLAAAAAAAAAACA8keyHQCg+PiSjtLlk1CVKVEr1U9wz+9Y2H/b10JWkhJVzhaF1aZaibREnYSnjWzoynaSNPHs8GvDPr65aJjsnuvcGt85Cz7vn69qyn3vppCPT9yPoy+Ba52n6h3iFaaKW/uGwseRTfP+weOz35X7nr7n9E5PS9dCSH/NzRTDz56rsl1toi7tdnArWSrbAQAAAAAAAAAAVK7q4Q7AxRjzjhi3s5J2S9opaYOkxdbaCBkMAIAhNfn8cOvirGxnjDTtDe6Kaa/cKB1xjdQ0Xere695n/KmS3Ikcma0J/W1kQ1a2k6T9LpYWXxtu7bSLw+8bVa2nst2OBYU7N93Mt0mJPCqPTTonVf2vu9WzyEjTYmwjKxV3tbRS0NMp/evT0pJv94+d85A04dXR9uncHm9chTLtQmnxtwaOJeqkyRfksefF0iZHu+fuLEnGcbJWeuHL7vn9Lsn7CFd1uvRqdnWJOu3pCbjW04IWAAAAAAAAAAAA5a1ok+0k/VKKUtInklZjzFOSbpR0q7X0ggKAolI3Rpr6emntX/3r4ky2k6Rjvu1vT3rPqdK5j0qbHnSvOe4HkuSsbFeT0ZbQ30Y2wq/B8adIx31fevrDnkVGmnG5dPgXwu+bi0P+W3rx64PHO7ZIu5ZKLQcW9vzjr8/v+poW6cy7Ut9vl5N+JY0+Mr9zMmVLtmtb768cWMlsUrr31dLWJwaO33u6dPb90sQz4z2v5aB498vFkV+RWlf1tri2Uu0Y6dTbpPpxue859yPSMx8PnhvKynbz3uqfnx2i+mAWoSrbGUdlO0tlOwAAAAAAAAAAgEpVzMl2fdwlf3LXLOmM3o+vGmPeZa29uwDnAAByNfk1Q59sV90oHfJp6cWvBc/vXS29/EvplV+596gbI0nqSjqS7RIZle08v+aSUXPOD/yQNOe90vq7pZ0LpXEnal/HeGOkkYdKdWOj7ZmLxunuuWU/ko79lns+jLYsLTxrRuS3v5RKXvSZ9bb8z8iULdnulZukQz4Z/7nlYMfzgxPt+tx3lnRFzH+/UdUY7345xVAnnXab1L5FalsrjTwsv4qOkmQS0shDpJ0vDp5b9kPpqK/kt38YHduklb91z898a+r1LE+uhOjMynZBOmkjCwAAAAAAAAAAULGKPdku/Z006xjPlPluatBamzY3WdI/jDEftdb+IHqIAICCCJMUVohWftnO3TJPalvjnq9JtVEN06JQkozxVLaL0ka2T1WdNO31qY/hUjvGPbdlXv77b3k8/z3CmHyBtP4fg8fHnVSY8zzPBUnxPHblaqieE31mvX1oz/OpH5dfNbtMrja6ha5I2Wfrk/553+tLBKEq2yUcle1oIwsAAAAAAAAAAFCxijnZ7l29n0dI+ryksUolxyUlPS7pKUmrJO2SVCtpjKTDJZ0maVLvtVbSrZLulNQgaZSkQ3rXzNDApLtvG2MWWWvvL+hXBQAIZ+JZ2dcUopXjpPMkeaqHrb/Tf31vVbU4KttFaiNbTCZ5vnfdrfntba2/4uGYY/PbP92BHw5Otpv7sfjOGCDL9zvfx66cJbvi26uqQepp86+Z/c74zis2rudZ+6bhPb/PpHNjOabT2eq7/zU6Mzm6T5cjmRoAAAAAAAAAAADlL0sJleFjrb1R0jxJH1Iq0U6SfipplrX2FGvtx62137LW/sxae7219svW2sskTZP0RkmvKJVE92ZJM6y1P7LWfs1a+w5r7SxJr5P0cu8aq1Ti4bVD+kUCANzqx2df0zQr/nNHHS4ddnVu1x5//b6b7sp2A5PtEr5ku6htZItF/QR30tvOhamEuVxYKz39Yenln7vXnHlXbnsHmfKaVFvedDOukPZ7Y3xnpMv2uGy4pzDnlgObpQrk1qfD75Ut0e7gT0q1o8PvV2oO+XTweOsKac/LhT3bWumZq/xrprw2lqPCVLarc1a2o40sAAAAAAAAAABApSraZDtjTKOk2yXNldQt6S3W2g9Ya1f7rrPWJq21f5J0hKRHlPoarzbGXJmx7g5Jx0h6Nm34CGNMPOUyAACFV9UQ/57GSEd8QZrznujXjjl+301nIkdmG1nPr+Kc2sgWC1/1t03/zG3PHc9Ly653zzfvH679cFgmIb3qx9J5j0vHfV869xHppF9JiUIVBi7h7/ewy5Ko+PRHwm2T7HHPmUTquXD0/4UPqxTVT3DPPfe5wp69c6G01/NP/REHSomqWI5yVadLf41OT7xL53p9BwAAAAAAAAAAQPkr2mQ7SddIOlipd0+/bq39XZSLrbWtki6RtE2p6nXfN8aMz1izW9KblErm63uX9rw84wYAxCVbK9nqpsKdPe6U6NdUN++72eVqUZjZRta4K9slS7WNrDTgsRhkzZ9z23P5j/3zYaohRmUS0rgTpAM/JI0/JbZEn0BVIZ7Pe9cW7vySluVnZevjUtfu7NvsWuSeO+eR1HOh3Pl+djfcW9izs+0//tTYjnIlzKW/RtcZR2U7S2U7AAAAAAAAAACASlWUyXbGmGpJ7+i92yHp67nsY63dIqnvnfkGSVcErHlF0m3Svj5+OWRXAAAK4rDP++cbJhfu7FySOkYcsO+mM9kuo42s8baRLeFKZ+NOds/tXprbnst+6J+PMRFnWDRMlEYe6l/TuX1oYik12drISlLXrvzWjMryvSkX4z3/FO7YXNizsz2/fRUzox4VqrJdcLIdle0AAAAAAAAAAAAqV1Em20k6VdI4pcqUPNlbpS5Xd6fdfoNjzV29n42kaXmcBQCIky/p44QbUi1fC6XlAGn2leHX108cUPWsKxmcbJfZltDfRraEK9s1THTPrfu7tHNx+L16OqS7Tsq+7oB/D79nsTriGv/8poeGJo6SE+JnZd0/sq/p9vyTs3pE+HBKWeM0aeRh7vn5/ykVqurm+rvcc6OOkEYdHttRYV6j6xxtZDuSVLYDAAAAAAAAAACoVMWabDc97fa6PPdan3Z7hmNNes+w0XmeBwCIS6JauqxDmvGWgeNn3CHNeXfhzz/hhvBrD7pqwF1X1aRBle08CYMlnWwnSafc4p77+8Hh91n45VQb0GyaZ4Xfs1jtd4l0jieh7ukPSz3BSUIVLUzy15Pvy95Kdsl3g8erGgqb3FtsfK99S74trfxt/Gd2t0pbn3TPv2Z+rN+DUJXtTHCynetaAAAAAAAAAAAAlL9iTbZL7wvYlOdejb2fjaRJjjXpPauC31UDAAyPqlrplJulK2z/x5QLhuZsE+HXZEa7QVfVpMxku4Svsl2Y1pjFbMT+/vk9K8Lts/R7eYdSUia8WkrUuOe3PDp0sZSMkD8rG+71z29/Nni8KridaNmqbvTPr/lz/GduuN89N+OKVPJ1jFytYNNfo91tZKlsBwAAAAAAAAAAUKmKNdluV9rtQ/Lc69C023sca9LfSWvL8zwAQCUafeSAu502bBvZMq5s13KQf37jA+H26dqZfU1TGVS1SzfqSPfc3nyL/pahsG1N27I8dnVjg8c7twePl6sR+0tVnoS7bI9jLtrWuudGe34ecuSsbJfIXtmuw5GoBwAAAAAAAAAAgPJXrMl2a3o/G0mzjTEn5LHX23s/27R9M01KW7M5j7MAAOXm2JBV1cafMuBumBaFkr+NbLLUk+2qmyRPMqG2P+O/fvdy6eaQbSOP/0HosErCAR90z/XwdwGDhfxZefHr/vkdC4LHJ5wRKZqSV1Uvzb7SPb/5kfAJjmH5ntfTL433LLkr26Un29W5KttZKtsBAAAAAAAAAABUqmJNtntIUpdS75waSdcbY7L0sxrMGHOZpPPU/w7sPY6lx6TdXhH1HABAGZv7YX+FJ0k65+FBbT+dbWQTA9vImnJuIytJx1zrnlv6fWmvo5pV1x7prweEO+PEG4eutfBQmfMe99ya24cujlIR9mdl72rppZ8Hzy35vvu62e+KHlOpO/Y6qXa0e37JdfGet+Ca4PGqeql5ZrxnyVN9NC0hOrMSaZ+OZIds3MmGAAAAAAAAAAAAKAlFmWxnrd0l6W9KJdpZSUdJussYs1/YPYwx75V0o/oT9qykmxzLz0+7/VwuMQMAytiRX/bP148fNNTlqGxXYzKT7cq4jawkmWr//Nq/BI9vcOXHB5j9jvBrS8mYY4PHozw2FSPCz8orNwaPz/+I+5qq4ApnZS1RJR39Dff8y46kxVx17QgeH5tPgWvPcWEq25ng77tVUt22qyBxAQAAAAAAAAAAoLgVZbJdr/+SlN6j6RRJLxpjfmiMOcsY05J5gTHmQGPMB4wxT0n6saRa9Sfa3WCtHdQbrDeB7wz1v0v7cLxfBgCg5E272D/fNGvQUKejsl1mpSR/sl0ZVLab9gb//M7FweO7HOOZjvxqtHhKye7lweMjDxvaOEpBlCpjYZ9b6ZpmRL+mHDTNdM/tWhRfK1nfPl274zljwHE2r8p2krtVOAAAAAAAAAAAAMpblnIzw8da+4ox5t2Sfq1UUqCV1CTp/b0fMsbskrRbqaS6kb2fJe3LXOiraveEpP90HPVp9ScdtsvdahYAUKl8LQyb95eqagcNh65sZ4yMTGAVu7JoU9iUpShtx5aB9/e8Ii3+VqrFbBjTLsotrlIw6nBp8yODx7t2DX0sRS9CYmr7pujbjz0++jXlYPxp7rlkl9T6itQ8O/9zHFXmJEmTz3fPebT17NXd2/6gl9sWa2LtNJ05+nVqrhqhu7f9SUv2Pu9MZq5Jr2yXcFc0vHbVZ1RlqjWqeqyOaj5RJ488Ry+0ztfjux7Qxs7+9tjVpkaz6ufqnDEXaUzN4CqoAAAAAAAAAAAAKC1Fm2wnSdbaW4wxSUk/kdSi/upzfcl0I3s/Bl2atu4uSZdba1sdx/xa0u96b+/xrAMAVLI3rJZuD0gcu+DZwOVtyb2B47VmcGKeM9muHNrIStIb1ki3TwueW3mzdNIvpUSN1Lpauuc0qW1t8NpMp/1BGnlwbGEWndlXBifb7VmeqgRm3FURK07UxNR1d0pTXtN//5Wb/OtNMReDLqCqWum0P0oPXxI8f8cRqZ/v2lH5nbPuDvfcjEsjb9eV7NR1a67WyvZlkqRlbS9o3s57ZHv/55P+Gl3rSbbb0LlGkrS2Y4VeaJ2vu7f9QVu6Ngbuv7J9mZ7f84Q+OePrGlk9JvLXAwAAAAAAAAAAgOJR9O8cWmt/J+kwpRLiejSwal3mRx8jaYWk91prL7DW7vTs/7i19qHej/kF+BIAAOWgcZp0hZUufFk6/a/SG7ek7tc0D1ra6anSVBPQltA4fh0ny6GNrCQ1TpUO+A/3fF9C2YqbwiXaJWqlt/RI+zkSgMpFVYN7bteSoYujJERMtlv4pYH3F/1ffKGUG191u+5Wae3f8j/jBU876KrGyNst2fv8vkS7PkklQyUwp7eOrTPuNrKZNndt8O6/rXuz5u8KSJ4FAAAAAAAAAABASSn6ZDtJstausdZeLmmGpI9JulXSEklblUrA2ytpraRHJV0r6QJJ+1trfz48EQMAylbzLGnq66S6sc4l6S0EM9UHVEoyjgplZVPZTpLqxrnntjyR+rz1yXB7Hf2Nyqg05nvMtj4xdHGUhIg/K1vm9d/ubpN2LHCvbSnj6olh1I6SqtwV3mJ5Lrau9JwfvRLcHVt/l32RQ1NixL7bdYn6Qa2/87EiIwEQAAAAAAAAAAAApaeo28hmstaul/S93g8AAIqSr7Ld5NoZg8aMHMl2tkwq20nS5NdIC68JnnvuM1L7JmnN7eH2mnF5fHEVM19FsZ7gNsUVK5+fle49/vnjr89973KQqE79/Lp+Pjt35L735sekVb+TOja719R7kk4dVrQvzSmc6fX7q7m6Zd/9hKnSQY1HakHrUzntl6kj2R7LPgAAAAAAAAAAABg+FVAWBgCAodVp3cl21WZwnnvC8eu4rCrbjTvRP7/k2+H2OfEXUv2E/OMpBdWeNrLr/jF0cZSEHH5Wts2Xkj3SP452r6kbK004PfewysWx33HPrbhJ6skhiWzxt6V7TpaWePY++pvR981RS9UovWPSRwaNXzrxfRpfMymWM3y/GwAAAAAAAAAAAFAaSqqyHQAApcBV2a4+0RDYMtYYE5grVFbJdsZI0y6W1vwp9z0mny/NvjK2kErC2BOC23Su/evQx1LMbA4/K/M/Lh1xjdTmbvus1zybeu5WuqYZ0ux3Sy//PHh+zV+kGZeG369zu/TsJ7OvG3Nc+D1zlFCV3j/1v3VAw2FqqGocND+2ZoL+Z+Z3tbztRW3oXCNJunfb7drRvTXyWb6qpwAAAAAAAAAAACgNJNsBABAzV/WiWlMXOO5qI5sspzayklTTkn2NT8sh8cRRSkyVe65ja6ryGiTl8LOy+RFpdZbWxTUjcgunHNVPdM9tvC9ast2K30q2J/u6qvrwe+bo/LFv1BHNr/KuqU3U6ZCmo3VIU6oK4oI9T+aUbNdFZTsAAAAAAAAAAICSV3JtZI0xNcaYU4wx7zDGfNwY87/GmM8Pd1wAAPRxVS+qSbiS7SqgjawkTXh1ftdPrMB2niMPds917fRfm+yRtj0jrf1bqpJYOculsp0kLb3OP187Krd9y5Hv57czy3Mx08YHwq1rOTDavjlwJUH7NFeNzOmszmRnTtcBAAAAAAAAAACgeJRMZTtjzKmS/kvSeZKC3hW7JuCa10jqK7OxzVr7X4WLEACAlMiV7RxtKssu2W76m6XlP5W2Ph792knnptrIVpoDPyq9dEPwnC/BqW2j9MC50o4FqfsmIb3qJ9Kc98QfY1Eos5+VYjTxLPfcqlsl+9twLXc7t0urfx/uTFMTbl0eah1J0D7NVblV6XT9bgAAAAAAAAAAAEDpKPrKdsaYJmPMbyQ9JOn1kuolmYwPlxckfoLv6gAAIABJREFUvV3SOyVdZYw5ssDhAgCgLkf1IldSh7OyXdm1kR0hnXV39OsO/Ih0+l+GpKVk0Wme6Z5b+CX33FMf7E+0kySblJ54r7RzcWyhFZVy+1kpRlW10tyr3PNr/xZun2c+Ef7MMMl7eaoxtZGvGZFzZTuS7QAAAAAAAAAAAEpdUSfbGWNaJM2T/j97dx4na17Xh/7zVG9nnX3fGBgGGIYd2RQVQQORmGjQRG80JuqNV3LRJGoSREWNJt5cgyt6oy+D0ShGRWMStgEuhEVWQZB1gGGYfeYwyzlzzszpperJH30O02dO/Z6up6q6uqr7/X69zut017P9urrrqZlXf87nm29P/1BdY41JXdc3J3nDhmO/fawLBIA+ys12/UMdnUJufMc12yXrgbtHfne7Yx7zst0ZtEuSub3lbXe/v//jvdXk9jf133bb60df01Taga+VadQ0VnfQn61BQ3lJmv9NzXgM02y3f+7gUNfSbAcAAAAAADD7pn2M7J8keWIe+g3qSpI/SvL2JL0kvzPAOf4s6414SfINSV4+3iUCwKlK7UXlZrtS2G6HtnU99oeSL/znwfZdOKu53W2n6zSM0SwFEFePJN3j/bfd8ZbkmoZmsd5qcvzOwdc3LVaPbPcKdodznlbedvyOzY9fOZwsH2pxwQmE7QrjvZscnB+u2W6tXk2v7qZTzQ11PAAAAAAAANtvasN2VVV9a5Kvz0NBu/cm+ft1Xd9yYvsjBjzVyWqXKsmTq6o6UNf10bEuFgA2KDfbFcJ2Vf+i2V69Q9u6zn5Kcv5XJ4fetfm+j3lpc+BsN7jga5K73nn640dv6L//J/5t+VzLd/d/vLucfPAHkpv+KFk71n6N7A4XvqC87ZY/T+54W3JRn33u+Ujy/u9J7v2rdtcr3BvHaZhmuwNzZwx9vdV6NUvCdgAAAAAAADNrmsfI/tiGjz+e5BtOBu3aqOv6jiR3nfi0k+SaMawNAIpKzXYLrZvtdmjYrqqS571hveGuZPGc5GmvSp70s5Nb17R6zMvK29YeOPXzG343+fSryvvf86H+j3/wpckNrxG0o9n83uTql5a3v+PFyZHrT31s+e7kbc9vH7RLMplmu/7jvZscmBuu2S4pvz8AAAAAAAAwG6ay2a6qqouTPGXDQy+r6/qB0v4D+HSSC058fHWSD45wLgBo1LrZbreNkU2ShQPJ039p/Q/N5vaWt93xtuSyb3ro8y/+webnO3pDcuBRD33eXUlu+uPh18fusv+K8rbecnLz65JrX/7QY7e9MVm9b7hrVe3Ddt2622r/STfbld4fAAAAAAAAmA3T2mz3nBN/10luruu6z+y0Vu7Z8PG5I54LABqVmotKoY7SGNkd22xHOweuKm87+rlTP7/9zZuf78bXnvr58l3J2v3t18Xu1PTzmCT3P+xn8iM/PMLF2oft2jbHLRRC0E32zx1sfcxJmu0AAAAAAABm27SG7S7a8PFHx3C+oxs+PjCG8wFA0WrLZrtOqdmuFrYjyRmPLW/78L9I2v6cHL/z1M8fPop2pyiEWBnRxX8jWTy7vP2G//TQz9QX/kty/K4RLjZE2K4+3mr/YZrt5qq57O8MF7grvT8AAAAAAAAwG6b1t5Bnbvj4yBjOtzFg1+43cADQ0kpvpe/ji53Fvo9XhbfjHT1GlsFVVXLG48rb3/Hi9b+v//XBznf9r66Pjj3p8789/Nqm1d5Lk+f83navYmdaOCN5wdub9/mj/es/j+/9rtGuNcQY2bbNcaUQ9GYOzA83SlazHQAAAAAAwGyb3+4FFNy74eMzi3sN7pINH99T3AsAxmClZbNdVQiU9IyR5aT9j0yOfLr/ttvfmKw9mHz6VYOf79C7kotesP7xp/59eb+/+dFkft/g550GncVk3+XrQa2/+Af997ns7yTP+I31VsD/cXXS3aHtflvl7Ccn1/xo8qn/t7zPh/7pGC7UPmy33HaMbCEEvZkDc2fkztza+riVun8YGwAAAAAAgNkwrWG7Qxs+vnaUE1VVtZTkKRseumWU8wHAZkrNRaVxhVVxjKxmO05YONC8/eY/SY5+fvDz3fCa9bDdZiNoz3rCzh3HuvfiEx8ItQ5lz4Vbf41hmu3ajpGthg/bDUOzHQAAAAAAwGyb1t+efvjE31WSK6uqapidtqmXJDn5W7S1JO8bZWEAsJlSs91CqdmuOEZWCIgTLn5R8/YHbm53vht/PznymaQp+LPvsp0btGN0l3zjeM6zdO54znNCmzDbfLWQTjU31HWGDtsV3h8AAAAAAACYDVP5G9S6rr+Q5HMbHnr5MOc50Wr3ipOnTfLBuq6Pjbg8AGg0tmY7YTtOeuQ/bN5+0+van/NNz0iuf3V5+7N+u/052T3OvCZ5wk+Odo4rvys5/7njWc8JbcJspdHegzgwd+ZQx2m2AwAAAAAAmG1TGbY74TUn/q6SfGdVVd/d5uCqqjpJfivJNRsebviNMgCMx2oh7FEK23UKoxKNkeXLOvPN2+/9cPP2ftbuTz7yI+Xt+x/R/pzsLtf88GjHP+EVm+/T0nJv8DGypXvyIDTbAQAAAAAA7E7THLb75SR3Zb2Rrkry21VV/duqqvZtdmBVVY9Pcl2Sf3Di+DrrTXl/uHXLBYCkW3ezVq/13bZkjCyzZGG4MBG7yNze0Y5fPHs869igTXPcaM12Q4btNNsBAAAAAADMtKkN29V1/UCS707Sy3pYrpPkXyW5vaqq1yZ56cb9q6r6+1VV/URVVe9K8rEkX5f1kF6VZDnJd9R1LbUAwJZarVeK29qOke0J27HRec+Z7PX2XjzZ622b/q8/BtBZGP7Ys5+a7LlgfGs5Yblu02y3OPR1Ds4PN0a21HwKAAAAAADAbJjasF2S1HX95qyH6k4G7pLkYJK/l2Tj3LMqyR8k+akkX5lTv661JN9b1/UQ89UAoJ2m1qKFUrNdVWi2M0aWjZ75m5O71tUv3XwfSJLnvbH9MXN7k6f+wvjXknbNcaV78iA02wEAAAAAAOxOUx22S5K6rn8ryQuzPlK2Sk6p+ak3/Kke9niV5EtJXljX9Wsns1oAdrumIEXbZjtjZDnFWU9I/uZfTeZal79kMtdh9l3youRFLf5NyxN/OnnRXyYXPX9LltNqjGzhnjyI4cN25fZTAAAAAAAApt/Uh+2SpK7r/z/Jo5P8yyQ356HxsBv/ZMPHdyf5mSRX1XX99okvGIBda6VhROBiqdmuGLbTbMfDnPHYyVxnft9krjMVhFpHds5TB9/32lckZ16zZUtZaTFGdqEafozs0GE7Y2QBAAAAAABm2vx2L2BQdV0fS/ILSX6hqqrHJHluksuTnJtkMestdncm+YskH67r2m9OAZi4YZrtOqUxskJAPNzcnslc58wnTOY67CAPL6Au7ba1/9ZnuTd42G6UZrvFzlKWqj1ZbhHuS4yRBQAAAAAAmHUzE7bbqK7r65Ncv93rAICHa2otKrUoFZvt5MbZDnN7k4UD270KZs1X/2nyrm/ZfL+q//1uXNqMaS21jQ7qwPwZWV5tGbbTbAcAAAAAADDTZmKMLADMitVCa9FCtVhssCuF7XrGyNLPgau29vzP+P+29vzTQJB1/C7/5uSSb9zuVbQaIztKs12SHJg7s/Uxmu0AAAAAAABmm7AdAIxRqbWoqUGpMkaWNhbP3trzz+/d2vNPna1tWttVrvmXQxw03ue/1RjZUZvt5g62PmZVsx0AAAAAAMBME7YDgDEqtRYtdPqPkE2MkaWlJ75yuOMKoc7THHzMcOeHM69NqrltXUKb5jjNdgAAAAAAALQ1v90LaFKtV/08IcmTk1yR5Pwke5PUSR5McleSm5J8NMknaqkEALbZSr3S9/HGZrtS2M4YWfq58PnDHbfnwmTfFcnd7y/vc/Dq5KwnDXd+2HNecvnfTW76421bQqldtJ/Rm+3OaH1Mm/UBAAAAAAAwfaYybFdV1dck+f4kfzPJoJUR91ZV9fokv1XX9bu3bHEA0KDUWtTUoNQpFM0aI0tf8/uSv/WZ5H8+tt1xdZ08/7rkuuckhz95+vYDj06+/l1JZawqI3j2a1qG7cZ7n2vTHNfUODqIg0M12/UPZAMAAAAAADAbpipsV1XV45O8OsnXnHyoxeHnJPnOJN9ZVdXbk7y0ruvrx7xEAGhUai1qbLYrhJt6tWY7Cs4YctTrwhnJiz+RdFeS3vH1x+o66Swm83vHt76ZItQ6VvP7k0u+MbntDdty+eX6+MD7jtpst3/uYOtjNNsBAAAAAADMtv5VOtugqqq/l+QDWQ/aVSf+1H3+nNRv28njnp/kL6uqesmk1g8AyXDNdpVmOybhmh956OO5xfXg3cIZyeKZOzhoV/h3G4/8zskug4lZ6bUI243abDc/TLOdsB0AAAAAAMAsm4qwXVVV35bkD5Lsy6khu5PhuSQ5lOT6JO/Leijvs0m+tGGfjcclyf4kr62q6lsm81UAQLJSaFVqDtv1DwQJ29HojMcNvm81nzzi27duLdNqY8DwpPkDySV/a8MDxuZur/E+/23GtC6M2Gx3YO6M1sf00k23XhvpugAAAAAAAGyfbQ/bVVX12CSvObGWjSG7I0l+KcmLk5xX1/VFdV1fU9f1V9Z1/ey6rh9X1/WFSc5P8k1JfiXJ/Tk1dDef5D9XVXX1pL8uAHanYrPdEGNk6xgjS4MXfnCw/TpLyXP/a7Lv0q1dzzR64k+vjzQ9aeGM5Hmv38FNfrtbt15LN4MH2ZpC0IM4MNe+2S7RbgcAAAAAADDL5rd7AUl+LeuNdidDdr0kP5PkP9R1fXSzg+u6vjvJ65O8vqqqn0jyI0lekYdqMg4k+dUkLxr/0gHgVKVWpYWGcYXFMbK1ZjsaLBxIrvyu5MbfK+/zvDckF3xNMr9/cuuaJvN718N1R29IHrglOfdZydxoASsGsE33ruUWI2ST5hD0IA7MHRzquJV6OXuzS1+TAAAAAAAAM25bm+2qqvqqJC/IQ0G7+5O8sK7rnx4kaPdwdV3fX9f1K7MerDuWh0bKfkNVVV85pmUDQNFK3b7ZrmOMLMNaPKu8rbOYXPzC3Ru02+jAo9ZDh/2Cdpd98+TXs9Nd+LzB9z3/uWO7bNvGuFGb7fZ2hnttabYDAAAAAACYXds9RvalJ/4+Ofr1++u6ftuoJ63r+q1Jvn/DeZPkB0Y9LwBsZrU0RrYh1FEaI9szRpbNXPj8hm0vSKrt/k+9GXDND/d//En/ZrLr2Eke9T1JvxDxVd/bZ99/3H/fR373QJc6unYkHzry7rz1nv+Wd9z3hlbLHLXZrnTv3szb7v3vuX35Zu2lAAAAAAAAM2jbfgNbVdVSkm/KehiuTvK6uq7/cFznr+v6tUlel/Xf3lVJ/nZVVeUZfgAwBsM02xkjy9AufXFy+bee/vjS+clTfn7y65lFZz81eewPnfrYOV+RPOb/3p717AR7zkue9h9OfezAo5In/OTp+y6dkzz9l059bP+VyRN/atPLfP7BT+cnbvgn+U+3/0L+9NDv5Lp7XtdqmaM22w3rnfe9Mf/mxpflv3/p993nAQAAAAAAZsz8Nl772UkOnPi4TvKqLbjGf0jykhMfH0jynCT/awuuAwBJyuMBG5vtimNkNduxic5C8lWvTW7/R8mhdyfdB5MzH59c8uJk36XbvbrZUFXJ034xuezvJHe9Kznjcckl35gsHNj8WMoe98+T874qufOtyd7L1oOhS+f23/exP5ic95zkjrckey9d//ndc17j6eu6zn+67ReyXB8feomjNtuN6s33/EmesP/puWrfNdu6DgAAAAAAAAa3nWG755z4u07yqbqu3zfuC9R1/b6qqj6Z5PEbrilsB8CWKTXbLTSUqxab7aLxiAF05teDTJe+eLtXMruqKrnw69b/MD7nPXP9zyDOfcb6nwEdWr0j9659aciFrRtHs12Vqu+9+uz583Kse3/xPeGkzzzwMWE7AAAAAACAGbJtY2STXLvh4/ds4XXeXbgmAIxdt17r+/h8tVA8pqoKzXbGCwL09UD36EjHX7p05VjCdt92wff1ffyF57wkj9z7mE2Pf6B3bOQ1AAAAAAAAMDnbGba7asPH79/C62w891XFvQBgDLp1t+/jc9Vc8ZiOMbIAE1Olyt845++O5VxfcfCrc/7CRac8dsHCJXnawa/K15/zLZnb1iJxAAAAAAAAxm07f/tz4YaPv7iF19l47ouKewHAGJSa7eaq8ltuaYxszxhZgILy/fGypStTpZOLl67IZUtX5q6V23LT8g2p614uXLw0zzrjebn2wNPHsooD82fkh6/4+bzlnj/NLctfyBV7Hp2vO/ubcmD+jFw7/7T84OU/nfcefmved+Ttrb8OAAAAAAAAps92hu3O3fDxfVt4nZPnrpKcs4XXAYB0U2i2S7nZzhhZgHaa7o4/csX/M5YRsYM6Y/6svOSC7+m77ep91+bqfdfmgd6xfOzoB07bXgvbAQAAAAAAzJTtHCO78TdgWxm2O7zh4z1beB0AGLLZzhhZgHZ2RkhNphoAAAAAAGC2TEvYbnULr7Mx9bCwhdcBgHTrQrNd1dBsV3g71ngE0N+s3R9LoeqdEhoEAAAAAADYLbYzbAcAO045bNfQbFcaI6vZDqCvpohaOdi2nUr3eWE7AAAAAACAWSJsBwBjUtd1uimMkU252a5TarYzXxCgv8b74/SF7aZvRQAAAAAAAAxD2A4AxqTX0ETXPEa2fwyjp/EIoLVCWei2ms62PQAAAAAAANoqz7SbjJMpgmdXVXXlFl3joi06LwCcolv3b7VLjJEFGKem8auzFGwzRhYAAAAAAGC2bHfYLlmfqvTaLb5GHdObANhi3bpb3NbcbGeMLEA7szVGtrQmYTsAAAAAAIDZMg1hu0kE4fwWC4At10252a7T8JZbamESwgDob+aidqVFuc0DAAAAAADMlGkI2yV+zQTADjB8s50xsgBtzF4YWagaAAAAAABgJ9jOsN1NEbIDYAfp1uVmu7mq/JbbqYyRBWhntrrtSqFq/zsEAAAAAAAwW7YtbFfX9ZXbdW0A2Aq9MTfb9TTbAfTVHLWbnbCdZjsAAAAAAIDZ0r9KBwBorZumsF05314V3o6FMADaq6rpC9sBAAAAAACwMwjbAcCYNI6RTUOzXSEYImwHUGDMNgAAAAAAANtA2A4AxqQ75jGydW2MLEA/pTDyNI6QTYyRBQAAAAAA2CmE7QBgTBqb7RrGyHaMkQUYk+kM25XW5T4PAAAAAAAwW4TtAGBM1hrDdsbIAoxLudluOhVu83GbBwAAAAAAmC3CdgAwJt00jJFNudmuNF6wZ4wsQF+zF0YWqgYAAAAAANgJhO0AYExKY2Q7mSu21yVJZYwswJhMZ7ddKVQNAAAAAADAbBG2A4Ax6db9m+2aRsgm5RCGsB1AO7MXanOfBwAAAAAAmCXCdgAwJqVmu7mqPEI2Saqq0GxnjCxAX6UwckOJ6LYqLUvUDgAAAAAAYLYI2wHAmPQyXLNdR7MdQDt16f44pWk793kAAAAAAIAdQdgOAMak2GyXTZrtiiEMzXYA/RSb7aY0bFdel7AdAAAAAADALBG2A4Ax6dbDNduVxsj2is1NALvbzN0dC1k7t3kAAAAAAIDZImwHAGMydNjOeEGAlmbr/qjZDgAAAAAAYGcQtgOAMSmOka2MkQWYhNkbIwsAAAAAAMAsEbYDgDHpptBsl+HGyGq2A+ivdH+ctVCb+zwAAAAAAMBsEbYDgDEZttmuU2q2q4UwAAAAAAAAAGBaCNsBwJh060KzXbVJs13h7dgYWYD+SmHkqprOZrvyuHChagAAAAAAgFkibAcAYzJss10pHNITwgDoqxxSm86wXWldwnYAAAAAAACzRdgOAMakm/7Ndp1s1mxXGiOr2Q6gjemN2pVWJmwHAAAAAAAwS4TtAGBMxj9GVggDoJ+Za7YrLKswDRcAAAAAAIApJWwHAGMy9BhZ4wUBdrRysx0AAAAAAACzRNgOAMZk2Ga7TmWMLEA7/cPIsxdqE6oGAAAAAACYJcJ2ADAm3RSa7bJZs50xsgBtlIfITmfYToMpAAAAAADAziBsBwBj0huy2a4UwugJYQAUFO6P05m1Kxr2Lr/aWx3rOgAAAAAAABhMc9UOADCwtbrQbFdt0mxX9c++H+0ezqeO/VWu2f+UkdcGsFP06l7+/NDv9d02a812Hz36vhxeuzdnzp890Hned/jtecPdf5i7Vw/lEXsene+86J/mkqVHjHOpAAAAAAAANNBsBwBj0i2G7YZrtkuS37j153Lb8hdHWhfATvKmu/84h1bvKGydzrBd07p+5eZXpq4377j7xNG/zO/e8cv50uqdqdPLjcevzy/e/ON5oHt0nAsFAAAAAACggbAdAIxJtzRGdpMi2aaw3Vq9mo/c/96R1gWwk7z/yDuK26Y2atewsNtXbsrNyzdseo4PHPlfpz12rHt/PnHsw6MsDQAAAAAAgBaE7QBgTLoZrtnu3IULGrfftXLb0GsC2El6dS+HVm8vbj9nk/vpdjlnfvT7/Afvf2ffx//bod8dak0AAAAAAAC0J2wHAGNSbLbbJGx36dKVOX/h4vJ5CyE+gN1mtV5p3P7UA8+Z0EraecKBp2e+WihuX6mXhz73se79Qx8LAAAAAABAO8J2ADAm3brUbFcOWCRJp+rkBy//qYbz9g/xAew2K71yKO2afU/J15/zzRNczeAuXLw033/py4vbm74uAAAAAAAApoewHQCMybDNdkly7sKFef7Zf7vVeQF2m6YGuO+48P9Kp5re/725dv/TcsWeR/fdNkrYrk499LEAAAAAAAC0M72/jQKAGdNLIWyXzcN2STmUV2rMA9htmkJpC52lCa5kOEtV/zWOMkYWAAAAAACAyRG2A4AxKY+RnR/o+Ln0369bCPEB7Dar9Upx22IhyDZNSoHAzZrt6lp7HQAAAAAAwDQQtgOAMRlljGzTfprtANY1hdIWO4sTXMlwFqv+a2wKESbJWr26FcsBAAAAAACgJWE7ABiTkZvtimE7zXYASXnc6lzmB77XbqfFIZvtmsbMVqlGWhMAAAAAAACDE7YDgDEpjXudy6DNdoUxsprtAJKUQ2kLM9Bql5RH3TaF6ZLNw3gAAAAAAABMhrAdAIzJyM12hVCeZjuAdauFUFopxDZttqLZDgAAAAAAgMkRtgOAMSmF4krjYU/fr9BsV2jMA9htVnorfR9fnJFmuwXNdgAAAAAAADNN2A4AxmSrwnY9Y2QBkpRDaTu/2a5/yBAAAAAAAIDJErYDgDHpZsQxsoVQnjGyAOtWi812MxK2K4QCS+Nxv7y9IYzX034KAAAAAAAwMcJ2ADAmpVBcJyOOkdVsB5Ck3GxXGs86bcrNds3Ndcu948Vta/VaekLZAAAAAAAAEyFsBwBjUgrFDdxsVwjldbUWASQpj1udnWa7xb6Pl0KEg283ZhYAAAAAAGAShO0AYExKzXal8bCn76fZDqBJKXRWCrFNm3Kz3SZhuk22N42ZBQAAAAAAYHyE7QBgDOq6Tq/QQDdws10hlFcK8QHsNqXQ2cLMNNsVwnYjN9sJ2wEAAAAAAEyCsB0AjEE35fa50njY0/YrNtsJ2wEkTc12sxG2K4UC1+rV9Bru9au95jGxK5tsBwAAAAAAYDyE7QBgDJoCcQM32xVCed2spa7rodYFsJOUQmel8azTpikUuFKXA3Oa7QAAAAAAAKaDsB0AjEG3bmi2K4yHbbNfL73WawLYaWa92a4pFNjUXlcanzvodgAAAAAAAMZD2A4AxqC52W60MbLr5y+H+QB2i1KobLGzOOGVDKe52a4cmNu02a53fOg1AQAAAAAAMDhhOwAYg24awnYZcIxsQyivKcwHsFusFkJnCzPSbLfQEApsaqfbtNnOGFkAAAAAAICJELYDgDEYxxjZTkMorxvNdgArhVGrTeNZp0lTs10pSJgM0mwnbAcAAAAAADAJwnYAMAbNY2Q12wGMQyl0tljNyBjZLWu26x9CBAAAAAAAYLyE7QBgDMbRbNcUyms6P8BusTrjzXZz1XxxtHhTYK6p9S7RbAcAAAAAADApwnYAMAaNzXYN42FP2a+x2U7YDqDcbDcbYbuk3G7XFJhb3rTZTtgOAAAAAABgEoTtAGAMemlqths0bNfUbGeMLLC79epeVgvtbwsz0myXlIOBTYG5TcfIarYDAAAAAACYCGE7ABiDxma7QcfIpqHZriHMB7AblIJ2SbJY9W+Lm0alkbdNgbnNxshuth0AAAAAAIDxELYDgDFoGvM6eLNd0xhZzXbA7tYURisF2KbRgmY7AAAAAACAmSVsBwBj0BSG6wz4dmuMLEBZUxitNJp1Gg3TbNf0tQ+yHQAAAAAAgPEQtgOAMeimfxhuLvOpqmqgc8w3hu2MkQV2t6Yw2sIMNduVwnZNo2BXeuURuuvbhe0AAAAAAAAmQdgOAMagFIZrGg37cJ00jJEthPkAdovVuhw4m6lmu9IY2UJgrluvpZvmwPVKw3MDAAAAAADA+AjbAcAYlMa8tgnbVVVVDNxptgN2u6b2tsXO4gRXMprSWkvtdZu12q3vo9kOAAAAAABgEoTtAGAMys125dGw/fcvhe002wG720phzOpc5lvfa7dTsdmu8PWVHm+7DwAAAAAAAKMTtgOAMSiNeZ1rGA3bd/9CYESzHbDbldrbFmao1S5JFjrtxsiuDtBaN8g+AAAAAAAAjE7YDgDGYKub7XqFMB/AbrFaaG8rNcVNK812AAAAAAAAs0vYDgDGoDTmtRSeK5mLZjuAflZ6K30fX5yxZrvFls12pcc3WtZsBwAAAAAAMBHCdgAwBqUwXGdMzXalMB/AblFqb5u1ZruFqn84sNTctzxAa50xsgAAAAAAAJMhbAcAY1AcI5uWzXbCdgB9rRab7WYrbLcVzXYr9XLquh5pXQAAAAAAAGwQFdyCAAAgAElEQVSuXd0OAHCKL63cmfceeVveePcf9d3eeoxsoQnv9+98df762AfzqD2Py3PP+hvZN3eg9Vp3sy88eH0+dP87c+fKbUmSSxavyDPP+NpctueRI597pbecdx++Ljc+eH0uXroiX3XmN2Tf3P6857635PMPfioXLV6W55z5gpy9cN7I14Ldqlf38r/ue0PfbQsz1mxXauI7tHpHfu2Wnznt8SNr9256zjp1fu2Wn05Vlf8t1TMOfnWedebXDb5QAAAAAAAATiNsBwBDunPl1vziTa/Ike59xX1K4bni/g1NeB87+oF87OgH8qH735l/dvnPCtwN6K+Pfii/eevPp5uH2gc/eezDedd9b8o/vewn8+h9jx/63Ku9lbz6lp/JZx/8xPoD9yfvPfzW7O3sz83LN3x5v784/Nb88yt+LucuXDD0tWA3+/07X517177Ud9tip/9Y1mlVarZbrVfyyWMfHvq8n3rgrxq3X7nn6qHPDQAAAAAAwDpjZAFgSO+49/WNQbtkfM12G92yfGM+fP97Wp13N3vD3f/1lKDdScv18bz5nteNdO5PPfBXDwXtTvjS6p2nBO2S5J61Q3n3fdeNdC3Yre5auS3vPfy24vZSU9y0mrX1AgAAAAAA8BBhOwAY0ucf/OSm++zp7Gt1zkHDeZ8b4Nqsj3j94vHPFrd/7oFPFLcN4o13//HA+775nj8Z6VqwW33+wU81bp+1ls99c/u3ewkAAAAAAAAMSdgOAIZ0vPfgpvs8dt8TW51z0LGzy73jrc67W630lhu3L9fHU9f10OdvCvIB47HZvfax+548oZWMxyP3PDZL1Z7tXgYAAAAAAABDELYDgCGt9FYatz967+Pz3LNe2OqcnQzWbLdZiIx1K/Xmz9NavTqBlQDDWm241z75wLPzlIPPmuBqRrfQWcx3XPQD6fhfMQAAAAAAgJkzWH0OAHCaUpDr4sXL83fO/648bt+Ts9hZanXOQcfIDhIiY7BQ4kq9nIUsTmA1wDCa7nffd8mPDnzfnCbPPONrc/nSo/LJYx/Jke69Ax/XSSdX7Hl0Llq8LJ9/8JM5tHrHwMc+au/jhlkqAAAAAAAAGwjbAcCQSkGul1zwPXn8/qcOdc5Bx8hqthvMIKHEld5y9s8dnMBqgGGU7nfX7n/aTAbtTrp46fJcvHT5SMcDAAAAAAAwWWYXAcAQuvVaeun23bZU7Rn6vIM32zWPsGXdoM12wPQqvUYXKo2UAAAAAAAATJawHQAMoSnE1XZ07EZzA5bOrmq2G8igzXaT0qt7E7sW7BSl1+go91oAAAAAAAAYhrAdAAyhKcQ1SgBkftAxstrYBjJYs93kWgLX6tWJXQt2itL9brEStgMAAAAAAGCyhO0AYAjLDSGuUUYbDjpGdrVnjOwgVgcIJU6yJXCSLXqwU2i2AwAAAAAAYFoI2wHAELZsjGyLZru6roe+zm6xMkAocZItgRoJob1SaHZBsx0AAAAAAAATJmwHAENoakwbZbRhZ8Bmuzq1kaQDGCTcNsm2udUJjqyFnaIUmtVsBwAAAAAAwKQJ2wHAEJoCWiONkc1gzXaJlrRBDBKkm2iznTGy0Fop3DxKsBkAAAAAAACGIWwHAEMoBbQWq6VUVTX0eecGbLZLBLcGMUiQbnWAUbP9dOu11sf4nkF7mu0AAAAAAACYFsJ2ADCEUmhq1PDHXKXZbpy2stmuFADaimvBblZ63YzSIgoAAAAAAADDELYDgCE0NduNQrPdeA0Sbhv2eRwmOOd7Bu1tVbgZAAAAAAAA2hK2A4AhlMIfC6M226VF2K4ebvzpbrK6hc12g5x7XNeC3awcbtZsBwAAAAAAwGQJ2wHAEErhj6WRm+0GHyM7TNhrt1keJGw3wWa7VQFJaKVXd7NWr/bdptkOAAAAAACASRO2A4AhbNVYw1ZjZLWkbWqgMbJDPo/DhPSMkYV2mho8Rx3bDQAAAAAAAG0J2wHAEMpjDSfXbCe4tblBnqPV3nBtc8OM8fU9g3aaGjw12wEAAAAAADBpwnYAMIRSaGph1Ga7aLYbp9UtbLYbZoyv7xm0o9kOAAAAAACAaSJsBwBD0Gw3GwZ5joZ9HocJzvmeQTtNr5mFzuIEVwIAAAAAAADCdgAwlNLo0cURwx9zVYtmO8GtTQ0SiFsdYhxsMtzzP+y1YLdqaqfUbAcAAAAAAMCkCdsBwBCKzXajjpFtE7YzknRTK4VQ5Kn7DNts1z44JyAJ7TS9Zka93wIAAAAAAEBbwnYAMIRSAMQY2ekySCBx2NCiZjvYeqVQaydzre6XAAAAAAAAMA7CdgAwhGLYbsSmpU4Gb7YT3NrcIIG44Zvt2h+njRDa2ap7LQAAAAAAAAxD2A4AhrBSH+/7uGa76dGt19JLd9P9Jtls53sG7RRHdo94rwUAAAAAAIBhCNsBwBBWev1b5RZGbFuaqwZvttOS1mzQYNuwAbjVYZrthO2glXKz3eKEVwIAAAAAAADCdgAwlK1qW5rXbDc2g4YRV+uV9Ope+/MP02wnIAmtlMZla7YDAAAAAABgOwjbAcAQSkGrpVGb7dIibCe41ahNGG6tXm1/fs12sOVKr5lRW0QBAAAAAABgGMJ2O1BVVT9VVVU9wp/f2e6vAWDabVWzXasxsoJbjdqE4YZqqdNsB1uufK81RhYAAAAAAIDJE7YDgJZ6dbfYhDZq29JcizGyq4JbjVZ6/cdP9t13mJa6wnjLJqWRmEB/pVDromY7AAAAAAAAtoGwHQC01BSymmyzneBWkzYBumFCcJNqw4PdbKtaRAEAAAAAAGAYg9fnMMu+I8n7Wux/dKsWArATrDYEpkZtW2rTbGckabM2wbZJjYRdrVfSq3vpVP69AwyidL8dtUUUAAAAAAAAhiFstzvcUdf1jdu9CICdYrkpbDdqs13aNNsJ2zVpM2Z3mOeyKXTZZK1e1coFA9JsBwAAAAAAwDRRqwIALTU1mo3abNdpM0ZWs12j5d7xgfcd5rlsGifceJyQJAysNC571HstAAAAAAAADEPYDgBaagpLTXKM7Fq9ml7dHel6O9lWj5EdttlOSBIGV3q9LFSLE14JAAAAAAAACNsBQGtNYalRAyBzLZrt1tcyXLvabtDmuRmu2W640Nyq7xkMbFWzHQAAAAAAAFNE2A4AWio1ms1X863Dcg83l8Gb7ZrWQrvnpm2zXV3XQ4+DNUYWBlcKtS5WwnYAAAAAAABMnrAdALRUHms4evijfbOd4FZJm+em7fPYzVp66bVd0vq1hO1gYKXXi2Y7AAAAAAAAtkO7+hxm1fdXVfXjSa5Jcm6S1SR3J/likncneVNd1+/axvUBzJRS+GOps2fkc89V7d6aP3z/e3PW/DlJkipVLll6RC5evDxVVQ10/JdW7sgXj38uvfRy/sJFuWLPVemM2M43Le7vHh5439KoypLl3vG2y/myjx/7UO5ZO/Tlz3fa8z5r7lk9lBuPfzbdei3nzJ+fK/de3fp1yPj06m5uOv75HFq9I0lyrHt/3/0WRxzZDQAAAAAAAMPwm8Td4dsf9vlSkgNJHpHka5L8WFVVH0ry8rqu3zrpxQHMmpW6fzBrHGMNOy1LZ//s0O+c9tij916bl17249nT2Vs8rluv5Xdv/5V88P53nvL4BQuX5Acv/+mcs3B+q3VMm08f+2jee/htA+/fptnuge7R/Lsb/8Uwy0qSvPme15322IWLl+UHL/upnL1w3tDnpZ1e3c0f3vkf8+7D153y+Nnz5+WHLv+ZXLB4yTatbPe6Z/VQfuXmV+au1ds23VezHQAAAAAAANvBGFlO+ook11VV9XPVoHVILVRVdUFVVde2+ZPkqnGvA2AcymMNR29aGsct+HMPfiL/7dDvNu7zzvvedFrQLknuWr0tv3fHr468hu200lvOf7z137U+ZlCvu+s1pzTTjcOdK7fkv9zxa2M9J83ed+TtpwXtkuTetS/lt2/7hW1YEf/ljl8bKGiXjCfcDAAAAAAAAG1pttvZbk3yhiQfSPKpJPck6WV9lOzTkvytJC/csH+V5MeyHsJ8+ZjX8tIkrxzzOQG2RakFbWGKwh+fPPbhxu1/ffSDxW2ffeATOd57sLEZb5p99oGPZ7luN+Z1tdBW2M/Hj32o7ZIGcv0DH89y7/hYxhGzub8+Wv4+3rx8Qw6v3ZMzT4xoZust947n+gc+PvD+C2MINwMAAAAAAEBbwnY70weyHqJ7S13XdWGfv0jya1VVfUWSP0hy9YZt/7qqqvfVdf3nW7xOgJnUrdf6Pj5Xjedt9aq91+TzD35qpHMc7R5p3H5k7b7itl66Oda9f2bDdoe797Y+ZtBmu17dzf3dw63PP4hu1nKse7+w3YQcWWv+OTmydp+w3QQd696fXroD7dtJJ5cuXbm1CwIAAAAAAIA+jJHdgeq6fkNd19c1BO027vuhJM9Ocv3DNv18VVVzW7JAgBnXq3t9H5+rxvO2+rVnvThVRhsnu9lbwGqhne+kNmNVp81yr12rXVJuKzx9v8Eb8IYxy8/7rNn0NbDF32tO1eZn/5lnPC/75w5u4WoAAAAAAACgP812pK7re6qq+o4kH0q+nO54XJKvS/LWMV3m15P8cctjrkqiXQ+YOr30D9tVY8qwf8UZz81c1cm777su93cP5/H7n5oXn/sd+djR9+c9h9+S25Zv+vK+q/VKHuwda32NzYItmwWRplnT1/bUA8/JR46+t9UxG6027HfuwoW5cPHS3Hr8C6mTnLtwQfbN7U+VTm5evmFDALLOkW7/ZsFBQ3+MbqXXHKZr+l4zfk0/+wfnzkyVTs6cPztPOvDMvOjcb5vgygAAAAAAAOAhwnYkSeq6/nBVVddlffzsSS/KmMJ2dV3fleSuNsdU1WitTgBbpVf3H3XYGWMh6FMPfmWeevArT3ns6Wc8N08/47mnPPbXRz+Y37j151qff7NQ1yw3rK3U/Zvtrt57bS5YvLRwzKDNduX9fuiyn8l5ixdueo5uvZaXXf+t/c8/RCsfw9n0NSD4OFFN95x/e9Vvj21MNwAAAAAAAIzCGFk2etPDPn/StqwCYMqVmu062/K22j+YXKd5jOxmrV6zPEKzFNpZ7OzJYmex1TGn71d+XhY7SwOdY66az1zh3zssC3hNzGbf81kOnM6iUrhxLvOCdgAAAAAAAEwNYTs2uvFhn5+/HYsAmHa9uhC2q6bnbbUpbNet19LNWuPxsxw0Wi6sfamzlMWqfyBu0LG5TfsNGrZr2neWn/dZo9luupRDsv0DsgAAAAAAALAdpicVwDR48GGf792WVQBMuXqKmu2GGbg9SKBrloNGpTGyi9VSFooht8Ga/Jqeu4Vq8FDQUmdP4fzGyE5Cr+5mrV5t3EfwcbJK95xSQBYAAAAAAAC2g7AdG533sM+/tC2rAJhy3brb9/HtaLarhhgjO0iQbnXA8Nk0KjXbLXb2FIM7g4YLS+N156v5zFVzgy0w5QCRMbKTMciYZGG7ySo32wnbAQAAAAAAMD2E7djoWQ/7/LZtWQXAlCs32w0ethqbqtRt1xC22+nNdoV2uMVqqRjcGTRcWHruFlq2b5XXMbvP+ywZ5Hme5dfALCo9321fWwAAAAAAALCVhO1IklRVtSfJ333Yw+/YhqUATL1eXQjbTVOzXTlrN1CIaJZbvUpf31JnTxYLo14Hb7YrjbocfITsybX0s2yM7ETs9NfALNJsBwAAAAAAwCwQtuOkf5Xk0g2fd5O8fpvWAjDVuimMkZ2it9XGMbIDtLjNcqtXObSzp9woV68UQ5SDnbtdIGhhxNAfoxnkNbA6wKhZxme1FGQVtgMAAAAAAGCKTE8qgLGoquq7qqq6sOUx/2eSVz7s4d+p6/qL41sZwM5RF5vtJj9GttRs1zhGdoe3epXa4ZaqpSw2jKQcJFw1rlGXmu22105/DcyiYpDVGFkAAAAAAACmiLDdzvO9Sb5QVdV/rqrqxVVV7S/tWFXVV1RV9adJfjM5Ja1xa5If3+J1AsysXgphu214Wy2OkW04ZpAQ0Sw3rBVHvXaWGluyBnpextRst1j1D9vN8vM+S1Z3+GtgFpXaBhc77UY0AwAAAAAAwFaa3+4FsCX2JvmHJ/70qqr6bJIbkxzO+njYc5M8OUm/Brx7kryorus7JrNUgNlTGjdaVdOUYS/H7UrjGk/ZZ4ZbvUrtcIudPY0tWYOEq8Y16rIUINKmNhkrg7QY+l5MVDEkq9kOAAAAAACAKSJst/N1kjz2xJ/NvC3JP6rr+patXRLAbOul2/fxuUzTGNmynd5sVwrELVVLWdiqZjtjZGfKTn8NzKLS96TpNQsAAAAAAACTJmy38/xy1sfAflWSRwyw/7Ek1yV5dV3Xb9vKhQHsFKVmu852NNtVpTGy5Wa7wUJlmzd/TaNu3c1avdZ323qzXXkk5SCNf6VGtLajLktjZAdZA6MbJEin2W6yNNsBAAAAAAAwC4Ttdpi6rv8syZ8lSVVVZyW5NsnlWR8Zuy/rTXf3Jbk3yaeSfKyu6/4VTQD01UthjGwmH7Zr32s3YNBoRkNfKw3NcEudpcZxr4OEq0rjddsGgkrrWBbwmoiBvtcz+hqYVcXWSM12AAAAAAAATBFhux2sruv7krxnu9cBsNP0ChnlbWm2a1DXdao+zXejjEuddssNAanFak/mqvl0Mtd3FHCpte7UfcYz6rIUIGoKCzI+gzXbzWa746wqhRs12wEAAAAAADBNpisVAAAzoNRs18nchFeSNHXblUbJDhQqm9GwXVNY7WTArRx0Gz6A1TSetp+lwhjZWW0UnDUDfa99LyZKsx0AAAAAAACzQNgOAFrq1YWw3TY021WNg2QLYbsB2tNmdYTm8iBhu0JT1iBfcymA1TYQNErgj9EN9L32vZioUiulZjsAAAAAAACmibAdALTUbwRpknS24W21fdRu0BGasxk0amrtO9kmt9jp30I3yNjQ0vOy0DIQVAoQNYUFGR/NdtNntdhs1641EgAAAAAAALaSsB0AtFRutpuuMbLlZrtBgkabB8+mUam1r0on89VCknLQbZQQYttmu6VOaYzsSuq6FJNkXAYJVq7Vq+nV/YO1jF+xNbIwchkAAAAAAAC2g7AdALRUpxC225Zmu3LYri6F7QYIle20MbJLnaVU1fpzNcoI19Lz0nbUZWkNdXpZq1dbnYv2Bm2tm9XQ6ayp63psQVYAAAAAAADYSsJ2ANBSt9B21am24W21agjbFQrSBgmVrdVrxa9zmg3SjlUa+TrJZrumcN5ybZTsVht0THJptCnj1c1aeoUQc9sgKwAAAAAAAGwlYTsAaKncbDf5MbJNQ2RLY2RXB2zrGnS/aVIaI7vYWdzw8fDNduUwX9tmu/JozEGDYAxv8GY734tJaPqZ12wHAAAAAADANBG2A4CWenUhbLcNzXZDjZEdMMw1i6GvYvPchma7xWqx7z6DNdv1DyC2DQQtNew/i8/7rBn8NTB7gdNZ1DSuV9gOAAAAAACAaSJsBwAtlcYddrblbbW5266fgVu9ZjD0tVz42pY2NMktFMI7m40M7dbddLPWd1spwFfS1IS3YozsllvVbDdVmu41Cy1fWwAAAAAAALCVhO0AoKVys920jZHtb+BWrxkMGpXHyD4UbisF3ZratZLmsbqlAF9J0xjZ5RkMOc6andzuOIuMkQUAAAAAAGBWCNsBQEu9dPs+Pm3NdsUxsju52a6w5o3NdqXwzmZfb2MgqKGprp+5ai7z1Xz/68xgyHHWDPwa8L2YiKamwbavLQAAAAAAANhKwnYA0FK52W663laLYbud3GxXGMG6MbBTCu9sNlq0uX2r/ajLxap/u12pnY/xWek1txg+tN/svQZmkTGyAAAAAAAAzIrpSgUAwAzopX/YrtqGt9WqajdItlf3GsehbrQ6g0GjUmjnlDGyhWDcZgGspvDhMO1bpYY9Y2S33k5ud5xFpe/HYrXU+h4HAAAAAAAAW0nYDgBaKjXbzW1Ds11TDKWuT2+2W6tXBz73bDbblUI7G8bIFoJxm329je1bheBck2HXwegGDdFt1nbIeAwSkgUAAAAAAIBpIGwHAC2Vm+3mJryS9auWnR62W24xonQWW71KX9/SKc12hZDbJl9vc7Nd+1GXSx1jZLdDt15LL92B9p3F18Asamq2AwAAAAAAgGkibAcALfXq/kGdzrY025XDdnWfsF2b1rSVAcfNTpNyQ9ZDwbaFIRvlSmN156uFdKr2QcthQ3+Mps3zq2VwMkrfk2EaIwEAAAAAAGArCdsBQEulZrvODLyttgoazWDoq9hsV21ds92w7VvGyG6PVoHT3uwFTmdR+bXVvjESAAAAAAAAttL0pwIAYMrUdSFsNwPNdqutmu1mL/RV+vo2NtuVAjybPTfl1rwhw3aFMbJtRv3Snma76TPu1xYAAAAAAABsFWE7AGhpuprtWo6RbRE0Wp3BVq/lAUI7pdGUa/VacURwUh6ruzBk+1ax2W4GGwVnSbtmO9+LSRh3ayQAAAAAAABsFWE7AGipWwhkdaq5Ca8kqcpZu/TJ2hUDY/3MYqvXSt2/FW5jaKcpwNP0/KyOuX1rqXDccuFrYDzahEhn8TUwizTbAQAAAAAAMCuE7QCgpXqKmu2axsj202qE5oy1etV1XWy2W9o4RrYhwFMK1CXjb98qjZGdted91rQJ0DX9PDA+5ddW/9cIAAAAAAAAbJf57V4AAMySXt3rO541STrVdI2R/def/8epUuW8xQvzjINfkxee+6153aHXDHzm9xy+Lu89/LZUVZXLlx6VbzjnW/KUg88ex6LH6t7VL+VP7vrtfPLYR4pByI3BtqZw3Ms//73FAGNpfPBiZ7xjZD9+7EN52We+NVWVXLL4iHzt2d+Y55z5gk3P96773px33/fm3LZ805cfW+gs5qq9j8s3n/8Pc+nSlUOtc9o80D2aN9/zuvzlkXdnqbMnzz/7b+crz/z6VBtqHj997KN50z1/ki88+Jn06lO/b92sDXytjxx9b172mW/98ufz1XwesffqvOT8f5zL9zxq9C+GHF07kvceflvfbcO+tgAAAAAAAGCrCNsBQAulMFcyfc12vayPu71z5db8z7tfm/9592tbnbtOvR5MqpMvHP9Mfuu2f5+XXvbjuXb/00Za8zgt947nVTe/Inev3tm439LGMbINzXYnn7M2FoZutisfd/J5v2n58/m9O341VTp59plfV9z/3fe9Oa+98zdOP09vLZ849uHcePyzefkjXpVzFs4faq3T4vDavfmVm1+Z21ceChT+/p2vzmq9kued/eIkyRcevD6/fuvPZq1eHcs1N4bzuvVarn/gr/PLN/9kfvzKX85ZC+eO5Rq7Va/u5pdu/onidmNkAQAAAAAAmDbGyAJACw9vydqoU81NcCWTV6eXv7jvLdu9jFN8+thHNw3aJQ9rthtzgGfY8y0Vxsj2857D1zVuf/fh5u/Lse79+ejR9w98vWl03+rd+cWbXnFK0O6kt93756nr9cbJDxx5x9iCdiUP9Nbb9RjNFx68PretfLG4fdgRzQAAAAAAALBVhO0AoIXSKNFke5rtDs6f2dhuN263LpeDMdvh1uUbN92nk7kcnDvzy58vVkvZ29k/tjWcNT9cu1mb4zZ73m8b4PsyyD7T6p7VQ/nFm1+Ru1Zv67v97tW7cqR7X5Lk9pWbJ7Kmvzj81hztHpnItXaqWxuCdsnwry0AAAAAAADYKsJ2ANBCry6PGe1Uk39bPTB3Rh6193ETu95KvTyxaw1ipV7ZdJ/H7XtS9s7t+/LnnaqTJx54xtjW8OQDzxrquMfte/LAzV2rveavs9vwc9lmn2n0pZU78qqbfiyHVu9o3O/OlVuSJHVD++Q4rdYreee9b5zItXaq1V75ftJJJ0848PQJrgYAAAAAAAA2J2wHAC00N9ttzxjZ773kR3PJ4iOGPv6rzvyGfN8lPzpQ8Guz0NekrTSEdZLkiqWr8t0X/9Bpj//9C/5JHrPviSNdey7z+bYLvi9X77t2qOP3zu3LSy/7iezvHNx0327W0q3X+m7r1b3UDT+XXz7HDIbt7ly5Na+6+RW5Z+3QpvvesXwibDfC9fZ29m2+0wbvuO8Nm/4MUtYU3v2+S/5lzl24cIKrAQAAAAAAgM3Nb/cCAGCW9Bpas7aj2S5Jzpo/J6+48pdy1+ptuXv1rvTqbn791p8d+Pj/48KXpqqqPHH/M3PT8uez3HswXzz+ufyPL/3+aftOW7PdamE9+zsH86OP+Pc5f+GiVNXpY3b3zu3LP7v83+Se1UO540QjWhsL1WKu2HNVljp7Wh+70WP2PSE//+jfyc3Hb8gDvaM5tHJ7/utdv9l335XeSvbOnf6fboOG6LrpH9abVrcv35xfvvknc6R770D737Fy64mPhovbPX7fU/MDl73ixPfi2CnbPn70Q3nHfa8/7Zij3cP5wJF35LlnvXCoa+52paDio/dem6ccfPaEVwMAAAAAAACbE7YDgBZ6KQebqm0sjK2qKhcuXpoLFy9NXdfppNPYwnfSUrXny2G0hc5Crjoxkna+6v+fCKv1Snp1b9uChQ9XCus86eAzc8HixZsef87C+Tln4fxxL6uVuWouV+69Okly+/x5xf1W6uXszenNa4OG6Gap2e6W4zfmV255ZY52Dw98zB0rNydJ6iHDdgudpcxV87ly72NO23bl/2bv3sOjqu99j3/WTGZyIVdIIFwLiIpQFVG2iEEBRa1atdXaum3dtR63Vdt6OdrqtijWVmttS9sj3V6OVrp1e9zd3ahUi4qCilRBvFZECwoB5RIMhEtCZjKzzh9KzJD1m6w1t6zJvF/P4/O4Zt1+ycwQ43z4fEsO1N9anlW7vbfbvkXNj2lK1UzfvCfyiSm8Wxbsl+OVAAAAAAAAAAAAAO7wqSAAAB4ka7YLWr0zRnZ/lmUpHOh5JKwk43HJRlWNPk4AACAASURBVMpGbf+Mko0Y1uJmJK4fJXveooZgYdxts51hDK3fNO5dq99umOUpaCcppYbCroqTfO/LguU6tnqm476t0Y/11u7lad27UJnCsiErnOOVAAAAAAAAAAAAAO4QtgMAwINkbXEBH/1YdRs2M4btkgSPTAGZ3mAKoLkNG/pNsufNqVVNch+icxvK600ftr2v326YpT3xXcZjKoM1jo/v6PhEe+Ntsu3Umu3CVvKRwNNrvmx8jy9qfjSlexa6SLxvhWUBAAAAAAAAAADQ9/knFQAAQB6wkzTbWT4aIxly22xnCLUkC7uYRj/2BtNa8jWskzzk6BxMcjse1u242d6ypnWVfrfhRrXFW43HHFj6Rf1g+Gzj/i2Rj1IeI9tTQHNAaKAmVhzruO+Dvau1tm11SvctZMb3b56GZQEAAAAAAAAAAND3+ScVAABAHojJHGwKyh9jZCX3YTNTKC9ZWM9PzXZ9bQxlsnWbgkluQ3RuQ3m94b09b+nOjTcb2/skaWzZ4bp82CzVh4cbv0+b21MfJZtsjOw+M/t/xbiPdjvvTM2U+fr+BQAAAAAAAAAAQN9H2A4AAA/iedJs5yY4JKXWbBfNh2a7PG3GClgBY9DIFCx03Wzn07Ddqj2v6/cf/TRpY+L4fkfq0qE3KBwoVsAKaFB4iONxmyOph+16GiMrScNLRuvgssMc9721+xVtiXyU8v0LUV97/wIAAAAAAAAAAKDv808qAACAPGDLHLYL+OjHashls50plBcOJGlYy4Nmu3wO65iCjqaQo/uwnf/GyL69e4Xu+uhnitrOI3Il6fDyo3XJ0OsU6vKarA8Pdzx2S2Rj1sbI7mNqt7Nl67nmBSndu1AZ3795OgYaAAAAAAAAAAAAfZ9/UgEAAOSBZMGmgI+a7dwGh0yhlqBVpKCKHPdFkgSjcs0U0srnsE7IEHQ0N9u5HCObZARyb3h91990z0e3qyPJ+idWHKv/NeRaFVmhhMcHhYc6Hv9ps12KYTuXr5lDyiZoSPgLjvte3vmcdnXsSOn+hcj4/s3jsCwAAAAAAAAAAAD6Nv+kAgAAyAPJm+2COVxJcm6DQ6EkoRZTux3Ndtlleu6MYTuXITo/Ndu9uvNF3ffxHYrJvKZ/qjxeFw6+WkGre+izPjzM8ZymyOaUx+UWB3oeIytJlmXpxP5nOe6L2hE9v+OvKd2/EDFGFgAAAAAAAAAAAPmGsB0AAB7E7SRhuz7UbJdsnykgk2u2bRtb9vK52c703Jm+766b7VIMoWXayy2L9YdNcxRPElw9puoEXVD/AwUt5wDrIEPYLqYONUU3p7QuLwGvoyobVF00wHHf8zue9FUg1c8YIwsAAAAAAAAAAIB8459UAAAAeSCWtNnOPz9W3YZVkgWMjKEvnwSJOuwOY9NgssY+v/PcbOcyROeHZruXdjyj/9j8u6QNkVOrT9H5gy5XwBC0k6RB4SGyZDnu2xtvTWltXgJeRVZI02tOd9y3J7ZLf2t5NqU1FJq+2EwJAAAAAAAAAACAvs0/qQAAAPKAnSTYlCwclGumEbD7K04Sagn5vNkummQdYcvd1+9H5mY75xY/1812LsfNZsvz25/UQ1vmypZtPGZGzZf1jYGX9NgSGQqENSA0MKPrcztGdp+GqpNUEih13Pfc9scV90mToF/11WZKAAAAAAAAAAAA9G2E7QAA8CDZ6EtfNdu5bIYyBeqSXcMvzXbJ1pHPzVhev+9uQ3S9OUb22ebH9cjWe5Iec1L/r+rsuu/Ispwb6/ZXHx6eiaV1SvZecFIa7KeGqpMd9zVFN+uN3a9kYll9Vl9tpgQAAAAAAAAAAEDf5p9UAAAAeSBuO4dDLFmuQ0K5ELbctXSlMkY2WaNcLiVr2Avlc7OdIfRl+r67brbrpTGyCz/5b/256f6kx5w64Os6s/Zbnt5Dg8JD011agmQtjybTa05XQM6Nloua58u2zS1+ha6vNlMCAAAAAAAAAACgbyNsBwCAB6ZmO1Pgpre4bXZLNq7RtM8/zXbOIyil/G62CxlGABub7Vw21uV6rKlt2/rLtof1+LYHkx53Ru35Or32PM9h1frwsHSW103Y4xhZSaoJ1eqoyqmO+9bt/YfWtq1Kd1l9Vl9tpgQAAAAAAAAAAEDfRtgOAAAPTIGlgOWvH6nJQnQJxyVttjOFvswht1xK3oyVv2EdY8jR2GzncoysctdsZ9u2Htv2oJ785JGkx3217ts6ZcDXUrpHfXFmx8im+po5seYs475nmh9NdTl9XrJmynx+/wIAAAAAAAAAAKBv81cyAAAAnzM32/nrR6opKNftuFSa7fwyRjZJM1Zej5E1BCDNzXZux8jmptnOtm39uekPerr5z0mPO3fgxTqxvzmo1pN6H4yRlaRhJSM1ruwIx31v71mhTe0b0llWn0WzHQAAAAAAAAAAAPKRv5IBAAD4XNw2hO181mwXykCzXchj6CvXTKG/kBX2PJLUT7yGHONyF6KzZWd9lGzcjuuRrffoue2PG4+xZOmfB12qaTWnpXWvfsEKVQSr0rrGPkVWSAEr9VHQyUKDyb4XhYxmOwAAAAAAAAAAAOQjfyUDAADwOXOzXepBnWxw2wzVF5vt8r0VK1vNdp8em72wXdyO6+Et/64XdvzVeIylgL5V/301VJ+ckXsOCg/LyHXSDXcdXHaYhhWPctz3ys7FaunYntb1+yLT69mSpSIrlOPVAAAAAAAAAAAAAO4QtgMAwANTs53ls2Y7t+GhZME0r6GvXDOF/vK9Fcsccow4Pu4lQBdz2YLnVcyO6Y+bf6eXWp4xHhNQQN8efKUmV83I2H3rMxW2SzOgaVmWZhra7TrsDi3Z/kRa1++L+mozJQAAAAAAAAAAAPo2fyUDAADwOdPIzoDPfqQWB0pcHZdKs13UJ8120bhz+KyvNttFM9Js5/5YL9d8YNMcLd+5xHhMQEFdNOQaTao8LqP3rg8Pzch13L5fkplYcaz6F9U57ntxx0LtjbelfY++JNJH378AAAAAAAAAAADo2/yVDAAAwOdMzXYBvzXbuR0jS7Od73gd3+ulrS7TY2Q77Kj+78e/1MpdS43HFFlF+tehP9IRFVMyem9Jqi8enpHrZOI1E7SKNL3my477WuO79beWZ9O+R19iCu3m+/sXAAAAAAAAAAAAfVtRby8AAIB8YssQtvNZfj1khV0dlzRs5zH0lWum0F++N2N5DTn2VrNdNB7RvR//Qn/f86rxmJAV1r8OvU7j+03M2H27GpShZrtMvWaOrZ6pJz/5f2qLt3bb99z2x3Vc9ZcUtIIZuVe+M72eQ3n+/gUAAAAAAACAbLJtW/F4XLZt9/ZSAKAby7IUCARkWVZvLyWrCNsBAOCBqRksb5vtko2RDTgH9kzjH3MtYjuvw23Q0K+ShRxt2+72H6de2uoy1WwXibfr7o9u07utbxiPCVvF+u7Qf9PYfodn5J5OaopqFbaK0w6AFlvpj5GVpJJAqaZWf0lPN/+5275Polv1+q5lOqpyakbule9M799wnr9/AQAAAAAAACDTotGoWlpa1NLSomg0StAOgK9ZlqVQKKSqqipVVVUpFAr19pIyzl/JAAAAfC5ubLbzV1uV21GMyYJpIWPoa29Ka8q0Qmu2k6SoQ0Ap7mWMrNJvttsbb9PvP/pp0qBdsVWi7w27MatBO+nTkGsm2u0y2aY2reY0BQ1/n+WZ5vn8T5DPRPvo+xcAAAAAAAAAMqW9vV2NjY1as2aNmpqaFIlE+H/MAHzPtm1FIhE1NTVpzZo1amxsVHu7PyanZQphOwAAPLBtQ9jOZ812btrdwlZx0grfZONM/fDLXNTQZuY2aOhXppCj5DzCN5fNdm2xVs3d+BO93/q28ZiSQJm+P3y2xpSNT+tebtWHh6V9jeIMBryqi/rrnyqPd9y3of0Dvd/294zdK5+Z2gjz/f0LAAAAAAAAAJkQjUbV2NioPXv29PZSACAte/bsUWNjo6LRaG8vJWP8lQwAAMDnzM12/vqRallWj6GVcCD56EzT+XHFM9KQli5Ts13IMP42XyRr9nL6mmO2++fCy7H7a43t1v/ZOFtr2941HlMWKNcVw3+i0aVjU76PV5lotgtnaIzsPif0P9O4b1Hz/IzeK1/11WZKAAAAAAAAAEhXLBbThg0b1NHR+5/FAEAmdHR0aMOGDYrF0isG8QvnGVcAAMBR3NAMFrD8NUZW+jRMF4mZK3nDPbTf9RT6KgqGUl5bJkQcRqpK+d+M5XWMbC6a7XbHdur/bJitDe0fGI8pD1bqB8Nu1rCSUSndI1X1xcNdHWfJki3nRsZMB7yGFI/Q+H5H6p09K7vte2fPa/q4fb2GFH8ho/fMNzTbAQAAAAAAAICzTZs2dRu5GAgEVFlZqcrKSoVCIQUC/iqBAABJisfjikaj2rlzp3bu3Kl4/PMim/b2dm3atEnDhqU/taq3EbYDAMCDfGm2k9IL0316frJxphGVpbSqzIn20WasZM+bc7Odh7CdvIftdnXs0G833KSPI+uNx1QGq/WD4T/RkOIRnq+frnqXzXZhq1jt9l7HfZkcI7vPzP5nOYbtJGlR82O6YPAPMn7PfEKzHQAAAAAAAAB0F4vFtGvXroTHwuGwvvCFL6ioiHgHAP8Lh8Pq16+f6urqtH79ekUin5eJ7Nq1S7FYTMGg/4psvPBfMgAAAB+L24awneW/H6nphOl6Ot8UlMmlvtqM5XmMrIeRvl7HyLZ0NGvOhh8nDdpVFfXXVSN+1itBO0mqCw2R5eI/aYuTjE3O9BhZSTqw9IsaUTLGcd+KnS9oR/STjN8zn5jev6E8f/8CAAAAAAAAQDr27NmTsG1ZloYPH07QDkDeKSoq0vDhw2VZVsLj+/85l4/8lwwAAMDH4oZmMDdhn1xLJ0zX0/m+CNsZ1hDqodHP74IqMjYlOgWUvDTbmcYgO9ke3aY5jT/W5shG4zH9i+p09fCfaZDLdrlsCAVCqgvV93hcstd7NtrULMvSzJqzHPfF1KHFO/6S8XvmE5rtAAAAAAAAAKC7/VvtysrKFA7n9+ceAApXOBxWWVnivLTdu3f30moyx3/JAAAAfMzUbBe0/Fd122OYLknTV0/nRw2tVLlkbLbL87COZVnGr8F5jGzmm+0+iW7RrzfcoK3Rj43H1IYG6aoRP1NdeLDr+2eLm7Bfsva6bLUhTqg4RgNCAx33vbjjKbXFWrNy33wQtSOOj/c0/hoAAAAAAAAA+rL9G58qKip6aSUAkBnl5eUJ24TtAAAoMHE5h+3ystmuh1BLkRUy7vNzs12+h+0k83MXsfd2e8xLs13M0MzY1dbIJs1p/LE+iW4xHjMwNERXDf+ZMUiWa/XFw3o8JtkY2WT70hG0gppRc4bjvr3xVi1reSYr980Hffn9CwAAAAAAAACpsG1bsVji/8cvLS3tpdUAQGbs32wXi8Vk23YvrSYz/JcMAADAx0xjOAOW/36khnpstku+P2AFjCNZTa1yuWRuxsr/sI7puYvEu3/NMWWu2W5z+0bN2XCDmjuajMcMDg/XVSN+qppQrev7Zlt9uOewXa7HyO4zpepElQXKHfc9t32Bp2bCvsTYTNkH3r8AAAAAAAAAkIp4vHvhQzDov8lKAOCF059jTn/e5RP/JQMAAPAxU7NdUP77ZafnZrueQy1expnmWl9uxjI32zmNkfXQbJfk2I/b1+s3G36slo5m4zFDi0fqyuE/VVVRf9f3zAU3YTtTcFTKbsCrOFCi46q/5Lhve8c2rdz1Utbu7Wd9+f0LAAAAAAAAAKlwanqyLKsXVgIAmeP051i+N9sV9fYCAADIJ3HbMEbWh812xWk220mfhpD2aFe3x5/f8Ve92/qGwlaxDig9RBMqJitoZf8/K+J2XG/tXq41be+o3WGkqtQ3mrFMz83ync/ro/Z1CY+9s2el6+v+cfNvtbr1Tcd9b+1ert2xncZzhxeP1veHz1Z5sNL1/XJlUHhoj8cka5/M1hjZfabVnKZF2x9Vhx3ttm9R83xNqjgurf9hYtu23tmzUu+1vq22+B7P55cFyjWu3xEa2+/wlNfglbGZkrAdAAAAAAAAAAAAfIywHQAAHtiGZruAD8tiewqthK2eA0ama6xpe0dr2t6RJC3Z8YQO33W0LhpyjYqskPeFuhS343pw8516eedzSY9L1mCWL8KGr2H93n9o/d5/pHzdDrtDy1oWeT5vZMlB+t6wG1UWdB6H2tvKguWqDNZoZ2x7SudnOyhaWVStoyun6aWWZ7rt29i+Tqtb39Qh/SakdG3btvWnrfdpyY6/pLXGRdsf1ZcGnKsv1/5zWtdxy9RsF+oDYVkAAAAAAAAAAAD0Xf5LBgAA4GOmMZwBy39jZHsKrYQDPYfS3LbEvbn7Fb27x7kxLVPW7/1Hj0E7qW80Y/npazig9BD9YPjNvg3a7eOm3c7EUvZr+E/sf5Zx3zPN81O+7ubIxrSDdvv89ZP/0o4kY4QzxbZtx5HIkjloCgAAAAAAAAAAAPgBYTsAADyI51GzXWmgLOn+kh72f3pMqev7vd/6tutjU/Gey+t7WbNfuXlucuHgskP1vWE35cX3tL54WNL9ycJ4/YIVmV6O4/0PK/8nx32rW9/Uxr0fpnTdf7T+PZ1lZf16TkwjZCUp5CIEDAAAAAAAAAAAAPQW/yUDAADwMds2hO0s//1IPbDsi0n3H1R2aI/XcHPMPnvjra6PTYWb69cU1ao2VJ/VdeRCT89dLowrO0KXDv2xigM9jxv2g/H9JibdP73my6oq6t/t8cHhEeofqsvWshKcWGNut1u0/dGUrtmW4ffd3nhbRq/nxNQQKklFWR7pCwAAAAAAAAAAAKTDf8kAAAB8LCbDGFn5b4zsF0rG6J8qj3fcd2zVTA0OD+/xGg3VJ6s+nLwxbJ9I3HksZKb0dP2AAvpq3bdlWdkfCZptkyqmamTJQb12/8PLj9YlQ6/31Tjbnnyx35EaV3aE476T+5+j6qL+OrvuwoQWyiIrpK/UXZCrJeqA0kM0quRgx32v7lyq5miT52uaxrGmKtvvY0mKqcO4LyDCdgAAAAAAAAAAAPAvPs0CAMCDfGq2C1gBXVD/Ax3ab5Leb/u79sbaVBbsp4PKDtWE8smuQmlVRTW6esStWrlzqdbv/YdidlyN7Wu0JfJRt2MzHfrxcv1T+n9Nh1ccrS+UjMnqGnKlNNhPPxh+s1buXKoP9q5WRzwxnLQrtkOrW99M+fpBFWlixbHdHi8JlOqgsi9qYsWxeRdaDFhBXTrsx1q+c4k+aFutSDyi8qIKjSs7QuM+a707qnKqakOD9Obu5QpaQU0on6xhJaNytkbLsnRi/zN178e/6LYvrpgWb/+Lzh54oadrmsJxVUX9dVCpuZny3dY3tDvW0v16WX4fS8mb7YKW/4LLAAAAAAAAAAAAwD6E7QAA8CAuQ9jOp2WxASuoIysbdGRlQ8rXKA9W6viaUzu35zfN0zPN87sd11vNdsdWzdQZdedn9d69oSRQqmOrZ+pYzey274O21VrdmHrYrjxYoQuHXJXO8nwpaAV1TNUJOqbqBOMxI0sP0sjS3m0NrAsNVlN0U7d9L7U8rVMHnKvSYD/X1zOF40aXHJz0Of7thhv1Xutb3a+Xi2Y729xsF2SMLAAAAAAAAAAAAHzMn8kAAAB8Kp5HzXbZEracR4v2VrNdyLCevixslaR3fh6Nh+1rAlZQJ9Sc4bhvb7xNL+54ytP1ooZwXKiH59j0Po7aEU/3T0WcZjsAAAAAAAAAAADkqcJJBgAAkAFxOYdEAiqcgIgpqNVbzXaFGBwrTvNrLsSAop9Mrpqh8mCl477FO/6iDjvq+lqmEKopTLdPKBB2vl4umu0Mf45KNNsBAAAAAAAAAODWyJEjZVlW5z9Llizp7SUBBYGwHQAAHtBsl6zZLruNWKbGrbDlHBrqy8IBmu3yWThQrOOqv+S4r6WjWa/ufNH1tSJxw/vCEKbr3N9LDZVSD2NkCyi4DAAAAAAAAAAAgPxTOMkAAAAyIC7nsJ1VQD9STUEt0zjLTKHZ7nM9tZb1eH4Bfs/85vjqUxUyBEUXNT8q27ZdXSea4njl3nofS1KMMbIAAAAAAAAAAADIU4WTDAAAIANMzXbBAmq2M4V4st2Ileq4zL4o3TGyhfg985uKoipNrprhuO/jSKNW7XnN1XXMzXY9hO382mzHGFkAAAAAAAAAAAD4WOEkAwAAyACa7czjKU3Nc5lCs93nAlZQRVYo5fN7GjGK3Dih5gxZshz3Ldr+qKtrpBpCDRnfx9kdBy3RbAcAAAAAAAAAAID8VTjJAAAAMiBuCIkECiggkqwRy+3oy1QYQ0UFGLaTpGKrJOVzabbzh4HhITq8/GjHfe+1vq3GvWt7vEaqIVTTa8A0ljaTYkrSbCea7QAAAAAAAAAAAOBfhO0AAPDA1GxXSGNkk4V4onb2WrFMoSLTWNu+ztRM5u7cwvye+dHM/l8x7lvU3HO7nbnZLvnrw/Q+znZDpWRutgsoIMtybvoDAAAAAAAAAAAA/IDqCAAAPIjbjJFN1ooWsdsVVuaDXHE7bgzyFWyzXYBmu75gVOnBOqD0EK1te7fbvtd2vaQzo9/UgNAg4/lRw9jXngKVyRoqsy1mOzfbBS1+NQEAAAAAAAAAwG9s29Zrr72m1atXa+vWrWpvb1ddXZ2GDh2qhoYGlZeX9/YSU7ZhwwatWLFCGzduVFtbm2pra3XooYfqqKOOUiCQ3ue/W7du1YsvvqiPP/5YbW1tGjJkiEaPHq3JkyenfW0nq1at0ttvv62mpibt3LlT/fv31+DBg9XQ0KABAwZk/H6FjE+0AADwwDY02wUKKWyXJMQTibdLWZio22FHzesp0OBYOl93oQYU/erEmrMcw3ZxxfXc9gX62sD/ZTw39WY75/2m8F4mmZrtggU0jhsAAAAAAAAAAL/btm2bbr31Vj344INqampyPCYcDmvGjBmaPXu2jj76aFfX/fa3v6158+Z1bn/44YcaOXKkq3OXLFmi6dOnd27fdNNNmj17tvH4rhN1jj/+eC1ZskSStGzZMt1000167rnnFI93//x30KBBuuGGG3T55Zd7Dsa9/vrruvbaa7V48WLHaw8bNkyXXHKJrrvuOhUVFWn27Nm6+eabO/cvXrxY06ZNc3WvTz75RHfccYcefPBBffTRR47HBAIBTZkyRTfddJNOPPFET18LnBVOMgAAgAwwjj8soJBIspBXtsbIJhttaQoN9XU02/Udh5ZP0qDwUMd9y3YsUmtst+O+uB0zBlF7ClSaxi/npNlOhrAdfw8IAAAAAAAAAABfePTRRzV69GjNmTPHGLSTpEgkooULF2ry5Mm65JJL1NHhPN3GT2699VYdd9xxWrRokWMYTpK2bNmiH/zgBzrnnHMUibj//PPXv/61Jk2apGeffdZ47Y0bN2rWrFk6/vjjtWXLlpS+Bkn64x//qNGjR+v22283Bu0kKR6Pa+nSpZo5c6a+9a1vefp64IxPtAAA8CBOs13PzXZZkCwAVKjBMZrt+o6AFdAJNWfqP7f8vtu+dnuvXtjxV50y4Gvd9kWShFt7en2YXgORnDTbmcbIFk5oGQAAAAAAAAAyze7okJo29vYy+r66YbKK+nbU5v7779fFF1/cLSx2wAEHaNy4cSorK1NjY6OWL1+uWOzzv2B/zz33qLGxUQsWLFCRT79Hv/zlL3XDDTd0bh988ME6+OCD1a9fP23atEkvv/yy9u7d27l//vz5mjVrlm6//fYer/2rX/1K11xzTbfHx40bpwMPPFDFxcVqbGzUihUrFIvFtGzZMp177rk67rjjPH8dN954o2655ZaExyzL0sEHH6wDDzxQFRUV2r59u1599dWEsOSDDz6oTZs2aeHChb59jvIB3zkAADywbUPYziqcsJ2pEUvKYtguabNdYQbH0vm6CzWg6GdHV07Tgm0PaVespdu+Jduf0Ak1Zyq0X4tjNI33hWnMbEwditkdClrZ+zWBhlAAAAAAAAAAyIKmjbLPPbi3V9HnWf/1njR4ZG8vI2veeOMNXXrppQlBuwkTJmju3LmaMmVKwrFNTU2aNWuW7r777s7HFi5cqBtvvFG33nprztbs1ttvv60XX3xRknTWWWfptttu09ixYxOO2b59u66++mo98MADnY/96le/0qWXXpp01O3KlSt13XXXJTw2bdo03XnnnRo/fnzC401NTbrxxht111136YUXXtCqVas8fR3z5s1LCNoFAgFdfvnluuaaazRixIiEY23b1mOPPaYrrrhCjY2NkqRnn31Ws2bN0m233ebpvvhc4SQDAADIAGNIpIB+pBZZRbIMX2+2RlDSbNddOJ0xsgU6etfPQoGwptWc5rhvZ2yHlu98vtvj2Wi2k7LfbmdutuPvAQEAAAAAAAAA0JsuuuiihDGjDQ0Neumll7oF7SSprq5Od911l+64446Ex2+//Xa9/fbbWV+rV83NzYrH4/rhD3+o+fPndwvaSVJNTY3+8Ic/6Mwzz+x8LBaL6b777kt67csvvzxhhO5Xv/pVPfPMM92CdtKn37d///d/1y9+8QtJ0rZt21x/DevXr9ell17auV1cXKwnnnhCv/vd77oF7aRP2+7OOussrVixQmPGjOl8/I477tCHH37o+r5IVDjJAAAAMsA2jZEtoEYmy7KMrVg02+VOsZV62C5ZOyF6z9TqU4whuUXbH1N8v2bNZO+L/Vvwuu1P8hqIJgnxZUJMzqHloArnz1EAAAAAAAAAAPxm8eLFeu211zq3Kysr9cgjj6isrCzpeddcc41OP/30zu14PK45c+ZkbZ3paGhocNXo9rOf/Sxh+7nnnjMeu2LFCr3yyiud24MHD9b999/f45jWa6+9VieddFKPa+nqjjvuUFtbW+f2nDlzdMopp/R43sCBA/Wf//mfnduxWMy3z1E+IGwHpzTaMAAAIABJREFUAIAHcVPYrsB+pJoCbrlutgsoWLBtWOm00xVqQNHvyoOVOqbqBMd9WyIb9fc9ryY8Fk2j8THZ6ydbodl9aLYDAAAAAAAAAMB/5s2bl7B9+eWXa8iQIa7O/fnPf56w/fDDD6u9PbufN6TihhtuUCDQ8+e648ePTxgb+8YbbxiPffjhhxO2v/e976mqqsrVembNmuXqOEnas2eP7r///s7t0aNH65JLLnF9/qRJkzR16tTO7ccff9z1uUhUWMkAAADSFDeNkbUK60eqMWyX42a7Qg6NpTVGlmY73zqh5kzjmOZFzY8lbKfT+JjsNZCt0Ow+pj9HgwXUEAoAAAAAAAAAgN8sXbo0Yfub3/ym63PHjx+viRMndm7v3btXK1euzNjaMqG0tFQzZsxwffwhhxzS+e+tra3avXu343HLli1L2D733HNd36OhocF1oHHp0qUJrXbnnHOOq+BgV9OnT+/89/Xr16uxsdHT+fgU9REAAHhgbLYrsJCIKaiTrZCOqcGrkENj6YyRLeSQot/VhgfpiIpj9Nqul7rtW9P2jta1va+RpQdJkiKGca9uGh9DSV4D2W+2M4Xt+NUEAAAAAAAAAIDesH37dq1du7Zzu7q6OiFs5saUKVMSxtCuWLFCU6ZMydga03XAAQcoHHY/OaqmpiZhu6WlReXl5d2Oe/PNNzv/vbq6WmPGjPG0rqOOOspVy9z+YcghQ4Zo3bp1nu61/9f/wQcfaMSIEZ6uAcJ2AAB4ErcZIyuZgzrRuHP4J10Rw3XTGaWa70LpjJEt4JBiPpjZ/yuOYTtJeqb5UV089IeS0mt8DFvm10/UEOLLlJgMY2RVWKFlAAAAAAAAAMioumGy/uu93l5F31c3rLdXkBVNTU0J2wceeKAsy/J0jbFjxyZsb926Ne11ZdL+4bmehEKhhO1oNNrtmD179mjv3r2d26kE19yes2HDhoTtK6+8UldeeaXn+3XV3Nyc1vmFirAdAAAemJrtTGMf+6pcN9uZrlvIobHidMbI0mzna18oGaMDS8frH23vdNv3xu6X1RTZpLrw4CSNjz0HMQNWUEVWkTrs7sG3bI+RNTfbEbYDAAAAAAAAgFRZRUXS4JG9vQzkqe3btydsV1VVeb7G/uf4LcjldeSqGzt27EjYrqio8HyNyspKV8d98sknnq/dk127dmX8moWgsJIBAACkKU5IRJI5rJWt8ZPpNHj1VeF0xsgWcEgxX5zY/yuOj9uK67ntCySZGx+TjYhNOM4Ums36GFlDsx1jZAEAAAAAAAAA6BW2bSdse221c5KJa/hdcXHiZy2RiPfpQW7PSeXaPdn/eYc7hO0AAPDA1GwXsArrR6qpOSvXzXamsFAhKE4jaFjIIcV8Mb7fRA0OD3fct6xlkXZ37Ey78THXodl9aLYDAAAAAAAAAMBf+vfvn7Dd0tLi+Rr7n+N1bKsbsZjzZwy9Zf+vcf+GQDfcNgDW1tYmbC9btky2baf1z7e//W3P6wVhOwAAPInbjJGVaLbzg3Ta6YqsUAZXgmwIWAGd0P9Mx31RO6IXdvw17feF6TUUtTP/N6O6iolmOwAAAAAAAAAA/KSuri5h+/333/d8jffeey9he+DAgY7HFRUlfh7Q0eH8uYGTVMJs2RQMBjV06NDO7Q8++ECtra2ervH222+7Om7QoEEJ26k8R8iMwkoGAACQJtMY2UCB/Ug1hXRy3WxXyONQw4HUxsiGrHDBNTHmq0kVx6sq6Py3vpbseFJ7Yrsc95maJ7sdZwrNZul9vI+x2U402wEAAAAAAAAA0Btqamp0wAEHdG7v2LFD7777rqdrLFu2LGF70qRJjsdVVlYmbO/YscP1Pd555x1Pa8qFyZMnd/57PB7X888/7/rc5uZmvfnmm66OnTJlSsL2008/7fo+yCw+aQUAwAPzGNnCConkutkuSrNdN6mOkS3k71m+CQVCmlZzuuO+3bEWvbJzseM+t89xyDQOOutjZGm2AwAAAAAAAADAbxoaGhK2H3roIdfnvvvuu1q5cmXndklJiY488kjHY/dvvFu1apXr+zz55JOuj82VE088MWH73nvvdX3uvHnzFIm4mzh0wgknKBj8/DPpxx9/XFu3bnV9L2QOYTsAADywjWG7wvqRGjKOn8xOSKfdFLYr5GY7K/VmO+SPqdUnq9jwXO+KtTg+7vY5NoXysvU+3sfUbFdooWUAAAAAAAAAAPzkggsuSNi+8847tXnzZlfnXn/99Qnb3/jGN1Rc7Pw5xMSJExO2FyxY4OoeTz31lJYvX+7q2Fw6//zzVVFR0bk9f/58PfXUUz2e99FHH+knP/mJ6/vU1NTo/PPP79zevXu3rrnmGm+LRUYUVjIAAIA0xWxD2K7AfqSam+3c/c0Lr4xjZAOFGxxLtaGO9rD8UhYs17HVMz2d4/a1YRwHnfVmO8MYWcJ2AAAAAAAAAAD0mhkzZmjChAmd2y0tLTrvvPPU1taW9Lw5c+boscce69y2LEtXXXWV8fhjjjlGZWVlndvz58/Xq6++mvQe//jHP/Qv//IvPX0JvaKiokJXXHFFwmPnnnuuFi92nlAkSevWrdPMmTM9jdCVpNmzZyeEGP/jP/5DP/rRjxSLOX/2YrJq1Sq98MILns7B5worGQAAQBps207SbFdYIRFjSCdLjVim8E8hj0RNOWynwnqt9gXTa77sKdDrtvHRFFaN2NkJze4Tk2GMrAiCAgAAAAAAAACQqs2bN2vdunUp/bPPfffdp3D4888PlixZoqlTp+qVV17pdr9t27bp8ssv19VXX53w+A9/+EMddthhxnVWVFTo61//eud2LBbTaaedpqeffrrbsZFIRPfee68mT56sLVu2qKamxsu3JGdmzZqlQw89tHN7586dOuGEE3Tuuefqv//7v/XWW29p9erVevrpp3XllVdq/Pjxevfdd1VSUqIzzzzT9X1GjRqle+65J+GxX/ziF2poaNCCBQvU0eH8GYz0acBv7ty5mjFjhsaPH6/nnnvO+xcKSeITLQAA3DIF7SSa7fbJViOWaaylaZxtIUh1hC7NdvlnQGigjqxo0Ipd7v6GkdsgpnEcNM12AAAAAAAAAADknfPOOy/lc23blvTpiNc777xT3/3udxWPf/rZ6MqVKzV58mSNGTNG48ePV0lJiTZs2KDly5d3C3fNnDlTt9xyS4/3u+WWWzR//vzOZretW7fq5JNP1pgxY3TYYYepuLhYW7Zs0SuvvKI9e/ZIkurr63X77bf7suEuHA7riSee0IwZM7RmzRpJn35P//SnP+lPf/qT4zmWZWnu3LlqbGzs1gyYzAUXXKDNmzfr+uuv73yOXn75ZZ1xxhkqKyvTEUccoUGDBqm0tFS7du3Stm3btGrVKs8tejDj01YAAFyKE7brFLZMjVg02+VKwErtNUegKT+d2P8s12E7tyHUXDdU7hOzDc12vDYBAAAAAAAAAOh1F198sWpqanThhRdq9+7dnY+vWbOmM0jm5Dvf+Y7uuusuhUKhHu8xdOhQ/fnPf9ZZZ52lXbt29XiPUaNG6YknntCWLVs8fjW5M3z4cL344ou67LLLNH/+/KTHDhgwQPPmzdNpp52mH/3oRwn7KioqerzXvvbACy+8UJs3b+58vLW1VS+99JKr9fq1JTAfFFYyAACANMTtJGG7AguJ5LrZzhT+SbXdrZDRbJefhpeM1sFl5sr1rtyGUI1jZOPZHSMbNzTbBRhxDAAAAAAAAACAL5xzzjlau3atrrjiCtXW1hqPC4VCOumkk/TSSy/pvvvucxW022fGjBlavny5zjzzTGObW11dna699lq98cYbOuSQQzx/HblWX1+v//mf/+kM3Y0bN07V1dUqKSnR6NGjdeKJJ+ruu+/W2rVrddppp0lSt8a5qqoqV/c65ZRT9OGHH2ru3LmaMGFCj414oVBIU6ZM0ezZs/X+++/riiuuSO2LBM12AAC4lbTZLsWWsXxlCrmZxr2myxT+KeRmu1QFCTTlrZn9v6L3Wt/q8ThT82S34wzvn2y9j/eJydRsx68mAAAAAAAAAAC4tW7duqxef+DAgfrNb36jX//611q5cqVWr16tpqYmtbe3q7a2VsOGDVNDQ4OrJjaTsWPH6tFHH9W2bdv0/PPPa+PGjWptbdWgQYM0atQoTZ06VUVFn39+MG3atM6Rt254OXZ/DzzwgB544IGUzm1oaFBDQ4OrY1etWtX575ZlaeDAga7vU1JSossuu0yXXXaZmpub9fLLL2vTpk1qbm5WNBpVeXm5Bg4cqIMOOkhjx45VWVmZ568F3fGJFgAALpnamKTCGyMbMoR0OuwOxexYxsdB0myXOYzqzF+HlE3QkPAX9HFkfdLjTO/PbseZxshmudkuZvizlNcmAAAAAAAAAAD+EwgENGnSJE2aNClr96itrdXZZ5+dtev71Z49e/Taa691bh900EEphxf79++vU089NVNLQxKFlQwAACANycfIFtaP1GQht6id+aCOaTwtzXbe0R6WvyzL0on9z+rxOLchVFMDnincminmsB2vTQAAAAAAAAAAUDjmzZun1tbWzu1jjjmmF1cDt/hECwAAg9bYbn3cvl52l22TQIGN5kwWcntvz1sqC5Z3bg8KD1VlUbWkT6uam6Kb1NKxXUVWSMOKRykUCCW9V8zuUFzO4Ry34zLxOdrD8ttRlQ16fNuD2tHxifEYtyFU03Efta/T1sjHqgsNlmVZKa0zmZhtGCNbYH+OAgAAAAAAAACAwrVx40bNmjUr4bELLrigl1YDLwjbAQCwn5gd00Ob5+qVnUtky9xm1xXNdp+7++Pbuj32xX5H6Yzab+q+TXdoS+SjzsdDVlhfrfu2jq9xrjS2bVsPb7nLvA6a7TyjPSy/FVkhTa/5suY3PWA8xm0I1TRGVpJmf3iZBoWH6rKhP1ZdeLDXZSZlCs/y2gQAAAAAAAAAAPnqz3/+s1auXKmrrrpKdXV1SY99/fXXdfbZZ6u5ubnzscMPP1zTp0/P9jKRAXyiBQDAfp765L/18s7nPJ1jFdhkdq8ht7/veVV/3/Nqt8ejdkSPbL1H9cXDdXDZod32v9TytJa1LDJeN1lYCM5oD8t/DVUz9ddPHtHeeJvj/nSb7fbZEvlIczfeoptGzc1ow515jCyvTQAAAAAAAAAAkJ927dql2267Tb/85S91yimn6IQTTtDhhx+ugQMHqqioSM3NzXr77bf1l7/8RQsWLJBt253nhsNhzZs3rxdXDy8I2wEAsJ83dr/s+ZwAYbu0vLX7Fcew3Ru7kj8XNNt5V/HZSF/kr9JgPzVUnaxF2x913O82hOqmAW9r9GNtjmzU4OLhntaYjDlsx68mAAAAAAAAAAAgv0WjUS1YsEALFixwdXxpaan++Mc/6vDDD8/yypAphZUMAADAhe0d2zwdXxIoVU1oQJZW40/FVon6FyWvP/ZiR7TZ8fFkz0VpoJ+qi/pnbA356Ct1/+L4+OkDztPA0BDHfRMrjs3mkpAj02tOV8ChpTCgoAaFnZ/7/Q0uHuHquJYO5/dnqmLqcHycZjsAAAAAAAAAAJCvqqurFQx6+6zj2GOP1QsvvKBzzjknS6tCNhC2AwBgP5F4u6fj/6lyWsE1MlmWpSlVJ2bseqbwTcQ2PxeTq6YX3Pd9f0eUT1FJoCzhsWKrRBMrjnV8fgaFh+qA0kNytTxkUU2oVqcM6P6L18SKKSoLlru6Rv9QncaW5f5vSRmb7RhxDAAAAAAAAAAA8tRZZ52lLVu26MEHH9Sll16qhoYGDR8+XP369VMwGFR5eblGjBihqVOn6t/+7d+0dOlSLV26VEcddVRvLx0eFfYn1AAA7CduxxW1I66O7V9UpyMrG3Rm7TezvCp/+tKAc2VZAb3Sslhbox+ndS1T+MYUfBwQGqiz6y5M6559QW14kK4cfov+p+kBNe5dq+HFo3RG7TdVXzxMg8JDJUl/2/msdnZs19iyw/X1QZfQHtaHnDrg6woooL/tfFaS9MV+R+nsgd7eF/869Dr9acv/1d/3vKpdsRbHY2zZaa+1q5htarbjVxMAAAAAAAAAAJC/BgwYoPPPP1/nn39+by8FWcQnWgAAdNFhR437/veIn2tUyUGd25YsWZaVi2X5kmVZ+tKAr+lLA76muB3vfHxnx3b92wcXebqWKXxjCtudU3eRAoTGJEkjSg7QlcNvkW3bCa9Hy7J00oCv6qQBX+22D31DwAro1Nqv69Tar6d8jZJAqb41+PuybVvfe/9s2Yp3OybzYTtDsx3vaQAAAAAAAAAAAPgcYTsAALpINkK22CpRwGICu5Ou35fiQInn853CdrZtK2JoGQwHij3fo69LFqYjaIeeWJalgAKKOYTtMo1mOwAAAAAAAAAAAOQrEgMAAHQRsc1hOwJe7qTyfXJquuqwOxxbtiQpbPFcAJlmymRmvNlOhmY70WwHAAAAAAAAAAAAfyNsBwBAF0mb7QjbuRK0ihTwGJpxCt9ECT4COWZK2+VqjCzNdgAAAAAAAAAAAPA3wnYAAHSRtNmONjXXvIbhnMZKJgs+ErYDMs8yhO0y2WwXt+PGxsqARbMdAAAAAAAAAAAA/I2wHQAAXRDwygyvwUSnpqtkwceQFfa8JgC9z9RqJ9FsBwAAAAAAAAAAAP8jbAcAQBemgFdAQYIgHoQD3sJwNNsB/pXJIbIxdX+v7xP0OH4aAAAAAAAAAAAAyDXCdgAAdGEKeBHu8sZzs528Ndsx0hfIPNMY2UzG7eJJm+0I2wEAAAAAAAAAAMDfCNsBANBF1BDwItzljddwotdmO8bIAplnCtvZGQzbOb3X96E9FAAAAAAAAAAAAH5H2A4AgC4i8Yjj417Hoha6kMdwolPblanZLmwVy7JMDVwA/CxGsx0AAAAAAAAAAADyGGE7AAC6SBbwgnvem+0cwnbG4CPPBZANphCrbWew2U5Jmu1Esx0AAAAAAAAAAAD8jbAdAABdmEaXEvDyxms40SmAw0hfINdyMUaWZjsAAAAAAAAAAADkL8J2AAB0YWq28zoWtdBlptnO8FwQfASyIhfDmZOH7Wi2AwAAAAAAAAAAgL8RtgMAoAua7TLDe9iue7OdeaRvOKU1AehJ9uN2Tu/1fWi2AwAAAAAAAAAAgN8RtgMAoAtj2I5mO0+8fr/iisu2E0dVEnwE/CGjY2RFsx0AAAAAAAAAAADyF2E7AAC6MLapEfDyJJXvV0yJjVfmZjueCyAbLGOzXQbDdsma7USzHQAAAAAAAAAAAPyNsB0AAF3QbJcZqXy/YnZi4xXNdkBumcJ2mYvadX+fd8UYWQAAAAAAAAAAAPgdYTsAALowN9uFc7yS/JZSs51Nsx3Qq0zFdjlotrNkKUDYDgAAAAAAAAAAAD5H2A4AgC5oU8uMTDTbReMR52vzXABZYWy2szMYtpNzsx2tdgAAAAAAAAAAAMgHhO0AAOgiamhTC9Gm5kkqTYD7h3BMzXY8F0C25GKMrHOzXVBFGbwLAAAAAAAAAAAAkB2E7QAA6IJmu8xIJRDXbYwszwWQU8Ypshm0f4PlPoyQBQAAAAAAAACgMDU2NurHP/6xpk6dqkGDBikcDsuyrM5/Hnjggd5eIpCACgkAALowtamlMha1kKUSiOs2RtY2jJG1vLfmAeiZaYxsJrvtTGE7xsgCAAAAAAAAAODNyJEjtX79+s7txYsXa9q0ab23oBTce++9+v73v6/2dufPaAE/otkOAIAuInFDwIs2NU9SCSfSbAf4k53RsJ1pjCxhOwAAAAAAAAAACsmTTz6pSy65xHXQbsmSJQmNd7Nnz87uAgEDmu0AAOiCZrvMyESzHc8FkGvZb7aLy9Rsx68lAAAAAAAAAAAUkuuvv162/flnEP/8z/+siy66SMOHD1coFOp8vLa2tjeWBxjxqRYAAF3QppYZqQTi4qLZDuhN2Y/aJWm2Y4wsAAAAAAAAAAAF47333tNbb73VuX3qqafqoYce6sUVAe4xRhYAgM/E7A5j61LYCud4Nfktq812hO2A7LCc43Zd/1ZZuvZ/n+8ToNkOAAAAAAAAAICC8eqrryZsn3POOb20EsA7wnYAAHzG1KQmEfDyKpXvV4ftrtkuxBhZICusHHTbGZvtRLMdAAAAAAAAAACFYsuWLQnbw4YN66WVAN4RtgMA4DOmJjWJgJdXqYyR7RrCidtxRe2I87UJPgJ5K2ZoD2WMLAAAAAAAAAAAhWP37t0J26FQqJdWAnjHvCYAAD5Ds13mhFIYu9s1hNNhR43HpRLkA9AzU7Nd5nrtkjTbMUYWAAAAAAAAAABfsm1br732mlavXq2tW7eqvb1ddXV1Gjp0qBoaGlReXu75mvF4PAsrBXKDT7UAAPhMsmY7Al7eWJalsFWc9Hu6v64hnOTBR+9BPgA9y80YWZrtAAAAAAAAAADIB9u2bdOtt96qBx98UE1NTY7HhMNhzZgxQ7Nnz9bRRx9tvNa6des0atQo4/7p06c7Pv6HP/xBF154oeO+m2++WTfffLPxmosXL9a0adOM+4FUMUYWAIDPROLOY0slmu1S4fV71jWEQ/AR8A87J2E7/g4QAAAAAAAAAAB+8eijj2r06NGaM2eOMWgnSZFIRAsXLtTkyZN1ySWXqKPDecIN0JfwqRYAAJ9JFvBKZSxqofMaiksI2zHSF+iTYjKMkRXNdgAAAAAAAACQlniH1Lqxt1fR95UNkwJ9O2pz//336+KLL+426vWAAw7QuHHjVFZWpsbGRi1fvlyx2Oef791zzz1qbGzUggULVFTUt79HKGy8ugEA+Iwp4BWywgpYlMF6FfLcbNdljCzNdkDOWZbzGFma7QAAAAAAAAAgD7RulB43j+lEhpzxoVQ+srdXkTVvvPGGLr300oSg3YQJEzR37lxNmTIl4dimpibNmjVLd999d+djCxcu1I033qhbb7014dhhw4bpww8/7Nz+zW9+o9/+9red2w8//LAmT57cbT21tbWdo2BffvllnXfeeZ37rrjiCl155ZXGr6W+vr6HrxZIDZ9qAQDwmagh4EWTWmrCHtsA46LZDuhdhrCdncmwnaHZzqLZDgAAAAAAAACA3nbRRRcpEol0bjc0NOipp55SWVlZt2Pr6up01113acyYMbr22ms7H7/99tt13nnn6dBDD+18rKioSCNHjuzcrq6uTrhWfX19wv6uysvLJUnr1q1LeLy6utp4DpBN1PQAAPAZU8CLJrXUeA3FuWm2CyhIAxaQJc5Ru8wyN9sRtgMAAAAAAAAAoDctXrxYr732Wud2ZWWlHnnkEcegXVfXXHONTj/99M7teDyuOXPmZG2dQG8jbAcAwGeMYTua1FLiNaTYNYTDcwHknpWDuF1MhmY7CrcBAAAAAAAAAOhV8+bNS9i+/PLLNWTIEFfn/vznP0/Yfvjhh9Xebp5kBeQzPtUCABSMJ7c9omUti4z798bbHB+n2S41qTTbrWl9R4u3/0Wv7/6b8zV5LoAscg7bPdr0R/31k/9KemZ9eJiOrpqmSZXHG4+JxNv1t5ZnHffRbAcAAAAAAAAAQO9aunRpwvY3v/lN1+eOHz9eEydO7GzG27t3r1auXKkpU6ZkdI2AHxC2AwAUjNb4bjV3NHk+jza11IStEk/Hv9/2dz267T/UYUfN1wyE010WAANTs92e+C7tie9Kem5zR5NWtb6u9vheNVSf3G2/bdv6949+Zjyf8dAAAAAAAAAAAPSe7du3a+3atZ3b1dXVOuSQQzxdY8qUKQljaFesWEHYDn0Sn2oBANCDkEXAKxVeg3Fv7V7e8zVptgN87bntCxzDdh+1r9d7rW8ZzwvQbAcAAAAAAAAA6SkbJp3xYW+vou8rG9bbK8iKpqbEwpIDDzxQluX8l/RNxo4dm7C9devWtNcF+BFhOwAAelARrO7tJeSlyqLMf98qiqoyfk0An+oXrJDMxZKubI5sVCTe3q0RtLF9TdLzKoK8twEAAAAAAAAgLYEiqXxkb68CeWr79u0J21VV3v+//f7nNDc3p7UmwK8Cvb0AAAD87ovlE3t7CXlpfL8j8+KaAD51SL8JGblOXPFuj0Xi7UnPGdfviIzcGwAAAAAAAAAAeGfbdsK211Y7J5m4BuBHhO0AAEhiavUpOrJiam8vIy+NLh2rM2u/lbHrHVE+RdNqTsvY9QAkOrn/2RrfL/1wcdyOdXssWdjuzNpvaXTpWON+AAAAAAAAAACQXf3790/Ybmlp8XyN/c+pqalJa02AXzFGFgBQMI6qmKqhxSNdHVtkFWlUycGqDddnd1F93MkDztbRVdO1tnWVIna7yoNVeqZ5vta0veP6GkdWNOi0Ad/QoPBQ/gYMkEWhQFiXDZ2lTZENaty7VrZDQ90+OzqatWDbQ477Yk5hO9s5bFcXGqyTB5yd2oIBAAAAAAAAAEBG1NXVJWy///77nq/x3nvvJWwPHDgwrTUBfkXYDgBQMEaWHqSRpQf19jIKTnVRfx1Z2dC5vaxlkafzG6pPVn3xsEwvC4ADy7I0pHiEhhSPSHrcpvYNxrCdlzGydeHB3hcJAAAAAAAAAAAyqqamRgcccIDWrl0rSdqxY4feffddHXLIIa6vsWzZsoTtSZMmZXSNlHLALxgjCwAAcipoBT0dH7aKs7QSAKlK9j52GiMbtSOOx4atcMbWBAAAAAAAAAAAUtfQ0JCw/dBDzn/p3sm7776rlStXdm6XlJToyCOPzNjaJKm4OPEzw/Z257/oD2QbYTsAAJBTQY/FuuEAYRzAbwJKErbz0GwXDhCmBQAAAAAAAADADy644IKE7TvvvFObN292de7111+fsP2Nb3yjWzguXdXV1QnbmzZtyuj1AbcI2wEAgJyi2Q7IfwHL/GuEU7NdxDaE7Xh/AwAAAAAAAADgCzNmzNCECRM6t1taWnTeeeepra0t6Xlz5szRY4891rltWZauuuqqjK9v9OhI9A+jAAAgAElEQVTRCoc/L+lYvHixotFoxu8D9MRbtQwAAECaPIftaL4CfCeQbIwszXYAAAAAAAAAAOTc5s2btW7dupTOHTlypCTpvvvu0zHHHKNIJCJJWrJkiaZOnaq5c+fq6KOPTjhn27Ztuummm/T73/8+4fEf/vCHOuyww1JaRzLhcFjHHnusFi9eLElqbGzUGWecoe9+97s68MADVVZWlnB8fX29SkpKMr4OgLAdAADIqaDlcYwszVeA7wSSFGTHbYewnb3X8dgQ728AAAAAAAAAADLivPPOS/lc27YlSRMnTtSdd96p7373u4rHP/3//StXrtTkyZM1ZswYjR8/XiUlJdqwYYOWL1+ujo6OhOvMnDlTt9xyS+pfRA+uvvrqzrCdJC1cuFALFy50PHbx4sWaNm1a1taCwkXYDgAA5BTNdkD+SzZGNuY0RjYecTyW9zcAAAAAAAAAAP5y8cUXq6amRhdeeKF2797d+fiaNWu0Zs0a43nf+c53dNdddykUCmVtbaeffrp++tOf6qabblIs1v3zCCAXzJ+SAQAAZEHQQ9Y/oKDnJjwA2ReUOTRrO42RtQ1jZGm2AwAAAAAAAADAd8455xytXbtWV1xxhWpra43HhUIhnXTSSXrppZd03333ZTVot88NN9ygt956S9ddd52OO+441dfXq7S0NOv3Bfbh02sAAJBTXprtaL0C/Mny3GxnCNvxHgcAAAAAAAAAICXr1q3L6vUHDhyo3/zmN/r1r3+tlStXavXq1WpqalJ7e7tqa2s1bNgwNTQ0qKKiwvO1Z8+erdmzZ6e8tnHjxum2225L+XwgHYTtAABATnlpqqP1CvCnZM12cTmE7YzNduGMrQkAAAAAAAAAAGReIBDQpEmTNGnSpN5eCuALjJEFAAA55a3ZjiAO4EeBJM12cdthjCzNdgAAAAAAAAAAAOgDCNsBAICcCnoo1qXZDvAnK8mvEU7NdlFjsx3vcQAAAAAAAAAAAOQPwnYAACCnvDTbhWi9AnwpYAWMgbv9m+1idkwddofjsbzHAQAAAAAAAAAAkE8I2wEAgJwKeBkjazFGFvCrgClsp8SwXdSOGK9Bsx0AAAAAAAAAAADyCWE7AACQU0HLwxhZWq8A3wpYzr9KxOzEMbKRuPMIWYn3OAAAAAAAAAAAAPILYTsAAJBTQXlptiOIA/iVaSS0vV+zXdKwHe9xAAAAAAAAAAAA5BHCdgAAIKe8NNuFaL0CfMsy/CrRrdnOptkOAAAAAAAAAAAAfQNhOwAAkFOmNiwntF4B/mV6L8cZIwsAAAAAAAAAAIA+irAdAADIKS/NdgRxAP8KGH6ViO8/RjZJs13ICmd0TQAAAAAAAAAAAEA2EbYDAAA5FRTNdkBfEHDZbBc1NNsVWUWemi4BAAAAAAAAAACA3kbYDgAA5JSnMbIBWq8Av0q32S5EmBYAAAAAAAAAAAB5hrAdAADIKU9jZAnjAL4VsAxhO3u/sJ2h2a44UJLxNQEAAAAAAAAAAADZRNgOAADklLdmO8J2gF8FDCOhY0ocIxuxI47HEaYFAAAAAAAAAABAvnFfLYM+wbKsUZImSBoiqVzSJknrJS2zbTvam2sDABSGoBVyfSxjJgH/MjXb2S6b7RgTDQAAAAAAAAAAgHxD2K5AWJZ1jqSrJR1jOKTZsqxHJN1o2/a23K0MAFBogoY2LCc02wH+5b7ZzjlsR5gWAAAAAAAA/5+9O4+yqyzzxf/dVUkqhCRkDkiIAUOahEHARAQZG5qppaUBZXIp2K1eUZRuEBsnRllwwV4dQbuV9gavP1RaQKZWWxxCiwjcgDSQoCTKEKYYQkIGyFj790dCmVOp6VSdqkpVPh/WXuR9z36Hvc85u2qf89TzAgD0NZaR7eeKohhaFMX3kvwgrQfaJcmoJB9P8kRRFMf0yOQA2CZZRhb6h9bey41ls2C7VjPbeX8DAAAAAADQtwi268eKoqhPcnOS05o9tDjJT7MxAO+RJOVmj41PckdRFAf3yCQB2ObUFx1PrDtI5ivYahWtLCPb2GwZ2XWtZLbz/gYAAAAAAKCvEWzXv12V5PjNyuuSnJtkQlmWx5Rl+f6yLN+RZK8kv9lsv4YktxdFsVPPTRWAbYXMdtA/tLYkdGPzZWRltgMAAAAAAKCfEGzXTxVFsVuSTzerfl9ZlteXZbl288qyLOclOTKVAXejk1zcvbMEYFtUH5ntoD+o62Bmu7Uy2wEAAAAAANBPCLbrvy5OMnCz8o1lWd7R2s5lWb6R5Kwkmwfi/d2moD0AqJnqMtsN6saZAF1R18qtRGOaBdvJbAcAAAAAAEA/IdiuHyqKYrskpzSrvrq9dmVZPpXk9s2qBiQ5o4ZTA4DUFzLbQX9Q10rg7Iay2TKylUmVmwwsBNMCAAAAAADQtwi265+OSTJks/JvyrL8XQfbzmpWPqk2UwKAjarJbDdQ5ivYarWW2a6U2Q4AAAAAAIB+SrBd/3Rss/LsKtr+Ksn6zcr7FUUxvsszAoBNqstsJ/MVbK06ntmulWA7mSsBAAAAAADoYwTb9U97NSv/pqMNy7JcleTxZtV7dnlGALBJfTqW2W5AMbDVYB6g97WWpbJ5Zrt1MtsBAAAAAADQTwi265+mNisvqLL9H5qVp3VhLgBQoaPLyMp6BVu3opVbiQ5nthNsBwAAAAAAQB8j2K6fKYpiVJJRzaqfq7Kb5vvv3vkZAUCluqI+RYp29xOIA1u3+qLlW4nG8s+Z7dY0rs6SdX9qcT8BtQAAAAAAAPQ1gu36nxHNyq9vWhq2Gs2/Ed2hC/MBgC10JLudQBzYutW1siR0YzZmtlu5YXn++bnPtdpeQC0AAAAAAAB9zYDengA1N7RZ+Y1O9NG8zbBOzqVJURTjkoytstnbujouAFun+gzI+qxvc59BdYN6aDZAZ9S1k9nuv5bcmoVr/thqewG1AAAAAAAA9DWC7fqf5sF2qzvRR/Ngu+Z9dsY5SS6uQT8A9AMD6wZlzYa2f0QNKgb30GyAzmg9s93GYLunXn+8zfYNdd7jAAAAAADQXV5//fU88sgjmT9/fl555ZWsXr062223XcaPH58pU6Zkv/32y6BBkl901uGHH5577723qVyWZbeMM3v27BxxxBFN5YsvvjiXXHJJt4xFxwi26/86827unisAAGyy6+C/yOOr/l+b+7xtyNQemg3QGa1nttu4jOzrjatabTuoaMiEhl27ZV4AAAAAALCt2rBhQ/7jP/4js2bNyi9/+cusX9/6SlODBw/OMccck7//+7/Pe97znh6cJfRtLX9DRl+2sll5u0700bxN8z4BoEuOHnVSGtrIXLfDgFE5eIeje3BGQLVay2y3IRuD7TaUrd/AHzP6lAy0VDQAAAAAANTML37xi0ybNi1nnHFG7rnnnjYD7ZJk9erVueOOO3LCCSdkxowZeeSRR3poptWZNGlSiqJIURSZNGlSb08HZLbrh7bWYLuvJ/lBlW3eluSOGowNwFbmbUOm5h8nXpkHl/8yz695pimtcn1Rn7cOnpx373B0xgwa38uzBNrSWma7sty4jOybGe6a23fou3Lc6Pd127wAAAAAAGBbc+mll+bSSy/dYinToigyderUTJgwIaNHj87ixYvz3HPP5amnnqrYb86cOTnwwANz/fXX5yMf+UhPTh36HMF2/c9rzcpDiqLYvizL1tfx2tK4ZuVlXZxTyrL8U5I/VdOmKIquDgvAVmyXwbtll8G79fY0gE5qP7Ndy8F204cf2m1zAgAAAACAbc15552XmTNnVtQNGzYsF110Uc4888xMnDhxizYLFizIjTfemGuvvTZr1qxJkqxduzYf/ehHs2rVqpx33nk9Mnfoiywj28+UZbkkydJm1VteOdv21mbl+Z2fEQAA/VF9K5ntGjdlttuQltPT17cSpAcAAAAAAFTn29/+9haBdgcffHDmzZuXiy66qMVAuySZPHlyrrjiijz22GPZa6+9Kh47//zzM3v27O6acr8xe/bslGXZtLHtEGzXPz3ZrDy5yvbN0ww17w8AgG1c0cqtRGM2Bdu1ktmuvhBsBwAAAAAAXfXUU0/lk5/8ZEXdQQcdlB//+MeZMGFCh/qYMmVKfv7zn2fq1KlNdY2NjfnABz6QV155pabzhf5CsF3/9ESz8oEdbVgUxfZJ9mmnPwAAtnGtBc01lm8uI9tKZrtiQLfNCQAAAAAAthUXXHBBVq5c2VQeMWJEbr311gwdOrSqfsaNG5dbbrklgwYNaqp74YUXcvnll9dsrtCf+Karf/pJko9uVj68iraHpPJ18duyLBfVYlIAAPQfda0F26UxZVk2ZbhrTmY7AAAAAADomt/97ne5++67K+quuuqq7Ljjjp3qb9q0abngggty5ZVXNtV961vfyiWXXJKRI0d2aa5bmwULFuSxxx7LCy+8kBUrVqQoigwZMiTjx4/Prrvumr333jtDhgzp9nmsWbMm9957b55++um8+uqrGTduXCZMmJBDDjmkW8Z/6aWX8uCDD+ZPf/pTlixZkqFDh2bcuHGZMWNGdtut+QKYtEWwXf/0X0neSLLdpvKBRVHsUZbl7zrQ9qxm5R/WcmIAAPQPda0tI1tuyIa0nNUuSerdggAAAAAAQJfMnDkzZVk2lceMGZOzzz67S32ed955ueaaa7Ju3bokyapVq3LDDTfkwgsv3GLfs846K9/+9rebyk8//XQmTZrUoXFmz56dI444oql88cUX55JLLmmz/zc9++yzKYqi1b4/9KEP5cYbb9yifs2aNfnqV7+aG264IfPnz29zfvX19dl3331z4okn5h//8R9bDXw7/PDDc++99zaVN38+2vLaa6/lS1/6Um688cYsX758i8eHDRuWU089NZdeemne8pa3dKjP1qxbty7f+ta38vWvfz2PP/54q/vtvvvuueCCC/LhD384Awb4Hqc9lpHth8qyfD3JLc2qP9teu6IopiT5282q1if5bg2nBgBAP9FaZrsN5YZs2LSUbEtktgMAAAAAgK75yU9+UlH+4Ac/WLEMbGeMHTs2J5xwQpvj9EULFy7MfvvtlwsvvLDdQLsk2bBhQx5++OF88YtfzIsvvljTufzP//xPpk2blq9+9astBtolyYoVK/Lv//7v2XvvvfPrX/+602M9/PDD2WOPPfLxj3+8zUC7JJk/f34+9rGPZcaMGXnhhRc6Pea2Qjhi/3VJktOSDNxUPqsoih+WZXlnSzsXRTE4yawkm199v1WW5R+6dZYAAPRJrWW2K9OYDWUbme0KtyAAAAAAALW2odyQZetf6e1p9HsjBozp9T8qf/755/PMM89U1B199NE16fvoo4/Obbfd1lR+4IEHsm7dugwcOLCNVluvtWvX5thjj82TTz5ZUT9q1KjsvffeGT9+fAYOHJgVK1bkpZdeyrx587Jq1apumcu8efNy5JFHZsmSJRX148ePz3777ZcRI0Zk0aJFeeCBB/LGG2/k1VdfzXve855cc801VY91991359RTT83rr79eUb/TTjvl7W9/e0aNGpVVq1Zl3rx5FQGIjz76aA444IA88MADmTBhQucOdBvgm65+qizLPxZFMTPJBZtV31IUxT8m+WZZlmvfrCyKYmqSf09y0Gb7LklyaY9MFgCAPkdmOwAAAACArcey9a/ki3/8WG9Po9+7fLdvZPTA8b06h5aynU2fPr0mfb/jHe+oKL/xxht59NFHM2PGjJr031HXXntt09KyBx98cFO2tZ133jn33Xdfq+2GDh1aUZ41a1bmzZvXVJ40aVK+9rWv5dhjj01d3ZZJBcqyzMMPP5y777473/rWt2pwJButW7cuZ555ZkWg3U477ZSZM2fm5JNPrpjLypUr85WvfCVf/vKXs2zZshaX8W3LvHnzctppp1UE2h177LG59NJL8853vnOL/X/729/m05/+dH71q18lSV544YWcfvrpmT17durrfafTEsF2/ds/JdkzyXGbygOTXJfki0VRPJJkRZLdkuyfZPNFrdcm+duyLF/qwbkCANCH1LeV2S5tBdu5BQEAAAAAgM56/vnnK8rjx4/P6NGja9L3Xnvt1eJ4PR1sN2bMmIwZMyZJMmDAn79XGDBgQCZNmtThfu64446Ktvfcc08mT57c6v5FUWT69OmZPn16vvjFL6axsbH6ybfguuuuy6OPPtpU3mmnnXLfffdlt91222LfoUOH5uKLL85ee+2V97///Vm6dGmHx2lsbMypp55akZ3vkksuycUXX9xqm/322y+/+MUvcuqppzZlNbzvvvty00035YMf/GCHx96WtPwNGf1CWZYbkrw/yc3NHhqX5Ngk70vyjlQG2v0pyXvLsvxVj0wSAIA+qShavpXYULazjGz8FRQAAAAAAHTWq6++WlEeOXJkzfoePHhwGhoa2hyvL3n22Web/v32t7+9zUC75urr62uyfG5jY2Ouu+66irpvfvObLQbabe7kk0/OOeecU9VYt912W5544omm8vvf//42A+3eNGDAgHz729/OuHHjmuquvfbaqsbelgi26+fKslxZluVp2RhY90Abu76a5F+T7FWW5U96ZHIAAPRZrQXNNabtZWRbW34WAAAAAABoX/PgtxEjRtS0/+b9bb70aV/2pz/9qVfG/e///u8888wzTeUZM2bkPe95T4fafulLX6oq4O+rX/1q07+LoshVV13V4bZDhw7Nxz7256WoH3/88Yp582eC7bYRZVneUpblgdm4bOwpST6V5KIkZyf5yyQ7lWV5TlmWi3txmgAA9BF1rWS2a2wvs51lZAEAAAAAYKtVFEX7O/URe+yxR9O/Fy5c2CvZ2u67776K8umnn97htmPHjs3RRx/doX1XrVqVBx74cw6uGTNmZNddd+3wWElyxBFHVJR/9SuLYrbEN13bmLIsn07ydG/PAwCAvq21DHXtZbarl9kOAAAAAAA6bdSoURXl1157rab9L1u2rM3x+pIzzjgjt912W1P5M5/5TG6//facffbZOf7447PTTjt1+xzmzJlTUT7ggAOqan/AAQfkP//zP9vd74EHHsi6deuayrvttlvVmekaGxsryn/4wx+qar+tEGwHAABUra61ZWTLxjSmjcx2bkEAAAAAAGpuxIAxuXy3b/T2NPq9EQPG9PYUtgh+W7p0ac36Xr16dVavXl1RN3r06Jr139NOOumknHTSSRUBd7/+9a/z61//OkkyefLkHHTQQXn3u9+dQw45JFOnTq35HBYtWlRR3n333atqP2XKlA7tt3Dhwory97///Xz/+9+vaqzmmi9ZzEa+6QIAAKrW+jKyMtsBAAAAAPS0+qI+oweO7+1p0AN23nnnivLLL7+cJUuW1CQobu7cue2O15cURZGbb745F198cf75n/95i0DCBQsWZMGCBfm///f/JtkYfPeBD3wg5557bs0y+jUPhhw+fHhV7XfYYYcO7bdkyZKq+u2IFStW1LzP/qDlb8gAAADa0Fpmuw1pzIayjcx2hb/3AQAAAACAzjrooIO2qGu+VGlnNe9nu+22y7777luTvnvLgAED8uUvfznPPPNMrr322hxyyCFpaGhocd8FCxbkkksuyW677Zabb765h2faNWvXrq15n2VZ1rzP/kCwHQAAULXWMtuVZWObme3q3IIAAAAAAECnTZw4MRMnTqyo++lPf1qTvu+5556K8gEHHJBBgwbVpO83bdjQ+ncI3Wn8+PE5//zz89///d957bXXcv/99+faa6/Ne9/73gwdOrRi39deey2nn356br/99i6PO3LkyIry8uXLq2r/2muvdWi/MWMqlzi+8sorU5Zll7Ybb7yxqrluK3zTBQAAVK21oLkNm/5rSX0GpCiK7pwWAAAAAAD0e8cee2xF+Tvf+U7WrVvXpT4XL16cO++8s81x3jRgQOUqNuvXt77iTXPNl1XtDQ0NDTnwwANz/vnn5/bbb8+SJUvy/e9/P1OmTGnapyzLfOpTn0pjY2OXxho/vnJ55/nz51fV/qmnnurUOB1tR/UE2wEAAFWrL1peRrax3NDqMrKttQEAAAAAADru05/+dMUfty9evDizZs3qUp8zZ86sCNjbfvvt85GPfKTFfYcPH15RXrZsWYfHmTt3blXz6ok/4h80aFBOPfXUPPjgg9l5552b6hcuXJiHH364S31Pnz69ovzAAw9U1f7BBx/s0H4HHnhgxbm65557LAPbTQTbAQAAVWsts11jWl9GVrAdAAAAAAB03bRp03LcccdV1H32s5/NokWLOtXfvHnzcs0111TUnX322Rk1alSL+48bN26L9h31ox/9qKq5NTQ0NP17zZo1VbWt1ogRI3LSSSdV1D399NNd6vPggw+uKH/ve9/rcNvFixd3eIngsWPHZr/99msqv/DCC/nxj3/c4bHoOMF2AABA1eo6ldluQIv1AAAAAABAdb7yla9kyJAhTeVly5blpJNOysqVK6vqZ/HixTnllFOydu3aprqddtopX/rSl1pts//++1eU77rrrg6N9V//9V956KGHqprfiBEjmv79yiuvdHm53PY0XyJ382C/zjj00EMzadKkpvKcOXNy9913d6jtZZddVtXxfvKTn6woX3DBBVW/HmifYDsAAKBqrQbbpTEb0kpmu8hsBwAAAAAAtbDHHnvkuuuuq6i7//77c9xxx+X555/vUB/z58/PkUcemSeffLKprq6uLt/5zncyduzYVtsdeOCBFYF+P/zhDzNnzpx2x/rQhz7UoXltburUqU3/Xr9+fX75y192qN3rr7+e6667LitWrOjwWCtXrsxtt93W6vidUVdXt0UQ3Mc+9rF2M+bddttt+frXv17VWB/84Aezxx57NJWffPLJ/O3f/m2WLl1aVT+LFy/e4jzwZ4LtAACAqrW2jGySrGtc22K9zHYAAAAAAFA7H/7wh/OJT3yiou6+++7LtGnTctVVV2XhwoUttluwYEG+8IUvZO+9987jjz9e8djVV1+dI488ss1xhw0bllNPPbWpvGHDhvz1X/91i0uerl27NjfccEPe9a53ZdGiRRk5cmRHDy9JcsQRR1SUzz777Hz961/Pww8/nD/+8Y955plnmrZXXnmlYtxPfepTmTBhQj784Q/nrrvuajPw7qGHHsqRRx6ZZ599tqnuXe96V6ZMmVLVfFvyqU99Km9/+9ubyi+++GLe/e5355ZbbkljY2PFvqtWrcpll12W0047LY2NjVWdr/r6+txyyy0ZPnx4U93Pfvaz7LPPPvnXf/3XNo//1Vdfzc0335zTTz89u+yyS7761a9WcYTbFt92AQAAVWsts12SrC9bTmle30YbAAAAAACgetdff31GjhyZL3/5yynLMkmyYsWKXHTRRfnc5z6XadOmZZdddsnIkSOzZMmSPPvss/n973+/RT8DBw7MzJkz8/GPf7xD415++eX54Q9/mGXLliVJ/vSnP+WYY47J5MmTs88++6ShoSGLFi3Kgw8+mFWrViVJdtxxx1x99dVVZbh73/vel89//vNN2fpefPHFLQIM3/ShD30oN954Y0Xd8uXLM2vWrMyaNStFUWTy5MnZbbfdMmLEiAwYMCBLlizJE088sUU2wCFDhuSb3/xmh+fZloEDB+amm27KYYcdliVLliRJXnrppbzvfe/L+PHj8453vCM77LBDFi1alN/85jd54403kiQ77LBDrr766nz0ox/t8Fh77rlnbr311pxyyil57bXXkiTPP/98zjnnnJx77rnZe++9M3HixAwfPjyvv/56li1blqeeeqrD2RARbAcAAHRCW5nt1pYtZ7ark9kOAAAAAABq7vLLL89hhx2Wc845J/Pnz2+qL8syc+fOzdy5c9tsv//+++cb3/hGpk+f3uExd95559x666058cQTKzKmLViwIAsWLNhi/1133TX/+Z//mUWLFnV4jCTZbrvt8sMf/jAnnnhiXnjhharaNleWZebPn19xjlqy884757bbbsvee+/dpfE2t+eee+ZnP/tZjj/++Lz00ktN9YsWLcqPfvSjLfYfMWJE7rzzzmzYsKHqsY466qjMmTMnp59+esXyvhs2bMijjz6aRx99tN0+qs1AuC2xjCwAAFC1+qL1W4n1rQTb1UdmOwAAAAAA6A5HHXVU5s2bl5tuuilHHnlkBgxo+w/gGxoacsIJJ+SOO+7InDlzqgq0e9Nf/uVf5qGHHsp73/veFEXR4j5jx47NZz7zmTz66KOZOnVq1WMkyfTp0zNv3rz827/9W0488cRMnjw5w4cPT31969877LDDDrn33ntz4YUX5h3veEe75yNJ/uIv/iJXXnllnnrqqbzzne/s1Fzbsu++++bJJ5/Mueeem2HDhrW4z9ChQ3PWWWflscceyyGHHNLpsSZPnpyHHnood911V4466qg0NDS022bq1Kk599xz86tf/Sq33XZbp8fu74o3U0jC1qYoij2TPPFm+Yknnsiee+7ZizMCAOBNz69+Olc++w8tPnbMqFPyX6/eskX9Lg275aJJ/9zdUwMAAAAA6HPWr1+/Rbat3XffvUMBQtCSVatW5eGHH86CBQuyePHirF27Ng0NDRk/fnymTJmS/fffv0MBWB31yiuv5N57783zzz+f119/PePHj8+uu+6aQw45ZKt4Hb/xxhuZO3du/vCHP+Tll1/OqlWrUhRFhg8fnokTJ2afffbJW9/61h6bz5o1azJ79uw8/fTTWbp0acaOHZsJEybkkEMOyfbbb1/z8VavXp0HH3wwzz77bJYsWZJVq1Zl++23z8iRIzN58uRMnTo1o0ePrvm43XVtmzt3bvbaa6/Nq/Yqy7LtFI410vuvZgAAoM+payOz3brWMttZRhYAAAAAAHrE9ttvn0MPPTSHHnpoj4w3ZsyYnHzyyT0yVmdst912mT59eqcy+HWHhoaGHHPMMT023uDBg3PYYYf12Hj9mWVkAQCAqtW1sSRs69rj1N4AACAASURBVMF2lpEFAAAAAACg7xJsBwAAVK3NzHaNMtsBAAAAAADQ/wi2AwAAqtapzHZttAEAAAAAAICtnWA7AACgam1mtmt1GVmZ7QAAAAAAAOi7BNsBAABVqyvayGzX6jKyMtsBAAAAAADQdwm2AwAAqlbfxq3EunJdy20E2wEAAAAAANCHCbYDAACq1mZmu9aWkY1lZAEAAAAAAOi7BNsBAABVq2srs13jmhbrZbYDAAAAAACgLxNsBwAAVK3tzHatLSMrsx0AAAAAAAB9l2A7AACgam1mtmtlGdm2AvQAAAAAAABgayfYDgAAqFrbme1aDrarj8x2AAAAAAAA9F2C7QAAgKq1mdmusZVgO5ntAAAAAAAA6MME2wEAAFUriiJFK7cTrWa2K2S2AwAAAAAAoO8SbAcAAHRKfdHy7USZspX9ZbYDAAAAAACg7xJsBwAAdEprme1aUx/BdgAAAAAAAPRdgu0AAIBOqTZTnWVkAQAAAAAA6MsE2wEAAJ1SV2WmOsvIAgAAAAAA0JcJtgMAADqlrqhyGVmZ7QAAAAAAAOjDBNsBAACdUnVmuyr3BwAAAAAAgK2JYDsAAKBTZLYDAAAAAABgWyLYDgAA6JS6Km8n6guZ7QAAAAAAAOi7BNsBAACdUm3wnGA7AAAAAAAA+jLBdgAAQKcUVWe2s4wsAAAAAAAAfZdgOwAAoFOqzVRXF5ntAAAAAAAA6LsE2wEAAJ1SV/UysjLbAQAAAAAA0HcJtgMAADqlruplZGW2AwAAAAAAoO8SbAcAAHSKzHYAAAAAAABsSwTbAQAAnVJ1ZrvIbAcAAAAAAEDfJbUEAADQKXVFtcvIuv0AAAAAAICe8Prrr+eRRx7J/Pnz88orr2T16tXZbrvtMn78+EyZMiX77bdfBg0aVJOxnnvuuXzzm9/Mvffem6eeeipLly7NunXrmh6fNWtWzjrrrBbbPvTQQ5k1a1buv//+LFy4MK+99loaGxubHn/66aczadKkJMnhhx+ee++9t+mxsixrMn+ohm+7AACATqmrMlNdfZXLzgIAAAAAAB23YcOG/Md//EdmzZqVX/7yl1m/fn2r+w4ePDjHHHNM/v7v/z7vec97Oj3mDTfckHPPPTdr1qypqt369etzzjnn5IYbbuj02NAbLCMLAAB0SvWZ7QTbAQAAAABAd/jFL36RadOm5Ywzzsg999zTZqBdkqxevTp33HFHTjjhhMyYMSOPPPJI1WP+6Ec/ysc+9rGqA+2S5POf/7xAO/okme0AAIBOqa82s53bDwAAAAAAqLlLL700l1566RbLqhZFkalTp2bChAkZPXp0Fi9enOeeey5PPfVUxX5z5szJgQcemOuvvz4f+chHOjzuRRddVDHmGWeckb/7u7/LLrvskoEDBzbVjxkzpqLdokWL8i//8i9N5UGDBuWf/umfcvzxx2fs2LGpq/vzH/tPmDChw/OBnuDbLgAAoFMKme0AAAAAAKBXnXfeeZk5c2ZF3bBhw3LRRRflzDPPzMSJE7dos2DBgtx444259tprm7LSrV27Nh/96EezatWqnHfeee2O+/vf/z6PPfZYU/n444/PTTfd1KE533777Vm7dm1T+YorrshnPvOZDrWF3mYZWQAAoFOqDZ6rL/ytDwAAAAAA1Mq3v/3tLQLtDj744MybNy8XXXRRi4F2STJ58uRcccUVeeyxx7LXXntVPHb++edn9uzZ7Y49Z86civIpp5zS4Xl3tu3s2bNTlmXTBr1BsB0AANApdVXeTshsBwAAAAAAtfHUU0/lk5/8ZEXdQQcdlB//+McdXnp1ypQp+fnPf56pU6c21TU2NuYDH/hAXnnllTbbLlq0qKJczXKvXWkLvU2wHQAA0Cl11S4jG5ntAAAAAACgFi644IKsXLmyqTxixIjceuutGTp0aFX9jBs3LrfccksGDRrUVPfCCy/k8ssvb7Pd5mMnycCBAzs8ZlfaQm/zbRcAANApdal2GVmZ7QAAAAAAoKt+97vf5e67766ou+qqq7Ljjjt2qr9p06blggsuyJVXXtlU961vfSuXXHJJRo4c2WKbxsbGTo3V1ba1MG/evDz++ONZsmRJli5dmsGDB2fs2LGZOnVq9tlnnzQ0NHSq3/Xr1+ehhx7KH//4xyxevDhr1qzJ2LFjM2nSpLz73e/O4MGDa3wk9AbBdgAAQKdUndmucPsBAAAAAABdNXPmzJRl2VQeM2ZMzj777C71ed555+Waa67JunXrkiSrVq3KDTfckAsvvDBJ8swzz2TXXXdttf0RRxzRYv2sWbOSpM35FUXRYv3TTz+dSZMmNZUPP/zw3HvvvU3lzc9BexYuXJj//b//d37wgx9ssYzt5rbbbrscccQR+dCHPpSTTz459fXtJxJ48sknc8UVV+Tuu+/O8uXLW+33b/7mb3LZZZdlypQpHZ43Wx/LyAIAAJ0isx0AAAAAAPS8n/zkJxXlD37wgxXLwHbG2LFjc8IJJ7Q5Tl9UlmWuuOKKTJ48Oddff32bgXZJ8sYbb+RHP/pRTj311CxcuLDNfTds2JB/+Id/yF577ZXvfve7rQbavdnvzTffnD333DMzZ87s1LGwdZBaAgAA6JRqg+eqDc4DAAAAAKBj1m8o8/zS3p5F/zdhZDKgvuUsbD3l+eefzzPPPFNRd/TRR9ek76OPPjq33XZbU/mBBx7IunXrMnDgwJr039PWr1+f0047LbfeeusWj+24447Ze++9M2bMmKxZsyaLFi3K//zP/2TlypUd6vuNN97IiSeemJ/+9KcV9QMHDsy+++6bCRMmpKGhIS+//HIeeuihvP76601zOu+887J06dJccsklXT5Gep5gOwAAoFOKKhJl16W+1TTwAAAAAAB0zfNLk90+19jb0+j3/nhlXSaN6d05/PrXv96ibvr06TXp+x3veEdF+Y033sijjz6aGTNmZMKECXn66aebHvuXf/mXigxt3/ve9/Kud71riz7HjNl4wg4//PCmutNOOy0PPvhgU3nzfjc3YcKETh3Hm84///wtAu2OP/74XHLJJZkxY8YW+zc2NuaBBx7I97///dx4441t9v2JT3yiItBuhx12yCWXXJK/+7u/y7Bhwyr2feONN/L1r389X/jCF7J69eokyWWXXZYDDjggxx13XCePjt4i2A4AAOiUajLbWUIWAAAAAAC67vnnn68ojx8/PqNHj65J33vttVeL482YMSMDBgzIpEmTmupHjBhRsd+OO+5Y8XhzQ4cObfr34MGDKx5rq11n/fSnP81Xv/rVirqrrroqn/3sZ1ttU1dXl4MOOigHHXRQLrvssi3m+aYf/OAHmTVrVlP5rW99a2bPnt3qcWy33XY5//zzc+CBB+bII4/M6tWrU5ZlPvWpT+X3v/996uo6ntyA3ufZAgAAOqWu6PjtRH3h73wAAAAAAKCrXn311YryyJEja9b34MGD09DQ0OZ4fcVll11WUf5f/+t/tRlo19yIESNaDLYry7Ki7wEDBuTOO+/sUMDgm0F8b1qwYEFuv/32Ds+JrYNgOwAAoFPqqridkNkOAAAAAAC6rnnwW/MMc13VvL8lS5bUtP+e8Nhjj1Ustzts2LBcffXVNen7l7/8ZZ544omm8plnnpl99tmnw+0/8YlPVATx3XnnnTWZFz1HsB0AANApddUsIxuZ7QAAAAAAYGtXFEVvT6HLfv7zn1eUzzjjjAwfPrwmfd9zzz0V5VNPPbWq9kOGDMk73/nOpvKvfvWrmsyLnuMbLwAAoFNktgMAAAAAgJ41atSoivJrr71W0/6XLVvW5nh9wf33319RPvzww2vW93333VdRHjVqVJ555pmq+tg88O+ZZ55JY2Nj6urkS+srBNsBAACdUlVmO8F2AAAAAADdZsLI5I9XCtbpbhNG9vYMtgx+W7p0ac36Xr16dVavXl1RN3r06Jr131NeeumlivKee+5Zs74XLlxYUX7Xu97Vpf4aGxuzbNmyPhnUuK0SbAcAAHRKfaoJtnPrAQAAAADQXQbUF5k0prdnQU/YeeedK8ovv/xylixZUpOguLlz57Y7Xl+wZMmSivLIkbWLkmzedy2sWLFCsF0fIqwZAADolKKoYhnZKgLzAAAAAACAlh100EFb1M2ZM6cmfTfvZ7vttsu+++5bk757U1EUNetr7dq1NevrTWVZ1rxPuo9gOwAAoFNktgMAAAAAgJ41ceLETJw4saLupz/9aU36vueeeyrKBxxwQAYNGlSTvnvSmDGVaR5fffXVbul78ODBaWxsTFmWXdomTZpUs/nR/QTbAQAAnVJVZrtCZjsAAAAAAKiFY489tqL8ne98J+vWretSn4sXL86dd97Z5jh9xU477VRRnjdvXs36Hj9+fNO/V69eneeee65mfdM3CLYDAAA6pb6K2wmZ7QAAAAAAoDY+/elPVyyNunjx4syaNatLfc6cObMiYG/77bfPRz7ykS712Vve/e53V5Rnz55ds76bL+Nbq6yC9B2C7QAAgE7Zrn77ju9b1/F9AQAAAACA1k2bNi3HHXdcRd1nP/vZLFq0qFP9zZs3L9dcc01F3dlnn51Ro0Z1eo696aijjqoof/e7382KFStq0vcxxxxTUf73f//3mvRL3yHYDgAA6JS/GLJPh/fdo4p9AQAAAACAtn3lK1/JkCFDmsrLli3LSSedlJUrV1bVz+LFi3PKKadk7dq1TXU77bRTvvSlL9Vsrj1tzz33zGGHHdZUXr58eS666KKa9H3cccflbW97W1P5oYceyv/5P/+nJn3TNwi2AwAAOmXUwLF537i/b3e/aUP2y8Ejjml3PwAAAAAAoGP22GOPXHfddRV1999/f4477rg8//zzHepj/vz5OfLII/Pkk0821dXV1eU73/lOxo4dW9P59rTmwYJf+9rX8pWvfKXD7V977bWsXr16i/oBAwbksssuq6j7+Mc/nttuu63qOf7sZz/LH//4x6rb0bsE2wEAAJ12xMj35EuTrs+p4z6aE8acWbGdOOaDOW+Xy/PxCZ/PoLqG3p4qAAAAAAD0Kx/+8IfziU98oqLuvvvuy7Rp03LVVVdl4cKFLbZbsGBBvvCFL2TvvffO448/XvHY1VdfnSOPPLLb5txT/vIv/zLnn39+Rd0FF1yQv/mbv8nDDz/cYpvGxsb85je/yac//enssssuefnll1vc74wzzsiHP/zhpvLatWtz8skn58wzz2y17yTZsGFDfvvb3+bSSy/NtGnT8ld/9Vd57rnnOnF09KYBvT0BAACgb9uxYUJ2bJjQ29MAAAAAAIBtzvXXX5+RI0fmy1/+csqyTJKsWLEiF110UT73uc9l2rRp2WWXXTJy5MgsWbIkzz77bH7/+99v0c/AgQMzc+bMfPzjH+/pQ+g2V199dZ577rn84Ac/aKq76667ctddd+Utb3lL9t5774wePTpr1qzJyy+/nMceeywrVqzoUN//9m//lqVLl+aHP/xhU913v/vdfPe7383YsWPz9re/PaNHj05dXV2WL1+eF198MU8++WSL2fLoWwTbAQAAAAAAAABAH3X55ZfnsMMOyznnnJP58+c31Zdlmblz52bu3Llttt9///3zjW98I9OnT+/uqfao+vr63Hzzzdlzzz3z5S9/OevWrWt67MUXX8yLL77Y6b4HDhyYW2+9Nddcc00uvvjiiiC6xYsX52c/+1mH+th+++07PQd6h2VkAQAAAAAAAACgDzvqqKMyb9683HTTTTnyyCMzYEDb+bcaGhpywgkn5I477sicOXP6XaDdm4qiyMUXX5zf//73+chHPpJRo0a1uf/QoUNz4okn5vbbb8/EiRPb7fvCCy/M008/nX/6p3/KW9/61nbnM2zYsBx//PH52te+lpdeeikzZsyo6njofcWbKSRha1MUxZ5Jnniz/MQTT2TPPffsxRkBAAAAAAAAQO2tX7++IiNZkuy+++7tBkxBa1atWpWHH344CxYsyOLFi7N27do0NDRk/PjxmTJlSvbff/80NDT09jR7XGNjYx555JH87ne/yyuvvJKVK1dm++23z7hx47LHHntkn332ycCBAzvd/9NPP51HHnkkixcvztKlS1NXV5dhw4blLW95S/bYY4/svvvuqa+vr+ERbd2669o2d+7c7LXXXptX7VWWZdspHGvEVRkAAAAAAAAAAPqR7bffPoceemgOPfTQ3p7KVqWuri7Tp0/vtkx+u+66a3bddddu6Zutg2VkAQAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAHpRURRb1JVl2QszAaidxsbGLepaut71JYLtAAAAAAAAAAB6UV3dluEb69at64WZANTO+vXrt6hr6XrXl/Tt2QMAAAAAAAAA9HFFUWTQoEEVdStXruyl2QDURvPr2KBBg2S2AwAAAAAAAACga4YNG1ZRXr58uaVkgT6rLMssX768oq75da4vEmwHAAAAAAAAANDLmgehrFu3Li+88IKAO6DPKcsyL7zwwhbLYQ8fPryXZlQ7A3p7AgAAAAAAAAAA27rBgwdn4MCBFcEpK1asyB/+8IcMHz48Q4cOzYABA1JXJ68SsPVpbGzM+vXrs3LlyixfvnyLQLuBAwemoaGhl2ZXO4LtAAAAAAAAAAB6WVEUectb3pLnnnuuIpvdunXrsmTJkixZsqQXZwfQeW9e34qi6O2pdJlwZwAAAAAAAACArcCQIUMyceLEfhGQApBsDLSbOHFihgwZ0ttTqQnBdgAAAAAAAAAAW4k3A+4GDhzY21MB6JKBAwf2q0C7xDKyAAAAAAAAAABblSFDhuRtb3tb1qxZk+XLl2fFihVZu3Ztb08LoF2DBg3KsGHDMnz48DQ0NPS7TJ2C7QAAAAAAAAAAtjJFUWTw4MEZPHhwxo0bl7Is09jYmLIse3tqAFsoiiJ1dXX9LriuOcF2AAAAAAAAAABbuaIoUl9f39vTANim1fX2BAAAAAAAAAAAAGBrJ9gOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoxoLcnAG0YtHlhwYIFvTUPAAAAAAAAAABgK9BCDNGglvbrDkVZlj01FlSlKIq/SXJHb88DAAAAAAAAAADYar23LMs7e2Igy8gCAAAAAAAAAABAOwTbAQAAAAAAAAAAQDssI8tWqyiKHZIctlnVwiRre2k60Be8LZVLL783yR96aS5A/+Q6A3Q31xkAusrPEqC7uc4A3c11BuhurjNAfzAoyS6ble8ty/K1nhh4QE8MAp2x6U3QI+spQ39QFEXzqj+UZTm3N+YC9E+uM0B3c50BoKv8LAG6m+sM0N1cZ4Du5joD9CO/7Y1BLSMLAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0QbAcAAAAAAAAAAADtEGwHAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0QbAcAAAAAAAAAAADtEGwHAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0QbAcAAAAAAAAAAADtEGwHAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0Y0NsTAKBmFie5tFkZoJZcZ4Du5joDQFf5WQJ0N9cZoLu5zgDdzXUGoAuKsix7ew4AAAAAAAAAAACwVbOMLAAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtEOwHQAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtEOwHQAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtEOwHQAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtGNAb08A2HoURVGfZHKSaUnekmSHJGuSLE3yhyRzyrJcVeMxByZ5d5KJSXZKsjLJi0l+W5blM7Ucq6cURbFnkn2TjE3SkOTlJM8n+XVZlqt7c249qSiKkUn2TLJ7klFJBidZlmRxkofLsvxDL05vC0VR7JqNz9tbkgxN8lKSZ5PcX5bluhqO89Yk78jG1/sOSdZl43mZn43nZUWtxtoauc7UhuvMRn3tOkPPcJ2pDdeZjfrCdaYnX/N94XxALfTHnyX98ZhqpafuBfsK56Nn9Mf3ZH88plrxvqrkM7ie0R/fk/3xmGrFdYbe0B/fk/3xmGrFdcZncEAzZVnabLZteMvGX97OS3J3kteSlG1s65P8OMlf12DcsUm+nmRJG+P9OsnJXRxntySnJrkmyewky5uN8UyNzuOwJJ9P8kIbx7M8yXeSvK0Xn+9uOx9JBiY5Jsn1SZ5o57VUbjpXlyXZsZffA6ckub+NeS7Z9Fod04UxhiS5MMlT7ZyTDUn+M8nRvXlOuuEcu87U5jy6zvTB60x3vz46cA7a2yb11rmp8Xl2nanNeXSd6SPXmZ56zfeV82Gz1WLrjz9L+uMx1fg574l7we2THJzkH5LclI33hI3Nxjmrt1//zkePneN+957sj8dU4+fc+6rnz4fP4PrZe7I/HlONn3PXmT/P02dwPXOe+917sj8eU42f8236OtNTr4/4DM5m63Nbr0/AZrP13pbku124MbgryfhOjntckkVVjPX/Jdm+iv4PT/Jf7fyCWpMbrE3jHZCNf2XS0eNZleTjPfg8d/v52HQOXu3ka2lpkg/0wut/aJLvVTHPl5Mc04lxDkzyx06cl+8mGdLT56UbzrPrjOvMNned6cnXRxfeX29uk3rqvHTj+XadcZ3Zpq4zPfWa7yvnw2arxdZT76sWxu22nyX98Zhq+Hx3+71gNn7Z9Hg2ftnSXv9n9fLr3/nomfPc796T/fGYvK/67vnYNI7P4PrZe7I/HlNfel/1hetMfAbX0+e7370n++Mx1fD53uavMz31+ojP4Gy2PrlZRha2bVNaqX8hG9PpL8rG5aZ3S/L2JHWb7fOeJP9dFMVhZVm+3NEBi6I4PMntSQZtVl0meSQbPwwZkWS/JGM2e/zMJMOLojixLMvGDgyzb5KjOzqnriiK4qhs/GuGhmYPPZvksWz8InpCNv6iNHDTY0OSfL0oirqyLL/WA9PsifMxNsnIFurXZuMvyi9n4198jE4yfdP/3zQiyXeKohhXluU/d/M8kzSler45yfHNHlqc5Leb5vq2bHwtFpseG5/kjqIojirL8r4OjnNgkp9m403J5lYk+X/Z+B5ryMa003ul8j12epJxRVEcX5bl2g4e2tbIdaaLXGea9KXrTI+9PkjiOtNlrjNN+sp1pqde833lfEAt9MefJf3xmLqsp+4Fk5yRjUsKbdWcjx7VH9+T/fGYusz7qpLP4HpUf3xP9sdj6jLXmQo+g+tZ/fE92R+PqctcZ5r4DA5oXW9H+9lstt7bkszJnyPfH0nyybSyJFiSnZN8I1tGzP8qSdHB8SZky8j8+5JMbbZfQ5JPZeMvEZvve2UHxzmvhXmWSVYnWdCs7pkunL9J2fIvphYk+asW9h2Z5Lpm+25oad9ueJ67/Xxk4y+Nb/axIsm3khyZZLsW9i2S/G02foHffE7dfj42zeGaZuOu3fT6H9Rsv2nZMj32K0l26sAYg1s4v69vem0PbmH/tyW5s4VzclFPnJNuPNeuM64z29x1pqdeH5vG2ryvBza9ZqrZBnT3+eiB8+064zqzTV1neuo131fOh81Wi60//izpj8dUo+e62+8FN7Vf1sL5LJM838JjZ/Xia9/56Llz3e/ek/3xmGr0XHtf9fD5iM/g3jyufvee7I/HVKPn2nXmz3P0GVzPnu9+957sj8dUo+fadaYHXx/xGZzN1ie3Xp+AzWbrvS0b/6rv7iTTq2hzTgs/vE/rYNtvNWv367Twgcdm+5/YbP/VSd7agXHO2/SL32+T3JDko0n2z8ZMLIc36/OZLpy/5umT5ycZ106bC5u1mZukvpuf524/H5t+EVyU5Px0PD336CTzmo3/ZHu/dNbgfOyWLW9Q3tvG/ttly5uFf+vAOGc1a9OYdlJob/ol+Qf/f3v3HjVJUd5x/PfICstNFkFYQGFZXbyhBKIJKEkWAwT0eAGJGhKzK94SjEeNehK8nKgxahIkehKDGhVJvESjYsBFMCiLBC8ILsrNW2RRiCC7LIRF9gZP/uh52Z56Z6a7Z3q6u2q+n3P6j+q3q7uqpurp6Xq7e4J8dyu4gIlpIc4QZ2Y0zjTSP3rHyu9r9TTr1dWFOEOcmbU401Sfj6U9WFjqWFI8l6RYpxo+50auBXt571L29oFVkt7ei6n79v62Otjnypb6Pe3RbHsnNyZTrFMNnzPjqoX2EHNwc3VKbkymWKcaPmfiTH8ZmYNrtr2TG5Mp1qmGz5k403D/EHNwLCxRLq0XgIWFpb1F0pIx830uOHmvKpFnmaRtuTybJS0rke/jwbE+ViLPnsO+nKq+f8YuVfYml/y+ji6Z92tBvtOm/Dk30R6PKPsFMMh32IB2fOqU2+Pc4HjnlMhzSK/PzuXZKmlpQZ7PB8c5r2T5Fmv+hcyx02yTKbf3kjHzEWeIM+F+YoozU2+P3P7y+1o9zXp1dSHOEGdmLc401edjaQ8WljqWFM8lKdaphs+5kWvBXr6hjyZEhAAAGD9JREFUb3JQB/5pRHu00t5LxszX2TGZYp1q+JwZVy20h5iDm6vPkjHzdXZMplinGj5n4kx/OZiDa7a9l4yZr7NjMsU61fA5E2ca7h9iDo6FJcol/7vRAGaMu68dM+sHgvQxJfKcKmmHXPoL7v7jEvn+Nki/wMwWjsrg7hvcfVOJfU/iWVJfDP2Wu/93ybxnBumX1FOkwZpoD3e/w93vHSPf95S9IjuvTH8ai5ntLOmUYHXYx+Zx9x9J+mJu1QJlfXqUpUH6gsICZse6TdKVweplZfJ2EXFmIsSZ/mNEEWd6x2yif6CHODMR4kz/MaKIM031+VjaA6hDiueSFOs0iYavBeXuv6hUwIbRHs1LcUymWKdJMK76MQfXvBTHZIp1mgRxZj7m4JqV4phMsU6TIM70Yw4OwCjcbAdgHGuC9M5mtqggz0lB+pwyB3L3GyV9O7dqV0nHl8k7Zb8dpC+ukPeryp6anPM0M9tv8iJFK+xP+0/xWL8naZdc+pvu/oOSecM+e3LB9rsG6VtKHkeSfh6k96yQNxXEGeJMnZqMM4gHcYY4U6cY4sw4fb6uY3WxPYA6pHguSbFOUrPXgjGgPeKR4phMsU4S4yrEHFw8UhyTKdZJIs4gXimOyRTrJBFn6sIcHDADuNkOwDi2DVi347CNzWyxslfZ5vNfUeF4q4P0iRXyTssjg/R1ZTO6+2ZJP8mteoi6Uae2hP1paF+qwQlBenWFvJerv6yHm9m+I7a/LUhXedIo3PbOCnlTQZwhztSpyTiDeBBniDN1iiHOVOrzNR+ri+0B1CHFc0mKdZKavRaMAe0RjxTHZIp1khhXIebg4pHimEyxThJxBvFKcUymWCeJOFMX5uCAGcDNdgDG8ZggvU3SuhHbHxqkv1/xdbjfCNJPrJB3Wh4epO+qmD/c/kkTlCV2YX+a5mujw774zbIZe3322mD1qL54eZA+ouyxBmz7nQp5U0GcIc7Uqck4g3gQZ4gzdYohzlTt83Ueq4vtAdQhxXNJinWSmr0WjAHtEY8Ux2SKdZIYVyHm4OKR4phMsU4ScQbxSnFMplgniThTF+bggBnAzXYAxnFKkL7K3R8Ysf0TgvRPBm413P8U7K8NW4L0ThXzh9t3oU6NM7OHSTouWH3lFA/5+CA9zb74EfX3k9PMbOeiA5jZSZIOzK263t2vLl/EZBBniDO1aCHOtOlAMzvHzK43sw1mtsXMbu+lP2FmrzCz8OaqWUacIc7UIqI4U7XPjyWi9gDqkOK5JMU6Sc1eC8aA9ohHimMyxTpJjKsQc3DxSHFMplgniTjTJczBVZPimEyxThJxpi7MwQEzgJvtAFRiZrtJemmw+ryCbOFd9T+reNibg/ReZrZnxX3UbX2Q3q9i/nD7x05Qlpi9UtIuufTdki6dxoF6F7fhBW7Vvhhuv2zYhu5+k6QzcqseJenTZrbLkCwys6cqmyCc84CkV1csY/SIMw8iztSjsTjTAQdLWqlsEmORpIdK2qeX/kNJH5L0MzP7h944m1nEmQcRZ+rR+TgzZp8fV+fbA6hDiueSFOskNX8t2HW0RzxSHJMp1kliXIWYg4tHimMyxTpJxJkOYg6upBTHZIp1kogzdWEODpgd3GwHoKp3S1qcS9+l/omJQRYF6V9WOaC7b5S0KVi9R5V9TMGNQfrIshnN7EBJ+wer265P48xsiaS3Bqvf7+7hW3bqEvbDX1V8Tbc0v++O/Nzc/SxJb5S0tbfquZJuMLO/NLOjzWyZmT3RzJ5nZudIukLbL2a2SjrN3WfxizFxJkOcmVALcSYGu0p6raSrzWxWX+MvEWfmEGcmFFGcGafPVxZRewB1SPFckmKdpBauBTuO9ohHimMyxTpJjKsQc3DxSHFMplgniTgTI+bgMimOyRTrJBFn6sIcHDAjuNkOQGm9V+v/WbD6ze5+Z0HW8Mmd+8Y4fJhn9zH2UafLgvTzRz0tGfjjAevark+jzGxHSZ9Rf73XSvq7KR62lX7o7mdKOkzSxyRtkHSQsi/bl0v6kaTrlD3VslLZE3CSdImkI9393DHKGDXiTB/izARaijNt2SZptaS3SHqOpCOUPTV4uLJ/MJyp+RMdh0i6xMwOaq6Y3UCc6UOcmUAscWaCPl/1OFG0B1CHFM8lKdYpJ4YyNon2iECKYzLFOuXEUMYmMQcXgRTHZIp1yomhjLOAObgKUhyTKdYpJ4YydhpzcMBs4WY7AKWY2WGS/jVY/RVJZ5fIHn5BC5++KCP8gtb2q7dXKXsaYc4iSW8rymRmj5L0hgF/2sHMdq6naFH4iKTfyKXvl7RijKdkqmizHy5Q9nMUW4s2lHSupNe5+3erFCwFxJl5iDOTaSPOtOEtkg5w92Pc/W/c/QJ3X+PuP3H3a9z9fHd/o7J/MrxHkufyLpb0BTOzNgreBuLMPMSZyXQ+zkzY56vqfHsAdUjxXJJinQr218UyNon26LgUx2SKdSrYXxfL2CTm4DouxTGZYp0K9tfFMqaOObgKUhyTKdapYH9dLGNnMQcHzB5utgNQqPczYavU/6XoZkl/5O4+ONdITeWZGne/R9L7g9VvMLPXDMtjZo+UdJGGvza5U3WcFjP7a0kvDlaf4e5fb7goU++HZraTmf2jpO9JepmkfUpkWyHpWjM7v9dnZgJxZj7izPg6FGemrje5V/izA+6+yd3PkPTq4E9HSPqDqRSuY4gz8xFnxhdDnJlCnx91rM63B1CHFM8lKdZpSsdL+fxGe3RIimMyxTpN6Xgpjyvm4DokxTGZYp2mdLyU48zUMQdXXopjMsU6Tel4MxlnmIMDZtOCtgsAoNvMbB9J/yXpgNzq2yQd5+53lNzNxiA9zhtPwjzhPtvwLkknavvTAybpfWZ2iqSPSrpG2VMc+/e2+1Nt/6J1i6T8JM4md5/3lIiZLSlbGHdfW6n0LTCz1yp7AizvLHf/+5L5l5Q91oD2aLQfmtkCSV+UdEK+WMp+ruJcSVdJWidpJ0kHSnqGsgvwZb1tny3pKDM7zt2vGaOs0SDOjEScqajlONN57v4BMzte2U9dzDld0qdaKlIjiDMjEWcqiiHO1NTnyx5rovYAYpHiuSSmOsV0LdgE2iNNMY3JsmKqE+OqX0ztwRxceTGNybJiqlNM46oJqc0VhJiD6/6YLCumOhFn+jEHB2CauNkOwFBm9nBJl0g6JLd6naRj3f3HFXaV3Bc0SXL3LWZ2sqQLJT0596eje8sw6yW9VNLFuXV3Ddn2pgpF6vQryM3s5ZLOClaf7e6vr7CbSdqj6X74VvVP8t0n6RR3vzDYbouk6yVdb2YflvTPkk7r/W1vSV8ys8Pcff0Y5e084sxoxJlqOhBnYvFu9U/0HWlmi9x9WB+JGnFmNOJMNTHEmRr7fJlj1dEeQOeleC6JsE4xXQs2gfZITIRjslCEdWJc9YupPZiDKyHCMVkowjrFNK6akMxcwQjMwXV7TBaKsE7EmX7MwQGYGn5GFsBAZraHst+Sf1Ju9QZld+JfX3F3dwfpR1Qsy26a/wWtExcj7n6rpKdJ+pCkrSWyXCrpKZLuDdbfVnPROsXMXizpg+r/snqOpFc1WIywH+5iZrtW3Ef4ExQD+2HvC3b4Bff0AZN8fdx9s6SXS7ost/oASW+qWM4oEGfKIc6U05E4E4srlY21OTtIekJLZZkq4kw5xJlyYogzNff5omN1vj2AOqR4LkmxTgUauxaMBO3RMSmOyRTrVIBx1Y85uI5JcUymWKcCxJk4MQcX8ZhMsU4FiDMVMAcHgJvtAMxjZrtLukjSr+dW/5+kE8Z8lX549/5BFfOH29/p7hsGbtkCd7/X3f9E0mMlvVnZP6BvUfYU5T2SblT2kwXHSfrd3quIHx/s5qrGCtwwM3uRsi99+XPOJyW9zN29qXL0nkoN+82BFXcT9sVhT6Y8U1L+IuQmZX2gkLs/IOkdweoVZhbr03sDEWeqIc6M1pU4E4tenPlZsLrSBE8MiDPVEGdGiyHOTKHPjzpW59sDqEOK55IU61Sk4WvBzqM9uiXFMZlinYowrvoxB9ctKY7JFOtUhDgTJ+bg4h2TKdapCHGmPObgAEj8jCyAQO8phQslHZlbvVHSie5+5Zi7vTFIP6Zi/qVB+oYxyzFV7n6TpHf1liJHBelvD9ln1JM7ZvZ8Sf+m7ImtOf8haUXvQrOSGtrjRmVv7pnzGM3vn6OEfXFY3sOC9KUVv/R+XdlPW+zYS++lrKxJXJgQZ8ZHnJmvg3EmFvcF6XF+FqCziDPjI87MF0OcmVKfH3asWtsD6KoUzyUx1ymia8FG0B5piHlMDhNznRhX/SJqD+bgRoh5TA4Tc50iGleNiH2uoALm4KojzsxHnBkDc3AApok32wF4kJntLOlLko7Orf6VpGe5+zcm2PV1QfrJZrZLhfxPL9hfVHpPRz4jWH3ZoG1jZmbPkfRp9d/Y/UVJp7r7/e2Ual7fCW8SGKr3BfrJBfubsyhIV/pZPXffJml9sHrvKvvoKuJMM4gzrcaZWIQxZV0rpZgC4kwziDPdiTNT7PODjtX59gDqkOK5JMU6VdTUtWAsaI+WpTgmU6xTRYyrfszBtSzFMZlinSoizsSJObjqiDPzEWc6gDk4AHncbAdAkmRmCyWdL2l5bvUmSc9x969Psm93/4Wk7+dWLVD/F5Eiy4P0lycpTwc8Q9KSXPoyd0/iack5ZvZMZU9XPDS3epWkF/YmsdpyUZBeXiHvb6n/S+0ad799yLZ3BeldB2412m5BeuMY++gU4kyjiDMYysz21vynDP+3jbLUjTjTKOJMB0yzzw84VufbA6hDiueSFOs0hqauBWNBe7QoxTGZYp3GwLjqxxxci1IckynWaQzEmcgwBzce4sxAy4M0caZhzMEBCHGzHQCZ2Y6SviDp2NzqzZKe5+5frekw5wXpl5Qs2+Mk/WZu1b2SvlJTmdryF0H6Q62UYkrM7DhJn9f2n1+Qss/s+e6+pZ1SPehi9b+2/aheHytjZZAO+3ReeMF8eMljSJLMbJmk3YPVlZ7M7RriTOOIMxjlReq/DrhdCfz0F3GmccSZljXU5+eO1fn2AOqQ4rkkxTqNqalrwVjQHi1JcUymWKcxMa76MQfXkhTHZIp1GhNxJj7MwY2POLO9bMSZljEHB2AQbrYDZpyZLZD0WUkn5lZvlXSKu19c46E+KSn/WtuTe5MZRcJ/5H7W3TfVV6xmmdkKScflVl2j7OmEJJjZ70j6T0kLc6u/puwL5+Z2SrWdu/9K0ueC1WEfm8fMDpF0Um7VNkmfGpFldZB+upk9oUwZe14ZpH/o7ndUyN8pxJlmEWcwipntK+ktweoL3N3bKE9diDPNIs60r8E+H0V7AHVI8VySYp3G1eC1YBRoj3akOCZTrNO4GFf9mINrR4pjMsU6jYs4Exfm4CZGnNmOONMi5uAADOXuLCwsM7pI2kHSZyR5btkq6aQpHe+jwbGukLRwxPbPDbbfLOmgCcuwPNjn2gn3t6DCtidL2hK09eEt94Ha2kPSUZLuCfZ3maRd2qzjgHIuDT4HV/aa52HbL+z11fz2Hyw4hkn6YZDnakm7lyjfCQPK9862222C9ibOEGdmLs400R6SHivp2RXzLJb0nQF9fmnb7TJhmxJniDMzFWea7PMxtAcLSx1LiueSFOtUQxmnfi1Yshyrg32unGa9aY9uLCmOyRTrVEMZGVcNt4eYg8vXJ7kxmWKdaigjcaZ8GZcHZVw75n6Yg9ter+TGZIp1qqGMxJkW+oeYg2NhiW7J/242gNnzMUkvCNa9SdIaM1tScV+3efGTFH+l7MmGPXvpp0m6xMxe5u4/mNvIzHaS9ApJ7w3yv9fdby5TGDN7pDQwxi0O0gtG1HWju68rONS1ZrZK2St9v+3uDwwoy6GSzpB0avCnN7n7moL912La7WFmh0v6sqTdcqt/KOlVkvYxsyrF3eTuU/u5Bnf/qZm9X9Ibcqs/Z2Z/LunDnnsNs5k9XtJHlPXVOeslvb3gGG5mZyjrF3OOkHR17zir3N3zecxsL0mvUdZX8p/Veklnlq1fBxFniDMzF2ekRvrHfpLON7NrJX1C0nnu/uMhZdld0gplT9PuG/z5ne7+0yHHiAVxhjgza3GmkT4fUXsAdUjxXJJinSbSxLVgLv9ukvYe8ueFQXrvEZ/JLe6+rcwxq6I9GpfimEyxThNhXPVjDq5xKY7JFOs0EeLMfMzBNSrFMZlinSZCnOnDHByAoSy4zgAwQ8yszgBwjLuvLnHM5ZIuVv9vzc89cfhTSXsomxB5RJD1S8pek3u/SjCztZIOKrPtCOe6+8qC46yTtFcvuVHStZJ+IWmTsjocMqQc73T3t05YvtKm3R5m9jZlFwl1uMzdl9e0r4HMbAdJF6j/tc+S9EtJ31X29MhSZX0x/y12i6Rj3f3yksc5S9LrBvxpvbI+v07ZWFgi6dc0f1Jgs6RnuvvXyhyvi4gzhYgz/VKKM2s13fZYLunSYPXdkq5TFlvuUXZx/ihJh2nwpOOH3T38yZzoEGcKEWf6RR9nmurzsbQHUIcUzyUp1qkODV4LrpR0zqTllXSwu6+tYT8D0R7NSXFMplinOjCu+jEH15wUx2SKdaoDcaYfc3DNSXFMplinOhBnMszBARiFN9sBaJS7rzazkyR9XNu/KJqkp/SWQT4t6eVNfIGc0G7KXvM7ygZJp7v7vzdQHgzh7veb2QuUPXHzwtyf9lH2ExKD/FLSirIXCT2v7+V7u/ovnPaSdHxB3puVvRZ7dYXjQcQZEWdm2R6Snl5iu3slvc7d/2XK5UkWcYY4AwCTSvFcEkOdGrwWjALtkbYYxmRVMdSJcdWPObi0xTAmq4qhTsSZTmAOriExjMmqYqgTcQYAij2k7QIAmD3ufqGkQyV9UNk/a4f5lqRT3P1Ud7+3kcJV9z5JayTN+7m1wM8lvUPSo/nHdDe4+0Z3f5Gk31fW14a5U9LZkg5194sqHsPd/T2SniTpnzS6v8+5QdkE4aFM8o2POEOcmQE3SnqXpCsk3Vcyz4+UveZ+CZN8kyPOEGcAYFKJnUskxVGnJq4FY0J7pC2GMVlVDHViXPVjDi5tMYzJqmKoE3GmUczBtSyGMVlVDHUizgDAaPyMLIBWmdmOyp4AOkjSYmVP+twqaY2739Rm2aows4dJOlzSwcqeRFmo7MLrVknfc/cbWiweSjCzg5W98np/SbtKuk3Zk61XuPuWmo5hkh6n7HXye0t6mKRtku5S1leucvfb6zgWtiPOIHVm9hBJyyQ9WtIBkhZpe//YoOznQL/j7ne0VsjEEWcAAJNK5VySF0udmrgWjAntka5YxmQVsdSJcdWPObh0xTImq4ilTsSZZjAH175YxmQVsdSJOAMA/bjZDgAAAAAAAAAAAAAAAACAAvyMLAAAAAAAAAAAAAAAAAAABbjZDgAAAAAAAAAAAAAAAACAAtxsBwAAAAAAAAAAAAAAAABAAW62AwAAAAAAAAAAAAAAAACgADfbAQAAAAAAAAAAAAAAAABQgJvtAAAAAAAAAAAAAAAAAAAowM12AAAAAAAAAAAAAAAAAAAU4GY7AAAAAAAAAAAAAAAAAAAKcLMdAAAAAAAAAAAAAAAAAAAFuNkOAAAAAAAAAAAAAAAAAIAC3GwHAAAAAAAAAAAAAAAAAEABbrYDAAAAAAAAAAAAAAAAAKAAN9sBAAAAAAAAAAAAAAAAAFCAm+0AAAAAAAAAAAAAAAAAACjAzXYAAAAAAAAAAAAAAAAAABTgZjsAAAAAAAAAAAAAAAAAAApwsx0AAAAAAAAAAAAAAAAAAAW42Q4AAAAAAAAAAAAAAAAAgALcbAcAAAAAAAAAAAAAAAAAQAFutgMAAAAAAAAAAAAAAAAAoAA32wEAAAAAAAAAAAAAAAAAUICb7QAAAAAAAAAAAAAAAAAAKMDNdgAAAAAAAAAAAAAAAAAAFOBmOwAAAAAAAAAAAAAAAAAACnCzHQAAAAAAAAAAAAAAAAAABbjZDgAAAAAAAAAAAAAAAACAAtxsBwAAAAAAAAAAAAAAAABAAW62AwAAAAAAAAAAAAAAAACgADfbAQAAAAAAAAAAAAAAAABQgJvtAAAAAAAAAAAAAAAAAAAowM12AAAAAAAAAAAAAAAAAAAU4GY7AAAAAAAAAAAAAAAAAAAKcLMdAAAAAAAAAAAAAAAAAAAFuNkOAAAAAAAAAAAAAAAAAIAC3GwHAAAAAAAAAAAAAAAAAEABbrYDAAAAAAAAAAAAAAAAAKAAN9sBAAAAAAAAAAAAAAAAAFDg/wFRlxEKZVemhQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import yappi\n", + "\n", + "from apd.aggregation.analysis import interactable_plot_multiple_charts, Config\n", + "from apd.aggregation.analysis import clean_temperature_fluctuations, get_one_sensor_by_deployment\n", + "from apd.aggregation.utils import profile_with_yappi\n", + "\n", + "yappi.set_clock_type(\"wall\")\n", + "\n", + "filter_in_db = Config(\n", + " clean=clean_temperature_fluctuations,\n", + " title=\"Ambient temperature\",\n", + " ylabel=\"Degrees C\",\n", + " get_data=get_one_sensor_by_deployment(\"Temperature\"),\n", + ")\n", + "\n", + "with profile_with_yappi():\n", + " plot = interactable_plot_multiple_charts(configs=[filter_in_db])\n", + " plot()\n", + "\n", + "yappi.get_func_stats().print_all()" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r\n", + "Clock type: CPU\r\n", + "Ordered by: totaltime, desc\r\n", + "\r\n", + "name ncall tsub ttot tavg \r\n", + "..futures\\thread.py:52 _WorkItem.run 7 0.000000 9.515625 1.359375\r\n", + "..lchemy\\orm\\query.py:3232 Query.all 6 0.187500 6.390625 1.065104\r\n", + "..lchemy\\orm\\loading.py:35 instances 67353 0.046875 6.140625 0.000091\r\n", + "..esult.py:1257 ResultProxy.fetchall 6 0.000000 5.109375 0.851562\r\n", + "..py:1217 ResultProxy._fetchall_impl 6 0.000000 5.078125 0.846354\r\n", + "..38\\Lib\\threading.py:859 Thread.run 2/1 0.000000 3.125000 1.562500\r\n", + "..rrent\\futures\\thread.py:66 _worker 2/1 0.000000 3.125000 1.562500\r\n", + "..b\\asyncio\\events.py:79 Handle._run 29 0.000000 3.125000 0.107759\r\n", + "..WindowsSelectorEventLoop._run_once 17 0.000000 3.125000 0.183824\r\n", + "..lectorEventLoop.run_until_complete 1 0.000000 3.125000 3.125000\r\n", + "..ndowsSelectorEventLoop.run_forever 1 0.000000 3.125000 3.125000\r\n", + "..gation\\analysis.py:291 plot_sensor 1 0.031250 3.046875 3.046875\r\n", + "..egation\\analysis.py:313 4 0.015625 2.703125 0.675781\r\n", + "..and_clean_temperature_fluctuations 4 0.046875 2.687500 0.671875\r\n", + "..184 clean_temperature_fluctuations 4 0.062500 2.640625 0.660156\r\n", + "..sycopg2\\_json.py:164 typecast_json 67339 0.312500 2.562500 0.000038\r\n", + "..-input-1-879b7ebf06b8>:7 4 0.234375 2.515625 0.628906\r\n", + "..gregation\\query.py:116 subiterator 4 0.390625 2.281250 0.570312\r\n", + "..n38\\Lib\\json\\__init__.py:299 loads 67339 0.515625 2.250000 0.000033\r\n", + "..es\\psycopg2\\extras.py:686 67347 0.156250 1.796875 0.000027\r\n", + "..on38\\Lib\\uuid.py:130 UUID.__init__ 67347 1.000000 1.640625 0.000024\r\n", + "..\\decoder.py:332 JSONDecoder.decode 67339 0.718750 1.546875 0.000023\r\n", + "..d\\aggregation\\query.py:41 get_data 1 0.312500 1.531250 1.531250\r\n", + "..ion\\database.py:77 from_sql_result 67339 0.468750 1.218750 0.000018\r\n", + "..chemy\\orm\\loading.py:83 6 0.328125 0.984375 0.164062\r\n", + ".._collections.py:121 result._asdict 67343 0.375000 0.515625 0.000008\r\n", + "..thon38\\Lib\\uuid.py:231 UUID.__eq__ 67351 0.281250 0.359375 0.000005\r\n", + "..chemy\\orm\\loading.py:84 67347 0.343750 0.343750 0.000005\r\n", + "..y\\util\\_collections.py:112 __new__ 67347 0.234375 0.312500 0.000005\r\n", + "..\\matplotlib\\__init__.py:1535 inner 4 0.000000 0.296875 0.074219\r\n", + "..axes.py:1651 AxesSubplot.plot_date 4 0.000000 0.296875 0.074219\r\n", + "..xes\\_axes.py:1412 AxesSubplot.plot 4 0.000000 0.296875 0.074219\r\n", + "..gregation\\analysis.py:63 draw_date 4 0.000000 0.296875 0.074219\r\n", + ".._base.py:1842 AxesSubplot.add_line 4 0.000000 0.281250 0.070312\r\n", + "..oder.py:343 JSONDecoder.raw_decode 67339 0.265625 0.265625 0.000004\r\n", + "..s\\matplotlib\\dates.py:1911 convert 6 0.000000 0.265625 0.044271\r\n", + "..on_base.py:2063 vectorize.__call__ 4 0.000000 0.265625 0.066406\r\n", + "..b\\axis.py:1562 XAxis.convert_units 12 0.000000 0.265625 0.022135\r\n", + "...py:168 AxesSubplot.convert_xunits 48 0.000000 0.265625 0.005534\r\n", + "..lotlib\\lines.py:664 Line2D.recache 10 0.000000 0.265625 0.026562\r\n", + "..s\\matplotlib\\dates.py:401 date2num 6 0.000000 0.265625 0.044271\r\n", + "..tlib\\lines.py:1018 Line2D.get_path 10 0.000000 0.265625 0.026562\r\n", + "..68 AxesSubplot._update_line_limits 4 0.000000 0.265625 0.066406\r\n", + "...py:2154 vectorize._vectorize_call 4 0.046875 0.265625 0.066406\r\n", + ":1 DataPoint.__init__ 67339 0.234375 0.234375 0.000003\r\n", + "..tplotlib\\dates.py:210 _to_ordinalf 8467 0.140625 0.218750 0.000026\r\n", + "..alysis.py:327 plot_multiple_charts 1 0.000000 0.078125 0.078125\r\n", + "..ine\\base.py:916 Connection.execute 9 0.000000 0.062500 0.006944\r\n", + "..:291 Select._execute_on_connection 6 0.000000 0.062500 0.010417\r\n", + "..y\\orm\\query.py:3400 Query.__iter__ 6 0.000000 0.062500 0.010417\r\n", + ".. Connection._execute_clauseelement 6 0.000000 0.062500 0.010417\r\n", + "..:3425 Query._execute_and_instances 6 0.000000 0.062500 0.010417\r\n", + "..y:1159 Connection._execute_context 9 0.000000 0.046875 0.005208\r\n", + "..:589 PGDialect_psycopg2.do_execute 11 0.000000 0.046875 0.004261\r\n", + "..t.py:1240 ResultProxy.process_rows 9 0.000000 0.031250 0.003472\r\n", + "..y\\engine\\result.py:1253 9 0.031250 0.031250 0.003472\r\n", + "..\\_base.py:378 AxesSubplot.__init__ 1 0.000000 0.031250 0.031250\r\n", + "..ubplots.py:18 AxesSubplot.__init__ 1 0.000000 0.031250 0.031250\r\n", + "..ation\\analysis.py:191 datapoint_ok 10826 0.031250 0.031250 0.000003\r\n", + "..s.py:52 PlainEngineStrategy.create 1 0.000000 0.031250 0.031250\r\n", + "..regation\\query.py:24 with_database 2 0.000000 0.031250 0.015625\r\n", + ".._GeneratorContextManager.__enter__ 141 0.000000 0.031250 0.000222\r\n", + "..\\figure.py:1259 Figure.add_subplot 1 0.000000 0.031250 0.031250\r\n", + "..ngine\\__init__.py:85 create_engine 1 0.000000 0.031250 0.031250\r\n", + "..lib\\sre_parse.py:254 Tokenizer.get 1519 0.000000 0.015625 0.000010\r\n", + "..y:527 PGCompiler_psycopg2.__init__ 8 0.000000 0.015625 0.001953\r\n", + "..my\\util\\langhelpers.py:963 oneshot 21 0.000000 0.015625 0.000744\r\n", + "..rs.py:86 Select._compiler_dispatch 94/8 0.000000 0.015625 0.000166\r\n", + "..Preparer_psycopg2._requires_quotes 22 0.000000 0.015625 0.000710\r\n", + "..\\sre_parse.py:233 Tokenizer.__next 1696 0.015625 0.015625 0.000009\r\n", + "..on-68gteq6k\\lib\\re.py:287 _compile 84 0.000000 0.015625 0.000186\r\n", + ":1 Select. 8 0.000000 0.015625 0.001953\r\n", + "..iler_psycopg2._label_select_column 29 0.000000 0.015625 0.000539\r\n", + "..y:274 PGCompiler_psycopg2.__init__ 8 0.000000 0.015625 0.001953\r\n", + "..fierPreparer_psycopg2.format_label 29 0.000000 0.015625 0.000539\r\n", + "..my\\sql\\compiler.py:2127 8 0.000000 0.015625 0.001953\r\n", + "..gteq6k\\lib\\sre_parse.py:493 _parse 75/14 0.000000 0.015625 0.000208\r\n", + "..GIdentifierPreparer_psycopg2.quote 103 0.000000 0.015625 0.000152\r\n", + "..10 PGCompiler_psycopg2.visit_label 29 0.000000 0.015625 0.000539\r\n", + "..py:349 PGCompiler_psycopg2.process 8 0.000000 0.015625 0.001953\r\n", + "..8gteq6k\\lib\\sre_parse.py:937 parse 12 0.000000 0.015625 0.001302\r\n", + "..5 PGCompiler_psycopg2.visit_select 8 0.000000 0.015625 0.001953\r\n", + "..quoted_name._memoized_method_lower 21 0.000000 0.015625 0.000744\r\n", + "..q6k\\lib\\sre_compile.py:759 compile 12 0.000000 0.015625 0.001302\r\n", + "..sql\\elements.py:405 Select.compile 8 0.000000 0.015625 0.001953\r\n", + "..6k\\lib\\sre_parse.py:435 _parse_sub 59/12 0.000000 0.015625 0.000265\r\n", + "..._bootstrap>:1017 _handle_fromlist 20/18 0.000000 0.015625 0.000781\r\n", + "..l\\elements.py:470 Select._compiler 8 0.000000 0.015625 0.001953\r\n", + "..rrent\\futures\\thread.py:158 submit 7 0.000000 0.015625 0.002232\r\n", + "..dPoolExecutor._adjust_thread_count 7 0.000000 0.015625 0.002232\r\n", + "..\\Lib\\threading.py:834 Thread.start 2 0.000000 0.015625 0.007812\r\n", + "..>:777 SourceFileLoader.exec_module 9/2 0.000000 0.015625 0.001736\r\n", + "..\\artist.py:731 XAxis.set_clip_path 26 0.000000 0.015625 0.000601\r\n", + "..s\\postgresql\\psycopg2.py:735 dbapi 1 0.000000 0.015625 0.015625\r\n", + ".. _process_plot_var_args._plot_args 4 0.000000 0.015625 0.003906\r\n", + "..icker.py:2848 AutoLocator.__init__ 16 0.000000 0.015625 0.000977\r\n", + "..es\\_axes.py:299 AxesSubplot.legend 1 0.000000 0.015625 0.015625\r\n", + "..b\\cbook\\__init__.py:1320 _check_1d 8 0.000000 0.015625 0.001953\r\n", + "..53 _process_plot_var_args.__call__ 8 0.000000 0.015625 0.001953\r\n", + "..lib._bootstrap>:650 _load_unlocked 10/2 0.000000 0.015625 0.001563\r\n", + "..plotlib\\axis.py:744 XAxis.__init__ 2 0.000000 0.015625 0.007812\r\n", + "..ib\\axis.py:967 XAxis.set_clip_path 2 0.000000 0.015625 0.007812\r\n", + "..tlib\\artist.py:217 Rectangle.stale 171.. 0.015625 0.015625 0.000009\r\n", + "..__init__.py:2073 _check_isinstance 94 0.000000 0.015625 0.000166\r\n", + "..sSelectorEventLoop.run_in_executor 6 0.000000 0.015625 0.002604\r\n", + "..y\\core\\shape_base.py:24 atleast_1d 24 0.000000 0.015625 0.000651\r\n", + "..et_default_locators_and_formatters 16 0.000000 0.015625 0.000977\r\n", + "..ine\\url.py:234 _parse_rfc1738_args 1 0.000000 0.015625 0.015625\r\n", + "..end.py:727 Legend._init_legend_box 1 0.000000 0.015625 0.015625\r\n", + "..otlib\\axis.py:825 XAxis._set_scale 16 0.000000 0.015625 0.000977\r\n", + "..alchemy\\engine\\url.py:221 make_url 1 0.000000 0.015625 0.015625\r\n", + "..\\psycopg2\\extensions.py:1 1 0.000000 0.015625 0.015625\r\n", + "..mpy\\core\\_asarray.py:88 asanyarray 72 0.000000 0.015625 0.000217\r\n", + "..otlib\\axis.py:2231 YAxis._get_tick 3 0.000000 0.015625 0.005208\r\n", + "...py:89 HandlerLine2D.legend_artist 4 0.000000 0.015625 0.003906\r\n", + "..icker.py:2051 AutoLocator.__init__ 16 0.015625 0.015625 0.000977\r\n", + "..tplotlib\\axis.py:56 XTick.__init__ 6 0.000000 0.015625 0.002604\r\n", + "..b\\axis.py:589 YTick._get_tick2line 3 0.000000 0.015625 0.005208\r\n", + "..\\axis.py:687 _LazyTickList.__get__ 6/4 0.000000 0.015625 0.002604\r\n", + "..ines.py:1268 Line2D.set_markersize 30 0.000000 0.015625 0.000521\r\n", + "..ages\\psycopg2\\_range.py:1 1 0.000000 0.015625 0.015625\r\n", + "..y:229 HandlerLine2D.create_artists 4 0.000000 0.015625 0.003906\r\n", + "..otlib\\lines.py:269 Line2D.__init__ 30 0.000000 0.015625 0.000521\r\n", + "..tlib\\legend.py:306 Legend.__init__ 1 0.000000 0.015625 0.015625\r\n", + "..ms.py:986 TransformedBbox.__init__ 21 0.000000 0.015625 0.000744\r\n", + "..function__ internals>:2 atleast_1d 24 0.000000 0.015625 0.000651\r\n", + ".._function__ internals>:2 full_like 4 0.015625 0.015625 0.003906\r\n", + "..strap>:956 _find_and_load_unlocked 10/2 0.000000 0.015625 0.001563\r\n", + "..\\axes\\_base.py:948 AxesSubplot.cla 1 0.000000 0.015625 0.015625\r\n", + "..base.py:553 AxesSubplot._init_axis 1 0.000000 0.015625 0.015625\r\n", + "..rap>:211 _call_with_frames_removed 14/2 0.000000 0.015625 0.001116\r\n", + "..lib._bootstrap>:986 _find_and_load 10/2 0.000000 0.015625 0.001563\r\n", + "..ion-68gteq6k\\lib\\re.py:248 compile 10 0.000000 0.015625 0.001563\r\n", + "..es\\psycopg2\\__init__.py:1 1 0.000000 0.015625 0.015625\r\n", + "...py:343 WeakKeyDictionary.__init__ 13 0.000000 0.000000 0.000000\r\n", + "..pool\\impl.py:112 QueuePool._do_get 1 0.000000 0.000000 0.000000\r\n", + "..6k\\lib\\abc.py:96 __instancecheck__ 141 0.000000 0.000000 0.000000\r\n", + "..py:3730 Select._columns_plus_names 8 0.000000 0.000000 0.000000\r\n", + "..y:330 _ListenerCollection.__bool__ 1 0.000000 0.000000 0.000000\r\n", + "..yncio\\events.py:32 Handle.__init__ 24 0.000000 0.000000 0.000000\r\n", + "..py:4065 ColumnClause._from_objects 2 0.000000 0.000000 0.000000\r\n", + "..ions.py:145 immutabledict.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..ections.py:396 OrderedSet.__iter__ 8 0.000000 0.000000 0.000000\r\n", + "..qltypes.py:2793 TIMESTAMP.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..ib\\sre_parse.py:286 Tokenizer.tell 171 0.000000 0.000000 0.000000\r\n", + "..q6k\\lib\\sre_parse.py:921 fix_flags 12 0.000000 0.000000 0.000000\r\n", + "..\\sql\\selectable.py:3079 8 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\result.py:496 3 0.000000 0.000000 0.000000\r\n", + "..opg2.py:548 _PGUUID.bind_processor 1 0.000000 0.000000 0.000000\r\n", + "..es\\psycopg2\\__init__.py:82 connect 1 0.000000 0.000000 0.000000\r\n", + "..ib\\sre_parse.py:84 State.opengroup 27 0.000000 0.000000 0.000000\r\n", + "..gging\\__init__.py:223 _releaseLock 7 0.000000 0.000000 0.000000\r\n", + "..ql\\elements.py:2428 literal_column 2 0.000000 0.000000 0.000000\r\n", + "..dConnectionEventsDispatch.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..y\\engine\\strategies.py:106 connect 1 0.000000 0.000000 0.000000\r\n", + "..tras.py:657 UUID_adapter.getquoted 4 0.000000 0.000000 0.000000\r\n", + "..hemy\\sql\\compiler.py:652 10 0.000000 0.000000 0.000000\r\n", + "..query.py:3440 Query._get_bind_args 6 0.000000 0.000000 0.000000\r\n", + "..b\\sre_parse.py:96 State.closegroup 27 0.000000 0.000000 0.000000\r\n", + "..ctions.py:933 LRUCache.__setitem__ 3 0.000000 0.000000 0.000000\r\n", + "..eq6k\\lib\\sre_parse.py:978 addgroup 1 0.000000 0.000000 0.000000\r\n", + "..yEventsDispatch._event_descriptors 46 0.000000 0.000000 0.000000\r\n", + "..tgresql\\psycopg2.py:815 on_connect 2 0.000000 0.000000 0.000000\r\n", + "..ne\\strategies.py:194 first_connect 1 0.000000 0.000000 0.000000\r\n", + "..sult.py:700 ResultMetaData._getter 27 0.000000 0.000000 0.000000\r\n", + "..ry.py:4056 Query._simple_statement 6 0.000000 0.000000 0.000000\r\n", + "..elements.py:4692 _literal_as_binds 2 0.000000 0.000000 0.000000\r\n", + "...py:56 QueuePool._should_log_debug 1 0.000000 0.000000 0.000000\r\n", + "..session.py:1057 Session.connection 6 0.000000 0.000000 0.000000\r\n", + "..xecutionContext_psycopg2.post_exec 6 0.000000 0.000000 0.000000\r\n", + "..y:3229 BinaryExpression.self_group 4 0.000000 0.000000 0.000000\r\n", + "..py:4335 _truncated_label.apply_map 27 0.000000 0.000000 0.000000\r\n", + "..68gteq6k\\lib\\weakref.py:345 remove 2 0.000000 0.000000 0.000000\r\n", + "..123 ConnectionEventsDispatch._join 1 0.000000 0.000000 0.000000\r\n", + "..lalchemy\\pool\\base.py:490 checkout 1 0.000000 0.000000 0.000000\r\n", + "..y\\engine\\default.py:796 6 0.000000 0.000000 0.000000\r\n", + "..ctable.py:1982 Table._from_objects 6 0.000000 0.000000 0.000000\r\n", + "..emy\\sql\\compiler.py:1000 4 0.000000 0.000000 0.000000\r\n", + "..\\encodings\\utf_8.py:33 getregentry 1 0.000000 0.000000 0.000000\r\n", + "..ery._adjust_for_single_inheritance 6 0.000000 0.000000 0.000000\r\n", + "..ler_psycopg2.get_select_precolumns 8 0.000000 0.000000 0.000000\r\n", + "..ycopg2\\extras.py:664 register_uuid 2 0.000000 0.000000 0.000000\r\n", + "..:3418 PGTypeCompiler.visit_unicode 1 0.000000 0.000000 0.000000\r\n", + "..on._memoized_attr__exec_once_mutex 1 0.000000 0.000000 0.000000\r\n", + "..ngs\\__init__.py:70 search_function 1 0.000000 0.000000 0.000000\r\n", + "..uture.set_running_or_notify_cancel 7 0.000000 0.000000 0.000000\r\n", + "..lalchemy\\sql\\base.py:39 20 0.000000 0.000000 0.000000\r\n", + "..422 WeakKeyDictionary.__contains__ 386 0.000000 0.000000 0.000000\r\n", + "..4 PGCompiler_psycopg2.visit_column 36 0.000000 0.000000 0.000000\r\n", + "..py:536 PGDialect_psycopg2.do_begin 1 0.000000 0.000000 0.000000\r\n", + ".. _ClsLevelDispatch.update_subclass 77 0.000000 0.000000 0.000000\r\n", + ":1 VARCHAR.__init__ 9 0.000000 0.000000 0.000000\r\n", + "..tions.py:946 LRUCache._manage_size 3 0.000000 0.000000 0.000000\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..g2\\extensions.py:180 _param_escape 3 0.000000 0.000000 0.000000\r\n", + "..\\elements.py:232 Table._cloned_set 2 0.000000 0.000000 0.000000\r\n", + "..419 Query._connection_from_session 6 0.000000 0.000000 0.000000\r\n", + "..my\\sql\\type_api.py:1475 adapt_type 13 0.000000 0.000000 0.000000\r\n", + "..y\\sql\\elements.py:4594 _literal_as 14 0.000000 0.000000 0.000000\r\n", + "..94 QueryEventsDispatch.__getattr__ 8 0.000000 0.000000 0.000000\r\n", + ".._.py:1663 Logger.getEffectiveLevel 3 0.000000 0.000000 0.000000\r\n", + "..ngine\\strategies.py:183 on_connect 2 0.000000 0.000000 0.000000\r\n", + "..e.py:737 _ConnectionFairy.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..lalchemy\\util\\compat.py:148 raise_ 12 0.000000 0.000000 0.000000\r\n", + "..sre_parse.py:172 SubPattern.append 182 0.000000 0.000000 0.000000\r\n", + ":1 cast 2 0.000000 0.000000 0.000000\r\n", + "..\\langhelpers.py:301 get_cls_kwargs 35/16 0.000000 0.000000 0.000000\r\n", + "..ler_psycopg2._truncated_identifier 33 0.000000 0.000000 0.000000\r\n", + "..ler_psycopg2.escape_literal_column 2 0.000000 0.000000 0.000000\r\n", + "..s.py:880 memoized_property.__get__ 97/87 0.000000 0.000000 0.000000\r\n", + "..nts.py:709 ColumnClause.comparator 4 0.000000 0.000000 0.000000\r\n", + "..\\orm\\session.py:2462 Session.flush 9 0.000000 0.000000 0.000000\r\n", + "..gine\\default.py:753 _init_compiled 6 0.000000 0.000000 0.000000\r\n", + "..n-68gteq6k\\lib\\enum.py:557 __new__ 26 0.000000 0.000000 0.000000\r\n", + "..y\\util\\_collections.py:140 __new__ 1 0.000000 0.000000 0.000000\r\n", + "..WindowsSelectorEventLoop.get_debug 33 0.000000 0.000000 0.000000\r\n", + "..indowsSelectorEventLoop._call_soon 23 0.000000 0.000000 0.000000\r\n", + "..:715 PGDialect_psycopg2.initialize 1 0.000000 0.000000 0.000000\r\n", + "..t_psycopg2._use_server_side_cursor 9 0.000000 0.000000 0.000000\r\n", + "..lection.exec_once_unless_exception 1 0.000000 0.000000 0.000000\r\n", + "..iler_psycopg2._compose_select_body 8 0.000000 0.000000 0.000000\r\n", + "..sqltypes.py:2182 _PGJSONB.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..ements.py:1315 TypeClause.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..tionContext_psycopg2.no_parameters 5 0.000000 0.000000 0.000000\r\n", + "..:395 WeakKeyDictionary.__setitem__ 97 0.000000 0.000000 0.000000\r\n", + "..xt_psycopg2.should_autocommit_text 3 0.000000 0.000000 0.000000\r\n", + "..ts.py:724 ColumnClause.__getattr__ 9 0.000000 0.000000 0.000000\r\n", + "..qlalchemy\\inspection.py:38 inspect 16 0.000000 0.000000 0.000000\r\n", + "..ons.py:971 lightweight_named_tuple 6 0.000000 0.000000 0.000000\r\n", + "..m\\query.py:3551 Query._select_args 6 0.000000 0.000000 0.000000\r\n", + "..sycopg2\\extensions.py:146 make_dsn 1 0.000000 0.000000 0.000000\r\n", + "..chemy\\sql\\base.py:38 _from_objects 20 0.000000 0.000000 0.000000\r\n", + "..er_psycopg2._get_operator_dispatch 4 0.000000 0.000000 0.000000\r\n", + "..ine\\base.py:69 Connection.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..l\\psycopg2.py:747 _psycopg2_extras 2 0.000000 0.000000 0.000000\r\n", + "..tionContext_psycopg2.create_cursor 9 0.000000 0.000000 0.000000\r\n", + "..til\\_collections.py:779 41 0.000000 0.000000 0.000000\r\n", + "..\\base.py:364 Connection.connection 11 0.000000 0.000000 0.000000\r\n", + "..my\\sql\\compiler.py:2252 6 0.000000 0.000000 0.000000\r\n", + "..033 PGCompiler_psycopg2.visit_cast 2 0.000000 0.000000 0.000000\r\n", + "..ngine\\default.py:378 check_unicode 2 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\result.py:319 9 0.000000 0.000000 0.000000\r\n", + "..chemy\\sql\\elements.py:4327 __new__ 16 0.000000 0.000000 0.000000\r\n", + "..mpiler_psycopg2._add_to_result_map 29 0.000000 0.000000 0.000000\r\n", + ":1 Select.__init__ 8 0.000000 0.000000 0.000000\r\n", + "..py:4442 _anonymous_label.apply_map 6 0.000000 0.000000 0.000000\r\n", + "..py:2248 Engine._contextual_connect 1 0.000000 0.000000 0.000000\r\n", + "..:307 PGDialect_psycopg2.initialize 1 0.000000 0.000000 0.000000\r\n", + "..\\log.py:59 Engine._should_log_info 2 0.000000 0.000000 0.000000\r\n", + "..pg2\\extras.py:790 _solve_conn_curs 1 0.000000 0.000000 0.000000\r\n", + "..k\\lib\\encodings\\utf_8.py:15 decode 48 0.000000 0.000000 0.000000\r\n", + "..tions.py:906 LRUCache._inc_counter 6 0.000000 0.000000 0.000000\r\n", + "..ctorEventLoop.call_soon_threadsafe 6 0.000000 0.000000 0.000000\r\n", + "..y\\sql\\selectable.py:2987 6 0.000000 0.000000 0.000000\r\n", + ".._psycopg2._get_default_schema_name 1 0.000000 0.000000 0.000000\r\n", + "..ns.py:738 PopulateDict.__missing__ 5 0.000000 0.000000 0.000000\r\n", + "..tgresql\\psycopg2.py:847 on_connect 2 0.000000 0.000000 0.000000\r\n", + "..e\\result.py:1335 ResultProxy.first 3 0.000000 0.000000 0.000000\r\n", + ".._psycopg2._generate_generic_binary 4 0.000000 0.000000 0.000000\r\n", + "..se.py:325 Future._invoke_callbacks 7 0.000000 0.000000 0.000000\r\n", + "..\\sql\\selectable.py:3751 2 0.000000 0.000000 0.000000\r\n", + "..:4707 _interpret_as_column_or_from 29 0.000000 0.000000 0.000000\r\n", + "..compile.py:461 _get_literal_prefix 19/12 0.000000 0.000000 0.000000\r\n", + "..ts.py:4059 ColumnClause._set_table 2 0.000000 0.000000 0.000000\r\n", + "..317 VARCHAR._has_column_expression 12 0.000000 0.000000 0.000000\r\n", + "..my\\sql\\elements.py:4488 8 0.000000 0.000000 0.000000\r\n", + "..emy\\util\\queue.py:191 Queue._empty 1 0.000000 0.000000 0.000000\r\n", + "..tgresql\\psycopg2.py:800 on_connect 2 0.000000 0.000000 0.000000\r\n", + "..9 PGCompiler_psycopg2.visit_binary 4 0.000000 0.000000 0.000000\r\n", + "..ery.py:3929 Query._compile_context 6 0.000000 0.000000 0.000000\r\n", + "..til\\_collections.py:981 3 0.000000 0.000000 0.000000\r\n", + "..i.py:279 NullType.result_processor 4 0.000000 0.000000 0.000000\r\n", + "..1333 Connection._safe_close_cursor 9 0.000000 0.000000 0.000000\r\n", + "..ation-68gteq6k\\lib\\re.py:186 match 70 0.000000 0.000000 0.000000\r\n", + "..my\\sql\\elements.py:1955 1 0.000000 0.000000 0.000000\r\n", + "..276 PGDialect_psycopg2._type_memos 1 0.000000 0.000000 0.000000\r\n", + "..mn._render_label_in_columns_clause 10 0.000000 0.000000 0.000000\r\n", + "..sqltypes.py:786 TIMESTAMP.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..ments.py:765 Cast._select_iterable 29 0.000000 0.000000 0.000000\r\n", + "..200 BinaryExpression._from_objects 4 0.000000 0.000000 0.000000\r\n", + "..extensions.py:103 register_adapter 12 0.000000 0.000000 0.000000\r\n", + "..y\\util\\_collections.py:822 to_list 14 0.000000 0.000000 0.000000\r\n", + "..res\\_base.py:517 Future.set_result 7 0.000000 0.000000 0.000000\r\n", + "..ngine\\base.py:590 Connection.begin 1 0.000000 0.000000 0.000000\r\n", + "..eading.py:364 Condition.notify_all 7 0.000000 0.000000 0.000000\r\n", + "..ase.py:971 _ConnectionFairy.cursor 6 0.000000 0.000000 0.000000\r\n", + "..gine\\base.py:908 Connection.scalar 2 0.000000 0.000000 0.000000\r\n", + "..rm\\query.py:418 Query._bind_mapper 6 0.000000 0.000000 0.000000\r\n", + "..result.py:767 ResultProxy.__init__ 9 0.000000 0.000000 0.000000\r\n", + "..:3361 PGTypeCompiler.visit_VARCHAR 2 0.000000 0.000000 0.000000\r\n", + "..l\\sqltypes.py:141 VARCHAR.__init__ 9 0.000000 0.000000 0.000000\r\n", + "..my\\sql\\elements.py:4480 6 0.000000 0.000000 0.000000\r\n", + "..e_parse.py:174 SubPattern.getwidth 138.. 0.000000 0.000000 0.000000\r\n", + "..ResultMetaData._merge_cols_by_none 6 0.000000 0.000000 0.000000\r\n", + "...py:488 PGDialect_psycopg2.connect 1 0.000000 0.000000 0.000000\r\n", + "...py:2282 Engine._wrap_pool_connect 1 0.000000 0.000000 0.000000\r\n", + "..session.py:1588 Session._autoflush 6 0.000000 0.000000 0.000000\r\n", + "..\\threading.py:341 Condition.notify 15 0.000000 0.000000 0.000000\r\n", + "..ections.py:361 OrderedSet.__init__ 8 0.000000 0.000000 0.000000\r\n", + "..ql\\operators.py:1386 is_comparison 5 0.000000 0.000000 0.000000\r\n", + "..6 PGCompiler_psycopg2.default_from 2 0.000000 0.000000 0.000000\r\n", + "..58 PGCompiler_psycopg2.visit_table 6 0.000000 0.000000 0.000000\r\n", + "..elements.py:4483 _select_iterables 8 0.000000 0.000000 0.000000\r\n", + "..b\\sre_compile.py:65 _combine_flags 39 0.000000 0.000000 0.000000\r\n", + "..lchemy\\util\\langhelpers.py:1506 go 1 0.000000 0.000000 0.000000\r\n", + "..utionContext_psycopg2._log_notices 9 0.000000 0.000000 0.000000\r\n", + "..ation-68gteq6k\\lib\\re.py:323 _subx 3 0.000000 0.000000 0.000000\r\n", + "..py:486 UUID._cached_bind_processor 4 0.000000 0.000000 0.000000\r\n", + "..ttr.py:227 _EmptyListener.__init__ 77 0.000000 0.000000 0.000000\r\n", + "..ghelpers.py:281 _inspect_func_args 18 0.000000 0.000000 0.000000\r\n", + "..re_compile.py:249 _compile_charset 34 0.000000 0.000000 0.000000\r\n", + "..nContext_psycopg2.get_result_proxy 9 0.000000 0.000000 0.000000\r\n", + "..uery.py:4762 QueryContext.__init__ 6 0.000000 0.000000 0.000000\r\n", + "..gging\\__init__.py:214 _acquireLock 7 0.000000 0.000000 0.000000\r\n", + "..type_api.py:60 Comparator.__init__ 8 0.000000 0.000000 0.000000\r\n", + "..hon38\\Lib\\uuid.py:271 UUID.__str__ 4 0.000000 0.000000 0.000000\r\n", + "..velDispatch._assign_cls_collection 77 0.000000 0.000000 0.000000\r\n", + "..e_parse.py:111 SubPattern.__init__ 135 0.000000 0.000000 0.000000\r\n", + "..compile.py:492 _get_charset_prefix 10 0.000000 0.000000 0.000000\r\n", + "..arse.py:164 SubPattern.__getitem__ 707 0.000000 0.000000 0.000000\r\n", + "..2456 PGDialect_psycopg2.initialize 1 0.000000 0.000000 0.000000\r\n", + "..hreading.py:249 Condition.__exit__ 61 0.000000 0.000000 0.000000\r\n", + ".. NullType._cached_result_processor 30 0.000000 0.000000 0.000000\r\n", + "..116 QueryEventsDispatch._for_class 8 0.000000 0.000000 0.000000\r\n", + "..compiler.py:419 _CompileLabel.type 29 0.000000 0.000000 0.000000\r\n", + "..m\\session.py:1429 Session.get_bind 6 0.000000 0.000000 0.000000\r\n", + "..\\elements.py:4610 _literal_as_text 14 0.000000 0.000000 0.000000\r\n", + "..Compiler_psycopg2.bindparam_string 4 0.000000 0.000000 0.000000\r\n", + "..53 _ListenerCollection.__getattr__ 45/24 0.000000 0.000000 0.000000\r\n", + ".._psycopg2._get_server_version_info 1 0.000000 0.000000 0.000000\r\n", + "..teq6k\\lib\\sre_compile.py:598 _code 12 0.000000 0.000000 0.000000\r\n", + "..sql\\operators.py:1497 is_precedent 4 0.000000 0.000000 0.000000\r\n", + "..\\sql\\selectable.py:3746 6 0.000000 0.000000 0.000000\r\n", + "..Compiler_psycopg2.visit_clauselist 1 0.000000 0.000000 0.000000\r\n", + "..ExecutionContext_psycopg2.pre_exec 6 0.000000 0.000000 0.000000\r\n", + "..\\elements.py:688 Column.self_group 11 0.000000 0.000000 0.000000\r\n", + "..init__.py:1677 Logger.isEnabledFor 5 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\default.py:415 1 0.000000 0.000000 0.000000\r\n", + "..ql\\base.py:1142 TIMESTAMP.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..l\\_collections.py:910 LRUCache.get 6 0.000000 0.000000 0.000000\r\n", + "..ttr.py:269 _EmptyListener.__bool__ 17 0.000000 0.000000 0.000000\r\n", + "..pes.py:295 String.result_processor 5 0.000000 0.000000 0.000000\r\n", + "..b\\sre_parse.py:249 Tokenizer.match 311 0.000000 0.000000 0.000000\r\n", + "..copg2._check_max_identifier_length 1 0.000000 0.000000 0.000000\r\n", + "..gteq6k\\lib\\re.py:313 _compile_repl 1 0.000000 0.000000 0.000000\r\n", + "..lchemy\\orm\\query.py:4795 6 0.000000 0.000000 0.000000\r\n", + "..ult.py:269 ResultMetaData.__init__ 9 0.000000 0.000000 0.000000\r\n", + "..iler.py:399 PGTypeCompiler.process 2 0.000000 0.000000 0.000000\r\n", + "..GCompiler_psycopg2.order_by_clause 1 0.000000 0.000000 0.000000\r\n", + "..y:305 QueuePool._create_connection 1 0.000000 0.000000 0.000000\r\n", + "..sql\\type_api.py:546 NullType.adapt 13 0.000000 0.000000 0.000000\r\n", + "..rm\\query.py:398 Query._entity_zero 6 0.000000 0.000000 0.000000\r\n", + "..py:1202 ResultProxy._fetchone_impl 3 0.000000 0.000000 0.000000\r\n", + ".._psycopg2._setup_crud_result_proxy 3 0.000000 0.000000 0.000000\r\n", + "..esql\\base.py:1226 _PGUUID.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..nghelpers.py:1167 constructor_copy 13 0.000000 0.000000 0.000000\r\n", + "..piler_psycopg2._setup_select_stack 8 0.000000 0.000000 0.000000\r\n", + "..MetaData._merge_cursor_description 9 0.000000 0.000000 0.000000\r\n", + "..ttr.py:257 _EmptyListener.__call__ 8 0.000000 0.000000 0.000000\r\n", + "..wsSelectorEventLoop._write_to_self 6 0.000000 0.000000 0.000000\r\n", + "..q6k\\lib\\sre_compile.py:423 _simple 45 0.000000 0.000000 0.000000\r\n", + "..\\result.py:777 ResultProxy._getter 27 0.000000 0.000000 0.000000\r\n", + "..ycopg2\\extras.py:909 type.get_oids 1 0.000000 0.000000 0.000000\r\n", + "..arse.py:168 SubPattern.__setitem__ 48 0.000000 0.000000 0.000000\r\n", + "..text_psycopg2.get_result_processor 30 0.000000 0.000000 0.000000\r\n", + "..k\\lib\\sre_parse.py:81 State.groups 80 0.000000 0.000000 0.000000\r\n", + "..l\\sqltypes.py:412 Unicode.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..alchemy\\pool\\base.py:770 _checkout 1 0.000000 0.000000 0.000000\r\n", + ".. SessionTransaction._assert_active 8 0.000000 0.000000 0.000000\r\n", + ":1 select 8 0.000000 0.000000 0.000000\r\n", + ".. QueryEventsDispatch._for_instance 8 0.000000 0.000000 0.000000\r\n", + "..elements.py:4080 Column._key_label 10 0.000000 0.000000 0.000000\r\n", + "..ine\\default.py:981 _init_statement 3 0.000000 0.000000 0.000000\r\n", + "..\\lib\\enum.py:828 RegexFlag.__and__ 12 0.000000 0.000000 0.000000\r\n", + "..py:644 _ConnectionRecord.__connect 1 0.000000 0.000000 0.000000\r\n", + "..GCompiler_psycopg2.visit_bindparam 4 0.000000 0.000000 0.000000\r\n", + "..emy\\util\\langhelpers.py:1188 _next 7 0.000000 0.000000 0.000000\r\n", + "..py:77 QueryEventsDispatch.__init__ 8 0.000000 0.000000 0.000000\r\n", + "..\\__init__.py:43 normalize_encoding 1 0.000000 0.000000 0.000000\r\n", + "..util\\langhelpers.py:1175 46 0.000000 0.000000 0.000000\r\n", + "..ql\\elements.py:895 Cast.anon_label 2 0.000000 0.000000 0.000000\r\n", + "..y\\sql\\operators.py:1409 is_boolean 5 0.000000 0.000000 0.000000\r\n", + "..-68gteq6k\\lib\\codecs.py:94 __new__ 1 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\result.py:460 6 0.000000 0.000000 0.000000\r\n", + "..selectable.py:2169 Select.__init__ 8 0.000000 0.000000 0.000000\r\n", + "..ry.py:390 Query._query_entity_zero 6 0.000000 0.000000 0.000000\r\n", + "..re_parse.py:224 Tokenizer.__init__ 13 0.000000 0.000000 0.000000\r\n", + "..teq6k\\lib\\sre_parse.py:355 _escape 30 0.000000 0.000000 0.000000\r\n", + "..uery.py:698 Query.is_single_entity 6 0.000000 0.000000 0.000000\r\n", + "..19 ResultProxy._cursor_description 9 0.000000 0.000000 0.000000\r\n", + "..y:4696 _ColumnEntity.row_processor 27 0.000000 0.000000 0.000000\r\n", + "..ents.py:3947 ColumnClause.__init__ 2 0.000000 0.000000 0.000000\r\n", + "...py:543 NullType._gen_dialect_impl 13 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\default.py:855 10 0.000000 0.000000 0.000000\r\n", + "..lements.py:2553 Cast._from_objects 2 0.000000 0.000000 0.000000\r\n", + "..til\\_collections.py:991 3 0.000000 0.000000 0.000000\r\n", + "..PGTypeCompiler._render_string_type 2 0.000000 0.000000 0.000000\r\n", + "..reading.py:261 Condition._is_owned 11 0.000000 0.000000 0.000000\r\n", + "..ult.py:924 ResultProxy._soft_close 9 0.000000 0.000000 0.000000\r\n", + "..Compiler_psycopg2.construct_params 6 0.000000 0.000000 0.000000\r\n", + "..l\\selectable.py:3036 Select._froms 8 0.000000 0.000000 0.000000\r\n", + "..ging\\__init__.py:1412 Logger.debug 2 0.000000 0.000000 0.000000\r\n", + "..9 _ConnectionRecord.get_connection 1 0.000000 0.000000 0.000000\r\n", + "..Compiler_psycopg2.visit_typeclause 2 0.000000 0.000000 0.000000\r\n", + "..etaData._colnames_from_description 6 0.000000 0.000000 0.000000\r\n", + "..postgresql\\base.py:2708 1 0.000000 0.000000 0.000000\r\n", + "..ct_psycopg2._check_unicode_returns 1 0.000000 0.000000 0.000000\r\n", + "...py:434 _ConnectionRecord.__init__ 1 0.000000 0.000000 0.000000\r\n", + ".._api.py:527 NullType._dialect_info 25 0.000000 0.000000 0.000000\r\n", + "..lib\\sre_parse.py:76 State.__init__ 12 0.000000 0.000000 0.000000\r\n", + "..lchemy\\util\\queue.py:135 Queue.get 1 0.000000 0.000000 0.000000\r\n", + "..py:352 PGCompiler_psycopg2.__str__ 8 0.000000 0.000000 0.000000\r\n", + "..alect_psycopg2.get_isolation_level 1 0.000000 0.000000 0.000000\r\n", + "..owsSelectorEventLoop._check_closed 34 0.000000 0.000000 0.000000\r\n", + "..\\session.py:2508 Session._is_clean 10 0.000000 0.000000 0.000000\r\n", + "..q6k\\lib\\sre_compile.py:71 _compile 111.. 0.000000 0.000000 0.000000\r\n", + "..e.py:1694 RootTransaction.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..eral_and_labels_as_label_reference 3 0.000000 0.000000 0.000000\r\n", + "...py:903 PGDialect_psycopg2.oneshot 1 0.000000 0.000000 0.000000\r\n", + "..ql\\selectable.py:3735 name_for_col 27 0.000000 0.000000 0.000000\r\n", + "...py:3065 Select._get_display_froms 8 0.000000 0.000000 0.000000\r\n", + "..e.py:1134 Connection._execute_text 3 0.000000 0.000000 0.000000\r\n", + "..tgresql\\psycopg2.py:807 on_connect 2 0.000000 0.000000 0.000000\r\n", + "..chemy\\sql\\elements.py:4279 __new__ 16 0.000000 0.000000 0.000000\r\n", + "..copg2\\extensions.py:171 1 0.000000 0.000000 0.000000\r\n", + "..2.py:540 _PGJSONB.result_processor 1 0.000000 0.000000 0.000000\r\n", + "...py:793 ResultProxy._init_metadata 9 0.000000 0.000000 0.000000\r\n", + "..ts.py:4056 ColumnClause._get_table 48 0.000000 0.000000 0.000000\r\n", + "..\\util\\_collections.py:771 5 0.000000 0.000000 0.000000\r\n", + "..hemy\\sql\\compiler.py:650 6 0.000000 0.000000 0.000000\r\n", + "..pool\\base.py:354 QueuePool.connect 1 0.000000 0.000000 0.000000\r\n", + "..cio\\futures.py:364 _call_set_state 6 0.000000 0.000000 0.000000\r\n", + "..365 _ListenerCollection.for_modify 2 0.000000 0.000000 0.000000\r\n", + "..Context_psycopg2.should_autocommit 9 0.000000 0.000000 0.000000\r\n", + "..xtras.py:650 UUID_adapter.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..ne\\result.py:956 ResultProxy.close 3 0.000000 0.000000 0.000000\r\n", + "..y\\sql\\type_api.py:1465 to_instance 8 0.000000 0.000000 0.000000\r\n", + "..threading.py:441 Semaphore.release 7 0.000000 0.000000 0.000000\r\n", + "..ib\\sre_parse.py:969 parse_template 1 0.000000 0.000000 0.000000\r\n", + "..il\\_collections.py:775 unique_list 41 0.000000 0.000000 0.000000\r\n", + "..56 WeakInstanceDict.check_modified 10 0.000000 0.000000 0.000000\r\n", + "..m\\query.py:345 Query._adapt_clause 34 0.000000 0.000000 0.000000\r\n", + "..my\\util\\deprecations.py:115 warned 21/20 0.000000 0.000000 0.000000\r\n", + "..-68gteq6k\\lib\\enum.py:278 __call__ 26 0.000000 0.000000 0.000000\r\n", + "..:1136 Session._connection_for_bind 6 0.000000 0.000000 0.000000\r\n", + "..b\\sre_compile.py:536 _compile_info 12 0.000000 0.000000 0.000000\r\n", + "..539 PGDialect_psycopg2.do_rollback 2 0.000000 0.000000 0.000000\r\n", + ".._memoized_property.expire_instance 2 0.000000 0.000000 0.000000\r\n", + "..ections.py:151 immutabledict.union 6 0.000000 0.000000 0.000000\r\n", + "..ListenerCollection._exec_once_impl 1 0.000000 0.000000 0.000000\r\n", + "..reading.py:246 Condition.__enter__ 61 0.000000 0.000000 0.000000\r\n", + "..chemy\\util\\langhelpers.py:906 memo 2 0.000000 0.000000 0.000000\r\n", + "..g2.py:558 _PGUUID.result_processor 2 0.000000 0.000000 0.000000\r\n", + "..piler_psycopg2._truncate_bindparam 4 0.000000 0.000000 0.000000\r\n", + "..ql\\elements.py:4475 _expand_cloned 6 0.000000 0.000000 0.000000\r\n", + "..02 PGDialect_psycopg2._hstore_oids 1 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\result.py:463 6 0.000000 0.000000 0.000000\r\n", + "..ements.py:1946 ClauseList.__init__ 1 0.000000 0.000000 0.000000\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..copg2\\extensions.py:164 1 0.000000 0.000000 0.000000\r\n", + "..ent\\base.py:295 dispatcher.__get__ 10 0.000000 0.000000 0.000000\r\n", + "..6k\\lib\\sre_compile.py:595 isstring 24 0.000000 0.000000 0.000000\r\n", + "..:382 WeakKeyDictionary.__getitem__ 245 0.000000 0.000000 0.000000\r\n", + "..py:1293 Connection._cursor_execute 2 0.000000 0.000000 0.000000\r\n", + "..onTransaction._connection_for_bind 6 0.000000 0.000000 0.000000\r\n", + "..e_compile.py:276 _optimize_charset 34 0.000000 0.000000 0.000000\r\n", + "..pe_api.py:450 VARCHAR.dialect_impl 33 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\result.py:322 9 0.000000 0.000000 0.000000\r\n", + "..selectable.py:2760 Select.__init__ 8 0.000000 0.000000 0.000000\r\n", + "..my\\sql\\compiler.py:2125 8 0.000000 0.000000 0.000000\r\n", + "..sql\\elements.py:2489 Cast.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..PGDialect_psycopg2.type_descriptor 13 0.000000 0.000000 0.000000\r\n", + "..Compiler_psycopg2._bind_processors 6 0.000000 0.000000 0.000000\r\n", + "..\\result.py:1362 ResultProxy.scalar 3 0.000000 0.000000 0.000000\r\n", + "..mpl.py:143 QueuePool._inc_overflow 1 0.000000 0.000000 0.000000\r\n", + "..e.py:1757 RootTransaction.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..emy\\sql\\compiler.py:1002 4 0.000000 0.000000 0.000000\r\n", + "..y:357 _PGUUID._has_bind_expression 1 0.000000 0.000000 0.000000\r\n", + "..esql\\json.py:177 _PGJSONB.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..lchemy\\event\\base.py:87 5 0.000000 0.000000 0.000000\r\n", + "..base.py:707 Connection._begin_impl 1 0.000000 0.000000 0.000000\r\n", + "..ib\\sre_compile.py:453 _get_iscased 29 0.000000 0.000000 0.000000\r\n", + "..iler.py:410 _CompileLabel.__init__ 29 0.000000 0.000000 0.000000\r\n", + "..my\\engine\\result.py:372 6 0.000000 0.000000 0.000000\r\n", + "..re_parse.py:160 SubPattern.__len__ 261 0.000000 0.000000 0.000000\r\n", + "..y:4713 _ColumnEntity.setup_context 27 0.000000 0.000000 0.000000\r\n", + "..chemy\\orm\\loading.py:59 6 0.000000 0.000000 0.000000\r\n", + "..py:436 prefix_anon_map.__missing__ 6 0.000000 0.000000 0.000000\r\n", + "..y:316 _ListenerCollection.__call__ 2 0.000000 0.000000 0.000000\r\n", + "..py:635 ThreadPoolExecutor.__exit__ 1 0.000000 0.000000 0.000000\r\n", + "..rs.py:63 _SelectorMapping.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..reading.py:1095 _MainThread.daemon 2 0.000000 0.000000 0.000000\r\n", + "..b\\threading.py:1306 current_thread 3 0.000000 0.000000 0.000000\r\n", + "..tors.py:180 SelectSelector.get_key 1 0.000000 0.000000 0.000000\r\n", + "..\\lib\\_weakrefset.py:81 WeakSet.add 22 0.000000 0.000000 0.000000\r\n", + "..n-68gteq6k\\lib\\os.py:732 check_str 1 0.000000 0.000000 0.000000\r\n", + "..hreading.py:222 Condition.__init__ 13 0.000000 0.000000 0.000000\r\n", + "..ctorEventLoopPolicy.new_event_loop 1 0.000000 0.000000 0.000000\r\n", + "..8\\Lib\\threading.py:979 Thread.join 1 0.000000 0.000000 0.000000\r\n", + "..y:632 ThreadPoolExecutor.__enter__ 1 0.000000 0.000000 0.000000\r\n", + "..ion\\analysis.py:367 wrap_coroutine 1 0.000000 0.000000 0.000000\r\n", + "..ib\\threading.py:1110 Thread.daemon 2 0.000000 0.000000 0.000000\r\n", + "..tures\\_base.py:316 Future.__init__ 7 0.000000 0.000000 0.000000\r\n", + "..ors.py:209 SelectSelector.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..y:102 WeakValueDictionary.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..futures\\_base.py:412 Future.result 7 0.000000 0.000000 0.000000\r\n", + "..b\\threading.py:761 Thread.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..\\Lib\\socket.py:219 socket.__init__ 3 0.000000 0.000000 0.000000\r\n", + "..lib\\os.py:668 _Environ.__getitem__ 1 0.000000 0.000000 0.000000\r\n", + "..b\\socket.py:492 socket._real_close 1 0.000000 0.000000 0.000000\r\n", + "..\\Lib\\threading.py:513 Event.is_set 5 0.000000 0.000000 0.000000\r\n", + "..ib\\threading.py:270 Condition.wait 4 0.000000 0.000000 0.000000\r\n", + "..n38\\Lib\\socket.py:496 socket.close 1 0.000000 0.000000 0.000000\r\n", + "...py:284 WeakValueDictionary.update 1 0.000000 0.000000 0.000000\r\n", + "..hreading.py:388 Semaphore.__init__ 2 0.000000 0.000000 0.000000\r\n", + ".._weakrefset.py:36 WeakSet.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..38\\Lib\\socket.py:285 socket.accept 1 0.000000 0.000000 0.000000\r\n", + "..215 SelectSelector._fileobj_lookup 2 0.000000 0.000000 0.000000\r\n", + ":1 __new__ 91 0.000000 0.000000 0.000000\r\n", + "..tion\\analysis.py:373 run_in_thread 1 0.000000 0.000000 0.000000\r\n", + ".. interactable_plot_multiple_charts 1 0.000000 0.000000 0.000000\r\n", + "..ib\\socket.py:97 _intenum_converter 2 0.000000 0.000000 0.000000\r\n", + "..indowsSelectorEventLoop.is_running 2 0.000000 0.000000 0.000000\r\n", + "..WindowsSelectorEventLoop.set_debug 1 0.000000 0.000000 0.000000\r\n", + "..ing.py:255 Condition._release_save 4 0.000000 0.000000 0.000000\r\n", + "..\\Lib\\threading.py:944 Thread._stop 1 0.000000 0.000000 0.000000\r\n", + "..ors.py:298 SelectSelector.register 1 0.000000 0.000000 0.000000\r\n", + "..lib\\functools.py:33 update_wrapper 2 0.000000 0.000000 0.000000\r\n", + "..ng.py:1177 _make_invoke_excepthook 2 0.000000 0.000000 0.000000\r\n", + "..Lib\\selectors.py:21 _fileobj_to_fd 2 0.000000 0.000000 0.000000\r\n", + "..on38\\Lib\\socket.py:518 socket.type 1 0.000000 0.000000 0.000000\r\n", + "..n\\Python38\\Lib\\typing.py:1146 cast 1 0.000000 0.000000 0.000000\r\n", + "..ion\\utils.py:58 profile_with_yappi 1 0.000000 0.000000 0.000000\r\n", + "..68gteq6k\\lib\\functools.py:63 wraps 1 0.000000 0.000000 0.000000\r\n", + "..ollections_abc.py:657 _Environ.get 1 0.000000 0.000000 0.000000\r\n", + "..38\\Lib\\threading.py:540 Event.wait 2 0.000000 0.000000 0.000000\r\n", + "..py:230 ThreadPoolExecutor.shutdown 1 0.000000 0.000000 0.000000\r\n", + "..:1017 Thread._wait_for_tstate_lock 1 0.000000 0.000000 0.000000\r\n", + "..ndowsSelectorEventLoop._add_reader 1 0.000000 0.000000 0.000000\r\n", + "...py:258 Condition._acquire_restore 4 0.000000 0.000000 0.000000\r\n", + ".._WindowsSelectorEventLoop.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..ors.py:293 SelectSelector.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..eq6k\\lib\\_weakrefset.py:38 _remove 19 0.000000 0.000000 0.000000\r\n", + "..38\\Lib\\socket.py:512 socket.family 1 0.000000 0.000000 0.000000\r\n", + "..vents.py:719 get_event_loop_policy 1 0.000000 0.000000 0.000000\r\n", + "..n-68gteq6k\\lib\\os.py:738 encodekey 1 0.000000 0.000000 0.000000\r\n", + ".._WindowsSelectorEventLoop.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..py:120 ThreadPoolExecutor.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..yncio\\events.py:756 new_event_loop 1 0.000000 0.000000 0.000000\r\n", + "..io\\coroutines.py:18 _is_debug_mode 1 0.000000 0.000000 0.000000\r\n", + "..threading.py:394 Semaphore.acquire 7 0.000000 0.000000 0.000000\r\n", + "..py:69 _SelectorMapping.__getitem__ 1 0.000000 0.000000 0.000000\r\n", + "..es\\thread.py:46 _WorkItem.__init__ 7 0.000000 0.000000 0.000000\r\n", + "..ib\\threading.py:505 Event.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..ors.py:234 SelectSelector.register 1 0.000000 0.000000 0.000000\r\n", + "..hon38\\Lib\\socket.py:579 socketpair 1 0.000000 0.000000 0.000000\r\n", + "..sSelectorEventLoop._make_self_pipe 1 0.000000 0.000000 0.000000\r\n", + "..s\\_base.py:386 Future.__get_result 7 0.000000 0.000000 0.000000\r\n", + "..tors.py:272 SelectSelector.get_map 1 0.000000 0.000000 0.000000\r\n", + "..Python38\\Lib\\threading.py:81 RLock 8 0.000000 0.000000 0.000000\r\n", + ".. _GeneratorContextManager.__exit__ 142.. 0.000000 0.000000 0.000000\r\n", + "..1254 Line2D.set_markerfacecoloralt 30 0.000000 0.000000 0.000000\r\n", + "..HandlerLine2D._default_update_prop 8 0.000000 0.000000 0.000000\r\n", + "..y:980 _ConnectionFairy.__getattr__ 2 0.000000 0.000000 0.000000\r\n", + "..\\axis.py:618 YTick.update_position 3 0.000000 0.000000 0.000000\r\n", + "..y:583 AxesSubplot._unstale_viewLim 2 0.000000 0.000000 0.000000\r\n", + "..py:133 GridSpec.get_grid_positions 1 0.000000 0.000000 0.000000\r\n", + "..lib\\transforms.py:782 from_extents 20 0.000000 0.000000 0.000000\r\n", + "..istry.py:246 _EventKey.base_listen 3 0.000000 0.000000 0.000000\r\n", + "..copg2\\tz.py:36 FixedOffsetTimezone 1 0.000000 0.000000 0.000000\r\n", + "..y\\orm\\session.py:893 Session.begin 3 0.000000 0.000000 0.000000\r\n", + "..ok\\__init__.py:2108 _check_in_list 449 0.000000 0.000000 0.000000\r\n", + "...py:556 UUID.coerce_compared_value 4 0.000000 0.000000 0.000000\r\n", + "..:1088 ExtensionFileLoader.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\colors.py:225 4 0.000000 0.000000 0.000000\r\n", + "..otlib\\axes\\_base.py:363 4 0.000000 0.000000 0.000000\r\n", + "..__.py:185 CallbackRegistry.process 26 0.000000 0.000000 0.000000\r\n", + "..array_function__ internals>:2 tile 1 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:229 XTick.set_clip_path 6 0.000000 0.000000 0.000000\r\n", + "..xesSubplot._set_title_offset_trans 5 0.000000 0.000000 0.000000\r\n", + "..plotlib\\spines.py:517 linear_spine 4 0.000000 0.000000 0.000000\r\n", + "..:776 Rectangle.get_patch_transform 18 0.000000 0.000000 0.000000\r\n", + "..rtist.py:350 Text.is_transform_set 15 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\figure.py:76 2 0.000000 0.000000 0.000000\r\n", + "..gistry.py:67 _stored_in_collection 3 0.000000 0.000000 0.000000\r\n", + "..set.py:16 _IterationGuard.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..nits.py:197 Registry.get_converter 24/14 0.000000 0.000000 0.000000\r\n", + "..tenerCollection._memoized_attr_ref 2 0.000000 0.000000 0.000000\r\n", + "..ler.py:396 PGTypeCompiler.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..lotlib\\dates.py:1921 default_units 8 0.000000 0.000000 0.000000\r\n", + "..base.py:563 AxesSubplot.set_figure 1 0.000000 0.000000 0.000000\r\n", + "..k\\lib\\abc.py:100 __subclasscheck__ 85/14 0.000000 0.000000 0.000000\r\n", + "..lib\\axis.py:922 _translate_tick_kw 8 0.000000 0.000000 0.000000\r\n", + "..manager.py:855 FontProperties.copy 3 0.000000 0.000000 0.000000\r\n", + "..pool\\impl.py:35 QueuePool.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..y:2462 composite_transform_factory 78 0.000000 0.000000 0.000000\r\n", + "..ctions_abc.py:252 __subclasshook__ 1 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:334 XTick._apply_params 14 0.000000 0.000000 0.000000\r\n", + "..t_manager.py:1043 get_default_size 22 0.000000 0.000000 0.000000\r\n", + "...py:1624 FigureCanvasBase.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..owsSelectorEventLoop.create_future 6 0.000000 0.000000 0.000000\r\n", + "..b\\_pylab_helpers.py:109 set_active 1 0.000000 0.000000 0.000000\r\n", + "..y:930 AxesSubplot._gen_axes_spines 1 0.000000 0.000000 0.000000\r\n", + "..es.py:375 FancyBboxPatch.set_alpha 1 0.000000 0.000000 0.000000\r\n", + "..x.py:690 DrawingArea.get_transform 4 0.000000 0.000000 0.000000\r\n", + "..ase.py:867 _ConnectionFairy._reset 1 0.000000 0.000000 0.000000\r\n", + "..ycopg2\\extras.py:805 HstoreAdapter 1 0.000000 0.000000 0.000000\r\n", + "..:536 ScalarFormatter.set_useOffset 16 0.000000 0.000000 0.000000\r\n", + "..emy\\orm\\query.py:1790 Query.filter 4 0.000000 0.000000 0.000000\r\n", + "..text.py:240 Text.set_rotation_mode 24 0.000000 0.000000 0.000000\r\n", + "..ages\\psycopg2\\errors.py:1 1 0.000000 0.000000 0.000000\r\n", + "..lEventsDispatch._event_descriptors 36 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\text.py:170 Text.update 65 0.000000 0.000000 0.000000\r\n", + "..py:913 AxesSubplot._gen_axes_patch 1 0.000000 0.000000 0.000000\r\n", + "..set.py:26 _IterationGuard.__exit__ 1 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:544 YTick._get_text1 3 0.000000 0.000000 0.000000\r\n", + "..rms.py:1632 TransformWrapper._init 2 0.000000 0.000000 0.000000\r\n", + "..:221 Query._set_entity_selectables 6 0.000000 0.000000 0.000000\r\n", + "..\\__init__.py:631 _AxesStack.bubble 1 0.000000 0.000000 0.000000\r\n", + "..6k\\lib\\enum.py:659 RegexFlag.value 4 0.000000 0.000000 0.000000\r\n", + "..CompositeGenericTransform.__init__ 69 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:603 YTick._get_gridline 3 0.000000 0.000000 0.000000\r\n", + "..stry.py:169 _EventKey.with_wrapper 5 0.000000 0.000000 0.000000\r\n", + "..langhelpers.py:344 get_func_kwargs 1 0.000000 0.000000 0.000000\r\n", + "..lib\\patches.py:2146 Round.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..b\\path.py:251 Path.should_simplify 4 0.000000 0.000000 0.000000\r\n", + "..ges\\numpy\\core\\_methods.py:44 _any 4 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:559 YTick._get_text2 3 0.000000 0.000000 0.000000\r\n", + "..xis.py:1969 XAxis._get_offset_text 1 0.000000 0.000000 0.000000\r\n", + "..base.py:375 QueuePool._return_conn 1 0.000000 0.000000 0.000000\r\n", + "..qlalchemy\\orm\\base.py:222 generate 5 0.000000 0.000000 0.000000\r\n", + "..orm._iter_break_from_left_to_right 8 0.000000 0.000000 0.000000\r\n", + "..ngine\\base.py:863 Connection.close 1 0.000000 0.000000 0.000000\r\n", + "..py:1240 Line2D.set_markerfacecolor 30 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:662 Ticker.formatter 65 0.000000 0.000000 0.000000\r\n", + "..7 BlendedGenericTransform.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..lchemy\\orm\\query.py:330 1 0.000000 0.000000 0.000000\r\n", + "..legend.py:1169 _get_legend_handles 5 0.000000 0.000000 0.000000\r\n", + "..tlib\\figure.py:275 Figure.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..t.py:49 Spine._stale_axes_callback 302 0.000000 0.000000 0.000000\r\n", + "..py:834 XAxis.limit_range_for_scale 2 0.000000 0.000000 0.000000\r\n", + "..otlib\\artist.py:74 Figure.__init__ 88 0.000000 0.000000 0.000000\r\n", + ".._base.py:3093 AxesSubplot.set_xlim 1 0.000000 0.000000 0.000000\r\n", + "..774 SourceFileLoader.create_module 9 0.000000 0.000000 0.000000\r\n", + "..34 new_figure_manager_given_figure 1 0.000000 0.000000 0.000000\r\n", + "..xis.py:1525 XAxis._update_axisinfo 13 0.000000 0.000000 0.000000\r\n", + "..ngine\\url.py:299 _rfc_1738_unquote 1 0.000000 0.000000 0.000000\r\n", + "..lotlib\\axis.py:645 Ticker.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..sSubplot.get_xaxis_text1_transform 3 0.000000 0.000000 0.000000\r\n", + "..y:2463 FancyBboxPatch.set_boxstyle 2 0.000000 0.000000 0.000000\r\n", + "..24 AxesSubplot.get_yaxis_transform 29/15 0.000000 0.000000 0.000000\r\n", + "..psycopg2\\_range.py:290 RangeCaster 1 0.000000 0.000000 0.000000\r\n", + "..owsSelectorEventLoop._add_callback 6 0.000000 0.000000 0.000000\r\n", + "..l.py:103 QueuePool._do_return_conn 1 0.000000 0.000000 0.000000\r\n", + "..e-packages\\cycler.py:227 110 0.000000 0.000000 0.000000\r\n", + "..ure.py:487 Figure.set_tight_layout 1 0.000000 0.000000 0.000000\r\n", + "..nal>:1520 path_hook_for_FileFinder 1 0.000000 0.000000 0.000000\r\n", + "..ib\\transforms.py:727 Bbox.__init__ 41 0.000000 0.000000 0.000000\r\n", + "..s.py:1247 AutoDateLocator.__init__ 2 0.000000 0.000000 0.000000\r\n", + "...py:1640 XAxis.set_minor_formatter 16 0.000000 0.000000 0.000000\r\n", + "..:171 DynamicClassAttribute.__get__ 4 0.000000 0.000000 0.000000\r\n", + "..nal>:939 SourceFileLoader.__init__ 9 0.000000 0.000000 0.000000\r\n", + "..610 _WindowsSelectorEventLoop.stop 1 0.000000 0.000000 0.000000\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..b\\function_base.py:2120 4 0.000000 0.000000 0.000000\r\n", + "...py:1423 Figure._add_axes_internal 1 0.000000 0.000000 0.000000\r\n", + "..mportlib._bootstrap>:800 find_spec 10 0.000000 0.000000 0.000000\r\n", + "..:94 PoolEventsDispatch.__getattr__ 12 0.000000 0.000000 0.000000\r\n", + "..axes.py:256 AxesSubplot.set_ylabel 4 0.000000 0.000000 0.000000\r\n", + "..lines.py:1058 Line2D.set_drawstyle 34 0.000000 0.000000 0.000000\r\n", + "..sforms.py:1940 Affine2D.rotate_deg 18 0.000000 0.000000 0.000000\r\n", + "..>:1010 SourceFileLoader.path_stats 9 0.000000 0.000000 0.000000\r\n", + "..b\\cbook\\__init__.py:836 8 0.000000 0.000000 0.000000\r\n", + "..lib\\lines.py:743 Line2D._is_sorted 3 0.000000 0.000000 0.000000\r\n", + "..\\elements.py:709 Column.comparator 4 0.000000 0.000000 0.000000\r\n", + "..tlib\\axis.py:1951 XAxis._get_label 1 0.000000 0.000000 0.000000\r\n", + "..ore\\numerictypes.py:365 issubdtype 4 0.000000 0.000000 0.000000\r\n", + "..\\axis.py:1605 YAxis.set_label_text 5 0.000000 0.000000 0.000000\r\n", + "..copg2\\extras.py:125 DictConnection 1 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\transforms.py:768 null 1 0.000000 0.000000 0.000000\r\n", + "..lib\\offsetbox.py:199 TextArea.axes 16 0.000000 0.000000 0.000000\r\n", + "..nction__ internals>:2 column_stack 12 0.000000 0.000000 0.000000\r\n", + "..ap_external>:90 _path_is_mode_type 13 0.000000 0.000000 0.000000\r\n", + ".._base.py:20 _atleast_1d_dispatcher 24 0.000000 0.000000 0.000000\r\n", + "..py:193 PGDialect_psycopg2.__init__ 1 0.000000 0.000000 0.000000\r\n", + "...py:765 FontProperties.set_variant 23 0.000000 0.000000 0.000000\r\n", + "...py:523 YTick._get_text1_transform 3 0.000000 0.000000 0.000000\r\n", + "..ath.py:230 Path.simplify_threshold 4 0.000000 0.000000 0.000000\r\n", + "..sql\\operators.py:358 Column.__eq__ 8/4 0.000000 0.000000 0.000000\r\n", + "..\\core\\fromnumeric.py:74 85 0.000000 0.000000 0.000000\r\n", + "..sql\\elements.py:4087 Column._label 10 0.000000 0.000000 0.000000\r\n", + "..WeakKeyDictionary._commit_removals 1 0.000000 0.000000 0.000000\r\n", + "..elements.py:724 Column.__getattr__ 3 0.000000 0.000000 0.000000\r\n", + "..k\\__init__.py:626 _AxesStack.clear 3 0.000000 0.000000 0.000000\r\n", + "..ool\\base.py:235 QueuePool._creator 1 0.000000 0.000000 0.000000\r\n", + "..s.py:302 Rectangle.set_antialiased 8 0.000000 0.000000 0.000000\r\n", + "..tlib\\transforms.py:773 from_bounds 1 0.000000 0.000000 0.000000\r\n", + "..68gteq6k\\lib\\weakref.py:44 __new__ 33 0.000000 0.000000 0.000000\r\n", + "..ction__ internals>:2 unravel_index 1 0.000000 0.000000 0.000000\r\n", + "..ycopg2\\_range.py:471 DateTimeRange 1 0.000000 0.000000 0.000000\r\n", + "..asyncio\\futures.py:377 wrap_future 6 0.000000 0.000000 0.000000\r\n", + "..sion.py:3188 sessionmaker.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..07 ExtensionFileLoader.exec_module 1 0.000000 0.000000 0.000000\r\n", + "..\\interfaces.py:856 get_dialect_cls 1 0.000000 0.000000 0.000000\r\n", + "..es.py:341 Rectangle._set_facecolor 20 0.000000 0.000000 0.000000\r\n", + ":1 Session.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..nsaction._iterate_self_and_parents 1 0.000000 0.000000 0.000000\r\n", + "..e\\fromnumeric.py:73 _wrapreduction 85 0.000000 0.000000 0.000000\r\n", + "..\\legend.py:1215 _parse_legend_args 1 0.000000 0.000000 0.000000\r\n", + "..2\\extras.py:226 RealDictConnection 1 0.000000 0.000000 0.000000\r\n", + "..ches.py:458 Rectangle.set_capstyle 11 0.000000 0.000000 0.000000\r\n", + "..chemy\\util\\queue.py:199 Queue._put 1 0.000000 0.000000 0.000000\r\n", + "..as.py:472 MinTimeLoggingConnection 1 0.000000 0.000000 0.000000\r\n", + "..y\\dialects\\__init__.py:52 1 0.000000 0.000000 0.000000\r\n", + "..idspec.py:200 GridSpec.__getitem__ 1 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\text.py:121 Text.__init__ 24 0.000000 0.000000 0.000000\r\n", + "..lotlib\\axes\\_base.py:586 4 0.000000 0.000000 0.000000\r\n", + "..n\\Python38\\Lib\\typing.py:255 inner 1 0.000000 0.000000 0.000000\r\n", + "..extras.py:296 NamedTupleConnection 1 0.000000 0.000000 0.000000\r\n", + "..tion_base.py:1143 _diff_dispatcher 16 0.000000 0.000000 0.000000\r\n", + "..s\\psycopg2\\_range.py:466 DateRange 1 0.000000 0.000000 0.000000\r\n", + "..plotlib\\transforms.py:177 39 0.000000 0.000000 0.000000\r\n", + "..ger.py:835 FontProperties.set_file 23 0.000000 0.000000 0.000000\r\n", + "..py:210 WeakInstanceDict.all_states 2 0.000000 0.000000 0.000000\r\n", + "..8gteq6k\\lib\\sre_parse.py:432 _uniq 22 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\figure.py:74 2 0.000000 0.000000 0.000000\r\n", + "..b\\spines.py:381 Spine.set_position 4 0.000000 0.000000 0.000000\r\n", + "..ib\\function_base.py:2116 8 0.000000 0.000000 0.000000\r\n", + "..mportlib._bootstrap>:725 find_spec 10 0.000000 0.000000 0.000000\r\n", + "..ernal>:629 spec_from_file_location 10 0.000000 0.000000 0.000000\r\n", + ":1 QueuePool.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..:519 PhysicalReplicationConnection 1 0.000000 0.000000 0.000000\r\n", + "..ures\\_base.py:371 Future.cancelled 6 0.000000 0.000000 0.000000\r\n", + ".._init__.py:1610 safe_first_element 24 0.000000 0.000000 0.000000\r\n", + "..cbook\\__init__.py:1933 _setattr_cm 280 0.000000 0.000000 0.000000\r\n", + "..ool\\base.py:231 QueuePool._creator 1 0.000000 0.000000 0.000000\r\n", + "..ker.py:2126 AutoLocator.set_params 16 0.000000 0.000000 0.000000\r\n", + "..\\offsetbox.py:410 VPacker.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..se.py:1699 RootTransaction._parent 1 0.000000 0.000000 0.000000\r\n", + "..__init__.py:60 _StrongRef.__hash__ 6 0.000000 0.000000 0.000000\r\n", + "..lors.py:193 _to_rgba_no_colorcycle 8 0.000000 0.000000 0.000000\r\n", + "..es\\matplotlib\\pyplot.py:427 figure 1 0.000000 0.000000 0.000000\r\n", + "..s.py:1355 AutoDateLocator.set_axis 1 0.000000 0.000000 0.000000\r\n", + "..s.py:263 MarkerStyle.get_fillstyle 8 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\axis.py:1456 XAxis.grid 4 0.000000 0.000000 0.000000\r\n", + "..hes.py:330 Rectangle.set_edgecolor 12 0.000000 0.000000 0.000000\r\n", + "..portlib._bootstrap>:35 _new_module 9 0.000000 0.000000 0.000000\r\n", + "..tlib\\transforms.py:274 Bbox.frozen 1 0.000000 0.000000 0.000000\r\n", + "..plotlib\\text.py:933 Text.set_color 24 0.000000 0.000000 0.000000\r\n", + "..s.py:2221 BlendedAffine2D.__init__ 6 0.000000 0.000000 0.000000\r\n", + ".. HandlerLine2D.adjust_drawing_area 4 0.000000 0.000000 0.000000\r\n", + "..b\\lines.py:1327 Line2D.update_from 8 0.000000 0.000000 0.000000\r\n", + "..ocess_plot_var_args.set_prop_cycle 2 0.000000 0.000000 0.000000\r\n", + "..alchemy\\log.py:174 instance_logger 3 0.000000 0.000000 0.000000\r\n", + "..pe_base.py:219 _vhstack_dispatcher 16 0.000000 0.000000 0.000000\r\n", + "..s\\psycopg2\\tz.py:108 LocalTimezone 1 0.000000 0.000000 0.000000\r\n", + "..mpy\\lib\\function_base.py:1147 diff 16 0.000000 0.000000 0.000000\r\n", + "..lib\\transforms.py:82 Bbox.__init__ 306 0.000000 0.000000 0.000000\r\n", + "..nctools.py:524 decorating_function 1 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\axis.py:1486 4 0.000000 0.000000 0.000000\r\n", + "..emy\\engine\\url.py:129 URL.password 1 0.000000 0.000000 0.000000\r\n", + "..sSelectorEventLoop._process_events 17 0.000000 0.000000 0.000000\r\n", + "..lib\\lines.py:1294 Line2D.set_ydata 39 0.000000 0.000000 0.000000\r\n", + ".._.py:1309 _to_unmasked_float_array 34 0.000000 0.000000 0.000000\r\n", + "..>:147 _ModuleLockManager.__enter__ 10 0.000000 0.000000 0.000000\r\n", + "..\\sqlalchemy\\event\\api.py:34 listen 3 0.000000 0.000000 0.000000\r\n", + "..gure.py:2059 Figure.add_axobserver 1 0.000000 0.000000 0.000000\r\n", + "..teq6k\\lib\\copy.py:257 _reconstruct 1 0.000000 0.000000 0.000000\r\n", + "..artist.py:827 Line2D.get_clip_path 4 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\legend.py:1253 1 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\figure.py:1073 fixitems 1 0.000000 0.000000 0.000000\r\n", + "..r.py:742 FontProperties.set_family 23 0.000000 0.000000 0.000000\r\n", + "..ap_external>:294 cache_from_source 18 0.000000 0.000000 0.000000\r\n", + "..forms.py:1669 TransformWrapper.set 2 0.000000 0.000000 0.000000\r\n", + "..tlib\\units.py:81 AxisInfo.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..ncio\\coroutines.py:177 iscoroutine 2 0.000000 0.000000 0.000000\r\n", + "..\\psycopg2\\extensions.py:109 SQL_IN 1 0.000000 0.000000 0.000000\r\n", + "..plotlib\\gridspec.py:382 1 0.000000 0.000000 0.000000\r\n", + "..xternal>:1265 _path_importer_cache 19 0.000000 0.000000 0.000000\r\n", + "..kages\\psycopg2\\_json.py:1 1 0.000000 0.000000 0.000000\r\n", + "..process_plot_var_args._setdefaults 4 0.000000 0.000000 0.000000\r\n", + "..b\\axis.py:459 XTick._get_tick1line 3 0.000000 0.000000 0.000000\r\n", + "..y\\lib\\shape_base.py:1227 2 0.000000 0.000000 0.000000\r\n", + "..ages\\psycopg2\\extras.py:1 1 0.000000 0.000000 0.000000\r\n", + "..\\transforms.py:939 Bbox.get_points 3 0.000000 0.000000 0.000000\r\n", + "..tlib\\legend.py:569 Legend._set_loc 1 0.000000 0.000000 0.000000\r\n", + "..tlib\\axis.py:2466 YAxis.get_minpos 1 0.000000 0.000000 0.000000\r\n", + "..s.py:1398 Line2D.set_dash_capstyle 30 0.000000 0.000000 0.000000\r\n", + "..on38\\Lib\\uuid.py:259 UUID.__hash__ 4 0.000000 0.000000 0.000000\r\n", + "..otlib\\artist.py:197 Rectangle.axes 117 0.000000 0.000000 0.000000\r\n", + "..py:2459 AxesSubplot._get_axis_list 1 0.000000 0.000000 0.000000\r\n", + "..\\orm\\session.py:1288 Session.close 1 0.000000 0.000000 0.000000\r\n", + "..\\offsetbox.py:356 HPacker.__init__ 7 0.000000 0.000000 0.000000\r\n", + "..ion-68gteq6k\\lib\\weakref.py:51 _cb 2 0.000000 0.000000 0.000000\r\n", + "..opg2\\_range.py:476 DateTimeTZRange 1 0.000000 0.000000 0.000000\r\n", + "..ycopg2\\extras.py:65 DictCursorBase 1 0.000000 0.000000 0.000000\r\n", + "..lectorEventLoop._process_self_data 6 0.000000 0.000000 0.000000\r\n", + "..y:154 to_unicode_processor_factory 1 0.000000 0.000000 0.000000\r\n", + "..:116 PoolEventsDispatch._for_class 2 0.000000 0.000000 0.000000\r\n", + "..hemy\\engine\\url.py:56 URL.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..otlib\\rcsetup.py:123 validate_bool 1 0.000000 0.000000 0.000000\r\n", + "..b\\scale.py:97 LinearScale.__init__ 16 0.000000 0.000000 0.000000\r\n", + "..b._bootstrap>:157 _get_module_lock 18 0.000000 0.000000 0.000000\r\n", + "..ping.py:717 _GenericAlias.__hash__ 1 0.000000 0.000000 0.000000\r\n", + "..y:512 LogicalReplicationConnection 1 0.000000 0.000000 0.000000\r\n", + "..r.py:774 FontProperties.set_weight 27 0.000000 0.000000 0.000000\r\n", + "..er.py:72 HandlerLine2D.update_prop 8 0.000000 0.000000 0.000000\r\n", + "..til\\_collections.py:317 5 0.000000 0.000000 0.000000\r\n", + "..ig\\configurable.py:426 initialized 2 0.000000 0.000000 0.000000\r\n", + "..t\\registry.py:193 _EventKey.listen 4/3 0.000000 0.000000 0.000000\r\n", + "..otlib\\transforms.py:394 Bbox.width 1 0.000000 0.000000 0.000000\r\n", + "..s\\matplotlib\\axis.py:841 XAxis.cla 12 0.000000 0.000000 0.000000\r\n", + "..ootstrap_external>:99 _path_isfile 12 0.000000 0.000000 0.000000\r\n", + "..d_bases.py:3325 new_figure_manager 1 0.000000 0.000000 0.000000\r\n", + "..sSubplot.get_yaxis_text2_transform 3 0.000000 0.000000 0.000000\r\n", + "..nit__.py:1974 _OrderedSet.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..lotlib\\axis.py:822 XAxis.get_scale 5 0.000000 0.000000 0.000000\r\n", + "..s\\_base.py:597 AxesSubplot.viewLim 2 0.000000 0.000000 0.000000\r\n", + "..f.py:385 WeakKeyDictionary.__len__ 2 0.000000 0.000000 0.000000\r\n", + "...py:526 YTick._get_text2_transform 3 0.000000 0.000000 0.000000\r\n", + "..bootstrap_external>:1508 1 0.000000 0.000000 0.000000\r\n", + "..plotlib\\axis.py:649 Ticker.locator 3 0.000000 0.000000 0.000000\r\n", + "..y:528 Text._update_clip_properties 15 0.000000 0.000000 0.000000\r\n", + "..lotlib\\axes\\_base.py:232 8 0.000000 0.000000 0.000000\r\n", + "..ing>:1 PGDialect_psycopg2.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..hes.py:260 Rectangle.get_transform 18 0.000000 0.000000 0.000000\r\n", + "..bootstrap>:103 _ModuleLock.release 18 0.000000 0.000000 0.000000\r\n", + "..lib\\artist.py:974 Rectangle.update 140 0.000000 0.000000 0.000000\r\n", + "..py:2249 BlendedAffine2D.get_matrix 4 0.000000 0.000000 0.000000\r\n", + "..tlib\\dates.py:174 _get_rc_timezone 6 0.000000 0.000000 0.000000\r\n", + "..e.py:117 LinearScale.get_transform 4 0.000000 0.000000 0.000000\r\n", + "..ase.py:746 Connection._commit_impl 1 0.000000 0.000000 0.000000\r\n", + "..ges\\numpy\\core\\_methods.py:47 _all 1 0.000000 0.000000 0.000000\r\n", + "..sSubplot.get_xaxis_text2_transform 3 0.000000 0.000000 0.000000\r\n", + "..ib\\axes\\_subplots.py:229 2 0.000000 0.000000 0.000000\r\n", + "..egation\\analysis.py:212 8613 0.000000 0.000000 0.000000\r\n", + "..mpy\\core\\fromnumeric.py:42 _wrapit 3 0.000000 0.000000 0.000000\r\n", + "..lib\\transforms.py:935 Bbox.minposy 1 0.000000 0.000000 0.000000\r\n", + "...py:2266 blended_transform_factory 8 0.000000 0.000000 0.000000\r\n", + "..93 vectorize._get_ufunc_and_otypes 4 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\artist.py:1006 140 0.000000 0.000000 0.000000\r\n", + "..py:2538 FigureManagerBase.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..json.py:146 register_default_jsonb 1 0.000000 0.000000 0.000000\r\n", + "..chemy\\engine\\url.py:156 1 0.000000 0.000000 0.000000\r\n", + ":1 Comparator. 4 0.000000 0.000000 0.000000\r\n", + "..ib\\stride_tricks.py:262 10 0.000000 0.000000 0.000000\r\n", + "..b\\sre_parse.py:98 State.checkgroup 1 0.000000 0.000000 0.000000\r\n", + "..extras.py:500 MinTimeLoggingCursor 1 0.000000 0.000000 0.000000\r\n", + "..syncio\\base_futures.py:13 isfuture 37 0.000000 0.000000 0.000000\r\n", + "..lalchemy\\event\\base.py:243 _listen 3 0.000000 0.000000 0.000000\r\n", + "..ok\\__init__.py:601 _AxesStack.push 2 0.000000 0.000000 0.000000\r\n", + "..s.py:2544 BboxTransformTo.__init__ 20 0.000000 0.000000 0.000000\r\n", + "..ist.py:961 Rectangle.set_in_layout 1 0.000000 0.000000 0.000000\r\n", + "..opg2\\extras.py:526 StopReplication 1 0.000000 0.000000 0.000000\r\n", + "..nghelpers.py:248 PluginLoader.load 1 0.000000 0.000000 0.000000\r\n", + "..1 _process_plot_var_args._makeline 4 0.000000 0.000000 0.000000\r\n", + "..ation-68gteq6k\\lib\\copy.py:66 copy 1 0.000000 0.000000 0.000000\r\n", + "..entifierPreparer_psycopg2.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..asyncio\\tasks.py:653 ensure_future 2 0.000000 0.000000 0.000000\r\n", + "..yncio\\futures.py:335 _chain_future 6 0.000000 0.000000 0.000000\r\n", + "..alchemy\\util\\queue.py:92 Queue.put 1 0.000000 0.000000 0.000000\r\n", + "..48 AxesSubplot.get_xaxis_transform 29/15 0.000000 0.000000 0.000000\r\n", + "..romnumeric.py:2185 _any_dispatcher 76 0.000000 0.000000 0.000000\r\n", + "...py:77 PoolEventsDispatch.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..b._bootstrap>:222 _verbose_message 90 0.000000 0.000000 0.000000\r\n", + "..mpy\\core\\multiarray.py:1043 copyto 4 0.000000 0.000000 0.000000\r\n", + "..\\lib\\sre_compile.py:411 _mk_bitmap 5 0.000000 0.000000 0.000000\r\n", + "..ctors.py:319 SelectSelector.select 17 0.000000 0.000000 0.000000\r\n", + "..ffsetbox.py:240 VPacker.set_offset 1 0.000000 0.000000 0.000000\r\n", + ".._comparator.py:41 _boolean_compare 4 0.000000 0.000000 0.000000\r\n", + "...py:1352 Line2D.set_dash_joinstyle 30 0.000000 0.000000 0.000000\r\n", + "..ase.py:3767 AxesSubplot.xaxis_date 4 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:485 XTick._get_gridline 3 0.000000 0.000000 0.000000\r\n", + "..\\numpy\\lib\\shape_base.py:1155 tile 1 0.000000 0.000000 0.000000\r\n", + "..s\\matplotlib\\dates.py:225 2 0.000000 0.000000 0.000000\r\n", + "..y:2175 XAxis.set_default_intervals 1 0.000000 0.000000 0.000000\r\n", + "..tstrap_external>:493 _classify_pyc 9 0.000000 0.000000 0.000000\r\n", + "..external>:1394 FileFinder.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..py:140 _AxesStack.current_key_axes 2 0.000000 0.000000 0.000000\r\n", + "..y:355 _ListenerCollection.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:444 XTick._get_text2 3 0.000000 0.000000 0.000000\r\n", + "..copg2\\extras.py:233 RealDictCursor 1 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\path.py:197 Path.vertices 16 0.000000 0.000000 0.000000\r\n", + "..t_comparator.py:359 _check_literal 4 0.000000 0.000000 0.000000\r\n", + "..ctions_abc.py:271 __subclasshook__ 5 0.000000 0.000000 0.000000\r\n", + "..es\\numpy\\core\\_methods.py:28 _amax 2 0.000000 0.000000 0.000000\r\n", + "..nal>:969 SourceFileLoader.get_data 9 0.000000 0.000000 0.000000\r\n", + "..ib\\weakref.py:73 WeakMethod.__eq__ 1 0.000000 0.000000 0.000000\r\n", + "..e.py:853 _ConnectionFairy._checkin 1 0.000000 0.000000 0.000000\r\n", + "..artist.py:841 TextArea.set_clip_on 16 0.000000 0.000000 0.000000\r\n", + "..e\\interfaces.py:901 engine_created 1 0.000000 0.000000 0.000000\r\n", + "..b\\weakref.py:328 KeyedRef.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..\\lines.py:730 Line2D.set_transform 38 0.000000 0.000000 0.000000\r\n", + "..s.py:1709 IdentityTransform.__eq__ 9/8 0.000000 0.000000 0.000000\r\n", + "..\\cbook\\__init__.py:1737 74 0.000000 0.000000 0.000000\r\n", + "..\\spines.py:226 Spine.register_axis 4 0.000000 0.000000 0.000000\r\n", + "..ng\\__init__.py:772 Logger.__init__ 3 0.000000 0.000000 0.000000\r\n", + "..Figure.set_constrained_layout_pads 1 0.000000 0.000000 0.000000\r\n", + "..nal>:849 SourceFileLoader.get_code 9 0.000000 0.000000 0.000000\r\n", + "...py:235 SubplotParams._update_this 12 0.000000 0.000000 0.000000\r\n", + "..y\\log.py:221 echo_property.__set__ 1 0.000000 0.000000 0.000000\r\n", + "..s\\matplotlib\\axis.py:342 70 0.000000 0.000000 0.000000\r\n", + "..:136 Affine2D._invalidate_internal 90/76 0.000000 0.000000 0.000000\r\n", + "..n.py:500 SessionTransaction.commit 1 0.000000 0.000000 0.000000\r\n", + "..b\\transforms.py:914 Bbox.intervaly 1 0.000000 0.000000 0.000000\r\n", + "...py:311 RangeCaster._create_ranges 6 0.000000 0.000000 0.000000\r\n", + "...py:1689 TransformWrapper. 6 0.000000 0.000000 0.000000\r\n", + "..ents.py:942 BindParameter.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..ib\\artist.py:800 XAxis.get_visible 2 0.000000 0.000000 0.000000\r\n", + "..ib\\threading.py:1095 Thread.daemon 1 0.000000 0.000000 0.000000\r\n", + "..e._process_projection_requirements 1 0.000000 0.000000 0.000000\r\n", + "..b._bootstrap>:549 module_from_spec 10/9 0.000000 0.000000 0.000000\r\n", + ".. Rectangle._update_patch_transform 18 0.000000 0.000000 0.000000\r\n", + "..\\cbook\\__init__.py:1742 74 0.000000 0.000000 0.000000\r\n", + "..book\\__init__.py:1296 is_math_text 30 0.000000 0.000000 0.000000\r\n", + "..ray_function__ internals>:2 copyto 4 0.000000 0.000000 0.000000\r\n", + "..is.py:1048 XAxis._set_artist_props 4 0.000000 0.000000 0.000000\r\n", + "..59 WeakValueDictionary.__setitem__ 1 0.000000 0.000000 0.000000\r\n", + "..hes.py:402 Rectangle.set_linestyle 7 0.000000 0.000000 0.000000\r\n", + "..y\\pool\\base.py:667 _finalize_fairy 1 0.000000 0.000000 0.000000\r\n", + ".._bootstrap>:477 _init_module_attrs 10 0.000000 0.000000 0.000000\r\n", + ".._bootstrap_external>:80 _path_stat 40 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\dates.py:1893 axisinfo 2 0.000000 0.000000 0.000000\r\n", + "..tbox.py:739 DrawingArea.add_artist 8 0.000000 0.000000 0.000000\r\n", + "..lib\\lines.py:1047 Line2D.set_color 30 0.000000 0.000000 0.000000\r\n", + "..py:2606 BboxTransformFrom.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..\\offsetbox.py:489 HPacker.__init__ 5 0.000000 0.000000 0.000000\r\n", + "..bootstrap_external>:68 _path_split 18 0.000000 0.000000 0.000000\r\n", + "..teGenericTransform.contains_branch 4 0.000000 0.000000 0.000000\r\n", + "..elements.py:4056 Column._get_table 20 0.000000 0.000000 0.000000\r\n", + "..y\\core\\multiarray.py:77 empty_like 4 0.000000 0.000000 0.000000\r\n", + "..offsetbox.py:175 TextArea.__init__ 16 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:529 YTick.apply_tickdir 3 0.000000 0.000000 0.000000\r\n", + "..nsforms.py:126 Affine2D.invalidate 76 0.000000 0.000000 0.000000\r\n", + "...py:792 FontProperties.set_stretch 23 0.000000 0.000000 0.000000\r\n", + "..ib\\__init__.py:1285 is_interactive 2 0.000000 0.000000 0.000000\r\n", + "..it__.py:1323 Manager._fixupParents 3 0.000000 0.000000 0.000000\r\n", + "..sycopg2\\_range.py:457 NumericRange 1 0.000000 0.000000 0.000000\r\n", + "..ib\\artist.py:1037 Spine.set_zorder 18 0.000000 0.000000 0.000000\r\n", + "...py:399 _ListenerCollection.append 3 0.000000 0.000000 0.000000\r\n", + "..lements.py:4145 Column._bind_param 4 0.000000 0.000000 0.000000\r\n", + ".._axes.py:147 AxesSubplot.set_title 4 0.000000 0.000000 0.000000\r\n", + "..tlib\\transforms.py:400 Bbox.height 1 0.000000 0.000000 0.000000\r\n", + "..ler.py:161 HandlerLine2D.get_xdata 4 0.000000 0.000000 0.000000\r\n", + "..e.py:3867 AxesSubplot.set_navigate 1 0.000000 0.000000 0.000000\r\n", + "..bootstrap_external>:36 _relax_case 17 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\axis.py:361 14 0.000000 0.000000 0.000000\r\n", + "..\\axis.py:884 XAxis.set_tick_params 8 0.000000 0.000000 0.000000\r\n", + "..800 AxesSubplot._update_transScale 2 0.000000 0.000000 0.000000\r\n", + "..b\\patches.py:42 Rectangle.__init__ 7 0.000000 0.000000 0.000000\r\n", + "..ib\\path.py:188 Path._update_values 14 0.000000 0.000000 0.000000\r\n", + "..ages\\cycler.py:225 Cycler.__iter__ 12 0.000000 0.000000 0.000000\r\n", + "..er.py:512 ScalarFormatter.__init__ 16 0.000000 0.000000 0.000000\r\n", + "..:220 Spine._ensure_position_is_set 28/24 0.000000 0.000000 0.000000\r\n", + "..function__ internals>:2 empty_like 4 0.000000 0.000000 0.000000\r\n", + "..lib\\legend.py:918 Legend.get_frame 1 0.000000 0.000000 0.000000\r\n", + "..ide_tricks.py:185 _broadcast_shape 10 0.000000 0.000000 0.000000\r\n", + "..tlib\\artist.py:1201 Text.mouseover 7 0.000000 0.000000 0.000000\r\n", + "..y:202 _broadcast_arrays_dispatcher 10 0.000000 0.000000 0.000000\r\n", + "..lib\\shape_base.py:597 column_stack 12 0.000000 0.000000 0.000000\r\n", + "..init__.py:882 Grouper.get_siblings 6 0.000000 0.000000 0.000000\r\n", + "..045 AxesSubplot._process_unit_info 6 0.000000 0.000000 0.000000\r\n", + "..ap_external>:578 _compile_bytecode 9 0.000000 0.000000 0.000000\r\n", + "..y:542 PGDialect_psycopg2.do_commit 1 0.000000 0.000000 0.000000\r\n", + "..ile.py:432 _generate_overlap_table 2 0.000000 0.000000 0.000000\r\n", + "<__array_function__ internals>:2 all 9 0.000000 0.000000 0.000000\r\n", + "..alchemy\\event\\api.py:23 _event_key 3 0.000000 0.000000 0.000000\r\n", + "..._bootstrap>:376 ModuleSpec.cached 19 0.000000 0.000000 0.000000\r\n", + "...py:1247 BboxTransformFrom.__add__ 78 0.000000 0.000000 0.000000\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..plotlib\\gridspec.py:204 _normalize 1 0.000000 0.000000 0.000000\r\n", + "..figure.py:199 SubplotParams.update 2 0.000000 0.000000 0.000000\r\n", + ".._json.py:133 register_default_json 1 0.000000 0.000000 0.000000\r\n", + "..p>:143 _ModuleLockManager.__init__ 10 0.000000 0.000000 0.000000\r\n", + "..:513 Figure.set_constrained_layout 1 0.000000 0.000000 0.000000\r\n", + ".. FontProperties.get_size_in_points 1 0.000000 0.000000 0.000000\r\n", + "..60 ScalarFormatter.set_useMathText 16 0.000000 0.000000 0.000000\r\n", + "..er.py:755 FontProperties.set_style 23 0.000000 0.000000 0.000000\r\n", + "...py:900 AutoDateFormatter.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..ok\\__init__.py:2125 _check_getitem 4 0.000000 0.000000 0.000000\r\n", + "..py:1210 Line2D.set_markeredgecolor 30 0.000000 0.000000 0.000000\r\n", + "..psycopg2\\extras.py:261 RealDictRow 1 0.000000 0.000000 0.000000\r\n", + "...py:978 Rectangle._update_property 42 0.000000 0.000000 0.000000\r\n", + "..rm\\session.py:655 Session.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..per._iter_break_from_left_to_right 8 0.000000 0.000000 0.000000\r\n", + "..stgresql\\psycopg2.py:711 4 0.000000 0.000000 0.000000\r\n", + "..lotlib\\spines.py:36 Spine.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..b\\asyncio\\futures.py:269 _get_loop 8 0.000000 0.000000 0.000000\r\n", + "..dates.py:1496 YearLocator.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..\\type_api.py:64 Comparator.operate 4 0.000000 0.000000 0.000000\r\n", + "..b\\figure.py:66 _AxesStack.__init__ 1 0.000000 0.000000 0.000000\r\n", + "...py:299 NullFormatter._set_locator 31 0.000000 0.000000 0.000000\r\n", + "..\\axis.py:501 XTick.update_position 3 0.000000 0.000000 0.000000\r\n", + "..re\\numerictypes.py:293 issubclass_ 8 0.000000 0.000000 0.000000\r\n", + "..init__.py:791 RcParams.__getitem__ 1343 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\axis.py:383 14 0.000000 0.000000 0.000000\r\n", + "..b\\transforms.py:909 Bbox.intervalx 3 0.000000 0.000000 0.000000\r\n", + "..ase.py:1731 RootTransaction.commit 1 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:1579 XAxis.set_units 12 0.000000 0.000000 0.000000\r\n", + "..sql\\elements.py:740 Column.operate 4 0.000000 0.000000 0.000000\r\n", + "..se.py:593 _column_stack_dispatcher 12 0.000000 0.000000 0.000000\r\n", + "..tlib\\axis.py:864 XAxis.reset_ticks 16 0.000000 0.000000 0.000000\r\n", + "..bootstrap_external>:1334 find_spec 10 0.000000 0.000000 0.000000\r\n", + "..\\gridspec.py:246 GridSpec.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..is.py:197 XTick._set_labelrotation 6 0.000000 0.000000 0.000000\r\n", + "..__.py:138 CallbackRegistry.connect 33 0.000000 0.000000 0.000000\r\n", + "..ib\\figure.py:70 _AxesStack.as_list 2 0.000000 0.000000 0.000000\r\n", + "..b\\artist.py:819 Line2D.get_clip_on 3 0.000000 0.000000 0.000000\r\n", + "..\\rcsetup.py:163 validate_axisbelow 1 0.000000 0.000000 0.000000\r\n", + "..ession.py:1333 Session._close_impl 1 0.000000 0.000000 0.000000\r\n", + "..ib\\figure.py:778 Figure.set_canvas 2 0.000000 0.000000 0.000000\r\n", + "...py:1623 TransformWrapper.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..otlib\\lines.py:645 Line2D.set_data 30 0.000000 0.000000 0.000000\r\n", + "..er.py:1712 AutoLocator.nonsingular 2 0.000000 0.000000 0.000000\r\n", + "..is.py:1654 XAxis.set_major_locator 17 0.000000 0.000000 0.000000\r\n", + "..y\\dialects\\__init__.py:24 _auto_fn 1 0.000000 0.000000 0.000000\r\n", + "..240 QueuePool._should_wrap_creator 1 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\text.py:1115 Text.set_y 6 0.000000 0.000000 0.000000\r\n", + "..plotlib\\scale.py:718 scale_factory 16 0.000000 0.000000 0.000000\r\n", + "..\\__init__.py:1837 _str_lower_equal 4 0.000000 0.000000 0.000000\r\n", + "..se.py:392 Future.add_done_callback 6 0.000000 0.000000 0.000000\r\n", + "..hemy\\util\\queue.py:195 Queue._full 1 0.000000 0.000000 0.000000\r\n", + "..on\\database.py:107 from_sql_result 4 0.000000 0.000000 0.000000\r\n", + ".. _GeneratorContextManager.__init__ 141 0.000000 0.000000 0.000000\r\n", + "..\\lib\\function_base.py:257 iterable 97 0.000000 0.000000 0.000000\r\n", + "..tion-68gteq6k\\lib\\re.py:268 escape 1 0.000000 0.000000 0.000000\r\n", + "..ger.py:619 FontProperties.__init__ 23 0.000000 0.000000 0.000000\r\n", + "..ments.py:4065 Column._from_objects 10 0.000000 0.000000 0.000000\r\n", + "..xis.py:325 XTick._set_artist_props 30 0.000000 0.000000 0.000000\r\n", + "..xternal>:1426 FileFinder._get_spec 10 0.000000 0.000000 0.000000\r\n", + "..py:1137 Text.set_verticalalignment 33 0.000000 0.000000 0.000000\r\n", + ".._bootstrap_external>:64 82 0.000000 0.000000 0.000000\r\n", + "..hes.py:475 Rectangle.set_joinstyle 7 0.000000 0.000000 0.000000\r\n", + "..py:843 TextArea.set_minimumdescent 1 0.000000 0.000000 0.000000\r\n", + "..s.py:1059 AutoDateLocator.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..ges\\psycopg2\\extras.py:157 DictRow 1 0.000000 0.000000 0.000000\r\n", + "..til.py:368 surface_column_elements 54 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\pyplot.py:612 get_fignums 1 0.000000 0.000000 0.000000\r\n", + "..teq6k\\lib\\copyreg.py:90 __newobj__ 1 0.000000 0.000000 0.000000\r\n", + ".. LinearScale.limit_range_for_scale 2 0.000000 0.000000 0.000000\r\n", + "..b\\scale.py:43 LinearScale.__init__ 16 0.000000 0.000000 0.000000\r\n", + "..umpy\\core\\getlimits.py:365 __new__ 2 0.000000 0.000000 0.000000\r\n", + "..psycopg2\\_json.py:94 register_json 2 0.000000 0.000000 0.000000\r\n", + "..hes.py:348 Rectangle.set_facecolor 12 0.000000 0.000000 0.000000\r\n", + ".. Line2D._split_drawstyle_linestyle 64 0.000000 0.000000 0.000000\r\n", + "..\\orm\\session.py:1554 Session.query 6 0.000000 0.000000 0.000000\r\n", + "..\\__init__.py:1640 normalize_kwargs 74 0.000000 0.000000 0.000000\r\n", + "..\\core\\getlimits.py:398 finfo._init 1 0.000000 0.000000 0.000000\r\n", + "..lib\\sre_parse.py:295 _class_escape 30 0.000000 0.000000 0.000000\r\n", + "..xesSubplot._set_lim_and_transforms 1 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\figure.py:97 1 0.000000 0.000000 0.000000\r\n", + "..q6k\\lib\\functools.py:486 lru_cache 1 0.000000 0.000000 0.000000\r\n", + "..y:4564 _literal_as_label_reference 3 0.000000 0.000000 0.000000\r\n", + "..\\figure.py:152 _AxesStack.__call__ 2 0.000000 0.000000 0.000000\r\n", + "..\\core\\getipython.py:17 get_ipython 2 0.000000 0.000000 0.000000\r\n", + "..on__ internals>:2 broadcast_arrays 10 0.000000 0.000000 0.000000\r\n", + "..:779 PGDialect_psycopg2.on_connect 1 0.000000 0.000000 0.000000\r\n", + "..ec.py:549 SubplotSpec.get_gridspec 1 0.000000 0.000000 0.000000\r\n", + "..ages\\psycopg2\\compat.py:1 1 0.000000 0.000000 0.000000\r\n", + "..s.py:129 AxesSubplot.update_params 1 0.000000 0.000000 0.000000\r\n", + "..tableColumnCollection.__contains__ 10 0.000000 0.000000 0.000000\r\n", + "..chemy\\orm\\query.py:4634 27 0.000000 0.000000 0.000000\r\n", + "..lib\\legend.py:938 Legend.set_title 1 0.000000 0.000000 0.000000\r\n", + "..essionTransaction._remove_snapshot 1 0.000000 0.000000 0.000000\r\n", + "..\\asyncio\\futures.py:351 _set_state 6 0.000000 0.000000 0.000000\r\n", + "..units.py:58 _is_natively_supported 12 0.000000 0.000000 0.000000\r\n", + "..my\\orm\\query.py:164 Query.__init__ 6 0.000000 0.000000 0.000000\r\n", + "..ray_function__ internals>:2 hstack 16 0.000000 0.000000 0.000000\r\n", + "..b\\gridspec.py:31 GridSpec.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..ython38\\Lib\\inspect.py:80 ismethod 2 0.000000 0.000000 0.000000\r\n", + "..tist.py:804 Rectangle.get_animated 1714 0.000000 0.000000 0.000000\r\n", + "..ericTransform._invalidate_internal 4/3 0.000000 0.000000 0.000000\r\n", + "..plotlib\\axis.py:653 Ticker.locator 33 0.000000 0.000000 0.000000\r\n", + "..query.py:88 get_data_by_deployment 1 0.000000 0.000000 0.000000\r\n", + "..otlib\\__init__.py:1267 get_backend 1 0.000000 0.000000 0.000000\r\n", + "...py:407 XTick._get_text1_transform 3 0.000000 0.000000 0.000000\r\n", + "..bootstrap>:58 _ModuleLock.__init__ 10 0.000000 0.000000 0.000000\r\n", + "...py:635 Legend._approx_text_height 2 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:1812 XAxis.axis_date 4 0.000000 0.000000 0.000000\r\n", + "..on.py:579 SessionTransaction.close 2 0.000000 0.000000 0.000000\r\n", + "..ures\\_base.py:443 Future.exception 6 0.000000 0.000000 0.000000\r\n", + "..ompat.py:61 inspect_getfullargspec 2 0.000000 0.000000 0.000000\r\n", + "..aggregation\\query.py:82 4 0.000000 0.000000 0.000000\r\n", + "..patches.py:491 Rectangle.set_hatch 7 0.000000 0.000000 0.000000\r\n", + "...py:410 XTick._get_text2_transform 3 0.000000 0.000000 0.000000\r\n", + "..zipimport>:63 zipimporter.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..__init__.py:1632 sanitize_sequence 8 0.000000 0.000000 0.000000\r\n", + "..es.py:768 Rectangle._convert_units 18 0.000000 0.000000 0.000000\r\n", + "..numpy\\core\\fromnumeric.py:2189 any 76 0.000000 0.000000 0.000000\r\n", + "..base.py:321 _inspect_mapped_object 4 0.000000 0.000000 0.000000\r\n", + "..re\\multiarray.py:990 unravel_index 1 0.000000 0.000000 0.000000\r\n", + "<__array_function__ internals>:2 any 76 0.000000 0.000000 0.000000\r\n", + "..registry.py:154 _EventKey.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..ist.py:605 FancyBboxPatch.set_snap 1 0.000000 0.000000 0.000000\r\n", + "..s.py:697 _GatheringFuture.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..38\\Lib\\asyncio\\tasks.py:717 gather 1 0.000000 0.000000 0.000000\r\n", + "..elpers.py:1381 parse_user_argument 2 0.000000 0.000000 0.000000\r\n", + "..kers.py:289 MarkerStyle.set_marker 42 0.000000 0.000000 0.000000\r\n", + "..s.py:424 Spine.get_spine_transform 28/24 0.000000 0.000000 0.000000\r\n", + "..chemy\\orm\\query.py:4642 27 0.000000 0.000000 0.000000\r\n", + "..ib\\lines.py:1196 Line2D.set_marker 4 0.000000 0.000000 0.000000\r\n", + "..sSubplot.get_yaxis_text1_transform 3 0.000000 0.000000 0.000000\r\n", + "..portlib._bootstrap>:890 _find_spec 10 0.000000 0.000000 0.000000\r\n", + "..__init__.py:51 _StrongRef.__init__ 3 0.000000 0.000000 0.000000\r\n", + "..b\\legend.py:701 get_legend_handler 8 0.000000 0.000000 0.000000\r\n", + "..py:155 HandlerLine2D.get_numpoints 4 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\axis.py:372 14 0.000000 0.000000 0.000000\r\n", + "..orms.py:1652 TransformWrapper._set 4 0.000000 0.000000 0.000000\r\n", + "..opg2\\extensions.py:133 NoneAdapter 1 0.000000 0.000000 0.000000\r\n", + "..kers.py:286 MarkerStyle.get_marker 8 0.000000 0.000000 0.000000\r\n", + ".._bootstrap>:78 _ModuleLock.acquire 18 0.000000 0.000000 0.000000\r\n", + "..nsforms.py:1972 Affine2D.translate 36 0.000000 0.000000 0.000000\r\n", + "..hape_base.py:1151 _tile_dispatcher 1 0.000000 0.000000 0.000000\r\n", + "..r.py:63 HandlerLine2D._update_prop 8 0.000000 0.000000 0.000000\r\n", + "..arkers.py:244 MarkerStyle._recache 80 0.000000 0.000000 0.000000\r\n", + "..y:163 TransformedBbox.set_children 149 0.000000 0.000000 0.000000\r\n", + "..EventLoop._asyncgen_firstiter_hook 18 0.000000 0.000000 0.000000\r\n", + "..packages\\psycopg2\\tz.py:1 1 0.000000 0.000000 0.000000\r\n", + "..b\\function_base.py:2144 4 0.000000 0.000000 0.000000\r\n", + "..b\\cbook\\__init__.py:886 6 0.000000 0.000000 0.000000\r\n", + "..syncio\\tasks.py:751 _done_callback 1 0.000000 0.000000 0.000000\r\n", + "...py:2680 AxesSubplot.set_axisbelow 1 0.000000 0.000000 0.000000\r\n", + "..plotlib\\patches.py:1832 2 0.000000 0.000000 0.000000\r\n", + "..ib\\figure.py:104 _AxesStack.bubble 1 0.000000 0.000000 0.000000\r\n", + "..lotlib\\axes\\_base.py:321 12 0.000000 0.000000 0.000000\r\n", + "..Subplot._validate_converted_limits 4 0.000000 0.000000 0.000000\r\n", + "..romnumeric.py:2273 _all_dispatcher 9 0.000000 0.000000 0.000000\r\n", + "..ates.py:593 DateFormatter.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..CompositeGenericTransform. 3 0.000000 0.000000 0.000000\r\n", + "..hemy\\orm\\query.py:537 Query._clone 5 0.000000 0.000000 0.000000\r\n", + "..ase.py:3227 AxesSubplot.get_xscale 4 0.000000 0.000000 0.000000\r\n", + "...py:735 MarkerStyle._set_tickright 3 0.000000 0.000000 0.000000\r\n", + "..is.py:1670 XAxis.set_minor_locator 16 0.000000 0.000000 0.000000\r\n", + "..>:863 _ImportLockContext.__enter__ 30 0.000000 0.000000 0.000000\r\n", + "..etbox.py:303 TextArea.get_children 33 0.000000 0.000000 0.000000\r\n", + "...py:113 GridSpec.set_height_ratios 1 0.000000 0.000000 0.000000\r\n", + "..ry.py:267 _EventKey.append_to_list 3 0.000000 0.000000 0.000000\r\n", + "..umpy\\core\\numeric.py:341 full_like 4 0.000000 0.000000 0.000000\r\n", + "..alect_psycopg2.create_connect_args 1 0.000000 0.000000 0.000000\r\n", + "..lib\\lines.py:1282 Line2D.set_xdata 39 0.000000 0.000000 0.000000\r\n", + "..atplotlib\\artist.py:192 Spine.axes 831 0.000000 0.000000 0.000000\r\n", + "..py:275 SelectSelector._key_from_fd 6 0.000000 0.000000 0.000000\r\n", + "..lotlib\\figure.py:78 _AxesStack.get 2 0.000000 0.000000 0.000000\r\n", + "..._bootstrap>:389 ModuleSpec.parent 14 0.000000 0.000000 0.000000\r\n", + "..sion.py:3236 sessionmaker.__call__ 1 0.000000 0.000000 0.000000\r\n", + "..util\\langhelpers.py:1500 only_once 1 0.000000 0.000000 0.000000\r\n", + "..book\\__init__.py:833 Grouper.clean 8 0.000000 0.000000 0.000000\r\n", + "..ib\\cbook\\__init__.py:1575 10 0.000000 0.000000 0.000000\r\n", + "..s\\numpy\\core\\multiarray.py:707 dot 67 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:819 XAxis.get_transform 4 0.000000 0.000000 0.000000\r\n", + "..g\\__init__.py:1392 Logger.__init__ 3 0.000000 0.000000 0.000000\r\n", + "..5 CompositeGenericTransform.__eq__ 12/8 0.000000 0.000000 0.000000\r\n", + "..otlib\\text.py:1227 Text.set_usetex 24 0.000000 0.000000 0.000000\r\n", + "..ents.py:180 _run_until_complete_cb 1 0.000000 0.000000 0.000000\r\n", + "..\\lines.py:547 Line2D.set_markevery 30 0.000000 0.000000 0.000000\r\n", + ".. _ClsLevelDispatch._adjust_fn_spec 4 0.000000 0.000000 0.000000\r\n", + "..se.py:2873 AxesSubplot.tick_params 2 0.000000 0.000000 0.000000\r\n", + "..b\\function_base.py:2164 4 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:427 XTick._get_text1 3 0.000000 0.000000 0.000000\r\n", + "..ist.py:358 Rectangle.set_transform 85 0.000000 0.000000 0.000000\r\n", + "..core\\multiarray.py:145 concatenate 29 0.000000 0.000000 0.000000\r\n", + "..re_parse.py:267 Tokenizer.getuntil 7 0.000000 0.000000 0.000000\r\n", + "..ms.py:1639 TransformWrapper.__eq__ 4 0.000000 0.000000 0.000000\r\n", + "..tableColumnCollection.__contains__ 10 0.000000 0.000000 0.000000\r\n", + "..b\\function_base.py:2115 4 0.000000 0.000000 0.000000\r\n", + "..ide_tricks.py:206 broadcast_arrays 10 0.000000 0.000000 0.000000\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + ":176 cb 10 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\artist.py:1095 Line2D.set 70 0.000000 0.000000 0.000000\r\n", + "..ogging\\__init__.py:189 _checkLevel 3 0.000000 0.000000 0.000000\r\n", + "..k\\__init__.py:827 Grouper.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..tlib\\axis.py:2166 XAxis.get_minpos 1 0.000000 0.000000 0.000000\r\n", + "..lalchemy\\orm\\query.py:4148 __new__ 32 0.000000 0.000000 0.000000\r\n", + "..abc.py:816 WeakKeyDictionary.clear 1 0.000000 0.000000 0.000000\r\n", + "..lections.py:316 OrderedDict.values 5 0.000000 0.000000 0.000000\r\n", + "..lements.py:365 Column.get_children 27 0.000000 0.000000 0.000000\r\n", + ".. ExtensionFileLoader.create_module 1 0.000000 0.000000 0.000000\r\n", + "..d_inline.py:59 draw_if_interactive 1 0.000000 0.000000 0.000000\r\n", + "..157 CallbackRegistry._remove_proxy 2 0.000000 0.000000 0.000000\r\n", + "..768 IdentityTransform.is_separable 8 0.000000 0.000000 0.000000\r\n", + "..hon38\\Lib\\contextlib.py:238 helper 141 0.000000 0.000000 0.000000\r\n", + "..29 _process_plot_var_args.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..ession.py:1339 Session.expunge_all 1 0.000000 0.000000 0.000000\r\n", + "..ent\\registry.py:165 _EventKey._key 3 0.000000 0.000000 0.000000\r\n", + "..lib\\stride_tricks.py:266 30 0.000000 0.000000 0.000000\r\n", + "..ib\\transforms.py:969 Bbox.mutatedx 2 0.000000 0.000000 0.000000\r\n", + "..ist.py:371 Rectangle.get_transform 31 0.000000 0.000000 0.000000\r\n", + "..end.py:666 get_default_handler_map 2 0.000000 0.000000 0.000000\r\n", + "..tlib\\axis.py:2238 YAxis._get_label 1 0.000000 0.000000 0.000000\r\n", + "..Python38\\Lib\\inspect.py:260 iscode 2 0.000000 0.000000 0.000000\r\n", + "..egation-68gteq6k\\lib\\re.py:201 sub 4 0.000000 0.000000 0.000000\r\n", + "..ers.py:743 MarkerStyle._set_tickup 3 0.000000 0.000000 0.000000\r\n", + ".._bootstrap_external>:62 _path_join 82 0.000000 0.000000 0.000000\r\n", + "..teq6k\\lib\\copyreg.py:99 _slotnames 1 0.000000 0.000000 0.000000\r\n", + "..py:663 PGDialect_psycopg2.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\text.py:554 Text.set_wrap 24 0.000000 0.000000 0.000000\r\n", + "..onfig\\configurable.py:381 instance 2 0.000000 0.000000 0.000000\r\n", + "..ctions_abc.py:367 __subclasshook__ 4 0.000000 0.000000 0.000000\r\n", + "..ansforms.py:1831 Affine2D.__init__ 49 0.000000 0.000000 0.000000\r\n", + "..ycopg2\\extras.py:456 LoggingCursor 1 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\figure.py:1959 Figure.sca 1 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\patches.py:1818 __new__ 2 0.000000 0.000000 0.000000\r\n", + "..ImmutableColumnCollection.__iter__ 5 0.000000 0.000000 0.000000\r\n", + "..ckages\\psycopg2\\extras.py:698 Inet 1 0.000000 0.000000 0.000000\r\n", + "..py:1367 Line2D.set_solid_joinstyle 30 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:413 XTick.apply_tickdir 3 0.000000 0.000000 0.000000\r\n", + "..offsetbox.py:783 TextArea.__init__ 5 0.000000 0.000000 0.000000\r\n", + "..orm\\session.py:1002 Session.commit 1 0.000000 0.000000 0.000000\r\n", + "..ker.py:2004 _Edge_integer.__init__ 2 0.000000 0.000000 0.000000\r\n", + ".._range.py:297 RangeCaster.__init__ 6 0.000000 0.000000 0.000000\r\n", + "..urceFileLoader._check_name_wrapper 9 0.000000 0.000000 0.000000\r\n", + ".._base.py:3484 AxesSubplot.set_ylim 1 0.000000 0.000000 0.000000\r\n", + "..p>:867 _ImportLockContext.__exit__ 30 0.000000 0.000000 0.000000\r\n", + "..es.py:315 Rectangle._set_edgecolor 20 0.000000 0.000000 0.000000\r\n", + "..8 SessionTransaction._prepare_impl 1 0.000000 0.000000 0.000000\r\n", + ".. SessionTransaction._take_snapshot 3 0.000000 0.000000 0.000000\r\n", + "..pool\\base.py:63 QueuePool.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..b\\cbook\\__init__.py:2088 188 0.000000 0.000000 0.000000\r\n", + "..y:886 AxesSubplot.set_axes_locator 1 0.000000 0.000000 0.000000\r\n", + "..ckages\\cycler.py:349 Cycler.by_key 10 0.000000 0.000000 0.000000\r\n", + "..kages\\numpy\\ma\\core.py:666 getdata 8 0.000000 0.000000 0.000000\r\n", + "..rl.py:152 URL._instantiate_plugins 1 0.000000 0.000000 0.000000\r\n", + "..es.py:2396 FancyBboxPatch.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..utableColumnCollection.__getattr__ 9 0.000000 0.000000 0.000000\r\n", + "..plotlib\\patches.py:1833 2 0.000000 0.000000 0.000000\r\n", + "..y\\orm\\query.py:1856 Query.order_by 1 0.000000 0.000000 0.000000\r\n", + "..ngine\\base.py:1869 Engine.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..\\psycopg2\\_ipaddress.py:1 1 0.000000 0.000000 0.000000\r\n", + "..\\psycopg2\\extras.py:132 DictCursor 1 0.000000 0.000000 0.000000\r\n", + "..p>:151 _ModuleLockManager.__exit__ 10 0.000000 0.000000 0.000000\r\n", + ":1 Deployment.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..is.py:1412 XAxis.get_major_locator 2 0.000000 0.000000 0.000000\r\n", + "..axis.py:215 XTick.get_tick_padding 6 0.000000 0.000000 0.000000\r\n", + "..b\\axis.py:574 YTick._get_tick1line 3 0.000000 0.000000 0.000000\r\n", + "..bootstrap>:194 _lock_unlock_module 8 0.000000 0.000000 0.000000\r\n", + "..lib\\transforms.py:931 Bbox.minposx 1 0.000000 0.000000 0.000000\r\n", + "..setbox.py:661 DrawingArea.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..ootstrap_external>:424 _get_cached 10 0.000000 0.000000 0.000000\r\n", + "..\\core\\getlimits.py:239 _get_machar 1 0.000000 0.000000 0.000000\r\n", + "..ib\\axis.py:1504 XAxis.update_units 14 0.000000 0.000000 0.000000\r\n", + "..elpers.py:1079 _importlater.module 1 0.000000 0.000000 0.000000\r\n", + "..gine\\default.py:295 get_pool_class 1 0.000000 0.000000 0.000000\r\n", + "..xt.py:1214 Text.set_fontproperties 1 0.000000 0.000000 0.000000\r\n", + "..ec.py:586 SubplotSpec.get_position 1 0.000000 0.000000 0.000000\r\n", + "..\\numpy\\core\\_asarray.py:16 asarray 176 0.000000 0.000000 0.000000\r\n", + "..ndowsSelectorEventLoop.create_task 2 0.000000 0.000000 0.000000\r\n", + ".._init__.py:573 _AxesStack.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..lib\\figure.py:453 Figure._get_axes 1 0.000000 0.000000 0.000000\r\n", + "..s\\_base.py:31 _process_plot_format 4 0.000000 0.000000 0.000000\r\n", + "..packages\\cycler.py:138 Cycler.keys 12 0.000000 0.000000 0.000000\r\n", + "..numeric.py:2354 _cumsum_dispatcher 3 0.000000 0.000000 0.000000\r\n", + "..atplotlib\\lines.py:632 Line2D.axes 42 0.000000 0.000000 0.000000\r\n", + "..logging\\__init__.py:2003 getLogger 4 0.000000 0.000000 0.000000\r\n", + "..\\_internal.py:830 npy_ctypes_check 4 0.000000 0.000000 0.000000\r\n", + "..ckages\\psycopg2\\_range.py:36 Range 1 0.000000 0.000000 0.000000\r\n", + "..:687 Legend.get_legend_handler_map 1 0.000000 0.000000 0.000000\r\n", + "..ger.py:810 FontProperties.set_size 27 0.000000 0.000000 0.000000\r\n", + "..lib\\transforms.py:2779 nonsingular 2 0.000000 0.000000 0.000000\r\n", + "..unction__ internals>:2 concatenate 29 0.000000 0.000000 0.000000\r\n", + "..b\\_pylab_helpers.py:115 1 0.000000 0.000000 0.000000\r\n", + "..m\\state.py:328 type._detach_states 2 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\lines.py:59 _scale_dashes 83 0.000000 0.000000 0.000000\r\n", + "..\\futures.py:357 _call_check_cancel 6 0.000000 0.000000 0.000000\r\n", + "..b\\cbook\\__init__.py:2090 type_name 94 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\path.py:211 Path.codes 4 0.000000 0.000000 0.000000\r\n", + "..py:1765 RootTransaction._do_commit 1 0.000000 0.000000 0.000000\r\n", + "..s.py:749 MarkerStyle._set_tickdown 3 0.000000 0.000000 0.000000\r\n", + "..ffsetbox.py:187 VPacker.set_figure 16/1 0.000000 0.000000 0.000000\r\n", + "..pes.py:2997 _resolve_value_to_type 4 0.000000 0.000000 0.000000\r\n", + "..cbook\\__init__.py:1868 Text.method 5 0.000000 0.000000 0.000000\r\n", + "..rtist.py:937 Rectangle.set_visible 69 0.000000 0.000000 0.000000\r\n", + "..artist.py:1052 Line2D.sticky_edges 32 0.000000 0.000000 0.000000\r\n", + "..xesSubplot._request_autoscale_view 8 0.000000 0.000000 0.000000\r\n", + "..b\\axis.py:470 XTick._get_tick2line 3 0.000000 0.000000 0.000000\r\n", + "..e-packages\\cycler.py:371 20 0.000000 0.000000 0.000000\r\n", + "..ore\\numerictypes.py:239 obj2sctype 1 0.000000 0.000000 0.000000\r\n", + "..t\\futures\\_base.py:381 Future.done 6 0.000000 0.000000 0.000000\r\n", + "..ase.py:3618 AxesSubplot.get_yscale 1 0.000000 0.000000 0.000000\r\n", + "..bootstrap_external>:1400 8 0.000000 0.000000 0.000000\r\n", + "..elpers.py:355 get_callable_argspec 1 0.000000 0.000000 0.000000\r\n", + "..nit__.py:1220 PlaceHolder.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..lotlib\\colors.py:123 _is_nth_color 51 0.000000 0.000000 0.000000\r\n", + "..rms.py:1284 TransformWrapper.depth 24 0.000000 0.000000 0.000000\r\n", + "..py\\core\\fromnumeric.py:2358 cumsum 3 0.000000 0.000000 0.000000\r\n", + "..xis.py:2258 YAxis._get_offset_text 1 0.000000 0.000000 0.000000\r\n", + "..uery.py:505 Query._no_limit_offset 5 0.000000 0.000000 0.000000\r\n", + "..strap>:397 ModuleSpec.has_location 10 0.000000 0.000000 0.000000\r\n", + "..py:2644 ScaledTranslation.__init__ 17 0.000000 0.000000 0.000000\r\n", + "..sycopg2\\extras.py:643 UUID_adapter 1 0.000000 0.000000 0.000000\r\n", + "..hon38\\Lib\\inspect.py:285 isbuiltin 1 0.000000 0.000000 0.000000\r\n", + "..b\\cbook\\__init__.py:828 2 0.000000 0.000000 0.000000\r\n", + "..ycopg2.py:741 _psycopg2_extensions 1 0.000000 0.000000 0.000000\r\n", + "..s.py:1096 _importlater.__getattr__ 1 0.000000 0.000000 0.000000\r\n", + "..lib\\artist.py:923 Line2D.set_alpha 7 0.000000 0.000000 0.000000\r\n", + "..654 _WindowsSelectorEventLoop.time 17 0.000000 0.000000 0.000000\r\n", + "...py:3168 BinaryExpression.__init__ 4 0.000000 0.000000 0.000000\r\n", + "..e.py:1907 Figure._set_artist_props 1 0.000000 0.000000 0.000000\r\n", + "..9 PoolEventsDispatch._for_instance 2 0.000000 0.000000 0.000000\r\n", + "..packages\\psycopg2\\_json.py:47 Json 1 0.000000 0.000000 0.000000\r\n", + "..py:117 AxesSubplot.get_subplotspec 1 0.000000 0.000000 0.000000\r\n", + ":1 Query.order_by 1 0.000000 0.000000 0.000000\r\n", + "..tlib\\lines.py:31 _get_dash_pattern 41 0.000000 0.000000 0.000000\r\n", + "..b\\text.py:1059 Text.set_fontweight 4 0.000000 0.000000 0.000000\r\n", + "<__array_function__ internals>:2 dot 67 0.000000 0.000000 0.000000\r\n", + "..se.py:2960 AxesSubplot.set_axis_on 1 0.000000 0.000000 0.000000\r\n", + "..py:1960 Affine2D.rotate_deg_around 18 0.000000 0.000000 0.000000\r\n", + ".._base.py:2048 _process_single_axis 12 0.000000 0.000000 0.000000\r\n", + "..pg2\\extras.py:303 NamedTupleCursor 1 0.000000 0.000000 0.000000\r\n", + ":1 Query.filter 4 0.000000 0.000000 0.000000\r\n", + "..m\\query.py:193 Query._set_entities 6 0.000000 0.000000 0.000000\r\n", + "..nd.py:558 Legend._set_artist_props 9 0.000000 0.000000 0.000000\r\n", + "..hemy\\util\\queue.py:183 Queue._init 1 0.000000 0.000000 0.000000\r\n", + "..idspec.py:508 SubplotSpec.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:666 Ticker.formatter 33 0.000000 0.000000 0.000000\r\n", + "...py:112 PoolEventsDispatch._listen 3 0.000000 0.000000 0.000000\r\n", + "..\\patches.py:704 Rectangle.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..s.py:266 MarkerStyle.set_fillstyle 38 0.000000 0.000000 0.000000\r\n", + ".._init__.py:44 get_projection_class 1 0.000000 0.000000 0.000000\r\n", + "...py:101 State.checklookbehindgroup 1 0.000000 0.000000 0.000000\r\n", + "..llections_abc.py:72 _check_methods 14 0.000000 0.000000 0.000000\r\n", + "..\\futures.py:315 _copy_future_state 6 0.000000 0.000000 0.000000\r\n", + "..nes.py:1035 Line2D.set_antialiased 30 0.000000 0.000000 0.000000\r\n", + "..kref.py:436 WeakKeyDictionary.keys 1 0.000000 0.000000 0.000000\r\n", + "..elements.py:4099 Column._gen_label 10 0.000000 0.000000 0.000000\r\n", + "..atplotlib\\path.py:96 Path.__init__ 14 0.000000 0.000000 0.000000\r\n", + "..b\\artist.py:336 Rectangle.pchanged 373 0.000000 0.000000 0.000000\r\n", + "..y\\core\\fromnumeric.py:55 _wrapfunc 3 0.000000 0.000000 0.000000\r\n", + "..5 Rectangle._stale_figure_callback 134 0.000000 0.000000 0.000000\r\n", + "..process_plot_var_args._getdefaults 4 0.000000 0.000000 0.000000\r\n", + "..ansaction._is_transaction_boundary 4 0.000000 0.000000 0.000000\r\n", + "..gure.py:168 SubplotParams.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..ure.py:155 _AxesStack.__contains__ 1 0.000000 0.000000 0.000000\r\n", + "..ib\\widgets.py:34 LockDraw.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..atplotlib\\legend.py:813 1 0.000000 0.000000 0.000000\r\n", + "..ansforms.py:1701 Affine2D.__init__ 165 0.000000 0.000000 0.000000\r\n", + "..otlib\\axis.py:1944 XAxis._get_tick 3 0.000000 0.000000 0.000000\r\n", + "...py:1626 XAxis.set_major_formatter 17 0.000000 0.000000 0.000000\r\n", + "..plots.py:214 subplot_class_factory 1 0.000000 0.000000 0.000000\r\n", + "..xes\\_base.py:2716 AxesSubplot.grid 2 0.000000 0.000000 0.000000\r\n", + "..:903 AxesSubplot._set_artist_props 7 0.000000 0.000000 0.000000\r\n", + "..8gteq6k\\lib\\weakref.py:323 __new__ 1 0.000000 0.000000 0.000000\r\n", + "...py:1412 Line2D.set_solid_capstyle 30 0.000000 0.000000 0.000000\r\n", + "..gistry.py:263 _EventKey._listen_fn 16 0.000000 0.000000 0.000000\r\n", + "..es\\numpy\\core\\_methods.py:32 _amin 2 0.000000 0.000000 0.000000\r\n", + "..xternal>:1431 FileFinder.find_spec 17 0.000000 0.000000 0.000000\r\n", + "..s\\matplotlib\\colors.py:157 to_rgba 51 0.000000 0.000000 0.000000\r\n", + "..lotlib\\axes\\_base.py:588 4 0.000000 0.000000 0.000000\r\n", + "..otlib\\figure.py:111 _AxesStack.add 1 0.000000 0.000000 0.000000\r\n", + "..2\\_range.py:486 NumberRangeAdapter 1 0.000000 0.000000 0.000000\r\n", + "..:505 Figure.get_constrained_layout 2 0.000000 0.000000 0.000000\r\n", + "..my\\util\\queue.py:43 Queue.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..on.py:159 _create_json_typecasters 2 0.000000 0.000000 0.000000\r\n", + "..bootstrap>:342 ModuleSpec.__init__ 10 0.000000 0.000000 0.000000\r\n", + "..tlib\\axis.py:1559 XAxis.have_units 2 0.000000 0.000000 0.000000\r\n", + "..ctions_abc.py:302 __subclasshook__ 6 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\figure.py:1651 Figure.clf 1 0.000000 0.000000 0.000000\r\n", + "..array_function__ internals>:2 diff 16 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\transforms.py:763 unit 19 0.000000 0.000000 0.000000\r\n", + "..schema.py:1640 Column.get_children 27 0.000000 0.000000 0.000000\r\n", + "..ib\\artist.py:719 Text.set_clip_box 23 0.000000 0.000000 0.000000\r\n", + "..umpy\\core\\shape_base.py:285 hstack 16 0.000000 0.000000 0.000000\r\n", + "..pg2\\extras.py:1007 CompositeCaster 1 0.000000 0.000000 0.000000\r\n", + "..on38\\Lib\\inspect.py:158 isfunction 3 0.000000 0.000000 0.000000\r\n", + "..rs.py:330 MarkerStyle._set_nothing 30 0.000000 0.000000 0.000000\r\n", + "..y\\orm\\base.py:353 _is_mapped_class 7 0.000000 0.000000 0.000000\r\n", + "..et.py:20 _IterationGuard.__enter__ 1 0.000000 0.000000 0.000000\r\n", + "..f.py:463 WeakKeyDictionary.popitem 1 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\axis.py:153 6 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\spines.py:238 Spine.cla 4 0.000000 0.000000 0.000000\r\n", + "..ray_function__ internals>:2 cumsum 3 0.000000 0.000000 0.000000\r\n", + "...py:1006 Legend.set_bbox_to_anchor 1 0.000000 0.000000 0.000000\r\n", + "..lotlib\\axes\\_base.py:945 5 0.000000 0.000000 0.000000\r\n", + "...py:96 _AxesStack._entry_from_axes 1 0.000000 0.000000 0.000000\r\n", + "..tstrap_external>:51 _unpack_uint32 27 0.000000 0.000000 0.000000\r\n", + "..ernal>:526 _validate_timestamp_pyc 9 0.000000 0.000000 0.000000\r\n", + "..\\cbook\\__init__.py:1938 140 0.000000 0.000000 0.000000\r\n", + "..g2\\extras.py:405 LoggingConnection 1 0.000000 0.000000 0.000000\r\n", + "..__init__.py:1272 Manager.getLogger 4 0.000000 0.000000 0.000000\r\n", + "..bootstrap_external>:1302 _get_spec 10 0.000000 0.000000 0.000000\r\n", + ".._.py:118 CallbackRegistry.__init__ 19 0.000000 0.000000 0.000000\r\n", + "..numpy\\core\\fromnumeric.py:2277 all 9 0.000000 0.000000 0.000000\r\n", + "..CompositeGenericTransform. 16/8 0.000000 0.000000 0.000000\r\n", + "..lines.py:1092 Line2D.set_linewidth 30 0.000000 0.000000 0.000000\r\n", + "..ib\\_pylab_helpers.py:99 get_active 1 0.000000 0.000000 0.000000\r\n", + "..38\\Lib\\urllib\\parse.py:624 unquote 1 0.000000 0.000000 0.000000\r\n", + "..ty.py:17 WeakInstanceDict.__init__ 2 0.000000 0.000000 0.000000\r\n", + "..tist.py:1017 AxesSubplot.set_label 5 0.000000 0.000000 0.000000\r\n", + "..ansform.contains_branch_seperately 4 0.000000 0.000000 0.000000\r\n", + "..\\patches.py:436 Rectangle.set_fill 7 0.000000 0.000000 0.000000\r\n", + "..ticker.py:224 AutoLocator.set_axis 67 0.000000 0.000000 0.000000\r\n", + "..sycopg2\\_range.py:242 RangeAdapter 1 0.000000 0.000000 0.000000\r\n", + "..s.py:729 MarkerStyle._set_tickleft 3 0.000000 0.000000 0.000000\r\n", + "..s.py:1642 _fix_ipython_backend2gui 2 0.000000 0.000000 0.000000\r\n", + "..b\\gridspec.py:528 SubplotSpec.num2 1 0.000000 0.000000 0.000000\r\n", + "..py:1225 Line2D.set_markeredgewidth 30 0.000000 0.000000 0.000000\r\n", + "..ager.py:936 _normalize_font_family 46 0.000000 0.000000 0.000000\r\n", + "..oop._set_coroutine_origin_tracking 2 0.000000 0.000000 0.000000\r\n", + "..arkers.py:222 MarkerStyle.__init__ 38 0.000000 0.000000 0.000000\r\n", + "..ylab_helpers.py:29 get_fig_manager 1 0.000000 0.000000 0.000000\r\n", + "..alchemy\\events.py:328 _accept_with 3 0.000000 0.000000 0.000000\r\n", + "..:2053 IdentityTransform.get_matrix 23 0.000000 0.000000 0.000000\r\n", + "..n\\query.py:76 get_deployment_by_id 4 0.000000 0.000000 0.000000\r\n", + "..query.py:329 Query._adapt_col_list 1 0.000000 0.000000 0.000000\r\n", + "..py:2408 CompositeAffine2D.__init__ 9 0.000000 0.000000 0.000000\r\n", + "..meric.py:337 _full_like_dispatcher 4 0.000000 0.000000 0.000000\r\n", + "..ine\\url.py:161 URL._get_entrypoint 1 0.000000 0.000000 0.000000\r\n", + "..d_bases.py:2556 notify_axes_change 1 0.000000 0.000000 0.000000\r\n", + "..ctions_abc.py:392 __subclasshook__ 40 0.000000 0.000000 0.000000\r\n", + "..otstrap_external>:1252 _path_hooks 1 0.000000 0.000000 0.000000\r\n", + "...py:180 AxesSubplot.convert_yunits 48 0.000000 0.000000 0.000000\r\n", + "..g2\\extras.py:538 ReplicationCursor 1 0.000000 0.000000 0.000000\r\n", + "..sql\\elements.py:4451 _as_truncated 10 0.000000 0.000000 0.000000\r\n", + "..y:4590 _expression_literal_as_text 4 0.000000 0.000000 0.000000\r\n", + "..idspec.py:67 GridSpec.get_geometry 3 0.000000 0.000000 0.000000\r\n", + "..y:949 Text.set_horizontalalignment 28 0.000000 0.000000 0.000000\r\n", + "..ernal>:1479 FileFinder._fill_cache 1 0.000000 0.000000 0.000000\r\n", + "..ootstrap_external>:104 _path_isdir 1 0.000000 0.000000 0.000000\r\n", + "..:964 SourceFileLoader.get_filename 9 0.000000 0.000000 0.000000\r\n", + "..py:366 GridSpec.get_subplot_params 1 0.000000 0.000000 0.000000\r\n", + "..tplotlib\\ticker.py:2118 _staircase 16 0.000000 0.000000 0.000000\r\n", + "..forms.py:817 Bbox.update_from_path 4 0.000000 0.000000 0.000000\r\n", + "..lines.py:1143 Line2D.set_linestyle 34 0.000000 0.000000 0.000000\r\n", + "..ctionRegistry.get_projection_class 1 0.000000 0.000000 0.000000\r\n", + "..b\\gridspec.py:532 SubplotSpec.num2 1 0.000000 0.000000 0.000000\r\n", + "..:2165 FigureCanvasBase.mpl_connect 7 0.000000 0.000000 0.000000\r\n", + "..e.py:516 _ConnectionRecord.checkin 1 0.000000 0.000000 0.000000\r\n", + "..rms.py:2093 BlendedAffine2D.__eq__ 4 0.000000 0.000000 0.000000\r\n", + "..artist.py:695 Rectangle.set_figure 95 0.000000 0.000000 0.000000\r\n", + "..:493 Query._no_statement_condition 5 0.000000 0.000000 0.000000\r\n", + "..y:208 _arrays_for_stack_dispatcher 28 0.000000 0.000000 0.000000\r\n", + "..lib\\ticker.py:2103 _validate_steps 16 0.000000 0.000000 0.000000\r\n", + "..WindowsSelectorEventLoop.call_soon 17 0.000000 0.000000 0.000000\r\n", + "..tors.py:313 SelectSelector._select 17 0.000000 0.000000 0.000000\r\n", + "..ase.py:1009 _ConnectionFairy.close 1 0.000000 0.000000 0.000000\r\n", + "..range.py:449 RangeCaster._register 6 0.000000 0.000000 0.000000\r\n", + "..3883 AxesSubplot.set_navigate_mode 1 0.000000 0.000000 0.000000\r\n", + "..ib\\figure.py:1070 Figure._make_key 1 0.000000 0.000000 0.000000\r\n", + "..\\artist.py:1074 Line2D.update_from 8 0.000000 0.000000 0.000000\r\n", + "...py:193 URL.translate_connect_args 1 0.000000 0.000000 0.000000\r\n", + "..chemy\\orm\\query.py:4625 27 0.000000 0.000000 0.000000\r\n", + "..r.py:234 _EmptyListener.for_modify 2 0.000000 0.000000 0.000000\r\n", + "..\\matplotlib\\figure.py:1089 fixlist 1 0.000000 0.000000 0.000000\r\n", + "..teq6k\\lib\\codecs.py:952 getencoder 1 0.000000 0.000000 0.000000\r\n", + "..plotlib\\text.py:1151 Text.set_text 46 0.000000 0.000000 0.000000\r\n", + "..ib\\artist.py:1013 Line2D.get_label 8 0.000000 0.000000 0.000000\r\n", + "..transforms.py:1924 Affine2D.rotate 18 0.000000 0.000000 0.000000\r\n", + "..py:220 SessionTransaction.__init__ 3 0.000000 0.000000 0.000000\r\n", + "..hes.py:382 Rectangle.set_linewidth 12 0.000000 0.000000 0.000000\r\n", + "..208 _EmptyListener._adjust_fn_spec 4 0.000000 0.000000 0.000000\r\n", + "..tlib\\text.py:535 Text.set_clip_box 15 0.000000 0.000000 0.000000\r\n", + "..y:2444 PGDialect_psycopg2.__init__ 1 0.000000 0.000000 0.000000\r\n", + "..lib\\text.py:1042 Text.set_fontsize 4 0.000000 0.000000 0.000000\r\n", + "..matplotlib\\text.py:1104 Text.set_x 6 0.000000 0.000000 0.000000\r\n", + "..ec.py:93 GridSpec.set_width_ratios 1 0.000000 0.000000 0.000000\r\n", + "..\\transforms.py:1986 Affine2D.scale 13 0.000000 0.000000 0.000000\r\n", + "..sSelectorEventLoop._read_from_self 6 0.000000 0.000000 0.000000\r\n", + "..ctions_abc.py:349 __subclasshook__ 5 0.000000 0.000000 0.000000\r\n", + "..ery.py:4539 _ColumnEntity.__init__ 32/7 0.000000 0.000000 0.000000\r\n", + "..\\lib\\sre_compile.py:413 5 0.000000 0.000000 0.000000\r\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACdsAAAUsCAYAAADFYdzDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy/xvVyzAAAgAElEQVR4nOzdeZhkVX0//vcZhhmQRVDBDRQV0a8YURGMkQhGTdyCRBOXaCIuWYxmMcZoXNFo8jOJ+s3XJXvcSUjcFZfEfUHAFTdQZFdAZWeG2fv8/rjVTnd1VdfaXTU1r9fz9NNd5957zumqe6qYmTefU2qtAQAAAAAAAAAAALpbM+kJAAAAAAAAAAAAwLQTtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAACYMaWUU0opdeHX7jQ+AAAAAMBKELYDAAAAAAAAAACAHoTtAAAAgF1GaVzcXjWtlLK9lHL7Sc8PAAAAAIDZJWwHAAAA7EoemuSOHdr3SHLy6k4FxqOUckKHAOkJE5zPW9vmcvGk5gKzwJoCAACA2SFsBwAAAOxKnrHMsaeXUsqqzQQAAAAAgN2KsB0AAACwSyil3CLJScuccuckJ6zObAAAAAAA2N0I2wEAAAC7iqckWd/WVtseL1f5jlVSaz2l1loWfk16TgAAAAAAoxK2AwAAAHYVT297fH6S97a1PbaUcvNVmg8AAAAAALsRYTsAAABg6pVS7pfkqLbmtyd5W1vb3kl+c1UmBQAAAADAbkXYDgAAANgVtG8PW5O8I8lHk/ykx7kAAAAAADCytZOeAAAAAMBySil7J3lSW/Pnaq2XtI6fmuRPFhw7upRyVK31nBWe155Jjk1yjyS3bDX/OMnXBhm7lLJ/kmOS3C3JAUk2JrkyyRdrrT8c66SXjn3LJPdPcpck+ye5PsnlSc6ptV6wkmMPo5RySJoKhwe1vmqSnya5IsmZtdYbVmEOd01ydJLbJ1mf5Oo0z9kXaq3XrvT4s6iUcs8khyc5OM1auinN63pxki/XWret8PjW8vDjTsuaPCrJIUn2TbI1yRW11nf0ef3tk9w9yWFJbp6mQuoNSa5Jcmmae3Dz+Gc+20op65LcL816uFWa98sbkpxVaz1rgH4OT7M25++xLUmuSvLDNPfYpjFPHQAAAJYlbAcAAABMu19PE4BY6G1tP/9J2/GnJ/njYQYrpZyQ5NNtzQ+utX6mdfx2SV6c5LeS7Nelj+8nedVyYY9Syr2SvCTJiWlCCJ3O+VKS59davzjYb7G8UsrxSV6U5CFJ9uhyzteS/EOSf6u11gH7PyXJyxe21VrLkHM9OMlzk/xqkiOXOXV7KeWsJG9KclqtdW7Acdp/x1fUWk9pHVuT5KlJ/jTJPbt0saOU8pkkL6m1ntnHeKek7Tlq8+lSej5lb6u1ntzrpH6UUi5Ocscuh+/Y4fnp5GfrpI/x7pVm3f5Kktstc+qGUsonkrymn+e1bYwTsouv5V5raaXXcpf+pmFN7pPkD5P8TpI7d+mi42tWSrlVkl9L8tAkxye5dY+pbC2lnJnkjUne0+/vsVJrqtd9PYgOc+z5nlJKOTnJW9qa71Rrvbh1/Mgkf57kcUn26dDF25IsG7YrpdwpzfvtI9P99U2SzaWUzyd5fa31o8v1CQAAAONiG1kAAABg2rVvC3tTknfPP6i1fiPJN9vOeUoppWPoZRSllMcm+W6SP0iXcE7LEUneXkr5r/Z5lMbLknwtyW+kSzin5QFJPl9KedFoM//Z2HuUUt6Y5DNJfjldwjkt903yL0k+1wo+rKpSyrpSyiuTXJjkhVk+1JM0/1PpA5OcmuScVgBqHPM4JMkXkvx7ugftkua5fEiSL5VSXj2OsWdRKeW2pZR3JflGkqdl+aBd0lQqOynN8/r+UsotxjQPa3nwMadlTd4/zWv311k+iNXp2lPTVN375ySPT++gXZKsS/KgJP+V5NutMBkdlFJekmZt/3Y6B+16Xb9/677+XpLnpPfru1eShyX5SCnl86WUOww6JgAAAAxK2A4AAACYWq3t4x7U1vz+WuuNbW1va3t8izQBnXHO5SlpQn7tVfaW8xtpQlrzfZQ0oZdXZPlwzKKhk7y6lPKcAcZd2kkz9juTPHvAS49L8tlSykChllG0AlX/k+SlGSKwkSYU98VSyq+OOI87JzkzTVBqEC8qpbxqlLFnUSnlqCRnJ/nNNPf1oB6T5MxSyhEjzsNaHnzMaVmTD0oTMBw2VPULGW23l/+T5h586Ah9zKRWSO4vM+TzW0q5Y5Ivprmv9xyii+OSnF1K+flhxgcAAIB+2UYWAAAAmGZPz9JQTnuwLkneleRvsjj08owkp41pHvdL8lcL5nJdko+kCWL9JMneaUIYj09yWNu1v1lKeX+t9b/TbPe4sFLfJUk+nOTbSa5OckCSY1v97N/Wz2tKKR+e36pvCM9L8sQFj29M8oEkX07y49bYd0+z9d+hbdcemuRTpZR711qvG3L8vpRSDkgTuLh7h8PfTvLZJN9J8xokycFpwnCPzOIKZfsm+e9SygNrrV8dYir7Jfloktu3HtckZyT5RJJLk2xIclCayl2/lqbC0kJ/UUr5UK2123aJVyY5Z8Fc79J2/ILWGMu5tMfxQXw3O5/TOyQ5cMGxba3jvXSdbynlfmm2vty37dBcks+neW4vas1h7ySHpNnis3171LumqWJ1dK31+j7m1M5aHnAtT9GavE2S92bxWjs7TQjwkjTPw22T3CNNOLKXHWmqEn4nyXlpXrcb0twb+6e5134+zRpf+D+t75vkP0sp96m1XrZM/yu6pqbM72Rx+HNDkv9Nc9/8OM3zd0iSB6d53hdpBe3OSudKg2e3+vlekmvTVBq8bZrg5COyuKLkrZOcXkq5b631ktF+JQAAAOis1FonPQcAAACAJUope6QJEy3cZvLyJIfWWuc6nH96mnDHvLkkdx70H9xLKSekCQUttCU7/0H/DUle1imo0tpm8rVZWnHqe2m21ftSmtDBTWkCM/9Sa+0UPLhNkvekCRMs9M+11t/r43c4JcnL25o3Z2dI5S1J/rTL77AmyXOTvCpLA2RvrbU+bZjxa619VTIrpbwvS6sSntGab7fg2nwg6KVp5r5wrIuT3KtDNcT269v/kmzh83VWkj+otX6ty7WHpXm97tt26OO11ocvN27r+hOy9J57cK31M72uXQmllLcmeeqCpktqrYeN0N+BaUJN7X28JckptdauocFSyl2SvCnJr7Qdem+t9XE9xj0h1vJIa7nVz7SsyR3ZGbz8ZpLfr7V+qcu1e9VaN3do/36Sb6WpDPipfgKbrSDYXyd5Utuh02utj+51fauPt2ZMa2qc7xellIuT3HFB09tqrSf3uObkNPfdQgtfm39M8pJa69Vdrl/02pRS1qXZqvuYtlM/nOTPa63nLjOX2yT52yRPaTv05SQP6LQmAQAAYFS2kQUAAACm1SOyOGiXJO/sFLRraa94tybJyWOay3w4549rrX/UrSJUrXVLrfU5ST7eduhuST7UmtOGJL9Ua/3HbkGAWuuVSR6d5Kdth55YStl7yN9hPmzz/9Van77M7zBXa31tmspQ29sOn9zaxnFFlFJ+N0tDPW9OctxyoZ4kqbVeV2t9XhZXG0uagNcfDDGd+efrw0lO6Ba0a419cZKHpangtNDDSinDbnc5S96UxUG7HUme0roPl63OV2u9IM17QXu457GllPsPMRdrudHXWp6yNTkf5vpikl/sFrRrjb0kaNdyTK31cbXW9/VbGbHWekmt9TeTnNJ26JGllE7V/nZH86/N82qtz+oWtEs6vjanZGnQ7oW11l9dLmjX6uvKWutvpdnOeaFjkvx672kDAADA4ITtAAAAgGnVHtBIkrcvc/4HsnPLvnlPa1V3GodTa63/r89zX9qh7eDW9z/uFVJJklrrtWkqay20f5ZWyBrEZ2qtf9HPibXWD6epiNXuj0YYv6tSyto0W3Mu9LFa67PrAFsz1FrfkuRf25qf26pUNqiL04TCugV3Fo57TZYGPtakCeHttkopd0vyhLbmF9da39VvH63X//eStAdvXjjktKzlxrJreUrX5PVJnlBrvWGIazPk1sPzXpmmYtq8kmarcxrvqbW+bpALWlUv/7Ct+R9rra8ZpJ9a6ylptq1daNj3BwAAAFiWsB0AAAAwdUopByd5VFvz12qt3+l2Ta11S5LT2prvmOQhY5jSjiwNnXRVa/1ymi1w230vSyt0LefdHdratyodxKBBudck+WFb22NKKbcdYQ7dPDGLtzOsWRrC6NcrW9fPu3WSBwzRzysGDOf8Z5p7ZaGjhxh3ljw/i/8O8qIkfzdoJ7XWbUn+qq35EaWU9u1Re7GWd+q1lqdxTb6u1vqjIecwklbA8B1tzcdNYi5TaC7Jnw1x3bOT7Lvg8YYkLxhyDq9se3zv1hbfAAAAMFbCdgAAAMA0emqSPdva2reJ7aRT5btOFfIG9Yla6yUDXvONDm1vGbAi1AVJ2is43W3Aecw7s9b6rUEuaFV0aw+XrE3y0CHnsJz2Lf8+U2v9wTAd1VovS9L+ux4/YDcbk5w64LjXJjm/rXnY12uXV0opSR7b1vzWbluu9uEjbY/XJxl0K1lreadea3na1mRN8u/DjD9G7ev7vqWU9s+q3dGnWttpD6r9HvvvYasWJjkjS6vbDnqPAQAAQE/CdgAAAMA0at+ab3uS/+h1Ua31jCwNQ5xUSrnFiPP53BDXdAr0fH4M/RwwRB9J8v4hr3tvh7afH7KvjlqhrF9saz5jxG4vant8nwGvP7PWunWIcS9oe3zzIfqYFfdKcmBb29Cva2ur3vZKg4O+rtbyYh3X8pSuyR/UWtur842klLJvKeWRpZQXllLeXko5vZTy+VLK10op32j/SvLGti7Wp6nSt7v79KAXtLaQ/bm25lHeH+aydI0Neo8BAABAT2snPQEAAACAhUopD0xy97bmj9Zaf9pnF29P8pcLHq9P8uQkbxhhWsNUc7pxhfoZNrz11SGv+1aSbVlcaXDcW6P+nyTtgcinllIePUKfd2h7fKsBr28PbfarPQy2O4ftHtih7Q2llC0j9HmztseDvq7Wcn9reRrX5NdGGHuRUsrRabY4PjHJ3iN2d0CWbtG7uxnmtXlAlhYD+ItSynNGmMfhbY8HvccAAACgJ2E7AAAAYNp02va1ny1k570jySuTlLY+RwnbXTvENdtWqJ9htyz83jAX1Vq3lFIuTnLXBc0HDzmHbg7p0tapfVi3HPD8a4YcZ1yv1yzo9Pq1B2lHNejrai33t5ancU3+ZNQBW1u+vj7JszK+XV9250DtvGFem0730p1HnUibQe8xAAAA6Mk2sgAAAMDUKKXsm+Txbc3XJvlwv33UWi9J8pm25qNalYyG1SlsM7Ba61j6GVJ7xbVRrh12+8tuViMQMWj1qkm+VrNiZl/X3WAtT+Nrd8Mog7WCdv+d5NkZ79+L786B2nnDvDbTeI8BAABAT8J2AAAAwDR5YpJ92tpOq7UOuu1kp0p4nSrm7U42jvHa/UaZSAcHjrk/poPXdWWsxlqextdu+4jXvyDJYzq0/yjJm5M8Jc3WpoemCSHuVWstC7+SPHjEOcyqYV6babzHAAAAoCfbyAIAAADTpFMg7vdLKb8/hr6fVEp5Xq110xj62hXtk+ErQ7UHIG8ccS7tOr0mJ9VaPzDmcVhdnV7XA2ut1636TGbLaqzlmVqTpZSDk/xFW/P2JM9P8sZaa79hMZXSxqfTPXbvWus5qz4TAAAAGIDKdgAAAMBUKKXcI8nPr+AQByR57Ar2P+1uPsZrxx2WuqpD253GPAarr9PrethqT2IGrcZanrU1eWKSm7W1vaDW+n8HCNolyS3GOKdpMMktcGftHgMAAGA3IWwHAAAATIvV2OZ1d95K9ohhLiqlrMvSgNRPRp7NYj/u0HavMY/B6vO6rozVWMuz9to9rO3xtUneOEQ/dx7DXEa1rUPbsKG5SYYHZ+0eAwAAYDdhG1kAAABg4kopeyb5rbbmrUnOHbHrQ7M4THBCKeXOtdYLR+x3V3R0kk8Ocd29sjTI8dXRp7PIN5NsTrLXgraHj3kMVt/ZHdoekeTtqz2RGbMaa3nW1uShbY/PqrVuHaKfB4xjMiPqtIXw/oN2Uko5JItf39V2Voe2RyR55WpPBAAAAAahsh0AAAAwDU5MclBb2/tqrfce5SvJS9r6LEmetiq/0fQ5acjrOm29e+YoE2lXa92c5AttzbctpTxknONMsU7bWO6x6rPYqX0+w87ljCQb29oeVUo5cMj+aKz4Wp7BNXmrtsfXDNpBKeVWSR485PjjWlNJ561/h6m4d/wIcxhZrfWSJD9oaz62lDJU5UYAAABYLcJ2AAAAwDTotL3rO8fQ72lpKuQtdHIpZXf8O5EHlFKOHOSCUsr6LK04uD3JJ8Y2q50+0KHtlBUYZxrd2KFt31WfxU7t8xlqLq3KYR9ra94vyfOG6Y+fWa21PEtrsj302R6+68ezM3wluLGsqZYfJdnQ1nbsEP387ghzGJf2e2xNkpdNYiIAAADQr93xL5YBAACAKVJKuX2SX25r/mmWhnQGVmu9JslH25oPSfIro/a9i/r7Ac//8zTP10IfqLVeMab5LPRvSa5sazuulPKCFRhr2lzboW2YSlXj0j6fA0aoRvfqDm1/Xko5bsj+aKzGWp6lNdn+e/5CKWWffi9uhRv/YoTxx7amaq1zSb7R1vyoUsrN++2jlHJikgcNM/6YvTbNdsULPbmU8oRJTAYAAAD6IWwHAAAATNrTsnRLvdNqrZ221hxGpwp5nSrp7Q4eUkp5VT8nllIekeSlHQ79v/FOqVFr3ZTOway/KqU8Z9h+SykPL6W8efiZrYrLklzf1vbISUyk5Vsd2oaaT63160ne09a8Z5L3lVKGCvuUUtaXUn63lPLcYa6fESu+lmdsTX6+7fG+SV7ez4WllMOSfDDJ+hHGH9uaamkPke+dpN/74V5J3jLC2GPTCnu+qcOhfy+lPG6YPkspe5RSnlBK6XTvAgAAwMiE7QAAAICJKaWUNGG7duPYQnbeh7I0yHRiKeWgMY6xK5ivHvTiUsq/dKuCVEpZU0r5kyTvTROKWuittdbPreAc35TO2wq+oZTyvlLKUf10Ukq5UynlBaWUb6YJpUxDBaeuaq01yZfamh9aSvnrUsrBE5jSmUnm2tpeW0p5TCml/Z7ox+8luait7VZJPllK+dtSym366aSUcv9SymuTXJzkn5LcZYi5zILVXMuzsibfk6X39PNLKX9ZSlnb7aJSypPSrM35SpM3DDn+uNfUW5PsaGt7TinlFd1+n1YI7RlJvpDkFklqlm6zPgkvSXJ2W9vNkry7lPKvpZS+1nkp5Z6llFcm+X6S/0zS170JAAAAg+r6FwkAAAAAq+DBWbpd5vm11rPGNUCtdUsp5b+TPHNB855JnpLk9eMaZxfwsiR/0/r5mUkeX0p5f5IvJ/lJkgOS3D3J45LcocP1lyRZ0UpitdZaSnlKmjBIe1DipCQnlVLOSfKZJOcnubp17IA04a17JTk6k92CdVj/nuThbW0vTPLCUsoVSa5J0l7t8YO11peNeyK11itKKR/L4spbt07y/iRbSymXJdmYJqyz0DNrrV/p0N/VrW0rv5BkYTBsbZI/S/JHpZQvJflckh+m2XJzfZrX9bZJ7pPkfkl2t4BsN6u2lmdlTdZav19KeWeS32479JIkJ5dS3p3km0k2pAmi3S3JiVkc6LwpyQuS/MMQ4497TV1eSnlDkj9pO/SyNNuwvifJua053zLJzyV5VBbfD69J8qQkdxz09xmnWuvmUsqvpQkkHtp2+BlpXp+vJPlsmqDtNWmq4R6Q5OAk907z/nD71ZozAAAAuzdhOwAAAGCSOm3nOs6qdgv7fGZb2zOye4Xt/i5NIOHxrcf7pwmetIdPOvlhkl+qtV63QnP7mVrrhlLKL6bZ5rDTNoJHZTYrFr0nySeTPKTDsdu2vtp9YwXn8/wkxyfZp619XbpXlNu3W2e11m+XUo5JU2Xtnh36PL71RW+rupZnaE3+UZJj0wQRFzokS0Nr7bYl+Y004bVhjXVNJXlxkodm6Xq6S5I/7zGX01rXP6nHeauiFR48Ns282qse7pHk/q0vAAAAmDjbyAIAAAATUUo5IMljOxx61woM97kkl7a1HVlK2W3+8b61VemTk/zjgJd+McnxtdYLxz+rzmqtN9Zafz3Js5L8aMTuLk0TEppqtda5JL+e5NRJzyVJaq3fTfKwJD8YY5/npwnMvC5NFa9RfCXJR0ae1C5oEmt5FtZkrfX6NOG0Mwe89PIkD621jnS/jXtN1VpvSnJClm7BuuxlacKav9l6z5katdYr04SNX5Kmet0ozk3yXyNPCgAAADoQtgMAAAAm5clJ9mpr+1Kt9YJxD9QKp3QK8XWqrDezaq3ba63PShM4+VSS5cIWX0/yO0l+cTWDdgvVWv8xzfaTv5PkE+mvqtRcmrn/bZptig+rtb52xSY5RrXW62qtT05TeeuUJB9OckGabVW3TWA+X2rN5ZFJ3pxmK9HL02y1OVRQp9Z6U631eUkOS/M7fiXJjj4u3Zzmnn1RkiNrrceMGn7alU1qLe/qa7LW+qM0ldOek6TXc3FJkpcmuXut9XNjGn+sa6rWenWSB6YJQS732bkjyUeTPLDW+vxpC9rNa93Xr06zte3z0jw/W/u4dHuSM5K8MsmxtdZ71FrfvnIzBQAAYHdWmr9rBgAAAGB3U0q5VZKfT7Pt4L5JbkhyRZKvr0TocVSllHVJjk6z7eOtkhyYJmRxY5Krknw/yfdrrZsmNkkGVkq5eZJjkhyc5JZJbp5kU5rX9fIk30tyYa21n1DeTCmlnJLk5Qvbaq2lw3kTWcu7+pospRyRZmvZg9Js77oxzVa736y1fm+ScxtG6/c5Os1a2i/N63BBkjNqraNWi5uIUsrN0mybfLs07w8HJNmS5nf7SZr3hx/UWvsJ5QEAAMDIhO0AAAAAAKZQv2E7AAAAAFaHbWQBAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAehO0AAAAAAAAAAACgB2E7AAAAAAAAAAAA6EHYDgAAAAAAAAAAAHoQtgMAAAAAAAAAAIAeSq110nMAAAAAAAAAAACAqaayHQAAAAAAAAAAAPQgbAcAAAAAAAAAAAA9CNsBAAAAAAAAAABAD8J2AAAAAAAAAAAA0IOwHQAAAAAAAAAAAPQgbAcAAAAAAAAAAAA9CNsBAAAAAAAAAABAD8J2AAAAAAAAAAAA0IOwHQAAAAAAAAAAAPQgbAcAAAAAAAAAAAA9CNsBAAAAAAAAAABAD2snPQHoppRy8yTHL2i6LMnWCU0HAAAAAAAAAACYvHVJDl3w+LO11utXY2BhO6bZ8Uk+MOlJAAAAAAAAAAAAU+sxST64GgPZRhYAAAAAAAAAAAB6ELYDAAAAAAAAAACAHmwjyzS7bOGD97///Tn88MMnNRcAAAAAAAAAAGDCfvCDH+Skk05a2HRZt3PHTdiOabZ14YPDDz88Rx555KTmAgAAAAAAAAAATJ+tvU8ZD9vIAgAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAQAAAAAAAAAAQA/CdgAAAAAAAAAAANCDsB0AAAAAAAAAAAD0IGwHAAAAAAAAAAAAPQjbAbDbqFs2pZ7zhdSf/mjSUwEAAAAAAAAAdjHCdgDsFuoXT0991G1Tn/OQ1MfeOXOvenrq9u2TnhYAAAAAAAAAsIsQtgNg5tVrf5r6kickWzbtbPz4u5J3v2FykwIAAAAAAAAAdinCdgDMvk+elmzftqS5nv62CUwGAAAAAAAAANgVCdsBMPPqf/595wMXn7u6EwEAAAAAAAAAdlnCdgDMvg5V7QAAAAAAAAAABiFsB8Ds27510jMAAAAAAAAAAHZxwnYAzL5twnYAAAAAAAAAwGiE7QCYfbaRBWiT9noAACAASURBVAAAAAAAAABGJGwHwOzbIWwHwGIf/VbNmt/d8bOvr15SJz0lAAAAAAAAppywHQCzb8eOSc8AgCny6fNqHvWGuUVtx7x6Lt+7UuAOAAAAAACA7oTtAACA3cpj3jTXsf05p3ZuBwAAAAAAgETYDgAA2M1s2NK5/ZPnre48AAAAAAAA2LWsnfQEAAAAuvnxDTXv/VrNpdckv3T3kofdo0x6SgAAAAAAAOymhO0AAICpdPFVNb/02rlcfHXz+DUfq3nRI0teddLKFejesq1m/Z4CfQAAAAAAACxlG1kAAGAqvebj9WdBu3l/9ZGaS6+uKzbmh7+5Yl0DAAAAAACwixO2AwAAptI/fbZzqO5fv7ByYbtPf2/l+gYAAAAAAGDXJmwHAABM3I65mq9cXPOhc2qu3bh84O0T565cIO6GTSvWNQAAAAAAALu4tZOeAAAAsHu7ekPNr/zfuXzt0ubx2jXJqb8zmf8v6MKrVLYDAAAAAACgM5XtAACAifrT/6o/C9olyfa55PH/NDeRuZxxwUSGBQAAAAAAYBcgbAcAAEzUh765etXkrumxRW2SbN2uuh0AAAAAAABLCdsBAAATs31HzXU3rd54V2/ofc6GLSs/DwAAAAAAAHY9wnYAAMDEbNq2uuNt29H7nE1bV34eAAAAAAAA7HqE7QAAgIm5aYhg25kXDj9eP2G7y64dvn8AAAAAAABml7AdAAAwMd+4bHXH2z7X+5z/+W5d+YkAAAAAAACwyxG2AwAAJmbjlsGvucMthh+vn8p2ZfjuAQAAAAAAmGHCdgDMtFpVJwKYZpu2Df4+vaOP6nTd9BO2e/kHa07/ps8PAAAAAAAAFhO2A2C27egjVQHAxGzaOsQ124Yfb3ufHwu/+sa5fPw7AncAAAAAAADsJGwHwGybE7YDmGbDBOeGCejN66ey3bxXfGiEEnoAAAAAAADMHGE7AGZbFZQAmGbDVrYbdpvwrQOE7c68cKghAAAAAAAAmFHCdgDMNtvIAky1YbeE3bJ9yPFGqIoHAAAAAADA7k3YDoDZZhtZgKl205Dht2FDczdtHa4iHgAAAAAAAAjbATDbhO0Aptqwle1W67pht6sFAAAAAABg9gjbATDbbCMLMNU2DxuaG7Ky3aDjbR1yu1oAAAAAAABmj7AdALNNZTuAqbZtyDDbsJXtBg3PDTsOAAAAAAAAs0fYDoDZJmwHMNW2Dfk2PWwIbsugYbshK+gBAAAAAAAwe4TtAJhtwnYAU23r9jrUdcOG4LYO+LGgsh0AAAAAAADzhO0AmG07hO0Aptmwle0220YWAAAAAACAVbZ20hMAgBVV5yY9AwCWMWiluXnDhuAGDtttTS66qmbbjmRNSQ67ZbJ2j5IbNtVctSG5062SUspwkwEAAAAAAGCXImwHwGxT2Q5gqg1b2W7T1ppk8JDboOG+Y/+qc2h7jzXJjrnk0AOTdzxjTR50hMAdAAAAAADArLONLACzbU7YDmCaDVppbt5qVbbrZkcrg3fZtckj/n4uV15fx9MxAAAAAAAAU0vYDoDZNmcbWYBpNnRluyHDdsOOt5xN25LTvyVsBwAAAAAAMOuE7QCYbSrbAUy1Qbd1nbdp65DjjamyXbtPnrsy/QIAAAAAADA9hO0AmG07hO0AptlqV7Y788KVqUD3kxtVtgMAAAAAAJh1wnYAzDaV7QCm2rCV5s4aIjR30VU1F1893Hi9fOq8pFaBOwAAAAAAgFkmbAfAbBO2A5hqw1a2+/h3Br/m37+4smG4z5+/ot0DAAAAAAAwYcJ2AMy2ubnux9b4GASYtGEr2x1/xODXvPr0lQ3bffp7KtsBAAAAAADMMikDAGbbcpXt1uyxevMAoKNhK9vtWCZLPSmXrNAWtQAAAAAAAEwHYTsAZttyYbtSVm8eAHS0dciw3bAhvW6OuPXofVxxvcp2AAAAAAAAs0zYDoDZtmPMaQwAxmrY0Nz2MVe2WzuGPxldes3ofQAAAAAAADC9hO0AmG3LVbarKhABTNrW7cNdN+6w3eOOHr3a6UVXJdVnCwAAAAAAwMwStgNgtgnbAUy1oSvbDXHdfe/Q/dhjjho9bLd5W3Ll9SN3s8S1G2ve/dWav/7oXN7yxblcdo3PLwAAAAAAgElYO+kJAMCKWnYbWWEFgEnaMVczN+Rb8XlXDn7NjZs7t5/8CyX3WSaIN4gLr0pue8B4+kqS866oecjr5nLFghDfurU17/79NXn0vUYPCAIAAAAAANA/le0AmG3LVbYDYKJ6VbW7y0HJSx7VOVC2ZYjtZ8//SfdxShlPcO2iq8Yb5H7OfywO2iXN1ru/9W9z2bZdaBwAAAAAAGA1CdsBMNuW2yrWNrIAE7V1mcDc2S9ak/NfvUduv0yVuO07xvM+Ps5PgwuvGl9fm7fVfO77nY9dvyn58iXjGwsAAAAAAIDehO0AmG1zc92PCdsBTNTmbd2P7b2u+b7P+u7n3LR1sPH23KNz+3yVvF+7z2D9dfKuM2uuunE8ny83bEq2L/MxdvWGsQwDAAAAAABAn4TtANh9CdsBTNSm5cJ2ezbf73OH7tu7Lnd9ux1zteu2tScc0Yzx3IeO/sej83+SHPy8uTz2zTuyaetonzMnvnGZpF2STdt8jgEAAAAAAKwmYTsAZptAHcDU2rRMZbr5sN3890Gvb/ftH3U/tt9ezffj7lpy1ovG80ek938j+bN3D/8Z9F9fmcvZFy9/zpd7HAcAAAAAAGC8hO0AmHHLBx2qMB7AxCxb2a61jexyYbvltqFt94Fzur/fLxzjmMO6V9Ib1Pu+NvxnzB/+R+9rz7vCZxgAAAAAAMBqErYDYLb1CtMJ2wFMTD/byM6H7ga9vt11N3U/dueDFj9+3H3773c5V96QbNs+3OfMT2/sfc6htxhfMBAAAAAAAIDehO0AmG3CdABTq9s2sKUk69Y2P++13DayA4Ttljt3n/WLQ2tP/YU1KWPKsQ0yx0Ft3bFyfQMAAAAAALCUsB0AuzdhPICJueL6zu/Be++ZlFbabf3adA2+dQvrdfJPn+081hOPWdr5o+9V8q5nlNzn0GYuD75b/+O0W8mw3bbtK9c3AAAAAAAAS62d9AQAYEXZRhZgan3qvM7tC6vZlVKy19rOobVxBNn226tz+xOPXZMnHpvUWlNKyTGv3pGvXjJ4/4MEAued/+P+Ppu2CtsBAAAAAACsKpXtAJhxvQILwnYAk3L7Azu3X7Nx8eO913U+r98gWxOY63xs45blr52vsPfY+w63r+zmIQKB37m8v/O27vAZBgAAAAAAsJqE7QCYbSrbAUyt7Tv6O2/vPTu3b9rW33v4lu3d3+6Pu2t/czjxqNI1sLecbX3+jsNcs2UFt6gFAAAAAABgKWE7AGabsB3A1PrWDzu/Bz/k7osfj1rZbrnz7n+n/hJ0R96u5J3PKNlnfX9jzts6RNiu34p1w/QNAAAAAADA8ITtAACAifjItzu3f7ttG9Xule36G+dH13U/1q3vTp507Jpc/fo1OetFa3LF363J0x7YO6i3dXv//c/rt7LdMH0DAAAAAAAwvLWTngAArCiV7QB2OT++YfHjUcN2F/60+7Fb7NNfH/PWrS055rDm5xs2zfU8fyW3kVXZDgAAAAAAYHWpbAfAbOsZphO2A5h2o24ju1x47eD9+9tGtpN+8trDVJ/r9xqV7QAAAAAAAFaXsB0AM05lO4BpdNWN/b//jlrZbtO2lXmv76fXYarP2UYWAAAAAABgOgnbATDbbCMLMJX+7n8HCNuNWNmuWyjvLgf1PYWO+vkIsY0sAAAAAADA7BC2A2D3JmwHMBGfPHeQynadt3rtt7LdTV1Ced0q5vXrqEN7b0G7ktvIblHZDgAAAAAAYFWtnfQEAGBF9QzTCdsBTMK1G7sfe/0TFofY9upS2W5zv9vIdgvbdem3X888ruQVH1r+c2TrjpqkdyhvoX4r2/Vb2W/jlpqvX5psn0v2XZ/ss37x93VrB5sfAAAAAADA7krYDoDZpnIdwFS68Krux57+wMXhr24V6DZt7e89vlsFvFEr293+wJJnnVDyD5/pPo9hKtv1HbbrI2z4z5+by7NPrdkx1/2cPffYGbxbFMZbl+y7V8k+65c/vm+X40J8AAAAAADArBG2A2DG9QhiCOMBrLovX9z9vfffnlqy3159hu36rGz3li92Hm/UynZJ8sYnldz/TsnJb+k8Rr/BuWGu6VXZ7uyLan7/nb0/57btSK67qflaavgKsWvXJPvutTCYtzikd7Mlba3v61shvy7H161NShHkAwAAAAAAVp+wHQCzrVeYTtgOYNW96L3dy6zdZv+lIapuobh+t1HtFl7bawx/Giql5LcfUPI3H9uR716x9PiWISrbbe0zbLd9Ltm2vWbPLhXkPvzNyX7GbZ9b2RDfzmDezp/3Wd9U4lvueHubEB8AAAAAANAvYTsAdm/CdgCr7pPndT/2c4csbRu1st0Rt05+fMPS9rMu6u/6fqzv8ierzX3OcaFBquFt2pbs2WXsy68ffOxdwUqG+Dpth7swxLfc8e7b6QrxAQAAAADArBC2A2C29QzTCdsBTJNDDhx/Zbtu5z38nuMLQHWb46Bhu+07av7hM/1/Nm3aluy/d+djO4bYwnZ3tn0uuX5T87XU8P89sceabgG9ZN+2EF+3452uF+IDAAAAAIDVJ2wHwGyzjSzAVLl24+Dvu6NWtusWeLv3oQNPpatR5zjvj08b7Pn5+qXJw+/Z+dggFfJYOTtWOMTXOYy3M8S33PFO168X4gMAAAAAgK6E7QCYccJ2ANPk499Z/bBdt/P26tLvMEatvpck27bXnHrWYM/PO86sXSv0bZ/rfM1T7l/y0keXbNiSbNySbGh9bdxSF/y883vzc207d+f3QQOFjMdqhfj2WZfsu9fCn0tutqRt/ueSfffqdI0QHwAAAAAAs0HYDoDZJkwHMFXOu3Lwa/ZeV9IpHNRvkG3r9s7tYw3b7dlljgME0c67sltwqrv/OLvmXc/sfGzbjs6fgQfsk9z11p1CT8MFoXbM1QWhvKVhvA2tEF/78Y3dAn5bkw2bhfgmZfkQX7J8kG/5EN988G6fda1qeot+3hniW3p8cYhv4XEhPgAAAAAAVpOwHQCzzTayu50zLqg57jU7yzm99Wklv/2ANROcEbDQ1mW2Nn3xozoHZrpVtrtxc39jdttOdc89+ru+H90q23XbwraTbpXohrW9y++9dsxviXusKdl/72T/vbudMXyI76ZW8G5hCG/jz9rqgp93tjfX1EVtQnyTt2MuuWFz89XZcCG+NWVpcG/x1ritLXM7Ht+5nW778b32FOIDAAAAAGApYTsAdm/CdjPl7IsWB+2S5OS31GzaOpffO17gDqZBtypzSfLKE7uE7boE2bbPJbXWnoGYbmG7tWvGF6TpViXvE+f2/zlzydVjmkzL/57buX2cIcOVtMeakv32Svbbq9sZo4f4Nm5tVdvbvDDMVxe3bVkc4ltyzRYhvkmaqysb4vvZdrqLAnw7g3qdj5e2c3d+F+IDAAAAANi1CdsBMNt6humE7WbJs0/tXBbqWe+q+b3jV3kyQEfdKtuddO/uAZRule2S5LtXJEfebvkxV6WyXZc5Xn5d/3386+fHW9quW1W9cVe229WsdIhvXNvpzv98U5/bJTNeKxniWxrcW1xt72Zdj5cuwT8hPgAAAACA1SJsB8CMs43s7uSrl3Q/tmVbzfo9/SM0TFq3ynbr1nZfn7fat3t/X7+05sjbDVfZbpxhu+s3dW6/zf799zHubWQPuFly3U1L239843jHobFSIb65+Up8XcJ4G7bUrgG/jV0CfhuE+CZmrjZbYHffBnv0EF/nMF9Zcnyfdc32ufuuLwt+Xnx873VCfAAAAAAACwnbATDbeoXpVihsV2vNJ85NPn9+zRG3Tk48qmT/vf1D5SR97DvJY+496Vkk126s+eA5NRf8NDn+iJJfurt/xGY4l19X84Fv1FyzMfmVI0vud9iucR91DdstE3w7/ODux7pVb1toNcJ2B+032NidnHfleOYyr9suube7+XjHYWWtWVOaENQKhvg6h/U6V9u7aZmAnxDf5KxUiK+U9mDezp+b763tdDseb22nu9fS40J8AAAAAMCuSthuQkopeyQ5PMk9ktwuyc2TbElybZILknyl1rpxzGPumeSBSe6Q5LZJNiS5PMnXa60Xj3MsgKkxgbBdrTV/fFrNGz+1s++jDqn5n+euyUH7+UfFSfm1N8/lxY8q+cvHTG7/xCuvr3no6+by3Suax686veZ5v1zyt7/uvmAw515R8+C/m8tPWhXKXvbBmn94csnvPmj69wftGnxb5k8mywUyru1QuW2hWmvXinHjDNsdd3jJ33586WfK1X3+F/0ZF9Rces1wY++Yq9mjQ7Ku23N99B2957DyIb6NW5MNm1thvIU/z1fbazu+cfPiEN+S41uG/lUZQV0Y4ruh4xnLXd31SCmtAN7CMN76xSG+m3U93rad7oLjQnwAAAAAwEoTtltFpZQ7JHlskocm+cUky20qtaOU8r9J3lhrPX3EcQ9K8ookT0hyiy7nnJHkdbXW94wyFgDJOT/MoqDdfNubPl1zyon+8W+SXn16zTOPq7njLSfzOrz+E/VnQbt5r/2fZk53u417g/696L07g3ZJE4b4k9NqnnL/mputn+57acu2zuGL9T3+ZHL0HTtvFX3qWTXP///Zu/Mwuaoyf+DfU11dXdWdfSUJkJAQVtmRHVlF0BHBDUVRQUZHBweH8aeijsLM6LggboMO4AKKouiALLIkskPYCQGSACEhCQnZ916qqqvr/f1RXd236p5z7rlVt5bu/n6ep59U33PvubfWdN361vu+y7xdzlJZLsqwXarVPCYigeGPE75XeQ/Znqw+MGW67lFeb6Jy3hDfVO073mhCfF3F1rrFy+nSEF9xvCsNdGXFF/zr8lT1o/oTGayGWKsQn2s73cHLSrsNQ3xERERERERERETkxbBdnSil/gDgoyE2aQFwJoAzlVJ3AbhYRDZUsN+zANwAwNJ8CwBwHIDjlFK/B/DZqKvqERE1TGDluugr213zoH7O/7hLcMXZke+OQrp/qeCiExrzYamu6hUA/O/Dgh+dxw9wyd3ti/zL0r3Azc8IPt2gx7errCEAlgh4Z5I3ZNGmj7NvZ2vjGmXorM0StnttA7Dvbubxnmx1/xf19OrDdqbrHm/+AohEPrUM8fX0lgX3vK1x0+Jf5mmnq92GIb6GKQnx6dewbW0cKYb4TGG8YohPP24O+LUzxEdERERERERERDTkMGxXP/sYlq8FsAzABhTuj9kADgHg/QjsHwA8opQ6SUTWu+5QKXUygL8CSHgWC4DnAawAMA7AYQAmecY/BmCMUuocEam8vAYRUdOofxvZPz9rnnNnj+DZVcCWTmDRGsGtzwtaYsBPPxLDyfvywzZXmV7BkysK4ZYjZwLxFvfbbUdPtMciIli+CVj0JnDw7sDeU8Lfj9c+IvjRedEeF41MC5YDnz6h0Udhl83plycCgm8L39Qvb0/olxeZWsgC0Ybt9reE6Xal7dtWG8pZtwOYPLp0Wb3a5xINdbHYYEiqViG+rowujCclwbziv12Z0na6uu2p/rwhPv23IKMJ8emq7bVbAn6mCn4M8REREREREREREdUOw3aNsRDArwHcIyLLyweVUjMAfBPAZzyL9wHwZ6XUO0SCkyFKqd0B3IrSoN3jAP5RRJZ61msD8FkAVwEo1uN4L4D/AvC1MFeKiKgpBb1k1iBs12eZctyl+uTDaVcXlu/6WQwdTd4CstGeWyU488d5bOmvwbrXJGD+v8Ywe7Lb7dbTG92xZHoFH/tlHrcuHFx29iHAHz8TQ7LV/X5M9wKX35rHd85V/GCUqvKbxwVXni3YfXzzPo4qrWz3kbcr/PEZ/wvs8k327WyV7eIRhs7Gpsxjmzvt26YNAUQv0/UHgEP/I48bLlT4xLGD39fps4QMo7zeRKTnDfHpVRfiM4fxRBvQ67IE/IrtdWvwZzEFqGWIr73YTjdRqAhZenkwxOcfLw3xecdTrYXHNhERERERERER0UjGsF39CIC/AbhCRJ61riiyFsBnlVKLAFzjGToBwHkA/uiwvysBjPf8vgDA6SJSUldDRDIAfqqUWg3gNs/QZUqpa0VklcO+iIiaVwPCdtVUKDrpB3k8+w2mIEzyecE51wwG7QDgjc3Ax3+Vx6NfduuLGGXY7qp5UhK0A4A7FgHfvUdwxdnhPoj83r2CY2crnH1odMdHI9Onb8jjvn9t3tcRY2W7gHcme03SL3/BUPGuqF5tZG0Bto9en8e2n5hX2N5tn/sv/xTDKfvCGLYDgAtvEJywtwwEj+tV0Y+I6ssb4puiXaOyIJSIoCdrrqZnqrbXnS202tW10WWIr3FEBislGtawbW2duzyE19Ef6itcVuhImsaVNvjXkSgEAxniIyIiIiIiIiKioYJhu/r5kIisDLOBiPxcKXUqgA94Fl+AgLCdUmougE96FmUBfKo8aFe2r78qpW70bNcG4FsALgpzzEREQ09zffr3/OpGH0FzW/gmsHa7f/mTK4C3NMt1erLRHc9dL+ofP3e9KLji7PDz/e0lwdmH8oNGqs4DrxaqFzVrlUxT2C4oAJZsNY91ZwTthutbr7CdrSplUPvq51eb/y86Zjbw/sMVMr32/69EgD89K7j8rMJxWCv6uWWTiWgEUapQ6ay9hiG+rizQmS4P48ngMs94McRXsk3ZZYb4GqOWIb5iME/XTrcjaRpXnrCfv50uQ3xERERERERERBQ1hu3qJGzQzuMalIbtTnHY5nwA3o8ObxWRZQ7bfQ+lIb0PK6U+bwvpERE1PcuncAJga5eCoVhSxca3A9sCqhRRZV5aa74/12xzm6M7wrDdU2/ol+tCkw5d4HH9o4JrL6jyoGjE68sDW7tsrQsbyxQCSwQE30YnzWNbuwsBkTD7A5qnwpstBnDZOwvJuDaH1tRX3CG4/KzC5bSliqctuEhEFCVviM+wRkXzFkN8XcVqfOnBMF5hmXguDy4vaaerGe/MMMTXKMUQ38ZdutHKQ3zFdrolrXEHwnqD7XT948oQ/GOIj4iIiIiIiIhopGPYrvmVNadDSik1TkRs9XvOLfv9Ny47EpGlSqmnABzdv6gDwBkA7nA6UiKiZqT5tEwAfHfi/8PPJnweG787FXMm9+H7H4zh3MOi+cBkzmTgWTbhrgnbPRTUhrHIFkCppYyhmhdRWC7BzShDpVEzhd+Cgm/vOUjhslv0191WsXIohO1s99e7DnSfx3tduzdtBTBOu16KYTsiGuK8Ib7Jo7VrVDSviCDd62+H6w3xadvlekJ8unGG+BqnO1v4qVWITxfG62hTvmCfN+Cn36ZQmY8hPiIiIiIiIiKi5sewXfPTfTSfMK2slNoNwCFl2z8eYn8PYTBsBwBngWE7IhrS/B+SXDfuYvz7lCsHfl++CfjwtXk8/pUYjtqr+g83bMEOp+1zgtY4P2TRWbnFPHbFnXmnOaJsI2sjIiVtJeu1Xxr+XD6s72lQqNRFzvBUjQcE38a3m8ds17dZwna5PkG8Rf/abjr+yaOB0cnBbT51nMINC9zSGl3fvQTATdqxlPHdBBHRyKaUQipReJ2sVYhPH8aTkuBecbw7Yw74FS/nGeJriGKIDzUI8WnDeAlgVLIQ1NOPK4xK6gOADPEREREREREREUWLYbvmt3fZ7zkAmy3rv63s9xdFpCvE/haU/R6ilgYRURPSpFJ+P/YjvmV9eeBPz0okYTtTkMRVTy/Qyv+htZ5+w/zh1DMr3ebo6a3PJ5KL1gCH7uHdb112SyOAyyO4mcOdlVa2swXEhkJluzc2A3On6sdMrw97TSz93aX965ptghndK9CzYjkwW78OK9sREdVXrUN85jCevtpelyXgV7zMEF9jFEN8myIO8aVaMRjGS5RfVoVKfdrxQojPvw1DfEREREREREQ0cvGj/Ob3wbLfnxURW4zjgLLfXw+5v+UB8xERDXkL2o/TLv/N44Iffqj6+autbNfTC4xJVX8cw9FekxTcokZmUYWQcn3243h9Y2nYjm1kKSp5h0BvM4c7jZXtYvbtbAGxZqlsZ6s8t36nJWxneF0qDxjOmRx8DMs3AtMfvhE9saRxnXZWtiMiGha8Ib5JNQzxdWULrXQ7PUG9kja6/eMl7XS923guM8TXGD29hZ9ahfg6+tvqei8PtNPVjnva6ZaNtyeAFob4iIiIiIiIiKiJMWzXxJRSowB8umzxbQGblVfCWx1yt6vKfp+olBovIttCzkNE1Bxc+i32294dzS5zVYbtpn2pNIkyZzLwrgMVvvVehcmjR/aHDt0RBOWimGPjTsGX/8/+2PrwtXnMmgh851yFjxwVQ9YhbHfUrOqPjYa/kVrZLhZTSMShfS7Zrq+t2mhQwC+sfz7FHLZLWwKBprBgecDwfYcqfOOvYg3vdmcB5PN4PVH+tqBAKSDBd4FERGRRyxBfJtcfzMv2V9NLe8N4Mhjc84x3Z4HOdGmIzzvOEF/jDIT4tKPVhfh07XK9IT79+GCIz9dOt40hPiIiIiIiIiKKBj9maW7/DWA3z+/bAfwyYJtxZb9vDLNDEelUSqUBeEthjAVQVdhOKTUFgEMtjhJzqtknERGAUGG7qFRb2a7c8k3Azx8SPPSq4MnLYxiVHLkfENjCKq4eL6/hGtKutOCUH+axdF3wuiu3AOf/UtCZyeNohxbFT6+s7thoZHD5MLmpK9sZXiNdgm+pVkPYzlbZzhJMi7qy3REzzc/zLZ0CUzjBtbLd3lMU7rwkhs/elMcbm/Xb3LBAcGS+AxdNv14/Z6tAqZH7/wgRETWOUgrJ1kJb9En6NSqaVxfiG2iNmwa6slIa7PO2002LP/jn2b7PoaIwRa8Y4tvcqRuNJsTnUFNSuAAAIABJREFUD+uVhvjKA376bRjiIyIiIiIiIhqJGLZrUkqpcwFcUrb46yKyNWDTUWW/91Sw+x6Uhu2032MO6fMAvhXBPEREVVmc2L/m+4g6bFe0ZB0wfylw7mG1mX8o6M42vmTFvS/DKWjn9eO/C268iB/AUDRcMsQ9WXOwq9HMle2CjzfVCuzQ/HXb02u+vqb9xVShWl7UJo3SfzB872LgI0fptzFXtvMf3+kHKCz/Tgtin9FfsT8/J3jXXub/62zteImIiIaiWof4BoJ73ta5una6mbIgn2GcIb7GqVWIL9lqCvAVQnztloBfeXBvFEN8RERERERERE2PYbsmpJQ6BMBvyxbPA/ALh83Lw3bpCg6hB8B4y5xERENHWSrlheQhxlWjOo+drVHYDgAee11w7mEj94R7VK0x+/JS8QcXz64KH/hbss6tTTGLTZGLIV/ZzvDhctyhylx5pbci22tDpW1rK6X/8BaYNta8jalqZ9JwfQFgTBLYqflLXyng31a/07hdqrXxoWUiIqKhwBvim6g9M1Z5iC+bMwX4+tvpGgJ+XZZxhvgaJ91b+Kl1iK8jAYxKlrbT1Y+rsnUHxzvagLjDl1yIiIiIiIiIyIxhuyajlNoTwN9QGnBbBeDjIhX1QqzXNkRETeumMR/FIx0nog8tuHHcBcb1Zk2sfl9vbhVs7ap+HpNMEwdo6qE7orBdNmcO7dTqGHTVuMqJVBcEpJFhKIftnlgu2GX4KohL+M1Ulc3aRrbOYbuwxwEUKxH62arQHbw78Njr/uUiwI6+pH+gXzvDdkRERA2llEJbK9BWwxCfPqwn2oBe18CPf7wrC+xKM8TXKLUM8RXDeB2J/mp6xcvJ/na62nFVtu7gOEN8RERERERENJIwbNdElFJTAMwHMMOzeD2Ad4rIJsdpyk+/pCo4lPJtDPU5Qvk5gD+H3GYOgNsj2DcRjWQieKz9ePx63KcCV622/esr6wQHfKu2n0K8sXlkhySiChBVE7Z7/PXK7oMHXnHbLt1b+KCCyMTl6xdXzxNcelrtjyWMXz+Wxz/+znzw8VjwHKbn7WsbzNvUO2x3xgHAvCX+5U+/Yb7uphCvLWz3X+fEcPJV4f/PScVH9v8jREREw1WtQ3xdWaAzPRjC60wX/5WSZd7L3QHjporHVFvFEN8W7RcFKw/xtcXLgnve1rhJhfbyYJ+hnS5DfERERERERNTsGLZrEkqpCQD+DmAfz+LNAE4XkWUhpmrKsJ2IbASwMcw2ir30iCgKImiBW4qu2vavX7ut9p8U3PNyzXfR1CIL21VxX7/wZmXb/fwht4BLT5ZhO7JzqWz35rbaH0cYuT7Bl/4i1qCgUxtZQ/jsmgcFP/uofqy3T7/TWoXtJo9W0H0QqatCV2R6bbOFgidpP0QPlnd5ABERERH184b4JnRo16h47myuv5peMbiXKQ3x+ZZlSkN8pnGG+Bojkyv81CrENxDG87bG1bXTHVhPGbYp/MsQHxEREREREVWKYbsmoJQaC2AegIM8i7ehUNFuccjpdpT9PjnksYyCP2y3PeQxEBE1EUGLOIbtctXt6a8vVLe9i5kRtLodyqJsI9usorqONHy5VLYDgOUbBXOmNMcHSC+uAbZ329dxCb+ZqtTZ2oDXu7JdJVVS06awnaWy3dhKvlID4KUNlkmJiIiI6igRV5gQr12IL6p2ugzxNVYtQ3zmMF5/O13LuC4A2JEAWuPN8R6MiIiIiIiIaodhuwZTSo0GcC+AIzyLdwI4U0QqiW2UV8GbGXL78vW3ikiT1UYhIgqhjpXt6iGqcIiI4NX1wEtrgaP3AvacqCAiWPwW8Mp64Lg5wPRx9hPExfWfWSmYOkbhxLnA6GT0J5XzecFLa4HnVglWbYlmzkyFYbucoUJWlKKq3jecpXsFNy4QPP46cNkZCofuMbI+zHAtTLZxFzBnSm2PxdWOnuB1XNrIbjbUW7a9NprCby6V9CoxKmnYn+X6mQLACcu7tenj3I+JiIiIaCSpZYhPF+Dzhvj0AT/z+C6G+BqmGOLbGjrEZx9PxP0BPW9Ir10T4CsJ+SUK7ylKAn4M8RERERERETUVhu0aSCnVAeBuAMd4FncCOEtEnq5w2qVlv+8dcvvZZb8vqfA4iIiaRqxOle3Cmj4OeCtk7dCeCKqe9eUFn71J8OvHBk8Of+u9CovXCv7y/OB615yv8LmT9emQbE7w8V/mPesLxrUD914aw1F7RXcCON0rOO/aPO58MbIpAVR+X3dmoj0OHYbt7F7fKNjnG4OfRt30lODY2cBjX4mNmBb0rpXtmqlZ6HWPBB+NS5j4n09RuOwW/1zLNpq3MX14WavKdh8+QpW8vnqPI9cn2nZVlVTfU0rhohP0+yIiIiKi6CXiCok4ML6GIT5/WE98wb3ieHf/uCkAWEnFZapeNgdsrWGIrySM13+5I6HQkbSPj2orXi4dZ4iPiIiIiIgoPIbtGkQplQJwF4ATPIu7AbxHRBZUMfXLZb8frJRqF5GAxl0Djg+Yj4hoaAlR2a63r1CtrZLATp9DqakrzlZYvRWY2AGceaDC9h7gA78I9xX2KFqM3vy0+MIZV97pP/5//oPg9P0Fc6f6b4//fbg0mAcUWkR++No83vjv6EJPP71fIg/aAZVXMbzmwdqHWlZvAQ7do+a7GbK8QbuiJ1YA85cAZxzYgANqANfKdvkmqZDx1nbBn54NPmiXSnMzximYPoDasLNQZbNcvdvI6j98LXh0GXDKfv7llR7jhwzBPiIiIiIaOmod4uvKFtrglobxPAE/73gW6Erbx+v9RUUqqGWIryOB0jBeW2mIzzZeUqHPM84QHxERERERDWcM2zWAUioJ4A4AJ3sWpwGcLSKPVDO3iKxTSr0I4OD+RXEUAn3zHKc4uez3e6o5HiKihhNBi2NlO6AQeLC17TNxqTh32ekKozxtVu9bHD4gEUXVs1+FCGbc9JTgyrP9J0jveVk/x+qtwNJ1wAHTKz68Ene/VJsQSaUfDvz77bUPtSxeJzj7UJ6U1tnZY779L7oxjzXfr1F6qsm4hu2apTW262udSxvZ9oR5bN5iwQXHNj5sZzvGexcLTtnP/RgTAceYag1xYP1aY3kAI+O5QkRERDSS1SvEVxrGk5Jg3sB4phDis40zxNcY2VzhZ5v2q/rRhPi07XKTAeOGdrsM8RERERERUTNg2K7OlFIJALcCON2zOAPgHBG5P6Ld3IbBsB0AXAiHsJ1Saj8AR3sWdblsR0TU3AQtcC/vlM1VGLZzCMF5g3YAcPiegFLuLSEBIN1befW9oodfc1/3P+8SXPFewdrtwPSxQCymsGGn4L7F5m027gIOqPjoSi1dH9FEZTJNfBK/kvDMSLGjxzwWtiVzJUQEq7YUnoeNtKnTbb0o2k5HYeMut/WSDo/9w/cMv596h+3mTjGPmaqTVnqMlfx/9ZOTVwOYE35DIiIiIiLULsTXm5OB4J03xFdYJqXBPU07XdM4Q3yNUasQX2uLKaBXCOm1awJ63vEOw3iCIT4iIiIiIgqBYbs6UkrFAdwC4CzP4l4AHxSR+yLc1e8BfAODJSver5SaKyLLArb7Stnvt4hIOsLjIiKqOxFBLEzYrsJKUJWEWiaPVvjksQo3LAhXLS3dC6QslZOi1vLZcL0oowj4bNwpOO+6PDY5hnTCquRke961nFiVoqheOFzV6S7Q+utCwSU35+sS6otKszyWXG8zl6DptHHmD0BM17feYTvbhzSvrdc/iE3/9wQdYyXX4QOzNoFhOyIiIiJqNq1xhXFxYFy7bjSaEN9Aa1xNO93y8a6A8Wb+Et9w1ttXCPDVOsRXGsbzh/TKx8uDfcV/GeIjIiIiIhqeGLarE6VUCwohuPd5FucAnCcid0W5LxFZppS6EcBF/YsSAG5QSp1mCs8ppd4H4FOeRVkAV0Z5XEREjRKmjWyl33gOCrXEDOfWrv+Ewr67AX97UfDY62776s5WHraTMGX0KvTqBsFZB1V3MvGcn+fx5IqIDkijklDlD+bVKWzXJNXImlEdHr5ai94UfOjaPPrC5U4bricrqOZDqaj87AG3O86lsh0AnLSPvkLnnYsE33iPf3m9w3YAcOHxCr953H+95y/VVyc1H6P9/nNpves1O7sCk3Kbwm1ERERERDSE1TrEZwrjdWbEV2Wva+BHDNswxNcotQzxDQTwEsCopPdyIcRnGx9lGGeIj4iIiIiosRi2q59fA/hw2bKvAViolJoVcq71DhXnvgXgXADj+38/DsDflVIXi8grxZWUUm0APgPgh2Xb/1BEVoU8LiKi5iOCFrgnqyo9qRkUtpugba8CtMQUvnKmwlfOLPye/8HngTt+hdcSe+OAOS9WtC+bF96sfFtX1YbkVm2RmgbtACBTwW14yzOsbNdojapsd+tCGXJBO8DcsrSeNu1yv9NcWyiPatMvX27IkDUibNduCUS/8CZwWFk7XNMxBrWJDXsd5mSXQ15+EuqE94bbkIiIiIiISthDfEClQb5cn7manq0aX3cW6EzrA34M8TVObx+wvbvw41d5iC8eKw/m9f/bVgjptfuCe6Xj/mBf4d9EHL4vhxERERERkR/DdvXzCc2y7/f/hHUKgIdsK4jIGqXU+wHch0JlOwA4HsASpdRzAFYAGAvgcACTyza/C8C/V3BcRETNRyRUZbt0hUGnoPDW+w93PFF1x68AAKl8j3GVaiqfrahDQaPp46rbvh7HmM6Fr/i1YnNtjqUcK9uZNSpst7JO933UmiG4uXKL+7quFTsXGkLDh+yuX24KsoWtChfGPlPNYys2uYftgsJ08ZBhuy9v+SHU2LPCbURERERERHUTb1EY2w6MrWGIrysLdKbLwnxZGVzmGS+G+Eq28VxmiK8xcvnahvgGg3mDlwfa6ZYs07TT1YwzxEdEREREww3DdsOYiDyklDoXwA0YDNQpAEf2/+jcDOAfRUIkU4iImlq4ynaVhlNyAVWvPvr2cCeU2sUStqsiQNPTW/u0UrUBn3oEhCoJtNmOa9IoYHNn6bKT9wEWrwM27YpuPyOdLWxnqnZWjb684D/vEvzuyQal/KrUDI+lMM811xPvR84E7tjuX761y7+sNyf4wX36+6+Wle3ed4jCpX/U77fwOuzaRta+n7DX4fjuJ4DMKeE2IiIiIiKiIa/WIb6ubH81vfRgGK+wTDyXB5eXtNPVjFf6ZViqTi1DfKXBPO+/pe10deP+YB9DfERERETUWAzbDXMicrdS6m0ArgRwHgbbypZ7EsBVIvJ/dTs4IqJ6CFnZbldQk24DU1ACAP5wscJJ+4Y78WOrbFdNa0hTm8UopauszLZ2e7hg07SxwIadwFF7ubewDRtC6ssLsoZvax+9F/Dol2P44p8ENz8tyOSA9xyk8MtPKqzfAbzjB3ls2Om+L55QNhPLQyNshS8X/3ST4FePDc2gHQDctUhweYOLmJWHUE3OPNB9znfso3DHIv/9smiNf91P3WC+/2oZtttzovk1v7xKZl9ejI/twMp2IarzXbblR0igF/LyExV+jEZERERERFSqliG+7qy/Ha43xGdqt1sM8enGec6lMXJ5YEdP4cev8hBfS8wfwDOF+Ezjuu0Z4iMiIiKiIAzb1YmINOwvcxHZCOBzSqlLUWglOxPAbgC6AKwFsFBE3mjU8RER1VqYynYPvCI4cW74l+ycYRcxBXzkKLc0hKx5feByUsypv2rajN6pCahErZowIADc/aL7Mf7tCzGc+bbCydJUQiH2Gbf7OuxtaDsZ+5OPxBBvUfif8xV+8hFBXx5IxAuPodFJYN1VLehMF070JlsLp5njLcBXbxVc86D/uvZkh264q9Zsle2CWjmHtbNH8Nsn7PfFhccrfPucxp98/cSv8/j7Uv/yJxzDp7V072K3x3NHiMqEqVbz2OsbBXtPKdwnm3YJ/viMLWxX2/vuwOnA4rf8y//2ouCb/zD4uynIC0Rb2e6AzCuFC0/Nc9+IiIiIiIioAeItCmNSwJiUaY3K3s/15aUkmOcL82X0490Zc8CPIb7G6atxiE9bbS8BjEpaqvElFEYl9du3McRHRERENGwwbDeCiEgWwIONPg4ioroSwdTcRufVwwQ+vCptAVhi2aKBizEI2vJpZGJJ32rVtIY8aIbC86trG+aqtlXtrEkKwSfECqaNK5ykSiUKv196msJP7g/eNuxtaDtpmvQEf1piCi2abOWoZOFEm1eq1dRiMtyxjSTWsJ0lsFSJJevsFSuBwjeddxvb+JOkWwzV42ZPqu9x6Ewd47beOYe5347TxppfI55fPRi2e3GNvRpiLSvbAeZKogdOd2shCxQeYzZjjR88+U3NbShcOPh4942IiIiIiIiGkZZYbUN8pjCeqdpelyXg15XhOaJGsYf4APt5S3uIrxDW8wb3SkN87cbxwrlF3fYM8RERERHVH8N2REQ0vIng1K6HEJde5JSlHFK/Sr+JGknYbmNpD8SU9CADf9iuO50DEHxddHb01L5qWjWV9zK9gp8+4HaMe4wHDtm9dNlFx9cmbGerPNVW4V9TxYBguWpuv+HOFpzKC/Dde/JYthE4YibwiWMURiUrP9H45Irgx9EB0yqePlJ7TQIWvulfHlRlcuNOwW+fFPz33YJt3cC5hwHnHqZw/lEKsVg0J2ldH89nHui+v9P2d9tf0PWvddjO9P/J5s7Sx5YtbBd0jKmE++12UvejhQvZCvulExERERERkVa9Qnxd2UIr3U5PUK9TM+5tp6sbZ4ivMfrywM504Uev+hBfR6K/ml7J5cEQn3/c0063bJwhPiIiIiIzhu2IiGh4E8HUvo24Zc3H8NEZv9VWivN6Y3Nlu8nl9cvjjmEO2b4Z8j9fLlnWnu/B9pbxvnW7u3pRSdgumxP89YXQm4VWaRvZbE5wzs/z1kBV0eTRwO2XxHwnfA7aXeG6CxQ+9/tCO1eTsIG2bBWVp0xMrTB5wtPMVtkOAL52W2GF3zwO/PFpwbx/jSHZGv6k4EOvCi67JfiBeNCM5jjh+JGjYrh1of8Bv34nICLaE6PrtgtOvqoQTiy6bSFw20LBA68Av/pkNCdUXR7PN31aYeIo932NtoQor54v+ORxhcvbu+33oevrc6U+d7LCLx7yH8NdLwK70jJwPaoJ2wHA+Ucp/OFp+3X9r43fRLv0fyX/leeCJyUiIiIiIqKGq2WIr9sb3CuG9AaWSemyTOFyYRvxb5NhiK+RahXiiylzO93CZXM7XW+Ir3w82coQHxEREQ19DNsREdEwVzhhcHbnXdj02gwsSB2DpKTx7UlfxfxR7/St/ZvHBb/6ZPi99PbpT0y4Vk6SX13pW5YSfa+Cnp4sgHbXQxvw4KuhN6lIpSfWHngFuG+x27pvfi+GRFx/UubiE2P48JGCZ1YCV9yRx+PLqz9GW2W7RIWBHVa2Cy8obOf12OvArc8Lzj86/Mm7K++0JDU9TIHJerMdx4trgEP28C+//jEpCdp53bBA8KUzFA6YXv2x2R7P/3O+wiePVehoC38fHbx74bqVe2kt0JsTtMYV7lhkf8DUurLdKEtb8tsWCj5xbDRhu1kO7YLP7JxX8rvkclBxvhUkIiIiIiIaiVpiCqOTwGjjd5KrD/EVQ3gDrXHTQFdWPJfL2ummpSS45x2v9Iu9VJ281CfE5w/rlYb4ygN+5cG+4r8M8REREVE98RMWIiIa3jxl0tqlB6d3PwgA6DW0lD16r8p2Y6ps5xzm+Ot1vkWpvD5sl+6xJL8sbnk22hayx8wGnlzhX15pWGz+UrfjO+ttMAbtisakFE7bH7hxgcLjy/3zNnNlu3Rld++IkHfLwA14dhVw/tFh9yF4+DW3dU2ByXobZ8nePrJMcMge/ufLn56xP98eWSY4YHr1JyhNrVQvPlHh8yfHKp7XFmR7aS1w+ExgQoeC7eRurSvb2e8X4BPHFi5XG+a17adobH5H6YI3FgNzDwnekIiIiIiIiMhRrUN8A8E9b2tcTTtdb4hP2063/1+G+BqjliE+c4CvEOJrtwT8TAFAhviIiIhIh2E7IiIakVa37qldHqvwfbOpMlG88iwJkqI/49BTYRrrnpeiDdu95yCFJ1f456z0RNX2brf13nuI+53UavhLx1ZJSqcmle1MbWR5os8o7CPYdr+ZhHlsNEtluyNnmsfe3KpfvnSdfc7OTOXH49Wd1d9r1d52p+6nsEATpAUGjz3oPGitK9uduq857NfleXmvtrLdafvZQ4UzetdiVu+q0oXdu4InJiIiIiIiImoCtQrx5YuV+AxhvM6MaAN+3ZaAH0N8jZMXYFe68KMXXYivIwGMSpa209WPq7J1B8dTCYb4iIiIhjKG7YiIaHgT/RvlT27/Hb415Vu+5ZW2QDWFJaoJc7Tn9emz7p6QSbEauPJshb2n6McqvQ0Nd1WJU/cDLjjG/SSEqepc2BCWNWxXaWW7hD4gU+ntNxKEaSMLhA/nAfYqhuXam6SyXVur+Tlx1TzBBccIDto93Mm7dTuC13FhCo9WWxXw0tMU/utv+nt4xWbBO/ZRxqp6RbUO2719lnnspbWDx15t2O7QPYAvnKrwswf0t8e16z7v/9gho6+cSkRERERERDRSxGKqEIKqYYhPX43PX23PG+LTbcMQX+PUKsSnlCa413+58G9/O13vsrbiZeW5XDrOEB8REVF9MGxHRETDmyHBNSG/Tbu80qpiuRqE7VKmynbbdwCYUfnEAa67QGHlFuCt7cCYFLClE9jZI9hzosLEDuD0/RVOmKtw5yJBlGGxTEAA7oS9gTsvifWH1Ny0GcN24WJYtWgjm2Rlu9DCtpGtRJggZrO0kQUK7ZXveVk/dvFv83jqa+FejH40X/DDD1V/XKbXg2or200cpaCU/iX+0j8KPnVc8HOp1mG7WEzhS2coXDXPf5BLPJUFqw3bKaXw4/OAsw9RuOdlwZ/uXoO1rTPwye2/w1e2/AD7ZF/3b8SwHREREREREVFN1DrE15UFOtP9Ybz+y4V/pWRZ8XJXGujKim+bgfGIuhtQOOIN8e3UrmHb2jiiVHkwr6w1blKh3TiuytZliI+IiMiEYTsiIhrmDC0M8/qgQdSV7VzayIohEGg8xu2drodVIuZwLBM7gItPdOt9awrLdGcL1ynsm+8eQ7vJovOPVqGCdoC5xWuY6mWAOYAVU4VWFpUwtpHtrez2GwmibYSsF6aNbLNUtgMKJ75MnlkJbO0STOgoPKZcwqbVtMD2qlXYDgDGtwNbu/zLi9807um1X8+orqONLYyb7hUkW5X1Meca5lVK4bT9gVNnZ/D9n84N3oBhOyIiIiIiIqIhxRvimzpGt0blIb6e3v4KesXgXqY0xOdblikN8WnHGeJrCJHBaoi1CvENhPG8rXE17XS9IT7dNgzxERHRUMawHRERDW+mIJtEG7bLGSpuOVVO6tWXXzIeo2pzPKpSc6cUqtXZhAkzmap6iRTCaW0hwzRBFcUqCefUuo1spVXtJJ9Hcu0rAPbVjmdy5sp3I1noNrIVpPNcHxuzJgJJS/vWejt6tsJfnjdf4a1dwISOwuXFbwXPN3l0NMdlqi4XRVDRFoIVkcDKdsfNqf39N77dPLYrXXie28K/oavvde9yWk2WPgvMPQSItQAt8f6f/sveZQOXW3jik4iIiIiIiGgYisX625W21S7EF2U7XYb4GqMkxKdfw7a1caQY4tMH+AaDeqaAny7A19FWOPfIc1lERFRLDNsREdGIlMobWrRW0MIznxd86c/6N4xOQQlDhaF2Q2W7LZnKUlhRv7VMPXs3gDO1Yz294cN2QRXF2kNWtQMsYbuwle0M65sq59nIgrshXzkXybZDgNlPaNfpyTJsV5TpFby0FnhulWD+ktrWttvRLTjlh269ar9zbnOdrDn/KIUr7xTjCa/uLLBsg+Ccn+exdJ1+nfL1o2CaJ4oWvJe/W+Hrt/kfE3kpvJ7YwtPHzwHe4VAArlrvPkjh//1F/7jd0VMINdpe+1rCVt/LOlasu+WnkFt+GmpqicXMYbx48XJZYC/WUhgrC+65hfxajOPKO1eL5nh8x1W+X12gsGxd3XFptlMuZWOJiIiIiIiIRhhviE+vuhCfOYwn2oBeV1mIT7c91Z83xLdBv4Zta+OIUhhsl2uottduqLbXUd5O13OZIT4iIipi2I6IiIY3Q2mrZISV7X58v/lNXdwljLXhTe1iU2W7O7bpq6EFqbRqn44seQbJX14OzNaH7bqzwDhLRSedoLBdJeEcYxvZkJXtMoa2m2Er28n6VZCvnAvAfP8ChftqfLiph4V0r+DFNcDzqwXPrQKeXyV4+a1wrV29wkbzLv5tHm9sDl7vb1+I4ayDmuukyrRxCs98PYb9v6kPC27YCXz2d3ms3OI2X1Rhu1q2kT3jAH3YDgBufd5c2a6jDbj70hja6lCZcGzKPPalP+fx139uMT6+W1sqOHn3zP3h1g8jnwfyET0wqlSPltKuBLCG8QqXYw4hP0Nw0Bf4M4Qe43GoksBhzOG4HPZrDCwa5mU1RCIiIiIiIqohb4hvinaNaEJ8/jCelFXm8wb5/FX6Bv7NVtZ9g6ojMhiyrFWIryNRaOtcenkwxOcfV4ZtCudKYzGeRyEiGkoYtiMiouHN1EbWUDWuLw/05gStcfc3Nv/3nPnNl1Nlu6fnaRdvbplo3KQvL2gJ+eYr0rDdI7cj1ddt3lcFeYzAsF2EbWQzjWoju+DugYumxyBQ2e031PRkC8G65zzBusVvmVsy11q6V/C3l4LX++hRqumCdkVz9WcYAQC/eMg9aAcUno9hXwt1TI/lVAWVKn1zWF4T/vycGF/zvvcBhdHJ+tyHtmO888XCv7awXVjieY2hOurLFX4arNnO3Ys38GcM8VkqCIYO+ZkrFwZWQwwTLgyqhuhbzmqIREREREREza5WIT6RwhdCTWG8kmp7WaAz3d8jHaF4AAAgAElEQVRONwt0psUX3CuOM8TXGN4Qn2EN29bWuTuKAby2Qgiv9LJCh29Z8fJgiK98vD3BEB8RUa0wbEdERMOcIWwn+jayAJDOAa0h/od8YoV5bIlDu0bk9ImQv3ecatxka1eh/WAYLgEu57ddzz+IpJhr64dt0woEh+322y38nFFVtksbQjttYSvbPXHvwGXbYzDKYGQz6MkKFq0ptIJ9blWhct3itwrh1mbx6nrz/exVSevgerGdOHl+dfj5urPA2CrfLdSyst0scx4Zu9KWFrZ1bNFsq2zX0n93mV77Qod5gUI1M6JmUayG2Nv4BHkzff4gSjm0NNZUJgzRallbDVHT4lmVBwOdWi0H7DeuWddxXlZDJCIiIiKi4UapQqWz9hqG+IohvNIwnpQE84rjXZlCiK88uDewfYYhvkYphvg27tKNRhPi07XT9Yb4dO10R2nGGeIjImLYjoiIhruQle2AQihtdDKa3b/7bcFvOCSjPxZbmK2StprLNgavY33Lls1AfnE58PhdwLpVSMTGGdcNG2YD7NfpnfsDM8a7vXkTEchX3w8suBuJcRcC067xH1/I288Uwgod2ukdvE+D2sgOVd2ZwWDd86sL/y5Z15hgXZgTQ04tn1FhAKoJrN4afpvuLDA2ZDtor1yfGJ/X7RW0hfbN0WZ+TXjgFSBpeH7WM2wXiykcNwdYsNw/lssXbyP9A7WSynbo6apgIyKqKxFWQzQIrIboDQRaqx06VEMMCBeqksBgQDXEMPt1qbJYFlJkNUQiIiIiIirnDfEZ1qho3mKIrxi884b4CsukJJinbaerGWeIr3FqFeJrNwb4ytrpagJ+3uXecYb4iGgoGaIfFxIREVUnGVFVMQl4h/jOAxwmef5h7eIo24yu3Vb9O1n5z08BD9068HurmG+oqCvb/eVz7h8yyhUfH2jXmhD9DRU2DPjiWv1yU5jH6LkHBy4Ohzay3RnBC8Vg3arCv0vX1y9YN74duORUhVfWFdqGViPu+BBr9rDdyfsAD70WzVymynCubK+lqQjCdgDw7XMVvn6b/77Pi6WyXQQtbMP44YdiOPa7+ifFMyvNVQcrCts9Pb+CjYiImgSrIWqVVkM0VRXUVEMM0Wo5sBpi/3bmaoghqjBqqiyaqyHa52U1RCIiIiKiaHlDfPrOOpWH+NK9bu10vcu7+8fKg3ve7fPN9AZuBOnO9p9/rXGIr7zaXvlyb8BPF/wrVvZjiI+IotbkHxcSERFVyVTZzhK2e+FNYKalPaHX4rfs406hjpef0G8bYeWz2xZW945Ttm0CHr6tZJkpyAZUVnnPtM015yuMTjpWtcvngQf+MvB7VGG7+UsMj6MqKmTF0Ye49CKn/JM0Y2W7rozghTdLK9YtXVe/kxmpVuDQPYDDZyocMRM4Yk+F/acB8RaFj16nDzKF+bak6/VYv6O5z95EFWIDIgjbWbaPqrrcmAqqkNazsh1QOKFj8qvHBQ+9Ek1lO8mZX9jUZ/4T+PC/AH29hWpauRyQ7ytcLv7blyskZYuXvcsHLnuXedbt08xVsk3hsvSZ9tvnn8M3rtlvvq/0ugxs1xd8XPkm6mNNRGTDaohGYqp2qKuGaG1p7NLy2B4uVKZwYYStlgOrIfYvZzVEIiIiImo2SimkEoVzl7UK8enDeOJb5g3xmQJ8nQzxNUwtQ3wDAbxEoT3u4OVCUE8/rgYvl40zxEc0sjFsR0REw5shbTOhz9xTsTsrcH1z9/Ja+x/wTqGOtx0DvPykb/GXt/wQH59xo3YTU1tTk5cDQoFF3/wHw/VeucR3W7bCUtkuwjayoQIna0t7NbYZwnbpkMf39pnAqi3+5a9uCDcPdp8DrBk8xlS+B7ta/A+S7p4+NPLPtM50f7Bu9WDFulfW1+8EQ3vCE6zbEzhipsJ+uxWCdTpRFDVxDYi+ur76fdVSRdXQDGpa2S6iwNvu4xXCfvQ/Y3w0+3Y1bax5bN12wb67ASs2+8d0rzlWW9aZx1paoNqSACLqkV6hZjr1JCJlIT7HkF8x4OcQLtSPe0OA+dIQonHePv2xVrTfvuDjIiIaKoqva6yGWMJYDbGkqmBANcSSdWwhQIdqiKFaPDvstySk6NJamtUQiYiIiIarWof4zGE8fbW9LkvAjyG+xiqG+DZFHOJLtZYH9/r/bSuE+Np9wb7iuBq8XDbengBaGOIjanoM2xER0TCn/0M4KRnjFmGCbEGhLVugRDJpyC+/pQ3aAcCZnfOM24atHOeyfiIOfPAIwx/wGX+VPQUYK7M1LGxX9kFb0tCqNWyb1kdf1y9vCVs0oq/0SqakB7swxrdaT08W9fozTUTw+6cE37m7EKgDCuG1MFXhqtGeAA7zVqzrD9bV+81kzvE51dfkJ0P23U0Bi6I5yJpWtouoAt9p+4Xf5oBp0ezb1cRR5sfy6xuB3Q3hv9CvL5rX6QFHnhZysuFPKVWoLhRv/FviZjp1JiL9rTzLgnvaCoIu1RD94UJ/kLE8JGiohhgqXBhQDdG3X9125dUWWQ2RiIYIVkM0ElO1w8BqiCFCfkHVEIsVCOvQahnx8sAhqyESERERufCG+CZFHOLL5IDOdH8AL+u5XKy2l/WPe0N8unGG+Bqnp7fwU6sQ32Bwb/DyQDtd7binnW7ZOEN8RNFq/CcLREREtWRJDE3JbcDG+FTf8jABk6DQlilQIrleyKePBla9Ytx29NEnAtv1Y2HDdkFBotFJ4OZ/jGH6OFPYTt92t9UQtouyjWyosF3ZB+GmVryZHJDPi1OJ7wdeEWzYqR+76PiQb0zKbsdUXn+79tSxj+z/+4vg6vmlz5NaBe062jzBuv6KdfvWMFgX5mq4PmZdQ3mN8i+nKvzgvuYI2+mqtRW1RxS2G+XYYtqrERVNPneywi8e8t8vyzYWfnT+3VRp1OStFeax3fYMNxeNWEqpwVaFrRH2pa70eBp9AB7GaohhWi0HhAuDqywWKhNKYAtnh1bKzvt1aPFMRDRUsBqilijl0NK4JWDcUDFRF16MG1pA66ohOrVa7t+vU7gw5lYNsX9dVkMkIiKiKCmlkGwFkq21C/F1Zfur6aW9YbzBEJ93vDtb6HLj2ybDEF+jDYT4tKPVhfgGwnje1rhtg0E9/bjyLSte7mhjiI9GJobtiIhoxJqRW6cN24XJOQWta6xst+gxa9AOAFo6OhDb1oe88qfNoqps98HDgS+fGcMhuwOtccsfw4aKSQnJogftvuXZSMN2If5IX/Fyya+mMBsAbOsGJo4KnvLrt5kr2YQODGVLb0dTGDAdts9thbZ0Cn7899q8Wx7VBhy2J3D4noMV6/aZWps3XVF8/pFzLFjU7CcXbC1Lw6o2bHfdI+YbNao2smEdOL0x+917cvhtRreFW19uv9482JYKfwBEVILVEPV81RC9FQSrbbVc0vbYFnR0qYboqcSoG/ceb1A1xJJ1LMfFaohENFSIALleAPX70pfxUBp9AGWM1RAHQnoO1RCdQ34O1RBr3Gq5JLBoCTqyGiIREVFzKQnx6deoaN5iiE/XDrcQzDO30/WG+HTb9/Etc0MUQ3ybO3WjlYf4kq3+gJ43xNeuCfB5Q3ymACBDfNTMGn+WmIiIqJYsJbpS+W7t8jABk6CWs+M7DAMvPh48uVJolV5kNGG7sG1ac4bel5PHKBw5y+GPVUvYTqe3TxD2DVwkle06S0sBjssbSgMCWLIOOHFu8JRPvWEeM96/JpnysJ2psl19wna/e1IiCY+NTpa1gt2zEKxzqRxYS2Eq9Lk+p857e3O/uYvyNu/Khn8el2xv7taNRIPeheywdFqtpQlhXytQKPgRSrf2DElBIhn+AIiIHLAaopkMhBAdw4VB1RA14cLgKouGaoiVtFJ23q9Di2cioqGC1RC1/NUQQ7RSDqqG6AsBllVDLJtDhW7xbKiGaAwXxgLGWQ2RiIiGL2+IT1+4IJoQnz+MVxri6yoP8mVEHwBkiK9h0r2Fn1qF+EzV9josAb+ORKF9rm6cIT6KAsN2REQ0vFnDdvrURVBrWC9bhbn9dgN2H6//g012mUNgRWrOQWhd1YsM/CGJbMgwW9VBtow+mNgq+g/LwoYBgdq0kd0nu8y4aiaCL+2/c3/3+0A0J+iTpsdguj69SpeuC7/N6CRw+J6lrWDnTql/sE5WLgWefQCycyuw/GwAb6tqPteKlhceN3LehFVb2c4W5IzyA4j3HQLcvsht3TXbItttKKftrxD247FjZ4e8jSz/3/EDHyKi+lOxWOED+niDyrl6j6XRB+BhrYYYUatlf5DR3GpZrPPmzfvNlR1j4H41YUpWQySioYrVEI2kPNynq4ZoHQ8T8rO3WvZVQ4y01XJ/ANIYWCwNOrIaIhERedUyxJfNmavpeUN62mp8hnGG+BqnliG+kjBeSTCvv51uovB52LGzFU7dD2hrbaazK9QMGLYjIqJhzvwHVbuhhWeYNrK2sN21F+hPJEm6G/jzz4InnzzDWDkum80DcD9RZTrOuOsUnTu1i43H16CwnWxaW/K77U9fl06t+YCyb3OnhvjjWlMd0NRGdtW2+pyEdKlqd8q+wGGeVrB7T26CinV3/BJy1SWD4aLps4Gx/rCdhCht5xIs+/a5CnOmjJw3VNWG7V5co1/+iWOjvQ1/c2EME77odrbj40c35v7bfbzC9HHAW8E56wGzJobcyYrF+uVnXhByIiIiotphNUQzXzXEUOHCoGqItvChNzzoUA3RtZWyUzVET6jRVv2RiGioKL72NYFmCiJaqyE6tlL2V0w0VRhscauGGCZcGFgN0Rsu1AUlzVUW+eU4IqLoKKXQ1gq01SHE15UttNItLBNfsK843mUZ35VmiK9RiiG+LV260fK/ogQnzgXu+kIMo5P8f5sGMWxHRETDWwWV7cIETEwBsQOnAyfONfzRdeev3CZvH4VW6BNhvb19CPPfeM7wB7trkE3u+o1+e9EnE20hRO38IlUfIwDgDz/0LZqQ24KtcX9qxaWCoemYKtLtDyym8vo2sr9eMhm/jHDXJvMW20+9PvP1GI6Y2VxvHmTnVsjV/+LWI3bTWgB7Os07f4l9vjMOAC4/a/h9E/s/Nl6Bb065QjtWbdhO/0YVOHj36uYtN65d4WvvVvjO3cGPid3GRrvvML7+boV//oP7xx2hXvsAYMdm7WI19+CQExEREVEjsBqinnM1xDAhv7JwobWFc1A1xJLLmmqI3uMNqoZYst+A1tKshkhEQwmrIRr5qiH6qhUGjduqIZaH/Oytlq3VEKtuteyphhhU3ZHVEImoydQ6xFcS3CuG9LJAZ1r8yzKFy90B45F+tkV4dBnw84cEXzmzmd4tU6MxbEdERCNWSvRBp56Me9U4U6jMVpFInrnfaW50jDFXjtu0EcAebvPAUtnONcwxYSqwYbVvsfH4Qobtcpb1QwVORo0DOktLRxnv597gVrxhQ4NWy1/yLWqBfgetsTyAsEmb8Eb7OxSXaG98sRG/5x/2fUtcmU6VblkP17BdUDXGt+81dN5EnbA38NjrwetdtP0GfG3L9/FI+wn4+6jTfePVhO1sVQVrURhx8mi39VINfEyPagu3vvPrc5Bc4z/MICIiIqoUqyGaWash+toxV9ZqObiVcuF3Cayy6NBK2aUKY1CLZ1ZDJKKhhtUQtZyrIbqG/FyqIRpCgNpqiGHChUHVEL3H6FBlkdUQiYYPb4hvQod2jYrnzuZkIHhXDOENtMZNS0kwzzveZRkf6SG+eYsFXzmz0UdBzYRhOyIiGt5MgY9YDO35bu1QT9q9apxr61NZ/Rrw0gLglA8Cu7YFTzz3UGCfw9AqG/T7TWecji/scRqN0peDShi+kRo2pGZbP1zYbqwmbKevYJh2yJ/YQoD7TwtxXADQ608ubW7RpzLHtfYCqH1Fi8P2VFiyznwqLdn4ohp+O7c6ryo5937GY9vt46lmvC0M3neowmOvB58iPa77CQBAh+hfC6sJ29meX+3xPOSVhcCY8VDTZ1e+E4/j5ii4nBaO8n6UTA/w6kJg8nSoabMC13c9xqLQle1MUtozNUREREQ0xLEaot5ANURTC+ZqWy1rg4zmVsvWaoi5Pn1g0Fe90aEaoktraZcK8UREzYDVEI3s1RDjQIumPXIlLY8dWi2rmrZaNlRD1AUdWQ2RyCcRV5gQr12IbyC4522Nq2mX6w3xadvpZgrtdIdCiG/TrkYfATUbhu2IiGh4M70bnnMQkjv0Iaw1W93fQptCYol44Y9V2bUN8u7dBge++9ngSVtaoD55OdA+Gq2yRr/frPuJhk27xFjlyiXMISLAM3/XjsUNbWSDqoSV+8kD5ts8VOBk/SrfIlO74B6Hm9AWAgxdLjrjr7D3qe2/w4L243zLe/rqc3KgM21/rDdlwCzrvz+Nle1CCAqINuVtYfDxYxSufUTw+kbzOgenX8Q5u+4AAGPwuJqwne35deTVZ0C2PQ4AkP2PhPreX6HGT658ZwCOcCtgGFm1Rrn9eshP/w3IFoLPcuDRUN+7DWqsuazpnCnhXjPiIV4GbJUEMWv/UPslIiIiIhrKSqohNoGmCiK6VkOsotVycCvl8mqIpqCjQytll/0GtXhmNUQiGmpYDVFroBqiteqgvX2xr9KgKTyoq4bouRxcDTFEuDCoGmJQlUVWQ6SI1TLEpw/wAZ0Zc8CvO2A8yu5Vho+UaQRj2I6IiIY3UwChrd3YXvTpNe6pmqCKcXLR0c5zAQDecyHUu86HOuwdAIAE9Km13oz7X4gX/sb8lRCnMMejdxiHomgj+9gywddviyhsp9Em+iqAdy4SXHqafVvbH+JHzQr3xkHm3+xbtntOH6bs6avPhwK3L7KPN2PATBbc7b5uiHltVQyBQin3oWLqGIWHvxTDtY8InlslOHh3hfEdwMLVwLYuwXETN+Ofrj8L4/I7AADtpkBqNWE7y7btXZ6KnUufhXz7Iqir7qx8ZwBiMYWj9wKeesO+XhRtZGXxU5CrLilduPgpyH//I9R3b7Vuu/80YOm64H3EVOE6OXvlOcsgT6gRERERERGrIZoEVkMME/ILrIYYHC4Ua5XFPv1yXTXEwCqMDq2lWQ2RiIaKYjXEHKshlnOuhhgm5BdUDdEQAlS6cGFkrZZdqiEObscQYnNJxBUScWB8DUN8/jCePuD3yjrB/KX+uRi2o3IM2xER0TBneGuTTBmrOQGFcsYdbcF/wJkCOq0tgPRmtZXWTNTl10O9+xOl8yj9Dnodv46xKy24+2XnQ9CSx+4yjrUaKtuF+bbI7Yvsbz9dw3bSuUO73FTZbuPO4DltpatDhwBXvepbZDq2PomhNydojTf2DV8UwaTIbfG3VlYRnPwNesxG1tKzTqaNU7jibP3jR+67H5IfbGfdbmgj25Wp/Ha1VbbzPe6ffQDSvQuqfXTF+wOAMcngdaIIkIopgPz0fEi6Gypp7knc4ficiod8vMkjt4fbgIiIiIiIiACwGqLNYDXESsOFQa2WLS2cc6Xraqshhm2l7GnxHFjt0BZ6bJKqYkRETlgNUUtfDTFcK+WSkF9gK2Vzi2cVusWza7gwoBqi93iHaTXESkJ8f18imL/U/+HgzjTQlxe0hPmSPA1rDNsREdHwZgrhJDswOt9p3GzTLqCjLXh6U0An3gKgc3vwBF5z3uZbZArbZR1Lxy15yz6+3Zw3HLTxTeNQIoI2sg++Ek3YDlv9ISwAeLTjRO3yuVODp7QFsMKEYUQEmDwDWFPaz7ddzF+F6ekFWmv8l9qEDmBrl3k80eCwn9aM2cAKxwRpiHfvQZXtjpzZhLdFpcreLKdq0EY2Y3kNSJZXm+zLAds2AlWG7d62u8L8pfY7/aAZEdyPix7TL+/NAju2AJawnWuANeg1VHK9hf/fiv/H/fU688rD6OQIERERERER1Q+rIeqFqoboGvJzqYZYEnTUVEPUBiEN1RB9QUeX/Tq0lmY1RCIaKlgN0Ui0LYkDqiGGCfmFaLWsrYYYWavlsuX9643NtwHQf1axKw2MM5/+pxGGYTsiIhrejGG7dpzVeS8uxdXaYVtVJq9sTj9/awuATMiawvsc5p9H6UuruVa2C/ojPebSRva5B41DUVS2ywccpHPYzvDtrBO6H8Nj7Sf4lrsEAqutbCddOyFXXwo8cQ+wa5tv3FTZDigEncakgvdRqZfXijVo9+1zm+k0pkeI51WYN6k3PWVe+4iZwKF7hJisycmyF0p+N4U+Kw3bdaYF519vfvJo209n9G29w/j40Qo/mm+/1w/everdFE4eG8gXTgd+fA/U9Nna8c+8Q+HRZcGPzNmTDPM//FfIr//TPXBKRERERERERJFiNUSzwGqIYcKFQdUQja2U+6shRtFK2aUKY3k1RF3osUmqihERORmohpgJXLXWGhFEHNM6B9j7Je3Yjh6G7WgQw3ZERDS8mcJ28VZMgLmPaI9jyMQUKmttARCmrd/7/0lbmrk1pg+sZLZscpo2ExAaDKrmJXf/1jquDc0AmLc4uj+B3cN2+it7fPcTFYftbKFBp7Dd5R8EFj5sHE8FVLarlQ07BQdfaQ5DHTUL+OqZzXSqzuPp+b5Fqsq3XDc9aUlVApj3xeFTOl12bAH++OOSZaaW2pWG7T7wizxeWmse175urHkdmH1gZTvsd9ie9vtozwmI5n5c+qx5bN1KyCWnAzct0rbFPeMABZdTBF883X+c8tyDkG9+tHCiN4xh8tglIiIiIiIioubGaoh6JdUQa9RqObjK4mC4UFsNcWDesv0Z53XZb0Br6SaoKEZEVG5s3vzZ8Y6QNVZoeGPYjoiIhjlTqEEh1Wp+y+0adLKF7eTOG9wmAaAmzdAuTxjCdr3r1znN+9Qb9lBHUAbDGrbbcx8kcvo0zhK3w3PiHrbTp+fayltW9rO1uSyyhRHjAVUB5a03rEE7AEjlzdW8XAOflbhzkf1xcfV5wyNc5hrBu2GBec0vnKowvmPo3xYDnrjHt6jdUGGxkrDd2m2C+Uvt6+jCdvLI7VDveF/4HZZ55/4w7n/6uKqnL3xDO8imtcAz9wMnneMbSjmea27XtJuVe38fPmhHREREREREREQNVVoNsa3Rh9NcQcQw1RC91QhDtFo2zttXuq4YxwOqIYbZb1A1RG9QkYgaYmx+h3GMYTvyYtiOiIiGN1NlO6WQaGuBkjxE+VNTkVS2C2OKvrdha9dWoEOz3/HTnKbVBTa83rl/wFvrRY+ax8ZMxLLOudqho2bZp/WKBRyC822Z06fnTNX3sg7vV6upbCf33hQ4f6Mq233hZnsMbY/xtdt31RJJIFsaUqy2st0Dr1h2N8z+WpY3lviWdYi+n3AlYbsFy+3jLZJDCzSBsWQ0tddtz5uN5i+kudux2W29lUu1Ybug1+SilG69lf77zskwCM4SEREREREREdHww2qIeuZqiNG1Wg6e11sN0VZlMajFsm2/QdUQy/bLaohUB22SRVs+jUws6Rtj2I68htnHh0RERGVMYbtYDKothZT0oFv502xRVLZDJsRfXUefYZ5Ht1+HqmyAPSwGAMfvPXhZFj8FuesGYPlLcKoJNmY89tr2Bp5PHeYbSjseHwCkA27ratvIGsN2VbaRjZ0xFvli1bxYDNj38MLlyTOgTnwf0Lk9cP6UoaIYUF1lu7XbBD+5X/D0G4J9dlO4+ASFo/YaPF0QVNVvjwnNdGqhjKGaYq24ViJrdrJyKeS2a4Fbf+Ebi7KNbF/e/tphej5i1zbIb78HWfgQoBTUEacCH/oCVCLct31P21/hsdf1x3DM7Age146v65Lp0Z6gi8UU4jEgF1CgTlt5tXuX076JiIiIiIiIiIho6GI1RLPSaohBrZb7HEKAusqFAdUQ+9c1VkP0hgdDtHgOrHaY01VJZDXEWhib34GNmrDdti5Bcz0jqJEYtiMiouFNTIkGBbQl0Z7vRndMF7Zz+4PJGrZbu8LpENWX/gdq3CTtWGLaDGCbZr/r1zrNHRToSMQL11EWPgz50tm+imFWYybi1K6H8H9j3u8benGN+zRBwcZq28hWE7az3X6t4jnwfB5Y+mzh8tJnIY/cHjw5gFb0IiZ9yCv/ldwZ4q7w2rBTcNIP8ljRX4DrkWWC3z8puPeLMZw4N/gx/efPBvTHbSDp6wvVRrO6encF2gpjQ4y8sRTyhdOAHVu046bQZyVhu9YWBdstbwzbPfAXyAN/GfhVnrkfeOER4Pu3h2pp/J6DFK68U7//Dx1Zv7Cdbb1rL1D49I32R2f5405EgNWvue3bh2/+iYiIiIiIiIiIaOhjNUQ9ESkN7kUR8itrtRw8r6Eaoq/Koq0aYoj9BlVDLP5UYGzfTmyMT/Ut37m9G8CoKu8tGi4YtiMiouHN0kYWiRRSok80uYZMjGG7MHklQ1U7AGht0U+UVW5vJIIq2xXJH38cLmgHAKPHISVbjcM9WUEqEfx2I6iCW7zqsJ0+zRdU3Q0IqGyna4UZkkKhlWyX8v9xPm+J4N0HhX+7dvPTMhC0K+rpBX7y9zxOnBt8Y86ZEnqX9WOoalfNm9qebEDoqfHv2asmd1xvDNoBQLvoK9ulewuV6lqCej17BOXijGE7nSfvA15bOFg1skqRnPzIOL5OWl5PJ3bYA4mA5nG3ytLrOAjbyBIRERERERERERENW0opIB5HIf7DaohexmqI2lbLfcC2Dfje17+OXhXH2L4dGJvfibH5HRjbtxMTZt0F4JBGXyVqEgzbERHR8GYM2wHo3IZUSl99yLWFpzFs1xPcQrRwHAoYPd44nDCEATMtKafpbZXZLjnV8+fu4qed5isxaizG9b1hHF60BjhmdvA0tsp27Qm4V7XK6SdqK7Z6LZN1CCLmTPevZCN7s9AV038LZrS/QrWTm5/WP+ZvXei2/UR/ocfm0Ruu1JpI8L306gb7+KTh8CWlxU9Zh9sD2hmPCvFYzAW0kW0LE7YDgJefDBW227Yof1sAACAASURBVHOCeeyA6eF2reVc2c4StnN4TPme/5W8RhMRERERERERERERjWBhqyHKnvvg7J73aAt8qM2rwLAdFTVvnzAiIqIo2CrbQRkr2wW1Ni0yhu369AEvnwOPgeoYYxxOjdKH6tJoK5SFDmCrzPae1ucKbTkBIN0VOFc5tc+hOLn7YeN4l+NNYLut3/02/zLZuRVy3x+Qv+6bkEduhxRDLTVoI2u8fw3V8kLb/0jjkCnoF+SZlcHr2IJ8e0xopu8clTGE7VQVDWMzAXfl6fs38e3hqsf+/DZVtgPCt5INetyGqmwHAOluyKsLITf9AHLb/0LWr7KuPmWMwtF7+ZcfMA3Ye0pztJE9albw5geWBwMreI0ewMp2RERERERERERERESBVEsLMGWGfnDDm/U9GGpqDNsREdEwZw7bqY98EUlDRadqK9vFXQIlE6ZCffnn1lXaJ+qr3v294xRjJTcvW9jutB+fCPn2pyG5nHuAxGv0eIzJ7zIOb3XIhvTlxRp6u/q80j9VZMObkM+eAPmvC4HffQ/y9Q9DvnIOpKerUOJZwxTuWbcj+PhMlQHj4pDUC7LXAVCnfABH9egrVr3lWByxEmMNhRE/d3KTh3IMbWSrYXuO/M/5CruNbfLbxMXKpdbh9nx0Ybug1tVhw3Zyy88gFx8DufYbkKsvhXzqSMhLT1i3ue6CGKaMHvx9fDvwmwsjetvj+lqZNa/XGlc4aR/75ol46eNO1q82rzxtltsxERERERERERERERGR3dSZ2sXCsB15sI0sERENb8bqbwoYMwEpMYTtqq1slzcHStTFVwCz9gcOPwnK0kIWAFJt+oBIV2wUkOkEWhPW7U1Vps7qvBcxCDD/ZuDQE61zGCXbgVgME3JbsDU+0Td844I8PnRki3WKtOV2vv+yGHYfXxY4+e1/A2uWl6743IPAvD8Y2/EmLFXoMr2CtlZzmKomle0OPxnq/MuAt78TuP16zOxdjadTR/lW+92Tghsvqnw3Or05QWtcGa/XCXtHu7/IhW0j6zKlJRz2uZOGftBOHEK5tjayoSvbWVpXAxVUttu6vvT3rp2Qn1wG9Utz4O6g3RWW/kcMD74K9PYJTttPYdLoiO7LrLk9bImAUN4HDld4+LUQFRn/+CPjkLrhOWDhQ5CvfsCwwtB/HBMRERERERERERER1cVh7wDGTgCm7AE1dQ9gt5nA1D2AGbMbfWTURBi2IyKi4c0UtovFgESyhm1kDYGMWAz4xFehHMMPK3a1G8fe2pTBjFEVHp8nLCY/+LzTsfiMmWAddrkNbUGeSbrr9uid2nXl0Tug3vUx7VjKUrXrmZXACXPNx5Dr0z9+4qiwxyuA2E/uG7gsbYYScwBmT6p4F0aL1wGH7mFuodva0uShHENlu2rayGYNd2UiDufnaVN77YXAVTrEXIYy6sp2KUuwz9mrz0N2bbOGlcd3KLz/cACI+D5Mm19PSmTsoTxbK2et8VOAbRv9yw86Dqp9FESxYDkRERERERERERERUbViF/17ow+BhgCG7YiIaHgTQ5klpYC2FFL5ndrhatvItuYz+oG2VKgAz5pOc+W6dVuymLGXffuatUGduS/UtFmQfF5b1Q4A2u1F9wDYb+eUbntd2AQAnpoHnPZh7dBR6WeN+9gekPupSWU7r3grlrfO0Q51tFU25R7jgTe36cc6+/M/xuvVvRXy2AIgH1CerFE2WFppahgLW3oYbwt7UcahozO4H7EtABe6sl1A2O6EnsfDTWjStdNYzbKmXNvIBqx34lyFoNqLIlJoAbz8JfNrX3nlP61hEBolIiIiIiIiIiIiIiJqEgzbERHR8GZrI9uWQko2aEd7MnkAwZWCzJXtTGE7c6U6nWTC0uI0Exz4qlVYTF18ZeFC+2i8Z9fd+Nvod/vWcalsZ1sn1RryoPr0AcIx+V3GTTrTAlsQxXT7VRxWPPPjZRO14rydt+D51GG+Vd/YXNkubFnOYnDKeL2+/SlI17zKdtxAVVW2M9yViWEStpP7/xy4Thx9SOQzyMb8Cc8oK9vt2bsan9t2XbgJTVxDb1Fz3e+GN63DsycrfOYdCtc94n/sPvhvMcj2zZAvvRd49XnrPOqcz7odDxEREREREREREREREUWC/YaIiGh4M4Xt+ivbtRsqOvVk3NqEmoIliVUv6wcsbUN1Um3mxM/WTZ2B25uqTMVRRWW7Uz8EdfK5hcuHn4Sjep7RruZSHdAatiurbCdBZcpy5slm9K7VLr96vn1OU2VAX1hxt5nWeYrUgUeXLmiJY0rfJu26nYa8ZhDbbVocM7VOjaxiX5MQh4pevYZWwcOhsp1sWQ/cfaPTuu2ib4/67KpwQUbTcwYAHl55Gmb1hqtOaJRuTNhOHrndbcXt+ue11y8+pvC7Tysk+4PFo5PAU1+L4aR9FeSqSwKDdgCA6QHlTQF7ApeIiIiIiIiIiIiIiIhCYdiOiIiGN1vYLtmOlOgDG93p6sJ28R36inlIhOsN2p40/1f90qvB7SFNYbvWKtrIqqNOH/wlkTLehk6V7WxtZMsr2/UGpPcMle0AIClp7fIVAdXjjPdvWVhRnX+ZfaKiUWPLJopbW3h2ZcJXbLPdpj1ZQV9ejE+LhIQsYzYMGCvbDYf6z0+5VylM5fXPkWWGlzIT03Pm6O6nsEdOH3qtSKMq23WbK2WWk6w9MauUwseOjqH7mhbkr2vBjp+24O2zFCTXCzx1n9tO2pLOx0NERERERERERERERETVY9iOiIiGNNmxpdBur/izbRMk503P2CrbJZE0VrZzCzkZ27S2G9rFvrnMad6iNktlu9FtwcdYkzayR5wyePm1hUgZgmzVVrZLloft0l32ybL64wCA5Yk52uXTxmoXD+7ScHxt5aG0A44CZu5rnwwAjj2r9PeWODry5uu1NeAqlxMRa9vPnl57m89WDM3Kdiqo6qGF8TkyDCrbYct651XXtU7TLp80OtwujdUgyx9b73hfuInLZRsUtnOsYgkA6AwORGt17QTS+kqDPnMOrmwfREREREREREREREREVBGG7YiIaEiT898Gee+MwZ+zd4ec0oH8xw+GZNKWynax/qps+oBWt0PYri8vyBtWa33mHv3A1D0D53WVyVr6NfbLGQ4wXmllu0QSyhs2Oe7dxspsb+0Ins4UDEu1Fqo+AYD09SH/0y9B3qMPAxXJzT8yjn1w5/9ply9dZz8+UxjQF9Lc5zCoc//JPlnHGKiOMaXL4q04KLM49P5NevtgfEwW5zNVcgOAxHBrI+uQwTO21B0GYTtxqcIWK7wdaDNUtnMJzRbduCCPK+5we81R/3IVMNH+nLZqVGW7MPu1BIAj2cdJ50BNquI2JCIiIiIiIiIiIiIiotAYtiMiouFp1auQfz0LyBsCaUoBbSljUOyJtanAXVgrhJlCS8eeGTivq4dWVX6MLhXM1P9n776jJbnKc/8/+3Q4fc7MmZyzRqNRlkYRJZRFkJAsIcAiWbbwxTY22NjGXF/jCzZOF9YPJ0zwta9tAbYMNhhMEkgIAUIBhAIKKI3izGjyzMmhu+v3R/fp06H2rl1d3X3CfD9rsaa6au+q3dXVrfGax+/7yx+q3bFsjczXa3tKmo3HWdvIDnjkTGxBnp7s1HbwqT+QvvC30Sc7uMd66OqBr4XuLwbSeN6eyPr2Y+HHat7z0tUyxshc/y6Z930i/EQbj5X5akiyL5W23j8pXtDJZ/zIeBPP7fxFM/d/J50r8/5PyazbHO9GVbHdj+wcCNvpsx+xH9t4nPSW35H58C2SpDcMfDF0mK26Y72v/zTQL/2z/btU82yl0jIrN8h8/Dbp0jf4XaBO8OAPmpqXWJwAXbOBwL0e7XZveK/M/765ufMDAAAAAAAAAACgaenpXgAAAIm4Wov+9IfStgvDj02G7SyV7aRSS87J6mph3KElS/mw7uiAXDX71aUfj0ZXybOtMeVT2e7t71fXjb/vHpPNqcdSEUuSntkT6OgV9ncxMmEJs5VbyAbFovStf4tcahRXoO17T0qXnxB+7IEXLOerfs9LVlQ2zTXvkLnmHf4LS2XUW7S3i4xb2e7Z/e7jUZXt6sN25sO3yFx8XbxFTIfbvxO626e5rO1+zPbKdoEtaCxJF12nrj8pheyC+++QJPXaWmp7Bj7/9V733U6r6sdo5XpJklm3ReaPPif90ecU7N2h4PUxQpP33ir9+l/4j2+VOAG6seYq2wV3WyqjVumajvcOAAAAAAAAAAAAKtsBAGa58TH38d3PWw4YKZPVSJc9/OYK00nSmCMIlQ0sCZWYYbtfv8QeVDut+8XI+WOWIJFPu1DT5fHXBGO0aeI56+End1sPSfKobDc8IB14OXodEY4af8567Mk99pDQ2UeF73+s+/ipF0891OSqJK3aoJwj8Glrs2tzwJE9laIr2zU8t6s3xVvANHGFUqNYK9vN9v+XlMFD9mNBVRCv/JtkC6QOj/tEFqV/vc897pHuE6de7Hy2cUDM38ZWtuSOJU7Ybqi/uWu4gpKSdPVN8c7nCI0DAAAAAAAAAAAgntn+z4gAALiNWoIRxsgYo3PyD1qnjoy7AzeuKmK2amUmZqDk1HX2Y8PF6P+M28JsrmpqkqRM1n180vFn6OSxR+zXj8j02Y5PVrZrug1jnW1j9kCcq3KX7dgx409NvZi/qMlVSWbFOhlJueKIRkOCn3HbyEYFREcmYrSRXXe0tHVbvAXMQuOW+5F+ebuKN71NWrtZ5qobZc5pXQvodgqGBxXc/BfSt/7VOsa88pqpF+XfpJytsl3M6oo2R41XBeyWrGocEDdsF6edq0XwtX9RcMd/SLuekxavKH3GN7xXJu34bR2N+O2sNnCwuYVF/O6ZS66Pd77ALzAJAAAAAAAAAACAaFS2AwDMbbbKQuVKP0vT9lCDq6rYwaFAr/gze/Uha3vabM5+0hDGGP3yyvCg2J3FUyPnW8NsjraqkmT+792R5y6daL6zqtjOQ+6QR2TYbsczfuuIYCStndgReuz2x+1rvHt7+P4rhm6fenHVjQlWJqm3z/p5PLE7XkjmyYjxIxP2cJkkZVQuhXjs6TIf+7qzjfKMYllm4FHzzlrZbt/z0lMPSt/9ooL3X6fge19OsMDOCPJ5Bb/zOulzH5X2hj/vkqTTLpra7i79Jtl+s257vDVre+3grZVt88bfaBwQ87cxaRA3+MxHFPzFO6V7vyW98KT00A8UfPoDCv4sog10nNawzYbt7vhP6yHzvr+TOevy5s4LAAAAAAAAAACAxAjbAQBmt20Xuo/bqh+VQ0SVUFeIp/faj335IXeoyRpmi1u9SdLxC+ytCPMF9zpsgUFrGHBS7/yoZZXkeiVJm8fDU2lfibhP1sp75cJ6wddv9luHzY2/X9k8dvyJ0CHffDR86kTevvaa+9fEZ1pj+Vr1FMM/j5vvjhe2+6e7ou+3TxvZrn+4W2aWtJCVHG1kPSp6jVtaLWeCqgPFooLP/23sdXXcI3eX/hel+pmdbCNrqWznI/C4zzW/id2NwbrYwc4EYbugUFDw738dfvDbtyhwBRXHY1y3/0C8hU2yXf+KN8tc88vNnRMAAAAAAAAAAAAtQdgOADCrmbf8dpMTS/8JXJKxh8522zNu+pcfRoTtbMGVJoJZuaz9P9fPOAKBUoI2sguWRKyqLFt6P7vSIW0hJW1e7g7QWMOAk11sBw/7rcPC9C2ubB9ILQ0dsyl8t57aYz9vzeebcI3KZLUzsyb00PrFobutHnzRfXx0wh4uk+rayM4BiSrbBXUP50Pfb8GK2uzxH/mN6+2b2u4rfdeHu3qbvuyegegxY6Z76sX4WNPXmjphgsp2u56VDu+zH3/8xy25btDfZGU7W5W/0SH7nNlShRIAAAAAAAAAAGCWI2wHAJjdmm2nVw4mLOi2t4Idd1Q2u/NJ9+lztspxTYTtLlltr45ka8MadTyqipWZtyBqWSXZbskYjViCOq5gl2RfX27PdhX/7v3SnV/yW4dNVWhwWT48mThoyf242ghfPHxnZdus3tjU0ioyWeshVxW6ZuQLgVdlu9nGKF4FwGqHLLnTWRk8HI0I0ZaZ7FTwzZSrWJ4wZu8X66ryKLm/K5NOGqsqIXnUCdETosRp51pvNCIwZ6mIGhQK0kSM78hA/Mp2QRBIE5YfpQ1bY58PAAAAAAAAAAAArUXYDgAwq5l0RuYvv97ExHIVIEf4LSrIZpMrjqjLFv4JaZ8YZeNieyDQVrmuctwWtotqI+vJGCNlc3rz4VtCjz++q7k2sj1P3Svd8ldJlyctmCoNd9Ohfwkdsm9QGp1oXKcrQLR2YufUiy2nNr08SVI6q/fuD3+vd4d35w01FvIe6uWL7ipkmWBCuvad/hed5fpHAv2zpUrlbAweBk8/HDnG3PSHofs3TTxvnTMaFZr1uFXrJqpao67cED0hSpLKdoOHIo5bqlXa2pLbNFPZbmLc2v7YnHdV/PMBAAAAAAAAAACgpQjbAQBmPXPmZfEn9ZcrDnX36HhLRSefAEkYa1W78vXi6u7pth77yQv2gFUQBNb3kAscQZW4Vae6e7SssD/00L3PuqeOWivvtSYMONkiU5LmFwetw74aklG6Z3v4vU0HE8qoKn2Ua779piQpk9XyQnhLy4EYt+ErD0WPmShIf/+98PCmCYpKqSizdLX/RWeM8BaaUfHDm++2jwirbBdYQlAzxve+HD1mw7GN+zaf5Kx2edDRvVSSntwdfdme6t+cXPzfwQZxg29VgoiKmcEd/xl+IG7Arz9+ZTvnNZr47wcAAAAAAAAAAABai7AdAODI9PVylbNszhrsslWFi6ogdii12H6wibCEcQRT9tvzYxrPS0XLUnuLjnaT2ZjV97p7lFc69NCiiBzayHj4AntcYcA4lq6sbC4o9luH3fFE4zr6LVmevMnU7sjNa2ppFemMii34K9mdT3pUtivYn5nAlNfQNfv+ethsG9kvPeAI2ymknFvRXmVyRsjag7kVPSHPayGvvqK95OFju9ynfOFA9P2vqabZ2xc5PtJ4gt+IwxEhuIVLw/fHDdsNRFTQi3uNJiqjAgAAAAAAAAAAoLXC/2UcAIC5bnys9Geu11rlzRa2GxxLcN1mKhM55pQCQdnQY642uM42snHX2J3TaCE8BNId8TeNIVvlPUeVrVjWbK5snjn6E+uw/pDLZVKe19h0fMxF1V8oq0UFS9tKSYVioFRXeOW2akMez+VEQerORAxK+n6mg7FVtnPftzuesB8LrfT28F0Kdr8QZ2WdsXqTdMLZUjo79dsWJpWSTj6vcf+u57Q+b/9NyEdkDD0ez5r7aRaviJ4QpVBQkJ+QSUc90CFSET9MGUtoMW7YrplWt64QYbOV7WZ6RUYAAAAAAAAAAIBZhLAdAODI1t1jbZ84aMmeuEJskbLNhe3mFwY0mGqsBjU4bA/bvWzPbzlbRsaunpTt0av3fkv/tOjGhkO77cXkNDQW6LbwDr7qbVFlO2OMgoXLpMP7lAvsIaTP3RvoM++o3bfHUuhreX5P7TXSCf86lc7q9NEHrIdHxqX5Hh/JeCF6zERBuuuZ8GPX93+xtHHC2dEnmmGarWznEhbCDd5zRcuv0zIr1kvD9up0kmRu+qBM36LGAzf8lszNf2GdNzQWyNaqV/L7TXRW05z02l+QvnFz9LhJYyNSM2G7w+Ftm2vOGyZu69pmWt2OOeYkbVkNAAAAAAAAAACAxGZfnzAAAFqpO2et8vbxO8IDPCOWamy+12tmzvkjd4ce+uRd9qDJez9vL0flbNMat3pSrlfzi45+thZ/8jV7QMoZBpSkVRujL7ByQ+nPV7yqsuu9+//KOvyJl2vX88nvhq/v3JF7p170OVoG+8pk1RvYg0jPRuSCJk3kowNntqCdJF0wfFdpYy4FehJU9LK1l56x9rxoP3bs6TIf+5rML7w/9LBZe7Qkae3EjtDj/3SX+z76hO0yKg/aeJx90Mr10Seq1kzlOEm6+xvNnTd2ZbsmnqG94Z+BpOYr2wEAAAAAAAAAAKBlCNsBAI5s3T3qtlQ8W2TJNUQFSzKBI43XTFgi16ucJRDY12Wv1nbnk/ZT9rrCbHGr72W6reuTpB0Hw4M6X33YEbZzhQHXbpa59p3R65oMNmanAo6u9/2NR/yCWTXPi63dZBzprLPq1+0/81uXT2U7l+7J5zbbRCB02jXXRtbF+QzOMuZ3Py5z1uX2AdnSc2z7Ldx5yH1+nwBy5ZNw/AaaqPau9ZoN20WxVaSLez1XS1ibpx+2H2umMioAAAAAAAAAAABairAdAOCIZD58S2kj26P7c6eHjtmwJHzucESw5F0HPmU/2EzYbvk6/Th3Ruih9fPsYQ5XUa/lhb32g3HX+ND3tXHiBethWzvWR3faT2mrNihJ2rFdOu2i6HUdW75nY1NBtjMc7Vrr17nAkjnbk1o+9eLAy9HriNLd7bx/43m/00wkDNsdO/6EJMlkWxAg7DB7G9nmK9udMfqTpufOOJuOdx/vLbWo3p7dHHp45QL39LGIZ/TCoe9NvXBUTgwO7rEeC79wk2G7hUubO2/ssF0Tle0c37/ELasBAAAAAAAAAACQGGE7AMCR6ZxXS5JMd4+uHfhy6BBbBTtXFaf5hQH90uGb7QOaCNuZri5dZ1nj4bFU6P5iMbAGYF438DV3va+4YasLrtbqvD105tNisp6zjezqTdJxZ0y1iQ2T7Za59n9Iksxlb6zsvnzoduuUQ3XF5Wzrfkv/v0+9aEVbx2yPUrK3/PW9f76hPJtzRu5LdoLpZHmghwL3s7x6of3YRUPfT7CgmcVEtQbefKIk6fLB20IPDw65E8auZ68rKOjdBz85tcPRStucdZnzOg2aadMqSYf3R5zXFraLeb3xMQVF+3e7JdeYZJqv4ggAAAAAAAAAAAB/lEcAABxxzFdemgqfdOe0dfzp0HHWsJ0j/HTbC6/VSWOPhR/s6pLSmRgrnXJsbl/o/kf7w9NC/Y68xv/c9xH3xWIGyMyxp6v7B/9tPe7TYrKes7LdWZfJdHVJNz+g4ENvk+7+Ru3xi66VecNvyJxyfun1ivWVQ73BiC4e+q6+O+/ihtN+6s5An3hrabtQDKyV4rZUPy8XXO3xbiKU7/flg7fptvmNrT4/9u1AH/S4TNLKdtlgXLryxmQnmSa2mNGtoyc75+UtOahP7Hq3svJIOWZz0qLl0eNarZCX9u/yG7v1tOgx5WfwiqHbQ5/Be1/MKggCGUugy9XC+D9fukFXD36t4VqhFljKido0UdkuOLC7+fM+93js62moX+pb5D08uO/b4QdOvSD+tQEAAAAAAAAAANByhO0AAEeW86+SWVwVjsn1qicID1bYQmK2/YsKB3Wmq/Vkd481rBKlN2VPsxSKgVJdtef95iP29pm9lvdbEbdaW3dORlJvcUjDXfMaDoeFE3f3u9t79hSH7QfL6zO982U+8l9e66u2fuIl69CJfKBM2jgDgj3FqiBgCyrbme4eBbJ/LgOeha5cgSevdUjOqmOz1fBYoN5uS0jMUpFtZd6vnan56k6ZnsZnvt2CPS8puP5ov8E+6ys/x86Q67OPVSrg1Zuw3Me3H/psbdBOkrKO70zc79N4E21kHcHgCkt1ueDRe+Nf78e3S5dc7z/eFujLzr3vJgAAAAAAAAAAwGxEG1kAwJFloi5FNTZibVk6Mh4eCBuZCN9fE8IK4wqZRAj229u0Hg5Z/of+2x5mc7ZoVSn8FctkUMdy3uGQ+/jCAfcpjx7fbj8Y9z4uX1fzMi17Km3fYOlPV/XCmnDmi0/FW0uYcsBtR3pt6OFVC/xOk7SynSRpnqOv6gzWa+zpyJ2H7fNsYbtM4FmOMao960zg84yWv1NDxv5+Jv7jk9ZjtqBnNgj5Ij1nqfwpSas2liqA+mqmst3uF5s/7+qNsa+nQ+FVSa22nBK+/8kH418bAAAAAAAAAAAALUfYDgBwRDEXXVe74+TzlLNUczowHF4NyxbEslXIq0hQBe3s4k+tx8KqsE2GxsI4q1dJ8aubRVTFClufq3LcttGHdMzEM9bjccOA9ZXHruu3V8Ob/Gzdle2qPucTzoq1llDl93Pp0Heca4piC475WFeu9mfiVOCaQa6Z97D1mO2zLBYD673Neobtmq1U2VHbXhk5xKTTUiqtc0fusY4Zyaesx8bz4eHe0Pt47Bn2dSxcKp39KvtC61kq0DmNe8wZm6qsGXzlH1X8jctVfP1m6Uufjn+9uIHA8bHw/UefFP/aAAAAAAAAAAAAaDnCdgCAI8vpF9W+nr/QWektCBpDJLbwTq+r9amUqEVn38WvsR7bGxKsOzBkP1fLQ4ERle3uCsnNPb3HXnnv6y9cE3G9Ju5jb19l84zRB6zDdveX/nRXtpsK65hjtsVfS73y/btw+Aehh33Ddkkq231g35+XNjYd3/xJptHJ2Z3WY7b79+5b7M+gV9juihuix8wA5oKr/QZ292hR0V4GcKTgCtuF7w+rEGhOPNu5DPOhz0gX/pyU7S7tmO+otthEZTs9FP49qzFa+i0PbvlLBR99l/TQ96W9O+zjX3eTtcVu8Mwj8db34PdCd5uzLo93HgAAAAAAAAAAALQFYTsAwJGlPkjW3eMMnz30UuO+YUsOx1Yhz3rtGHpyaeuxrzxkDw2FniuijayyMcNs5fG2+/jZexrX92/3ha+5r9CvFYW97us1cx8XLqlsuj7vLz1QWtePn/dswxv3XoWpVAYMX9d4XioUoz/jJJXteovDkjFSJtv8SaZRT5c9kRgWjh0aC/TJ7yYM2/XO91lae8SpqOf7fcn1On8bnhpfZj1mbyMbch8j1mPmLVDXn35e5uu7Zf7jKZmv7pLWbQkf3EzY7vEfew0LBg8r+MLf+Z2zOyctWh5+7Af/7bmwCJPhQwAAAAAAAAAAAEwrwnYAgCNL3+La1909WpXfbR3+dhpawwAAIABJREFU05dCKtvZ2shGhdgShO0W9NjDNWMh61m5wH6ulocCy5XmdqTXhB4+ZW3jvhULwt/PQMqx8Mr1mriPualWsvOK9rJ/k5k2V3Ctrzgw9SJlr/blzZT+OtbreH5GParbJals1x2MSUEwO9qihkiZQNliePvNsO/rNyOKjWXlccMPRoRCZ4rFK/zGZXNaXthnPbw3P896zPZ9Cb2Pnt9f090js3KDTCpln9NM2O6YU/3GPXqPtOdFv7G5Xmn3C+HHTnqF3zkUXkm1YjSicioAAAAAAAAAAAA6grAdAOCIYnK9tTu6e7R54jnr+NGQEImtjWxPGyvbdffYqxqFrfHE8NybJKlLEVXSYle2K72vvmJIP1tJYyHrG52IV42vRjP3sSpwlFLROmwy1OYKt2VU9Ya2nBJ/LfW2llrRuiru2aopVrNVF/ORDhJMngmM/f6F3buDw+7nLxN4hO2WOb5kM8nxZ/mNy2S1oDpIWmes2Bgs3XUo0Me+XdQdT4TPCa1s10yFNtt3fjw8YOk0HvE7Pan/oPcpTXePVLR8h+Ks0bW2o0/2P0+DBL+3AAAAAAAAAAAAqEHYDgBw5Dj29MZ95RCHCcIDWB+9NUZlO0dYSlKylqO5Hp03/MPQQ997snGN3/lZ+GnefcCjLWLsynal8b914G9CD4e14rUFFn/l4P/1vl4sS1fVvLx88LbQYZ8pt7z92cvhp1mVrzvQ2xd/LfXmL5Tkroxou1/VklS2SynfmuDgNLKFXV862Pj9KNjzlpL82siaba/0Wtd0M2l7C+oaES2EDxRqg8ov7A90wUeK+t0vxGzH28z31/LbGdiqybk8b0kG1p/76Yf9z5nNyVz5i+HHfvJd//O4KvWtWOd/HgAAAAAAAAAAALQNYTsAwJFj7dENu0w6I6XSOmP0gdApT+9prMI2HW1kle3RUZYKfPc/73+a9RMebRGbDNvZKttJ0kTe7x4uy9vbWE5dr4nQYl0rzQ35kASgpIHRUivHv/1OeIBo43jdzU4SoJxUvn+uyogvehTZcrW+jZIKCg2BxNnG9v371J2Nn+Xd293n8gnbteSzb5Zvu99ykNNLuhS2O3YsPIz2hZHaCnl/e0egZyO+ruGV7Zr4HbR95//7H+Ofy9e//n/+Y7t7pFyC3/dJB+wtzZv63QMAAAAAAAAAAEDLEbYDABw58pYATXePFhQPW6fVh9lGLafpbWdlO0kTyniNCwJ7pam88ahyFXed5UDPfEfY7uEdta/trXgj7qHUVFjHLFtd89rVJvTFA9LmZeHHxrrq7k2SAOWk8vtZUOy3Dnl2X3QbyGSV7QrNteScKYzRmAlvT7o8pPjggoiPLevTRrYVn327pTyr2kmVyna2+7imqzbxGVZRs17ofWzmvtmeTd8WuWXBIY8wbzOKBalg/wK6fpNrvPCk/di8GMFJAAAAAAAAAAAAtA1hOwDAkcPW8rO7R5cM3WmdNlBXcGx4PDw4EVnZLk7wpd7azVpesAdFisWpNY06ckJrJ3ZGXysbHraxKrc3vHD4B9Yh/XW3punqgFJzYZ2zX1Xz8qyRH1uHDoxJKcvfkPq7ap8hk0rFX0sdk05LqbSzMqBPVmc8QdguHeSll55u/gQzwM7MmtD9qZAicAsi8qQ5R5XBqUG90WOmW5zfnHJlu+eym8JPFdQ+YPW/i2FyxZBBzVRosz2bcX9ThwfiX9vHqo3SsvDnT5J/kNUR2DOzvPIkAAAAAAAAAADAXEHYDgBwxDCXvTH8QHeP3nnI3o6wPlTywoHwcbmoqmxdCf6zu3qjru//ovVwdcDOFmSTpBPHHou+Vtqvgt4kU25p6QoD1q/ppzvCx7laqVY0EbYzR59U8/qaga9ax/aPSE/tCT/2Gwc+EfvaXiLe00uH3NMLxcArkGeTUkG68sbmTzDdjNGvH/hk6KG7nmncly+6T9e20GfLeLaRjfNdzpTGXtf/X6GHf1aoDZO5Qr2TQitVNnPfrvrF8P1jHp9TkvG+1h8jHXWC/fi453WTrM+3tTAAAAAAAAAAAAASIWwHADhy9C0O39+d09LCAc2zVBb7f3fVJnN+8kL4aXrCqjhV60pQBS3bo4WONqPVYbZhS4tWSeoNhqOvVW4nGcvKDZKkxYXwJOI92/2SYF4VxZqpjCVJ2y6sbLpatn7qTvta1+R3Tb04+bzm1hGmHEDaPL499PAffMl9/8bzyS6fCgoyi5YmO8k0s927sPa6US132/ocdlKcyovlynYbJ54PPXx/YUvNa1eod1JoeLaZsOxCy7MZN5y215LyTao7534e7rvN7zy2UN7azfHXBAAAAAAAAAAAgLYgbAcAOHLYQh7lkMlSS1Bsn727Z41s4Ei5SfbepD66e8KrRJVVB19GHMvwqtiVbiJsVw6aZIPwBM6uw1PbQ2P24FjkPZSaryiWmarylVZBJggvb3bX0671Vb2/VoatygHH7dnmQjVR4bEo6SCfLAw6A+QCe6vO5/fXfqZR96tLHuHQaa1s5ylOm9XyM+j6Do5NTN0X1+/MpFzY700z9802J27Y7rnH41/bR7ZHys2zHg4esLcpr2F7P7PhWQMAAAAAAAAAADhCELYDABw5Nh4Xvv+Zn0qSXshsCD28pLf2dcaSSRrqsoctJCULM3X3OINy1cEXV8Wp3qhWt1Jzle3KYZDd6ZWhhxdV3cODjuJ6y/L2VrQVme44K5uyq7ZiV2DC/xo06qgStzZfVRmrlQGYPS8lmu5TZcwlpWLz93VGMDp+zB6kqg/M5hOGEyXNjvvV0+c/tvy9X1AcsA6ZbKmdLwTq9yj+17I2stawncciqjXz2+aju0davtZ+vOj5wNneT9LfmiQ9pgEAAAAAAAAAAFCDsB0A4IhhbEGLk86VJL1q8Nuhhx+t6hxaKAbWqliXDt0RsYAE/9nNZNXraG3p20bWq7JdU2G7UppuSX5/6OGaMKBjfceNPxl9rXQmekwIc9Uv1rx+xfC9oeN2HrKfY+NEVQ/hVobtTr84ckjgCMz4VBlzSakgbd2W7CTT7JyR+6zH6u9P0kqAktoX3PJhjN+4vkX+5yxXtLxq8BvWIZO/M4c8ulFLIa21UymZZr6/tu/agZfjnSduOM9Xrlemy/H77tm+NrBVtstS2Q4AAAAAAAAAAGCmIGwHADgyLFxqP3bi2ZLsYbmdh6RisRR0coWa+ooR/WZTzVe2M8aox5Ht+a8Hp4JYLx20j8s5AnsVCdrIvnooPLD499+bWp+rsp2rVW5FsyGnTbWVDW/o/3zsU/QWqxbfwgCMOePSyDHjjop7SSvbpYO8lGouxDhTZGW/CT+oaw38zz9sQaWv2XC/+hb7jy1/r5YU7D8gT+8p/bl/yO+UDd/nZr8zLWrZHNwX/vuUSFfXVAD4ul8JH3PPrX7nsraRbWHLagAAAAAAAAAAACRC2A4AcGQ4HF5xTVKlalKPI4j2k3JBM1eoKTIolqSNrKRc1l7N6puPTIWH7tkeHiTKFUfUJY+QUYI2srlgLPRwvji1bVuf5Fl5r9mQU111LNfnbVMTVmxlACYb3ZL0qT32Y4kr2wUFKZVOdpLpVK70Nr8Q3gL1zidrn7lCMXRYPE1WWOyoOGG78vtxfQdvfax0Hw/4hu3qz9VsNUjHvODgXv/zvPR0c9d36e6Rmaw06FrnIY8W2dawHZXtAAAAAAAAAAAAZgrCdgCAI54pBxmOHXvCOua5clbPFWqKDIolaSMrqeuwPawxvyqrtbg3fMxol2dgo5nQ1ZMPSpKeyB4TeviE1VPbWcfpIwOLxjRfIXDD1pqXayZ2xpreXRytDSu2MAATDJdCYn+36z3WMfschROTVrZLqZCo8uJMMZjqC92/dF5tUHXbevs5fm/fR/0uNp1hO982sju3+5+zHPhcVLT3Ue4qX9Y7bFcfaPUIlYZastJ+zLNFqyRp0/HNXd+lqlqfWbrKPm7PS9HnsrW5Tfpb4/u8AAAAAAAAAAAAIBJhOwAAsqUKZRcO/8A6ZGS83EbWWdkuolJaC8JM3cXwawxVFZRLFLzKZKeqNMVRbsV7wfBdoYcPVWXoXIHFyCunM82tT5JZuaHm9SXDd8aa3xAEbGHYzpx6gSTp5/u/YB3jum9JK9ulg/zsqNRmE/FM/PCZ2sp2EwX72Df1/2f09VIpma6Z/9don/bEFd2llK6r+uXkc3ZgyK8Nb0MAudnqias22Y/ZqsElHeur+nfgouvs48Y9KmmOt6myXdCCtskAAAAAAAAAAACQRNgOAHCk2Hyi/ViuFDLJakKZIDy1NBlgc4btoirbJWwjq0vfoA/t/XDooburCljZ1vjawW9GXyPdRAtZSebk8yRJJ489Gnp8Z1WxLNv6zhz5cfSFmlxfxcKllc1czDayPXVBR9PK1o4LlkiSFhUPW4c8+JI9MPOpO5P1RS1VtpvFbWTLfnv/X4buf26/9NTuqfuXt4Ttfm7gK9o29nD0hZI+h52yPrzSZJjq5/m6/v8KHfPtyTayw37nbPiONfuMuSrixQnQ/eS7obvNOz4ovfV98dY0KVf1O7Bqo31c/4Hoc1nbyLawZTUAAAAAAAAAAAASIWwHAEBVyOTYsSdDh4xOhu1cbWSjWqAmDdtle5zXGJ0oBWGGLWvsLXokZDJNhojK99BV3W/XIXd1wPlFR5/USUmrrx3eX9k0kub5XLOs4d432xIzTFWYZlX+5dAhn/+RPWz3xQeSXT4VFGZ3Zbuy+kBktVuq7l/ekk187eCtfheaLfcqTkiraqztu/jYrtKf+z2/Ng1huybvmzHGXt2tFdXqcj3q+tU/aa6CXNUcY0ylUmq94P47os9ley/ZFgZ7AQAAAAAAAAAAkAhhOwDAEcG8+XfsB4tTyZtcMBY6xKeyXWSltKRtJ4f71ecIhz2zt/TnqCVsF1l5T2q+Ytey1ZKk1RO7rEMe3lH60xYGjGzDKzUfBrQY6prvPbbh/rWyst3ilZXNl9OrQodsWGKfnk1YlC6tWR62K7eRXZO3P38PvRgdtksHeb/rTXdlO99WynGe0aqxL2TWhw45dV3pzyHPtsUNLWmTVE+0vRef9qySAlcr1ZGh0p/NBPdefsFrPaaqqqbVmOW9tPK3BgAAAAAAAAAAAIkQtgMAzH3Zbun8K+3Hjz2tspmzVI6brGg3agnb5Yojioq/mISV7cwJZ+uyIXt1pMk12gKBXmG2ZtsVnn6JJOnM0futQyrrSxQGnL5AWMP9a2EAxvQtihxje/YKxUDjnhkxm1RQmBOBHler5Or7N2FpI5sJHGnaarMlmNhk2G5dfkfokMnfFlsb3khJ7lu53XcD34DceHiQWpK09TT7sShLVngNC3xCgZb30tKW1QAAAAAAAAAAAEiEsB0AYM4zf/6fMn2L7QPmL6xs2gJff/zVcgtUa1U2j8BH0jayp11kbTEqTVWMGxkPr+DktUZboCWC6S1ViEvJUjJM0oGh0rpsoTGv9SWpjBXissHbvcc2BDHbFID5n/s+Err/24+Hj7fdzzhSKljbX84OpajrhvxLOm7sZ6EjqkOotrBYWr6V7eZ22O6SoTtDhzy5u1QhzlYZMFKS76/t+Tyw22/+uOP3Zfna0p+nXxxrSZJkrv/12h3bLgwfePNfRJ/s8R+F7/cKQXtWOwQAAAAAAAAAAEAihO0AAHOeOfsK94CqkImr+tt4PtDIhCXIVvSoWpS0jWyuV2kVlAnCE3+TYSJrm1afynFJAmSbT5QkbRp/LvTwlx6ICCz63MMWt5FdUjzoPba3/v61Opy27mhJ0qLCoVjTbPczjnQmJZP0+Zwh3nL4ltD91aHExG1kM7MkbJft9h9b9d13tcR+eo9UaDZslySkaPltCm7/gt98VwW8yTDbAkevZpueulbUtnaxQaDAVV3Phcp2AAAAAAAAAAAAM8bc+FdVAACSqAoy7E7ZWwJ+6zFXi1afynYJ/7NbbjVqC80NR7aRbXPYrjx3sGte6OGVC0uVl6yBRZ/1Ja0odvTJNS9NEL6WMA3ra3UAZnhIkjRu4gUKh1oQtktlWxti7LiBqYCi7Tka8Wgjmw48+6Ompjts51nFLM4zWlV1zhX4vOuZaapsNzwQvn/9MZ7zB+3HJit6erRzbtC3sPb1vAX2sU89ZD0UuMKARY/ncvVG+7Hla6LnAwAAAAAAAAAAwAthOwAAslOBFFcbyef3B9YqYjmvynbJ2siacqtDW/W9yfax9spxHmG2JNXayvdxX3q5c5j9HvqE7ZKFwswNv1XzetuYPfxSr+H+tTpsd6DUInh9/iXrkIl8YzjwwFDyS8/6sN341HciF4RXD6t+7qzPoE/gU2p5hcW2ifOMbjq+snn+yN3WYSPjUrHpynYJwna7nmt+rlQTyGxQbjNuzrws/nlPfWXNS3OW4xyjji/riOPY+q2RyzAbjpXWbWk8sPkkmZUbIucDAAAAAAAAAADAD2E7AMARz6TTUqoUhHtT/39axwWBq2qcR9gulSxsN6m3OBy6/0fPlf584MXweV5rnKzw1IxyK8bXDXwt9PCjO8phQMs97O1EZbtTzqt5+fOHPVtQKuT+tTpsd9G1kqTjx35mHRLWIni/o2CXr3R3ghDUDGAuuLqybQuVPrG79Ge+YK/MZvtuNUj6HHZKnGe0qqpbX9H+UO0blPKeBQAbJKls9+q3hu9/8gG/+f37w/en0lOtYF95TeV76MvMr6tsd9F19sGH9tmPuSrbrVzvt5bf+2Ttb3hvn8zvftxrLgAAAAAAAAAAAPzM7n9ZBQCgVbI90sigsoG9J+ePnpOOWhZ+zKsilmlBxn3VRmubzL++PdBf/rx9qldluyQBsnLIY8NEeNrv3mdLf1oDiz7rS1pRLFfb4nZB0dKaMkTbK9utWBd+nSpfeSjQ28+tbSF6YNi/Fa5Nqrs78TmmVc/U55pzhEr3DgTKOXJyXoFUKXGFxcSMZxvZbIxn1HPsn3490OtP87x+vSQhxaWrwve/+JTf/P6D4fsXLJEp30+TyUof+px0/3cU/PRuaXxUZsESBZ/+gPcyTSaroGe+NNIYWAw+91GZy94YPtEVtvP8rTGnXSh95kHp7m+W2paf8xoZz6AeAAAAAAAAAAAA/BC2AwBAqlRcWp3fZR0yNBZoZCI8ZOIVFGtFZbtUSpnA3up2T789eJWSRzmqJG1ky/fQ1Yq3ULS34vWrDpjwry51YbvewLOSmUIClbkWh+3K722+o6rYD56W3n5u7b6DLWgj2zXbw3ZV7UnnOarT3f54oMuOtwfFXEG92uvNgsp2qXSpaqevrN8zMJ6XCh5tZLeNhrRoTvL9dbThDsZGZKICaQO2sN3impcmnZZe8SqZV7xq6vy2sF25tXeDbC40bKfDlup6Uk0r5AYxgr1m1Ubpul/xHg8AAAAAAAAAAIB4aCMLAIAkDR6SJF0xdLt1yFHLTbI2so6wiLcd27Umv9N6+EVLnkSSVuT3RJ8/Tjin3jM/leRuxTkyLo1bMn/dwVj0NRKGnEzv/LprjmtlfrfX3J5i3We8alOitTQ4uFeStCFv6QMsaSLk3oW1lpWkBYXDXpdNBXmZOBXQZqLVR1U2zx75kXXY/qHwezjJVdmyRmYWhO1iVl40vtXyJOWL0dUUP7j3Txp3ppq/b2aRpayoJA17VKi0VY7rmR++v/rav/4X4ft/9U/DJxy2tIudt8B+kRZUtgMAAAAAAAAAAED7EbYDAECSFiyRVApf2ew4KHtVNp/Kdq1oI3vMNv3m/r+1Hj7sWMaW8Weiz59gjebyUg/bawa+ah0zMlGqjBXGK+iUtI1siD/a+8de4+rb95qu1v41ypz72tKfjjEHhhpDTrYA6KaJ572umwoKUneCioYzwbLVlc2VBXuodGTCXZUtFXhUf5QShcY6po0BrXzEbTp75D5dHhZcTlLZrqrSXANXUK0ssI3xuU9XvFlac1Ttvi2nSOdfFT7+yhvD9z/7mP0arveQpOIoAAAAAAAAAAAAWoqwHQAAknTmpZXNNx++JXTILT8KNJqksl0r2siecJa2jT1sPbzb0UbWq3JckgBZuaXiksIB65Dn9ktjScJ2rWjfufW0mpdvsXze9WoClSvWJ19Hvb5Flc3fOPCJ0CFfCenM+YUfh3/miwqHvC6bVl7K9XqNnbHqAlPnDN8TOuzLDwTKu8J2Pq2WpelvI+tTha6ZsN2WU7yG7Xe0Lv7Q3j/WrS+8Lvw3Mcl9m7/QfmwoQWU7jyCbWbpK5uO3S299n3TOq6Vf/AOZv75VxlKpzpx+sfVcwT3fjL2+Vgd7AQAAAAAAAAAA0LwE5SUAAJhDqtpo9jqq1O0dCA82eVW2a0Ub2WzOea0fPO2YGliSgtWSVN8rh3t6A/v6vvVokKyyXSsqitWFa3I+QUnVBSrbUQmuKvDW42jFWywG6uqaClsdsASfeoMRdRdHNdblXmupst0sb1NZ95nOK4bflJf73ZXt0r6V7aY7bOejmWc00+017IeWIpm/t++j+sC+8JarkpJVtnM9oz+7Xzr6JPf8JJXtJJnla2V+NaQ1bsxzBnd+Weac1zQeGE22PgAAAAAAAAAAAHQGZRIAAJCk7Y9UNhcW7RXBntsfvj/nCJhVtCJst3O7egN7EMvFK8yWpIJSORSyMr/bOiRflMYteaaMTxiwFW1kjzq+5mWX7NUAq42YqvBSOwIwVeecMPYwV33b2ONXh4/7fu/5kUE7qVzNzTNkNVOZukpvd/eeEzpu68qINrKzpbKdj2Y+08d/VNm8vv+Lsaen5Li5kpROELabv8h+zKdq6JglVNuO73Ldb0yNPS+G708YBgQAAAAAAAAAAEBnELYDAECSzriksnlD/xesw2xVxLzayLagFaA54xK5Gkj2OzJ/XmG7JJXtsqVwjytwc3BYCSvbJS/Ka1791qbmnTty79SLdgRgqqorvm7w69ZhI3W3acKSD7t46Htel00H+da0OJ5BXjl8V+j+wTG528j6VrZL8j1pBZ82ss0EAk85v7L5vv0fiz09HVi+3JMSBI7rA5U1bEE1nzHt+C5vONZ+7ODe8P3jtvW1oYomAAAAAAAAAAAAmkbYDgAASWbTVCWirWNPWcftGwzf37E2sis3SJLOGPlJ6OG7nrZXaetUZTtJumogPCz2N7cH1nCYX9gu+T00p14gveZtNfveefAfIufVtJttS2W7qVDN2omd1mH1le1s4bEzR+/XJUN3RF42peLsqNQW5bSLKpsXWMJ2338qqo1sRFhs0mwIJ6abqAJ5wtmVzTNHw39jnJeMun9J79vmE0N3B/fcGj23g2E2Y4z0tt8LP/jUg+H7qWwHAAAAAAAAAAAwKxC2AwBAqgk09Pi0hK3jNacVYbvyOnssrWRtbW5NUFRaHkGiRJXtpu7hvKKlBKBreocq20mSufj1Na8HuuZHzqlZX7YN1aZqnkF7pcQH67pQ2sKL6SCvrEdr3lRQaNl9nVZVoSnX93FozH4K7zayrfgut1szAcq64JktNGsTef+S3rfu3vD9P/xa9NwOh9nM0pXWY8GLIYHuTra5BQAAAAAAAAAAQNMI2wEAIEkr1lU2XW1QbXqKnWkjqxXrJUlPZLeGHs5aMlPZYNzZfrYiSeWpZasqmy9k1see3t3BsJ165tW8fC6zMXJKpjq4Nn9ha9ZRbcGSyuaywj7rsJGJ2uqFeUu+KRNMeAUY08rPjcp2+3ZVNuc7wp7P7LVXf5w1bWR9pON/V0xdiHRpwZLetV0yqrJd0vv28vPh+4/ZFj133JKybFeYbYXjN/DZxxp2BbYwYJawHQAAAAAAAAAAwEwyC/6lEACADqhqnyhJS/P2sFMYv8p2LfjP7qbjJEkLi/2hh8ctWRevqnFSsjBMVbhk29jDsad3srKdNp8Ue0r1+uor47WCyUy1/cwF9vJrI3W3yVrZTnmvezpnKtttObWyecXgbdZhA45crFf1R0lKTfNfoY1HdLaZAGW2u+bl6wf+K9b0yPuX9Ddw7ebw/bagmscY064w25mXxluL7T3kCNsBAAAAAAAAAADMJITtAACQZOoquv3N7t+ONb+n2Jk2ssYYaeOxesvhW2LN8w7bJQjDmKoA0HnDd8ee39GwXc7SjtIhU12164KrW7OOeqdeUNlcnt8TOmTn4drXtrBdJvAM26kwJyrbmQuvqWyvLITfO0n6lx+2oLLdrGgjm40eU6+ust1Vg9+INT3y/iW8b+bKG8MPPPd49ORH7w3fXxcwbBXT22c9Ftx/R+PODre5BQAAAAAAAAAAQHMI2wEAMGn52srm4sLBWFNzgUcb2SQtWqsddaJfuK9KtroFqkvSNo8LlzU9taNhu7pQkdeUyfWlMw3hzJZZsrKyuTr/cuiQz/+oro2spetxOsh7fe7pIC8zFyrbVYWSuoMxmSD8xtz3nP0UKfmG7WbBX6GbCVBmaoNnRlKvoyVvwyWj7l/S740jeBYE9hBls+dMbONx4fu/9s+N+8Ys/w0hbAcAAAAAAAAAADCjzIJ/KQQAoEMGpgJ2SwsHYk31Cr8lDbJNGjwUe32dqGwnSRos3cOTxh6NPdUrENiiUJipe59v6P9i5JyMyuvLewYXm1EVrDmYWhw65PjVtS1Eba2DM8FEjDays7+ynRYurWwaSUHM75sJiuqSZ2BrVlS2a+IzXXd0w67hrnne0yMr2yX9DXS1zz1kb/0d5B3tbX1a0DZrxBJUnL+ocd+4ZR3tanMLAAAAAAAAAACAphC2AwBg0uhwZXPb6EOxpvYEHoGNVlVDGxvV5UO3x5ritT5JJmkYplAK25w89kjsqT5rbFcFtjf3fz5yTMa3OmASVWG7FzPrQ4cU6gq2jViW1ROM+LeRbVelvk7acmrNyxNH4wU+vavaSTMgbOcInU1qpo3syefFn1Ml6jtikt63zSfZj406KvDlHd+DDVubX0+URZZKn8WQZ63qvz81uuMrzsapAAAgAElEQVRX4QQAAAAAAAAAAED7ELYDAGDSua+tbKZk6c1pkQvGoge1KKBjLn+TNuRfijWn17ftbNLKdlffJKkUBTp19OFYU72qA7YybPf6X6tsrijsjRxeCRJddG3r1lCvKmz3joP/FDrkid211ddGLDminmBUGY+wXTooNFcFbYapb+37l7t/N9b8yKps1eZoG1mTztR8LyTpzJH7/S8pRwU5KXmos6p6YQNXhbqCY11LVzW/ngjmbe8LPzA80Nj21rZ+2sgCAAAAAAAAAADMKLPgXwoBAOiQ5WtqXl7b/2XvqR1tI9vbJ0k6evwZ7yk5z8p2SddoVm6obN9w+N9jzc0Fo9GDWliBzWw8tub17+z/mH1sUJwKYK5tbLXZMlXBmmWF8LaYD9flLG2V7XJFv8p2XSq0NsQ4nTafWNk8dvypWFMjg2LVpr2ynYd0c5+pueT6mtdHTTzrf8kg4h4mvW+u4NnLz9uPucJ27WyhvGi5/dgzP619PWb5/SNsBwAAAAAAAAAAMKMQtgMAYFJd0MwosAxs1NE2suXASqz1daqyXdU9zMi/7Wp3cVRdPu+nlaGwus87V7RXJwyqxxqPFp7Nqgoj+Xy+xWKgCUtBtlIb2ejPIDVHKtuVTH0284uDsWbGq2w3zWE7n2ew2c+0LtwVGaCrEnkPk353cr32Yy86wpXOsF0bg6a98+3H7vt27evx8LCdIWwHAAAAAAAAAAAwoxC2AwBg0rwFNS+HuxzBjjo+oaaWBXRWrJMkPZ3d4j2lx6dqnJQ8DFMVKDxu7Anvab3BsN/AJqt1haprSXn26I/85llCMa1gVm+sbE+Y8Pfam53aLji6HaeDvFe1wLTyc6ey3fZHKpsLi/2xpqY019rIZqPHhJm/sOblxokX/C/Z5jayJuN4T65nOO/4fW5htcwGm0+yHgqG68KgeUsVStd7BgAAAAAAAAAAQMfNgn8pBACgM8yFP1fz+hcOf9Z7bqaTYbvVmyRJ/+PgP3pP8aq8JyUPEZ18XmXzFSOe4TVJPUXPAFsrQ2FVLUcl6YrB272mmTMva90a6p1xSWXz0qHvhg4ZHpeCoFT1ruAofpcKCl4VDedUZbvzr6p5eenQd7ynxqngNu2V7Xw0+5kuWFLz8q2H/83/klGV7dp434Jdz9kPuirbtfHZd4YDf/Ld2tcTlrDdXPluAgAAAAAAAAAAzBGE7QAAmNS3uObl6old3lOzgSUoUa1V1bDKbQVPHX3Ye4p3G1mTcI1VbR69A35xxrYybFfXnjHr2/a2t691a6jXM9V20tUGtb98u4qOynZdCrwqGs6pynabjq95+dbDt3hPTclxM+uYuRy2m7+o5uWq/G7vqamoynatuG8nnRu+/5a/ss+ZrjaykvTKa8L3//SHCsaqvp+26nuE7QAAAAAAAAAAAGYUwnYAAEyqC195t15VhyvbldcZL8zm+V6SBgK7c1ObwZj3NO8wYBvDdm2f5yM7df9cn9l3yh16nZXtVFBvMbo971yqbGfqv8O+z5XK98HXdLeR9Wj37Kyq5pqXStW0ko3zOxNZHbAV9y3bbT0UDFlaBzvbyLY5bOf6vXjwzqlta9iONrIAAAAAAAAAAAAzCWE7AAAmLVtT8/K48Se8p3qF7ZoMvzQoV487ZfSn/lN8Q0dJwzCrj6psRseBpnT7VAaUWhuMWbS8uXkbj23dGupVVQY8duxJ67CDQ6WUnbOyXVD0CkqlVJwzle2CA7VV2FoaFKs2GyrbJflMBw9XNnMxQrPRYbsW3Le6Nrc1Du4J3z/ueA+O8F4rmKNPth/cV1U9lcp2AAAAAAAAAAAAswJhOwAAykyqNgjS52jjWS/j04K0RRXRjDFSOqNtYw95z/GubJewjaxpMriSmYawnWkyWGja2EbWVFUsmxfYq9KNlB+3qMp2OZ82skFeSs+NsJ056/Ka13FaLac0iyrb+WhhSMs3rJvuQBtZc/VN9oNjlud9zLH+dlaqlKRL32A9FHzqAwqC8pd4wvIb2KqQNgAAAAAAAAAAAFpiFvxLIQAAHbTmqJqX/7jznZFTUkHer4pbC0Md5sb/JSPpssHbvcZ7t9NsRYhoyarK5q8d+LTXFK/KgFLrK7BtPC7e+C2ntPb6YV791srmKZaw2P/5ZnRlu1RQ8PrcUyrMmcp2Wri05mVvjMp2c62NbKKQVl1A7Pf3fcRrWmRlu1QLKtudfJ792P3fCd/vCttVtW5uB7PmKPvzcmiv9NmPlrYLVLYDAAAAAAAAAACYDQjbAQBQrS4Q11cciJziHRRrZQWlXOlcqwq7IwaW9AQj0vpjogcmrGxXuthUK9ScZ9gpOx1tZKWatq1e2ljVrqJ7Kvwz31Jd8aWDpT9dle265NlGNijMnUBP3XfMO2Qqj6ps1WZDG9kkn2m27j56fo/TUYHFVvy+OH5Hg9s+H37AFrbr7qmpJtk2J7zCeij4xs2lDVtlu7ny3QQAAAAAAAAAAJgjCNsBAOaGay0V6N72e/HO88KTNS83TrwQOcUrKLZgidQzP95aHILhUgjrmcxmr/G5YEza+Wz0wFZU7NqxvbK5vLDPa0rWpw2v1JrKWNUO74833uceJvXy1DN3MLU4dEhPOX/jrGynglbnX468XDrIz53KdivX17z0DYlJMSvbtfo5bIckn+nO7TUvN0087zWtI21kXb9RPfPC99vay7a7heykwUP2Yy8+paBYlPJUtgMAAAAAAAAAAJgNCNsBAOYEc8UNja0VUymZy94Y70Qbtta8PG30wcgpXpXtLrxWpoUBHXPi2ZKkE8Z/5jU+G4xLm0/yOHFr/2pwXf+XvcZNWxvZ0y6KN37rttZeP0xVq9rLhu4IHTIyIQVB4K5sFxS9wqKlNrJzI9BjFq+oed2lQD3FYa+5acUI27X4e9IWST7To46veXn5kKU9a52OtJF1GW8M1QWH9yv4698OH9+psN1Zl7mPj49KBcu9I2wHAAAAAAAAAAAwo8yCfykEACCaOeV8mfd/WuorVwJbuEzmg5+RqQoueZ2nrkJelxxpprJMWDWnbLkVaFeXdNF1Mr/1sVjriLSoFCo6b/hur+GZYELmmndEh11a0R7zdTdVNrdMPOM1ZbrayJorfyHe+Mve1NLrh15j62mV7Tf1f8E6bjwfXdnOnHRO5PVSQWHuVLaTpOVra15+4uX3eE2rrmxn/uqb0tU32QdPextZj9an6eY/U3P82TWvF3i005bKwU3niVvzf3qYd344/MAj99S8DIYHFLznVdL+XeHjq1o2t5O57OfdA1yV79LZ1i4GAAAAAAAAAAAAicyhf1kFABzpzFU3Sq95m7T7BWnVRne7QZvu3oZdG8ef1/PZjdYpYVXZzDf2SC88UVrH/IXx1xElV6rI1OtZtSsbjEu53lKoquAIxLSijWxuqlqUkTS/MKDBVJ9zyrRVtss1ft5OnaiEVRUAygVj1mF7BhRZ2U59i7V4/wEdTC2xjkurMLeqZ61cL+3dUXm5qOAIMlXpmgyKGSOdfrF0z632wbOhjWySQGDIc755fLu2Z91tqyMr27Xi90WS5i+wHgryEzKTz/Pd35S2P2I/T7ZDle2ifjd+7KgcOJe+mwAAAAAAAAAAAHMAle0AAHOKSaVk1hzVXNBOkoLGUmHzgiHnlIag2Dmvlsl2y2w5pT1BO0lasFSStLSw32t4JpgoBT6iwmqtqDw1UBtuWuaxxux0he0WLq15eamlXeYvHfqX0kYnKmFVBXOW5fdZhz21Ryo4K9sVpQVLNGrca55zle0O7K552e0ILFarBMWCQMYYd0BqVrSRTfCZ1rfkll+wNzps16KQYm6e/djzT1Q2g09/wH2eTrWRXbTUeTh44Un7wQyV7QAAAAAAAAAAAGaSWfAvhQAAdFBI29krBm9zTqkP25nzrmzpksKYxcslSeeP+LWRzfqG7VpReWrRspqXrxpy3z9p+irbmdWbal6/ZvBboeOuGfjv0kZHKttNXWND/iXrsLEJqeiqbKeitGCxRrrc1ftSKiRqOTrj7NtZ8/KUUUdlsyr1LVCN67Oe9jayHpJU39tycsOuS4fuiJyWDmupXa1Vle1Ov9h+bLQqFLjrOfd5OhS2M8vWSJtPtA8YdQS6qWwHAAAAAAAAAAAwoxC2AwCgWl1QTJL+974/c07JBuNTLy66VnrdTa1eVbiFy5QLxrQkH105Lt3BsJ055fya13+8948i59TcQ5c2V2B718FP68qBb9Ts+9WDf6+rBsv7OtF20jMA9MzewF3ZLijILFiq6/u/6DxPOsjPrcp2r39Xzcu+4oDXtFRQDtttOr70p6uK4XS3kQ2pPNcgyWfat7hh1x/u+/PIaenA0aJaat19W77WfuzZR/3P04lKlWXmD/6f/eAXPm4/RtgOAAAAAAAAAABgRiFsBwBAtZCg08Jiv1KO9oiZyWPrtsj80b/KdKrt3/FnSpLeOOAOU0nlMFun2sjW3cNlhf1aXDjgnJKerjayklQVDswFY/rSS2/U3c++Un+/89f04PYz9bcv/5a6VC4hl3NXiWuJuvu3Kv9y6LA//XrgVdnu6PFnnJcrVbabO4Ge+tbNPcGI17xKC9TJaodHchvZkPe+uHgoZGCtyDayLbpvpqvL2l41+PQf+p+oU21kJZmt26STzo0/cQ59NwEAAAAAAAAAAOaCOVTGBACAFuiZH7o7FRRUMOH/2UyrHBQ79QKZTla8CkplzbqLo5FDM5qQcvM600Y22914/YgwnX9luzbc32JtebiUijpr9H6dNXp/49je8OejpXr7al4WZa9iFlXZTguWaknhOefluoLC3KpsV/d5VoKSEVIqzyt/r5zV4/Ke4dDplChsFx4q7QoKKhr7dzCyjezS1c2vqV7R8vAPHfY/h+V9ts2KdfHnELYDAAAAAAAAAACYUWZBWQ4AADrHWCqXjXc1BsgmVYJkHWxJKEmaKAXUQkNhdbLBuHTUCZ2pbDfZhrPKnvRK55RMVEhnUlcbwnZxAnSrNrb++vXqWmTa7l1PRl6V7eYFw87LpZWfW4GekLCnj0pVtud/VvrTFYwqeD6v7eLTRjbBd8Wkw38nXEE7KaKy3Yr10tZtTa+pQWAJ202MK7AF8ep1sLKdJJltF8SflO5QpVQAAAAAAAAAAAB4IWwHAEC9485o2HXR0J3W4ZWwXbbDwY2rflGSdPXA1yLHZoJ8qepeVOW6VlS261vcsOuMkZ84p3hXtvMJGcVkXv+r/mPbcP3Qa6w/pvL6D/b+eei45/ZHVLZTQVqwRD1FdxvV1FyrbHfC2Q27Lh+8LXJapSrba95e+nPdllauqvOSfqanXdSwa2l+n3PKZNjOvPujtdfv6pL5tT9r6ffHvOND1mPBL5+j4PD+6JN0OiB9+Q3x58ylICwAAAAAAAAAAMAcQNgOAIA65vzXNew7Z+Q+6/gxU66k1eEqSVpSqng2LxiKHJrtLa8tsrJd8jCMSWca2r2eOvawc05Um9mpk7ch7LZyg9+4Fetbf20Lc/27KtvbHPfOWdkuKFW26wkiwnYqzq1AT0h1yp8b/GrktFRQkCSZ8vdKmVleUSxh2M684lUN+84fuds5pxJYvOIGmU98V3rL70g3vFfm49+RufxNidbT4ORz7ceeekjBx94TfY5OV7brWySdcUm8SbP9OQQAAAAAAAAAAJhj5lAZEwAAWiSkDWVv0d6K8+7eUujDZDtcJakcFDGSeotDGu6aZx2ayZbDb1EBnFZUtpOkbE4amQoBuu6fFKOyXavWV3Nxz8+tk1WwqtbUXRy1Dts3YD9FSgWpb4l6HPOlcjWyuVTZLiRAFfX8SVVBsUz5++9q39m3qJmVdZalFay3kPvoVSWxPNeccJbMCWclW4NLVFDuO/+R/BztsMTdUrvBXArCAgAAAAAAAAAAzAFUtgMAoF5IGOK00QcjpwWDh9qxGrvNJ1Y2XUE7ScpmyhXhIivbteivBiO11faWFdztJ70r26kNle3WHOU3rpPBnHVHVzZXFPZah73cby9t15XJSPMXKhdZ2a4wtwI9a49u2OXz/Z1sgVqpJLZkpbR6Y+PAbLd0zmuSrDA5nwqPSQOUIc/7ttGH3JdUuTpgb1+ya/vYdHziU5hpCNuZrdv8B3d1za0gLAAAAAAAAAAAwBxA2A4AgHpnXtaw65LhOyOnmbMa57WTmbegsn3joc84x2YzHa5sV2fL+DPO41nfsF0b1md8g2adDOaceE5lc/P4s9ZhQ2P2U6SyWRlj/KqRzaFAjwmpQHjy2COR8yphu+POKJ3HGJnXv6tx4JU3yvS4w60zQhvCdj/f/wXnlC45+hq3mOmdn7zFaierVU669I3+Y7t7ZNrROhsAAAAAAAAAAABNI2wHAEC9qhDbpJ7A3YqzNG9hGxYTYeNxkqS3Hf6cc1imuxwo61RluwuurnkZFbarVLarqtYXql3Bk2Vrosd0MmxXFSLqcVSm++Yjjsp23aV2qD3rNjgvlTbFuRfo6Vtc89JIes3grc4pKRVLG1Wfs7nht2Te93fSqRdIx50h8z/+WOa9f93q1bZHKpVsfsjzviH/UvS8clixE8z7P53sBNlpqGy3Yl2c0W1bBwAAAAAAAAAAAJozd8qYAADQKs2GqqahJaF650tSZPWybLbDle3q7sUx4087h2eDcen0i2Vu+kMFv+GoENiqMGC9nMdnl+1cFSxjjIKeedLIkHKOoOfXLQXbTFCsVHjryUqTObIwKdO5amQdk+uVBg7W7FqWd7cyrlS2q3t2zTW/LHPNL7d0ecl5hLC6kobtmnzeO/k7mLTCYNLKeM1aulravyt63Mhg+9cCAAAAAAAAAACAWKhsBwBAHdNs4CxWxaIW6T8gSTpq4nnnsEx3OWQXFS5pVZjt0N6alwuL/c7h3cFYKaQTdf02tbn1qnDV6TDlyJAkd6zKVpAupUIpcCZpfbf73meMI4k3W+3d0bDrQGqJc0pa5bDd/EXtWFHnJW0ju/bo5ub97P5k141jzeZk89cf05p1xLWuyXsLAAAAAAAAAACAaUfYDgCAFjF90xDSOfe1kqSVhT3OYdnJNrJR1apaFGYzZzZWpztr5EfW8blgtBy2i6jY1a52pz5BuumoXBghsBSl6wqKlfUuiPjIe8x4i1c1Ayxc2rDr8qHbnVMmK9uZ9Bwp/JwwbGeaDaKtOSrRdWM5+iRp0/HNzV29STr+rJYux5e57I3Tcl0AAAAAAAAAAAAkR9gOAIAwJ50bb3y2uz3riGAue1Nl+5TRh63jMt3linZRgbFWVbY76ZyGXX+094+twythu6iwX7vayHqF7TrXRlaSdN6Vlc0/3fOHsaamVJiq1tfdo5t3/JJ1bE9XvqnlzWTmTe9p2HfmqLviWirIT1+ls3ZIWtlOktKZ+HMu/Lnk1/VkjJH52NfiTzzhbJm/vlUmlbDVbrOu/ZXpuS4AAAAAAAAAAAASI2wHAECYnnnxxi9a0Z51RKkKia3I26vbdU0GxaLapbaqTWtIeC0b2CuopYJCKcwWFaZrW2U7jyBdpyvbldvAStL84lCsqV0qTr2n7l4tK+yzjp2Tle2yjZ9nT3HUOSWlwuxpIevzPWhF2G7VxthTjE9L5hYyy9dKb32f/4TTLlLXp78vs3pT29YUxRgjvfHd03Z9AAAAAAAAAAAANI+wHQAAYQ7vb9h1+sgDoUPfc+Djna96Nmnx8srmGwa+FDpkeX6PtOfF0ouDu93n62pRpacljeHDdRM7rMPX5XdIB/dOX2W7xSujx4Q8E50yZrKxxpfCi5OV7XLqKY5Yx6bn4t8GxxuDdVGtltNBfka2Cm5aK8J2+3Y27PrN/X8TOvSVQ98vbUxDlU8T8ntjH9ymwG5MZonHb86lb2j/QgAAAAAAAAAAABDLXPznVQAAklu2umHXrx38dOjQXzx0c2glrU4wy9ZUtq8a/IZMUGwY89rBW6XF5TDKvIXuE7aosp1ZuaFh39ET27V17MmG/VvGn9Yx40+XAnpRQZg2BWXMOa+OHrRiXVuubWNOOb+yfcroT2PNrQmOdfcoF4zZB7eqmuFMsvnEhl1r8rucU9IqTF9oth1a0SI1CBp2XTX4jdChlf3TEVj0+f5OWrO5feuIw2PN5twrI8cAAAAAAAAAAACgs+bgv64CAJCcufLGhn2/cPizuvHQZ2r2/eXLv6NTxh6Z3opYJ5wtSVqdf1n/svMdSgX5yqHTRx7QR/f8vsxpF0qSzHkR4Y1WVo6ruydG0r/teLuW5fdW9i3L79UtL71NRpI5/ZLo67crGHbJ9ZFDzImvaM+1bS78ucpmVFCsXlq1YTujxtDUpLCA5qwXEvaUpLcc/jfrFCrbNTI3/q+GfZcM36kP7P2zmn3X9n9Z7znwd6UX03APzYZj/cde8vo2rsSf2XKKzLs/ah/wupukV725cwsCAAAAAAAAAACAlxb0lwIAYA7K9TbsSqmof9j1K/r9ff9Hj3afqFeM3KdVhXJb1ukM6WzdJj12nyTpLf3/rlcN3aYf9J6vtRM7dProA0qpKKUzfutsZZjtuDOkh35Qs+vUsZ9q+9PH6a7ecyVJ5w/frd6g3OK0OzdtbWRNV5eCo06Qnn3MPijkmWirqs+qJ7C3gQ2TDqaqtJmIzzw4uC/+2mY6S4W600Yf1L8uDA8w1bTenel8Kjy2oo3s/MZKmEbSh/b9id5x6J90T88rdOLYYzp+/GeqrGi67uFr3iZ987PR4zr9PXYwb3qPdOkbpYfvkoYHpInx0v075Txp7dEyM6TlLQAAAAAAAAAAAKYQtgMAIEy2O3S3kbRlYru2TGyvPTCd7SfrKpMtK+zXtQNfqR0zGbyJWmcrw2zzFoTu7g1GdMXQdxoPpDPR129n+CSkZWaNToeIcvMqmwuKA7GmZoIJKVtab/DS01qZ320du37ixebWN5NZ2iWngoJ1ysvpVdLEU+1aUed1taCNrOOZX5/fofUDX2w8MF0BMcvvTYMZFqg0y1ZLl75hupcBAAAAAAAAAAAAT7SRBQAgzKYT4o2fxgCHWbY2etA0VLabbF3rbdMJ0UGddrWRlaS1m93HO/wZm6rA59LCgVhz08pPBUYP79f6/A6dOPpow7j1Ey9q29hDidY5E5mlq0L3nzb6oHXOuMlKB/daj88qXV0yrfiunHJe/Dkbtia/bhPMaRf5DczOrLAdAAAAAAAAAAAAZhfCdgAAhOlbFG98dhor2513ZfSYSmW7iBaKraxsd+WN8cYvWOJx/fZVzTI3vNc9YJpDOpvHt0cPKksHeZl0tvSiHBL8yJ7fV644UjVmQh/b/XttvKMzz9bxp63HjAKZS6/v4GoSiAqltqKFrCStiQighlmysjXXjuvc1/qNm84qpAAAAAAAAAAAAJj1CNsBABDCpDNSKkYbxukMYs3rix5TCdt1sLLdgiVS32L/Cd09Utc0VrZbvcl9fDpCOsefWdl83cDXvKelg7yUqQ3bvXroNt377AX68J4P6oN7P6x7nn2lrhv4ckuXO6OEVCpMyd5G1iiI97zOZC0K25muLmtLbatcRKC3TUy2W+aDn4keOMPayAIAAAAAAAAAAGB2aVHZCwAA5qBMt1QY9hybae9aXKKq1UlSuvyf/FznwnaSpEXLpIGD0eMyWZmuLgVRFbtaWXmvXlRIaDpCRJmpoFN3MOY9La1CpXWw2bBVQXn/ieOP68T9j7dyhTNXpjEk1hUUrcONgrkTxOqKERSOkumWxv2fvWkNHvctjB4zTWFAAAAAAAAAAAAAzA1UtgMAwGbUM2gnSTuead86oixdFT1mMgCz9mj3uHVbkq+n2p6X/MZNBqOiwnRRYbwkFiyxV7dbsV5avKJ917YZ6q9s7sis9Z5WU9nuyl9o9apmh+caQ4WRle3mSovRVoZmq57BSKm0THoa/395tp7m/o1Yf4zMvAWdWw8AAAAAAAAAAADmHMJ2AADYrFjvPdSc/7o2LiTi2sZ4tEAthe1M2l2BL+p4bNe/y2/c5HWjQkJtbCNrjJF583vDj93wm6X73GHm2ndWtl8z+C3veSlNhe3MsjXuwRdM37PbVpe+oWFXKogI22VnS9gu6lls4bO6Yav/2GmuDGgWr5Be83b78Z//zQ6uBgCA/5+9Ow+z9KrrBP49VdV7d/ZOOk12spBASAiLgbAm7MhiDMIICo4OoojKICMgIIoo4jrOiKKjgDqgoiCLgmwyLBKWsCRsIfva2ZdOr9VV9c4f1Z2u6rrvvbdu3aXq1ufzPPepW+d33vf8qrq6q5L7rXMAAAAAgGEkbAcAdZ50YftzDz+6d320obz4Nc0nDCgEU855YnsT94XtWh4T29vAW/mRl6e86T3JuU9Pjnlgcu7TUt7wrpTnv7Kn69Y69WH3Pz1s8q62LxurJpKxlfsHmu3Kd/zpnXS26JWHnjdnrOnOdlU12CNQu6mbodTHP6/9uYvgGN7yq3+e8vK3Jg89b/rv8DEPTB79jJRf/9uU5/63QbcHAAAAAADAEjfAc54AYJGbT3Bk0MdPtgoJDaq/dj+H+4JhrXaP6+HOdvuUp7ww5Skv7Pk6bZmx09qaamfbl806RjZJ1qxL7q6Z3IfP6UA0+NprubPdIgiLdUUXd2Esq9akanfyIvj8ldHR5EW/kvKiXxl0KwAAAAAAAAyhIX11FQC6oOUuazMMOmRy7CnN66vX3v+0vOqPG8+58OVdbGivY05ub97Y3vx/q+DXfP5MhsGMkOQp41e1fdlYDtjZ7uZr6iePjHbS2eLX4O/ESKaaX7NyZfP6YtEyTNfFHSBb/dsy06BDxwAAAAAAANBjy+wVawBoX3n009ufPOiw3emPaF6f2d9jn52sWT+7PjKScsELut5WOaLN43XbPUa2izt2LQkz/tw2T2xp+7KxanJ2cOy4U+snD+vOdg8+d85Qs2NkRzK1/+twqevmn+kPPbX9uavWtp4DAJMLjsUAACAASURBVAAAAAAAS9iQvroKAF1w5DHtzx1w2K6MjDQPCs04ZrYceUzKH30sOeWs6fDaMSenvPn/pjz0Mb1prp3P4/1hu8EfI7uoHPB1tWnilrYuG6tm72xXnvXS2rllSHcLLGNjybqDZo81m58qGR2SsF03j5Fdf/D0McTtGHToGAAAAAAAAHpsOF9dBYBuWD2PXZpWLoLjE486tr62ctWsd8uDH5WRv/5Kyifvycj7vpPypAt719dhR7Wesy8Y1iL4VZbxznZJsmni1rYuG8tEsmLGznbNvpaHOcDYbEe/A5RUw7OzXTePkU2SU89pb55jZAEAAAAAABhyQ/zqKgAs0JoN7c9dDCGTJ13UePywTbUhtdKPvm+7qfWcfSGnYQ5+deKAEOcNYw9o67IDd7bL+K7audXkREetLQk3Xd321Ofc95GlE7br9w6Q7f47sRhCxwAAAAAAANBDXtEGgBplbKz9yStWtZ7TY+W8ZzUunPfM/jZyoEM3tp5z/zGyfjSZqRwQmjps8u62rhurJmbvinfqw+on7xnvpLWlYee2OUM/ffe75owdNXFrHrfji0snbNdKt3eAbPd42Jm7KQIAAAAAAMAQ8oo2ADTz7P/a3rxFEDIpDzk35RfePjtoc9ZjU17xu4NrKkm58OdaT7o/bLfMjoltx/Nfef/TX7z7T9u6ZCwTs3cjO7TJUb4TQxy2a/C193u3vTaP3fGF+98/fOKOfPiGCzOaKWG7Ou2G7UaH5PMHAAAAAAAANeaxZQ8ALD/lyGNTtTNxbPBhuyQpL/il5Bk/kXzny8nmE5PjTqs9QrZv1qxrPccxsrXKxs33fw2un5q7U1sjc3a2W9Vk58Xx3Z03t9itXjtn6KCp+/If1z01P1h5Su4YPTyP3HlJVmbPdHFYwmLd3iHSznYAAAAAAACQRNgOAJobGW1v3iIKmZSDDkse/YxBt7HfuoNaz3GMbL2JiXlfMpbJZOWMne3WHVw7t2w+sZOulojGQdOS5LTxK3JarphdGG3z7/ugtQrQdjtg2+7nZVh2BgQAAAAAAIAaXtEGgGZOe1h780bl12ud9djWc+xsV++Io+9/etruH7R1yVg1MSsAWg4+PDn5oY0nn/u0BbW3mJW6j7mRsRWD3wWyW7r8YZQHPaK9iWP+HQQAAAAAAGC4eUUbAJo57ZzWc1asHJ6QTg+Uee1s5/M4xwmn3//06IktbV2yotozZ5ex8kt/mKxZP3vii16THHfagltctB78qPbnDtOubN3eIfJxz2lv3iI5ThsAAAAAAAB6xfYTANDMqjWt5wiYtHbokcndt9XX930OHSM714yvwTXVrrYuGa0mktEDwnZnPy5591eT//xYqnvvTDnnicnZjxvuoOjqte3PXUJhu1JKquYTurvg2g3tzVtCn0MAAAAAAADohLAdADTTTthuhbBdSytWNa87RrbejMDY6qn2wnZjmWgYfCqbT0ouekW3TxldvFbNI2w3TEdBdzts1+6/cYLHAAAAAAAADDmvaANAE6Wd8JeASWvHtziqdGxf0GnZxMDat+n4+5+ur7a3dclYNSG4mKSsbBHynGl0iHZl6/IOkW3vfmhnOwAAAAAAAIacV2EBYKEETFoqL35N8wl2tqvVVuDzAGOlGu7jYefj2FPamzdMf4978Wd/0GGtl7XLJwAAAAAAAEPOK9oA0Mo5T2xeXzFEIZ1eOfvxzev7dgfs8o5cw+jNt/9myzljI1UfOlkayjN+sr2JY46Rber8i1rPGabAIgAAAAAAADTgFW0AaGXl6uZ1x8i2VEZGkmZHetrZrm1rpna2nDNWhO3ut6rF3999hiko1ovQ6qo1reeMDlFgEQAAAAAAABrwijYAtHLCg5rXm4XI2G98d31tX9DJ0aeNPe459z990PjlLafb2W6GE05vb95Qhe26//eoHHpk60mOkQUAAAAAAGDICdsBQAvlyS9oPmHV2v40stRtPrG2VPbuDliE7RoqT3/x/c/P3/7ZlvPtbDdDqyOM9xldYmG7Zn9XevH36Ek/2nrOMAUWAQAAAAAAoAFhOwBooZx2TvMJ7R5TucyVH391fVFIp6ny+Ocme3cWW1Ptajnfznb7lZWr2jueeJi+BntxjOym41vPcaQ2AAAAAAAAQ07YDgAWatWaQXewNDT7PI2O9q+PpeqZL2l7qrDdAY45ufWcoQrb9eAY2ZGR1kdmD9PnEAAAAAAAABoQtgOAdpxydn1t4+b+9bGUTU3Vlqqd2/vYyBJ15y33P/2hHV9uOnVMdnG2yYnWc4YpKNar45jHdzevr7CzHQAAAAAAAMNN2A4A2lBe+fb62mOf3cdOlrBmx/FOTfavjyWqnPCg+5+/4Y7faTp3rEdZqyXrEee3njM21vs+uqlZoK4Xx8gmybGnNK8PU2ARAAAAAAAAGhC2A4A2lIc9IXnWS+eO/+xvpZz79P43tBStP6i+Nils19KJZ9z/9BnbP9F0qmNkZysvfFXrSaNDFBTr0c525ZW/13zC6BILLAIAAAAAAMA8eUUMANo08tp3pvrF308++ffJxgckZz8uZe2GQbe1dKxcXV+zs11rB3z+ztj93Xx31RkNpzpG9gCr17WeM0y7svXqGNkNhzavO0YWAAAAAACAISdsNyCllJOSPDLJI/a+PSfJzMTGdVVVndDhvRe6nc2JVVVdu8B7AAylsnZD8tz/Nug2lqYmwcRy6tl9bGSJWjM7MLZ1pH6nwLER58jOsq7Jror7DFXYrkebVx/UImw3TJ9DAAAAAAAAaEDYro9KKU9M8rpMB+wOG2w3ANBfZdWaVGc/Pvnm52YXRkaSRz1lME0tJSc+eNa7N644pnaqne1mK2vWpeVvIiy1oFiz3et6tbPdsac2r69a05t1AQAAAAAAYJHo0bYX1Dg7yVMjaAfAMlV+6Q+TQzbOHnv1/0o5yLfGllavnfXui+59b+1UYbsGfvTnm9dHh+h3UHoUtiulJI98cv2EVWvrawAAAAAAADAEhuhVxSVtd5IbkzywB/f+cpIXzvOaG3vQBwCknHxm8jdfT778yeS+u5JHXJBy4hmDbmtJKCMjs3Zn2zRxS+3cMb9OMUd58A+l+ud31E9YajvbNdOrY2STlEdekOqrn2pcXLW6Z+sCAAAAAADAYiBs1397knwnydeSfHXv28uSnJfkP3qw3q6qqq7twX0BoCPl0COTp79o0G0seaPVZG1tbLRHx4guZWvWNa/fc3t/+uiaARwjmySHbaqvtfocAwAAAAAAwBInbNdf70ny51VV7TqwUHr5oigAMHS2jWyorY2N+blijgf/UPP6zu396aMfevlz5aOeMn3/qpo9fvTxyeFH925dAAAAAAAAWAQcMtZHVVXd3ShoBwDQlp96w/1Pn7z9M7XT7Gw3Vzn0yOT8i+onTNbvFLjk9PIY2UM3Jhe94oDBkvJTb/TLIwAAAAAAAAw9O9sBACwR5REXpHrXbyVJ1lQ76ueNjvarpSWlvOFdqT7zT42LkxP9baaXehx6K6/8/eSUs1Nd/PFkzfqU8y9KedRTeromAAAAAAAALAbCdgAAS8WqNfc/XT1Vv1luNbKiH90sOWXFylR1xakltrNds0Bdr8N2pSTP+ImUZ/xET9cBAAAAAACAxcYxsgAAS8WxJ9//9KG7v52xas+cKaPVRM5au6WfXQ0HO9sBAAAAAAAALQjbDb/jSinvKqV8p5RydyllvJRy6973/66U8rJSymGDbhIAaK2s3ZAcMx24O3hqa16w9f1z5ly09QM5eOUS26VtMRC2AwAAAAAAAFpwjOzwO3HvY6Yj9z7OSPKiJH9YSvnLJG+sqmpbL5oopRyZZOM8L3tgL3oBgKWsvPHdqX72sUmSv7z553LExB350IbnpErJc7d9JG+79deSsZ8bcJdLkGNkAQAAAAAAgBaE7UiSdUl+OckzSykXVlX1nR6s8fNJfr0H9wWA5WXdhvufrsye/MFtr80f3Pba2XPGVvS5qSFgZzsAAAAAAACgBcfIDq+JJJ9N8oYkz0lyTpJTkjwsyXOT/H6S2w645tQknyqlHN+/NgFgtvKytzQuPP3F/W1ksTr86NZzhO3qPfS8hsPlZ36jz430UPEjPgAAAAAAAPSCV+KG0xuSPKCqqidVVfXWqqo+UlXVN6qqurKqqm9WVfXhqqpek+T4JG9LUs24dlOSD5RiSxQABuSJP5KMzt18tzzxwgE0s/iU9Qe3niNsV6s8+QVzB9esTx7+pP430yt+jAMAAAAAAICeELYbQnsDdgfuWtdo3q6qql6X5JUHlM5J8l+63NY7kjxkno/ndrkHAJaAcuwpKW95X7Lh0OmB1WtTXvG2lPOeNdjGFpOTHtK8PipsV+t5L0te+Kr9u/8dfnTKH3w0ZcMhg+1rvpoF6oTtAAAAAAAAoCfmbhvDslNV1Z+WUp6a6eNm9/n5JO/t4hq3Ze6xtU3ZXA9g+SqPe07ymGclN16RHH1iyspVg25pcTnyAcnV366vj/kRr04pJeUVb0v1029KbrsxOfaU4fuZwzGyAAAAAAAA0BNeiWOf3zng/XNLKUtsixcAhkkZHU05/kGCdo0cfETzumNkWyqr16Ycd+rwBe0SO9sBAAAAAABAjwjbsc9Xktw94/3RJGcMqBcAoInyyCc3nyBst7wJ2wEAAAAAAEBPCNuRJKmqairJ9QcMbxxELwBACxc8v3l91DGyw69JoM4xsgAAAAAAANATXoljpp0HvL9mIF0AAE2VsRXJC3+5foKd7ZY3O9sBAAAAAABATwjbMdMRB7x/x0C6AABaW72uvjYqbDf0mgXqhO0AAAAAAACgJ4TtSJKUUo5IctIBwzcPohcAoLWyem19cZXNaYdes90LHSMLAAAAAAAAPeGVOPZ5YWZ/Pdya5HsD6gUAaGXV6s5qDIexlfU1O9sBAAAAAABATwjbkVLKUUnecMDwR6qqqgbRDwDQhpXNwnZ2tht6K4TtAAAAAAAAoN+E7YZIKeW0Usqz53nNpiQfTXLUjOHxJL/Tzd4AgC5rtrOZsN3wW9HsGFlhOwAAAAAAAOiFsUE3sNyUUo5J48/7pgPeHyulnFBzm21VVd3RYPzoJB8upVyW5O+SfLCqqitq+tiQ5CWZ3tHuqAPKv1VV1dU1awMAi8Hpj2g8PrYiOfGM/vZC/zULW476ER8AAAAAAAB6wStx/feFJMe3Me8BSa6pqb0nyUubXHtmkt9N8rullHuTfDvJHUnuS7I+ybFJzkrjP/+/qKrqLW30BwAM0gmnJ2c/Pvnm52aPP+1FKesOGkxP9E+zY2RHm+x6BwAAAAAAAHRM2G74HZzkvDbmbU/yqqqq/rLH/QAAXVBKSX73g6ne+YbkK59IVq5OHvfclJf+2qBbox9WrKqvjY72rw8AAAAAAABYRoTthsv3kvx2kickOSfJmjau+UGSdyf5y5qjaQGARaqsXZ/yqj8edBsMwrZ76muXf71/fQAAAAAAAMAyImzXZ1VVndDDe9+a5NeSpJQykuSUJA/M9JG0hyRZnWRnkruTbEny1aqqbu9VPwAA9MhNV9fXrry0f30AAAAAAADAMiJsN6SqqppKcvneBwAAAAAAAAAAAAswMugGAAAAAAAAAAAAYLETtgMAAAAAAAAAAIAWhO0AAGCpueDH6muPfkb/+gAAAAAAAIBlRNgOAACWmPLEC+trL39rHzsBAAAAAACA5UPYDgAAlprHPzd55AVzx897VspJD+5/PwAAAAAAALAMjA26AQAAYH7KyEjyB/+aXHlpqrf9bLJzW8pb/j7lgQ8ZdGsAAAAAAAAwtITtAABgCSqlJKeclfJXFw+6FQAAAAAAAFgWHCMLAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALQjbAQAAAAAAAAAAQAvCdgAAAAAAAAAAANCCsB0AAAAAAAAAAAC0IGwHAAAAAAAAAAAALYwNugGArtt9Z7LjxmRqT7LhlGTlwYPuCAAAAAAAAACAJU7YDhgeu+9MPn9RcttnZ4+v2Zw8+4pkbO1A2gIAAAAAAAAAYOlzjCwwPL7wgrlBuyTZeXPyxRf2vR0AAAAAAAAAAIaHsB0wHHbdkdz6mfr6TR+ZPlYWAAAAAAAAAAA6IGwHDIcdNySpWsy5sS+tAAAAAAAAAAAwfITtgOEwuXPQHQAAAAAAAAAAMMSE7YDhsPX7redMjfe+DwAAAAAAAAAAhpKwHTAcrvuH1nPu/Frv+wAAAAAAAAAAYCgJ2wHDYfXG1nOqyd73AQAAAAAAAADAUBK2A4bDTR9tPefilyS3/2fvewEAAAAAAAAAYOgI2wFL35X/J9lzb3tzP3lecvPHe9sPAAAAAAAAAABDR9gOWNqqqeTSN87vms8+oze9AAAAAAAAAAAwtITtgKVt29XJrlvmf1011f1eAAAAAAAAAAAYWsJ2wNK2577OrttxY3f7AAAAAAAAAABgqAnbAUvblo93dt11f9/dPgAAAAAAAAAAGGrCdsDSVVXJt17f2bXf/NXu9gIAAAAAAAAAwFATtgOWrq2XL+z6nbd2pw8AAAAAAAAAAIbe2KAbAGhq27XJHf+ZrD0mSdk/PjWeXPkXC7v3+F3JmqMWdg8AAAAAAAAAAJYFYTtgcdqzLXn/hs6vf9jvJZe9OZnYXj9nYlvn9wcAAAAAAAAAYFlxjCywOH1w08KuP/1XkqdenJz4k/VzLvuNha0BAAAAAAAAAMCyIWwHLD7VVPMd6VpZdfj020Mekpz77sw6fnamWz/T+RoAAAAAAAAAACwrwnbA4rNn68KuP/jB+5+XkqRqPG/FAo6pBQAAAAAAAABgWRG2AzpXVcn3/yj56BnJBzcnF//0wnak23fP775tYfc46b/Ofv/IJzSet+u25J+PTLZ8YmHrAQAAAAAAAAAw9ITtgM5d/ifJ1/97svV7yc4tydV/nXzuwgXe838m3/3dzq5dcVDyqHcmJ71k9vgZr6u/ZvftyX88Lbnjy52tCQAAAAAAAADAsiBsB3Tu6r+aO3bLJ5Lt13V+z6v+T+fXPvuK5OSXzR0fW9P62mv/rvN1AQAAAAAAAAAYesJ2QOfuuazx+JV/0dn9qiq59zud97PikMbja49tfe2tn+18XQAAAAAAAAAAhp6wHdB9u+/o7LrJXa3nPPxPGo8f+fhkdGXj2voTk0POWvjaAAAAAAAAAAAsW8J2QPdtu6az6675m+b18z+ZnPoLydFPm1t7/IebX/uEDzWvb7uyeR0AAAAAAAAAgGVtbNANAEPolk92dt2lb6ivPet7ycEPmn7+pI8ne7YmN/1rsvG8ZN1xre+97vhk3QnJ9mvr50yO1++OBwAAAAAAAADAsmZnO6AzU5P1tZWHzv9+E9ubHz+76vDZ7684KDnhv7QXtNtn87Oa1+/9Tvv3AgAAAAAAAABgWbGzHdCZqd31tTI6//vt2VZfG1mRrN44/3se6AHPTq740/r6xPaFrwEALA+7bktu/niy9XvT7x90WnL0M5I1Rw22LwAAAAAAAHpG2A7ozOSu7t2rmkr+9fT6+mP+b3fWOfopyckvT67888b1yZ3dWQcAGG73fjf59PnJrltnj6/amFzw6eSQMwfTFwAAAAAAAD3lGFmgM90M2932+WT87vr6xsd2Z50ykjzyHfX1yR3dWQcAGG6XvGpu0C5Jdt+efO0X+98PAAAAAAAAfSFsB3RmqlnYrprfva55T/P62Lr53a+ZUqZ3nWlkws52AEALU5PJ7Z+rr9/xxWRyvH/9AAAAAAAA0DfCdkBn7vhKfa2aZ9ju6nfV18Y2JCsOmt/9Whld03jcMbIAQCvVRPMdfqf2JFO7+9cPAAAAAAAAfSNsB3Tme79bXxu/q3vrPKzJOp0aE7YDADpUTbUxZ7L3fQAAAAAAANB3wnZAZ5rt6DIfu+9sXj/+x7uzzkx2tgMAOiZsBwAAAAAAsFwJ2wGdWXV48/rE9vbuc8unmtdHV7V3n/kQtgMAOtXWznZtzAEAAAAAAGDJEbYDOnPQg5rXd9/R3n12bmleH13d3n3mQ9iOxWZqcvoBwOBNTSYTO5LJ3cmercme+2bXHSMLAAAAAACwbI0NugFgSE20GVzbc2997YzXdqeXA42ubTx+3xW9WQ/qTOxMvvYLyY0fnA5mPODZySP/PFmxftCdASw/E9uTf6z593f9Sclpr0pO+4U4RhYAAAAAAGD5ErYDOjOysnm93V3iLntzfe3s32m7nXkZq9nZ7vr3J1N7kpEVvVkXDnTxS6a/7va59v8mu+9MnvSxwfUEsFzVBe2SZNvVySWvnA5DP+DZre9173eTtQ/oXm8AAAAAAAAsCo6RBTrzyHckL2gSqGsnbLfrtu71Mx/Njn+7/Qv964Plbfze5IYPzh3f8vFk5y397wdgOWv3Z5Kr39PeMbLX/f3C+gEAAAAAAGBRErYDOjeyKklpXGsnbHfvd7raTttu+VR97Y4v968Plrf7rkiqica1u77e314Alrsb/6W9eVu/194Rsde8e0HtAAAAAAAAsDgJ2wGdKyUZXd24Nrmr9fXbru1qO23bcHJ9bWq8f310w84tySX/PXlvmf349lsH3RmtTO2ur7UT5ACge/Zsa2/erluTfzuz9bxqKvn3RycTbfzyAQAAAAAAAEuGsB2wMKNrGo+3s7Pd9mu72krbDj27vrb9uv71sVC770w+9YTk8j+aW7v0Dcmlb+p/T7Rv+/VNatf2rQ0Aknzj1e3P3X1He/PuvDj5x7XtHTsLAAAAAADAkiBsByzMUgzbNXP9+wfdQftu+Ofpo0jrfPst/euF+bvyz+trV7+rf30ALHe72gzPderOr/T2/gAAAAAAAPSNsB2wMCvWNx7fdWvra5vtInfkEzrrpx2bf7i+tvExvVu329p58b7dY/Hov7qgapKs3tS/PgCWu7su6e39v/v23t4fAAAAAACAvhG2AxZm3QmNx5vtuLbP1u/V105+WUfttGXzM+prO27s3brddvO/tZ7zyfOS95bpx1denmy/ofd90Z77rqyvVXv61wfActfOLwgshJ3tAAAAAAAAhoawHbAwG05pPN4qbDd+T7Lrtsa1VYcnx71gYX01M7oqOfxRjWv3fie576rerd0tl/56snNL63n3XLr/+ZXvTD50XHL3N3vXF+2Z2Jlsa/J11s4xzAAs3K47kotf0ts1dt6UTO7q7RoAAAAAAAD0hbAdsDCdhu2++7v1tfM/k4yMdt5TO5qF+b79lt6uvVDbr0++/ZudX//N13evFzpz1f9pXp8QtgPoiyv+rHn9se9PzvuH5Jw/Tk55Refr3Pihzq8FAAAAAABg0RgbdAPAElcXtttxYzKxIxlb27jeLIy3/oQFt9XSioPqa7d+uvfrL8St/7Gw67d8LKmqpJTu9MP8bbumeX1yR3/6AFjubvpI8/pxF+1/vvOW5Io/7WydWz6dHN/DXXsBAAAAAADoC2E7YGHqwnbJ9DGZh5zZuLbnvvrrmgXhuuXIx9fXxu/t/frt2LMtue59ycT25KDTk/G7p8evfOfC7z01Pn2cLoOxp8XXmGNkAfpj25Xtz12zafrnnla79zZy3XuTR74jGfGfXwAAAAAAAEuZV3uAhVl3QlLGkmpibm3rD+rDdrd8ovH4EY/pWmtNHXRqsu74ZPt1c2sT9w1+57cbP5x87rm9u//kTmG7Qbr7683rjb4uAeiu8bv3B9kbWfOAuWNnvy35wgsa/9zTzMT25O9XJD/8g+SgJr+oAAAAAAAAwKI2MugGgCVuZCxZf2LjWt3OL7d/qf5+xzxn4T2169z31Ndu/GD/+jjQ+D29DdolyS2f6u39ae7ubw66AwC21AT/91l/0tyxYy9MnvLF5IxfTY69aPpxxuuSp301ecGu1mv+64M66xUAAAAAAIBFYaA725VSSpLXJFk9Y/hvqqq6doH3PTHJT8wY2lFV1e8v5J5AE3VHqtWF7W7+aP29Rtd0p6d2jK2rr93wL9MvqA/CTR/p/RpbPpEcd1Hv12Gudnet23V7snpjb3sBWM46OQ42SY541PSjkTN/M7nsTfXXVlPJ9huSdcd2tjYAAAAAAAADNehjZH88yduSVHvf/8BCg3ZJUlXVNaWUM5Pcn5QppVxdVdUHFnpvoIENpyb5t7njdS9i79xSf6/DHt6Vltpy8On1tWbHyvXSrtuTb76us2uPe35y/fvbm1vt6WwNFm7nLe3N23Z1suqIwR5nDDDMJnZ0/56HndN6zl1fFbYDAAAAAABYogZ2jGwpZSTJb+57N8kVSV7SxSVemuSqvfcuSd7axXsDM204pfF4Xdjuhia518PPXXg/7Wq2s92O6/vXR5Jc/e7kvSX5wJHJzpvmf/2Kg5Mzf6P9+RM7578G3THZZrjjE+cmHzouueKdve0HYLnac0/373nU+cnBZzSfs6OD7/MAAAAAAAAsCgML2yV5cpITM72rXZXkdVVVdW17iaqqtid57YyhU0sp53fr/sAMdWG7Xbcke7bOHrvnsmTPvY3nn/iTychod3tr5cw3Nx6/59L+9XDb55KLf2p+16w+Mll9VLL2mOTYi5ILPjO9U98Ldidrj2t9/fX/0FmvLNxlv9l6zj47bky++vLpY40B6K4r/qz79xxbk1zw2eZzLvnF6eNkAQAAAAAAWHIGGbZ78Yznl1RV9cFuL7D32NhLZgy9qNtrAKkPc8IFfwAAIABJREFU2yXJfVfOfv/6f6qfu3pTd/qZj2a72239QX96uPrd85s/ujq58NbkwluS592QPO79+4+tG12ZPO+65Mer6ccZv9r1dlmg2z47/2uEIwG6a3K8d/devTE58onN59x1SfM6AAAAAAAAi9Igw3ZPn/H8r3q4zr57lyTP7OE6sHytPTYZWdm4duBRsnVHyybJhgd2r6d2rW+y5oFBwV65+l3zm9+s5wPt3NJ4fPWR81uT7hldM/9rrvv77vcBsJzturW39z/mec3r/foZAwAAAAAAgK4aSNiulHJ8kiNmDH20h8vNvPeRpZRje7gWLE8jo/UBsAPDdduvrb/P5h/uWktt2/SU+trk9t6vP7l7/tcc/8L25x7x6Mbj43fPf10WrqqSyZ2D7gKAdv4tLqXz+x/z3Ob1+exYOrkr+davJR9/RPKhE/c/PvzA5PMXTR9HDwAAAAAAQF8Mame7s/a+rZJcVVXVTb1aqKqqG5PM3Dri7F6tBcta3VGyl75x//M9W5M7vtR43sbHJms3d7+vVlasr6994cd6v/7nL5rf/NNelTz49e3PX39S4/GpPfNbl+4QtANYHLZ+v7f3X39Ccv6n6+s3fii5/v2t71NVyecuTL7z29NHz26/dv9j29XJDf+cfOapAncAAAAAAAB9MjagdTfOeH5zH9a7OcnJe587OxF6oS5sN9PNH6+vHXVB93qZr1Ubk923N65N7kpGV/dm3a1XJDe32Njz6ZckZTQZW5esOz4ZWTG/NZodWXrvd5ODz5jf/ViY2z4/6A4ASJKr/qr3a2w6Pzn0Ycnd32hcv/xPkuOe3/weWy9Ptnys+Zyp3ckVf5Yc+fjO+gQAAAAAAKBtg9rZ7tAZz2/pw3oz1zikD+vB8tMs1DU1Of32rq/Vz1k9wBxsXdAumQ6k9cpdl7Sec9g5yaFnJRtOnn/QLklWH9Vk/ZoX/+mdbVe2ngNAH1Stp5zwEwtfptnPN3d+tfX1zX52mu+9AAAAAAAAWLBBhe1W9rmHmWus6sN6sPwc8ej62tSu6bc7mpwYvfnp3e2nWyZ39e7e93yreX3zMxe+RrMdB6d6+LHRWC+/ngBo39R48/rIita7zrXj6Gc06WF3sv265tff3uaOqNuuar8nAAAAAAAAOjaosN2OGc831s7qnplr7KidBXRu3bH1tW3XJrtuT657b/2c9Sd1vaW2Hf6o+tonz+vNmndcnHz3bc3nnPvuha9TSpMevrTw+zM/l75p0B0AkCSTO+trIyuSx/5TsvLgha9z6s8na4+rr3/ohOTe7zeuXf/PyZV/0f5a3/jVebUGAAAAAADA/A0qbDfzWNfj+7DezDVu7cN6sPw0O0b28j9OrvrL+voDf6b7/czH6Orm9Z09OO36W29oXn/hnmR1l7LIhz288fhVf9Wd+9Oe8XuSSXlvgEVhoiZst/G85MLbkmOe0511RlYkT/hQ8zn/+aK5Y1WVfOPV81vre29Ppibndw0AAAAAAADzMqiw3b5zjkqS40spJ/dqoVLKA5Oc0GBtoJtWHFRfu+ey5NbPdnZtPxx1fvP65X/c3fWqqeS2/1dfP/KJychY99ab2tO9e9G527846A4A2Gdye+PxY5+frDyku2utaLFD3t1fnzu2/brWR8w2cttn538NAAAAAAAAbRtU2O5bScaTVHvf79LWEQ09b8bzPUm+2cO1YPlafWR9rZpM9mytrx/1pO73Mx8P/Onm9S3/3t31Jncl1UR9vdufj7owY+lioI/Wmv0dAKC/xu9uPL7y0O6vte6E5kfJNtLp94yr/trudgAAAAAAAD00kLBdVVXjSf5fpne2K0n+RyllXbfX2XvP12Q61Fcl+dzetYFe2PzMxuN3fS2588v11216am/6adfaY+qPWk2S3Xd1d72JFkeJnvLy7q532i83Hq8m7HrXT5f9+qA7ACCZPqJ1952Na6sO6/56pSQP/5/N5xz4s8FkzTG3rVz33uRfNid77uvsegAAAAAAAJoa1M52SfK+vW+rJBuTvL0Ha7wtyZGZDvQlyXt7sAawzzE/Mv9rHv6/ktGV3e9lvp7w0frajuu7u9bNTdZ62lea7xLYibXH1teu+ZvurkVjd38zue+KxrW1xw5+d0eA5WRyRzJV8/s3Kw/vzZrHPq95/Yo/n/3+fT+on/uw32t+r123Jd9+S3t9AQAAAAAAMC+DDNu9N8mWvc9LkpeXUl7frZuXUl6b5BXZf1TtrRG2g94aXTP/a1Ye3P0+OjHSx8DfrZ+tr63Z3P31xtbW127+ePfXY66r/qq+trIHuygBUK9uV7ukNzvbteO6981+f+v3G88rY8mGU1rf73stAnkAAAAAAAB0ZGBhu73Hub4u00G7au/bt5RS/r6Ucmin9y2lHFJKeW+St864b5Xk9Y6QhR5rdhRr7TWP7H4fnWj14vpdlyTj93ZnrWqyvtaLsN2GU+trE9u7vx5z/eB/19fu+Vb2b8AKQM+NNzkevpcB6Ic0OU78vitnvz+2rvG8aiLZ9NTu9QQAAAAAAMC8DHJnu1RV9TdJPpTZgbvnJ7milPL2Ukob2zZMK6WcXEp5e5Irkrwg+5MLVZKPVFX17m72DjRw8IPmf81Bp3W/j06taLLL3scfkfzTIcmnnpCM37Owda79u/pa6UHoqtkxvXd8qfvrMT8n/dSgOwBYXnY3C9t1/Ds/rZ38M/W1Pfck3/md6edVlVz2G/Vzx9Ykh5zV3d4AAAAAAABoy0DDdnv9RJKvZXbg7rAkr07y/VLKjaWUD5RS3lpKeU0p5b/tffxKKeW3Sin/XEq5Icnle685/IB7fT3JiwfwcQGtbP7h3oTLOvXIP2s957bPJV98YedrXPu++tppr+r8vq2c9dbG43vuSfbc17t1aW3jeQsPcALQvjv+s/H4ioOTkbHerbv2mOSCz9bXv/X65OaPJdf9QzJVsyH30U+ffvuMbySbn9V8vakmO+kCAAAAAADQkR6+mtSeqqq2lVIuSPLuJD+S6ZBcsn9nus1Jnrv3UWdmWmfm9R9K8pKqqrZ1rWGge1YeMugOZhtd0968Lf8+vStOq6NnG7n+H+prY22u34nRtfW1LZ9IjvvR3q1Nc6Nrkru/PuguAJaPu2r+zV11eO/XPvJx0//uT+5sXL/+H5OdW+qv3/ezSinJEz6SvK/J707defF0oBsAAAAAAICuWQw726WqqvuqqvrRTO9MtzP7d6bb98jesUaPHDC3JNmV5H9UVfUjVVVt7dfHAczThlMH3cFsB82jnx3Xd7bGtqvra738fDS7d7Oe6L31Jw26A4DlZdURjcf78f2wjDQ/Anbb1ck9l9bXZ/6sUsr0bnx1tl83//4AAAAAAABoalGE7fapquqPkhyf5K1J7snsUF1V85g555691x5fVdXv97t/IMkZr21/7nEX9a6PThx0evtzP/aw5NPnJ9e/f35r3HNZfW3zM+d3r/k46kn1tbrddei5Las35C93/7+87syn5jVnPT1vOeNJ+cADzsiesqi+PQMMl7suaTzebBfYbjr5ZfW127/YfGe7435s9vunv6Z+rmPiAQAAAAAAum7RvZpfVdWdVVW9McmmJI9P8sYkH0/y7SQ3J9m997Fl79i/J3lTkickObqqqjdWVXXHIHoHkpz9O0kZbW/uwfMIt/VDKcnpv9L+/Fv/I/nCjyXX/WN78y//3/W1016VrN7Y/trzNbYmWXdC49r3fq9361LrzpVr8oennZdvbPtS7l25JtvHVmXLmoPyqU2n5K9PfMSg2wMYTtuvqz+6+6SX9KeHk16arD22ca2arL/u4f8zOeyc2WMPfn39/K++fN6tAQAAAAAA0NzYoBuoU1XVniRf2PsAlpInfSL5zAWD7qIza4+f/zVXvCM5/sfamNckbLfxMfNfd74OOTPZfu3c8YltvV+bOS459AHZPraqYe1bhx6de1asziF7dvW5K4Ah1ywg36+d7UpJHvKG5Cs/O49rxpJTfr7xvQ57eP1ufTu3JGuO7qxPAAAAAAAA5lh0O9sBQ6CdF3XPfnvv++hEJy9I3/2N1nMmdyVbL6+vr940/3Xna3J3k5pQV7/dsPbgpvUb1xzUp04AlpFm37PX9OF78T6r5/nzRjWRjNT8nlSze91Vs4sfAAAAAAAAHRG2A7rvoAcl609qPuekn+pPL/O16cnJSOPdxmrt2Zrc8MGkqurnTOxofo8jzp3fmp3Y+Nj62uTO3q+/nB0+9893fKT5cctVKb3qBmD5avb9bvOz+tfHpvPnN3/9A+trD/jh+tp9V85vHQAAAAAAAJoStgO6r5Tk8R+q363tEf87WX1Ef3tq18qDk8f/y/yPkvv8hcmlb6ivT2yvr537nvrdarrpuOfX1yaE7XqqQbBuvMWfeRVhO4CuqwvbrdqYHHx6//oYW5cc8tD25z+kyc8YD/yZ+tp3f7v9NQAAAAAAAGipD+kOYFk65CHJ865P7vxactclyR1fSg59aHLKK5IV6wfdXXObn5786B3TPU/cl3zuee1d9923JQ/678mqw+fWbvts/XVHPbGTLudvbE19bcoxsj3VYGfDVjvbTfWqF4DlrC5sd8rP9bePZHonvXsubW/uygY/W+wzMpqc/LLkyr+YW9t12/TOu3ZLBQAAAAAA6AphO6B3RlYkGx89/TjtFwbdzfyMrZk+4m1yHiG0aiq5/T+TY549t3bfFfXXrTh4/v11YmR1fc3Odr01ftfcIcfIAvRf3fe70SaB9F5Zecg85rb4WWH1UfW1nVuStZvbXwsAAAAAAIBajpEFaGZ0dbJmHi9QT9zXeLyarL+m1Qvo3WJnu8GY3JVsv37OcMuwXa/6AVjO6na2G0TY7qjz25s3ti45/FHN52x8XH1tYlv7PQEAAAAAANCUsB1AK0/4cPtzG4SqktTvpLNiHrvaLFSzIMH43f3rY7nZdnUaRefGR5pvLmtnO4AeuPfbjcebBdJ75bCHJ6e22Pm3jCSP+NPp8H/Te51TX7v9C/PvDQAAAAAAgIYcIwvQymEPT553Q/KN1yQ3/1uy6anJDf/UeO63Xpc8+LVzx+t20tn05O712UoZm37RvpqaW/v+H/e3l+Wk5gjh1jvbCdsB9M0gdrYrJXn4nyTHPC+59bNzd8ddvSnZ/PTk0LNb36tZ/1/+6eSB/3VBrQIAAAAAADBN2A6gHWuPSc573/73/+2s5J5L279+MRxbV0pSViTV7rm1bVf3r4/lZvt1DYfHRx0jC9BXe2qOek+mA+mDUEqy6YLpx0K02vlux43TP8sAAAAAAACwII6RBejEnq2Nx8fWNx6f3FEzf213+mnXVIOgXVLfNws3sW3O0GRKJkvzb8FTjpEF6K7xe+pra47uXx+9UEaSDafU13ff2b9eAAAAAAAAhpiwHUAnTvulxuMT25Lxu+eO1+2m0+9j6zY/s/H4tqv628dyMjF3V8NWR8gmjpEF6Lq64HuSbDi5f330ypm/UV+baPKxAwAAAAAA0DZhO4BOHPaI+toX/8vcsS0fbzy332G7Y57beHz8rv72sZxc+7dzhtoK28naAXTX5X9SX+v39+NeOP6F9bVr/qZ/fQAAAAAAAAwxYTuATow1eVF+y78ne+YeHdpQv1/cb7be9hv618dy0uDoPjvbAQzAzR+rrw1D2K6UZHR149pt/9HfXgAAAAAAAIaUsB1AJ9a3OG5u1y2z3x9b13je7tu600+7mvW94/r+9bGcHHLmnKHdo2MtL6t60QvAcja6skltCMJ2STK5q/H4ikP72wcAAAAAAMCQErYD6MTKg5Ojzq+vT+zY/7yqkontjecd9aTu9tXKET9UX5vc2b8+lpM9984dausY2QN2tqumutURwPK09fLG4+uOn94VbhisO7Hx+J0X+z4CAAAAAADQBcJ2AJ167Pvra9//g/3Pp8br560+qnv9tKM0+Wd/QtiuJ+797pyhdo6RnTrwGNm63YoAaG3nlvraWb/Tvz567Yz/UV/7RpMaAAAAAAAAbRm6sF0p5eGllItKKc8upbQ45xFgAVYeUl+75m/2P9/e5HjWQRxbt+rwxuN2tuu+8XsaDu9ua2e7Awa2XdWFhgCWqRv/pb5Wd9T7UtTs54or/0KwHgAAAAAAYIEWbdiulLK6lHLSjEfTZEIp5TmllGuTfCXJPyT5lySXl1K+UEo5ow8tA8tNs13iZtp5U31tzdHd6WU+6l6It3Na9937vYbD7exsVx24s92OJl9HADR3zd/W10ZW9q+PXlt7TH1t4r7kviv61wsAAAAAAMAQGht0A028Oslv7n1+Y5IT6iaWUn4syXuTlL2PmR6T5MullCdWVXVJD/oEaOy9JTn83GRqd/2cxRS2237N9Nvxu5Mr/iy565Lk0IclJ788WX1E//obJlONA4x7Rlp/+50Tthu/qxsdASxP93y7vtb8d3qWlo2PTVYclOzZ2rh++R8l576rvz0BAAAAAAAMkUW7s12S52V/cO6vqqqqGk0qpRya5J3Z/7HMnFftfaxL8oFSyuoe9QrQ2J0XJ3d/Y9BdzDZa80/hZW9Otl6efPr85Fu/ltzwgeTSNyafflKyW9CrIzVhh46Okb33O11oCGAZ2rN1ele3Ou3uVLsUjK5Kzv9Uff3qd08/AAAAAAAA6MiifGWplLImydnZH5z7aJPpr0xy8N65JcnNSf5Xkj9Kcn32B/aOSfKLvegXoCOD2NUuqd/ZLkk+9yPJ3d+cPXbvt5Pr/7G3PQ2rLZ9oODy+Yn3LS+fsbHe1nYgAOnLDB1tMODDdvMQd/shk05Pr6xf/VP96AQAAAAAAGDKLMmyX5Mwko5l+5Wt7VVVfbzL3xdkftLs8yUOqqvqlqqpevfc+X907ryR5ac86BpanQ87s/NqVh3avj3mte1h9bev3Go9//dW96WXYrdjQcHi8Gm956dSB2Y9DzupCQwDL0O1fHHQH/bfh1Ob13Xf2pw8AAAAAAIAhMzboBmqcuPdtleS7dZNKKQ9KcnL2Hxf7pqqq7t1Xr6pqWynllUku3jt0Winl2KqqbuhN28Cy84h3JJ96XGfXbnpKd3tpe90nJ1s+Pr9rJnf0ppdhV001HB5v5xjZA3damtzVjY4Alp+7vtp6zrA55nnJFe+or3/r15K1xyalJBlp8bbsPWq3nbcNrq+bW3efbq5d10u792t37Vm9AwAAAAAAw2yxhu2OmvF8S5N5+xIuJcl9SeacEVVV1VdKKTdm+hjZJHloEmE7oDs2ntf5tQ9+fff6mI+Tfzb5xq8MZu3lZuvlDYfH125ueemcsN2Bx/sC0No1f7s8//3cdEHz+pXv7E8fy1Kr4N8ggoMLCBA2DEEu5TBkN8KlbXwM7X4svfja6PjPZ99bAAAAAACaWaxhu7Uznt/XZN6+lEuV5NNVVU3UzPt29oftjltgbwD7lZKc+ebksjfP77ojHp2sPrIXHbW2Yn1y1lund7Wht276cMPh8ZUHJZlseml14Gude+7pTk8Ay8XURPKlnxx0F4NRRgbdwTJWJVWVZGr6v1JhqVmMQcyFBhIXtMPmIglDzvfPpR9/PvMN/fb8a0NYFAAAAID+WKxhu5n/h2xFk3mPmfH8803m3Tnj+UEddQRQZ+0xreccaPVRref00uja1nPomfE2Xgeas7NdMn0srQAFQHvu+NKgOwBYeqqpvW+b/2IILE49DmJ2uitl13fYnMfHNNAwZJc/lnmFS7v8sfTq8zlrPgAAALBULNaw3czd7BomUkopm5KcPGPoP5vcb+bH6f9eAN21+Znzv2Yhx892w+iawa6/HFRVUkYbvlA5XlpvdTNnZ7skmdyVjAlKArRl2zWD7mCwNpya3PeDQXcBAH1U7f/vL7uLsuS0Cv51KUA43+BguztsDnIH1Hl9TB18LIsxKNvTHWXne799bwEAAJaPxRq2u2nv25LkzJo5M9Mtu5N8vcn9DpnxfPsC+gKYa83RyYkvSa55T3vz15+cnPDi3vbUyuGPGuz6y8HUntodQcbXHJVMbml+eaNs+MQOYTuAdu24YdAdDNZj35987KxBdwEAQFscRc8StxiDmI6ib39uP/98OgqX9vJrQ1gUAID5W6xhu0tnPD+slPK0qqr+/YA5P7X3bZXkK1VV7Wlyv5NmPL+lGw0CzHLuu5JDH5Z8/Zdnjx/28GRs/fTzkZXJEY9OTnl5smZT/3ucqZOd7e79XnLw6d3vZVjtqv92M15GWl7e8BjZq/4iefDrF9IVwPJx6RsG3cFgHfrQ5Bnfmh24G12bHHZOpl/Mndr7gu7e5+28nXVd3dt53K/VfQAAgKXBUfQsaT0OYna6K+Vi3mGzb2HIJR6U7dXnc9Z8AGAQFmXYrqqqq0opV2T6mNiS5B2llCdXVXVNkpRSXp1k5hmMH6q7VyllfWYfN3tVD1oGlrtSkgf90vRjKRjrIGx300eE7eZjyydqS+P5/+zdd5xkVZn/8e+pzmF6ch4mAkPOSJYM4ioIKiAmzO4aWVdXXVcU/RlWMaBiREURQQyYkBwEhjggzMBEYHLOMz2d6/z+qO7p6up7Tt1bdau7wuftq19ddc655zxdXV09Uk8/T/b/8BjYRnbNX0m2A4AwOraFX1vO/2Fy9BHSFSWctGYDEv2yJe/FmjgYJYEw4LpsZ2d+jvPsuJIhoz6eeX8tEb6mqM+NbN+XuL8/AAAAAEqEFa3oUbqyJf7FlAwZNXGwIBU2SzEZssgSZWlFDwCxKcpku14/k/R1pf5pO0vSYmPMc5ImSNqvd9xIapd0k2efM3rXSVK3pBcKFC8AlI6GqdGvqfR2fFF173ZOdSqZ9fLAynb8dTAAhNO2Lvxay39JL1rGSKZquKMAcrMvGW8YkyFDJQzGlAwZNXkx1wqbsT+eMXwtxZgom+1ryroPAAAAgNKQ/v8BhjsWIAexJGLGnTiY575DVmGzgMmQsSbKxvS15JRcGvPjaKp61wPFnWz3XaVaxc5V6p8HNZKOlfZlH/T+10F9y1q72bPPxWnrn7PWdhQmXAAoIYlqqWWutGtJ+GuWfl/a+pR05FekSWcVLrZy0b3XOdXp7XyeYoP+oqenNZ+IAKBybLh3uCMAUOn2/Qc9SSJpFCVmQLJokSRDDnlyaYivIVKFzQhnh/oahisRM+LXEulriuu5xrvMAAAAQMno+4Mvik2gFJz+d2nqa4c7ChSJok22s9Z2GmPOl3SnpL6+hUap/2LS+1+t9QdJV7v26G0h+0b1/1eW+woWMACUmmO/Jz1wXrRrtj4hPfha6fwnpNFHFiaucvH854LHx5+mzhB534H1JHa+mFdIAFARdi6Wnrkq/HraFQAAMNCAZFGgBJV6MuSQVdiMkigbcb+oiZhD+bVEfW6E/Zri+v4AAAAAKE68l4A0RZtsJ0nW2tXGmKMkvVvShZJm9E4tlnSztfaPWba4UlJL2v2/xx4kAJSq6qbcrkt2SCtvIdnOx9OS0NaMUGeyPfsWrne2kj1SguooAOC06tbhjgAAAADDiVb0KGWDkvGKIBmSVvTh9i2HRNm8vz8AAADljBay6FfUyXaSZK3tkvTj3o+obpD067S9dsYVFwCUvKbpuV/74teko74aXyzlpsfdQranp0NJ1WTdwrr+OKJzq1Q/IcfAAKACRK0COvqYwsQBAAAAAFHtqy7KG3koQbSiD/c1Ra2wWRaJmDl+LaG+Lzk+N2hFDwCIisp2SFP0yXb5sNa2SWob7jgAoCg1ThvuCMpXt/tXT+eU8yTNy7qFs7JdD7/WAMBr3R3h105+jVQ7snCxAAAAAABQKWhFj1JXrq3oIyWXxpzYGenxzCERM7ZE2bi/lghfk/e5FeFrAVB4/EEM0pR1sh0AAMOie5dzqnPy2dLGEMl2rr+O8CTyAUDFW/MXqXtPuLUTXi2d/JvCxgMAAAAAAIDSQCt6lLJcWtEXOhmykFUp86qwGXMiZlm2oh/q70+p4C8K0I9kOwAA4rb+HudUZ8i/enD+HRKV7QDA7cWvu+dmXymd8HOpfaMkKzVMHqqoAAAAAAAAAKBwaEWPUjagFX2RJEMGzY06bGgfFxS1kky2M8ZMkzRb0hhJIyQZa+2vhjcqAChBM66QVt483FGUn/aNzqnO6rpQWyRdfx3RvimXiACg/FkrbX3cPT/muNR/dGqYNHQxAQAAAAAAAAAAtwGt6KkwitJQMsl2xpgZkq6SdKGkGQFLBiXbGWNOk3Rm793t1trvFS5CAChB09+Ue7Ld9uek0UfGG0+5SHYNGuoyCb3QMkH3bw3XstC6KhHvWS7p/NxjA4Bylezwl5yfdN7QxQIAAAAAAAAAAICyVPTJdsaYhKQvSfqkUmmsQekHrm57WyR9oW/eGHOHtfalAoQJAKVp6oW5X/uPo6RTbpFmXBZfPOVi1+IBdzsSVfrRnBO0pGW81PZCqC2sq7Ld8h9LB34o3wgBoPzsecU9N/NtUssBQxcLAAAAAAAAAAAAylJRN+02xtRIulPSpxWcGOhKsktNWrtI0gPqT9C7ItYAAaDUJaqkA/JI3Hryg4FV3Cre6t8PuPvUmGmpRLsIrHEk2+1YkGtUAFDeFnzBPXfoZ4csDAAAAAAAAAAAAJSvok62k3SDpHN6b1ulkuYelnSNpM8puMpdpj+k3aZ3FABkGnV47td27ZC2PRtfLOXCVA24u3hEtEQ7KUs2+d61kfcDgLK39Un3XHXz0MUBAAAAAAAAAACAslW0yXbGmLMlvU39SXYvSXqVtfZ0a+0XJP0m5FZ/79tS0vHGmPq4YwWAkjbjskHJYZF07YgvlnKRkdSxt7om8hbONrKS1MljDgCSpGSPtPVpaccL/kqrjdOGLiYAAAAAAAAAAACUraJNtpN0de9nI2mlpJOttU9H3cRau1JSX1ZCjaSD4gkPAMpE7aj82uv98yKppzO+eMpB184BdzsT0ZMZk642spK0/q7I+wG0xh1nAAAgAElEQVRA2dm9XPrrHOmu46U7DpPaHFU/p10s+V5TAQAAAAAAAAAAgJCKMtnOGDNG0slKVbWzkj5mrd2Sx5Yvpt0+MJ/YAKAsHf5F6bQ/SdPfLFU1RLu2p11a/M3CxFWKkj2DhnJJtvO2kX32E6nHHQAq2cNvlFpXZl83592FjwUAAAAAAAAAAAAVoSiT7SSdqlRsRtJma+1f8twvPVFvQp57AUD5MUba7w3Sqb+TLtsb/fo1f40/plK1e+mgoc5EdeDSyyd+UKeMPDdwzmarwrTpn5FDA4Cysfslacfz4dZGTSIHAAAAAAAAAAAAHIo12W5y72crKXLr2AC70243x7AfAJS3w6+Jtn7X4sLEUYo6tg4aclW2qzV1Mo5fxd7KdpLUtj5iYBH0tEtde6TutsBKfQAw7KIkHI86onBxAAAAAAAAAAAAoKIUa7LdmLTb22PYL72cRVcM+wFAeZv5FqlmVPj1XTukvx0krf5T4WIqFT2DKwN2uZLtEnUyjgp2Vlkq2wWck7e2jdLNRrq1QbpthPS7RumWaumJ90vJ7vjPA4ChUD9+uCMAAAAAAAAAAABAmSjWZLtdabdHxLDfxLTb22LYDwDK24j9pXMekKZdLDXNkiZfIE06x3/NriXSI2+WNj82NDEWqz0vDxpyV7arVcJV2S5bG9mFX44cmpe10p8mBc+99FPp2U/Gex4A5CPba2Sfo68tbBwAAAAAAAAAAACoKMWabLc57fYB+WxkjKmSdHTaUAH77gFAGRl9lPTqP0oXvSydeYd01j3SGXf6r7E90srfDk18xWrTQwPuJpWlsp2jgl2y78bYE4PPaVuXW3wuO1/0zy//ES1lARSRkMl2NS2FDQMAAAAAAAAAAAAVpViT7Rb0fjaS5hpjpuWx1wWSGntvW0mP5xMYAFS05tnZ1+xaUvg4ilnjwF9ZrkQ7Sao1njayfeOdjoKsibqcwnNa/hP/fE+71L4x3jMBoNCaZw13BAAAAAAAAAAAACgj1cMdQBBr7SJjzFpJU5VKuPuEpKui7mOMSUj6bN+2kp6z1u6ILVAAqDQtIYqN9rQVPg6fjQ9Kj18pta7sH5vyWmnmW6WZVxT+/K49A+66WshKfZXtHG1k+25MPl/avXTwgmSHZJOSySNvvnNHqh3tpoekbU9nX7/9WalxSu7nlbuND0gPvEZKdvaPjTpcmniWtPWpVLLqgR+SxjmqFQKI3/jThjsCAAAAAAAAAAAAlJFirWwnSb/p/WwkfdgYc24Oe3xFUvo72j/NOyoAqHSHftY/v/nhoYkjyIZ7pfvOHJhoJ0nr7pDmvVVacl3hY1j+owF3vcl2xt1G1vaNz3iL+6z2ze65bHo6pPvPkRZfGy7RTpIeep20Z0XuZ5azDfdK9501MNFOknYskJZ8V9oyT1pxk3Tf2dIWiuwC+QvRRnbaG6Sq2sKHAgAAAAAAAAAAgIpRzMl2/ydpl1LFfaok/dkY8/4wFxpjxhljfinpk+ovDrRB0s8LECcAVJbmOdnXJLsLH0eQbMl0i76RqgZXKG2D26z6ku1qEp5ku742stUN7vPW/DFSeANsfEDaNj/6df/6VO5nlrPF3w23rmevtOyHhY0FQMroo4c7AgAAAAAAAAAAAJSZok22s9Zuk/RRpcpWWEn1kn5ojFlmjPmqpAvT1xtjXmWMebsx5teSXpL09t5rjaQeSe+y1maUmwEARFY/IfuaPS8VPo4g6+/yz+9dI7WtK9z5K349aKgrS2W7hKMN7L42snWex3vXkgjBZdj6ZG7Xrbot9zPL2aYHw6995VcFCwOoGCZEZbv68YWPAwAAAAAAAAAAABWlergD8LHW/soYs7+kzymVd2AkzZGUWVbHSHos475Nu+Yz1tq7Cx8xAFSACWdIiTop2eFe091amLO3PJ5qCVs7JtUesHnmwPnMFp5BOrZJjdMKEp5aVw8a8raRTdQ6K9sl+xJJGqe4z+vxfA+y6dmb+7UYrHvPcEcAVJgQyXaTzy98GAAAAAAAAAAAAKgoRVvZro+19vOS3iWpvW+o93N6Ql1fUp1JW2MkdUp6p7X2m0MWMACUu5pm6dRb/WvmvS3+dq3LfyLdfZK08EvSM1dJdx4jbXs2bf5n4fbZ8Xy8cWXhSrarUrWqTLWM41exTU8kGX1U8Oab/5l7YLm0kO3TviX3a8tR24bhjgBAkObZwx0BAAAAAAAAAAAAykzRJ9tJkrX2RkkHS7peqaS7vgwEo4FJdn1jSUm/knSwtXZwTz8AQH6mXSRdstk9v2uRtO2Z+M7raZfmf2zgWOd26bnP9s53SE9/ONxez38uvrhC6EgEF5GtTdRKkoyjFaJNvzP2hODNd76Ye2Ab7nXPjTjAf+1LP8393HK0+NvDHQGATA2ThzsCAAAAAAAAAAAAlKGibiObzlq7StKHjTGfknRq78d+ksZKqpW0RdJGSfMk3Wet3TFcsQJARagfJ9WMlLp2Bs9vfEAae1w8Z63+YyrhLtP6O1Oftz3tb2ubztTEE1OQgMQ6V2W7WlOXCsfRCtEaI1U3997xVAm0ScnEmDu/35uk026Tbva0aNz4gHToZ+I7s9RtenC4IwCQyfYMdwQAAAAAAAAAAAAoQyWTbNfHWrtX0t29HwCA4TThdGntX4Ln/vUpac3t0kFXSdMulhxJZ6HsWOCf79oVfq/2jbnHkU3duEFDXa5ku0Qq2S7hbCMr6djvpu7UT3Sf2dMhVTdEiTIlURecoFhVn/o8533uCnauBMtK1d0a/ZotT0pjj5cclQ0BZJPlZyfg9RgAAAAAAAAAAADIV0m0kQUAFKnDr/bPb5knPfJm6ZZqqX1L4eLwtUTN1L1bWv6TwsTRvWfQkKuyXU1fZTtXG9makdL0S1N3pl3oPrOnLVqMUqoanqsS4Iy3pD4f9VX39VuflHo6o59bjnrapZ0vRL/u7hOk34+Wkl3xxwRAOuzzwx0BAAAAAAAAAAAAyhDJdgCA3I05Rhp1ZLi1f55emBiS3dLib0W75skPSLuWxB/Lsh8NGnK2kU3428gmRx4i1fS2ka1pcZ/Z10o3ii2Pu+fqxvR+Hisd9TX3uqXfj35uOVr0zdyv7dqZ3/VAJctWFXLUEUMTBwAAAAAAAAAAACoKyXYAgPyMOizculwqsO3jSarY+kRuW677R27X+dSMGDSUPdnO0UY2PZGkqtF95ob7wsfXZ90d7rmqtJa0DVNz26OS5Ps4PPfZeOIAKk6W/xtTlUN7bQAAAAAAAAAAACCL6uEOIApjTI2kkySdJmmOpDGSRkiStfbsYQwNACrXmGOlFb8JtzbZIyWqUq0ze9oDk9MC+SoYtW0It0emvWtyu86ncZrUunLAkDPZzvgr21nZtH09SW+2O1qMktS1yz3XMrf/9phj3et2vRj93OHUtUvqCGhlnOySqkdIjVNy2zfX51+6vWtSiY3ZKnUB6FdV556rGy817jd0sQAAAAAAAAAAAKBilESynTGmSdJVkj4saXzmtJSekTDgurdI+n+9d7dJOt5aG7gWAJCj6ZdKz/xnuLWbHpRW/0l65cZUpbsJp0sn3yw1TMz9/Mff5Z5rmCy1rQ+eW3yt1L1HOu77UiKmX4cBSWzuyna1kiRjHJXtbLL/jmONJGnnC+Hj69O9xz1XVd9/u+Ug97q29dLNRjr/KWnscdFjGCptG6V5b5U2PSClP6ZBzn5Qmnh6+L3X/FlqfSWv8CRJt++XStQ8+pvSjMvy3w+oBJseds/N/WgqsRsAAAAAAAAAAACIWdG3kTXGHCFpvqQvSpogby/BQf4qaaykmZKOlnRu3PEBQMXzVV3LdP850rIfpJK9bI+08X7poX/L7/zu3e65i1b5r13+Y+lfn87v/HQ7Fgwa6nQk8vVVtkuEqWwnSXM/HnzmtvlSMmJ1u5d/ETw++8qB942RXvUT/153HS+1B1SMKxYPXyxtvC97op0k3XeG1JrlOdNn+7+kh9/knj/5t9JJvw63l5SqbjfvCmnL4+GvASrV3rXSkm+75w/9n6GLBQAAAAAAAAAAABWlqJPtjDGHSHpI0gEaWMHOKETSnbV2j6Tb0obeGHeMAIA8bZsv7X4p/n1bDk5VrJv1Tv+6lbdIcRQ9dSRzdTmqK9UksrWRzdivutF99uZHs8cXRlXT4LHaMdmvW3dHPOfHbeciactj0a5Z85dw61b9wd/Ct3akNOtt0nE/CH+2TUorfxd+PVCp1v7VPVc3npbMAAAAAAAAAAAAKJiiTbYzxtRL+pukkWnDCyS9R9JsSQcrXJW7P6fdPju2AAEA/ea8J7/rX/5lLGEM0Lkt9XnE/v51bWulZEf+5wW0kJU8bWR7K9u52sgmMxMAmz1fx54IyYrJLvdcT+vgsWyPnyQ9+4nw5w+lHc9Hv2ZtyGS7Pcv9833fr5YDo50f5XsJVKrdnp+/5jlDFwcAAAAAAAAAAAAqTtEm20n6qFLtX/uyDa6TdIy19hfW2hWS2kPu80DvHkbSLGPMhJjjBAAckmcrVtuTZUEOVYqmvDb1eb8QRU07d0bfP1NPW/DWrmS7rJXtMpLtpnra7ToS/QI54pQkTQk4Y9QR2ffsKNI2shvuzeGae6T2zdnXbX3KPTfmOKnlgNTtCadLjdPCn+/7/gBI2bXYPTfj8qGLAwAAAAAAAAAAABWnmJPtPqL+RLvbrbUft9bRo8+jt5XsirShg2OIreQYY2qMMWcYY95hjPlvY8yHjDEXG2NmDndsAMrAiP2lU24p4AE5JNvt/4HU55EHS+NP9a99+OLo+2eKmmxnIraRrffkij9zVfb4+qy6zT3XEvAr0hjpjBBtYvesCB/DUGjfJL30s9yuve8MqXuve37Py/4KdGf8vf92okY65yFp7Inhzt5wT7h1QKVq3yyt+7t7fu5Hhy4WAAAAAAAAAAAAVJyiTLYzxhwiaar6sys+meeW6e+Iz85zr1gYY2YbYy4zxnzDGPOgMWaXMcamfayI6ZzxxpjrJW1QqsrfjZK+Jun7kv4o6RVjzKPGmBClnwDAY8Zl0hVWuniddNHK8MlFUiqhK241aV3Ip17oX7vlMWnvmvzO2/Zs4HDWynaONrKDKttJ0riT3Oe3rffH12fRN91z1Q3B480hfnWu/G2484fK6j+652rH+K/d+aK04T73/LIfuecOu3pwYmTzbOn8x/xnAghnzZ/dc3PeW5jfJwAAAAAAAAAAAECvoky2k3RU72craaG19uU899uRdnukc1WB9VaWu8sYs1WpBMBbJP2XpNMljSjAeRdIWijp3yX5MgtOlvR7Y8xNxpimuOMAUGEaJktN0/2JYUMSx8S025Oyr9/2TH7n9QRXQstW2S7hqmxnA5Lt6j1fhyPZb5D2Te65unGO8fHZ9902P9z5Q8X3/TzgP7Jfv91z/aJvuOdcj6EkHfW17Oc6ki8B9PL9bPpeIwEAAAAAAAAAAIAYFOs7uunv6i+LYb+OtNuNMeyXq6MknSd/4lssjDFnSLpdUnp5HStpvqTbJN0jaUvGZW+V9FvjKrMEAFFM/bfwa1/4ihSUXJarCWdItaP77086TzLBSW/75J1s1x443JWtsp3jV/GgNrKSNPV1nvOD29gOXhccpySppiV4vG6MNO5k/76r/yBtuDdcDEPBkfwoSZr7sRDXh3w8M/m+R3Pem/16m5SSXbmdDfTp3CktvV6a93bpkcukRy5Pvc7uyffvV4qAr8XzlNcOXRwAAAAAAAAAAACoSMWaVFWfdrvDuSq89Gp2u2PYL24dGtjqNi/GmGlKtYitTRt+VNKh1trjrLWXWmvPkzRN0sckpb+r/3pJX44rFgAVbOJZ0dbfdXw855pq6cRfDBxrmCidcov/uoVflDbPy/3ctg2Bw52J6sDxvsp2xtHyMBnURnbWO93nPxui47q17iS0E27wX3vyTdn3v/9cacl12dcNhRW/CR6vGyfVj5NetzjL9Tm2xW2e6Z6rGysd853se3TuzO1sQJI6t0v3nSU9/SFpxU3Sqt9Jq26Vnvsf6a4TpB0LhjvC/Lxyo3tu/DBXVAUAAAAAAAAAAEDZK9Zku/SKa55+bKHNTru9NYb98tEl6V+SfibpA5KOVaqFbIhyN6F9UVJaSSfNk3SOtXZR+iJrbYe19jpJl2Zc/5/GmBkxxgOgEhkjNe8ffv22+c6EtVDmflw69xHpsrbghKfpb5LetGPweLoFV+d+fkACiJWnjey+ynauNrIBle0SVVLz7MHjktT6itSeWbA0g6/aW8tc/7XNs6TLO6VJ5/rXzf+Y1BNHnnwefM+jvoTFlrnSZR1S7/dhkL2r4q222Oegj0lv2iZNv8y9Zu2f4z8XleOVm9ytVju2SC98dWjjiVPQ62KfMBUrAQAAAAAAAAAAgDwVa7Jd37vkRtLR+WxkjBkr6eC0oeX57JenGyW1WGuPtta+z1r7E2vtM9ba2PrFGWMOkJRe+qhT0pXWWmffQGvt7b2x9amTlEfGCQD0ap4Vbf3SHwSPO6q/7TP2BOnYb0vjT5EcleQkSbUjU2tdNj2Ue4JVQLJajzFKOmLfV9nO2UbWEUfNyOBxSdryqD/GHQvdc9XN/mslKVEjTbso+7r1d2ZfU0ibH3bPpT9+VbXSrHe417aujC+mdLWjpWOudc/n29IYlW3TQ1nm/zk0cRTCbs8/4xO17jkAAAAAAAAAAAAgJsWabDdPUl/pirHGmIi9CAd4t7SvbFCrpKfzCSwf1trtvqS3mFwhKb2M0h+ttctCXPf1jPuXGmPqA1cCQFhT/i3a+vV3OSayJNtVNYQ/Y+KZ7rlkl5TsDL/XAIN/pbqq2kkhKtu5ku188Xdl6ZTe0+aeG3mo/9ow5/fZtSTcXoXiexwmZfyTYuyr3Gv3BCT2JHtyiylT41T3nO2O5wxUpvaN+c0Xs27Pz/b4U4cuDgAAAAAAAAAAAFSsoky2s9Zul/RU2tCXjMlW1mgwY8xUSZ9WqpOflXSPDezLV1Yuzrj/izAX9baYfSJtqEnSeXEFBaBCzb5SGndS+PXbnpK6Pa1OXaIk22VrNdi1K/r5ktS6YtBQp6fKXl+yXcLx68356+qgT7hj2LvKPSf5H1tfRcB0LQdnfwz3rg23V6FsuNc9l/l8nPV299plPxo81rHJvf7k3/rjylQ/MXh819Jo+wB99rwibX7Ev8Z2S61ZXiuKle+1ZTL/bAUAAAAAAAAAAEDhFWWyXa/vpt0+UVLAO95uxpiJkv4iabT6SyJ9K57QipMxZpKkI9OGuiVl6Sk4wIMZ9y/INyYAFa52pHTm3dLJv5FGHRHumkWe9pou1RGS7RomSefOc88v/X708yVp5+AWrb7KdjUm1fIwchvZxilSw5Tguef+xx/jlsccwYzyX5fOGOmYb/vXLL0u/H5xs1Za6Uh6G3WkZDIe76o6aczxwetX/0FKZlSZ8z3GIw8JH6ckTcvMj++16cFo+wB9nvr3cOue/VRh4yiUf/23Y8JIVRRkBgAAAAAAAAAAQOEVbbKdtfYWSf/qvWskvdcY87Ax5jTfdcaYJmPMB3uvPUr9Ve3uttZGSTwrRYdl3H/eWtsa4frM7JOQPQUBwKOmWZp5hfTa56QrrHRJlhaGrkQpn90vRVvva+EZY6JTPm1kk65kO0mqn5RbQG3rgseraqPtE6bYrPXEX0gBSY/7VDcGj/uS5LY+OfD+xvuj7++S8DzucbWrReXo6ZA2PhBu7apbpZ5cW2YPoz2O13oS7QAAAAAAAAAAADBEQvaMGzZvkvS4pLG990+R9KAxZoOk5ekLjTE/lHSgpJMk1SmVoGd7P6+V5OkTVzYyswWWB65yy3wHM2KJHgAIoX6Cf37Xouh77ngu2vrGae45m0OSk7WpimkZrV+7fMl2pjfZLrPSWt+W8nQ9d7W6zZZwUuuoYNfuaY2aq2TH8CTAtG92z409IXh8/KnSKzcGz3VsGXi/p8O9f9Msf2yZfEmOPW1Sojnafqg83W2pJNqaEZKMlIyQQLfsemm/N6ZeF2pGFCzEWFU3S53bB4/3tOW1rbVWm7s2qCMZvE9jVZPGVE+QCZNoDAAAAAAAAAAAgLJW1Ml21tqXjTGvk/QnSZPVnzw3WVJ6WR8j6f1pt5W2do2k11lrM94tL0v7Z9xfFfH6lRn3xxpjRltrA97VBIA8zLhCWnmze/7pj0jHfEfal6yWJcGheXa0800i1Yo1qNLb5hyKoCa7BiXaSWHbyAZ/bdZXGW7uR6X5Hx083tPem/jneLxcCSl149xnuZz8G2neW93zHVv8SY2F4ku62f99weMzLpeedMx1ZxSIde0/9sS052tI0y6RFn0zeK6nLVUVEpXLJqW2DdLe1dLeVVJr78feVamx1lVShye5NJtnrkp9SNL0N0sn/ar4K8QFJdpJ0gEfynnLJXsX6Mb139GO7q3edeNqJuo9Uz6pGfWZ/9wGAAAAAAAAAABAJSnqZDtJstY+aYw5RtLPJV3QN5zxecAlSmVlGEn3SHqntXZDwQMtDpkliyKVKrLW7jHGtEtKf6d1pKS8k+2MMRMkjY942Zx8zwVQpI77nj/Zbun3U8lwh34mdT9bNaGmGdFjOOQz0vyPBM+1bZAaIrRq7QxO0thc1xQ4Xmvq9lVIcibb+SrbjTnOPbf+TmnKBcFzy34YPD7Zsd5n5hXSriXSwmuC5x97p3T2fdH3zdeS69xzrnaxNc1SVaPUs3fw3ItflWa+pf++K9nu8M+Hj7FPvefXYts6/zxKX9fuwclzffdbV0lta1KJvENh1W1S7WjpVT8emvNy0bbePTf9jTltuaNrq65f8yV12ewVAbd0bdR3V39eX5lzg+oTDTmdBwAAAAAAAAAAgNJX9Ml2kmSt3Sjp34wxx0r6mKSzlapuF2SnpPskfc9a+9AQhVgsMkvg5NJTq00Dk+3i6iv2H5KujmkvAKUuTPWkVbf1J9tlUz8x3hjW/V2a857we62/J3B4ZWNw29baRN2+2wlnG1lPZTtf7CtvcSfbuVTnmDgy573uZLuN96cShRI1ue2dq82PBI83TPFf17RfKnkw044F/beTPe42nVWN4eIbcI3ncV9/tzT6yOh7ojgku1MJk+nJc3tXSa1pVeq6dgx3lAOt/oN0/A9TlT+L0Zo/u+d8P0seC1qfDpVo16c9uVeLWp/V0SNOzuk8AAAAAAAAAAAAlL6SSLbrY62dL+kdkmSMmS1pP0ljJdVK2iJpo6QXrA3o5VcZMpPt2nPYo03SaM+eAJC/MIkRrSvC73fwJ6PH0HKQe25PhLMlZ9JMc3dwEseenl37bufURtbXNrfD0zW9ZW5wQlnQWBjZqv91bJMackiEzEfDFGnP8sHjQS2D07U6Oq83pOX2+1rU5pLs40sStd3R98PQsDbVzjQzeS79c9u6wNbSRa1jq9S1M1Xhrhj5foabc2vturUrUhFoSdKWHK4BAAAAAAAAAABA+SjKZDtjzAhJs9KGXrLWtqavsda+LOnlIQ2s9HgyNWK9BgCiMUY67H+lhV9yr+mM0MF69NHRYxh3kntuxW+kIz2xZXIkYXUlsleIciXbJX1tZGtHuud8j5srqW7C6e5rfBI10uTzpfV3Bc8HtWUtpKc+HJxoJ0kTz/ZfO+3i4NbG6a0rfcl2uVQHTHj+Gda9J/p+KKyVt0pLvydte8b/XCg2Iw5MJW/uCfHP5t+PkSaeKR3/I6nlwMLHFkXbBvdc/bictuxMdkS+piuHawAAAAAAAAAAAFA+irRPlN4i6dnejycl1fmXo1fmO/O59NTKvCaud/uvl3RYxI+LYjobQDE6/AvS/h/wr1n+sxAbmVTyXlSJKnfCXesr0tq/hd9r1W2Bw52NwR3Pj0lrQWhyaSMrSYd+Nnh8y2PB475ElZaD/Wf5nOD5Hi25Lvd9o3r2U9KyH7jnD/ig//pZb3PPdfcmVnV62n7m2MZSk84JHn/hK7nth8JYdZv06OXS5kdLK9FOko7+pnT2/dkTTvtsfEC69zSpbWNh44rCJqWXfho8N/n8nLftstET5zpsLoWjAQAAAAAAAAAAUC6KNdlunCTT+/GUtXbbMMdTKoo22c5au8la+0KUD0kvxXE2gCJlEtKrfiSdO8+9Zsl3su/TPCv7GpcRB7jnljsSO4Jsmx843FVVHzheY/pzyHNqIytJtWPcc60rB4+t+ZN7vSPOUGpa3HNLhzDZbtE3/PPZkuF88xvuTX1e/4/c93ep9nRr79qd256I37IfD+/5VQ2pNtCTzpXmvCda62yTkJpmSGffG/6a9k3Smtujx1ko255xz9XlVtVOcle2O37E6Tqs6bhI1wAAAAAAAAAAAKAyFGUbWUk7ez9bSWuGM5ASszPj/vgoFxtjmjU42c5TxgcAYtA41T23r+2pp3JdmNaILg1T3HM7ngu/T9OMwAS3rmS7pKZB47VpyXYJR9679bWRlfyxb38+FdOAsX/ltlc2VYO/vn2sTX3kUnkwbtm+Rt/8zgXStNdL3a3uNb7kR5+6se65XUukscEJPxhiUV4PIjOp51/TdKlxv97P0wd+rh0z8OeofUv2BNM+Y9KeQ2NfJW19Mtx1Bf2aIyrQ61eno7JdY1WT82WrI0llOwAAAAAAAAAAgEpWrMl269Nu1w5bFKVnWcb9GYGr3DLXb7PWbs8jHgDIrmm6e852S8keeZPt8jH1QunFrwXPRakqFlRJTlJnzQgpIGmuJtH/q81Z2S5bG9nJ57nnevYGBJOZj51mzLH+s3wSVamEoL2rAiatlOySqgr8qzzZ5Z9v3E8afaR/ja/KYV8bWV/70OocK9tNu1h66YbguVJrV1rOugN+psKqHpFKft2XPLffwGS6xqlSoibano7204EaJvbfPuQz0sMXh7uumJ5/vlimXpjztl3JzsDxGlOrHtMTONdJG1kAAAAAAAAAAICKVqzJdgvTbufRH7DiLMq4v3/E63EHdDMAACAASURBVGdn3H8xj1gAILyTb5bmXRE8t/UJ/7Wz3pH7ueNPkiaeJW28f/Bc5zbJJrMntbQGJZmldDVMlJLrB43XmLRkO0f5JCsra61z3lsR7Yn3STMu67+f7JJW3Rq8duyJqYS5fJx4g3T/ucFzW5+QJpyW3/7ZZKvUdfrfsn8fjZGaZwdXStzdW2Hxha8EXzv6mOwxukz9N/fczoWFf+yQnbXBCax9mmZkVKLLSKarHRl/TGGT7U769cD70y6S9nujtPoP2a99+ZfSib+IHFpBvORp6z3h1Jy3dVW2q03UOauLdtBGFgAAAAAAAAAAoKJFKIsxdKy1SyU9r1QpoyOMMZ4eg0izMOP+EcaYxgjXn5JlPwAojFGHu+cWftl/bVWOFcX6HPLf7rmtT2W/fvmPnVOdJrg6Xe2AynbuX8VZq9u1zA0e794t7V3Xf3/Tw+49xp/sPyOMBs+v6YVfyn//bLI9R0YfEW6f0UcHj6+6TerplGxwpatBLXujqh4RPL7o2vz2RTy6PFUhz3lYumiFdO4/pZNvko76inTAv6eSKEcdXphEOyl8sl3jfhnXGem030uXbJaODtGGtm1j9NjiZq20Y0Hw3PjcE+0kqdOROFdr6lSbqAuc66SNLAAAAAAAAAAAQEUrymS7Xt/r/WwkXTOcgZQKa+16pZIU+1RLivIu5BkZ9/+Rb0wAEErtaPfcjuelak/ecMtBhTt7sydJbd+aR5xTXY7KSLWmP4nD1UZWCpFsV+OL/ZHg24P2GOU/IwzfY7jzhfz3z8aViCNJs94Zfh8b/P3S6KOknZ4zqpvDnxGke0/weKLA7XcRzk5PoV/fc7+gQv4T3tWmu36cdPB/SZMcFSn7bHk0WliFsHeNe87kV5XTV9mu1tQHznU4rgEAAAAAAAAAAEBlKNpkO2vtDZL+rlSy3ZXGmE8Nc0il4k8Z998V5iJjzEGSTkgbapV0d1xBAYBXo6cyWk+bP6Fl2kX5ne2qZiZJXY4kqHTdrc6pzkRwt/aBbWR9le0cyV99Jp3tiSst9u7dnj3O8Z8RRsMk95yvKlhckp3uucOvDr9Pu6OKV0+H1OV5DCefF/6MQI6kSlclPQytnjb33MiDhy6OdGEr2zXP8s9ne/3sHIKf32xcyaiSNO6kvLZ2VrZLUNkOAAAAAAAAAAAAwYo22a7XW5RKHjOSvmqMucsYc+Ywx1TsfiMp/d35S4wxB4S4LrOP4u+stbybCGDoHPjR4PHObf5Ep2zJJNk4EuIkSetDFPjcNj94fMLp6rLBSWA1aRXLEr7KdjZLZbuDrnLPbXm8//bqP7rXjTvBPRfFXEcs3a1S24Z4znDp2Oyei/L8mPPu4PFdi/xnTH9z+DOCHPb54PHdS6VkV357I3++52/YpLe4hTn3lFuzr5l9pTTxLPf8E+8e/uegL9nxwA/ltXWn4zW61tSpLhFc2c6VoAcAAAAAAAAAAIDKULTJdsaYn0u6TtIuSbuVSrg7R9K9xpgdxpiHjDG3GWN+HuHjhuH8moaCtXaZpBvThmol/dIYRy8sScaYiyRdmTbUKemLBQkQAFymXOCee+mnweNNeSba9XFVd9r6pORLePNVfZr5NmeyXWxtZOvGSiMODJ7re8yS3dKel4PXzLgivmShyee7557/XDxnBPFUFtSZd0Xbq95Toe+5/wker26SqoIrYIXWMtc9t+Lm/PZG/hY6/klUO2Zo4xjA/bqxz4xLs6+pbpLOuMO/Zrifg+s9hZbrxue1dZevsp2zjSx/iwIAAAAAAAAAAFDJPOV8ht2VGthXzar/ncUWSadG3M/07vGevCPLgzFmmoIf98x3+KuNMTMd2+yx1m7xHHO1pIsl9fVdPFmpJMX3WmsXp8VSJ+n9kq7NuP5aa+1Kz/4AEL/qJvfczheCx02IhJMwqhrcc7sWSSMPCZ7b+ID7uuomdXYGJ3KkV7bztZFNZmsjK/lb7HZsk3Yvd8/7HvOofHv5kmXytemf7rmoX58veWr3suDxKmcue3i+ODfcI81+Z/5nIHed24PHfVUxCy1bkmyU535VXaod65bHgufX3z28z8HdS91zaa+lUVlrnZXtakytTCL49wuV7QAAAAAAAAAAACpbMSfbBclS4qckPCJpRoh1UyW94pi7UQMr0Q1grV1jjLlE0l1KVbaTpFMkvWiMmS/pZUkjJR0jKbMkyN8k/W+I+AAgXqOPzuGimJLtxp4grbwleK5jq/u6TvecHXuiutb9LnAudGW7bG1kJalpprT1ieC5ji3eGDX+5Oz7hzXG8/3r3BbfOYP2diRCSdGfU6OPjH6+7/kR1lhPK9849kd+qkekfpYytW8a+lj2yZJsN/ZV0bbzJdv5XkOGQsJTOTKPhOtu2y3rSGiuNXVKmKrAuS7bqaTtcc4DAAAAAAAAAACgvBVtG9leJsaPimKtfVCp6nab04aNpOMkXSrpfA1OtPutpMuttT1DESMADFDTLI05LuJFMb28z3yre65tnXtu7xrnVHfTNGcb2JpE2DayISrbzf2oe+5vc6VnPuGen/aG7PuHVd3kTvDpbpV6CtB60VrpMU/FrerGaPtFXS9Js98d/ZpMDZ72tevvlLr25H8Gctfq+NuHAz8ytHGky1bZ7lBH22OX/T/gntuxINpecds2P3jcV9UzhC7rrlBXm6hTnXEn+bkq4gEAAAAAAAAAAKD8FXOy3awCfMwe0q9gmFlr75B0mKQfSfKU/tHjkt5krb3CWts6JMEBQJBTHNXlXOJqI1ufmXuc5tHL3XMLvhA8PvoofyKHSWsj6/lV7ErWG2DU4f75XYuCxxM1Uu2o7PtHcXRmV/I0vqS/XL38c8l2B8+1HJTbnqOOiLZ+4lm5nZPpyP/nnnv6Q/GcgeisJ+F14hlDFsYg2V77Jp0dbb+WA92Jo23rUomtwyHZI217Knhu+pvz2trXDrY2UafahLtFNK1kAQAAAAAAAAAAKlfRtpG11q4c7hgKwVo7c4jP2yTp340xH1OqlewMSZMktUpaK+lZa62rXS0ADK2m6ZKpkkIX2IyxcGndeKljc/Bc997BVc981caqm7yVj2rSku0SnqSZUG1kqxqyrwnSMC2363x8leFW3Sod/4N4z1txs3su18cl6nXVOZ4z6Nwm99yav6SSjhK0rRxy2591z+X6HCtWvkTTnQuzJ/YWgivRTsr78e/0JETXmFpVG3eiZWeyAJU6AQAAAAAAAAAAUBKKNtkO8bLWdkp6YLjjAACvRI006khp+zPh1u9eGt/Z1c3uZLv2TVLzzIyxDe69akapy1P5qCYRtrJdiDayiWqpZa60a0n2tekaC5BsN2J/91zH1lR1rLiqEUrSxvvdc2mPcSQjD5W2PhFtfRxGefbp2iH17JUSI+I5C+G1rnLPxfW9Lxa+52Dr6uFJttu72j038rC8ts5W2c6X7NxhSbYDAAAAAAAAAACoVMXcRhYAUIkOjNAys8pTSS3yuf/hntv86OCxnjb3+jnv9VZNqjV1+24bT3W+ZJg2sr3nRRblcQ6rpkVqmuWeH8rWi/u/L7frZr0j2vqWubmdk2n8q/3zoas9IhatK6WbjfTwJe41TdOHLp6h4HsOtm8cujjS7XjBPTf19Xlt3eWpPlpr6lRHG1kAAAAAAAAAAAAEINkOAFBc5rxbqp8Ubu2My2M815Ow9tjbpD0ZHbef/1/3+knnqCvpaSObXtnO10Y2bLLdQZ8Ity7d9EujXxPGKb91z218KL5z2rIk/0x5XW77TjxdGndyuLVTL8ztjCBVtdIZd7jnN9wb31nw62mX/jzTv6Zu/JCEkpMxx+d2XZWnGuQT785tz3x07pQWftE93zAxv+191UdN7YB235k6aCMLAAAAAAAAAABQsUi2AwAUn4OuCreuqiG+M7PttfoP/betldb82btXp7dqUsg2sjZEG1kp1Zp19FHh1kpSdVO87VzT1Yx0z730s/jOWf4T/3x1Hs+NsImI9fkl+wzSuJ977uVfxHsW3NbdmX2NqSp8HLmqac792ubZ7rmorarztd7zfYihpa2r+miNqZUxRsaYAVVIw1wLAAAAAAAAAACA8keyHQCg+PiSjtLlk1CVKVEr1U9wz+9Y2H/b10JWkhJVzhaF1aZaibREnYSnjWzoynaSNPHs8GvDPr65aJjsnuvcGt85Cz7vn69qyn3vppCPT9yPoy+Ba52n6h3iFaaKW/uGwseRTfP+weOz35X7nr7n9E5PS9dCSH/NzRTDz56rsl1toi7tdnArWSrbAQAAAAAAAAAAVK7q4Q7AxRjzjhi3s5J2S9opaYOkxdbaCBkMAIAhNfn8cOvirGxnjDTtDe6Kaa/cKB1xjdQ0Xere695n/KmS3Ikcma0J/W1kQ1a2k6T9LpYWXxtu7bSLw+8bVa2nst2OBYU7N93Mt0mJPCqPTTonVf2vu9WzyEjTYmwjKxV3tbRS0NMp/evT0pJv94+d85A04dXR9uncHm9chTLtQmnxtwaOJeqkyRfksefF0iZHu+fuLEnGcbJWeuHL7vn9Lsn7CFd1uvRqdnWJOu3pCbjW04IWAAAAAAAAAAAA5a1ok+0k/VKKUtInklZjzFOSbpR0q7X0ggKAolI3Rpr6emntX/3r4ky2k6Rjvu1vT3rPqdK5j0qbHnSvOe4HkuSsbFeT0ZbQ30Y2wq/B8adIx31fevrDnkVGmnG5dPgXwu+bi0P+W3rx64PHO7ZIu5ZKLQcW9vzjr8/v+poW6cy7Ut9vl5N+JY0+Mr9zMmVLtmtb768cWMlsUrr31dLWJwaO33u6dPb90sQz4z2v5aB498vFkV+RWlf1tri2Uu0Y6dTbpPpxue859yPSMx8PnhvKynbz3uqfnx2i+mAWoSrbGUdlO0tlOwAAAAAAAAAAgEpVzMl2fdwlf3LXLOmM3o+vGmPeZa29uwDnAAByNfk1Q59sV90oHfJp6cWvBc/vXS29/EvplV+596gbI0nqSjqS7RIZle08v+aSUXPOD/yQNOe90vq7pZ0LpXEnal/HeGOkkYdKdWOj7ZmLxunuuWU/ko79lns+jLYsLTxrRuS3v5RKXvSZ9bb8z8iULdnulZukQz4Z/7nlYMfzgxPt+tx3lnRFzH+/UdUY7345xVAnnXab1L5FalsrjTwsv4qOkmQS0shDpJ0vDp5b9kPpqK/kt38YHduklb91z898a+r1LE+uhOjMynZBOmkjCwAAAAAAAAAAULGKPdku/Z006xjPlPluatBamzY3WdI/jDEftdb+IHqIAICCCJMUVohWftnO3TJPalvjnq9JtVEN06JQkozxVLaL0ka2T1WdNO31qY/hUjvGPbdlXv77b3k8/z3CmHyBtP4fg8fHnVSY8zzPBUnxPHblaqieE31mvX1oz/OpH5dfNbtMrja6ha5I2Wfrk/553+tLBKEq2yUcle1oIwsAAAAAAAAAAFCxijnZ7l29n0dI+ryksUolxyUlPS7pKUmrJO2SVCtpjKTDJZ0maVLvtVbSrZLulNQgaZSkQ3rXzNDApLtvG2MWWWvvL+hXBQAIZ+JZ2dcUopXjpPMkeaqHrb/Tf31vVbU4KttFaiNbTCZ5vnfdrfntba2/4uGYY/PbP92BHw5Otpv7sfjOGCDL9zvfx66cJbvi26uqQepp86+Z/c74zis2rudZ+6bhPb/PpHNjOabT2eq7/zU6Mzm6T5cjmRoAAAAAAAAAAADlL0sJleFjrb1R0jxJH1Iq0U6SfipplrX2FGvtx62137LW/sxae7219svW2sskTZP0RkmvKJVE92ZJM6y1P7LWfs1a+w5r7SxJr5P0cu8aq1Ti4bVD+kUCANzqx2df0zQr/nNHHS4ddnVu1x5//b6b7sp2A5PtEr5ku6htZItF/QR30tvOhamEuVxYKz39Yenln7vXnHlXbnsHmfKaVFvedDOukPZ7Y3xnpMv2uGy4pzDnlgObpQrk1qfD75Ut0e7gT0q1o8PvV2oO+XTweOsKac/LhT3bWumZq/xrprw2lqPCVLarc1a2o40sAAAAAAAAAABApSraZDtjTKOk2yXNldQt6S3W2g9Ya1f7rrPWJq21f5J0hKRHlPoarzbGXJmx7g5Jx0h6Nm34CGNMPOUyAACFV9UQ/57GSEd8QZrznujXjjl+301nIkdmG1nPr+Kc2sgWC1/1t03/zG3PHc9Ly653zzfvH679cFgmIb3qx9J5j0vHfV869xHppF9JiUIVBi7h7/ewy5Ko+PRHwm2T7HHPmUTquXD0/4UPqxTVT3DPPfe5wp69c6G01/NP/REHSomqWI5yVadLf41OT7xL53p9BwAAAAAAAAAAQPkr2mQ7SddIOlipd0+/bq39XZSLrbWtki6RtE2p6nXfN8aMz1izW9KblErm63uX9rw84wYAxCVbK9nqpsKdPe6U6NdUN++72eVqUZjZRta4K9slS7WNrDTgsRhkzZ9z23P5j/3zYaohRmUS0rgTpAM/JI0/JbZEn0BVIZ7Pe9cW7vySluVnZevjUtfu7NvsWuSeO+eR1HOh3Pl+djfcW9izs+0//tTYjnIlzKW/RtcZR2U7S2U7AAAAAAAAAACASlWUyXbGmGpJ7+i92yHp67nsY63dIqnvnfkGSVcErHlF0m3Svj5+OWRXAAAK4rDP++cbJhfu7FySOkYcsO+mM9kuo42s8baRLeFKZ+NOds/tXprbnst+6J+PMRFnWDRMlEYe6l/TuX1oYik12drISlLXrvzWjMryvSkX4z3/FO7YXNizsz2/fRUzox4VqrJdcLIdle0AAAAAAAAAAAAqV1Em20k6VdI4pcqUPNlbpS5Xd6fdfoNjzV29n42kaXmcBQCIky/p44QbUi1fC6XlAGn2leHX108cUPWsKxmcbJfZltDfRraEK9s1THTPrfu7tHNx+L16OqS7Tsq+7oB/D79nsTriGv/8poeGJo6SE+JnZd0/sq/p9vyTs3pE+HBKWeM0aeRh7vn5/ykVqurm+rvcc6OOkEYdHttRYV6j6xxtZDuSVLYDAAAAAAAAAACoVMWabDc97fa6PPdan3Z7hmNNes+w0XmeBwCIS6JauqxDmvGWgeNn3CHNeXfhzz/hhvBrD7pqwF1X1aRBle08CYMlnWwnSafc4p77+8Hh91n45VQb0GyaZ4Xfs1jtd4l0jieh7ukPSz3BSUIVLUzy15Pvy95Kdsl3g8erGgqb3FtsfK99S74trfxt/Gd2t0pbn3TPv2Z+rN+DUJXtTHCynetaAAAAAAAAAAAAlL9iTbZL7wvYlOdejb2fjaRJjjXpPauC31UDAAyPqlrplJulK2z/x5QLhuZsE+HXZEa7QVfVpMxku4Svsl2Y1pjFbMT+/vk9K8Lts/R7eYdSUia8WkrUuOe3PDp0sZSMkD8rG+71z29/Nni8KridaNmqbvTPr/lz/GduuN89N+OKVPJ1jFytYNNfo91tZKlsBwAAAAAAAAAAUKmKNdluV9rtQ/Lc69C023sca9LfSWvL8zwAQCUafeSAu502bBvZMq5s13KQf37jA+H26dqZfU1TGVS1SzfqSPfc3nyL/pahsG1N27I8dnVjg8c7twePl6sR+0tVnoS7bI9jLtrWuudGe34ecuSsbJfIXtmuw5GoBwAAAAAAAAAAgPJXrMl2a3o/G0mzjTEn5LHX23s/27R9M01KW7M5j7MAAOXm2JBV1cafMuBumBaFkr+NbLLUk+2qmyRPMqG2P+O/fvdy6eaQbSOP/0HosErCAR90z/XwdwGDhfxZefHr/vkdC4LHJ5wRKZqSV1Uvzb7SPb/5kfAJjmH5ntfTL433LLkr26Un29W5KttZKtsBAAAAAAAAAABUqmJNtntIUpdS75waSdcbY7L0sxrMGHOZpPPU/w7sPY6lx6TdXhH1HABAGZv7YX+FJ0k65+FBbT+dbWQTA9vImnJuIytJx1zrnlv6fWmvo5pV1x7prweEO+PEG4eutfBQmfMe99ya24cujlIR9mdl72rppZ8Hzy35vvu62e+KHlOpO/Y6qXa0e37JdfGet+Ca4PGqeql5ZrxnyVN9NC0hOrMSaZ+OZIds3MmGAAAAAAAAAAAAKAlFmWxnrd0l6W9KJdpZSUdJussYs1/YPYwx75V0o/oT9qykmxzLz0+7/VwuMQMAytiRX/bP148fNNTlqGxXYzKT7cq4jawkmWr//Nq/BI9vcOXHB5j9jvBrS8mYY4PHozw2FSPCz8orNwaPz/+I+5qq4ApnZS1RJR39Dff8y46kxVx17QgeH5tPgWvPcWEq25ng77tVUt22qyBxAQAAAAAAAAAAoLgVZbJdr/+SlN6j6RRJLxpjfmiMOcsY05J5gTHmQGPMB4wxT0n6saRa9Sfa3WCtHdQbrDeB7wz1v0v7cLxfBgCg5E272D/fNGvQUKejsl1mpSR/sl0ZVLab9gb//M7FweO7HOOZjvxqtHhKye7lweMjDxvaOEpBlCpjYZ9b6ZpmRL+mHDTNdM/tWhRfK1nfPl274zljwHE2r8p2krtVOAAAAAAAAAAAAMpblnIzw8da+4ox5t2Sfq1UUqCV1CTp/b0fMsbskrRbqaS6kb2fJe3LXOiraveEpP90HPVp9ScdtsvdahYAUKl8LQyb95eqagcNh65sZ4yMTGAVu7JoU9iUpShtx5aB9/e8Ii3+VqrFbBjTLsotrlIw6nBp8yODx7t2DX0sRS9CYmr7pujbjz0++jXlYPxp7rlkl9T6itQ8O/9zHFXmJEmTz3fPebT17NXd2/6gl9sWa2LtNJ05+nVqrhqhu7f9SUv2Pu9MZq5Jr2yXcFc0vHbVZ1RlqjWqeqyOaj5RJ488Ry+0ztfjux7Qxs7+9tjVpkaz6ufqnDEXaUzN4CqoAAAAAAAAAAAAKC1Fm2wnSdbaW4wxSUk/kdSi/upzfcl0I3s/Bl2atu4uSZdba1sdx/xa0u96b+/xrAMAVLI3rJZuD0gcu+DZwOVtyb2B47VmcGKeM9muHNrIStIb1ki3TwueW3mzdNIvpUSN1Lpauuc0qW1t8NpMp/1BGnlwbGEWndlXBifb7VmeqgRm3FURK07UxNR1d0pTXtN//5Wb/OtNMReDLqCqWum0P0oPXxI8f8cRqZ/v2lH5nbPuDvfcjEsjb9eV7NR1a67WyvZlkqRlbS9o3s57ZHv/55P+Gl3rSbbb0LlGkrS2Y4VeaJ2vu7f9QVu6Ngbuv7J9mZ7f84Q+OePrGlk9JvLXAwAAAAAAAAAAgOJR9O8cWmt/J+kwpRLiejSwal3mRx8jaYWk91prL7DW7vTs/7i19qHej/kF+BIAAOWgcZp0hZUufFk6/a/SG7ek7tc0D1ra6anSVBPQltA4fh0ny6GNrCQ1TpUO+A/3fF9C2YqbwiXaJWqlt/RI+zkSgMpFVYN7bteSoYujJERMtlv4pYH3F/1ffKGUG191u+5Wae3f8j/jBU876KrGyNst2fv8vkS7PkklQyUwp7eOrTPuNrKZNndt8O6/rXuz5u8KSJ4FAAAAAAAAAABASSn6ZDtJstausdZeLmmGpI9JulXSEklblUrA2ytpraRHJV0r6QJJ+1trfz48EQMAylbzLGnq66S6sc4l6S0EM9UHVEoyjgplZVPZTpLqxrnntjyR+rz1yXB7Hf2Nyqg05nvMtj4xdHGUhIg/K1vm9d/ubpN2LHCvbSnj6olh1I6SqtwV3mJ5Lrau9JwfvRLcHVt/l32RQ1NixL7bdYn6Qa2/87EiIwEQAAAAAAAAAAAApaeo28hmstaul/S93g8AAIqSr7Ld5NoZg8aMHMl2tkwq20nS5NdIC68JnnvuM1L7JmnN7eH2mnF5fHEVM19FsZ7gNsUVK5+fle49/vnjr89973KQqE79/Lp+Pjt35L735sekVb+TOja719R7kk4dVrQvzSmc6fX7q7m6Zd/9hKnSQY1HakHrUzntl6kj2R7LPgAAAAAAAAAAABg+FVAWBgCAodVp3cl21WZwnnvC8eu4rCrbjTvRP7/k2+H2OfEXUv2E/OMpBdWeNrLr/jF0cZSEHH5Wts2Xkj3SP452r6kbK004PfewysWx33HPrbhJ6skhiWzxt6V7TpaWePY++pvR981RS9UovWPSRwaNXzrxfRpfMymWM3y/GwAAAAAAAAAAAFAaSqqyHQAApcBV2a4+0RDYMtYYE5grVFbJdsZI0y6W1vwp9z0mny/NvjK2kErC2BOC23Su/evQx1LMbA4/K/M/Lh1xjdTmbvus1zybeu5WuqYZ0ux3Sy//PHh+zV+kGZeG369zu/TsJ7OvG3Nc+D1zlFCV3j/1v3VAw2FqqGocND+2ZoL+Z+Z3tbztRW3oXCNJunfb7drRvTXyWb6qpwAAAAAAAAAAACgNJNsBABAzV/WiWlMXOO5qI5sspzayklTTkn2NT8sh8cRRSkyVe65ja6ryGiTl8LOy+RFpdZbWxTUjcgunHNVPdM9tvC9ast2K30q2J/u6qvrwe+bo/LFv1BHNr/KuqU3U6ZCmo3VIU6oK4oI9T+aUbNdFZTsAAAAAAAAAAICSV3JtZI0xNcaYU4wx7zDGfNwY87/GmM8Pd1wAAPRxVS+qSbiS7SqgjawkTXh1ftdPrMB2niMPds917fRfm+yRtj0jrf1bqpJYOculsp0kLb3OP187Krd9y5Hv57czy3Mx08YHwq1rOTDavjlwJUH7NFeNzOmszmRnTtcBAAAAAAAAAACgeJRMZTtjzKmS/kvSeZKC3hW7JuCa10jqK7OxzVr7X4WLEACAlMiV7RxtKssu2W76m6XlP5W2Ph792knnptrIVpoDPyq9dEPwnC/BqW2j9MC50o4FqfsmIb3qJ9Kc98QfY1Eos5+VYjTxLPfcqlsl+9twLXc7t0urfx/uTFMTbl0eah1J0D7NVblV6XT9bgAAAAAAAAAAAEDpKPrKdsaYJmPMbyQ9JOn1kuolmYwPlxckfoLv6gAAIABJREFUvV3SOyVdZYw5ssDhAgCgLkf1IldSh7OyXdm1kR0hnXV39OsO/Ih0+l+GpKVk0Wme6Z5b+CX33FMf7E+0kySblJ54r7RzcWyhFZVy+1kpRlW10tyr3PNr/xZun2c+Ef7MMMl7eaoxtZGvGZFzZTuS7QAAAAAAAAAAAEpdUSfbGWNaJM2T/j97dx4na17Xh/7zVG9nnX3fGBgGGIYd2RQVQQORmGjQRG80JuqNV3LRJGoSREWNJt5cgyt6oy+D0ShGRWMStgEuhEVWQZB1gGGYfeYwyzlzzszpperJH30O02dO/Z6up6q6uqr7/X69zut017P9urrrqZlXf87nm29P/1BdY41JXdc3J3nDhmO/fawLBIA+ys12/UMdnUJufMc12yXrgbtHfne7Yx7zst0ZtEuSub3lbXe/v//jvdXk9jf133bb60df01Taga+VadQ0VnfQn61BQ3lJmv9NzXgM02y3f+7gUNfSbAcAAAAAADD7pn2M7J8keWIe+g3qSpI/SvL2JL0kvzPAOf4s6414SfINSV4+3iUCwKlK7UXlZrtS2G6HtnU99oeSL/znwfZdOKu53W2n6zSM0SwFEFePJN3j/bfd8ZbkmoZmsd5qcvzOwdc3LVaPbPcKdodznlbedvyOzY9fOZwsH2pxwQmE7QrjvZscnB+u2W6tXk2v7qZTzQ11PAAAAAAAANtvasN2VVV9a5Kvz0NBu/cm+ft1Xd9yYvsjBjzVyWqXKsmTq6o6UNf10bEuFgA2KDfbFcJ2Vf+i2V69Q9u6zn5Kcv5XJ4fetfm+j3lpc+BsN7jga5K73nn640dv6L//J/5t+VzLd/d/vLucfPAHkpv+KFk71n6N7A4XvqC87ZY/T+54W3JRn33u+Ujy/u9J7v2rdtcr3BvHaZhmuwNzZwx9vdV6NUvCdgAAAAAAADNrmsfI/tiGjz+e5BtOBu3aqOv6jiR3nfi0k+SaMawNAIpKzXYLrZvtdmjYrqqS571hveGuZPGc5GmvSp70s5Nb17R6zMvK29YeOPXzG343+fSryvvf86H+j3/wpckNrxG0o9n83uTql5a3v+PFyZHrT31s+e7kbc9vH7RLMplmu/7jvZscmBuu2S4pvz8AAAAAAAAwG6ay2a6qqouTPGXDQy+r6/qB0v4D+HSSC058fHWSD45wLgBo1LrZbreNkU2ShQPJ039p/Q/N5vaWt93xtuSyb3ro8y/+webnO3pDcuBRD33eXUlu+uPh18fusv+K8rbecnLz65JrX/7QY7e9MVm9b7hrVe3Ddt2622r/STfbld4fAAAAAAAAmA3T2mz3nBN/10luruu6z+y0Vu7Z8PG5I54LABqVmotKoY7SGNkd22xHOweuKm87+rlTP7/9zZuf78bXnvr58l3J2v3t18Xu1PTzmCT3P+xn8iM/PMLF2oft2jbHLRRC0E32zx1sfcxJmu0AAAAAAABm27SG7S7a8PFHx3C+oxs+PjCG8wFA0WrLZrtOqdmuFrYjyRmPLW/78L9I2v6cHL/z1M8fPop2pyiEWBnRxX8jWTy7vP2G//TQz9QX/kty/K4RLjZE2K4+3mr/YZrt5qq57O8MF7grvT8AAAAAAAAwG6b1t5Bnbvj4yBjOtzFg1+43cADQ0kpvpe/ji53Fvo9XhbfjHT1GlsFVVXLG48rb3/Hi9b+v//XBznf9r66Pjj3p8789/Nqm1d5Lk+f83navYmdaOCN5wdub9/mj/es/j+/9rtGuNcQY2bbNcaUQ9GYOzA83SlazHQAAAAAAwGyb3+4FFNy74eMzi3sN7pINH99T3AsAxmClZbNdVQiU9IyR5aT9j0yOfLr/ttvfmKw9mHz6VYOf79C7kotesP7xp/59eb+/+dFkft/g550GncVk3+XrQa2/+Af997ns7yTP+I31VsD/cXXS3aHtflvl7Ccn1/xo8qn/t7zPh/7pGC7UPmy33HaMbCEEvZkDc2fkztza+riVun8YGwAAAAAAgNkwrWG7Qxs+vnaUE1VVtZTkKRseumWU8wHAZkrNRaVxhVVxjKxmO05YONC8/eY/SY5+fvDz3fCa9bDdZiNoz3rCzh3HuvfiEx8ItQ5lz4Vbf41hmu3ajpGthg/bDUOzHQAAAAAAwGyb1t+efvjE31WSK6uqapidtqmXJDn5W7S1JO8bZWEAsJlSs91CqdmuOEZWCIgTLn5R8/YHbm53vht/PznymaQp+LPvsp0btGN0l3zjeM6zdO54znNCmzDbfLWQTjU31HWGDtsV3h8AAAAAAACYDVP5G9S6rr+Q5HMbHnr5MOc50Wr3ipOnTfLBuq6Pjbg8AGg0tmY7YTtOeuQ/bN5+0+van/NNz0iuf3V5+7N+u/052T3OvCZ5wk+Odo4rvys5/7njWc8JbcJspdHegzgwd+ZQx2m2AwAAAAAAmG1TGbY74TUn/q6SfGdVVd/d5uCqqjpJfivJNRsebviNMgCMx2oh7FEK23UKoxKNkeXLOvPN2+/9cPP2ftbuTz7yI+Xt+x/R/pzsLtf88GjHP+EVm+/T0nJv8DGypXvyIDTbAQAAAAAA7E7THLb75SR3Zb2Rrkry21VV/duqqvZtdmBVVY9Pcl2Sf3Di+DrrTXl/uHXLBYCkW3ezVq/13bZkjCyzZGG4MBG7yNze0Y5fPHs869igTXPcaM12Q4btNNsBAAAAAADMtKkN29V1/UCS707Sy3pYrpPkXyW5vaqq1yZ56cb9q6r6+1VV/URVVe9K8rEkX5f1kF6VZDnJd9R1LbUAwJZarVeK29qOke0J27HRec+Z7PX2XjzZ622b/q8/BtBZGP7Ys5+a7LlgfGs5Yblu02y3OPR1Ds4PN0a21HwKAAAAAADAbJjasF2S1HX95qyH6k4G7pLkYJK/l2Tj3LMqyR8k+akkX5lTv661JN9b1/UQ89UAoJ2m1qKFUrNdVWi2M0aWjZ75m5O71tUv3XwfSJLnvbH9MXN7k6f+wvjXknbNcaV78iA02wEAAAAAAOxOUx22S5K6rn8ryQuzPlK2Sk6p+ak3/Kke9niV5EtJXljX9Wsns1oAdrumIEXbZjtjZDnFWU9I/uZfTeZal79kMtdh9l3youRFLf5NyxN/OnnRXyYXPX9LltNqjGzhnjyI4cN25fZTAAAAAAAApt/Uh+2SpK7r/z/Jo5P8yyQ356HxsBv/ZMPHdyf5mSRX1XX99okvGIBda6VhROBiqdmuGLbTbMfDnPHYyVxnft9krjMVhFpHds5TB9/32lckZ16zZUtZaTFGdqEafozs0GE7Y2QBAAAAAABm2vx2L2BQdV0fS/ILSX6hqqrHJHluksuTnJtkMestdncm+YskH67r2m9OAZi4YZrtOqUxskJAPNzcnslc58wnTOY67CAPL6Au7ba1/9ZnuTd42G6UZrvFzlKWqj1ZbhHuS4yRBQAAAAAAmHUzE7bbqK7r65Ncv93rAICHa2otKrUoFZvt5MbZDnN7k4UD270KZs1X/2nyrm/ZfL+q//1uXNqMaS21jQ7qwPwZWV5tGbbTbAcAAAAAADDTZmKMLADMitVCa9FCtVhssCuF7XrGyNLPgau29vzP+P+29vzTQJB1/C7/5uSSb9zuVbQaIztKs12SHJg7s/Uxmu0AAAAAAABmm7AdAIxRqbWoqUGpMkaWNhbP3trzz+/d2vNPna1tWttVrvmXQxw03ue/1RjZUZvt5g62PmZVsx0AAAAAAMBME7YDgDEqtRYtdPqPkE2MkaWlJ75yuOMKoc7THHzMcOeHM69NqrltXUKb5jjNdgAAAAAAALQ1v90LaFKtV/08IcmTk1yR5Pwke5PUSR5McleSm5J8NMknaqkEALbZSr3S9/HGZrtS2M4YWfq58PnDHbfnwmTfFcnd7y/vc/Dq5KwnDXd+2HNecvnfTW76421bQqldtJ/Rm+3OaH1Mm/UBAAAAAAAwfaYybFdV1dck+f4kfzPJoJUR91ZV9fokv1XX9bu3bHEA0KDUWtTUoNQpFM0aI0tf8/uSv/WZ5H8+tt1xdZ08/7rkuuckhz95+vYDj06+/l1JZawqI3j2a1qG7cZ7n2vTHNfUODqIg0M12/UPZAMAAAAAADAbpipsV1XV45O8OsnXnHyoxeHnJPnOJN9ZVdXbk7y0ruvrx7xEAGhUai1qbLYrhJt6tWY7Cs4YctTrwhnJiz+RdFeS3vH1x+o66Swm83vHt76ZItQ6VvP7k0u+MbntDdty+eX6+MD7jtpst3/uYOtjNNsBAAAAAADMtv5VOtugqqq/l+QDWQ/aVSf+1H3+nNRv28njnp/kL6uqesmk1g8AyXDNdpVmOybhmh956OO5xfXg3cIZyeKZOzhoV/h3G4/8zskug4lZ6bUI243abDc/TLOdsB0AAAAAAMAsm4qwXVVV35bkD5Lsy6khu5PhuSQ5lOT6JO/Leijvs0m+tGGfjcclyf4kr62q6lsm81UAQLJSaFVqDtv1DwQJ29HojMcNvm81nzzi27duLdNqY8DwpPkDySV/a8MDxuZur/E+/23GtC6M2Gx3YO6M1sf00k23XhvpugAAAAAAAGyfbQ/bVVX12CSvObGWjSG7I0l+KcmLk5xX1/VFdV1fU9f1V9Z1/ey6rh9X1/WFSc5P8k1JfiXJ/Tk1dDef5D9XVXX1pL8uAHanYrPdEGNk6xgjS4MXfnCw/TpLyXP/a7Lv0q1dzzR64k+vjzQ9aeGM5Hmv38FNfrtbt15LN4MH2ZpC0IM4MNe+2S7RbgcAAAAAADDL5rd7AUl+LeuNdidDdr0kP5PkP9R1fXSzg+u6vjvJ65O8vqqqn0jyI0lekYdqMg4k+dUkLxr/0gHgVKVWpYWGcYXFMbK1ZjsaLBxIrvyu5MbfK+/zvDckF3xNMr9/cuuaJvN718N1R29IHrglOfdZydxoASsGsE33ruUWI2ST5hD0IA7MHRzquJV6OXuzS1+TAAAAAAAAM25bm+2qqvqqJC/IQ0G7+5O8sK7rnx4kaPdwdV3fX9f1K7MerDuWh0bKfkNVVV85pmUDQNFK3b7ZrmOMLMNaPKu8rbOYXPzC3Ru02+jAo9ZDh/2Cdpd98+TXs9Nd+LzB9z3/uWO7bNvGuFGb7fZ2hnttabYDAAAAAACYXds9RvalJ/4+Ofr1++u6ftuoJ63r+q1Jvn/DeZPkB0Y9LwBsZrU0RrYh1FEaI9szRpbNXPj8hm0vSKrt/k+9GXDND/d//En/ZrLr2Eke9T1JvxDxVd/bZ99/3H/fR373QJc6unYkHzry7rz1nv+Wd9z3hlbLHLXZrnTv3szb7v3vuX35Zu2lAAAAAAAAM2jbfgNbVdVSkm/KehiuTvK6uq7/cFznr+v6tUlel/Xf3lVJ/nZVVeUZfgAwBsM02xkjy9AufXFy+bee/vjS+clTfn7y65lFZz81eewPnfrYOV+RPOb/3p717AR7zkue9h9OfezAo5In/OTp+y6dkzz9l059bP+VyRN/atPLfP7BT+cnbvgn+U+3/0L+9NDv5Lp7XtdqmaM22w3rnfe9Mf/mxpflv3/p993nAQAAAAAAZsz8Nl772UkOnPi4TvKqLbjGf0jykhMfH0jynCT/awuuAwBJyuMBG5vtimNkNduxic5C8lWvTW7/R8mhdyfdB5MzH59c8uJk36XbvbrZUFXJ034xuezvJHe9Kznjcckl35gsHNj8WMoe98+T874qufOtyd7L1oOhS+f23/exP5ic95zkjrckey9d//ndc17j6eu6zn+67ReyXB8feomjNtuN6s33/EmesP/puWrfNdu6DgAAAAAAAAa3nWG755z4u07yqbqu3zfuC9R1/b6qqj6Z5PEbrilsB8CWKTXbLTSUqxab7aLxiAF05teDTJe+eLtXMruqKrnw69b/MD7nPXP9zyDOfcb6nwEdWr0j9659aciFrRtHs12Vqu+9+uz583Kse3/xPeGkzzzwMWE7AAAAAACAGbJtY2STXLvh4/ds4XXeXbgmAIxdt17r+/h8tVA8pqoKzXbGCwL09UD36EjHX7p05VjCdt92wff1ffyF57wkj9z7mE2Pf6B3bOQ1AAAAAAAAMDnbGba7asPH79/C62w891XFvQBgDLp1t+/jc9Vc8ZiOMbIAE1Olyt845++O5VxfcfCrc/7CRac8dsHCJXnawa/K15/zLZnb1iJxAAAAAAAAxm07f/tz4YaPv7iF19l47ouKewHAGJSa7eaq8ltuaYxszxhZgILy/fGypStTpZOLl67IZUtX5q6V23LT8g2p614uXLw0zzrjebn2wNPHsooD82fkh6/4+bzlnj/NLctfyBV7Hp2vO/ubcmD+jFw7/7T84OU/nfcefmved+Ttrb8OAAAAAAAAps92hu3O3fDxfVt4nZPnrpKcs4XXAYB0U2i2S7nZzhhZgHaa7o4/csX/M5YRsYM6Y/6svOSC7+m77ep91+bqfdfmgd6xfOzoB07bXgvbAQAAAAAAzJTtHCO78TdgWxm2O7zh4z1beB0AGLLZzhhZgHZ2RkhNphoAAAAAAGC2TEvYbnULr7Mx9bCwhdcBgHTrQrNd1dBsV3g71ngE0N+s3R9LoeqdEhoEAAAAAADYLbYzbAcAO045bNfQbFcaI6vZDqCvpohaOdi2nUr3eWE7AAAAAACAWSJsBwBjUtd1uimMkU252a5TarYzXxCgv8b74/SF7aZvRQAAAAAAAAxD2A4AxqTX0ETXPEa2fwyjp/EIoLVCWei2ms62PQAAAAAAANoqz7SbjJMpgmdXVXXlFl3joi06LwCcolv3b7VLjJEFGKem8auzFGwzRhYAAAAAAGC2bHfYLlmfqvTaLb5GHdObANhi3bpb3NbcbGeMLEA7szVGtrQmYTsAAAAAAIDZMg1hu0kE4fwWC4At10252a7T8JZbamESwgDob+aidqVFuc0DAAAAAADMlGkI2yV+zQTADjB8s50xsgBtzF4YWagaAAAAAABgJ9jOsN1NEbIDYAfp1uVmu7mq/JbbqYyRBWhntrrtSqFq/zsEAAAAAAAwW7YtbFfX9ZXbdW0A2Aq9MTfb9TTbAfTVHLWbnbCdZjsAAAAAAIDZ0r9KBwBorZumsF05314V3o6FMADaq6rpC9sBAAAAAACwMwjbAcCYNI6RTUOzXSEYImwHUGDMNgAAAAAAANtA2A4AxqQ75jGydW2MLEA/pTDyNI6QTYyRBQAAAAAA2CmE7QBgTBqb7RrGyHaMkQUYk+kM25XW5T4PAAAAAAAwW4TtAGBM1hrDdsbIAoxLudluOhVu83GbBwAAAAAAmC3CdgAwJt00jJFNudmuNF6wZ4wsQF+zF0YWqgYAAAAAANgJhO0AYExKY2Q7mSu21yVJZYwswJhMZ7ddKVQNAAAAAADAbBG2A4Ax6db9m+2aRsgm5RCGsB1AO7MXanOfBwAAAAAAmCXCdgAwJqVmu7mqPEI2Saqq0GxnjCxAX6UwckOJ6LYqLUvUDgAAAAAAYLYI2wHAmPQyXLNdR7MdQDt16f44pWk793kAAAAAAIAdQdgOAMak2GyXTZrtiiEMzXYA/RSb7aY0bFdel7AdAAAAAADALBG2A4Ax6dbDNduVxsj2is1NALvbzN0dC1k7t3kAAAAAAIDZImwHAGMydNjOeEGAlmbr/qjZDgAAAAAAYGcQtgOAMSmOka2MkQWYhNkbIwsAAAAAAMAsEbYDgDHpptBsl+HGyGq2A+ivdH+ctVCb+zwAAAAAAMBsEbYDgDEZttmuU2q2q4UwAAAAAAAAAGBaCNsBwJh060KzXbVJs13h7dgYWYD+SmHkqprOZrvyuHChagAAAAAAgFkibAcAYzJss10pHNITwgDoqxxSm86wXWldwnYAAAAAAACzRdgOAMakm/7Ndp1s1mxXGiOr2Q6gjemN2pVWJmwHAAAAAAAwS4TtAGBMxj9GVggDoJ+Za7YrLKswDRcAAAAAAIApJWwHAGMy9BhZ4wUBdrRysx0AAAAAAACzRNgOAMZk2Ga7TmWMLEA7/cPIsxdqE6oGAAAAAACYJcJ2ADAm3RSa7bJZs50xsgBtlIfITmfYToMpAAAAAADAziBsBwBj0huy2a4UwugJYQAUFO6P05m1Kxr2Lr/aWx3rOgAAAAAAABhMc9UOADCwtbrQbFdt0mxX9c++H+0ezqeO/VWu2f+UkdcGsFP06l7+/NDv9d02a812Hz36vhxeuzdnzp890Hned/jtecPdf5i7Vw/lEXsene+86J/mkqVHjHOpAAAAAAAANNBsBwBj0i2G7YZrtkuS37j153Lb8hdHWhfATvKmu/84h1bvKGydzrBd07p+5eZXpq4377j7xNG/zO/e8cv50uqdqdPLjcevzy/e/ON5oHt0nAsFAAAAAACggbAdAIxJtzRGdpMi2aaw3Vq9mo/c/96R1gWwk7z/yDuK26Y2atewsNtXbsrNyzdseo4PHPlfpz12rHt/PnHsw6MsDQAAAAAAgBaE7QBgTLoZrtnu3IULGrfftXLb0GsC2El6dS+HVm8vbj9nk/vpdjlnfvT7/Afvf2ffx//bod8dak0AAAAAAAC0J2wHAGNSbLbbJGx36dKVOX/h4vJ5CyE+gN1mtV5p3P7UA8+Z0EraecKBp2e+WihuX6mXhz73se79Qx8LAAAAAABAO8J2ADAm3brUbFcOWCRJp+rkBy//qYbz9g/xAew2K71yKO2afU/J15/zzRNczeAuXLw033/py4vbm74uAAAAAAAApoewHQCMybDNdkly7sKFef7Zf7vVeQF2m6YGuO+48P9Kp5re/725dv/TcsWeR/fdNkrYrk499LEAAAAAAAC0M72/jQKAGdNLIWyXzcN2STmUV2rMA9htmkJpC52lCa5kOEtV/zWOMkYWAAAAAACAyRG2A4AxKY+RnR/o+Ln0369bCPEB7Dar9Upx22IhyDZNSoHAzZrt6lp7HQAAAAAAwDQQtgOAMRlljGzTfprtANY1hdIWO4sTXMlwFqv+a2wKESbJWr26FcsBAAAAAACgJWE7ABiTkZvtimE7zXYASXnc6lzmB77XbqfFIZvtmsbMVqlGWhMAAAAAAACDE7YDgDEpjXudy6DNdoUxsprtAJKUQ2kLM9Bql5RH3TaF6ZLNw3gAAAAAAABMhrAdAIzJyM12hVCeZjuAdauFUFopxDZttqLZDgAAAAAAgMkRtgOAMSmF4krjYU/fr9BsV2jMA9htVnorfR9fnJFmuwXNdgAAAAAAADNN2A4AxmSrwnY9Y2QBkpRDaTu/2a5/yBAAAAAAAIDJErYDgDHpZsQxsoVQnjGyAOtWi812MxK2K4QCS+Nxv7y9IYzX034KAAAAAAAwMcJ2ADAmpVBcJyOOkdVsB5Ck3GxXGs86bcrNds3Ndcu948Vta/VaekLZAAAAAAAAEyFsBwBjUgrFDdxsVwjldbUWASQpj1udnWa7xb6Pl0KEg283ZhYAAAAAAGAShO0AYExKzXal8bCn76fZDqBJKXRWCrFNm3Kz3SZhuk22N42ZBQAAAAAAYHyE7QBgDOq6Tq/QQDdws10hlFcK8QHsNqXQ2cLMNNsVwnYjN9sJ2wEAAAAAAEyCsB0AjEE35fa50njY0/YrNtsJ2wEkTc12sxG2K4UC1+rV9Bru9au95jGxK5tsBwAAAAAAYDyE7QBgDJoCcQM32xVCed2spa7rodYFsJOUQmel8azTpikUuFKXA3Oa7QAAAAAAAKaDsB0AjEG3bmi2K4yHbbNfL73WawLYaWa92a4pFNjUXlcanzvodgAAAAAAAMZD2A4AxqC52W60MbLr5y+H+QB2i1KobLGzOOGVDKe52a4cmNu02a53fOg1AQAAAAAAMDhhOwAYg24awnYZcIxsQyivKcwHsFusFkJnCzPSbLfQEApsaqfbtNnOGFkAAAAAAICJELYDgDEYxxjZTkMorxvNdgArhVGrTeNZp0lTs10pSJgM0mwnbAcAAAAAADAJwnYAMAbNY2Q12wGMQyl0tljNyBjZLWu26x9CBAAAAAAAYLyE7QBgDMbRbNcUyms6P8BusTrjzXZz1XxxtHhTYK6p9S7RbAcAAAAAADApwnYAMAaNzXYN42FP2a+x2U7YDqDcbDcbYbuk3G7XFJhb3rTZTtgOAAAAAABgEoTtAGAMemlqths0bNfUbGeMLLC79epeVgvtbwsz0myXlIOBTYG5TcfIarYDAAAAAACYCGE7ABiDxma7QcfIpqHZriHMB7AblIJ2SbJY9W+Lm0alkbdNgbnNxshuth0AAAAAAIDxELYDgDFoGvM6eLNd0xhZzXbA7tYURisF2KbRgmY7AAAAAACAmSVsBwBj0BSG6wz4dmuMLEBZUxitNJp1Gg3TbNf0tQ+yHQAAAAAAgPEQtgOAMeimfxhuLvOpqmqgc8w3hu2MkQV2t6Yw2sIMNduVwnZNo2BXeuURuuvbhe0AAAAAAAAmQdgOAMagFIZrGg37cJ00jJEthPkAdovVuhw4m6lmu9IY2UJgrluvpZvmwPVKw3MDAAAAAADA+AjbAcAYlMa8tgnbVVVVDNxptgN2u6b2tsXO4gRXMprSWkvtdZu12q3vo9kOAAAAAABgEoTtAGAMys125dGw/fcvhe002wG720phzOpc5lvfa7dTsdmu8PWVHm+7DwAAAAAAAKMTtgOAMSiNeZ1rGA3bd/9CYESzHbDbldrbFmao1S5JFjrtxsiuDtBaN8g+AAAAAAAAjE7YDgDGYKub7XqFMB/AbrFaaG8rNcVNK812AAAAAAAAs0vYDgDGoDTmtRSeK5mLZjuAflZ6K30fX5yxZrvFls12pcc3WtZsBwAAAAAAMBHCdgAwBqUwXGdMzXalMB/AblFqb5u1ZruFqn84sNTctzxAa50xsgAAAAAAAJMhbAcAY1AcI5uWzXbCdgB9rRab7WYrbLcVzXYr9XLquh5pXQAAAAAAAGwQFdyCAAAgAElEQVSuXd0OAHCKL63cmfceeVveePcf9d3eeoxsoQnv9+98df762AfzqD2Py3PP+hvZN3eg9Vp3sy88eH0+dP87c+fKbUmSSxavyDPP+NpctueRI597pbecdx++Ljc+eH0uXroiX3XmN2Tf3P6857635PMPfioXLV6W55z5gpy9cN7I14Ldqlf38r/ue0PfbQsz1mxXauI7tHpHfu2Wnznt8SNr9256zjp1fu2Wn05Vlf8t1TMOfnWedebXDb5QAAAAAAAATiNsBwBDunPl1vziTa/Ike59xX1K4bni/g1NeB87+oF87OgH8qH735l/dvnPCtwN6K+Pfii/eevPp5uH2gc/eezDedd9b8o/vewn8+h9jx/63Ku9lbz6lp/JZx/8xPoD9yfvPfzW7O3sz83LN3x5v784/Nb88yt+LucuXDD0tWA3+/07X517177Ud9tip/9Y1mlVarZbrVfyyWMfHvq8n3rgrxq3X7nn6qHPDQAAAAAAwDpjZAFgSO+49/WNQbtkfM12G92yfGM+fP97Wp13N3vD3f/1lKDdScv18bz5nteNdO5PPfBXDwXtTvjS6p2nBO2S5J61Q3n3fdeNdC3Yre5auS3vPfy24vZSU9y0mrX1AgAAAAAA8BBhOwAY0ucf/OSm++zp7Gt1zkHDeZ8b4Nqsj3j94vHPFrd/7oFPFLcN4o13//HA+775nj8Z6VqwW33+wU81bp+1ls99c/u3ewkAAAAAAAAMSdgOAIZ0vPfgpvs8dt8TW51z0LGzy73jrc67W630lhu3L9fHU9f10OdvCvIB47HZvfax+548oZWMxyP3PDZL1Z7tXgYAAAAAAABDELYDgCGt9FYatz967+Pz3LNe2OqcnQzWbLdZiIx1K/Xmz9NavTqBlQDDWm241z75wLPzlIPPmuBqRrfQWcx3XPQD6fhfMQAAAAAAgJkzWH0OAHCaUpDr4sXL83fO/648bt+Ts9hZanXOQcfIDhIiY7BQ4kq9nIUsTmA1wDCa7nffd8mPDnzfnCbPPONrc/nSo/LJYx/Jke69Ax/XSSdX7Hl0Llq8LJ9/8JM5tHrHwMc+au/jhlkqAAAAAAAAGwjbAcCQSkGul1zwPXn8/qcOdc5Bx8hqthvMIKHEld5y9s8dnMBqgGGU7nfX7n/aTAbtTrp46fJcvHT5SMcDAAAAAAAwWWYXAcAQuvVaeun23bZU7Rn6vIM32zWPsGXdoM12wPQqvUYXKo2UAAAAAAAATJawHQAMoSnE1XZ07EZzA5bOrmq2G8igzXaT0qt7E7sW7BSl1+go91oAAAAAAAAYhrAdAAyhKcQ1SgBkftAxstrYBjJYs93kWgLX6tWJXQt2itL9brEStgMAAAAAAGCyhO0AYAjLDSGuUUYbDjpGdrVnjOwgVgcIJU6yJXCSLXqwU2i2AwAAAAAAYFoI2wHAELZsjGyLZru6roe+zm6xMkAocZItgRoJob1SaHZBsx0AAAAAAAATJmwHAENoakwbZbRhZ8Bmuzq1kaQDGCTcNsm2udUJjqyFnaIUmtVsBwAAAAAAwKQJ2wHAEJoCWiONkc1gzXaJlrRBDBKkm2iznTGy0Fop3DxKsBkAAAAAAACGIWwHAEMoBbQWq6VUVTX0eecGbLZLBLcGMUiQbnWAUbP9dOu11sf4nkF7mu0AAAAAAACYFsJ2ADCEUmhq1PDHXKXZbpy2stmuFADaimvBblZ63YzSIgoAAAAAAADDELYDgCE0NduNQrPdeA0Sbhv2eRwmOOd7Bu1tVbgZAAAAAAAA2hK2A4AhlMIfC6M226VF2K4ebvzpbrK6hc12g5x7XNeC3awcbtZsBwAAAAAAwGQJ2wHAEErhj6WRm+0GHyM7TNhrt1keJGw3wWa7VQFJaKVXd7NWr/bdptkOAAAAAACASRO2A4AhbNVYw1ZjZLWkbWqgMbJDPo/DhPSMkYV2mho8Rx3bDQAAAAAAAG0J2wHAEMpjDSfXbCe4tblBnqPV3nBtc8OM8fU9g3aaGjw12wEAAAAAADBpwnYAMIRSaGph1Ga7aLYbp9UtbLYbZoyv7xm0o9kOAAAAAACAaSJsBwBD0Gw3GwZ5joZ9HocJzvmeQTtNr5mFzuIEVwIAAAAAAADCdgAwlNLo0cURwx9zVYtmO8GtTQ0SiFsdYhxsMtzzP+y1YLdqaqfUbAcAAAAAAMCkCdsBwBCKzXajjpFtE7YzknRTK4VQ5Kn7DNts1z44JyAJ7TS9Zka93wIAAAAAAEBbwnYAMIRSAMQY2ekySCBx2NCiZjvYeqVQaydzre6XAAAAAAAAMA7CdgAwhGLYbsSmpU4Gb7YT3NrcIIG44Zvt2h+njRDa2ap7LQAAAAAAAAxD2A4AhrBSH+/7uGa76dGt19JLd9P9Jtls53sG7RRHdo94rwUAAAAAAIBhCNsBwBBWev1b5RZGbFuaqwZvttOS1mzQYNuwAbjVYZrthO2glXKz3eKEVwIAAAAAAADCdgAwlK1qW5rXbDc2g4YRV+uV9Ope+/MP02wnIAmtlMZla7YDAAAAAABgOwjbAcAQSkGrpVGb7dIibCe41ahNGG6tXm1/fs12sOVKr5lRW0QBAAAAAABgGMJ2O1BVVT9VVVU9wp/f2e6vAWDabVWzXasxsoJbjdqE4YZqqdNsB1uufK81RhYAAAAAAIDJE7YDgJZ6dbfYhDZq29JcizGyq4JbjVZ6/cdP9t13mJa6wnjLJqWRmEB/pVDromY7AAAAAAAAtoGwHQC01BSymmyzneBWkzYBumFCcJNqw4PdbKtaRAEAAAAAAGAYg9fnMMu+I8n7Wux/dKsWArATrDYEpkZtW2rTbGckabM2wbZJjYRdrVfSq3vpVP69AwyidL8dtUUUAAAAAAAAhiFstzvcUdf1jdu9CICdYrkpbDdqs13aNNsJ2zVpM2Z3mOeyKXTZZK1e1coFA9JsBwAAAAAAwDRRqwIALTU1mo3abNdpM0ZWs12j5d7xgfcd5rlsGifceJyQJAysNC571HstAAAAAAAADEPYDgBaagpLTXKM7Fq9ml7dHel6O9lWj5EdttlOSBIGV3q9LFSLE14JAAAAAAAACNsBQGtNYalRAyBzLZrt1tcyXLvabtDmuRmu2W640Nyq7xkMbFWzHQAAAAAAAFNE2A4AWio1ms1X863Dcg83l8Gb7ZrWQrvnpm2zXV3XQ4+DNUYWBlcKtS5WwnYAAAAAAABMnrAdALRUHms4evijfbOd4FZJm+em7fPYzVp66bVd0vq1hO1gYKXXi2Y7AAAAAAAAtkO7+hxm1fdXVfXjSa5Jcm6S1SR3J/likncneVNd1+/axvUBzJRS+GOps2fkc89V7d6aP3z/e3PW/DlJkipVLll6RC5evDxVVQ10/JdW7sgXj38uvfRy/sJFuWLPVemM2M43Le7vHh5439KoypLl3vG2y/myjx/7UO5ZO/Tlz3fa8z5r7lk9lBuPfzbdei3nzJ+fK/de3fp1yPj06m5uOv75HFq9I0lyrHt/3/0WRxzZDQAAAAAAAMPwm8Td4dsf9vlSkgNJHpHka5L8WFVVH0ry8rqu3zrpxQHMmpW6fzBrHGMNOy1LZ//s0O+c9tij916bl17249nT2Vs8rluv5Xdv/5V88P53nvL4BQuX5Acv/+mcs3B+q3VMm08f+2jee/htA+/fptnuge7R/Lsb/8Uwy0qSvPme15322IWLl+UHL/upnL1w3tDnpZ1e3c0f3vkf8+7D153y+Nnz5+WHLv+ZXLB4yTatbPe6Z/VQfuXmV+au1ds23VezHQAAAAAAANvBGFlO+ook11VV9XPVoHVILVRVdUFVVde2+ZPkqnGvA2AcymMNR29aGsct+HMPfiL/7dDvNu7zzvvedFrQLknuWr0tv3fHr468hu200lvOf7z137U+ZlCvu+s1pzTTjcOdK7fkv9zxa2M9J83ed+TtpwXtkuTetS/lt2/7hW1YEf/ljl8bKGiXjCfcDAAAAAAAAG1pttvZbk3yhiQfSPKpJPck6WV9lOzTkvytJC/csH+V5MeyHsJ8+ZjX8tIkrxzzOQG2RakFbWGKwh+fPPbhxu1/ffSDxW2ffeATOd57sLEZb5p99oGPZ7luN+Z1tdBW2M/Hj32o7ZIGcv0DH89y7/hYxhGzub8+Wv4+3rx8Qw6v3ZMzT4xoZust947n+gc+PvD+C2MINwMAAAAAAEBbwnY70weyHqJ7S13XdWGfv0jya1VVfUWSP0hy9YZt/7qqqvfVdf3nW7xOgJnUrdf6Pj5Xjedt9aq91+TzD35qpHMc7R5p3H5k7b7itl66Oda9f2bDdoe797Y+ZtBmu17dzf3dw63PP4hu1nKse7+w3YQcWWv+OTmydp+w3QQd696fXroD7dtJJ5cuXbm1CwIAAAAAAIA+jJHdgeq6fkNd19c1BO027vuhJM9Ocv3DNv18VVVzW7JAgBnXq3t9H5+rxvO2+rVnvThVRhsnu9lbwGqhne+kNmNVp81yr12rXVJuKzx9v8Eb8IYxy8/7rNn0NbDF32tO1eZn/5lnPC/75w5u4WoAAAAAAACgP812pK7re6qq+o4kH0q+nO54XJKvS/LWMV3m15P8cctjrkqiXQ+YOr30D9tVY8qwf8UZz81c1cm777su93cP5/H7n5oXn/sd+djR9+c9h9+S25Zv+vK+q/VKHuwda32NzYItmwWRplnT1/bUA8/JR46+t9UxG6027HfuwoW5cPHS3Hr8C6mTnLtwQfbN7U+VTm5evmFDALLOkW7/ZsFBQ3+MbqXXHKZr+l4zfk0/+wfnzkyVTs6cPztPOvDMvOjcb5vgygAAAAAAAOAhwnYkSeq6/nBVVddlffzsSS/KmMJ2dV3fleSuNsdU1WitTgBbpVf3H3XYGWMh6FMPfmWeevArT3ns6Wc8N08/47mnPPbXRz+Y37j151qff7NQ1yw3rK3U/Zvtrt57bS5YvLRwzKDNduX9fuiyn8l5ixdueo5uvZaXXf+t/c8/RCsfw9n0NSD4OFFN95x/e9Vvj21MNwAAAAAAAIzCGFk2etPDPn/StqwCYMqVmu062/K22j+YXKd5jOxmrV6zPEKzFNpZ7OzJYmex1TGn71d+XhY7SwOdY66az1zh3zssC3hNzGbf81kOnM6iUrhxLvOCdgAAAAAAAEwNYTs2uvFhn5+/HYsAmHa9uhC2q6bnbbUpbNet19LNWuPxsxw0Wi6sfamzlMWqfyBu0LG5TfsNGrZr2neWn/dZo9luupRDsv0DsgAAAAAAALAdpicVwDR48GGf792WVQBMuXqKmu2GGbg9SKBrloNGpTGyi9VSFooht8Ga/Jqeu4Vq8FDQUmdP4fzGyE5Cr+5mrV5t3EfwcbJK95xSQBYAAAAAAAC2g7AdG533sM+/tC2rAJhy3brb9/HtaLarhhgjO0iQbnXA8Nk0KjXbLXb2FIM7g4YLS+N156v5zFVzgy0w5QCRMbKTMciYZGG7ySo32wnbAQAAAAAAMD2E7djoWQ/7/LZtWQXAlCs32w0ethqbqtRt1xC22+nNdoV2uMVqqRjcGTRcWHruFlq2b5XXMbvP+ywZ5Hme5dfALCo9321fWwAAAAAAALCVhO1IklRVtSfJ333Yw+/YhqUATL1eXQjbTVOzXTlrN1CIaJZbvUpf31JnTxYLo14Hb7YrjbocfITsybX0s2yM7ETs9NfALNJsBwAAAAAAwCwQtuOkf5Xk0g2fd5O8fpvWAjDVuimMkZ2it9XGMbIDtLjNcqtXObSzp9woV68UQ5SDnbtdIGhhxNAfoxnkNbA6wKhZxme1FGQVtgMAAAAAAGCKTE8qgLGoquq7qqq6sOUx/2eSVz7s4d+p6/qL41sZwM5RF5vtJj9GttRs1zhGdoe3epXa4ZaqpSw2jKQcJFw1rlGXmu22105/DcyiYpDVGFkAAAAAAACmiLDdzvO9Sb5QVdV/rqrqxVVV7S/tWFXVV1RV9adJfjM5Ja1xa5If3+J1AsysXgphu214Wy2OkW04ZpAQ0Sw3rBVHvXaWGluyBnpextRst1j1D9vN8vM+S1Z3+GtgFpXaBhc77UY0AwAAAAAAwFaa3+4FsCX2JvmHJ/70qqr6bJIbkxzO+njYc5M8OUm/Brx7kryorus7JrNUgNlTGjdaVdOUYS/H7UrjGk/ZZ4ZbvUrtcIudPY0tWYOEq8Y16rIUINKmNhkrg7QY+l5MVDEkq9kOAAAAAACAKSJst/N1kjz2xJ/NvC3JP6rr+patXRLAbOul2/fxuUzTGNmynd5sVwrELVVLWdiqZjtjZGfKTn8NzKLS96TpNQsAAAAAAACTJmy38/xy1sfAflWSRwyw/7Ek1yV5dV3Xb9vKhQHsFKVmu852NNtVpTGy5Wa7wUJlmzd/TaNu3c1avdZ323qzXXkk5SCNf6VGtLajLktjZAdZA6MbJEin2W6yNNsBAAAAAAAwC4Ttdpi6rv8syZ8lSVVVZyW5NsnlWR8Zuy/rTXf3Jbk3yaeSfKyu6/4VTQD01UthjGwmH7Zr32s3YNBoRkNfKw3NcEudpcZxr4OEq0rjddsGgkrrWBbwmoiBvtcz+hqYVcXWSM12AAAAAAAATBFhux2sruv7krxnu9cBsNP0ChnlbWm2a1DXdao+zXejjEuddssNAanFak/mqvl0Mtd3FHCpte7UfcYz6rIUIGoKCzI+gzXbzWa746wqhRs12wEAAAAAADBNpisVAAAzoNRs18nchFeSNHXblUbJDhQqm9GwXVNY7WTArRx0Gz6A1TSetp+lwhjZWW0UnDUDfa99LyZKsx0AAAAAAACzQNgOAFrq1YWw3TY021WNg2QLYbsB2tNmdYTm8iBhu0JT1iBfcymA1TYQNErgj9EN9L32vZioUiulZjsAAAAAAACmibAdALTUbwRpknS24W21fdRu0BGasxk0amrtO9kmt9jp30I3yNjQ0vOy0DIQVAoQNYUFGR/NdtNntdhs1641EgAAAAAAALaSsB0AtFRutpuuMbLlZrtBgkabB8+mUam1r0on89VCknLQbZQQYttmu6VOaYzsSuq6FJNkXAYJVq7Vq+nV/YO1jF+xNbIwchkAAAAAAAC2g7AdALRUpxC225Zmu3LYri6F7QYIle20MbJLnaVU1fpzNcoI19Lz0nbUZWkNdXpZq1dbnYv2Bm2tm9XQ6ayp63psQVYAAAAAAADYSsJ2ANBSt9B21am24W21agjbFQrSBgmVrdVrxa9zmg3SjlUa+TrJZrumcN5ybZTsVht0THJptCnj1c1aeoUQc9sgKwAAAAAAAGwlYTsAaKncbDf5MbJNQ2RLY2RXB2zrGnS/aVIaI7vYWdzw8fDNduUwX9tmu/JozEGDYAxv8GY734tJaPqZ12wHAAAAAADANBG2A4CWenUhbLcNzXZDjZEdMMw1i6GvYvPchma7xWqx7z6DNdv1DyC2DQQtNew/i8/7rBn8NTB7gdNZ1DSuV9gOAAAAAACAaSJsBwAtlcYddrblbbW5266fgVu9ZjD0tVz42pY2NMktFMI7m40M7dbddLPWd1spwFfS1IS3YozsllvVbDdVmu41Cy1fWwAAAAAAALCVhO0AoKVys920jZHtb+BWrxkMGpXHyD4UbisF3ZratZLmsbqlAF9J0xjZ5RkMOc6andzuOIuMkQUAAAAAAGBWCNsBQEu9dPs+Pm3NdsUxsju52a6w5o3NdqXwzmZfb2MgqKGprp+5ai7z1Xz/68xgyHHWDPwa8L2YiKamwbavLQAAAAAAANhKwnYA0FK52W663laLYbud3GxXGMG6MbBTCu9sNlq0uX2r/ajLxap/u12pnY/xWek1txg+tN/svQZmkTGyAAAAAAAAzIrpSgUAwAzopX/YrtqGt9WqajdItlf3GsehbrQ6g0GjUmjnlDGyhWDcZgGspvDhMO1bpYY9Y2S33k5ud5xFpe/HYrXU+h4HAAAAAAAAW0nYDgBaKjXbzW1Ds11TDKWuT2+2W6tXBz73bDbblUI7G8bIFoJxm329je1bheBck2HXwegGDdFt1nbIeAwSkgUAAAAAAIBpIGwHAC2Vm+3mJryS9auWnR62W24xonQWW71KX9/SKc12hZDbJl9vc7Nd+1GXSx1jZLdDt15LL92B9p3F18Asamq2AwAAAAAAgGkibAcALfXq/kGdzrY025XDdnWfsF2b1rSVAcfNTpNyQ9ZDwbaFIRvlSmN156uFdKr2QcthQ3+Mps3zq2VwMkrfk2EaIwEAAAAAAGArCdsBQEulZrvODLyttgoazWDoq9hsV21ds92w7VvGyG6PVoHT3uwFTmdR+bXVvjESAAAAAAAAttL0pwIAYMrUdSFsNwPNdqutmu1mL/RV+vo2NtuVAjybPTfl1rwhw3aFMbJtRv3Snma76TPu1xYAAAAAAABsFWE7AGhpuprtWo6RbRE0Wp3BVq/lAUI7pdGUa/VacURwUh6ruzBk+1ax2W4GGwVnSbtmO9+LSRh3ayQAAAAAAABsFWE7AGipWwhkdaq5Ca8kqcpZu/TJ2hUDY/3MYqvXSt2/FW5jaKcpwNP0/KyOuX1rqXDccuFrYDzahEhn8TUwizTbAQAAAAAAMCuE7QCgpXqKmu2axsj202qE5oy1etV1XWy2W9o4RrYhwFMK1CXjb98qjZGdted91rQJ0DX9PDA+5ddW/9cIAAAAAAAAbJf57V4AAMySXt3rO541STrVdI2R/def/8epUuW8xQvzjINfkxee+6153aHXDHzm9xy+Lu89/LZUVZXLlx6VbzjnW/KUg88ex6LH6t7VL+VP7vrtfPLYR4pByI3BtqZw3Ms//73FAGNpfPBiZ7xjZD9+7EN52We+NVWVXLL4iHzt2d+Y55z5gk3P96773px33/fm3LZ805cfW+gs5qq9j8s3n/8Pc+nSlUOtc9o80D2aN9/zuvzlkXdnqbMnzz/7b+crz/z6VBtqHj997KN50z1/ki88+Jn06lO/b92sDXytjxx9b172mW/98ufz1XwesffqvOT8f5zL9zxq9C+GHF07kvceflvfbcO+tgAAAAAAAGCrCNsBQAulMFcyfc12vayPu71z5db8z7tfm/9592tbnbtOvR5MqpMvHP9Mfuu2f5+XXvbjuXb/00Za8zgt947nVTe/Inev3tm439LGMbINzXYnn7M2FoZutisfd/J5v2n58/m9O341VTp59plfV9z/3fe9Oa+98zdOP09vLZ849uHcePyzefkjXpVzFs4faq3T4vDavfmVm1+Z21ceChT+/p2vzmq9kued/eIkyRcevD6/fuvPZq1eHcs1N4bzuvVarn/gr/PLN/9kfvzKX85ZC+eO5Rq7Va/u5pdu/onidmNkAQAAAAAAmDbGyAJACw9vydqoU81NcCWTV6eXv7jvLdu9jFN8+thHNw3aJQ9rthtzgGfY8y0Vxsj2857D1zVuf/fh5u/Lse79+ejR9w98vWl03+rd+cWbXnFK0O6kt93756nr9cbJDxx5x9iCdiUP9Nbb9RjNFx68PretfLG4fdgRzQAAAAAAALBVhO0AoIXSKNFke5rtDs6f2dhuN263LpeDMdvh1uUbN92nk7kcnDvzy58vVkvZ29k/tjWcNT9cu1mb4zZ73m8b4PsyyD7T6p7VQ/nFm1+Ru1Zv67v97tW7cqR7X5Lk9pWbJ7Kmvzj81hztHpnItXaqWxuCdsnwry0AAAAAAADYKsJ2ANBCry6PGe1Uk39bPTB3Rh6193ETu95KvTyxaw1ipV7ZdJ/H7XtS9s7t+/LnnaqTJx54xtjW8OQDzxrquMfte/LAzV2rveavs9vwc9lmn2n0pZU78qqbfiyHVu9o3O/OlVuSJHVD++Q4rdYreee9b5zItXaq1V75ftJJJ0848PQJrgYAAAAAAAA2J2wHAC00N9ttzxjZ773kR3PJ4iOGPv6rzvyGfN8lPzpQ8Guz0NekrTSEdZLkiqWr8t0X/9Bpj//9C/5JHrPviSNdey7z+bYLvi9X77t2qOP3zu3LSy/7iezvHNx0327W0q3X+m7r1b3UDT+XXz7HDIbt7ly5Na+6+RW5Z+3QpvvesXwibDfC9fZ29m2+0wbvuO8Nm/4MUtYU3v2+S/5lzl24cIKrAQAAAAAAgM3Nb/cCAGCW9Bpas7aj2S5Jzpo/J6+48pdy1+ptuXv1rvTqbn791p8d+Pj/48KXpqqqPHH/M3PT8uez3HswXzz+ufyPL/3+aftOW7PdamE9+zsH86OP+Pc5f+GiVNXpY3b3zu3LP7v83+Se1UO540QjWhsL1WKu2HNVljp7Wh+70WP2PSE//+jfyc3Hb8gDvaM5tHJ7/utdv9l335XeSvbOnf6fboOG6LrpH9abVrcv35xfvvknc6R770D737Fy64mPhovbPX7fU/MDl73ixPfi2CnbPn70Q3nHfa8/7Zij3cP5wJF35LlnvXCoa+52paDio/dem6ccfPaEVwMAAAAAAACbE7YDgBZ6KQebqm0sjK2qKhcuXpoLFy9NXdfppNPYwnfSUrXny2G0hc5Crjoxkna+6v+fCKv1Snp1b9uChQ9XCus86eAzc8HixZsef87C+Tln4fxxL6uVuWouV+69Okly+/x5xf1W6uXszenNa4OG6Gap2e6W4zfmV255ZY52Dw98zB0rNydJ6iHDdgudpcxV87ly72NO23bl/2bv3sOjqu99j3/WTGZyIVdIIFwLiIpQFVG2iEEBRa1atdXaum3dtR63Vdt6OdrqtijWVmttS9sj3V6OVrp1e9zd3ahUi4qCilRBvFZECwoB5RIMhEtCZjKzzh9KzJD1m6w1t6zJvF/P4/O4Zt1+ycwQ43z4fEsO1N9anlW7vbfbvkXNj2lK1UzfvCfyiSm8Wxbsl+OVAAAAAAAAAAAAAO7wqSAAAB4ka7YLWr0zRnZ/lmUpHOh5JKwk43HJRlWNPk4AACAASURBVMpGbf+Mko0Y1uJmJK4fJXveooZgYdxts51hDK3fNO5dq99umOUpaCcppYbCroqTfO/LguU6tnqm476t0Y/11u7lad27UJnCsiErnOOVAAAAAAAAAAAAAO4QtgMAwINkbXEBH/1YdRs2M4btkgSPTAGZ3mAKoLkNG/pNsufNqVVNch+icxvK600ftr2v326YpT3xXcZjKoM1jo/v6PhEe+Ntsu3Umu3CVvKRwNNrvmx8jy9qfjSlexa6SLxvhWUBAAAAAAAAAADQ9/knFQAAQB6wkzTbWT4aIxly22xnCLUkC7uYRj/2BtNa8jWskzzk6BxMcjse1u242d6ypnWVfrfhRrXFW43HHFj6Rf1g+Gzj/i2Rj1IeI9tTQHNAaKAmVhzruO+Dvau1tm11SvctZMb3b56GZQEAAAAAAAAAAND3+ScVAABAHojJHGwKyh9jZCX3YTNTKC9ZWM9PzXZ9bQxlsnWbgkluQ3RuQ3m94b09b+nOjTcb2/skaWzZ4bp82CzVh4cbv0+b21MfJZtsjOw+M/t/xbiPdjvvTM2U+fr+BQAAAAAAAAAAQN9H2A4AAA/iedJs5yY4JKXWbBfNh2a7PG3GClgBY9DIFCx03Wzn07Ddqj2v6/cf/TRpY+L4fkfq0qE3KBwoVsAKaFB4iONxmyOph+16GiMrScNLRuvgssMc9721+xVtiXyU8v0LUV97/wIAAAAAAAAAAKDv808qAACAPGDLHLYL+OjHashls50plBcOJGlYy4Nmu3wO65iCjqaQo/uwnf/GyL69e4Xu+uhnitrOI3Il6fDyo3XJ0OsU6vKarA8Pdzx2S2Rj1sbI7mNqt7Nl67nmBSndu1AZ3795OgYaAAAAAAAAAAAAfZ9/UgEAAOSBZMGmgI+a7dwGh0yhlqBVpKCKHPdFkgSjcs0U0srnsE7IEHQ0N9u5HCObZARyb3h91990z0e3qyPJ+idWHKv/NeRaFVmhhMcHhYc6Hv9ps12KYTuXr5lDyiZoSPgLjvte3vmcdnXsSOn+hcj4/s3jsCwAAAAAAAAAAAD6Nv+kAgAAyAPJm+2COVxJcm6DQ6EkoRZTux3Ndtlleu6MYTuXITo/Ndu9uvNF3ffxHYrJvKZ/qjxeFw6+WkGre+izPjzM8ZymyOaUx+UWB3oeIytJlmXpxP5nOe6L2hE9v+OvKd2/EDFGFgAAAAAAAAAAAPmGsB0AAB7E7SRhuz7UbJdsnykgk2u2bRtb9vK52c703Jm+766b7VIMoWXayy2L9YdNcxRPElw9puoEXVD/AwUt5wDrIEPYLqYONUU3p7QuLwGvoyobVF00wHHf8zue9FUg1c8YIwsAAAAAAAAAAIB8459UAAAAeSCWtNnOPz9W3YZVkgWMjKEvnwSJOuwOY9NgssY+v/PcbOcyROeHZruXdjyj/9j8u6QNkVOrT9H5gy5XwBC0k6RB4SGyZDnu2xtvTWltXgJeRVZI02tOd9y3J7ZLf2t5NqU1FJq+2EwJAAAAAAAAAACAvs0/qQAAAPKAnSTYlCwclGumEbD7K04Sagn5vNkummQdYcvd1+9H5mY75xY/1812LsfNZsvz25/UQ1vmypZtPGZGzZf1jYGX9NgSGQqENSA0MKPrcztGdp+GqpNUEih13Pfc9scV90mToF/11WZKAAAAAAAAAAAA9G2E7QAA8CDZ6EtfNdu5bIYyBeqSXcMvzXbJ1pHPzVhev+9uQ3S9OUb22ebH9cjWe5Iec1L/r+rsuu/Ispwb6/ZXHx6eiaV1SvZecFIa7KeGqpMd9zVFN+uN3a9kYll9Vl9tpgQAAAAAAAAAAEDf5p9UAAAAeSBuO4dDLFmuQ0K5ELbctXSlMkY2WaNcLiVr2Avlc7OdIfRl+r67brbrpTGyCz/5b/256f6kx5w64Os6s/Zbnt5Dg8JD011agmQtjybTa05XQM6Nloua58u2zS1+ha6vNlMCAAAAAAAAAACgbyNsBwCAB6ZmO1Pgpre4bXZLNq7RtM8/zXbOIyil/G62CxlGABub7Vw21uV6rKlt2/rLtof1+LYHkx53Ru35Or32PM9h1frwsHSW103Y4xhZSaoJ1eqoyqmO+9bt/YfWtq1Kd1l9Vl9tpgQAAAAAAAAAAEDfRtgOAAAPTIGlgOWvH6nJQnQJxyVttjOFvswht1xK3oyVv2EdY8jR2GzncoysctdsZ9u2Htv2oJ785JGkx3217ts6ZcDXUrpHfXFmx8im+po5seYs475nmh9NdTl9XrJmynx+/wIAAAAAAAAAAKBv81cyAAAAnzM32/nrR6opKNftuFSa7fwyRjZJM1Zej5E1BCDNzXZux8jmptnOtm39uekPerr5z0mPO3fgxTqxvzmo1pN6H4yRlaRhJSM1ruwIx31v71mhTe0b0llWn0WzHQAAAAAAAAAAAPKRv5IBAAD4XNw2hO181mwXykCzXchj6CvXTKG/kBX2PJLUT7yGHONyF6KzZWd9lGzcjuuRrffoue2PG4+xZOmfB12qaTWnpXWvfsEKVQSr0rrGPkVWSAEr9VHQyUKDyb4XhYxmOwAAAAAAAAAAAOQjfyUDAADwOXOzXepBnWxw2wzVF5vt8r0VK1vNdp8em72wXdyO6+Et/64XdvzVeIylgL5V/301VJ+ckXsOCg/LyHXSDXcdXHaYhhWPctz3ys7FaunYntb1+yLT69mSpSIrlOPVAAAAAAAAAAAAAO4QtgMAwANTs53ls2Y7t+GhZME0r6GvXDOF/vK9Fcsccow4Pu4lQBdz2YLnVcyO6Y+bf6eXWp4xHhNQQN8efKUmV83I2H3rMxW2SzOgaVmWZhra7TrsDi3Z/kRa1++L+mozJQAAAAAAAAAAAPo2fyUDAADwOdPIzoDPfqQWB0pcHZdKs13UJ8120bhz+KyvNttFM9Js5/5YL9d8YNMcLd+5xHhMQEFdNOQaTao8LqP3rg8Pzch13L5fkplYcaz6F9U57ntxx0LtjbelfY++JNJH378AAAAAAAAAAADo2/yVDAAAwOdMzXYBvzXbuR0jS7Od73gd3+ulrS7TY2Q77Kj+78e/1MpdS43HFFlF+tehP9IRFVMyem9Jqi8enpHrZOI1E7SKNL3my477WuO79beWZ9O+R19iCu3m+/sXAAAAAAAAAAAAfVtRby8AAIB8YssQtvNZfj1khV0dlzRs5zH0lWum0F++N2N5DTn2VrNdNB7RvR//Qn/f86rxmJAV1r8OvU7j+03M2H27GpShZrtMvWaOrZ6pJz/5f2qLt3bb99z2x3Vc9ZcUtIIZuVe+M72eQ3n+/gUAAAAAAACAbLJtW/F4XLZt9/ZSAKAby7IUCARkWVZvLyWrCNsBAOCBqRksb5vtko2RDTgH9kzjH3MtYjuvw23Q0K+ShRxt2+72H6de2uoy1WwXibfr7o9u07utbxiPCVvF+u7Qf9PYfodn5J5OaopqFbaK0w6AFlvpj5GVpJJAqaZWf0lPN/+5275Polv1+q5lOqpyakbule9M799wnr9/AQAAAAAAACDTotGoWlpa1NLSomg0StAOgK9ZlqVQKKSqqipVVVUpFAr19pIyzl/JAAAAfC5ubLbzV1uV21GMyYJpIWPoa29Ka8q0Qmu2k6SoQ0Ap7mWMrNJvttsbb9PvP/pp0qBdsVWi7w27MatBO+nTkGsm2u0y2aY2reY0BQ1/n+WZ5vn8T5DPRPvo+xcAAAAAAAAAMqW9vV2NjY1as2aNmpqaFIlE+H/MAHzPtm1FIhE1NTVpzZo1amxsVHu7PyanZQphOwAAPLBtQ9jOZ812btrdwlZx0grfZONM/fDLXNTQZuY2aOhXppCj5DzCN5fNdm2xVs3d+BO93/q28ZiSQJm+P3y2xpSNT+tebtWHh6V9jeIMBryqi/rrnyqPd9y3of0Dvd/294zdK5+Z2gjz/f0LAAAAAAAAAJkQjUbV2NioPXv29PZSACAte/bsUWNjo6LRaG8vJWP8lQwAAMDnzM12/vqRallWj6GVcCD56EzT+XHFM9KQli5Ts13IMP42XyRr9nL6mmO2++fCy7H7a43t1v/ZOFtr2941HlMWKNcVw3+i0aVjU76PV5lotgtnaIzsPif0P9O4b1Hz/IzeK1/11WZKAAAAAAAAAEhXLBbThg0b1NHR+5/FAEAmdHR0aMOGDYrF0isG8QvnGVcAAMBR3NAMFrD8NUZW+jRMF4mZK3nDPbTf9RT6KgqGUl5bJkQcRqpK+d+M5XWMbC6a7XbHdur/bJitDe0fGI8pD1bqB8Nu1rCSUSndI1X1xcNdHWfJki3nRsZMB7yGFI/Q+H5H6p09K7vte2fPa/q4fb2GFH8ho/fMNzTbAQAAAAAAAICzTZs2dRu5GAgEVFlZqcrKSoVCIQUC/iqBAABJisfjikaj2rlzp3bu3Kl4/PMim/b2dm3atEnDhqU/taq3EbYDAMCDfGm2k9IL0316frJxphGVpbSqzIn20WasZM+bc7Odh7CdvIftdnXs0G833KSPI+uNx1QGq/WD4T/RkOIRnq+frnqXzXZhq1jt9l7HfZkcI7vPzP5nOYbtJGlR82O6YPAPMn7PfEKzHQAAAAAAAAB0F4vFtGvXroTHwuGwvvCFL6ioiHgHAP8Lh8Pq16+f6urqtH79ekUin5eJ7Nq1S7FYTMGg/4psvPBfMgAAAB+L24awneW/H6nphOl6Ot8UlMmlvtqM5XmMrIeRvl7HyLZ0NGvOhh8nDdpVFfXXVSN+1itBO0mqCw2R5eI/aYuTjE3O9BhZSTqw9IsaUTLGcd+KnS9oR/STjN8zn5jev6E8f/8CAAAAAAAAQDr27NmTsG1ZloYPH07QDkDeKSoq0vDhw2VZVsLj+/85l4/8lwwAAMDH4oZmMDdhn1xLJ0zX0/m+CNsZ1hDqodHP74IqMjYlOgWUvDTbmcYgO9ke3aY5jT/W5shG4zH9i+p09fCfaZDLdrlsCAVCqgvV93hcstd7NtrULMvSzJqzHPfF1KHFO/6S8XvmE5rtAAAAAAAAAKC7/VvtysrKFA7n9+ceAApXOBxWWVnivLTdu3f30moyx3/JAAAAfMzUbBe0/Fd122OYLknTV0/nRw2tVLlkbLbL87COZVnGr8F5jGzmm+0+iW7RrzfcoK3Rj43H1IYG6aoRP1NdeLDr+2eLm7Bfsva6bLUhTqg4RgNCAx33vbjjKbXFWrNy33wQtSOOj/c0/hoAAAAAAAAA+rL9G58qKip6aSUAkBnl5eUJ24TtAAAoMHE5h+3ystmuh1BLkRUy7vNzs12+h+0k83MXsfd2e8xLs13M0MzY1dbIJs1p/LE+iW4xHjMwNERXDf+ZMUiWa/XFw3o8JtkY2WT70hG0gppRc4bjvr3xVi1reSYr980Hffn9CwAAAAAAAACpsG1bsVji/8cvLS3tpdUAQGbs32wXi8Vk23YvrSYz/JcMAADAx0xjOAOW/36khnpstku+P2AFjCNZTa1yuWRuxsr/sI7puYvEu3/NMWWu2W5z+0bN2XCDmjuajMcMDg/XVSN+qppQrev7Zlt9uOewXa7HyO4zpepElQXKHfc9t32Bp2bCvsTYTNkH3r8AAAAAAAAAkIp4vHvhQzDov8lKAOCF059jTn/e5RP/JQMAAPAxU7NdUP77ZafnZrueQy1expnmWl9uxjI32zmNkfXQbJfk2I/b1+s3G36slo5m4zFDi0fqyuE/VVVRf9f3zAU3YTtTcFTKbsCrOFCi46q/5Lhve8c2rdz1Utbu7Wd9+f0LAAAAAAAAAKlwanqyLKsXVgIAmeP051i+N9sV9fYCAADIJ3HbMEbWh812xWk220mfhpD2aFe3x5/f8Ve92/qGwlaxDig9RBMqJitoZf8/K+J2XG/tXq41be+o3WGkqtQ3mrFMz83ync/ro/Z1CY+9s2el6+v+cfNvtbr1Tcd9b+1ert2xncZzhxeP1veHz1Z5sNL1/XJlUHhoj8cka5/M1hjZfabVnKZF2x9Vhx3ttm9R83xNqjgurf9hYtu23tmzUu+1vq22+B7P55cFyjWu3xEa2+/wlNfglbGZkrAdAAAAAAAAAAAAfIywHQAAHtiGZruAD8tiewqthK2eA0ama6xpe0dr2t6RJC3Z8YQO33W0LhpyjYqskPeFuhS343pw8516eedzSY9L1mCWL8KGr2H93n9o/d5/pHzdDrtDy1oWeT5vZMlB+t6wG1UWdB6H2tvKguWqDNZoZ2x7SudnOyhaWVStoyun6aWWZ7rt29i+Tqtb39Qh/SakdG3btvWnrfdpyY6/pLXGRdsf1ZcGnKsv1/5zWtdxy9RsF+oDYVkAAAAAAAAAAAD0Xf5LBgAA4GOmMZwBy39jZHsKrYQDPYfS3LbEvbn7Fb27x7kxLVPW7/1Hj0E7qW80Y/npazig9BD9YPjNvg3a7eOm3c7EUvZr+E/sf5Zx3zPN81O+7ubIxrSDdvv89ZP/0o4kY4QzxbZtx5HIkjloCgAAAAAAAAAAAPgBYTsAADyI51GzXWmgLOn+kh72f3pMqev7vd/6tutjU/Gey+t7WbNfuXlucuHgskP1vWE35cX3tL54WNL9ycJ4/YIVmV6O4/0PK/8nx32rW9/Uxr0fpnTdf7T+PZ1lZf16TkwjZCUp5CIEDAAAAAAAAAAAAPQW/yUDAADwMds2hO0s//1IPbDsi0n3H1R2aI/XcHPMPnvjra6PTYWb69cU1ao2VJ/VdeRCT89dLowrO0KXDv2xigM9jxv2g/H9JibdP73my6oq6t/t8cHhEeofqsvWshKcWGNut1u0/dGUrtmW4ffd3nhbRq/nxNQQKklFWR7pCwAAAAAAAAAAAKTDf8kAAAB8LCbDGFn5b4zsF0rG6J8qj3fcd2zVTA0OD+/xGg3VJ6s+nLwxbJ9I3HksZKb0dP2AAvpq3bdlWdkfCZptkyqmamTJQb12/8PLj9YlQ6/31Tjbnnyx35EaV3aE476T+5+j6qL+OrvuwoQWyiIrpK/UXZCrJeqA0kM0quRgx32v7lyq5miT52uaxrGmKtvvY0mKqcO4LyDCdgAAAAAAAAAAAPAvPs0CAMCDfGq2C1gBXVD/Ax3ab5Leb/u79sbaVBbsp4PKDtWE8smuQmlVRTW6esStWrlzqdbv/YdidlyN7Wu0JfJRt2MzHfrxcv1T+n9Nh1ccrS+UjMnqGnKlNNhPPxh+s1buXKoP9q5WRzwxnLQrtkOrW99M+fpBFWlixbHdHi8JlOqgsi9qYsWxeRdaDFhBXTrsx1q+c4k+aFutSDyi8qIKjSs7QuM+a707qnKqakOD9Obu5QpaQU0on6xhJaNytkbLsnRi/zN178e/6LYvrpgWb/+Lzh54oadrmsJxVUX9dVCpuZny3dY3tDvW0v16WX4fS8mb7YKW/4LLAAAAAAAAAAAAwD6E7QAA8CAuQ9jOp2WxASuoIysbdGRlQ8rXKA9W6viaUzu35zfN0zPN87sd11vNdsdWzdQZdedn9d69oSRQqmOrZ+pYzey274O21VrdmHrYrjxYoQuHXJXO8nwpaAV1TNUJOqbqBOMxI0sP0sjS3m0NrAsNVlN0U7d9L7U8rVMHnKvSYD/X1zOF40aXHJz0Of7thhv1Xutb3a+Xi2Y729xsF2SMLAAAAAAAAAAAAHzMn8kAAAB8Kp5HzXbZEracR4v2VrNdyLCevixslaR3fh6Nh+1rAlZQJ9Sc4bhvb7xNL+54ytP1ooZwXKiH59j0Po7aEU/3T0WcZjsAAAAAAAAAAADkqcJJBgAAkAFxOYdEAiqcgIgpqNVbzXaFGBwrTvNrLsSAop9Mrpqh8mCl477FO/6iDjvq+lqmEKopTLdPKBB2vl4umu0Mf45KNNsBAAAAAAAAAODWyJEjZVlW5z9Llizp7SUBBYGwHQAAHtBsl6zZLruNWKbGrbDlHBrqy8IBmu3yWThQrOOqv+S4r6WjWa/ufNH1tSJxw/vCEKbr3N9LDZVSD2NkCyi4DAAAAAAAAAAAgPxTOMkAAAAyIC7nsJ1VQD9STUEt0zjLTKHZ7nM9tZb1eH4Bfs/85vjqUxUyBEUXNT8q27ZdXSea4njl3nofS1KMMbIAAAAAAAAAAADIU4WTDAAAIANMzXbBAmq2M4V4st2Ileq4zL4o3TGyhfg985uKoipNrprhuO/jSKNW7XnN1XXMzXY9hO382mzHGFkAAAAAAAAAAAD4WOEkAwAAyACa7czjKU3Nc5lCs93nAlZQRVYo5fN7GjGK3Dih5gxZshz3Ldr+qKtrpBpCDRnfx9kdBy3RbAcAAAAAAAAAAID8VTjJAAAAMiBuCIkECiggkqwRy+3oy1QYQ0UFGLaTpGKrJOVzabbzh4HhITq8/GjHfe+1vq3GvWt7vEaqIVTTa8A0ljaTYkrSbCea7QAAAAAAAAAAAOBfhO0AAPDA1GxXSGNkk4V4onb2WrFMoSLTWNu+ztRM5u7cwvye+dHM/l8x7lvU3HO7nbnZLvnrw/Q+znZDpWRutgsoIMtybvoDAAAAAAAAAAAA/IDqCAAAPIjbjJFN1ooWsdsVVuaDXHE7bgzyFWyzXYBmu75gVOnBOqD0EK1te7fbvtd2vaQzo9/UgNAg4/lRw9jXngKVyRoqsy1mOzfbBS1+NQEAAAAAAAAAwG9s29Zrr72m1atXa+vWrWpvb1ddXZ2GDh2qhoYGlZeX9/YSU7ZhwwatWLFCGzduVFtbm2pra3XooYfqqKOOUiCQ3ue/W7du1YsvvqiPP/5YbW1tGjJkiEaPHq3JkyenfW0nq1at0ttvv62mpibt3LlT/fv31+DBg9XQ0KABAwZk/H6FjE+0AADwwDY02wUKKWyXJMQTibdLWZio22FHzesp0OBYOl93oQYU/erEmrMcw3ZxxfXc9gX62sD/ZTw39WY75/2m8F4mmZrtggU0jhsAAAAAAAAAAL/btm2bbr31Vj344INqampyPCYcDmvGjBmaPXu2jj76aFfX/fa3v6158+Z1bn/44YcaOXKkq3OXLFmi6dOnd27fdNNNmj17tvH4rhN1jj/+eC1ZskSStGzZMt1000167rnnFI93//x30KBBuuGGG3T55Zd7Dsa9/vrruvbaa7V48WLHaw8bNkyXXHKJrrvuOhUVFWn27Nm6+eabO/cvXrxY06ZNc3WvTz75RHfccYcefPBBffTRR47HBAIBTZkyRTfddJNOPPFET18LnBVOMgAAgAwwjj8soJBIspBXtsbIJhttaQoN9XU02/Udh5ZP0qDwUMd9y3YsUmtst+O+uB0zBlF7ClSaxi/npNlOhrAdfw8IAAAAAAAAAABfePTRRzV69GjNmTPHGLSTpEgkooULF2ry5Mm65JJL1NHhPN3GT2699VYdd9xxWrRokWMYTpK2bNmiH/zgBzrnnHMUibj//PPXv/61Jk2apGeffdZ47Y0bN2rWrFk6/vjjtWXLlpS+Bkn64x//qNGjR+v22283Bu0kKR6Pa+nSpZo5c6a+9a1vefp64IxPtAAA8CBOs13PzXZZkCwAVKjBMZrt+o6AFdAJNWfqP7f8vtu+dnuvXtjxV50y4Gvd9kWShFt7en2YXgORnDTbmcbIFk5oGQAAAAAAAAAyze7okJo29vYy+r66YbKK+nbU5v7779fFF1/cLSx2wAEHaNy4cSorK1NjY6OWL1+uWOzzv2B/zz33qLGxUQsWLFCRT79Hv/zlL3XDDTd0bh988ME6+OCD1a9fP23atEkvv/yy9u7d27l//vz5mjVrlm6//fYer/2rX/1K11xzTbfHx40bpwMPPFDFxcVqbGzUihUrFIvFtGzZMp177rk67rjjPH8dN954o2655ZaExyzL0sEHH6wDDzxQFRUV2r59u1599dWEsOSDDz6oTZs2aeHChb59jvIB3zkAADywbUPYziqcsJ2pEUvKYtguabNdYQbH0vm6CzWg6GdHV07Tgm0PaVespdu+Jduf0Ak1Zyq0X4tjNI33hWnMbEwditkdClrZ+zWBhlAAAAAAAAAAyIKmjbLPPbi3V9HnWf/1njR4ZG8vI2veeOMNXXrppQlBuwkTJmju3LmaMmVKwrFNTU2aNWuW7r777s7HFi5cqBtvvFG33nprztbs1ttvv60XX3xRknTWWWfptttu09ixYxOO2b59u66++mo98MADnY/96le/0qWXXpp01O3KlSt13XXXJTw2bdo03XnnnRo/fnzC401NTbrxxht111136YUXXtCqVas8fR3z5s1LCNoFAgFdfvnluuaaazRixIiEY23b1mOPPaYrrrhCjY2NkqRnn31Ws2bN0m233ebpvvhc4SQDAADIAGNIpIB+pBZZRbIMX2+2RlDSbNddOJ0xsgU6etfPQoGwptWc5rhvZ2yHlu98vtvj2Wi2k7LfbmdutuPvAQEAAAAAAAAA0JsuuuiihDGjDQ0Neumll7oF7SSprq5Od911l+64446Ex2+//Xa9/fbbWV+rV83NzYrH4/rhD3+o+fPndwvaSVJNTY3+8Ic/6Mwzz+x8LBaL6b777kt67csvvzxhhO5Xv/pVPfPMM92CdtKn37d///d/1y9+8QtJ0rZt21x/DevXr9ell17auV1cXKwnnnhCv/vd77oF7aRP2+7OOussrVixQmPGjOl8/I477tCHH37o+r5IVDjJAAAAMsA2jZEtoEYmy7KMrVg02+VOsZV62C5ZOyF6z9TqU4whuUXbH1N8v2bNZO+L/Vvwuu1P8hqIJgnxZUJMzqHloArnz1EAAAAAAAAAAPxm8eLFeu211zq3Kysr9cgjj6isrCzpeddcc41OP/30zu14PK45c+ZkbZ3paGhocNXo9rOf/Sxh+7nnnjMeu2LFCr3yyiud24MHD9b999/f45jWa6+9VieddFKPa+nqjjvuUFtbW+f2nDlzdMopp/R43sCBA/Wf//mfnduxWMy3z1E+IGwHpzTaMAAAIABJREFUAIAHcVPYrsB+pJoCbrlutgsoWLBtWOm00xVqQNHvyoOVOqbqBMd9WyIb9fc9ryY8Fk2j8THZ6ydbodl9aLYDAAAAAAAAAMB/5s2bl7B9+eWXa8iQIa7O/fnPf56w/fDDD6u9PbufN6TihhtuUCDQ8+e648ePTxgb+8YbbxiPffjhhxO2v/e976mqqsrVembNmuXqOEnas2eP7r///s7t0aNH65JLLnF9/qRJkzR16tTO7ccff9z1uUhUWMkAAADSFDeNkbUK60eqMWyX42a7Qg6NpTVGlmY73zqh5kzjmOZFzY8lbKfT+JjsNZCt0Ow+pj9HgwXUEAoAAAAAAAAAgN8sXbo0Yfub3/ym63PHjx+viRMndm7v3btXK1euzNjaMqG0tFQzZsxwffwhhxzS+e+tra3avXu343HLli1L2D733HNd36OhocF1oHHp0qUJrXbnnHOOq+BgV9OnT+/89/Xr16uxsdHT+fgU9REAAHhgbLYrsJCIKaiTrZCOqcGrkENj6YyRLeSQot/VhgfpiIpj9Nqul7rtW9P2jta1va+RpQdJkiKGca9uGh9DSV4D2W+2M4Xt+NUEAAAAAAAAAIDesH37dq1du7Zzu7q6OiFs5saUKVMSxtCuWLFCU6ZMydga03XAAQcoHHY/OaqmpiZhu6WlReXl5d2Oe/PNNzv/vbq6WmPGjPG0rqOOOspVy9z+YcghQ4Zo3bp1nu61/9f/wQcfaMSIEZ6uAcJ2AAB4ErcZIyuZgzrRuHP4J10Rw3XTGaWa70LpjJEt4JBiPpjZ/yuOYTtJeqb5UV089IeS0mt8DFvm10/UEOLLlJgMY2RVWKFlAAAAAAAAAMioumGy/uu93l5F31c3rLdXkBVNTU0J2wceeKAsy/J0jbFjxyZsb926Ne11ZdL+4bmehEKhhO1oNNrtmD179mjv3r2d26kE19yes2HDhoTtK6+8UldeeaXn+3XV3Nyc1vmFirAdAAAemJrtTGMf+6pcN9uZrlvIobHidMbI0mzna18oGaMDS8frH23vdNv3xu6X1RTZpLrw4CSNjz0HMQNWUEVWkTrs7sG3bI+RNTfbEbYDAAAAAAAAgFRZRUXS4JG9vQzkqe3btydsV1VVeb7G/uf4LcjldeSqGzt27EjYrqio8HyNyspKV8d98sknnq/dk127dmX8moWgsJIBAACkKU5IRJI5rJWt8ZPpNHj1VeF0xsgWcEgxX5zY/yuOj9uK67ntCySZGx+TjYhNOM4Ums36GFlDsx1jZAEAAAAAAAAA6BW2bSdse221c5KJa/hdcXHiZy2RiPfpQW7PSeXaPdn/eYc7hO0AAPDA1GwXsArrR6qpOSvXzXamsFAhKE4jaFjIIcV8Mb7fRA0OD3fct6xlkXZ37Ey78THXodl9aLYDAAAAAAAAAMBf+vfvn7Dd0tLi+Rr7n+N1bKsbsZjzZwy9Zf+vcf+GQDfcNgDW1tYmbC9btky2baf1z7e//W3P6wVhOwAAPInbjJGVaLbzg3Ta6YqsUAZXgmwIWAGd0P9Mx31RO6IXdvw17feF6TUUtTP/N6O6iolmOwAAAAAAAAAA/KSuri5h+/333/d8jffeey9he+DAgY7HFRUlfh7Q0eH8uYGTVMJs2RQMBjV06NDO7Q8++ECtra2ervH222+7Om7QoEEJ26k8R8iMwkoGAACQJtMY2UCB/Ug1hXRy3WxXyONQw4HUxsiGrHDBNTHmq0kVx6sq6Py3vpbseFJ7Yrsc95maJ7sdZwrNZul9vI+x2U402wEAAAAAAAAA0Btqamp0wAEHdG7v2LFD7777rqdrLFu2LGF70qRJjsdVVlYmbO/YscP1Pd555x1Pa8qFyZMnd/57PB7X888/7/rc5uZmvfnmm66OnTJlSsL2008/7fo+yCw+aQUAwAPzGNnCConkutkuSrNdN6mOkS3k71m+CQVCmlZzuuO+3bEWvbJzseM+t89xyDQOOutjZGm2AwAAAAAAAADAbxoaGhK2H3roIdfnvvvuu1q5cmXndklJiY488kjHY/dvvFu1apXr+zz55JOuj82VE088MWH73nvvdX3uvHnzFIm4mzh0wgknKBj8/DPpxx9/XFu3bnV9L2QOYTsAADywjWG7wvqRGjKOn8xOSKfdFLYr5GY7K/VmO+SPqdUnq9jwXO+KtTg+7vY5NoXysvU+3sfUbFdooWUAAAAAAAAAAPzkggsuSNi+8847tXnzZlfnXn/99Qnb3/jGN1Rc7Pw5xMSJExO2FyxY4OoeTz31lJYvX+7q2Fw6//zzVVFR0bk9f/58PfXUUz2e99FHH+knP/mJ6/vU1NTo/PPP79zevXu3rrnmGm+LRUYUVjIAAIA0xWxD2K7AfqSam+3c/c0Lr4xjZAOFGxxLtaGO9rD8UhYs17HVMz2d4/a1YRwHnfVmO8MYWcJ2AAAAAAAAAAD0mhkzZmjChAmd2y0tLTrvvPPU1taW9Lw5c+boscce69y2LEtXXXWV8fhjjjlGZWVlndvz58/Xq6++mvQe//jHP/Qv//IvPX0JvaKiokJXXHFFwmPnnnuuFi92nlAkSevWrdPMmTM9jdCVpNmzZyeEGP/jP/5DP/rRjxSLOX/2YrJq1Sq98MILns7B5worGQAAQBps207SbFdYIRFjSCdLjVim8E8hj0RNOWynwnqt9gXTa77sKdDrtvHRFFaN2NkJze4Tk2GMrAiCAgAAAAAAAACQqs2bN2vdunUp/bPPfffdp3D4888PlixZoqlTp+qVV17pdr9t27bp8ssv19VXX53w+A9/+EMddthhxnVWVFTo61//eud2LBbTaaedpqeffrrbsZFIRPfee68mT56sLVu2qKamxsu3JGdmzZqlQw89tHN7586dOuGEE3Tuuefqv//7v/XWW29p9erVevrpp3XllVdq/Pjxevfdd1VSUqIzzzzT9X1GjRqle+65J+GxX/ziF2poaNCCBQvU0eH8GYz0acBv7ty5mjFjhsaPH6/nnnvO+xcKSeITLQAA3DIF7SSa7fbJViOWaaylaZxtIUh1hC7NdvlnQGigjqxo0Ipd7v6GkdsgpnEcNM12AAAAAAAAAADknfPOOy/lc23blvTpiNc777xT3/3udxWPf/rZ6MqVKzV58mSNGTNG48ePV0lJiTZs2KDly5d3C3fNnDlTt9xyS4/3u+WWWzR//vzOZretW7fq5JNP1pgxY3TYYYepuLhYW7Zs0SuvvKI9e/ZIkurr63X77bf7suEuHA7riSee0IwZM7RmzRpJn35P//SnP+lPf/qT4zmWZWnu3LlqbGzs1gyYzAUXXKDNmzfr+uuv73yOXn75ZZ1xxhkqKyvTEUccoUGDBqm0tFS7du3Stm3btGrVKs8tejDj01YAAFyKE7brFLZMjVg02+VKwErtNUegKT+d2P8s12E7tyHUXDdU7hOzDc12vDYBAAAAAAAAAOh1F198sWpqanThhRdq9+7dnY+vWbOmM0jm5Dvf+Y7uuusuhUKhHu8xdOhQ/fnPf9ZZZ52lXbt29XiPUaNG6YknntCWLVs8fjW5M3z4cL344ou67LLLNH/+/KTHDhgwQPPmzdNpp52mH/3oRwn7KioqerzXvvbACy+8UJs3b+58vLW1VS+99JKr9fq1JTAfFFYyAACANMTtJGG7AguJ5LrZzhT+SbXdrZDRbJefhpeM1sFl5sr1rtyGUI1jZOPZHSMbNzTbBRhxDAAAAAAAAACAL5xzzjlau3atrrjiCtXW1hqPC4VCOumkk/TSSy/pvvvucxW022fGjBlavny5zjzzTGObW11dna699lq98cYbOuSQQzx/HblWX1+v//mf/+kM3Y0bN07V1dUqKSnR6NGjdeKJJ+ruu+/W2rVrddppp0lSt8a5qqoqV/c65ZRT9OGHH2ru3LmaMGFCj414oVBIU6ZM0ezZs/X+++/riiuuSO2LBM12AAC4lbTZLsWWsXxlCrmZxr2myxT+KeRmu1QFCTTlrZn9v6L3Wt/q8ThT82S34wzvn2y9j/eJydRsx68mAAAAAAAAAAC4tW7duqxef+DAgfrNb36jX//611q5cqVWr16tpqYmtbe3q7a2VsOGDVNDQ4OrJjaTsWPH6tFHH9W2bdv0/PPPa+PGjWptbdWgQYM0atQoTZ06VUVFn39+MG3atM6Rt254OXZ/DzzwgB544IGUzm1oaFBDQ4OrY1etWtX575ZlaeDAga7vU1JSossuu0yXXXaZmpub9fLLL2vTpk1qbm5WNBpVeXm5Bg4cqIMOOkhjx45VWVmZ568F3fGJFgAALpnamKTCGyMbMoR0OuwOxexYxsdB0myXOYzqzF+HlE3QkPAX9HFkfdLjTO/PbseZxshmudkuZvizlNcmAAAAAAAAAAD+EwgENGnSJE2aNClr96itrdXZZ5+dtev71Z49e/Taa691bh900EEphxf79++vU089NVNLQxKFlQwAACANycfIFtaP1GQht6id+aCOaTwtzXbe0R6WvyzL0on9z+rxOLchVFMDnincminmsB2vTQAAAAAAAAAAUDjmzZun1tbWzu1jjjmmF1cDt/hECwAAg9bYbn3cvl52l22TQIGN5kwWcntvz1sqC5Z3bg8KD1VlUbWkT6uam6Kb1NKxXUVWSMOKRykUCCW9V8zuUFzO4Ry34zLxOdrD8ttRlQ16fNuD2tHxifEYtyFU03Efta/T1sjHqgsNlmVZKa0zmZhtGCNbYH+OAgAAAAAAAACAwrVx40bNmjUr4bELLrigl1YDLwjbAQCwn5gd00Ob5+qVnUtky9xm1xXNdp+7++Pbuj32xX5H6Yzab+q+TXdoS+SjzsdDVlhfrfu2jq9xrjS2bVsPb7nLvA6a7TyjPSy/FVkhTa/5suY3PWA8xm0I1TRGVpJmf3iZBoWH6rKhP1ZdeLDXZSZlCs/y2gQAAAAAAAAAAPnqz3/+s1auXKmrrrpKdXV1SY99/fXXdfbZZ6u5ubnzscMPP1zTp0/P9jKRAXyiBQDAfp765L/18s7nPJ1jFdhkdq8ht7/veVV/3/Nqt8ejdkSPbL1H9cXDdXDZod32v9TytJa1LDJeN1lYCM5oD8t/DVUz9ddPHtHeeJvj/nSb7fbZEvlIczfeoptGzc1ow515jCyvTQAAAAAAAAAAkJ927dql2267Tb/85S91yimn6IQTTtDhhx+ugQMHqqioSM3NzXr77bf1l7/8RQsWLJBt253nhsNhzZs3rxdXDy8I2wEAsJ83dr/s+ZwAYbu0vLX7Fcew3Ru7kj8XNNt5V/HZSF/kr9JgPzVUnaxF2x913O82hOqmAW9r9GNtjmzU4OLhntaYjDlsx68mAAAAAAAAAAAgv0WjUS1YsEALFixwdXxpaan++Mc/6vDDD8/yypAphZUMAADAhe0d2zwdXxIoVU1oQJZW40/FVon6FyWvP/ZiR7TZ8fFkz0VpoJ+qi/pnbA356Ct1/+L4+OkDztPA0BDHfRMrjs3mkpAj02tOV8ChpTCgoAaFnZ/7/Q0uHuHquJYO5/dnqmLqcHycZjsAAAAAAAAAAJCvqqurFQx6+6zj2GOP1QsvvKBzzjknS6tCNhC2AwBgP5F4u6fj/6lyWsE1MlmWpSlVJ2bseqbwTcQ2PxeTq6YX3Pd9f0eUT1FJoCzhsWKrRBMrjnV8fgaFh+qA0kNytTxkUU2oVqcM6P6L18SKKSoLlru6Rv9QncaW5f5vSRmb7RhxDAAAAAAAAAAA8tRZZ52lLVu26MEHH9Sll16qhoYGDR8+XP369VMwGFR5eblGjBihqVOn6t/+7d+0dOlSLV26VEcddVRvLx0eFfYn1AAA7CduxxW1I66O7V9UpyMrG3Rm7TezvCp/+tKAc2VZAb3Sslhbox+ndS1T+MYUfBwQGqiz6y5M6559QW14kK4cfov+p+kBNe5dq+HFo3RG7TdVXzxMg8JDJUl/2/msdnZs19iyw/X1QZfQHtaHnDrg6woooL/tfFaS9MV+R+nsgd7eF/869Dr9acv/1d/3vKpdsRbHY2zZaa+1q5htarbjVxMAAAAAAAAAAJC/BgwYoPPPP1/nn39+by8FWcQnWgAAdNFhR437/veIn2tUyUGd25YsWZaVi2X5kmVZ+tKAr+lLA76muB3vfHxnx3b92wcXebqWKXxjCtudU3eRAoTGJEkjSg7QlcNvkW3bCa9Hy7J00oCv6qQBX+22D31DwAro1Nqv69Tar6d8jZJAqb41+PuybVvfe/9s2Yp3OybzYTtDsx3vaQAAAAAAAAAAAPgcYTsAALpINkK22CpRwGICu5Ou35fiQInn853CdrZtK2JoGQwHij3fo69LFqYjaIeeWJalgAKKOYTtMo1mOwAAAAAAAAAAAOQrEgMAAHQRsc1hOwJe7qTyfXJquuqwOxxbtiQpbPFcAJlmymRmvNlOhmY70WwHAAAAAAAAAAAAfyNsBwBAF0mb7QjbuRK0ihTwGJpxCt9ECT4COWZK2+VqjCzNdgAAAAAAAAAAAPA3wnYAAHSRtNmONjXXvIbhnMZKJgs+ErYDMs8yhO0y2WwXt+PGxsqARbMdAAAAAAAAAAAA/I2wHQAAXRDwygyvwUSnpqtkwceQFfa8JgC9z9RqJ9FsBwAAAAAAAAAAAP8jbAcAQBemgFdAQYIgHoQD3sJwNNsB/pXJIbIxdX+v7xP0OH4aAAAAAAAAAAAAyDXCdgAAdGEKeBHu8sZzs528Ndsx0hfIPNMY2UzG7eJJm+0I2wEAAAAAAAAAAMDfCNsBANBF1BDwItzljddwotdmO8bIAplnCtvZGQzbOb3X96E9FAAAAAAAAAAAAH5H2A4AgC4i8Yjj417Hoha6kMdwolPblanZLmwVy7JMDVwA/CxGsx0AAAAAAAAAAADyGGE7AAC6SBbwgnvem+0cwnbG4CPPBZANphCrbWew2U5Jmu1Esx0AAAAAAAAAAAD8jbAdAABdmEaXEvDyxms40SmAw0hfINdyMUaWZjsAAAAAAAAAAADkL8J2AAB0YWq28zoWtdBlptnO8FwQfASyIhfDmZOH7Wi2AwAAAAAAAAAAgL8RtgMAoAua7TLDe9iue7OdeaRvOKU1AehJ9uN2Tu/1fWi2AwAAAAAAAAAAgN8RtgMAoAtj2I5mO0+8fr/iisu2E0dVEnwE/CGjY2RFsx0AAAAAAAAAAADyF2E7AAC6MLapEfDyJJXvV0yJjVfmZjueCyAbLGOzXQbDdsma7USzHQAAAAAAAAAAAPyNsB0AAF3QbJcZqXy/YnZi4xXNdkBumcJ2mYvadX+fd8UYWQAAAAAAAAAAAPgdYTsAALowN9uFc7yS/JZSs51Nsx3Qq0zFdjlotrNkKUDYDgAAAAAAAAAAAD5H2A4AgC5oU8uMTDTbReMR52vzXABZYWy2szMYtpNzsx2tdgAAAAAAAAAAAMgHhO0AAOgiamhTC9Gm5kkqTYD7h3BMzXY8F0C25GKMrHOzXVBFGbwLAAAAAAAAAAAAkB2E7QAA6IJmu8xIJRDXbYwszwWQU8Ypshm0f4PlPoyQBQAAAAAAAACgMDU2NurHP/6xpk6dqkGDBikcDsuyrM5/Hnjggd5eIpCACgkAALowtamlMha1kKUSiOs2RtY2jJG1vLfmAeiZaYxsJrvtTGE7xsgCAAAAAAAAAODNyJEjtX79+s7txYsXa9q0ab23oBTce++9+v73v6/2dufPaAE/otkOAIAuInFDwIs2NU9SCSfSbAf4k53RsJ1pjCxhOwAAAAAAAAAACsmTTz6pSy65xHXQbsmSJQmNd7Nnz87uAgEDmu0AAOiCZrvMyESzHc8FkGvZb7aLy9Rsx68lAAAAAAAAAAAUkuuvv162/flnEP/8z/+siy66SMOHD1coFOp8vLa2tjeWBxjxqRYAAF3QppYZqQTi4qLZDuhN2Y/aJWm2Y4wsAAAAAAAAAAAF47333tNbb73VuX3qqafqoYce6sUVAe4xRhYAgM/E7A5j61LYCud4Nfktq812hO2A7LCc43Zd/1ZZuvZ/n+8ToNkOAAAAAAAAAICC8eqrryZsn3POOb20EsA7wnYAAHzG1KQmEfDyKpXvV4ftrtkuxBhZICusHHTbGZvtRLMdAAAAAAAAAACFYsuWLQnbw4YN66WVAN4RtgMA4DOmJjWJgJdXqYyR7RrCidtxRe2I87UJPgJ5K2ZoD2WMLAAAAAAAAAAAhWP37t0J26FQqJdWAnjHvCYAAD5Ds13mhFIYu9s1hNNhR43HpRLkA9AzU7Nd5nrtkjTbMUYWAAAAAAAAAABfsm1br732mlavXq2tW7eqvb1ddXV1Gjp0qBoaGlReXu75mvF4PAsrBXKDT7UAAPhMsmY7Al7eWJalsFWc9Hu6v64hnOTBR+9BPgA9y80YWZrtAAAAAAAAAADIB9u2bdOtt96qBx98UE1NTY7HhMNhzZgxQ7Nnz9bRRx9tvNa6des0atQo4/7p06c7Pv6HP/xBF154oeO+m2++WTfffLPxmosXL9a0adOM+4FUMUYWAIDPROLOY0slmu1S4fV71jWEQ/AR8A87J2E7/g4QAAAAAAAAAAB+8eijj2r06NGaM2eOMWgnSZFIRAsXLtTkyZN1ySWXqKPDecIN0JfwqRYAAJ9JFvBKZSxqofMaiksI2zHSF+iTYjKMkRXNdgAAAAAAAACQlniH1Lqxt1fR95UNkwJ9O2pz//336+KLL+426vWAAw7QuHHjVFZWpsbGRi1fvlyx2Oef791zzz1qbGzUggULVFTUt79HKGy8ugEA+Iwp4BWywgpYlMF6FfLcbNdljCzNdkDOWZbzGFma7QAAAAAAAAAgD7RulB43j+lEhpzxoVQ+srdXkTVvvPGGLr300oSg3YQJEzR37lxNmTIl4dimpibNmjVLd999d+djCxcu1I033qhbb7014dhhw4bpww8/7Nz+zW9+o9/+9red2w8//LAmT57cbT21tbWdo2BffvllnXfeeZ37rrjiCl155ZXGr6W+vr6HrxZIDZ9qAQDwmagh4EWTWmrCHtsA46LZDuhdhrCdncmwnaHZzqLZDgAAAAAAAACA3nbRRRcpEol0bjc0NOipp55SWVlZt2Pr6up01113acyYMbr22ms7H7/99tt13nnn6dBDD+18rKioSCNHjuzcrq6uTrhWfX19wv6uysvLJUnr1q1LeLy6utp4DpBN1PQAAPAZU8CLJrXUeA3FuWm2CyhIAxaQJc5Ru8wyN9sRtgMAAAAAAAAAoDctXrxYr732Wud2ZWWlHnnkEcegXVfXXHONTj/99M7teDyuOXPmZG2dQG8jbAcAwGeMYTua1FLiNaTYNYTDcwHknpWDuF1MhmY7CrcBAAAAAAAAAOhV8+bNS9i+/PLLNWTIEFfn/vznP0/Yfvjhh9Xebp5kBeQzPtUCABSMJ7c9omUti4z798bbHB+n2S41qTTbrWl9R4u3/0Wv7/6b8zV5LoAscg7bPdr0R/31k/9KemZ9eJiOrpqmSZXHG4+JxNv1t5ZnHffRbAcAAAAAAAAAQO9aunRpwvY3v/lN1+eOHz9eEydO7GzG27t3r1auXKkpU6ZkdI2AHxC2AwAUjNb4bjV3NHk+jza11IStEk/Hv9/2dz267T/UYUfN1wyE010WAANTs92e+C7tie9Kem5zR5NWtb6u9vheNVSf3G2/bdv6949+Zjyf8dAAAAAAAAAAAPSe7du3a+3atZ3b1dXVOuSQQzxdY8qUKQljaFesWEHYDn0Sn2oBANCDkEXAKxVeg3Fv7V7e8zVptgN87bntCxzDdh+1r9d7rW8ZzwvQbAcAAAAAAAAA6SkbJp3xYW+vou8rG9bbK8iKpqbEwpIDDzxQluX8l/RNxo4dm7C9devWtNcF+BFhOwAAelARrO7tJeSlyqLMf98qiqoyfk0An+oXrJDMxZKubI5sVCTe3q0RtLF9TdLzKoK8twEAAAAAAAAgLYEiqXxkb68CeWr79u0J21VV3v+//f7nNDc3p7UmwK8Cvb0AAAD87ovlE3t7CXlpfL8j8+KaAD51SL8JGblOXPFuj0Xi7UnPGdfviIzcGwAAAAAAAAAAeGfbdsK211Y7J5m4BuBHhO0AAEhiavUpOrJiam8vIy+NLh2rM2u/lbHrHVE+RdNqTsvY9QAkOrn/2RrfL/1wcdyOdXssWdjuzNpvaXTpWON+AAAAAAAAAACQXf3790/Ybmlp8XyN/c+pqalJa02AXzFGFgBQMI6qmKqhxSNdHVtkFWlUycGqDddnd1F93MkDztbRVdO1tnWVIna7yoNVeqZ5vta0veP6GkdWNOi0Ad/QoPBQ/gYMkEWhQFiXDZ2lTZENaty7VrZDQ90+OzqatWDbQ477Yk5hO9s5bFcXGqyTB5yd2oIBAAAAAAAAAEBG1NXVJWy///77nq/x3nvvJWwPHDgwrTUBfkXYDgBQMEaWHqSRpQf19jIKTnVRfx1Z2dC5vaxlkafzG6pPVn3xsEwvC4ADy7I0pHiEhhSPSHrcpvYNxrCdlzGydeHB3hcJAAAAAAAAAAAyqqamRgcccIDWrl0rSdqxY4feffddHXLIIa6vsWzZsoTtSZMmZXSNlHLALxgjCwAAcipoBT0dH7aKs7QSAKlK9j52GiMbtSOOx4atcMbWBAAAAAAAAAAAUtfQ0JCw/dBDzn/p3sm7776rlStXdm6XlJToyCOPzNjaJKm4OPEzw/Z257/oD2QbYTsAAJBTQY/FuuEAYRzAbwJKErbz0GwXDhCmBQAAAAAAAADADy644IKE7TvvvFObN292de7111+fsP2Nb3yjWzguXdXV1QnbmzZtyuj1AbcI2wEAgJyi2Q7IfwHL/GuEU7NdxDaE7Xh/AwAAAAAAAADgCzNmzNCECRM6t1taWnTeeeepra0t6Xlz5szRY4891rltWZauuuqqjK9v9OhI9A+jAAAgAElEQVTRCoc/L+lYvHixotFoxu8D9MRbtQwAAECaPIftaL4CfCeQbIwszXYAAAAAAAAAAOTc5s2btW7dupTOHTlypCTpvvvu0zHHHKNIJCJJWrJkiaZOnaq5c+fq6KOPTjhn27Ztuummm/T73/8+4fEf/vCHOuyww1JaRzLhcFjHHnusFi9eLElqbGzUGWecoe9+97s68MADVVZWlnB8fX29SkpKMr4OgLAdAADIqaDlcYwszVeA7wSSFGTHbYewnb3X8dgQ728AAAAAAAAAADLivPPOS/lc27YlSRMnTtSdd96p7373u4rHP/3//StXrtTkyZM1ZswYjR8/XiUlJdqwYYOWL1+ujo6OhOvMnDlTt9xyS+pfRA+uvvrqzrCdJC1cuFALFy50PHbx4sWaNm1a1taCwkXYDgAA5BTNdkD+SzZGNuY0RjYecTyW9zcAAAAAAAAAAP5y8cUXq6amRhdeeKF2797d+fiaNWu0Zs0a43nf+c53dNdddykUCmVtbaeffrp++tOf6qabblIs1v3zCCAXzJ+SAQAAZEHQQ9Y/oKDnJjwA2ReUOTRrO42RtQ1jZGm2AwAAAAAAAADAd8455xytXbtWV1xxhWpra43HhUIhnXTSSXrppZd03333ZTVot88NN9ygt956S9ddd52OO+441dfXq7S0NOv3Bfbh02sAAJBTXprtaL0C/Mny3GxnCNvxHgcAAAAAAAAAICXr1q3L6vUHDhyo3/zmN/r1r3+tlStXavXq1WpqalJ7e7tqa2s1bNgwNTQ0qKKiwvO1Z8+erdmzZ6e8tnHjxum2225L+XwgHYTtAABATnlpqqP1CvCnZM12cTmE7YzNduGMrQkAAAAAAAAAAGReIBDQpEmTNGnSpN5eCuALjJEFAAA55a3ZjiAO4EeBJM12cdthjCzNdgAAAAAAAAAAAOgDCNsBAICcCnoo1qXZDvAnK8mvEU7NdlFjsx3vcQAAAAAAAAAAAOQPwnYAACCnvDTbhWi9AnwpYAWMgbv9m+1idkwddofjsbzHAQAAAAAAAAAAkE8I2wEAgJwKeBkjazFGFvCrgClsp8SwXdSOGK9Bsx0AAAAAAAAAAADyCWE7AACQU0HLwxhZWq8A3wpYzr9KxOzEMbKRuPMIWYn3OAAAAAAAAAAAAPILYTsAAJBTQXlptiOIA/iVaSS0vV+zXdKwHe9xAAAAAAAAAAAA5BHCdgAAIKe8NNuFaL0CfMsy/CrRrdnOptkOAAAAAAAAAAAAfQNhOwAAkFOmNiwntF4B/mV6L8cZIwsAAAAAAAAAAIA+irAdAADIKS/NdgRxAP8KGH6ViO8/RjZJs13ICmd0TQAAAAAAAAAAAEA2EbYDAAA5FRTNdkBfEHDZbBc1NNsVWUWemi4BAAAAAAAAAACA3kbYDgAA5JSnMbIBWq8Av0q32S5EmBYAAAAAAAAAAAB5hrAdAADIKU9jZAnjAL4VsAxhO3u/sJ2h2a44UJLxNQEAAAAAAAAAAADZRNgOAADklLdmO8J2gF8FDCOhY0ocIxuxI47HEaYFAAAAAAAAAABAvnFfLYM+wbKsUZImSBoiqVzSJknrJS2zbTvam2sDABSGoBVyfSxjJgH/MjXb2S6b7RgTDQAAAAAAAAAAgHxD2K5AWJZ1jqSrJR1jOKTZsqxHJN1o2/a23K0MAFBogoY2LCc02wH+5b7ZzjlsR5gWAAAAAAAA/5+9O4+yqyzzxf/dVUkqhCRkDkiIAUOahEHARAQZG5qppaUBZXIp2K1eUZRuEBsnRllwwV4dQbuV9gavP1RaQKZWWxxCiwjcgDSQoCTKEKYYQkIGyFj790dCmVOp6VSdqkpVPh/WXuR9z36Hvc85u2qf89TzAgD0NZaR7eeKohhaFMX3kvwgrQfaJcmoJB9P8kRRFMf0yOQA2CZZRhb6h9bey41ls2C7VjPbeX8DAAAAAADQtwi268eKoqhPcnOS05o9tDjJT7MxAO+RJOVmj41PckdRFAf3yCQB2ObUFx1PrDtI5ivYahWtLCPb2GwZ2XWtZLbz/gYAAAAAAKCvEWzXv12V5PjNyuuSnJtkQlmWx5Rl+f6yLN+RZK8kv9lsv4YktxdFsVPPTRWAbYXMdtA/tLYkdGPzZWRltgMAAAAAAKCfEGzXTxVFsVuSTzerfl9ZlteXZbl288qyLOclOTKVAXejk1zcvbMEYFtUH5ntoD+o62Bmu7Uy2wEAAAAAANBPCLbrvy5OMnCz8o1lWd7R2s5lWb6R5Kwkmwfi/d2moD0AqJnqMtsN6saZAF1R18qtRGOaBdvJbAcAAAAAAEA/IdiuHyqKYrskpzSrvrq9dmVZPpXk9s2qBiQ5o4ZTA4DUFzLbQX9Q10rg7Iay2TKylUmVmwwsBNMCAAAAAADQtwi265+OSTJks/JvyrL8XQfbzmpWPqk2UwKAjarJbDdQ5ivYarWW2a6U2Q4AAAAAAIB+SrBd/3Rss/LsKtr+Ksn6zcr7FUUxvsszAoBNqstsJ/MVbK06ntmulWA7mSsBAAAAAADoYwTb9U97NSv/pqMNy7JcleTxZtV7dnlGALBJfTqW2W5AMbDVYB6g97WWpbJ5Zrt1MtsBAAAAAADQTwi265+mNisvqLL9H5qVp3VhLgBQoaPLyMp6BVu3opVbiQ5nthNsBwAAAAAAQB8j2K6fKYpiVJJRzaqfq7Kb5vvv3vkZAUCluqI+RYp29xOIA1u3+qLlW4nG8s+Z7dY0rs6SdX9qcT8BtQAAAAAAAPQ1gu36nxHNyq9vWhq2Gs2/Ed2hC/MBgC10JLudQBzYutW1siR0YzZmtlu5YXn++bnPtdpeQC0AAAAAAAB9zYDengA1N7RZ+Y1O9NG8zbBOzqVJURTjkoytstnbujouAFun+gzI+qxvc59BdYN6aDZAZ9S1k9nuv5bcmoVr/thqewG1AAAAAAAA9DWC7fqf5sF2qzvRR/Ngu+Z9dsY5SS6uQT8A9AMD6wZlzYa2f0QNKgb30GyAzmg9s93GYLunXn+8zfYNdd7jAAAAAADQXV5//fU88sgjmT9/fl555ZWsXr062223XcaPH58pU6Zkv/32y6BBkl901uGHH5577723qVyWZbeMM3v27BxxxBFN5YsvvjiXXHJJt4xFxwi26/86827unisAAGyy6+C/yOOr/l+b+7xtyNQemg3QGa1nttu4jOzrjatabTuoaMiEhl27ZV4AAAAAALCt2rBhQ/7jP/4js2bNyi9/+cusX9/6SlODBw/OMccck7//+7/Pe97znh6cJfRtLX9DRl+2sll5u0700bxN8z4BoEuOHnVSGtrIXLfDgFE5eIeje3BGQLVay2y3IRuD7TaUrd/AHzP6lAy0VDQAAAAAANTML37xi0ybNi1nnHFG7rnnnjYD7ZJk9erVueOOO3LCCSdkxowZeeSRR3poptWZNGlSiqJIURSZNGlSb08HZLbrh7bWYLuvJ/lBlW3eluSOGowNwFbmbUOm5h8nXpkHl/8yz695pimtcn1Rn7cOnpx373B0xgwa38uzBNrSWma7sty4jOybGe6a23fou3Lc6Pd127wAAAAAAGBbc+mll+bSSy/dYinToigyderUTJgwIaNHj87ixYvz3HPP5amnnqrYb86cOTnwwANz/fXX5yMf+UhPTh36HMF2/c9rzcpDiqLYvizL1tfx2tK4ZuVlXZxTyrL8U5I/VdOmKIquDgvAVmyXwbtll8G79fY0gE5qP7Ndy8F204cf2m1zAgAAAACAbc15552XmTNnVtQNGzYsF110Uc4888xMnDhxizYLFizIjTfemGuvvTZr1qxJkqxduzYf/ehHs2rVqpx33nk9Mnfoiywj28+UZbkkydJm1VteOdv21mbl+Z2fEQAA/VF9K5ntGjdlttuQltPT17cSpAcAAAAAAFTn29/+9haBdgcffHDmzZuXiy66qMVAuySZPHlyrrjiijz22GPZa6+9Kh47//zzM3v27O6acr8xe/bslGXZtLHtEGzXPz3ZrDy5yvbN0ww17w8AgG1c0cqtRGM2Bdu1ktmuvhBsBwAAAAAAXfXUU0/lk5/8ZEXdQQcdlB//+MeZMGFCh/qYMmVKfv7zn2fq1KlNdY2NjfnABz6QV155pabzhf5CsF3/9ESz8oEdbVgUxfZJ9mmnPwAAtnGtBc01lm8uI9tKZrtiQLfNCQAAAAAAthUXXHBBVq5c2VQeMWJEbr311gwdOrSqfsaNG5dbbrklgwYNaqp74YUXcvnll9dsrtCf+Karf/pJko9uVj68iraHpPJ18duyLBfVYlIAAPQfda0F26UxZVk2ZbhrTmY7AAAAAADomt/97ne5++67K+quuuqq7Ljjjp3qb9q0abngggty5ZVXNtV961vfyiWXXJKRI0d2aa5bmwULFuSxxx7LCy+8kBUrVqQoigwZMiTjx4/Prrvumr333jtDhgzp9nmsWbMm9957b55++um8+uqrGTduXCZMmJBDDjmkW8Z/6aWX8uCDD+ZPf/pTlixZkqFDh2bcuHGZMWNGdtut+QKYtEWwXf/0X0neSLLdpvKBRVHsUZbl7zrQ9qxm5R/WcmIAAPQPda0tI1tuyIa0nNUuSerdggAAAAAAQJfMnDkzZVk2lceMGZOzzz67S32ed955ueaaa7Ju3bokyapVq3LDDTfkwgsv3GLfs846K9/+9rebyk8//XQmTZrUoXFmz56dI444oql88cUX55JLLmmz/zc9++yzKYqi1b4/9KEP5cYbb9yifs2aNfnqV7+aG264IfPnz29zfvX19dl3331z4okn5h//8R9bDXw7/PDDc++99zaVN38+2vLaa6/lS1/6Um688cYsX758i8eHDRuWU089NZdeemne8pa3dKjP1qxbty7f+ta38vWvfz2PP/54q/vtvvvuueCCC/LhD384Awb4Hqc9lpHth8qyfD3JLc2qP9teu6IopiT5282q1if5bg2nBgBAP9FaZrsN5YZs2LSUbEtktgMAAAAAgK75yU9+UlH+4Ac/WLEMbGeMHTs2J5xwQpvj9EULFy7MfvvtlwsvvLDdQLsk2bBhQx5++OF88YtfzIsvvljTufzP//xPpk2blq9+9astBtolyYoVK/Lv//7v2XvvvfPrX/+602M9/PDD2WOPPfLxj3+8zUC7JJk/f34+9rGPZcaMGXnhhRc6Pea2Qjhi/3VJktOSDNxUPqsoih+WZXlnSzsXRTE4yawkm199v1WW5R+6dZYAAPRJrWW2K9OYDWUbme0KtyAAAAAAALW2odyQZetf6e1p9HsjBozp9T8qf/755/PMM89U1B199NE16fvoo4/Obbfd1lR+4IEHsm7dugwcOLCNVluvtWvX5thjj82TTz5ZUT9q1KjsvffeGT9+fAYOHJgVK1bkpZdeyrx587Jq1apumcu8efNy5JFHZsmSJRX148ePz3777ZcRI0Zk0aJFeeCBB/LGG2/k1VdfzXve855cc801VY91991359RTT83rr79eUb/TTjvl7W9/e0aNGpVVq1Zl3rx5FQGIjz76aA444IA88MADmTBhQucOdBvgm65+qizLPxZFMTPJBZtV31IUxT8m+WZZlmvfrCyKYmqSf09y0Gb7LklyaY9MFgCAPkdmOwAAAACArcey9a/ki3/8WG9Po9+7fLdvZPTA8b06h5aynU2fPr0mfb/jHe+oKL/xxht59NFHM2PGjJr031HXXntt09KyBx98cFO2tZ133jn33Xdfq+2GDh1aUZ41a1bmzZvXVJ40aVK+9rWv5dhjj01d3ZZJBcqyzMMPP5y777473/rWt2pwJButW7cuZ555ZkWg3U477ZSZM2fm5JNPrpjLypUr85WvfCVf/vKXs2zZshaX8W3LvHnzctppp1UE2h177LG59NJL8853vnOL/X/729/m05/+dH71q18lSV544YWcfvrpmT17durrfafTEsF2/ds/JdkzyXGbygOTXJfki0VRPJJkRZLdkuyfZPNFrdcm+duyLF/qwbkCANCH1LeV2S5tBdu5BQEAAAAAgM56/vnnK8rjx4/P6NGja9L3Xnvt1eJ4PR1sN2bMmIwZMyZJMmDAn79XGDBgQCZNmtThfu64446Ktvfcc08mT57c6v5FUWT69OmZPn16vvjFL6axsbH6ybfguuuuy6OPPtpU3mmnnXLfffdlt91222LfoUOH5uKLL85ee+2V97///Vm6dGmHx2lsbMypp55akZ3vkksuycUXX9xqm/322y+/+MUvcuqppzZlNbzvvvty00035YMf/GCHx96WtPwNGf1CWZYbkrw/yc3NHhqX5Ngk70vyjlQG2v0pyXvLsvxVj0wSAIA+qShavpXYULazjGz8FRQAAAAAAHTWq6++WlEeOXJkzfoePHhwGhoa2hyvL3n22Web/v32t7+9zUC75urr62uyfG5jY2Ouu+66irpvfvObLQbabe7kk0/OOeecU9VYt912W5544omm8vvf//42A+3eNGDAgHz729/OuHHjmuquvfbaqsbelgi26+fKslxZluVp2RhY90Abu76a5F+T7FWW5U96ZHIAAPRZrQXNNabtZWRbW34WAAAAAABoX/PgtxEjRtS0/+b9bb70aV/2pz/9qVfG/e///u8888wzTeUZM2bkPe95T4fafulLX6oq4O+rX/1q07+LoshVV13V4bZDhw7Nxz7256WoH3/88Yp582eC7bYRZVneUpblgdm4bOwpST6V5KIkZyf5yyQ7lWV5TlmWi3txmgAA9BF1rWS2a2wvs51lZAEAAAAAYKtVFEX7O/URe+yxR9O/Fy5c2CvZ2u67776K8umnn97htmPHjs3RRx/doX1XrVqVBx74cw6uGTNmZNddd+3wWElyxBFHVJR/9SuLYrbEN13bmLIsn07ydG/PAwCAvq21DHXtZbarl9kOAAAAAAA6bdSoURXl1157rab9L1u2rM3x+pIzzjgjt912W1P5M5/5TG6//facffbZOf7447PTTjt1+xzmzJlTUT7ggAOqan/AAQfkP//zP9vd74EHHsi6deuayrvttlvVmekaGxsryn/4wx+qar+tEGwHAABUra61ZWTLxjSmjcx2bkEAAAAAAGpuxIAxuXy3b/T2NPq9EQPG9PYUtgh+W7p0ac36Xr16dVavXl1RN3r06Jr139NOOumknHTSSRUBd7/+9a/z61//OkkyefLkHHTQQXn3u9+dQw45JFOnTq35HBYtWlRR3n333atqP2XKlA7tt3Dhwory97///Xz/+9+vaqzmmi9ZzEa+6QIAAKrW+jKyMtsBAAAAAPS0+qI+oweO7+1p0AN23nnnivLLL7+cJUuW1CQobu7cue2O15cURZGbb745F198cf75n/95i0DCBQsWZMGCBfm///f/JtkYfPeBD3wg5557bs0y+jUPhhw+fHhV7XfYYYcO7bdkyZKq+u2IFStW1LzP/qDlb8gAAADa0Fpmuw1pzIayjcx2hb/3AQAAAACAzjrooIO2qGu+VGlnNe9nu+22y7777luTvnvLgAED8uUvfznPPPNMrr322hxyyCFpaGhocd8FCxbkkksuyW677Zabb765h2faNWvXrq15n2VZ1rzP/kCwHQAAULXWMtuVZWObme3q3IIAAAAAAECnTZw4MRMnTqyo++lPf1qTvu+5556K8gEHHJBBgwbVpO83bdjQ+ncI3Wn8+PE5//zz89///d957bXXcv/99+faa6/Ne9/73gwdOrRi39deey2nn356br/99i6PO3LkyIry8uXLq2r/2muvdWi/MWMqlzi+8sorU5Zll7Ybb7yxqrluK3zTBQAAVK21oLkNm/5rSX0GpCiK7pwWAAAAAAD0e8cee2xF+Tvf+U7WrVvXpT4XL16cO++8s81x3jRgQOUqNuvXt77iTXPNl1XtDQ0NDTnwwANz/vnn5/bbb8+SJUvy/e9/P1OmTGnapyzLfOpTn0pjY2OXxho/vnJ55/nz51fV/qmnnurUOB1tR/UE2wEAAFWrL1peRrax3NDqMrKttQEAAAAAADru05/+dMUfty9evDizZs3qUp8zZ86sCNjbfvvt85GPfKTFfYcPH15RXrZsWYfHmTt3blXz6ok/4h80aFBOPfXUPPjgg9l5552b6hcuXJiHH364S31Pnz69ovzAAw9U1f7BBx/s0H4HHnhgxbm65557LAPbTQTbAQAAVWsts11jWl9GVrAdAAAAAAB03bRp03LcccdV1H32s5/NokWLOtXfvHnzcs0111TUnX322Rk1alSL+48bN26L9h31ox/9qKq5NTQ0NP17zZo1VbWt1ogRI3LSSSdV1D399NNd6vPggw+uKH/ve9/rcNvFixd3eIngsWPHZr/99msqv/DCC/nxj3/c4bHoOMF2AABA1eo6ldluQIv1AAAAAABAdb7yla9kyJAhTeVly5blpJNOysqVK6vqZ/HixTnllFOydu3aprqddtopX/rSl1pts//++1eU77rrrg6N9V//9V956KGHqprfiBEjmv79yiuvdHm53PY0XyJ382C/zjj00EMzadKkpvKcOXNy9913d6jtZZddVtXxfvKTn6woX3DBBVW/HmifYDsAAKBqrQbbpTEb0kpmu8hsBwAAAAAAtbDHHnvkuuuuq6i7//77c9xxx+X555/vUB/z58/PkUcemSeffLKprq6uLt/5zncyduzYVtsdeOCBFYF+P/zhDzNnzpx2x/rQhz7UoXltburUqU3/Xr9+fX75y192qN3rr7+e6667LitWrOjwWCtXrsxtt93W6vidUVdXt0UQ3Mc+9rF2M+bddttt+frXv17VWB/84Aezxx57NJWffPLJ/O3f/m2WLl1aVT+LFy/e4jzwZ4LtAACAqrW2jGySrGtc22K9zHYAAAAAAFA7H/7wh/OJT3yiou6+++7LtGnTctVVV2XhwoUttluwYEG+8IUvZO+9987jjz9e8djVV1+dI488ss1xhw0bllNPPbWpvGHDhvz1X/91i0uerl27NjfccEPe9a53ZdGiRRk5cmRHDy9JcsQRR1SUzz777Hz961/Pww8/nD/+8Y955plnmrZXXnmlYtxPfepTmTBhQj784Q/nrrvuajPw7qGHHsqRRx6ZZ599tqnuXe96V6ZMmVLVfFvyqU99Km9/+9ubyi+++GLe/e5355ZbbkljY2PFvqtWrcpll12W0047LY2NjVWdr/r6+txyyy0ZPnx4U93Pfvaz7LPPPvnXf/3XNo//1Vdfzc0335zTTz89u+yyS7761a9WcYTbFt92AQAAVWsts12SrC9bTmle30YbAAAAAACgetdff31GjhyZL3/5yynLMkmyYsWKXHTRRfnc5z6XadOmZZdddsnIkSOzZMmSPPvss/n973+/RT8DBw7MzJkz8/GPf7xD415++eX54Q9/mGXLliVJ/vSnP+WYY47J5MmTs88++6ShoSGLFi3Kgw8+mFWrViVJdtxxx1x99dVVZbh73/vel89//vNN2fpefPHFLQIM3/ShD30oN954Y0Xd8uXLM2vWrMyaNStFUWTy5MnZbbfdMmLEiAwYMCBLlizJE088sUU2wCFDhuSb3/xmh+fZloEDB+amm27KYYcdliVLliRJXnrppbzvfe/L+PHj8453vCM77LBDFi1alN/85jd54403kiQ77LBDrr766nz0ox/t8Fh77rlnbr311pxyyil57bXXkiTPP/98zjnnnJx77rnZe++9M3HixAwfPjyvv/56li1blqeeeqrD2RARbAcAAHRCW5nt1pYtZ7ark9kOAAAAAABq7vLLL89hhx2Wc845J/Pnz2+qL8syc+fOzdy5c9tsv//+++cb3/hGpk+f3uExd95559x666058cQTKzKmLViwIAsWLNhi/1133TX/+Z//mUWLFnV4jCTZbrvt8sMf/jAnnnhiXnjhharaNleWZebPn19xjlqy884757bbbsvee+/dpfE2t+eee+ZnP/tZjj/++Lz00ktN9YsWLcqPfvSjLfYfMWJE7rzzzmzYsKHqsY466qjMmTMnp59+esXyvhs2bMijjz6aRx99tN0+qs1AuC2xjCwAAFC1+qL1W4n1rQTb1UdmOwAAAAAA6A5HHXVU5s2bl5tuuilHHnlkBgxo+w/gGxoacsIJJ+SOO+7InDlzqgq0e9Nf/uVf5qGHHsp73/veFEXR4j5jx47NZz7zmTz66KOZOnVq1WMkyfTp0zNv3rz827/9W0488cRMnjw5w4cPT31969877LDDDrn33ntz4YUX5h3veEe75yNJ/uIv/iJXXnllnnrqqbzzne/s1Fzbsu++++bJJ5/Mueeem2HDhrW4z9ChQ3PWWWflscceyyGHHNLpsSZPnpyHHnood911V4466qg0NDS022bq1Kk599xz86tf/Sq33XZbp8fu74o3U0jC1qYoij2TPPFm+Yknnsiee+7ZizMCAOBNz69+Olc++w8tPnbMqFPyX6/eskX9Lg275aJJ/9zdUwMAAAAA6HPWr1+/Rbat3XffvUMBQtCSVatW5eGHH86CBQuyePHirF27Ng0NDRk/fnymTJmS/fffv0MBWB31yiuv5N57783zzz+f119/PePHj8+uu+6aQw45ZKt4Hb/xxhuZO3du/vCHP+Tll1/OqlWrUhRFhg8fnokTJ2afffbJW9/61h6bz5o1azJ79uw8/fTTWbp0acaOHZsJEybkkEMOyfbbb1/z8VavXp0HH3wwzz77bJYsWZJVq1Zl++23z8iRIzN58uRMnTo1o0ePrvm43XVtmzt3bvbaa6/Nq/Yqy7LtFI410vuvZgAAoM+payOz3brWMttZRhYAAAAAAHrE9ttvn0MPPTSHHnpoj4w3ZsyYnHzyyT0yVmdst912mT59eqcy+HWHhoaGHHPMMT023uDBg3PYYYf12Hj9mWVkAQCAqtW1sSRs69rj1N4AACAASURBVMF2lpEFAAAAAACg7xJsBwAAVK3NzHaNMtsBAAAAAADQ/wi2AwAAqtapzHZttAEAAAAAAICtnWA7AACgam1mtmt1GVmZ7QAAAAAAAOi7BNsBAABVqyvayGzX6jKyMtsBAAAAAADQdwm2AwAAqlbfxq3EunJdy20E2wEAAAAAANCHCbYDAACq1mZmu9aWkY1lZAEAAAAAAOi7BNsBAABVq2srs13jmhbrZbYDAAAAAACgLxNsBwAAVK3tzHatLSMrsx0AAAAAAAB9l2A7AACgam1mtmtlGdm2AvQAAAAAAABgayfYDgAAqFrbme1aDrarj8x2AAAAAAAA9F2C7QAAgKq1mdmusZVgO5ntAAAAAAAA6MME2wEAAFUriiJFK7cTrWa2K2S2AwAAAAAAoO8SbAcAAHRKfdHy7USZspX9ZbYDAAAAAACg7xJsBwAAdEprme1aUx/BdgAAAAAAAPRdgu0AAIBOqTZTnWVkAQAAAAAA6MsE2wEAAJ1SV2WmOsvIAgAAAAAA0JcJtgMAADqlrqhyGVmZ7QAAAAAAAOjDBNsBAACdUnVmuyr3BwAAAAAAgK2JYDsAAKBTZLYDAAAAAABgWyLYDgAA6JS6Km8n6guZ7QAAAAAAAOi7BNsBAACdUm3wnGA7AAAAAAAA+jLBdgAAQKcUVWe2s4wsAAAAAAAAfZdgOwAAoFOqzVRXF5ntAAAAAAAA6LsE2wEAAJ1SV/UysjLbAQAAAAAA0HcJtgMAADqlruplZGW2AwAAAAAAoO8SbAcAAHSKzHYAAAAAAABsSwTbAQAAnVJ1ZrvIbAcAAAAAAEDfJbUEAADQKXVFtcvIuv0AAAAAAICe8Prrr+eRRx7J/Pnz88orr2T16tXZbrvtMn78+EyZMiX77bdfBg0aVJOxnnvuuXzzm9/Mvffem6eeeipLly7NunXrmh6fNWtWzjrrrBbbPvTQQ5k1a1buv//+LFy4MK+99loaGxubHn/66aczadKkJMnhhx+ee++9t+mxsixrMn+ohm+7AACATqmrMlNdfZXLzgIAAAAAAB23YcOG/Md//EdmzZqVX/7yl1m/fn2r+w4ePDjHHHNM/v7v/z7vec97Oj3mDTfckHPPPTdr1qypqt369etzzjnn5IYbbuj02NAbLCMLAAB0SvWZ7QTbAQAAAABAd/jFL36RadOm5Ywzzsg999zTZqBdkqxevTp33HFHTjjhhMyYMSOPPPJI1WP+6Ec/ysc+9rGqA+2S5POf/7xAO/okme0AAIBOqa82s53bDwAAAAAAqLlLL700l1566RbLqhZFkalTp2bChAkZPXp0Fi9enOeeey5PPfVUxX5z5szJgQcemOuvvz4f+chHOjzuRRddVDHmGWeckb/7u7/LLrvskoEDBzbVjxkzpqLdokWL8i//8i9N5UGDBuWf/umfcvzxx2fs2LGpq/vzH/tPmDChw/OBnuDbLgAAoFMKme0AAAAAAKBXnXfeeZk5c2ZF3bBhw3LRRRflzDPPzMSJE7dos2DBgtx444259tprm7LSrV27Nh/96EezatWqnHfeee2O+/vf/z6PPfZYU/n444/PTTfd1KE533777Vm7dm1T+YorrshnPvOZDrWF3mYZWQAAoFOqDZ6rL/ytDwAAAAAA1Mq3v/3tLQLtDj744MybNy8XXXRRi4F2STJ58uRcccUVeeyxx7LXXntVPHb++edn9uzZ7Y49Z86civIpp5zS4Xl3tu3s2bNTlmXTBr1BsB0AANApdVXeTshsBwAAAAAAtfHUU0/lk5/8ZEXdQQcdlB//+McdXnp1ypQp+fnPf56pU6c21TU2NuYDH/hAXnnllTbbLlq0qKJczXKvXWkLvU2wHQAA0Cl11S4jG5ntAAAAAACgFi644IKsXLmyqTxixIjceuutGTp0aFX9jBs3LrfccksGDRrUVPfCCy/k8ssvb7Pd5mMnycCBAzs8ZlfaQm/zbRcAANApdal2GVmZ7QAAAAAAoKt+97vf5e67766ou+qqq7Ljjjt2qr9p06blggsuyJVXXtlU961vfSuXXHJJRo4c2WKbxsbGTo3V1ba1MG/evDz++ONZsmRJli5dmsGDB2fs2LGZOnVq9tlnnzQ0NHSq3/Xr1+ehhx7KH//4xyxevDhr1qzJ2LFjM2nSpLz73e/O4MGDa3wk9AbBdgAAQKdUndmucPsBAAAAAABdNXPmzJRl2VQeM2ZMzj777C71ed555+Waa67JunXrkiSrVq3KDTfckAsvvDBJ8swzz2TXXXdttf0RRxzRYv2sWbOSpM35FUXRYv3TTz+dSZMmNZUPP/zw3HvvvU3lzc9BexYuXJj//b//d37wgx9ssYzt5rbbbrscccQR+dCHPpSTTz459fXtJxJ48sknc8UVV+Tuu+/O8uXLW+33b/7mb3LZZZdlypQpHZ43Wx/LyAIAAJ0isx0AAAAAAPS8n/zkJxXlD37wgxXLwHbG2LFjc8IJJ7Q5Tl9UlmWuuOKKTJ48Oddff32bgXZJ8sYbb+RHP/pRTj311CxcuLDNfTds2JB/+Id/yF577ZXvfve7rQbavdnvzTffnD333DMzZ87s1LGwdZBaAgAA6JRqg+eqDc4DAAAAAKBj1m8o8/zS3p5F/zdhZDKgvuUsbD3l+eefzzPPPFNRd/TRR9ek76OPPjq33XZbU/mBBx7IunXrMnDgwJr039PWr1+f0047LbfeeusWj+24447Ze++9M2bMmKxZsyaLFi3K//zP/2TlypUd6vuNN97IiSeemJ/+9KcV9QMHDsy+++6bCRMmpKGhIS+//HIeeuihvP76601zOu+887J06dJccsklXT5Gep5gOwAAoFOKKhJl16W+1TTwAAAAAAB0zfNLk90+19jb0+j3/nhlXSaN6d05/PrXv96ibvr06TXp+x3veEdF+Y033sijjz6aGTNmZMKECXn66aebHvuXf/mXigxt3/ve9/Kud71riz7HjNl4wg4//PCmutNOOy0PPvhgU3nzfjc3YcKETh3Hm84///wtAu2OP/74XHLJJZkxY8YW+zc2NuaBBx7I97///dx4441t9v2JT3yiItBuhx12yCWXXJK/+7u/y7Bhwyr2feONN/L1r389X/jCF7J69eokyWWXXZYDDjggxx13XCePjt4i2A4AAOiUajLbWUIWAAAAAAC67vnnn68ojx8/PqNHj65J33vttVeL482YMSMDBgzIpEmTmupHjBhRsd+OO+5Y8XhzQ4cObfr34MGDKx5rq11n/fSnP81Xv/rVirqrrroqn/3sZ1ttU1dXl4MOOigHHXRQLrvssi3m+aYf/OAHmTVrVlP5rW99a2bPnt3qcWy33XY5//zzc+CBB+bII4/M6tWrU5ZlPvWpT+X3v/996uo6ntyA3ufZAgAAOqWu6PjtRH3h73wAAAAAAKCrXn311YryyJEja9b34MGD09DQ0OZ4fcVll11WUf5f/+t/tRlo19yIESNaDLYry7Ki7wEDBuTOO+/sUMDgm0F8b1qwYEFuv/32Ds+JrYNgOwAAoFPqqridkNkOAAAAAAC6rnnwW/MMc13VvL8lS5bUtP+e8Nhjj1Ustzts2LBcffXVNen7l7/8ZZ544omm8plnnpl99tmnw+0/8YlPVATx3XnnnTWZFz1HsB0AANApddUsIxuZ7QAAAAAAYGtXFEVvT6HLfv7zn1eUzzjjjAwfPrwmfd9zzz0V5VNPPbWq9kOGDMk73/nOpvKvfvWrmsyLnuMbLwAAoFNktgMAAAAAgJ41atSoivJrr71W0/6XLVvW5nh9wf33319RPvzww2vW93333VdRHjVqVJ555pmq+tg88O+ZZ55JY2Nj6urkS+srBNsBAACdUlVmO8F2AAAAAADdZsLI5I9XCtbpbhNG9vYMtgx+W7p0ac36Xr16dVavXl1RN3r06Jr131NeeumlivKee+5Zs74XLlxYUX7Xu97Vpf4aGxuzbNmyPhnUuK0SbAcAAHRKfaoJtnPrAQAAAADQXQbUF5k0prdnQU/YeeedK8ovv/xylixZUpOguLlz57Y7Xl+wZMmSivLIkbWLkmzedy2sWLFCsF0fIqwZAADolKKoYhnZKgLzAAAAAACAlh100EFb1M2ZM6cmfTfvZ7vttsu+++5bk757U1EUNetr7dq1NevrTWVZ1rxPuo9gOwAAoFNktgMAAAAAgJ41ceLETJw4saLupz/9aU36vueeeyrKBxxwQAYNGlSTvnvSmDGVaR5fffXVbul78ODBaWxsTFmWXdomTZpUs/nR/QTbAQAAnVJVZrtCZjsAAAAAAKiFY489tqL8ne98J+vWretSn4sXL86dd97Z5jh9xU477VRRnjdvXs36Hj9+fNO/V69eneeee65mfdM3CLYDAAA6pb6K2wmZ7QAAAAAAoDY+/elPVyyNunjx4syaNatLfc6cObMiYG/77bfPRz7ykS712Vve/e53V5Rnz55ds76bL+Nbq6yC9B2C7QAAgE7Zrn77ju9b1/F9AQAAAACA1k2bNi3HHXdcRd1nP/vZLFq0qFP9zZs3L9dcc01F3dlnn51Ro0Z1eo696aijjqoof/e7382KFStq0vcxxxxTUf73f//3mvRL3yHYDgAA6JS/GLJPh/fdo4p9AQAAAACAtn3lK1/JkCFDmsrLli3LSSedlJUrV1bVz+LFi3PKKadk7dq1TXU77bRTvvSlL9Vsrj1tzz33zGGHHdZUXr58eS666KKa9H3cccflbW97W1P5oYceyv/5P/+nJn3TNwi2AwAAOmXUwLF537i/b3e/aUP2y8Ejjml3PwAAAAAAoGP22GOPXHfddRV1999/f4477rg8//zzHepj/vz5OfLII/Pkk0821dXV1eU73/lOxo4dW9P59rTmwYJf+9rX8pWvfKXD7V977bWsXr16i/oBAwbksssuq6j7+Mc/nttuu63qOf7sZz/LH//4x6rb0bsE2wEAAJ12xMj35EuTrs+p4z6aE8acWbGdOOaDOW+Xy/PxCZ/PoLqG3p4qAAAAAAD0Kx/+8IfziU98oqLuvvvuy7Rp03LVVVdl4cKFLbZbsGBBvvCFL2TvvffO448/XvHY1VdfnSOPPLLb5txT/vIv/zLnn39+Rd0FF1yQv/mbv8nDDz/cYpvGxsb85je/yac//enssssuefnll1vc74wzzsiHP/zhpvLatWtz8skn58wzz2y17yTZsGFDfvvb3+bSSy/NtGnT8ld/9Vd57rnnOnF09KYBvT0BAACgb9uxYUJ2bJjQ29MAAAAAAIBtzvXXX5+RI0fmy1/+csqyTJKsWLEiF110UT73uc9l2rRp2WWXXTJy5MgsWbIkzz77bH7/+99v0c/AgQMzc+bMfPzjH+/pQ+g2V199dZ577rn84Ac/aKq76667ctddd+Utb3lL9t5774wePTpr1qzJyy+/nMceeywrVqzoUN//9m//lqVLl+aHP/xhU913v/vdfPe7383YsWPz9re/PaNHj05dXV2WL1+eF198MU8++WSL2fLoWwTbAQAAAAAAAABAH3X55ZfnsMMOyznnnJP58+c31Zdlmblz52bu3Llttt9///3zjW98I9OnT+/uqfao+vr63Hzzzdlzzz3z5S9/OevWrWt67MUXX8yLL77Y6b4HDhyYW2+9Nddcc00uvvjiiiC6xYsX52c/+1mH+th+++07PQd6h2VkAQAAAAAAAACgDzvqqKMyb9683HTTTTnyyCMzYEDb+bcaGhpywgkn5I477sicOXP6XaDdm4qiyMUXX5zf//73+chHPpJRo0a1uf/QoUNz4okn5vbbb8/EiRPb7fvCCy/M008/nX/6p3/KW9/61nbnM2zYsBx//PH52te+lpdeeikzZsyo6njofcWbKSRha1MUxZ5Jnniz/MQTT2TPPffsxRkBAAAAAAAAQO2tX7++IiNZkuy+++7tBkxBa1atWpWHH344CxYsyOLFi7N27do0NDRk/PjxmTJlSvbff/80NDT09jR7XGNjYx555JH87ne/yyuvvJKVK1dm++23z7hx47LHHntkn332ycCBAzvd/9NPP51HHnkkixcvztKlS1NXV5dhw4blLW95S/bYY4/svvvuqa+vr+ERbd2669o2d+7c7LXXXptX7VWWZdspHGvEVRkAAAAAAAAAAPqR7bffPoceemgOPfTQ3p7KVqWuri7Tp0/vtkx+u+66a3bddddu6Zutg2VkAQAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAACgHYLtAAAAAAAAAAAAoB2C7QAAAAAAAAAAAKAdgu0AAAAAAAAAAHpRURRb1JVl2QszAaidxsbGLepaut71JYLtAAAAAAAAAAB6UV3dluEb69at64WZANTO+vXrt6hr6XrXl/Tt2QMAAAAAAAAA9HFFUWTQoEEVdStXruyl2QDURvPr2KBBg2S2AwAAAAAAAACga4YNG1ZRXr58uaVkgT6rLMssX768oq75da4vEmwHAAAAAAAAANDLmgehrFu3Li+88IKAO6DPKcsyL7zwwhbLYQ8fPryXZlQ7A3p7AgAAAAAAAAAA27rBgwdn4MCBFcEpK1asyB/+8IcMHz48Q4cOzYABA1JXJ68SsPVpbGzM+vXrs3LlyixfvnyLQLuBAwemoaGhl2ZXO4LtAAAAAAAAAAB6WVEUectb3pLnnnuuIpvdunXrsmTJkixZsqQXZwfQeW9e34qi6O2pdJlwZwAAAAAAAACArcCQIUMyceLEfhGQApBsDLSbOHFihgwZ0ttTqQnBdgAAAAAAAAAAW4k3A+4GDhzY21MB6JKBAwf2q0C7xDKyAAAAAAAAAABblSFDhuRtb3tb1qxZk+XLl2fFihVZu3Ztb08LoF2DBg3KsGHDMnz48DQ0NPS7TJ2C7QAAAAAAAAAAtjJFUWTw4MEZPHhwxo0bl7Is09jYmLIse3tqAFsoiiJ1dXX9LriuOcF2AAAAAAAAAABbuaIoUl9f39vTANim1fX2BAAAAAAAAAAAAGBrJ9gOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoh2A4AAAAAAAAAAADaIdgOAAAAAAAAAAAA2iHYDgAAAAAAAAAAANoxoLcnAG0YtHlhwYIFvTUPAAAAAAAAAABgK9BCDNGglvbrDkVZlj01FlSlKIq/SXJHb88DAAAAAAAAAADYar23LMs7e2Igy8gCAAAAAAAAAABAOwTbAQAAAAAAAAAAQDssI8tWqyiKHZIctlnVwiRre2k60Be8LZVLL783yR96aS5A/+Q6A3Q31xkAusrPEqC7uc4A3c11BuhurjNAfzAoyS6ble8ty/K1nhh4QE8MAp2x6U3QI+spQ39QFEXzqj+UZTm3N+YC9E+uM0B3c50BoKv8LAG6m+sM0N1cZ4Du5joD9CO/7Y1BLSMLAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0QbAcAAAAAAAAAAADtEGwHAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0QbAcAAAAAAAAAAADtEGwHAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0QbAcAAAAAAAAAAADtEGwHAAAAAAAAAAAA7RBsBwAAAAAAAAAAAO0Y0NsTAKBmFie5tFkZoJZcZ4Du5joDQFf5WQJ0N9cZoLu5zgDdzXUGoAuKsix7ew4AAAAAAAAAAACwVbOMLAAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtEOwHQAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtEOwHQAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtEOwHQAAAAAAAAAAALRDsB0AAAAAAAAAAAC0Q7AdAAAAAAAAAAAAtGNAb08A2HoURVGfZHKSaUnekmSHJGuSLE3yhyRzyrJcVeMxByZ5d5KJSXZKsjLJi0l+W5blM7Ucq6cURbFnkn2TjE3SkOTlJM8n+XVZlqt7c249qSiKkUn2TLJ7klFJBidZlmRxkofLsvxDL05vC0VR7JqNz9tbkgxN8lKSZ5PcX5bluhqO89Yk78jG1/sOSdZl43mZn43nZUWtxtoauc7UhuvMRn3tOkPPcJ2pDdeZjfrCdaYnX/N94XxALfTHnyX98ZhqpafuBfsK56Nn9Mf3ZH88plrxvqrkM7ie0R/fk/3xmGrFdYbe0B/fk/3xmGrFdcZncEAzZVnabLZteMvGX97OS3J3kteSlG1s65P8OMlf12DcsUm+nmRJG+P9OsnJXRxntySnJrkmyewky5uN8UyNzuOwJJ9P8kIbx7M8yXeSvK0Xn+9uOx9JBiY5Jsn1SZ5o57VUbjpXlyXZsZffA6ckub+NeS7Z9Fod04UxhiS5MMlT7ZyTDUn+M8nRvXlOuuEcu87U5jy6zvTB60x3vz46cA7a2yb11rmp8Xl2nanNeXSd6SPXmZ56zfeV82Gz1WLrjz9L+uMx1fg574l7we2THJzkH5LclI33hI3Nxjmrt1//zkePneN+957sj8dU4+fc+6rnz4fP4PrZe7I/HlONn3PXmT/P02dwPXOe+917sj8eU42f8236OtNTr4/4DM5m63Nbr0/AZrP13pbku124MbgryfhOjntckkVVjPX/Jdm+iv4PT/Jf7fyCWpMbrE3jHZCNf2XS0eNZleTjPfg8d/v52HQOXu3ka2lpkg/0wut/aJLvVTHPl5Mc04lxDkzyx06cl+8mGdLT56UbzrPrjOvMNned6cnXRxfeX29uk3rqvHTj+XadcZ3Zpq4zPfWa7yvnw2arxdZT76sWxu22nyX98Zhq+Hx3+71gNn7Z9Hg2ftnSXv9n9fLr3/nomfPc796T/fGYvK/67vnYNI7P4PrZe7I/HlNfel/1hetMfAbX0+e7370n++Mx1fD53uavMz31+ojP4Gy2PrlZRha2bVNaqX8hG9PpL8rG5aZ3S/L2JHWb7fOeJP9dFMVhZVm+3NEBi6I4PMntSQZtVl0meSQbPwwZkWS/JGM2e/zMJMOLojixLMvGDgyzb5KjOzqnriiK4qhs/GuGhmYPPZvksWz8InpCNv6iNHDTY0OSfL0oirqyLL/WA9PsifMxNsnIFurXZuMvyi9n4198jE4yfdP/3zQiyXeKohhXluU/d/M8kzSler45yfHNHlqc5Leb5vq2bHwtFpseG5/kjqIojirL8r4OjnNgkp9m403J5lYk+X/Z+B5ryMa003ul8j12epJxRVEcX5bl2g4e2tbIdaaLXGea9KXrTI+9PkjiOtNlrjNN+sp1pqde833lfEAt9MefJf3xmLqsp+4Fk5yRjUsKbdWcjx7VH9+T/fGYusz7qpLP4HpUf3xP9sdj6jLXmQo+g+tZ/fE92R+PqctcZ5r4DA5oXW9H+9lstt7bkszJnyPfH0nyybSyJFiSnZN8I1tGzP8qSdHB8SZky8j8+5JMbbZfQ5JPZeMvEZvve2UHxzmvhXmWSVYnWdCs7pkunL9J2fIvphYk+asW9h2Z5Lpm+25oad9ueJ67/Xxk4y+Nb/axIsm3khyZZLsW9i2S/G02foHffE7dfj42zeGaZuOu3fT6H9Rsv2nZMj32K0l26sAYg1s4v69vem0PbmH/tyW5s4VzclFPnJNuPNeuM64z29x1pqdeH5vG2ryvBza9ZqrZBnT3+eiB8+064zqzTV1neuo131fOh81Wi60//izpj8dUo+e62+8FN7Vf1sL5LJM838JjZ/Xia9/56Llz3e/ek/3xmGr0XHtf9fD5iM/g3jyufvee7I/HVKPn2nXmz3P0GVzPnu9+957sj8dUo+fadaYHXx/xGZzN1ie3Xp+AzWbrvS0b/6rv7iTTq2hzTgs/vE/rYNtvNWv367Twgcdm+5/YbP/VSd7agXHO2/SL32+T3JDko0n2z8ZMLIc36/OZLpy/5umT5ycZ106bC5u1mZukvpuf524/H5t+EVyU5Px0PD336CTzmo3/ZHu/dNbgfOyWLW9Q3tvG/ttly5uFf+vAOGc1a9OYdlJob/ol+Qf/f3v3HjVJUd5x/PfICstNFkFYQGFZXbyhBKIJKEkWAwT0eAGJGhKzK94SjEeNehK8nKgxahIkehKDGhVJvESjYsBFMCiLBC8ILsrNW2RRiCC7LIRF9gZP/uh52Z56Z6a7Z3q6u2q+n3P6j+q3q7uqpurp6Xq7e4J8dyu4gIlpIc4QZ2Y0zjTSP3rHyu9r9TTr1dWFOEOcmbU401Sfj6U9WFjqWFI8l6RYpxo+50auBXt571L29oFVkt7ei6n79v62Otjnypb6Pe3RbHsnNyZTrFMNnzPjqoX2EHNwc3VKbkymWKcaPmfiTH8ZmYNrtr2TG5Mp1qmGz5k403D/EHNwLCxRLq0XgIWFpb1F0pIx830uOHmvKpFnmaRtuTybJS0rke/jwbE+ViLPnsO+nKq+f8YuVfYml/y+ji6Z92tBvtOm/Dk30R6PKPsFMMh32IB2fOqU2+Pc4HjnlMhzSK/PzuXZKmlpQZ7PB8c5r2T5Fmv+hcyx02yTKbf3kjHzEWeIM+F+YoozU2+P3P7y+1o9zXp1dSHOEGdmLc401edjaQ8WljqWFM8lKdaphs+5kWvBXr6hjyZEhAAAGD9JREFUb3JQB/5pRHu00t5LxszX2TGZYp1q+JwZVy20h5iDm6vPkjHzdXZMplinGj5n4kx/OZiDa7a9l4yZr7NjMsU61fA5E2ca7h9iDo6FJcol/7vRAGaMu68dM+sHgvQxJfKcKmmHXPoL7v7jEvn+Nki/wMwWjsrg7hvcfVOJfU/iWVJfDP2Wu/93ybxnBumX1FOkwZpoD3e/w93vHSPf95S9IjuvTH8ai5ntLOmUYHXYx+Zx9x9J+mJu1QJlfXqUpUH6gsICZse6TdKVweplZfJ2EXFmIsSZ/mNEEWd6x2yif6CHODMR4kz/MaKIM031+VjaA6hDiueSFOs0iYavBeXuv6hUwIbRHs1LcUymWKdJMK76MQfXvBTHZIp1mgRxZj7m4JqV4phMsU6TIM70Yw4OwCjcbAdgHGuC9M5mtqggz0lB+pwyB3L3GyV9O7dqV0nHl8k7Zb8dpC+ukPeryp6anPM0M9tv8iJFK+xP+0/xWL8naZdc+pvu/oOSecM+e3LB9rsG6VtKHkeSfh6k96yQNxXEGeJMnZqMM4gHcYY4U6cY4sw4fb6uY3WxPYA6pHguSbFOUrPXgjGgPeKR4phMsU4S4yrEHFw8UhyTKdZJIs4gXimOyRTrJBFn6sIcHDADuNkOwDi2DVi347CNzWyxslfZ5vNfUeF4q4P0iRXyTssjg/R1ZTO6+2ZJP8mteoi6Uae2hP1paF+qwQlBenWFvJerv6yHm9m+I7a/LUhXedIo3PbOCnlTQZwhztSpyTiDeBBniDN1iiHOVOrzNR+ri+0B1CHFc0mKdZKavRaMAe0RjxTHZIp1khhXIebg4pHimEyxThJxBvFKcUymWCeJOFMX5uCAGcDNdgDG8ZggvU3SuhHbHxqkv1/xdbjfCNJPrJB3Wh4epO+qmD/c/kkTlCV2YX+a5mujw774zbIZe3322mD1qL54eZA+ouyxBmz7nQp5U0GcIc7Uqck4g3gQZ4gzdYohzlTt83Ueq4vtAdQhxXNJinWSmr0WjAHtEY8Ux2SKdZIYVyHm4OKR4phMsU4ScQbxSnFMplgniThTF+bggBnAzXYAxnFKkL7K3R8Ysf0TgvRPBm413P8U7K8NW4L0ThXzh9t3oU6NM7OHSTouWH3lFA/5+CA9zb74EfX3k9PMbOeiA5jZSZIOzK263t2vLl/EZBBniDO1aCHOtOlAMzvHzK43sw1mtsXMbu+lP2FmrzCz8OaqWUacIc7UIqI4U7XPjyWi9gDqkOK5JMU6Sc1eC8aA9ohHimMyxTpJjKsQc3DxSHFMplgniTjTJczBVZPimEyxThJxpi7MwQEzgJvtAFRiZrtJemmw+ryCbOFd9T+reNibg/ReZrZnxX3UbX2Q3q9i/nD7x05Qlpi9UtIuufTdki6dxoF6F7fhBW7Vvhhuv2zYhu5+k6QzcqseJenTZrbLkCwys6cqmyCc84CkV1csY/SIMw8iztSjsTjTAQdLWqlsEmORpIdK2qeX/kNJH5L0MzP7h944m1nEmQcRZ+rR+TgzZp8fV+fbA6hDiueSFOskNX8t2HW0RzxSHJMp1kliXIWYg4tHimMyxTpJxJkOYg6upBTHZIp1kogzdWEODpgd3GwHoKp3S1qcS9+l/omJQRYF6V9WOaC7b5S0KVi9R5V9TMGNQfrIshnN7EBJ+wer265P48xsiaS3Bqvf7+7hW3bqEvbDX1V8Tbc0v++O/Nzc/SxJb5S0tbfquZJuMLO/NLOjzWyZmT3RzJ5nZudIukLbL2a2SjrN3WfxizFxJkOcmVALcSYGu0p6raSrzWxWX+MvEWfmEGcmFFGcGafPVxZRewB1SPFckmKdpBauBTuO9ohHimMyxTpJjKsQc3DxSHFMplgniTgTI+bgMimOyRTrJBFn6sIcHDAjuNkOQGm9V+v/WbD6ze5+Z0HW8Mmd+8Y4fJhn9zH2UafLgvTzRz0tGfjjAevark+jzGxHSZ9Rf73XSvq7KR62lX7o7mdKOkzSxyRtkHSQsi/bl0v6kaTrlD3VslLZE3CSdImkI9393DHKGDXiTB/izARaijNt2SZptaS3SHqOpCOUPTV4uLJ/MJyp+RMdh0i6xMwOaq6Y3UCc6UOcmUAscWaCPl/1OFG0B1CHFM8lKdYpJ4YyNon2iECKYzLFOuXEUMYmMQcXgRTHZIp1yomhjLOAObgKUhyTKdYpJ4YydhpzcMBs4WY7AKWY2WGS/jVY/RVJZ5fIHn5BC5++KCP8gtb2q7dXKXsaYc4iSW8rymRmj5L0hgF/2sHMdq6naFH4iKTfyKXvl7RijKdkqmizHy5Q9nMUW4s2lHSupNe5+3erFCwFxJl5iDOTaSPOtOEtkg5w92Pc/W/c/QJ3X+PuP3H3a9z9fHd/o7J/MrxHkufyLpb0BTOzNgreBuLMPMSZyXQ+zkzY56vqfHsAdUjxXJJinQr218UyNon26LgUx2SKdSrYXxfL2CTm4DouxTGZYp0K9tfFMqaOObgKUhyTKdapYH9dLGNnMQcHzB5utgNQqPczYavU/6XoZkl/5O4+ONdITeWZGne/R9L7g9VvMLPXDMtjZo+UdJGGvza5U3WcFjP7a0kvDlaf4e5fb7goU++HZraTmf2jpO9JepmkfUpkWyHpWjM7v9dnZgJxZj7izPg6FGemrje5V/izA+6+yd3PkPTq4E9HSPqDqRSuY4gz8xFnxhdDnJlCnx91rM63B1CHFM8lKdZpSsdL+fxGe3RIimMyxTpN6Xgpjyvm4DokxTGZYp2mdLyU48zUMQdXXopjMsU6Tel4MxlnmIMDZtOCtgsAoNvMbB9J/yXpgNzq2yQd5+53lNzNxiA9zhtPwjzhPtvwLkknavvTAybpfWZ2iqSPSrpG2VMc+/e2+1Nt/6J1i6T8JM4md5/3lIiZLSlbGHdfW6n0LTCz1yp7AizvLHf/+5L5l5Q91oD2aLQfmtkCSV+UdEK+WMp+ruJcSVdJWidpJ0kHSnqGsgvwZb1tny3pKDM7zt2vGaOs0SDOjEScqajlONN57v4BMzte2U9dzDld0qdaKlIjiDMjEWcqiiHO1NTnyx5rovYAYpHiuSSmOsV0LdgE2iNNMY3JsmKqE+OqX0ztwRxceTGNybJiqlNM46oJqc0VhJiD6/6YLCumOhFn+jEHB2CauNkOwFBm9nBJl0g6JLd6naRj3f3HFXaV3Bc0SXL3LWZ2sqQLJT0596eje8sw6yW9VNLFuXV3Ddn2pgpF6vQryM3s5ZLOClaf7e6vr7CbSdqj6X74VvVP8t0n6RR3vzDYbouk6yVdb2YflvTPkk7r/W1vSV8ys8Pcff0Y5e084sxoxJlqOhBnYvFu9U/0HWlmi9x9WB+JGnFmNOJMNTHEmRr7fJlj1dEeQOeleC6JsE4xXQs2gfZITIRjslCEdWJc9YupPZiDKyHCMVkowjrFNK6akMxcwQjMwXV7TBaKsE7EmX7MwQGYGn5GFsBAZraHst+Sf1Ju9QZld+JfX3F3dwfpR1Qsy26a/wWtExcj7n6rpKdJ+pCkrSWyXCrpKZLuDdbfVnPROsXMXizpg+r/snqOpFc1WIywH+5iZrtW3Ef4ExQD+2HvC3b4Bff0AZN8fdx9s6SXS7ost/oASW+qWM4oEGfKIc6U05E4E4srlY21OTtIekJLZZkq4kw5xJlyYogzNff5omN1vj2AOqR4LkmxTgUauxaMBO3RMSmOyRTrVIBx1Y85uI5JcUymWKcCxJk4MQcX8ZhMsU4FiDMVMAcHgJvtAMxjZrtLukjSr+dW/5+kE8Z8lX549/5BFfOH29/p7hsGbtkCd7/X3f9E0mMlvVnZP6BvUfYU5T2SblT2kwXHSfrd3quIHx/s5qrGCtwwM3uRsi99+XPOJyW9zN29qXL0nkoN+82BFXcT9sVhT6Y8U1L+IuQmZX2gkLs/IOkdweoVZhbr03sDEWeqIc6M1pU4E4tenPlZsLrSBE8MiDPVEGdGiyHOTKHPjzpW59sDqEOK55IU61Sk4WvBzqM9uiXFMZlinYowrvoxB9ctKY7JFOtUhDgTJ+bg4h2TKdapCHGmPObgAEj8jCyAQO8phQslHZlbvVHSie5+5Zi7vTFIP6Zi/qVB+oYxyzFV7n6TpHf1liJHBelvD9ln1JM7ZvZ8Sf+m7ImtOf8haUXvQrOSGtrjRmVv7pnzGM3vn6OEfXFY3sOC9KUVv/R+XdlPW+zYS++lrKxJXJgQZ8ZHnJmvg3EmFvcF6XF+FqCziDPjI87MF0OcmVKfH3asWtsD6KoUzyUx1ymia8FG0B5piHlMDhNznRhX/SJqD+bgRoh5TA4Tc50iGleNiH2uoALm4KojzsxHnBkDc3AApok32wF4kJntLOlLko7Orf6VpGe5+zcm2PV1QfrJZrZLhfxPL9hfVHpPRz4jWH3ZoG1jZmbPkfRp9d/Y/UVJp7r7/e2Ual7fCW8SGKr3BfrJBfubsyhIV/pZPXffJml9sHrvKvvoKuJMM4gzrcaZWIQxZV0rpZgC4kwziDPdiTNT7PODjtX59gDqkOK5JMU6VdTUtWAsaI+WpTgmU6xTRYyrfszBtSzFMZlinSoizsSJObjqiDPzEWc6gDk4AHncbAdAkmRmCyWdL2l5bvUmSc9x969Psm93/4Wk7+dWLVD/F5Eiy4P0lycpTwc8Q9KSXPoyd0/iack5ZvZMZU9XPDS3epWkF/YmsdpyUZBeXiHvb6n/S+0ad799yLZ3BeldB2412m5BeuMY++gU4kyjiDMYysz21vynDP+3jbLUjTjTKOJMB0yzzw84VufbA6hDiueSFOs0hqauBWNBe7QoxTGZYp3GwLjqxxxci1IckynWaQzEmcgwBzce4sxAy4M0caZhzMEBCHGzHQCZ2Y6SviDp2NzqzZKe5+5frekw5wXpl5Qs2+Mk/WZu1b2SvlJTmdryF0H6Q62UYkrM7DhJn9f2n1+Qss/s+e6+pZ1SPehi9b+2/aheHytjZZAO+3ReeMF8eMljSJLMbJmk3YPVlZ7M7RriTOOIMxjlReq/DrhdCfz0F3GmccSZljXU5+eO1fn2AOqQ4rkkxTqNqalrwVjQHi1JcUymWKcxMa76MQfXkhTHZIp1GhNxJj7MwY2POLO9bMSZljEHB2AQbrYDZpyZLZD0WUkn5lZvlXSKu19c46E+KSn/WtuTe5MZRcJ/5H7W3TfVV6xmmdkKScflVl2j7OmEJJjZ70j6T0kLc6u/puwL5+Z2SrWdu/9K0ueC1WEfm8fMDpF0Um7VNkmfGpFldZB+upk9oUwZe14ZpH/o7ndUyN8pxJlmEWcwipntK+ktweoL3N3bKE9diDPNIs60r8E+H0V7AHVI8VySYp3G1eC1YBRoj3akOCZTrNO4GFf9mINrR4pjMsU6jYs4Exfm4CZGnNmOONMi5uAADOXuLCwsM7pI2kHSZyR5btkq6aQpHe+jwbGukLRwxPbPDbbfLOmgCcuwPNjn2gn3t6DCtidL2hK09eEt94Ha2kPSUZLuCfZ3maRd2qzjgHIuDT4HV/aa52HbL+z11fz2Hyw4hkn6YZDnakm7lyjfCQPK9862222C9ibOEGdmLs400R6SHivp2RXzLJb0nQF9fmnb7TJhmxJniDMzFWea7PMxtAcLSx1LiueSFOtUQxmnfi1Yshyrg32unGa9aY9uLCmOyRTrVEMZGVcNt4eYg8vXJ7kxmWKdaigjcaZ8GZcHZVw75n6Yg9ter+TGZIp1qqGMxJkW+oeYg2NhiW7J/242gNnzMUkvCNa9SdIaM1tScV+3efGTFH+l7MmGPXvpp0m6xMxe5u4/mNvIzHaS9ApJ7w3yv9fdby5TGDN7pDQwxi0O0gtG1HWju68rONS1ZrZK2St9v+3uDwwoy6GSzpB0avCnN7n7moL912La7WFmh0v6sqTdcqt/KOlVkvYxsyrF3eTuU/u5Bnf/qZm9X9Ibcqs/Z2Z/LunDnnsNs5k9XtJHlPXVOeslvb3gGG5mZyjrF3OOkHR17zir3N3zecxsL0mvUdZX8p/Veklnlq1fBxFniDMzF2ekRvrHfpLON7NrJX1C0nnu/uMhZdld0gplT9PuG/z5ne7+0yHHiAVxhjgza3GmkT4fUXsAdUjxXJJinSbSxLVgLv9ukvYe8ueFQXrvEZ/JLe6+rcwxq6I9GpfimEyxThNhXPVjDq5xKY7JFOs0EeLMfMzBNSrFMZlinSZCnOnDHByAoSy4zgAwQ8yszgBwjLuvLnHM5ZIuVv9vzc89cfhTSXsomxB5RJD1S8pek3u/SjCztZIOKrPtCOe6+8qC46yTtFcvuVHStZJ+IWmTsjocMqQc73T3t05YvtKm3R5m9jZlFwl1uMzdl9e0r4HMbAdJF6j/tc+S9EtJ31X29MhSZX0x/y12i6Rj3f3yksc5S9LrBvxpvbI+v07ZWFgi6dc0f1Jgs6RnuvvXyhyvi4gzhYgz/VKKM2s13fZYLunSYPXdkq5TFlvuUXZx/ihJh2nwpOOH3T38yZzoEGcKEWf6RR9nmurzsbQHUIcUzyUp1qkODV4LrpR0zqTllXSwu6+tYT8D0R7NSXFMplinOjCu+jEH15wUx2SKdaoDcaYfc3DNSXFMplinOhBnMszBARiFN9sBaJS7rzazkyR9XNu/KJqkp/SWQT4t6eVNfIGc0G7KXvM7ygZJp7v7vzdQHgzh7veb2QuUPXHzwtyf9lH2ExKD/FLSirIXCT2v7+V7u/ovnPaSdHxB3puVvRZ7dYXjQcQZEWdm2R6Snl5iu3slvc7d/2XK5UkWcYY4AwCTSvFcEkOdGrwWjALtkbYYxmRVMdSJcdWPObi0xTAmq4qhTsSZTmAOriExjMmqYqgTcQYAij2k7QIAmD3ufqGkQyV9UNk/a4f5lqRT3P1Ud7+3kcJV9z5JayTN+7m1wM8lvUPSo/nHdDe4+0Z3f5Gk31fW14a5U9LZkg5194sqHsPd/T2SniTpnzS6v8+5QdkE4aFM8o2POEOcmQE3SnqXpCsk3Vcyz4+UveZ+CZN8kyPOEGcAYFKJnUskxVGnJq4FY0J7pC2GMVlVDHViXPVjDi5tMYzJqmKoE3GmUczBtSyGMVlVDHUizgDAaPyMLIBWmdmOyp4AOkjSYmVP+twqaY2739Rm2aows4dJOlzSwcqeRFmo7MLrVknfc/cbWiweSjCzg5W98np/SbtKuk3Zk61XuPuWmo5hkh6n7HXye0t6mKRtku5S1leucvfb6zgWtiPOIHVm9hBJyyQ9WtIBkhZpe//YoOznQL/j7ne0VsjEEWcAAJNK5VySF0udmrgWjAntka5YxmQVsdSJcdWPObh0xTImq4ilTsSZZjAH175YxmQVsdSJOAMA/bjZDgAAAAAAAAAAAAAAAACAAvyMLAAAAAAAAAAAAAAAAAAABbjZDgAAAAAAAAAAAAAAAACAAtxsBwAAAAAAAAAAAAAAAABAAW62AwAAAAAAAAAAAAAAAACgADfbAQAAAAAAAAAAAAAAAABQgJvtAAAAAAAAAAAAAAAAAAAowM12AAAAAAAAAAAAAAAAAAAU4GY7AAAAAAAAAAAAAAAAAAAKcLMdAAAAAAAAAAAAAAAAAAAFuNkOAAAAAAAAAAAAAAAAAIAC3GwHAAAAAAAAAAAAAAAAAEABbrYDAAAAAAAAAAAAAAAAAKAAN9sBAAAAAAAAAAAAAAAAAFCAm+0AAAAAAAAAAAAAAAAAACjAzXYAAAAAAAAAAAAAAAAAABTgZjsAAAAAAAAAAAAAAAAAAApwsx0AAAAAAAAAAAAAAAAAAAW42Q4AAAAAAAAAAAAAAAAAgALcbAcAAAAAAAAAAAAAAAAAQAFutgMAAAAAAAAAAAAAAAAAoAA32wEAAAAAAAAAAAAAAAAAUICb7QAAAAAAAAAAAAAAAAAAKMDNdgAAAAAAAAAAAAAAAAAAFOBmOwAAAAAAAAAAAAAAAAAACnCzHQAAAAAAAAAAAAAAAAAABbjZDgAAAAAAAAAAAAAAAACAAtxsBwAAAAAAAAAAAAAAAABAAW62AwAAAAAAAAAAAAAAAACgADfbAQAAAAAAAAAAAAAAAABQgJvtAAAAAAAAAAAAAAAAAAAowM12AAAAAAAAAAAAAAAAAAAU4GY7AAAAAAAAAAAAAAAAAAAKcLMdAAAAAAAAAAAAAAAAAAAFuNkOAAAAAAAAAAAAAAAAAIAC3GwHAAAAAAAAAAAAAAAAAEABbrYDAAAAAAAAAAAAAAAAAKAAN9sBAAAAAAAAAAAAAAAAAFDg/wFRlxEKZVemhQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import yappi\n", + "\n", + "from apd.aggregation.analysis import interactable_plot_multiple_charts, Config, clean_temperature_fluctuations, get_data_by_deployment\n", + "from apd.aggregation.utils import profile_with_yappi\n", + "\n", + "async def filter_and_clean_temperature_fluctuations(datapoints):\n", + " filtered = (item async for item in datapoints if item.sensor_name==\"Temperature\")\n", + " cleaned = clean_temperature_fluctuations(filtered)\n", + " async for item in cleaned:\n", + " yield item\n", + "\n", + "filter_in_python = Config(\n", + " clean=filter_and_clean_temperature_fluctuations,\n", + " title=\"Ambient temperature\",\n", + " ylabel=\"Degrees C\",\n", + " get_data=get_data_by_deployment,\n", + ")\n", + "\n", + "with profile_with_yappi():\n", + " plot = interactable_plot_multiple_charts(configs=[filter_in_python])\n", + " plot()\n", + "\n", + "yappi.get_func_stats().print_all()" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from apd.aggregation.utils import yappi_package_matches\n", + "import yappi\n", + "\n", + "yappi.get_func_stats().save(\"callgrind.filter_in_python\", \"callgrind\") " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "apd.aggregation", + "language": "python", + "name": "apd.aggregation" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Ch12/apd.aggregation-chapter12/pyproject.toml b/Ch12/apd.aggregation-chapter12/pyproject.toml new file mode 100644 index 0000000..4d3bb67 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/pyproject.toml @@ -0,0 +1,5 @@ +[build-system] +requires = [ + "setuptools", +] +build-backend = "setuptools.build_meta" diff --git a/Ch12/apd.aggregation-chapter12/pytest.ini b/Ch12/apd.aggregation-chapter12/pytest.ini new file mode 100644 index 0000000..8c26fbc --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/pytest.ini @@ -0,0 +1,4 @@ +[pytest] +markers = + functional: these tests are significantly slower as they start a HTTP server + performance: very slow tests that provide performance guarantees \ No newline at end of file diff --git a/Ch12/apd.aggregation-chapter12/setup.cfg b/Ch12/apd.aggregation-chapter12/setup.cfg new file mode 100644 index 0000000..704c6bf --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/setup.cfg @@ -0,0 +1,89 @@ +[mypy] +namespace_packages = True +mypy_path = src +plugins = sqlmypy + +[mypy-alembic] +ignore_missing_imports = True + +[mypy-alembic.config] +ignore_missing_imports = True + +[mypy-alembic.script] +ignore_missing_imports = True + +[mypy-alembic.runtime.environment] +ignore_missing_imports = True + +[mypy-matplotlib] +ignore_missing_imports = True + +[mypy-matplotlib.axes._base] +ignore_missing_imports = True + +[mypy-matplotlib.figure] +ignore_missing_imports = True + +[mypy-matplotlib.pyplot] +ignore_missing_imports = True + +[mypy-IPython.core] +ignore_missing_imports = True + +[mypy-yappi] +ignore_missing_imports = True + +[mypy-pint] +ignore_missing_imports = True + +[mypy-pytest] +ignore_missing_imports = True + +[mypy-setuptools] +ignore_missing_imports = True + +[flake8] +max-line-length = 120 +ignore = E501,E712 + +[metadata] +name = apd.aggregation +version = attr: apd.aggregation.VERSION +description = A programme that queries apd.sensor endpoints and aggregates their results. +long_description = file: README.md, CHANGES.md, LICENCE +long_description_content_type = text/markdown +keywords = +license = BSD +classifiers = + Programming Language :: Python :: 3 + Programming Language :: Python :: 3.7 + +[options] +zip_safe = False +include_package_data = True +package_dir = + =src +packages = find_namespace: +install_requires = + sqlalchemy + aiohttp + pint + psycopg2 + alembic + click + +[options.package_data] +apd.aggregation = py.typed + +[options.extras_require] +jupyter = ipywidgets +yappi = yappi + +[options.packages.find] +where = src + +[options.entry_points] +console_scripts = + collect_sensor_data = apd.aggregation.cli:collect_sensor_data + sensor_deployments = apd.aggregation.cli:deployments + run_apd_actions = apd.aggregation.cli:run_actions \ No newline at end of file diff --git a/Ch12/apd.aggregation-chapter12/setup.py b/Ch12/apd.aggregation-chapter12/setup.py new file mode 100644 index 0000000..6068493 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/setup.py @@ -0,0 +1,3 @@ +from setuptools import setup + +setup() diff --git a/Ch12/apd.aggregation-chapter12/src/apd/aggregation/__init__.py b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/__init__.py new file mode 100644 index 0000000..3277f64 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/__init__.py @@ -0,0 +1 @@ +VERSION = "1.0.0" diff --git a/Ch12/apd.aggregation-chapter12/src/apd/aggregation/actions/__init__.py b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/actions/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/Ch12/apd.aggregation-chapter12/src/apd/aggregation/actions/action.py b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/actions/action.py new file mode 100644 index 0000000..99f8c31 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/actions/action.py @@ -0,0 +1,140 @@ +import asyncio +import dataclasses +import datetime +import logging +import typing as t + +import aiohttp + +from ..database import DataPoint +from ..collect import handle_result +from ..query import db_session_var +from .base import Action +from .source import refeed_queue_var + +logger = logging.getLogger(__name__) + + +@dataclasses.dataclass +class OnlyOnChangeActionWrapper(Action): + """An action that requires another action as a parameter. + The `wrapped` action will be delegated to so long as the previous + invocation's `data` attribute is different to the current one. + The first invocation will always be delegated.""" + + wrapped: Action + + async def start(self) -> None: + self.last_value = None + return await self.wrapped.start() + + async def handle(self, datapoint: DataPoint) -> bool: + if datapoint.data == self.last_value: + return False + else: + self.last_value = datapoint.data + return await self.wrapped.handle(datapoint) + + +@dataclasses.dataclass +class OnlyOnValueActionWrapper(Action): + """An action that requires another action as a parameter. + The `wrapped` action will be delegated to so long as the previous + invocation's `data` attribute is the value specified.""" + + wrapped: Action + value: t.Any + + async def start(self) -> None: + return await self.wrapped.start() + + async def handle(self, datapoint: DataPoint) -> bool: + if datapoint.data == self.value: + return await self.wrapped.handle(datapoint) + else: + return False + + +@dataclasses.dataclass +class OnlyAfterDateActionWrapper(Action): + """An action that requires another action and a date + as parameters. The `wrapped` action will be delegated to + for all data points with a date strictly after `date_threshold`.""" + + wrapped: Action + date_threshold: datetime.datetime + + async def start(self) -> None: + return await self.wrapped.start() + + async def handle(self, datapoint: DataPoint) -> bool: + if datapoint.collected_at <= self.date_threshold: + return False + return await self.wrapped.handle(datapoint) + + +class SaveToDatabaseAction(Action): + """An action that stores any generated data points back to the DB""" + + async def start(self) -> None: + return + + async def handle(self, datapoint: DataPoint) -> bool: + loop = asyncio.get_running_loop() + session = db_session_var.get() + await loop.run_in_executor(None, handle_result, [datapoint], session) + return True + + +class LoggingAction(Action): + """An action that stores any generated data points back to the DB""" + + async def start(self) -> None: + return + + async def handle(self, datapoint: DataPoint) -> bool: + logger.warn(datapoint) + return True + + +class RefeedAction(Action): + """An action that puts data points into a special queue to be consumed + by the analysis programme""" + + async def start(self) -> None: + return + + async def handle(self, datapoint: DataPoint) -> bool: + refeed_queue = refeed_queue_var.get() + if refeed_queue is None: + logger.error("Refeed queue has not been initialised") + return False + else: + logger.info(f"Re-fed {datapoint} to aggregation queue") + await refeed_queue.put(datapoint) + return True + + +@dataclasses.dataclass +class WebhookAction(Action): + """An action that runs a webhook""" + + uri: str + + async def start(self) -> None: + return + + async def handle(self, datapoint: DataPoint) -> bool: + async with aiohttp.ClientSession() as http: + async with http.post( + self.uri, + json={ + "value1": datapoint.sensor_name, + "value2": str(datapoint.data), + "value3": datapoint.deployment_id.hex, + }, + ) as request: + logger.info( + f"Made webhook request for {datapoint} with status {request.status}" + ) + return request.status == 200 diff --git a/Ch12/apd.aggregation-chapter12/src/apd/aggregation/actions/base.py b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/actions/base.py new file mode 100644 index 0000000..0589ba4 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/actions/base.py @@ -0,0 +1,62 @@ +import typing as t + +from ..typing import T_value +from ..database import DataPoint +from ..exceptions import NoDataForTrigger + + +class Trigger(t.Generic[T_value]): + name: str + + async def start(self) -> None: + """ Coroutine to do any initial setup """ + return + + async def match(self, datapoint: DataPoint) -> bool: + """ Return True if the datapoint is of interest to this + trigger. + This is an optional method, called by the default implementation + of handle(...).""" + raise NotImplementedError + + async def extract(self, datapoint: DataPoint) -> T_value: + """ Return the value that this datapoint implies for this trigger, + or raise NoDataForTrigger if no value is appropriate. + Can also raise IncompatibleTriggerError if the value is not readable. + + This is an optional method, called by the default implementation + of handle(...). + """ + raise NotImplementedError + + async def handle(self, datapoint: DataPoint) -> t.Optional[DataPoint]: + """Given a data point, optionally return a datapoint that + represents the value of this trigger. Will delegate to the + match(...) and extract(...) functions.""" + if not await self.match(datapoint): + # This data point isn't relevant + return None + + try: + value = await self.extract(datapoint) + except NoDataForTrigger: + # There was no value for this point + return None + + return DataPoint( + sensor_name=self.name, + data=value, + deployment_id=datapoint.deployment_id, + collected_at=datapoint.collected_at, + ) + + +class Action: + async def start(self) -> None: + """ Coroutine to do any initial setup """ + return + + async def handle(self, datapoint: DataPoint) -> bool: + """ Apply this datapoint to the action, returning + a boolean to indicate success. """ + raise NotImplementedError diff --git a/Ch12/apd.aggregation-chapter12/src/apd/aggregation/actions/runner.py b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/actions/runner.py new file mode 100644 index 0000000..b544c21 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/actions/runner.py @@ -0,0 +1,75 @@ +from __future__ import annotations + +import asyncio +import collections +import dataclasses +import time +import typing as t + +from ..database import DataPoint +from .base import Action, Trigger + +Decorated_Type = t.TypeVar("Decorated_Type", bound=t.Callable[..., t.Any]) + + +@dataclasses.dataclass(unsafe_hash=True) +class DataProcessor: + name: str + action: Action + trigger: Trigger[t.Any] + + def __post_init__(self): + self._input: t.Optional[asyncio.Queue[DataPoint]] = None + self._sub_tasks: t.Set = set() + self.last_times = collections.deque(maxlen=10) + self.total_in = 0 + self.total_out = 0 + + async def start(self) -> None: + self._input = asyncio.Queue(64) + self._task = asyncio.create_task(self.process(), name=f"{self.name}_process") + await asyncio.gather(self.action.start(), self.trigger.start()) + + @property + def input(self) -> asyncio.Queue[DataPoint]: + if self._input is None: + raise RuntimeError(f"{self}.start() was not awaited") + if self._task.done(): + raise RuntimeError("Processing has stopped") from self._task.exception() + return self._input + + async def idle(self) -> None: + await self.input.join() + + async def end(self) -> None: + self._task.cancel() + + async def push(self, obj: DataPoint) -> None: + coro = self.input.put(obj) + return await asyncio.wait_for(coro, timeout=30) + + async def process(self) -> None: + while True: + data = await self.input.get() + start = time.time() + self.total_in += 1 + try: + action_taken = False + processed = await self.trigger.handle(data) + if processed: + action_taken =await self.action.handle(processed) + if action_taken: + elapsed = time.time() - start + self.total_out += 1 + self.last_times.append(elapsed) + finally: + self.input.task_done() + + def stats(self) -> str: + if self.last_times: + avr_time = sum(self.last_times) / len(self.last_times) + elif self.total_in: + avr_time = 0 + else: + return "Not yet started" + return f"{avr_time:0.3f} seconds per item. {self.total_in} in, {self.total_out} out, {self.input.qsize()} waiting." diff --git a/Ch12/apd.aggregation-chapter12/src/apd/aggregation/actions/source.py b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/actions/source.py new file mode 100644 index 0000000..dd3da9a --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/actions/source.py @@ -0,0 +1,102 @@ +import asyncio +from contextvars import ContextVar +import logging + +from apd.aggregation.query import db_session_var, get_data + +refeed_queue_var: ContextVar[asyncio.Queue] = ContextVar("refeed_queue") +logger = logging.getLogger(__name__) + + +async def get_newest_record_id(): + from apd.aggregation.database import datapoint_table + from sqlalchemy import func + + loop = asyncio.get_running_loop() + db_session = db_session_var.get() + max_id_query = db_session.query(func.max(datapoint_table.c.id)) + return await loop.run_in_executor(None, max_id_query.scalar) + + +async def queue_iterator(queue): + while not queue.empty(): + yield queue.get_nowait() + + +async def get_data_ongoing(*args, historical=False, **kwargs): + last_id = 0 + if not historical: + last_id = await get_newest_record_id() + db_session = db_session_var.get() + refeed_queue = refeed_queue_var.get() + + while True: + # Run a timer for 300 seconds concurrently with our work + minimum_loop_timer = asyncio.create_task(asyncio.sleep(30)) + + async for datapoint in get_data( + *args, inserted_after_record_id=last_id, order=False, **kwargs + ): + if datapoint.id > last_id: + # This is the newest datapoint we have handled so far + last_id = datapoint.id + yield datapoint + # Next time, find only data points later than the latest we've seen + + while not refeed_queue.empty(): + # Process any datapoints gathered through the refeed queue + logger.info("Passing refeed queue") + async for datapoint in queue_iterator(refeed_queue): + yield datapoint + + # Commit the DB to store any work that was done in this loop and + # ensure that any isolation level issues do not prevent loading more + # data + db_session.commit() + # Wait for that timer to complete. If our loop took over 5 minutes + # this will complete immediately, otherwise it will block + await minimum_loop_timer + logger.info("Getting next group of data") + + +async def wait_for_notify(loop, raw_connection): + waiting = True + while waiting: + # SQLAlchemy isn't asynchronous, poll in a new thread + # to make sure we've received any notifications + await loop.run_in_executor(None, raw_connection.poll) + while raw_connection.notifies: + # End the loop after clearing out all pending + # notifications + waiting = False + raw_connection.notifies.pop() + if waiting: + # If we had no notifications wait 15 seconds then + # re-check + await asyncio.sleep(15) + + +async def get_data_ongoing_psql_pubsub(*args, historical=False, **kwargs): + last_id = 0 + if not historical: + kwargs["inserted_after_record_id"] = last_id = await get_newest_record_id() + db_session = db_session_var.get() + db_session.execute("LISTEN apd_aggregation;") + loop = asyncio.get_running_loop() + while True: + async for datapoint in get_data(*args, order=False, **kwargs): + if datapoint.id > last_id: + # This is the newest datapoint we have handled so far + last_id = datapoint.id + yield datapoint + # Next time, find only data points later than the latest we've seen + kwargs["inserted_after_record_id"] = last_id + # Commit the DB to store any work that was done in this loop and + # ensure that any isolation level issues do not prevent loading more + # data + db_session.commit() + + connection = db_session.connection() + raw_connection = connection.connection + await wait_for_notify(loop, raw_connection) + # Always yield new records from this point on diff --git a/Ch12/apd.aggregation-chapter12/src/apd/aggregation/actions/trigger.py b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/actions/trigger.py new file mode 100644 index 0000000..d5c0def --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/actions/trigger.py @@ -0,0 +1,77 @@ +import dataclasses +import typing as t +import uuid + +from ..database import DataPoint +from ..exceptions import IncompatibleTriggerError, NoDataForTrigger +from .base import Trigger + + +@dataclasses.dataclass(frozen=True) +class ValueThresholdTrigger(Trigger[bool]): + name: str + threshold: float + comparator: t.Callable[[float, float], bool] + sensor_name: str + deployment_id: t.Optional[uuid.UUID] = dataclasses.field(default=None) + + async def match(self, datapoint: DataPoint) -> bool: + if datapoint.sensor_name != self.sensor_name: + return False + elif self.deployment_id and datapoint.deployment_id != self.deployment_id: + return False + return True + + async def extract(self, datapoint: DataPoint) -> bool: + if datapoint.data is None: + raise IncompatibleTriggerError("Datapoint does not contain data") + elif isinstance(datapoint.data, float): + value = datapoint.data + elif isinstance(datapoint.data, dict) and "magnitude" in datapoint.data: + value = datapoint.data["magnitude"] + else: + raise IncompatibleTriggerError("Unrecognised data format") + return self.comparator(value, self.threshold) # type: ignore + + +@dataclasses.dataclass +class ValueDifferenceTrigger(Trigger[float]): + name: str + sensor_name: str + target_deployment_id: uuid.UUID + reference_deployment_id: uuid.UUID + + def __post_init__(self): + self.last_reference = None + self.last_target = None + + async def match(self, datapoint: DataPoint) -> bool: + if datapoint.sensor_name != self.sensor_name: + return False + elif datapoint.deployment_id in ( + self.target_deployment_id, + self.reference_deployment_id, + ): + return True + return False + + async def extract(self, datapoint: DataPoint) -> float: + if datapoint.data is None: + raise IncompatibleTriggerError("Datapoint does not contain data") + elif isinstance(datapoint.data, float): + value = datapoint.data + elif isinstance(datapoint.data, dict) and "magnitude" in datapoint.data: + value = datapoint.data["magnitude"] + else: + raise IncompatibleTriggerError("Unrecognised data format") + + if datapoint.deployment_id == self.target_deployment_id: + self.last_target = value + elif datapoint.deployment_id == self.reference_deployment_id: + self.last_reference = value + + if self.last_reference is None or self.last_target is None: + # We need to have seen both items before we can calculate a difference + raise NoDataForTrigger("Insufficient data processed") + + return self.last_target - self.last_reference diff --git a/Ch12/apd.aggregation-chapter12/src/apd/aggregation/alembic/README b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/alembic/README new file mode 100644 index 0000000..7d90be0 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/alembic/README @@ -0,0 +1,12 @@ +Generic single-database configuration. + + +# Database setup + +To generate the required database tables you must create an alembic.ini file, as follows: + + [alembic] + script_location = apd.aggregation:alembic + sqlalchemy.url = postgresql+psycopg2://apd@localhost/apd + +and run `alembic upgrade head`. This should also be done after every upgrade of the software. diff --git a/Ch12/apd.aggregation-chapter12/src/apd/aggregation/alembic/env.py b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/alembic/env.py new file mode 100644 index 0000000..4c8a2c2 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/alembic/env.py @@ -0,0 +1,80 @@ +from logging.config import fileConfig + +from sqlalchemy import engine_from_config +from sqlalchemy import pool +from alembic import context + +from apd.aggregation.database import metadata + + +# this is the Alembic Config object, which provides +# access to the values within the .ini file in use. +config = context.config + +# Interpret the config file for Python logging. +# This line sets up loggers basically. +if config.config_file_name: + fileConfig(config.config_file_name) + +target_metadata = metadata + + +def include_object(object, name, type_, reflected, compare_to): + if object.info.get("is_view", False): + return False + return True + + +def run_migrations_offline(): + """Run migrations in 'offline' mode. + + This configures the context with just a URL + and not an Engine, though an Engine is acceptable + here as well. By skipping the Engine creation + we don't even need a DBAPI to be available. + + Calls to context.execute() here emit the given string to the + script output. + + """ + url = config.get_main_option("sqlalchemy.url") + context.configure( + url=url, + include_object=include_object, + target_metadata=target_metadata, + literal_binds=True, + dialect_opts={"paramstyle": "named"}, + ) + + with context.begin_transaction(): + context.run_migrations() + + +def run_migrations_online(): + """Run migrations in 'online' mode. + + In this scenario we need to create an Engine + and associate a connection with the context. + + """ + connectable = engine_from_config( + config.get_section(config.config_ini_section), + prefix="sqlalchemy.", + poolclass=pool.NullPool, + ) + + with connectable.connect() as connection: + context.configure( + connection=connection, + target_metadata=target_metadata, + include_object=include_object, + ) + + with context.begin_transaction(): + context.run_migrations() + + +if context.is_offline_mode(): + run_migrations_offline() +else: + run_migrations_online() diff --git a/Ch12/apd.aggregation-chapter12/src/apd/aggregation/alembic/script.py.mako b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/alembic/script.py.mako new file mode 100644 index 0000000..2c01563 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/alembic/script.py.mako @@ -0,0 +1,24 @@ +"""${message} + +Revision ID: ${up_revision} +Revises: ${down_revision | comma,n} +Create Date: ${create_date} + +""" +from alembic import op +import sqlalchemy as sa +${imports if imports else ""} + +# revision identifiers, used by Alembic. +revision = ${repr(up_revision)} +down_revision = ${repr(down_revision)} +branch_labels = ${repr(branch_labels)} +depends_on = ${repr(depends_on)} + + +def upgrade(): + ${upgrades if upgrades else "pass"} + + +def downgrade(): + ${downgrades if downgrades else "pass"} diff --git a/Ch12/apd.aggregation-chapter12/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py new file mode 100644 index 0000000..ef671bd --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/alembic/versions/4b2df8a6e1ce_add_indexes_to_datapoints.py @@ -0,0 +1,32 @@ +"""Add indexes to datapoints + +Revision ID: 4b2df8a6e1ce +Revises: 6d2eacd5da3f +Create Date: 2019-12-02 16:07:41.123116 + +""" +from alembic import op + + +# revision identifiers, used by Alembic. +revision = "4b2df8a6e1ce" +down_revision = "6d2eacd5da3f" +branch_labels = None +depends_on = None + + +def upgrade(): + op.create_index( + op.f("ix_datapoints_collected_at"), + "datapoints", + ["collected_at"], + unique=False, + ) + op.create_index( + op.f("ix_datapoints_sensor_name"), "datapoints", ["sensor_name"], unique=False, + ) + + +def downgrade(): + op.drop_index(op.f("ix_datapoints_sensor_name"), table_name="datapoints") + op.drop_index(op.f("ix_datapoints_collected_at"), table_name="datapoints") diff --git a/Ch12/apd.aggregation-chapter12/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py new file mode 100644 index 0000000..eb02455 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/alembic/versions/6962f8455a6d_add_daily_summary_view.py @@ -0,0 +1,38 @@ +"""Add daily summary view + +Revision ID: 6962f8455a6d +Revises: 4b2df8a6e1ce +Create Date: 2019-12-03 11:50:24.403402 + +""" +from alembic import op + + +# revision identifiers, used by Alembic. +revision = "6962f8455a6d" +down_revision = "4b2df8a6e1ce" +branch_labels = None +depends_on = None + + +def upgrade(): + create_view = """ + CREATE VIEW daily_summary AS + SELECT + datapoints.sensor_name AS sensor_name, + datapoints.data AS data, + count(datapoints.id) AS count + FROM datapoints + WHERE + datapoints.collected_at >= CAST(CURRENT_DATE AS DATE) + AND + datapoints.collected_at < CAST(CURRENT_DATE AS DATE) + 1 + GROUP BY + datapoints.sensor_name, + datapoints.data; + """ + op.execute(create_view) + + +def downgrade(): + op.execute("""DROP VIEW daily_summary""") diff --git a/Ch12/apd.aggregation-chapter12/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py new file mode 100644 index 0000000..b4a3545 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/alembic/versions/6d2eacd5da3f_create_sensor_values_table.py @@ -0,0 +1,31 @@ +"""Create datapoints table + +Revision ID: 6d2eacd5da3f +Revises: N/A +Create Date: 2019-09-29 13:43:21.242706 + +""" +from alembic import op +import sqlalchemy as sa +from sqlalchemy.dialects import postgresql + +# revision identifiers, used by Alembic. +revision = "6d2eacd5da3f" +down_revision = None +branch_labels = None +depends_on = None + + +def upgrade(): + op.create_table( + "datapoints", + sa.Column("id", sa.Integer(), nullable=False), + sa.Column("sensor_name", sa.String(), nullable=True), + sa.Column("collected_at", postgresql.TIMESTAMP(), nullable=True), + sa.Column("data", postgresql.JSONB(astext_type=sa.Text()), nullable=True), + sa.PrimaryKeyConstraint("id"), + ) + + +def downgrade(): + op.drop_table("datapoints") diff --git a/Ch12/apd.aggregation-chapter12/src/apd/aggregation/alembic/versions/d8cdc709086b_add_deployment_table.py b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/alembic/versions/d8cdc709086b_add_deployment_table.py new file mode 100644 index 0000000..204e096 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/alembic/versions/d8cdc709086b_add_deployment_table.py @@ -0,0 +1,32 @@ +"""Add deployment table + +Revision ID: d8cdc709086b +Revises: d8d4cf6a178f +Create Date: 2019-12-17 16:28:58.585616 + +""" +from alembic import op +import sqlalchemy as sa +from sqlalchemy.dialects import postgresql + +# revision identifiers, used by Alembic. +revision = "d8cdc709086b" +down_revision = "d8d4cf6a178f" +branch_labels = None +depends_on = None + + +def upgrade(): + op.create_table( + "deployments", + sa.Column("id", postgresql.UUID(as_uuid=True), nullable=False), + sa.Column("uri", sa.String(), nullable=True), + sa.Column("name", sa.String(), nullable=True), + sa.Column("colour", sa.String(), nullable=True), + sa.Column("api_key", sa.String(), nullable=True), + sa.PrimaryKeyConstraint("id"), + ) + + +def downgrade(): + op.drop_table("deployments") diff --git a/Ch12/apd.aggregation-chapter12/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py new file mode 100644 index 0000000..88d5219 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/alembic/versions/d8d4cf6a178f_add_deployment_id_to_datapoint.py @@ -0,0 +1,34 @@ +"""Add deployment id to DataPoint + +Revision ID: d8d4cf6a178f +Revises: 6962f8455a6d +Create Date: 2019-12-03 20:58:11.285509 + +""" +from alembic import op +import sqlalchemy as sa +from sqlalchemy.dialects import postgresql + +# revision identifiers, used by Alembic. +revision = "d8d4cf6a178f" +down_revision = "6962f8455a6d" +branch_labels = None +depends_on = None + + +def upgrade(): + op.add_column( + "datapoints", + sa.Column("deployment_id", postgresql.UUID(as_uuid=True), nullable=True), + ) + op.create_index( + op.f("ix_datapoints_deployment_id"), + "datapoints", + ["deployment_id"], + unique=False, + ) + + +def downgrade(): + op.drop_index(op.f("ix_datapoints_deployment_id"), table_name="datapoints") + op.drop_column("datapoints", "deployment_id") diff --git a/Ch12/apd.aggregation-chapter12/src/apd/aggregation/analysis.py b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/analysis.py new file mode 100644 index 0000000..eeb4ab2 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/analysis.py @@ -0,0 +1,401 @@ +from __future__ import annotations + +import asyncio +import collections +from concurrent.futures import ThreadPoolExecutor +import dataclasses +import datetime +import functools +import math +import typing as t +from uuid import UUID +import warnings + +import matplotlib.pyplot as plt +from matplotlib.axes._base import _AxesBase +from matplotlib.figure import Figure +from pint import _DEFAULT_REGISTRY as ureg + +from apd.aggregation.query import ( + get_data, + get_data_by_deployment, + with_database, + get_deployment_by_id, +) +from apd.aggregation.database import DataPoint, deployment_table +from .utils import merc_x, merc_y, convert_temperature +from .typing import IntermediateMapData, T_key, T_value, CleanerFunc, Cleaned +from .typing import ( + CLEANED_COORD_FLOAT, + CLEANED_DT_FLOAT, + COORD_FLOAT_CLEANER, + DT_FLOAT_CLEANER, +) + +# Static UUID to represent aggregation of other deployments +GLOBAL = UUID("bd02526e-7619-4a59-b04b-1fafd1c262d1") + + +@dataclasses.dataclass +class Config(t.Generic[T_key, T_value]): + title: str + clean: CleanerFunc[Cleaned[T_key, T_value]] + draw: t.Optional[ + t.Callable[ + [t.Any, t.Iterable[T_key], t.Iterable[T_value], t.Optional[str]], None + ] + ] = None + get_data: t.Optional[ + t.Callable[..., t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]] + ] = None + ylabel: t.Optional[str] = None + sensor_name: dataclasses.InitVar[str] = None + + def __post_init__(self, sensor_name: t.Optional[str] = None) -> None: + if self.draw is None: + self.draw = draw_date # type: ignore + if sensor_name is not None: + warnings.warn( + DeprecationWarning( + f"The sensor_name parameter is deprecated. Please pass " + f"get_data=get_one_sensor_by_deployment('{sensor_name}') " + f"to ensure the same behaviour. The sensor_name= parameter " + f"will be removed in apd.aggregation 3.0." + ), + stacklevel=3, + ) + if self.get_data is None: + self.get_data = get_one_sensor_by_deployment(sensor_name) + if self.get_data is None: + raise ValueError("You must specify a get_data function") + + +def draw_date( + plot: _AxesBase, + x: t.Iterable[datetime.datetime], + y: t.Iterable[float], + colour: t.Optional[str], +) -> None: + plot.plot_date(x, y, color=colour, linestyle="-", marker="", xdate=True) + + +def draw_map( + plot: _AxesBase, + x: t.Iterable[t.Tuple[float, float]], + y: t.Iterable[float], + colour: t.Optional[str], +) -> None: + lon = [merc_y(coord[0]) for coord in x] + lat = [merc_x(coord[1]) for coord in x] + + for axis in "x", "y": + plt.tick_params( + axis=axis, + which="both", + bottom=False, + top=False, + left=False, + right=False, + labelbottom=False, + labelleft=False, + ) + + plot.tricontourf(lat, lon, y) + plot.plot(lat, lon, "wo", ms=3) + plot.set_aspect(1.0) + + +def get_map_cleaner_for(sensor_name: str,) -> COORD_FLOAT_CLEANER: + """Given a sensor_name that represents a float, return a coroutine that acts as a cleaner + extracting that sensor's data keyed by the value of a Location sensor.""" + + async def clean_latest_coord_and_value( + datapoints: t.AsyncIterator[DataPoint], + ) -> CLEANED_COORD_FLOAT: + + # We will iterate over data points and build an entry in cleaned_data + # for each deployment. This lets newer data replace older data, as + # datapoints is assumed to be in date order + # IntermediateMapData is a typing hint for a dictionary with specific key/values + cleaned_data: t.Dict[UUID, IntermediateMapData] = {} + async for datapoint in datapoints: + # Get the existing data for this deployment, if we've seen it before + row_data = cleaned_data.get(datapoint.deployment_id, None) + if row_data is None: + # This is the first time we've seen this deployment + row_data = {"coord": None, "value": None} + if datapoint.sensor_name == "Location": + # Coord is a 2-tuple of floats + row_data["coord"] = ( + float(datapoint.data[0]), + float(datapoint.data[1]), + ) + elif datapoint.sensor_name == sensor_name: + # Value is a single float + row_data["value"] = float(datapoint.data) + # Store the info about this deployment back into the cleaned_data set + cleaned_data[datapoint.deployment_id] = row_data + + for data in cleaned_data.values(): + if data["coord"] is None or data["value"] is None: + # We only got a partial record, don't plot this + continue + yield data["coord"], data["value"] + + # Return the set up cleaner coroutine + return clean_latest_coord_and_value + + +async def clean_watthours_to_watts( + datapoints: t.AsyncIterator[DataPoint], +) -> CLEANED_DT_FLOAT: + last_watthours = None + last_time = None + async for datapoint in datapoints: + if datapoint.data is None: + continue + time = datapoint.collected_at + if datapoint.data["unit"] == "watt_hour": + watt_hours = datapoint.data["magnitude"] + else: + watt_hours = ( + ureg.Quantity(datapoint.data["magnitude"], datapoint.data["unit"]) + .to(ureg.watt_hour) + .magnitude + ) + if last_watthours: + seconds_elapsed = (time - last_time).total_seconds() + hours_elapsed = seconds_elapsed / (60.0 * 60.0) + additional_power = watt_hours - last_watthours + power = additional_power / hours_elapsed + yield time, power + last_watthours = watt_hours + last_time = datapoint.collected_at + + +async def clean_magnitude(datapoints: t.AsyncIterator[DataPoint],) -> CLEANED_DT_FLOAT: + async for datapoint in datapoints: + if datapoint.data is None: + continue + yield datapoint.collected_at, datapoint.data["magnitude"] + + +def convert_temperature_system( + cleaner: DT_FLOAT_CLEANER, temperature_unit: str, +) -> DT_FLOAT_CLEANER: + async def converter(datapoints: t.AsyncIterator[DataPoint],) -> CLEANED_DT_FLOAT: + results = cleaner(datapoints) + async for date, temp_c in results: + yield date, convert_temperature(temp_c, "degC", temperature_unit) + + return converter + + +async def clean_temperature_fluctuations( + datapoints: t.AsyncIterator[DataPoint], +) -> CLEANED_DT_FLOAT: + allowed_jitter = 2.5 + allowed_range = (-40, 80) + window_datapoints: t.Deque[DataPoint] = collections.deque(maxlen=3) + + def datapoint_ok(datapoint: DataPoint) -> bool: + """Return False if this data point does not contain a valid temperature""" + if datapoint.data is None: + return False + elif datapoint.data["unit"] != "degC": + # This point is in a different temperature system. While it could be converted + # this cleaner is not yet doing that. + return False + elif not allowed_range[0] < datapoint.data["magnitude"] < allowed_range[1]: + return False + return True + + async for datapoint in datapoints: + if not datapoint_ok(datapoint): + # If the datapoint is invalid then skip directly to the next item + continue + + window_datapoints.append(datapoint) + if len(window_datapoints) == 3: + # Find the temperatures of the datapoints in the window, then average + # the first and last and compare that to the middle point. + window_temperatures = [dp.data["magnitude"] for dp in window_datapoints] + avr_first_last = (window_temperatures[0] + window_temperatures[2]) / 2 + diff_middle_avr = abs(window_temperatures[1] - avr_first_last) + if diff_middle_avr > allowed_jitter: + pass + else: + yield window_datapoints[1].collected_at, window_temperatures[1] + elif len(window_datapoints) == 1: + # The item in the iterator can't be compared to both neighbours + # so should be yielded + yield datapoint.collected_at, datapoint.data["magnitude"] + else: + # Otherwise, let the window fill up, it will be yieleded later + pass + # When the iterator ends the final item is not yet in the middle + # of the window, so the last item must be explicitly yielded. + if len(window_datapoints) > 1 and datapoint_ok(datapoint): + yield datapoint.collected_at, datapoint.data["magnitude"] + + +async def clean_passthrough( + datapoints: t.AsyncIterator[DataPoint], +) -> CLEANED_DT_FLOAT: + async for datapoint in datapoints: + if datapoint.data is None: + continue + else: + yield datapoint.collected_at, datapoint.data + + +def get_one_sensor_by_deployment( + sensor_name: str, +) -> t.Callable[..., t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]]: + return functools.partial(get_data_by_deployment, sensor_name=sensor_name) + + +def get_all_data() -> t.Callable[ + ..., t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]] +]: + async def get_all_data_inner( + *args: t.Any, **kwargs: t.Any + ) -> t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]: + yield GLOBAL, get_data(*args, **kwargs) + + return get_all_data_inner + + +configs = ( + Config( + sensor_name="SolarCumulativeOutput", + clean=clean_watthours_to_watts, + title="Solar generation", + ylabel="Watts", + ), + Config( + sensor_name="RAMAvailable", + clean=clean_passthrough, + title="RAM available", + ylabel="Bytes", + ), + Config( + sensor_name="RelativeHumidity", + clean=clean_passthrough, + title="Relative humidity", + ylabel="Percent", + ), + Config( + sensor_name="Temperature", + clean=clean_temperature_fluctuations, + title="Ambient temperature", + ylabel="Degrees C", + ), +) + + +def get_known_configs() -> t.Dict[str, Config[t.Any, t.Any]]: + return {config.title: config for config in configs} + + +async def plot_sensor( + config: Config[t.Any, t.Any], + plot: _AxesBase, + location_names: t.Dict[UUID, str], + **kwargs: t.Any, +) -> _AxesBase: + locations = [] + if config.get_data is None: + raise ValueError("You must provide a get_data function") + async for deployment_id, query_results in config.get_data(**kwargs): + if deployment_id == GLOBAL: + name = "Global" + else: + try: + deployment = await get_deployment_by_id(deployment_id) + except IndexError: + name = str(deployment_id) + colour = None + else: + name = deployment.name or str(deployment_id) + colour = deployment.colour + # Mypy currently doesn't understand callable fields on datatypes: https://github.com/python/mypy/issues/5485 + points = [dp async for dp in config.clean(query_results)] # type: ignore + if not points: + continue + locations.append(name) + x, y = zip(*points) + plot.set_title(config.title) + plot.set_ylabel(config.ylabel) + if config.draw is None: + raise ValueError("You must provide a get_data function") + config.draw(plot, x, y, colour) + plot.legend(locations) + return plot + + +async def plot_multiple_charts(*args: t.Any, **kwargs: t.Any) -> Figure: + # These parameters are pulled from kwargs to avoid confusing function + # introspection code in IPython widgets + location_names = kwargs.pop("location_names", None) + configs = kwargs.pop("configs", None) + dimensions = kwargs.pop("dimensions", None) + db_uri = kwargs.pop("db_uri", "postgresql+psycopg2://apd@localhost/apd") + + with with_database(db_uri) as session: + loop = asyncio.get_running_loop() + coros = [] + if configs is None: + # If no configs are supplied, use all known configs + configs = get_known_configs().values() + if dimensions is None: + # If no dimensions are supplied, get the square root of the number + # of configs and round it to find a number of columns. This will + # keep the arrangement approximately square. Find rows by multiplying + # out rows. + total_configs = len(configs) + columns = round(math.sqrt(total_configs)) + rows = math.ceil(total_configs / columns) + if location_names is None: + location_query = session.query( + deployment_table.c.id, deployment_table.c.name + ) + location_data = await loop.run_in_executor(None, location_query.all) + location_names = dict(location_data) + + figure = plt.figure(figsize=(10 * columns, 5 * rows), dpi=300) + for i, config in enumerate(configs, start=1): + plot = figure.add_subplot(columns, rows, i) + coros.append(plot_sensor(config, plot, location_names, *args, **kwargs)) + await asyncio.gather(*coros) + return figure + + +_Coroutine_Result = t.TypeVar("_Coroutine_Result") + + +def wrap_coroutine( + f: t.Callable[..., t.Coroutine[t.Any, t.Any, _Coroutine_Result]] +) -> t.Callable[..., _Coroutine_Result]: + """Given a coroutine, return a function that runs that coroutine + in a new event loop in an isolated thread""" + + @functools.wraps(f) + def run_in_thread(*args: t.Any, **kwargs: t.Any) -> _Coroutine_Result: + loop = asyncio.new_event_loop() + wrapped = f(*args, **kwargs) + with ThreadPoolExecutor(max_workers=1) as pool: + task = pool.submit(loop.run_until_complete, wrapped) + # Mypy can get confused when nesting generic functions, like we do here + # The fact that Task is generic means we lose the association with + # _CoroutineResult. Adding an explicit cast restores this. + return t.cast(_Coroutine_Result, task.result()) + + return run_in_thread + + +def interactable_plot_multiple_charts( + *args: t.Any, **kwargs: t.Any +) -> t.Callable[..., Figure]: + with_config = functools.partial(plot_multiple_charts, *args, **kwargs) + return wrap_coroutine(with_config) diff --git a/Ch12/apd.aggregation-chapter12/src/apd/aggregation/cli.py b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/cli.py new file mode 100644 index 0000000..799325b --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/cli.py @@ -0,0 +1,295 @@ +import asyncio +import functools +import importlib.util +import logging +import signal +import sys +import typing as t +import uuid + +import aiohttp +import click +from sqlalchemy import create_engine +from sqlalchemy.orm import sessionmaker + +from . import collect +from .actions.runner import DataProcessor +from .actions.source import get_data_ongoing, refeed_queue_var +from .database import Deployment, deployment_table +from .query import with_database + +logger = logging.getLogger(__name__) + + +@click.command() +@click.argument("server", nargs=-1) +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +@click.option("--api-key", metavar="", envvar="APD_API_KEY") +@click.option( + "--tolerate-failures", + "-f", + help="If provided, failure to retrieve some sensors' data will not abort the collection process", + is_flag=True, +) +@click.option("-v", "--verbose", is_flag=True, help="Enables verbose mode") +def collect_sensor_data( + db: str, server: t.Tuple[str], api_key: str, tolerate_failures: bool, verbose: bool +) -> t.Optional[int]: + """This loads data from one or more sensors into the specified database. + + Only PostgreSQL databases are supported, as the column definitions use + multiple pg specific features. The database must already exist and be + populated with the required tables. + + The --api-key option is used to specify the access token for the sensors + being queried. + + You may specify any number of servers, the variable should be the full URL + to the sensor's HTTP interface, not including the /v/2.0 portion. Multiple + URLs should be separated with a space. + """ + if tolerate_failures: + attempts = [(s,) for s in server] + else: + attempts = [server] + success = True + for attempt in attempts: + try: + collect.standalone(db, attempt, api_key, echo=verbose) + except ValueError as e: + click.secho(str(e), err=True, fg="red") + success = False + return success + + +def load_handler_config(path: str) -> t.List[DataProcessor]: + # Create a module called user_config backed by the file specified, and load it + # This uses Python's import internals to fake a module in a known location + # Based on an SO answer by Sebastian Rittau and sample code from Brett Cannon + module_spec = importlib.util.spec_from_file_location("user_config", path) + module = importlib.util.module_from_spec(module_spec) + loader = module_spec.loader + if isinstance(loader, importlib.abc.Loader): + loader.exec_module(module) + try: + return module.handlers # type: ignore + except AttributeError as err: + raise ValueError(f"Could not load config file from {path}") from err + else: + # No valid loader could be found + raise ValueError(f"Could not load config file from {path}") + + +def actually_exit(sig, frame): + click.secho("Exiting...", bold=True) + sys.exit(1) + + +def stats_signal_handler(sig, frame, handlers=None): + for handler in handlers: + click.echo( + click.style(handler.name, bold=True, fg="red") + " " + handler.stats() + ) + if sig == signal.SIGINT: + click.secho("Press Ctrl+C again to end the process", bold=True) + handler = signal.getsignal(signal.SIGINT) + signal.signal(signal.SIGINT, actually_exit) + asyncio.get_running_loop().call_later(5, install_ctrl_c_signal_handler, handler) + return + + +def install_ctrl_c_signal_handler(signal_handler): + click.secho("Press Ctrl+C to view statistics", bold=True) + signal.signal(signal.SIGINT, signal_handler) + + +@click.command() +@click.argument("config", nargs=1) +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +@click.option( + "--historical", + is_flag=True, + help="Also trigger actions for data points that were already present in the database", +) +@click.option("-v", "--verbose", is_flag=True, help="Enables verbose mode") +def run_actions( + config: str, db: str, verbose: bool, historical: bool +) -> t.Optional[int]: + """This runs the long-running action processors defined in a config file. + + The configuration file specified should be a Python file that defines a + list of DataProcessor objects called processors.n + """ + logging.basicConfig( + format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", + level=logging.DEBUG if verbose else logging.WARN, + ) + + async def main_loop(): + with with_database(db): + logger.info("Loading configuration") + handlers = load_handler_config(config) + + # Set up the refeed queue before starting the handlers + # or source, so they all have access to it + refeed_queue_var.set(asyncio.Queue()) + + logger.info(f"Configured {len(handlers)} handlers") + starters = [handler.start() for handler in handlers] + await asyncio.gather(*starters) + + logger.info(f"Ingesting data") + data = get_data_ongoing(historical=historical) + + signal_handler = functools.partial(stats_signal_handler, handlers=handlers,) + + for signal_name in "SIGINFO", "SIGUSR1", "SIGINT": + try: + signal.signal(signal.Signals[signal_name], signal_handler) + except KeyError: + pass + + async for datapoint in data: + for handler in handlers: + await handler.push(datapoint) + + asyncio.run(main_loop()) + return True + + +@click.group() +def deployments(): + pass + + +@deployments.command() +@click.argument("uri") +@click.argument("name") +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +@click.option("--api-key", metavar="", envvar="APD_API_KEY") +@click.option("--colour") +def add( + db: str, uri: str, name: str, api_key: t.Optional[str], colour: t.Optional[str], +): + """This creates a record of a new deployment in the database. + """ + deployment = Deployment(id=None, uri=uri, name=name, api_key=api_key, colour=colour) + + async def http_get_deployment_id(): + async with aiohttp.ClientSession() as http: + collect.http_session_var.set(http) + return await collect.get_deployment_id(uri) + + deployment.id = asyncio.run(http_get_deployment_id()) + insert = deployment_table.insert().values(**deployment._asdict()) + + engine = create_engine(db) + sm = sessionmaker(engine) + Session = sm() + Session.execute(insert) + Session.commit() + return True + + +@deployments.command() +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +def list(db: str): + """This creates a record of a new deployment in the database. + """ + engine = create_engine(db) + sm = sessionmaker(engine) + Session = sm() + deployments = Session.query(deployment_table).all() + for deployment in deployments: + click.secho(deployment.name, bold=True) + click.echo(click.style("ID ", bold=True) + deployment.id.hex) + click.echo(click.style("URI ", bold=True) + deployment.uri) + click.echo(click.style("API key ", bold=True) + deployment.api_key) + click.echo(click.style("Colour ", bold=True) + str(deployment.colour)) + click.echo() + Session.rollback() + return True + + +@deployments.command() +@click.argument("id") +@click.option("--uri") +@click.option("--name") +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +@click.option("--api-key", metavar="", envvar="APD_API_KEY") +@click.option("--colour") +def edit( + db: str, + id, + uri: t.Optional[str], + name: t.Optional[str], + api_key: t.Optional[str], + colour: t.Optional[str], +): + """This creates a record of a new deployment in the database. + """ + update = {} + if uri is not None: + update["uri"] = uri + if name is not None: + update["name"] = name + if api_key is not None: + update["api_key"] = api_key + if colour is not None: + update["colour"] = colour + deployment_id = uuid.UUID(id) + + update_stmt = ( + deployment_table.update() + .where(deployment_table.c.id == deployment_id) + .values(**update) + ) + + engine = create_engine(db) + sm = sessionmaker(engine) + Session = sm() + Session.execute(update_stmt) + deployments = Session.query(deployment_table).filter( + deployment_table.c.id == deployment_id + ) + Session.commit() + + for deployment in deployments: + click.secho(deployment.name, bold=True) + click.echo(click.style("ID ", bold=True) + deployment.id.hex) + click.echo(click.style("URI ", bold=True) + deployment.uri) + click.echo(click.style("API key ", bold=True) + deployment.api_key) + click.echo(click.style("Colour ", bold=True) + str(deployment.colour)) + click.echo() + + return True diff --git a/Ch12/apd.aggregation-chapter12/src/apd/aggregation/collect.py b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/collect.py new file mode 100644 index 0000000..2ec7c01 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/collect.py @@ -0,0 +1,118 @@ +import asyncio +from contextvars import ContextVar +import datetime +import typing as t +import uuid + +import aiohttp +from sqlalchemy import create_engine +from sqlalchemy.orm import sessionmaker +from sqlalchemy.orm.session import Session + +from .database import DataPoint, datapoint_table, Deployment, deployment_table + +http_session_var: ContextVar[aiohttp.ClientSession] = ContextVar("http_session") + + +async def get_deployment_id(server): + http = http_session_var.get() + if not server.endswith("/"): + server += "/" + url = server + "v/2.1/deployment_id" + async with http.get(url) as request: + if request.status != 200: + raise ValueError(f"Error loading deployment id from {server}") + result = await request.json() + return uuid.UUID(result["deployment_id"]) + + +async def get_data_points(server: str, api_key: t.Optional[str],) -> t.List[DataPoint]: + if not server.endswith("/"): + server += "/" + url = server + "v/2.1/sensors/" + headers = {} + if api_key: + headers["X-API-KEY"] = api_key + http = http_session_var.get() + + # Get the deployment ID in parallel to the sensor data + deployment_id = asyncio.create_task(get_deployment_id(server)) + + async with http.get(url, headers=headers) as request: + result = await request.json() + ok = request.status == 200 + now = datetime.datetime.now() + if ok: + points = [] + for value in result["sensors"]: + points.append( + DataPoint( + sensor_name=value["id"], + collected_at=now, + data=value["value"], + deployment_id=await deployment_id, + ) + ) + return points + else: + raise ValueError( + f"Error loading data from {server}: " + result.get("error", "Unknown") + ) + + +def handle_result(result: t.List[DataPoint], session: Session) -> t.List[DataPoint]: + for point in result: + insert = datapoint_table.insert().values(**point._asdict()) + sql_result = session.execute(insert) + point.id = sql_result.inserted_primary_key[0] + return result + + +async def add_data_from_sensors( + session: Session, servers: t.Iterable[Deployment] +) -> t.List[DataPoint]: + tasks: t.List[t.Awaitable[t.List[DataPoint]]] = [] + points: t.List[DataPoint] = [] + async with aiohttp.ClientSession() as http: + http_session_var.set(http) + tasks = [get_data_points(server.uri, server.api_key) for server in servers] + for results in await asyncio.gather(*tasks): + points += results + loop = asyncio.get_running_loop() + await loop.run_in_executor(None, handle_result, points, session) + return points + + +def standalone( + db_uri: str, servers: t.Tuple[str], api_key: t.Optional[str], echo: bool = False +) -> None: + engine = create_engine(db_uri, echo=echo) + sm = sessionmaker(engine) + Session = sm() + deployments: t.Iterable[Deployment] + if servers: + deployments = tuple( + Deployment(id=None, name=None, colour=None, api_key=api_key, uri=server) + for server in servers + ) + else: + deployment_data = Session.query(deployment_table).all() + deployments = tuple( + Deployment.from_sql_result(deployment) for deployment in deployment_data + ) + asyncio.run(add_data_from_sensors(Session, deployments)) + + if "postgresql" in db_uri: + # On Postgres sent a pubsub notification, in case other processes are waiting + # for this data + Session.execute("NOTIFY apd_aggregation;") + + Session.commit() + + +if __name__ == "__main__": + standalone( + db_uri="postgresql+psycopg2://apd@localhost/apd", + servers=("http://pvoutput:8080/",), + api_key="h3hdfjksfhwkjehnwekj", + ) diff --git a/Ch12/apd.aggregation-chapter12/src/apd/aggregation/database.py b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/database.py new file mode 100644 index 0000000..f28b469 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/database.py @@ -0,0 +1,129 @@ +from __future__ import annotations + +from dataclasses import dataclass, field, asdict +import datetime +import typing as t +import uuid + +import sqlalchemy +from sqlalchemy.dialects.postgresql import JSONB, DATE, TIMESTAMP, UUID +from sqlalchemy.ext.hybrid import ExprComparator, hybrid_property +from sqlalchemy.orm import sessionmaker +from sqlalchemy.schema import Table + + +metadata = sqlalchemy.MetaData() + +deployment_table = Table( + "deployments", + metadata, + sqlalchemy.Column("id", UUID(as_uuid=True), primary_key=True), + sqlalchemy.Column("uri", sqlalchemy.String, index=False), + sqlalchemy.Column("name", sqlalchemy.String, index=False, nullable=True), + sqlalchemy.Column("colour", sqlalchemy.String, index=False, nullable=True), + sqlalchemy.Column("api_key", sqlalchemy.String, index=False), +) + +datapoint_table = Table( + "datapoints", + metadata, + sqlalchemy.Column("id", sqlalchemy.Integer, primary_key=True), + sqlalchemy.Column("sensor_name", sqlalchemy.String, index=True), + sqlalchemy.Column("collected_at", TIMESTAMP, index=True), + sqlalchemy.Column("deployment_id", UUID(as_uuid=True), index=True), + sqlalchemy.Column("data", JSONB), +) + +daily_summary_view = Table( + "daily_summary", + metadata, + sqlalchemy.Column("sensor_name", sqlalchemy.String), + sqlalchemy.Column("data", JSONB), + sqlalchemy.Column("count", sqlalchemy.Integer), + info={"is_view": True}, +) + + +class DateEqualComparator(ExprComparator): + def __init__(self, fallback_expression, raw_expression): + # Do not try and find update expression from parent + super().__init__(None, fallback_expression, None) + self.raw_expression = raw_expression + + def __eq__(self, other): + """ Returns True iff on the same day as other """ + other_date = sqlalchemy.cast(other, DATE) + return sqlalchemy.and_( + self.raw_expression >= other_date, self.raw_expression < other_date + 1, + ) + + def operate(self, op, *other, **kwargs): + other = [sqlalchemy.cast(date, DATE) for date in other] + return op(self.expression, *other, **kwargs) + + def reverse_operate(self, op, other, **kwargs): + other = [sqlalchemy.cast(date, DATE) for date in other] + return op(other, self.expression, **kwargs) + + +@dataclass +class DataPoint: + sensor_name: str + data: t.Any + deployment_id: uuid.UUID + id: t.Optional[int] = None + collected_at: datetime.datetime = field(default_factory=datetime.datetime.now) + + @classmethod + def from_sql_result(cls, result) -> DataPoint: + return cls(**result._asdict()) + + def _asdict(self) -> t.Dict[str, t.Any]: + data = asdict(self) + if data["id"] is None: + del data["id"] + return data + + @hybrid_property + def collected_on_date(self): + return self.collected_at.date() + + @collected_on_date.comparator # type: ignore + def collected_on_date(cls): + return DateEqualComparator( + fallback_expression=sqlalchemy.cast(datapoint_table.c.collected_at, DATE), + raw_expression=datapoint_table.c.collected_at, + ) + + +@dataclass +class Deployment: + id: t.Optional[uuid.UUID] + uri: str + name: t.Optional[str] + colour: t.Optional[str] + api_key: t.Optional[str] + + @classmethod + def from_sql_result(cls, result) -> Deployment: + return cls(**result._asdict()) + + def _asdict(self) -> t.Dict[str, t.Any]: + data = asdict(self) + return data + + +def main() -> None: + engine = sqlalchemy.create_engine( + "postgresql+psycopg2://apd@localhost/apd", echo=True + ) + sm = sessionmaker(engine) + Session = sm() + if False: + metadata.create_all(engine) + print(Session.query(DataPoint).all()) + pass + + +if __name__ == "__main__": + main() diff --git a/Ch12/apd.aggregation-chapter12/src/apd/aggregation/exceptions.py b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/exceptions.py new file mode 100644 index 0000000..6200e90 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/exceptions.py @@ -0,0 +1,14 @@ +class NoDataForTrigger(ValueError): + """An error that's raised when a trigger is passed + a data point that cannot be handled due to an incompatible + value being stored""" + + pass + + +class IncompatibleTriggerError(NoDataForTrigger): + """An error that's raised when a trigger is passed + a data point that cannot be handled due to an incompatible + value being stored""" + + pass diff --git a/Ch12/apd.aggregation-chapter12/src/apd/aggregation/query.py b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/query.py new file mode 100644 index 0000000..14144ff --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/query.py @@ -0,0 +1,154 @@ +import asyncio +import contextlib +from contextvars import ContextVar +import datetime +import typing as t +from uuid import UUID + +from sqlalchemy import create_engine +from sqlalchemy.orm import sessionmaker +from sqlalchemy.orm.session import Session + + +from apd.aggregation.database import ( + datapoint_table, + DataPoint, + deployment_table, + Deployment, +) + + +db_session_var: ContextVar[Session] = ContextVar("db_session") + + +@contextlib.contextmanager +def with_database(uri: t.Optional[str] = None) -> t.Iterator[Session]: + """Given a URI, set up a DB connection, and return a Session as a context manager """ + if uri is None: + uri = "postgresql+psycopg2://localhost/apd" + engine = create_engine(uri) + sm = sessionmaker(engine) + Session = sm() + token = db_session_var.set(Session) + try: + yield Session + Session.commit() + finally: + db_session_var.reset(token) + Session.close() + + +async def get_data( + sensor_name: t.Optional[str] = None, + deployment_id: t.Optional[UUID] = None, + collected_before: t.Optional[datetime.datetime] = None, + collected_after: t.Optional[datetime.datetime] = None, + inserted_after_record_id: t.Optional[int] = None, + order: bool = True, +) -> t.AsyncIterator[DataPoint]: + db_session = db_session_var.get() + loop = asyncio.get_running_loop() + query = db_session.query(datapoint_table) + if sensor_name: + query = query.filter(datapoint_table.c.sensor_name == sensor_name) + if deployment_id: + query = query.filter(datapoint_table.c.deployment_id == deployment_id) + if collected_before: + query = query.filter(datapoint_table.c.collected_at < collected_before) + if collected_after: + query = query.filter(datapoint_table.c.collected_at > collected_after) + if inserted_after_record_id: + query = query.filter(datapoint_table.c.id > inserted_after_record_id) + + if order: + query = query.order_by( + datapoint_table.c.deployment_id, + datapoint_table.c.sensor_name, + datapoint_table.c.collected_at, + ) + + rows = await loop.run_in_executor(None, query.all) + for row in rows: + yield DataPoint.from_sql_result(row) + + +async def get_deployment_ids() -> t.List[UUID]: + db_session = db_session_var.get() + loop = asyncio.get_running_loop() + query = db_session.query(datapoint_table.c.deployment_id).distinct() + return [row.deployment_id for row in await loop.run_in_executor(None, query.all)] + + +async def get_deployment_by_id(deployment_id: UUID) -> Deployment: + db_session = db_session_var.get() + loop = asyncio.get_running_loop() + query = db_session.query(deployment_table).filter( + deployment_table.c.id == deployment_id + ) + return [ + Deployment.from_sql_result(row) + for row in await loop.run_in_executor(None, query.all) + ][0] + + +async def get_data_by_deployment( + *args: t.Any, **kwargs: t.Any +) -> t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]: + """Return an Async Iterator that contains two-item pairs. + These pairs are a string (deployment_id), and an async iterator that contains + the datapoints with that deployment_id. + + Usage example: + + async for deployment_id, datapoints in get_data_by_deployment(): + print(deployment_id) + async for datapoint in datapoints: + print(datapoint) + print() + """ + # Get the data, using the arguments to this function as filters + data = get_data(*args, **kwargs) + + # The two levels of iterator share the item variable, initialise it with the + # first item from the iterator. Also set last_deployment_id to None, so the + # outer iterator knows to start a new group. + last_deployment_id: t.Optional[UUID] = None + try: + item = await data.__anext__() + except StopAsyncIteration: + # There were no items in the underlying query, return immediately + return + + async def subiterator(group_id: UUID) -> t.AsyncIterator[DataPoint]: + """Using a closure, create an iterator that yields the current + item, then yields all items from data while the deployment_id matches + group_id, leaving the first that doesn't match as item in the enclosing + scope.""" + # item is from the enclosing scope + nonlocal item + while item.deployment_id == group_id: + # yield items from data while they match the group_id this iterator represents + yield item + try: + # Advance the underlying iterator + item = await data.__anext__() + except StopAsyncIteration: + # The underlying iterator came to an end, so end the subiterator too + return + + while True: + while item.deployment_id == last_deployment_id: + # We are trying to advance the outer iterator while the underlying iterator + # is still part-way through a group. Speed through the underlying until we + # hit an item where the deployment_id is different to the last one (or, is not + # None, in the case of the start of the iterator) + try: + item = await data.__anext__() + except StopAsyncIteration: + # We hit the end of the underlying iterator: end this iterator too + return + last_deployment_id = item.deployment_id + # Don't yield an iterator for unclassified deployments + if last_deployment_id is not None: + # Instantiate a subiterator for this group + yield last_deployment_id, subiterator(last_deployment_id) diff --git a/Ch12/apd.aggregation-chapter12/src/apd/aggregation/typing.py b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/typing.py new file mode 100644 index 0000000..5db1337 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/typing.py @@ -0,0 +1,48 @@ +import datetime +import typing as t +from typing_extensions import Protocol + +from apd.aggregation.database import DataPoint + + +# Aliases for common types +# These type variables allow for generic functions. T_key represents the place +# in a chart that an item will be placed, and T_value the kind of data that is plotted. +T_key = t.TypeVar("T_key") +T_value = t.TypeVar("T_value") + +# Cleaned is a placeholder type, representing an async iterator of key and value functions +# Cleaned[float, float] is equivalent to typing.AsyncIterator[Tuple[builtins.float, builtins.float]] +Cleaned = t.AsyncIterator[t.Tuple[T_key, T_value]] + +# T_cleaned represents a placeholder for the result of a cleaner function, and is *covariant* +# because it can accept compatible types (such as ints where floats were declared). +# It is bound to Cleaned, so only items that match the specification for Cleaned (for any values +# of T_key or T_value) are valid +T_cleaned = t.TypeVar("T_cleaned", covariant=True, bound=Cleaned) + + +# CleanerFunc is a generic protocol, it matches any Callable that converts an async iterator +# of datapoints to its type. So, CleanerFunc[float] would be equivalent to t.Callable[[t.AsyncIterator[DataPoint]], float] +class CleanerFunc(Protocol[T_cleaned]): + def __call__(self, datapoints: t.AsyncIterator[DataPoint]) -> T_cleaned: + ... + + +# CLEANED_DT_FLOAT is a Cleaned represents datetime/float pairs, for simple charts +CLEANED_DT_FLOAT = Cleaned[datetime.datetime, float] +# and CLEANED_COORD_FLOAT represents (lat/lon), float pairs +CLEANED_COORD_FLOAT = Cleaned[t.Tuple[float, float], float] + +# The _CLEANER variants are functions that return their matching iterators from above +DT_FLOAT_CLEANER = CleanerFunc[CLEANED_DT_FLOAT] +COORD_FLOAT_CLEANER = CleanerFunc[CLEANED_COORD_FLOAT] + + +# When drawing a map we will be building a dictionary of UUID to dictionary +# That inner dictionary should contain coord (float, float) +# and value (float) only. Either or both can be None. +# This class is abstract, it's just for type checking. +class IntermediateMapData(t.TypedDict): + coord: t.Optional[t.Tuple[float, float]] + value: t.Optional[float] diff --git a/Ch12/apd.aggregation-chapter12/src/apd/aggregation/utils.py b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/utils.py new file mode 100644 index 0000000..75bf6b3 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/src/apd/aggregation/utils.py @@ -0,0 +1,100 @@ +from __future__ import annotations + +import contextlib +import functools +import importlib +import io +import logging +import math +import os +import typing as t + +from pint import _DEFAULT_REGISTRY as ureg + + +# Set up mercator transform from https://wiki.openstreetmap.org/wiki/Mercator#Python +# Thanks to Paulo Silva and the OSM contributors +def merc_x(lon: float) -> float: + r_major = 6378137.000 + return r_major * math.radians(lon) + + +def merc_y(lat: float) -> float: + if lat > 89.5: + lat = 89.5 + if lat < -89.5: + lat = -89.5 + r_major = 6378137.000 + r_minor = 6356752.3142 + temp = r_minor / r_major + eccent = math.sqrt(1 - temp ** 2) + phi = math.radians(lat) + sinphi = math.sin(phi) + con = eccent * sinphi + com = eccent / 2 + con = ((1.0 - con) / (1.0 + con)) ** com + ts = math.tan((math.pi / 2 - phi) / 2) / con + y = 0 - r_major * math.log(ts) + return y + + +@functools.lru_cache +def convert_temperature(magnitude: float, origin_unit: str, target_unit: str) -> float: + # if origin_unit == "degC" and target_unit == "degF": + # return (magnitude * 1.8) + 32 + temp = ureg.Quantity(magnitude, origin_unit) + return temp.to(target_unit).magnitude + + +@contextlib.contextmanager +def jupyter_page_file() -> t.Iterator[io.StringIO]: + from IPython.core import page + + output = io.StringIO() + yield output + output.seek(0) + page.page(output.read()) + + +@contextlib.contextmanager +def profile_with_yappi() -> t.Iterator[None]: + import yappi + + yappi.clear_stats() + yappi.start() + try: + yield None + finally: + yappi.stop() + + +@functools.lru_cache +def get_package_prefix(package: str) -> str: + mod = importlib.import_module(package) + prefix = mod.__file__ + if prefix.endswith("__init__.py"): + prefix = os.path.dirname(prefix) + return prefix + + +def yappi_package_matches(stat, packages: t.List[str]): + """ This object can be passed to yappi's filter_callback to limit + by Python package.""" + for package in packages: + prefix = get_package_prefix(package) + if stat.full_name.startswith(prefix): + return True + return False + + +class AddSensorNameDefault(logging.Filter): + def filter(self, record): + if not hasattr(record, "sensorname"): + record.sensorname = "none" + return True + + +class SensorNameStreamHandler(logging.StreamHandler): + def __init__(self, *args, **kwargs): + super().__init__() + self.addFilter(AddSensorNameDefault()) diff --git a/Ch12/apd.aggregation-chapter12/tests/__init__.py b/Ch12/apd.aggregation-chapter12/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/Ch12/apd.aggregation-chapter12/tests/conftest.py b/Ch12/apd.aggregation-chapter12/tests/conftest.py new file mode 100644 index 0000000..309a30c --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/tests/conftest.py @@ -0,0 +1,127 @@ +import datetime +from uuid import UUID + +from apd.aggregation.database import datapoint_table +from apd.aggregation.query import db_session_var + +from alembic.config import Config +from alembic.script import ScriptDirectory +from alembic.runtime.environment import EnvironmentContext +import pytest + + +@pytest.fixture +def db_uri(): + return "postgresql+psycopg2://apd@localhost/apd-test" + + +@pytest.fixture +def db_session(db_uri): + from sqlalchemy import create_engine + from sqlalchemy.orm import sessionmaker + + engine = create_engine(db_uri, echo=False) + sm = sessionmaker(engine) + Session = sm() + reset = db_session_var.set(Session) + yield Session + db_session_var.reset(reset) + Session.close() + + +@pytest.fixture +def migrated_db(db_uri, db_session): + config = Config() + config.set_main_option("script_location", "apd.aggregation:alembic") + config.set_main_option("sqlalchemy.url", db_uri) + script = ScriptDirectory.from_config(config) + + def upgrade(rev, context): + return script._upgrade_revs(script.get_current_head(), rev) + + def downgrade(rev, context): + return script._downgrade_revs(None, rev) + + with EnvironmentContext(config, script, fn=upgrade): + script.run_env() + + try: + yield db_session + finally: + # Clear any pending work from the db_session connection + db_session.rollback() + + with EnvironmentContext(config, script, fn=downgrade): + script.run_env() + + +@pytest.fixture +def populated_db(migrated_db, db_session): + datas = [ + { + "id": 1, + "sensor_name": "Test", + "data": "1", + "collected_at": datetime.datetime(2020, 4, 1, 12, 0, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 2, + "sensor_name": "Test", + "data": "2", + "collected_at": datetime.datetime(2020, 4, 1, 12, 1, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 3, + "sensor_name": "Test", + "data": "3", + "collected_at": datetime.datetime(2020, 4, 1, 12, 2, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 4, + "sensor_name": "Test", + "data": "4", + "collected_at": datetime.datetime(2020, 4, 1, 12, 3, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 5, + "sensor_name": "OtherTest", + "data": "5", + "collected_at": datetime.datetime(2020, 4, 1, 12, 4, 1), + "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + }, + { + "id": 6, + "sensor_name": "Test", + "data": "1", + "collected_at": datetime.datetime(2020, 4, 1, 12, 0, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + { + "id": 7, + "sensor_name": "Test", + "data": "1", + "collected_at": datetime.datetime(2020, 4, 1, 12, 1, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + { + "id": 8, + "sensor_name": "Test", + "data": "2", + "collected_at": datetime.datetime(2020, 4, 1, 12, 2, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + { + "id": 9, + "sensor_name": "OtherTest", + "data": "3", + "collected_at": datetime.datetime(2020, 4, 1, 12, 3, 1), + "deployment_id": UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + }, + ] + for data in datas: + insert = datapoint_table.insert().values(**data) + db_session.execute(insert) diff --git a/Ch12/apd.aggregation-chapter12/tests/test_actions_actions.py b/Ch12/apd.aggregation-chapter12/tests/test_actions_actions.py new file mode 100644 index 0000000..1429fb3 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/tests/test_actions_actions.py @@ -0,0 +1,118 @@ +import datetime +import unittest.mock + +import pytest + +from apd.aggregation.actions.base import Action +from apd.aggregation.actions.action import ( + OnlyOnChangeActionWrapper, + OnlyAfterDateActionWrapper, + SaveToDatabaseAction, +) +from apd.aggregation.query import db_session_var, get_data + +from .test_analysis import generate_datapoints + + +class TestOnlyAfterDateActionWrapper: + @pytest.fixture + def subject(self): + return OnlyAfterDateActionWrapper + + @pytest.mark.asyncio + async def test_minimum_date_before_passing(self, subject): + wrapped = unittest.mock.Mock(spec=Action) + wrapper = subject( + wrapped, date_threshold=datetime.datetime(2020, 4, 1, 14, 0, 0) + ) + await wrapper.start() + + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 13, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 14, 0, 0), 22.0), + (datetime.datetime(2020, 4, 1, 15, 0, 0), 22.0), + (datetime.datetime(2020, 4, 1, 16, 0, 0), 21.0), + ] + datapoints = generate_datapoints(data) + all_datapoints = [] + async for datapoint in datapoints: + all_datapoints.append(datapoint) + await wrapper.handle(datapoint) + + assert len(wrapped.handle.mock_calls) == 2 + passed = [call.args[0] for call in wrapped.handle.mock_calls] + assert passed == [all_datapoints[3], all_datapoints[4]] + + +class TestOnlyOnChangeActionWrapper: + @pytest.fixture + def subject(self): + return OnlyOnChangeActionWrapper + + @pytest.mark.asyncio + async def test_initial_value_always_passed(self, subject): + wrapped = unittest.mock.Mock(spec=Action) + wrapper = subject(wrapped) + await wrapper.start() + + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + ] + datapoints = generate_datapoints(data) + first = await datapoints.asend(None) + await wrapper.handle(first) + assert len(wrapped.handle.mock_calls) == 1 + assert wrapped.handle.mock_calls[0].args[0] == first + + @pytest.mark.asyncio + async def test_subsequent_values_only_passed_when_differing(self, subject): + wrapped = unittest.mock.Mock(spec=Action) + wrapper = subject(wrapped) + await wrapper.start() + + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 13, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 14, 0, 0), 22.0), + (datetime.datetime(2020, 4, 1, 15, 0, 0), 22.0), + (datetime.datetime(2020, 4, 1, 16, 0, 0), 21.0), + ] + datapoints = generate_datapoints(data) + all_datapoints = [] + async for datapoint in datapoints: + all_datapoints.append(datapoint) + await wrapper.handle(datapoint) + + assert len(wrapped.handle.mock_calls) == 3 + passed = [call.args[0] for call in wrapped.handle.mock_calls] + assert passed == [all_datapoints[0], all_datapoints[2], all_datapoints[4]] + + +class TestSaveToDatabaseAction: + @pytest.fixture + def subject(self): + return SaveToDatabaseAction + + @pytest.mark.asyncio + async def test_datapoints_are_persisted(self, subject, migrated_db): + db_session_var.set(migrated_db) + + wrapper = subject() + await wrapper.start() + + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + ] + generated_datapoints = [] + async for datapoint in generate_datapoints(data): + generated_datapoints.append(datapoint) + await wrapper.handle(datapoint) + + stored_datapoints = [ + point async for point in get_data(sensor_name="TestSensor") + ] + assert stored_datapoints[0].data == generated_datapoints[0].data + assert ( + stored_datapoints[0].deployment_id == generated_datapoints[0].deployment_id + ) diff --git a/Ch12/apd.aggregation-chapter12/tests/test_actions_runner.py b/Ch12/apd.aggregation-chapter12/tests/test_actions_runner.py new file mode 100644 index 0000000..f263420 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/tests/test_actions_runner.py @@ -0,0 +1,110 @@ +import asyncio +import datetime +import operator + +import pytest + +from apd.aggregation.actions.runner import DataProcessor +from apd.aggregation.actions.base import Trigger +from apd.aggregation.actions.action import ( + OnlyOnChangeActionWrapper, + SaveToDatabaseAction, +) +from apd.aggregation.actions.trigger import ValueThresholdTrigger +from apd.aggregation.database import DataPoint +from apd.aggregation.query import get_data +from .test_analysis import generate_datapoints + + +class AlwaysTrueTrigger(Trigger[bool]): + name = "AlwaysTrue" + + async def start(self): + pass + + async def match(self, datapoint: DataPoint) -> bool: + return True + + async def extract(self, datapoint: DataPoint) -> bool: + return True + + +class StoreAction(Trigger[bool]): + async def start(self): + self.data = asyncio.Queue() + + async def handle(self, datapoint: DataPoint) -> None: + await self.data.put(datapoint) + + +class TestRunner: + @pytest.fixture + @pytest.mark.asyncio + async def runner(self, event_loop): + processor = DataProcessor( + name="Test data runner", action=StoreAction(), trigger=AlwaysTrueTrigger(), + ) + await processor.start() + yield processor + await processor.end() + + @pytest.mark.asyncio + async def test_simple_flow(self, runner, event_loop): + data = [(datetime.datetime(2020, 4, 1, 12, 0, 0), 65.0)] + datapoints = generate_datapoints(data) + async for datapoint in datapoints: + await runner.push(datapoint) + + output = await runner.action.data.get() + assert output.sensor_name == runner.trigger.name + assert output.collected_at == data[0][0] + assert output.data == True + + +class TestRealWorldRunner: + @pytest.fixture + @pytest.mark.asyncio + async def runner(self, migrated_db, event_loop): + processor = DataProcessor( + name="TemperatureAbove20", + action=OnlyOnChangeActionWrapper(SaveToDatabaseAction()), + trigger=ValueThresholdTrigger( + name="TemperatureAbove20", + threshold=20, + comparator=operator.gt, + sensor_name="Temperature", + ), + ) + await processor.start() + yield processor + await processor.end() + + @pytest.mark.asyncio + async def test_real_usecase(self, runner, event_loop): + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 19.0), + (datetime.datetime(2020, 4, 1, 13, 0, 0), 18.0), + (datetime.datetime(2020, 4, 1, 14, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 15, 0, 0), 22.0), + (datetime.datetime(2020, 4, 1, 16, 0, 0), 21.0), + ] + + async for datapoint in generate_datapoints(data, sensor_name="Temperature"): + await runner.push(datapoint) + + # Wait up to 10 seconds for the runner to be idle + await asyncio.wait_for(runner.idle(), timeout=10) + + stored_datapoints = [ + point async for point in get_data(sensor_name="TemperatureAbove20") + ] + + assert len(stored_datapoints) == 2 + assert stored_datapoints[0].data == False + assert stored_datapoints[0].collected_at == datetime.datetime( + 2020, 4, 1, 12, 0, 0 + ) + assert stored_datapoints[1].data == True + assert stored_datapoints[1].collected_at == datetime.datetime( + 2020, 4, 1, 14, 0, 0 + ) diff --git a/Ch12/apd.aggregation-chapter12/tests/test_actions_triggers.py b/Ch12/apd.aggregation-chapter12/tests/test_actions_triggers.py new file mode 100644 index 0000000..275c8e8 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/tests/test_actions_triggers.py @@ -0,0 +1,127 @@ +import datetime +import operator + +import pytest + +from apd.aggregation.actions.trigger import ValueThresholdTrigger + +from .test_analysis import generate_datapoints + + +class TestValueThresholdTrigger: + @pytest.fixture + def subject(self): + return ValueThresholdTrigger + + @pytest.mark.asyncio + @pytest.mark.parametrize( + "comparison,expected", + [ + (operator.gt, [False, False, False, True]), + (operator.eq, [False, False, True, False]), + (operator.le, [True, True, True, False]), + ], + ) + async def test_simple_value(self, subject, comparison, expected): + trigger = subject( + name=f"TestSensor{comparison.__name__}21", + threshold=21, + comparator=comparison, + sensor_name="TestSensor", + ) + + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 19.0), + (datetime.datetime(2020, 4, 1, 12, 0, 0), 20.0), + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 0), 22.0), + ] + datapoints = generate_datapoints(data) + + outputs = [] + async for datapoint in datapoints: + assert await trigger.match(datapoint) + outputs.append(await trigger.extract(datapoint)) + + assert outputs == expected + + @pytest.mark.asyncio + @pytest.mark.parametrize( + "comparison,expected", + [ + (operator.gt, [False, False, False, True]), + (operator.eq, [False, False, True, False]), + (operator.le, [True, True, True, False]), + ], + ) + async def test_magnitude_value(self, subject, comparison, expected): + trigger = subject( + name=f"TestSensor{comparison.__name__}21", + threshold=21, + comparator=comparison, + sensor_name="TestSensor", + ) + + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 19.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 20.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 22.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + + outputs = [] + async for datapoint in datapoints: + assert await trigger.match(datapoint) + outputs.append(await trigger.extract(datapoint)) + + assert outputs == expected + + @pytest.mark.asyncio + async def test_different_data_format_fails_to_extract(self, subject): + trigger = subject( + name="TestSensorAbove21", + threshold=21, + comparator=operator.eq, + sensor_name="TestSensor", + ) + + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), "21.0"), + ] + datapoints = generate_datapoints(data) + + async for datapoint in datapoints: + assert await trigger.match(datapoint) + with pytest.raises(ValueError): + await trigger.extract(datapoint) + assert await trigger.handle(datapoint) is None + + @pytest.mark.asyncio + async def test_different_sensors_are_not_matched(self, subject): + trigger = subject( + name="TestSensorAbove21", + threshold=21, + comparator=operator.eq, + sensor_name="OtherSensor", + ) + + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + ] + datapoints = generate_datapoints(data) + + async for datapoint in datapoints: + assert not await trigger.match(datapoint) diff --git a/Ch12/apd.aggregation-chapter12/tests/test_analysis.py b/Ch12/apd.aggregation-chapter12/tests/test_analysis.py new file mode 100644 index 0000000..053272e --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/tests/test_analysis.py @@ -0,0 +1,525 @@ +import collections.abc +import datetime +import functools +import uuid +import warnings + +import pytest + +from apd.aggregation import analysis +from apd.aggregation.database import DataPoint, datapoint_table +from apd.aggregation.query import db_session_var + + +async def generate_datapoints(datas, sensor_name="TestSensor"): + deployment_id = uuid.uuid4() + for i, (time, data) in enumerate(datas, start=1): + yield DataPoint( + id=i, + collected_at=time, + sensor_name=sensor_name, + data=data, + deployment_id=deployment_id, + ) + + +@functools.singledispatch +def consume(input_iterator): + items = [item for item in input_iterator] + + def inner_iterator(): + for item in items: + yield item + + return inner_iterator() + + +@consume.register +async def consume_async(input_iterator: collections.abc.AsyncIterator): + items = [item async for item in input_iterator] + + async def inner_iterator(): + for item in items: + yield item + + return inner_iterator() + + +class TestPassThroughCleaner: + @pytest.fixture + def cleaner(self): + return analysis.clean_passthrough + + @pytest.mark.asyncio + async def test_float_passthrough(self, cleaner): + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 65.0), + (datetime.datetime(2020, 4, 1, 13, 0, 0), 65.5), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == data + + @pytest.mark.asyncio + async def test_Nones_are_skipped(self, cleaner): + data = [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), None), + (datetime.datetime(2020, 4, 1, 13, 0, 0), 65.5), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 13, 0, 0), 65.5), + ] + + +class TestTemperatureCleaner: + @pytest.fixture + def cleaner(self): + return analysis.clean_temperature_fluctuations + + @pytest.mark.asyncio + async def test_window_not_full(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [(datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0)] + + @pytest.mark.asyncio + async def test_window_exactly_full(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 1), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 21.0), + ] + + @pytest.mark.asyncio + async def test_window_overfilled(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 3), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 4), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 1), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 3), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 4), 21.0), + ] + + @pytest.mark.asyncio + async def test_outlier_dropped(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 21.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 61.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 21.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 21.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 21.0), + ] + + @pytest.mark.asyncio + async def test_limited_to_DHT22_range(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 91.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 1), + {"magnitude": 91.0, "unit": "degC"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 91.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [] + + @pytest.mark.asyncio + async def test_Nones_dropped(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 31.0, "unit": "degC"}, + ), + (datetime.datetime(2020, 4, 1, 12, 0, 1), None,), + ( + datetime.datetime(2020, 4, 1, 12, 0, 2), + {"magnitude": 32.0, "unit": "degC"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [ + (datetime.datetime(2020, 4, 1, 12, 0, 0), 31.0), + (datetime.datetime(2020, 4, 1, 12, 0, 2), 32.0), + ] + + +class TestWattHourCleaner: + @pytest.fixture + def cleaner(self): + return analysis.clean_watthours_to_watts + + @pytest.fixture(scope="class") + def huge_data_set(self): + date = datetime.datetime(2020, 4, 1, 12, 0, 0) + power = 500 + data = [] + for i in range(50_000): + date += datetime.timedelta(hours=1) + power += i + data.append((date, {"magnitude": power, "unit": "watt_hour"},)) + return data + + @pytest.mark.asyncio + async def test_one_entry_insufficient_to_find_diff(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert output == [] + + @pytest.mark.asyncio + async def test_two_entries_provides_diff_with_second_time(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 13, 0, 0), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 1 + assert output[0][0] == datetime.datetime(2020, 4, 1, 13, 0, 0) + assert output[0][1] == pytest.approx(9.0, 0.0001) + + @pytest.mark.asyncio + async def test_nonstandard_units_can_be_used(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 13, 0, 0), + {"magnitude": 10000.0, "unit": "joule"}, + ), + ( + datetime.datetime(2020, 4, 1, 14, 0, 0), + {"magnitude": 3.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 2 + assert output[0][0] == datetime.datetime(2020, 4, 1, 13, 0, 0) + assert output[0][1] == pytest.approx(1.7777, 0.001) + assert output[1][0] == datetime.datetime(2020, 4, 1, 14, 0, 0) + assert output[1][1] == pytest.approx(0.22222, 0.001) + + @pytest.mark.asyncio + async def test_fractional_hour(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 23, 42), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 1 + assert output[0][0] == datetime.datetime(2020, 4, 1, 12, 23, 42) + assert output[0][1] == pytest.approx(22.7848, 0.001) + + @pytest.mark.asyncio + async def test_diff_happens_pairwise(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 12, 23, 42), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ( + datetime.datetime(2020, 4, 1, 13, 23, 42), + {"magnitude": 13.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 2 + assert output[0][0] == datetime.datetime(2020, 4, 1, 12, 23, 42) + assert output[0][1] == pytest.approx(22.7848, 0.001) + assert output[1][0] == datetime.datetime(2020, 4, 1, 13, 23, 42) + assert output[1][1] == pytest.approx(3, 0.001) + + @pytest.mark.asyncio + async def test_None_ignored(self, cleaner): + data = [ + ( + datetime.datetime(2020, 4, 1, 12, 0, 0), + {"magnitude": 1.0, "unit": "watt_hour"}, + ), + (datetime.datetime(2020, 4, 1, 12, 58, 0), None,), + ( + datetime.datetime(2020, 4, 1, 13, 0, 0), + {"magnitude": 10.0, "unit": "watt_hour"}, + ), + ] + datapoints = generate_datapoints(data) + output = [(time, data) async for (time, data) in cleaner(datapoints)] + assert len(output) == 1 + assert output[0][0] == datetime.datetime(2020, 4, 1, 13, 0, 0) + assert output[0][1] == pytest.approx(9.0, 0.0001) + + @pytest.mark.asyncio + @pytest.mark.performance + async def test_performance_of_cleaner(self, cleaner, huge_data_set): + import cProfile + + # Generate data point objects before profiling starts + datapoints = await consume(generate_datapoints(huge_data_set)) + profiler = cProfile.Profile() + profiler.enable() + + # Run the cleaner to completion + await consume(cleaner(datapoints)) + + profiler.disable() + cleaner_stat = [ + stat for stat in profiler.getstats() if stat.code == cleaner.__code__ + ][0] + # Assert that the cleaner may take no more than 0.5 seconds to process + # these 50k data points + assert cleaner_stat.totaltime < 0.5 + + +class TestTemperatureMap: + @pytest.fixture + def temperature_data(self): + return { + (53.8667, -1.3333): -1, + (53.35, -2.2833): 1, + (52.45, -1.7333): 3, + (51.5, -0.1333): 6, + (51.55, -2.5667): 5, + (54.9667, -1.6167): -1, + (55.9667, -3.2167): -1, + (54.7667, -1.5833): 0, + (53.7667, -0.3): 1, + (53.7667, -3.0167): 0, + (51.4833, -3.1833): 4, + (53.2667, -3.5167): 2, + (52.0833, -2.8): 2, + (52.0167, -0.6): 2, + (52.6667, 1.2667): 5, + (50.4333, -4.9833): 9, + (50.35, -4.1167): 10, + (50.5167, -2.45): 9, + (50.8333, -1.1667): 9, + (56.45, -5.4333): 4, + (57.5333, -4.05): -2, + (54.5167, -3.6167): 3, + (53.0833, 0.2667): 4, + (51.35, 1.3333): 7, + (50.8833, 0.3167): 8, + (58.45, -3.1): 3, + (50.1, -5.6667): 9, + (58.2167, -6.3333): 4, + (55.6833, -6.25): 7, + } + + @pytest.fixture + def temperature_datapoints(self, migrated_db, db_session, temperature_data): + datas = [] + now = datetime.datetime.now() + for (coord, temp) in temperature_data.items(): + deployment_id = uuid.uuid4() + datas.append( + DataPoint( + sensor_name="Location", + deployment_id=deployment_id, + collected_at=now, + data=coord, + ) + ) + datas.append( + DataPoint( + sensor_name="Temperature", + deployment_id=deployment_id, + collected_at=now, + data=temp, + ) + ) + return datas + + @pytest.fixture + def populated_db(self, migrated_db, db_session, temperature_datapoints): + for data in temperature_datapoints: + insert = datapoint_table.insert().values(**data._asdict()) + db_session.execute(insert) + + @pytest.fixture + def cleaner(self): + return analysis.get_map_cleaner_for("Temperature") + + @pytest.fixture + def get_data(self, db_session): + db_session_var.set(db_session) + return analysis.get_all_data() + + @pytest.mark.asyncio + async def test_latest_coord_temp_cleaner( + self, temperature_data, populated_db, get_data, cleaner + ): + data = get_data() + deployments = 0 + async for deployment, data_points in data: + deployments += 1 + cleaned = {a async for a in cleaner(data_points)} + # There should only be one deployment + assert deployments == 1 + expected = set(temperature_data.items()) + assert cleaned == expected + + @pytest.mark.asyncio + async def test_newer_items_superceed_older( + self, db_session, temperature_datapoints, populated_db, get_data, cleaner + ): + # Pick any of the deployment ids and find the pair of DataPoints in that deployment id + deployment_1 = temperature_datapoints[0].deployment_id + existing = [ + datapoint + for datapoint in temperature_datapoints + if datapoint.deployment_id == deployment_1 + ] + old_location = [ + datapoint for datapoint in existing if datapoint.sensor_name == "Location" + ][0] + old_temperature = [ + datapoint + for datapoint in existing + if datapoint.sensor_name == "Temperature" + ][0] + + new_location = DataPoint( + sensor_name="Location", + deployment_id=deployment_1, + collected_at=datetime.datetime(2031, 4, 1, 12, 0, 0), + data=(-10.5, 150.1), + ) + new_temperature = DataPoint( + sensor_name="Temperature", + deployment_id=deployment_1, + collected_at=datetime.datetime(2031, 4, 1, 12, 0, 0), + data=21, + ) + for data in [new_location, new_temperature]: + insert = datapoint_table.insert().values(**data._asdict()) + db_session.execute(insert) + + data = get_data() + deployments = 0 + async for deployment, data_points in data: + deployments += 1 + cleaned = {a async for a in cleaner(data_points)} + # There should only be one deployment + assert deployments == 1 + + # We expect the newer one, not the older + assert (new_location.data, new_temperature.data) in cleaned + assert (old_location.data, old_temperature.data) not in cleaned + # The cleaner converts two data points to one plottable + assert len(cleaned) == len(temperature_datapoints) / 2 + + +def test_deprecation_warning_raised_by_config_with_no_getdata(): + with warnings.catch_warnings(record=True) as captured_warnings: + warnings.simplefilter("always", DeprecationWarning) + analysis.Config( + sensor_name="Temperature", + clean=analysis.clean_passthrough, + title="Temperaure", + ylabel="Deg C", + ) + assert len(captured_warnings) == 1 + deprecation_warning = captured_warnings[0] + assert deprecation_warning.filename == __file__ + assert deprecation_warning.category == DeprecationWarning + assert str(deprecation_warning.message) == ( + "The sensor_name parameter is deprecated. Please pass " + "get_data=get_one_sensor_by_deployment('Temperature') " + "to ensure the same behaviour. The sensor_name= parameter " + "will be removed in apd.aggregation 3.0." + ) diff --git a/Ch12/apd.aggregation-chapter12/tests/test_cli.py b/Ch12/apd.aggregation-chapter12/tests/test_cli.py new file mode 100644 index 0000000..5cab441 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/tests/test_cli.py @@ -0,0 +1,155 @@ +from unittest import mock +import uuid + +from click.testing import CliRunner +import pytest + +import apd.aggregation.cli +from apd.aggregation.database import Deployment, deployment_table + + +@pytest.mark.functional +def test_sensors_are_passed_to_get_data_points(db_uri): + runner = CliRunner() + with mock.patch("apd.aggregation.collect.get_data_points") as get_data_points: + runner.invoke( + apd.aggregation.cli.collect_sensor_data, + [ + "http://localhost", + "http://otherhost", + "--db", + db_uri, + "--api-key", + "key", + ], + ) + calls = get_data_points.call_args_list + assert len(calls) == 2 + details = {call[0] for call in get_data_points.call_args_list} + assert details == { + ("http://localhost", "key"), + ("http://otherhost", "key"), + } + + +@pytest.mark.functional +def test_add_deployment_to_db(db_uri, db_session, migrated_db): + runner = CliRunner() + deployment_id = uuid.UUID("76587cdd42dc489ea1d220e9b0bc62ca") + with mock.patch("apd.aggregation.collect.get_deployment_id") as get_deployment_id: + get_deployment_id.return_value = deployment_id + runner.invoke( + apd.aggregation.cli.deployments, + ["add", "http://otherhost", "Other", "--db", db_uri, "--api-key", "key"], + ) + deployments = db_session.query(deployment_table).all() + assert len(deployments) == 1 + deployment = Deployment.from_sql_result(deployments[0]) + assert deployment.uri == "http://otherhost" + assert deployment.api_key == "key" + assert deployment.id == deployment_id + + +@pytest.mark.functional +def test_use_stored_deployments(db_uri, migrated_db): + runner = CliRunner() + + deployment_id = uuid.UUID("76587cdd42dc489ea1d220e9b0bc62ca") + with mock.patch("apd.aggregation.collect.get_deployment_id") as get_deployment_id: + get_deployment_id.return_value = deployment_id + runner.invoke( + apd.aggregation.cli.deployments, + [ + "add", + "http://specifiedhost", + "Specified", + "--db", + db_uri, + "--api-key", + "an_api_key", + ], + ) + + with mock.patch("apd.aggregation.collect.get_data_points") as get_data_points: + runner.invoke( + apd.aggregation.cli.collect_sensor_data, ["--db", db_uri], + ) + calls = get_data_points.call_args_list + assert len(calls) == 1 + details = {call[0] for call in get_data_points.call_args_list} + assert details == { + ("http://specifiedhost", "an_api_key"), + } + + +@pytest.mark.functional +def test_list_deployments(db_uri, migrated_db): + runner = CliRunner() + + deployment_id = uuid.UUID("76587cdd42dc489ea1d220e9b0bc62ca") + with mock.patch("apd.aggregation.collect.get_deployment_id") as get_deployment_id: + get_deployment_id.return_value = deployment_id + runner.invoke( + apd.aggregation.cli.deployments, + [ + "add", + "http://specifiedhost", + "Specified", + "--db", + db_uri, + "--api-key", + "an_api_key", + ], + ) + + result = runner.invoke(apd.aggregation.cli.deployments, ["list", "--db", db_uri],) + expected = """Specified +ID 76587cdd42dc489ea1d220e9b0bc62ca +URI http://specifiedhost +API key an_api_key +Colour None + +""" + assert result.output == expected + + +@pytest.mark.functional +def test_edit_deployment(db_uri, migrated_db): + runner = CliRunner() + return + deployment_id = uuid.UUID("76587cdd42dc489ea1d220e9b0bc62ca") + with mock.patch("apd.aggregation.collect.get_deployment_id") as get_deployment_id: + get_deployment_id.return_value = deployment_id + runner.invoke( + apd.aggregation.cli.deployments, + [ + "add", + "http://specifiedhost", + "Specified", + "--db", + db_uri, + "--api-key", + "an_api_key", + ], + ) + + result = runner.invoke( + apd.aggregation.cli.deployments, + [ + "edit", + "--db", + db_uri, + deployment_id.hex(), + "--colour", + "red" "--name", + "New name", + ], + ) + expected = """New name +ID 76587cdd42dc489ea1d220e9b0bc62ca +URI http://specifiedhost +API key an_api_key +Colour red + +""" + assert result.output == expected diff --git a/Ch12/apd.aggregation-chapter12/tests/test_http_get.py b/Ch12/apd.aggregation-chapter12/tests/test_http_get.py new file mode 100644 index 0000000..df575c6 --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/tests/test_http_get.py @@ -0,0 +1,188 @@ +from concurrent.futures import ThreadPoolExecutor +import datetime +import typing as t +from unittest.mock import patch, MagicMock +import wsgiref.simple_server + +import aiohttp +from apd.sensors.base import Sensor +from apd.sensors.sensors import PythonVersion, ACStatus +from apd.sensors.wsgi import set_up_config +import flask +import pytest + +from apd.sensors.wsgi import v21 + +from apd.aggregation import collect +from apd.aggregation.database import Deployment + +pytestmark = [pytest.mark.functional] + + +@pytest.fixture +def sensors() -> t.Iterator[t.List[Sensor[t.Any]]]: + """ Patch the get_sensors method to return a known pair of sensors only """ + data: t.List[Sensor[t.Any]] = [PythonVersion(), ACStatus()] + with patch("apd.sensors.cli.get_sensors") as get_sensors: + get_sensors.return_value = data + yield data + + +def get_independent_flask_app(name: str) -> flask.Flask: + """ Create a new flask app with the v20 API blueprint loaded, so multiple copies + of the app can be run in parallel without conflicting configuration """ + app = flask.Flask(name) + app.register_blueprint(v21.version, url_prefix="/v/2.1") + return app + + +def run_server_in_thread( + name: str, config: t.Dict[str, t.Any], port: int +) -> t.Iterator[str]: + # Create a new flask app and load in required code, to prevent config conflicts + app = get_independent_flask_app(name) + flask_app = set_up_config(config, app) + server = wsgiref.simple_server.make_server("localhost", port, flask_app) + + with ThreadPoolExecutor() as pool: + pool.submit(server.serve_forever) + yield f"http://localhost:{port}/" + server.shutdown() + + +@pytest.fixture(scope="module") +def http_server(): + yield from run_server_in_thread( + "standard", + { + "APD_SENSORS_API_KEY": "testing", + "APD_SENSORS_DEPLOYMENT_ID": "a46b1d1207fd4cdcad39bbdf706dfe29", + }, + 12081, + ) + + +@pytest.fixture(scope="module") +def bad_api_key_http_server(): + yield from run_server_in_thread( + "alternate", + { + "APD_SENSORS_API_KEY": "penny", + "APD_SENSORS_DEPLOYMENT_ID": "38cf2bae9adb445fad946c82e290487a", + }, + 12082, + ) + + +class TestGetDataPoints: + @pytest.fixture + def mut(self): + return collect.get_data_points + + @pytest.mark.asyncio + async def test_get_data_points( + self, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + # Get the data from the server, storing the time before and after + # as bounds for the collected_at value + async with aiohttp.ClientSession() as http: + collect.http_session_var.set(http) + time_before = datetime.datetime.now() + results = await mut(http_server, "testing") + time_after = datetime.datetime.now() + + assert len(results) == len(sensors) == 2 + + for (sensor, result) in zip(sensors, results): + assert sensor.from_json_compatible(result.data) == sensor.value() + assert result.sensor_name == sensor.name + assert time_before <= result.collected_at <= time_after + + @pytest.mark.asyncio + async def test_get_data_points_fails_with_bad_api_key( + self, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + with pytest.raises( + ValueError, + match=f"Error loading data from {http_server}: Supply API key in X-API-Key header", + ): + async with aiohttp.ClientSession() as http: + collect.http_session_var.set(http) + await mut(http_server, "incorrect") + + +class TestAddDataFromSensors: + @pytest.fixture + def mut(self): + return collect.add_data_from_sensors + + @pytest.fixture + def mock_db_session(self): + return MagicMock() + + @pytest.mark.asyncio + async def test_get_get_data_from_sensors( + self, mock_db_session, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + results = await mut( + mock_db_session, + [ + Deployment( + id=None, colour=None, name=None, uri=http_server, api_key="testing" + ) + ], + ) + assert mock_db_session.execute.call_count == len(sensors) + assert len(results) == len(sensors) + + @pytest.mark.asyncio + async def test_get_get_data_from_sensors_with_multiple_servers( + self, mock_db_session, sensors: t.List[Sensor[t.Any]], mut, http_server: str + ) -> None: + results = await mut( + mock_db_session, + [ + Deployment( + id=None, colour=None, name=None, uri=http_server, api_key="testing" + ), + Deployment( + id=None, colour=None, name=None, uri=http_server, api_key="testing" + ), + ], + ) + assert mock_db_session.execute.call_count == len(sensors) * 2 + assert len(results) == len(sensors) * 2 + + @pytest.mark.asyncio + async def test_data_points_not_added_if_only_partial_success( + self, + mock_db_session, + sensors: t.List[Sensor[t.Any]], + mut, + http_server: str, + bad_api_key_http_server: str, + ) -> None: + with pytest.raises( + ValueError, + match=f"Error loading data from {bad_api_key_http_server}: Supply API key in X-API-Key header", + ): + await mut( + mock_db_session, + [ + Deployment( + id=None, + colour=None, + name=None, + uri=http_server, + api_key="testing", + ), + Deployment( + id=None, + colour=None, + name=None, + uri=bad_api_key_http_server, + api_key="testing", + ), + ], + ) + assert mock_db_session.execute.call_count == 0 diff --git a/Ch12/apd.aggregation-chapter12/tests/test_query.py b/Ch12/apd.aggregation-chapter12/tests/test_query.py new file mode 100644 index 0000000..9b6e0aa --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/tests/test_query.py @@ -0,0 +1,111 @@ +import datetime +from uuid import UUID + +import pytest + +from apd.aggregation.query import ( + get_data, + get_deployment_ids, + get_data_by_deployment, + db_session_var, +) + + +class TestGetData: + @pytest.fixture + def mut(self): + return get_data + + @pytest.mark.asyncio + @pytest.mark.parametrize( + "filter,num_items_expected", + [ + ({}, 9), + ({"sensor_name": "Test"}, 7), + ({"deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd")}, 5), + ({"collected_after": datetime.datetime(2020, 4, 1, 12, 2, 1)}, 3), + ({"collected_before": datetime.datetime(2020, 4, 1, 12, 2, 1)}, 4), + ( + { + "collected_after": datetime.datetime(2020, 4, 1, 12, 2, 1), + "collected_before": datetime.datetime(2020, 4, 1, 12, 3, 5), + }, + 2, + ), + ], + ) + async def test_iterate_over_items( + self, mut, db_session, populated_db, filter, num_items_expected + ): + db_session_var.set(db_session) + points = [dp async for dp in mut(**filter)] + assert len(points) == num_items_expected + + @pytest.mark.asyncio + async def test_empty_db(self, mut, db_session, migrated_db): + db_session_var.set(db_session) + points = [dp async for dp in mut()] + assert len(points) == 0 + + +class TestGetDeployments: + @pytest.fixture + def mut(self): + return get_deployment_ids + + @pytest.mark.asyncio + async def test_get_all_deployments(self, mut, db_session, populated_db): + db_session_var.set(db_session) + deployment_ids = await mut() + assert set(deployment_ids) == { + UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"), + UUID("6e887b81-57c3-4f3b-a7e7-bad159e05e78"), + } + + @pytest.mark.asyncio + async def test_empty_db(self, mut, db_session, migrated_db): + db_session_var.set(db_session) + deployment_ids = await mut() + assert deployment_ids == [] + + +@pytest.mark.usefixtures("populated_db") +class TestGetDataByDeployment: + @pytest.fixture + def mut(self): + return get_data_by_deployment + + @pytest.mark.asyncio + @pytest.mark.parametrize( + "filter,num_items_expected", [({}, 9), ({"sensor_name": "Test"}, 7)] + ) + async def test_iterate_over_all_items( + self, mut, db_session, filter, num_items_expected + ): + db_session_var.set(db_session) + num_items = 0 + num_deployments = 0 + async for deployment_id, items in mut(**filter): + num_deployments += 1 + async for item in items: + num_items += 1 + assert num_deployments == 2 + assert num_items == num_items_expected + + @pytest.mark.asyncio + @pytest.mark.parametrize( + "filter,num_items_expected", [({}, 5), ({"sensor_name": "Test"}, 4)] + ) + async def test_skip_first_deployment( + self, mut, db_session, filter, num_items_expected + ): + db_session_var.set(db_session) + num_items = 0 + num_deployments = 0 + async for deployment_id, items in mut(**filter): + num_deployments += 1 + if num_deployments == 2: + async for item in items: + num_items += 1 + assert num_deployments == 2 + assert num_items == num_items_expected diff --git a/Ch12/apd.aggregation-chapter12/tests/test_sensor_aggregation.py b/Ch12/apd.aggregation-chapter12/tests/test_sensor_aggregation.py new file mode 100644 index 0000000..655521d --- /dev/null +++ b/Ch12/apd.aggregation-chapter12/tests/test_sensor_aggregation.py @@ -0,0 +1,199 @@ +from __future__ import annotations + +import contextlib +from dataclasses import dataclass +import json +import typing as t +from unittest.mock import patch, Mock + +import pytest +import sqlalchemy + +import apd.aggregation.collect +from apd.aggregation.database import Deployment + + +@pytest.fixture +def data() -> t.Any: + return { + "sensors": [ + { + "human_readable": "3.7", + "id": "PythonVersion", + "title": "Python Version", + "value": [3, 7, 2, "final", 0], + }, + { + "human_readable": "Not connected", + "id": "ACStatus", + "title": "AC Connected", + "value": False, + }, + ] + } + + +@dataclass +class FakeAIOHttpClient: + responses: t.Dict[str, str] + + @contextlib.asynccontextmanager + async def get( + self, url: str, headers: t.Optional[t.Dict[str, str]] = None + ) -> t.AsyncIterator[FakeAIOHttpResponse]: + if url in self.responses: + yield FakeAIOHttpResponse(body=self.responses[url]) + else: + yield FakeAIOHttpResponse(body="", status=404) + + +@dataclass +class FakeAIOHttpResponse: + body: str + status: int = 200 + + async def json(self) -> t.Any: + return json.loads(self.body) + + +@pytest.fixture +def mockclient(data) -> FakeAIOHttpClient: + return FakeAIOHttpClient( + { + "http://localhost/v/2.1/sensors/": json.dumps(data), + "http://localhost/v/2.1/deployment_id": json.dumps( + {"deployment_id": "b29ba0ee10f14552b6b21327bb96d3fb"} + ), + } + ) + + +class TestGetDataPoints: + @pytest.fixture + def mut(self): + return apd.aggregation.collect.get_data_points + + @pytest.mark.asyncio + async def test_get_data_points(self, mut, mockclient, data) -> None: + # Mark the mock client as the same type as the one it's mocking + # So we can set it into the context variable without warnings + token = apd.aggregation.collect.http_session_var.set(mockclient) + try: + datapoints = await mut("http://localhost", "") + finally: + apd.aggregation.collect.http_session_var.reset(token) + + assert len(datapoints) == len(data["sensors"]) + for sensor in data["sensors"]: + assert sensor["value"] in (datapoint.data for datapoint in datapoints) + assert sensor["id"] in (datapoint.sensor_name for datapoint in datapoints) + + +class TestAddDataFromSensors: + @pytest.fixture + def mut(self): + return apd.aggregation.collect.add_data_from_sensors + + @pytest.fixture(autouse=True) + def patch_aiohttp(self, mockclient): + with patch("aiohttp.ClientSession") as ClientSession: + ClientSession.return_value.__aenter__.return_value = mockclient + yield ClientSession + + @pytest.fixture + def db_session(self): + session = Mock() + sql_result = session.execute.return_value + sql_result.inserted_primary_key = [1] + return session + + @pytest.mark.asyncio + async def test_datapoints_are_added_to_the_session(self, mut, db_session) -> None: + assert db_session.execute.call_count == 0 + datapoints = await mut( + db_session, + [ + Deployment( + id=None, colour=None, name=None, uri="http://localhost", api_key="" + ) + ], + ) + assert db_session.execute.call_count == len(datapoints) + + +@pytest.mark.usefixtures("migrated_db") +class TestDatabaseConnection: + @pytest.fixture(autouse=True) + def patch_aiohttp(self, mockclient): + with patch("aiohttp.ClientSession") as ClientSession: + ClientSession.return_value.__aenter__.return_value = mockclient + yield ClientSession + + @pytest.fixture + def table(self): + return apd.aggregation.database.datapoint_table + + @pytest.fixture + def daily_summary_view(self): + return apd.aggregation.database.daily_summary_view + + @pytest.fixture + def model(self): + return apd.aggregation.database.DataPoint + + @pytest.fixture + def mut(self): + return apd.aggregation.collect.add_data_from_sensors + + @pytest.mark.asyncio + async def test_datapoints_are_added_to_the_session(self, db_session, table) -> None: + datapoints = await apd.aggregation.collect.add_data_from_sensors( + db_session, + [ + Deployment( + id=None, colour=None, name=None, uri="http://localhost", api_key="" + ) + ], + ) + num_points = db_session.query(table).count() + assert num_points == len(datapoints) == 2 + + @pytest.mark.asyncio + async def test_datapoints_can_be_mapped_back_to_DataPoints( + self, mut, db_session, table, model + ) -> None: + datapoints = await mut( + db_session, + [ + Deployment( + id=None, colour=None, name=None, uri="http://localhost", api_key="" + ) + ], + ) + db_points = [ + model.from_sql_result(result) for result in db_session.query(table) + ] + assert db_points == datapoints + + @pytest.mark.asyncio + async def test_daily_summary_view_matches_query( + self, db_session, model, table, daily_summary_view + ) -> None: + await apd.aggregation.collect.add_data_from_sensors( + db_session, + [ + Deployment( + id=None, colour=None, name=None, uri="http://localhost", api_key="" + ) + ], + ) + + headers = table.c.sensor_name, table.c.data + value_counts = ( + db_session.query(*headers, sqlalchemy.func.count(table.c.id)) + .filter(model.collected_on_date == sqlalchemy.func.current_date()) + .group_by(*headers) + ) + + daily_summary_view = db_session.query(daily_summary_view) + assert value_counts.all() == daily_summary_view.all() diff --git a/Ch12/apd.sensors-chapter12/.pre-commit-config.yaml b/Ch12/apd.sensors-chapter12/.pre-commit-config.yaml new file mode 100644 index 0000000..d3b6ec7 --- /dev/null +++ b/Ch12/apd.sensors-chapter12/.pre-commit-config.yaml @@ -0,0 +1,26 @@ +repos: + +- repo: local + hooks: + - id: black + name: black + entry: pipenv run black + args: [--quiet] + language: system + types: [python] + + - id: mypy + name: mypy + exclude: (?x)^( + (.*)/setup.py + )$ + entry: pipenv run mypy + args: ["--follow-imports=skip"] + language: system + types: [python] + + - id: flake8 + name: flake8 + entry: pipenv run flake8 + language: system + types: [python] diff --git a/Ch12/apd.sensors-chapter12/CHANGES.md b/Ch12/apd.sensors-chapter12/CHANGES.md new file mode 100644 index 0000000..b2f6115 --- /dev/null +++ b/Ch12/apd.sensors-chapter12/CHANGES.md @@ -0,0 +1,44 @@ +## Changes + +### 2.2 (2020-01-17) + +* Add ability to store data points on query (Matthew Wilkes) +* Add v3.0 API to distinguish sensor errors and include historical data (Matthew Wilkes) + +### 2.1.1 (2020-01-06) + +* Cache DHT sensor connections (Matthew Wilkes) +* Force use of bitbang interface for DHT sensors, to improve reliability on Linux (Matthew Wilkes) + +### 2.1.0 (2019-12-09) + +* Add optional APD_SENSORS_DEPLOYMENT_ID parameter and v2.1 API which allows + users to find a unique identifier for a webapp sensor deployment (Matthew Wilkes) + +### 2.0.0 (2019-09-08) + +* Add `to_json_compatible` and `from_json_compatible` methods to Sensor + to facilitate better HTTP API (Matthew Wilkes) + +* HTTP API is now versioned. The API from 1.3.0 is available at /v/1.0 + and an updated version is at /v/2.0 (Matthew Wilkes) + +### 1.3.0 (2019-08-20) + +* WSGI HTTP API support added (Matthew Wilkes) + +### 1.2.0 (2019-08-05) + +* Add external plugin support through `apd.sensors.sensors` entrypoint (Matthew Wilkes) + +### 1.1.0 (2019-07-12) + +* Add --develop argument (Matthew Wilkes) + +### 1.0.1 (2019-06-20) + +* Fix broken 1.0.0 release (Matthew Wilkes) + +### 1.0.0 (2019-06-20) + +* Added initial sensors (Matthew Wilkes) diff --git a/Ch12/apd.sensors-chapter12/LICENCE b/Ch12/apd.sensors-chapter12/LICENCE new file mode 100644 index 0000000..053f694 --- /dev/null +++ b/Ch12/apd.sensors-chapter12/LICENCE @@ -0,0 +1,19 @@ +Copyright (c) 2019 Matthew Wilkes + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. diff --git a/Ch12/apd.sensors-chapter12/Pipfile b/Ch12/apd.sensors-chapter12/Pipfile new file mode 100644 index 0000000..44bfe74 --- /dev/null +++ b/Ch12/apd.sensors-chapter12/Pipfile @@ -0,0 +1,34 @@ +[[source]] +name = "pypi" +url = "https://pypi.org/simple" +verify_ssl = true + +[[source]] +name = "piwheels" +url = "https://piwheels.org/simple" +verify_ssl = true + +[dev-packages] +ipykernel = "*" +remote-ikernel = "*" +pytest = "*" +pytest-cov = "*" +mypy = "*" +flake8 = "*" +black = "*" +pre-commit = "*" +wheel = "*" +twine = "*" +webtest = "*" +sqlalchemy-stubs = "*" + +[packages] +apd-sensors = {editable = true,extras = ["scheduled", "webapp", "storedapi"],path = "."} +apd-sunnyboy-solar = {editable = true,path = "./plugins/apd.sunnyboy_solar"} +waitress = "*" +pint = "==0.10.1" + +[requires] + +[pipenv] +allow_prereleases = true diff --git a/Ch12/apd.sensors-chapter12/Pipfile.lock b/Ch12/apd.sensors-chapter12/Pipfile.lock new file mode 100644 index 0000000..ce04ef4 --- /dev/null +++ b/Ch12/apd.sensors-chapter12/Pipfile.lock @@ -0,0 +1,1092 @@ +{ + "_meta": { + "hash": { + "sha256": "8099f56a327cfc41360e2cbc7ff56ad2bab9f24325f631df83cc94d9f9196469" + }, + "pipfile-spec": 6, + "requires": {}, + "sources": [ + { + "name": "pypi", + "url": "https://pypi.org/simple", + "verify_ssl": true + }, + { + "name": "piwheels", + "url": "https://piwheels.org/simple", + "verify_ssl": true + } + ] + }, + "default": { + "alembic": { + "hashes": [ + "sha256:035ab00497217628bf5d0be82d664d8713ab13d37b630084da8e1f98facf4dbf", + "sha256:ba2d8937aef1ee14ffc983f9ab00a6f8e48907e46c7788218b561c100175025f" + ], + "version": "==1.4.2" + }, + "apd-sensors": { + "editable": true, + "extras": [ + "scheduled", + "webapp", + "storedapi" + ], + "path": "." + }, + "apd-sunnyboy-solar": { + "editable": true, + "path": "./plugins/apd.sunnyboy_solar" + }, + "click": { + "hashes": [ + "sha256:8a18b4ea89d8820c5d0c7da8a64b2c324b4dabb695804dbfea19b9be9d88c0cc", + "sha256:e345d143d80bf5ee7534056164e5e112ea5e22716bbb1ce727941f4c8b471b9a" + ], + "version": "==7.1.1" + }, + "flask": { + "hashes": [ + "sha256:4efa1ae2d7c9865af48986de8aeb8504bf32c7f3d6fdc9353d34b21f4b127060", + "sha256:8a4fdd8936eba2512e9c85df320a37e694c93945b33ef33c89946a340a238557" + ], + "version": "==1.1.2" + }, + "flask-sqlalchemy": { + "hashes": [ + "sha256:0078d8663330dc05a74bc72b3b6ddc441b9a744e2f56fe60af1a5bfc81334327", + "sha256:6974785d913666587949f7c2946f7001e4fa2cb2d19f4e69ead02e4b8f50b33d" + ], + "version": "==2.4.1" + }, + "itsdangerous": { + "hashes": [ + "sha256:321b033d07f2a4136d3ec762eac9f16a10ccd60f53c0c91af90217ace7ba1f19", + "sha256:b12271b2047cb23eeb98c8b5622e2e5c5e9abd9784a153e9d8ef9cb4dd09d749" + ], + "version": "==1.1.0" + }, + "jinja2": { + "hashes": [ + "sha256:39cbce1ffc25cbf4860b09195654763be95b9e4900475b24d5c345d3e0948c53", + "sha256:c10142f819c2d22bdcd17548c46fa9b77cf4fda45097854c689666bf425e7484", + "sha256:c922560ac46888d47384de1dbdc3daaa2ea993af4b26a436dec31fa2c19ec668" + ], + "version": "==3.0.0a1" + }, + "mako": { + "hashes": [ + "sha256:3139c5d64aa5d175dbafb95027057128b5fbd05a40c53999f3905ceb53366d9d", + "sha256:8e8b53c71c7e59f3de716b6832c4e401d903af574f6962edbbbf6ecc2a5fe6c9", + "sha256:e20f2dcad807217874cad8119eec86254afee47ba8159adb3808449040ddcaac" + ], + "version": "==1.1.2" + }, + "markupsafe": { + "hashes": [ + "sha256:06358015a4dee8ee23ae426bf885616ab3963622defd829eb45b44e3dee3515f", + "sha256:0b0c4fc852c5f02c6277ef3b33d23fcbe89b1b227460423e3335374da046b6db", + "sha256:267677fc42afed5094fc5ea1c4236bbe4b6a00fe4b08e93451e65ae9048139c7", + "sha256:303cb70893e2c345588fb5d5b86e0ca369f9bb56942f03064c5e3e75fa7a238a", + "sha256:3c9b624a0d9ed5a5093ac4edc4e823e6b125441e60ef35d36e6f4a6fdacd5054", + "sha256:42033e14cae1f6c86fc0c3e90d04d08ce73ac8e46ba420a0d22d545c2abd4977", + "sha256:4e4a99b6af7bdc0856b50020c095848ec050356a001e1f751510aef6ab14d0e0", + "sha256:4eb07faad54bb07427d848f31030a65a49ebb0cec0b30674f91cf1ddd456bfe4", + "sha256:63a7161cd8c2bc563feeda45df62f42c860dd0675e2b8da2667f25bb3c95eaba", + "sha256:68e0fd039b68d2945b4beb947d4023ca7f8e95b708031c345762efba214ea761", + "sha256:8092a63397025c2f655acd42784b2a1528339b90b987beb9253f22e8cdbb36c3", + "sha256:841218860683c0f2223e24756843d84cc49cccdae6765e04962607754a52d3e0", + "sha256:888d45d90cef0c9f32e01d5beb7b5dafe6d1076cc23977e39944cfca73888907", + "sha256:94076b2314bd2f6cfae508ad65b4d493e3a58a50112b7a2cbb6287bdbc404ae8", + "sha256:9d22aff1c5322e402adfb3ce40839a5056c353e711c033798cf4f02eb9f5124d", + "sha256:b0e4584f62b3e5f5c1a7bcefd2b52f236505e6ef032cc508caa4f4c8dc8d3af1", + "sha256:b1163ffc1384d242964426a8164da12dbcdbc0de18ea36e2c34b898ed38c3b45", + "sha256:beac28ed60c8e838301226a7a85841d0af2068eba2dcb1a58c2d32d6c05e440e", + "sha256:c29f096ce79c03054a1101d6e5fe6bf04b0bb489165d5e0e9653fb4fe8048ee1", + "sha256:c58779966d53e5f14ba393d64e2402a7926601d1ac8adeb4e83893def79d0428", + "sha256:cfe14b37908eaf7d5506302987228bff69e1b8e7071ccd4e70fd0283b1b47f0b", + "sha256:e834249c45aa9837d0753351cdca61a4b8b383cc9ad0ff2325c97ff7b69e72a6", + "sha256:eed1b234c4499811ee85bcefa22ef5e466e75d132502226ed29740d593316c1f" + ], + "version": "==2.0.0a1" + }, + "pint": { + "hashes": [ + "sha256:d5b5bcb570b2a8e0a598621fc41684497ff248f418bbfe00f69bd6e13caa14b8", + "sha256:d739c364b8326fe3d70773d5720fa8b005ea6158695cad042677a588480c86e6" + ], + "index": "pypi", + "version": "==0.10.1" + }, + "psutil": { + "hashes": [ + "sha256:002bd856770037221256765a472f50d677074ad207276a39e2bccdb7394e333b", + "sha256:1413f4158eb50e110777c4f15d7c759521703bd6beb58926f1d562da40180058", + "sha256:298af2f14b635c3c7118fd9183843f4e73e681bb6f01e12284d4d70d48a60953", + "sha256:60b86f327c198561f101a92be1995f9ae0399736b6eced8f24af41ec64fb88d4", + "sha256:685ec16ca14d079455892f25bd124df26ff9137664af445563c1bd36629b5e0e", + "sha256:73f35ab66c6c7a9ce82ba44b1e9b1050be2a80cd4dcc3352cc108656b115c74f", + "sha256:75e22717d4dbc7ca529ec5063000b2b294fc9a367f9c9ede1f65846c7955fd38", + "sha256:833b2b19c04fc0aecad22daa3e35108d6ee2e4f92061a4a8f2dd77c6fa9154f5", + "sha256:a02f4ac50d4a23253b68233b07e7cdb567bd025b982d5cf0ee78296990c22d9e", + "sha256:d008ddc00c6906ec80040d26dc2d3e3962109e40ad07fd8a12d0284ce5e0e4f8", + "sha256:d84029b190c8a66a946e28b4d3934d2ca1528ec94764b180f7d6ea57b0e75e26", + "sha256:e2d0c5b07c6fe5a87fa27b7855017edb0d52ee73b71e6ee368fae268605cc3f5", + "sha256:f344ca230dd8e8d5eee16827596f1c22ec0876127c28e800d7ae20ed44c4b310", + "sha256:f3e7f183162622eae9fbdee44ff19b226edec68b94ae7cba47f9afcf4c3ec66c" + ], + "version": "==5.7.0" + }, + "python-dateutil": { + "hashes": [ + "sha256:73ebfe9dbf22e832286dafa60473e4cd239f8592f699aa5adaf10050e6e1823c", + "sha256:75bb3f31ea686f1197762692a9ee6a7550b59fc6ca3a1f4b5d7e32fb98e2da2a" + ], + "version": "==2.8.1" + }, + "python-editor": { + "hashes": [ + "sha256:1bf6e860a8ad52a14c3ee1252d5dc25b2030618ed80c022598f00176adc8367d", + "sha256:51fda6bcc5ddbbb7063b2af7509e43bd84bfc32a4ff71349ec7847713882327b", + "sha256:5f98b069316ea1c2ed3f67e7f5df6c0d8f10b689964a4a811ff64f0106819ec8" + ], + "version": "==1.0.4" + }, + "six": { + "hashes": [ + "sha256:236bdbdce46e6e6a3d61a337c0f8b763ca1e8717c03b369e87a7ec7ce1319c0a", + "sha256:8f3cd2e254d8f793e7f3d6d9df77b92252b52637291d0f0da013c76ea2724b6c" + ], + "version": "==1.14.0" + }, + "sqlalchemy": { + "hashes": [ + "sha256:083e383a1dca8384d0ea6378bd182d83c600ed4ff4ec8247d3b2442cf70db1ad", + "sha256:09e83c304c7f2eb236ecb9830268b8e5aa20e8f90fba1758fb2a0a8ccc33e1ce", + "sha256:0a690a6486658d03cc6a73536d46e796b6570ac1f8a7ec133f9e28c448b69828", + "sha256:114b6ace30001f056e944cebd46daef38fdb41ebb98f5e5940241a03ed6cad43", + "sha256:128f6179325f7597a46403dde0bf148478f868df44841348dfc8d158e00db1f9", + "sha256:13d48cd8b925b6893a4e59b2dfb3e59a5204fd8c98289aad353af78bd214db49", + "sha256:211a1ce7e825f7142121144bac76f53ac28b12172716a710f4bf3eab477e730b", + "sha256:2dc57ee80b76813759cccd1a7affedf9c4dbe5b065a91fb6092c9d8151d66078", + "sha256:3e625e283eecc15aee5b1ef77203bfb542563fa4a9aa622c7643c7b55438ff49", + "sha256:43078c7ec0457387c79b8d52fff90a7ad352ca4c7aa841c366238c3e2cf52fdf", + "sha256:598355efdc17c8df2940dab1d81c6d2c2ef54f9e104fd18b772307813e63a37e", + "sha256:5b1bf3c2c2dca738235ce08079783ef04f1a7fc5b21cf24adaae77f2da4e73c3", + "sha256:6056b671aeda3fc451382e52ab8a753c0d5f66ef2a5ccc8fa5ba7abd20988b4d", + "sha256:68d78cf4a9dfade2e6cf57c4be19f7b82ed66e67dacf93b32bb390c9bed12749", + "sha256:7025c639ce7e170db845e94006cf5f404e243e6fc00d6c86fa19e8ad8d411880", + "sha256:7224e126c00b8178dfd227bc337ba5e754b197a3867d33b9f30dc0208f773d70", + "sha256:7d98e0785c4cd7ae30b4a451416db71f5724a1839025544b4edbd92e00b91f0f", + "sha256:8d8c21e9d4efef01351bf28513648ceb988031be4159745a7ad1b3e28c8ff68a", + "sha256:a9493755ebe89992dd3ce48b05630a26e7bd3d3ab2edc3ff97947e4a45c9be70", + "sha256:bbb545da054e6297242a1bb1ba88e7a8ffb679f518258d66798ec712b82e4e07", + "sha256:d00b393f05dbd4ecd65c989b7f5a81110eae4baea7a6a4cdd94c20a908d1456e", + "sha256:e18752cecaef61031252ca72031d4d6247b3212ebb84748fc5d1a0d2029c23ea" + ], + "version": "==1.3.16" + }, + "waitress": { + "hashes": [ + "sha256:045b3efc3d97c93362173ab1dfc159b52cfa22b46c3334ffc805dbdbf0e4309e", + "sha256:77ff3f3226931a1d7d8624c5371de07c8e90c7e5d80c5cc660d72659aaf23f38" + ], + "index": "pypi", + "version": "==1.4.3" + }, + "werkzeug": { + "hashes": [ + "sha256:2de2a5db0baeae7b2d2664949077c2ac63fbd16d98da0ff71837f7d1dea3fd43", + "sha256:6c80b1e5ad3665290ea39320b91e1be1e0d5f60652b964a3070216de83d2e47c" + ], + "version": "==1.0.1" + } + }, + "develop": { + "appdirs": { + "hashes": [ + "sha256:9e5896d1372858f8dd3344faf4e5014d21849c756c8d5701f78f8a103b372d92", + "sha256:d8b24664561d0d34ddfaec54636d502d7cea6e29c3eaf68f3df6180863e2166e" + ], + "version": "==1.4.3" + }, + "async-generator": { + "hashes": [ + "sha256:01c7bf666359b4967d2cda0000cc2e4af16a0ae098cbffcb8472fb9e8ad6585b", + "sha256:6ebb3d106c12920aaae42ccb6f787ef5eefdcdd166ea3d628fa8476abe712144" + ], + "version": "==1.10" + }, + "atomicwrites": { + "hashes": [ + "sha256:03472c30eb2c5d1ba9227e4c2ca66ab8287fbfbbda3888aa93dc2e28fc6811b4", + "sha256:75a9445bac02d8d058d5e1fe689654ba5a6556a1dfd8ce6ec55a0ed79866cfa6" + ], + "markers": "sys_platform == 'win32'", + "version": "==1.3.0" + }, + "attrs": { + "hashes": [ + "sha256:08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c", + "sha256:f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72" + ], + "version": "==19.3.0" + }, + "backcall": { + "hashes": [ + "sha256:1fac21e6861f538700a5d498620153f38407a4bacf9e1d5047b3d717f10bc4ab", + "sha256:38ecd85be2c1e78f77fd91700c76e14667dc21e2713b63876c0eb901196e01e4", + "sha256:bbbf4b1e5cd2bdb08f915895b51081c041bac22394fdfcfdfbe9f14b77c08bf2" + ], + "version": "==0.1.0" + }, + "beautifulsoup4": { + "hashes": [ + "sha256:594ca51a10d2b3443cbac41214e12dbb2a1cd57e1a7344659849e2e20ba6a8d8", + "sha256:a4bbe77fd30670455c5296242967a123ec28c37e9702a8a81bd2f20a4baf0368", + "sha256:d4e96ac9b0c3a6d3f0caae2e4124e6055c5dcafde8e2f831ff194c104f0775a0" + ], + "version": "==4.9.0" + }, + "black": { + "hashes": [ + "sha256:1b30e59be925fafc1ee4565e5e08abef6b03fe455102883820fe5ee2e4734e0b", + "sha256:c2edb73a08e9e0e6f65a0e6af18b059b8b1cdd5bef997d7a0b181df93dc81539" + ], + "index": "pypi", + "version": "==19.10b0" + }, + "bleach": { + "hashes": [ + "sha256:cc8da25076a1fe56c3ac63671e2194458e0c4d9c7becfd52ca251650d517903c", + "sha256:e78e426105ac07026ba098f04de8abe9b6e3e98b5befbf89b51a5ef0a4292b03" + ], + "version": "==3.1.4" + }, + "certifi": { + "hashes": [ + "sha256:1d987a998c75633c40847cc966fcf5904906c920a7f17ef374f5aa4282abd304", + "sha256:51fcb31174be6e6664c5f69e3e1691a2d72a1a12e90f872cbdb1567eb47b6519" + ], + "version": "==2020.4.5.1" + }, + "cfgv": { + "hashes": [ + "sha256:1ccf53320421aeeb915275a196e23b3b8ae87dea8ac6698b1638001d4a486d53", + "sha256:c8e8f552ffcc6194f4e18dd4f68d9aef0c0d58ae7e7be8c82bee3c5e9edfa513" + ], + "version": "==3.1.0" + }, + "chardet": { + "hashes": [ + "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", + "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" + ], + "version": "==3.0.4" + }, + "click": { + "hashes": [ + "sha256:8a18b4ea89d8820c5d0c7da8a64b2c324b4dabb695804dbfea19b9be9d88c0cc", + "sha256:e345d143d80bf5ee7534056164e5e112ea5e22716bbb1ce727941f4c8b471b9a" + ], + "version": "==7.1.1" + }, + "colorama": { + "hashes": [ + "sha256:7d73d2a99753107a36ac6b455ee49046802e59d9d076ef8e47b61499fa29afff", + "sha256:e96da0d330793e2cb9485e9ddfd918d456036c7149416295932478192f4436a1" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.4.3" + }, + "coverage": { + "hashes": [ + "sha256:00f1d23f4336efc3b311ed0d807feb45098fc86dee1ca13b3d6768cdab187c8a", + "sha256:01333e1bd22c59713ba8a79f088b3955946e293114479bbfc2e37d522be03355", + "sha256:0cb4be7e784dcdc050fc58ef05b71aa8e89b7e6636b99967fadbdba694cf2b65", + "sha256:0e61d9803d5851849c24f78227939c701ced6704f337cad0a91e0972c51c1ee7", + "sha256:1601e480b9b99697a570cea7ef749e88123c04b92d84cedaa01e117436b4a0a9", + "sha256:2742c7515b9eb368718cd091bad1a1b44135cc72468c731302b3d641895b83d1", + "sha256:2d27a3f742c98e5c6b461ee6ef7287400a1956c11421eb574d843d9ec1f772f0", + "sha256:402e1744733df483b93abbf209283898e9f0d67470707e3c7516d84f48524f55", + "sha256:512f4e0a9bf45f0c983c820b46f759bbe8bb224c727a26e3b347d3bd4e6340e1", + "sha256:5c542d1e62eece33c306d66fe0a5c4f7f7b3c08fecc46ead86d7916684b36d6c", + "sha256:5f2294dbf7875b991c381e3d5af2bcc3494d836affa52b809c91697449d0eda6", + "sha256:6402bd2fdedabbdb63a316308142597534ea8e1895f4e7d8bf7476c5e8751fef", + "sha256:66460ab1599d3cf894bb6baee8c684788819b71a5dc1e8fa2ecc152e5d752019", + "sha256:782caea581a6e9ff75eccda79287daefd1d2631cc09d642b6ee2d6da21fc0a4e", + "sha256:79a3cfd6346ce6c13145731d39db47b7a7b859c0272f02cdb89a3bdcbae233a0", + "sha256:7a5bdad4edec57b5fb8dae7d3ee58622d626fd3a0be0dfceda162a7035885ecf", + "sha256:8fa0cbc7ecad630e5b0f4f35b0f6ad419246b02bc750de7ac66db92667996d24", + "sha256:9e3892bbf2423b6d2691b98f5c3bf7e9cd134d0671c8ae063903380093709e16", + "sha256:a027ef0492ede1e03a8054e3c37b8def89a1e3c471482e9f046906ba4f2aafd2", + "sha256:a3f3654d5734a3ece152636aad89f58afc9213c6520062db3978239db122f03c", + "sha256:a82b92b04a23d3c8a581fc049228bafde988abacba397d57ce95fe95e0338ab4", + "sha256:acf3763ed01af8410fc36afea23707d4ea58ba7e86a8ee915dfb9ceff9ef69d0", + "sha256:adeb4c5b608574a3d647011af36f7586811a2c1197c861aedb548dd2453b41cd", + "sha256:b83835506dfc185a319031cf853fa4bb1b3974b1f913f5bb1a0f3d98bdcded04", + "sha256:bb28a7245de68bf29f6fb199545d072d1036a1917dca17a1e75bbb919e14ee8e", + "sha256:bf9cb9a9fd8891e7efd2d44deb24b86d647394b9705b744ff6f8261e6f29a730", + "sha256:c317eaf5ff46a34305b202e73404f55f7389ef834b8dbf4da09b9b9b37f76dd2", + "sha256:dbe8c6ae7534b5b024296464f387d57c13caa942f6d8e6e0346f27e509f0f768", + "sha256:de807ae933cfb7f0c7d9d981a053772452217df2bf38e7e6267c9cbf9545a796", + "sha256:dead2ddede4c7ba6cb3a721870f5141c97dc7d85a079edb4bd8d88c3ad5b20c7", + "sha256:dec5202bfe6f672d4511086e125db035a52b00f1648d6407cc8e526912c0353a", + "sha256:e1ea316102ea1e1770724db01998d1603ed921c54a86a2efcb03428d5417e489", + "sha256:f90bfc4ad18450c80b024036eaf91e4a246ae287701aaa88eaebebf150868052" + ], + "version": "==5.1" + }, + "decorator": { + "hashes": [ + "sha256:41fa54c2a0cc4ba648be4fd43cff00aedf5b9465c9bf18d64325bc225f08f760", + "sha256:e3a62f0520172440ca0dcc823749319382e377f37f140a0b99ef45fecb84bfe7" + ], + "version": "==4.4.2" + }, + "defusedxml": { + "hashes": [ + "sha256:6687150770438374ab581bb7a1b327a847dd9c5749e396102de3fad4e8a3ef93", + "sha256:f684034d135af4c6cbb949b8a4d2ed61634515257a67299e5f940fbaa34377f5" + ], + "version": "==0.6.0" + }, + "distlib": { + "hashes": [ + "sha256:2e166e231a26b36d6dfe35a48c4464346620f8645ed0ace01ee31822b288de21", + "sha256:8a041060c5a140131768a2e2450813f5577f7e4c68a4585824c5585502dcfbea" + ], + "version": "==0.3.0" + }, + "docutils": { + "hashes": [ + "sha256:0c5b78adfbf7762415433f5515cd5c9e762339e23369dbe8000d84a4bf4ab3af", + "sha256:c2de3a60e9e7d07be26b7f2b00ca0309c207e06c100f9cc2a94931fc75a478fc" + ], + "version": "==0.16" + }, + "entrypoints": { + "hashes": [ + "sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19", + "sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451" + ], + "version": "==0.3" + }, + "filelock": { + "hashes": [ + "sha256:18d82244ee114f543149c66a6e0c14e9c4f8a1044b5cdaadd0f82159d6a6ff59", + "sha256:929b7d63ec5b7d6b71b0fa5ac14e030b3f70b75747cef1b10da9b879fef15836" + ], + "version": "==3.0.12" + }, + "flake8": { + "hashes": [ + "sha256:45681a117ecc81e870cbf1262835ae4af5e7a8b08e40b944a8a6e6b895914cfb", + "sha256:49356e766643ad15072a789a20915d3c91dc89fd313ccd71802303fd67e4deca" + ], + "index": "pypi", + "version": "==3.7.9" + }, + "identify": { + "hashes": [ + "sha256:23c18d97bb50e05be1a54917ee45cc61d57cb96aedc06aabb2b02331edf0dbf0", + "sha256:88ed90632023e52a6495749c6732e61e08ec9f4f04e95484a5c37b9caf40283c" + ], + "version": "==1.4.15" + }, + "idna": { + "hashes": [ + "sha256:7588d1c14ae4c77d74036e8c22ff447b26d0fde8f007354fd48a7814db15b7cb", + "sha256:a068a21ceac8a4d63dbfd964670474107f541babbd2250d61922f029858365fa" + ], + "version": "==2.9" + }, + "ipykernel": { + "hashes": [ + "sha256:003c9c1ab6ff87d11f531fee2b9ca59affab19676fc6b2c21da329aef6e73499", + "sha256:2937373c356fa5b634edb175c5ea0e4b25de8008f7c194f2d49cfbd1f9c970a8" + ], + "index": "pypi", + "version": "==5.2.1" + }, + "ipython": { + "hashes": [ + "sha256:1807adeae64502fcaa491cd93405644faa055b646efb40c1e48648ad66f65a75", + "sha256:ca478e52ae1f88da0102360e57e528b92f3ae4316aabac80a2cd7f7ab2efb48a", + "sha256:eb8d075de37f678424527b5ef6ea23f7b80240ca031c2dd6de5879d687a65333" + ], + "version": "==7.13.0" + }, + "ipython-genutils": { + "hashes": [ + "sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8", + "sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8" + ], + "version": "==0.2.0" + }, + "jedi": { + "hashes": [ + "sha256:cd60c93b71944d628ccac47df9a60fec53150de53d42dc10a7fc4b5ba6aae798", + "sha256:df40c97641cb943661d2db4c33c2e1ff75d491189423249e989bcea4464f3030" + ], + "version": "==0.17.0" + }, + "jinja2": { + "hashes": [ + "sha256:39cbce1ffc25cbf4860b09195654763be95b9e4900475b24d5c345d3e0948c53", + "sha256:c10142f819c2d22bdcd17548c46fa9b77cf4fda45097854c689666bf425e7484", + "sha256:c922560ac46888d47384de1dbdc3daaa2ea993af4b26a436dec31fa2c19ec668" + ], + "version": "==3.0.0a1" + }, + "jsonschema": { + "hashes": [ + "sha256:4e5b3cf8216f577bee9ce139cbe72eca3ea4f292ec60928ff24758ce626cd163", + "sha256:c8a85b28d377cc7737e46e2d9f2b4f44ee3c0e1deac6bf46ddefc7187d30797a" + ], + "version": "==3.2.0" + }, + "jupyter-client": { + "hashes": [ + "sha256:3a32fa4d0b16d1c626b30c3002a62dfd86d6863ed39eaba3f537fade197bb756", + "sha256:cde8e83aab3ec1c614f221ae54713a9a46d3bf28292609d2db1b439bef5a8c8e" + ], + "version": "==6.1.3" + }, + "jupyter-core": { + "hashes": [ + "sha256:394fd5dd787e7c8861741880bdf8a00ce39f95de5d18e579c74b882522219e7e", + "sha256:a4ee613c060fe5697d913416fc9d553599c05e4492d58fac1192c9a6844abb21" + ], + "version": "==4.6.3" + }, + "jupyterlab-pygments": { + "hashes": [ + "sha256:19a0ccde7daddec638363cd3d60b63a4f6544c9181d65253317b2fb492a797b9", + "sha256:c9535e5999f29bff90bd0fa423717dcaf247b71fad505d66b17d3217e9021fc5" + ], + "version": "==0.1.1" + }, + "keyring": { + "hashes": [ + "sha256:197fd5903901030ef7b82fe247f43cfed2c157a28e7747d1cfcf4bc5e699dd03", + "sha256:8179b1cdcdcbc221456b5b74e6b7cfa06f8dd9f239eb81892166d9223d82c5ba", + "sha256:dcb7f54f06c868526b97f9825b558e5199661f9647849acf9204c2d6028501dc" + ], + "version": "==21.2.0" + }, + "markupsafe": { + "hashes": [ + "sha256:06358015a4dee8ee23ae426bf885616ab3963622defd829eb45b44e3dee3515f", + "sha256:0b0c4fc852c5f02c6277ef3b33d23fcbe89b1b227460423e3335374da046b6db", + "sha256:267677fc42afed5094fc5ea1c4236bbe4b6a00fe4b08e93451e65ae9048139c7", + "sha256:303cb70893e2c345588fb5d5b86e0ca369f9bb56942f03064c5e3e75fa7a238a", + "sha256:3c9b624a0d9ed5a5093ac4edc4e823e6b125441e60ef35d36e6f4a6fdacd5054", + "sha256:42033e14cae1f6c86fc0c3e90d04d08ce73ac8e46ba420a0d22d545c2abd4977", + "sha256:4e4a99b6af7bdc0856b50020c095848ec050356a001e1f751510aef6ab14d0e0", + "sha256:4eb07faad54bb07427d848f31030a65a49ebb0cec0b30674f91cf1ddd456bfe4", + "sha256:63a7161cd8c2bc563feeda45df62f42c860dd0675e2b8da2667f25bb3c95eaba", + "sha256:68e0fd039b68d2945b4beb947d4023ca7f8e95b708031c345762efba214ea761", + "sha256:8092a63397025c2f655acd42784b2a1528339b90b987beb9253f22e8cdbb36c3", + "sha256:841218860683c0f2223e24756843d84cc49cccdae6765e04962607754a52d3e0", + "sha256:888d45d90cef0c9f32e01d5beb7b5dafe6d1076cc23977e39944cfca73888907", + "sha256:94076b2314bd2f6cfae508ad65b4d493e3a58a50112b7a2cbb6287bdbc404ae8", + "sha256:9d22aff1c5322e402adfb3ce40839a5056c353e711c033798cf4f02eb9f5124d", + "sha256:b0e4584f62b3e5f5c1a7bcefd2b52f236505e6ef032cc508caa4f4c8dc8d3af1", + "sha256:b1163ffc1384d242964426a8164da12dbcdbc0de18ea36e2c34b898ed38c3b45", + "sha256:beac28ed60c8e838301226a7a85841d0af2068eba2dcb1a58c2d32d6c05e440e", + "sha256:c29f096ce79c03054a1101d6e5fe6bf04b0bb489165d5e0e9653fb4fe8048ee1", + "sha256:c58779966d53e5f14ba393d64e2402a7926601d1ac8adeb4e83893def79d0428", + "sha256:cfe14b37908eaf7d5506302987228bff69e1b8e7071ccd4e70fd0283b1b47f0b", + "sha256:e834249c45aa9837d0753351cdca61a4b8b383cc9ad0ff2325c97ff7b69e72a6", + "sha256:eed1b234c4499811ee85bcefa22ef5e466e75d132502226ed29740d593316c1f" + ], + "version": "==2.0.0a1" + }, + "mccabe": { + "hashes": [ + "sha256:ab8a6258860da4b6677da4bd2fe5dc2c659cff31b3ee4f7f5d64e79735b80d42", + "sha256:dd8d182285a0fe56bace7f45b5e7d1a6ebcbf524e8f3bd87eb0f125271b8831f" + ], + "version": "==0.6.1" + }, + "mistune": { + "hashes": [ + "sha256:59a3429db53c50b5c6bcc8a07f8848cb00d7dc8bdb431a4ab41920d201d4756e", + "sha256:88a1051873018da288eee8538d476dffe1262495144b33ecb586c4ab266bb8d4" + ], + "version": "==0.8.4" + }, + "more-itertools": { + "hashes": [ + "sha256:5dd8bcf33e5f9513ffa06d5ad33d78f31e1931ac9a18f33d37e77a180d393a7c", + "sha256:b1ddb932186d8a6ac451e1d95844b382f55e12686d51ca0c68b6f61f2ab7a507" + ], + "version": "==8.2.0" + }, + "mypy": { + "hashes": [ + "sha256:15b948e1302682e3682f11f50208b726a246ab4e6c1b39f9264a8796bb416aa2", + "sha256:219a3116ecd015f8dca7b5d2c366c973509dfb9a8fc97ef044a36e3da66144a1", + "sha256:3b1fc683fb204c6b4403a1ef23f0b1fac8e4477091585e0c8c54cbdf7d7bb164", + "sha256:3beff56b453b6ef94ecb2996bea101a08f1f8a9771d3cbf4988a61e4d9973761", + "sha256:7687f6455ec3ed7649d1ae574136835a4272b65b3ddcf01ab8704ac65616c5ce", + "sha256:7ec45a70d40ede1ec7ad7f95b3c94c9cf4c186a32f6bacb1795b60abd2f9ef27", + "sha256:86c857510a9b7c3104cf4cde1568f4921762c8f9842e987bc03ed4f160925754", + "sha256:8a627507ef9b307b46a1fea9513d5c98680ba09591253082b4c48697ba05a4ae", + "sha256:8dfb69fbf9f3aeed18afffb15e319ca7f8da9642336348ddd6cab2713ddcf8f9", + "sha256:a34b577cdf6313bf24755f7a0e3f3c326d5c1f4fe7422d1d06498eb25ad0c600", + "sha256:a8ffcd53cb5dfc131850851cc09f1c44689c2812d0beb954d8138d4f5fc17f65", + "sha256:b90928f2d9eb2f33162405f32dde9f6dcead63a0971ca8a1b50eb4ca3e35ceb8", + "sha256:c56ffe22faa2e51054c5f7a3bc70a370939c2ed4de308c690e7949230c995913", + "sha256:f91c7ae919bbc3f96cd5e5b2e786b2b108343d1d7972ea130f7de27fdd547cf3" + ], + "index": "pypi", + "version": "==0.770" + }, + "mypy-extensions": { + "hashes": [ + "sha256:090fedd75945a69ae91ce1303b5824f428daf5a028d2f6ab8a299250a846f15d", + "sha256:2d82818f5bb3e369420cb3c4060a7970edba416647068eb4c5343488a6c604a8" + ], + "version": "==0.4.3" + }, + "nbclient": { + "hashes": [ + "sha256:193731fd5039061dbd7d6d3f765a2fa59d23012594d68b1798deea9c3eae4a01", + "sha256:44dde0356def1d9345908c8f58dc604a434f2fe61c49ac13fac6e2da2ae429de", + "sha256:4589b7d656adfb90397ffe34b19e16fab74f0e732bbda7828f96d1f3111744ac" + ], + "version": "==0.2.0" + }, + "nbconvert": { + "hashes": [ + "sha256:4b2eff78c254a85d1668af70fca1cab4cecb077324ca72a1ac8959af08e78e3d", + "sha256:b327e1e75673fa4e76659396a0a012cb144bf3adc7aba3b55756de9497a2215e", + "sha256:fa440adb42328e35ee904c948932086744c23881883afc9630f81514fcbd4c3d" + ], + "version": "==6.0.0a1" + }, + "nbformat": { + "hashes": [ + "sha256:049af048ed76b95c3c44043620c17e56bc001329e07f83fec4f177f0e3d7b757", + "sha256:276343c78a9660ab2a63c28cc33da5f7c58c092b3f3a40b6017ae2ce6689320d" + ], + "version": "==5.0.6" + }, + "nest-asyncio": { + "hashes": [ + "sha256:14e194b72144052a82173ca9109bd07c57813a320f42c7acfad1e4d329988350", + "sha256:b4cdd08655e2848098d204a26590cbfa39fcbc4ad1811c568678ffc8a0c8e279" + ], + "version": "==1.3.2" + }, + "nodeenv": { + "hashes": [ + "sha256:5b2438f2e42af54ca968dd1b374d14a1194848955187b0e5e4be1f73813a5212" + ], + "version": "==1.3.5" + }, + "notebook": { + "hashes": [ + "sha256:3edc616c684214292994a3af05eaea4cc043f6b4247d830f3a2f209fa7639a80", + "sha256:47a9092975c9e7965ada00b9a20f0cf637d001db60d241d479f53c0be117ad48" + ], + "version": "==6.0.3" + }, + "packaging": { + "hashes": [ + "sha256:3c292b474fda1671ec57d46d739d072bfd495a4f51ad01a055121d81e952b7a3", + "sha256:82f77b9bee21c1bafbf35a84905d604d5d1223801d639cf3ed140bd651c08752" + ], + "version": "==20.3" + }, + "pandocfilters": { + "hashes": [ + "sha256:41a309da81cba5509389b19d96b0ee49551cee8165a6406754f2565e95429860", + "sha256:b3dd70e169bb5449e6bc6ff96aea89c5eea8c5f6ab5e207fc2f521a2cf4a0da9" + ], + "version": "==1.4.2" + }, + "parso": { + "hashes": [ + "sha256:158c140fc04112dc45bca311633ae5033c2c2a7b732fa33d0955bad8152a8dd0", + "sha256:908e9fae2144a076d72ae4e25539143d40b8e3eafbaeae03c1bfe226f4cdf12c" + ], + "version": "==0.7.0" + }, + "pathspec": { + "hashes": [ + "sha256:7d91249d21749788d07a2d0f94147accd8f845507400749ea19c1ec9054a12b0", + "sha256:da45173eb3a6f2a5a487efba21f050af2b41948be6ab52b6a1e3ff22bb8b7061" + ], + "version": "==0.8.0" + }, + "pexpect": { + "hashes": [ + "sha256:0b48a55dcb3c05f3329815901ea4fc1537514d6ba867a152b581d69ae3710937", + "sha256:fc65a43959d153d0114afe13997d439c22823a27cefceb5ff35c2178c6784c0c" + ], + "version": "==4.8.0" + }, + "pickleshare": { + "hashes": [ + "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca", + "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56" + ], + "version": "==0.7.5" + }, + "pkginfo": { + "hashes": [ + "sha256:7424f2c8511c186cd5424bbf31045b77435b37a8d604990b79d4e70d741148bb", + "sha256:a6d9e40ca61ad3ebd0b72fbadd4fba16e4c0e4df0428c041e01e06eb6ee71f32" + ], + "version": "==1.5.0.1" + }, + "pluggy": { + "hashes": [ + "sha256:15b2acde666561e1298d71b523007ed7364de07029219b604cf808bfa1c765b0", + "sha256:966c145cd83c96502c3c3868f50408687b38434af77734af1e9ca461a4081d2d" + ], + "version": "==0.13.1" + }, + "pre-commit": { + "hashes": [ + "sha256:979b53dab1af35063a483bfe13b0fcbbf1a2cf8c46b60e0a9a8d08e8269647a1", + "sha256:df6cc19403b4ce6f8003e7657bcf6566150558070ee2363429f24033c09158bc", + "sha256:f3e85e68c6d1cbe7828d3471896f1b192cfcf1c4d83bf26e26beeb5941855257" + ], + "index": "pypi", + "version": "==2.3.0" + }, + "prometheus-client": { + "hashes": [ + "sha256:09b5750fd1c153420dccd35881116e853c730081bea0dbf0ea6649103bcb8445", + "sha256:71cd24a2b3eb335cb800c7159f423df1bd4dcd5171b234be15e3f31ec9f622da" + ], + "version": "==0.7.1" + }, + "prompt-toolkit": { + "hashes": [ + "sha256:563d1a4140b63ff9dd587bda9557cffb2fe73650205ab6f4383092fb882e7dc8", + "sha256:df7e9e63aea609b1da3a65641ceaf5bc7d05e0a04de5bd45d05dbeffbabf9e04" + ], + "version": "==3.0.5" + }, + "ptyprocess": { + "hashes": [ + "sha256:923f299cc5ad920c68f2bc0bc98b75b9f838b93b599941a6b63ddbc2476394c0", + "sha256:d7cc528d76e76342423ca640335bd3633420dc1366f258cb31d05e865ef5ca1f" + ], + "version": "==0.6.0" + }, + "py": { + "hashes": [ + "sha256:5e27081401262157467ad6e7f851b7aa402c5852dbcb3dae06768434de5752aa", + "sha256:c20fdd83a5dbc0af9efd622bee9a5564e278f6380fffcacc43ba6f43db2813b0" + ], + "version": "==1.8.1" + }, + "pycodestyle": { + "hashes": [ + "sha256:95a2219d12372f05704562a14ec30bc76b05a5b297b21a5dfe3f6fac3491ae56", + "sha256:e40a936c9a450ad81df37f549d676d127b1b66000a6c500caa2b085bc0ca976c" + ], + "version": "==2.5.0" + }, + "pyflakes": { + "hashes": [ + "sha256:17dbeb2e3f4d772725c777fabc446d5634d1038f234e77343108ce445ea69ce0", + "sha256:d976835886f8c5b31d47970ed689944a0262b5f3afa00a5a7b4dc81e5449f8a2" + ], + "version": "==2.1.1" + }, + "pygments": { + "hashes": [ + "sha256:647344a061c249a3b74e230c739f434d7ea4d8b1d5f3721bc0f3558049b38f44", + "sha256:aa931c0bd5daa25c475afadb2147115134cfe501f0656828cbe7cb566c7123bc", + "sha256:ff7a40b4860b727ab48fad6360eb351cc1b33cbf9b15a0f689ca5353e9463324" + ], + "version": "==2.6.1" + }, + "pyparsing": { + "hashes": [ + "sha256:67199f0c41a9c702154efb0e7a8cc08accf830eb003b4d9fa42c4059002e2492", + "sha256:700d17888d441604b0bd51535908dcb297561b040819cccde647a92439db5a2a" + ], + "version": "==3.0.0a1" + }, + "pyrsistent": { + "hashes": [ + "sha256:28669905fe725965daa16184933676547c5bb40a5153055a8dee2a4bd7933ad3", + "sha256:3217696df78f9222a3d1179b119c27be346b969a9e4d617de2a215a87d9aa456", + "sha256:9324b762b52e5a901611b25f50f9cdf8789c61ece3ff7c24dc872603c4faca62", + "sha256:c11415790cc5803e173de7d71d54f94c66a9154f81a72ffdf45a70096916f226" + ], + "version": "==0.16.0" + }, + "pytest": { + "hashes": [ + "sha256:0e5b30f5cb04e887b91b1ee519fa3d89049595f428c1db76e73bd7f17b09b172", + "sha256:84dde37075b8805f3d1f392cc47e38a0e59518fb46a431cfdaf7cf1ce805f970" + ], + "index": "pypi", + "version": "==5.4.1" + }, + "pytest-cov": { + "hashes": [ + "sha256:cc6742d8bac45070217169f5f72ceee1e0e55b0221f54bcf24845972d3a47f2b", + "sha256:cdbdef4f870408ebdbfeb44e63e07eb18bb4619fae852f6e760645fa36172626" + ], + "index": "pypi", + "version": "==2.8.1" + }, + "python-dateutil": { + "hashes": [ + "sha256:73ebfe9dbf22e832286dafa60473e4cd239f8592f699aa5adaf10050e6e1823c", + "sha256:75bb3f31ea686f1197762692a9ee6a7550b59fc6ca3a1f4b5d7e32fb98e2da2a" + ], + "version": "==2.8.1" + }, + "pywin32": { + "hashes": [ + "sha256:300a2db938e98c3e7e2093e4491439e62287d0d493fe07cce110db070b54c0be", + "sha256:31f88a89139cb2adc40f8f0e65ee56a8c585f629974f9e07622ba80199057511", + "sha256:371fcc39416d736401f0274dd64c2302728c9e034808e37381b5e1b22be4a6b0", + "sha256:47a3c7551376a865dd8d095a98deba954a98f326c6fe3c72d8726ca6e6b15507", + "sha256:4cdad3e84191194ea6d0dd1b1b9bdda574ff563177d2adf2b4efec2a244fa116", + "sha256:7c1ae32c489dc012930787f06244426f8356e129184a02c25aef163917ce158e", + "sha256:7f18199fbf29ca99dff10e1f09451582ae9e372a892ff03a28528a24d55875bc", + "sha256:9b31e009564fb95db160f154e2aa195ed66bcc4c058ed72850d047141b36f3a2", + "sha256:a929a4af626e530383a579431b70e512e736e9588106715215bf685a3ea508d4", + "sha256:c054c52ba46e7eb6b7d7dfae4dbd987a1bb48ee86debe3f245a2884ece46e295", + "sha256:f27cec5e7f588c3d1051651830ecc00294f90728d19c3bf6916e6dba93ea357c", + "sha256:f4c5be1a293bae0076d93c88f37ee8da68136744588bc5e2be2f299a34ceb7aa" + ], + "markers": "sys_platform == 'win32'", + "version": "==227" + }, + "pywin32-ctypes": { + "hashes": [ + "sha256:24ffc3b341d457d48e8922352130cf2644024a4ff09762a2261fd34c36ee5942", + "sha256:9dc2d991b3479cc2df15930958b674a48a227d5361d413827a4cfd0b5876fc98" + ], + "markers": "sys_platform == 'win32'", + "version": "==0.2.0" + }, + "pywinpty": { + "hashes": [ + "sha256:1e525a4de05e72016a7af27836d512db67d06a015aeaf2fa0180f8e6a039b3c2", + "sha256:2740eeeb59297593a0d3f762269b01d0285c1b829d6827445fcd348fb47f7e70", + "sha256:2d7e9c881638a72ffdca3f5417dd1563b60f603e1b43e5895674c2a1b01f95a0", + "sha256:33df97f79843b2b8b8bc5c7aaf54adec08cc1bae94ee99dfb1a93c7a67704d95", + "sha256:5fb2c6c6819491b216f78acc2c521b9df21e0f53b9a399d58a5c151a3c4e2a2d", + "sha256:8fc5019ff3efb4f13708bd3b5ad327589c1a554cb516d792527361525a7cb78c", + "sha256:b358cb552c0f6baf790de375fab96524a0498c9df83489b8c23f7f08795e966b", + "sha256:dbd838de92de1d4ebf0dce9d4d5e4fc38d0b7b1de837947a18b57a882f219139", + "sha256:dd22c8efacf600730abe4a46c1388355ce0d4ab75dc79b15d23a7bd87bf05b48", + "sha256:e854211df55d107f0edfda8a80b39dfc87015bef52a8fe6594eb379240d81df2" + ], + "markers": "os_name == 'nt'", + "version": "==0.5.7" + }, + "pyyaml": { + "hashes": [ + "sha256:06a0d7ba600ce0b2d2fe2e78453a470b5a6e000a985dd4a4e54e436cc36b0e97", + "sha256:240097ff019d7c70a4922b6869d8a86407758333f02203e0fc6ff79c5dcede76", + "sha256:4f4b913ca1a7319b33cfb1369e91e50354d6f07a135f3b901aca02aa95940bd2", + "sha256:589929630502f3b0e87daee190b399f98401b6bccea87ed634a73fe5da43d3d4", + "sha256:69f00dca373f240f842b2931fb2c7e14ddbacd1397d57157a9b005a6a9942648", + "sha256:6e8383720b2127b09dba5b323ac896c702cf02bc5786fce16cd6791825d92d16", + "sha256:73f099454b799e05e5ab51423c7bcf361c58d3206fa7b0d555426b1f4d9a3eaf", + "sha256:74809a57b329d6cc0fdccee6318f44b9b8649961fa73144a98735b0aaf029f1f", + "sha256:7739fc0fa8205b3ee8808aea45e968bc90082c10aef6ea95e855e10abf4a37b2", + "sha256:95f71d2af0ff4227885f7a6605c37fd53d3a106fcab511b8860ecca9fcf400ee", + "sha256:b8eac752c5e14d3eca0e6dd9199cd627518cb5ec06add0de9d32baeee6fe645d", + "sha256:cc8955cfbfc7a115fa81d85284ee61147059a753344bc51098f3ccd69b0d7e0c", + "sha256:d13155f591e6fcc1ec3b30685d50bf0711574e2c0dfffd7644babf8b5102ca1a" + ], + "version": "==5.3.1" + }, + "pyzmq": { + "hashes": [ + "sha256:07bfbf192f22ef1dde65b6046efff191e3201e74da6d47098e68958469ecbe48", + "sha256:0bbc1728fe4314b4ca46249c33873a390559edac7c217ec7001b5e0c34a8fb7f", + "sha256:1e076ad5bd3638a18c376544d32e0af986ca10d43d4ce5a5d889a8649f0d0a3d", + "sha256:242d949eb6b10197cda1d1cec377deab1d5324983d77e0d0bf9dc5eb6d71a6b4", + "sha256:26f4ae420977d2a8792d7c2d7bda43128b037b5eeb21c81951a94054ad8b8843", + "sha256:32234c21c5e0a767c754181c8112092b3ddd2e2a36c3f76fc231ced817aeee47", + "sha256:3f12ce1e9cc9c31497bd82b207e8e86ccda9eebd8c9f95053aae46d15ccd2196", + "sha256:4557d5e036e6d85715b4b9fdb482081398da1d43dc580d03db642b91605b409f", + "sha256:4f562dab21c03c7aa061f63b147a595dbe1006bf4f03213272fc9f7d5baec791", + "sha256:54ecd00daa474885bbf318108401d318614425a05dfeae917611dd93f99f2678", + "sha256:5e071b834051e9ecb224915398f474bfad802c2fff883f118ff5363ca4ae3edf", + "sha256:5e1f65e576ab07aed83f444e201d86deb01cd27dcf3f37c727bc8729246a60a8", + "sha256:5f10a31f288bf055be76c57710807a8f0efdb2b82be6c2a2b8f9a61f33a40cea", + "sha256:6aaaf90b420dc40d9a0e1996b82c6a0ff91d9680bebe2135e67c9e6d197c0a53", + "sha256:75238d3c16cab96947705d5709187a49ebb844f54354cdf0814d195dd4c045de", + "sha256:7f7e7b24b1d392bb5947ba91c981e7d1a43293113642e0d8870706c8e70cdc71", + "sha256:84b91153102c4bcf5d0f57d1a66a0f03c31e9e6525a5f656f52fc615a675c748", + "sha256:944f6bb5c63140d76494467444fd92bebd8674236837480a3c75b01fe17df1ab", + "sha256:a1f957c20c9f51d43903881399b078cddcf710d34a2950e88bce4e494dcaa4d1", + "sha256:a49fd42a29c1cc1aa9f461c5f2f5e0303adba7c945138b35ee7f4ab675b9f754", + "sha256:a99ae601b4f6917985e9bb071549e30b6f93c72f5060853e197bdc4b7d357e5f", + "sha256:ad48865a29efa8a0cecf266432ea7bc34e319954e55cf104be0319c177e6c8f5", + "sha256:b08e425cf93b4e018ab21dc8fdbc25d7d0502a23cc4fea2380010cf8cf11e462", + "sha256:bb10361293d96aa92be6261fa4d15476bca56203b3a11c62c61bd14df0ef89ba", + "sha256:bd1a769d65257a7a12e2613070ca8155ee348aa9183f2aadf1c8b8552a5510f5", + "sha256:cb3b7156ef6b1a119e68fbe3a54e0a0c40ecacc6b7838d57dd708c90b62a06dc", + "sha256:d2f64994f9628f621e0f636f9532055887defc9fa5213aaeceb770d9c579f9ac", + "sha256:e8e4efb52ec2df8d046395ca4c84ae0056cf507b2f713ec803c65a8102d010de", + "sha256:f37c29da2a5b0c5e31e6f8aab885625ea76c807082f70b2d334d3fd573c3100a", + "sha256:f4d558bc5668d2345773a9ff8c39e2462dafcb1f6772a2e582fbced389ce527f", + "sha256:f5b6d015587a1d6f582ba03b226a9ddb1dfb09878b3be04ef48b01b7d4eb6b2a" + ], + "version": "==19.0.0" + }, + "readme-renderer": { + "hashes": [ + "sha256:302f50d694158d6fbd5db1ab549999ade0669b8386b09dafa9c54861e0571b75", + "sha256:cbe9db71defedd2428a1589cdc545f9bd98e59297449f69d721ef8f1cfced68d", + "sha256:cc4957a803106e820d05d14f71033092537a22daa4f406dfbdd61177e0936376" + ], + "version": "==26.0" + }, + "regex": { + "hashes": [ + "sha256:08119f707f0ebf2da60d2f24c2f39ca616277bb67ef6c92b72cbf90cbe3a556b", + "sha256:0ce9537396d8f556bcfc317c65b6a0705320701e5ce511f05fc04421ba05b8a8", + "sha256:1cbe0fa0b7f673400eb29e9ef41d4f53638f65f9a2143854de6b1ce2899185c3", + "sha256:2294f8b70e058a2553cd009df003a20802ef75b3c629506be20687df0908177e", + "sha256:23069d9c07e115537f37270d1d5faea3e0bdded8279081c4d4d607a2ad393683", + "sha256:24f4f4062eb16c5bbfff6a22312e8eab92c2c99c51a02e39b4eae54ce8255cd1", + "sha256:295badf61a51add2d428a46b8580309c520d8b26e769868b922750cf3ce67142", + "sha256:2a3bf8b48f8e37c3a40bb3f854bf0121c194e69a650b209628d951190b862de3", + "sha256:4385f12aa289d79419fede43f979e372f527892ac44a541b5446617e4406c468", + "sha256:5635cd1ed0a12b4c42cce18a8d2fb53ff13ff537f09de5fd791e97de27b6400e", + "sha256:5bfed051dbff32fd8945eccca70f5e22b55e4148d2a8a45141a3b053d6455ae3", + "sha256:7e1037073b1b7053ee74c3c6c0ada80f3501ec29d5f46e42669378eae6d4405a", + "sha256:9016fe9da2a10642e25543c9ffaa2466dac697d87d42653666ec84007e4d37d3", + "sha256:90742c6ff121a9c5b261b9b215cb476eea97df98ea82037ec8ac95d1be7a034f", + "sha256:a58dd45cb865be0ce1d5ecc4cfc85cd8c6867bea66733623e54bd95131f473b6", + "sha256:c087bff162158536387c53647411db09b6ee3f9603c334c90943e97b1052a156", + "sha256:c162a21e0da33eb3d31a3ac17a51db5e634fc347f650d271f0305d96601dc15b", + "sha256:c9423a150d3a4fc0f3f2aae897a59919acd293f4cb397429b120a5fcd96ea3db", + "sha256:ccccdd84912875e34c5ad2d06e1989d890d43af6c2242c6fcfa51556997af6cd", + "sha256:e04db93ad8072c40ce03e5ea074fe811e483a2fc5b539f481264e09bf6522559", + "sha256:e91ba11da11cf770f389e47c3f5c30473e6d85e06d7fd9dcba0017d2867aab4a", + "sha256:ea4adf02d23b437684cd388d557bf76e3afa72f7fed5bbc013482cc00c816948", + "sha256:fa4c724fc5b867d3a2461d4d78e0feb6adfeee5f2976071aba4b2325fae71045", + "sha256:fb95debbd1a824b2c4376932f2216cc186912e389bdb0e27147778cf6acb3f89" + ], + "version": "==2020.4.4" + }, + "remote-ikernel": { + "hashes": [ + "sha256:5253216e87a8c31f1b0ca9305454f223147518b580e853b7635a3d8b9c88c295", + "sha256:740b80a57fa1af40cadef541c5a4eb293675b504092ecf00c57dd2f0011bd840" + ], + "index": "pypi", + "version": "==0.4.6" + }, + "requests": { + "hashes": [ + "sha256:43999036bfa82904b6af1d99e4882b560e5e2c68e5c4b0aa03b655f3d7d73fee", + "sha256:b3f43d496c6daba4493e7c431722aeb7dbc6288f52a6e04e7b6023b0247817e6" + ], + "version": "==2.23.0" + }, + "requests-toolbelt": { + "hashes": [ + "sha256:380606e1d10dc85c3bd47bf5a6095f815ec007be7a8b69c878507068df059e6f", + "sha256:968089d4584ad4ad7c171454f0a5c6dac23971e9472521ea3b6d49d610aa6fc0" + ], + "version": "==0.9.1" + }, + "send2trash": { + "hashes": [ + "sha256:60001cc07d707fe247c94f74ca6ac0d3255aabcb930529690897ca2a39db28b2", + "sha256:f1691922577b6fa12821234aeb57599d887c4900b9ca537948d2dac34aea888b" + ], + "version": "==1.5.0" + }, + "six": { + "hashes": [ + "sha256:236bdbdce46e6e6a3d61a337c0f8b763ca1e8717c03b369e87a7ec7ce1319c0a", + "sha256:8f3cd2e254d8f793e7f3d6d9df77b92252b52637291d0f0da013c76ea2724b6c" + ], + "version": "==1.14.0" + }, + "soupsieve": { + "hashes": [ + "sha256:e914534802d7ffd233242b785229d5ba0766a7f487385e3f714446a07bf540ae", + "sha256:f24cabf0197b86c6d5e3fb96fd11a1c0739618375d95de91a477aa9652282150", + "sha256:fcd71e08c0aee99aca1b73f45478549ee7e7fc006d51b37bec9e9def7dc22b69" + ], + "version": "==2.0" + }, + "sqlalchemy-stubs": { + "hashes": [ + "sha256:a3318c810697164e8c818aa2d90bac570c1a0e752ced3ec25455b309c0bee8fd", + "sha256:ca1250605a39648cc433f5c70cb1a6f9fe0b60bdda4c51e1f9a2ab3651daadc8" + ], + "index": "pypi", + "version": "==0.3" + }, + "terminado": { + "hashes": [ + "sha256:4804a774f802306a7d9af7322193c5390f1da0abb429e082a10ef1d46e6fb2c2", + "sha256:a43dcb3e353bc680dd0783b1d9c3fc28d529f190bc54ba9a229f72fe6e7a54d7" + ], + "version": "==0.8.3" + }, + "testpath": { + "hashes": [ + "sha256:60e0a3261c149755f4399a1fff7d37523179a70fdc3abdf78de9fc2604aeec7e", + "sha256:bfcf9411ef4bf3db7579063e0546938b1edda3d69f4e1fb8756991f5951f85d4" + ], + "version": "==0.4.4" + }, + "toml": { + "hashes": [ + "sha256:229f81c57791a41d65e399fc06bf0848bab550a9dfd5ed66df18ce5f05e73d5c", + "sha256:235682dd292d5899d361a811df37e04a8828a5b1da3115886b73cf81ebc9100e" + ], + "version": "==0.10.0" + }, + "tornado": { + "hashes": [ + "sha256:0fe2d45ba43b00a41cd73f8be321a44936dc1aba233dee979f17a042b83eb6dc", + "sha256:22aed82c2ea340c3771e3babc5ef220272f6fd06b5108a53b4976d0d722bcd52", + "sha256:2c027eb2a393d964b22b5c154d1a23a5f8727db6fda837118a776b29e2b8ebc6", + "sha256:503700d85d9a2c2aa737fb16df58bfa2ac0d5ec501881fea2acceae64ce17858", + "sha256:5217e601700f24e966ddab689f90b7ea4bd91ff3357c3600fa1045e26d68e55d", + "sha256:5618f72e947533832cbc3dec54e1dffc1747a5cb17d1fd91577ed14fa0dc081b", + "sha256:5f6a07e62e799be5d2330e68d808c8ac41d4a259b9cea61da4101b83cb5dc673", + "sha256:7182a9285e364e55e6902b5fb4d4a219efd8d7818d9000b419a0eaf3909fc0bc", + "sha256:c58d56003daf1b616336781b26d184023ea4af13ae143d9dda65e31e534940b9", + "sha256:c952975c8ba74f546ae6de2e226ab3cc3cc11ae47baf607459a6728585bb542a", + "sha256:c98232a3ac391f5faea6821b53db8db461157baa788f5d6222a193e9456e1740" + ], + "version": "==6.0.4" + }, + "tqdm": { + "hashes": [ + "sha256:00339634a22c10a7a22476ee946bbde2dbe48d042ded784e4d88e0236eca5d81", + "sha256:ea9e3fd6bd9a37e8783d75bfc4c1faf3c6813da6bd1c3e776488b41ec683af94" + ], + "version": "==4.45.0" + }, + "traitlets": { + "hashes": [ + "sha256:70b4c6a1d9019d7b4f6846832288f86998aa3b9207c6821f3578a6a6a467fe44", + "sha256:d023ee369ddd2763310e4c3eae1ff649689440d4ae59d7485eb4cfbbe3e359f7" + ], + "version": "==4.3.3" + }, + "twine": { + "hashes": [ + "sha256:c1af8ca391e43b0a06bbc155f7f67db0bf0d19d284bfc88d1675da497a946124", + "sha256:d561a5e511f70275e5a485a6275ff61851c16ffcb3a95a602189161112d9f160" + ], + "index": "pypi", + "version": "==3.1.1" + }, + "typed-ast": { + "hashes": [ + "sha256:0666aa36131496aed8f7be0410ff974562ab7eeac11ef351def9ea6fa28f6355", + "sha256:0c2c07682d61a629b68433afb159376e24e5b2fd4641d35424e462169c0a7919", + "sha256:249862707802d40f7f29f6e1aad8d84b5aa9e44552d2cc17384b209f091276aa", + "sha256:24995c843eb0ad11a4527b026b4dde3da70e1f2d8806c99b7b4a7cf491612652", + "sha256:269151951236b0f9a6f04015a9004084a5ab0d5f19b57de779f908621e7d8b75", + "sha256:3791f73e5d75aa9a95274679ab4821bd9d16de623c4ecf4900a77a29864ee144", + "sha256:4083861b0aa07990b619bd7ddc365eb7fa4b817e99cf5f8d9cf21a42780f6e01", + "sha256:498b0f36cc7054c1fead3d7fc59d2150f4d5c6c56ba7fb150c013fbc683a8d2d", + "sha256:4e3e5da80ccbebfff202a67bf900d081906c358ccc3d5e3c8aea42fdfdfd51c1", + "sha256:6daac9731f172c2a22ade6ed0c00197ee7cc1221aa84cfdf9c31defeb059a907", + "sha256:715ff2f2df46121071622063fc7543d9b1fd19ebfc4f5c8895af64a77a8c852c", + "sha256:73d785a950fc82dd2a25897d525d003f6378d1cb23ab305578394694202a58c3", + "sha256:8c8aaad94455178e3187ab22c8b01a3837f8ee50e09cf31f1ba129eb293ec30b", + "sha256:8ce678dbaf790dbdb3eba24056d5364fb45944f33553dd5869b7580cdbb83614", + "sha256:aaee9905aee35ba5905cfb3c62f3e83b3bec7b39413f0a7f19be4e547ea01ebb", + "sha256:bcd3b13b56ea479b3650b82cabd6b5343a625b0ced5429e4ccad28a8973f301b", + "sha256:c9e348e02e4d2b4a8b2eedb48210430658df6951fa484e59de33ff773fbd4b41", + "sha256:d205b1b46085271b4e15f670058ce182bd1199e56b317bf2ec004b6a44f911f6", + "sha256:d43943ef777f9a1c42bf4e552ba23ac77a6351de620aa9acf64ad54933ad4d34", + "sha256:d5d33e9e7af3b34a40dc05f498939f0ebf187f07c385fd58d591c533ad8562fe", + "sha256:df74880bdb70f34304ccc52b0c99d3e578f96a906b86f3ae172a1f1c2edef2bc", + "sha256:fc0fea399acb12edbf8a628ba8d2312f583bdbdb3335635db062fa98cf71fca4", + "sha256:fe460b922ec15dd205595c9b5b99e2f056fd98ae8f9f56b888e7a17dc2b757e7" + ], + "version": "==1.4.1" + }, + "typing-extensions": { + "hashes": [ + "sha256:6e95524d8a547a91e08f404ae485bbb71962de46967e1b71a0cb89af24e761c5", + "sha256:79ee589a3caca649a9bfd2a8de4709837400dfa00b6cc81962a1e6a1815969ae", + "sha256:f8d2bd89d25bc39dabe7d23df520442fa1d8969b82544370e03d88b5a591c392" + ], + "version": "==3.7.4.2" + }, + "urllib3": { + "hashes": [ + "sha256:3018294ebefce6572a474f0604c2021e33b3fd8006ecd11d62107a5d2a963527", + "sha256:88206b0eb87e6d677d424843ac5209e3fb9d0190d0ee169599165ec25e9d9115" + ], + "version": "==1.25.9" + }, + "virtualenv": { + "hashes": [ + "sha256:5021396e8f03d0d002a770da90e31e61159684db2859d0ba4850fbea752aa675", + "sha256:ac53ade75ca189bc97b6c1d9ec0f1a50efe33cbf178ae09452dcd9fd309013c1" + ], + "version": "==20.0.18" + }, + "waitress": { + "hashes": [ + "sha256:045b3efc3d97c93362173ab1dfc159b52cfa22b46c3334ffc805dbdbf0e4309e", + "sha256:77ff3f3226931a1d7d8624c5371de07c8e90c7e5d80c5cc660d72659aaf23f38" + ], + "index": "pypi", + "version": "==1.4.3" + }, + "wcwidth": { + "hashes": [ + "sha256:cafe2186b3c009a04067022ce1dcd79cb38d8d65ee4f4791b8888d6599d1bbe1", + "sha256:ee73862862a156bf77ff92b09034fc4825dd3af9cf81bc5b360668d425f3c5f1" + ], + "version": "==0.1.9" + }, + "webencodings": { + "hashes": [ + "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", + "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923" + ], + "version": "==0.5.1" + }, + "webob": { + "hashes": [ + "sha256:a3c89a8e9ba0aeb17382836cdb73c516d0ecf6630ec40ec28288f3ed459ce87b", + "sha256:aa3a917ed752ba3e0b242234b2a373f9c4e2a75d35291dcbe977649bd21fd108" + ], + "version": "==1.8.6" + }, + "webtest": { + "hashes": [ + "sha256:71114cd778a7d7b237ec5c8a5c32084f447d869ae62e48bcd5b73af211133e74", + "sha256:da9cf14c103ff51a40dee4cac7657840d1317456eb8f0ca81289b5cbff175f4b" + ], + "index": "pypi", + "version": "==2.0.34" + }, + "wheel": { + "hashes": [ + "sha256:8788e9155fe14f54164c1b9eb0a319d98ef02c160725587ad60f14ddc57b6f96", + "sha256:df277cb51e61359aba502208d680f90c0493adec6f0e848af94948778aed386e" + ], + "index": "pypi", + "version": "==0.34.2" + } + } +} diff --git a/Ch12/apd.sensors-chapter12/README.md b/Ch12/apd.sensors-chapter12/README.md new file mode 100644 index 0000000..cd96353 --- /dev/null +++ b/Ch12/apd.sensors-chapter12/README.md @@ -0,0 +1,96 @@ +# Advanced Python Development Sensors + +This is the data collection package that forms part of the running example +for the book [Advanced Python Development](https://advancedpython.dev). + +## Usage + +This installs a console script called `sensors` that returns a report on +various aspects of the system. The available sensors are: + +* Python version +* IP Addresses +* CPU Usage +* RAM Available +* Battery charging state +* Ambient Temperature +* Ambient Humidity + +There are no command-line options, to view the report run `sensors` on the +command line. + +## Caveats + +The Ambient Temperature and Ambient Humidity sensors are only available on +RaspberryPi hosts and assume that a DHT22 sensor is connected to pin `D20`. + +The location and type of the sensor can be controlled by setting a pair of +environment variables: `APD_SENSORS_TEMPERATURE_BOARD` and +`APD_SENSORS_TEMPERATURE_PIN`. + +If there is an entry in `/etc/hosts` for the current machine's hostname that +value will be the only result from the IP Addresses sensor. + +## Installation + +You can install with `pip3 install apd.sensors` under Python 3.7 or higher. + +We recommend using pipenv to manage your environment, in which case you would +install using `pipenv --three install apd.sensors` and run the programme using +`pipenv run sensors`. + +## API server + +There is an optional API server shipped with apd.sensors. To use this you +should install the `apd.sensors[webapp]` extra. The API can then be started +with the non-production quality wsgiref server using: + + python -m apd.sensors.wsgi.serve + +or through Waitress (if installed) using: + + waitress-serve --call apd.sensors.wsgi:set_up_config + +Other WSGI servers will also work, you should use set_up_config as a factory +function. + +An environment variable is required to use the API server, `APD_SENSORS_API_KEY` +should be set to the API key required to gain access. One can be generated +using: + + python -c "import uuid; print(uuid.uuid4().hex)" + +The following endpoints are supported: + +* /v/3.0/sensors +* /v/3.0/sensors/sensorid +* /v/3.0/deployment_id + +## Historical data + +You can install optional functionality to periodically store sensor +values using the `apd.sensors[scheduled]` extra. In this case, +`sensors --save` will store the recorded data to `sensor_data.sqlite` +in the current working directory. + +The database connection can be specified with `--db sqlite:////var/sensors.sqlite`, +for example. It can also be specified with the `APD_SENSORS_DB_URI` +environment variable. + +The database must be migrated to contain the correct data first. This can be +done by running `alembic upgrade head` with the following alembic.ini file +in the current working directory. + + [alembic] + script_location = apd.sensors:alembic + sqlalchemy.url = sqlite:///sensor_data.sqlite + +### Historical data API + +An API to extract historical data is also available if installed with `apd.sensors[webapp,scheduled,storedapi]`. + +This provides the following three URIs, where start and end are a date/time in ISO format. + +* /v/3.0/historical +* /v/3.0/historical/start +* /v/3.0/historical/start/end diff --git a/Ch12/apd.sensors-chapter12/plugins/apd.sunnyboy_solar/pyproject.toml b/Ch12/apd.sensors-chapter12/plugins/apd.sunnyboy_solar/pyproject.toml new file mode 100644 index 0000000..4d3bb67 --- /dev/null +++ b/Ch12/apd.sensors-chapter12/plugins/apd.sunnyboy_solar/pyproject.toml @@ -0,0 +1,5 @@ +[build-system] +requires = [ + "setuptools", +] +build-backend = "setuptools.build_meta" diff --git a/Ch12/apd.sensors-chapter12/plugins/apd.sunnyboy_solar/setup.cfg b/Ch12/apd.sensors-chapter12/plugins/apd.sunnyboy_solar/setup.cfg new file mode 100644 index 0000000..0f5db10 --- /dev/null +++ b/Ch12/apd.sensors-chapter12/plugins/apd.sunnyboy_solar/setup.cfg @@ -0,0 +1,33 @@ +[mypy] +ignore_missing_imports = True + +[flake8] +max-line-length = 88 + +[metadata] +name = apd.sunnyboy_solar +version = attr: apd.sunnyboy_solar.VERSION +description = APD Sensor for reading data from Sunnyboy inverters +long_description = file: README.md, CHANGES.md, LICENCE +long_description_content_type = text/markdown +keywords = iot solar +license = MIT +classifiers = + Programming Language :: Python :: 3 + Programming Language :: Python :: 3.7 + +[options] +zip_safe = False +include_package_data = True +package_dir = + =src +packages = find_namespace: +install_requires = + apd.sensors + +[options.packages.find] +where = src + +[options.entry_points] +apd.sensors.sensors = + SolarCumulativeOutput = apd.sunnyboy_solar.sensor:SolarCumulativeOutput diff --git a/Ch12/apd.sensors-chapter12/plugins/apd.sunnyboy_solar/setup.py b/Ch12/apd.sensors-chapter12/plugins/apd.sunnyboy_solar/setup.py new file mode 100644 index 0000000..6068493 --- /dev/null +++ b/Ch12/apd.sensors-chapter12/plugins/apd.sunnyboy_solar/setup.py @@ -0,0 +1,3 @@ +from setuptools import setup + +setup() diff --git a/Ch12/apd.sensors-chapter12/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/Pipfile b/Ch12/apd.sensors-chapter12/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/Pipfile new file mode 100644 index 0000000..e69de29 diff --git a/Ch12/apd.sensors-chapter12/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/__init__.py b/Ch12/apd.sensors-chapter12/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/__init__.py new file mode 100644 index 0000000..3277f64 --- /dev/null +++ b/Ch12/apd.sensors-chapter12/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/__init__.py @@ -0,0 +1 @@ +VERSION = "1.0.0" diff --git a/Ch12/apd.sensors-chapter12/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/sensor.py b/Ch12/apd.sensors-chapter12/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/sensor.py new file mode 100644 index 0000000..190159a --- /dev/null +++ b/Ch12/apd.sensors-chapter12/plugins/apd.sunnyboy_solar/src/apd/sunnyboy_solar/sensor.py @@ -0,0 +1,73 @@ +import os +import subprocess +import typing as t + +from pint import _DEFAULT_REGISTRY as ureg + +from apd.sensors.base import Sensor +from apd.sensors.exceptions import ( + PersistentSensorFailureError, + IntermittentSensorFailureError, +) + + +class SolarCumulativeOutput(Sensor[t.Any]): + name = "SolarCumulativeOutput" + title = "Solar panel cumulative output" + + def __init__( + self, path: t.Optional[str] = None, bt_addr: t.Optional[str] = None + ) -> None: + self.path = os.environ.get( + "APD_SUNNYBOYSOLAR_PATH", "/home/pi/opensunny-master/opensunny" + ) + self.bt_addr = os.environ.get("APD_SUNNYBOYSOLAR_BT_ADDRESS", None) + + def value(self) -> t.Optional[t.Any]: + if self.bt_addr is None: + raise PersistentSensorFailureError("Inverter address not configured") + try: + output: bytes = subprocess.check_output( + [self.path, "-i", self.bt_addr], stderr=subprocess.STDOUT, timeout=15 + ) + except subprocess.CalledProcessError as err: + raise IntermittentSensorFailureError( + "Failure communicating with inverter" + ) from err + except FileNotFoundError as err: + raise PersistentSensorFailureError( + "Inverter control software not installed" + ) from err + + lines = filter(None, output.split(b"\n")) + found = {} + for line in lines: + start, value = line.rsplit(b"=", 1) + start, key = start.rsplit(b" ", 1) + found[key] = value + + try: + yield_total = float(found[b"yield_total"][:-3].replace(b".", b"")) + power_dc_1 = int(found[b"power_dc_1"][:-1]) + power_dc_2 = int(found[b"power_dc_2"][:-1]) + if power_dc_1 > 1500 or power_dc_2 > 1500: + raise IntermittentSensorFailureError( + "Received corrupt data from inverter" + ) + except (ValueError, IndexError, KeyError) as err: + raise IntermittentSensorFailureError( + "Received incomplete data from inverter" + ) from err + return ureg.Quantity(yield_total, "watt") + + @classmethod + def format(cls, value: t.Any) -> str: + return "{:~P}".format(value.to(ureg.kilowatt)) + + @classmethod + def to_json_compatible(cls, value: t.Any) -> t.Dict[str, t.Union[str, float]]: + return {"magnitude": value.magnitude, "unit": str(value.units)} + + @classmethod + def from_json_compatible(cls, json_version: t.Any) -> t.Any: + return ureg.Quantity(json_version["magnitude"], ureg[json_version["unit"]]) diff --git a/Ch12/apd.sensors-chapter12/pytest.ini b/Ch12/apd.sensors-chapter12/pytest.ini new file mode 100644 index 0000000..0b96d0d --- /dev/null +++ b/Ch12/apd.sensors-chapter12/pytest.ini @@ -0,0 +1,5 @@ +[pytest] +markers = + functional: these tests are significantly slower as they run the whole CLI script +addopts = + --ignore plugins \ No newline at end of file diff --git a/Ch12/apd.sensors-chapter12/setup.cfg b/Ch12/apd.sensors-chapter12/setup.cfg new file mode 100644 index 0000000..9fa1056 --- /dev/null +++ b/Ch12/apd.sensors-chapter12/setup.cfg @@ -0,0 +1,83 @@ +[mypy] +namespace_packages = True +mypy_path = src +plugins = sqlmypy + +[mypy-psutil] +ignore_missing_imports = True + +[mypy-alembic] +ignore_missing_imports = True + +[mypy-adafruit_dht] +ignore_missing_imports = True + +[mypy-board] +ignore_missing_imports = True + +[mypy-flask_sqlalchemy] +ignore_missing_imports = True + +[mypy-pint] +ignore_missing_imports = True + +[mypy-pytest] +ignore_missing_imports = True + +[mypy-webtest] +ignore_missing_imports = True + +[flake8] +max-line-length = 88 + +[metadata] +name = apd.sensors +version = attr: apd.sensors.VERSION +description = APD Sensor package +long_description = file: README.md, CHANGES.md, LICENCE +long_description_content_type = text/markdown +keywords = iot +license = MIT +classifiers = + Programming Language :: Python :: 3 + Programming Language :: Python :: 3.7 + +[options] +zip_safe = False +include_package_data = True +package_dir = + =src +packages = find_namespace: +install_requires = + psutil + click + pint + adafruit-circuitpython-dht ; 'arm' in platform_machine + +[options.package_data] +apd.sensors = py.typed + +[options.packages.find] +where = src + +[options.entry_points] +console_scripts = + sensors = apd.sensors.cli:show_sensors +apd.sensors.sensors = + PythonVersion = apd.sensors.sensors:PythonVersion + IPAddresses = apd.sensors.sensors:IPAddresses + CPULoad = apd.sensors.sensors:CPULoad + RAMAvailable = apd.sensors.sensors:RAMAvailable + ACStatus = apd.sensors.sensors:ACStatus + Temperature = apd.sensors.sensors:Temperature + RelativeHumidity = apd.sensors.sensors:RelativeHumidity + +[options.extras_require] +webapp = flask +scheduled = + sqlalchemy + alembic +storedapi = + flask-sqlalchemy + python-dateutil + \ No newline at end of file diff --git a/Ch12/apd.sensors-chapter12/setup.py b/Ch12/apd.sensors-chapter12/setup.py new file mode 100644 index 0000000..6068493 --- /dev/null +++ b/Ch12/apd.sensors-chapter12/setup.py @@ -0,0 +1,3 @@ +from setuptools import setup + +setup() diff --git a/Ch12/apd.sensors-chapter12/src/apd/sensors/__init__.py b/Ch12/apd.sensors-chapter12/src/apd/sensors/__init__.py new file mode 100644 index 0000000..127c148 --- /dev/null +++ b/Ch12/apd.sensors-chapter12/src/apd/sensors/__init__.py @@ -0,0 +1 @@ +VERSION = "2.1.0" diff --git a/Ch12/apd.sensors-chapter12/src/apd/sensors/alembic/README b/Ch12/apd.sensors-chapter12/src/apd/sensors/alembic/README new file mode 100644 index 0000000..98e4f9c --- /dev/null +++ b/Ch12/apd.sensors-chapter12/src/apd/sensors/alembic/README @@ -0,0 +1 @@ +Generic single-database configuration. \ No newline at end of file diff --git a/Ch12/apd.sensors-chapter12/src/apd/sensors/alembic/env.py b/Ch12/apd.sensors-chapter12/src/apd/sensors/alembic/env.py new file mode 100644 index 0000000..f508d4c --- /dev/null +++ b/Ch12/apd.sensors-chapter12/src/apd/sensors/alembic/env.py @@ -0,0 +1,77 @@ +from logging.config import fileConfig + +from sqlalchemy import engine_from_config +from sqlalchemy import pool + +from alembic import context + +import apd.sensors.database + +# this is the Alembic Config object, which provides +# access to the values within the .ini file in use. +config = context.config + +# Interpret the config file for Python logging. +# This line sets up loggers basically. +fileConfig(config.config_file_name) + +# add your model's MetaData object here +# for 'autogenerate' support +# from myapp import mymodel +# target_metadata = mymodel.Base.metadata +target_metadata = apd.sensors.database.metadata + +# other values from the config, defined by the needs of env.py, +# can be acquired: +# my_important_option = config.get_main_option("my_important_option") +# ... etc. + + +def run_migrations_offline(): + """Run migrations in 'offline' mode. + + This configures the context with just a URL + and not an Engine, though an Engine is acceptable + here as well. By skipping the Engine creation + we don't even need a DBAPI to be available. + + Calls to context.execute() here emit the given string to the + script output. + + """ + url = config.get_main_option("sqlalchemy.url") + context.configure( + url=url, + target_metadata=target_metadata, + literal_binds=True, + dialect_opts={"paramstyle": "named"}, + ) + + with context.begin_transaction(): + context.run_migrations() + + +def run_migrations_online(): + """Run migrations in 'online' mode. + + In this scenario we need to create an Engine + and associate a connection with the context. + + """ + connectable = engine_from_config( + config.get_section(config.config_ini_section), + prefix="sqlalchemy.", + poolclass=pool.NullPool, + ) + + with connectable.connect() as connection: + context.configure(connection=connection, target_metadata=target_metadata) + + with context.begin_transaction(): + context.run_migrations() + + +if context.is_offline_mode(): + run_migrations_offline() +else: + run_migrations_online() diff --git a/Ch12/apd.sensors-chapter12/src/apd/sensors/alembic/script.py.mako b/Ch12/apd.sensors-chapter12/src/apd/sensors/alembic/script.py.mako new file mode 100644 index 0000000..2c01563 --- /dev/null +++ b/Ch12/apd.sensors-chapter12/src/apd/sensors/alembic/script.py.mako @@ -0,0 +1,24 @@ +"""${message} + +Revision ID: ${up_revision} +Revises: ${down_revision | comma,n} +Create Date: ${create_date} + +""" +from alembic import op +import sqlalchemy as sa +${imports if imports else ""} + +# revision identifiers, used by Alembic. +revision = ${repr(up_revision)} +down_revision = ${repr(down_revision)} +branch_labels = ${repr(branch_labels)} +depends_on = ${repr(depends_on)} + + +def upgrade(): + ${upgrades if upgrades else "pass"} + + +def downgrade(): + ${downgrades if downgrades else "pass"} diff --git a/Ch12/apd.sensors-chapter12/src/apd/sensors/alembic/versions/0eeb2a54fea8_add_initial_sensor_table.py b/Ch12/apd.sensors-chapter12/src/apd/sensors/alembic/versions/0eeb2a54fea8_add_initial_sensor_table.py new file mode 100644 index 0000000..bb38e90 --- /dev/null +++ b/Ch12/apd.sensors-chapter12/src/apd/sensors/alembic/versions/0eeb2a54fea8_add_initial_sensor_table.py @@ -0,0 +1,45 @@ +"""Add initial sensor table + +Revision ID: 0eeb2a54fea8 +Revises: base +Create Date: 2020-01-16 17:43:37.298379 + +""" +from alembic import op +import sqlalchemy as sa + + +# revision identifiers, used by Alembic. +revision = "0eeb2a54fea8" +down_revision = None +branch_labels = None +depends_on = None + + +def upgrade(): + op.create_table( + "recorded_values", + sa.Column("id", sa.Integer(), nullable=False), + sa.Column("sensor_name", sa.String(), nullable=True), + sa.Column("collected_at", sa.TIMESTAMP(), nullable=True), + sa.Column("data", sa.JSON(), nullable=True), + sa.PrimaryKeyConstraint("id"), + ) + op.create_index( + op.f("ix_recorded_values_collected_at"), + "recorded_values", + ["collected_at"], + unique=False, + ) + op.create_index( + op.f("ix_recorded_values_sensor_name"), + "recorded_values", + ["sensor_name"], + unique=False, + ) + + +def downgrade(): + op.drop_index(op.f("ix_recorded_values_sensor_name"), table_name="recorded_values") + op.drop_index(op.f("ix_recorded_values_collected_at"), table_name="recorded_values") + op.drop_table("recorded_values") diff --git a/Ch12/apd.sensors-chapter12/src/apd/sensors/base.py b/Ch12/apd.sensors-chapter12/src/apd/sensors/base.py new file mode 100644 index 0000000..e822f4b --- /dev/null +++ b/Ch12/apd.sensors-chapter12/src/apd/sensors/base.py @@ -0,0 +1,59 @@ +#!/usr/bin/env python +# coding: utf-8 +import datetime +import typing as t + + +T_value = t.TypeVar("T_value") + + +class Sensor(t.Generic[T_value]): + name: str + title: str + + def value(self) -> T_value: + raise NotImplementedError + + @classmethod + def format(cls, value: T_value) -> str: + raise NotImplementedError + + def __str__(self) -> str: + return self.format(self.value()) + + @classmethod + def to_json_compatible(cls, value: T_value) -> t.Any: + raise NotImplementedError() + + @classmethod + def from_json_compatible(cls, json_version: t.Any) -> T_value: + raise NotImplementedError() + + +class JSONSensor(Sensor[T_value]): + @classmethod + def to_json_compatible(cls, value: T_value) -> t.Any: + return value + + @classmethod + def from_json_compatible(cls, json_version: t.Any) -> T_value: + return t.cast(T_value, json_version) + + +class HistoricalSensor(Sensor[T_value]): + def historical( + self, start: datetime.datetime, end: datetime.datetime + ) -> t.Iterable[t.Tuple[datetime.datetime, T_value]]: + raise NotImplementedError + + +version_info_type = t.NamedTuple( + "version_info_type", + [ + ("major", int), + ("minor", int), + ("micro", int), + ("releaselevel", str), + ("serial", int), + ], +) diff --git a/Ch12/apd.sensors-chapter12/src/apd/sensors/cli.py b/Ch12/apd.sensors-chapter12/src/apd/sensors/cli.py new file mode 100644 index 0000000..576c487 --- /dev/null +++ b/Ch12/apd.sensors-chapter12/src/apd/sensors/cli.py @@ -0,0 +1,118 @@ +import enum +import importlib +import sys +import pkg_resources +import traceback +import typing as t + +import click + +from .database import store_sensor_data +from .sensors import Sensor +from .exceptions import DataCollectionError, UserFacingCLIError + + +class ReturnCodes(enum.IntEnum): + OK = 0 + BAD_SENSOR_PATH = 17 + + +def get_sensor_by_path(sensor_path: str) -> Sensor[t.Any]: + try: + module_name, sensor_name = sensor_path.split(":") + except ValueError as err: + raise UserFacingCLIError( + "Sensor path must be in the format dotted.path.to.module:ClassName", + return_code=ReturnCodes.BAD_SENSOR_PATH, + ) from err + try: + module = importlib.import_module(module_name) + except ImportError as err: + raise UserFacingCLIError( + f"Could not import module {module_name}", return_code=ReturnCodes.BAD_SENSOR_PATH + ) from err + try: + sensor_class = getattr(module, sensor_name) + except AttributeError as err: + raise UserFacingCLIError( + f"Could not find attribute {sensor_name} in {module_name}", return_code=ReturnCodes.BAD_SENSOR_PATH + ) from err + if ( + isinstance(sensor_class, type) + and issubclass(sensor_class, Sensor) + and sensor_class != Sensor + ): + return sensor_class() + else: + raise UserFacingCLIError( + f"Detected object {sensor_class!r} is not recognised as a Sensor type", + return_code=ReturnCodes.BAD_SENSOR_PATH, + ) + + +def get_sensors() -> t.Iterable[Sensor[t.Any]]: + sensors = [] + for sensor_class in pkg_resources.iter_entry_points("apd.sensors.sensors"): + class_ = sensor_class.load() + sensors.append(t.cast(Sensor[t.Any], class_())) + return sensors + + +@click.command(help="Displays the values of the sensors") +@click.option( + "--develop", required=False, metavar="path", help="Load a sensor by Python path" +) +@click.option("--verbose", is_flag=True, help="Show additional info") +@click.option("--save", is_flag=True, help="Store collected data to a database") +@click.option( + "--db", + metavar="", + default="sqlite:///sensor_data.sqlite", + help="The connection string to a database", + envvar="APD_SENSORS_DB_URI", +) +def show_sensors(develop: str, verbose: bool, save: bool, db: str) -> None: + sensors: t.Iterable[Sensor[t.Any]] + if develop: + try: + sensors = [get_sensor_by_path(develop)] + except UserFacingCLIError as error: + if verbose: + tb = traceback.format_exception(type(error), error, error.__traceback__) + click.echo("".join(tb)) + click.secho(error.message, fg="red", bold=True) + sys.exit(error.return_code) + else: + sensors = get_sensors() + + db_session = None + if save: + from sqlalchemy import create_engine + from sqlalchemy.orm import sessionmaker + + engine = create_engine(db) + sm = sessionmaker(engine) + db_session = sm() + + for sensor in sensors: + click.secho(sensor.title, bold=True) + try: + value = sensor.value() + except DataCollectionError as error: + if verbose: + tb = traceback.format_exception(type(error), error, error.__traceback__) + click.echo("".join(tb)) + continue + click.echo(error) + else: + click.echo(sensor.format(value)) + if save and db_session is not None: + store_sensor_data(sensor, value, db_session) + db_session.commit() + + click.echo("") + sys.exit(ReturnCodes.OK) + + +if __name__ == "__main__": + show_sensors() diff --git a/Ch12/apd.sensors-chapter12/src/apd/sensors/database.py b/Ch12/apd.sensors-chapter12/src/apd/sensors/database.py new file mode 100644 index 0000000..a90ffba --- /dev/null +++ b/Ch12/apd.sensors-chapter12/src/apd/sensors/database.py @@ -0,0 +1,30 @@ +from __future__ import annotations + +import datetime +import typing as t + +import sqlalchemy +from sqlalchemy.schema import Table +from sqlalchemy.orm.session import Session + +from apd.sensors.base import Sensor + + +metadata = sqlalchemy.MetaData() + +sensor_values = Table( + "recorded_values", + metadata, + sqlalchemy.Column("id", sqlalchemy.Integer, primary_key=True), + sqlalchemy.Column("sensor_name", sqlalchemy.String, index=True), + sqlalchemy.Column("collected_at", sqlalchemy.TIMESTAMP, index=True), + sqlalchemy.Column("data", sqlalchemy.JSON), +) + + +def store_sensor_data(sensor: Sensor[t.Any], data: t.Any, db_session: Session) -> None: + now = datetime.datetime.now() + record = sensor_values.insert().values( + sensor_name=sensor.name, data=sensor.to_json_compatible(data), collected_at=now + ) + db_session.execute(record) diff --git a/Ch12/apd.sensors-chapter12/src/apd/sensors/exceptions.py b/Ch12/apd.sensors-chapter12/src/apd/sensors/exceptions.py new file mode 100644 index 0000000..725a0ad --- /dev/null +++ b/Ch12/apd.sensors-chapter12/src/apd/sensors/exceptions.py @@ -0,0 +1,32 @@ +import dataclasses + + +class APDSensorsError(Exception): + """An exception base class for all exceptions raised by the + sensor data collection system.""" + + +class DataCollectionError(APDSensorsError, RuntimeError): + """An error that represents the inability of a Sensor instance + to retrieve a value""" + + +class IntermittentSensorFailureError(DataCollectionError): + """A DataCollectionError that is expected to resolve itself + in short order""" + + +class PersistentSensorFailureError(DataCollectionError): + """A DataCollectionError that is unlikely to resolve itself + if retried.""" + + +@dataclasses.dataclass(frozen=True) +class UserFacingCLIError(APDSensorsError, SystemExit): + """A fatal error for the CLI""" + + message: str + return_code: int + + def __str__(self): + return f"[{self.return_code}] {self.message}" diff --git a/Ch12/apd.sensors-chapter12/src/apd/sensors/py.typed b/Ch12/apd.sensors-chapter12/src/apd/sensors/py.typed new file mode 100644 index 0000000..e69de29 diff --git a/Ch12/apd.sensors-chapter12/src/apd/sensors/sensors.py b/Ch12/apd.sensors-chapter12/src/apd/sensors/sensors.py new file mode 100644 index 0000000..c577dbf --- /dev/null +++ b/Ch12/apd.sensors-chapter12/src/apd/sensors/sensors.py @@ -0,0 +1,189 @@ +#!/usr/bin/env python +# coding: utf-8 +import math +import os +import socket +import sys +import typing as t + +import psutil +from pint import _DEFAULT_REGISTRY as ureg + +from .base import Sensor, JSONSensor, version_info_type +from .exceptions import ( + PersistentSensorFailureError, + IntermittentSensorFailureError, + DataCollectionError, +) + + +class PythonVersion(JSONSensor[version_info_type]): + name = "PythonVersion" + title = "Python Version" + + def value(self) -> version_info_type: + return version_info_type(*sys.version_info) + + @classmethod + def from_json_compatible(cls, json_version: t.Any) -> version_info_type: + return version_info_type(*json_version) + + @classmethod + def format(cls, value: version_info_type) -> str: + if value.micro == 0 and value.releaselevel == "alpha": + return "{0.major}.{0.minor}.{0.micro}a{0.serial}".format(value) + return "{0.major}.{0.minor}".format(value) + + +class IPAddresses(JSONSensor[t.Iterable[t.Tuple[str, str]]]): + name = "IPAddresses" + title = "IP Addresses" + FAMILIES = {"AF_INET": "IPv4", "AF_INET6": "IPv6"} + + def value(self) -> t.List[t.Tuple[str, str]]: + hostname = socket.gethostname() + addresses = socket.getaddrinfo(hostname, None) + address_info: t.List[t.Tuple[str, str]] = [] + for address in addresses: + family, ip = (address[0].name, address[4][0]) + if family not in self.FAMILIES: + continue + value = (family, ip) + if value not in address_info: + address_info.append(value) + return address_info + + @classmethod + def format(cls, value: t.Iterable[t.Tuple[str, str]]) -> str: + return "\n".join( + "{0} ({1})".format(address[1], cls.FAMILIES.get(address[0], "Unknown")) + for address in value + ) + + +class CPULoad(JSONSensor[float]): + name = "CPULoad" + title = "CPU Usage" + + def value(self) -> float: + return float(psutil.cpu_percent(interval=3)) / 100.0 + + @classmethod + def format(cls, value: float) -> str: + return "{:.1%}".format(value) + + +class RAMAvailable(JSONSensor[int]): + name = "RAMAvailable" + title = "RAM Available" + UNITS = ("B", "KiB", "MiB", "GiB", "TiB", "PiB", "EiB") + UNIT_SIZE = 2 ** 10 + + def value(self) -> int: + return int(psutil.virtual_memory().available) + + @classmethod + def format(cls, value: int) -> str: + magnitude = math.floor(math.log(value, cls.UNIT_SIZE)) + max_magnitude = len(cls.UNITS) - 1 + magnitude = min(magnitude, max_magnitude) + scaled_value = value / (cls.UNIT_SIZE ** magnitude) + return "{:.1f} {}".format(scaled_value, cls.UNITS[magnitude]) + + +class ACStatus(JSONSensor[bool]): + name = "ACStatus" + title = "AC Connected" + + def value(self) -> bool: + battery = psutil.sensors_battery() + if battery is not None: + value = battery.power_plugged + if value is None: + raise IntermittentSensorFailureError("Can't find AC status") + else: + return bool(value) + else: + raise PersistentSensorFailureError("No charging circuit installed") + + @classmethod + def format(cls, value: bool) -> str: + if value: + return "Connected" + else: + return "Not connected" + + +class DHTSensor: + def __init__(self) -> None: + self.board = os.environ.get("APD_SENSORS_TEMPERATURE_BOARD", "DHT22") + self.pin = os.environ.get("APD_SENSORS_TEMPERATURE_PIN", "D20") + + @property + def sensor(self) -> t.Any: + try: + import adafruit_dht + import board + + # Force using legacy interface + adafruit_dht._USE_PULSEIO = False + + sensor_type = getattr(adafruit_dht, self.board) + pin = getattr(board, self.pin) + return sensor_type(pin) + except (ImportError, NotImplementedError, AttributeError) as err: + # No DHT library results in an ImportError. + # Running on an unknown platform results in a + # NotImplementedError when getting the pin + raise PersistentSensorFailureError( + "Unable to initialise sensor interface" + ) from err + + +class Temperature(Sensor[t.Any], DHTSensor): + name = "Temperature" + title = "Ambient Temperature" + + def value(self) -> t.Any: + try: + return ureg.Quantity(self.sensor.temperature, ureg.celsius) + except DataCollectionError: + # This is one of our own exceptions, we don't need to re-wrap it + raise + except (RuntimeError, AttributeError) as err: + raise IntermittentSensorFailureError( + "Couldn't determine temperature" + ) from err + + @classmethod + def format(cls, value: t.Any) -> str: + return "{:.3~P} ({:.3~P})".format(value, value.to(ureg.fahrenheit)) + + @classmethod + def to_json_compatible(cls, value: t.Any) -> t.Any: + return {"magnitude": value.magnitude, "unit": str(value.units)} + + @classmethod + def from_json_compatible(cls, json_version: t.Any) -> t.Any: + return ureg.Quantity(json_version["magnitude"], ureg[json_version["unit"]]) + + def __str__(self) -> str: + return self.format(self.value()) + + +class RelativeHumidity(JSONSensor[float], DHTSensor): + name = "RelativeHumidity" + title = "Relative Humidity" + + def value(self) -> float: + try: + return float(self.sensor.humidity) + except DataCollectionError: + # This is one of our own exceptions, we don't need to re-wrap it + raise + except (TypeError, AttributeError) as err: + raise IntermittentSensorFailureError("Couldn't determine humidity") from err + + @classmethod + def format(cls, value: float) -> str: + return "{:.1%}".format(value) diff --git a/Ch12/apd.sensors-chapter12/src/apd/sensors/utils.py b/Ch12/apd.sensors-chapter12/src/apd/sensors/utils.py new file mode 100644 index 0000000..24f912b --- /dev/null +++ b/Ch12/apd.sensors-chapter12/src/apd/sensors/utils.py @@ -0,0 +1,20 @@ +from apd.sensors.base import Sensor, T_value +from apd.sensors.exceptions import IntermittentSensorFailureError + + +def get_value_with_retries(sensor: Sensor[T_value], retries: int = 3) -> T_value: + for i in range(retries): + try: + return sensor.value() + except IntermittentSensorFailureError: + if i == (retries - 1): + # This is the last retry, reraise + raise + else: + continue + # It shouldn't be possible to get here, but it's better to + # fall through with an appropriate exception rather than a + # None + raise IntermittentSensorFailureError( + f"Could not find a value after {retries} retries" + ) diff --git a/Ch12/apd.sensors-chapter12/src/apd/sensors/wsgi/__init__.py b/Ch12/apd.sensors-chapter12/src/apd/sensors/wsgi/__init__.py new file mode 100644 index 0000000..fbd2a91 --- /dev/null +++ b/Ch12/apd.sensors-chapter12/src/apd/sensors/wsgi/__init__.py @@ -0,0 +1,31 @@ +import flask + +try: + from flask_sqlalchemy import SQLAlchemy +except ImportError: + sql_support = False +else: + sql_support = True + + +from .base import set_up_config +from . import v10 +from . import v20 +from . import v21 +from . import v30 + + +__all__ = ["app", "set_up_config", "db"] + +app = flask.Flask(__name__) +app.register_blueprint(v10.version, url_prefix="/v/1.0") +app.register_blueprint(v20.version, url_prefix="/v/2.0") +app.register_blueprint(v21.version, url_prefix="/v/2.1") +app.register_blueprint(v30.version, url_prefix="/v/3.0") + +if sql_support: + from apd.sensors.database import metadata + + db = SQLAlchemy(app, metadata=metadata) +else: + db = None diff --git a/Ch12/apd.sensors-chapter12/src/apd/sensors/wsgi/base.py b/Ch12/apd.sensors-chapter12/src/apd/sensors/wsgi/base.py new file mode 100644 index 0000000..b3c73cb --- /dev/null +++ b/Ch12/apd.sensors-chapter12/src/apd/sensors/wsgi/base.py @@ -0,0 +1,47 @@ +from hmac import compare_digest +import functools +import os +import typing as t + +import flask + + +ViewFuncReturn = t.TypeVar("ViewFuncReturn") +ErrorReturn = t.Tuple[t.Dict[str, str], int] +REQUIRED_CONFIG_KEYS = {"APD_SENSORS_API_KEY"} + + +def require_api_key( + func: t.Callable[..., ViewFuncReturn] +) -> t.Callable[..., t.Union[ViewFuncReturn, ErrorReturn]]: + @functools.wraps(func) + def wrapped(*args, **kwargs) -> t.Union[ViewFuncReturn, ErrorReturn]: + api_key = flask.current_app.config["APD_SENSORS_API_KEY"] + headers = flask.request.headers + supplied_key = headers.get("X-API-Key", "") + if not compare_digest(api_key, supplied_key): + return {"error": "Supply API key in X-API-Key header"}, 403 + return func(*args, **kwargs) + + return wrapped + + +def set_up_config( + environ: t.Optional[t.Dict[str, str]] = None, + to_configure: t.Optional[flask.Flask] = None, +) -> flask.Flask: + if environ is None: + environ = dict(os.environ) + if to_configure is None: + from apd.sensors.wsgi import app + + to_configure = app + missing_keys = REQUIRED_CONFIG_KEYS - environ.keys() + if missing_keys: + raise ValueError("Missing config variables: {}".format(", ".join(missing_keys))) + data_file = os.path.join(os.getcwd(), "sensor_data.sqlite") + environ["SQLALCHEMY_DATABASE_URI"] = environ.get( + "APD_SENSORS_DB_URI", f"sqlite:///{data_file}" + ) + to_configure.config.from_mapping(environ) + return to_configure diff --git a/Ch12/apd.sensors-chapter12/src/apd/sensors/wsgi/serve.py b/Ch12/apd.sensors-chapter12/src/apd/sensors/wsgi/serve.py new file mode 100644 index 0000000..0b1f684 --- /dev/null +++ b/Ch12/apd.sensors-chapter12/src/apd/sensors/wsgi/serve.py @@ -0,0 +1,10 @@ +from . import app +from .base import set_up_config + +if __name__ == "__main__": + import wsgiref.simple_server + + set_up_config(None, app) + + with wsgiref.simple_server.make_server("", 8000, app) as server: + server.serve_forever() diff --git a/Ch12/apd.sensors-chapter12/src/apd/sensors/wsgi/v10.py b/Ch12/apd.sensors-chapter12/src/apd/sensors/wsgi/v10.py new file mode 100644 index 0000000..f3ae5da --- /dev/null +++ b/Ch12/apd.sensors-chapter12/src/apd/sensors/wsgi/v10.py @@ -0,0 +1,30 @@ +import json +import typing as t + +import flask + +from apd.sensors import cli +from apd.sensors.exceptions import DataCollectionError +from .base import require_api_key + +version = flask.Blueprint(__name__, __name__) + + +@version.route("/sensors/") +@require_api_key +def sensor_values() -> t.Tuple[t.Dict[str, t.Any], int, t.Dict[str, str]]: + headers = {"Content-Security-Policy": "default-src 'none'"} + data = {} + for sensor in cli.get_sensors(): + try: + value = sensor.value() + except DataCollectionError: + value = None + try: + json.dumps(value) + except TypeError: + # This value isn't JSON serializable, skip it + continue + else: + data[sensor.title] = value + return data, 200, headers diff --git a/Ch12/apd.sensors-chapter12/src/apd/sensors/wsgi/v20.py b/Ch12/apd.sensors-chapter12/src/apd/sensors/wsgi/v20.py new file mode 100644 index 0000000..4ab1522 --- /dev/null +++ b/Ch12/apd.sensors-chapter12/src/apd/sensors/wsgi/v20.py @@ -0,0 +1,40 @@ +import typing as t + +import flask + +from apd.sensors import cli +from apd.sensors.exceptions import DataCollectionError +from .base import require_api_key + +version = flask.Blueprint(__name__, __name__) + + +@version.route("/sensors/") +@version.route("/sensors/") +@require_api_key +def sensor_values(sensor_id=None) -> t.Tuple[t.Dict[str, t.Any], int, t.Dict[str, str]]: + headers = {"Content-Security-Policy": "default-src 'none'"} + sensors = [] + for sensor in cli.get_sensors(): + if sensor_id and sensor_id != sensor.name: + continue + try: + try: + value = sensor.value() + except DataCollectionError: + human_readable = "Unknown" + json_value = None + else: + json_value = sensor.to_json_compatible(value) + human_readable = sensor.format(value) + sensor_data = { + "id": sensor.name, + "title": sensor.title, + "value": json_value, + "human_readable": human_readable, + } + sensors.append(sensor_data) + except NotImplementedError: + pass + data = {"sensors": sensors} + return data, 200, headers diff --git a/Ch12/apd.sensors-chapter12/src/apd/sensors/wsgi/v21.py b/Ch12/apd.sensors-chapter12/src/apd/sensors/wsgi/v21.py new file mode 100644 index 0000000..16cbb72 --- /dev/null +++ b/Ch12/apd.sensors-chapter12/src/apd/sensors/wsgi/v21.py @@ -0,0 +1,47 @@ +import typing as t + +import flask + +from apd.sensors import cli +from apd.sensors.exceptions import DataCollectionError +from .base import require_api_key + +version = flask.Blueprint(__name__, __name__) + + +@version.route("/sensors/") +@version.route("/sensors/") +@require_api_key +def sensor_values(sensor_id=None) -> t.Tuple[t.Dict[str, t.Any], int, t.Dict[str, str]]: + headers = {"Content-Security-Policy": "default-src 'none'"} + sensors = [] + for sensor in cli.get_sensors(): + if sensor_id and sensor_id != sensor.name: + continue + try: + try: + value = sensor.value() + except DataCollectionError: + human_readable = "Unknown" + json_value = None + else: + json_value = sensor.to_json_compatible(value) + human_readable = sensor.format(value) + sensor_data = { + "id": sensor.name, + "title": sensor.title, + "value": json_value, + "human_readable": human_readable, + } + sensors.append(sensor_data) + except NotImplementedError: + pass + data = {"sensors": sensors} + return data, 200, headers + + +@version.route("/deployment_id") +def deployment_id() -> t.Tuple[t.Dict[str, t.Any], int, t.Dict[str, str]]: + headers = {"Content-Security-Policy": "default-src 'none'"} + data = {"deployment_id": flask.current_app.config["APD_SENSORS_DEPLOYMENT_ID"]} + return data, 200, headers diff --git a/Ch12/apd.sensors-chapter12/src/apd/sensors/wsgi/v30.py b/Ch12/apd.sensors-chapter12/src/apd/sensors/wsgi/v30.py new file mode 100644 index 0000000..549af12 --- /dev/null +++ b/Ch12/apd.sensors-chapter12/src/apd/sensors/wsgi/v30.py @@ -0,0 +1,117 @@ +import datetime +import typing as t + +import flask + +from apd.sensors import cli +from apd.sensors.base import HistoricalSensor +from apd.sensors.exceptions import DataCollectionError + +from .base import require_api_key + +version = flask.Blueprint(__name__, __name__) + + +@version.route("/sensors/") +@version.route("/sensors/") +@require_api_key +def sensor_values(sensor_id=None) -> t.Tuple[t.Dict[str, t.Any], int, t.Dict[str, str]]: + headers = {"Content-Security-Policy": "default-src 'none'"} + sensors = [] + errors = [] + for sensor in cli.get_sensors(): + now = datetime.datetime.now() + if sensor_id and sensor_id != sensor.name: + continue + try: + try: + value = sensor.value() + except DataCollectionError as err: + error = { + "id": sensor.name, + "title": sensor.title, + "collected_at": now.isoformat(), + "error": str(err), + } + errors.append(error) + continue + sensor_data = { + "id": sensor.name, + "title": sensor.title, + "value": sensor.to_json_compatible(value), + "human_readable": sensor.format(value), + "collected_at": now.isoformat(), + } + sensors.append(sensor_data) + except NotImplementedError: + pass + data = {"sensors": sensors, "errors": errors} + return data, 200, headers + + +@version.route("/historical") +@version.route("/historical/") +@version.route("/historical//") +@require_api_key +def historical_values( + start: str = None, end: str = None +) -> t.Tuple[t.Dict[str, t.Any], int, t.Dict[str, str]]: + try: + import dateutil.parser + from apd.sensors.database import sensor_values + from apd.sensors.wsgi import db + except ImportError: + return {"error": "Historical data support is not installed"}, 501, {} + + db_session = db.session + headers = {"Content-Security-Policy": "default-src 'none'"} + + query = db_session.query(sensor_values) + if start: + start_dt = dateutil.parser.parse(start) + query = query.filter(sensor_values.c.collected_at >= start_dt) + else: + start_dt = dateutil.parser.parse("1900-01-01") + if end: + end_dt = dateutil.parser.parse(end) + query = query.filter(sensor_values.c.collected_at <= end_dt) + else: + end_dt = datetime.datetime.now() + + known_sensors = {sensor.name: sensor for sensor in cli.get_sensors()} + sensors = [] + for data in query: + if data.sensor_name not in known_sensors: + continue + sensor = known_sensors[data.sensor_name] + sensor_data = { + "id": sensor.name, + "title": sensor.title, + "value": data.data, + "human_readable": sensor.format(sensor.from_json_compatible(data.data)), + "collected_at": data.collected_at.isoformat(), + } + sensors.append(sensor_data) + for sensor in known_sensors.values(): + if isinstance(sensor, HistoricalSensor): + for date, value in sensor.historical(start_dt, end_dt): + sensor_data = { + "id": sensor.name, + "title": sensor.title, + "value": value, + "human_readable": sensor.format(sensor.from_json_compatible(value)), + "collected_at": date.isoformat(), + } + sensors.append(sensor_data) + data = {"sensors": sensors} + try: + return data, 200, headers + finally: + db_session.close() + + +@version.route("/deployment_id") +def deployment_id() -> t.Tuple[t.Dict[str, t.Any], int, t.Dict[str, str]]: + headers = {"Content-Security-Policy": "default-src 'none'"} + data = {"deployment_id": flask.current_app.config["APD_SENSORS_DEPLOYMENT_ID"]} + return data, 200, headers diff --git a/Ch12/apd.sensors-chapter12/tests/__init__.py b/Ch12/apd.sensors-chapter12/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/Ch12/apd.sensors-chapter12/tests/test_acstatus.py b/Ch12/apd.sensors-chapter12/tests/test_acstatus.py new file mode 100644 index 0000000..4f0e6ed --- /dev/null +++ b/Ch12/apd.sensors-chapter12/tests/test_acstatus.py @@ -0,0 +1,58 @@ +from unittest import mock + +import pytest + +from apd.sensors.sensors import ACStatus +from apd.sensors.exceptions import ( + PersistentSensorFailureError, + IntermittentSensorFailureError, +) + + +@pytest.fixture +def sensor(): + return ACStatus() + + +class TestACStatusFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_True(self, subject): + assert subject(True) == "Connected" + + def test_format_False(self, subject): + assert subject(False) == "Not connected" + + +class TestACStatusValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def sensors_battery(self): + with mock.patch("psutil.sensors_battery") as sensors_battery: + yield sensors_battery + + def test_sensors_battery_called(self, subject, sensors_battery): + sensors_battery.return_value.power_plugged = True + assert subject() is True + assert sensors_battery.call_count == 1 + + def test_sensor_but_battery_unknown(self, subject, sensors_battery): + sensors_battery.return_value.power_plugged = None + with pytest.raises(IntermittentSensorFailureError): + subject() + assert sensors_battery.call_count == 1 + + def test_no_sensor(self, subject, sensors_battery): + sensors_battery.return_value = None + with pytest.raises(PersistentSensorFailureError): + subject() + + def test_str_representation_is_formatted_value(self, sensor, sensors_battery): + sensors_battery.return_value.power_plugged = True + assert str(sensor) == "Connected" + assert sensors_battery.call_count == 1 diff --git a/Ch12/apd.sensors-chapter12/tests/test_api_server.py b/Ch12/apd.sensors-chapter12/tests/test_api_server.py new file mode 100644 index 0000000..8aa4cea --- /dev/null +++ b/Ch12/apd.sensors-chapter12/tests/test_api_server.py @@ -0,0 +1,332 @@ +import datetime +import os +import typing as t +import uuid +from unittest import mock + +import flask +import pytest +from webtest import TestApp + +from apd.sensors.base import HistoricalSensor, JSONSensor +from apd.sensors.sensors import PythonVersion +from apd.sensors.wsgi import set_up_config +from apd.sensors.wsgi import v10 +from apd.sensors.wsgi import v20 +from apd.sensors.wsgi import v21 +from apd.sensors.wsgi import v30 + + +class HistoricalBoolSensor(HistoricalSensor[bool], JSONSensor[bool]): + + title = "Sensor which has past data" + name = "HistoricalBoolSensor" + + def value(self) -> bool: + return True + + def historical( + self, start: datetime.datetime, end: datetime.datetime + ) -> t.Iterable[t.Tuple[datetime.datetime, bool]]: + date = start + while date < end: + yield date, True + date += datetime.timedelta(hours=1) + + @classmethod + def format(cls, value: bool) -> str: + return "Yes" if value else "No" + + +@pytest.fixture(scope="session") +def api_key(): + return uuid.uuid4().hex + + +def test_api_key_is_required_config_option(): + app = mock.MagicMock() + with pytest.raises( + ValueError, match="Missing config variables: APD_SENSORS_API_KEY" + ): + set_up_config({"APD_SENSORS_DEPLOYMENT_ID": ""}, to_configure=app) + + +def test_os_environ_is_default_for_config_values(api_key): + app = mock.MagicMock() + os.environ["APD_SENSORS_API_KEY"] = api_key + os.environ["APD_SENSORS_DEPLOYMENT_ID"] = "8f1b57faa04b430c81decbbeee9e300c" + try: + assert app.config.from_mapping.call_count == 0 + set_up_config(None, to_configure=app) + assert app.config.from_mapping.call_count == 1 + for key, value in os.environ.items(): + # There may be keys in the config not from the environment + assert app.config.from_mapping.call_args[0][0][key] == value + finally: + del os.environ["APD_SENSORS_API_KEY"] + del os.environ["APD_SENSORS_DEPLOYMENT_ID"] + + +class CommonTests: + @pytest.mark.functional + def test_sensor_values_fails_on_missing_api_key(self, api_server): + response = api_server.get("/sensors/", expect_errors=True) + assert response.status_code == 403 + assert response.json["error"] == "Supply API key in X-API-Key header" + + @pytest.mark.functional + def test_sensor_values_require_correct_api_key(self, api_server): + response = api_server.get( + "/sensors/", headers={"X-API-Key": "wrong_key"}, expect_errors=True + ) + assert response.status_code == 403 + assert response.json["error"] == "Supply API key in X-API-Key header" + + +class Testv10API(CommonTests): + @pytest.fixture + def subject(self, api_key): + app = flask.Flask("testapp") + app.register_blueprint(v10.version) + set_up_config( + { + "APD_SENSORS_API_KEY": api_key, + "APD_SENSORS_DEPLOYMENT_ID": "8f1b57faa04b430c81decbbeee9e300c", + }, + to_configure=app, + ) + return app + + @pytest.fixture + def api_server(self, subject): + return TestApp(subject) + + @pytest.mark.functional + def test_sensor_values_returned_as_json(self, api_server, api_key): + value = api_server.get("/sensors/", headers={"X-API-Key": api_key}).json + python_version = PythonVersion().value() + + sensor_names = value.keys() + assert "Python Version" in sensor_names + assert value["Python Version"] == list(python_version) + + @pytest.mark.functional + def test_unserializable_sensor_is_omitted(self, api_server, api_key): + value = api_server.get("/sensors/", headers={"X-API-Key": api_key}).json + sensor_names = value.keys() + assert "Temperature" not in sensor_names + + @pytest.mark.functional + def test_erroring_sensor_shows_None(self, api_server, api_key): + from .test_utils import FailingSensor + + with mock.patch("apd.sensors.cli.get_sensors") as get_sensors: + # Ensure failing sensor is first, to test that subsequent sensors + # are still processed + get_sensors.return_value = [FailingSensor(10), PythonVersion()] + value = api_server.get("/sensors/", headers={"X-API-Key": api_key}).json + assert value["Sensor which fails"] is None + assert "Python Version" in value.keys() + + +class Testv20API(CommonTests): + @pytest.fixture + def subject(self, api_key): + app = flask.Flask("testapp") + app.register_blueprint(v20.version) + set_up_config( + { + "APD_SENSORS_API_KEY": api_key, + "APD_SENSORS_DEPLOYMENT_ID": "8f1b57faa04b430c81decbbeee9e300c", + }, + to_configure=app, + ) + return app + + @pytest.fixture + def api_server(self, subject): + return TestApp(subject) + + @pytest.mark.functional + def test_sensor_values_returned_as_json(self, api_server, api_key): + value = api_server.get("/sensors/", headers={"X-API-Key": api_key}).json + sensors = value["sensors"] + + python_version = [ + sensor for sensor in sensors if sensor["id"] == "PythonVersion" + ][0] + assert python_version["title"] == "Python Version" + assert python_version["value"] == list(PythonVersion().value()) + + @pytest.mark.functional + def test_erroring_sensor_shows_None(self, api_server, api_key): + from .test_utils import FailingSensor + + with mock.patch("apd.sensors.cli.get_sensors") as get_sensors: + # Ensure failing sensor is first, to test that subsequent sensors + # are still processed + get_sensors.return_value = [FailingSensor(10), PythonVersion()] + value = api_server.get("/sensors/", headers={"X-API-Key": api_key}).json + sensors = value["sensors"] + + failing = [sensor for sensor in sensors if sensor["id"] == "FailingSensor"][0] + python_version = [ + sensor for sensor in sensors if sensor["id"] == "PythonVersion" + ][0] + + assert failing["title"] == "Sensor which fails" + assert failing["value"] is None + assert python_version["title"] == "Python Version" + + +class Testv21API(Testv20API): + @pytest.fixture + def subject(self, api_key): + app = flask.Flask("testapp") + app.register_blueprint(v21.version) + set_up_config( + { + "APD_SENSORS_API_KEY": api_key, + "APD_SENSORS_DEPLOYMENT_ID": "8f1b57faa04b430c81decbbeee9e300c", + }, + to_configure=app, + ) + return app + + @pytest.mark.functional + def test_deployment_id(self, api_server, api_key): + value = api_server.get("/deployment_id", headers={"X-API-Key": api_key}).json + assert value == {"deployment_id": "8f1b57faa04b430c81decbbeee9e300c"} + + @pytest.mark.functional + def test_erroring_sensor_shows_None(self, api_server, api_key): + from .test_utils import FailingSensor + + with mock.patch("apd.sensors.cli.get_sensors") as get_sensors: + # Ensure failing sensor is first, to test that subsequent sensors + # are still processed + get_sensors.return_value = [FailingSensor(10), PythonVersion()] + value = api_server.get("/sensors/", headers={"X-API-Key": api_key}).json + sensors = value["sensors"] + + failing = [sensor for sensor in sensors if sensor["id"] == "FailingSensor"][0] + python_version = [ + sensor for sensor in sensors if sensor["id"] == "PythonVersion" + ][0] + + assert failing["title"] == "Sensor which fails" + assert failing["value"] is None + assert python_version["title"] == "Python Version" + + +class Testv30API(CommonTests): + @pytest.fixture + def api_server(self, subject): + return TestApp(subject) + + @pytest.fixture + def subject(self, api_key): + app = flask.Flask("testapp") + app.register_blueprint(v30.version) + set_up_config( + { + "APD_SENSORS_API_KEY": api_key, + "APD_SENSORS_DEPLOYMENT_ID": "8f1b57faa04b430c81decbbeee9e300c", + "APD_SENSORS_DB_URI": "sqlite://", + }, + to_configure=app, + ) + return app + + @pytest.fixture + def db(self, subject): + from flask_sqlalchemy import SQLAlchemy + from apd.sensors.database import metadata + from apd.sensors import wsgi + + db = SQLAlchemy(subject, metadata=metadata) + db.create_all() + + wsgi.db = db + yield db + wsgi.db = None + + @pytest.fixture + def store_sensor_data(self): + from apd.sensors.database import store_sensor_data + + return store_sensor_data + + @pytest.mark.functional + def test_historical_with_no_data(self, api_key, api_server, db): + value = api_server.get("/historical", headers={"X-API-Key": api_key}).json + assert value == {"sensors": []} + + @pytest.mark.functional + def test_historical_with_data(self, api_key, api_server, db, store_sensor_data): + store_sensor_data(PythonVersion, [3, 9, 0, "final", 1], db.session) + value = api_server.get("/historical", headers={"X-API-Key": api_key}).json + assert len(value["sensors"]) == 1 + assert value["sensors"][0]["human_readable"] == "3.9" + + def test_historical_sensor(self, api_key, api_server, db): + with mock.patch("apd.sensors.cli.get_sensors") as get_sensors: + # Ensure failing sensor is first, to test that subsequent sensors + # are still processed + get_sensors.return_value = [HistoricalBoolSensor()] + value = api_server.get( + "/historical/2020-01-01/2020-01-02", headers={"X-API-Key": api_key} + ).json + assert len(value["sensors"]) == 24 + assert value["sensors"][0] == { + "collected_at": "2020-01-01T00:00:00", + "human_readable": "Yes", + "id": "HistoricalBoolSensor", + "title": "Sensor which has past data", + "value": True, + } + + @pytest.mark.functional + def test_sensor_values_returned_as_json(self, api_server, api_key): + value = api_server.get("/sensors/", headers={"X-API-Key": api_key}).json + sensors = value["sensors"] + + python_version = [ + sensor for sensor in sensors if sensor["id"] == "PythonVersion" + ][0] + assert python_version["title"] == "Python Version" + assert python_version["value"] == list(PythonVersion().value()) + + @pytest.mark.functional + def test_erroring_sensor_excluded_but_reported(self, api_server, api_key): + from .test_utils import FailingSensor + + with mock.patch("apd.sensors.cli.get_sensors") as get_sensors: + # Ensure failing sensor is first, to test that subsequent sensors + # are still processed + get_sensors.return_value = [FailingSensor(2), PythonVersion()] + value = api_server.get("/sensors/", headers={"X-API-Key": api_key}).json + second_attempt_value = api_server.get( + "/sensors/", headers={"X-API-Key": api_key} + ).json + + sensors = value["sensors"] + failing = [sensor for sensor in sensors if sensor["id"] == "FailingSensor"] + assert len(failing) == 0 + errors = value["errors"] + failing = [sensor for sensor in errors if sensor["id"] == "FailingSensor"] + assert len(failing) == 1 + + python_version = [ + sensor for sensor in sensors if sensor["id"] == "PythonVersion" + ] + assert len(python_version) == 1 + + sensors = second_attempt_value["sensors"] + assert second_attempt_value["errors"] == [] + failing = [sensor for sensor in sensors if sensor["id"] == "FailingSensor"] + assert len(failing) == 1 + python_version = [ + sensor for sensor in sensors if sensor["id"] == "PythonVersion" + ] + assert len(python_version) == 1 diff --git a/Ch12/apd.sensors-chapter12/tests/test_cpuusage.py b/Ch12/apd.sensors-chapter12/tests/test_cpuusage.py new file mode 100644 index 0000000..445f4e5 --- /dev/null +++ b/Ch12/apd.sensors-chapter12/tests/test_cpuusage.py @@ -0,0 +1,45 @@ +from unittest import mock + +import pytest + +from apd.sensors.sensors import CPULoad + + +@pytest.fixture +def sensor(): + return CPULoad() + + +class TestCPULoadFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_simple_percentage(self, subject): + assert subject(0.05) == "5.0%" + + def test_format_multiple_decimal_places(self, subject): + assert subject(0.031415926) == "3.1%" + + def test_format_multiple_decimal_places_int(self, subject) -> None: + assert subject(1) == "100.0%" + + +class TestCPULoadValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def cpuload(self): + with mock.patch("psutil.cpu_percent") as cpu_percent: + cpu_percent.return_value = 50.1 + yield cpu_percent + + def test_cpu_percent_called_With_interval(self, subject, cpuload): + assert subject() == 0.501 + assert cpuload.call_count == 1 + assert tuple(cpuload.call_args) == ((), {"interval": 3}) + + def test_str_representation_is_formatted_value(self, sensor, cpuload): + assert str(sensor) == "50.1%" diff --git a/Ch12/apd.sensors-chapter12/tests/test_dht.py b/Ch12/apd.sensors-chapter12/tests/test_dht.py new file mode 100644 index 0000000..85c3e34 --- /dev/null +++ b/Ch12/apd.sensors-chapter12/tests/test_dht.py @@ -0,0 +1,61 @@ +import pytest + +from apd.sensors.sensors import Temperature, RelativeHumidity, ureg + + +@pytest.fixture +def temperature_sensor(): + return Temperature() + + +@pytest.fixture +def humidity_sensor(): + return RelativeHumidity() + + +class TestTemperatureFormatter: + @pytest.fixture + def subject(self, temperature_sensor): + return temperature_sensor.format + + @staticmethod + def to_degc(magnitude): + return ureg.Quantity(magnitude, "degree_Celsius") + + def test_format_21c(self, subject): + assert subject(self.to_degc(21.0)) == "21.0 °C (69.8 °F)" + + def test_format_negative(self, subject): + assert subject(self.to_degc(-32.0)) == "-32.0 °C (-25.6 °F)" + + +class TestTemperatureSerializer: + @pytest.fixture + def serialize(self, temperature_sensor): + return temperature_sensor.to_json_compatible + + @pytest.fixture + def deserialize(self, temperature_sensor): + return temperature_sensor.from_json_compatible + + @staticmethod + def to_degc(magnitude): + return ureg.Quantity(magnitude, "degree_Celsius") + + def test_serialize_21c(self, serialize): + assert serialize(self.to_degc(21.0)) == {"magnitude": 21.0, "unit": "degree_Celsius"} + + def test_serialize_negative(self, serialize): + assert serialize(self.to_degc(-32.3)) == {"magnitude": -32.3, "unit": "degree_Celsius"} + + def test_deserialize_21c(self, deserialize): + assert deserialize({"magnitude": 21.0, "unit": "degree_Celsius"}) == self.to_degc(21.0) + + +class TestHumidityFormatter: + @pytest.fixture + def subject(self, humidity_sensor): + return humidity_sensor.format + + def test_format_percentage(self, subject): + assert subject(0.035) == "3.5%" diff --git a/Ch12/apd.sensors-chapter12/tests/test_ipaddresses.py b/Ch12/apd.sensors-chapter12/tests/test_ipaddresses.py new file mode 100644 index 0000000..bd61d85 --- /dev/null +++ b/Ch12/apd.sensors-chapter12/tests/test_ipaddresses.py @@ -0,0 +1,59 @@ +import socket +from unittest import mock + +import pytest + +from apd.sensors.sensors import IPAddresses + + +@pytest.fixture +def sensor(): + return IPAddresses() + + +class TestIPAddressFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_single_ipv4(self, subject): + ips = [("AF_INET", "192.0.2.1")] + assert subject(ips) == "192.0.2.1 (IPv4)" + + def test_format_single_ipv6(self, subject): + ips = [("AF_INET6", "2001:DB8::1")] + assert subject(ips) == "2001:DB8::1 (IPv6)" + + def test_format_mixed_list(self, subject): + ips = [("AF_INET", "192.0.2.1"), ("AF_INET6", "2001:DB8::1")] + assert subject(ips) == "192.0.2.1 (IPv4)\n2001:DB8::1 (IPv6)" + + def test_unusual_protocols_are_marked_as_unknown(self, subject): + ips = [("AF_IRDA", "ffff")] + assert subject(ips) == "ffff (Unknown)" + + +class TestIPAddressesValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def gethostname(self): + with mock.patch("socket.gethostname") as gethostname: + gethostname.return_value = "localhost" + yield gethostname + + @pytest.fixture + def getaddrinfo(self, gethostname): + with mock.patch("socket.getaddrinfo") as getaddrinfo: + yield getaddrinfo + + def test_getaddrinfo_used_for_value_collection(self, getaddrinfo, subject): + getaddrinfo.return_value = [(socket.AF_INET, 0, 0, "", ("192.0.2.1", 0))] + assert subject() == [("AF_INET", "192.0.2.1")] + assert getaddrinfo.call_count == 1 + + def test_str_representation_is_formatted_value(self, getaddrinfo, sensor): + getaddrinfo.return_value = [(socket.AF_INET6, 0, 0, "", ("2001:DB8::1", 0))] + assert str(sensor) == "2001:DB8::1 (IPv6)" diff --git a/Ch12/apd.sensors-chapter12/tests/test_pythonversion.py b/Ch12/apd.sensors-chapter12/tests/test_pythonversion.py new file mode 100644 index 0000000..43ad806 --- /dev/null +++ b/Ch12/apd.sensors-chapter12/tests/test_pythonversion.py @@ -0,0 +1,61 @@ +from collections import namedtuple +from unittest import mock + +import pytest + +from apd.sensors.sensors import PythonVersion + + +@pytest.fixture +def version(): + return namedtuple( + "sys_versioninfo", ("major", "minor", "micro", "releaselevel", "serial") + ) + + +@pytest.fixture +def sensor(): + return PythonVersion() + + +class TestPythonVersionFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_py38(self, subject, version): + py38 = version(3, 8, 0, "final", 0) + assert subject(py38) == "3.8" + + def test_format_large_version(self, subject, version): + large = version(255, 128, 0, "final", 0) + assert subject(large) == "255.128" + + def test_alpha_of_minor_is_marked(self, subject, version): + py39 = version(3, 9, 0, "alpha", 1) + assert subject(py39) == "3.9.0a1" + + def test_alpha_of_micro_is_unmarked(self, subject, version): + py39 = version(3, 9, 1, "alpha", 1) + assert subject(py39) == "3.9" + + +class TestPythonVersionValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def python_version(self): + import sys + + return sys.version_info + + def test_data_value_is_sys_versioninfo(self, python_version, subject): + assert subject() == python_version + + +class TestPythonVersionSensor: + def test_str_representation_is_formatted_value(self, sensor, version): + with mock.patch("sys.version_info", new=version(3, 4, 1, "final", 1)): + assert str(sensor) == "3.4" diff --git a/Ch12/apd.sensors-chapter12/tests/test_ramusage.py b/Ch12/apd.sensors-chapter12/tests/test_ramusage.py new file mode 100644 index 0000000..197ad06 --- /dev/null +++ b/Ch12/apd.sensors-chapter12/tests/test_ramusage.py @@ -0,0 +1,47 @@ +from unittest import mock + +import pytest + +from apd.sensors.sensors import RAMAvailable + + +@pytest.fixture +def sensor(): + return RAMAvailable() + + +class TestRAMAvailableFormatter: + @pytest.fixture + def subject(self, sensor): + return sensor.format + + def test_format_bytes(self, subject): + assert subject(15) == "15.0 B" + + def test_format_kibibytes(self, subject): + assert subject(15000) == "14.6 KiB" + + def test_format_mibibytes(self, subject): + assert subject(15000000) == "14.3 MiB" + + def test_format_gibibytes(self, subject): + assert subject(15000000000) == "14.0 GiB" + + +class TestRAMAvailableValue: + @pytest.fixture + def subject(self, sensor): + return sensor.value + + @pytest.fixture + def virtual_memory(self): + with mock.patch("psutil.virtual_memory") as virtual_memory: + virtual_memory.return_value.available = 1024 + yield virtual_memory + + def test_virtual_memory_called(self, subject, virtual_memory): + assert subject() == 1024 + assert virtual_memory.call_count == 1 + + def test_str_representation_is_formatted_value(self, sensor, virtual_memory): + assert str(sensor) == "1.0 KiB" diff --git a/Ch12/apd.sensors-chapter12/tests/test_sensors.py b/Ch12/apd.sensors-chapter12/tests/test_sensors.py new file mode 100644 index 0000000..0f74084 --- /dev/null +++ b/Ch12/apd.sensors-chapter12/tests/test_sensors.py @@ -0,0 +1,126 @@ +import json +from unittest import mock + +from click.testing import CliRunner + +import pytest + +import apd.sensors.cli +from apd.sensors.exceptions import UserFacingCLIError +import apd.sensors.sensors + + +def test_sensors(): + assert hasattr(apd.sensors.sensors, "PythonVersion") + + +class TestCLI: + @pytest.mark.functional + def test_first_sensor_is_first_two_lines_of_cli_output(self): + runner = CliRunner() + with mock.patch("apd.sensors.cli.get_sensors") as get_sensors: + get_sensors.return_value = [apd.sensors.sensors.PythonVersion()] + result = runner.invoke(apd.sensors.cli.show_sensors) + python_version = str(apd.sensors.sensors.PythonVersion()) + assert ["Python Version", python_version] == result.stdout.split("\n")[:2] + + def test_failing_sensor_shows_error(self): + from .test_utils import FailingSensor + + runner = CliRunner() + with mock.patch("apd.sensors.cli.get_sensors") as get_sensors: + get_sensors.return_value = [ + FailingSensor(10), + apd.sensors.sensors.PythonVersion(), + ] + result = runner.invoke(apd.sensors.cli.show_sensors) + assert ["Sensor which fails", "Failing 9 more times"] == result.stdout.split( + "\n" + )[:2] + assert "Python Version" in result.stdout + + def test_mocked_failing_sensor_shows_error(self): + from apd.sensors.base import Sensor + from apd.sensors.exceptions import IntermittentSensorFailureError + + FailingSensor = mock.MagicMock(spec=Sensor) + FailingSensor.title = "Sensor which fails" + FailingSensor.name = "FailingSensor" + FailingSensor.value.side_effect = ( + FailingSensor.__str__.side_effect + ) = IntermittentSensorFailureError("Failing sensor") + + runner = CliRunner() + with mock.patch("apd.sensors.cli.get_sensors") as get_sensors: + get_sensors.return_value = [ + FailingSensor, + apd.sensors.sensors.PythonVersion(), + ] + result = runner.invoke(apd.sensors.cli.show_sensors) + assert ["Sensor which fails", "Failing sensor"] == result.stdout.split("\n")[:2] + assert "Python Version" in result.stdout + + +class TestSensorFromPath: + @pytest.fixture + def subject(self): + return apd.sensors.cli.get_sensor_by_path + + def test_get_sensor_by_path(self, subject): + assert isinstance( + subject("apd.sensors.sensors:PythonVersion"), + apd.sensors.sensors.PythonVersion, + ) + + def test_invalid_format(self, subject): + with pytest.raises(UserFacingCLIError, match="dotted.path.to.module:ClassName"): + subject("apd.sensors.sensors.PythonVersion") + + def test_invalid_module(self, subject): + with pytest.raises(UserFacingCLIError, match="Could not import module"): + subject("apd.nonsense.sensor:FakeSensor") + + def test_missing_sensor(self, subject): + with pytest.raises(UserFacingCLIError, match="Could not find attribute"): + subject("apd.sensors.sensors:FakeSensor") + + def test_invalid_sensor(self, subject): + with pytest.raises(UserFacingCLIError, match="is not recognised as a Sensor"): + subject("apd.sensors.sensors:Sensor") + + +@pytest.mark.functional +def test_develop_option_finds_sensor_by_path(): + runner = CliRunner() + result = runner.invoke( + apd.sensors.cli.show_sensors, ["--develop", "apd.sensors.sensors:PythonVersion"] + ) + python_version = str(apd.sensors.sensors.PythonVersion()) + assert ["Python Version", python_version, "", ""] == result.stdout.split("\n") + + +class TestDefaultSerializer: + @pytest.fixture + def python_version(self): + return apd.sensors.sensors.PythonVersion() + + @pytest.fixture + def serialize(self, python_version): + return python_version.to_json_compatible + + @pytest.fixture + def deserialize(self, python_version): + return python_version.from_json_compatible + + def test_serialize_deserialize_is_symmetric( + self, python_version, serialize, deserialize + ): + value = python_version.value() + serialized = serialize(value) + json_version = json.dumps(serialized) + assert ( + json_version == f"[{value.major}, {value.minor}, {value.micro}," + f' "{value.releaselevel}", {value.serial}]' + ) + deserialized = deserialize(serialized) + assert deserialized == value diff --git a/Ch12/apd.sensors-chapter12/tests/test_utils.py b/Ch12/apd.sensors-chapter12/tests/test_utils.py new file mode 100644 index 0000000..34a82f8 --- /dev/null +++ b/Ch12/apd.sensors-chapter12/tests/test_utils.py @@ -0,0 +1,57 @@ +import typing as t + +import pytest + +from apd.sensors.base import JSONSensor +from apd.sensors.exceptions import ( + IntermittentSensorFailureError, + PersistentSensorFailureError, +) +from apd.sensors.utils import get_value_with_retries + + +class FailingSensor(JSONSensor[bool]): + + title = "Sensor which fails" + name = "FailingSensor" + + def __init__( + self, + n: int = 3, + exception_type: t.Type[Exception] = IntermittentSensorFailureError, + ): + self.n = n + self.exception_type = exception_type + + def value(self) -> bool: + self.n -= 1 + if self.n: + raise self.exception_type(f"Failing {self.n} more times") + else: + return True + + @classmethod + def format(cls, value: bool) -> str: + return "Yes" if value else "No" + + +class TestRetry: + def test_default_retries(self): + sensor = FailingSensor(3) + value = get_value_with_retries(sensor) + assert value is True + + def test_n_retries(self): + sensor = FailingSensor(5) + value = get_value_with_retries(sensor, retries=5) + assert value is True + + def test_insufficient_retries(self): + sensor = FailingSensor(5) + with pytest.raises(IntermittentSensorFailureError): + get_value_with_retries(sensor, retries=4) + + def test_permanent_failures_not_retried(self): + sensor = FailingSensor(3, PersistentSensorFailureError) + with pytest.raises(PersistentSensorFailureError): + get_value_with_retries(sensor) diff --git a/Ch12/listing12-01-clean_passthrough.py b/Ch12/listing12-01-clean_passthrough.py new file mode 100644 index 0000000..4cb58a5 --- /dev/null +++ b/Ch12/listing12-01-clean_passthrough.py @@ -0,0 +1,9 @@ +async def clean_passthrough( + datapoints: t.AsyncIterator[DataPoint], +) -> CLEANED_DT_FLOAT: + async for datapoint in datapoints: + if datapoint.data is None: + continue + else: + yield datapoint.collected_at, datapoint.data + diff --git a/Ch12/listing12-02-sum_ints.py b/Ch12/listing12-02-sum_ints.py new file mode 100644 index 0000000..317ff88 --- /dev/null +++ b/Ch12/listing12-02-sum_ints.py @@ -0,0 +1,18 @@ +import typing as t + +def sum_ints(source: t.Iterable[int]) -> t.Iterator[int]: + """Yields a running total from the underlying iterator""" + total = 0 + for num in source: + total += num + yield total + +def numbers() -> t.Iterator[int]: + yield 1 + yield 1 + yield 1 + +def test(): + sums = sum_ints(numbers()) + assert [a for a in sums] == [1, 2, 3] + diff --git a/Ch12/listing12-03-process_own_output.py b/Ch12/listing12-03-process_own_output.py new file mode 100644 index 0000000..438de25 --- /dev/null +++ b/Ch12/listing12-03-process_own_output.py @@ -0,0 +1,17 @@ +import itertools +import typing as t + +def sum_ints(start: int) -> t.Iterator[int]: + """Yields a running total with a given start value""" + total = start + while True: + yield total + total += total + +def test(): + sums = sum_ints(1) + # Limit an infinite iterator to the first 3 items + # itertools.islice(iterable, [start,] stop, [step]) + sums = itertools.islice(sums, 3) + assert [a for a in sums] == [1, 2, 4] + diff --git a/Ch12/listing12-04-wrapper_generator.py b/Ch12/listing12-04-wrapper_generator.py new file mode 100644 index 0000000..f53b5cc --- /dev/null +++ b/Ch12/listing12-04-wrapper_generator.py @@ -0,0 +1,36 @@ +import itertools +import typing as t + +def sum_ints(source: t.Iterable[int]) -> t.Iterator[int]: + """Yields a running total from the underlying iterator""" + total = 0 + for num in source: + total += num + yield total + +def get_wrap_feedback_pair(initial=None): # get_w_f_p(...) in the above diagram + """Return a pair of external and internal wrap functions""" + shared_state = initial + # Note, feedback() and wrap(...) functions assume that + # they are always in sync + def feedback(): + while True: + """Yield the last value of the wrapped iterator""" + yield shared_state + def wrap(wrapped): + """Iterate over an iterable and stash each value""" + nonlocal shared_state + for item in wrapped: + shared_state = item + yield item + return feedback, wrap + +def test(): + feedback, wrap = get_wrap_feedback_pair(1) + # Sum the iterable (1, ...) where ... is the results + # of that iterable, stored with the wrap method + sums = wrap(sum_ints(feedback())) + # Limit to 3 items + sums = itertools.islice(sums, 3) + assert [a for a in sums] == [1, 2, 4] + diff --git a/Ch12/listing12-05-enhanced_generator.py b/Ch12/listing12-05-enhanced_generator.py new file mode 100644 index 0000000..bede34f --- /dev/null +++ b/Ch12/listing12-05-enhanced_generator.py @@ -0,0 +1,25 @@ +import typing as t + +def sum_ints() -> t.Generator[int, int, None]: + """Yields a running total from the underlying iterator""" + total = 0 + num = yield total + while True: + total += num + num = yield total + +def test(): + # Sum the iterable (1, ...) where ... is the results + # of that iterable, stored with the wrap method + sums = sum_ints() + next(sums) # We can only send to yield lines, so advance to the first + last = 1 + result = [] + for n in range(3): + last = sums.send(last) + result.append(last) + assert result == [1, 2, 4] + + +test() + diff --git a/Ch12/listing12-06-mean_finder.py b/Ch12/listing12-06-mean_finder.py new file mode 100644 index 0000000..5e344b2 --- /dev/null +++ b/Ch12/listing12-06-mean_finder.py @@ -0,0 +1,29 @@ +class MeanFinder: + def __init__(self): + self.running_total = 0 + self.num_items = 0 + + def add_item(self, num: float): + self.running_total += num + self.num_items += 1 + + @property + def mean(self): + return self.running_total / self.num_items + +def test(): + # Recursive mean from initial data + mean = MeanFinder() + to_add = 1 + for n in range(3): + mean.add_item(to_add) + to_add = mean.mean + assert mean.mean == 1.0 + + # Mean of a concrete data list + mean = MeanFinder() + for to_add in [1, 2, 3]: + mean.add_item(to_add) + assert mean.mean == 2.0 + + diff --git a/Ch12/listing12-07-wrap_enhanced_generator.py b/Ch12/listing12-07-wrap_enhanced_generator.py new file mode 100644 index 0000000..5327e96 --- /dev/null +++ b/Ch12/listing12-07-wrap_enhanced_generator.py @@ -0,0 +1,50 @@ +import typing as t + + +input_type = t.TypeVar("input_type") +output_type = t.TypeVar("output_type") + + +def wrap_enhanced_generator( + input_generator: t.Callable[[], t.Generator[output_type, input_type, None]] +) -> t.Callable[[t.Iterable[input_type]], t.Iterator[output_type]]: + underlying = input_generator() + next(underlying) # Advance the underlying generator to the first yield + + def inner(data: t.Iterable[input_type]) -> t.Iterator[output_type]: + for item in data: + yield underlying.send(item) + + return inner + + +def sum_ints() -> t.Generator[int, int, None]: + """Yields a running total from the underlying iterator""" + total = 0 + num = yield total + while True: + total += num + num = yield total + +def numbers() -> t.Iterator[int]: + yield 1 + yield 1 + yield 1 + + +def test() -> None: + # Start with 1, feed output back in, limit to 3 items + recursive_sum = sum_ints() + next(recursive_sum) + result = [] + last = 1 + for i in range(3): + last = recursive_sum.send(last) + result.append(last) + assert result == [1, 2, 4] + + # Add 3 items from a standard iterable + simple_sum = wrap_enhanced_generator(sum_ints) + result_iter = simple_sum(numbers()) + assert [a for a in result_iter] == [1, 2, 3] + diff --git a/Ch12/listing12-08-shared_state_by_return.py b/Ch12/listing12-08-shared_state_by_return.py new file mode 100644 index 0000000..b16850b --- /dev/null +++ b/Ch12/listing12-08-shared_state_by_return.py @@ -0,0 +1,33 @@ +import typing as t + + +def mean_ints_split_initial() -> t.Tuple[float, int]: + return 0.0, 0 + + +def mean_ints_split( + to_add: float, current_mean: float, num_items: int +) -> t.Tuple[float, int]: + running_total = current_mean * num_items + running_total += to_add + num_items += 1 + current_mean = running_total / num_items + return current_mean, num_items + + +def test(): + # Recursive mean from initial data + to_add, current_mean, num_items = mean_ints_split_initial() + for n in range(3): + current_mean, num_items = mean_ints_split(to_add, current_mean, num_items) + to_add = current_mean + assert current_mean == 1.0 + assert num_items == 3 + + # Mean of concrete data list + current_mean = num_items = 0 + for to_add in [1, 2, 3]: + current_mean, num_items = mean_ints_split(to_add, current_mean, num_items) + assert current_mean == 2.0 + assert num_items == 3 + diff --git a/Ch12/listing12-09-mean_with_enhanced.py b/Ch12/listing12-09-mean_with_enhanced.py new file mode 100644 index 0000000..15fde89 --- /dev/null +++ b/Ch12/listing12-09-mean_with_enhanced.py @@ -0,0 +1,30 @@ +import typing as t + + +def mean_ints() -> t.Generator[t.Optional[float], float, None]: + running_total = 0.0 + num_items = 0 + to_add = yield None + while True: + running_total += to_add + num_items += 1 + to_add = yield running_total / num_items + +def test(): + # Recursive mean from initial data + mean = mean_ints() + next(mean) + to_add = 1 + for n in range(3): + current_mean = mean.send(to_add) + to_add = current_mean + assert current_mean == 1.0 + + # Mean of a concrete data list + # wrap_enhanced_generator would also work here + mean = mean_ints() + next(mean) + for to_add in [1, 2, 3]: + current_mean = mean.send(to_add) + assert current_mean == 2.0 + diff --git a/Ch12/listing12-10-coroutine_and_queue.py b/Ch12/listing12-10-coroutine_and_queue.py new file mode 100644 index 0000000..8ea91a2 --- /dev/null +++ b/Ch12/listing12-10-coroutine_and_queue.py @@ -0,0 +1,52 @@ +import asyncio +import itertools +import typing as t + +async def sum_ints(data: asyncio.Queue) -> t.AsyncIterator[int]: + """Yields a running total a queue, until a None is found""" + total = 0 + while True: + num = await data.get() + if num is None: + data.task_done() + break + total += num + data.task_done() + yield total + + +def numbers() -> t.Iterator[int]: + yield 1 + yield 1 + yield 1 + + +async def test(): + # Start with 1, feed output back in, limit to 3 items + data = asyncio.Queue() + sums = sum_ints(data) + + # Send the initial value + await data.put(1) + result = [] + async for last in sums: + if len(result) == 3: + # Stop the summer at 3 items + await data.put(None) + else: + # Send the last value retrieved back + await data.put(last) + result.append(last) + assert result == [1, 2, 4] + + + # Add 3 items from a standard iterable + data = asyncio.Queue() + sums = sum_ints(data) + + for number in numbers(): + await data.put(number) + await data.put(None) + result = [value async for value in sums] + assert result == [1, 2, 3] + diff --git a/Ch12/listing12-11-dataprocessor.py b/Ch12/listing12-11-dataprocessor.py new file mode 100644 index 0000000..3074098 --- /dev/null +++ b/Ch12/listing12-11-dataprocessor.py @@ -0,0 +1,44 @@ +@dataclasses.dataclass(unsafe_hash=True) +class DataProcessor: + name: str + action: Action + trigger: Trigger[t.Any] + + def __post_init__(self): + self._input: t.Optional[asyncio.Queue[DataPoint]] = None + self._sub_tasks: t.Set = set() + + async def start(self) -> None: + self._input = asyncio.Queue() + self._task = asyncio.create_task(self.process(), name=f"{self.name}_process") + await asyncio.gather(self.action.start(), self.trigger.start()) + + @property + def input(self) -> asyncio.Queue[DataPoint]: + if self._input is None: + raise RuntimeError(f"{self}.start() was not awaited") + if self._task.done(): + raise RuntimeError("Processing has stopped") from self._task.exception() + return self._input + + async def idle(self) -> None: + await self.input.join() + + async def end(self) -> None: + self._task.cancel() + + async def push(self, obj: DataPoint) -> None: + return await self.input.put(obj) + + async def process(self) -> None: + while True: + data = await self.input.get() + try: + processed = await self.trigger.handle(data) + except ValueError: + continue + else: + action_taken = await self.action.handle(processed) + finally: + self.input.task_done() + diff --git a/Ch12/listing12-12-trigger_and_action.py b/Ch12/listing12-12-trigger_and_action.py new file mode 100644 index 0000000..bb483f6 --- /dev/null +++ b/Ch12/listing12-12-trigger_and_action.py @@ -0,0 +1,60 @@ +import typing as t + +from ..typing import T_value +from ..database import DataPoint +from ..exceptions import NoDataForTrigger + + +class Trigger(t.Generic[T_value]): + name: str + + async def start(self) -> None: + """ Coroutine to do any initial setup """ + return + + async def match(self, datapoint: DataPoint) -> bool: + """ Return True if the datapoint is of interest to this + trigger. + This is an optional method, called by the default implementation + of handle(...).""" + raise NotImplementedError + + async def extract(self, datapoint: DataPoint) -> T_value: + """ Return the value that this datapoint implies for this trigger, + or raise NoDataForTrigger if no value is appropriate. + Can also raise IncompatibleTriggerError if the value is not readable. + + This is an optional method, called by the default implementation + of handle(...). + """ + raise NotImplementedError + + async def handle(self, datapoint: DataPoint) -> t.Optional[DataPoint]: + """Given a data point, optionally return a datapoint that + represents the value of this trigger. Will delegate to the + match(...) and extract(...) functions.""" + if not await self.match(datapoint): + # This data point isn't relevant + return None + + try: + value = await self.extract(datapoint) + except NoDataForTrigger: + # There was no value for this point + return None + + return DataPoint( + sensor_name=self.name, + data=value, + deployment_id=datapoint.deployment_id, + collected_at=datapoint.collected_at, + ) + + +class Action: + async def start(self) -> None: + return + + async def handle(self, datapoint: DataPoint): + raise NotImplementedError + diff --git a/Ch12/listing12-13-valuethreshold.py b/Ch12/listing12-13-valuethreshold.py new file mode 100644 index 0000000..3ac364d --- /dev/null +++ b/Ch12/listing12-13-valuethreshold.py @@ -0,0 +1,34 @@ +import dataclasses +import typing as t +import uuid + +from ..database import DataPoint +from ..exceptions import IncompatibleTriggerError +from .base import Trigger + +@dataclasses.dataclass(frozen=True) +class ValueThresholdTrigger(Trigger[bool]): + name: str + threshold: float + comparator: t.Callable[[float, float], bool] + sensor_name: str + deployment_id: t.Optional[uuid.UUID] = dataclasses.field(default=None) + + async def match(self, datapoint: DataPoint) -> bool: + if datapoint.sensor_name != self.sensor_name: + return False + elif self.deployment_id and datapoint.deployment_id != self.deployment_id: + return False + return True + + async def extract(self, datapoint: DataPoint) -> bool: + if datapoint.data is None: + raise IncompatibleTriggerError("Datapoint does not contain data") + elif isinstance(datapoint.data, float): + value = datapoint.data + elif isinstance(datapoint.data, dict) and "magnitude" in datapoint.data: + value = datapoint.data["magnitude"] + else: + raise IncompatibleTriggerError("Unrecognised data format") + return self.comparator(value, self.threshold) # type: ignore + diff --git a/Ch12/listing12-14-webhook.py b/Ch12/listing12-14-webhook.py new file mode 100644 index 0000000..16345f3 --- /dev/null +++ b/Ch12/listing12-14-webhook.py @@ -0,0 +1,34 @@ +import dataclasses +import logging + +import aiohttp + +from apd.aggregation.actions.base import Action +from apd.aggregation.database import DataPoint + +logger = logging.getLogger(__name__) + + +@dataclasses.dataclass +class WebhookAction(Action): + """An action that runs a webhook""" + uri: str + + async def start(self) -> None: + return + + async def handle(self, datapoint: DataPoint) -> bool: + async with aiohttp.ClientSession() as http: + async with http.post( + self.uri, + json={ + "value1": datapoint.sensor_name, + "value2": str(datapoint.data), + "value3": datapoint.deployment_id.hex, + }, + ) as request: + logger.info( + f"Made webhook request for {datapoint} with status {request.status}" + ) + return request.status == 200 + diff --git a/Ch12/listing12-15-loggingaction.py b/Ch12/listing12-15-loggingaction.py new file mode 100644 index 0000000..4021ae6 --- /dev/null +++ b/Ch12/listing12-15-loggingaction.py @@ -0,0 +1,19 @@ +import dataclasses +import logging + +from apd.aggregation.actions.base import Action +from apd.aggregation.database import DataPoint + +logger = logging.getLogger(__name__) + + +class LoggingAction(Action): + """An action that stores any generated data points back to the DB""" + + async def start(self) -> None: + return + + async def handle(self, datapoint: DataPoint) -> bool: + logger.warn(datapoint) + return True + diff --git a/Ch12/listing12-16-get_data_repeatedly.py b/Ch12/listing12-16-get_data_repeatedly.py new file mode 100644 index 0000000..140edea --- /dev/null +++ b/Ch12/listing12-16-get_data_repeatedly.py @@ -0,0 +1,25 @@ +import asyncio + +from apd.aggregation.query import db_session_var, get_data + +async def get_data_ongoing(*args, **kwargs): + last_id = 0 + db_session = db_session_var.get() + while True: + # Run a timer for 300 seconds concurrently with our work + minimum_loop_timer = asyncio.create_task(asyncio.sleep(300)) + async for datapoint in get_data(*args, **kwargs): + if datapoint.id > last_id: + # This is the newest datapoint we have handled so far + last_id = datapoint.id + yield datapoint + # Next time, find only data points later than the latest we've seen + kwargs["inserted_after_record_id"] = last_id + # Commit the DB to store any work that was done in this loop and + # ensure that any isolation level issues do not prevent loading more + # data + db_session.commit() + # Wait for that timer to complete. If our loop took over 5 minutes + # this will complete immediately, otherwise it will block + await minimum_loop_timer + diff --git a/Ch12/listing12-17-actions_cli.py b/Ch12/listing12-17-actions_cli.py new file mode 100644 index 0000000..efbf891 --- /dev/null +++ b/Ch12/listing12-17-actions_cli.py @@ -0,0 +1,61 @@ +import asyncio +import importlib.util +import logging +import typing as t + +import click + +from .actions.runner import DataProcessor +from .actions.source import get_data_ongoing +from .query import with_database + +logger = logging.getLogger(__name__) + + +def load_handler_config(path: str) -> t.List[DataProcessor]: + # Create a module called user_config backed by the file specified, and load it + # This uses Python's import internals to fake a module in a known location + # Based on an StackOverflow answer by Sebastian Rittau and sample code from + # Brett Cannon + module_spec = importlib.util.spec_from_file_location("user_config", path) + module = importlib.util.module_from_spec(module_spec) + module_spec.loader.exec_module(module) + return module.handlers + + +@click.command() +@click.argument("config", nargs=1) +@click.option( + "--db", + metavar="", + default="postgresql+psycopg2://localhost/apd", + help="The connection string to a PostgreSQL database", + envvar="APD_DB_URI", +) +@click.option("-v", "--verbose", is_flag=True, help="Enables verbose mode") +def run_actions(config: str, db: str, verbose: bool) -> t.Optional[int]: + """This runs the long-running action processors defined in a config file. + + The configuration file specified should be a Python file that defines a + list of DataProcessor objects called processors.n + """ + logging.basicConfig(level=logging.DEBUG if verbose else logging.WARN) + + async def main_loop(): + with with_database(db): + logger.info("Loading configuration") + handlers = load_handler_config(config) + + logger.info(f"Configured {len(handlers)} handlers") + starters = [handler.start() for handler in handlers] + await asyncio.gather(*starters) + + logger.info(f"Ingesting data") + data = get_data_ongoing() + async for datapoint in data: + for handler in handlers: + await handler.push(datapoint) + + asyncio.run(main_loop()) + return True + diff --git a/Ch12/listing12-18-config.py b/Ch12/listing12-18-config.py new file mode 100644 index 0000000..1f4c54d --- /dev/null +++ b/Ch12/listing12-18-config.py @@ -0,0 +1,22 @@ +import operator + +from apd.aggregation.actions.action import ( + OnlyOnChangeActionWrapper, + LoggingAction, +) +from apd.aggregation.actions.runner import DataProcessor +from apd.aggregation.actions.trigger import ValueThresholdTrigger + +handlers = [ + DataProcessor( + name="TemperatureBelow18", + action=OnlyOnChangeActionWrapper(LoggingAction()), + trigger=ValueThresholdTrigger( + name="TemperatureBelow18", + threshold=18, + comparator=operator.lt, + sensor_name="Temperature", + ), + ) +] + diff --git a/Ch12/listing12-19-dataprocessor_stats.py b/Ch12/listing12-19-dataprocessor_stats.py new file mode 100644 index 0000000..96c7d78 --- /dev/null +++ b/Ch12/listing12-19-dataprocessor_stats.py @@ -0,0 +1,43 @@ +@dataclasses.dataclass(unsafe_hash=True) +class DataProcessor: + name: str + action: Action + trigger: Trigger[t.Any] + + def __post_init__(self): + self._input: t.Optional[asyncio.Queue[DataPoint]] = None + self._sub_tasks: t.Set = set() + self.last_times = collections.deque(maxlen=10) + self.total_in = 0 + self.total_out = 0 + + async def process(self) -> None: + while True: + data = await self.input.get() + start = time.time() + self.total_in += 1 + try: + processed = await self.trigger.handle(data) + except ValueError: + continue + else: + action_taken = await self.action.handle(processed) + if action_taken: + elapsed = time.time() - start + self.total_out += 1 + self.last_times.append(elapsed) + finally: + self.input.task_done() + + def stats(self) -> str: + if self.last_times: + avr_time = sum(self.last_times) / len(self.last_times) + elif self.total_in: + avr_time = 0 + else: + return "Not yet started" + return ( + f"{avr_time:0.3f} seconds per item. {self.total_in} in, " + f"{self.total_out} out, {self.input.qsize()} waiting." + ) + diff --git a/Ch12/listing12-20-stats_signals.py b/Ch12/listing12-20-stats_signals.py new file mode 100644 index 0000000..54e5958 --- /dev/null +++ b/Ch12/listing12-20-stats_signals.py @@ -0,0 +1,11 @@ +import signal +def stats_signal_handler(sig, frame, data_processors=None): + for data_processor in data_processors: + click.echo( + click.style(data_processor.name, bold=True, fg="red") + " " + data_processor.stats() + ) + return + +signal_handler = functools.partial(stats_signal_handler, data_processors=handlers) +signal.signal(signal.SIGINFO, signal_handler) + diff --git a/Ch12/listing12-21-better_stats_signals.py b/Ch12/listing12-21-better_stats_signals.py new file mode 100644 index 0000000..71b7216 --- /dev/null +++ b/Ch12/listing12-21-better_stats_signals.py @@ -0,0 +1,32 @@ +def stats_signal_handler(sig, frame, original_sigint_handler=None, data_processors=None): + for data_processor in data_processors: + click.echo( + click.style(data_processor.name, bold=True, fg="red") + " " + data_processor.stats() + ) + if sig == signal.SIGINT: + click.secho("Press Ctrl+C again to end the process", bold=True) + handler = signal.getsignal(signal.SIGINT) + signal.signal(signal.SIGINT, original_sigint_handler) + asyncio.get_running_loop().call_later(5, install_ctrl_c_signal_handler, handler) + return + + +def install_ctrl_c_signal_handler(signal_handler): + click.secho("Press Ctrl+C to view statistics", bold=True) + signal.signal(signal.SIGINT, signal_handler) + + +def install_signal_handlers(running_data_processors): + original_sigint_handler = signal.getsignal(signal.SIGINT) + signal_handler = functools.partial( + stats_signal_handler, + data_processors=running_data_processors, + original_sigint_handler=original_sigint_handler, + ) + + for signal_name in "SIGINFO", "SIGUSR1", "SIGINT": + try: + signal.signal(signal.Signals[signal_name], signal_handler) + except KeyError: + pass + diff --git a/Ch12/listing12-22-time_taken_callback.py b/Ch12/listing12-22-time_taken_callback.py new file mode 100644 index 0000000..00b2f60 --- /dev/null +++ b/Ch12/listing12-22-time_taken_callback.py @@ -0,0 +1,25 @@ +class DataProcessor: + ... + + def action_complete(self, start, task): + action_taken = task.result() + if action_taken: + elapsed = time.time() - start + self.total_out += 1 + self.last_times.append(elapsed) + self.input.task_done() + + async def process(self) -> None: + while True: + data = await self.input.get() + start = time.time() + self.total_in += 1 + try: + processed = await self.trigger.handle(data) + except ValueError: + self.input.task_done() + continue + else: + result = asyncio.create_task(self.action.handle(processed)) + result.add_done_callback(functools.partial(self.action_complete, start)) + diff --git a/Ch12/listing12-23-refeed_getdata.py b/Ch12/listing12-23-refeed_getdata.py new file mode 100644 index 0000000..23b8a57 --- /dev/null +++ b/Ch12/listing12-23-refeed_getdata.py @@ -0,0 +1,43 @@ +import asyncio +from contextvars import ContextVar + +from apd.aggregation.query import db_session_var, get_data + +refeed_queue_var = ContextVar("refeed_queue") + + +async def queue_as_iterator(queue): + while not queue.empty(): + yield queue.get_nowait() + + +async def get_data_ongoing(*args, historical=False, **kwargs): + last_id = 0 + if not historical: + kwargs["inserted_after_record_id"] = last_id = await get_newest_record_id() + db_session = db_session_var.get() + refeed_queue = refeed_queue_var.get() + + while True: + # Run a timer for 300 seconds concurrently with our work + minimum_loop_timer = asyncio.create_task(asyncio.sleep(300)) + import datetime + async for datapoint in get_data(*args, inserted_after_record_id=last_id, order=False, **kwargs): + if datapoint.id > last_id: + # This is the newest datapoint we have handled so far + last_id = datapoint.id + yield datapoint + + while not refeed_queue.empty(): + # Process any datapoints gathered through the refeed queue + async for datapoint in queue_as_iterator(refeed_queue): + yield datapoint + + # Commit the DB to store any work that was done in this loop and + # ensure that any isolation level issues do not prevent loading more + # data + db_session.commit() + # Wait for that timer to complete. If our loop took over 5 minutes + # this will complete immediately, otherwise it will block + await minimum_loop_timer + diff --git a/Ch12/listing12-24-refeed_actions.py b/Ch12/listing12-24-refeed_actions.py new file mode 100644 index 0000000..970fc68 --- /dev/null +++ b/Ch12/listing12-24-refeed_actions.py @@ -0,0 +1,18 @@ +from .source import refeed_queue_var + +class RefeedAction(Action): + """An action that puts data points into a special queue to be consumed + by the analysis programme""" + + async def start(self) -> None: + return + + async def handle(self, datapoint: DataPoint) -> bool: + refeed_queue = refeed_queue_var.get() + if refeed_queue is None: + logger.error("Refeed queue has not been initialised") + return False + else: + await refeed_queue.put(datapoint) + return True + diff --git a/Contributing.md b/Contributing.md new file mode 100644 index 0000000..f6005ad --- /dev/null +++ b/Contributing.md @@ -0,0 +1,14 @@ +# Contributing to Apress Source Code + +Copyright for Apress source code belongs to the author(s). However, under fair use you are encouraged to fork and contribute minor corrections and updates for the benefit of the author(s) and other readers. + +## How to Contribute + +1. Make sure you have a GitHub account. +2. Fork the repository for the relevant book. +3. Create a new branch on which to make your change, e.g. +`git checkout -b my_code_contribution` +4. Commit your change. Include a commit message describing the correction. Please note that if your commit message is not clear, the correction will not be accepted. +5. Submit a pull request. + +Thank you for your contribution! \ No newline at end of file diff --git a/LICENSE.txt b/LICENSE.txt new file mode 100644 index 0000000..89d8143 --- /dev/null +++ b/LICENSE.txt @@ -0,0 +1,27 @@ +Freeware License, some rights reserved + +Copyright (c) 2020 Matthew Wilkes + +Permission is hereby granted, free of charge, to anyone obtaining a copy +of this software and associated documentation files (the "Software"), +to work with the Software within the limits of freeware distribution and fair use. +This includes the rights to use, copy, and modify the Software for personal use. +Users are also allowed and encouraged to submit corrections and modifications +to the Software for the benefit of other users. + +It is not allowed to reuse, modify, or redistribute the Software for +commercial use in any way, or for a user’s educational materials such as books +or blog articles without prior permission from the copyright holder. + +The above copyright notice and this permission notice need to be included +in all copies or substantial portions of the software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS OR APRESS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. + + diff --git a/README.md b/README.md new file mode 100644 index 0000000..148455e --- /dev/null +++ b/README.md @@ -0,0 +1,16 @@ +# Apress Source Code + +This repository accompanies [*Advanced Python Development*](https://www.apress.com/9781484257920) by Matthew Wilkes (Apress, 2020). + +[comment]: #cover +![Cover image](9781484257920.jpg) + +Download the files as a zip using the green button, or clone the repository to your machine using Git. + +## Releases + +Release v1.0 corresponds to the code in the published book, without corrections or updates. + +## Contributions + +See the file Contributing.md for more information on how you can contribute to this repository. \ No newline at end of file diff --git a/apd.aggregation/HEAD b/apd.aggregation/HEAD new file mode 100644 index 0000000..cb089cd --- /dev/null +++ b/apd.aggregation/HEAD @@ -0,0 +1 @@ +ref: refs/heads/master diff --git a/apd.aggregation/config b/apd.aggregation/config new file mode 100644 index 0000000..4638757 --- /dev/null +++ b/apd.aggregation/config @@ -0,0 +1,7 @@ +[core] + repositoryformatversion = 0 + filemode = false + bare = true + ignorecase = true +[remote "origin"] + url = git@github.com:matthewwilkes/apd.aggregation.git diff --git a/apd.aggregation/description b/apd.aggregation/description new file mode 100644 index 0000000..498b267 --- /dev/null +++ b/apd.aggregation/description @@ -0,0 +1 @@ +Unnamed repository; edit this file 'description' to name the repository. diff --git a/apd.aggregation/hooks/applypatch-msg.sample b/apd.aggregation/hooks/applypatch-msg.sample new file mode 100644 index 0000000..a5d7b84 --- /dev/null +++ b/apd.aggregation/hooks/applypatch-msg.sample @@ -0,0 +1,15 @@ +#!/bin/sh +# +# An example hook script to check the commit log message taken by +# applypatch from an e-mail message. +# +# The hook should exit with non-zero status after issuing an +# appropriate message if it wants to stop the commit. The hook is +# allowed to edit the commit message file. +# +# To enable this hook, rename this file to "applypatch-msg". + +. git-sh-setup +commitmsg="$(git rev-parse --git-path hooks/commit-msg)" +test -x "$commitmsg" && exec "$commitmsg" ${1+"$@"} +: diff --git a/apd.aggregation/hooks/commit-msg.sample b/apd.aggregation/hooks/commit-msg.sample new file mode 100644 index 0000000..b58d118 --- /dev/null +++ b/apd.aggregation/hooks/commit-msg.sample @@ -0,0 +1,24 @@ +#!/bin/sh +# +# An example hook script to check the commit log message. +# Called by "git commit" with one argument, the name of the file +# that has the commit message. The hook should exit with non-zero +# status after issuing an appropriate message if it wants to stop the +# commit. The hook is allowed to edit the commit message file. +# +# To enable this hook, rename this file to "commit-msg". + +# Uncomment the below to add a Signed-off-by line to the message. +# Doing this in a hook is a bad idea in general, but the prepare-commit-msg +# hook is more suited to it. +# +# SOB=$(git var GIT_AUTHOR_IDENT | sed -n 's/^\(.*>\).*$/Signed-off-by: \1/p') +# grep -qs "^$SOB" "$1" || echo "$SOB" >> "$1" + +# This example catches duplicate Signed-off-by lines. + +test "" = "$(grep '^Signed-off-by: ' "$1" | + sort | uniq -c | sed -e '/^[ ]*1[ ]/d')" || { + echo >&2 Duplicate Signed-off-by lines. + exit 1 +} diff --git a/apd.aggregation/hooks/fsmonitor-watchman.sample b/apd.aggregation/hooks/fsmonitor-watchman.sample new file mode 100644 index 0000000..e673bb3 --- /dev/null +++ b/apd.aggregation/hooks/fsmonitor-watchman.sample @@ -0,0 +1,114 @@ +#!/usr/bin/perl + +use strict; +use warnings; +use IPC::Open2; + +# An example hook script to integrate Watchman +# (https://facebook.github.io/watchman/) with git to speed up detecting +# new and modified files. +# +# The hook is passed a version (currently 1) and a time in nanoseconds +# formatted as a string and outputs to stdout all files that have been +# modified since the given time. Paths must be relative to the root of +# the working tree and separated by a single NUL. +# +# To enable this hook, rename this file to "query-watchman" and set +# 'git config core.fsmonitor .git/hooks/query-watchman' +# +my ($version, $time) = @ARGV; + +# Check the hook interface version + +if ($version == 1) { + # convert nanoseconds to seconds + $time = int $time / 1000000000; +} else { + die "Unsupported query-fsmonitor hook version '$version'.\n" . + "Falling back to scanning...\n"; +} + +my $git_work_tree; +if ($^O =~ 'msys' || $^O =~ 'cygwin') { + $git_work_tree = Win32::GetCwd(); + $git_work_tree =~ tr/\\/\//; +} else { + require Cwd; + $git_work_tree = Cwd::cwd(); +} + +my $retry = 1; + +launch_watchman(); + +sub launch_watchman { + + my $pid = open2(\*CHLD_OUT, \*CHLD_IN, 'watchman -j --no-pretty') + or die "open2() failed: $!\n" . + "Falling back to scanning...\n"; + + # In the query expression below we're asking for names of files that + # changed since $time but were not transient (ie created after + # $time but no longer exist). + # + # To accomplish this, we're using the "since" generator to use the + # recency index to select candidate nodes and "fields" to limit the + # output to file names only. Then we're using the "expression" term to + # further constrain the results. + # + # The category of transient files that we want to ignore will have a + # creation clock (cclock) newer than $time_t value and will also not + # currently exist. + + my $query = <<" END"; + ["query", "$git_work_tree", { + "since": $time, + "fields": ["name"], + "expression": ["not", ["allof", ["since", $time, "cclock"], ["not", "exists"]]] + }] + END + + print CHLD_IN $query; + close CHLD_IN; + my $response = do {local $/; }; + + die "Watchman: command returned no output.\n" . + "Falling back to scanning...\n" if $response eq ""; + die "Watchman: command returned invalid output: $response\n" . + "Falling back to scanning...\n" unless $response =~ /^\{/; + + my $json_pkg; + eval { + require JSON::XS; + $json_pkg = "JSON::XS"; + 1; + } or do { + require JSON::PP; + $json_pkg = "JSON::PP"; + }; + + my $o = $json_pkg->new->utf8->decode($response); + + if ($retry > 0 and $o->{error} and $o->{error} =~ m/unable to resolve root .* directory (.*) is not watched/) { + print STDERR "Adding '$git_work_tree' to watchman's watch list.\n"; + $retry--; + qx/watchman watch "$git_work_tree"/; + die "Failed to make watchman watch '$git_work_tree'.\n" . + "Falling back to scanning...\n" if $? != 0; + + # Watchman will always return all files on the first query so + # return the fast "everything is dirty" flag to git and do the + # Watchman query just to get it over with now so we won't pay + # the cost in git to look up each individual file. + print "/\0"; + eval { launch_watchman() }; + exit 0; + } + + die "Watchman: $o->{error}.\n" . + "Falling back to scanning...\n" if $o->{error}; + + binmode STDOUT, ":utf8"; + local $, = "\0"; + print @{$o->{files}}; +} diff --git a/apd.aggregation/hooks/post-update.sample b/apd.aggregation/hooks/post-update.sample new file mode 100644 index 0000000..ec17ec1 --- /dev/null +++ b/apd.aggregation/hooks/post-update.sample @@ -0,0 +1,8 @@ +#!/bin/sh +# +# An example hook script to prepare a packed repository for use over +# dumb transports. +# +# To enable this hook, rename this file to "post-update". + +exec git update-server-info diff --git a/apd.aggregation/hooks/pre-applypatch.sample b/apd.aggregation/hooks/pre-applypatch.sample new file mode 100644 index 0000000..4142082 --- /dev/null +++ b/apd.aggregation/hooks/pre-applypatch.sample @@ -0,0 +1,14 @@ +#!/bin/sh +# +# An example hook script to verify what is about to be committed +# by applypatch from an e-mail message. +# +# The hook should exit with non-zero status after issuing an +# appropriate message if it wants to stop the commit. +# +# To enable this hook, rename this file to "pre-applypatch". + +. git-sh-setup +precommit="$(git rev-parse --git-path hooks/pre-commit)" +test -x "$precommit" && exec "$precommit" ${1+"$@"} +: diff --git a/apd.aggregation/hooks/pre-commit.sample b/apd.aggregation/hooks/pre-commit.sample new file mode 100644 index 0000000..6a75641 --- /dev/null +++ b/apd.aggregation/hooks/pre-commit.sample @@ -0,0 +1,49 @@ +#!/bin/sh +# +# An example hook script to verify what is about to be committed. +# Called by "git commit" with no arguments. The hook should +# exit with non-zero status after issuing an appropriate message if +# it wants to stop the commit. +# +# To enable this hook, rename this file to "pre-commit". + +if git rev-parse --verify HEAD >/dev/null 2>&1 +then + against=HEAD +else + # Initial commit: diff against an empty tree object + against=$(git hash-object -t tree /dev/null) +fi + +# If you want to allow non-ASCII filenames set this variable to true. +allownonascii=$(git config --bool hooks.allownonascii) + +# Redirect output to stderr. +exec 1>&2 + +# Cross platform projects tend to avoid non-ASCII filenames; prevent +# them from being added to the repository. We exploit the fact that the +# printable range starts at the space character and ends with tilde. +if [ "$allownonascii" != "true" ] && + # Note that the use of brackets around a tr range is ok here, (it's + # even required, for portability to Solaris 10's /usr/bin/tr), since + # the square bracket bytes happen to fall in the designated range. + test $(git diff --cached --name-only --diff-filter=A -z $against | + LC_ALL=C tr -d '[ -~]\0' | wc -c) != 0 +then + cat <<\EOF +Error: Attempt to add a non-ASCII file name. + +This can cause problems if you want to work with people on other platforms. + +To be portable it is advisable to rename the file. + +If you know what you are doing you can disable this check using: + + git config hooks.allownonascii true +EOF + exit 1 +fi + +# If there are whitespace errors, print the offending file names and fail. +exec git diff-index --check --cached $against -- diff --git a/apd.aggregation/hooks/pre-push.sample b/apd.aggregation/hooks/pre-push.sample new file mode 100644 index 0000000..6187dbf --- /dev/null +++ b/apd.aggregation/hooks/pre-push.sample @@ -0,0 +1,53 @@ +#!/bin/sh + +# An example hook script to verify what is about to be pushed. Called by "git +# push" after it has checked the remote status, but before anything has been +# pushed. If this script exits with a non-zero status nothing will be pushed. +# +# This hook is called with the following parameters: +# +# $1 -- Name of the remote to which the push is being done +# $2 -- URL to which the push is being done +# +# If pushing without using a named remote those arguments will be equal. +# +# Information about the commits which are being pushed is supplied as lines to +# the standard input in the form: +# +# +# +# This sample shows how to prevent push of commits where the log message starts +# with "WIP" (work in progress). + +remote="$1" +url="$2" + +z40=0000000000000000000000000000000000000000 + +while read local_ref local_sha remote_ref remote_sha +do + if [ "$local_sha" = $z40 ] + then + # Handle delete + : + else + if [ "$remote_sha" = $z40 ] + then + # New branch, examine all commits + range="$local_sha" + else + # Update to existing branch, examine new commits + range="$remote_sha..$local_sha" + fi + + # Check for WIP commit + commit=`git rev-list -n 1 --grep '^WIP' "$range"` + if [ -n "$commit" ] + then + echo >&2 "Found WIP commit in $local_ref, not pushing" + exit 1 + fi + fi +done + +exit 0 diff --git a/apd.aggregation/hooks/pre-rebase.sample b/apd.aggregation/hooks/pre-rebase.sample new file mode 100644 index 0000000..6cbef5c --- /dev/null +++ b/apd.aggregation/hooks/pre-rebase.sample @@ -0,0 +1,169 @@ +#!/bin/sh +# +# Copyright (c) 2006, 2008 Junio C Hamano +# +# The "pre-rebase" hook is run just before "git rebase" starts doing +# its job, and can prevent the command from running by exiting with +# non-zero status. +# +# The hook is called with the following parameters: +# +# $1 -- the upstream the series was forked from. +# $2 -- the branch being rebased (or empty when rebasing the current branch). +# +# This sample shows how to prevent topic branches that are already +# merged to 'next' branch from getting rebased, because allowing it +# would result in rebasing already published history. + +publish=next +basebranch="$1" +if test "$#" = 2 +then + topic="refs/heads/$2" +else + topic=`git symbolic-ref HEAD` || + exit 0 ;# we do not interrupt rebasing detached HEAD +fi + +case "$topic" in +refs/heads/??/*) + ;; +*) + exit 0 ;# we do not interrupt others. + ;; +esac + +# Now we are dealing with a topic branch being rebased +# on top of master. Is it OK to rebase it? + +# Does the topic really exist? +git show-ref -q "$topic" || { + echo >&2 "No such branch $topic" + exit 1 +} + +# Is topic fully merged to master? +not_in_master=`git rev-list --pretty=oneline ^master "$topic"` +if test -z "$not_in_master" +then + echo >&2 "$topic is fully merged to master; better remove it." + exit 1 ;# we could allow it, but there is no point. +fi + +# Is topic ever merged to next? If so you should not be rebasing it. +only_next_1=`git rev-list ^master "^$topic" ${publish} | sort` +only_next_2=`git rev-list ^master ${publish} | sort` +if test "$only_next_1" = "$only_next_2" +then + not_in_topic=`git rev-list "^$topic" master` + if test -z "$not_in_topic" + then + echo >&2 "$topic is already up to date with master" + exit 1 ;# we could allow it, but there is no point. + else + exit 0 + fi +else + not_in_next=`git rev-list --pretty=oneline ^${publish} "$topic"` + /usr/bin/perl -e ' + my $topic = $ARGV[0]; + my $msg = "* $topic has commits already merged to public branch:\n"; + my (%not_in_next) = map { + /^([0-9a-f]+) /; + ($1 => 1); + } split(/\n/, $ARGV[1]); + for my $elem (map { + /^([0-9a-f]+) (.*)$/; + [$1 => $2]; + } split(/\n/, $ARGV[2])) { + if (!exists $not_in_next{$elem->[0]}) { + if ($msg) { + print STDERR $msg; + undef $msg; + } + print STDERR " $elem->[1]\n"; + } + } + ' "$topic" "$not_in_next" "$not_in_master" + exit 1 +fi + +<<\DOC_END + +This sample hook safeguards topic branches that have been +published from being rewound. + +The workflow assumed here is: + + * Once a topic branch forks from "master", "master" is never + merged into it again (either directly or indirectly). + + * Once a topic branch is fully cooked and merged into "master", + it is deleted. If you need to build on top of it to correct + earlier mistakes, a new topic branch is created by forking at + the tip of the "master". This is not strictly necessary, but + it makes it easier to keep your history simple. + + * Whenever you need to test or publish your changes to topic + branches, merge them into "next" branch. + +The script, being an example, hardcodes the publish branch name +to be "next", but it is trivial to make it configurable via +$GIT_DIR/config mechanism. + +With this workflow, you would want to know: + +(1) ... if a topic branch has ever been merged to "next". Young + topic branches can have stupid mistakes you would rather + clean up before publishing, and things that have not been + merged into other branches can be easily rebased without + affecting other people. But once it is published, you would + not want to rewind it. + +(2) ... if a topic branch has been fully merged to "master". + Then you can delete it. More importantly, you should not + build on top of it -- other people may already want to + change things related to the topic as patches against your + "master", so if you need further changes, it is better to + fork the topic (perhaps with the same name) afresh from the + tip of "master". + +Let's look at this example: + + o---o---o---o---o---o---o---o---o---o "next" + / / / / + / a---a---b A / / + / / / / + / / c---c---c---c B / + / / / \ / + / / / b---b C \ / + / / / / \ / + ---o---o---o---o---o---o---o---o---o---o---o "master" + + +A, B and C are topic branches. + + * A has one fix since it was merged up to "next". + + * B has finished. It has been fully merged up to "master" and "next", + and is ready to be deleted. + + * C has not merged to "next" at all. + +We would want to allow C to be rebased, refuse A, and encourage +B to be deleted. + +To compute (1): + + git rev-list ^master ^topic next + git rev-list ^master next + + if these match, topic has not merged in next at all. + +To compute (2): + + git rev-list master..topic + + if this is empty, it is fully merged to "master". + +DOC_END diff --git a/apd.aggregation/hooks/pre-receive.sample b/apd.aggregation/hooks/pre-receive.sample new file mode 100644 index 0000000..a1fd29e --- /dev/null +++ b/apd.aggregation/hooks/pre-receive.sample @@ -0,0 +1,24 @@ +#!/bin/sh +# +# An example hook script to make use of push options. +# The example simply echoes all push options that start with 'echoback=' +# and rejects all pushes when the "reject" push option is used. +# +# To enable this hook, rename this file to "pre-receive". + +if test -n "$GIT_PUSH_OPTION_COUNT" +then + i=0 + while test "$i" -lt "$GIT_PUSH_OPTION_COUNT" + do + eval "value=\$GIT_PUSH_OPTION_$i" + case "$value" in + echoback=*) + echo "echo from the pre-receive-hook: ${value#*=}" >&2 + ;; + reject) + exit 1 + esac + i=$((i + 1)) + done +fi diff --git a/apd.aggregation/hooks/prepare-commit-msg.sample b/apd.aggregation/hooks/prepare-commit-msg.sample new file mode 100644 index 0000000..10fa14c --- /dev/null +++ b/apd.aggregation/hooks/prepare-commit-msg.sample @@ -0,0 +1,42 @@ +#!/bin/sh +# +# An example hook script to prepare the commit log message. +# Called by "git commit" with the name of the file that has the +# commit message, followed by the description of the commit +# message's source. The hook's purpose is to edit the commit +# message file. If the hook fails with a non-zero status, +# the commit is aborted. +# +# To enable this hook, rename this file to "prepare-commit-msg". + +# This hook includes three examples. The first one removes the +# "# Please enter the commit message..." help message. +# +# The second includes the output of "git diff --name-status -r" +# into the message, just before the "git status" output. It is +# commented because it doesn't cope with --amend or with squashed +# commits. +# +# The third example adds a Signed-off-by line to the message, that can +# still be edited. This is rarely a good idea. + +COMMIT_MSG_FILE=$1 +COMMIT_SOURCE=$2 +SHA1=$3 + +/usr/bin/perl -i.bak -ne 'print unless(m/^. Please enter the commit message/..m/^#$/)' "$COMMIT_MSG_FILE" + +# case "$COMMIT_SOURCE,$SHA1" in +# ,|template,) +# /usr/bin/perl -i.bak -pe ' +# print "\n" . `git diff --cached --name-status -r` +# if /^#/ && $first++ == 0' "$COMMIT_MSG_FILE" ;; +# *) ;; +# esac + +# SOB=$(git var GIT_COMMITTER_IDENT | sed -n 's/^\(.*>\).*$/Signed-off-by: \1/p') +# git interpret-trailers --in-place --trailer "$SOB" "$COMMIT_MSG_FILE" +# if test -z "$COMMIT_SOURCE" +# then +# /usr/bin/perl -i.bak -pe 'print "\n" if !$first_line++' "$COMMIT_MSG_FILE" +# fi diff --git a/apd.aggregation/hooks/update.sample b/apd.aggregation/hooks/update.sample new file mode 100644 index 0000000..80ba941 --- /dev/null +++ b/apd.aggregation/hooks/update.sample @@ -0,0 +1,128 @@ +#!/bin/sh +# +# An example hook script to block unannotated tags from entering. +# Called by "git receive-pack" with arguments: refname sha1-old sha1-new +# +# To enable this hook, rename this file to "update". +# +# Config +# ------ +# hooks.allowunannotated +# This boolean sets whether unannotated tags will be allowed into the +# repository. By default they won't be. +# hooks.allowdeletetag +# This boolean sets whether deleting tags will be allowed in the +# repository. By default they won't be. +# hooks.allowmodifytag +# This boolean sets whether a tag may be modified after creation. By default +# it won't be. +# hooks.allowdeletebranch +# This boolean sets whether deleting branches will be allowed in the +# repository. By default they won't be. +# hooks.denycreatebranch +# This boolean sets whether remotely creating branches will be denied +# in the repository. By default this is allowed. +# + +# --- Command line +refname="$1" +oldrev="$2" +newrev="$3" + +# --- Safety check +if [ -z "$GIT_DIR" ]; then + echo "Don't run this script from the command line." >&2 + echo " (if you want, you could supply GIT_DIR then run" >&2 + echo " $0 )" >&2 + exit 1 +fi + +if [ -z "$refname" -o -z "$oldrev" -o -z "$newrev" ]; then + echo "usage: $0 " >&2 + exit 1 +fi + +# --- Config +allowunannotated=$(git config --bool hooks.allowunannotated) +allowdeletebranch=$(git config --bool hooks.allowdeletebranch) +denycreatebranch=$(git config --bool hooks.denycreatebranch) +allowdeletetag=$(git config --bool hooks.allowdeletetag) +allowmodifytag=$(git config --bool hooks.allowmodifytag) + +# check for no description +projectdesc=$(sed -e '1q' "$GIT_DIR/description") +case "$projectdesc" in +"Unnamed repository"* | "") + echo "*** Project description file hasn't been set" >&2 + exit 1 + ;; +esac + +# --- Check types +# if $newrev is 0000...0000, it's a commit to delete a ref. +zero="0000000000000000000000000000000000000000" +if [ "$newrev" = "$zero" ]; then + newrev_type=delete +else + newrev_type=$(git cat-file -t $newrev) +fi + +case "$refname","$newrev_type" in + refs/tags/*,commit) + # un-annotated tag + short_refname=${refname##refs/tags/} + if [ "$allowunannotated" != "true" ]; then + echo "*** The un-annotated tag, $short_refname, is not allowed in this repository" >&2 + echo "*** Use 'git tag [ -a | -s ]' for tags you want to propagate." >&2 + exit 1 + fi + ;; + refs/tags/*,delete) + # delete tag + if [ "$allowdeletetag" != "true" ]; then + echo "*** Deleting a tag is not allowed in this repository" >&2 + exit 1 + fi + ;; + refs/tags/*,tag) + # annotated tag + if [ "$allowmodifytag" != "true" ] && git rev-parse $refname > /dev/null 2>&1 + then + echo "*** Tag '$refname' already exists." >&2 + echo "*** Modifying a tag is not allowed in this repository." >&2 + exit 1 + fi + ;; + refs/heads/*,commit) + # branch + if [ "$oldrev" = "$zero" -a "$denycreatebranch" = "true" ]; then + echo "*** Creating a branch is not allowed in this repository" >&2 + exit 1 + fi + ;; + refs/heads/*,delete) + # delete branch + if [ "$allowdeletebranch" != "true" ]; then + echo "*** Deleting a branch is not allowed in this repository" >&2 + exit 1 + fi + ;; + refs/remotes/*,commit) + # tracking branch + ;; + refs/remotes/*,delete) + # delete tracking branch + if [ "$allowdeletebranch" != "true" ]; then + echo "*** Deleting a tracking branch is not allowed in this repository" >&2 + exit 1 + fi + ;; + *) + # Anything else (is there anything else?) + echo "*** Update hook: unknown type of update to ref $refname of type $newrev_type" >&2 + exit 1 + ;; +esac + +# --- Finished +exit 0 diff --git a/apd.aggregation/info/exclude b/apd.aggregation/info/exclude new file mode 100644 index 0000000..a5196d1 --- /dev/null +++ b/apd.aggregation/info/exclude @@ -0,0 +1,6 @@ +# git ls-files --others --exclude-from=.git/info/exclude +# Lines that start with '#' are comments. +# For a project mostly in C, the following would be a good set of +# exclude patterns (uncomment them if you want to use them): +# *.[oa] +# *~ diff --git a/apd.aggregation/objects/pack/pack-0e7fa669b06f00ec17d49d52ad382f7f44ef9af1.idx b/apd.aggregation/objects/pack/pack-0e7fa669b06f00ec17d49d52ad382f7f44ef9af1.idx new file mode 100644 index 0000000000000000000000000000000000000000..52e4a5d0a7100b91135bebb17cb5af7f11f24c68 GIT binary patch literal 24284 zcmXWiQ*apV!-wJ6R%11`ZQC{)8;z63X>8lJZL3LRHn#2me)GKt*ZgMo@Sf*jcV?e2 zS4C405D+i`1OOTU1Aqe{08jxq0Q~W=mnYy$OhyCiUE~?DnJdO4$uf_ z2DAgZ0Q~@<8R#Tn8ZZY~0s!4Ww*WvhP@oa$1>h0@bOHq$fdY*{-vM9$f3(2Bfdv|Y zApnp8KqoM40MH2x=mbUt06Kw@0jL2q07d}N2n=Wh1~dZW2Jrs}Xayz$0D6H*0;B*y zH!z?Zm;yi*0JH0qg^S zhG6FapdZ*R;O;+8k^Um_2c?jLP$Kq8^{K`X`GYg{&9|@tVI}&vML_NSL4of6JQ_D;%>9$>MxUIC{I} z+xi76gL}25&`|FVX$&*Slf2z~YEGaZWV{fZUB_4l=?}T2OqSu=Ygz&K5%O<=vc)3~ zGQ2~2$&X9M`*7W!)~s?b?cX>VWchwap=gyW`MXwFWkBARP($7`6aj7}J_v2uE5#jQHrw^OzejB7g7>=yE4f9ZipE{`AS7*s51WB+BSxVM`jKQE2L5f z(?87-P_?%eo_SiX?rg+qe(_^hk=FS(P^~>?KImNS`j%YhK?ibmqx2aH&^+v#{8gVH zLf>#s|AB-03}`OzLEA)>leX@VwjP*urPzvsT8C28L*KD~PH3baq5Jdg_BeiGOQV2q zz(SL31hRaGH#ZCjuKvS`LNF|m3yX64kLN2Wemb##e>m<=^%?_SAGW7`BD4D9J8H@V zd35SjMNaawD(ngxr}_)h1a}W6Eha}~KQx|JHrx<(wbv?o+?WW%uwvlEL)|4t8vK!R zL&}v-6z(estm(Qz_bcHIJOW6uCnw9QMv)YfmK1uL)?fw&2_i{L z*bb4vfkL0pmIq#bObg1V6eE?WTEUsH!0s(@wn!^iDOi5pHX~y@FJ`Iw5Js5H=jUWB z%RZb`f*`B!e+l@Ox$rI6Pszpo-uvd#sEzDN#bW1o42#DcyJ|FplQlsz!HArpn=&%M z0zZCQ)~k+*b6J!y{1QH5jm8-2~JaiW3))vC+^w9+I)$YJ8VZzS*XMY^JXnbI!DA#Wv zc#>v*^5Lcohe@QK+Bgrh~yeq<_v4} zuH_lXfp-<@NSm`y>F$&f4^<5e48_NY334S{zLocQ+zy3rh#IsQ)Nd??7o|k!ePr0F z4E=#cq=aY~f|e8)9on%**Io?r1qyv>@^udwMNlo96((p#mf=qDo(FfnML2qxxF+SI zLlfA-JM_Vd4jJE;t1EmknMvOiEN6nSywfrFJxhNW{`QT;TunN%2m|TjG)sz$%}r~a z!&G|13dS)pS1k=2jET2te?`73Nm^CII#P>G2bb2Zrgv7=CCIm0uC-cSQ zyL5BxX(yXHQU1r{Tk+@y@x>O?9`Db}SyfNpw2kJYZ*`?kPtGof;gAsxBa5y4N(*uX z*utD;?oQOF$Kwdcvfsk3m2zRzu_v6#JUNghjOWV2vq~Xh;#451 ze%0BTKKkz3;|L3S;AUb*fhsrQo?ma-L5YC>z@;czQ;2!PP?fCrTh$G6EYw3F!FA_N zpupW@qqW{w4|bliTmpOD$L*uIbDF$R&Lk_t4bgPy8?_amz(Xcb_XhLQt+w%X0+Gy) z6O`i5!23qc?*0^ACXnK^ActE}98OgbfsdsWPdqMtxfVTFl38D?C%}eUg3n%crdQte zS9^xWBNtMo4ql>m6<!7kQ zyB}v{NLDImRs;(_cHSlMt$53RcU_c~B-^jIoDpJvB$>m9Q+MI3^jb;eX+W56tP;8| z&e4JkoaI#>@{3nGjL)J;BNLhBaI_nYR+H@@<~q0{=DTeP!x7oqnc^%^yVD>iIH)x9o5AAm!gzbfkW5FrMwPi%u; zi-3<;54op2N4g{o9U`VSTW-IcDt*5=fyi`cU$%^UvLcq3@4v_Q&h{OlwGN`}7V_Ku zQ%tM?Yjc5?f;-bH>ibcn)aTwWL_{2MXH)DoYCiJ&q){fmcX9KO%#XOb)~h0v1D7Lb zp3+qwu7yj}Cz*Jnd^r`I?`FZ$6-$Wvk4%v$-aYY!+eCX|m#J!mno$Ch*QIxh3LgnF zxRzMdm**?7o4klLP9i?|=`4u}M*E+k5Y(3Go$LOfo`$I0vK*E{Aqr*(!RgGvy; z!DBy92sgfmr!1>DQ>85y@ov3J@?>8W7jb+~c;vReX-jaU-k8KAiwzP#c#i(w8276; z5_AbZZmEqWhYRZb89n;@p?fV#LE=@no51xu=$<|Ex9UAIw87#7sSSmIy^Cfxe@US@dX&)4NX23ITbH!mLqPe6H z7nqPS4(UCM8Amb;R#YaD2=jBRYV!0P+BwKiC~~qbMDD9Wbfo#BW^v-xj+*A%_9e0% z9-NS`f61IBF~-Q5RvcZzN6!?X+I)^vT_&9xowS{o)^6wESSJ*C+-|x-q9MV=ulO+J zgVrYlxf&G2VW|lWNnpez=B@37^G+pja26B-K@OGAMyvcTi^7Pb`4$dgvcD+=FUr4h z2UYyO#57J_<{7h8&q<=F&B@Z^qZG>&*~Yptr|aAO13Eyd7Zd6u_|vXGL>cZm4S3Deygi13s5p zXeSv-v?QySA|U9~bkKT61@fUz~Wh@GMb-S5$y9d16Spy_-zDo zEvE-{`FV?44d;#KXHi4hXE?sxZ_$e=kq-tM(Nz^qX9tY?f$ZQztI=lloTz^^N*`D3 z1T7PW)#K+S{?~3fJE$VGNxvZJln8SNU+2gR;FBUxn5Lp=SF^V67_L{7GqGx;AVJ#K zFP75jKsA_nqVK*ovX9-(dj0Vpdy0zb;BNWRrFO?GN5(afHmwknvieTwa^LhMGaH>P zn!l>qupXmR=)?%=L)h6P23uWnR9p(t^Q3|#4Z=1VRJQm6&+SMhEnP%o479R*nm8U9 zM*A?{mq|qfnhFZTQb?{!w9>g4wm;U|AmJ<-z$+@~MQ|dEXx{4?9#CmYjeLfEpH4ff zXFqo$>1>u5Ir5_q_CL3~JK3u7uL(pYd7Wz++XzS4(Q6qnVSOuA{GB@~crE;yXh3NB zL?=*>N}IcrPc^<6BSlr2OeYB9Z1DrTTP@Db{t7Pp5fIriWiX9k?25&2ZLC*@SfqJh zqcPw!Wg4O`V(FFs%29NOz&LJWjb)EuCYVcmm}hq67H-j1MBc1{kG54|{%uuDv&Jwq z>wv6gS0_B+-a z$yuGO&>6D>i~FM-8OL}a#|;-&h_E>OyL){JOMv2vENN>?5hqrR(Z{spl(F~ibQ ziA4L9CV~s=*&$2oLKrVGG&EJjnZ_49exhAnvD*dGkx=+?#2g+Gn{Zhl#57*xWgqUqd`;L7IECXKn=MgO zJn#11_flWk0sne(i(SP6HfiB(W>BNK$fvyOwr zkMkvu!J)A&@}}dh0MYWs7VTqyoJ;u#Ike>v2j0M@y5Fn~ zy6a&rH^P+kKVEsEn0b@y3*SYK945{5E7wn{n(R56+IUB*l=rAYf+{Ox=e&L9SFU&t zB6!De$^)xb2KS(A=yI`>cCZhtn)xVd%*isqV6E&okH*}mqmIAN1@Z+q-qFCfP5ik2 z?qGM}wmvM9Kgu^D0o?;vlSse!rA&M$2K#z~UCDQU-hPTZs~&v8&m4eix#v6i10 za(PxY$O-*R&obzYBc$zI#*Sak__Yl$nQMqPFL@Hy=A9qmPaMCyn#)obk4fA2iqHcu zRHY&5rZ4`KV1ah5a7YSJf+c(6@zNxWHFyC=s@wXoiibJpKZh_euLU2aPuBu5o|4XU zp^Zf^5vO-AQ8Q+*+S&sDM2#U-y6FCW%P?FK58rU$ZIKap4$XY=h)by}`N;1_)_L^d z*DDlU0^{v%{8t3dZz(PeFCo2X?U$EdzgU9XCkh+C_#@-tFe zLP;)hyS4+L3TQiL(l1G?@RV5rJ6$WX33f@D_F47DrQphneirORQB~lLM zlrD`8icq2(Qo^kq$*Ej{$9&$I^)iji0#MuXQX4_c_u%A7LKY+U5cyxo-bk!V(#7U3 z*sZ?gH?s%@rU@`6jVfH2GNd@~eyT){$$I0pW zeLSC>GLA!TJG zmUi4f1)<`^%#grgWOp5Nm%WqM)eVw4u;g=MLcQl_zNYRl<#}6Nvk)HzVHA)l zj4bO2kKV~abz(4r4@5W9&HjdmDbO*I zv%3ajnSS%O?oNPn(wL|OQ{c8X>ukE7%nh9wTi`WkkQwbKQi!Mz%GZ*4FBPP}ijzO# z{((3xrce&K-GFlY_ecea%Oisc@ig)bNnuuX^&-LcTZ8JAV$RysAr-aHn!>+uryJQC zah@(s(efE0X{81BOGOex`7V_p(reD0o$qVGu(E-0>543U{K>|;PX_#Q`#)G@Vr~osaNA82!_(w^UlC%zU2PSuo=@=+`w?X1nS?ND^7#+~N!=+5S!o)N1gfLYfpl*6R#|Ijf-B~s!VJo;E`b_6RO{rXs(=q@zP94q!k*}E*-v*CRnBbmZ>~7ezj!# ze0`CLt^T6?X#2;{*+vDv#}L}V;^f-FaVr|_$V6@&t3gEoZwRG@1lMI?KU@kNckC0g zJ5?3Z^Y>4uvvNfl50@H8$DGEZ(XUVkxL5;UC5_INbZ3?TSNPr4DM} zEHa*NVd0BR^34Jva9+c5!(a>G_vq|($m0s z#RyN9G1aS&W7~=gw#WvsZybE`Gc#IR%3^3Rp4tbp`t6kTj8L3x_E%KbD9dVCqf%aq zlJ|;*6|UuP>h^Bib{lHMt|OZa7k=2KT!D8s>!Q{2G>mC1Ki(sMS$)K)k=h%MUWPiD zy|il_U73j}5+@TA74_U28Hm(tB?oC`(Xsp}HYfsh23sf(FJv`#5$M;t#|iCpIhLOt zSg6bFk!ChxW_;6T$UIrfke*05Ssp1rPNy&AZhh4jaM@JI!JkvDW0*^$39C2f8)VY9 zHBKi>{mDW}Tv8BuHgAcXuNbQRTPoty1XJzvb8af$?>ho6-|2^TO#tMTTd$7k=!aqd zB90dKsA8OUZ9|s_yR^H!n-K|1`srCHeNBmuK%Ilkk7fgF&GKk-!Xd`PMU4*~8_3U9 zK{#fURGD$)_StmIyAw~{P}6O7H~-{VBogU_m|UVn^=V!`<~)hOuvsur zR~76U%GD1TQHM49Ohk$7KBJFj%#j2S35X79LoA~D^{gHroGVHon%{W3Q;_{I`NFyl zxL|gYS7(nExLA=_8%?zE(F02igqP>|%>%1W6axAA_$Lg*NKr&K?q7^2x1$!aIKGz4 z9POo!k){(;6uF)hnIU-uvJB-PAPqCX2gy4$jpW&9W+;>QQ{m>8cuH8yHOKAZp_vx zqah%93{fSNi@Fa^XO+b`Ma>TV<4^+U|NM-E&%Ua1naeBXwKj(`;SYecOEYI_6CFgI zgd>^Z3^11!@1iL?>~6L9mH(FMy|hLVXKt<&d*s-Io7W#1mYu1m%=gR0KSZ(!*&agr6OYdO8Wp z#N5bnTCTEwUs+f87}6&A72w=;ExFGB4g19Ui=qS&Bq_bu;21BEdq6&F4>M6{*~SX#d9 zFfWG{ed--B{G0sT2eYr*KFCh&n%xpsV{+!tgmoL=dazXO*e8|j-ZS6Y_=sk(tWb$a z;_Ht*!!Y>mp<_2AAGT+OsdYWwg#LzUSHZK|d-nUUF?|kMCY?l~8yiqG$DVfCr-_=# zDU5l7iJ5Pp7t%XPl37yQ7l!%qplp%i!TXk5S{1BU%xDuiu+?lUyb2G($xuZG+p#J< z`d#Zg_&MbVgv;TAbCZN`foL}18shsp%GunXKlSiSVjF{(^7jc3W3&xA2{5+PGDq)j z^O$wx88)58N%6uune9IQK*NY9@nhy?3UufHu1SvX^fQ~PJbw!^nsGvw<#JzU_>ElO z*+4v#_irT)$uQxxOCPRx18mJ7=fInYiXFyy-z|4o&M5T+>3{KX;m*XI;;48&Xp1!4I>XTqTUqD})+r?nzyS#H0wRl5#Wk<-IBYU90neI)zyTXb&pst9_ zpYzY79S@x&e%E>9a;0*(W}{bTAx^GdDB>TubAszfm^@OPyTbyfXw;0B#$se#@oL7>75zm!Pkv7 z(+*v4*wU3LvDMnpGVPD4_ne!;O6~1giOmDOOW+Y+<;{KTdb`^uo$CiY_`fkB;u|61 zl@^HEs&KbMn}fI4d1gB=eGhDYDVRkaw+Xjvg9(#K;xlMMghN>#%HCS)r*n7k?<|NS zJ$;w2e})t?S~abQ|9-lMbrO2%ANb)EW1w0GL0C~kG>d7C4agmoCDME&W(Fqe!eL)(T+E}qSjpb%^OmoeVMMBlVq{$V>h zDYgh=)ygQRzp~xKl|i(sk(k0Abc>thX~MkkaxK?m69-LY?eWbqp(HA2D_5LrhM&w6 z{9}>AYa59`ZWaor8NY?XtkT{yk-Wa$Cpi4AR>0$hXpT$x6}`@jWku2MhUAHr;wu>H zgdex!Wpdmr%Pv=svG?&GtocnI{&Z=jk1~fhZizh0ts*BCl8WxBeklRHCO3q)TtD#u zw(y|p!egQM#72(_aejxvzW%e%vqvF}taOffLk0*GglfPFX-w-2J+{<>p zVM*foFiw#C5;N1Fg|26w2S*kOc?)Oq;fWKxsM!2Px_R|OLse+@W(VKdN2VrbaT0B8 zIp%Ln{w?gUX`gowpF+#e4KRk(Uxk7i25WyplX`Q_eQ7aprG6c+DNhjvKBE}^6w$f# z_hstM3c-D26-?kMu^jI7cMhmk^c6aeMf?MYU5HO;7oy$hToHBD?<*OguvQJL$A84- zYuULLlqCb7;~Uq5goZh(bXpR(MEk9x(b|Uf(05eFqELeQgM*aS>0hulrG^F0iC@(5 zc${o-oX|3{xTX|E&F+GX)i3oV&NU2e)$cQfRG0LbrniaF-+!&r#&T#tdKX{_z^C&{ z&ls&GI{AAS=$XA?-@pc9{FbP|k}mGPeDx2@O{V*tBN?zO^QJqXh*7}{84HlubA zy-X0ENqn@~9EG%w%L#B94lor`xOG*X$17WYcTK8y$kYPrl0&8vUiWo#`IVeZ4dYVUv zA;aiG;s`e`BpO6D_Db36U^Lfo5V;Y8Wb8$11{M}2%o4wrO^x8vHavsS5A{R(5ic0W zbT5LEm#g4uhHOO=y0@e6h2onkb$-NdU=SfxSB)eWXm#3Jw{+AzbJ6n$!u*| zRpUbLLE}XgelyDNoh}!Yr5|Vp7s7-R$jN^=PlQr+{r2k_b<1I@%nJ-vs@~ehqtql` z_G7OyapG()bDj>h)R!vjI36V6es^*Tdyw?tu_z7wN&Xm-GaSRv*_((&C=QwS!%8W% zskV}I>%p!LmBfx)p**{X+x0NC`$W)5hr0>svx>zdiD6xG-~v2!0Mq6|EhJL%H4s~E z$Z&y>aStPm#yXI6i1TG_u#-=oQCjR6`b00xByl7Xf3Lpng2Tq*(78{gevUP)QM7^8 zJbB^qkr-A`@5t-Ta@ONFBul;A+TGTWx7wJ)+z-)M>yMG&izGRAli<9BcGrO*OZG5F zu4cmFRE*vardwfE7rnZ8xUz?GaXbm(mL!hM4rb^-TA7M`QowFOyvw>H zR0VuKH~Iun%26q3?xF^FO%#$MtVs?Au7co2S;4-U^x|K^)Z2bVbkL4|k~}*ZXg{ig zBCT7NGSz&G*y#+iRnsvJ!`m1yz-`DN8-|65REFBRT;QE|wnK8_n@e?$uJRsFfWQja?mMe#OsCq`j?(&wWS{Isdy=>{0e)TP7hr01~pD2Mvu> zE<)BG6>og~7(oJumz{WfPN{1WO+NV))ojjsTC*pz|5JzfPwX+>9UO{O)RrjX`2Z)K zb$1UvA9g+E_U%k?)O(O7%J8`B9*9`px*;m->r;vDA zbXY27m%g%_aJDbJB2}kaj%X}=bOJ$=y#c?`hv(DLr*KrczNN=YbfYZ8uu7N2Mz^DX zIcKK_S4wzN^u0TRdA89fGU`z=et;@6$hq0K7<{-HQN#o<*((+Sb=xQD$lAG?75rsDgF_#q($9|~! zyXMN9Z%V`@8RnN@v3T%88(Gnm#^2s49W@s+v1=J1V=Lzpw7|1s%56od`?-0|^>&sCGTcfdcDskHs9wFIE z`Ugl63DX<>(ShR>Xp*O?bsm9WsFN=9S4md%%l;Dzvj6yUQ!6-!SCWa7pFU;(@jR)%u7d}3zURS}%AUrt%)^45r`L@g^&4~rnG=|}r5ladMv=G1#V5i~}$5-T%C z#L?Ytp_E$YtLF$24XvnP@&_8E$K>2!>nL?54TH0Ywk1wMFO=Kbq0I$+4=0V={#>VQ zBz*{CV|bW@-5f6FP&-X96toUJ*|u)BN#k7*jw~`tA~nqumTRLx4rHaaUP$36TkTws zZz-)*5l$RlJcKKtPB2W!3hkQ=`eNEFkEq$w5=l;DUWk+AnaU!TwPV`DQ@e#!7(I4! zcbG_rIDrfNXK%W$^eczMuws2GY_rd42Y);MJV<(>rV*&?b|c92LkS3jtm)B!7E${1 zAi;j=-?@m@-FV!j*GCI$_}UD-m}^uP(al%$_Q}nSC0uTuTE2{~-qO@NYj=Hzu>m15 zz4$>gv#E^H3Kch5og3<;O|J&VO81bU9pX$|aaNK0uj;7kbuBECLF^EjM%PSxxRNcJ z-1Dt-QuH2kCVU)H1jx+3U?bbRa_+p{PmJ94zIMiJvZ~AxCtdJSlI699nxIaO@?}5p z8k;OS3lWB>wckB{OHBhSgSwiV7jIcnJ=FP%H9SkGKhL!5Q>xXFt|GH?gqT6Z|H zro6b1=I)9A^oY+IH(ZQ{GS*pMB)Wgt6&BL%my^!gHeB#>K4**?GH<)NouMXRf;`M- zN(oXdiDlc~L~i9Q*BN8qUewOsFh>l!Yk^LI>i}uY+Bh0B!2-)+Ykcc$K#^_XL_lUT zh(%2~TFA`d+MA2zLC<|nw{^oOZR-oOHm1p?eNj^}@+w%SUkJb|_aORrRJ5PlXeH5+ zTRk(kIof=#58*2rH{6wb)k>K{nEu1>&|b^@P6`U+qD3>0K7+~Ol!R*9`tS;GpLJk} zO|c-aLwiR+u2iixPg~C@T-QP&dO|*Lm_Uvt>^_JsFUm@cXQ`PUhjHgDZg- zP$@R(b;=ePDDc&83?Cw<`W8qR(8km8M@D@j(Lb^Dv$fLaBXV{YNb=K2dKZ(;L-9?r z!J362R0$v!_@%tc^UyF%sDL6^dL=Qvpj_(|Qsr(<#<^@;n4zOss^WNBJCocO(W++H zRS|g-kuuN9YKK!eA+v-P@foYfR^dh7>-Xiq8(fQc(c7vP4bBnZn>HT55B7{rj@yRa z9FPeWUGc`0i9Fpy&*>Uw+1X537Y5rFede#I8a;-wKaoZk8x>c6}qW;S;i~{;V4u$+ksi>)>5L&x^3Xyba z6R+n%WsV^E zWvZ+(xLOCiS|XDcUge^GWd*&zc#DulRLQ`an(ZcrD{bV!%jGTDlgdmDj$BG-c!Ko zWM>zI<#h}Aon^%gS*ef!haz!FK>Y1+fDk!1ToYm?qslHoG{@?!C@Tv2;I!E5)z^+U(A^+O0;%o;Go{&HTF*kkIE32NOvq-pM$o1fbMzNpY z#Prj()Ochq*^!hPZtEFT26y!d&t4YV%0q~bCO7an1L_B&%^tp2!Yk6xguf6V=o(e| z_|-pa$yZmQC~}u6`9I6~Iz;R#I5x2T)`ALb1HXv{I|-x7Or^D~#%hENCNoA|0QZX8 z5*XYT)t=~Xv}}a=W;nm3*n<|l^geLQrfq{HMbL;^+3w2EuD=bcA}HY(9cAZc*wd(F zUJ8XDz1F06Z25tXarmk4QQ0`v8ga{?DR$26mCUoxC(|Ue7tvIxrba7cSgtUw5E` znUv-&Z-2+{gZ+zye^c%XmG#9Nc8yvQtpC9lHWY4@*Xt`OGtj+`1ZuZN3;c58Lx1Vc ztz%7qYn)rPsH|vBuHySivP8_0I)xWs8-PF)Kw-JaW+u&1cQF!u5MFbPWhnVebOiJ4CAQ5d$P|6-U;BUFXyWZ>!o3XFf) zjp?yt5g|#d!r#s^aQGNK{~YF@X=g|$A|^}I3Af75x=aGTjk=cN`K58^;yy|)yWbLA zjPYyp9a0jZBF<_T?wRrZ_@YEkAe{5RqRFn8;T`F&W^0I0ZFc;G%jL^R*5NXI^Q*_M z?vXhvjI=^ObL`*K*V4>lz1GPUx!dSJ2XHy=BPBtO>Od0Lnh?y3^KQ*3`w_Qr< zEJi=F+Qw44-T50{gMvrXl!VC0wVBJDY}`7!eQUPRa!mMwumhjrau|%_rdhVS)37^( zk}fHQktFma`_nD2JXcJ6KAD*`9!=>z{CM42viC`URDlNf*>T^~G0x2Nc%ngob?><* zdu`75wWO7R@@jnQ@1-UFc<#g;XpB|p`#a5mfHA5J3;V$X62GKrW7hY(Z=0{8Pt6Ab zGDu(*j`LzhED}npAE8iZY)r7E3K=6Pb7LIaqrB#(-)b}Pp3igB9Tv>s1EU z-x2&-oTIrc3NIwc*6o+cB~hhQ|KEc!zcP$$C|-vd#Uoe}%{?E2fghVtiqZo=B99OQ zSF3ieDkhIu20JDnG`*8@zO^hFOdUkBjiv154ZiOyFAH^nl9$~D{4RHq*+#^o9sII& z)ZQ&s?d<+Bli+Ec#(SHhI)tzz{6?cu<6m*irc)%IVfIiOIwWYCTfH(;^{*!rIqV|r z*inaicgR>oAi~rTS=%j(0Y@u2{R7O?XlQx%bjq7WIL6~PlEw*H6Ib6Ja`>JC#iFUi zD4`9nvzTeluiB5-bNJay1TS#5L(Elf1~IgL7txHjZe&#My_c*Uq_A3IJ|}>+p+sd9 zeq>xN6_+t9{>p!HSdgCHx**tHZsf@lu8BxN`;e_dF_!#8t*l}#ZWJ~VjVD;Bc$*5ogzg`bEy#AN#^K#y>`Oj@F(oyZA zRS&yvg4d;>FOr1wyZUWb*HIsCv__8yIEj6BL0DxM?x9mXnT=X7o%&G)_cDjOyl!kA>jWYX>3!LX^#yeN2(uD zS4b@BF`ge|i2BYLV~t%r)QT*(5pd0p%DpPJ{9Hkvryh?+JI!|_R@rd*XGL^-+<_?( zX*~fQvdHkIzQG>;BR@7qipFD5Uu?n{RQw5TDl|?#ahc@OEXue>MP;I(b$ZFlfZsg# z3zT(cQlliYReTae^eYnVr@?#nW38RGBt9}ETIr;7)h*pYEQ{Yc|1(-BNBV@@B;90o zF@n#I)`22;jzxN8>h_NpUYg0C{#qS&R~LnHrrQO2w<%YnrMt|vaW7-KK4&NU-6as(q48FQTN@}_n-!(I6! zxGa;QeZ|5p@}l`iY++;gl~7sOt79BXcgGwX2UPUWk8U2J7vpSo(^H`q-1llY}`F!k$He*a>HZ7}=>oNFG5FVH&Io=Lk%GG6xP>fR>b_7nzfdFX7Eem6gE$SB{8~WA;AeurG_zR?4wAMvWT(uY0q#t-e*3 zOx^W`dXi`vd!z~V-=I)w&bl`ff<=_CVuAgDy{;qDs_c1E$@Ye92+zBi+a;J3hFYq9hJQ?9C+EN)) zy=N;b*+~7hTrjw8pq;zmq;>GaSAMF`k}H^0STO&U^8L(umgH4wae=|n3{vem_50v+Fne?}aTo_Z%4*I>bCpWw}uOaM8#L-h~rG-dH}?i64|9mE{0QEDi}LPr##*HlrE6r&$p$$9yUs_uDQ^Kmri-UxKTb(suD^frQP zCUv6Og-+spLmUTf<0AhOuD^EI;_}H7Yd{`w(L`Z6&rZeWhfm1YmWe?3cP~C$;&}gd zph=y#*{5!(OhrjwPmlbQ zI3RSFltZnrY(jYnwr2EaeWsN)fH)P0dVDz-(j6-I4jP|w{WP-qrBSW;BlUYXlwZ*i z8hE701`d2a+*6HrsnITp$PA?=2ufP(Ci_!)F})=y{Cj=RtG`IPwY)LugO|!_+t5hO`XKTj$dmWuvbxZ^7MjD_B{5D zoBEyv=V(JYvrPuH)Jkd}h^wmcf_ zT_`QT)EL1*M{!X1Ys;g_w|cSmUcv}kjW6e7x1n#(^jF|`JhEF{Z*UQV zC@3B&wl(#BnBWAghka*)ukZdnwC%H{p`~lKfM`x9O{C?a>&(CAu$|F@C(_i3 zr)(H+7ILMC>Ik(^xm~8xtM(cv#U->XfX3i%I)aRwv)xfGS?O_R`6ry?tcR-k@6f;Y zpZ_8Za0^fhA51w*6V|)=i*^ZZZ~m2ydN2kGSIdKJ`65ae@==^IAnb5*`$|q9$ggTy zxg+J%S_^6KsO%WJ8Hb+h-@v8Ro%a7CU@Z2@{Ilciu^spfx!e&HZ^N?W9W_msnz!Ro z(~FOucdXaxN7`3dDmWI8QnqU)jZ10<27(g}BYGcXl;SQAIk#*3BX_M7#4$eOopV#5 zP(tztqS)RLm8Z>JkM(NQdrPLbr|K_#1Izvk#Hh_g?~AASgjpA&wP6r2}Q%m6*QXw zYT~&=ezh!jS^|gBa~554rb|a z-_8@xfTD#(ZY5=Cit)}B1Uv4?jJ1(eMJ^iUUGxq6*|$mbt3>O_d?Z&JL?EjxMks!9 z@^Me`>1pT0jF`sO59P4z#mNI&o;3DF9xM5zz6^u7rXDSVXv&hGW^#~*SncEF$)D-q z>$gxbS%`7ob3m4V!*{Gx*c&;k(^SSKxx1a$)D7V3jY7@o(yUO7+pm5H%Dm}D5Oqh) z0d=V}FmbKBoKB5uv%}E%^9Uw1fz!=1)E*iIF02)Y6y*-PNJ2-W!-=mm_o5mE#J0Eh z+IM^UonJxMGwJb}jGCVSL8b8a2qL8TzgKl1juf8iG79Z1dz}BYZy=)BNu2(tNM| zaJcHUukbUC7O&-Q+oFB^vZ?a>-$Kv%wigH^1EQ_m=qvM(E20%!wvCx-q#*~<py3O7}nUZcRlHp$ohqp}fd4 zLv`bnvnJz^ZX+dj`yA)AF3H=uG`nF+)XUY;Z?EvMv9oVNnx4&;*|jNJ zF`}1?(yTrVUrYb$n4wuF-fk)(e>I}sZ24lV;kVb5JMOjo7TN8nml|#C{`1!HrV)$h zSuvkPN{ow@9lQ1em(i76g6{-+wBv1sJ|8Q$Z^Vs4JRJldWx>ZCXD zvSewQ3b(7-@8-;wG}ZI_M?XKb9rG~XA%EjV;-C4o|NOn&3&vz^E1Q<`amqZFZrZWx zhnwF+`^52GoYkuq>FbzfD2npk5ek1S+deUFXzrUC@YyjS;;d=Fj53g zpE={5NA<)&&HE$c7Jfy3MJqX%cHH#Q{$n|5I$Q2{!DwK>^oIvpD&E<-ddFQREl){o zsVDM?kBkYtmD1uNgvl%`*7hu>5;*TKP#`rp6Jy2F`1nuQc%pre%QaS({IK2 z@mo9kYo{#drl}hB@f(@U-z8LZ|G(K6Qst&j8fEXjWLbW?M!H`8#;uW+rw50oZdKhZ z8UDCtfBvSZ9b!_pEdypYQw43!q86>n>-G!H*XWKpI4~u1X{uk(w(oO~zU838qR@~< z5Am?88k37>(6%tyTc;W?>%atWFg|~FuRo^UFV8i{b zD71WmY4rHH)Y-M#d1-tO+synX-!Q@_H+)@hekZ_YyVhK>g&Nb|K6rtcA6WD<({+_q zPR97&gU;RO-t@jvHvTX(q`}qQywXuLc%o8TB$E|ycbl`l{laYt+Y*_JYyWf#y09O7 zb9(t#ZoF}gwSB9_hgsRNufjKqMJ8%(yjswAfBjtk7h30ht>?e`Pv*LLd%`^)CacTE zVl78mk6QZL8!4y$s?Xm)H#?)@c}x1bi@6cYM-HeScODIH`0wrEo54T2{QRoDXBvoP zTxwZ-Eq_+Udy}I4!hiLttC|*$ezW0M=j2%QeE-F4>EJhs)1~KJo~t(ODYISoOPivr zhfXGZ@tpqpbBRXv?hh6Exut7&X1grdwykPS#VAu=6r3No_O~Nj<*ne>-Ax0sLMK+9 z^4kDIM%^Wd|e5dBqWq(6=@l1IgeZIN)t!rYYwo76t zb8n4%Z;FXck@)gZo6g)HG9z0!7;jghd^_8;l_?SnmjC(aWOL+bmX6`E+@v83&$gP_ zP14b!`-hy(V|(v!jmXaIHGOnbvdqon?a%C=p5{s6@5F6IyAI9nmJF(y7)+`OWc6Ap zZSEK zH3zL~d8fJ#Xl_tYT2TI@|M8D*LlL)K4cy^>UsZ%i#kz~~1?^Yb`*z&3eir>c<>jBW z>9YROQ<~mI@dh>>CZ|lU_!>^eU)7PAcP#ecxw{3jccw>@pXutFe>$HoyhZx8(z(7l z#onCHW?a6TZhEJ>P3n`&?_u47O;?4CKc|iziFN(=7+SMMf9~@ire&bQGCy9mKFES^mesVlv>@#~`9daA*v`<;o&+#_v zwMd*rwc3|sbC-4e=W^a}mCA#l$jc*!KIK=qdrX!!w&Xv~t7NIJwhWWEY~^@cGXHax zpN-+}eV^LrByW%Xd;VK()(uIeE0k%kqdHO1dZfpMx8?Lde^tZJA&*{vKH&aAh)LKd zD{2=M)IIO&lc_wHZ5oMOB3`lA2KGjVpYA_#_GNJ|--~FSg`G}wxMXfKx|Z!3eGRR5 z^NzXR`W|X&*|4{5&LIJAn{$=P$p&h{;Yv;i8+sNiwR#5|r&ZV;5ce^xzL+p(e#S81 z;OYv+xMQZZf)1gU7pza@+`k=qQFc^SJvGKda&*m^!)~pLyEmfS|MK>`wC)CR-8*9h@U8H}XHuZ94s- z-{i)Zlb3oguQHBV*VNbRMwc$Qs9wnKZMu0v+cYQlK%YQ|Qb^FxxsiEYFIU)IWL_mc zT=lo?fun|GN3@2a!|D8gz3YtdSnrt#s0`pY=Tl?|R=OH(}=cy|z{bWpoQon}u;BUGv3#UlS$L zjYf}T?K`z>(Hb|JC0e@UaeJgy=+iyANxz$4T$_L8z`l>-qub4$R{QzR3fHVL4K3rp z;hmR|Jtz0UhfiON6HeMoe%ZFv=b5OuZS_-)eKTU(u!v2It-%kf<&zAG05j!fB)AB$V7?r^l%(Hmchq3nBr2fwNvDfRZU8P9x-JU0R&G+n4sW`HJR@}V+L*50UsZV&d#TwqU znz}z*%;ezlNSBq<()En_7~f*rsHbKf|Xl3CttMzV^{Z3z*EvlDPQuc<4O-Q|ySIkFjsNOR+QG zy?cC78=2AZf|Voc7q(whZ_3)yzt*E*y{x!mlY&WXSMBpRO6P;Pr`aKMy*cw!Pil&9 zSe299_-7V7M>G72MWFSX1N>)o{a@BTZAm zs6wS%zJavl*z1={SL&O}bjJ8D_xcGJOvrC{H~o0!)Ykmy67xCRw(a0;kFC{rykWvt zsprra()Chyd#*2))4NW{bYPFY`ni9#zdi(iVQxKfs_(hclUVKX%rWMxiX3Y+B2>c1V)@F}XSNG;C2ILvmz+6MdBF4u zm!*eH3BPVRkMzry?0YLTcmAw9e&W<~nJ5LN2d6^~Qv}|pH>{NSVxAD>{qJt+Ym*7H zhX;x|@(p&!IXCUy-nP`RhEh42<*qmAD&@L~N31ximxb>qB|rL|GZN zR-VMRbdD(J^`>G>QK?`;cI$(J4tHMdz*qI*Pi`q3zG^1d=2WslNSwz`^L^Js4jH~f z#*eGY5~Cg%{xCRW=6v*+Ov9LI6|#L57oL~Th!Ir(xxKoo$UmEd z;;nuCWVaPPUgCK{*L2k0?XU3a)V&f~qk}tK_2s*1XoGu=wMSXyx>o6g zGfV5`mMz$8v_`;l$iqv%HS@q6DIrnSdqx*NCCYqCs8-vy>0rS24VUvfl)eXD)ARD5-ye>1`*Y&cBlz1F7;WOfNe879P(1`1DxN^vw{Cak0zxQ_ns9 zR&q7*rEyD+y|)uSG$pR-oAcw-RCVYcfkXj~HlKa3gR8oi*2_Ga(-b}Hpt0MQHN}_R zimmc{QzBYJo0Ze1?>5Cv3K-s(d)Rn)&ewW&NZqEp8tuw$DI1p_*VJ`Ts|xiPoI5^q z&ljl?KCnHAq$XGp5? zwom(R)oPU;5vYw7X+Kk7+2i{wRP2r3Wcx{G^`Zl%W#SvDKkWD1BmDf~HhnkzuDRJS zet*G9esRblJLR(vH*f55IyzscE#A<-W>$lu%E#@;U1>R|V^38~^Wqb(Rn>#Dw`a_W zoaH_ES!8+ao&NWkY=OgrR&mUmS=s7cTSjx3Es1nEf<2<6-*zUkYbIyzmVE2?_~D^F_uu|8s7RjLpRl^(R!BZ;*&VwNwk}IV)#NTqKN09Xdc?-( z@vSqno6@usBD5s#T^d`n%=yor#k(vWR^+=lj_xPdS;DJYe=lsGI*}+Ky-nfhxT=vr zGq+#Hw*)@V9uWn{FV6RsR6qI2SU+2uJJama3cZ^`vzi0B9eiWYYDe2u2XMQ+Oo9jG%*E{#7tr~-Y(1mTy&b41XW@+;9lN^!~|FnlPpRs|5Rea z9}*L7N=#%OG0Z42Lmk9;bzn?mFEJf$#KdS4a~m_~b}T0Lj22>35wQj0h!us|a&xqa zxgdj1*t~Cv30+3ar4}L$^epw1 zn2Azi3W347JYrrL5N(+xM!}Mp6__I^^PX7W4-l(&ifEM=F(uEjRx&M6#XXlYvF057 z7!mVGotS2P{<@r)y8q7yEF-4gnV5lLVgmJvx$}saGIP`|Pt0FUBEqx7z`N`cF`mG( z%bQqL8pI3^0=Hmr(M*iYAVyyv27a>W--DP~HzGaU^Usf%E7ruivjuqk2DarGqnQk> zTd>w2Vm;F%rdEcSWq*me?nX?}8~hw2CJ%KK77$6HPTw%1Z92q^EyMWDPxw9x+{IvD z;CDlsm4DjIBps;K1k^F?Vx;FJ>q50>dRC#I%q|^IKQT!a zM4OetcRw@|0ZoIyl-tDgwiC?-z9qrL=KM*F3pCvi?yJ@in+LtIb`mST9P2j`vl?>~ zReurlZ7=qyCR*(Zt*r$|D!`nNn1@Bs3Gl9mhWhi>2pop;dR5^#%}gY1au3@2vf4ly@R z5-SqA?1$d(u!&}K5!0Ybq>R3AZijD5i0N8P%=u7a^Woa9G}OR#-JIv64)%)eZ)gGl@XG5+9SRRDSrf`&NYNq_j^HMAH53>1k8gD>kv z;8Sgkd_7Ji2|pB967ypXkpZqvw_=Pe>P&$rN{*n9eqwXyV=kyA5&uPEX7)j+So<0D z8KMH8g4box_+1NNrUu-vK{xRFv;!?rVt&2{ZqQpSv^Rn|s0Ztj1Mo}bc5n?Wy>21LoZuZt;3r6|^B5- zF-R2}sDw_rp!Y4{1kdNWL7zK_306X`E<+XpKiQ+;7xnwSBv$2q;D%cAOW>1xMBD9v z6}&K4f|$}K^fDV>#{J(sk%`$DBaEylcn0r2!dWpJTDB(UKJw`izKe<^#$yh?6NJ{L zP-`HxQHEz<5h)_yQ=4%%*h0_4zy#VaJpsK+0cYgGrv=Df0b-V857iCuO(e0}(}=0r zOXByPi9PEEye$SVZUg@CqJj=E$4~G~h=!9`_YyF+7<=X6JmUa%-r(RSydft9PQlZQ zzeMxU^E2>Vrw*?ntA1?+XKKWX)rQ`n&17gJAGmUVAV$s=Yru0Y!oUZ5V33L8SeqaC zFLxqZvJJIG!>7m4w>>aGzpP&*o^lZw=VA|V%svY2u#b-mk>DBZk2)TBK*s~nj4t#6 z?l&6Y+&V&RE@Y+v)|G}g8plyf8Zu=FSyF&AL5@fr8lHw8ttE+hZw!9F6ImU>o>Ii} zH6Zp3oImC3feZ9J_M4db8PG#L>Ol5QMFJ!6vn-jIG*fV8i!=QKKJyUk?kr>;v=ay3 zp5c0PK6+L~R{aF#Qpg)mWHI#iOB~P0Ao~QNo!i7JXK+t8`shXfn$YO~^%zfd2%0WI zF5dq6BulO-oD{?WLYUN^aEFN zi%}oATMr*4JHT)E!4WjqwF~FMS@4QyazcsLVP9G3uzeFrbmZXLYt#d5hb4%Wfb~X^ zKhqw>3VMgEi-&i?`IR8#FSur*?`aMqVSE=TgzK}3xd>m}hR^z%N{0naepw`tNz=szx5_gclpP)@XB5i44?v8h^9ngIk_IZyzM)CfJ&(YAy zg)gWJ8U(#;E@(}9IX)w!52L4_2Z+=(k&EYX?_wgetLWL8i0=^5TJ)`G0WG4hKRUSQ zBQTQ1x$cktqwp>Qf8B&mL*cd0=sOBMtwOC0uZe~8k6C?}NEWykgP$*`{YD&k=z$l0 z<2|4RwFG0lcM8slI${M2AeV%}&lzYL+AP8Qrgt84%?Tdv#r~&p{(J_v9MFRWybtZf z0bgMayq81)yIPzt$B?0TW)Qs=>cUINPwn^c4)P)d_^gA@2K|T?aS3%4BB%d8r?LFOhg zPqAJcyv)f9Z|=d_3UB_fAy&QwxNpRJ!dqh9YK6|>{rUlTf**B2;}hb<8dylI|DW+8 zLpYx~ac-gJ`|8Bz#&sEEoOeG^6ZFt&3BG{cB;LQ4U&h}R=y$*wIQ3zSJou?w3=aaE zj;FXs3|K?EkzCLk@K`c|GyDVky@CuvE~S(KQ#>#G96EtVqQ4P|IRZQI(wQ&lnRGPW oiMqvVZ|zH4C-1qnC+45Wpu>!^OHP6QnO_`q3rDLsy0Rkv2UBJbq5uE@ literal 0 HcmV?d00001 diff --git a/apd.aggregation/objects/pack/pack-0e7fa669b06f00ec17d49d52ad382f7f44ef9af1.pack b/apd.aggregation/objects/pack/pack-0e7fa669b06f00ec17d49d52ad382f7f44ef9af1.pack new file mode 100644 index 0000000000000000000000000000000000000000..133e6aac13852310866cb6b055b77cec501bd4aa GIT binary patch literal 2559225 zcmY)VV_;p4^EH6RHX2)v-PpEmCyi~Rv2CYGgT_u{p4hh8n9V)O^MCLC-LLtuGkc$z zHEY(aQ4|u90RaI40|5c&%R}LtbyJFE<9jX2)bkc@T&C*bkx4n~u)rYT)b zJA&(|cZQ;BJ{Q&100eL_vu|Q=YH&@L-zVB!*H(dfALsx6PZ$t-vDXV5TBSA#{Z>B zTgLiUqtHOzjg1eKucy?Os>_BejlCWj6GQ4c6&V;NfZ48(2|;jLuWXBuINm0qFo5_d zncmrarO>9JNtY8YahJnZVM^fNcB3BVk_`3|;!jyF5*k;lV&c@`80K&pVXp7r4C<_H z1HjSmsL7y=@e=CiC!Vl*7Si=%`F7Hudxnd~SCKTVY!|53Mz71=Ips=xEB!B@+GEw! z`GQ57Iw>Y0pkF4USKCq-ZVe#ZH=G|y*0Pw=u7kWYD(IMGKQjUuiv3jYuRnY+7 zZ9*xnN>0n0sJ0n4#%sG*tvkb%G%UV>Y;MHlwl-x$=__p1Wn2HCw)$i0OGh`P*hNQ= zs}H|NXrFEJ?5)Wv);X=b55#U!(+aeSVVRCIl}ijJduGE9_e$BSH7Ya=9Yj#DYL(k$t6aY>XvhUXYJj5|$~ z(8ZA4g)}vY^||wHQf6!3(II=_r6E5B9oim^{W~Q5bKwe{6_TDu@#=NPvlq)V)Al9eBbE{xoM4#sEZe(z^O5q;nnySx#a zk*q@?A%`C39-Fdl<})@Ok>q1`e(^{|Fa8FJe4?bBVf6cL%L{K!&_-Nj6qV+5Y9+vr z31jN^%?iIAk=7#6iZH%|(s~%p%4uah_@03?_q@`zCOMBz`G*Eq8XVDArvn0hlQxIo zG>XyH=b?Lp+ib^ujVXqoN!$~f9*PoewUyQw+y2x+wF}VxUvCSJHdJVMWNS%E(y=T{ zMmxt4;Kvq2g5roFciQH!#}&E6iqi|%KyD!L7F*{qZ-yV_XgobD7PBvr0O@x0-%xDQ z7T!R9^w{F3pnSZjoHPV8O6Y@c!G z_kI`0I`%`bm&IO5&_1^{3OH9z=g)0#wL^?v8&*m1>G2w;PS;;@7cxTQY)>n$8O545 zhHOfEWe2X+X%Q&SMR<@cZxkpfTJoUBuzmk92vj~O6J-2X1K;~TYJhv-4BX6|T!tlN z3Lc~F)C=F2in10Rqp{U*{vP6OZ0PW>He@_LT#YcUBeGToFEB3hwB!eMQ(Voc>|G z@W}(yNpO3kES=D5|F43LjHQ@NE&ClOVf`1!Iwx~2M{m+Cu!g+bTm*ALr0T~YN^9#3 zR;y9o>z&KX}#*z0Qd;q zCs2Far!9iq&8&`F1Mk-(y5_kx0@zsxKu5r!wceU3e3u3SuiYX6!X?I+Z^2ZzvOjFbF?zxWhV}&5IJ1r5q0#PmW;hT+Q#L%q|a_~2r7ic zN>$z)$>v0jXZGns5dw z+a!)(RCz4N;SB8^;e=53=+U>+W+jO#Q99tp_cpAB4Wle#EMawy7^06kW#6`V0G>Ov zugPN>?vI?QPg+E0UJ{o&KYaq;VU<(a&^n|jN;Gw<%;f##3aT36^5Fie-J>ufl-z%# zJUg5zuvN5wgE9-|e^d%wL5mWY#a6S={Y(=fc?c4e&~4wm!h3O*sqU!==8tlO|BAiC z=8}E_xTEj_Pn5} zmX%jaf7hj2$h(+_ZS*%zSoVm0GK!Wv_1vLlZCgmwIb}*IdQh?Q&Ym~kSbozd(CTRQ zl8@j^qW|~1;}6M17B(;_m+2eUDj{)hyUIVkXx>v5=S(9gkX~`o(fpWCB+03wTMpeB z#?($xz?N;=ctY!sP2vt7(;h@i0#l7{* zZqp^S*?B+i-gF4O)6M1~sAOH1!o>*Wr4fw1~*eB*#J~Uwmknbn8eDa0kGCkp^=;yhH z@7Ii7O;Lg*uoI9jrJ6IT6hDgV$5E3?O~r!f^_+-Pv7~oP|}Cc%=^GajYvB z7IzZJoQ-B8H*GcDJshlqeYUvd1+If+1e#V~ANc>Ac3jbEF!7_1iYqwGNYK>W@HSDt zlNg7G;SU5eK^I(ajxdg?jUGbJasvR#F3UE`5bqD8;gZbV)Ur7djZr!#tVyFYdAAYEE-Po9s&LUYgm z-iDUkeckI!{IXHXOxkEm3wVq)c8t2MZ=>B)46n&1*{w2x)71_oyVX8{V~af3d|2?m zD2vxFsq6J{v>{V|1^436*-HbWcL_kq4vZNAq}yA6n+HvLX(@stjwl2}#~7ZLSN9Lp%qltdr0p3wrO zYfPC+qtPSk-R$_rilj2V3)<}dvqHv4&1!?^fVV^Ap??-N1}huIr=Va5$>5iqeS^@K zdYunl>Bjz(4yR%2j6uB$ zVf;=r1S}`E=m>&{yqSPNg*L-z=7^HL&TZtJW~7=*?lDk%GtV@F+zYY1MFAeaIt()9?&)S$Gw#C{x+x-Vp_9&ORhdK{ z@@k6NA21RvWYxZ`XS8Ba!8pY<-;v{87gZkFe)fo_&n+?n+3cUEnWT+VMB?)* zCH_upM|A+FykSicEWli7&(I|jcUBL#Nqzx&f)4hV`a)(%$WP&`Q6WZW#X1Pd$Ryt9 z#&2zsmm2uDsrGqG$4_JrY1c!s1}-bbTe73v-)>GkOUgWL;2M+Hc>X0BTC7#1dXmpc z%GNL|cRuJ|$4VMldRODkiw?!<6UFo*))mNY?nA0QeJ1#X9I&rrKx}m?{Jjq))_PYI z_713Q_wys9D6Pdeg?xBaTSa&I244S|t`3?RgPFq~otACua#ffZy&M%IB*)de%xr~2 zsH=p#9FR|d_vL<&jG3nx+YptqHVJ;P6jdAX)uy>>CRC?=J3ns!Uqp_6jf}U>d(*Bv zH>SQL<+*UfXbj18)CrEM&SDAs>yPjrsG69Qkc<8+{>czVRV_Eg3wy$!o$3r=-#%ITV>`GT^9p``s$ z+xP;?URhZaDO7s6HXD!WU9&I+b-q!8t`(O=yfY-Z&F7-^_t~+G_KqMtV_{JN6q_?{ z6~;~uHP0|fW>F_gjozw|Crg1b*Ov{uH5nedO0Z2{4u+)e&7oJYG!ez0|3%LCISFk8 zCn5d(csV5jF(sFi)G9%9?NYRYCVWn|?A=94g(;4%?O8PlUedG;s-0RGF;YOX?NxBx z9w#wXG-}3pjD{5)EO?Tl8$%oCEyZded>mha*pOd%IXNH~!QM+xowN2t&5d*MSmNT! zul$+oz4NVAA8+y+lpr)bTunGTnSjXkj50<)m@`(6cz7XmW=*&oT%rsq%!y|uzk9XgF< zw=|5g=*iGI>yI))W8Gp3-UDsy<>lw^+sd;YN*o&3iTU%iDaC=}h}I^>c*H<4b(*Ai z>F*&o?gDp*r@_uGA{3k6Y{thcMfZFkAO^nDQ)D|MFI(nO@U^8t{%Lj1hBavn?%eh8 zrp5~65fc*tAzME~s1mn|iGS_TGc{8k*H!3P(sGi)SUc3$V&x<~dkKrYcz&0zP!P=H<)EoVq?d0ZhD)V3PJ>yE{8>Wu% zf|0aj#||gNyW!-t}49D3HL?W_}T#`eXXFfKPBiZ>&g(&RC{57scx(@*cu> zY-o4)uMmU~)V8srGAB_GI;kNWY<-g@N(@U#Mz3)xA#w$Rr`z(Vjbf29T2521m&Fj} zzF1PY)Fi(a>i|{Fd4P_o{xPJ1nfDazwp_IA(tRh> ztbh1cjJxu9aC~q&ze-R_6My_`<#5S7`nAU$fj8q+T5P`` z=kN{S0oFE#`1Z!H7Cz;@<{>oU-vM*wZ;u3(OeSp3s9JvFMv&Rpv`94|TFD2pF+Y`F z3WXOY@|T-LXdv|!xWkl_TFNltRdP$0DyF}P|5(UOWUn}oV^FhtOviU>(vP~`I@LU8 zWj6R*T;uoBBR+IFark65>Hn-b6OB%d)e$EyB?jF}HJW}n5$*m(<+n2K>3!%5){Zi* z?e6^+|Cb%1#{unUD3%@MwC{?-pKUC*NBU#-xO|Fig->J~mj@%w?eM(+Iy(aR)?%Ax zo_ey`enjQrdqp_uhH99DT~*dj85(>Yd} z%DBb|P%E3#8WR0f9SJ4Dk=0DFF>I3xzOlNm!p)nL)k)`n_9zxdOMi_(VupaqZ0d2< z<2|%m$Hw|3(c9Tnvx?bvyU~RCSa;WyTaXm#8@zEDYkng^Q54bELe%`EiJbK@;{oJ8 zbPmC7UwLM4q3b*-(OZyeJ%z*wC_J5$a1ZY&;AH9(6^BKtsJ%jBh9^TkV=1aSJ+^~k zW~CP%5iJ!f322$h>G`==alaBqZY#^4G`p8G$zNgYJ6;~9D~Iy9ciPYmn^AKcPzN)B^ruSV5f^7lX zwyak+)N2gqiOy01hy$;}| zB$#=anTUUEyOZ$ks-R1jgpm&J2`xi*xw-|H_0X%z`uHj0KAHiL06hUkjl|JXgXXu6UCy-{j;N3vt&H zxxtVQy7D@9`O1h!^||cdP+9Or3Gu@+6Aaj5&7N&GSK`jOdq|h(uhcxeRkmHX0`Bi> zalvi8;Lq5?EJy^rMlolsCWjsuL%CCK8WbpCAI{3m@bQNRN}hE@)r^es`m_bn&hj-AKIU(X$pO)i7;o zy785b3S^=vW)fWeBZ-1ivM~j_EV8Q^ZAOG$>gSXsdosaRYFr zWE9rW=%n4U^##NU8@E|-hVy?#JU%`gFWK*Ff0ZxcC%wP`s><>dC>>Ay991`KfLnnG zX>6Ih0;=CsYiTgQCF`3Qe4uC7-CFK7;_jx#-@qQ16|yov6&V@0UO}K@<{Y^J&qCxy z35v?NCGW5<)#f_oBdN{S>^_IC8Kun|DRB%yp!T@sXG3EO6E)5u{zf9T9xujNC6}9I z3lL>RhU+yuHb&bN`+_i?R##nBY`mx(Q$UHAfyj5uJ>ft;Pb;vUeaWG3=sx0g~-nxPgQImbSR&>VM5hNFJOS0jL+qZ}Xwm zQSFY13WpQsTQAt1O@WrumrI1MqHjTT?AMe{X5q{Uv73F7?^6t(046sRO2~F@nITd4*7v9QfNlq*_?5dv+yPC;R_3Y5@Hf zg&aCa4VS=JpKmBdp6rxM>JceAjACy$^SeC8(J0X5@{7P8Ikkf$8T^kxK1^7K$sQG^ z>#4Dgv*w@rR}F`E&r$7fuUdDi?<+SsNLi}*^r0BOTaq>cx_Q*zRljKdi9|9dF`5_~k!l!;p49Ebq5#ix)!aGcC0l_PlsaViA> zRPRoOTWjCx%0Jvgc!2SGJo=v|nOQ6>9Ke`MCzC|8$>mbfiGD*CHHW}j5`z%=-j|bg zv?UvWK?d>rjqPa%m6X$TH{m*7kAV}r<|^KE{SGe@;Invn_dLS!_NugR_B3|!XS#g5 z*TNP&nglW}+mFQ;qiRf9>`_1z;&jk5OnyoJ=VJC9V6lp9-;&(bmP7AZBh3UT`ZeCg zbUs#GD{i`>YYcsU_5Z(Cnn=m|-_F1_Q`Yvkz)Wm-bMq0b&zSvRQ=_m!BXTD_@wrl3 z%C>-w6BH(B8HPHFyk+Y_eG3vT{K_H$Z>5-0>fove+!kFJJqXLG1K1IS^hvgOBb`U zA;2<1Ia|4k#8E~#G~C*nG(D=S)`87s@usbZsyufe)L?91$IXL}{(0klX%~y2dTt+) zsrV>Z?gEB!Hoe^XGOFTLA_2WEor(v86XPHl2ku-3GDXkblI)0_o0WQepR0b2;j})^ z-~f7uU4t#{v-8NvLog$VK5&ITNDfPJ%WDghae`Q<4ohWcg#XL8D{AEjl^3KpD9@Ef zMs@hguDs1#KN;$C711Zk8An+pc0Ha_XIJJiU1yy7+VCxU0rsC{j$_5)OgPX*}9ht*7>{NOIas z`Y5ayDb%yP(R!0ZKmTrjsKn_6))v1#vP(n#+vZ<86{kq*MdD@0+Ah{6swmB1K*_sj|#5eFP) zx86{<_lmlqQo=59F$T#hp=l*@9fkn1wJ7n6wtsBIqE}aXB~kgLp3C5NREce#5_$hC zT+I2U3qqx^%el(bH#TK4qhzg=^8PhQLc-{`UZ9>4zY|nSDPn4FUF7#=jU{On&M(7G zo3WQG2JAQB^#*EXpI?1~`QxjHZu6Hp#Dyf*Qb`3)Ie~na-s``=fMKc6WY>1|7Iy&C zf5OVky{uruF_%|!QD?!lp20kHL%8731JYTOt7!Ky>TubW!D# zXy#U5G4G&%`!82p$24HcRFTpB{Q2(A_nZhDN$6Q%*Mg`CYhQ~zuV~arA|wUsCok|> zQ587jiujUb{KAJLmM7&4x8-VVL(zZfoBgQS_XAdi?w2<@f17u)%akbmZn0hz?yn88hQ%n48ZB)&@y1McbzFwn}WhpYMF1+7`|?4);QKvxB=&dQ6u@J zzyLXUVEkd*K&`-=d=F%tC91CoCwEe-=vPvk2YS41Q6P=kiqZ~* z1RQ9$Zm}u#Wu|2NvOW7KN$i^)V--`>?zF=>LK2eR#>~1JA);_w zJ)cla#iJcCEUnN`jp8huU*^z%ccn_e*+Cl`Fu2t z-WfrYb^j-yWlnORYC1YkYs{=!um;Yqsk=wkB+)&r!sU&J*1wH6cLH^-GaTMS3^EgA zk8VB<#xa&SqjwVN`((K1oGYH~*qg=k=Ot4ZRV^Vz(>FH(eGOTOkAO>J$NsYtJVh?U zCz>X*fud?$=(fwxL?GUa8`~7ua_8fiR+TPAM+0 z_xGN(pKHe3$|76Nzvx@q&)RVNLnPCkM%dvZByI}M z10K43POx|l+B;+a+&{{dsfBe3c1Ht7RKlqI0pqLK>$2}6vi+imA<(Euy`A%LzUK>O zf&3RyvAaQTv`3al3WEEF`jI5FeNzalak^AIRz>hqG+bZ|Q0G?AL>icB+% z8y8Guk2+-VIg4c_liVGVDtv~^kv*tMsk(YzoVacijNgw<-PVNKegFpNx35r0M1Wf@IkQFQ>nF^C--X|dOI(ma;gV@_>T~ldsv;KDf z!d%F_0H8MIOJOsK;7;Ch&X!=42yEmcS8Pw(S{VCUkoiDPfxq4K8Cmv`qUP ze|K~xOG>-BRbprF)7xjAGIYPV?)U2@2iHJQ$DTQV9>#q(URuH$xRwltv2#SS;6d>s zo>Q5)(i&1l8Yag$HqGY~IkY~!IaFBR_Sv+Qp>1ZoLu{7Sh)(>E*GNMM0Y^PopdO&S z37|un1_!K^m};2u#JnZsCbxD)Ynbv|ZuJk%zwfpa-@ z;Rk{gq{#lM#ZSmd_X`3s@M9SqbnCwu5RTgBR>J{s=s0GEs@UOg<|WB>DiS%lE8o=|Dh*F7fDSB8@~8(s#g`vMRLG7}`F zNe)y-8+%jWE1o7cMb&tlsg9w$&Lt@p$D0Sx7%j?+pL_L=9*;=aS?!(=>0JYX`0y6g&Woik zkol@2_TMh}f5vHLNBjXCnV%nB=bRjgphtE(`j`G6GEPwYCz;EeafITB!DwG;GPOa{ zXl=||N~=ySD|8jp;;W*pDkNbVGG#j!Zgist>eHVyG=mj3{y%{79QzHc0#9_6`IYEFKX6g$WuBf`SKK!)YDh;-1LZ*hoGdnUqk} z1$6WJ!xf0ch3t?2n$7?0YKZe~PJRfYHb4)rWu*Qblr+Vn3D*51?j6+i7cmb}ZJ1q* zPO?gNSSIsO*QG*?@;iMQr5r4^q?-YY3+qq#1en2ic^3Z`RvxI4dDdyhBW^Q!mG!%J@4nL7l2a%1UeSpBQvl+K5FASCV$Gf!Y6^%8}6 z*I=%g&^BFUtrd*596JaMoXU~@-#qs*MFU-Hz}e!f6?$316burR^+N2fESaTtBVkMn zAEbP@0spZ8-?|vFvN2sb6yf)3%z>20#Sq^q2QslM? zvpR(nkes#r6kjkE4(COM&1BrWRsTC@NuNmOI=y^gZN~IbCha_cLtPIjCBEH=$a}Q8 z`f9y@@N*>neH{G3cwq$ep5RXN(WZ}~NMtJeU|FXF#vS#bQGM!C&+u5}r3Ew&?neVZ z#6;b>QznsCy0ZT#>H$7UAh2!90~am{Hdbt5XmEP&>y2!L6r{BnXHp{e21(h(_D?sD zE|`Iw;fk^KC0s>_xx;CwKeBzLFg*Hs4~GNC*{fzS9N;G8$+XrCa>D=&WyX3!2LY-M zqh^LwDwojKgMa~0qR@8jY0@=F&YwL_GOU{7II5*2Dztd)G6 z>HGGhvM_;e-jbd*H86vD=4&lm#R3yn;)?c^{hxE_j`ElBi>nO*fwPdZl9#dP#fv}3 zj?gaKE*S$FCCnhM zB#56MuqRFJ>MJ-YEA~6U^Dj-*ie`t18_ClNJegA%N!k)}IBFQmcZ^X!v%aj@$@vW} z*W`7-rem3n`&Ub^ocE1??fhSI_l-%65Nbt0yqzRUc@JC5NBv<&^(Jy>gt~>&bzU~~ z-M&Z3*73Tq2^a%p29p0Hsz75d(Djm2*0SC&h>Qeu<~ljM@o#;{D`CehinA|L*b?~H zxA+D1Dg+xHGnm0bqDN;AHHpfNFBChH^0pk?^-!!7ii=_-%zNmlFz;)voWV-ln_u+5QD*PbDKHpTxDW?jg0yg z&9$dGL<`mxe{+(DoPh}jON;OXoSR5S;gdiC{+B?R)?C7nWG0sbtIuY^xD#mu7S(a=Xj}Yj_cJ^mk7RL!p(ZGAQbFsd7maa zfDq7O^q)xkCiztgk19bt9R9axy_+#~MMi1``_8jyAFN0F10(;sD6u&Y+rbty8V7Cc zkam_>mb61-z664*B0xHe4vzX|Plt|vt2>cYZQC!BHg=Gda{)>DK8(<--QIz6K8ttT z;`t?opsOY+_rTrzUs<1UJ$_FpXGnCg#ABUr>Bga_a*9HD2=xJm4V5kxz|2fJQ17;u z@OwMh7!CZGGS%`pJTbje#AgY{wSV|u#k_q7ZUfE8wHRSYbnH--izWG*#A}yQIy|Tz zAIK6Jhi#Fvce+z@aH7qKz%XM>6ZcsTx1fL1{ap5H(uN+jna^>%0Q0IFkl5v#+*76_ zgok3`HDf_%Oy5bipp&0&u3Sa3C$GB(&AW5khvxNH^Rxx}x7EtzV+;h_4fU=Ep*(t- z8*M(?xB}@jwz3N+niu)pkdm2}(6@Y~!!e#Yw?B?}0+J^S^T=lFO5Z=%%yB{=qvNOf zC1I+ii7GY(1wVlOw3g3~ZiiF4?BtF*8UDBL^ZT(spD1w%@2cc7vnE85~y_vMm>H6EQEpbLO-vJ)JTp9lrztwXpf(jeX#CstgOjm^4 z{08N|278@jf_D*$ne6d92b+8R-i5fPYR78xjITo@5iYowex(!WGw?hK#w@#q0m z6nfi0^Z)l~*Z=;W4N6i0@%$fq?UDbmk52IzFuSAofk09+iwktuA1)g?M69oem6Ye% z|9T75-`tL=hJz$aRi#yHpa`*YLIcMvU!FA;kCEr-`@Wf)4adQ;D6h3U04(FBcz8C4npBe6?+}M z44w!PwG$wsu+Q6QLng5L<%!eqSH3`@-b(e9dVGdLGjE1LCxmkBe;~v6F=qZ}Fou1y z-~*Brl9EEfKSR1h0)f< z8Qcz3K{pF{A5sGN^C3S3{N+<{Y$slPwFV=Vx0{$)+%t|UrN1kFzK`S&x{~{|ofL}m zmD!DQsZxq8)iBbnO%rJYJ15%Sd3dB&jg_7k4kAZ*wO>>DBAuIVLqay8V>XY;>v~Qb z5J@h@TGjU^l?K2 zG}4L)n;LHGo*$7Y6uP!hpSfrJlt zpfJVc43?zX-YRbDJow!eJusc+FjE-8wHPCaQPtD@*w36Fam} z6&U2|#kjwRRiS7DD|hq4>)4OWZ%l%9lymkWiOx?|+&I^>^q=!O{f=9T87#10MT_cD zQIR-_as6&LRQHMCo#`RHRv((yjC@bMQ^1^c=6t}>^W-N!w#C3uKL`j&H&4w{dxTM7 zZz6UP^3_>JXcbxsJALUU$265kPT#E^%l9;iTO$##}&&e`1^R|kmJ#TLH>6eAr8Ea zID;&IRVx#O;tQ}|Oetnrw`}{NIlgsni_sB~We+@#;3XgpTRY=LF|Up%HYyE+37WH! zq9=wB|Jo$SL0DHF2-fXLDd4R^P5L8VuveE}e3Cib*_r$Bax>h7l1?+*Jsuv`d6Zrp zk3PbISi|@Zov7`sucPjS)cvN(uVbvtv#t7h4d|4B=CfPdH@1;I3g)3W0Hy0zz2DGK zd-`GQRX%^)nYYf{1@JpMS5)~z*k-qQjQ2*Q2l{b_RTBMqh6VDF9n={S2v!r1y$jjq zHh#z_Z4)IVTVr1&;gFgHxD6Xl!Ld~xJnbn6nidMlCr@NcNTeXX6*NTieh$+)Bq0yh zhLezpfDLJeN%UbVhTx`GN^%)te!p9;UG{LL?#w!I2fV`0PSqK@>z@#%I`(kXm?v;(vY(-+Jjqq(uKkG z^hsF4Il>Y>%I?;RD|?s%r$8>ctqr}rl{wU2>2T!CCnvDl)xgL*f;#1C%g&x_SSC=u z$}88Z{$x@x@dRmo0UyWY5Mjd5=>@K1FI)5h1trm+%Sez*&w&ld<@A0zAyJ~Ov40$<9CD*FEO=9+R03NiU5; z;j86$In$4c;N39-o04^H(^t@2U;!(?B40rE3FTQnmb@i#JV-#IDfp1x3p7+QF;Iipxv{1QY$R&S@O){@aE zuu%OL_@f}j``+|Is_#4<`L_kOh0a<&qDh3@)tK^9u6tP7V=ntVXJLguo(}a58uexX z-j-n6_Q7{Z-|mA)PIj`(=L` zM9D@)ez=#K@Yd?sy$7N75JoDCO*&aJIlB>xB=v^4T*VDwbe|q^+sFJ~ z5(_k@08#PtT+S+yGAH2w7RgmYF9kTqcl2Hmo501Og1R{jzeJRt3t>dzLWpU0AClBV zzm#?GlJeE}f)pxH7p>+5Ceaga*{&XpmkkesO4cd`eyvj*ON`Ea<{AgG1ZaB)#u_RO zPDC+=-AP*m*KEr@R?8nT%M#k)Kg=acJn^Go-V+oTvkTy)%9WKv{oY5&A;!3=svBj4 zpFupJl`8(bYx?xOiGK#0!8ZF1=%OKRapsevY_immD(dXII|TC^gWlXtp#!r;H^J1F zM&-lpF@&X+&5U92_TUN3ua??dMqDAwK-$NTR{95}>JG@il_3L`_ z_Hc3fW2wk1vAn~CF1C(u#^;8?r>f~;1&m_<)Y*#t;ao?rC&C)S zc-c)`VJ8dqFMH&JKE^U2rT{(W7(h(fIsc`4g@9dL@#!)5A%tLuisGeRteGb)sLxIa zqe2xmD3(C@b@Q{B1#X1=R}#HE4vu=9pPq|&?GLFOl6d-Qs*=RGnQXb^qe@z9w6Gi~Fno?zSr`#jSnaClM)M8`%m%g7z@WUky z(fRTH5AMp^zo@ro9b#~~TZr#U9~;ld(9mbyFGm{XRdyZSjB!=>m|lTzxeu!WKHDwV zivD#1Dqf!#0Fst-kcf_S9Fniv=-v49hV{JNHA_FNtRU;OZdW ze~i7!T}~T)zX^wfO)IHfKHsC!I-=>_OXd=x<#s2NjV~3#kr?&@PN<~0kyxYzapK?T zL`hWVM3ZY<&>6j$1Pu;wXZQG=qgmuRpQV}iwb6?tsgq4IigxFlh9J9^Y<^)q+P&oD zZoAH&b-uTbiSQA%oZ=Y*cezjLTUL()^Cp+$vhTGHdFO4p`ur;y?G59jrB{72Cd;&I zc<$g+%u2BT#rr?aPb$kUGd!Hiegk51^;|vJmc~`aw@WN<3*W-f1uYO;_m(tTG|)F% zce%n$T>Oy0%bq&iBlwoc?UWrQou}yM*RsWeKKyJlrNa8kGF`_t9cI#PHnV03afoYSer&l>OLn$`CiR1V z8Jml*o$truB*Ldq8zlelf1yAM0xPva5cb97d{HQK>vvrmnQ-_VYAeF1G*yOYsm00# zt+SLPHm9f$1&Q&T{JcwZh5VIrQMp+V-_lhXiz38PxfMN0zF}S zij|c9GFbC$kwsR%229qiKZc}PCp5pM@%c?T$MF0Kf@S5lkcGJ_mQelvqA&Wm33pg3 z5b8x0l+w&k{-mFjtgbM;JFjupDJY=Lpi{2#74tiKSA!eRJcqr2R#6^M)hLPn^yGp7 zZRlO_Gg6eYKsz@$gnh2}OisquflyQ0n=jTI#Hl7mi3-FQrwKc*R>3nq@sS-)iBi7H zmZ5Pi30i2j;8He7H-2Y;Ohb530`u?6R3`cbMj=!9o>B?pqf(2!E1`$dYo@!KOXk%dI-#~~3?8Wn@$AiDhXK|s zN>U-b!c1m3x8o_38g9+~K*WFPYJK>+N`R;X9IYU|bB$j>K>cN;1r5oe9da_Y>FIkZ zsU@wkTYVv3U~-)zJr%y04|AE4vOaG$B8^zOF%NphLCThqr zj{^oxy2BTWX4xkAkx*my0a_*PbiTpPXj+e;fA-z>3Az}>x=zRVa!=|@MyZ&vMX(99 z!HJ#)m1-Kpukc{+SSJ-1{_IKyFNBtD)bIdwy{)j~OU?vkwBu0kkRjkyyFO`aj1W@L zhZe>+a3%+6Fw>Tdo(6Am(_0b34aLO{8p67R0eV0@-^cn9Y{N5E$aNBa5#U6viS`jt zxmcbpcv#drpWsjuLeh~yZW_y#nk;0A<;seEF-f8^@SY)RS20THl68P3<*RWRkK>ti zXffkL6ln6B_Co+C60#SluEk|PbBKyG!>)sQXD*na?$ITT+G7dA*uqj^o{D(1cZwl~u&+PyZT2;x+KV@DnBa2+KQ{sOTOak%F;t zA7D6N4Gf_TBdbsCevQr;G0RKnoe+246>9@4fWROc8S9RyN&+RDO%HJ{V1cx-6&ek@ z^y*@`8mX}G>@L^uG7Ejvy<7UXwyR;w!@(6GB5ie86!p8-9^hhIRq=6YC*iwcKXuZ! zzz_b%;^Mrl&@G*zSMOTG-0TKyr&P83bJ`yN-}3}Ye>phPk6Ycc5zAmXot1>0b4UH-N7Qc(-Jzmh8(Z38&@~P%SX}dYwgxM4s!uR0KT53{nd#5?!Bwp)fcZcK z>pFq+lU5`FYZ&5&305^z;|{7=OYRK_Qd%C_hy%5#A9P}hM>?~z8^#BIRXK<2E2$QZ zGgmC2#}oRC3A)EP&ktwKhjCvTdRaEr3DmoD zwr$(CZL?$Bb~?6g+wR!v*tYHDOZWZmJ)U21o#Ps7)vBs_%=zxk`gMt9MgU0WO=?oj zY8hZ+L7~NJ0*M-aeAa_k*2{-(GvwDE&XpI$N5I#f-0!==AS@V*7%6 zbwUU?d~?TlqV=f2*Cp6LA3jcQA?0U`9r&k6SS5&@m7;7wvt1X>PLE z{6<7O$klmv0`@3CQ*SYj4YJ=JFbTdq$JBl-w@9lA{zZxy0r$J2R&nw0ELOZW~K{7M`UMrWC@-$hCx)g@?CBm4I1RxV|Yvt~ziE8hb* zr)Knja_`?S{}<2zC4wpC07OCzcHDjzcUXbYbiPgg{K{fY8{6Y`jaO3xU@mSYqLKzo z#E(CkM8NdN|IRL`$s&*|HKQ_>s|=1jGc|$pnBF1WIB2{#iJ{H#@!S6ZNAx{HsJcbOzi0g5EAdkMbLJ%Y05H45b52;SI%~Bmg`R21 zX8^~{elssN;0b%#xm0)BFvT4~cIGfnWFr|3E5%IABfEqR)lhrVgkuv_)l^ka z^;WI<-;!eL-)9GXdt?8?u9bLUf908U4=Y=IAhNiIUuTBB2&uPJK2gXfIOIdyo{>03 z1nB*7nlZhI%ks>nAjP;AB0CyROZY$U0X)R2LEHS5mfUTnE#R>q7T?&_gHzU1^6B8) z?zHqujsn@dTV))^_&j~h`H1cmS{AtsE#vO1%arU#-4S>A5KlAXqveLQsSJ6DGSz5f z)plgO0TLkPlmC6^|89IF7OlSVbKY+iK&GLtw^_1-@N+X?&Mq35i8BH~l9t3&b~gS1 zUg11ijo#DATKYUrDkanXnmPdp)VvVn_84k4d8WOOSE5&6f}2#VuBesieg2cTKTXBc zy|)OKO+(+e$^+Z?@?fYhyzB{)ilVZ$4{qWry%z9chGR)q@gHxk@c5$(+Q zw^M)t&m&OY`d?r2&71f0!-M{H-GBug(h2Sa}^*0 zn@BzO)b>67C`F2z5RODk8|@1-tOiws?8RYg8P>C=OU|!`>@EPCVuFSjEH+GrS)0?qmHL6af3%|afnZkhXUG>!dyZhNR`CW37Q+cUK54&(eS z+M}?+46PFMDPC$wp>oP>0H^&XCuJ4~`pn}((uRzzO!vL3#Q!%U$NaUV!;Ainnt>AW zO{V$Jw`$2vBsNeV#nOBK$TEs>oBX{6=3Pna-QVZ7FdQL50!1sBhEP~DW6&&N(b}gk zrMc(?H#?H9$2r_|D8!bY-b~|Ggg(v^YTPI_*H6NA&~j}hjl;sb);i>3drlAcT1w%{ zK6R8xqSJ5Zb;G-W-x10wwXgcG_Y(r?lfm3~92+1sPSdBA(Vyh+oIKOx(PMdlb4OPZ z`0pQ<`a5HS{>?9nBlI1@)%rIskXUr&Bp}>KGoO&}J__4`d>;(O6WG|KSjhGo2>s`5 zDU>pj_9=oEWz5JTJ=?&k7p9lVE4&U`LQK|mk2rsocs;+bw58{qgFuX$1HxoNAr*EvW zYJlpe_I*ZSI$kQJlI#Bmlm8Q(eFvSsVRHB9Cc$4nIKOi^OzZ1h48^8|ckaUc@U~Ue zj>N?%_m_=RvQOu$`0})lqQ4uyVach=vywu{Z63S zq|}T54<-LMs)@|DsVO)T@Aq(hdxQaoBFC%i*Yc4+VxJyJh@pUX%0CwmUSXClI+3a{7UL?_D10eo6RlYw+hXM!rV) zy6w(|eD!jtzw<8;4@aQ4GAiZ1t^e)!KUR0BA(s}Peo#MY z`7SOk^}hq;%Bd~c9x8Nm;;&!ifLfK z!P(nZrmhG-I8t~N^df4i3$|B7`a^#K7%dy5Gn(X(A2{KH(8N&CB#Rw}!G-l1*`aVm zWJjv{4(PkQ++s~V`0SCL4^f6bI$qVR$}YRXt-@?p6HWat)>3e{sS5wwnG*-Feh2?- zE-7Y-rjns+&;|vZ0z=#@fc)dHC;q*L0JEDV%inBSSPwV><@cd)>IwnR6#iN8`yy-` zT>2$^Ck(t^A-Yl7NXbEl-#YLv6#=FB=K~_9V1*{bt}u_#DCy|B(Je#DcHmRd{*S=s zsvFAH!O&+zXkBemB-&E)L6q;Uh)or;|X1LQ!cF3 z7|c{kmoLxzzhl6~AE0RMSHU4dMe+mcSC#`Mt=K4TGrkOCI@XnX()vIiA)KmcjtN%& z!(Jx5sT-V|8hs>U1=D-Ml6A?qm*6J1rrB#x_9~?~=VO}3=ev|d!`1V?W|j~Ldtm9N zx}SBGeU}nPrVNz7SNBT->c0@&5~%x8tN|JgN2xte_M&V*xd zLFjhd5}aJX*b)fV+Ml1gd3!k*^KzYj@sGrzmaC`yPL8D*L@co&(YpF$AXG>hyiKD58NT2A>To|^K(-U@CO3g?OM=H>&k38~!(=TG?7=G&Z8(UeLT zeW;A|7qu?>-?v7fz7kIeV)ENR=23{Tke{42mJqbrZSEP=eGvH6OO}Ok55FuT%NfK@ zVhW9t9~&Ttc~Ka_66jnR(Qa_0f!}&;C^N& z8kdG=S2hlIb^WS)Q1#I^T*Fzp{0u$>YFgkt)ED8Cf4iuOvg0dViiEI!#*_pD4vKUM z-HPbc?Xv0nIgj!<4VuF3_@=lOIj+X{4;YI6_eusoaRxv76Gm0>ffI1>FKHytnkA;H zyV#LFzoJ;v&4Ah7p>Dky87|Vg-?EaRD}mbpfa}i?4NSE8#T4h`Sl*w8VbSH69cE%s zDhP)M3WbuWTv2->MFRREkpC#Srg?In%OQ6-($On<>811TlyR`>S^H%2re1z7tU9}z z4KaJ@y(iby$`F3;0k7S=4wX+)bUJc!PP|m~G|w_6-MMX|J;m~7maqA@*NpBB|CTUB zo_q$^(0;IB!X)PL&FK7G#H^7JXP(=KG5+k%`v}@R@b_fz1VpY<)#W^4bl_KPP7yVR z2!fpzJK}T;O&zdZmQRb6<~)HmR<1}dX3>=}ZL-bn*h9}xVt8SVxE|hXpJkzsahsWL zoLD~LmiD5seRRvK!G!FVSn2;`W(%FQ&oEn4Bt7xWPhhj`UgBjm-!x==aa0D|xRp|S zPc+u!24n%EaQN?0pWq4qzKHxgx+ST+@b|V*ef4O|77_DA=2j6+R)#Y4ZQjxjLEZ;y z+?!zlp7Zv{Kagg}dM!*FlQ>t8y<}6dMe(fTMXg%r`t%*HyI7C|Z@pt>J#QmTb{tC0kUvx>~>&(<@ef?SZrHIK|j)!in?#K5Thxy)SKZe2Z;6IqC z3mr3?A$hJXJ!l+bwg`_!{3Q)FxQ18TtZ&%5!dz0K|AEvp-`gkXzc~{-Jc=lCpCmzJ zfa(p81F{$bCh`^o4-sZ`Gv7%Qa-rbLOXbggnVne`gB0>Mw1!j4@pl80j6>$Eu9)?d z`Vo1*A{-$Uk#6=uX;M(vp!EBYHMlhy?`OtYw}s2m-22?ybPli{^&)&8x1PLeVv^di z0fcS`OAL_C DJHqlgG&=4xAI1>5#u+#E*7R$$*|G;oYRY2bX19!<3{Rboe(`)_- zSl)%;==As^3Lf79NkbFx1p~|VCE*@#!r%9-$18#kiwU_ISroUjSXkjmzYD4m6)~ zR>JtZ12j{fTWJ?=SvtwU9Dr^N%0js~l}D z)8+B{+iG2qT}8xy5^SW@Uz+egS8U*F+=D+oF<7eeBF&jOHRAZtCH?**!zhAcg;+1u z24MVo><=odEU;GSWZ-vZdMg>0Vg_|J1H^{W=<07XCd03OMEQ1JQZybwb%U<$&39p zf4JE6z$HP~SkMg1S?t{Z(+7Z>P0{jiEi0Pnfc#!Z^3U?>F?8X(pA$h51~fH&2druY z+7NaWMEKTx=cSA*X{V+ATnH#Z|tv0@vhF z{9}TSg7zXzv&*OTbK7kz9GU*fGP49m|5updhLZ|ZIo4UKfEXBN&p0zK$X z!3CLYPcV`0$|Ha2#G=Um?I4XlFeQ(n?$teX&G|@3>kQ9f+&@AN5g3R4F*X3oc~=wJ z*Y-6Lb}$WuB#I*LXz`teM}sRg-23y1QM4_hyuFhB4O1B4y2E8Kuwys$y~}>mdoA5r z7uc%u>|Q*>2I9x&^~4Dc1YgvX*<`J)+Ioei!EjEkxKn2X_2U zjw!zt?89y@9)@u8=k9-+#?|c6E#%{^Z#HIi{V0+jI{UF~`&WbPf(hh@{vjX6D5I($ z)bAS_nm1y~MI!iX0zqfkV}8?oCc?AqEG?>b*P=_YUisUspDBS^LO^)E z!-dD1)VkD~MAXCk<_O4!&#eX(0S7@aw60)V1fMvfTIj5ZOl|~Ua5=s~bfaxVk!6iI zl7Tr{p%f(rx(*^FA#gu{P3BgZfYN8tp60c$DZ2i|vRmeMCX`@l?!DC+kSN;=PGq2-f>ftMo4FO#)5A(jCklV;-vdOB(zy!L zo9G%Ia=w@}?B9Ak@2GHpN_y<57}iS6pS`+ka4*H4sud0gV~i%B!*l<#h9%D{GAeNQ>;T5RgiIODq|#Vp*)owcs6= z8k`>6aYGs*uqGx`NB$&BV~Ql5I93;AELzmBc7`>C)9hY z=kYynqp!isFNd)ho!-+;DCT&TbGl#pv+0_FIH#m1m}`?WgI@~`$8^R%slyX6ZcCQo zAOG}U6g$9gotp0eLVR4I*jj8!gP1B z0t${Za)sJa#9owQguU2y;~jN7u_IA1beBepY`#p{$(lGTvctq&iADMq>Bu=yE{gpP zr~B}1(AAA=@}`^n;xl(CgVqOR%s5{Ahk%=aptQA4GDqK+5;%;u_^nZA4XV1=?>zq6yPE-SeReYX@d;R>@1 zhKj$LFGjSSR2D}k$J#KIByqFkAoP*?AuHVa6UN*iMDH}I>@2iqRq=ATg*sB=G18&4>DFp2uTgY0?>^U#EvL}AqNte9<|8^Bv=fgXnS}9B#|W_Bq`2`#S5)2?-R`|w z>a=EFi?{7KC~ii#)Ey9zw@hUM^nd+KA3ZX_43D0@t3W&}oj`a+V8flYgQ3u!-=n0j z-i(|bPybF7xWT}7Q41^R1rnhJPCk@+-ctIvi(7DA>o5}ZF$vP%b{E*do{yr8%ngu#ma{`a3hn)8y2Z1`}1-6>+LBtMBW%wq^y1PrL8TEgrAa* zhDoP}k%2Arr%B@xUBi39Csv80O_h7oxJ$_d$&XT0Q#dg`*CqX~b>xt)&W1Ud8tp2l zuSPQcVgplv5QrU+1B3f z4FV421zBkt1&`{jG(R)K?sV^V%Rj!Y6} z?E?#~FL`K6+-03dO8mIp*lh*X!bzhFQG$ zEY;LU9&pch?#{>m0qWXsbP55=Ij6JjzG`qz5jWDc@%(*LIuhMa9u7%~fyl@mRgayD zep*9LY?U;w%`QgBGc*7IjvVe!VRDjm%iYVFw$-6m{l}W=weQndVuI)w^$5uzbiFr1 z=2asqj(KNqkM8Mg6cN&t?l>^OBFV$kHc%kBTjty7ZGv$iRl>+DodwW|Rx*k7DnXZL zS?^$blk;Ly0#O<=z}+8Mu?8Tw%m`Y_$%q3@3s@M9WGxEgO)SK5Y?MFGZXn^;dnH4)AJ6U!erX>MtiqGX(!X*bfbY|afR__ z;i6oF>)wBL8lS&m;=*>G<3gxi|J)#v5sp-haj~Nci>?@?`HQ56Uz zbrw}|zAhmlsW1#{coe10RwMA)+>?*xPjzk)WW&m)nWk!IyAz!&%q5nO4~q#HTmpT+ zg@l+^LW*l>+g&(+d%^Sw?6l3zV7jSK3?gbzW7Ss?>wSkvR<_~jb3bhUwL@G_D`A@g}$awY9G$L z(O&POT)T%fI)_}xd|zsOWigwb*B5(|-%{eQ?s>tIgX6q zFZ%hUwRm%SPM_E(&T0yDD||m)2*Og{X9Y}}P1$_~LZ#I48Y{U-fIB$LGe$3hWzN66fBztLGu72(H zAisXFOu2UXK96_txt_p%74!JMhi;jk!TG-LUF|*KRBas{_qbN?e7RJAtw)n&g;tL@ za2aQ{yk|Ur0TVsX)iCP$_PpwG=Jmup*7&|ZJiqO`alGBDF-&|JSofTM+RD85<9*36 zd?_Md$Mod-PMi4jyz!YMj`%*^esPVr)ttF%A8s$FY_(g&ELQF1fgkX1eCal8+1t4L zLiQ|CkIC;mU4`+!Tx9s8>P23pAqpia3aD6r$P~8sA9kF5<~lqzOo-*r{1*GI91!UuJE+N`{}Y&o#{GhBg2-a8n;YW#Rv^EFdg91(m!zK;1|U3I5~7-PW`+Q0LO9)LX@sy8kQ>iFn74z$aI_p=yU9c`V$-a>&7*f?4KB0~VUdj)Uy3SVI+0BSGyf8wr(f zEf(9sXz*yBhAK@qOj%LodY}Z=6L1o_t+8SE1z5&8{nZk8H2FzkpRvSU-DJg!(%hii zI+kFr$}F7$IWL)bPI!E=z=lM_kKqDWA64^@SB1v@fbw9-uh(M00i(J#~DefjxQ0y>-57w|@OE^0( zxwWG_(Mch~Vz?NE?9fm{(wPcZwk;B(fYSxD4XU79R^Ut-)e}~5>>S4{3|e6deh%hh zr_~tZx7hmrruiF#Xgem>uu28L($MKHn-c=GWPah*`AzHy40sJabarAn(Q3EbyW5f6 zJYK&-(mV4u@?aYr6WASpbzPWtt!ZK)>B#D*q>)CG5O+$Qk|%b(Bs>N z8jt1zHOD$gm{$Iu+|CuAUv6tmf3mi>A2dswg?l-z{ooI>Pk2(dSl1ppyt7`N>gE{P zg^22qozZC!`iXlB>z6Lbd-u;p_v7~-v8L$YdkSBF`)GduW ze41P_m-I9=j^o&8RvO?w=x2B((H=FRP(|LN6mEN8ADBe(lh9$$5CB^IA|>!ay!pP- zO;}?(QEc(4q@w$x>=$NPv>dl@x@m3I8Glz%{!G(ZgsC|-@#w98otMDXed_(IH3Te} zvO==brln6p(SlQw<1;4tXAgBiikJPsoenh~fPw@e4?EEDb3bA?E(ZGMVK?`GP$&ptyM9%r-mXWl6UKsslIxXOud!&*767bajdsPic7 z;z2t-JKPE7XrGOcTjW+ecIRg4J1jPGoIc22ngQsqTM9Q^Q(O#($so)U>*hkwelV;{ zOQbO_Pk#S14xwaLGS5q4?!u)x_?-$t2oBm`&lfefkoe}J@<$x0cw-mHs?HuJ_|-&r zM;yirgL!n1+@{moy!H1X#P~^QIS_hRKDx-n0GPrsY+y$nsNg8e3ErE-YkvO7B}&Jc z(&j+6E&z^s0n#-3tlR)ub}WzH$Rskuuop`q@iquOpbyykoxNvdPQ5C4I5!m#$pA|? z`Nsp($7FQykrte%pu@3?I4gBNgbh*@@1)T5;`MxPFUKr~HqKELZn6K-P>psEFPEY6T9HB1g-5g+$N9zGX3#t^G>Fn~ z2<)$BBbTkavPdG3s`8vBKQMl-{iw{6h1z{X-p7H_^Yid0xzNEp4+AE*$z z4Mb#inHWPFIl9jxhMFS+xgm9H9*m>|NHRNL-}tN{6@_ z6+~r#O>5-MvliW~Ifc#0U9OrXD?IFr>r=CdhoO}a$u_lt= ztu;j?%$H884D2OwowaP>ffhidEHR>=yUDDDXOhDl&xZcfpSE_GC6JmY)Qn@Ew+q|2 zVq*QC?wS4-nOMp6{vj*z#dRiM^)lCW*tyhM?_%f4jnBbmqXu2%8aFS=;M|{M)x?jNc5<4toOP*kcshs2oG>fEW0Sex`=9Sy|z9_yka^_0K79d zNn;e*5AX;DR+OU!F?4^3(Q4hbKqSCutdkLagmx*MUxY185LJbOW>}4C5DvjO35~}6 z7AvO`%))G;8?Du?$6`~muhFfaD_tTQoHuQGs;9izg)-5tB}hjsN~GF@-Rb0heHx8v zzLqCrkYjc~Jsl@hmFy`NawF5ZDV*FUbO~D40mVZ>+l9J8tj%4?l?EGGnVXvrJ|^~w zM+4picjsVao!ll7q5=e&7@2VjJN1hqY}r!yxu9$$le-aWKMF z(g64<4MhgE1aNP?!2mnJGVmP#Op}HnBcqD*OAtY`#ziaJLM48~2%?uZ!gjw(smxkP z9BhYP?3@$5`ymu_M?wM#!!L@2Jjm(FlV^9&n+W6R9E6_=1o&r9ty26?AfLUV!6@@= zYngE}xEzecX3Y5|=kDJ-=TM99@G;mt4Lq>SFE;GprZ-IK^vY+gCjq88gB9B3!53TnI(=)>bml8D^>)59jEX=iM8W8;^``naQRv24ENN=cxm^w<*t%G)0{4-4k zzR983IpN7|h-~R!<#{!_h|nAkUYEU0J;XgQe4BmK2>>3M_3+9;uDuX2k3?M!@6ABe zdK-ddfggRnNI0Skbmcbm87(5|L;z%zvwK>^9d_1Lk^eME7Q48$9ugG$vEiq%wV^!h z*m~(=*djo(0aRB))}lNmtpq=|_PcRF_d@zX=|13EF{eLs|gBfqnU!1}5Dn(r{*p{AYmx zy>|tGz*Z91LI<~DZ zy>jqbhGp%g_41aoP)!M!RBhxXb zs))t8yCCmDC@74VcK}(l?l9^lkG$9J%-Xg`4cI#-x3E8`I9IwE5o?@?3oZDPD3>#Tkzgj=^{Sm-m#UErZsLGbJRXRi zkDWPYWySU_qkUnwoH5vuDMQU31+tEmJLt&+WngJkD zc7(osj~I}LV4CCFTxHsxk;{cD-S?7HIy5m6;vj)?pdfKnkW$k8vt~c#;a?-`&AnMU zk;Ps0V%dpvstEx%R@1gxR+jFu^;2PnJoJykugtaW8JKZ{%ZI-4at{CWmLG+UQacyx zWl;u_$*pCOGW0>pQlJYS3WPk%$q7X>_7%;Q(3=6vu>p&qCpzup-3yQ=F2b_v8y9S( z#fgP8f|D7v^pPX>N4cpjL|3-hkCReC&5E1vMJ9|XUqd&Cl{QIr!gy!T!9CN&8^&JbP&^UDba;r@a-@X=jNNj zHT4vhFv%U8fLNJRf`5UU`&0k=IP-qPan4WexwkJ0rboNo4}gIdlqiUmVCK0@+j7mt zL^(T@u}o!^F59ynmEYoyIwSi4>6!4PUX{$uUwk#9sC&T#Qo;hRyQDlnJ5 zXJkS=Jhn_Xaww-WIy6~a>dE`q6rjiqUZ>r?=7j5raxE khhoiMB)P;W*O9J88eRBpI>;I&jjA z|4|7ub!E`IDYbUb+X+SC1ouUtd^alRPj7Y(?uM1sXOy>*$iVK#^i5p+!WveUbDb3j zYPO+PUE!>j1q0XcaLK%OU;cqxXrv-utylCIw9v3pXR()bA8w|uTO5Jef)u!wupiAICVuQ+T(R07(li_2g{W@;wwM2&x7+kr{en+)55w}z7&2K4@f@2U4wMLeS z-&EUgmAe0K$frTu({I(yEGwJN6x!;;&07U2Rf#K3B*qG7<{n1S@uuG8mm|Gj?j~(XAe3&v6z}Q-(tt$1 zW!TAU%ill8&!rFdU}&&RkXT*tru9|cQj!Vcc~g=nE_5;iL;ayMY}VQpnxBFm7p!zNFIvt*$=~}Jfm*hq4qX(u+o#3 zA)b6HN!&)7Z-K~;>4;~`GZP?`j4Dqa2GNS+#K;*E3M#>KhM#t-uVxQcxI231N9-bF z)&59i?1j{oTaAYQB$N)@OX*Cwx+b=o{KQqOKJ_uri zu97OQ&@k;o;s7$@I&EB9irU3_CPv?Y6El(9p}3OSW8r<{aRplsCs++!2bhALb2*;eglhma4 z8dn%eoS{$-1)V(rrruK`6(&$^DUjzsMClX_B1ncu$zjmE%j$JN#CgV>5GYm$U~kT% za2yG+$C*>Bu&(S5_h3Us-y3}z=|JXDuZWmXHITYa@;`Qn&r3AbEdGVwJ^$3RXd%Tx!S#VwdO=qYB zZVW#Ja##dD2AtAlZJZA9gmJ%(8aMTD$^dgD2zU4xJq}}rtahW0=vGO$zDq@e7JO}6 za?gPPzwIC)zWYF=d;5gV0Uj1owT>iJvMR}@9l=#Z0;fHT{qq8CR4^xEbUEIz#%2oj zu?Fc^hm#k4AS#+*xr04t1Y23~F(p3#89@lX9>?{)KQpkc=GO46nscz7!UW)!d)qHZ zlBb(mfFruQkQ4W@-r=!mPhsqmaU;T`q~- zK>xwl>|u8UoIE!?MxTN6zIZfa#}9d)_?*Ja?blZOaRRGjAs{4s5r8 zt#MpQS>bF$cX3kO0e+#!S|nhf?k{ZfLNl z&YRauIU<`4M&tKWm7xFU?9-%qtSz5&yH`-GVYSLZCKuu)jJ-l&^lv>&SnC<9Q7vNs zv#2^%nZEs$W$MQH@BT5Bn*(^;^l&kyKpRfaYZBpcu^8@M!k7@&x^EUPixsTPjc{yH z>4;FN<_9Zl;OHGmZy^gd1AfcJr>&;9zrZ)u@b7y;Y#4ad$<1ObPgaYJHeZvx$`7=fO zjL@9FpG^CsKO%|4DU0ox3;OV}&yFVv6|?Z#+5+QQ`LxGn8&q34(W{KNN||%vLXza) zrgk(*l?u&|$G2(1Mcae&d^gU-4qY98iJ8qVB-=>d59&6DpijTPobI9S@%TdZoQdM= zG`AIkfSo1ufyK9|F&pkF`p) z5>>PjTEj8S)Eyw18Oaeh_=y}m>2xHc{Nf|m&+dYla?X%p0X*3VwC|i7+G9k1Lg3yN z6)-w`9eNNFd|=*TSZ)jFdDtgCSPl$*S4GXieYLYYR}lUg801|Ws__#v3wstl3@~mk zmPx5By;4lz36d#Flm^uE1!8l+?@j>+>Jo*4*vV~eZmk*b*;4JI=Q8eBvk#H&+X0WT zULTcImpN1!O_&5eXk_yZ;5{2Fl{6#5yXyzPq4v&UmwtB~o9LFW?gz_{T;z3pw9P4Lpc)X^w*AAWTw36T;+6>i(t$ z9y!k!$B|yt*eHyH+AK(;Gnq8#e)c44p&w+&j!(`*1AzS!dp6C)@h$~kPZ$C}21LBT z1BbH`@O24pBE<+b?Z8QbO4MpR)_~!)gn=R@VwW())sz@&LHvU706P(nCM9lpA0A>b z=4Bg4s%T~QPaFO)$5feWAA7lu%pZkvz9N1Mg{y`4Z`01T9yn?(PmNwzzH3|%bTO{P zEdC6-heeGu#$(R`B6h;5J>-0T+YQ`lP_Q1^3lng@d8^C6Q)M?MBvRf#(p3dpW<3xXsOkKQtj$0bQ%^ZAU*zGfZQD41L9C}9 zlG8%g77wU(OZ09`4taH4*l^cAEe)Pv$?jk;2F*iaBg2?$e|$=8l*gOlB}(Ts$(PIi zP-GwjiUa>x2R+O(&sguTDm)PIFOnRE|FDmG6tSlWR;nDeVRkYkx{J81c^q_{bxh5C z!qkg7f-NtUJGvXTA01BN0!SU{TbD2U{V7|*gkHXqAaeZk#E{DLk{A(a%xTkxM44X! zze~}o6ktw;5)4F@Q>_At+=~{?O@hfmtb+O?{?sjPtF7Lzgfho!hI?qWtfIO2<0=~l ztqD^ySlPaDemO3$cepY^8_PkPaIL$UfW0CSE0Gs?h zwh9EB>r17-gyVt7k$NHz8cCTX&5|&UcMrDlTw_Vl zbaOp-X`%^vTw^*3iq!axAXXabGP_uba^@tl8I^9&ndY-pMqx;mVQJsM8|Dc$l56z+G!V_~`3n3oZe5 z=4*2(+$Z{XxUCHRZbkX^@HW>8fff3smY`Gpm-j}#1Wg`Mb07D@m!l`Q5`{f(0SIz4 zFR!8V!s=^Q>GuHYUk%Te19w@gIW$10o z$xBQ*<}=c@kOa%{mpQPbT<~r-4bpm9c z%&x~I#RT6EmJ=9Fl$gSG+hu-VXa1gQ=P}=XF`vhpm|FJYS3Y;iRavGo^}cJL86rrT z(4%6W)}P0{5BK|xC1O);-#J{qrX881>FRN<1ulqs_g;CXLIHncC*n^U%s~^kif4KW z(Nxjn4_?5@8l+#T)>R%yjU{j$ep}C1dGL#~60=0bHykX3Ts7Z|xUG)o^;)+a9c>7h zBGJ^gClc430Ay?=ER2}__$Lh>)%H0az#Mt^RQZ`q+bp`#N$q^J#v?wUE1c}c2n4D~ zv3RM);+AZl5eRF?JE(4?s2KGNBlqggGsp-_X%DkWyc2Af*VCacRSz4wWMa%!2me15s^NW{?Uk{3yU9j-HGz(X;z_wqse>Yx35O9K#so&qU<&t+M2e|2RtPU|QFVpm zvF8-Zcd`X0CkjO-TwMe&X0ZyXEDdAW%kz@hRvd!(W{Ii*V1cZ;*(@s=-{RU)uFW61 zu&0CSG81;)$C*cU>kn3yTI4%|+w#%$ILfpvT!)8nEq6HDKWrW^=m&jlw4$ed9S1~# zkQhR+8AuHTPICj(y^?tQ5l7*T4-N4(u_`BRGKd-N@qOJs_CFR4j#t6o?tX-Ps74KX zu)C$6DTKyR2R$(KrKP2%SLq7YKy22pgA;gd@fa{NS5&Rj88j>2IImrwr}9c7wl)XT z##a@^b@;bCI7XT8c?s=LH%zld+VDO(2@FFZyjT)49RK*dnXTx@PO}k~0*~+;(=243 z098B_f?umz%7Kyd4H|KeD7R7>R}JqnI&(54A(z4BD|OSgXLDkBhp%7PTa8jSBTshW;lCmL zmNT(vWl!_W!MAr1>=k|mxKNjC@>K$<@3TwVbg4NTH&(IgRR4H?>t-4L&46I2=7Sk` z%orf;hTMTUN_ox_+n48Im^y;eKP7`lTS!!(jd2=R{jD2~k=|Hd0R&Kb?Mq~E*UnB>kRNOb9`5(<}>{Xg!`sW}s74S=z2+qP}n$;P&A+qP{d8#~$9 z$s5}?&-Xh{)!feIR82k8(@hZPm^321y}#M^C+21SPbVc$;Pb=%C>x2PoOi^(=gwI@ zRgCwp4=o7XLdD<(Yy3uN-)FhmQ!NOzpw z_8l;1Jh+&9K+lB_*P?8I^&>}mGZUashS2nhdmtOfc-R?s^Ja8}UGC2s4-+3;vZ(bk z-v@JuQPS2}OUSzH7lFs4dOMw*8Xdsw`=ZntNBBHi;$>|&vCExFg0N!%N~O1L=GJn? z+Z;3Fwol$NQ`3;Qv*3b&piwM;tLdd6O)xQ_nVcYBm^UB#~70qynmb(7(Lu(xlq4ZR1jySkwpgr~KG*!&N5jtA zhBi06&M(I_KHq*KP1}DoqVH%v+6@KD6ZEyS6q=$!&04V}j?Z*iiNb~LARYF3-zVJN z<~}F8&-Ryk_pPa|T2{__;uX~j*uxWU{(<5nh;gM>rJuUz%0X{dnoWwl^+Fu1MTvx5 z9dE1$J0>!*9rIZKoy?o$*@oC*Fb(Inl1Z+UH!Dcp)&T625)hzf@~9JN-3An|Ap-}B zL7k|r>P7O?*o21I;gI<oLU7Hc^em9<5L76>+M1{(6xtTJvzz>C9Um5!(Te zJXNbota8t1`r1p0;}0VG1(jBE8jdqGP1$r^*jMTGP~y)Tc)}T$`!th$XN?%TqTrmOG`t0~U#&OsSwOd(x_C=ZmHLdO+uI zMPru5ZVMph{u0F=L|O4Bkp7`DGR?(Q-N!pOhGtjnN#{cV47%JsCTvFc0x`HC`^_884ImO@qMdKI2A|-SY?`w_+oWXA z)_QOCKphksv0(v__beoXD??y>QvF}*rLECv`4E1YHSPKw6l%w<-A+EYaQ~ejmE*~e z5Lo!e`=IxsrX7A9^h*ye9)#~1MOv?j#1#V)U)QIZB>Pq2G3tB3p$XMn+aF2_<*_3Mw9Eog3DO z+Y8w%c`}jQE5V|C$U#+*RFss;_;PU5+7vW-c0_cc4ex-y^H7`90K8=W$7y)p(M`+6 zd0wdqJbCd|G_O6(CRiE;Uj3HoJCm3+!$4=EBi>*)V?eD3$ti`L9IR?HNLj+ZqIePS zuRE99iv|*ARr&Ic|DM|+S(@lzL68sI=uBL)^j~62KMR)^3L%r%R5$vtd>}4!U&HW% z5JqW<74!K1abb5Z<%vkjjiNxr+qOPn|2V!Uwr*yz8EK9dBqh8_I==t`Ki!Z4|~0ty(w3jbn2X5nArcc^`|E5%K~_uKj$SvTyyidjU+d$ zT7y<`fa^>;K&c96acL~D^A;glvVKAGce{_9c&H>`e=t)oB2C_PR(+Nh`5mq`9`Z3B zpI(7IhU2ehhnc;sR?YM~IF&woLx6y#_eZ=~cmi>cSM^A1%X>B2(wPYKyEB$OBE(d) z;e2W}-&0z1+vRfF`YpkzYMoRF=gTQ&O7qdf_lz&~u_3GbW>Hi@+kslWB1$M+4LEf5 zlfC{R%j;BT5@NDowoLhfI9k%`pdGc7C3K zpIFnXdMHbMVkY6ipozYN_c0ud_AqXTJjp%<55N^S&C%*TdhA514Pj;P;p zBsy$}`qOSpD{V&~LZ1m2UzsGycy@k>Y;={yhTRs2uY$&-F$}^gh)0nOyTVUKelyg$ zZWY6n%?cP5I=xiC_SZUJ!DwOHg-#%Ggj&Msa4pGDRsSWpq}$zWYioMD2QU74BP3`d zt>2=bYyA)-rVK?_06SHk`sNP6ROXZ26v~D(#8R#knsU`#E5UIxqJWkEd=})yzx{=m z22uVBf=Qc|DiZ29X&v~H%ecaE`z5l@K&+ukH6z=5L=d}q##v~8JlvkJco!Tocgl&q zA{jCj{}j^NU+@Q2Qz7Mj)S5p|1P6jjCSr4P`bvFs#OJTbQ+$^RgJ6o}ell=J#1{AZ zv$F~N$IWi54x#r%{X*_1z=5V$p2Cg||9dyjuEp+IzvaTV8zseuM^P?|C);yR>JNn2 zzuVJo^Q=?A)9dZ3W!d}b?J`s;EPA%n9m7h8UIcQwOjIXuzY;|$kTp?qJ|s>c93)YJF3YFF%p|l znG7SGjyzGBZwVKB65J!r=ebJCK`<$s4%1UN$+0{cW=&$dNFC-Q9Y^q5Uj?!{_qw2z zd8B zs8qn9{rD>1AW`ovW#z@~e1vHG^$EGr=H4RzSgJDS$M)Lk_FDXxm^eIz+DB0n9EE}& z1-8%B$07aGD-f6QTkQbD#DnsSh@pRaAVe}5uSD3N4pdgT$V6AzZD}Mg`5DtK7oW&` zwB7H_eAW6HE~%p0CgFmbU%1Q*18Kyl9T75NBb9*`4Wlj7pc}NLyTYJ^I+8SBYU$K1 z!(?E~z`m!*QGmsBkIXav^G~zYQf1xg@LIhb;q4wnr$!X#s+jljbK@O&H2|9V_#si~kyYhk zJPf{o2|^=uMJK%K1e9{t6n#oKm^JXY)I+7C1;?vIYf?eZ77oD;B1=au3LpSk9fza} zRdcV|JS1l#UTU^gaP6g~J0O$5#8~((rLcV8FL};Vr+u-#0=k8$-vU#@H>3&29N9UQ z@kEbo(JgvQb35Vn%adDJOn0dX-cZ&Lfz6!y*#|*2J>OM|Bm8S#(lKa$o_3W|B$q&+ z6fJ)w??&Q`jV6M;(+oZfS48S2xXuHuQo)u!2Eq zDl}of;*e(Cap5zzIGGroe9U@RxO_f@a;qbtHUaqsmnOg5XpHrqyn3r(K z@F(~~yt-Ra1Y@*ol| z5DH_>Cc}v#$BZWiInQgtFtbXdgyKnfeoq<$1rDaCzO_&MJ>hNJBDOlHKh$=6HKpRP ze+Z@wS%+-HLanD1WM1;)5699OP7Xgq#({DtV-sFYLem1FQlrJH4;UZh-GRmU!2H`4 zz%~&kC2zv1WzZW1Y*6YsCB<(2R ziMOgys`=KeT3&~yX!jZ1a>JR~-u}3m?)RSXm!j?tGYrP@>Y)2qlLx)u|8w`fd+X$D zO~v4y5iLlNN%*TC{~q>3-0$J|_bn!L)PRldha~_0R@%0 zYjwq}?dQdT;D^%~N4s~6o;N@<=IuJ5PGjsgtoP9ED!i>Gr9Yi1e>b!NWo*6fcgH1Q zwP)htV2$%IfYj;!FVxt>C1JpKg`nx7V5tFgvg=GsK>V8EcQI~MeKGUJ* zAKw;wuYR~k!2opWo5`=4slR_)d>HIG7wXm?3;aLl0t_xs75iuZ&ejn8-t~WXfd_nX z&RnbpytTjT%Kt<-ya;}ORP2Tad|WH`3+$E#xSr7e9{#GxC%r{pJ~M{AF?#gD|Eb=8 z8~!bYg8Co@dH6qAf)pSR4WoiT{MQMBKal}n{gDBNf(L}Z9tVWn?wv|#g}lk*sa}VD zQgAYP1kIySx1#nQF!=P|<-`(2+iO%+9^a_l%^k|~Q2NczOy|Qst zt`?}Zn9Dm*)i~@~F>fNG@!5IVC8iDXUUzVUI7;l4 zbFt_77`wb5ksPbw${d1a%mlGSi3D=W+I`@sX5L0ig) z!KQvK;Uvt3q}zr%f)6b#DI~>Do(c=>HQL{I18ElSPE(W@`i5yX0k3bkU1v+DQ>^^{~q1B+(5fKcbSgtNa*RyuG_yMaXg*v{Z*=QjH@-u*LYW zQfyxbib&B;>T|0!P&!$<8uaNkfa&dsCDj0>Z@nU;*dX?7TO@fjgO^1KYltDX>VcTI z^j>&;O0b_FB#^NH<{bm+ICO=4+9Q4szVeQyfbPEWf(a;6El!QR$ zwb^v;W3pY>Z3;(-Dz9|oXf=~>iE}bGe_(?i+D!0PLk2MVcV2u8yeuacp!_oYb5KgCos^4<#Xi&b7 zcEH;d02tA`t37c5;NBTrIsp2Sz5y?o#oN0a_sw>aU!S~Jyz+Xl0d@w?GAeczV@T&u z9kjKT(~TI~bNvX^Y_7pehDyteQjlLTNIqY|n_H#aj*OWVZ#$6W8JUsGcWQ!eO_A{h zxN*c)!!5{x3~jQ;LC9K{PtXFE{?j=J7KFaO>GQK~^X?eZU@Onl*I4}dB_IW9wlZ#0 z@{QEb#d-0Vz|dtdc(Fp%RPY}VGVp2hc|F^&v%h1#z9zIpthYX*qG4eQI1XGxIL3Dp zPXMY)0_l_Giw&Q=t80%N7b=$6l#CC4XO%PFyTttP%=QJXv;U4WFi2xbC>clHWu@sU~@GA**x-5t0ZUw0Z@)drKnO} zqoDXRc}@b@{@!B>k7}~@!ie}SXkF=HwM?q?s|_#aa3PrMo9_{qvh&Fo=${A{@|$x*{M8-SqQcg0RDgcyQT;lHJ^ z0_4yt9Q7(;dUuIE;I%(cM)Hs^42Gj;jv)2r20ThAc5FwTg!ylpcr8*lp)#RHl9#TO zLGNJ-PmEWygscBeANh9G&fquDzn(peP<~hi1o~dTV|)sfWel=iDz3!2@xl`W`g36R zF})SC>X3W_-tC*|2OI3nq~TTvOWQxN=nm*vGn({D3x)4Fs~&oGLi}p9+v^!Q+R~n^ zf#E5^#59;j!_s(Iwk%7F#~;RUEz@V9_2~n89-85cavn3?lB@gH)0qWifGW})i43nZi%@CSk->lIW+;kq&0e=QIC@dSb`eN0|l6}O>1*rOPf-ZVq8~UQI#Sk zjWfGlPCa`Rb-5Hoat&p-y#^0v`O_jz6IZ%EW(WfrJtcx;jp;YCfdpW2nv;hamMj>f z@BP&H{p{pi%I@Dw$@&QO4l$}rwnn+k%$N0&WyNohmy-Xk4C!>Jry!dJ!E)TJSIfnydTyp|q46#8JGB_qAn_4c{@Y9y$p0?#35)jEzyWvX-W{c1jW?+q z(9HoB-;c$UM9Q)8qn&n71dW6j^GfeRJ1Uvv{tmC7L_3Rlns=>BPu(s4P$5JV^20+U zV6|ARog0^cEM;;Ic^A&WwAxHo@><@aXpA1}o%x}Xc*kUM&Fwv*_yw`RwXrK^khhD; zzR>05R(F)Ee{cD0gamNfi-j=gCVtc=RLxRD`R zBfk?erehs*Da0uiWSgCb?)UvmkL8xsQA84W{=w$L&&V<|XcThq_dd(0oSTH#4@=dw!!z-A4)DS2|2}lH^W5

Al+_(-=O*fPu+{0stwjGHLnqQSyRc#L8#2s9w zPbt_w=;#L6P-r_1=bNCQGGSICYNGmt-2x-GMJPp`YJSN{z1rr;3Mkhr`oMr#5lwd2 zd2B}fN;#$E{XV}oM?UlePHzmbL*xcfihscgfqHp=0snE5&jl1sSxP4hYw6vDP=&j3 zO7~$!Z=QJ-T`oX*45Z(2s77^=!a5YN@X z7py}-us>qUc+que2=~E{6(nw;xb;mpQ#PKSCL*8awwodHG))+i2m%$Mxaj?C;i0@S(s=l!O!Z?~z zIDOa@gy-Y`tvtfCFW9|XLl85{Ziy6S^xt^YGWIty^Uw4~JzQxWp%QLNTv>1BFYWJ> z4ie%rUnchv_pfrv{|3s3fqv2_3$t))_|rViSe;ag9qFaGXv9?B?s<)}-wmM|E1QXP zidi(G_uoU~8?C^!k%K8?zz9->q!!9|$iezwjUik7V9s;>rAt%=^Xbkf6n9wxP(uc6 z@u20qQCL-T?{xr< zyZQ1#I4ZV%FZp}}=U@QWfNchvT(O!NxN4$(;iriX1)f}cH}~jo-0tK|F`N8$@(&-^ zDfNUW`ss-BE*n)k3l|N3%CrnX?98B>4{=Xq&!66eiObs;{!jP2AMK@lp@V&GfCwgl z^3X({2zXymR$`qgc z>8M-%s5L&X-w7nlz}lv^VrBLXf(;EvnXRo^d*22$?ZNV3_cEYe=+W=c1e(4!MUvrs-Wv8PM5WBY(>9S~;OsZLqAPxfS(D|IofHO*=#p8vktb39oD}xmnj~4ug8)Oh_F22k026ABrPN@|_O$V0f6B;iF`a?KjQCv@R|vhRLmSaQ zvG0QL_}-7`>l}!@WjJgoqJB@Y|5%{-i*WSK-30bTjV+R{*qBf38t4BYdi zuV4zUxCv*3-+DMtF@Nvt*6Q~DRhd_nSoLA(z*>wET13|p^x`c&`qk$;!GiL$o<`l0 zxm+U+&ks*=17%vejMvrE>Rf$hMZ>0jKLd|S?*y8qq$uq zxg+KwOK!EihGzQ(mdf)?xLzEuX+X*#D6z*+E7tugwf~F1+{+R z>#qnbwhX5IJ1JIfSFBo+e%Zwn5gE99;(;^g65x`Nn15Z_2**s!p*PDM9WCP5(6;-$3z%SuJ;rk9YzavAv6bOs+&E&Fc&wUW(6_Nz_c$H4vbFSJ*b zE7fF91j{ulLF7N`Xda&`_0dj|8X@Fueyv_7ooZ4L>j-bjC&Yi19@eApo71(Or&&>-m4zG9^+?JcCc|3 zW2LFG+NSNF$-G_^tbtq0M3yRx+Dv|H{4DNwB9*t91pbh*k8k0~eP#2_8HbW;D4r}t z2A;bwA{*A&Rpxi7y80|cW_(y6JPIPTdPh()YXH=X!#1yXL>I ze}x z&m)CI^jc+er9tA-R*fbsou8};#lFDYr92Nd3SL^g1b&}juT*DjSYcbPc_Jt7zkHQX zMY7+O1Nc>aN1gQ$cdiIVFd_#Mt=QgP3~7G^KhDOXJd*hoK_?L5#Pd|i6D_%JW=_^n zj99fOVytnPVDrG~whH@4ZH(8TQ--6;@yrWaPA0Uxm61kR9n7P7koX5E5i11V8n1g9 z%N93oA6S+C@yh+LCctatgvXCC`ie|KG5V0)vBaW!Div!KQ&azTC?bhLPelecRU>A6s= zXAZ}^Qx>uT$FM=x-Wb;Ve2XSp3Ce~0Ev0W+lF#FIC0nJ+HiP-CuO8#mH7tCwg-o;1 zs|zgPHD9v%l3)J5Pd+@X&`!R*75f|)c0#J0qk6I(w8i2so9GI-lS=E)=0_k{`sHY2 zI{*?6&vMxMLn0gmb?>jdL3;39Q)sU9Ji0so^3&?`6OY~V;r9qKdQe6r-%glgFA#ky zT5&7m$r8DgEv`8;oY@jgj+XD}2%*JdJgW2+sn*d6=M_|APQHAOA6A}5Blt-Yvtq~R zWR8>QU-%e9QHfmyMbrM?S-4=DNi#RL8>A_WInGl2j#v+O4RtQ$iF6g8YsVmS_SBJeB(QnS57Ax z^72XEPIjdToJwq$;>fEQ@Xofa3ACTzNWExJ1oy;)cG5g+y0caGjY(i0O!;$GpU)zu zs=yypVi}Yg{V8J9AYz^%*L=bIz4VOKLlgFQQLXW7dE^zCEBvl4{a|qcQ$X~XhVv%4 znSBrq6cM2|bS@INF(?}UwQmLHk_sc&c;&}bge@V{Z?fReuJfs_d@qmeI5!0&+A)@S zfC_Ho*Ri5ZE0$$Ft%lyjEKtF>-%KFZ1|g~QRH?dvP@&~*G7tL!PunQ1; z2tAJ#5~izKxG#&M?}wy%&myRl!fgA>qBQ5}(UqC+sEOc?ye3{@C5A1zF6J#OvMl|o z3*5qA4kG7m29GdX`lReTlgw^$M+@(aZ~FO*a$)veohoCSJC$J>zEJ;!*w`g72T^^G z{4KB$yQ{x*<_JSAT~E6u;y({A#bMoFwhQa*eiOXLXl`Xx3+rpasSY!(%Q6PdwyyZA|&5T#cnoY?{9ukfSx8M}Dmp=iS4nBU4#1JqB90$j>aAgsPfZg? z|Mmob^v@&pQC2Z&b3m2fe@*;Izo89sLI9t*8uR(S%mfpX$(_?7@XtC^w(kK7ua&{yMw1RWpWJ! zQ}C`jN@{%y_^EnU6Flh9EEPvQP$=s=!fX&^zeRwyllb*f_K=5zwv_c>Y}Csm^w z>duLfgxNy4iii;tP}t9B0N>p^Yq<;5+|(5lHxzM|-CANZG*#c|X4gH!mH{(lukRq(AMRDx_e4TzNKjBh51)}7Mo4$&oupPH z5AG56k9tX_E^o-w{eqp@Anj@H3dF_}MZj3X=J2ph->+6Tm*8~{$I-HDUc z0}NU*X#6LK8arOaq|FE*-Ua!2m$aQsx5Dx z$w1)LSH<6CPV|W9#MzF~NEqjb(0<0{9dtWRP6e}n@$26{Or@R>q=sACz$^Kvj9(@s z`hIJYA)w(wmz(Wq!m@7@UWNgG=Kd9TO;*9G5>6w zEcbGzF@|KU0FZYOmF-6qmM>F2(G_wWcOf~PVj%>>9oMkBiMR^vHLb=BO|_H1cqtda z`Ci;O{MbN;q;NLYFDH9|;)mW1(Vk$nj~kSi=eoTtJ0F&D>z1h$D%DJqXFdFb*`vu# zn{b=fWE3zA{D*~F$*r$nJlUKUSi(51J(MlLwTK%yR+9PCN24HLwXajfE7#~_n3{s$tss}(lGPOA@3NoMo~#DvY@(&yPbzv8Uy%KDmWXn!o={@Ind zMjJ-s(cLR0XUwr>I7#)CN;`rJXErammCN}O>T|bQyy3(zw99;Q#2^rOE*ULZA#~v# z3!R|tnZycS(*$i7qxw(1rSc}-hWl(C@xcmh8v}EUdBoYU3>&=49xSF{1j>(bjMiTe zZX631IW-wVk7+pG-+`PVxarNks89yw-8XBte-K82xP?hw=XJSmf%joaly|+!%BkF= zI_^B1s33m*ytDa|=0Iu=0f@VHo&`v2Z$m?lyUpqm0L}!rN0E?KrpV~RU0e|zDydBQ z4=aOw$+_p72S3R+@ex}F%_S+nH~w$K@l~$x4l(~jQ_OpWmuf{}!uZC;bGMbk(+&SL zR7H`b1Oy4>W#y8)o8f~U0)-@iUc>fUi)bS`6%oB6hlT}teekkq@?UEb!O!Xm=G~dQ z#JjvK-qPi;d8sQCr&O^)3gN+_j@WL9A!e)%n&GRO0wV51jKnYg{UF+~c zVn8H^JxhYulL{wHUfEZ=a#|Qvgu=$o%oOf$Si4z!l!=_tCBAk{<0o#ZdyNM~hxAN* zW~M*NKmD%{j&vJ!mT3-g3PRGP?oD6>Ye~Sl z35$?Ej#e{YGihl(3(c?tR!u`Y z?r)A7vV1Fa4w%*)9oPIdykljzPO&fA=e85OeJsB)zNhp^DuCm&8?M2-%U_17piOUM zWwzS_Bmwl%RXBbJ!@+{T@Gfi7e1(^Wxfz6<(WJDwGt3x!l7FNZPLzv3?6x?wkArgU zP`->3HhXv{YU~t*+lAosNFcU5eKs6=Su^`E&%E_{F%psXH3NUmkSNIh!R0rTIQX9` z`-dyzKlJS=8Z)NZ1jUOY;s72c2ldNXj~U zxvw*Q4rZQv+cS~^+}7S7bU80}U1Sq11AH9&ob!d(m7d(-hWJFvpQBfc{Fr20;#CT< zi?p!S(0JQnE0H~DHCD3EV4`?d2ssHugaBl;+z?(}F|cwpLP4*F(LU^iK!?co@XM;!*{-Q&uuWf#_1XAbl_H!VAPD(OQt(#`TWhNEc*TUq6vR9 zguzzI-_Q*_XIorSb1YawC#4DoU8Mqy+7G9@V~Kx1rKiL{*?f;{W8uD>yoDj1!pKP* z%rduR_=s~o1oFPa!w~gA1!mkT#I&L3yXfzgj z9{P@ig#oLu)FqwRrW(sJ)0PoWM*XPahf82!F$=D(_a1ij!>rveTIPa>LvSV=_U(4; z^FtPs%u^$+^gII%iWS}{8#zY>7FHkaNlx=lQS&ptXPaG z>eA>Ygz*>QJcV_~Io0-1@s|{lUlP?q5R(hXvP$76-z}|-8|1d^77VDkOkv#LT<*yz z1!|kES4B$P>Z{uzK$x-MkqpT=wPo_lgmmX^XKqIPPy5OH{BW1qMR6Br9F`)*W=eDTM8JCL8ewguu9GH z?;#`w7d(nLaAJ1Y+Lcc03&fNkCb`6#CWxcX_RXWqcJ`cvvHh7D+B&7QH;O{vHOnZ| zTshAd?BGnt8*7AT;ghB8)E&}9pBiEADDlZ9l!|lwZB@oSSr!p?WIN3|;T@>J%Z-j(f1MrR&Nqp2eF->rX-O0b__ySVAt>TEmy>{oPW zOYi?Hc;uk?9N!7T{naEmEt`GQ0Wt4x=LuHY4UqHykY`c z0mo(ks$_!{)2gGI3g6kI_d@OAiy$SM`hkFbmOeTce2-R=I zsY|MP5%?zV1RoM1h`#{)PD@ei<~!>SV&DGLW`cO4c{fCBTio4~ zwmGNAe;U$G9mJNM*aNF}$+ysDj21{Po(jF9?D%}WW>&ebal)QV| zf0)LwB^q8*CYv`Q<3xI8v7N3WsC@Y&Cy+%HFJX|A>WVX9Kf(&)I>K=8L&vi~WPChi zaV|=9##mS(6);=#wv6)UVIorx8&9$diI`|;W~(MeiRp8teuF0sLQQ zrQm@RQehU$#(1UWg>UT6?PA_0VA934L5!EgF>w3|H0I@20s`85U0?-hdCX9~b&b>^VpY<^qjd+`P{7AKpP4DReNy!CCvh_Q0N z$-bs6UMt_NZ0&i?4i&6+lq7QzOO*)B?g}$LlkCKG&Zs~74%0`msKQ?Vz*0?$uS zg<|d;>?RP?6T$CD&k+EYmJNxKM0tHs!Tl~a-u1TXO77o{{(`&E6Il4thB7~e3Xo$t z5m0{mghnE=U_H?tHo79nx6w5H9d;opbC^#hnvyKwS)Zg5uXQe2Ij$U^1{$|xD|Fe5 zGM1Mm-TVWz^~j%u=KV?THTX(u=#1KiALkfi@(At90p)N>-LQl!z|m=+N7E2@BZLN$ zI);3-Nfnq~(Gw*jOHL0pOgx1>=fE_ZUDVyEd6& z$+9ij$5`9)bTVVol_?aIpvC`4?GQY;thP)Vw>CNw$|l~EUI9w8x&4kSL%fK489$QW zQ@-R*-8$kGW2$~W@Gbd=36y+@r4_JSy2X7?2@d?S8KdGw#+loDATYcyuODD5wOopu zR6wg+k@N~ahqJy%w=vv{lk&vRWijn4d@{ioF6O860y{M0nzMwE0|Is9`|<;|oW^xbnnSE6rD?38J<{7+n%e#?eYlvWmLd zdt84)3sfKoO*J1*+xXmFfeeRs8bK!$2{U*3-h(Ga)9oHMkR$S{TC0D5K~B zb{vN5x#ty44zNO~uD(XW4#te(FTyqrzYJav(@|oGhs?B9>a%zAIT&dTQqC_0ThJL6 zdV&`87mMSQ{M3C( zifNpw(nKt-5{CZN7n!F=0QAD_T(VyC2lkQG`*r`CRG@2LhYo7|vsj(FBs#QCfCicv zi=?*2c+5`USikqpUcY<{=sMbSqd|Y>g=K-^Fz}4cEO!6?ApM4B#DsJ*Li;Hp%1`b! zPZpA&p0UiVrQZ5=1)H1r<^`_Mjg+p5^uH4R5=lJz^R-Ejd(Wve}2cXu)PsB z{jGk4Qn1#+YPVM`G3WruV7|+GIkkbBzRm+zI2LOw)K)TcRR~#~5tg(xOlMXy)Ii?C zFmc{Xk0UG7CiWA`N|8?e(8tO_iMGmb)c$W*6v4}dWgMG#crPsv0})K(I{)r2qE70W zY8&;3wULsk49SSNVbvFbURxT2wM!T_Bd$Q^Nk@09;GGTjNZhD#SKa)dlCZiSg8cox zCaS#Zq5kop&3E8*vUmAp_;^jn>Tw4R4F}*1f&zi#WPD2vxSkguV%ih^RvsK%eIc{P zD)~yT1AlzlD8e_H0%>@|a6x{E8FUIwGkR>TLq@WSvBctLik=21o`unBJx`f299eBD*!Z2FgfSP5}$47hB(iZHt zEh=Y-yE#+CuqML3+Z1t<)XyX&8hCpE^ynhrHJ@}W@xFV7)${xiV4sWGVCDIvSX2y- z^r-0Q_cejHZ>pmO$f-IVWHvw5nXEuzqL>O8ci_nMc~20#{G?*d1pSeXiKu%%)}2LJ zl;-dXqQD3Ac*vV2M0= zxwt`e^>-Y?6L`;Th){g%AsW1_3MQ|{2_{c>s!yz?t*PYU-r-ToQhZ@uIIg6eQmu2b zi2@#Lxv!!yWdsHsI!qs`-!;phxa_VKtLf7S>-2Y}BF=!M|QY%0Km_CM;B^f!Us~%ZVK_ zSY^E2ypZ2(sUi&yE7o^Cr^;4&8s@>$NfC5bZLLp)#&W~qx+oIS9U6z$A#f%Yp*(EK z_2$PL3j0a^@>CF9lH5__9Mb}^Xq2F(*(_bi!|0D-t|IRsWU`lH8U1u$~ znr>uc*YI5d0x7%-ty+04CH^g`yTo#0v4^!ex8uL$yYIqL2HUw`GYQSOz_P;5KT`Oe z`AvnLg_;B`G|Gj#F24AIm+9T?{s%j*`H^g}3g@i98`+PG1QS`;y<)lC#!O{7>NA}M zKJCUiG-hIeTED3hb4~S+E5~JHNV$$f5z4BU{m&z77+a zFsN_(U%}HjbuNt;i5Azm71Zg+EkkQ=U{x69Y(PUs6`cR=Zf61Jh6|MWwh(1i@i92c zb@BK;sqgT`^?WajjXpqci};@UHSx>-{^s=f4-mZwarqwrML@d02?!M$Zz$Nc{KtB( z-$!n6+c7W!eG-tbQXuf;yK3}DvZA}uphj^ z&Tr`d1oBWEUF~{!*8cmoB(c{i(@HuG%vgeZV2yl>zrsGqs&fufc>MpEe||fP{JrLX z>twCy6^6h0>H1>_>j6}f#FU8Hjb`O;8na1PMDgiwIcs|AYr0EM>X!*%u@w>j3V4ee z`27qagHXIw6n@A!K>C9l74!6M2dSzRndZPm1moy98#7kAL{ckcOZM>tlT5~e`#ZnH z(p}dKf6b|zkI1m)vNs}StjDVkGR9GsXs|FmB7`?N(CHD0e8m$9dQ#zJ|HVmPgpupQjpeuFlxy7rul$%qhGSbkQvKu=v8O(i5E_NeMc70 zs~{H3EYSYeiC0QQguFo%F;3m*lu?XDfqGbZSw^2!LJ4}MbWyg!>wBBklf(*^rO>h)lhV+7S~Xd7ULTUNDF%fQ z78QC>-OJ;$f=#J&@r-D0D& zkTpMlA2ME%qprTOvr$}e3R=#dKQSRu7c}wm(mMl(@9~MRpm@1wO~WD$@tplV+t-XU zOvGJsE0~TnJ85Q}BS8tX$}w(ka%LUIXurSw-=VJ$conrSd-AcCez2Cosfi_n?`Y{g z?8k|@3!rTArMZZvJf#(-LOnQ0)S8?yio4QpxpZ*-aPzwTI=5k~*q$c@gkHyMR{lQ6 zIuciMQ2s`$?8<~pvy+{cJA^SW7$jO`XYrs(ztqb9ogH5Oh%geb$e`ke*GDTD^Ty

%W%Lae4PbGC=of)SfVUp9sEdTd}F8kUY#a_PW9EcS83g!(bJ^8BA zBX&Yufamp;C~cCJsUQz2#Jge68QpGa@we;Li#m_}^4y5l@VfrZ*N-ypeBo^qZVQb^ z!i*j!VfxJZo^Mz5oi`4N{CZ=n|9!jsNq8p%>Cr;~RGe4S>t@}GBRfxECv7t)#16Eu z4Qe!JS<}wmS4#OTa8h#9A8mZCruSbN$4xp;Oau$kCtGi2nW}0~_P5{dc`79YJTeN! ztoPDu-7v%{d7P$TvhIB}bgD;>xnQ z3pbK70cJ$L0x#@uKvCkT5U^PV({rA%hzDP&-XN1#T-7OanfMJqg=8~KVga{O{uNHDPu%6JCM&*Py1QmmlcZcl~Xz)|>cHs$+rny;jp~ z%fu1#-Q3cnMZ%PJ=H$~d#cOS(ljtfYEsBaYAK@~8J~D=(K|+tX#vK93Wa_Bp6RlhS zbh?KQ2yj602O#_J6hWqVz2k<{9sxdcwauFWiL=Tv^uM)Kl0W>%dZPaewHZK(QmWs< zu?3Q})&E@zT>WPas{gDS)lB2|KdoH#|Knw_`l2ev{I3qye{(Va<^A>K==Z$I_W!MK zw*7x7R`vgVS*-uz=>N?b{6GJSZWZr2-a|3&|L-RMfBlzap5J%=xBq#4uK&||SbzWh zJGK9IXaA4?qu$qhw*Ps+|I+Nmu>F7BkpHD>UH`YN*hT#RD|Y?QD|Xd?6}zUAI7kj? zk1vDXn|w&NWLcumyY_AgG9r17#q=LLpl-Jm?t<;YUFyPG_C%5OdSUd6$1Ks$Hgq^c z0@iQgRiXZb{#V`xEeXvZ8_cTrH5AmEZ7cFWz$%?@s`otDr=Ml~-%0z99ch8Cy$fPN zlVM4dGfjpaIp@sPn|Z%q4zgrR_F|-Inx@h@Pk^H8S=hzf0-}H*3L>1@^ol(-`s3KL zD7Vq`Ql$BH;$x!cuK(jX*K%8Au1nYQIM;zJ>)-b>K8_vzcZ_shzxq3t^Ky`s-0L9G zS2sq+;7z+`S-fk{ii}|>T7p6^^73$}UfruRq;%`wMzn|^jrIJtk5O;C9{%PV4}WD{ zmhSQYsmt(xDqpb{NM=-!u1}h(rp8&!T9Zzy#On-LYv><%>G>O6M??p8+?=)RnFwn~uK^to8nmm*QN?<#Q&dFWNFUzz z5v7{zTE1}+?VfPeJekE|-=quxruoswNswG2^eld)gbi=is5ekx-*Y?!eSv`~`1@d# zHtn9aBrNdRS~@U~l3gaEIj|IO3iyr0MZ+}$12Lf0t+4|A9lJ4{9sf2l5vQf+7Z^RZpB>)H2|qSTt{cD6G06~ za>UzD=R?38|IrcW0%tM1BRCm78jOhch!~2cWC^A{gnQ#H__0FIpqAhRh;uq|N+d~0 zr26mm&Gd{iJu7#1TV6clVaAam9q6W$Q-OMJ`p1XZY!6U3o>+DniO`MhXA#%6A`L@m z*0mUEuG$Ca4zhlmX?r|ir$n7imoqGI%)HjahHhnpo_QUI%CY3}OXxY39k0h0RU?}W z`Z?HIaTm-F2rFYH$mxwT*BX~u*P~yFHwYqUzy}@pvlHa;eh!DM$N8TL=a>rrjvr{- ze8rO%b3!HtDh1;VX4pxMoLVfZ4YWh*(=64Uob%J?Y70Mj;&?JE6Z2^}>PJzM38oGb z$#^(#a18r(qF5Vt8b!C)O9n4;m96yIDT5-_u`2Ikc=RqbfgWg|TrVP)7~r3ET%4JG zUir+O{7^bR?XC2VvQx<%^pr*+g~J;`<^a8yJkbb(X*^*okC1HC3OAj06+oVDM@e{N z=k7PTO(e*vrd;cef4M0;$V;Uc?^+JeL9ScRZ(i5=tbAV#uq@N#x$*DVo6NQQcg(pg zEB-qsqvJR+?>Ri_{=6!Ff43{LQcnMW*NUyt{7pQQ?)?N|1NEl)ngB#ZeTOF1UybEH z;JhPAu*_K&f`@DxU zC$=2DX-Vy<3OI+!qC1TiP}FC?a@+~@8*nfcNju41f^Wbq4ufRh<^vhW3O+ytG*dKjio#i9pc&jD;(g=lrSLE zl(@fN8;v*$>`t~lLdYA#IhqvU9xveDraG7smx;U_H#0*v=bdDS1;QHW0nFxtv-w&e z`>^d_P4({z146^9Rl(6_0Rx;`NnQ8OLtc)2!Xk7a6op`pi8!*BN*uf z!Ohfvcw_i|x?ce!(GG(pWl_$9LDItQC7PyH$ZR*@K{86YD+bI@XvF5n0q{!!UEq)7 zWKDf@J9g$m1kx<<8STygomhO+kKpBof%e`O1ffKA4+sAJ5G9R{maDTULudV>6cY!9R zR>t|qc$TfaN&0d<=T>2rsge_9;A+!&lfPTQemP|q(aUFY|n z=vkd8*?+o#Ay2RMb$+5nRA=d^7Z?ryDQ7^Y1Yw`GhYpfniP6@B#ZgxEKV8AKw%>7K z_{=nn@?sf~>`?MJ4P0RJ2t8yqj?ok8u73Y>KHWNZ)NPH~8(JP|A$g^!0F^w*^fmiq zVTB?_bf5mt?WBElU9cgtbb2fP%~3%tl>nC8{X2YqSoJ#RKMokHa0ezq66xbZi`3GH zooMOdmwM~VqkK@Nd(F(9E5hv(&)NvNXKVR_1|$^=LkE2@jp)T=GTqWmT+bX9E&H6z zxOR-o&DyeJf!ii=t&fvU_>G<@ev9d`$}8k8Kjm zlw?#AZOh*_abGpMKPRyl#SQ%ee?IbYzz`Ik8=Pf~6NC%{MH1Ic<{}{`EiMDy5H$T6 za#EiUAYCGGgANj+4{#%Nd1w)T@g4~D8Y3BicCOFv#^Nvo6_)bSf=GRZht%0%$WK0F zwr0<5F~rcrYL*QlLpN0j8H4*$Qj6I?u^>Yvh4QcHEZB9Xp6ytcD=zNE2>@3+JhWAp z&Xs2z?ukH^a}-}9arB%hggi@Og60ri5CeU;LmsW2KLu(h$E8GX-yFP*e6pCDA@hV> zdoja3)OQ|@V$Q>HA~PkyxWgI2`A|$f=SB(`e4#C&Qt0el1 zf*&#ij{=SR?*V#eI_Wl~Q;FzjB^4#=knH1I%`y5xo2HW$ZY_>^P+;F5ne_?&sPr~# z*)o8m2fcZdSt5ey&=3^ync(l27yR!6c~y*HRsl{&lZCM(12D_z(D+HGYMZ;fe4OZ zz&_{n2FOOR-s3`m=k6=6Zg#Y|j<7t&jYueHS=}6K&^r0*se$mmxI-Q&^k_HApUF|WR>tY-s0AgE{LpTYomD{m-t^Mj2s}jFF!iB?x zxL4zoF!P-I1RXS5>#hGD6QT*XD~Q))nm1lUZ0xW5boK|lJ<$UgBWq!9v&sv`{{{nF zw-@t_eDU%dQA*f1ytYz4$q>RQeiyf$l@*$5tou7?mo7Di)tY@ zy)bO?3(WCi`?k>=;_HXx!#F?o@s6FB8-vV5K6J5&6pGz+M;GrUur`5>`I6XPL5) z-t5=Z*K&yDK;424dm2nx@T5(83qP0h49Ot~ngG}xhcQd3jP&H<5sArO5R`5A$6xm1 z*^I}V#i^1=RX@+wIP`N$1HF@qt?IOyEWw;-jUyt0pvR3PY$zG)_00%>+M%sq;ja11 z`8}=JqAfZPzhe4jPhKW^JfIz1k>@|XG1<KcnX=*S>YrNU5!u&hIrCSDBgf#iIovc8prNjQ*R-#K-a96G7ei zOm^k{76F6dx%}i|ivQJR`i-O4ypGtj|DE@zvE0&iXKc^(deV_uF#def{8JPtg$x06 zdjk53uK|6}^WL%nE2ihWkg^^?%6m_&;YuoYe?*;h3`cJ><_usLo z!4*-Airfye18$3)r@*JW`{KxnD6%BivOCbIwR4Vs_V4=v@i^nJbX8=X`@=Up{?1YL z%d`*v4YZtMSPdU43ia`_T@RZCzLE%UW4Hz1>QlcRJ1cEF&!HRGsmbVt{iDN>2#C=% z1@HH!{$E|IR?A)g0?2VO9k4Kpf<((=f|lR+Pmih}J$9{Yj1dh|{9rs_g&Vp9((G#8^tK-nxbr0HEBgTWf8^iIr~!Me>@Ol4nN=OIN3; zc7W>ev;1o#?_U3M6ZU(}$Ub5EEGL)KKT^=kZ^C+lsM)LT0n7cyZ1)?}sL!#II|N^U zl`Hzyw`LR2FRw*#vwYur-#fza0beE|oV`RVR-eb|#XttK3A{H&2s_oa&o8kA-~j*6 zdY1lQ_3YGeH?YZ3SpoN1#2Fwr^@Zm=OBMZ{b&G%P(I1 z^r3bDo!qroJ11PGoM#pxpU(pfIZSmjbbb)JyeBU=ax{G?Fm@f8`5kIk|0bZm*P9Fd zEt6|EsR~yvMDRF3o1>rjus4!M*v)i!>x7JxBfrcIfe@*Hj4h<7#c0zIHhqv6P7a5s z*J0H2h_>-OhRFWNv4t9uphQLG=)r_D_FgFdh1wS1A$If^Q}|l}S{e5b=XZi+OZrI% z^ea6-%W3W$#{Df(%yb_Yv!K%0)Bs~q5c-iyNT@1`8m$4V(%FQVOjF!(zhJ{qDY*; z4P+i?9P10d*uw}Bhv%mS`u6#yX314dTSsQnk=nhwP-XP5ZJj)x_muwl{DShy2$iGE z2rcZ7#$p>&ab?$}F|#!(eiQ*xj#-ny(SVrM&jUu9`sk7HH&$VZ7V46Y(+fyP+-l|z z|7<@*lN(6JQ|1^u9krx(k3IYms#ht`z($In%8fP0m;nN51T}H|`>ze<-*yMv)V{T4 zJ7>NZF<~rb!MsYQKbZPDOi!z%x88IS!+T9q%R>6*wk(7$%&WTx!-pELaG%Vf@9}Dh zf1HJPQyi8n0!ODll$rcsbRdMfF2=r^WPUqLdGDLZxvh>~)5kRq(pMN>% zh7q8_M4>kFQIb3>OSkPK9|?jr$xUS&b;T4{gs(J*LO0z4t&&X&R2qpGjC>gU(~O#; z08>UkGu19@Qe(JYQG%?n+mSBoPDvG+SE7RgiaU)AM;U#_Z^Gf@CKGaCxQr^JgXaSX z$?)y8+3v1`i9w)hjOg5yU%KDO=W=1m8y&_s1M^i+M0&7;yG9CnjJ}n!^78Ho{|9PD@5W)c$2V0cU( zlx|0BzA1j!5F>GNVNzS``DaU5wlJvs27x^VEb{V169>|p?%j{PegF}l!0N(RB# zp4?PSbd!Qk#3dI3c64ngVqZu}$|mz^x;&3x+WU*}B~94tahvYKf4QMyg^f;f&Hj2i zu8(^Rqv72WhfN7{WN|k*6850v^~!{0#DD(s#aPjEodu+d&D{{9+;;j3bSl0E)$bQ` zpZ&h?U6q@wZaXeE&!FnK;3D6?1xj$%hp)5j{mG^9U;DY9!V_lZxxnGwjSM2@6R7qZ z^2tv^KOc^?b{zE*rZSL^eoz!h{5oJz?%Q@{ksC*wa~$8(0KOY&^A_S_jd&xRw+AoS z{q7YkJgMX;sKnchxJxaIs~bpEIH_Ed zl5B$X4F?(oi8?H2Omp-e?()rDD2Mhxi~7MnW@4wQ4nZa3)_sr*`rW;c9|X^@tr znL2=Jh3NE)R9KgE={ZJC>XMiz4FB}SPg8LBoA{LI!EDf6CrJh-EGXEx07$hZ}|f$ z7a)o+QEF_Gkr#?N-}w4lQ;EK!LU`*?2pPcw;6Xp-Ex4^y$x4^Kex_vD`}Zppk?niV z9X60vb^C=7ys6j3@bvu;PB;|L9YGcA&oq|2=d!r}n!$iFcH%G265 zbfUk)?h2n_SRv%sfY2oR`->vuXQR(mpm%#t;*VzizKS0Twi$%h&d*GI5`u!K^#|pi z4LUp^hVauUBy7D^>zJ}7z~G%vp8ew?uzKF4xhk#t4aK`4`>~hLz;X@2@;X579s-Jpilr$eXc8 z-!GgKeH-N+TGiP@yZ4>7C;00L4-7MBru{v#T3^q1e$*s_%l?j}pa(vvd z7h78hUpRS=-n}t~gx_mK%cx#q=r(o-Bx(W_jX(c7D_jy)={nGYJMy#kmgX+?e%4bb zi@fZsOqLbZX-TzSK{t-9!2U8hM*zsMv%Ch3)o+zw9@=J5gCL*Ew^szvYh6Opn=&9< z4wQHuYVMf59d}6?Z2?`WNqz{F)P>Xj7J%c9Hwu*~gli@%SG4CZoUn-xeULz2Q2pnn z5e;!p=hddpSmP;yu{rhPtM#;u6j;3tBOe0>v!BF~=7z%e?d%EJ;Z#N0jSjuo?cT%P z*0X*=<1y%?>gum#yU(rXu%4SD@R=s})sbAgWf)!ot-^;N(vU|!@ajqEi*0@5`uS4O z?I~wJ{;lpJwFqsV#z6lPl!57C{R$zopMu&H!eQu;_^NC)9A;AXh3~Wki;%eI7?8<| zVylh$HMx>0{`!KLc-42B-ajbTB-#v6IlC7*u7%BSizI4c*-}zs-BBLY$T(%SQ!qx_ zJNc-2xPkVLoocJEMI;8~xF2>TLm7gAU>CIytGqZqJ6K2{u3r3@XlFg(F#3M7xIw9H zSCr%<{~DHrez8(6XqFX3S}Gpsa1~*nZ13JhIUdK_rM}+|5KCsIL39~Q^7XNx$|$e@ zdrj>(r@?#-&06~3pFi_$^d`|`e(l1`w8x22F#3}loUjOl?C=Hy~o6Y-ykhF~m|8-w4 zT1aU;?3$??<`owGBqt*BZ9`KQ#Z=O|FAn)8ReQ$V3X}Jmu&AiOG`Hq8S>$}9s2~|T z#p=tVa^418Jm$D|FTgrX9|ny9FgT?&4uI~ky7jz&l_j}3W=^MO1^b269ON|ZFZ4F) zC~5WRx_x#hLGO)=t6q_X8nF5?%-7Lhr*QZ=`i(j)GnY!T^wjAHlq+hjg8vqk@an&n z%>;>{rG3@Og>m#5P1VvatU54-G}kT)v>FhG2|(!|qM6gN(xsJumY8ld1kl$h2DwMIVr#xF=0_{}%0*#n%?2 zV3r(2L~1cfks#?H1Cc#3AG_ffjL}V{e7_kK%bXc(3Vymm#aO)MI$u_;jGEL*PeZ%k z#uhDk2ad->@304EaOHObjak{LyJbun#%_~5kHM7`u&Onc-R zL+}vU517>snv;1(QTgoQxS2>lFBCD`@_BSzj$7_OmQ~41xJQa#^ln`K^)a|4y64+9 zD>#81*n(6%`ZmQ%FW+t)hv%6d9^We_jB!%erv4Vh-HvU@2zIRpsDIB<8VfeVJnFvyy@@d}$LxfmbON@t;j!pG`ntQ?k7_YaO1MhNBcb>#VONzQo7jqTcO{C0e}?|P|hkk#=$@gK-uSev@xn?joAm%NFo^m zyE3VPS$DqnS!Bj_KzMzBVMDxK)}tajJt;2L2Ay}lPAf1|A6=y=7WHN&2uU=-qK*2D zGPxK(%+uh2zCjT702rXaH$Rv;sQ$H^6xB9&dLxJK`%Gr2B#L9q=mD(~r56yyE(cq5 z)WuN*ThXJu(V#aMy=IXIxo<@8m5mC3E9&K?GKI87_&n2?~$8e(oz+8L`y@}Eip$BSm0N*nww@a^3@{K4Td6Lo6jv@mJ zr1>(hT@gBHz|XM_<5`X$zVO)%hQ)wWERLqX?)Y!TE|twU-fY_Ca2MyJ=d_1;3KO|s zpLd&)F)C_ErV=C7e8nL?1Xw^NfFHuMu1sRq00=03Hq&&X3Dix}S^ik+NX7VregkU% zDGp;abt}vAofMvK0@kv3D!r&f8Fs+)eI3ng#^nTwzGD5v77d&fK`~fPiP?~`!8y3;RG^+rJg`EX4ZxwWxYdemfJbO)Js9!*W z2*-q1-r!Iq3l%~zLnKwhGvg%_wPAUF$XULD1v5H6>rSsYTtc(k*TlE3QUVaH2VZRR zH*!AvQNW#VF%ocWHMOgmS%3u6O3R1A*7Yh&(g)le(>q5<9@`ejb8hpa-o_vr*#4^J z3^gwG95|8ux}xp}IQwtE5)#M3)bxYf54Vjt(k}Gv*h(1J{6WRTF>Gw z8B<4~9S5;uJr>&WW07X8xe!lX-S2No^5_DbWq%xUnh~9i&#`BC3Z1U&ksrLbeaEVj zRA!_%Hg*#sE{wc^*Y8=6D$A=lyLx^o{bJw<5f;-DO)+H_6Hi4vug)2>SvMcp#r7&! z708Hvt6D%swc6KJaYOsuT~?zF!k0)Tu$#iuFpn&mb_pbK7UiVn{HP+>QR94tXShhk zM&-zdBJU7d5#KydU5b~>>0Yk_I1T#Yn`Haim8^w z^B4Nfk7h? zH}&6mXfIZVX5inzdC&c~t*lS$0{wm$Fy3!oGa1o~fcafhQ=o0;MqqsvLL$z-27S-P z6Zat^KS$RLw0dO|10^L+g$woWc3Na2xu5=~K_VbOhA0?@Cx*Q8GhV2I_D|@VPA*Y{ zLirdppMdZ#{|pI%={z#x5K8S@{nm)er-m}{9o4Ei6+Sp49^q*tS$jGHN=9}9ZZ0_( zqY>$Gg_G-#B7o$QpY%?RZHNNcNT5FUf89U=+#wIR@p~;iuVWnsGR|VI%hY1I5P7F4 z1)@7s#7$O_ZxV65jCv-}SN0{gHyN85)y6umW{)@WuidM8R`%yvU?5GdQFMoZ(uYq!WHHGPLX_HX{D#L`WDZ5>XhN{L4~xKw zJrt%R-)H-ItRB{fPFsa%2?lL(j!1)#C?K@1XA(PQd7#(Io8lm!m5~+^z*Nl@xcec5 zZTck^(LT-TB=*z;Cpo8{_<4noNb!08g9)$cmj>)*@e`s5tPTfadNFVW;4fR(zEOP2 zY(VHvevL&nE)d7a4}rpw@LqDq3hRhMA0}hnoM6wAutezA&?LU)aK&z-eQD?;ip3R( zJG@`QPq1&@iY{jmeAD={uh~;z=`np`M62}mNr@#m$uS^=G|rW*eUdLlN=Ije9A7oD zK}=Bw5k(;+i>QPYNe=#Ju3z2%+OgQj$uzskw{6g?yBHN{NEP{u(>r?g$%>Lir{u)V zpOBnN)@oUP(nsgH=&6wzNi*PLA!|lzrjFA^O?7_;<&=R(fps=P-Aa*C%?xpFthA1M z=h#y{fG+((9o} zmOoXKF3GPAAbM9yU~SKD@Zr08m~&23Bg>dLi5Ig3Pa-Bm16epc8KF-HOXgJ9Pajpo zZ}guERzA+ug#{aNk07c=T}#Y3c0!E`5fKLQg(WSh_lr{0f&RNCpY;8}@v+uYxMzFo z$ZNETz5R%Oi*j4FG$93oHg@jIWhM8*3g9t)0WgITrPQ6m(n~|fN%$fHh|UkuYfXAW zL|<48(F@(|S>Sxq5mR7|2*{vDw+jkiplZQ}e$FbZzFu>EEO4cR>ips__mzn`x++^A z4~K+w1{P7>Bap(<)Uq9VPdO{6Al*q?ffQPBRBcUAM!iAU;5WThX|n%zZKOU)7QqDW z0|@oE7_lXa+0#txGk(7}A8Jn7e-*d*4Qi{R5vLwF5&;L9POuqwVX6t@PB*~odU=Qu zqHN&o#2Ofrq^!TUGnVeahv$jS0|qcT`|(vJEVM$cxRk3{2JVAAZW1Gx}udGdvyy22V<(U@h+-&?Stq3=wsrV z5XPP7P@<`!ZN!7i>}Pt{II?=VD38#F^g=+JF7E-ZPyfgFF>iDu3--xxscw`rG4du9 zkZf;se+q-Kh#Td|L}QdSd?i?{g_SZO?r6^U=JGmw zFsZNWpND(3G^Bl5%x;abC*oIQb83?j0gUdwT7N<$cSNxID-$enyx+}c{c&L-ey*5j z;+Ls$Xh6uoWyhp%su8ZQT^Lre!O`In0ZI{j76jDqLYjlEhZ!P5fS=7ofAxV|1Z3e~ z-tlY%(u!x{e~k-`e&9ka5TC;2L6;^`@q+RXFJx2kv+wKU^oxFs)yRWNH;Ayt{aY$sGkn85Im2Rr@&B6r^TN(jXqdoAdt8J>2m&osen=W-SgmlDmKR?8^t!%i46aqZ^yt+G#$zOvaGjvzs21Dk<7g+F5- zEjU1Rg#egy((BCQJb036zWY!tIb=inH#tsndJowEteBz{*V!WsZO)#*q4k8v$n>a- zq{5-I+e9Z1$n85cqh1}1d1Z0j#JxR_7;h{Rxp_Sep;P$lKK9~gU7$_@xP0&kaxTY# z?i+J2LqpJVkAiGwHMhxRF-h_gxoUs+bjn_bP8}m^r>H}#x$gZNx(G8lIzouJ9^4?7 z<;ug)U{j-pn(Z(ChCC@U=JHyqLSa0P8~_S@P=r8s6`Qd9`ZlKk!yaeCtp@qnzg*=} zGg83F+GJFA7_A+qmR3mXRkO}`frSj?kG>SkOZ$f1kwAsl>r>C2)3n%@<2JAd(wa0|3EH z0%TtakOZnR)0iheDZ0e$+PThgIfN_Xag<%kCDPLlGAD*k^%w920tJRbzLyB=Q#JPM zKz`0XvnynUP7>NnAXMYt~w>$mcUA<3d5mMg~dvVAs!Y=3qGvc~>;;&)F@?CFduK%lTEMh0CksV4!lp zr2PJ?x?-fdASEOILE5tCsPL(IJ{<1Aqvt#UBYKt*D%Sm(O$47|($K0a5Xw zuh2hcBW=A($<^m?emq#b-c5!n&n^JxuH|8%cRDFBJUEa)o|Z zJ+G+|Atz8uwRvD9$pAH;+|WV6s(#|5R-~5@K)i5XfS5Z^F86ouP1j3p050IYjfU?_o=znXM(6b(w?*aOvL(K^=o?H#FKcpK zq#ddcH5Y#Q`*7x)2XRxb1g4-YMef!Q>Z>Sdlj4SeXu+&eB)t;S&NVHDW`uGhmjaT6OrvI8#%Wy+N zm4ELQ{Y{zWN^QOdp)Js+*&(*~r{chA_k#D$iv6l?6}gfPn-r#?6Q=Sew}f18C-~)r zZz5ql({~XZ^TUU(7534N0i;0!;`gOY0{KQK88?6NU#IpM#u~HPo1*88Z`JYNx|u5H zbym&QTg{%GG#wiS>m0^&7VP_A^Y>EEB>PK)5dJ>42r5T1;-xtfqjhg6T4kL!Iz>-! zM{Za(*1$m@S$vA}HQ!eCa0}}dGpV_GTxc=?iO`;GuLvT7Zs8eks=6`m-Ns11LiE*6 zF)0NgZnAflVCopk z@a3E!k-O7F8+$JQ{^V{$8^0T$wsPrah>|{b>Th1SJBwVqs;ppYg|G9vAecG5Cw%Jt zy>DuFpkmjl{P)a8&({nvz6JKP29X&DCEzEY*pw!nQvX0+GZ9{j`E6%@Tr1vEV{hzb z2l@Nn4Z2s5%o*ItJ$1+U3q?E^T-Mj;|LTCYZOo@Gg;`-KGZPYf0%oI!5_pp>2gO`` z|K5MAl)Y`5hWp#$!IQao9RJ$I3&1-J7g94r;Ph{{Y5qG-;rIf-VhhT=*h2W>>zaq*fqXe`wtgQPA=NeAi=C!W+FVWf zH~p>f^)>0&$6^4=nv)0Z0AUbG)&i>pIMadWF_Eq$7z7=^5o0hG=!G(iv|zd{Eh;P)tjl!<(C z9t$k3sEJd%V|`Kee0&;g6W(T#4rQ}b^x@$(O9rI16y%gG`R!3&yQfWpCc)9 zsi)wl6o{A`+2hToI>%2zNrm)De6KRWm`%5GC^X_#It%4gB2 zRNnpfZ1nvDn&rc6I}4blzI5ep+CLzm7W7bsq?)=WutR#ZkW$AmkIx7VB?rj1WKuhLahlb= zCen4=A6501y=!SqD!1~LSyMO|tu9Vzy>$6(V19x~M!Jps>&>?{16uzLq~d$u4;B!C zplh>Kr?iRZ(%Rk@qBoG~N45DYNjn_U{$sb-Lm=i(Bd3trvY74?UZ=pb2fwA)H9z)i z^+)$)jp=nC7$gkZH-NnXMr5*CaTbTw;8R2~7?=yz^NeDj`J9SZ)rgCoAjFSQ^v$w< zt1I|s+_3y0z@|Y5A+x__doSs3$BPoRs17F^(ASG+4}QWhA&aY-Cp3A&Q9}Ied%#Qp zGLeH-=jWqsv4ol*r7bocWq_{;YaOfXE;yhbApb6`R7!E!-Jw#j?-Pn(nex<=`-s!) zFD49#`6{koPd2Pi%%}aYJ(MgF&x;M})&2E%njGZ*wb$_uH1T;rLefc*sHZXb000T} zM)^9tQ}`Yr(h!+r`I#0Lywf40We%)Ccc}8K0r0btDz)tasUULpAUzn9ef($$IuL<6 zP-edPy2;u5aQOQdgbUT6HOh<{O^zO zKe6f8C;#mp{|oKt_2=k-HTbo~*S`&%|NZ~?k9I)&_S~P(|99Hx54(r`e(wJd`-rjs zHT#I&vG4w2?(}OPu^XSbruU!NM{Id+my7z*u9@PZ;Qe2@kJt$SyJHdVuAI&**X=3a zFS7kYc>Pn@*QGfK|GxIWul>`t_jq82&%n%5xrjkKM+E%rSlr3u zgwxJtexy9Hdwk;T5$9)<%97IS_d9I{UEW#mZ8Lb$@Y%tTMzA^*{N}dh#ZX>e|NawP z?n|p#KbX2<+rV}MNf>H2oWn7kc;YEufLpkSw@k;xdTU<)cpv=}nlXG9Wn7l~6X}nA zD`PXr3|dl&4+wb>(oFFfFWS%P%VFr)_xk7cVK}86Me_G2_CSU1O;x6~5gP+K*n?2x zP1-K((2o6Jl>LWWjT`u|p6&(~&7CR^o8B9NEs9d1x4(75`YF+ocDe16BwY``z&?q*f2HsXeC2&$tA*9}wDh z_W~c6Rgk*^^>fvvrF5uQ^3NaA;<86hlb5ko`>}GXYFSg29*!5?$K!(OSWZx5^`{sS ziGAT+$Ao1*<0Z{W%R@byu_PMeds_mgf`(YB)l(8N(7D>E?kMfF8=R;rN$yOYF)h;eN1$>&VIgI_VTS^P5; zzV+4L2N~c?RU&bkjSY;Go=qv~Pj!>%1jcIUg=v+6cbAJji4vJzQzTRvpu^PAbBYa^ ztTG6F(Y}X)0kX`F=Y9RTfpOyW+JAn^6EA|(R~B)g@*Ek^yBUr*!+`afm{#6Zjn&6s zJGq@Jx-9c5H%rUf+)D1?ZO_AsBXAE|>cgs=tHbms*+e2*Go0>&5U+;^WUZQEZo1XS za3p!G{JqT-6t&45*>}_N`?y;w#PaQ!@t--r%4c;RuZ%@dtER`q8OOcsWOS=^ozEVeD17D#;&aKp3SUMI>ylIxxzR4$b1{UIWkV`oT;_a z0@JX$QolE-c>3P_a>x%V%Wk$;M}i_~r~zLI8mA{;z1qSUnek++4<~aZ;ZCp3VQ1L+ zVNm}mUw|&<{0J?6H59Q!y<`{9sfd|Bux>BKwizojxhlfAti{HI14Nxe#N>N7#^7@* zT7_%n861R1B>*@;$G?$TWD(<0LBR7uQm56;ZjOx3yCff8i=7LB{Ges7Q)hH4aC+49 z%vDn52OIb0H*CDjI3V*u8CP0+-aZy#G*ZC(!#IGdM&z_LBmX1Ly>brAI71xkmJ^|? z#3hDdFlGso#)vZq_8f+8mB&`O4cY3}!5GIf=6ruswlNp? zG^=&e*=1e3N3K$t{7jsuk5t)9A#<_>@rJs%%j;S-TF4`3G6oHdoI)LSV$J3WG0{w? z_kfdBarld4DhBM*W-nDBdKLj_HG?=(3zzIR#U~Td7sOd5CEM%T1Kt61;JkSVxu^v7 zK2ecb`4u?$T%NjNqXydhQXb%DoycYb1kJx{EGmu4NXllb!-6gfL|TQb9f&W@5pT+t z8w1nfa$BB}93%j5J0s=x)034p%F9%gc%NNw_|W!9)c}G=^Cs{Oj2!A{M^I8$xOEg% zuVco+^_O`@^wzEY;Lrt^oo_wHz-!LOD362!??F^6humhQT2Q{$Q0?|RpkBidL$$3? z6u>+LSwWKTZ;E*db{sKpvL!%eq%z7vx{>(#p7ss^^@{jlGB zMxn(llYLUm9!@1b4T&R>lOv?nsVx+IC!*Tt^{I6hbV@!PU95TR8@2o8o-jxWuCbo* z^Yy*?AkhGxH6T9RwuXX)|Y23yA7!-p`8EGW{G87xv`ngSQ8;`AE}~HG8^db~_Q| z9e*AAbkez(Ak01nNjG%HICO!Wx2$l-E*?5%EZNIWMZ;k8XD_%B1hZb*BcNXpVft!f8kG#ac&E=RI1E(bZ*@=^TYf@jji z5z-C)Jimxe#d$J6@@v)x5$1W&%8|MO=8gk}1^FfF{-8bB(ItaBLccsO*D?Lt6U8iw z8-gTS@=6^8xAJDh@;eX9e)6wl8v3bSz{6$KbMl+z9OH4o>Ht5n3aJp=)Oe>HV<580 zr4q36c*i}H;{J>q*C8<){A13F;1^yHXAmREs@to0nlU6ktw+NaT2+BIlc^Q*EM7k9 z)mg!lo2ts;PQ?MDO>6H8JxF=QbMLjsI9i@WQT9Lno6zyT{PE;h2zAxtHuDjS+=it# zYyt8$vL!zG;e|WUS-D*0BncpVdZN=TbkaqiPQ+JCg}rj55zCbn^TZ9W_JUIt9BO=# zAkQOaFIfg_5xFwXNveUVHK*Ktw?5F~WE!du;Ml6%n{#-OcCHe`+@qXV&jXUSNJLC1 zyQ=o8v|b*B=+9(Rhgg%s#Yh%()lTMMzu0B@53?eR<(>Ug5YYlgvCbEjTFYA zC`*35=ND8TS1#w+T|Y1BKYMl4lh_l;;xMHMq~^V1LUUP{Qnb3z30BH$4uY7m+(8v< z0GF$6G4#1eQc1BnHj}wu6(5nzcUi~*eLYFYlZEY(Z@-Nte}XjhO0cwQmN{(qI+jE( z!Mz#&wD^j*H-j)A{jUS=u5TA9gbNekSq;p z_H1d4%!12osd;M!JPEWQBIx(g7-x(d)16Oa@8O}X_>k5_JgX6w%Sln=)<~s@6ub5^ z+b0z)T8U3aRQ3o4(BQ+OGvoCQyPv zj7Jdsb6B+N1z=TIGvEcM8JZ#gkaEId6d&vIxbQmHyP5!&rCB7B*?Yd~=M47ObhM_d-cwxkN%8gYQdt{io)? zUDPCrpsBP1bE*xWa?Ot^6kT7+5F0V3Ew@vjmbFwe06?)DXNr(E=Qh~_hKn5;M8Pp( zMCRvezo3>=SKDEd&S%dBtBj+*p_z(lvyTQ+NU%|_2GGj^Z&+2L#)o?hCh#IVc5$Y_ zEMv6FL>g^)LGW;ku)CSv)uJA~H~|{BJS%}8??eq?+w5tk^3bR?tt|2;w*)d5xksYV z9D$svpo+GsBEvcdVC4C`0G+~v_xlUk2YhJJ_z3b7o=d!v#%O3r{%(a5 z2!8nz2(rhCBoo!lYiTW$Efg@zeLQYhleLKR96a5Gcuj&8B=l6U_ke1SkO8)e`1GX( zW@6GFG$3+X=h3aqnl(wh+zp_<6GnGF5A>92iAO6#BKdm&(8#oO8ySWfH84Tg=i1yq zgw^S0(#ui?c7e%hRRU(bhMWU+T&`)x35*pD$#cF^tmh}0t&Bt5kFcKvG0wBfmU5Nj zDE?d=9&Mp-w1|aJ?0_EzNj9p5MQm7o#DX#W!J0*D1KDRscDdjh3eJgywv)TP%p*D< z?Zd;T<3&o8mrt|08h`MyHk%jO^o-bkD2gVD4}kMqxWoLXUj|#Eo^jlhJ6_HY(8N!h z=r(rBAb)B+$!}gDk~bKFDP}~61N|WROl;FQa^cKy!p`y0+(*j;(NvurYs?Pu<(T`Z zl0A*f<2^BSJ-)H;n5#3tv301ck}$~IoI8dj<1$)qBmb?;oF)uNcU5>O)+fVB5otY` z>?`AMEH~xe?9TF8oBDTGBMljc6=3|Cl8t7>{P1MFU%s;})fHU6b-(SJm*Z}<@C|HE z{PuY_K`(+2i6fO^FR-60FB(3w+b{^BMYpESbZ5j1Wni#!^vR(}fSL0Py6DW&Jncwb z%#mQBZLQ*1cX;MAFvrGi47u|kE0;LmXvoZl+%ba>6WWmyjCq6%aaUICUOh~Ds)`vl z{2auz>b_6VDB2~~8I$R-`g*iU?1J+|Y@754{57ZxS|g7Z)mUptwR54an?qi=Vn$B` zK0HUHnB^`ue8xcAZLJK_Ywp^1kD&;%>vA&UHxwh#6xKk2skR+66S?bU<=vH5jTCCY$e$xJ%Cy!&OVLlO`jwBx_`SQ^=6t(b|9r z=TcFdkE<617jZHIubZeTM%}kWbw}hg2-5;ImT>e!8_b8y+vYA1PsDImG?rU6a^02u z*e`U!J7eS2@B9#leu6RESuucK}e8_#9U5xXVDBLxSIUIka%0wBp3~dM=+#7?$cadNW z_T-T5g(#SaC*GOGX;iNCL^2O0F*fR7q>WTBK13c z^R5uvSib-yXmT7`m-ROB9pWJ8!ZSRM#r7ptcb2*PPH;Qr#j25FF~vABo6O@0HNC*J zAH_1Ad?>~jXnR68FHSq8K}1SXPiyJ2`*ack8Ovho4O$)Q>Skh?ypKEM;3#&yCGrAs zC#6?i_ybq&pr6c4)R2&VrUP#wDzr$;YuIp#Xg^UhQ_|-Xn`MDJ-g(Df12S~%qc`VA zqLXUUv8%x#RGLWAyg-dzXHT459*Vs%+n)44x?F?0oJ0xXn0WR{s8Hi#hTp~%PU5#Qh1+9L`Y#_TFvd*iRg0?S^>omp z8f8Dmd%CvelR>+D$tQx#Tte|=iiev0yKxJ#F^-IKg@9r3i~v3vqNv3<=@y3 z2R&4NPjQwGvfzC-~TJi&I>-oXRNVx#$F&RX*{jLk5Ils+X zZfZGgiPl&^ZH@Hh^LGy}UW$3RWvOw7@+H&5Pc~~=qT6Ytj}#=DfuMF&1$G>gd$~rWBiajCydQFviJb>+TdR#KDv@}_`GO`+J=lP4 z{b%jrgKd%0Gic)|#P~9Urf7C?&m}a#`^a*3h?0%WbgLslX>HpW1d6-~%rdpUUuQAcsJlBxh{% z7teuvG7+t5Odd^2JC5oJR6KlAUSI1o@~g%QdDMJ$Xs?Xo%5ftS2Nq|w5l63&U-J-G zwsI@yEzBPNsy#lk2W0k#thst*P)5rO;?wPXLI>@PivT67XhJR-=9dI=pRsX@y?I!F z)En7MdLOr$U3ch(qOl{MN_=?8toIOiQy&<4)xG#aNA8DxcNwwi%q4*uVpzhDj#meg z-mNvD5AsIVpZ4~hQ&1QFLjPmTS_lvVmIrlu_J!aGFOwcBVCVMABx~8gcCJ*dZ+{5t%p$rc3+gR!hS?p2;2Es*g>!kompuxC5VxwyJSi z>u_t}YvP{WTU`PTS%V!xe#W0TgF+%`EziY}h{S)#Cn*|u`<;`Jz?zefUT{D=uGcBy zBKny)5I&w-Ez$j1eop`hd8>`osdKjP=xqip!S(>C#<1EvyrkPC@G;&w&=vQ2#074SIN*vcjac)CAV^^QIyngt|(N~xaL!^0w2r>yAX zsJzqX#8yJJWhTZNBr=LF<6(ZOWLT6fbG_RleG21j5oo>4e3GUJ4u~8U z@d6~$3?*a1?lP15;UQ!|UaeJ&qL?4uf6KFM@~Td{IX^~2XoRx1$W|?OA*s@B2|UOV zk;++JbZejUl#Zh?ZK=Dv2d7L;4t-slKTcn{L0>XVl@WAq-r!IPAv&KXYwgZHp60&O z>JN%hsz~~*$s@lW-+;|Dy);*%)QduV4GjOWbAr2tEX5cO&tKlmxl3BRarlBY9PvEC zdRN`nCNmJ=3D+!n0PXVtp`E^X0W@+bpGtj-i-T5YIm8=tt5lq>lApOa;erp#(9s&F zyV^P5r&))*3C*y=m55{Bh%?#a3`|&+(`D6p0X`WlG9S3{<I_blc(ConJ|&wDTTNIRpjo9B!EIHG0{L|m*FBVJ1<*lp-9g=*c8 z;uBfZKHNqC7@av&wjS@CbF$V2@4So%s30F6r-ltYqLn@^F3^oGU5%a-qhmIV317WNZHzv6Oh8S98TtQtDOC#iy zC0{h{nbCV+O2^qq14WjA&4zMe7ncAaczBXLwyR2nGSoB4BN_R`s_*>9gBWOLTY1~FfXXdb3sJTz zq35#c4cnARh(DLA#L8oo+S3nHCnX-`e0$O3&?7TDtx(IT^4dH^kgwh_e&>?1cCn2c z-5){jzig&>IPeTSy!v?HJL^rA9V^9XH_mAy8W}A%f}4oA!JPbqkMCB3@2?*NwI%0g zUI^}>NQq}hnk!0FlV|{LTW8p-dJN+j7;_#~LsUQM6>L5iRFo2~7<(vqJMjn2`kgVR zmSmw-1tqQe&;z?N+R#Otom>eH#5g{j^G1Y=wANmr#Vt$_sA(+cM9I8v4RMxEkzd1+ z)k_@*t1!wl7VkTQALy%!(2}o-Rr8zT*L3G3Zm7LJ^8=$l67;YIl#CC9^z4{TNe6XE zXb;$RCV19&NI{h?CR>bCl?})(m53{kZw@|0*fsPrcR0{yIB zja&O67Nu@ZF0&b?XlTC$bi<0UQGPi1Dq+|6&(yXrmy0}p=RXz_Y7D~7`Pt_OJ=e$=xQ@-yD8_83ng5cVIk+ArX9 zZc7#4uV;@p!g#&}ESG4~A(I)K#(02&Lv`J}wb}4?su{x;r<5m8ax!Fq=R1Ll!n|0a0oG;< zdfWG6w}PewWWaydnn3Ya`VqP#rzZ>Zde7x4TKFYoHIv4G&^>ntVXna*#3MU&g|GNF#Kn)XVZeIU)S&WapwHy<du^&kMl!gvgr&V{X35+ zp%)8eiHpwu_DAAW= z?w=K_tH~K#dHRVoLJi2t;&8sb6FR9Qrg7}f#*Vg{s0fRzw;~MsW*6-M2spEGI+nk?{LTE*FIvctO%zmWJ+5;sa(^*&zEM} zHO#wqyceiq=7QSp^b5UQGF0`Epvv}29R$|_|InO^5Eu{UbuBV$*Sa1AnhbL!UKcxbPEXV z&4Z_F$yGW#JIy9@j`?iE}CXYq5_oQZ~2}X+lp-Opd}nqRj;v) zNs0eNuuf-8XyZhy91+6uy}g_-q=zZk#*edXj)si*k=1WsO>|Yef2^NU+@`P}W=l%L zjA!(e=|Cf%W?Q~)M2!IrVn@tVGA#QkYhX%E^0c^|O~_kj1w9WM0^zeaK=Fs?Vf?Z1 z674|_fQ=G{e8ke$<1BR~XdSJb`^T+!W@zglycJ}5lf6{PZ~Q=XCCQtao~%o%j^4cN zXFpEt;UUJ>X6rD_8hF352aO}6I-!$N;+J1zU%ZdI!1aRlm@gU|y{jujABgpk+g`0E z+{2O6Z`RrAGCd+$W{Lume^<+@8L#wb?O;fmc%ijZ(fB62FiB#>R$xsTnJ~j+q^(E- zsK&L4SC%}tP#KQ66T!YSZLTj4^xN6-qJeDCvOYVo^(S!_=4mJcei9SMcN7q>1JrWH zF!bLsP((4$0_x7U=C}NV^nWmXy1ah#lR`pe&a}ME}d*v$^6)_SAL5>kL z&gJBb8_1$k6U3(Fi$1O>!1DX&(^W*D%xGo2aM-S3Xh!Mm;6Lk4kaNAO8Ly=a)$#L9 zf51AwPl|t@Nx=4pBRPZ_U>k!_I|(rW`dB*?=>i6C-ah7afF3uH*EYk=2Vz^yce*3s zLIyqYbt8WBh(XgIFLaVBey4#ku(r$UoSJF);nHf_Vr60k&Z;a>V~@&gVqIKph9V!GGJ4cus9U@qU3^El>ZBUN?^g-xk_L?}c73uSE zj{vx^JFa_g?=d2MnJ<4j|_ZDh@H^d$)f)CGNY) zvj)3&T^M66J9>3-H}DbkJ&Zj9b-@y@1k8m@@_4t_Pbu%ZL;ax8JT<$=MtMc(BAp}c zQgYOZ_^jV^Cx|;P>nj!|HigNoi{+&Z8`Le zBP->D_M9&#!@yiG09z;|i%zqRVXWnL%+T-00Y$cClhCBeb7nAHkJRGhJUh?+)sKSO zIluMe1J9bwayq`Ot8-uQDS(BCRZo$(0&>F6*q2D8J&=n7(h);8S>isRg#x4iXC6xm zGmN$DolG-`#J2S(`N*XFu0Z`qwVmkAKB(3sFZ>Lvk##A*`UUz1zxs~HwziMM*l-M1 zf1`=Im}XCs*qWy5bYTyjg@< z!3s*)7QNE$_h?48cH5HbyX6>LqgB6}6+q^QdwoZ*xSw^$&5&i2ES=N`tj{l0PKgaD z`biCX(Lg2gpoNmEN?<)dl@W?|8pm#kbK zH|&X_N6DDmlh2~y@S{0u%^jqt1n(8z5rS;T8?2vDHH$H>wF{%MdS|T`k20~n)t1B! z9#qMsdjbBIUC|Lo6@s~~L!WxwYz~XYr=P^fqm?2(7LqtWW2rBzTIrZgaIpcZ^=f1XFyFIZ4BNy{vjMp>Jkp=TWUY^5ggN=^!QHz-_0M)w-)DXoYUA zkTe@=I&J38B;UjxV?dzqa09Inn;P04eCOS`5vyvfKUmu#AtvI35BXTRZxmT2Fs4RW zH>FxCAlgXsUF&mx`-KR?(Wlee6hpS8XL1c1-h5U$T~sL3hQQ5(RrT4G4Xi8l$$Vto zhM7y+WE>(BZ#~`bA=j$zML1F04i2c~mwWuPKH1IVi)2j!j87D148&f4 z9{!Jqz@<2C+l)htVMI2%DZLa;vp{tf7(D>H2I{`k79gLi1!m?nsvY znu8TW{lpdn<#{H^SY!idDe;ZE9_)cVe%5&Pj%u8HPvBg=Nw4*T%sQcHuTEg zsqZ^Cw@aP^26~rPw+j{t)iaX}@me84^Blp%3I12yZ4+Dp7{q1fyAO7f(IZFx8#_k#~BlX&iB5Y{xz z5Rli@aA2yIU=eW=kpPi(p|zr`kbKa?q35*aaBMx^Zas6tV&`IgoRNFv0yvk$DIJev zkIZ0^eNqq6d;HUr63st+Qo@c5^nw(*AQZtPjx5+}-kwrJdLF(U_Ilt#s2TW2^eJq~ zW{QLW%0tL=Bn5`mq4>#6VKR)DIl?p1#Y`EV5PJZjnHrsf9Zb# z>>RJ7IWRTo0Ah<>ZBjFs-U}dgtUTtAb~MG+0zH=@-1ri7zp=k zU^chc_q|9E4^UjbP-8?WM3RH{@m@_T^n4!T?(QOYL4%6VUs~Af3(v0f4smMRSj1G% zj#+)vA!a|V;zz@&?*~0P-W-ROjXY2@{qE6dNZAzpqK&RDImG|Ncm=6b3JpRs!5i76}*VG76xH6 zXlqf;+fI_U9SNAA_i58(#*yuBwh8qrP`$I1F{pnG)75EtvbTHkYcAs24h-a(d7qTk zuH`#$aZeg^-w9pAP6wxMl1g>R477{XlB?2gU*DAC0T0O=%<-^5%}$O=2Q_+-XzQj^ zlOWF?mpMUg{LJMQ#E4rOqN)=?!{7xpf?R{<`x~dkR>aeUS^LOsR}~vY7{CBbSr9 zXM^5cS(W6os*i+k7hOVew_S`N&>LFefMA2Yd4I5a20ojT<3Y@pw-Z8E5U@YUXm}_2{o#)& z!8|pi*-aQvEd&EP;s7s!1e=f5w$KWABa<)|tPNycW+l2l#Ru7Vyne#c0Ct9Ir*zOjz^5|@6=#^~eFP(S zg!hQWSKp{5PD`>~_~0Nl{tWqB`;e_{7>c=8pd5Kl#xn4{!7WwABIp8%_?%fhf<7sw zMVLkcio9`kVm#$fQz8~a&b@K*85_njdsPB6)Z zvSu(FQ9{mBXD*=wV_wIDz&AldXl*5NA+p##zh?Y|WGjuwjB5{#;i+-8_{Vq8_ z&9~Jc0ox+7%&A)W@(@fBjVXR4Y0N4{?|ykFRPUJe{xvTYs_7mFBi-9C$)P;xsTo#1 zs`}Tuq+6oKmz@|02i1)mhWDgU2Y8CLOPg5))Lc1jUaAQ8nVGh^EY&oG?jl`C7GfR| zucZn7IjWY|^`C27*eh|}|M8CUZCl8KsXn?i`QHV*folJ}M*?wB z&~cv3U>-jQ@UT3Xo)HqCpW^$w8FXg<{%*2xNh<5tyRq=7hhb1_&pWa5h#B4Kq0h!F z*}nYpJw$GBsg$E1ca*~yth$+2LSLz^EVX(yKYxEWRWIiFxrslYwHq-ET>v>lk~D?*-j9 zg1`KFrxf-R8^pRSWSOZjuU?GO6qiX9^@-^1{+!JUK7)|D9F$Mb_&74btV6b%8ss&| zY2F^=`?+1uQ;N!phPY;41H_f(_KdXPpG9gyW;Yu4kN(gPh_C5!RKNB6Ttl`@#Gx!Y zw5s<77}a%Rn8bY2VHDOm?Elr}KmgrP?B)0sO3S`Zw#BVIavVmqK`fO>+AHzd$$=Ri zXlVkE?n$f>=C#*3sq7&)ZPiXDq{Bzy<)86(eYZHY{n_?gzzN}ZUF87lp z*ZsfjB_JLi)R-AKxz7<2u=&r5m0S(M2HQI<8tM&o45V3xJf>=GfLC381XG*xwBeq= zzx)1vK;3(A>~;I&&4ut$`*=V<6Uez)RZXxBPI-YE0QyLxKJj{sciRO_NNJ@C!ykngch(CN~2|5AtR zvyT(%yDW)$+&F9F{`|H0D#;!VUcuR`|Cu_$<8}}Ka?hVX9+ec{e|e6-JFZWIQvY)Q zlRq8G3vB*&8uxIdTQTjwSI&z$*IU*%u##qy_nUWh{cHGcAU$4!|3S8P)n zp94^UzS z1Jm>hz-m}Vx+KtLeY(M|A+6@>$!)druXyoq4*gbq+uf)O5JVV}fT5z{jewlqF88{R zo6#-{jGaYO65j6Z^1?#xetQ&Q0CQ#fyZT@1RjHTl@^1LR!~GU4t$**{QplbzsT1q> z?_pqO6&%&y-0O0g3g;T%FA`xHN;Kg5_nPXe`u_Bv=ws;>=4_{4RK=RTIMEw?xKo{f zyI5}UI3{)`SY^LFkL$ld#to? z%?%4L2Br(I`}JPQci1`K-KnL^`{hD|@m{X4pZ0VI)h4~~@>Qt$02wILlGITdLJ2vc zrb8HyzpbOH=qisrE_%~}@b;oFFYO+7VkmvB^|wIHgB|!m+I%K@zxn)axL+#;=Fj^= zy`*sWgU7BZ*WrRj;ciXvFYCc$0c!r`o=E>V?pO96ZelNgaIeC32VO@eGwI+OevvOR z79ghXxcK1>N#FckE?h3r&G@#dd!uq8$-5hr@3Hb0FSseOs82Ga$sm6l_s=VDIhVK+ zRi7v$e(&Fy2Mynlndh9~b!x7x@VD(F5Rdfn_YeF%bjA41i2UslyXk+LTc7`dp8DhQ z(mSjC&Hw$)@n&Cz__yu%J>)Bawy)r=(M5TwpGK9~_j?N!i1#F58eNEWZVG4B-P4Bt zLbQ!;i4&umqo?otOX9Ls@b`tlynmb5Sgb$gwOZm>scy-HN{84Fy8oI%5_fhR_PAp^ zk!n=DqlVn}u>%mrG~d%W+uG|u_xCD$9fPL1yu3`0cwsR<`_FL5?Z)1pr~e7JUB*gi zH?~dJvlqmo70^Rv9k#by72^ZB3c0haKFo>FVY9eAX}|cVQKAO+U~IJq*j!4D!6> ztI_p8)4qDE)(CZ5`cjZ(VmjaT!@wjvx%*;Q*Rp-Qcr|NL8+4hT;Wyjm;&4}y#SujM zUNClp3s~CKXkd~-HIpohO957&rSNd>GX|S55{ixSv^c3lPP|>SYPtPwh(bM9rJLVG zU2R(QP=x3HK5Sk&D)Nzl1gqkRAwZ}QAQ>>;2hX?dAQrCg1Nlg6GE(ngL_8o3BN&ZJ z`kt>~e3XOC!aBy+)nrVQ+K&3UG@5*WP=EJ8@DQHv+b%&uH+DKzs2kW(q!{(%RWYx$ zCk?H!ZGR@ZsmeheBcwFGVBA>EI-}SSOJ#u4u<0&{Jcr#DsUHxIiMK+oT_+F{Rz~2j zS&={QU1AQrkH-C9<>d>_aH)d7!fs7e z>ajW*F{x=0KxntnVXoZT%FYd5NQ!kB#XI&dVZw#avPseg2cAm>}BE7Guk`4-hhhmN6j z%L3&V86S11=oHCAp=V{wvQW~D9NEQRXcz_1!dGU6={~qqFq8Ql0v)yY=bA`el7in0 zk9RU&Njy^p1eNsXw~6S2QglEtp|W8b$FWs}Qkyw6UxFk#&gcb>vpSg8TOR*i>tnA` zx|zKP?Cipp0MK=$vOZrq!V#oION_x((cQuCx~ogdC}qn%Di`oH6~#i(p$29@%hiF` zLnZw0eRy$z*AO%jT>Cc+$|=rM^szF0&sI7sW&z86$)ayk{|40dW}jwzIBDCj4_6m3 zy4X;P!flOxbx_VWk!qO_)s@Zv&{3$3y-R)>pNJ``3l(`JntPKl)*pA znvB;c=S>K?r8$(Ff&S-nB>rhU{fN$!g%2)XL!MK@#TnZ$GY55uqG2!3$#q8 zX_wkyd+iMifzIrmNuBsvRCL3o-k@C2kN1MrC&8+DLp?bCDy?7zPwP7Kye~09EhFiIx{qshUMsh$-sgar=cAX&{Rw?+GjOL zhC#5RFcbyaQv8^G(C*(aQT-jSY7Kn0@gT)3Ug=lWaC3ZlLiO;7I)N0-^G!K|F?*CM0X%cnsW)A#Joi_mLq7<>3bPP5OWm}*0Jo}sb zjp9|Ds6sSDzNah(`R&>;CvW?kJ$R#7yb2rAcN0xCPc@s47nDGeHl;#(AZF7|!w4HZ ziG`&}UNj2?-4Ed%DDmr0{ex1pDxd7wvjIXp5$4wxo)3MGA<{n+GaGFn&}Nyeu>XO&;3cTy036A>rACA`q}s zaAcYgG>)nCA*;`Q-`D{Dzo)D$%Ls^OCltr$9(anw}!!FqNQ{3iNa9E{~gWoe%kuQVKrc&YF227dYsG&WfEJ> zu;7)my3~yv1iehMOy7}M9TSV`A{_;IldV+qfDTcPAg_zDGb4zdmP=7Nd_s34dfL>X z$Tt*cvJB<;y}ew6hKa7qU>LO*g13ALXqPXuY1nkT2hq1;7I2cYmthsKfOILBUS5~8 zzQOYd{Z5AnG-EMAFJwJ<;wZ9Hs7rBYezUEAvRjElT6(1lGN^69L~I3}pmzrtV>uck z^HDD`Ts7@?-A_xV=dHl1!Iw%2X9!sYJSsp+f=$nUyGgBlVuBOzmb! zlcXJiCUc|cLazet5)F23Pf29HMgdt|QACrZBYn~rh=r-y51S7M9$iaP~8iF9& zlQ4)G9e)XG2bCA2zvJ=cR2Erj%XQTo$`(PCGPV73#AeCDRL4rQI#h4Kn%{VcJBdYA z1^%6^x1D7`v2O0)byb=s?_&~_{gS~Yn#QQ*nGHrk5sZ$^6W^MyUy86YSW;4zSzC3D z!sr-I(T0;AxGA&r&IZ}9Of4#!EBR`~$I6xtzHOwUJ&OFIJ4;g&@^N-lVK5k^SkbdD z$j?z48ammBm)m%02>MQbT8ZqYa=n{c-UOA}yRBkn8y24v4>u_eV>hwD6Y!0kKw zVL<+CRWp2IGtF2Srg3&9qY%*?h40&uqmxQ2B{F86fxRF;h3+Nny`;xUn?4pdE&(6F z)12Zs1+M~j5Z9O|-#0{Q`@zV+=i&N&?nHtP(}}?GL;tXaCKP-3g5dek{%zB_`Z7p= zREf!4xHV!aCE}q;(bIG;z5_Y|qq+oi+Ykbvi{h(ZlhmtelYmvT)ylf$d-zU?Q7~B6_`Tp!X&b#A)Y< zPVBc-F)a%lZ5s>k=A5?E)3z-5`l|K17-40~&(2jj&wYOxNa93E+;LTC3gWJt2I2ue>_KnzD^^)3`0TKc z6#l83l_4mX)CZ4^&-1*RAO#$iXh8nxAU~FAaz-o@8@~Lr2e9yx4`>e))h#?~3Mop; zL0eR|@4&^L8d#SxRO-`;v{~~+YFEUi92*>D6#TV2ZQ{jV`eO*ksE-5(sT zCfje$rjIQgg1VY4u2|pnD3U3NVNCruKGz zxh)P=p5gS}6AhM95KA^4#*~^^0-!6rrWg?FLJ<< z^9)!0mnB&i#Y+PGS&)Rm91p`#*OLSEo~L2u_eX&In}85Kn3HzMIDUQ)d%78*t-p;@ zZo^9ATs^s~e+D|;Er*~6J&t+_6^QUWkbmj`*A=5aU63L$KT)(alj}vH$UaaV7x=s3 z6$898!8l^oktHU4>j>5WPHRkS!3Vz!)NJ`v3r0PhW%!K{B|?mee6h)fc(VT<|L5)3 zOLJC06oIzAWj1{cACpb`YJXsl>Q+Wnr4*J-0G_Tq@I-?FaPg?l!>N9A&1@87N_}CS z*8O}y$1o9mv!9=4M_B%2gZ911cw^3+CKbbSfP~)nab`;(swk2AaZ6h~2sfR#r3eJ! z#(m^NK$Z61cj&r4W?>D&$2o!C$esrcm1X7O@BR1WZ}aPJIs)?GaJB)Dk6i8^(dX%I zKAJAJkrpi;IEz3ZAq@w=d0p;NF8G|}Y=b|ott-#tcWAMOU?B=)WQcrXP3bV4CJtOD zK3Mr1d*>g9I#gM}lON+1+-;MYF93y8FHZPXAPU}j%k-<)LL0x9u=`1f1+ z5#2^qPgx%7H#(om3+aDj`<~}x#y)^R?z0>iHSM)6z}K->`C@+OFOI+_aoFNaK6{-R zO_S3OAn+!>`3{oyihTyeJ*sxz76~7_9b9Y)fLf*t^Nl2W?M}wuecV@=zIY_k+JGXC z4Z+~9uhTE3PuvE5jd}5uzKjj(^zcxG)|`jbKtqOl59#<)u`nV$ z%5?wiQ=xaoHjB$aqsv%&w?`k5tJ2-LiMCh_t=P~0Ea~`S1UnTPZA`K^MzZ3vJQ;|r zh6{sTn*Hs?qdq*^nB|vdp)kqMaE+rth2YY}su_M7*b=#El9%d<-;-z)I?(Zte~kk> z{4>_FV{N24QW`6f45P?wOPfDhJh6`$VbC-rk7v>Q3a#i!3L%(V>~0^Lx|>I#{Y=M2 zy?v5oVSLke4A^F&xxZi43wz<$pX;};?JZiq#7Jn4Gk)W-xbu@^Le*`jI&2PH8$82l zw(pmLGpnb7$S$R(yAn|WXz~8qIRnG^4UkFZ3R{;1>8)h#=Cf7@Gr1pe>R%riC0yn! zdFz!lNMYP&i2~p^22fKPNI;_7o8@oMD0y!DR6hp7^iR**2N?gpbfGe5%?~?ciB6=wUsA}h7`-oDN)7HE~=zq zIl>W#jhKDO0q{f&6ew>7avmGjHIZ4ogg~JNXf~|Rs%FKL`fadf90FCq(6V?Zmk+J0 z>qoJYz*>ycfqbv324-Ge7*|}_02x9)^p?W+)_t~uEaB6ciomODXBk6xFfUMGER4tW z(qLJm(bVMeFTA%OE{|l2RtQ3J@!lX1?7R^5jY95tBrnAok5VOj5=&8})$hteI$SLJ zqY!yYh2D0TgiaX8YPe7X@QE3?lY=A%=>NfI;$y{2TBD$ia|VcUu%9b)K*@~ z1WpuC1>^m#zf10GjkUZW;0uB+5rUkXOZ7KIlUEVPRrUpa?sJJla_)^VR(0{uOj|Tw zclM2yJ#`BJ7QSVV+O1gVyyB?6UV^BS#a}8Fw}ZHaJLY9Cbw5eX7#btRFK)SoX>Vrt zhHF2CmHbWqc0QFCbErg=__L;w=0dZ5P>EKhg`(oj(Nw_9NSg>tJaT`My)$A6$r6~k z@8LxzFn&5P3;@ea7#X0uC{5q*%Dgya{AiOv%B~l$ON6T7kQRYfnN^H%5&6Uphl3Z& zhg!0SGc-D)chnA{ILo~!)} zS^qjyO5w#{duaz`rXz!&A16(r)g5G32Z&KOv~N1o+NL2<_vfeC+cq5-r;Os|gs2Fz zS)<^N#6#N{dP%CDR%JQ|?*@UQj`TyMCxIF1hz8_3y$&&h6zt!UIuR3sn@{nt&5)2s z^4(3h-%ZLvNssb^y-B+P5O z*sZogKTm&wjrV5q-*CZ?k0+l-SLTZ^SufxoKiA#S0F#*(ABI1BsEFAGA+-z_8M*KF zH!b-DS+fBFhQORp*jP07%q^GX%eI~)_oN}s@=C|oY}OtkH^Cv5wvM(s)#^Yhg($Rm zKvv;^W+X)ug$3atL}n|;d-2es)QAq5y+1FtK|}uIXh(NV7|KsH>Q3p?yUKr_kMd}r zF~DixNg=e4nN!9-D@9H@;uJ6ViQe@`{a}k+^*3oCX?&5Zb1jzwu>y6WA!)_}!wCRv z+1EDG1w`t9a?F67=Fs>3R`q|uJ8!1=bIA22NL-tct zl`2u@QOZH~T_c)c#zo&y=$pu|&DehD;=Rv;X2HU=8w+h-?64do7uhWF0NSQ1x_@!Z zldHJY7>3;MKf#XOjVCqFsljnn-VR`dtpZN66ay6RTBfukar{lRbU+t!)!bpM-_`g~ zRQ@;C(KzEdra=(|<oXBIzAy*#O)X1Jn5qK)APg9ehM}B=+j*Y!^923# z+#;e9;tZJbeN}D>8)t);Wt@r;qfy$ckT(k^Z}gq~T{IxPwXi83)WV)SoNAXJz060z z8;?N7Gu-S;5Ngxr1C!Q#f(u;%DdCuz1w#DUb~L*dk#AVd@!sOERvw;-2?u7ZpsAFR z8$OAuo987{3~rD`a_I8udl!bBw)#{n*r=DCLe3FdQt{1jDIYGMNzB~ zSd(Ffu5DSJ{N=8K+3+Czym0*b;Lg8lC%8vskd_;&aH8Vu&Ao4z)$n4dI(Jx}l5Exi z%O`r7ENxBhXyLb18b7yXbC9EVAIp)6=hh616-&Z)h^b~K&nxu8a9q)B`~@_B_tCogoYJxyNa%RI2o{lpEet-H6D?x>aTC2)1ly`1 zmK7DAxEHUZVJ7kL`xf+#w)3)l^1~1%DX{Xxoy^@dXHR*wfp4(AE-}3k6<$}yG4L@A zTZm^{lSR+J>sf0)YNhcTW{g4F<&Tl1y(js>vx_F_jtCW*~L`#WV_*uszjJC zO8YZ_xG9|?)xcNhW@G2?2z9-};k5^v#S|Lj-}9c;&Ou>^`yI@V>`>PmMIU*>D(#}E zbbV0(yX|C4gG-1t3GMtNrw3b>@{j$`dKZ^NtNne9>G(b0#P_r*9agMRllBRh=!zZ@ zD9^$~o%=f&>U)ZqG+qM_}oFcX{j~v@ciFmT?3&#n) z37m;N>|crYVU4q6?&1OV$8z zz`QryRkI*eDIqE)_X_`7bZh5bfTDkuhG{e&8W zY)^Y3p8wROAXKa?RGLHWr-$xJLSZBQY{j(RM&%bpf|>q0pL?5~NHGyb6*dWZPtDCK zN`y4?s|1mf1`dKkw!xbmbfkp0y$Cn0w(Om^a00bbp2iahQN_lqBPk{$Wff#Aw=LN{ z?6Ex_b7J&VCJ4=@|KhB@ybaenPejk}J0K~_^#f6U!-q`ccvLL+1Y9N@d6H^YaCr{H zt`A-^x8GIa(IN`mNaat1gkc;tdO_fFh8zYQ>uLNROr|gWIUm(}aXp;Ao-BG@7qV4= zx;(a8F(4F*a`Mr;ThRG-C;*hp&q2)|wjZ(t;??&NXj(JTX%BB4323fh7}}3049U=I zN$YFYTeuj1Yb1@3#!Z1EX9Xi5qZKzQZ4v6`TKu%l4jhVUvHB+R1bA zrSE%%xbjq*t2--+&i@hfhVt<$bO^WO8wSda4ZGF57(;yI%L?FVvzXE>Xg0-6!nS=9 zFV!76`5pM8K8P4fab`W4aa7o3^ZOs1tEa$h^QFp+6{eRZX7I7nN|cx|9L5v~Ur4eU zCby&@7NS)bpAS-O4q&iVFD_IdhULos6IqFt2*NJ%Yn3o-zuxA3a-nkY<{GpZh;%- zeg6ErbKth*>}$8hu!8z)8(+?+BgQ7Xb-vt|I~XS%P~Mkk@=m@O!}({8+WMAZXxh6) z17=tds}6Qw?3h-P-+ILW5oMscN|B{Lr_rC+_e8FUbqa-CY$|ZQC5YJ(a|`H1Yf>*b z=&iE-mBdH5i2d#1rYwAr*^QR(*Ur(jc(sP-lLywF-}oh(M;6C;bR1O$oVjV%Q+-#} zhTRFkVH{?NlWCwC;Ab}*@(q_c1=VA%76nU^<qNbN??Ekj$=aI~48zo`)f$kKAnbP2 z0Qjp#FzHStiuK0{u`v5w(EfIQQ?RNEm>^E>gn^?Q=!n|>TY78Ob>CnDlHG8JLbX6| z8s0zks1iTyeK%E3Z$bcnkCi5MTle(ZUtgFj47JEU*S~eX8S1i~W#{xPWBH4fE;tYN zBgO%}RU6*mSU_;d+OI7Ect1MqJ}{NKz7+e>E&jLmgl{pEyRmoLNEw4r=6;f2 zocs*y7kfXWQ=uaNdK(a#A{1cy6UiW-Uq%HEQ&sd=AdExW<|p!!O_X@nX?a`2gH`4Z z&yJo)GF)tNJE<0N?R;IP6a1^Jc2hJnU6~W2rE75Wf=|F2x6$8uH7SU`;11cFtjf-`gQb-hOdkTWelz>>2VHlM9 zT`v%WK=Frk>#@vhhE9ATxfy89Nw87WQRUXt#XMA16_n_fh3+H+MY<0dhCvqph%`~_ z$vs-m)5+1S7?CBIQFl^qFJU35Z&|qVyk#(TJzK!T0Ivdat(G1L0sH;LBKy9->#XQ6 zCxZ!~yV9erj>9s|ySZ^I;OyTCfN2jnw)@@c9QWdHE%{SZI25N~ zK59%5>7RmWX@=jzP%JV2c=OjJRrlxS$^{4>wrJvSYohx>cqsMQ==qr&Yxmwv0bGfU7h6xn!_b?P(2W!j@`c=HcUzS+ty`j z>VOFp|J3wQ`!etHs!MmGYc%CUZHE42(c{@Y?Z6|(CE0OceX+z)g8A$NEiBH{#_JP(u;*`ovA0UDNKV3KLE$o6-G+qDky=UZbNz7cLP#27^a!+By?KcJQ?-4*;$M6nK_^ z`i+Go;ja?YQC(z1e{-x9S^^Cksx`6R=I3Ly$FDrM0A2+R|ID#ZB*V1r7HZt1zmv^x z4dD$ELsEs$m#7wrg^ABf(DZ$ylpzXj=LCThp65hE<&$99z}=z+O@$jrT8<=$hsZ*v zBrjX>ZIH)%e6^keEp3ayp+Uo>7bB@ymPYlbP58^-YDpBcm<^gW7ChY7tntHQS(cdV z2~PzZ%J^@ND80F~{95Yqd>!m?9n64;^Seid!g_T&e+G}>PhEea>|Y@qKKIb?C$cbA zK*wWZ2=Rm$puuw7|7F&B#B!0N$R2ApxTAiIhjyDZG?KN_ICpc}@yqIj3012$O6xMvT#r! zobD`r5ezf7d0B>TMYdF;w}Cgcr;?hND!N;GG?_H3*Q%K!%N*8SczTewx}D~ezND6(p}0>?^8?{(;3O$KHf4&X=j^V{38S#+RnsX_N; zf2ucX`Z4};h1r_tBSs|^VTp~dl%0=+#a7(d7XFlkd|%o)Fw?8qU#fp0mo=TNH=~e!h06 z{KX+mtxY4@xu~a3Bqh6$a^T#WbsaJf2agAflJR$-IjU9Ib599VX#oW*h83*SM39Z< z7BkYZ5x2Yior_O1+EoXvreoNodv;J@Axhvin~ImsP~Lf<{IxR+U0qgSQN5_n5jT*5 z+K~2I%Ss1%4NpBK)w%q~hI#$>zqeuF-UkwYr8kE>J*x6feegE#SvxwNy%?yfmT{0R zlgb2CM}sX(u~6&q6!{QrdDsxg;3%~P+5|$ioTtC*uob?0FImEnO~nb9MLNCpVbSf) zyf96HPqW10Z&)Xg%fSw`k3be4DUA-teR-ksDfZP}MjGe-ECjZ80O(s;?6}niu*?b{ z#osmV46vvKn7J5vOJ@YU(ej|s6Uc`jzOgqjbuLe6m^pw~c+4@bc+sEzeq?vFN^!`B zF-K+KjwOp}*Q;)e*V!;-IbfgnAjs}+?p?(~c`4zWUfRrD!l2*vJuNzP$n?Q%GebQp zXnHThNCkzOV$==yFY<_Q#44W3ZEpv1xj;lf)E3he-b}C?Oo&l--(L}Uu(>`N_)skS z)b~B~Dt_5eWwGl=n*tCt1mL-31UQRmlf7#R%KhvTSk@ay80w#cFKSREkQQH6S z{(LC)GZt+AQA{J6lG#ihF+>Q;gv>S){MloQf2-dn9nJFWb#c@kn$Kv}xHhKvexfCg zpyRD^D|w z)BTkdJf8oYSX|z}b;$f%_L3D-ABm17PgX<`#1E$VPaANL;FOR%q2+wMaTr!LFoWo`VINbKt7?pa`FKwj3XP6b*8Z+!>w&057R8R zwUS`Ly@q1*q$3ix-MI2OIuAUCURwsW!$AZwBut(ex@4qHa%8#clS=b9{-+*=f+{t{ zatu#R<$*JE<9(vJW5&!I?IS;#$gb2PT(PAju?L%^d9<|wnneV-GcFiM4IdX7@m`=n zz306Jz8`!`BZq=Vk2;Qk1y|}-3Hq}JlG)Ra)p-AgOw`*&&dk?hx**ddAC=Qj& z6qQW|=<{xB$0;Z@R)PL_e!vWL!7azKEnbQr$Fbt>Ql7$!4u&luUQ~xeBIN~c|(B;FyQhPnNn$}%# z#9t6IYTZpDG1Dn#)&n40v9w#Gzw1OIKeD+7v$*i}?3jS!H5h%vyMZ={{u1?y*cm;V z#f!GdlF^#5L|)hNcuCl@9rKT;Z#jQS`_>q}{2^X{e4q`nk%l_Ou4gD_Jz0-{2n~Me zI2|T=3Po3?FkGOHYm31^o1x?W66LD|{*DM6GY*hCCrMT*&P1!Zd;L=@51nW;X-~Li zGA7VopR344yi2x*Gjj2R0)61Y=2INflf;)c!ihpT^UHzXmDizEAnuH%=I!1Bj~qJ3 z`B+b`2xT1g`>V$atvst}<&+DfNgrjQy)G6# zMj~kBgu~PU9nZbJ=D?kwPYSjw7eWi_M&xL7i&gXHRTu3eixvlp_!|nNUyUB5+#S5M zn7LV*a#RR=HvQ*ap;lf|x>TE@&Cpg#a}soXKXWK8f#9g-!NY^bMhf5Ng^|_xm-+AU zFWWvVLc{@KC|ZOY*Sbg6knVK8+r6P(?-3DU80zw(-0P1Ve3QQeq#q80PV(lM=7&Ee zkeih*6x1a{%W-{ow0yjS{A;UP9hJL@HAO&dz7w?IbJX>?O04~}Pm7_+;e13Y$^tQ) zy;atG61!eQ%e^mz9_qm8*Mu~_G+WBM;Z8N z)`SDFz=UC@gve2`<%%u^$qv7Dzbe-C0c;gqRB^P#3gM~yhU`k>Cp6xyS-!Jac=GSZ ziB;<03Oant`oXnkHu6`@2o+B<@<(4jo#FR^dY?*R0oB1iRzoPKgJhW(dwdrPKFJ~) zfBU9GgUXE0W-&7_>Jz0Nm{CrXi84roN5*h0I>bY`(9YuH2cPUXCvjYME+@ z)l$9h4_)vVZhKDWQ}X!kdI&Acq=3V<8*E6@1_FI_j+`YZS#fc-HuxUV(U?aT28Dr% zSI|Jux&0EA{_`bY!8hmd6-edh`U#8=Ck^kKk(oAoytDEXD^8M2!Vt4OB{0j-Z%p*i z(Jao3hIl{;{?$pPAe(cW-&7FYCe5|!UL6}n0+z0y2{FIw|NfF}r}D<;Rco#jc9R-W z@Bn8RyLg!l!ip)*>$-4Ys&-t!^8W9KG*=DUZ{NTQfP3gfVEamCBlEG5!e?%W&>F@r zwzk-D74b3qu9B-1TZHG&u@C6*8B!85fE z;~fy{dlz(+j}fA$F(0@J1t$_z^=PsL6BhZBL%s=zFZ`v6tz0bIFyVS<@(UP+Rx|j| zhn~`QnO~JRjKL-#nr3`HP~2B9zj=8JA#MU=%bylw<#8N(Gt8TeyA|8f#_$C}+Rn%* zhc818bS6r&hj?B439{ADzoMlRwDs%*<}UK6iHjINKyztXgbR^CNrRQ){mhTejFApy z>3r{aPv80$6x^rb0&F!O(s>ycOb4jE1_-FeIdiWdg-$u($pAdZp1{MTQPNM$XXtXwj+B2ue6Kwk$o3({o1JTE>Rx7bYsaLqB3}EiXU$q zPoGI@2aTCx{;Pr3fCZ6YO9vSk0@^Iy@Xu~31i!;rm`>yXk#LVNOFyTp6 zGW&?_d6X50>Jdep#>Ymd{i)4Ym;juwc5J7`$X4Gf&>t0k1cPi-FQ|iMe9h&ksL$s? zU8uG}ObLD9?!3Ws7Ee^gS;Pl{>hSY6W!{SmstHdD46c&5dc4>0o8O`Dz5MM!*rUX} zH+Gb1n5YW$LU?XME&446>Etz`(qAPuG6}b$?A%8?zUV6HFQrCsf)RSqgNudRJ{sk$LX? zH_!O_%OxRgz0dqzWZWbA0wt&>$hI-z#^=8)0Y`ehjOBmGx{d`$b!PoQEXZj|&e7x@ z8Do;k@bs6SlV<+gy<=fxsp<=*k|g(sYL!J|-z_10rz>qxIicp#8u*oDQ@&N}RV3v1 z91)-7HBaUSl37cK2R)&RMbcIn$|g7X8sz%Fe#YmpW%wXLnLVZ&xBFxT?cvz;>iA+q zT!6DLV@qeyCi+dro#`BI0~d45-(SAAsD5iGKN!*e)~c5j(~x~Mw3hh*lq{AIz00uu zfCq?|wSB~CrQ$IfNhxw&$=>Mw8Zj?&*!fL_PE2r!k~{WuD73^yEf{ywW3nM1T@K`?I=;EBzhJ#vWqtU+V z_flX4D1Nu7k2zSK%DPA-|IYe+H%KJ~B~T;}9MU1hIzfTb$Xcz{JYGf2WP6RR)io?r zK^KY^l4?O2heQ8Xhm}=*rM4B)0FQeDnP@AGQsUrzH2}##kev#5`6x1*SgQo4E3B$I zL(>B2Jo@oZTuWGA9I^htC(Lp9S!FKwJ+h*O@LnI*8i2*TTaYGE{Oqyg6eWtx!W71{ zKkEfY_k{{6<$|U`{**`iYm#I6eMN{J)|TO2O@;+SDN1e$mGLrC&z_{Uy)3LQiT5>Iiy#b5Xw_v7zI<&A3qcUB zS~hHzBM}a2KD(KPM2E!W+CJ8of83`5-|LJ2Sh(u3J-1OcEodhs!&;dDKqey(Za=2{ zysdqDrwovh`IxZp$U9Wf+X{jkAltjH*uQZ~2Zx)feWq-*Z=JXcX0I*H>o>VD{iIE6 zM|W%XIR*yVQ-({(S(@}gOy(#mFhxL}uBL3nJ#`)3yXj$+`xYwWvG0^c@BrvCG-K}o z6Gn2cf{CX)$dO8>|3Emnl^^wqHLv9J@TQmx+#bwMOSUW)OIOdo^Yrik*9X2nvG?1v zMBz^MMPftY?le7c_eQwnHv|D?|6!WdT@@%L6YqL34`LY@sb-Myz5XrN zE&MA?7G=Xp?{;aO9nc4d)WXp4p$)?rG>hsGYICRS?Xv;BUQKRA^ys%(yLUz>$J#%f z1=Yj%bw-QM{T;xcO6{!GK+IGEkKpagG*HQG;x)ao&FoOQgE}x2d&1ZF*5Cwx*UO%4IK>t;Qt{1cq3nY{{TI}6G6GNoJJu4*&%;$Z z7x5~dgh|XyQ1G?&=(TPkT5^l<=GZhlA!I)e+uP0E0Qt$-T{4&S8wnnS(2$zs)Mvgg z?&r?FgV>>d6`+rt(*VpJi1%iI(YPx1e5hG+G}$~D1R(6_rhUE++p&b0&H!Y(iLsTD zv~!WLFTuY{na^T-t&~j3>M=aP7jTew6hC1u>^l9?za1|TV#flGd6U=rC&E0)<%I3; zdWz>+7Y4Vgd~~NF1sQ@xSmZwlpa{&mbL^NueuYps34k|KgPm<7UX7OuvTp5UEZDX~ ze+USjSb@r4(fcp568Ho8O5oy^#6_B0UUpZdJgi5MZLa}j@l^#hOQH6WrY1nwCR55E z(*wp+ci;Z;UPk9vVwG zSxg1xT`I$3JlI=jVSz_$RVyg^IPaVZzKF&)<{#pO^Ys6D_Nk>|2N#fUj_Ac%g+?Ok z&rtz%R*JO)Nf!q~?c(t`xM&7|UD)L)US5M0QtQd`HWr0Ik2mjye|_Ab1Z@mp;-}0R zWzqRTMBZdzgc)O#FCNOy7V?iHY`^S{cN$68NKt_*KJg|FdlMN`4lGd%qvb0c&o)$0*#> zbRh@mpyQRc$pU(Kfm`%X|I)s5%zX^|lJ5QSNXKJroOJ~_)Vjg=ZhP8$``90Y zTZs6G9x*94WJ}dcHpPPfQRL6S2cl39+@) zi$ztr&9Aqf*pp!E8wkMt&jl?jG_eF2kx<@E7ges#Za9A2;`^j&9M zvcxRnGr>5D!1j-s>B+d-4maFZ;C-9as$~%i-VeEwQAY#q=0fJWTl752meu9{UvDqD z%Il%9AsCQyo5jT@SIREUgpHUZf?b5(h@{1fpn>`MC1cc1J!~uUXC~VeZZ9+Zz?)H7 z2lm)lnn&?T}X60&|dw!5sl72-BSKmPunv+C_N;;;GClWd4QhfWCr znj%#~GM#aw^RbTMsJpUye2%cDc_1(g92mHFV~O))rTJmc$n4%zl035nY(Nbk|Ivud z+3auDzb$YNqdLo9-yC?K3(y2YPsm%wzJb-Qh#AKFwFN^mvY%nGYGUyq;Odh{+?cu4 z(3RaE+ z{fon(q+m*>qSEwBgMZhV2qHq)tY8pGQ0NUD$m`FshL+*d;@=-OpD!AtMEBr`bwoH? zC@RF%*f3S3N}A$hCD-!Rh#sUz)UOK6fYLKs0? zzWiYMEmw=qK=>X;cnbvf!slNM#B(utn#a~%mhlX$Zeu23-xCekSZtE$k$_d0Bpy4M z8xi|>@R3GTU$;|MZwu&B68wIrN}da^`YMAxTXuGS&oo28Gwo%J*Y#RgcjE2?TNUMv zbQsy#X}GMYNek^%*fYE~<=X*{MMh`)-IX59aK`@9Q7blWC>=oC`4e)4tz-W19T&rR zMX^v9ZRqZ7JmKrmBvEu54X-^IsSR2#RVbJBJF*gunJJkmN+`zWy2T9Ud43;Lc{05G~9+^lWgbNBnH%ezZ}S?%O?nvXPU zL4K*TPtcR}$E1yu`g20ckISake?Rf324yDoYLQ^~NYiQ-$>ex5dh`s5-$pS%fT#9r z4=D5UT{f_ayHcE-1kkPYQ{(!$eetoRv|Fc7|5}me zyjq-U7b-o>{n3;yeY+Wxcx|X?SZtI#?!QO(3FQ{R};%95}IT%FWX=2LdSay`&_fu$Gd1yHFP4nASrx@hbyghkrDPsX+1z1f<$^h zh-HZ@#_w9!D|wQUljoSBPC%rX z;3~$5qtz&bVWpxFo&e`?j`JwQNd8gv% zPIac8U)+@2r^`5@6CH@0*lSeoTU1{_n7SImfCn9eXB=z>OUQp7S6DK5FgYzoX5PJ<8~SXwi1-wE-*l zbj8C0{o#R^*c>A8yyN@K9$QQm&6p!SQ+CkBmL3JskI7GlBN%4V&%{!Wc>#(fatm;{ zW>zu;v-iF4lP}5WgjG^>5NkzGcy=dU-!MV#_V|C!If z);fa!m*W;J*!jZmJ+G~Es#Cc|AUx7VB2@zPk_pt<+RhD7^+?u~M-Lj@NM&!KG2E^j?%+LPC zF=o19aXV=yI&k&t888rC11&^91^x=WBJM@agCl#7KzmbZR#LfiuJ|MEbkuf0@gvD% znw(%qA-sXVVrbUZCP(D=M4@z3gX|jz?D?W{77p}7f!V5spbR5+8GTHHWvMX5WhgY{ z^ejd_KVTFg(a4#bok1|ZJv5-loJ)wv^^;3h%Qx9%?WVs*r58EN8$Q9H1X#oFokENk zkS6MLpZAO)Qu<>7Fd^3f%^)b|y}ANvwT{HEM?dVNzu>?F@iw^(N4Z)Ta|zfeF(^AO zE)XM7KXbsq+n2l_+=q1drDV@^9T~5&8g?OH@)$C{s9>iPRS%p5;veLo5KO&_zddoJ zUTPnJxcf;aNS%(v=ZiT;*J)=bfMkWA!MxTNpC3xF^Tw)}jkQj>dj0ZP>pE6hsGD_~ zQ^X@kZcVuo$V;o#C+r6JqTE9u3~oVhZhMXA z4LI2NAx(Sx-atc#7Ad% zZ2C{D7bU@uW2L*wB(f)7hPD-Ve(2@2J0V_8SmO)t%0|iuwQqncKW57M)-;2qRWIUk z-)#JfQbGv+DkZ+<5g?`g#3?IYi4dKU4d~YsXUL*IXy?%y`6J9t;-|CSj%vgR8QcRG zNC5TV@x>dz*i;3XqrlQ>D(KPICs;^rUo@}y=3?cd0KUTDfMN2^K@mV!d@Jjj(z`$F z0`;D9S$`B+@23GWiFpMvBg}htcZk+RQhWN z8%;*XJH#FhLl~s1prI8kA8ok;Z0RM z5ia%4uGeef2g=1=DylI$>@Wb0y|)i#)!lgCHrCWl;;@ zeHswVn;lN)st9LCkN%6aL@4F!2JuT7L=4DySjBC&xO&l#U_;i z_VXRenG84NZ5}CWW1z}_!oZq@h}+R^{OPUUl;3i{74}-4K@{Bu1@gOs+bfEX>K%t3 z+p-@3i>NAx!hPjEj03ZM!^*aoGZKUfi%lLWuz?dLp1(e4?MF0(hoUg~VTih;6b(Ij z2Yv)1F^M!)eRdv{+=eDQ_HYYtF7j#AtEOVv;7G#Aszz`8u`J1DsoknXkJnVnOd=I= zzgGtEPUk=CUAYufF#)ozw}xw|jvNOQE(l#x=$k^7M_Rb0*dMLFN3{P&Ms_XICGnok)0lJM5W}c-G#8T(Joj-EJ0QH>NEBgd7j8t zl;g$pJuRRX;#qXKTr(N52%7KJX|mVvqpiQN!%#z2yQBPyu~X39>sf)gNNc z50zR@ZkD+;EK!c_5j3ZHm^}E-eLQP+%X9fFk7N%l7~cO?SE)-rs2`;ynrQoIxKF`< zfD@lG|HWpvT6@-r`^tzX|*wvC1NCPq|W z#ek{+2Sqc-t}*ywcg!(&lvN!x%_zVhn5_(04r3N zoTIGfmuUMHIiHo)z?|qZG^;$Ju2VX|u`#Rp_h{j?VX1zu-q6_+kd%yQe{hI%ZcWMR z{><}h450No${=Os&Ri`&x5@&MKaRgg7K7R4?K-~=T32U=I9BfpMo5)tZ;9ywC znt6ddW3PV+c;2iL8d3{d4F-!mv`puRv7M{wDtSQlXv-NKgh?)#s3+@W0g3x{#i4@-e~O|Lfv@`Fctq56u_E(r@CAVf7Jr; zHQqF4p(nI_>aZ>RS4&4Jlk4;9f6*weVdkM0dutD5Pxd$NRsd>rKbX>iOH5Uw~N z?Cj^PK#(Ia-Ah4kYiOS4cz;${lpNKSMt9UI0hzLIc`ujEVt#J_=53t%Icf|aC^KCj zO{ln~)#ThIT)oWez`af~1!cFccPlVNd$r1FFs=7+A39Nf#adY&y%K$v6@kt%?6Ck- z+l*iYZ`ZR{N7)C(uPlY}`wlinvK*_Sn(|^7>nL@rTA|p|31A?BKXP!A80a@PbeUK7 zU5EbHe6tOI;jTD&%6-x~s^iw% z?JWUb;yV}T$O-gOuBqETzPH_KSiybuUi6C+;8lu1*Rz_kz3?cj!uMhwMuvMg)Je!k%K;;)2 zHh2Je;oO2UkpiWp@0q{O0_iRdp`PeWk-sxITXXbs`G4q4*F?qy9hg@Mu6uV@^1f%% zX=?{5gai};>%vK6`a+#+fAOhwx7&{BDz~nP^Wx0Pqxkw)%w!fv=-(xk!PlaJOk||R z=*J+rHgwDHQLCa)-hLk8+JoChW5hZlL{?ocAs7Bu=Z053q$zg5xj z+O&UP)TkL8eAgKpL;KXkCh&dZk4Nnm-U{NO6K<4)<%11vXWld_jNd)*wd6NqNw}2{ z(HGsS;$~AY8dT&8ypo93)S34;M?KGdza3*0JkEJLUQ?4#ro%qsHj@sV90dDYRfs%P zd8zV{!%6z>vwnf1FA!HODW_4(7~(6Zxq+h9>KRP`tB}T*8l01oQ*mVUt$b@>Mgh0m z`*t8S2829$-`ojz!P$Z1>#>GRgPQ?IyDh+zJz zk1T_~R!ET%P-btV-%TeE;nfSvfaSy+2CN3nV>JV>T+Zm0{wy-J#wCx&?fEkB$*YbU z-`xA{2r7OuXy%Yk@ki~>sB6Pcw9*niDhwW&60XxN+E&LP!>!lpIKRR0-UoP5pV75$ z7*o49oiJSS2~^T zy@;gd>ByT*SgJ;`XHRW>3|kyc@xC8G4x~$>7NojAnmFOtye~%ZK?hWcno>WEwKA05 zq(4P-hm}bZWO#C5>T#XJu?EP{)+02qJmuH1s>zEW_(?2ULIus+wh7M{*}Yy1t_v6d z#$MkoBq@@-w-yTilMP1m`dLeO@l<9mHp#<?O`UQ&HX7C{!^2IQ;uD zkLw4FtL$@xZ4!ZTp{qClNOY-gGxazB_*r$#gZRuI+S@w$B*rvQT+i+pu9p;T9haK~ z1}}~sdfcXvpz6F{l_+z)u^OovSLa7t%uEFE1)XksJw2&S2w|;B&~%I@)Ske@zaoE@ z;v12EdTa~UrEgIl);#IVENBFfZI`$x$Im&A7&#*x{36QzKF@nNPu8wV z@a}XJNPg~OT4K6a|6Z0h+D1gZ%%(=h^R$(w0d9RFIevrwh1rx9Fb@UKBrN)i zMR=Qfw4fX~TVp6Ekwp)lpbA1dyK2U8#WW>&&|?M=*OTuC@S)=3^eGS($I>mXFTz`o zzoF)?AHepEE4ZK{u!DbLoK#z@MVRxslB(<46oX4WIEl!^y_U`(`*7!Qm8{ydHuJHC zPPcmTFql%tW9E-OjXmx55;&D_F%xK#6_SD#L*3feT%;6I3ET$X--A|=kIsVLKe~#P zDNpJE3C)3+F<72J0FZw2(9uMFOxYFbW z4a51v?J{`REIGX2?`@n3YLKjp3bpd>G?er&zp63v>ztDwL{(=`-(9^I9}1+UM{UgU z^Da`@+KGD#k2F%*(oiS89zYk$h?x)RfDPp(BDifr^}wCEFD zdRuv$EBDcaq*b$Jn?fs+c(U}-{=|tyF7}kcW_}4%`@v9#V_CiYl4Ds{++%Lt{}iGl ziFu*g=WEqq>HvesNwtw4=QxU4{_fbXn#ttj##C-rHbd$Xyi?zX#$3PuQ z|9m({mc(oTq8n{#n&2A%36V%QYDx3?{fdD zukHCt=Sx13c^iR&T%$2^l`F^(Ll_+4*yAUCpOW$6{ZwyW102^y=IsJWI6+RbwrCId5oZzLa>eY(D&fDuie0~ zeNLr(El_NZBGt<;Gt9o+v_neo zgZbdLB08|GXutsJb+Oh25K|xFC;jZ>LN=O3NYXNE-&E&o&6OjW(W7)3kUgj>#V_Rb z+KhBT+hncggLG|#Za1dz05-XBJ0ov`LgZNH+e6)$dj`VX-|dGm03i&kK_K}%cP%57 z7o<_rgnGlEp-8VS@DJjxd-J?m110hj!lVAlEJi7rN2){kUoFLdt#N$vzv{;=iX8Rw zb5i54v!DUw^Y22W1MPnHz`1wl@$II7p!6aaEE_IRA;Po1$^a{6;=4I#G|30nGRQwY z5E^B_VSED`gt#F^%6B40aBwKFhRxY9d20h37r#3ad?0#*G z7Vr9~Xt@+aVYgZwQ$Qv9An@yRI8UgAv=pB`cLq1biV(JglR0#;yU$IcLo4=8!MlQR z@25nZNM*PVSS=MeWOR*_59;oz(z4mh7#&9E9U&P#xcWwg3stQTbYKSx6?w3X6aPL@ zHZ{x-Z%xQeu6&2QAMQ3&1Npr!rHqOSCKELWJ#i6$C-EX`pLORIi?C&#gQ;;=(WRW% zd-O=Ogsr`%lV?IvYgY8*E~*vkgaeKP1;LR^c;Ne>tg6q8g-uP2D_=%EonDAKvK?)5 z0dG4_$h=`bP^z{Ufbt}AF>3=|;7Y$L3W_ffuO7D^x+B5P%DPc-PVP5VHE^*X9axbi zs1UT?F#_b+eYNAtSFD)>iFtl*S3z3tI-Fex<&Vs3kFM?#=|PWxJ@m{e%(61VAAKeP z6r4nlf7K+PE(^9Tqv05QyCK(3V6o&4CS|XM{|UN7c%8$rAy>=>N2? zwop{0cDRk4hpsEVj{Ehi)`dmXm1}r2ei`BNYL{&WyU6z+mf>x`?r|0lAONhLr7J;A z*Lo|rra|of=JqQA7jR@pVP>vw$%^ETp=9*$;~hOn9*MtIBsjOq-!jJVAygC^d>6PlhjD=U!h5UQ2nU%F4f} z+rY{9^qB5q0hmB2rj7W37$;V?c>^{}mkhSZMzAVnlh&Ots|69U|A4!E{;G>7LURm3 z@pI?lajyGr$kyO(s>`W<&?T=B-u0h*4>j&IFnYbW@lh57bol?QN&26jn3II~+59=m zff4{)f_^@5ub2_di{vL$I;ey|pXJIlZNw^Ow#6INt=6%3!B|+wCai>3lya5*O8(kY zrt1OmP32kkhfX8MH4^gkl0O&d8_4$E1@m5FhL-Z1V-qqvlBSG;w%{&X07y`J0hP4U z;P(dy>OlY#dhG#1#L51Uu0Pkx)r+9KzuVizhiS9kOW3HKv$lC21L(y}sem09WaXyf;7ialc zWdw>e2br^)3RzxC^>b@~o#nmO!%!L67InkJU-3R2KYIu9{bRW&YG&ukWx#CJA~Me} zR4h9ab!^w_Pmq;s0p0N?Ug64v$RY!R_oV?c_URmRw~w0yZB~dwFXnQiZ++=35kO$&?Fl%YxD|gm7lG zG|uut_4WZTVEtgKVIQAfK33VB#$)`ZE9xOOD5L_&AmC;lq%X&7_Py^Z=Y0~0%aH^k zwIS^6hGrNV_|@DEdmj*UXNyqQNeB*5?{k1ZXE@!C(JY9#zd(UL`>&~qi&t};T5yPt z%K66y$DIdzu50hUYKdcbMAXZJ!Dm8yE#UD|$H0PZfDhCs#$z#Su<>xyYw4;OJ0QbR z?@4c-Qz4WIiI!_b!|Z?d8;mav`{}XtPIQd)+hXGr0INj1jmoDyi6Eou;V2}nOmeb> z>)@pw1XcWJKM%87@5iU?buZpt)uaJ|WinJJw)3)3&>8+gj=cG6Z%)E;zPwLgi)QhSyNrIFH{r)n$hixzWQZ6U5>aP#D)0N2W z?R{`6`JGQbpDm_;L-GBo!>S35RTQn19=JsQf@#!%AqF07{-{oird4reXkSnMXW!n- z!Z3?isQcBuD25_2c>$>`+zS@nd21VIJlXnh%3go%{h56A<*tCTIwjd!125nNYZADC zrkl}=pZFs9_h!F(!18a%Y#8JQ2B-6XG!m?yJuyDPVm0N@-sl_lIkX^l8;G;TRu=)h zgC#?5uraBIq_G9S^H8RvO5G?S;Lg#u&r=2@_>;r{40&Uh;5K(-WlnJqTG~`i$kOm( zHw!JZ=)jYGo$t|I>8lEZ3t`cmW@bJFP+LkAK4re2@W7f-kzJCCp&y7 zY48Bg@?zJ9Srfz#MId;dfLBCR{m>29LiX7wpIV%H(J%`Okjsv29 z`*LGwDhMS}*Vwf2%=x-IZk7puEz;uc+oo7{Ri5oBY3F8ZXH4Z+l8^q+d9X<4P69>I z^m(sj0#(X-A_xL6$ox`mkUZOClK<%|yL?@(SDA9pw*jvYz`yOxt$?KIvbbK|1)x8n zFEM(wHM0}~``^97pIT;%4h~EnokOvj^j?Ia>gVKpZ;@`^rHaS4E>786Ndq=|UMP@V z$po0fb6yOOPoo~L+er}m>G^?~{1*NQQh7>1JimnfVG^5?ruOFwEKqS(GM6X@Oe0l)>QQQ>%}@hmO%&uO3afb0j2MYm<;M%O|F*vzwg$jN#r5JDY{zp)DV zreg3IFcXpEyr`^Y?JM2C6|KWQb(a#~834l!Y^#g;>ES&Mnn8QI#z0W&FglhSdSro* zJP!WYJNlhL%cA3p*@nyOq6%P@t(;3J!EUB)rFDwtaB9y%wG5Wo+!(00546s_tyD5)NLy!FOgd&#n}BFQo&YK}2D34l!3c-fyf z)j_L~hvLDQg5`Ns=6SC;C<;PP0?q=sl7T&%QS_O`3qdIr-7Bl4Pq51K1C-^Y!fx;9 z)O&x4veB=lpX*doT_;Iw&!%~vd+A1RiK+$17vW+E)%l-u44Nq&B{B-x1g^sY`fw*d z-d@UoUeKtR7GrdqQ@>&CcE2IygKVmHTZU5Nru>w6nh)_nIgGy1A~OfH5`L}kPEln% zxJCjR!9m#xv6|6wpsZO|YuuHKp~FfesI-&bU_JCBjYn9>@@X|q{`&K5p;mzc;gZq> zys~9mPt~fNG>t|*bl)||KX{353$ecq-F0k_#yCZJrefq>jM#%un(P97iX{_y$<>Fo1;)P8A zVuCvn!Da!;Ra!PE7Xt=%$JihJU`trJ-U+vu-r``ax!-z|bQqA@Af@|{PJDdygW*7; zjVipGSM|0(ojN}rE%rWEW;Z^=&QIcVc{{&D@y2pKgUsy7=J;Ba0PW4CsO~^lm!xDo zb8pt`i%vlF@45u{`L*uP3y*t}1#wQ1mAv6{m1>v2LCUZP{O!_0ASNNT7!^3NCq`xG z&z+3mj9wW^-aUL$R2~?^P11X&GK#^EQ2M|pe5PSDM*$kZMR3vq7K(Uny?A#)PBo0W zDM=CR?>7Db5gg6?ByBii{+)=#+%34jj0|x?KO0;*$A;DLJp&zp|q<`-9 zQEGWO0qOR74LgDc5VgAy^NY=KfCba74jESzD5wq(ruGgDbAW?%#Ia%qE&0f67-qo! zWz-;E%DSul{4*0pv-H(E3Z{nA@@@8y2g1Oq=;d!`0Ia+0Op&4+v`8rShP8_k?`J6K zDxlTS%m1SLl=ev(KZJF~f4#ArH8ltbHe^QCsxl4-xK|PqI8yx9B2Bu0A8}2t54?d^a{z;- zoaYn&?S`_~xuEBrIBuP=3)Jy#l1ARV`s>lsc1CrN_dwFpqca7bzT zXeZEoN!Imp**%yf{y+OiRHy&##|5Gv*kYO)wOOlxBQTf|nQEXT>u$pG!Mfw?`#sZw zQ~7DY@%)Q~dFIa{i4WnBrKtW z_ID}HPY%?@BYk4`(aX4nIn=f}v;YCGGXbQh-t!lW$&YYfo~m*1w_3zB8euvh&>c}! z7(%@sy;8CizqnuOp)h>PvmkqGOTau@XTv5@!YWh34+Qv~5wLt$dLk{9G6k8ob{j(K zQ4hB*wB8k>{Y`5l1Sp%51(;x~mrV{M=}DYg24zd^rVY#nm%Pvc5mW#@S%trQXa!MMT*vD)LU zV03qT^UZ8M7O>$CqHA)U>83FOewF_%MFQ&A{pJFoRi*(v(ul62dAHL?dgT7flkfM0 z6h5Slz_uTnsIPQt@TgJ853c{wCNhCc#xC*@4ARpzvuk*$0p0Z&n)!f8me6KL+?!}< zVF3sNEf;)AEHo);Ui=J9I4;7_#n}FLl*^UWYiej|J+`b5;D5APhxp}pc4Bu8=$kaU zOWe8s5ef@E{*K+P-t>cMxMOVi^xIcIF0`;?VXpzD?o12L6A2XqBhb=^bi-ZTZi6L!~Yc$Ybm?SpkAR3BMiPE4R3=w!YyOSl?V{<`+d#;Eepck68R@ zi~=L~t(6c-fZ*Y#vW8KNUhl#0`aZ^5v-4QmtzV1{B1%PYaQUrv5Hb zJt<)#+e9oBI?!u5FT0aI+9mnPmPBicQa!{0Hlq_lb+O-NEkVPR_Ae53eaJokHx^s! zs!^CRtq{4`=B$Y=c*i9x&wGvBUfQkABP1&o&NA%);~Zk=L8L4V9Z zpqaYG(9?}2vi7xnyat~NLg+Ik7iV8tCg^Iq`TSL1s7mvQ8MPjsX72XgBsqxAbO*~G zfFG<$VN_4pvA<6Ui2vt1*8iMWW;+RP6bzC-zH!D}fZ|y}0i^@n@oMiIRn#Yj@)sz? z`mY7_>7e=V>|{QrwSTcQZ@@p_4*>X+-+}R#?mO^C8vYx7y+%38}>=EeY}3hWOX%{XPXR#_mxWxrNHF=(dA5n=^H~u09$1R zMAoO+Z&X%u$@S`uBqbvBcdq*d=mmiO^WD9sf}+)t@MXtPvfwCYwbpOUr4no@>aMom z9G4=GQT+_}=`Fw*pypQW-{`vTC0hYXEEp_Bx*5|%>Yn8_e2heJYX%5bO0yIa%WKrm zA2tKv((%kUx#Vxj2Wba_V05Y%TZo1>qffToFO7nt9fSP=|*gG~89o=4Ur@^b8kB*qB5^1)=_Y zNS^X*BV=2t_y4e+W%qN$8@qvCTUTVeDYv+_XaMR^3Ag*#K_W3{OLs*H!~mD8S|*Ac zlMxJ`gM6a?osqQiBtZ5Vm8*%(UM(fYSz zmL!pNW8Yt^pJ!7I_OzbWcD&^g8hO4-pirLBIfZLoo<}%7_R(5g`fBN!Q(&5L*=q#U zAd&$2rKu>U+gsGccnGJz*|}qO@7%Bo5Go@8vDcIQ;YWw` z500J0t8Ih>WWT5J{ehy{v`zVV*mPA{r8ezpTw};^4$szeZQBaFIs~@Kli-5d8Zbc zx;%yrkV_hAfmUr0EAL`6SF1*$wgWTQvZz|xH&}t*T?DcywJ@o+<=s_f)<`#BbVH}) z9B5U)k>VjU#6fomEmnv2d%zc%E(ik9Wk7_3i(yKvK_4!YUWGf}<76-5oEUZcyU(fg zPa6fhS+u2ny%`SK>d$aneur-f3lMdNZ-lu~iS?hJ9pz zFTN;|Zu^kz@(wBMgwn+&zA3mBW^&<$RIoXU&MgT{^6;Y&M8}9CJui` z8!CJci2y*bpT)d~=^_Ee|1>xl=IMQkDslv%C$L9J%4fB9!1II((liZL%@|9Jit+Zl zmIG;$d2R7g>%1b~*1A&a<{2+FPjCwi=`(0JZb zf>lz^?~9uwZng-_``_bT zanqKU~ z%<$Joidcz|`I?qrPoeRZ#&_X*oTpB2>>>ZdGX46&kDj(Lim>ti_KG*UEQ+%=rTkGd zeq!vU@gvn~)vLtSM<3OBgYa*3QgOJt9YW!X@^-iC^r2!}PS8?d5;al+ws|;U$)}_g zXn6eTMfH+iU-5-8-|^QMdr8w2yYt-C4ck*37uS)*sLEe2J7c4OzMrQlyx~u{_(I_8 zGAMP@KQ*4 zT^ztl65n0|1nkvH16!tMRq63K4X=9f)3nakt?ft4zMJ%?IT6P~yFmg?AE8N+FD7Ai z$EXT^?yBg4M)F04w+mV|1WTMQvER2{cMoE;-RUvYWF((kx`MKFFS4AzI2_=p144_EzffqSU_MEt;|GV7@67ctHBYFTu~5T z&wcbf81V$(@dMI_*H1tH_D87Q|Je8meLh0F<9Ja__mcTtV(-zOC~+7LnctP(6{o7AU-$M$=wlHXf-IFw$p zPZye>WdU0*3ka1Si&xj%h&TfPJ&ZMrr1O@m)jQm9Znn$6B4DWErf58Z&J#u|gL^5c zD9gu{nm$jl@+Y%-Y8^BPJ?gS3-J$lV0dKi8+c$qsxk|eQhCews%vPk?uBqiAz8w$LO< zYQ_%t)cefTnTiRCi2iKXKoziUbEWVM*z3)0A)@AiUqe8^?&GOXj^PZ@+OcRJKhZF`%EG9pBoQ6%IO&55ewDd}rW14J+9*U7zIDX2=HpI-d`GB@+Gqx&cb zkDo~ATo*oPi*Y&uP|va*oWPx|9dH3_+*Pq)9`)})BfALA+j64QfRwQRr}rbrHN1R? zFW%Bk0H6i}PF64;6W^$Z%Ngf+-=MDR`ygxz@rH@jB?#iWGizU0U~^rFRASB8pCMZV z5>NlECEu2skoWl+VGJ8uS{(8seMU&9o}nXFe~#p4FHi&_X9#L`cuQ&8sg3Ry7~zvA zhWybxM|eS319^X5RboQB`J<^b-(;XwW)B_HKHK206?;Z$eX-&$8?(c#5!L$FYb4>l zqnTdpX_1e{&Xf^Os2g3Ax#HJ*k>Q|^WfVADuVRs54^6ewd)a%F=AB8h>%9xLcfR>w zfz4f*`CR0X0C+hHb4{G+xGwa1?G4f`111cA^^JWC-Tk69)+bzHg-X(EX0q=SZWRWE zD;^3`Ubd5y_B#1THYRj3Rq=;lVsH7zGw78{EKI-qJVR57FX;6ht9d2~;zp1xLnzx% zn6eB=XgI+!#X+(+l#wRlJj-{V$Ucrk2N01NFe*us`k9P)-H;@he_M`RM@({00vYC0 z3>^(p(MnnJP(1es0h?oEg+nPyH;7-qWGl(CUx3{8Qzl+~!v4cQZihHAFQ1)I#IrS1 z321FM88E#cg;mztzfDt0(0RGT@`mdy(*?emDl9X-hyxNOG$n7E`X$i3y-z%Ze~_MM zpZkW7p5y!OBu>rP3hm1**QA2LE3__t*7yyHU?!RJjCf-yF6!vigy-XxD`Ey>+ee>8 z#hLpd>vwRifi65FP8+l5lT0ie^IyIFnDR-358Vd}YUWSzTE+-nw~XeE5$N&;g%HQ= zBP_WMpvr9GgdLc z^^a~oB-YIsHOF0XUd#=9cciJ2>64qX_>^({`z0F@JX>VJT%ux>_3OQ_M?PbL1Lp}S zgyoZejk9C~9eX`B_h*PnssP+?GQ0M0c!aZ!euv(ZoVLY45z?AKGs+LVbCR2l@lTct z?ZZBba0icbSsaLNXEGHoTGGXkkyD-uOssn?DKUTbQe=6t_uYv9ohNjW$)ezH^;+)Y zVrf$g_Gh?hqHat>)&kr`&?;`tNAv)hJc5^M1S?CUHf8j8E<4eCdkP1=@7S*o08oQD z(jqYWB8z-mz$~Ds^9yXv@<5a1Y%RrS}xRM#V_2*&i6XN3$b?p)O&MJ3!ko$~< z26w8QMp{=2v5a72)qk(YlMnxt1Wx|b2l}9E5(R0X51zc0%s4)-FiE0lyaGTGk;&JU zzna%wAAJinx)?{C&YM}FNq;RMzz+ffFF;cc@@*PN@^fNP2pe}k513I*CI64EhV{c= zUK1%~^fyD7`wI*h*8Oy5`Qlst?K$uKRs{{Mgz@8FK}_C~=GFFOKe~*GZ#E4R|M~M{ z|5BCuC60e*6V+b(fLKM1lwap)lAfZBfE`$$>_uoMj;Lx#mxiuWhObCM@?qJk8d^n( z=z#AR92tAO%JSpnY+Lw7*k|}tH~ziYQY+)~i6{6`7GEnXtd!>jiURKRIs6 zF7;8WthMIuHFZ_*NfiYr_$#*zg6x4gf+i{0&2_??S_?)o-(Z{o-vwU3*N(7>F(q?S zV28KnFz-3d2wAwP@ZkUPQvHbuj+57p%*=_S9|{eKBLx9j0)Pkv{U^W9nepUGq}ziX zRlkH41NTEU;}9Ec6yd};Jy*G}`QodBH=QAr=jR&-9?TL=!kCodNn``>pZ#@(MKXl^h$oa- z=4#G0E-fiL@B=9SHu3(^7_24vVm<;#pA?(K0%4+dDS2W+yPh&JSs4;9Fd}_O_PG^7 z%~Psw1y=v*DgVE82IAG2Otkgmw|$+gx#cbdb%WW#8Ol_zpKcEoB1MXf%oQh!y5jQh z9(WCQm{>yn0Zwj#W=ooG>wy_h^EkC_T_nMwU%vtZZI5etlL<5If#U+?9)zc*BM^@F zpflYW4%Z(VzG+WE(VRnzcxj@mG0atirm7zO6wnX^IOrQ4eOfg^{I_qhCBeA{7tCn0 zozhXgNL7~@Lp&o}b$H8e(lE&=M3_%iwZ;n7+~zlHO^f+^W11iQ}j&2yzT8!iIBsUY8AHER=DIw=C?j?|9128uE zn(VLFi?#mBvoBUvI3+fF0EV^Edm>(j6O(+?ylDdN7UzlpZKUURek~r6uiHIXq!$pZ z)9H5egP#yW+ynYmq5i@(6C9rr=+u#ZBWPkOcAWC-_d^Fms=)5_747Z~PD19ORj~$D zu;%wf&Rvcn+ovU0&4FbQV+hlT$9MP0s?0-0*RZmL+_T!j3%^*O7bG5DAd?h>AryNn zXl?PFyB18)Y?eNOwbcBYuPV|;+vfnX$dQf@%C$H%T|&I09Pm#b;{NpN{l^9`y_3~X zx%lF6cI?CasP+i>?OnubayLHx>imuj9uysS#5eoLy4JV6JWXcD-MX>TpnpTm8$wQu zUU8F9_vk~~C{riIphsxDtf*!eD4I6)+%;wPe)F+~irPpH;(2~&GuQ|q8h6NzpuYwb zt95OHZ6Jne!hg|{%wDe14)d%pL|)El?Czfi`Do8SJ;7=`V<=25xG)opPf@c5iK3W~ zz~$^|?u-j9K8d=l&}(su?W(T*mk+gw=?cgru+mZieWzP?Yo@ISz!0N@_vqVc=abre z;*TO-yVx{LY>9KQ?h5yw0Td`&yUsrVtl;$=J>cARZw$Vlx(KV)#6PJfOUzqoj^Y=yzj+kv-GQs=bT$s+vpZ}SMW?kO<-!<+^B{Hm-!lhBm zMOR&RH6@viyxnDCJ3A{3)=Is!Y{eussek^iDn5LNz;t0P`A4%**S!n2c(vy~Nw0KA zDkv%Wc~D-Sw`k)v&6-8lVS(ZsTh23@fMY&!OSwuHXYiXM9?4(h!pHi>d><`XTnHE) zzEF)?Q30?P8Tpohs1>MjrbQfC*JeJbG`JfU9#lEuD>f0-;Ekg_9=3asYqavbL+&9q zHzQ972Lec&z;5;92LUt8JjR~(%{>;$eL6?7{Q5)R-4Zs{qdG-njY`CAAlyg3$3+&hOz%hcvDGhLR6tRKvP2;k35SLpcRmol z2lLd1x7{`UoaV8#$II_TpV%Wk)pm2&PHst@n(wm3B`qwGM-(6P8u;p|7MerdBRpC? ziW!b5J>G-pM_zmR8?Gn5La!GJp$+rbxV+ADu;=lKdJOX`3}|4=+c%u_ zCdO4;1?h%#W)4=M;k(!d`umbQ`TAR@1K0aOvEDik3ztrx4@viHh5~5yRv8LiqCHbu7icSqWu6f{vjdYH<yI&{O^2|${LCS2$9usOl;gszj%=I@T#gW-Y#-ENxx)CUowf~q1XCLY7CLjD6QnM zLR$7>k`{6dS`Se!;+fIIKrSv+aPrjf(FojOBJbb!Pagy?B)j+9(z>UX_ty?Tx$j>7 zvf?vpaNNu%@avZ|-XM120LYMWVcdls>ks&6p!RkvXcYqcK!U9g>U-1>Yb0B`?;vG~YJ~4#Mn;Nxe7}`sZ+A?L)O-e-R=ob2 zTYL$ODAr)3%}7SM>qtB5NcbLF6z__NKA@JPp(8b6N!6r4QTIAM3m zH*$VPXmq=P!!-HI4)R9yI%=?C*YiIaowY??CWmX`Fj3x}sf(g~uoKO1!@M8eqAilA@8ol+@6ifazit=lJA#uX7O>B+y{- zNnP9ApUv5_`%BM^@?}ZT95Vqhk%TOHdez!X_*>x2Z!>GaM{^!G6LT#~@HeRiUig{F zC%)kx+ZyxFy?9QsG7?&t6E6VfN;8myE1Nz;w={+ffCVR-$sGZ?g8_}E(73N!uO zHE2c0PQ@?mOFjUX=jkRIPUXqlTA0L z=~x>)wr4v$=#T!Vc1=oj?E?O_CBsf;sS(S~>A@2$I$v$gWHd0o1hpWk) zk|TXTh;MyZof-b~;LQ6oKJh*4)X(0A8b9{-=4+>{nSSzi1y^Dyf2i^ps&ipsNfjWa z%`5cakZ=|(3r9?I8*8LBHY3UX%g5+(4>S*Ve=J-C6W**ubSyle3>R#rV2n;S9z{@c=m;*Sw<|qSJqwHm>|1spo4%fG>X#JCsH3&X##kY!Iod;1*|CQ z62RVM&!~jF`d;0~ZN3%DhupuvcQv&w%7?Gc)n15rbDx24eB`J+#nhSnY!z?Km?K!y z)9|OC>HKS9yndb^nA4RJHkon_yE7r?-(2g9f_M8Jp*>%1b3^ooYMy2B+pB)nl>b{+ z!r$1Nt~c=eXxkA4%}m>SqvQo4k+mHTlf>%ySTa}kZ?img;~-T&5I27NLPMJ$ej|+; zGLJ8`P(cjSi~lwE-N%E6a52Fh9Q^R-TK;l(DSt}+KX>C)TOXBtOi<-huKl@3)X`cZ z(o=W41w351`Uu>A*8aDS1wenUiIl{h%A6UQ9@4>;dI2l6&~x=tRRICY6UUHT?2m5M zL>k>Ee(huW#}W1d+2@=0l@Idi*o9wd?+;I?6(8Qrx9E9$?v0zGQIQ4?zs><{5UR!7(FfwoF$yyfIenSM>OKOFq4)J6E;xrjBVM$G+QIt85&GzFQ8p_%f; zVSGO0SmTV6N8L*^@;#XacnT(*zPM=a{4f9ad&?(=K}68jSiSm}PtPC;zj3We1pEBh zBiX!1#131ZM)t}JM>vnNwyQj2rA~y;`SQV?G%AqwSm)>n^uh1&*BY`-$m8wCmwn_Q zmhEP_Kun!&8kXm(-lJ!CPaTwfPffp9mK6ra6Cp==RNS6*x2J5NQI%)>Xd@*YFn_RA z`|r9<$*G@A(Zp?HJU|5rYVJOkFU#0DE1-@i5jk>(gRe!X2kCguJBW%94yj1&D%bsb zh8{dW`8D{hX876iXTJEwPpy^tQ*=-?**2(*#+1_drn-wV$otFSNP&1g@b6bPoG;@P zN4EgxQGSBaxr=#!gs#QNK=M9+y-2-m{c-R@eJ;`=t`5}AFT0li$M)=(^fD_O6M*2F zaR*6op;iM_6K`o+JSSIp!*bM~R4dihQ@VF2k2Xbsy6zFHAt-a`P2@LGRlj+cbHu3$ zs83M93A+I}992ELJSu~~?JOh%2A}lMczw3bUx|0WS7m0sa1tG6S$8`-M}KQWV_&%$ zbw2N}!gUKeCJ0qhFy;i;e|PC@YR5Y!&m|nX24|-Fnt24eso0}{i^FzIQ*U~{H|Do~ z98tkILu6^>(A6t;Qj>&Hx9b<64-uVBK}&==-GnGL=O8QY-=06C=J%)AJeulv_UeB% zO7viiBA@UV0b>pN00z1DTtg*sECcuj2b55x)VmcgRNRW9m^1Zj!wI=oln2!u053q$ zzbZxOxC8Hi`)Ostu$()f-DB&oSy z)H-7)zD5L_fgsFLNk9OS(~0oC2(8w`nBMz-!XN*zQ?stE)_LSasy$B)Nd5`|)3uom=BYXl)q--wMTa^-d zQ+v}G#gQM0LAOSb zC2hCKCe;^?nblGFTZ@MDQ>nHV+054U%pYg|<|R90S@X6efJbbiwzmWK8?K3Ieb0fj zc!VQA{xFxu2VSgoe%PCMIfb6Mp9`%ai#gUkZXT7TCNSHeHw%{dV9|W0QCl*AqS?l7Gk%T%%!Wv$K`HV6bs97? za!#b+H1o~T_W_|tV64adi^VBDQFroTGi@OV=MdTE-Gu7HhH>^}Jl(MH)WAL`h=VB& z2Q=c7B`WNw9mC1^2yQ#DfU|?RP$<8@wf+BG0}nNQ7$2HH1mILX@Jpi_1tmcFv5(iU ze%pRJPuKHgyf*e@k}ddQJ~E`{PFBL6Is@>ZG|nLGcoGt81>ZdkR<1bfuE>1H4b+T% zaL#y9_?EP&x*7Bbw|vme%*R*X6vE)6U?m_Lw^Thj4=FyGYHp;za^`<7y_6#jjeRua zuNZ{U@xD>^l2s2{uVh)59SALmRPyFc066Ab_g)pARObhF5IjY%8>#kNGl8FqKI@4? z^B@B0$VuhLKWmYAyW;iyoj}}J$2SuQT_RRta?dk>_&_cEKGlMzM{*)wlyZIJ8lHCp z$1LP%2Z9{DE<;DqpiX}>2K$emf|DNPs%v*J7&omih2?rY_tWF=yCGP>dDQi2ex zAfDX0-p$4ZSg`?7g>9}|S@q9821)gAVwaV|uEd{qwO1UxWH{VXy|!!bxBhf26NCdQ z({C~Ix~GaBbi2Mnun0t|VJ00<%L7INql0cwgPLZ*?GHWUo=$;zKBNx*HR33kjBAfb zRk>I)kg31tryee~mHEu$zRS6sQib;_6)r+07)%QdU9V;%5%{4CdT>eUI#8uD7xxPF)$ z3o6&zpgD#YDe`r0S?-VB!MkIZuOo|Mh3?4Dwbl+C!phMyi)jFu9v2_Qoxgt7kg|om ztwUixO08%Aqqn<4IW}PyI0nqUXFL`F^PAdDZF6#b4-5+>P z`Nkls;dk!;#7EP{ohX9nfRe!HNZa^GZc9FfiNrm;$1kdv%-W>tYK*U@-NJ@d{WI@R z6!lBe={J5k8BCHraex>SC>9Oo2}xCp31m#1EB0$uUwW&E%L)D0KO%l1Sl`H&7s$j` zpOFeiF5=SYBSh}N>#)NamCvt{F4nT^`UP6QHEQB3aR^5@x1^s6XFciYEjABmU5D;{ z<}^nxegHaMjUIcQ_pL}g0UB~q3R$0bW>NljF@QyZ zXd(v{DsDSKAp(jduO@z--n(tUqx^zSHo2-~S&4Jmd&qs*pM4IUQATZtJj(*}H8R*Q z&=LucD$Qi$vqM)b`2w|)kl$e#@u(88rWNgQy-HUd9_|1P0oSAARt>B zBCYA6vseB9+G@G(ank^&p3x7NBWhi3OObgHk-tf%ix%9L!v=elV>m0{#JizZtq@y> zv=Df$k%LBrrrwiU*b)frQkK#7J!*8MwHvaHr)6K)*1!nhxnI}@Kgx*qd1GDomDC^_ zb-n2kzVAGu8Yb+1MkOnQX&sE7P*pl8C47j2_~*g6NGbiwT_INWj#=@hW)DGh4gd_D zYpw8*zUZstbI2uk*!6$+-HQRMo#h(-nJ>kuW3E-&eQK#65*ZPd-_)w=AJnG6{HDz7HUw4kH|hzd^gd}l;90_Z6v1b?VZsoCg3;N{m`w2ZeyW5s#2>`^++}w?DX^`+>Gz!zCWFy7B$lJn6)5??^hSr2c zgJ423?Rj^UG|^;C;~6cKKl@FM9RPOjlWH9b&PfYg`_|MgYVT93J=l3bV6(Kp9mv=r zwyy@5-v7?AvThaI4$WSu5OEoWQD>fx@Ir2+6A(=BFuj^{FF`ty(ZJrF!tJ>e3sL@7 zBX;p2uw4E3m^8NaJ3$MAhQoR8sXHIh83dBInxCz2_yRJ*R%o^r~V3B=6*)jzM71-&c2I@u>GSv~(W z724^X50;wW(3tT7kek|ktV9jlvd0x@+9sG3rUMlZHK~2#8s8a3V{fbwXg)n=Y!5u{ zzJ5!wqus7FKnUP#GK<8*N&6Z4CA3zChrKVzo!n%MY`+HH(*e>~q=;z#;^`{<^I#(I z4H7{ul)y7nR*75`ph1AqbxY~bG9tD_Ut4~s4>u|kN;aKD@q}}G&BNN+!3pv7;TJT| z0{1EVUC|^7{po+R$$C*d`TR-i@{{cTXHAp&XH8R@6}HHS-Fs>k^cp5a&w($w0Zb1H zb;v(tXibGx%q<%oH{-nECr=GA$fUnWkWkp$vM$Nd6c<`F-hF#Fv!tXN$U1@OLHHc< zD}Sj$KJqq1ZWA{p$Os0w3f+JpPzAWpTjT~u>X<5NXm2oB<}Z5wA8vlM+S_L$cdFyS z4YRg|N>`=1tSN0jO9VWj0YMDg0+ zuQOBaFX26s-z73=aWwpi1f`;b)M%l3*i~S^lLuL^7X)=ELa(MkqPfpZ%qqfdj!PXD zJ(5r=D*v7(q^AYI*^{&|(ttL1BaU;ZU$&*!dLLwZ2(a#?o{3Ks+;3?(QMlOY(`taAB5y9?BkyG;x&2ytZkzr;A$BQC)=XNBs{gEw zBJ;{Yi0tU#B7ariA#ujs8ssVw67wehsVLM|G?9^pmTauI9em=o#Yl46cX~HzH7m@v zPk=z)%x20mc>vPD8WW(Bi9qhm2C&G-)RqLJY$Rx>Z_iN+Hz4g>1&ZOByun#Z-x53k zWDtV5op1V9gX0Y9X&_awVe)`IKDuSgOa6C6|9a~<;F4qK0tta`67k~0WuFh|{5J=3 zuaM)igaHmhLfkWe=x*V@$4rgF_ad7@vQR08da5yZKVwZxDnn}$= z+)!vJG<1#E&6)fQy_fBN7>{+LGQD04Wr_W@8Rk0ER(s5Su?-&AXTh8HHtJCVN{}HG zKpFF9>2aop5RUBlL(@ToA^ArepTI?PDnYk}eySx%B!t;qpgE8Gx#eV_!SxsQ@T&yH zDZ=-8!)HBvvtp}}nf}`Y^G`k~aX~SmS*H*^D_7;^wUwti8_-YMr9J#@3_YaJ&P&pO zcku2~b;0(Y72k8)-%@gp{Xg90kdhfnzb$BZ-gnkDe>17~wHVL5P5aOaTmVKSV|Sgy zSLI`_G2)LB-ODiepxfF3$+u5P@?t#E@|<@2hEVXP{-2t2$luQQG;YkX%hOTv0n@FS z6RN{))yAz{#!-Tz&h;FzB}hhvSj+X3#zg54v=ekiX2$!I8TN)AQJb;M_DoXjOMr^u z<{FG*tL2Ejr_I9D0*m9+6pg|k7#fp+Di??%70yfX9tY2!mI;z9_PG-?XWxqG=#Hw65@fFYOy*iE+bMzqVTNKBPq+!7 z$(jGw90`6GCqg|`G?m8oMD@UDgS zo=x}apTh8JV#C1j2DC2u~+FYOy5rZ1*~6N03+Gda)@^PHczYoc;C)jwJtV4 z%jms>fWL`513!x%f9c&p#-Hq~C<^9AI0hXl@vk{3d07#@WjtzZ=#LR{ta)nygOT{` z+jBGk4@rK1m-4mXL^(T?x1PXQ%X;+8z*Xv(g*G^9|p=8>CDz zQTo$ad&)Pc2GsIrrq*rh{9s~?*SnAAuk87z*kQMqfN4Anb$oFv8;;kwk`n@Xr8knK z>84$=*?L28vbtE-kC<|HT5QS`6lqvC!TU|}Lm`wmt}T54G;2285%@e75X0Gh;P}jU zZ&cg*AeWhBpkEEDD%Kw}6n|q7nw2tsaV}P#5PNoKh^o_|evN*=_-Ap2kLA7u_a1DB z6SSz8aCl`Pu=wpNsDF8t){w|uMI-8i874uW)cQVSbC#vod*<~tyQ`CgX<(U3zmY

6I< zA;X%WY#ja?*N0Ut4;k*Atuhmi5n{N`ot^N_W9a-op3n=Uw;6^RsG#w^=z3)6aXZmr zeh1#VEAPKLS59#G$wMXZZYFqZfJ#d8N?!O!GYb;Nlarjb@?Q^dSgPZQB?9%Y9c_9q2pK8^)J6Cer0b zUU#X_O>aU>Fs*+Crt)0>;|U!4Nt~UqeXi=WKjhc-@xJ5xgx47FrF4IpqN4%eX30v> zypA8Bm;de?zFn;JWLl|S039@t+`&|NojznU6+5a{4;VEjb)+IyGU#IbxS3=j}$(t(00bc{++jx!M5Gu)9l@W z#(O0AULeAYoJh0+^$&%0^8j7eckXtRn>5o z2~zpa6R{O}c=xE7_~f>25Ji25np)Y%!?f~RQVCG!XzEvR(`Q)ThVwh6=ppI;5_o8L1VH76d=h_=Nu@LT;T z!b?5+MB_Xg?yqj{Cq6vIR8;PJhtd&sJd)mAWXGA=2h}V+{@TQjHwgBKL>HGAmx8?r z4${uqt^YNS693`>xZVBg`a8SEDcrc-WdrIC`PNf`U$fCe8d(<^1AbqF8f!Po@%1C3 zQ5n6F5^6Ec;pEc$cn^RtU=61l!?Kty4kJpEV@LgZm7}`w0Z)q;#fad6<2cFOb=``b zmKRWOF9@2}W=Vf9p21BnxMP4-uc3knZ-payvp3%UYcmdi3 zw($vEJsNqFzIZHn>4amb#G~vtB4mUI?NW7w!pjhT^VTzCtSFy zW*uTkpE>7o2-`hO07B9>Ac+pmaZJIwBJ3=yn<(FqRzP8c(b*cH=JP+a7n#6&6K$EV?i;4r$8IZo`d3?CAbgZD9FGf2d`AFpQ4}m~e0J#%>88Q^@l%@lNQ zC5L$ZYe1iT!Nt3l`MTM{A=`RrZlGzruw2&c>y+)-lc9VPza1Pxw&GAtaVOKR=Tq^u zMQbU%rC)xkpr}F6ueyTf+s!xh-RID7e4Y1hkNe%;?a{>pp11P>e6K#V)M}U^B)O|d`xy}CSjb-uics9e^oec2YtB$2|C&xoelGSo!aacfhHcR|%xZq`SE%~D z7yORj@PywmH%#f?q{QH~$mF!Jzb6>~dY!-h)5QAS6`?G}xX)fg>-7mOpB`%RbISpX z!Zu6es9A>=z2GO{!+itd+Q5URX}mru_PdeUl>IgGk7OM90dz{FTZ?aK_9)o@)}Go- z$NuZZprG->7&yGBfR~q*Ac*1nyB|Pi%`9V~%(E!-#DgSBit%pt9aSQ|!*5wU%BL>D zxhbL;=KB=9&vRpoElHktv&M@b=-)jrW+KkX4KO_n|1z$MEQ9vX0LXy_{O=|6b=5oC z_$>1wwa!VW*&+4kYXXookLq8a2spT|i%C{;IYT1aHsdM%g11LM$0ft(Z@mBN-rq`2 z#xexxf~(IsfWds%0)z!`4Bu-mU z|DGtj6DjXeInHde%A&&2UEs{R7atSL1IJ_yxEP+-M;a91((CGEAwx3RuG==(DN_*Q z1;NBRP%=TFs6YuYaCo!7+|4%9H!Ml!VHh?fObuyQBXjiLF+kM}ozP^Yfadzn&WJEO z)>e68ilXXmm?Nw>-B=sKs`k*sWQ)TV{7Z;qVV3SQ7GHBJ%Xj4Xu#hW35acID;$$l} zIcBkgh+JB;m=u6P*~DzlyU2(g417B_E$J!{HfI{mqmoY zerMT>sPFaV(Zz=4w6G`$S*Zcjg?o8i2)ysiyS{$MXZN{e6dnM4*vwf^pBA=*XX#?; z-PaooXMwXL@wQO9?XrFUX;>Jc_WVWMVVRNVf_T(OekhsGHs@t(21W}sx+Lg5-7#WP zkRQoro`i4T7WHPitsWH)aW+)w%DFNeVSl}`ebbGRK+@HdQ6g+*8b9S?+Pzi1YOCp1 z>a=dX=CC4T%CgkY3$_?*eJZgyZmn;5x0tB3S*095ikRC^fSzQ4sWO*3QElmxzBq&@zB_B zZ8GbsSkdJM{E$44a{2A|updRS{kBS0Z1z+NaI=T52}bZ*RNxfr%=>N{2mn>6G1Ze` zviY|+G)>rw=D#jt9!7g3n#s;^yq?0gH+2pBfHSb2kg+vTTig5Dfox7R40?1;bq*Ww zr7_@PB%kLP)qkIfQUL1-+TCG+=kK{~MFaW0gzkJ0_E)O>c?_?6ZxX1(l5|BC-E)^7 z*(PDkda@#lOcp*!Oqm`+XW534&h)|g^$krB+cpG4#4M68I9cAu)v7B_tSgGaNgIFX z?FJF~dbeI0z91cLXTxVU{qP(%FZ!B52BmB5?4CeO1s_ z>~gv}Kp??jny0}*AWDm&&)J^~oz(+~8`#Cr5lj#juptXA*LQ|y;#CH|spE_V`=RzSfl@$W((P zEZR_U88WVx`)AXCrGdsn@URR-mY-zh18JrzY~{nSq*fdy$HI$ndOzimv1r40(H)Bu%5+PY3inj!t@E9TFFWbz54IxC;8WU6u8=Pnj&zonjj{8W~(O^ zD*dP-a2t(9o5rcC;Y3+|4ikQO5>FB3xrE_3+29q;1ShfO1!NiUyV#dO-;D*iT5*tX z-Hb+e4a7Q?5ZyGk?%SBY(UcU+XfM^Dt-Soh*Wv}{oXSDrR4FLBVn1k~}zL30l zf6YREKA8w>Bj1zq1%~0?TmzbgYIANvOyBljPbv?gJT+QJ+{624I(r-L)N3%W7SK$n zSMmD!wqEa|Xat!dURJaaY5WGh!~?`Di=x#wzmqu>=walBN1uhMcAVm_cbdjY{Z)Zc ziY?}8+P15#M4uj!DFIr@hlk&L-s=oOd0wDo4#Sem!h6$vr=MO=25Q=Nbep~DbYHCr z>A%wm$n00VUlqBduRvQJ04(UbMPBdCHvA!R1un7{mxS%oWtf&}p~ePd(2`_*{!T}6 z8quiVo?pZImT22uD^hDhmisI$geDk6yQ*#+py+Sf{aA6+jrdFi;i0RiFj7 z+h2=od{V2QslD0H)SXd~m;cFK^y~X|O zc$P2UlG==x0hw#vJf6d5Ac*u3ANG%*ZnP{+oMO)5h+NW!nj40o_f0E=e}+sxEs1FT z;+!vIdbw-i$ayQB*!Jf^qyk|W?IB1$ptbyC{q)~0XyCnH%f+gE_1VyHag`*)D9=rc zBCxDx%ViV3s-SPG$~Nccl^G}pRF?8I3*#a9zA?_q?J`@Sg2ltK4B!$AVRAv(;n;EF zA5lf#^t)Zvog=VN2bR@2p`XOz+gM~`K=Z`=87HmeK7Ll`^h-s9U$|2pj?zkXv8-ooW7{^e#i zEyovB{8*O%aE|%h)XN#1_xsnYQcQ9fWl$fila*d#4ua*H_24`AQ94Fyl-giJpUqds zB!$~`!#06+o@71TuO|oq$;fSPWw;vd?-aSelj0qMm0*$Ys*`aewSV-|~6HC8IF-snK0AK1L=iC2JCI<*f(&e&VJs z0C7I%ttL#R5wNtH)d0kvLJVu#0SEj@K+>Wg#sgN=;?7+X8c>GFMvuTO{X3dFPt6VQHwmPFvT+ z33@gM+Y(3Mh_z<`oMeb}+903p?+=@Fx3<&@Z8zBaR-AEylBYzaU%_*`9))r4c_n#+ zIV_dcYsQ}x5fkk9L&)EgDCRHOV=j;|{%6qG(@}{x3Ht|)QFl;k2L>TS5(2#>DJZ5W zKsWEHv6nD8pXl!ANNU?Fn_VG_PkvdvF)zSSC10m%7UuFUjmtt}Lq+;;Cf>`!&Q}xp zx6`K`N3#p^9e@=_x2F8E_|ZOg@_iL%=a_`({Oc_2x8L@-pKd6W4{8*m0A=?O%L)vo zpnaz?c!HX}?fg8a(h5s}4fh(Hq7Tqol1W}qN9@89LN zy;<+@ablGScE za+|zNykhNnC(2BiEOc7@ooc(n?$~(g$Sh{>bt${|QM7M!r9G-NxEPjs<&1)rq_-+= z+iwKzZRWjj@>-PSQPHBPMWoALr3`zs`p&DvNg*i@9*7%rHAMflUN<>OT0wA z;sm>CO&ce}!Mj)p@tZ=V>H5vDlvggLYnS<0SHBOw_&B`j4Lx--OwKU}t;mYvVVSqe ztvt`hn$0Zj5>FyEF3vQ z72V`vDZB$JqG*RykSJaL(P_#2{eJh@7?LEJ*Y()+`zDZ_7i(Y%Tf=}51kN9_ zNjBH!>cWSfo2J<@v!O9e(osfx%GL=DBhYMS+XX=n5P3;qhy|Kb2AI`0^DmEnt1HT& z5)>9%S?4~AH0vuVeOVVDFJ!km&Mgn6zMsf&J@_u(7X$XGrj->PdlHD1mXMp}lS)uv z&ARUUC3=j}>-2CJP_N3<%5Dqk%Ei8UMr4WM-p{PhL0RXtSM3FF3DIr}Z@(umEo{34 zBV0I;7(jgh-OOSUb0S8b=(hIa%`UlLY?&_Zw3y0UeWAqB8Qz5&Dr-U}kf26Lw&o|7 zfRMM9zf`g-5)Q0{4%h0HZ<=E4whJS>K=GHnJG7oZ zZXw|;G7?;ZCf})htSlH|zc!eft#iZ(cjSA72P9R5ve?s{ z^9lrTZE%cO$uzb>EK>ioM2`Rc~P3qis5!Pnop>E2`pjJIg4{C|76(62W=K z_p9IINj6YSUoTAI6V01Sd`ffjFY7qh%Yohpd`ii+}ArD*gEwo|>dMy^;UVyu_%!Rt zfSG}2ZMEre!pE7+5NK!%Z}=X^e6%0W_@&msr&?dFIrhZMVA`tgPjAGKKAb)9Oc+j~ zPyw6k8)0<*(-{jKKciP#He`i0FDT3qn4_Xm*Irdh;NjSd!`TE*)cty#L+e}3wAfCs zNRzI6M??l@h3IyGz-o4b;9@9T4U&3$r~*WhiL!H!T$u*bs|=&>q%K)A?&eUB0h!sD{@H4?#8f)GDSAy32Z@5iqWo8Y! zl}UgxDV3S52jGJQcwiGBU^EaTCB~}n*+gjGg%}UA=mo4;#%@vWD(!|F;9G153SLO^ z974l_mkznTpSzCS=7lB}X;Bxds07NGUV?fFzLySbS&`OUrP0#fWEDPjS7;hg@SU~j z5a%jt&!kVH-W(lEa~BOFQ`*szw70++(3)}HkR((NP+lNLSN(6{7jj|MJR+paX!qHo z)WxN=86MGm=jf>GLdSh3=`6!opD3R2d434^O6pYcVmEA`6FR@{n@ysKWY||oV+;wy zfdIo$%CvU8`g5k9=Lzjkgdjft4&;4v-1Nb4G8M%2e{s2Ph5T*=v$%_JF(Kbii|u`(af?xN5I;bCcZG{3qtZ=tHtUzfu|QZ9PS|FWNK$)1w*WCoVG%&8L{94up zD<+`tGc*&@CEw>f?2m}d|sp!Wh>S{>$yE@V8=`$umCPgbdQTsF!!l1$Yp2U=#D zlziV>@iUDsaMZ0%vAQT{sq1-Ivto0gM1sQI>@OKjgWw%ZBFPED`o#BL()9sCG+S%# zkcCoFs~^&%TQF!!T(Y#v$;4ZW9sNG(a-4tESsP$mRMKkKd zKkvzmB9rUmFtFajQi|BZJba1LQsgxdfq0X{S#&%mUDeK$SDrOk+!DV6X5(RP$Rt2> zuwjhZ%SDJQ1{yF7_ruZ*8ddevrE(QgiJJMr@xSDnfUi#YzJ^15RMZ(R?rZj@E7T0E z>o9V<=5gQmzT-o-fL0}#ro11oewJHf%=nOBx;xTlupn|c_?-_=BSL4;jA0lYh+dWs zSq`x?z&i}iE2G$OwRK361T;x{}b(MMTf~ zqtpfJ79dQ#kJ&%nWES|P^rpM>3g0oW1NmE)DlN*ubEE~&U{_>;rMd5J=bCEVr zA!d_vFx|>{Ehs#{_6fE10?4%h-H+(}`Y%=D^FVsevF;|$p~zJ++soTKg$SNx z54jI?m;fV!2|aFYMaq-tJ-L+m-+iARN-2lHbW#cz?7QMUPZIw5MKA7M-?S=>j#g+R z@%`MW-jPOBvtSr4H;!dfQL@UA7a-z2EMKM{Hp4IwcrW1JorEy{+d$e;HizNfUxOK? zXxv~}eBN^wn&ZYLPdi3H`iBc;WC5gHhGbCT-z<-bW0v(x&3K&ic|Bnf&7$ zzuqYG=HrGqOKs{@eCZ&DmY$)C1yP77#X=|0Jtj3!c*a7LQh*ZW?u?bs*1?_YiRQkU z%o}HwQxv+=Pf7jnW=~MfV8ByJIb@#ZGXDOW$Bp#9^d=cBmvK|GAV{m8oL*%ejR z4o~zJ1+eAnb73k91*K0hPmEsz`7RmR@qsc%;yFvpg@Z7xl{WUG$R%t|36$+8*g;sM zPE&@q`T(r^&+qOMVP|-8Hn{~ zGVb*&C(39oxd^>fgN5C5J`}N7fSNqQibIs?#7x-3)pw2#-mHfZCVYTD0}=CW7z5x! zCYt+`9?q7lF*RQEXHx=2{+P@FinteP*!nJV;oR8s0-YYFzBUG~yX{DoO*uF%akJ5f z1Y}<=yLLV?w$-_rFvx+Dvq+ORA7u+e)Rc!Zlkqw*-=Ozyhvo3;6$aem+VSh@B!js$ z()4DLd-v4*+t}#kWv{NwM)RA=*+JZM=cW+lfOv4&2l?iyD17t9*j#>wK-2lJTx$(| z{`z(pTYUg3cOW1^-^fk>}kbpZE4FVshKo15cK`e zoghClgPk7(d(U@&i=b1Z}GOBwOph$QTf^CB$@A3x$p zqQIf-K&;9Uw)bYX$zZs5*S3pX;tbaJ?@>|w3q=muL z9>$1Y?#*$x5^!Rg3qROp8@OAo!N`*;F~ZSK^eX}G#d6I4u59{!CQrYSyW z?;_I;Zk%YrsN%;P)HiYfkGrsx&-e}|f&SqG`F^Wm&lJBqRn&0yJ^%(3*s>bhnO#pA zfloZk+I@*Abtoozt%E}JGyHV^dYuo1q< zABA!hE3&a(-Vx|%k)L0G+4A9fZvpqHr$&%(sGq+J5$g1}q$0x>b~Tp)W)@_C!(Rx9 zUl_$Jrix?fyO3ly&pv!u{~Zn7pe^s=p>tJrlGG&7_?EJICnq$WWHVgMXujX)c^NCg zJY|{vj3ar~Ah_THf)I;Wsu`!z37x1+>B!&xJhGEk*Pg5i{@b39)~9_BR6*FGbCNS-j8i($@+?k6CQSqLHwSx437(BY*Zx!uu z!|2}}zJe7UvM>b#!)I8=1ooFDXa@3FGr|P!zte%aLHvuMhluYnwnBYI<1}7L9gYWa zA~gG=$#|!cu+`RR@)(O`m%AI@q8%HG305;e8^~k+?zu_uJ;aKfrSW6aM+r|iQR;hHQRIGK zmIQZ#J-%A3N2%36&uaeyLCel4O&nFR6~+DiBJfmkx`C*`-`J=(o%;Uah*(-*y$QGP zJ#X~{RZxGx(W3SpJHTh3h3&F*RrX5*(a1t0|AR;shBX)l?wrb?I~;tLAH;XGb7Z6&xd2|1-Rsiq5I)#wRNNS(_PKv^jqWFQ)E_sD1vcjw>F@D?XA zZb_Ur$2XxK9_D#*=kE*&Bew&TIr?66QKa2WqbrVbY>*Y z!WD>Jn}z8B?+Zx(>18x}LCZzhAMZT^??K8)J}m6ZFpJ{QdK?7pJkl(C3ly}^F3v*xd6KjPrVh@Tezx<> z*><3zVYi22vPX)Tp8Oz~MnHIbB2`D)@*kFAj@#IA1fe}(8-X*E>jW|+%>_a=v!5T~wZ3JptI6zFZoqP^&4_-iYF-)s&v_ucZD zj?vlF#uP+dc{EKLD=$D<3@+2;d7A5%t8nGy&NXqcsa7@vDs>xK4a6?ZS}{xUS< zi(u_PcRkt*WfJK*$Lqs-8s5Ss>jbqqcQ zo2tsDz*{!vwUz`3bS}#w49yoU!6!a5@J#tuB>29>QYgM7UpENiPt!CN|H}hMUN4cq zKa8o|+~GdiU#`a&C4ToF-o521mu+88h8d!Jj#g7X2j<1U2SoA&9w_crC^J(Czw-Kh zuHh$EOU9k6Z~Ab<#5OKF>9{vx#sfQhC4XU_v`vC&#`hgXve^t{d=v@yx%@Sc_YZC6 zipqSW?M-gs@;gX{zPF|kXzvht#Oe1cYV`YynfZuX{Hs%|9)kg2unBkI1FYs9ljTz( z-#K8#%3qK{Cg^M3e*iYVgOEW;UHZT#1E6jtSH?nN{}1EG0nSlLMO%`JbQvk%auceR zSD-_=a|=DQsvG|GbpznV-2+=ykK*fCJ8tM^p2IuETK~$(Ddn*I^?MC+2aF)>ZGAAa z3YaH%G0nXx@vYBu76l}W0W2cv5BWQYsv9;1G1C4-fUc1elII4`ZF>^Oc;NefHnM=< zb1K{M`HX&b8~yGuk0J&N0pQaCFNebp^iVMtHAu5a4Z8IdvPT`%- zaWA6*Pm@H5l)E%dbZW? zHba_By_mnA95*$J`L#UXmSt|y2gD--=3S>Bffphh;}F_>=i$^b&HMV)&BMj(Jt#c=OEmreVp08Y>UFbI|!X;VQfWb-_?T0ZezC= z5)1zwQThX`UBdi%7$olcewt}|Ud;gBV-$B3B~FL-Gw!|=UQ+Z+^zEs?S|9{V^uF_Oj;;M;gBBkjktv{#2f#fQc+~GYqto@?0ZtlQ9ESL>a0mz>{|(T z#om@M1Y)^vG81Nh$z1hC+pyW+50bePmSFb6UlTU?)uXJdzX#}ytzNwPac)XYF#}~m z^)AA&Ues#QGPdY+Mgy^c=P&=x+A|$RQPyV@;MK>{oX>UCUhD4CSz}4mE4i(gpV=*K z06jp$zfc74@ZQeJ1SPx5wRVv19h1r1Zngt&=TfSqQFs%my6_Zb5L*#}&E8%~Xb+oT zR#jdn+s-Q@ak``-$~#C_#unl%j8HRIzhEh2dM2fj{0Nhz;XurWsS8kb4J4pREqu%e z`otdBC)P?`saak9kjcp?1h77NUBMoaxbgSDVkw77Dx#Bu-}Pg226z_)0TrV zr#VB_ucVTB{i!T~+mB`61;J)W6mYoweBwb}+km@vmD~*g zktp$(1DNmgI08?p^G@G$A&BgUr=ZDj0j-D1M$VA;i=g|qZP$7~qEXi?3|NGKN{j-I z&uzl{K!7wpm9(86r5`IkQ5n>{`6+@{mGeU7Yv(k#^i0~doJ{7hoG{b>l6 zU90AweOcl2HGVnt8?-mS3v4|lW&x+>s(3gl{P;YM=jqQ?DvWnRjry3rgrWE<$OrH0 zV0mxdA#tD2+3&?_OW!~T%Q*X53cuK$$k}{a?B*{7$M+-}19tSXwsT_on$n2_ zGrPgddLlG#I7yRVI(aX8sDqrnFDwp()hCKA1S1n{XKmyW9UPP;hZ9Nj1xYdWtk`F4 z#&E!G4BsPKD8x-7)JBQEvzXbgq8ym{=eJcgHSnq=@U$OKokkOj)>&N%g6c&SiICz@ zY&q}H++upn)KC2L+82qY4BT|haQv&qLoAqodnjZM#?M(QL60Vz48ho~1q@GEqAdC5 zoyK{dck?0uo>hi`_;#zc-^>ItKxb>twu`sz{_O7w3-FSXBR}F3hx}cqRCSCwfpzXl zQ!_T)NXz6$z?8k?B%>KwhDIWU8k*-=VZaY*eBqz_cSD(!WOS$W(fkTW+J`>97vlTI z4)!q@tG~s--@db;(W?18-Tnq)0!%Ve520hv-`tj+Fxj!=d<#<;!|(q2PEmMj0x3)G zSrz6^XeCR5EsEU6wquZni?IH6-|_=^tYxl3=R>bYi6mV{eoTml&R<>?RY2HlrM%uJ zD^XWzY$QY|)>>if@kfR|+6q1L44#+hcQ0d$ukSn83;X^4+uzC}HGdoJVF%22va4~U z92oVh2c19+OYez}{x?AIWo{{%{68FI1_%CylzTYGtaBuOSi{gso*L>iqb~jJ6_yoH zYwHjcw1Uew`-&d!(N7p|1R|cXftLA@d zf;!yV25{uHDf4&!Ow94JaPs)0h|o?V|%q!|D8Kp)b54-65vp|!J%N*S?NttfZ| zje)UE6nUD+e-9m_Du2Ciq3ROj%Iz|sjTtNcLX91sZH~Cg0D0s zfBQ>Pl=`>)X{%GRY*aIRHw*C*X6}9(X+w=aE*&VF@o-S<)%A8&!1g)c6S&AtFpwa++m0##+P0T zomafk6meh6!-8y^cT0Zb1|-rmdZCXV0UgkuN6npq#){-z+4`($<7XO3t(l|GHd)aN zHFVO>#yGwCe%%(*{I9KTf$cB?m;YgeH{=->BD|60Vk6i`qC?w>H+`?$qpg*csyI)w4RWaIdlht;HKg#x3oM#JVk-j{Sh) zu;ODpe%Ll0B%sh3AdTd=zJ)M+NDl#9#m>#g+i{&ulh~I?&c45k9KEgcUzf``M)~D+ z|MT^!Jh;X5OzM|$CuXs+Rc~Ozs#Qa?Xwi7@b;jE?^;N-nk1~!KmlqGn*ZXgNO(PH_Z#0^!ozFlq5oG=psrsPQy@r`aZqLdY+$f3sgEHIERBZ6FhwAx@4#a?`K<5#qo6+H$}W#CybK)Oi2I zt0Y0j6Ekea?SaQeKbDv*?O(4R=2d;98|jP!fUECsCwfmQj8^o{Od}((i?QRV1Sy@_ zr{GgYk^bMkci5Mba_RY>@&2@-^2oNk@^42vOMl_as@6gkNN4vO8CE6Dv~DuYtS|<` zl9|$mraeow1xM;fcE7b2$=-66B)3eSyMAO^ngEOUJV$sqh(y&W4+n_X>K0H*OY=KH zUXUO@zes}r8YSj6fSm0$;17X#wwFq)Oz4$Mxj(noSeWoZ^YEbw+O9@VU?A0_vHieu@W-&#xt(BbBMx7aQZA;W&@p#srEz!aJ4aFgR9p3jlCNjOXgr$6Pn0RePTgRn& zWnaS`u*0u%{)`LZZoTp(Tfbm{{ypHZebyQ~4q9ETHzhVmOW)|;cEvX;g6d5_8ddT> z=OY%ZQp_a=Cbmt@2O7TTMkWCbb5l}lr|vx>E~uxDe;dJGco;h$LO2KEpRLlGgw%(9 zmqnHfN3^r@fhuJCvM351(#HqvIN@RoJ05@w03MAWA0eA;grc**D-S__oObHRu?zBn znmbwuu*&)UKQV{(*7y0V;q`rSEoXZFVXXH{Y1H36uHSPg)<0Txe&(-?kvn|ZD#yd& zAY>|HX@ZHK$otddC)N@^&kZqs`p&y<-3CfHKvJr^Q^oAz#$I0m7LSSZNJ`Mn1Q=U--uV<2q5ZHnWkN$Nf42ExCT&m8k zbr%E#*P)ox>Bg}Bkxf3;Pw^d&SDjJftO$B=#{v85lsXN*wV}a?qO48RHh6BnaR~Bg zVkW9#0CXly@MLYDpbl|LK#&eEn+lznA)`3v2#XxP?{7;9UHB`&g>*g5gD#0Mb0bGHqhhj%HMgfKYN1 z$ihn;N6r+p;JIfmq8B230A)ZT3?|+dDz-8Q-arQk0hj4~n$Q{1-xdtecJEtmpds-R z9eQhbkurb2g6fp)WA3>xhabMOv*66@e>IdXr!XE05oxCL?x3YFKnh&IL_1`|! zQHU{>PC%d)1O}gI8bZR!sJ^3*igJs6U5M9h9eOl~3DX0^R80&8kxP()9h4sFJIdTA zK3kY_G4A)#PFe`}7C$n-9vM7Yw6K}dU>V}@eJ~!S;qX0D-79;%`vA8WIF)%NFA=ZO&iZEW{4BkMJrB$b?)I&1nQAvhf039-StPiz z+mcxiO*z;#ZA+PBdC@e7(mpyh}j zTDN`rxA^|)?yd=s&zr~)n=t*~evXg!dj{$-PEWcXZu!z&5@FW65-{XLm837gEJJF^D%sX7KB15@gq2h`2BLKia%P>K zbgdYZwchOrCE)%<1YM^4ys*`!FV(VCg?iT&AIsy1!;sHnxJF`v7%EL}oAo1|5G!9A3w z?{ZaqKkvv*W?f%MEr_TX&71oi4RCFSG6>Q;2?kM^&Y`{SN31MZHCZj`f?txuf(KZl z91%$`+P|6~_oy_Emgb1(V}XJIRg!S~i)ww5`9EXF*NMpptY^NzM6I~PS|uh$(_vkI z5mq}Q-65A;Op1f|q5Mv7Cju@M?#VpfgcAV>jQ{Ov$*%^d&xest?-+jNjgUenLQ?8o&eY_V?t_dSO9 zxBZ>9{f+Ir8xzsAWB7MR$0oi0`966nW%X0iXS`zK~YTAJIfBFqHV> zhq;f1XulfMR|haID4riizxxiOFR*-f`&|j~BLbc3&^s0{u!meM7co3_qx8SVvMyO_ zP_I^oPQUDs3Mmq+h#1v`^@WLe02N%j7f+lwxVCs;dc^4?Yx+p?D`$)%nTYX-Hdkfd zoeVHv|6RwNfux*>{|QD9?@-<(1#g14qOnziJYUpO5Ink`y^ohZEw#sK2f$IV`=t8Q)P72$2}wpC1LPpH{*}OWzW{gDb@YufXXAMh#XLMZN|4b+qS$D z)9w{UJtRE3`iQ0X?L{;bJfBBmk33#{aOepi?vuF==k`MjTSbkJZRh=a2|NHkUQok~ z`7dXF5+7 z!I-sQ*(P9qg4jXXT?7}&Gic-n-G30u%N+0zKc`2Mz2)DD3~d^ca>ZIQVi^vHL#7M@YVxo3x%d1%4^da=oQ9K0I)qwT{ZUDmQoVj*Wh5-lM>> z@1SSZkzhDqn5~?oYh;7O6r+UjySI^5?>Zjdh9S(~M3XNr)K5AhgE>nRgGt^o_ex)g zTi0@w>l=UOsP^fE{%U=GMa5Qmn3!FLVjA?LBrVir1(#>t6|gwnL!&A1SJtPzI$*9Y zaO>IP?(grM`_()#tHKpP1d3FZ-3df~?Fqq%3>+!;V`x&h* zVndG*VvW)nJ=frsf8Ldwv&2Y2yT@uj(E6qeN2VHbhz}A!oB$x&VdfKk&ukTtZL?}w zYsBF2CT6S}6@8lvU*JG);3pafABE@`)#@@3?}666%P&m1B(HF*qzf}Y=rq4vr8 z{3OY!$Lj%thgKe%f4F1B*mtZkBa?_}csoO%QG0Ry##W6m63&s(S~Qx7Y5E3yTGx7z zK=bQ%hzi=pqUk5E>ChaYiUc*u|K=|9ot-dXs`z*+HaMl@YpD$b;hP4d3YB?{$l8GyueUAt?My*)AnCVMQP*=FI@5h3eCAl*DZ8C0rkf} zVf+<(pUj>48%f zlg#!}8fj-tYSzllwLjuj^3?g1NL*h4IWO~Z05y>?w%DG{&hj&0g&Z*&lJ|joGmmuf z6Eh00GE9!i&dX}6#Z_U001U>{(g^RRecXe)&# zX`s8xy~iKF?0x@rb>J5l24iS-_IRx+*>u(uvzpmaa}xA(6xe7GgVBBO4P&E9Dy2!V zv*+H>{UAq4-B10C9Q6iKhaFC#O?>A4cOML_c87jAK$b~b8#)11yGYt9aR2Ar{joy+ ziFv=X#>pSj$`)Ztr0b{7NX>w_5#bZAmyD6-F3FC{)b3 z8@FyB;*?C;?`q*t;WIN0v>e)I=0GCG#XOhqRQ7Kwv}QUP0v^a^?ovb5BP8Ad7Hyzh z8ERr}K0YS1%*l($`an!W2 z)^vTof%{Ci0u-!Z8=K(d^?>q-%Ny$s@o#Oh;pe(K-iq1Sb@aD%xgb|(sY!D+K^|hI zZ^b7dlV?%9&-CGIniD?o?1#d-_7E9*0w86l9ZhMA(Phn$-SM)hzp|SF= zt@an0Nw4vjuSNhEE&S})dGPWLe-s4$u_dtYwteW$KWs@jbmRZeQGG!tU9NIJn)r+% z1u5kqV1(w1k@yn}lsLX38o4WfjiO&a2<=zaNtSRWCuV3bg}cw2wh)|jlz_Glef5uR zzWmHL8pBTrvD{(ES=0SuKe0bUwlbHDV8W-*sriRRy|+@fSMcg22Chjno!YJrJNWrK z`w6jgeBWNR)*Ro|=^Xbf9Out$u{%jS)&%0@HPX)WrM_mc>&Lm*-v4;sC z18tk8P@CEW`iHpb;%47tMeKQT^mo~!=<)Nr%@2yI#Zl-fwmXYvnP0Y)7EE7rF z&%{C2+gLq1UgAo9Y z-7a{4`P7j-EM)290l{yuoM`k_V!9;I@8P%~`I*M+gB|`l6T?lQJuoHSk*Qb+D%Yn? zG!)>NkU8#Jj&qR<6ELIAmvffd%bbCSi;cd#A6{$?vzUP3iGjuw1BVolumf?G&(3%| z&nle&%E!NZQasP0pMoHuo&JCuz^;!^aWbwmaFA$mP>M~QBsP5KVAn~$dqNk`h}QCg zco{#rk@?S9Hs7Ia!cFDeX!Q6e;`?*@#x}TY^CJv6dyvCsEKNt zCZ;BWUtX#o0d-4f-#pCmfM>rG++OEczr(Wj38ZQl5q%*8z_#B;`Q{L044S|1^jRh- z8fIza)yH;s*(h51nuSly4H}xP-GK6jZ&xC1^1BlUf1Cp;Ux8Sxd-Is;p#QUX=7S== zzRf{-m+}ko0U$_3_LH(bg}(lqmH&Juler_5zvOYtQ?zCt20pD?L1E(tc#m;VMJH`= zEOWJM?SMAa2uVf}f_lM#p`A#EyZw4?{mb{;K@y(9;QKx3>31*WQ<|S^^R9pL+2cK! zpkU8Sp4j>^PAB9EQKA8qN&rr_*4^RoO7on1v9Cj&+9Js&an`h~7-pZQW8i%WcecT7 z5Ck71Nk}^L$!LL6BGX}iCFgYnab6Tx@zdH%YukC2$r6%i)sevjnNZRrWmzYn1#EJX zH6JbLilRlmF4b!&jQQx*-siuy67Z=iBX~+mQ6389w}3fp2FMT2F7nV@#jkq(Len`M zeDozV0j_@M!J=!`{8MP=?CpQLiXGNRn;oy@b2tK))I(mrvXBh)Rr%W9c_pEy0|8aW*!hJsGt0BghU= z4e9tG=(5Jz8qWIWIgN$?yD!l5aEDQ9eAhQFTw@x@B-={wji~3TpKmk@Hz#O5cCbBm zkmmU3`EN(%-1$s$w{ufF?BJt@L0`+VbihG?{yYvDfD%kGqM5@$FmPxj0_o2C%byJP z6#46g!^1Gtgfp+dVSe(C?ROs`AM@>rc+)ngzinC5Bl-9(UwNGK+WL4LPXd+rZGR05 z@)hoxH~m*J4uJBv9meqyI^!9->>BHg-s;WpXU710_Ue8dc>-=Iu1l@pR8U*t_ zM98~*b_0Wg=H1;D?%nza)|*ZuL~%3w_nXDBjQZ}@+=!TjZ$ zpmyL9FQFok9+ZoQRq^ooZs;lRL=~;m+))-?C0l-WORn^RMx*=2bo#W#qnh!_Xo6cO^W`GL2#EsX$Tx4Mu9u34nkkD>4<})ED$jZlAojP!RS|pj9ah zGodX|TDMwqpzDC=ODN4BeeybZdr`S4>^@jw8-XGZTxk9_1N0I?s+)&XbP{;8K^Tutsphdkz~1Z3$&J@jlw;0jH@tcuAnc8Y(L zrIJO+o?IWat_udZ#W>6BQvOU+Esqbm#@mGojl1hmz`!@*j9z0y+VsML@gBOf71ZP7 z@YUMzgtZj!s61L?-^@Q7_;?HBH2vsQSEi-M0Az=sy>5YIy#k4KePcuM?#DG5fFNpf zD1+XYlXA`KyrBm?LJa}vL~_aHf7-?C)g0aThH`omOK|AK>dYo^m&(V6Zsng!LRUkIh?=N2259UlLBGnK#6NE8^9EJ}xe z^GN)9xJ0VoC4V)Os4)lU_qJ`E!iTM3|1RMVeGX7K^q13rT3KP}9#ViHi30n!0bmY* zm8w#t36mtUx@EoZBthKnwQRHiFUz(;M**lWQK}&2cP>(WB+F1IEYVpgn)wZxpdOZZ z%T2YxTTNln?fGzpBAIvm!9n{pr+Q3bJbr)s$Zs;rHGpo(qWV9tFU z4LZuvHZJcNilb;AFFf*FdSEAx$eARQ z8T~Rg5UM&zKa&V1bKkaAhwlDA_4rWmEohLLXC$hiy`m_El9S-?zV_=o50YhdD~zdD zyx(r_yx}SP1j}_jq11muDG8|D@w?l)Va)_`@7OrE10c-w3G1&+X%N+Qw+*aNfemrw zQ}V4f*Gwb4a`xw~KP37T8z)6Sib;s;Iu+!sn-^cONi2Fej z75SZ6r^S3e@sj@)?F5Wf`duo0Ub;bG$>Qbl*{DBzF&sTUSBO^h#DOohKQAr4A^nz7 z9Q@9xW6nN>{R|rJs1RCN{ZdE@*30#mL-OyB2<6AXKZ+(tC?R79uOQ`+is$%uHY$zQ zMZ~fGyPI&A+@sOS7ZHeT6o@?QqD`~#=gh}5jv`0!Yu-)Y(|x_R56pDEy{#cX3sK}9 zmsKZgjPJvU)btI3!0wq-NZ#A-09?;n8xGlCOiik!yB=!8H?35|_7ebn z3UK@Hm1dB#$KD05kDia4{!4RW4a}x@JPeBl;rj2|G(S3JU zx^N&;Mv;@z3__C?<$$wfzYy8(vbx7vw=$I99;xU<&nnM(Tt(+IXmk zMCg$%eY=rI+m_20WWG@RyZ2dPLMq1cnaf-_>+xEcei_Awz zeuhINQFg>afQ3p%jyI5ne!0o?_Nz5Uq()m#(OGNzNDk}&?;aRb!+FCDMn}<@p>Gd7 zY<-gAZ?!>lAO+4$)}WDaTUm#mSbICB0!i6wrBTId51MdkC%Vq5(S`vVHo+mlXUSqr1yoym#?(Q^eAMXP``Bz zn_WY+^PWGt(pu1Dby)TWmLz*ZlJ{NWt+#*OT+_+Zb)Dm)#E9gXvS0rnePJgKV#u%} zbOO}roLNhQ6MUL}kd){HTx9FQh`i&?;>yyR=H4PgU!wS0!JSLO8O@pbt&+Z4;g~}z zRMU~vOrK?4gZ}rxJ^3S}!yBhO+PQbQt6+aqc=PQLT^9>Sr_sEA4T!7*bfB7&yJBI4 zzpwhFD9zQ5C;pX>Z?r-LeI=}CvR|yBV_#F{naNQsV4Fu*3#fwzD5nN(92&yn-q1?{aY0HH*)`oDDGi_N~|(nVLjgF&EgMJ59?U~>!oATl_PI6n2@DrWU2AE;}zow*Ko~)x?fTc|8eTx?y~Ny`qY( z2yXikQsaSzT7H7!=C|ALe&K^NAc(H?ub(}v#j8)DJswE-U;PSa20_Dsfi(w%rESt> zgi-Xd*JNInWrx6=1_N?MNJj|(d=7RlEZJmyO0-oQS-&kAH9nBOhJh@{ zx(KC;AUOF3rF|f(=0}6)KnTJ?(eP7wSed^odYI);(U`Q-j#yEbLixFJiX5`k0T@T*Qx787Y9~P^`P}%pSV6SbUmA{$lZtZ+PrEfD+R>g z3R*L7(0=f@E27d`69s+PHbgU{E=%B7TLM@J^7%OuEAa8gA9@#AO8m%HzYkEvxuyyKZK8Z(7)@=OgTD-FVT4qgY?vSiWHLU3pt_KT*4_>Mh^+$72lh9SqKT zkbIr8Vllw+J>U8pgGsz9-A_#8eUDL=j;*)h*%L;dTM4jT_W?>yFsMT~pg==v&ZE>` z%Y(-!OfR2*B!CR;yU`tDBht*(z)2IVV#_V?TEsJlC*(s4czF7<_`s7QDg^cKcH7Sr zawGi5v^hxs==!*P+FPZl8HixzZoA-m!xl#l+I@T9V!D7QyBBp4p3cst-jhh2I4EDC zNvt&ZC3nze)y!laWP8>xf&bPybj*(9)Z6;W7l2G0=kJa-0MmtrqGl_=}53db{LR$0=h1?z+e3W`0GDdwp9HXob=#Q>dWhx z7OYfvm}yO`m=xd9Q9I)?f~FJt_ulRq-z18hr-D;~Pkf(%VXzc?R6cuoV>@G&>j$%F za`%Xhu0XB~Wl9^M3{Zl%jPb!MUy+3IuMhU9zm;30dP|D6N$_Z+*$3*F&U^cm0~aA!qiHd%mT07QG< z4eGZ_LiZapE>ctxKXOI1ssFY|BF7F-4ZCvTQ~Hp0!@=%Yp>I zd-E5}Ylay0Xp8=OBq}WHq-kE91_)Y4x)C@|hD!=QYxgeRfAx&+;Ub?8MWaQF_Rp#= zWQ-2v;8#DiLp{Rhv!Vz*h1b#Rx_}@i0NPtH001r@2RA^ue>FhB=C4K$;41-mR@h^P z+cr&_CqPueKTbc1V<31y3`8UUToM(&FTlSF9lv{AHwxXX-Kljg&S|z^`$zQgr*46e zE1F{P{;CizF(WiGz&{YQ~HoEON>v$Cvp;7Cd?xpJ%t={cg9hZ>NMCVKMQ96N}EI@ zp%Gp9SMW|-j3$~^pH?ol?81(HHLiOSGx_QGAFbhEuf`@H)z3+GpxqF_CT;G}bKYMB zc7OR0x%Lc>6YFtAEJR9VX;``C_` z&0~*N91fT)N*-TeoC7WQ9!N&7Uu`(RCkO(cg*^ZK)%yiMyn^24rK^u`E}7(6HNUHE z)ZS6S!lkIz1WuC7+ zo-YF2MZ)T=0>Y5dI>XX5)>LdjZdT&tql?#5VKJCP$arZ^EeH&urGwmdQ__RNPY9P*IU44&^8jDSn3OrWa+0eUFS zN8p#CDzc9|2;PUElgSdiu^#acBo$E>o1f=lGvEb+)Qe&Vq}Jpr>}G+3Lh6d6V9RA1 z#LhZAgdv^DrEqB4yR#=Pxx-zF%kSI6VY`5Hm$U`@J8S1z2V6;{8FPRAAW(r zRh?S*s+YyLEzay9c&QX>lZYV11o4C3D6aHDVV$~r)?a((GXp6uZ&+*0xxfj&gu$Mv z|Gjr7zp_$e?owAVeyO949=|6($FCN>R-)iZb0YhQ;qZv|8_N=KIX&lZ;WxTxBB~== z5a6N;LU-~=B!M`OLzw2xy#F2vBZX5f`bNINs6jlCME9b>L7EgYQJkMY=70}D6lfIA zJd^V@)d92qQ;&`otn~E~svTeRMk=D0t3@LlD~Q{&P`NWg#&hpa^~o&HK2*DD&k`-A&3eAqkJ*6B_nK6@QKnRAvUg1cvGs~BTSEGToLNIBN zc4#MsF$dn^RMc!{e)=~D_!!~)z`XhQggooVN~zraj&Ht$YabbwO9CIWVD%gg08i^; z)FSUnc~=AnMpsihTrhO`+iI$w$zYzbUi|(l5cFPp%5Bnk zIsy6+^}>_91U;S@4bo8P9{s6*UzRRmH}U2nGI{tfC*l*%(lqoIWVT0{+JRr~qva6= zBzWs2WD!Non+^M`@dk_HO5->V{ogT)u@YQ3PC{1#vOiZgdm6 zM`o1DC1-N7l^IYUgtDnvV?jmdi~O2F=FlGu3oY5fJeWCVjjEUwdiUiz=BI`k>X$#6 z^-<~fYG|WOe~|AZAwHWkeyAtj`Fzu2+Bc^~)c#h-%i_k5@aaPM(G~Ug21y*Xa+(5Z z9vM47n0IOWv{Xt7(}4`3soSK7fi;(rLE3(?`+EJ)v#T#aj%PYP>yHW#Iiqq6yQ^B- zWsP%M7|!io5OjdsO(LZ3y50!`XU z!ci|@>4MfKmg;oi;0vkW-+W1!y+~6Eh);wjAbcg(?fUilp6}d{FSo^kt?Q)=uCv%# ze|;nP6-3X#8|$z1f&|(NFgl4eI1T7D<26JQ_V!K7Wr`+65x*!10^`*T4GlDGWdwVM$wSG4eA*GHDv~or>`)dW35>BjXquYewvK=K#uz>_+Zq-1ElTe;G+Vi{k{kE^#8#|MiMrOsv#g65p8~J30GFz$t?OVEj0Hne zFVSTPXuPM->3;TS-9%4pwnv9Zop5LYo4k+T&s_4@1zMh@7bis9Tws8G#%hVWJaUh!KM5fmRJM+w_CEv8 z+hjoqgy?j!8t;)#4p{3d?nwJ5tmJ2vzhBjf)lz4F?D(N4_fjstGt`;-EGJXlH!3`4 zP)jSEt^|5md1{@#vGO?ASVBPKfw#rMPJ&fhgIpkx@C>h3^oVsJ)bp~Q(K)IBpn#BH zVd13csBqc$>U*oVO24Bo4H_()WGTuDQ5UTtrIe4BrZ`w3mjK_2{vE5#i+QnR9K~G3 zKdxCD=25qMc|+?#9IW1AdcxQEA$)gZKwJ3^$x>`u#seGq{0$d4IJ&PMCU#RXBU%X> z$g)f4!5=#tN6@jV;-k|%^sux9AEL~Pk04GQtnTuM=;+9MC@MxLkFq7hRb1PykU@3a zRoBJ~REf9h_>V+}ly^Gpa)esP2kra?Is{@%-I9vEx_9C@0q?ozLoz&&I@|>8@kk5t z2p~6L*|Qx>@v#`ke&n+y*oanYtf0bx*pSnW{7*gnY6k8=mgHNh)g0`PJ7hBse*vnR zX%^oR>XyQ1ujI{U$sg{bKFk)Q9-DamMX#{%pHr9Lmze5>dm#BEQ9v9v3HTrmcceH&ZZmhRnslB@ii>8 zy?YPRuVv?uJSwbxJ1E%I)fBvUFuPwVrBNele0uSVpGhMHLZI#tzG*Qe`eN1`axj6k z<}T$;``M|cdQTURJ?UOqK8rhPaog$gNWKs!$N}jLH0?_W|W#J{Xn{AsZawi|<+CuQk}fDNXA0Bwo<&ZTwMx z>&Z>6nKwdLv z36=iQVU|B&IZfY#8(8-Zgqz;AP{k;KF&aHv79Xkn61oU!+#X)Ua6p)uP>W%RE`8Ed55-zIvxiC|@TfMa3{F!D^BE)y2Yn<&gQD!V zMGL@qO!Gmb9?)al;9tjI9m@C+FV);UCW)kTYXG3xy{+0U61EbEZ3@6e-j>J(eAEF> z0=TeyPL0;MBF^@&{J1so;90(@MB4!SSOC5CzMz98k(#Ne=9UJrS6O7g$j=crOTdCa zc8K9|yt_FMsQN~A7lb^6rq3qhP)^>O=0>r*FeGW{+n8CQUw_sHzDRE#F}A*93l6h|z$3OU$yG^)<;Kr#TYXV!pqDQoVyJjV$feS62`xEvLx1&zL_? zU%g!Y_(l#F6 zk>LTAnrNR=J9=lvY%es8Kg6>9FIv}V<&i>fa^a+g6H1*)nGN_)0bqT9sn#F@KeKwn!2c2}r9?WtqrnN#-m{gKr~ zG`vleSE^;Hs|OCEF1zJE|E1|qGTCl@Jc-cuN2-b()qM!0Jy#IWS5QyC#g1+7;ll{; zeSo2~>sHKy5++fVBS2mSQMtN{c0)qsPka(y?5-(Xo^XFVzk5C6m#RO%j~Bq5aaxD+ zz?;yuj^@cRlcv$Qhm>;ho7)ZL&R{Kmj}1q`oD`ty_gcsxYUyp)Q72g%;Kd9~DY8^E z<$1pK$w|U6Z07XZeSdKU#zqW{0v*A#aWNn^=)^}#OSfBFSHXKRh?!B8=S-4YrvmJZ z5qF$RUV}t2dxR+c_meQAoIdx;z=!9F7`N6od`zU45i^(Q8O5}sP;9fXx?9gnuDd8= z*~!Q4dsGqI@mPlvIEC2MNQy?CS+1eWU$oN=*<};hE4p6J!v{;v)|@kGS;t6$iOCFL z!CX=emPBjCir~f`ZUh0(G4Ujf2M?Hf!8Iv)KNC;+B6BPxf5j)gd;Dg+JonojUJ&FJXO!rghS7Rg1Wv4 ziW#asZ3&1~d5aC)xPZ&Ovkl9#B$+s2=yz_H<1n7zXl(p?T&mE#z6)z@L2Lj({dq&R z$O_{pT|ZzMzv8a|aU2t}t@f8Xuvy~o)RqpDf+8W4@b~yOTF(P9)oW7eStEw@*pxNU zFt=S;G^(&5HS&e%L15dAr>t#$9P@AO>Oyus8Zm`8Ku)GnA8;88p@g!8nzx*EUNGzFu$Rhjy7Pvm3B=O4bquplGf5F$ zI6lmaWesgh3gz$Kso7a49f$x?K(4<(>}Swco^7tEslsLF>Ubq$eT=Jp+lrjNH}#bU zKFnlwxs`Y+6IY;$l4Y0ebD+&62}Q`11LX`mGuV`!;fT^|2^7hnyu6MupX#vkPd1Lq|$OYnMq*~GgZ1X;XOtbZO zL+6!tnqpz#Sf^$5R33HHE7axIu+I^n6D|*|`dRvxucjc#RH4Rg z_Y|k^9t!7~VhbI@EqDjqS45A3JhBpOJ-U^|QNw>q8OahqN}2&*zfWdYH4UB1obi00 zseKFc2#E(uYK!CyLwe@*%#6-(#J|9@K8=UmqX6OWMK#=z6u%IaEfcwp9 zekjxgC9v(;FLxn(B|gq5Ln1j}9~*TbX{Hw&0`!e6Up3VcF3}Q5ko@LE){bse_sgb- z#Acq999$3W-PYTY=fC0j{#@GGG)#C zhG0ostfUvP*jtlV=)JK41!EZvRtRtq5c40F(Q9B4hq8R)ROrhxUGVW}EfYEnI zR+j#I7Q+4gtKVY{c=n9v9JF_9$neN7!((4JpAqrYW4K2VS5KYr78p4x z@|eZOUg})RCXQ#P#8luCsEn;ZDyJ?a)uCFrxX#89#%1>M@spcKHMdh^a^yS2gxPRAt-!8UT3Bx+u00WnobqG|>KV9qiIO9*2?Sk29f zec#47I`vsA-@jrN36Sw^NH=}@ARgTqxZE=IAZ&u-VzwO ziTp?ey4b1VK6eVX_T$5mti;!s_Y8cvneK-z&f#ZFuV`GfY6Moy*(;njoOT%4+g?`! z#kl@!)>!>SJc>)<-h-QE8=iP?hCMDTlKqfZ}FmxZinB@x~Pl4NaV6#a9iF7M^{cXVjGX%z6VUZ0n*Q6dH0<1C-tW?LGLf z_iFe*OS4F!qQs>v6AS}(kZ53L{Q1rrRz;@kSI^*T3g2S-+n9ZauK~yLwA{!3vq*Yj z|CxDGku=Q-(Q+w%r4sf{eHHK-8vv)$KqFSz9-WaVQBV=4d$w-8wqHligB#m zefR0L%jjeq_W)4x@xNJ5KEZob3fHZkk3!*k$Py~QP^Hr4!vXWc& z9&hxwhxfBu)yr*3$9*-yzMFx^QWA-&Q9&UJM6L*UiqmznPTHBw8RQH_Y*? z^}LE=AE%;tJ)f8jwB4jmAaE`9)j`Ns6q_))h^aW64c!Pm+~P^hW9}i!X|veaaXTCa=pD&!tnc zTzSNU!VTcuN9~SgsRI=cBz8t|dD&gDV7f82#bBlAy}a&wO|b&I4RjwS#&Pk&3;_Tq zwjd!!w>HVk>pJ73!D&_em1k*>ljkGuBfnG8?rkePuuB1&1;pcyx6jbe0rwrd9ZxrE zJ+2(0Gu7R2dcU<5;K5tU=A%LPHuUc``N9ihucak)nE&o5=6yH4IM{xC{d)XQ(R495 z9z}-tdCK0?@8wrf)kX+0os%~ozoB|vC{^$nTddms=VN%-(r#|gzr;XGo3nMukxX5N>NAj7HfTOTh&Drz zL?WY$BBD4x(YKJ{2%};eiBFJ|apna#&oICSx>!Jbf23DE$rUAKRpF!!SP2S4X!Kzzl{4hLa%h{ z(+}Q#Mhd#%qz8rwR{qPG6zKfX^|n%s{6yX6;k4Ih+HV->3r8tVs2iE{S@FC1jLVrv z$~VTm(gjhM2dW}sahhWqGyqT8h4O&g#jgz}lH-9$=YwfNrO>|F3X>lEq)+_U)4=dX zwD?vNvK%&0mkGH%tir<22K>_L7sJs0Xv@@c5ZN04x&Y4? zuRs6!RwOpWITiElH$xTm9m~u6l*11Pe>Xoq)$W`9et2njMx!gqvg0|{gF5-A7P2^Q zGRKH0NaV2sR74}Bb{1YlZ!^tm@0eK_fBGzuffi@I^#+kK$mgq>RCyq4 z0EfeJ$ZOAzOVjG71_Uo{`FqI+h90uXRH2t!T*&{|AMy8+pTBwK|M*6=CfA%S_n%yJ zBeX;OC87nM0%G?@#S4P0b?w#+S>-s|6BQ9mG1XIg0v?r;*ij1KQ^fR&8&nY*Rc@$j zhkr0Se|U<3w=x^UTsnUTN)rNS8|FRQ7R>>u!sE(YbF$Q7o3eiuuqY>oCdy~AkUcffY(Dj1= zmIG)JbZz_;`TEy-ujixU9?72%#h2_WL7D*VxYj~r80aPOg|Spz{!-!0d&mPl*6sei z#z@pPo?#WaMtff**1BhsXm#+rF7&QGs}Thx&OHUJEiI%aMQ@?%xkFmm_YDohB=aQD0SgiIqt_}#=LIO9Uhb9#oIw29>*eAJ>x zeM+y0t?7rICoRA?{e&zZhbs3>i%h0y_C5_Jr^3iGlYmF~7`S;79Te;Ae5Q%jlbJIVyJIoWhds-0;<7rT}m2I_;G_q)I0x?&0NzRzC^xNEoS! zc=Dci(zuvxL`Cs|MqV-*0hQ6j#}Qk0yr#nnraGVaET3?VShCnh&W!&NB8kcZDr%0xO#Xu>uS^Q4KuP*UWV@K1= zpGw5KkoF#~BCmN1ES;TU3CluRK)=k1MX<+nSA?c1$fwr{g-U%pv2PJS9nN&la1Dk9 zz?+;byr);AGvyDf5p@sR*!V72f3j2W7niGU0&I_YsvhTG^G*+aXpZrJxDqd;EBf!b%C9< zYEyTVzf=3NZ06(rtgVIAZM(fiDT!J1px>Gc+3pp6M6v}KmMKuf?(B&R@Us)9EH!q5k_agKnRO4M^@l!WLn@fOo?J{?ubyJ zGSIDo4$^~`nVSwIBvT8N4mTla4dNT+&X>>pPJTJ2#3j$gC5zoQG;+G0KR$g7LW&#N zwv3nysGor)jGC+nvZ(-lQ*37sTTx)`ul4ND5A*m>A5pOy;wH^g<8()pcG6;$IBB&G z8wO$pEIE8|nC>5DI0f{tj{un?Z)T$R$E!*9svqQa?h^9yI(T;NciVJluciR=ScuS` zNm?9Lgwm|HIOnV@%!wOnA?~w&s0w@%$cx_nfF844*ahJP7N+#w9QG8GRfgA)%%M49 z3>Kvb2f&Vrdz)cmoxcOYPs7{ztB<`_S^kRuE>+^E>^j60h?=kZIo?4MIt?+E-Sl1I8t7Po zOv)CG!c0cloXx zKXyx;__QQEx_?`pwJ?q5bcs&rH%am)4~2&QXnzPKVn3FRi5kl6zl-ny`hrTdzO9Gc=@4kGhHgkwa<64 zF$|II$TI_Us+N~S)RqSn(+l=#&aezM!+4=zdC-WJwO{TX+>)5enEpZn z$eZVqIp1;H#fHCB8BR%jaM~&RhhJedFZ48&;(<1$zP7)Cf4)w87)q>1T@a-VpvjLf zGoe)#MRb|m`4huOY|T=iuE@en^5biWNbG*EId~}xCe62$+|GvwaiuihgKTqU&k<;F^L|hQiw?e$k`qBMoipKt}LGfdL9EUn+=vTMw8l; zuWj$X2?E80^Y`9u-ab5&VKmuiXJuQW?7u{9rkws1O2U$pSYi?ak}uoD;$vHBZNH3# z*gla}w}Vm`1>#P}*3d43`;$d((>wTk1DHTYzT)<5mhGUnWbwZn-afxi#ZTZcpwhS* zvd6=+Q$OmGSTs$kAM7TXN@0VLXB$Z9ucnwg?Q(rnDO*Ov6u+qssBX3nJ)i=nYllrs zCBov#zo=TSWay_gXM=Q7nhf7ADf3MzR(eq6(qZS{;?ZiJ8_?A^&Z*A^aETTmpQTX$ zllm_tbr8H;-w}VlehnHTH|qVwT=jk_F71U9K~ro8wto>%`EEPzP*Z8$htKO>q{21hDjbx`!eZW5eOacIgs&HYohD(GA`4W|V-nC9o5bTf` zp0K8%SrSCKKnu^vt8nF#L(ppO^$JUtZgKkuFO~S@=K1`CI(Gj z4ZA=BoMd4qHXVgFeqo|htwKp;CldVvp+RiGM&Fd^kH^U)Q8Pw-to7`s8PxJ+c?>c# z#~nLL4($0bSn16|E8AZw6a4jVHuofc^GK}flL9?`7b3a4<6TYlcZB}mU6Feub(s`rG!eGp>EXhel2Ldz*vCDAN z?NAwnS0@RN|LBk$a>c0ZNd=En?pz0d#^)2 z&!y~Vf3;5PWGfKItbR0}n?D)D07C@`ArCn*buTGOm?Y;s4Dk74lHBYc5h6b{&h|@8 z&BNIX`0;qkzJ#_LLJ&a4)9L|DHi~auQ?PD0xIXp?Ln@U}aj3trS}W8cj$jdF;Z*3C z-8o-97|H|VW!de`@tbDkzTN2F7bBAKy4!5*l0RvgeNxEj3@>HWqz+dAc_=DB5=rNi zIymj1%Jh8X;*JV3mgl*b(Rr}gE1RlFgoY6&_TI`b?}C07%O*b3zNtoLK>pN8*A4}- zPaGAkd)T$2=L@c!hVL~0W<#vE8ldnMm))N5=N~^WJ`W zN_60P+bs~vD873DL+%h3L42%?tJ|$>i1<|(1lk?5#=>wG1sKrikhuek_&An5?`NtBAp?w>_9#szIp4&W!WT@C^qX z(3^r1+bu!V&292!Rdqd=n{N{<;50^XD!^=%z<%j58F{fnN*gHDpPM~?Poim({Qf3d z@uoN+-2c8Gh9o}l5&Y>hHjiK_wRL46RZrlI6PyJN>^^SeJ{}f&p$P6RoI%q=?B290 z;Hl$0(1O{Zs-}A3&(}k~S2O|(3ft@OCe|BHxN!EHqeDB818Yp1BFzbGOi0>x3V)M{ zC`fdw7Z?Yn!w`BYbR2EA7)U)lFvZG!!zI7c#?Dxa5DL!_D2MJ{l0Is#3)tJO79O7K z4LJo#Z%Kgi#S`F+j3n@f%xwD3ffJZ}vX>w@nMz8+Uj3NcykbV9Ag>iSI4+SxZLLkq< zcXb(2VOMpxD0Sx9YvS-eFLFT|*6N)VdnWk121wE$NC=M7J@?!Ev{h0Kvf=tUNe*6SVEa-(d)%TM4*G6=2~W9P7JZ zqckN?$D&x4N65ee!7%g|J+?j{erD-%61cU@r+z&y`OqLlW=kgMQTd$>_hx&wu)_k3 z&9H)yc40?Dz3-aL=A^PRb(&a9*=x+%!hjA-e_9o7u9A9h30ek#5OsXdKLVY)Ht3~Bim&iE%a!Sc2|7gp?g z&KK-~nav03kY|6jD25xu>y_$AiI?0hic(iWeoK0qQCcVEz3dh&%MBzvOUJV& za5`{XD=VQnJ;C0ctm&|jyAUwTOjp>ggj>>gX0ySF%t=QkWyioPL^ZmqidQ^SKH|T@tw_voen1y!3qHd5_Z#J+?;-= z?pWwpY1SMbd4GwLU>PO~V2<;O{<{u%J;NDm!`^7{+y!SE377EIEyAnNbtJV~XSWW2 z0i1_w>Oz)&^;Pg82{$#A-{hTk({cDT!QH{PvTfeJuR!lw_fKqo3JJm>mUC3wlVEz1 z-66^KIYtwQbkY0n)v4P?65J-e3`d0O6d$_MCEo?o?WILFd>p%`rXKmJGfP=%P&0cG zmYP~ty&{SPG&}EMz@@@KWb#tQNjJkn8gS^gi$Y{Ulj1-IWeX34!T#JsfC=j~uf=)= zB^DO>&H3t>7dJMyP0WmCYGIGqz>BBGTj(2B!yCpu@F!sY{xEbrfVT$YLt-@2vY5m| zAO{HKhuIBiGyM3>H(g42M0@k4@-8ySubRdzt%j6&t~0N_C-C1*BAiL zY3e#vZW5v5ewrOujc|kVxVOf3de#5=+Td>ZHMYahe!w>#-%OakE^kx$XfT2>G4^94 za895zb{+e*sTiXiSeU_0{|(PCc1U;hlDdPM!yENccHN;9JY;#p7m5fx%9EyJqs$%w z0*)1Ki)&P2&?8_)lb22cSki=Qf&86%IJGGtK1y0@RArVgRS=zkWZ+>u&x*uNp-#Jl z9bhV>n^{$A<4Zyqd)<@(R>};-&v6;>3f7eOT+eNl?}1+{a)%I2u*uE_1~R}fSBGD8 z6L_pOXz^q6K-oQ9p=ut)?*EP_*o1qX6HZ_srg%3c$2v`&PbW;!yJ~MMmAF|M)esP= zES973s~rnt*$;sL3c#37=7h>Mh4X{cn8_3hc*jchRXU3oQ?OHSSLkH3Dn3HIxnLND zEiboOfw!MzQSvXqiC=xw!6j|7<*o|bpY=0_S%X5jELy-3x5EPwyP$Q7rc~u{Me`{M zvKf=>>k#fTWpwAi^gjNI+>~GMCol~ubDZ!(S^(2#(=?OXa8eD?B-P%?gHyD|G*v3y zom6`84@xWM1u5!rP57b}>E6$@g8O=MqE+?9z(6FI_XH7}7!<;85D9qf-O~yIA9I9R zk4he&ixw}muD$OYUFe5GMix~#`eE$=!+k?BgL&?eQq6w#9O1{-ez}I&hf&pSA(onh zB4T#9tC++_Q~$wiu<+P>snRakk%SX^?|TcqkHoFQqf7mxz)K(4hA3yy}pxP#GJthSD(2+!7`rpUHUppFXuWw0-B(Wtc9ao-<+ep@R-+ zS#$D8Z}+|>nGm;`b)fI>3U@#*5BU-1Z;s8h2b9KW;fjE>mMVHcaOC5t;~X9rIxwt& zpKqls&x0_$sDX&fK|ogaWx?=J-;iC+ot8{!k)t77ANL2**c8Zepab7DGeb(@Ir5to zQ?IvH*p1fK|9gqXhxQ;~Va!{X$)+|ZUtHebKf3oNI^84E;{Bs5W5B!`Kd$91BvuI) zwP|A0DI?GrXwoE-zQE{YG;y*fCa!{q7jhz~O!@io8NiY?q8KgH4SdHLt2jo2l|{Ng zoE1ARPieH{O?{X8$z&dtk0nB><`->@T9b_-=w>C~tE!|wH z>!?-osqYfU>xI!CN$v1Ua~Kqt=x}CF3{ZiWX^Q5sOSnB+bG{@qP;wv^95Za)cNOP3 z4mcmX>WpSCQF+Tv0z@7PrEW8^PNGjUgc~drdp#-w&Yr`VZi0|aI*Qc9zUj{$WWW0v znPKn~5!|O;+2B=f&@xIIa-*@^sW5}vF?kbG#HR^peK<9;`0J+X<^bJ$_s=IU`R#h2 zRq@jI^Rq34YhNFnb_?Hr^rAFiZ0T0d4R;f*iG2B@Nrc%k$7OpQ`_($^!F7d&P#(l2 z1C%1y+qO@VUK*_S4wL(0AHTdM#M}=1@sXU^xq7@*n^Gp9>OjV&Y2gvqvtkB)4lVxn z)#c)DI!2Lwo%@H>chaZ^z#D5^UKU=1?r)uov!ytW!?&<0(QNxrb-T#%F>qDi>K9|v z9JehkQ9Eh5;GDfBWlg!rrB6v3ern2YMRK>NuR1MM89N&Dmq#U~4YN&J?2RlR*;3*r zOzpLjyvLKS!j4UVYo?xl!%_=dg4W!pxt{~NhrY|9S0J=5D)EpZLs+p3Z)O72O zQ=NMNI7+NwtYzE>Adsn+1HK;D;l=!AgI^CKH{qT5_wKD(12}+AcPM!&`xuAYc6=8H z-|kLw9vQOax{j-A^opK$Z&O7bv29w}>9uLbB^T~ro9MJBAT5;%y8E;L`KExFDIM1; zQ44ijqPH6t)iyii;M?&%5-J9oq{8ILxZd((ryytL;{ZrCN#yE9jj@+*MfazEZLvew zLu3P)&+J=-2EhU$%d#|qt~`%YT-)zh+u;2xg67-}lR@`n6M#;=^0xi<+t~iWk`zKo zmoa}=benKaNpoqeD=vGOkbd$4xz~YM-)1me}g^d!Ij=tFxc9W!UNL3OBVg$JBP)0@)>!|Fp z)oQVIv`<|-@VG6ySGyQQUkH=?#TshMAq9%9Zr&{@)JT?j9hYl*ik>U6qW!r$v2YER zy=pt1lY~dobBtWa5I(SbG?roESr$aZ=`|rXz_1mDUw!s_i>a2QjQ_2P}!oALo_W8vJIDH zd7Cpk53si!$+vw|HW!-!*atqT$WQfn;FFbq~+sTnBU-X$l` zYchF77CJz=bx6S+!Rt|fN--^M3T=!mL1+z5j)h#1lO~VAf>AP^vCDj??d8Kw(LA-XYM zIG^pIdjVUSNMonNElSTJ)kG%7SnTP2U@`gbM{7i3c&21=BZFoVG-ZW@8==r{kbdt z{A6tsTcP=xhSHCIJ@}4)`|qZoD*gl{94Eho5mVgMrDCsY8Q zM+QaEpYF2ZY*;IOpa>L#Y>mFoSyI0sLkOUEj}Vge6I|7 zUz!+DkHgF5z0`fwGiuZT&MWP_nvu+6%*$gUh?9!v6ozo>s7{v8nv9>-eA0HAojy}U%pDinw`KpbRHRqNoljN_c*#@dPb=;9W$98bb^MA(GTiHL<_rb zFt!T5H$nW6gLAB6u{IU4HYduwZsw5N%|r&@(mZHRJe-2*tsO`v;kMqj7_Z(2)V zJe%6PSGxEX8#ZAZ4$%`B7D66}ci{Pf++?+DuW}P1OW*N;HDNoTtNbU?qA%7}bGRwH zvc10Bv%kDjsh~7C;HK%#5hVw<)+p?vSJ!@wV2Xt!R}?+wPQR zj7!^vTJv#D_7}WOhPFE~3ABi3`6pk-=UvI@p@=afTtp| z&z%%>#PN(`LuTypN^rWQG1FI+K%A;fd|CH!&_O%q)-#0qeTPprPVcy zbYo~dQGE2=g7Hzv+?u~Ww*LGuCA`U)q1qt^uZbH}}2zq$scI9gQd z?DsG~F^UuMbk=OvHr!z9F?Y6pwePZen;;Hj8T!b8t$!HwBKhz%p0#cK$!jlIgl|B~ z=JnBrYohJslNB<0`MA!tRvb0bafX9&5c`@bJsL2!FT$aW^wG z9bpt*_F5^-%NT)NChfGc+=R*;ULus&;ywTDIh3P-=7Z&Uf+#K6vPgA(rHITOOW_nX z%@9!Nhh9i)W?D^=X4PU2)tn3kt!dSst4h``9j^psZ*Q!2Fx&2Qa zruuIkCc5H+rDz;8(`-B-cI!h8~P z?rl~^Q4$`En3g~oV#!!-*SfX%z~c>rqGqq-XiXGH5q}dHou7`0w6ZT}+(UfGoR74N z>^}B#Nj?*aqg#;z+}w=$qv9#^`n)$($zO@tjYMgWn+j-tdaX|GKOsxWE`c_IrCIbXvQ4qs<8$YodzR9TXOO!Nw$n%ZERimx6fzHTG$b z=07#ykI6qUHJ1jPD_urd(u`C(Klt<^>GRTcwK%+OnP4Xq{~faz*s;)gpt#7RbVFzb zNq!yZHR9dsM9h=t73@`P3&i7oW@?CTwZWj#cbf5wYjMR)|LS_IZjl!WiEfuHcZ41d z2P?3h0@zd=7O%PI)$<9TQ_N#{OrXu6|B9mCSh z8Y?2-J<7_9E7}{p{rknM2RHtDmi&VQ@yk#9rwIW7tY{^22B{@30KMeWbi!ni@PNx& z>+L+3fVf<`?b3bJI+)iDI;{Cn{~ur9)#SFWtowubz?>dMQ6xn%iKLj`m~+nj^%rtj z=d3weyI1c!eVCF#RK3;57P?>-qq7t=oC|9C(b z;GwRg`R_TAC3fFu{FLnFa4HW#vB2#N-Fp3%GI`i}4&P8r!8oiy*ev@xXD`Z%6+SQcfdFYBr z|0o~JM!DI?BO~rOZd-x^9YOJ-G0;@ZI{D+f*WMkx9d$`I4K0;S4brhf4-LMf<(Q7X z<=2PW{Jkyb0ZUDd6?b+4^wEo(*^A50CL?)bOZ2cYWO}$8e{7Jt^fviPY8cotv}@_( zgv_u0NI(AtSoQp$p3>*Cc-d#doPbGLo_qYdtKk-6baRf+XB-YeG+ZC?BIkH=TAH}% zSr~061iYtxzOKqAF(P_97J-r!ZhD_wV+}OB^!%*CltpDo6q?l4ELs>su=Z_1tS)v? z5y!&lj42ddjm+dMWwzequSzj1(ad@-3=I#sR&8VJRF0_*&jo&u(^?!Tt-z z+{zY5AIh&U)!SPXt=#e#bBV3B;VZ`~52eI>6iD>2cynXWG-K8-`INNQhTRjdF12zs z`Z#2W#3aR;$ttF-*{twCcBHXM?JI!0neQRKmdT>f&*$MhvO9$dLxiR!`uX}}oAR2Z zJ=jdV<1tv#=iDfXRQuCVB|ui3xhUPQUT0tU;%+kSkmSeDfNAFr(ku8;O~wNHNDK_` z{In&OP6zjaP1L>mkN2B?pF$TOzi~(9-XhX!yn7|Ss|N0RjB)@1wCx>vejVsNOy%-* zV#-}YK7rL^XeJ)puSSMGi{F^aymsCwrkuM=Oum*v0m1NdMx*Xp>3|7{4M11o-skQC5YP$Y^Hg3#Swc_}(3sS(&-F=7 z#YE1&{a~vXm@nXuf)wu@w*mSKc%{3{)e*gd#0a66mwb!9?gOExJr-=lLl~NHKRSla zoDe_N=EZ({2LoeJ0%SonaZ7_)Fufo#VP-ljTU*%Ea-_l$n}7^XPC=su^W ztGP?TC-fv6Rpnu$4XN?7`>(yB&r7Sn=g^1|<8u2y@0;9iK@&@(09DOGv%Cwzc}z;h$ag^GCre;d4lw!1S?rnozfL$6BJJ-2H*!KF(`V*^%{*NSSZ$Ycm9?4))tNT~Kf{0eoFiwL!VWg@*%u7JfD%X=0ZE z7nI*|qO|W1h!f{Q%|MP4^H9AODZaIpZ&$>x`&rFy+Qb(%UtIVQbyZi1iL&iwWtA1H z{Qh3-EytliB&fqJPKpHI2A7S7?|u(SpqXT7|80_<#r5ZW=ly=(&nQ*bypW$yw?GGW z#%XOrx&*yx*@UE*m)A0|siU}>Awv$p7xK3nc!w8V$@fr0AI(iJhxg+!oyR_VLsjuu z5FX?EX{OnX%obyOwdfShC zBfYk3x6(=ArJR>Ogc}5KwZYuN{fPYiQZXU-UgYhujHj|6cj_t3uj1I-z4Bi=qhK77 z%{CtSd?`q}aS1Y*v16z2>x`^-QodQwTm85{cksi;K^KkzK2q~EUGa7nGL>FH7j>lC zD1qbQuta9dx-ujgejl^~=%N^>dm@a^FdZ)%7Ua<>NZk)?PKYNeAC*585Nlre+>Vj4 z&3R3!v!`Z<(Zn9|4yaDEi@wyyGcDcx)t(r%l$rhU#DvVmXJ#CAj#rPh0$eMUA3Vt< zKFiS3I3XNkp1?=gPr0p@0Q2^bLr0nX(!0p_PDlmvPEBJbY%GPJ?Tf;|Zz{Xk_3?SG zb%Wt)jdKO~_BLknr^UE@-y>8M{@3y_+3*9j{zxW4|uoFMqR0(LcuY5Z+IZ& zfPO#Y{s@a)+UymmTZf)J5a^Wv503u1-h#l(-MVnWQ8=i1?B_$yN>Zd(duR{uL-QWn zo~evK!X(3>{RngsThpBtydzM1Sl26Yx z7o&o1U^-a5#BQE6-vMgbP=cmdA3IIQP(a)}7Y)+mt< zTE!dcw2$Sfi>a2bK`h#O>mO5?33GaqQDGeC;s;j{O5`&1Wd-1L!gVs$8X^iwdvP_` z9rwh5CaYE5FBebuo6^GuCKS1+Hu(K#TBL>3= zK6BPybt*oS&X6OCgf?Abj2p9(t%w{4FymQl;9E(@5d*z^g3aKntY$|1uW`YQ&?GUZ zh&YJ>UuP!hpK!Sa-8KPeitMBpQG}h5VpqnsrzCSTc&C02QyIMyK3yHce656g0B;O$sUEH?1;0tj3kBrO^~%1c!ImLG zYG}96SVTJ%?I^Zw!n;_lC+?wvMlH6ZaKJ6;d41%SjBEn-E|?NYA#-4#g1k@D!ffVr zPI52{ZZt@|0t%7}2!e8iHp(A&{tBh``<{pU{L0odE3j)7pv-*O(2?P6SlofmoK4^n zCJoGk87IoKKn!Y|kI@2a?;9)XL=yINTU8s0tl{D=_ik8iF>~j`>$kB?yd58JB(F6n>oG}^@gj&5*V*)Gm&?C@xz39lZ0HEJzHyX9-2tu z*{MDrt`*mJU&QZswx)(8-Ky^UuG`b-uTSE`RCuM+fFU9~(=y==8yi3{7X;&7VRV5# znVTZ(0)Pt5kIcY+>AD-eV7!U+kZfB$Hv9d`ZTj&H&2?QQB%H)GWCAFY`}1w#*_))6 z2SsMxHcTvyc}_Q-qS`c=qKum%Nf@;%=gaOcyGmi7N$P*cg36D-&x!%*6l?3}yedeu z;jVK0yMUnPm9=^FVLqKh!D;Z`6|7Z-31@oSZ2MMeRKEL4ZVI_{7$>YTx@{Fw9V-rK5%onpUBeUAnum$>r}_2<1v4y zEhH-)Vtaj?uO^x{$8J+st29hLfGTo%?(V$g$vvd$%1j*kIWw(;Xc7=PTcm9$6GPNE zNi04u?|+|R$T{TqnbqeF)nd1>7fSbB_n21cz8&AYDp{8C*nknQHGR}QA(bxhrn=I6 zeC5s9l|D;H>I~^i5S;r#E1!+-UPxp%%URvel7)HZY{lmXT5BTmP@<5u-VO@w2Dl5N zryB3$#KEBH3IqiA9kbt_MnpB@!r8(|M{GQ;3-`W9|5 z;Dj>=k;|Ar-ds^R>YuoG9A^MPYM`~XqN93C4=<-G3&b@0fdTJ|1*Jee1w#t7rCkEz zk*62Og;>Z@UN@`u6ARh6`x`IU%N_tB&(IcQPRYM-ss|YzZ!t%Um(dL3irQX1PV)K{Hnh3~e*i{3=5})-(j(c26d5IUj|!qj zAr^~J#X#mciQne9W;K{YgQjT~dTCSuI7`wcg{=60??LeUVQ}#6{i|0c5+w`7vTOKF z)+i9M9r=A6`+*ziGlMd}L-1EkjmKb%a!j70Nt_mxq@GoPStiuFzK2E4M1|J3PqP5) z|LCe-G3x6)@A5<=3G!L)fr5<^jOx;01t+6TbSP65hT(gr%D3kl=2X@|-yge^N@%)Du`2po8X!o|g0!a0mU4=&EH<;X*kdb#-5j6kPH%G8F72(mae)6Is*P8wjT_To~~t% zr3=e-bEh^C`kMLZ;b-2C#>4_`okmj;r-g%% z;=}^4Py5(;s%S|mXt5iY9tmJ1@+rK_jAR#{@REK9XghwIHbl@+>mh-%k4C?2k+%WqD8p7MK{#~_Om~HRWJ3rd;OaH$7 zLFY|<$BM7sJB@5+NJ&T7_*KpKb+ZG&X&rQ_!e}2pw`+O2^o2pAE&1_Mnto@w?A}_ut%DwH2j$qQe2U zh!lSbC-a5t1LYD}qWOE4j1-P<=gQhuTdD)Wrs5F@g{z!TwGDuRUulD$)~y7pq%O%Y zJ(wHzT`H$#nU`ns|LY^`)qy zQ~U6vcWpPfmsr_?6}|G)>G(jwB?6Bc?ICw(zy|ZC`x{CIrU<_uPsi8vtEE^pd$P2p zt-W+pXN2?9^CO7ZCN>$s)kvatYw}$s=HJ6tYd{RUE*gV>4X_-57Ad6*)5d=DK(r`1-T(c_8<&iFWTnN2#7k zOMd-;@j4CxQx}W$Ns^qKy-!jbu$~@FI3!IZ!CZIoft@UhN93X2$ZBxpYcds|Z2C~1 z(+si-O>);LyHCZTc{MKa+lp)KfFs0-PX!F7N+(IJxh2vVk8@w4YRjZScTD#dXnQsi z3fK!WhjhM z2AL*lPqqpf?O*3{2?iawh5QG7$}!@7FjINVJkfLPaEf zT)^YJW47zM;e|1P-8m}x~IWI;qC&P5#N+zm4vutbu>-LW6zjTp!-i2%Mnr#r3?d_goUe}(`wsIXM zG28k8{ewgJD6jY495$gJwN_7=f+5+PhAx4|MhEy^`5+Ir6XDDzmN$mn=6eZG2xO6| zd;3IT#*j)$bC29hAgB}hq-C3=y%%IG?a9u zdIj)CM+(8%Gc0tTTDFFPeOUBLoAMBY#yrc zwSw<2eQ)AudTpQ_0+Rz(#63T2%=x_kkKD-dMrCuqWA3q zV_M1O+ub7D>clb_g<{6t;||~0gBU8BZRiZYhTX{)==r0;M&#(f+Wv;N&#>9yQd+MS z#K>!$e0o20C0-#`Von{Qs@u?2GH1WVM>KiD?=_#`@C6)cvFJN_HdN*$!6IJhP}b(d zkang^O+yWhAP)BW8R5&Jp>Ddv;GZE7-MHyzzxyX4w?np22rMTBE1s!{KcMc>>LRq+ z4lyVdJR9_S#Z1*Ma^(d+p)FO5M9gQG0pr zckW(RLn;a?!**YXCVZla zzDgDC>?}MMqj0_#+r%Jo=#A#CGnOR!I&cz~S{5YRNgb5S@!?Yt(f^*b$R{dZ>ts&uJA25w8a>I^*&#PcB>}KofR9$y+y@s+|7@jI^0ll93E;`kVE5RTwagzIH(Mu^rn^f}Ns}a6Ke2KmVuA9!FiIJ% zCV8w5(CsKfLb69UBnQ?SWpOxIJShKp3FqCb|I}`y*KK%oA4JJxxfpQC-|yf0QEiZ2 zXva!p8_bpDn@P(8*ZgAP8BgdS zb?xh7y_SR=l6eh)*P90D^%-h{t$9T0Hp6jh)kzA|;{BSL$B#7DIryKrK7igCxRZX( zpBuno+fDLZC8xBc`!`MZ_~tAzOmVah#{OOBdEmWQBYq1rj0o)3VO_!dYU|kOeKOOA zw8!uV0YBeZ+_-MF61E6@Am@AGH}Q!K-J#bBtGnB>6Umw`cGY+97Hl>^8_Pz9s=%=b z!;8Do#>w@_oBqSM7Xf#Hrvqr805`gxlcojm<4k62&@I_EVUHo8puMBp@C-mw!2IY3 z<>v1CyS`kMxcY{bkS_TM?4d_`uV?fKL;YBt9^Jgv_assggJZi$GBSWR;P&@wydJ=p zgAC_5p$r1W8r&>LS^&o4jLQ!ncy>h?pi1A-s?YtTN#&LNWHdDu4Zw7?Z*-_5r2HNP z$bDCI@x%2vVY&PQs2`=#?AFt&JQ4US)-9!+m4p;u=-6%+gubB&xHzICY}4txSt{*| zkQ|sLgTx`JhpG(*@ZmT@@%2}eWB);uLnbGFYZdtoYvyo~bXqrrcN}DvG)9bXzPE)d-0Cq zxIZS3CnjYkxlo*(*R~b#e2S{GOs!Xnu22Za_i<&@nVVjEp5ozol4psN&)~|?2c6*m`-C5wuPcNIFPy{fbSZCbw~^sA{)SA*if%&H_h7xqd0w} zI$)(t+|W9P7(eQWVMUYe5a0iXxZSA#N2fWdYQ8aRRl^Yp+h_xx5!>uT)g}<@hq$sY zc3I>j!CXfbdbdL7W|KJq*zeLVBCI1~v&l1c2F_!SK65i^ityxY$7`TircXw%M&I&@2uba)VBql;PdZ=6oc-*pMud%$0^C&%-}zg& zSI@8?GV7S&T~?V#Gde6?5lkX+dQ20JFwthN^!9VJiO=CbcZ=@NFx)0Ct8dQSHin&oc0# zrd5=_Vtbq{g&5ulPH+>DzXxz|fLrZ?NIe@@xo<;$CXvM=hU9cznCoK=bUXse%ZM;C z+&C4kYg3flyplb<5HsLW8oxB^rMsRqujahb+fReV=h?0OGd>@vT%}idV{Rrm?{?2d zHWc9(nFUxcCy9wlS<;d=A2uo7@Gk?^SLFUGGdu3`!r$CCdfw#P!bK?^w7t!zVkTW< zV{6!L)bFD@mic}3#+$!2l*re+7*Y{mvm>l((Ix>A3+J}?vMTGVeI_05zV-Msy$DD- z{WN(wns@4%5m8sBcArdEgMMBqvL^A!bR+wq9};uu8ytazzr!K);t2#+`=mR5ND+D8 z{`yKp;p}SAnmGr~ZrkLgXf&Hhmt%8zjXzFAY3pyzq~~90_iiig^EMqI-GWry4hL|q z1#|=#ng#0c0kw*!;yV>nlrgoY#?GrjmZ6bESxO9JF-cocEFu#363Xkf$gm`mubfDh zoQ5wxH10R19ik5CA908lM}fl;29ipjSooxf$xTaQYU4@5fcsv7*@P4guz@hA$(rfO zYqo#vk4d@pyFZt|6-}r)m~)KDr}CPt?1fqH58SZ(_+E{Gl(w0q1X@>x5e`20=9QIb zIOmfKvo%}hA1!AfLnO&s}|*(&>0!wL%Wyx7Q#M-JB^bDJ;d*VC{f8 zVov0sUKf_Wf5s{C_}v3|-+NcUkB|$P)q|Xm%7H0yL@84G5U*59yb(mWqlkD`#O7)v zch>#eW5Y*@&i{*3n!c&uvXdji*XQec5i35WUA=A6HNFW; z7EOCF+l&=Xi$6+*)yt3>k^goprI9CC@eJllUsL4m$~2=WubW;-XrD6?UVV&L@Y< zwIKnN^ooj*H?oBsp7fSpFJ{8r3+jOvju1L4We9@UuEgXx%>;+pGs647d;>m<_*2(? z=o81_FA7V{soUZGs-Ev$vXSpvvu$+R50Fpg`0~zEC%l~@X2IYtYEOU#kMPU^Ff@$|wLVzp5_O)94n(L5D z*^X>7rRajZj$TtVP9}UvU_XUNbu{RZ+J=0`7M6xxsH@|ui|BJF=pTKpPd@p5P7LI! z?Fs5kkLEqY#tkpA`^YUBIzD7)szOOyA*6ZbJR2#U;PG~lZz(@s)6pXW!p_5{M@dHDA0Q?$HtArc#~_*y0R#g} z!ZMU0%;w4lkPh?&$pG*F)Bn={)Ukk33Hhj(9;VYo?7kt>Gd!qXuZz1ACmmR492nj3 zohBoN8LK-%S3?ks*_e900&h6NiU)k}a;vw1YlWGd%2y99E8|HqFE0WTM3s7Dw-t8$ z17H^?nKmJ}HS+W$Co=qEYH~q@pTR+Sxv#M_)Iw)8V*@V#s%ybtEIVGty8f#D;KYLN zv&RPj$h2*wLt%$scY1Ro?0KqMzcNs1X4if5n9oEU@OS|snXXyc(hiC(CTT=59;LWY$TU43##6exLUQEdx0MevU8=!KU)OUrBvp98}F&`X;YDV`2b0~3Nr9-|+21)3bO*T^R}#Kp>s?S)0@RK<$yovN`_O)$G=IJ+fERO%>TVyI?czsMAx1ai{wyjkG%O%} zQ800@aYR;r^sC)b7KOz=UEH$BQY|>3aY#jLAM4P4tK>+HfI+-Hurowf7;6^NgR%jA z1HQ^&1g`+Mb~u5RS(&cv{-0v}pZXRwcqt1q!+g*s*3TldxrUoR+XLAS13l_?8+45QT<0f}&d8(N}KrxgytXzF-)WrbBKewhlVEnZ27g}RF&U>dx3!Xdn z^J$iG<3@xJ86D4?TH@n4u}xUGP4fO0G@lL?bfi%v;)OBhpHo3!;Z}y-a<;J1d7p1j zV4AI6JqFL?)l?IAqun!3>o`ipUhYczb#q5}G$Y8~PXC6y?Cil?5vm(N#cV5i9SzGS z=A*ygJ#SfS3vCg>Y641AB8m22B5`Yj%j1KH8EvpT!A&w%o^8C%u`R@Q_KRg zGqHFq!-+G=V5gJj%>#}^U{3fs0?_)|ud{#tYV3RpGNxr-p5r*ES?D_MG7B3_WxFRA zOERnu4|w{de)q8A+jFx7Pp0)6p+=<{}3$c$= zX%XH!)_QAQ;HWi-j7|IHqC0Hh_@bO}>6ess1t;S_w$sf6%-_ziCuM#)E zlX-(INU>;FOJfiREH(;XFQ`;HlbNQfUn#5NrQS3>!7II^;k_(Dl>6NCN>+%yyK4vQ zf7)S@q{`R&%M+LnwJj_;)if@db#tRP2|at!Th>^+-962ZY2Chrv$(SZbb5dW#mkSPH8TnE7Rd{F7Z=xt)Vh2JG3Ag`5}gV%!WiJ& zj?JniBU$w%pe1tcmE{AC@LlPG($@7YYzHFz+Ta47SEIKYEA~c~HtG*Zxjf5o5$H*#d8Wv3o?M_KO{vazUycQPO-GVSuDj$wz#^esD2K-tLdBpB8E1Hj^C2(tY z;7|F?nS?$^g&o%_J0zG{Ew9A142X1i&Z6$;dFWJo{yw{=-rR3<#=!>Bqavp*fCZp4 ztUFmsw>rECs{=?f{G>9b=n?&T%%VfD{Cvb3xG<@fSBJE@>xyfJP3c%lX@ z!~7sovdgPGyrWME>-~zU?%@M`Qwp13ZI4eJl|WHW_}*vtm1s8ZqjtFFp`Cyyc9_Dx zJsVV224F(c)%(^6|2<-E7vF#Q zn+p**P~dqgJ`{}1hw{lXM}!^ z)cCE9l8H9=#bN7inLrEC&r&DCM&AUUN3BASwb;J>>bv}~+?+MAkyR86G+0b1KpHv1 zuk}V5klS*cu@gYIZ?TIF%z>6}-r_1*n`~riEDoXf^#;XyFrweJ*96vs7LVEFCx{VQ z#77^OG5BG#Fv|e%z2Wq(WzxE3X#!n8y(iZ^|L~oA@$=H7i58~~kaz81iQ9raxnoC* z<-R2rm;(!X%0RpGAjo_<6@^mwjKq!J$~$xHHmpi1_p^I3G>8{@^?Oq>kV6~cx9$5V zanIoPTlwt9QKNs=^r;@5Z}_nubgQxf((_m4pGu_LN<^wp=Jq5TB&me;oT2_W6HdIyZmo2~ou5 zs@DVWiA%Q|Fgo)m=J%;!9~9!$^hdc(3{r7!ruAl9Iy4bUi?~G@D_vUm$y7iZ6yne0x#{}Mh@~QONbQOUZ4gv&?%p(eK}$nskbZY;>+E zaSx?=Z2-vEj)=cm>#~b2NGzvRqruPGtCKzf4aMKr7QKX0Ke)HSSbQPa4@`^A`A@&i&E=KYU9miJg;~A3 z*7u0blj6&Sz@I+-iM~A* zBR$i4PY{&3XtOePDbD*PzpvY)^qG{z0t$&XI%YH{a31&-#_*Mq9nkJ#2G97+d=8v8 z78iO3cn{bQ|8aLUx4ZB5A6&1Td~qpuQN`Oa4ImKz^pm+}wS3Q!c%j+cg3nw`oSfc8 z1qbrX`NU);aKfW`5-SY3U=}o@5P);`Ql!Ogk~SOo#@y6-y$`ri$xi@E5u?~y#zC}h zO93GpI)$DV&>MC}FLVOW_dR8YU{;1sxRRc5xz{~vRVGEbc-so{3CvlCGOm&WI6=wR zK@xOkJmPBqk<2oXvHzpVc5G67Cs^|LJ*JQl#(@7Iduc^ijXqpTyroDD=6&oo4Q+rw z_(;94nQIJ^cu7xIbiZdg!V;oBZwl({(TJ-0hI}FndZZVU$jc0+2<^@B4ft`uyPU;V=sEElQr@ z!ZxX8Wb_OLBk&)pza4G@V2b%_LrgtS2p(do4yLY7lYxq8;(MP;ks~ObHW{@F#NSOThLi2g|dH?p>N|@Ve zF=9OGL#u~rwYa^r1X0D+FK*BB`PF4tnHp0AIQqP)ITKZivcLPydy+cKjmEI~89b`X zPzc_gbFngD)H>CY5oWqdV(?XSNn9-uwEMnYo!_IccO3euMCyEV zP15ncI>?VYiezQqEhPjjN}bB%nSOwo(nt7uO(3RGUg%-zWRBJ}PUePa;YsLSoC?0) zV_rlfFBt2WwbA27KDS5f@_?*A2wm@xckDE+!6CGX?&USonX-J#u=m#5AGmGehP%YZ znXevwu8!c51|VC@EXW7_t4@A|Z~_l@g_Y@+iQSsOA(H*}2dGnBaXFAVb|>oP7l+={)$2zMM8nZ(*cPB~jgpw;fl9Ec4)+LDD=cVbP3KOq=uk|JfJdBDJZ`AY*1{a(fqc%84B|PfzCNrP)cMu`pCjFq*2={_CutULT9t0$l<) zlRh#*do~mpY!}3zw`H!y=R5Y3C6q4B=gee~Gk)49^IR~m{1wZnv(XuV(!LZxsL$u# z7DFn${p!6T*p$cLO)74U5uAYmS7_8DhewEU4{d-1b=Fqhzg$6l(jh7v<-E{$+=yQt zIs-#iWhsqrWSd^FE-4s|{=6icxr3kacR#`6Wwkn8KD$^rT&F-XA0+^q-un@U+UXHiuT9oTGv|GJ}o=v0kw% zP+Qe41&UQ%z*#NYBCd^T5)EG(F;p79;sl;#P@KEf{zHO1nD(!~sH^Z8(TH|U`TaW3 zt}}W6on_;>Y%}(KUAHZ;>B=GMc6mnY4+bCOZGlQ%`2Mz(=+S*G8;r^fgKP*tpJ_#r znZ3Tn7|w?xayN^(XrZO?zda)1?{hksv|-+p@{U+7nW-U(CdjzbZk2z2j&1yBY$GNhN#tLow=PaZcjH=? z{Wn%wuvYE&t``1U$6|eC(e&N$huN-a-HoxLq6D<{&J<#X`M~1>-91x=+qrIeW7YDm zea|<6HvDd-PaS2Ia-`uieo@)&iaxnKm${3;ck+XnzU~zs+{u$B$6gE1>^7bA_xvpy zD_)zOu$1JrHeq zOeUF)tkfVTE4mWXVUq0uR81Syg!<1Kk9`e)eW0bt{()Zpx>#rK^h29v3bin?M@y(V z!uaM81~D~T2EZXH*+3y$3`md*56)y5L@r3hGobm8Z~IJDw_5x3T`Nc-!3H>lW#QGT zA(0K-+AyD4tB~wl*WR(9qk+VDW6k9{#p2KkO?>j-7&QK>=>;2(tOvG+3>KPmN1+Q2 z1f7--7sN^k4&qqc^-Tr3x6L+K%qey|HGxjf9}TLvl$#J`>wnet39&sCj&`(?LL&vW zavcq6Bw`>7rY1cZZem-ah>)%^uU!^Zjv% z&`fuSfU2y_m1~uSuK2q%<>?V4B#4lYwx`nLlw!cY!%)u7#c!`0EbJ0%lsg&Z$|+$J zLuMfq8a|pEDzRfZ9@r+_Qur|#c`8FS^N{&B;4R+=bj%BKz5X|zsk&9P9NqOy!%*Fp z_Ot$~8^s?8aN~Hzx{A*NN(`SUTcUHl9k1+=lb(r#8rwEm4Uvodj0wf{MgxqXok_bn zp>&(bD8;D@?Kww5#VDbbi$UR1P`-WB+F$zXf_6Zd#V1caXNXN={xvV3C|vN1qw=#w znr4p~G7RFUJALIgu5ojnn-ypEDYL{1?`>Zv^W{R|ms&mDpmQK_VF zxwvhkv^a?$W4oEyO&7{Qg~x63FgQ#?qJe{mvuo`dq#W7OLSR3EPIrS_cOYtuAxYZI zM0q-*M=QaDT{?N=5DK(EU`Kpc?63OfyJ_LkD@p%s)3O6H>Bl}B7><0-2*_i|JP+i0 zm?yaa5za{1CGh}n?8OEV;<-y*Tn-_US;{wts8uA>Ep{Zxw|-0z*L(dtuD4JjTzz_N zs*2*(PdzZSa+KJkM1Qbqie)FI%PRTwuN#*JaJEc39TzU)gm?{$#Wc%p_L8HB(}&3^ zeZ|85-gvwvmcsotG<4Oumj=7fi9#95z<4zZNL#nC=Sq>XV8j6uUP~#iZM`{8q@F`_ z?jRuD$2aq=Nyg|%AD%Ff%Nx3NfoPRf76M#H4M>Q92fStL?%O)yi(|k48<(0JD}Ka! zeT{njIXs37RcgUImJu3Y@KeMk(Ra;S@$hSY$O@~KhjD1y?Y^Jq3W-=tP4){&I3rA? z`x`UsNqf-uB#<|7(~AO{_tR(fpPnDF{Cqup1nyV2`pkjPtRM3wuyTT{F1;cJba*7? zjmEXSY*X&!5=BRf%9LY7j?EVR7;_jh^`MrH7(eq5TWfv&J=91@RrQ+_RtGc+u&*~S zjK0vJgXiZ2>fX)F<37IVJTi!!U*C%);p+{yXpmb*;Ibd?2azaGz^|8)6T`G5?}B7S zOWCRbf+~q;IPw5rA`wOW^szHOs+NO>z8`lpZ1l8!HH`k@t=aw9V0vcgeK4CuC*VnM zAtRYl^=F=}?#`n0_F_3o!;dD9cv&au#?|!U&IIor zwlBK=+9G_OI7Ey-15BUMa}V{slO=GT@9H9B#Cg2lj@(Mcf&S*hQ zuc2ARPSTz8_(>?fNRG7ju&SkqagX)i@7b&1a>8@SYUK&bDVjKzHJ6JSe*DdsHeLVS z2NR0Rd!Rye-eorHRm8w6j`RrInrG>=4@3KAr9BPQ8@Z!6(A=G%P3i>y$LHf=4FKQb z#J4DxTZ$6U#fpu<>hUCEXDOUuwNutyAbe}#-g1S0<}kptxVzGwVcH3A`}?YPF%3At z@K|_)H+?j-f!(4{Z&D5$Eius*1GEc?kxYo&16_|a|Cc{rxSmA*+XGiRmAO)U5OG5O z9;LPlbuP5&3TW%tnyo22P*Z6Pq~tGdgkvEYOO;M|{*u1?{V)&hHao7Qr0DPv2;oGc znc6c?-6CZ-JvxAaa*zI7cR!40;k}>vd%YbE%ibQCC$GWunfie;@2PD_429VvR_4fq z6A|k_b7z)Du4;&7jIwR~_AH<=TjuAt^DX38`#XncwV$z)61U>?>C?q4)(P%tPfP7n zyz*p%c1DLG<-LzZi5!c-t)-h|PW1#Z)o-6M?}n$eedg|$(JdjLh^Ns-S2*orW%j#JYJ3 z$9RN8JjH4-$!u_?=_QeK+UsJ;KFI!apWZdUIyA}MW^V@qX93>w7K`mEHT?5O`4J3Qt3S-fXvRI?q*BsfcWef6OYd!8DW@m zq-g^`;56JiE9{&jhTjn1ojd>UhQBb#_G=6?(2eD@WmC6*#vp>3BMSqdI|1n+*DXEj ztyjSd78J@wC0&WLiqe6a)+^fX&-XR$X&SXJlA#oNcRLXS{>JHQ7?X`HV$w2N4 zE9*=%UXYFYtcTs&ah=U1;f$=kdq8eDh}Lz;hl7)zg!*&qfk4&|Or23A%C|7tK1HK z_W4ZmOh9C>Wq*~CgxlCvWaD6`y7${Ypm{(ZSR7*$g>wMY5Ii+oBD!N-1f;-7-$FkR zOqSWOa@;3L#2H-J^Co$qj}i8AJugjC$z_@`_N(7A z=XoAU=CM(q4;+V zWG~AFh0a7QJoQc#X}F>0EXN=i?_}+P<7$bYgP%YCp3Vz$za$w*+JA7xb={UK2C8D8 zZvON^9jPrE2DsT>*N3`c=uFr3(Ar~Z7jW^B8Ubrt258V-H^)WreJB-Occr0Wc(GFe ze{$Ky$J{i5e1ReSlm$G8c8^;@v?H#mG@Lt3aKdrErV3=PqXz!P@q8$??4{ix<;@tY zxvmggN()P&6F_gk(Yy>cXu99qEGyp8bCqD2gRg=Q7k*dkGYL$ULjoofkm>t?WzOR4 z8?5@SnG6S#Uq*Kl{_MT+^B%k<*N^`~cQVFzEzhASM$b0g0l$dXlM`X`@#7uXJg+FD z6Eg&{;G2`Twi26ggo2jqsoy$8UwPuN0S9c2S?ZewRu)*`i7*#s90!3rjkq`Yx!rHa z>@RFyKrD>4Oh&ORiPKX~zZRIRa?^=)*vhdlK5IScj)X+JU$manK zX=LqcyCwd#yl)ngF$~n5dlwjMDZ{wwGtJmWIhO6$lP<07jG+zAp*=3G9FIom`&isP zbr*~=n5#VwOXpnkYi=dZS`Y>Mu3fmJfG-?K0e2ZS)@)3C4k?4~@@=`9;Cp(gV0m#X z;dKD{1YceF<7>j!x8=;-9FinZeGg$JlFe}0<1VEthK07g0JCfe|6F7`w z=6FU727p{x7;I-C%k1g>!iIN) zL=E^&9BT%o7AC{oMrs9d4!d&>Fp=CwJ}HPUDTx|Y-4&AxvyeVz@{7gcF`T<~nPL~hnyo-LTam8*mA;ikbPW=ffFPq#+00G-HMVql_~6@N z79-+c@kuR=LV=Xe$5s}=H{=_p?f?pNX_rlahbROMR6DxNuQ3u+yGm_f7EIf6k#MS8 zQ$ooWKJ;Zz?lzf=^`R~DX<6U$)a|aEh@EpwUYW#t?XU*4!LSa?N*~KW!w(Vnadh?B z2>iW9EXD@^ubv1p0{9;5xxU9zHt)JI0^eGqa;n@i--+d;t_2c=ss!KdO?ghvxXUSS9Y_pMU7_ga}XNsn-?!C|C zXBV)kR#KZq91_2wC%^d`cRMnl-$njvRgeS6sF0_RZ`}Gq)In^w2>Cospj0mN3SoVd z3;XK9IojqcF~$$_fx^$#(wy8!--u%0Ak+(g?&*BVe9Z*j#O5abn1YL~@y$cBt@kX~ zyEYzEitgXusTSH>mojH$QF6)o%e-WMo}oz9fBd(-jbsy~*XmYM_}0o04ax)F`}Tgu zd0SnCa|8wzY|u!cZg_9Yd@6CL5=sVMjgAmyX7n-)iu%5PdrfK^Hk*A9+7X^qp!7(< zW7;_EVA__%T!~>C*d2D+99_d$2DyzW9N^Q?^N#%-b7Hs$NEDyGPgt|wACBG1yMN_x z2X~&D(ji3p)-_T5`^`Kty+Div{;-The9d8c8x-JMpwQ{;x~ZoZ0(`=>j?;*Qg+Ac5 z!2j?lr`uA;11<_Bk9$Z~^=x>B^t#(iVA9*QHXt&*9#Q##rrYHOQrVpg!tP$#$aU%p z>uw%4*C~(3LwO4?M&!`j%=6$8H~x*MuVPBJ5?=w8IpaIdB0faDdj!S}AE#R#YiTHT zP~Qibyv}J%;e*(_4+w_n0vFVetPZ-F+@Z`^E>Z~{$FF$-Z|2xAm`G(nmUWh*lV?Wf zDaan%puM<8y0eqtvAE|nHrs}Mut@Km`_`xPLaH5GWb{BP$Y^6I25AaAQhgjoS5cvq zl*DqwSe2POWoCEyfLl3aPJFWQHl?5eBunDg@Q95$PdP;~SaT@GwnI92H|J`QXBrS6iy83U3>n7CNvP&32=W|Oi6o#-0o0@Su zr!VWe9sWfQMyI5h^mt=8`TdAnvW3y7IhO z6DZdKDE1%B(fCX-J7Y5s1TD$PO`(LmW)3Xbwslw}v&5#NuqM;bN?u16k_&W$O)4OJ>obUjnf)0ble$_5;NLqsM{zyDRcJVuZlm~T%&}EK zi+3aS1P04o*7~81CBRJzV7KsDmB@LxIo4pIp4<2xUaK#BM&qGpuw&32h=Td>`is}g zSqR;x`mErSR|mH{LQF-T^mGHdO_B3BNH7*ss_JAHIsNHhn3M}~>Fn4lqu!Bt(j6H9 zRyLABK1w-eP{S&8^M@~N`Qe7WK3Tt&_ z6+b=TX90ryBe^vcLk^nTsYrV??{;0BQ=#Dez5LuO0s|y|^q%#LJnwC=+?`?jlpEXW z7#EUZ)d)ecW&{A+Ng+KhIn4Jl> zhXaH$_hmf6jNJ8jP_0ZXN8*;`4*Y0wW_jKs6z%C0eX>f@x&dRFfPdxyX46UXDRg9( z#d)1T|DOqz7BfG$o~O~x+2G-f%m-UT>QA43f>;#9R9bTXdHNZZ0)apR$41>D2Cnrg z9vIEgL2BakfKDxK56O?Yh?vet5T@pm7Xts*s+CO669=qz^f7Yi?O$hz{qXg>{9r8% zaMY4lvt-5ZAkt#T!)jm;S)U@ssfKjcR*zO8A8ShhY4C-auucCt7f{gR(tdA7d4)zf z(IT0PMDAYR1Vwp!W$V7+wp=4RowJGhP)uH>`OG%u^Mp8nzn`s=zvOdF&hE&A3Wsut zNb@#t7?dVqGlGP)e)`=7j38GS(r{dYL3#7W6rrEF#Y66oO9z?bjw`li4I57x?h$yZ z!mdgj!J+%vFGq5p?t{HC11zbIo`DIVNWBg##b!{c5Js-1L+CDYx#}~j8IJ}szMw7$FU+~qitq%%N17_lArq1U5r zFL8>K?TIY2ok|2Mf5IpmM}^lO|8bDZhVzer z%ja1KoY3&)!MoDY51-J?cS_z8+}RZ=ifOY23n?o*B9RQZ}JT#JiR{18lft z6q}JZ!0kNJ4!owK?#j>hI0~mNH$1PF$BZ%PI=TQ$Y>*%Lroibu57YC#4kSAKov%3^(^n&?YQ{ zKiK05A!tQok^%BTd8|9c$ba(4!y?Qk6Uzt-?j7V%j)Db7aT zw1pYyQR^lN!E-?x>GO`j)AM$KI^nvu-#&8(py3X{pWZv*SK=7^FzzPVAEWaDe`hZy zVMP%%yX-?(;6hcDa24vz3hj`z+zi;aO_j39$)R|dHm;g+7*bF2=F_W^w$uS^y&iR8 zw=khr+OvY5q6@Ei#fpFq*7I|Pn!!~~0p zfDS`PM6PHfz$uy?!xQ(ar&-60l$0#&SWqh5TEjgUp|57_vHp(tDG#W8SO`!r1ymd-%Ftf zdG9I*sgHT99h}4~3)Br|sKflNDU1%IiD2|xmMAfSStcz|m3N9e#T-T$9lzPnxUiuW zK;z#kbtmGic1JovS<-5KZ=Bx813PiiKoQJPzXU3Hn5|t z3OxeyTG$P#Gg{K1c0`A*3i~wOy^quwsUC2vC&>OsM24giSNJv@{v1bamhaBbnEK!@ zxj#xZavl+G+#dDj-FD9^&3poONRZd%gF7)wC8VM1#KBaVADP}4O%&X(&yGX|ubFdu zRXyH6P5Rkp<^r$(*`I$w!S?I`DUJ0<+U8aEBd5sx!%d$;Rqiv0nH-S5btveVOapZ$ zLAHRrj0JeUGYs~1t=Xx}h5qZ^k|brvTk;^>BYW;@Tn;0>8zGHKKh|c+5+B2d+4A88 zPw)txA?&REgRZIMi}twi2>eWcLyVkhZWFB5dwH_-##I#lwC8v@t|y>d-{xZ&{OkGa zOlu%9PL+#KP=EUkaN3#T06##$zce;nb)Y@02Xgn@6(ZU${q&(p;6^=pM{-zG@W6Xd z)IA;Uk?@n@V!>$f$+%4b)3{p0T!&a-Rj*W668 z83V^79=W!ci{tb4*|%i}(C=Y6 zNgr*!8a(QvSYXw01Dwet;N;6bYMa{LuJF$;K8?SeuJY>nm)>a6^bTfMPZH!)=Ic71 zikYRsOtBTZ0kuB@I5@lf_59QKcH>VsP4Qp968d(~*U&jpPvfh-oCQVI!XCH2?c=sx zrTV}5DIcR2-P2DIYHY@0mbm-lpgqu5^yS;ye&FYsg-}0jvpqG#MN;b&trw5%Zwx@) zIM7dQ|Fo~h9npZMb0@5W(5x`LRVN9z=~r!cQIP!i87G3FM&?54*2$A-p-VijLCAP{ zCx7?n83Om!Pf_5fj)VFiEnlWBRwvh_`hIq`lnR>l(-lF%DOK`8vopj*-@eO zE`Br6?IPIcHTqLmebG%f`DkoiibEHT=-H{7@8h9o7ygOqy9g9Q*0#eG2w^D=%3S+< zt7(t#`*m@c_^01e)w5lCGOQbLmIjgtYh~BsTa6O;HvZg)^TNHY9<`_}8yFz6wP-Ui zcv$kl{dNzr@OJsDyqD9TtlBjFPkyrlUg)Nv2!)Sdy|`{I_%?!zoexd7nY7-x9G#QNvMcD!aec~^n_@Srdm!Vt_Sv+*uz~ns!_Zd3$7b~{7?Is8G534^5dO*^_>Z`B z%}-p8?iG(6IRd%E`Br}}qn^R9xsRS&TE{H)WKn-G8g12|_WO3vCKCORc@&?E4;So) z0XI!PG3G^D54i4s-0JHki^cud`Q@+MGftmb+l+a1ceqPm8p-s2>pyto*9%a4pvC_C z`F0T{JSvAQ=r!)%=3e}I?~Xe5Px+pGwSwgO}Z(`*5Bqq2`}OUI6vR7>c=J_ z2fJ8U)ombiwyItwOQG z&f^yV?TPDogf{nkx!#IEjLLXPf8=uZ9elrW`}5ulE6ILK`|mUZzBOPXp6UttKkgy^ zy2l{BQV)7{QyLB0rG+7_uYE87U6~)0Kg)OL{Eo%$NciwM$Bc593Hy8J)!*+?3is(A4z*^#5}R@|(9IxAi@OdtckL{$L!QC+=^I|8>ci$Nl-U zpM~Qo4e%D;I8G$!S^isF*M0pP<2ybV{KufV?m)!2Z{;LaMdBKxcUz%R`Fvet19qoA<`TOvYXtR|YQ>#EEhH zukZNl#qZM}j1w|JT~DPZW7p%Zv?c*uz?lAj_?iC2&tg!$idd~r?#eLnA3r0b=NFq} z+Y5E7Ej6j zFP}L-Sh)&8_i2Cn7SLj3{^*zddJ$LN`E6^{Y8K%hWmk;9#sD8kU-@A9zc^Vw{=y#L zl@*i(&xxl!zQq2ozPB&e>!$0!IjVk%11F0z33XqVwDE`ekN;2VU)T_)&!qKh9mL}) zI-RHfk1_>c%k=!TubRG7mcB;R|KKt@_t*1B>q!5u_v;_ZOh|v*3WQekt4xzl?q*_RCkhEfk#H;51qo zDBTMtH|LMUgA1m)u?w@1r7XHR8NF@p2%W__oB-2BJ4E^EG6*~!r4eNP!E z-YE%A^JbWmDsy3_P9_WcuJerX76SFYeN4*^B=5TO!ePv&i+5 z^`lSTP1$5$OFb%|IlJK)xvI0&A7*qOT!{R2=JdZ8rY!Zn3RR}Fruu%Xj~r;YcfE|gx3iD`TirWyrR{(E6@Fip;Uwxa zq;Vr`ZCLHi?z{H*a~+>CHz|9c&Yc|U$iXkGk{%8zVunA?t@&MH{k}9|66$UDYASl2;km&7%kX{d;eE)waY=}-9Kv#e_wa*A0GVsGK%zf&i?1R zyi&q|IP%bkwlAuNRhf~i>cb{)T04~50%C8hArkqXn}1)8PTJz2yJ%?Gt57O%lF2On zP7HYd3-C78{?VU1f5v|og1&rd=S1d_kG)*iXCM6y4^ZE1rI_r%z)quZpYcKj3o-&%#)>*p{H$$OTpdRlL0q-q!H;I06Wq|gu634WUUh@R zBXxGldt$N7`KouLjnD50!r$xgwK)tSVdzKYlb9aDeYR9uj}?M4ka{u;?Q^b3C8<0c zJwg(ekK*fGr~~7H5S0dMy;TC!ggm7}+EnAS9ximj{M9$p%F8fR>w&4#8-8Q z@VOVfu{gXtnEzTdz3MD{o?Hj3=R6+ZWcxaoW-2Lq_2ID1 zF&gO8(Y_4+@>_C2!RrQH_90^4zc!4(tx0B#Ec?b6{peR`3KccSu-KqTg^6;5sLCBN zx7(NeE2tsa+!2RB)A6*uzj&wcf>pU}@F-x}Qa{PK`t*xQbZSI*EVWlPn?9?FapcRq zO#UU=pnU0=mv21p>Etg6-;CkO>;#*xhaqPn`@!q6G}^DQCjdEle}?1eVh*WyAcHw`CSLCw8SU#agIUQ)Tym{HeBpA)GjGc`a#IFSyEGx4=q;s{S?O{dtMpy73cNbXCnRN}|;?Uiv3 z;#*>GT2&shDPm8~lWYY>ZYP*`uC{m0K>UD@0b6>ZZ@vVY%gl z&DR+HQgw+BKY2>KEkm}@4UsQ)eqHPW_+z z<~2(@EWK-olvU>U^G+JfN{x`ARW(b=MmN{5cqWX;e>`YC zlFXkgy<^71uay+@e56Oi4bn5CiUoHQ;tbeO0zAn zbp_$#NE7el_=-n1C5#5cL57I~DM&x_SMbHhE?k1RBOL@4PQsO?5zo%YKXcUri@Y&; zdW(Qf>nvA;HG={R{SxvLM}D?H^%lGozUBj!m&e${6~De!bt?A(D>OOY8o$jRExJ>m>mSru+y z_#?kD+zF82f(=cF9+BbX(qbQ=E!^-|*HU5~3HBueG;NGf0>^arABj5dYG$wiz$tUV04G@Ku3+RTT8?fgn3S5>7 z9_mTGSZ_P0vwTT}fD7>4E05U^1}J^Rpe*9wW%16c++ZKB7@|QHxHuK*G*br0R=HfE zvqjXeTufE4`i?~7P%JhqHTKBN{#v&Ot4vMGTG4X&O2kCc+Cs3l-L^iCpyU*zsy&Z# zkDNb!c^9s69Tz=Z^65kwfvw^F>d?Dw;W346I^c;jJ^Bwa(yN<6O=_3F)<$;bd+)FUyOGH_b%bv}958_?(`t0l`AoUI12G~-oY)>FO2 z=93&=piSoX`94B#oj-FJh|^dYnARcEtkk(C68lSTmpQ{502RA9rrj!`J`+=8KUQZ| zH^83(4+)^A)J$u^8#sRXGiLp&Pkv1NH}K#?+%1O zB=gXZ48hNm`69!4XP~;$j)@VJwU}+kj3SJU4tAW=*sJh;i;aR0$*((}@qsnXUTMZ! zd#Oc;GCge6aG59~8`QHd9=UAI6e5rncfM(bVCo!J1JW?o4o-u8#@*y7!Y3Kasax0{nOF zj7rNO>#F79pRKBt#FpX^1HP{YGRZOzT%8C!$#OO^6&yy;q|#}0XZp6H%;vdc9qymP zmpJ1tCjkF*`pnP4)_ETFgr*`;iX|c4FKwt@Y_I>c;lsr9eX=8R9&8(S0#svK$L?ba}O3 z$|nHlaULnbg{8n=(-eV5A&1gwJlW>TzEl%$95~Dq0zKK4Sj|VS%rLbyRvpJwNG>e_ zWBIyH=A;@cQv&7_J?q;oc-j{g^{M1`zi{`<>vi*(S~kwK>M-}lOQwvsdU z@q!WK7!6#xHul#~uc0?>^GY>AD17K72*SKHJ|=#hmFMb4`<|_b6XVKZIu?y1;{^iT z+siGAFu#|-_T~k~r;AV#y%X(7M>=+w2%h)UOqVr+f8K4xuA_;a3TLnaT^>;x-tP&* zu@e$y0~Nux-7CfY6=ChZG}|b5SGOck&4m3&bY7yrpI6%z-Q^yKToH~+T*l30W}@29 z-elC=JIXg(yXqMY;cHeGeqHHOvYYx!jRAFT2j@*(n_L9cc{H};Tk~V5jA_nO7UvuH zf`+pV-eg5D_WJiTLq#fsvg1G7ZPpaSi^tqxu7o41#Kmi#=WZM7j0fj z9MKb9%@EKY%s=gMeT(cp0&ZbI*5&z#FG8IBFo%-}s=y%>wh@FfObBN&T=~i+ftu5cvU%6%I-=vN3f&dEi6{ZuAT_tb-#IQXBP};=nZsJ^*@TeeT1F7*eJE0EdYs$il zMEZO%ewTWR-QWt%T=8hW4{sy7zSu-%a zs{!m|E{i5>o+6JmZd+wKE^R_dB2JxDdJLFt#`X8u7&`F&+wRWa4YbsloL0k~OiJYTPu;(N>R}K- zPP@m}E%Kkj8!%(ens{mhknqTg;7tnNu1DkPo(#{DWa=%D3r!j zOBgPwTXt5M z+Y`IQx4~OEmvWwKS2LP)qwdFIMvao*A>M_EY4l@hz~q=9M&EI!3TBTBj)hr4QJ3H# zXGakNtgW|=l(t(ozqi}69OGudZVaUn;&hT8(PP`aL(+&8_KBcD{SAYjRbait{vT`_ z`nzul;iK$*i?f%;gXdfa{GhnG2Vk`YmP0sawu^4v+47Kl@lq@IebaqScs$kMBEPN+ zFA-9`kr6AwZ`U509)2&+VZNin{l3n67g}WK>6n)j#~tRI-ek=Sl6MhlaubFUG1UxB9uh48o?$9Fy?Up%o6>8~Iz>C8IR3C0ir5%p>!v z1bTA!n?%QsjFb0_dS3gUhxntr=p%F?Uoi0^%!_K2UE#bej4Mf%3{UuVCKvw>mlWWZ z&xwi=>|M*X7~o4{O*@pr{yLx$<>B|;yt@O19jRdR3nIQ|aWS~@!f&Yh9aFEMcKeCw z6mtI_zxH;zu?B4BB?&xW_xu$R3Ur`hhYn<*A$a=nxVQhAo~k~%$jXyhnYg*xC(Io1KNDLfbduyeb1nhd zH#8U3CG-$aHQbNK1k385yeD^SssXQM^vOkS^J>ELVi{AJt{C?ndOTJl;k`q%(WFDp z^T02%r-b&AonmoW9J*|6sCrRM?Y3TV2HsMu-iYMUm1>tJ1c^kgWPUFWb*@5PxD6aMiDwac5*d3DI}vc`RPv9 z=RawV7C!RU8&Kn8WotOSxhYAjc1CYaBn+QbUCKK*>=3F(ecuxdCoBIi-R=6>x6|sL z5S6#*D6Y-u{$JSJhU(UaR4s`6-HzpcMg*NW$T2e#KQR-+dkf@j)&ep<9Y(&#Uiy%LoZxqQ`NZQVM-oy4LrZo=I}_suk8XaJ}PW zpGV=INuqy*IB%;SHGjh?WKJO#kzydfIEgY3Gij3hNAw0 zijPw0)o1p*-2izbaAE<2!Uo~V9AeJDhC%TrWLAQPUQo(vw%Pyl`n@oaxl8H((*5pi zipUvu4l*U)&WrS{z?10iJ@CMiXjOaHa|8!}MqZ|sz4^4J(IexOy->zV-se>YyK=j$ zZKG1=p5v_WsT2;cQ%(?lJy4me<|_FI2eu$0N1R6bo}}-BJiRy61tx+rWDn;RMfPJF zGv#71>Fwob*&Y#|ObdnzFho#Ad2h?JRR74a;IT#tk3~$!TYv4DJAbAE?3OhyaLMxO z)Gqtvxqj;JfFoFWsl!2R2Q7(`5~D19_V%TDoT|5YEWkcnE}aFVZNiNx@xNVWOF1 z-ZYk38Ekmd&apeW+ z5{Ghqy#{-!#4*MJ%k$Ot#fR|^tJCiZhpmU!oC`9CK{aiuH=u&~IKzfbfbTe>=NKtW zR~XbmFN;v55HFn@Gg&nL&6Rd*@EVejH~OgF1t6Z`wbd704bfJH>TO<-Z@w5G{QD0K znWw-_=ZO{{fBWC+AOFie=<`+bOWcao9q`kg!O&!A9%3$5Qw=A*@~>}4)u%W&LCr-x zrc`Sg1ghqo3Z0xd%C*cE6FYh`#2A=@%m|UdQn$zwy#7VMw}tb)kP@3zq=kAl+mh3K z$~_7OdRQC7WeP>_*w(R;PHylqP7Wg&9g$iSpl6nWn8z?=gTn4;Vw`L)xDfgJ15cjY zk?=0`md@CJt?Br>|Ky}@nkrCjt&_WMZ$7hH+qo#O#nBfBT0Y&}Y|gb}v+uxtu+ipZ zN4_SWU|UoNK(fPnqn5gCvom+ezo&kLTMDD3<1(%`N#pYU`AGB2#X=}ZPgwZso^Zd- z`>rzNWoP_lRUUfk%~n5!&pRdiA(_KsYEHYjAnS1V8;3UTW~(q}I644W^TnV$VwRljPW#K+d=}?gq|GJ5T96P|LVWFQ{x4N!B3ncd=tO@7{C{t z<|aI1zD+w*TZz*{xP=kz_s5x$ltBV zJ@UqfpDZcLo$|_UDx>c-Fxl|6rPqmBI$b~L@zRS3?FSn8@^Hs3FM}fy4$64`<>-8= zA2PQ~IyO525k!+ch>v1(q@ldi|5~dVINQksI0P6;63>eBzG{<(cJ|j^Z_XONm*S=Q zP22_I!5y&x*C8W%aKJAZH`WFu%x8hP`F;<|=kVzV^S0vtV?>fYC@W)GEJWURBv3z% z`}}-a@{u|qMkLqEDaCwc4Lh2FLu#Rm&eeu3rGcmwLIvL!2C3a0#0_)L{@$qXJ(}Wo z{Td6T+nra!dhC4t#C0ICj#Ia*40p!=-Yd9G-Q5RKc*w(}0N#KDYSdpQ3FyE0T7vQM zCzp5wLVKX5jE0zoC#1YZg}c^Ad8&#T!B}m@;#*dn^))^*b${Y(;p9YB926`Tl1IKt zTkwwR!`$e8A~cLz2}MN%vaIE&f$>P%gEOoP1lH}N>?h0`R$^Qk2uEWkXa`6ej-aUQ zT(U9Ux%S{QCn}VeG_=oI|Lc#qK?b00l>rRy_N`MS{NKIAxd3T=6RK@gb&Y&m7_al3 zBhM09rY7-R9N_A_T#oan$1l_vy}`O4Lq7mrhR|k-5LM(DUfQU&Csq}HKnW=2yoKJ_ z=64g#fd8lGQ(WP$1E=maMVkpPBc|;zZd>)T=LHVAd%V8$oVoV6 z?1igJfj4}RmSI;4TKPAw%TYkH3I(@0K_l6`vH#>G8I3bVk4i)j%Q60U-MVr^wEeHw z-I#S&3g~GS9Bly6HGTxPE*VazQoowsuC;g&?$3Yq!uSsHS}tWIKnF0iM=z;pF|1F? z-~M5yXiNC6zLiTncmnOYY&g?higX6(h2^`WeA;~2=hXlsfK7;+v@MF4cGNH^%Z3Gk zYIJ2>n4(qGQK>R<5BeGY{w})V68X9J*MD74>x*8l@Y2EKv1r%K`s6K*p8!K~j=`G% zo>bo58>la2z?V5>KL74_U=D-$t&j%y6LlU@T|e7ThKsQ0x&zAXOk$3gBLxSPZ7m6b z#EdVv{%YU1w?Aae0*j|Wy&PI@l^t-bLx>3#_B=EUe{aR<*muC6nKc4-x zh|d%I$i_TLE|Kg7j_xD{ITs#;IR3rL6Wz7|gSKDYO+E?MTM&m!9ot+r`0!sd&h+)w z8_sta7v{WGNKOM6++K$%I^xv)@#sx0@{tdX(uMbz){XJ-H>7?G?Zj6ap`^!fvz$1h<~}M$zi+N%F+2X%@jJL*5-ffb&(fY zF%z?|-LRpzb1cVXbbB%=fudN3mJYkZTyJXks%u5k@P0qy}CufX3b?IGq!q2iDs2vdWP3 zMQ#6WJ_F_qfw_f_m`6bDM*GPr_FTQo4YS_61=RyE_a}b@1BP=zGMzLAyE#Gf$9Z){ z-CXF5eOc~H0}RH|V#}a^wD6PDK$O+|@OFj)LJPeHL;bILoZIFS#_P{&P|HL|xbP$1 zwfURbmcQQOkr99QnW!1tN@MsiZB#S!-5S>tyR=E-v~V}rjOM=g&s_2W^ImKn5b=8D z_yKEVP;n7bh#7@botUCyFZwN)y|7xLE8fAZdfRROLy;#|R1gMg*Pe#b3Rc)Y#8b(R zuX4-Xuo1XrvltO$<)+Oad`CS2HfdpyiM0yNp99Y7Kf(@gc_?scrc`9k( zElL;x9b;iY*OoB<&2zzC*{dUl`+hF`F+h6A%x<4DgGe z6jwwFw+pDzNxAqYsy2A#m4q7w%Xse25nCY-LSzpRCnfM>9B2nV!igme7SD*i|JS3h<(uuR zI;DEUMqZZv&=DcMkN{P?_vbg5=SMLb>;;Yl?#2(K3ZW3^SVE{A-#O5CR&g{H`QxW$ zgrGiP`eJep?&{w9tJl#2?vVU5?3SsYZ_mv6&S-NwDr)$+_!w!~X#O-$5j(=^**x3) zv9%>B$bIzXQzH;~BvbuFXek^NH;iZV`%nN>v5Yt71lVA-qzR;*(GnYXmbZ#MWeos)*_f^G&(xt2)K;Dk@*ZO>G#-+vmh8#|5~cb<9yV`b>C z&%qLU1r(~jIzTYKVX%+Ce#Vk>Rqfk=7gz{T=wEXLRDPRMe9DRe*WFirGmmtt)8a{Q zE&S*{cdlE3`oz}NnGI=-sE3TJ3}dfV0H`dZI&9i*(YYzsPw=PTrFyNEFh2GazM9Tt z`!5AA7@Hdjd#I9;;3|6a2(773kYw$z>Gn_T=eZz0rC^XAzF2DV#Z?Lakt?17_8! z-F19f%ScFyeGW@f! zK0bbl_75f&%7>~mA`hb);UR;`6gNz&%q@$U>&(S?^ZajGJi9AjTMs1kS4y!7P~O-5GuXAzRd?YtzV6ph^PeR{{QRf(v|$o zznBhNnk$fBX6)V^BkqTrHz}Jvy%8b1?2DHf7(Rg~PctVe<>(D%smcPw*7aUoH%GlJ z)_b83#LO$00~oFk+&RoIdBBS+jlzOKQsmz_cJ5F>trIKf%8(>tuF_K4GYb6YoD%NJ zXM|NfSl}^P@m;Eo-FNj?|BpF>QmVkKKPi;XDvCtw5v71PLmyqdL_U)#=n5bGc%XY_ z1CLB^;~^#Vfd>!pwWC75U)i>YC$Zb8UfV#lz-m<|=rt;LsAIbjvo9gden1pnnzLGz%>4ly?ym$IHkuG?Ha z@;8k}F*E>a1y595TH38B^dz3=_Wif#VXHv(8If?6TWFtwCtNLAffy8kY@oZO_`lAF z^sS5RtxP^TBZMy z!ux=t;hVAF^ON61+=$9*+$o0&E7YJee^CfipBSwjiL7js;le+^hhSCjb?;B8NE4I_ zJi>}SY`%20}N(S`kdCJVx*A@`(Q8#ee&fVMrNSr@g=$mU>R%aU@yN zKTvAUvr-{^=^#urETwiQ5j|wHt10PrYd%Z`1KVt-5w%%5aGuz*)}nWL-j2~-Ns3*T z&W8ybBwpkuz}KTxaHSC1Hz4?l(pw$?Wtvr3!|XF1FmiQFAJq|#b$|tcF8pm@?-XIn z;^CDrJaPnsM4#|w>k9GQSRz*q?1=V%_s=xrQGD1JPlU6!EnW(#{h`5f99ea(A&u=ja;`ruv6*lC(b#!asj4goAR%- z29n&RvF-TXN8vW+5luN88M=#}GE95$?mb2m*l~0Nm(_h5&c>MqhQG!WS|az0uB(Ty z5G=}OFFYLhtD}rqRyY1#{8pnGAMT}O%%4Pu7A&iL0b|P;&NA{FXKHx-LI@zJ4T@0J zZ+t9xHwHfn8|V7IQ)W2(vLTqmV+sfiD!sMkyZ!4a7;K)Phn*lcLaKB{%&yywlqnv_zmvsHsp6 z$2zc;o=-EM9eqnsn;%|piuRlO9nGz?{}{gv@hC5p%tX^HvEO)cM6YT*Rr*=&l-xjwdL8fFMex!b`u1-=vtqLcGO&Iy zd`LdX?l58_hNY}hCl{0UwlJ!sfVji^1#xvx5qK)+C@5|$w_AvukjP&tD1bGZ|YnXcNJez zU-+(L*a+HKM7txHc?HCkeIJ*Oq<`|7JDUkG9rZMo_|q0emmeS(dQ)eKcq_Mj(M!X2 z#jIURBL~4>+?p>B?f$~Jb1Vo`0AC`S#faKOGBsy7x+(wSHp{?ktsZdeMbNIdk;}!uDsOt$oS9_*5B!CY{Nc6N_XBBy!)r0tph_0^d3o} z?{LF3t9WaZ)*&v{7o2zI)WiJ55>P6cCBmFcSirO9BPU&5`aWVe=g`xrI3)%?Q6aok z7%zI#iN9yEIR>1q?$ib&{BlfAKei>T4crjTxI>i=a|F?dC8sZRi_fW?8&0aPWl+>V{+($J6&9R_z4;iIjVRd2&^A~?3g2~F zFRpVdEG58sKBW**)se+%6~6QURUPAHiIGG(_SHM;sb!qWh-S+XItr_l>lZVu2j4&E zpw1M?bNZ_zzuA+4^5tx%skC$QVC_q>5CvH1msEvki*!3(!`lY~;WBZBU6NwwVcFG5 zHR$s)(!?Q1z|t29!(oKeviYF7BrApQUTO9X`+)nHuBf5hJ}*9Bb~KBSbqRlG$peJq zXeAycikT$a%Z_vbYP5H!Y>Lc1r5cKyZpHuS>|>gFpQt_-=?ZtOBK_3DKHd$v6E8=8 z`*AJR;}P8gA=&u_c-8OoO_&)MFnm(G5nODmpg>FY;X6uev|XVu#Hk$RdfqzDzX)+Y z<=l+a>c4wM|Cuv6{~UgcAMIDTcw>^uuw39E8>@4^TO~bmm(=8R+VWB-U)|H4SLn+- zV_x@R#gj3<$0oNFjEF)%AI@m#La3QXq^5SKTS(_01BR3rB-(FAW+K$Vju_YHeT%x@ zrGCdZ=X+y?1(YmGM}~{Tkw#Y5*PYPuLp5xkLmGr05OL$w!H)l_FOR3m33{Ryd6LX; z4zn*)R^bN+SKH{EPJp}&d*~KpCPc56DCkq+&$o%NpZ!_t_lpNH)OI0+hm}(#T7dsL zOa4NKFxH%HZ{Zu`_^;X&Nkk_pRQY>QcCF(_c=d+Lda^Z`5sn2v5A)XN%U00mwkXs9 zG%C_Yr%j=h2)Kk}aVE~%Q?~ZpycfXS_f6g8zVBtpuJVMX)ou@@1TX9M>+{YHTJ7~z z?ixzskOB*niE0>au`g3NE`Uh1E2(JtP6GNKP6OtP0s7EUphF%gh#xlVa<^R70H0|I zb=d%CT_tJck)|*Uv_j{`D3;nR&FPTZ7}Zy*V&x;@kJ#XnQ}+7^h|=tUzSi{m(+43_ z>v)E_gkhfR>B3jVrar?H$2!V2=p}kZ?#qa`XZbG604K;p_r5T^M!=6M!8xnTV+F?U zIXFi}e;w#S)sV~!PzArzl(dO#H)DI0(dyCln~uRSR}nsLzwqo3GQ2V?mpSG@RimSM zt=}`Lq)EtP3S)JgF1F|Fg+QapA7q%{ByA!4B4U30g+tx#xQ$q)qotIK(%qNusr`dd*MurybrPNJ*}0# z5w_@ughXkPx!rj#%$)HTvcDjs#f=~_vGh1A+w-TBK^F)}b@M$EW$Y2L4A*yLn<*8s z@v7Ybef8iSO>#<5Pis6*JEA!wnwWb*d|0^pFhg4!yIBEscZG%8>@fw#*T;kH_q@3$ z$E%Jg`4D^KRsSY}GEOi5E*~dNNLP(>_wvPcyWG;7umMMXSB!k9G!YL2s4dpRH)49_ zl@H>X1*D7jUpLU;xh_z2+B~z2s$*HcH%i|1KR7n$9SbMWNt?7w;RRz|H-je1;*h$p znSr2tMLq(>cQYcxJJMeTv zB0SrC)lmYg9w|)n#r5?Mk-%j| zNhz#-KE!FN(&zkWS#=H(>E@OcYOi$Ky~&1dXoX1<&KUV_yA+O=B)w;f`M?`CVQ@9Q z7<|02ReEilR4hL)N;m@C!z=`ilP=Ns`OLpM@hI+(+6#;(U!HI~Li>Ha8`ule9SC-U zE<6T4p>=%i@Yp}H<8zP=3Um6N8{-Gcx@_N5Y}|8yOh@t8YoW+nW6i_a-sp6^R~r(U zV2@V6=w7X)uQ`6@<|B&Bz5PNE8e_}O#0bC+VAIk7KsZ{%Qg*&S)lWA+y7u^@7*6l& zjbk!Ph&)Yaw)i5_01x0S`Omq{7EPWsQOfq2FG_4J{AyN}RFU+Jo%CS@FH`JNjMggA zm`N8$dt zXI{GZ$P4ochpcT!;CSnipSv$ruD6tmB-#>c#^e)mtdhYkgFb4^0uYR3ff5yK+Tpd% zr~De8-vduXRhlfhgfL}i(ma)`PA6tcdsPS;OTo*fDe4!H|k~Wv}FSGD%<6~`*y-!?M-yH*P{yMk(| z)15qBixB6Wif9T*xg-eO_{jUNpCx~vrsxZuFAQ9h^Y=IRj~SGcc9nnj=H%W_hYjJV z5a=|@M^>C0;8}qitS_WMTprgrlAep?obr9SD;HeldB^>uh_`QxKzUhFY%7PX<3F9+ zA{fsEluI#B{IE;}*3v!1prP|rx{TIlgw z7=?)#`3tJLIw2afr{+ttLOQtB<87gDINnJX$lW-MkAKe%OyLbPE`5wTwx1}ts+4}1 zs=ph#px(eDrE>Z*vF|OGr)hJ*M!PYuo~JIP!OnZ9N=#E!h>pQL+3)lR7kfbyko!%_z8=L9Z835!S@HbcBS6iS zUXmIsDL8syXKkZ^gF2@d)Y8XZLtbA3PTpX^%^c#tz6Y zZz?Fyu-TMsRLZ*wfAc-FhlA=37lspIu)yVoBj&Igm@ih8JpubL0=2-sQz+!Wnpcze zaz>Glyb7JIL&vYj3fPp-uchGCkybQD!0Ub$FNJp2*CbZT-UxO39AibOt6kQ!eaSf> z!uI*kzEq%N!=p>}#@;!XX~dxplK~&0QPQahzS= zdqy*;yK~_&e-CTj2NO4FyPU8Ox1d2e5!{S?he6H97CzL zKu}ya0YAkL9H8Wj;eO`>{TxnV#n6}U#g3>ZAZc9r)m-k`Kli{b#sx%u-7ZUE<4A-` zuce2N8%6-#jncpU<#~FA@XVs+k5;!CTJVT+RUxoUnET`p<$RSKfGhok>kLDIrIOgX ze|D7FNUY)*6#RJ3z-@8BMldF*)v-5q3nbn6R}3ZdpL-0rJr~N;QaY}~2V@!MIH~w& z#;{7DQEp!c6wk)m8}?rM&bMUI5^!XrRn1v2C$g}7(a;6!;oW{VnEiGUV8SD+fz}z{ z%uMudXa;L87-nSF%nttGw?kzaKU&fWfkuO3{dKBh>prY407XE$zX?cqVP)bI9ky>` zJPZ?W=T~P)(|}E#WA?k(0-i7ya>4>nvx$sj%ED};!g-tEwToN2lb}j4yg6DL6wT&Y zw?L|zgX-i+vGEXx`qf?bX+k0|XRs#KF3=Zt^Tar112x{;GO<5#kb6+hUFVZ#&kN_U zT!_*QYW~~@Q_xa+|4l}k3V3H}e|m;^5=ypA+9}j>%`oopdY~}6r)HE3xsr&inJyVJ zWOYzMq0or&2XLSe-t?Jh?CQy;k(0rfnwO~X9!6h}i-l*)ethX7 zH!4d?LGU{WU_-HBD!2vu%RbOWcTuG<-y~iQBMF^~f3l(!Lu)zaO;_nzAG+6kHOH4& z4<6W_puMVWDz$*PV<%g4Ihm?5@{oz752a}7QBvnADy=$fvj}J>9iwvt^Wbx)4{jak z-mS*}oIh272?tt*KrDfLkX4xN4A5Cls}q&{&I90|KL?jVb8MhnQoL;3WTW7cug^wD z`Xg@2&%=GO@)w;^TdNQeQtptk)>Hm#w%42g+@l%1n&%WhmNSQV_v#rr{d|?ht~RM! z&jo08K6SM34t|MyEi|e#ws~FUP9^WK2P*7=q1pKy@H3~!{`WN9Lw;_vF&K6^B04tb z2EJtku+v1;3n1|7i>J^nJHn$kFlV(64irL})tFu<%+Cs#*>n}f!6FF(C)jztD2c-2 ze26xNU_geFVYjAqyqqh*n)kcKqm$CA`$nLc_jX9|DTrr3V_#HN{y>U7uV_I`y`O$J zS#Px3o&Df%lg1|k0@ZT7i+?d{IL1h5P=GVzGkd4v#rH^mzq>`t@@z&A` ze7{=*Pu9B7X8h<|T(}>RFpD>TU8J&U?$e7}(`AnpQSAHZQ>a>-JTJaMzIxVLVu}a3 zK;xOXt>YN{ubw-izyx~kiAr{YNhAu9;vKJbrDUW^R@PPQ))$AN9xnypgPbyAg)l#d z*^#Ldn{OQO23KI#oqL;fKkN0VI}IjFg#0JhB@1ZR7YcW;F5&w(+Al<);ol_QCMKj6j&cZ51KRSYaBv7rEOc?XCf zqt${=tke=at1dfQ^wd#7U!z4i7=c+e8sVMY+K**wn9|2&v>ipE%)p#|>8uSQVaiUX zNU=dta$?O$2>brD2AV|Zly|M~vng>zkxp!*-o3V|MlCa?xsrx7v^_CKU8ajIqX-t{ z7=$`dDC+J0=0ly6jK_^akX&Z{BdOMr1Ez*3CY}wCf99iFpWM~a$B#CxRni)4yuUev z41~RhrQTD+I5#|wnLFZ zRfjJ}hKA-zPuB|*TK9-|&fFV+*F-8Gy$;GvW>Cj+_VA9hnzunWrCqKZx(~A6*6lvT z_;NfsXLfa7@ewmd;o*QZ15<2d?DqTa-2{r?gDJd$KGf5XCvtj-x$g2)QpIS7d60drl9Jn z|5zct5a%R|m*|L&auGmELU4w{1gBO+5ZmTNg{?)CUnZsKolc*YfN}7K zdqT&pUGMFim3I^?$o_im(HYqz=K$ovl`Q*2>hV2_Oenr_@@p^PH9LYG$q)mLU%k09 z-w^4m3XwjP?>T!CAx&gF1Hxe3=jS*-7+#t%9i=P+^yL+N*x39mtG!9H*~xYeNy3U( zkvR)zO=I-y7b9ufY%|Fq3%fJz@%9fo+$AoB=}#8W$;Wn<^)i-qU~Q#FG3AmSa{KO6 zZu+_q|VS62~medHp>od8{tO@_cKODj9Md z2Z7>rQNBaejyou6?W6~rMIC%Sc_5{L#+Xl;U-v7o)6a$|R9!{zX7??_B-uv6gv? z?-eLw!=o(e#wM;#FYbQ?Tz1d~AL~st&a39}ClfSvro1U7d8giW0;wk$27!8xIr>lk z>y*8)N*^=o+*Z%t5iKAPJM6D%nXMZ~2V)6t@O>Z=gFnDS#odUq1f>Iwquk}%UH?D8OA92N$R?r9|uOY=hNAC zR^+p)w~%?#d&0=?m=@>(;TD=5kqLi)@oZozGX$FaHN|jp0FF7u1u#LeFY5G3<_a?L zRrO)rDTzLf~R`<*lj5nPolfL${?f!2R9`a_21rMZU%#kb? zH(Yk6)FVoh+4BmExm(W^032J+_<2{p^+r(BtgkjwUO|JrW%pRpjjg&;5YkWJpEP`} z!B?`r$0STQa821UU|DgL`J2U4BcO`X*Maxi5N#aVo!~8ikSJ@LO*q2_oD>|h9*-{} zw;9msG|}>5=t~Um+%eG-NPy8L{q{Jn;7^sKNc~{qQ;HIV-ga8kKNLt7pja_0H>;yS zqcdevjW%}=7#P1xgv8F-X5mXI1ONa}9zueRNES9@!U|8(XfRb-^7rnfo>#*CrCQyXYrp^x!} zSacG^|3l0LJzBI-c!`qC`uHPw}>&P4~@bw2cb18qb_H%BrS-Ma{z~}Bvy#=AJHtS8dLX50~^gM^>Ha61d!k8JZ54n0+v~$R& zzzX&b1qQP?{%^@%x(=9KUOP@Q!AW8D;_-F~h08$Uukt~n?jaBQFW!k7yk#H}9YT4i zD{^obaOnl_CNLApmVL)a^4#M8mA>z%Mmh`F7tcQ4EBDz<1irkv9)`3cq>}R&g#!{m z%L0yjDk~M2F{it+~zQ-Gb62e7wErjvaej^$==(clQ^5yw!B`*p4*+L#juUVJR)DkX?6 z{|{^D9<_hE!*--y32~|a@*BJV;lTrx01sDugsMlXX(OLNWb3%hRM(_5AtBbkd1WpdF&l}{$K4K%5pcfz<$Fk z0-DM%h+v6gZDkh}gDr&Bsi0&SA?w7e3;N1$-{eV;2g+~l6)7&7NT$H)@M7JE@I6;J zW1hK=X9w`ES3jV#!eu$3LBsF0u~t!NZHJ&ytc}_0S^O# z95NUwd!SI>S2A$@PlLHS_v3lR=2#@%bVeT^4#3R-OMC5qg23Yy?@nr<%czbld>JJi zhnk(pjplxlg?=6D8}Jc5ekiQ(y%3b?3Ky_X5Lpp}eEROtWAO`D`!-UwRWZv(n+=l~ z8YV}I(e`@UyG61njl-=$K0a-lhM7EnzT?*%-ss8bI6}e)Y0bF?R*ehsmsR5PLE*_; zy<6IM+oi`7vUA2eVn{Z_iIVD(hu{Zdxa`2jX4{yj!+|A^biZ+P@(_1qOp_KHk|wv6 z(Gwr>(rI2y#vpLQ@RQYkM!o_+tN!xOu<6M{2%hE5;vp;hg!M1p>cnMdH0fE$Zs{*j znM+!?i0*%wB)|3?;v)K3>Gs4o)BRzKpboMTe+VwDQ_>#DocsBXW$mrtf0CT|KJ(`H zjjA^@H0Xx7)qN|a&=L_87tJmRL-K0 zfjUKmamay-4LinmJ$~ptA_ov8FmGVguCzxE+N$!7!tA6g^nb88-A5dw6I6x*cA+`; zeGMs*wiU8_&Ao45f}icl?op8&Rl@d8nhP?RUt;*-Z~HsJZ7gQZ!bOTnA#T7AA^eaj z>p#AM`9x7HxaV>py+H>wZXa~SWgCy^N*oD~Ud>n)C$L^u|M3+$k-P=28aNM2O^pFA zmNyYdRJ{MW0nY|wp>2*b)>N=wQu`+>o957nF0(An1nH6`4GQ3v}29*1+Ht+qTc(=z|z!B_Kp zuFgGJH5~A8N`~PJ?cs(GhG@#O4Sdh5N^u9!yz%H#)ht@lnA!S%+)CLle!dth#OGbU z=YN4fQF)qrAjQJnU-}X3!nYbVX)GVB+QPTB=c=qc@7{L#d$8Y|0P{`406`i5xShVNP@6}S2w1QRhoN)Qiujd8WKkLm(1EZ1{dA%HGD@L?uSnB zM|o@rBz#>+3dw@-A#+Ryvom|!VS~}mFWGt+2sdiw_ z864e)QBll;f_=NchJr6Bnuf$gZ}hetang^k{TuS1091(f<<6TCT~_y9a2js>J%Z| z=eb*Osk-=Tv6iM#n|4@!MaX7DqP70oQ1i7B|anMi}eX~WmlE0mt>^(fKmMiLSrbFuoe*=VZ4dN0t z!!|f3#YDzz96Jc27|LVF!B71DO&+B5nxqTNZARb=c#Cj!sC z$V2!bq&(gsaa{4@e6Txy#!}@%!jsAbGst!gg;`EqDlVg3SzUglp{MKL=(4~VW zVI+tg)^lT{DK)DrvXG`z=o*(zYx^8xiTBHQupLfm)9L@T)->D-aVU$`mx{V(j2?Aw zYBmjp`GP!9VS4siS$>kA2d%K9olot+?3Q_qG>^XPUq*+NN79&|g~D&oY+Sl6F-;z8 zbVcU-uJJCbzpV2YKEz4oaVY(J_(HH9Tcn^urkU>*h$Ro~v~;U-s;a)|7SMLDn3lv= z>_G!TM}W6wlOz&m}e`-ucsHJ!JFo2h2un6bK9{o>G2)DE<3=X+5VYl7HZ`EuO z6=G>!AJc6*B%Un005Z=ai}dP&=0U=}6%MP@_vW+C2Fs1|ip-}&7FTqCUW zRU|UGAliafe{N7Ax*-$it%;}&xZ?liC+&&WtBC3KmuZLVCh1*iQX|j9deEyw^Hh}z zw@M%G&q|dETD~N=YrTgto;QtO_JWotR_9B$H^k``cCSVqY%=@wQ3`iPv;KRVK{=OF9CsIAp> z$P1jNn`~+jpdOIsuDzST*?ItJi{ole>Ln*|+%*%|JYsKaL@yCLjEm&$Bm2UWLz1Np z*})=KQ_1oTrM}Q-vVZ47B*S@t=b2sXqNl`2-Uf7(z4OjD^Cl#q6B`9!E@sCh*ADAx zA4US3ELm1(VU&(S0ctnl|MmB|ebOyDKG}2aak`+@)v4-S$A}^fE) zt*Y!L=COnKxy5`KqRk!i8#<6w-6MuKxgxlwR@lN|Nf^~lDX7P_F8J3u_>6I{DCTqo zDpYGQK~0qfm-fDJWbQ)bZ=dc86J=iC^!0ePrXJj~>zgQ} z0zK+nvx+w6RC{YZx+4h)f=yp8CUi7}#0}ku8^YdYz-X(3I2}sA<&qz*1a+x_)7NrN z7BHf0HO|!lUA_rR54c?7Dhm>KHl>pqq!7)l4l8knqE6x^B#-gbU~{0g<)S$yLmRk@ zoGqfU^aIQS|Bkxcwwyjz7ivU_P~;}IO^hJzc%6Nyw=w~jhmO5|$Lc}Pc@w_aZyA01 zvflxGR^but0B{!LBU<0Y6NzbO%?0zRhoqUpRjl>l%o zy9(&XwTZRpHCmbNZ2vU~1D1Sbl|~L>Zb+?u-j?ZmdcWPO?O$%;_UdZpxJQf>&oX)j zT0FcJFJ-3uVLaDrua_6_3MlNps)>|XAi@XC_hXfx*hTROL73$9XCBij^k#AA57XDd zo3Ub*;j`%eLRER#gJJteFZySO!f=8dObEYFL0da?t-u|S zyxwMmgkW1Y-Wxi7MKvqx{GONN36w;DQwSTDLM=0PNTByH>V$yrSh&LShx?9Lc*!Zy znTFZ%2A%R9f9Q9M5ADLzAvPl%IT3PCVZt&1u@8d*p+Q~^7BI$MuQ#8|J5@eh)3vgP zkm7;p3e2b^JA4M6cSSV#A}jVdpmq<}!Yzi(T>a<1k%u3BF!HOAFx5(C@1oU*8d6du zhG1$i_b>C>e_p-%{D$2Bzb7f>A0cXTz?gpF%)vYlD-6`ACLga66ut2*clN&fMr&NG zVICH{BW813v*yfC^I^ZPewq#W`_I@jccxge=EOYQe-QQHaVW^KS5msT4?JwH7`4@z z7OFW*O60}$Dk*2{Xv~}{QwK@t=DE0VWcNG*S`WXMQhJ~Ps;tFzqV5*7eCj_lc(Q)S zVr1fCb+BPQXQX)5&o6o`MF{6F7H2ox$*2q^(c_uE2GT2QMr{&aGV5>dp z3VdQkN4#Fx`Zi(8cthDXof*!cusr=@yZjv4fGq6h{_W$@w^l@a@vSb8SGQn|45_P3 zKSzjWv$_OrvUc2>RcXQEgoOi~ZSVw|oK?1Agnw&2;EL#IqFGv4P>g87Xl_VY`;%pm zfD7TN-?-4t@~Bx32^Og*r1m0XVNceiTMz`g4%;IYyo;YW)J+Jgd&N2TVe+@NKzzSI zLgmxOsWh(U&g3N^@kPk5C-b{sNJ1oRkXM@bL$R-~mZ~8%)Ap1WFKCV<{r#`=?f=ZV z7Coj|D(aMT^4lUAWQ%HmewstK|FiIH(@;*KCO-T|Bnf_IX zSXJ`0D%@se7oa8t@V+gE6Q&k@dc-~|;M9!U--|nCLVHN#iLi=F6v#04{(V#dh{^^> z!8GuFssM2VNZWv~FpRAYB;bHSv`y^n`rEo&j8^QmPvgZr9{T7q>ZQ zzhi;yD0Ope4*gZ{SP~qq4zDeOhlR~r7WiAugjH>R!1Y&p$t$mE1%2WOO0^^;y-Da? zRc4d`_Vr^rT$O7MQyMN>E2a?qdp`c^T~gkOfcw3!I2~ju$r(=~Qw$l%iEwz=5~OgN zBbgcQ>6na|VXeB=#4XPE5v_DyEL)w2QBCdDF_oL6l!GJUN+k+VB|^g`CX#d)AHT*u zRa^&5#gC5HFX!`A_8lw56{biJsTT=9;!joMbTrAZ-ASytn=Q4RiYPIZ3<8A;eyX9Q zQWTVCG0V>0a&{IcDIhbEmng+|S+s$dNw(v*r8hh@=+Tvh%T|nC_`LnfnGASYs^%y= z?NIy0Y|AZSh@&WLdH~Sg76X+74mwzfDQHFp|Ib}L%him1f6R0t{F!;mtpMG)HbCjQ<}iS*F;#(b%o7~Xt(m*kkX?a>cr<-aPJC&%6-J*+Of%qJka z5`6>e+Lq2A7PtWXeyAu+h$eei(9V9qx1lNNeNjSp+#~t8d+_u3j4BAVc{Gvcqkd;r zrQWqA!$U7|4;o6~nOfbV@O%PJSZpSW-&zt*8}erWXf2)@UNF|pN*HT%(Dxer*3KiC zRp%d^ShLsXbua|W`qlfJDnkwpfORGyhbXUwqeR}UW!yQx**v7=-zJO6oq66XZ*!3Lz3etbi}ojT2$#c5EfN zt(nZ<-DdW96K1!H)Zkl|%Q2&9zxT8K7W)R7UVce`T_nQ=^zS+bluQDhAZV@v!n?KS zz0-~{hB_CQ`9OHDNFRgPsT$N3YlFkTB?THjbDxN+l1zxJHfv`o+<41p+DlyH2({o! zriy&vhm5{9X}&071Kk;MMbpgovoPJPraM)-GB9PC2m7%d(shn_&G`9E4ad`oM$0-_ zyI8$yD*9+L$YegKlLIgqGz}26DQz;UmG%8(A+>l?rSnm~>tcU##;e}g8Ww-%uqgLi z!_q*QZ}gd~WQH_*A|4>;x{su392gnul+_79B^$}oI~~PEXDc6OP%sgtAz>mav6EzA z3$P%Z`lG*f*6swQD5{;gsiEMGGUDY@{EeIL(@Eo@8iRA#{leW(25>u}t#0a|RzLD@ z3{p;JZ?^bzFaZfObk3v;`a8V3Ou5`Hh>VmGO>Qn>&FqKU%9*d^qk_dO&HCwxzg8y7 z`tM2GhU|oLW{9&J)9H*Y?8I9!n0#0uhjrdyUnqf$F6pLg|@rDQ~P+kDhItJ^*Vw zxn=SWpM>-5nAYGY;w*}&YFg5FK^%?HD7(n2i)h62lpV~ZvwdEo+U#o_1&HkYPFA51 zyZg-%jqt`XXWYjibV}#tWLzz`c`fWs|APIo^Bd%nO3Ub)QMpj=pwt-fcRnvmGX27E_1ea08uz zA<}W@C;x3zO2L?>hk(++XcDPOB#4GreF7#>r3g&|2b+GiPEf+Xo_)@$`Zgd*E+E zx=&hZ&)aBkm-o`n(we&z5yp0?Qsvwm>gRiy80khZ?sd<6$+EZD8qBkobcTuv7SBr( zhWD7skNLsIxIGf`IANZ4)$9v)-8G+f+}>w)(F>=1fBisuKDWGH)pz+448G5}CE1R8 zr0|=_)N&CQsp202+M*OLVwYP4A4r`#NO*GK_a@pPqUXhp1P=mhBkDrFR`&zL6rJ?% zG1g!572AVFvN&xK0ND!Wu@doka&t4T1>k3v9AJ}B!L=XoZ{Dq3plivo7oS%}7n0io zH*7AgX!@nke3)@WlA2Bu$Is)XspJRwb}6d_KF_`hEqK`NhU}u`&*=w+$(5piwW9gS zz2j(~i3&NQbv}m4qA>Vp#-fn!^#wF?pYg3Xa46}12TAXZLR?lz4F0kV?Vnj%f8wbh z2fr+>uMNCGX3mZuCT+;mxxymeV=eMgPS&$enwpiKOoo-M#vv}M8?j{RYZ4k?f(A6o zn!>uZrY)f#IPLY`6t0H(RNu;mmLPGPvu_F^M~#NCGh;hWG7(|~x=uXb?IdnF(&(!t z0gXy|2KbQF$BbuAqFyqpuXIFYNmB9M*D3uBEs@_ENFt>m< z%8?TQrEDvoKpC%?ERX^NWRoqF7D2(n*VKX6Kvmow( zf+VBMdfY)1lnukS2FiS~#<1aqkgBC3>}=SWq<{_`v2cXKhmS(zN)*v?$<9Y{s+*1} zy)kP8Rza1#N>AzB#>_pP0ko~d;DAUtFAPJjf(tXh!R|4)2Cga&02xxek573)?q0 z=i|$YFTu;07KyV`Ff}KQ?*Uc|0Mw{Wp2>4JS3dw@_PxShaQiqv z55|UF78bNG2CXYjU1wa022;3CKdT%pVb#EwS+X)g7@+Yz%obhlNvJZHY#=OZFX{W) z!eiwy&z8)^lneo={!;^k^fZ~vkLTQUEXyd_Tee~VwB=r8?1p4;Gc5MrcNb%WrVQx% zfIe?zzP>g?3K#L*M+zg1hGJooBpF3`L#lHvH;(?Pp&kT%i~U)LK#LR#(;ssPx~dZFxBGZIz{_9b5`=5T9vH+c!B$g;x2JcU z*ROo9k2HG7?rUAV_4fA?9%uAySpFN-iiQ(_4!(&YAx8&d*lRukm$iF|t~f!n4R+cS z`n&OAQ8sc%#Pks(=|ASKh2$e3z60XF>;KjyHT-3ea|!`(PuK6msaJ_ZcVr#Z(0091 z8ks0{DzwS4rTb2Z_=1iFWZPwH9vE%~?AYc@|(7M4MT;oob@MN7$`plCjD z6U8iSAr0ZS^MKDr=im)`N$>81T7-L@U??cu*&*9Vb_9la1^+W;JT#)oEV9ef1CZTSJT9Yp%;QSo=pE$I%&Y1H4 zn!6G@*WB{0&2rd}uD+K=ZuxJtN2V?}J)%AFz`xAd^~<*0US-?0{!z zYfiAVU;P#sb?f@(OJ&($WGXG|#yeYUyTL!^y=v-0Cq!C=hUT=Ilb9f%uweO}+QLba zu?p}92eIkLL+^>Dqb#KxLA+Dxnxk^v?R$CZ^TP~^YT*$a2l@XfnIRud%pR^np5XgV5s_5BuPhEkse#BX86(@*udM%3Bh zidae*7Jv><0quR6IXF_J2WW>(*bbPH^FgXA0ij1SZ@gqL^ z?T|vdROGwN!R3phl+8v<5$k_s z*q5NaW6^nCFGT+B6%k!Y9cctX=zga;SiplloreIf&wS?r5S-f92%iaaQr!|7D>2R~ zge#pObbIv}l@SQSmZgnQg>28s4{XhdBtvILs~3l-8?}2pttcmK>{AGDBgA^z&vLlL3j;$>>DWwl)e%x`) zA(Cc19UejbwditSQ>@07Y9fX2%33vtBfm{QU@s}*+Dmb!O7y!9O$Oh50i$r`BObcb zGEQE+i9AmeXK$ug$wF@!GdLsugtpr|YP#^Vn(AhSyamZdA?bJ~tV-h`~|m-VhJ#TNLom3MumB`JH;a z)l$WYqR257Lanzbthn&uu*jr7320^V6!r*8mjQ*l=Zt3_2|sJ}FZ%=jyy8z>ud?)1 zD@g?jN_tDmct?I{NPaOMM8Ojoz7p>erG)n)%`+OIoOV{sjCVr zoV~gFz&LnDOj>%k@k%xpJw%eFr(oO!`p&YnrUZ=K*qDgh_(=?Ku2+y5*HL{&bo2n@ z2r(%2`^{k}Y#77-aFFhw&3iZ7%36_6(q}4>g-H{o1JZLIzK-w5)Lm*y=>8b^D|k~+ zAG&kXtNo!pfFdBJuviU*ZVJlQ)k&R%XZoXS{0YPPcV7}J#XX>Ide%X3JGik>=Fke2 zx9#1K8dXN^*gK>xQ-AouLml2E@l0OG-@Esz0A^^c7cQ%{q&W^bs^zstRu$o>zKw33 z6?ZRJA>>3z0Ghl zJf)<>Pfgg=>so8L1x$j4U-pVZoRObPLt%CpRr0kd`eut?f4SnbK1kj?rp0V9dlHc% zZXb=NH19cvl9R;=O@GMpjI+g=sGx*hDO`zXJcKuqU~a!kAB8B$-Td84{H=F(8_@T) zJVgTPUhOuP5s$KFI=yUzu?Rf2s+@oz_&aA@12Wlng}D-DWEW?+H$}--Y8M=FucA$K ztF<>fMTetS>z>IxrV7hUema;h-0+R{0f98ykEj4y#5PasC=scfoXn!41qxn`onK{6 z!*q_sD?1~qoDVIIL4&D7^als>Jjkf@f%MhACGTOr9eC@eI?1?P`xu`SqWZ!h=29g4$FS*F zeJPbY+(q?FAVNNrfNcI{o9j+xx-CC(fy1UR9OA?0F!bqcdy43%JJa?Y(W;b0KNO^D2eeP9s%aH zPsPJ-bx)MyESGE@MVht&8pNLa=6+zaN?HDa1 zI@51p$(}P&K)lEE<$$_66M{K*ta5<;XfGQS+V*4=LdE-xB|lzUL!rx4a)3dc!)z>i zXD7|_`*XY~xtLJ~i2cW=qcDM6x&(uQywxDYuIz%B-#K*eAZ?tRPnVwNIahOWC^20Z zGQOX~k@eW#L5ZmzKH?uJ{gm)47rfgH##SffbM<20&IUtsou@Kd?lzHcoQClvt!d5< z)wl?E!t(9owN*8W-*LIOi`{%m%U42siCn#1kTdC|Pl6E=O3?InK)lU2+JhhLCrzo- zWhi^UP>;>9ULTEho6@b*Llf-HfGcL;h$4=jKxa<6HGa>QT(SfN#4kx`$qhusLu-;A zu#tVTK|MXDr|FH#wD?b$!kv_Z05q(3-q0Gl4i?9^6c20{EKk)!n98k|kG%D9u5pyYDB@?(ZpAO)gdStyVQnMOyPR|En%O zqyBmcz>=O`vfhQ?WYvIA)rv9eP=6Kr60^M#ddGZ=S>U)WLA*ntLHQ0c*;izw@Pu!3 z&OA-1*Ni?`_*+508|8S_0>oDgSWjUH)DLVi6XH&nApIWAvAsL#@#<23-OZd_MJuo; zAP3#lS<^k@4J#?q^+sm|9&%fped#)jTprcLhE!kDqQU>I6>`c;tYM>g-K|~GPImL1 zOyjgJjD5=Awjh3?BIG%&sfYjDs>$zaFur-<5sVy9o`q(Cng-de^jyAd?wUqb!f^8MV` zX87&9Kdg42WQ9u$)PB#ePxXc1iGoyyB+qKMY~n*4(69q-u|F&) z=BLv<8(KI*Ri-G!FN}3!AI%F*=d&Pq!Qf|p20`+-KBGIJ5A}Fr&b262BbyL+`B20Z z8T{Ia8{ymN963(lIM;vifzmR-n_RPny9$S1krfS~&&C9Z7(l+gT=o3mmutp`W=eQO zaACcdw?~;y^{QCZz`c5o#!NiJIgD;{(yNdvKkVb%i+>-RPUoJk@qBCK$Z(CKAuGJM%@BwOlPIJ_|4a_EgQEl&_1;^MPr6qylC>nADB6Yehv+w-tLwAhn zDzMiauN&pHQmsnLt(z9$YZ}Lx!RVdOWr)V@1aJ~2m3`3ehg_S2VLf5yi=k0B09{4w zT!Uz`v&)k)*NHN=2(e$RZT!~0hFqMhIK@_Vkg?UWcE7whR}H%9Z|O}97Ny5TgwY{k za7e<4DV_6cUN*fv?KPQfuc?GQeu0#NVvyi!69D&+T(NDsAy+-_x5kze7>Td>*OT9` zNtN*W{kTw*&W4yNW6X~~0ct}Jkpir8TMKNc6fpQH;0@MC(= zL`?%;`#ANgVwQepl_VvFh@gXr^c54mb4wo<6qU<5fu(h{myOBt*2;}zr=l0m>;tkj z#9lRkt@LX7zBy}?%1Qit?9})TNTPm+;~_lqu-t@*6b_q43LfY9Lx=m zNgFi~<8U~bmPY$6XnQMzurx3~tMoMAGF#=lx)1k@4ZWEu;3v%O^k6O&a1gIT)3OG9B)aIS+-uJ$x%NIOMI* zP%g?e+TtptSC-EZEQa1xzRGWJrrExEK_6f+Aw1^YOffL_fSg9b*ibpnMt+;+g|K8s=n@mklTE9);M@$AnpoIZrf0@kY&0rIf0LxiHs905^~s-&<8u?I7u|!O%m6-6##%t5G&M8gdu5 z3>pq^RgUJQoxzDY&4zu>=)yX$f$;SH?3y^$|D#xtM?+Ut-%C&K@&D#|YLUd&2-9b1E{#rhcz6UkMFz>vCFI znD|!C+H=&+-`4zFQ-=~JjiC%WxCdtT>?{qR4j9!&UIQgPQ`U_kTY^5m+AgQIlmIROC}mWRrfZxCe~Z>s+vaE@#59 z92i>%7mTD4Gr4!Wa#RI9*FWpP|N44-v+j?-N6Me+A_3?PsKW*~izc*1+ASAHC(>IT z<$EBs7mmj<0gJFDygeGu@qJ$sMEx);t@NbFvm*>Rd;0BLLVVr%9hY!&atb3=f>g~w zhg-^S5&rXsriTv7HbQiJAKD~m+W4T6`F^a}VQh#60 zY6-zjzxJ7eB#@KT6@vMv#}B4(QNl_?!hEBzq@kblfgm{is0zKe+bxVUK06`xWede3 z#b-#g2ljq&jg&}-Wg?YwsYOPDKp4R-4%f!b6Z{6Hs!y;F`FU+SvQx)eSI6e4vsuM8 zPTegcRlm7Gd`UJ~2GDy~41&|fvFt4UVmm{gysVZlk3=5RG(e!2JJW6QzxS%!^}#>u zYuj2IK)tsO|c_aXMwL*FmZHq73TPgq2`z`=CooZ(a3te9hMnS2=U znTZOnrETU;212|!gN95U5NNhvUCTEm%w1(Zz(hLi`89Abj6ogon9uYn)6kG0{P{s+x zzwQ_M=QSy)V?4hP@<9>K&7~#Bz>K2f++IP>i_x<;JK;V-h!mZ2C&-YZfgRq*4xJKf z*mJRQTC<<;llN(6*DLhNBBo3;CV3;`@0$k7AcwYajtL6JBFPglfn86=M3i;whvA6O_AZ`A#*z_c%$jOre z#<#`35#%VsO)B|*f`unRtoAiu7&daoKJ&Lo>u{dnp4sSag74Aa8@%9zjv#c-z)WI%`*3Hnt-+oaT1yQdaE>vT{Dw zH_Oh9>=CR9>I{;!oA^d})%n;#DHBmP$FkM2wObbBeUA|kdNwzfN;kj#8EeDZ5WI`Q!e$VG2OXHv>moi`YH3dhMTcZI-1|IJ_2Wm{w_X zmDi)H;Vvp2_`IETAQ?;f-Rt?Q4`?qiFk$Q6wVNh1DBUfR@;I^IzBZg{VVON3WR6WJ z_Ruap_c9fqF49E5Gq)R2CevNJ{RpRQP247ElylBiq7=Fl(QWmx-^H*P~M&ME^+Y&ZM6rd;$u~!sq6&7<970Z6bj>kV+MdPYUzq(JnR7nl4W`Rbm16s}XQSv1Ok!8+pgDerge;^LrbN}_ zcVA%vVxLtdL?$QTrGRZu$lRaSR-S+MTLgD6>v4vLCfVa^XyzXF1UcV^FNpPKYxCKk zKZ~=Ebeh>&uh07ZIk}PR;kWPW{6nGcL$%aII@k2kRd$)??3$auy z`odSQp!CMAY%7}^0rjc%^jf)CsUwxxdh=h-sQ5=`-lea9#kb{Jo3tEZX9l^wE)}DZ zGYkXGL0WE4)eq=A{vEP-nVY#Y(8@kd5S#)|M;MvI>aVuJOoA59dJE>}di0KYDj_rj z@%hMguVAi7v(s2CmPImlQL$vD`1-2_UZL_;MeFFVkiHUlZL9k3m6 ziCw@3X3N!3A;&JJ`T=Vtq4mJ$N1zE#8z>cLefIDxkE0ZoxTeUzph8W{ZNNz8uizV_(8y;xAHVY)vYyEdf z$gT|`TM(c{#Fx7BV}UpC(O&ZhNs}OPnvBN`p~KA81jzLxA41FGLOn)*7Z!Q?%^&~f zl@2iA%hA-4hf}d}*~C+SS8U= zPu_Vvm(~MtyopjS4K4%dti!7Wg~`h&$6#n^UWG_!`Ll1XXd^)oKAtKr+9WZ-gJAw;C zdqz4>!h&%&?*_D3TgtM|GB(j&4GpS#f+Wm2GM!;-6cK&&gd_o_B%^@DQfl~M`|WIQ z6;9&l3@1+J2GyMXp6LtUa!-Ew^uh0{#=`LMdxA2k%1}aJ#vpG-oZv&lcAwa1Sd@Ou zRZUfiUo;RH4_@8t-XHT&6&FP3u9Sa1$rEKu(zWSK5)>OLHuXSpg-_A*J*jG)edj9q zo%@&uh^R*OfQgfgY`z~VYp4Cr>WuQZ&y$;hGHkEE_w`Zn%G$6`EKpS>B98SX9mi{w zR*9MM5ro#RPQzMLzsCVKMa>YF^EEI=uK%2?Qq_2XAA6PnFB_^HjegwuS1r+BE3}}= zk6Dzjusej&MCtOmY)CxdbZC0hPe zS?;&@d0)$#_&>hBW6M!sY4d?t;N21ox|~|Hr617-9kvV_I@GMVQ&tcuAV)Aq6MurHm=;BJ~~i>v|QdLi9@?jHH6vJ z^56Zge0Lr8hdHSJVr|?Z=Q4`*-6~N0r76w(b9?CkQN@ZkdB%4)ChVzE@C^QUHT+sC z#P*FU$Q4(3G#$)%;b-pBg^7HzGC<%DuKRzN(AdIpE_ybE>vFIf#SXdN7BpHZ6J3z2 zAIS|+M%{Tw`^kFpg8!WD@196%81xGJu+gy%6l?@3rHF{_EueU~`GR=eVX(jR!?gl< z->N?NmYiiv1E;vS<`70@yi=k`a&oqF)^3a>^Gv z)fRsTddqsvZRaBm!GftD>!bpLfCS2C-*4~0z7p96cq&KK7KHnn>liXA7K>rA$k|jB zcI^J9^s^A{Q=j3jy!8K`UsV0`E9I6-cRypY-r(~OM#>`mZ8;j90*e(nQ*og?UI^69 zVN?d$_<<{K5k)0{P%(U}!lZS|b@`Vnylt<1qnI;x#pmSIh*ff)4dyF0joXle--1+v8Gc`dkCmCMs9>Jj58EjF#nYFqSvQn;UqAM3ym zltEw7Ns5E|kcx@0|vHJh$ zy$xQp|K;JM>s)ts`j%F)>xh6j!^Q#n(GBYp>Pk*_I$PuRw~PS4if6@(R32(_SO~sV zfH5K07cdP{*U{-TBJ*CTtr5bz z>|u<_gA!RDQLrnYw3Lp(80+EO2HtwOKd9nE>e$KNJh$*NVIcCrM#}4u(QI>q*xVs9^wjGW^wI zKAy3!jWKJZx1)`=GV{<9RFkGBLkWF5S+iQ`B9gyc^sS)b|L&{(-&f%_zhCb+uE7S9 z_)2ssXf8~Gnz6oi8hoM?g~wxL8~Y$}6-ighbaLS3aVcDg%vw-JUJ=y`2zF52Oc_#y z8tw|r7KWBcrX0gY^H;GQzJC)gQ#gDcqHK(t*$j;DAQwXn0r8>)CelduV zt6_`^Q^nM){qOj{7Uf4*e`mE)X$hnG@L+NNR(D95ezy_oe35@g{z&(E>*IS1oedJl zqWFEK*k68efFG^hz<{q?C|=}Wb|~)-=Uu+1tj)gRWUE^UDGwH|XJYqs0_c(DWOE2A zBfoGlNDL^}TI^%Y2DTy}c2HE;Pb|g`{~BUAxAd6}X?Qal9i>$(vKyqZInIQUW=lOL zesEMfw$NY?TP_G|4O)h4FGgh{#{O$PX;SADt+YEJhOn3i&Ag>i{Q!UCFpPFK`~t1w z3no77u_ZTdNfX}f$-EQh^$;)AL$nno<}N_%^RJnVfhP}%13@SftAYm5qGTxLKnY8B zB$L&Za;QTowdbna7H)9I{Xene*N#EWzJ6U&raxIgl;|gqPq;T(1malQmH@$Q8d{S+ z;ZXY;4(IC~we#_A0ILdO2^PCxOGZ-=w$#6T{SrbR@S4hqw8(xxv8?DVg>SIlBLx{| z!H;>FZ1|#}6I(cfR;!i1c~nz?+w(X*+sXXeqn!XGN~O=wYpGQae7|XM)IeIe2vAaK zs?a!Y>^7U=C&Nn^Om4TY8`~k*6Ei)1A4_Z{9lwuFM%ppEx;&)`U)hw#k?k5y!6PAL(*4R#3sMq3%R%d~O{z{h*p7Ur(3 zTJRf~`g&*h{YU)|Gx<87U+^isgu_$Yh`H=7{=<8r0Vp6CRG&!;Z~^6MBX&3W~{)Th=m^RA8_N5vG#KyzI-kHsr2 z)?{tpo<2){6`%*(sQDFPcM>hcGU1JQqbk{q!(}8z0iKCg%7@HgrB;FJdmIA#!SSZH zAtC;-#=)cvh1=DEdL``P28^10jOOgH+^q6`C!M-N2x;LD%(S@px>@gq4KPZ1ai#)G zmG58U(9J8&Tz_@tRw=d8kQGP2l_feVedudov7v3-Y~~hxa$9`)2|c!oS*$$C%yQ9Lj9;$X;~RjVeGWK z(6%`r)Im)gxW?`hFX^R9!GdHY@sC58=59%#6ldi0ct7%#li!z=U`+kH) z93U7`jx-LE`Nlfo($n4P`sic5WPfr&ZJM9;sA28vQ*|Q1lr2C2!#kKMU5s2H@BY*r zdYr48#nvIfW)T7U%6gC|IQM@0%&!ymipE>90r(RAW^ASx5pE&zCqV*37yOd$$s@5) zxG!uIh6H*<{6x{|Nn!GV{0m37kJ`)Qcg`N4ebMEx?g^pCEJlWXi&Kg!Ltsi(rDJ53ON67Sy4_Z=ofeY|<82o$5i(&AgL(fB$P-oLRv#hyu+d1)7& zZZ4LsuIbAY>_)PLH9W+d`Y=X{UInm{fx+-2zWk0VV87_51LaU$-+XmJy`pb5@?*KB z$d)j~CC(FL*3Kn}!(>js{EsATZh1dz)rP29Ss4B{KHY{zmjGeX6SENqIi>s$-0WNn z(&4`yqKD~No=HJuf#>MoRy4ClEc$_Ob8TL0w`FPHet%xgNJot%Ry`KIY13KR8cXHOa9T?)Bl6b8sLEsHuC}*(<#nPb08&AHXj99M%+m+3Z!E1(Q+@s* z&Mh`l4EfthsY2()W$yML+IIWl1y!QaCcUO&SUQYBMf`deb9_cOy7cSMc>_0lc4N)#X0c5FEK(5~XrF4}JC8 zwjQoU%=GchWndNs?IN+53KV}mw4pvsK5*b~X9ggphIV%pN21Fx68u8Cj>3We9po5B zinx>v=Ub;_L+RVv_cnnJal%H@(NN((Jd1meA3S}nGl+@ur|E~fWT#c^3rs9-;K^Zk zbuSUL>S?=!FUC2MG-6&~O^bf0?; zu?9Y_Nmni87wtk6rxncNxpu!(z2x9Zx*b#M%*1_4vVp@9 zyLL>74}v0O;LULQxm#=08AhM0;o=C+*i?d9S9Qe!B6^091Dh1_j(u@kBS2AQ*5WQ>ay1tx| zn`Om(uni-1bSszY7hTr6{AhnVtDwp!yecX%&~MhH;3Zwh_EjU0%zP(+RXd#Tustg9 zC6^G;(ST&E`ty6nvV_jcI;&Io?Z2v_$p2Bxe|?g*pOO>qcRbkKsKdt2-?}y=H}z`v z@XS$rIgao+tG7ZFUV_Lzq3bKodh|zYTAU`rDNIzqRDF`4%`K!enp~uHa+dV#f1VJv zXH8bsXT?(NacDuyHhYN?HgWZAoRm2D3lV72-B-h@fm&y>#;EN>omb#z&YsaM5`u!^G#i3NQ2RRvK!p<4+x(Fu*B z34a0Ysdkn7U^|LBaq*)uiq414F&^bPhKm-d)N30pZbC_8de@mfTC~Y1RXce+WhZNn zzq2QA5Mu{s@`#7mklT-{eucQoL-=;UT?Co?10$3=_;7k zAi$XFrU%8TM52N@l9(C2n>TTM8xqYHwhondC4O^8CP~h`NzI)OxQ{Q{eG z&7~b-A2F%*JK-f}rspB}R^uha5jiVuf4zO@HO&u3VuOzQ+`;zhHvDJ00FDisXb%}? zXSzQ$+<(m><=|K}DTT<+yB_&J;uic=51J5ehc^xh4nejwfu2M16#E5+hTcGIUYt`Q zZ&^e#jhr*6&+z(`>raDn2PA@g>2bDz{N?ons@)j)lMy-x`-JHREcXC2!<&06un%W^ zaIU+Dv;F%u@Ut{>e|tQN;R{pv^2Gi} z{q0I$mRfuS%S~9-X^_xvB1|WQeo2G?h=9M=G6L+t!jS@xVJP*>|6(y(LD#uL?QYmQ zL$H41YTv)pSCbwfC1%u!Di2+gOScug_^rBHy3cO`Nn-dXu`Fk8WgX_wYjm{$4qt8n z$wE+cFur~V-}&wmsmVS z0z$wxGZXxS+keI9Esw}=wgHc*CoA8K=UTUT;g?t`E!k5e)KtG_r;y!sXY00?f)w-Z z#vd~5kgErZaX#L? zerLG0Rgt+bn%d_K=(2Qb(YE3)24>!{Ly5?zj24ifK?`}+`us8ohpYzZ;+lP`<_+21 z=z$y#jw8zXlVXkRf?=y@=#@=30;WDTNq_G5Nlto=0PVU9!jlt8fghCgH>ZI8;`NGx z>f_@RwKk#pmG~1V^cpLX%-ZOe^`LA12uP(}l^5kUhT{y0WQ6V?rv-di(I!MFefK!^ z=Lnk>b_pc_%t3%Q^u0CD$mkoE{)90t#leL8V@(0}{=)~m(+}pX%pbZ5J_y_@{`z?8 z05rRTaBaC78r&=+RSo37z8{=>lP@G;O}j#G1o^&-`)$FSva@SnIeuR~>wBF9pbWxZ zp>4wkHSs8^r!X(wN%K1zy#~JD0{jb~!rjF0V=+Y%+~= zS26yBc6no?`&2zMRXD^~sRGLT8#^^RFQN4^Q~1CSEchqM-6Jrm87dhP9^<5GJ#>-Q z8LGe8$P?4(U_zdg$N1VH?@;SalZH;G!nS`9m454=?szg=nt$oXC%*j-QF^DmpHRgk zxGpNOe=$8wJuM*uyhH+fn4%1yq>(yEGh^)HT|sON;m_$?0wGNT8CJ7M7|x2gjA3oS zJBk%i@GRHg=}`QC#^m8*FVIOU3*hQ7s{T?+6k<=HyB!>!-O17xO4YMNM)jO!p1KqVjWnwe4x=8avPUI2SrPwQKpaC|=b*0$KD26;lKD zsv290HpLIzZ|v5ASqg}LZ!{Ib`0~-lCOp3{{M3x$jA;~0+5e|65@P!Ud{H%~g$S%> zynR26C%7p_!w$V7-EVWCz|0172I{{g>1#89h;~e|9~5%*UsL|TKSmnUFIwa>{{Xyt zjSpLHlAeCF^Fuc+sFo0^*jIiwUJ19Mu~SzU(o0)-@4^N?CCpGAAOCL0mOZVH5d7n(ECTjew8L> zQYO|4^9^y)=Xhurfs4iGMr>eq+Dg^21kC%$fIvgko(U)9tl#=alA~8(%!%QnYkpk`amck{Da~+%a3s#pfq0@%}H)+#=(DbLMOQ zYm;5t@i(+{;q`u%um8+N^K^KK;|A)Zy7{%A@B$mKUZTve8)yxvPk?A+c=}9nW-9$# z^5fus7KChnQ(olv33~g;NDp(OmQN0$C+et@oENaEgg?gBYr)J<=2@tu94x0mRD7Y&MiUYz6rM`*o5_cqS3; zfOLAvQ_^ocMIYx{?$EqY^-F9=Tg3@&UVc*co)RWoT+?2uS-H;F`uMs?#$~Ssm}p>)RSE;JX+F>Phyz#vlfB|CJA`N$W-HRAY7^P zd4nPhs;ia;G$Aq#R?Weg8x>>itGFFjS3%bKtQ zMT4TMp+gTe#)g5R4U5PX>ERgI6n+15%{dP6!2iu2&{QWf*nFG&*R%^VreJ|-;J_Ly z1DjLQOK<~~nDg_JF`95+b^re8T7|Iyu)SHhhRE5ta4sPX%7aXL<;?f*9%Aa&$KN+~ z60#WVzY`xU%~qD*=H{m`EYGLyc%8-o&dOD@##B>`x8EyH1H>$U zmy8U|$AN!X6WmZG+D%=y&Cq`fyMc_dfk}m@*@5t;hE?*13D@oF))Xa5 zbB5+msiNbDHRJMU2u`=BL3V0RT*_$VIWugKPZ(sz_ z0#6vhd#u->s0o@FY-;t%HN_YckG$jY38`MBqM)V zf_D&0Xpm`wt_gU%D+}1y^-&DMtc`Wg(9V$N`K5Db@ zggr=<9!5+hT+QB>wSWxiL`JNCsPP)<=*lB{Oal(qxrTS4wEU)c#vbFS*nH)i{>I{H z+g2jg5wW7Ob^q9uk|gB# z8i5!5)r596@?Un&iHRtI&zP-84j|Xu<3!)3yF3w2GLm^E)}e)qIt1EkWXE;?1+u?6 z)Mt5uUh1s?(A-|v=crSUJo&%5Bzm`=1+Un@1_f)$p=Js6mH1{>{0DTPoRWZ=KatR; z5Ey-X)qf+9Cdy6@BXjImiRm#2a;`iPklX0OXcn7@MGEKXx54L#=u4Q+DWVcC8+!d| zEc`<)%D}**mcOI}VTD(!H>cbFUF}Cur#BFG)?f})t+MG$FCD=l4&N=x5_wW@;!S`P>hS)4s0n#(bb z1Q^4(qC9#PFR>8RBYUwEneP0%``3I+F>?kD6u`t^ojhJ4_5lLB)AJB;M)Q|bzgkjd z9hfCN721$pNhrDnepE@BbKi4@J+r1V1os|90>?yR&!cR@ev7T-mu^ql4JYp;0y@(A z9Q?|7dDOBq*-Mac6G$i^@z@MBNSCT-ik(#l;9j)*Sw;BW z;BR|hcbY2>{oS2}S0_wYUWpT?-1C5&qB3h!ctYC22tlOA`JJ{j5#eyH+f{m<6hqNC zpw)cgn_$R*utxn()PD88L*{w10zKO)v}rC#@`(Z(`4FAB7|fJi(tXDZ82Paz^BKkx z=7FtmXCSi^o{Mc@AkPT)B3re;W+wEny~%p{oGlkl_AP~P3B7@guVu3) zQ)|O6({vos0eB{|u;KwMh5lNnAPOolN>tU9qPu*91%oI;Uow*zdCktGao3(Hn~*6k z8|gQIK@J6Y;Z^=H(fRr^;d^P5TGn23CIlZe1^jY186~t@vx@Ej8NOUh=+rcqK*ec8 z-SeLPHtM_goqPZS^yvr{_0T({?0ivve7Bv}4H1??+H1*w)zcEZ`d5hzkXjV3J`gRQ zNB>PK^+c)NPWaU5;zM)~#%xTigi&TvjCP9vzebE0sMlW&O0P3 z`=^IoJ&pXKuA6rpuIlFXqFDzQ0q^I*$4}Vo@2(P6bbh~Bi1e|*tHq+ToU{qeiN=tu zUxpTV!=;etl7HKX0~)VEja=KHY)&BY^P~95h36~Bp%l9aJtJh+o}Mfc{3u195+Bxd zQN~+%=^26?urhi?!T;2?#7R11r(#`U96onNA#_nhil8N|_PUE|#L?w+Z97CEizu9# z`x?9J=~k$}8sdG*{CmTQvXTfdtipQ1)pxJS-e)NlK7Cc?D|`B3`JI(QF|QzI1mIhq zbV1hEgFRSeF8@_~-}z$-%BOb{i^Ob-CiHXr2Ke84dttKA9C?*Y10RzE0-m6U(O@UV z77V32JzLqm(jz{V^h6#co&a3Pi76}qO)m8Wn}l#itdFcz&I0RS!8~F z6|ln&!R?ApmH+%aVSg5nWafXagAcR1MKSjy(`(P|@%q4zClkORX4pI%+lC*Aa!LSC zi6qgBt%49;_eGb>{H;dYQUI`5b_%_%qENQ|(}r+=yo!})U?Nl6Q2?)XMFphNuR4|@ z{)+NnM!~DFp>o5pG#wu&t8~(=<)3IlG<1Q=&~4H&##m8V_7I3tj6R?b^KRhtKpny! zkaDaQIipy>-G3T773RRqVOQ&#t%K&$uvCT;)0;%9v={2GdVA_L#=F$W|l$oz&$Cm$r+ix~&&K)kFY^2eQ7oop5u%{=IoZuf}pKzwh@8 zMKKY&;sHmC@u5EO=TfJS3~(3d4S-c`Mi4L@rrWB|DyBdKBtjf+(8;&P88;zFv-M+! zE<`!s1Vk0o%>Ns=`+tv{Y^8&;u|B$Kp6l{~rL?cu`-fk0^U3Fj>g{$~GB>-ww`}Ss zBc;9u;E{(X5TlS&N~`{LARPtepp5aiw(at+ zJe(`=QtDH6I%6FbaEg7kfk+o*h;ZkBZLL71YIMq;Y=mCF2^zpP!+mTwRz|H zbpEZs)H+S}mo^3PT>9JAR)*GyC=W3{^f020hvZvJ5 za<@WcFF zjN-a8<7^<;_XMv;fpf<8(2SGHT&(n}M&tSf(le`haKw-{L}2o`?q!+>zH$7P!yx4r zLt%<3VAxY2xzBF%F>`}J!(-mrOv&bUO^7T%y&f@h3zm;5Qo$B#Q~XW|_CKHLUm#S+ zQ^-->w046)#kPG*`$RCCmy07rLFkT0Kzz|t=_5$xNHT(R{@M-&vqk%#-l{L15wG?P z?KrIX-C+9-N@EXE>^lxuV_=I9BLm!BBeff$r(V^rIJ;MLz|X14;}Mp8T`}_@E+8KJ z>6tG3_u#l4p0H#m3*B$O@MIR5xjRjkz?<(2tk`onIjGtMp`WyTmSKRP=v*1zz1#x@ z^!`qnZ+&`0{rv;`Ygg85d(&r;*3ZU|< z%DESw`6D|;T%ptJmz{boW+)3=X0iRg%NK-v7T~WJ#m+}huV)qxm7$i0gG*bxPKQIK zX=@!2`ySsJd!Vz{>Xk*mTSg!>NEpk%y&#v1>E9?yLT`p^H>+qqbU!XNWsAts{o z3L#TWAH9x+a;Rc?mC6f0X$I!^cf8pXvAk^=8W$a!we00uoyMkq{XJo_!5vUCCT*S4DGP}T?EcCy9Z(^e23Ir3U!KNyw#`Alszd0vl0hZ0&okCOO@Z|D0XrR9~&uhOrkZu#`!ChY%=(uoirXM^}`#i=y&}C-C4`hHEcBmk- zf0Wj6(`HtZ*Lp(9Qat!()f=Il%NXVN7zl>$w8t8KRP|T8#oqA1#N!oY!G44qY^CYgvk8 zX{gxpl7IR`zdm4m0W`j3@uAo(ksJ1h-6ID^z9YRwVc_?!Fw1j_x7FVo=9grq$i-+$ zcq3DD{r-BaGv*wP);7utX)y<#pimI`G?2kuAwCFEv|MtgC_|*r0A%Q8MjsT|#tjZ0 zG1Y>4V&kivq{)32En{+g>Tu^#n|MV2g*gEZ&_)7J(PT(08uxXd2mHM zMQzzQgiS*_x2-2SO+I_SKf|^Yh+_1LkIUpNFd+Nk=i!wb(im0}@d0KNUNiVsTrgTZ zP+HqI`->f1Wk;k=!#YULQEI8+gVvNZoU@wc8>17ZO9Ee-(}ztfPC7hs6nKa&erI9Z zS{SjeYcBU93ei1-er8;Ls}+}A!pw^@`F>MWQV{FITZ3aRLk(MXH5Ovyqf1@|B4KI! z`q*T`5FC;KJzBBbBBDYId<1jso(JvO@aOdwj5tBY_TZo$*cPHLGCIx6WCl>Ekoc#XN_(09EK> z^r7Z_CG;IdZk;+dT3c2EBxeF?lDBbc3-u6(&imtw>qJme9#&QbJKKwUjlcImBjlM= z{l^p?k`N7PTF|1XZ<}1_FSRwi_rPw}JPZ7UcbR~?5|5gNHY8nYqxu-KB0=O~C_|!F zfAidEh6(4pzB=Gf$F#&@ltTpLO{zFF)Z8Y=#)1pWx17WzLcypE4kxzAT7K({hXSQ? zXfZ^A51(?nP3}I8gxiW4 zp3sAd(IW>u9$?;c{Keexj9LIQ({`j|nVU=Y()!oj6HZ2`8MWHVL)J+nH9@frg?VJ2 zVWl2p)zfO}JZT#t{&~M+|L zL21vt+J38|R6$6B8=D@+s~kRSg8ram$PvL-{UqaWj^ssU0((Tx3#q=cciG_=PhWw2 zUQ3I5H$@~(NGE?y>CEFie_mbEtpNsraFKI%Eo-{R&vcdVvmSnSI}qj72W*$r1mCbT;O+3s#RGy-7Vo z-|EnD99MI%?&Sm@4R1*Emj#9Y!I+jZgR@|>4wCp-YS0IE@J5R@DLJ4JYGBp&V*XB` zmroK}SHmbI&@SiAJoMLbD#^2e6_M(VvaLBa*tJrPlA2f{#YgG=Dk#Jf@^3C?jYJ?K zxdx_5ve2X%K1mB?71D0kI8%59!#l!CKFNs7ava$P6Ws44P9%omp|-ttl*D#cnuf`H znl9YzqiyZ-W(RZrFe$83tKtakbO!t=`{*uclOs_gzXuw)FPt%5n~fN8Pf{O)^GPE^fv%E(`Ut3=>2OCc0PGu9e~c?9v{&` zD50R4?9ia^w$u*|bW-dtaTVJxYI@bHnAmUM|K;L)qAPiZ86LYT0a)uhq)WSl#JgZM z+f7oXBA;a+OS^}i`y)*C%UR0`axqMK&&d$XMeM#)nfo}$;C^1KdAwW0%G~#kE$brU z6(hJ7YRHX@&O*zSg^WUgnTykSu*hDS!^W4lB&^l%D>t7kHZItzR%-N4kFSlj!c07@ z9L@N<=s(>j`lX)Kjz{#SGGTJyR&uC#Y*SUeiWd3Rg4}FP!@hI#+v$G0KFKRPF*yo+ zSd2xv1+Jb3|NRilVAlh5y-Y9SnhB)jG3Ka}@SC+&-UIbn!yCJ<6PsVp!-4HhT-v&M zQFtDQ*%$rC-m1SdnlqnD{|7sxfX0PU0UE9(-wzfnW<5;Y$b#7x|m!uZgb-_(L# zH9^Ipzfh35eyFAju#^YCyllk7TyYe?*)%ebr!Fy?y5mndM0m8cgkM)*9B)Ask zsyR@Y|K<=!2dscXEdzYI%#bCQSdiR2`q%~hX>ICr^_u$aaM*#A9}2yMpzM_E0G49+ zc!>&kJUmVXr_b0>PQp@74is;&5w$#ho@(l;gW6+A@KH)sE>rj4)Q^A~hTlHDtZRjb zevFwq=coHuoWW~|Jw8z($&ior~3w4zhm7&9bLtJ z#Y@^DC4xg{cgHnn!u((RWwXx%OByKuCiUeyD17h4XPGr#yBMAP0y84{-93Lg?KRB< z7-hzQ@DtsXt@ZKx3abbcuZL*GMZaaahbDA20R69+QD0!DX6(V{op8yB*(?S=SAMs>u>)U$lE}t zDdi-G=Uuk+sJF`KCo7?ygB5>YMSFy8yA3Y?rV}rUtLgZnrVa4qLcdrS2vP)$3Blc+ z*!ntZe?{C55BeMjyE*csxfoI7!KgbMfOh@9Kxh z2-1pYRsIkw`=u46MFL8`XAo@G72P12*t~)XZ}~0du~mvOZ58%F3{3?3O0miuFb|S1 zUs@b?{EvG`@-x_|Kg@4*43Nw}-PX**%=U+u!<5|y+%axtUApZqZ54ho%3w@WNcwd^ z3S^mbC$NA|rucy$stbWX#$7aV?Jb8C_QvS_0glkF^~atlXplg?Pt}+5+}WKt!(0%Y z5jX-?tN(W_lK;j+35@Z7(e+*1ZYo`~55xsIT}na%kwu0(a?Y8jKP}t;-pAhl7(-($ zdo9u3vuoC@YM?oZ5f=L&&pmbZbI1C7#Vl)eF~WzYxtPoeM(745TxxgnpGU_WfZIVC zkjcfwxQ<+|k(v*4ONq*fyeQsMOz$f%Egl*NGOM10T1f$cDurQP2JN=AL9$f}Sob2AQ zI^N$gNVW2rINk%tp{DrPXH)FbD1WS34R2yVuSe`~!*~1LvYAHsL~?>Gd7sI(o*HNt z+AuwDmF&`S9>;P=&>5nVi5lW&U`(C_+0lK16)nSRuP1O04Z0+q(~gRa_JJp0)ziu; zVJUDvEe_=4r;m4>eqvBcZ33cd#t0W~y&`_^b)yB;i`y_Id|r57I(nMWT@S zczXWh9%Qn6j2sevG%;cGMSXfN%GdrEhxDeL947hYXY`{#lgL5uaPb~KBT+UHm$BzP zycrsN;}z(U!F`k9l);{EcHV(+VF*e{$;(E(Q;vXOFUdzVY6ZxW7~pG0+WK)b73c13 zI5n=Za@)!&h0X>-#L1XK>X5@1e0khw99uzRzxM>uM!W#)Fl$l3a-OmtH17q$efAok zeZ%|KVelhcpe)O-5`b|z0@0r1ldeR9+OqQ6;@r8A5V@E9EE4)Dd+kTg zzEY?>nHI89)Ac-J`IMuJ17CTtG{_4-dno&2mw%0y^X~lX5q>$hks6}xA3a;XjmMWJ z?C+(0ZY5Ehof`<&<~d&+k!I-ae#1CK^tc=t!h3w{J?r4x7wnpL?buI)QeHLt{J?9- zR+my`2$HBw)GYhG$?P3|UA_8oUHk)W*{8;~JDKjt>U~%==Y^ncW~cK3$_WqUO1j)c zsjGO{J5T_6g=Sp%O~hGE4`JOmwf_L7)ZJhiw)2>xfrRs;G;yuAn;8-k7F)Tp~to)JYkl%&kpf!$lS-20XeUU4D=`lZ=e|5X|_(pu#Nfv z#eXD=S1;C)7>tepNT>5*k&Gxi498=kJ4k{3QW;L}7-W9kFzH2{SooozOB>?@_14y& z7_AC3u{uEItE!J7@-`3Aiw~?6W9RLemF+yxXIOcCv@E?dkHADFUVpBC+d~HA_eU`X z1z=1T)O3&g_xi6C*du>r+-vJz4pUjeObxWS8mLf%} z9xI>tt4(y!pHA7ROVKC^<@FRUy;wbL7p4_NHSG&V0)k%k;BuSzK{Rs)zdB#lVp;<{ zXdr;_zje#R)a?Dxc%=~Zz|*wXpy|XhYSgjf@U!@CdkhJm7UBs5;-3R`Uq9mNNPoTV z+L#9R+}oepeccwlKxFo2C6G%8P7>!VlCJGZEC=JA(=n{pQU~{Zc{W)d@gDsldTMGi zM2r+n*{+FVK1R2{@5LFx(V6fN=Zrh>6Zq;qgiihF)nt_8v)u0AhlUXoD>7M3I97SV zriy3t;}i@>_nCrVvT9-$V|a^q*3v0+Pm$5oMo zr+o7kxr-qRD;wdX7xTOX;stjfONW~cV|JM8;A5&^W=iF;aIi1v+f`X=pvQY>fJuzI z?ET$C@-#qE_mxvELh0uJV7#P$S)e=^!=Ay~&S(2W%RUB0JDKlp zs)3vtKwGxnqXfy%OfRCj+Z$*iB665D$=Daq>t=)7w@(hI3xC!rsGpzdHP$NaZju@= zAhnyDC^XqSf#I1Zf~>sKA$+@IH#3zjngw{9$@ShPu$3Sh^nv+#S~Q^}Eea1m^9<+7+!n}_mw>-D z2w1Qp?YrL>Z3CHS7tcW&kR+_G(axPp3`?0!a`l!!1X2y4Ye%LTt%xjpwa|mrsW@}4 zd4I^fAxh0>oTfYVoKK$K)+Uy>4ykTU4s>|iz9Sb77PwnrHOW{#iz#$M4WMXIIMO4U z_-mehHTNq&`1-ql$rjkinO-rF@P2GpM~F2D@TH`N8RsIq_Ghg0Ch}QVj`Hb&T%|u- zHzo&g%ha>akQ7XAZA!juw%J=Yq-o_@24_=)kT(o=)#QPw8Afca?W<)Yh8r`kn2kk^ zcHfCdw9JwfFj~@s(g&&`mPcGkBsg2Svos^j`VIrtJs;2;#)uHu)v=&OXb+Qm!=S&e zk$gY(JE$JtwJK|o67~CBD88X9qxF69G{h4%p4^m&2`6LitBcgiW!z-KvA4FPpZ!yM zjWm{$=m4*DeD$#3)vq46MH=5KjOJFyt1bxUq{ia#4dbSLzC0YT9zN~ZOh2n@W*HA) zQE6N!w73vgzx*c$1EQ82H;Fi7VjaT8=?wY!3GS!0y|=+8gryIke&6E@|k3Kl=2gpKP5An`QQNBlxWG zKFo*tKx9vQFM{Y*$|#_yaF4S}|ERLGjv~4fN@ql}bd=w4R|!Tv0bSn^D7Y_|P!Lz7 z79k=d6zgfnP1~Z5gb$i>qc^zy3JA1b(j?xbNMG2F$zQtBim`FyI)!mJHP zsP^&lakPo0s(=R7|Ct>pd8u-0JAt20!vGgK5xW_4WZcOvb36{blQo zG)MP`vdJ$n%>RY^W)y$ifAZC~OFPg5PGZlT1`<`|qIQ&cBpDppnc@3%ZO2F?@f^T> zawfAHHPT^(@10z<1w#@zZ}L(X%S{R*V7EPVjWIerf!8im2I!_`Ofx;b>6)99o$PCA zjZ4$#d*8S8Mq3}9T$!L>HzZ$jB!&0e3_Z7L_UrHSdFH0SR9CnCNtnr0Iw+10k{h0C zQq2{vS4|M|QfG>~fA?t^y!f>d8Jt)rli>QqfO8`hDEs$9{aCvZwPwEpUB!3 z=)@Li@}0De5h6ZVO->dLz-E$3{`NiwQwIYD4^mbyCd0EtQ9jaOt!GKXAUQDwo3PZmK`+6rvHo#5GQJ&<}(p`RQEHS-_q+c{47;qub@hg35is>IQVU zzis1}`$xe2eM}6`o);ZPQ&2(|wgwVR@nf%Ujuhz!4ocGvpsG0QtmtE8%zyJ0b zgJ0ewkTI0EH;N;QnHCn=*vDt^_Fq!nM+VlYdQpG1J1@kqN=Fnyuysp69$7nMQ`sm{ zYR_MfIrW++*KmrH0>{2AFn%G17D;+(_X?b;nf1!WW5#+UC8h}%L)<%(J{!?41B%`m zG|R-uN8=qEk8Mv;&X08k);7s`+Gr&c#CF-(MX0C@vC!5wD^xWFia!1)pO>@vQv>sj zUVri!Rx;(NqsYDPfbL|>yv6#O4%h8|?eSIZ==G@GPh|`bAOac^=oZ;_V$#(=)b?Fj z-)QW08wbub90>isJXxJS3M~1!vIFhzdoq#G;{0MEM$oLd6F@G+S{A3%hUfH(%ovXm- z?5CeP)_I@V2YTcf`_?Inz59LR&t3FB+-3^ZnBy3)qN!|$X5($EwZwVq5BR*7z>3LvI}m&KIjl?aB_B)$M8RMPkQe^bFY>V9F3uh7rWTq zdb&+qjKeC3I~0g}ofsF@>(z?nXfAl>*3y#N5OB-XV>IySBC1ug5r#~&1h%&nU(ow4 zG0S0}AyAhazC^xjc`N55+JR;!*H-ikM^ba(aEI+v78rTHBXt&+H(`h0!lPj=aTJ|B zfE?E1h(If$1gEDf>-qX2E=iEKa@H;HA0D=YI~u2}9-gNadcjv~E=9Jb3+`^oV*B*{ zn4jpLm#^J4$WXe~#XB@V^>e)eI<3&KpjXsUx*i=l7IpJAw<{)r8D<29Rtc#;~Usag@lsPeMC!$aCt zino)!1|MegdP4AXdl-UxG*=Y7@doqAi?rqYe)lD1)!K?=@Uwr07sVkiP4!H)usBvi z#nc3vj=iIpcRh8CH-8hO6k0Oe|9l!A!(SXTG@U5BB9(5mPNEDc3jkK^yD4BNRmcQA zEf4l&dI^$^evJVlH6a$ATL?n$1Q(8z`f(@K4d&@CW?0BfGWq5|H15IfUp_9^E=Ll6 zdByRj!56iN>^qvE5yCw+(PXP`m6cAB^v?k8JYNgvZWzv!5t$|vlg9S5Vz1}8)~rSx z+y~N^WeV`J)yL%pYuT74v6QQrm=0++tCvda%-tU6yRS=aE2|*+KH!-tPW1}iGfN?4 zDmDmb(ODsF0#y7}*TUDR$?)|i*+s6=DQ-CY#Gt6SKkSG;Himk=2Mke6jnv4go>Yk5 zI1H<;voK=dpAT+{02X)=4|^jB?+&CcT^)pECv1EeC`whINM=5x&B~&*PETsg+_+>Z zbK-`=n|m&o0{&Iqd^$Qju}zt`+I%Y+t&uXV57ex89+kj1L0?qjTDWtkAbmT<0Ov(P#%LAMB!fl~9GCDNaI=1Vi+W`!mQPn2R-o0et|q{{#J%BSK&FxrmZd>q)V>N>M0 z+(n#H8*J#LO1eJ^=%p zgy|6AnLdII+_LY#NA__$fi?gs^s=LUG>EW-UCmU))I#VJ zFZQ(DLQ<63PqVtJ!i0;dOQtA5HmTjjrC?>I_v;PC4{U$lT7j7?tV(p?n|8MV994H1 ze2mMMX@Oo>7{xj&sG~eCPO(@TXxz2K8AST>AhP58PBxll)rb|Ye9|)Ybq1&>qB=c} zFnv6k=0FKbus`<)WjHJ_T({LMg;W4VA&fc_cmN(b7b_0j3OFpGLyWjR8U%=rn|%8e zOS)R$Eft>Em94x(TfK{uHHPz^ctOyc?$~iPr-?l1$Zk(+w$|xC+{h{AW^zWj_hr7C zuu3UIU)MU?x}@c)%4a%ytk_AgKyPZI&lCZV(EhZ`y$c{$7Eke#)ma zTiQfNL)$Q5FNm7X@UUC{@Uv5!TsYMudu~B}ku#EVN zP!jZV`z_|2(}OpuIdFV`5;OjNaKub6*v*z}$yhj8ixgI^4thk&_=tvKTtX(IW$|QB z#>F#?y~Q_HT0y?}%zJ5$LxpwoJr)Ch9Xeg1#o%`biW#^*XLOvV%zOc>WQ7ZS_JD3Z zQJh!PBB?OjSPX5^G$p716k1uq7WMW*?z8ZjaY*h{0jIIrF^h1E-m}PVb8J&)M|OrP z(zTHRktsOSR>7i%`N(8fXFK*NsI$rnJu!eaktrb1wpN)=hYfug!K1~tGUCKoFj*d` z4x}lrj5%vu56H28V``G=5rihv08Gc&ImH=uy6~V!MxNQ*$V;dr?Dr2z9hokR3xjGv zO=K#oDRf~4(r?{yRp3qB?<0ynGs^roli2 z+!aC7BxveGnZ>;s0v_4GX`q#n7@UIWtR;=t1JyPlykzNNJo@KNqanwW5eiTVsFPhM z>Km{ego@E{n9V2W0m~4qY;t-?7O{uNamngIBi~fnM!_K*U)i$JDNT_$(KC%Tjo<4C z+|{doS>U3n-20m&WNC&lYg(@-;fpmJb|Mx*wyslQAc#6^Ic`UeK!5d^w-gX9O=^@4 zdZf}G)n!+}4Lj|}a5G%c-dfEg?u^&zdT^_smxPOF%)Xt1&bEnmhOfqH5tz&Wh?Q0b zwQsMvNRnoPqcB9@g&CSxim*3OD@h*(vSdF_(-zvruTxJlIov$d{Bfg;B6U1`J|w!P z+ts|&-@YR>vS$}b^_UGDrjW8yw%(G{d04ru4RdN%&E;kuoui>tIFKSGG(u}B+D(w7 zR%c8^_2zXK2KAU)Vr$4AFdz;C2Ar#=cVQ^Tr$@VE&fG$ci#@V~T4@Db*GfLA0X;J6 zp^+*e_zc-$*2-?)%!^jM)^vqk@Sep9mW4@jx*1H>0cU$>slyH|691`{?LA3Me$4U1 zc*S05ipo-wnL*v7C@Rwy)4$~+3&tqBaxft59(b5mApaet951Lodl~_Bnc3B%yLFxekTf}vn7uyP?xAT zUbr8#664O#nHu*$u*pRhVWP?$tY{1I~n3Z$q!hx?HAa1qA0eGK--p3MN>4qo>=! zh=o)AJ8k*lDA;*aZ^&)bN>Ib144yZQ#IQbNSD>H9%iYpVf4qXF`^JjGq;6eT%y{N?fL{Ehb&S_5c8rW)`m(@YwRFs%kzd8|(>4YXb8ZIW9x#OSNuoe3yNWi;-2q zp;`?3dEQDk5-%!;k_8V68d!2qJmDLI3tcu7r0$5cla6O;&NvL6x{nU09SNw*ihuG4 zf6pIw5Ooh~Txt6FXk2iRBBLs;TvvO2W_>-9-;EGV(M%|y9m7)6sZs)3`eEKX6o^*T z<<*1@lIR>Iztw~gcw$zici}A??6Mz%J-MZc!(DelMqGQ|aLllspL4igP{v}>CI{r{ zXWJ!{*v2X#yWFqnf$(m+Aa?F3rwoVa9;z^b$I-ITz!t7HvheK0j80}M{W?5fN!Gb1 z+n?mLE3CSB<=}bnp~&$bezCJRnHyt)nc3n z#tRJxheDeMa+ru;GO=BMYMpy78AU+djNfp3KpiTZnYGVJLueB^@%+Y zKXfmLNv7z62aTE;_GDvxh4$+V$I9EVYlbr1zU`8T!R2brI5S|L8qMq0lClD4tLZOp z+#DBtFmmLGr=vrOh}gObtpIn!X-pOc0dPwwLh$T&Ey8D4GfCstuy~K&KYymB{{}dD zjTwc=(iE4u9l4MRSc*F0R(HaR_=EZq(|J57KA zV|n*VWi=gHRcR(5P_>)#KnTaV+6#t!*~u4Kax+as4cdnpxh3fchT+v(Lvq3ecq2&R z1$!69L}43*1+OHVmWgQ!_cI^E5jG7h1@J*98~?or7YW=Tj$uR>4VN*>Ik=61r$QLL zNU|T@_+kiN?n$JAB@iqfz%togw4E@LbABM^eKaZFRV%hA^aC-c1(U6>zWn`o?8B|# zUCfmFrZj@5lQ2vz=p8eG&`a}l(tzeCGbBdfpB*zJdjlA+dOP^KiV;leAH}4# z6=LpPx%t}D`QTcl(_kt+HH7e|o>g6tL2%3tqblMk1#fXIipq}{a%E*o(kW!lD9NPy ziptQjSQfxD(P>8oPaDuKafA)`G%_3sMPYi~M#v#w41BQ0eACoDkjV@BPp#7OVjw_eN}lk zVkIvEE^nt`JgQd+T3|OGv+o*`WpOS9{C7kit@WA{JmQbwvx0P3aM-0m&HwMQm%Cfa z7O0;P`9`!-hR7x?LQZ3}MJd8OPP*^XCg7tnT2d#(A5Eu^D0!+Ia-GZ#$kv5=Wgq@_ zxEGs7S_ZnbhN~{!Kh@!SxCv_v89rzxXCoH7NEp)Hm1kFB^l+viWg~?G*CFM3v(^B6 zy;vCNN7E6M%z^tGZDTT7XDj}Ks6RRVd&q+f41BrB$sN1a$$DIJ+(IVH`l!dg^6tbrM`m&MqyaFluJ~OKd zl0+~4;sf#z-`XGZrG{~npPMB`n0l~QQ#XbsFsy4nec5h!8mXbIc1~~-)32%k4Ecob zp6Eu9&)rbZg|uj*5R4ulS2j`?lW@ZKk<0%Efh)y(vBXi|oMsJT01vTFyX(5BTpTbf zL{rO+#>YDhe?8%Xr^FrP2YfHWrn#tV{T$h~C!yfkA5twT{dT;eIlK_eq*2VvbgJVT zJY%a&e8L2(rGoUqP^)LL1)!}Geymr$Aoe)y;o9jnRg){*a!$d;uI?|+44;O)J*<^GvcGnw!!U&i=Z)lUPMiF_G`(Fe+ zZd)bWS)Oy$I|RUaY9yQL9^2&C8`N4X!B-^(lapmscY{Ez7?*wySjO#dL^tZz2uhIK zX`|CM!Z4BtOtccRP)0cao!8s_ z<{iyX-4Mc_=fZs~&@6O|qe^P@5HD)mFafK}v4iva$&T}VzwIv9i$=Bd$#XeRbTvII z(F?Rdi9Ac|-_-O-}_LwE-&EgZiAVZ#Nz7f;-T6w=98Jp+=_! zQ`_t-hd|w+*>2tR7RKWt4C7EmGyd8THn!F^WpNrw^+?{(C`CCW0FqUNQV1sYn-ocG ztC@kirugFjZ61&YV8jUX`J_-$ub?V)T2sWs{dno)RKZs8y$Udr@G?)O;qY+>nI>Qt8*<3h=0;YT>Ha!)TQ z;yy9-VTaQNc(28Bs}dr_|9a3UV!H-rpb#*HN5|GHfyD3HPEyDG^MRJ*t2ZMNH6VEW z3$5SQn%S{cM4jLr1?UCGucs}?x>1gALI$T88#HNFXQ|@Q3$ktzHONPz4|67rXCzOg z3ZH#B#$B55%CJ4_2}7ON&fPxuB2a0VmJ=2sbdA5(BxR;(MJL%`J`3McyO*iyOHVORgx~u)txg)-(a${_aAdS~O*mawWH*f)wE$N&m|!+(ywY&dqXL$WR0!{(?i@MG>KU06 z7vJesLSj>DE^eZEMbj3k_973zz8p9CVh;7Lnsf6)@T zM*Lh;5V2F{*bw+(xrQ&Y(t^y&WZ7_D%sXyfQCdy?F^Qq)SqG^z2GCA8)?Npm%6(V3 zb9fRij+ zGBpg_QA{z5X+^LpWN!Wu4AbJm&DvzVupfWpF+90HUI@1}u17jZown&GtJh;yGAk8j zP!i;G?A`ogw<525kU#Ef(k8}dr65*h(m;XQxGB8^H|Cbh6h;MN9jG`%e{abO`OP_K z4@(ZKTfD>_!Usaq-a4`0XNb*-gSKeKfvus^*79N1Y0ysx`klWF>g1+KTQz+7^IFTV zelx}6#c+(IZ0AybHu*i2P9V$m0IKi%Qxjk;rXaFz0N4OhQufS966A{4k$J@`8ZAHZ zGw^Hg++?O&F6^V+dY(}yBwwLmtFa=kNype&dfI_s!91s7@mhzzuLa-fA-gaMCl{;E ztGGpB-~%*&!^p?1%k;h7*eu@g?UFF8WSMh;>pho(5skBSrd2%o3m4o}q~m!^l;Y)7 zl}<>fOGrggXS=t4dq1E=1$Mm0baSE+lj+zFnp9!drW(~U4`_Y@W=JfLN84SMaxLd~0du<_Q=^=d~W!;qxYi65M)w9G$yx44#Us<9Z4VAX1~ zU|y|(Mkv?l(=?m(&U8O6vJ?E!u+h`9nT`lFcD((i{k2`{{sVaJeSZaT+paN^c>@|V zE-W7TYLUijBHn6cUfdZM!tel7q@Fv+8C2YH1=}{-YvSDrx3^|;#p&^KVH4D{33NDG z)=8$@pKzVAOQmq zmtD8~v=rlZe3GL2x?;_+SJR*=D9#oxn^0B&u6k)vj6uT$6KKVzNi&YVYj{XkGhdaw zs~1J2yzl@*TQ`nwvF`hSdx8kx&8Kg-UR~V?+hMX!p@u)8bA2s4wRRYrCOAmj;X-iN z%QV78rwci>6el~1HV1c98NDMRD)zZnFMb05!P?cnmWZ8{zNd)gcjd6)-{(%6? z^yl&B?n)$o?x0V*BqO8B%1cM>al#th*FwuXlP1NMv?<)gas7hHd%}k0oT-_Xq1(El z6PhM-%3G)+>#Bv2rue8M_JlK6Kr>e{M$03gZBZvQf+T;z$&KBSB>@HMCg1wVE1t{- z$LLgT4WFsei6RFvsAu58SklG_4vo-K8fx6}4|2ohYaM4AE$X!2Unf>QFJ!p=1q0Mg z0D2f;;jw_ZJyS^PxElp*nirk3%7(Kj`90=MW6!WZuM0rU47(Zg7TPRC9|(36$Hb<1 zn$5n~s%|$9scblQG|(}sbv>NbWd~xmL?`0k+W)_G&G&b0*wA1?JR^MtHUV#33k5zZ zw2zQ_ufdoK_PK=YfkS=<65+sF%Xxs`BiE3numiqVZze{Q45LRSBmiv=uNjB>1=q7m zg;4mQoZlAn8_iyBGNy3{Yo5`;P?|})zIw+cDJL<%rrYm&QsOf1fg)dSnYCP%5lG8| zbSrU5lnKm zl*G*&+uCiTKl9gnksyC&TtxZ&oV#fanRjWg+rH^mZ}9L)@hQ-dE=D7(=8~zx-D6;{ zh;LhUOvfz-`!VLx9NJn_RlU2Y3^C={lDQMwguYp@9Wk~kM zCG(|{cmsR!s!v5HkK+3Jf*1Ifbg&xz^IPme{fON1XY6l}eq471)L%x$J*3B0C|*rY zxkdxl99V0g8tBt)ZwEA>hwYJI^zV7cEf4!A-`wkPK>!7pK(iq}w62tX-eX`!F}A-6S3C_Dvm{PFvHq`^gWC;!x>??>>@ zdJv`0ipow9OQ)#H>*#p&_>|g0{#_&HsEZ_A!cAl;`TV|U%oqC4oCjS6+Wz~FK#bLk z;>KfP(_PzwEZhi!0k~{}(BzF3-R7t%it3{^Pm_Z!FEByoQZh3*ki4kcE)2 zix}$r%U-3^S1%+}*8lePTylhe`!PO{pbzC?!sztZG*l^mAe$D})x0iqYxQ_h)AFj|p`~CS7fY844Jl=)e8^Th)z9seu{*A+< zckti8P#+oF6X&I;|c6F+dbQ0xnO zwUhpP4(61>D?fAMRAMmKA-C`=kO|w_$#ZM(SV{lj_}k;mPiMNez8#?O&p9aI@4IKe zYht;>N7mO1th9%?3_$WI94q2hHy?<)+av5eT`OzGk{2dSJYHhXg&X| zpJ3?fveFrtWc7P~y>c8E%74F({=P%+;{PCBG~ac#%ALanV*JQ@4Yiwll^l4#=2;$9 zH-SRq=NJCJSls8=FCaX6)oMh~u*9NqRS1t}3Po5r6cgn&(%Cm&TG=?Y(AB7ZIs5O> zMs()i`DL3sH9ku$dQfo!X-Gml$O(t{0A4z*IBo^Y*hAF%_W zsraB9{JG{)AElS|n6Rv2-}v!;FCv2~!VkEp@0sEbQ5>^hbN}zr>&(BoGO76@@kOBM zW8Vsyofm+XX0KAiR`_y`Fb?1Q-Q+A&y#x8}JRhC0{_T@5jD9MSQsq?Hf>m3%b{%b~ zMX~rD{i7!4Pddq7(3#k&OmhDjpYhMRUZWMW;;ZiLiHEZVpJ0MRQ+@f=(63r?`?Lcd z;I!%-5xiORZ|Ab#=s&!sa&xO&CO8ojf-zn3Hu2EQnzCPWEKBBTrF0;%#KPZxA7A_M zf8z6=`-?MGY$=Ot`D6bW_XF@bGgMS0P_vFL^V#L^w$ z8NpD^eL_<46VG?Ykbcd{KZjIE|Kwz_rhP$#CTq_GFQIP8Vz77p%#{a{|IGb=+y0<& z@zWoGpPfj#%@5G`!Flnu+tE({_}IIpXTHi^4~Gz()d&2XzE z56F^*&+q{_em(BqAM@5frk}i^aJNthKVXb+bVO&Ii=oy(^roqyxhuFu>|aNLAg(>P z12clZhEpHsD&4hL7)C?3-;;3K$gO&3YbYpH$VBHDqB$J1|Mg|u2UG9=jxR)K;f=a4 zrK7&@O*JEt&Im@L3e~y{xeAIhq6H+`vYXePyZ%6II#kz`d@``NKBKR%@s%gK28i%` zGv(tS0I0@TC96=jM)Ktq&!1Ud!bReeEx7Melzqx5OS`acF)0m?0f&5fE|2w?|LvTw zPxA|BKCd8}J;ka~Y>R0%Y>$SRj=iB0U}^z+u7%hI-=HNW#SMoN0w{{xM~1*R=HGcw zygz?&nxjV#`V!}_CfYU$aycC5LdSQF5f^QW>4Bb{+8LrFGy(Oo_H5e2{M|oz4PWWF z>05e&NpIYYZ)|l``*q%b4qNr!pCbN&ZQCl(j?{Wx2|m-jd7|1|9>( zmov^8Nyd9l7Zakh%(Y;2K%07$y5+l@0)T}=+cK{$!g9f%Y(BcE>@Erc`rG`*iBr76 ziI;aLD)Yj>R*2Pp&$CZu=syTx(Oo_}*{+a875tUn&>cjVli-doy3Jh>`b@I|i0C~5 zZdQyP!z8m*FRYF>`{DzSfL+%yzlG=}Gk&y<;N^`^|Hw<+jDNr)mwhOKRwHzbrj4%S z12km&f&roOJeQkQmwaZPM+E|oz=U>{vgm}P!4oA%;-i0UK!b1dCfSUtOT6)+v8Nrtg>lSKz1;9PtNu@ctq&emRw0VJaV-nf*);# z;-h`7V4mwGPbhEyhU#%Skh^ArS(2FjM{cRNe|69R%HP|&!}3QhU}qKJs9S)}JQ+8- z?%`rTXzhUK*nIw&Co|G=hHNkzV%guz7r@H#a}2w9&3MBs>#d~v zQhLlMGg}ezMQ|s#iZ{08kT0lb1W}u=;e`Qi!~DCZ|Dq1?_2)ecNsaDKE6}WgV5vWA zYW%Y{OOFQ01Q*V-IpIqON|gDgT{P&!R1y)JG6Chh9@&re;!97()!YTtR*h-t3N|jj zHRTf}Q|+hWAKt-vJil7?kq-$kq8pCW0hMXxeGvM?6_kQ=>9veA7%E-k3^$$+P+Ky_ z*;kf8AM>z^lFq=cFGe1Idk#4H{?ixyA0OS9>P_MF_m10&ML(isTQ+HO2l6(W6`!{* z#{G@R1^3$JGB|*V@sJd^9RHm?S9AJRKcQy4Ah-=SC4Tv$!f2E zYo`1~*jSM#5vaQ%Za`Fjt3xl;(zOCj9g}mJ*@~kX%4`GAAP)lb!{|^?KpChoydLCj zJDsbtBj0*aA1*Wz8Ww46@+0?@Lv>T$&D5+XCUpCK?d~!D)KT}FN$C|3Ly6nk5E}Fh z{-Nu>_0)3w^n4GKFptSB-G#Kk2cf&)a`xE{qChUMl_!+a89U8OJRzdt^B`RO6B@3#fn%{gnd)>zbIQ#BHr*GeLHNBYh z`;z>zp7G&!AdA8OA*$S`+PZ(=BYa6oSnrSBpCiw@PM8Vuq=d^`5<2;!d~5Y<={|17 zhQtpaM~*>I>WzZ8%I|Bfclj5un8$`-J~EOofeT(R)?igP^hPCz5=G9i5D8U>Cli%q z=%bI7JNyLD6@T%C{24&IBA)vD?{|>Y{XYL#n*()*d?Pgq=IDL9i^lV1FZ4GzF`AuO zT?lRnx8I_6;9pDoLW%2D)l3JK)_ZCWSH17&{^L4+swBnxLQA67!jAm>$iXL*Xg@t{7xw54p>a$gNSiWO$lx{|-~FDrS$ zVU0X?-iIKvfAyy)vJ)l?A zLsRrAbL^j+ES{yLkV@R~X1SA0)|qBvX*~XFT{5lzA7lTqG%2#QZKDUo0Ih~3BwA~j zL820^)zNRVyVu+Ot<}HT&Ouo{RaRLEY5;zGvVZw-=Z?6SGq=xtn$Ef2F=1#Ft)+177bamqA1|)C)R(!} zHqP%C_fArRWunIh^FQ~5I0oe%eR%}*j)tXSy%_b^tL+62N{x`9&o&FMdIbI6H#D36 zmNHmR6~t=+m1^(rBxA)hfh(B&Kg9!r`;U!16J3?7^TZUkiR+@aNwbRXlI9ap;qoN` zNV;%Tr3QKo*ZrCh(VA+MGN8o2Y7bGNuEHz%)noRr=XLq6zj&S3ywhrBbDW!1owfis zKh1+<)XX$7g$_A%Ip8z(SXn5`e1c&)@P9inv%RCg;smVu1Ph;IWm6sT00@0mY6BZYiRp#O%7X-dnRSO3ic4Xz%T)j2HaVX72$xAw9`WA%GU*vr2>Fg58n3GBlNd1l61_^@Nxqv4j z{PN+;zXKtn3*e9b4xM9dSxTG!z^~Bz^+(oM;LGORFbNk*?+{uFxMgd_cIIoj~(5K=o@qcctE6?5A`xT$aC>0 z>J=ROgkL2wZ9v_=*8<%iSnP|t$dGk}K`+@*k$l}x9?^}5XB}MJ$-Mouw(x;X7`4y} zI3Ba>Td~>wHt_MN-MqaOLVTU2WrwHdnN{G5g|8wd?ye>qkbROWkuqOS+YDE!pha&1 zo4%9|D9qpK@X*X#RDVA|JST_Tvq%9BWMg&}kx+VMN`Kt~~^zz69%ip0#V)MtC|MVHsQ*ij5 z1tXF^T5bmSI)f(pcjqQju=n&?Im1lEbCdUt46t8aNhuA%V65ZljS_ma1DXO;Y0{4v z49QVM1{^@M>9;Yl#y5_TAw|It36>ILalizOJ2Cf!COy6sJkokrS0IMFAk8S;yxGod zxHa&R`JeUoygB~ljz8=rN)L@~i(Z|<4@#z8Z?C80yD?!}VEBZV&#z}6r6+q?my(%4 z`QAFSz(jNxt-O8=L>CLEp9pNF$k=RY8U!~mYVW(Bkv(4f?dZ49Z!gO8)kkmT4K0@} z)5W-xfyl^hX;7o+)U(6i>@B@;`SmA9wA1ib>kcyNCnQ_t^VNM0By0WVo>;j?;(#O9 z5|r5QIB=}L0Jxji6FN0HG3z}6+U_1qyE3FTcB$+0NkDWdXktzd$@^{WFc9YM%<<9` zZ2a1>aufIjLfZR*wK(hHCyo{h?py!ROQz2KrIl9y_nz~;mXWv9@kV3RQQ%|0y#ea> zNVAP#BPbtXTLJd?;Ip&$J$Cv9KQ5igaARfqWkq#JPwtPtvI+pFsQ0BK=THB)By|?* zPy36jzhEm$=Jfgp;{gsOYuc~pbiYtJgg=dVK6(jqoe!=b8*KffSD1tTtUE|-kW>Nt zEfS4R3F8dTYwCZF|7lle9<%rQUNF(l|ilHwhzUv{6Km=x5fg{LiifdE!N*(mm$Xsov* ziujPD(8xd-{(cw?S`dKB3Q*izue0eL^fi9((b}+K5KEdLf7byP&XWG4(}D@5g@?gEw;AKL07Up&u9ERbIV>4pceX0R z`RL5`exhbP6ISdo$D{w&^zr7MKte-pt+UV`CMQ7-KpQ8{zoH?_wN0T z^j|D!35@Zr)-Vhgu+^uKG`6-6ybWj_pLECcANKiVQ0vFcf7mLrJ_5cWR_u&C`_{6i z0gbLy-G$oA51ii^^7ucAgQZY=?Y4Er`HaSA%I86an>i*W0fXZcpwx$ynC$nALTRzEj3?&D0G%%3igeWVzJji{KT|d zn@_AP&nb;@?uEfRttLj=Ey*JzwokDmdy33efnDe~dbktBGM>w!VDH8gVNnnaE7je7Ga>?)VvR~F7^DR%M zct8afU!#5qifut0Z$(k0;mZu0q)n$JN@j6ku>+mp#C z>@Zyuo)dB+a$+QVj1~_nClY-3i=ZdK3h`rcHz2k`a1eQLe}eS#gv$|DZ(hVV;a~TgwmGwRVVz10pUt7N%5o zGtSwILNr(#Sw(Bs=$q)gS?#AaDH*O){6HTf?nVb7`+Kcn1aDzq4-uaES}leUQzf(F zAH0-979wa+w7|PV)|^TShxy;*i#|@b{pBB)>fnK=kh0S5i}`|E)v#6O4Z0cpstzDD z=`HwbUdIt7p2>Zq`JJ;WZ@jpD-g0Ipcg8W4D^5w-On~+-_rP6jO3^1cinBbdt=7bN z#R}}BbN!&qJnb{swGik6y4gR!2@Bvhu{ZO+Oq^@>_s|B``ctDnYfrsCP2`kExDWW%F26(66I*#>+4x}s*!cJ* zm(1t-emUgbqwuRMz4oD$(?E1QiK~qp3sbBq!ffD$o9RS$h)bDweMdShY2+ zgtLqm2v5T^{KEE`#8QT55^-H85QK0rNNQdaD2shnclB2d=^^s&$|>{$#LRnaa+8Sv z-ghY9<$p>+492c4o2UxRWgfuIO5m!h-jTZk{l>xuM*hNHiY`Old)}2|C$-Zw{kM&C zmp^KPeXNP?Qc;vYX5EJfKJO$8OZp&Km_@BcHRcKV9a{ow2pBDMp3k zL6orMDfYH(;R|V{8XssmQoVY9Vqz}#xj0dr{xLJ~O}o!?%Hdn!v?j?VkS{pmtt?o! zsN@~)0sG&3M{g_tvo7;|c>2ZQABR&yDR5==kmz|-$j%)*avlww$Uc{fV4K@L>!!{* zgg|Ey?fuW69N7&cL-FEt)%^GTN<`vSrYWs7?Vn>+ga=B^H{e5)lYW2%0E(52{N-2C zG~?kql_`ABA@XL{j_oI3Q(ca0oTjIPN$-P#&PyK8vt@^^NH5tet^@AUzkq-NtJ zUODprjE%AX)a$?hgYos(cdZXL=~<7f`02^WL9Nvwv1-@8fBE}r-xo-JPf7~>My^}- zQ+&6KbPZB@3%HXEMlnXxllqhATc9Kj9n-&ec_W~~8!P;Mp=@BiAN^H9L-9hTnZ{lN zkReF66exsAFNQ4vej>n-2Cpv+3C`EkgiQJ1={>JU{D^51S^6~M5tlaVAaNcc!@RT+ zU;3Q``A>XJDYLI#UNow){7)aGG^~H^-LuS0urCMet7DDrdq3FWoxn6=FBoqt_>?==Tctn|>wy$o(YD8~0XoQW_(D)f2ue?r zKWZJqyh0dW%{omztV2eJCN;wH6aV=zm9 zq-3I$lWj+9ck6eyD8hNs>~e_IZf~ZH)$>|5Llrwc_!T#e?$8c7?_Lk_AFz<#_wVEr zQ!vp{$$Kxs4xoTh98`Y&9;uqGs2y3&&eX5GQ?^#Lp=S!T29QGO5kz|CJi1T`wU2$= zSo(lW9--%CHND$bR2di;aPQRFlMXoZmDU#;6>A`-!T)0uEc<6Xe?I$u2oVx1+$%@w zUhN)@0Z&ugow*|?Cny*9+m7$$6X8)WN_&T_8T`0ktKlV)h z&J>$U&AQC^rYWq9p>`yiK2SjlmdKGzY48dDuRzluzSJd$=_?kYsC4 zt>Yb*NM9f61!y-mY#tAuFGj9?^o7qW_`t>n-+SQ3cvp*VT%PC7@T{@4@RLe@dxe%m zS4lmj-jT%?yVG0Lj^y`uo`A*pgriGH4FX$#bA_|46mmIP4*=hq6SnbpdcxS8c@#9; zd5cJHVfTVOdGG!j+C%GMHWf0LJ`$+!rV^x>|K0;-I_dRSXfc>MQDRM`_`wMI?2VME z4nI)N9VZm;VEL6c{Na)H2x>8Py?r8d)&C8%(_W#pB1rHZVv&VM-b5b1;TQBqw>JA0 zYBW*-GG*a_hdM) z63`UUVKA}BabDJ&_TN3S%FSaX!`&GJumcb+4T+ca<}@Wm^X51vQxoO|LtF8gBwYRi z8L^^X!?wCVDnfMy`=pyKw2icr9BrcR3 z>f?8CF$i>1S-t!^hOe4F{O~!7NX@ZF3zpjWt@WlM!obo`%s5`d}p!HyFj{4dP> z_q*0y6M#O%|HbKFH7UzmB&`w?QUHSU<+Fz_LMEuAKn?{ETRF?H9aMdeSVdBI-TGh# z8KJRQM9svI;TL)(4B+s+fW?#sBdX_{P~dZ@tIhdZ08Ir{hM&%BuC(w@xiuw4ju2cDlmBkBvBnbB{hWZyGk^GBhc! zUBF%MWKtJVm+KLW^FPicV*lxbV+yn3%O^8d%qajsm&uQiQFACQZkHgGO>Y;#49m(K z95;(h9X{{NDZ)9S;8kN&CaYTy$ivCNkb18&Wt*3FB|}*7wx&oQ{)N0@SlMjW^d}IL ziD3)kqy(Q3TuhQNhO}8{a;Ta`ua3i4mDY#nwQ)9?csH7mqYKBydjcPcW6!?()`uPj z3*L0Fhh@CByXpMCo85g`(?{+eN~iDEHp-Q(nS*7nIqDe+vh@F+0NHALMEp;$hBvaGx2gwLRFVd>mjHN~jlCE|h1&x?c2 z7xYmA=mW$SEOd|UK=e+^f;LSj5Kj}j(i`f(Gyaabs=RpG)v1h~vM*(TU+SD}jwBK; zylcZ_dU&x|22?#F=F3JONA%vB;LsWOvc*ilO}UT-^7}vi|mat-(HDdYdj>eTivq`=TSG z*I<0p)z9}#9~H-_41P-55A3@!LP&{NKS=d(?vidt=Da|?PDB7iin&K;9wTcW9|VT2 zGNc&Maut|Jcm$WJKbn{}eUUkWIax@=nU;~r{_Xvr!IZ4O`VtxH>oh2m1(tH$zQP~K)VH%d@ggm<~*J>$#t!MZ^TR#=FWNF$+ z8&de&6HD#yJ|pzz6d)Ztcl!p8u*u#QkW$CgT)Hi2ek~=zV(KQ0lJG?DZ2zd{@}+zq z8&!#5UmoIDsqc&JBGLg;otE+3+4CKUlhq;m2Kt`^xqhFQSCvDWmVfq$vd<8L2jaoDg6&EBZQ*x z(gr|Pym>ZWlhS3li_q!KCiJE9je(>-Di7knjErFi?r*IJYyxrtYhNGPlN1IxjQU`> zFf;K-vDPFSnRmAZ&)8u?$+Wq)TGD%;;ff)pL}7nD9MJX}5wf+zI0QaW0uNUZ9O~Zn z%aB|fud%|1S6Td?%M%HQ`REab{c@N# zyr}rv+-x8B0zs&rM;DasqnJNoWpCyH)4 zK9Up+o5rg@1USsz`m0B!F0`JoDy7@{Ra!b zq701F?d$4X|8L_Pw8Q?tm?C)UFiyksCCWIcI;xLzO7FSaho}z`gTu-1fe#A%vG+XW zZ*kgWvt5`#yXAd5V-nOs&Q!n}cejsSK&I>~GU>kP5&6_2LXUb(p3n!r*=>6D5NqCp z1G&pybMNFy3lowFVPAo^ep*K^q~6K|b?o+tJKt|SF1eDE99^pjNpKk%X65BF2owwy{1LVjo;hB#~mhJB}PAqd^G6WL;Ze4b)6ise=kS=FXh{4Z0 zRmv}0i;-%T06hftE9Er>7=)R9dl8~UQx!oH>v#?vA9ZPSY04P%ii_Lt{H;J&wvO?S zN5CswC`OjYq;0BYG?_1xk8CPGJKlt{2fh*h6&}>Tjk)>$gOAdOj~o zW&OO3do^Zqt|O?WFowF8T(4&^-Dx64+s>+A$=5*BP=&u#W7nfX1{k}HAE#I8Vc-i* zJ?Hd88p~O07*5=fS3MK-_Ic|FmIMgvJIqglg(4}vUy26T%fLB#4O$WnwQPg6(ZY89KRvSb-blJg9))b8*~Bq0?V#>?(!(udHY(*nfIOS>PzGO%6}iDHEY~$xDDgeRyKqU?h?T!&xEHW5xR!=+y{` zrp397_ltp}Cb7C1VIU_McWx$}clXgRRAE&g01sWLQPKmstx2097Mw5ro}7z=f}_e` z{j+WjMV@E@+W`HugU6?S_lIWRj~c!|@u96Z#UW@HNZ)Be=sU|SGc3>$E@FDs?W^BE z2CocL@x-&wI1+5Th>XHuPb%2kX9Dz^&1xfXQlwi4WLDF3SWUI~JTXEXDe7O(*x4NI zua;)6RG_aFM3GchRY1z_Z;h5kC1qzcZ=FFnrfegu3@x< zvS)dD&P&`;ALDw(=}|@LDvb}_4iwExz=C#tCC*7;1JaN~ik<@b4abtuINu~6&35>}4U*B`Z=WZ25)qC`EL%+k zqE|llmL9d^*}BZY7w7qmK>J#;(V?%St4#5HG_1COd4+}j@3b(SB7XS4Hj`e(WV0^^ zfN5x50V1E2>WUsgV7T77YxyGab43>7lctvhp`Q@O(0hku(3g`CvyjgA3*50kgRhMc z>a%YNA!Yb7`lF87&*@_?@3pa-_`+2f-f5|sYXzroqwceF$*5Bg9}9%dvS44Yva2SY z6gy9O4<`cgD!H$8WF!UOGFK3BujG$-QV7+tI_S#L#sG~~VXksO^IT*> zsFOf>S7Q0H(&6zb+*SaNIYRFWMg{O$66tmD;|+4@GzLU;F7~gOi%0n1b@2O{CtPl7 z(G_Mdm7j;^Qp*7_l59Z-Ap$EPLpZr_&g6kj0Z-N{hN69nU8 z6Gp)_GZzwD>4Up~!FdF-8Nyv$pFYZ5eHLE`28$a|JIMQ8dgmWD=jhXuH!Gk)#!Mn{ zXE(?fW@H2Q*%tCcZ`W#`k!9)ZBc(i3QkVsmk!_MS}*bqJTC!Ry%m>b=aNBtyp^yymvT5 zG<|-*)zfcRwwVJIpOfsvS)OEf`~HPfDU{hn1N|V8E4F0=;bBRRTr#e`+eFiHl1v`a z;8I9=q<5NVCNr?t+q8%dXTFCF7E^9v&>-RH0=)BmP(29r04tQ8!ovT}z7&!Ao5u~$ z`P~a8z_Y+tM?|-vOx5$q5cEN-DYp=TXx`IkB!+ip zT6+BeAb}HStov!`KJ)0-Tym=HW`Q}$4r#UXFDO884LTYUM0~Av;~h)-ElCYFqKTfPt05~24lSuy*XKdfMAn76_UNv0dPOw_oHNPox7f4>{`e{oCu zJ8rE#`%SsHiNzo*(jEM2gz65{IIgoj-&g>_1dL=EeadY;_<@l)1>8siWe6#}x>ZiGAk&GHy#OmJc=|Efv9?X=OEkBUD53MLDBI%(MhKH_TH z0O4^i9IYAY;=NqupreN!`eZX2u^Wj5nq;Yo3eG?Zv@?69@wyUQ9Q|IRKryh(ZsPW+ zuEeM~yT|uxbTjnz_+@wKcyk#nF8`#alC0X&HN7!kJB6UH!q++NiG?%c*ZcM5CY*+i z>Q0XfMEiTVPC19i?s2@N53xc=qb|HO?iyGgTRRpSf13JtDOz=aqT}T?o3zX!_V;oC zA~w~NlVRr_+z;^)ApjtpgE}8w9_&5z3NYt{5{nXj_Ej?E#}u6&7BNe0MouxQ-xq$+ zhg%4%w>JVwA8SqXNwg6re3%!{mn>LBoGk`5mu>_??l%Y9Jc8^)QO5tKV`PU6%sBo} zyj1n9TwfpZJfjcIbZ6&Q!;U7wfcpJexRnn!Cf?Iqd&?}8Nn1gE2coq@5d^Y{rYMY^ z`~(!7sz0Z6|43{wPuvp)`{697QD7KntGjNY%2j;Qy#ptdvL?)=5!C#luN=p5Y@%s( zzd{G%4dk8!J~jdi6jhwWdo|Izw)e-{kMac z2Nd@{xMlbU7dYsnLYuv&L*-4Z!cw~U2>F8(Dl(G-G<8A1Rw0o9w}&>(H`7w+0%3RU zlxv^UK;q{e-sZn!ssF!X@;_K|9mLYSdmD;!WBr05tRSJaw9CUApt*|Rx;r3P2OSI? z#qj>B0Z!OcgTvY9kzOG>%Wcj{6fdk!=Grp^NbZmoxfw#ZcOVsHhHcheJm<(5r(Yxj z%V>$3rW^Kevpi}J1=)A@m6LIV%noQN4^)j7WRlv+6kNV%;ub}ua_M79_WRL2Ej|ub zCz*g0YxJXfPkJ5pQ+o*Rt!$~JZUj0NhvEuvgI8N;v^0KxTZ_M(;Kdq6+&Wu;&8MqN zA5st8a4g(yKIe^|vPW35B7sUtaQxnJ5y{Yq=uJAyHN@0B>iv7RM2xC8U(~xD4;RtT zT#`y^i5@-qzu#B?Ge)!c^Y8!KJLOcqVeeQbp_8J0BIoyND4DcJ40rHJN&Uq59+0bb6Yv zgzx<53FdPiJ-Je$x(r`I`pom-t$11b@Xratye-$8F%&b7=CC1UxzBZPn$)~qlC76^ z2B#V+R+Cyd{wyvz=tc5tY5UcQV+^l3D7xi+xw~HR$hc>YcXj^j*~$#tvDDwTk9-uF zZs8^*lQRH@cu@Btn?g+z*c}xb`F;y$o`WB@V$aYa$&MIDQU2zS+#|`E z$kyKlN*{7(t5k+!$10jkdgzsx^#DFId-=od%%SlOPkq+z^C0p6|x!b5w1vB={9ljMJp>*spunLsxvwh`W6>y)!5R|3UKZMtM2t-txoL+vV#v z6NTgF(I%q!Vb~?#O?0d>P@EL8h>xKavcgy8t=23iyo?+AIG=qc4Oq8RGXG-o0^>J* zP{F^RkHyI4_J8N(h-b?Za^iO%bNmcJt;VH0GfBI8c>a7PkODkuBi^5Vn7@7Rfh^F6 zqBr^j=9b|ih0A9m#7oi(m)=cwB zYaTtv^9Pmyg=m#ZFiajT(3zhcdUsZDON*7Q^x0zt7 zG!6+Y(*H*cYX2F7^y+&j3zfxT;157}?|Bi!flpaD+1&@8pRh<8`g|Oe`Z-$yKDX-8 z{bNQ$Kn)?FVeSe&1pXp+hDLVa(RToNKA_es*4Z%9+ko%`stzu<%|oU2UA&=ru+qN#5*4ki@KQw zwGjd^hh=bYL&(+(bAJe87!42|%?zCXe*JXpP4FXlqWN$2UxlOo*`FxO=a52ck8EfS zTGY^Ko{?l2Kz!wzX#cGTqiu&&|2(m4*SaeId|5(9<0t8EbM2I?706o;{4#^w5; zGBYYY0nSTS6ekRR7Xo~rp$Z(via`a^-B4?UwSmLfCYx?0375BD;+xCqZuD=E{{Yn|1C(do;3Vjn=MPHp8b0;J-S{=r@hl{O~=T)E>R~YL^S9T zNShliZleostboYrj;aZel?0B7umHiE%e`8?DrM1I(lYz0-HCVu2hzdJOgp-E$IXDqb zK|!aNFvm@h&7>6}wjIHj%qea6kPCS;)1G!l8(Smjc6fn0T2|E;=^^rG)??;3&y#WxU$21~m_ z>%j)KyIx?}$|q-j?2D$L>UkbiGaH)HUWfr#DT>0X-0J*T+-aTkiT;Zd_R@JYsR{yz z5PG;}VS(20*#;d&pTgg6bXlg0(DH$r6LWY8G29(kt6g9{)E1|$2{ zV1aw?%{D};Q~klxa;iGsgQW=MQrss87kN3iC|~Qg#L&-HXQVNMFMMt7v24$qE~#)Y z|E&)GDz}RL>l`TVz|%R0ZiAcnII)H{CtpK>$?g~cpycAL--0=X>VmKkdlR-vYm;=^ z@q1B?DWvfJZ-3f%`GIiZF(GIKm>q*Ibmc07UHh{3n51g9knl><8Rpg>-G!S;?0_Og zSCCSTJDeU4tiqhVJEIr2$7GBQMQWx?LRdRUx8(GB7SWI&yDp91fC*>SF)JO`Q$W8X zSWrZ|5ArVnsax)Yjvs{mo*h0Gv59Isjb|zILUAZ&JOKI7wz;+}sxaSshO^|gvL?}- zQt@jsUQK*{^eFUQkucHB(72~&-*mmU)r5?thfpop(sU@J5Wuz|Txn6Z6M|n$1;Uru zN$wfluim}i2#GDg5On;iqhw6MZqgn{*CT-VXnpw9gO0;dgKhNMw}bvr%3M`p8`k7u zNuq%jE^i+Q5qe<*n%!%csqPcel*_yRuP^)mT~B8GfA)JytO?MA*oW?N69ZI?CoLUE zFr}fmal@5^Jgo@z2?2ZWc-i{9TI@0OTPFiZo&o5Ljx}&{URrRY`;IiIr1W(auGpbI zzBYLcjpX6Pbm#39j2|&(qBL{=YSrMkQMvl9buN0NBM?$iVmLVg2KYIeupx6D8hVyT zPgpVrMX>E3-1hu%0xASlfxUGj3!E+h>_zno2V!7c2<-~G_tO)E)NZ636l$n@GS|*k z2rcT%(%WMuq5unt`g(VBbWBa16J2F_23!H9*Tp|y>S@FecQFLJ8oKmUrpSB52~1F~ zT2e&jK)P2&9A(`mUJ(e4Y(JoINNjYickf4)=-5MY0N2fFYQKmP(65!D1$ z=pbDp2C8jSrWfJVyNZ^PMe1iguz-lUfu?A}Kn2|GUfdnLTLXOZsV0v?Nefhi>`6?= zq`T$_js%XAQ;1XWui>II@&?&#H8hLL=?o=EdlvVQ9s9E&e~m#;DuloD5ZA=VSx4Te z*)s;+R5QN7j%H3il9T`f1Wrzi@{T>&hxj1R2h>K=XHFZ!P!U}1P$Zshd=2QSF-OW8 zpgUu5g^Upss{(16z#xB6A5SOqP0t8bj{L#^U%D6b(0l9)dU7&S7oQcxJ;Ql_*O_~L z!$BNoU7t;q>A!i#0x{N;X!f-vpBH!_vbr>wvcA7l^d(cMcApSko+5CeSKraK0}6mc zGsoeJXK6wNBRT%;0tD3wb%#@%`$b#zeSs)+{MNnAu8HQQ3ppOv-s>ReDrJ}7BGFIH zdmy_F@-_00y+J(;)@4rCf79G-ssF9_4xUZqWOFzwuL|={ki3u=^rCqe#rE;rP&lx3 za=np2(p+I*pU4KEI}qTynK$}!?;Bd+j;0S638wl+>mV|yebO8RDxBlAB6s1h(^TYa z)4TeXB^`m%^ok<5X^)-AJu9<8MN685?*KGdAT?bIcMp&FmPaN!-6D)-(r!JhQJ(>y zGxB*Z=IxT^#Ob>p&fE>3FfBp8p-$%RUT0BAA(Am4&@{B>Ss#d?>5>+wUCGe^BU43v zKOEEXn1(DL*X|$P4ugPYfS6doH{B^+S{B)BM_k>4IGJ5+DD}h5s4f5A^^KHHck{oO z92LI{AS&m4tB9s0gW}nPE2`}NXf#yZfa)s)E%B<#$@pdl#waX+09d8rG-fZW$;yJT ziPc0Z0R3=Xt-QFBPBkESG-x=ti&5@Y2fB?wF<4)FBr#{ge4{*kZNBir!Hw#df7!2R znLh&iU-A38)6%RBN$HLQ8IKqmuUOn#0V13ZS%tnH&=COuiEt3HCg}Nmzw;>;`NW_Nn-GbIH|<}vP67@3JcFHuA`Qb{?d)BfdGM=wCaN&|H$fRIEraQp z_(cX&iWzJwLKZLd&Lq$?Yvj(6N?*H&uf``k%l2-}sx!0Xw%ll?Qw5A-90=|xE?97P z$h$f@{BC=qg?_(>Ixnf%XGs4$Js6oAyCR+xSH0=TY7G?T_hwORY|t%G6mQ_0eaaUA zwndDgSrzU%=F)k#C;nIx4EvG_(0y}LCoc*%vbG@wQ6CD;%PMNrCSGA~u7qi@F8;!R zaJXLdO}(Ua+kl^+3pn-Jq0HFme(3B1-~a7Cg!c=2OaIZPua?V+N$3|k#giI{qf+?N zD&8RL*vZLKc&{7ie{3%Z0=!T@zQKhG^`Jqn=!Vdg>s~HXJ2~(gXgw5$M~9=fWz$`XIT6W?0D`V2dy+IIt%h37)ix?owcK&@JjWP6&6RgU`e83R zss~pOrV}xTh%il5`_*AMdfkSvIVF|ol}G~4at3W}0I_I+T5#|FMq;FuUEjc#BWwA> zJh#CKeA*kh7K;fIv>JWk$;taqFFATuuBlPB3}g8#2M~pW(h%>wk#Nk+wE!)}yUlOz zF2IL)aQ$OL>%8X=nZ$#oM1Cv1%c4JPWe!2Gf84PJcX|NN{9jg&k+|XiYC(W1@epsD zn_@s!>|;vompZ3iv*Dv*UdL@!A@IvLll2KU4{DG{D@^3RCr^>%G%EqNF8~PxrfS zCZ~R4K>$rITHPmnFvT+`V4)ern&)qP&G4%srtpN3s z!y2*V3SXkOH#rP=3sP9DzkWyIX6aeONnpdVNdgjnPF@rl(`E=5!wJwPN{Pq!|HsyQ zY&)ndS-THJ1Mix6g!it8M+ooX=`ZW-s`_u$IZHzgjUj1?Bx1(=ATts?^ho2CFBgm| zTdh%fu5u{E_Dc&V?5~Ui2fY%z5fHu%gM5x$EQnJpAe^RMwAG$$)`~oB0|XBmr$i*Y z@sX|hyXJhLeD29Kxg7VAoa5waboF(m)#mXZx`u}J+mlq-Gnh?}!NS&?&kbt4`o~Gz zmny!Xd-aG{xaP5}9Urd1M+F0lMA-kdf0t$d&)nHnR*Lw7K2bfesWIQd5f%i28a((w z#x^h#ji!+~hkvj2JVn1hLPdslk(ZulFf+7)Jw@g5uWP>1GVw&@95UKlYIekR$_ghs}x$GC!HHuq1JJ$j1>)WlE!Z=z? z&|6+HghdzPqO+w_d8>b^E)NQHUlAap%V<41bL!iKMo2++bGx(#GP&!j1W3R6*taDD zF5c9%h!mn1>ULR|AMG6haOX8}e@4%FOH;dq@as&HFuY~1vQWV{gCady7D!;td&3u< zWsS57s6r7WU$Nr=56UlkZop|AD!&F!4g`Q@(29SN-SYG=*iZa_yku2F|KrES1c-ws z5HQOT>)2Anky;>T3XUEbA(3n!cSgnwGd6%g67nqe`gR@Ecrj&MSJD%R*V(Yy0cpmp zLcDOYvoRq3=;5->8)$>&^jV`}ns!7}!e8&|P?lN;93Ci0v6klzrnwP^ z{9NX2Mnf6QB~*@AfZwP<7kmaU8HskktuM(0d@1zx96x*lyyA8G+ZLQ<^=d*Jf{<)B zIVnk~-%67#qK^Ri{$M6kG9)x?EUsQ9y++m$cxwA%k%%7Mt+ckw!52EHS-#~&n_apj zSuUUmq-e8Hv|?4LgZ^+&^c;VR^4i?i1|g-_aQc|5E$-Gl4!-qfFy9jg%7r3N;>_Lfu6U9-_!s@{jhW?F zt&h&egDLDrFmGqe=i15kgMk|1cM)p9m(uTiOBQgY9Q!eOziNq9X3W0E@9~wIs73AN zvZ-Tdlg5Dvk=|ki!+{xH-mgcKfe1l!_h9Pg|I__+#ulSrdjHp45>+Ua;gnvIiCPrg z#m>JWM8O8}+w}=%%$?z}C%i*>nZ4x<2ImN|a8x6;N$a1%`N3^49^1A=5pBWI*&*=$ z+vCDY=feqkJ{5e+3hC-3~JMQJ{f+J)_IS;HfqT7y6EZ;*FgG$&&8+ z$$rsz9{Q7$1wmQ2JQi`SiVPt_G&0#4hv+tJ9hB1Pj5O= zI`6Ol^MW!u1>hD(MlA7=9cv+!$J;8?BUMSC{BSXQDx*A;@Yl0;VPs0GfkwDZv#A`v zTyIzf=><1oM~h^Q)Cv*>kdUN)%K0-F_MKPB;k<+~;QUtvefb33;f57q^jL@yxb!4| z^+j}qUOsm|ZZN`!-amV`&0|?XL1npd*!Ir{Se_jTV)8^20a(4SIaA@i7`?@&T!o;G ziY3B8P>FI(4+x?UHg3@e9wUZ#3 zD@vk(mIH=9Pd!$cVa1~v9C;#aRfJS~USknAR(G>v#dGMXGY5wK&dQ+MJ zF#}-d0h2^J347|ns_U|-GF~l(ftT6GDyHf{4eTws4_tAxsT}QpWO0@Q%>BRCPjSm6 zQfIhD*lR?2FSUBy{QV&v5jf&{y<7$k^4EirJOW`YGzO}{ zOP9(*@*e(mK6fAG?%m!lv>~+9x=N=Erogk6X_?ppnP3VH&jcGlopsJ*D76BnV_>_G z%!#a{#@AXN;Q=YgcmoUHlNA)ZkH6j1+mNa;maCSn{EfB5p-;$zw(xCZWIDj|Z$TZ! zk0`%$WYL?S`t@X0mcGD9e`P*cX?&>&k49CJd#f_?BILAG6*Pt(<})M1ampGS#Va%4 z=}-YB)0IBFRGl5#$HdE=^9mfeAL!V(SrMr1aDcz06y5ue#n!lrNW2M#0RW0gPf%(ZuW=*s{2sYLu|28NXC$YqGg@FO`FcRh9!_u% z1&J#YwwC~AHxZx*@eqr7e^SVAB=>##ja zoN=)7pd@^G{r`eb);5U4oFlOJ{B7%{M1RYnW5a(TRAGqEK++-8GzTi8jjsG^x4n2j z%_xIBfI!h$+bCQ6N}o$ja)1$3&DZ`vi0F7OdxuSX>uMmt)_sy&-&jFJxO|L!6G z&mT34|L+{Xr5cs2py3bo@O5D%;9S?CDfmfHrW8{14U`KE56C~!lAG+MSO>HMhmOV$ zFH6V@^5FNdzxnf8@nvZpvfh^(MmZ2*tB`a-3Z`p-qAIXiJryibSS~Ulk1Eb1twG3% zfHHq=M(Ju|$<5&%<64;cf%vbrf3tPo`ZL|hQ)aAHtOXd=mGKuv^F1N}^#t;^n7oEs zv+hTxbwsFG$@__ft=)FO8RYlXfYI94<&tMpT+;$aN{^gJ-berCRi%WjcgFf+9c~Yx z17gWT2T*mcfsfi5Mj71{a)=G^M;iaV_R;PH0np;zUrr<@1|5u-HDqf;9<>Dgj>p%b3{69JAJ%0)B%N2ZC03kajgE2hc%B4nyUGQFo6fWO zFsi2QKp8s*e8&Pb;T_0L!g;0=Nk+kr6$&s!Ht4}Jg@VCT@blp)GUreR7gc)iM4G-T zB{@9iz*vGnqhRgj$FR-`fC(ArD-+e(`v_h>w?9#Pn49Y0uYv%eC7b9HR7ZwvG3tKcU5^IZW?2oRzR!qQDJz7( zUm7^x>;JQllxF-~yvEMtBvz|We~G#oV`Cg~qB1&#i)hO4TabL! z%B+XtYPK{n0I-*)qKk>t&@A$L-EGk=*B1a6A0dF&@=!Qu@SH?SxcTr1vL7Ose@s#6 z9p#n0AFs**FwvTDV+es1THY7r0D-AVE$7kS?WYQ6)I(di*|T$if58u)h}O)X@0OHl z4uwS4@aIfL|4D;xCi5pQMPK?v;BSW4Jw1s*`jE?@OGFzUQvvy9RL&;g#Xs-u@BpEC#QY8R);ESnWW16 zn*A&1$X21Zws*<{i}w?6Ds@7`)PV&yAdQw1A%Vn1_*mBKY9$T|H5clZBi6W)C9K5$ zwj8-11RLX_R_T_fE#qW4>I>4!5nCmNJ}<+OI}pvmD;WxR&3|h!uTR)Htb+AOKks+l zd?NmdN}MqD`jP+~B)yzyQbqGI3-Y?C_!lP-Kq*IbHRA ziH3w_L(7F{r-!q9C1rJJ}pq}G;5>5VCl5{E{et+q5 z>;vRe;9pBnJ9dEKBixC#z8+@_%_B70g9HvyjQE8no$b@#XyoA=+Q4u%pWV5*!KXUI zFQbrvea2nHf5?{5nGXHR-|ZkKl(Chhd|ngLvZ0@U0{k_4Fto-O~cUe+5mKhJsWe!>$-Yfa=Xs8seIth=0iaYPV zQ8xWRuRok3I2giTBHlW(n{+q)Wc%Y?zYFyRs;b6cC|9EKfLWqn4^3EzSsflgnSUDu z=`sP9kvI2LciyJU0Ki9sak^@!$x(IV#o6}|-?CwsuYs)8pfu^0##VfqiEm}l7~etc zNC$YPQ#6T^5jxogpKR;y{w=S5U*lXcE~0Uu_rF*~i5;SOlygg zf_y9Y=Inbgjr8xC`0{{euRgj@pzL>BKx~>Yzg#8a`l6EWjS3YUa!}h6EsiD%f$uus zwcpgBMZYgNWO=e#dga2r*!DE6Z@LZB#rIwTTr~I>uaWKS+V(+d(0Y#3*Bre?E*o6V48Aw>-ur#)y_N)= z$&iR?9kkug2n;u*=;<5Fnv{<^tzaRqQt`3Srt)~2hyZd1!Cw&_rtXud;#@`ynD?>&A%8#pDE)Z;(CjvF{10EKo9*4suhtujZpIQgFSgmimv<(-d9P<5^%R@ zrru$SE^qr-U0shs%O~;9FC53Zy0Mj{4>Y>_*M1&`1pcvOIgah1~xU%6&7|oS#^l7;R(iU{cug zt#bAm5R7aqUAzW{!v1>T6~;gNr*+)nLAUtOS$9|958ew3_e)Yl@errrISHgiCBXMf z=L6YQbB*wZ7A=Bov1_ioFwFxb5l$dCEYtw2Vri%KvweuaJzAC@O-@V!2ONPevuuzT zP3rw@rD2SlRcZO#22B}$(o-2eVI_AE>Jfso!Tw4aK1@bUpIWhIuT01}ut7r5dZ1TD zrRgT{L*&-O7mYpTQ}( zi3C>lfCQF_J4uUlv_A?kf}7?j-vijERNw31qR@{KtdG`ksx4EayX9z%0SRWI%a2}zAuwSyoM zBPQS4>lN@eWrzuW;ipQrLzGDL@egB&Gt1)<_@aT|6yY?u&ENG3cCR2X2%t#XL+%&^ z)dQsl2#Dk1`dW5m^Mi(yk?UCN*7aFbYE`kOB($I)$62dK6gkRFk#1bA5z}*Xlh2Ta z_4X{m>#3fI(9LMy4Q?uO#N7Z&4<5tL=C zU+u8?Lcup`y7GofvU9I~sW;E-;00gubF4T|uQNV;KF_s&^E~-Lmi&W&`+O#?g3;8- zhy&XQbehphYJD-cjM&{Lmk55z=TULAFAQ0hEwrzTOBx%D*o1!JNmJK!%$tx@8e|KY zO^RB7L-f`bxQKf3wrb-XVbQ2Y`g64#V3DAYAaejpbIf%Nhk(R4KUtFI+<-(ibEU}& zfU4HCv1cNfS^s6r4Rct)mf%M_^FzAe*N=9qsl#oeazLRjbSv)&utoqsl78_i2o!x? ze;X3P5KT_GhcrOkH==*6zlF3~0OheAD>boKS%-jYcVy~odlrEuGo?ol?lqe^x&Pi8 z-l3?3R;|>>Ct-J++Z)t9<1s-2Zx(&hehT4fdVod$-lRrl#_9Fs5>>@kp4_9TjVc-v~ZN>V8msvkEXz=RH3&{$8N! z@T0eO@$(J}WZX$hBI>NIA|YUyL?R5)H&!yV%?Ycl^mr6KmC});fXdQC=_?*b<)3RK z{%6+pNGqtLk-eJp#kIJ^&mm5SgBt&PU)>sNB)$1|k8GC3ZzkN1LrY9-l*N(QP#T)cu^l#0`Yc(pq9cZ`k=p~ukQ%3*#StgyMeSxZr1f1;y zN5zlxaBDD+Cv>Phy@YQ_6~;4^!3wAqd7E3Amj+s6BOO%6*~S@ibh}zbKtY;}f=KZlePN@>8{_MH z)GP5L%~3@76cMF_Me$)RjgsmY zA2{h{7gl}0iDEu`hfy@Tr9ZgBK@WDRt$$NGoZitBvctA8K*BimBS?)8O5u4uZ##yaOE~i-Po} z4XzE926EUL>~3-;4Bz`wponJd{w<*AL8wLR2t@`b{G=^!4?^3SMMWAIr@9W zDFuq}YeWg&;>)%>_9^^;v4uqVLgV2#A6K9iq96glQWExuQ;(VPnZo>SW>bBBCQ<1~ zF(hiT=LQ_~8?K#6(PI5az&tP%IwcNvl+SWEu)R{r+f+cV!-*&j zpGWJ4Hj-T`@AxeUBI(fp=5!#VSUHmzi~LY_5%47FZu{9@ON7qhB4?#xpeDP7dsFl% zdnag-V8`+L?x&BwMUdyLy#x-72vxB^T$@g}FkvD2J0lz@8t3=O<(JsXiTwc1} zI~l|L$bLTvqP=zAeA8jqKg+GZ1fgZg-roKg*33`Img9aZWw6^1O`$>*SfkJ7%COo$ zcMGwEW{CF$1B>SrwD&a{Q=F;@MF+A=E;Bk@B;HRF%RJ*mK}x`A;26M=+=G~_1p(C#xDY71+>FxUOlVv$=8XR-%){bcJm3Vd3C;?(Bxp^ z-{-4-f$j~Bk7M*t(%g8w-TI=&-#QiIP+XVKok&3!=Xb}%kW)L&IMEQPS~Eq zKi{ULAY<5mh*t?9pg&ckMzLr_>ibOPlI2*8b3=tfr-F8L0bMA+@?Y{w29)} zD8uNjZUH8sTRvJ11}O>e9l*sGiF~9U_~IqBL$43~ zBK{0@nJW(mqf1gF~? zP{42*x-nlvf*dHe?ACm_ZZ_2GQs{O^u!lvsEflmx1RwFUD(Utdd6}|@9HFtLq6)d0)>Yb#OPUHKM1-;;YXL~ zSZ&aQES6)J@)V zBu=Hol&x#)(ntnIptVCF<%@L8K9{~Kr3tmDdu-eurXmon_vm zOx6-+pVfb_EfD#W{3Rju_i__>fzOd`(g9cs7HlCo{b87lv1qG4Iw*Jc}5LOc9CXb zAG;m;tc4T^(2q0qeml-D-`vCovm4`Av3_NShF)5&P;%Z-TRmvnu%;0H^}kUPUS3X3 zoxgcYb6wHc&S4B6s$bn+Z8RNpf5aN79}fJyiQx+Fg;+0TWyWW4Vd`gL2m|?#smvK( z5?Ey!JU{BXJa))wHu6@`Bw54$F(*9>W~`J`(_hcG@9ZI4jn|OG|5o#7yLJh@d9WiY6V+oW$cF~(wu(jGiE1lJc)9&0_Ww+-#3mm z53))#mIbmj7v%ss=QDoQCOE7BNUoCG5S7IAds3Ecn}hSan-P(1Ed|`Zw!=xfHhknhHzwKO7q zSRin7L=RqUv_RFdR%=C5U_kM6LEEB_c`%4!3Z^^;;vl3;BRd`460BwtF?Axr5nSdQ z<}zr>E{-zaPeGE#@D?DjPh?bAsosB{X2iZsc7#M~_7MJD zLV*glfR|CHa`kA7cqy-ob`yIrrD;D7*6_3^@b4KXCo#{YY`Jla7z`9j?Vo1NH)Yp} zQJnF6?v_Q@0#5%|2{9*6$)D=rA)l{}bG=1)V8{|=CAT+U-~QK^I-}L5|E5?t0Ae!X zzlM=F8R*OM_3e*mt_jMOrSD*1C>@ztvz|;*x$d(HK$2^eF9gMT?ypZ{&F;aAkOc>` zj$_eYvX;dIQNP(*EgAMEB4aq6q1wfSvUI$$HjBlkcB5vGS#m*a(fqd;YLHeNXiXdk zRlHG{yxf9N=nx-nx;*{*RTq9n>u1BWD$d?&_p@R#fIRSVQk82zfwK#gVW;fWTE0MP z*mGP<)Yxy<7NIxMGNxKI-C)WUdFErn^xq;ivW7BUc#>Tzez`AH&md+-IvZX!=d2;) z3r4LO^N9}=-X)5hNbaZJH#~Txv!b5=>M(&W3$*I3%Sohf@mX@LMCO=mOJImDn>c0; zNqh`>e5-75;~}9i{+ksLG(CK==lqwfFlMplx`WQ}r`i+w4fASws1m8TPl5=bcL>%J znIdzB>xL1a3Zdp`tmi6bAT}ckWO>$59<&wV=T;6kfEB67RcSt1JhK#>NN@lc$`5Ul zXQichl+34X4V_5$#dbbvF>tR8U<76eX={+u$*Bam+mlc#y^<&V!I|Y$}tCD~T%=J1ytp zCcrXC7XOW+)}kWvYOl-2Z3wEn-v9Ns8NT*n4?%j3yd!_P5;o8b=_+eyE&=d^F`~^s zUl&YMy|HKlpkUc^0*3X1SD@J3&Egn%=u_XXLuNb+Haw=tcXQ+eMtzZ=jETvtY8O@2FD%rJ+1ZL*nYj9`eZ^}-){t}xZ3s(Cn&u; zIT4{Rn|%wPQpEZf(Q7lXp@bRE#$hh;?{?9MJKW3bo522(Fof}_!%GH3{td~$X3Gdt z<~4iAjEXaJC4Z{pIy2TYkK=|L4pD{M`rmG_XeCdjQ+Zoe`?L0;G2d~}k9{mSBw4IL zK0hq7eiZkp`#nDMr8M+7tN$*SvC7MKz9k!bDO}v|a~3*FB`n#^xyh>z4hi(@W?(1o zE_cjPII0w@AMKpGM)b5kv&m3*!l2d2F)B-b4|LYnmu!?IQ@syCi7nroi*1EmA|Aw_wAb~N-kBHG20#zHUo$)JR zk+(uHmLgYdAVS5a0n=nv!<=7=|5;DDR3Qz@QhmJTstL-o^p2NHY3MxKbOWPlL&Kt2 zJ7za5pKTqN5HH%o2H1>yhQ{xpL!qtGHv2x*{@v+CYexwVxNms5eeq zjz-T|njUZV*rZ&*{E{=5{oYa`L5ufBJa<92=V{AWH^ID2NVQOmDQU=i*2*M@Q+M!%rtY#Pl z`@9y=U=)UoWz@@;;@c2q zqzN&`^MxE&rRp%F!#enU?jI%|3-bdQMSG+3!B1UWWNJn}#taXF3Kn>>i8H-cb;YR8 zWa0zehxBz_h0XwBSN_US_rBcGb!8Dv>#VX&LsN)`zlX z&r$t-zcy!B1^`wr(&)Kwy@+-`xlE+%(TI2PIG1^+5P~PSMofdhWA%yQ3WFcRa24^e zN5luv_@}yvG)ZsLB*@B=A|jFuaD)Wn##le7!W#$8ThgZ@q}vE6vjgI(3N3b$Y9HTo zOfKvNE+iGoLc!@{d|zO)5x%)~c!4^I8WX21Wd0|92jpH``Tib=NN0}1El3=F<0Cn4%#q+BT03JD zEP9kiva7^Dbxwr#GphHxkI`q5E@PpfkE_fvA6kAGbcrj|4Yd6`W-xii&UzuuxZ|#{ zFec0!HOo3e8<} zyn(|$0ursVhorH~a@+j5G6K6An_=V$d}6LCMdk@ZSucT4;<%jJIF8Kj%*xgXf-n(fCxvpQl%Y9VKCjt zXmJlgh9DX@L=_%K!R_msD}4x*BV&9kbY&`T9(sdabh4xlMF??ziD2mL8@_%1{TvsF zBQ&i27fb)IM?*>D1*K1&pR&L%j3F>_EkcaUP_?|WpsM=7PoIojX(||=U&Gqx?Ukj^ zW%|Eqn)dU*5)JuoGo&pY`WWjA5wsL#@Q=T9{6rOa|MgwrE$QLD+EneV8WV&lwVu2E z{+d{YN&+_4bHHc?a6)!Wh~N;S0sS!MqApy{lH>0W#yQ2$s@ zOc*p&-7fGo!!WipZtI5e{8NHHDr!h5mm2`&OX9!u03u9?7ZK;Dnpg0l1ZLC=%56Ho z4sqQdPRCRc5aPe}%{DpC3LjnzZd6S7phwT=$epGw|&O{8YvKKnsLCzj7Bl!plA=Z5pKp)!fOJ3{D0>C9T05UBgCutRi(dp~9Ce zMsnZytrCfEP&?Z#A8nvs_p_E(;)*EP8B1q@%KW;({(3ZHTKiXTAdU1*=QwB?;F|?{ zGKMP`TYUwF0W8?bOHS7pE#j+-#h0R-I?UEq3;kCo7 zs%cC`1${vhDz8UUT)O2RB(l*&3Z)~;33?U$K7&>s62|}(<%<*c!(*Id@I&i5-Pc4G z2r!jP1_RFFpMCtOl`E<}{t?0ZK8x-NwGX;&IQ&|(xG_6CD$k6Hp%;hm7Dc)pgj_p> zZS)7>_qTSUqkP8?hpk`((8Ty1KTRi@Z7mLs0V}4(i7zY@S6_fHQBr%9)gc|34fw#{ ziv^*=7(th?)1{_HV`M`+~4_>B2c_5lsp>RZ-?CWPS7dRxQ^a}}T zg#??C*4POSFgswszxk#zFVAj*$Wrz)&9@LfyB|}E(bTzJKqrFbQ%L`@$f>aCx0;^j zK%RianL>KyRg)uuted(xyY}z?GC#|PQ9{#OjKG{Y4(lt}23SmUHjot=Yst7Bn*|QZ z5AyfLIsf|QsalHDi>^7}b;TeD{CE8L?}u`0(B1QaULf{R7d9I)PR)&M$;dTlzOUNa zq!(DsU#;;^)#t#~^Go*8yRA>NkA)qZ2Xq0mcY#Eq(a8`Eq80ySquYGG8ne(TtJngZ zok%AdZXkdWt%0qZN7dhTU7nI~*RA!zRy#5p@<44>YN9?5{OU^DN4c3}IkWxd?Z+_V!@#y8I zBjW)`vJCA5csNlWE%Ib*kSph$Af#_haHa(t8BHTad?OJL%ovDNMPjKsXmQ1$o>}PC z!bthBf3&l+=kmF)pkTQLAw+`ldPrRlwdkq#3XKo&>&9EE5TFMjjD+rnEJq2L9uHn# zBgW7>##>PxGmFtSrO?F3hDICxhF&Sy*34*J!Ee%)7gNM?#>=WvG%yTl&G-PH1XY;; z0{L8akw};RDl7gxQa;!Q4sv^(3Acc@wui7AC4M?{XFLNQ}_(G!kw!>^p<~e_P1*Fs7sK1 zBc4bh0|UCyZknHiFnXkX0&vHAbGDxIv=I?^s|=Ns&i?^*86~Is6B9gey#LQ({_l0Y zfxn`ihT$?k;j+fZ4n?}Pd&Zhoh(%agKDHxb-_F+=p81}mmy$c~e}Q@k!PnoaTo*wj zq*mZgN;_T5iUoJ@PNd`m3;)Xhl6dX0Z<`}%yS@*;hEeYIvuWfPX{mZg-{!i~q|OAb z6{>L=d2M})Ik1IRq`qIUA6m;8XGNFZo9m-Q{Kx*1^Q)dzx3}_^m z+P@1?E*w^vl{c+xLBG)7hy)fVE&2P&GW%VwQFAX~Aj3%q>vBZa8jKGgf7KdApQYG$ z)J!eJmhcfNxmrgnVxavH%SY`wlS`#tWB{C3B)k_jUAc10{kaP>oZ45ZFnV1l){}y4{*4Tm`@*w zpIQrSdgUS4@B6VD-wMP@BV#81&c-~Wa;*%<>FSWG^Z+bpR# zN^q9fnqlyO2`bP1vfg~Gz)ELVyhj-nfE`HC_JIl%%>_iq_{%%Zj;B)G22+@ito^NI zc?iUGA_WhlCB4a)`#|GJgXmy)d6~yT{8R!vcEK>3zA$ZgQ0WhkF%X(u&s%2t7dMGM z+JRtFmHLsxj4!xw=?lLPV}W}n-2_ri=Ux7CDHE|sng*17}BhxQn zEUPJ7{;-(i{-W)#p7taXk`{BVlWu!_qcqaL$Bw;Z)EcDV)Y_!Ef&|RxPoB$p$%8AR zxYWUFnZ8>1b)ySiMd@zCl6p2gSHNa9|7K$IlfOZ^2v1^aJ5(3M+{U5*7`giic#tn~wQloc3f2@`7(ZlB|$flRh5 zL;X}y=cY6ul;gVFYPKh|)Hx>+T-RBw`g>Pngk6fYDk$@(E;k1tMWU;3R$Bh9ae@|y z?1z-}9(9-^ZWL)*+bS2*9DGE&LLYrX(62UxgiNB96rhH9SK6CP&M-9gWH&tcaNCxy zSWLIK8f5zpcro-zm^e#|;IW^3^%pQ`nBA5QOwS6k2L7$3M^gUBxX6EBf@-|iK@jqe z$C!@?;s^9{n3Tke2g=6QgP_0o!P7=M$b7T^45>KE-`;E&hDgb_{ZPn)m&;_%_ns|? z#s0v!RV~@b=f`GQ1Fx1Q{TZLe)ZcsD{$i@Jy3sozu^g?slqnkKKT9zko|rTSZ_rG_ z(i=FY&INx9%pytgjww7rH1)8H;di4g_y%5z%^rY9<%qy_06%T)QpHck2?Nd2&GUsf znReT63iqw5grU|-HjSw)A5jTnA%C+~51L@fFL1=Sxey;Rq-l77nGj0{Ea1cw=_~}T zC|8uWgahG24$2_bG-XE9R}FwGzEQHb$p^HT*#r#VjcRxedF!)LcPYUZ$QWG=J8joQ zf>uvT7cbkiBRfi#4I_8{1`LZe%(-nC zAw%n{@!@flby?bb1MwNY^Q=X5?3;i;_vcqVSW#!vRMzDuHka6DYUkZXa*UYG1FMc` zP$k=0&Lrwk@JP-f4Y{?{1n?uG-J+s{K|2KoJWRF83IN?`Fs_6XXgn9XibUn`rzBr= zFX;8}ISqe(1HNzUD`k51Z@B#%_3-_r8y!Bz!Bo%v05cPHN-1_AvYz_Nz{G$+e0cfW zM-IR8$iN=EG-LGZAhIT$F=9zwMZg0Yp}pyPc=@*+J9|C*!~IhssSR`f?bBK@3ir{N z?B3V1^4!ut`8Nq_7z1bvX!3?cG||60-DWpeQKr~KHunQJY?Bg@Y@Ik44ToekThI`s z!i5qj;Ng{T23O&*QtFTl!IM~-ETF2pqGx*TlIeCIy@}k3iJxaXWJbGzSE{l$B<|xi zEQXss$E;{r23QYrt4L^HN@DUvK30#@wk7s0p1rb6mX~ER=DGP6qEWEN4@z3D%^>u< ztsE7(Z3ml)O`%KVlQGUGdMmm!>IsdydBEkdm<5ZDL43B!o(PhSkXC$Q4=795sdb69 zxk)HDo+-loPUChK0D|HKKmO~(RXOjRkU{#i6bX)bsP*dE(vDn;ZHLI%k#NRLMkIYk z?!Ue0e!U1~>pg-SKgI~*S-#70d**RI+X{-`rx2F5Xfxe=FSj2XR(XETc=M+rO&m-| z`BvVK7EebAAUSCZ2Bb`A6D@(KG2X0&g}arTlPY-f#G&IYDr}pf>-W1Ha_( zc#w3Ml<=mTURfih?y-X>v^%69GVptYu}ka}rW3bJry~#+3%OLAv?Ho=4uA}o7Z9o!J z!1|`Fd0bwe?cGcz!bpu(;#t~w?Z2P8!WMTpvR27R3b%hS7(sv zp`Y<@-`ahdK9J&0<?)Ro`k(Mka=zy!jl>Mhpo9%XTs+Bdd2(cRxX$N5y4u)#*?Z#iRT5>9 zwTBH@S2beeUmt(5i^zA@ui@N)4fHq@AKGwm|6E}?Nj`Twe!!2)AXYNV{gNyqEy-t_%>rAZ^% z)dIpGZ!>Spsk5>@B$O8TV`F#DIzjUdE9_Jog-cfDsf5B+G&XGDkCBX*w6?_pjEWeN zW8OFWcdxsfek^6r5mvM}3LumG1_<#xI50sxA$>Jf>XgemQ9zwI`_^2uoPdYkBF$A| zazN)?wph@w*qqfAL%!(E?t~~qn*f%q_PO1F)ODjg-8rw}Ku5D{_ZbZ5x zB*@Cqc3@}>G`$Dc{gp}kHOk^7M9jiB@ORn)&$BIDu>3mA%29y+;9WbDl;6R;b{bPRss#{D3LDJOtcWWWCV8yV7ytUXprYtW*~-S3hoyR#*13CfwJ#RC1n z1O!~>!|`qBXftWvz`^EWWTx%kLouOTrLeGq_5@#rr&}uFdQ^~eM>;aQStFQLJzBAL z1s_bhGXZB%!}sSR4B$%*6C-Pbn_WwLpE0+EcPGkxo&+~J(9u@`&u9K@BGYnlsZqNd z$|$=X0W1ZYQj5pSV-`9fWHr&N&KoUBc*PJ~2eG9dGS^4ogqb$~^&g0oIn}E;dD5mf z4iYn~WJytTP+tPod!TdFL4yv9L-35@`Ibkrl-jDDo79v|e-~@<3k=|)Au|}vzS@^W zTOBXwroQSmj`A3jn9R*TId}c`WSD&_Clmmed>_bQA@lNw#!kjlM@&`mwh9jCB();@ zb%RA|p5Bn+{}3kZd}TRR)rRssKfJL)oo@}Li3oZa42C2tX5hS81~`Tz?d3#{E1PDA z%?eW{YJ5}3hg&)+F-xHu7cUPsh%8@<@A9$8h$#UY%6rldziZ6(O}D4mu2q25aS>sQ zZuAirT7L=U`pGhBVkA=qt(^bZ5RfVObaV14F91lSk_NZ8w1Ilaft3Ikyv4TpVn*%I zVMy`li!P}j;LD)&?yZk1|NRj*Jwqkg; zMDlM_?0>a?$P*3K4*lH*Jw$#(rPe8bbLmNQ2RFYi@hR4zh*s!$_KtMAKe|GmL|30>sTyQ|UQ0drH9=kCGXM64kHH5Sf6JEb+i zbDkk+RM>4>;j(vRmC)KUl5iJJ6)hE(2Y}?}WT%NjwEn`^+723}XV5wHd8Stf3NKO? zhkwy4Hq}Eer~3m5rxrZi+>d|jUFOH{X()hE+rtk&xgty+b7CUH$bB9@cSrTFZyRGS z`1u_La6F!59jHS|#VT#5#Xe9HHKK>=%(@~8k?Zv^;GWBsdrjW-Y})*HWf&26DIHZ$ z6~tcv0L<+t0`2^19SCH-9J2lU)m*dJI$8N7r93UkhdidOyV%$NvOx+R#pj;pGDq92q<`XPpISK>j9F;pt50Sy4C~2r#vmYGiInHxwY2PYYH?^`!i>z9jTfopkzvDbN;(*!ohbt?S>K6S3YEv3HXv z+ycZ(1hdGQ33z!9r~A0%%uuakhJ3J(erTp2A55k9Bk`A^twPS z%kFN#BWG|vM|?^&rPIhlF5fsT2ULj#ukb~HGQ7nw4r72gQaIVD1GRk0ZH)x#QsX(F zfhLQMUORgwK}h`qko-st^sjc@PowN^2yMa7y1*p`q(%Z%|1(v1HlsVUIVUTzx=S#B zxX;8`#Jn~Ycd|@KT)zYZB~;tS|4fmGZ(pzlnA1yUh6ul*Fxpo~E~6xJX7QfjgB}p4 z@r#l^y2~8^Z}Fh1DIw8f%nd2}$$T7sY^V+0OmsQdd-hTMPF}Y`b!|trp!=+i5gz*m zF&V%4Cc0iZIc5x#_W0*eYL@YuUQh(PSWE5$K-kCJl#^W|ATPX1ILHNy{gum27FpF! z5&F^+vz0J;P6Z>^#c{taDm*Qmq#=95ezB57WKmZ#q2_Vw=>F0U>?vD=6xYx;N=Mqd zw%Lndk-V|z^_jnC1ckfQq1A{EeOoneZqKC9M9BL0U>o+4%qC80O{!p~3#7c{BP^{l zW)$>?c%;px3whov&mUS!1W8CO`Nan?BI|!VyEDcrY=mrLsT$Ar@A$r9*i5|2>P$C! z+YQ?zt#_uJUTf_28a(A`NkGS`Jflqc)=j~PI|7AC`+R=Y;h!T0z!M|_n@}IV6DI3H z$z$DOBv0?*A~P^exM|h3x$!rr0C-bGYrp9qQd0CS?~x?eA*VTkN`D61Yyq}BR+Z&! zV?+E%RUa9*i%Ss!K zj7dGgR(em{PCc{0MxEBIXKw<>kp}gn;cKL~Lg|^Z3z!0&+ z=aiv@mcw>39M+=twqDSg)&j~uGM3sf)XJJu;MpBCiMCO>3Mx{_oq*~a&QZaH={F(T zR>W1Zo^NXKZ!oLvX`9d*lrM8`kGwPJy_V zqEJ@Li%ygIL)}I))7ht?3!EHY&H_`?ppHr&-@IG&T)Ki>yYEU*3YPj^LK^va@MKto z+TUd=@fvofffXnfj&?ka$KBNC>CQ1C8Bd+1k zkq)>2X1Pz_@#dm`626%f;2Ut=pt0z)iq3Pb*anN$Mj^}%QYza5o6==&%qj|}a1em9 zKdurEhTx_8_#X7QET3m2e}$s~H^C;Wd?*OqUaeAoyRS>)sQmp5i=f^0xx;CyG~JJz z$A$g!gGmjG&5TLn=aOi09pgUVSGU8uD1Rz8FN{ThtW5%@Ns&WMt6Sp^vlnf0?&**w7LY$W-p+yqF~ zqFXNBv8s|7^Px<)sK@5^O0Tmd!3TgPU4PbvQC$2nVG>1Od-oAOx?Yrw(ckd^#;8tH z@z-i1AA==LL!M_W)^JnR)Umw1NyeIqv5?Mwae1I+{*bihCz3M@a|8)f46rso4*e%T zh9m^e0d=CNe~S6_RfZXDl0_zO3AFQ<@yKAi%#`J+R-HfTrYd)^)Jz2X#3i%0#-wsP zA9*hav+8)iaLnqbd}idOsbw14ENK;0t(_kv(C=xVIL}qy1y-QASMmfotAtqK7S(#a zwkDx-;4DswBW!X6YVMQ;O40ZI99`U6rlp|anEEhGxU-2u8y=PNmIfJ*SROUn(2~JB zMNDr(ztRgo!Jx~D#*M>ooA%^FCWp-t1gef7N{E^#(tr+ylmqJp3^@$?EtA|jtaRPw zxOs~NvG0ja*~~2TT7c2+OPVASQC_*xkI+o?E!=$4p)=%*ukbW@2sQOMAK z^UK2Oae`r6%ogeUMHOHZ=PO@MukH~ZvszF4iC%ucV$#llFk4TpKA9GL``uctfJR+s zOd}W$?w9eh#Go5{D*$$_my@olr#Kju;1?w;vy|krWXpcD_~e; zU56%W0@U9e>C1clNL2cPYU9Z10yG)^8Rlx@nYG0r+^pRdL*eo_`|mo-iH)}knSyCn z*53t&aOUg9+1dOe&-sU0@1IU#VL$I5gClAg9n06(l02>773 z82a#Sq&XOyY-8QSBr2eRc!?RM&7ZwEpxlpla-{dz+4DSX1K4MCVCfPYf@i|`*)~NZ zaFUXGh%hpUlm*^7?H6(6ocoos3FGO;iOPwLl9hj~OeYiayw7xjL5=i1*6hAqoxPk3 zSCP{fK9e@-iB7sbg?t3tKL&nDW~n2UBm)B5?I(U_m=<~I;lP4iZbtL|OI{)<~nzOhg?kSWRtvY?+|AeolyatU(s3mv{h(XbYEiJyT>6(}Q=VdXNT zBsHJ#xD0-^Y>7l~|4;}yj;Hkgc&McU`_Getbf?`gSr;p@@V$v*0Jdc;R=PmVn5W!k z7%Ssu{+DJ=!GNfFE>($c9hw1XbyoaOoxhtHONdWufg7w^CNNaoujs`23Ewi>{w?StRnQ?R>*UwSyQt=a8L z+r{xK9bXbOB8w?s`7D9h4)9Z@OC~W7-hiqE5`eOjZxmgb1qz8?PnoWza+WZ}{`SYu z%kN+Ry{i7YMuxB-kYh*wEVHW(GebH6H+A?53ad0i7`w|R{Qj^`Xl9#`v6KkG%NfEu ze8UU*?dG?2c)m8TwSbeF0aTMezaYb&A-aO=`^>J4Bh zWhO_p_|qxmAix8t)_ZS&A&IhPm?!y=OpFA9mH58hK+9|}JKryCTmW(K35R7vh8yw^ z*{R>8?uXNQ0FdU)(@4P7SK^g$v2d1t&+W3Wps*mSK8N?Xj2MaxPP&!!lQyx){`F0r zpWtEWtSH!XX7_@BiCN7fLVAr3y8uL1YTtqrsER8!QI(HWjh-MlUh9?&7z~8b)syaj zp&jJFOfpcXaG})*=&2-#Emv1D(&X!TuEgfw zbfu6@toKVkR2DROlmhg`ouMlpbAUd%iWRcMjUL+$hd7pNRFD7MlgZb@TdFH&*q@Wg zvBSH2n8}!c(K_Z}xbJK0rlJQ8>0r!+)yk>%m9l(z)%B#)%9!zpcB@XAWDdRIWDo|c zWQe7i=i3kA`9{_kGya=xM+U;t&^v>vSJ&TJ;6-dghb=8X!(oReb3x8eA`0g_-wgpm z_;xjd@)=y2$)-7_TokD5D%b|pKKcglU>h+iyNnYTxsl$WS^@#ilD7xaEvTbyl{hTJ zQ&Rq;M#RL$G*b_``&)POi8-cd>fUpT*Yv6cambuoN^GMs=*@4#s5#$t6^EO0HDj3j z^9z_OLWJ`*S@f1!!x#h_8twZ{(u9zhY;E`l#TI4uiF7eswzUY-$IEh9$PhYtz$^YL zEiR&5boq6qa0Mx8gw@Tn)~1o^G_M0!-}X&$UJ;4>^c`b~*fQqPfMmC)ZP@$h%c`5_$2_c(Mt=(E(}03>C$76syBZ}wjBj(JBk-E6;c{3HP{ zce2|~X#Q&AZ&2xnw16YTf!#l~Xtm3|!?Xl9#%3g1!td?T!{?7*YIkex>#V5fz6n3C zFj)wF4LQZ#sujxbnuQB;XWzqk`2fg&0QE7tX1_PAjhTkjNJYdZQ)@2(3FHJYy={EsU}h>Tm4(WPSc@zE^WZm+J$};O7+M z*98>?kN<|9RlgwAOJ9##*7I_z+fSF$Wpu5hSccbdsW0k;;k}O3v%%io=#_rr^|2d!CegWk7Sjb^G zM-KfBxs1v;-Oc4iWu`vtr*d<==X#JV5jN=F4@#~0Ou2`ML$MJ6@GZMV1Stm7mjJBq z#X&a9eA0-)cZYNOy4RxPDD&3%9PF?3osd8{h;(*lgoqjZGQ7%F&R`{6V|yt>mz!57 zl{cowbd9~TUg@AX{nYAROq#yC#Wqju_HKH}TM|_9|m@w4m z3=jM@CpNvA zEv4@Ji5nRtf0+g&7-*Nx%~t^ntur0%wuSKBH`A#j@8AMtT%022dGA5H^ReOyf8Nhn zKKW3@>Kv9U7TL4yopyKG$sSX_ZGViBc+`dA>}H7;h9<*kEhUDBl4n2tyV&a2L(g+s zK<rAey$gVe~1ipRTX+GOqzEH6cKe2T|nqg zo2;a$``gB`<(Vu3+2r2@3C%3yXd*(0(h)A5FF94LexbuTb7_Kz zJhNQKp$j6t_r)hb>7Kl04G%Qk-5;Ka@ruMFoQ$taoN+aOJM(yc?Em2FJ^NIfVp-J5 zB1~HaHj~M;y|NDzoxbM)FQAIbp&H&iT9uM91Cv#rZ@@yt4UYMJA|w9K8cLV-C^WT& z#9&AqKu{^wYk%6^M}1$FQ->WhG{tMA0v|BeD#1^7VrUz0z(;O&{2CxIx%Iq=%-q=>a7k{ zIYIj?%;&E}e_+7DDCU44XcicW*eY(9k+=#JkS6I7vRT6Sb~)K$<&(ANS#gvr zdeAGU`Fl`nWXb^iJG56qa*)R}YW_se_+u`THj6`Q}!B9Nu~vgfD|TE1#xUUxwc6S=*E1Kqv+=KFU-nGWm6D9 zj*7&yF|3ZCYy$Uu2*LxpCI1mtX}8Rka8`I3wsYN-40G1nKiVeUoO_-6g3tP= z5@qaJK82_+4*c2WQUJ0L{`FM}5%RG~pso?*foHm$oC@~~4uGaMzQHh|V{Q&c!lPUc z?322HW_;T5x1TSPS3xV79hA$-F-e3J$~!fZ%M8+ll+`kV%LfRM)U>vbAxJ))Iv*zP zNsNf4Vz%J2Kws)3sgoR z2ozbFn@T!_ z?C+TD{3JNetQ-m`q(8;s7fys3gw+|5kuWLa00umblfgKRv20o3s3yV`!%6lVtxiX> zf$9@6?kjD4#sExz@{|NIgW&ek82o1lnt^516?}q!m99i@kNLKy_q%6}E9GyG2Qj;} zgI+X8IyrNF(U1V=oWht%L;z7%JF1ZRNC9GLPJtpPetHjo+M`^n=msb&;Z=Z$AVSmw zulEHzdW9M#keNm;cLzw(sD{8F9BIR%fMpgB9Et)Fr}rLj1>S2O_xC4R{n`Yb=EjcC zS#JwVKj?I%VR?3vg~$zsgbYpWOn^knGAyzWrhKx#e*R|XRcufA#4Fq*tH1X(Qf`#m zc7vc?t60YB6g00BzrGyf!SIKp06yIt?m&Ht78zvBzg5EMj;iD%tPYN6&~gSo#3W6h z0J@0Ft;`q7qQxH(C=Rvu);XR-SZgeJ&Y;iXb2Z7Lx@zfr^IZwd+hpFanc@^TV4~2% zXI*r>obNQ&jgaM^8TIRl#_a)t)cH^Q&8EKXE9()FdHm+B5#dvRFRSar+|cKuO65BMJLg-l+}|W_;%Y`Ix`QT6K2>Iw78BVEN^AA2 zO310=D+8R-LbO0P6jq#S>$$8ONRbEFhXsUI9DbnTAjOeLFr;vj>6`iD8B(kb{$+P^ z8uk%&Hqzl0KNTr{PW#y?Dkz9V?Rgd96<4o1tMo}SUi0rO+!yjjKW7klp*w%cu$d~Io$@B$S7a zotpd|BW!r_K!g8T+xnjD(KI(`&wnRi9qUR@w!tu?dLMjF({xRkmQ^odDC@?X-ZQW^ zN49k)sIjvWe6F51hPL-l$>zF=_}d6=+s}3w2F1Mfy_jyDqNwwf`1)346r{ZTKwoYm zGYh0?z!U@sXNqMq_Q7UI@_G1nf{D@nba%ekw7{IaV`yS?GMpi|tNr`IPeUA?{r@jO zl*cSiG26R@taCg6lJT$bEks6Wq91zdP}$PtC| zmpK;p!Nd8#V}UeYii}%goM~?JDC#Aqyp9r+wAi+vqWutkG~XfnGIA<@Ke%4pr}gGk z2_;V^Hct)BfODL!Jh0UO%AN?}YH-`(ZXXtxWZcsMZploTOedL&Dk74@kZc(RrlfXP z*4bO$PKE(0O5|J6EYV&jS6190ou(%FIrce)hDTSxbr67tgB*MZ2S6czJyWv;2_>?| zE~i^wV&SGQY}4cqI_(#pe@ZX$Tt=bbik2nip+0bda!3PRL36=2-gkaVanq=r(iu+7 zG%7Y>BUY0YJnx`NDA+R2RrupF80(Z*g4CI7)Um&9D_uu4KyR>w9CK5P6xF^{WlR~kclx(4U&Cl!s={k5z(r}V!n{PqZo+~%8s*GQMty_d9D<{Sla$AKi=_mg@u8yAR%Txk>fxa4#zsWdeQgQQu`|mL^@j6PqM9m836- znXYIipSS=?JGz$*+4?f@L2~l{_Mn5>p5QYVaW&g6xKAI^I48=byVnswWghsN>#kBsEpMZ2l26-dAXRxp zc7X(~CI~Vg>42HfQo$I?Ij$~Fim(i-Sy$VZb`4ZB%1?^vVs}OQBL-@zU)Ha9aoDax zi{K%zeGTz=W+?!)iuQ5P#;k6-ypVoQCsSJ6=LY7|81(&DK)hU3?5 zS|E-M0(pca1A^f5wCo7aog|MGl9{ndlFO+5sN-o!Y!B1%EDmSMCLRnZ2 zkBZ2Ve}cHJbcse0Mql@hpg+sc=ieJ9$1~Qk=p)>zeV`z?uK9+fpP&1w&e5A_6Ch|B z#`fc=n{_dt8;qvOs|_~@y;+p9oW}7%PLt$o4+RR~(EPr2U8V^Ki&3T}yZZO}a-1Xx zf}$vq{dWnjNj+o|gTnv&zbJ>kpxnfi3`dw1rK=J<%K^ofFF7gH5(hz}#6S`tAfFTq znc{7sow>m>4cc-zC1@Uuvv9GhK4C^m>-azbj9&n#zyD3Tkle`KpbzIc;O=yxh`hu! zhC&ifr!Q80_u*RoOPq8*CJ3gfo`{Up5U%0=8ye-Qdpt~|Lj+yDl90(b77F}kE;1r> ze6Rfyymh*Za4`4j07*s?&yooL=HRzmKd>!v5v50>C+LlCkmF(Pyf#?IVU1U8E3iSkM6R>|#=7$%4`BFaJ zw&^bg@4pQSsqk-wr_~b(DQ^}Dan9RVt1BzX-C1BI4WfMqKR@GKrPhl<@D?Yx(^Up% zvvs0dVLF&T`7(FgGW>OE5$mNaj`rN`juk9M7p-)T&>;*Ifmg|7Vi zz9LMxn$=Jjh?LQ#OzKahrU0k4zPxhWg3knzUA@QNo;~=x@^-4I&@3o;s9W3dV_X>&^j`N?e?ydqC`eOqaWei7bNtzB{}o;9M(6h$)+YWH2~(A zhq)l;53td*udF8Qj3g8@RuAB-`+4*3s|RXzej|jH<1M&1_BL?Xl>3A}$G+w}={8x_ z{Mc5dHD?(eq=n$Htd$?w^vhCTgY8KSDB6BQx0l0~D|QDiC7( z{!PYx!o-QisC~x=zekY=0KEn4Jp&TqGrQ9QMDTo?Lq-{HIoOuhPf_j6|7I zd;F7(9cMic?u5(l`TQ&HrHAGMEJ*{Tv55U6z2#qtWe%1Hno$%@gM5}zfKQf3*FgYA z(>VF2!MX;f^%;^aSOWEh;RjUk_Zyna{ZPP=yPmI7L?8DtDnHMYJ`mJxKj3=v7ccZK zj_U{+Z*7PifhKVX0)S|6l$b8@MUliY&=yB}gy4aaZ$LSYGP`36%Z>v@0ysJN{Y+IL zwT3q&@DConP;#1|>W=LhMTc=&{2is||3}w*Y`F?$S-THJ1Mix6B)m60Ji>eT^goeR znOV1PR^yxzAq|Cqz2=(pgUx1Mw!dX5#xTn?O;7b5;UnfajvrS51YQG!JDnM{)c?D` z{CAHv7)(3BpT+#U2c_OP?I!K#%4<)YvicArvE}y*b?6iE4ziSajt<3Hzm$S^wztT= zO@AYpP;WjQ#qRAmFFv#tJH9zyFm2}R^2Gp%m7u!Jz9f_>mEgXvK&w6Dvfk=3?~1PE z7v0Jzam15w)xIbFI8e1fvh7wOrR({#_n&1p=sKVsTqi>>4evHmGaRm1q*epiRNlZv zcRlbs+}NK%g7HH=Qf=8>!Yk(ak3u0HV0dbFH_69G6uoP9^vZwb$PQ%!hX ziik^lB_b8eC#65aHS`Al)QeBAlk#DkcB)r?TzJdZqp1tGZbYE+2<*0^eJiyl@$qwNq`s{mQhL6n zm74zHZ;Ilju(v+My)2JPrwpJN3ykJ)&y%51qt@KW)Rt^B;t^_uzq+Wc4Lcxt=<)y! zIH=?J-dI809!yoqJJ*4>?}}o@7LeIplxn-~=t;?ZQNB24k7pG5U8!W@-?^z+lNjcU zUnf(qXj-`ym0($m&KNh?unJO-}Vw zF$CO1TsqEbBZNf6#_M(xhmwTG{`3qN^^((|r*SL=b-%;OYUo&yL<+v;?(Lj`HY7R! z7VttdbKm(BWVivLCA5Qv}iT`lPi{z(tym~w#B2aid z>JhlFl#?hZewW@pRMve=y4%=XNAnS+JoqGVuj7~`8Ac-|X2ffgeg2o4W!VM=r0 zl<#$t{ku!H?9d%pjul`377`Ys#WQcr7SHj}Z%hs1w-2Z~dy&vUr@xH&ZsDc>Wr)(m zqQq)oi9b}-Nb|c0>cn8a4zI>-715w%f2JCR!Vtr}Yyvg0@IMO1RLhxleW(~fwNxf^ zyv>+Ge#6s$(`OOlPoIGD1qhfal4+GIU@7)nzAt4;h=weh4do#R`dqSZ494{y8!wRi zeD85^&7dLlaQTZ{o^#+=!QKge$%Lsh?6=P&)u9oDSEarQ-@i6^Cp}Z`9BUbtHFAn% z2$?-}nH$NFW*U1M&0Ssz1lYiN@UUAOc$kD;hK zJLiIVO42V@40)`v3)8_gkXV-lfG;Y5!(V<^w&~R!MNq{Xbu3z#_Z>kHu%X^a5wEKY zkXTigrEOD(`P^hu7RKir-F0GnNTM4u48JvkNQTL}SDixd$1K}4%fKU3N&Mel{omRZ z>eFdB=bzej&zZF=Z@&NK)84j4ra3Gy&Ed&!{+bhKm_Jj@>2)s)DT*vnb9g(taJpBI z1D;7GHJU8d589_d`Pafyh%)VFK>Q)Va$Sx}!B<7Uax@A=%iO6=rAn1C4bt-j0^+`! zt-}Uoth7@Tf1_U1;ei+_PGyn0R*qpO3=il5rgyi$&9MVY>=R;=W9cU_>gzCaq!N`B zN!E}AzeN<&&f4r%mMH7`2<$Cp_EGPHe}hcAcBLoU&XPooE*=o4SYSGDdq=5EMT-D> zib+DJ+ZtlIoEwNW+kEqr>yMJKldT7tj$gk%NEZW4&nZaGqR=7~ES!`(lcBqvcnPQgT{#8z=-oB=yF*5`MG8Y=>`92 zU#5ZYbz%MJ4rOpWRqAr0Hbj>ws_utr> z=%3j7UJf~Lak*2u^m4ip89*1I8`)Ig<&^|?;Lhf8_ydS#^$C1Mc2d)%g^JKV94$b= zvvqn?w@xQA5XC;G8zw@q(AWsafZeGN=2y9uf7e*;lWN4gW7Jy;8!LFFruO2PBVeHF z8#7fJXpoeWnNqx# z`Sf8FjY9saGd(ZBVo2i+A-~;yMT|e=S&}^DRc}Wj!DRs;@TG+@0I=8dpeVxN(oLZ{ zZOv&y1Hg;5X==vLG(P=M9DgsMsY30l+4>HRs zV+VZ}eIO5?$)4~YYgB$8MYbc>ep!hF%gtgle_U1W6Y6EACFEP-GsycaksNHs)&+O@ zMSVlb9`QW(c+Wdd&$8~BT;4{9QqoBgQ|6Wl9(~c65J7;g0U-Y#2 z1XeSQC;*5%z}DqP`ZJ3fHY%`gU{cbnOd71eP<JQ97~aRY1P@6o&Eq z^aXMu%Z#-98ztbC54L7MQRWzp^O|@P-hC_iqJdOl$+sTz?5l}OgWFkwE^q_zc1kZp zQ^`=^j7Q=jYUUrDdxiRvsp-ZTXy5n_w7*X*pNXC{@q|Rv7uQy=29cu6jn` z%u^A1WXT0dOP@kg_^~Y@)l#}0^#S8+JnExUg%U0sr-3*6X{wjPEcuazO5Zemy}ms$^HFpkUWZh6R4GQtti6JLei?m%ZNUR)VRvz z`3p$M?)UHRHmFYH&SPDd<&%qN4DPw(fj zj3ATma#%9}x*G;a(>JMr@9Dq(M>Zmxvp`QmNc{5fgM$KyHWSGAQk%jq&q(7bQadvO zq2cG?uJ8jEb{FWs6GnMRfMj(f%^qFX=)lZ$_wH@WC*)O-B}1CTbCt?gI%X7QiQs?hMCQg|RjT$7&Ku>voQ+NQSQ;|VXmzvE zG!3fcn#&h$UKo}$_!4SamYru-mIjB0dsyw0<8`W9>B~B!AovbuuD-nZA2{~izRkH# z72}-qpYO>+n;nxJ$KIqoAj0>M_4l+83@I|W@Qq`JFPiDT38O1dyWG$uACJn@o$K#f zf4Ao6GjRlsz`s6*U>*lTW*zC-T#4-=_@B@pnTwf?#yEv;E0KVx?&9p7k1GIjONrI^ourcmN| zj#!t{zhg&Wn#_=fKPt_hw;CnkRPjDpgfWmPJ$n2dP zDy*nC`L)=Xy{SmwO%TOIJxN1~xvY3TN@3s|1$^7+C2?3}!OgE$o zA@Z%JBczWZmTaMXEy4cJ=Zs+ZEDFHtOLLrAJG#@Hq1amUobM_m#V*B%3qnh8U5q58fa<*VDa)b^Fzr> zvV^{#<1NoQ6kwAOs#;*8!W#~!rQ+%!VeT6A;#(cnF#7v65%ceZj7Y!|h*yr1 zUxXys;2CJcCoLVz6Bo>&5g!hBDlf1yG-4A4S!7<%>k;&)OdQ{Iw*sW@KnMqcJ6c~9 z1QUerS)tSs*z{j|G`((j!g)!iGWoHy6{;#Q;VdNieeoCVx+@DcmiDDL(+CPGzYdnd zasD>V0>$1q3Lh{Hfq*VeE&1qI@g_zP8d+ng&O)T9?|(dBY*}Yb;w!BE`*jvGCOYre z^jjEq7mV=&l#7HPq@B0lZA*}b#)twTDrpq)q#gtk6tl1<%EoOpag5Cc*aqt@BsZ}i zF4=cDmgMfsJ85|Goqh(te?00*Xw$CL>Qcy4HZc$v``p|E*5r2Q_;Q;R9S6vT4(hOrJ>K;sdREczFz=ZxZw&719Nh z=V~5fJR@^A4Ri*M21RhZV9w2tzJ5sqf+IV_b0TTP`#(1cHDv6c#8N)G+#N;LOo5GB zl7?lhIXz3ZDlh|hEvu*{wT|Z7(o?p8St?}$$bDgZO0VJv04>hybi1R#x|Tvo_FWy3A7AgC(WvkTTe|GdxQ#i~v@fx5Nw>r)JO z7wn}U{9K!00duqnxy-bGx&&P^o(4>hF2U1z4g$yXJ2K{)OldWSVF6n`4IK}-Xh@Q> z^aGrbTwDb6S$yCAX%L75Q#jrj@W64A0GCP8j!rz*XOvZ8{EI<0ia6W7PZcSDv!jvHp68RpDcW6%?lPvxKFp~S-~CSnm&5TZfWjO``yLYG-y+agWdV3x}K$G^l~l-gVxi2|tXjt1gSIV+jo$sJTL zO40V>;S7Ky90suX#vXZ^Gw9ERVG{wUdUaKnM}809A%8pmF;_hzxxdxvAyhRFTgl04 z)w$s_hILPMpTuQmn#9K(JTE+Mh%!_&;>Hrr)X(#tv@xTOBSQutoVTvUj^8ef7>NcM z5HulB$t2R>J)V1`0s#0k*U5(^4*2Eq7no}%p6a?D0!X$L?ZfftW-2tTBt;=@OvG=O zKvb%_4!7I{9EAES7yMr7W;y}F!i343XP!EY4f@|6A+t7`{uk$~l zYlL+f=2xiWW?XJu&P!qZZTV-uHFK$=Bh1KDgon@(T9HXKUTI8VQ<~R7)b;z3hvN5y zJWaCn(ox+Y&nQU@J12~jpHS?b!FX_7#HoZ6;0H|5tN~0f5gf|te7?H*&cN^W3`ZU- znF4E=NZBJ>|7P&NnIivHiPK7{uRF017#MYi9+2k5-*GZW(@6UTkv`#09c4F>q-Cmn zM59uZHCzHu6I>AJlK0(A{z_Z?JUswF--@@s_S=FOdFi*@Q|)5Incu>Ew2K*X;aSbe zCWq&TGTC}VOV%3nFeJ}38}?bS(Pm?L+QAg$UT-w(<`Y~>Vi?6Opfy;4!BfV@z%@$9 z!(0q7cDXwJlOFWFJLvq#i=hC@vQ(j^88c@BzX2&Xw{P~}rr$RpD4SfafDv!ARr@u0 zJ=~XYJdmhyoRBQCItH__$}9&|W5QsG2z~#1-ie)FBbx3vToxQdhn^hXGwOKtXV#@` zQ7dle;!?bq@}eH?`S9eeRVTe9BD*((3}daW}`#paXk zzx50bZH8xpcV#n`EFVbvpn3^?_igFHZ$imQ@F|E1(Pt&us%;(;x%NgXJ}DHm8k({S zahDkcr-V0c@p?)%Z~NwBpU`ECW~VS4>$pcKF0wXiR)_2CV!nEIi(K-l~)aLm5&ikX;O*>R>PfRK5j&DytHj+}?zSO8}dK zj)_t@xBZ>EWe$v?Wm77kU}a6u5BVHTjub*}g@UMXsM>))3q}r$r>Mw>j8GSTM-WR5 zr!_?%u12cd&{d{~EuGv9rMWtH_c$%>!*&m_pXreYNQS-8V`K{B>=4j`Hsj**qOra@ zxqKeg3=inzVrd+W7TEgd-x~F2_N(T_|1F=2ym>)KKk)D)`C^xXU+e|r-^9hwNKbm@ zjXiO)H#Ff&BA}=ah9{bwb!mTTZEpznf>g)^gJtgsT_Yj)Y>C^K1L3hjHfM4unt#6WSo+JV%t~4J?nFJH$yNE!IN2f<8 z3xsZqEAnzaR}g4k9v3!oZi%NY8TA4l|C`UZ?lMy299Kg`5aLfI&(2>7+9mZ&WUl=oqA8`+%TVvJEf<&NQ{j z5cEqhE#!89DTq5Ya_c3&=51l5j86fuHLZG8n_OH}Al8?J?aF;%8wZ#m<#)NBu z>d$9JltYdHsg6)@$^gunYe*3n!zEQw+{yJGoxp@j3A$Ku@TjU%@16gAZCLpjyAQ@O z_3!yzG9bOAeAv#S1svKEWPYJfl$4&AgNJwyxYmjWQpU#R!vQgO!WSk+FDb3Sa4ev5 z>*smST4V??T-iL2O6k5yz50yT&t0eVu8?>os|iCo2_G&l6>WU|zE#?i%n7X1moUN7 zeqpR{e#i>oNI*T`P&2NJQtV_M&lnY9c$YH-mDcA6#}Gkt2U%StB?A>MGPJANNfTK# zHJd2wou&Z|%PpZK$%2Kg?*}`g4MZKmUlg=M&nWlWi5;B;I#5{11-4Ek z#hCWPzA+X7C=iN$wo_xn%Qn~-8ZgOK2Ni}y-HwKI@oI<{>(G=e_pvv%$V+PGu~R`9 z8Wtj#myN}16b&856B4P~dg)JB@tj+dL^(k1#DQAVP3yB0bS;q(0i$2k_DmV5xnIqE z+%|v>cfySQ3J>Z{$LDPfkV#hAe!9?zn)-3|E>xAyog9noBI8+rz-wco_v~{-F7&U` zub`vHhXy2oejcda0N(6~iWWEX)v`Ea_f{?%88vlDJ!@>uc1L?g?MMA#rq%qHhD4$CUXdy+ zU!Qn~z+D_9SG?XyWlqr+011pHbZJr>@yZ&X?s|yJ9{Y&PH$*8B2&Ypp-2)}Tb=!^& zpSI&2x?KNhO-0k-h8A0yaSY>=se?!B>LSMfrQ^CaIOu=8Uhs`-;gZsYgC85s!c&Gh z(5cvH^XOQhM})s$`Rlt;2hNinb2z8L!7=g|a_RSg%?E(ql!xBW@u@gE01W(u^tN)> zD^@rU+>bb*33$I!PkSMjqAN*L%Em(zJ(6e-0_GQNsiB?gaG@W9*KC?5<>et&?#g+E z0+@CUk$_mxjxhU!T8P!mXICdT7G z($~!;MDT#TN7D&EDK#nHAG`CU0!=EqIQxb!Dvf)AZ$6s$6 zk@1Mg%Vo?rIvvP(T-$>>$YCBBrjU1$&g80sYco*u1&7l{5-|A^k_gAyO~{s6t1nWi zVm|NTom`CHk7KB-7g?a`zW=(e!`BYao){z@(7V1{lS38+TZ7uq^>@Krue};$= zCxQ3Zfyl}jo~3y641^pZRU2ak#!B$bo**XEq+SfPa+nBHakwa96~ZcJXK-^1LbhNf zrUXyuiXa_nikjt>I{)^0igM#M3<}abSr`bBu^AI@*CxYIOhs)DHuM@KcrS-;csqpaxBTLgv zSQg{rMBfi#js+?}hXd#lJvgF7d;_6LYh&z?kArhS7r)z*eOyWg%hZL7ncNRYSx~mj zs*7;Azkkn)ToUyhdscrJoOw}=N|U*VKG}R9wcX^XI&f}CxN#o@xwL(#r#6*%`~1-Q znm1jRfu(}vTR8sa_z>d(VCa!~SX!Ag^d;AW9N`jt`vAZlYE?pDlA^rU@*_y!gTIj> zo#Es7>P}F9yhrgZvQr$n;1}1ceGBTpA76-qS-l!B)tR1+$IzZpez5QHl~dkbQ5L1{ z&0**Z)~hm2uN)*xrrhVUO4;vELwnA>vRYy3zG1+(e#b@mo;W^@CVOsAj(KU-ey|wYn_h zXMUL!$ML#>Nm7R6hlNqp_?tvU;P~|^(gR_~04$G=On+Az1F%xM4@h_K-|Fan4)D@2 zL7Iwsy}8LKRK3;j_Yp{`2PG)a0j?rf;x*DKxNyshy+pSx0O z^#3ytOH-PtVG_Ix+}!T9X~NTAv+Nx|rtV{9NzeN&_ikG~rN*V<17B$h9_FH_d_o@Q z%6k+8;`dS56E#0Lkt+h8D~K`kTWN6~q{TUETB&gmkP)NyCmKv|3QHeMe{#rwnaumh zB#KN=!BG)}vWb}zX<-r8_p>xXjSjt!FY|0^2BTGp<=yB)&_sY->pDSNa*nZ$)efoI zBt@ZqT!w9$^3dfu8Em%~v91RgK3V1v)QD`uhM_bp5Q18k7L`QkTJRnk;s?o#>zDg* z#9fNp+Yg5X0|t=Q>p;ovoI?4`s8(N!V25kMx>)KnX!+b`?N%!c^cOrCJeKlvd~=$3 z3UzuE<7%1^T+5I62?2@33K|j(W6?`OJY+^n%Z~&5UWsBbTjGF-CDkzZiu9(8mZmHB zheZ@jqez9MPq{C*I6OjgUe1QikZaTFp<4x>YU}yxhfS0ZK$s8-`KEl<;Ja%W8<0&R#;|Uz4P#eU#_u zn;jp>``5GO)~7z-!qT!JmSPI#+DqN)H94g=xJEY!oqEt1kBh2DEBJOQGF)^N82|z* zgmXcf>Y!uq9>mGXuv>24K#mLuLpuw1AKcq2KRHCGK$y^+IKOwN~^K`QEuX#|_9cr)mX+suER_pKTmW6oF`-Qo!MFtsTx`*2_3 zE}Q`Y>{5JK0ivigQ$&v1kHQO(niqz^ zbEuo6B6=OA%j=IbO$&FdVak3yBF(JGE7vhHWe5+t173`iM^O|2eSpst0-(;to*kMlCdrfUD5OYkpmWs0}ftjVhLTWw{uw==p@jm&&LbB@-y zR>Q-WM-NvRzd%LMqw9^p)~mXF=KK-lT?pe`F%m)o8{dJirJ+95gZuSUc?OLkXh%LD z)CX4Y7iUgikL&Dlny!3tai1BZq6LEfuqxRqG*z#&KFj+xqXOZxRK6HIQoICT_f;Wr z8a8L7?6_jk&;>ZY7QT2JI*#19p+OP^c(YeZd;ZvE&7&N2Rgp}kfCR%(j{%%4$E<*B z;EdBU4kz8_{axx9H+Mu2mP|EDgCRQ*+IgrJ2SIt|b;5g@W|d6CK?eaMRUon!4JdCU zkL*xhsyGMoYjt_f(fA%+d1wtKi~hlVnJ>QPbz_|#^8|gH6wC6wr!}d9-Y~(@G1bki zJorT4+udb-i^uM2B;5@OO_0`$d?c(Ofg7+Gc#8#U197Tz)}hi z>xBe9D;)xTZJa(~;3Bl$dQe!(rin9TX!LyQ$uw-yu56ro{4&RjwnJ%JeCYt|!{`w- z?4Loo>W#F?WnJy@_u1#6T&J1?i7oD};0YNI2VK2nn`Wl1jlpQoENJGZ?e(WcM#5sZJ+7?na`nTat5nx@NxU__j1F zBnB95molw01;5ko4giHlMT^_ai~sSf6t4U5MWDv8$oz6^UK3~JD&){@*o2@`L|*nW zGiewU`mcXI>9(h|$hzUdQ2*2u7iB!~Vnv!n<+^FY zUaa2G);OIz4gB-uc*!?knCNVRZmi+dO6eL@!zcy@${m<1K=!z%jGNLG|s@}+tw@~sGyRQ?KNI}He8pJE| zk~dRZfA>hbTlof#4wG~5Kg~z^27d)+O~bWSfQ{3Sr3di_G?JOLm( z91F2w6bvMG<2zaA+k)QyRxU0WoHoo5B1KHYz;!1!0`!oy!shP`r)fR2_N08js&SHu zLb?+g`W6%U9ri0S9-(O8ws68UhR-u2j1CGmH|IeSfh+T}Uh;9$7$!w~q=j zXVMta?HUwGxHkcXD2K$$=1ZasizH^``{i4~WYIAKwf6)VM>*Yg9~-3c?)s!m!e2Ab z@kK{im1D#8Qj~d|VTln&g)7p{x~k15nDf1`Lk|=if3+&+S$Jd~;9Cvs z4(z}-u7sCnuBuP)%eRy0T*4~@rHYmXUATRd?FJ|i>N7RauaB)Sgbq`!w7>^I%e!oG zcns!Ja!of+@+irBV)qCHUBDPq;WVT^D=LWevu=|B0$Sq#29tnu1eRydli_E&|; zWDNxQ)jK*Ns?hwcpY^>zziNMfBK4QHKeOdOe0_q$X=NqNA4PRi!2S8Wd8JYA>RX{C zP7m^%jzf1vzEWX^t0UK>fi5r!6#XzzjZTM8km|`Qxo>(g_}}j|Fuk+o^KE>9$@Bcx z-Z4|9Iy&w{|J#c4*fw+^$u!%L``5kke-XDGNdvP!$G1A zH#5D#)o5({?}_F~Zp!$Gq~6rVoF(%Y)~XJo!+(qDJ!tTs*J-F~V#;1LY5(;eBQR5q z`dQNukkn}8DRD{vx>+H*GZcC+8~iMo?ZeT8#1ZsT;wVh?pe|RCII5z3>C&yV?a z^$DphTt*UN|8}PddL=X0pv6O!k|>oiJUBNUqsbwvOo`+gFlh@?F9pc?OB{XX2$hPXF_3MRakDn8Ta%^QBS?Pi}8Ays0#LtbK_6zAo zXl^uDx~0G7#wa%AZ946InTSx&y?N*pC<43q&5ZBpOE-6vIK?J9Y(9zA=N?f*rajsH ziW&qNu7L&P?hm!usl*<~^H9g5RigNG+ny;4vIIR{=ZKu?={Rs*?n~iKsEhy{^yJRfBC;19f9Qtnijt=v8xK*gW0YME3F+$9OwBpop^Ru zI{mi-cExPL;#O!_mT~b!t9?>|Ok8MVOMk869~!26GDiT0CenSA7XSCACji5jW$7i> zS_442)Bf9hKy!E`x4XZ((YvKK|1dw>%#Q>U}?4yQ?UpgGfkEull`YDu;78{1bEi}W# z=n(ls3YYFv!j72M3P*y>SW~~`k{jMp({#s&lN+5AUF`yXWR4DNu1g-6@=*BD<*8yz z@4@v%qbXO_i828&!Coyw=TE%X!$Q1`NH4KuljxjgwB=kHOo0iE`6$CXGlJO6)bVhild8;**y`Aa5@N6^<{%PcF(KTNOP-) zM?b0_;JhKqVn$5S%Sm>Z(V_H=9(dnz-Mdw9{%%dseQ9C?EnCEa@f89Df3*AS{G!`PAf%!|*ue>h^NE8FyLkSQ z+OKIIs;BeTGjyG3V&HKcy}O~y3|pJ{}xsqJ#?Gej3j}5vb6OpCD z3cA>B?2OKw20;p0gVg++{DPu11=pWM(t4g@3<3mEGFV{H$1eK za{qo$NH|d&+kLaN@0{0V$+nAhkZa`daeNy(lNXdKnbhr9wZr6`ZQY~XQA4u@zO?<$ z#ojRBN%!j<*_*|SVu5Z#_yjp#4cJYenj-yt=Em@XJ7*6%yXR>2(#(Ej^(2$_Hx*q= zA%iH+Otw`41642U-P<05sg70hTM*EI$&E&p-Tmd2y_gtZB)V zj|XxTUM~CHAHp)>N6gN?Q>_&XOzI~NXVf*3_W$U5k1bi1CR_J`XrNV-fIw>vJ!GJ@ ze)>!PyKYsTGxo_AxnhmT2zRq-^TToTBbjHAYk3Ze5s>LY@G?>&0WM?C0E&tG$G&bK z9jD^00veD?@B@VK3C`#!rDDKG@~O^#u5L^M29Cuek}mEgUIcLZAzM*$$KWke@~c4~ zXL?QJzJ4LRD!!j^j}S2(3mtFQmGD_y*CBaH(-wOwM}rrog+>wX!LlL-Fzsi`g5&pN zA(RgmVLE@0W8LyHi$xghm~?gzc>Jyphz4~)7Qzq;R)#U&ehML@Y^yw?a;C&)Q>^*y69>*boVz3MI&pnc#BI?__QCXeOW(?(m#qiWag7j;>Fh zuJ08Qn#k1_0uS%&QtH9H`=4GP(55R8Pw1?z%)RSivYz6+n7cInz3;6J+|S}S*eB>B4C7Ss0#|O~wYfC=n|)yzemFhP zGYg7^*JJWPvtF`c%GkQEbcr|qf4z6LoAH3)1#ur7w@jX#WS>s zI2qyRIM3HMD*)wvNs+6cg)%=swwfj*1oiAe+^?9hXiS0XU>^azaj{^xHor2PHm1A?P7CBPwL7 z4@xrvW`DrkwV$L0b+&@S?Fp4Zr0%#ttNn=ij;uP(|yV`W)p zv5=bM3WckA`GM&DyU=7JY`2&s#(mP^YV*OA4>+9B@Dm9m>=C(Yt5gMO{DxS+O;89l zD*k)F6c>mmB>c4+8)1Sjmk6;t+5G~h*dzoBR`rPLc>a1;1WwiM!70+`rfEUd-!~UZm}Z4c(l>kG^m2y#B0*s564<|cSe5H#N$CMiW7<^XIP}0 z!p+P+z^kGWU5?F$;xN%1c3mrmp*IB`jUbov#*!f^IW?9A)&^G55Dv0Xc1gCeKO8P- zq!uoCj~0w?)S!vv=cR=0CXCaX;T~pQ0_Sfw71hAI@9XSUEiMHiV+yk4qbb2?$ z*btTn@PoO3pkDmYkCluDpPEea>-@+#(JxqjdWz=b>x0ZT0rp@Fxl+_PU}@zPt`pqQ zh-76B&12F*>5+Nkr3Pr(kaCKls7HxHo_Y06YLz4^0DO{f<@^X)Gl_npYNSysfuqI2 zyu=cOtWBb#c!KJ#e*O<~_NF|V&9Usld=Poct00=OJYWXaw6 zS7letLTP+hGL3cy7_Ls|k>2mbMCWANDAli_=n;5_3AiLPWEwh{Iz;abmPd)Rx|3kh z#%RWLZ#fChqT$`KRy1B_74nW$7mJPK!yj0PCYB#^jZUHSZX00kZfWuZxX~LtV5uKf z-2w_vD&w#obUBi-wR3KU$gu$;j%{8p>l{;h<)g{y-=;LbMiHEV`YbcefyJfVP{-xK z`i(od1!7Fr!*Z2ggefWG2=!teN2{IXm2_ibGw``CRGPdiO^nBPe$O}KV4+HgH%M_ctLv+zlj2*gE)p6{S+#=sRM802dII8cTqRK;D_njodlJiMPhV`Q-f| z{E_haGi#sHyob2I%c@!pxmXw`(@BrNofkk4EB@<4O2CPJj4Fn@{61s#Pi%d%hSDaJ3Xg-P8>qjvL6pmd;P_u0#74hK zfO=d)5Iygu?6)Z{`l(^gVBgEy`Gok9+TKo@ZBs%~65&6^VvV?@6L>h$sn0Wx;hKD$Il$37Z|ZUORqUT`HStmJLPRvp zR$3C0SIj*100?>Cxe^ab`b@aJxeUUT;Ts^IaWetKI9|g@Bl}JY3Ake%f|_pnfUhmB zx8{h&(T;Zu^YMcuJa4Y67%;HnA`Aj41IKv>$|!o+qL^SQE(6K?0{~F8)dyu6A?iVl zaG6I^Ox*TBg<{%KpF@FE$B)5h95N%S);$L7b=3^R{Fra|wR|@v!TUS2G=T>6Xi$ao z{p-WfXwd%Aly+gPE3%tX1^f2izXg`?ih*Hj`e{5b+W*sU&QDxYBfz{G8jbS6EBZnN z2w&)4dUK2Vl<{$Z15Ya~TK!WqsEw;^#{pR@7*)ra&g&}o;1|I^pZ9s&6>-tV{bh%*Fu$;)WB z&C?I-P0v?(iVf(Ph2Z3jE}bA3YVC<_$^h1*5U$(E&!d6w1m80HTZiC2c=WnA?t;PW@`ZLS7JQx2hax9-p1 zAsO)_%gf=ub-}@8;f)s){e-%6oz#w+=op(NtT3vQWpTV=9UO<-G532v&P-^F%>c^!4WKXKI1+S?^f8+AI3mTy+xNAFKcEXRl<|`f}2( zbv2w+fy&=>|F>37Ff(YJr^+HG04hsZN8Z0bgHv62GqGI){nL-B1k>Gk?pZm&1~5v^ z702HTq8=pfzC6~9Bqx^M^Cklwlu_J$lymZ)I z=s+gF^*W`~qJjt8{zh-Y8~*wo9f`#?P?vK&wx#d9N$7;~$Be2wfFLzis$`^FNJO}P zv>&gp_cuVg{G)x8I~LMH;Y<&J!r3d!!}Q$QbZkm}sSH>%acxQ}=oTP#epYJAGW6@g z8TTK3u$ukab<)7BTj1G^2-w%djl`+quh`B%n%8bR+9AIu53``c354|r$qW2ayuTwn zZi*TY!TB}POf{`I0^YZ#B(c~}pR_KiT~&$HUY81=cm5fh2s@$jtBxp+3t%hv_z$^h z80xyX;2&_Hq2n7mxY7Fs;&-)>=PA0Han6%VusQnt^6qqy^sJ&OOK8pST#mAWj;-aI z7AFTE9zBYrF_unbJS~#5y%XR!^(fvw3U|emT_}J8s;z=>at@V{85XyjD&xlXuknH^VKamEhe@!|F#m&mF9V~M~+Kn)BL z$WElRuMK$!xC`oG183q8apXgGM%ZJEIEa=NfF@A^<@4cfb2!LB#ikrHf~os0T={6I zObpBUd;HS;_uIg*Ui|Fg5_m%2q1he*!lF?@#+D~2A50Jm(31`ZEAV9q_*n9H?vV=b z;kS4e>OBW{y|2tc%ne2_n*PQ+rL6jE2g@W34^*O$RCUp!aNd#aV)FUo{;D&7#=uCX zMY%MU1gW*d0U+>A+HPYZT-w&lUM%5$vX}|X|Naqv68nv~|6EHB_DM8eA*}7Ga$xSm zrPuf57!H-I-eHc%&>YBsi*Z(EJ{WFBFe=s2kBHST5i1G_gs)H1J`U6a_(R*!&s1YK zSSHuediO@^kRBMcSSFT!t5?le{#z@&vd`xWU8qGBs!)5)GF9vI{QCR((IK*>2j>C! zW&&4gjC=4+Vz~#&jkqrE2-SD=npYo}SG5iXne^?2Skm!f7|LmFjin2wS}_!aP3-fI z&&D)|#-;3RVv9?;(a3BQstKx$GpL=-P)OpCf@~cbF?bJN^1v@+|Y_ z>X3U&R3Mx`+^f_xazjOoUn1Lv{iq83S({7m&5h8Bl zVL)nm0Sla0V94?`orq`yZ}D8ZU1tF!z@!{i)RCYiQu3>oVZe#hkS?V8mY z*zTw8bLv*g6pao|d>QA#HuUE35Tz}#AaccPlfYEV{ngHOQ)aXwdhkhUs_fU@oB;aS z7Ys_zQmx`(*&L62s-C`dN931r-+3~%swi+<6$N-SLSR3)>RF7+r z;{wrRu4o_cz;Y%jfXtN;vW?|Lpv*^S1Pr=i1KA~}tw@kRTR4Of=ZF(Th};tspmU&^ zmae*9Ow+e}00;2~%V`+vjcu9rdVF0D8aV24R37B`>$lzf_0SJ9<8O~a9iRU@F<7P= zUt0Lj^@pj2^$a>LSvMYEdT(*zJ?(KKJW3OVs`79!-s^2`@7DBSi<~Cl5(%qxq;J1#7LPz8$F%IelOeg&7*Mfl4NbRJWvx)WDbi^d~rF&5- zokKO&+AglVFb2U2`_XQVP%1K}L$(Ee^=et|`MK1fruW?vS=_~KzDLqB1f*qLAySo4 z52Myk#@H?io=E!}NZUK}jmTBiV-tiXEwUJ;kEg8DckVpGan-Q{LmO4@CspnjA5*gc z;vKAA+;h>7bcr3yeitrTg@?~E>|pWMu%GK`96r@Ce|{cHTJ>l$f`zeWT$Vnc*sgX~lRC;0t^9?r3^ zhk&s?9byZZth8RXTtTG0z|J{Re_*@#RNA(~3D!>DG;@ z-wr|_0((SQJz8KH^xn^Ql>o`hd=bctu;Rgoy(m!#ATFawKWy1iBf-`u4${CKfGm2F z*omwe42MRaeqeJ27il=6GAAXmeIWDoI#=-~#c}M^6MiVJ7D?!@Z(Lyrob;r)4YN?3 zu4x_g?UMbcZh$+q8ncc-#xE< zEMnZLXU2lVT?6LdTCG=Ske(2FZ zKlR2xz8jK+k=EZcm%30IqK2e8M8B@5@4A{UUvy1%WEr06jSsD|2s+u|^D@VEGMdp;$&kxQT<7MHwo5;LT`@b|cI z;thXGZ{Np{zWi&A7dkQs8+TR~a76UraJooCzbz=;w-xS$=q@zYqa~N=^wsOGc)T3v zH2MS|KvEN=^H-nWlZ>XdqLNjSPBU9Mf{_#7|nEQ+HF-QKG-oqo~A z(V{0IG)@9#70sk&G9YtehW+m-uh@>u6nE|eo!tadNP~_L5~sS*eU(~$K&**>&p-=P z@0I|7#}xZCpX5p|$#*0;_b8e&XXCl9JvUtf$g?Qwvu#lBdU_QWY=UjeyTzv=j(i%8 z7@gm<^bB;D9hm^gRD*2w0yx)yZ5AseImb2D?DUu*He28kh{ET21K$#sO1;9u(O7@q zaIo&33!!I;cNy3GKKOK?NXBEisRIdxT96OntvwhiCm{I?$&@3K)btMTqqx`r6at;r zWljTRa72LyM_jRXZ!w$9jE5*9B=I|y-s*j>FaoG@w!PszvJOaXm%52~3Wz)pse^H# zL`TX2>MRAIG-hpmJLmO|g7s|jKp@)k&fu=};qNP=FC!DArTs_WPdo@aB6HoQ`uv@L zU=0Y${Qh^$e#Vihgn#0g{qB-Ce2CcXQEootQMsOCHmWl(9hk>1Qw4M zYwpk~&O-75mpzO?;#O?bwxmYJmP>*oX{6hL21 zK&ncTCdHd->UDvZaRVLU-q5EJI)x3+i=)@4V8)3rk_V;}*_C(HDmnoZ-7OIm4??BZ zvlo&W6+HxfvR?Y&!0-Xl(AkSj%ugS4Wjk{>zQSAYt}wuV3416&Wb%gIyCe{5l!|7? z_WpU?EzKjV?k(a*4UU0Of*k8kIOvg(sxwzGW%xAhHA`4@fVIe>viR=)tz_Rpav9$v z1IK@39%G|pEs=J>2!QotSL)8!rJCa>!1F{zW5euDjX3a?)yPGDAe;%5DRE+ra9 z23@#L8YvTmjPPdk)oi#YCvnuLB1QdQ)82ht{wqkm^@%GH0_ivR0J+`?bowg0)cWV6oC zO_*`!RoI}osm=@=iotdh(d|o3mPK1`Vnbj0+s%Fs8yR9xG{H4WKZ>tO81ONq8NQVa zAm-u~lH]Km>dL@l8<`=yctJzXgh%zUyU;hZ`Fn@G*FC=Vw6m1ihk@9L>EGKZ?A zYcmZ2^RiaSin2@D<#7A>ZF>g*vyE7W!7l=gRt0u|aPY?}nJKDMo3X9;Tz!+6FU;&4 zIPCoa7x|kCjx%jvH`(8^h^9JfoCKOLy@>##3he^{Cb+d3KgGrXPxI3L6wIzCHyz)g z{I#R6)#j~VTif;rCifMDg<9PVcu=0#ub_0ieF0!Qgb zbUqW|f>LUY9%GxUZ=qFl7#LW(Z-s7K0l!;&ie3s<`}#7!r!Vzb-c3L47XfewVpV{q zMD)4V8GY5r?{-ivpC&NA&S$Sev&nm7_0wKyK%6!P$rGKreI^DGkyiUOnyE(9IYF-6=Ai_?6wF&-pGfEC&I|vT6cpJ@7Xrl-CZ?wwf9_yYeDx@W zUssqx+^EI5h%W`|Fj*nf#{AZHJ+f51U9hgcm-1PG!0&Hu;rqYXigdft{b`SAVuApr zcP5D|2{kN%!#x%v@C5=A_|L2p9S=5i>4qVuRsjS3n_d-P?-c%tz2Dy5c8RM>+{+OFZG@}uzDUUgAu+o+P=o5k>&o>28}iTyy01E6P1@^Y^UvP$RP zX^y3}I~L+hZOofTL;6MK(zD9tVagr8VVtL;^~rHMCxeYRhFf}oa_(Y!FzCaWf(_PY z&s{=Wj_2P1ON8_3;^i><00rZ)HCpna(Lv2o(8m(p?|X*^PAWpvB_Q#Q_Bo2Uf)p1K z!kOUv$%w4`jia&ncCHd>!v9u?*qWFm9~Blsy!#BUnk3>`5{XSW(Rl?+#Rhvw<=^i> z8ixz3=z@cLp*o0dx;Fq5hn6Ow%E^?q5;!-54M{oen7qDA%N8@A$x9fY-lK!>P!`Ig z;6ME>5c;vJj4yMAdKbekQEtN|{}yk@U%zMTpYn(uCckW*TOO}fIA80vtF*9^Qg;mg zlnv7-g3~SEoEe++ruKQTdN%FTCHt)NONuOQ4FjPlBX1QP9Z+*IbM|CVtjpWY%?1s+Fl%RI&F z_exgnnP-p6@>d3N$b1%?c+(#(y}jQt3@(6G#@%3I_ERBtgDIN(2IUiqaL37CB>N-qmEO+RWh3H?W_ek)PM8b52nFUf~oNLeb=E~IjO)v%=xH?M~6I`BWu7@ybJ86MUjWL-03g4JNU2;+blFE#(1qg!*S#DgZWJ3APYL|D_-qepV27c$1Ug!8bJ5m3jLa<$?DehSukN%q3H@B5kuY9 zAE>q4%SC_9F&mgSj@Hz+0O#tg~e&9@cy!8+*eP|{sm@CkfJeNaL5pgr)J|pa*etQ2};zQ^gy@w+Ox*s+M>t^#p zV!Cu1`ne4r7G<+kWyA{4;O=UiXDk9P3%V&&A1=YZ52v@woV3eHp(V&`3uAtU*a`%* zg@7VI^rj+h9W*>)C@q(kTvynMZbYv}Ww_k3htmN+t2stX&Yr_O-FISlsK5RBKo{B( zIQvj&!_e;hR`J{S&##naYMwr-+9?m+yK02mb%kZkHEuNF%R;<4@KsgQ-&$37Jyp<~ z$L^g(Dn$T7UrC7)jXb{SIIoiP5@iC0olB8Vb<)Oj1xtV}Sjy=DYAE18X zi06o66d}kA3c7hmlC>YmbiTm;v)qSG7CX`Wt3y(;?!LR%vz$MW&o0r-~VVqJCe;^|~y(DB%4;9p4Xm{K}J8d!clDviQEOA$ts zR!u?4hXO5#&hS6>xh?0H;`f%Le>j`CIJH$V)3lXSs6{FX}?ioE%B#y`cB&6i?8OhU5lj9lq`mIy= zw;^86|GEDH@W>tvj@wOrX8xG=+RH1BvAvAV^n=gL{5$9jdux5?sahLhO$9s~x>=T4 zIwI(LE|o2mM!ygk>+Lxbj?wNY1SG-Dc>Nshr7f2RI9k1ThqQG6Z4rRiFjNm*YmrjA zk#sQcg~TV*g+dx#fb(|uf-xLl5mC+M0(A6b_4F)8@9hex88o355>ZVw$Vi|o-yF8Q z?h?b~J2`4;YqPijD$@~m`R%Lnl2`vqno|G`Z;+K1?$QEz$*Wef6ySM zd?VRzwlq$nOZTImCHBB1*n05Vc0s$5z%bHWFiU?YNEmt1J3fjpiAoU@`j39GE+74#nw4nj>1gI# zYaPNu19!)$`Lr~q3QIn1vmf&DR@}VP=VF$Fn)e~7k5k4Q2oDnpz)H0cp$xy4X#Y7O z2uE)%f`ui12v;e7KgX4(IaL}C7mLD)srDh?7@v^&7)WMw&}~AxyhB>*_yPf$H*aKU(T?Pfe8)A)zf+5GF(!u(x zw|UHr#6Yi8jgp!V5DU!UZ<4p@mMSHXZ>iRr0zA~^u_Kx+fK}LFyoG=(%6?N$9fk4o zeCIjTMVH-%C&7C_K-A-x=;fgB8lkJxz&!Id;R`8MqVxTk{aZSBBnYO1CV39?F=x=8xzTQqt5sKbpw51;S*?Tf!v*WaPPCdtO~(40>YpzEuD zr}$)mZ}*Bn^h6B+FQ#OwVl;^hB!qnFyNFa$!-)DruV6Rf-7%08%&+14O*GP9K@B~B>(+g}xO2;dV#ikA6M^3*2531Qat$>* zs4ovYOEP8?2vP_i{Y`#L7hf~&>TEh~s|}}Xnb0wbYED0CO-VVp4B5o?B(>*}$;-u@ zjsFCD1{8GbAY;}Swv*F0jg{f&JK0#6)QY&?V(mr>-y4SCp3=0C3Z}=PZNqWE+)1{p ze;DHzvCF-4pra*UAG?jJ{r(@&A7wi>+A$+>NFu4ZircOC8(7P7hmK_fnpby#FhW4U zu((0;a0~B)%C#vu7)9LszHv;C| zfW=cTtN*x`9Uo4$u3-M9frJ8I+7z&4*B$86V;Ybr?`yZ-cNLEgo>9&|6o>QYA?V@E z%PIQV2AXfH*)uic$Lc=yk`yoi9Vo*PJ%Yr#LrgJ+)PyE4o#<|fA8qQIvNCvb@tal8 z=u5wx$YpTuHK_JU$-P5BjD0OR5A6SrFE@$;Z+n8n=tX^rtv1l9T(E=U(Rv0EZUUEi zp}muCU2ThMGJQ>=b)+(cuq>$e1R5N6LvSLEo$s3-g+{+*a#}_w#W0IP^j4(9Dq@6V z4#bje1OSc|bdq$dKAnRsHIeLmvr#`FZ#N%x57YSofI6VWvggkZEoLWn^x~brsd!;L zm%0b3>JS*V6fr}fzu{JWZ7uzGY&l7p^T0~wu_AEj(8%8A{*lw5o>rL86Nq0H?We!{ z{t}3>2}`4uDe827R5T^o_*Pux_XE*?iyufmt%ix1f2wUSYu9fZ0tOnt-|N_ZaDl-} zS-le?KGjBe2JX@%_xD^dp5E(fa+P1 z(r@aT2mV~-lDJ?zKfFevZs+bv70qt8*ZhGFO+)Q5o1U?*BPfvRq7JV0(B$o9WZqQv z@p`m;L9ZGFUes0Owo3rQToEgmCU%*og0r{q(2(qT}BGg60*d)3sM}@pmW{s|M6Jkh!|F0si)&dpp*MEMI zID!WNeq7d_X42OSHS`+ncQ&cz=bAy&Q<1-0w}nq88w_vysX=8O!LGYZFHJ2a7>b_! zF|y0usGvfY#@)czkbhSA;)b5W77i;r`@Z*BgcV&RD3@gP4+iKccuf`!oZNJQ6z&p9 zClhU@3sLN)q)uk%)Cl_llfaF1k!=7R0K}nKeN|gF5RyWSd@~1oH3tn7<9yw}2Q*5k zL`MSnjY6?--E-ZW5(hFPC&$~>seA3$;<)O8eDXc7RE3{5BLC#ZzO0jQ(wnN=#YvkB zip+dHqfr{JTT+ZPk?=1|g(-|Ul(YnI-3MEf1^#Vpt*_2$pZ{9MX049?1#py0uhG%O zpJqke4L-5zOaFJCgxgGpuBK|-Ed98{9 zmbnZv77j!t7olt1cn6LQ{7y?G-Y-7V)vu$1jX$Hr=LAN$V6pf0&|O#lV+i&Itq6E! z@S)AreFp7YXZpvUoG^?Q^)P7nn>tB30eX-ZATF%=v7`Q~@}!R=8-QYf1LbSs3n1Fq z>2RO<6vD{gV$jJxVHw4U-c0jszF^%f1(pt@jp{W$<=%y#O9s-S*0!2bJfS(nI_)qI zKw%GbfOG((ieKB5yU^Kh`?g7O^p%8rW>PZT7hQ1$V zUe8h_DuUE|yaV01z`AXij=?yBgGuNSYx7STd%!9xFR*npnxe#ZO%b&O(CAN>-|q2a zJm2ESS-V)_jRCdYtDUwsNm)$210En3QL2ka6k=(622%2v%{Pj(gpDGLx?+xP^uu>h zCVP*dMYBlCXfp376SnY!!+!O8cXv*&BS4Yw<3DGc(HvwnT}YC#K%!@ACd{sC)#}4l z27t29#=ui-pQJKio-HW#-^N$xtnYY!|B3CNdVLaYYOJ09St*YL0-L`+7t_4r@7dM* z2#OAjrv#BgCPO^J)ip2C9_n{2^W+In=kP};{T*4|h)Gy7;AO86^`5*12gSEV<@ zdIkgemcZq_L!MZ(umYNS8^}3Ox3WTD96sJUkmB_CIhjO20oH_;4sfMx`ev$K@9I%v z=5zWmbzKK~dL>}C8lOe+DFmi?*Yp9Kg3S?qig%T6fasg>=brna3H5o}-(Fg7 zqciB|#8s~nN9uz9RlCug7y`M87RVxWHZt2 z!_6M4RuB>m;{AKl@R^`$e9G|YL!n`ad}-`8(_ExkrblnlySH07A8>0HEy$$?x8-}X z(6mK445b|{v`lJBUtp6u0MJ#ZS1QEM4+H%my=zzDuG$8`6)ZXwMFXdex=#mo+EaXP zhvNT@CqEy(VYmLDbxTgSYtGOl4Ek*X^O?isQ|yM;EuL%BBeP1!wo(UuB^tc!8_YtW zP(q9w{f>Kp;1_HQlJgU1-K5k&v5|g;;zu~yZ>7>eGt4Krs8b(HMa@&Fa9<@!1|et- zi3$zO>HM-hEBbG(+MQMbIp&lRF#k1l$Pk-2)fBWRzq4tJcT)OFF%UF_Q1F zYNE>fJa+R*ns|U*VSuDkH~?CIw4>+ALkAAh1;6PRO*Y+*Ct7~BtF&0N<8B9O{?^g8 z3If6eJhHd8vuCua3kv4%8?vZ7`39lpMuRsCI__82TNzlVeJC3}jbC2Y-zkZS!HpN* zbp!A~-UHU3nm_1diGT#G#7vDBu1`2UiH{k8ZzAT~-wR&gb@mlb4ux`oP+S*BK zee&?*FX;h-_U`(3glP*n+9T^@RR)4wUZvK zWM1~!EJ*ia6WX%ecRv=L)OoaYKG#aM{9AP(4nE$A*da?sn4i-Wf!~K85gfa(c+n(^ zbF_q{!~RKIUR$*A66u|h;Ly|ndwzs(n8|!TEe~ME4*diodUep7aUS*Uj&SGPYuo64 zfG3XhF;Fn#oJ^HLgd1CdaO|4nVc2BpBq3Ba@-jhJ)4@Lhxh>^UA0!iq4i8c`I9+v7 z(AX;=X9(>JiD(OggLEby+B1&!FV6N6(xmT>%JGav2&ExYS|iXen;Gn(u`%bAIIy*s=IyV5B4vBf}NH-<|olxaH1T_^%~pj|~b-BA~`_ zVde!Pd41uUZ#RO7{_Z;n)d%f;;z2j%DvQe?S)tiMUfgF`&)ZIVzl*!bpm|O-7P|7% zE6&4jFHTbc!xGW&nIxf^M5uS%zaB@%;CzcxEzRHcNN;$BqxfZ;?~Pj8G%?P9L^Nt{ zAWXqDd0|ZNa6diNFfB>!S3$=f0-SRVxM=#IkD-dwI-9n)>hKQu07`^QH@Ji2P7q5J zr9C-#XTz9@SqQ6D(6_LHI4;7=wON@W}6bAYE%Kb(4iqUr(tSn#PmSt0*$&va73+yypxts0TMstJd1-Z zWOh(+m`LF@F8;Fyp?reB9{ARjm*p}D&1>bi9!>x5ar#*j-2-KsrEQgICjB4t_GLGx zWKqES$0Pjl+T7U=sX&PCBKTpkl1n^RwLa^lmD6Lq7A8COzevsflAY z3%@+qvi~1f*R|{>vPD0L2XcBO2oM>Oc_T~YoWA~|WBZP0T%{_>M}lVe?iD(Ab5J$S zf)KvhmshMH#AX4OFcW$(n1$JmH;1gqCjvmW$KtrM`=0hc5{`B}y&>(oVUC>A)dAle z9XC)U@Ph{u(~tq}3edexfsKTMuN;IO8f$&>@We?0J^if@8}-DmVM2>^XGM#@jdF?Q zTfD@puflYmI|oWOr!HLp0KNxhmu@n>)APFEK(^h6&LHJKBnt2EocuMY#9N7GIp^cC ziwk#O|0(pO-?tZO0eq7pJV5}8(c63I+g%q0EMp$51&bWgklWBJH9@?L$ua|l`W|~V z6GX7)JKGjB*ce^90yxRs@)}@O%Jm1OVVF)AmnfNqUcDX3bPgv9Y%}F}Bq$h3Dwi{abQtk-dbb8yZ}b>(&C#p-_SK;_(dY;87Jx8#Z3J#AcOzVeG>l{E}7%5~<#h{X7@^yfoCXF%3hUzI+FOcBo$8MwKKfG3UrZxvSSyk@8z1jagaFwS zEb>8IcQi1PHA7y;D!f~&uTLZBVEE*in|q2UdWDX2nNudtk=muY8a9vTfnXB`7yGf^ z!s68iqj3pfL90Z+JuYO~G*6OmMNW856)cuz<&k+o!4@Zy#nrHV(|6P*IsjExE8}8? z(`zGO3r0qCwKF};OZey(LoAUm;v!FcDq{LV=yNq$;G(7@Zb3I>3qWOKS*hFd zX3`?3XlE#`6!FV<{p84P~6Pe%BSy}%p z)RqA&lv?1w=eOzZhiS4IULhNQvL26uya*KQc39m5(mpq&8SS3Lpqx;P7e+_nRHq&C z4%0#wpRK&I81n}$3}7*=NpU<+S@-op(Uo6vPq`k;$g|jTkxG@{GFyGVuxm+6`tgZR ze|SNU{;Ar?9WU~Py0MtXAz$?d zHxI7oGc5W!P4kh;jejRO*NeCi7}hUpXh*;`I5Kx?*bLqjgT2#W<4zo+vtwl?H8@Hj7xp=VufvPZL~n~QLoDmEkjDM z1h=T2vff_Mv3J-D5ghZYX*amK+rSX5h`7`w2UsLKGHAl8s>3;F!mDI~;G-A^EI&eP z|h#XiT6!eLvwveBYd*RC=?Oz2z(D`pABPhiNbf!|BS=v)>1CN zF+^~=?>vCYi#3Yzoz{b;D&}7r6&-*)z%y>e>a*^*yy-jaQpJ)bDOS|jlGC{xYezAN z)DO@kk|}rI)I9pjpW0xd1tW{ICf>$5zX8qb5IYB^1aScVA>r)JG3fYoU}q~gP}$5; z8ERCgW;Dkn%^Y;DChCaXW@uS+63F3f0FI7?(`;qzsx2TR-A`z$f}(gufW)EHq#gLx zMD8i#u|h7ieL@IZ{?HH@)A7tX+lr_{Wd<(yZ*9S6&p$)!0@HN;ibCJ<-eYvF#{>cK zUI%<@4s(rdh=mnK-nA1w--a3koQIBr?NBXULg-)zpib>R)EA>s&sS;OSm_s-2_utM zw6PkWfq)~3M~3$^HEtM4xT*5kz(vMQMjw~RGi#*_8MY9(GoRMORSciqAC z*_`ZR@iH?|Q-ipe(es9lj*(xDuC()21+;g%w0r-*7EYAatS(^NAG0I*yf|eHal1&7 z>5k{#K1CgB^y!BtLT9$>ptvte$jjlU7usJ2i67=%wTAfsbn>x?FF}C%4KoiR) zCiN(WG<1v}Z{=)jq9|MBl&nTeN;0Fdm(PxrwzK$SO*XPctovw3W#k3N&a|YWl z;1q_*ak-2x$PJ+Dh1l*{wNR5D^TB>3{eIQVI^?Leu#hHI2<{~5XNdq)yGGpEsh zFqU8e1)@$^S!XZOu<=){;R8c@9{#3N-@G;tzUvirH(i@^!|mLGwfecafaYPudtfq+B-=MXSR2z+#9@ciWXKPhUE%AOb*relqnldYd_j zw>i?rbAV8a$?ETVoy|;ae@GMCMdpA#?l$d)S3!1i-sKA6EiGYgK&F{Dg!=v2}?ZmyAmH^gq(gU@&^_*@#a5A)HwoaWPp|{)($%?;7 ztQQllH6ECbY`&@?v7RpQMK%|XOcY>>EA^lLBACh7u>6Io-m~^5^_9fasA;z}V_i0_ zbZQd`sJ!_#TS8U5sgln3gpD7}=er(~h?6cVXsl9SRg6@7sTj=zrGpKFSccuB;^c`C zxiwgAN>F~)5&tn0x_=o(LPY>cF1OCr2~chy8=y8TOLMO`812%7b~@!ue!J^I_Gt|k5ap5*`)<8EEsCKN?n(ZC26 z+Rr#|m6obXo@EVDfbXqn(!;R_5Aj&tacV20<7)!L_AAq~EIVrp6LRd|9-Q5G2=spI zCT|l6s*A=Pfck@r&}K71y3 zB(>x^VwmAayD(6#^++!Wo(Nz^#&HO;YnslNRyT>X0ADWVC)O=OZ+yL82QsdQlt2~; z6_z^K*;>T_KDoYk*OfHk+D*YZK>Gw`>R;K(^&BOfv76dV8@`mpsBm#5HX@{QFq*r7 zBnYb)cN_reyn0z6O44xFMq~8#%f)o-T{Mp27rpFva&p1z!2;Vwpf@zUr2O@v z(`0jpW&~i=DAue%5-%gopn0#GKN)T1xWyz;o*HbEf(GZC2FcD{M^y8(Lgn=x&0YBR z*j2McDKasAkOdH11tUqc8%2|cqHZ0;gj8fyjT#5=!wduYii*W- zcmlJxt?<#CB)RQ{`CP%=VU@>^m7I`00Kn^VERx~MIEV`~E9YGsi91{So%qdrf9C4Fn zoJVKU-geR>7lcgJcBD3guh1b-quI~iSke+JarFO=B|DC>O7@vC$bWwL) zk$D9v`|PJCYW7OI>IX2AQ|dIh+89V=h^qojQfUYEkrUThPgzXrr>sQ!16ATrM*t`bnR73I@Xfd++_`tYvxKb{lQP=isBM8wA9KqTOOn z{$H|UsW#=%&lK>8rf$lGH^dH&l^8=Dfr<2by`0fLuX8Y zH9=9hF*udQJiI{-uTIneM?kp0I6ljwU*moNX^b8sv1qH2K(NpzAFYrxkbF@(30mvJ ze92;yxV}1#y%&jyQG;f(F3G}8DcW0rO_HBBB5>Lu^WVZ#Gz=nkX|Y%)l1V(a0@ zzJ+PKEPTgbpg{s`-r`tP3|9|&BX@Bg3IiSfgTd;wf6onhvq+H}irg)!A@VGDCw%bK7gze-tQxX~8Dtcjw>#mzuL!t&x@I~ss z8`vR}O)<^SammCl9s5Mnp+=HLbmV%TDpWsGI^P17!01;`f!XR(0W~G-WukX#o@Hg@XFFM8E zryvv)2vl%6&YC$F! zCd>KXT&u*QLf5~ZQSd2tG;tSK6L#lHu>0U8m!c-v(BD79w+}N(0cIlX+F``-Z=9cf zd$}_%Ab>|l+o?On^`XR_ow=YKba+}Y8_M0HG;t=yaB8G3q zM|ayLoW{mUyiE)9B)tJ5Zg+=&kG-f+L^AcGhmx4Kod1BR z{z(7qlfWwSz>md8XfjL8ol<6M#G__^i5Is4q%YQ(?y~1OaID3fdfD+59oqA1DWFjx z3m!oy8>t;_G7tK@8iz24*7euB|u*2rtWhv(OeyJ4RLr z006|@VDB8xCU@lii`V0aHA(H)`US2$-9e_kNc!p_T|fX)qSdFJ6~opG^!`&Po=M?9 zbrJ==<~*=1=H*kvQAs~;e|f{j1$wJ;bk#Fu!YWGS_$)GzkY=1whK)PKG=E)sWv&ga z(h^h`+vl!iS_NLz8zRHHl*frM9*8IZBlzXsIC>kV8Sn{_jQ#53X`wuToVOxG7FV@{0H-ezcGKi%WWhb zVOw_$YD1t~>GbJBN547FyE;r$yI-|~PIcq!0m(@nT{k0VP*qH%Xrv^Xq>VtP2ybic z%LFDA!ldBE!6-L95EN__6ztn92U$StO|+&6N*^Wodv{AR&aZa!thll>xvDOtB?v;L zoHx*XtI`cs;Us4BftwCp+^wF@Mi6O+(3M0ycN^Uq!T+oaho5ffT{ZW+zCGay-uWqV zkagF$^E|9~s&MPte#Zz)v-h3zjo~zDW2z(*yQjZe;sz6Q$-K46-8mg-drDr<#On1= zx;-hu6mGrs%?*||w(hPZ!yw7)az;4cvdKZ}dD|Rk&h@*RUIH6czSrXOosP!{$3u+1 zsDER+Ixz{g|0=ICV0;~^wvQEGy?|lcQMZr$XT6@nMIYAJnn5eZcZ~#VjKGNZF++@# z*`PIgAYcg>_VKHu*WP-Pd+4~?ZKU>?Y`;9hF?n@sywcJ|N2#glZugJM86Z0NN|$i| zE~jVZ*F$jAKsaE@N6{cog6=wwbolPIx2^`q`75yHV6oaYvH(*DqH1$_UUb{^t@~<= zCC%ayp#widkE~(A;-iNs@Ym96ohc7f=&th5_$tYSH#besjb}33Ot!mzJzA=|q7Sy5 z?)Arc%x_Vl-dh0Y%TFCEpsSlXUf78YnsqbAhbw;&n(PLyr}HieE_k$rAzZ+kem+G- z$zYNle$QiMt;hEqRysbTbhiEF7XNT2L*=aj753Fb@vx{bx89s}1?Z8~Kgat0cfC$r z`|SEn)f1iFJ`QQVM=#wLh^p&(g<_U14|ROrt{fKZJI1=00)^4o_TsAo=Ms?yc}>^F z-hG9B&@SzoR6JYJNO6E1{%T@k8U1ja(G5>>K%Yhw1Ym!99J)*dvIk*jI&IiaxBmo_ zi**98*&hwgy0+UL-ddnOlb6m=J1Q>H^x!-xk1m2V&-(A^YHXJjOuhA`UI?;`e)3{b z@Csbg*AQ#hnZ7=Kh(&RlWd7cONhSLr`q&y(5sT+R7n+0C zI++5)Fp&WK{MxbGgEVDSagqGXFYkDI91~6vHx@|Mapuc+juj?ez+-L00&;+0jzuz4 zI)$)aLB0a=Umit#%RqSi>cen3-y$Z_2zk4-vI(@s?osAK_1p>fsEMINNh_D@ez%sP z4T9hsXN!lE@na&EP0tO)-Fv^%?OK!w4U`7Gx_)kCOb;T?i)qaB zyq+Q?Yu>l@B~cKBuzuc%vF*C$i`!adErMYdp1a-O9--*~>Oy^Vd>Dqs@J+*-1~-T9 z@h>l5;Wf#zD|AL-ZW-f!I1A*B4ojdL^4?!{I9<~TSy zL$3_%8?2Ad^!~kk5EZ`XjV-<-KL+^rk)3i;G&;G9Y-a+?9!Pzw)RqVzl2pG(MIY7% zhLQFaF8*kNpz$!pDqB1KhE5{acnNR0?>t0YjH1e38_-OJi&nNu8+B6=xdA0#0#m4y zc*0Axlz-Jb%o}UO{O(76beGUY6*G6>%ZHecBMjfe%tzM6NTn6buRZl_`Pp`- zwX`3AraQhzSik~OSl22@f^VLTb?2w<5mGDj04YP~8Qj(#0iM#zW@0}5%r)hnv-mxW z)>%;^(nT7+kpm&!nBBZ1n*JL(jcWBQyEup`AW#O4DoxlZBVBWcfnq?k}bTo3^KrnEd z+_a8*lqF?}r?$U7Hp0>P(-!JjVH{@KHOG3s-{FEc$jJ7$ z!}N9lF@(c}TH-LKi0Q2#J>UQukZx=?zSzLfBc}_FJm`C5d_=&p=jTOHBzWf;T~Z?G zH5J$d1Nvq{0dp1Lrvl>VqqXIqS50KcN0aNH&oR7+^d@0q4|TTh6S7KceoMzIe}8w7 zTz_sl4!Q6r_(VaD$&fuVHo1E(H)oyMGa{)WWK@Yb5%`wf1cwvPX2tPw2g62{4wMb~ zmt23GA(I_BQmeLYR}3G937%%xj%4V)Rk*Ut8<;tVdCuZ$1mK6f#`~eW#C%>M^rzgN zy{5u;J;tBUL-*|_Ccs3BU;=0AF2R*6U$WAE$i*CB?xmfgT~7IiNfs>DgnjvhaRBORfA=5#mTwFu)5fqOpQ4L8dbh7k zGwn#%lApDGt6KZ6tkBa*%*4?scykvhk$jEJMTPu+#``5hE2zcu&wH^&=#{+vLmhv4 z0w)d|LWkfdk7V?)?mP!Ur2&8|EzE1zWrQyq@K%Yx%RghSaivnRsRplubiJPiK%;^Q zQrCBnt3UV5IPwrl<5yhun$X`T=v*-hbl$VBar4L%c&fRdyjAckn1gEf?Sxrg`4&14 zB1Igk?bBb+c<0kHcOBDYg(y{TcQ>}JCEpiDNW2?6|2!wm|NWf!l-$qRH6BSBcBT%a zZ|&{(879kCmk|ThW6Ek4J-_o(oKa#Euzk9Ju7&EzF#E|Hh(F?zeEvND{UUCC^(SYd z&+Jw-D1F<5(WO7!d*|KqF|vH^svSuH^1D`1wPh@Me16BL>E_#Cm$c+BCH_xtEV1*e z-oG*H&U1f@ClLADj>}M658@LWzVVpC_oQOV(pj4c0Dhruhw`B+Ot-F<~bRz0b%>U=m?>N|r z-hlEb{Xf_FBw2&*$Sn|>8tDJe{mlcJqz>g5cEqYjVZ{K17wzY<5KBT#j;R~KY z-r2}2kA7p3R^FaJ`YS$M$fO=lP6>%D?mzchSWJ5j+MgJqUp!_Np;O2UG7r^Xk6%0l zRgX8o;rgFEHI}WJ%N2!>;m(WnUwQG1=YQHY{;k7Ef=J~LMt+}9)dS9We6Yt<77F7T z3_r6I=7q$$hA^7#y1{-h*0}vLzYAo!UXoY>i`Smt_GNpuht~8VjCA5J7XD9t)46ho z?bmxG3Y|*+H>UiQ>D{Z(WPbpRS^D7u5f=3>*aLfE*Kx9wCp_7LrLm`Jq*#$q=Ej29 zdc3Q|LY4Y^|Hdx? z!QME|62MJ6&bQat=rC!8@y;h@JTg#Ef!;1;Jf{J&mg9L<{KCsA#M5k*kaZUNf8z7H z4o(4|cgcS8r%mDI06^y?z#o49tBzv8%q|8O##;+AQzD2mRfOOPi-zg#Y``o?0V%su zaJHB(&;V~yf#1Gx>xgM;JssX0M+Dfb+>~x<+18sG6x+GU`{4_*^>8-C5n}Nxg!sFDmgwTO(J3;miBb*cFFHV~xS|}GS;mE&or}LqI z+Uo16yprmSj%2H~bqgHvA8fkIPi%t|8X>szm>q)G91d_*u_iNOV$}QX)>%X7LoKL_ zIU%4`rws`?Q4DS&_!lng0syS$hYBQeA%=f=<>qhy0u2^_cMghS2ReaT zEO<|jBbMgmVA(YcOL7asj)bYhPRp1~S?C;zsxkNvfOu#7r4diL45-d1VJl!gaH~; z)dEOybT#h(`|hetk^+WN;I;79;|YrxT~Wt@lNAe*S;_8T5dWSsw<}n|9ZLaP5uISVxy6~T zNHc8;N+(Jm%~yxtrME{8BOO2b2mdsj|BZ)A4FvKn&`sQHlz%^;y|s=+ldH9fqLy(S zPjS;Qy$ZhF-5ak^yu84~a(puxjm#{})Qbnz6g`qWg^b+aRk34F%~Zz)T)nHEagbJJ zkS4_p2Nt8a%I^usVopz%lRFhBkmSyKBnT|26JFOl-@w`d$%p&p$QfssG&umudU`Zy zV{%mRuh#|XuJ%aFhhoI#eAU+T*wbpUl39f&hzIhd2K`=U)g;Su{s9R)?f#SNaT;7m z9Q-`5h6L()TNXSk)~o-kJt#FCm_ui@l7sU23oo-u3L{GPoUyIq275>)m+4MHL!2QF zS{ji})Aw(c@p4nthR?LmFMqV1vAQcWBLO=j(W~2@+$ZAnk2xu!0G?#fYCT6p}9a(Jlo5k4Qq(hFO6$2kRr`kHH#9L`Bdu zHN#!D0+32So0-HsFmDV=A;Z6US~jHp&u6tgkJRt*;+kUXuNbOE!ikS$WJzZ;^2c$s z$wqZucL+1(hTpVlJJ6>;8OcHJaV zBs&;xmTpOWcqv3=ArZYHK??VdeYb+E={gJx3;cYfz}{^+bzoy-^-PT$cQJ5yLi9O# z?ny#k$7(FMl6gq0k>`YS@dA03Y;oO9u?8DBxT1@^L_6$cjMh<9Rn_FWMLwOu)7@r_ zPRkZoC{wVQ!DC+p<46uRr-M{4HqPL=M_7Gs|F%R@e>`Ny1I%A~TrnvBKz{c#PyUAwWBh>ETF*Y2Eo~xWv2b-c_|g&!@UO0F#$*HU_f?q+*)M-r6#? zN*`rXObVFS((>km#RO>bJ?$B0x~tm7hqITcMD35cO|Oc=)K{<>DNgdoMIu@fEeM(P z>5!#q*`lcQyfxz0C}?+lU{KqNBF~X4Z)uQC-7o#BS@UTvBBaQiG~3ib}>t6XG ztGZWQroVrNuYCO3O>?7HWRzPWw^^}ePDJQ)=`tErO$KY#%OI9 z(x!W|+Pe*v-8LNN@rJUpVAb(q51z=LQuBGHQs22E&BkwOUri_Fbk-~Fy?_=aI?{Lj zd^)hn_e4jBxM{8Qj>~m$XMaS9gm`NO_G+VES6Gl|Zr>3ksB?maX}W2vZ45X+Aa87~ z?mchlcP1Tj3ndXw?CU|JJ7Mg;MN<=+#mNGYle|w#+?vc`3`P+`fn1Y2L**Zf_5d)f z%|U|~^P-D3i_?Q(&;;JoSB=b($Q&5X-}JSgcT7*saTTNkBNci1TrKf6#B8(J%eKUk z(`_KZ2hERfEpWfvEyEr%Sd*)ja8#&+o-&O;#^zROzsxXUiY(jIot?7&q3airVO#v?Dm z>)80+MfgMyL(&uRp-b40EQTC#lb}tqVCzhf(g>2rl%VjS5x_E(;CvIsV$6%aFVlEme#vl++6Xr4Y&-qA`^n z6W@zTburK((Bl>3WW4T7kj2h+BAx^KoWI; zHIYWN@Q^f2pE0`{VP00x6O|(a&+%3 zXY&ID0XY-@VAI!Q1uvt`2<+pCt-5Fk)cNyRh8TWp2KmnW{kgFx5w9IuJ^C%<$-O$Z zN^W9I0$8+k;OrfUjrXJdz-uKza-GyGL=;}bE>ax@u@Z0gvL>kXx!2ONYj69!57(eA3->shN5=WHG~p4y)_ zC~HhvU(Py@5D5v9!n_D43#vKgcb}G?(8Re;FH$p`ztV+&2vBQXO0ZWC_-WaJ#^!zc zZXi_UA4uIlsfA3qw;cK~|2)h$Kt9HR%X{eYd3$@D5lXz*DbW%cZ$cBE@o?N)m_hh& zg|Qouj#LKz;Jm@ThGA}E+?-HdeUmh;(&TcZT>iP;zQet0dPM>d0OzamDsaC4OowPU z9uka92*O_YRp z$6nqbaASEcoZJx5kV9ago!uOw-@K{@6o^UK495o{6EZwlGqE5AVu?V(XRIu$bNNzB%9cEmXN9gTyeBn>( zijiSU-4G94czL7-zuRk26rS;}U9{iac6sE@LD zE(NAfx8`AIdr6UrS0m|vxGz*p6qj$Cg=)jf*1_#xvA_>o4wJ-sVzWV=Azd5M0D}_z zxkNW$Vz9Z7*bQr|0Z)1Jq+tMOSvUUF6gAYr0P>_JS*M1n5SM>6__o zIzADB`9xRo&TU+&Asqe74?O>j$NYL3?W|YnYYcWfq;^{NXTfF&I`sR zrA;jE2Yrcox+LhV_Jr{{h?F#(ilhmb+Kj_l#v5t$O&lB)QAUCwK65AA7LSnGCap9H zt1Us(StK<0iYGlw6< zChs)v$wQx*-te3--#wdWsRu0<-Jd%6(BPwPj zc}XvvriF(gUAQ)Q%6lMk>3i-rWgMM}FZP%?oPWx9y*EP)7v)X>ap9|QdIExoV~-AO zSX?W}-ihFJn?hN&d>7_ub4FHQv2&;fJ$?&TzqM&ImC?wuC4 z0O?FH@_zNO)i$n1S6z3*^Q#dcN+@jmDxFU%iz&^ar1uSxOu9B}IbMyW)O=xc7T3}} zzgkDF(fq4Xqh(>9K@z?ubswk%0&6P3Fq0Yi5NH?rV@SQH@HkB6v1Yk1Da+X#ubwjB znn74gxt1XCQ-5QLqqp$<_5l2rjgz;BM&a<#cI+>*2>J6WiJvrIMJ0B8i-`dI@>-F*$ zpFncp?VYZ6@aZWn!+FcFWImty?OxvyvM?61X!1h{M(J52g2l%UIcKNtsT!M-n`6$z z<0d528`;wtZY^(uh1Zoxl!i#hwIBYGb9CFow&r-*8z60;RnXNpta{ zA?9Hg_1%2>;alcoAKL~%8(OFm@`P|C7%Fc8PF_f6cWC`F-(F8kz9zj#*8YGtG^81{ zMUvPmpY}LDb>?y-ac9S3;Z@_kOb1@#VR)+*g+j}j&|uu7&}POI^MdrTKsa)6u9p4?~=i@rZ$@#c!Gj2m#g}0S*)G`+F6vF0#Umt?}LUi6)e4UNC zY*5N1!V|lxrvx67WpjZ8=HYKY@f=@>{cG%m0{j4AMaFHetk-^)LzLZ*{d#Wp#fqMhs1YQFh)iA22Lg-Lwa$ zYLovoZeY0m;AcLZ0q7S=s$LCwwM(8tLy4kYSrwoc6p#79Z>H_0c}|OP_DyNdyJ;eU{JSOzqbul=;Jbb) z5Ug&=5oO?Mry$@qM2^k@nH4UqS-MVN%m|aP(vTGP&YjDTO#}R{#78AHDbjsSK@e@l zH+AGpPzbtd0FolQ;6=%=J{EWuYr>HQkH;}|Nk%kHbC4+5 zYh6ZOzyw zhXviBdTN6z%ByZ6OtOvf^ny&~x-yw!8_7#e@#9J&5)KPX0?8hylwIyeXD4R?R$b6= zuR6PMiuJ)5b`|QZwWglk@fnAk{nDiy&t?uobu1Ex9#dKnQd@NY?qmR%GpioEM#R}36U`!n^sWhdEglH3JYv`8i7my zfRiye1P!MA(pqJSO3ENzMyWaV^_^xQ08b_!{?bk5vF&FJ^RK>s z!>PY}yOzwOd03u(%h^wtId_{iB#>D!cmV4bGeXP+ydI{VMuN2Gw3|7EKvm##15}>e)?a|+HJOX0r2WgvCeLjAY_A=V}htNnQqFv zA?Z?X2qYQ^TxL$kIC@71&$A179Gdg(Q@+7L4Zw=qL=IW=3I1*qcESsWf?NI~%$H#h zm;~PU1UqQBKs~2#zV1knMnUk!XF@$X)u%6zeMkXkyY|arqxTRYfOf3b*x;MHBwC>J zkj2GZFSg8f#SkFS0fti%UBocqds*65R3Wr3x$TfF;@)qy}@;x(( z3NmRWQLR2vA%51rUV}^Xuh&32{7_0AJtiXwf5yrh(-Y5{$x)W-le!Zo#lI-*>C5x0 zU80dU{jaeaAXh&WssK&&S3hR#g2{H?#1U0=I)Qkf~`om>8XPZD4Gx3Y zFDMzVr+C}y`|ew?p>w+hQ`0OLy5$rc)ufTqB-&o(BCYE>uQ$MqKygNZtyhaT>J3Rk zLvRrg4&*uls?7(YaJwP$aOCw~$Q_CVV6iSN9=h%6ea z`>fk0%L_tAFO?1P++<1=?2POv3+bYL2!l{`uD(-kQ8aKI#Rn?+Q8QGr6f%t?9C($) z#auD^o?EkuBT6lbXJEmJ4zMwC8hrmKtm2uq=tn`o71ty1c8!=#k|{Xxm~O= zeVEb!(4?#(I~MtfZi!bIK;nmbC_-9oscxN*$G{%CrwIAGc@}hubXveidUh2&I6ho_ z@@Wwn;FxP$0*W8qafELi`q<7mZ6@WF?(KxX^RSQ@jV{x=#qaG&{gA1P(@#F70iy{0 zFpF3k@^#&*Rb=_63<$kdhpKCCsq(T*Qc%Qk%UhQC>IU}t6#@m3Rp+_E1BMV{qhI*! zz=cia4JPr=i|wJTg)a!I#<*7@JaN;3 zrJ*HG&V%a@ACn2X&O?sW_jJ@U_n^eL&0+kFdr#IVvoeKmtbM?2Y`GN9=tR(v{V;HD zKjO4-=4b2#kBIZH(1x6-wSqE-n(Qfc;s4lruVq)2WNq|;xG2226hgvVfiQP?g!k_0 z{~Bv|_wF6%C}PGOl8^*dnV$hFGZRtB5G-d@TIi*3$>hN-$^Fit{v@ugNn2E@qHmQ? zOAg~wu_RZQyG%yf8Hhi2BrPgFE!zb~@&^U(sljsp(G92ucm$HOq; z1$eTco!!ug9M9s&?hKss{7cO0k5vD5oyKMl+hf4AI^AyLxUCXQe@h~{(Ylke+^B~h zf$ac`IqK|*u*CUwoGFzpo|f*rqQZX|h^kEg*Ki>05 zxP@`rE8pirazwE*#d|%ySi=s<8=bujiQs`g0_!TQ_quEDO;cx!C+`bz|17>HZhT}A zP6-sAxoLV@d)MQ1*Ln&PxE?W0Q`O&fpIr(=lFd3$K!~RUA4j17uF-$a|Hm|!ZHyp7 z(sqS?Mz(FYxCBSX9BD1U?NBW(c^8o^jV9TK!%;Q|j$x^~u%0NCjP{xzFNhhbjbYev z&jeDV`E%P4<_Edult3>#H+@k?wHKzIM5O=A0tZbE_yAIjF|@zVG42QGKX`>h`tdn< zOmpUHW6Ez9)MiBA=@d{ja6dKbZm_2N7%vlhtOy8^Hm&O9~4~8BOzA_~LNw-S%@1 z)1C>3>FV=7LwcMeDJv)yAYbH@2y|LDmdO-v=RL1fV?c`wOe%vw3U8eJLHRtku4s!)1-#(=kR>{gy9pU0;UnPn4#(gPXf*;P#hTH58RRsxd~1`K3xq zqmoR&-p!BNwt8zm_DV+Pegok*9p;WuJxsr`R0T{*#OwVsLcDldVlG};!vyFGu)%+q zxPJO}7M+jg71poey-@9;3Uz-bIhxh=?R69_omb@I?<>TioF>du)5=XCuij2xi_}_5 zf6ug`7fQ(hXRgbQM!_4+MThpG^>lYEtZ(TW2<%`OO17$XP$#?Why&k422v8kA=_8+ zF>P>T-ND^FEcf?RCm&0p#{*3hF9B@X8>!L)_i^}dl9L`PJ@p>i*U2_T&*!<0NYn=o z4g&hu+j9cpvphC^GjP{1jZS2&{Y?*Aq~sDyvsO@0e3UYi3z08msgaJ~f0#!_McmHy z!`E}a14FWY7^aZ@puczjifW1@h>r13`H0>UKIo+`3pe>tH+8V)CGD(}mW zf~TJ!$}#7WckbFR4$dGCYS)&-{NT&(hW^&3>d9*EXmr0K9zoWwbP=)ih@sOb6PYXd z_r0wBsTFBEPT9ZjmHpR!U+H;5)0x#~tC`xnT;(MYMYauuwnx@iNaB_jxV32V(Q|uj zWauTgPQGuestk&xxf~Q`x6*9x>WR^vVUvjaW~wTmWyI|UL8I^OUrnr&k??zAOuxYK z#AvPqYKau-PgbY4TA_#)C zfF6@&XO^z5y;oe~?*@-F>lo%Z%ALa399g#tdU+3H^ALVd+gte>SyoQn^f%Qiqo%A3 zVL(RyU5ma%`%)O1|2y}`X?EgOd*LunJ`24d*OF3 zRJ+O3$%o$uYux)V6 z=C7INBUw3(Bs9`X##vdWz!S9QnFd#A3gJ`B(ZeV&EG`FEbKL3>sevZl6Ac_F(wem+ z^%@~xGVY$9LQ7uzP~0D;kKG&P;$l96-wzwjoGBhJ+510`XMX3W^!xNw+Q`! znj_i?@{I32IJh%(4JM7UzkLi%|I-ZWbLI?*E&-Jf6Va!U}V z##kV}7N1O@WCk|4DzX>*hi(UDImxIzs2EL1#7tSyeZmCf+hq&If}rLPsJiLcj~G*{ z+*fcOed$c{aCS>RnY2O1*$|V3L(dqnkBV%0x_CdMk44bJqTwG-!N1R_BzZpgK4Ws2 zn(x(FBmRUw+y6d4Rv{g#gd!75e|&4&S1O+A??L)Qn|S%w$c*-q>gyEiSUS-JH<y)*&K z-dFP6{nHl8XYKrCJ(J6qpi|4*Ld}b`X!eQgrHxzv*gC-EQE!b)BpL3P>s-H3z>eai2>? zT4^S0X?AEScNi&fUZ<|1fpM;;~^l zry8E8j=mB80im3e507T+FG4%Lv77F+m~@e_jws)l6)~DkC{g}{qci65NOS`b^&RRw>2zeJe~IG4QIoi3=y?BK6;plb#>M$LTwXHAaP zU!UVszoW(Puk8O^<1%xq&1xZDNFMkp{ggx7C)Gx)we&;vw40NCQ#FAR_(}cA!e1Xr zGyBx^i4a%65DC@u1ON9SuSDdOBn(Aiy8~@Zv}vks}x2;**=j#>oEdBIzha(28!Ik z-Ym2T_3f>Gs~^q!FDXhtG4_2LO`4jcGD+?)bz8fz1Ur*vC6zx%T1t zP|USjO|{8L-tBjddCyfC-w&nv#4Pnrm0Ah!ib|qx?Z;;ygzr_N40ZL>crG)kN{dna zt4v^NZ>$op5o)D@H7mPu*y7gd`GNDo6MWDk7Avz_Rl|+_xVgOeb|xdyF!g6vUG|Ra zpYn}Mw2X}E(~G?3Q`pZVMd))Gy-EAFU^6Tywr?WyqS7oUNwtCv96#(Ol! z`{mNag{7m&*Q^&*-x`u>+sL)-89fmkIBAD(T%aZMij=v@Wh%CN&-xcl5E$wuW0_}h z;|v8(x-+}h?#aXgi64k&3-upk_5woXAn;8=7d9S?AW=PQ8@?_vRL_ORwS%o~9qwLg z4eZrCeW;?vt#o);F9tACV<1MeI#VZCSVaHQI9f=i$*tpT2+$ST_E&L?i87yo%u^7> z`V0@03C#${^dO4IuF*9%n;kUpAMB{ z#NeS&?%*1pWgon>MSVkcV} z3=8ws1Vf&?*EGq@d&ztq*K863dNykDLe8)YwGM;}aRWfww*7N)nMlIhz3XbN-^Q=0 zJLmc1kB$$M!08=ZkEv^|3- zgZ1&%+_WL`cn0dx(ngj&sG*Whte;qFWy|b`sh05$IKvxvkNKc@C&} z;BjMLMQFqs_lS02pp$0p3^;ZAg+RgnDdo3D3H8bWCQb>)5nIhcX3FyaB)JtZWJD11vr}N9B z2VhGju;z*6}ot6m=h4^i>gyl84}j!h&QzjOvNHT+1N4y?tyb{7O4BpX3;TVO^+ zhL{wA$wB00oSrJ2q7aI&G-tK?1G;e3CqG)4Pg%6IPyy}ayqT|aAH9l8A<;(S_v_YVL3#c<}) zC|`K;>LD4-Bcfc3{bngC-MEdYmQnu^-N?K>bM^gS?Rs0+fBC&ijm5=vR=lf~s-7pd zw;3(=pkQ4YhexcSPu}Y7<*LrwS}{vE_|kHHXL^Su>aV>mn!=9}#i{ll7-cqNYj%UA zMig0=YaP5}HO?}xYHFWGKC#bqo*F0m&%5MEjzox8m}lW5P1YW?*7{$!6&^1qSANLu z!+CP97P%^>?yXq4ZJD8hujz;zL$A}%9*C}3YM_0~FQqCoW!+J-bEAvK=wyT;F7q@++;wBN~ zFFUg>5PUgHQ?))g?y9YyReZ!>G2HKLc(%SeI!9eQa?ROlr8kteMXbj4NJ5O{{1b^x zFk=P}?kbw60=UMaM&D6Hme#zZhsxVBVnb3_*Y@Y}I4ubM*9LZvpdHGEJmTIx=Q@t$ zP(O|+=YeZ|x^qL!tZD{(iVwtiuXARw(+3X&&Cqh^SrQj#ckf>*Uh-Go)>9_)bX~US zXQLj@J<{uy<>SM|XajJ+4ZBP}9N%RY`DW!BP=M#d>52U|P94)+SZ2CvWNV&JJF6Ck zcx%C+6>^dj`EqyAu%qjXoY|<{)A~Rk_G*EHc=k&{Dw^UDwQ>o-!FImZ{;p@_>@EPj z=R?a0>XpRr(Mzd;L{ni!(Wm%%uXXnN<^|`<`Upjv6CXx}$Hvbnlh61{eAkh+#QQGf zVqJVpBRa3OCwVT1Wy!lV`Z^;NigGDYzp&-z@#?K_>G$5{BRhO)o5<=l4Coq$ zgEL=+HgKQ-O~l5?Jtwg>tEW4^=#PEz4ICAtPB1hJ!>${?8S6f=F#){6?GcbBVikxk15*km8)b*s;U-HH+NDGFVKxA-hU6g`tG=} z=yi2j!s~t@PdgU}O^=jcTy2MkudIa}i97qpFwzptr|X$~e95TDu!d9o{G4LU{+e`; zeo3(a_oqGooWu1_;sC;EXRNi)`}%i!A)JH{+o%awSkZV!`!?@A6!VoJTGkt`UFVOnYW5L zI`+zc);9MyMQ+;N?b!R-{MUV@3i<_AdOVzi^ASFRo~}R7dJow6nkn)IDLeZ{ftZ4YRMI3{}UnsbMi-g;cooKF{# zg#V?`{vk9|ip>mO>OH|54vw#kpUp|iBm}1Gj%~?ao{f~l=>~CQI4iK6#lLU&%pca& z6AcO2$;1TjvtWqyV5TN^Yg_^!t%S3@bBQDi@Ycx*=!_%HrR*`56tv zu9jadAVl-cGtdcJGSenh8ApO}z+ylEFyL)&zBCR+m}m9O>dzZOZfE>C`eXfEI;ws3 z4cDb|O}bN@jQR_x_m9N4qg=aTnDs-XM>oX_= zm85yyA`)*5dLOgTaWR*mT$U9(uG9rElLde#lQLq#_h7E{IK(3vr>ShiOH}Oa3qZf6 zn7vo=Ldhhl69C|*W_@xWO6t0=l-ZmGb4##dzrV+gNP$*maV48`zD7?WhM7?KZBzQz zTZc43Vo)@+xz~Q&NeJFTazVFeDaeVwPPczP?{yU!bJ*Jn?v$uL89flx5c@vMT+%b8 zjxX(fta^?jE->gurxTuRM*ExdAHoT!xbajmc6Y+$}$?#VVVMRW&- z@EH=Ho3O??)e+f3^|=y)rjvO~FXf5r8Y z3nj@nk^RgRbH`tGo;uc!9&B16H`d9&7q zP^XHw=P~5t^utgJoj6NIu$RL33O)?>xD6%}4Et}vQjQ<&H9wuGc-GBY9YlNF6!G!_ z2V*7EE}%&cpw$*97=-9o?d%aw7(MxKje*!;tM2~A5%0J5>8^@vp^634a;zPbPk-gv zi(T<-#YAYo+TqXc;BU2uzNfgLo{3MqNDC07X;8>pXlQqT=HuU-|Nb}U5KsHD+#I(Z zWB%8@u+8Lr-=e`9vU8~5>5C8A|ViU4@D=ggNHhZ z?X*=E`7P_pI^N)oSj&P#+J6M4K?=l!-}~C~@o!x3wc=`gpXh|U&?-)3TOatGE($!- z&os6<4^1xssG)x+iY|WcGYN3R~JPPt^&eN5N=w`Z@=;{^JS9>KA?B zEknC7E_oU3!A6Z3hc9(cC%_g`BIz4zjUN3A+0)FbGD`%@2U)Z3_sPJIMkGsl>=g>>-gw4)ic0O}gnhHD zHk+19dx_Onda`?Z?vIrahDpYO@Q$B-#mPK3=vWHA>lXS%ay+4Hfz(+un!E_imCvVl zZO}w2Ooq(`B9`$^toO5hWXxbXvIFJpvUks#M-_v}Ii&K6I2gMh#qjNk3-)1+*7tj^ zCM&99DXU^z;WTuc6YDPq8cS06GD`8+Q(uyv@toY&q1A$V~<`N z3iKD?9362M0Y@Of(RGV_QMf+q3?u5IkzRSswv~31k;{9C^dKVl(a0WS9;1nd=Xf`M zFVX#23)Z0^&~Y?1Uo!OfbcF1eVg_y+>rzE-JMCvvWgLT)rBYRF4N{~JKP?D}W{XDH zIOT*|+6Y{1++s^5@eW|W#9b;hL7PierGMpm{Yq%n zpxsVUWBkmC3^kmmrIivhvx&5qh+q|#HPRRUb--{-ApP=FwI(KA5aw6o^!GZ@=zQ@u z-TPtL-~shB7gQd#?=p;AKnqh;Pji!*^X!6%G3-`PRxR#HgXWLF!huAZM_ij>M-Nzf z!!~*+I7LQ%cTkS#VH=x%kq>=RUtu0eSi_HpV}Cy>?|{k+-j(OH?Mq=L-cBXoIbM;( zSE7Tx^G9h$%0oHqHVPHlZpuC~N4!}Hhu{h|u}})jGJmDFzlw*2KPNL*%v?@!U+%7n zo&$T95`akQ)$EJWU;4Lptqs#*2942#5i{KRVU!kXfmo1PoMA*MyMnsHbW1`nvsQC` ze$9S@&mAE*r&Mn-GKhp>W~8w#gn_a5_>0;>>4@s2BLI^Uu||?zxe;6-Bm838M2Ydzt+AtuX~f5ky4ja-7j;DrQd|68v}Q3TT2wzG(A+Yt77Oc^ z9`&w|^JT4B@IG{5VSwSnox^h%Ska1izZCIh6sk?GP6{nviRicZSt~;KUm)y?a%$J#%MGgTOrm zXTHXiy9Cn5{e~pb)iIIQRn#>%_yxnd0H>g}0#oQijzgu+XMKRRnzY?Yzuaw)MLGlj z$bNd_93)TsaTaTgw-gVG&Zq5ssk{v?P;S#tA5@kO`_ z3Vc4`+f0_~m)5j1l@BJLn z?S5UcZKl31C^Z+zxK&deH4@#V5L6}F58rc|{F5;lNB29z63zKzv7P-OQ41A4(n=?_ z7K(w~Cf9)xv@Ii`mZn{MPn#JS*fdCWc;9ub~T^b{)-$|Nl z$pR8(#W~DCZwW@!pzmTc$p~k+Qd8=Fs`+@#I35&TAxmF6)rFCw2vUupAal#y)#E<*lkh!RkYY=sh z!%vn9Pkt@(r8e$cT>!%jI}IEx#gQ60=jUv5`I~clk*M3zdcPlRk!Xx*ft_t1gdyG2 zC~%isSbj|PyK)j3ajlYIF+;DKui- zY>}W$-k6vnw}J1X#L`rB;4LQVktiVH(zSC6u!<2Rqu{xy%}-`|_VJ33h7J|b`&DEa z#@%~v9e2@p*%w$nccF4o_-@vm>F<&7CD#*-1ixd!n|+rs#En6=->rCzfbXsX8=Y|H4oBw^2dad(-E?wYj~rI=0kktW!<3f zdy4(5wSA}S)?2$j)|De7%mxr<9cd0=L56&rNNPEDH()9+U6LSw^?|5XwEX3_zjdg` zR*WDhwDFVg^mQnTQbhCJl0vC}J*>l2#Lf1OGZC(+PpT>+4&lb%BzYv;QtkZ#v&G1z z?@HCDov|s&bF{e5gjL4_*w969>%jz z7GKhq*c^zRiY{g{T;aq+O|AlMz7`}5zzc$3L=@BCciRx|tWOlJ%!`r`2zQ&$=hXb^q@U3vRI4N+_yV#-WW*1E$ toQJn`gWwISfYh1Xz~) zY!H!{U>rcz@W#8{X8z(Vve&Op{2)?u>18h#khn6%HHb*H6wCKnu?zp zZ&6EE%^O?k4W+j`Z*vl@aBO}~#tvP5A?mveMh?rCIYd^Q+o-ixhVk7Fs7nAn6+Ivd zbc*C6d%rO?UYt86n3MQUmg$G~oMGkg z*i}+|TwJg}E{3X+k_-ZAyofuPy9Iz36Q?Oq&moq&oO+H)i0I0I6o{7z@A~$=QJz85 z-K%N6FyhtUnkk1|dqFA3Y52Jd@S_Sx?lc{95gEI)zK7%HCT<5ork0em>ZSXB(jk~> z1lj`bR@^|UPZB6|gx4Lah;fs?n@|;+dPT7UByBe%%#@}7`@??wZqwh5x>H!J=yrOM$ zLrf_a5$l42)Q0r_@*<7A7qf^S{5GGp;R$#Uq2GhlYcr@yn~3uKV?s%yk7n{YFivyR zp0lyl^=4~BEM}3uzhJlZB%N$M`aH16mnqLk8lUg=`ezUkyPbsFrp|2ap@^Gp{7O~Q zq@w*xMBMHm5O;=ry%zOWtIc3^>|;gSO_uiE$5v>7R99t60_%bMZZj$blc`oh`h4N(|2=$sO zLM3Z4!mQ{QHw__43tgW$FcdG_E>16iZ;Z*$e}L)rKRuNM(}O$#Y42c>5CK+!^Ab@h zEUVxD?p;7XO$^&H1$50wrO0Q0CQ3$eKkUfe;^`_PKCMB4Bo`C-`!%(JlE4j3R$jVD z{UvFO*up2HoS4CD95ID4zocUONo)m>gMf@^fd_xn_CMEcShyqB^NDj87Go*GhOKp* zRc}JH?j^IEGY&;joFa$W1crul8<8l-R!i=Ps#1~Xe)>1=vLo85PpWD6;p08E()w1kCv##P>HCGKe~aWE(S@t6p1mb4 zz9GIZ>6X8$mI;$lq!@}Eoqq3Yyw3}lnT>qe`TAyr+->)}NDdbS&Lx;Zq@jC`Kt6In z*vqtGG^uRHQm%U^6!v5e6*;v(=b?2I@qQ4i`Tm8GMV$)~y{~&ABPMg=4prYaoSSFk z27YU(aRImC4i+4q*TkenC`QV1g@Wi(SL5&9qB*KRP~BL9XVpL*I`UdKzjWj9IhuLb z?pGu$1paParuk%#dmWOPX5U6Dm8>Q3(a3SaXF2mu(h%ofGwa7R#ajNb-wEDQ>Ipyk8 zCFiS=GcJkTNRqWYMfoDf8L?DP7^jDzq7W1t?vR829b8?-E^reoo07Fe3?oe(Y+yU0 zkFYn$bu5F71CI@LU5l}TX^Hx0i3iM*>-bi9__>NYh9^e{{lz3Y=TP_kVC$%WQ0p^} z|4PXO1Dm;f&c;70$E*1Ddz@kh!ZtW3RsZf~%cE{gU^k_){-o0UZ$)$#Em-7y*VJdSf=7_yy54IesFG< z-U0^0zD0k2xNRq@S5x1u>H+1i{%4!^m`f0o$L_fG*RR&V9BjH*&f(1|ymY0?(rxDJ z588CUQ81A8rxa)wXu-+)ETt5i{e9jmp2D!(=y%ji5lI19*j;?wOi}}{aXr|V0u^=NQ08M+bEjnd78RDDfU-T+!8?qMNzI3 zL&tH#t}(IqLA;KD{6#>f7Cd?1w;1$ur&BDI6qq1^(f-3uj1uu4_)COh37~a=Os2U$ z{?+$Uf2eCjw3=Hngz_hGUVr|Kd!xecu`}I_HvESQD}ob>8eg2O5X$=!F3ASKK3StsXj) zjmY+3&uNVC8z$bi?KcDgai5em1^fPKcPr-@1e5W9_uNqrmWoF}Y)hqy&|ez&{PF}z zD8BT6_dhfAvF^v3elbYAn=Ikt40~6c-0#5MoyGf`YLCkDyldeOWdPzSd485|#jyK! zeTtr@ncZGiaYF>@_f5<;l8T~)UF2Y|9|S?%S9>%fUnW;+bFBP^gT4{!#uplm0f5wZ zEv7IlCD5B35GV3Y+#;fmU3t|W#F96V2vz!)y`E&XBp0EDA z^iUYicgcT{5IaloH*OTIYT7cs-x!L{i2m>MlY`81l#@)E*mzI~w2Q=tflrVr(OXwzonf^O*- zTg(gKmhwogwPe?xx}lN9DV0f@enar^u4c)E)J5iz84wE3D++*OdPDxsg#*U261V@< zh)sGJIQwxrHm#JV}t)$4}`5&<}Z1Ho>_7~-r6u_u(4z?g(jv%9y(l-SLeffUgWKp36p0gCzt z>;r&C033P)1K}8AZ~v)n7;S;o*HGrMqZ&|x3BAOf|Glp?y?C<4eN;K3KRN31_KSu4 z&oU<7e_W}q2<`9Mevfi2Sy}(oziq~K-|Mab`Psj{Q1}*q&PlM1{w_9U)NUkvG1myG3>8%qy3^FZEZ#0LJ7e@EQ9&P5ZiuV8sIMNudLa4 z{`LHdR>6Vahl^eI-zN(pZEQ*w6hCC2ky>(p)cK{K5(9X zY`+r3U_;Gc-3&VTced4EE7xT=U85+%zh(I384h8LKP-oP{Wo`#P!SVi>Hi9NzC=D- ztMKq(MGB1Rjo>=}NGGMlw|a`kcHO!6_sV}Jo$Y?oR0yr7wAm(uaZL69?Y+!%jGH0k zU0j@+0?P%=awCb4(^M2F%3cFv^5wp#yH;;SCHALiATEq`2!MO9e(~gnT-g%=Sn>Hw!Nkp5lH(Xr zrvSL`o2&7EY7QXoUom=11H?x|{O9u`Ns_4j`MW_FXDW#$nZFt;|J<)$bPzgzX6~ZJ ze|BAo39o~x=KRVL9me*`DKd3w!7b88U-q53B>9m4v$?O7Nx~dwP3$R2M_b-rE0;!j zZKn^j$1P$NYlpDljQkZoN)#o^(w6wnedH4*EBYC)bCZOQ?udkxr9I3jw*f zzB@exN<+aImm$^c5#7l<^ukiTXf-~XTViX-a3_$d( z&!vhya-#TKH~r7&7-hz2lI09u5S=o-v=M`^)h9`%`PQ{t{`q`vnKX@>k2ohu|I=$) zpi79i?*S>sRdL41t&|rBVV(Y@l(x8pLNpWb{24?C{rW$xf)Dir_w5DUacfmy^{g_eSUFN2;_h12vM1DHBdW#X zIyZG@tXe_6tu<{BhlnA8TPwi-Z(jZHgBDp~cgV;7eXB?$>6$#@@SCV`-Y` z{X9h=ud;@Tq7z+XYH%b`5=HM_SEE2HdQXaEW8Qrh_l}H+tj?HoZV#q55V5t%W&ZWs z@1w}YuHI%N00g2%$_F9QLR32f;PbN7kk&ZtL5~A`dsF^=?DM%Al8gI-&P|hnw1Jo~ z1L4Tc7lb6LA#akz(|~1$;i72245AAK0*+n?1)MZ(!y_atp$Wq!_SQw%pUAJdtNw7X zy8ueHL@xr51~TtX%p<}WVXPYgDr~-~s$p@P9z><{1{?-QmaW}z4#wXd;XN_v75(|} z!bKIH8}{mSW93S-3g9k4JcfO2;?`*TwiS0LQ%yAxV$|P$>QOFw``a6pyK?8g=dy(knC%*T- zK7CTP&ZM{+TX{8@P4k<$KnTNtQTjGJuespt?))I}J9;0&KO_%6uPc@>91=q>n{=u9 z<+ymPVyquluir5=t67(PQYnPo+*pNGrY$>YoOEjN8d{tK_32tazT}!cFXy+ki#y6h zx&GV{?;5cY$D(8`1sE1Szt!!RMky*aS)5 zzZz9_A?3^OVn5iWGEss^U&{!PvSw$d5QrRj@iHr|}QAxH<*y z4ruM-)P$J;x!}}@gId4D?E5t;q3cjG;Id4Q#mV9@&g=Wjrlp0|1e()s2_uaSZlVoL z+QaZRC}bq#DorMu&B0og3S|4V>|n!9vJ%-@qVYzw+NTsy5B-X3?x14)@tJhvdL4F1a7G@2HNVUtX z*0XcsHy@5cm6cnL5#9c7b02P)*oV|4p*^x^t$ z^5ZV~H;gCw>)h>tMG5cr@w=STnPyd+Jaf7-xNea?>8^9vr5qUrb9D|JYq>Y@4Ar zlnC9B5|X_X5=(q@Z3*N2LX7_C-xJ!eet818v&cDig%x~2sS$(Ir3Ik|$D{-Du)IIF zviXPu23jni(@|LnTvz*sQ!k#J=?{;*LA9d0<$F~I5qeb|&kw2NNb8R08$Q5f<0O4i zv~TGL87|I&#{mfoDjRrN?S@m0byE@o4ytrh>XQMG!9oW9EnUyr57(bU`|K5((@in3 z=h77X6-qJIFbEZ^sz(y_)5RAOhcN6D=Ew30U^p}meq29$&MRKnj{B$i3jdxzFRx8+ zT1LBg=tOFSaO+5f;pw?Dw%#`5t*;8+H{ixG3d)OM$`8mDjk)~Cb^T!;@qNE87nnRbJ^)8_cxcXbX7by6eD;CMQb(Yw%eZ%a>!X&Bo45P+hJuaTw{n(=pM*L9@n&8{!$K#$=!-=F!Zz!-2|^s z@Xy9$uE`xq^46KBQ#ry|l6?l2tbtetF7P~Gc>Q*_{-oMuJ~RG+Z#lvBqLrxNc}|0 zV~jiU6F)ycugUS9hTGDYr0)S9<9LLON2p@>b(&gwewG{oZSeFiCkiCO@j`FL{U!L9 zyC%T=Ghkif!fFBjd^+c@yv3J6*d0#qgh<9*CIVxtAri3X>q&pZtp?hWtVLW@BjCYew}QqNX? z6<>ES402sIm5{z;b*+%P>B{X3ln1Ug)PS zx4b{_TO1cZli_?1PA`DjetQ0P$>g7%6WHc{^M1m;&*!8h{?+$~zS)t79$w#R?>cb} zV6%#E-lSAlM>hHKT3`eD z!3Hg>O(*yv=us{yYOJy}CHA~17+=}FY#s1<48}aSV82Ma?ZGLnM3dW!bHcN;ZeQEx z8ELg0L0ZHeifYW~%h(rJo|_GvZ|X+bdtA%iOVL;lS7@JJ>3`N0Oj#P5>?_Sm?~=X`?t^YA=c|ttWlzaZNs?-|GjPfA{i)^8)NTT zFkgAI#_R$!?bs#CXuBcLfc%IUP{`k>U`GzuVk&n+I6pmeyo<>`sK$5q_@Xv&di_>hR{8Hj?3{V7gZ!{?AM6kSF8QlmHlk_My^4k*{FOevk5KeX^hHJ8Wb;b zB9}a=5R4E=q{N9wZ~2Wt6szu(-kei6IJ zeCn^qZ`^&5AfKz>%iTrLO;am5714Q&sH=4^$})p=jR6hHju}rdjxvUsPIl3Bd?Esx z#YTNj(WD|XOv3v~oHu@)hy(w;k99tDnA+(06ZoZwqvTR#z$b9NT_gHp%vhuXs@_qy<2dbcMm$L z7!46f>ud(^qmm2E9#SN2Y!SsN21z@LVQ|Eqb@wq<*c#YXa?qeCkqS;;$JiUrL;EB0 zujO*_5ORg>i4V)t97?(CmlN}hnsdeB(7x%gi*!T+@-048m~$HlJl9eK@KxWHWeZ@t z2U22y!x&|bnq0$l<>FM8lG;uStF1pa{L)-zkLu>jNTF2xYg(>XQ*K)yDQmT4@E z@gg5hn}_?WB~_OpO`@FT0IMBShvxxXHOYjSMQm}(zUxSvka|8vV6Rp*w)1sR_rsJ* zpQmy&s!F<*2Y!BUh)P+*R(bX6c55wm0l!jS1G%q`@M{zu>18c4_sGRO(2W87eBb0w zs0Lg@!LbS)(?b~_nXSG+4Bw`~bldA%--2-BYMl^VUasE;hfFpuw19uLW%edVVyK@B zGzBjCrf+$$5EN*94V`n+`x!?P4IS1;43Gzjm?|svdu$yBX zmKz*D)|q2$CZur)Prz$vxAh}A?aOFw^Pbc=U1u_AV}P2Hp!*K;d&7HCy#<^Pp`}8T zs!QCjVKtU?iKymmGE3m!+0f_N62yHSmN3QWrR7h@qW$$I@*jd&)z))U)Du42ZO(T& z%sajWl;rmn4@$XWPY+5QYuISSRY-lt=AZB`?R^5%sNq*d3V}K|x$M5hL?}&Ai!_kw zw>TW@3=AO=1lNQU`F^>sLWDeu=W2-vs;gmu3CUvy&YV>^g7WFWR5+&WR6O5Nsu_q) zl`nA3%Zmr<3dj|k?yJ!Z@lmrQC*389oJ@;Ty)LX%H5A7~A#8y8D}X_|+D$Kn5J_|l zbs2@PUP(vx zH3EHN$9tV7blE&oSuzXOQFPnXCD_9qM>?@N@_C&NBdOY(NjM0N>>Di};-(^^~Aiz3*Ktm;c?w|QIrb#Yf>|I6U%{YU)ty_=^ zg=oV8e0ZDWa)FX=8j>oNPDC9yb;`o=lj4>>t>!CTI<6DIK8fG z3ZQ`|BG9&d;(KJ@>$KwDxU7!L-X3?!pN68r9D$4`F{XFtAgwGJ`vY-rrQ&y-MWL4nGL6R@q|+!tiny0+OT4$sG63ZbU+ zWdg>n3jb;wEaqrQRFr@>(f}`%n>*trlnj74n?SeJ05LIZO+7UeiyZ7Nn7VYfUYz{t zd0mIF0RHfa8)#b2$JA_2g$((QaoXXR4~HEW0xJJmQ@EL!&ewGgf|c2n(vlho6b~Mr zHI1H-bkWJulDFXL)}^}a)pQ2F0oKLwFkbPV&)>k@?u;Z0`l+9FOF<31fB1l*0nD`! zj5(a`tS{#^I&pUxEd&CtTV+LegC6fEMJlUkFJ{<4nZ=Ei6?>DY7GEzXwQmc}zK{vV znCPymAsp__OxP&Y=xLEYwm879IHx8zC!&fNH;GhT*CR%2T3QRD_Qowy6kjacqKst9 zNq=HX7%2n{W*Rx7?$*5mbOO`$7`UtwVXB)mz<;Z zm>cv1E9*|6L6rKv&x;~RRi*>11tDEGi>h4oQ**30*yk-!L#!KoG&YkIq=@(!vn;!tLY(2DK>( zvWQR%IaU?KRC@_XL_yI~-UD%rcZ96>L|V`a00%lQQZlY!BO)cz^u;J7deNQx!AczI zvcj9plXx9&_!^XVQ6O_|38p4e#<&LU0B+IJn&LY_!lJH3xBiL(H*eFZ&*aWGjM`N* z)yGGVtPR~c46Rb-%{4`TArNN*?QzlX4&7CZIEJ($bFS(w`i?*AjA;S+3vs}=NP=WS zG=t+3y^S}(^#G1U7L6v>C#au8_-yBj*@P!H#3qPGp%p=$PcjCih^~@$=nO(^UvgaJ zN10hW2&oiEc7mp~?h7c>8g$fbS5-WD|L`3kqxz>Z&IPkvKkE6NMUJ>7u)Uor)c{Ka z;7Mm#qP%Hf8(u^D9RfoU44fGh3sKnVyLL}>1eZS;0dRq1L0z&>ya zXI^9@C9brV31gOH8M?r8AAZX(kpb{a`}X8E?G`R*iwL!8y36 zY$)_7ZW<~7j_b8?-L%6m8-Q6KC8I{m!(sxtgX?G90Zjoc-!P8k)H)mkzmrCU2=>dC zr}PWRt^@p$lNWSxP}nZ-fKmQFmUGQ~{yCC{?g7<933upl?>i1xpYZwWfDE)s1Hdv1 z*C4L(t>2?3i2X?epI2h^NfSOtAkF&T_M0cl$Z!j#_Na1IHcT)&#dVw(wZYgA`4s!R+f>+&!D=vcs9%ATjQWQ04B5=!bia z`V01$FN`0sTSCN9U%!k^CKzoPQnjl%r90zf>!*01=sV@^GBe!hzH`F-xcl?SJJ%HT-V{ot>xZuG@u z->|Tv`N$QTkNVJEoKzzni?yl*6GcMx(RQZ)KkBgpk;Fk5Ps$#2U;(8ql?W{B;BB{Z zP}?aQ(3AGD{=Q5jx}eXzH#G2VTX>bElT?rSPd!fxzi+IgUOxiD$Hn;4F5EB^_X*(6Qg+N1TvqXTr55;-hh?pHpOz z0vRB!0F*{5@-X0^IfOGFT-V4jKI|Vpax=y;N4J5>-+&uLq}RF?qSPn5K;e&T7?ze2 z=q24>&>iuE&Kie+7nl}HH`m|uadO10N!5{QNf48=Aoxp-SwTZNgs);rvQp^`W9U>o zECPbcG9ZJILTZqICNU!o!%W^geb(6pMn-h%{J-YZGojVbC3u!)-P-{~#y-kV%EaP#bvY!f`F5mlHxHz4t`r@i)cVkNo?Xuo_R(7l`AnXarKz%s^MXG$A?I1Z| z%>DVni&+&!bxKCfsVzjGhV8%@$z)WCy)0i6;?Po#b0rFUZoudu5>)6qXx(c~{3O{G>L#7^{B@opDm4dY^2!eA za<+|aw&HM@(@l6hK=CrcKg;TgXH>f)0jdE8orLFe3`T%`Ql9{E6yrxeP2!;D091f2 zNs$v>10^S5JKHz_5;sFK3_O1Acn*O!q%`OC+32sV!Bd#QcO z0=INVAFc(Cr^;x$C`9=ny_J%z#715DK1+@8pnP28wkHQ1k#EUtN07`t0JJ}@U3h?t z9++qCw*H1PO(`>qNn3g~KL9>a0TEk(-eIH1(YGl@Sk+IEa=y+r&G-{?#pb-+DQ8@$ zt2Nf4qdF;hr{s}@-QBT`s^V`YM>hzdZ8EPybI#yckew3K<0S@J#|Tli zgBVl%=Csnpt86y1a>eUeNd6Lp-pXCD{ek-DJIFV# zA#h#6sn~QaIN_;o!o36aF(l-3hx=)16MW=6CMG6nZd^^ibpV#UOpbFVfiI)kSib@% zHXe81zxxnRe)#g&Hrko=Ir_RCJn@k=NtU^98p=CYP1_^D3w`b1??G%$dEFf;0dpcC zH_F0x1$Bs?OG`EDM?5)a?x^X;=el~9W83QZP6FVUK+giy^MK1Zi_L-h({%u|+F7Q! zT0K;*`T{sqf03xCxc~#h3VU+(s;i7GQw&&2oZUb6*MOUd%Z5mdosQT1ou==(MiSDP6 zOhMeqAlIpAb-bVlDANzf9d?|8(E}KT%WBgIF)`6=!!;dVilCnP8dp%aX$#IC@MqEn z^}3PM$DMgXXm}4}XxB>w0H~hDfgifHzNXJsZ=?|pk!Krw1juhJh!+*`gLs-vQ2q^@ zunlyHN$EDr9N%5o!EU<5&;rJa`F5%SUzr@E^5c6y+cczpws9K#E52oYfN$yI%`7Ih zld>AgSn-0s&SQ*KhESsH!35y@`zCN01F~wZGx75o*OCMW2=sx?uE35gup=11k0Dr9 zv`Z*IpGz>J!nTQS&w?10Xh1Fc%>uTb06}c@HwD_HUJkDzVJj3GO@#&#*>(CBb^>gKVrEMy7I2y9(e!-sMvk2A*l3`4busRD>0+9Z#mazh_h+qcJ$n*Ej~_sl z=!_tKjG-yZEu}-U)lRt(UyRF5ziE60XD)&p;t@Mya%g%+_*->5)+pmg{r~0%b4-MP8DO z9d5Vyk=bUCEP92LvdnV>jwH9Y6Cte2r;Tfv1jY=fL z+6D4xWfDGRF)L(K3r}6q!1q@$$1?_1vqi3Lj7_AZK!Ao_&<;#EfxjcCHs+*Zkbt+8 z&|wrV8O|#^iuz=z zSW$_)C0V2RBo5Rq){Ld1oM0t^DY<~e;eJ+!0cuFMi)pTt(u{JQ6rBM3^vWH`2FK5G zVDJW7-yy)amA2y@^6Xt%^iv0$rXlC$>G5L4r0e_~At5#Qt}EJimc$hCJ1aU(nPMSp z<}hmQ;ka#Vo)cY^H=D4wrh<;IR5l$3^dGJ^pRmC(0pv60&Fs~rlp2X5y$}&G`4S_> z9Rm9{fVub_4ZHy&&KWv%){Wjt;z|THYq*LW&QXZVqLKpoUE{O7DHE^(J{Ya;*2kvS zt?iMhtV&94D&BFA4zL+x8vAUgnEs3d(!Qt>L~0N$V=dxLlaMz`n6y`1wJS!+>|(IW zH#tf7G=6;u_(=RI$Vy@!rh*M_MqZ`2hjD!Gzx8g+A@DZchv9;c5t*B;>&(nd=m0DW zIPW&}@h(+5+15QzHb@FH&RQtAHsxrCtrMXO1r#YmXKuJvL9@sKgU=I8vYh9Jg!&{Z zP9G; z0GlByV+t3RyWZlUk6Ad$v>EVl%4(nx)~99wOo>i)8asfykR&MWyQKjKWp%Xn|RHbFj=dC6VAE z?p%emhzi^$PiNPCHc||c_cO%-dCwW1UzJKzR=n3wX>f2x)i`8#nc#kJh`x8fw&k+z zwAl)xb-E4#z3XT}OBOQ?{=EADHi|zp&l%qX}G`9mK;B<(gut%fsq>=5n zi9KJ(1K8zk@`g?71bv>m0?!RCd)r3*uYLG@k%Q7Z9$c?G7)oxFns z!6CiA)DU~8UbaJe7Q$#xo z^%z-c4BlF7yi@VDD>Pbc5!4eBD>Gs;A(YvPo8yXw+z$yHpE_1X4F~}0bf{?<2BCyn zLa{qR@oaAwvW@$;jcABTg07+>6D)^i2}M*qu9f1{3V>vXT7*pH_g^(kf`!m$uxEU zjECc%*fKHYBF5E+B1dblf5heC|0}wqigCoj5(M$Brx_72H1&8!sMCAg>u*hK#MSM+VA$#l`2Etuhi_OZ6$>q>L}@%k0=O3kPvV))|x4m zP|F(Rc$_J=k&Wr7yRH0OWR z=^=G3{>dcRa2j$9>J{Lh7^CF2-62%Q7AN#;TiLoPw5B5hH<9tV=i(u_tV5Wlu*|Vm zjCCgfA_M^N0g^00tX06&02espM913r?R*6E^$H)yRXj12gQ$FA&Jva3{ z+v9pGx~eU@ATsv@8>LDU@eyM?VMB|Wk=KWhPew?rL7IZ!WCbwj05nFz9zLx^Y;coV zFc$1b;#NdM(38NZGtLkNClTFU6vpG)OcuFXv+iY<0?t8GdsR;bkJe8)A|W!YX?<3v zjaCC}h2a~!NP9`j=XZ?sw^GCiz*jj38q2A`?G3EMb9(*$V2I{E%LS(+!CLJP%mV9{ zfIZj?Vmu>q7LpbAF8W?SZ%Uy_9MCUYdz4K8-P>2tX3CeQojARJupm#>R4uXC#RIj6 zt#1p<-=U;%$QS3sk8^JTcD(1pw2o&M?>yd#B?fRo4De12xV##U z(F}5oj#QA3H7*)frzkE;Yz(m-Vm38X-{{qJ#Rm>Yp#5u8;thFN)PFs5S&Q(J1GE8h=3&0D-UZN*m39ua)oCI$7-O@M`x+UBShKG zH#mN%=P?Cn$Yb^%xU+R{k!HGwsKoKbi8;QV*Z3V)`01VT<;GnA#tv1XT^BD~KzZdZ zNKl>0747z>&!p+my#Nm`2y(HJ;C?1`9uV0TK9BdkxZv&vc;6eu!=|2~gr+u*eW5}| zdwbHRQW9*9c2a@sJ|w)qDP}{^gCMi7eIOz;1W|g=fc;y}5lkm0(+Vr}w+O5stv1PA z&hevo?007Y`H4kxE-*Qtb}reZm2JlWT(;)A>M$K+6a3OsE_CXsgeWnYO5ibh5NVTW ziwI$)7?l)*>xu_gT#=w|!9AS|$_t6x8x2BiFzLn=vTr!Rd3d5kXbMtguH)hZfk|hR zV)xE?)JSwoT3y1%+W?!K)9Os^mJj4Var&U%*#SWTr;i>DRpsV_FTBSij(F+g`-!No z`R);9`dEwCNj_c@jzu6QZXhO<3zFY3Xbx{oe(Yby2-!O+wb1d1k9g1k$df6_Mwx5& z4jPTpz&N)HD;;;#of|y8@-C#PrzF)!V#h(AyO8na)J^9sT1of&-`C8vKv!V{5=#{6 z-Y{A_t)Nf=5zxG3nz$k2kNI*otosoLvT-dUZhlXZH(*yK!(Ka<-ZL*WctNnECNWXN zCy7a&6JCObDI|&lgV8!SQaA3Q1NYu_G(p$>HjogC4>gReog*an9rS}HWoDdUr;`g9 z&ZVm@g3D78KPj5Z>(iB5i+VWj<;OstYD0izBHyX*0wj&qUNvD{Lk61c8!ABXo?p!r z)FfsE?dKWB>+BgnI!`H_G3VTF_298F2V{4hLLWuFbuV&f#S7J_=E=DwT-Lb#3EO+% zi-22ao-%56=j(vCinnzJmP_O)19|z)JTq)u(T`fu-@BW6PZvwzG7v`-+n}^|leXQ4 z93f3;p-N9D_(d>}y-`yQ{NSt^A!4n*OgNbNDu&m*P-f_6tW0Z%d656rJ_16R%Mu-u|T0LS& zrfU&!PMlisn_gXj2?b-?LZT6l*lD%_#17{tFv!HXuX6IHyKaRF$&ygKkEsZc%WD=9 z?s1tbrl(=)dyDSh5RckGBF$+Sx&SskVwQu}y}>|WQ6OC(@9MG3fiRByeCx&q95g}G z=+q&B7=zd%D4>if3b+;2V1<-MT;|a0tp;2W0|20jl`H}i@SSfqAxG8QJVWYO4-aZd zEers3oKiwymVk@M7~rJ6s|N~Tq|dSSR)SUgsKxQ#A!Zvp4;?-`AoqcEl@TYZeKZV< z3ljb?dqi0g5(G_Hr?S^s3I%x8t~6#BoG_IIbv&j+A27N8c2RPTS^%$+$XKG7Bn5Gv zkO;}YoyL@1+(#730aguUWX!OR`tL|j?6 zwdhKP^v{ZzY?KDgbSH95Q30RD0BE=?xo-ERuFYI9-Sy%L=||f=AlS`ii(@UPtEM`z zS`n?ez0n~dY1yo+J(O15cz~hfOKyJQ6Ynu}NKpnsb=>?G~5U3u3y+E!xuu+bAgxX$B;sSW=DWKMl*$aj$ zN&e`6y(X~vXc39*ZjwlibXdG8;D&Fq5&?I^_yf}*DAU1?tg*d_Y$VzclIxuY1yql2R%^RL3?* zq3AB4vS9rio@jtpiIf;hn^I3Y+y}hEjEcv=>cXasb%Tp-g<9qTt&p5mBHQn~*(p1;Bob z)dw|d|J0`wn;M#v1#ddb4!WDgaTiEtc0EngrfJK=j_M;jCEWThA!f=-6wY}W-n9lv z6ly)LePX<-dZ)0_K{2Ad6PlBe#{zDPlDA`x@eVL9^?i+}l%ltA!xZHNiU?m&GMla^ zVgXo0Hc3DUpLyd2sw@sB>!=2Ez@SjtYI^6>=XmEumOKbg`U4Nr)e0=BoY17E-VHt##0=s9B`W$ z7GL}g4rqQ=dAI6@)Ph;}3=Q}D06PGCoAU-qsIa3jiHwS=K2&*wPp8eB`XOb|jY=8# zs;gvrr7?o1T@nX2h-q#QH4vY{tGkg5|1MqXiooG*3)akhJ;?l!rORcV{>*) zYK;ZD&?ufr@B12ny3+xCue>9=VVWb>0}1f58_C}RlqiUPY_v8;0x6JK=vvN^KR_4b zq+@V$#8)?-ffAJ(@Dt>cP-?wLu{08|knKxtS8I599|1bm#eGM0<=`=h2e>8=fZKt8 z3xJtj*2S*oHF4%8EQ|NNc}ykQtP6!!xsx-x46Kt(E9$qkB@yK-KAH6OJChr$~pr z7b9h$4qjhW)JC8AlLYxwHOHs`Y@yVB`E8visW{a}n@G}{hb*XHtoWutf)OC9Ejfrf z)zfS)SB@V+^1v+A%?>{*G?wUl^>qREur_}nPTG<89_9^t-K({T)3@MWReabxz}@7R zyC4AP1O2=NoTqV+2g*j`yhGpq$TEo)pFy5$FXL*PAPImRE7ifA+%CA$>Lt;qcRlFQ zqIpZEb?b?A4F;}Z{IZPeF&tK%5F`7sFbH2XXc-;X8Vwc5+)^^orE&qal_PTb^BUhU z7EN}FkJ{5D`cUGlUXF|$)w6*Em~}koI^)ras%(DAMcxCx8TkT7Gyt$&2cFwpVz-B3 z#Y6H;ol(wt_UvS3MJqXy?r!TPy(G@Zww*68g*Yn)U%BW*#qWJ!T92jNw9fl@75%F<;g%9(qK zTzBKt7Yq&~8?Q8B(*ux_d5<@_Ubbjk^0##P>7$qLxnCaY>u1lVpU+oP`pKS1=W|O* z@5j%cduGq%zxw{G@4x!~-`Mv`!tXRg>{mZKih2Lor{Kct7I7O&{`GqO?Qef?e);Xc zefjwLWlGiw?y4Yfe)+dA|NiypmtX$JJ%7zZ@@35TRu z`ODYF|MB_ze|;VDmpYk(IG6%3-hX~O*v?ZoPyd*2 zkH7x@%U_O_j>$LzVgBv=pvQkvJGA4MzkT`l|M=ta^wZ3LI~4TS&p&=WBt6Xjw=ch9 z$ZubWzx?(k?()Ck2=bSI9`s{Xpy7X6>97CPbZY!}e{cRJZ@whWTqi>?CBJ^3@3$}G6b#ef z(7*hXN{*io_xRgaE&Mfz+w6`e?bp zGaaA%+wIo0y79a`ZR<>)b5B=UqY?(>_I%~nDj=U{`=;tBt7@8lCj;TB-PqowIc-Lt z*2NO|+wH1Vtzq0a5r(URs@w)JsfyYO%BN|Hg6!RO9~u+vXhl)DvyZMM!?B6$$e$(j z^T(EgW>;d`_>=QMie(0|LXf=Ur#Xlq9=Q9!J<)FQ7SNc zrFIdhWPGL@u;&c#uK?@Ktb^_K{iLa7`C%j_e8oNW`rM&QVPF4;?TF4J9&n=j0q3r7 z1$Ax2Dj^9`+>ubCGBH9xS#9EeynZI-AJjlKH)mmg+?wwm^!?at$v*Y5GEjy`_0%Ne zY4vr7Flo=rhxI9+{My-a+DOCXc(IzwF=`aE;Yr&?C!r-%z7{cP?#W}PZ)1YgVHsuZ zP8q1p#EZtzC%ziq<+rIlMZ+8*v1m0)1sS)-Mg;NZ+nkvKHm}=UnBJJ^HN0Ou(H(1i zoY5>kDDU-5xk1N28JX@GJ5J?FeE*=M=b0gC9o-A;)Yk)NzdpCyd*9!Rn|jyd^Xse% z6Cp(N7!cPjA#|P>hlYdttG*0ESIqFlV$|&q+qSVKVaHxs#%R-&{a7mo#j6nhe0_z} z^>g{$id{O7>cqw?iQ<}V$5Pa&JXcv|Kg(uCk6X;xXy}j-zJw#9IbNWu4=X1jQY-ll zB_5`_r|0im;w6m9l-U~#=CPa-@w8rZX=*esm`{(dcJZ@qr9QT_lGp^9u#|#`hNr5e ztYT$O^xklZ%txd9534zIOZr06TQlwh8xINaQGr9h?jZiYygy%+c)nt~8^Z!!F(tfH zm8{}8#8rQA!dq;k9Kp^dGEXVyG{jFq}TGzGDOBA3wf5y)9G9e6}nyE-x2o?82 zJCCvYhwZq$8%;*885uSi5oeTNhW#>qJx^T)PHaA3C-UYge9fyV+YCbQczoZd*48nD zkP?IA@e(P^8N`6Z-x)rtdn1LKnTEVLB_2K5CWgzZtkc5JQCZrDRYTRR!6miAR%s}q zeX;LIx0RdWnz-Qe&!~Z%{*gc~i>Fw}8^mIfLywfzT+K%Rh(mbSw#%Nz7=tyUD^D1h zq>zRk<7ny)b8mc0DjqLzF(9E{05V5j*w8A7Fa~Z)YC~t5@n}(Otjgi|u)3G|*v$53 zP+Lk2n+9|yWYm1B#25WtSN9|!p6aYR9fVQDXxI)TOZ74o8U7}F(rscm;TJbfPtqLN z15Y(&r`B+}?7PUxE*e=IaVLSE%qK510^M6B1?}^`F$fYY%~Bgiy#<8R38Ejprqp;) zG8fw)ZapAU9r2>Sn?J|UEBv-Vm^vXfHSj#7F19Z(L_7`?+8F*~qORv-jV&uXQ4oq}ismQa@in7jA}wY%q|JV;ESN-v9mqV6 z)`?(w9LgMMEu9aD+s;`;fVxy1iXH0#<21K#G=3eRox#>nN7_ezwfF6OWHs)o$Um|PaJG`@skbd(i!xMVPw zK)|V!f_5%zxt*mfVo`d>KZwgHGDR%MI3bh9J^29{t|E&Q%!x-=b2iTXvfxPWG9`s< zsK0jfh$NI;NTpX4%*r3XY8ihSSMe0X(Hl+YhB^SyOUb^zOQ*}jahwMSPHO-?n_|tA zUpY?uZoDI4SXtiLD$jfR9W(86rZk_APDh|k8_qT|epJ{^>!PL@T zLKlleXrzO&6EjBT+CR>`qXaO_nBr$QM(f~3r>p^h;cinw{!4XFLQz1 zwsABw0cxER^}IsqkXswK`VrCSY>@C8(O9yIxYX?)>4Tj`OW$V0wSDn9J>uyeg=kU? z*;L>0d4P2$_YZr4Ief^^chJ8pB9%KY@I78fh>R`c7Dwzt{oWf>l`uZ}e9>~)5bpAIURA~@`(Z!DXI$bYY(`dHwse}_gcGjHK(yl zCNsULUv@!GySuh0E22*ga8{-(j!SgiUrU?YhQFWZTbFj+ZIQgxvH|IF$a!Mw?#ZAo zd?oDgG;+0fq9K9joo@>b#<(+}quc29X@TJQ;3V=nGFVxw5*Zis3)bnyr;zjWao@5e zAq**$4P+Rq%oOwdF|@t#ZL+brej}is`d*5)h4RIyz|4-7|+a(=wODvl~bL`^QmHJ`rBmcPDr!mc{nnx?p?{wyV&X zq11Qb;M7niO5ISn6frfP7paLy0bkW>c)4Go=zMZV%JyK~1q zdNtfS#-o0{+BiMsXYmo+(%Z%(SbR6W_BV{SDQPL^SD_o+t5Wy~0d_`kTuPutVL{#! zbY2;bHyDQxwtW{i&c5sAi0uclFE%g_EhxC)z4BuI5}OMvoZ502OV$>F7uzQN8Qy?0 zpPX;m8RS4Bd7jc@$qLdB@6|-bOqE}fWTMnTS`8gIEzfb))wi~JqvhCQGysI%Q$C8b7sA zD`?o9?wETfmn+5Y4FjskGXr-_5l(;@!^sAxradyPmek}6ojwAN;%t1`7>z}!gQ24K zJ6M4S(hIqITrg^+t#D(_!yIZB1_mm1F%M(-_!^RAi=cRg52|xt zj-grQqLJk57eigmU>|wo--&IW>LpD&{poi>_&s6`+Lp=)4z% zU(x26T0Xo|2CJntJn4wYfM5>WB94_I@Xm)+Bp;I5$)H=i2%?OaAbF&ZOWR~7whp)~ zfXDr+Fm{);F^3q_JCoB^_8IYDos^Q<@a(2G1u8t2mS_Hud0)w+Atia6joxouQd(G%huiQ7P@l{wfT z<(W=FBj~h?(qr^(;->R^gVzY;UI&B$_O(;hTMt@(nh$?EDX1En&mE+cDI12#p8B`^ zKv9)dRKOZ#HSgnIh!Mn%j55Dl#!d%!x+f*ai*EExZ(HjSk7EW>V(QQa@^K_(6n_e! z{+&auNidFP-r9ST>x}(uc^)F~BcpOJ$hvU?hL+iC-@P&5@fD&Q>_Eaef4yBo_p54d zk4us3X(dR`1V^laZ?cdsNO(l>6}HcrNjbPv0v$8(XfuFfrjuXr1%kOd)%m8geje*CcxiHEIKYdM>O= znS0zP1Dq@#VM=J+9F7P7cp2<-r)}_Du{LtyeXIs=7S+RQayp0cYybu-O(DlQKf+^& zbaW&l~C%ExE1azM{Nk=&rnX} z^HI0`m|-08I7^dHWE4&G0K(mnlSo1uh{sk>rFzHS-=+!b%KgBI6|=pd z(C^|qqVrjndQe%=6ND4cUKnRElbwfuoG8q41je1(vW?3zErWzo7j0iWshOUNfiety z1&;A@2$Yb}R{t0?Gb7-=G4GpWN~c#u-_d%$Ua&1m86*;i8uHzWg7Ksix9Xds1LLky zbkb%}KGdmRnb%!dG-t)Acgw5Vkx1=V_dw3g?)|t3qK)AJ77+-f`^=sS$dNIuLeTs`*zeozqgH9I-TF)N}XmWY!u z?>(J?y&&-@<@2L4nNL}8UKe8{b&gPzE;xs^Ny)Fq&A`|dqraMpF(?oW=89SsGVahP zBi=*tMGzwd`YEe92O|n8FQ!^5nB=18sjo)tM=7U_EPBOR+Eu?mF?t3|QRg-egLq{O znn_N6O^f@KAa&Gs$LUjy%pj>`6%V9ZtT)8wMKAh16^13danpZTYh;S@`np8S$ia<*D+jhFpyYr_mq4qjciU$|{X zUj(zzOa}5%AJ-&=Ho<0sumjbm^=CFTW6ZY$gTgw&=mU>~x29rZ4zM5_j^xdZ%$}L!`hx8t zYtRcHNl;oVMWA$pFUvZ^WhF~WUJ)zUm@$nrfu732D<#R3$>axU@cH+AqISE|W)iIj zte@jvwee})&_a6Swo&R@%)LDu>4OCT{x=@Hk87V{yn?_%?$64Q3?2$L*9-a5jUdXIf zGj^;O!LTzkCFFh?+VVwbfo%uh4G)VoAGx$Ke0uJhkFz-6d(RJ}F$qXRFv@8gqFM5~ zz}2pW#G*hO4iV$8|9W)-buKcYyuDXp_K3hX=HTOBshO_ZBGQ;UKRYtVqy~FZyAekW25F#V?J7bj{gLx#=n_$4@Gpf_;X$ zm5k`k#UaWj6};6B3(i$;osijIGN-Z?r;nPG1R2rKz$7_z|nO8d;y`ONe^bGi4J*P<6S+( zJ>3>e@Cg5NhLD5Zy@uP65M*ZF``8~_NJ{)gycUifJ%SOEl7TX`+xFz(^?fb_;hNYC z;Misa_^kMN&=lu7;=AkK-tw}pqaBfZJW?U#G6F?-3iRPy+rRU@3oL$tGI${0)*Z5o z9+t^dg!*2G`0=nqYH*nmiuV=?XNQepeBr7y>VS{p-5-JVHPh?icTn^D*pu@x3m@qT zaf+KGXK|Jy{Z$u+ohFQuWFUu_>Ne1yRS$H|Vlk|h{Iqo*kC(cW7(qOum}(uCj?p&Z zqqFuf(sl@u_d${1lk(-eEVJJ$;Z|5BB(W{%wkWD;231a{M#mIlywCm>w}k+*TeEBQqj` zYpY@OF*v~N3!Uz;R7Xr%+arjXlg6>Va>YlOvG=?J1TeS)Vz)0gP!=!?TO$c(LBqB9 zjfWV$@#0CS3lJlqneg5TL-$WvnqHTLF3zgl>9VCwTT;o-Vw_Xi7i(RcqJk7{v1K!jHJC1l+?I-9{h)>=JmY5k)cvC{_(6&K|5k9aP6Cuc zrero7Ml#+5n$BAEeJd2O zR}q$nB|kz2Jqwa>D=E1|WW(U~ai|QPo_0N-8;3Cu>Hq|S zTZk)LA(3g_A6bpVgnRP$C6Z!UmWnviS*Z*e^H|24?VF{mseMY?w)Y+j1uaZhdH45( zb}%ft$}co?4vkLhGHp|&{R=UGCh zS?sp&HMJA=Gmw}-2T6@{Tz=$(srwEWoIpjOe1iFEN2cmCCIbXLKih}4T@oq-&FJx- zhq6bA7|mE5Ah_mU$(086sIS}Q67uwaJP&=@j@cS#GuM#5=qmn!41_Z%sv&OuHKZ}S z4l+%vOYQv>7VhG|&*|F$lo#i<8!3|wiwK-{R=qa4h5E&<7F|38kPz176<>etdGWrl zjUMA6uJ}jZ=Oh!zF@)*0Y?)FM(&K6*2ENF2_T6C$^>YJyGzrO@pKE)ypt7V>8;q;T z$_`uBF)o4hP1ag{X5xy<+l7NTab-+^0A-U+Zhg_DDeZXC(D#e{>v_+0yDOi;hg_c; zAdtfW)GlhU@dNT3^Mk10XJy23-q0!DMXE-9UBkf=#bjzziYc#kUaiI&%Zp!ejS}NQ z*h@xz#S)l+-21#OX4w?F@E}!2Bz(h|G3}a(4HbHYA9-zp3!2TcM$cd=aG|!LBBCQq zis#lahipcBMx=orC!U?`VN0bxX>}{OJ>4U+eES;oMcAJ4-cNu)%JQ*>&gg9-MUhXaA z8x0mg^=-wmX}!dk#K3yBob>R*39x0}pQX2ikz=1r_1+Wq(&cqNVZS2peF=Q#}GeLO-kWJjV>gb#bSKk*o4tYG58siPRy3H zY_%ptaC@C7zdnct@sEaZ=YYujn>B{Dy^-HJp^s{ep!vBDLwau<$^pLx!qF}?@+6<& zF5}M*8%_HfDeR*3NYtB9Z#|1<%;^_54He4Y52#Ha-O8=$auwPw7S1OVP%1ML-p*To zFO}B;G#0Vqnv+7xBc{q6%F z+yRE)AwC7UNW0J9rAe|Pm3;^K@}2n|hZoY&xAAa2F|onOjCv~>xd5@=XhlxW+3=Gd zr<0a)lE&BORzr0_cnqW2=X#yMLKp-tuwrhm8q2lQ-cH(gE>Q}cZhHURs+r-5tOz2H zaDW^oCXhh2*2DdB4k#fS52i!(6>63RymSI$K6Ed{-aKt`_pnU_lGuW>0Ld3cd@u{$ z=Z#^>3N@_0=Mpr+5ROqDYCqz@ey;drxde(G!5XgM)5Wid{SN11yVli{xFh2@tbYak zS=OgLPvpQa>R33LQ$YS4o97EJC;)GBA6a5q7~BrYd@isk135mvep4m<4spWf7#~_H zxdUs4bEC!)p#)6JV6P>6M<~GrH;_ZR6tYn;sm{8q z2GU2^L(GLd&N?nznF*|h_G5iec&iM&c-cQRieBr_*Y_DnzwIvPV-8Bt=C_NURu0Jc zc-z>Lb6bCeo|J^ppCyt%teYjvSxCx*Pd`0*pM1r6zY9PrCa=;+k&T3Ali zUeqPdf9I-wb>&5L@mu?~qPZw^R~OU*Cw)LEVQy%q4! zS`{BTg*%av`nJ8`M2VlCC_;pPUuZ69irBF?VTvI*{Y#`4QDGB}<}` zLPrk!k!$Du{d21}kxw$SXsh$v54A0D`WB)sr$ZjRgmsK10X1aiiOCWR^ZFeG={2qg z`bT@AT9D2)9*5Up;5qJKd}o?1E)Hyh9bDYe$s<8v9bO&3No3YKju>628-GwR$1twE z<$94mXOKnf&gGB?;|R+P%E**Qxn z*)Z7VCj6CCdWyiXb1xp{>ZKJWgGj7FY<}ZFyBYt&8Gh!Lt!j4~3!GrQvSqH*&amwv1 z)%@Ji?)RLHUSdq|R49y54?2@eilahoxjXNpa>~Y)YM4`R z*Q7RMp&v(B+g7=4VYzD$F9=2}rOyx4;s#qE8mXwqTjUhBA*==?MrBaXv&vsM2I{qV zX-pGn)0KI=*O-XY+6V%-kd0wkyW_{YNR2oCy~Y>6RI6PmGK?b+=3a$Q0mSy+XHJ=@ z?Pse>d;K{zgCckS-mm*dJHWyX5!5z3weM}1j0}#}x!w#&<^?m3wd?!VW^D;dT?7hU zqY{ICCnDc_`!KDY&e88~SN0XRzALYZ5-?i+=Kb&`~xJB(5IlulsJbR+8f`` zE0UpOf)d5<)LbE536R5dh*Tq!57CwJ{S5}hEIW|O$<&mv*hrCDT_O`!E?uNfCM62? zI1oMqFnK_Gx`j$sDvb{}7Dv%e*D`{ojy#jjA`brHhIyaIbxD~rV|rFiem zZR(mR4t&&^feCvxN!nn#a1Lk-iQe&uT(OAGg4|>YTV>@;UQ1Y(aL+S+GNI;v-p2;o zpn=3UXoNVcEsIOMBu~?G6Af^m7}{&oiK|}f%B;6%A(lZg#W1mqErj{q$~?QDU{ks7 zn27SE*4o2P+?~Gj1TPt{|2^;QVss33j+l7agB`EEKorD4$!w@wtR+8)Qym<_`SLAs z$gABWd?W|&nM9D1WN$WDqsD;R68)~BGW<FeaUz?E8qnaof6J z+^8P3+^Ewtvqf@HdaL$hjr}l0P_LEjLG>?FFm#KeY#S{7_xiyIwPQ=#YfM5d^xc{) z&McOL`j}vM14byeVRdGTM_Z~~TMRY~cjsjkR0X{r$%gSH(S^>Lqm+Nu@!OW2Xt&|9 ztT6ZlIYNe-ueHf!oa|K5ocVMahJ5KO6><<*Zm1E~WH58DnuqyrP<3t@D={pC#gf$5 zH{(zuS%JF@2@A|x)`O3SNGb}{p4QDUK$Au+cmir2Cs~6w3!ykghnAY#m11@^1P8HB zO}39>e%!FJX10;P2<26U@Z-9Ru+axYoZg z?J7D_`pHcra7lU{wq`~bBDY79h{t}cRxiLBYK_+T82F(XzULTji)g6!?%7qJOh?Zv z-)7NhF6m|<;D1jpiwFjH*6(U9mDo$ZZ3`B0k%+UrAYX>nG>ts|lo!q3AqPo1r*nM+f`T!@tg!0Uqv#T)tqTr`GG=pT&l&IkyIdXDaRwC9wFK75cvWz z0U5*tgM^Sld?5_V_spDw+Wg6DX0#D0S8!mJ8ly5^R~8IitrOo#Je9Z^7Z$>vHm~07 zoftbpf5_BIja6+`imwppYoQSQj2G6cVQgcAaX7LDZRJ6tAbgxC%V~n>&T9cC~@T;Ha2^uaA5EvY)7R(>?5sWmmp5uDe3GOrWwA-tN7~%BM zI7p8bp5j(WWjseQqty@YlR8Ps>7Z2@OZeHcF{I=W2t5v%+b*l3QpL4WoD=^HHSKk7 znHtarZElNVPVcoZ(gBIxJjd*r73qeV)1b?&!I>H(@du*6zOQVzM)Rj<<1R7>tq1~X zrrkPk7l|W|WvbLW5RdR%-AvwBL}Np1LyV+$x85 z4dB=_(TP1E9rlP959EzUlqt)_XXmf$^`+o3S-&v`azjO9TF4C{UkLpnZz7-CmZCOn z1jd^pn=IlNTCL$vhoMT2A@erM$`>-cqkv^US&zHR+e zuLZ44829~Gs{$yixIu=zGoN0>x!xQ`K$AoV#nro(Gi^1>&h2H|9*}VRx4rXk{aUkC z4<@GJCX^cyi^vN-tz5I@_%P0Q8uzeQ9CPH=lZpPUuo_mrfH^b}zZ35?pR1w3IQp*J zE@cJg+edfya>v=p6tmTeh{`l6fl)6e*HrUdafOb~wrvvrWmc&bT|p{h2>!5Rk!Wx$ z#85W$c-1*#|M4tBz0G{x;+NNtc{BbTsSL$pI)h>84>O-J?0P)W<9&;fne?G( zGL{qv#rA%WJjZb7b9=wmLc>j0wZH2>Vo;Fl25l-kw##HkStb!ILJ{_D-xdjuu0jek zAM9bRcrHH)lsI(AjZ$_|@x`YRbe5C8jhKEutMY&~CRKLk22~ZU^ZY!XZ$(7f!zSrs zX2+Matg|4x>LtRNQqnmS))h!M(E7<i+;?d+!Dfn#Uw1}8Ku4|hFWS!pKtk^M}<*L zVsA_|jXNeU$ruxo1muRCofJRk?;c9G{g_*2;zjI|@+(4`E(vrO#f}(6? zm(o*McnVn3M<1ODfcv(Djz@QUuFm>c#VjG(r)Ow1vEcw>6|xEEAMJ@4ks+Kwy}H@L zEMRs%6xCJDl6WmY@Atr*qwhG|3=|h_52d_X-7^A+P2B`J8GXmf1fO1*7HX{_f_ksf zu-TQ~`Fjk&Gg8ZH-?>h--^)5BFk}k;+FmP4VfCqLt9IjjZbq}2!BqZOah)i>Yma27 zqBneHpR%e`mjyJ4n1c}2#CS>)#(QF+F!?DsUInEwqpPJ-1|WXS+S{Id1QcxspLy=M^p$o=b1 z4$ElUJ{?lJEUSH6v6q9n%5>COrC%IRYK#iQPRRrP)U@pkW6m^>}o9@3Vn_r%emW*z0R&Z}ywm*6IHNLz}bQbz}NCczwe z7VcAWB##gi(|2=oOvIyZx@?YCvO&!4;y!N{Cs(MBJ{$=m*!}mM*Y(hbrMF>S?N(tB z3!RKaC;B$(pB3Rod^zpwc|_Z1ZVsNx%)5SVdF@P$lls_p@qONry!eL>f#Ct|WoUJ+ zLE2SLpY4+ykr?)3;hb{6=hQP_uHDcZ_Npcdx6lh6r88xd9 zM`DtmE)#PA6LxLzCGtEgGroMxW6KQ$*Qy$|b5+AN0&hq~eMZOh%Xbdxdj}3IvlFg8{_%bP_WS*LTx?;Sw)u6=*+HF)^=IXMouDvi_ z86Rd>16lv=QeJ;QbDHkOgF?{fI}=_v;o$PQQGfpqA70zcVEevSH|6r822J|SAvb|- z+a%KYdi-0z6nOk=9o&CAUJ4{tdZoSu;*}ng>68pbUH9|kCG`hq|JSkUyI~fAOBn8w zVQs{z4K^+Th!9|G$MM~p>J32BH{;mf^LOLPv;0&ZpW{7uVr5;dbW6%Yv=Ld6V(Ii0 zULXrg!o*inmadVe4XE}-{DizMc8`bM6@u7!!WGqD@&HFbxWD5eUo;})Pt?#O1_POt zSsT~3jG$w~ME5QQOcq!?!vuu5CQIJHEF6gS+T3Da(SE0iwv*VB=@Kh+cl{37g?~Ob zMDIwF9_sp!IJkDb$;9=>UusnrfA^QTb{3bkP9)gV_Iuv>ALjla{byo+yvBd~@Xk9o zH{}2JaZ{0hZ*`_$(bxR9_KCMk|2BTEkNR&1Z)YL@wDD>UC3YT$>#h#YO|h?f^XH&KNWMTpAlv(rIWCsD z-fa)3&&5@R$}$}i5&S=fGvBO{d)%UZ?S3^ncuB_%^>0d&A&41KB-vG=czt(VeYw!H zS`a%h&2^sO|E7tPBHU^jhT*^|PsGTz{N)cF8D>d$aSV$Ke%Cm}9d+q-LnnktW;Ty? zf0~wy+^i4r`tm+!RACdr&>Zgm@h;`#_L%OW8DD@;ZU2s?n;A)S>_?fR#>k5QN0I<&0T{GC6{iEB7w-H`w&6%$Chswl`1)zOTcp}$`eqOdak8*`4 zI4Eb{(e!uW*RE3(qPZsPQTr?Zug@TEqYHV(bxFBCC&#!xH$S-CPdAF{G`(D}sMSVD z4tXn{=x5gd3C5?C`1D1ZH}j9!&^kzR@2;q>UA#!Qw-u!qNB8T--%~@nxxQC|6aAz7 z^UiK{Tqj`R?{QtWwz;6Odi%yM!IA9HoE#{6UA%CYFa#`z&7hEurj|QY{2c>)bU>SS z`hQ-l`Ejl5u{g&vs?cRyRbKp0T6VON`o0I+KgV-*4(qSiPy)PEr(uKs7P?lDdnoO% z!cqN>L;1a6%j?Rd32pu!mvvSC-UiaK)4xNQ_@X!eZ{T;mpj$0ow!eHV_r~8j0RPM$ z>i?*%$@q=`=1N6%>xuiNve@Ey;5YU&SIPapOZ$g%>}?|!n!Y^@zWZ<;@<1$UkM2+Q z{uYUzdWzy)1%LYu#=UQTuUCE$ZPs;5?lB0tlq(;Ndi~s|+_tMZK`+2Q%ufe@&)UU3 zVo7X9i#vtM3PIIXfFs7o%%t7CQ#E~>5E_+_`r7)!(IT_^2RHqB++OSREjB0&@*Yj^ z7Npv~&&Z?7Wqp;@mHwR|4=9n+knj1NoLvv4ykcd}A1yF>Y7fg}C2@7iJF z8ciXFC;z)h-{75l_+BQV{o;f#7E47=h=sAutVRy2(YY@ zC{hzA|3_?;`>3(M>h(*mB~9o@`msE&`|9~}RA1peXNU2LQD;x!7`^-03wBd$n68Xu z^SD625D$oW5)|V*Y5@i}n39a{ey$l;`T_j{jd$<+tbl@Wt?$L1xfh~y&oazn9nX)F z*+aA9pLY6r%(wO$>-ze*$%tr4z&O-guicAN?3ba_A6}g%?L$_aB$%GG3-IqFMrEF?cnBNg zIFq^du`!DBps)L02(>~7vxm%;b@xH0$4N$vqn>?Y(+YZa!@=AkT7ExC7RmHtNBw%gW-3c&$Q z3`v^xhRCv)GW`@~{D~h3j9=VS21NfzRav%(?T*8WUP`G%YWmNBcl^I^tyE!TBf4&aY9niK)X zO@Y&+W%+ttbXf5RPYVD7#L!IBM_v?;wV0-1AjZD$v?@6>zUvgj?C4soqDt=mn%{lb z?oIU~K!-O(noiTqrccLVZ3CYF0e~P%QZvo+1F!Ray&=mEhaiZnF?uv&Wcljvd7?MC zX_`f@fg(v%EM9_Z%`k}n#2n=R|A4Sdi%91mT0gt#UXn z0j~4+h;dzqT{IGZU6ee};|MWJ$=sO&(Ly4eaXPd7mCncEQ|pFdy9>0^2hoWFWY~>K z7;N+r{WuU%m?hbTY5rLPwchg~M+{wO<1twMfy@n69lK5)8IqjOaXPjHtmqhkR#{Al zO$W@CHAxZ@`Eg#co~4B5RB)w&gyJ}^Ys|uUmT5{-6lZg`(FH4b3x#pvCGwRduzO5Aqgy}XociZVB1h)*Q&O~j&8)iZVVBS*XDla2peJ~ zFeORBC`akN&mMMOnhAoydVNn}KE|N`5p%how0^|?;to#(YJz53-y}%|wcY|3#-f3E zQP$YCu839WMfHM4_h2@r0ok#g^CJR(y_Bz6N5fp#30LLX=7JGfS0?2A!Apbzi+hqf z*Fuc4G_7hhQymX>Uj29uJ9Z=!kFEozuST{-w6$kRsAj{c27sj$p-|Bt4R9@bg81g zQ~aCyX2$#|mAKeNQ zkz(1LBa>axCqjgoaqGe^QZmTSnGl(uT!Kg~pS8ufL&n6SX$Lu-emO=BIe+ngSm?xk zSJEPnKU#1;UQ{BKK`=hW)5cdYIwR(nXOoL4S9`kRGulLx_@jMG!sn1b8}(Lq5T9o3 zqhmxPO1IB$L|`v#K#TJL}UPOY8WwC zVuZ3`TDzJvD)nUo5@#6<@V&8Yj+II$sy)=plz|!YmM^G6I2OYw0k=fDkIF4KO z`OIr2uq*|b0|wJ`d@(6WqBuU)r%25AtLEJsu%{rRz`ro z?*x@NE;UgWcS4NL)7TtAh6=cu_8?%`dJwe6^U*AE&s6;G1VEFFg{^g%`UNJAx~xv8 zC~Gm8{3)EfL%36uY`P44>YpUrv9g&(^7H8&C0ky^2^Bdm%=EWPKPl|~aLhUu2F^PX z0L_63qcK~Q*B^1G;a{QC!X|&SgQjLadcmXyn|xdngg1I4oI&bb=8Sus47E5iYb+Xz zp#YT*7`81Z0D@dNgsp{9_+U5OtQg91J)q;|b_J%O23iQ6->?250T#7v!EP~u##))c z$sWw{Tk6lvDm!wOH!byp4Wmp%G02M$VeuX6R*F)Mt`Vwosy{C6v4{u!;{* z>c!{#_y9eEwq=YX#eXnSfU~lua)QnwpI|@`A=ps<4#(v~UbF}d5!4TNqp)Sdbs5*0 zpU0XsQQJWCXv4&nKR}#3I-5^277s(A#shaMjYwYr@a*xpj|T9G%xXMw&b3|4u%(6@ zao`*9S+F^|9O4KP$^Z{aq5680{pW}yMy)2tanMT(;mOI2cJ!02+CTGFD=Z9~mTRm@ z<&SJ3r@$wEi(qTlQ3sIj;#Vc$vLJYczP2g<{on_@6|i+uG_7ghc?MWGfe6|aut@?A zPSPpc09&`c5?VOf9)i5Iv=2g8XvcPvEY|i2` zNydd0bhfV!Vb#f&S(Si$02>AH-qm!E4YpfCER7S(aa{z0CM?)r-LcBessCE5;&$*? z2up;!hjK>`lxWc|oyNRYH&R=w5A zU)rLshCo(4pJ60q64)xo<*^~wQ6n&0I@eYN@{Gb5%mjj179pT8Y6Q8=V;7F9%n2k}b+lOi8T0wap#~nYl@L5N??tJU z;D8j{U|Uep)PRA6Gz$S3FfEv2a1++G=6A*#fh`3j-svQz-pYcd z1zR`_{_Qm=Nl__~%?gQJb=Msx{~;{?XjvK=zyhmk9?Q)?s9bHBHw-fm_F!}Y?0E;? z3_^ru=tQ^>%8#X93qP&5R}}j_0c>GXU2`cp3sRHs=FC>)0iQ6Bi&%DUGz z8A~F}%nDe0VM+{6HpoV;IPSKqCIl*)Z)+{)DD2ZmJ|$*~W$k@|76E;Yr+v+JTc0az zwI$Hs`X1eR{T7dl9?RKo`(F;yHO`zziaBs02sUTf3FR20V%8KmO|5KdZa21dLClH@M8=o;+9kEN|QxurvG7_qzu!#5AU* zVX{SK*@Ee##?5WJF$OX^3*KVJ5+Mje!Vtzs|D4zLI}H!u&~NQ(jRYFZII*n_A6%v| zxwz&um>I$^YQ8hrgsfDRWy=1R{R?e1$C0d*<}8ZF*H`ciMtv&o*V z{>r^2ybcE(dOpXmp^F2Jxl>!1gn)g&X^fpfO#UqWA%!7MlcQ-|SN-eQ1;i5Mg<5d; zatVThmjvIwK3j%}A)#x1YZ{qooUx4Iy(cJY{6<@Mk&Gn(A`W|Nrf9D!N)N_sW;vEigG{^^-7z9QBKDDaY@lhtH6>XMH4nyXJ!zYjiliY=#7s|Sx zWqQd<=R#-rtz)JJNVlKQAJ-?&pwg^;pk0%2XT7W_f;S+nJTKVNQI;F_Cs)s$rG>*; zo|fQ8YfoGNt~6tp&n29Cps82}pcufocna|je12j=_SUucgf)ay&!11DV^fM6;0nT5 zu$3$mDmX(8LO|6or81kwAPEjQ};e zbGzW~)=QeKvadv0CNyY%xP_*P?HL>HG5oMpttbZCa$xY~7e4{4^B>bH-8X;&v}%A> zTli4Pvb8oA@E%MSiO4s~6au0r#nFLy0+XCkuIW`ush)x65-UzyR!1;{>uhoX!OVU( zLXlIn^V}fjDoD+Q3#~qAhQ|XlZ&MnchV2+9l%OqwAxV2H6;7357P_onTPasd7QmUqYIv=T5PUSQKjr! z$KN%5Da!YtUPw2u>xO;DFm|96YpDSe6{x6E`ENe2SUB|B=XJ=cuR6BWB(W6NkGnt&REL| zbu+#KEqtuyv}h1iK@6hq-y4%Xc_366@K}|R| z?CL+9QNl;cW__(;*(`exC<0G^KiT2Yz7V0OgK*Bo9~+{kR%jnRD{<8PP9#^3{D{BH z3uRH?#5V_Fb?pU1VQ|^33^iXmqMxE(y^+*zvsi0JWHbrvSmI&vJaz!8fe6qQ*TBwL zKp&U>hKUrBNz#`hNtRt&3Zuy8t_|}65a3?r9_%rE0CHf1NsZnShltE zS5IWyBxkK)Dokcb@vIHc8FjoeT-wM6Ra!)8gtnFbk|=J#Wr$~~T`c-wqRFvQ413Iik4+aPAic;f5_FHklMJiS`K>$*@RBHK zDkAi=nC0)8n126t!EF*7^!=hMst?L$A58U3Hm%uJ8hC14w)Volzh%jBAV#ytNzH6R zYdiOF#>b-u_sqTv7aD~zxFv+#-Ib^QrAcX@>7H#!h|c9p7Zs=bOWSr+rOO_@QwNdad*hXQ4V1EBnsY5e)!4)ryud*Vz+>*^hU*CtH4#$g&; zXpt?T&``T3xJylxHUPhFI@A&cxc_s}mGVj5w;rBAl=j72EE_k4$=w6=IyLC7!*Q`( z>)3S$V_e1VJQ9I!E}vV(Iu104TTxHT?!E=GNDLGSRIIb)-E|_9Ey}c13;)8N7aWY} z4{*WIN;kQo-F=l@x2(btQ04Y^V4eVriM^NlQz_4Ww?^*q^48$sBw6NP%qGkAG1WNU zZBw#Z7@)8vu)BHA@?ewb@7@P>UFRzjgt|f?O_N|AfWM}=Ox5cn|T^v)#>DX7L ztTHNlqAi87-v;Xr1R|~Awr;2P;i5KU%N%awndj)Rc#(I`8K{C0F7L!Zj@3bnJE)=Z zN7{4ex4-LTK+3>ShHm0W(lm|Z$DRLjeFiryS2$VlZ}Sw^8|IK9j?0Ecgw(o~X|gZ5 z*|31CW4Ooo1;h*?mpc#)TUt+_5GItg=OK_`hE~fz{|K702HXNY()I33jkMy6OB`}7 zJB7O)Tv4CR&!;)8e{Y3@g#Ly4D^$Lo9qV%_8DW}0u;>9(AWCioux^K|G#F0r&zhMu z4=_qg3vapaf33wX=~oCWamV-L)PCH;Ab>%t3ck}a>w{Ea8>7XXnn0Z8NTQNK#QWa0 z?Oja%-@4ov z`8?pp%~oznsum#be;6Hs*>0TxJ!aKgzjRu!f2K$m*q1WTegCE|C|k@d419^nOBnV`pai-zR+=o2<9J6(uu96v2w)=@ z^}M;#^I?Cm_7imth@T>epQ|SjN1%9*PkI_~ex& z$tu|I8fX&kwPM{j5Az~@Lzve$=V4h88*i_R6sPBbgm9_?m^#WC{axthEJ686eSEn2 z8khh7;FAUL$)(vuDb$*qFvwU7>d~2VQT2dlLHWgyykbJ7eLCPr^bDfw z-9O^nGQd-pxrn-#WjWsfc0I!|yNIlcR$GN<3h3iiDR@_#*Y(t_HPrM4lD{%6B?ga_ zeNB8=$N9klV(0IjYrF3Gl4Tr67)xq_{QfJ)2VIdDBJ}}fz&|?TPXP}sFnBXd4cf#?uV-@qUq!UtAdoOL%8$;}gp~VJSx85d_&;&Q!e?Gx|=Qa}mvl z^e`Se55a`%UJgXA6!kl>diky1k0f1)q_4v5PAzOFCg71Y?YenR%S-opFV<8*A`-3q zly3nzsyrhif#k`JD!kW0tYuiXmMDnqY{2?TO|!Pyi~vHnZEk!ff~joqc|L`B0oGTpMS^BdAjUaW0% zmuwBNEd+t!NB`@(?+1q1&N{Xbzj(_!c(4^uYXgo&+hkCdFikSC8g878caJ&H6!890 zhozb*?m8MugI_OYUIq~#*FqL90W2ph^NN7~O<&^9zea$&y-JVywavA^z3@-~7csRj z!C zAEv(^Dd35AK$U&G6$;FA5|-BS=588@+^=s1|178|#$I?$wi@X1TgniNQa*P-FrRIf zoUH2_y&*I(?Qt0{X9KuXw%c)yS7=?I^*xP6?sq5nZ^I>dE#Bx?Bng}2LsuS+FkEEOOC z%M?M-Q(Y6wljjKxfNwt*-9QnG2*@&W?{$p}D!6QzLQCnWacqt|2JBlc6XQ5d-w9HH zYF>h^UJ{lCB!Hq+`S=Y5^U_9og)FcqklDfb9Mj^0(TP$SUmUz@kAx{-SfDmlr}11M zM$yaT4^AmSC;)Ib4`yicq6qvu5$B7=@(b)FyvuWU-8WwL&`M?!g3gPe!0+|FRl+sD z1=3ZzBz73e&`${@1h0xOV_q(4gR-{@YXkXpT^e54(TE3 zUCU1gtZG@LWQ@XqbOk~nBdj@Jk~HL=Y0thBn_6{Y z=RQ&znQ2dzDcz#P^sC7ULF8pRC}Ma9Q2aJ2kNU8JloKK5cXKz6AqHz{1Zxn!X=qh= zWgx^@Q$_4Hu8#PQU=~U)tklK}wzBZn-!Bk@j-x zFQ$S6u;?*Y(E=&hGXm7G6g0q@`77urjFk_qxHNw5m7aQ47E(t&q!e6V$$hI};C*m} z_Z(F(a={YzdBk(&7VMPZM-I$@C^Z=eI-?LpI}RBvhS?yzjtYhJYo?R-QcTn29*|Dr z+t=7iQ%@si4Yd3Cq*;AFkRn^~_i0%;g5Y6sl{R>zS%~yqS6vzM0=oY8#Bmyza9b8X z&&sW9m~slYi+~_qussco?UBDPh!-v5zS9f!ZQsowBLCVZ6$rwc-w{kdJ^jv8;EaqfE_fY5C+Lp|kFC>IOa(LJVlu*xg6qFr1-KNE;Dyz^4owRnt!P_$` zS|t_lEe%*Pj*UiSwhRdbgqhoPNp=zO!R~K>XXj_ikv z-Il@7oQs6ILUx)=o`udGKRaXIU1xKRKs&V%z1(u290Oj%=$3s^|bD-L;9uFwE*?S<2fE zLeZ^b1u+I5l}Z-NsyYAEH?|)E1AReIsw5M`OVj$ct}lurhitwZ?jt5p#ZW#DyOd!N zd}M(01w;$!SGoII?X&&$e{fnQDP5cZr!WuT^Rm}Lzs`y~>egdYhGP+TZU(2}CF1kW zw{L!tc;}Fo*K$e#eT@+t3yFLkEPW7LCyN7BUT8GDj&|{DK8dY2s#+Dk&?gIGhn4tr z9+ACi=PV928pM$8qU5&*JJ$c^s{X6NTn8!kC-^svzhH)WIoO6>@w`>^2Cp<^T%GmJ zfnEFIpAeghE1ph01+CgvmW8(9sa zVqlAmmf(m0RtOqFd_ai$k_yD*5VI@cNgnNMmrN0WzTLcrVZSd(|Q7XQgI8KuH;{RS`Y4nzQ59g{4~z!JF>jZ zb12_=1v9W&z}Hi3RxC2z^0acS{X>~5M=?#z2BAzgWCn44w{!xF@PU2W~%m6Q)3 zq3t6+FWmoifTpgKnOy}n7|b}xYA`RBNhI|%Nih1?VS_9Bqs>wW&ay==zSk=uc3l9)WQ?CRq` zNfw1wZ?fCaLrd}A7tXzPQ4X~1f6p7dzN|Cfy*|92zw)x|ni<^m>^YRcUm>VU?lTY1 z_QMEBE3fN)?Tv>MaMEm$Rr{}$fpuu^nJ%*MPc-K zz#-cU7UfuUq)yDBlA@gpv*S2~{|rdrQVpvAvpDX7dD$*~p8DRJmSsnPr|{2FQ?Kg+ zzxVgrDzLVnysYk$*abxKKrKz|~+*u_Tn}8=GrWJY~Wd2!`Ca##q_e}xF z%UI5msBg%(+ zklREy%~BP3GaaG1g)%@lxv|sjyCywGh84iJ88alK->3T6$_DkOg0K4(w-)KPV-Bib zIIh=BVE^1DlCt|;K=MEB%6-~-Ed7VyDt9l7$UkrV4Q0#ttEV&b){b6rtvlF+g)N_^ zkRdmj><JWx|)ElO=6+YS+j(WdYf*l0(fB)fS3$?l-dGq zS%6Y*sADsFI&clYV6#-poe+X4=gLXkzGu)%>Oapre%d<^5A0+L+=H0CBW9=!5X&qB zc$<}A-As|<@YSkz@87*!i2=T>h<{Mda_!49&NtRe6HwIwbd}Vy5(8rv_Qo=V@~q~8 zMyHua{GQcRL(v6i`f8u&LpaedfGfbc>9W}l+>$i6$5wAE`g#1REH=PFLD6U6c4r#! zNHn4yUgo%=GV7cna;b2wV@MWh+Dg!f)V&_%_yPL!UxT*`cl&*uM^IEoiXZhKE=}Kk z;Uht(X&M0=MoU>y2v~qNAgAd9H=xw)>;>?*rrXSis1YC6z4qe*im>ME@AqjYR&dw* zxnQ&t9UVl}AMrFS#@8p2p{(#~gWkGth&NBS)Sulig`F%71|e)Uo(_skwkBH&gyb7( z4x&J*ytlvTuA62ohA{b*WoNdO3r6U`hS0=U#B9-i9{T#o53))04Sf%i3dh}i8hE!r z$s5OpxbKp&U zW9=SI%@BXwAvwGyAo0;DFup|!pC!XcGw86cqxAJiy;s!A)Bg5=8%12t$;UXH7T!Gz zD{d)ZMJk+K(|7e#SOLC)Fu=x5tL(1fk;K1Z_ z#w7`H_V+vt&h$+9jiwl4v|wP&+1%?r{jxY6#LKQ)egOTy%Lmr`CPv?LNAzS|FRvnP z`gimGQSVsy}u zbV|I4vgTv@wizoeUr&zFhhFFp^l6sYTIN3e*!2%QVbLfo{TF-ak3=pTr{!?L@CAP=34-UTWu%c2T22DdY_ z>*ec9E9mbleyXe$4nhX7;lg@>fvCa~+NhEUnU(VB&GpZ}Ago{r1bl=^W-uKOp|S_x z7=*aO;E%^DT0`1f=$HXSK&F#AYA3IH*C3<3zu3Pp?H{kiz5YH!uJ3!{iJ9y-@|8}a zF)bm!o`9ASn1s41CEgD|6sygDFS;sr=mlSorAd_YtUb9Fo_})VL{L6WBlbdon6i`*yac=IW<19bM?W?PV;kWTN7zY+;@K&-xXhz+yW_y9eSV|Sm(y878_jmC%v{dYCvx8VFbiNmx>=yz-e zF+d2)BEcR+J6)_az~qbtEKT6d)cvd+j$xJf*RYm9XNvyJ8Q>mL5cRwt%{23&5;j_d zihnofu;ne>xaHwa;m{wM%ZaeU3AEDNK^gc7Uy^;^kQO$h@@(98fc~lTvNP1kV#dIe zRaXIf9KlkO-q(apu4w}kfr=1tzd0SzM?V0CJA+7)|KwbZ#|<~p>L4uuXEa@8=OUGA zUvhrA#Q(<+ssGG`_&l3df1sYmF+u%`LdAHdOqq++Oh}>M;2=&V`y1%MfxTQn$&Kxz z?X65z#Tb-Fe7(0p64w64lA}-5SI4^>!L9^*n$mH{p>X{yNoQ8{>%G#Q~S@M>{b%b4=bv6q}fcJ z(AJT0zh^=C4)z;a%%7VV5|iOpLfSLYf-*zP08d|EsRTCt)51UZz!+?&YF51aF2_xU zHmerji#ZvMq&i#k+#Z;@J2(dTz$&L|)|F#Xop5K0b?C^?{phxU}G${(MXGZU{rYv@AM3-=U{caB=cb z?SE)MZw7c~GC;8(emQOR)>ShNNh(Q@WiAa!<4hKjrRseyk?r{S?k5lxfiYJ( z!UkQ3%@>VzUH*K@w^P?)XHNDQc&Q7=J>x#4$B1j!vG!9F1onZfn#<9JDIm{}UX!3bka-t@QZ=xlilVLzs6vRnSt&j0s9>~X}(Cl~qunI{6^ zNk?mw^HR-hr(jCMc=P+{tu7n+V#hUO*Uu>U_FH#@+M9dq^T7p&Cjfp1O9;3L3PeGg zsw7DxHnCNdpF@Ygjx2BsEmnPCYx7)<&rU{%_fHa!%z#Ja;2~y7DK^5_Y4hlS>mR|t z=bP}){6Dh>_Q!s;k7&I8wsXUYY*9=`cK)t~j70Rjth?{y_l)z9Bh~3uuyGABKkLN4 zDUp`l2SITxrrJk)UzD@+{DGCd^U`4UR-{2~WeV;$NzB4UmHb-d7eY}9u z3$Ogt?)(r6iaqCl$pni#J@+I>Q~#bx<-PtMds*~GS1v{On?GKeb&(T$Ij}X#i-DYD$HGVk9!8q{_Z$iRDg8Z%=K1-48~t&Fnz;jKhWzaSw~B=lIS)M6 z%Z8SPS@U|#Y9hP)zI;EQ@&MPn>VCZwQJ2UC_-MKa+B(kz&4d+mwFo-_I2e*N36uw?;K`TBd1!{v#@jtwX9r!?P8 zPOM%ikeLZhG7Ft|oi)7@rf79uKzmeE&4N%W5BWOQ^Yi>rHSV)$%@o_ZsRKzLk$Ru$ zHuq^tX`MXx33uoRDLJG7m&}2|t`18QdS7#O(MJH`T^C$TH0Ae9c<)U+6Z)@fm4I&k zukW3%NL;}$41>v7{oKodsd{_RK%{YHdT)3*<3Td@9t!EXn!gg*!!apn1^5r!IE|!# zSPwoD@L9t`8xjR;R#-Yjt+%L@)H`0LHXv7vf!m3Km;y&86C0x@4sfnWeJe=^-^B8X zf*1uZpzWW}!ngrVs{Xb2AF%h;?$k~Ca&jrm#SBK9uKazwtNFfZ{k5QRgy<8~E8JbE!i!21Ok#AeTuGY;>~3i2+53iv_{mU;sUT<5b#hjf^*VHEkM&vf;mGNASA!|A!3# z16dF_In!R4nb81UFr+VIE~?<8;D>nEh+uR<8+w zp~`PT0$fRHVQ5_8>T6gQFW-GaC1p-yRbAS*WAl7zn#(4tyI}`AzJK8ct(kA|tIv1+ z`-YeC6@YnT=o}f%D(t`BIlIPM*Q2~h5-t)E6R;5AHB&Nw>S{W>a%KUkFZh>@U9$o? z;`W;C8>@+DCRl5CLCu|u!t6J&I`3L2BB;f4>Eb`VZxZ^r@*pJo45O6%N94Drp8uJv zmL3=t0H*YKwks5B4U^UNb>eN2ND}y+y9Tm`Kfdj`tu(!f$!VY)N($P>#JYu<@{A+r zWBApzoyv44`I(0zEJX6Z??tY)WMT}ej+H_Z~sr;3UkV=!7f(BM8 zp8Mmiu0&E8sF>XknAQY4$*pn4m;%sm@vhaB7z&Oy~m}#r_JQ zR(8>xU_lJDUG1~o>oTD2`X3hYt?B~N4eT#9@}j^nhC=a8ovxmmqclA(bjU_cqe&w9 z+;gJ%_xJDq(7X2OS=h1rE6v6}PD=E-us;^2+r}}ZJ2j^J97^==oXQbp%b0`fB)0^1 z@5>+If#^NPCzKUp7wKgFWkdMEEES!Q>}$y(*N@2>sDb|3>D(_U_?th@&Kzka#10$z z#;1V;Uy=nFUSO!1_-qlimAtiO9Nay*Ub*DoIFu4$zp5>*P+p zl()(Bj~O?7;w4vc+ohou(?nBL^t7-LzQhpvULCw1mWY@pYu@D$IbcMWS>Dz?JuBef_VN{pZDfWLvuD`1RO*9F$^FicJieW8?Yf z;5bgwviCP8naDS$&4P3VR|95A<<+}mdP^Npz`Y{8PNCPv4jGGJ4ntFZhLcC6yx@(n z#>#k45{DDXPSWLl&z{5cYEv`<&S9Brdtl`-s)Tzin4DhE#2UkuQtg9fC4CZ@vt6X( z&A&oK{E!*KhSaMFH(67${;G!A1YZq3mgHMizbvsJ*DO6azlZ_4&cEhO9)0=Go{f9m zkNg`9?0qddKHdH9+Eqi8kio%N{1q33Cw=Cl9^>6R;_VO;6siO4Wsc=iqq%QbRE_=o#5wn6>R> zedM8a%W29qu&jFTF^v^Rz^{M!^2bb(c-@OGW$ zyS-R?Q=AgV$CAb;t6hEa>_Q8g6dE@&x4jG(3dB(;Uy>-{^Qmy%&HR(%(HLuF=i~ssA;H zTje0&Q}yjrk;cfo?Y)U-z$^unkV~zE7`DC@6XESVA%IrO6i;0Z>MD94te=z;$avqg z+7Nj!Xnz|z70S`jcpl|)U1>Opk(LVTQ5r^Hl(X11@1Ek=70N((c=F9hM zZd2d0p^qkE7Jy5lijQoC5B1Kfs&y_^pgd6wl?C*>;s=hZ}OVoOHdI zh4iB}vg}&ff9!F@<3=)Q7(fXK0#fl)(U4*rtC(B0=Keg?QympHY*7SyP3%9;J^l51 zKG^c%<_T}}(&?0)*l%8GLp4oQ%bOiosvcis*L8y$!Zj!EeGtazzJFSZ$)Yqbr(rmX zY{l@@=2S|R`8jWvnLqWqI*x;+qc*`z)}Y5>hbDTxCUo4L>G*3#JNDaxctFw2 z)-6LKQzM_WN#PX`J0ISeU<&5SJg836p(OUnTQ9R%hbfpT2&?}{OZxZCx56^&;s@=*m2@Elp3 zd?d2Kc!F?l)v%uYxgh-+1@UsAv&VthE8@jb&~>nkqWTpR;`8*gN0^vm9NF+zAn9K? zHEGm<<3${$b^tj*#=q+HBz=yo(ez4M8EO3idMB-_YHaUi*+jwSkZiHQSHA<^8RWP> z0@`4vKhM5$|ocMV4(phzGoT6d;5L;o%J{yaxeae?isfbno8h@=#+`ja6DAGh@b_kzs~1`0I|j zlIUFJCue`iaBXviwt9jQ1MX_aK=FmGM0Ar?8&IYq9oc`(slYs6SW4XMj8CtYBmp=5 znn#zq=R3W$Y;56vsej=H?&#GkT^|O>RT@#+)zwwZYwgiL%O{6QeM9}3soqQ4KWb|J z;K)0_oo&!YExuPf-mC&FK5pr2opUK_Vi$}ot7raY2F4+8^eR7|%7gnc&9YMB=NKjg9 z8R^`KWCu_IOIAE!%iOW$1% z^K-Gh=BtO_at$al;Ktp!K4V~?(G+*wUZ~a6(K8aCJB_LjS7mu_dFt7(4=VR2|NAUH z;@R(w$CEXurL!0q80e#jd^(@A9{9*pxFB%&H3SgInWhq6DXD{sD1KLcLC92J@%^u} zFiOaJcB^YX!9C8CAdoCc;674mj@H}j@pbjVVzC+H6RVyAb3DTTBhqxt{rv;ODlxj-~OYGhmQHcjresNRDR zuPEPKYtS9I#wgDcD5BoJ$H5M$xV0JNY747(m+!fJhPkOU%Dfjx z9@xcccIJue<;7$A4=%T^!2j9@;C@|g?sMa8a`NKz12x@Pc9#gq=~oNPFw-T_rE395 zlMr`4yewTRJ>-EmQ&mbj)BfDqVzj>|9P4e~m zXOHyX!#U_kH4^#t1p;x<_d4V+gB~lM~s9^_w>KBq=Mw9 zu+eVC6m!!SbbF`8gRaNjY*l`prTp$O@?>cvX3iouR#L(mHv>RteUVf0esRz6MC19} z`w~E-&2e&D023SSs$^=n7qJ1EOI4!Dd?z>gsSqa#n&UaA?KfpdAtuXD$~?lf_a=41#B zZ-{*4xwy?H#1_=2>2$M@-TiUY0B-fo4*+1M#xFS;YJWOd=55X;a6^JoXQF!an#Ek~ zoIk%Akf04tIdn+o+2n6L6?^texVsQ#REYg%ZY&SwAHDDYJPtGe&pQG6J(l}DZyUoB zRhH#BNq#alQeW2}&mX^IKl7yMfno-u5LsfP=5yp9-L2X3R&#oW+P zcW7jjvkbqq;P`|Q#-NEM1ZD25V#|q$M-O!9EK(r&`WfO!h`GP>bpLu@BX{4|M=Wm- z^=Sq{l4_ljAQuDT%o!08z}#P(1%wM@;kh!FHt4kU0ZcY z+Nwn1yh}BbeiRYct#4)Wb(+~f*bt&R1B_4&Ba3KCA|QGs^F8hv2F&<%$B97)Khr|3 zdXgTSA{~sp6E;)noa!h3EU1NcgPY@Dnx)00zAL`)nnUsX^pRzugIOm z45up^*SgfG#NCUn%lW+wrP8rVj4M;S$)Nnt9ZP@xr7@C)V+cKbN?R&8PmN594ZFNr ze>spSyUso60f6C4(mp-9MamUc%aL|wTB>Ph;fz=BOS4t!lp}Jnl z$<@)w&(|y04EZ{apF;JfM$vcUkZ+LYR#cs)lbQWpC-Zn^dea3S-ni0)V}WjDjTBuEni>vF0_nFtmKo38@(hQYmDgTnH#_hP%B>I~ zSDu*SV?1UXK!8g!p%)MP>b{8gG3~iUO}d(;i+i~oA<=z5W>ui=`g68?&;PS$$M2Cp zz&$IaSG`~D6!fmUj$;l~%l!eG*VVDO4~WHg7Q^X*&wTJicCIN@Xu?-y%Y_0xzKk3<6;he@CZOxLI&WJdUn!oz9P`}AZYHhif380fJw zp)ae3z%(3<50Rcr`blz&eTuY<1)}r5*MNzb>>u|VzlZI&jwPkbKe>7Cc?dmVRHTJ2 zM1~ZWSgE3EG%!ODM%s?XWhicg(cq4#-L_sn?!~gf^2NiN;d|!sMN3?Wa3z|&OhP^? z5Gyip6f&BC;igJ7!-O*7&Y$JvpR}-OZI~vYYl{(R@NImnOdC3S?~C-~9(jf9Ujn6C9z(P}z(YQI@F*6AFWP z0Yji$S)FN4K6B^BafaU`j}ZEO9;7dEH{1W>vKoi6&w%?p!t<~^zY&lHjh9OuS+>1M z=msw7S6^=Ko|BzCYRu2}*~qrz?fPCP7L)EJ51ITt zyQLbcijmEM7c=bLWTA^E;v1DLUU|J#fG}CRh*`SdaL-!IrhD@sD+wqodp&92v{}mL zGb;jZY4rR8+bNDu#wWf*bXMf_NsHk-m^h*s)$IuQh_b~13fh!EqPjQN#2}yT-CSJ>70$;7s z)o<-rT9{1V|Gz#oe){mC06-xa#OV7d9yTxytWl`7KtL%wVML%%?*7#GK?+?9gSx11 z!Z8D08wbM50282f*MdkPei?Fm3C+>h?JE3p&YzEAYFTI$+Z*qaaLYgVC68RNU=y2V zFLy;a6Dr(Z5TVl6KH;xM@b!aeJnZ>r>kR+2^^4+DCWY=Ki7{U?Mz8wk0pH(r6!Td1UD(X4f%)vvQByU zLN45#_BBO~F!0KkUMcxYhN*}X{jQJ3OQbtaW6}lYTDR$Z_Z6a2h?UOsjJAF(Wo)V*&pO2#~ zFOK)mD>ljl&UAIA(lm!k<7y5G|9$aoln_4jw2a))tAK3Q zK`J#ubLXu<{GqBrD(kgiJwlm~JjA2ru`VtrlfQIy6UefjiFc~7HE8)uvsvxHX3JvE z6Z{4q$^Q|H#ZC6_`DonRbg%bOUf*w9>eR6riL`9LI6AODpFY?;0_~$fUwv<7>Ch_$c5NFo}&_o9j zN=I?^pU2}~qwUY#^M9-nEZU^o0Ku8psZ_j1(hX4b(r_-x1Y@4oo5;^iri>G%);#yT zPQ>!vZhj*&Q5MPU33CDIw8wPbr-#L9oT; zqnuX(^(lz6nMmb1?WsS>KzoRf9WQptMHb^F4PDPCr#gp_MGg`)JB>X+Bk^7>qdin0 zv|zeP8(Q#~;rfcFRqVvtT6UGcP?j9jcDbZ~3H)mjF5T2uf6u#PdhxOe`m%}EFZ;AP zVt~q$5SQilS@uh_q|oc}|0VZz~xx`9R=u6qxs~B>CC!<2CZYnt9J8sE0tJ1dxFlP6} zzDow4J8CoqRyVLvK{a%CE+IYkKu;@eYpH;(O|gyl{=cLo% zI<@S21H~-0GsCM@$0bN)4`+TVWQWBf%KqY}!PmlWKUNtr_2q`;jL*S~vpz(H9`LP3 zONI+UUr#SBol-Ez6d+PH^DC~z5O6bMY~2zHu-j}5WN`cjvG3Kify?R zoS*^oTq9JPu>?-kk8cR-f$Ccq^9V@*S$h7?Ffb~La%+j*-_#U$tk`;!_lpUx^0{tl zb{euQ@->|Kx?xsN4~sb-)uhps?N7#4kBRRJAl}dp|8`Zof!liE7qh|M1ckL35y-%J z2C>L*50QPGkRXs>@BbPk*CklGnNm0?{IIE{dLnYU#3}%V7d*{n0!}Ar z$1jpiE*X$0HZ8G;OB?kAwGdx>`3{xn7TTr@X4x-qSg$pQtMj#5`7Jx^p*kPHyhPNC zc>H^=Ez`3SPyAy(=Od9xjjo_ic2?>NucmkK%fDC2LyVNq_GCSL<|`dC$h!CYe< zI$_O_y&L4J)y+b@B!R?ZzLv4t^YswTVoK402V&P2zk3&ofY;a*?JB*pj^YP}BywBXPwKAG#B_?X zBHgx8x|@7x#S{h^Z-=S1t*w~iLkc7XS8Qp4R+OJ>e#ak~ zJ^&J5h$uP95U!r&s;VhypU+D_KLZuoEGp9Fc@Q&p;e9IptgP@{{(Zikzw(U!vVBd` zXVvUiAuc!3+(IjG(dA%THQ)^yA+Rr`R{{kX84$vj})@Aow{ zhU}0O|CT0vjOH0tb0B=JihuW634|yK^#W^bDGKn&hqUtJLt|Z`xwgTJz$=5Z&usNG za*7}JQ(Y=5H4d_8(kKGw#&BULf1ZzgiI>eL`r>OKf9aJ%Q-kgGkJ$6V5r5CP6(4Oq zY2gV<$7gx5@#}3o2hxkTb44!g48TOZm|cULNan5+O+A)+)`CqR<-^yX<`>YFR<6on zz8GiLeAzp9>N(&_?j3$zUt+yMiPbz|vs=dPC8GSdSQRfLPDg$nVsx5KBCw2ewlttG z`#N7Fh$IOM%0jC9Ovl81lInVq_d_KSrZ~$}Xg$wR?bc9hj&Bc|tc1O(z_|}p(o@r( z8ubnvaKqX79m+|&+*W0ez&|n52dkqf=>6{*cHClK+qeCBbN}#}tbO^+M1`%sd$F)c z@a>z+g=H_?NDLj_2Oo-G7Vw1YIwroTWS*i*2jC_%2`(}O@=J7oW;JupxlUPjY1Ob+Iai#xMkAHX!pa%Q$+Otdsv@)4?=z0BPRaV! zIRDGv!Ov(z|M3scnsmbuM%BWgJs)Q^^3ez{J|QV`*~aT+O52hU`=!5iDFZ++KF7qV zP#g0bYPfjzH|q|`;$<@FE}vUIfAMBm9Uk$NWI2#BCpqC=l8+zNW;By9H_RL=rOA4b zBZ~lh@ei-kGdvwrrnHTiG8t6b&RgLfBpCCMACfIG zP!YYGefSt2vgV4<12!$}AH_oq#L7Kv)%}##6`hy>Zph(fO82332JK}JNo%EjIPBQG zhkaBN)^pR5g96|GSrc{VQ2uWn^9}uCJD+wn6;-|zJ3r6pHc*O*TtX3#36I@q#gq1O z*%cHa(?lPe)y`#LsHNHhep`! zbdmdhJ%rxK{(BxK^Wpw6!}h~Q=5mJ@VvmK=YBq*A&#l=7b;s}cc=WfKA86-D)DwOc zBJ(Y^g&>wVyWFB_BrH zW^}lecr*{ucxk#XX{?P>umnkztk`@3nEIX~TX48@bQLSoGLo+9JrwPttH#5jM=wj( zlblZpKbmM?4jkFe7N5L?I6Y#H`JU`%U*gU{@Jf$1j*|cfC!g7KYg%sj{N@rvGO{fO z*gpFn0u;nsHg~eXqa5|Rvn20DaGVY#?rsw#_OBOYA8R{OeEPSRH;kI^amOZ$ixHvg z8L!s1)bDz9_Vv=(_*&c8rvdtw<1_UQlKT_6IF)=HJutAlLO72mY%g)=U7EdM>r`l7 zQ*znd$B2+@&FF4*Ow)H?C%8<8G<-lkBuKMV!vP9~*621A9(pIBVB^%Bt3em1AOwf$) z(U+~DIOhv&JdmFW{^)>!qM zSnLfwhw5;~r#rRmS5%+eUVIv{ZX4>O7XSe{8^WGYNVzbOwSsf!WHOJ~gK}h)I)F|I zc!0i1^lWz`_Oj=NqpFll_zS!IxVjS&>CAlNr~Hbd{Z{x|Ov5`37z0y*sa6lNsjL}X zc{@ZX!YN31O&7ah$UJh-Fpk7?n9~@^E)}aveH{U?XSo~a^Tyaff3PrOqSZ(KF;Dr) zG-lS*f3FG0gfH~vnaL#Xp9OivXtKreVw3)ss|q*hHO-YQWSM9yArtCMCkr@%VaGm! zbb|As?mUc`1EVDo!?8<|b5Ns-O%hk*-LYC4eKSM|e8_|~gNF6ZD${|TBsB_z#3!S` z>PqQN=3UbkUbXq_!YHA@Y)#RxA2KZ`A^c6ey`YR$Sp!Ti4J-BGw#z-KNcK{K{ ze&2s?|FZGuQ9P-y8kp5TdBb}Yg0B}!8gQx5os6pFqllmHdjWhscjb;#C!Buv7svVa zLVj}aMfJICsx}SBVFrCClhCG9cPM+qZBK1~1udF6wu-zGbX%j?F|^vf@G=R<2G7_Y ze9C1S7Q*bsPu$-x9jp3t*LOk$`FvMi3Vj(-*DOn^u7v_Pk6KnLen&e#OniUOkZwmW z7b)-mJ*OOz{vLeJeyse%_mHb8f=Rv;8EZSI%1I9=2WawMe1KG!2XM|`jfD3MDn?ct zBc~Et=b-!&D=cOWjeDF+8w0y^qc+J+bJnm)|gUb+%l8x%*u9 zh6z56>GO#$+PPT0mzbvMOxRvK7k7QR+hMFJ1s26BS8K+TuVpRsXoN4{S8K_C%_L48 z^&fieQQx@}o{5_-b76C{(1RV3r;AXzg;&$J6ZHPs8LGR!(~IjbG{h*`6EXL=cUEO_W>UFF`?YgksiY z65X5)d1?7VYLbq5eT9GTr_2@q#aI0DvVMe`j8JAGgSVf@t}e@(X3i@oy!7*Kn>R2} z0O`T3xt~n@aG67QUi(+L@os8TTS1zNsC{GYJ^TDX6iW0R3?7t`Xw4QGW~D~2#BtS~ zffKh4zez51gKPG_)q@yc=aP63&(J3TT2yoV_9vD6;xr9fjuNXC3o=6Aj;cE$Qhp*y&E+lQ1Q!N{gyG zE_62a+F+A2Ul(LT-Ku?3kXs`ZUG4i$^R5)CzmeGZyT=(7baO2ZUMS7P{uM646< zK=U0xu^TnrJI&8qdDEV(>WLUo*y{~bhn0#z-A1}x944(KTytFe4wjJDo$)Kz*lr@M z+B;0RVn+aRCvtA64qkd+N+Dz%3l17#5sO&UdQwB9evRM zxQDW&N`8;Q6KpRbBHzZdX7E5p+LUc zN^9>@BW@8r`piZKExa_fkuNBu8QrTvB@Yyd${UT>w0FlscCc&C!4O{H5uYD=ycWZ+ zw75Y~pt6bz3?cs4*9y0}*U81NlkG0eCeMANRsNbUpa(=f*wIpsvM_z~TTO{IbS)Mq&O+67qMK6JD_E~ox;Wro6lcgkLDn-=5a*yATUQWCCo-BD;QKEPc+r6O_@`d1t`n?k;GH~;FCI+##*&0Gpsd|=X=lJnXb~y#p&`uGdZ&`!kQs4= zU?d~7G;`QJkr1k0ma-J2AmxzYG`Thh)Ewu=8cMpeKI^c)wwE~I7So_$MAJ|_@mV%= z%j|XEUO1>5s*@k29DhTZM}ZJFuiLeK4Wv`jzjc-T_{)dEYw%(o_Id6Fk5iZYT~HEF zN7t0Q5J}tWI%*#b1O+zDbXg+Ss+TqBZAkEWR!y||6MQHycqu1(;z!t8e?5vtDwP|H zbY~=%NBZ&0yZNM^f8IF=nbs^)DW^_LbnBPMKv6V7<-?w$_>zXV4e*RKZBHNl0^kV| z%X|6$YDY7fL;V>%#+OJ0pi;hiy3M6;v5NQ?b;B0V(et&cve~K6H19Mc)o>ENw3%Oh z<8#cN^5-Xg*V~g5ncz^|O?8onPrk1wI{xy1ZBIVvk0my#xDgpJFLuU9=^nMG@yeg4 zwLvWr@wUr7yG}pISY8|Z!V=*PM(|Nor|7h3)PPtU@({I<;HG^G;u6=BpIdV9Feeq5 zl;z*~ADsN_(ZyLGpC!6`ls!nlmxVsc##(%N*ff2nHEB?Zi%^}kl!8E*5tJ$_(OLZJ zS07Jy!84oAxe^FCd*gDVA(k=qAvRpx_?0~pWMCjBtX~|H^inRDHKtwyYNqsGPcxaZ zmJhtZ+XP4_I@!aHwPnm_ZBO+Zzn||ePC(32ib~^cdwyYO`#cNZ&_SfdGV5h|p`wMH1Y*U9M%bE?6Ed|_n~Il$}=enOk?Ap_t+U+}Fo|D7)o9O^Gs_I%MG z053H5UUKMh=LK^;$iK%S-nOk-P!vT_yCU(>KtIe0zAYe1x5 zs(JqAf9Syf*pL)@mnIXVNAtPEzl>x)d1pSq-pirBZMPadyCe@C{}jr89LqRk1zx0S z9DP;3R95oA0MxgrhqG{!+SXr~UY{)LMB4tjxIRDS9})rU&Ur=>n$Cp%>h~Ii@#8CG zse!J*h^qyk&=g6KIGS%6oN463$;kP+dGxC|4G6@IH+W2s&qEfoiz8qzLSrRiQq5t0 z?AkVSsC`-7U_0Vb50QIuh`NoX905@AahMbH)|ZkY+fAI zC0^Myu++t$2|pF1`hD11y}UQ#4NEpWO#a?%26X3y{XH-JFK(gzdV0M+p94=e7*v`A zaTm-Fi~u`yeeL^SZV$LE3l7{lKP?R7WSpGkq$YU|A6@51(XSUfFj>|CEO`3(qoFzP z`Wh<>CGj5H1o)PT&+o2*r9@GJa##CS6N^^`Zu;n^N4=3pLSDY_dw$-2nQt9&j@>65 z?pRB)?t@Uy-rl$-oO5sVx7efsjL0pY0RjnXyuH3*D8hm!5bNqbvxjsh5WDP{pVn_$;t|zxOBNV-J~*8V7U01y;bvd58AcW3%{4CbpEL zS^3|!au+V1zxX&aJ$W}xdUIJ<`Spo)#}Yn zLEx@F9Io_+H16(&0+bs}gZWgJ>pH4k@CT<@xQ^ZM1m(c|7QQ23jE~|lnP3~sG7Cd{ zi{%*#1>lca=9ouEZb!&yGTb%P!}lZb5xIwAjlQjmd!>kc+wZ?~s2*%&5`XGAEG19VWerUC9>R)RcTd?g_gxpA*L9HVEH^H&Uve;-yvbd= z0Hf$->{0g`k_I2uMSZknIpTjHqB|NN?65*q)))?qvI9AHT#g`O<1j3$aPq16bK zl;-l&ct5!je27xShy)I793dz*;9WoSt2=-4K}5O)P9j+vBBoLzLCQy(3BSW_eUY)9 z3Dib}m9?#Bg`%knn0}r>an(Co`eM~3r3_COG>OYev#=8^6Mz5$Up5!K?mc~doZA-( z^ndyy@v#HL!~DF|yO%Q4DdhS6Y$Otc0MhFx1VNym=XpBN?HPX45d%4nqjQ?3fvv|d zA{yUwM}gB52eCp4HxwpK>aTb|QKplMlZ|Ss+X^9X>yly&i*ys$x?+2s zp~!Hw1LfeS6$FzRF!5b`t+>l2l6#mIxBGru+gf_-^wwMhR6-8)@_Q5ajL)hLPb1AS z)J{=C2ZLq%0uG9XT_n6<_N0uS`rYF`WH$UiYTDZOo%5mDq3fpUkRl`vLM;#ynXsYI zaMEsyrsyby?J1Q-2cESAOg+JTh78a(4Yjp<=u<5JaYi3wIGE^inbA3G8-xIg5uz5n z>g_v0VO-PSq6a?3@Y9DVAUe}(jEf{BUt}rv#?qTQONUXFA;$kndp#ouzZ zsp1mE3Vqc1cD=hlV+*Ki6ZS@_X0!nEOX?I67$zuTuI=kD?)T0Q`oD6YuXlDpLbu-B zW92S)DCl>xFUij1x&jz+hCMtICsI}9#eHBHc0Gb#hRLLc^>U!C;;x9z>#fanzQ=6Z zg~Rk9T*Po~HH{|UQ-hE<*K*;^4`(779n~;gTM+y#S*MX0D?(4Xae<@7zwpTSmzOTs zGZavP`on+Z;*?(K0t-N8v6|(%X~ro+xE=t4aYU@-4BtPixaIdP7~MI-SpH}Eqw<)4 zwYFiLg{n?!z}!Cm+&Pz3$XdfUKOZeO_+L?+R`w_@okJlmnR{wv0y>OvWEP)0ZkFE% zdh3a`3mX8mpHt;!sgoi?1cbsn_p+zuVrTAOoHtzM@5#>y_F04^f#_+N*8e*f}-PqqFvM3272f5!jR+mQQjT6 zJ$*h8m0hydIz022`%Iu)4&X$VZyrv^e(HD?WfPVQd+sSOt=j|XVuV(|L4*~DT>BbG-Ms{OW(TQ3 z&)sJ#>|_;n98Rwl`Te}XewwybUaRY<@~(<@G@Yg}+I3x&T$m6D`U$v)H!aANMynsK zcdx8~0%C2XivZkM!9XghF5NpBAMLVyMkZGQ!EghKh`i^`ZeYbL)U-wbdU?w!*iWK0 zKyt4R-^g=;=dWc8!+h{T5cW~uxc;&KK2$?dmi$-a;L^x|lb7+Y7r?F~QeVGmeBqsw zkB3ZFyzQIg7Q0gyb}0QiL2rZY5jU=rfW6 z)|+;@jJM4PfRh&_#Ll`kXywm7ThNPhO9L-SwszKr9XoO{bKDUbUXq772H*x8bpWI@ z<)PwY9bjLb;EG^JEzqM;(@F?rQd}Z$+0-w{#NjUEH+=lHlQzOBccILI2~)b{zE@|4 zG)Fa&&9a14^j^O}(8J;kQgjj~dUU1q(wV&30?Y4~_Vu`(#VWySX=(XR`(TSjw2-nDBYGJI3gMJvw^ zU=2ovRH9SNl-#D`pJlzh)k{x(Q_RZ<5a3AAF`x8{DIE! zU`g8uxojEDtSXuDi&9gYu`K8aBp2UU8R7(W8lQqxTKU;PbV1M|hz3>XPcLq!XQIdB6fnr|l+Mdr24mSwB0H4ZQ#U={8p1sbNS~OXei!&QSd3mWJ zyX!38jxz0c$qV18MaN?lg6kgKN6)J3P!MRJuI~`34*P;2M3-+tl2PdC2`2Cqx&GsP z&jz{{0NgJ3_VO=wZA?K@+*5Up3Y4<#gC5EkKs$qYhjWx*Z* z861`S>W|AKoIr$;}m7pS%J ziPQ*PKfyZcY!uHsCwqlk>ScotY+gHLleRS{f!jUV>ot)Z;3KyXY)!weU1j-HyO(a3 zwiLW<%|3dN;M*)6EP-=&(X1x7yL%{gXG+fbt9c@to#qV#LKifH{1hg{=CG^xC0dqf9DdTF>z(y#mFICg?(Bw zNkx>P&>0v{3SEG9Y<5{^hW8^4BQzEo z0G@1`SS@_NKHoCabY^{di{S^zowfl+wU@twej(0AuNg;CpE$3d2n!j&4rsz7p3k8r zP*C?rA_D}%6|@mEV&nR9D1>j|#4)1stv(2v*Yrx9Bj|a(F&$ZLiEZDTlH8*77c&I{ zIgfy|zz}kO@#8nARk=$pu&`=3C;7Dh%T2^-I&$+Ly#by~K(6BRb^XG0DnXEnC4wW2 z#=o37L-(68=@(0{`aZb!R=Repb&z5rNi?HYoxu`8Gj01sntQgcE8BE06Cl|2i${iP zJ()dZ$@JY*ryk!Nckb_qj^@NAeKdvBL^u^CPA_|y;ETMR_gLl!G9hCaR_ZpGp85@#_|s03a>`MRqwI zfMBYEW1OKHXl@LTT)z^!KC3D}wd>E?=TGm`qVa0M-U2!=m`cSTSb@$cl3_O z+a=_skmL$}HI5R1z-TSr+Or|@l^Kk5M4dL()`UYh`GmRNliOTGk?q5?;#(sxk~WRB zM#MYniSlH;z7IbUp9V?`>9DOxj^)7oW%4s?$E7v&HT5Qk~Gh=g@Ph1TF}oT$FId={`xliC8pG*=Lk1g$hWrNK~Bpr>9Mhwb)X zPcM+(35RZrNK&Bd+*jVTO`?S)`HKwW;6xw1O%XN8p z>r=yig<6cAT2T62xnKc8qzRc50oZ{rpEnCLy!%jP>H?nQ>TtHC?B$Zo)H-d+=jqgA z_nxy#yG#={fD;>^caMmV9`pB%wJ}d3BfV=-NrMCalh?h9ORqiHSCzwq_GUj)6)s3) zehtBBZT;fNDCS0&+zT*jL0oFFrHiKfMtf?nME6yv1W*O*Pd+Fw+uLZZJ)@EQl|>LLvw)9-eY%;A=0Jj@^lg_Il#nC{g3WkI zK@$;ZZX9335J41DW?>K8#5?D!c(V}nO(ZRK4ypU00oKM)enLmTssq2tRT-(}l?Ykb-wW3SYt`AkQ#l!6Kxw%&$K7R8FQb?ow%86X-|t zS7&X|c_Az(qPlY{huOf5&!1RpVYv9D(r4iRD-O%O|J2$)@rxrAX2R{wF<9~v!m2d5 zq9mMTblhRqX*?vrFhCqT!x>dT7KXgSq5KMeyakThT58+$l-w-`%rD(Q+sSnv=n33J z^CT`&L{8h6bYb{93z6G(ON-VybK&e7G$o#Tn@o7@(IN;z+V*vHna{9-Btbw1e9v2& zp{|3dDT;ZNAZGw{@D%W1Kf@O*M*uf$sNTr#OdHQW-p~}g3L-p%Y9cA7zpxIUeSWqo z>YGGGSE?LSCc0CKZ{>%DE&E(pHHdAl^HVJ3%q&o4@FaMyqk$AT(sAETwTrbfI4D8N zvQd=O$T@*o)*xIWWeaVcCd_J^te5<=VEUU7}Hsb)ZNSil{HPXO(TUM zP+dUCQ<3!@(Bx$o`$U&=O_DgsAjNLa_{5EpZQ0S zcnKgT$qD1%waHJm`qiB3W1X?QV?(rIrt=oB;IiE1$;JlHoj<|T1Oe28?iW!++QCodPxzwUG3XUudr-AvP_X)c_(=h{JEzhdrLGjYj= z$WW-yG`JLMLjmMxtiOOm>1MAvkV7(AEmM=1Z8UxG?Xl3`XAeGUD<^&Tbo_b;)fKVk zWtn-Z>yhW(3lhOCz$dqK*%|r36}`vp|3}w*EIp1RZKD^&1-)BJq7%L7$sMiey}$Y& zs-8a6^UWMBDx#u{_yU=aNhT7gUL%K5BxDdYPbBeWV>(o*)+{Yy;3m?mjNEkEE8Gbv z{PVRigN&4b`1Ra-8TQmB&tkjgGiWAnLsHJjVRPFYklBeiXuys-&Fl3L`Q_FUwfxOL z-ybi}v0aW@aX83+ef_SeY-IH@XIOksTe0-t-R0T!cLPn6BvBRmwnvx+VBCi@lqR}Q zElf>7io?hzw%M@0J{j6~Zav~hvOpAz+~lB6b#o}_g4a{Yx*l!Ofp3iKr?)G-hSAUA zwXeto$g08alv;oG-4K7{pO{&L@Bcb~tW-J^Bg*spKvYrJ_AvWsZkp$@t zQnC4Z+Vza%l8)X^00QEGA>+k$wcb0^Z$`><5W0TmRt@;mjYvPPz-0@@$}twLMCzi{ z_;{)dVHLbPG!G&9>^smKgojItM?L3LFIhjrsW*<&*yU*Bm;(3wZB~sqa?d z9Q0%@TKhL!Vek8@U)q*uy>}k8a_<6kB~xW`@^Zv5Qf+dS|G$=WQGWV&*qr^Hvbd4*~WL97d@y=f>{> z6ZT=wX2E1EJmYBL;ctwf&?lCSG9J;nK3Sw@23C!eW1;t?lltBUg({CE$GRIA6~=9l%- zpZp2bNG9<77gePC=DSz+v?RuM0_vGR8>cx|O)3rjJAB1=SAN}3^+BzN%L`xf^_XXR zyR~KB9Wyf|2reXAI}Mh-3u>BjbHOzT_p;y#62tRQmKLUH+Vd2G?-kldWHX;A7Lj@T z*n>WP1#_~rypzyq4t#vL8np$NPdbHgWOZyfP|!FXi-0`v--Om*PCj;3u?x#-;2Jjn zZ;i0ve|6(08Lj^4;W?gdzh4Th9w@`Y$kkNm`}nNraU8g_vOweQ#r$Vp4DSX(Y~A;b z2G0{%FRhRk=?~5)GKnJYq_)mIkE8JIgB1mT51HBn;!Og4hMF%>@$#k(=8ZxEdf^;4 z_xX@Z^Q_D&GGL~3So@uz$h~evk$)0sR{`|XJ`0}q&3ppE;mi6Rla)Cw`>qA%^ld5M z%OnkJXb2*G9EO)0Ds%^#WX=(w`a<4^Mbhfq$&BmbA)tR2w`s3|AJP51fkF?W%oO?9 z85L;}M~o(c$&6#e3yQgxXgHH}Q|SziiBf;Rg%O|F_ckCHM`E=@a4m`ebt=OU-j^g? z=m}e~L3ES6cX(4`df%j_Ngh8bGA_dFn?jBdgYVKAnAG&{p%_jAmem6pbwXM1xGdF+ zBHLE5mas1xh2e2FdYqogtjFPvYI_iONu(-Lkh%lSZmWfp1s@Y4Ilmdn*R}0y#6ipfM7>}JrTGCaosBaPh zc4JK2*1#r!72deho)$wrukpB-Fc0YGp$QZn4XQyWP_Y>)0!ymHn&*YUGwc1)myeVC z!s<;MH@;j*5)$UYJQnr4_T2a1hk}(C%)226E$25H5GY@qg6)U!#ggBs!S?dzW=pB8 zCK9nZSzTpnU1jxjpGK)H+kG6v`yPj&y9TkUPRDh)T!SCgz z_I&YAAG(y_O0rfw!rD6@P54eo8x4r{73-xsy(<%M>Ui}=w2#y^Ru~pn4Rh!aT;mUM zRPKP;4~QX@6z%D*k9F&qq-i<{&q*N>4K;PP_7zU>vas#aSmga8#xe5H2OE71X2=U# ztvO?(?|xY4pjm`^H)#2XP@IU-rl8 zPLksNUH7cw?uFaJY?py#fSHSi(#%t%-@W3ih$s4v*CtHWqt-Y}Mqlk*3{A6aakdsj zcQBey3svdMZ3~fU=P%HKm@CXwql41yY_UDiH|%>q{i-3%d=Xno9oO!vgOs z=u>({-|LI!PcS~v-`I1QTGWuxAjPZR^*r9Lmq>EOY`=I*(@Nin+dDS6%=lG+6m z-^yW>s~|#Er$yym_*(XdA3jQU6f0dFMN2Y)0O9L-6y<-OOIihJLJ#fn)q?4lPrc&- zvl_37*Wv^|C}k+;(5eJ$7i4>+%8_ZGHI8b|O_L)>qm#>y2o>qq=3U^+HjIw+Kl6-2 zzz^S&rQEfkcKJ5d8g@yHVk+e(_(&pG%3Sd9`>7Ixd0~GBZ7%oW|rZf z^8;T#239TANGM0^{Xh8|8!|Zm@<;jW4K$tiZ`R|uXof+Z8#ZA$zD~cvSr~?)z;`kf zWq)+;aUoHLI@22D7SH|ZTlq7KUMhf2&;HahHwc1!5~fh4K(;k!on`aYc%x~E&NkTZ zbQ+a)mLv%B!j1cbcv3+_d0sfQ!_X^6hb+3^(M(k&P%*n`Uibo!Ftlv|i!D(T9^wNM zW9WBj*F6PyvX;DO(;`+w_5$>_+Yb*#sF+#k9HCODvUwA4z6toEo1keNrz7ZiB$&C^ zQ0XW!O;FbDt<~-EX3|JVp{Nfh`N>3*u^`6r^8;VD5gaZZ>)iQyd z++paJgq~Q38ZN>H8q3@#fgfF-V$G;iR9S2RN`>*+ejSv6qaX<)q>w5Lq zD2${cFUlMP!idmR8V53fI7&y~%%te$j^O7-BQ_vlsHOPOi5pxvY*GL{Jt^T56qMi2_r+6?UI$=L;3o_|vc z#~acK$`jf;FSsL^Bj<>!O>Qzh`ZlE^?KDjK)XvBcu^91-sf=(d*6ZO{PjvuFg^RHKv9%UvZfl|f1Trhop4Vwi2i@~?IBIV zZ$<;FKWQ9Zb0a9e?)=WcehpZ+?R}_rWw z;Kp74R;K3JqNW0=!E z?<;>`Ro&(y1Uadwz;k?&@V~CuJegjGgJ8V=Pj4_c2#Y*C^e6Yb5ozV39d8eu4z&VS zURc7yIkFFVzJ1H0P@J9uvTqdx0qeb~4W1AUf1frKuECk=EbvB@a*}~UQUy~;Cu^?a zX@7x2GIp3@Ku-Lb%@3A|g#OGz#~~DkNRO>ldacic{?m)O|E&UqS|X9ovjsck2+zSk4-jH@R$^!*k^ z1YfFtpk$x3#jDbDj90~cRIb7IwMKi*FO;DlliKLSElMD#SNhn;F%!;hNZOezGZoWP zH(L#0jM2U_XUOeHpq<2BDcQ6=Ybm34{a(a{Qo@Jvj;7BcjR*U)gRNbt714rc049pa zAU#4)f22spi!upe8BwDEiC!Bt%(zF=3)9ul83w|+XZ|_^uS!?ivuV`-`d+nXb(XO8 z@A~8ud15^BFsgHhD|KgIw){yqsQhM97LX(f?R&7}ayy%KiO}pj#CM)|_|tTdgMc8B zV}Ce2CB62$uPVR`ngT{FpU$-ah>x>Bu*8B`y0|Z4Ixx-NB%s+Hz}qWowQ-}d`)R;_ zFNvaG42-6kJx#G$zWPP3B{)%`^wSFhS^CxKpAvjNf&Iq!oMo$w`Ssu}!e*du|DuFq z9IPzV6$RB&fwIF#S6LsAx_bK6KT;$-axd@qbGO{N8fMbcd|s<)#tZ|)F4eaBQr4Qo zZ2ZQ?G-5o_AJsC~C)%^$hD**}?U4S<)P{f1>?wWIahUcXxgI&R#W( z=+k^k52&_6jFo&5aYvmHnQS=pOKYW694T0tW%pL`5P0+i!)p3;VRWD+=*1vpSj>|j zc@dJk4y)QD_`0`TP%%9hQkd`qKFoh5qfi&d4K3QeFx*3Yox}?LV*nSIeSURkX6y8-aK(2?7Kni?Y)lA@Gv? zYA9$5^76%P1?rE2GWvGL2f=-wE)FA`tLyCbz45!#hz?_cqJp!9qNb`II|lyEGKB`b zfF79syQ2oU6hm^>&ipU{uMWi9A4AJbAjfyZ$OGpBmeziS6Nn7s`xyKgC$zWQVzc&* z=hI<*_v={OCIehZzEOQjLtxFqGsJ~wVpna8yBy$YlSka4-ROL3fnRVR#ST4b1`F%s_pBV^}axQ=E4ri89R6P`|rKXCssgj=Aj7hwxNwyG(AQ`Dc*eaHTg=^v8Eg#RhoHFx5mU0Gh@cQc3u94J#dt`h*}&EAD-m`v&+)UHYSiPmAnZ@xZ2wWr)v0 zG0bu6&cWoN^j&~D0@=Xa8SHL-Fter-?C3Fj6z%?Mb!-H~P{d3^mF~Dek?G`b+cx}O zCT28ov9oU&hMNRHII{Tu5_PP`fj_lJG0$^1+4D80Gp%V`s18E{_Wt$Xu7CUQ#`GA z5|!1_5U>ShxDbUM3c6l}KdBj3dvm_tbuGwz0D>0w-QSe1I=?kw*l`lKcfClMoW%Q5 ze4qm!(+WVX+?8ToN?~NwrH{G8C@kaMO_V*?(Hjt1UCl^Z{I8lH)Ra8fzhnZI{^c-v zuNU**-l#f?o;>jf6m;o-+##vIcH^}~$J2TJ?j*2onnFT&x;fKCRiJQe;?E3pgf&ftN!-#NJnrMsFy%!kj`ux9xh&jubz}h_Y!*ov;(_U=-?BWfO2jDQ zlcvB&UFljEj+TP{R>7XbR_&F0sABczGbB)ef01m%DSPUhE}1~?sS;@OXLVFPjH z&#M&7-i(iq58LR3CL@*oI3)Y^k8L{)LFBf*p|;?@?jux*Xa?#F!Htn^qKs&w4pFCp zq}4^H2ZFB-M7E8u&)2vyoL!-??g4?g>hxEs3zUq(OM1>l&H`7f(mIWJbborgX&}bx zb(J}o0#Mg0Ld-HuFz9? z7%j3Qo;)D`+rsm_%h3G0cY{9VKXUK+1{yy2)sfSH_|N_m(~76{H(!KvbJm}O$p^eW zzW>~*_lK|3xgpxkH=+wL6Sl^%2ha`EeW1naz_Pu}DK;-CngGXx9E3(rp-e|IZ*Ps+ zd_#-9fB_`__6D2FGlb;T*59&BUf(y!X4uF|et`CU0%>6xwUAGh&Gc zz;JCX;9UW^ls0hj-eLOvrv^r`f+Vr-9PFafE@4c@fJ@^hFZQww0#%kh5VKN$n7>+E zW+wO^VrBt;WOhPg&r~sXI>ONWqXmirp9A)H`;9yOeC4>T3$B({i-I6d=)2G1p)A)e zmipv(@AZ?7g*9p29mvKd)^Lj}V%eSnn+sU*@P@Jb@@kqnM10`}bE^3E(GHCGTCOm8fwhsnk?jj5=tX-nJ_jZFYanRS z_9ATgqQ!}m@7)W<2u;<&GmWd8bg1yP{IA)m`eOvh8T|C3!7=}Nj>#M>4>?|+C#*!A z^5=YXmW#l*&&A&Vj*R5ch~YpV_EKG9aVM7_bu648_hg1`Sn|yZ$QG=RD7?_~#579!OG943!NCTC3mH?;g2$M}Zrie|30&o{{4bh_gc$ z$Y$M)48n_#_dG>s?=^Xu0kQ0_`byF^W4?|b|BjTWw%9nt{5R3N`*RLRvIZjx8Sfsf zwmDl1dfWPbxsCu$s)IlKtiRfL@9A)=d{Sp5AcNP1%o>83-&EX%peS zLp^G-``xWtM5%Wm8U%2!uM5~9!HjVXY;VP|tWm136+&Zl2=%Ge^XJv=T)jYvj;n0k z6P@cW6ZHVT6BF-l*)$7Dg;$3{+^7KGd*jApkbUW4y~^IkM%sB}%XuFC!o}pg$I!EBBZ2_djDA-cgBc}tuXWj2J6*-90|&qlrs;D( z{ppFmAwao#%VCa}N#DjF=v7Qm&m(*@*N*gGaS616`n1j{M^|`cTI6>Z&42@F5i#on z-~Tmx?9ZAF*7>ioP22;R#Z%BdpJVX%hO^P?`=YgJylsh#uhK&0@{hZ*#YSD?;=67p zA6iqS`8-n5PFstm9*DKqxV6yv0_u(Jo}}@KS*$q^5oaG^&luDo_h%PXWFp^errW@; za@`<~Hrg$|4v{S$L!bIfL0u?`l>wE;d-ftgA6t$G#CgJ20H|yDV(!{Ry+nLB!+tR| z%9KdVpRqbk@VwFO#xZQvpjclcV}|CgbKmF_Tb*`aIW;{aNsBfNSQ~73{@0A7KN_}p zDcWB(ei3YzHvX6RxD?cfXMMh zqz%s|Y}y2>-AGI>ZU6P}qLK7>}pN(k|PF9i1qpy)6@#^V`=_w`p#=!0PuVrBFJ z@@#0%mg{>hR$~RcN8Rz;F6C)2uNH}4Wg03uWxL1#@HJ=Tj~7Cguz5r!Qeo+Yr%Z!$g8^`phu{k$>0^0EYxqOjMJvSVQ~UY$c! zw2RXyy{$BRMIV=$>9yC5x9gSBPKpVK@s3ff^mX?rNB)#ARZ4ZD| zuB|iJ3l#_~Pm7^;|2@0*WfMB2{3CAus%8HRe|?YFM$*2L>9u0l)EtXwUjhHY$7(j- zqO*J%X$T(!x)neNK2aC_JdXE}dX{gzECf*4BbZgrzshQ#Km9?m8isP%tDr#5VA}Nx*>gOdry1EVT zAmPWh-ghKw1TQXRmcP>JNpX4g6bx~h#1FFEOw@7{GNHrvJN%Shw%e1CiT6GT9XpvX-O_RU|?Z5 zPA5RRVUIF&R=v8e(JKXo!bG#=na_=mwX5j0Guik35{8fSao1g2)AN#|YR=UIJ zKwG2cHoTZ&%cSMNW<}Gq#PanpCcS+lhrdM+QNv}Z?NkjY&y2@<^A_OeRA?nf>FnSPhZ+8J)3U6jYnSjR`$M8 zd*t1SOWW|RrL zmM{ri!ueem_LF2#ic2o$*O(?NZMf!gxrgj&J+iPn*?u+0j3lo)KgqtD^?j{BYTri8 zFV9Z2hglPQqlY5Xj{34)Gg>_)e_5dltUOlhgx#y@vb(CJ-q3noMhqX}JrSm3T{Fkb zBrZ^U)MRrm5zBwRr~iAcIEepy7C*zv#BA9qJ~W5FekdDB9xqc6p25_4+zGs_)t4j} z!#8fdszr%HJgL5I8z|8lBJ$-rqBP|YJ{b_{%ttW?o>8YdRU^oT(Fjo{{z?o-*gbJe z(QX1J>R@=zthifXRrQGz#2t+sTTq1Mj-xf##hNLKE@U^1?L%}k&hyARuw{2+NF0^!vKsXdwlE|$)ytmP< z{jX(tz@huEIjzrcFu%8H!CI!n3$KnnFOAwSY$#f;r3>e(6JOe$^N9WKDWo6Z2f-fM z(bxOXsu@ArCO-Ihc?oZIv^F_S`V(vpxn0$WkHx(^berF6LjRg^+iMJu} zL`2hG6m7+Gs@6@!e{t;NHYQk%` zuuN9{_bR=<1zsBV5g*b&IbI-C3*oLQCHNp$d7pj7?r0XN`uL+ z%%7dwGFRB5)`dsvHTkZ_lG6Q=Tdykp<~yAA&@H(zrJLNfK2TJN-kPiGY%d4ex^6n@ zWjV!>)9`KF7__XFr`7{rZZvd`#$w0u=ay#Bb@B9vf{6DIt4m)d^9jW45wt$6K9X66 zX#;j?>Ax52htaqAk9CUP-XpE(qRG*Sh^+3g-iQFDr2M`_uPrUU0VNjMu*tlJ+Cg-W0&HtnjmB~iRMI+ zbT}m0diYK`%kwR@&TiID!q?qKnT5yW9-$uhv(E6``KT5H{Bcx9LUiEnMuPZ4!1ig? z{J$y9*MBvD-{<`#f8MsbH~+}D_y}FPh>p}_fe-Y>7hW$NlJMwQ z)0K(sM@~z5cjN8u5VwQ{84e}ctI527sskgwP~7uy2Shmj%>C_t zLfatQz<3T{U#Qm35Qd1}<+t4Uf(tLL`;S)dO54%=A3FNW`>((6ya@$B&Q(WxDp6y! z$-UhVP6GLpvgP!7_^MAsQu7me%3RWPuFQwsM?jab(UDo>%BabbQI1*o@GgZR(F1dA zTJ7gOpr52-4_JSZ^Bk`L)ib#8qR;9;5Qh%>!Y9HGDOD*?grW zy}d)uExYmgHiiT3ylZc{{k(@>PwBTpZa8e3*_cV6-Y_uz0F+5{OQT0^D2)V+DDT4; zlYMP4?cc1;Khu5vkNMdPkXHHMcVc~oSVNKdNhRI;(#90i`D7^9Tgd;FKmCWcM$bLM z^5eUFMd8Nh9o~M*Ms&Q*^qg&$*)7ajpw??!>6LwzMO+J2FU!p(-qW;;!5TqaoK%@1 znQh^cv>Jh!xPAD2tBSl%@QNMhW2(>3mFm`{ik>xR36zuScTT2{ekit;)|Iwa(=D&b zh4-4p8ET^Sqnb*y4^*MsCa_Ir{9^K^NU{mlOIe&57iJQ)@ISM|`~*k$SAcw_c2s)D zR^&p-FpKu)TM)lRH5KhN8~I0jPWH4hOEQ|M=LmtCoSHWk6bkZ3@Cp~0CDGW&_7^H& z1$fMhn5h7jX6uzM2=by^T}g5RcuX3e9Q>$Dwjr-T*#8~cIzgod2G-iFl^2s`?) z^d!_Xn7PuiSykQY3!ry;Z1+GE$>+ii-*Vmq1;i`XJ=6cOK->eCxrzN7TL8!93gY%6 zC0Kc)_#HG8)>B(rTCz4b2D-Z8@!%{Hh;JT~d|-8H3yv6N3ntHY=jV=*H`vNDuk^%p z;h07t&zbsM%}nEgv5IW9(#9x^Hy2qZ>YI!s+O41YjSA2DOS9I{L;+J+TE@+JI?&xZ zCQ0E_A0HLsPvE2SD}4YX$-QEh z#Y|C-Cw3RK9X^-m|MK3-3y!3LeMq*MViY;*T02KMVy$mrDj_c7mhaJv?^88yC0ESWeHSIEW(hX=GZ5+fClz-O@5R}s7A&UwU3UhujI2m0R0BQs8Ul6ZP4zMpnr@0qIt!b5f~YjGb=Thu|l*vpJHqQ)h4 zG^+Ngo?z|#(()Jb30N;!ljY*a12^c0>r6W7G{S>3Q>dVKv2e<(*nnWIC^Opl_C3m_Cb6ZIB0uOJqFp4L zq=P`WQpM($DO)pxe*#nFJ=fIoXHMWlJ5_=Xjx)2#>RD@n;W)%+#hT+oY4YNI#gP{u zsBDG)2in|MVXkx(u`fKB=ahV&SP~mArf=&2H&Kp$RqYyG49c1&pm^bvXmFN67Reve zbqdo?-%{Br=GpDv#G|-pJQ73#JSb{tI+aLL;Uh~G?8ZPc$Rz-S=Xd0}lVsyae4Tt= z4IX(J^PMF{$b_dHKVR5|I9#+G@Q0PxU(D}j!D&f` zw$mq(Ke*NzM_YKXO^|Or?XHq*~Jp z@ay2j#??dhVXNH7=fv_)ArqR+MyQ`JUiCb|j2x_f0Oj3zIMU`Oq!DPw>^{&b?u1@N zRkH!HjNIb9XEXOny#{ilbkh~B=0JBRZ0Jg9e0_rS)kNVeeCB)G_b--6Vjj^7mNe=% zpemZ+vENd8e5200r2|0n3}?xWluXQ#e>V?rr95T^_hdy4iv)Vt>Unr+H$t&rjn!d6 z`^$&20S;Y`Kq#(_EysdPv@&ZjMwzW|!VHE+LP)}?$_Uf{w-@}w2JYtH3R!v3?u_IQ zZtj!?Glmwa;|Rx#(Zt~f&mk1X@fnCX7|DBFgaa}{zPPbb5qqU6wYIp;QIkGoNJE|d z3V-(kxP}{_$ruS%nbxhg>tH#yy|gR*zrIp4BZrlY{4cJ>tn2qz==E{oHaSD`@9SIMEl)>Rx%H#mR9jH_1~`W-HFm7HLUEO?D@LM zB^#k_=jEe~_tPSQDXxb3mc#DjSlxVnw|p%}(LRA)wASKjzjRLu#SzNVVolDf^hDx( zhq|h_tdV>(C3p2Ng2AKKk=<}CKsVsU#AKw*?)n=(vHzN(|5q-2*K&OXZzIVpWODW9 zg2CdzL4Lz_F2R5&G23Z%Rx%LHwhA88Pf32@`X*ucC}bpkvKyww1Pc?foxt8=-oF-B zR?{NvFCFrXJ^q-LZ+HubTWf-f@fR+c)&t%a`K}dPL5tt?H)0B&pSU1@H5ll6w5x;T zlAocdD~ZhJR^(bXii!rvjk&@4QGnlbzb7 zumwxGk4om@ebq1#44Tc?^ITv1Gkz!3C*>-Cy(ZGDRj7R2AJko`@%N5IAWs}u-_B}J z^tvpyzgObYZ7&2#rvpWDyGZNfe|kBtGl7?Tv6|!+a9k`a4U?G#EZW|aCc+MhEa8PQ z#%SA11}q!hs$G$8OH;zqgu6sY0yq;oCp#TENEOTFUobV9F9AiUMU4yI`ks$j8`QSa zJreny`)X$8We5>7JyV4W>%Da!%wY~`BwStM>#vx)2vl&~YaRE@d5evcRuR6<8|rzd zRhsP06lkx1rU4Z!&H@HXhqyFywZ@QP%d8hIss5bZVepnLhuC&G)}mY%F#Wdrh<}EU@UG=JliWCg#e8`1 zOvw4X7qC$_(5XODNMi6dyc;&54lJM=wZkX|ph#bu#}@N?bvORDx6wo-GCjpu&gHM39|5jA9_bFUn~`9!o2%2RJUw4 zL{Ux#ulhi3LI{!5(mwZ`29}MA#pADBZ+7x}of#!clCnTy>6(v&`1~f(LR~2g zg*`-XFyyqqUL&!tZ)$2H-fGiDQd^t-&0J=a7~gG-pd}o~<7}R3)X!M(MWsl?YFWKh8TVxh%@a(H8;l5RjdH}kT@aQN;_#F^s_WHp>qlC$+*<{ znc~(T1usOx(5Ox;3?5cBm!fdMg~jquv|fwYMOCC7PHE0;)&-vDd$w4M?kKg$-!0=~ zMj&Ppk{P`m1CGCjyzQ zuJ_mZ=9eM;X&U>!9O8TZ+jD;n;#;f9F^dx+6@){pi3pwW)C)TRRyfm4T;P(lV05D2 zz+%xulAM+`g!V}?lYW}fY;Mwbk4~w zh1k2z(xqv|k_Dnyah1_m@ZH}ssJ(l5O)qv4e|?kjeEP43HnZYYVY8*i4A<&UVQ`RC zu+PUz_c}15+Mk{gvD(Du`uOMr^*QBn+Ru;2rvp(ezd8IZ5@RCb%tSE;oi94|0qwTeV)?aw!#=O}yx$8s8(cXuySL zYe!s2d521hwRtg9KjYg=QF<|@?=z`Z_j&WQchd2`z0%)2ist{(^&Q)e0?D=?!~pMx z5>_CL@G!#)@BP=mR8^aM`}Wi5oLWZ`l^JI5$c!Cyd``huaY}@YCIud#B+T1s&vPu> z*O^`7LBx(#4fJ-7l6nqs2Yb%={GBcH4`MON{FkRyq}m?;)*ql=q&pw^W9>G^t*;<8 z`wtvKhUTNmvEhuNh1gdJMiZuM6L%2A1vKKj?5Kp{xD}De=r*l8v_+220jtjeAiaH1 zR~2BUz@dv=S%BkR_j?9@wS4-(?d|f0nb4*F%q|W5RIKkI%ih9tiYdKaWEp_D86 z^x19oB|cRdZ~7Yk2EPC&Z^H*cmlumgCw^{x_a4ZG@j5`gIybe)hxe{z5#jR|k;!y21>5AY0fjKd^jhYp*GIiz!GH8IAw;OS2GDY5;*$^{-Q6>;2iO`&N{3 z3L#;ihUtxFlAIoZpQ#d+cqBoD9(CS(KK#|6kLZ{1ruBT866TZaJ4P4NpZ;trTX+y0 zso{o!IiWN?xABI@t2;Hk$YM)CGZ5SVxF#1b=__=7DbA{@X`z~=wxjTW_dqy$OVQ#a zKa}}=Y`W+@HQ~EY&uyhASh|G*>^omVXO_)Ilmlj>nXu$F>RmcE2U&pj*C8|Y2L!E4 z2Q%9-(=-eJsq11B6`=GNXZQSh13b;!fT>H<1Ts)><`D#T$wit4@z#Zo>A@3xL{l}& zRm`y~S4lfmN95K{^j>$M2(wGve(>^$w=TJ&$$6vp)+w~Md*)5d>jM^uI`Z*&r~8$$ z!56&C5RLmA0?(w!k@(u?$d5c=_DEctg`GB4hWx>LA2mDwQ&-|)YP^Rao5{1k?SG{h z#j-FJfs|edV})t;b6pG>yD?)6$ae!`@7!~%a@84t&}69_Mao_F>LhjeX2`ZfI69E$ zar`^$WF9ND*xLgTLQZCl5Z}>GmV+dmCI8R-7>c53XZ&d&ze>nj;@zC;XFz*z>+wH`sSh^d$rO>CozqcoM?fS1E{bx1Vs*TE9QbFEj-N zk{qg0Tu0uoVT&OcG7S&XtiakY(*ymgS;BoHV7hRf^UqhyO?rC={lIT|%1kYn%FN+* zJ!2fPW9(?|yhn(l@i2}Nh9|s-qaoyoC{tA=9$PtK*0ELkOy(`&f5T8@8R@D74G(SW z&pWEm-P&z?e<0LYmWSaYM4Ix~WxuyWdLuFYN5>+{J5Orr_R(vU2nWK^zfFct<(*tw zD!rfSujaCNqx#l5Spe7-M5ZB+=L)2(e-Ig^|IgVp8qYNT2#L(m_B+-H&L>?&J3R|cXU zDM`?7`c5Ikb*rqnn2rx=R4tXxO1g@CVK1Lm39H%@x^jT`@S#V>6I&C=m9OKooaQT5 zDm$l(tEX5dSkG}17f51Tk#D63ImB8KIUln3xU3Lpygfe}9%M%GdIP$kvMQf%{nh;H zWniDQ=MKrQtcoMVW{b^sjpJ`6grCGex;_8%rIf#WkgH=tI8lT$;IHy2*4scT{&PxX zE;dA%weVF7Z^GIG&OX%orm4xKzdTHRll6CRoSJ-$BCUK6W&%R%UoV^ZF5o@J*Fdh% ztsPfy)Dyga`?PgO@JD>FKS3slmV-P=QN;h%qTe7_5f=MQr^j-zmKpoUQ~W`@V-KC5t8%|pD6qLCn&k`@FeEKD83xE%yf}D8DZG8Dl-W`l zx395lpFhrlhTk}HEm?M?e6AR=)>v(iA4N+;e!%B(Xzb)(0ooH@G2ki|f!7E^y|~Fl zFmsS9oEXjK;`DMC*~Zxb^ZZ+%#aHRoZj9<6FY8bb`tP zv0g^Y()d=e8{il?3cUCEK~Waoqj0s^P%Sj!9ZcLGEl#QYhMhuVzn(?!3A2=t)-Ab_ ziQB8urWXxw2Y+~=5mopr-DeF&4Y_Qd!!@yk4=su}3#4?8OhP|;(JRE(D>F9n`fBi~ zBlLXZqjG~`ixptaHO+C0AEo|)Ro)n@N`Rz~XNzhR5kupg=042JxJTT4{>7G$(s*36 z#9O!n&}(T8z>+HS8=-TPnI;(Q<2d)tO!~8q?-dd;70nF2qMc16{X$6W z_S80p_ziTArQ~BMa9+wL`vT!n(zmWFAnns<`t$juePo}254H22voOt?l3Cy-+e!Ei^C1 zJbm;<8Mss{JLS`Cx}yHh?>*L{RTAEu;#R`J|41_%3^l>WX}r*KE}YY$q&9SNiUmwTR5=o z&TCJfDYEZ4jOC=YDyr>6ndakpsY?udLjh}Q&4oMlD8r9*4?K^}GVL98w>4%N2wW*T z_hXdhQv)#Xs7>va?%fLE2?=m0-J8@$E1=h-q0*-BS^FLApDKl0fLBxxV30qYR1tjR zXEuMdNbZ?oG^0;Q7Dd}W{%L=+2GWQO!or2)K)VLRxXwc9TA+KfVhm1;pF!LU)tgx> z!Qs*03mTo#l861W8`KS53ZK|r`PSd!BB-em*OV#d9 zNZ2a`@>En;^iDnYWwA)1?8_)*z&ko_VYl4pbChRD9(UsfF^bzc-dDG8B| zbtSAmYoZh@q96998c6z<>&K(Za|U%+!s_|l^{p+XJBRI#vDAf|y0GXn zZ7Q>v*k6aA3=a++3@xI;4@U81vacLN4Zvkm!N8gK$4~l?0Ra#jJ&_az9;iH+ncvUC}%RRZMllvgZJtWyyE~l z;Tzli>9L(d>G^fGHT`iIU=%TmL|b&z7ryPPO2KaVMH1F%&ElS~5nye#jNjYdcO4!) zpH?yabcyQu+*fb*WSA~xXcpf%b;5gBz-+@%{y6O(Od(^2+`KGP#x&0uJ^oI7zV9aa zXYcF1({0RcRAW0w`7!LL;ZFN{KO3JbtKe6^p1vT4pna>NT6p;I_iU<9kMQ<7MHvMj zsI-lSu1KXfkC$UwnbjMzpuIQoMx`E0-H@PLfAJ^jU}qdVKlZs?j{Je#AK%3|iBce| zRJk-X-$GQc2^KSk`OIB2O2vm#iR#t{K|rq?#~eg%h?Xq2bV^#nnlwg)<}rg5%Hc85 z*K+5Z`Y7=Jr}prCc=!_v`s;u9NdM{)Tps;B>BRB{ zmF+DNg0wK+c3b?*N5P*C-jXBQtW9V?OVcjYk@Blqaj_gKfGpC*Y<=Hfp{dCT?{?9T zB1u3@ws?kuOwcrn#~6e%J~KPcSf{*J&K#LER_oeT?|I6CCX{`-(2foRWgZTA#Ng9N ze@&vf7xw-A53N5C2iUUaocDx_5TE`uQ5P!y(_aXH8GfNK#LRPY`pQq(2;LEbVO)C+ zep=P{eV(Sx{OTV&HPaU{!%PMCf7DHoQ+;F2mo7Oz^mN_#IOXgDxOFSzc)#zgfkhOF zj=%XUN8X-6kVH|U8{0qhyP@01oM+3-Z3bf{}OjAJLTU#;x^FyQHw~?FhBi{EGdGYuHn~y9M=ECFI9>n!ZjpD{3d}d`)iiv29DFE%`!v&YpbU3)cUAT z55+LwrO3!~G85P$wYq>K&@-GfMAK$ZW93xL1+~uWipjX zyGPl*12eztOnFpet^;J|&yR2sa96Jed6iDo?_#Sy_8qLg9 z$Mn!wd1PE`H()Xxm^dPN8PUF0Z(B3IG+KRGWO8r5=Qaa+7gQE03Y#VGZ(O_%e-#LL z+4{Ds3a5;{AG96$gKjHJQ30{Jm1>dQgb()&p#tC(!O$266j4;BA8mz)v`maBzikKZ*5Na9a~umHIBQ439E z$7zpgWW*=gZYPgr;rIoc{h8jA4bN7(s`rnaM}!XU*Lt+b}8(lY}_f-wbVpYnrDj8!c#j{4>u4cUhONDk?BahF#6Bg`ALj@5A#d*L@H{1 zMA`2kgw4xFRS`gb0iv=T+csYjRLf$R#_SoOZ{5QHK0D{smzZvu3hd_nl@_DE6Q6kFDU$R+!zw=S(j!|^4&Zn<@_+dhVcDV z4UdS)1t+G3-Hh{3-gt3h37a>u{XM^G9w%%){)siXjC7h+N}mt_rw4c@eB0(a8UUVv zpqFphGoPe;HFw!?*_kexw%K&}**3l}d}D{OCRp1(DeDvaCYN-3HwXwrrpZ0%8N9YW z`7@sz^@1Stf10xp1mP6%VPQkY>Dy8i*|>NVzLw+6E2zwve$(#2mm)g$iK0IAm$f- zr$TJ!!bc(Sf+RKaA2cYfv5|JPGw+BZq|1hBOe=(q#3yA$x(uG)?!imbIDU$geikIa@>;d6-kK4C^ zp>WlcChg@Yq%PL=cq&%{f zJo>K0%)ocp$Y|PXgU4@fa(l`&HF)Fu5?sm3hHs(?FUI!uOSBk+_)2=U2FDLa;it4- zYJ5fOxsYAnxUGGx_$0;)x*}?qaiWMgv*L4!9ecl+ zZI99yJ7iad1rGb2^7Yh4RmkAgjhJ3#zTD?IoJUjg{;xVxJ8%I(8oTc%p0PgWG6G2= zWF}F8MHta@z(0grk;YlfKF!RO@4MpPUctC5{-GWB{Yid$@caAk^#^1sHInvW08MLTeT-FA7mb{RSIF4YhuzlO$(%Ug$L?2RWZuHI%FJLfMx*8Z)ZB z0_)Gd`GD) zo^L=A0@la|n8`sHycT5G{UEYiBp15)2K!gG5u~uGy)TWl!buI!fxKr^tj%VRI# zTLw$hGJ}U+L)*p`uvThb1thV>HFxXq5XV9kCPlKEBwjc4Gfkd7(WkM26`_*+H{lxW zO9D0!&?H$hQ;qKW9;Yaf=M;rxm=O-VxCRt!ppEM^f$?!+!bJ1&q3+SJtZuTaquW{) z;Db?lOQbeIxGGtpDvZ)c7K`su+L2}r06Hdl)Q^(Nz_&L3+Ff2-Ppd2>x*}x5{tN$f zn6GGThVu12#op=zl3~3t*i&&hn069G!1vp>2ziPFEu+lTHagJ*{*;2SC66TPS)Q@{ zPMyoL^**K6pUVCWUw>vwRKJ-LT6JKhWN9sZbk!RTVF_+h`dS!?Br%9tJ=K5-avO6= z+eBEpW}3^fna-pulZtvM%=Mprh}^OFRR@W1aVePvqg^6$F^Z1CD~IM0hzAYXvE ze5yF?n(y_=-dOhylcrbRc$~xVZ9MlAui?7q*8-`tel`}w{xBp-6Fn7(iVA0YjNv@7 zLLXLUY;z*S1jatBS<6tkVto=pli9MyhJ8K}3}9_lsb-eli+= zzyWR%alA5bl&-gIt?uYx`rs=(kVoKKiEp>YdPp4JBFofsi*O1$`g(5@%D-jK6}UR= z&?1!wxEvpiffA@jm*HHtAU&ty>@iL4tOx-kVTK%kW<1mh)6oji+(_Vt7r<~2dN|Kg z)<@4fJI`ezFJgYWa=@;Xpc7w+1Dp7Y%T=NT8B4;u@xIktosD^#w~@Cl164Td(UzPn zJYoTTt5zv}*=Mhl<})@=B1Ea9s3jlx^c^qfq0kRs^XZ$Hc=;Pi!wi)*iyj7+ z+2VuZpI_yr30u3$G8$y4=K}`QL_3VtUW_fX&fwavf~PpCoh0S@9%`-9q1=rcFSY6I z+lx-woO-_BnU15|w-(U;STpRJ9#WV%N7k3_PX79YpWhVXiQPCf==`$v!p=4H zpWK_PE5NqP%&}E48BtJ@Q~s^z8hZnOM$MMd za0+Vz?zkUZ+WhHxnR=l$bY#3LXL5(D`!>Q(VOD`@lb*dL&-?YPD4~a2yC^8HrVSLo zG3xOqy^kt%HdA%=r>vN;BH3DO|K@Ge!YiRC2 zjua!aEFnSQ_%|Fhdq~e3{*SXCBNyQrVS3_afQIs%` zh3R)Q5;K+SE4sJ3?ZXJ(!u6iR3on=7FWcP_0b}%Ug3LPpsip4~$UG>_Qsex7aBj#UIR4S-yO;+bq z+za^FNJ+NT3CJi}B8v=lzN@Sr(;bUcyr$2ug$~V^*RkTNNeUp><5o9}TT=aFw=84E zEm8RvaU?fTEx2L~*l-bW_i#N#YFp*K7jr{HkWi}pt zezQ=d=^TSEtDeTxVtPW`*SEut%$l6()TIwH`w%S$aD z8wg#^SjF-x?gSRGgE;pz+OGZW=+`Kswf=ErZS=LHMLzxzI-m-f?k(2(FyZJveTc7|HZqCosV@s-?cpn^v2^2|{lehZ}uQsn%CW^3AG- zq&A061~29|qOy$Qi#1hqaJk+x?UJA#^(u>HehBU!Hf&*jILIl^_gT0@UwkGw z#Kv&2_@->Mv+*a^Xun#yFss+nk0VM^Q%~&~4Cn);>;C>{p4ofem!&j<`Xtz?&shpZ zS-*&(qF51jZTp@s84Sa4DurQKgXyIM8^S+B5Ab)n!KkoG=Jj|L7N1h#5p2zB0nSkl zGc?T6Sk{@Kzi5XIsF}!jfqsgg@KX9upM=%YoX_yhzW(GD-adtA?m5;@$93SP^lXY! z56{IAdQ#PQ+puZAAdzu<`m|wSD_vk;EV?iTIk);izRTK4IbmU$EuWVp@D6iL)MzdG&tTK*!C4de=yE&Y1T00LVnI8T*< zz}!{eDrDqvAK+>O_#d)36*E!a&*(5+!xZDWL&b+WUzN0C0DbAYvOeCb%TaJ}QR_s@ z3+iJuwM!GGJM4^4N#`*qImb7R!B-A|0zDcCw zwt}_GmIYwqieVVq`Nw&3S)Po6ZxjSUwDafgE;Mo6MSnml!FK>O&Aoo|(0pANQ(#JU zGXub6!h0`_ltz)8zB8C{z?bMTY{>!OlgX*eT0xz44h_NY90{R*cN^HEuInS;GX_CX z=)3;zqgCkwd~>CabI%7J_@0Y*OXZJ{*a5!W*(A%k8-BsFw&%g zSU92ux$(*3rO;cbgYUL@#5x=67;+kwsFy7x(RrWcZO6(kE@@=p2}z_lpM$8eA!_H0 zSjxO+tA2jixoCnnlSt1wD=55V#*t7HNiV5Cv5?~g0@fG#Kks}#OJJ>n34Snm1gr}1`lqEciuF&B-d-ZW@l_em z{&b!!9Oy83m>k{SRT!^L0mHSdgQPcKEX0H$Mz>MIEzECh)HRGlkWN-!BcT+SK;aQakk>Rot*wQ+1?k5s$8C<3>O4|B7% zlCUzg-5_-U|HWtZ&i&B|^>cn%&b7B=>m33$Q>??vlyB30m%ukYn5VQoSu2^I3`%;< zb8I8cvlhK$LZpVNDh`g`!0wgK(zyOu(+yd8x0`+Z0o>r|dVLyc8B^U5R-ZtREur=>+G;e#6=LoB@EImUk4DU0Dt~t|#I01Yg zc9okxIS)k;*XQMK>e9JO&3%t$BXo^#4m-bbrRcmua|3j4%U>u z*UJ{kOHCC~sEmQcejnsxPsvjsq;-hIS$hsEBjN5sL46YFPH$vxZMQqOgkfSG%v*9u zCxvn7svmi;D@0&%3xKoQK3%C3V$!Ripje~;r;c`wX5YtZlKojJyoByo+H(qd=6iQ% zsYy9@rbj&5b+S`)@4q$IC(kiKTmJQD-X;#V_~#ym?+2ll{bTCt@Tbo=%Yi6*#X!&d zj&>=;oNZR@eS2-W1CW8!kos>_WHBcIr_-=SCq=Pug0Z!8+v^63qSP$I_xFj3bQ!kx=oQnx_H{z_Ibw_WoL-?>LQPrJsD|djJqNtDARC zsqe2be;9Mbu4I>GU|kq5BRo%jI7iTpM_1{L?04yEb|m`gf7RQAE%#WSARCDeXq={x|G^iiVy-o`&uPogCfUq&NPr0v2u*v7Vs-c{_U|@A_Ty0 zAV+R-uiWls=fy06*v@u;G}d*n<5=NS_-^DZ^aWnonjW3A1h8Cf#xg}gfA`sTuN=uA;2C6 zv@5^D#Jmldy`j?V>Oz2eertDy!Op~-?lG3?D<;eXg~uP_Ms!-8z;G3 z06?7`^YxCnxl&3!UAjF}LfAcPMT6SU&qS|2fj0n7<1tJ7b0A&&h)S$3Z3{2RhpXYsL%~9&P1;n zg(l+bYnHAe8^0)6x93OlUxG1Z`EB z8r8GtIQh!);bDk(6)s$0VQO7Cm+uv-lea^N(^)31Ssas2HN{?b0+)!;1*LFyhoUg3 znxH7LfVhHcb-6c`O;50bQDK7oxdiVFN0a)M^C|()^yJcCSkDbpyMDeEIY*UAFKoXw z0-(#6QY5?~6Zjv!()WW*gEN=3|Ky3Bq*^of&)+EFgU(;O9|_!Ixp6eJNZHZarmbNB*T@<@7YDckI8Of}8Y@Uvde zX@3?RlG}!$i`h#+!nbvV%7CGae&I}CGz<*_a0`nA!u2!kqpZB!yd1nTcqaPCe|dd% zQTo}~pO7QQlhr_k&bc#T>*T zjoKi^4E*itI*O5**6p&EUYRDHw4khPSyKYe&mQ(%eMQYHC=9Xc0a4T~kNzp#Xd;?* z%#V~W5K{AtyVtR+1>6^0h~$jemi1nS#>>Y|8XIX0fB3w$XLfsgfY34@fRlkWn5f>h zJyQ~vQM-Xm%BeXrbjCl>wjD7+ME=_vJcN?_*BbCqB~$yPG9nrKuMzfm4YP|w08H#Y zra?3p*VW_>ph?xbJ3-M~z!?44U!*4b2_J1wh#vPBkV&;3DQyXc6SM-UT3?2l`JIw;Z8`Rp>9!IzN=n)b&X zvgDidlc|eA)R|9JtM0{5Skc~}RhqH=V%Dv!b+GH_@Lm=}ndgkWGz3lZ69xT$v`MV5 zUj9=E858T%3(Pzc9W8oX&RkVJBlLwgeFO^atkzOW-E>~&-a@OU58iT)x~+r&!G8;5 zXTO{HlJNeet#%-qR;qvI^5CuKjM~}r2lk=lyqffgQv?N1eUE*!hj71?Sf zM0V1?S7<|9eMM;;n*`zAG%kuh{csM z44bH$Md;gYMEFz9cSxOl0@HXuPCZM2Fqj1RmXb1-|1U;g<|?PE@> zWelp((>~ zd27o}bEg)r*^hquG}SHmwI74*m*2LP(Q$c45>#kk5`InF3t$S}efXaGTBG9C7eVM} z`-1k8=m>#helj!0NpZ1e05hwqpCI$QSTv4ZxrV@7oz#lN>gF|LeqpuZGT$1PJzD&9;wQxo53JZ6t*h;GiI3 zuo9DFwGK6j1=9e%j?3la9z!S0C=w@o&TXKPX1WT6I8gT^lA=iRnJE~)j|(lz96mXe7TT5n+8rXIx^eIYrE=R1^C7otcU5C9691Y zrCOC^)XRnvBxGwb*2dmOmgKoX+Xz|hYj_J-dSi-ck8i)dZJ6L9!+bJjocwMQNx)yT zU5f^_o{FsaJTT!}kDYhn5xrFSGxm;=y4?#OeG?n#wqg{g-f^|>DackL?8ChJ&rIU) zxE*2Vv*VxN`Qq2_*-*%53tx->st2O+hm~sonpG8hLABKFuC3bP@81TWoU=~WIM9uN zZ>a#<$HIga&rIZN;z3dwKkh)j)TDYb&qWz*RkjzAO$O#rg%*6)HbKcs8{C&H4KB*u zl+@1h?9D9ak&0m4bkeQbK3eWQv_-_?265i|KvK%b)6qSV0);L#dy`m2!Mu`Re5GEv;PS_e?- zJ~|aHRwtg3168kNeXC1Ud*RfzazPUOJ(u$J?Ftu?m4Ij%U-ihKCQ~QacMm}B2SKuv zWUQNb?b90AKNIApGxKUO&V)HyblNd|8-XyV>BY~+G7p#BM2 zI8W_QQKMf0%AD)Sn#F(DIei?(KQ-?Uy*ixf%Ien?)r&?|PCDYeyzMhexJ-_3zIMt& zJfAi&4tzXPk_~hRn=Ee$=!S~bGG;wBK z9S&N{@>lTI|GGTyU!?knF0gdE1g;!V=SW{my8-%q4(H}=>b?I)l%8}(Cx%zjF#}0r zmBY^0OE1?O29UqRi9vQDT;5HyCy{FH&)ySjfR)EI0c!-TV6u(U-tN-VqGHvjHFLB} zO(l0FVKq(_LqU-yF}S;JR(L<1nn8-p4o z>*0T2fO{femht}0C%Ef>%#grto{Lp1r1))V@Mf$-B*gdGB;J|F7{Z95MTk>IWW`Gsk8O|^oPiK=4r&)MLP~5Y;w9r^ZaVX&L@g;(XK(L|fW&&!^T8dW# zcH*_AcRO3;kT;YfKFJsHKs>hg5L#g!x{xNhy`lu(f|-~N0}_3d+PdOg&PwM@=I*k? z?r%0Vu6>90VRHu7uNRn6{;yFzC5}nk2U?2%#@*or_G6_W&RP?yiM20?N%%{c_dsSOHHA};Y7k3>0U?OH=JvHvN8mDnlNyHql3TaHBi@Kf=m@N zTuqyU@9iGk9pF%0M^!Vl{9A`jvK9Pj{%vw^<@xWmihm=XQxiO?cK$?tQlmt_WauM5 z8~i?mR`__I9v-OsECvftbmZ4ZTRKLd$}iH+6cNBLVaAOwJAU(dCyCqn%qjQEii=ti z(bQ+^6KQpLs%O~Pu3PK;XPVWgrQ6gjuGh?R-WtAF5`WoG6 z=(be$ZW=ZE3|I)l+6D)aXxkd8$aVznUT-aIK!O}(AV;Pf^u%~5yS*T+eCSXz|7zgB z>FQjxn?Ig6y9M+D*n!pBo|^6|yx~56d7P8qeZI9;O_;i{Lu4>ur4<{3^uD?vV-aXlQH;$k56ugFOyM8t@ zvfFW15GL91&1DmskFZM~3J?Aqv!>5;dUoWbuBBU{`R*7Pe6K`d2r| zgTj{op$+;!U#jucuKa2Kbia%js~n%FB(dktQ_}HmkH_m-PFm~{roA}Sg%0KFZxWXN z;|zec|xJk=8J46#QiG3jR^mzK5& zy>=> zEY~mi5g%tzO-XR7+*$O}HX`*&U!4xe?69l_1b*(e3w#%6k3O#h7sC9;Sa z58~t#vlWsckHYu>kbAe79k@5}eP07;iUJ8Kx_K~7L_cz9mXc>EGzP-rn z-w-(#AZZ93vv52)fpDjPoNq#WOHEwp&Bj^L|35Gw`9XWGp!AU|{TY`AfO^Mp;@s%5L&1@-C z?&p!I5*Fa{R4k8$hihvOI1F&`v6ePnqQueb4(XuX%~^dj=iQ!Zxl)UjAdA1NZ8zm3 zx?~KGp`I6r{Y>V)j$DsM1M>Zje)CMvTJghsS)v6_SO<@15`YlUR)hpjO*p)RZJDbc zs^MaK)#;y#-7l$ZMh3N~1r;rEC;BHd{sUC{#Ztj>5#+7)4e6%Pfml_a^*{Xk-W z^=|(6db0HwfSiA?Df9ZtwAU-DqRwk?Ag`?fRPqLsUNuwfdx+&`GIsv9_rIdEpYX;k zBfpZJAzd97E}n9(0$S6U+na=TIR>1gs<~~wvspcTnjiH$=XeS}!0Qlx!~*7Y3(lwe zh=nl%pa&}NHuh$xG>?8oytk8D_bCTo2q`-Fgoxw0^?C(6!^xb>)PJTarh1|@WVu<$9d4vi4 zExccBNGjtgI~Co)rD9$-Z{3lS8OBL0Ix&hPnCgTYfpNT|yLB_coA~VT2OJ-xgv;6d zxJo~^9qf?s6Jv=8~1|y(-#T4FzAH{K%dC_&)w87z<7n`=aszv^nDKo2Fqfw>bxxyEwxh0t?s3(zy_&AcLG z0Yh?|HjmXLI_f$yb5iM=dcG|JMoJ@;3z+K;4Q(8h$3n{=IN8^|)nwBSN6Svrn7H&| z@Ebc!EKARtj_zJO^$JJDeOp>1hX>8<1K)wKZfBd`DlU+}5b8as#4Sd2qYZRVnyEV& zK^?n1a@MDh<1%3R`=SqNIuect70S)^OcknV$}29Yr(xRYM?VWn%Ed!M9@`YXK#-t@M&lA=ws zj25LN&7+2g+4I?a4;LpnhyMBR(qgw8>=C54gOnm>JNG&T>8cUQ-m--mB+1sdsM_OM za^GWdOT|FD&iGp7<>$rl{{D*bK6`xs4x0yU9t}dEAt%K%EX0W}-N8V5hD@Zgeh)od z*#hKDQc=0POs{m=VGWt3>1lHljldq zoL44Ob({!E&7Wyw?QuK0aknouH} zUN-9YC#ILH76@E{)}Wk0n;A8f7|&W{HeYU{$zp0TR6t*3Akt>7NJO{o$oSaFxaTR_ zR~KIful4jkv|FsD#XfpqWKljPKd?#f$ToYJ^?Z$NUEJw$eGO&-mphqC#?8x>ORQ?p zWi|lWvzDgzcWXa!K@}}7E^|3Mu5Z$jboronzbG=5`{SrAKL_4_Hg6O~vk+a)Cjen6 z47RbUplvPJyUMzd-sZgkCNSg3E-;HTViReOChjhrPfAMGrI@m#*j3!g1Qnc(S9hC% zSGbU~tds*MWmS$R)8ic~k*M6+Hhk)!*JR zNnGOkSb)k~!@(s|C93E(C&@NZTlMY4b@zA;9RQTKgLkL`_?_&wcmx8NG&`EN1wvDk z0Aa3h0`?CjQpr+5=t$;8Ho=C1<72Sp+v)A_lomir%xB3T1aQqX$o1fIHVv>7rvW-L z_~4z@i;pTN{1*7GBZ)g@S{YE_R2@_RZbajtV0Jmmx^?evU0U#uu z@%;vz2-pK>UVR_bVneEllbUKED;n|$n!TIb=Ac3F_M@a|aKkNL-vqvjYRRoKa!hJ?r%5wRDX#DQw?5@Lhm>ryg?9oF5^E+RcMc z`MnD81@>=hFQC#+K{!aFxgd56q=xK~18I4zp$lk;vevP3>6y@FUy){`tl3#1lAmelC68UpYj z`&A$&@SZ1qXm&dbY0##_6oA2C?QS?PTnnU&5)`s!=vKS%`Im1D5GQNCps_cP8Z|FY zM~EmDt>ce)1m-Uo@po={DIjFW@Q|3AA=+|+){0`ZxggdUJKs3j*Sv1ZT8QZAOI}7n zkOvMr8HUp_!m95h8uvaN3=!IPVyp4s6TgR(o=uP-%#HZ-UiLg7S36)^GNAJ(1#_i3Pr>|SGj6)4cqLsl$=JL&7VW1jHI8}8+U+*U{ zAZ0qmu%C1$aalT%cRqPxF2nfNF{h!_oAkRO=qkj=z1FbIh`shBYNZ_`eGPLCb z#v5l%KMkwN7-oIJ*JiMo`ClUHJtT;hpC3RojQkOQeY!}0_2k#G-)Q>WFj8R668rdD z_+wEUihVgSF!4M!XX_l)X&=K-gu1)n_P3MQxDOLHu+P0i($X1MjoqF`5$%q=Pz03& zl=4J4d_Sb}k)}1Nx)4L^Da)fs;Q?F8=EADiSTIV5T1@juRXW9U1%Gk{G+SCose^VX zq#WBm#P7f$gJ{&zcLWh>GUPt`Kz?%fS@FUj1MJ6u4`E&PXxrpQNVi=f^tT7@I}Cs^ z5dq(R?B{O_F^B`GGJz z`4Zwm!3W-^C?hJzIb3hk{&;AsHn$?{mwhi+`k^M#`hq}EX;&1z`yPn|GsFSJNW2ie)|z6FDQ4x$he1c-!ED0=#h?c zNE~<+m-ig&ZIJXp_NVsnA)<@IJ?y}PjC-lQoT>n?+PbJ~r#MSa_vTP~oj=K(sYX@5mTJ3PMBe$Ewl-0-BKvU$Eek8kwbQPlbaM2;kmQAEaOqE5I$kay|MEZ`_2_H?; zQF6;g`1g#f4${{~mwJ6nfeqpyx@IpyLM~L6pDr_l-8OTN2Tp@TY$J!-rHwrEeM1!v zPgN+ia5R~A`65+jQoA4{Gzo^NoCvO@e}f#7q${?EyK)>)$ z3vw7YHu`=tTuWND&qnWIW%95%`DkE3Z%`4n$`Ma%A}#8EYXcg5NH6L8#~g6?0T&1Mj$HSu+F_?#y!b(o_IAEOpyA6 znr5L52`1abv()k@ATVA+UMMps&AQDLVHM+=?7)+0VzW*@$j3AVIw*lHBG?R|vQk;W zh+?5tqXT}*=SRut%g0%X^=2a*ZYa$BIWd!LDi;9#E;ko<4Db|epNQ`}BA5f3b*4Jk@XtA#O@t=YcNi@@c|5$=!VhWl+L_HLMid14#c!O( zs{n6l5SRoY0Zj@GSYW{2=NBf>oJPWPtfS$!DbSyB8krOPB21kaL}d?apMmcc4hL%M z0=NyX2V7|KaelS~6EfUVYCPJjdHclcp+a7go6 zzxr~N*)c)mb_F(uh>BS+mVDJ;@bUj@6?uQLi_!kR-!o)Rx6WBNDt$fp!m)D9!U(b7 zWG^u-gnC=CjGib2&pK4qx2Q*GrM!<2O-)ei32+BeYu!!T?WaKT_`?;&Bty>l>rMNQb>a5YhUI{KeZbQPgHBW%R6~-;X&E1O{1fSFBu~Cp7+<1G|l(>?>+h(Qbol>>O zW@vz-wI70&DNH&|OKopo*q;>UY+sbX!OZaLyl!T2n%9ee_=Dj>33(DBNg1n+UTXv_ zWOgYtF_!{0M8Fxm6#3y+EU>cg386&{B*C}H7FkzX*;uUU9etp_RzvH_A)HRj0QO$A zVE`BMXaD`rIQ)<`inLdpTXudu%#m!ljoN&1XB(##9sQ#WiW|T7(sm#&idQmoz zAbS8G9JrGG{(2bLSGg8rPjmnDHz+T%)c@92k4F7-4g^cRh?Hx8TWYuI-gDAYhIIJb z0C^KXd+K=m3ELPJZFlLUWmdNY+Wclh%}>P-a7$=WMnTUXd2f^-kg|^}(4!FQXaI=D z$05&rPCVi!OvBn35b~X7!>-^86H?>zJL=ntY(Bt2G1}AZ`-9AB(l%M!zt%^9bl-dP zp~-q{nVN3OD_9;MnfxkBMMz{XLm`^k2R}+*p*gGTz2D8qh8W^!b{YFbwsvEGG+g3{l7>J2M9d?0qi1b zsPkA=OYxb`B_gqPR@I+g>(m#&ZKTV~O?FK&yOD|7r=RZ}KU8tZh+jUyP30Q|skHk$ zb5a;&Yc|89`+vdr)zFtwWKOdZEp`h~s5A2k_@Je$aI=NPrnj42&@wdB=)J=v3Bn)= z<`}Rv&zgevc-a|j#1ju~1j6>H;C3J}qdS-`?*A@p!-`D&x1L-)Mpr0tY+!E0a4z+* znQ7uF4q%amaqo6euw5HDc#L1ECf#}jU5UWeduoIA=z6^!paW??kT42n^3|rO|CW-E zR~A5Mnmkxm|5Dz^rwcsZXp*}+*x4?@k4-|F%TBtNKkxrxVO>usyXVs1S^bZ$P&7(W2g@U5 z+#M)St6f*cBokyx-ir@#7C}{wTgcLK(~u!#;Nkw&<0)Eg2%`DF!9_8|9(uif z&i!}a4?i7)FY;2D*bN;eHSPp&?OFs^n!4NY7r>Z^=bP}xx^REPn))3kVdA8*R9JBb zF-jj{M?e6x!Gx=Q%(W1m_tb=KC|Ro>!MQTT&j^q#x}`>d!;pRkH%DY-XD4}d^T zs^WBj^PAdphJrCD#hQrx{=sTtV&;)^+n#57bF)O~Qo4|8HeGRxvMJnd()Cz?^7{jOPL;L;8zXM5 z>@1Y8iufACcsOA}ft(WK8ru01gD=rAwCRgQ`OA4PsWrbUE-eD{bhUx>jTOM>xca6s zR1qwiq;ryC<=ej+Sz)!$Z~V~`N{%)cYCJ{Vjn4UlGZ!~02BjR1hzKRdFLhMtlsuFv z$;L8rp%o|tKvCwgNE0p|ebPv3e3d_fCQ-ukNr2xOfm_8V(ny(Ku(9DNO!i)ZW7hOV zvCSZgn^4;HAS@NFdG%v`Su`rHdohRy+OKkeItFSxW7IStPk(-=XYd#EPCz2P!P4|D|uZ zst(8VW1gL-m86`;4~K@{#QI|tUbOHKy>qtoIID2xPL|S)kyC!9c<;C^zK6JW-toR{ zud4UKs_w}&iR*CV+ta~PM`R7K=2gYY4TH2d>1u%%wBrSj_A*y(q7Q$j8zRt{4ECb* zg*s=H8tG2=og|t09uAu%(Jub^ianyh=XrSbwS-Mvkp+4y_NKuNCn23oljW~3q)Tc` z7ADGSi+mk6);pt}kBmvjoF%M(do>4>+%2vk`9>Fn3WF0^05^G~89EpEkg`PZ=$qQ0 z>6139NrEXFE1LbILgT1Vb7!mD>~!MX_2TA_JUw;ury`;(8IW4v%?zA#!=#B(wjT`| z4S#`-KG}v(|3_|^pMQGK`D!>f{x%<8o!&q*nm%$)j$+Ns(#orSIrV6wHaT*Y*Rq(~ zh&DZCCsxwJa$fbA+F1OJ=_`ag;Cq;Kph*+~`Zhg#SMhFaWLfu=-zkz}`%?Ga}b9^Dyn%$d$%UhiJ zDKRcTT722A_4eeRfHAR=NC0B+J+BoQ{=peG+-1dRUjLkF z8vsK1kuQI(^Vz7LA@QVE&PHw>cuVJ8cicvd!Ip351y5)rAN+ou&9nM1KH;G= zwDZIIGN01K@Vuuf`AC!Z{Vqx_x0Xv+y64;quyy%uXyF^gA}olY8TadoswE3ARTT_! z$$|5C^6OFBP};a&A0{cuHq#H8pMdF22CPl(v(8Es!YF!KXm`Ml^SwTDElUo{z@9g{ zAiKgp+EfANBHLUk|2F7vycqIr>+9ZkACET{!xCuSrU&~eP|>VE7i2S9tFE!SQTbKX zOt5AbV1qXLBzA!Tj~wvyZcL!7$8_d@ect;E-QDYN9(9)aB+2SmdtYd%4}sl$E2%j) zpZz^SzZnRv8^LH{UG{aeRjYZ!)whAm@%qVWsp<(+IzDj8l%w8B)B%K@>6A)amt3!C#{sM?Jk#xRKbJD&?g8W{47CWE<$iA8GZEh>Lv zrb(y|gdk`@kXYUe1`Pf7ME?Zqwb_S5x()js*O$^dXE;p|C}8CUUZC!`Ycxl9lhwZ^=wg zFW4~-phj}x8lyzTo=mhVk5_9YNN7Z?N)EB96)>eVkYAryEdvaL(m{AGf$|)7Qh;0tce~6QK}p3(TFr1OXDx91!Ju z!$oH#dH3I*(#Uft5b;G(^pGT*wI#uM&%vgmg;k9TlSH|{Hf0q?r(Rk6&q}iO;Se?d z{Yz78&O__+6NB&&Y`0o@%66*E7Q@zH$M2Mx%*KOr75*lke}Te@nf8djLp-8#dRZSg z#XxC&?Ja4Rkz0ROT0e0GyL?J7BLbnagiOn2QqF?epmuyT-nII#&--PoMUwd|kaYr- z>FXZKjt)ORw5mOGPlVr|A2t~SD5zSV-ibz!!Bh}lp<3{Fl$<8Twzf%}V6dNEs^j-~ zfp)#9vJg^#Kuvg~#ug*?++9(@FTo=vJeya&WD4KheLvh#CPDzphkuh zMe3@75K#YisXiy$y3_y6F z)6V@$1BTq?1kUZ?gDgcRo>O`_gwZCTS%214FMRqZAF^dL%y5q}VLKy#)wDMloBfsx-cLbL+eEHy=e|WOhI-CfOCta)YdwUgH+Cs2Tn`tWER_c*#iMl(t3RAS zf|iV6z!Q}3ADyn(YL7~GbN^y>P|vUO0g3)?)zC~Vlat6gR1*o)__}1+R;B=DD|@%U z`>R4`#bF{dG2agn6iDwlaYw64A7*M#s<5T^qSo8_1Z^UWm~{BZmr1YP7cuCcU}pYf zKkkht2D-s~xu_p_2jTTf?-2&}K6IUOjs?Z$d@fQ+WvotZ^b_O}rTA0{G)a20u;G?f zu8JoZ(t((+T&|L2nM%)R<@fotT$$cuu^X zdt)4;aAq@8HWW=praZdx4RN)hMc+?)(uhvMl<{ZYZUQd|@DEQZ5#Z9YuD9oA7fVa_ zV5B~dj}Ysdoc1DDzDcTVU474;D)UfJc&$#Mq-YeGPJ(D5D_2cNDbhw(9mBD&%lUB& zB;8Hc43M9{nvMjcZEm1`{kzlX{i6Sk&o3fd`bEJ~x|I3v84IyP$NT97Ug4l8-G>kX zbe}_-_O1~&J;}zErTgetgM?syICX)z;%`%aMmrp4+vux|NyG83@X|1W*$4tq8sdE- zQy1d`1#~`oNm!anrS0w4b2XN5n;LaDCx4NE76_ zjy&!?nSlP^y2iUAV*UHKH-3Ku{t<1@5;=$`d z>aDtPtXj{fE0cb6J~x#h**XK3!eJ{jY{IHp`2J4eb!;Uwh%LZej4a59Qq11l{hOcJ zC0;gP-U449xjnGKyldE{#n6H_GB`pF0Yu^zn0cTGq$ZClVq~lL!TEA^0bpEjBQU|j zX?cd7WIAab`*mz}mx-7b^8^LsEd}R&&i~O7UtKJFb2FQsK%+t`a)1JLt^Um^Hf?a= z9}mc+G12r8f%*CJ=m?3Y5qn*a9{m12OU^BK6UCSRV7tgH*8f<)w_j6iGvM(Pnvwaa z=Jiwp4UaK7B0f@zTXy+X0wL^KA``Fr zi%Lf4)00J&(dvn#k(x|P1KfCsC6V{wx3mnJ8%K35g@^Dm%9mLy%n0%dwjqng&%bTo zxsD#~7Nca>ji>Vo>f$TZ;fy01Thd1ZPewU&`wqq&B5IdFY+%w;V|GE)9w^(^%2?h& zvj%ufZj$BY@Wp-_6w{z>{}^6tV<-xHBxc_8I1rKHUm(im%)|CuV~RLDbfrsCzuOL8Xd4LRZ`bv7 zO7mPM+^N@1#8+9WYQTl>+r$bl`mJ-5t|L@Ft~}ps&Tk9j;=5at4&nQ_NH{rGgPf}* zzrRz7w-EA~J(oD4@e)~7=Sw{4FEKD$Z6C_IEr#fJTDALx}6_*#i0WFeV z1OtuSgi3_c|=1k##I)k#vmTpG!F44D7#naAXEyUgz6*%~ zg(*|+Xph3^1YiPt+xXg+If3=`f$5w8+nnXF z7wP>L5RPkcMz*C#!hg`Q%r$Gu<;|MDJLzwITNHW0ovM+_!}DID*Mwcb8~X^mMd#Pfzy1WTQ8Ou z#p6DzCbTB4{BOSKFUqQgvmb8vFRJ40sfF=-wJ+O<6{M|0Ayd*m5Uqk^t#@wH1 z5D^y;1-R>f*YT@x-`||s-^WMJmj?9du=Qvwl4hTF@Zc!3^Y);&+B673C` z=4pQenT{uM<2R|_JlylARv}>gq08K^+;jQHf8#Yq95^LQBU?S^x-V$NCxY-~rgCU} zzpO{gI@1;hu&`Kb@$l&T+di1<98;a=pk71~bM!c4UfxO)SEx8|1>aUdcm#uee%C9T z=}6c?^Fd--yjPvXx@J!wab06C?G2LqTYjO zJu@?eydG&%feaI>oga9WANa}Z(3GWq$VqxN3(HB5%c`Yzk;;~-j{qt=ltqw_OV@&Wr0QCII9?4BDcDA{ygU+iZD5| zA42c5fQ`98@5Bt~*;9Hl0wxJ_Q(=t;TNK@*Jj=jndi++j*q}H*&^36T;#pF| z1r)J|26ccM9@t-S*lyl#QI2^-_he}n+0u2;Qg~K$f}H(F4GQB9`Oki^#wf%?j53&2 zk7!t?8@x$;IFJ=G!HRlJ1eB@Amlrwk()9VgeWn`s1ttu-KJAA%=)NC5-M5PvSEmgh zhlhsNnOMe+07T7lFKTPBB=E3Oga;=o^%oOgFd0~Ydt9?hWQn_Vb3AMO$eB$P>dv8T zx00e#lVET<<0p*F9p3h!ZsPaHMr|wInb)){^Ma~sfHZq>rMQFBycq0g*=hDe$@twq zq5>nd_e)}K*K&9dN;nkTBqS687AiRLx>fw0Y6kprEt{(Lj^C((+I$1uZx{vWAt8Ys zJwwS^z487_BMU2$iTM6kUn~0>An30>OFo7?;1m_Koz3JMJaJ*z6e_$_QEnwTJ=F+V-SXp@|hIwi)DKKaalO>TH{DBnw#RLVg`fw$tSuImQA5=@WFbG3&ou zJ1m!Zo)>9+JHEB=5dSA0m+>75zV~P-9Hv)$5S1Vy=#Z<~aIJ2={dgg!Vz?keU_V>B zFrDCumQ>#&epEL`Qv1k!P;WS-Ki#8n?LL}O5d)PsdJ4Gn0`eIlQjmF!|6W4}1w>T# zr%zymQ}+xsi~3OYP^UNGrWLmB$}*p{-em9%15(94+T@LkCrjsxMi$$=r!bqkRw4T3 zzQuGI*LYbxA?`tf?8RL1~Slf%-3yE+Uozc;Al- zlm+3v6!5}k>DJKKnVNm~)khA=lHEwOksM1I1hF9~r0!8R$hBeW>hLNQ52)TAS2o;^PzOf_s zm~aAe)W-^MPCCj!OI8UIKiGp;5B7kIulHCToa+ZVK5VHZ0pFLnMf1H))5FEM$n-VTh})QsP#}ix$?JriN9I;h;`!nUJ+PcB!(NeG!K2b9ix;UZg{s@U=8_Vi zfb~%AJ-)-wI$_B<%b#!(rzq@4pj`P;npv3|KXZ~dvhTF79ITp_bM#G;Nc(Vd5xJW#;gFT z+^hoOm*+c~$op^31cQy};THAZvyL?Ok*$CAhQRAvHRl&tyHh6Xf(8`9MY>n*r)cdB z=J~k5bn_&fq!TQ9*6({caTdjdW zm>wc_0JQp?jByS6%wDu70%PLQDyP1r-7VAWfPZy0Xy&HPG*S@&nG1yJ9cK~IA0Kykk_ zt+oPTb@Hb3L2p5%eNttO+8KcF*OM&!Z4Ffgn3V#U04d(sB;`htJ<66MpPbk*TMlORECh+qkFR0>P+UE6^hlCDaI zo4JzE;LF5U8Qn*eWXI-QQ*dK)xscPk=U*2tPz*@kp%9r09u9l~R>3V8I5+N_|K{GkkQbh%LK#}4Fda)s<`@}((us6)={^$7gB}r}AY@Qh>)o9%8&T{Yi7b8c<=RJ9BNWJX40CIEha z8B;nC-+Tc7(L+ZX^{A_(d5-u9#z(bB9pxAy<4E&!ju-LBj3GWZN$5E9Tg+l ze&Uzh44c-ft{ou~K`+H3%a<8G%T@XQb9md(a|VXYd!9MHFgI*bs$SFhJhtIy-3f@7`CC=lZ4WLZ(tG2 z+R|9K`>e?WEaCT0^CO}#!`ru;>9nF_b~|%tjfG52qt=^hY|Y`$C3z*0zQZ$QA*txM z8MAZux8ck&8HZ2N3H#N+KRwm(Y|SQRxlBt)K(0QIgddV`T1qM3@a^r9`6u<=3l;VC zg|F>GWgO4DYBSko2RQ5fcsByRb%VZR<+x2TH`$cwBX}$0-ZI4?SRLYK!VmXu3{k=( zuMRp})e_XSQf6Oz)8F|Z*XYe0I7>2_hVrOw#>o47mESPpA!Gb&Lhd^VHOxS7T=i-H z)Q_%xm*oA(FJI*cUuW5%-1kafhSc5{9+4rn5Z z`+;@@3|;Iz?L%IX?Zt*>#$Mev-A(hz@LaHe&zGr){DR`y{_%cI_$)>t%nBG;1>_j&kOk@?u1tf>+_M#;A4xDUK9Cp;tmc9NYC zKIehIx#IPq+voKIIPCS|J zpdFQ^LDsT_%>Tgj?_6}B(?VC)`2~oS`;Tqx?rnza&r^lniKWezr*?OBiCi`Z3IxX+ z(tYR`5bqH*_JW8>n2%qVrd@R|o|_%N?My&Ib>H#lmme=}wml7#_Uv2ecu+`i(tSjz z-fTZehx*c?DJ4c-w+IL1Qyrmg<`#J;lW90uY#J$+26N1qJCWH&g`LNJdrydQD&=~= z6Rn8hxply4A31@4A*lU_4@;Yq%fo>(Y)@JLJ^azAfBLSB=vhQx9fuJ{+}LIWJsw*a zZ_lg^ZJ4siIvG&ucFDr)K7Ndzey`f({moy1xgG(=U>^3y9az(h8OfT5Uj`sjI@Cf6 z$?*ZU)ZL%Omf!*&hBU9ZP3wZF;gJrA+3Kea-3eMy1W!_X-pa+6rh{xg7)pej`y}C* zr!O4@V|$CW%Jgu<3DS15v&^;cqs5lw42xARO=xUpaC|bT@Mbgi-w*(Jigh#ooLm3l z{kI*hW>K=fv#=W*8LnlOp2f`qes8veLXXtr7X2uE`x;g!n)paXd-NT^SKWJ7(Reow zHI3pXy%=3f=(PL80qsacfaWe`YBGBcm(1k0i6jljMa&M>1HY3N^5F&jFIS1&Te++d zz>Ni;{KX*D^@!Mtu4ma;LMD3_#2Rl9Aczb#+0WYV-0Wy zmUjEkT@E}~Lly(4#NUM9gO}@z`y&S@Rm=qnp`_+5-=m=feE7C_Pr6N{+AQqdQi*S9 zMmnM|$Nir4-utfhfW!G^L2p#p?EZrs^^SrM(x)R!f~*M;v4f0{=GoezB;g@M0$Tn2 z_D|dtTM*xgz9>nzdGu4~sP3gX09)QpJ9Z-BK70Ie?0GyljFY%MdVQQYtxyui`CyAD zY+09b*Yw-$0ZH$%KA4BG0hD1w8YB*dxsqdeQ&bm8X#a*E5Cb_r!KPL|HYZ-B8MLSk z{?Y&4=cV6BzG>!K^sGheb!$`qz18@G^Jv% z=chfE3esjfl-*0Femre&_Dh+zkQy?`FfU%0GsdNm%pyh&C4$z8lW?PE=!|Bs&8MukeggLS2V%rN6K9M91Hq(|M>paK~WR1 z+Yy1e|Kr@Jq^H#hNjbblC+l6?Y(Xug84w9G{|C=9>r6TpGJdrQc~gG;+(Sw{p2d81 z8G@2z3QGLK^TvKL=uX#3s&=ptuwl?3EPKr%zKR1 zQKWAfTcm4xj^vhZOU*2N^0Z&5@!Yvl2}FlBo^K~$F^0gx2+mI;lmk0E6Ay3#AR_4~ z#gos8D`!5mTC-jTiePWym5W4eMG%s9Z003i-RUoRn%F1cI4|hpAR2o3G*GYq#{1jH zB%D7yClD|;?L0kds%#9;tVo^LDEjA~Gn3&-2w=IZn>epW`7rBMha+YdT!Cmm%+O>M z3K1}ls)T~R2{Q!GSS(z`&eEPw1PMOx$|BhF?}G?95`*E2Dxyk6T2JwVR@x0A$_LQ8 z%s1aPr|U_$a!`P;$K|>OxIt}4Fh2??cII43JI7jKcwYw&MBkD{s3X2DCYQ3CU_G z&?YgRPoJvOHSuzrvoi`k3-$Bu3HaPN&{_FC_Y)T1v{n2)ho3WfCFMyd{<&*E&*4kfH(vMYdBGaGweFu#+($So#8ruun{uq=$(ePBSVs+B<4&DUT%MCWItGz=5P$VQHN2$(Q*3xhK(l?5 zkTfI53H%0gpy5pXDCX*=8x>{F?VbU}DnuN?g)QL3=kZ?n;BK;k?w)~hPFgf7or)z;Xjvx|>z5CqqTeT?>rPo|I4aMk~(clcu> zuRnKnJUEn1C%2CceM51U%bB@V!gavCXS^Iq z;;DK(-l28Dhp}-M{yo!|*6Cxjs~j@OkMm2Oh>iM%0r(Ka zVTsx8a|`YR?I*CLupJWfTiiSd>sa2!+xbic{&-IWW~ytFrc;pH!z>kCUQwOg&9ywF zi==Fx3WITt7tM+!`JPkp^lHk-mv;>(KyxL&#dxd7geMELu6me1WByn^u|0o&(dOcB zZ_I7-sxWI3uW5Rg@Pm?1yLUkQ)fwEYPbTjdo{%>PKP4pY4elJ!Jz|?DN{39DIS?i7 zQO*}Zu)&N34~Wsd=J@>f09={y!e~vk-oSTXJum>U+*1e;bjC~`;+U1Esf-^y3&cf? z`9O151!HQkAtaaXOQqq=VK2avaH^X(|g9^68q8Az%I! zlm73I#M8g|IRNg^&O=&oA}QldID+$DU>zUKoIFy9sP4HfC9*9k3P3`yu^p?z+%ez` z4F{&f`pt9s5W=DNy!n9cdS#r}Cq=yG{mzwUv{A&`;yV-2ZyJN9RBgEyqr8eps%Zln z1ATlGd9zpH>q*YuUau0BhLH-tiS=GmC}PVj7R5H4!pg+hbGM-nl15Q0M?1uuSJwZ} zZCD>6yZyZzQ-vAd9%Cma*JjeDTLPpaXRZ`LLu8j)udTKp_TPo{U zl=aYe?6b)e_WT~x$!t1p-F_&>;|`qaxJ$ozg!1~Wx3xoHw6D1f z!6d|k^teg3MWhkrDaYR2^Qv+W4sFhH4LCEJNn)5mercVM8P+CcPIc!6)nJ(-szL@}AHW+9+$Mt9uvHD67= z;{IjUcMi92KRESX( zLy_V}v4A-x6ysoXqx_D~s>scnqV${z98cqnav+sj7q4j($KF=O#hJQ#KcN)vNZDro zn>U!N>Q_J4Yg0*^82!|{0YCDLdCL}I#M&kacuD|zW#vaBjYM|dbT*BSK{~0&<7D^k z%>pWLn^`qk6w*<|Ij>|5XhAt�i#<>87sdK{!sP+co}37G`xS8?iXSsV8XTwa4LA z)lRgmYH8>Iw>K)Y3Tyr171rMbjId70JQs~T=gc_oP$sqn_}C_RSyMtN$q1k))ww`S8UxO> z@i^5cEK6!Mv0z9_|EV?n`4OH7ywAhmUv5G5n_Ibe^ej{EI`LA{ODF>22#D9kqF74u zzSJ|uwF9k#$wwjZIL=d$TqLt0`|fFv#Yxej21p#l=~+64@bKP4iM!lwD?p4+3oJTH zYi!oJsjh_c)R%M9fp}%D&572>@WP|3iodwh*A3M1_edkCc2|*{uh7)Apkvnh%M0~a zTrsR)=0y9*K5o}-;p(}RKX-hjSSpon2(i6=bM7Pdxy4E(64tC#?Z4B}TaqvoylZ)oP3A+*M6CN=6dJhq$D4w0>e; zvoDnr>2YY`oa~(mvf`MyP#(J>%z)>W&!QBSOeBr7#I#lKHQj-R{?Ep>JFWcmlSfeR zWvnS9E|r>87CvNDVL=ePRkr3ptN>h#?o7@kL&?7~=Ly0< zWZxEOgJe<1?~%R+<_Py+&_oKQu;%Yjy+t z>833=UR=g{&h)OTp`s=@k-2IcuZr0p(}M zkdNHK+EK<^x`1ApxAZ_vc71O#Vb&k+O&k3L!qY1Y6I>D^?FJazw{K2z5;#))K0cWc zAz3|M{TuNa8qXn~E=i#Li)>Ns4B_aSuGPk1tDImOXpmyVt*VBW916{A_I~490pZvk z`{^Z+ixVu|?VD%2RSsLrY)YwpUoPKk_$+#*m&Es+DU-De27qpyqrawi2$Kppq(mn* z0RA!38{l7!dK=oXWQS)6%qN%|5wYDaw2XU?4XZr-`3h-=+uJL7ES^`clrQj4#Rqak z>CluBIIeDKJ4JDV?mB95|QsPIO% zJJS(33v<=g7?mw?hI-?c6cflc_g}zrA>L1 zhdO(FLgi`F1sV0chG3So-$(S3+wy1k(8M#Za@3m%g6^YnSjB0Kv(Y#7;v4jsuO;bw zS!Clu`M~>FCYhOmq1e)Conjf~z(POv?P@u)d2x}>=sLgamDdK*uB>mu8NkdueC&9~w0Ul6FtR5!eiD4!@H4KcwepOM z#|WoE2_knepU*Uew~1w*jt-+>sG8pPtIzy9MO%P(0X~~9R|M$HN&7c_H^=WCo-{DE zOM-k3nK-KQvj&X%^bW=_(ZnTMCaPt0@8oN?jv2pydzN~p-n%pz%tEpYg2bD*PgjYw z9TP)Cv9D$>jIc69Fx$-k+B=zD>kIo^P7XwRI6%zze`7u;hMH*>q#X&@F>E1t#%6xr zhY?V}>`9#K(?UOVjq=(o`A%Bx4f)=2Ma%9}df*q)e)V`j(-J{d zV$@ZD_sOe~DzOcuer)2O^xZnJbpa@HiN3s3)R1WCh@w?`zy1_#6 zQ%W&D@4x4f@WDp~2GB6?1{;|!Yze@7UiYiax<|CfJwQYdxFQ9|b#d&HZR{-$Yk7U9 z|I|kubt<$|?VC@~)|(&afbvnBK$DSuyo|LulS7S`ZA4q1$-;ZGbGvINNJ~>|NG3TB z@Dr2xnAz^Vew(`e-1z1kI~fmvs)!~DHobQg9lJo=rAJON)UmXkv8tlv;Z6VyQDGtX zyT&69Dia*|3NP(wCD(-Zo{PjJ#fK51U?>X5L2D z=ezCOZx7;GBasX)KP}7L5kJJ_dkE~e$DPbD4#H?N|9!z2Rj~?z;g;Y1D}Vm;bL(C| z=QA1OZ9t^M_SIp~B@Tl+|2cgqPEHx)W*^oUdnT`3uf{kgBGL9Z_r1)20M!p$ejQoT(J zO&v&0R6vb=PRY!GC7hpGC@`NS^;;nw@Brh6Pk|V)&z5FqR~}FC2n})aoH>ZSop^mWM6d=~u;?VQsLxhAFAD%6MOiMXN3!5 z-H*NIV!mR$I-t{-uveeCQ5%T3iH&T%ri53O8*Z3(U*L<88>1(0f$3%`Ry~^ZDcOaiS^AM0e43G0kaGY zS`3jzgWP`9^jd{=z6fM(9INas@Mb7d>Yhs56Pt@-cpSt}f1=r^86#=uSJn{02{jS_ zu7R2yBh=qJ^Xti zub~QS3TfONeLB853b}j!#5OW1-Pp#L=4eD&3Y61O+$6@3xDGP0*?Z?A$#zIPXWcxe zFH477)|l8Bdc*T>fs72#$MD40G>1)vSUZD^;Q8mA(tE$?eqR09{8O}kayQ(~c^O_w zhLiL;gUVZ*Aa)Mi;Ukk<*O=j|IXC)g=A0p|42d>=@Y4*@;`gw~c9%P&;cnb-a@Z^c9$**F}~;4cevZ5q*v zc<5P*CehxZOLswjIzK%_7ky$-(HyFxksze!hp#UXz zZZsX(-+dGiz-{)MizMJBGE6N!wvuTG$FAnw06KZdA{T|}^Ifn)TjkkR@vDQuay7x^ zgN%0^NH}0cbT(jYv;8L@nHa>+J||8xtoD;%GX*qQ-DW_WA6coIBpg}H=l=8(=RsEQ zo~|e8VX zMs1_}trN>B1z6v4n)+?NQR0NH4g}t30ZPTk?)IdzyJ{RqPf9PlTrv#n4pj2Od|*5& znX`}sk}@Uf7Q}6^+=jHo{x#w6D}g$V^fQP)p@Su^J^A;b1?Ke+XSqiOAoX+rJPspg zVe_ZuMi?RddcK95aJ08eX7bABBctI$`;U(ob`s$?D5QDf+Ypz+qd7aJJ_{$=3l%;o zj6~bZVoe+SNyY`+LhIv4ZzJAX$kjvNKv%7EGQ;}43v@0*aRi9pp(mgLcT$t|BEsg%>|KEap zkGeg4Im+Y2oUSYyYNspbsB@O`i{qIAuFh@`z^q@#JMmeF&5*E8nUyp6cfaxjD&Jl* zh+pUeiSZ=(bo9v@a-Rh+yE`EW#PkP(x~kc9YefTmi&-g1Nsf^L85NnKeq<#zXDjok zF1Jl{7QOqiV;8Rs3sUx(WBwk-3}^5LczXsxtmz#nJLM4nUu?hGzx&`Nn$L-c1v!ZV zs8M`kOmqJdtAjM+#5w<@XBM4>zrCKc=z?_%-?zHf10V>Wo6j0bnb-xbe)~oJGt$xZ zJZ7ujF<`u*rp5ZH!v6FA8KV%`b*Hgxw(*0tJR9LnImI&HIp)4>2(^BCW$p-8m^!Sd zEad|qQ(=Wy5@E-_Ny}uN3<`%JvC5c#UnRnEnevY&k(a)} zX**)EHrshPnO6n{YwG=7XZgY8xO0m{VBz=&i9=Ho^K!M07xuF4RU$(qXecw%1nmOc z-8se5Igm%Y?i8Qc1XNNVtEUjB-A%516l=sHK#Td*N~)|e!0%0_?@NIheocQl))sdM zoW86~pC<&0Z)V7YxWz&lFDWm#&I|JE&(D+xkA4>t{d^KY?GY;VRRV&+C`vs>eXyo^>Dp`59*4}%DLh3ADM`2;P=Y%Jp7ptgFq0H}y?Zf!;#l9H zh+7dE_bB^&NSbmF=A!5`@f}w{sGr~1{nZ^>faA<1Z|m(6yIjElPPa7iK4Cxn9$2~_ zfcUr%VjS?a1%@DI3xYwAlvgxOIjmM?8NI{ymWn^)-=zSB;rVZ|Uo6F#XLjWu8`t_B z{s!$Sq}`{8ab$$X68AkX9`c{G$o9T;;Fg#5>s>Wdhl^Z>Hi&0oph5g{7+-pad0e3x zh*4sOR|N2SCO)yj@`ttF44DPVq;*{u6<${871=a7LScDGMsKM8_(LHuP zksEv)RI_cWyv!Hgn9;L=Wl;;jZ7;U__L4MvhO$NjICDDC`t3J|^a_=!F-a-+(j0o) zs~KDQ|KPg(L4I>jMfFmA$B(XF<-Em(+)sOx<5%u=W9qx}`+aNlxbaPz_9+#DF16Zm zBm5*b+15fBE5Mk?e#ll3tzbKo9-4Wc*NP~dXn>eo7+)^_u(v7nL>qf}Rq)*t6Z6+4 z##qDn{9{v(EO}Ai8Z(pE1P*00lv_H=eQPhz+9e~$-j<#y(iLuAjNXky0s_Bp(c_=J z7#X7d*Pq>Af4&RxoidkMLB5-CjHN1VPC=wDcDmoLR9|;HHS|dR!Bd7!U>CKaz^h@evYE&tjf`0jyd9CyKlzscD z##@n%?; zYvG-wW; zlK8tYByWCwkfkOFqH}08`{sF4yV<%Uq$D!+NbB26>o2KHdezEowccaiHUZtquspap3CeD(HZFk<%^_EbVpqQ=2_mF zDh7e6eR^cL`m#U0S0ssdW)#2YA7XA9=z2d?*A7^535*`|CkJ~Z-yXxYAv}P6c*b#` z#|Mh9n8B_fe+`qmVI@Yemy!GQ+gu&R26__(B7=OKaSFD!tRxComM^0P-C z#Bf|dqNzq)%(x`)Qb;(B<=Tsk)8$*%#EtB%Et$e$f;`h4LU{^aJ#vSWO?2zuyD$h7 zr+)7A<+*rrOz7{q0iPrmdVod9UAy(`+o!YeK%)IIrnV&b?Mw%;7A?hAwt2CLytW zLS>$8H>M*XtteWVgLeLdW+ZdeD6PZaa(u53eqhl zWVyKh$3dRXIRahvL43t}7oX)$-Sx8-BA^0fg$ClXndr--tLGaDrq~rE3AG{VN+G<2 z(O@pkkfJhS_Gau8u}_mTmu`YOZuOL>2(0`=0blOZJLTP%8DZuATkH77^?-uVjdaA-7wA^=%HroXnoT)OQuyM;S+f5Bq>-8Y;JBu&!@ z>8>E?{@bMqQD}b7>51pD{b14Kfrk2fO!~Vzn89JmguQxaOV;YG=M zRm*D4^m1=uW-4`JA1%P=PAd#Cvf~ZQ7g|V@5=$I)<(udo+BI;fu?J6l3yzs<*U$TF zZww=qkjqDK?pyIuEVXt*dljUWLxM<(?KA!D^_GE4OXCCcG`vjEB;Wx-oz!|xU;*)|+*=;yy%op;mF|Mt6b*r2eC$Ft=c-9q3STX$BsSa_yv{~2#Ez%&9PhNI2pK>M4fQ8#dLmPj`)c@Jz6B33Px^2rv z)+zyxOEnbj9Dw$EccDvpf zBwDaz+MFLmHp4F8ZEZ$R1cvzdM8DF{Pbppt$0Plxub)$X_wGHyS?z3hf%djF6X;q;p3ql?hi-hR3ok*LY1PVIRM>>^;~Fb1;Fb0i@P zHzNSge5@}DO1Fbhd*E+X4aSBLFs+a-(8)l&w#JLhY#WE-A{C|3e{+y7U#~)uJX~hr zea7=kU8@VMbq0qg%A`}Ieh&-((doQ-bxJOCKU`6re|uaF%ys&4$yV%58=Icm{*!Nx z@k3Qwq>SP>uTJSVtPc8D=|PvM#qVO{;Pl$icUm#kUGrVLd?m}t<=^DG`rT`TdAvQ} zE^m?{EQoCr3D9+R6H@!`-=6~gnDUokGzE!W_eg1s?U5_Tni?IxR-|#gI;Y)4vz9YA z(0Upr;HRZnTVCQ}2IZ=|{JRf~=W2xet(n#ybciZDx(x8Ue6<#o^F3+}*lGnB%IAN2 zubsCe&RxO#&M{*d%hPc-?bzGSfTc=qr^h@XZ*^J+0qziZd&*q`Vor{&6)_g53T|Xou%_d{E)u=ZQC--)^Z{(ED;&R zIY$&5RBVI<0K9Kh)G*#EH+dSAP|C7XpMmvp(nIp%v!E)9jOpfKi^v?~kWw4eiO~$Y zx-uzg2n5TO!Q_r-6$E#3iV%j+qx2=DKg>%1Kvn84os7iOa?(N-^aMq%RnJVm%a$Gv zhUNhuF0o1+63U%26mJ|pvgf!nGN|*5mQC*rg0>slqX+|=oAuqJ<;yv?8P9Q?SSzZ& zyX>3`BH0v1@?is5WYO?@`A>T*A=K4x+(f0tEm+Abp8}X0>Dw!oI2ZvLcScJqY&8ql z{!m>^zPpAM@WkG5uZVmGL=~Q-7TE z>4_x#enULG+f(sl_9)OxtUMkc5Aa-9&f$AQ6AaL79i8Iy{x-!IiE~xJGzQf&AE=pe zYlEO1wo(?RSRZyu{e&0`EC`=6=?%g<5ZFrpK~)Z?$zFUr&_2y!@5VsJ+tRvDKpl!? z*^qd_&?2$5_iHQk;CA_MUje@t;{;QGNR?P9;>`$=LU(1-_6n~?ivzCDmr_TTz1m!-e@To6NB zn!=apQQa%qk3|Yg`;8zTyFIjX->b;uUk%^_u2Cc(Yza~0mIhpJ5@>GsYgF{RSuUA) zbsIlzF&~+W@PVg=O)L?D@T?JL#@h`4z?l=S2*ygvN2>&Q-TE1PXBGq5vEIiHzmktU zT~qt_>;ryM8JPNg;OFh9e!DgiyJIdw!o${41MMEh(i!NPAq+o6EFFgFHV+UItQ|IF z9+0CzT@0@ig<}jDdk3@xn0Ey`bna1VSh=AHzT&5H*Tx;Iw4+gR;$0^tEcRJqWi6di z@SC=)V9_eYqz{)&Vv)@<8e00vM;M63X?&l7JxS!NNW(2+nE8AWa04X2)J#ONMi?|f zzkJjvSK6oT-v#+!jW%KlsKc%5wY+hs{O%Kp=x*`l189#;%)84g{A|so(;BBV&*i)d zBNmxvuVZ;~p?$;yc(tuonH}>A4|(o=_lo--@GE-TtL3w0AJ&-YX>(y=fZvd&k~m82 z^p;zLW^{mX+;}@Wu$tKct`g-#`rcRM^sz;SU@WxAB2H1k2ssc#f7l5FX9vcj!kh6M z%dnw5he(GeM%FDz(buDsfL_j-HDu`6gV7mgx(?Lw*A^)~bov-Yo zTJG-SZO2Ssc8PE2vRsZD!62@kORO!*P^&(A*u6QTN312Lmz@=iC7^*K6S?BsKPCWB zFo>%veNrm1u3Fy#xkPU?0$2JgpuW0ZscXZrmtg$$<12f1iS?Y$}(c1hd4aRH%`Yyw?WAZmQ}RW zFL;F>;e;P#o>&qY2_BtJjYa#clp9&Rb@@Qs5YiFTpZDY@bj&V{5be6=oyky8z4@8D z%j{#sHi7Nnf@PwZU8oZ%T-q)#c4ytK1irr-6mi=XquN+k>k$j*>hBpeh&y>7myKX$ zg}LwATQQFF9r4Y{EnWVq_K%uJ4fFuWZ0AR|;rQgBxsO*AO;mW-9WUyUX3@EqV#r*L zkxK^56cvQdIS$!q4ky}$BikI=huZClKX12(4FEjN2^e6ji61_E78R2^w3quU(52|L zS~u_^JqkYndUtHs|HBji`u`_!O)ta|VV66bRseT4RJHF4+_tVx$VF6$MSq5>Kel0= zS~-z!10}r*(KWze#ut31e~d(Z!bf0R`xd$#w0R!>&Fe5~L9iPSNFCg;jE^F(<-oK$ z8u6&d;aoSEm+!+}lu0NeDhYj2C)2&tbi^uPHyxWY?|if3g-Nx2ITv`fnl}lx1g~`@(vL1;>(gFn~`Bl+#gdcH$KM1Y__Z zI?@w-gGB3afG<>YmWlAb!7vS94HU!GCZhwCjYQZ0ONtX(Zh*w0lCARJEQ}>lhQsRu z`(+Ekqj7}uf9qQcVVFxrOQp*9HsdB0QM0107}iej!(*f9(yGkwSyA8KApWF|2?DR# z=8EXvnz-R5`2VsmLAa}JCPZ6rA*c15ry@l8r7pwq%?Z;PhLm`aq$9f$k52}S5Ij@m zz|Def3!9AxyU{JWZ2)6p3xT%fB1_hBJ zj-JmG?E#;lqDQ}t#C#$hKmPO&?00iUud(lV!T>t6``*z!T_zWO`5Mr>C826UmTc?i zKV(pNA=lP(n9{@Yhm{eBcncw$Hmln;l27uU8|L*AHY=o+Mk*dR@UNJ5V2ZW!2C#fp zUih2(`tW62$H%%AB7_yfrXur+XI_{$MhfQ#*;mAT2nPhU&P22i7^g()?;Qo-XYV`0 zv7I?axyS&XwLeB9oY>de@kjLC8~Htx#>T!CHWLzFy2h`EQ#+360G~R*-cvfhUQEz^hjuPqcYEa{_zB7;W$+Kwht5j-zi0KZ(ObfsF&-$ymG&Lcp-@B_# zPI&|uCf!GsnDmM$(W|DRP6K|?7^n;8+_Dn~HmaPAunA+>=mCMype&eDO3ZY^Y8@6Z z{J1MnAjPk|c9{td*;R@erm6?NhfJcMeF=+DgD85h^Hi0Yo{eS2!rXdAx)RuMLn^-DE@?Q>86UrWR zJ8>)Y{dni8J*_ycna^)0OS`?Glq!ZryZ-#Rkl29RmQhNiA z;I{pHuT6)C^!Q|*wriES4B=a#&Y=6vq=W>qGn4nDO|vh*^_0-;KDFw|F9K-cwk7rp z_C6JX(m;Re%;vyH+4AFlQNp)Pmgk{*D~_Kmc?j)jK^u7r3pmU%faGKgu$fH14NU)*41JsO>*_tyfVQZH75r%^h5MsK25j7PsiCMym z9GlvIF;3+0NnXS_VDcI2UPtRXvw!L>J#IhBdf50L1a$W7GF(aiV2dUsuAY461^M;H zJtT}tqlkotzE7IjrWJ9wNn@h|+oP7r9NgdOY zoON}twrwh8;>&Q*!Ti}Ov_!2bz9@vv%xnkRZ@b>O7fEmzj2{XN6Oe#P=O*9h=jH1> z-9MMxDaB->OPoI`9cfke#kNqWRVLY1I-Xpt`Nx*S$OTw6aqP2UfV0C_n?@b1coA)Wyk(7xdv1*JqoSd&_ZUATBIE)Ng;M zsE$eu$xXj-5ikNTy=i~kg#r?OH8&TvT?Oy1m5IOgfJH{$GO0`^!DwSkq?veU53c50 z3JSlQX3p9ksWaVc+WW27^w*-m?IcAIsf}$+zV|SDUl)Fgb^9?$cUFN-?sZkl4x*K( zA2K^o6FbQqg;q(+U7pRQLHTWk(|LI5^L+isdCre>UNwjbqnE0hBoc!*}#soWSg^PGL2F3#8a6`aX)L-sYVmMfMw zW(X3LVh5}{^ZC``p4U!zwPd=?zp5-hc{hv+F`8wdCBoiEYM|3A)tJvYY#NtoWN`~* zXGBGWG@mjTsmMvF6sey6fX$S_k% z)1T{u1P--tL7YQmaG6SuQcnK=aT z4C{&Tr#|-$)Tbgfu@pnH~?*j5Vg19iob$DT9}47onq z2<;U%j1Bf--z!Hf3_j;&7~A8GQJFPq-Z?Yccx@Hx@Atmy+^wLlBnw5rUoG%Hq(kPu z?~ZEOsA|zAae`7(1A=_;6SROT%K)Kidu^dl48=s4iqKJhu_(**l!C6s$_>FmaTsRG z6oZH9HTGNMfAGDILb7VyAp|Wcmy~M7@8YUpE6vmw1F>zm%IpYWq&ZEIan$0_-kYp4 zEWeue?MQ)C^=m$Yka~#kCBhK@&6CwcNHZRj92{QK3{O2^t_eeg9d$Rw#XBz;I-wFdrI2fWvJ@?Mk;HSV)tV=b_dvrFk}j!Jkn$;-DQK< zM;n@2UE2XsLHDa&f>)XC=uMv*b>(Tl-2`pwa1^T_oWk&s<`(fGAG-BGqnq%>J46~w z1GD4a_7yk~H39!FgzUc zn*>^7IeR@`-xcIQ4*xH&K7%0qwKb#6bHXY3T5IWb6Z27b4}?4}9p6*JRX^Qdw{_`% zACheFvw(cP^Xi5@d{6q;Xyk#-B&yv>`CMc$hGKzgq0Lm@Lgd#Q`1bZWXXlN5F7O4G zJ4+ICRSTig!usJ?jm?G_^7GRd-c>%wQr>fqdw}il=O{w83Zd0b!!uBf83iRaz8+!w zCX#`6}DjC5)Hx{7Lvl?mi-RAlw2m zET!Qhsc!6Z@fUuYpjWr|uW^Cm&!^7MId7Pib<1}=NBCww_^UCgH0ONz0G#w<_!$d5 zj^@7#v7Rq__R3m$7#|Xc1-F60?L&zE^{L4H<1CWULCq}oNpjV=YlCF0zEI?dUQg%r zci&f5ef2&opz*fo_j0#UH2yF&e%{8ebk3+Jzmx5S`KL-bRdjR}LwckONTZ}kH@1U!G1IN50c$HuZE z^%}1I`d&sp^7gZ?BX>Fd+0*MZq8=bIf7)U|L$vcz-VZ+Gi?I5r?|*$NIdPYdc@ZDB zih6vTG}Dc^lOyN=8{8uJH3w4_`gfiF`wOq?pj>U+kMH;(EqFG&hB-yV&u28TKYgxg ze;3z{860$|@r^}+kaKx^HU^TtI*#xC59}V6>>HL~-kP>$KV~yJCcIIY*wdx41lg7f zyVi92*lB+uPw(^PdBk;N+a~p~^#Ohd)i67`C@UM<4J|nxgFV}(&?+lw0AX#ZKzFFj zOZKqkM51*YncvQGy74JP?FPPl9COcc_TA!Lp84C}xNBTH&zojF;O;T^-n%fN63u!T z#M|(G)b!S#lM>QoT6@6c^JYqqdIuky?!NI#kOpYBl)Q&mRe2rcO;PgbinB-EdRZme zGSco7SBp#CxeMu63OWrre)7^V#GJPuotGHOAo{botB8~O7r>}zZ^`Bs=gX>Jxo7ag z=>@;G(vW5Vj}uTlLF@az1v+bsFVQ2m+LxZC6i&*Oc&}#MlVAG1nfqwSZSyL=W1z+c zz*r!*gGeJ*+F~z?XoqC(+Uzi-2w{`xV~G6Z^xmt;E_ zz}Fl=AD37FglMfwq}-oRN4A)lRgo5gZbzLzX#`4)2EMKgjzz@v{WNdLW+Yul}hjTk2sndJW(ysTU9sj{LzP> zDOXr$l4wB4ok&WE2d3<47h|AjflfU;#BOdcsxW2~++ANYPSqFJ0laTNS1%gykvv+w zX2HwUqpnGHfCgBnOH$1~)f$zq&i0RT*5AuXQH-K-YSXh!?1=8X+=yxBwRiqSlSqx3 z0rw#FIAZDC%Lfl-r+1$`ljrE!Z@Wce$@2k`N`j&y;6TF7Yl@@e-a?V#+z8t-@j0@| z{T9MWF7v<;E!p?$nq#cFrrQ%9+K;`7-v_{bV)BI(Z{NRpF*70pSa2Ixu8;3NInI)X zeQ0C|nOr}Ns|M)b_FnGrqiHe&4&XK&H8_q_`hgh`tcDHLnsL+1!{DyMciRf%Lx^H| zE9^hH3}H)`BMYK#edqO}f~Anvd&=i&Ro>+ZPfUQp>Rk?ARVxTMK3lvch7aB zp;_yq9X~$mb&3hn{#pxy{LPmLM;aLT>KYmdJF-Jn%xAwK-u15`XeuER%9y;1Q}VH( zhT*%?9J22iw9+r(&7%+3eZMnj@*&=qAivjl zzbqgi*=F09ZEs3q*~DUDzW#@ae|%54nzygDrAjy>Aa3fslnQ02l{WQgpmhZ82qxfo$lMl_1z9&c#})}m4Ptz z8*kx>^owwEpoOU=Ip2x(&5^ZeI3Z!F1BW->d{f{Q2SAt!ztlM(nq`)sBKj(T)neCe z+rh==K2ISoRfZ0Bz6&0P6Mo_-;I(gm`>^5UFOHRIQ!Qoko9~&6mR-tVba73y2u3gI zR-4Ch-hy{7`VNfvBNzQOep~l+4zLf6D{YlZp|`14~1Qgu79~j zaUw}s{A^m4M+%mH^a(4qzX^06S&c0g7gf^Q=cx z?ksAoq2v*USNxzV=p)Z_!X@p$F{YHss(YezKW&}W(6KL^pgcU+^MQ~`WoN=r+9`)O zccDd~LlSC6t1XJ?q@8`ti>R)b`#aBFL<7p<&oLZsv?%ybzM#11?Q13LILO-xw)eWG z$@?0tOHN0#GaHyCe5}`n7~BVbx-^;p?9108uB$cU#?_cp56#YD^z_K|@}fM}jZpEM zR?);O6?S$Ou`5r!|}urWEz`X2Vc z%L2qjAF1|yIfi3Uz081|@(EY%H~$RyyYh#dim#1QFd8V^hm{B;;K!mtP}_T66~8?3>3I-R-a67?Ye|t>>iB>!mqiu+BcV@`J>SL3$A6 zv_Lx0KkQ?r@f1P~219YWX`OT5^eX~FX#${#UfXZ)53bpi>Rd1p3;cM(+b8aLPF;vT*R(BJh^cdPw&;_gvK?m~ghVZ3H zg^jf>SYv9qX|LCgfG3zGumES^{l<<7gksCn$6Eke(Z|-H@W|)S3(D!D?d(n_@PQ z!=IjR?U^>L-mAMVr$ae!PfM=WU4js30OTD-O9Hh(cPcXsj^A4Y)35g9-10;YeUG~d;4`4a6UFv8P;f1MNO(Ktr8mrWKWMDxZ+nKlo0Gb(4~EA zEjY@3)H9pxO6A9n!4MloOwx!RHQ}LI4bGx5H{NB_qB=IfIt5i}@QjEBz@6W&uj2ju zITwl@s%F}l;IFRXk=MYMg)Ti5|1QvcLJ#|YxdckzkE-6Sjze?vAT*5ZRlu<<<;p}x z?gahPV_Aa1eccTc;5P*GeB6*WyPtj5PSZQ;r?rNZ^JLEUBKOziJw9QU7r1pnS+|K= zY-f?_0Ku9iqVROCF-u7q=dWK1qxdI|@jwy>@3B%6!|L=Ml7OvmOPCq43{`;FVVRY_ zh7`Mzf>u6Y8e60V=z~{wcRf>TnR@oNkup1vAfn}oC$9v@Yy*k00cez=?aWw@`#qCo+E*haPudXzvR#~_k=VvZiMka0C` zrm;A(l7`wG1C15Ach+PY-M$lYea2$)8ud{1w2%GvPP*X=U01ZJ;J~+)YyP5X*HxA$ zcz!)_9jKsvzrlC+o;yHgR#jp~tba-Kq|RJ&pzn)wKDYaKExDeCSDJq1jrbMF^pnJ$ z550bV&)(e&jg{`l9v-7 zG^_#$w1QX z9;@^a--Ftq_W$*}X~e~pjjI|EQuLjQ2OPZv`XYBOFFTp~De9vLV>PC7s%5)Y<%~&r z|4;<>HN;po`C)a&{W`CJOIeGg#k5Jv!qHSh=rG#IhD~hWmBINfb>Jc^?Tfi9r zY`$~oPtbZp#q6G|luw7ebyssr1IVC&xe$CuL6clY;0t(7RHLpe-BC?XXNf_7(}{$# z>9Kv!-?{KQ^dDyN9J|_o&p^t`;mYBu0`s z{gHwl1%2onB1Z}2yNtkFmYrG}{{j}_4Qhfgk=DgAdClseqKVO(~fHSVM7m#FWO zl9K~|X+V(~!kSCju#!Ip!1n-e$q=0Q+6NoA4DBl}rc$)(WfeF9XN~;wkq>vLEq=_* zwA-%Y4>Ko~5QvAMll4r!hogVzKGs2r9Uf#~W1-2;{YgJkryW+9_q+#qLc6>Ek>k)& zIw3EM7$?J?LQCH=`@l28>0^Fs0TFU|BA_Aarw^0x~`#u|YBmuT}T_44sHm=C6m0Ssp zgb{Oy@A#qW_}}jdoaHXd7YE=Bv5=OV;T${e7gw#&TXb3{X{3nvK35c6QMQScd#wQG zMUSuDo`F=j_DknfD^kx+tG0}CugE6On+ySV>ULFY0Io)W01oty`6>Udn>j0t_!;ljSNkWAZalPi zt{{_05PPImSj`Vyp+#w$a)#bBSINs*Y2zB^&V9`AuQY-36&pbzVD^dS?==kk`(#Dq z_O(8qqrDmX6YGeXi`aEDO~CJ9{HzhiCtc@{$@kSC1Z=NX*`x#R&@BXEx5Y6ric|;!?b5P57 z?zzg32lE|IW%2n#Ll18a9keaa7yNvjgJ#<`rR6N{$HjXM_GL(+&|o|Zj0^eBO~;Ex z|H;SwE$8x`%aY513UtEY)wlqCrx5pm1CENbvxq3m8nWt+@;gLIzt(dHeDn?f2qrX) zN0vSx)sX36e4AjGk-*!07AeF%iCI-qHe12|cpWCn?W|eLJJT+zhY;rSy!AT9# zI>E3k(RS<_rqlXs49nQKKlrE%3%vJ~Xz$JO1+Cl%dmi!vqv$XP_ z^-UA~dx^le$>Lo5D9@OBJzH=b;ps9?q}&aa8s+Vq_aqz5{@#Q4&!x^sN2pd+u53e{ zUv_$dpLk2HbhT>_=Kpy}yj3pki`gdp<+XpWRgsxym+<2&->rSCu1@|UvGdnN4gCg(>`x14m{gUPQeX-eSS7F5s?nWeYCtevs^fWkb8a(&P&Q<>ADd+Z!Gwp0 z84Q9;`rb6{5Nx}tcLo@(>kr7lUeO|T1e7QE1C;5GrWua*F~CyfqwIHaH2<@kz!~ln zG?n9Flh(G;+~1G(=pw{_Yk-BcoA2KZE>a(LVr4t+A;&cyizY+fTjL;WZW5Skwq@mM zJEjA~Mxw7}wH%^yWr2CWkEQYl3e8mE;%mnLSYL%Td(wEx(xi}WOnLy#BOcUHs9p5| zw$1AaonC|2%!{ni2fWg<8>+*33jXY^{GPWvsqrBheBl`oRagz1H4c4@6!q;xTwyj; zu#{Oftw;oTmTA+9o9LUG)bDvPP`Y%?Cx;-bg3(1BWnBl`r#xt%SQY<$6JO*@c-PL| zK&N-Q{FY}0{hcMLQ;DHK-%UF%>ddgasDhUP^yXwlG*HM6!YNNv+tdCNJ3h*%_&_VX ze$11&7?~045PHOq;Q;}T8-rL6>{XgewVScu-qG@X-)Oex7Ycad-|?M~OBYyaYBNlV z6Wumrnw=W_oJtdTVNZPE6cJqP{BvKKo0*({EVe*YjJAd#pC^y&hu65f_wsR2>){{6 zi_9|1{lLi^On(L%i4V~hNcjPX$VaU#Ph6=;z$RvgiA|_Ft{8$&y~{wvk24^`MK}}w zSZCSwq@@fA!EWqX zT3Int>+fU!;%!djXt>w&o`pEJ4~mNB?m5a$m%R@_httW}#tMVFZkE?@!DNf?LHM`z z|A&&S7ehea*xQ_3;G4M;5fR;ixaPdF@|~|co=$AuPT%yvTl;wM0lrC|d;3Z%Oy9qt zc6My#0&7hMYw~^BVQf7PRzJvLLKRYF*wshBb8PLL($_~Z?Fpmf2n)~IWR6Q!k8*~f zC7pZj_dVnIm2HV_&q4IhyD_iW`NFiWVd;Ci^!#gpZ{D&TaTb#JSQ78Y=^EAM@4V@K zY#s3tC$5SP-4C1Xm88lQzs4d6o9W^8Ee;4A;}@z z?O_2-z{Q@@Hm3+AcpuN!m`(~i9Kw@X;D0pPy`&cYElt57gcrJ* z=4pwg9iuPR(`pg32ygRitK}8lf zX_zylSVD>jd7@&h8Y=8N2^>#+oO^X2y1whI1a6Xa)jV%L&|t0YQ&nG50eKCobiV`gwN=Ea7uW6VXx#dV!Fg)pMwP;X4Q^K0W@O3--P)yy2$zqoP+Nq=}e?s!DzLt2BQ=$$0pV80E;Z z4@7vt7p$j-+$*106MfhHX4|DH&dJIKUFUE{#WnuP`Scae1-6=Yk5mTdNfi51^{VH4lXL+PaHdGwiyJ!@l5r)3E z?DDqM2aIdDNB9-HUY^_;yPr>Y;Y<1uhTBHmb#0;ur39Wl4_@Dc{ zo*ar!s&-2cgsEK-J%79;eKeUk&{_X>vfG~g=NTWr4~BbKk7Yxz$B-a_!~Uw1r9@>T zBDSTpasKj#^5JMDe_MdyXD-{B;kFifjQ;QPWY{s!7DMjwIH9=$<(GyQ(tqBqrny7i z!2Rh=I%b(dL@FXdoWMJ@=GD24x_`p1#)a2fYV+=i1G zx^9u@tH_B5b)JfpZOL(vuH@~v4N_XZ@zogVOGWtFIk2=F(76!Lt~_0@s6`CKe9>1E zzBlX4lT_Tq#A4Uic2Kr7^NudYWJl|YeZ+AT5SbtEPZPo{F04Is`J7wl&GN$R4kcN; zo()y1;TPJT|GW2!g*eUF-Cvu?C6=lUH(q8XAWn3_HM}X58INW!e?1+=&EN?_^Yx*E zZ1)1%gj$)pFjmG?F;I}7Z8%vWy!KT~6N z_xj&+LA5f>xB7qp1i1FeKUE2Dt|Hg-(Mf}o8`}$~Qax0kvw*@Iun8+e&{(ruupWmL zoaay1#QWLi*Ge20jZ8RMQVBeM4(k*=gVQGEd_wfC#aIWh`-H?NmJrDGJcdh`&YW1Z z+L7T5HsAhhcl7?k$JEM78-X2}TOQ99~QKmEjd$=YJjpzbe5K3!R+IwxGYBJs83@*Nu#q>f+$ z(kOP$K~=x|<@*QX0o&SC;XD|?W^TmUK;VMcb_Sh8;|2%Mu7dk_DB^g5#4O3WwD|9}YZv(YqVIi>sdr7f{YjLT2}$a$e((!f*T(^p^`Ev(FJZnUh-7 zEfCto(DJK>>+v&JM0Z|2Z-tlh1mQ5P4`mzRqFrL5S+P^@Qq$Orry$PUu`$~O1&;YE zMj%JyGz25km-$+*+^lY_!8ZwC1wyk*W}zo%v>E2@KK#bI$W#E{oU5VZ(f9aclDPh6 z5bB}jkuSi=W8u0oBkKKzZWzEEydKw0U+EAQG%LBUlZ=_1_v~;Cof4IjUZ!=f3FAQ? zF;>5Rn1JG@?O3a!jP;aa~(ycB@uw(nJafA;OseAmY3|7Y+5PS#} zO)L*mhs6PNJalrd7)rc`kbF|i0&^qw8vK9S^0Pl8cz$)dZ~gO_K~Ls@fzI8&^zC!d zJ6%2M93eo!yw+QVM_rx~j?0K5%zBhJ^^b*#a2#~AKr@^nLeIbB(?7q-vT)1RropLl zGihi!UH81%m3eLL03TXspxX1*%&#Mw#+C{baYRxy6hKS=FBkdehx%uz6{u2t&C0-O z2|m{6)4|!s)u^dikwHDGPHSWb0o}58yG^GK!b~>8ZKggNJl+891|pJ0VZHU!kE`gh zE6>xy354VnCyB!YDdP@tXA8>xH!e>)dOyS{CV2kEWr1X!mVG>ijV}G!x(R3@dR)v7 zw-&Qe<)QBs5BoVj4CQLz<$5_qrYU=jq)!2q!uQ-mGx=wETHD|?3n2uUO9`1ipCD1P z&nb8Y?)|{$2u442xfTB935NaN?3;WgqU7MUTQ zkBBt?X}h|wBcKbO3&oP=b|Q=gRWHMboT%e)HMAd#7x zp|*2y(WUcZ6v zl;wP##10f0XTlj3NY(#2U%HiT4}pkiKI5%Jyeh>@^Eg&7m8kK%E|K^hYkCI#ONwaG~>fd5-Z zBh>k@S!vI#>`{eyCQP3jG}R2uq9HW<;&C^~cV7EtSS6XW8GxZ8!)oh$3jPwird|#9 zgx+BO#WEAj@k>i4ckF3|iL;H~%^hT_fp83O*WkPqDbXDfgu2;Fx9Wvh4uRnPR|DES z``za6eSH!^6h%aaM2Hugz%>yhKXHyfC#xy4%qu$Za3z`2m#alJk*Spf z*O!xMFgx+(!)~67r#cs(K4WOXG5N#(VY_VbkrTZT7ZcbOGu@YAyz(Go9RtN&RJ?rf z6TfRo!Q`(2e~x()pE!D7L+QoQt77m`Dx(@=1$V(Yxm=?n1A}=63GbMM|VP$kbE|wTCP*TKTq!P5C6>i;wct3c7Y!mbb*jr@DgM(M2uY34?SGl ziakLhIeT%stX1v1;6fyb9EGk}eX8i{8Z(tLpN>IWy)ux#N5?_eP+#yHV5d-0fV z<#a#$e6R7L5kC)kJu~N{fEexxw8yFR?U8?i$OO2%cIe05%li6xyE=p(WoO{KcnVo# zOTK*ZdezQFiQbj7HJLnMi3@KRAhxF7(wYU08j_D^r7+;DM#IpHFLEM_D=55J#PwGVv?~CfaB*ka*b zHqPqStIu6sST5Q`aMzR1X`|{c7|DpRb+UZeNnSd@Y;7!gBun^1-k>sjisrXHd6X%P>ZI=gLqNR0vIZkpzCD`*3g7PMf9zg5-#P2$ab@-ykXDQ< zQHgl$Gantwuz2;qI;89e47qlAfh9t>3b96OLQ~PT=QlyatGh$ONa9f2YczrJbi#j# zm_sQ3xtwkfdD9L48OVyl?f|;NmTa|^F%CWF%2kI1;S58V3^1Eu`6p!d6%F(@&`PvM zvH=!DNi=Rq4!iV(Vw6|hvGZLGDKmMXPC-%KY+Ai?iH8anN1YZ8M1OH`gb8_KS4WM-%_6@{;!=MUy~vv}fo?4(T{WIz?u8S4+A#q+BM z+L$xX7nGnm^jtG0>@9KyJCAa&I3FoGR=9}K zW9WSBwj@Jj?AYkhGzYJEdaQ4@hL)q-&0ChG^gc5Yw(LL4h%6Eqe>+zf`ZzTctjtq4Y>*h(f@JQGW336q^<%ET)T@ zajslqxPH3a`BA?ZaWu_~=U;B;8o21-IU!K%G@g2--?G&Is%QE1ntQ-Qg>g@?HWs?%qfX9Ekd{AK+@Rywo3CrH|EIIG6)R3Pi5u~F zhC6u~@gQdB6eUAw&BEE2?z+!<=t6p`m4D=#F{G!u;GHi!$j2- zP{H$y6P9Jb;M{udwCn`${pun+9*vfSS11_{Xv~uLEYzPkV$Wd~PwRUou4M~HBN7Ny zhe^$0=aB<8*LH>_uv+Lo?uQmQpT6b8J1Ks30BhU(Vz`IC2HGK~aEn;|{824PKWum~ z%Px(KM0r3{ZqV^RSU6XY1}_>$v^fyoqD&mulTzqvk@y@8>Vv7Lr}CTYUTbB3Rzd8w z3UoW`m;}SsqSsFPT&{?FQehDrXEN07l^y$oO%%*;%jKF+>Ip%ahjc}4=A2DgGip{n z!=ow>sAQtWZsN`X?I+Fx@JK9}I-~}MS6Pmup?Llk$89~{q)o&5o1NwfkgIMu2jwd0 zlX~C(;f7fMY?0N!6S@2z-;pg1gkO)m`|>o}ZW1GeDz#xEK%|H0D+dpfoW4AN+5mXF zDWD!17M>ibJW8yhhiiQ+`N$_{0SPH)9Ny(0coh>B$2LsbUjz2C+dI&eJDtuB+jXSe zf{-^a&M)7H@{Iy@0A#sH8(j^Pe{yzq2j4@b+iE`sfsqTf?r}BQb1rmRMx*t*%jR$)0fU4!6Z1}B!PH_R4Hzm_`h zYCWd=%j6^RJwef+p{E>>u_z67uJ6n8aIw^tC%A3`-}eLPT<4jg3Fl%f>Ntg6L&BQ{ zZto?F%)hje*Wz}Y{2yEA)$FLTF3=yu135jCkwg+1-pGg~a{BeR_spDYAN!PQSJ|E# zZ>jqWYjr@%ksme|Z8Y{i|Gn<{eulQGcVnM|KGhSC^MevuLu>`mxveN2?UR^X^X3ye zT?UzIjp&fmmk}Z>wZlE+xw3XtvWXXn6q!#QIcnkaF#*a4{w$x z#v#+3RR_XqZCri^MsAD8V-`Lp{f;uex;m;ln^=(w1flHf|rpuU3`9>PzQmepB~*x*@*HZy%%cN20CN z%6^a?tjGF)O(>}YFO9eSq5OPytk0#P?J(2@)d4iJcY(Eaj2_^-uX7K;jDd}-2i}~CF_07^2_Gz!+peI=tySo9W3#s65`C?j)oVGt5<$WOew>vSo@ z1k{$@$7{3yHU=L^f-B{8w+vo9jHQQv^)#t^yH$u4oy1?+F7Q^^W>1&Mfp@*uWlKqZ@H^69=QrG zgP8|^vo0nc>)-Z##B9(5TRoNSr<=_VrpSt6~{(sDivFn++pT0r@r=H+r4^AykcG&&KTrx)SHGW7u*S+nHKV zk*cW}kwK4FP^V(#Z*?F)&&tqYC(T&56lvdwQ-$~{i+~g>^KsfM28y|~K1cl8N6qj` zo}0~=Ys@5tqi_e^s^PwT;coZ0IWuI1QOb&}%e}Pf#rBagQ$|-?ANhxJ5N<$wZWO1%Bo7m~8C!!S7XkS+AkZ%|cR{^Gkpj5~f zA?h~{$=O&vvbv0#3VP^}b{-Jt#>hHiTOP0}lm`(Mm`vZ7ZJR0V z(?4Mp4{baFaeNIw7g@$vd2Aw5#;jR7#-bN|d6P`J)};|9#^TP*`xaS7Pw~nA=w!$I zT1QFKoP>)1>h+F}h0n)7Y7D9c*R>)Rnni8uL(~s%`NwF@2bjp^%uq2nQ6aZu|A{@SN@*e`tpoM;N(peEqzCszy1$(@QWEn~ z|NiGMNt1u$yH_7W&6vM=ERa#gEwqrdt7;(=+ECH;e0I!Hi z8!gc?fZML`d#e2eX!VAIbFYyE$6;K8B%fu}zH|A}Y~8p_5Oxnm4?hbtK_L0*W@x#f z6FZRSBe~Wf1QNI&Fd_fMPv->eNr}r%!&`InP0Zm0wa&<2YntO@n7%`D0zx8pGf)+Tj^iV8=+kM_{Ycu@)!7u=|!`Z++LR-gtBZ}sp#?lE@6;`ITT?Ej26tv>^j z0qRSVQWj?V`_Yr>?bU)t#Bm&-F%aANpzxT`& z(Py%?cHf$3YD=7bF`8$?zkd099GeHc!Of=ZCsNua6fJbt{ktyz_47%8aq)bs2lMC& zIjlHFzaHkrT&mfjp^Ue50J9`c7V&x)R1!qn=h1{eSAAPz&!2}3e;yTGc?Cyh-1Fec z?z$Kio(5Z)oXr#3XbuaNT_YaRvSv_Q^|smsx5BV1%C)@H1-i9}e18aNacmMfVChT4 z+~2>F-p!}fY)*+5SB8aZ@Ej?}?UXq(1RVo0St99kBO4Wkj_AV-%AbMPt06@g3# zIfmv^+MvgB8s-uuXB|5U@^>|>A-va`h7n}1lOXeNAZj7rm#)#^V-z&qpIliq1x3lw zQ{^={FdeR3&pK>kIB;sOOpw%a0OoTF;5zP0N`vz9$Acj4U!U*Q8KT<%wQder@V660 zofJxSCeX+AZ3tl(`P;nrOc|P>buykmLHGN~A>y7%CH4_lLNZQ1_>EWWpvS8bbW{UI zmwR>~t2o3;15R)eG<{6pyuLi_pyVma?0YHSv5o~O;dT(JtUKZ$kccGiwuaI(R2k*x z%wr68Z14^rblxaXb}35|H`GwS#90s4^`#%g*T6<#YGIi>w}>^ zvF+DqT|3zRb#C>KFU_5_j+qvfZ6|J@Z!{N8e(-ZuF+5$#0Gq0vi{qZ0Um#L^GcMli z3JItde+V8245J>l$yEf$R%yV!H-5XV8}ZZd5usZ5bKmcqn5)-W8g#SY<#D#tT&Dp} z#aL){PnG8H0wv+eIeXeH4@~`5C`roeL1}Bno;vN3dYgo{6^aU$zyI>RBn#NgVu#2u z9Lz)s(@b1MELH^l;l_mcbCEhV@+CCV=qoNK$jJK#&Jn;+XNKehE3Bi=er9mfb}t0vrR zT*U@d1ak%Tu8l zCCVBJm=Mqse3RWl%z1S!=dW`szt+hKmWF#et}=?=2xKSRMD@^jtsV)1o}za#WDh_kB8#dU?;nX2Lf7mfqUk9@`ZJ4iNeK}*^vW1uy zP+8pbN}X%?!5sgw>Vdd~e#1yCet74o2J~@o+W^rGsG+o#byoa28iWc^_}8`LRBZDWnIty+YsQoJ;%kKth&UvlcCA7$S9{jraDQN44o$Z z%P9%514>{+cyQ>pi2EzAAn?X)CIT)e&FnKG_C9UBK%Vyv)b>CgLNOjlhey*?zxAT@ zi}j4`%oUF#)iwi+j{o7dXNLE{U0 z7t7~X0kzGkK7gO5es(on7-(50Q!5&xCj-2L7}hBZoHUGA{@w}&?ig=yv7d7zub%44 zQmopwBF-m44D1}xR=Qv+IpjOWo}2!hdV?IOyZAIoD-^p?*T(O&cjJ0z`av?Q|D4^i z@;1j1mCVEM95|>{hr;}|_`dk82M=?^!cUQC{v7BsGtoTr@VRrKCYD^YaNF@zdXXUj6ja?=XY5aL}h|Rpo%J_z`QHkb< zsNvbQmS1bixrS*RO16LPH=$vd$v?4OX=(%ZMx3z=6o9~{V`VOrD{o)x^L}zUg)Swg2IJFaDYIvGKv?vY;mZnk?~6bLSMu2h10L z_Vd%cH0smGnj2knvRrP*e~s=TtDagXcmeX|Dp5_R_1t!Z#tU9fCOtTIgAzp9a0D@_CiePli@KPWB#s>y=PHvtGU)Oot26WesN82Sz6#X93LM^)B8?0>Ddyi(F-!TT7;Q`BKW+_#^zX@Cwn3K&SFrSHzb<_3jP*h;-e(o?syya4t#irowga*gV89mXJbBuiBOO-u@JVMNYwox zQ@?^OB|jZOEMThXWtQ2E7pB^I%GX|LP2F$4e9KOjhWg&;TjxZ94)`p}+lsSNDJ&oQ3q54O zh^F%hWOgqbqQ>pa-XgZaKbnRepsNq)9$3ReH~zK%(B?>9j$Hlqr7Yv)LmD_D1HD6{ zIkJy2{A8t6nipw1H>bU2x|scTNWV#d`!zw60#xO=MkoCsxmC$KIH5H^&z(|R@aqp* zY-$=K1l^y$-rmS9aXq8`;4xgGH-rq8k@YOJNiBjupUKRk4Wk${!TT(mVK59lGmv54 zUGm*TBOD=`8CKcQf6=M@1^nSzW!0MIn<*fV?o4|Nj|bDsDLveoEZ~p~3rq0Ujt9J}Z@vJ%AKJOGSX03%E+$%eYuNlKOVFlFXZ9MGFfbqGq z89?VCMs;#A?IcxhIE=D+)H??%b|0)NMsv|9N5#0u#1IDljkC&7EZy%l6ps!g?r-Ob zj28-++RonR@hmt5ndk(qDP3dZz3+1sx zXvMh!bGq#Lv~NnLklps5-OnAsb!Zh5sU3*Lv3VUu_w!`?3vk+Fd*p{)aFcCsxG=L* zxH^`L4_-A|@B8A83RUOBgwUVerT~NWO~DvUgxqVlnD;QUc~{S@I{d6wmNw?Ry7d6L zjlTo*hSpvX9|j<2>J?0^3t<*=+U6>ay~zLybIkZrZFmU2i8^VX4sYSJI4}z zD`4V5gX5M?-<{OlJAfs9^d?}){T`dLShmlL}VL*Rz`^UN&HE)L=MIjJaF zp)X)NHWS$6p;cnYxr+!L`T%M$$2x43@!gS1PTrHf;j=3>&LS3APZDB_ zFC~BMCCG#8=S)KEr)-r@1t|{f$DEt}{mVO#JKNKeK}isKu;KjLXBsVIIs}u3blHdT z*)0Q?$n02C;#NJ4NDv>8MvBFaqT6%swlhsP$T2+z&0grnG)cvBiMM6Ekr(ut1;Ay+ zW7T1%({ae|L(u6KGcG)~562`{DfM8C6h7D(P71;Z`O{_{_{9L1YQiw!fA-?YaDV-C zzwd#jp&jUQtmiPYBion&8JJ={tFqoVV(|XUtkUEEY%jD zBwydix{bG8t!B$4jjJ^^_}M*LB>16eFotJULeoWa?jJ*GeMpUw|O^Hsl7!>PrcS)?zkscz%dt-nw3ms zHx|yX0^-;B*S?d|Sg_!be{$OOr*+(^VyDHFYCp*}SF6Ig2SxcaW{?>(WgEQET4ZWMWb}kOWyhOXs30r}Blg*~wWZ%h-TkMx#h+nf}UGMtG z9k|Z9=c-eH!xciyK5tVyx9nyxzrn8Mgop>zg`gaTlhk&_Cl3acX&3n$v6}1SID-$& z#dS?iQYx%!1B?_9vJyniooh`M*pUGq&hkwJ__hTq5#AQvVlN6!iXlRQYg1irRptR{ zXUDp8Q2pFdOlBx}K5)MqgM2G!;kws5^nTY$Kod*-Mzo26V-^bECf%~E*EpwT*O6j8 zq06nrQ$5$HCOpqwyqTyT6{UgkR8Jn~%0qFLH!1gI5HCm`F}Pd#kEpbV@y z_QdbYPU?1_Y{SUtDCO@F ztYkBu`C)bz;f!`hEQ^*g6Yw+nvw)gUce6*c+WYyh`yL^k%a0RFED5dL<;w6tgvemS zp=j(!&1-dO1>>sEs<5alZh-x!^W6THsYaKCP5t@>X+>R`oI1;wsvNRh#$zMV*>fWex+4y*0) z&H9hzYe8&cS!R)x(Gv=dy`a|gDt|qjAb(1FQ*nTUC3UX_q73U9ElT`0M<|Ch@aNb| zG+^F3$mNl&6+?Xr=}?C@s$pe(IUy4?hp=%S74&gX=sU*}n)}JZmtWYHtPrB}Jdut6 zkUPqFcXsl`4xF<&#=E0s^aI!n9{hs&3Ku&b6#DCo+>oSO`1SsFMmU+}?Pt4ce|O)q zwy+n1Bvh~q<@od##amOp?L_4@ys6Ea=-05*DFr>E0qaZ^{zzBFas->_VLxO)3j{*jaW14BV#^HQ9V>#>li?hq-lTw5x zz`#|@y>H*UV_Hgd^plNK34H0~=;l4nt~m7DpHm0OLY+hF;A#q_ZsM62Hf|l8%ag^n z&MoDxZzY9zu}UDWJ>G)4h>ujfk;!_zRh?t0xOZUfmVKX{8C1uZNgWD|0DUcGh&chJ zZ-G$DSkE`QQuVbS>b1@&-k%=aI2p4e|GdZDX33UTtNcnKVPec--nKKyHfm5D550fR z&5q2?+&zdm^Mh@{L2bsmW4Rv&rIzdsYcWrBWb~XSbX3HPt*byCBp4WsTx2m*mNo4| zgn?S91OYVob>2u>F-U`(Fa+Tc=X$JN+TrTNy z4Rx4}5i1(nd1^|!5le63PizD9W~LPTrMN5IOiPPNJ49*V-)vTM3c6-k4yAWLz-(7$ zSc&|8ev9&D3Rr^<+DH@fhFLZgGZG!c=CarNe%|jOfdseWAVEALi031|mlw@N4@s+J zfES0paqru@kA?Isk(5tG=AhVU;~}Uz>oJ(VP4{cf#sw0h>STYOm7N*9%2b<8>V%)&WQ~z5K_rmp?WrrJl z9LrwQeaQtITpN*2XE$3qy9(;&u`G24ZO{>^F9u^_k-f<(!OIU!A7M;c&<$p87DnsQviUKKGDW@Mk*e1EbkqRve=??=+%O~HcI1- zjM)S|vZ#PKeK5G9S~l~<(|tuc{g7On`loc=>y#2#JyPHjZ&D?-nsG~w4TJ4eqQf3ynL9SRbt-6TU%S{yctP$ft4Yh zWNTtD&uRd#WKvK8nh)%phTta(&~@C zYLDi^@hAf(@7L&gzVDAk3`f%LZ<=io3h`dUM6D3(=+Eh43-^P8>L4sUUy~jf6dchFU8(v z{&57Kov;C<5z<6RGfaS%G^jQm=4V)*j{WEg8r4u16TE|n*tcJ!v*`un>15FyNO`I@ zhG2U(l~psR;E)EH>lgK?>P>Lh2?^LIe0x!3g#-sGRYdV_KEGW z0=$p(JF%+$a^JhfioKQHB*wPPK}PupV%T;VXdHcSbjq#sz@H;Q8L9C$9^yrB^y=oz z9U!dqd^P>HyGni{{D@GZ&O&?}Lp(Cg7;J+MYO%YS=Cle$Qs1)76~e|@vXA+QeveBm zGpKy12~~2ivDc$*R1CVklZR%c%xg&qb4M^E%f;aJdDJb9ot0;3teWv65ap`jTdve{ zkwLAX7#J>oVJmmi8={_frJ)LEXPx1CB6~!O@BRLjdLLh5B>YaTKQBj?#$Mr&1Vb8~ z9|q(AZOV8@$Zh3$be!k$zzNP-fI)c+=85rf&Me^QISr0ywNd&t&GLk zjG@WPQ#!Xf_n)Wx8xEC|TMub*h`fRKy~VoQQLA#yozu6VLR`3V>5>Oyk1_-thTq&5 z>E&%$RWkEavvs%;8q$G%rNcUD(Jlw^1vC!$ou(@ zSnOtX8kv8NYuhkM#XN9=9yam-K%<$kDqP{OWRI5_Y8q=M&+n-VPcZ$>7%7vyk9bq= zBSf$1_ITN!ZOs&R$L!F8LD4LNkhZkx^Mr1^aGS|(8X{(S)`IiX%1U~st+j&gN&1uX zSM22~W6UVw;9*l(DC&W*eM}K@k$MqF5pxWn@|Q*yGxu5F4n@ybUn)JPa;A+X3q4GS zBUVme>8fJsZWcxNk^j^oJObHM83RYy7*%4gHH^<`VbP`pMgRqJb3Y4RFA!)FRi)7b zk}(fZHn6nfp&o1V-)~TVzHPk}skJWtt3G9|7^m&_;PC)k3qvn6(T8{@0l#k1xro8` z>Kz~RD~+2*Xl1w3Acd~<=P4L?X}}4E=E{I~kM%juDzK@?N{4LlE|g`AR~)N|1f4R_ zYq*x~5G|B^Ieh9tmDvVD+2ua;lJq6~72*4X{Due#d$15C8O4$zWh;8u*9iCJr+NzD zfv6vPFc(yg;mmiasN-$e+rmD|Pm;D@rdlNjc!AqSAM~`|j5$i5&f4NE6lLvGjSZC* z|EbB#>m)SoLbvLYIHyook^*^g^NOlx42M_wOLXGwV})jt2|lm{i0l&x0YbVQGm2^u zrni6-XZ)yZ{B82Xp~D6fFB}vJ3L)ihIj^x13U|62c|H_`1BO@cIEu1n}WpTRw1Jo$CvKe6UHw0B| zbE{V+4k5cmo@RH4vTSMRnpJnW#f)9FP_BlUP%VV@6+KT z#K?SVp8R~H(A$-qHaf>D0XfAUqFY%nPP=z`zkIeJE5IAJuCooS^p<3IV? z(}pCPJYXEHQZ}9=8W9zdVB$gDol~S9vS3{Wgnr;}J>T}P7(T(5o==Q8fi_+zxN+qeO26yylrG3Rr|;K9Tz=kZ_PcXtx>!mL zP$nxBr6g)u{yD$08`WcYrzu-Sz*rvZn2e(6&4fI7=RJgJb`9O+0MO$;x%pKfrBVs* zT&x^^2SG`w`dlnV;o}YNADA#y1;t`mJoric_&jAT51V5F$ur^ZCa7rt`qsMT3X!=2 zZ13ReyVpn0{HqZpfW@BxA0I#P&N3rK*>ALJsHl-8Bqg5caZ~oK9Bu zKx>dp{)O(9INWV|>XkNOzSY?r80;_JP9d-l}he z!Nyv%lz=J@iK;Bq%o@VjIYHT1HSU&V0??jdEceNzG)^r<$2s_r)IizF8+-r%9CarA zKjz2+bENZuvf$j5@y4O2iOn+T{$-(P&m%hGaYlOD`BDUo^zrt4LK&@X;al}B=QYN* z`Av?*9om?kzZYgTR30nAhu!7rMG37kdi>Bpb z>zuxf^lDrCRw z`Nc@h)ku=@1;6kt%j4PV&3<2V>O#S<%Ckrd?@EFM_KudvwNf{Hg=(K(u@H?(h(|bxnFl0w2=rT{jcF9~yd5n7NOsIjY}7RhPZd znwOBe*8-h|Vxj&J-*z9M6fhk^bOFD%Zvw)xuVTl5lOu|7eH$y;G_!=Y&)|Kpp$y{Q z%wCtCmP0qpeBdK%=89rNe8t#3=+t-z&c-_p+08KE7xx=TY;F!aKC`!;o=mfsjO3T1 zUc%j;y)$l6J-HFt=qdK*xD z541MCbI&%N>&M?>0gvVby>SG+#eRa6{dGM)FsA66{U*9J(yEzIO8uE^_!Eawg75GN z%Dt}IMWvr;4-+Z6@a=0^-$Qku#&84Dh7BT zta~;l=6QU1c>eG&+YkDk4wT(m*c5sv^7m1{o@{PZ*inop>0_Ui3hutCCZ9u371m7@ z5<7(ALVs^2Z@6w|R=qDfqUn3xOC?UGexTh36ZfeUL|lz&8k+=mkclZsjan|~#P4+L zEwDy9Qde5w`_1n5EY;HJF9?6PK9xWCn;Vp?1Ffj6TgJ3sm<9_42JZ)L&aQf3gr?4pLo}vO#0`-4_YhS6O1bFz4L)n%uQlGXmxnN?06z=wN-6hI z_u)_ND${i|*1O7$@EFabrxtm-O({j9paSVzJ&@-9Ri2sLZB1!I%P{n~Hen@wAcm zyzh$vtUO@3z(f0lU;u0~EF#Zkf zK&VAS`0Fh6clPs$dd~4|-sfTQ^UdA+T&Z&ZqL9;$ImTMlDlzxiUE~(Zj^mFHesc*TLRQ~W* z(?Gka6v^CmX6kbdWIPM{e>e{MY#qU18WnhdZ%bkgFhJ`ogtmjAkNdDW`1DcVtB4cOOXLlsdq9sj*~zhxyghxlKLI}C5Y{0| z+|i-h?`XvugZWW-*4b*90Nj$p2zm`Wxl&sszU|hH=b>V-bPF3#%U;trBM6Tx;f9X( z=fvt1=zLx;7x?<|>4pZ0D!}_j(K@R_qbsFGs5yrS`b)Mb9 zxq9}rUE>+TOx*4^s#?NJFH&JM7q4}Wh&bNYZk3&#XR zTWDMeA?XN;VW*>W%8K?&zco=LM7yKPz^Rh=vr~0>x~o-|Y>RBJ6cQR7WnRWv3U3w> zN(wj38$@K#d^{k!=KK5eklsrh0K@OYiEip2rmLBK)A@<7Q};x3KCVIgvf=9;F|>c6 z=i8Rt^64`&r4cUL*35eYAT)gcgtS(@puAfCYgA*|)HX;!qT`GRk*aR2dn*Wtox&0nGX|Ucj`jdlnH39;@i_}MaC+0|e7(yC zCkYMTO-0^cC&iy($#;fPL5@kzpAouKe{8-CP#iRYZ$WL_c_{D}H_i6v@GTo^mCy_e z!R8|!+P>KY(##&UlAxfmeyazk1~WoJu3L#Q!hNoj5A^5fMG`fbpVypDN`uiu{|5a* zEczx>b*%U^81h#o4EN_Lpvc{vLp@Q>?ZCk;xe)Wr%+Y&UK4Bps7t0$HOH0SGsD`m~ z1;#T^SWz>#3-^4algFoj9XIHe>j2`w24L}o!%a}`et3>38b_JB)5f|83{E*cK3-GW zZhI-uA@K~YqcbA=1b@?QOh|~cl0QXD-cnE`hM~=ewU~Ehs_m7Q%5z<=WMsz%=xCDf_en zV%G=dbEV6eP`?^iy5o+EqBDHVh^061qoAx@_V z%Y6szNKmV23wDVnkeTmjEfWPCx4&wwP{r9tY7`v3hbIJ3xniJKyg}39i@j7%H2L+v zZ2kUSZ{JCZBLqwCNLd+S?N0J2e1I3HPVC81es`b%)K7`&!u0Hey9F#Lfv!FUU1x0D z^MB!pEupFujSoNzzKt+aYS zafDvbYkiyu#%1s_K+E*x1DJTQs7DFp8~FrlDqdO1p#AYZ6a`O16M`n)2${D3T;=dO zA5pwm+)m`qN$GSI(V*aFUzV%uWGFqeQzr>Eoy5m0>3F^1(=XJI^ns@D0(_u(K)yIJ z`Nt98zw0W*1&vxhX4C9RN}?0vNGWy0iw+vm@z>gG{fO!GS^}{_TS!~Kw0U$RK~j4> zv)27KKQ;*O^#?W9A;-$Q1iowN#sEFELr!q!-1$E4Jo5j2htNSzzW=L4IPGNGscuXX zo-?biuL;EDo&@}>JmMbNqwxSG2X&%Plq?0klErqqz;ENk>4iOfy0h?c9*EEI1T4Kf z>?5rXgr@9*iFmXz9eblE5f9~HLEF1daa!FdILf(OaM&Up2(wr7AzVtji$H29vEvnc zW?4(Y!i5O)l%FFXVm3NY+{*={_L>HsK0S^TOi}$Z%$4F36Gf%s{#oyv&cx#MAI&z; z5MlDy^IE@lL97^*3ikpvL%jd#GXk3U@S;ldKzy)fAwN)L#WN}=ylp{)g;2lN&VY+b zACYvE6uyIZ9wA4^JnTAxcRg<4948`Ys z!p|HJ$Y_*>HYkOhWECn^eI$RUIAQw@7E{-^{pfR%Jv*y4LIq{#GKAR|)p+=RV9##5 zr_Z`=H~70VO2`umJpk8a$wX`A7aJD*qzF5AP*fhr5QeR_+^`^iMF}(`(=w*LhvEZ< zI+$vQsp9{9RuFf=MrW!O4AJN6Wg^apl}N&N&~SF2eZa70+%mQla>C4F-l$fa8YeZ0 z@AxaT`QPitc77A4(D*Az(RrVujg}**Q)dfM8ZFoJmF;IkskV_gz&+YA4Mc=7vIlaW zn=eK^tn|R*#r0c$$nxSQ?|=KrM^^6Ad;zy`<+ON_L$e5EG(NA+Rxxyt3EUXb&D&vH`V{q zbspPt<4CuDAP(r=keOL}rfZpNQ*Q1gn^w6_PqO zTqnR=-pExBjf?0~*+=Mzv7mmJ1)mh}#U!H5h_6f*D0<5*Tcj|;27wIlt{r1SbhLX; zRxXwyDYHWmaiIa(z7q~&mTSIX15OPZIN$nWsxLqqerFqKW9=D&?n@8iF$-cJwJRl& z0Qketz8;_lGarYn6=fImtHSyQYOA6 znHxh7oqvvv`IR&v!p^7}4)!i196KrI{&3z;1H%I>hyT5FY%#f1t6aATgPP&o^gAhv zIXCJ?|q7~+w6cvmgasSkfy&sZUq{~{=mBpWZY{noSuGANgQ4t z!Zr3bmyaj<2wep1L2LIN3WB6}Qp@GA% zp3jdX$tjN}Pg1I5Z5$sXFD)w9xA6P=y_Xbm!+!A;s|&9G*BW4~u5byDHWsH%anU;8sx1+ox4b_oeUrkx*K_PQfwz{B zg#zItgufaQ;sG;TBJnDGKLg)99*E~mB1WH46_Lz!D=dN`^|K;+1-ln-318^ROOZ{| zc6g~;U7T&}3M1e3Q+?rqXHBVe#|cUtGe=FuNE7cW>B_}kfY;A*e~ ztEbRldIX#tr`x6$)9Xk7PGe!+C--W^@o7IKs*fRlqpW&DRmD#K(gXDzH)&4VG+Os`1`qh^TrHoJ@c#R!ST3_{HnMU^564?M3yW!7ok3e7;ox z(JaI;$MoKhjR#`I%@Z~)yKPCw(t0O0xnL*;P#h7bTn)qbj$FygQ3~AvQb4W0#Js;g zAlV(5`@{-8-373dlsLu3mA&h`4Ane%dCl-7_zy9qk^cA|uZYl{d1P=ONMJ;D5YDuN zbZ*q}z3kygvxbYuT33p%CWh_P6siFo4-S^9Hu~;^m&G@LYgH6KTK*}n!4R(nOKb%@ z91hT-kqizwm!ZfVc->$7sc$_~REv?4g4eVS-c4rQkOMD+&{zN*Eoe-V>j?z+wRYn} zZe>SLje7F*M_6Co97AGJ2GmuRH`kPg#3T@7PfU|C#P4<&*#8m?;&<{Rq0 ztUCsC50fsxs}XrB%zM2qHartsnC4qfpV10!Kswwi+7PakWnCI0kkyqQvmD3yl4mnX zE7R*dAwcr+$zA^p-7;p|?|Xb)MtK;396(z&J*wS80NaOqj5H*r7fvWcI3>;VMmmoo zfQC+OWChn{t<2I5KkKDT&kzVsv!`lS^vc?Is zpMy}d+_NL+TW}z4IH**4wEUhSlR9vTp&LqU?v#7HIVTw);{-fLY^$KckNhuX?k@Ch zcDN)fY$wLhn$sz>>w8JWt7fn*VlD&-=F#!}IFu=5i-f&B2I1N)NT2>BR%LVJ31}vzZOWL@~$fe==|qgJ?iD^+&`C8I}vuk7UhvE zLjMl#C^7(Ogl1*_y0MvTJ}3@P7`NXi4HO_Ss8r-s$fx%lF7AFE^J*Yp`KYrNr*+>( z%RT{qI$C(!Ig^-n0MS(6hzvBmOS33To7_zyH9?uRBrDt;*k`Er8!cpoSv7hBvJfK)8?nlK~H(16+(#tu|QS48za02aXKmZ+gsVcsXLCJy$g^$v;(#+A*__X2_Hc{c*+duYxJ%52B( zzb0xNNd>>n^aU9Da%pRcS#5APBJdhbh6oAN9Wvt!K2r0bMhO`69lK5c4K@HcTlBzk zu%00Q4N(gCN%is2@ zrd1Cw#Kw9-;QINRd>=}BLTua!<{Y5)RsDDYQn>6`sgZrq?bYGoFHRK)+80$&nkK2z zy=FFcaj$fH<&q?lYq+kIZ@zc>i|UWvEu2&N)kln^dga(b5yIn%hz8z)C9vR^x%<^v z!e_FBORSR<@N!Ama4HW{|MTd!>g~7tUxw@}zmM$8?PJ_Hhb|Z+I2{i+(f(dfhspST zgD56-J_I`T-O#dZ|1B_*5T=ttRbRj^ox)QB?K`TAr)=;#33K7aH& zphU4`0P~6t&)*L~uHEOEaIAPVeKP%EKzY7A`~KlH^Ti&UaZZcVFY(lhkG!%ONx1ut zFbH_^ouPhOcLzaS%qY$(Fr*jj&L{?H%rB7=9Bx5@7@IYN9i3JZ8Z z*-9G&^{P~m+Z`yJ{0d<)^taKF#*VHVy+e<4N5qVzqC`E{G8;Q*sC@J@VDyX+#I?A^ zBI9#LU`kfS1d(u~VV1qweYEQ$xAj=|G^dL+;2~8}?Rw|X$3?y*j1(c0Hl{M>c(+M+ z8hc-FQKjVt{o?O1yU;$*>|~9Mw0-UQ38jIL;*%^oL?i16m{AE4AyWaQ?f%y6Cm!0M zj6!H)7>qv;nJZmT<2s29e>j&L1NMo}$4!PE&;sUehOyg3{wF z1+~v+LRgiXX7^9Z!@B7pV7}~IHM2`f`RO5r5h-HZfgbua4}n-<{196KaZn7LgRIj(ka5Pt}=((=&=sFi569lqy7DY zU#;{YL$)KlkRprp(BCAohPeLW|jkUaKih8$^e zK3fKy_nux2!a-xHDAsp>DQvaEjwu4yP(dUYMM?ok^-Na3A`8haHu-ZmX1&uJ`mAHK z>aZAfZgNWRS_9BzN_`sCi!uJOrRBt?=bC1Pm;mb*nHW%m)UspwjD;neQ06wLz1ip^-etS%}NHjIpw9sS*Rsic@b`kI40PO9bGMBsdARn^V}O6prNoV21`^WNtU%D%AA297N8jr4TD?6q z2Xk{{5<;#-Q?=fP+9MT;%HwTy=UN!_u5dhLDLH1306J45x(_uXI2fJVaYR>|S1>Tp zUd%$%=;xb$K@miB55c&4B#ul5OHt3OR^Lk4_#V8Be%cPFx4qv$0sPfW03jU}4fW*n zx|b`-3YfiF>@m1XMHm1y7W!v8=fi$`nE9^CRpu9f+VCWAX)3cX@>eYeNbUhF5f(3< zyW--JeiAbT3h>(d>3%=)x9)^ForJNUa7o()D2N#Tc~T_z=txO`?DPM=d26foz}d|` zFb#?dW)PL527U(>QNT^F!MN~xb$@tiA3?aE_vQfJ^rmcqqKU&sCL7|#;MK#+eHd8{ z|MoSiTw9`)pAYtTmWaGM81Ux~UQ;5u)MIVrZ#y@W`1ii6|0Jpj{fL=q{xh?_MSJ;E zOH@o{MAEmvG;uEJBv_(12pxShwK9|CH|UbAw~)Gse!yp4K-hzN0}yR}MwxG%GRHnN zB9Af;Vbcr7z6#z#fyV}DSmvh=NmNNR&=xRcc8t^V`7CZ z*GqXAr^D-g* z?(<+|@Zi1;oS&zC<0ER#{623x3-&-Ov|k#KfP_}{o3>oLc4z9l7ozS1k`7|AV9~Yp z=*8tdbI52ZP4dKd%VPWx#a`GPx-%Tp6;q0zHGnM8bOCn&%Rb#RCzVD;DZ3u3r)z-l zhG2p@O9o^tjamAS1XT+!j*h8NB|DeqlY6Z~rbO<4Drc>1;-9`IoXNpZb%^W%jm2zN zk|f^2_AP$9>O(Lby-KxoQr#lO=P>DHDgb`XAb~ZKADpg20(t|#pt~RNT9n(P=oET- ziDFBixMAXxc+UqxwXPdFCRs!T64JaAYGX4lQ{^Gj@bCPAN}sQ7DdmU(;EV`^0U zVxBRYa6tWCBoq7|`}%OX`QZ>1yMXTdMq*M&1KL1xX$&buowSDwt%nPJ?#TtFWFDbA zWBDh*j8E_&?m+Z?f-my&Mda(s7#q`RQ1icA<0skKB1h7{Fyan^JOK?_RiUIVDF4wR zl>UBcqgZ^VPJ$8u#Yz~>pAdfH{K=`{0b0*D*`WyVNNQu=+?Lfwp>I{*21YJd!8AST zE>C{Mepclz&83Q;HGm5oM5gRs%8z2MNnB=0ygWZc;({%>n@{+W_k*WP(_qj;AY&Hz zcx6ICXMG3s0d{}avKzU31hV*F=UcU%{m~SC+Am}O|=Dvb`elT{0Fczh~ zMFY^d5<=up9Pr1DnU8(>5W7sP2nY+>bz{79z|x4NT%d2YjVr2{*Pz^UywNS_s{wi? zffva`a^8Pt?9;Wba7YW+hJeJr`(_iwCr6VdTwC^UkGF#N;6Owc!`v!NTbiKo6vUR3 z9N2jy55=Uz&p1-D&j@0?S)W#VBlU}R7SbU%INqwzHL)!BXE>!~2`nVO;PVwW%;`@} zP^I+yz`FvRD6c_$I9_`e3~+lh*{dE>(^(q>(63kIhSzCl7K4$0H^snSfSI}F+0?({ z;q^-Uvr7J<){>=6hAW@)izgC+v%6`^fO{s}4cL)n9bWoorWxSmgItX?Z@pJA`5hNL zW*+ze?(vql$GHbDROD=R2N@vMF7O7jZi)kISBbBnA|rz?ja zPA^YdiK`bZ8%ywsm7F<2krbol7bd$vj_O)$vt@+yy*hx)v!w1`h)Tb1&z>iJw+J z<8K@gq$o!cXn~G(3i=n%QD?+;$FYN~0?%MEIbqQQu4$AZ2-FudwI7C2820h;qKol3 zLbcrik2hB!$j6?PC>~QmBKNj`LX=2!snah&xv@3AR| z-;^wSleIk$xgI!_RD!uYXr_K7_)7V=Lx`gsM$hLtOjQV;-@8P|#-rY^>)abkS$ zl;>N)yz(vO$Q^0P!l*7Ks;JQ0Q{+j=G1=<$r}I%W{I$G4lr~?Tmn#AP@Bm8!-#>ez z&`z58mTIb%EF~mzNVFDVhbeKJeFUHfe!W8f+CMFkB>&ItAffEBJvY7?t_!&6|LM*9 ziBKhJ;_ki>gDD=qk6z$Rzbuk&2Dbr^DDd-QCS;nq4>LRA(7b(Ohi^*P2tY8Bf|&)7 z_3wfkn>iTb%4_k9)Yy^jVmvWEJ9L#{7mv zfxAHABLRD(?AsKhlRPXt}ZvZi>mB*(z(D(s*&_`ihDO2npIX51OG&G64xqab2l+%aP6gn3<{mg1p z^>Xb^7E~OhCLh?XhPpYUo1SkL>znG>19*h)f@!rAOb8WL5aV6;-+Kl?-i`GdN91(_ z0i!y$LU<2f8OFNf3c^7WV8Ix~2ezM&8TfC;NvM_-9~M;sLse}&>BNW>o1s|m$0C^L zX&Tbu?}te3Ek>}&H?Uw)UEI>8twJJpwKc{Ol3j=py9ZX&TnE_(l`546=h5@3(-iiv zR+;>g<0}$_-h|^-z<6-TD>pz#==yqvH=%4Ntw#sV9^~UUZVDvtphs;@AUJFGFAjYNf0igfVK}Xr zWiE_R`TE`MezLS|EA^I#Ufd18Je1MHlZ?Qyz)lZoi4NU?KHvAUz;fKNUm=L=WWI4S z6{-{VlH<-qipkIA0J8ceFr2~!+x9CD-^5(X4Mk!C;P`-g(`-d7W#+QX*vkcvkY=Gr z`>AvO(r~>2a&XD85ZG(lRYP1E7yPFH813F5<$9w%FZ6^=zKslMNa4Wi<)G_uAb^QJ z@vSKD7PL)p4>#zYn}AFi!{g031U3ws6b~2t8ujm-dskG;UZxBOktX?-aJA;nrE-wy z*bAZvHX5nYd&$OWfc49#!87R(3$Bs91n;6!^L%~A^!qI66mZG4Lk>CT=VWgKlE3Qo zencmP4k#SAnq6idYbvMhWN?tXGf=DNT3n4t> zq;lVz&mx7#Y!;G2((za?Mb#ZF7oS&G$tby~sLe0oe*dI_Dhp+w|eEdBUdG%^5=MTWDuDqb-qt-qhd_{KB0Mq=&S<(?|@vgpt$bHA?F0IR3E<%ZfqG0iek+>iAH-C{X4Rw=R= zQd~{t90u-eOlKU1Bz+P8&OOiZ{bg#8K)(kmC2c{0ZlLV^dRgV~$4GgUdjKB;fc_&ZlkKlo9UOPSqx) zbVjaZfR`jWNh?{-LL#04G`tP)d(Vov19*Vzn=yJdv>H{A%pbJ)jdK12CCC8MghGGT zTZO-^_~bo4_n-L*3!S*v=1kMc{V2exnU!W3(-uA`SvVk>3STSSc+}*=w;FgyK=gN> zzMKJ(-wzI)bWqKV%B*M)=QC2M8>E`$^Ktf~*&+3FFXViAwkm|Gm1C5i*pMY0qeW@L z#S#XcP9ln85^AX%nu%Bep8mK0 z>^=^e$Ky?h;8@niCBln0o6y8|sy24n#7vZ7 z%(ZLv__RNHiD@vu;H5O*Oa6Ap4$kzQvDlz zo97e$0Zr_Vl%OpNX28Ba2zCR#{`gbaGox1mVU^SmK(8*${H+D&wptnI5n>H0_~oj> zS5k-qH@1N?%s!znkY{g1<{d6S68%eSMi<)LN6fAZQxlYSiLMay-vu78irU8{(Iy%{ zOCG-fZut@;jDovCkz_9k5;#;!$}d1U`%b70BlSr=U~tbzYgJe{6o4P=#|MpYWbRP; z-RZ`}P?`6Cdoyq5RJIE37}UIwQfp8l`+LSIBCEQ8p1X*@$65dO4Ts-u!ZUU{?P5n| ztq#{fW+UNyTRa|4Pf)a29*YQ3W_9G!@i8++?0JmKY8sWvb>JwJ^s|+k$M*$s$3dV4 z)eabLSGKi$na;V78VKrV?)l{2ED&U^KXq1xZmmSKtW**95+Lr?rP3sQEurJu?=w}v zWy!oxQW$08?nj83Xr4i`CBk0*@G{z4qp6iG_T4hZxR$qlP-5mBXEFiVz7mA z9k8#3(R$jf3d8v6!4S0XM-PBd90+=l2o|l(fA8C?Dh{df|FhTo*Le+iH5Vto6>10y zlGy-2Nv8L^Gl2_CT{t|w4~98lQXrdI3TFho#5>g`>T z-5_YpPjt@5kALj@?bjE!$X=e${#$&HT1g8NK&f~Q$d7iD_c1L?&kwpiEtik{Zl6dQ07kl05vVEpp$%V}TcGM20HF?|%x4>tWDu2On6 zppSR|d7nkg3OG-{%}1ObE!3=aKii-v&@~fRf^w^IqQh*Fp`19u%EPcvi4ir~TN<~f z_p2ZX4KxO!4d!_z(7PZ(^Ft#IhQ0FR<_v9GUD?EPdLHb^BR?V+MegtH=93!|X3`+v z3_QIm=g3nXaXduPIgfs)R!E|t3Ri$8PS!1;Gh-1*SuKn zrwsr&Wjc-P7yj`&>4{~bUD3)!5**sZfVe>U&3wHS2z_PECfqOw;@BKid#s^hJZtNw z_!=aTh@=ZnjiK)GvmZnW93IN@7GPSOkX9Rf>`yMG;2U^{q7_gh(7URieeBeF-W~{MhvyMdTR==ZK+#>SufnnMCc=lWA!96%)k?;5&6u@caeuHwpMT zK#(VrWY-bl00;g0l`z+Gzh6zDZ-^A6@w}c9|P2j6o?GG@d7RxM1eq0J`%OU79bQVwkvGctY<0I{{IB3*R8FLLU3q7WuZ zX(R?M=cwYi))S67Y2^+4+}%g&Pj7lB^0eF^x0q`OIVWmE=i)O>kst zHRzuUyw$GoHy22j78KKRQ1)J>5c>Q+zTsRrEJ3_aDF=Wv4DNzH*%SvrPQZzK-)kB7 z=ukgVZ36p)2DuvgwJM}na2ZPS+be13iqb*;`w@8bh0%g^)VYM>Zyha({G($3RkO}* zV%`2%JwhLzb^(3b0)KFq%u!hI?*P@-`L);RTHJ%wJc;1-tSqVDw|9z)_W+E*5y4x) zWGoyR(M)znn&{VY(Q_fA76B|04~F<$kThY-&m5n=*6qdb-aa2aJ)>0!#nvA>_U3O2 z7K9~N@cHfw>iG+ewcRLTbm$C#%Mp(HyTJAj10_QZG!2Vak=s?51Di}!Ou+2V?nU49 z5bPe6WMvYulOaYaD-e9UJs!jD7O{W)@!B8L!_8h`pQSB-#p)IL(QIYtB{hXYNVP@p zv^LPCu5eFkFm~%169Fbo?p9t?cJ~m<52VL=_`YHsLdZFUCNQlxVfN*ToZ8z7wDW?X z$pigl5k;%$Y(rr^FB3T8iB@5jo_93@3a0KJe!b=ur0Mpr-xfmktj3C$w-M&TuF$Vn z?thn#{HZxmus?gqRGUZE&BiI@u(7!Jc?2-p=A^M1yGN(pG8Y4km_p-05|@-W`&{+k zTR6xbXwW1h-pWk_BfdWR>J$p}44AyTIhsHXQZ4gI=9|_PPu%|Q-z11cbg^8q#b)wa zl?Rr)7lHY1Ie;tW9_;9h;v6_;X31eHO@=_vQi>|_;hhYT^62rEwOHtd% zc!w?;EYFwE11bKgP@TNY_+B~mb^rTdss zP!a^dZ`aMfeNpu*cDQG2x&4(O?i;BGkkRo}Y4xB*?yb`3dcciSn}Q zeL%pGfP8+4K^=TuNJY2&t z;iD^Bh_SJ`E_)3D?~{AKsIb4?t|(ewGwer$Ha!xH8htQ-@GAyTBi4h&O{AMcrrG2}Y z(RR~GrSLY)$6TQM8&T}HeYHvjn5E&H1Wy<#M$#s-gS%}Ntzei7pG!Cem{D-wT=Lb5 zTqsaf;@Xh+`IRL20w>;y2}7`9*0}$~-gr%Ole24iw-U$}OK#`L>LnmFIAb%ndcmSg zdf1#^?Hfh}B$2Vl$v8u;gs}&KI*(@n>>e8sPf9C`m+B7TN;rPl~QQ zK^{HJcFm=F4a&kgc?ArHW#A`HoEuq~=W{??s3Pm(<;jk83&^g^BQI(b#s$dS5=dKK zZTBMCM;F}eUoDWq3P|>Es_(i6tbguXFTP9#7?icucjo>N1p58Z-_oyt@+Et%|9PxL z`WYny<$X#i)RVL+C*kT_r|+T27lfZ7>N_h5fFe#aoHMs0WER|f91!h@J#q`Ji3?H9 zj(jnkDyjz21LI|V#UcaY+h~2XsU3gdcDi|FVgG1VHd4&Fqo2pEQHizUi(11v zFrauwc_#LL?BGcDQz#y`Yu-S1O*z8r3BD&hL2waOFs~xm>DF+OblZONw zl!+ST$EeGk{NAhQzn}yl-{rt&+Ro=E9scfOJ33`{G^OqSKT-2(GrPwv==r!5Q%i5? zPkxv0dG9dc_pbG+m>xz7yED+qha{(Y2S}JwDJg;`v5K4f*-|6>S$^!sH8qW1aN;3O%v%$Nhq4OpJ*HB;Qs*elrX$O4x-X1Vbg7+Ip z&vo(9QwLR$2q<|hkZ&dv#61HI6gN$tHuK74WK@YjGcoZ3wAUVVH|ZqPoN|*hG!}%7 zjhD^OA?3W>-7kvYQ!<)Ssra_%I6kVc$KN+<(u{f2C;caU0tytt7irD3v6a1VY)cRi zPPam``DhC6_UBx8ffCj_h9C^2y(N6}kSghmg&?t0q;SkEA{=Vnx}-&-fBD$zOm;G5 zj8_YgEcHd!GhN1`25@`4;#HKISxZaQPIxa#U2uJz6733cw@5a=J~-yRT%V0`w%7WJC! zzGkDmCG_;ctnBcEe1X*-(+uj7FtR{}+q>s&c@`aJiMLDJWu}$cZb6njl5r&ytJyM!Jjx)rc zg4wh$l1KKXxn*!EGj>qdWGgAeQONw-_NGg2KkRkzj#|;x_^?PDdmlI;Uo}8;PWQ>n z+gAbfutuwn_<)VRFry^kqPrsLxy$1hmx)K~a8Qlgaz%Cu@55i8RB$|=SE?Xsz=T)7 zlTblxn8cyl>tS9QizwD100oTT>_UXVr#T(ZtJCP;4?Ct$lG&a0jDH>aEHp}03HE_} zc)U8>!0no|%9zXz6O2fN%#_olah6ZTYEWj97r zDLxqUL{eD{Q*J;hLE=e|4HQZm4VJy6=%g3%O+Pk4k!5VU@Mp1-SPUL>)MJ_>yC~T7 zYjEo-n4`7u@NUNq9uG!(TK*jdb!4$fR#&_^=Ks(V&hCuhF-=3Ilxr#Wx98?$VU#Yo zAT%V|ZZC^VEzYYEe`tXLmW!PNKpI-Pys+2yqD)QC_(tcNB_uFXE13722PO7hW1Q>G z{ZaMB$9+RMMxlPRG^o1H^3J1dDx(qJ35Uxq^ z~6NAANrpf(p3!Q5_f=v zrfI%QFVkPM9hnN+)9~6k_%#W0p9vOWA9hn7KTR}@nz1qrNS>j$0eqn)D~u@vkOiGs zN~{|j<8mr~)HI*yxK-zL?_}Y^7yvZY?P~%b)}4^-R)k<{2(fZx(ODN$LV^3cc-7Bj zmm{Yg7z`^osk?710MG}k;U}c1MGvJ&mb9*|7uyussOah2z4`Df5^KQi?ze+rdVHD5 zN*8{Z>r^p|);9gm-n{R3GW}CSypIFbu$IyrDQYErubXM zrRZc(y#{dGVFl!wHM^x9h$qjF`(2}#$Z3=TudcmUA{K9E2Alfkcqfl?-|u??tjNol z9`W~g?aKF6=qT`DfyxGd$BxuOwWmL3>7QBks`ivd9Dt7}r5s?Cg&&j>Qte=?nzRF*9mdi*NzcY$GC`cnMz|r6Jdi>U8HY3Yke3Ym5UjX9*Sb z;>jNl+_$E=wwSZuVF(v0`4tc#B1ILVIzdBN^K|g-63e3}4`MS8n%}hPD&wn0q~XFT zuYdFI13~Y7_Vbhnb(r&PW(h|`NBxbR8E;N;=4(DWL}KBu;mA^j5-voJ4$6~v0{j@x z1{DZBNN0Zc>@C25Dnx(e6@3R*abtz`d^xKT&T(zX3@q3?JVN2?RE~ASNOEH5oH5%z z$4nL~h>!)cN5LfXe&ebVEfph|Mj|B#21yG`U_($>N1IwDw>+PVZhw6b z>YsU&?X;L%g?F55TB?G0)=|=5w1B@-%0{oHuEWz)fay@!}yKv=Xra=^ComU3|?0QUZ7pKLeA=56ZHL%&0#7Z7n*!r}!{#P}$x zO`bU`+v-DI?p)~U-h6mc?s!Uhsd!)?FMWqhD4l@*OPRfm4Bh)63kLermKHl_rq1Nm zBdyDano-S@5~m7k!}k^X0jBB_&EHP3+E0g!VeQt>j~RSYi+n<!*c{d>9m?8X`?Y}@ ztOKhFzK4htYofv>8Rhzpt$A$ZIi;sN{QS+O<>sJvq2e;(6>g3wcXlJ>g0RjG^3}Y2 z72(miY%q?5qKpzIEvJL$>#O7K*}d|7}d~^8@`t7TIdfUpUG(+vSbJd8rigZUHN}1T|@B1!3 z+3{}HQ~nP+P7rtP0U4vb{amqgvI^Z+7!m*rld`9_pfBwn%Ik|Loq-8XI6u-XRpmj~ zGOMBq&$)D?pkP}>xuT+>yt?nzG3v(@&wa@##&=}S9HxlANX=~(=FYJMifyD3ezUsU zBJYlQLgXIrt0S)`vUl)k4rac%JC!^}4w^mj%`qMGaL7bhG8_z^kfg`rAq}D7MQg>TP~zyQ!~`qpaa#OX-`< zM@AZN#Kb_F@t71>NLc~VD1Uonh|z=RCH3G`<2+ZuZsEE>V~xPE?nJ32i^1Kv25 z6We9JjBckSVO~CC91jR5_TG8lD4jvoD#T0kRUghxfxel3hW&(FUx@7Q6+N-WyzI| z6G|pB8^i{`SM(d^$euyfYhU;)1AjpkE8azF?~V|I_rLY(?IW?Q62Ucz`|Gb=8E@3{ zH_B6mH%i^s@XlyWQL24fhzq98dh3p~YE z?|1fieAY^Xi?yR^;`6hq2kFv8iS2=tRVw@8ATs7LzrM>N6C_+rk$qBcB}CF9I=6|( z?dK8*Z^o}!-jbg*!*XrKd@d%F|nFv z^~hd-{waL#U@6M-x&ZU5S-Yt=O5rA)kR}YP`;7G`xsWgOH(n0-4^e^*ZDT(a-q>Od z1D}Ek%b5sQ28qBYTnYIc))0Se8%8a_OXbQFU#j|8RFJ<953(A1u_LIk)~2wS`AUe% z3{DoCr}crcky_{nJIjYS-K-kk%mc4$V>{#6WZ=MB7repjBaOn|4ozN{q~XM4QbzJ{ z))RpzU0_o@_58k&sX$uG#yQfaE8tk+ISJUR_GrT|w6s4S^H&dRE;1 zpx*oEaf3(g=`YXR9vwx;V!|$^K!jDBb_ey?4(MAR#2Y_up&7)}bV{7}!H4yI<5{Bx zt%4}1_nh_cvX2;}5dWOc)*bBTC^|Ot>7`=T zYiok7{l-Xl0+!8DXQOO%2}ArK6#q&-y&t^=wvx{)r=woF$UZ~KwO&<`(Ju_bY2MoM zn+6;K(SeKQK}RL|WbSSFLJOe{6#FD~;>r7%Ho6MTSlgK@=BH><6?x_}x&i(?(Tor% z`-~CGkDmOZ!vl|-(TvwU?rs}i0j&Ipd2o0DkCul8{l7xK)Tn=YyS>l4y;450y_278pN;~yq3{$!kqm>6rhC78 zTYZ*P0rQg#ARRTdCbF#$b*IWSr8`CE@tZRBO1o%)l+B0>?B`W|m{36p6n3#ApMo@0 zuvpyVz}hG8Nh2mrO=08GGhI7>+v{(mb5dh%SoA_`dou7 z!+c?4Y4jDLob;YHG<*%g7r&EQOqD|nZzoAjBzsDZ$sbRgP9dG>RxS6J4ueY|?m&Qb z5{VFcHz`Uls*AJks@v-64Qd;=*~zs2Pwp@K1hZ8rsCd!jqT{jM3h$;7b+!u+21w{4 zj|vnSzlg!<3$V%s0di(77aMXx6EMZ)(2V$j)HY z7VFYenr09%ELvp+ee93&*`Ml5*3?CynJn3=6MM%Si-B^myNgvnN&GkWE5uGbTI(nB z>bFgM8T+*P%d`U%aOo;EJlf^6)dFHj5{^awOJ>8_K6pzpcu{9wS5wfyy6!>%%AhH5 z+8X$Dw)eCT>jB_8FuUaKW40?O-|QE4AdpTDO;ju(={$YAfd}g zg8UHEa~l?LBIkxWi(^;bNdkY71mro7HUC8Gu5E!G>X?}z0{K3%sv3~5>d~~hEyrk3 zSM_UB-dQaBjsxk*S)-@x$#*0>Uy8?dCYp8GYmMYnpI(!J?kQfr%u=+oxo4p4hR3@b z7+Kha=+{HEI1rZ3=4DD=2~opLWM&%Ks=s8gkGvol`SyDdee)Ufj@RNZDZov3WgUA} z(k*_B-Y7aqWF4>?xp7l9pK1VFBxOC%e7&BqDK)u3EiPWEvU}y1prEamth40erKmyv zMyZL-ZO}c|LeT&{K*GPkLlN6>{?y}_nTaHJK{iIa zVLD9vhzEP3(k5k3cc1)yFIo3}s$}&2XO*^R;C)a@)5Fhq$Y6Ct6*!8LLP?PF#o*mZ zO4gt^htFM){!U4g74c(v2Ly|_4@Cgp1GlkK;21q-^fE%LJ2>yS&@|gm^?bAN+2KtY z^B-l1%_Y6mru(Ai3z!3z#_@7nknIwmSzA91vW<>;3Y3H8BML>dO-YaCuOOvhY)*X+Bbp)`Om+v#|`tysuM zA$uqOU`Q7vV$o7jH}jIi!4a~bYP$mRJWFri+m3xSM(rEG^dIm3GK{3P%u}Fz z(Ty70-ZYr|Jeh93=rNEd<#{(K44zi?zLOIV(@1o`f(H!uY1Y7L7iTV_o8fw&&m_Dc z*{N;Y3pgvYrfGE4p@1$pR0)=G|+8D5IS~ZylF7X^VIJ|_!0#2#YF`^9cvyU zHbpnvrn%?Ulu9_{A+@K%hC)iDp?HQwX)3hZm(9dw0Chl77&fMJXr68UGPi2puP#-HnLS|wl^%y3<;+##;}@)5&*!@wjPh? zTx?ydy0nl$-&QitjCL95cT=jM*#V#rzmhldDOj=11* z)HYdG|9YrnF(M=RVk8oS;&et{^JB$Oc30g*GEv~G2Lz5<6bEaxc_NSh(992=x(xU5 z%`dgW`2WZI&Sxmj!rhiZrvvS+yq*OwyiobUnD%{k9eS{uKyNuki+chkfcLH6zR`EX z8~pX@y;Lk-d)11$QCT9nVWOvJ-S%#$_x#X@a}Du~N2ll!Qp07v$`CDr>jZU{Z-&qL!K5cYX< ziAeYW^(k}h8a6^6FU=yd4MsIm&wh2?mCG!QYNZ|71^Zlo=SH;i{mcDde;RY16S~fb z@bTv<O#zJ#Q zg@vDBZz+0`l7LI3me=9StKQA;PG!vLNHSM!0MXJ#dC2%!m4~dyuI0cAd^zWuyx-W0 zy`Za(1a&HawJGzP-6;Hs@{dgujMCCu1eQ}ul1p(&no@F0LUfBpP)P7SkjJ*0@len3 z=Z;4ySKEC2JGc5JtZXa!!gHfc{4SQV)A=64nVRjy@A|`VBhjU3*{d&vCW9&vmzfy% z+=#i#Z$D6hM)1K|EQldY1OV9XydUoCO_Y@S$bMI9#C(CO=t2qegFbSV{p97CAu3`f ziMT7Y1zi*=crnDoPwJeQ-<{+1;YANVv+yyPorw85it6~KJ#wX$?AT$aAtB@f_)ari zovpsicDL%~BM=a|?vF}H;R+Adn+fI#%?lhSj6zk=b<0%9N8I(s=_@EjX0qR5U5O(2J}Ovo14EiP>bpS$ngZXpp?`hY;`fr~AdBK_V}r#~-B6#8pNC7sqRJt0H?3_afrVefCvBiT z8BDiPq`%(M16?i%PDfTL-*DhQo>56nySV;X*g_#bLvzj@zc}l8bD}CK^Dd7Ps5)+o zzjMxWSuJMG+#TD!rdc%tyKezlq*AiPS7D|+UFf@f7+X$f`C_qk^*AVHCRi0( zPn1Ov{lGq~t-<*iL$27ozAaXkD-^#hP)FVTRiNbXl9$n_P`j1ETk>RX{Q>VWV-c3~LhCHG5E)P0!ay(cnYHcb5pwpp1^Ek<*O7?|8g~VqgL9xO8y}i4+;8 z*ZTguqfWd&jQAfj58mup)5&AxW0-qP>hX|{hf}FOyV)s7))s=KsVv35FBgcUa3_W) zy?MT`>M0`;He;`u?G~A$=$L&|R_R}kiz%3s(i*CcZYJAo;tib}i7zE=G-NT3?Mt>63KRpxT9#K5~ zd=8d;Kz53XhXi%@1j^AyfNybSBU8lW*D)XB+w+0#;;4N+S=VTF3~OHGdnm;&fO+kP z)M+nL^(wCdvEVl*9%~6|kKB_Ech~CEg5u+mn=K-&?p6^_{gFW>`}{T|)aYvU56c`j zSBfMKm)TY=I9%^kcs{c~wPIc5!HT;1xUl}=sjPlm_C*sMsRrW1XHj{$FgOC=t@<4^ z()N;3q^8U9>Z_LZOTxF3VL_@6u}18*gBTNGD^M${ME!lU-!J{N+La|cO;!`X=tqmi zNvpgQ&!r{nRhb0iwzL(#(tq|%eWQR8^xxrNPe=4bApuKUd^)wRSS7>6!FGCxi=HUj zA3g3!>P}fvD8;ID3DYC}-sZZs;mWPb#C|NcT`?1(BaL`7qcofy6T+(tiR^P;qE~;U-yP<*1*UjPolU+*{6e3SuE#M_ zrCS?)F>D6)^oO1GIoxIjM%i=!%|}%#T!qE+!B>Sm}i0=z;n(IFEb~GS4nwj3^&HXZ%uN~@yGco)+{&U~M9e%x+ z|M2qjozE{ZKwfW`=?=;$1A5R`9TC5_wLq}TlyG@8kMR*ruf*WLA}MnhW7{+7A;=Jm zX)^<}4&}{2GiqcZms5MS-iE;of^J&UBbKLes|gwQ3N^w`Pe`rLhzKvkJ_Wc~pQg>^ zIgC$wBs%>g;8(OjPy0%8i|h2{7^rN1YTGu6m^Gj8Rcs*m@r6_ZWkA@VR$D!{1!^cr z!Dpk^k1jMCQUFe3tPg?H-l- z*&fNaKN{9(ON7E{6r%x~ zxeuMCQ`^!3XED4pwF+9WW;vigqpPRLxDfhlZSmBq9Wyfg9QmDaRKH!;O>a~Qa3`g{ zfJwM9Qw`C~=lK!zd=t>k?-)7Xb)M}*kY&`rI~k+XtI*Ds?wqH`{X=PpcDytjPYDjn zD3zXaHOxcKOzoqmW%P5b3FQtpBeZ7U!v;v7IO0>9l=k!T8!mMFkJZ;>g+maULE^%m zn(HBJa0C^5508;0{GGxd45=pawxYGtBL}?{#rK_!v$3Cs9b17K&kQZSOhny-tec-N z6SY~K1$?_ZP_E%?)--;>if#&?54F8UM$oT*rv#ASbJ;UP|GDXSSK;$Z!KT$8Fm*qq zb7kxcqf8LLI>FF;xM{3wjRYh!!lC@UZsfLrRY{ec99S^Yh=lF_z#(01H=X7yYjyVw z=)|9UpZ+sinc7~)ouGvIcw+Qdwj55f_1AkLEh>LLyMzf?Z(hSqIl%}}iO{Adw-YG&8 zX3uQAswJg@oaV^c{W}+#Tr@Uw*Jx_J`4!@&Cfbxa-O2Ye|mZtVB?cFELy;`qUpwo$f!E&=k!GS z6&ka0l$J{r{4>W*ysw{j^YNuq+4z`yx0_Q#SLLRC^@U5*fTMhXrSGPXI;~h+&dMk} z>UFhZ3Wt3xlDHx#Z`0~kjCi{*F%k3`j9TOqfZV8)!%;izUW3}`d?}pl%pmf=n9*X+ zX_39RRvr3;plijmH_e!5W>wKQrA@bFWFOSos0=&ICig_{CfX!z7;`t*^}i_c#63t| zTu7h=?bb~vDyIW}zu8_coy!T0-A!#!!K-Jd8)WqMUpvE4rhZh;BKn^vE8uT3V&97! znI-FMEd@S#lY5T5XQ)gxMS`P9i3b`4Jp62Ua3&mnji%V~>j?(X2w3A4YSuGPq^Bie zJu;V~!bd$El>^5K90&X_?^~Fi(;k_^mVg%)tyXph(NJZ?t7C+a^~!~)xl@%3GSX_Z z;6W{%+cV~OC8QoEVx=Payvd^M+>z~cCUVi=3Z}9Z%SXwL**d+G6m&EUd|p(92P$CA zc_5o7|0xjq-}^P*Fa7O*h<`nJS|A{qfrQ(dp|w!E0;W`s1N@HU+VCb_C`hI=n}2by zPyY7gz&nBswU{G%_YBNp4xbxWP!mSnW|Jj7LncbjT7{5InO96o4_fm@NRs%=$E z^M>8Tpvsr=j+^$=iRROMkh?)(`Wf+-APBMXpmwg7`pF(w%HFGPw!iB#Ee;dYwn(T< zEa&x%JvSlj0nv(NCo*B((>YeQ*E?5M46V!~OAo^D&e|^3K4T!oxb%nkqz_#=5-1&V za{GX~6S(%_yLy|}R@t++V7CYV<4BUd#S?|aZB0e!5iKOv9&md1+g8d4!P~Sl#L%7Z z{r8`}^v7Dq(7*R?tM&8OyZl*4rrb71qDww8N?0#r>bGZSq>txtE@9F-e9S5meN~Yj zqMjbfvd@SRnP9dEFN&*IJ^YA2O@yZqQhsf|?IO;kNZ(o=R!Me|(0^wfcDn#C4V)_=L8Y0y7`iUmbtd_g zFN?m9sI!k`EWt|jkCX`k&zaW}(FzN~>wCh(InebskPfOz=#us9%FoC9WBZS<{8Sv_?k3Ff z2-4&)X&BTFS(Dnu)Kco(JA>3d*wJ~Rz65Qdr=EVrWIAv3W-~*c*>Y`JZGHJ&z6MxW zN0zx#?GW5i5lv6N@Aj2sRYtc^=3J+J89lQNv9xJqiuY- zLS=)+ltM|>Fx|F4RIB>yaiYqYcjYf)P8q$$td5Z=!0xvV^EXX`!iVNF4h0@>bKMQC z$5#>1K^ow%OIX1I9xDH#v7BY$!#~>35j*f}hC9IYqF-iM$TAp?-U3sUO5PIR$4XD8 zV^Tfm(cy45i{XU5oiw=ZebCnW@f+i%`mJKXSa(f0*Nx1@sI_P&$CC$n z0%t&GpAZc|c~vlYS_+43V)o1pYoh5j`}NKA(mf6=JwEbLCiibeDJ?||<(Kd$l~k~j z@1M70jEiP^FX8nB-utx-Q+46$IeWhJ((mtm#3d&^O?t^N^`U0jUbap} z3Hj$y1NBP1jOFgL29CVwePI%$eVyoVmZKf3Tc+*k#HrdX` z^+$x0AKlEi5@plHyPA?ms`|dLeBri8D2fP+pir~BL}V-;;EDrMB-A1luTG<=k0x<+ z6pvx=WFnuYlrRf(af#QKkQ1CKcY12plD5gd^#^ ztz}jnHIyexD5gc9lQecGaW2L*@O%ULNJlIS%`g@*B*oK1Mqxw_L>;!Pf@d-dN_VOY z%8vxuX2pnsgI_kZM%~~2C>a$QyHVaP0Qy`m?CSmhR^Vlf(RhpD89V3F6>KpdVXOuR4VjaYoA;uy+N zLO&I8_B8RwyAe}_*LIv*;E&&0@q>D`5ztRI1HMggV&Zq^3{nd?jlluDv$%M7B`^lEQ=q z5a?k23@2AAjWh?FW~!_^&3_Xd4okVUEcrEwm7ULoHIv7?h)DL$T;JI<=b>t3W>KpN z#Vn~D*?VyLRYd>~K)M^WIZ4pma4Le+MsQqXM!r6nj9h8x)@LS@D9n}`R>vQH@fnj6 z6&JgjB%*H5GpjXo1kTi1#{Jf6J@@b3?DkJvX4KOYA7%3h`C%@NvpXq%srs#_^1$A@ ztt2S0_yFT)R^OfVH{%I;#*V=R1e7H#)zBt1Uaa%f#)q}EGd+>}AD9gD~bg>Z^G}a25S`SpQXjj>Lcofv~ZjiS7voHStW?lW@$(XlpfXwK>bLyp!`{!)zUI7nC zXXeg5wj|=9?9_sGXdZ=dITDOVcL@nHl?sG|chEMMhcVFyoagxsEim%yIQI{$dmP

>mA0_> zaWQouCk=u`iJta@N|gmYD}D2YZV4Fl3Q~!i{Qw3_R{qx?6=vKEfP*@#gx+gNiFbnf z65Nz~0_Vum{U8~49)ooRW{Hh?uz_Z_;z!P4JPEqdh^{WXs6f4gt~|M?>u zR=zaP=J_6AjmGGbh^8jNzSg%KLTkhKYW=E5hjERs# z3YJ6`brpn1;4_Ta1M&%-lG%^vNE0aA2PX_mLJHfvI>*zfOh9K;t0vd|1Jg%MxkK5) zheVE9w`n>KVn3=+@^>GWPNE$S-FFm;G*F;nu4rK7X}SajS{$R&h>&pYNOf}OkSKM1 zct1xLvDs7`w>7ITc}9wn^mjY-AWHpo%0c_z`}dAxum&-(q$|}$eaUHGrnbx&8%WSn zmJ?G52dV*nC;z4idGO->BxZS%m2_4+UIO#k=lN34C_Yd1(Ju!AYLatG0k$; zMF=+RA9Q>#?^a7kg+n%`yuUMpLtjRzXtw#y;u7cs65tr7pA;0U?Y#VYB{MOm-B2gm z&Xm&U7l1?*2_f)o!Kj~r~AzVqvM!uI^^sd6KxBMsfWQX2M2$& z)LW#NdRAu6>pt;_z2OK3oQAs<5-#gEgQdrb%t?l8)!X7~K6iDKsXE*10=K0Hv?aTT zZhoQ$8dO0`#x=aa8sIvp$~b{3L7CmW66TDw!263uu4?Fy)29*Ne|DmPNF*$WXT2=E zSP~&V4>BpBrCRrC^hlUj3S0v>=* z{PsI2Cv1<>_muqnWQ+N7SwX?Fk(w zB-uqCxCe_?X`epQ-$dK_=>uwqlek)i7=WT(D+nb#DozP=kCLC5hM~guyA0jIcYBbQ zbSa8oy9dFsg&w2g7Jht5Jic};Sd^Ie1(1|LPS=c756kcmX}A!|(7gD9ihF023})ez zIypP6)eo~7&;}!f;6-Af5^8IA5QfYx4f9H%o+xYCHjaIS^U^haNS;GS(|q?$@`fOHvjGB z;lVZxLV9NAJ~T1izbvmF?Z>*IFubdj|01FX!T9>6c!z|AwaZ$T*>|~QlV1${&UX9j zp$!;u-p9wDXMIEQwM*4Nd#l4hRZu=MVv(auN#oneb*uchh8j?Vy7j;L|KV$_157z` zHEj0pn5%=5IpN$McOrN~G9xgk%6m_VD;M zu}sT2oz)Ziq#MaV{4X|}6q51QG~P1tQCZ?0U}#h3i%sedY;Ny4Gp_xi?_RmkwaGlZ zh7zpgVZZqAVU0B0%mAr9NHA)jLl))xqQt|GI~I|NLGesZcYEaZ!{a)eXAmt=qEIdI zAq$tu^PMhh5D5CqF&=ezGH@X|uXBMQ#(m$TmAR?Qm~F%0AIxX`;O5S_6oAKT6r?ce zvYi|#0tFUIRcq`xo7H;>+P92cqM$Le&u9?RtD+d}OUyUYGM?xi1j$yk9p4TQnJ}@* z40x6Z_68||+(Q=5z%)1qiR5|P8#qnnaMd&ZVFNF3HvQ)+V{|HV);EX+0lC>f;y-!T ztA~5C9>^GIFJKuR;2r#2((Q?48`2gUqz1vc9!Vv}v!aA~i4WfQ1T@chF;XNuJaCUY}?%-zAT z;Xp3H&G_H>&@vgzJSTndsz3pch1Q)jU6(L!wpfBvsS|-b9-@U3hK(q}Qqvc(;f1Z2?BcsKEdrzdutVGCtAZvVW@A)q1I1@UQD_aoqN7>BbobE7<> zCi7!e=^cTbrPK<#{g1t>OS{ezth8DL6VEygT|wo`)lS2b@dS)ntJG3CfOx6}(NnBO zzVobws<0i`c8O;)r>g1QbR3rO@@U)BW_d?Ulxp)SR2Cyv>bpfhMDbJeLDx}A$$1b| z6Nvg4*M8D?L$$ub|Do%KTjPz8`T` zv0q?UAsKl_Z{q!#09I?u8-_=oJYEC;{--RSb!+&a`(>7+_y4V(J-JPuzsHUA=ct_f zZ~$>xzPY>J)Oqej)ngT>!lduw%$@LxGH7@rWB8WgRCRb?WSz`3G!bX8Ld2ig-5XKtV!!o;uh0d$_K$Y%-+hS(cmL0R zz=4(5`>$IxWNn;iKh8tvq;r{Bzi^ah!drpGZ^wM5IjO7A2;V8tbYJe(DwwSmkbq67 zyXAhdTWZzN61?tkd($dphh-E#;HC64f@}C$wAd2zd}P@B)$cz?!b`eh6sJ0E^;(ft zZK~0wbcN>*;sJcF&wiAKN7oftWnGy`@_xe&ZKCX#Qml-@>+k{eD-u$Rf;$ik-6psA zAhv8%rY#wowFy{mPJ5%X8ggB*>svv{bdWYVUj<`O4RX~9vO|W}Vy5GT*cG%uZlj1_yKKXe$&-3Anp`&J-@`_GEG?rq+4_+fP_jAaGYa_Hn!^Eul1uwsD z;hpI8`vf%@6-R~=s`6TQ?3^+_75ie)VHyS$oNxhC2)iU5r?zZiu-Zt%LiQIhTuZSo z3>@fjiV9pWPT4Hyj&J$6=IaL7A3p&$0$@rUc9jl^tR|U5q_``$%K?N|)R%-kp*smr zLOScDoR)sn95J_}_6)&gM^i1JMa<8Gg2ImqqhFy&B&Rb*&rb}@(Wh$1;%$6v_e$Eg zM@yLBmA4)JkAeKmt_RD=e;>c2aps@rVgG4!oE%4FayS!H*Lr_SV00mro+|XR8dNPZ z_1cgkx@Msd1XG?wVvE!AEb`yuP7cB;$$QM=tAONnAO>{D)uN9fU1)t?o;QUuf?G&$ zD4ph&=`9KQJ`w3qRBTBqo9BVk-X3}`FXc1if6u`|L;SawIK;5gWVAz&-_c~4tfndH z^Cdw5;1fmSL3ox$-JAPq?#n0}RIds*B{T5?boL}8!Tm6`;}raXRveR#!zjt(e))Ru zT6$9u?_zt_q9H3nEbLSY3OwplpP-Yztwk)KsE3^FqtU7;rtf5;_X!{G_J5xDJQ=B3 z4(wYSkmG+g5q9};{ z*Gr-x^Ul6T(gYVd7bUsPvH~>x@XXjgYI1_Q@P*xx<0-QE^GXrH^^t@rhC9`GCg~z% zT;Yq>rUOCFa6WLwnq}G=64r#r>k}@?upz|d2|r(BRAI?wPI&I^5yDl%G;CbH;CDJs z0qT}#h72_E+r!YL?VWBd^u*5CnAm~(IJ)_aG|eK4lwesAfJ^f~mHqn2(DdI=k^~;^ z@$a5L&4{{AQjfk6S($6%270>A&-D`NX{2>mM*3H$3?0-@=aIf-c*UGXg0s$QEhhjT)e z%t)0^u1YzcFW1x9U5pKPstA9dm>l}wyz%sDWYa$Q=NFMoru*0DaO3W;Ubo*`gVglO z@RnKJ>fM%45eaL(#H<@a-*}J|!Yc;`r-+_d zg70wAU07wUhw8Gqi=}YaeC4WLN$N9wc#tS>%g7wp8xwiMGjYsa zVE#So1FDW{w>#Qi85oB54{7mG&y*vYvZ?@*5vt!=h^Lxh*QcuY) zOV@YB=f*?f#7TJTvfkguQ z9XSp}#-FrozaR4JX;S~!B}Zl~KDE!=MJH?#bM1k+H=o{u=d|p|N5hMyovllGHiIhC z2lUu3)B)8rv(b^b4wzWlxC4t}3FweSjn|cY6q4P2L9k*r3fSW88m~uLBkV;>taW>D zCIsee3u~bMXu1j#mW*zgG@lq{no{S3=#xo>0)l_;vWcG{aYan8O{;2cxcZWMoLx6C_aWL|BtBr&1AhIiG1`V3jSft8EL&@a z_SRNNQ9$$I>N-;lMuLJyTM%xUrx8jOkYqUfAm5u%`SGp4Fh z1ILB(SLmQF74?=Vr8IRqXYvRSub32zio@U9-{tr-iV(EYr)6NU>3?GOU)Lv1>Pz{2 zLF_g|*XpMvK3~@hU)EjQ8U|$gwjFAak?@lU`1HWHvw}^>75n39+E7RAf<$%6(-Bx1 zyw&uhq;I5XwbU}aNGw^QO$u4-5SLNqfm}r4ts$j5 zh9_5lQ!pp6Wu#6=aH?kK<>*0gyI-^F4k7mrlgjNw5Zq6OBs^f&V(q;hlKIa0_*4*RtmCNNuFGL1V>E)InR~i)B~thS$7C%4o!&!5j@5>?iH(BVsLjK}t14kw8>q#ZV0 zY-@@ZoeFvih|Bjw%?+@N+OWKRRllr+4LQ0Q!oz;A^o_1;_tn!DM&#c>yF++229dK! zXMpXOx!b$A+Dik^pXpne(ODps$Co-kBF3{jSV3{Iz)1VT^UPt}Op9^-O5z} z<9$-=3+D~W)>jt22At`v$TAi1p^6D0Sh`^$|yxm zk&KE#1f+%58YRvKM5zp9=Ebg_bQ`Ekd^Y&h?D~vzZj}_7>FiK6CDPZDs9WPc27f~y zYnD?0i=#FnUHfFt(kJg5GqR?4@D}?X6tH3M!5Fg)N9m*=apMtWlmip5pk+NMS+=O& zwg>dvhw=C=x0Bp?ylwj)a_a=2UKS$CI|aXUl(Ck9aAk+ETDWdi*bNlF+0XnPX#d7D z zUA>7oB$jEl-(j6PC$wken_M86J(fAn=_LlnyG!9EbO#*%94vJWb3FEk;k}7EHio)ohw7@YWGa60%LvD|Flo$_C7wx%`WcN z_;9948-o`^MThDxH&25%e~^suhXdlY+Yo!Bfyf>>26xi%yX6(LI%!IBh^Qs z={00R-oB(FsO1MjfZF7c_CL9m7%$m=oI))4|G_#AA!=6o^F3UR2?-%-=|z(AN}Hrg zu+=lnSwTSB{iF*ZGIQIg;&NO(2#yZ-89JL7_su>9W)q|W4l?Ya^Du%BhUEDjB4{vT zu}2%>78@K}`dlrWrn+r0TnYxbjearO;GbEiFcV)op-X!oHt2C~)SilmRNDBujjyG( zX!Z58au-I5n4E&5w{fyOs42MxPK4hvJ(bR!J9LBm2vS&Y_E(--*PUSUtd|vu?}_-H zw+zy{>h|a&s9^e?LV^-7hT#2L6uwh+z<|{v6k*H4_z!o2D;;#@{T~b*$j@QmcbP`p zBjQsH#5J6t(G97j$Js4?1=mWc0n6wnLUAwu5C+j{Fm0>Pjn4Qv4)#8-c1IpV$NC)P zvkGq6KMbe?vb&(pI<|crhv?*)J69FwM3&<$Zla9%WSNHqr&C5@D5YI5xR@&Xd`Io5 zWH%vJbWOlC!7t*-McI5+)yvYhj~A^epa_MY627&6VNZ_t3zJF~FD4J``VStC<~=#sO@NmhP;T$R=f%^l6pt;UJ-%ib$WGBp}zphrc- zaXUr@8)N&rp^qk@6cmU!Y8xG~nlgI7k9oVr4zZ?XrmG~Q8YnB-v~-d$&;qBi^5f;> z=fqaR{Hf-EWnJlM36Br>18mq3X^#G$s}ZMn8jJpe_laZir2wiyxNH`p67_8m5Et-ks7H9Zg@buG^? zjv~RuT0NpO#{e9`!+C`2c||@Ezp`y4k4R3doEkN=L<@oKEV9fCMnFduEtt$qwJu?n zzp>`Oui5iN#QUQ~g*0}a98WVh1Gvk5Ur&G?=9%QTU-R02Mfir=~=$1Jq#%Dc_-jWO)IBbXR+F_#B^%DotBoP&SPZ=m0bmo)KPG7IkS+Mg6v_{*z# z(@OwYDVduJ%u`68uw{2fO^_E`AV)H2cy?X33|CTI#puY$EoY}^% z?&v813ZAB8hy>=`ctBUf0~Bb6SE%J8=noIWX+csX6~8Q1H8=)yyMx~?j@b<`;9Qzy z_Q#+_9gWmIGAb1v*5n{p8|0LePIO#^_=QqYaNp}!9%C#Q-}0-XiH}!C$f9=}96RvQ z;}t_ga)%N7k*4_7I(M5~&uXQ`hzP2}e24?fVziasAg@@QrmQcs99S5i{Xb(dKffaP z{f{O?J`0s5Bb+8S()=rKzvGP{Dy*=3k?Kv>n~FekrVa28j;)p7@h>d81(2@`Z1O{U zwR99&!E-J3j;OHq!0!=p9xrZ(8DnsOz)Ri>)p{#a1ZWsLvh_0j_JiOCyZPn*O{;3h&@VC{ zC`A9oYyU5w-Femhi2YwZcq5X2@_0vgYJdH3Vh%m-)Rzj)o;Z}2?jtYGV}&IphHrvk zhVq1%V!?2yU618uO|2|&EX$W9Rl(|&)U=OKLi7z{Jm}K#{JF`g;#L~Yv5|NJg3ii= zHb2-1zW^^-Lbi(}=BL}%dH`GD1X5=#c_6P%%Mx6&d2vvZ6LsK zXa=q6)aIj0p+$RL?^$jL4_K$~CDK?|_+Kx{OEQ1;T^3>%TH`i>W|}xKCCtrZQIi$c zk;3l2utUqHLELm=Kn!M5ln& zE#3?f!UI#7{%ige(fR3Ll&>S5MFTBN;3~3aS|vCJ<%93j>03OVfyyea9~&p-I9O$!2i`| z8uaOY>xZ9timWf>_lXF+XiV&J(+MwU8$Lvp8rka$cJr?_5Kd%g=i8y3A(vAv?M#SPUnYdF1DRU#L8e+i^E zQL%uTz`9qAF2X3y+F7XVfFlF_2$xaWNAa<#5uQD;N}xV@T0zwMxi+}@FFoyAg4gdx z@(<79Qc7MeJi{jf#z!$v)^f|a7$@z#MhNhAwGo=}xQ%nM$?q|jp0Zp!_|?=A+NI>L zmYr)_0hSrYj%4pTJ*hAtXoGEF3hJ=0)xVEYMYm~IpeYS|wX}02X`PHg0Y)a6$Ud4k z&R;jEDW)*v0 z5X_s@X;dJCPj#nfO^CGVFZpYs`)B^5+U?TC=bOHsS5Q3(aSuS*^8~>g;u|7HwSH(Ma0)JG; z2hmTcHDfwa4tZx`#)T)Ac(b6^vq~Ab+3HUOKbm(51;f3)0EdN6{ag1ilA*h3DuEmJ zti-RoH!*r&R?g<)P(llQm+I4*gE@K4;Vp=Fwa6g1t~U(>vk;yzR?Yam`8za~_iuk7 z{1mYuBEd-IjMC!q=HEShU?h2K?S;k_zI@y2wtSv+L&y0D|MXz41RGxe4_%KY&cd6# zEZCew7%ewl)iWeGzLqC$Rs>AS1>=-3e(uwcQFE`Rk#>${+!%<5BqAT5^d(3fZ#s<< z;vGQGh>=G#H;m%Ss}NRj;m9=EW}GF7BJ^?EP)(Yl%R4Z~m(b^!%9q(GHV)kwVLgle zoqS(Rc@JiZR25Ko4z3cm;oMcBZjM96koB4Zj~ij?i(gqvHf%dO*Unfs%%pnY0##j3j#4km<}gwMdI+OTpKurJl-=LEB<$7pNy$LIIYU$*WDiPz&VE$y<%38fL&HZgW)?<2m6$9i4IZrlpPi*-=)*SCrfHaYnS z5nmzAM@`f^YICT4ajHAFoLc6rD%LUr%#o}PWxn-K_ zO`~F*0R<@Q^27D44}*U7*Hm{hc46LGH+NB~P%cP^lWwOW0qP*Mhp#Ga&f)IaI-Fef zVuT=#BLcX#-?CBweDTqPPIuB#tS`k6M&>zLcUm`k>R%X29i=MV>FsL2wGH5pH#y0J z&7!Y3I={#uU+~yUIuj}=CCC^tIuJAssE5&rTGd#m23_a{5(Iorf8mW$k;hW>08l`$ zzZ&`#LH_Xb>c-AhuBx6vSiz+aC1yl8ci%{1I8um zx`#fXu>IwGl>W;9@3kwyFX2X~f@lBXh#iuOV+z+we z+-nI%XC?%LSw^a^91s12zy1-ft2CZ6(E2S>wAF45y#vb?X_uQvu2=8fx9pLjW-}M! zkKUxc430iF6J`@{_Pr+6qIuvR^f5;eg#55@QoIY)q4bf-1*I{XNHi*;)x%v1;7dGeF3xif>9_BL)YjzjoW7QIz0-_lFY9M<0NWdeY2o@U>*vE8i9T)^pXDHv@#k-${OA(W zH=1Unb*j7YCF*pj$*;${t8E5%MY)G~g^(4Og|JPXZ;*3^aZu@hbEEt);eW*i@UiE? z)6}=@^r1bOatlj;c&CK(pJ*!t;=!U$Z&Itomcf@jy)(#g(+^|O;#xGj-sra)AteSuyj;Ze)&+<~|B8 z`IvjGU=>XGh0|pf18jozY_{{oHg^NeH*vf;X=oA}QAU6_mde@3v)S!MMM?|sgN*7e z7E&{{PaTg}ykcQB5P~9w0{l4;WQK-+$KhMo&Boa(m)X3M^MKyvGb64mPH+bU+C(O6 zt>w~?d+c0@*`{7X%s=<1|Ju_+OMW)d2?Y?UK;~Lf_`vq}sG?P?$^~C;hY_~ND>T_( z-L{3CK7FA0&8%ZgE{ZkgK-CPo=4c{m67isq!@PkJ#)qwcSN;I(w)S`(+9T?hs-|&= z!j=+WwWY-eOl6|>ceZr67%Vh5n5eOtI3-d0=Go|2fm@B^{H9Qld7O|ma!GipJpKIZ zR1L$qJJlTB1!O)d<;r8nW68>VA}P-}j<@4#vVBV%SP~J4DeDsd?YEof@4PATPPg_w zHf@VN!_szNgo@XqX{gd5@4SHN=0SZM>+^U_r&;kXv6*GmN#^6IO;}Nso%xXemp?>u z85pmcLoZX3>0;&FmAW3WYq)3aG*3PRe;ZsJxcFTVWX2r5(`ClHc(bE}%1s+bnnFbM z@AX8N)QF(!9Cb_R5{Pl>1G6;goY10f5aviv8iGk9Y7b`$Wd->5-PvLSnCmPL@`xU2 z?7Izvvp zLi)<1;jTKtZd1T9holHYfzg?Rjka&qc=h^sKh3~C9?$b}a2z9&dZTOGRttpl@XzC` zNUtEw&3l#@(W%YPtd5I9Hb>5jgzL65jHrL*B<4QgEnfC-yn;Y{k0;=Z#>Ht$17^H&5Ef@AdieFfY)huzkFs6HsK%~; zufYtbAV~So6Zj^+w5wQPmxiQ7(K?pn%-U2K8Y*va`RI_vbS1i!ZURd%AIq zo|(JVTx+(AT9@mrc$NEBq&XK}!c*_HzbOvI4#CEMtNi2cdUP;r zp&-tP7r#zsnv$=YX0mQorKGh!i95HQ|JDA|IAeO4g!C#%m2$Ad_qnmTIeq8E<-7L` zk2gVEiOmtcD_|*vh16+-gBz8wAl|3Km3keV7Y!TuUVC!vyLDiE`P7d%s_KRjnx0;% zI^6_8UAu?_DDnq?!iiNf{vX;a_=W;Pc5WOFaT6jA@EvN!Q3OBKmcmslN1h^C5N!@T zCa7=qp(vK~@l74MF~C9ZyQgVBRqPql9e2-pvM3t$5B}o8Co5OncmW9K(>r%y5`$B? zkhYD)*jQNEG8!i4+sG#+!Cph>mPPi!7(LbF?CEN0AAOBkGgZ0Fvd`gFrM2)y+E|_z z;vpUwGWKKo%1i?-UhGS@)(wo&+hR;&qND#k*itk~wkVI7Rh&kC7JQ0S*OprNES&BV zh{Nm&rlPP+EiFQsv%!m55@PZjPv3@~rN!VTd(m%I7dl5WNJ0r() za(SBmIlU4=jRYd@M{K1PbJziX#&MLk`=YEByH~KIN)sg!#uIH3%ZG`WoN#}G;c&Y> zY#Po3o|P|@maHJyy*0<-{A9az9omDg@9(wR^P$ok(2!Jr0KRd{zt^!r9{TjTfmHT$ zF=a3e?@VDCz(bnT%NyEBhRbavO# zy!y=igYRhWyW&55JhgU?;FlHJ80`G5%lDDM@px4nO_qp*Jtav`PeYsWHM)i;`}0MN z^}Y-XgIi?H!dHGl5p=*NQKq4guvGr3*d9GXE_0$pVYJ1bwrTk~RV%ZqNoyZ*=$yGQ zT&&Jld34~}Fz&qjd;eAw2Pvvj*xTQt1P#4Wbmx&SC)2b-joPt$O6{Ayc{=-jpYOiF z90$tMC;#mO>s0O?@j58?@^afa!^YCqlu+L-CRLL0`4~@T_$tw(P36YsCE_qc^l;Uw z-_I3jm}m=$`v4IBg8Z2lf4yCE(pz{MQCqoJzaE8$OicxbM=+M#R<*HO)G=6yvKX~i zMg#Q)P@SW?X<78*7j+HGF71b#{qp0}h3LV1Xdv;w_}z>ZJ^i%7zu$Z7uY3+1f(mHNF_{ z1Li;13*9aB*-WN9B_^?Tyiko{U_tkyWkfNGgdSuwwN3AD0SDH=%&#gaCIWdYzD{zi z{`dR!gYX29u<%aQ!mUL?S5@)+MvweO&tP+Z)G(uWZhk!2ZDjbxhy0);EGG|(q_yqIASxkG3003zJyVr^gy4gSl& z*b#?=QEd8@1!KUzT6eN)PF#yePV51@<92CHqF}3-HDY*6kjLfStB)|hW@aNd}DAr{kAYrBc z{C*&8qVtbDndcp=J(3eEDPC2yERkNOt~}a=Jm@Qn0HLy*Fn`^Evw`k-pDpt1&7+>k zN*hKUi$_Bl8$aVV;R>y;U`+ao4){AnV%F0oHo#|PI}hA+K*S>~p^qhuOp0()c}Wha zw1ejc-&0&lfXIs47=OKHBn2#Y&0$ZHARqchhxy(-D_D3`EcXE}XE>^|92_ob*>ZXl z6&5U$B&|L4pw5kf6|sZb+km@&)WWN^X#Z>*1bXhGIBFE9gdDMR$0*ou!&oNcx*Nwrju@Q`qb_YIvyuJ#=ITxb@AcJ-h^3x-Ua?d#JWcgAR!(`uX zq&`dubV3FlODO<;e-F#Y3|bVZ!aJEEajr^b;GQ&5*&o(F&P;W9OZh#J_8!I!?QV6z32Y&;}y_%MCP(Et&c?Wz{&sT)Kz( zyeP#VnJ*}^K%}mFex7waqJx}MRRqbD_tzf!8$iwW4?jHDbjlka&dP(|63bVn&SNmX z%y+tlEiM_??MgF`aNRtKWhI$kPoDewd`_&%ikq=ooXCO}N`ysNuJ?GrSz`?=SXh3=eA<_aFW0Ur>b-GznXt_3nx78zEXsf`krKASm1O0AdewU%KR#ouy#a@f@iLsnzc73n z050A8nC1TY#VTi_v$|=XkLv=W4lS<~8NPci0brLtIw7(^1)_PDi_ID3!0)`LF(R$+ z;5{{D7hl2W1!5T=5y$2c+o$*X0XXv|W@f54L!pD;8E=n~{gzJB1{;jicF!JGsXIE# zn6C33%Qsiv1iCFwN2Hu@F8Eg~wOJdn~^?gp%Lm*XFJCeN>r!cQ+U=D#8ou_ zJhHCp7s45g&S(%p?5SEruVBS1fOYQ$e?~fcGr-w3M~vNdWY3TV{SUV_n%##<+~X!` zB8%ag1*go%)wc02V24g(gjVZY`))=Rz28w6$%|hNeRhLf-cLa$qjGzwRQ+eo(>9`r zxtFgjj>E}*?-@Pw*uHi){q}nmhEQ_x+M9`&EVs|_y{OxQX?NvB6S)K5I-mmuS!OFM zvIFO;qs>4U{k@jod;IjGzg$>mPqwYp(q!WNy1MP%az70WezhRd7{0L9kt9M8YbG|( z;XIo``<@jh*I_YcT^TQxV_&%mLylDb_Zkz3cgOwKdkHX37w-Gy2`uP?umxs$f5{!o z!~E>sZ@5?TM~??ckNwL-3<9}=!MT1|3G(CVED3yH>!lQvawZDAME7=E1xGSIg|gmi z_CQc%8u>e0AOS$6H3WCTSO;qzTzSREgrb4;4=m~H;uTS)Wj;Hd2KoikgErm7f9{DJ zt*XqxAD~PS!wn$hJf&+n=i2LKR$eb5+Jb$hX;JOx@@I@vQ;8@b|auTM@*9q}f42$36Fi^OK4@Q2S%;6yH%uU@2Eu8^sv$pgz{O4L% zVZP!BjAP)2{3>ExR%1D;qx_}#8a5i(SD0-hxcpry;GwfO`V^udYkKt%7JG~9KWkjR zu2i4Dd!7P`QN}x*6vgZthieFVu9L{YQRMN+3DLQpO+=cE1HxfcT9xy!CR;cT3d(e3 z2;Q&VKEuwPQ^3#D#CbWBj#uC6%yxd^%N>?`EAJfA`SlrD(p#=-x=f!?2GJpU_D8*A zS?4bOD_XjGv%me4!PREm#9;MD!&uO9M2lv4kpq`DOLE`b`!WhoHgxpY_D_Ro{w^Y1i|8;Mdm% zWWmriBhcsC;2gpD5FyMe#@lXWSf>np>ANxpN6Ej6gb-rIU0AlCjHuQl_<4lk<5Oho zvX_M$HYy=`A8h^0_nK7|X_VtOGk}#*!)0B<&OJzE$#j0Uwni!;?gg`ooRtB7+nest z&0eAf?^OYTO$&8b(e`jZX5SC=A^p|I`tROFzucVp)W*X$kHRevy@M~ z%^xf?aGN@a(JMM5*?*DeU;Q`Fa3*vr{HG2-f6w)9iWXMm$HTQ4xp;g1CfTZ{oU|0x z+s~tWgR=|0lncu#(Md`3A;;Z0{60PjqZ4ub%`D|FEnT{gz~6#b+#1=RmauEm^> zhu!^jIw5A0q|_O5v%?m{1$3;>#;+)&cW4BfvMTU9M@ zHKgNHwD7W|;-ljYTOEdW6|aBX>!xSVsNl*l)XLZwlRtWs{^?Coz}2}5Uj6uAeVu@94>XvdNvXNQBO zgew1Q_Hy#MVTe0mHp{YC!PwrGB~k-Ix(@#5V$k z5psfe-o9aorD196RWhgdt-E|IpzmXf`KBm!3!kelP{uQizdmui{+ZhW<^fNUXR>DI zaravc!uXLw>)&aN--wyMt*|YTW`0?DXz+6zKTlS~v5f~l^O`?IN@QGgv~cl>W$PfY`5(Tu6Mz1mSNYVf3QKtHyP>>c zr+kq+`@m}jDZa5hA7@E1?5t)R(YBdsVB-t@gW2g!PmetnIq&b+)I0C5dlR1;Tg2C# zW#|&1=gq@4%LivLKK+gnuYwUKgW)j^L+AsybSA>6ZH6}S2m?Cpc06gwZ)t5K#v{Go z%UXj77>u?>6+B$@yE5X!)9(eQUVr!1PKw${;5C6^HW_1=prlxb#gS8>Ga!JC->8^c zRTk$QU;y=G^qo_O!X zGsVBFlz?(^GVOXvpI2EOa2&ni>|k^FLvcYnj$?}U4b3}cQ=7_~VFAw+jz z0%I^w`tM$`HGL8JKWl<<>*f$V*_?6F+6nO%mI;;sp9jihwT=v!MQ4_pt~J1ak~<6o z_sxf*L0-Z;e89KxWbi(j9{?e-R!s>MRk3Qu<2>&te z#s%a4&6_E~3${gB2d&i_SRI+8gcG0B?zSXltQQ$$5v^POr>3^d!gZP%obLwre*26h+Bdr|WKSl+b=>r99NyTy=C{Ha)twH}D}ZhQozrJjAccyw19D z;IAo}+I~K;EM>d5T>>#9{Iy@&De@cS@w7V{`Bx91HgME;G+LSxMn< z#6!_~A%v@YJE3Kp6XcP0)X@LTfQBHEbT&HamX&PmE1~x zN9!Fg)Rrt|eR-1~jCPNA83rNg*6^5Y@wQ+}DLG&n%8h@<3PMNw(h54pO1cJO?lF4^8hr+_n@fZn7mVOZu zavYysA~8o0R7NSQH**izUIp{^4t%XjOG%blv-s9m|6lvw?XSlDspI#K5tir+JBvq+ zk#MllL2uPSyQUI6wwEEctZC8tBHgZNf*k^)YxNqE1dIyzS9}G$H~tSV7&7Z4Gm=qx z*+fzVH&p@9M|vLI`Vn)Y>quJOB9x7L_s;s`z12&vfu_<*rLy40WmpDK8I zf6#y@Z&PV!KYh3FmEVohKl!-k84oed_csP>dU8pNQRQXH;{vZM>fBrtN z(3Gm%eepL3i1$zZQS?)<0_@5#O!RKb$gn9pp6i(4<+GLFg3%8EeKn#`A(z8457g?< zOdPG&*GL@2lbzYiY7StOwxMM=qxn0i>->eeb1^;{8#c=<`NF0M`n?5B+42SZq|Klm1AeaMRlJ}8o7@oCsh<6lI8rT(w zyHT?r*n2qH99E;$doTHC4Y%a;itQr_X$Cr>9G20}7hOx<%d$k~J4~B^h@QXe!(p2P z&}gHi9N(Gifc>}r57#jK9BF)m?;rPnb)-G~K6?*r(O2u7u*L1_Y~QOzZ%PGff6~P< zxCfvpEzK%cm&WJ>RgYw=#2mJmP3!`)V$bjoX5?DcShuVC|32rToeOs$+~1#rPI~s1 zW7I)g&q~isD-LJdK=;Z9>y6dk*57#Bq)(N#&>ecC>p%H;+bA1y`nQH6R-vl(EE0SE z^Gy8LhO+wZzeXKh%*d>g+B~uVW;XJiLdcYU?a0uCXEoDdTAV*MBY*d{?~b;y>l-zH zY6k1`AD<2TzdrjM1i4090bygntC+lE^-3GEGDs~^;6A^5H@nf=H|bdaiBJFg4Cbfg zlKSuU{b?QKI7pLJhphm;*hr1^jEcmFistlyt;$hCS( zc2aBpk`mGVmC6oHr8iV?Snl^Z@aKT!QS$;oiCqp8PRl>%4j_xzUby~m8znCOlY^+8 z&v73`#QCue5AkCvReT&~z1N@TabLOJ^0?R3|Jgf19@6Fc=0|eB{65145|MxBk?*5l z9RKlKebS}=kp?o-8k4a(rShi_lGm#iy24`#kN@-B#J_u}gdFYdU+yB_EfA5mC;%wF z{C)m&wE2dA>P`KhGf)1TA1bRuzF~jQrikb4Q7uxK&uWYBA7AvpFTfpoV~4EG{OMC43Tt&8c$@Du-c+$rzDm~=wRMxx>^ zee6Na`hWR)6b6s)(`gaQukVCRzTcF@!N|7j#J)>lvVv^8Gy)ByuUFkN?VQJVhs z5%t66&s1~q-~+Y)vH$;lmZ_}%YokW$x?%!tQ>f>FfDI3kV55K5PyX#{V6E>>}rMh5wUZ z`_I3^{&Nl!xVDi5JA`7e3GuiSt2OyoxhlQ<#x*`ML-}{#s~HFNSurfB|Kkt;=&kAV zS;*>#7mY65(Fk3W`e!P(8w|uVHMB*yQt_*9Y5tG`(${WBV4x`M3%HM>xD$kVi43d8 zqB$-}p~Qva;n+S$JHC5xH`(D|jlqenBx_w>wRhsx={$N8L3{lXzQNKn*OZe&MZX>}5FLs)ai-R`^0fe(8>8JcdDPyc2CCZ~@zqJ4zT z7p{i_^o3RX_gi8*K<{yR$YE6x-(PUHl|Am&4O|J;PK;EqI2IRtYwT~ox5c12=kE>( zzxQ-lBMPm^B~?8A^j&tJ=(`=k`l~3_2*Sy!ILQD6`jPV zYZ@IsTrwK7C55sYfqu(}oA1e9H{dt=^Sf*D-GT-AX~8=blu%g++Re+#_v%O!w2X>hma9m3 zY3@(c2d{zACx?|WbFwy^v3wG3)_(3Oyr|Yhvo5d%)bVod{2-C#p+p0eW zyM12*pNOx^OgGqW*dYLbcHPtXVYKHi* zmd0a2`G6t|x4*tq|N4%sS=V}EgO}dCw`nj)O0mr9ZMr}h5!yO3fZ^=04+xR{GCzMHS z>kkWpC2I&0sZR*na;)p|V6Pu1L%3CMZ2g}uRh+V8F{H0nw%okAyF*b?PxZx~Cd3-r zGF3fC-M;S^`uep{Ai>eP2dmz<$m3PRV8eM2X7UUI_O+GKy!Uwh8yiEyM8sQ?(g=vN z`E6!w-_iC2!0$3B;+f$v-7wLMuD93uUCiF3Gjy;1op%Lat1y?y`CYDdRyXg03M-o1 z6~TRUsH*e*w{MN|SWJR|q2BpyWyf4rH`4V>#hlCN5M+J6H6$cOU~ZDrQDdt$K{^#- zf5;~G@($(FiV0fTIjg^8H7C<@v)}eLRCt{PHyarEKM|Salm`%j-?$qmMd+OW;EL$s zyWSyNZTgpAvyWRzB6ZE@P)>6QOJ%{Hy!gzX=I3dz_+cEmGSm?J`p7To;b2?p zb}gS3D`@aN_4sNnG2N}x=0Xpzq?LX7b|;mn7(2#L#=2QHyE4Il``JI37zY+I1Je8W zg+@zIqOT7nfNfiYxd@1#vgfmWt|syd(exRHA3oB%ACqKYFsR3DW$d$u z4RkTK%v%={`2Sk+$Pb={Z$>VvUpoX+r!c>Bro27`$8wHpOJNX8Y4JP|^JV?USiYxH zqr~#+_>7S=!S7ytnG}GGC@pG)J&lmGgW3%oi#~Gl!~%ARLlb4CwRTiKg|nhYU!%!K z{CBQ{_>(r-c#HPGz98D<>AZfz(fv2>t0sux#Wm10{b&dh@mU(j<&96Q4UacSxQy4W z#Gpw%J>hsnNtZx19>>~CYZpV%O{G{E?dv!4QMAc+LPcOUzZ`aD~b$o?WD^ci=|%@Am^#Yk3;$q-!YoA0Oj6=Wx(! zNQXP;0pBgnAD&}W!u|u6{Ct*AK|8OZo38C3a+9Zwyu3*m#2oJ!8izN1ajO*sem#^9 zfc=I#$XtIM!nc1q@s|hvjju>0@o#8wejSz@8_gZ0<6Y1`2j-{Zqpa?uv@A{9iXjC( zS)|>;(AAp310IWU*ka=~3pmq<}RqEOb#A{s3`eLW)W)#}FD6TkpCPhOg1k&J6A zi~KqNu8AE;C`DYTI*K>>YQ2IJBb4&qh)2Qw3e8de1zw|YVCn+u5yFfyBzFyISRlO#_9_Cg()Zmw}y440oxhV zT_BD$r5fp!Z+T;*@{_gvOk?1iaQimRJw1o_e|VBOj@h|*+Zb{G{iyvjx#ci$l0WTs zpxtzM{j_^?t{}x&Rr;_cOXq6@vlX;bIb&`^kdf)5_`x-AWTq>qhieFbd|Fyu@{@fA zD5Y7t|K&_7k5lR_0sbAgPbdOT(TisO{=aQ@MdT@$^ee`7x{KyOB8l?zbYlj;R?lMB z5%07(#U-UW=A}AsBWxJcz|cJ~7bg zN7o71FkdYFKkFq_;oj-52W^9yPPfal<5!fFUjOSacP|KfdvHttz<3w^u(@Q=_9_>M zgp+WNySD>{zbf?+_bYTtfTzlTGz0We;{qdE*1hpRO&QOWi@`EU8A0w}n{A&slq9!G z=%0V$*~>{npj10)8eAT6KRm%1Kxe-&ZJr8}mYmrYvW|s5srF1o-17Rsp3@{#yCW>u!7TtDti&P zUFjid=cwb71Nd$K$c*ZyF2|^2?dztUEH?1v9XluqJ%bmmF)tX_9VTGbp^k%W*J@Pi z=3SOC(yqmXi8~VnDWGk{pwaLq1{}D@ynj~JQ~Plr%m}{ zVkOa4@zS|bjz8-@|JW7imCEymp?OYLgbD~{4W81_Ar~-YzXrhJ92lCSPq{u)GHy#1 zVwDGx27p{F=9_)TLPh)PQdX>@(rT`$;24OuhA;pzdwxf;~HEqW_}*s z69~A9C`_FVzGEfje1!xTKDj^ht{LAWTD(13(xsiOCDB71F54(%bGm4BH+5>hgepZq z*iyv~__p?CTE;hw%@Nzd9KiAbqN$Z%ngC;O7;Z;IVuoYd?om(-g|tR}jG6 zsE3ni7)!f4{n)!Hd*t1vxYrZ!rmx#dldOqBfp7?F!LfdzxHUnlX*hYean8= z&Ybiu*nteo?pJl=FpYLCJK-=cTfo&u~ zozNC3V&BOo`tZ*rW)38y8K^*F@0nujn@22BegQm=Xe(DElUi{INXCq9xa5X|;2Sa` zkN~i%tTnPc1qSbb*OANO$^QJf^Qt5=-tr}109W{v3+N3hd6eVnSH%)nxr5{re}_LB zR1kIIUhH_{sS$Q*glp!#n}p_Pp6cvpo<1i>c(%pAs@307xrInw$sPBbpSe&dKN>b~ zkm#!OH?2adaUGPZz-)UUU@_HqI#0RkK2c=hegX_vnS|SdwfnUt=){yS@rxAVkHOV?@vw7s<~YXLFsu8s5g4* z#-IaUT6G&uLA6^j3hX*`3cu6#9>c(63DRQO82je8DoUKm;{CDS|Al2SQfdTatE*3m zKipoj+e~kPsUf7#^H9F=I}1(Umm#DC-SLS8qod$l+tfDj0{Ht6ew~}6?^~WyK|c0H zt)^EQiwu($7Ydin#$NO4d`*n6nv!RKn!fW3IS?8ri>c`_Jat=F15kr^^{l^h1B^@u z^Z74;)7L*>^xz(wD3G(f^RHZQVlmeV#&40{OyxyW_Kq1xmHl_ElBqL@4OiHeDii> zW@{3Vk~lg8m@Wk8EhllV_53Fvlbc@%HP zQgmVuFMPSUq1|j4jbbs3SHC%gu;W!TH%RS9hU-Zl7-#@8w@G^yvCbMZpXvNSl0%|m z7YvalonAo0^pC=a9pypUVaNQ#kH5!dmGVzsc)g6WS=iRYFfKBrKY0SFoq;XvFMvja z{Kk9+hLsgHZW;qf+>2BVgrbx7!nZ!KmT&&`tnA47IJy=-vARn&0g2LU?VNU~ebz<# zrWt0|vcP}$U$WB=#pMShBmLFKBA?HXm=x&PH*lF$bU5IAA%kgyXNiY9by zqPxu-N?;JXsiRs{h`zVR+u`?!rr{<4G(;C3?>Q@le$%izTd){`O8w45k+7rhWl0qu z#L2t3s@q(D{_vSEr}mBNfpsvhf|%KuIwJtvVz0NtLH~_SwEE>-TTepEvY)bw&^geX zUt2!27gw;VkCl318bA)O!+QvxC4=1SI;!VgtEh9CacyFHViUb%Z9B3aQV|XgOt?pB zXut0t+eIbfcFWRvoLfSc8BH$0opoGgcdLOUbNd=D?mb?sAJw9`K&n)I9yH1+k zj7b_YIzS4Vw3C|7+M;YnETer}L*}Jgl(uOSk$I796arptixfuW>l4yDd=d0lZgmI& zCruWi+VNIXyvbnnaBcM$H%m#o>%TgOV{7$(tHdat?*wO!9&yc_r{i}1`sQzVZi~H# zGb}mP?K$l2d(br`hFL*oema_&3rEA4Tc`Y(<=C74XJITYjqV?6Og9CuXP~wyIQ2rV z(0V@!vX6G5(?&nda_SXh-NeG^U}}oD%L}itPGfd*){ z%Z4&%=e+N4OT~>RfrY>ke-=W+?>YO6bu1^<1_AK!uTBe+$D9+F@Z~!s15BtUes6sFJeFhjA znM!J}EH(5r0>4fFN^5F{ItJkL0N<{X#N~;`EvRy;f<5+-am9hw(r}X;B6!*U;M0Tc z-hQEvXODn?ax!n5HX{(i{>yQv5B{%y2-TRo46O^Gx}$@Hm-W0=F%u6#AJ1wVcW!wg z^rx$t0bn%F`d#HU&CGCtOkzvV;wP}r6(@Dp@{oF{Y*g%@jWm}A(B0zeT1pmG{IFf1EhHyz4Dy<1S|I0PQ=CIR{RGiQ2(h?Jj-9R9Wr7L&owaf*GbttT!8*2PlPeSXDxRiA z!&ud9TPguJI-lfpG>;4+n5Dk@Uycg6J%WQ6pPDuxRR6?T@h=9QRkU7d6lpgKa{86) zuqerbiHTJ=40(JgU}i@8a-}@-W#rBre_-p)v{bB=7|WX%ocoWJRIgB{{U;;!P9*b1 zF{AfY^}wR?vsP!tKn@*X0#sz;-&4Zr3kT%m&VkTaYo6*C&?l4eNrFrV^J$SSS7kIr zk|gvKrmqjsX>ftuFVDqpUzr4!2YycbH&zL2z2B(Q1$wZ4p1A$9XKJV4+*J?-_meKr zyaAFas2#QT8K-0%@uCOJPq}qfUpyGSPy7z zxVNkJ>l%k%(Mh=r^``*U#gM9az%54tmEtf=F z%yazxhAg8qLYvg6J`Ng;Tp&>d$33OdTqQ^tyX`!UUayU6mS%Rl2rD%xI`0h~3 zk9rB66F^%3AzH_x;5A`$bqA_Ytg8*W$IMv(xMb_5R2^^f)QNc7m4guA@ygCC|34+G9-zuioLi2vx7 zUN>WECV=iw%u=#_ZgM_3ma+#i6B^dA`t`L@L?^9tyl6;cNO+_JcVwz+o{#6_dFPUctx)kvza4l6~xy%(&})W9qF)U zsU!2p#F?&_xy-38vSSX!`Q53E=h#s1P}!g0-W2Cc%_S=jdil+#0xsoD1h^Kc-c0eC zQ}-aEx1DcLh0bm$@RdJ%8U7VN;~UT&YKFE!+s8G5&)D@k@^NDMJj|Z8K^M)pCLqs% z0L*y66zc~))(GvzGkKbM`OeyMO4K|6c52}R#v&isVCRgYQxF#@_WP9r z>?$|cYA3&FKC6*!)|WqE;xYi`tz{*bnK_-9S2>-S5{KN4>lSg^T8ZjG%yrRQ=UYWs z5t))N#I&+#KNnBrcf&?;Q^JaepB$aRE6IzGmJRVa#e4mfeB61V@FWiirF=5z#?Var zr~p?j49j9$9Xpuf5~yjO7d)3;_|GItM>iYF(p&Ch z6gyX@B#1j!r7w4uPeZ)LdDa>z7ERH`md`7$zXchnrehRCGbd8Bd%*x}9svQWH zh#xHD|2HRTy}duVu}8yWmg)1mUbgmFhcHRC5yOB`2tDA7g9|MI%ig_WjUNr;3JYKZ(?mR^lVQ<3n@IEIw!RkLa0vKDfcDZn z6Zfe1pW{MaI=y+VJ5W`*x_|Q!L##hJt7VPadOP}W8Niad9DE0XS`qM`_|_O7*FLTgPPhs?rxd{R zuNSTWGlG0=jOC!EgP70RFxf zTUYnM=wPxw)^dF`fP0Do7+$YcLlguol~|?xP6~4YG*cM_+_H)0hycHnt;5M}oK@R# z-nL=y9vy|fyJnX9^~?S?Ier`VhNAIF!wN%&!F$-YyEnJ?M&BM7qHe31_fXimxwQy1 zF$tLy(-dE6w$d(Fy|xlPxIFx%Hho1t@lH$Qgz2#7{>e#l$bCU*?hh{v#ND)F@w)U@ zp#I&DQR_L%@MOR?%Or`XvYEkEu|A1@={&|#koxG4y5T*clrfaGufmgiI_!zGnjc5K z(AB_ON*HL`CnpOO7^vL~Jd?=LNR&4g!{CQ{=v{m*t~cS4PST}sxW_&R_KvNu+t*J^ zo6>!FV{nQ@gX3v>$1~wS;+Awi1AId!3pZD3pN`=a!R(vqv zKU&Ku7488<{cZVoUoF-6K|y`;(0u1GUJrmt~pi$mCHirhG4*vReq&S|+F{r}%kO54<0v zSB8Wy-&_sBODEYbEdQ~=?2U$;~&EBJoZ>A!oMFKAHehX6w z3#dgr--2>fzhN0;Q2bu;oCLf4mLpt6Emd}hYZJC*=p5|(u4DKYxbDJu_Vi}ejk_(@ zbV?3{;euAF3xr^!4TpnkANkTLFJ@A3iM1|2^#In?AXx`Bh2jUE@O(esVuhvt)=ST9d~HJh z-C?>v5${#rA5LZU7J)sZ=sX!UjIx{kcQ1w&Qv9d> z4jJFP&38=t;SjMk=knQc&a!?vmM!@WM;7DD%reb>IWq0opY$%$PyIdgC6+!8f;AOP z%5~9rtvcIUu%SS*%Q88W-wP4Rrj=x{_N8cbPWO~_nV6en;sYiN7M8Hm)LlA(yN}*_;EvutZ3hs%9pl?)Bs69w!h z{sz-NlrhjKy2VWQKY5(-WkAI8!zWbEWjTarpSM3)dY>Mp`K}x9eqEol$ywfLtC#Wd zcoiy=vl?Xi!o971P__)f63~=-22eOZE$fZJaN(8iY6d*M;shPX_dH*wH+LHm`mAfD zrq~p1fL6ayy%`_!{Z)j_GWBv#dPdKW$VEDZKiPS_v@7=*-)X=i_x5qDVFo{UF&fRC zbSNl`7y~=E`Ne2}yF5O;xB(97MI=R5;$IkH#Ska#FQ3nGFwTGWht6t!n@cgQQ7u2G zHm;GYSy&XdK^X}$0gTwe%; z(AzXG+taw?WYyyDfPk<5|e{-~7v2ZL()wwC{c zLHx~me9uD`Bn`Wrm(tz20s(k z;$6rJjUL2Svn@qk5{5LgjE9idFzhoV>1>{Esi|#gm-~5R6=#6l3&x%mG7rh#t(D~c zYNaC2{YcG8hyuj2c@-bA*7i9zWijC+f}t?F8PN`*M6j5Xxz;Db-P?crJyyrg6(; zj&p*>U8cm_i%O5ST{Q~Exv9u*J?cl>s@KpJo33HrJ)~4Eq_qO3iNlZH6xXX@Rp?nL znjAIPb;sExibC(aaZ*pADM|ueC1MsB+bK0Yh~dcM2s=u3UKWnMt@0m-Nm`Lj#&TwH zDC36>`s|nUE=~+LMZ_EBIZe}S?v{xFvsdw+4<}5IhLQH*;Q%sfc8%cpeRYbaluJ4a zR2)vl-<*Lg+H1(TmE|+qhqox{zL$%lon~5!+-m$=|MBp-A#Vlbp^`)SgzhYiMQ2$y zCh88!R$`wEUNv`fq=3y+YYEA%yM~>ukA_2|_kB*jx$*bCr>q8tp30D=%@BA6d_kKB zD4@BK`15wX4_P~DJiO)a5U2(69@Z1O1bQDFh$z){(hL(x903U`tnkK z;EZ6GJ|PQum0HV0@pe;6d>G;SO>0;Nb!5Hxekz}w+ti;gFCfHKReqLX(`qTaEA&@XlYbDkdv1hJ6u1eye*_0+9ivU;q#^pcMl%bpf|d9ami zin;_IReTa>fHOqDx(#dN?c7-4peJUL5W*L4=^ccxh6{r@r|Fr1VOdG0dqH6o>v!K!C3zG&&e zvXq5>@vY3z1}ZjaH^o_M))To~d;;+Hxx~7L|4djrQLObmFj`wy*9uX{3?AdQZORM< z&nii3?f}du=eKhparQP5x_pLW*uN+uyx|v9ebuxv(t{F#J^TfX9Wzi9XozMSV_4DZB+blhSEeS%w~Dc=~5 zZVyp8QtwJ`s)y8cO`hb!{`zB^$SmU`h)Ee2-ZGC*Q-nU(YU--fIQoPutME0USRo+U zv5q;C(kdq%_@@HHkI=X{rSZ$urJ`W*mn;WXKLlwxUJK+LB1CG+3UNe^9*^t@&wE6B zZVvo^RK%<<+9Fjh2hM$rEKB?013iG3@!k^S(8~vREpP7CRUG?RPm=8}yB`6cky!83 z+(Iom##4Xa-?7RYB7Xmqv*irF6NLy!mBeRGj=R>!#U*^*DVsa|gLAJ@mxkM6yl#gC zrjecsC}-0Ly5uERp}IPx-3FP4Lc=s`f{qlwRmJWrY%4Y*|?prtBpbgt@_oW%IxMn3p@ur z7H1->z%RgYN-HDzNiefaY?wtc0K0grjk zjGWGMx0I96`=5t8xMBIev**65>yBlGsj(g`IAQp5kBEi5gJYnf46kwvHlwh5-^^%C zCTaDK;dm+@c}c$!w%sguaNz0FkqpB)r%uNw9#Q~0Ysa(%B%+P;oNA$5P8_yxI5f!_ zZlv3>FxG7&>5@IR?fKN$uX3=*vUSS&t<+RRTWQ+0yH)z$>>np|t;A)^DW^FK=9_mYnt+dT@zZ%6 zh#khMV_X#u0I%q&)F=MbXahcFCl`K1UyY1qH{`)dcKuI&wvcX9exlmAO{BvN^mIW8 z$z<;rQa{VP$nl(#)YBXQ-HNO+=hJ;3EfCQsJHh4UUd8Ub=$S@?7aXhtRq#L%DDC z5Yf7LlUb;@Hib&H6lWBX+ggqu-cdj!1vGO@5}#3)AHzaFH2+pPk}y-6*T16`T4^nL zK*cq{3GFArb5hQ~`M^Xh>)%>`=p%&3=jLtESQxEnoJ#al4`pkZFJ$;5+X_d=Ss2n% z=0SJE;aLZ(vW4g#Br*68+%jkzzAYQO>IFdqWnMh6=-t5>0q}-|Z!1i|#sE42R4&=w zWRl9A2N0Ol%gYKZhuolS?|1}kIYyYMJ>O8z+6FBjfk-l6ZllO_k0D6(`V1DcF|a8> zGx1~6XSqIAvmeWHHj?tnax{nWE{PHcXn^jH5#wF+H)zEchQXh@crvR@n4Z)VsIg21 z;J$tfU7bUGxpcDf6<-t}_CsrH%=32g6ujp*kA+huO~WXwo7XUOVsWw=%+A1D_+c#C z9(3k~9*`I0lbuDWSmqrQUGVrK&8@=f5~c4KO>CkS`q+_U#r86vlH{q?E(_QLQx-m7 zwp%EdYDSMdesh<@#b6|%|;-o(g)vf@k`TI?5!}nuC44@ zy1Qv7E>k&Q=EFn@OwwVBTs0n+SjsdKsUJ}a!OEwskgJZ<KV z!Z3Hi8B^7Qvk$ZiWBkp%pR=4p&iB2Y`q3N^9QvR|4QZnb`M_-IIwh1J{k9SK{X&mb zUboI!gC*+b7X{+N_1^BcZJmkijkGvLjJ}^3!jMOnIAU~*>?@1pQfySt2D9|sgzRj7 z^Av7bPutSDnmVHm#Qb^4M1&#GUJ@oiuC{5thTDZaX#-vV?9+0Uj5fX4 zbF=y9xwTQ_t%%+bew#-?Q~%}$5IMPyJW;yO)rzvqzBW8Y@IrrB@=ETs6ka5K!~b36Lm8eh z1;6hQ^C+~XJjCI;b{45JGdBYiJ6a&%H|C+xP(k!1q$}xIvztk~NjF7at;Nw6(~GCX zc}ROWe0@xp4z{i%{dimBvH3)M{!sJfR`V{F@1JQLyfLDzPkoddSv(36N%}0?nT+kd z3K5$cjH~5LqXWVzGuMegPO_=t+06jWtUM_|#lU^=60I?B$aukCnE=f|#(!{7=z;99 ze)$Hcyv#^6p7+1ppX3;+WU~DO&z8#^3~sz+>-EqYKCxK1HZ={|V2lQ_zh&9*{&{Ek zRiSZiGF|#)hHM@QV%VRA@h^j+Cb?quW|q)$Q%cqQbPPUI+r8u&b`~UT@ltjULb|hCTZyyR|Gtt0i)7 zsa1&4bP3zkTn98#c>1YV9Gfu^x1@+7`JKh5isJgs%w&kXY(%9S4ZpRWuyRqL=A-vv zX1E!S|W}Z6Ovh9;!t?J?fvHGuD}6?w&7LMl`Gj! z*q0m~2vhSrKUeo^>VDL04WmO$VVGj~`}9}WLiHn%-gZrcL!8F13Z6MQM3>nKRB2*S z^EdYg+WFs{iC?HVGF!^blb*bP-Keg%o2m6i-ifJ@;I}m8gankg6- zYnlL9ovcVA@PGDEc>kGb{dT1PJS|!`4lhq6nEzAH;gJyXDF^G79JyC+YXNEO_ctzA z9!{@OM)5L%hIZqdn~(X7Un@vHWi573*g(Gw!4RZG@a82*hXADhKTDhGIgn;F#N6ac zl@U?Tpt3&+P1BZniwHq&$LtE;Zf9<+NqWRV_L+t6A_FQ0Y16FO+;peqr*4Fo9JI~pA z=i$QVOboj@{}A^k?eH7k_eQ2!Fz)i;HQXBpNP{@F*4*RqAge=^B<=sr2Ag{l?lALD zZdeuR_?{f24UEOMEcpNDa=#TkAHF>aT732IK7Ry$8~$~9wu*v6N@|EW2(<#>Gw1>w zeI!|O9Ix@TK=^NIsbIe>-=uUtur74U{R4t1DtryJnISFgkM=N}#&2KWb-djV#9RDu zUzfWsaQqqE+>l?>yF&v_2ibQ(VGF3fV1dSIsL}E~i@*~eL$kzS)uRAv%ZexBH(3TA zZicT=J#S*#57_B{d}njijH(=z&El(5FDVLE{yp6LflU4rQV5ZEB(Q7YWPo*HRVN-#~nD5Z@ zdX!rsESfx*Uw9VA)N@g44e3R?VAY|(mWeFw(k%HiJz}{B1Z`k+Ryw=2JW2XsU;>fk zi4|63SpA${L}bMjio!}hxb|I|to417)U_xG(l#If%jQJ*iZ0hw`c?78scjv0w?=P4 zE&|7MEFf92C%yuupA!DxoU#6DlZ=*ggE>hQ$`zsKB>v>2`x#Bz&5#n%en+s1@o#r? zP9)})Ajgk#1hqaL);VY&Z+HZ29g6lc1AQ26-O*5-qN9dZo(iMX7ts7WzMk*v?HW0vz}x@GsZPmznj_6j(fZ z)5q%?u0wr!F_F@hG|D%oUF7`z?O}m+mBoJC?nsbdV-PFo4$`QV zWzUW)+NzH%*zfP!gbg9DbTFF87V5en3{^UU*zp0~PD+KYE9JCWpy@bUee^V7>0aN| znl8`Jf^a!`nik%di5TaLzNRzyG3@2#4IPy<-6!jwtDm4K$I}>8a$Fq62}BeFmd;Y0*&FBUg>eCTicI&2S>@IsC4Q}JzIKEBwV7r`f1%8 z1ONdP{QS@o>}l0P0gh$x4NN~hjv#tkG>wVk(kB3E?enAY@(|s!v<~BMUY6QmY9Z;X zf8_+(6Dlc6*R(8a8pJnu_2T=XP!fr=ua$2O4Do9z!9L-j2sizZ)?b|vJn@?wGpULm zQ+`UZK4|Y367EV*ddO&P{(6o=8fPs1fFHC&V=^jCJ|_^JC+zD7HzJXj<=xcBZl&vU zn$nBk`+lG_3gKtamEtY5Nn)aciGWZ}2%(gK@^ub#7((IQt5AL% zGZ>7IfA>FP)H*)Xb@)#W8#mfp^<{kSzw;MeH8-#QhD?TC$<9lh_Jj~K1@XSdC<_~o z;%|36a55bC>dH%QPN<{6lJrXwJXtKQE0Q{e4?snSWrbAA%ESR`=Oh-u)VwAmsJc6# zFwGu+0^eq7*EnWOW;q%vDShfRWm>cVUoG8b@q?l%a(7UM{MzFv?ye_kV}axmLDG%| z16aA3!-+M_fL?L0ielhFi`JFdH0Fyaj;@&|9*ij1Z3|a&9(o7|k1%1_^JX zaAFIv-avT+3)2j7!ka|?YI;3QC3uwf-L4sAIsI5tbsqpC7GypY4}I>|O*LWgv(RA> z*L;wtC_%&Z=pxM)nk{4@-XsG1v%GviAy}1+>s+G(1vRQAW1YnKLJWtnm9A6`Dqt#{*8aVi5 zHQzU=SEw>b;f)my5T!3NNTG>ZQvvd4(&zTyT31ToKXJM?e`Eb{0SEhH%J7M zOYrvZ?}TRp$axz^1&JNbewF+1;rr&-8e#m-nzBjzzkPz9&@g%N0an+Df8&2JurQDT zB7cizYQ*>YfV467plPu{4WxNJrc~p=KbP0?euq={n*FzXqkC>!_m&(d<^R+eh7L5A zkUjQSOtsg&B(aa%6TmRni-fAac$wNAv9Md2_>{X(;`|sm#=k}z!I70w(%kK2zaC3) z%_%92)AsMY+Uu2wrT`4$>!!k&qfayQ|6c9y?7w~c9EY2o!NRl?+rUUlA&D+~xs!N1 z8irdK)>Gyc(ipG}E)CpzVN6Z^14#w~&Ggx@*b2eoE4Up%m?Ar=SikN!N>Wyml_=aO z>5o=K;;>d+&1K1=>K>HKo#R>392U?ThI=wS_lKcdz71BxgDBOK&#PxyMyVmb(@J;U zwk2XnS5lOZ!K`Wh-98&6;qkKgxl}+p(~l6v7HZT;cY(md_ZYV;G_iP zmo0bWp%Eg((F0uBR%0%^_4zSM6Y3EFWh;aFg`0yMLt(AQ z(_`iHt+E$~x~4(?S@-$+;IxoP<>V?AzaGZ=4i{RETseUiJKFzcmg)n2Y$3FgiBPwo z+n+p!xRipZtfva16fv?FDUve4A;Hq7Q!@Rc^Z5r@3msE0p^(&47ys$_iExtAN>VgH zLUbuTO0>0R0>^~S2i&^h0Zbyr9u2~-iX_6qrC0?Xb7P!P^bkiEIdHdHVhntu;4N@C)o{O&ev}lmKujxLrau( zTBFz<&m{Syv;m#RIr6*IFQe(rnusBg02V~6kzqTzaTlnUSx*ZHAvCXp5oIVGUFwny z=-eBXb(^|*fg1z6RLkM^D1dcTZK_JYG1&77Eo1r=io<)nk`ie`q@?N6K@EA%P_Q1_ zZ~HwfSm;6WzquxogxvLl=2=hF^QXPoA=3nEQ|ob41ZD8rQyq0e1Nn;`FE^khiFmwi zWIBxAJA;4y;EldlYCw!~UynM;WPTY5+L<4TpyZs(_yIkt1CbrFV5i zc!Z82DsxnZ$JxJTom2;j0^@XFTa9EE^>h!Ag%y&Y4^T2eY_^1D1--09t?T`kD7nL(TLdH_n!7P1&EWK$8IJ(?eBrui1OnH;d zli9sm7xgS9Lly#LEh!;0OcSr`tHT+F`sp(@>>|h)!md7#) zht!L*7v7Ff_CF2TM7Js$D@^h8bpiww9gW`R4TY}`4N_EFg~pv+)0-`71}sqh2b`f_ z&_FXR2YE>))wdl;v{2Ez6wy%`_Zn5;4UFWK%W87=BdHpNeTCy5OkkvEr#v38ezj?~ zehQKI=Sv3zb;6LHVcW1>6c&m|Jj7E9mULfjqMFRRHtz?axU^Fa2u=Sifds)%s=M$H z8o|(`mYvvlwv_yDK_FQaZUXFiQxCO8cfuU$$%747F_LQs!%Mi18CuFJXTZ&kw(C&>TEKEUPvWvdUlu z3H{{&^tthkBo`1!+2sHVElz+hicX-od|#>kXB?h+_WlB!jEBper@#N~lV(pPA;?o< z&y=|S6)69wrq{nKau*-)rVAu<1R(oBfrIB(86^AMmt_e=KnhV&3;o6N-v)9LSbkKv z1WQo*fbp=kw7J}`_i2iI-zOpBU6#D|d(gK%^l=RX1p`p#a;~*zYOl37ToA&S2B-!g z0P*?_9MY`m3;;p=&AcJtNas zFe&}Lka#$EWYexl>cIw~g|SdUe-tA}TB(98khDzQ)_O9MeD)uj=DHtmFKp7NF@R6C z)lz(9KHsNa<3&rbjEcv`aYRcJIpkSTEpvU--Wk4c=Eu6nE9cE*7Xap6W_Jat4Mjnw z>iqTS@pHco7+)Ebzv4%EbZ-IpnwA2_Koa06Y-hH+qr4161&Z80(C*-T;V9PdcONX^ z@BTd~4z-SlTTxHT?e1O#O{U8oE7bJ3uY;2EEffElM`k*v!B}8&8}nqp|E)3JJpq#M zEQ5krfD>o(3l7S)Zc3ZG-|~K2p582{OOk5+p$UZP_%OW{01uw_?j zyN$dVYk9iC>@#KX+JP;;mS7-}7fsVJ+<@+ao>Mct$

pxRIu@jL_$0G1d9J_r<{ zcQx=$K@q9E6viA!dA!(`ZbQ&fD6$370UV2NqenP)=s-4j6~Q>>VSMVLpL?z4A;|~I z1wo(YDH{bRYidgHf}ir2)hLH$lyRd+FC-m!5B!)nLIg$Dto|oQ;K)u3S}N~A@mnsq zEX7@sNE9XW;|n%TLzMQS%nWUT(GGy8sxCBN@JH_ys;Yho@(IMwcRt)F)f!N|B5SI1@bL0P zPs9F#AoyBR4%0U%+;iZtI^X1`}wrf&2AliR+8g)8YIGF^z3Ix&_bbH|a zP(5#@mdVxlIR@nV@1biSiot66e;)m41In${rYu#o`0tB9`F?BxxkSqNI!#piC85Pl z9j5mp=jC?@Hac}!_zT16OE>jFk(dLcR}>HL8XqR3 zFLxx4^#p3oAWhu-pk0+)lNWp>Tjk7i6&64noQ9B{sjN+=RR5mi{cS~HUMH&WK|HLi z2iLk!W~~;cNLFUWLDyyRWd@zp2{<3H!LsS166gnO+;t?sF{>JQJ|Uqw z$4PpYsq=ZbGw}9E&qDNA!dZ>$2S$Q@*o&#+BnuqqHZ$3*&dL*P zmx$fSF|%+Q8Xtk*%mymJ6lF^q!|(S(Y*iEDOh0r(*kp(G-18Qrizl_6fdG?r?$kGa z_5JP2-Qg8SbnM_kneQbSu6!3>6Lx1`^hO^mIuxynyi}(3Hz3ryPy?^{m9G_IErzd@ z%8V2szzRmsctAKOI_?~`K2$e2y~+QQFOY+8P|A_^Goa}2Wf;PiSmA zi>PjvhZBPMh~LhMo(@Oai9Waem1;%^Xb!N1Je{_mY*X+|(A>kSopsxjcX&#A(Wd0K z33#mgR}WuQJo2JWB*4W0;! z=PMg-f$$KAK#** zF40xKS-$m~5Bc+PDLp@?&EU*kI;dziTU z*|llC?*+3TeY$TPz^`mT*z?97BQe0q0L&{SUz3Ze{>xbR+^w?}>}~vYhM`J8FlJ)w zX0n^n?q}m4hwAi-qtwp1H$?jW8;`bObDKgAL~DOwR=ccE{DC?7+T>y^3J!2u`%*qi zUPS#r`lnXiyoA$Nd5_`#RsoKjSGDVdGFqy qv)(r-4ZFl<&$1!3S83z&l`}jb7b;U9n{wEw>gIIq&9>K6Q;aA1wbeAE0&;IRw_Tgrh;ID z=M5r?%XKL8AM52YVom_0>3=Gj(z!{z_}nDn=HnXnr?|tF z!LVOvm*(+ucB`5(tcG6hx^`5y3Oww95&>6j)UczX-td>`lL zBJVXr(Iv<+!d&S>oxdDFqBwgqcAKmR+Ek`J?|RxC86<`KLazwWm-zV$R{l3=8*r*i z|NLy``)a68u#WTtfa`Dn*oygdpRe!!)z9Nso;Ew0G2oI&XTOHX57cR@IoZ@m(yxV< z4u+8k$9mg`meYoARG_l>Ws^DO{?I@8#0m}!m*lw_F0|l1QwGZ0IlY6hnll>gPCt>)E zDTMAb?=N)Cp2(n;e_Cul;xg+BzRKICtvO`+KYF?>PQcIRhKHW>vH$ns`9`C&7h49Bwx-(;xgok9O9o0syy?_^G$pM^MOlTT3a`Vq5Bv@kKl?&V5N%G!CN!gZ|R zEq_{iLXK8!a%)Z1CVe^&6c3WiG6US%N7yb}j^kF&_6tCAk_zWXjTHN9R6x3HzVPLT z`}~Hlt=~Vz9%gxU(r_*ANJpJ0Rk|Q+Q0u3mAelTjFd@qqdiFu#rY&F@hBo0Srpu*+s^mP@7{yIcZaZ>ESWd(fbP^kvW9DWTM$_5~j` z&Dev$K74_drCsNcjhA}9rAr1CxJFbvG76h*xCCM#3meXG8;JnJ^LR`NO-wpKg!d`K zFN`(U^2`Shf`?RdpNiDc5jpz@yVAd$1~aIsahKFdbiGO(-2rTjhBu`AKTR6jFHIp8F*s2Mg6^V!KcLw& z8ELk~Akq*e$t&NZC?dRe{kF{TZlAQ^@Sy0}^6OEn-qW$Cc<#F0R;+^l&II+`wmQUM zSRgsEFL()j&7Uj`BOVRSmuVm6;JN`oLW}308aoV~Iy4Kf7Jk@BnR?Kf`irsgY;SSI z^0DEkoU!`*BC|q$NOr2Y#aMa(-L+}7(96(0eVY>Z-q%^Br3o?TV=$iM@O#nCArdV{ zBSdpm_AdZRb}0q+ByX+XgaG@l^dI@@4+2Gr;L78EQ*dK-Q)oiCACZvzoomtWryEP~ zIbaf|U|~1sk6um^GSGW{kigumNbV8O+x9;35Z>FKGM5%?7(s9Wh1yZ4PF5Z{UnR}Q z@84L-I0~`QTjKzNS`Rjv=3p(ZTkjW5UA`SWI|Pc+fJ=u#`m-~$7?hr*Z{5w{1a1af zx4me)eq)_U+~_?o2UrYPjTmp^P=N#yj2JXu`DoM!SWv^S7aLwJV|E_&&BY17!t#&6 zxSpacX-1|!+!6QnAz$d4sCo13zv7gMB*b|{L0kR~`evbXX$>JLX5r`tq^P1nOG9AY?#T14y*vO^ z3wE$py_9O9$}Ga{j>7wz+jWCcpaFYutHbDwU6%{n@7jqp$3cYptucxGNUpZNqg6i| zi6ZvtG2_?mS!PGmPoA-bo)64RyoJ89wX!?3IuwMEAT9!@vTB*!aIM#i zn%#2RqSZ?cDF7uZ{-^!mH-jaDS!@rJ8Iti{z)xa&N%dZGnYVeYNLfsguyqg#jf$oqcYzr zq2hh`uiomgs@K2omhb(v%q6W&4md4)LDNT50<#QaR1i{DH(vFuS1ki#z75y&(#A}y z$B)%91cEpHp+4DsqkzvhuUu$Sv>P(b+?_=LJOJCKQh}U3M9>HGznf}mY4lY}n2nSt ze1udz(SVMjRBW)F8e<0SxA|c$mn=sra1K zCQk!SEL!FxRJKVMVolW9nB>55kv^?URxqX@K~8u-Zr*w;i7IFIw2N(LmH9!?uc{Jc zzs^Un$%H0)l^Et5nh?~H{0an7KE$n^+qN_kzdIyCN@JNGM`UY$=`YlD>TeDfV|S4L zGv-joki=x{-gWXif<#5|Et?*ISlWSupXg9>Y*h$&+y4(UPId#%4D`Qo<_i$Tx8WxX zte+b14EyivnRo062mNG5A2V_*%};N<7nJ^zYTDgo)GPF}W8eoCwQ>uV)v>!;HDZW_ zIzCFC1k~3X@VZ#FKCdy_PvnYhqD0y^y!?yxj)G;Yxd3QT!o2TPf^`t>&W(YlF{sn^ zv>%m>IR-Y}T37aPE@%NSdGh`|lk{eW)Uc8K^|%aH^MvJeY?NygR{_=sys=Ny5NpmU z9u0PkL~n2lpd6H@e_^9#FcA#+!+Y@~Mhc2GoZvBFw_NkIO4I?C4ro+5xLlD=UaQ1~ zr;RW60Z>>ns&UXN&6hS0W~O@>)C$9$7CLTo95)UZmdAyaGb$04#VP9BAMjKI8rLkB zg8-tMz>qCC^P!4LfbH$Lp}?3}VxQaxq>so=P`=I$07Ux!3E&b-xp8!`j?YyhPyn9DZq4mRO4^8S?%Low8jPmqBk`vPF>6cWDIjm-z++T?%Y z&$dziFB#6lPyx{_*Vc1dVXter0Oi6kO?Uyl`EU{J8+S2E%*Y7%J<^2tl9xP1HHq%lrD`5yM87 z#ObUp^3^v$d%wbdS>L_hwDFW9KrZDqSKhXaK_RLA>tqA-3(F~CevynMe(tK;jmbRy z@bVphN#orE)SKzTBVQtmJGqBEReN|2!S5%G>jXRL$l>uW{YgPKa*;Qhn@lS9941M{ev`&33;xF7~`*LNz>+#?|b@@@myu+NS?}>uZn*F9}=iAzi#HZh!9}mHtZON&h zXhi}ie5zGEFzyW;;vNjF zcM1vcu5h<#pGMQXL@W9@=z7F=I0(L$9#&pvCCv{oBc~DKfxIx4#9^10I#T?cBW)7s zXXzC*($ptc)?f%p=M^Oa%z*;$j}PjMbgaeCuq5=NVdbyh3K;zzMixrybY6EE2qjMJ zq)5u(pb2-KfvE!T1rRW>9&*OmGVdwa0(*w2)hYYk#9aCHY#kHY&D=)V>~{zVN6Y5c z@lzsieD7bCUN4U@S{o5Q=3<<^BT~F%OyTI|@3RCQ;pZHP!9-Wrr7I5zY=*MBm)Vt7 zTe2J_01jA2F-gw;;F3pS&q%;wR%~8XGVUe?nrSSeCs<=tI)+bB@9D9DAtO3K9PkhO zmF5&Pkz?wT)8uo^>P&`5v9Mu5UmpqAwgfeQuDLzkOs7-E3M_sBcaeuq%5)8kiFd8i z6!n|#9=sUf4x)hF^gI+*>;CpPNnyJ`c3-FNQz&-8^~uKYGsJw!m3O|w-fX+Mbk+=h zI3f3$WYBo35XB3D4u(jnr322Sv>MKPLybcj;w$k7*2@TKlr9l^;>noI#u#62X1+(o z!M}(BScwr>;Sv#%@G1UOr}9~#l#ev`?YQ_8e6xS?rFBpmnesAg9FF`d;&4L{5I zJD!P0xu_5SGcQ8TJxrA85BfUIFH|rPYz~_P1vcX$@QEUWQ0is3a0avNy`MSAk6Jn} zgSNm+8&y(?w<4-g;pH%a8v3AtT+~LMRA4#PuSp>@9YBg(abD5Yss}t1@#P_gV@iRp z8%AP#O+G>$B6QGwmHqp z(6-eN1QI;$@BiVXe>B#&KAQS*jcP{@ZqUJ|+xGHAl3D30{Y{6RAkUuD!d~6Mm9NeI z9D1-fPtcq1kN9Ow@1L*IV$TyG9sn+0R|r5V@)hfK5EMbpH!tqkXaPpfpi%rL^TJf) z3`heB`$xr7g*#@?*+Zxx4F%aAII3_=&b4`p97HZ*KzxPQ!+Jn$+;U`w{ut3?j}Fv2fGCV~Vg;F@9p@0Y-$s&FPE z&0s{{RCkVpL2tSG_eb#Slaw&Nw&EDfH_?~;4SbhZ-V$~#SLVSnH#FKZ$6_GVV#EYl z5PV)ZE4UZ7_t4YMr`X~1gxYT-5^uj)m{XtO}toZ^#V7!^;lbLK ze#zSY3iS+U_}h&wQqgI-)c63>7?!3U;pS^Bjz+2*_M%6|&1-xAnDF+?b}W4_s6QNH zg>Xs;B#&`ISh*wn11WYKhms)>C?UPR^3Mlw*0*6^(`kMpHXKQ3^%*{7%3rR!;pbZp z%y66YhZP11cKsKHPShYf@ZazinC=3F#|;K!Ns-kj2DApC_j{%H;65b%ckJ4|l*AlG z&-_l46EVBC+J1UY@~^-{F&-Ezd&T}>57>@%=6$kEQf&e7Y^H)c5Lhpa8W^!-Ixax4fbbT8i#fe$B zJedtdDCVHa5f$Jd3S~rkEkhy0zy=+n2)9>6%M_keu&J-C^Y)F={8|w$;RiM(>#i4h z1c;w@+MKmghd02o+%}c3zuz2{DHq+!l3knwfK*pIG0J;1i$IKet6pjTV%*WuO-O@! z5}AS+89>nn@UUpZgbKL#NnvC+KP{&wsaqDn1$@#ii|(hPp1eZs`6I#*MeK?vD(gNTvl*yKBY%k_UCzO7J9*9YO4)967?U`jD>^3}+2(OV|CY@dG zO`f0c$vE|b|JDHyUhbR9*^C){)P$SNx$o$I*JsRHP_gv)^ZUTzlS&yA_n*eI@?)D>t87FL z5o=|}3lld4`=oJq%`WzaU(xy41}Y#5wlQpQ{E08&5=cCY@Tzqk=q*ZuKXdiG3$Cke=B|)( zOu-*}z-e8WZ(lS#pe)RoLdIt-sEps7_O#==k)e`AZmli)>h5`Rp4Jv_qBqL6yEz@WEEbgdqB4R<|7WrjN@tt|=pc}Hm1EjC%iUcg9 zaXsK62#IuW8MD`a>s8EumaZ4yV}FPll-nir95+G_kFR!+K0e!fSapiMS6CPcqr z_2zuY@Mv0Y;Fn z=;fMbRui8BO&N9V#kN6>&n4dpX`C1$`Hd7be0yov^P3P}6nTMvx_w>qm0{2;*K-nz3GJ2NE_~oZys%iIQ zdd!$5a=z7)ly0Yt(xrwB01w)RKz0gc%j4AV4~R-kbpN3AZ#TWcutDuQ(p9!!kL0k& zvk)eeD~{oh(a{$yw^dq1Om#a#RnYvET6su;tT=Xv`{4~Va?SoKjRJDh1u5y=1vOokCUvTheMb0Ql|1hf>PVT3`MX{gTV$=?;d{h}d)}H2 zxj|DOq@RdsM}~0#F+k40C491I$*CAMy_9Z%#%9Y*rybgP$FotKJ4@WAF?AF7gJ6q% z)Ajo5#)#O1%9Y&?*5I~HoY2{J$g@~o2{1p>QkVK1ABEI!{?>9+_pmxE7;`{8)22Ma zlvu5`biM1Ez47bh*J}+j{+a4x3o>Sgg*M3%P{_59{O@?Os9pa0@4`7{PKT=eLSN5v zAJJP^Z=w-V%`}rqxuHfW)J!^0%{~6qGp0Q*@iq6=%b1zWDZ_iLi;+g=Z)4?a1~c&` zZv&9wf8tuQ4-sIH-$Lqx3H}7f`z?_CH)hSsD|z=)PP#{(1JpO~%-U(v_Nx%&lj7gk zK98k&D~MW1r7Q4<*;KrTS!T}gce4UH0>Urn;|LQWXqedskJ z!|XJLczVAV)N%>W-I4V|sG|urxhG;`3ZLPKv3yB#iC9qcwspOvIc?%LBR0TRpON8{ z#u3Tqou5e!Q9n5|I3VJ=J?+E<8l*M#YBNoWj>?i#)8^*Vi`mNT>XKjrG-GgOHGqs^!|sugGWdU+}m$hE&%J$_R!}-iFs;h)jG_1tlVclhF&Y zOl^D7M9yO+!W8mR2~LK!jZdstd$YrbXrx~+=TLCwkZ*$9iz$#_Z!%5(Hv}YdT*;#( zUbVllpIkOhs5zRseM&F!y?Z@Z0_~-`gJ2^X3Z;2V;$#PvyTVtOE1cDl+(n;WR=^Q=lu~ z768rLhn2JfttD-?^MU#D2+=Q~*i1xDaXcmyWkl^jX59Ue%z{ji^0MzdlmFV_TWk2;)6j@MY~Xb@K1u_U!M>nOXDZ5v*P)bUKgUUo*dn z$m|66T=6CCH1GHLmC(NSKT4C-{ZD7<8?<}7yfAYwf8PE1@k(fdv;b$izQuBE?(+o7 zpMZ*N|2vTLam0L2rEqIB+=P=cVaK@(yU?ct=nwa%pR}V;NbDNZBI5PaDU|W+o^r$v zfL!Y4W1k*kHFlg8_Gj}Lf%zr}PXoPmW&3NDM1ljnQdzT4cGPL2NR?990n#$BinWzy=>;`9MLY@(d}_5Hc|>kMehrnY$Rk!U?m zHbqBXqC@|wkoK>J8_sEugshoM4~Vp}D{?;%-C}zyyXxQdYBd@pNpr68=N7tA58;yAc2n~0lM=>@o^J(DDk zZF^3Rz&psIQC%o2@_wQ$EmZ6SAsL8I6~Wl9PhK7HUMZ)$K3$=a5uZICR|9uH@g0XGkIULX6wQ&0s=TyuS-*qvW$T7lk@oug>$g}UPp{kFXneL zi0!I6E9ime;f$2q@JV4dA$xiUtbj0E@4GbtboPDxVmldNSH3%nwM=r|ES!<|ew7XgqY(X|*?cPAcCmt8L$y_5_ayE7iXe@fP;H8D<}b zKY0#>B9Ccn$@#eAdM{Ug6KKo0Y~(%ZnHqGU#^Ia|J?q1sQ)J_!Y?}}(eOjJu;2_%n z$_*%#PuNsSsSpPd$ zdfy)_tV)XVEc#^%?pBe(c5#}`n>TaZMF0VOr!5BobIS|CWh5}^F=#3Zesdf^dc*eP z-L5f;l5N(eu;M66n_Q9ui_O00AXuZz))0AG5!$?59?h`-+RB)(=deCQECBO!shvJd zUc~`BY1Jfn+225UbgQsQYYbAH>45(&K*Ks@npf$L5}4(5Ju!jginEDT->*AJF_VAT zkJA9wU#G=9E(jXMz|iE!evSf(Kih6^5TV<*Xy{0uLtVxaM%+Gm1Mu#GYmgsr@H)z7 zQl?!PSH~TO&YeS(km-pQkA^*G0e)&AAd-Xqd5Y2p&atKIMuGw~wZBF8H}@XDnBk12 zZOz7SD_( zvR!ivU5=vTPX}B^P%r9pl5PY)tUvzF^q8Yov8AvxD>nIaB=kdlCD}%`pKB7MSIs2(wZZ*qHG-6*AP>z@x?@d6bkgmJt-@-fkEBZj)us;NAT?s-(*Zcrr{og z$G~mW_R7TH0ES;f;7J&_G61+6S|y%`Qmw7zr;ct5D<@XDlpBbxK)fjM)d$-}`nNBZ*58t6H2}mi*0UUvN=-vE|%9>(*A7Gbep+lI!`iRQzm0} zb*AT6nh4E)gL0{S>_XI**5bGZj8wp30JtoX~-<(>e^);9wPBT7R;Ng14e|w$xxn=5hBdVxbPM&73WC=HyEYu5PzL=D* zue3pNO)s-ka2BdB*Hubv7f-t1lxzmq@aggSdrB9<J3woBc8TJ>H?(?#nsE*LpJ4xK zVn)c8?sjQeNb>dI6Sk0+f^LQ{;m^YLh4K2cGTH%~`C_{tan%RXoyNFbr_kf0q~d&T z0PPO7ToQhj%ougaCfY(`9*2tyz>ds1ei7OQ(Ly%1xFbc^C+0G)JvE@n`cEhfm+O6Q zXEjDCvG$AcnW8F>v?qQepYtm3q;{^6)|59A!kjOZ|I-#nJ^|?d^H!=FoR6t|Kl8QU zCg$FN@OWCj<;@{r?N~S3ijX|ap5v4%ENSZKT&IkC6EpC}BA~d^HvZcqGIPQA>*w;e zYAUx@L=HlE(t5e>=oEeEe_OL~PL$2687`Q-IOAV0(Df_Fpt)1W(t(?hKm({pdo4@u z@yddNB_o)IOmV<6cw!c(1euS%DZyTxTP>Do8_#JlY!k&PfMwVLveXWDpDNpD_;M{T zku*&o)iEPe+Ye9_M9!qWva*#@)wiwC{7HO9FUKKmFb+y3ngM z!rovTIPtz)TXzlVd^cg4%-Mn%*`S`7anqdbS*FvVpm)Ed!p`u5_-RRae038sN!UVQ zC9?!9e73aE5Uf+^kZ!}Ed(xl`UFOX&x%>}~diG55_od%XNaBd^pP@DBHr8Xe0*5snt-8;X0|1tUV@E{2$& z-=QY08gILmy-t7p?daj@a`Xf{64AfkJ7C}3N1?Z+qhYFCY|tzs^V zkB@Nynb$-Z*Nce*6u|WK=L3Iz6ussyp)?o(`iHDj3j2cm;oeSz1vN5c8yLK3kfM?p z8I>R)AfSm2!j^T%hx{YzGAv_u*)pkcJxQC8`hXdar~6?&8e|a1K&JW)@(H7|^B=t3 z`BKKV4H1!C0Q126j7C_*G(!%1A@PMlv1N8k2g)FEA$6yjn}Yvw32-K_)T_UnW8V4K zl4wobFH4~!Jq!r-c9kE5*@($OvGNtI30=S7gBO}|Tx3pmFe=w`#d*?ZL?X<-(eSFM zowAi71u)MNy74e?LXuMhEkcyG5t+=CE0^&M3$a33wBFzQA<44PVpUxUpX@Z;UrzP?|(+23&BRTYYNTg)Yp0zHy zfnz_C(W)3BrKWx)R$Foz-qh2dlYP^g^RH@mvy0zC@B3q4%d8LIIenc>8u2dL{Eg{x zR3_h6E9u8L$80Q>efmEKNIxIx^%`nyYoqY+3Hgr2v^ zzy7PI72xXMC>bX{AD{_fHqy}{fd-7eDJWy}nSbWSmX1{)-%(RPR{ihXeJB4*;Ldk_ zU&6~YHMy@T$}LvgCc(|yq{M>&mKSFa#Pi*H8BVDG%*Kf zqGBDko(x0ADr>oJC>2>TS$wP6DUmN?8AIc1r)6eeZ*9G10FXHjO7Y^Zz_j5sG4a{) z!$Ro zfQvmXdsuAu-85wCFWcpAy0GspDa~Lm5Jk$SurC- zEWt#Tmr7Uf%1B(!X)`C?BL%f7I;q+65GZN?%rvZ>;yuVY? zfe;f#3^%D+6>C#1_V3b%($m(8{{N6vr6Uf!zHOs ziQE!LF7#-Xw*1_oqSzl~b`FoAjcMP$+?(Z^}_i_-~J1cm5tFDnHc zmt2@(4K@ z^Z>}gQZb8}0R;WrGlNw_=Gzi!WHhMdie5Ip87=KV3ShyuJj@y(ip1EXPZ*P1daVu1 zyZMdyKXWgg3R8DQ}CP zn`4~_(9^6uR@|tAR6Ly=Zh#(AKXA7CNEHH-Gt;8Ur`a~noYgc^{igw6`Ryi2-NYMUMPo%C;&1V^W~r@cSgM8uZCZS|t?Nwg=M z$^Z4;>l)Jq3_zUDIy(1Kp?N`{QDcFOy(?^c_01OlZpC_TvMySM!`>`WJ z!>f9-?|U8z_B2dHWcTa+8)A#bKIr}VtCJOn*04R-D~(@%q8;@?#(>nw^8(mZ8RskB zW`9WjIT`ioMCBz#jSK^fv8C4>ie(OX-ybjV6-;XBPW1eLa~Iw3^0X6Quj6a|73(pe zm(DkIkxwYXTfCTb^(%4;QD0aZkRNy)C+OuKMa=t*2$8U%?d z%;2yZi`ZG*%X|9IUI$uT?fS>K?nOV=kO41bbg%9ExM#%M>fH33!y73u?V;tAi$RvL5x74YbBax$HTQ54;}dZ z+CGGhG>~+izdc31N)4eD>0@q5oYv4$;cOIjS{MjnVlh|!op{JgpW%2WhiYZz>0ft{ zj?6Cz$e$l*-nQ-t{?{+@HxJUwGhF4|8{kk334ZyIRtcO%yNA>Uu0rk@FGf_)GQaW2 zXZ4p*NsE-AYC9W@s!-Epc&YR`0!e1v6fD+B6U5&A;}!Kli_3osBYOZYf;!84w00=xhQ=}n}b z;P|05dcm$(PH>iD`U}ES2Ec=eT|qb^=W~kxECs2FM==J*X3A0$;>g5Uuh6!6QJ?7X zxF3A&-s{I0fCYFESF7YybTghPCVXjQh<4B0Mk|b+uWIuJW3nI)s!5|>2r4oED`)2i z?0 zd}-2Fr4#slrKh$ejn-uEoM6wJjLbExlcg0>T>q!jZ~m#K=Wk&pM;5~LV2?#>?_v-+D;&m3>o`|+r=(lRVQ+wIh}ni^8YIsfa=L}g&EvR^2n?Js9c zneKdM{Gk?5M|P`58LL{G2L?mF&B7~xVh`Gu3tLUZ`X92Ms`LA7xg6#Kd4N`*oMqf{ zqhQMC(%wwcx(gPo?kEsg?QBSzAt7Sp;LI0v2rlMi94dyEEUgmV>hrod5fTc;_bn1@94NGx@6HWcxB&BrhCxB0oXi;=x65?{od`! z5c&&3xpPE-eM1o!17wO3^RL40$kQH?;12Xgy9Rj}H{PX`$(kBLy;<*!F#Wd5t)3B^x(?vrW;8`w7pX0eQCUN_%soc% z89)ulmKtqQt0d2wJ%bB_E0=cCddXLT&ut9?iYAjCjp#ceG>Ifh#&G(*9j?fFzr}Jj z0wt-*k7AqaIj*LiOy3Q1y*CE1lCY+@U(IYQ-{n8bpZ5`7KsKz+aUKF#<&`uK{1~V7$})4)6qPvpD-+3B&A*aEZ5%3Bw#U0EpibEVTPG*{`h* z`y}I>AMJcQr0t~X%n8*)s^g6<#-yF?9nxIk>1+MpoXaedVEMT}pps()*jM78p0hDw zHAJYL*qLVaYn)TRVkE^!Zt6tcE*55T}a;3@YJ^~I#Nd?d>Sj>Qcn|Fq-$>S(P;~8z9V0gtf%#uO1TVP!eu4}W}1SuB#Fo-=%l-j_FVdTzu zsfP42KnWW4ST!14vrMPTIN4}*{ODK%R9Kadvuy?2xxQh+SFKiECa*yIaTjOwQPLX1 z0{d*AL`F-{6p>p%TTk`@if#cdBG+##f;GNHh+;*8VFnU>+e4xtw7ZA#lId*YF=zSeS@(fTf8497@#j(8H@=`H)j6iOWUbR-if#N zXjlw42a&sIa>DcKZSUq@h)C2AmcgPD zKZc}|-CFcU(iYoG+$s|l*7`+Ve@Gj!huqDuKvc46tJD3HyzY;Flh5eASv^qvHvQtb z1w+q-^4A1Ea3kI)9)2x19l$haz!vya#)q>J)XBYCc-mH4_xVS7iA<+iH5vqfrRm2u zQF(r8rf3OsnTCMR7YdK=-U1^Dh_(s(0IdpUnW(#uR6#HKz7d@nUf2%$80xyI6(8ty zrB6<-Uh{^$E;>)rBN0X%Y?3VTd@ICjNAhZDiyIJn|=Yl~i*YccXh+<-&RCMKGGrzRsTLo za|DpGLU7z!PFU*Fy%e}SKP}$kTLaTTIClLH>NF~WwUUGgHN5UF66m~z4o(h%RXj>w zi2mkuI7YMOjBQ>u6se}e_UJm4OWHc=f|KG5W!5yP&RKOnn!`8 zMHm$~G zjL-LBWjsfK1l<>p!%_JZ!+(ABxWz9lz>X6#BCOtjfWIme^_={3Dh_SfLl9zHwZ9=rV}7J3ilWn>|bgm^%9tK{TII z82*i9%04H$R5;MvCPfIPh3t9VUvTHtGD74T&K`qHLD~@+0Umnd<0}=@i_x90*%Kbb z@RT40U6Kx^ao-lhx0uiv1sD`T4@(|CwC>4P@oT)U3!}>eNC|gI=r6LARA!R)p9{ zcK=>~Di3vuT=-ia1SJuB;c3y@Br_aHSA+k-hzsa~? zvj_OAtG`6}8O|0eomWH8%bCO0vFY(<&n7b-4dj7Poc{LVMwazu@)dQgcUr*@-0xMt5Z1&u1gD1o;eGc|1pfQ~%UG{E461 zu+p>|Q?r=Ag-S+OvZ`kqt?{?dV{@brxk3E>aI$;FI>e$1kkV<;?HYbk9=S-l4!8Ji z%EWw(-S2qfCSP&EFFqBijcA}s*cy=xu6t3#;h~2bfs^-XADItdJJf!v ze;2MzPq2UE6ka7NuH9d)6ZU$hu}H=^kL!Q)1c>)KkEbO?d-zeFPEYnm>jJ3#=%7g# zgXz_@DPHzF)j$82R2Cb5QF)0s`+lZ#%)NmLS|(z@+>&J}z}E*=AermU+^Yb^Zl$nl zoeA8bK4|P{?Z4JLiWc`Y&E+dg_#F20bw2kH)a6Ho%=Ubyz30qi<6v}0X5I5@#sAy0 zEizNG^`|~U9DD=hM9x$B#?OuJ1>+{m2qqzD1Mx#hg^x2HnYF#Y%Bx=!Ng$J3Hw`9F z%9~RAJNnZ(0O?Qq4Gt8Oy^9FH;)lY&rdpwySeMub)kGDe^dXh|H@yX4dbwY+0@097 zK85M=bz7nksem0IXnwyRMs0F(fR#+d^@uCxGwSCJ*ij#AyGAViwIfg@2lFgtq-wI} zRW1yvge@qv!n9*{BY_Xx9yV=;dCF9=dpM7 zYT*zFk^?J?AMDTRf04H5AWzIt*>&oDqPAwH-pA4Gg>Cx&EsP4U+C8{JAkD|W-?HfY z4;g@HnR0Hc02)i@VzdX)61g#2;+y?>jv#V+Gd3DVo<)kk)ctceA!fcze(*G7b{~d& zQT1<|wv&G$kGsRdBwt-*gs`(6cFeIa)p(HeGZhA41WcwliUH5~)FZBCLfii(oAA+q z>;7+@fBZF{1t|Wl&*WtuW6oym66Hd%e`*3`CTV{u$b?w?+7f+V%`J(aO#7=1wNd5_ zCeaVlT!=rrqRH~ZQ~dnp?)0CFb5--kt*{?4V#PZ_2En*|NEZ8hu6*d9DrKy=+yNL> zw=kroItZ6`^NLmJmAyufpl?>R^xLcHCS92cQJr0`G8(E4r|VSl5sI8|M)$fO8@N@v z?k9SipR!WJhmNeyl-Hb0hoZC;T%hu$oR>5G&{+^9><~GoLHnCrh(fO^JC>BJe;mt;S!D zq1_~r8}0jVP}X0IWC1hzVzx+O^{N;LGO5Nz57>ve)&Q>D?ZbeE+j~a&biT(&oCJqBN54H-fpqrb+7wKO#>gku%T za%qUvtQbaN*v~tM3K zCrpCT?r~1Zzg!2w7ddWMER&T8hd&UwRCmi|KpnX=TzYn-w5DUD@*Eiw%*a(a1u*rX@HKu=0D?k>C4qQW38O`JO)f(71_=Zma01cA@in=XHPIRmH}j!D?g-D;!aw5ATKDH z;cw(W)+Ao5835b|{XPuCf=?yi6=d%C=RjpKt=i_!c(+4U(@mh5*Lcjxip1H9GDMW7 zYRjH5;1rkbv48Pw+)iR8Tt2+e5fk{lMQP$=Od&~J-Rt3OfxIh??@|95!Pfk&^L&c6=k(_&vd{^6 z?>Mw_^s`Npzf1tKeZN#*$qew`*(Gavpy`y%mVd}5GcF8ZA+&o2$w*hN1^ zvJra5m#U-*9(BV6&9 z?&njG)#oHQhY%OuLFq72DQ#A23(sl(@VkOi;Jz~tG#n%vC4a@S8v-pz+q6vI1UTFd zX>?Tu5G!n$kM*Ic679w{EW$PBaZpZKY$c7S0`TPaSw^Bzn9i`I+<@^`d1U`#%2Vql^x89$v@$u=?K-2Flo??OzWWYvWXI zkv;HXF|p`!A8^7tI#C_$vSSo@j)qP5->DZbdXv7Q&F1CKue{fX6=|^LTga4yW&Dy) zFEI6W9abqXIU)fiTk0_au+L{yLF)roR1Z$YEu*@#cZ)&D2L9Jwh6X<%qA}#*y4$|1 zMY)7^tLSE(*}bUt5mrrYOSl`x5pHY%fXNDv_vE#NH`i$F5za&^0`XIc07X7kVPJo# zr7K$o=f!5U`8dc89i_Q-p--Lf9Q}ERRBpMG5CAe%xhh$vaYD(Ds)T?06N?*Nh~MHR z6q3?6%2d>Ix*0PgSZ?Z zqDj=kEI0K!*$WKVBKMu&2N(h@y`0R#K%_j5*=%PELn@v|-vr8j6g!!i_RHEXTg}Rt z&rej`bhKJ|5!OC=(%9k;*obKR>k%5d&dKjrP`=P)<|KH?Lia(){n6t#U(Z9wYsf(G zCE7AH?{grH)o&D}n|kDzB0#jzFY5Sr{;Rf5w{M~Zn(EC(WE|HgBx)Oc@`Emp;YyWYpRn;1q3a7k~(u*<0;w9VS$B(s|jCornc=cZ1{6ZPK;% z4JWX~py_X3X48G4DQF0jDH)iIbe22Lhb#irdHx>UL?RUE*Nw+}u(xjfrZu_}qkZNf z=hf5KuB{=+e&v9<)GkmAcFl^@1}<%(FhN7xkK?Dt;}SE30Q5$xIvy<>NDOJ1dq_co zbmK-fggo^?=GV*Wa0}*)PGFMHqD}nDE}{LuT`B&Vci}9j)>mEWe}2cfFLEBdp_{y= zV*&-1J;g^ALm`-G^^{e9A`av$Nwsv4$5mxp4?rl}PBkcmqEX;fr!WVTe=e=Et&tlL zE4YC}rm0H49Favt=Z_1Uh)xMW2}(U~C$@C(S5CPNVoak{+Abs_5i$@4;6ER zKk&(I@oU2td7iqi^z4K(&H)3&K?#$RTuKZf?0V~A(QNN%3B}V#ItMImmp`auI2z;rP2Vj4Dv`#8`{sW_-2k1Lz{;-!VczW@3Euu>{ z?-PP7v&3Z*bf9!nz6?M|*I);B3jHqXl>ZkLuUH zrr<>~88JR^%*mlqoJb%sul669u*fKIq3B*TWm40N;?^aRgtNSNyAKpXk5d&|y2q@bqtaKO5HkASp2Th}CtXlrd~N z(66ZeexJLATxQFbMNUSJ%{>tggp@v&SHscp`86?@Pq`thva?I%g0Nk-uH986*|$!u zE%e17{)`kjq~t-M@x?QtKt!4o41g&{{@0CA8W?`TMXuZLmA~U0&(uN3h^HsVCeITh z0X4xm7CaO>AGU!U=|h|yvfRKw{#`tTTERl{ur%$!4O+UY0B}D*Dj@o2@1_5JX|9%_ zLikA&h;p>;!-w6e(`^+!LzSRURr+qJ74IMDEC+tS$mm*Ieu-VgD*AaH2W2Ffe6cWd z-SMe{ZDrm^rO(uhfk?(>Hzw(~`}#)HR`ADrIS(>vr2hmhk&hjd2JI%e#+*OB@J637LC!wpzx)>xBKc z&@wQzwCa;udP@XYY>g3KA*t2%H6_(KpG1(fny_1MRZ&WV*$iyY{2?`C&!var;wXlx ztsl2(eH|d01Q9hUP*%?K#|?Jt3c>b?DXxTQ2*!<<<8&s)xNyqKHX&5|lVrb%KQOId zPo{{-E3Sv)*2b*fcDMX%(Pj%3o_i7x7QcXiv7jl@98%YqMf0FzV)x&B=@-=iSA*WW z0xk8}`Oh9dcKyP5i3RNlA`tToD1TW^xO@O?5?^X-W(aekwg8s!D7P@t2qwE`9bO8T zdQuc|VC5S%x}sWAyn%bUsT*%E-!#}ALAfvEN1x!d_WaO#4X^^nB*r&Kk8=?^WHP-( zjwM2``0?*rkr7W9Qx@B=cZ|U&me895oNL=(;6{m?OV)hz&rliXx$D8gXKDqmZ@Bwg zYcP(z5lXc_fRGH-5y%O9iV-62ZMeIz8Q^j|!>ku~$d$(T zlUGTvq8GfC#HGyxBzqYm_HEH%E^YmP9`%pce)>T_E+s5UBm@@RW7?QnM_l^LsjK3c z^^4$a-*`c*kKWwC&tJ$4l*~F_-DiK}CumBO{Oh4G9g`ywuM<9o>UeS_-|dxxiT@cA z!b(K`IHneh*i`kHW5~bVKYCY>K9LYKW?i>Ek13fmWg4l(oHvqOP;Bkx0$Ja{{l=i* zceDhTx;{<%X9O-U-lY@7@z6w1^0OyE9NMB(tdvH|Cj@7bqX4sKe+BXh=r5|S#zjX1 z{!rEpJ5?nK&<#V%E;AhkB65C?7k+*g@st6OX-%-|u1he#^mV`1X^%(EoP&;FfPiUX z%2h|n@9Yo!%z#W_QyE1(d!Emd=phdU*b(l#0ReY7lTTSlKhGg$)3D@UCtf`wsgc9+I*h`bP`^%UbZq{tKcoWBk=c zHvcY+u>X=_I|BfF*niQ$DexHzPdh^8GEmN8HA|$w(J}z>QlUyxI$~LZ<};a}VvfbH zGCOtd2z61K8D9WM&q0O&RWXWB!kPJ#1o_oC&1az*)dCf|B^RkKmI=lWWv%LE{t?D+ ztbEuP6N(Pe8&72tkRSCVPy8CKy%62Yb*7eKB}fsv#4Q5nmv`%;q4JjWZ;ilie*|e^ zO=FardB>aUYW;0cPUE_-7+T35m6w=^p>Z)&Xb)afTC>k>tH)p6-z?U4X=+BLD;L zhVuG}7XNP@@_+02IkQmjZHoeo55rERHYF%~G`MNYwD42*QkGc!;J|gtd>{IZ1}-TU z;o?Sgd%=I#K)Mdo1kJ;?j-G0sd#-KW&o0&=*Mr*kmjz4C&FpgITfy+gdJn)$u=hrJ z^JG;dITw^G;wxAe9{$G6?L8*FAd%wEd&+=|V&arvVhL3%PaYt&Hh)k`||KaMq z6&%);E&D+X=v_!piQb!x-iqFT{jl%cGw-~~I_OqY0BYA>AW+3*rppLyapXsA35ij= z%l?_$9ZYzqfP@$;!H?~t)GvJPlC@R~jXW3;?W2^azRM@{F_ImCbCfyN@}stC+zfQ& zWkdCS&Q-GV?3m#Lz4rjjqpUmC3lf78KYl{F4*f?#bIk(=+i5=JJ-}r@xf=rV$e1-l z<9aC93#n4l8q1gv5hQdu>?lwj>uursk1kip`LI^~KALzAzvcCQ&#$vwr9j|y=Q%G` zRXfV)=nRp^DbwNCu?w(C*x_z%r!sx;4(HyBqC3bvyCF|k)YxoP_Jo?7!+RJ<^QTCV z)-TIk)U&PxRJZK|0&?(im1P|EmOY3%@q2r)5%Z?7LiWrT7xfLREn|JZCADG455<~6 zj`w0Xxkoa{b9nl6Y{TXf=pij*Jq^F-IWO~x+l2{HIMl1FF99H}IeH{zk9})exa*Nt z(_v$q`d2*rsHoAyP@BNATpLG!f?ERA%5qjcf3!;_9;es+m1pxftmu9 zfa6k%?~E{Fw)~>d*oGfj=1OP0yfs;u^m#Il^bEBBG0+bU6)ZjBd}Qe}zqU+vGl9d? zG*XR4Z^SDd=^VMlSMfNtZnhWkE1lsm0B-5{no|x$LiSCaR5xM2`rmy;-kj=v`UFi8 z?)9I%Po&fx#mv@m6yN>TP9y*oXKdC22FaN6Xh{&us37sH4AxNFf#DL zvAVNrf-%0&qgc+TNTj+l*MqB_p`H zKIQTDmOw_UgOC|C&X~{mdBW%QJ?BLKJb$TY{eYcm;A0$z>`9p>3wDoM(n>s5&oxPGtP$ST`IJEt*)Fgm4B9xiE95`{f)#eoCZa zn)S68cV!mkc{ie*fFvVmB=cDxYsuoR@WxN+s$bjLjhd-*k!G3vwOm5@(W`X{D?OG3 z1eqbWGEoYia*vrpzuMZ7QarTxBSrk3T>rEF?y#9in$pj+RG=suz+KG(exCoSMK*BO z6NSt#p}xiv*|PpE$AtAL{pDei9!7B|Ibom2K4x=-IKI?te7inSGYe2*fOnm3K(35R z9YsrE@&)}U;^yuPcOu8eIHHKhmnC~7#>Z`EI8}_*xa0Ht{^606R1RaD40QCI{>$!njt zqdnDggw@^1sx-jn zbjYhvKHy`|!7Lo=`OR2!c$y{CV%Yl>8PodbWN5(5{`y>Hvr;~Q=#+TK!zQr5Nw+2_ zhO4%^T_$Ro`j9+@qQrlr5)r?zn0S2#Fw=D^zQcV7Z+&!&y&x4q89GW?4bsY$jPwUb zG?N&;SaMk!i!z1>NvpiGol9o=`&8qz+%e^t5XP43bkotY0TGv>gaDct2%=tZXD^dt za;u(0{`qdNigX6GtFK^ZP3c{2tOZ~@ns&58$|bBKZip%*zqaeg+9|w?uZM*A3Ld4C zUXdaJ-{9{Fe#?*N>CT`@w{w~YBWMhZ;D`i`#Xjx~Vk;8>Cy-ClOnKOiVd1YZAo*nu zGVIj|=qIv|*B@A=$Yh*?s5o#2bv#;=L|jsFekRwxD@qd)@UP>%bSJ>xq*w=tkZK?B ziEvN_lK20lWGt! z!yk^JvZZH|h^8iI(AmRsMxj(_U2hR|9$eSW(L+#ATV7 z`fMO{_pmTB#L0L}$#4#%oua@D4LOR;2XnfJ3#)PYeCN=6&34H|ZG0RR!w9?Y9TXQZ zS|w%d$$X&0h#>=$a5TsMTSw>fMKD#`D_WZU&(l+Nh1$6C(@`$|H4B4*Cl{gv30}86 z&c8$NjDC~LOy40v&Oe(-mM}6Gu`Ke)`$>DD&q&Lku#ndzFTUw{Vtwuw&G0HA%|yC9 zl8LB7Jj~_3O7wUqPIK)J{6Ysv{Z3#B1;88iahf+?34iuP| zh<2Jp!@PA=W4oOsrQssF@c>Ccw!fgS2>V&`oCX**a4TBu2p6#E3lrlGN5il@sDsLS z2!c1Fgh5m2yV-g`hg@wqrAD~NB%ZhGoJHSRg#}z&z2C<#+JfI|3sdRc_O7zk43v-4 zzG&TV)(|?${+#$YHK)%pfOABHh!gXn9Hzc=TCg8)Xh+I%Nr=XD71$JG@D?HiGNsY|U%2$?GyCu^D7 z3~aE&LSzU*3K_kv@xV^3&M`-X7;qHTVa%t$tH*ugxQWY|w8&612;)=}HMu`kHp1O4 zrjhx9i=&Ce5&@CuLvLHoTDK5OO!vR~(b|>3vqzP~v9NJR6$=09D|AyTlFq`rq_Ueu zQ2FnIa=-Z>&Hf!U&+zniP%6%4%wK(l?_B5&)f~?Ja~bv4_v2mf0sn#$9hlYkoTCbJ zgsS>4zgr%cXWTFhf}g{G{bA+0(0`1;MHXMax$1h}@6>C^QkB`yaONc)c7F`2tr8}q z0`~HX}+Jb7_fq+?ZwZrR3BPJuOQR<`wf16-<+)JS21<1!K3 zhM;(CEyY|Qs!b+(8r!6DKoBR_eHtjKKCker?p#M@E5#^h*bvf9UyrT8(2(4{Ol3|t ze;k4V>(LDsjgroqA@HGdOXpd+gXXBN^-@r|EOI}bz@-}`K@n296F{pIaqyH*pfTQ! zyvrYdMYaBC;B6Ku7h14E0;{neMasd4zx`oBkza4MJ*39ym4-0_ zW3qs+GT~`P>g!5bTdQyN-u&>Zh;ed#6gF)oO*d zU4!$crnIB36|pD2{zyb+lycDFlFy;jDwL*lj|l18WyaVzxXj!oRwiQ7e+@q29T(Q2 zuxcBZdg6=Rk+I7?^D^8UUp!My1G52un9LRcT#z`(wV3GJ`l-E?1%^VT8w*Q8=k+YT zi%l-^{b(^8;xFT7WK0QP>$P8WWuSnI5k39PAL)9{!=b(dYahIj-?1`dTub*(l&LJ| zew~9fsJQBLP`n>Q{8UWoj+}qN4ff@MJV0n2USF^FVJ(xI8*qz4nD~`Fl6-4nxioiS zQ=FDTb&Nw#^`4arP$PvUvb?9jxbK)G@Yk&9X5-|*J~DUUSPn5V6f=v?)v$)D(DYEA z*@T>l51EcP-Ti}pf`*BBchSBDX-Q^e!`aHIY2dPnJ>pdoziT+%=?Rg?wF?8~*`PXI zXg_J}`svb)fAt<7YJdoV7A>WYH<&ccpu&LnCYT6KA8XL!`m^4GEZ1yy!Q)hgN^0}C z^Ua}yn){)nWB3iS6Z*R7EDYl4k$~qCfueCxeX{{_t_G;;B{=849mI&o&Dsp#QVQJf zcI}NAf=c>Ir6n5RaTw8{2!_~J20FckXSGY5|8Zyq%;!|&O1x|4@BO;wL1pfJpxwna z?U}qu%()89nw@7Qb@Cf(I{uk?`Rn^R35mF)u6J6}077}d%dd?pC;Hh{%Wa=8d+zU~ z_7&&qV6Rja$2DwyQQz^i{U{A=TSkT7xo$ZQ^gN>;Wz;l+z+EPH>7t$OWnmr z&hJWtKsIKjzY`a=S(Zv0r~bg;e*6%`5eOh!j9Vvy6~NmN1ww#Bq|YV&e~q4mD3h(l zPqgQTY_B*3AVx+z<&&$@Yi(Y zVXRud>X|P?hH-mQ4abJ?7FVavU{9Isbi35o$*B0RZYV=KVOo%CpMXz8uN>Y_c3Q*h z?^%^VqgNEFk;3+j?=&ILMab!`nrH9H<=E-&S;R?Tc(XyI&!L*ax%(9097*?GXr9-s z%HRU|Yv$sZKg@FxHTgAT*CItArG{?~fEDD;k6aRjWrRMyC}3yMTiC&Wou%OHuVV4l zH4-i*K1ky6?4>;{!!Q*i^n&F($U@yA2i;T=$y`vbqc6Iowa=b6HJ2yz8HWa}rBjdzWr4)!*g|Ky#DTfNYB9NT`k+A z6;fIa|v@T;;{XXIsq`TG1}uEgMS zEuUER=@!q(rbHDu{iuSMKL`AartuHYU(RMJbU6nqCCLh_jE%tkkP9)r`@+)&K_@b0 zYIV>Ye2-D>G#)mjjgA8MVzW0;v2vV;!k6F-Q`>xi9IX|-Oap-|lE>(>G=Mlool{1W z+BPS8%9X$PN;lhM@3Sf54k7Vzt7wRv@a+W&OQ?fBEdDwt4=of>VvE8v3Yw4koiTiq zf9_{SUICP<@+w61`K(qAt5te!)e&#+cVW;hpPWjjjpoq8f-a+%e8FBaUf=Y2=mglw z{TN|Ah(nsPz5j`Em|xDZ=M-JObYXk>Qr7Z6_Pr!=6na^Op%>@A=hkS=cPL*bw{7Fo zf5y)MC^u`_g&zxYE!p5@*tes;qt$906t=^brhBar+5Yj2ehU=pBi7vVU@1lop;N1aVl_N3hN=M0OQCWAZWYHpT zx>CeRg;nIh3q{`Oo40WdID0a$z5-okx#5Lv_hkZ)5R3w3D`_e8#v`TGcFKUs_WJn+sNNJ-?y*|e8%iTA>VG$U?&!LUJ4xU`cZ*wO`RKQ@ zeHjLe*prWl?kDpH+{=yZFW}sSG3?YtT*K zUnRo4NgoEcOY&JCL+uWnPHBY0kduj1vP%0IQbyjT(nH*Oc$h;z;V0!)Z3PqIF`@6; zdSTX`gAIm$no!IHKij^6$o}J?*^EZt`UM0ypuCRK!5{Yr?* zNPHLbVV`2xCI0f7GTBrohp$p)It~EiOq{BH{`J4%U*TLxjY7~FPY*|8hAF}?yQS@z zHYrJno4L<4X@t~!Xc*3S^V-Z_1OIuR$^u&fE&DoT)A z_}2~KYa;#;1>G%tq>|@r&tC9(NI|IKZ^^6p2?ai~b5Qcl*+j!RwV2kF`UFNK^Na5+ zASJ>9fI+ZmPr4wCcgN@mj5A9{ z6!Pi`Zcq4HmZ<}y1YE0JdpS1yvE&*XPzpTdhV&#pN5(N>_m_G)qkLI~VF;0XSVs?z zNaw?8&9p*1PI6pmgI;B~y2?bZgmKLtEiC|V&B~dnsKZZ@aG#PV-Cua_}iY< zC%F0I!H>NmBgbf*L4eHP3%Lk#$O1Xu@TO06|9~#}H7#*w81~6v8si z3_&@0N0G63p!MmEOge5A`=l+_XxM4}yT{${!d9p8$06M|!MIRY=tsul>P4OT1QQk-8+17)k{_yzJUdn+fOAN(TmcR zRqFr+F0XCyd&s9P>p%U>lf1eL-tPNtTHR~_ojTDEc!sBGcTdzgD8>bGpEB>5YpD%7 z^M0_aQBq)C`>RekI|C#9F1Qo+@Wz;A#Q-KIx`32L1SV6v$`83=;L`xz>Z6;yp^vEB z@3W@fsYwmwr|2#D=YM!oGN-5R$iX<4>XF8fb$&u2ewc4`KGc>k0)W!#hMU1(9T@Z# z^gKq9zxM%$8pMq943p%?z!5ikA{4(U;5MY324ctaYmAT;MMExMrj|R1e3g*Zoq)4o z4pt>;&w))XMM`2RQ2GERZw8+q5s&^al$7oCM6e=d*gxgpHW!XSuA(pVT0tDsFzO?Y zet%c@jXOEN6CCRKIgs+-6h*|j*BgUN9DNU{BW}_Bz=iOiJ~KOOPTC6@$bt$US`S}R zd)48HcO~&pROG}vr6V0AU2W&PS1%UhY6uLTO(wLL*WrI@5kOx{zpp=99pCkjY5a4I zAKmU&GfK$kb#~vhJ)7Ks{@v?W9D1}LH#Wy#(@#3*M!)(sP6$sz`zGRa`q%%lDgV_= zhWl^KjGvp=ntD1vU`bAG5C_WYoGFIN_R3eEUHR?MOgL#2GWLF)zkZn)cFXur)%4*~ zSyV;G@Ne&k;;6~xq0>>!NX$%&f@V80r$V4kLw(SAE1iHLr-J-pXARFvRIX~wWhPJ) z13kdTa3yH2|1R4k$5CK;r+aUlaPt9+O9VHl!9bm}#Dt;$Ra*DEEc1lYLwuF&gpc|{ zvd7={IP3vU_%dN+16qBkl{XrQZ`D9hc`R{1F8$M!vY!d|#&M#ioQ&RCZOOCb?E`3m!bYe9!N1nzvZ^r>AI`@y4G*TnQUA(wn zQX{j7nU+2piKWuHhNG5A{)s5SwG>V11GvxiYpL*VaPKJ3!Q=eWps#-??(a>&O_Vtd zoS0zOWETlSu!0d7EZ}kU7YsVT?pmez3xS(TSS)+y9eo^=;7y#lqJe&_O)uKyg2+;r#qUm>#^qD%se=err1mwBCb0&>xj;?R5S#3m2 zB`ED4JbY8b;529Bz{eaGzw3Aek6*b%-B<5QGRLqQwQ5)W74*m+5F}nbYDMZ_&&PO& zmVBVCd7IhSit5g{Ig>ZGtQsO-el{R>UQhs!^T9Z4NkL^a9F`_rNc`h?wP$i+R=dh% zfnZkC&eU6KQNp(Uqcqk(g*br+ux3Z8J-g2Np&pwq)NXT&i8Y* z65jG!kp@|qZ4?m6YnYu`|L)M?2Uv{nFrS0B`+~Bb6ZsO)S1(LiJ@6lf?YzYzdb(Qc z<3Pa0*R6_53w=s$>UC_`Q?E}w2BeG>Tb_RS)BP(our|_#Iq>&m=LSFwd4T!fdd0S2 zc_x#z|NLqffi}f0U*#9%&8A_J01K7aJs%OExy<@mABf%xlFJ|SR8jehi+lYntwDoD z3EgseFo2g@CII9TfQ_8($py_6-j~`ZqiL#HtprCnbI&iE zc=JVzvEO>1GhSNqbZMIhKSQw`(i0~{36}S*E!t*hP7X&fw*PH6T5cOpK$d_gQ5;KZ z_pP=pi+K*V>BKzqQneYXbZ4uE?Py3^@66XzV$iZYE1Z^`k-;$igqqFqu^(>!(kiAv z>V_~HV^L3sVM!OW#5?D@_d;X0yn;#s}K9Gafk zyI#sP0&%+vlUr>Tg{al>M>${MER!R>D#>ic3@atJV`1~V&4{&K7-tSpJ)85Z&sO6; z-wq#~(SCW}uSA57{p69MB_l5Wso07Ha3=aa{Pk3XGm9t-zr6X=maKBvauaZfZ5IGw zoZ2f71Ihr=UtT83V>;@Qqy0Oxm70}^8Z}NDt}`=7N3{CleKTOiI&CQq)9PU(>voz4dY4^ z3$wyrIta*V0=jgk^V+|?4C)BTV~By@HDaQKR%Xu~AS3^s`)}#_CmIsclp7QtBeNDI z`GZUwzQkXhIE5p9=XbtGdAvhk*Y)Z*;|H9~=f)lAaF+493=>&CrJa)Di0js-tZ&x- zkDigEihy~6%go*XPK4W+*Bz3_Xj|z6BPTQaAGX@ekMq&#Twqt`5vL8b!tXcHe5I$L z)xc~9SPQ-6Mb-pEU~cZfuCvz^UE#Sfy?^BF>ox#2uYN_clVM%-2gdhooQlZYI-c`k zK1ogeHIW#FZvraJAt9XVgh8Gg6cCast|soM)Bz6gEY<5_(XmOha5}WuIOuQxAEW9R zfWC@DGMQ(t)y@7?M%f2P!6*r3`*UZIU}x@>`s52mXBxYxmZ9H$95VT^v4(mwRi^A0{(36)D~xvobo@77Zw?8eH8v!mj`1ta40>Vu5!mDlb< z$~>E}p`qj2Y8NLoBrACbps~7FBjiMp>T@5}mMh>s1qj9;e`wqLV2tnjtk0y+Ny{gG zRK6U-ruJqgIW^8cyPS1A{1w=}|K8v4OQfA-S(dw1;U}F8MuI(Khh&MI_m@qgIr? zaXjjM#)kE)Cq`xxMKod_osOKSC5aq2PLxkNb(n=qeX?WldnuT%|KmI=%si0SP+ zn9Q_s8|gwP{D^pNYX#UbzdHy2!n>3iOd*+w$VSir6-XwvO)SM~;t-hPQ2DfT-%Zv^ z?pGh+WF;b(SvL+o9YKXM2=+Dc$d*C8GAS?Pg}xF2#p|T?JUROC)2ai*CwM^+KRT@g z)?bc*_?+2n3)z$lwCf2=eMy4i5fr4UqX{W1ttm2Zg7uA2-HCors4$vo7X`o?Co}=L zo6a9>P6_i!*QH_FuG!>(jV-R&Ut6?*zx=2fFxVFigMR3AO=U@uu-FVvHVB`aTNX_p zf87$Ok&e@T`@xc*<$+rw-s8k73EeiD#OAr&mU^a}^xwOt=%Bub=g-c$vJm_F0_KR@ zW9Y(LAF6#CiQnoI!-=8TyJeD30p zD1L|fRurq-mEDcLNexC3-tYTgJ?H6}#enM?XxKjtqj;L#Xv1-UpCa${Cw6zyNsu$B z^;F)Ev|3trKf(c&<_3od7IBH-VNKFH9zwv*H#y2kN`ScPeZAj3{L)>yXCx%($iNRo6Om!hd_sS8jpbanVxG{)G5;htpq!eV`aTXiSNBm0#W$ zCnfRikq3T1d%mryik->`-#Y67XKTa&Z-DLf9RcG+|6I9!Z5O6%m2J08&pFXUz>q-B zFxvu?9vI)NzrK)H$Z5fci!-;XTv`YMc~5 zvUVh>;!WSl&0BF;yjsGH)&nXFkkC z2Fp9a8+d%tkv2Bnm!VixiqEoDs-2ck&?g60nPE=?K>dQ)Z&zvY2Zl@ivPOu$CJOyz zGU-{!cU1R6_bw1+gwuyf^c{WdmK%w;M;EnsFuQ&BcRkyFY6_!5>fTnvbJi+p-7hb{ z*%+B)`Xum=wtXPJY5uN2<)hV;NdX#An$6+|la7qwlS!?L7Ip##dQ)}yL6}9pEaAzi z+dZl;9n}~=)0uTqD;%{0$ zEJaNZSuY2|j07nu6D<<8Y<33OTOW!%z^G@}?<`surQk(v1>cjFP=V&^HdBAraSXRH z!oRP$h2^_+%L#!d~JK{AvILCIohP0p%J|2*9Wv27!j42Gq29p=x@8Xo^}fUj#jYp5OaevHtOM z>i_^-yq`j{cs!q9LU|;Cy^oLTH!&)T5%&Q!Bo0@&&I9N~e#8XtaGV6=i45;j*8AnR z#nKWjvprFZ@ULt1q%&c!6|wb_{=dmY{& z^ScLl|HJVnHd|>f7*9$YL+5WP_Y|S@7eC_4@h|xGc_|Ky!=7gd~?uJkcH)GR|Ubo zGf0EH>o??wc(d8c9PY}@WQlDLQgI;9eyv0@uL?5^bnJG}x`P8O`NDr$;wCYQt}D(g zE7_mp4g4h`Xh|5zI;}MsWaM}RUmVaeYZ(1&Yo|m^lEHqLrF6fE85wAKa6TXg7;$i7 zHJB!Bo);nWI{ki`q=WG@4?*We0~x&?e8om7PfjGffyez=SH|HM=Csn7m#k`KZZTRA zz#@YNG9T9Adf1RYv>GpjDAHRlBn(?nnMqq-eDmdztUFYTtTfp!k)P>rk@axFbX{Xd zCNk&r{C4OrO>Q|+(q3v%ej3+0VB(`>KkWE@UBKu={3wPG#)4$8>+{7FlEVJFG*HJd z%WvY07x6fA-abwAum~TfXVm;L0A7f+oF*L#R!Q)Dq7}G`*?z!kmUU!fH0E|AyqSSt z_<7Q>p0#_2*r7IMWwwM{M4;bM1TlP=GKdfa3)1;G1UIPVY@)|10vw#bw#nFa2@W58 zPvEDF_9I1ogS$$Y&$G@kXJg>qA)fPyqUc1gJkI(_bV>!F(8#h)ol6aH1i zCn)N?5Rvf%h)A$;87Xph8Um}s{JVZkQ0>CcHa%f~&nq^T6BIw_09WO2WGhwahPl2BIyGVaWG@2`i1l z?xE2hn9kAVRuSS8QWA(0FxOwTKCc(z0^#3_;R1Ef_^JW_{E{Ss$4{*L+->L~&>+FD zUOr)x$>JMvmI)sgT)*7JRA!gfim|Q6$uh`ORlwdnQgf*$`2F}O6ltt*h;h2y6(s-N zks)qoKMp?fr1xnw8ajD?4oB&Jb-6nR^Y5&qE>~eYI^FqgiR*JYTi-5&*xpHTmxx+! z02K7WL51~j@giA-2G%T z@Vj*kP-K7SH|Btm52SXNk-KW-uwt0@u)lMq9AX7!n4_5UK2i>V-^V<=;`eG|`dEft zYk&Ktm%8moM-sU%zPf#&scAYIQ{ zMT7YsehBJokJg4SN@WDT{;yMrmfh%-?#Y@;f0s6Sz76Gk@3H0^`oH^;qWt~yy42JJ zP5g`L-d+D+3>M=}M4xG%QhHw7DB^=PV2DrzjsyT7R$xHg9teaZHfx(C*uh0{LrwuT znGGlU13GeG~4l)cEQ3#mel{X!;S$zxV1@=?||Wq(n1PGP&l*Wz`u7t{~2hX~k&0X%6x%vr4VR zaysPXCIn{!=g-CXE&?{z`j4~ zz@5X2!HC`d6~nV&1OYI90J?<(zn$7wy`ZGj1<{D_U!*9%9yw%c3Y>4K?JtNqc-4gp zt@>h7?epwn{*~qvflLp^z}#-ar<&AQ?_+ySE#^ZE^UfFJcsA=B zDB65}FDs7`oWITw9q1qCW5=4K20|WTiIvBOW2UZ9Y{>(_wKK+zE|N8Uw(6&<4kjC| zN2JW?wR%)@QHwCTXRKq9N-xLCgn1H$C%FSEg29fg(e&fB@qg-FG)gn=jJR}e9hXI1 zKnJdm)o8VxS4GW7G1cg3!RLtgk0PJg1*;3pEBn=G|D4k}=c@#~*>5&2Xvzcf@a{Mm z(f}bm`tE@sYnQ$GsM_EjW1T_8l!EXpqlhb`bT8)YLs&{S>BQF;$RtV)2m7G;07Pzz|u8r)M;udnm1l zY8yeR@J6@IKpAJ9*~^{?d|4RZ#VU10m6e=oe=RUHPy|`UYw$yJMHwfM=qnvBf#Mj) zjX3}Mf|aE7GexZek&!N`lI?QJ#T(TmU4N>PR!iEQDmnsy~|_e zw-}GH&FzZ7`eh!Lr7t{AQJ%w6*{F}-bMVImC*JFEkxdJ!+I}q})0JC_wC+tRN+p25-%;ax!ny(Gk!>$W zM~LS1e5Xfs%0KifxSY?wgQMqzm}WE@{vWQ+W5;1-*|HzR0lgd2lM=n?XY}5Cetomf z>-+BMMgavBB$Xs)#E!L@k(qZ?2EZT*cQJEAW*#v27EBQ;az(+?&-Zx#F1NA`63`S^ zKs3XWv6T5piiP-~y@E3LGX3k#sf%EJPcULNLK{LZwv%I&aixfsXJaLmG%P~R>FlQja_K_fDg^w#Q&MG_f z6P;<%)dZ<@CZ6+_eY2LWEhiVOQoNb(6Tk@!W$xgJsLT2 zt1F)#;r1kRL#PQbbzW6Uf`00oWFiGr@CAP*`{kLeHiQZm;~&8t&D7EiLMlCH9K*NN zT+O=W=uDk5RK?>QljFjm&yN=E4Zi~-naV_mY#<5 zZ#LZcDbc0=-nA6$FaebK<9TP6p;E|hU+$kdw)7&nAD%C$8;yc+N-xjtG{!kgJF|@O zbco_B3Dk2JK?VRu65aipz>M>=ONL|U^>Z6oy?Vn$7r}df`v`G={Zk_0YTXG)l|VoT zz|+)d1~>h;X^SP(a~IaGZD?Mvx<3&3{7ydJ7JdK7`GbKtWVv>>m3f23nOPR@BCCI! zDlc_T$O!axgm(a$H6YZ1`89w0A%y-jsbDN-6*wl$X@AzaNp-k-I_#0N1p~Y6%LGYP zvRmMKEx7? zh^q*hPRSu9SnmkzMxG95C0W0!f&g$ z27X~$Zelx^1HPbI$NAYg?!Gui!WhjS3-D-1Qd0^e0kC<UvAZxC*l{A9f zJA{>ogpXPL`R~4>PU}8Y$QSeSnbt=V5L&DB8NH2oae%LEObm!KwSVS?^dZ=d`$>2^ zbt{Z1ZI<@*H?vp8|Nb!cB0b$|Ake7@3>MHpj$v++i(p}~lX(^bm)sl*yfK)W<48;# z*vPHyG=)9vbth;lGNiTm>-AgFB+19aLZ@A}RZ~j`Qf zEL=simN@@z`7n27B*WOyaXkEfX7mi^wJhlF0MMucAj*yw;z8p4D(Xr90%Rr(28+uR zJ6NB953TleTlOk4c+Yazw7|4~)P0@VAQ<|G-TU(NhO_QO-JS$Yd=fP99PtvBU!ohA zvFPQ)w?q+k58SCYMa{bq*hhBc7Js?D_zI@{uuk*sYu_R;jPtf#*etJsRNOl7gv||{ zoLRAvz3efL9Ha6QEr%TxzfTk{2oPfofFYW@&tCY!@D?{}P|z=HlmO@S-zrSi{`0qQ zZ)y2p*}EbmMAXd%^4WZNPQl{Btw(NQ0x?|7N}kWrw?TtzJ~fJ(<|{OcAbr6{|jY9--{opH&d2o=hF-tBDHn>Hb zvI&UseKGzt1BE~3dFH|>9uu1kf%f2vDffr~G4g1#ZCLPV5bNISU8a3-&Na6HNtVu= z(xBs{;koqAqC}Rz-l6X*6ZFfJ5}bGOQJr5a7U!Xh+_)}W>6HpiVx-l76CpKlvpE*^ z)?d9L13aTDJvw<&?>pg@yPVVgy(QN9kN-=VCS-XMv`}I3|OVrPk-&f_5;$9^C=IbQOVrIX%5xNHirB{u@YIP1sIT5NC30oPt5?+z|2@%% z(pi_!^;RbJb|M{D-IQnBYwe5vh*L$27_XCIDZ^=2I6=zIP^-e##3kB?iUb`?Xj#NG zFY3hodKqgDD~m{{oi1gijiw#Vm^+xnT*r5PN`Xw5xs-V+mR^7uW+)GU82-1W za-W6=eY)Je3jT|_FG$7+K-Xz=TX7`Yu^JS_&kC1dB_mX?to~t?QtGC=S)t1aR|22j zdW@kwH2iB)eKvz~`dqSiJw5xCtWei0f=b#>>F3T+sek6x0Ypum+o+>8`ftDcpyq-f&4NPB1Iu6F@ z`zwht;j%@VL3$ubk{^lYF)Nx&CG;n#gT8!O9*BX$~mHE>6eXo&h0-J_v+iUu-ydceD*ZP!O5 zcf7;d3%bj{g^a~9R$iw>CFyR;&UOH%#tw967SYl-Bh)KkEp5OI`d-S*BAG1vd+6h# zGRWTT`eoL|{mmZ}!j0sC67sMQ3mlOpELJk5T`qEVb`ftuhf&lG^36f>$lF?rv$?{=vToI>vEv=|q;CW`0Pz{}em>Wr|_3?-?ZAE9*U%qX2%l zAy#{J5$e8M2R*F^f4@2BRoF=$<_e|eFM{iQT^w<37m8-t_T&b2)Y;XmTDsCF?#GCh z#Oc*1vDJCV(J1lPtUzD?_oREKu}x}BE(j+usc3@uAO{KzDthhUGM8-B0F9=`rqu~R zc{$0!B1x%D^xnevSv`k{dE&l`W4s!3X=GgMMbU`zvnlOWtO14cRCr`q0P)tqL+-1p zHh0SB?Z1PDLd5%NR^);2DGil|)>fKx>PDu?TkQ$@7!}1$tk_l+IrZ>>bg?RQDQ z?*?x6Q5mQ79dXM0riTKP$~_^d`#9+AV}PEg^qpXozBBDy~q30a-X>%!^9WHtd?{w`E;RiS{n2eWI z#^D5d5&&DaJ$P1KXgqFG3BcONJ~b+GI{7RGI`^9zoH0>>{5xn+L zCa@Y}thZd+YDVK%(okQ=V_V6%(k(CFGW45kJc4*#vNCVoI%#ul7FiN@69+nd5;v%} zDwJLhVsy!msDWv0-PO-4Re_hoC~@<)b$Npo)}B$CQDTIyUs*G6D9~mKjVwiiwe3+t zXy`LW#`|BpC4j-1SWJY!*V|;x$!|vC$3;xg+|cTN?Ww5fptFk+hF3r3rsW` zlskKnlvDbTMGIP-m&lq{YZ?RqD7$sMCVs8mZE5tsHu`?q^2t;Y#k47xz z8=;hkRYVRTiM(5I0usGVB%)k(e^e{D0z5`q(XvH@uDX4U5t+MvR_6iY!kJ4Mt@XP#aZ`uJIV1fI>ZgZmSQX+^Lv68-G(|{~PXrD(=B)8wObvHn4_uE_KIqQLQ?8W5$&#iTGnb!r{WP{@ za3WNks@x2DZma3VvLUQWs{`5B8^OFW)<1!?WQzVTbG<+DV$`IpXG%Y9CKp%>4v_Bj7pN$#+vnz7-l@zz$^S?FiPnxr@RVE`j=^%G=9cTRW zI|E+C+d0{cs8H@}H$WQmgW;IP@NZ9)Kqe^A*R`@=P^#d&n{D{YmO$$Pu#92su{&Xi z$RQ`FErSJlMTGgGDg0~{w<6R(kPobyFY2|h|KfK*cc3ax9H1Ha{*K}KqWL<%2yh5A zO&$srbsuJxM1}(;sqjW0gy%6nAmWrp#A_LB_*e>R$OY7usnP!G1L}~RbV8Nt>m%oZ z61;~AtPyAQ4UTQz_Zy@pjX-6+KXo$-Gs37l%DjwfRUf|RN$Xx;r|tfjGlF%beg{rD zNwKTZbD+SCiwnRj_Fr}uaH6&&h1 zd^~h0gX|vjylT1JoASD)_@J4|HLBf^{EpiQ3{u1`zbvFXKL#IHW42e%7vM_cyngq4 zrGNFzA&_$VZTz(iU|ic`AmiD48OOHrbPZ*nX=s*{!mEGt^z2(f`dt52cQ<%SCl=hu zt_0x}S#TDxsEEm0Ye35BYeY(p3|-wHSQ2(?xjS?lSa26sYa!H!Wo?Gzq40mFVsp3P z#Op-6w3HI~noZJa8Hu-~T+;JcnkT3Pn=y&xsDsQbgCOiJ8i8gY`kIdWcLh+BlkH#B zl;E!XJ}*!x-~4Y%8MI=J*lwOFPml{<>0rJ?~^!e>aOf%syPVXHdD& zC>*tWx^hkFGR|i-_M$2FT9n2g%k$-D&nt4SI+KIZXIAP6;2<&(A`(c_6R? zW0)6+z6>on&p@u2aB@xYj^$TpA4PXI9H`Bs;0%F)P5rRoT7)U>H=V==AlI)W0#Q;}YYtgsrduQ9!Q0 zG;B>%R7!?uf(WU93bc8Bdy$nSkV1J2atlp-=D#zHs}+a&ZYqmi@KKDk0*u7KaLbS$ zqfI&UO{gn|)cgBaG$Wxx-rUY@c!bM0*hl&MD)U%&P|} ze0l7W6y!gzrgTNOJ|UGLY78juuQr0e^TnIP@|c`|T}yI)$!+m5kso%HO-w5gYm%4y zH|KoerCzQP6dktm@7I6P7FBcUwod=0A@lX%UV-yRv6vJv1!zMtyu&8{9 z$|TIg`uj9JEYWk03<8r#LX1}wdobgliF`+u$Qnf>iOXxb_;>Qadnsvgt1NZjrosYr z@x~q(dK?Hc9t@gr8%5uWf&69>8_!wI#N*bk2@sWgodrp@$`wdIAo!gNX2KhrR`YLv z&~9b0oo0{ob_d9k%76?_#%8-%037m;21gxN1~w5Yoo4&6M!Z5mGKAe1JI{o7?5 zs9wMRyuO2`+MrOI6cpV~l4*Cy61&Fr`t% z%F*B4DK`aKMi)zB6)PmnpRe#Qjzr>(U->!3yvQmnFaaBj_o<5@+;6B*bq^#=zw3C5 z(*>D-p6}Pm*y%66&$DToYHId=F~5s*aBb4O1SX5qZtPxGP$vu|ah<7N5XRfDq9Hdo zgXZYCnqP!9Y<8tUdi)|w5{g;Q3#R6*kpcvs9W%-q>&LM|)o~#L=cs4po&)0Ol%XxZ zR44QLhQ%k@(>rl-O(DksFSz5u;&kor9b;XCq zH-6Ji<$NepXEFUB@4jjvS27IhkEo(`PUSDU35aX%Dd369@P%y%JIh=Y1;9<8(g!#7 zl9s*{7?64t_}o}rkzy<^TWj{e)~zRYao}IaKaDJ-jW6<=;ApA?p_DjONYYL4L<&2k z?8`;M&sQP`%s(8%*T5GK{uBM{`uZTD!^_Wi19}J_e*CA2+fh5<@2CSxH+dIaB9?r> ziOv+FNDT|G4mA_A(OZ{OnxmEKCN@uWU9FrXgfvx?{cHVQR0{^oz%dR8rh)Tlx1KCa zLE?!nAyvC2q3Z7_cOnHp4Wvr)$GYh-xzaG;ZXzPo75q3eTT!%O(=&v;UtTD=atQVV zv+u51=C%!^a(gSm(Jy(EvgqI0H4C`v#OmZ<+3kpsRH>sL8m*KKc2evN0qHSR}B0 zvOYTyvhVC^3%dRT9v=-w^_j@SLhdf}HHXBPTfhCfZ>o}Iy%p?R9mAx!kNJ(kyzBA| zlTw7}llGErEonSdQWG06N9?P|Ik8Y3+0yu6dIX(LlqQU*1IlWC{di3c|G#}(uO&s( zIqUpmr9w!G^Avn31jEKmEy2Gh*fs!|)vL{(JlaOG|L;olaRT_U0MhY~QFQ0Hp#=u= z>W{^F6ysDAvwSt>ZjKVb5~Sy)zOD8y?GXUS%xc937$eiAys%SYh+Gn(sH$1RMh4HmC;{9v31dJ_?({rRp7%VS~D-8Rw1<~~jyqP*kNZn}Qgn9&xtmWfe^USJm+)peF>}W!g ziK=r#?EB9g)QlYkol!%Qn)n6X+OYY=QB0QsqyLfy(j_@dFhEC!(Z@jcWG!NCTsbm3 z_3&`jCV-j9;K-` z1?Dm0&&SY)@t1}#CS&QZ?vzrnGWxabC$FQ3*&+uQ=@oX;?ACy(Q2(rAlD-hUI8#A~^*4b;h);?iPI+u10lgnUiO`hc_B8Yo!k#;ioO+YlI`| z4|YNv6!9MLw~y3Aiv2IMpw|=i{}WC63)F`k>~<$o4%XDM_7=9LqkL zFIx*1=DfBGsCh5kS>#AK(2LArv{d-C1Wf2aqy@sn;`{-}zj}{j?VBJU#INrdGDd1Q``@jXNH-iE_i=)jKxCPGKql-IeII^h!c#lAJ^8K&vW`)%NJenwdPzpsL2NbFVG8Qq?`hw_PUZ+Mey*wME~hmwZSni z%)0XXeKhMOnsUCdkZaN&pKM zMC)CeK9BPFA)QN1sZj+f*A*mjd0B5LM`(o~`QgeNd{rK4Xp&I#7qu|;GI)U38?N_Z z98GbVISGhox0sGhD%qBjL&!6@5xC8*K@@W5VWtLzB-Drpn})t%vX@Z8R?!hK^Xp&L z7`=x#%I0U}EZt3-;=Jb9sDb^m1QMPcuUe>l7TUMwRdnA?$c)0c&m~RDwYZE?psca= zhJ@6qy6rjsUfgO_9{y=>sFqvsQS@|;7v96?|7ShA(!}Co7HXmNQT<8!k7Y6B-&p`n zELSA?cLwuUw!%jEPp;Vc-<~gWlb<#SO3qvTWR#5wXHDaSV^95i6rUIC@x2q6^<}PV zlrgMIk9s;4%PB+Tg~T_STuH?|d;s4I*FF@3JSq44_12)^Re%)kd>+vcPP|*@kJBUM z0-5AD(RcM*?h=DUdw|pZFk<-=?#N&Pt2U5;;_WiR1Nfkwb8+!sU3ksIcI)R~-jXJ8 zWQ^i#{(G$tWB9-u7ut+VkTPHGddCqARZfhV?97tTT;Ys7)amp^L$q))>Q(9tAFnz? zO9nwCpuL#;ubVAeU`7eBDmuBu2qaCO=s^iyeb`sJuoDSUBKf%$+grR_HTZbLa|Cb! zf9vZ@ognW6=8BiFEup%5k{_6$R_2Y%CEwDp(l;yO%M=~7^2tRS%)YTHkulz|FD_KP z6(GKjf+;EOU>Z%hNkMF!jlD2b`$14J3INy724R$>`1^IT;9x9^B?5rGV7R}J5dhxs zr1!0^c8!kzb2ehEe5H6wW$z~65oqRK6B+n=KpJ0Z>iiX;i}JvPFc=99kU7|f#l4v5 zgKwHjKWLjlb8f-i$LPg{eAEN?POb2dNSX9oz%okl#A4o1ccF)NyyMQgD2ff1D>y*V zSboC(Ech(}Id2z3HB*`~MHVWX2agk{No-a|t&e%j@T!u$aG*W8VrJ!j;oYM^UHdMw zgx4WVIGM&)I!>TY$4MNGhfx4?@z6V=$VVUcEvVk#fvw?xvjD4RzNwp-lH1@&s_pM= z3jj9La4$2#lhXh37I8R?o0v3UFNB7|{A;f)*FpJ^x6D<_gQDBXMA)4BLJrG;Pch-! zl;R?eA84-U)72IHU;86;6Fz6JY@YI0+90JYwDu9rpF;3+<4;DpHWym^*ol<5JS^D~ zIDG7*`!@{`^U9i@RG1I&mfOcUfHERr;$#>&`YJwZ9Q1TFi}Jyz-h-A54S_Fr@;DzL zIgVPjWVQa8BHfE%l*o@j{6!owYL^g>wkxBugk3V1eCmK@cqq zlxrsJ^Qg@aTuS9`+W`Om6|5|hAA_RWtj&)EQ-gwQECD{yw&c(bIijkXc2xn6)`efA!mCb%?AVeUG9x=8lXUz zAA-C5nb^fnUXBPFRryK3=uQF55r&v%<;>?&G4D!Kxxpk9hF=DB>hKPMI4c8RT<6GP zCc~D^W@s`=3zY~xXW-IeXAvYNm_zB?nZG14^ek?d2O4+`t2jkbhpC6|-hgfnae7i` zi^`u7CA202WlF|azF2U`Kp%p@t|h*tJdK7vElw0BK>x7PXVBR*7(Zc;l6!yoA~tB` z;)cd2 z_sA(biM$|B4{o<{>whyBWQfBuL&vStv}WA$KYN*6|LkRw4LkL_9CE+@I?nBX`FIhR zPD{yknC(U7_Cutbe<>gYCakoIYqvj7!otX>**4yrairU!v4b5atM6*L0H`)E^JLhe zGb!ND_=#$t%2Gcl6z&m3GSqBS{_;Q;7qFF|DNG^26<-ZdHtcFhKMZsF~$mbd_A7JXp!$D%{!KhqH0= z^O|h%2IYkL{WO8UuNh>#xttdkg|?k{?y2$r`m_Ylr2g zty-*#k3UUTY)INe>@>ZhWhO<*2a4fj?6WlAbcKa(_FC4!997C{j3+in*982cR>P#r z9MA<;R_Q`68QKI_58fIG*W%zby|Hw$MB!G9P zuXMn(avF;X|8_Gt&QFY#R-4D;waMdz3^yNtiTo?w7a~(8*QU8pmd z#36TPGyhL3ul>s(lr%5DI%^+ySe1_dIcM|Nh->|8dfQ>3rs!7v5M+ChzW?rXkL=eY zm;#f7Hm}^jr?5*^d70_r_!N58o7VJvR^VA^IUm0ln@m)`%?tY6W#+IBT78S~Cupr< zr6|eIT{GOh+Vzp&UGKr}(~kj++ATR#Ye=tCq**L5rZD}0N1uZ?{rQw&e?@iARzxXb z_nVp-yL+bBjMO7nmsqOJKpE8)Ciwl*8^qnm_dkfUiTa3ow^KQ=Q0u=iD|_ zE;E!+v#ZstUBUDC-O(cv=^&RscSWqb^)$Y+Jul^w=jpfS2@;#r@U>wDk_xc-3+DUC znOqnL!;$7G*|l8Pl&K(F8BB;fbN`AL*tZ>DAisVUxeNpU zBCJjihV!P=(b>zGS{5b85b1YH`zn&EytmdKb_|TQ4D-$BEA>fvWio`I9uPe{_^E8i zL@r+cETK@(v|PI6Q88E!9AC6_A+B`*4g8dS+cY}8koAcsrgH7Vy0CZP;78~*aYR?BVQ*P=m07<_=&KT8g@%W0`Guz4ka{);iVwLGoB%qfug-n_qO z6#6T}B~sb=U%>~9$u+h1%m+_y|0v0@B~egl*bRZ>Z@pd;@t-vU4(=^*r+*cEE&_=< z$L$vpYw44501^IY54CY=YK@ts^fbtA-_a z?O11b8&6OUOC6a2tpSMFa%iz-J=C2?(ciXq{P)WFW?0z12~2IWHm*96SmN3YraKyj z+nGDf(6k?|W^G_aJ<(+lIw4grE)E0(FuxD1JJKsOnanpl3wFA1rnS@{1hCgVEfUKG zG~Ia+c~|rI!wFb4!c_N$o)amY_K$5pB zYLwc5PL=neT|X;eOY1T)76)CtHhqzscTPFawHr;ztRBsx6lcV|bqAYM?g7D1F-(e) z7v=LZ*4^o=zL=2bn@R`2p10(@f^l}V7qBHHa$(N-F$EGKTbj0W(2zjNV3p`NaF}@O zA%>AEOA^70&B$-hJ`z`V`4I^h`*(k%s*xMBoG~IOFQH$I`i@1dRnu$NuE3=z3G1=fAf3LM^E7Tyk#j+GHkBGoh(+JFf|$xAUr_JurgWFY5{U7`A4Zmn>mX*QBoF2D zA$vZYZcZtLVQUCi4}iR9t_=Z-bov$rikmbeMn1o@g%yyG@W&T>+wf<^OUb1hBtj2%XD{ogxaVOO!MOOKJf# z?f;#y)YehbpiyKXCT(_ky24lE=uv*c2mjsDI7#5A7D+$CZuCcVeUsYQ=hs!3N6|K% zA}DL&PR3AuTMhWmb+|Gb@^~^lV?Dp=^9#+{WvUegn&J&+82(2q^1KWdu%K9Tzz0(= zd`c7D$hSJ?QsK?r|2EPiV#?SFk@(1!{7YANp&bG z8YJNw@@Khz2w93!W@QA<%ssiM`Ycbw*JFR=0$J0-(U|TRF9JY=as1QEP+~hPS*c<( z7ML&`La20h8m%1j)s-7NMb3R3&*eln#L*rA#a`{D_#F6b146uoz4Vl?GOB52LV!1# zw$59~ABt3)C5~?nuX@|CC2yxHkq=)E9JK$g<^7+vS$0t_Pu26eEnu!i-|7F<)S(eK ziWble!Is9M5pv`U<%fV+D#n-0eL2pPO< zdj@boT(}^-FW;(nqhU}e8c4N4PdX_A0E?LY@Q`CIYj#rMJuX4Zp|SX(Z6B-%8Fi#k zMjJYIyS{qS6XZelMeqt0jz9g2NaRMZ#7) zJ_4*+Q}Zsv(|mDZTBZCGd-@SY2ZM))K)yjl!_irVIIb7p=Xrm#V2lZ}a~ag`+Mx4Q zoXirlHqPC0S%hHb8q-wpNaKO-nEL5_>)Fi5Q6TPkAxoVYtZb&n@2j%WeEmb;;?fuW zF!@Y2gfP>Ps9A>>*NAZTt6xa}?(Hj{Du^CeI%=wh$y9Hx>Lh-G#PX}Yf057c`wjd= zPFb?3{VzuZEkYw&UDu~H{^$QhQh<7|bct4JIvTavoLxi{U?}^p_*%6B8AmPq%YVc- za8WKN)ig?`>>Y}m@`u^bty!WdQlR?$w_n9>H)yh~sgdKE67|lP8(q4TfB^V`paSFF zoLeu^90noAbvhsya-~zUy>8{Qc)XQMevusEa|sJu&mihCEicnAt%NU*Hm^gy0H*(( z^ADF@iE2jKdr=P#9v? zRF4)^xOH440tcrhn8wm0C(J9IYfh{gC^B3GL{acn!a~t@K5D?x=Rf;dfs;MEk>5nmBEdv6lb3hx7e1 z@#B8qtgv6Jp=h|9SLbjG|2$fE1w|V)`Pi335N>g1_8Dp_^(3NX ztGfRd1!M6Cd&9uXG?+x@d4(3}-5icJOdhIt~ z*6o8T%&W?8{?EUz(cg>c7T%cgO7#qSl_=$X*GQZ^bddnt`~I7fNF9d!sdszfDPf~d zBG*__E&e=BXjTPoZ>S4La#8p{I`jJvQ_<_yKbP&{qMS4%pwJ1$pR~dc@8GTPx!yT}Xxij; zy7-9#u&nR_&BhBA!0aIyiM3Bs*t!Rn^zFNGeV$DiZja)yRJQQ-1mc#z0mJB-z#Rhn zZj=dBCI-c-X*$AtDaRY8K<3t&Ltn<1wNBhXOtbQ09!K;ET9CZn57nzI52`HlMXQq2 z;~1LW%xga$=uBzK&D_eh&z>8bP7&|FsEoZpuLH(sWun8L5hMKyg!1K3P@Eziu$Ij_ z-lofFEXo2~IbaEqrXtMj9AvY#2{_4ZISV@G#|mb|qM0{~291AfMt|~2-TmX#u0-Ja zxM{sMog|FTepTl0{3&L$MmJW>fAw~vYeyw}`-0THbUxTKmko*w;6-~O$y>+UjboW& z0r!RRF^dK^C8EK=ByA5jr09fBt0O>$y&Q}d=Xt-9Pph(3cA|#VgPdkn{RPmg1H*9c ztxlbax$~j;)v=;w6EKecnnoYT*oJ!in?IkzG^tppUC?j>kLNuUNB*9-`Z#TwV@i}Sedxt!GKaPx zSL%tGJS0;m^Xx&WO1}0CgooS2g0|cXmS$E9}_RRLgSt(nK`WuL8mRY zM<$3u-lGNmXRl$9A16|sjdy#cf53vs?(_a^Vk_o8sLhAYEG=hfyb&0l5DDg;SDE8M zW-uxdO-~u9aIk*6l!!jJ=ZJ1gQJo*Ke#+!)6-Xukol+r~o#_-;oGwvj#_9=lhrh8@ zx25)gI*XrB^M{ku5BsFcRBmQpuW;UZ2&>}tWAvPPt>;7YTc3f+W^yyl_JXABWBT3q zAh1#UjAEoRYDM*I)(KQF7o}+rJU^$~>3rUFiI5U0Li}T>a@CWZU0Qk%Tf{rORvqKv zqhT~2)mZ4}?68v9HI*SajIb-Z(0m}ty6<-0{^FoJt~nxv3GfCzyKU&e@#&0DGqnY< zY%6URk=HcoA9o~1?p%$77ovIEy(y`mp0N9y?pwut;p26ygJHLLp1i{r;Y4g=u;{=* zAM~F^zi&<8_(nM+TiLdAYlpDw@3uQ#5@#9~KAG^5IOJCLoDVy>V4nwF;jB;-|ejeg_I5(%1MUA?7J@S-SUb<+hFLAH@6mEc~ zDP{pycagi+M!I{O8MDofBefNNyMn#Eeo^m9P-bAicsfP zeGjOhL4}8_M(K{iX^&}6PV>S38z-GYHDAK-+{AxtSmoAYKlg(Xe4Va4^OrLT9g*(O zTKz5`H_d3d6tjLduok>Vh+c$mDo*f-LS%lU5uTlgt?$@|U`f53Cs4x92cfuSx!IZ{?(Hz7&G|V!(liAKDGs1A6HzkMR3^ zU?{_orAdoZ(A^CW+ImhOxyCjQbWL(gJ~shzcXUJ z;*{@F-FNa68c@FWoc0!53g6aGYF?5V7sgk$rzt^$G)g?_caOa!u6S`GxVrL0r31h} zVh(b+Ds*sxy7dpL0cm838$2bWNnkc}oGSK)I#tkN3F|ZU0XCR2ZlyT~JDqVO2Hdfp z3}pNau=nlxR-MQe?rA~NrLU5iu9?bM2HZrYdP{FtE!Q^eci$uAfO1ZBbSd5az`nK2jGlsA7y?Sbnva6} zCgRYHrF2|7!TNH7IVW-z8KZLCfTh1QD0KLH-nrU5EJAxdA~G1z@4=cS09y~rCl(>C zjQ+|E`g(TebL#noQ?dCs*c&=PISj*8jBrc4hx0pUZl#f%sNeNp(ykq`s1dY=$N@Hn=rT#XTk+7!Y81-4rAg6JZvS9z-Yte%cuR6yhC$W`!Ds_iz4+l#LjSpeZl+cE@0x_IM`joZhOEh#j)RvdjjP<84tl zXJ+`RCHU6VK;Ra$>m1kTf`auDfvQ|SwVcoFp_T>$L$?FYJ|tV!d7n_Vk@^Q1cwjct zVC*$@GRgkRxd&LjnqFSw2V@K!f~*S>JqwG>In>{MH(fwZo@l;*I<=TTnf@pQ(4+oW z={SLt#Av=*YkI2X7ni>{t)sv8ca{o z9lnmMyezW8;r03?(_Wc2BP_{~J)U4K^`s1?JaXc!La)7JcSyDFN}@!u8v&t+X{CL7 zWxeu;@RFO)AnWfZ46pf79Pa(uCC0o{;2z}TUGDjSd~=FjNnJ@<12(cL(v?%7Oe2dN z!Ty7WIs3YvSq#_VUds0rmKP><1PMLC(xF*)v58BBxLT z%eV~Nf_?a>id~(a$S#e0|J}#hG)Qz43ub%WFc~Y4Z53baTt2Er$8raT^q@Sy{ba3S zg|c$VQ%ID2<*3|TRP}lElO?owjabksP@9;YWrU(=;7Zs#+I|40zggFj%5Qu(*9g!c z`NS33Y_6FwC#@#qqE+O_iAlNdPs0*f-Mh*|=H^XevkizmdQx;q;7jpZ^D`yHW!}1; zsC~OH&I>N@NGsy2JSO&irLu3(w6q&0eSn3b!^{KzMk&KH9zzVe>z-ldT)ZT>`N$ zA=c|t|LO&{3lpBM%f+Xe<&-W#tgvdV-(9w&FG|HmGv1bov&)v#5b4IN?7uTJTjfN$ zO=4hmGo@71-lN##N_;WNGnYSW><{`ZPz&Fdq@sZ19GlIST^qH}%gK80z=4U!XxR3X zH?Omc8fphwR#`~GB%_D8KR~aSx~x^x^mFj##xqumxW-;;UAfl9=fM4Q0bP4f`@EVE z=Jsnd!m1JvHJVyGh3-C*1|gK)%pn+7*H$c>GXl44K)8OFGHvkLN-H0bEP(h4gwb40 z#0T1J;@W4`bR?0CjCbW^rJ?Z~D5HyUi1Fja0$59=lmqO#S|s!vm`jxY-2z-q{O4A;j*sqrMlacp-iH9`4~ zZ^|UgYH)j*Q${I&>@)|cyQw=bs|tO$YWmixCt~J&3IXJ|=8CC|7J<}WX>yY!GgafB z%>!!Q`DSDQ>P-Q7{Hcc-vsRwR$z6ZHcd@?-jIp&0W|klXn4 z3wx@XJVm7TF#rs2P(BKV<9}+@tR4|E?>G1IpLhi0x3-KsLSslQ?78q(STC+Mlux{2ox zo&Yb+s1^}=wIK}ibr0upTe$50 zChotHstAACW-QuHJRCZLzM6(w1E)6j0Lx>yD)>SwSK5s{*sb`ub#;+pH2wggfn-Li=q1-$mDnLM>o6XM#Hb z(=BZO+QkxEgpU+&aa4n#s%J?K%|_*;dzo<4uEnG?RqS^ z3|YVg)a1@*m@_*y;#`RvL;zfJ%B=h>1U%v5IF$*#jl`-awF^MRj>Zq9uE*IWfX58@ z$8N%3jck_bbH+XH*2t}M)(IMD;{jsqk!<$Af#I44a_%d`bqwZlqCx1E?~;#u`qjlY zRJ57JU(*(d1z}*zO=IIo1Vkzf#A~OaOk-)Z-ZTA$%CV5T zcsXF-TyrD*ySI(8W=>)EK5|i0Ek!9Mv{C3=@WwX9XQ2Q%JuK2a_84BgEBdxB@$&g( zpb7DxC;-{g0C$)?*em;1u3PnXY9RM17=iP2`*9i<5t!9H|LLl;Q-N+n;k>o)P{kZ% z>sGAAm+cr-2uUu&4&t{-%k662RC|m0D+SA0Bh9VaoPt$$3YK*<*+?@`sEC!&n==iU zMtd)J7xk^;0no5dR8PCykJl6E1jtiKA~Jd5*b9X*)@Rwt9rv7*?)(6T3xzgqfuD8N z$d2!qK?Fg76n3uCwulSKn^DgcF*$Vbh#qhGpwh=~rtsEnI^7wwJ*z-_{L6C>cSU2i zypSQJ`SY1pFbL@79XD?DiCQ5Fq)|ph0JmKYd40OLCSNN6ARNr$E&19ynD6}HXa%VC zD#R6r$i%3~+=R$O|EJC|I0dY7VO0aHu~N2Aw;LIi6i^fFrD)euS(C#mbQ=#0Pj6Qd z1-aq)Oa%h+n0H+sN{bTC8zmrn<@Vq_#dpx$+?5%`%9bxDlG-YkWG98>>NIR8!m#jC z1e#`z!Ms7Wa}W2t9N}|aqwm0-cqkNF;VD6R1C7tYR)647q7DcZ?UwQ?$OrZgn#YE>G{je^}27HzRdxF%PN7;_ylZ7xVb9to@Mh30LSsA!>b>*;;?WX9k`--qQ-~0}_J;@@fGRQc)H@et zpk$Sn;@rbdjf6aPEA4>Abdh+bsl0vA8pmw*zo`w9>$}8-kr`M@B#5jEmp~gII*22u zSiHnu1eOSvD)r}Qp63TidWkf_1BgG+TTizo>L(h~W*PHy{Gia7nK2CdCx z3~oZQxl$4pQTgqUL->qub$XQwUKZ$wA8#GIvFv2r;eMe>D*%2Wr znX+d5ShJ^6X@*@Zw>!0<*+D$HK@9O8{VJO1DjTIxf81hgW+YO7mZ#T^QqFhuJLQJs zZ6M7u6_U*GG!-q_u;3=%NEZoOe2DJ4%pZn9PTEcjAWeUU7kP~9fEYVYI&QTcNHq<7 zC0Xzj6U`9*Y=oL`BaeeSI)fsJ@sG3%C4MY4t6~YC_BI@h`Nzyv(*7T`_S1aWTa3i| zT$zE*q>tC}g5v7-HTvDIG$kQI`e3UE&OgBqybRIyu^xP6QiLK?93A??j<=b?U zGlhR4M{WEEsrOuI0L8wR?`0(8Gev7Tsr`Bx>s5UNXm(M}r;#0S(KG(Q!qP7Fru@+b!JMD^=sLKyAJurh29s`ejFM%2VssA;dvAXrF%L_AP6DiVQXa3+n z(EgHoaz^>wsE-|PHFk2<@BU6!{Qv@%s*UCpG$sQhJ%#4&Se942G4Ib9YxEVVUQ$mp zV>i<6?a&OBeoDLOmnks6>4~9p_Gjz!NQ+x(4UtTQQ;x2bE*;B&H`V2Ahky|Gy9@i0 zq$dzt#8d@_SGYmQr|P82YtS5{lmd~kr&E^3)c?TH^rX2gL1u4{ zDlLkm%GU#AE+D!xla-_|46YSVddS-ACqjx|OTu9pw|K^i@shp|qR}k9_72Fsork@h zr|(sGa6u*;Bx%mSb^V+0KD7;RelG=S9EJU@!m6*<%6O8Gq?K{*Byx1DEZ(m0~X9SRbm*3V)wLWAw%i)r0osG|;;! zbo17Bn$Larr-6|62#2AlOxEdgf*+N{VB?q)QU%wu&r;o_nQ8VvsY0`{zilJw-L$PAF&Z<1Si=v=uZT?KUE zWSKmFd|5iKe20RHum_SX_F20gjov7d;(^%H4}ULyeU)mr5jlRa)*qRgq&_@ zCX(1ixzB=8jGmMIyQ#OGRi2qQ^`yALvl1nwe&ZwrFJAvaJPbQh;NonzQ$0dOeJYJ!AbG1$-W!8Oz(h5vNVq3gb zF*krtq-pK#+cy7_ty3hTM`_>U>oyqXd9IC)<9!i1xkqX0nJnorJ_g9Bs<+D?FjZAe?vFJ|~9s$>*K=f(GojlFP8zhSI6M#lD ze~e9HDsAbwIlE@7PHe&q0rTf;~&DM>;yIOZxM7}|*c=5o|K+L49-)jp#5%(x<5 zlBa}aIN5YSeG`YKA-bH}o*4ChXFzj^4;#=rEK+Qcc-KVBNnN6$dtdVQ>F&y__- zRK1d!_xKh@e{m>y>Pte@4&vH}(bOFWs2oHb)%8P5Y_s1aD+R}#&+X`fd{?0;ApdNZ z0UzQ_qWQ&r>q!keGc-Tx5o1PYd*3Mgt_ZD+=flNfe!|P<^w0q_m;3;9F}of&xa5w> zDI~5rI_-Wm0P+xl`=0lc*8F!nQ+~_gm+kRBj%W$^3`yeU%QXI`E(exODILxUkF73- zlojC0j(!zP`gsCrfnG{cX0eVGwq@*}TT*TKk}{l=*zE8GnfK#S$TZT_#$^eDHAJ>O z@5jw=fOkQ0L&;so98Z&uyaMI(bYzsY7r#Is+{N!c02pCPPNNvk`|Y6~8!(@O6IS}) z)s3hy>*Cf5Y_@&K9xadn?!t(tRd4czp*G(UFrv36;QBa)KVKPe%dxfOTwbB`qc+;$V|oIw6y%>Jz2L@d3(YadU$PPxzPjU@oDu~=U4p7UbV z-~o=G*T=Nd3CKLEq&S;2q9qO~!TWtYl^&^hN_(7{6-x%YqU-x`2Ogf>T zPpuxKz`FnN!60bGyS^iW3lhPrLac1b};knTz9s$+W8 z0Dz{;G(}B&u&sd~26D^KoQ|=3dW;L|WYL+O zkE_MJO`NcjM*AYYfYNX!0O&4x132JB@Xb>}pxc}tpx+ObFuSw__^BuY4O&33{otUC zLLb#Z)*<8v=4k>zMRyzcl#a#<#kW1YBnI+w)y&c0rg-S$EpQ6pISA|5=Y7#9XnbVm z_lxZwRA}6I30=ByLmH=DvfbUvj(M5PPOuU0R)H4MC%mtFcb?Udk7=IRC(SFO#(v22^SZDkJiB|yr&Z_>84c+sCB-94*eIgfpK zjc545DvVEvMV7oN0Wsp8v+G63zu%Wta54aNoJhHq%6KP2JeU>E_|pg?7`xPRRJOeU z_|};9v%BXK`2b+R)bC0)THU_=(J>h&%2h-HbeBvc#5M5zlxBo_lpv5_V7gh?5@W<* zuh41ISe;R2cuMYROvTofgJeV4BqrLN4M=5(%v5o~`>2}wKb4)PjaE*Yaj!5ya>PkmN4!*B*;mUGI_woT(i zBsCqIm^qRkB$#(YPlIj-6x_>}N$^}{e2&8Nb_f}_ukI1xGT2O)v6Lu{zSe{^dJse> ztN@89?>2@+;gCpssiQzXzfC(mSi(1#ENyA>Vd4`CngbNCz7(4vy%%(j11JioJ08l_ zABU_Zvk9U$CSt}^IXTypMj&Ozv)*n{zmZu;9I<%GsnFyd#4skqhl0Y7fFz)eVEnXU zRoZr2{URMGvC9>}1j0y&=6giT;M2TR{>R3Q@4e`$em6-#N7kn)FQnvy1aHwp)*zTZ zp%PsT&?ZRy+2cqEl6vt%Kk;)}yAibDM2F z*J@j-nL)4ebO!@IxKMWfYGVa&;ujIy9z~An{Q2WM*Z?m;(7*UpJUQe%$X~IIRsazC zdG;~R6&Bd{y^&PJfAT_>V)`IAZybgp+zQ0y>=I#dQ-Q&#P{Gm*&qt)Gb8|KV!*+fk}0;FXLx)y0&VS@(VsPJw{v|%sw z*oZJf+fOMDfH569@GMW_tSzDg63qJ`P)S=)QsCG z@ye+W|L39Gmyww+7=9X~sZ9A9dHIRdX~pm}FrepWM8sF{iQJY+DlNlN#@*Xz?N+AE z`P)wm9Al?s8MZwKMVw!M@4_+G4oz^!K%dhWGj3lS7mVN`UzeXdWxUd^moh6faXrm# zvQeIW3+t_MB}GR)_Y?;{n2?>z1<)VoQ!M30qw_Gtw*&#oq+Fh3X;>(6bH;z4Bgo#^ zPWfi3N5#}z!2zE8OCAlj^573h&ut?1Ot6^MkT9z(0vqCTH_p5Du~;&5#yR2VD_O=@ z&nm3&J%{uAig;>EG$2Ef2xl0ZUnO$BVY2JZjhyatMwv` zC$hdF>YmHeoPiXl3~-mhjmID9u%K~n5G?uR``ot9)iF|(h3|NVMf6KpP>#RQ4%B6B zpZ`2xrfOYX7q8ae-h>a3#M1YhZ^HB4&7A z0OuSZ@8?>oIZBl3%b=GgWSrj*Yr8=*DSYBk3^X`V*+oOV-q5mPe09DT65Ap(65KnI zFqqsreZ@JdOcdh&V~_j$#vjuxx3s>gIw<$ku%CXX%yg;gEN^UmLcY;qL@2jB>7CDKV1z1II2yt6myXN#A z;=_%@;f53a9RL;lHQZEbl>T6=lJLIs0Y~K110%eAY}x}?pvS<3r=2-S$cOzgD8n}N z*?p{7*igHOB*3Ve6mBe;iV$pLvg1YB0(H(zG6xJep zLFuCU8OyY$3*cBKbjtbcR_G%X!F&RR?{i9^XTMWu4C&vx1_iXe6c=eMSvwy@--;Iz z9}dmRCwP-LGpyk$-ACV8X>52Bup)!C{h7gA#Eu(9BqUy533z7dV|r*_G6nB^kC^A5 z0brtZx{-J+$0F!9|H%k>-l#VJaBd&`iMO(3-F~?skQU~<%U!_zr#ml>xj!(Pb93{# zn&sbfeC*)umL-8Ekj!W-h*ZPb>l2Y(_Z%C%lldRTows3It&PP}?V*zgWj-4?GQu9B zQ3Ac=(`W<61p*dUWSGIg2n?6%31=nx#Bc85dFcx=P^{X@3+|SZC@%6s1|YNL74T&| zi~Gs?)^-1W85`*_%16@;t5R@lW%-Y72lKLiXo4vw#1rf{WNV4ZK9nz>-Y7}h-7Xld zLTpJc=B$vnCM$i<75>_31VOQU3f6+2qDw~CtZ?_=ma_~$Nd2Q*){w0~GYjIF=N94?A?yl|6mZ97>XgBaPL3f~7ZZ2-z zI$wRhJTq!;EF}Q-b^RJ8-l0YtIqUCp^8ASm$8(?j?9xe#-oJQmXkhVe6GgfFqG&Xq zoK-qr9zd1+BP|BD!B83X$4$yjsp3UT=S|Yx<_Ca0$~+jg>AWonMa_64R})%6pc&p^ zMZE_9Q34Hg!WS`b&nJkxsF%T52N0d@9pKNQ?*`Q?5M64eS=io|(-vL)d2B`!;KSSM zSZ49Y-F(kwO9wzp=AE47B8PHOg%kfAy{dy$p9!*N;JLR4G$ z!Ykti?(NWLR){Cc)Kzu+;IA>ZV=Q%&c6}Tc^WmLj;nnR!W=;=IUyOt#(86xmy2K5L z<7}#W;e0(mRH+A}9eM{9!2CjCe$z&p&qV`($Do#?C|Y!4kGXMwY}-pBs1IqrY_JrK z4^4kcKey@BrTohOJlb^?Jv6JcoWr$@QK}=gvM$d}VSb8oa^(K0ZK9k&3JsN_s~4hOVgy@Xm^!!QCu08L36v#NFB+Xd zKYO9xrq@*xfP;k7YiJT4SZe-Z8bCrKnrMi;flGT@r|qp5fA`yJ)WzidLTz}+VY2Ws zGm$t|!W)Syf8-HRDsLfFkpbR*`z{0}CWZX@E>QU(8~aTq5`;UZ>4*Grb4I>!<@TN)O$9kDhf5qu7AOD^-!#KdlYgNc}E#a7){c1 z_r$UwlHcYvXPX26g+`7Rl1v=2Cq3;2)13v(eyeET6~Et+-d?1w%p$KdM*x{0?n{mm z{>cZ~V`uy^WmgGb7Oz^zNOm)&DJ>`a9o~`cThsP1lf)wH)arh7U*hj^C!3CWV>>5Uj}nLfrJ|ofFB)2j`VVT3WJp&=@q_ypqUPN#J~g zKy^vc-9JxLsl@($oO*u=W1RKtC@;y(z0^#FBz2Tp&3)eT7pxXhDT|Q^8r)jc_Q7I1 zCRKMIWR_Ybgdl?-iS(s zs*a20uEjxog|3T+Wl7W>6?vw4_sy5aU{8hPDc+pqgAI&0HtQ$AIB%bdvflF5e!`g9 zil+~)iY?EO&2koJA<-{Cmse^u;Pc1tf&PV_b53D15tRky46~Ym%N=HpEb+@Bwzb{I!5nzSHk^F zZ*YV_DWWhQ$@6oCT+CYA`emLsl@C~duqaN2>||SJ9*nD=!T#a;I&Bn)aLX)<3|WC0 zd@Y`hOAk+Q7(h(!%dJpYvjbkxYY-f3|KT>A_ZAD<4QDt9PCCDkm;|Y~f2;*WQUsQH zBpBRN^Q3S%g^7s2?FpPkno-|(X#Q(<18tH4vs7MH-7W05G%+GKUVA zIK7b@zjM>G-{zT)L>+55{n+Mb^v#w0!DD%B{OUtD4|SU}Mk&gQhF&yC(P6zaP~-FS{~n5HE>{;IL+v61qJr2YoZO39xn&Fmv7z2X;qC z+LfI+^|Rm4N8i+Hd4+aPE)mc09QOH@%VHRfA1($)PxB)E$ZN1ibDPS1#|*J1mlP+L zOjL26PhITy1F(!wc;fKp5k?r2La)9Hgx;`?H~fhu+0nEiFa#;M){FpE_*v-j1(Lj# zv5tD402E}`$hhvo?Cj^ld1wKP5rnEphq^e|G#uP=40Ya}MBik_dD8pA?Z5b6fY+ZH zwO$87#mt9wxN|cPBv9Pyn`+^#Xnt4pt%?#AG3e>S%|-VOdB*U^pBxugnY7Mb$N@F% z;QHb1x#fFqqa37*g4~duTbMW{wz1Y2bquj@-{~cKyfLjJ$DBo7xgv-=OhU%!+?Zvy zgnv^dn40yFmYQz%-Vv?KC=x&Tt0eK!v>1(MoZTYdmG~-+mlkH5ZXb{h;*Rk*G*qb~fOOt88@!+63~e1q+;iuTBa1xp z^zk&AY3WG41goH27=xRz==dd*1Bq_lLlD0Z24dJczQYEX{L&#=VMI4vn>q1(tizMa zhcR+v{eSt$iv=E^OJ);>^}re!AdtJdVteqZvrj^&u$sgD#DH7p&ER2RfCz#)LeE*Y zW9j&C6#6*MUk#2X*`?O!oR{)P-?1;FM*%AN`K4giQL5tgF~}YVP*YSq_H3v#^}n3^ zji2v5h=g(CH$rK%5*g;vG>_yaNjq0haGt``33nj^l?SoZViJDXerOrxWMGr&+G=AO zpQ!*;)~8)cM2YD#Bl`tp8e5d}0ZSRU{b+5)czf56USTr!SO@6?kZ&w~t1pfM7^vm{ zkDo!#8+#Tq*G1|3MI<}up*;U0STK*zwJ4V!k5cM><1rbpIw_K^0@2=Ni>uwSxBC!v z8~D}K?*Fwv)6tCy)dl6|o0_FZKYER?p5}qNpp{}X2m|@Pw>N_M%%3pBL+)!Hz3_}8 z-Sg{)(J`a;7(^gsr!Yn_t-XGbiJrVQm&P)#HVoeT=D?;TTLrl*9jYjDp?j2EyeyN+ z^@%xp+TXpldj8H43JkqrKY5DZc?nw;6ioerOyv`zO_TS?NRe}BtL3iwew*RdKm8Nu zq&m?4`#dgmYvX~To-5>+`Fr4mJJj7+`u%#pcd@MbVfe3Vm)fd*{o(_T4kLF=r~bzE z8&CE@GRk#^AA3=41uD8XNfne+QmYd!{>t1NTiuw*-Zdl2@AuezB$L~fCiUrUF^{he zEddCnF;z<%yvPalO9S0=b~G5*@~xF)f}cX%`b4^u5h~BlyWhGeOt>z+iS{@D^wTFs zDNCuquCvO8t>oON7P|$#Yi$V%=l6Qvy%D0n68y{k1xJ>^=PFmMHR^tW;E2UQsaq*A zBR5ecy0sT%?^TcmjG>uZzIzOInS`EAOjuKF7~I0-msY95nuGM!JT2!phmzUgsB4-6 ztu9500s(*t)13XUZu>q$EIfw+UO z${Rohn?}V%*g5ZDkzYDlVTp2z|MR8aFIcv)%Q61g!Pum(P?I+q(wLBAKM|v)_+aFIh`+~Y$GDZq?hH#*&@x86yZ^-&6)V4&9N#2O`a9X`Rht#{ z$3`j@*7=6e`O9jRhucLoU(wE^4$(Y+V~oiP0Z;yChZS85WGED9JqjP)K8<^>I7T>0 z7{I|oE?QiwCdTD|VFY6_l}%ejYc240U`%C*es9$%|2x;U@WcQ5fa-WLQ(zc(`O{hFiOsoeb$F5~|8mwnuw=I#IOk2DSeqq>lxD|Cj7Tk69o&|wkd z!AZA~q8BR-CsmphqODnr-!_bb(WK}<4vJ|^m57M+HEKyf(M{7!)A{8K(9O&HJ^S-{ zj)02VSXr#5GF^mEHUW+Z)Qq3TB6%=>)Brooyx&xh$CkWNM4~X3A4MpA^!;$Q(k#36 zG8F}6vOLqoJQ3}(yc|@S`x11U?!V(e|C*Ql*Sy#y&fek4G8>ABa^lOCe=tQwpmzAX z7Ws?QD!qBTe5=4;Ud1i+{E-N)unM&F!-|EUQ&7_!Y#3IMRVAof2PU`opYm1P)70gWr+2x{}^bLZ$P9#Rz=_vLxt}8qz8o!CtT>l!Qo%3P*d}WluoTYHHI4Q)C;BZ?FS8Ip^H+-Kl{VGx-#ng*5 zp5K5B1E5J~3V%cP^Em?spOP-tS9pg%s8`1=epx}4BsLfzK>PaOgJTP&B> z4C&+le|;X6=;hOgT!SX3n$_$gLK8~E6T+#0W-Y+p$k}}N-`lX;#c-ZvpB?tk#m6I9 zM+)+~`TTu&TWi8PFR!E*T7Q@RFP=C1Gf~(Q4afgegop94GH*U=57XSQ-k!M+{eqA~ zouPL|#G0hXJf`4L)EL9>8F)o9FF}0so#<~22}+|+^nN%&4zaBVF^Qnf_>8${0@eDz z1H{jV<)ZF3p4xwM{l8z)`)3!U+Awk?vr5AMkd`N9d>TmTM}O}o5d|pwDEMXWp;Mau z5Nz?PM5fM!>)!vSx8S($6`8yU2WL(BpVPu`Py$- zb?CdZw#Hv*+Z80gNBmw7OT)qdQ#N8cH71yEBiSZ5)KVjmaunMz@K}=1U>^U|P6Jct z_F%Cj#s8l|L(Z#s=jak$T=IssE|=|Z1cc2!1cp)cl;j{|8HIGV zU?z>)WzW|)AAZA!f3leboXve*8#t;k?>%*Tdv^DU6eM@gX!1x<(rK0FR!O!5>g#lT zA*&pO^4cSgU(6Xlf0BWCvUGtUZ+5zY!6Ux;0RO9xo?n)o(#eMkV})d4P*FK~&VSb| z^D>(I1HEkxO``feooI8Q@5P*8UDue$|M4`R_%$fn*goe^+bFTD@5pWCYKcBkHC7v$ z9lG5In0SAK6!QC&@l!l>B17<~_u7W$bDUgzEIytTb?l#?84t>U5Qlm`M~3`(mv{C1 zYu<)#@sLc7Grav`gtf&Z+T}rvL|PxSdLkVQ)`kXFw3>=6da6D((I5G&12h(b`AY0i z_Ik&~?JAw^Nx7L*buT^*bH>9#)R7p;a2Pu%f$7|H6yl6GbhKqo_olb@(MWzvBRHCJ zw|ZU8*u^mct793LnXb)fM2y6b#3(p1KNT+t?8{wTdK+DBb=^EU51k;g;5Ig3bh_`i zBr)MZJ083i1tpk*n=eegE2&xK0?Ps6dDc-`HDaKTG{KFP&f3V$B1p!uG0ysxf+G&u z*;t9w-Th_(PmJfb2ck~ybt^+=XHNvjH&AcDjzNVWq1O{bwxrO#SZe$w9A3MQo9j-_ zQ9)w**?R_5>MTa67>ZRo3lUyRL8GTSdQOe7w^JQc88}_uaZP^V46R(sqzvCa$kPCq zizq|}$W-=YY-Wyd{5%P#K~v0?TnmEgHU?#Rjy@6umWq6)2%95P+nw5T_lX(}y9jS) zf3}+dbDn*->J76fD&Hxl_31Y|Zl+}+_^Fk;cB(taXwtX|X}Y1^Nf}LHf+C*0_l=?A z`85n4fhmKc7}cn~tnP=r%~yQ|z)r)-@YgF0oV8B}F7`zxKuRZzSbP6uS7>(b3;U)L zp8n+>2#${7c)V>MBaRKKUz<~)Novb`zxlAN^n0cR#wJ_6rB1m~9$PF5Mt1ETpD}No zP3mA>=&C$_wZcp_ba}P+`qw3i&z*U&o%@(J-a>3>gz%1MNIp3fG>k*J^Z zhW3`3$Y!$?OmJ7GJEiF0t?@I)ji%lgdbrJMS@4OqRK6ggKgBZ2HQ%$etRWcN-F=L} zPF7{ib!L*VArC2;NMak3F?3-@c}*_Y!x_<1N-Plud#D(e9mnY-JGI zGpOROUj>K0X;YdTn zca^e|$09D`T_`?>nJGV5Ad@rVuW^0bPD{A&2EUvVb4_ri1BLa`HBfzKD5B9cmgo$h zY}eGdl-c42y*ALUQ5Xv0`{SxC<@b?I%Xi|lK*>(-|Y)Ps}6#DE&6Ma z^B-TrWOu1;O-0)e)!`$xxdq5xZ4v{-6khwze0O{T zUY81fCk@ndm}-?l&p|b7CH;X zCf58eBinwdBckyQHXZwV4)L@Y9D7iVkeO7836rhtW}xq2Nu~_!&bBGw4{!SfA(fd;iCyyv&!Y zUiaVBmmMpU?tXCOnts0j&A2Z|ku06L0zS-D-i^jZBCJ9~hB64Yomc7p@2ErXeio`A zM9iZFt&LP#H8@{-l5B zx(MQ+2vV5X9I^*BzO$jvl*OrHzs_%aChbnTbVkkC7CD&&b6G8Z*Rk=M=g>&3d#-)0 zo`?MPp1N57rg6>PVCP?-N%aJ|q+e_6&i04ib#TaXG{@wo?+3&W4r6{|Midn)V- zKNx42kF)JVgm8ida<#8QtF0Spkk5_`&U)=0tc#Z)xu+23vk?|iHjfxhNgOa8-#4`s zw1YZxB)1YVo14xK+Gq$aA+8`%SE)!0mG>SyLz(nNq{wW~UrNAZ!*)+;Gm)ywp#_XZfM^-w2N~f>vwkiF~D}?pw zBNTE#0vasGH$*=W+K$9+KhrYLls97^@h0>ugP0$n=T&hnTpXKXZ?5C2=GN5jSMl#r zxxn%rZtY64(Gt}}(cPGG7RxmJ)yr34G~v~>ZY?CuOkBKCKQaA>@i*VEMvj+>Oqi;J zBOnj#sQ`sfY(|gVLp>=WUwxp`a>Sukje_wEyYP%6mesvJPoOx)@bU!vHr#Y%j2O2g z_h?A6@aJ#Ph@Vf(OW#3xg-5%-iayhRPl1-QP~|rETWJZ^N1i4+mF6IMRogz#Eb|9Q zc%pvmURCtcF4n=OhFF?;|G}j+&yN>7b<5?j5d7P9n5x^ji5R2X^Z6pO!EjC2B}gD_ zk!C@@=Ciz9ERasju|eebR*hI^@w8{#nZ2>Y79V`Syzee8nF!M3fLF32^wTj=i*_+Z zZp;*teeYc)P~+$6YEcFcxH2ceBRddzH6vRn#40^1okuZDiGa#h0O%8 z$^yl)<3&plMTeCeY2W*Ktyyk|8o7({rHVjH`=wH=_-Ym?c*d}bTO2{Yyg8KZK?l&Y zb#<;)KYtDv+T6+aeiy#X;6^aeDTfmU@X){f&^WQ-aueqzUIREwHQOVWq3*sp1nZK;B~2SIP*ghw{xW*Et@?;O2 z8&ib(B?ft-(vwLpj^hAdPO8TE`uT2C6tsq}zrET?SKhC`I-4D^S71*Ylm7%cH?von zcEsjD1@dH>pXYRZc5S=DM(S35y#69EZ!8qVdWGB+GsAq&rW<8`}ykcgeFrM(hE)^m6)&zv5@Wmjp*jgxZAf55Zx{^dHW- z>ZZM4J~vaVn@TNtTk125B*!r5Bsjs#vT`I~?TvYkVh5%u+nlNlfy+W?-cMUcQUKouC1bZbmh+TO1$=R*>jmHl_@^78_S)1$GeozMS__x#)6^i{bi@_CI_ zQj$5;Mr#`iBp&J9v04C@_*6ru>;$40QGoN6$&uJtG z7vB)8B;jHCJM_11Ubjxek5A+8-B(ty-{SM@wFboP#Au%ns`z^tDvTnBl{%wO`fj?(QB|i8UeF;$Cj10z|erBiBG0S?B zOEdjleq{ASpZ^Nq*JD1sDWp{DzsJS?URL>a=N~W5*u-p%O9s+PZfKiC2;=eU=CCtn zTy4XQg4`2%nw&oEi$9}ga?6R>zomF|qB@h>`Juu&HtH?FbT|p4rEh!EMfRtxeu2yF zdBz@S5hkvy7Y0}_sap{SB?W3#ugsF#5o__7UNt?aM2TweJDKGZkv;I6PT!wcZ&%2( z+Z?L{5W^0GLUJZk>UZ@B{Ddhwig0b#$t~q$Ef#a9!nC0113IXSOPgw)QJJMrT%r7! zC+%?GbC%v1qh}84LhbZqw1Y8P?-&8P zTn5MX`CQG$n4cpEPH(-;!({1OkI)}J@HnVeOZW2m^(g3Y*yOLKYik+`_2HQf$;PG>p$NU?>d5CWc_FE z$m6xqvnP(^dwTu1udND=uInGe5&*U=@f6MDZAY4u74{)nqn`Su-m<=_`^GQapz6jk`a-z|F! zML6{g_bp!X6GLCgc`vk@x@aPA;;8kqMKU!mXX{x2F0|k8Qs((V`rE7=nDz{iZs+AE ztkbq1$n>!Em)&U++sCg9t4RNeet8u^?UX`Lx7~|S&(YWau9Xlfitp!amxx4dxD8K!zD-?fD#~D_X%krcCLGD{T1tw?I?Ez@8LOE|)=Fep{|imX18@1-c%33^{2@#v$r;M9;tTY=gOe}el;H9d zwd|z5)4!3RL%Z_NqmNsL5NW>SKjDn?OsHW~j(*n8Oyl1|aR+FL7q=<%o1(qV3B`#; z&@#<fFDp}So8_iH8qW{vad_dYdW{UG{=sqAX6sMj>#k5?EV%Ph!FQ;tqkH+cAT zE=1C`(Y=G;5&EL6meEtVI;l-~V(3IsY{sGMyO+6yimvI%%8cnkkyC*7qVc@8nRq`X zzuv3$d5c$5b#6F;tx50h8C^6RPO;`zG;p^Vgk22W>6uU1!cUm~@B8}aJx`M41-61% zZyjjLLUmoEc<16?yQb&LWA7K&O(Q@OSw$w<|DF%#F=yy9%yx#tELhzPy zzfkoR>ciK@1f^)&F{VJIasxG4yqNvkO~Dhtl`W-wj-C*nci5i(T`rN(0x4ZWO8I3~ zdtXIgBxNS61!^eJJ`?^T$6jUAb2nM1Qv-$BLuQxNCY-TiHVM}F*%nGxSxqCsPy{mm zl;SA7#OGw$u@Ro%Z_?ZuCSLq>Lx&k(hIn?~=+olq$HCq%-K=%AGm6TpF&r62EY#**5hCg|~jy-u$i5%a-^*giqh0m5!&gg3gO^PO( zX@1rud(k75AOVY~-PXyMu85h!tI>K5CCH{o<;vVVBf8$gWfu}?!HSs(p5kABobsi; zy0MZ*PcR8W19GBBmBf%REDoY=eR=5Ts%xU@KQvNh78+~*RT$-z@t`%5#$%M}z{O-r z=V~fdB4%>3D(skqO^JiR?fq5#iB*=kfEh2fUlaA7y9-r(KM$$Db9y4yL96(#`pTeK zr8edr=Xj6IBNmcd9I7NvzPE{fZ{v7o{qXNVYN7aK0wa($w|079KG3`*5$e-L5@v6*DW1U}zNG6MZgT z@)8vu@~o%V|8#AL<^4m_#(GiRjF`arR&4G^)|KJ9wy$z> zW34FD1ONM?Lkw$rB3*k)yB)cU{e^PivaF;130Sam+R+HWLeJN=B4yYmy+7^^u zY>9J>TTQX~E;1M{(!lp{qhnm=SLvr$+Euxtu2E6@_ll)IEkpRlnLrsD3K+=lu@cml z2VP9O&G&(?B%=(f>HBqfdTAo;>TKIEj$$JLEi)2ohT#!5E%@k~9tHpQaPmWe2p_}0 zzN<1%g(UaZwcl_-H12wsLoUL^i4nk^ezj=>C-|ph zs-}@arr1s^F$|pf`Pe}x43xANBnJ)~xA;`RjU5ef474QrflX()D)fq~lOJ9jk z%)=UAxfiFNCj!iKS40UzyQzy+zz9r?Jyaj_?AxD7SU zLXS&2|I!#{#e;p)=odeNvhDrX^L@b(vmHHk8qmr1%@1-;cSyiu@g=|Za7n`)rrQ=kDY8lFl~@%qLrxcvW8idjRjr{-iWQZY1l*gtOX9L?ViofcC)q}+MzQI zwiCKWA4RRxEy1tQR&~i^F)=w~R?e<4b!QL*iI<}JkNSmw#&~_C8!ZKQ^cM%s-ifP6 zK6rWF4tYTKiQoQdgsiQd{N>Q|CpAZ;5b6{>vur$5JSRjA>6T3Rdz!Mh9)|JmcQ-K1 ze&vyHe>_J9FF4f^(DM{_44fz{kfBg+E|VjBNurJU<;a126(ufdU8)=BljFLTQ8=!` zZS&i^yZ_}uLX4vhbN#v7o0inOmz9C z-R7V}P4}r??8lbCF1K43(SSMP5)aIgpJS<4`*7*Wh6;6^Y$SvK&TC6IO9$w1r z3;Gb=dT12l(iJ{&=I_4^UA7k}|LxCvjDm)&!rpbiJaf?l2@3Jy zf_cBH!^fFYFA>R%<#2xTFh$*eua%7Q|*522n2 z3ZgJ!)eAD?V~A17X-t2dsU2*90Z{Gu`0dZ75`;FNtHhuQ={JeBaC)X6BdVCIMM`|I z9;fU3nmRgu)0?krkbX{eFVE_?R!~l#e&P(BvNm%R`w{|mAZ2&WWf$On%tqjbnbG5inZ-yC z5tt*5o-sgvm6hGC=a?pj@)4sQ6)+wd6mItn`X)E9E%-trOHd-}&{@=PV*HY<$Upqd zU-v%IT9f3Vm8_(t8lwTk+ue-_io1O{X{n!UnDgy^rTMw|6><6iR;w68vocb1>>mNN znLgyI)N>oyh|+3LCevx%YAKtSmaV*sdFAla*{xggIst7KB|6aj6jt&Z<-qzy&KZ(X+oZj$FKC?z86(sV=iJ54gyC#!i$R#sc)|AWlS4g)9Z@`lJo!J>l;72jHjH`8pHc zJ%ACrb*>1bnz`yutoU0WPruKFj0Mb4pC z!d88kSiiO?-jL03GXeiI9ub02?408YsDCI6D3`E1-iU4%I&yKPS;p$AX=sJ+>(p%B zQ+7^dFegd+qV;gCeENuYYC&$zsMzA%DsFcn5@&I z%1vN%XCPbz>P%3<#+u?HKdbB5G&gz+9@vjG@8? zs*AnZ9^%(Gr7gjrkMF=R$7o2;uE7A|)pXA5Pj`an2@%D?NNwlP6!2n|$}tp<>s!Ud zElP#%HfYN|kQH4J5s#sCN|Ntp%)pKaQJ6M@TTcqF-Szvb>p)jN4hZE5p3H*AnPw%r z2pD88?$gXyBnx6tXJ_XKe93Q5Uas|wl^2HAH!(!~pD+erKmO-;36zW-l;#xKEV-0L zy%b{0D9^!RgaD@y>p(m?zSOmkJgg62LujQ-pISjlT};|k%GQ@Kc4%qJP3gv?tk=n3v@eT#H#3LOhwNT)={*r&9B!`ZTamaH1 z9%AtPvN}Q%K`(=RAcIvif0^*PfOUQ%=5aE{EQ@U{xw&(%xZ`$Pa@R**G?YxRI^_4) z1xOE_8I;P%P;Otup84DzA^1j^X}iOev^8&8IkL-ZI*up?*FhN4FRhv6myUC$v|`q?JkM_)6#G8qw(9Y$(mt=wwAumxV&s7ta??M{I4VNX0kSg3I!! zOdsRl-cy#st=b(R zEH?(}MbrMxy<)G>qX$zizEy(>s88$pm!G&ex|cQq)fWoE;I5HaJQa6WmQd{(V)$HI zdaBu|w!5;~>Fc726tB*;CBrL=*)4E+Tyqf83iq{Ok8{)0yD~taPbaM-1jTqG;; z3qp^#b4+W*W%^L?v0&k?A(w~gOfg%MnYmGo?_d+Lprm1P z=bX_Hj|Ria88nPz$yoS-gy-vMRe`QxNvL|kWf`BN0?-bN9}{`gRr)+hrzNQh!hlwKdN{7EFchT6PkVDI^UofuWTS9kL=c59$#l{HniDQrTKwza ztz5r#{r(C1=Y3Y)qkCg*JwKjjfPK63fhX(pH~bvil4j?`N@L_jIl`a1s0Y7CHTvT9 z9Y1FkA2q8V(*4lIWyjDpcXwta*z&J`jDZ3LXLkkJab`$q+@;amTrp^wIyYx#u#;|w zm}_B>_u%@Lk$qUb`CTR*BWvV#JQLz9RHHD}d%Q98cXqXC-}T{|Wk~#HhnhCT%xdsF zE2hz2a%;Mr*wqL7DBhWzU(Sf>@VqDscLxs=Buntv?;@6tk|CraKqV*wdff7Vm=?<|{S- zaKn|7y2s|L$EGVmyUvIcVa@ja@)mq+%U&76{ccm4SN#B=2au-mLiN0KPehV*6k!Y; z`@>BaWB5BrsJQuYI&C)f1@u%&a4Cl25X{1yOr1XkH=ElkF=JD8hvj~$GeImWj^8zr znml*r>xwrKdqOLeh8seoq3ansO4K~jpTQih@V3CVX4ZRdLb!+ z5&f;)gH0s_ZvCw|!MZE&L>U-DQ&6P6ZFmZG;a%#44b~blC>?NCy3oJ*@+^UXDhLN} z&eBdC843#TxAnuVl#D32j1pQ1r87b(i!1GH`27=R!mPUv$H}3F>g)fmhdVwaHwG4R z_x@Jmd2e6|Yb`D7|)=cJE(T~ zez}Mi=ZR@ch}FZFdYO7p2$&=-!+=7_!ZBHT;`05ZLnH#$d(Tv!u5Vx3kc4d!IY$#{ zl1+2Cd~>z?QTQ@M35x=d+-?~N!Mz_fYZ>+42K5$bqC z#(<}y#Pz~dLccje4@pSmnHdkxyxNf)`ovZ~J_GtqFN`XO^5W+u*moLqsN|t}1lq|W zZxYQpg#JJW)&@yv%<9x~n@h6_#hE1@nHIbu>C6pOj&i|zowRmBA#|7f8O?{78L_Cl z@qrplX}V46L+hI+?1AUA6>mRoa4`-I+bNwuMy|?@n648DCO@SiN?ewMO!RsULr)oQ zK(5tP`;+AocWO0vc96!jG0UBuJVT%3y*AuV#J<&F5GW%FWAOguoiy9t{2v(6grVy+ zW?xC-3f~u#NzdK-aQepx;!hhFZ?zvSyli?xG5UaV-DKd=Bt(lMV7hhh-qKQAf)tX} zY8z{h+eJd`Pi_^Xk2)ISgY0|njvWa=+(`7|+;5fh@ zE`a&ce4d7K@6Kd<87Y(cUBsykMuPT%mvD-&*U5<|_h7I^g2EbU*7^(E^){DGG7$eH zMlc)*0+qOIyXfxJFBUPSxX&()x)oH@tD9j7$ZusR{t(rq3+tyLg$ilG3`#!eQVt4f zGVX7>cj0--3^m>BUeo8Gw8_gJ=)FZR2PjnXUbk>h!Ft`PbCYRBYL^#o7WQoZS;J~Z z_x7%u^${YU^FMnM2xHS}DqB0b9Hm=WM8{C9<%X&%VSJMZ)=EK3X!tgvB930eW8258 zOVZohG2LkiY?=(On%VbH%2}8z1v#e&u4P3BBctSLJo$UTqySGqu)i@D&IEnPEa)Ml z^RFRp15o%^o?vreHP9GR+nh8$oe)T5tf)1&@GAC=c$O00G>?K8ijIU!joTn2Y2PQ< zI_^yawgu7$OVDJf>N3IMEwSipFzx$^-4;^}bz!d0!RRRKy83)U@(}tQ2ci(K8(jYP z(4A9b2Q)qQaM?lE+~&kRSYpEHAvd-6xshU>q;6oMOpJFw8ExBZ*9w0Kf`j*e8Ik8R zB{$FKd=DBl0}#g76FZwlC8`MD8oaR+{0>MZCZVpF9y2wRh-9uvB-#F8Jz@FohOk&V z>)b1IrmZMnydX0hDp|BuS}3$|WLc!=10&IH*wE}YGCJL5k)VQXosC@k+*`6WLQKX` z*Qqy*BsQ05bM&aH zv?resU*aVmzWR#4^&KZIpB)zaD>b#;pn9;!o&;(|rh4u(tBKv|PK}mp)q<1x_ zQ&{hPKe&u@HdgYDnJn!T93)yCEr;@1!Hj$<(2 z;AcRViJgbJ>8}NE@R3H+Y9>J?VkGqx$|Q&3C(r6amZ8CCv&djkIbtz!Uy&;^Y4?q2 zwh+6q%Zez=@Uo!IF-ljjTl|*!~a*}`kui2C5l{>9jVYb-> zvaZ|g(m(m!c8Oyh$;Gi*^vks< z%yp^4^%r4AvBh3DLTF6qcFXz*M;zH2KCBtC!_;N`qHQ>ciaqFIk!xUd;th~A;OIj3 z_rXDUX`)rp$jvLD(vKi>!;eyXz2Q)knzyaU5%uH`b`wyxV))T;+q5^xCDk0-=@_vK78V3C_Ji zk)j@SEr0vSm?c00R*857VHJZ!!3Rm1Kyoe5Xre0sn|DenmsE8vSlD%gR(m;J@W=Cq%jW6`D1`v?_D8HqOTn}$FS zwFC6ST#Y#NO1H6zh&bircCY^fx^xE?@VCvKGb;Z( z*1B@m7)%1>3)?SRL2XIJ%{Z2NQ`z&oL?%2EreWn3ulD3{8aX2E|29YkdJcXZw6WOR z?36dkYh2InS43Mm&gR?VUm1Z05}z-R7JqVRU-&4CBHuhkk+6@et%0uU_eF;}Ef6Kb z77|>`BstjTEVBJ$yK53bhJ+s&6Gv7B5b%{e%{DJ>%MHF ztbAU~&}=43#H4I77&_EMxw={)XLb|#-RIplao71t>}Wv;0&68$`TF?;_BRdS_jq^j zum2r!9;HMw2#+t&2h{MVM)Uc+N&Zew~+g?5pY%O@YPy=zg#z@a6*Tdstp+)WyL>YqG!_!8pV08;UO$8?;6 z0Vf71C=!Mlk_gEMIo&8~v%}63sAc)PoDJ3JP|2V)AEs=kCdLr59GUVS*;7Be zPnX{e!3|Fs)p0)0$t{`gNh%n%zOz33wf2>nG}pX8cZ+1s=?mxR$ZMO zFfp78JfPWacJfnpAp6X-r?tz%Qtv81oVJ+gl^llDMz7AIJgYVCIYmqiUsIRU!l_u4 zo=9d8jy>TL$|7iSAn#4;+UTG{x$X?GezfSy*hbZCy40`>eCu85ZM;=wlY+Z<Ze zdXClY;*S-*T+qwrO0u%pNg;Y=OQOMJUz9t8V%GRN2Wn$fP#6O`C`GRc7&`h}c%7H+!61B&6tn-@G{J=)@QKTPdB*|F2N zCvsCMbrSAbiM*{&8tK}C9xokrEe{x&zy5n2vKMFZD^^JH#g~Sz756A!8ENTi=tFJk z)h@b*icvcUO2;ai9TL(^b~oKVX)oSBbj}2HO{;dn&5@~ikvQOqp@`!gYV|x!FH}HN zJdJ}oBQ(^u4o=ihN$WCEBHW9x&YAnb`F?Nu%V*BR(>jdk+NCw6DzL8^!-X|JA4&BJ zFgMbm*^Md&t!cp?kXBrkT=Igffn(0g$y_2 zpcVX&-n8E)N^4{mwUA?7Hm!0z-10Zkcv@{))#aRzY#n-j_|W>6%Mrn@YyO_xDdSUu z**;6cF)=22TfUb`18Z>DrK{oMi7&Qi=>pw5sfk;|2ROdxA|xKh+3(vI$?3+>S0s(j zhE2Fgp7h8l%45{px*hJJc5m}N(U^I4pIlxaHDIHWBs1$()j&@emIK6jR1%tW;!JSi zNyi9;2W`tzP=8=f4we+@2zHYF!oB@EBFZR7Rt=K&juToH>?nA??@&Ujqo^m9Pf^_Y(BgaZC-&@tqg2?q%> z4C--$>hw<&Dhrpq{DX}qSsBwZf8xWM=D4rp_T0PaIqM5Tz4XD%+&^`$7n)!<;HMBZEHr? z3jGm@{BCK9sKwK0a4^Volin#53k7D0f*f=SJJwW#9 zHZ)Ajf^Ecnh0;G!$V72=Zcqy#)LKQOYa{;jaz%q0r5iYr)xFt%8hP~~E5*SmW}x~f zKD66|=Q)RF+HRxWTZeXR`18P}llRC&TIdfTBjrEuny>>lV5lblbbglLou}TQr&Y(Z z#@bYbR;*^SbF6fVe$6gs94vkHt&MiJ{rGw&3OwSDdZ%X$giV zyh}UK$18M6R|*+K9}d>`y~8Ox7fAW!*B@ z0N=gQF}pym?kJ&YE6g_r`D&a=JTUz9*;m;tnK0BBabV_vaJVISt2Fw+MV(r=|t1f5S4u=k)XqMyAUCLcLKyd zLT~j!SK4kl1Ko-kq12ZqWHEg9#MUx#kkw+Gt3FR6nROB!pk}cc!1JOtPr=YiJUAj@ zsSxyYj)R}KhFHJ-q}@+CV+=|>QYJ>0;PY6^rBA{S_hyz8+A{*NBF=MHmWlOiyPN_W zYf;L3T8AKOx>5&4Xhb^3p9EWRKFn*TdbG=mRVR_)yuuk`Xzp+5ld+}Rkug7z2_Kr6 zi_e{jW)WOPMxp>mn8VoB2jFPW$~fYMq)5DOMjq&xVL?%P6%b+3%tZ5-eGIGRh$Avt ztpI9bsu}bnHyVTsRO0f-}lF8QH0{=wl6XJCq}2Fes!bK*BwLim zO~}3(zMX&gXVf29=i3ohCy`fOb~s_Wu#kBmb=r_XhUli=gvxWY#X<2ZGCL}v1 z;+Js$thrB3mzLM$(W^t5cN;BL(8+CxQ@5`i!qKSU_Um zXF2IcI!*i}77dW0>0yHh%cw6gS+c>#&9Q#PJQ15jBC@Lx_w4CIarVKTunX`M_fbSJ zg&f>Fm6&S#9vPj=;3S^f=jOx6gbE6(0-V;lt+6|c_5|Ft{P|mNE9@I};Hkg;R~^t^ zB?2w9jwu?)nw$f2|GsfZbeqN=$AMPWmOr>oco1oEIXZ2S#(w=wfhRNUzS=w(uDBT-SQQC zLpOwDkZ1+F1aJ`xKI&z9K|S+xHjV9sPRkesyCyeQ1Jj@!5p-b)UFYcefR6Nwg{yy(WAj0h##;r2 zq?-?#pHk3h(rp`7O5*%H*8t+)NfdRrnvvVx6ULu=Tt65tYiJzy)#b0}U*0(P;k!@T zb3SN;FBXc_`pZ7{sy%v!vT1}?h3mP3+OIc&jZ>$HfaO8NKD2(|C+Yyue`5wW0k6F^ zdPVH;NKNcKv%){bBkQV0z z4P%}#-a+X$$EE4@#lI}D<`~f%arLmR+#h^%YaR(Xd!GoW>Y9n?)=roGAVWU~zApg} zi2*bE3a8ZR*+vnA?4rDjRopAz$ORWP@{MwXK4j6s5ZwMc$sz1f=Mb-{=~}Ky^MF4t zRNS#<(!HjoQ-t1-J|40TI}_Z*FsaXTUt-;_QatdDl;_eHFLNSPpyyOkTAYuDs~Cm? z+U=NlPHu}~nXHxXKTE!VO#;zU&BT;&N5XXHmBDR4?}9VM6pYiP++^g>jw%HADp~A0 z$Q`JsgHSlB+xGK_jl8u_E~WIVnNt@{yK?2}02+M+)eswDtYHz5V*;%^?}?2G^7fi~Z+)k^K8r(GjIZIAU=M+ouX1-<-K5q$=0d zD|0 z&|169c!xqWF)MoaQ~Us^S9TJyEYTgi88QR4Le7GYSy&qJ6b;4VYJe7T%2}_=1#3_y zf52F_&0A#xxSK+hrqC6kh8o9wsZ5Z}KLfID&W5x5OMH9tPqaA`U7R4rKDj36Mm$^a zPK%)t^(e^GXUR?R3f71L?Q;R*)eY6){0hsP7jpR{b^m%+@8#06LN0CHx@=9Sct#xJ zHXfoc;6aRdFpK$+_n}8QwVE0GLh!i?mi#~?jHcsy%{YA=+gj7d^}3EHNeIhcc`4s9 z$}z`rhA-1)tZWBR6+1JXBqw>SqC_$1-IhGgd}37wrB@_@F4kqE!}6h@XGoUyeH^T6 zD3oYQIG5RY%$sdNYu`y1g55LFxC9rc(g0Gq(x9EY()3$oE7iU}QdB|;bukS2kpFr^4>SY8ektq~H}uGUU)VBY3|NH?)p!ydiN z(a(EadEO`H6?WTdeLes-Fo|~jiRroj_w!DqP0=Yiu_md>Hs*WBlJB}cc3AG55gQa^ z96F!ZV5TWx=Q2T@1A+M7#&ql=P^ch#J8lyN#&&tG5;?Wx2nrbIlB!$K9A*wevA!YP zQ>w`tp%6b-5SkgMekd03?7n@V>^;zOgZU6^Ui(Nh+n4Lcs{{$%B?s*u03;2SRNRf+ zY72nb*0G3iCYb8XPihYAYXX&!+Zfz|A#7T#)Rfo|S0#u`#41CM$NKonB(0r~13{jN zn4Jk83(wy%x{8r)T6uyIk^wM+MG$hTH=AqmnWD?T!W2LqHLgP~XU<}!BlCS~&0)3TGW=WpW;Y5SW7<@{!!3}H};vE>9i zuS?ct2erg>bWw&Pe88pHhZZh%z*Qd%i6%k|84&Xn zFY-l$t~P{<5b6i}j@F@f<+STN#=``J!LPsPo&{r@tCEK%_M2FMP;?oGxzI>deh@bR7`%1o>N;E z=vu3f^LspwBR$fo`)PV820ttbGD`tFm24${WUw*O6$)FE4X;x_cN)clOL~NYA&JXs z`2m;t7>k(5<@5-#&um(xT8_~!&==K@_mhD6{JFjlwIXA^d^O#pjIFXB2oOb@$ebU% zW$8#8090JI(9sq8>$$EgofGvp_X?o$JTyUs0u-3AH&*tSqnbtNU4!SU`B72T> z*wk@Y#8P62^lU*s+bvoYssdw6Jv*RJ9g4*C>jq4{r@A@A<73r1Ev>kR^Tjja`tUn3 z29U6;%c-wBoU9PC$AK%`!KK^gLU63DWNuydAXgtMm)s)n+MCwUf84W&_0>@~xwe51 zlaHs-z~3UaG^DMym#w=>3i6^9$~p$baXOl4427_4+QS{fJj;+uT-f1Ak&nNhZJc!H zq|P)_3*j5Sc~^V;;k)^mGo`9M|i`7T{QgEoFFm>@ZAT_`Gv1yO1j zeLN{GX3K%b%QnFG<^?#>km?|_51Nx?m$5(i@DCmReNK7gL<|XeFjVN0Q`O*`vH#Y$|V?FbE~&WaY|Y7#AfQ-oV{f z>5fb*wQEy$1`Yhr^^oGEcsZ9peSTu|hYu8h zVfuN@-#-0V7IdoZD-;onL~Eo&EFLB(^*wF))Bclik9r&{htSTgTt2GVC)|gNB^S41 z9O6LMZcj_(a~7DCe?8*D#mx5p!)Vtze&Y0vzGOpaZD)G4(QQuYk1H9&RJ(5bmeUc1 z;)jLDJ6h;%;*(d z?uLro)IaOy$f!$ZRZ6ySrz_>H+#sLePsgZGvsmh*ZH!wEP1I@FrA^JQqrx7jS8i$< zv^qL@9F0XloW^xS$R)^D*9t-epn*6xQpui^*MC0%A3S+ez)@3{)71jP6!!zCvE$vX zI(MmCZu5v2eq4E&q63u-&pd86^bJ#B#EKk5U~3ibY||}I19AW3T!a^#%XWdfRD--|IY4AcDIG4Lv@Mm*n3EdtR}r>k8Mc#JsX4JJo&rFex|8 z1uxobZ{d`4RqWt>-_zT^Z>QW0XtXG3= zLG+k#9Kt`do;J(%4CNeiKw@UAp>aIt(h))*W4Vk!#P@$6^1}Bu8mHIv$_=3@)KyXo zA(e3kSsNU9`2GtwtCf3Kcen};OV4X4eWOQT+90r735liLck1`p!C>v!hQC^5~KKg8&9>&yjxpbtN9 zve$$o5f~tTI42RDoS-8y0sVOC%oTPDw3>RZ`}jk!ArE}L{`wv$J10YeGY*her)e$;I#ii*u7{dNY|i?R93_yI5M4K=nPSDKhHYftUTLxur$&X=Qc@Md&8vF-6ZYKV z3i?Cku|Ra;p6n{%W`fo>286o`M%YR=mIi+aGJiqFV8`E~<)&@`2WWIxwA|qPYIB_bFCwyhSGf=~* zIl{oWrc6VHf7typ-IJ(i?&Wt;`rLePv526S5uAB?zLwQ-8rq?Z2sgdV-W0OCzW(<+ zJbuOWwnooWh^EhaWCD®$`DpyCN{oPPK~o@P*R5a)^msvXCb8Il0~_pvUw`NBdC zfb-lqP9uQvfI5qPvfYc*mALK>7V2_Dk~m3)n&5CcJZ(?Jgt`}}x#;rx_fb761Ua!da&XM+p1Qk&!Q-x`SvI-37*29v$|rNpZa#VJIo}us_+U zu0{HQRH;wI>knLexx_Ua_UQv=66Ok`TblkM4lq~9xBmY$(B=O7THAm7$XERL`R0H9 zEUEhU`-J}2zGb?%f7E>!#x{jN@!>^)d}#j5J9B>R`_f6m{KJozw>Av_t)u_>;hm{z zh)aACc*QpevFkeDcmJ-T+eh9smT4dTwmFyn$+6}?^p0nwtTA%Hg1ReBlgna_O)lWp z!nx`7KWn*Oc;@I~Ne~!@-Y?SXpUC^~7+zQBL~_iMe|zwM|DeC#x%sc_A6;0B<1`CU z2tiqFOAV7OYY8MA>O`nCB^>HRA8L`Q@xJF&ljL0lH~eKfd_r9{Q{&$ctVWHCSKgGj zGAvl}iL6d~;NS$4JdM$VcwC;mL0|51eT9TpM&etUq-S(p|HoL%j6|=W^~7*J<8?(5 z@!(oWNa!^9qUpP?lha&GUam=5kT>jg4X$aZ@h^?2?~exn1zKRj+@_gJ$Z# z&aeLKzVEact3Tln^a=Jqeg6O0x9^hhPX&H?>FED8|HFBY{dum5!poK8k|> zCvPZxE;bH%z)9H;&q>ehvN#v-;(PWBg&{v(uw&%6+Ih}NJK|1KyU~s)hXlus@67?lv?&=`n>wFt9KmgI?%!J^6F43} zNw1lHQz3Sf74K40*cFa-cl0v>)FrjA39%E0ar3x5NEk-lBT`N1H%YtPteN#0F22v`*XzKJh>!9Un`sZudmf9&W4c?(_-3fbO%a7>^WE=|@1Aa3 zAoVc>#1#LMZ%UI5g%VX&48pgUVTq0mNvfdyE)Q*pH6j}QWkb!%ol;BD^ z^lU5jOlYnW2^XcSYPEnq*B!RiT(K+cf>@$F?O)_EVTZc|nc2kW_vd>rG@19wBQ z!%A@D?Qzd!PRi6Kk33>lFA;;s*$WS<*Rigdk?x%zFkRw3p`>RX?dKU3uYK%rdSmwr zqkZ~irYHrc^n8p2!_tO;pcg&O5_0Od)4nin+EKFw6jb67hf*>tzfF>>W=K4ON!MQ7 zVcp@_DVWZ!z*#kZAEoa(pN^1>D ze`Gc88LV`&?@ev(qX^RXgOK|?9wDO|&H$Dx-}#-c_JtnX>-jC4inG7x#F`^mtrsIb?XG5t2D1t2$+tu+>QjYe;+X|=E}k7!r*Kfjd{NvR>6nZq z4^LS;H3`G}+_r!nGTR6iZA?Q(CgA3b&QK^q{hR;y86~(U3gZ>9FUOmF?H^O51wO z8Z2}4OgJ=#c!wa?S#W_--HanJ!k4ms!-+XU=51y4l9Yp7;b?I4_l63_#>B^pZB#q0U za+c(0Tv!(&YgfN|gxP&1$UL?v9XL+!hh%qgBS4D?J;r8?ZKz0#(UvnI0^D~O{48My9mHIUB%zQDRJKC9G(;b0 zkQ&{jEE*d$h{Y$`P6ASVcFZRvqxpDma634SW-pZPGYJF&#C3|nb#tr~*=gQ^7__+U z8|r2Zo8NL!l&8+Y$!e#eColwOI|#HNkng$6rOq&_uI0#4rSDk**e|O-7Sa_-rp7ax72+a?d=s~_=;_FAr<+tLlSyXx6C$d{N$+&iJi zrc5I*wnp`n%LvvoApXl5hc78D1*r%7Q>*W)?~XnuZAcpBg!qBY09s{ron}3Z?tJ1k zr)|gq<9dTUg@g>NK-Wzz_u+`1K@wDMjark`7wz{62RO2AZUW~*X%`jZwvqZ00=2(Q zfx`95BxI@<`J59ItGghPf6YPX$P+d6_|^ZcYsNtb+)uthy*mGsD zB3d1}Q$w!ezc*+hlCLuiz_5B!?!d*f)kO_(#M1qoJOTRP6XqXPvJJsB*y^ltHd@zY zCJJ-VLzPzr?vy&`$~+f3q?GR;&gSW`ICSD?ieP$fl{hA^PAe;)Kx4zoO6eD+HPSL4 z=hyU;lYJW*y@hRJ(B^=wtqwvuHvlc@Ttpd3or~Z5pYa&L3N|;6V}=9|D2Gw=oi=pY zhkXYzq+89GH*utI71d*ykfGH;jGUqxHD_5KmKn=^NFx$9ZSvI%488Rj#o-+G)Y=LdfsadJutINL+y4Hi-h zeQI=sTe2v@?Z$VfoA#DjXSWU4pZ&P3!ceiN3}no{bHw`(g~{Lyh#@xyjvyiU{KlB{ zhkKkExL@9dO+!p%8x=swIR6w6^~=?@BOrPKvauoP`8!@+>oG9)0BiAa{ao$FvVlxv zYj!4EKrKL?YW@g( zkt*SKqBl?mB%cco7^!MWwh^*w2kCi|=RGAJoXW0!jZ+bMI<90a^bSz2E-m)%c6W$8 zO!D|Ro7dW$5_XJ8;$TxvZt=i5H894TL;s}}T2!4z9Y3V2nj*v?C?tRfFY4O*)&!yS zn|tKTFKw~hn{&K@ZU+`pjW*WoF=A5C;O$6P(%F__xwy5=MrBwwQongehP;DZ`KH7%ODh3AeJ0@lr{tLmXEn58rpE;ZPorg9yZ|xMPI_Dq9cdl6?9+4e+n%=D{ zVUiF!2ITZ9V0x%-|Eh%&Vw`our?Z=5bD=bz0+82Ou)bc%h61@@zH^EsqpelYP0<7L zYhCD>eP-SQ7wsL^HKwWulh*qIIZJs`z!*EIT)yLlX`1u0C&sT89&7>a#woT z(IgWY@V9_@cv4f>C2pEAlt4!K{maoWenufbBl)8jaB$t|ODr-UI^93|1Pk-a|N5Mn zFAkp=j>9p7&+;XQnrvZ`ryu|1jc;{P8o*{m`>%O;nS}j57RiY6|BKw&f685MFF)8) z>>|W_8*1Sn?bthb^g8K$A^*}m*R7h9k>(bsW0829QPE|}RFR}dml@A~>%?dWlON-( zpDoxo_tu5MsIHv*D&Aa+>pUdmHMC(Yeq#JLeBIa5?2j=1rRNV^% z!qMx9Y%gosW<$)?O^G~JQNru@T>eP+^cGmVi|CIdI!{FT{?UWb?o-a?=hph1kk)JL zSBPf1smp)QQ+w+7bkibH#3Meo7JZJMqc|_!}7 z-^lT2i(21nXQrQQ#=Wwb~-DDNqjoNxx_~% zA?F;J^Po@K3G!|F;&Se@=P0_kxg|ke;X?jpL_&T(LhUggvJ$Qw5B-T1b~y0f^imez zW3kk)V@ zY3rR3f8e?+B|`G}TIKaTgxTkYGY1&}#%~z88pj@~Gn0#h6_@-jbEbHiy%awct`gD> z2}AjebDd}!1vUg-r_pxi%7_+Vq4Pmr;_ubT1c+AXlcHRvw^h%@gC`EUf0ma*aW1Va z6c?K{pTxC1o>KB|2q+V`2RpVyA@`Aa(}d^hkE`X3&%PYe=l%M6yv=K>UdL^Dz59Ff zxH@6LkR{D9H-=^BEXfl(=_>6U+7#083N0iuvS?1IoMBVvnNugxAtAmRlkXW^cdQ8> z=KhEHzO*&Hm*P5_{Eb3F>he(VGwoP&o4h-sEHa!kewc{;W<^`-{A@g5C}iKYc{POH zPf*t_D|;M|R_#8_;7H%co?%06hL{!1-t@?b9#v^fc7}8=*bB5k8FL6J-pU3ET2?fl z1vA#K&-Q&gl=(CX7|a(F@}zE)x$1>kyBe`fX6=jbT&ZBGBTpH8xt9u@^Mkp|VhZP| zPv(1y`}F5ajqfi?PxvzxbetqQ#@Lp1&iwmGxs+tY{0TH{Wxw~%F-}HgI$aQQwu5k3 zI;@y-7qPGdENkNntX*q^-53#`4HuFd;|FlbsReaxbjWbEj*1|RQo{!auJPuiURN9e zSRYFoPI`4B51}<5oja5z3>ukrFC>~R0>ewadwthhzv(oMfxs=SniO$0puffmnlu{j zZiqoXV3{DdS35y~PaZ^NCeNh+5B#)>KDt1Hhxl z(G%+5h2Iv$(~n3eSs1x$b-fV2PaHh;!q~c-u_Wj^d&$X&YyKgQ@z|IG*X9k?}r0d z&^yK4t)KF7kmL2AdWSK_%T@d(!9W(uhf`$yti!O+c7qM1m585gowl=}n2{l+J!d^aDijQY z*_n@I0teTr^RaTVwY8En_j%(g+4n+$Ikb;vFqZD1oBWOrgW14@s4$~LkmVE!sQc=t3!YGyMAQd-M~{0-&$g-|S+P!qr@+sKQJ&_Tx3$SW$Im;r|=^63Zd}C9F4HjLsNnDAa zd{q_qWR&2zZGwo7K9uATxmVc#OLX`aZcJNvpt`uF=n>;#mJE2lvYOUQ^6^5j-FJsF9q4|veLSuMU^&MGt(rLI2J;Ub>X zF>eYQxCp6Ul07+<4c82H=0>;qr1%-33A=>0in0i0Tp!ps4{y=#@15aQDM`ab^ytl@ zu_yMcFUHh5-kKsi>^Q_9_VBsI&|d?@7@zkaYe0v5gA^|fiJhmnxv+>!i?N_Y(MHsY zy%F19y|bX>b+KU+P?smIbD&T(TfIIB5jOlE~zhc`h=wI8J_4%9I?_UeTB|;juP)%AEo;HcTE@5>F#xoqIZ@A zb5)K1$qvm(r zw3#bY0E*3;R9@{<+Hhh9<0FcIw$_k?&h^1WG~qAyE+j<6K*!2Bl(bp-QyfCepg|Ql zw8Y=e5tVi*lUS)P=oIN*f_h3H-DuZkHo7i5+)LU+a0qO4r z`}IKkA z2w$(_V?M*Kj1X=f3OfBYUR+>D?lRpX6xR|2=(2~);Z9iE!QF!#AMUDxjRVowD&$hD zEB&;uH>23wLL4RgSZ{WYX%#0z+)pv)gXwWvjvyy9FFu)0;pevp zn{;w-fQ&^ zu&SqHZbTV~3ALl0-Sbx>`moTWNMhSXL+-Z=m%nncvp$Pn>rkoP_{Y#17fvWt_6)^$ zJl?PR`-Q_fUMVz^aRRoZE*aUj&y~6^Hfva~BGuJ6%TPVG z`p(L{&ZtfclT+9?;x7x5Q}>zyd{k?F6nyBUMS>!tPh?npikNcGk7&%tFc^P);lhZ( zpx^Xzim3CtgXAI8oVGKP-(+&+&xu6au*RlTc!LD#US^r+mdFhOlQ9{NyiE&24bRyz zB~tq30;P_qbCq^4&fS|kypyAX|@4$MhD{^U&)KjOsQJ|H={kP``3rcE;ay-l*hTs_-5VSXJmIJp-c zRv+Wln=r$0em=1^7t!pYoLEdU*C{ZvH@y1KF+&-rUl31TeU5+cgN;3ig$0^=~)n3?6?XqLgEFoFXj35O)H5jCs9Uu|NP6y_q@o zy>S#BMR)C9%o;nrg|gb*ib_j>I8?fH`$RSUc#Mz|QbOzNyz4vY@zgeB1WXY1+ml}I zqnK8C#ZPE=;4?nG1|-d_J~#Uqr6(p?Ugb6$UR}-jKp_d#)w{{IrDa@z~TYb znHIf?Cu+lZx4xcMS;=>gdn%OhfY`c!F)*bwNW1O>ez!~fa2GTcU8qgI6Cg7@kTKeV z`GXU{H8Rm{-}%1z2))I(6zVRn-i}SWBKu;jk@Q67C1w^NWXq~V`7^BQs?c? z8SGjn#L(`N(Ou!b_RPE)x?IooYIK{!W*l%RSOSof6h^rcQ_)P*F`$Tbw0=y?$C3ub z!cWX4G_9@lloca41W>R{K*(-z8?Zza@!`x05f^A8+Cn9G?OsD6T=`ZHy$>;JG5xm8 zP1iGHs+j{kpcH{Q9u7NC6{xD}Ci@@?-&~=AEjk&k>8Et z4#np8Uyd>P$wB826^@@!IQ@+^7pC&4DLiS&jR>_H1rb@#@8bpUE><0Qe^+DLy(%iQ zzO(?*Y3(ZLi*21+n9;#okKr1X1gBm!W8fs~!S9dncQai-ZigabIy?((vS2TJ;dJNA?GI?v;> zYKFB_!w~BP-#~dj$7%-lmVky_NFEGOM78%l$UGz3zGw^%(s{WNRBvj5Y`2^;#>2eP zJ=BxX8!%7g{W8(=_u9-}ns=TJ z2LG+74OZoZpNjj~!}ufdvo}cu3zGT zsDlsq=p!`q9MoaoQyogXo?5pZIsL)5Ud;A=t0%MnuCI$*{1DIC{NfBtLwbD@^+_C2aEp1fpz?Z;@OERiNqQ-5NR0DkQ+;ndIh z6~U+tpJarIPV4v-D};zz(VH{seErN%3{m>A`};77W;LSU_@2!N+5!e1!-%0Rjs*vj zFaP|R6W){hk}33db0heDf#1FFM3DZa$4(|LqsCKAe_&%zKss4qPeQdm7Gr{o0aW8_wJ5Ru7hiS)pl$HscEQXy|Fgh;#T*-$WdWN66Xm_72o8t3tAlN& z=+weO6?TtAyn1vki8rtP5#-1m^#rCi{jDofkWMMiryr8n=>eI z+w!|@199j;e)XRao(u)OnHt|S;sf&saav=loiLa42JM&`LjMNyQ6Hk)bmuC)A*O45 z%i`P%2`deH>#FMF`1VQ3sp=j6ckgBfy*;#_o{ppN!MNq*L*Me#f6((l-9`r$+!yw& zwn4u0>R){4-;kQ)1eSi*9V4R%*Vh$IV_>EAg20vltd&J8p4}QxkSk{sOa{~-QR7^K1vA!eZfVBLi(EViM-ev81S*RuonD}392(fZLA&K7 z;kSl=`Zo@gyMJBI+HJQC>T?FhvU$-9w64`KA-yu?X^A`LnNpO%Hd28vkcsy)(xfoa4ewmT7I{$2h9nr%G*ON!=_DUZxRDVV>aM4UC40_(*wh*x+#Nbw zY3oXF-I(HRrzUNNYbP%?&W*+@+~A@crYDwV2Yu>RX4pL9fRm(-KqXj%!*~ z#Mp~mQTnO)ZQ`<%tnnbMly-{K`VKv@2m68lp4W2- z!MJj3#Rt%1*)h}t*ScK2bU|JeFJM@c&k3?eG_~5BFbo)u9o$S5&n7{aj>9^jhVO)v zlkNYo_h!qEBI&x|eLqE5UR5<|#XKGBYHLXd5MmNDoZ42#DCQXi96Rsc&WfmvtlB%P zuljB;vxv2X9B}`~@AI)W*=Zg}kD(B`iVYAGTg=%=rqkVdWIu(G*}}r6L2;PBsz_Vkz$4t5-C43l`RjA>W|xL!N<}gF$jjb-vLOB!+*dzQ-I&{v0Enm0F<>GE zKGa661nb?28h!iH$r_9d&Hb3*$EsYW# zR)F95lrnCSB@)nEB*_wj9r8Ls1n>(aW0-WJM-j;Fxgp`PT#{)CxAsk=W|s;I{v~q~ za&j@pI~202DE4DtF+c@h5$!poz64jsgPVsH6|D3yln&_HC=uA%I@<0Z@Si&!Ral=h9TOjJNT*V)dkB+G{$B z7r;Pe1#h=%o)+38`>Fsw)G#qQe3sO1Oo~h~5eGtI7h)R4q}7@w1GGn7AG7IzjHkvS z2kPIx2sQY85~zPvGYW@UrI{YPZmy((kb+y?A}F10drfBikpGGR`7=QNHjuw|%0D<# z%%BA#L*5k1O^M&D-~FL{UF4v{DUicJJo+L3?jQ0`dLVxW$lr%^lD!?C4)A(%bV$qb z$S#ed20m|oE?Do&g?nBljoXIekeuC2*rd~u6K?WEe993{k%}Kk3JkPC_0a5NMI6>wVV?^TD?g&aCLg4 zvb1s0&W<1?1K7*FWro`#@d2d$R5Zz zqb+Y}QPHBFZ%bL)m!3?5;0oA_NzZ_TJkD{cjLM!Uz*lgyyxJO%l5?4XSv0r@Yc}9N zX+vu;lSYE1L(mTEA<9${PKSEt?WTz0Vd81#NbM*-A7t^u-nA}&zVgw91RNDINKqZf zB+X!IyXrSgju3K*UAreOaTMFn-W`xJ;aQgn;mpPirfcc-)OqBoW*-=IkcsF5WhR|3 zfZsq7v3(+tI5VyXG1*@ndnK<`7cX?yU#ccW^_aFpRfJ}(u=yURJzd={0N1uhMJM(v z@hgC_MTSc5XF7LGu@0VTa_}X(k$4fesTY*&J`aGrF6Rg};2vk*ZWHjlIqgq42)ix7 z7dzRk-r0G9>N!I9$Zb3>uY*tF0|ME|zDKyI@7RJEllrs1bHJcQ{eoAka}+Ak$m57( z9_St>7jTc~KJMp-w0%7dgd($nNdVx;(Efx4nj5Yuh@-PbBpL{X{K&g2z}YOoCcWr% z=$y4a)a!XC63m{)INPFhHO%reNO4{DQJ39%W(GcF%#*(66@+Tm`rK`%c2Ts1NYWPS zTAgYr=qj8|2zbpLcZP@~Zftv@EC$LZ59EIgI|%Oy&2vPv?;b!SK!S6-h8}UdqI?I( z3PtK%DcPjN#HpsQBkrcF&2JEV?;_@0%PvZK>qugfVk<^TD&&(_s;;@PO#!!IgATK> zqD0rR1z0gNS7|osC3BIHtdSN(3IaFsq9U{6S+Sa=dPxYLHFt+mNm;mn% z27e=x0dYiSW3Gt#NE(z9suixfKKYP)0^CL9k5|?%0!ojTtA?Jo_}tRGfZiR{J7S4x zPrq9C^dW{aXs_s^?aD@Vb@sikRY5&T&fP$qDiCTv912d9{2ct8&^<#BCINvh0V&UAXaRMHMSok6iCzeJ zoXcGeSr7O($6)wyUFhf$Re!>Lv}S|^tMD;{$}9*-0Ja|7f)PS-1LaCz#+h~ z^{O{kji6@=9w&%W5 zq(#89EH;qk3#$QHTPR%uv&eERR&c*agIW_$yvG5)1L{mJ`)8^7H-zV!5Ghw*FNat( zfsYOes@-Rg%{Y{LI{bD#vKLMw8W#hU`5-me@*Yg)brIbV%%H7B=y5D2Utlsh$K|Qy zny)#PB@A8SxU!2o{2<=X2e})h8%QIXAMk2dsp7rbbS-G)cIrUnG7eibE!)oiv5dxm zjh*w?!XMa^;z~vGc&c6=w7aTGtNl3AtjzoLL7&QnEl9jqA}}57FTVNRQ46ZNTvrL zJ!Fj#N7*NoeWq;Gf!!S}VqvB(j4Hwc-?%p*=fghZdTYH{*4&nHVmHv7L{xVy5SM4K z2S^8R;!d&hyAlDng(H9B*DiQpgZ^9)h2G>tF&StaK_ZyC_;eM?|;#ng!qA z?wcO92>75s;Anv@0E#+$yx^=aJ;#ZDkK`V}b^4;KV|$M}(~(r3#H~Nv@%J5@ZHm_OrT5)_YBk(`|3ig zZ-8eW)RhPP!$OA{v_3(?JMh}$GUAJZW|uAQj$}P!o)2BZ)oZO&uNO9Jk6_XoOYxgG z$kCUb&==+rN_Y40Zzu(j?8Csqr@K1mID%Hb%8DFxyO|Ow|M+i5enyc-P_W2W^JgsR zDS~m=96;N$L#&p_G0d?Z0sg2Kk8u-dU@{|u-&s3KBI}1RUS4cSmjlD3dyp*bc4<>X zGeeLVC%;;VTRcfau3gQoLh(Ld=gcL$^)FT=v zm%)huySQiH~!Tr`egrFTP}&o$p*Ya$VckLy$U6d8Maa!m=w50DtK1hq%62 zB`2H9z(Ar9{?TGRg?mS(hur>Xz24&IOP_4CK;1g}Lb zP=CC}@Qtf~ygpI5exmM=*EVtr_3ze2UKi_+*Hi*=;eWgy^CFPUAFt&E!ixWR9q7ex zugf2=%YCTFAFt`XzQ2U^hwHKr?cc2>{zTO#{5v%v{vYfeaxM$c{;h4{*Y_W*NjlZ^ zhxOuOO!;GBiKnpsXubSJIl6zd)?N|F|F-F$KmUK)G_EruYwS4Ozp!WheeW96b~NKj z-u%bouYYTQ`St(!_Vx42oNhDR*J08A@;|=)&mUL6{qleD#d{gkZ&Puk-zWq@Hk3q= zZ=Yh$zhU1lTRQ#Uzx*itAK!of?;nr+rAcQ%`{xim?|=Pvv0LVTng2fTeG0Dsk`xno z=l=Jva$iOM_xb;Sd=>v?>XtE1f2+?gMbmfV{4JdJHZHo~YX8g6zp}AwzBS?8*WFwf z(YGIW^!s@M-1x1p=RdqJ?32HQ@AsI#!@20%zYI${?*Dki+2XHiM&XqHf7}?hVZBeq z^pAVr>HPPq?LO__H(st^`U%%bHuKri``fBR8B+b6XbsDyRZ^Cz5 z%uAB~>8wiM741Cz`G5Q@fByIVo~#?c{Z{5%(f<4}{Y&}tr^tSO|CjTxZ=m*S*QWnP z+4BdqV=mey{mm}FaPmh3BXF5J{`ju z*x+|5ef#SVasBC^-~C;de{aJk{p;U;f7{=F`SqVmeo6AL|02(SDKi&yeLm;XL`4eZ zH~*XGod*S`H7Lxbzy#9i+wGr<{P{o2=;xI$Kl&%r`qSTj>APtLPnw1r>Zd*K`ZxAJ zU>F$L|5JBySm)sD^V8pc`SWSfQ#wt+=>A1faW{4okk$YEkAJ?NeRt=-o{sRB?;rkj zTIA{8fBp6+4EgmN`DdV~zW6JSAbpr|r_5<$l>+P|}wK{}T3n+9rScoxA?&dp*9p@UI}W{rO*R z4nJY>Tafw-2nl&Q{^|exdfcD?D--|GfIoe&-Jie0;2BH5V&?z)3WRZ5*T2QgxJ%OS z_x_S@X}p{v2dH6bXYeii{fqw`dw)dU>9=V5zkWpIe-!&iA}D}Qq;TK9&vzBhRWm-w zQ+R(RA=R|=yA2ZX9XYeVJ>9-gz>SS;-8lMSy4sWZopYQu|lA1xZ+L0t=js|G8!V8mJhWq{A zc82-5J{qRA7w4`UD5t+(22X|0$Lr1w79+kE^kHA^r*yyH zUUg@hcTtAnx}Chas#zUZr4cLCf z9t(WDLu|0}9(K0RgQ3^;cTduycQVlL@4M=1+`IcXtZ2eRQTD#b%k86~o`cvGq#&9% zky>1(W@K8FL-LTh-ZDv`N4mYc>p$)8$cMu)4X^Z=heR7`)29b|R`IOVI4GbDF|Pq33<7GsOy4VP!RR1q#Y#%OFy#9Pxh9w z7F*>XEL^5)PGw@d70TSc#Bd>mA9@M$eWSm68Wb)?W-Oy2vX$sMt?EQuQe!YZG7r%B zce`kE7jezrNOo_hW8{)C1vdH=(I2ewbN$%g8RQK!yaawSHCw?4U8_2dLt_0;MtDyg z)JOJ63rVC~%vI#+Ze{{dv5^9&fk6Kah(ws&#X+QZG=vSXSYm=KK{O!#J@9C z>{+qtP%(KqcicU$^N;W8+f$U=>5FlHBpTm}dd_!~GxGnLTrQ zA!_+|I|2H98j=rv(cK=xXmT3; zi>iml_D=E?kdyV0RQAaXc11(Sa_lUEgloGtrrGQv>Gn@Kh~IN&3bZOF&X-w_h|RLVVqAZnXPok@s*p~QuPj!E{)FU(0B!X5c8zZqrG6sYQ>y!^qDOHWUE z2OV}(H+9Jp{2?DxXLK@;l4Ll;4JZmI5(EObuI3NAyBM&wwVLu7(ZY1Vd%dziTm4bt z@o*d_q|w|(M{LJM8&i62c!ob6UC;}U!`6fh@i?0qpE`FLH-HmmrYCV2Qb)Yuun4^) zwRk*0+_sJ^fXPe6BIv&Ez)n;1Mxh7Ym1o*Nx&e~h82)aKP3`h_HlwHg?(`YG+YG+!|4MHuKKJU+hxI^)TT=k`XKJwQ6m(Q zQYMy8meDJ>|CYaq$0G}rwtAm>-yK$$nSloL_eV&Mv5 zq0B^&LAmyiBkf2Y9_H~Qdvl(gO}E`>3Q%&hyk@~DfrLZM45`mCIIWY|u++9;Fw-7l z93uI;0_u<&A9i&Eyipl1;uO3wBpI^F+dWVRGYOWyO@?dx=2B|J;w|uzC>xTgzGL$M z@=WUP<^p_pmtMKo=M^4Ho#VL>WGJgD$gLgtJYtidg0NTGrK``~RT7Er1@*G= zQrz8@Em|RUYG7-nyKKJ%*X_Nusj0c!apbDFVRj3prIHL#j{(dRl6Oaf>&$)n9To?+ zl1B>UInI$Ah&P6v1{B=}@1liy%Y_d-odb=Llq!-iA-$lTniZLp9*_Gci6UGReMy6c zp-OZiO&>$s^VJ+zi|sZ%;>h`utu1JWQ@c2p$OU=aND?OI*Kys~6y|r#?%Fk2fdDws zDZ@{NVk~}0gWeFsIJ&E#YDv36pJz$p{!sju3zh4Yj4gwSQVUiw=nc`3Ej{(}Ns%7v zsIqfIcmTC#kQ+?+DZ8QeLMF?p&Rt(u5?dd@QIwl2ZV_ao7nH5{N0o5yT} z$&$>R43(-{*@Gw4@bxoX?t)3~z{M%!aro3Qyk{GAG&AEyiJ(>J5(d?N6BCd)h1P&l z{yB#mH!O|zO3Z-rW}sUsR_QdIDw?7O9L4XrI2(?GLBmQ6yMM-xa{Q8Ag@iOI=b43( zLm55mhQ!2xuCX+W@x zx-SfFKWlRnI0zoj!&ZUVTUR@A2>(w1fgf9st7_Rl)OjI?hD!V_T``8)*!>>78+IMT zQN3PGjGEFTD}=UmKI6F?za3ut8%mj^xRmodQ#JNoJ-Gma%>-xJ7)P?q0Jz2LoYEg} zzz!cwn`b7*l$VP zFpxkThqxHh6Y7V2)e#|)rMD>R2)PqRLwQ!qv21m9jnDj{DBu6U(Wfo(W9i}T*ytPd z`w@!tHI!ZRLWHok>4h#;F*2E0beQ6G2(=N?b(UApDMz*!on||FeT6LJ*CBsF0_~JV z35UR0#@PYbJRoa?-8l|7K|}p1TxMo}1!U7-RNl27eFl51loj*AtC?gg+|&ZDprCWS zq4p77t|YTHG+YIa?%87uu{?+|tfaAW+(Xl9h)uds@xxWTs8{t?K9BgmwiG zJ(Jnz18!Nef=O0lx?zF~9neFxjC0tS z>^f7JCR{I8kI}HQh0EX}?T%a>wckAw+AX+Q1oT|d+UNBxxW-YE!R2|WFc+J6De*bmlk%$ib;uC?#>282hT9?A@JVPih`*)3}SIBarI(k3W!Xd1Ypao zB@w}ZT;YKFWDoM^2^NnFhY;Gabey?d@~~Prr&=Kkeob~8lvVHo@r}StSf!q`_W_V+ zI(P-A;x35y(KYd#%54o+LjZg2APg|?jjVFjYq@FO-RU3!YiNo)9Fw}FX*zSLXZiu8 zDyc}1(aLJx#w`;95H}K1M*?M!)*&3n1dj2kLmGg`p_qQUlLz?k z>?=)#vJ{;w`6Sf|Q+(3Yhw?okQ^!lXae_4^G3CC?QP|-sNY$8u0CxV)ZCrJ$YHs&S zma1{Z8!(pHyaVGbzIv|C0JtDx0nSzEHYYl1VO9yNsD=d}J!CM5{elFf0|1w{(cspVygZu>m4eHt)W2gBKP=Si37E z6}1VV4|S|o`gP+M#adA^Z#h}nBk`O~iU7>bZ2h?Kf{9`t8sHFs`}D{rA&fR_N54`0 zIbcJ$Tcpj0qL?rrH-%di%5ikJ^y3ZR^aPgfvI$}mX(^L_tf8C*q!Q1e+~+{ApDJSe zZaY}&vruhN0Osyr#5;1lF)I@|8`iBQoAxRE{5*YvD>ny(5hV|xWqQiw4QT-IMMsBs z*B!k*0$^-ay`kvx0C?Gn^S7iuAzWTfOHxRM37y{P!j6*f8b%sIX>YJzT~sO|{F`E| zb+A+3!-5ZjQmu@ola;wFv5XCMRj69H*kyhd{3LxWZY0p&sC*;%<^SRN4@!$C=t4-+2kS z?Mmo<$JKi~6jVm4yk)I8YE+&f0bB}g2@m0+3A_>a*?25^zrr&t=k9`$ZAAhNAgM3x zXGY#Qy-;)lr=vQqkq=~o&Nyy*vPr40WN5~aYX=$ud4g6440$&PS4+;!l#r1K=EE*F zuNIIUGtfeNTEKU=j3!+>dR0^`jLLHC+Km)gzzaW3MTZUq%t4i+G5B64r4D60#Aq85 zt&};dBgC#ndBmkHJZ6I@Zkc!nIpi}wXyryC>p4@?+YcCWAJKcC%`yz6j~?hfJ%{xL z-F!x)7A_D0wSH#avm0DVQfW3R8A5cj@QIEI-B=UclPUa;3F4p==>a#`{Ifq%xm_te z3f3Lu&vC2T@Gx#jCgzx_m8uf5xnn}Tx4;W<0KYJMdDZEK6ob}l$gKykirV{8Ghyu| zKtZ(zajBQ$Ik^;IcuT1v_%Xo%u8Q=bg-5Y2BxI0U45EceA@AB@4fQxiCX)G{-&Eq6rUyWwmaXZ?#*OAubJrBsVx4VIcdgNJ07FpHY8$*+ z(mKQBt_8p%LmCzm!c%{}Ji&D;(7yD^SAKSI&(vnGaIfS{)om6ibh9$5Pgm?VjG@$3 zbnETCosNKR(^0fecx?lJWzO&R#L~&ZoaAoAAdQ9^Kv}yA7ob|g@dK7BByFSqTxFA_ z>e=m!QJBU0S3D}4f}z7IMLJIMUm_`8x^^WaLp_;cz7cKB?GA`x6g|O&v)4b z_SeXyVU}q|7@MCi<~7-|j@V|~w_IA*bu#5@@I<)fqh}JHL5Tda2J;W1fGc*m+_c&Aj(|~ zZiS!Bw_#|eYDv=$vQiqN7))cLih&_s(v-sVp)5w5l#B)HfFDa{hH#UbDemEdC?Y!c zK0aJq^9c;+GJrSK0(eN%+OTvi+1yP8Zs8!Qut*j%_~-0T=BE3@`YZurm;-mj>{8nwU%}u5}OI@rltC zSCPy-SYtB~yIr9Hw18fi z8j4T@2(HC$9Ei~$PB?IRfrS88bkKHOQ{6)nr}rhIvZE?Ds%$CU6lJ1Vv|}p!Y^`fu zFwktJ2CZ$CuZaRl$Ne^zRRWyVuAxP8Q}D`#)ykf)@kaU#gj6hqFEvIWrsE`!sn*NB zZ=ZpWu;XYj4(}w1Wk1Pmtth<|fNw%Ux>tFv-fDr3fXTF5jnUCeSKXpvrT@InfHVd| zIgfxYiHB7JnC;W?2OalRL(+`NW{9=zDY!JL4!BGez}lqfCH6eTtLkbF&lq3)+ca>*ymOIoGHSLsMXD% z7*R(aLPJwD>&>~+57_h(3?R#zrUG~Y0~&_UdLoio{Q~BoQj>f!u<((jXvi_NR#NqX zKuJJx3taCe<1UG6uGnb4BC_B`1}E6z&~6y%SlH@<5F!IIZ87hKNO=N|Mm5#TH!H`p z5^V5gf|;uT(!-MOK8+k1f!mcBT>_$^v3fZe+MwZ0&!U~q30NXmbSwa*mF@YlE6Ukd zE)_pc8xnS0ITTxs)+XqN!b(1a>Ej_jy1eRb=bmzUT+UK&eu$Qlyxy`{@vKW8T|EX5g2)=FzTg0d(}FZe9R}H(qEp?Yy(^R;&+s&vYz>9GmSIbxC|1L7t(C4ye34mLTj}F<~JUeRRMr zj{G=EpfrQ|Y+FrkxcTx#+Ed}E##lDp(?M5Vi}emzh5&s6{%Qug?9w_7^J;pu59M=- z$OLZ2bC+U-*?mZB#%zbZYwDD2sgaNRJn75lsDBy{eVdlvYDY8I0KTX)RsaOTY9!g< zxBlu=s9Af7qSU35zxai{xcM>dyDf9Vymlk0GkzAphnZCGkJJMGVpoeQ93C9u#^hwD zzP2>W?`xxmn2$Z(J?&G1_M{Mm>9uU>QsLwMszn;MNK`U+%!0V71~eM^#LZ2Wty&OC zRLKvptI0@qQ&Lej0`N^zT6LzwicH&u1##j^>o5dAKa$R_Z;H^x4a*wpevy8jZuYr9 zi@^n0pBz9S2NkGoL}S7Sz&CmU$>&%Zz8^Pa3O9kQ5m!|(cnLxxHp!oMQtgk%#ZU{z*P#%9RsKn@Cbh(1NLAO{GXmL?QaO^E(Pjy3?A*`gIWI-wMl4Q@im z6a9%=rdlK1yS)#DTOW7>xqE}#vxles%^3aK{19iKP$6q0+Q;7*mn+|XLjHKs9x2l! z?rfal_F{P*;KsmLOtE4BnMC!Y-DuWB%lrHgy%(jCJYY%*d?ivXbmsMjy~inAQNwMg?}zSF0k0kZbCbf%#hTA}^DdF>x{9@>d*RF*8i2Gwu3 zA9FlzJm9EnlErd`e&81^M0HGg zlrnx1?}rtaQWS^R=2ioCfIBp;n8$jZ;04!kjAw*YUloRJr>&iovoBHftZvG`pKeTZ zc#?U6gIll^L^>?O)mjht%P}ChpgrggQdhuP7Wl2=Am#)0g4mnJO=|C^4gnCGkp@g~ zSr+c}LiK5*8Pby+R@bp{3ZijKt9H2`G1z>q*ksr^g6`hxuW-?Y?|}JvlA6fw3Cp7W z+vAS1KFoO{25ynZ%u1{b;O9_3-dIM$pqbmq;LAc|rcb1Eh6V|oV&m^l%Es;>PM9q1 z0!c*|zQpNe5N9tT;3NE`kHU;;|20ESzc|(0$YFp#J-VgQ_mboRg45m&P61rI3v4q381|BOmCqgwls`GbAbT32AVtmm_VH`?T^rb9h&jK&1e`gn=9_l^os+ z!^+B=ym+p6nApo0mXX;}8qhT(^fl-q`#WAo6m7KWxf?OsL80i(9>KD)egaRGQSqOv zhQ8;j@Z3St3bfcY%>~0tNM4f%z}v-6PHIfp(kK-vBOnLtb*)3+#qnhUjF+Z+P`{r^ z6qF<~vgntu9rrv}zhl)X(X+NXwtgSl45My7(y}VR!HZvqXylPYq93RvGQh8M&x@~N zJy7(y8ocJkV-3gQJ!n{pSt!@(dW#7I6QMgBc2x9;AdrVw%WWcwG4?$~7V^gJB=9km zEpMrs#jhDof^}n4fP*oJp@-+lmPH25;{q=;BL7@$RQf)}-`;1$!cRP&P zjX_%=?+>~%P||mYrVU{k+W?~pi}#oW>oF13gGTVj?!tm0sZ25_=<@Nj5A&h#qgGt~ zTbhy)j#(O2bNcl*4S-w4c11AQD`7$Cq%AW0n)_Zno{#UV%A)5iDcYsC5tBy5~iDyfOS=iiDEUM<7M-8Y>jotbJ26$v&|sj zOC+6_O@o^&-cTa^Nk1S9jm^!o(}i_;@wQVCGfO%EJ!`ExN2b!)JT*&Py3XNRQMRO1 z3P}EtmgEfhup?N$t`UtEipx5&1=;=Vvr$Ww?yU*|HtGOnvQf5IkSTS?eS990b|oA7 z-1#r6^^ot!5#+X2YFm)*+THQI(TJ&|09;&S>Rln8@}3LqlWB0HLGkf9$j4EoZw!U& zHG3;`<0;dXe&lP2hjFcWo}EeBu&mwwH7`=(w13R;#V*xqW={#&kpq0M!X^*I_THrr z39rppD~nrQ9EwH~8+Y&5tx$G&VTS;48;;zz){jOSL+Vs*1}Jg78AIDOzqLtQ!lf#} zPpU>l8a+EA^R0d8#zv(G?wale_-l5r(p4&Jk+V{T8=zPJppR12Pz~0jC`#}{S%Hna z#iDZO?#{b|S)LdmbfkDX7yl;ONnTVHb>zH0LT5y#-D=7?*Be|bmzS6w!#Ha46=@nu zPcy*Pqh5kNwHUI6J2{Ysbpe?S>J}AA5LLnFVKv1bhjg@kQ17sSfB8WPLz~UOyVrIN z3*tJYTT{!Zaxm?JRc^=)oBdk9vq@E$(vFso)33FidBb;a{@(upKqSy9+$7I11sK{H z^VbzhkTF8=Y_n=M6R$X&0(S^xEs=J?mar{{2S_hFIF_QRDM7Lk1G%~cI>=nAKpu3A zXUx7sTml2IrsB6 zHb4dq0KQ(she>T1Y~(~~93LM+gYOefIc+?#)mvWa_4dky(#xh0IF|PDfq%CW$7~1u zk=bsa@bVzn+CdM@p3Z)Pw}jRI=y$eJDg-=7h@9lXjMtvWGkhQ=##ar-kRJFU4;F5n zcuN@4YIATGO5uDaAgCmmn+dN$qXBM-oO7r&_aienivSFg%q5q;S_@xjor(`8-^0^x zTN@rfWDmFOs8Tci2_&y{R^@As{V)W8ua(SB_HUinRD&c<6JGlB`Q8Y)V@sH8NB}O> zAuSXp2Ezh=j5C`CEEN5qb)pM#b#E1+*SWn)V`)g-YqYlzw+AcXA-z z2MeVqjZFX}B#8cAn?%BhP8Rf;i~SKu(dNCFgb}=}q?G z9bcy=*+wC~Zt7~>Oe>&u^n(va!h2mW`4QP#R*SB{UZGa3A8W!b6F*krgqRwh1 zKvmLLw9*Arr|!)ZdyI;LhYsq_qU)rv;N1ms+_-^N&UxL&9+CvNjaml`I54pu^&A;B z94nn)j*-T+RucJpyS6L8WWq7=z`n9*)~h*DlCnt8(|)VPn4y@*F)_sgydDAA?I7s_ zVgfV>I|=|H4Y|DUmHA8`gWUWc*UU&GkT!3DEHwsYxULL5bhV0~op>^S(=H4Md&;~z zvvZ)#2=pP5D>+uRQ9a!!j=UEV!j5oZoEq3RI%vBkDL}U83Ds+iD0c05LpX{~;)u#( zzR6;|%#KDahhA}fN?DG_W;KX^?^y z&%kKMG7{Z2ytUr$vP^d@NxXk4Na+(@tcw1WyJ_!%DC>=@FNQZ4 z)tahULB*s74O9UQVXf;asEY}>fD~74wQg!v;YoAK>UQY)%3hz}WBLttF+oSKS%7#^ zU@7*^8!1SW7kzXGx)&?fu9iuYZNri$PY>@y3of=X;Ob8^!YsmvQ^O1?o4kZpyDJ`C z_3jAU7HFR-T^PUh`l8CUfm$H*9J_Fh>ULq1M?7ScNFQX<%Ob#jn5e7p6pm@5qj(|D zQ`Ku$%d1X{tos;#7IBRZJj1STnnsAfSTIjxfVH6RppNiJ(d#j;R~2WAp{ML#&V&G? z_QryGG;^MI1y$N>6cS1M4K}e~sb_L2K(3@lFJ-tHRFtZ9!nK4*Xqebq3_t*T&bZamdJrj0;J}8;z zi8E!_X}gFlzBlVp-zFx1j93HWw|>rL4ow*|o?Ub->q;ri0r+pmkF7Y12?9r=@pBCd zCN0|WVV=iw9Dv3^H1%jGjXFS_t3jNDj7%ph_OtE=GlxCFeI#X%xIN@FnAZVjA#c`d z!E(*<%@_iIP07b-K{f35Qid@EpR|dGX2{NKM8MN7X_8OcQC+bj&m*^0iETWyoVHh} zEtFtMF9KhOmwsaaCXHqbfj&@(c+CEyjv7yN0tGs&43n)8ujT2L9GnE{KTt|dUFmgp zl>)hXpzeuah0eK?)`(>fD8~X)m!z!Nxa)d-Ke3RgbCd?y@Tt%(z=i-X`0kK4!T(F% zcWgVVEZcq%4ZLegLKxw_>0t#3@8RojYE^AB?m2baZ;YqL+Pl`01Y}0cm@_gm(kJ(| zXmlF__9nj!2J#EFQ8Ck@$(p5!yo<8>4UJ_KFie#d84i4J6~ajj{04z$Q|%Z={7gG) zqT+MH0%^CXNXi!qHm`!imeqgHU%t5x+%5j$YQmQWonzj~!ma&GMiP(Rf@e56*(3wz zGM+!hx0IKC0Cub-PDf&Il-1KgRo{`|O+%$sN5(2lXGG>Zy7c+5Lt0}LYR)8K-U_26 zyfsWv&A)TWx~gPzq1(-PLd#gOA6XudJrf5Y0!b3GMc4s+F$D2h5M6jQfCS_MO@vK6 zV13UV>npBkn0}1P5PTl7=J3dIqTt&8M0t_}f*89ZoBU~Su~yiy@{r?nYb$YH%y;*K zo7C&z?uF~mwD_*QK#Jr2)F+@djBzO z4f7e`nQqw`VJFDK^Fm8Mu2HjG80QCtdFVTiS>o>fbO1sd5cvZ7RN=Txyvr~*T?Tga zt=q0&GVr%bbB_AJnAs4r&5H1kVURqn+zht;EX#*2G-R=D1NU!>LT<dgxTeEy@1MLGcTHr5pfQyJGxW!W%V=ghP2?;eF|-gq z5Ka1;VsNpS<;1ZxdzpLr-U<~nT*dy@f5dP>Y&#g!mt(thcGh(gfglv2;Qq&mcQgf1 znB`&EJ zVipE{rYOuYIPrzjA%O#K$l6KqD}N`+zq{MeaVZnJ(8;6wtpN@KswfITgWoST`#`cm zZ&*Ow;6u1R*SWqgzNBayPrpTXOBZbKHY@?k*-k*~6t4Jy6kNl`zlQUJlSX(`3Vyd=f80OridihTZPAZGRNlOMRGu8syPI`sXS zff%7N8Upj{FWHJNSYZcB_EI2=2+;7nK2f$@^b9cl_)v2ae{*GD+(16x(vqVdgQD(U zE~%v;@Dw1VPd>8XFy`ALGM)Xy{B}6qge<{3)6-Q7-!T|q6}0o$`=2~CEzr0VD0eqo z=@nj_iX{6_yCz=8Eypu3mgsw*T?Q97^$5lMv$u3(N_RkOjSpW|SA!7kTrPJqc2+`YShNcnrZO84n@)@K(aTWD0_&JEM>;#+(4 zaz50KZH)O+H1f8>EhOY{h^Rt5CkgGDXvoig3ZL(SRO!i8Q!#@9ek^Kf&prefT?XvE z4?hc3uLpEueOuFxPEX&wtM__|QBcCy(mYXIcecj{#!yKIW!;SI^WndmipS=1fukSa zzaPZ7PPXk+A*sDy%Fun7+ezPFRMcCwUz{d6MFsI7ALH7Mc8gqo{t{nMO%>#~(y`#b zr1kBh!FO*iR&Lwp^WFdWc=il%o(}0wanF=z;%Gp#POquSKcBf-gNMLET`h!i6P@Ul z1WV*um`}c<*90&zE!&4(1=KIq8xq|i_AapFQKzX5pUrI{dXqd>81WdDwxF1Z*1Q#X?;C z|9(G+IT!!@-2qH^4CC6{UJ)QKg@N?Wi$80+hVJJ-Kc))hiT<7Y7aMA#s?)^V^2p`+ z<9!y}wGY?7)mH1rHwz_0Yi~n&)55G?a8uS0$8-wd)Q4#-h z%>Q|ff9~-1T)SU6lmGU5?AiZspOw-z--SKlJ=A)=YVWdGW&V&h+UtM6O}+cUgL^ez zm~ONWysHJQ|8cAD|ExL9&q5+0#4I!Z{oqeFUs~m#>u}+{%XDTK8fBMnZ*o+{e>mjM zGhLTN8rMvJ>~IEnSn%ggb21=R+DCcw_&Ysk!>MVKydT%aiOLUW|NYvvLpO@R#dUYh z&@N(?7M<1rjv!dy&vT->t%TuZXs2m-=4I>MKm6-4R+}WWrfIqF?o+ECVJmnm9Zjx1 zd*iS&GrX_5W|G(W>XbU=dC9pQ_q*-N`N*6-A*pku34&?IYqAY_TpyE>8+1jEy0NB3 zJm{#?pwy<3T}Ss@5yd%$T_Z`hbUdP4x!z)5*8Ul<+fJZuq2b80NBAeqRNTH3v?37@ zw3cmcx_`g1e~DC#ruX-wX=>}Axk4mrzR0;6{LuL0cs~Jb{iy+;c1PaJpF156rT*tG ziJYDNxpm*;O_}!pVarJO=Pr2nUZ43tcF;35_4ViOdym+ue`&h^_CiGa@qhFfX`jTO zI|gbm^v}&pWNx_2f9_Q1WQ9fF#9Q*R?5dMV@zFNXo8iOPKA+Ufl|Q~8rAYqx*I1(} z5*zW|^CRYOXmwx9TYJ3)ISzU{$27%TvEvmkJ|)8&4M*lK_hYuTyFWKGJogxg(tELpVPw4b#*@z@TcKsQnsro#6NLMzBRtA zip$-Yn7?z0j~r#i`R3keFbTYiFs$a&V1TnOI*)Yaxb`BMqKmNX<9pEu38l{iYWSPV z-Dn=A*d*MY*`4EHZ~M2wIN$rN@6Lajv&WWTY=4BK^)zQ+xxKl%22VPB z?|WN*$CI3~gh$pu>5;C(_j75lNbQa_6mD;5o2Y)w!Bl?ge~j$@UZ$78k@f4}<1@;% zOW*jLevG8~;45;Mga<|4TDw+eaLxBk2lJ<0p3#9Ttcmuoy4;%((lKn`vi8pYjZ@Ei z^IkwK=#MN@yq$0*W$JI=s+`kT%AJU-b1q>0A7AHgnZgSk_72cB{rh(7M;dZgKM$6} z!Ua~JYhrXP^a1{e97_owKpH`(-k`Gc@A$C$Xj|WD^Lx6@-@mkea0&I5p%9zE!?HRm zU$=*bu%e~L)Qn6l{_pQ-;>)_Rqs9jR@UDJug!dj#tQ2F4y2k2Vz8zKT9UmszUQhe) zH%ihg8p;>EkM%0{rCnwkf{Hh^ox^LnW)6t zn>HpFj;CTZ7OBV{;@%9(w|Yw?FbO9h$q0-Qzdx-GnTNt(?IJ-)X(5WIU3@&gEuyUP zo&kT@ZI?wx{~z4+*X!}#%u;BPC~5}8ep-NP`+U#4hAb=>_{!kPTf#9t6ORP{HPrPi z2uk{%O1>;XbitR3Hzr8TowW zg7s9SRe@vwR($Q^W$QXkR1$(}GD|>n!z-hGc5L9YCJ$*N@)h{a^F>$Ys(l8(J3o3Jzs&fn&FJ>@ z_yRGqfBOS(5pF)f1g!R6vOx8G!v#_Sd_xE0u#u>pPxsr3K$`9l^hwM4rVddvV_L-( z!K#LY4BQrsU;K34Yz~Y+wkEy=`GI7UK@$WCH=|`$Z36+{j!s=>`$|GlZ(z1jYPq5U zVt5!l#urwRP!ntjxj*SRE^dSeq7APGO9+c8B+Cj_D-GtXq08Yi_|1zO+UhY3&GuMl zatu4yQ_c1~fO_OOXfUrnHuW%)g#=|xqrP>Av%F*S!acgMU5Jli& zG~M@I*S)K3y~1a(ZCj8ttn6;Jm$OvkS@H*2Z@8niwRcbyh98Y)7#7ei>nXuSQ5ZWx zlCK*9Z*~2`@x^Z9#V_5-qbPOpx8MLFx5W&@C~_4pl0-pcz}0w~PP|};=YQeM{hf}N z(H`}`IZSVH_c+J9SF7tH)n0Ha;Zq%0?hWo^A-u3pUlVDB1Fb%U3r1#zan&LLZ3T=^ za{%a9KcMS0Qp9384uL8PjUdIQ;stG(Sq4++R0xfi<$7>2=R-G+=Tj6tyQf`%IhMWU zDLR!sv#q&puZCmWxG_cO2ZN0)*x<=aGfmSF?|Ix&9KQ=eAiiF(QHusao~v`NxI@$Q zT`i!r6p87&u5qD1na#2+k%(}8yF-c~V9=cF2*+Lfj&J^&F}`SQc1h`VUp?n-b4&p>Nl}xm0gFpFQmdI}@f8MP0D3)%8}$0JL8q9&x8C%_khI6^C?KR)kPr1eiti zgf>hQfr5ua@Gp-8v!53@3*#ckaRK<@6i=On$!n@-fEra#=_q^@2NSZe@t`0`mqMYO zwW>_=4ZroAM0& zyF}Gq5))kTs#$LW@YZ`=ZXWsNz2-yzybDUQ(1>rIy;af_Le6memu~|AS#WA_CdRAl zrErm}Y8Ea~=7o}|dt+^ncct~`pigl@gSeCw0pj`mTtUOkvCfXhETm=hQFpnTlUvn? zX)aVOdAdu5PX{>%6G~0>b=8ZgI2^?cIV{RcFcI`LP3sz2SyANS)e)^x=w`h$nJ9`p zaCY(eOu)}>dm;z}iw?|EE>tgchC{}VqUi4MD2lkj_sC3W%yTgLTYRPIljn(jDwswI zN?8*-3&~lhaDaWXlwsh234Q%3M`$gTzWY4HI@=(TOt(COEvFOi zyXnpW96TV+2=M!$=tS5O0*nB{P%{9paehed2a}X?op4Yit3hyYP8DYn3Bi^O3^A$Tmql!oQAMET-YEMD zwVTO(pn{@CNETSH5X1YZD$0vsXc<4S)rZCSDp~g|m)E<{@!?`p*2jROwvd7JFXAG2 zSTGC2h@}#aB1ezOn1OsE%T*0r?|5BPg&R1eNMzz0@b>N~jEWNiswPI$y%D$r@XObvL-hq>(Bu8gq?$zvir_z% zb3xP$aeD~pEO=Rp*Tt9c{H0BvoCEpjl7CzNfLJ<_SN@E34zVINbQlmy$1Z7FUkO(! z?-(u<-Zj)xuExE?8Svid4b`xXu&N?q!E`@y@H!F@!gA88C`#A!I9&DfJTZl2R==i3 z@*A$#b*(B$lY_0c(ri{Wjd6G$Wl|A_iG#|P>*+6n@;Q?UM^V6cbbXy?NOC&31a{wj zKCv+-TD40V4Z|BSN-s-Q@4~PY_}T)nv@1l@OtVJZmK8j-e$hy8f-BZr)9^<1Kw-iJ zM$2kKeJ=SL00kA`$59x95)em{OrORZ(b&t1ZZ#BHM$%=iM$hiVJkJaMZe{87!7_xo zh^UJUN037di4ZV+T_GHds0B1etQN5S{`IV?*%=KVZ2OnTE+JlgkDCqJlhmoBF<9Vt zMYmCOt}}{KqPQ};Zh%kc6HzR=Dn-2@(JLwd8E?enwou&AA*>fI+f_ht(rmn5;<7;x zZ2}o@e8@#(K{t%EVJDIc`rDUVcx?m)vButxJUefWz7`NYLNBZ#FYAbaDNO#>pwl8; zChrVNNrA7Hzc!Yj^$kTXe20T#DqEQ^fj&$223~UqK2<2s>md9P7?i;<>^n|PL>yvE zRoP1W)YTM&^ZWJPrNX9A8AI2wLBndu(MAFh^qR_V%pj-%nDw#YILr7?zF3_c(uD+A z?QQ>{RiP1hoJ&~F2Axmt{7nMfU)peQO(C)Wcuzwti$P(@46_SJ0KWOVZ}9Dbm4=t5 z7f;qVW^U*5MOuhCkAb3DTjbDD@30ZjeX?~&u~A=K_NgyRTT-nLXX_?yAw6mx*K#jl z)LYWi5M00|afH3cgkXLj9AFJIKCQGp0P0zxFcX#sh6&>FHd!WAYQ`mD%2TdJ@u62k z)5wsiCpjwqgfa!df*|P1k}l`AIgjYsz%;gG)lP&O6X9F&NGs_Fj1}NSOu_Dn^hpUo z%=S>c@2SzzPRkOm2hiS2ecY&kf7K2|STH1+Uw-=_7*$e27NfGzg?CH`ybCz!meVBx z(JQ^xSi5euW9Yi9Rj_?2#CTp;KQ$*=h?Sk^!i`~B9teN&0)Y|IGn&4-K-_mT4ZwW^ zP4q5cxq*1=8rTE;r1@@b)YO)hGoRGNQot61Cj@3dY1&7ZhHQOxQGp zid9S=8>OCE0{euc=B<7A4QVNy;Q0T=>Ho@O^)TY7Dshl`PvcG5*3& z$)c$vCEyUo8H;=h_fwgu*9F}8myS23xz~dE=E$8Jwb<>}QVf&EV8BTlaPB~9_VCx7 zc)WLN0GysYldUjZ9Buv0E5CrR=y{jCPG|NNzWThj@LNO&)03N~0Mi5`g|<8cFDB6o z*uRKefmya+!QA;1Z)I6s*mn-!-@%qsDC?#tQvLAhkjZrtR?D9l45jN@4g;3F8peiU zrh>Tx(Kz$OY0U&-SWfa`erjCO=z17c6vVY@?k0DVoK7Q1usFH1Cg84fa)(wL9Yztv z(7A7MMZl?gbIr#sn{2Ec3$OySXdPXEd$EmjS5)zQ%{0g+F- z7BDXMieWy30=YeLu4%kn*K2y)3}DYNjw`H#0W!#ta$P6*RST>bplrU+P9R$seSYl9 zi#KMY^{TE3isR~`hl~nD4O*FsRZH-rMh&5W*S0vu7hmn8MpCk(RD-LWuL`51g~|M_ z=mG+I-8rsr@GW1mGMkHxJ&rVcy879Eo6!+6zSpy#kkKV(nbbPUV!98 zRE-)P1++DXn5efC_q~slW`!$x&J3SUutoUKP`)>=r)C$PW>xx0_iV%S{ zSuJCM#vl+1p1=CScqAbMLF=1fm$EK_HDcM82sjYaK{^LC#q_?O)=C4!dOQpy8LtKj z_#xue7fpe$eI^Ua8L78fAG-AIHN%&kAQ+z2Pr8*4sFk7Yru{a$Axn2P_b0V%B=%K~R@6%hg!Uz7PJmWL*aq)mL>)Lloy?(Dz{`cxZ84_DgB1J<5_}K&V)LP%uPXFciY|1^^d`Lsi$Q zb4?R`^kQaY#YCFTt^Qeif&@NveGM*7fNTDyB>Uqg-J_9znI7Uinc43Sz*eA01M|~1 zfCF*cQ8co|&>q%u1xvOpm7$ zf(?$Nb{f`UMUs#-o6yGb*yP>ZSNbE5{x#DU2t(riod{^wVu`mQY)!$HuT~XV$xGLP z7zMOr0vK}+DJ%{61z^1zt59q{cj$M$`c*~u#QSQOR*o-1V~HH9FZzv_07EZLGHPA zGvj#kK%H^r36=QN=6iLj531g)h3P8Fht6oMwyCbp)8?K~CDV4qkhIvg==EL0E^nP|B%U{r1C?+c*zjH$O_#-^P^GjGOpAbqlyvQkS&imT-iJ^X__Q!??2%549 zz%b;k))1W)Af~&t4-fAY$@j*8`Y14-D_oD;@Nna8o z%j&H7eC^JDrUQGKNK?pEn`wDOhivV_lI%g%V7juU!Yc zYsN^DNuGb5%%^hmtE`r-xVl!?gUI_}3gsi4&(Tk8NfYQKKPlh8fInxhOP$GUu8ETH zEtI{!=c*&cvv{Xye$=Y_Xf?dL+cZ1(GS)pcZ^*Lm-YMOH;EkdtR6s7*UW0TCr)&N$ zQ_|$kuQT7yRv@x%T%DRF4Qf6ig%z8-ZSg14vgywCv+5jtp4=o=b4NTZ{1*FuftDGD zKw+Ez3_kz^1d22vSJ%lXjobW<(^I?KPl&{NjNGtta^ugVd$1|Kl?9;qxeO~u~39jCMX3t5g zB=Lxu*gO8vuCg^DzrCnq)(B+w*ir97Cs_P4d#Ga9%N1a4-YoEiq zzc9T&GV-kz;Z=9o6&*Z}vnR>2Bwb%4L=Xf`^rqvC6>aR_(;=UTuLz6}_>;pB!uM=+ zc2jYtNL_(P>9g3>+N@dOb8>D-%NO%e^dkxs0YYc#7zyg*E8yYP*E&-;gTd{V;7%}U zwvvu4iZ)Op)SHX}-`Cnlil;4|_!P~+lbj>dNlmqy<(~oQV*@C0$UqByZjGGz_9diK zhuWm}_~Cvdm--t6|LRHbxKUm-vhRDp3Y#D*&|(88ISERwG$wTua~a?H2-~+Wb`nM_ z23j}}6j|4^uL`fW9+1(m0a+mk3Ct!eOaY9JfX|&#I*;hO^}-8Vbf*k+SA$-b76IAp zk@Fcn_cTpaZU^xkhI2sAC;W^CmyywYRd{Rba2yi?m-)oZH=lU3RO>B_Wf)XQsMzp( zWR(`C4}kqGfjRi5!nv29dZWqB#riS&&nPchgoH#dj6TR5VZOb?aiVDst&e)Z7k22YmoE|MWbu~E?RLz} zbwa@)n7<1J6tmy`dIA1jhpRn>8RbS!!rvltVPfzbinQi5`~ zwrj0o?pDELaD$}Vqp5&q?bAG8>mBGHO@NGVj%lNg0mnsA1U_BY^}2==#y^hyYsWO+)Kb69rcgK%|0GC*|fmwXXqgyIrZ2acc0N?|2)g$loCUjte=~Ei$vtDT)>{holiq zP8Y4-*W%l6q!qDmofq+~fe592(ZZK{B8K-@J%ag~omz`p_tP8JY(rI#)J6X9wIuDPz89hO0YAQDQIsuQXdJ>plhr6j!AKY5l@aKw^sNLagW+3* z1)qg7SB6;2E`8DpZq1GtvIDG*0piQJ@o5w)a~-C@ba^A228-C%cfu2XoTtLgqtpQ$ zKTq1Q3jVfKH+?v0dTQ%>g7?yfpDM#JE>$n(1v7*viUoWVi-XJX4DqOgq-jL}F#`gh z86HJ(z3&$!=@7)sD3?)zqw9I`e7{|#?4fPV;}}w(M$tSjJOWy(Y+%;QU@xhPm%I80 z2SN*{F`F1n=v2So?`;&m2Z=oIPfm`3mUlDX&DItoZ3o1R(tO-E31{%En=$CjGnT2w zcbfD3bJ+wQ_?I+LbZ(8kCq4||R#HXexq)VxixY<&EE>w*TsPInVPL}JIQFYh zzB(x)PISwk^@4dCEHOoA6c+_CB))NXw)3qBhSv=4nhh@RnqGTx|a)=@~q@Ekj6bxG#T29Db7PA+X+^wQ+wML1P0JI#e5^F{ zLzkH=qCX`_U@RsbGN6mFSEb}FFH?*EhSk>$JaWI7ysB%2?k|i2iispM(L*^4F1}0X zKlvRd__elHV2e+u>s4>tCe|>-GVr)vkH-nA4UNxH($#@-f1AYx0f2@WLo^Zo!4M|8 zRd?`jsi-MHt5_xrwoUf*Zv_ZsL=g#TU!O%qO&MmC=TXE}aD1?d+|V#M7v((5nlUYk zBw|u@D{2j5!ln3CSFsU<$-;sT6d$}*lnjD0xV`OSsl1!2+6T@9@eo&oYZ>*~&Fxz*;`ClE#7v)8erX4hp6O$haM zYg~rQ-omaa0GnaQD=@D2YEElPO+~3TMKP;IbbT>Pe&%Gjpgzn49OEA^Ht4kQTWh7C zZrO*GHbPr4HYt>6e^qMiKICkl))DNpVGU+IaiWrHBze+E_QXG<*n$6#(3gyVyDOkT z*1VxpF_zXcPWTz{jI#vj>}WSSk^vTssa|u_mb*(rHakXISW@1|Z@!G!mjZe!%o)Lq z9a%W+DF|ReTfGAQa}l}@ox5&KeNXA#aHe?yU&m?~y3V8vD|SnaGKmOp;ekyUOAAI} zpX(Rn2`4?LroCPb4MR&IhGClV6-#63TCMa1LB zR~$jcLo}|7(TZtsa3nblVke#Mg^T>RnN9|Qg_ zN@7c9j?*#pr!idu>ST&WTO$4TXn&u&#Pjn})w8E%ULw?e7;JgSTM=YK(o!a#lGtZo zJ~3&<1Xg*eDFG}p{5{1F=EQK%IdD=rgX2``qH&K{ozr;CTwpyhA=4(_PKKofZnrRg z3kXy*Wr3o@l0M3pW{BYVeMZ$Q@FlQEe^?wqH}mB`(^tRf@sEDV0JEXOs)S`uucUX+ zA-LiHRj2ZFU)Hd+a_n=%)WVu29&~jn-&(%sX;hXa90_6pPzk_Uj|arY=yrHb*I9t|w&#GQ#W(Yu0^G=1NcrN>!myh9 z&5#kd-*r{pmNO(pki#&IOOnMD#1eBqO~j6G`V*)$z(G3BT}@Zv7iW&)EHPO4d+-wf z;Sh#${8?u>PWsrVwtLCWQ@w@*{-yDXUZ zeM*id2&zu%ONwMK0BTMHJk0uZmJg%Dw;TRgqILDmzm?qVCu?ESpr?x^RR9$(j7}j1 z_2zVsUwRtSu?8Hf_fkEEn2|*szN31@s%DzYalIJO{)&N%cRj_5tP8=|t|Df53&rn3 z5?lS`q@`hhHpW6E2lgXn4HJPBvR5-dwl{t0?749}*JpyFT=Aia- z8hm=AAl+V#7BHN5;?NAh^-g8JdBC)wfqX0S9D*|cd!pZ^fyoA8KgR&+{}rQp*9%q> zrKqtvND{@568N{8q|0?%gQQ1{?Q!QAi)C3PunrXUG^_~e>1Vy1$-%Yog}7yr5^S>V zD+iGl4#KKtSsuGRkSvsU*8q5#{H^`aHF_^=;FQuqyO3R3;ViR3AP9c(ln91-4j_ay zpEPCmL(A9?mUWSk0#Qe>KXq+l2l%H`!?2-tZ1ud~q+2var_h&IQ?2=Ur!eGJ1aQi?7&*>I12!5a@<1lY#N(UjKxr6s zB&~VprxC`(SGBTXIdg(&8{Hd5xdqO)G4aN}%{yAyBcGVYif_QF zhrWy1?A2u1{CCbr6D=C>pG%AZ&P{#8lkm^lTav*LT^wu5vdT(**Omy<1~J*+f~m)# zZK6Xkmn^~DIF8so84caM*Q%}pv4NA^D$<`n{fXCp+ao3E)NEQs!0hGtD_YP>{ zlc1>B=_#>>3V_O;_>u?SB2{E=*v!l*0{CSAo~Eg+%oYtM{%y%z%?fTxd zBDGw;X-@G|B9CC{&gF4VG4)wMb|BIcns*w#IFAWSrf3UR`8H1{w!-T~Z|)OaMXkwt z^ce3Uu&4s1cVWNZz@N9ID4yxAP2V}4iyBq!JW;WrTp_H|Q@+>o7>Gu2M<~0YF*m@k z2c&}EdkzgJBI@67k2mXmS6ntU&yw!ua9TbU-qfghyA6MxhjgJ+zsN~~7y-m&BK?G4 z^r-CZqjkewm~Zp9P?4DGy6!jdV_DB_`Zb4e2Dn|`(m>kA%Zeodh4x3gH>Pzj61MhmvIEUj@AFLUU-kE(@<8d=z4C zckD2y$Wi4-&jI{zv{@?az1_>UxjRx5UFp+2=az?0FQZtTB{O`37dzf<9knJglGFik z$F`pW)?xB7DKgg(i}?+t?ks4B#oH0Jw?Q3NjIY=kdt!>h%e*kCT9dC!nnOy_;^(ml z)b5ugPRz74x~?B3i$2l}lq`yoYF~zX6K0$;Zd~k)K(olgAnw2V$*Hn7 z)(kVi%AY-d_jazpAU&j?dLY*ifcRe45AxlA%&EX?2MHL-cYPo*YtNifAz99CSpecV z#p%%AXqtlK+GyDGBRp9W;jP={zzOvIyrpFG_7HJgZIr9LpcQ){el>_a=37qIvN0GD zt!8eyM`t0~>$xq)q+J>LMymx*MO_NLzW9YID#Q^F4At0TCCK0VTkh{#fQy!}D>a@a z>#g6O35`x5bOH{+2aFRh{xYExj^o`{lP?YEi(o=`DA)jYqpGtPW3TB>fXbH)^f+`@HdJu@VFA-uJGmqrrG!QI_&2s4P+XOx+-MXl;{ zzrWYb4j@SCTAXy5?7ZVC%OdWM3^PF_-PGH%V2RWioA7cN zt1~t|(sf-`AsImsN&$47ArpSa5(QBDN@Bk$O=k3D2uOPvFMi59%N3R5d>R3j-wZ{5 z^~AS!H&o2T33ZCRs_7nOE=GiKx@u4$SMVdrJPp>=QbDa1nV*XO#Q~%gf|cHqb?w2((s;*z3gBI7`)YIZ8Tt<-jN798C98JnIw@t674qb> z%Kh$j8io5itaM=hC-to{rOYh=3<61DxH915y%lh$40!pIoO^~}f5=jc^xlhdz00t+ z1opbLO*F`Fe%E{odHTFrfc>DT;U$#e3ZInx)|_#!)uFYgNxO85UzF=ECqopocQMFv zg_zn7HL<7vV#HlOeEGX>IkV#JS3lN>B6;+et+4j|#ReJuFuB63exY~D6nA1>Re`7| zN%3r1U?=N3J_%gtk6Sp&E1T0d zmX8hltZnZ890{AanRj(@Gg>5S5yHug$@W(T>~U%od{pG&v1Ma{cI(VEAChU&H!H}2 z18w*MM7A=C+8sXuNv*8~ay~XcSlM@~A8I559sP9fp<vZ9K~PE06GOtl5B{GP|*9ryU26KmmK4>JXN*% zqZC#_%OxMQ_eZjASwO!{4B&@l%GPJ5!;Y9cDf#YUL{J7vHj<_3)#10xUmflqXLe&B z#mkO()t2}}C-YKSLZAaWbjemnXVCdF<-MjrRBvP{B?GamdannnqO-tU_8k3Ft7zR$ zHK5hQ={n|u`oHP{rkxJm7MFedMV{6@qO;o~^f2;+uPWesF~txhd0fPIi%i>LKNXFS zK6WJ4JCXT#Awx9!Q$jZ{Be~92565}WL@?Pc^=%Tx7H2Go_4xo(+3gO+! zdJ#0t4UT8ejD+a&GA9%8_Pa1&gz@IvZDTk?F#W&wme+t1t}uJua|BqgaHG78X&yg+ zdmx?qL|jE+RA>cw8Pez85kl#!(PYrR(g9tjO2OwncxEGDY*S=tLUvOo`_I@)-K!Pf zfOFq%Jb`<7HAP`U$upXRbBxM*8FaTHW*>{}=UKWh@gylYBjlT}T9dV^d?PLpDoEO| z)H349|0|{o2BTMLIK^`vZY+;nv)?|b-}^@I?-E#A@T#0Fv*z~5R&>bo0Iw2}*uSL` zG|6K4X`0)w{8Z5#=}FVLmjmW3O=x=YX16?bKyDSAPRmiot_13JnKT?gTv~W$(orUH zr6bqKcv^xbRcWNeNsE`R0>@|;Q8(seY$`hU_weICAb{KY@Aam8VR{cYoE#V-{)%G+ zz$Tzs+^wyRikF5KO03;5&A)o5sLb)Rj)@OEineF696TJ|%3Dy~Z^2gIlGh!__rx)8 zS5w|;*R3$5ceW&t;p=uVtvJ`d{q!HNGjzmvdQI_f0n!ytEBd$+@B^{Z;mb#P2<;6gM{BG&ERb2I^x3H^*lk2OcX)*G9-jU$ zb#b=CaWsT%{1El-ixpUjST}@3C?=l>*h_9CJ>ySwjUVMHD7%R zG^B7J;K}ok)rU6{O%otr8Q0E<0k82fStXPG&5b2O{`P)gtqv&y&m+7%<8#b;nXD3< ze-8_{;zLYJa|2lw=_79Fuqz zZqI?Y<5voV)I7hx_+=C_&@u$&a_@1|5prR!XkIA1*$4@Lt`u}Z-skr`yD&J z9)Idm*S(q+Btg840LWKtor`awc#i>Y{OqMF*{0R*sH<|cUq8b@*4c#483CJbV&FA6 zH8t^WRp8l}%fakO-!9zVibRothPy|XwGHB9?Z5aotrrkH^>SJhn{TE54fp^%(b(xp_h2H73$6z|_Nuff)G^Zz&>=GR(NXa&9?>I&|{$BI?Vv zfG)654d#DyskECntQK%u^lO_O`;PzZb)wz1&#`LWyMNWs7{>~nc*q>RE9fYD_%aPI zudmk$Hb0%zA3k&uc$6WFNF;V}0(;2MKXtwDc`pHYFIb|46xIPo=^lrWV;-U}Z|?P* zh+>>bUWDcCROB>lCwe_`QJY|^!P#R8iJ&}9Q#fkG9-N0mV*oBdM;h+)ziXYYaKL56 z2;ApSuPP~teDjlS)x)0S7uuW&H{8E_9RK)~kxL)I%1cg=5WPoH){XsHUvVGYjAK_$ zVr3~!&0=qa?oZ7upKsX7sP6k+kQ5mBEplLs@i!^u!o_%##EWpc)R&rz(m%P{%nR^N zu3y+L=VN&;vBw-NISG#pk@nL^n3()E!MR^Z(*^@;21gPIhTms*CqX{^?mu;wy^lej zz6^JM(bM|LIArhszPko~4xbn3o_IwxhUL+AfEmZ8^8so=3G@61t)Zr}Z0x z=frpI$E=zj54`g->rN3K*ldp;iH9G}{zcNS^-4DthzrT>Z8V>SNzmwVG%j({j97S6G}xuY>Zjav!Sw*Uk@R zuQK5lJc)Sz)AvK$L-Fjl*XY;9W8`u(aC5p_1>rw0_A);vjTO>93BTb?0 z8*d2mDMUi&eN-vu(i{AysVQax)gWNp)F0zInF@YenVlB;CTAv_iEL8%{7wwOG=RHr zCLMV9nt#huA}?ak(y7(xgKsb6PR7ZF%< z#c!~>GFi3P>i0hS>plZ)pG@e1R!r!rp=MOJK>9rtf95Xx{ z(wg1}z*W7jPL*B}N!>>+l^9Fim<4mc{)|97sE|DCJ%6Gk%`Kq?~t^jqOg zEo8^u*NI4B%cZzS91fB11vVZKBN&rs9MFqX3nltko2n&5u zFB?ch>W3q>#}Q}VR-hnX^g|;BQ|e5;GK%gu=q9t(L3L6}Cvvx5dw4lo?HQ}3G4ahKP`^t~F_ zllAH(ZqwD3M?Cd&9SpuP^lkzy3^()Yx12_|;JT&^(u5JbiwoXm@UTCFLtDF8sBv}IQD!A&5*3VzYN zjlW|O&^7pnMm`E^zsvX5-h8Yh!AH3n+zgQMCnQW3#z5m_lZ!?LI-r z1RwUG%`Ux}wqGyzN$;Q=s=V41(oKq*8x6dN;SZAa*FWp?CA8Qo+PSxV9?Kp0`9Jxw?H$dHOXt+L zu4A1h6AYZAyaq}AXei1$?# zq$}M{%s9s7Q{<}~n91(EEQq>%@;i1#hc9YQ_w)o{_)ko6?>Xi97|{V={Ju~4NT)`4 zF6Z(_mafj3@Foq!+Fie9kEiL5LlAX!h})geJagZf%V{?vF1X ziNBae+L;}V!HI%!g+K8b&9{LW!`)P~VUaDNQIsOfYZxa9(@z9U#)D#b(Zx;3_pfj3 zcmquY7sgD_Iq^c52E^;ecH__#%EKAIphoE*J?1$NptUaMB>kE_mwZED6Q1#)O(oH1 zVOZJ_M!RswAfB!Dx_@jLNDo;weCYn&xUjA)i{2)=--3MPr)iy8N}cleG%C;YnZpnE z?uNpiST){Qe5Jo%PQ~k=&*xm*oEoTZfC^-9+ngK*Y8)r1t7)8M@~21w`$3LlL5=y; zL0&w=-CRDyooe(?)USB>)64L|Hi$!;0DoEy@N81!lb59b_Dy0ZZW!#3OuT;jbC3gK)Ohawoa^N7&A?rL z1{0}muGv6SmdIP;OD(Z6_Et@;kcLpurjJ5I37W)>@n*a81LaIB$Q*Ds3icy_uAg;T7FSQ8UcLXQZ z>$=JErjfJLfWL6nx%d3qlKD+R^@v=unvw8dGL)cFdF< z&&xxUcUMqPTPy0fXwcPaJlSOvtnoWhKp^KydafvKBoypr*~&doa_mAVKhF;x!&lr6 z#Cg^q{^M15w^pKM_v@7;roK;3+X85cmgvZwQO#sDe+HiB?o#j`iJxnb?t&%4h4wvj ze1<@#o3i?E54uM^Ez>*5GM(WOWHpzY_Z^qz&3yO55hcYJ-<~Sux1PF)Q?R+?k`$Zx zM zaY2y$x)yyD(X15u`pbo``s}){5nn{Q;ts(;Yuk}K14Ej2L(AU}@IR&jb-7!E>FKTJ zdE9uq;q!j^ZjTYEu{clfiZk74V}$QD0R9U_$~g5GL)|-b>f=o5 z4E0&DgM^T4!Evw0idp6#$>k1Hs88KoIM!PvI4!EJ^ksyK_+A?-|0r;w)=HeuS6pYA zS>-Q$>M?k@8p^WFCbd3uL;0Jn7avH$*_>a__SA%$Mmx{#0-(>xW!N=|ln zu|=LrTCX$YID!MuFbLWE zs04j7Q|+x}9>}9V+CT@f5HblWqG^%~tbKLQWe#N?*9&F8k@W#`;wNu;6ybj{QsDdW zivJ%>cm@+}6ebxriy88V^{rbe>?da8`Ha?F_cz}Fulbu>qZHxhN$51Ich=r+kD_@( zm=gO7yz_AMV1X7|`-taa1*us@i7*5ecbw$*+T^R~>HEtn6f|D@-*M}Om#QyUX;5&M z8Sh?+q3z^J4qMs40plgqp>(b~*VzaT5y&$dwdP$kaCu6^7@9DR$ zTbinE?)1InLf5Fug^>PjKie*oVs3Qa1dFC!{>phQ_2a=GBNnBrzZo6Iba$S<|Gw^! zE^!7G!78_sGHa;9!wv8B5?$s(O8LqvHn_CvZWXHbV-i2L*1>5idy!Bm#d~hz%U~&h z*pq#Y-$APu>y4uuVE%oKEPm^yn zLBs3lBTQ*NtYox4cZIKfe?=qh^D>KXAD-!ZM&5PC6a}b;Pzm^{0WXLen&#@`6g{$Q za-l7M`;C^Zy?}?AlUdf^kM8lAs0(4pQo}*`=M?{#1S1NJIV_oV+MfY&VF}W%>l%w*+<1mJ4otF5Z_+?(y?mV9?zY;X%r>`2d>>b zygeG-cbr#M!{l*;0Y>8Rx>8ru*1-cJ>ZKDYX~OjqKe31qAb z!geyDEar*AnC}N5f59=i1(n z$hC}m;ugv1zjd70N&5sfu|(KB;xqC%V zz8Fujr}iG0XSB`WZWoe8S&;vv1CxZ$cLWne$KdIr#>J zMZG#sL$za5IRI}S_O^X{C68;m0gT8WNi*YE_ZM#J!|mx&Y#iYlywF#@n?tx61b( z{3n`#0svINTe(3MtIkJ3y+Y6p@o)l~CI`*sf`nd=jM?pdWzZ8xftk*n|&}D=Pcbb0dpv%8t+` zL!z-nWHV`pDNaA&Z=5kPK@hj;f&uQ%P-dX1BuU);+xKsgfPAg-eZQLu5rlM}_rV6g z1#e{XDS;Wvhm?cZDDel+*t@*(=SB_?PiAsb+B=>n@5raL8*I~pW&}R^8H;K0vV#0xh!&Ci z-R9RXc!6!@f#qg)Vk0pKlC(%aeaE&35mX03juLf#2)O^AKe(C&r?L@+ z<{{Wd1?2A4VNkmGD$vU?K6-F~PB_gZ3<`WfJpA-XgDtbz?mS#@lF95)k-DA-edCZ$ zT>{FxiUPUH6rav1z|SzLrh!e=j1Vxi@YL0&^evz_t#u4_`%}`2IW!_6ipE+hwg}f2 zIMzCSEdIRaUKWRY`P_GzNLR8h&wMR{)-wR1mBkd@~TcLdcyUR@Dso^E*EJO|I2 z;=1Cd0?%4}Vh#zP+{VdLm$f|=bTH%LOR%KGRA+X{NB}KB(!a42X76D{mF4Scl=20w zh38Zzj>P&;?kXT}cV62(e9!*X&iHah1x+A~{8Ghm^wFl2g!{Lys4K#C)s18!I**aL zX%I?rbkf(b>4(iDARREE}U0H z!@2prw<|&e6etl5HvIaEj@!q6BJ=1eu-RtdpAG6yeOf-f#qPSft7V|+`jSCaJPsr8 zH6nZEe{T1&9I1S-jrX?T9{<%qmZ(RIA&5BKh?ic!&&8fcK6GL$?i5iedM>#zJ_%sr5iOy5*J=X@)daH!UEL{eAf=8k>uVd%9k{q|Lsl9pfI8o<u#lQm(KzN(_&G<+Xe(rMj>!t64Eu!tWb4Q*q3)>tI zj0)Rc-5ip~gKU?=wYRKcAoog4_g9H}OIW?PUAC#+tj?1JIs1L)UOdfYB8nE5lj50X zIF807%fH>a;!_q~jwUMaH`R88+wONh|2~Vy^W()h;~B|dPh1w7a(HOJtvWaB))&;DS zq+t~4cqAKmX>+@s7Py!T-?0M}{bT|I!9)87|K^K$q(y2I&U0#VVoUtLT03sja;!AurU4!Bot<8~j`UL6(q>cCb#Xw8+33izzCs;q} zpd8o2v#~<%rI&no?yXAl)o#>n@)h<~`loj*$GFvZUyyf95t~u)zvIhVZB@J!H~@3~ zJ!MBGg?f@05I0!?qv#S(JVY6$8&X!8j*sy47q21ciuoA)2l8IDZswT-FV*$HUl1@V zcU4ScRD8U|NgZ5cxu$P#1-5^|g>JFi)ZH!aKCb~S-J*c*{^L>SXVKguW>EIGN$t;A zc>UoD_M9}3Ov3AJxkmllpo<@0G(~1Oskc~dT5@@oDr&Qv6j-z3O4Pn@>TMD=418@$ zyxB?i-kkyL>MeuppL*G`%$azEw}!y2BA7e|g$7zj+wh}_Jq5@lvaL1dYm*CB3A!c^ zzm3F6b{Z3UYfaTE&{XoDJ6>WAM}GPkh;A+Z$4{01Wsq|(?Ym!ZzMeO)nMYX>XiTnr z=O=<71c4kgp7cj*uMf;63zCQb6sqLYtTp_0^-#h9ziZz=R7mj@KT{T0%}}lhF}d&0 zbkA!j1u^QGVQXxt(}fQkc`s7Fe`~EHim~f>P+_KS+dQ=yge`vhp*#{|NAh^gVO({HbzwJEQ z5lkQ-D|CZ!_tq-bx|O(fyF0!^GDbrn-#(@n{cd1M(`fkPq)@2E#%%mqe*>~_;sLkY zXWxl0X|BO=N!}&N?Rs6Ec4Z5unNn-e8^*KQQHi!>Q7wJGdSR8?u(OXcK;VApKUN=w}0+%19L}pVu3E7jXsXl%h$C+S}iy_=Ozg{ z9mVYPA@9JRpdWI14c|7()RqkJMnK;?p- z*NBP{iCk6!m~(2CUFUr!laI)9trVnt;IApc9_4L_u&t1@2^A~lh#s8m!`06H+%Gu( z`kc~-&ND`xOspO^Xni@z>zH7M;68!TojB%|0vnqPX(VO*&Lqyh8$f7h)O`?XrW2Qx z#*WO*-+0XE1NjcPMfB~T+I-J$j``)#$eNRyjj;dJ;B=BC8l>EqJ)dW|dusR_jxz(7 zFx)ApZTH`L#Qo^(XH(Y~f+cWo7I4LrB39&UKd2ti6y}0xL+8dQOkw@xIg$K&yH1|* zV>Y!l@%v5uoNnp{vpped=tDHFl@o{Fb{{-^(>TG6R3FZOchg>r4pk`tJ8mDu^cFe( zPaU1T7eUj83LsD(-&W`hmAG(K?HnJgNKL+tEC+!rB76&ZC(xW&iG4MRj1)uHSXy?3 zWQJyrNq`a$1^MzpDe`|Y<0*xQ5AFHqAD&R&3ox*ViP-+<9kzpn;!`6uB|kiV$K&(U zt02#`pMIE3p{nYwh?#yVU{TE(>3i<H_XHAirlzmKjRI%Z@G(GvO2@Gz~J}mTbDf$k0`Vb987M zcKKiJ7b=iO0B!5msBJWNX$BT4IR!?y(n1$PYtL#Ff62xKE9_ow4;i@eMLPu5Sm+JR zLit^@yQy-8ka^=D)E)%MerN{j!W+^qZnMgGG`2{eVQKL=fsJ$f1WUYCTf!*kPig4W z??Qmn^Ss4SpfoRUG4Ksb9^Gq*vV0s3!}tum1?YVQIKV6m`t4anzET(hEMpjoyoopo zZ3D7fU`(G+Rh`=ezPVfRy=wtK_E+J`$RgRj5B|Fwf-xoCr-J62H*9&jB#bVaMPmbv zjN$7vo$Rg9I=*qv*Na#F?ooVDz#YT&TtqVQvg+!I*tHt*71GJ4Rs)&qKlm8kCqH#v zY8z+)@v}SiTDGVXV=DN_6>9XF>(_<*#UNBMD1Eto6q>;?tIHDd7y?U8zQ9#&&v_R# z%Z9&A;jMl;w=(BzWI@Y4-9TJK7JgHgyb;$epE>kr57M*G;KJ;`eROuUeE*00`#6AZ zI5te{R*@?nsfh!KEaT&ET!TEm(5C5{d$yHnxvmaaDn=nMd^a{JK`*RK&gSVXXp5ONK zh%5^neu2=d_C8O{4u#P5cbxA%-H>&AM;;LB2Y|(3T=kP65k<~>zhaNxE0ZR+=BOO& z6C$4o$lKa}DSrA4gKUDl&*VlC!WR46;`etm`p6e%xM0%op4tfDONs^O1r@?0uV`8F zBPEU;8)1U7$&@W5lWJKlM&dIz2y7sD{f(PMWnGCI;Kco6^wj5&Lix5ZnCx;9Z)pFs zwt0mVlo#F4_**jGq^so9h_bSOJ)6Q+ra7dm=|apNaY)FAxd3=cxM$yf#M4jBVbD9i zJQA3^u8W*VlBAp_%kwz+-V>K=5w@D!Rq@aU{)q{4e4)^Mz>ccvNO373Vv4c8H|;Eyu;oHTkun=>tl8zKH4Rhuu z#KZHnF7<}_1D)s3W7mH@+BODWMt7E9)NL0ey=s@@yM9`ayO3mH%*L^)nffR%=5|kE z#LQtBN0wkZLg#{+MUU4YUJzr%erm35?WxBB;+Bi_wt5lNecm?V{?jM@3|#6a-+4wx zw?Z*L)bGBHQt*8cq~Eo?5B8Q5mKwc_C0?GGTqP%5$yT2}Y9#3~sJMSN>^ z2vp|qA+NBKA@9l6*wciMR^&`3@~eZ8d);?`>fvNLvGJX|3!9ka(erS zXD^Rfrp(WMJzQ1Y5t_b^D8^jvets7&@Zp$qu2>-l?%pu^qG4Y#f8XK3Wxi@YH{c`7 z+tpqx3(5RF{-+NZ`1L#f5c+Rd%TXitaiLKR+soqeh`P^##!>=f_BfKgsHE^q-&ps1 zTK9P3+?*Sv+S||CEjfGlq@QzKdPx+eFh&VmN#8|Fj9ZFA?UNAd&5midW7H)hrRX^h z^Rji__X?Afy6KRsLkblDzuMn`c6m^bPkG6I?*HTNqb7?z(!A7nA&5of#Y`0A#ru|N z%sEnM_Y$EZx~$<$Q0p$&BN^p@wV^>1mUIFy$j*rQq*h%zfF9dQh>3Fc)o##_`|=qMDu($dYh4;3^HfE@eY)=c)ND7H8BQf) zngcJ2VANy6*n(vMyr;%Du8?c2yb{01rF05=M^g7P4Opr$16Qc3+^428jn%4LBDumE zm0iAf#CDF@I@vS-l%%yN>qm*y*QbtT|4j|DzX91YZ8MOiTJ*#k>ZJ}G_6i0EnN<&q zUIG4dzDnV^bo$677C!B9K4KC#APV;;h)UBCCRr*2b8$tj5}9FjNAI%TOqn~iw{>Hv zOd1j$zF`euA^r}d$HwF?E*5xT(*Ecol56_wa&1_K#_)!1Vg_qwGKm!AJa*=1Ztk3v zXw(QtSsWCBRoBVmIyOWWI+O<#Vcd{%?5mFKaSAIPds$d8FfU z`L}{T$miIGeQ4UTDDn^QNXf&co+Jh4kzj8^(Dc;-A<%|>{_~z2)CwqatQbxB+r`{M&j$r>%0PxMCJXetb`Bwx{9?K5Fp#; zVk|`RGK?%5YpkK+DSor~=n1#JeT6jrgi+*^dBL^bf9^blb(|i|-_M`gyulf!V-ks2 zIKh(O9$;hXJenufnd#ulrCtB^tPh|?y$RS6*5i<~0_@?AlS(W%%5ID$GTGNIs-uXLyY}}NmiXCa6m~@32 zHVKTJAXu*9HDO3Cr@#Fo%4{Rw3dA6g8^2ilQ+`6Jgmph%Mj13LlIhV3;NQB;|;TSLR z&-wzp`xN-Fr>N()56>Og>-!jNm*Fh)63bCe1EwCa<#w;#xtO)!&WF5wB-~ z2q3b0EJ|MP{Fx%&Rr3$}=>|~^pkmNEu~oA;rm!8_zj(`9wnsjOx?_QF#V0F(7&0!@ zsUk5#IoB2v8m)QSH0G_-s!@2HM{w|YF^Z$2O{72wjzG1yBJI)YQrqYOqmcISAl)U- zKSfOLv~mV-Wacb^*I#pkkg)^RzGpHZEAMWL8h(aRfvL=y{>qWckqGoXK<^FsqFmYL z(Jc>b2I348^3EnmKaHrM%M>%%9;31_L6FfHE@kku2JduZXyU@Afo2qC$rRd*Ey64U z^t%tyGH{0E6IlOPql{t~#!VCdf{Q8J`dM#Y{eWY4Y}oc24;SD1lSKb_-AzCEAT(Pl zmWjZLmdQ=((Vbm`C8-Z5He*B*@7sMg#mPvOpu0be$|({OpLOo=Hw06SGfv2PJM&f7{F{b)Cq9Ojo zgj>A37#}2KSzJi>-*iPf#}g-9B%RIM1!nlUe&GJQsPz32+}ATP!xQy4sjuhtlh5$l zSUtKHi!@2sbu4(7P}^Hu;XLB)l_tz5ptB9Sqs{`6ZC7ce+4&X1c<>Y!iebVFF~--V zbt3{5x5?HSW)SQjos?YBC8VTbNx=<|gY^h6fIh$k9MbGAJc&`h?}hyU@Z zfQ|8WSxc(8D6;D>Z&JD!A3+Kk^I6QV<4xCc)&=+ zi4T$Fi&!>^IAt-1)*foza)|sEkZHqx<9*h?iSc-CpnUiEaAVUoD*q>V6)_I2|H;#;yZ(6`}qbn z-PU6Qjc+`Og4}vG4A8ODhqQ`m>^0V2u&1`YBA5mJT?w#>*VM-|^GLS94qo zHJ6$D&fXPb^MKLKh%42Wo6ehBs*Fmhf9Glpf$z7uUJU=;+g;w{*J5`C6iALVwX=3N zBQf70Z0I|08R_#m%b0#<63EWfrpLnODInG| z{vMSd=ePRc#}|{+MY&Elk~9StdBQh)oQeTvN3=25E_%XS1pCbul|a*&b9GNFzFDEi z(E{$&Te(+IB)E0jKAATq^NWd!7tOGNu6F4j>&rwsXyY1ZX>^a>jN)&@Oa_ynY(s;+ zu=elS3NvX8b-K(LS@WhK&%tSsd$XenoM(7;cyP;g*1P<3?)b-w4f0X7zyUF-*Kl_< ztUl$Azo$J2wBR9By_ZesdoQIGUMyTq4Ro_{?g3qh!&Kj%?yP$bs-9tsnvCW)uLgym zRZWiC^@{3!%EA{aij2nA`UZ0S`MKW=ot>fQ`G^Zz>f-D(nU9>X%l4Ad$+ke8QKmn= zj{_lS*Ll)mIBfWQ=&*};e1B#&P#?A8O)6y zBd@uWa@GyDhdw?pJn!(Gp4Px8-SmoIRDNiHfi&_3;Mg4&ie{t^IwiQwnO-0uJRDw>T}!6%BkA`}urAtFU-ur_p>< zy1akSyMS@G3_o1j_XqswiHp<$>J^D{lr?iOOZ4=GyvB(0^rsZfpZJCgR*{6wn}82W zXEMnI<6)Wj(^l(6YoCpTAu9Ter_EWrflAOj+YA3wgP^-;GGN;6fp0304}Tar+Kybk ztd?VCYfF943dyE(E|}TNoEQT;WijWpaq_2_1n0SZ_wCgfq*gy0LZ1Fm!AGBvarOL|)$45;1)- z+2MgK_D}M-KmT(EsFafmi}uS?R-ovuz4x<^(nRz^ z;SZ!tWfH_kl@)k;W7F?`2d>Pj1jWC5)Vl*Oe2-i8G3=%@UbbMYs7+emAK5NvCoqyX zS6fNo6ILu>M_To0{2Zq5xz4eTw{mUgLAh6NEA<=>LeZAgXO*G2F*IxSzWmmmr~ND! zafJZV1DP`3o+@?9&wLmbpt?M1{)rEq{GTqay8=!-vREIM>kw;&@_;7hAobsWn#gy0$Fst`V62X zYhxlG%LhEmh;$eu|G^U#K^5DTJl>ni-_^`Fk1hmbhbS)**Yu^kmz8~D3y+uJ4XA91 z!Gk{D@0tkzF+3Vap8Be%dj0Ip+pw1mrdA|?k=D7VuNh#Oh}}VK+9847Bx>ooXiQfg zYw{;q$L0ha{3clI&$-p{X#*T1+nPnF_;J3R0elkhIWBshFSA;wY#_7LBr~eSwbpD| z%MXNHQyhAkuswdDB_1tLrFGBFENDB8&?P{e$?ZvYs?U1*dU+|_kH_g}?!{9V;$j%N zlmL4lczhe%C(+i=W}Gs_n*W@25PWXQGKylJ-m@k;l(GUABboFGVepH2#a1L^9(NC& zNX;3QVWF&OazECa;95UNexmCrEojHwN^%-dI`3*=P@!pU1QOmDQAn<2d{yO=&k4xS zjL6qrI1}>~EJnj0Xbn)Mn&XjSOTGqkw?GC|68_r2Ao(Vk^2nZmeG$o-#7wq&0c`nM zhp8|{_(p$yIa&ZYy*Vz9h0&k zICe+2XsCKjT>cbz3%_Mp>n)1O@UMIEUoI-?DrQc79xGovS{|Q6#qcSqoJbxZj4B!L z@-{^=8q_~#@R96cM*Kgn-eXHrCfL?|AO>hPLPN^ZSU_S0&BF1L zZEK+~2Nv9JU}G%~#YlNs;aZbsApbSd<%#PA2C~zoZE%MoSM+s_nZNuEH?tfc8AoA+ z14keL7&r>2o!TmHLox>p%=g8f+_<~uyjhSy-tF$N) zB>Vs|5&US;T^YSvW3TRQg8%|tB%5iDATgD~d=_X~G80&UVacM6E*#vw7xc(J36`KU zj*p$!(ZmP%o59P*kjKdHb57X4I>sSNPru5f=zASZ%9^L${I4fwpjz!}?Qb93mtke= zBe*dQ(Y5jIff)hPubI6?sVp8J?wuI!PrM`bs*uB3P|4cAuHPc|SRl%w^*!v$T}Qcr zngrQg=da(p%&91CQv7H;aAQQ0&P#0fCF#N24*M@|dsulgQPQQr)-ABnC&s8=~aKHm`*kwOmH*u1*o(l+?V#pti+&{+?AsQcl zzp2*l1ifolMgSK)voM_YMq4Cgmo!%?_%e*mY^P5o+G=@o$Zf-DCVQ zAF?2HDZuh;p178ritufjp@C}(H+ zw14|cK{@DwBb>thqn@@^9Gx=_IE(*n$uUW7EaDjg)=kVI3`R&NnaP)> zJKmb>tIdq;b?yg3pS~c_1o2~A<0CLWJx~gOo($BK5D(3v0s;<(Fo(Ukl*hx2N{~Mu zP1igS`U`dJE{8LhY;G6ZJsp}SxU=^q(1sGHHSX^mFJ3OO>9axXzUE)bTLN?tFQ$zb z#`qsdKKnDx{t1+A<`g5zu>X_wfHsP}F}*P$kSX?yZWilJ1@dHH$&l%rAm={3O!cDL z3#}%{Xzu$6gzuEx{QY;HRne=JmJUI(o*3efs2;TbO`?Bj7SHu9TL3281C;|Q>M$PazC%)L<6T+a#l$O*i|P->W2*}p z>Af>|n*ZZP6q{k#?$LG>QxG(e-Xw`x0=|k)A7?=lgxM6#_K-J@@1_IvEf}jpb;UEQ z4*3E5ab}co?ikcQ{>66e+{s{)K;winDkktOgVb-63h>+vWubBift{GY>tgf5*Q+HN zs8}9|aS(cw_6}31^d&&p5;c7kN?qgR|L@twpKosfF7A}|)`Ik_XEl{0x~~LUx+{F8 zwVT|riY}jsfPnocI*Wbl6!zC_0-L`a0bz6XceZR)lO0tXMvN!;cNCKz zBSdv!&N=(@pecD?TVq;CdnZVXNZJss3t?L+pwA7K$|HeGZ!IuCb9e>U$}p-|H*#AM zRwVBj5`&4->TtE3CoZ7g_YBf8NR1Ct`M!@;vRq&@_IQ^J!(NI0TkqnVd-u(^0@IzD zP3hlTTEXRo!*TaFUbcE{V8JE&wm<s?2&~inaFKiTuSwkuASCU-UeLO5EJuCP7!GENyG9dgf2H5N z#Gm~2@|;(;p$1A4(95>|cpb~UP#6=#cOAdr8$M|jgG9mFh(->jm%*2{$mGW1=c1~5 zXwc{WGGdJ8RkHib=YQg$Z1hfs{>HObExbdZeP>A=S)wwpTd9l3ro8@7CR9pBI(#qw zJ6|JqBwM7k;S*BZz#k;x-V)Y(=WWa?48+n{xle>oWbX(fidLi}(yu?NZ)Q~uP4%Ho)7zlmz@9H&E10X-KNPz&Of?Y3;fWcEQwX0OhBF&07^^R>$V(Rn7e1m^UoT}GR=bJ!{v zPqJN}Bv=DYP_XOkL+RO`tPi{%XN7%@G`5Vyg)4$iY_MdR-&T{ z>}zbKhytf8po82*0W84D{)L6N8hTv4E7;V+7!2`${k60D*jdi)&`f4sh6dNyfmX}V z%;5zJo$rbVBc>rOgw0rIX9X-GLx7l8HF*YcI#L~yPJtuI0#B(?zX8lO2>5h=pc*#2 z1*buT?asFHm)dmMfAgxWi&YGGI}y|fx2y-jUfRZ=qEXxHL5km#f{G6#nOLmET-jB~ z^uG`7{m%m&KSG;i5n8m@R!_tDK+LFb6`jlQS$fEJRo;m)BY==(`iaUP-PGjSC<>d% zUOgXx)rMKLW=*`kg~4>VKYfJ*T>>%W-@FO6f&d`=z4;ju(Y4PuyFa2EOkoofk~fdO zc{rkXr71_g)z)oZ>;`b#YMSknWHA}iZd-TrLyn&h!)P)8K398Ud^>2inXV)GC7ngO z`|1{50YbMAs^TYD1U^zi9sG|+Sw;>Td_)a$t~kvaIL$}sg4QH`g^W)h!N{mfxRvAc z^Ab0`K{&GDra@I-4xApP2DrmEQtTBE#;>)zOh2+4Ht;>!X!){^mOM z^hAum>_Q*dn0K;+*ABs;oHPT_lwUjTSI)gJ0@o(ffJP;e=Kumqj^BVqg6P<=`Gs^3 zM-C`OLo5agG(iILuK84HR)2TNA(Pk`KXLW}7xuL`F`9jM(t-CXWttQbJq2+3FEP~;fmEM{q^bQ&YvREy}hVR zwEX$rb}lA8pv!PU9(=$@1@w|{uam*g*Pc)3=nA@c-JD8N1rS~s3#g)n%=Oke*t8df zroZ3fZ@;!~$8TJ66T7yO)6H}h$*+<3&5o_tm)Bp~^3r0ZxxYOb>gT^%W8A`0;J4qA zr*mQK+YCbDx-xT5=kLt{lJr%mwhX;k)ECcjB*zbk42sXU%n~v&9_W{w+Ocd$t_4jK zrt+GVl*;eGxA6QMytaeN$OTX{&G>KKe6gCBK@w9!5vATqGPA)DCn4knC1Q|Eu!l`Q zL7NH3kfvzyYhM})g8_ggrX|FA)S4`#H(@M&X?&>P-(|A#Alv(qG+Kl}11$*~+7O`b zHso!hI92CnruM&Bd*e6QS0GU%$O2De|IQvP7KhsbyjlG8fy2W|aLG%eq6t~ZmU3c@!ysM{z&oXmC(%9HJ_SCkDe#G&q*m+vk3 zD`g9+r$!IR0thB#Ecm4WvHJB)Ty}m?=Kor&{J_WfT7kr+cs0OGa=ZTy2YF~ZT7ghj z1=U?CDcpL>{OtWyWhJGPLS~G?qV4&wUpAWViVPf|(!+)Nz#6)+f}eMwW~!Kc!dH^G zSl92|*)!?|V1=!6vP5Z#dq(ts_aF5&Oqp{g>Abfma;@3U zkG@kWsS*yYCxOVK#JqjQ4JMH>9fc7^|908X46GL2@!)IJKm>VEG%X}&BP^aXm_%s= z`7jJ1(FcF=y4^6eK9Z_tb2H`wUniiZ^kXEv5xNwZNrtM|WO)$VU95H?93OpaO zr86JE6MtB0t4RRUAe)=R^zAlZk;fJ-3Za+AUT}cC0IRR_-2xj;>G<)`{dg_WHR<-J zbj-c=(B##s!BX%GA7C{Th<*Mw6Sf@r23s4QViF0`M-)BzP?GFnT>!(RNjE_-+~QqFIB2DXc8(_lB~cPi9u6 zH3&sBKbDE<-bM&V=mGE!lIVabG47+vd%e3?HIYkL$~75|v%cz)4(zp?(RNp>b}-== zp@>7Ld>*ovC;NREmqEo|vER6yV-uMWdy|tz_0Uc*kgW*2kh*O9mmU2T1gY7?k1eXb zK%IrJ;q<>f`s`1BA1I;55BG14rJKGY>UB2rnFRI-K&Kp@md3L1x%Nh{pz1JZ`@U!> z9MPV%q0R5$!a)9Z?B>O!<;5Lnq=P#cn{bYNNH3tsg_S^JVCA46~$Wo)8r7;+@0 zyANJ%TF*}DQ=I`v)|G(BfeMI9_rt+U?(J$!M7WF=^!3?DwjlO*) zyrroMm?~4Sb4P9KZ~qMEZJ_rck3Jje6NM>WrVL~713Dt8;u}&S=NTlyMB{JHKJ(|| zMU9l8ZexCm-EfW0Ug4duBF%v3iby#c{;Z8U4O2L>!Y=n*}|e=&$uPIVRbTLPkBk-McT&A%*FS%cKgErMT$|M{s*< z&=)rxZw3N-!|_~ZfdmI!sqoA0-&&3~kZg5=WUzqg7SUfS15vyx>7aKr7^SDO&w?0Z z0r+sdoj#-wMsSp`JOozIkUx`tl0lbAL_Y*LPB%UB=gNTK{c;y5v^!Gt6Ja?7KqMcA zop}fqg}jcISAoKCP`motmSjTG_)KrGwCrcuwA7}PEyBx9fu|WLd>hO+MFG+i$Ui0o z?BzE!B}9h^*noj+1;dd9LCzd@{Vfu7<}VM%_^ZLsm=c(zE)rAc_T*d|;=cXe2lhb7 zR{02%iAYFW+eRDefy0XggOc`N*RdmTp$*;az88ld9KiXTu2IqK|GS_4`@iS?CsnEO zJ~Y~ki}SU}Hh(O^YB?=L`>;2K33IL)BFBbbPV^VnFM!`^NqiJLF6;9YfSmjPU z7~mKH9J#!*;mmiMd%G5QDVC9)pKKjQr{T+<Vk14HF38)2D=nG^X%8 zUo-e`y^3R^5K!zl7@(^Y9}QQHO;2)96Ee`1?C$n;Q!6Mkjl&~G;47Iz5ItC02z;Z* zKL7GgDRmW3Q6%>~`PG6Aqs#51@IN>_5^P4E{6Jek-tb>Qd73KW*FlpVu{a^N>}4wx zt}cln+>QlJ)2Tk#pf)TKi$2HR7SFk6w$-8FRrM|nSm@Mk`4yl<5vc$*kj1=c*}jK7 ziz#0Uh|s`7>8JXsFb$1}nUhPoppkaUrVsfAg7^o<|PL>`U8OO>ajaN zvRf}nV5`S$K-KY;9M6&>XYGV~3Y2=}69o?yw1T9gNaw-~E83k_$DjVSr#Z=Dx9)3p z_FZ}q2@c=LHw`rK2wes{`nI^La3J+o6=j1np<`zXp656IPY`_B*yP{8O)Gm4u)U4~ z8HOGhvE(O14OMgjm6jm>X|Y%FeVT4EA=ijIFJccX?4^>^E`m7)YI!ooQ}S&%ewL>cr8T6x+RWfuG~U=+5&pG# zla1E=zd1IesN{$_pKu@e0EdywvAJ8+A}A8TH|vR>eNh`3VA);4Y~XjyNMsSJ#p{7J z4YMQwK_W>yCj5Kj8f!!(C%dlf*E`Qp;J(NYub#(3BKCZ!vv~5?&WwC_IJPYTjz}ff zE!;IKO4WVf5hQ|bbJn#yftQ(iLh1zVV)@NN$G0^xN9uoPi93x~rTfIsY>U%QB(onN z_52Nn`F*1eCgN8X?>0&34NWyDjd=>X9oS(F9`LvEAN6fG-)!wSQSg@n!_zn@-I~Gd z1RCs!(VV{5Lw)!mfT$bTrex8cD8c0%l_NxtY4hTPMgQy>$_q!9>51Jn$WbX z8TQ?~c$w`RNvceMMb5L33KD!|>d&(u)D_41=Yggce4|&|48AE;xiKLOs5A7;zgjlpOZPh<6r}HV6w18s(7B!tW*L{A0o5) zM#VAz7zV_un?D_a_CiwYRb&0L8^F4OBg(JNV?;zF&I}nqNQ@M^lHLr297$OJ>sv#4 zW@_0);;*@6qzqqro{!YSItt2yfC7x9zvZ-5LBw6u`N~Bs4iq2EgGgH@kH0CK_)Hr< z*hrA2zz6on)LJ?79W%q!kU3^PY%97vAUaoPYg&6VD&T~hX2y@bI@qX#ZvjXkuKWBp zZ=dQ7au{KZ{`wHEk&0{?Lx1y5Rc}We38o8o?%aJ@N!>9F09cD6i7bM~AOCQn>~o=; zxB8|zJak@L;rl)GUhZVq{d*@l8q~F&?E^`cWw}9E=muWz{daCjo&tDynfz(<`^vcQ z7EX9@5%)S~>d2Sj_g5|@_pINKJpF!vCo9V*>$`Yt0hnHs^6lfx-t;B=AoDW)bHFVX_GB9Llw9h0r#_ z=Z5E&O|augXUzL!t>yOV8R7E+nh1m~9|Mv9vXy(<82{;NB7e|K9}s8~c3rc83vMua zoxYb`OH*)L^n&mt33rPJ`Kv%P_um|-p!l16!j^)(g7$K#-GPzdBamW(K#(*4tt;N zKY?cx89vo?ITeSQ>R)rAjs+gUf(1Dt$3#YRwJ0=#?oydXTgVece3$>ZxRpVm!0f@8y*#w>oe|Mrn^a5tGC?F;x{pO*n|RrNRc_Y=Bb1W(Y2F)PWl%=|YD&9VWJ zfoOD>{;eqr%oJl;4o!L@fl)?JlWZZ~eW-`1+p{@CXxQ(_5Wi`&%zSl<98{XObq*2g z@<%FoO4>*+l5quTacA`TKH}e=;?eMENG$S=ENFrD<+jJnHxgrjJTH7l>}2{v?TSN< z@*5gQROJ}?>7T$hKku`85^yK%qZ628REGcN1AK2a;P7Kzj|=(+mR#qZ;}EE}(cq*@ zUQM`Uhaq%F&iC?6?DR!e9r#{|zl*T!ji|YkBRwR`jS$aFMgkpFljFKJc17^E4o|i> zV&g6R2!K9Mg9-3nWKAEPluTWhAh*+fksDx^Xg)B?*FAeD2qKo7R2cNejn?Trk;NsiAgQ#|yz>kU$xI}V z3vz!7h@T~rpUHkUfKwTd&s6LXQpg$-zHaI+{m>QxN_k=b1~U+h006)UW2O#*Ehr-E z(@PWQ{^L~NsT?eJ;_6e;kh?BDt01E+^U+b+w^-V?*z2-XK(|OjxNXM(X75Ui{ka1F zfu~>1$e)k=RdHQA@&dge&c3tjNr@aK!2`zHpobeBCAW)w|2*cAC&|M?guteMv-f-z zCN_U=l#@IC8N~p@Fw^uS2ne6_*-FzN&S7g>)Pk_FLj&`+Ar5-ijMF4gHs^by)Hec!BNmJ1pa4S$h;Mwe#j; zjU-lADfL=aEX!dVh|(Uwai;=Jy`yn~J~4GZf9|LT-66~b=ZCg8MkW=85Zwk-B%JiZ zDEXAf66O>h8)5G-(JGk7+2W@)`DRckA>~D8E(u-?xr^a2Nn_1?^qYerYc8d60lr}F zQ||C{8=t@XdP%%_${&|ch0%eZ7L4_AfUXknSk(R2c7qm}m%QTAsT%^?;BdW&6wx^C z2_;}}nN#QNm!_?$Y4-2erDtT zXS;CdRWw}iz106u29!jgfH21?1%oIa^}Ai{V&Y%DQ8n|{Fo0ThaV6!~YZ9NF0q{!T zY870GhRUGl(>p@6V_>6ytDHaqWZ!`VfI=6b$?3e~bte_H1k7JB_iwscxgNHa#qm@C zJ1ZMX@WnCPC)|kGOh2#BJHgr&ZEQDCbJZc~(LS%La!Q2$ol!<4?{_Q`afoi~eFV{QZ7qS%ta%``gP7nLF*M z9;4216@=Ya{Z)*h@+BrEUsuGjS@M$l)QUys@Ldp^^;>b$GY2-J*cyKsf`W_x;@$YF zJM!?&2`_?Hz*-(RkaWG7yt;-UWY0Y%XVBMrE<43SYwh=WHNQ@gr7`X|Tq_?EF@As=u_;18u z$$Yxc&--2WudHOH+4p^Yoe@DHq8|F)7?TSK7TpEIUNFK0P{7Y4T&efg?cXHSaLmew z&X(MX00>6JaT2ORnCe-UVSYz`|I3lTm^xQe?sDKHYF|I_adDXgbE`cdbem(un-b#g zOJCSt0{|75knftCM(U^NVht}q&hd-8)LL7ue_eI{emB?tmxC{@Ld#pNlkS^lXd+5H z`|9F*`|RT6wN%5Py_8piM2oZ z1K&)l^Z4^g6ZEwrfZa3G*OlpQL*2QgCceLaYdVDs54&pj+0c7QL^8>ejX=k^jm?*^ zN!}^LVzTL9F*nU=kKgmUWrSW6Fxw0Gg)qvX>Sj5>FOGu*q}lm&jdvd+jE>m*LmEvA z4~R*ee^WroLE5=rVI8&nWK@-hJ|5PWevKoqxai8DH{rG-#*rU<8;CtVx>kDu(mL~{ z)Qr)hOc)t4se1f13>HKg$>p^HPsV;q`{cV4Ru6MeT%TVKM+$9!67v(`>v;L_sBWM` zq=g~17;NC?^aV?de1F=H8SdpKuKdj1pS-bD=jm+Meo?CdA(KZF#16H(GL{|q2BhpT zUp;@z(I|f-z)v|=*@Fv&i%**BEi&d`ne>(o&43H#yPRqFJ~bz1#X&d6Zr4O;5$?2Y za64H(NAU~&ezVG~eV`uflsOSbi8%m*4@uBQ+YBQ3CYpd@V>_f81j7Jl+c(KR6GS3Z zlBEQz=J!K(CuqYUu3g^fz_c9u9~aQ%`!&n{kEy)rd=_yh8&gRA@V&+F6FBjw z4&PE2T)|e$viw1`lh? z0d>vFYya~8H)c;#7H1MW>d&p$(Two+O>XLZ>w?S}yO>MlL>eJ6J3RW$S^iBd{y5)D zX^j9cGf;d(b8B>xnFM9_3Mvwg`$CD&NU_y$nhuET67rI{bs0>c)FN!0LUSvj!AKkW zk&^hO2T2kleDMTT|0bmRJNZ(6Ky*UzJ``Cr_1M0xun=0c%-wzS_c1MUdW==7^^6`2 z$yRdfhCd7OBdC`nEJpOAE4*>VCrunQve06B^GQ9(fs7+~5+PP_aIzcboQm!ARjRW1 zHe8nCbyRQ7VoL6Q49RV^&huN7jg?P*KX+*yIaVl9oZWx#3QC4LG_9f@`D7|n^iY0; zk|CrMV->iEBd&!R`#oporLP68QJ@y-6Qf$W{#gc-K`!wIKIa9fu(sLU z;TxbLwZp``Vb7E!qW-R4bHw%Rhbgq?T88V7W_5a64JG+6=0a<9{UvK417WbGkq0|j zx@oBUXwFjkgiXKZtW+HD7G+sEgNbU>QE6Pj{D#eVV*5OE5ML4eh5W+*hiyXp=YQ1y z;_1Ck-FM93aD}G%YFiHZ&OqR}ZF+yN`1weAib~CIBUHh_Ha!pOSP3vjm2$Ga zGc;aDoleU=Kozrag2vaL6|&3hpCT~5jSTKeK8IWUu-{j1Q|V{7Ken6ynq|;};Sn0y z5BAey<3#PZ>~>Fcr07jn)f_%cM^zy`8rpawj8pUxHH|L5CMIoR@?XoNE^-H^vr8BH z20(YBXh10_-cp&mi8hg>-9|J=<(6@zFhO-ob8P-?Hk~cmU<226)27@=07aCv)sF^{ z(6_MZDLw^RGJK<(?f~78&;=N_t;vR*eEoLK%RdI$h+q-JEr&5kOu=&mvy zMi6v;Jq5fh7qbDEG!6g^wz}>Jw1&vpla0vQGDejp`sM#y}{Fc=l{)ty}qa^TSPgx7J=fSj8Rc*JpVRd*emE)J=SqhM}K`z@oXJtu`R)fg$ z?dNt1hip@v8DK62C_!sN6ycE99$w%HRtXW&8+{~Yh|?TTT-=Y#t0G&2s@0{uB+r`* z@xQ&9Ob~?c-A88(c1YJ^D@n-Xp9k*0+AnsZkFub~7j`Q9{4(R--s}XHmv=rgC-IGF zSUJGLAor!d7WN7M)pI}(+C=01>F^Z{dgXoWsYxdk3{hCWdvABoSL-T=Iu|NdWd^1* z4E13~tm)a4%RF1eJgLLRgh4x1q{cZB{u1{;zwoK|v4}`;mZ1DUzsuOnqM{|88CwqW zXu~Zaq1UFDu^J+YgK9OmN>9+*h03JgMM-ME^5*9L~E?EVAP=b%$ zeB(k#O4D+-N8aj`cy0-{F5wI}lM~bTrbgu^8##zis2EPjQ}HG7pfiMCz=YX3MM0{@$Pmf`NOO22OrU5K)pR&;x-Qi^kr32dHn zXD~9YRbUkLO{dQun<+r6Cpz+Z-en!pme$j?%j2-+Ce5mTHl#u{FA#uq#1)Ho4$8c; zk=#jFkh33FPBtcPB!B(*JCx$JgQj_OF3$QP3%xM(_cn$p#9*w-?s%s5=Hd#_&#rEg zuO5{DxTGBq`J@N0d2mvhUS5Vz&|;-e+yOj-eiFVkj|7OZ+Eu_vw=2zoMK{$ExfiZe3~8t}e39iw$Y@}dlMyDsYesUx## zS*YNR`JJw|ZPl0OJj?Ch&tHT061Lzbf*;YaBg|E=CugPoIJP~sjdAw=_Q4`V<|BuJ zVtHJRv3T(3dD0D$DP1gHE6vVDH^pLJm_3$AlGMI*yFifYnI9~8H7_ahvwnZ%S1yX9 z6AT??%AawihQOf`&+{3-5SC^BS1aVNDakjU>}%C>Z|pgoK-ACv%uU3GpVw@nR`nIS ztL;`GPQ+&JD;$f2k9q$p2*Y>FxCM4s{mbU`(jmRQ;s@rxewFl)V=gRV0%P_Xr<$Dh zJ9Dm_^=)sH-#N~hLn>UL0*cx8bBdj@=hXB{bf48*rkxvGRK7n2)(RWO>Q=-m)RfE7 z{w8qSr~f}5>?*TmP+}9wBVsHp?Da3)iKSy@OEZ=#2`p1Q;S$AU`0T>EPp#=3Cz;Yr zch>L2ei+|)>eTLJ%-$r$6b`TjpUrrU$S+00Ssg$H@*|D_SfJn8#+mnF&|O&7wV*At zEEGzPMziAeo?Dz?`ATDNHEn5>b%l2NDX5TxkLo>gYIqpOXlKlh4aZYd@yV{Y-UxL0 z*-RR|)BSeeYz6AV>V-XBc>a#UUJkzE6wtrjO1mGgY0uW_`0l&~$e?Gv4D;8GPrt)Z z0S~?le~%F=Xzu;ExvwUOa#^*RI&*dT`@Zg01lIH5y2zz~%ac|-Xlfiv4Gbi<3CpaL zBimb-2eN@l$NSr_3wY$_%d`D}>~#&+${ZWXr-k8CvM1Fb;+>+@$^FI=V94ubE5P~yq*_@ z=Pkkva|=w;U_>7O*s)&YfcL{F>o|;zn$d#HUpR4L(7UKGQ*ASfJk))yw<5lT6=gkV zbtzxXvG(ifrkHKjGUQK7YPoU4i7S3c$>{4`XD+jlb>{g%k@M5stq4kJs(gkk`MV6A z?21e}B&jivV||y)1^k?T4OG7|lr1AwcbX1ellR_Vu~r5H0PS@|DuE@A3*q8yU+G?> zh7rIoa*dL2dXU(S19IT{YdeVkkRW3-NU`2^6@hUSLb58>rjh0y#PeWqN}zPdXLQu@ zXnvYpmfP!Vwh+(T#k4Jz0zWX@QJtN}NIoVXS^e`RR$MpGhR}RV8tQei=-B^00=|C2 zzWFLfm8AX|!A-xcTYvM7w_d8~u6td;ys_Ljf^>+8M*NtqC&ss`nNIy}Yjq?n zppKaLzMoc|n(SA+3*e7|fL3i)^zQ{0PPyASpki^?obdg^nWCL`9SNF_9s~$7!@3!; zGjw?ULDvKjzOkR%#1tz!P0!OXoACgX--wpT)qLE9L-BzN<2K>jQm z+L*m>qg2yX`bbbH`-bRom}|iS7k!9~0aQc$q00;l2Ca-BmIyUwO%N7al*?Fe;>$+U zDS==zEa^m{--Abl(&v6(X^v)Iz9*r#_Y;v4OuX0*dhO1O{08&77NU7*G&ZmOp)dDE zUKm|63&WQfpkSSYDLfp7nEBwc{_~rUD^n4y1JP{M)&pK9U8^a@b%P>i+Gpkq6|sg` z1{U}FMnr)!?7_ zujjKvdO^UHK$(0mL55;O`u6L>U7^Y*E4rWwcJ>)UX2%6K7e)#f1|<-YnbPrO%AfvU zGS_U4LZxPD>FVT4bU*L+|FL6hpa``TQj4n0b*-wbtXTUpU0*DWqX$Tc6sf((c$kTppRu_}@dEVo zBsYy{96=|1L(2=*p`&V_6$hOZ=M*(ElI)HE=L@8Emwv%u4V+twsr3yR6+pOij>k{P zcNKIrdk3}g_gO7E_3YAGXGNcU7g`u;R1@58NfS)q))C{Ls1ZQ=<_KF2Imqf7jhA1xd|#y3XIZjE}V>B1%050d}A|7!z<2uW>uno;`Wp$D5I3x@Q@hOMm62@ zBLy~){`7^n7mDyT>x9eVLtf%ss78sQrQp^1FU#)#)>;hbmwu_p{))#8RXas`9X(Bf zJyU<$7w0@p9PqX?vKp%B^o!?M4$-wz3E~b|#$|Y4E`27&?=|DB4vOW9mh-DVv??-g z5bx3`jw{7-+hg#4HFJrA`4El%W=q=m`ur8(M6Qseg-(^O#Bll4R-tz=o!25SLqCKB zo{kqN8v;30tcLx|fZHWw_j9T5>)X*kT;qXi%KG^^b*(Zd`rYwV&=PC$y};ypVWJ#a z`L}7uRgcnFX5ca>I55XyZUZHnRe6EVbxoRmJ66(n#6_~9Kj&4Vk0FdH3%Bm8jQf)d zT+GM3E|5TVcG%r3CM4XY*`y9C;U90;3>H!UWiuPFkrt%3kC2SZgw!JHA0d z9+hvfXG|cPCpAuoU|ih)=p0{c*}w3zDv5fvQ5tR{id59G88Ox4LV`}u& zqNPi;%80+(5&fa4?TF3K_EClDH-71-YyUA@xC|ji5C~eItc9|d#S-sFyVx%)(IuD( z*x#Sc`(Z%a;G2!Olv6Z)|6bdps<2r_0C)?K`My)Y(lmm+QrUr1I^JwMi{q#3I^Lqb zJAh>Fd7QRsRW?Y|7spVi`g>Fgl#$mq&7mcNTX8x6))--pI6lp5eG}>Q`Mb@EE|I7t8RRbFTGviwwA*aatfw7kXP>C-OIeZP{NwsNH^TB_G74ERr7SXvK zO9JBPE(*F}Gw{ZpZmZy?IgI$8iu0jSY$2p$RejUs4nJW8Fa&zi&}Yx{@;qk6Yngl{ z+ZH@MEY``JCV9{FAJAVku6RV6SSvkR1Ksh@1A^e%c zAK@L}p>_U=%SH5_8F zQS8_t(H-$-yY9F=$v;wwt*3J@T@ST3D|aouHqtJ@xNb(sKBxlb#ZLF@SNf&k9Uq29%UD+BA5{ZZlrL;Id~uh@|8_O_ z=4Y`GVF5l@*8TN9wL>_eSoipHdLcG0?Gh&_jt^* z5oHhYfD~>uQBxyl`%mQSPLe?Osqvp(VzkF8&R@Zg_t%pv-7vBXlfF)kregi+{y=#< z`{p?*PTFEmhSC;dlLR=H7WF2=5Th*cr25|t9vN7jmn9$f;jcA{7&hM9GCEI7%|a-y%N3{vB@fdxfjyC^>zC-fb&d zX!)G*7dE3e`ehkCjRSpAs=i`FU@-e*7%^2^chTN4C_BzYv-FXV+pI(pdbxibm7!;` zA%(q)uSc9eBHAE(0GmFQ|6Q@f$8S!>KwH;?u!z2BPjBtrq3eyyJs4KD@4BG;cgMPd z-#uM+9srba_NXta0r2H2%tN;8N9h?Ux07!v?d@qw8LnRVo=Su%6>cl zCJH`A9US?P3C^Y#PFyHkQb4mCjQTX1=bgT2)kj&)!geH5LG zfK+7SG{^Qt8Kac`b#sEE({Z4I`AhA|*#(u))*_OxY--~ac-76#WZ+zBEOVOa*d zv@7P@tDM)LEZDh!doJ9)qz?>+`Dr}NlWsjU3fL_@f*1L5gL(O5Nt`jnBu8={n2EUxQffGDF*OI39{l%jyGrx_uO}ILI7%vE=Vg#1Mg@ z;;-cvRsNFvbk68R_fgWt7X76K@^4*q)n(P}8eC#Q5t>CYn;)e-tnd+$>rm(5e&;YN zpMrGtON0F6F5J4vxlQ+Fw66DMTZWjaP)X_90_XAxDFE1@Qucq^&nSMTsPA-6BWmKF zXRVlqk;lLKunZO8+S@4q9juL)+-iwgPt~Z;wb`DX?i0h-c{ElLzJ<;7;{TgMdk8_? zUk&AFNbj3a zNF;aQq6wGWI$yQlnnk7`-ML#efGu}IIGqJe(+#bA(EGi=HHizHroX)qbk3`)Y0neH z2$><|?=e)RC5ih=B{A9&M4H3HW5A{xpeTAh@&r=3!!tSwQuVHT!51iBCHTi^!XRHh z-$F;*ZW`WfTi0U0R$Lb-cjwmo)aM71#WIiViJYYhD4zQEm^2?yNF0WICo<**22vkO z5H%W0^wKK7`W8arVZi+Zoo5E_^FA>^(Z|qoETM`qV^Kd|1u?(h7r%pLU^cG9p>TxR)oONaL?HGUEj<8;a0Dv3bNa0L`yWUUOapV(o4* z{)tix%<_{s!hn^F&u^Tc7Q=Xf5r<3qoiAAprx6#CTN^{e`RPbL4+%@rUP z6?PLobdHHW!SmZ<|9v733oI`1$r)I<+a**9QAB7o^rz|KPrGhunprs#f()%(FCj6> z+Wf$3J(a);R$Vv@jels;8|1V3{zQ6-KWI~

G%A?+{Rt<%X8sFH5pAj@dE~dU)m} zM@+F+1pcI!OuN~00K>ptVk=VJd+qNBVrFDlVFINZ8{9E^73%xUm``qZgl-s+F!6>k z^2qz|##hr3$#fL=y}7Vb2(b6u_t7;+6~7wq#MT$MEFt^?E#|Rkfo7;%PWY?&OHL~6 z>vAcOP^O=!V!8ZC5=jkY{MxsSClAAlF*!m2*y_G#g-;EsV3omSkbv@wiDi>6$)1OU zs?J;wO9E>;v|Tqb8-Lyg4y%ikYiw=)tz(Bay9kZk!lrGzpVxa+62t!O&9r~o$z5}x zU+^N)3P>P5SYbqu+0NIdf*Qdnx{nB1?|Z zgq3CM!{n;uWiZlVm4|IGVp~ztfF?G4mBOH<-Q8WHq!?4(?vjFX52KB5xu|+p~PAr4i*o2E)8SYtNOdPi6 z*Ad)=MGsujY&V=kd_Ts@{8x|l+KH%J>mF?V7&IenvW>+4C6^z9g^+($B7Uvkmy~YI zJ%Z1fuho$g`6NX2nr#7lM>z3Q$B}`85H=pri6{Q%iV%~y2sRtP?kZ>fh1T-DU|q&u zReY&vPJL)0LkR6GYHr=(Zl_*R$H;J0tw-787)YTK&xB;ZTY6GqL%d4x{1S7(#Af*z zw>5n@A2{r=sm4e_fN!sF=}u^(2>oR&7U&pisZA=)aoXUaK9SF5CY%*N=lO{=8au z4E)1D-;Yq8wX;=3#OGtwhX^Ur_w)`HsV|Ma$}{QTzD%<2AQLol!j2*Zhf-tM2Il&J z;TrG847J1AwSD*34AXOe>D!la_?kR|_qYB&GfE?%`TFtjvrrS98Ya~muTf&0X>^MUms-MOqkqh`xPHzJ=^wZ#tTt>S@hg% z;e!SX`2T7|S~2;AeYw7}d#d0lDjiX7R7E|@spHB2&dQ0cTb!#6qF*2E<{6{^diO;! zMdVi5B^y#HKbQ?d%fHL>!6=_JZIq-+0W#MoIZ&&+abxAKUb9t1T$HFF#=T{ktDwg3 z%f5B1s(u>gx|WqYByT@#z~qqnkhun;)jKsves`Q$DAB;_|JAh%&Vi8SV4e2QOon@v zptaevYG%RbAxr{n(q80LYy@~pQ0nGaT200WR4$$BEyQ2nXg5>DlHqe@vV}{=^}6I< znv_dL%D=NgMDl}5%i`(V{P;<^jN6+7pb6~u&kYhuT_#9m+~Uhq4rRgDCyr}F~vMQ(;~zm^qW}yi&w5y zoxY45@q~&IIE_wT+i~7JG~ty8$4|d6v)lB1{gt3)t}cBAL@Pw$e`nCTTgoCE!pIcI zBVy<9WrA`=$=!2XIQd*0KBxox_;l}FeT9t%AL(xdlY10D&4h&AL#Fi1LDA~h!W zAbMcI08geik4;V(>uc4MCjFPW;+901K|4ddJ?sjl?i&Rjfh?~T=tw%g|JDr#4?%Vx zP(fevWl96UE=VQXmE{x~SG3A#jQdWA8ynRV_F9gqRX4P5Iyv%>tHsES$G~X9DF|?F zDKnCS%$T+$|M|#sEi&KsQryKDLCh0)E6<-Swv9*^)t?i*+Yuiau&DnYRg_Dk~bl5b6Y{EXL_UoD66#4VJ5 zqb?_2-dG?|G?k=rAbB-tGIa=(b8SXVal<#Sc5snWwVTTJ5tT?@>Q4v^PB~Nxc|^tB z5@4{`U*5{<^0@KzltwtlHzP|cbFvx zECp29o$tDcL`4N+Rjx-Vy?cJ^7_9xgJshGTVMFd9GjuV=y<*6lpU4EM0b%; zq^2xb9Q1cFYg5ndYS&9EYGy(=D+f3o`xG$e)}4yv&)V+S*=JK3q$kS)kPJJ` z2E!uvC$mW&0L55l85;cc_|zM1%QP^WdD2p_#oxPy3A@9YG!CVw%XGKXF6IJIxvv^; zjmiAx&{zcvj&uRb3Keoi7Lf`IP$^kvC8|(p8$wEAV8EAFZ>i;r#BRhHZYN{4L?IWa z3DT8Oqj~4ILOi5hOoxlihA{XZ7a&Cp!}ZHJ^}Jt?vd-H>Bv;s5FDA}#HGOFo4p>V{ zY&OnZe5z@D+mixgA@~atPd|uHU8feF1uuc6I<^Ro?~M-3MAH&;kg3#*`1%2@?G*Cc zOR#g!1B3PFiLMYGH56IY7i{_=n|d6a(&eG=dF0(q2iPSDVz4Yvy-qld;*w_kmO&@ zq3&J3znTIk{jkb})2qw(pVwJ7ES&bj#*dgCLxXa%f{3$iqJ27<3xPx}L*}Ko#2g8+ zjYpn&J!~C)B^xxwy6qgF^?R|LFOK`Ws90h(`fBMPeED);@m~7)=ZS}rXBomUV$qOV zPV*XsBm0(~V#n}@Hb>n#UBR^j52{4TG+&<;u|Jn$n-*Co`ojp*vWOEb6kWnIus;di z6Y0j`aNL~F(^&7Q(8N_(q2r6BAGcSL^BDWJolv%X(Q?Z1#2f^Y>8x3@-&8UcfDR$E4$NvLAe9BCz&1YtUzVnX%EQS3)W_DSw+0{Z>**JszP(43sC&GBhfwQ#I0I z8F-T{en2H>#vku&MB&Bg9Wjr-;;>$Ipk0&H(S+9&wQ)Gac5JG6tmgp#Nwx}M?uZNo z%|65Q9uvKnJOSg=VRKA(*-xrON}z|Qo2Ks(1p)JHUo*^U!4ar;e~AaspRrb&EWlU| zY-nz~xh66y7JLLg0M0Ug>r~mIF$vo}k}F+DnQP4I_|B?SRnp2l$!cUkp9kiD*jdtOdClm@^!w=df_Q%V{2P{vf4G^A2N|5DkqVbjX^<#29l7o{?3X?cI3b{vm zv`nzx?g7`YbQV~8tDIl9jQaBx)%i}WV?jw0dB}pn2uDIztpu511N!9)!Zo%nrS%=D zAcmoC<5miHD7UdCGaDSIT;g=2$b4|G?N??T6eqHsf~S0#m!)fDb+;_MJ^-=p?@V&d z?~LA~r+b;-4*3XX)0ld78=}I>oGBg8GEpsG^B$xvU4yUgrmax;R~!$4nu29xr$}gG z63sdYkT>`%_+ak(sV|h#ix7#0|La-MEgk*WoUKZ5aIul{-)oLP`9?qab-boM3z~#} z)R**g|N7g=35gPeHIS?G@oV_zZRjVK3d5!Ad$z_tD zcLy>z15YQyef*}5&$q9ZDl?5Z&hkv85sW>7g1XG{8wJ&%e0XsI*bx7)Hki;PvVj#l zfg_Ktdf@ERLK;lvYkYWkG1Rh{d#JE*kCqv68*-J9HFLn2b7u0`R2e3lOc=z!mdzj; zkaRF1>-?zara8E;{yGo!nZNF z^RjA&xYj`5ZhxWhMVO55HO283Bue$ew*4SmCWaS=f|y zrE5}V0zd)!JS~p>Xy4J5UVMsP-RkH=))*vj!JpPpey=@z(m|c_Eclt+qJuJ9L*d0x zT$z4XRNXmRM_NV+;ZhPG-GO$~*LOip6B5qmmoFH8kubl9ZWX)7NgvdbSI7CgX@c)l zeLBkhu5Z_o?P-%;&a+w9VCSY0T;)Vb8q(;>zAvKCnjH~~7o0vpGn8vcfJn*104UeJ z>IJX=|5=fyOyL~H(SViYI!%8ExSj{Okk1nzQ?OQN*Rbdtqt%GAz8q;cAKRw@T#pf>%O~?ObFhL;u1>QhmklbVMANq8h$Kn6qR{!@K94I| z{@~JVs=BY|eBF|pe&VmS8`e4NuX?qDde#;rEGjRk&a4Y_;5MXabQPvkV8|&Q#fccj zZzFR1%MMyL@&oQ>sVoa+xotuxfTs47IBIP!(fB2EiJPXdIs{Gep?r2KUNX7nAa(b- zo%(!;U)HA(%N!02%4p257%7 zr_U`?&cn`KkYdF(oq#zVn++$dWkiznhg<(u8lTaE>hPEcI8;>cH?yI}A0W zQyo}LusJqa*!=F5&RQKc*$dckNSDV-l(f9|{4_m!pr0D-8#GlvG-Q6$Zl zVfYdKhs1AbqrKB5UXEiRV#<%8QKQ$xCH)8ci&0;FZKi9CzQNEmeenm4ScA7m*dfU> zl>$|@F$cdBI^4c?v?xnX=zkTJjq-q(E^*QTSiRW8FMp>rqk#S#`M)zf!Z$Ppt7&;j zn?7rFeZ>@S-icW+e)x5@`kHMJmWUU8y@LE1ai^ufYz-Otmq!t4f29gF#8;8QxaI%t zwdpcK;gWA*zWjO>iH;`?=6m7E)BS3=ELU6~VBJ}*JN8vR^;*>w50mTZp!C(rZZz;H zt;HeSd#?Vu^Q(#KXKM3)^g`-2(cAR6bE6sGDc&Gx-9OSanQMy)&ujAVJ{4z1Wds)1hotkDlLfdWGPrHKn)}nl{hgTMjMGE0 zOb-UajyhEDLy)%&dkw$}v7W^wPpRB+jxr?l+@;+;ZYuJ}%PS?(*!;D!X%nXW_okD< z1$j6?QZOaW&6;*d*G#OL3|}FAUe`ZOcraz~GsM}w!sPk(lle8vo8ZxBO%0BI2IkDD zuZ&1Mh_R?08(jT*UoL-ugC!YdcmMx7zUwQPh``VJg95| zqJil`l3n2+QT>`wk=F0$?+5?Y@Q;}_DMNE%X>;mV&d5AQN#cfNiukwRPN8S=uP*KN z1{M7vo|Pm^^g4;+;TBZsKaqH{1Sbr^9%IX0 zN(nIhn0Xf!$woa;eYMa!wrn-(&F^-p##~q?y$u&Oijcbb=JaJ_4=w#zr@pGz!>O|{sVGN!QSplI|I$-mfwv2IRnZ=dv(R@Kz|4jR9qhUlLXizFH@KdcV+|0@ zBq8!$7%5-LFxrISAT1gBXIcyGscmQb8oT+E`4=zAsY;b)En_T27%tOuY+pY{O!c;G zhUTT+&BX`4q>~9pKA=FAEOtMpxzWx>XUzEPJsau`(h-Mmjf3ModH$RxWqePhCr)y# zo55FW6`I*TreAvNBMVpXNF3si&FFIa+VV;^or4bC4Y9E`jtG8+pkkhDWQos`%`7rz zMBw+5fR>-02GF9i`KVkq0r-+Kv}h4yt6MVP%;wr+?H zuaAt^zdfJs@BDCjp9ucqvy_1}`2pSs{G0EREDliKHi{;A{RDvHaEIhGSTc%|U&6Nb zmM))4>KbHCL#X%>KN0#g8$j>l2KLZOP(Pznt^&aG)9%_9L3ywLYRve>%;=qj3iv|y zYpW09%LcXSJ|vS zxQ@TIH3=C`Zg9gyo*~?chPs{5mfi}?#KIjPO2Z>6JC@pLKgXJ1HxQVE3k`fEIZmMrsXqwdxHD2 z1-sBFvreoaeBXzPB`bI8$Y%JY%+b zT*4x~ncc^)meQ{PYbOfGF}EN$1l~6O;KF*w*&QRnEWP?LqzJ!!?)|mbG+>=5m!)2! zXqvyIoRA2~m3DNtSe#elhCRu4#T{LNU`c~{4#6<$;cE+kAgg620)8SsV^FtSzSg>= zU7hnyZOr9?t#m<7heDX=^SkL`nlO|CZ=(_mxmVHn({Q{_0d^3FHTpQ=FGZw3;q6%m2g~Akm znGUnFrZf~Hp0R)%e^W`D{m|c%20x`3%C8OP%031uDC9yy%;mI~dnY`r+Y6V;Jx`xBd#?(vSabeaNis_dixT_(J z6bW^PU@aexgVMWb^y06q+qp~!A6S~4mdJL~u%J2jwdSExFQ*sH1g-m9aAUAJVgN%x zyuWu)MN916eqq#T3wI&>9LvlJ>5CCK{9?A|UH{X6Vc7ok-~2!Qw-gyk11fs?Rz6|s z^J-N8;ZU#%=d@s;95-vzbgx6P}hzXUKU z2Igh+qT;|9p8K)tB>#t(Oei8!r`}yjjiGSqddhcmsa&t>(QZKhjj4 z`HW}ZI*He|`(2kfbA7Kp?0) zKk;gR-l(_BF{VR*B0uu{MT1^on>9pT&&#=|SpL??fy&dJRWRq#Kb1}nG)uO@DY=FE zlQyb0^`9*vf8^hm9E?UkrpLEWKk3J?q~`b_@y^HER7Q`uiB^i~5C%Q%(Yg$oV~0G1#>Dn`GIWXYxk zbv8=Uh)vMeYaEG^R$EvVcKnSWw8xKF!|^wu9nI_MzYCV|{BTv#4Z>nQ&NL;!*YFco zQ{Ug}w-^vG3H$5i7i0w9xc&U6;mwln8nqtTm@Id^1sYaOw9?OhmXTl))7?7)fYE;y z53YvKDzbANKi(f}!>M&44n8ea>kE1X1)G{;qe{ue_%@}hqQ*9+ z$a?Y$V6sS8bJQ&KPTfUxrD3- z{$N@A7)UB_o_8w&8u9+h8nnDjg?tmz-bCKR!AL6nUyV5+R69kxF7Vv{d34V+5!&EK5v0!3OJ zpp~>1k+r-mv^TxJn~K?K&Fj=1*GjdM1%kaJ@(-42M{yu5& zL+&;beRasOKto{jQR@89o1o|hMlXwGp5)Ja08W9K&Le~9{+nLd9ADzL@EA`N96o+# z!3~`Aqgce74o3~$DwZDh(x>j?4qLGsyzPw&UscL*MV_PcE90SZj>8@5Fkr;g@dljD zE^f~KyfdeHXDthcfeus8oP*kCAvgHCdZa4s?v(w70?QEo^88{5*H%B@Y-jjxoJVg?f28;b_Y@*U%`=hfeCgQJFb6UJXU~ z6<%NrC_fQ`rF%qDrGw?x?HIPLaO=9xT2-A0oh;{}*Rl7eggaHm7U3Sme_w1Pqe$XPo@Zr#r}?nFUzuO$gHaF`AUrEH}1u`fAnONN`fRGGJyBEH6Gjl zVhQut`|F~$!K3#wLP462y6bZCyE<yL-xLl@e2$`v9AS0MVP zv-*x}rz|aojpX<1Tt_2#&szGkhJe*|56S($!J3z8k|6ql>OFf-=0Aoh_Yqq}bI+NV z`bFiZbL1%z56dxFlZ|te!-zQDTvA1yl2Dfx%_*E<3xZGSl6!LBw>rODQ>+tiZp%JSceNip+bOvG1mJISl+SO zlx3zeiqjB|_XY~d9r2*gSYF0}0BzIw|F15FKLCq~J{BQ$tg8L=#qkT_e|0fV-(G>e zQRx?qge-+a><{MRz z$zBlhhjOB>{uWmCu!%dxN0Y_DYn8} zfMgYDJy+%!M**ZQaD+#Xw+hM1@2Qn&3T2+y^!RIQT3!PVhEGp+$Vq>mVyKq$wQIE- z?ZaPDtxzJ;btcnws#+sD)Wwgj)Y4OXnMnpCzY>oP7}BQ9Y(8_{XLpEaIed?_I6sF2 z5q~-FZ2118U`%d5Sf2lK%QbkmewdaOx;I|Ze~m~2Br`X$-5iD~Pk*jIZ|cg^Nrla_*oUFC zd6uP*a+{_%KgfBp?|ZwOf44ou@{B-?#@(AM>O=dmeH-c*+wnCc@PXLGt@1N?tAoqk z4`7L(o-bVbplJ9#DM<)G&Dofze|=PFoTg#e7=1-F{pjFlB^2EcM(VoWt7X*CrfuJ7 zaZDkfe1f4mpW7up};KYetdbGe~v92dj)mcpgZMe+zEZf{EOIyt)^Pr2~mB@9>KoJUuiceosnGXJ#o zo~%ADUO4#@r$xXs!qJh#Sz@^a7R6eVZes+d2L!cISQD3lhoL2xQ1&FH79S}~+$FLV zRJi1y9mTU*lvA47N2}$e!xGcbWN%3G)Zt6J$~vopI<* zT3oBe=s;J?C;N$-?FH#**hpnf5(gEJdQy;Nf95CV{+H4gf6o?nd8wTU%rz%sY}@x>FRSofSIFA= z^Sv!1@;=@rM%+L?!{@R@sQtJf;)v1al{QDF%=uC}bNFbwSE3mygl(v&o^E|{y#D^) zJkPMj`BO>y{D6C*RepNV3!dmQe8ehy>&lp2c)kp>z9I#mO4OyZ6HzLF%=L)p4_>oQ zSHr>}P&$&tDbncYzdYV=5Q}IcS|;aQSP7##=xYozI+ouXVZa7U#-aB!#K737PxNZS z@(eE4J6p!!QiWh$gm10z5eY7NLeyrb`e6_kj#Agn5_RweEXmsT|RaFS2C| zK@jbP!EY)Yh>7_mT_de``wN16e|(J;07fMoWNSr9u#B&DB68$~-oIOZ<@&@jdD95f zYmd#4pO>MESVuBbZN?cHzfsVq&EGsOg^$3W6b;*<_w0`-dLcm$klK^W3zoZ{= z_G=U*Aa|96TS}C3UrF9!#HO>!R)4GV6QVG$`L?b_w0n7WBKk^Vc-&dQryZSxvAzDn zp{e6SYg=>8vJy3FXso723~hnm9iUEwn4h%Z(Jpnw9oROqijJj{c>blO>1Xh~(!P14 z`X~YexIEK$AJ=|!G+NpAhb!!!Vm^wM+jdyZ0=meP(FB!*7;CBmMnP|RN{h3Sp*T2k zDAC@n6a^Fcsyt9CGrr#65AsXCE16-S$Wujs_R=>=sB3H5m;EZf9~wDMsk)Xz+yUqI z;yv9=PkcDe!lSiSzm4ZoF2VWFE8~H}C$91$N&Nkq|D8tFX$|gVZ4AwLa)RVXroP1% zx<5&s$7+s&Ivktw`1=N(P@EZSwi3mt6gnR9B-qB3rZM+m$v!orVWELw0#DSTIWP{E z-Gfc6$lzavn(ug^CT}`0nZuz2+ zNqdleo0*JREN-L+-*^HMB=;k6wL|Fj(pyX|y{WOt=~Gkdii1Cx{L?aKNU7NWIZCDq zWU-4cEHFQD{oCMxlz^Zo7duDob7;VP@xqe_ft1DYtiAo~jRDJyhYXOW+za5`&Y8P2 zM{;mr1ESYJDYay$401ckW3C=8BaWAc12k@9Wv=&JTr^C~%7sutzR_CB-=(8+o8|*j zYk+80lSAd@p?-dRvg`>up_uV`Uf(qe+W;z~sPsFhdagr1HPSE4C{T@kl86*bA{!sk_{cI!Wi*YG8j${N$a;o6=0u|6R{ih!{^VC+ zI_!^i1Zbv)wttj8wFV5-v}M)32ZaNj^7L{|tQUcvmLya00$!FJ7xjYBQcxN7Yy7ZO zY_78H{H!?b^*BE4`~PqK$9joGAL6tA{^oY#g3R`)MUb$(hCHNeOj`_FZ8VIW z@ZUWJp{9{o{0+nDfYtMPND|X5%UbmyfNvH60PuhTc?+>OH~AR;b-c`qf&ejxAxgP{ z?;l}WB5gU=>KGmzu)bd$6d&)+nEV?wS&JPlq_w&CxJUOD{ZajUex6!kG;MGK-fe=T z*vG_fi~HQY`b8{R9-l^D@JZ?OS=eF|ZFTl5R3FBpzWn-ezcUDnBx7~YXGWVugZHfd z%vw;HL3b4lthUCLem(Uw3WR+%nJ;4Uu^#~s1-?Qd-3MmJ!B z5%6|sf=fa=bf`;gv7Mx1%g6|c{gCpqD;dJ9afc~+ZVx3YeQ|qkZYOQuZc5|5InBtW z+rTob^Ty<+N8@Ege7T%7}8}sPox&(q=Ec3 z)(s>!&g#DMU2usYC|51RkIYL!c;l~|sO1y2uI5#|Ff3PAy;4{rV#c$S;|vQH`Q*Zq z&q>p#zj|ouj*NPVb?b!Tm^L~3EU^|0!V8NS{Y3F(5Xjp$+s!9FM=g!kGMBSi*c@|vhK^W|(%JuHy=6mN?Sd;~QRZCkWYCA%Ne z#|}f+&$Vz+87a{=)Q_&NcdKw}W4+J|MEuJKWlI}|<)9mBJ|sm621R9lglHG8lQXgR ztn0sS@`3UOTV3VHPq5leYPSIQ`1o&&8j%5-rYafdd&9&P!|#e&{Y4;7yWp#WhUIFf>apFcjt2dUTtZB#=ht&Yv6j{b7rfCX7E`O1DBd8*1;G_j;qd*DamO_T}t&^ADKm=+IABVmU!a{WaQ^-;dO}sxjeZ85o$O zhP~H02xo;+9;2{8`hPpA{pR2&X85iZ$8-hV|Q(n1UEjKnvb}<*OTQ!xmBCwp~R{4BzE=E=aPDj z-RzNd+XNsxQnsO3V-v-0(#HnV>)uD6Ykv#kk-6<(Ii@oVZ(zk!3J!Og390123jS{r zF}(dQVeFtOx&m9Q`RHqNKf39WmRXlVWShWTd_K0r_ElKX;+4u~@uu&y^3UbgOA|G~Q3K7}eMLTmKdQ_7!0+ z!7!K|H-k_Vne(?1CwDAUL3tN3?2%1_=LlAT=V44TIP?QYtse@wC&6g}2rt&7$+Eoq znlP|0#(HYhJ2=B`kT#3IxrA7J#;pMB)iz|9^8d45y^tQ^i#4>k%`uqmm744RL>%5@ zKsSUD*(!dEv}GrdY&;k{(37Z6_iRCc zU~_GB$MEZTH`qwMnFB*?Px-7j_M|4?zkPu3GXQR!NqnE5sLx?>Q)Fh&{&ds?uy5r# zxLnL4m{=)TTvdFP0%;|&jphg=tRUMcb*yBQFPPZq8u$2cRyQ^uuB-7P`hjg%PR8$v z-==$hG^pR&>0)I`>LHpK!kroontHZim##MIS(d$Zg!kVh#18(=)EU!!nh)D_(^rkV z>-DbbwXo8Da`%JSutkWyZc z18L$9(#pXO7I zZED-Ee_u)uqV$c)y-f>_e^PdKGjJig<_X2` z+sYdoz-@~%84MmtvC{l6m+m$jqfk29l_3X)%K=UH5(4cT$lB~r`~hMtDs?z*x4&Df zd(>Lt@sBjwVLem1LQVMVi)HzJe{4Y8>S%&i9b_>$fJ(F^D;%>U?Sh1%=U&Nt^bqY& zG!1*Y+TdR>2i#A0lu8Ko5%v`U9@0#R!-RAM=~5v%o|aw^W6(g7k+-|hgYLlyjbd%( zBf9-s8U4HD^~#e*tO#KO0l}+o1IeFY2LVib>MBhjkt5`cvwxzPBA6U{BUDe`x$BFd zwa3BV8DTx3@8u9*QiEO{rl|$zLeL7$4^am9Qhv&2<|*-;`u{7cj^aj}5nrQc<$ev_ zpEJ~4U0iX2peRM@7}yypbM&hTV4jZ;-lc)cP}Q+^OGuwP41AK;pS8sYSUN0b-Uz2h zFjeeKoLk-Tbrc{K4K?8Bu+Rrbj7Q4>#sp~!6zZ)2f~T}tag*7?I-g6(L=`O|A1`yy z8E?>xQgq}6uJ+3ArJ(g;hjB>Q9*OFk`tlOlxOM?{iW7Iu0nHCXYjl=+)#q?jlK2KgGETmfg4Qk zGAhBnT169OLZ5ZGlHX3rv%icr-luabffT*n8@~AZupAf|{BHPc!{3vO> zsYUj;B^D2H#owK&WNtl^QWS3{Wo@70*+g!yIFkH*SAbcP+88UWrOg0#$SDL?D_XAG zC|i+aKMDN+P={6sJ&lvX5(c?Diw*=2=qpEH)vr46in^>&sKq*r&W+}9)3iHeD}Yf0 zZ~e5N>0C3)$UoCfxV(QD-`ed!jn~heE-_t5nG-axTG`$>bu(>GXcmGl3@beu!(ZQ%ID^P1ku3dqpdSN2AuOVPeBn6koX7j_;dnzaEhDB-A>Y zC8-U2z?4O5pC~h&>GoVFG1y9H$Nx5*+)pWEo|uZSaPzlQ%XFwtB_su_g!T~)jUqB% zQT))GAbzA12XqQAxK4UFRJG4f0yb)juUS3KqQi6J>{OfYC^!5?f7nPX9t{2v`!A6o*R6W=?q3ohpH`I2rCQPFWQ#v@fw7?ZeQS3*O@ zS~}4CWVIT(ZK@-GlXFgGR1PJw?vANB+8ptk@2wF`TO`Avm=YdCeyyt;g`PL6T2CO_ zRB%0ow1qY-bzoW|HZdyy>bcK4j#~b#%k;6F&e~L!!&tLY$AwrR=k4fG8b zjd3f2Kk(4-zjJ#pccpmGPw-i#sSI;cn0Ug3{>#zDDfFKl2}dPxM)G6YYrX4uU2sU^ zof^Y^I7#HJH;a6~A@l%UwklKtXmctGM4)nArx~*Z2x6VD;yk;t#9H5F0{e$}_D$xV z&?Mme&DcMbG!+PC=*BsrczA7%2?sWLkhelQVe)n`ojvRZB>4LDO3hD#QIx+~8Qa?k zMi%weat${f<}c}d| z?o)))L1r>SVS0(g&MgZ~G!ez$H}h@U4J900nZZfl8+-Kv)@st5#^3)AQd`?6lUrb4AY%b$+EP%Zg&w9&hq8Z=iyC@8#(%_(dp6Z=)^9sz)I zp?yZZIESo78z z{J8(BWas;Z{MP&$kZoPgmhp^^Pe)I!YpaqIc6eul`4fVV#GbS;da}e>$k$DyP*7AM zzL60Lo;h3(WChXL*+Os7>1bu!qlY@AmJ7aK&^p+g?LTpff2{tjP)qqmUouKU!9XA` zPu@@z(QqN#D87azrYI1`D*%|KlR#o}&rqX8?~dc21n3p;vm^G&+Nl@uUlqnP15e@e z7HS=#CT(IgJeZbPGUhj5T#xq_OqDZViua0#u%|0>PjPL58=3O}2d8ravw#cP(x`c2 zmbMh-F}DCw4Wz!pXE8RA^^jJy#zidCdd!MU8^OiCJF)%T5=jTB;VhbHYL~AOkM@C< zfmG}g??e*pLd(oW-O{BS_Vbmv{2NleU)* zVl`=Q6w^rcOcm=%N?3dgQqDZ+Cw0vcR@!orX7!~5CPE7!6mS|mm#5J&6aM6(g2aD& zWWOI$hu*SLf9Gol`ado(s}#(a**D=_@l)!626GrQ@dm7MFN+G5#+V}QiSjyTJO0vn zw(O2)l7E}!AaAE|p77?7gF0Wzz^qRsXkVDh)CJ|{i?hp30;;Kwwx2#-95+VGe&Qbh zYk&dXr&R&>*9Uy>CWOpyN*gJK@&IGc9@W3T`I6;&*(NVP<&C46T49rcJeCwwWb#fnRtw)hB zj!tIT{44ID0u20l?cx^;>6cdm`-fN20&7Hr@jjrZh@Le$TKE5}#IPL!?){?o4phA+TR5$k^U z%0(}84KI2#|LV$&Xl7HEY=BXBS3%OZ+~pC|%?+B_y=aTRoPcq#a};709?ezm7Pl63 z)i%XD#*p(MO@xb2;m{FxeNBgETD32WIv+*UTNL6pCwweB-Ed$QK|1(edJx#Gjm$bm z5tEJ;tr0~pE@*G2DfIq8_S7Cc@4Hv!Q+c7qAdulJnzhEj3t%-!QX`GsZ*@wReDUa; z>lP4GjqrYR^3Regib+_8v)LKNE&BG6W-q(6C4L!n{I1&q&^LQaX_C)xqGu{b=mk6Q zv=%Ng?8&}U=S^b>(o@t6jYH4Q#kB&OqFP^vad=0XaI`bKZkE+u5Su_6cr4fz{77c@ z#V!J64|56={$rr*j>7NEfjLs2v<%AS?sKDiB4lA}s9i=3?F~Jq@2${jwEcSR; z`<9q3{76W%eGF*Z<%N8d|JPBOs_n%4W~PHtVbyO zjbf6Ww1OMH{NsI1?QugIdTGhe+xxYeUkya{g%&z;N#Uh{^Kt#&vHFcsbwa1YeWYV| zSl5OAWoC*!nT_(cBJAkOm_#}F=*r=351=Mk3f_IQXYP6?k)!?k)2$f zLpw3ghL!#d4(48gHlX)={=1$uC#fUBFeTb=pNnz}5M!8;0c$!Cf&i$RTt4#BakLdb zpQ~)1kfUu#R&gv0Vlm5YacG}iUJiYfwnT<#YEQ=RqLGb$Jv{cv|nH*or}1tMcWu&YTLsUCw} z-YC%W&*20CRJ2f0c$grJBnq=7KbgP0Z|Tj$qHMUolp+-93A6x9=10@h$H8$mXhuBY z5#n*U*DsgfEE}?z^@AEF1H^dP7z_Z9E5yMHk*ldMph7u;IBH6i)HLx_%ct8ZArW@W zLZT|Rz8;=__>qeLr@eo3C8JZRa_vsA6;m(t>XjQgdF?Sl>95(Pydg^C1lUwkpCELJz-AcwE@*$Xp*sR`(lun;;j@!$5 zXHboazr*$SkczS@8+v7bGEPlUt8}NYe30k)CU!nq*K{DMLXxm*53HG=Lm6t{r?XnP z7`f4oLITpp+x&Fy7v^k1p?&`sn<21&2nQSHjZxzbgkg+q325x%=vvbK3wLlz)YmQ= zWAPxQlJaSFz-dMO+m@P&Wc*f1n)p*Xya$8u7=$)5XrX#vr-Tz|e*NSY+o7ajrK0IU z)CZwdwW=^IO>TQ7{vd(P*iapBRxx;dM23ImwI1nl=S8aNX}=&@Y2G8UdnjJS=#1K6 zzW6<$((Z z^$$)^D!70^msE=z0FLLk6({fcKF?|MVMb2&6ZQmujKO4^B#{{}k)^EV`9|j!v5UAX z_YGt_#E(D&IQW)@{Z%)n+GGGAqKAg16fDTpk$YA{Bcy-`14YFGOT1@XbBm#?Ts+Yb zT!1pgZfR6Hihg197e9wYc?YfCmK>L*o{LpKEpk&c{}myz4-I}c80?_GUJ|v=r)Hg) z>70XXP*kdk)c#=N=MZ>r{?zI*Py}zOY%|0cLgY_vPXhDzL|>xQIjO8EaYS5KG-C(m z-k@J|iY53e!Ci549_|!fBt5hr=<}r1IPCe#955|q=OBDcgE=6;JAk6O;XT*Y)A)pz zzO=J~ud7Xs2~=DY_%(_Rg28b3U6Wf8^9Qiga#|s?`aQQRTU1(AbTgm~7g+8Nk|PZRY7$kvAOO=v6PLZ=K3n$X%$w1lg8^n6eN+D)MTL?VyZ$GunN=@@R z0UHrP9MjV6@$|kWb2hgvZEP+(b(X7gzy_SbIo^^X?FswWoi{rvj;bVpaU)oWNW=pH z*E)??c8nvtfOZkW#Fw8vqVc|+0mDGSMH}@2^VT?-7?%x!AYraL5gFXXq0Az>JoW2f z(!8jTd3Sbe>?_{>yXCl}rndGT6s7%SqfjT*oNy#h;inPHIfsv^Pbzd!-~A1ACSWk- z5Af|`i|*YttrZRehp;Rax9#y4rZQU?JIK{z|5oT4QVKwh293+Vc3N)>5-Z80M~k4F z!2VEQu}0AylW$=;D-5ewhB5u4e#j~@dGP?V#c!zBTYRxf;O*2{wh;FYjddPwBMrmS zeYXNWN53!g0T{kJ9?cAXu_ zqf^J^I%HPsUx6u}6DKNkZQz?K$x2P{@W;0u^f!N7(ms$8AUhpwn5eKPH{Q{+m-_?Z zR{!@L?yTxvtT`q3Berm3W>KVPL&#bs&A-U68(4ev@v!k}jwrqTq*xRc5Ihk`K!?wq z0xqpWOn_J(icf|lXVhDhbF!IZr2u)-$1UhVi3&t4=)BG&OT#>t>owZk;>_cU5P4LY&ZIRntmmdU&6S60W2s%!R;Kq|F@ zDRnIGGWf6qy3v*tzIA+Lf6L#JGZ^&_wj3dZP6CKyn!Wc#1@Q3)@-;jc1gBJ?qo~rd za!k2imMOHUAKIFv?0Y5~wlDkS82U8zctoAQUofHk5FzFI>PP5{gP2dNsG%UsV`@)6 zoE{zaO5^8HJ#Eom6s=i{do0=~B$mvwD=3G(Z4E?NU(3Z#7D)|(d<3mjIMdu*wmG~d z03&!wX*;*lo(@@aaA%KMc1{I7m_G3Lc?Hb_tQYd;EsNToqMrm<*faYV;mLoCtQzw( z+`Qd7bH;6vJo>7(9e0uO5)7K3+n8}e&^ag0-6Je({#^T_N=_bA4}kjcq^4-=T^Hc? z+i+OBz|RQhL(c!YZvzqO9x-YX5UlkR$82n*g91xqquI;C$ou1;{IVi%q=`^(_7Edg z5JDDO1Z?VL5`|CF3ncYXKT&^uznW#-MxwDZR}E~U;dPdj21vZJ{}%)&x+%W}eo{~! z_{A#%W`;Rwe_UfNamatKRnljIP6`0f84$wKzo-@k+AaK>miZIa}}3o(iYt9{Ub+{?d*v`)~pxC(9Y-&m>eVK5Y!r0Fv6rwOEy z2_mQ~QG3=S$OpX;XO{TM3wP!V5RXPWxK{Eyn5M%A<&!I5tdj9yn4L!kBX57VqRkou7pLs5y^4k4IkA-rzf?n`TZ=|fK62imHBFkD*Un?!L%&ad+C)xpu%+77o zo09AYh;gms$M)f)Q~YmLxPDK#Y0|CKvuPLVzGbCLLo+@tQ<1#sSK%9kL`L}N&a4Zr zDqv+t<8{9^%IMc_ftWg5Z3-R`WcGPRaQ*Bkvm8$e--L;!LV#>~w$D2H0~0q9^(DwJ z#74FW4Hqy{`errH%S1%*rSo-CzPPI@75S{OMw1G}3Ud9KL+|Uay3?&qz&+K6cS2+$ z#gPmUS#E!d=$ef@O-nBLMi2JOjm~7;b!kGyt)D1`YT;&KoU9G}f(!7lJof8pZ1y6r zGPHhi`)~*FNj2+`vB2_Tlu0*BxR!?qMN=(?7VxujItoAgrN30 zY=ZqABAj2LDKiv|2i$m<8xKTg%j0I3&kbG{8$A*qG^w+X`gO+z|B=jvTffe7!f9v4 zcy|}1WD!~hEp+hE*lCIBKSy5yMpIbV#<{T?8(@pf;Vu5fe~ z&>XE7^!Asf3uL*3AuEqBj?Zs@SWnd9T8L;dX&auO6B4kG-#Z9w-}Ws-_*)!N%LQ!z z?b^Ja*i%GGT0FpO3c$Cv(A{LpIA37Ca{(Io>Ge3HT{?EDR9EjgL2grVp#>y!IVIaT z>dyE&!Y{kLss9<(&G=~OzTjzCH0|*>k8IPU_7sRBy#A2sRL8cS^kS|{SWKtYph1~? z8scyXL1-b1z|SHvn1C-#w2O=MLHf;&$UQ*zp2_~P&^zjU_^`2K@Bge-siqibRnPBm zoDuJ`*1m4+RVAy0f;7ScH%Wi19b*u2yMUQ~UEUo_<#?H^^z}xA6WZk;;2gy|RD$jp z5iZ-X9N_|3!J6RvIJnH+GUXOIpz@em zWo-_u5WP{o$8gi;tFSM0A@HYQmBA8UI$#cS_>n^V*iBB4jaI0aGoqI3F-hkg1{R{& zE{8>yUxk?K=O)#{+n2ud`C>D`v16)xpHEzVM-AE^I>%A&-!$~e`cD_vL^1xDzYc%A z_q>GX*h%d>cIq(m3%gI=wbLNN*cc^S9KJum@yJC;P?@E}*YoRHicQ5fhsdl&A0H>g z*Pa%FhM@tTK(ms;v!yKqtY`wzBHswptTD=vqON<@iHz}RvQL+(j{lyg8fq4U9)P6| zaFWV#55Y`;$ysSo;X5>3j>i&~_R<9qUm!dVv%aNr-=>Otzh&rXk7vk@7%(p$*AzWphoGbYT!kV zhno2dfJyXk-M4|ouvb;Pao$i4Mi7E%wupu_xnq_?>C%$DM^x#C*{}#eqaF!nB^4k% zjXR}-0k4>3uL+Ucmz$-3`2Ans# zmvef%TEs5?m^uWR5$_x*;lZc6xiBP!sP%ez?N0G-V&{iE{B1G&sHG^i^#?*VHst!d z*8tiZc?)k?5DX<>HM?IbnnvJxb$7<`h5$Y2g7F1luVtZ=R(9S_YNIm;To)TcF^-2s z)oVUj_4-S_MToeSOh@x=Cd=g|ebA4bzR_M8n=#1|`C4%F`DyyTZ+M;8XLRz&=b7Wj z%6_X>`vL9)$ZTNv#D(@Hbr?C-3LE~rX~yy63kl)96dv!C;Go&9O7Xr_XG!et1K z9p`h3r07W<<-3c$ye^Sa#BeG4y1PO2&Cdw&o32US4BGl~r!lp0x22U*tAzY;7oz#S zn2FdS)Y7d|e8^_1AW*ooX=7Php=X|)i%GRh=wM$Zj}&`N-wX{ifBt4_H^BmHv}Jp+ z9M!8@PfrXM%6||!2ZNQVtSC~6H#PzUEgj2_{*5)D0+{dM?T{Nn{oiXd0j3h`DGfpk z=S>{Tf=Xj!2rvToIbU36xXyRZsl8hp&kQ+3AWU@*a~dZXZXCrU4xtszpDN`9U1l5P zDgcyPA>`0C`i+)+l@E|fR{rv}N@h5}81^A}xd;|biEnnqhvC;vN@y7LUgc$n5fhT( z&42tXz69jW0vPHN4r5rTbD^g913s!!AehG}98J9>3!}KC-2yJupopww@6i_5KzTzy z=69-VC-U+a1DWk;>!FZ8q&GgjL4Fi3yTh&@|J9US)#^2;Pvh5T=!{|q6i>o-OlnUv zLQJGr!nlDz;rt8=$6(0eaKKm>;uo7oo;bOP-|?0pN#7mFG8iTu?I8i_$$lvLr!m8- z)6lGFl<8$aoK_UMsZL3GXfO~uvdzvf-0WX#%Q(x)rU#=rOtkVVBcKc1HaVC%Hj0JoNc7q;k@XG?+p_oO=&hsq}i{P!?Pdf#MCr*-uXusUx zm_B;()bldg@5e_88Ew69E=pgsCNWI@Som<7nt_aZ6jJ9bk&GS!yao;iPI2gfA^A~7 z9KnORbND2;c?Ln7V+q(D!a>|Dg7#c#0`^T1L;3L|ixnCv?YZ@2&(G~^FpV|GNNChb ztPkt+hADLATci~4d^~20@es2D@RwyU;^4{zZ zm5R$_7IL<^Hc|!m3?ZAmH60iLfD0Hd_I6#L;*ZdM?s+en)IwYxq$K2J30ko%r2$l! zb$bO|jNJ#{ENp9)`^rHDJ}{dMkwq6iUNRg}u|xd@<;%XcXW z^7n6YE*RVn6dQlqh=nHWg$MD9#dNSq&^h0ghEwsasJl7ib2n0Bt6UCB7LAcn&jWmJ zf+0Q67ZLkaFm}K8ywN-g$_v07B*iad8DRo=A&71^K1v(o;4xY2d*~8gb&|M~0~E;0UZkdN*kQ zv_LLeqBV+S|2*wuf5KL&z=Fhr+fjL=G*9^!q{3*=qWBJBFkteC{I)gt#sfkTPi!7! zX2CzdUikECIc_p9vn2p2kl^f}`;jgc?*W|wwJ^atlK1V+ENq@lmfY7DtLJ2uGP8*z zb~>xuy%a|qRz(se_XxCmaEE| zaQi?s@UDsX-m8ZbLUp~f0g<|5!TbD|((thqT7Q@}s|Hhq0oxbn)m zncq}6Usj;+DQ|u7+8q2Fyt#2=(p~dY$)?k|!!(o^&(};nt6j9z*~5ZgJb^m(O;9P1%OiR}N)4_B_SfdfU*$0gVim_uhy z`*8ZOaqX7-dVDS`Ab$9>&wP}(*rnDM4N5`U2B$FJHfjlray98ES>0qzAV`C13Ub`z z2aEn`#X3Wn=^K-SJ=!eXW>dm&%OxYAM58X-UKERVc#uiPFs9!!_f8|{u{P(IIVDHw zv25d}&3(cFx~rA)jk<9z9`*gT_??g6k~}TnfWPLj>Z~ z&^s3}Ckui~LM3*ejU;e0C&$Lqot^6W4Fkycsgdd^ z;Onr_sS^1h)LU#>#*RkGa2nov3um>ANOL*6dsMo0WrxTH2`UjSR$}Ee)M+ysPvM@` zMtm@klwIQ8y3$jr6S)2`___xS9Dou}rCMhOp>Yr*05CvXG=5rJ?!*PVzKM{DpyL)3 zVqvIkmvu0I-gx6^!jg*fEvSw(5vcZbX8a@O!ZM2n2e})sR3*NI6G(WhFK;A!-14!TWtF z?vFz##BZrL`s-8G@EZTj5rlt#ErD@8CA{ixSpA zMwA-s+?;=tJ#qwprxcyBTD1$!#ezznhwMkxD;wwy`B3wZ81RVpJi#<8# ztzjJ}_`R3zMWSh}mUy$c?iXcdo4@QPC{B zSP1U0dp$oGI5630mKX)8Xot+Go3DSYRrn>~0DCGzb_E`L1<&Djh>Goo18RcEVfuk~ z`q0Elz1df(L9L4szK$d>A-en}h(Y!MsAbzel$&zPQJ0|hHrPp?~}pR|r>c@AL} zreD1@c1K;LEL;PS9?_}mvT3}?u>eCryuWHwd35++k+GW)$Ei>7Rn>eZ^T;bNXjK_l ze=$++c2`QFT~TEf4-3dnFFs4jXhrFM!ukqCL+IYZxI|CQ>Ki374DcPvi312%XM{%k zw5HP65d)R{3k#DP{hTVXet-`ZN*M`AFoS+e6T$(UnX_?USd1qsu!@o`qYFqSpay5K zhXgQ>Duc3@-5qSa0gBb;9TIV}p+~cajMDamQW(=)@`H^XT%PNcFVdyKa$mJPpfH*^Zbn zHQpQR$z*&+-M|kgVEQ!??de@|A_|T9qC2L#LAk~yKVi}%Bn{}HzQ5Ex8QuUhxK?x; za|2o^OJGu{sGu`M#uyj`2F1>W2M;{FL&WxN^{AFZC=_y+WB8vu6tJ^`i9_Qs*Z6rt z!34%pw5u(cf9q;^KQhPnO3Zz0=_t7N&N=P^%5pb@pe|^(Zu_Q!dk6WX`#%XY)drgy zEF)wwb291PCm;9usb^lxMOVFWo_*Lr&BTNEP9SxsYxkDtwlCusrvv0MGk>?NtA(P0 zU~hR9vcaPhWXG2w+n!o;Lo-GhI<#P=eBDV6WEzJnk%ChY;Es3<31&ao1jFlll3~a$ z3QG@+pzrqWG*$5R2M!zKtt79Q64_$gX*k(B$*leTqYN(wkNP*5yPd1m4Bm!#FGYFz zY|RXQ`5-1_9zgS-LuHHnJR;g5E~syiP6N(vo1YvXzTVC$3Bo`MvRnsy5l(rqK2fN2 zI?6p{(B($fl5H^zhVxxVATSrB^$PFQ8(hD1Zoa)!keE92yyBY>AR=q}sD6k;O9g3) zIt6LK*=VSv1Y{_LD(u0R)~-vV^$3RewCW~xH{-wgfK|zhfBZt;jiI=`?YhvAMdCO; zxTysjbAHv8Nf-5R(tt}Co1I^tHXj6F$b^W3H47Wi;pEWGLZl4y{f`%!5TOKC=_ZEZ z7{&`+HnaiMUfp!GGWt56Qe4MSecg%oAlaWg4*= zq2>buu-X1849`SWn?Bi50xV?Z;lWdJU!vu;PxQq~i1^$14Q36tVT^>8n6wsihG3K( zg1?(@sZ`4-IVUl6Z7LihS2n)VDPe^1^Y8POT6+eN2CE7e&Pw0VWWwU9W2Y6XA+nk9 z?tR^uqrxTkwQg<{?k}CZP-(t3s5O!19X5)L#MwP2nSAR`<#(rL+AV*3?LU1j#=3G_ zPicO8YR%K~p(owEAWmR+~%Tqbss02PG>J-*t5upfZP!;_}mZAd!_9w*YO(6##?q@ag0T1KYH6(NrHryJxC* z`>jJ=3KI=Lln1RVt^ae+p6j)trUjt9KzItWF6Ht@vU`TxtVw4gYHYnD-@xe6GTRfgQ@0zjLeLU1s7W7=rv!nC{g>}j)&fPiaA>{5Tl3O5a$f4wJ_M{Ep;>h z2G>4CBBQHb2dS~-o(^;6xhp$PCVO(qay4Gif~fAXB>CHY3}m<^oHE|phiq^1>>-rw7aoNOek<}z9 zJk&UCmi{JwLkQ&nt$+pyqQrt9(22AfJtm|wdS4VpyoeMT%{${U?t~)Pj%oB6Zjx1n ztwASH5}lT@)_Szzt*)DU5~ENY4uF51a9)kxDbP)gE)>sjAL}h1$DT3+=>WxtXVTAn z2j4aMu9~)>)Q_&QLriqHe;pEiKj_V4YKl`yu6US1jc2I88{C%%*7=LO}f@Jk^A(PhYV;kd>W_Z+*1a zq|P=39Mp(^s&0u2qMldQu$ix^mt-iCJ$wVx&p8c)L>E`5yLIaG53Z8_2YY(i#ndQ` z$tC#WuIC2JY@HnS=GsdXRYN*xUDWK;iwddw+>xBZk2x5g)5OWTP7YIPZAr=?So;gU z{}Xs+)K5|b4B0BE^*KmsSW+iKX0<|SY7#Jf;MBCN=-IEH#T#cruv}N4@5SG-I&T<% ze6N^Aa?UkiMt_x(gqc?uJ$m7|R05Fo`&$|B8#zDiyVXfcMk+S9Bj#79r5qWXT7R2q zG3#F*5*dWQ-9gKA{Mjkmgm&Sic<&#N^FMputd9F~sE5{xnO{x61}G!ULKY1>1ywhd zzpk5IF|zpe_q?GcR^w6|Ys1HLar%kV@X3CZGySi$6Wx17u>z?53(UZRI!{8fB=?|z zrCy1KmmL?5`F*Gd+Faj;(I2X$l;iZNO+D`LKA+pSS8&p``&Iulpcno#I<=T+d!bE% z*L-jq3Kfod#s2+H)H#o`C3AJ`x+nYu#}ksz?~sa!r(naOweOvN-qVU$YjYFY+0aB$ z{WM(T_!EVuqhxUB=)~v2E3Ivlp$y59f&#rDL3`2sxWH!Wd(B`$MsAVnZc5{ChdOHM z1&JL8tN6{x*ArSuhi5o;WO|ErkRGatKM|RxhPPuuh1|d}9UhOS3~~+Uxt~&%Pg4r< z39I-04?8|}6zP>0n`~pKi}yB#=%{V`i&nM!*!=^>p_=m*+Qn!^H6llsX^$g!GVs`! z5qS9AE8-*a>sU7SJ&CXC*PV| zMT_Dhlufg9i{#|dN5%_^RCXo^F7>zg02EEfHzgZ72SbkP;Zk9y)DZxS-`y4cnEWm! z-OaaEH?UKTzD?qSUjOI&_e*zgGV4lN7E!=Y2j(Y$R-d!W{{i9tr=wE_ylKHC(4MoG zt2P$%eYLeVts4WfsPRq`1@^I%YS8otdh*E$=I~NnPGo#_g%Sx7tRV8J)pR>019iY% zn>Z4y%2Ob)*v^iMp15T}`5bwJCUf>rXRMzig~EQ#4uH*iE}BvX-9rVWX}eay0THY3 zt2$-|PdxasG4t(3ErId=v8&TFv5wtSr%0DgMfz^e=PJ0{GA~%f{EL|l#Fx@0g0CEQ z3R6Nf#g7SJK`~w0Mo!cw+%ME0T%PzQ9EE zalrZqhbeoso-JXc^sVQ_P|AQS3l0w_KtXSZ>1k5Cll`9rNLmPGq$wAv zo(+_#mQL6kx|<1}yJ7hh}jb&BtjRo6%Ap1g`_i2`NBvyYA) zfc*P|Sm~+rs0FMev^avM;FsI6aIJ6l_p5A-_Es)EtI+bM^pLywW66Yqs5}&5Y_7%8 zzKn##dx6I;*ET#CS?sUd;%)+-dKtM*8cT7K)&48mHNbC`TG)u}sG zRPn9D?M%h2A^_C%>eXbftlPJ64VW1H5%v!Lh>5ReZI zZTDfr=}q%yw^YgpQ^3EB*E?s%ZZ=@4I?}tQcDMd`G9$7%FEl z&c2Xjk^5D^D`HPg%1OybsCwQL4A0}Tvw@C7Uj3DB}Y(kon?3GFp^#Db*N;v|2 zP;Y#^pR$!P19xqVf*=iW`P+ze-q@^KRINx!DS6>q72Q0mzW_DHWj^6O3gl|1GtH4Y zIDg7;y3K3?==ty@xV_9DxRAbZ=4B_$L$nTT`~pgs;?^d^;#de+LjFiRAaJvs z6C>40zmn)gMpE^j2!M%;@(>$L-oawSthCscpwF7syshffP4Ae_8QSct@T)r&Et zvK@RJ*u{rEIf)MM(4sg>;gCLQv(c}uT;33)Eo;cxQ!A zG^db;yyI;FENTm9f6q`gq}9_g_*QR>j4#LX0VwY#CcS!l+DB1v)WKtHib+ZZc-eB9 z+gIIAm~Q#y@u62IA+gv_iHTv$a4g~Kl#$vkKGjoGn6Pp(n~}M+ru%|T`9sQklwqIH zyxi@2ZZ6ul?1cs*v6o6);zc%Y`M*=p8W>6X9!h*(r<@XOT3&2QG(VbLFSS5aI%r{JcKCNfEB%UyEy#|JCSCwFOfBOW+*$ zMX#BAQ_*s92MVe(6vynzQ5Oohs?yWpE*=1>SKdqs+{dRC$rOuY+r2~Rz8GIE?nJfs}))uKK>aowtlZ~!heI^Vf2 zCdDqLpm~;SF)a=LHF&+ymJ-dTpHyh&=PQ-)*dzy?kPq`ih>n<8Z$RGZX4AsnB#4-FjjrrYzZZv^VEfH3T_ zWvAkyT}za5cp(vHCMLf{z?8?$BTl;et>OFsS<_5hC$sf6zg8u10Z?SZ8np(*nmLUz z0}GY^|(mjHn^gA;QDvqK4_n2P*~xR>524V~OyxU`cp}P#X)P3bX0LDxa+r}A zmj4L)Grayx$!7Me5vkby^0!a`7awlf_M6hPH(hkYkDv&-C_cc?AQKH-k4J}_xatc+ z07p09rq{58_(k!IQ{SSnFb)JNud%Yc_GRyO>(~h}GR3b_5Hoi~eX0Sl_ZH1m9k8#5 zbO8D8%HnbIAHNcry&;F!kBVb5_OI$AMsM@lWEUfpv?zFinflAIywf&#oc7wTNM4$l zT=7j+%Xxy`b9w+a+E?TsxOTN!j#?Y%RZ#rPJCa+A*cD;l(SFVy4F7fzb0^MOrJS8_ zL1)tL>mOd(4x$@{{LhiILhnpH%nYt)eERa$GEJ3D;A??=;D3J5 z3w#m4oVK#h{9nCkYglSwLNb2cGs7Pbm|U2XDD*(i+$2>@my>nC^+v2A%M6q=>Wzud zkPy2#K9*4HcQOA9`s9A(N3f}}p{!t+`{J7Oyo#=3%nJMvFr0q*9{WISnK=H5_0NTO zRHBckro**hAKKxn@%`l;|S4gwa8bb8E@Gn4KZ#Gb?xAv$cJn6eWF@bS{=76V$1 zA0zVnEl+f2k_}|4MXbfuW{0hKKem#2%1~LEc-p^b&S=}C(J58J5(U~HX=LGZOd2T% z3arOqz6C~63Fc`zJkIE=gv#XL%&@tOPk_>+Qx;QpewT5ogdwm*Vv_C5d-j~hL zA|6x-Y2SGeZyKp@VbyU)@U{(FbZ`rLQ((TAi;oK?uACUVaDaUtiVItajYlj1+M;Sg z63d!7^>(jBkGiLsNOmy*4Da*(9AJX|4zqFx=Ve_zm|D^-3E5%6$0*=tA-c>>S>Nq+ zLn!|vEPAz+vSCaY9XPY`4|*L3z$uPSv@esCAv#BR8t@7lT*D?ps{jc_@p2BMQN}#! z#1E#{_EeG!&QVM*(iUh~JgoVj-oMBb=&;eC*|a)8bv)B7?l2l53(LOCT4B2^1;PsGFz z2Fd-|KgDtZlmJ1Juz3Zj8_OqRqAzWJ;Z8jLNEuI=s2&P^Rf@EbzkMD~i?6CVbBo?u zkS{>e`?huZl*K|fJo>-u>PR9`?QE;a_JGqo{U+wy84O~v``kt}ZWt25U{VG@p12!9 z^ue;=^S{i?;~!QSod-RI!n4;gN6|z>zw>tVZ=bx!Kz649m6RW4^x&9DjS*j>j-hl_ zn50Ga+?pNhJ1}VEm>aWKyyU+md)tzQz{122jRRPU9rrhRz0NndTLtg6hJ(ays!Wh> z!O5H4=I7Y@-Lm7Dar*6(y}thRaW1oo%YImVmq4juAYC1J7G-P0>EI@d<&3S;TBZ$^ z3#OJT6{FBVoe?1h)gdFWF%@s2nT z1wmg(De29xIEi5i_p^NeHZH$sW07wfL?2|K#>k}|HbQpSbYe;b4$cWG;qJr^ts@VODAy+Xa z7s_S(SSRJavaNn!!^M7(d<10-bSErtldrELdR0}0n8)HG3}L*>-In|AyM*^NYPX zI9%BDgh1<1cZ*4K{n;O!rngZ}fyy2+^8I;CGb1zX$NP?D5Zec;(Q{D~JeB!@{`SjK|lTdi$1)(~dfU_`*Njdyf1M-ouxB z53MWTKPQQe9+&0c^jLcPZXpFXQ&nW6HF#lPwob8 z=BY3usCWh(dw36aW`0>IZ~9~g+5{XWNlJl;^tWEM@eZYE*9-mjx{xjZ%e?}a*?;TM zOXC%M-aimITM;=21%&!2+$7GK9k>|oIBH>SGE5@Ci_K>QTcCxMML)Ue)9-u^^KY2e z_w-XTn|7RI+F!DS5dn0pl1(?(M}h~+m-dlu;)I5S1QGu@D8AJwj0SN4|BB%eEkzsQ zT=o$ygPYgR^LabjM3zexDG_GP5t!~|Amy3sLa7;!b*z>iM9f6kraRSU|0#(6^pTf^ z!%fWSp6wOd+|PWk*RvDlx*yf^vOD$}J|hkh&;FJ#61|3=u`%z1pljCiPUj7_E^b8I zuWdDMy%#Xyh_6ShRybcPdwi;+-|y|~V6!{4EB998N>y|OS)yJlsw3a^K{M}ZZ7mLR zwsIy<6XgdhVjYZe6JVrZA4nFg^gK4PI%R~MqT9Y!6rNVHTp3=-*|BIapNmA@Inxxa zxRe;34vYJi9!j)CmdM{*EK*j$w@DK zki>@yQ+c(x*@%m6HRu6G_m&DoE+|q>RikOyS^>0{_iXz5ax5&G?Z&jtW9#x2`@@4T zmq8g{p@%>+@-FL}+$|?`B~3&r+y2lU*va&`^i@_(U}sLKl2>TF+^&k?LGaHUls8?6 zk|TJ`>C<4fr9<&lxt>(%{zHU#QfZSjeML<=>OiTg6|QmLyO$e+M1esu==K>FI4c)Q@3_s|Au zmF>0BesY(97-Cy@*6Q~Odiy(B-s4MDbRJGNg5B|xjNILA#lkXX7cl#8_&I8w_+d)I zR;)EIhj<+Q#g5wJ<)snV$a3=aRpWS8gU_0OH*fB|)@8Ugwvu(CJh=`TPji@LUk4S_!ZdryF7ZSYXV z<_SSYF7FS}=;nOcS`o$Aw>SOYH$LVxX`lj{78Y=kJHVrE@nmU=y8~QmAgg~=L^a!` zJAOj{l;->WI$y@&;P#7=Q?wFMX_skLLBbdv>mEGmi0Xrn!N7*xqP2o&R#{HD{?<^KW4YrWqHP_9fYJAq@)oHwF8u` z(1d}^G8{-na#K5+^ty|qOlPylFo^cqJcjc7m4th|pbKO9&)atW(8J@Wl?Hwro|s$$YFSN^^O==T+dCRS*M+mmrM9rNfHVC;p(ju;PAu?z67or zhcKN}ix9Tqm?OSH1ohtiKY7d=pPzh{|K#z*vz)TOH8rseH^=f~CmQ|}2@KL9@>re> zqcE)M3SvNF97Qmlg4{&SQK8zg$)u1of)Mc62+Kf#691}_sCA9fu=8E2nWg<2!*3*^ zWcN(utCt;YcthW5)uuQA#@x1OlKMP?4>}GYM9j5B+=UdW?y-E8pGvb1R~IWpfJFgv zCGi{yxL+ExVog7|7KO7s_#2OqD5u;PAmhi*WK(-d_5U-N~D&j## z=tIMl`p7%L5|C)f$$g1^%+$O9#P*c$6o6E61%F|NI?1|s@)|@H4A)Jx_!KxXX7DyG zU|D!Un6AD^LgJq39XLJ~Rju8J(oJ?F0VR$JILQ|FO9yHLI@{dkxHZRrd0iM*24yjL#}q#Z*UZNazq_IKk-a>_w{WZ0}(^Q_p_BgK)R(w(rc_ zr%?>6jMp`03hU*2-}irZ(_Db{mX=J99&!%$IQcDs_DT5ZH4~y;6-Gm` zf9k_T0YLpakge!{`@ro7MglJw)MUD@DJr6IRiRac`#1&c*8964FN!c-Kc5M9ik~G# z`rY{QKlx!Or>gOi4_@UFU`ei`r!;_*(N#beZ;<8@A5$hS2Z};eGN%l-t z7nW4dRDpNWTXW8S%y$^i9e88nVY~5oPTT@U@FOXDH^s!b4RDMHIH7lCZLwQ$mypquv2p01G z`zgrVqx%=Dr_3h?Qu@_```Ry_B`(fDX)bYe6^FsfwyhF@< zZr61Usvr1JS`{Hpz9_hgf?j;PJK=ojFRTk6Ux`lSZ|YvnL)4AOxJ*zCD0~*0C>VIa z!}-~Mr^<4S8SK>iJ{>6#QuvPYDLh3>i{y1oB5AnqTgLCR_)@`E`7CvL;!e5}(pd}8 zMywHUM_pjX?w}NNDi%PCrhbG7)|v#wjt3q0+*>Ow0Qk9p&j?*Xl0Gr1y!+L^cu>;vTOU@#dere(X^;Z&*N5X((aSmy2VGZ;CZT=Y@h+1? z1!{o_e)FItPUZ-tQtitIvz8`EN?kKTWM0STi@si<-56kLdY)4>eR@4!RwG6%>-tkZ zAN*#M+>)9IdCDVPY@5X1^m?9dC&StNWe6yfC#hcd#AyDcIPuGJb0|3%vqpWLmMBVg&gBUwe zs5-6PSw2I@dr^pmp!jImH67MU z0P0P2Ck@+eCcfs9J`Qg(1(v5wAi5G-8H~-bGR))SS|W{Sb;{H@^a%8wKAP_YsTR

zj{^FzMtD?B&cgzBV08866-P8PRQ7IasAPAG+#Ev|s;e9HOrU%^aQYN(vneGIEikGj z-OT#b#|bC-l1Nad_LJ_-Q8(*Xk^=Y~2<@BBJCU8x$}|_kMCQ|1qgJtU``YqH-uShN zf30}dprl+(-$4p594F+G246Q`e?+e<7SgIN3dV^*dF`nbZL7RlpEOd;AZ5nvCH z$G5E~>l5?r?1|5=ZNNP2twyW(UdMJ95qIK)N8EMZC9ESZ2E+bWSnuSKla7g%N6N)v7 zUm!9J-z$WkvXpT`x!G40Q3?9J?u zOrpD=<>4uIf0cvwS;HB}w)HBmUNFnD7{<1%Jg1jXmaEUlt@7ecQ_I?aKa}@8uV|1= z?c;ce<8hj=iK;qe^ygtjkJz0lW)7xwv#!C;SmzfFCMN&Ke+{n78+Y1KO!1ZxnQY-2 z9;k^bSOeY$%{75h_F~vO%EDV30s|VNK!5iFxZ!oK)sZr?HJGUZW71h%6cvW3W z9#3k6n$ADaQi!#AecOlN&S7mj?=*Cxz(X7?VXHHMYP6W><7L(=sf?OU_1=0}UT`VCcR&-rkKXVc z`bDv+R@WQn_&HcsJ(xUa@zBkGi{Z`ZatV@nw#fsZeZ~m?ZP@mEn?UIWR`h(U=Zf;> zckjrY5lQFFYWO*r2&cmrOWgBGfCMNm44c8fyw&D{7+qQH+59uU{XUp+_w&X`xIe+m zcKe%4UzeM;J4=z)yGjNu<}dWm+QcnFjziz1{yL{@URUY?hw+!HKCm*jx>v>j)*rRAl(uEgt9t;l<{LWY&iVo|0-#{2D< zYpSLbd}1uac0YJ1qWxwgEP`$oirm!zd0&Ls!q2_iS3a)QoQZLMTka>7sLm}H`HKaj zLU)Bo3|mkzQ^-zS8#nY;sw-N>lUtVAR4yzEU?}-W{r3fVZQCo#D=#WX11xE#Z#w=> zt3y8fwt`=4GlPVB=MPB#j zfT-F(o_8}Ez-vPP^8?K~Jknv}FPEvWl*CvYTe~To+RbE2l>^T&`i? z(1{o+AjC3t>_zS zq{=5qWbVVS>*^A{!P|V>^TeZ2_(K>~#Q->dd$;R`ljutWD3s-UHY=-oN6f5XYIVSQ z{OzAEj5Ofy8pr`(bbLq2j4G*TJbzBl;zz*jWAj-{s-ZQ&G=tSa9;%3kF$yR ztcF%(o2<;NEnc^XzAw4bo^%Gt0i~2-2>JiGI*TQTl{H&GkOpEJiY#W<%wn>bpZ==$ zKBv3mRzyu)E?bcQTI)+C_@aqPtENMEo~@#}zPN4J)O&O2r^F=&Hhy-0oibp9;5BCn zne(9e`K=S6P)LGCnl8)9?iLw6tx$w>mH|6H@3o(rHm$(z_}lV})WEa2wqM&Frs0FpQI#eq0$#*(e;Xyq+m~~>uei$1HM!d!C6=^AQ;C7G z;47>rx?#y;ZiOc>*V@YvWL%e_F4Xh{|Lhg z&;K=j3Xtb%yeOy4F$HSGMC;7ySsqM=E6}~j!E%%niX$r zxV*wXC5X2_-w?2S#max-KYr*mFCaBt@l&>ZxZ?f>R^4T{?Jg@u2gkKBUme4rV)Fq^Y^ z7+#`r6d5UmyKEC&jL|1uCEMmiQgonx8{@rvIY^=J_qKTK#alPOdKT#}q%?v=IzI~Z zI?zYre(hH=x@(KRk6s=@dWt|t4(`>HWccDR6AQK?TlB|Eg?1F3(8Q(SvcyPDW%^1# z&v!Sp#QJDaYd^gwU9frEKP$xkIX>3^&dC7*F|%Ru0p^8Zw0Ia8rH6|^7zlhpbE5dz z$#b$;4VGt<6@w@l=C0qjPymd>$u#rlUjkLKgJ9;F1AsiY0HoQbFe`E-^|q-D@X_;A zJ`BS>Eos$5d_Y-PZPLy|^@%`5t$;&6l?p1pH|;?P6ydQ)?0TJ}a60^45Fy?IvV}(D zPhTd!85m$2n*mh`H~{+xlXtOi#r0Ji6=Rlffi%)j1cAwmecB05eD2!{9UJG^t`R#& zCp9z)CX0fbZ+kbv_UWW?P$2qsg5SqulToiWW}GbPG-X=Gr^Hg@?oGY%w>-po7nTyZ zINe}S%?#b^6NAo*+75ogztET@@JPs)jYkjLgFuh~O!V4jlkqDDSkR#WZnxyR;g6!y z+u5cI&z5alu;@fklD)=0rIF%hdXyGVTO+R79#LN~oeP`+B5FHOX5?;+|5Kr^(5sjD zQ!)N3R*ZKB#wk{ysca(&rp*?dUllCE;ex5Kj7f0_b565%) zE#bA7F}f{64iKOpP#;<-t>b8}lB9MlkQ=!&y+*YxU&*vU5|e>tCVIAvFd!S)Qx|!L zDS-Q8!8FStx=WB;3cjF)Q>Odo@iX7yZ)zaKD=gMOZx`5)V@C*z(jabn-DNfDzcqTb z?~SR0IT;W@A%~2Bg_k=TK(?n!U(P8QS#HwtSzE$qKybY&RjzXUy~dp=(-Fo8v2Oh= z^76qNgj>0(Xvku0{Wmo_Z+_`VBf}_B%2ZZU4np}#0s1%zivRwe{t{p@Jz~?TD_uq3 zZy$4n>*pfNg;KY`XtbQY;j&_>LD=Iw`tcRH#GA`vV*TGIjP1B}xjdNR4qG>bgi{K# z?m+(mM>$#5BP`C8!=&t!jj57oni^1BP|ALM*!ge${Qu+>QBJ2JVyS2a|HCWQFTMol zbClnG5`EF{rmFlMs%6O3goby&F)yegUJ8{*p%;8 zVlqcLZalAgS0KtdjwkOo$#PA}TEm6lU=pqPi<}|%BOaw&)&{C3LH}#b34SvYzpzs` z-!#=Pi6mV+vDT7-UKOHImBY8Mh-A0U5cT+m+#WK35*bdTe6$csgTA1E!!87j?}?+d zvjfi>q02ec&W#|gdJ7Vw{(2Q=H^>UB2}^1*T5-E&D4`!Tzv!#lzrdeKVo?UQOn1PVqz}C7c=Yd%Lna)O{dH7g+^>FpV5hQvbkCDB$k8mr{dx{ zcCk)z{RwH!8+WAMzR=fr955R^oYOBXSfz%O+-lN|t5$0=l?z90aBUm+ruIRR*W^Y7%5o15 zg5cYXv)K}sh<**}xo| z>!z#}YMsU?@eyG}nl7V~k|_MC$5fx@0GJfw`{6 zTom&0%}ww7#D|lc2&8Vgj1PHe$6Y!{f~eW^lTW0!mAN+^M_s`MGGf$ekm3f%s-P*$ zV!qmT)20sP&g;ENZBDE^ZUh-5eMGQL<*|9E3MIjc*+mtRS07p3xExTO)1WLB{PU68 zzEBxYqV3CzUq}ZF3&6KgkC*)A8sXDl=mY+5Zekt@Mls@+lJkEi{3TXs-&k6Z9V^-9V$ z;QmdVE|gj^cack`{GoX-STl!X$LA1g?7<8|f|Y4atoIPd11&VWiSu%`FoCbb;TqG4 zx7|@CfiHEZgh2ad{*>TP)+eM>gI$uos`2`5H}-2VFqzdvnfmro?V_PS4Kk5-QFWKt zes``MvDs0u?E3@uEl3rGt@_NLpZJMxSAW&+2vt@l1xtFf_qrsR#b09MAxOpIBZ0Js zVY?AQiFh1uwNaO$|G~n+)lD8U2)1p8?&Lir))wh|$H252?0P4p z{^pb7lypYpUB~+T7&hZ}wq-Ddqr@)4A#Nv%G1e=GYb5IBcWz`w%7VTdPLd>2JxGz~ zPD;>BUy_-vGJoALnj}f{k$cbBOqpXCG$KS%ny_V==QxEB%*Y_y@}+c)Bmo9Jz|Js! zkB#0f2}XF9tz9qj8=@&VP50eRsPlu?c~LN*_8K47D$7iu1N6UqgQJzcJu;14Y1x1E ziHPIibV{#v!g>&>Iaoif$S66A&8Te%b08fV*fZDf7~@-16I-7c_lwHZAck4rZ!H{7 zA$MO?e~j%<()6~`4p^kdEK9yiAN_F3t+QxPY5HeJ$?t#qI>w`-*7oJq)Go(VaXzz= zEROaz#6#CNfni#{HW~P^>h*fAKI(tvm{(hl++2uz$%miS`y~pE6rgy#Yen^Odb=Sm zshj`F5Zsskdu~CYEG4b~^nVJ1_+$6q9O?ZJF$A>`ZxVz&t<~g;1BQNY&(0nJKYg<5 zhwa4d3Ha_kZ?w9<79(M(QJ(Kzi9Ci@=f?l7>b9iJ%h_|b3ZU{$TD>*dattt|FczHc z@l7y~*=vv{y&xo^e}RPvLRbvKU+j?>-*@9U6?SqiRCI$aTHr+uU7)0HqX9ReQSt+zT6=*kV&soU(J_ zw3VPF_|17qzcXzrnW@vavhN#2O+T)$BFidb#0H1O18dEu}k5>_0S&k)}N_? z)D%fG^ElYa=G#g-JFHlywjNl~OSwhy{SSED&87%2=_DMqlr_*%&)VAMfJz*x8KjQm zLn4`B^_{N^=sS83qtMVotTY|gZ4jd@xU71VZI36L@i+6cxgS$kg8W8@C?Y2 zvLu`41}i$6ojwT*0Z3@8rcJ91{KHbz_xK)YQ`}dH(7(P;rDWe&(ril>p(qMi_@4ZH zG(@*Fssj=vJ|2l-vRTpUy=wAVS{KgO)y3vRjC_C7yo#P8EH1JQUzjLVO@k7;e98X7 z$s7Yf`9I?%U`zJ|WIr(uqesI2YS34%1MBY2d)?UjP0=y3r$qQN02-lvk&x487Y*6^ zkqpmBmn(VC5c8k!{o`H|2uTf|qnZo6R!o77YT!Ah5=L)cC`Md0Hat6hDWgT)abaSx z!Z)yweN&!vIJaiwrfTXM!Ygbbjw3A61pHPG>K{YSM`Zi9BJsbv+N?~ye^UFTrO_DH z5zMz=;L5|w^C>_ySl0~nW~<7YU#Uzp-M)BQuCMvHKCAoi{~c5HwzF3^hT6xh*8~3a z#9sL6{q8%dVc#R4UMn&dxs|v-WgDj;@mbo;-}KdoF^9Iqj~A9z09pJ3cBzQ5$N<@; zgN*czX3j$DvwPZw*&7uMNz6>sa&OuE(+*5MSt#$g?Vdfy&F<%qWqO&LVe^N~^sVk- z4H8l0-|xxhwGiMe=Jf~3`qV8PWtPSMMif6B z+fZnenk>GDq$mFsaXUd0`?$2>i4!W35*ulv6vQCXZE&xj!7n>GV)t45ZW?o;-_u74 zH|-;#WjRbDU<<&F`~HH@J*kf7C)+e^4E+F8ES@Q;u}`ZaD491iuyr=7m7g_l98S*e z{CbP9h})Yzh-&Mjl}Rp;0X&}Asr7&kRa51ZM-WnHTwMYRVprOuhch`rt%oqju%&UGRscyrw!cDs zqWg#JWq>xurFVJ#i_NXLzhYO}dz0<2GI=geNu{>C&*B2ae!QSWCu7xN0YVq8w>DcP zX63d(1>nblY{)JrtJ)e47xJLEixELFl@y-rcw{1oU+HS^#@6>@_P~tW6C%;!G11pD z>Yb)*X45IsWbFxy^G3fc-g}Us!?`*NOaGyCcS|%9Baw2FYy-cAfuX}pP{K&dkNZq& za5V#Y)3j%9ppgm(=6P>xqAGSU#TNgc92!be| zFEIa`Ok%t1VjX3c;T2^@cRx?6+tvsBg2XTXhIz5i6JTkYMy>!$$LXyw^&d+m%K$;$ z!B;c>d!}1KQe%iIRp3IY=QE4>z%*4AMOj{iWq|~??b!Pn=c$^_JgN+{BCmWd!!V2o z1zLBt{@_<;+p4nj^YNnSG|@fe;N_W4{Kq?!@Jsa{EA<-PdK; z8G!)B5Z7)+otvj4iT6y~KJh$pix~oV>!lr1uI#`1c?}=%!ZbKM)uE6#+|#}Xs`T=E zUSd%bDhUT`%!XgZx@!mwSfHsn&EGTpj&56M(}|w-?JKCdgFkj|)-yB!P`VPLU(UHX0D&DQ#-{l$nxf8+Y#PcB_miSfrAi=^Xq8Di61 z_K*p*P`U4#{C8a0BWo>nDbo70Ad@F8i@nS1UtN6<4~jkaB^vLTtCzXPrI;iJO}p#U znU=(uHZR}B{`GmHi9Dp}SeXe`P+}OSV*bX<1x|dBa4Qe%?5BYN+QdB8t(;YLX82a6 z{?u6J3-U4F7%C|A7RT8M0qBuqU-Pq~PUEhqU z%#lo;);|CXxXPM1mdQR&Sx&Hlc)oQh&~&`wq3`1{g~h?Z|32Ji?gn-(@nASIi5D%~C?m?~n)MlT}+Q z{g&h*d>Q6EK5az>9Veezyjz$-=fJ*H0Y*TD;)7qUd;rg1mCvEdGzsw^Z~*ak##dVP zVuPDKnR9(GoT7O1_ER3ebeLGB`?*e3oU)5h`!Nn_PpWvPN_&%{pak6m>~M&FC4fZ< zWdGJ2MA2AH>THc_>ff*?as?nsid-HywFW0cHean7)uruI0Ie8))pkJ~^I;{7R5Fz| z7#;^!>z5O;Ga`c&WTjs1Xj9@t$6j)2LE-uQ zEW^dVRFp7iHd0n=X$(s1f(6J*4!tlzVZ^v~qM@7)OFQG$*olWgC6epUM%ND`ZFKIV_~9q^uZg03`lh@ z+}{5LXquIazdqk?zt4tQokZn?xWAwE2hN0a?_-m0dkJs8297TuuiVG(_;UYARu*S+MWzzaOk)Z+n$0czxZZyiI&XzEqm1u+Y9e-*I9XFF zafg!xZnPQun{Wrm)ug={htpn3g6IK-5k+#bCYp*#qcgm0Yw{S7dT2GzJpPo#hu8z8% zk`cL&wS@ZdvnEbHftncKWW!9NW7>$XR;t^Uhf3^~BeA;cvuK7z?RuZ>v6k_@h;@tq zn>tEt>XD75b%O*v2D5Q~_;B6`&Jzr0_qnenxpx%;?RG&Z^D^Q!i~EGwBG%-Fki

!Ytf{?$MkI_ap9z@WP%JQ_9LuRkg4)l`Mi+UrzlhfiHO zy4DyL#O_Q`C0(D1Za!x2Eo#1+F=q?iTgCe0F$jQ&WvvBzsJ#eD@1I+|)Og z)K$}36^a#J{|rU^1%OKBXQiH^qm##*@0J};UgqOvs?rEUP?H1j}r*h$%X$IY2 zDg6twpN79pA#pmxiKO`d)GW!gn{HaK3}!YJ-k#5Ms(OodMkn9uBV{g zJuHP8Iqc6{7xun9qm+o$7^zYJ@Fe|Xv*5$D95hAoH=ju%INz~BdRZ|L{{NW z5TK}$fMJKR6~!APWV3j|*F7fc6l3pP6Z>|^pgg%s(@ddtl}JDganR_Yt$dOGX6XL( zEPhWa&2-Gio~0diw~@~Ghc}SuTFC) zNkF6kg}H=$W52qp2+U?6RE8p5 zH?jR1eo5UuXV}=}*H<}dn^ad;R2eN?*|7q9oGJO1$QLC?_P7?Xyv43xgSoj6$kspA zW1NfhYKLza#?zi4QB@}&jiG~aOJ6&1P1uli?T@Tg45+92dLHp$+iGj~?uT@LHJwMH z@+)lDMM(^^bBf;jAxgl90*wm*5cIDL=WnihO#g0jd$p!*Ti(2J94CGo37%)Q^Dl1~ zg=rc;&DH+tgH2kwV4%OcR z(thxG$l2825!+huNejd$+lz{w&ZL72R)V6o8{B~=0hi55*TVxf0Cl>?*F$0Yyi}bk z`ke{&1oF+=acGA5a{Q-RB#DIc@<@aUe^2ti&u|rquK?|lvw_O~8Gp(u!p{uJoHK_l z+F55gs&8TW^|~||)rfNAm%==Rq446EV7d6XA-!gmqdfKpOq6DL0r^K|?sH$)Jrn|& zgQ*Vynlv@4L;ytN6nyQFUT9plJ+Tr#TTr}&i}e_oSs(?QH4l?#2t>CFpBV;19BV?@ zFJYd;Lf}0i37d`GB`T)djD8FR&P@XR%-#CndGC|g!qbhyr)AY#{1RXuc!V#-Z1FjA zpx$C<-F7I$@zUYLMQ@TRYe0rkQ*;GC5=Nyc@K@beOLB4;J|fI3>>svbs9Y*7a1)H{ znu0T)A?Ey8(9A!%nE*AU=qCTD&g_R(&9!JSSrVL~J$x$L=a+(brmL?;*$K`?5=s*e z+`hF1GRBH9_z^NYMf1@>m>-!_kQn@A$4{@WmT|tVZZnMR+eO9Xd^ZE;YIF}{o$LTn zzFl(`6U%bsFT3OR{ac}&=%$9CjclnbC*)@(8$keAdLEPlU@~_mN8PD$gCm8|0CjB| z0+c--O3h_rDdkgOkb-u6HUErFpoix5P=&HZ?_2h*>=!4CGZ+MD2d(1>OP&iG=#DgB%01f zjQcNfVfr&pB8^`fu|?{>aRShGNr)Roj-cg7;DRo$D{1Duj~hEN-9gS6&`zsQk(HyT zu)wx7)^KLN%DIFBmpN*4qSFyKDmI5%e<$9p{~wRNnAv=2i~sleC##2z-gsK*3R`oJ z<UcuVAi0I5^CZcfw45E`kO0mRD!PM&Y{8p1=Gvl1S1oq zGn<)@MjzW1;K=W9NPLnJ7*i#2E!E`60Xk=(zks{~$K9TrAHpt-j0dZ6n9Z+_dWX?v zrJ?qE)QiQD0i4ko+f2{u=bU$~&q@-mgo>PBqYCHPLgG2Q7q37t`FAzws7xt?J<_6W zeS=!=Ia8p(ACHLx9C?86W+JW#nUXj?mJUOCk$=Kp6wbWL0uV5i#0EZ-ezsN%>jZ6K z^Gk)xqhbd?aHwYJLr^n(%OMK{3nvRd^IN)4_rOJY*8R5{Js)0vK3yfMkjsNJ_b5x) z@#Y+d1i+#U#qC)$#`gn=4N#Swev-72xwQfx1y7kB>uc4$jO6;=q_jYT#&*3k9f`&% zz&Bj{s;;gPcL&(^yRUi7)TQk+7Ej2)0-+Ml2!9K7Gow8@wXwA}w>-2SJja4e1f(wh zIK%euL+4ccYJr0fsBcPm#jp7#w)260YFBNV$fC4WuCaa=$?XDe7q_>!Mt&2>>vuq? zf-cun+9eqDqIJa=EYJL8s|(cPEzBM1dUY2BfnrQCAN-nP+H`Q?rG{n#l{TEk6J z#u)P=>kz$8YBd$#keAvTx|S5E-w&+=^DkFRpXOD=GQp5ESahN%pzlYraYAk6rOvc& zgIVUw?!mc>a?FN=9h~()&qzhW6N(B?(!@9#5xu((!Q(zUFZdVS)@WdBCY*A>(kebQ z$_3$DdqMzZ9h_}~^##t?bNhh|D;C#H&bT{oJrtqUZMg(kiu3Z`8b{_k86Ubi5t{r~(~{O$(r@3F

{r-J9YyA_`mj-g~8UO~pCa z906z*{PP5(E;N(-4~`nq{TsK68q3aQ^r)Wr3FS}H`{j6JRw$81x=Z5zM@t0~=o$o* zm@CuwQ{*}?CZ@GrdqLd?P0m%Ox>z{{2`gfWr#w{HMl6SQ-(9(wme;GS(~og*LsCQN zo4A8)%YCn^gjSjPb9GO~1bgulkJ_4kW7XTkGD&lLEtDR3XS~10S&{D`i2WDlfIxXX zwf`CCQ>-qU-m-4xyA$NC4t--4tsKf?rS@1S%}WoFwv@}|So(U{tnR#7dzgqAQf!%= z=-X>5h-OS4NL4AW;+ES6bvMY~zgVFU9FO60#93jov@|5nr{dI~Z2nZ&Gj?*~*i`$D z^YP1{y}93i#_oN5DJL-?Lo(`~t6R;rI9xY&k2(F^_8t&+ZEDJBxnqr&()EEf)N_9< z4R!g^=%*ma-Ka(Ugf$AOdVcPIfOsLqJroy@*N~B786N(Bp!2EYb{q$BD^Isul++Nh zl?BoRJv33MoZvF)%J4=iRAW22O7$htyWgJV;7a%SHH;4EF>=BXQN7r+PYI8bS9#zG z)skHg$O6dAe{zX*GS0zD*k3#|FFmX@Bs*mT`bsKCx$W__d}7rHi{E9-Hd0zWrd?HD z*x1Q?UsXaV$I5FZ!}^{%kWR}-&O%bX47aXF1AF&qoi&rjxAro(P1RN8WvS(f zF8kS9Zm6Qg(*S)8RiM0{7uq?|KR()8;hd!x!-Z+78j5?KIpV^pCYA|}Y zX?!SN6P;RS)wy`uD)d9o{rLKJaN*{KxAeoQ8m-Na>}V6>wv?#1_w3KJfAo{!ltZ5f z_(;ltv>Q_-@KJ78!dX3r6vpkvrNg_M;rEY>SbEeEe(U0Y7FC>kF^+Ox6 zME>N}qg$vU#O>l6JGssO-<1-c9Ct^F6O*89Yn@pJD~oL-bEmiK_gMP^ zi)^-LG``5Odp-Z0pZ`!MHxTda{4R^AV zMM}MUjULTn+&ppqUte2``h+1~8kXP^cS9j>X2;djBZ0}Ec|u&;AR5Nmuof4sA%3v= zDgW>`-;4v%&X1=M)i`*z%Xs_ze7p)H6!0`Cq-HETJ{Luvv|QopzgY9u ziFzg1>kdY?2{6GXJyCsSqj`S9b&pGWXX5t@eOqR&UBiN|Rul@rfp`AIyac({;(I*i z2-B#H6Yra!hne^SHGFds^~9s5SnUqpgq(7pP8QA5YDu1w3Tk}(&scQ+^2uK{q>uVL z3{66&wiC1s!Yeq)u-;tWFJnB6sb(u#!O99|a}U?pmNdK{d=F0a0B5XdLI>YTbo@19 zh{tu^fTQ`skya80g}D5kx32sJrbmXp28->HI_W0$grh;@|GoDw5N;nL*(7_KEQ|{M z)pJ~^bM;!LP$8}wtl#tWz!~`c>(NqliP=NJ`EKghVl{pPqr@9$fvQGT2>z2LZXRPhA*tV(aAV^x(CDyCAEd)&Ol zvS-PjL3(CvOL=2ST`9@{#(dU|N7I2)$qZ?FhxA5Rza`Ao1a}ynZAOO00|BeQ0g|yu zmh@J&o*@V`ta!o4OAFo~UL^8-BkKy2k@2Xz8uzoW|2@E~rVlJ9afa zcdb_B&5N>}gPjO6Yp&{rf!UNKU?4o5Xu|vlo6yj#S2+sAH2zvws1OHpQrK}u8xBOw z!IC5R%gOK8jJ@PA|6hDJIyIH&)E_viidnK~2<3i--)7rZaHp0^WOr%pUiNecRZe7a zP|M&?qN;Sm&P7r&Blc<7zH-2PWODR&OxIF`ei4l7KI}0)GH?Vxm|bgQq{93QCXgAg z*VOXQm9P2%r=qB+A;vq*wB^(J2$PrQJM}dU8l_I;X!dp7EsosQIOE}Wu8REpsy_Chx?^> zP|H+(I6N+}p#E8ZeE4|uM_@jBsJDGx&vS7UqZ^({L`%Dj+Z!|U9b?+2>h$iC5Q9Rq zsK;yuL;XrKRs|&mea*xXliV)JQh^eRBAaP@DXs6M93zB&YycySOmcR@=;YV)moEv= zY&p*8vB6k(uVu-Wh;#2kueM71Hrm5=+@oum?irj#Rarhmv?RlX46d`w41Fi5K0dQL zkk_PjKx;v1GDOdGU5Xe#ekzJG?vCdc`1S|KFuq*;rNun6|1bxtP~Cc zo2^9I?IAA?JV8(@@>Sa3g9g=o2mgb00#uED_@`&<@}!tayFOlXEBevvOq>w!@)&Hn z)`PEymk3XPXt=e0lmU_9ljAA@%7J0ce1*!;Wa%0d-MBsHCk+2SkMsR8@I8OEfZW%Z zo#TOOBiMvo>{g`P9>v0#AM5EFahvn~In#@ANtL_MSJmfax_;`2vX^$=K3Ei@m?;LX z&#jA>8&#+;DaNsX&&0~X{kI30Hy_%PMgiOP$cL{G_2P7|h%qi7Ti%s#TtY?^_xI^x zSm3}0!hh)@F+z=hH*+I5C~7pVD~%ouz!Q`@Aoiml+maEO{`3)PrxQ)Pzt6bh57cte z=k7hyDvGnZT?SU`6x*UBhMyylO~;FjW2B(a0nsM$@@)fwp$y2sw|R+O~M@ho@OpxzSC!E;O?h#^{KYb#+#wYsFPIG=9N-jxR-7a5diY<^4D0|Z6dqFdm zYy*Ul)ZK+rt`JXud#P&c&-1&*yF(Gk=GG`0Fh;b%#I~N({>^~oa(iEI!~)FiOCTC)c|lP zYyuPtMe6C7v+|NCu$zhg+Qi1NYCS(!X*$7>v*+9HR4~f)FTQj>WMVO_7{iKKT8Tk? z;$H4keS{30<(S!J+Odo?QDj}@kY^E-Egt}9kmm2R-9|~I-~Nx5znz-yr92hksWaNc z;kWctgB`yxT6z0ZkDJRv!Z4!WNk17D9w4`(VK@)Uc23{6+iYzMP*V6puNWJ@B$aTi zkn@a9#L}Acc4L5TGwR2K=>xW|ZJK9O=1*6b$|8V6v{{C}3B?jAPa$jli806( zD&4K;UtKE+ug{*6(NpPX4CzhCYOG!BAFizNxQ~w0m>w`>tbF$8Y(g=2LH_o$KmFxG zFh8&EXVgWuHpSO=<%{kykS^kHW&6b8dVa-wD7M^eH{kO?^T4)XA{J;SYfQnnLS!k! zCCX%c#~y4Q0VFQ;l_NMD8 zt<0t+0fw1YC3;X3iT_|4DX$>jxQvEz2SGvLMS&U$e!!0R+(w{Ey(%P6>XX z@!#i6P3n@y?R<&&b9z$x6!*VveuC8D9@!CKb`2Cbx})^fCKc3imyGLDGA=5pLFrrE zw~%i+kjE{yE>C-ud)$uD?Gv>Hz;Z0vSY>llVQS$@sZlV5HqF`$m<-(*6uH?Aw%MkC z{@cfT5bq7SY(L+)ysy&Wy&yY~Klx3Dx-RwU{2YH8eMJ5_D0CbvIGMmPI`5r+&Kw|8 zazdyE!)FqCyUO5kOo7tUINK|?jEfn?I5L&mBVJ_8=*y`t7|7#TLugX7G5_{bh^GeJ zKF}01zXOM!hqso|~YZJRiLrrt>Fft;$;esb3rK z?lE!q4M33>2!<|o_8g&D3eI0O7D6Mm=~+oL0_;5w^d+0B6!mO4N>K{ZV-PsV_BM6aKLkU)}JN6RKt5qs{AJ%8tRtYKayxrtusJ7lR2*tRZsl#^H?T zi6`2uUKHRKX=bX~G0olH0}Uyq9Z?_`>h#`I#S!Tf;*sxqI$iR8mJQ3clQKm)CN@^` zvRnS5`iB_-6xCD&S$_dU;LkAK{Qkc<-2T3i{;A+kMkOt3#!z_kId=x*!1H4=gE3Fi zWN=R(q#p~kaoMa`&Eq`>W*-kAvXEe2w`#|b#MmFj)t7C{3F1gb^ZTD*d%nG21D>86 z(&LX2>TJSW-!#UvtoMfQT`8{DTi%j>Y2nN3uJ?Fn0`x_E)+-$Y*{Ps->h=|H6xrq! ze8DNU@Kmm(y+$86a*m2HNvbNdLm8H-*)Epm%0%XZrV0(tA+3}V*wr+$^x z&+n+GQ;e4@0^@`0b069**WE;qTXJkzG55mdB!Vx@lDA?L*0ojo#}dd&8A zPile-8j}R+F?cclwhDs2MLA&qK%}R=+4}kX6K7suSAIQ}-j#o7SF@iIC&hEmUoD#a z(lP4%uv6$D3@4Sd6qmguW|L{g>ag8t(w7%>hNJOQ2Jv5Bygic&=I;&USy~<0++*=& zolc(2^}+JTNOGu7Y4ztUi6=i95%Q)UY7M>^Y({(rhd;@mTt4!`I2RJlW=A8G zm|T1bxj-lBeKcb8KpGtF$(bwpHN~24UJr+h)?bD3y+8AN_f~5pjOai+t$GTcR-hss z*W817?!WFsS$Tb9;zdn6^5M;B1bh##+!mj$ou-0Zy?mZIpRl4`4!Fs&BIE>Td_QWN~7{v5g~8a69H&Oo<87jH!O$EP4hx7ssFTW@(kWRj`eXf&JKDs9*o! z2K~W}GR1jHeLQ&@mxiKUzWQDT9g2KnD(1lR7Sm=a3EdpcVx!sNL`D{SW!B{8CAI;G#X60u79XDnNfw*lyp zrxWlGqUT7*D~#w%->+BYj&wIBd$oHucnQ=v775rHvi<^%W_g8vn)oK!RSAr!lHKtFC)2!kkM%iQ^}urTZw=Q> zzv{`qHd1W>x$W&`JfWWHKeZ|1g#8o0!kvbBrYl-hN-9WsRu(O!2rQX1qU=Y*@7I{n z9RyJ?6%k7))5i5nhxvm;AvMANQa3I!=f`^&8Ba0V87ZMt&doT>|VR>l>1)nm*J7tqf*yp~+0#!IGXbOp|S# zK4``*DC_I@FZAFmtVZfI0qC^mzR$_>r{Lj(UjA7ZMy;43y*wJ|PwmCf#nyZX(|0`{ z%8E#c^l83DP3+rxl_OTHvuu`<&v6Fiy_vWt)}STS_ICs-)WlTi3Sw$MWZc~YR2MD^ zK#@dMk#{HZWrlsAg}0oC;F_}$gAwZHBF&S`lS3pywM*GhIWZJ0pEd~DOga-!bNb;c zdvdbK<%j!-f*K8G`X}H_9*asX#qXpe2v4DjDpIqgt4TrN8>&q5wCJITvdnO>2bDvooP45> zSQ~xjJk)p0Mw>p2f1^KrYp(Ic|65a;|Hs$du7UU}b}_0pUz%Q+W37ByZhwAOBym(U zp$$fVTbhe-^n;(rJXpdLy~R^=U&kii=I~;Y8FfiVA0LuszF_zSC_JsFSHjbM0MwF! z^fNc28U;R_#t(i3V*c*(^*7h#{p5sldN&}Cas%O&Hn8~l5K+~^) z0+Ky(^vx}h7w3cNP0>U7VmJ*f9UY=RFqs;l>4}CcLTo-b5z0iGC5YlS^e)+Muwm21wU(!q<>uKi`t z!|aUh^CjEqLsrJwl*|b%r=+<(Fao`-0u!?uzNe|tK$!TNtj4p-_M2wKc6P$4ziABb zgnYNgw?G=Yop=)ygMaV;N}^yOp}u>#867mqxG>ge3|y)weqjz^<+qf?7y`XT2lDb7 zWz3Pthwf6h8KTi886cLibCVyN1gXk$m~pqF;ml;-;%stKU>t84XlTx%aQ&JA1D+=?oC+L~Hfhc$hsDx;sKlzQS>f{n1 z3`5ZpIo-Llk=5}&Nwf7L**?oRI$$mfPcFnDV$5j1d0M^aii$#~1igxqM`*r1umtBJ z-8eki<#zB77ENl2fu=|Mz5sXg93P+cx#|-cEHTB`V(BkL(?>^`X=JJY*f04X`vvE{ zRsl9KMAumePE})ghyI+0n%u6~ckD^0*KK!b$|fcnN@$F+`fSS0^a}YB#OVjbj}}LA zRV+&*v*|tQWM%LPbdMF)s21fmW)-usoMGX(^V-?{fr5#jbd+lVi?9&0$hV*K08V2I}>womHfFDl5AGB*ZGdG0BXCGnlPAB%%_1z=Fwg^Me z?7K!^BLzkhxx4KQfH7DtB!yU#x(6~0X|NP6u60|&(RB$OmkDP?R^DSq4s%Ax-q3WX z5zRoEra9-4>XrR)Z6tZ^c`)r6=EJ!P3KWH8sE)a>S}wl8+(TYYk-kEX z3EmON&-{rGfBNAuyq8L?>QQlVirAC#?z0+ivDZLezV@t&7a}JONj$AW3CaqrlaYy? z6%osH;5fAexsr06^{GYVGgBUDP?Jnx1Q}|o4NNZb+gxO}L^-FFy^!jMj!AQ-#+d4&UiVWA& z6lPP1L56k3DIAS8fl)w?o+!*%FrMp|N>JHn{1Zvbzr8Km4Rym|{Bys25Dori z$Wj1Pp1R)ZuA&F~(iY#8Pap^*b7<|<=rkASP*;&r3J8pC`bmaT5D87eo+3A?b_!i= z2h|#LxY2y+E2kW>eRWmNmpeluA$k#?7^QeFT-F9m$L-QXIZaow!Jz)M$Bt@M8}u>L zTgD_8j&d_$22dj*Y3^teoFH9B7Pi?14kv97TaD};eqsk|tmRG8DBBAHFLz5SFZ<#_ zcRV1$fO5gPsQH98tcb(lA%E{u-z22Yz^@hwq)Tr@2Coe3wZ5qe*ca{=`B*QEU;7{X z^t6GU)P2ClX!&s6G@q$~8A^0F6UT`Aeqb1!49|4&d_v5Pm)Bm_Lo+)|-b}}0I87dC zXdKl|YSUNU1=&L6FdJy~YsqT4j?;EPtN^DtZqZP&+z_;D{7FqYZR*$9W6e{-r4?`t z2-&m?$d*Q0#9DFS#2r#sFoN$cq6)S zj9oS}*N72r=o1<(8aS>${vf}MKU(Uz_Dmo?p0CLVU%f)o$umV%@ew}@Z_be(j-xvD zr?sW7WF;vlbCImM@-MiHhc%dsY+Zp`lrZU6_(3uu*?j8OzDX?mLqbV(M(S6SHvP(_ z=#5z%w9DQLwu_Y6MAp-q0g}dQODha^-%{6&ziNLiAne#r8sZ3z#mmhLSaP?Iagxfo zC&{Sg74leLx2g;wQ1|5Gd1-eXYmP9Sb^vORBA_tooqJ$-t(opLyiW*o}}8+PhdveesE;0Nr;6%6T~ zJPJNIm_Yv2X3_YfOeERNW0O=pjwGC#qxCQkk213wKy7p07JD3jy0XEGz83ye$56N- z%Y#VtFG#J_e(pVJ{fb&txYRRlban2Y+3=(^`K7fueOPcO znHDnaqlS$D7nGQR+a#a*Ql?ZY~yzo z#FjC@1lJWzEGt;VnR4TM!;(At@g@#LTIQLfMpE;K^hKl5U=uTfqGOkWP2zn&4`;5I z+qbWrcl!F8X%b3M=xhPmge25HWStx+R|2_V)5TL5JuY91VU09OPY>`NbEiPbiG%!I zGnHTU`#s=oeH@qN_B20xB?7jti=5|2(f2)K=$h!fd`tdwCKz>?{-JE5zlz0pnZXgTP8ko6oclPs~`It7Sp`;h2 zg<%UGNuA=1r^*u_lM~e8{*KtBEiOHzfe(|*L9$y%bUPZ_XM+qQ<$_2mvf&gKbe*Ya z85*HI_qnNWSm-N))&=^0h1p^o6bdPWwL-q;WynFkmRff!_dw%g@yVt$v}RMWs&Kvd zr{=60tv-#vl{||7(m#Q4apm%mS6QwjCW1hOgEj=bufL-SycOlMFdElw`Wp5 za!z35d1mNqYjSFoXT(9zlPS$|4EDLQii;P{1RCP^C=|3K18R`V z6o07wlu+w0ZQ-f&XUpg?D!pDgB-{b(TKjQ!PVQh2#j{6o_;H~?z+ z)T}JVbDp$0Y6NI|9Ao3<$Zpu!38cTNmv>OWn8OC7MAEGSSTWD)i(G zrq4auiX$fve!Wu&G>)rAs8IkR;mmv~ZlP&L(p?V|LhUaI|(n|4b_s2>E#=V)Mf zM><_>Cde+xsbUP#OO7n5T&q~J@$yv2G${cVnd@V2 z?vCm<_$68H`4j?_Xd9)PCV;V{>C+du=$S2`&6s%h?jcF}d7dJ+Wk-mV+a8%lRG|m6 zvK2|b0&Tc$`awSC>=JJ%Jq}AnjSJ)NNjPj9!%gN3**y~-NrERX2idCdTX|OCXf%tf zI7etv)ABSun}ak?3QdZQLaA!avY+FF0LFAY#As8$uIEm;IX}E(um4}((LHtjU3_{T zf<*=I`a`@JAK=k3P)PeKkIN(=-DNuDxyZZ1(`YH){JPA^)QdK)=3fJM}VCj|M|L z+2&|JN8g>$h6pGyWjErqqw`!7orC5EuIM{1-CdNvv#dZW?SKP(W%+=iXO`Ot$al&< zMxy-67CvpVC`9lBCyAl9Pz+(XVF=B^{^_ICiTj_11WEAlQ=)3Of!3eFs(@v?=5A_3L#@~3=p`qg++|*fV%M%Y*X(yEj^v1< z3MC@J;X^Hu78!~}Xg9bE-QVu>3AjbJ9a-K0$kSA=nNG3)JW(!KP?4djhm?XzhG_ut z2n1)$qOl0&r!Ow*L96$XcD!-k|bxNx7@Ar zi8CH?pqj%nX~|^zAqq6$&Q^agmT$gqw7NI8OGEO8#K?mQq?P(ys2}+x`?+TiO(4FN zkc6fx+kkpuX;izYTL(xp;(CaxY;ieZQPhuC7qUs=u>fUXU)nS=*Ygdkm$-y18qB$@ zLXybjE*(c@mA{YV>Mf`mLe2&TV*b-hEF1ZMY^FS3Km&4bWW_7ok(kvp2C$r+fs z&UkM7V1G>j=ZDjs%>9EF*}SX{R$=fVdYa1BLfc&9yo&lgp6H5y0E2`vaUsXB5i zfhn!_9+;?C>@$pa8;OHEY8|QSK@(H{#@i~3!S*O~M z{Q{@elDeojD#e&ydF-B|h;_H>sb*MrZZX~6RE8|qj!Q|RUfQHdju39~wDcevz&P~xtp1I`0k~xX@oRhIy(Ts&E%ghT3UO<&Zo@|zn0M*gb?EL4e>v@nkRIk z5>+Gr^xU0-Buq*o>`S7Nx#`4YkR}x7#CVWX&&|`(1_uy^s&Gf>qt$gAiNQUlep4YQ zFGJu1lW6>-RuCh9UYazW=Ya;fe_EpA5wetTFm!@kr82=(9Jvf1TzVns+?$GJil$dy zg0mcECB%3-vuj9cW3}e;jNH$(D)oIc`Pcwx){b=w<&1ax6Sk)SS^w_GjZBz%+_uN% zi9g%C{@K%~!|&o(eW^Z2fpm7l$}q_b8*95EHEtc8a8sk2#|v?lS*+|OBIzo(WL9zo z_+CuxcSx~w6jGl(?{Ygsv>G5`BfHlSc!N)W+KI%jNlZ31@44cP1|;Xm{^W>Z%cc8E zH8U*O$3Z%ffo76f1sg))hq}7mr&a)R95passXmv(R%@DZ4Br(?yi^3+dt$j5S<@YW zHa|Ep+h>k~l*ce~caC?f@B04!r(fxii4*p-7SIYdBaLZsiusfBG`{)|jW>ND2Q@kU zejOVaD5B)=Zdk|iIziE$3b_H7lwofT*d|j z?BFX`meb^=d+^SX;GFQerxvx&fY}H;-;g*%F%N_4XHn>BVX$gAaW_}~^mjpsMsgyn zgpJvzqWIJt@@10uoHm&XM^6~m?TLosHpQ|Aohvqqv>d<%@st-Htu9MG9#7>|kdw@g zaNYAc)d%9JUPNrFM_REDSNqpb(60I0*Cf9B>FX@q(Q`N#CIa_4uRhPRZKX^aUVO=^ ztITzJdW`y>V~;c4dyWnVw^Hk6pq+BUf>naN|5LvbNbHFu&ERo)!j5>!Y@|Y&s=?tn z$iM4r(MDp8=XV%Q&O58yq!j>m1+t76vz^mu36PWSW2KQ1)sj_Hi#PiV&3Dn9#bZv> zn`$?;m{gaXJ27-0!!-^FsIw*%!`vs&jHZo-a}D;nm)+gJpv$~8VoEHWyW(|a{rJU+ zpB?ruhn2?YbM8d4!u1S)p7k?itwdF+KRw+R2i(1>o=$}<%-6Y@Bi^gZ3l-E}ZZPpr zo|Q8g{G&t`k;K=H_;BEfP#F($|b#yruz5FYUcy$(rt2#a!=_RX8e?w@@4`X?Xa zU-*%3yd6Nil--Hn@~{4u_B4OaB%g1Y6IvmYWtgeuZ&aZ^XUMQ-r=rif+pQdMm@k|v zD>F+|T|)y8DW?5 zLL&C3hY9H_871X6L%wTfp%<$GYdOV`mU09T&u(Y2G;1`<{b1{>M6mH=wq$yLkfwMU z{nL~-D{|1F+CDu%wnQT~7vuE7Jq=sPX*S`~uYJ+g5lDRQny{m7FF_JkEt*}2dAH}J zkooC_X|;cP3RI(Z9#e0mX}(K zuR}TQG)13Fi`GU9D$cSqY@l)ls?dHmAqP%&FR?Sm*9^%{I}6OMIi@|s^RPU^N*QthwNai^{soR2$Rv@K zrRyhgQdaRG+sy-5=k01a@2Ap+SrxugA_&f-g*R8MRG$+#UHoJ?jW3bm`}5gpFAi4L z5KMr)IMoJ-q2bv4YF)u1CxjN3L4=?<(=1ENG>2(s*+2+Q$WDj(3Qcq%j{zSBKt5A7 zKN@N=OMl(Z`QWdpwd8M-6$+mcWECSm6%VzQ9ODq*XjJ10R?*D@P*u1y{=r7E&;m`XN_jo_dqT31Q4G>WO}lOg|2Io5)^4L3*%eEqd4TiODq& z9fhZU{`ApR%T4E^E5tLR7Tzh^Fy-lIUj6+hjf#1HyMN|cwo!dc4a+OEz;>^lRG2XC z-^c(L1SPH5R61y!!7ud|@_+&YO<^=|w9$=2%u`_o3^Gd_GuW@)p5A^7 ze}O&X2GHDVx@nhwfn)oO>+35jO)e3Wrxjky?=O|`TO#bHM}$B5!m`{}d%g6}Jf$Ys zwuOaqalIpa{>+op`I&jn&fa*I^m&~+Et~Mp2W&yd zK+wibL%36BM)6smZDyPEXYKkcbsYUP`-*`n^AtA&)DpZf#HXt3i9EXaCdu0Pdq>@x zA#C!j3S(4XMzYFvX|jcCqvLl*VN#3LziZTs_o(>0KDRPR4JUHyN%Huzf7mqtN;y9~ ze}2|0Y(xpm%Q+dBV>M+yNJhgZ>(BTd}!RBc3;nsB z6fh;4sf=b#uXAM9&jT!5VxZ-#LU3hMUXWI*jUXfweD_xQ_ zr9SR`yysCxX)Gh+2W2jFpO|yj4cl8&%I3mUd%ob{*^vI?nJBnB<|Cc@AkJ)oO*INK ziq}0i(RNDznRkt^KDSk;|G~g+czgd~pd+_iP2IkJzq0D|PTmupij?*gtn8SFWTzg9 zV}}k7V-_iI%qFlZ``%{~r8{r~DKXg_Y7_F|mB?i)LJ@N!=GE5pl_esC8T>bl`&)jy z2m(h~iL9#nfTR~0${s9pxd+SNR3TD+ZKL#e6kqjS_={&tm=$3Sk-rrlopQrM2<&I# zYmVKmk5DHJa^Ku=3}bi~S|VoiC^|`rEly!9z6ltPK+J2VL6Ng&W$cXRiIpemD9;o{ z+JP3+nu%9*iX5a6bG<6iBgX}VO*`^iF7uwq5HH*pUxS1UBc{vEI!zuY#?fToP&2Pg z!2&KxS7j4rleLyFAUcu#i)pSfu`*2afBf&!5){%l%9VyhLkM7y&v5O#$CT+xXzmAd zDi}8O=Ew9i|KOBx>?PUR5p+Eh7RC0W{q8~bFAAmP?S&8s`eswsKmaAyj4!^6UA7&Q z;pQXe$M-~M+l-V+SD%Jt%IAp8}h*SaPlrOO8V z>hxqhzTaHB2y&3Ef?yHH0;z*UF5V?}@sx?6x-I$b2HwMm*Zks=%cCTZU;o&#w>X@! z$IC6i59v|SpGQc{2`)QZ(baV@cZ#!PVI>vy6R}SjX%2UF)+eZ(w77fj_67fbpW!a= zg#CJH%X2(K;`>aV>5}_d1M?3VUyIfcP8=Qw`uft$%cV3g({bx9`cTR`&01rVsCDF-i3A70fK zvGzG{_Q{S&EfO;cfD+7lO8KR*`W2pz93pIg;z4>|*avm~$DcY6&;=oq8%Jb$K&qcD z;RY|sX28wFOz_N#raJDHHTCg@kkSyF?&iG_8vT`OsHtt~kIk?bF^7#km!yq9pn9n?CyG`cxZsBrb7A>`ImtVf?)OFO2 z>Z`$!S$FpH6+oVbRu2>=8}YPwXO#Wij>=6Y)knF0FtJ-K>jf8K&V7Xb!xSePQc#@L zPYvWRs-k-l`JyRAH=%7!q>YNoC^}!cG9-Ne#;osl#1Y}#s|1wZQE>|Y@NgYETe=#5 zINtw!UGXb>utpr^0@F>;Z5yuP?NW*JcF2RR0R{EbXU~H3CCH!nm^U#ALiy7T&0l#z zd7Lj!>c%NAjG4`W;@EQGxTGR`P%Z+OZLHlF+Z3Xp6h}1=L_2n^b+06zEJhYIc?o@d zs3;V20kx`FU7|T{7;#pF*wFPwMHG{-vqUe34t9t{H>?X=oCJ)QI2txa-?l1T& zFYA^e!+|w4K#$DwJqn6Mha3GY`kCtl%)wWFJTjx{KP|QG!73AdogVm`iV*fQCz}^( z@8bW|Q4~34^`K^nP~B~(G4Uhi@0mu|nsol+f}f_%(TI4&{b4-dvV#>D0!!_s3o{hF{P6X?F)xWOQgr`^$L@X%{qUa)2wnEKAk=*rQy>* z`AyLN*Sq|m%Lq)D$Fd@~Dh40%Lo&-s@k4*6dP8R!oyLQx5fgO_zdfTw9IMSa4M61= z-=b0B8Ppuv91>BR9Q6&BiyUN)&sfxdyj(1Ggw`0i9A3uX+79D)pgU$27dIET+ds}% z?ECof=t~VcwrGVyLk^skqHCQCn?L|UtHE~GnkS6nQb6k{!GJt@$SoCy?}b^5xySA? zcoIJ)5xj+ZpKNJ30%xw)MJsMdS^oO0*O z)uzYrC+8rXAz^b^LsQc$Dw(i*`5LIwtDQM-m{1+po0DaY%#y~44%OjM<%P^1^IR)` z4P_NF{)z>MiM#7Xbmp__WmW(Gx$$r!6r$49D&~$L&MgYQ-9kU5`YN30DBC`yF%yqV zTz(RR))j!UqK;B&xL(&5ejvv%o@hD|vK=3BmI>ecxw23Z{`(+3z zCgnNQ0Ta0;5Q=R7$(`O2? zdO9JeL~$YwRmNeJYj<0Qb8!US!}KFkdstJ$j8p6yv_kPT(KQ+u+A^!>{}fT371FA&Ri0`r*^-Oe{Z4Kz*_vK9I>WH=n4xhl-pmsbIo@1L zv|%&UX5av~I!`AbK@BVFF<eL);HcS5ebM!Ca!?g9H=4H z47mhcrt1#4C5|GbzLM8Zqh;3Uwg1My#u)_WBll8REp^=x`y$#$&%VJZ0?j;PgVDYOp6nL9 zuA7yy6~wYc#V9>xB}PA*KpWxhPM0CG?bYUo$N9x=;OAHk-(Y`@7!!x?GiP{)BGh)Y zv>r8_WI|3Fio#~^EM!fV$(Y~8lSmjHv6qHz)9P1UU6zrQx`um$_O7%Y61s#P68kXz zralA3E{lbfoTd(;HM5BKq2fTx0)d* zdmPU2W0kKEqhy>~h0tp2+fSZbH2;b654FHD+M*j=@Dj@i9?hZ&-RwDj0O(Qon|3+H z!X~7im9LzTwT=B8ArPn@>#A&=lof%=}OetUfs3<7$m{E+;iz@P- z&x?-n`Fmt3wngk%-lZ-NVchD_rlFcE;(aM*ENRUzoX~WJm5BZ8jcoURl|Zg&|FoqpdyCQl(GRfa}{L(3FJladEobqvl*ftfU?jTXqU`rX+X;x zOiuwGl^AU6sSF&i=B?Q!dc=gNukTa?jbX#qHhTIBeSx$i+UcREAn`MEg>86TbNO~! z2-D%7&Xg5{TG*uSpFVSwS2*y8{j>WyFk*&+zhdVrDtfRe5OPGEX(WVcll=$nBw}d^ zRIy#Sflo(#GC|_U^=>B0|D*v{ci^ToNC5_{aYL3YI$X=(ZvV@-P4C*5Ej|%d#W|Al z>HVAg-UBys4CT^rYMN;X?wiB7l!b`MjtCm5YbE3wjjE4B`Q>>Ff>MM~TntEoc3`B{ zfn|rXo}cycF7jr2R?p&G$WHJbIII(d6 z$P%L`EE6%j!=7uJF02M+F;z9vqXLE9=M{~Z4LLlta_MSH+P3paZI|qNbQU_}e|Rq+ zHPL!T!XNbT_P zhNbT#=DvgpyG{mu7J@p+p=&gvG?DmOQ~A$|*|F#MPUc$;PiPO+Wyb$xXc$uHE`HL68A~Wtm1~w}!o-4^>LkE!9 zx!iYjZ3+++xeTR$m~;5eC=GdM&uE8D9Yg;?>XKpKhxhf~UcWHY&4ES$u%4A+R4 z;UbE@u{o750wx#jJnw*5`oJ;d3)3EH)S={VQuufDbNo3o#o7hEl)bhR3RaP6V}ix% zN?ye0N#$X?Qwh|pN_ZImGxn>iNCjv}=J|LZiQUv4&|tfxNF(xi+^0`!d;^r#zk3m* zh}+CeS)5xfaYk!AdGDM>WigGPpgwW&CG9`G=>t>B`g>lIK5p+h6sk9@_ivbZ1fM7{ zrh+&iF-Vx5_Gb{BXY&vjY|GPB@C)Q<@V#D%4Fk?JZ7O+Qhj4DbkGWa&^>gQJJQ&R( zlhpzzDTC%K-oCe#0P{TNjVkU1@Q4dbJR&&Ti?TCUML_DUqnp4NZAi=L@0}C;?i+~Z zT1$t{yMK`08D%hBQOJLNYU{|kXIWkN6&%2j_~nN&;{?U*syLQ?g@1DmS(Zm-nNOh6 z?`XK-5-=;MF}BeKR?m{nGIv7_1qiT)0k8lWz9_83C;7T=h6_&WS!dH4qUhYjlr|i{ z)&`@}W-tq4btNvq{{w4#vc`SWn&03L-6@W;m=Z#JKA9IUBQlno0rXshg18{jgkKWr z;Dk6FG;fUi&-+gyCc~{~Let{`vjd#7ej(CyS?g(Y-=S#YNr-Dw5AyMeBPy8|JO1sD zbA-xdYk|LZfSzO>iF|3^9CLF@8})v4c>iPzY>wV(cu1ipEX-H_o6la;-BqhB2s|V2 zb8~y}B;MZeG=&9q|Fb^ve=gH|N9bYO{YSwi!{%VYko2b(5r@WkkB551rrL|oHfZPi z%_|GEi~i3m3KjqP{U!xk8~2-56}9437%54JRRKCWP{pt@W1v|9#NM2K)%8P(WDPtO zb~4M%u_%1JjSsV=3j3VKw`>8Qx5mV)juPh?RVT74vHG}!Zp1JQtyxDSK$Wd-!~r=A zC3}iNs_&LOtLj>SK>u_9*YEo`GcJT?+OVSBWGrK?w7CjT>qFZA#+N+2)ewk5V(0cn za37JQR$^Q|cYNpA!-U1gGN;moahgvz;S_dn{^_+;8897cXds%7mKmkI0U=KqBx3=@ z%>$6z>3&Wn5S`-Bcv{qXPgCPTU-XI!opM?OclOb>Hs^JrhIf}~azHU}^?98ocN2GN z=c;7StoZ)<{%=p`J=~6pAg86#5sRz6LMZ`PFe4&Ag>l-a16vRR=_*%G- zK)1A+)t&t?`{&a$FO-4Qet^_2!^Hb%f%Qw-$c-Nwx>990!nlDL$qp3XJDAovP?NN? zVpp<0_yhQr0@Pm$yp;@M4(p$MJh7xO&YYvtDKc7ADwwG=lKaml>GiX zrrzL0&>`I)DQxEG76jaeQJUlAgD-`6ZQi1gm;%aC6gfHC4@P`nIY7-Lyfuc9DfF#D z6m}4EK{p=^mN$|Tu#-^L2|K2FCZgCKl$>VE$yv=jg#;56JnT?JUJ9Gli&&?z3(#bR zzILvHpbtDw(*r_<(xjQ$lT&*9`jB9w7ED#RR#phxN5TI5%ZGe@|L4AS;aR>}kOJyN z15NE_R@D4Kdn;c@&z$ynT6{rhB}XuvOLE#ftn;Q+F@14MOWGLe9G^6daojwi0QG+9 zBY&(Y6XIS>WUpUknsEBIU{L4%jgvEb_bC9VE1_n$p&a(Ot@4(kl3}Ad1+@-b%(-iR z9c)jc%&M;G3-!?vhRA<`?lTU^EM1bihsBw_xc&L zW*1F7N>XD87R^o2~r4PCP+0weEnA3OuLMVsSRpFc$NiHVgW&YB$dx zc6Uh)3)>~I7YJjmc`*>BE0-o+f2J6W?LtUPl^Ek)EiKLu1fAaqwx#{2Wv##SV5(Z+ zYugGKw{!dd_BO$o6doqTTP1HOk7!ta5Ja_)tP_L>hW7_+ly1zp1to)mXsPe~#;FbC zCn#yrt0;M?gh^JwKPigjFZ4BQ9_C6*c2kiw;C}1OjSMQ}iG6{Q?9e!{PU^4EZf$;j zJ3705eo1U}@c!I4%(dbr>(&!SODKtZnR$CuU&~qPngz$IXSn}K!tNk+% zeB7Q~a>9vH&#_*j{aso$hgoe(2Rh6c9Z4w}u;&fyp~uT@B5RnlAMYZ;DqVDFm%z^g z>VtkknB8iNc4H$~aJxQTr<2tr#+6Y5`%DSaEu)<@^-rJ5AFV6$UADW+y-c|`raD5- zV@?M`^w;|5BSvNW2!{LQfm8I4*Uq~{0OtQb_a-F@Qu}wFJFRfZ-%8r}hJ4bdGCsOz zjInTYA4-m+U;TkHUL>PV<^IH(52xX=R&0io6=5sLEkH1Q5h($6d#mq`W^jT1J4NkQM~ zf`oSpuc|gX)X0kXf$U+b`*>tz{l!ykp6SKgHXdR?Yc8;l=tKOb^R+tuzNt)u7_5T> z>Np|cSFK&_U*oh%5#cBO{UY3hN@=$y1h>+A&N?hukzNEabXmZah&&q`$jzH9PWRuj zb=flrIR_};LGmvyC~!a&Ga@Zn@|R#60|EqJu4!A)$HWis2m+i`Hb`axJc$eojc>=(#ys_diYoW z6VIOOpcaNv=suqN$5jg)ElM{~K^|p72(c-_R<_-ldKRwjHUf>rs5%! z9YexbD#ijCiKVYDT_L=A(b*yo)Cuup3Y&diSoPAYHXbi=nK-_@U>b9lJ$?fF+THn4 z&Kp~JV}yy_!0L12DFYTLKhL&j7OxU!57!f6T%`wU0gx|pP;xy2OiaSR?uYm5j|j6W zFJsnMx#X9UHGje@8D++eZ8$y>pAe$IomFX6>0C5=N3Qem)IRyyPvEWJjBUFiVMjEz zXqkCwaNPWSh>TB^#6Nr-+B zZ8l8m`4jx|ah)mver#&M4>ymJ^Nl2adxfF8yJA)C0w*SmodhBjSRJnfaQ!f$m9x>2 z_YgW-oP;&3aJR2}10p>5wYP;xksF?SZ|-BaKVLdphtoA%JS~>|KxU@Z!6*5@`&g6d z)m5YNxz)m45B5*`wEEsNbbfe<*$#Y)c#^WTJyn%~|CwA6u zKEP*i!M@Qhykj<*b1?nrl1{CwRt!+sxwI7cMmMPiUER~G$&m0bU7zmxdE%S=*S2c$y(4tLTkKX2d;QoJ5(uUM4?hUK8VAbDw?^;R`Uw#Cfz~ z1Q%ymmSB(tB`gGm-Vl)`|B6>KJvoLB+dyH*>gQAgKXQNK>R8WOFl#z|4=`hH#E}=R zc*4*JaH&ciP~Jm}cLd`|7%z%gQyrEq!fJiQ!sVqxYz6M;JqXNDB*s+SgJWkNAJ=ci z5Fd>agXxvmAb1EyP$J`$2i>TCicw@f7>5_$>wJ!wHXN)XM$k8e3##2Ktbn<)XWhQX z{B%)q;z?*$^*K&4_zvX4AwEc1NBXbLp4@!#6Sz7}C}{1e&vGuX4qr98w9GMwk?SWJ6l- zR|`I*js{1yNI#oS#u(r%&mWz6w?F$K5CZ{ef(6tyIPwWH$bDb8%8xBonC-fl3_U15 z25JJ|>n(uiA=|FmV7lG0S*enVK|wU#*w$3^U`7^E;G}ZmuiSs_(#btvU*hdGxW(`v z4WpX|#`w6#AFgXDKui1+-woLYu8YQ1W)vQgO%bn(x35iI#@{tFSwmo2>0D>*o<2;s zoEsW?Naf8Vv{rs)+)@-|UlRt1*}P3h6j_oYkKk`hrCFv_EncGe{MsNG*urkZcKxS^ zrli5Pm`eKCcOGiw2j&u)yOSWFtwRgdn1FId#v?PCYntl64GwVgwF8L}tCqBXU*EaB z|J!5g9bK>VpS@$FhG)=_R|IL&4V+`g`k1E`vi^C`R~PnS5%H!dNcz+6Ne$5xlb{=h zD{J-@{rn8uXpLCo30o|s_GQZNH!)coYEdRNRM@>pdJQC^d;YAW>s8UjUnUGd8>i-w-e9idr>XP@2#O)Nd`d$x4P(Llw*H4buR*KXt-fmQx#om+u zGgo~FXNN1Efeau5>%$a3oS!|hVN6vI6N}BJ6b*B9-a@6!9ge9F;ZLM@gK z6k!HL2^<{M&l{5xREx?EU36x?=KEBqv~l}pnsAiQwh(%I;{ki!k$T~_tKY7-_`I`b z=h~P#$)JPmNrG86(l+_CMxK}<+=MnC2d}!ygo(v=l(0IBMAkM$1T`_=7$pa9u#CKh zz}o)P+efYYmj~jLOG9~TM>*=)HQGvWI%P8!ODh4#%DD>6#+5pY{5f>>O+qo@vDTe0 zif%N|(c44fADr~`+?`R&$DKj&T&T#4(3Y66NqL4vxT-m&Ea^47yNz9WJwCbo`j;Ko>CSDd| zIVd8RS|*g<1m?fB(EG^mc>swWb4gz8@Y`Gp`oma3`wei?fUANhX=8o5_kEWdHo#8; ze(WR#?`-O++Nx$PPnl>uWdX)2)iO!->L+KUxl1C}{Z|wp=YbJU83Kr0($AQ7pO8uE ziU1ny)$gmuzwD^~d1RTBTFLh9^3x`^@POJ`D(ev&0(FNxn*U&@egwsM(3%OJP)n# zjvh6m1ApjpO&t>A%`=4ccpstN*QsF2>cMGMS~{>rb7~;G94EfD)r1j!9W2 zI-h&`8h7oS<9eUxy?o&$P$pzw;zLYe}!`K~7oACE%>K1iSgS3T-qs{Y@Q5dybrQlV)(nzA>XL zdOX-fuTdS?QcMjL{Iyp>hdo1h|NX3yJvtsD52Q>do1H;l>%CVq6A>4Ao{1zWQMl>E z%4+O8SsB}IH+@NQefLHuNu#9(ztXF_bBqm37@~C;_Fd20e61g>v^WxDw>rBKqN?|w`C}bQ4A%R7!+JUw}WZ3fWhuoqUDYCl_$#j)`wX|2exk zDQh$(ywn|()xlq7iY~lCGS4Rr=x#oId#T|v!QfOlVM<_j37|Snz$6$my*dI ztFjYem;@$KsQL9=CilbtlqwwFo9pMLZMe0s`L<%E%6Ww<3%HItNYb~Z3ztIFixtFg z;o5wtfmjBH)Ol8kNQMtU*B1>cM?rXeABahjhff%@qRl{aj{pI*{k($kKRPG5Z3pNa z&g9B;gl=0Kn*2JX%IJJKD0Mi`nO|P_WdIoP4U=6eEZc%X{0;d5n1a zD6s%j6(|9o71kpC`xBpdwag@d2aM5O)`H+u-(WY3C`KH3lUB55)pqv{?D55HkTdTosLi}g#-T2 zBz`}K{GH$GM7EV-ijRF@-i7EYka5`Pxf9xDL)kZUE)95Ys6$g{ug)6eUR-{URZZM! zXP?BnYAzS0qg`_z|@0YH6`m$yR&1w?>K|sF0L`g+D1tC!;Q~aCpA70f4xGNI91gHyM2)OVM zYGQAfrA9wr16hoBHp8LEpVq=bY^d%N^L7sNPnuX6wV&q-%MT8@iPudtlzh7tMOpZklrJ{Dk3f>+aFP&>;F!HakQSd}59l-%miDc*07L2uK9qPsYG17+ zD>`2$^Ue`Vw*np61Wq(cih^@;(DGd?AL1?BgtmXy+VsF{it+QaNRB zKt6<22yE(D+;9l^EMtD>D&3bHlS3mNu37!juw#T_$sISBWN+q?%_|Hu&6x!a7au3I z@tmGByiGH<=~Lgvxme{=H2G3HgPW-`}VZp|rdUEl+cQK)o34= zgYXGl7hJBHRkgeW#-DmqmL8}{;n7@;!O!zh1dF@(pt$Aupn)**F<=a)P-NnwN8c_p zS`nVOTVBVwQqut-~{+5x)BFC)FMT+(6r*;D#S`^#3*iCj1OdKZo1E&0us^8 zW4?*2J*(uE?ghePs^%2jg4~fl#GA{ccX;MWh$8cMvEH^3Wj4aFdFY_y@AXmImnO)t z%%xwU!|K2Kbl^E7l3nv!o=7YDY(_xOiwDN1NL?r&-Q5yzxlByc-JGKT<65-;KyR_y z^Fz!azc?VF5JTERd|a&FsYq^_+MhKUl@-1~Xf9H?VM)l7(#ph(3E0e2VX6cHxK&62 z-Z;sV8zoJL1o@sppO#<^O(@pp&Heb^)d}S$E^XQxey|x}eu&BsP%B@n?AUdZk0WTJ zRZ(!W!&D}ChiQIhZnKPK2tTyWDnqnr+fnYX4}7DSlY9G61YIb4E&fz*JRx?aKN2!! zxQeEI6Xf{qGHpd)X5}4JSP|rty~x`#>r03Fo50ycYk{$$hx=y5)cumT2uqM(`s8o_ z;Q=TGcc|LU)Iy=|T>1aaGfNrbRn!KN9T`>9QE%w>X ze#A#Jn46gOXftmU%B+tC>PJ?dABS#-e!_&8itL@rA+xpKaNo`IP=F}0EDZI@m)nf= zIq&wyg-=Ci46Fr&gLKzgo483qPFbazowoa_$`_j*fUFoW5&70gvOI;xI zCG>29us*Nd*sq=~1+;md729XS$l^4N%;Z!em$fgn=N%+Wa3OqqM*Kc@xSRq%Z5JW= z*;|{jgmUNRj54gr0-K68{iL|_ z#_9Z=F_QcePnM24xJKE)s!AMM=MO9H0L=T~+o{Nl&9-Nqv1`YPw?-tQ)m|x!)~{b& zRcpS>y|G4>^2~s^!CS?bMedWJNM$5gUwjdL`@MZM$tj^N7zM2@?pcp`iX7FG^<~Ri z7p=E;3Kh$9~oCFC;D-rf%l7 zgudoCVt&JA+fW?@94({Ik?I3i8RBx^P!uda#%p(@JN#}aHmtOHMD{>+E4>jB7dZ%1vmxi07hZbJML{$j;)jR!cE?`Avv@6*8&YZD zY8N|A5w*2RhhBL%z7y1McKF)e~d zi?tubcCT7BDfldF2`Y#q`SZu!@xKbn^j1$riqtuLrEE8|2dPz4|PNu z;E=oq@srWp=Up~(MQLG6x604{$H~#bZJ08hSrjm#^o^^T*3)|} z_zh07xGKXGQCg@M#uWTq>`%o?n8md-+%^OZ=I{79=>28EYB8lBcAZBeJ%4=f;VeaE zF9AtVAjjP#_}OVvWNt7 zw_SNCupq*M17y`loX9wZh0_KID?vin7fyh*dbS5sZDT{L?bH1nNV+BO*XxuUn(=qd zVxTr*kB{_iE?A5AHL#yPLux76>!2Xo_r!lfY`oZ;h{l`I<>Y`@7QKkO?(wYJnsRiL z?bSwYW<%@a^ZQG2*q$4eg^eKLa}FV3k~~YIl|arXlO}gvyUB2q-ezKN=#lwKz_%2J zW)6KnKHBGt;~K)Q5FEaDYUkZ$k%tSX(#{>F_aDBVf~o6S$T0{{VkS^aTF5;VP7)%g z;edw*b2tT&^m}kqKjmTCoh!w@ECot8S>)MREE5E0%W6Bnn^brFWn(D$N_$AnvM)$v2b(0V8F!)z{X;s>CB$KvI#w`(Z29e?uZ_Lv7jJFBSsXmesc8$wDH%_xw zZ+Y}DV$at4_KYJFcf>N#xB(^e;+pMKG988Q;W3EXBNoWlagy2!^o@kR^V+u*)$EdEy&pvT&r?B0a9|7x7CN778 zVk@$9K-hqtBU##U9TMb>`gRXNs;7M2^WkT#OrNJPc4jB69 z_*gOz+-`&{{~kELJ@_|%kZeOfjkc!&meZQ=uq}IH6@W!o#Ov+Lo?Q2Ac(0|%g2M#E z=gM#2k>}%gpkhV8fMzv->Pk9G-!jp)CB{^X#*>Z@ygnj6tvd^@>N^anRGkvm(jsl+I3lth1l@eIlV_om)WglZg88DO)w z2G0rnnfigT7Ovl7Ey5y?-jBQ7yo{w|>7XgWd{6p&IPC8b*|)_wvo)nGYZfebBC3hA zo5@MJbftV~LY%fhu1eG02RGAvpAnf;IT%)%^O??JU~O}eL#hjM1bMu77^cwK)&W)x zQ4Ca3jvB?JO2(i$5R1{YHJW*I>EDx<=piFfpt<}w1@)VY07z=cWl^{(A=$8oPXzND zTk!r4aR<(mT3JF=dr$Zg-hEXvl~$lvy}og-+|`3ojmAbspTje{yKX=2HTd3IY&Ini zOlp@@<>YycJV*-TNP;|QbU|e{WuznOp&;%Y>I*9>&W=)9_u2MYv0o>34S&j)N7HkP zs5_K_5y?YFZu*^`i41T`DYVjk`>@h`dfQ;VG3xBBNuzJ5NeRy`_4Fb9-PegE{NJ2up$JmLF&59Up@EJ`3(aQ-*J6AV0UvghP+pHJD;iJ~7wQt)Z7O4Ju+* z*OR5B){i(Rg9SxH|oDQBCu7Nyp1tdtJD)B^b+~=;OMqr?p z6&5}w%MYT!LawnU_5&C*bFVcSHyk2*nSGnmb)AGv{}2;`W<@ATxLj8AlWq#B=LGZ( zX{(sFz*lYc1tX&*4JxeES{2NElKuNO&F8puM z7}56|3gpyx@yr-jTfj1X8j#is*cC9U9GLaQ?VdkH*c)IqFu~8_Gxz5PyELi|)+c1Q zbjrAAxIbq$Pv5>b6X``1efSlCXI?+|OQqn?$E;Tw?kEB{WDUJPq#G8mnI_D&Mt!JB z*}Xruw6qb4Wiy#L_fjXcgna{ClzQ2KG?;gOhPa_y_g^ z$}w2bY?aPG1U+c)ZAkMFQu#vjYnEL}U8bg{dNXFZ;d=C5`Gq*Y9&#d;w52VpdUnghda!K({R^#~6&b{1CY#G|l(ATd5wM*Pi3oVu=@0UE=N-4qW{Zh|qsjg;o*SZLT{#VfP`?E~ z<0(Yzs}OE?jx5Z` zt9hCim0RVL&p}BvkBcGAZ3_>WAak&Lmm?;>%KgaOEk$%Op}0;bama!2FXDyO5q*;X za2?&FTTeza8Ya^SqZa<+9X^G$S=owzeUV@U(EYpPP_9@a15j_3aq(181`T-s z4DyNbDY4#L@hyRW_}7Wvhgw#!sos!2ZH_ z7e*lzj%0_4#mWoS4lj%i;h>&@htedlPLb7)($)gt8}lfE?85JSf3q}fj`Bq8zDB%! z9FP#tIy`IC?W$-XGHY=8sjXccEhL!^1cmQCZ7XZ9Gm`*_iAc=Piq;MJS?&mInz-(0 zXj;x@v`=zS$UCL5PyUsaeUT{&h>#d;myAx#HU^_n{85AO!%2`a9pnQ(Tl{IS$4ThO zOhD6qb*ZFoXD~UmUf;2ee@j`eV(2&7zwF$^ci{Vi^}KCumUaPSzB=mVfyiNu@V^n} zJv+DHx9g$g2mK@gxtm8C8MP5;#w3_6X40MM-agI5&t=Y5yu}WA#OaoxpynF(l|$t& zp%&A#H8>Ggw?!~$f+Gh3?VA_veh4ha>)13f{^8aC`>$2HUt{bvC^n!VwIy;;BS)2t z$6f_bp7tXx=XP~7OrC^+zZ%0mH&-#x{lG0|kchV}P6*`KmGaM7!iTfHd60hj9hSGC z`{z&0gA*~LkD@%6MM*^zKr!M3pXb(X-sfj{bvggkte{qU_f+!|>)gnE3CnmxAi;iY z#?cZ4h&4CvF#8DuyRTsBy5TlP3j-SvJz$6_=O%9TBw}y*HZPb3wTeXhUAzpcM}>S2 zQRT^^lXxguqOI)+U-ssdG+x!fP+Nwh*Ku@E;;K8ZqiH?1t!g0Xa7;=Ev&qcvV=p5r zr+X+Vt~J=_)9w*OvsO8Xa(3!n8wrPoReiWcQSG}pevT>rD~hmQ?@u{V{I5lL%zVxx zLe&Iy@uU*!)$T2Twd|ukE{_BfQ#7pJMdUROIhyNd!UA92i{!WnJIVlS=R5&`-(b5* zi0;r1m7{a+KDG~i_cfbXJN*j^|7v&)AUFjf1U&;7KG1B4V4>5JNfSV1O9yk{Yq~GJ z`4MTNFK3@pH1|231lqn{@E=&3=4ZZSPoYO zLka+kx;Nn)@@|xw^)eCAyZ23=xvKw%}tldSdp;sS>_Ht!tIh?Z6`NRzBC_9&O50m z)PLuEWYd^h%Y*BULTvA~j#pgni#%`j^Rlo=_hpTOK`+THp6-h}3(QsWAWqrAkUn!A z(wL0Uw3cfp{du)5{M3o3aV`2c*BK)9!06YXzq$ijZyx{HpvC13E-_SdG&vSqh$!U; zF!?Wh4Eph+)KQlsl>>8Ja6!2AZF#=2>UXtpCZYrw`!q&?PjC$+xhlFl>yu`MY%P$7 zE%+raVM}ze-PbTZoC!T6f6cne-toYGBXNV&{sPhCheNXR0F&t(EBnwg^2F?!f<~Ow z34S{fS=SK|6r7myPCB7Pyk@=@B9<@jUET{~O>mkCVI)ssrgLk|*G0D!1 zD5JX33JG!NNw#q$&?%um!Mh`!t#hWknxet{Z!Li+{{&5FBv_2rO#kSRh8|#2qxg`)QJH1NbhwEY)SBonsyZgE6IQPBD@u99gKq-U2fERd{88u7$b-7 z`MLUvv#0T#>SzbsgNucY%m;%2tH^r`U7I?~6BexXwzim7TvTni7(v%tv zjy6?r6#P3k?I#VlHv~3a03JiFK*}=@*5|f0;9R#uGM)I+JBxsWK1Y2e3vte}PPIJTPW?F%>9@QIw^p>I zKIxt>ZZb#|B)${PGFE&IjRWUdb6J zTh+`wSKH>{vjq_AR_=xo{GI0mtp$&su?Of6qt{G@D@ne0MWP$y&^1li~qm6HvxhQLA1KQP3GXS0m0cZ5cW(^2SYxpnZ z>U17jnz-N8w(&2S1Q*l(9T1A`avQ(e>v;cFTbc_4E_#wwPF|-8Ufme!oGgtN$*d47 zV)s`^EpuqfNs>&1m)Hu?zU~u?#3ya!HbfGN1IkI`{>cXE@?+kIfl{~!(oJSCAtIHvJfQzN}Z>I$v) z#t(s8G<{3J%lj?Zj5ZAhjpm=>!t$B+^{HgjOFedS+@;;@3;8Wy=C;sda;ak3NQCAN zV5npiOKI`-0zTcQbCo6N8Dg-TF46}n^>A>IW}h*4HulLm00zX$EHKM9X@c*h3IBaK z*JtknWPwlFK6`WlHwkF9hoANcQsVJtjGN~6uYK(pTDmD@(_`EZbFjnsiBA`{4mLz@ z-*UBul(5UR23GHHeiGI59wynYJT9Pef|C%Jss1$?d|*rYKKX&^AF|^=Z-$OFPWRm1 zeFg9Lj-glWS{bX^T<8^Ahz{{#>fDAD&Mlu&oSaud{qQrP?z1R`JT; zJ*fs`F7Oka8NGrPX3d$nFzDPCvvEsUO{GD-SLm zO*4$dV(c%Xzb*b`&V$M(4{61~B+w0((!B7=d8q|E2-$ITq-_cTpUn3XFkvaTKTTZe z-1^GnH+E&KiPp~&0-wJ*J~`ug$nXigjT@PxGXGX-TTd@{TyoQiIyU*WKV>5i9IEFx zq5kJf7Q5S$AE!BhIQAHuUUO@ng5Aomo6^_Z#f^zDG9|o94KwL>otv8N_!~y<-A83S zoNV!*s+%?RTfq1Y*45UCkUnl8l2fgb=K|EK`jP`{t3TAUMc%T^X14(}CK0!ZW(ACp zpmk*M8vNBm)BY0yIo$PyPitny)r*!Bx&u^aYsV$JGvb-md^M8dmA2mqdn<_AkjF0?;NdPCdc)*sJ03uoSz~N?YJcHMI>ah z=yCY=#~|}dlAiZzuP9M$sOZR3LVd{Q=XZI`V8S_P^|~b^^?5)K|H{7s{&n_nF9HMi zVbTr~b0RCZoSv6N$Y`vDS;Uw1;;?O7eTS z@JKmYx?Gx=mEvn(upH7cP4W=RJY@JvK)q@up}dKuZJRw>+=#OkibIt*Dj6N#LEP3) zGPE3m)cki2LestDc=hG)9khJ`ryh`rmbw=L9IK&NvOo+9cy1krZXJPxKl6B?vqYk& z33Gm>Nr@k4^2g6s-B{QJz-7D*O@blxht{B(ucsG72Ny<*jbKIiDC^q~<5r-c50#@bQ+%V_)wa;H{lqg=l3x#^Le>BjWmuTJy}5r zu1wxYW#Px^d^D`4q!=4F+PH0> zrs{F^w%(e|dwRsEO1oH0{;Xy^SZrzd$@&hx!!e7=WPb&@VE_E~9?Ki~YZ(b(eaK$| zT;)Adh5sv#Grw!T3AJ))Hc71ism<)}E&RMhAT5~ks6QJql}&9}t+68vFUIw~EqAF!uWC?y)0-h$_ZZ&o_8~2vcETN9lgG~yj zbMAn$y~d+l^0b}DGbP~@IOqLe8=CaW(0)9($vO1ri9}+Xo>i;3+nW!Ugl=-QA)$o+q(YaH&ykQnx0P>yIY;xYQm}g3LwFn8d_BMPjDX8!RY|0xWX#x9*Z+ksZ5ZC|geUVP&nN zhj=F{Kz{_N`Z-o_(a&S`M{li?_N@oiQ+LOsUQTstq+-Pvs)@bEwR+SY0tVP3%x$%O zS)7d}L~@Y}R7TjG$Kc!bf0Ma`nT*g^V|7EEFB51kvkounQVe(7LGuXkehH7N_F*)u zInDvu?(If|PU>983(Qv9JZp%p{O>hzvk<1)LorL^oL6&lK%hg+tfpE* za(Wk(K#j4=V#hkQAe#H~mo%VqDj>WYjP%DwbB(TTg+Mi(7FY`#%)HEZva=H?-^TpTSa zI_o16Z?=ZBt-JhD=T&>oR9X{IO1Ef4o>*ddgKwT^G-0W?=FPD_$9b)-_Cee3=ZNW! z)*4W{p-CDU_I$(P4|q$nlzf3&zx@njVfx%I{Hc54`;6johd+ViUZ$6W<-WsvLGf47PnH98 zW5JJ)pr0dR;M!*4$VO2IIBtow@dSXElJ8mTOIo=ES6YQhwMTG#Kub9d!a{TrLj0?z zddTPx!3S~-ZJWZ5DFq@xJe&Z#B-KKV(u*w~AQ9bLP&K$PO+9q&`(iMMv_~EZhy=4{>g(mT-&A zheJfIVg~N~TxwFW8wIfNk)3<|M%fIiDVYJOsX*iY)5>-8i0H1@d9~LVfY0V?XEkLm zDx|UkAfEdeN72hT&H`x@=k;cE#f3b@^seh2r#2W4wV29-k}b%Ku>C?mNC6qjYk4_r z4Y%6r2OYTQ_owi3Z>spU<&U=r5+MZaqkRgreH7n>S9yO2JW-8>E^HgeQjxrSG9Y1$d;agseSWLP5ghKP8 zg1di1Z~jqn_R0DCGFu9K(>pM&&D{ikrm4I>S0LhlzR~AR8eCElGKj-keIO?@@rk_8 zm=Z694C(#>mNZTA9CC(3yq^a0Ol(!r@lH$lF1S(+ypiws)FZQmj1piNGE~e&I2b$^ zxX65CX2aE;T#7P41!{5^vciOIUz62+XgS7Wc$709Byu0q z9J-PP8dhcp_q(PB56TtXRg_#!fL)iO!K zJr}`%7>{LtypR5JG>6dioj=rv&Vl&1bI8xy<*nU)YW`b;Q;5q5wG!xU-Rz_cVjqpE z0+dO>P`wLu*SFsLf3zMzA+gr2#Z)wyQ^BYEy-G;$nRd!t0uqgb*R@kdc0$r50S`I9 zqYu9l;9uY*6WSNo36H6AtbhqUKogv{#QLt4memyw4&YhP^O)`J4>@+d5I;W&bAfz( zJ|PbH{8t(}x{+Ue$pN{ZL3p_nS1889bZE{{#e|mzoNbh$7b&hPVhil|1`+$X@~Oie zcIeo}?&)st$4E5)I{$!JwEG>PGkpiyVS_}+1pajBTtz<|$mP)A+5NnAz!t&0IrDq? zj(ht(E@0QVWYAw$G<|6+=r_7PrX3;QSnVXskQ|sAAluF?I?3p*-@n*3f3`DT|MA$u zwl$CUgLx2Ho_ZPFG_CgKM@V1E!GYY&Gnzr-An@@)+SLGwt$E6@TdDyqHuz*KK$c_# zV{FNj(O!ZiXuUy~En_*v^QKtCq|@N!{_pk5@z@g;-Eb1T-#vT!Rhhy;Tj*wy1x4JP z7IH03X54?B|D?i1pxUXcvkNLrVx-`I0eZxb+1pE`QQCT zaQvX#a&a2FJJ7Kp$ zx{fNERE7l*0bF9~449h;*=K;*RZUL<3L*U_6a#O)76$L_I!OllVP)GijkL%$q#UVE zdc%6xcoiG`O`MvGWR&|)!{oE1!kCGuahKpem_=Qe2EzgaAut_>P7KTkeC+gl*cYT>wJbLE5u?xN;Ynk!1j>+OCnOmZ{4(VS;7kYP zuCe^kzy^*!2;;h5;Z$Pvr~>X!jx8RJZY;19Qc^^Q|MV=8`k zF+x6WQixsHKU{d~8kJD(`?sCr7~$Fhz9vh-HwU@PZ_>a#rR>|j9UwkHy9&+tJj`xNBi2kj)QRmjBnc3;2$D-YhmlPmlJLF=^W$G>a&e_3Xd!-tv zU3V{f@Nd1)eF`Z-WsD z80{sn_8G-6of7Oud! zF&1-A7H~j9+>$RenmnigY~T=Vkl}EWs(rKmbZ0$C@E02DNDS&p=u+BMgA$;2R9X7v zTDADEgxmuKot4%P0eOblcK9Q9EAj!E5 zAYSA9-?cNN0ko0A#b&SGH4i3OA5|dkkcXeLGPk1>dx@0hl{g)PO=qtR zo~~-lmElNut%x=Gp19mL;r9DhfKYf2bkIp_;*t10MmK-rfRa3eFj_3C~1-<4tXaHAYq&@~v{U zVVRqJHYhpr_}kW>F8f;pTvT5+9m&_@Ax`!tjk@VT->6{MGci};ql`Zv2yHMhgfSrT z6VOkM7KdubsyZ<1^-1CON)x~RMeyK=BAem&wEviukEgU~PdIRl7@sC|w_^Ag1Yj>$ zk-9aopZHZDm?UH}RivUmD|eVb1SrZ8_qS#cyUA%^QSh_WuQx$0V7bvGT5oednCy7k z>jTf`c9>1`lQT7+YZ~*3KDF8hx;pr}eR#tJN21##fGvXi-=-?q`;D^H>y&@lweYl~n;U#QJl&n4 zr9Zk2!Mshq>K-G%Npbt+QTK>}G5|&r>P}DHW*CN`e_eqwQR6FHPM5G@wVAfD9C5-U ziGG1(Eu%Mc^w*m?l73r3Ezx}mMF#JHt4Ep)~ zd9(b=r`=~agct&NAQ(>Yzx6R+&4~|r1lGsi()HSYWuOEm?;a7F>rB-Bv#eY9dQ8NW zfuG}ob^hP_O{Sfv*t$r_5;#X$Cf8BOZaAV84lfuSo{XE4HO_%dm_Oq1-R5$bbb7255%u&2>6-rXVfqVOzPy{n%fMNN!kPo zarXE3IZKaFide>Z?xRS_8PU4nb)-{|!v|b4kPu&X)}xD5Py)<9j zzDtwSJVsLW8>j9d?#$G|G2fucz5)K`Gvzz#FL`;hrf4zZw?maLY1|T8llf3(?|48N zhhnbRpND$O3jfWYbHPu_kk=F7oYk#GJ^dw3<6rJZcC61XUeyCBert*nn^|Jeme!UF zJ!)&r$i_4P-mT@&Dyiho79iA6b#8?fRA~xt^M|t+=$FC3{w!aAT4^8p9I&+PC1GL_ zd4H*Y-(f0$cU`g`RkOl{w!ertDXzAdK={A@{Fhfz<^~(tFwxDI$LfZQ;D=+@sN)}O zSX1Rp`Sy&r@e6*O>i6%~gI0i__wiKY4UuGy9{y-?O8$4wRUa<`6hj)WR>Vet#E2SP z?h!Yi^W)e5lz*!pR05uV!_7naZ!n{`Ae**{1x)14(OJk4`~DigRQu$hfzL#7tYwHy zyfBg3-!d>Sul9XQ<_>6MpzVzI0nTbpUC!#G*c!rzomXw;Im)`b8&$g6o*>GXOzO)E za_bnS&b8nzSAszUP09KQ zrW3Yq2QFFf;B6^W&ivn!>j}Rm2P742%C09iB{C$EI&FYobKc$0wfbHkaxXMut*?y^BCP^5c#zZby)Z z9fTW@3H)Z2B)pMl?Fux2TJ@2aZHzAqk0DkVK^-*UQqCmD@WGZL7glb*2*}@e&4B7& zFoLi0+fg+SsPCW>GM|qgB38|AjAR;8$&{I}xIf23qUb<3n8lH5 z$v##jF9J$HA68fJOjh-Y{wm#|2E(r7YEFztfntyCgNAtbYr%0v4swC-O5IgJKY7iBqYDJq5_I|J{dm*o;FcE>-(l4egYGWX z+XPnsXYH7(t!Z-M-$P$xL@A%3py!i!yN4$V4yX4Vx%5GgBe%t5n3$6cE|TQJgk>Cx z(CMi2Y981_zYp6!Ow7WF_9YZU)W6F9PYqux7xRBp=wC5DiStRovIK7MYdDY;r!i4W zFN0|TpV(^Ww;x57$a9O?#<*YKjAs%IM2vjDQROBAcOaV{#><2`rceIR0Rsf=A{c$G z20M(xzf6x~>Pyu?xyYCAn0zGX2_Q;g>F@0=s}IdZ7ofz65>CwV<{f_0>w+um8~Nqa zR8)JU5V(l`N`?sOBLzUc8gOa8X+g|E+08{RgOkbyq5X6T-;O485+}X5O$ttn>D(GX zt{Mb!!EBsW(kXcyF>?J;%Ime*^XI*>4geLW`!{dkeeD!+0$b%*gMP$`j1QLd364+* zY-p5(KQbWuT=@3W#R6|){=(y1(*O!q2mI{;z#Ay>s*DoHQNjn)kO@?>Ax8|s(R@75 zJdYX2E@w!+M6^W;``Q|GYrrpjKAUbFRuT!pz(0-GNs&n~MkOuj{E7&aqHCE&Cmb-u zK`k5-OOhoqvwY|qQlA5-D|0SOqn$<3YO8uj&wST?a_4Q9PR_HGOq2AoF%U@iiqT)h z{`x###NFkY9bHt{m9|70xA5*Ce)DNY7TddpK!Yp#XMd(#>p4UM$G0TGHgB>2*FZu*lXzlBk0umf50?P1|I_e|}x69xCP%-q+2Hw8#61$oq_5!gGAE0^%fY1K7KPDiW z=(7~fCK3~|Ih*LeT}jargEVDR21j$0KA0WzjpF_Lx(bPR zoqZ#i6#qhJlbm1>dVD<4yoC{KVBbQk1 z?pS&~))~rfDtD~NE8KCkYcWx&dT8;@Z>g3bLMjA!sZC5uvC~LUw(|trc;Z&Izj_&` zF9Qy@gMZ#yELAfy;$OpbWatTv^pL#bz@dwc6wSCg+V|8&7{jTFo&$;A<)x z7}~C1>q~ft7L$M12rVN%f&Bj|sE>9bIh!x@*Ibn0u5RxWBS2h_D>K}OXK6Pqp^`Oa zryf0!8cCWlMu1Tj=ijp4h5=df%W-dNGa06@UXJ@$e}CnsQuP)rsKVuB29o84=m{qU zmik0$1*kKRNv2w~m*~KJh)gHy_uxuzsV4zjGo3&cS8nbE@Q6Nnw0V$#`at?ZBsPEa zFM!(#*h4$vD-URsB+gdFmDV(YBQy-(r31KRK)zm%eywn|vKEmcuPSdJXB$3tZEVlp z&j44&>Pd^;q1q~mL%vz)jFtpQMDqAs3(ND~LH=$x10J+IemupEIF9K4R&V}9u2Tid z`3^+NEscohxf4A_;fc}L+XkMT{ZL10v!h1z)@XHbUevMgm_AnNh|(7@@{qV%<2k~u z*O!9X)!!Uc78wa;3Xi`yL+jyXKbZEcW+;b;Eyz6Rj8zd&D^> zq3YkYj+-u(Y@>l5V50!o$&|LJ&xnpe%?32wP|&VExrj!!533z`S-%K(ILQDfd9~LA zWK4@Z_bdfBFZk^6ah3*+7WTskDaD_QW~<|FEDcN?Uy7N0g9LO{Hinafl9$nVdx%`d zb0`e^>=$r9SW{cco4dhEcbN1`@UNe~7J0Df-v;+&tR13}(t(nEDo}au`7yl(4#x-U zm)5mW28@YT&3J&am~^C-=m*qfpuP-grCr5_SiwO6)RIHI*F{;U$0M6|6tbs^W^Yy@ zY1m%Q8;J*MoJv1grH=pC>oI~q-jB?(lhb0l|c4Z#^!8blPlsJ1Qmq5wBQ$iMxTZO59? zdQSD=3of6gfw7k11WaWB?w%f;weKL)#C2FbilRN0PUkmYDlC*c8w3sf?rP93Q<-R@-% zNU7@+K@?)$k$Z}Tu7Q+sqgZ_a``_O7-$BLui?8cLDIkLTAAKb|py-qU-%3(FZ4$mC zBz?0Y=ivL5GoR@w5u&2`9JOeTs_p>CImbta2H}K~hUo^;b|eDkIURZRp=|cS51M~` ztG$`lg-Qzq;U=~!)c7bv{~0jdJy+ZDhJF2PucZ|J{RR30l)TsH1xnJhSBgHeQ6$6Z zdfV9b2AP!9ROG z`occqv;4^du;$Rw!~d_Z>E86_lh{l5sAk{q$wy=79^qYFD4H&005d$m2AFa%dhw>< zg5nzDhSisUW~BZA*FS&6&AjAb3=3cft7J6-6%1 z^vlUxv4hK?Gi%YF!gaDLBHy!XRvWEpPmW6I=-(w8u8Y)FTj%e1E-KeE%vZxi3z|9N z={dLa<+_>P2v<~kC!h-XWHe*BA_lw7V@o=qjJ5$|yy8PC(4Ua}ONM?D*E1UM7HcW4 zLgHq4`7gJ0n!;`6`#E!#Enl%_7kgBHsFC|ai2oxM#&09^_<>##r)7oa-!b`r=c3Xy zL$;O9fFwidzZ;rr0)cCikL)qp;?nlEzkS0>t4MSRaJC29whUBw#^wI`j+F%0$LR=; za=W2o4Dn3}9|5RmfbMc&%5pr3!>?$>q((nuXL+i+Be^@=C~f$E%U}*c6RSoU5B>VkXG1miTKR=ug%8}NklPP+CeDCZ2bfGMn?59k0 zgE#KJ_;+`(Wnk)tyoR(x_EpcIaLHE`7yb&2ahs7B$KN~7s^Ex+z}mmZ zbX2$mn_p4a3U^#e`1@9tL9wdyf)F7rydc>IyRzReOC@~l8AyE*m{~$E*J@n!=2&F} zv+71bIXy2K&I|6fY0@MPl!zVTe!d2yR(6LI6R5d`=^lxBEP?s(yRX`gQy&?cl1iyM z1PB-Z^!Bb&jn02(lK=91$pgaQ#wPf`*N|FJTHWPZGwJ`w)_E++jRe{DgRp>BONfNX zgx0_gT5Fm3`iJZ$d*+#q(b|mFtRfQ#55M<>aOVI(L4!h&dX65_d^W|ZHxT*N&jZS&dpP~ZV$jds?YBQoFlX`jB&!uj zQ7XN~xNcIylwxOI$iu)c_Ig-m1vwT>dBykY!aY7OY8MqB*7x@#>DdYD`bL}}BO?QK zM+sCmSTHHioY5505DSo^I1!NGK`L8E!d`6m=z&s+*48gV;qai1f)_I-KANvT>cC~Ay=g0Nou7aatuwEWP)^@HylupyxAxbsYo**I z1_;<5;EVEX;a^j##{fO~JME1#<`y{t)xx@#G0US=vyV`uBM zY*DGqir`epj?zUm)P`dS0uqLjVme^+qm#9rbXzbpp)*iYJ`tX8P`~s3d6V!niTB$F zpE8M3lZi@y7ya(nRoy+2IX<#aTu&It7I&kZ59v4fC|0?_+RQ=bxL}HjLlQCrVB7Yd zVvA5hi)uon8jZ6d2|OGMZihfrnBS zKM;PILH=WDC3d2S%6J*GQGGPK^w%MH`G_AlKfih-T+@inq;BlN>e)xd1Vu&oAKDVF zZt|SdZ+xU080M}kA4ua6#7Bqwolm#6YpNb6#GPIcFbDZfPk15ahKT`QH3?KsQ%qEr z#D9$Bf#z_}+d{nDg7Jl3f%y)RRm}a)D3IF$8;LU8L2m!wQImK|@at2Z0pizR%9Ul+!s$s; z2x#c&;-k*UoWgF1n2i2+f9zv}-1SOrlt`uwum>*y_^PR^fGTnp(RSMTno$qZ$@oE( zeo8v*y$>tl&3x!IOk^6>w?E1`Acr(}(K+vn7DqszukVE0m9N*|rx(%Ty2p7*~Ti9>#1y0Q^LGwciatuqsERYD!)w@cbCLCl)@Ee0lmMhAepU59OcgAod!?-0-x_@C>c>)hz)ey`gi5 zKy76a?0XF--!l%xq9X%f!ap@N{V6l%#|G-jZ~6a=xviEn(wq|8x2}sp99oK8hj!;u zNCPUCf9w0UGc=+gUm!VxB1}sS(gUoUyZ7T+YXrRNcw7H}{gEP?88?t$d=JvwQIs?( z?6O4ouU?yI!K>8jetvc`ttQJxf4*$U7hCpgfFR-(5?gOUU4S95Xx=0du=HM}fi=ZM z8E5mlGBLaRfAYdB6Y=poj2tA4w>RbO{qV>mwp@OvxNm&-8*8ho!NzQ7i-G}{zzn1E zcqbl#(6o9yitvj1MW*w}&{!y`JjYHPhU2s~%DQQnhuTpLA%{VRguQf* zf9vE*KL0I+M;a?e`@h=KKsNgxsgmiVq&H2!$zU20Cdz=`2Y&U21+?{kwO4a{=n?wi z2ZRMNCF$wmQ;y4^DagJVHgU?294Dr6rc1KC)OHFgK!1CaCbLCrj)*YjWb#-X(Z_Q6 ztpm;Qq=Wzj%<@;4OZr4Gg$T9%Y#q0QRCwt`I+4H<$mOfl9mg5vSzntz-u-1x~$kv_~^R z{`#*38O#`%R>No>^R=;W3}niwK9~NpuR4P~xetT{3kLXk9&X+bzj)kARMEkbc~DJx zZ+j!oMyQzkG+BEU2!Pk<<5#H+*1y-UDvXL76`Z;qUxT@nby)#jDKJ(qZIm8fR(LoN z!EqV=6?*i6D;C=V7wXKTYzl*>=>lvi>rp5xRo@G63>&jUvmo7==Abxc=Cjc+RxKESb-|16T@hR(~@C= z8o$DLB3n4cktmjpCU^nxV_l%P!Od>>idY)|^|!xOA7A5MxYD6X#+H(3iK3*vX`#Me zuu3MHX;y_Pq;c2JUsvDIv6P~x#bv~dAW|=p@2m=InN+vfm$ZO5R`g?4nx)7iQZ~oK zU<dDgIS9KxP7f1fqk*vhwa_I3$7UyA?h8no={rq1jIj9G~iwU->Mkoc8IRFIS zr~Xy_n^OYurQVOR!zW7IZ(1wJdmm}FFzNATM;u`F2o#2JbLcM!>?nfVA;{u;UhY~^ zg)%eE(^jyL7f;uBIPL?2)FE}3uJDOKhs`|R+tLk84>3HiYjHOSo76f#5L--TYhO|B zByct(@#J7{+dV7CAg&jQ^?NLy9QDL>htV%!MDij_C?^Z4FNM*iyP8h)pN1wU0BA^5f-E7*RFZG9JyFHJw%V=Se2VU&3zBvqkH`io}Ysjtt#k%ZKs z>yI&;R#@4$Ny@P7w{|Z92~J6zLij)d=s6~i)~k?szt6ixK#Fshibe1||dB8hi=eH{;-IX^j561yRn9*dIUpnFysV z3L|vhSF>$_5eHjlcuRVnncF3W8}dZDmo&7DB5|((>ZyQc)EgYYrV`T3snXYezNkWi zzou?E2ccRO(pSdX)soj({*HjF$5VHxTI!^(&)4@R{Q4*WACT|mtpd(Me?nQXLiQ>; ze60^H;l{b7Pr*bv!*pwx0sVySt)o06%&ZgbObAo#4oq(b3_G-us7K%^{ffs1Qaa9= zo{%=L1xmOAepCX!OmO%f@EF&8n&yjm%`|X8^t}3&bQNCwF`IM#72E*QShPEc zS9dyfumVh-5Bcx}IYg_52%huytK}IPW!w-+uGhL<*eoWEluIHZ737uKE(imaG6-B~ z?<{xP$xAojHkv2NSib9z-QOf_qYJ4~K2ANF@D?kLP6^HIkAvQEN6o0Wlka$dR`A~v zpP3LA;Pxex)ZkTJC#YYXMM5e_TT_8Sc+4~%-8M-l?v=PY6Jh6tl7x*o{Y$d-TY^e@Nhl(Xjo(&2KV0=Qe zdLtgiw}OXVNkA5e!XgE<8!uNZ@~M0a72JgLuQxehgFlvtBwhkC@?!`kBu z6tSs26Rex{(SFSVhhze1cGc16$B$-7%R#O_ke3t>PAr5ivimQp`@_6%F~A986~@Wb`Nef@5fyyu`MQ53+jL ze!rEI%{8zWZy>5lbcNpr^Pm+2YVRe2R3pl`i8M-c<+F64P*Kq*q79r-HJvK!L8ZUZ z$PN-ZMFBhhTOPut)_NF(fU|@j_oHGlXE0JA%338_i4e69M}ltn#0BVlQKVk>r>caHS%uKM{BPi7?DEIWy_j(NKcmz+{R`qE2@ec?SOjM&ij zhazE18f4}^@Q+s4KFE(CFXkzxMFFW5NrL0eW2CT7?&jZyCjj<~8!4{#7Z^@-HiZ7Z zob`%hqSd2?D{FZfB!Ack)ekv}|1Eed%#t!Nyp39LtWkK*jEXTJBkIh3O3I@6ATk%l zC*_J#dSQ&;JtISL>Zt(ZpKWBDpNK{-rUMI&VoIoEENB_5h_`~hQ7qDKNa4O$C`9KF{(&4WXd;a29$_nD2YZH&4z5p^wO$G6Teai(U-ZgkA#Qzo4S-I zZaU?fO+6QIhUXBY2h*=)D;wp%)&`uC{D*X2jCHJE}_ zx;^uZ(3K@I%WID{9uwAj{%k$@p?rd3z#k*o9ZLZZjsgsgBObpB4eT8q#>#{#_JOrk zRP#T*S-8x12TCzrKD21O6o9R=QH?SS0KDGb^FK-$=T*cI(3G*^iYxtzII> zJ!U<69jQvmayeq!i-JD(>E#Yjmdi@y{w;!(m<5?FfQDN|Pu~KCjGc-5K5<9{r;!{Cotb z=%ij!?i6l(gmH}#L{sx<{c)Uva*djYQ;fi!^9HkPs_q`#A(YK4L9{C5xWy50l5Wp+sAxH5I7^|)`lUURw9uo05 z526ymJBW>91t;Pm?ZRPp$+0u>5*!zk&=kj*0f* z*SRQ*3(|CkJ`WGZ;^k$Gi|O|gw=8=6mao%a6Hq31?(hX;)IANR^8LdM2jLk&l6f7Y zo)95@9YB<-hk2pyw?-kVaVP_#a&KV3WO1*C1hO$bzJp7s?i$zK*HW4(110zP?R@?H z@7==s)r_aCC8QMT>M-tb-zk*93J5maeL>}J zEh>vo)a-NnV^7+l!@qsYoPPB<>Jms3aBe|BNWt6@+;WZ)NYNyKCCVS*f?E9 z41r$ZF$12%3YKpVOz3q$_WIS|G^)P8IA?#zFx$zy4E%MKSlIq!03K9H4D-kH_{$+l zJE{Nq_myV+5DXn+;*;2&F?azX>)jz}Tn5%cdx4`Y2c73>$Z+%LoWK08Jhb|D!D(i} zwbKDqrakzr(|)zVamG$EFV3P|Ky3!{zBmEYO<3SV4F^ocb2X#8NFLsOo-n^4UT#{A z7LD!+M=!PG+b_XWZC)MgOx}1H46j@<5kjOgP%cEcLO|v`j8=$0qY^FGJ|Yq|rK0+d z-o^uOB4`pkG5Q;VPI}dJ#>pDZQRE2-4+B9lxN2+_p~>iq`X5^&6suDT8bCrCQk|oO zB+zO<+@>EN_qME|A>Fy$G6XzwlDmO7AxH1@O4Y~z%krV~ZA2v(;%vuZg9}5xvJ!gV zDr~3q;F38@sE=3sb%o7(2GE(KeJs2%EeMF>4KLDVL~1Ag;BO&?0ED(~|X5}D_UwcWb(_O-VX`tsc z;d6KI6lHlA6}STk^RGjR1PW3Z{+U@d+9VGpvC2;?2HySRN8djp^9dZ`=w5jdIg$Yo z7H+VA>U6~Bu=XG@yQ{BKqGr<;bd-kSxc%iTzI~KtjP~9%A9!li0tpUPuBWD;DZ^J$|3N8r_ zpb8cM)xCqkJ%9EUJ%OPsdrXcJU_3%qMz^pYA5{_1oDcJa{|a*jh~T7Fs8p1i0;Jll zP`Z3kMSk=;^|~q?$?pcP+X}F&s!t@|7u~76T-3~n=ysle!Y^K^FCkI}?yRwbi^Vy& z^*l!8Y86@_Cjc8EFnvJKnvs*(hEwR1L15`u^m<4XI{QZG#etz;#;!vvs9ulNtMIvi zuc~3YZHX~`cOdf>1ENEaXaZ2sXTifVW1&xr0^w!8sYA7nyiTAlW?vBtB*PH|4)wwx z9;|X;O~BT$t^tdpgE%sB3t|y&9q|2IduYd65<=c)CgR~O(avbl-Hf9v9y2vI#+4Fl z>iyX$nPMs2V;n!RTdIcejY^&Ng4KbW9y!D$S09Unk!M(U=YRF5?s*5~ zbN6}Y0})e5btPx$5B#w<^Y=vyCY&>N)0wBbM<1jfZ_-m)`J5P`HHjX8ON9`mu&#QovyOn4=y%8(rt;Pz~*`R|rOS56%%skJ^HC0f+gO=y7`|T5T{SVKMGJFOKnijC7Z8E)RV4IDG+rear@koe!$-J z32~C_+1K)SKeV*ED_QtwT;NOUIum{5e_voQEy^lM#E+9m3q3Yoz%0|Gj^c?~2axY1 z&KKs+>@m@3iAyu}=8_p?Cqqna4Uz+#4khM7Q?=xFZv`j;V-P``c~W?EP9f+18B9>P6p+0hmz97o zHyhDHnLbN@BwR%TjDP_`rHj>{~vmXgan0YVBDK4$C%OZx2m^50rh>lYiX1N?QAYY%?9BXc1bep%>FCh+IN!nE-=A!x-B@=t%U zVtrmG19Stwbk2~Yv6aawmC2ALt=1qPVwyQA&2n=>PuwD)trSGHh90%k`VJ@}z1a(q zGd^?<060)!Bvp8qYTZWTk3rH~g+sveX-2;z54e6j&uZ8O=G^q)^y6Mttfzz)*ijOF zS^VW6s*LCq=?Z*{J{|{gf=Wl24_IUc&>cgOp3dt@OjLS%Z~K#(9VU!d*Hk65J?fDd zGeUD#H7pkNzzuxQY8F?e)3ZWcKKVy+Qt*{r;I|L>nRrznVC6!EN{;s7Hpeyt-&~L3 zGz;*Yk)!-BAkd}JX9Irqz}|WBw$tHoVJa(FsFrtm?=ye6Iw0O(^p%0d_If>?uLGu#lsCF`SIiRY~cRI5JAFDJN$)Yz> z4`|!a{5_mtv!f`P+C8+>(Wsvtl2+n2&W4m|L479D98cGbWXS=%S=meMpcB~I&ywpE zamy1M73xeZRp=%C3V?hqlF6crN2?`sB-s=0~;(FqXZbXX>C-6^9V{4D`fZih7)QatCvm z-6ceZXpvAKG}IU4B)YdH$al<;YHrD*RKkK0-S?P&_K=ld;!XmBfYCAt_Frt1owY{^ z%`TWPdWh4`Py_;lSU1t+4qf&q?Fr;l2Bg^Yl8-b2+u3bBWP}|9AG8BaeZmMm+LGe8 zZ-DL)97F12+2$z}dR8OzB{#uIgzyRQ!0mR5oz3(oN&E`vmr=Dz?01iCQXtw+?oJA( z8EZ)4$iAosAi^|^BdIH3&dK%cF=zj`*PIcqfQwS}{>fE=U0}JFYgLPPY7MEcbqXs< z7iP-cPb@2o;{(fLCi0CxzMxrhVRmzNZvbq#oEwz&fctMRnh$tqd?_?OU|eE!H)}sx4Rp0o$Z};oCLR(&XYzSLhz4B$_+rO zi-N|b5u>IjwQz1Nc{sb3$N9Y~hZDX`is}v)KUz}Ij8sgc>W)pSQYhhSq53?jknk}cZ{nr1)K4A33K>GwZ7#PZTNDf0jm2BuM7 zj&3(vPJ{jKlO0N#H612XudbRJu#Z(e3quGs3Mo7<;1>@~AS%pzXWQvCx7V5~J51Ml zP`DwJB3%|5J{%fU_*bvn>G^CR3X7<}?lsI7$~A{U$r~OX4+Uef^xqrqj8yg=i1CusG}2?!8afsWR17a~YH&X*pf4ZwMb3 zWxb~#k3wGN@SIhAUo|b8+uJ$JhLCV&`?L;)fb6-|kAfDhco@9^A6$B-1@D?PV@Ci2 z`XhR->o65G>$@79AG`950hrSXL7)ZkshhQ3n&McfBy7C3qCYG+VuL(=X8VQK#-;(R z1^$|2HpMVHys@pT_-~EUT5j4F%)m}*42oCp0DE*^H@z5u;*h$6QrS-75gwB-N|Az$ zhX=`0gD}Rg>3#vY7Z!=sjfpw4W4ErE9?cQHe&v|aG2oZ^dne3(n4qZC@r7go&7*05 zj}n;4U(CVP*GpEbe>U%>Mqh9Mk?jx-@VX#l4{{X?Qi%&O~g zz7WGS;Lb;r{jmAtA&7t0&rj4#P7g)7*I;f#iK)N+>FQSFFA0Hsm;%KEWYK2IwGuYk6YS(rkb@5S4HX!jhNepL ztx)g*CfW--yAO=rD*&#*@Jb}Em^MTg4xSaQ$H~nv@IjW1HfcLrizdb}aKeqh$vp4m zu|-bIq0RjiiKeeW#TN=Tbx&Nk&bU&oHo590K?{*pg=7`+fS@}&uYF9>@;juFol2nm z#4r?ImMu`YAZ7UbF>IIK4uA7QXf3Fa)weiBIYE;-h%y*43ug>IQ_Xw%q_kLD41-OX zHav`f z9PNTHIXweFC%gGIb-GhFid5OY*pnZSiJdj=Fqc_drCFyK&2hOgSL|#p(eM&1I_iJI|Q>?pSb-&oZzl^&(4A zY<^Vi?>$+>o&VL^1mA24)*c=Ijh9z7ISf+(?3~b&I3lK?W&&%mgv|`nhkf)YTtFTu z;DKzB$Asv{1`F%&W`HXD6+b1)tW~_>>+&IMw8vpzd?43II>0AMATP3zMn^Kf!~H($A^Nl7a1DuGHG8D9c&GA^@1iZ*62cP&*H(Q9k;EeugPY zhI^Rvhng|+5&#(kFmE+*_6=PHD0FuQUZ(bb>7R+>PXB!r^{9r*7f@3Qj^XW9J|GNP zafwo5v=Dk@KMu3(LcDFwIHM$+AlO+h?390N0K+3+L5RZb761TLp3f>9WB&MX#E3uA zO?Yr~d2|h~}9#pL{gO4uOG7mJJWl;HEo5Ju6l9_P*HrmV=Dbu3 zb%xmVSD$J;DO%wik+Hh5lwZ^?H-2Z{I4z0OouxwRG%?{WIguftN0j)?T$L15(oBN084R>%d@)QA0)#Mh6SiEjj}4 z=c!-~bTb88Gb)VW*Lyb}zLtjUqM~C#$7bNC=WF_9gPFr4wgr}3n7_3G0NWrBR$Z`;KeHqN2}d7!Mv^(e z>T6N5YGBIrg=MLOL^^g;;Sd%lIxt);950}i7P2S#8D5g4>&W3P=Ec6+_-He68p^HK z070N2OERQ+(SFH&33}x~GvIbc;dQ;Pw+<&BNVa6qCquKuAW8J~CrriRdp++4yM8r1 zn>Brs-}(uO$3{v)&b=%?T5B3OGM-6OC#N#$u2l~RnJari=$;9G_ME?-f5BhYN1wNS zp!z(zM{yayakhW;8c+tMr{cdJ8ckcNvv^1N){=+DDK9%aC-DV!7D(w;#_}tgFIhyV z!>X5Ll4M(cWit#JpiBr*sBegSax{-IRs^X*hXw7gzjRh)yz8VP9Sq@m&!GY3%F9nB z9Vg`X2Y`(8n=)5$quIWoSiDh)WDXL)ye28dodDfao|H7usTHmI#*`xgfJPyFC_4OC z(sSzlsyyyjn*iojCC=Yknic5*{mNc^kz>saAgF_DrRyC#cEW za{t6EVMG}GVYdXRuqUq_Lvs(ur=Ic(K$|iBvTM#Y2^>zX^Ehh^VQ3(&AH zFd81Yog2*-^W)1J=Ob zK{pF@AP{+R({~^GAz{Hd|U?c)&0%j0!i35*3P)deccKZ-i-(0q~+o zbTuVIT_t1VKwb#ITgSz}b&907HL>yI{~ZM^%R^$&1RVsQ*9hdx^dUVTL8so{zkL_~ z{Hi|ncMP{>+YDmZ_V3%rJ~tx>QvVtu_ZQzbN^=gT*q+K63}9=dw@P+zykeSSNdqZ0 z>&aMn3#mpa^#z3F*OM=56yucfon$A;=ma7(Wb^>mc(OBc{)S^TXh0W>)gjEkx&?L?>go z5QlkaJe&*7gTKr9Gk%0Uy_Qohln93iKvP3HiP5xGvBzDvP3cZwMhiLVi9N?s9kL{r5O%26$X?j*KL34D ztYN2w1d^!8X1Wu}#ZTu*bBU>Ln!X<}8}6mjv!h6%_qjd_@nTMTFHqzk?fb5w>J)|^SL+90IjXC)bp%IMm@;gr}%N}e%?D2XzW;<`>upk0dx0^C@hAVCfHF;WF zipN15n9hqrB$f0Vi=QkZ4n?m8nE9NQX(hakj%p<1?#B2spS?VYV|)FB8G0a zei+2#@qWk)+6392qk0MXxO@_Hk9H#zc^`^iBJy&;wPd!zUMy_tPfb*;fmUZ(E7z-^W|a+Q59# znP=)XpN3~>Jwpr0c8Y)SR~rLtDjHElli@C{!UzS+z@Qp!b6Aay%}V*$QcyRjO9T%U zi%vB_-=7~NRP6EJy*fQMo7rgUP{sp%=BB%VjMu*ZWoE> zK0fov0*S}{%u8OWQAUJxCxd)n#gD+yG>T<9xM}px?Gh8?kf~kLyD$ri>z))IO*5LU zsBs#`^C|BEi+7XKx7((YD)oY`q_IIVquZ!xsuWatd*_gvim48jXEnm-VaDE2d(wEXw<&6yLSeh4x);NdUG@1IDffMO*$Fv%!!jx15URM_G~0YXlqmtGq59#0j7fK3An_aQ?PG zkzj~e%6W@}t`^-L(BWu;)co-S?P`1^Oo!=Hute##(>x>#2Zi;DpsFPY=-{;}Yn#v*j4G03u?g{?Hq5&+H)DGk?7G!Q76RMd+W;>!l1mUrw#n*>LV!`)9_-_1#OfP()rTV|K`? zIR0rNF1)XCPKM}s`Sb5qKtf`E!I5$f|JJ>0qv{*IeIHDuPJz!taJkW7jIUd?t7=H` z(e0x~Mw#mWFwtwOKi7)v$eFu5)8p+?f0|;ir}7^rw{NUFPY%ow0Mj1ilr~z@vnaOk zdo-SWa2#>LEDFeuJ&n`!@YoT@GZ8VM^yM3a5Km=4zKd<6+Ab8ptU^1hOgF(EE87HM zSDY4TUb)GmsA!D>_-cnusLoTQc~4+M-5MF?5%DCCXKJVYwsnrwvpWC9*PQ9*h(4BR zjQ+=E&HmG9tBM>B42yyav&O*|XtRpKB^}y@lp#JhHXBjgG;a}+NC44HvvwzD z{eq{E+7GqiQTlNLl#KcHljr2M!nkP@hyx9F+|} z!f*XFhnIQE1a?1S3?j$4CU+8r_+U--_+#yJc^~LKwTz34UfaDYn>ykF6{e-ks3Zh2 zE|A%Kq&4dlxKjQkOSV5+!w;qM#8=sw?kjq=h+R{eaM#7?WhzW75&ecg?1d}X7l4=^ zs{0~4oF}c~a|%VB_y3qWuVqJ(WeqZ-X?GW zX|Dc8Va)lC@b?uJSm$l*6X6e#X-#mklYjbvvH&b0a)G@`#SnO(*)!sP0_qDaoxnx5 zlOE`E8D@K^?gh(L`>cVGeQY4-45P@ni#C#Gi5Nit!rSu2%hiT$Y$bmwde_NMdsvtOXuun%CC~6{i6VYo4BkfCtkNm$mC$M zS{odaJads$O0sr(?HO-aN8B%^3O2m$0a<|;61kN+9k(I>zC+yd$;ZD z7Vg^?=27yP5IkW*Gs%F(h;x{HVet7o!~K%NuW6X-&M|xn(K{$hK@M8)5UM-Vu1T$4 z!-Jyno-%aDTYlLR54?bnKqaetFNrz%d|Enw-0AC^F(fk1H;I%Rt?SoogQw<325Qli zw2r?K>h;3U-kdNSLzUCr_uGFQ?uHjCb5~v+KroJxq5TYdJ5C=fJgQ>!X#n`G%`02y z{&MN~f`1`^bXo`xiR7ciw67>TfaK5GUse|Jw1DX4nYy~mK5y+Mg@YSnpdQl2LIn-wWC6Hn{K{PscrIWt!;pFy(U=nhesBwBf5s0%rp zx%BIm%1Xa;ExbY9Jmgyy&Sk%R6QblP^G`ZhWeDSI?<Kva-84{ZZx3>q=A$(n>NIRVwvA6=I0HSDutwB7Wiy2 z1+DuID?ujm{3j{;9EyK79AilH^8{?#U3)%l zO>-iDkIJSwfQ*_YP=J`#M1ld>;F%$|>R<;TjWe8tB0>8}q7nOh7L3n1UlIeoPqx)j zpYp(PU`MZs;(r zttFJ|#ErB`-itiw3+Iq#R0$uK;|+%%I3+4m@}_LPi_I2x%j;rmh`(;EJSc!>BOYEl zQ@8}!G4B@hDDv(hK)N#!N72#@J^n758UoR?o9MJ)Xi1`CO_%@VPuFPti{o*fM-2zz^7B^cPvYSRgG5zE3N;mSFcWV{)DA3KpRk-~g zJCIG34IC{-RZbX&*Njvrs(bZB3iMbaD>u9YTrA_V!sr#HajAMk;&m#^Qnsuw>0 zUU!K@d_z||r?3Reaggi@3cN?9@J9Hc+4L1`9UmHgf*CKE2)~qCwbYn+PezI1MmCeX z1ccd-m9@=m!DWF#e1eEGGxOSO+ZVNf7(#&QU^+`i+DB8pHk2o`XCT%0a^1xH{yGum8Ii=mN)1A!K^I9)bM&9Q}mt0-X`+0l%>D{p;hPo%jw01IKS=>YGNP zhX6-FxWC>D#>M`>x@S-?`sQ#UsE>Ee-sioz9X7U7V(a^c`uQa|S%epg*43J3+t&_b zS-f5hV|KV9!Y*Wr#ypg!R3IYlmvT1?Z>tORJeYmxeNZb}B)qJre)VFHBpO8Q43Gj6 zwj;?peMk=OCdcwX{4{4X7X&fTEr^9a4l{Qr^uTA!*1xHtM${RfI?QMR+YJ5EM1zIO zuYgLXFAj+dnFv+ibPdtU68C)3nwoU5-!fJ7I!q$?4%AH1Un;_>~ze%`R% z5d;Cg-VBnC9locM;nGkqMQ&%x%*)J&utY#FC_bA3 ze&yQwX0984TiWHoP~<5vtAUZ?4BPuR_c(@w2V5^zykpi~9MzTvl%J-?#kFy=FRJNs zId^!zQ#`7d#}cx;{O^82n8O1g<47r!uvmz1XdAoY3wL2l+>_phSj@GLR{mXzO;7kA z`;f70vHr*#A28H^dk*fDZcDw(Fhi-9qY2IWy%I8&2y{oCho`bGu7H$_!V)7%uu+?A z)w5Q7ILW-{YDueU5IHp1kF7#y=`4`o#L&-NGG<{_q$Z!^Sa51h@Ww-ktH^abFVpK= z-Lab#Ul^d#FRa#;fRBWSAYZ_W8w-YUY?&wxL(}}k$Naq?c1Uh$k>8{KgcSYe6<-UB z8udwv(=!}4>K0ihDc%4mqspBOHK5~vG2EH&{vdE{A$($teM@0;@OuE3fW86=O9M_n z`BZ9wvaL@+WH|)opaBz%%hEJgh#|QkfWwRIYLk$oQgof_5i!+{v%$}+ov~DP&=H6A z$ZAzG&BMciLDF6{T3Ymait_t4szz{ny5337O#A}#SM{|tw5d&}xHQC^*o4$yUB^!# zcZ;rrESCc6hN*HC7YIsboiFEihz)D&3ghhKr8;(h7ObbFXFKAT^1g&Ino?bni8k`@ z`oPZHc%r!637RNufDk;i8+>0&1sUWzBH}}|>X891;2^-Vf zu885F8aLNtDBX(9x$!ux_zQyd8c{GZiT|w;O|9k}CAl%h8yBcESiKM0KF}UZnQ=sJ zU}sD!lTrxMzkLSpee(?|an{eB7)Uah7JlOEV(uJ%Ur2j>Ux+HA3`jKcWZdYzJ*YCJ z724aWjoPggW1doOfW+m%LxX;$Py|vnqy@@!dww?Fkvw7Wc#7BBloOzfAS@aj$H#RM zpiw4k)~Rm?2BM%sO7IhIYh-*WjQSl&7&l!{HJ%Z_1$t24@Pddm42luU_Rk+i5#2Jn zEk&5bu_`gS45S?;X$v(`rqATjz#GdnUXO;mDdQ8o9QR$uhW#rF*cGiF-%@&Eo}MfM z2j)(v9iN<7BH97Zp_7EZ}Gx3rf6d)hf{_TGC@P22t zgfAJR0$AdN^ofAOtkTcf6bjqWcnebJPaYu+|)hcUuUR6J|roS`?U6~5&Z$wtKRyvlP;e$_f zlXufYZ?H(n`Og}o%d47U*;Z0MNHQ&m9UNN=MyB(!PIxCy_`n1}z#lqfjN6WaF1jb8 zmJEL}c9j3PQDUF4O~y;7xJ_BsD4m3guG+4ez;7F$KwfTZzwNaTeOg9M0m8I5UPQF8 z^FAu<@wdeD4gwSap4l3G1I@U1U6_`xsaC-0cNvwuhmy zV*T{5tEU17B`NhPA^^Gvb%#<0gzOxlby~;&rYC8yTSGx1BmoVGhixLQQ`|`MRW2>9 zV$$I#EAnT*L5;pJ`e?a&YlU&_sTF@2tJqY{X{ado-_|z6e;(e8k=)sddSV#pBh}(% zM%}yUV5~K3^{f8&FlPPrl`W4T!7D3UNFCa&FNq7Ipp7>^R!h$Z0#@%sUSr*cXjrq z7L$8lezz^}1^rCBqUzVH$4K@<{2|onYSR+pW-r^(9I=Bk2BT{|vK3o6Gi^o=Oe&se zhGNDJ=L5a{Q>XnHHS$CiJfi!bK|}|{6A|qMOmc%W30Tkkh4wy9=!{t%APeJBvy3Ft zSKbb$NEG{ifylFd{bv)ek3`<%a-QqG`p(Z)N9f0 z4qo&XMf8dNYBatSA54g%xqEBa6Q>cY2=P%k4q5{eyl>Xv>y&gn4yd1E z!9)LmUVf~Otd2dQ^$@JHk>i$65rCmqkv+7Dk1 zet`Un)z2t`B1astk8nN!(ABZ!kE|c$_w$Lqs3%Rj;hPz3HS8dD@BZ?E%#Zm<6%Q?a zr8g9XqV@DVkFd@rqK#Rf+w7*RB*%w?NEJ6@sYm|E@6-v(GmD=$sHAr zIGA-3q)NNK^t{3=L$T3MLXjY|4%JkDC!tH+V| zZ6iC~?r87syTOgn0!HPZknNvHHI1=#zesEr0M%(T9 zHd@i&^fgw?0qPsRB+38S2pCvJi5J4L!!#d~EhjX4axaEe0r&FDv$1P<))lJW>g)YH z1Mt&A5Nw~g63yF1x9)I+(H&s@=uDloH`Vmj{^u^+QW0|-5T z-ay=Sc46A_VLFkr9t zudpjHvj4DXDVenXNSORQR!^4TMCyGi)Em1uLB_EFGADxqT?V^1+@BsMI+|ev_9737 zM4k4Q5YvF67by)k!U7R1-rP=Kxn`PaE^D`zIEyp#`Jh9awI8C-y(DaM(HM~j%}&6mbIMG%t|+2*&r0$(k&UY9_Q0h=EXy@*@qfJ z*#-b9%m!n*Y94^B`%QyjgDm2z74T1kYJ{x2Ah(M4Lpgmq3?E(!$_>q#@p7Db0T{`| z-s)L@jVc(x${4~E$6!b{U9fo(`GwA?lWaAp%TacTSpNQ<7uJc-k!@g^$YcTx<`qFG z_5cTc+1AO+ZF*;t$Am>=3=;M_Y0MKMaU)^5gnGN#Q;SGrC z8av8A?E5EImIX2X9q~B%1!>wd;9QASals3qnIRd0DD-}C=B?Cm>z{csGdIp_U-AJMaB)GlSt$Hbx`Z6Z8Dln9i(7{d zKO+Npd+>sm6cg+cNb{H$!B<47Z}a3IZ4HStUjm-E7FWKq(u7)N=I1PB{?4L9u%)*5 z0f{yRH{&C~I(!P|_8UL?q_N!a%rdeHxcR}UqkKpL96^L^SE}8Y;!%WT-WRU#-#t36 z=)A2Ei(JGL{v}T6C(eD>t?P9ns??*ia@@P$(`r&XmL*tx8&bv^28n!L7npaApF%rn zkr>VT2t4FtjKJg}$LF?W7gN6Hyw!`4xw*cQmpbHkwZYVW?&^u# zT`xH}5CK#@dZ@AiV?CVTrZ`V8V}@%>Pj_c8ab$SI4ebsirJtA92M7>P0RsuaK#q#; zSQ8?yAMuRT5MAF3@%r?-r1>TK{0?p*;Q}cVU}s^r{S=%E>8(HBuI>zHUrFA>?_FWr z(}7OVO0(i^#(xU}zCx7^46{ZhkZ-VH`*5zjEB^LD#n2UmYp3x$oQtyUERyeIxBAqC zfSx*&8nE@NJp^eb6X~;`A=q1iD`!m#V?PF+TA( z1m-7Uy237LxdeQ{o*13OFP8|T(&BmeT+WxFj43-Mb%693*Bc2Od*XLfT;(V`xR*AY z7*u;vF@P)c_Y(V{_W=rgTFBF?Q_z7u$G%3*j(LYsUkEc;JF^0SkADD)ipUf`5GgfF zpyVT~4VQqAioxfj%thbCIto$2fQqvzA4DkESyc6d@FuHCk3=8k9PI3#7>;AYSBGwy z+IaY{W>au+)b?8}EZlgRQ~&A$+XcWi8Ng3DV!a9nQF=MMDH^_=Cm0_E&?h^mCqc+E zByOHa>KarJIVTnokJk&@<>m8al=Iguytt+;NSv1yCRfM_OMoP)%Jk6{tgMD_QdXca z$8@ed(=CJ+eo#*djlK-1mgX=&y8hFr)HggzkHz);iAD3v-pEV!9v@_-ljPd-usHwp z8ilFA+xep+-y2(Ldq1uJPt=xdNxXT~I}W}ye7 zr4cMF<~Bk5zVzoQ=V7$IZ+H7|pJGhcMK%NwL|H!kuih6dlZdD+*NWPr((9J ziXbVwZCUl(Do3%or>t(vOx;6|UGmrX{z-TtjG*4SKZWvzvvfoux^5ECkWZ$!*LjHUWjW`UWPq<8vfJ}E-~AVT zqL0~PB1>k7SJ*JNG6}&m)RBI;e5gp+LQ!}u$y90OL-9%6eYlo<^-o0PIjxSy?HfHY zy#e!mSMeL-eEB8N_3Dp@$U zlEF>ie%_#R2~6pqtxYwK@nuL24uBwiWTCe|NnnJgKS`wE`jX z=nx)kLf~eF$Li=^GI_ML)^>n2tyT5FyTSh96?%RdxzyjB+^RKo-cLXn!DY7q=f}pd5y!rDyKC9HPmjUWVi878Ju9cI`KCp0+=~ zTrA%J*cha+&1}#kRcWImJ)+Iyus0un3QNK_p&<~X)}RJ!pm!T0BK&6Gwug_uy~O1i z{$mg6u)TA+y={A=l_3P+y%eP@kNJSJU zcNRf-B{#JDMH2cB$!~6BfrQNFf4B-&SuI?(3z7wzE5i+?;`BociK{O6FRD>+F39w|&p&m&Z-p5MHHskow7K0fgi=#d;(N0n6(0z-L=W^qIXZblVq`lU^5Dt<> z@J=!J4kJ;)WaW}H6i_~o1RDf{)@%EwBAYi1tZ`k}eBWMaY)g0vYPA|_&%!adg&7sa zcR;xGYm>i~zn;>{j3_22M>d#}hrEgwiQh~2*-I=Pk-L9v$eLUfK7)rEC;NseX~2oE zw=JkuiP`wF-%<+LAvsB#4zK#AE-58>Upk7vpy0b!t^9HcK~}&qi~rTCY`bor^LzMx zX0`1)qz=gdsxEfyG+HdUA$APIC=9DQg7{Y1w?hRwXpC+Du{`8kx>v5fgzp51r~^hD z1<-;%WoeGE^TIyD;u*gCC~L1DH~HRVmq5-(Du%e0@7>?HQ)Zp?TjMRRRzeFA)XSks zTGSXSMfTf#4M3bE_$oPCCjV9uPFm#`>|&Nh=|y~e9Tkc5(Cmzu5Bm%H$FZ27VNCrr zO$(VbrG653=>rPGG(3#;>*q6+&{Fb6f7$482RNQ4tWRk|dB24Gc`EGD2>A1kovrL1 z8_fCxviJeFLJ@d1J`B)C`K4OX)nX}IAV6@yj_3fK@xIBm z;D>6;r7AxT=BsWms_L82J7Su}ODq0-f+AV%PkHYMZ>v|=?UybpSFn3JZX}lf$phC7 z-~P7@?YydMNc#DWLT;`VNa@V1M`FW58Ff>Bw`p=5dOv}9!0yH-%rDdpn`^`jzp)xpWcyph-V_-&sLA{^Q(aTOpK9I2i~K4LF>a?bU`{l}OB3_O`97uXP*zTC0)v+b#waB{EIiCh zOub1c*5(M`=yI)R_;^vEO`-`_eg~=)JU#(fn5S&S1bECe0gM`!0#11ZJrUcde@CVP zd0F!z9QFP6>d8)q<|nBkccVze)>@c-Q5CWShw5_Nb_pnNXX&@Qj*d`5mHfE623$ z1wA@~Y{Y{9&`93muDz3T976SpwV<|cU15}2KrF}$)j_<$gO39T#{lZ@Uwv`5J`3pO zU96;LV+^>YVbwuFoWSj2miGAfc|uei`*2s$MFP-M+;3%4g}>+*7tdP+XgY%Z6ML-A zloUEjwfP1ha>vGgpUtLRvw#UoFms7ON+m)~+2^$Y5gD4pezk=jnBaR)>yN@Z+>zhk z;!i&3Ci~U}HuOC?fO!AvikDnuEoz>M{98Z5J%xuJgcq!HkM1%=G}`~iNSa>-;$_?B zorIHUr^JbUk!-@S&YLcp-xWBA@|A>*a~dC{k6}CWP!lTe5D-jpy=6+3X0Oenq=PhR zBV!2JjcmaBlZ%L4@45D+nbpvtV4D8dlY`G1cmx$w(^+G-pqVJpEZ=y*OHyXw5~{aY z;ahOaqv>^k<3-Q_YZPDeL>D7dnQv_wu0;z%_e+)wLxrlTJ5ms$g%?E zsSGW8TP*mFtVGQW+|?{34EqN)TX;QCw0&RPQiog(qL$W3UQ&7fnepqJ#yq#mAL09b zWQIEmSHKA=I&Fu3m*)(j zWkQJo5jO3Z3qAsl#e_UCGrO#!)$Cvoen|7*TvUwx^3ZGknpd@T4HGR7pcKRL#d8kS_m`&Mp`Obnot zn@IP35c94aiGWHl1yy|fRw-m)1x>^&OUFgypkvM-g0|>Kb(py1-Uc?N5$LV{mu`kf z&mQ)JI{;ELP_aY~3}TXlQn0}XX~xxgO1B4EHW|%<$PmQf=yt9CG=~y_){tH!74^!TPz!vg-bawDiCJ%>AsIj&AqabQ) zDjl-7w6DM7btnDy1!S5siW^7LfdXf1Y$uI=0)qC=GxSi&3_6@-Uf)fem+-VRP6J2q zhl7s=a8tm=g!1>r*hDK@e1Em|ONwJcF{PZOV)3>+TXu7uAd))Vve6HtiqYSSl*6B2!PIAa?->0#a`hZGT1 zA6pcz)&a2sZJ+CB{(iv%KI)lk9}}|3`xJ!-=n_15m88)nht^`zWn-y$py@$_B8n-l z{Cv092n{lq7W&!gH}N&ovnDvGP@Ti+=FfYBx}|TVn1B9*94Ixx!(|z7WS=XRg!*OH z^WB>yCd!Et+kDSE8uae4BJ&GUECY`n!)+&!o(>Wod}OLUVwli}SSGE( zD?jI8#CT%QflV+R5^~&R$7+D84yTY%u!Jqjnd+n5Ggcl+)Z?35Q~%=Cb*5Wf0zC1g zJ1qhjCZq5YO7IUNy(aQR1^b*|k1f??WX!8&V-9gTdvce64>JIiqISI&$+%a65R4{h z*J_lzU9EQE2b3%Efbxzbyxr#?d)x-1HeIS|ICMALAU%uGTo$6h-?>i^M7Z! zVx_JhnB!!G6Q{a^P&3$pcSi4IN`P*}%hxVtzBCYZ_D}x-35nk2=5NQwR%y?A&^J_I zREW#vE{^7(-ifpLx_Pcvc+38Rk32jcBnuEM%@Y$qcL5}*+YdqV9Vu?RLnT|6EPe~h z%xQ)~wfNldYhSAN!{Pz$pz3corp z>W%m4H&5amtv(!jWi8QD;XX+?z!!Oj$>@ei7Ho$<&0k|tJqjwt)UVfOGMoLW42;W9 zX0GHuVUTXFe8K?QGUGMoU6`-Ct=5YY|IMG@lz`N}@PQ;lM!Xi*>!}r3xsx1_kJkTL zL+|`#1i#_0_jLu$X$s8OSl%|Og?V$B6CMi z1aywXMSRbh7JoH1wQ23NzU0WGq?czLgPJ-Xd!XmLJ)W`I4>0WZ1JQ*e$MIWV;&#wU z%*92xt+6+*F-y~Kzjinb${RxT>kFOtbcG2T#O-W`u|WM9hS-K~M;?+GKcpcMpkL2} z=cfv&B$O#Ap{Tk~#3qhhg;@MV@f7`6z+uy#=VgS())gS!!T0WK{C6F3`}nINTu|YG zQS)frV89klF^+@boOOz~G6Q5IEqW6#lvs!_?`|*mRrzLcrhxR0%F#xWT5-DU`{k(W zodkbsL^XRNRTXNcy2goXgo+W$D{91VB;#wI0grVh=Lf)NVN2BbL-^B9%y$~%PF^7f z>C<4LK`;5}=u3Z4@+wN?P+4a$R+HXyDASi;AD!7M>P4&R9pR5^8ts>r^Jmt^9J&(Y z*?BUSTh(QkIT_3*AU5Up))@fcYsm>&R%oPR5Y=cTm*0U1IaCrPd{}iFHsmDbl7(q4 zfr|@CKl@VY6aTo8)1>4p3WY;sSNFLBFsgGYH9jPAelhu$GHDV;O9;^QFO7u)#jVF) zJGp!^8y^|+cD@2Ne($dk14<=^;2qaXoMx=&3CiP|1xHa_50#wDI6cf3o5Jptz%HWW z4%AIZU;yEZtz_3<-&N*w(Uv~a=6!8snPZ%H2mDN~tZv#B3KiAje!uVa3!>3NmKhpe@fuR-Rz!IVHm@sh7TmN#ZQ z<7WE0a7WALbN>?deTlyEeqzX1_op1RFBqUW10i!0V2U@*AOKs90l|XoGUlniWA|(1 zpxX;>HRx8s9=jdoEo}2p4=&bg#K{lS5}p#8I@ul}*(J!aW){nB)in2TrH$=iRJeT& zq)lC3QYSniav!s=OCOdb{$p$wu3%Y+SOF`M`P#^9enLCN5tL1Vze7}e_EM0SsF)tw zyfc=8)EYtLMCU;JbA@{Kq50qW2a5^Xx>PF3Ky{QXIC_;$83WnM_g_}e9w#3MTP71n zog?=c^+dFivbiD~9k$gdUHFw4Y#+UPGjA!;c`rhhHEl@Yzl`7=2RZi(2w+U|+7(g1 zt81x)v)~kA<8gutW4d$ZqziCyY+IDf^ks$x6Jjd zp-E6=uU1SVgc7I7wT#!R@%mw_h}!+tyJ(Sd6kExRWlg&1$6nnLvK)AM^fc_t=zbL8VtC0BcXJ&%U2uIL zHrAi;e@cDDUI@W)?NZn*QV_4yb12mdAMa*ove7}n2VPCRrtF&mxH+32js14E^Hbh+ z&=WjROu<~1A+jUtYnGbxodr4xn~&DuKW2q?zSSCRO@RI4b0T6R<85OO2Z!(a} zK>Pij;nQ6&2EpW~L13gznmUPycs?pTLy7Y zs+ux!!KJ@vmUP!VUO0>%CAw#SdJTS+_CN;e8KHb2F6NgD)Pl+gMif^qh)eZsOn8&b z-3@}$c*S9vZouEing8u|oC#s1IMqflUV^cN;rFi$JP=3PF0(pYu;MnGuq>P9791bYKajD;9Bf+KlMb8Da3Z6e78Z(UEvJ4s*Zl zjubsil9=kzP7BpSQChkixucGD0Cx2v)-A%q2PK~uW&4yhqET+?;7WKNbb4r8g%6qr z2PJ6lV}e@B>bf3Mjxh%eIe^&otyc46$Di}-JzT>9DG2Fk>1F^l&NkdR3PxJ_`FVpS zbob-A5F$8z{nV3Wk{TI}kPo(ux09sA3w$PVTua#~h1FO|k@61Oi{?=1O zJ%1rR=jN9~t}U__&J%(N-|xC+S;43V0Eool1#~`JO`TT+czKk^l+P?=ryuP((CLB+ zuK=Vq!pMd}#BbX~Ts^wkWW9DhS1Eywk?aD;Dc%qA30nNc=dZ7yUn6EakFPRICO>~% zX|jX#ez{rwe`KB45~Ik{tsjUByt~8*5Z=2xJi>brPk&I)?Af#b6ADFiM5|kf%FOkx zqAKh1v$&GYo=7KzKLD>-M3R`m64@kLz#t<42kkecJYA*9ZqCOu|870z@Q5hsKq4q`hD1 z!`+BZKZ^RG%W3jvn@FY>a_?}XL4ij_@$!i3%{60-4&Z>$DL3EPgjUEWt3%DKkr`eV zv_RJ60al1s_me0SdbmH**aQe*`PlLSvh@L=$`FCtWfyL9*IXx10O~A4RZgc-`NR>j z2oKdU->!#CfBTzsz$P^PVAa*+2DOGY0@*deTv41#2C@WQ%PJ7}o{^J3V_iV*HsO&Pa&|+_t(KFf{hB#xd zQ(oDd)Bbj0@^)$ju|)V5S{o5BoC9;!pFN4w8&NxrmmdM|pL>J?kFEa*jr9uWjOStF z>rMC*`%jsQGSDf<91~%G0UO1rVWD7{)XkF?~MZQ>@viHs^I?86E8Mo)(dj0vcJot{zzH+x7y zRS9$7AKP9VjIGx1hM~Z{0|8hWk*UcJb}uV*2+#50Ut{rsI09aXtJ-Q zkS+bq*&AV@@t0imwI3?)VM*4E@UKuAQ--sn7gzvrNBL!n0DgLOB|J*G2+=6Q^)bFl zN*_^tWJ~68bc`67yo<|JINvFEP9VF(CASW{gOJ7bTn`Q6>-gT^!|%)&?=8S64}Rk2 z@ieG~U&kInmU-e$YnerDHjawlJKD=O4H_V9ZCZ+`kt-aaeH@Y#$y0p+cgo{!^o>yP zljdI-#A5v>^1>(ZZ_(feTyRfqgv~$C@DDU!+N+v_KB2&GftlJR;y??t2=dPwe=#5l zG>y`o@{}Yyec7#(=^bjtb%?bJ13;Ai+4Hs>T%GgayJ;TnZDw?i${K{VF{nOm(~FFY z45!+pOUV>??D6|JgBD`XcVdM6>t5yZ)K4|iP#QgoiAKKVG*V$9 z+@~*s=<$xuEuZMsSRZ?VOJGeVxwq|n)rm<7zRE}MxfC;Av9M<6G;oD4YwW^|+)SYf;b3gK_cw7`e|;!h-!)+uS_;WN=U*mw`-+C_^k{I?V}4DCnky6TZW$ zxBS*w8+lA(0%9gj5f={gA6J#tEFs^j&20-W+hlpu&DZNk7GKp?rEgQOekKhAVC zBDHaVdKns+^22}5m-@VA#hd;9cbKx#I#{$g9{N&LJ`bl-(f#c6@5Kd%S3jlc8T9HC zA|hb2_V>B3zXwC`>Zt7PAef5ew4ek?8vc4<99iLY(UDgb06H%!tiGnGr&15=_5IB@ zfNo_0dO;tzMIR}Uwr{!naK?U6uq*SsAFD_23fx+AH7%vIFtjZRgy0r|RfIWQEcqQa zG8;THfc4%=^`U3FPdef8-mczY{DMQweIg7^Vu~K_E18NseV}|{JCCpC+gI}?(%(9j z{WN_?N4kt?)v9(7DZ?8wLo-V-t6|AE&F^!Y6=l7NE7hEO!*fDz-0I^1j`oY8TQ~= zKSiy1{L_mJF_|~;0|`rEc)-vrUf;*Nq_~bJ?~e{-P2Hy;4t=eSy#&(&Uf&47M072! z!{zbJODr_|&7r=OU3~mu0G#d7jC?#%#!laQ%3w^KA^2T1aOyG1;{jKSo)&T}a3&eT zZeBj-8GP~!T+!|~7o;AdKv%CKi4POd93ih3`%PUc!tG((v z0=B(BgW`!VH=gcD7v4Lra_Lce_%{znS=}o5M%$;BXRv`tM5Z^CwNFiH-rJ=KNBpI@ z6RK(c5JJoDHJ9a9FI^9f4Bj8c-XLr}X+&L8fHGMXR z*lq-G2DzqWCEM;jsnC^Sn2LFIFUxm0$c-reFdkSvw{mz9OXZCwo#157AhXca<&A7` z_Ig4-ECFQrqA=*zvJbieQC2>{jfdLOYbTXS$?e%ut@VOovjj1;T7dBz%!7dUuKKfX zfXjajil)))F=9AhT-0@rYXDO3htF7SL^uOa^OnA;kNw--L}L%%0NF6^`O>6^?)Rte z`Y%&FEyKAH;=Tt76T#oUTHISAebag#>L^GQ(q7W)b<>lPya0ar4B76?&kvAoy&#hm z-Ah7y%;^Vf5!0S1sYst#F}?+pVgK}wTKo&XO`O;!*(xiivF*D!v4hAXJpNbH`ro;= zf6Yxh=K6Y{0e3Tz8ZH($CyzOFYKUwqyiQ}vPS*fw%I&z!pYtlzC^U7<2?OD6l@@9TQ;U#lDuecjjsAry4s& zC<+WO70+;Q|a_ljq(}Ety9-h3JN9DfaMudS1*#b)@Vvd4k z@DOqvR4Ep+TV@I9RWewWfI-yW*d<}S~5TSHMFVJ)Dn0A$khWb%ll_<#T>gF{IxO5i20t@cLfbNLjJYlU3?1wR*UADP< zcwdl$EXp(4s4rv250k^%PJK5f+bSI#&u7flk6Rd|#5|bQgEYdVmYlKpKRr6-VENR@ ziTYTguG=Xmy=*9_{NZOB|NdKh6eqrZb9D;-2Hw`h@@=&dO8nG~GPJ@x>zM|jcYy6p z=?M{bj|-NiK@NGm8%qzD4YIl-^gLx{Lf1*(nLA(CP1^w2_&orDGekyjUtJ{V%?||N zsWc){CxDh)L=+R;9Ug4FA68DHkjyvE&RM+VS=b3jjltrK&oWYdCmVu;@$bCWs^+$8 zMjrAkb;Hs>^#gv!cq+>rRkbDuPfd1pi|!ZMLcT7aArv&G(mDT*61yBIQvEk4ko^nW z@e-FPdhxyaw7w-;$!UDYG&nB_BOZ_FZ6J$-wDA36QV|zSV~RVIMab1reCjUUaOI09 z)G_`cgmxixdKynwLQmG~2NT-|v$eYy0HHLXon?fJ&fw<|0aDn5Q}VK8(LyFrcH|2r z0awaSH?5^5@X7WJndox;oq=;2J@yuDa0A=^&w79mcv8ub0Xp_ibt|i*I93eH{R7kK z4{R)5VwbW%YrSAJNjive9N3O3*f_C8& z*j<(%kO(Q6=EoZhf9pLQD#5Q^LaZ~`HMAAbqGOrA!%VpR3qg4(TE6iUnC5{}#`xD9 z#ed^#t4(x!KmP7F+y9?>vxJI}(R(#xO6r3$PdI#ZeBH(+JPI_jD^#YO86cAZcQvMA4PbV$HO~ zSvU;}1=}!5en>Q$8vJG+acFJY@+v=$)4=F#u31 zW$GCxy;pVpM=!ZSH|p;#oYe5JPcu_A?1REirEj|d?$VXMLEbTdv;rxAiO&99@!Bdp z&?hln>y)||WlA1syN4`sA5)3T0^S@q?8PdWJ8AO<4r~Pjbl#ksPQ!&9z<&B21r_(D zs#kx`A$)3!(LxQkVoDP7?UCi62Z{jo#!yO*P;xCD;)yMHj%JJXNsF?tab7jDT*wyO zTme0-GIybALlLKYVJAYpjv&GC*KeUs_x68Wo1rL=Ec{4WJ@6ZR8SBA>9F#Pk;~1j5@o8$MC@-|`yYK{z!oV+ z>=g|DyL#wTe^nJN1jbUrgS}*j{4TY{i%O9GDA&0SJ_A*6`lu`VSbIR--sK0a5YxCQ zqXy9oA*(~8F(}~Vf&=J+Dc7(_=%J7n@Xdp>zcHYJh%@`D@8u#v_`&M z(a5of)lSY>o$hvyc_2gZWUoz(Gv;(TWu_hVmUN0kkS9)pxJK3Vy4mEW6w1!B zy%A8WOEYeIsenyF7@1cIFzJ|K865%1_tefW4p$SLu!O=k{OBAdt>0(t3NV`;Q_gc) z{98LjjwF<{oxd}-Q8K^N*d$b?8`LQs)N8G_$4}0KbUChINMg1}?u-n5yJlI*By?Yr zGO3GKwLLj_Vq*eAnXh(E_{A64UCc0#Q^rlN2KkwMcrPVautXA-bh!PQM5;myTw~ucD!EzdVuy)~d1aS14u1F{J9O`D0mEIF@4~*16$~xxwpU{?NtPSClzw2u ztkO0-AO8`RNb{IroibwYqlUFX1pRBhEyS2WU{EOE!{>Vl2eE)${mfi*=jUj_WV&m(8KTUzvV7oGsT+DgswjrWN@p==zRs@Ez zg(R)^4Y}vx@;xIncl(>z72C{?HN>?ng+(L@Za(R&lH&6BpL*w#KnN@tf9!QB#e+vW zE=o^RPGppA08N2*2`?yb`S?(b?(Y0T>89HYT>wu&u)pIOj!{FRXr?ryjHn#r1A-jJ za-wN9I6PF|PISwVIGLMr$SQdoIfABIl`oHvKYkPR(yFqS7c5QePVHu_FU7bYW7T~A zIW^~{ zZCjJd!ueu3J?Xj-%jb`nz(AP;-uD56P|Q4^HYBeB$IaLlXZ(N8B1-3*o9WhV*>WiV|H2;7~rkD#2!8s04%s+bHN z=QK(ly_K?_wHbKQSa%e_;AMOW9gcz&*G2${+HOIG`aP_b2x`fpwF$=?u0@{j^`53T z3WeYg9rn&M23$z@H@1uCLWd=J{Dw(e4+_))x$Xsx+uwXI^STPN|7;_#i7A=_Jx$VT zt?;0|f9J9WBXJnn@b46F`-}>EZ+*s_jehILg_=2oij)j2kiNa3wwa(2WxK#kRBzDR z0P=pv)s{~&@mr&Ly#Qe>DexRNOVeUjjP%%a3efcm24ty)fD68$aG?1 zD;a~Ww5Ep*g=j>G;|Qv`d{}ZFd}wV=fXv_|7Ctjl*7-=&JEE6&{CWyZoMg%;q_Wb2oq_)dt}k;I#&jy2lZvF;35F@CHb>m`V)!GmrYPeav>>1UVX9*_Rps-X1R_ z%kbP?{RDf_v^&J~i(=3=kc9lHIrhBa6GVbu*auU|(R8A7ddTUI0f?v#a^%p<7u`S-dqoK7(zR51=Ft{U@m>6Im)em3v@|;{W|^Fi z3Ar7(I?}#|;o(S6b!HQV)(jrZUy~#YMA}kBpbS|*&IeY|{sgjcg?&D|;NNcd)7HryrEjzZo~prWAncF`ac^ z{TcmXktF2=gxoT=hYaOYQ7K_8Zd^}`ixQ6V+(?;VU}vw7n6G9~;vs?!6QQ3-LkyX$ zL?;(0-y0BD9>bgX4D@FAx=p?c`w&h;%EVnyj3OUf(69PM({24S0f)Sx^LuB$LGom3 zR>iDGFQ=j|!7As|S0_x<0L-bok5>#x&9OJAX=l`xV-$`-$`S^=0@U!HR8@MLHp%9` zta)dobK&x)3GJKX$0Z5i8vOPaFQ%A~)lbdT4Q&B?vnD2( zm=3>^ag&u-7)RQD!K~GSDrwo&#{1I|iOXB-KBmf_AQ;^av_mAFqCmcld(m z_Zahn%DZWVJbF{R-WOv7AOt2X#+SIy1qcrK37ztii1OvS0-f%(=Ru zOmp>V!!cFy`&5VuBAcW1Hp1Fm_#2lVs=M*BOXJbkyPEm4q4?zt-shv;L%z*AVND=8$^U<2*L~tuV-> z9@14ZN@7;80Q_x8KJIE8_#&x;S>SqpP98%#NSO~C_Z1Tt)fT<_wgUxU0008MC=7?p zFai&hmq#gA*KZDrV`)&lNrGKZO4^8|8}4_R-<{#^Uc9hreTi}5q0zhkY>3+b7HIL0 zPP3Ub0(n<^Z5r45Hw{6|I8M;9AKpQQZ5TNmqkvcT;P{n(Z`&0#^h1(FdaG z7=8FQF+1=cC8X4;CwB%6tms#gox4?_uc(*$q%YpEB0S>D*=TPG;D4t>o^iK7n<3bW zBBM84KQQsWf)40Y`91%umQ)Y+l*Xt1Q%i*Lf;jCYL>KOj)t-OLv+n}P8c^<}V9w8X zY2h%qjHR7Wc}ln{+4>EnoK8U2|Pn<{tHRSwy?IF~Itf9#wDTexc*vnU{LGpRE zr6pSiXkl@!mUvk{p$OKn$acF4C?@S08SH(s|b*~wo5#RX=>006@kx%Ebl{KcP!4hx1 zMVj;&-R8&`Qf10f6B=nDeqeE4 zAi)A9E@OIIAQ8A?e!8Usuc%q%P`f~9v!3~~wwb9yu;G04@f}+dM~_)}QcEP{4@0O4 zTic2JpYRy^k1~)XOr5j!CQ&2~E|1@27Z9hvAi_i1CSu?rjjJn>k5AI| zLr-uuwtJ189`Y7Wa99?)JigEP)6pY(h=1RYuMLksdx>6|5bBs&k@Fx^cJ+8wMlk^X zCrGMHz9s-%z_Kq~9)|;depS8W-Rvb-$^mqgW_p0|seNld%firhoCKoqHG(MAeK6BV zx9isxO!@_3J;ad#Pk3 z;sMyoSC5s?FgQNK{=J{?pZ*zLsh?e{yq$M~u`w;o;A4M5%Avuytq7-0tu?gL%oSVJ zX3R;i&H=UP*3vlD0Mu9fFYz!TFScZ(URlI-%CX9GygqUg`kqF@0<<2u*d7f2G#J4v4OO; zx$>`7wm)kw>UZ>gv~hF%ee`6+KTw@(8#OLpt$-=!@!Jj!EG8<`)Q!^@H43iwG6?xW z%%`3p;ivHUQEtF9rPZ_R)$wIKZwt6m(xA(|0k|%U2J%+~t`zvD_kQxf=OG-Gvx9cj z4N@9!%2nF$bjxW|E7HR94G`J&-Ge@%b#DcHqO#n{QPWhyC?lv`^v9l-j8pxU2U$0^ zSf2km+oat1LE;++gCL7h6Po=1M)g8X7A``E<+5g>?mQ&umDM3Lj|mizB7lCEB>g&l z<$m^`R6kIwxuR*`8Sj3m$)}9*LXYhzX0qF+k)|}Is@IYfR#lvE zRN~kiA1F$FpKenk10A|?1NVp8H^_;%FKknhI;14pMJ}eA<7aG?a@X6#9d>>%{vLy2I zuDlu3Pq>pLAHHPZS_r*7HiiVU@>3<2D2BK>p;^^k96ehJeWxy3Y4w27zqJS^^pIOX zfjbi*2fI+Hwm5-QGeNpM2i%xiUQ=W^3Xq}8*3D>xH!m=GZc0CnFin{(`NYI$2q+r1 zhe91wQ-}Pa2FGKjYG7RlNJ0w}&tLE}L13Shi)$2@`i9|Qeyl3wxYX;)8lxG~rq zBGvxSUXp)aGxGX#rngjJs?V8wW$UtH?5`u*a*;f;$pR_tgK=J1eWX1TE+=qN%LI)H zVX7}M?>(}tB@2ZhG?94wushM1_JDS_UTQ2*V7aXsoZ2U_0PQ70fv(tx?C6vHoucpe z4PW2ipFeF4Xb?IuO0i#*gcAf`vKCZZ0n9on_$u>=;$*PskNfelrcHciN4odYaFE39 z-Muc!086q5?iG>^)wB;YpEO&HF1xQ&`u*eD)>Nh&GXQ<pKk@Y8P~9yvYo(AV+=!lMYobI3gSG{ z7~aj>Zang>CT29Cw4=S@vte<)*iLqsvmZKJQM6v}~qP>XI{)NT%)RL7=%;^Dr&sC55Nw zl3RX#5GRB{0aacHn=njsRGL}>Qx?#ax`;Zs(fpVuK&KBSZkse0p_@^q8c<Rpdlf*#A6! zG+|fbxB97N9eKRFivQHs|LWZb%9iQtxAxcm)}J~tW7bAJ(%V4rQ9@50xIIOhi}K#@ zft++cg&AgSSQRzbhNS%7dJHJn?hN4Vr)9*gT+6>Xi?A88vGxP{Pv7HTUz|OR-^s%i zThU5>a2!Z!?TpGeO_GW0NAc%3ag#i3AGLuEzka#&Lt*47cxgDW!~;i>CYaB+W+?Mb zhq2f+LL4O~1~~T-e3}}F<`vxm%I5viZeo*sz`(@e_6+J7^bvwZUl?LC!{f)jh9o8K zQ<_uZP(^iyAnWZ38%amWlm&3hTCqiRuZX9He@R|U%D6#M2DJ$OP0&0v5iGouf1Ws# z?!rX{vIXA-tvDDU#51CHq+ssAw5}%w!e6h2^`W;h989t!>>{B2uY#P1kPH-BrLv|x zH9JqFgrqFqgowqQ$S;{hfAr;53X-M>C)^ryabmCWcWTrPxkbj{%KWfW#^yY!70X38 zwSOY?Ct(T1T+=+g=~q`q${MV8p;k#_|F+|sfWVXFgQ0NF-_4X1Ym^w(knJh*L-fz7m86no7p2QsG*dB7Dg$NEOEOEZtZowi*H9(>6 zSHW;c{dceYzxTqmAZ+2RV)*s(9z+iPP&&c=U;nq2{6w$o?+EfqS;{h8G!jf7!(oI4 zx*o%2pC2F@&riTXS(ry361kUx_I8O$T^SP|Vt75+z&c`&%((2)j|T1uOn5*#C!At3 z9s8;}<&p%97M>{3lAGel`?kyGtotkM>=ikHCWEIaTp02OO!I;pI|70{q9q-p?IzMQ zfG)wWwV}^-Rd5;}VX)o)TfRP9vcOIw~ ziuoX$h2YVUS(GuLn^02Q|GS>OVj!B@4nA}RSsXVrSJR(3{PWw3ZM%{#D1iN{|MmH- zt&Ny%fBP&QQDmNC@SvJEm`qwrLX*kyTjiRKB<>P$>-w9f9Q<%xWtL9H8;FD-C0B$m z)9#PZ40Tvn#8R=v-}5ACYr=fnmt&RaDc=`a2-3`Sm>oIybp7=M;uphh${ls?CkCO<2+$?| zMHsbq*rhf>6FpF|h=a1oH&A|j{3Bi)DhcfP)z8u`q;TRCt?zyMW0|ibN!Pi5KuSk6 zc<1_)OB@IC*!Np49YaadcsI+vF9por)EnDb82a@h-PCLV4hPRg5Ny*R;auH#2I-Vr ztFeQ_uETPB0|Je}j}8B<`-Kz-tL#no{QD3sRirDKfy#ha4Dt%Ga3l_Z^HC=_c-iJm zbO$C6$MkxB0Z&#Wp6>XqwEe1uK8cD9hnhlEtf%N^Bj`66)5MgZ z=2=Qd>=r_EuBus}8gqPYx&8d!mj8|LR;HnvqzvRbW^a!d>H+nJNu+Z4=X19I!c6-K zrr?^MAI?GoJL~W=mT-f)XhQQ zteWqF86?*!-8qTE)lnG?r^*lx@d9ny`Nj{js?G5{O5_C>uK{oH0k_e~BJnS0@hSDP z5%~*-Rr@yLeaiy!BtD;EEwC}5B-4)}8AEYbUAwKxB7!Y%xGUn>C8aW1D-Jp0gjk4z z7h|VPn46IB50Qd?4yjR;Hqcub&SM7y=TmalIYGt~S(;I~M#&{;(3mj@Qwo6g2P+D! zH4X-*B6GALL7UhgF5I$5KnRibmizkJ1HipQyrg*m~ z)=39F54mSy#qZYny?qtdDEQ^|kDG$hMdg`@OuVuNvm8834xXNy8yI4wx_z4oG6}z@ zCZ(`E+)xp@C}Ad+`lfXLOMnUH3}!99^xFEQ1;@Mi;eWq@3$gH5(|K;Dw$vf~IP(qy z+^|Ar?d9&l;<>=OjM|K$p7E2flFz-qqd4r5xm|&={IXr7ybyT`NYg$j{;^Qhu|qsR z$~<_Q;?WGZIMZ2If&gBs$^F#%g?y(wkQT6k_%H2Sfy}q)$%)1su)eBck`PTr0SS#4E*p5~s$J#0BC2vpZnj%-!By&fOH zf8lxrFi}=WG(m&A$DZU|1+-gT#0?(erENJ@ZM4m1tA0ZSyFh$LlOGM2~V2&ax&_HbiF4} z=}wDiApOF#Stxnp>;u}Ro`6~0tb$8%nzlxA(|W+EVswQ-hyKpJ^`%I*bs@^bm89EK zAom7MGBhu;=)UAzo5JEXUcpxrRy1F$V}Y^Fw$(td)6pro=5Et_I2HcDh}*=F!ED=x zuR20G4(>9GZs_&Jp+dj?og*=oyV!mYlh?8N4w37ToW=21H`53@LRQK~4YX5qBYW2@pa}kHw##C)a zJaVM)UbNfC6>5J>jfe)X^5len#@x@WCjR<th(FWib>vBW%T!vmjX|Z~M3Q zpP2mCsxk`QF#vT(#DHJJXn=gD0jQ+Ib68AYKy%?cqF?yMbUWA-55eoE@q)7rj``1( z(NLqA?wi_d=P4)o%7;8f+Z=;m#0+@onF*!4!Gk7DbL8ZDOl-H5I-25P+Z8L?gkZ-t z4iy+=uMW2R(lU^PaTlrjmIvChyga!Diwe-v7SaJ#GC!*uk^pCv&V>gxqk@|+X^N8B zG|^HgWJYz(6FbUJK?0@6SKAYsdXqUf2m#1)pC6SovXBMrxeXxw0B;2=+$zO+zvf-#skoc(O;6vsR zY#)G|CW-7v^+EZ^r~Ff^Wu>dhQaluTiX-%vLvLybouvunci0$mDgXJLH+m=L2~J$J zr2a7JbuOcGK+-I5W@x3)g`)>~Q~WiZDf$87xYCST(t^_&Q1%o#f%vk_P390BOghmm z-vBI{5yeTo-9-fss%vgj5iW-m2cMzt=EQV14l+zwfMtk|?hNQ-L`u)iruUFY;(&VF z?eXGV1pjS2C9uhHI#C#^y1-hxPwi2h=u?de3x9{?WwvDGp1ud zlUMJ^f4ygZB5F11zqGst=$AT3}z*p8E18JBY8wgB+ehB92(fh>E?(=a2-b^|_CZD1y%- z(@PLvSGBU7X;yN8;ty#94s?>yL?f4mm($cCU*(-*dE@~Y?7z451Z3l=%H8+~Fp3~| zl&L9Ja0lxYFCSB_NVUF)4Eal>vl+sHImLYvFx^Vf11lUn9%fHP7aW`?k_zuG=aBzM zA@7!3za=T#6IagW|qWtQ=bpHBNv5N=9 z^tE7*W1AN%H%?N^03Z}2%IO|3o{8dPO@n7;?KpU4>?O2bA4+=>DtRLmt*j{78vcf{ zGe8??2~sfd+-^MXQ``@V!}X^8^l-nQCS(uBd(aD%%i_n|oGqoi_XE!);0!s4 zrXP$*`=HM*kbY+}M5YmD_1$C5_Uy~A42;RYcq#l7Y?rg#vju zZWQ`mTm#9X`xP-dFTv95@GGpR-Na;VT6|JV&sK2{(@|n4VE*VWM(p2cpFIpcn?hIFfFTQW$Lu80KvU zmJ4ZpTE>7#)ai2g3wXS3HbsT4v8GL8F2fCrRiTRnd8w8%c}f+P>TE(7rrcA^LmqMm ztG-b^+VivW!57~J!WI34FF$Yfdie1&0wfH1H!h$|xXe>!Mv=eqM2eY+-FHYxT; z6ZM_Llu0O)gKQ4SI+rlwYj>1CUY$WUbF2?zs`Ag6T)t3!>lH1MYP_cdzxehkNHmjsP2#Tna^rWnpvz=BJo8T4U2IuM z_zVN%T0v^DQlex}D~3*l*!ok-JzkPTfezq!vYi4#4q^IH>*jR<+HPS<5n^5}zsH|d zw;U#r_8A!+!ulrmq9Djj!L(Zkic+21E%nR}!CaW_8j&R1HjlqvJqu1i{mn0Y+9(aW zDTV?mI@fPDpfvkgcPFFP00v0k8cY1vkDbg1f-m}wJ2pVLF#suR3RNe9a|^qkhi;d^ z=mgkS0`Az_dAiJ~v`V;!KKuafNJ>c?`b*a%{-(Y)8;xJeb$64{jBm8p?b-6D4ABd8 zL@SZSAN{viGV44D^D7aVu^`5Qi$Ld(((hQKX;5~ym@QS2A4Ao5YAx*_ZkM*1JRY-k zG}_*7l;K#gZa%Km>`5S^OI;cM)VdHItHM<4noR7I6O&v(zqKSlZF~P$dpILA7h*a& zYV&}0-dpJJGU4oGQG~WTQ-PoWZPxR5*&Bhnbu6S?! z+fyXV37RrI=5@BSvcxzrin+GTZ=W&>s(5&Y_IG$zD{uu&SKDS&m}A|evhL(352X7i*HWvuC+vpfKEL~vak0I1e@ zW*LDlFAbq*ya&}^m5G@BsUqA0Jl^ND?itzTYnQNfmMDxBmN=_zs6KjMl2!&^GIe=b zklcBIdF?*S<_S~hYm1VJ<>#yz0^Uf(>96NpyM=+bgtv8|{7GM!z|Fz9Rr;X|xeAZ? z)IC0YP`?2t^cK0zaXw37?tU#Vb+z{hBpZIiHDwkDwdNHx?O^CFW;r32>@?;*Mw1I| zt@?nk)`0B=^r||#V2oL~4vH2*=?`!(S*xEGC5`&xq8y( z+f2UZpLMS${UJ(6U4Sqln3mJ*ojs|C2V#`XkSt&o1&+i`iD_JN_6xnuH|DUfR_9AE zySzqaKV?i^B9D?+X(yYu2|K1J!)I3I6)^YMVLdF}W z0%bskE05`%b?9&ONTNQ}89idq0D=RrZwkI^(kDFgg45?IGAArOqHudwVajbp!(L=f zpfr9-ljO=mVfj!In;eRGWJDwTs!J*169MUO98Nh?JPIKt33l_Q$ zWK<|_j>B}IA=W$OaKDxcS*l$M<sOx>7PahrjypwgHV zi?gL?b#r&+{q_8g?>gyRO)hmzT;Q+N?FlLdH2cVvuTyNUKYe=bKX}kpbig@%&eE# z#{zNb?g?e&w;$pue6`siIHHdkMo7L~Nk0b)7wYYAeXlrrLqTv@Mqc`mR*-QAJ?=zrVXVY0tJ4s*-!I?{??|ZmWC~aeHVwr*LXsN_#91!3G9o4H%9J9{E z5_6#MYa+V*5tA^*veIEQ>0(%=Zh)avMlo$)=3EV_rQv8E=p$z3g^R+SnkUNJJTPfH zXdYxD+C)wlP8-jrfY44_+GKhxAW`z%0r~~q^rp(`Q%)GgZ21Nb8V?P=_AVb;vb=9% zDKIPoS$we-SPQtz%DK-8h;RULs5cc44yClTeDhalnI(~JrR;;HRU?$-A=cfkdjlT8 zu8u0DgNLZ*=037J2x&kY{_Pb%An0tE%-QffB}%b!69@h2|GS>915@+3N1#DC=&{*u zRqE+0>5uJNlTW!t7(qq`ZNK>EL(#11XSo8%C@U53Tmihr$0|;TpNa%Sinpz!Qc%tO zP&Xg_5F0M$yV~IO>V}|)m-QeZ;|TyN3Ac>9j~C`b&cIa-I3pp{Alsdo1jc&89q6axQVbn+J^kBC55dve2xjWZe`+fd^e1N zO~_=XLP>;iCY?#OSY&;0B@v5h1Gk?^qU;?7p30|>#h%G{JBz9~kdDnL(WGQqmKVc! z3u`$Ad+%`<2&6^(e;gt`!qlL6*Szrv0Sp^8k0V^99CUImJA=7R^#w~U|& zwE;<0zkzrg+@|%zK%#(lg&x-|W3K@Hy218aONgY~1C^mesovP6T#sHhU=H*kA^w!z zlGZxKULqLk?`8>JWz-Fgu2j`)v0pdBz4T-)^ z`h$?xx>~scd{s539SW7L_e&)57v#Kf4W|uaaGvjs`1h{KGaV*-C2RRZWWC<==X>>rX0(pE>zkMjf zDva-mBZ8^w+C25utd`^D%YRguSi$iNfxF(a546^C092J( zHbVY+q#3;79ALu*Fo=z~){S+D@y#q+c4O@nm*SIL?~xLx{qa<0_Qo$p&&w=+>n3S1 zU%!)|^*?^zke!U}cOJvJ(80$;#3B^QBX1}if6cG9%k3otU~Ws`#|vEuXat4PEF=?P z9}cWg6m;I+#yMpH^qD~PJ5Qb&DN%(bNy5BG1iUeOFB_de(EOj?Q#K1oX~Z_TMp0FS zWcU;&YDwj`gCsZ~Wi3+QtRl^bvAU21|LEDtt|s|)JI-fx=|&vr04^LsYUj{*Jmq|6 zOUVyLV_6ygMASCf8qJbsDf-Cy9kp%7-Ri9;s+BAgqL_qT*n+xb8t2@RA(BFZ-=(H) zK{;{@6qUpJcE7EWaS+zlla>0r+Jv`EGLiT@Nu)+F^L??h=8*NW(5vAj)Yj_P~sBrc3JFx(Cg(4L` zzd>n%#jCL?_0s1SV40g#&dOCD>h>p}bRBs__W=jg5Cd#!qbIaBS=JFdc?_C8$|zw5_I`qu9q^@dt> z+D%i`4wFl9h%kTC;@)xtk0lyHG1ZHD!7(U#qj(T5YWE2E&k6PYw@(ixc0V<10|3uQ z>Fc1lN}J(Tj!!^xZxZ>k>jsFp21x;2z3hl;@T> z!#5mxSc(gF95%0|cfc`GR}Vc+MXevF1IaB+Tb>SBg`NyZja}*HQwphiJfK=_k7Cfd z4A8u#j{Ucl_ug{&wQSZPbxRVQlKr;s)kfmiK;mx`P^J!gmLddXtY{>SmMQO>fL?lJ z02=c~`vUv}v(Ht2w5xMUozE z_J^DJR)Ehq?`D-Y9))o$pU)eH%##|r%Cf?CU;d9qF`T(^1x2|U>n6-wyz{b&vdvZ$ zPn=mF{OtvB#8TFa&I%4<2iI&{iy$v(JuiUpZQEs_3{AQ_>!H%W-Wb7F8MUC}I7`@* z%~-z0lfPZB*Gqme%9|HHumTV(mIcp)cD^`|R$(SK;oiCjWx9TG#<03A=Jt^=^ydfGorU^XeLQAfRmMfGJ-1|bG z99M8yE=O*NUuMtV61rp7v34I+=rY-ou(LLqU5B%IoKqT9CiO*9( z;s7;X1Rm{aui}fY32}Gg&wRtJwj*QO84p@*zx9pQ7i4MqnPGX5PKoTSYq}#HK0Cm8 zH7>iMvkOqu|K624o+>@oc|1g_b^4#r z$F05=2QRfKnMa(vnDu_<5!1MVOd*WP9|=J{Se(HOFStZ>l9hz8aPXbP7guXo1bk?7 zhdhj9&=j7BOhR#3P=z6V8*0+NP`fks$KP}@z4C=)adv;Wu)tf=wW-U8C}l>E03}ax zilkl$oi@^(BX(RrZlbPbsb29%Wa{~Eu55EWhIHrQ#aVDh(LRxL0Yz$iMMGMIW#%%O z_ktX^1-3n|WAv*~Bo|}-&-g4BL+pEN^yD6D&Z-efj-oUXZ>u(yza05f&rXf3+Gt@m zp8j{np}cP3JO#x-q;xx4jVb@#3w!^1VN;uHgvA0?2Cx;mmZa3SDwH{%=$z$#_uAg1 zsKjHjuzZ3iVc#HErLbz{xz{fiH|3%A`D~r>fZ7*jak4_doFcyj-h$;~gB;RRpP9gQ z0L>O{p|kztSNgNQEB8CX(jQ~#u^;2=fjvq}M>0TbvN zJ{Bj%-#r(Q63ixPIF@IXv4^rIC$|=q4{#u~$gk~pHbc?LZ{Es>Y~376=3(>{=<3w- zj8JCmcXzXMRk~Ar+nikqwA#;AV51+q7-c|=h1R%vOQG%0_CDm zTF*|2UZ)5@c-Gc6SX#A6q7NWNQ)L*!vgG}*-gZAlzQlwqa$23gja<>K)Lrz@H?hBT z2okrrUZ4Mi*;XuLHXJ!>`+$<=(vVl;#Q1tVWz-yMHc>W#MUI?MLW|Kc=+r2R1!=b; z?~Q}JIOEnmusz+Ef7fOM?3;dcmw53`8SugJg!;g=y^Tq8cTx21*2@S458=kb^Yiy( za2hd@z|5x(s<$zs&h5s4nfGgWSD_1unr<%(5ONflVU=nQ+-F z9IKg<_O>sP(UV#Kqf5Cj_vn&4iyo#67n_bRBUhoo11<2~L){V1ae-_uxD2sWu>C@v zvBb%I;?FbuGG2fLm4NikAFRxAl-}6{U>gu%FSkAdGy6*U8I3a(Y~_y0-w*ZAJKn9` z#1)wbFMhlcUSS(Kw@M5Kc?gJa3+AVYy=Qs1Xqk7QJpT`17w_vu?0z?%5vL&H0%6Bh$gkPxvrF!7uuwa8~`BUeG|7HsW zwX)ZpnA!?)6*gYm7=Jq!N@cp=Kp;abc62%1280^H^GB@b+_X41$eNI<8P>wq>81x2C{8D^F;Ex#8tvAr+m4g~i3i7X5*Tl#xv*qSPk_gBG+OoVI zM#jFrh(ozKp!xEEOfNh!ORJi*Y&7J^aA-QG)-cmo(KG{qG}0wF)S0}xK@+`^$b<1w z_qnfNgu*;{6Jq_IxN*9#L zm=vP}BNp*%5sl&=fGYrV54>fWlSUrTs;@g&QYc-> zVe%OPwe z+3|v6V8Pc}r6u~Y7}_h{$zOyeZsY z6TzZ3MS65O<8tfoKH3zvKvE4{{l%D|ohRvyL-PZ%G0Yue2l7rB1n{Yg(p%*C?6!s(Cdz_2f7y+@sHQ$jW0{uLmgdpwZGvR#7?I<)itzx*Q;vC7td* z?|4ysUZiHJUpzJYxe?wJ?RJ1f`*@hG>2(< zLL7UH#O6GB!{y(J<6Z>GmL!>2?Sw>4IJlxG8|iO`tG5oARu&Ok33tmuAudz@Gl35u ze+vyNvijv6AfrDZn?O&_8^LT(BneRZdtFDO^BCY+e*4Y88k!)#R~@-?C#oB~Vd8<| zU-AH(g2!9TL*;xkYYFaNt8dfhL0U;-*x=+(A{i$jvb@u7$3oV$o!W};2V-Mn$25bz7NZuM;q>PNWpOp&E@sJ#p z$Uzu;eMyK1qqwtBaDW01aYzn%Wo0PDHq3?QFL3psD-(fq_kN&SjH$n4<>G`I+j3Hr z)z^+N;QUuxqmK1TBC|MoaZghCeyE{Y@Ed&X#-%+_S%EmK5T%cGZhAPe7w-n|{|r0UekR z9XOR7S&P}tm@5!YZ8H}MD45n2YA!y0P@u}!6kv7cD15s`F~Jru$_R_c2_W0vi3suS4&iAI zU==0j=oNVVX6)t0_e=ujVFfe3i7YYrhP;3E?+5^vQ$zJ!3n~`}eH(hRc!cOjzwKh^ zO8I9qH~)K&G`SR>Mf=c{4`$Dg_BzQ=I|HFpPGtu{2 z-qO6v_%MFveW*0o6Ss#li981^rVz&JjWSmXC{oJe)?R@XWf$;xm!rkV^!zcb*W27} zK*o0*w9NBKp4B6SLRq4ieT|hU6<)s|ZVW?G9m;h>aq!S0#WEpcTG{c2_HJcuaJ*7F ztx@KvV+;V1TAqT^13@p96{H0zCR93x^g7n~OEcvbA`b~#5?G1^a*1D7#rNzr_~0Gi zC|~H~?!A1mgS%WVGc&v)1tmU6cEerb^p;og;;WzX{0l;3m_Xp+E6AF?5(;F=a4)`H zt}354f1EE4{N!4PKMdBVUI+emef#{7m1+BW{RM?p5> z@wEt1*mb5K;ZFY1ShV;*b0{k`-h%ei7?xi&QO;2?t)cI9W_K)2>QV;}hXPFWf)zLX zd~w?8`ntgxUC?5&dGtC0=UiE(zrI|7BV5q{toa^|Gt3A99-Np8xd^-aK| zqCi70KI+;2&b}Acj*F?4z84o|bn&GEU}|Rj;T(blgAyT;hXc6U&YF?cWrpX>PXzuRPZa09&~B0=@z80 z|N6vVH$|@Q5oj#(wQ0U!$70#V;KPgfFL&SrXWLarz(|pjqzG1(gQ} zN-@n%@g;b?+Yu?TPjb{O*7VrCfThR z$VnB$FM{1Rx19gZ;meKcgDaIfOeiC7WgDt7pKL@SU9o{udW|xrV*cI7RDONTUwyd> zKS+|7CNFJtd!#=m9z+5wfkdk;BrskO)B&K;{gAR>tRiudd2q8JH+~w7WRnAE(C__e zf_#jXSp)={^yy$HiUFS9^+WBgGlbe#>qdWQT)&EAL-Cr}dF4Sf)Tk7xPI~LTb<*OI7WhVWt?;C$HZ!i!C_|6}?&QXr*4_m) z64~6e?)sZALQ+6{{J3N3L_-00f5C>kIF3u{H5q2hywL+l*mhH6D)zY8|zPcu@1`WKc+Oz_3fl1odxcZ8x+!E+U9gnk-|Gl%5{K z#D^a30cN>J^no`KmWeTPSPso3Rf1%SEsYb}x-eBP)GyCtLj*AqZ)Rn;J8Ica9LtA( zKHrs@!?xc(o$dAL<8^NF+*^S*T)Z*!4ltgx&gAjbO^zkO-cCSgcaOQKLtyhka;a$! zp|uNkCGdJQ50O1=WZ}1sUajA%3r>%&cI~D){>@M4q3!HaU|A@`La1Q&SSglV{`PXz z-Vx=a`*HNOh6m3_Ig=PxA(WW&!fAyP`3jMW+hiJ=>2j@q?3}GuQ{!LTeUrGflP*YO z#2(Y=*r%ZSEwKRkXI3^F-AAOFt4bl+2c#a|xeZwqd|muAB4r(|Zfoemh=y}AUmtha zG{+AVFyEyM)*eiDTWIFEZUVFizos#UZZ-s*PiS&0bqji463BmIG@YQLo%`va?c_`E z7~uf?Hm!*O4fhm-Y(fdSaOyjUc2UAFEL-KjHR+6@h@MY?iaCZBQH9oh4)pd@{mHld zzr6S9kO)x8YK9x_sbfWxe=~k`h%f|K|1%?-pebdKkOjP~bgSy$J`=h(;`4COH3K+p zpa$0HiHt;>e10rqdkDorrxQRA_45znKe1_B>hSv;)wDMNf!ZS~*EzF|dMVl%NwI_k|197?Gzcdh-3fk)k)1B4bXwJEEgg5*cZd2gTIdWdidf!Lf)<< z@9ORJ(!Y8H3gb7AF>SxWs;yiM!t3Jjd+kf5Y%71>-E`jBJvjU1794%41Ld44^d5+^ zAH)WK=eeHo&CMOm5Q4$e00+=Jt{HkB6JA1aci@D;hO`Y~IJdPkggBmt5^jQ0s8rJ! z;E&^*o26sl3HS`Q9KDpqc?UtC;U+w$oqfZ$Aa!QIo zVcnzq4L`Xaqc19K|9&QQdfVTAnyPg;zFvuK&{!ok`G5~5%w%`_wnhEMl!pgj4{3%7 zI7{HvAGXYiNAN(H4y|75)SIv7=Xdg zx4+8u@eB=8Yp~we<*zfPB7k&+nLp$Bl17)fHi2z24ze>ZU>;p2l4+0;NR4tm{f6>P{nbN*+GEXx37m%at>nsKYLp^`TWm2 zi(d6A#jphjcJ!D7AcB^#Fj=zo@qu6hBcQB*sufj8(C=UW>=`u811zo=R(`gIO-&6L zmB(4w8V7wfMK#Mjg&%2o8o--_kQ4AxyM#6O;gqt#SUCRe3IfGCqvXb9$KR~2^H*Dr#>Mwgv;4DnFy6=hs<&+1GA+Xi%i)($ySOGBd_S)_rrG5?16T*7S!3{9GTNf?v$eW*Fu3O!+$qZf2Flv8H<5Az zujatP^`L}|`*6AZ1UpH)$Z95MA;}41R^CWBGy@D{-}Ow$)ohQv=pmQ(DHAZ|NF9}bxRP%_?USW`QsbbtcWS(H%#0( zuxIioXF8bRAN|5^`QyVt${glJFbj$hbUgkYkmmnO`#mb*pP9)AFaP1z2!dR|2(zU9 z%P*hm^WU88;0QS5M@WmQ^9Wn#qKBZK>G0iH&vO~9TSWWSj?vb7`ZsTOG;GmF51~}l z@5O*}g9g{Qz0K3)Me@9}bQF*n0b477P&$vT((&8t^?4F&bgd&~O7xQtr;319lJbl4 zh@K3p2V|6jR{UBI*zNlEJKMomY0=2QT1t%aQ5kbX8IgZc%!mQT?~>*=;ixvrL7@+m zjYZ8&w~BlMx%WC{UwwPIW?-KZcz(^?X3Wh_B47h238a0~OkmR-2-9je)B5BPcTp$x zubI<_TQ}`>EJ_HSgyJpqcgQ#<^3ih^oqz3Fdmg7|zrWs6Wccn%IA6u-U*r+(vwt%@*_G^f?K;5xQtE_Y!sf9FZL#2%eGMTdO_ zKY?s22^H-MM4?*XUyJo_R^Ep!65AW<&46bGy7X_ajn6qo9D&@P<*)eMUSD%KwaC;q zB59^PiTaCw2`u+!^E7{Q&V<(NUI}cqJ?5N8<@}umP8A;OdQ2}oZtJy93+BSU2T|zgf3QIq`d1aCje*9rOta7P zyD%xD!W;%hjpi?h2CW<b~T%Uq(#JYeP?F5X$WGR@6b<5U%}(A zc_9S`%yY5UdnuG9@ij$QNS~wu)f^!qqusIhIzMp8lxxmtn`I}6c9mJ4eyYw18@W~T zy`Db+l+=wSy5P<5#PivIGbeY|Wp&}RXfAUW48f5#=O!Y8-;@Sv* z+d}_8IVU${1fPi%*XH30@nxwm;?63A_uq9=0U$T}mi`Yl+wL+&4AQkF-0 z?n!<;e8EUSTHI7*JImG^K@L3Xal2d>dtA}|l}Wvz;)Sq=7zc@&cz=NinE%xu{&}z1 zm@5QU5d*TL=|kVWFu@VlwN^=NR^}oN`@i=JZ}lO8=ogDsOP7M?U;R!;L^cei|CTS| zvoh^vST9|?D{||`E!O~?fE{kJ8l9JCqVZm>KtLvm4Yo8;AB}CkGndgMxoijKv=~_K z2d)GM)YC5n&=wdVBW9sNBi>Hz0?oXIm1b7F9)S*|*#$JugqRX95&fnlJ?QyOdER=w z1D5u6V{$zp1QdFs6%ym>`4GbfCf5?Y@<%r*dHRUKf8_w*wh)fXl5P7!dHO0i^T6aS zF|;n)V@LnQY;;JmIlzD7Qp_Kdb;-qjyb?i}pQaW+WGaQ5zYgb7@oqi&d#%x?x^9_m zCDt20y~Q$=JAA!f#fxuw+jDlYa){5I^=yPVP6cJL-LJ%j4I+zjg-@Uosr9s0w?Aj(yjvVNICEO|onaQpEdbG(_Pv6$&eY2O**@+*_-2UqwwT<)1ppw~bU^Zt~| z!^=}+&_n~U=#q;HAeA(wvBBX6;RPQzLl?Ame=u@+oRqg8<46wqW)xIE1B-U>k7mJR zZe4Sh7Fr}t^Y%-4hgF9rhXa?EADf1P6>V;xOO%AG+J!HpTB}smfyKyOAWT&DuYIMz zKT4Wp{BZl9&0-=I`qlg@$C>muX1){gR3QK7?@8H6-x`BIeoz{bUV5{3!Y#kkg{kg9 zcJ>uXcgkmlMjt~rzH1+@VDT5YA~!i&iQ{64K%qI$($o3RnNqiB6a=xC;AaP0i3D~t zFF?h64A&4QJOdb?%4zuy(&P1%oX3_%GIJVxiPkwYtl(na(YMrAs{|fjA?{mY!xp1F zXi9OEMlr@Ce(mgqX8`}TA@JA_*$j?djSCv&o|+Vbnch%POo`jveGhzmyQ2L&KA#DG zK#10m6pP$9lz7#H!&48UC5&Xy-#(Dy@}c|Vt#pj_QKAvCTNZbj(Is8 zInUA9I4CB=2sRE^R7>|WLQ9JJ=KSE4zw-$l)&)VwQ?AK*vXQ3p9h(6%T=ygJpHBiK zxyk*lr52~%9g~4ClAcR516C2t3p{00aQlC3y~oz0%Cfb6K{W8Li4h>YcRjrD-iWLJ z(W*LUpY`out#^!Kl*q`)8S}{uM3KhmqRn(1-+%P=|K!C@x9)tv2zrSlDJl?*o7>V{ z<&}c}xz2x>=1*^L_j@*!1W55xs!in1gPx1Pn(?lD=8{Rb2*pw!{E7e#NO4q#eu@%>HBP(*T<5HO{VVCmJa~0Iq;9&N}H3Jz>x|(|QPZgruv; z>`SeP!cFlyXRA_E4Q`;TeDX=4Ej&%LT#{1{wF{Kp^{NBnJhr_j!+}myq0fs&zy9nM z|3`18_~DTBd!#`iqM+$kE1*1L9Kr26vF2O${@3R`6!pJ(L7=3Sq7xDk>n3qy+hV)*( zs)p%@<3o6WK*M>eDD0Eb%eewLS8b9w2nU1f5C!ltMoKF7J%tmYBx`fR-w#HI77A|? zd=5@BR**YlL^r?nJpt|IKAK!--H{LfObw%#1{w1TF7y7 zDLxiYst*FTpPl0?h&}y!&k^=b0POFrUu8&8%oS4$_<>``Oc)MsFx8Q;$W6KKSeoTA z571%J!_u$8i=FWIzdZZAu}eh@H4&-yHU-z~fA@z6W%%pWz3BsZ&)A$W@sE+r^8n!m zlHzF`Q$ZY{4Gb^|f;_+y1nxP_yZWmOb%9{_hh(-^4kFHCW7!!QS2;fZnB=-zd2)($ zYoc)IiIHmNb<8=_Qk`E%vo2w(;)sE84`ZzEa|Q4*W&q9(e#Z7@BSuE7FwI0kSyYiCe1NXeknFZDU&wojP^XyZ8bZ+7HBQtyFM#rd_|z+iVhqDIf#F;aPa+WIgf@I;u!V(Q zWeDBFKu6Mlu3H7+mig-WQ~f}^?3EtKf-7X_!3!j)fL5`a0#G%j6-WI+{kGmUU&Su-f-TOh0^XW*j_`*Tb@2y{; zpzd+ITcS4wui^Q1>Lh6G2UKrx?+TFEsRQ;zAmW%82V)!hxO^@N#0Af{oJdNLrgQLU z9bg4-jQQ6`@~!~?T=Wq@h07)==XzpsI0v7HP?M)`w$lIS(o>s}decn5$(x($9e47f zNwIdPd}gEew=Q&sEl=qV1i#5Q>jsCOM#8$B+;H-?A*R$v0yOZMlVNn7{XOiSmMi-8 zcw7GNgfAV{Ktx~jBOJVN+^L&>38b5HmBY8f(@A#LXv#sSWysZ)-n-4oRTtc~%}67R z?^2KmseN8?m!WmxvH^ea9>I9g;)#Q3BVvFmd2<1{Pky!rjXOv=Hv*g&;&VSg|49WL zG_;706tuk{q*hk{4wdd^?u+4r7qBf67wV9WF0=)U{kPL};+6d8%Gy-uE_?;Lb`TEg z3^OmZrW!Jf*bB70Z*c-puQx$t-Qkzc_v>sK_Qma7mXVdJ6D1jS7Cv*oA2l-xNOxK*Z7S=SeH75#c=R@7aW0lT_jS zh*~r!s(^`}*n;5=HfVU<90g-wFNGG?vV%{cXiLmR39(%n_H+7e$>~DDFd0Iavr(^@ zkP-=rxTQR3v8WGjN4R8!^>h z(r0?b3d+zaRWP_asQt%>;pGO%0`| z&SDS03yWb4E=a`pg@F3r-3j2ZEfGowL2c&on4(g=a*);TlDNMeK+)*?Ea#jRWK5HoN`)S8gnvU7`mpqpl01$r3p7?0Ji5h+P0>NB9EJJMFMY#nbO< z9%&Q;hYchMn}9HZHz{43fJsM$F2QVh4#FK)+_)xyQ9==j92ppAWo}9VA2uWvH}JEl z-lDGu1ignSv6?9e$W~%RIg60akZU09ujugtFHSE!LA+QHY_Ni~VRFLx)CF>2l#0C+ z`G-5jJ+k7z`S6WaXlG1+Xw*)D8gJ%3pY(P0ad2=94S`eE=_4t9kL|HKJr_9)}qNEWENxqZjJ$6gEWs-}1B@70ZS3}> zxV}Wx9e`P&R>LPQj76vk=xY9G2VNlISM%f5I0{fSC)38yOt>r=65^Qh`-xNiUBMJ0 zxNzv9CBo$z)>a=EmMzVuIvsF|+WY-@iTiT*^tUCqpeA}*=6>x^=ru7_m5x*9D(^!( zSV#xFJsb#wOR_N9zou|jTPfaw`Rh(Jm3nXx6x}26I7_j*aAFy7+`tq6W-0p=Ne}3; zOQ8>YA@g>x)421snz0^LY$B5Z(r=<=MDmMvu6aw5{u)3EXlM;Br#Xd9jsy%0y(o~n z^5P(^`8&_N^^bRBqS-1pUTAKmcg&@J%wRcnd730Jd@pKH2&1W|O)7rO0VtjYSvg_4 zK{as+GpTaYD_GWwC`_?`WnGvSEdc?#R?_v7Lq*h4zwgjHpfbn~h+0W?y-fw1euSx_ zdR#D3vJns?PNaXBPJG-c+M`XoZc70XKmZP=^~k7Qg^k~9^m~WYtS!LL4f!bzT&Clg z<~&#JC`SrY(ASq=jqF6joVsiFaS96VUEV>vlLU1%1z7Iu`^9qFn}v_^Sis-*bG>Y5 z8h#wg-5dZGmg%GBas}jX9lyfz0K5DR`^OpmYwkvl6xVxO))kk{qzq#j@t5YS4InHbIX5a`iNW$ZoJOHc^v}&*ra>h6Qm$n4~sk$kf3W zRZrkaA=Xj+^-B6La5sq79RV(TaOx1)#zWB(fa=`dUwR@Y7V`7@AFn0Wcp-m2db{9c zGdX2Td^h(*QIH0|5fXFwdJ#3Qx3L2R`-C{*r)*vxCI)r z&QliOX8<#gZ+TBE5Sh-lNa}e*X0VSP@aQ4%>pC`aa>aLGI$lG6~!rmoPl_j!Iyb+`lSO&ue zH)VM_?QqHYR<3jeh@$#nL)lfqc<5Q2iMBKTya>cU==pvz9+)dIYO7y2bO_04SCE#8 z&vy?k#67+h7_Xoyt58>Hw>Hx1PJ##8rymeN#?T=L5?}KL0O`yDHTc*}2iSn%KJeEr zQ_{$YRK?zksR`qg53d}&!FK%G+khwE7FP(AR*hY2p882+c{!qW)$OyxzNFG6KjQ+C zV1e2tw39s~sviU@e|{d@$#i0g26v48l|$>V&wAgVQu_c>jIso1AHFmjUmWBAH8Wh5 z_~*ySa%4!p%|6N{i9yp;A$fq>&J7H6BZdA*p8oVL3!Gj7;tPo*1(O*)mAz@@8MK%| zI+6I1IC;H2imWzb+g;fGVrVzqIeti=+FwuAL2m9r+OMIsHRrr&uT{)zeJ@)&)X*sG z3h{bs+s5VNlAn7TRb}Xl|HEIa{qPxpPB&DhBtdefaQWNkoQjoBix|7{KC$oNF~x0Z zWzOSJq5%45y}csvyv8ys_x?%02QDG$fJs^gbqF zA87U+|DW}w<8Wt+ugv~hC4J{+lEim_jZl&5v>!lyO^O1_AdBhpdX$EQm*ot8^$&19 zbdx}@_7tl>IaDu21@Ve*IpOyw08wBf3qitn9LiDj;)@n}yesJ66bbW0JmNgx|DHQsPJyr&fC!fx zcXlb}cL4fq&bc|M%O`~oIPO7#Tha>i+o&j2qt4*DS>82wm-xi5-RHfCL^n9>-&^70 z{KIfcLBZxk=z!ZCa6=UD(h-g#&^P*D!DrYxuIJ~Lh6SX_ESF@uBDRUokt^IlWYD1b zStD2lq_xvm?dFqo?MY?1Wz^&8e6au+e7RzjBtN*^IA32X%@H@#saq*ga|JnyWB-nF z>#q%b=hbGW5UHr!&rC7bJ68r-fyy|Cw>joa{ZR4|*t3cFT~E|{Vg2?7Idp9c90v|{Q5V6lyZ6I_YYK%OY1pL%?(W@?16vxxs+&U# zT2dy|!J*?H;8x1;a40C$iAVeXPT^BE8r$QB{Uv^qh-KcK^^Zp$2KovqMBNlpPHQlO zZG}D#baH@kQKHIvYOo7ZC{a9hp3_2j!2ccV7q7>X`p8oF@#Qwn6WB4!7ZB6*8s%dg zHijp5l6J{HVm|VLKHRerjJ2Tld`lhGugd{PZ!{!;Z_q7P;X97pD&lwY)ZyGo{;$8q zZBBzHqVN}+p1)3P$5|8+7;ktu$;m}^q_W6=7s_W&97>NKh-2x)Bd7Ae_IOwZK}7*K-4{SxIf=lhoJ4wVwYc=cCIUB_c6mSr2qxP=%(El_w?Q~1NaAgRGh&{-U~dO| zVtYnApH?Q;`F#ibFPD%lji&q^OOFpLjpmhq$vqp-oCiTdon z;)t~N-cPkGY@zG>0ee?rv*5+!*(fZmSa5%sVC+2S<{&l~Owix`XBuKfwAM>^mdSyZ zLF|n@e)s_V6xD%z2-BN6IN!!d`vOx24R_G?u9rtsJf3kkIffy^s$Q-S%(0u=34$ii z=-cpzNp#;k&CmchOj|<{hl!rBuM(iqkY(vC&rIy#LPB4o=xE;HFEGoM^TBs;0{l^@ ztY^%s-eblnQ()92i)lK2F#{;}5|yFZk4HB#;Hi%aw+$tW5OD=|N>sK-3fjvu$%)?- zOa6Xe4;BL}U@gmvV;c*lhUw%`I_X4n?i7loYlNu#X~T2WnzPYj-wCf*_FsCWTC9ID z>hImDT&#N^VDPF5I*54PTy^I^I8M2`Hi1-*yq7#>{mnu(d-1;~qZ%(ozc;LW&*_Ir z+>^vVA>eVRkTi>0Jf5|stH9*Up6r;-Mes5kpE@!M#rh6y>d*H}*xT+m^Gbxy2ewnu zXKi}XGO#4=^$lT%pM2=EwqeS)_uf0;rbX2ETG9+3Br2SwLGxk0AMi{VOFLM-;!+&H z^dlDfZBPnSLe6+!q90}xSDb_hun4w3-0Zk_x8yD$9~hwR}kgk+lIoRy-GseqcpBaKnb zMXLFrbM#&XMiK=lk&}PFedNS|S2RY@Jtb-vS{*T;9Gh zp(~{>5#{1o?7cpPXKO193188#{(q_#|iZPfbL2i z#l0#cSU!=j_6#|K^89x|6`ozx;A0K4H8)2wlPK=K29iGd?QVt%7u5>!+4qNw1lZnv#-aH+vc#k?w$R6 zy+5B(fHlEM{1qgR13r^>)EzUFz%QjBw~JQDg}b4#JM~?D$moI-56#RkGq_r1FoIoA z1IuVM#-b$AMRC1jB(*q_26NyZxuU~cK*&kQddGS6=es#Zt2QZVR3GstwUi$p%3G5V z0BRmomu(<*K4}|$wNRLbg)raj=^kRzm7l>$@)sz5K71LePka(2UK$0bNC2s^ERE#1 zOXl`%0|SBfG(!nA1ZMkiksyk8C+z?ra!pGW9ovdg@*W}|8!UAviaihpDm!Ep)O>?F zPB%%*|G#l!1Qx{THoq70BRp(trBm~u+J@af%V3R0qF}WRChnYzWtQ0{<5b}&b6b>z zA4SBQ_A%3!sUYyJ6Ufv>k*Rz?XsVIjNkHG1#QZr=u~?3S^2KdlU@B0uw&|(im{a1F zhG4dO81r1Rg=zM1zu7Ug%)(QMxftzfO^vh5Hk}dKa3O*Qp2_3`+8M zGYVAtbW40_x9O7Dk6ro2b@gpI`@6D21N4i#np`ZTh8??{*$!5<_)#XeM*Db5vs zz#WRyDd~3>3<@6^IaDz*3|5G){~Wsh?}v>{|6+-@4$m%#2&imGc#e6CI>My>svFrP@?t*Nd?%%+vj+2BIKVy|3i+H@+ zAhg^gQInonY8Dlw0if(}u%^O&+hWaze{w0-S|Gd$@;sd0rc++ElLD99x>3Z}DWD#` zk^SRA=aW86(4Gi?0M!UCvZdZMp-lUAiwkV=j+CT~SCxkKwE=`eqCnKO@J*R)_WkwE zAMyo(P-dn#O*E-XerOdBaZv-$9s1B0?3WGg=&IO3%X7~a!om$}3L9`s<-Uf?{tbMf z`|oUI6d3CR^gBU>47EK6Wy{k1_EzahFdBy}^X4(#`MDQ)oC@9h#i-s%R?VeU`0Q%2 zL$s8ZG;h#zl^{|`o@$ceNC)Sl8q<~sNeylWnaFHsW@J=r`E!ltpJL6F;Gsstj!j5M zybYDcN~JV=b62(zkoPyx)MR=z?(aPXTt&H~IF-2T{LVnQHpV=N|AfQD;<*A}(1eym za1|)!8tBZ6=4wP}9)5QX6d5@+z(ENT@XzJ1WY!R zPb;y6=fnop`AMr+ikk*lU)*xFKRsp~&t`qmhI8w+xY}zmfiw?K>f-(@vfPO+Jr}$u zKI^zyrm-|BuhX;nBohP+X$8Ee4FHr0g?MUx2i-yTh+g;j>(6i}!j@H{fmCMNT|wlN zAsXP<7hW;>J5+Ui_dff#RS>ZB&q>I3E=-)8sB+Giwn~MtvWLanEDz+_VfXrM;I~6;}_K++SSbGaWf*Ew_A0YUlo zt^|tc_>X7v6S;Btg`jQU&^IM{AzSQ*hkBnOD&Wy;1pMXaQS*duYgj3zWkpc^ZkG81 zK#Eaf0@?suxDdDVQF#1+1M=f~Ul7TLTU|Et#b+KKX2Rywe)Xh=R-+9v*6$6g+(s)h zl&i=XJ5zu-8<(N#N(D(5hYGePuRTl5-w%?!ulujTs)EXSiY2f-S_3|i(mvk&evHEA z#M(gkyMg(Dx0%ji!C4ex*poIp_^=jmb&It4>u>!fcCLbM|AC>qZRK!oV-&i9?S^k$ zBj7CnrXltf*3j@8lI?Z(IWJCgB8CVL?P##Sb*L*YHm_B(v+E%j`_q8l9NjAN*pm4t zJnsMBn4o0!35aNcZDyf^878m=`CR14LAqjKiug}ncyDYexoz_H$>ik(0mg zw3mOs)IuBz`*wBPZcDwWR${>ZhUOza<&xaH#VNfVQEydb-$^3|hUnY#nEx8?Yw^L` z-y?B8UACR;Z0gYPlA$y4lP_y`gn!Pi3e23DC(je6m)Qll-bdKh=sbb@=f1%qM7Go+ z*HIWRpJQiZGdz*N*l~J1qvscq@v%U#2i-F!0`j4FAZwq>w}RL~t0!B85)&X5_Wrf- zXtOnr$$!O4 zH_`LU!QbCz;$YZ`=UVX>@a4WP+?1q$w1u_QhZ&H`fw!8UmRJeGMg?AhshJN5vg0C& zh_<)CjVumU`#S4DKZwI8({Z)t@5zMB=UUDSm;AXNt<`CU!rMfY4fXNXq_e1POyK5B z0I!eA2HFX19WEA!4#LMD2ZM^eLPZflgtT0@4YVbF#b2&B9LvtC|7e-i2GU!I=LTh>nbZHLW7+B@}bHplm#@MoP{b9Ma0A$rz;-+cUc z|A_h^fZjwA$kvP9>7pp8v4ovJNt5QdP2BkCb_i8c<>AAU>pr?aZ*1x?%EN^_kzlW{ z_g~9(fk(|(T;XrwW*1Pq z&ph@X=F4i>++TYBqNCDN!`dv4E@P)evgaS|m)@%FSC7a!S!ep8b3iNc;#sI8T=c1D z#lwy2CBc+Kzo)jrI>l*3Fe#j{SGF<<;Ji*1^H;y0dU=LMYpWH?`_{G>>51bg4;Asg zD+;nDr`W?-fU00qQuDDEDK<8K84fM&U~sMuA%5VDx^e4aZE4K+_>23mwa9D4KDO_V{|w@BWk8r=Z-uvEFF!|c zy#iJ%A@-H`IC{(D#NpBW6r&|7qKk+Qa_AEl|EmFBi+m6!sI&xt`L@HG#^{|~CE7HfHkCx%P2dd#n`Ezx(8qAfzJFroB;{{h$`w%-ISnsb-N;K> z$B-Z&Xl}lDoFXMwI3>`hE`sYz2mv^uxARc896^1lrN_awyCp+41BBr`4RUZ? z7TjXixiBP&oW65-LH`xN%6vS+@)SSJZ6mcW0uhY0Vs{e9*Px{|MMa0Q_G_xm zzR*M(imX8lC2_eJ?%3Jqe=Syb@QzR8pBobxyxN37432G3+yf5VGVoe(F*4xy&;D%d zDz1s{qyyksI=~y8SB%Cs(!H)il1xAYCrdM(y;Ubgx+fu|#t!%0;X%Yq7~d55E$Pby z>usWSRUq+F4k5eDL3aApi7xkEo63!6P%oeb{Wo&!+^jVNXvv`ws5yZlYZAWDg&2wO zpWmqf5&mP5@buWKtTr&uG0Wc9Khdg!qrXL z%Y5D1pLy`mHa`w6xQG$2<}JW;O+hfnsdH%yQQ%C~R zZjrs^NNk?0l)LHf{DiI(Ld`^-oiM{G+Qy+Sl1GNRIkpY% zo@|h{u0sG>=HZu!#4W0`FYnF_2gtK3BbOs?d@fxi=o`2-R6sB)(PLj184eHAeE@d*3n0|WMmAJlT) zM$)(y+HiEQo3GFG;h-!yw&jdE>UMlVsvpha_tVk`DH9bN5AV}yoLtV_eR{)l7W`Lk zym&g6RG@N3iGd-@9g1}W&d9$TV+`?-c)|Nbd|_7i*jXMITRAc+X$N>N_TUZnhx{-_ zXps5)GM4sHpe(tEI{u!K&|5@jCuss5U_%l2Sn@ZFrvoD{hL2>?-*ZI4TH*ct2fr&d zbv54xToahcg)H|@ONuhCe?B^oV5LGz@IkhNKkT#PNB$PqKo&jpyK zVg2b9_88=0Am(>YlQ<{hNuZex(AIQc_^8qB*p4iJAu#yVoSC)}@=#DT5eN567+ZyK zyi06rxMen;W$iw@`f@_W3)ro&6RjuPYFIUBAdbDDM!;8wsAan3zG?83e#yoF$g0#Z`=2j;vxLJt2Oz2Zc*6+ef!8C>S!NA3(qMy>*DavNmu%zZs4m2>VZOlJ5vyXJ!M zNf~rFdKfi;om(6*bQz)_b1_i6$e17r!XfFYZ8TKBC{Qg9${wuBqXHH7wz&kYQSE=u zrD|5u{?Rfz(Jg-*Uv9Jt9agb5L|_$@XV^^IRJ{XJTks zJSu!J%U6PQrLE&q?0XmX#8h3(k$7?0?*R4YrQg|5ss`Wr=0w~cB(3bH2=qNkeVHym zdXzEIk@U%`a(Fy{;}074hh@0RScG2qqtj1GCkBV3v9C%W=N0IS6~K`D8pBd;63H-% zA;i|GEs}zTa+Ln2sZBEoG)Fa&;DZb+miAvm^j<|gNPy+^#p;mHOm|vrd%&ua3@Ews zs7^4%o)l~Ges3w?$#^#iw>69SioPE7j zi%VUz;5;RtM_N(aWkEGyP_-p8X!#mkz!J5SK7TX8h!3Ldn z9x%3pxQ|`hxpUGPII?eSMal{P-@SH!JWEsrVHpHJL=2a7>D(W}6o>Oa&8;=n}b1HuZy-O|7@ypJr-a~d=da~YydYS0Wx+0QwTx1gKes{PxJnFs@TBvb` zf)RG6U0tK%VQ=5b-`?p_zFzCO{_{7oE$@}EmTL~^9BOhK8fg)q@>eqYBpxX%h|>`T z_`@L=bFg{D)_P@u?r*|sxl z5Bo(J`BudlQY$!8L&dV`I0$B1QK@E{^!n4J`#mFLc0e3+aFC$lmh z&%d8M3m3qoOSiCt_-67yIlvO@fBXPlye4IU)-hOCjPOx_v=JVv!e_3`!DkaC-(xpX%z+-x!AAmG8X z^Pgu|&et;V!!uw7`qP&MgV9A>e$nVTqJZ%^*g|fJj3DtEe+^mkzHLvJ!G$}b8HaU& zNT5d#pQ1dQc=p_>m3KpRLf^aQ?r1Tk1c&*L^LwF}&gQ=}&EJG^rLAiJ^LLOP?lLJz z*%?W2m^Fd7?zC=uYrjC4pb7_?+Vc0%<+GNe_EK{=q2!Hy9oP{%8Tr(8Rdntk*yO(G zFc+I%ZmFx)-)FaUg!1F%+--6mKB&_Sa6o_?4p!rn4!qN2&{clX$$s^GJ17p_Hi^2o z4=6q0jL>T|{NWLgHG`n{zhM2sPYgfR%3Yenp9e6-=%wXuXb}xhK4hcsf8CCjq>SS> zWxxDVeQ20#;M(SN(MNgU(5a5n4T)_KC2ji6i<66^f^to7eW|YTsQe=wK@IdGiR%mr z86u+WlKLZxy@!}do5Kavkh>uRP>rd20v?pVqjF=@b5Au}K4OPCC8V@#^zI`>TGHmG z6_>xZ1XC1_2BiZmk5R2Hg^f?6m_0q_&}S-Fqr|RUQga~+}d6F_Gro6 zrM3(;S_eK%hYzt_BK-#XL{p!C?kkwuoz#m=2aZ(udM%5U@Fi_Dg27s3@UeFwvh`!g zCeyHDbwi?_kD580g*G|@C%qgE7BZYb38#s1KnXy?fzy;0Z*TJ=ut_>4ni10H-<*wk zPtwMaFV|yzJbug~bD|R|+%{O1k2hI8mTo@eSSsh?!oh)xZv#?v61(8pEdWzIze6d5 zsQE?~VnfT#!TsT7AuU^b(yQ|Y4v38l?lVA|XUY-42z0+xT#kAzcLZ8mJd^D4L%I}A zIX)c&09+M@)+qQJ#IZd*3Xbi5&;7AM1=lzCmw~$NaWU?)VD!5)aoYfK-dhtg7A$f3 ze6mXnkexQ+FfDeFByHk?v(TbnZBi5-{SYKo+T*E(!(Tap0!$p1pWdoI(#`H6_9lRS zJ}yP>gD4te6*xam6cF!=?A1& z;yVVl6N|rg*A9dL^KNdZQl53O3ZvC9f1g7UX0fqnt(##}at?b7pQ6-!ZlmbSk~)3- zPwzE@R}&F8Gg(gr`Pl{OM9c12MPI+RX3HK+8wGe^uQ{ zaz!G{y-;XEGQ?P2&`U2K%EBGUzviz$qbUsntx~Q+rH2)LK&bs0%LjZvzgT3|M`Zq< z{i&IuisLt!Au3mBVMD;P93IEy-c0hRhH`lIh**3@iT``N_r<8d(ziIYB$0wX9`M-W zhhg>K18k%jfNPu-*bdVlGeFk09UOEz6BQ?KRXkMwo}_(g{Ya8^WBVt4=KR#~bvbB+KJVkShdwvprRD-s6-|w^Y0m z4J>8X%P{HlppCi8nX{4Bd#!Kum7mC?6I+u_lKEQpyK(dOV3bqzLi(ZcJpFkW=ltJ3 zE2jIsZ%u@d0H+9lR>_^^!G5dl=LPueVV!c_VgRP+YSueGLV%E# zY?;4oxXihT6AJ5h*7I06Wfl3M%vUm+Abpu_deCunIYzglj%4rEe4lv`YMW(H59IxO zwiTJ;psobLo`D;hyw^f_Un`&hiyq(P+OR{H9|k70k0#3R$nz=XS!pnM&obbK=(V}i zaHl#Ae6gfZ@%rsh=#y`KeI^A-Zz#G=D$ME&$hUP%BVE-aI(1siCeI^|Z-{AR9P{RT zDg=W6IX7Mz#Xo>+*t7m&9Orr+KD2XGKj2>*7(V772gFrQ67lCs2Od%3zqvpBZlSNK z32SM}+oAs!kt_3X3LW{p$s5=m?&BH_#4+bX+@bOx55>(V#)_KXZ*(1!G!Z2re3vNr zE|B{M#`Q5!W(bb{ug11^5+iUul=zBaCG@P05>`{3#h$04{Zv`h{EO zu1a7Prx+1dC;P#{^uf#VSsSM@Uc&&gn~S$bo+X6rpnw(ZYeX0Y5(2opZ)7pMaP&>~ zvvAI9Fghmq`X4sgbGgqzI`e!)jw{jocAMKjPz_hJ5YAuVf``)JTx1|dzy#TYj?8yj z4A-Xz?;S!o4YFUk4fJ(Yl*>oPpW7@a_k287yaKya8@;qyMZ6yvx7`$APkY1qP={OL zu-zE+l)!!_%#)4CXRT=@DTUs%q+|rB@+2l-zn;zDp^8>`!fWxF@b@5 zwQeM$kUL>^BBRJ~H1mgJl^X4TQ;PR1Tu9nKnkcwxaI9)XU8wBBs8j0Q+`Z0z@sUuM zv5xODkohMgs`>F=_fkAg)t!087wK}oHaMW~ft_8E&Oi!Fe8HVT0HtgiAwY2L$QV!F z*Jndn5!e*zPDFG>ly5pA*hqwiAfD0|Kk+oLW-C1HfQfJkJI5^(+l@$)O<2Q#G&y+c z0BMlnA*t~H$JKdkJBl=0_<Y9Qglj%XCOP4=|&)uJp4XsgR;_Nuss>}yY z3ph$0M5bc1fjx^wYtSk2#lk|~-pXsku z5%~M|P?-~c@!xp}*EC362vxmb>p;)P%eO2BmP=Ddcd|Nm_OuxYvui#+s{H9hs?=bH zs=&xSN3YUuIQk3*4I6h2vSMR=Py-f_sfFd+pRsVxOqS3?A#hhPYab+$wn_|4$vDGv zig&>g73)HiVYsJ~a`V-0TL?eWZ?6}ZP5S9tE8VQ+dsFrH=d4Ke_Qjq-I|)r?ppBe5 zt80AUv-G!QF};lzIXc1?D_IXJ@#C<6UFa&Id!dl z$eK6@cmxv*TKG)f-8-($fHs4hSk2Bgr<|U&QKJXzE$sCjV}RzEr4Yx?<_r67LDkcPFV{f zO%H>dP~eAi2K&b7_crN_SkIUne&PNS+xhm;@B`;{;9;H|)+1XFNXikMXldm=8J%4x+b!aj4xWm1Ee-0FvZJcVCt0H@{3qLv_F>T^p24?EJ%E;x2~woO=Chu{_{@i>p0Z9n!B4)F5+n^ zY)U}&^x|Ik1?b?}-A3?tUxo!YB(2|WtAC5}7acnl{&TinU9I#A{+JXoW}HE@qi!t@ zWOB8SBOfL5_x%yU<}b9re$DIsg|+O%??*9y$qsxuqxdU6hZD#|aTR*qmi_x&`GN5a zTm$5Eey`v1zAN99>5TQI%GSVqL{O(tZ(b7d@#*+5M^%mt$(R&bkKb$GtS_7oQ;r#W)Y(KG46tu)C{C=Zg)8i`?&Wm#1NPoJ-l%a;Hg_j-KxK z%-}Vei{b=qMqaFb1K}n_bH+r+78|_>6WXn81KpS$j%R~TXN9EAwBmts zN)XDW=>OC+@a`!WI;O6PKFN)w^GO9%bKEd3@GA#k3}}XX-`5ila#@(nZ=bdKHUq>F z)jB&0-{0-FykZOD>zHSTyjIBg-f{4FS4jT(yLI)mKT;2UBoElbov68w0ZzjbbD}87 z)7bQ=&#!*UpisB>LSJQ?{LC-%P$@;jvGWOAl4ZU}33JBk=_wqlnr+}zI-Ks&V_VpS z3eK1E3&Ga!o}kxy^@Rm;2wP#kd3aS19JO|qVNBwskQ&-^96`P#WXA>&th!V~80ZB2 zfYPQPzs(n${&Ig%^yiX({c6DZ$@g|awhO!)OEKena`ztFLgb{S7XWJvFZ#fg8DR2; zUXtJ`G@ph(j8P$G#(&HYV0Kl%9G{0v( z`c~G#L%Jx$tHaogvT;jEoC#3eJ{|WKKWJWQmgq7+t@K3K6U@suMxJ_{bP&44n5MoI zgr!rm10Dv}A_K>tUPxQ z@Ck{3VnZeGv)?uK1V~`VpaRA>18XKM`JO|Beq*(Mvs9=|n_U%;^~-nnXSkC*GNw)P zWXPgPoa`G1S(HDkcl?uMVvK&zjiIG@?Lwm`j^z)FIDGr%*G#pK*Of6p=Ok9zP@JB(@l+%I`a`b9D#1i+(`npu^3jcSd8xUZU1C1?kR)u3Iv}g zPU>0r2@!oX5QwqH$_w{rO;1+ZXV%p>*dQ6slRT40L*Uuv z@}%56z}ww!mwIda)tZ-;mCoE{>MOgSw%qH9o87sLp^2lb6n7SCo8Hzy8+kLDe}u+BiKM z3Ep9G@EzYpQlc2nlx^;#-#t6-aUKL+XH1qpzvmh8W3d_R0{EI#PAr~fwDqshFe&c(Se9zk$ z`Kq@?Zbh;?VG#7}JnqHOzFw{9>ceHRkD^hZbne1iUidy6e|xaso-LYupzogke6Qj0 zH+^yvCo<*5$3o=vkj^HbqLU*lJ_R)*?&jZmdU@{F6&;$bp9FPnu!;o_n)&lcW!ulvM$cf$UkxB3EVXjYi2=NH#*Tf z$cYoD1nd}fexqJRLkdH;RPBR4$&S8CKIX8H`1)FO$eDPHYWKmR%&6-f6mE{J9)C;y%3W5P8S;bbEg?Ly z;&=%I-Q+Ey|6Y6eS^zU(xPQMs{X-n^K#(Qo`2>pcGdH*SQov75KcNSO&U;H$jhqqE zwE-oxLx4yp&{7*ceW4Ahj-rF&AtVFVWXpO{^g)hMo z)3+Z%Bmk<~vTzKSWt#a8JYW8gAKh}IsmBfnEXAV{uZt6i!T>zi-@aaaD(c^P{Z^Sc zl@bO+tu7=ak5Iab@8R>nSkXRpqt%H)Yv4S>bK;s@8z_Yhw~|)lIE8d*KxK&EN9ki zU^K5{kQ`aL8fHs!Mray^bMG8+e9!4axc1^ZotnwC#!tQT#Uzo4If1Z_m z`7bAU?j`pDL^!)VZ~N(3ygPFq(_Z;G3d!p#Z_Ge~kND;mU(ZeUUN2*;=>(p;PvA#d{plJmrz0;{SORQM z$?x8Wl}m2%@246hEabYIKR(3##H}nYa{)<5PZ=vb2Y$C-vJ5U9w617qpfwD}#VCQ- z-X@quSC{-(vJ4^({U=!jxs^RVyn;K($L9-!)tufc%8QA78w{uHc>y(N`z4jZ5op>n zIuFTw*kyH#40Z<3ok8{JVZ)Oj7KqX!2_AokWGS z+07ZqNs8c6#t~dO^7>rF55u-HLhIl@G!K{ACt3PYh)}YX z1C7MD;E_F$`qD&pg75E`upyZ41~#BuCiHNsq!{PVT5Q(wg!%cWh|kB12@_|F+NHc8 z-^3WDGz6njZQ&@1fzq?L&`W);Ahg%tZ!wEmPm#}N9!l!ENRKho+W}wLmSKWu92nt! zA7q)@Z6vKjlGb34#@P)S_ZGG?mQ_elm(~J7a#oJph?%Tip8r-wJOM0}w&>YyNTN0JqWY+0u$U=Lmg4n9Ij+H|z*2|;) z@b^hp!^;n0Z&L4qv3YT-ec zD@DaR2zdUt^yz*JvC6OAEpogMRwu6Am^b{M#;c|Ku&gU{z1`=Ex$qE9Eawdy`uyX! zZor!t@5EXDg`1)_yScJUn_F~X-lY2^B|wd0i2@#_*c#cj1tHctU}ndTcaOGp$NBJE zT;NR%gLKm*ExylGW;>;xhHt*frDC*6IK}%xqWRU?Sw=yY_M7%yl|pfYoVJRk!Prjg zt^%S?7BD0mk*wc(!wbTnxO+PCY@iv-9+^m6kTr~p1?o1-Olp9z#GQ z4yTq6b?C`LgJ~AuPdV0?!YjC8C~~|`_5%}@^CR!NDf9u=Eb6a0caf_+_`D$_^(+njW>Baqc1~;p^G2264Px!}h#2j&>+9@; zXIXem_`|hcfwv-hX1+{QOAiy%v?~W$eX1=y`IK8I)`jT<$AX@%CReUwJ7_sGW5ndM z3v1ylLolsmyY0B){(hqztHHDW&D+~x;d(g7u<~F;bK!7TwlOp+YeO_B#TNymeC4`@ zWyx9#Ibo+Tw@xBK#>OMEyE2ohCt^*8d*CCtuOikeQbFZ!O3aQGx)2Ca>vLRe_X;k1 zzkL_sbS7P6O8C%pvkC4?womUeZzvG%*9tf{G#BNU*?rumq~C_6N!o4I=%iBh61+F~ znTx_G1B4tv(u19h@Ea=^(Jb;Ce6In{yYE1Y>Km$-hbH`5C=jPeg80=ZIl}nMY_~T9 zqCD16Lw>i|yF*DA&k!4=@ny^ z8-C9KWVb*4X?2Q?{=#z@%jO_=Ztj#&$=M;8gzTy5lkgOgDV=-F!gJjNumaTk?QlHx zbESn+MhK+%71#WmB2-3YnZfA)bLr-T!mo3IXz^*@c{ma6 z)^jA;%5t38IZ!{u;r^pr;MYfs7cx}Eir^_-z?yYr0LLQH-mTGfWu2wsH}P>L|Khg% zT({gepTEwBK5xsv8vTt{T|tBVmC>Zhc4hB;QbK`V2c8)=r7%)Nlp_CZJmq;E>zbTP zubIaj{HjM^{@a|kLY+!EdD~Avx?&y1d$oMm_Z;(ta2zN~oDnpS*1WRGz z6(*D=<~Y=rhNyp%*{|CHCddKwr;6+a9=pr=>utpXVSdQ$a0^kfnI*nZn% zDgZ|7Q4vReK*vjCU7IvwsIl(OkbkcrvI&s059JE&rgk zpIXE5g@gn!TNv|YH}XRPb>WvTLGlKpTdcg)KHIF@`jo!6=DZtCk=`Ml+Goi8zQ@R@ z@`njOZn6GvpT4DSWiMtmizh$tkG`QVPw{SP&qM3jIrG7~vT?Q0OMuEgwjt|YZxC}B z@TrVTms?pU!QuX-3!2v4Di=LA#wdtbuv1wI+t;Mn#U zynTRKiL7P2`cGBgiz58N#Z^9;aE5qx&#1&%o~fMs2N{ID{{Fkd$C=cTSt=hfO8YT%mFut}59kGDJN8vg_U} zp4AwI5kWFS3yE($>^mYi74XIJrh6!~%%y z*}O*%#we_^z>#Rwkr~> z%G=i|aywj>1M!K&irR1qhuwNN=%aSrNVAKG)>e4kcX7B>(%} z5*4JN3$2g^L%!eF7Etk>g4Y2zJe`JPsj9#<51Q#>LtOe3Q*6!^+>!B$NFZ^4IG?AoK z&rZ@^3f1HCTvMf3D=!v8t++mwXyNxBk(t15Fg$xukNfx5Zohp#3lC8PUf#ZD?hkTIbZijB>eTOcMd%DyaaplXyR`xJeDPy#FqhA zkw;LpSAb@DkbnWQO4TL+Lqr^g<00@c^T(W7I6|zIBZ1yPc}(%TE8Q(=vYRCY;Ft|c zQoBx?d^MP|!s2wXH$gYDgbxK9X!Kd(N&SYh^A1(zm7A#43QuW|RVhPa6ETZGgFf)= zhBUNT7mYdaj6(tZ3j7U+64HmI3l!X8?EP!NWa`6i7-g>lmR}`q>)Cb3JHRPfZ$(7_ zVAWl#M_f4$W@yQpS0G4b_@YdB-sZ+qfn4LHaD3O!HkFz)L!iB-p9}n1|7C8GNr0}R zF-!N4r(h7Cotr}JM0fVM)|H##wuhled&W_@Qu#^b(CNFIguDj6m|)kfK4?<@8vM73 z9vuB?0~Q}}t62Ye3qb5c$N_C@Q^wOX#RV>qzuoF=fiU08ZW`>E_atJ*`P&DH=gG2M zv^R1G^I>nGyZTOl%xv~(8ZoFmg{HIj=9O|=+J-1xDk4F`89jbxbk2|~BxB*TQCD)8 zna_!#a?E?JfjROr=ku|A<+6}1mW6Zjp0FmWLvXN?(f*nSLcrg2?&dv=&IJ33O;4E> zi=Cge%TA_38$g@j`}~sZJrgpBBvI0zeKgz9k%8dbPF>3wkk60=55W1$LFL|yRG^KV zN3*^NULh``{UusFQa(WZ<3l&cY9#B{mhEFaSV9hHj8V`7Cb7Dwr>)zWwS(MH9}aKc zqhuZe{=mt zncr)65`R&mSMALEZP2!pHmv)aAq6P>^j<#bcI-B)N2jKubpyLX3ZOrgWt$8%iWuf` z8PPCcTWlf zAXX`QR7F2UTDNOJs5SEP&b@_rhB58Q4$vB6lM3|eS&@9U5SE>uU^HiieJqFRYgIr} zfJWFH!>xbUSe5PEb(Y(doue#ZCH9h8cU9?P(0pr0W-4cJkm?-&tUi8$l9)otZ`b~) z2;Xo0pZy21g#6@(D~_U0Hr;Cl!J{jsA4R<=V9sNbq`TU*t%6VM*&yt`9p&_HYc2lZ zb6=W2|IU5jryVs5=HJB|#$94MI#2P=!n3_;e6EMHi%6g<#otS^?f@vdVtnr08g!jX;Oscm08*%2}StQBvmrbHdug#KQK7;~Rh>hR(Vt=eq zFzx(xk^eblEcf?F4sNl5wvYR{z<9FZ*i`Cj{(5BG^SB|sMeQRkxgyifl`$o>izFD; zp!E)eqW*z|a&~r-J>vnZob|q(W6eZ7uC zu-=y!M#LKNOb<8)TB)AYnzLWelMmR7O|`OT7Di4se_oB1g45S5rxYE0&Ro4Y9c`!A zhT2uOo@`_(J5lVx)krnwn^b&Cr9q`AD&r_kE>#lj&`O&~ZYFI{%_f;{sJA;BdH3Ka zT(gD9i4*XOUjL|PlXLtaAE+`sjztp#N%p;W$;5W0TGcx>5}LaZ=+9<|@^ zx;P%%&S5Sup@ob0RHhN4x8xYvEGG*}2HV8+)zT-s4@)qxAMBmDZTu~l)Q7MV$x$g! zo8NFykD$6GT6I+ZDP=eq3HQz1@4gN6B*A*s1RRzvxxIjzv_y8h3}BwWR~)M0J<;sC zt%G}NZ=m$U7sS9lZt3FGU5`GB@0dwp?+(P6i+#ECLytp<(_Zk@vIMif&mB7o_OyV% zz`YWu{P=3<>3J5=xto|lxv-Z)x`i&biOzxUR$KPnCYzxy0_|3E?`!!L&fn+h<5VR?jB1~$wAW%bU7NQ4;wS`q|&F?oqH!YuvXeZ;Ai8tiy z@tR)I3Nq&megMViT|H}A3!eQy{$WX)0MIS<9&~-0;U?;w%hL!FSY>DBE7Jv|c-fv0 zHN}g*-PC!3!N?-VGfpWfE34Vp%}CsP=I3*rZzc4G$1X+4e-==5WteWeJDMUAdhtem zLe-pJDn3dN@BJAe0leDcMW3z?o8Gm}4?##P?s~0&JZ`m{B88&)-MFfC*7%NVA9i{G z#h8ap=DRWO`xl|x+ZrYvF{%CXc%i*g`&pmaaUS~{b}(v)YgLS7mtws0Ntv^=|!LKM$zziTd3veMaW}u0BCXl$;ik^aTdgu}9T0jXSvqE45BF zYAEVH!aHj^PVIvMSM=rg9!i>f;vaFtT#=Yeio6*kbNszyL%8Akkl3>k=k){j+sC!B z-jS!45vvY6n)j=MU~{96p;wd*+aq0iHrBKRlb4-KVN?CBR%kn88nfo+HJJqB+b0%$ z(Xr~;opcE59a>-eXQ+7#n3AI!3My{*b-iI#(`#nQ(-t0A!!_k#4uQ3oCwON2Z3$W= z+@MR5jFDiatJu7oALTuI0znHd{KW7F`|e(N4}Yw{#S!6+i5csy^@E+4 zGx3LD=_d%YM#AN3&l6OjZHkR{XWhE_a}*=@z<#=~Z%zQd#dBY<=I4)OH=K^N1N35A zje?;DW7VS5w&{XPazI}1+i;boqvpm@@8sWe2q)@NK(x4X||hwb{o zhW0l0T2icDO8Xw^k7?!`iUl?MdfFycDG&#A8PAnZ8#iNzFVxjq)^#DEWK(HxiQ9Ny zgS`aSB;oYldHEZS>L%yhNLet~Tb1u#4V)cb=H8;=h*GJ#XhXwNOb_=JlrqL8`I23@ zMNT3N;9=MXq=k*e%wru4N=eFsc!o*5{=T0M_xoE5G8wis1cHjVKk^3`-m>O|b_vC8 zV9f=t4?n;6qTM-b(lTbg)u|wYK+dKikG1jJ>-E7+DS96@`L?$r(Thm@YHO*FNSreZt!GFY=In2_c z;C04P&3up}4Kc%-Z}MltZH$KdWG`7IZLi(29pCeo&~-=DvUGhQ@x!b$ud`$Z@*Qp8 z5;R0RzpruPLk~+a`OqR)**?n%?;8s}J2Xl|HFOy`#bh#0odMlX#Tpswo=Y&pB>D8n#r5TT_8)6+-vYI_B(@ z?15z1s(;Wn{i2NUz1PwF^MnkF%ZldEP$8$>BGDw?c0xlHwwU6|HqxS3;s;RMsNQtBudYj z%xL|_9xLBBM-R>`X0IDU<_fZo7s(VcqkpijWrwKF8~Fs@cqd*hg2Sh5?F=ZOZr)#C z2Kx4*MRb>fEzpKBL&58E3-7+(0pP${sJdaW46Q+)xApy(OK*XI-7Bh^TyHK`?gD;h z(35^2>jI-4G(FFOg(*E(hK}q(Z9z*z-%f+Su6q|4b22&R2CLpnroyDH2qv==<^}vE zF-xd=khj61=K~IYtq%_wBHv?m&l&bV_xXwVO%!5HXp*~Fz3Q^Q#gAadR%3ZZK!?BP zA`9Ex5VV`1uBvoK0f!TQwI%FPx+Ql_Jml3e1{m0tdn3gg#*prel(1-5JmS7V(aw!(}KA{YfafQx_#uaYXrXJm1j#5=y2)OYqn7YH1*rMZ^w!Gf(>B~a;-pa>o z^>-?$~W3()v zyXu6v5C6;`R;ZL+sY((uTA#9LkRrak8VEVwx@9ydRo)7wBU$C>44Z-dgV)RT0r-&W z1A5wLcF-UGA!ZGri6W@GBBEzd31C+#!~%KSCatc}C5ohUtdH>MatRBybjoQh7 zJ)U9uYAgD|bTLiq9u~zb`GHvQ|KkA_SYyE&-*uodpRGbJP>LRV7|3?0zNcPFHn!&*^;d#?04z>obBSgE~Bj; zYfuuItIYkEgPFSBIyg)5S-%rc11TG)$=}!QxWCKqM-VTm5uMc9Riqz3<5d-*YYXB@ z>1IwA_a|kSA3;u$S6@{WA7g%7KhroxKA|2yZQvye;8Uz^IqSW^0RI6_Ku5r5BbA>c zOkpo~jZla%%g{p{le)9a(~K(~9lEs0$N~+hNDCMI+2nLt;VB@EN%dD^?Vd$G}Nm&s1K;@BV^5dBt^pxYJ@5G`!y4_&oO>>@q`CjN9H=R3S4T zn!<6MJE6{BK5zcR2n7y|6p~_Tvu*NZ#vYsWj@%np%Lr z)W~ii5D28_b!e%RM8l!-D!ZSvEh^H*YQ(Gw5#0Z?Z(~(DhJaB%4dD!f9D5M;<{n7N zpoMCi zZ+o)Ug&g7F0Qzb$wK3Oy_5iMxR>2up(E zyw^L`w!BWF< z6eiDuW*2sy9Kg`+Vk1I6GJC}CdlrAFI`yS<-qiy`(F~%nKHKSbwp{6ctt$LvlL6S$ zh5XfL$J0Af?4+*Zm-KIOpU)=f^erD4hYo}~sF@0;VCFk1qXc8Z_orDcRfs@sZXcDN zGm(mbx_|QCyXhjwn#Y%BID0OYoD?!2UmHFnvDOzm@h{I0)L<(d9@~Zerj+o&_OPL2 zh=Hf#A=glD#SZX}G4PHyo^+z7XqmS{WVrNMaNSMJl381zAKXS6+g|b5iosz*#aGV2 z&h49H*tr&STLtMAAq4a2*}Fj(eXn77mOYQ!xUD`jCvSGR6ZHH>`WG#1L3DX`GU^QR za{C%eYT4c-0inb&V$PT<5ao3Tro)&5*k)OvqQOdg6a}rp>C!Dl2QK76a+_I2U9IDk zaMT?oBP{inQR}yz0V58|8TxzQ0N~p5&MQv5CJSr#a2*Lb;IMh}^7Mm_jU`T-Os(@dUL%WwpZX+ zR0jpbmQ+4p-Ie}2Ghxx`+hh}uK`;Ejt$l~yL3YkdvBf5@Aj0y^$7@3iIej0&3=2w0 zg&KaoIyM^_>Dd^lgaT5$Mf&*JRtYwE>THPI!2+?y1Knu~+~I5~OY7~KPVHQri|c|x zRE9?Z^0@w*|=~tWvRQANJW+Txi zlHkKv6UVR+rW%?FGn>*EzSDT1ohdwi8^>PYvI;Y>t1K1pHrY4}B!osK>!PV>56->} zIAd&XyB6KB(o;ZvMgD(%z47Ks9t&JIBoGVgU7hZDYFA^bmHh9NGx zmm@T6DtcZ_b~xX{JzUlZ#>x~FWy-q8j36YlycbkJluCc~4Ykde=@UQar)Nh2B8Z_( zqf&n-7wB69D&(gt{p0|t)=+L`UdMgXBcjV4P!@#bP;Dj(t-Nw-f~2(<5h>_!3l3ic zghiH^o^$S~KBP)@wP08>?~uDh!6hAeS@mv+0-(7$mf6wO7ldL z8x_FinoL zI}wD&V`b^xF;XP@*^m6VPp&FoI)%6ID*4Zc32vFPK_LLgX?b>am~YN2XXdGx#pHF( zSS38#uq0|+Vs}+F(k5bupmJ@(#v*yp!BnCqsVq!aab&G$4r_{L(rp;7l^uOvk1Tz@ zh&jSH=|UhC%dYqOfE+4Ts#Yz&91TLz%!Huie6&HdbaAZxTrs`j1$IY7q04TVKj z3dV_N?I5xU-a}{xr!Cga0kB3Ifu>W~WD_>gwX`S$S|-3-C$%4lK7$1N zLhA70Ae+UUmdB!7@zFY z^M=T~)e8pA2NR!skB0oxzw+eT4_DUrm>r!7ejtVK-1KZ5$HyG3OopF(C+|S(Z5U!2 ztW}?1WuBv9p8zDel7uuj%(H9)KaZwEepXCYI6i*uKe*l8VWU0lh7bStUzaa2Zq6f+?ePzT`bXYZP8FqD79chF|25dOlD73c^HU(^-Cx-aodjD2Z7Ls4QL-5)l{@q)AWBQMNd9Ff)ND#m7meeB% zv23J9yc*%8iT@+(Jk}i7ktqE@T+q9vD0(lFqTA7X@A>pYRd@BhGxO!5R#_zT?P*N2twEG({ke2i!J0vyR9)KxfgiaeuPbpQMr zRu4Z@+GEYX`fM}MOde(Z7)7ZVLl0YiHBjGLoW+|X`8W(9p22aXSN$~nZg)8$a6UNA zkh9zAAyPHrt(|CN@u>ck`5H4#8iYP8-Q$?Y7-Q!as@jG4Oz{};GI8=lrqcI|q=4w? z+VEH6ZCnMxSZLab!&RDL0Jdeio&a*pQxTIOauVdnGOyRYjdb$M=%9`r3+XAld zFu0j}ldUI`ymqxE_UTCTVGxh6!K~ZwVO5#^@H@EKA=s1qa;0dqiMK)J8!mj~Rh%J& za@|DVn<}?^IIu`X%so0!hMhRJhmT{_je%MZ0MH(DZtiN!ei^92D>;(EkdnUsb%sTW z@90^7)|Jd|fz-N}BxLf2Oms|ZA%0UPs;_3=mjdz-)%%@AQO`csQ9Ocv@srIt%o&z zhq!DMQ1z|gO+%fZwZ$#J6%AnC@^YPE|M7aLb;%F*475M98joVHd;IJf01c%1ieA}J z$1h;IF?u|-(*JXY=|`oSBFr}&yDOy}t(n}+0Ag|>!o!{y5 zau6tq0VSS;l93iu2xn{;Rdr_IVWHIu%Ls=*nX`0_XEb5km=|Etjv5B?n)>%*3D zJE|z-BAL!<0r~B=zy}~R95~=WA0vAOO*6JGz<+S;qxJ8ZgoGZyiuJYDRxN1ofyGLD z^_mGOoZ=?(fF#QJ)p2QO`#*bAeTLo*L1wvv)F@-@BbxL6@3a`O7aJda?0 zg<+dX;_Gh=Ft7ERu;2czWfeMdYG(JVgUggfU9HxE>F&+R^0$6CycGsZaFS=SdW7~^ zFG4Dz#@}=MYlW@^Y=ho<-;q0icl0JfdF+MB-8=u=Cq{DQQga~qF84;mSEhT1bH{1o z>(-YZ-<^j4v>Bg%XKnB^H03vY)bKg~}LYGC|uA-56{{#M~M+Ffv~E6Jo z#iou8am?!%^;}xu1Z3GwlAlMVp`KWMFwq@`jOV?| zQ{&QU%=D@3kY3#e7$xD0EqVKUMs*en9@7M;m1Pckhv_1MYAU1uueZ!gVzyRH5L3=k zrY7%`2;XgSNy*B9qL1GCuVc3uf5K=WODFjG?fX=fWxHIn`wcm=W3uYe1^2- zgwc88KYQr!&ovFTp4<^3Jk$SQzq!vu{p}ouKL_Avd#7B;U_un#y~Er0?&4|85E33` znmweBn{6FF-gKx>^=W*IqP`5-YjUMKF`__!@fzhdfcjnwhX*7Id(!Ez=v@c^frALx zVlOp$L?B0_hr2}Jpn?05#C^S8f@6D8U6_YK%8kl3m5g)XZ2cWf6!#L}JIA=I?c^aI zwIP7d$p1P`{Xiaih^Wkm@Ouc`P;!pP9mC`%*0zVPOft5t?EtN0-ximtynfHPT`t)x zeBt~nL?xb)6&}c&=gX<5qugOe1vLypq|(Qop^sgz5apt9kTsNkSi7zm+7RBd#wgMA z3+eY!7pzLJf7%b5B=&M4d!ug@J$smog?g*vGXZDm=4o=Csgkws7GP{Wx2eG)o0uerJ1{rT#Osw(ilyaG?$rf z2R>{4ElIRvCxa{8o00W$3ZJJSJcxnvil^}ds=RCol;I%S59}+_sA&&$tBgrst;$2M zuHR<|;A!udXrrCp4O})a`^;92)+;f4qEx!EU-n7o1 zZ^bB^Q0X=fF4s!lnu`dYwXtfK7{;IsZS}if(AkV=ynw{Od#{8;6)C&jMK=&zP)}c6 zCU%&b2H|LQT^#vv-HsFv<{0+$Ky&tOfuT-YEp?o)PNIAEPmxmlc<5p0fq2|@3NWHe zMm9UH81f6I&ATq&CwgikfCK$|Uv>!6LYmK3`?Oj*0h$iXYAM1XkR+$g*UXkd;8{Qf zNLVByK%nmn!CElm88EvtpZ4#vB|3+K!Dm!^5ftb=4MQ09ZxG6JFK+qxY{~X_7d?LA zufzW|&6R(!Q^;6M{D)um)==%U?^->@p6A0WC%|# znK{t^fPWCR@IXq>$NxzCSK}O=>TqKM+?EYo)OH4UfC@L9FO>7T{1Nu;Qp)#x+Lmk7 z1c>@`FY#z?{0WB9kTLR@bgWay-h>A;&k#}AcX5t zC$%mcoe(Xs9Pg2{@Ik=G0$9Lz!gT-hI*M@?^2gq)H1#nf@!p069ri{*cw!FeSb|&6 zA6aTciNh3g>T@NzFP_cg3MkE=SoE<1DS0B_bcu5`hk?fkOktDifJYv=&G?W5?C=d@ z8L;IikH+=!&b)+8!PvxQ^2<;d*slbZzh*j|t^Q~s^c8=yrzGowp;<%7a&qiXSUL+oy zCAX!g&+VU(`0E!3$z)m))+1OgsUTUcynHY7{&WAD1f*gi)Y>D`zzUS;$Be6rMBKSnT%sv4JE5J8tW>%>`tBAT#IUSz) zNdOD|u|9YbqOLPX20I-MB8=35mj@#fg&yOeI z(27SL7n2suJnBK}Jap9D>hWeNN&OlL{_R^jy~|bf-jTj~cKd>bxzuT3Y2v0gi^Bv% z5;{R@A|4Gw^om(6F{T*QBHYY{7RTSWh2AfDDM)nVq@$~b5-o?12qO-&8hH3cA?l0!QLV~c zH-0)-B2}vy#mD>T%Gk(jFDS4iyinkg6;@D?hyR(E=~mw8S7l&QeH0y#X8X zuso=Szc*%Hug9J;F6$W4GuG3*dNF8d*stIF+oKb+a*=htyiIqlG4mZus0lYd7&wsZu2Y_h499T5Z-9GQ)gLw0<=j&<| z7xXSSHbU+$^o2V5UFO|w`)fh~pre~OXH0x=|FFh8{KFddt$r(oa51nGr}0UUoe&Pw zv+$ae4w8p~BEV{j;L{P~>(SSa?Y74gv6Rq2%aqH*!6W|j`{%uBaHon;cjC9N<0||4 z5Jp~08Sv_=4udC1aazob(`%oS-?Px8#tfqd+j3?3u7x6AR5AbY6u&)#i|oeO8wOL6 zeNrT7u-i-Y+P%$JAtJRz+FN_j>-n7k>#oY4EEEnNqAQm4#A&End%6)KZ2$Q`GYTXb z8o6k`Pj|D(m3ao_>kDkZGqjl&^H$phw0mU9C!P4{nR-fm@=9pr_4>QV`(a$;Fj(6t zgh;g)9$>cqLv_7MRg1l+v`fxa89<>cEf*O89SN=o4R5y6r8$nxw!OygS2^yzDm0;f zEl*Mo=IrBG#R78Q2XYOg@|w-%L5pLqfqQe)hFc5Bu8v>XW2tj}1kzM$r0GUtJ5Aqetb>eWjxmQzZB<-HIMP-d0x%=bHA@ z4EU!RZ*o8gKoTP~rf1>y=XqX#<;-IWFQdJAY?k(^O?MVJc=@lAb-dggFLk|-g@&p= z{LzmpgIKui##kO%*(LqvxAte_c&%`r4fR&1_XvQi82T_CYR~H2W|WrV1^~ZBPRs~E z(r<|=_+rk2Y$_?Ks?r8H6wg2)589 zDb9$=@c#a){b*iet}PByG^Uq;bj?XJMGdx zdyPhD(AL=AxuKtup$IbY;(zq3!9 zR3F-PwgY`YysJI>nIAhb&sf#DRHBy%N%lZTM{Ck+VDoOUsnJ=aO_-v=lQoi+ZtdtR z`uBY1H+Fy?LMwY~)H{Q*#(<4}Lj*!y@sDWz8LC6h^H95WZSRG8G92LJ6;8cabX|?( zobBMCk4Y5MkP~aIh2>fY&Iy(#dj>?0K0L1M!p=TW%OuwK2hr=<^GT7sPcl5 zZJqSMA&FDRZ$H`&v6;6M?^=L0mw;7X@ZlSwpNEbyCT5%V|o&%@3JG>~}xtGPvAE(ckw^m#8EX+((Y-k*=qKGgH(@aR+5 ztEyNwryw!gO{T^jeps~iD>VPy+i|+d1R^bh9!d|h5eQ0-)-NB>g0xQOME~n z1s3*1LH=hp;<)cFD=3E9{0}8)btTSe~qvU|(z278|Fr zk??ZB&iDRaf$ut@6HL^|-7+sM!u4@{`MHe8lC?&Do@6v!jkQ=4o^4>jkbGWk8ePsqzv_SPGG;#Hlhk|YD{}5sx~Pw@F`#{}ZU&T}wVt|2 z`y{MCagvIm%_1LD0n!CFzd$nzG*VLFlURb63ndv56Q3b)&{S~m4WYjpmF7~vc_vJp z@u16uwyWZ4$0te3-~Os|CtT(Pt~c?B2XC#oafAFSUa|^^Q%GF9h{BPZKHC)qcc zA9O@mn-CwIFyu+3zcw#AI8}@2PcKx~i49BY4KI%GM~CpZ?bP47pORrl%IyD~O+#EC z5TtJ~EtRjntAJnzWllZf83v5>zV4scBqy2$_SlJCnVud78R5^Oo&ib;&?_~8=ruhV zSBZN>GlmO>F3y<;33T=+5zTU3({v@3ij$TbIP&xk0$|nw6m}AERJY0FRX@5ff@A2? z{6SE@MHRmqlqH5%vOEWjr+uTL%2RU=iraap?p{jz-C3F|*pELAyq9J)4t-ySq{jhp z%wM!MvNRiLkNRhqTSf|ki5sDkUZu`|R1hgYxgTmCgdxEQkBI!i3vg_3QK{$+DG;lf z(d1$27fo4Xpc&7!;M|{jLx>rc3zjNvBEn-Alr(}bRYSh}7s$wm1$k9@haanYjI)WS z?Umv9vcq8nh2mm{vm&lC6t=QD1|AXDR3@ynBDS5j3QB1ZwSonBF3ps?f$nGwMqI(_mGRAiL)%$KMJ=E%c1dQ{~ z9_fuU&yv09Phjo)>&}Qy(T9;F`wR}Zob+b%Ypi_6Of7CwI2{_^Gdb4{JwZhf;a|=4ylaGkfcm3~!vN86=fB=2TsEMpvPi$d1A-q0QRRw9+-^C~Ms28%V zNEpn_>rm?MNvrVDgf`M>9hvP`v*^1qLp|S2yTmpQ2}-#B$y4>kG34ZjluzvE?y#TP z8`nJb3B%R;cRpm|Ke$5JDR%l8B52G!;l7jLD^KC>xA|gjh*2Pn_#)3HLg0>>R5!o3 zG&iq5o=@}z`)$Hc6e_vj^=@+Xv~0+&Z}p26C_1|0M4n6+74&%^5ZWuZ5~ zumtpSA^>N10SQu+ThlGp5x_v!5}icH4ur2fZCy>`(+hNz9X=gjrAWIlb%M4;HexOS zd5W6E4O(KF*bY1c@mSDlZt9aq2c^HP*~z4H0p2s z{=KggcxoW-;wXDtYMxmpAv-8cAZiXa=$Vnf9Keh8SpS)tfvS^vTpgRE!X~|`9ZFgo zo2Hx=!cUe!BYLFmJyX72Wcg_s41mWt;PV^CJLzUvfao#^Gk{P(q^cf%yDtknK3;lT zG}`zz>xpp5eNew5&icRp0zx`EnR=@&D)8b9*N z!#9MxSgIixy6*0}{eUO>CaKxHd5in!C*&1RI))3HA*i~&@-?OCwU`B14C`x*=@)uM zxrA}t;Nq(mvl+|8an_kU<)d=xujMPB!J{bnmtGyv}O6O&8214*9XSFnV=8WTcIfX8;qKdC=;VTL0;g#>Vczk^6 zcVERxV4Uxym@|kY}i*|XUT&k9OwBLi-{xf zho}bayn>9`{CsJ4;IZ=By;GGTsw?x`MsxP%`XCeM-Q~ORr39OmGMl*qqQng-Gim>w z0l`wDorzxNls2uyXy(+}fx5j1DBO6nIea*2Ki$5$_3%n6ZiqWI#05DTUK)$a6rK}y zfn4j|X8#EHMvRRdF?y$?Y~ zkzbhQ;D@R<3hgnURt_-L?Bgrqib2q(8+fU6_TDJKxXCs!H5xmbDLoh^`<+gMJzKV# zi)(4;4S?tfs^Sy1fCk_k9F87>TLL1#PuY>gR%^HIu1ai%1zIQ?_gkTaJ zKVh5UQ?HkhP!Ow8%70>z40(Or46znOYRPp(Wl-$F@B!3??}vll;zkg{^@t&E&e7!P z7g`9{5$2~v_n;+ZeZ~)f{rRAFklr0LJqbpc)dl}M>WKG+lP91NLy=zWAi|!v{p>}n zTuvUz%tC zS!kKP`1r6I>dnOEPSV|_c>0NIPj1bL3l<)kg2%_2q}l?$@83fh)i6kPslLAX!x=c; za!zZEgtj22F>4XdFSZ%$)!jh#P)Yy$c}>1jmU?kSCceN|995q&RdA2_ZfyZhri6YP zwG*}osR@u3u-6iHH?7~;N;?ol@-OH`)UeLJwrbd7R5!ebo_3B)^xF4T)3`4_uR_yKe0*RMMg=VlPe!aT4 zaEC7vP4JJ~O^*ahK|Zqf%B~N$)8MkJ!C6zrtD?MZU*Qwnub2{j5F}*IKCuF=CxTy} zd{r)HN)vkH7svbdH5Ne2`}1|HI@}zu;N9W^n{1sL4qM18GD z9VZA5_E`!=4}3qMw+Pjou(>@7P9g!@=B~1@8g}!NUoTtO-eglf&Q0#RNLlOEaaeEfL-PSlxfEdn9NX>8d{zYY=HK#RV^3lmWPcbx*D%c1 zXusKZw%@#V+YPl98BFezmM_tSu}j!HKpVIILB@`D0(AS3!4%j2W;6-E=CSbV3Nxn3 zGo`9e`mE;79@ZN+9bND~UZ)<&kmBnC?DXwai!tn&lVneR+6B^~Qt>4-;m2IPO@8 zym&J$Ipyc%$Iju#2LiAPKb^eGz4xBL1GAvo(=WVxst&I?fF-QC2>ReWtY6807l}g7 zuV6zyy-7Hd{CzU)ml0+$gP4G;d{e#`WSoF&vl&-1t$J-uGm+H@<5j9Yk~qqy$3`~c)VfARyr|a$uyGXYfhZqtS}ABZ zuYqSE>mAs@*K{?}{jD_xhNSu?>4J-Vd{JzwM>`(jT^pb}F%-c#N)Xz%7zUg41l9ZEOc(ELMZ7*qv6=CJ1qs5dW|FZ<#=m zREt)n1;%XUNJXFlSgR>g^;uG9ZBos~x+dREt`P!p;#d&GogOhm$Bq1B3G` zIfGcY+Qp%u#>XCe*+cEC9`+M)pFIA38t^g z>-vldPoIIS2L0a7U>qJdeUHfwG5{#D-j!befT?)@~QLR5A3;=RB7J_{jrsZtF!>7 z3+{-*ysQrfEkF-RpXKBS-9GW|Js~rvpCB*S?u#$B;hSTrvJ-xJmH8loD6qeQ1J!RD zbfP_0oR^2R?0Ugx`iwE$$2MoVRz7`2FHEm7aB)NTW?P=1o=~rkd_8XQak#R-2`3f% zt9d8uu*!%K$CrHY!{vrFM$l-&I3v&|IQGQD;JA{pSwx()@-<>t_lCZE3;Xd~di2LG zL&~QRn*Fz>DZjfb#Ve;$@a05BK=K5jQbd~GXePLm^5L8;iElwWOwwg8&QB&UR9l3| za`awooFYik!%XlG(o+;0SLT%k!R9lMi#z(1)eav3F*BYQM>=;U6h!Lx5{5 zTRJ0z)M6Ua&+|)LEtV#J{IHC2>9_6s;WxVrn3Kdg-^Q!wI1DD@x*t#kvz1rvdScKwJ7s+mv zsX{s$8Y99Mj4sE<5mVo?20EBbAR`%JP84r2e6IGcbp@G`*RC z^-R4*^<`*JyN{7yJ0aGJ&s27HM~^o_y8b1M%jgH5&Kcv)MDk~RBI$Qcb$0LNKE%4BOnsT9yu+EEisyUM3sF*|H{{!I$UjcoBp_X5KAf+Jl8lx#GnA49q3Hlb$VNgi_L ze<{Dhx6R}*(|WWuQraV@8VyrQV0*Vm+RS-<#g$a%{ti{?I`Ute3x!{Y&i!>9qcqF! zG=Tjnt4+Ory-x#9NGAG(JVo;F-as+$U%^r+9$kI(!zwgpvJ%`G#;8Q#@2t9S{)xLbDwHj$V7HxmJ6NQ0uynaf7Koqt=5-Fr`Ovc} zCc`;>;ZS^_~Yy{T*YtHH=U|-SKCyxy98J!qD>N2FR zTcy#jiIZbI;KU0x^A@neR6dWNRrJJtg4m^u{$j?hBp=^5?TEq@DBL$;+(RyB$*nt# zc@>#}yooFjlkXu`fCht7o)N)4FG_z62}4gf*Ne(B9t+;sa%V}dc5~T23g4a!d2{PxGVZgn17FnUK7ZFc z;M!5W@dSOnn%*yqOWU4~k7vyl3-=MG<@Zc`HjYT?_m%YB5X;r}_V)j3%b%aLD_Jgf zu31jFOS&*Hmjr}CmfUzyrt<7SuLMi6wA&>*+-?15jg`_>EbHBWYv<*@OY{oN@41-% zYvosHm!tHCsBO)?@cBDmKh{*aV=YunhT~UC#K?~``)WX#6d9>7Y$+Sl9x$<%L;JF%|$WiK!2jj7hJU+*T5 zUq#X`QpKdf>4XB_dj$YQM|!O9liOdbr7UIfz^ddgk7iE5M+GaOG0pcbACvd%Z)n;R z0^N=Ewz?QReHi7_L>cD3R*oC^3VC0FS=r-!y5ksEby4RVQNtJj#B>D2bC%wgv_Gsq zMVyr{%L+$6M(`V<(yXSui^UVKroY!HKG?r8(jDgaqoJPx`fj(+XqC3f+j5FEwXSliB@c{9^zWIv{Q<`{8rBb*6+ep=3J@e-@3nASt( z6JBT{$E%wUj&4(Q=YH5>)}mkUmNxoE`+T9>e$|Bv5n(WVUIhRI8OvqIO<^s^iexme z2k%yLsqMX8th2I&a5RrFxHpDBq;JhDR)N6tJW8%`(avI(1n~YiJwkR7bAiMY(PcKG zRi|AR`1KvZ`@m^z>}tY2`R!fI^DDZ%y6d0t#M@twsBYg=Fro+Uw92H?vHSn^lVZ?3 zj-FzrpiW9lnC~l{4*KDu<6RYplv4U>E+0Nug`p=*tnzisu%w4PO2}DNZwoTX2^AW7Avw_ zcg&PwgMFj0#r;>{QV)+MPw4D8dn?pk^4=S^7Ed~a^6v&-ryxg}5G5v)1xPz(fSu1BZI1DbOBdPs=YjY^d7+|cUdqGl@T4f4y*6XB~5L;j@ z{Jw_y_3-PFoo!*s*6u38_s2J-p(WU&Xw1_JkdmJUen98x%!2Re5n zIQ0qd3pOJ2I+GR1BjL|E;$jw*8PAJ*kRqe%pCf_oGVpQ!k}GFQ)FhkCw0d=)JSo(6#kGo?IZp6_$;e3>WaZ+3^K@ z?3H1@r;T-vIJ{l%9h8OYr3MHf!u)!_G-I=iQ;zFNjfbSkJdbJP*P`46X|X6{+OcZ5 z8$!Qkikv*zM+1yyPGYvj^()}LaU%8(-)`bMx&2*(^!?2q5XSJ#Sdk?BNYyH+?7b5r zA8GQe^Vr^9_n5~b30AYarfMprX{XFyH`OoLd!cGn-40h^&jj-YeV=$~GfyUr^+bOm zFP|2Gd8OYk5i0+E-uh>&H!=<>rp8-%=C;d5{b)4pwb#RTD3;-?$CUbutkGW!pJoU{Ih0wIM>#hW1Me-F{^W)b(f++= zF9CZzhk??EFvX;`1G%VPp|Z6EmAnU1ZC93(ee?MxE!+aL=`a)Ac(Putyw?#7P2p{W zM?dfPD-o}^?~r4hY{oJ6OVCWaZ?%b(){}|0pI-^jSomJLeMm0@V3r1)9GJ+8h3rVg z-mq7`!}YD$s5yM6_{{~gzXzVp-|jXgk;+KNX(uXEc!KI-qL|Jw&(;l|(aYVF1QEM| zO6ce-`MD`>0`ic3Hs*$8AP(r= zklq_n^fP)RdQU!mGjDZO-M^#b3{FHEr3e9QeGAwC@}J@*(~tgVZcr&e0a7{nA{D~L ztb5@PE+I`y5EWs>!-dz4{<}Jr$^AE;YyO)Q66Vdm+hB9QsKs4%p5Hu=z$K5{v2N!y zj3K82zWuSAk#R21b-(i-1hZoM>r};jw4X3$v*HEA{kdK_YVJ=A26K8 z{O>pKY6I8AYCM#z0Y>xigxg<{6~~YC-x7=s(_)1=LpDt1%4=}4{p6~pR^!lr*Ac^A z2_jS}6N`nhpF*1BA?Cs=mU57clJ^((^MRYX~$0V`3VmY3< z9`R|V=VH*+gv$c5lHARQ(uKDiglEKvIlIxd)_$D7i&%vHROpj_j!8ZI5dYMU=k||4 z=qAI!_Rz&3R#S!ca&bM!B;);Co(0G56gj$sLog5_2tt%t6{oX=%$E`NtKaz=%(0gX z&z_=>_>sCEGB;?Jr%M~hU?oa@qV^xs5`@doH1rfYE;-_-3e_?FTNg{;gocUf8lv3@ z9fHW~Pefmz9Yw3TdzlkE8iXRI2ba|_&N0a=e|{Cla%9Lx)g}$o+RM zkMivs>v_lTaNu+@#-vJB8(i85vwm{8!B=R}H|-)6i9!dIRpdA3xF?xYsbx6{Lj$-2 z@Ky5iE+u1a>gL}8-n-#P+nM!3^PubPDC3K+IFN%ryU|-u-7p1KyxL07nE%8B*(bJk^aUq~!34;Y3LkYMi zVTtG1g^@aK{K13ZWpBv|BB1C%Q!W{mZ3@9e&m{OA#x7(`r%w zqR=1?|7bhOy0XaO4E|HCaQ<(qQdbo&9<%bu6ljn;l(d6}sY zG;x3%)*HAsl`0#%tp93uveFK|G!rM;#__)4ddgSCO9RgqI1G<$52qC$8o^*K`+m9+ z@R1-$Ap4gx*ZKgtx=HG8Wr7+U&l#rxcIbsD!T^1_)`IH^^07HsjeGW9iwYuVf@Bc`OV4o zwz4w^!)F_U4f}q!*%N_B|J(lRD_9{Y>9$YF824FrHt_GXn-P+z5?zzsaFXqHFk5rW ziV<(DIwLt3l{Hq6){mery!wFKQ1JKz#Q34!h^rC1$9&*MeYh~~q=|YXDP1`FIt17& zpT@t`Uwu(l_IP;Hr09}xz6O@(%wDX{*`Iy(VX*U=Ckt$PgUK`_j`R+3pNQ#SV$(ju z`#}}_E@8@Sy7@70$kVkF-8~Y^%jclBqf=34yAu@{Fg=mctO(y&ETN}jDUv1pt(O*m zm#pgA3ABH6aGJQIZ#K1Fq*!@@W6A-}$i4_xX7duUG1&hujgaDR>!&&|L$Sa+zc4uB zqdQyp;6sRXvZ7G6#L1)Yd6HRXbIygwf~{G!3WMQOy~c{?G3@oJ?xsI@LBW^6Q$iQCfeciw}7#;ADt!nTT00e* z_DN<*Ks^N|#jnd@5w)Aomvq zGA^_4uzxBmhcZ&~mo0lWA8I>zhd=z^I@13$hczo;1z*U5)$5Ob$`~M-s`JjE4MSuF z{tk_JfC;B0#Uc=&LH%z6@DfAkRJJxX3U1uLDf%jLF@@V_e)bwtX-Bb=rgXH$ zgqZ*4_8U{{AotMWqwTa$JR=P38PD1atmt4ROU8imYCg%`89IzvoOh^8p$7uRHgihlv<4Rolx4NhP6<5@`Q= z|G#hTGagK_wtcoDjFCQyPf~=jc4jll%OS#K+ar~7_jQ*RViO%fE)2z(&pA*q>AhXf z(+{2YF~dYEzs}Ijg3PNfON65SwP8y`C z@V3t`GGs?Z0IqW%?FyE+Yx{A;+u8-7!^@oC!f%Z?t2`ZsdZN(i=>BYF%Zci}E;&e0 z2Zu2N>Hs}J!oNb|x#^&o`utqm>)x+dRfm-74T?CR&=-3xKMkK z3mfA2X}+KXTgq>PTuJHr>B9em84*W8U6hfBDD( zRjg0MSxaxBAE*0~u&4jN5P1SPR93)W9g)(EL7(IeO7(1ZSZq*Aq-5lL{cRT$pv(h1 zG;;!k(vGM`9rTcpewaPh&W9#H>qC?kEgHm(X;otm9M`|H;*6SU`26=Zv-~JdW`F#&bAR1IoaaN{TICt|pa?dj_8hf^?1)+d*~<1ZcC-VI%b#h>h z!LmHdA2*J%Id0D{Sj!f=UNJ;G@ZpXdA0iQnOGKK+W;3z5tBqo|(rqqC#W z$?6&CluKi+kO??Mn?)T1KH( zaTqRpb}*zi;d!>H3%Pp1-wE z!-|*B=Gd)aI-6~fH{`!+lvlL$Z@d^0dkbts17;nbJC<8Ap`fY>V!b)bKDG%Ve z3%Aiy0^@BkGUekG$t2k(L0k56zb~0H?(^AYq%0vPoF6LBQrUpr28|}IQTVTtRBn3& zO6#`E2c(h+hCq^vdBtz_qzYF6eHLE>8j*YWGdNY%&Mx_d}Atfcb zYnjeZkAICfkkO;4w8Fqzr_g5V<8GJ;_5{Rc+`fl4|5=J1Uqx}c4ouuo$!&=ovFib# z*Ly>6l0mG+Hv?aFSJ2LltF)zdl-IJ(NC3Wv`ZIpLKy>5}z&2lrFnJhhTb)*CxpE9| zN7D3{_uaUtTDX-SiNoVBz}3zgv*vP8%Kf*?DBh47Rk^C=IK3RoIbw{L*<5XcH~P0H zdy2wx`UWkEbh$619CwvGV{#a1aE*cGwFrFb>Mdd7%!}twX;c$J*$*A$*B$98rS*vp zi9EI9d3vHWi{~52b+4eTT9(M8ujc(+@k7y5t|=jjoU8X^0S-%8)4B7CB^Tzvj{I_#0%29yN>h-DI*ov#_^I4@o7tZmvS<`I4eOP@eB8IzcniWk@E&5*x|k zb61r8GohRp0`@G367MCF**m;3LY7{LS_|NNK*BO)y@*@`vk6ypbAnpCObtb)k0VHW%PksH>B7EXlkHGKt z91!S4wx4n8M6?1e3h|V87=UWNnZuV;V`&j&5VAxD`|njH0pOTTG}J}<`)npyMUL@h zApDlnDkjHt1EErn_Bfil+vwnp#@w$M6f;7Cdd?BjRV++6YwS*gfQVQ=b1Z^U*U_|ib?sEwjREFBvX3K7MabbZW z+GcSFdXNcnOuh0zdYDxoSwq9_4Zb1Ifn4?H*icTF6wEkgF0*%T9-ir(8F~y8WQRBh zJrKS6Nvnz4#P?)ST|)U2slj%RUZ#n0p!vazH-Uk&heWSLr2Mz8RF>d^C4>7|CGrtN z=}k&28A#SiZ3f82()nc6s58r#QeKFY7_b1-iP#}2sUb8kGpih?OEcisA4_~%J%!|+UTXvFCCByFcYyI2$sJ;2O}bcytUB~ zALU4dF0f~P`sO+DWoP6=YJYV(g4>Hhz=q+&lJvKR@{tIR^2wXnHMTjtyodC2A11re zJco?cLPBuZhWFl99(-_3_P{NWnpOb(?rnJ5e*aJKSoFp+rs3n&;V<`-yLJhmKD3fB~* z3icT^gtF3`fvzi>DumVbx^Y=CPugQ7G z-#*T;R+^O>4o`Uj5_`Qb@DU9qaY2Iu|0ce*>d0N~#m7p7*Hl|$^v%6Cl5|J-{6=Km zOKs^JvWCt8!glM8j&qEs1zYaY)6RZHQ2c2`rQT!gM;wn={R9Q;=7B@K#1Ir+^3)gi z;AHAX)OLQ==A~lw@3}Xlc2VK7`1$40Ve$_mUL#C($AJTSm8vzoSxboI39c@T9lkIO ze2mbZk(51_DH%0qu&1|uIEvc~4Ix)4UV-VTY5S|Zj>60P9ClUSmp=vz^@19c_HhQ; z?qu?AXvrQkZre#|Og5%0Dl{zyr**!Iti8!t+7wrc-=O{>ony0Id`=a&YrT9!Arc4| z7myA9L)bIA&WlAQNR3gfxBD@cyQ-y1%S>8F5N}`{gr;cnyC@98uq(rvFF%)3@=Gs*y3;IA z&(;;gJL*>hjF!%hHtzJe8S6Khf|xWtxnGwCt<7P}VxR}bGo|hf$Z7IG>S53XR5UV} z!yIvekEsUVbEk~@PAEZdKB67hNPk1e?>tSMG8NmR#4#R4wMk!?E{<12($=`Bppa1> zmIa_7EEamli?JwK%f04@k1q9njmVkAzk4x+Pb&QFM_#vRt;b(S)XjMeP*;zowVbAx z{;@nY#F1PchV`w|s8G1yen((y%a`yme;WNYNXw<_zjbtYMc_AF-^cDx1=>Wa%+Zj4 zMD)LFe3eFPKC4=pnof;KpBTR{^Xe-uz>FY29Mx#mY07h|M-V!AjA;=stAArw|NFcx zBLK?xJ(uQjwlY8xqVPqD{6IvAPsluHqk>GwP&`X<5_r1?DNtab?+|L%@OI{Q5Ls z*lc3!zkbKQS7e*5Lvxp;-$upqAbACnSQo;Fj)Twa^E@S5JJ~H%@X>RVbmMQfCgi+6hvu>8cQ1^IQTgP`_LV34AM(b* zfW_GQcX6#_L$5!{^z|_M71Z8~8m4B(sS1m<4*$;IJn~2Oz~JS+9d)?=j=yDuPWbrl zD6?M-|Aa7)mR5+Z!|OS|*|ssJyue)BUD@;GkiCG2J`4Gw`&m$|xK4sqj~ytp`m)QjcMo{Bm+8GlZ@3j;Tn~ZGHVDUm-4@c8w-yX+0OP~`_vTD zW)@};y+5yggZszYf?Jt&3L8v+G&TP)Whj3+?r)8I3YR-0-+_>;LGzC%dT0lv5{^V! z8?6DV=(JYhs*}6!qO@V*?TS@em$LmfuOPK0zSv%xGlHiJ0nOrhWW$cYgbHo>F7h zl-<}jL|7lRzgn&Ig`_1J;R+4uA!x5Adkr)H?Bb5FoIR7|*|QXY)hzp3nve+i4lQi9 zglp^l*6@g0-^kS4-D>DnuX`r2T7VyX$%tI^=n5~8cF{@v;lJ9l=#K8ua4M{7u}fIJ z>I%vwUUag%%Ei~YQM|l7>WQ@w$K4cE=x6nBZ5)_Ycig|b+HzEwga>fZd)1)bajP(n zv0D<5Yf-8Zd>l;t(xLnC`G-NuVYr9`E}ikOX3A&ic~B|DDTgl}=mu zGEhEU4p*j1g_Pp9j-%*5VFeUv7P{8qn zz)ZM6475t88{~~N%(q#kcmlrLhCA)~s9ey5`%y8q?FNcNJRtJ}Kmlig2(zR3?V&V= zGsnk0mhIUk9{UL9;r#~Z1P>0-cCky~$BEulp?A1pt#0X>@XCVlAhjF!oGMS4U>hb4 z;|*N{#M4fr#Ce!@3i^uvw>7#KmIkSIP|hmF^NkET5@ZV>3`0`#e@ZUKyQ`c{tBS%nS`E`JaiiLfB6UaZo7&hnGN_YU8 zal|-YA&#_xYu5U*-V@eTDqzQr(-fbIp#hW(_O>Iu(f7hms*)z!BglV2C z&QUx&4rjVDRMdHCqc(TvaxEVi^I`hcqt7Z#Nni*}wA7ln-P!qNp1{1F4cvJlh~!wH zgcnlW?~Y{@%k_8oI8+b+Ld-_;O zFhPpkr>RZb{m~p~9~J;vrzKhCu>bR^#ZeXNoiv?1<6 zpMc1syi6A}%U_TVol&f+_zf6tCI2#U?jj^v(3%SFr<-F3$NVcf=$ZE^S|n(^ui(4` zc%p3N{Y-iH$M}e61xd}GNP+*IL8Mgo?Tu$Y`IYgQLA8ZcGqA?r>&(whh%m6*7Xc13 z^}L|7{jC-EN?Ri_E@wixJg>JF`p`W<7Ytk(Y6Lz|lRWRJBTLHDJDP;;on7XPxi_ED z`48RVX69naH9UD7oF1>SwY>Y=M{HZ(Y;BUS_Vt+N3C5 zk|XzLYcDrYm?qJG)oB`}Ki7xx#h$Jko?BJ*(@7lS;33Gr!kHkmYgvQb+)#32@auhF z(wFFM$o1se9^s_lb~esIaP86ruo$#sRm;H;yXuAcPM+QP`T2GH{h>c^Xca#c@E8k9 zyP6%(9dQN#W$jn-NT!X^EqEWzz3|Q3$iA&p$G@jUEDwx+CJ5=KsITzpzMY%b+0Sq? zBo;V@k_(MoJfCCUo&c#Z_g9)R=Z-5(lwpwA*|+7An)*9SVM~I1d+(V*b)UaIs?~qgpmxl~ zYy8fMka50JemJsyXnlCyBtQtb6dlra{m!UnwJAIjE;|l@BX1-5fgq!|0ur4lBk!^g z4Z@zC}+M_Cf$7)8C(GFYyNiy*4TLIZ|jqx z-E20ON}_CO&i(?oxClG3EdbTEC57?72|JL7AC9kKi=Bp`8#kBIa**jv3 zi7nesAhueD46CS_Zve!6 ze!kN3)EA8FZ zW{U%>cv3OE2x8Z54Los4j_pq{FTemCvx;pE@DSj2-H}$J^x9C?%d6$J(0N1m2J@jz zBB0H${U7VyChQHNqnk|93T_v7$;0b!D6yY5d$~UbE>+{`Dv8p_strBv>Z8B$1)5XCh}CvxqIQ~0%xpa~{_5x0>_J`* zOloM*D#!7GHGr3%zS~#Mdil|DJ;%Q_>|t)pP|J(qGRK zwjWf~Z=MguQzn1!;rT4CQKD~6A{=|^4A3<1P4HNoC1#!)BZ=X;%D<%-!EpkwBhn+a zz%ip4N9AWM^BPNt#Y=aLd);bz89Vt=u?9DwP%%|)@KTCWR!v=?lz;@^*_Hz&LwUIo z0W19CB8a*j^(s;^$5OBal||S@8%Rq$Q{|c9l`is0`=Q?|?BidDF0+SbKHF$J*D&N# zPZHA@r|!mnupepLFAtODd2i%Z9hixRNWDsn`Du+;KR=Y)RNTw)2H7RWy;xaSKE0ub zG$>z{VwD^ECXHqM&M$J4xEyPn1RAfC$_B$H{mz5BL!dd+Wne^-*}jFg_h`-HQvk>m zFIl#e_{;zZQ;EI&l-*)RzND})DpNC*`1Fa?C`5nc_k00tFuuT}Qax=rM#vKfJ|-7+ z+S0ViZ?I88E+znLv}v0erYs8Nrmm9Y;mZ^Lf?K4LO4{&mcAq*zusm{wpviFBO}l9K z)pi=g>;`f27)Vn3TSln=z?%(xi~p?QD7jB98PnT1ZPu!$fbiiZ8Ny#}Fo&jp`?46? z`zIUw7QMOb7#M$JQC4&aTxnF#UbdBqu9!MYPwRrLD{uy`gdX;9R@krM6oihIK3Nn^ z8q}R{YXxHFg0cjG?TMmtA}3&mLrn=vbx9dMf0Vk}9Bvn1RQ>(c6FgJVFU$XI;`JIy z>E&;mFJlMxSm3*2gdRb@1z!W%D2|udSc3bv2gk~Uhrj|V6SObCr?QnVUueA8ebS0r zaGq>tp*RY5at|X3jS5F!uG%FVb}bCZY4rS35eWV*x?d|1ml4!q{0A?AM;9QFvg=;1 zIMgbyVL6s{!edd#m7`D14^s)1U7)G{kSCg-s(?y)OKBJM+;fi9b^-M8*b-lnUD3mLN4l9tnpu4_ zQt@UJH)Au3Hbp#Kd7<6YgxCg~6^0A)G2gHB(=P&24^PBT<4*aQ{K2Y+W zKy17Zu0jctcLqx`oqH99KgW9$M8cv$;cPaY>ObJfqQ#y{oR$KD2i`o?2#qq$7Cx!C zB^?&*R|vo<1qYrWZ)CpgNCfvh@nRHBYgx@yM zc1Kt#wH7_%Q*xz3!Wz3{{d0!G%NbcW*PlMix&Ju}!x!B;qnJuQzGC66(%WC?vbzT) ze({m5vfvHXdRzM6H9wZR(V5E(ZFTe6o`)2ds;}oWUz}(gL#c<6G+q!1C~l`!HUpR8 z&<-fDeap6LX$b$G9{=Hlcn5>eU2(Qe><3evL6%o`wxO1VQC^mT?p9tD1q|q5ViA}} zG2%0_6A6rd5O`*i8&+-;dmHKk*hJlGk^cGJ;DRxG1qx|qF^ui6E-I3%xAh`L}Ds||MM5J+FI-VobN*qZm*l55+ppp!=2JM4N2o#HG- zOY2gT-9E|m^e|BYDLeceVRkjrpN^F#Cg8>;OBtUm@WwzvNWLcX9>8WC{?ZflBW#1MOe0gJQnTLA-8%oy z2#9x7_`lPNKVLU=wl&RCJZ3`ZKP)DW2vodKm%bpEz`gsJB&4h*#zz_>Th(Xg!ygAH z+#N^v5I>&z}4k7>3=RtX+z^aMjVzOx*pQ}A1&EN*mg3TX8LuS?v!YQqvKE;Q9$4gTjgg#EpnUO4QmU8lmWmdy! zc$>du)-{H>45PfnX1*#ui9$0lrN~YnPx&D8Hll#@cCqu3NhSXZtQbdbaVF$c1pX1> z&}YsUWBc1jp-Kg!d+@G3$lwp8FTOf=ZgPXLum8p=t(1N=)5``zgi61PhWuUDl2gWD zZy^I6p-AP2`|tA;^`9#`f^xH<^v^lL_A6yS@9Z1x*F0*gvLxq;Pa&AW!3kA09*<8* zaL`TRWG@xek$T2Wz?&r-vx+vsQ616lGSTf@N_evy{Vax_|K8}-v`$soIgOYhf)cDB zna2&~&gC`TN_!WO?{ycEFIes*)wbFFBPNIOt^R)9Ma4k?T%i;~Q|F_n+Hy7S-xS&obg&K;VLvb^XjQJIiu{~ZkB z_a@1H^7faj!oM?w%Wdoh+llw2Yffr~&CNiGzr*NPc4Hi`6i$+h5jVGQ*W>JyqDtd6 zG!wv4Pp#HpY(?yBn!t9f;HDu;RT1p`Y#4=bk{GZQl1d@QpQJFe6+vB@8M@3?f*!!S z@YP`ygD&v(ANvG^eDusbF}#1)i{CsP)ZFU*{`Lb+cGop1ZynZgE>YroNlN}k0#wtJm9ezw;s_Qk249=;(J$n_$%lMdur#Fbd>A6#NEhCF7gUaB|A zJrwu3V*bSk$_4nRAgaYC%|s4PL|&X$?C&l?%-W8T@3Wivhfe4I?KTnr(K+~VP41dm zHiDS}s`&)iT$-3b-R1K)L?|7o+JnVcP7t~lxFsImZ5`A}gY&tS{7on=PF}+u1_#S7 z(@N9=20jvNlXORd8;vmH$}#PVtsv!gAHTKYiwOe_Pr{oje~G={5%5a)*82dEEP+kh zADG5IhMw&P7{q!b2y%z*nX&53{&(MfNSpC>O-lT2K_A9e0p-o-nOF9d_5F)#({=+hhN^KqoMOu- zjTQLY)8re3enDXQ42SV~Q_M_LuMty)ST-et1s#D3|4|DOvO?SH>8Y-cU~1?iM-QxJ zoAzIMzR%~wpc(x{K_QmT!R!nB9;xU1vvughjPht!k5J5E$LB;m%c=d92LN%|xz(8M zV0uZCSDyZ5?M%4s?s{ml!6Kz_=4@0@q3(WM{1lk0(LMut5)KdG?>s49RblwSatn44 z4ZJ=640eV-_=WJG;hEh8Z>cGqEzp-3xJrZSXW|F+{o99&*%|bSk8D)Huim?g1-kfe zy7`wJmw%sE{_B2cKOA4sWx>mDu&?_qN*&j!T?Viu3FH!l6eSUVuSfamJWO7{V72Ma z>eNteaiyVwMm~4^R*>)c#@_b@3Nv*Pn6@OR@e>R>Avkjpe1{XX<_V)g$o)WrtTpvm zeMTMch>El!*f?tYL72+i%kG%pwpSmQu^G||rPo-)rI3mAuVyV3I1v8Hviv^#`kh30 zX1V~Kv&H;7j%Il^K%FhM7gA9^+)(%tR=EIskGN#_IwBSQx ziJbR0zDy#39F~Dpda*(3?;7DHWt0vxPbBnforu6P1aM7^q=@rXiYD@g-2~XZB|t56 z%Xr?=SNI+aG&kq13z0buVyXVbra&v7hKzv71STMm}@k0|CH-B)!E% znxR~B+6!=->wj?_jYVB84%i*5-h6_a0aZc@nQz01lL0=JKq?&7UaTagrS<6IJ%8;k?p{U`^LarBmvAqT-w-%l;Qdy}h&>JYF<8>fg() zJNV_ZY%8OF#s*~kk;sg*0onSwes;%zo+l7LUXk8zVgje` z04Sy4-Mq73=8Sm zh5{^pIPfKwUhMNy#ersL_i>~M<4f#8$PL)q$Z%h5rWO^7IZureEt#Fyf|!?^HES() zZOOcA1Ii|f?7|SHI3HW8ejt#~v&CWLH?vqOl7%)i-ymbs797gb&mEKbaVCu&nM4g> zKv7XAUuKw&KyhWDAXOMcD?j-MDTCyxk7$EsIb&9(xa8Jqsg6{CPJ8x1*-7{e3Uf6> zL=?V>j0b-U-U2oh@s7_aVIJpjHX`En8;*O!?>8JrnEtBpa279*RGFLE2j>$n;np4EYJjGAqmnAuM z#l(l;ZA99=K@gjMoUBxh-I%JJyVp81pB)%ysY0{ZA_^41|4!#n7m7Vz7Z9p4@L$`( zqZ49Zy2!Qsv#vCjhvPI92i|DT$Bg94@e*mywxIE4spu4(;bUM=lrI^6CFyovW(>*X zNwe^oXi&h2-9Ecw$=o~Fd#ql22xuK@LJ((38=A~U2v$;~W?x|DaT@ri2E`l86q%d< zTem)2ynyZFz1^?C!;$$L5+GESfj&vGuBZXj;WXCJF8S_e6Lqfpw_S;kZ3BxlKbmk= zbF~*bOhe$qPWDwJ2lgQ0@hbmX?lBJeLt1McMmvTo{YG^M+X?ELU9w zFz+`FS;dYsXj{9D(-Ws{Nnx=}q9TZALCl?@zv~)WySU%po1kzyYk;dC!-g%a39TC~ z%E{A{0%^`W;NOb^5I$py54I10baSXPB3o^c&!nE9h`te)j6Udj=_?oeWJMXl|DozV zwj@-NWzi2}fL24amWiH0q7$v*>mRjy_d9(DHOaLK5xBdVg^OS=0A;!lCcaV;V1ET8 z70D)NI(ILVJHhQSxU&Jb#!A_E7>gl!Dk{N8=I}SmG!~J_5&h(AHM`Vjk=LO^F&f-o zJvH)EsH6q|YMusur9(rUvH`uYl|-VgQW&v0EVWRil@l1<=&JtOA3CJfA9zx!fP`gl zJSK?in5BV8ejGYY39?)al|$`tAO_|T(G3*~cHflN1l5&NmSWq|jiJZh^#;mt0s|`+ z^xV_;vZbt*tvq4FfhA)rbJm~wFVYv<7)AGtW-_7)#z`AT^!aT4~`^4UDhHnH3Vw5%+^Y&S{i&bT%Mk zabUNuZ?V{8C+`5s7L<9YD%8s#vGF>q=?Fay;ujk!_-pGg@bY9F~o{+CxvbR6gOAt#iGc~E8rf$}I<>r1F9!tlVb4oLlh*YPT* zPbawhXAA{>e;p_)Q%Jf-x?LtjKcW;bG%%H-U$8ce?*=+o`*rGQ+d*biyxqxjv?RY~ zgKj020h5;@jWq+-1@D9`beH-5dhQ=NkzJPc7v-tf|0{&*4DWDx_qoIanbAJ z)f7+f3rsE?aK86Ueaj8^SN0h)wgYtz=*YMoyuVSAcD}!%De~$Y#?ght_@>My3$Xlb zX)e_$irXJH*>F#!oi2~6L@<~zS)Or?W{Rj?=gPS_c29HPSJ3$onoP7dKr>Z@k|sh? z6Lwxd3BKfE(4afD%Iy(WaWfa=*2$j1_vm|KG;v$yC?Ht&+b-V zd7AWpS-B8x%ph7xyp>~TdBJrRL+*Hw*beJKlgTehNPqG# z-1KJr9dHYZ3Hez~mrs|VZwr}m=$K(RhWYp|8^|hQG3wq#iNp(UXk%6GV#fNa*7~Vc zF5&=T7airBD$Y32@`fS*ylg6cI}KXvi2T`jZ${^G)!h1kDAVFdu{%)@WCR&&?zp+K zC?g&N0t#JR3SpD=^Tw5l_3~TA4cC5f$!9Dfdla;IGNKS^Ql%QGuf(JLo-sqq zG$69CmTutK^DSEb^lkUIYYa?$RazJ$NlWoL5O*e@y6`50!@_X7Cu8I{QH#Kp**@WQ z5W3|D56i^f&4AdR-`DKv2p5LZFdi9JUBiC7+$DQ_$L%u^_JT(BEW+Q9@aoLyuaq(P z9gZ{6*3@W4X*nSF&xLHObn(_yMzKSOf~;ZV6!_M?8jBgd&S>Cp8d6Z1n1F!F2vLxYtN# zXJF6+_RGSwb368gS zvS7pk=g~XE$Hbuy7Ku{)0a7`rAelv@Oj%jXqY;3JBx8PxK?JiN54ZuNqfnT@wV#s7 zyJ-AjcAucms~@1j4eFi4hxnZ>$Bf=E!(=l`O^tpCXQ&@gr10(A6jovE(w^ZY0*l{| zO<$v;e;LbKu5BoKJPU#H7n1 zuQinXYBKY*HNr_Y{7BB&pRo1bG}~kQz+GxZ*;Xr zW`t(zITf{#5p>2V54vqT(Xds?rVOc>gGi3R*V_J0NAnmL6z8f?C8qK_64SkvyTluv$r|bvkJJKIfoQtN8S}!cazCaUPDUZ&lI(twT|Pe*6$ZntRb#vntQ@hI zManV##sMW(#Dsd~MzrVS=X=}V;Tws#QP{f`-8HM3%mOB`-c0O~D z1?v8v5T@P^NcLC$sngE`S}aMV40KXf;SqK~(g)j$mAzGOthfxHl{%GZe*t#jg6&nY zU#7-pwB0W82s20;3fC^fOYQf?yR`DZUXs0rh=j^7%g)36WRhC)tm-5dpn#8ny*O*f z?)3&znWLg+l1ZMDzJ=0zLp9K@)uhhMy(~tVj$v?C)2|}2#8xEZMzX>s4lc}|YXIbx z1JTI*Ox)q^0rLDBz{B=8*_Bj2hijS`@d2%5CNQ3;$4=ZeSrW49lZpCfbxW!&8qx?46tUdBAjRd0CDmbGt;K{$){_%U`1s~% z1t<g-eklG4iATRHE2qPsL56broNodtC@OT#%&8Bvq%j^QEmL=$p zYd9~(n#@{+<)8I&cbzCJYR=Fz<=?Bx81h~RkTf6N|DM%P3t!G(Lj;Rh$mHYhD@fe~ zrWJnp%V`XI&W>gYU-4>W3=u!CP2H%Nv8jfQa^&i;A!4eaZp!GyJizc9gNwhD1=xex zD~@71yV_pC&1C1oD#(9w5aW_MW)d;jFuX{gf>4^k1@~An`ST0#Lqh~?3rAwSq^J1E z56Xpn(cp>L9w_Q$DaS4g5jmC1+>~Sz*8{89tNc|ch14fqpWorQmP~BBD~-)+;X8Bp zJ6!#yzbR3>Jy+J){zM_)Qe~aSGo-*La*9_MX=3ZKbhzw@sKF)mg+2M@)^Rqzeue6( zkoe(8H@bz6Y7F$3>?YE*`*J<(GNOdaKgTK)tlc^2b4t;aOV8tz%ty)TUKX|O9$#uu zr@3t9HcPqzF5>1=*BWW+<;r%q>^PSduDah88-cE`;5QqN)KDIOSxeddbs~qCSzg>! z>2d#ZG51yD(&r>M2S*b(gTJasdfogG(}YhBTbf>wMIu(B=KEM`JkP3*mkW-SPsc!v z(Hy+`N()ya{J=3kT<79b>g1C_H%8?KWi<#oPEW2x(`?X12+Bn{4GaK0h|`Dxcc?Dt z8xH9&Z-TUq?RtbDCG8z)z!*$ks1PN51%eQc06|$+bXke zWnKAo$pl`sP?a97+i*DBf$a=2_aHD_e>D_rvrA$orxhz4U(#hf2aW={2LqgZ6aKD( zmpH7GHKVf?Un_iv*B`ZL8ZV%6NYfI`< zWTyQqt9CcUeJK?yd5KC_!!;)7YxN0HJXF5myj_?q4Nofr?4|Pu^dWNd_+}pPWnW2V zRWPFth2MCZ^}F}2B5#T;YSyeBsJ$Kd#a2C7Y`=Vi_X#hz9@440L>;8G9u4Ie3PDdP z%{`}^dU2UIrS6%wve$hz!zjTLxuvp3yy9Ds5{#Za#AFKciTTg*gfLIzkf(ns z-dA#S^8<@p_%-<%nK{Qg80_0YiBBkc5s?)z&3P~_F}KN=yq5OX*J!e780*rc$$vx@ zRxZaE+kR#XMh)2LZRUc>g6x;+9lQGYuu)nXs@}t0!KB|CGX+5fB?+Jjkn}~rOc#QV zK+cb(CUr(@dh}#O=rB;3Snn4~8yy59e02(jNE*P^G(-jUIbT+3{>%Dwadf9H@)>cg zAS*up3bO)#sbyZ&vZc{>lT{IrIasah4HbBjfJ;}7zwjLHzGZKsKqI?h%0p3`^zxL~ zH3HQ4uKovm#37*X>X?~IdE!jp#Tln#2THM3gGgF=Lq<#zn?%OY8}dgQcSm9;COKvc z0(+G`1v{lLF<8cz0XHt-J4Uk!{Au>I@ld4+yVPKpFOqb>Jm z*&@A%URZ0(qYZ!$Fk?G>KytRU4{Xi&&M`<6TH^6HwDa{}HXDM}xFiAAxX+dSHEOQ% zIGkZ?YTieN?~6IC-+HCbWcvNZ3F*@8e`lT}@MlM_=*TURY_C*a7wG^TE(N??7o1Gm z9l&zzCZuoG9Vsk8q95_z%Xj5fm3AHEOLLfqncB8ZKKl8B{F?v8dO@=ciV#Fr=1PtR z6dn7nozj8hBPR2MUu^eY&WTV!<`9dqAa)knflu3Tb@t0vVB;PLGYF=V+6~7-&(iKA z_A5RfdSA^hW)U?%c`Qtj<%%ddo2n0D2~sXyaYVkiN)BwT#SJ;nd($|lKy#b1E#y{fc*R&E|k(DyI3?Fqje zQhLlP-T`azQOOL{pqF1j0xK=@&WHXG3UKRCGA-0Z6{9U|JJQix$|MgyuAgShWwQL= z@}EFF-5AF2eMr6@n(d!J*tA1$cBCFee1KLdec zXa#6FZLu3zqs;%-ABgYbNskg>w=&tXS0hj-!5EeS(9g%+#&8?Kb*fYP%BlWwAm*9G zPdeuQ=l+3=&E5?(T#Q8M9<%=^KOo1}x|}h!&aLvH2+r11>=tdwnQ@%8%SWUlWIo!{ z-_s726$w%t*y%_D0=ZXAoRgFYo&41F%yyR=+D_!5Q|udDq_&%X9do1;nCI(1i@QJS zv|wqI{*}&unCdb=ahlj)Ntg_lk;U;ci>zI_r*Mn5q)cg&5B)1f(?~WQAdwqZZQYX~_$k@h`)7c4SG z+b6S&StuNB^mQl_4gpAREys`kRwgYHh@a}{KYP64&_K%H9`B%EO8TKR)c)kH43A5d zej(KMO#8Jr?2<6^a(ncS0BR&gCvG1 zx0R}hnOY6sH$ql;0ZHA4tOtIe#V@R41>q@{_Lzp+nuN6FO|~4lSpOor`ZXL&3Jl6v z3NYxKu}$s)q0tH@3uM-mC5q)85Z?!Rpw|D8!n#$afkJ0K%tS_SPI}OjR5y8i<$;8} zR5(GO((nPi4iMVy{L5lph;n;5Pg1o|U~w0YHXu|hqeQbFwOB$sC>n~t^Vg=J zxYPR+Zu^5XkeDoT%~9{|I+2Tqeb#)!M~s%f7dBoa1OE+oIKYC%XY`jlDW3DoMP(qz z#eWm^i}IAW%>E}$u4dFj{IE=~fUo8NK|sF0sk^y|z1UF!u&Y!8p^^Y8OzGtNZe84+ zSxa;#1W2X~6)eSWvE#H|A@&0#3GNzT#jMUar54AfvbqhUTE!as2A*98bvU70+zuAC z?{!3G-PZ4CXD(P*bFvr6au>OgfA;TZg<^bI@6;5!8e3v%UAC+ny7d)TSM}4k-2csA zP1t%J{L zC*AEp9RaczLWxHLMFga;K%OlGp@=NPU;fkjLd4_UUq5!*yxbfOUJL+>G`|A?aX$(D z)UhEh@6Qnh8cWFGDXF?dngKdNzo1^Gh5Cfyc0U06F;sYry9I3nmz+{84@qoTfsX`V z7%e(Hd|fqWXDZt#mf12V0)7Q`gg^RYf^NYRL!2yjdxO|Rqb|RD^j1gvz6+R1ZEb*8 zAi9|mf5?}j1y~7uVR#fqI0#&i5FhKeS8zbS+`kKIs*AGhAg76jDY!eCg`6la4YEMo zVE3D4RI$Ub{dcs(?N8?W?pn1|-^UYLwj>`N_zr$CrgUj)>ER6`iGQyMX8w0p!ZY94 z>NEK85h&O6ihY?rLP{moT+RS0H>=?=FKoNs;GZ%k_2YQO|Y#8`e_%1Auj6>i_M|JqY`Jt^| zFgGY(2}Ys7pfWvB$^Z<1L^#`aN~sl!(<8y^0fEemzin8K-EFui)jm_XTAX-v=Y4q{ zEg)T`ABBmvp;1@cz2fIb@W*hn-8`eD$RpL9GhQO_&GA=iQWh#TK?8lgtGK6K>M%0R z#7=(cR~LC~ng=MvcMM_{rHeePKoUI5^v7=6JQe2g@+?0B6=1U8!H&3+%kglY?*Nc7HEf~tTS9*cxr^lXvzhQi36l6 ziCJW`7NhYV^V)OPhak3mISr@wszrbJ9-ikqhxzATk@`bPwGBt0eUg@ z-2QMy3!wP6Pf}l7!kEu-@=Cw9!yk8H0~iz~4V|Ztr*sUdfi>z$M6H9**%-Nj^1tJ- zHz6B$U>fwgG@1{_7TAV`e+P3hh>=t#r_1>pzk@w5@rJOU-cGb1G`^y2WL3sl6BD zFaE2OPK_VTw&cVT`uhhU8!8%{PCFnXc_O>?PBZ@7GbIRF%f!+Mg&IQaz)xf%_y-Gr zJ|Zwxy;pX;QvQ#}c#)qM?ApN#3gPWPH4L)*{3@V$EleZsrOt2c-h@V8VSHhmh>kRS z;MDV}1kO1sX;<;5GMILPTv=1cSEU^N5E%9IP*q`xpv;ID4)2@V2aw>^*eVn5BLfEe zjdKEB9qBB-R%JJH^JN&pd=@cB-95~F9oN=UW|3M@A}GDFnGHC0Y3@ay%HVD zMEvC=zz}7jFPRHugpbWd8j;CoY}4BZ6?@!Wu@$(wNbWIkd;vk(bjV3tHiWgB6kY=E z7ye`jPm4OI5w%N@19!3Z6Z4dej0TGR?ekG#z=nu=d;T;;`kBiRUu|xmn&dqkBRL$%QR0AneYOYe)^2cJ?&jQE4_t`=6=bFbaBdZD8xl?e>pbvzK7H2pL2NeqnoZ?nY ziuxDE>9U45l>E>yc;cD$ z(gT)QcTTxc{%6#%=vwzS=_YTb=lFV&I(u}V#=6(kJOAQ=Zx-KW@cDC*bn*j@#!_?h^>lP_Z3tPfuie#xtp{zk%W ziqIi{bsLnV!60^LLJy4YrLB6YnPZ->tstU*^UD_ceg+aHz%pB8V-%?&qYLqiXNad1y!~${eqXzz|41%weg>YMlcPJI zJ7dP7TlmmyT7r=|oz!5fE2-BO6{%-aHdx9|NfOyHexy_oKQerOy+fVRjzoNDZi@PE-{-jd8xlBYU!`1}zw_n+?SDHZ#_{7ObEP(wt&wYzak&ZGuCkU$z+q5*cht=Tca9zQ^x?+nY`25h#j&7ZPFZ6Axm>E| z184h;@BIG3m=Lv$K0R@@@f&uwH?6^Zr#T&`KLclTR3)87f!#%cdH>|Et~mG|ny&&G z!N>|8V7YntKMpCo_}cv3wXu_Doyqfey*908%Ee^D>8n9zmM$@B)s}iM#o%wP>(LD8 zOo97)@?6C4R~mLeY2r|s6L@q5y2{Ck*nGm2A2)_Y#r+aR zTaXw|EifXTdih4>g5lA#|9KgI@rI6oIA57z1#CXJjLORYPF~Z95V5F2r?taSeIA=Y z;f;`b~sxCJVo6Es6{8~+V zK9QD5K$hc>SlFNLtU~aOCC_OE6s~>5vOMei+k=Yon6+Fxb`jPQ3Ig)vONGfao?H`K zR2K39MLqp#BUIFC{aqJ^=M!bFd`84m*(P6nxDKgzFS0CCXJ+RfdMQ@kWURxFLIpxl zaSa16hM0LQJo6aaK$gV$3 zIoE04=ye9=35vkTAlik&Fa!YOWiIvu_fULWDA;N@GbOttG>gT?(-4vvz!O&$*u|(! z>d;8);Qp)4`M=q}qAA{*FC?qk0qqYajel~IV*0h*W}9!_qWJY}C0Gta=}Hn(TV_-P zkZaA)uoe4-)zEO`{>2r))g)B{RV{mVG%<6RAmGsZfgf2lK0^HJgE}0Tq*6w%UjjmiNd<tWN(_0#`tPxFmG8?sAHoiM>Q)5E89zf3`^$CX<&C#vYOq^WqqGv2 z-lM1G--gutd2EvA5-aY$f2IaPu~NRaZFvQ)WdyUYJmVNbZey?&BlC5peDrwtVMvZ_ zjkwHD@jQr4K`vngr6;RjL_5b za~^Iwea@e&O@t6EYj$AZsx!F#&Fc;d6VdKW5swo)JW*^NR1j~Gcm$z;-)+m*_5mxA zqNfRw%E8Hvddqgs3vRC5-G0=~FeD3MI?a0f;L+m@KiU(`1`1|Xjc9eZj^M`gWt$F2 zQGqVjh*;CvY#PF(`$-Iz@)&|%&(tWez@}`m66AleEFbA z>+mOfqy)ssIMEF6B5*ylbu*P)%Lg%zit)x3*EWRu-VxHpP?j#}!+4(z*lAw4mm4Vy z97b=5`LU&UUip{aiZTmkSqugnnL_4aKJ#X#=Do8_mIZ_ zAOBO4$R0mK^7>1yw2Jy{q3meL6M1}=j&gUJOd1-lYC7QBm!esP?Of1Eh?L>ktXtXC zlS+kV-(vVStmKCME6n8gF>3=&q}dvXcFQd}yW@=L)sG@6m-KvNrvInrbX8_>yP1=x zT*M)z6&p6xxeAA26oyq@LG-8eWHFge@_F{Ge|1_uB=-{nwVt#eKGge};zz1{2^9>S zQ3A`~3tO%|T*E+Y5l3Hu*hXu;ZH!I8qe${z=C_veOJ^g-Mp!^c1A=$x&aSkL{f93jZ?+!5viV)D#OG_~nZ( zN-w)I66bkI(`|-{BoNJid)u#Oe`)22apbF7H0VyGr}eG{_;&ouelJC^d!spiYIb;- zzsT-N^$9c3N)7>#62MoYmHH8)gN>!pwjPC9ZCs^5pg|yf^7)-kVGBJ71<$km-0o$o zT;EKy`o+O381nF<$M?V0hy+Ai7r@nsBndoT(a1m1@_~nSc+t}HN_yo=dzL{jIkd@- z%cM}93xmD||8l*QI4S4oPc4GaXr4YHOgeV1!Dt1;t0_x`dz3?&QO38Gk`}o3hI5nb z&+xQ!I*R+13D(OO9i@zzznFRnV`AjE$M|L&{%YdmG>)?93yoq{OJcRYE2TEUS;zWVx9 zo;GnMu>E4u+;F>mi4;k=q6}T8zXHX><^27325{gIt?d2=HP&4Pa^X_#2W}sG<+W>a ze*@i6nWz1-7N$7am~EJ^!|V*m;Su^{F)n84^E1ID9r0nHEH-s3`5jpk<0###82O{x zC&Qnl_@6?$Sv`M&!Zmcrs=nCKvEwkko_aD$qbU5_pJ_A1aj@0dr@w+X8Xxm{ewvu{ z*iJF+bTx4vrz}Lp5)TE7F{j`uLW87MH2h_F_0`w0#xQXMOYlw!@3-gNmQRNx1XG|i z-#5EJ38WqKbxXNX6B8#evk;MEXqsP+f-;K9TT*kYVM&bKV#8W_%jhdD#$r3)ZedWO z(QJK>B?ea*B+k?m;Xoz<_7}a1RB@|K4a5rVqnDDZI*K!~m0Nnx?6hUMtbV0OisFce zVx1A?I05RqS!wjrnim)yAxY746l3CD%?yoW62m> z(eC?m%Rc6v456v&rRy>B(^O~Jj_F3=^*rBuQ~XQ%kMaVAwna(8D$OXzZpnagwCscP zyE;D)%EgaLQgu6MXnR>$mqhe&v_NQ6h-~dO3B&lUs5Bk&WIg@r(qrgm<-5vaVFY{- z2IA^+q8%OYY45RzeH((+vw}>PlZ;K3fhcnE%q;Cdg*4l?QE9daralucexW0qB5?uZ ziA$lEB~ib>gQ(kYFm3rLf$p)Iu}HLp`M*gn*H7GvV<^{6RzG-_=4Fp})JZ(Jl->AC z;J=)Q$0QA(1NK4v!iwf|*}aYAH+pJ}q;}hfrT6b#?l_Vl!!i5tZ)E%@hJK&z{yV>P z{t{TgB5N;96=$%tDt@Ad>q-&V_Mp~wf71HTtM@srD}_lb+z(Sa(n<#hz&4Ult}Yz& zY)Z)=*0G5wiHl_-G2v7x3q+xK8hr2H`^!KbFzA>%VjZ>@cmR?vmB+@Jp+_o0dr$svkux0cTU?Ki)mKfx|o8Ly{*ti_`dbT5fw zE~ak7v!$mWce6y^FV)ME(%-3lACk{|Hz5z}1E<{eK$Y?%@#9AzdJ)wwnQmM=ISj{u z<_9H1WLrfrB3=pm$p_=0=h~^w6Hag_i;@Ygu$q<9JPsRhM-o~uQ2*a}V>N$qvo*Bf*zdCcq7q=`F21$aIc3F(Q*Q&raQ`7o=c;v=yv@NOKG}&5h z6wuD6b3^`mXX`INmnNVK!gz+ipXr-mOqGxVeMyEW^LiK0%g8z?0@j zwLHCLen8L#*9dj=uE}GWFt?_F%*?>d*@qEA$2ncGU8&JM@deT1a|6D#A+7JaGmLfD zXN>j4&2lJkDyZZl7oZ}cgDGCM=qbCy>9l5D$KZ_6(W|M6H^*cGu9hxufOrRY! z*^)bVK=n=P?r((eUwwx(@|vK!lVQ9#Em(^Y`hy9NrhjR|n;ot-@ChgNa>e~{y1){u{%-7`bBH=&%Pe7QG$zq{;TZ1hC*y|C9Wq^HWluYRT&Y>c+ z97xijo~u#_Is2Yka@oVArR|u=;Gz>3%i0QpApC4ER<6Cffzy>|%weeEvt9OR*Q{`t zKvCuQi`+aV%|OnX48u3|=Kzv{JifpYI{vPIOwjGX?MaIc$CqsS7K`4c^@FGSLIiS- z>jAqe=)>vlk)arC&{-M=r{ss-IqbpO8?T110&-#w>wr{%C_!xf>$!Bv_yHxWFAvy6 zr~(oG{8-~EZSlHBYhYi;?2{0WdgbK~ix3LY(Gkq5o5|MqL$lDE) zmY;X8%tCb}+e6O+Hf*J3-$p`fXu}UyLrbaUc7xHeQ#sZdyyL&Q*%4?HFh1OW=Um&H zjQj#z_tJQ8Y8~uH{_h-aIQ_+c^~Rmg5Ifs^+C&foec|1}rCHDE}ew=%`M1XvLvEPh1ZiP9t< zGq^NUxb_#UX4-g)x^#i-!>&eFd?_>BU&PE{|ILBNiqmInB~-M~jCr~oXmuh^UB~R= z>Z8u4j58%}&p@e0)FX4yR~$K#z>JGyBiwxJJ80j)xo~W}_BTsl7NH1a3Z-gP4d{ zurq6vh-6B7VxPJvSc*72kL%F!huxxYqRFIi8UVWU9JHe&v@R{ggea}RDODBJq5mTD zcgC9hBqw=&+8}4k2X^712yc!|Hnegn@E(3|jAzQfe%l(|mel6#=_JbZIn0bcKF5k? zBKmcBr(v5|Xs0^Cr8YURi3VS5i+T5GG!fsfbIGfRpusXAmISo%zQ0t-?%!ba#fEa* zTiuT4*|DINxq&jhd3r4^rUU4SA}9VEM#+z!a2r9OvW1XWEQb-$Eg+xBna8HTJ(y*) zM-P-NiX$)=!D`-DNJ;j9Kb;lL<(DC_#TVU^X1W?}&*P0PBZ3uQvz0s<3PMD){x2?r9GW^GEJq|DQj=bvL458Ka$De^$Ch@JWJ&+f#@ zOK>Nz*a6DK?LYnN7FsqRcr0aJ004a%}Ez#8Ut6g^KJP zeYt-4P+heN_1S|{`?<(WD1MiuKnx@5T6FRTjc-(^C78(+E$EaCr<7n@f!?3q{PR!b zcZOM&g&@0p)?SxROz`;UvZAtyvYTBPfUeY*#>72UnVYi-CVR#=@M|C3*K4xHr23N` zkd8OLrzoINsrM}bUe?mvYkAM_`xqOJ9V$f6gW~_~K)DsbQ(S_&CJV;&Vndn8{Mzf3 zljDQvyTmu>6CIW|A}4J$RGMB)q+5%~ra0aj=vhC&&r?RysJsjAqr7eG__js2dASeo zUfv=)OZ^pe0~$l1=gJ}O{MUP+#^8v1=rD>0R8kuZ!>UFyxDD+!gra z7p;f9G=4!t7_S-LcdV#}qun|Pu&*pY(*)jrp|zdO8;l3?rmt690{34zy;F@$Xbz3_ zGp4`!K;cmV2HfS9?zwKz5#dJGy8 zR#El{Rq<-484V<>a?&q-2Q8h9uENMSf@PZW7!i7~UOOH;y=TZE>`8v z@5Nezd-*21a_)&4$A+BkPY#17C!?a2-S7Atjz_=B3lP8>q0}Bb8G*Nss=!%SDfO<1 z`e(|N9+8^RC}=_(?}H?AF36d&vHkD+3cY%&7Sh;koOvd)3-N247S(&M)dRGA6U-z* z0Q&!Nbry@V!dka}AR4$eaVXrShdWicJpE-I|8Hxry@VnpbB=E$VdeoQD^hNzhJJvD zk#6|SjG!pLx9X%IUat+rTLz5N*_?KP{JilFC6E4a?*En&fM`j4y_xp-?)t5UYx=fd zIrPN8wPeFW!T|l*$lL-%+JI3$?#ueSx8l_x0?qoHSpB0&g@2s`i?{-m`}%m8Xx7>^#vuka6vu*JuwA*)dUUzlpV|$4Io+hLgmf7vI7wWhUPL*(=Lx5^E2Azn{QWi9*KEfGr5mo2w4<& z)95(L{IqL=3;iLjZlFAYSI!{YJ~#5coB_mIvIDxoVr0@t`Gl^7M$CpP!irGV zU|_ee`Uyew3PrdE;n$bCQ%fD40@E=YtvE6?poB`dAe3WA?8l>0N-z@AZ$`WV_Gn2q z%^!DW-+_e)t-YjJFJy*)N_;gN;-$ALrP%KU;b*Gg06J08xP6&UrgX+207z$BklQw|j;H>o8sev5djo5^CQb722iy`Grcj=U zWE!ex0e`3fCeZ-99Yg;t*&@sFeK2$OX7zt>tii%u@jNaq_|9&n`$wm%aGox2$r=h27z!$d23tWC9e9=uQVsE@Jjy`^UU~)TO$*=y6sMkLD*i&veNjQmg$1It`|N(`Z$!H^jBw5IYYZlSLtRg)Io2!Ggb{T^!|wIMAFqhVEM>@3wU_3%|&tAxE@Hg!xA&5Z{+VwKo1v-F&CR2D~4j7rGn=C4l)EgPM=RM|1HAKI5%t*pL7i0k?JcAB_}`)23JaJ znelSEm(VECmEChq5oicMRWANY*q`{?HTAyk=|M|_Jl_XTV^vV&-j9rcOf%{am@R*+ zQ+yUYiqNYsyVGPSu~6d`&Zp!~_m{+5s?mt^>4MxZ|H6R=_FkK;biE8V^Q;>?b{#B` zUf-n3`2`4K_J2WBa&+jQd&%~m z`8z`i>Hju3%&{sMx@g%ddxqLaJN%-AT{Z>aj|68w5qQb$U!2r%&`;YYr7S2A+ zYO*+GlcCxspp81V1-e844^Vqh(@Nc@NEC-b9){LX|61lSAHQLBj}aVxLK&}X9I9TX zN8gWIbHV8087n654u14k6Rc@nJg(Yn{Kj5J<==ES9Kn2uc{C`UdVFGAV%l8lXZ zYhJD5ly$4-8FGN03f5tn-B{g)qvG~+0|&ZZp%Se)##5SUI9M{MgzJnK~U`xr4VNBh<>BDB*0RFL}(yq<_idPX|Q7F z|7R|AEk6=np#H-A)rjj-8+pNsa#hpxsUYTJwLJ~S__TV%PM21u!)$+?`GAYpD~jWxT#>Ilt=;H6^*A+-vNJ8HNJg7idaj+T!5KTT&}?y)Xrl zWtW<|4w@G8^_c&GmOXmaP5>xI(o0Na@VnO5mbW z3n*+!bIGy}ORFE0?oo%r-cSXBGl~@;U7Pn-79;a`#(2>hWJMgOqLoEo|M01^ZWFU+ zw3M^q%iV7YXlFGZF#w*&Z?QU9>jo{Tu~3Rn&zbe7>VzW#HKzIuf6KnrXLI+Hlbtq* z6mK*2WJezt+CkJ**Ouyd?@Gm+~99!>L_4~YK-LO7r#HeATSXYcS=LA zfjWqXhROhHAru9y?7)bMu1MZ- z#D=pHD_rr>4FAn(}oIh(qe71$my5{%(5niBx zdylWSkuY3eqwf4qtzTFhu!OTz>AMFMskQ%@Az)#RQ-sy?+fMCST})zW7A&!^Q8@Cd z0_|Q}G!iK&FclUK_-*9cWB;7bm^noFjHJRUmZPlF#uc#nH&@!bzVwAf4Q$PYf?e_V z@o+}Q58dshQxQzKvq}<_CjJ)>|G3b$3~!IdEq_$3yg=E5c7&$aNq44)qOMUZZ5!1F zOM;*U3}iI`ZO){rBxR5)$5h95Az>uDw8rftq)gCpKKoZBzJ9+!P2>H}TAFJZP~t^L zPX2l3{^YR*1-W0?4~0djQd9Ngz8MMx0*Qk!dgX^y)HN(te5Zs z9=}qNQs5(mCbtWxy_-We>a z4m7*SE0EEMBf@9>Vx#iFw4}w%`L@ilIUk!%C>dkzM|8y$)fU#uwKcXf$w+%=5?WTG7y{X?Zgt3Ru(kY(&FwypZ@7of z%L7?#*Nv8xsmrOc~O;Y;KV8o`7Si$k5!)0S7FzncDf;V=`X?6`o zccwCvtDWRW3Ad1wh5pcs<_{cz@c7OaQ3){zTqo}mDGz9S?b|$;IrVLampP`91KsH~GPvy&P z&?l@gr^b}TkpmmV5c0%UF;O4jPpyu9UX^dYmtBDQAFxnf(0@WoY69Psc4w-oAnJvU zpaiXKoTi}R<7~eq@iGruIQ+4EWz1wjsfX#WO-pI38)g$V%ja*N>dZ{kq`s|&^K`xw z5!<=1dFg_Yqy#g9KygAtGM#=!0S@Y`J%alV(s93*`1b|rY+<{q5`O5fOBQ#pO@7G_STz;EOrUV!R^7|AY%R6hy}M?|{oLua4rZ@-(nywXb@ z7mi{5{%LI>n+-;2ZM*x$-f!defve5qNqMPT95liNFzFUjt<+E5?pMBES|}q^oxcg? zkeL+EYkG%*TfUw)N)zZ;>#(w7AScL(h+EZX=^rmdDL=~douL$Jp zkrv}mNyPr|48Gr1W2Lfis8zp0ud%0>7r+P4NmS2&MR{bz;rte(2d254y$%A6LIk3` zG=-(1*8?wrD0pJi%I(**xy}ElvFh}-r&?h7PbU}W&?)uTUKIEY+gZ@uwpqE;5ST*! zWvf5X@vqq_w82$ri`c9lBw?8`L(aDk_sL9heou=Lm9wT0D? z-Sc?q)>F!AcrR&VH_xao*^cF$kS))umN7a$WHAtfYbJ_FhjKJ}({*d~-D$i15Txz2 zjs^HF`5U?@kI8|rcfl8=c-gXYDiW>{Z3<|fKUMZ(nz%fB@jTv92 zszS<)#+%vWE$d`&I;Wg$5g)tmpvPh2iPLTAvf_oBr;J`M8sv$=uOY)8JZT)khtV0{ z2=bnsiPIVx0RHhklEGwL+P1G0_7K==CPFdD-o@9b^UjNE%y&C6@jsF5$1v`v6u$4N zEpty{UfdMW-w$)8{i7%@Ll~H)%wa}GsetS*TlyA%sLz{AyV@}KMtg%IfpyW_|#Y$;%nzvs3C8O>%@6 zwU11bMU|)|YCQ4$b?;oUWFQ1ncL3O~0vz+RtyyF6(mM zT1>pjIr(^c%RdIZr(B_d9w7?v_CbU4&=B1^KOTSzuCnb;bL4&~e}13rM>6f}rw_p= zj|R0($UVf*&ACKjHrESflx3re@S>&ANFqbCH$&_9j_gHw__=hHI(j`t%ImuRrdB*8CwD~5t=Wyh%L?)@X z=F@(;=j++cXQd$J2&2i%-3h?o+{sR*M9k1SzGznRTg0B@~!U{W8gVv@8S-IIzEld-$WBN zcJ)?JjlL=#(b(p?c+B>oA&cW`@9!WZ#v1|(7(0+_kmWggS6fCN04;)}y(NA;@s4~l z++R%{trPPqhGJ|qneuHF&CbjDc?BF}*qz??35Mx~tk5sEY_ClCOyEN&5Z?)A!N0`D zK(F^Apqg*+zN*fZ4E25jK=_Cdqf2}EdnsHjaL875xgsW#CQ{JD$BlHiqkM- zu(tt)FuqCt)o-HwkI!{@oC4>zWYkS`4YnVMJ!rVNYn!q&gsQ_!9@+Z}+H z8o8w;Co2h2{&y`jzI=3+!Ef;O6~PhVhP#Xk_PWJax9vV9T7YvnWUwCpi$ zkf|`=CeIJXzBKLk%a9ZS*YX0B)mr_I%v;5Ha3!T3A>(5tNt&_+My%`R*Z04GEMo7u z8SZ2#Qmd#F&YJW;dn8_aYY#UjboKI3xmM)g_!oIGj#A4=!PFA|S|iu6mk{Uh{x;+_ zNe4feU>uqzq_#{y+2wsL01W&5rrz+!JQf+MQ=Uz^A~@2r_y82eqHJU*7Zz70MB{)| zS)cSY^w{n9;Nl{bS<8yYWnYhqNig-%j>(t@J5L$AwxIwvra(!t03~`7 zQg7}$0xR7BdO+TOpu)HiLc749$Lar$%2q$=vb?5!G#9)6IKo$}iCp_-A9INIaexuU za<*ThmD2Mvwt{j}TH}jp&m zlkcX?GH!>*`68)sl`zWUHCUJHIR#dvJi0&(nC%U5v?Uf(#9KFm2nw3%?8=X z(o{tJqR{l!huw1plxMAW^3Ww7lcn)gJi46i!qui}&4C1tU{jDK`OKqc!rfrzIcxE3 z;aH92u)Sk-{+%05V~5ZKg^*o&kL1zqAWh1l2Cyvx(yFXW1GY($n$}`sKm}ttmRlXcb*GTW{#$eCeaWfRKE`C2L$*g8j2Uhq^8U11tZsnY> zDmJVDD_``s#2*%B3NS)8m6IGus0Qp14jST1Dpzzh?%tlS1Nnp74UU>1B%TNv+_Vvp z`Pqx%)zh7gnidK6uj-`VLGijzniAHdeZw*Zj<7s@r==UMqCdMOW=*$#8Pe4N^c^r$ z9RE)?Q0qeE!?~tKU->&@mW3LGP(XFWR+|T-uL*+$Kz~QJk4gsd;gE;I%`~(b^H~DY zc`*C@`<+lVPHJ8Jk@>iDP@))r=fQ=ca3U-A6LK~|Kp?TdEzIySH#1(%CJY-36l2D} z;XaxCllr>ZIKF#~s30k7tyAnJA(h3DjN8h>bMh}`)uPVM42bhyX}_bQN}+$Yr2Zz% z>kXS*e|e%E46B>i>oaa-op`5F>j%Jy6b>L{_6^^pMnHC&j0i!*W^V+Z=}lsa!=paq zh@N6wNxOF^KYc!O73HvW1F1W3p*Q4iTsEdm$6_`~0J1KfFYAT&ZWhI@zp89m0}8A) z!#p0(sfTf?r<%n_F&??3b!UW94C%Ofuu)&CA`YRWH>!rXh#2wD{P&^`nnoH4s~UUH z(NZSF-^&clISx0@TUr2M{DF5vS^Vf1vFm+A@ZAHp#9)gb7p**VIa?h|Dm9|#WL&5jp8?NELt3XNqW!L%peIRO(7&_X9fc3^p{t_z'=j2^%a$YzPo}5;T5w5 zc~nWcs%%NX;StRMm_p&fN5>&>JuK5!b?}HI$F*ax{rQm5lH9x>xHnVhEoB2M&l$ z0i;m&84DyqpD`*jEjX6-_B1E#GB32;R~WA{{$~6TYae`jBjR66Z&p!lGwX2@!b)a@h@^>x3WXe;=-DMXADQ7e06ZG22vO4hkDaa29oLsG!S8BM zUzH5N)3l%J05lO2Qh+>1>rr&9No4-6x6qCVCV{f*u~1{f0{YhmY{T>B^U~A`;CBa{ zJ~#GIDE3^E1XiqKzx=4MvKS+f!jrL~U>^}!g^N$$e)YUzS&ri*K~O)Fn%+-iF}=&Q z*86|*R=UN@F7+#7GI%ylsFmsIPrR|6@9jsLvi2Xa76v#hL0ck*gM7T2mLRzC!o^c} z;?>3E@7jW*C@*f9Nqv|m*v205eW4~C+a=P4UUQk@(zsdZB@Q}HMV5>S)9~A>KPC*f zJ7vrS3=a0MaJ$pg(Iz>U`1iX0JF*xl_$`2M|En!r+Y>GSKn$3NhESvro0{2i=vU6e zxss}_>`2sOSdoeX(rg?JD@YmQFXW3~1B_IG; zfW0L7fz%-twGZ^Dop@dZO*ulw*N%{N1>Eqi^DwUVprk)A$losLgd#LmRlT|o2-FCw zgU|p^+5+QA%k^(VBiJ|Z;d`?7^OZpyS!yaA%qowjdZlami$VIa)srAMY1IP4V;5M8 zRAC3Em+E;Qyg}Xz=LGIWes^p*LEL;-{wB^(w7)Z}rPvSK>DfT!F}!cYA|cY_ z4TNvvmh&wG=ixBK!e~7uezMPkk+yNV>o4xPa6>oO>0yM z?414P6I{w_HMMyVFG9IAu?fEPF~3|c!es$vGjVbERVH96O0?acMuBSF%8ILAJt)zU%=Lg~G*V~OUAld{ zup1iA|Ktl(a?Za4fwm3FzRq`h-q6H!WV(S=+COo?)Xf>z+4tGmA!p4~Vl3R9u3G~z#VlJF5cz&CAy!r1~R9@#9+COD!G zX5Wd_(+4YtGKwLIM5Js)%*oNf)%u#n&3rG1n3U*+gOCy^n6-y1QQ0u$8jHbm0qf^^f*S9 z!bJLo2QO*KZZptHb&;{6659jNteyx$C1FaamT~s@gM(F8&8|iJ6pU3)fWCf>fLb?h zGIv4-OSl)CDk!PB8}M%%lTSsaWkryLqD+iGFGo_)1W|o~btE7uP`uG&BQmK)PF(kH zCIf;_>kcPHh#ue~w7#yQl;=!=*qiS45I|curhAlA)vqFB*Z5i)m)n#TfR2XwszRzq zd~qxOvOicJxu>d`P5oTwp{j&;Sm6U^)~#<96x@V|JVc8*o5dL9iK{JUh8nkD+lxqt zL&?g~u~S-cgbW#dW9&#ki0euW_(&h23Q`)1$HMpQ|Eue7UVtKVoo`UMLOM^*)fIYG zSvF?+X4EA~@P>v90E(K+gzN9D?k;}9vW-sxVt#`?>Z~1eRV?@?BdWC( zG0e_POBUe)b|}CAX`UFUk~|-Sl(MD zD@|v(_=mTFF6pxwl4Laeh;MjDi#Hbq{IVapDkutU@t13?*Z8n&W^VQl4{Yv=pq8BdU85htxTxup)i^Hs!k z3o~HEC&!U&4=3F>K6plfUuu8~D`;+VO4ZS7Soeo}?UGOsOOqa`MrcXWGq~jb)HMN> zi_~L_=uW#RU}g=D`zHmJk@4a$BGI{GJfjy=tWH8%yH1ygu5*gJFQ1|XXVx#PO%}Q( zMC@%mWbSG|5B(5{= z=D@@EZa$fxbp5Ch?6w1BKhUiGNX*nj8yA%@2xDOg;P@*Ig#B6OF@FfiBY?!qNt{RV zUo;K9CVemTeGnpdx(aen+Cd@kSElpNL1-|^09>nD$skb&fYQHZ*D`CXx~nNKO|3c^ zY>*0Btjx7`f&>Y{NW-*hrgHk0T100#h00%;@H~3{DL>!WNj3*O{k2U(djAj+;?M=2 zfTmN<`l4p)d3|vZJT3@BcM0+fmRBbEf~GZY24ZaGvTOz=y}3fi9i`sHa=Hq7|E@nt z2$fJ+=5qjnLhe7n-Z|4c&uL*ez;$MRwIhONv=Krtf_Wk1`3@y2A%;>Wc{VT;W2@#L zTN|wOX^#1HBF~u{t{OX-p9Ro#<Ixh0UhTV>NpBDUIp8F8Z)rvkcoU;^@w335Wxj= z|JMWjBUilKux)%PYwgEr49*Z~Tu-x_64VfL8?ku5rp48cX;lqAbeed$i)mp{Equg; zCqsAAL@@53KOlC``S*1dFGl!1c}U|%^4k!0I227a(ewP1_`W_8yWGLQ5X%DCAfXxv;UQ& zRAQ=l(tlErRlQOzoXRU=kGw7$Ne0$heJBM9G2N{qJ+G@ zsGV@=mByZeQpLF_8xdiY^^nO}O@~8J$JtH)b76#_s{7e^kdU)LLSq?91f1ebvvym*45?x)b(5dOE=EW z6YqpK)@Wt`<9yYmPO6SXyRcS+H0tGCK42Y=@vaq)iltE# zbzrfDOM9V%SQhQFIZhZ2rr_&p>g{C(>_Iqtx#VOpz)7OK~!VcvUxk%X;D5ypxKyiV=2zm+3 z@vW1UC#SfMu6?=7C1m#(v=Lv<$E_to-T1gEz3D9B!#P?Juu(Zb_WFvGc_{5}{%O8$ z{-LYDHnc+?-BA_L@(f5@{7rrzK71-!W-c=-9We}Jw8cTrw>o5M|s`wCL?JHZ7d+=uyKl+S$_P5>p&sM*lap76x*%GRC>Gt)# zwxQ_31dbAM?+6$3o@R7C`i%h8VhZCwxhK=HVH&>6@9llDU3gj4Q*SjzUl9sZgfYzj z@8|PrFvL3nm}JP2RVfE>#o+)2jlb(~{aEveHs)mO+{iOpZ7`e^F{8o!aUc?bQR5-Ck+!NyxWj=6PmdJL zknO>jgdcfa&|D=Fy!rsG$;C2W@qMoupJ6%^QbLWRJW8#gYvQXMzfbqb(4`W;nfQH3 zpULHhmS7`Y6g<~O%&qW*4Doaf#}Jyu2Rs(@iCA!$e|{*r(}H8Nje!?xRDUN?`AV6; zAfftX>K6kF6>h~nFpzK$4(qo?pgNn8EC3N3f*aoRG7me!IDzie4L+mjzu?J^Www0E zbmVE`&flE&4m_xnSeGNQ<;P34gE+ z5$yQqfceb|2nhW6spu6eft#1AiO2rB_6-k z8KSoXT{)TSDHajLOdRDfx%d1)C`gQAkUkz|m)eUi%uMJg#I&T>^DyQ+vY z{}QM@xgzRU+#m}Df)!`Mt+i+Vjg0BSfTsRN>Ga*;M>e2}Jwhpo z;~f6^gDj)(uaoVVRP7(} zXasjRAOoJOy_}DTmlH+@yqV$O^9bJ-)R^kAco!x8sB^OI#XRiSOJ_#H^y?v>CN52n;IZ%hb4K*23&Wy{B|PfH|*QpFukD! zyT*ZkeaC%<hydm3rkiQhNviH$zN{)_Xz_Sx5xVV7#(Y37Qc1thwY-)}L zz@@q^V&jhs(;B|Y>CBDmLUav)Z|;C_xJ&MrYHA7KpD^PW#epznt#eZ(F9cue4{-B9 zz!pDfFgX@ADO1ULV))jEKJsE3iK@iRZ%Zl*A@4UQjoa}d`-x2z5HJCSFq1cjstOp? z@|YD0M?GV~a87D>a5#i@2~rCX=?H$0GIi?gGlg=}SW|JzYi;G1_O~t!^_$ z!9Y2(uA=fJprZ6Qbbp5#&PFq^?2R7wOh(~)R25ghUAY%cH-Ed$K0I`P*rxyCBOhWL zg#zPG-S~a^L^IQXiJ+_Gm{nvS2 zZ8KIQdw?k;AzaqvU&4BIA=8&o+FyN zy)2sET=M>kv|5Z;!9|e-`*I4y@8DB>{>C6xo-r#FL^J( z*&*m;Q)&AgxRn{l%6-Y4*Dtro0^us z-H!FErKFEvf==KEwE=>v9?~S7VDyrnNnB*F&~sx3eJQQYm>Oc5qx_4~zwfJ^6uc2~ zdu;eo)Z7opmn;wbh$?ur@05t%yzW#mbuB%8snF!WHvgS5K=O!p?CtmkCtrSp`5YL? zvm{bN-iV4ni$i*oM_?Q%o_;}NyD1`K2i}jfaa$jz$DzRXDg8m)avQ_Ue`WTS!Pfyw zH09zCy`VC#Z(oOyAB~U7FqreZPFY5EGYebmNo@4i)y#w9P8OEtif1E1WFuA(N^g>i z^an#?E?@!J3`;owfQy#aJaPOcne|G}qeUv8%`I0__KUy+(canegC$F{q7P!r2jxc} zKC<-NXEpL=`%y2_h}%MK7c)!kXNzD=&f(+x#{q2n2t$lNI$jH&Q*GVe=o~`bu!hemY+T&Gn8QrE6Wd zp+*k`SKq1Ksoy&{K5Vv3<)zzBIe44Ga17)64ja5+v2Fcpv!qWp9x_-y3wTtY=2e%q zzC+Mh0I>T!zFSmWvg(ZsqqZALT(rzwcr_71J|g|WrA$g7_R<;}oe}?e3^Pb>2e=qj2Y2geg^kf?Lu4S0}O~}Y1Qw{SZKL3p_+k(UyRO%zadG%DFgpz zF{Pg4i$F-`{FU$)Kc>(v$v(br`X-N3T~G=J5#p?jY%MCM6@%>H7L$i}8y1)Hbu17r zgOz!8O*39{oO9dw!w)XA0UDmO!%}j5>Hs6g?-#5g4hAdnKyt+}K>Zf|V*8@a*0o$q-Q~8ZTSUSeA{PtIFm6`YH*`t(7 z7WAbX@9APqc}o0>iAWC(aVH^9_MhI>jz%l(Wmvxj=s39h8*HnrkWcm}@-y=`Ot!Mc zGVo6;e0#Aj5#muclEQlwr)=W}c0f$+&BZxcgPjEWF?I0~w}1tPrudBlqn+aSlqoUhCQR9rDRrqcyN%G5{;)$x+9Viqy8hWS1>wL&a*Z{bJ-v3hN)Q`@n}rT$l> zC#36(oX(S5`oHTrOmS@q(C)R??b|7ErQq0;eRPwibR{Sg%QD#I5yCStA|nM5X<>~b zcLg8n?{GeY9MuL&mpg#@MtjV?N09qJbE!?7C$A>GZbTQyEf_{i74`L+-_RRvx8vOZ z+>4Tni`CDUhYxPPt>QNv4~%G0NWy3?u77iPo7smXNGzii=+SovM7MM0H;tx+1Jt45 z6Y=x~NK4lcA?*bn!BT!s?xKOHZvSIHx5Gw0dftn_K=Ruh#Sub{LW~0`N`9It*=V65 zMX{hOxf?B;(;$FYDyf7_WT-#pF9@+A6f6UmEI_syQ=n7Dj>=~p*VX=o;pnONI=BC8`P za-!9SJW(Mp%TweCJh=@~Jn?7zB-B<{-w;g$r%4nv5Z7_5pl3VQmW_eeCYp3iq1Jgd zk5Rt5B`@;HxJwIkt2BZVumX)z69!_=AI|CL{s$*DNn)NgVE8I>)(A^(x|(5^?Vjd1 zF9f0ha;g2^o-u>&mR~w*HFb{>99mQy%shMx{B866is>IsM|r;WQvr9+G4EmcPAY)E(6WkzDSik>H5*r^j z_vkB~(L5~%o!siX27(~mvG^JcwcIDZmkF?zo-1hywfSW6qp0m(tUa1ys9qT-bhn2{ z4fyB@C=?~LU8ns2+z0t7_*QzlQ?6II>AOLrRcF2NOYm>nC=ufwCm~PvDPN(XctuL^ zj%#xE&Awh{*nI5UuL{?T%H6|&DY1x}t=@XwX{(~6Sr z8%3Hsv%k9F+z#i<5Qht}M@nFDVNEyrX&AQ>E(2Y0ldFaqnC@B3F!w1$Dja3=?Kv=V@S9=A6#gLT6o>MiyIsND4fAe3qOd0%s0UNhl^l+P;p0(goIrEs@yQO&w1EAHS=i?B#~JH~H;Sa-qrYz}^O{>sC_C#{s3G z!!0aR&2}{Y`b24~6R=`KX}ufRG^T1W=&g}8MOsp6NDb=7jPLha^Z|Ncnn5ArrUT$| zp0z!55r69N%b)e6>B_umS*DO$dFXI@VfA$Y#H8Twgj#%O{dNR!Ih#S+{~3Fr5E|Oh zmpQhTFY*H-Y2(5NWtp>8WX}oLPr!rz2SA?LvEX|Q)TtRJry$;UoNXloegIOIM8I$t z@0Xj?KUGh2XE~wvwv}5|UJZLEz2Uw8`?wO()!VO{rIp-zhMi}0ieTABgk3y{7_z1V@B1Lf4ck`M!zp)YR6s~In@&BHb@iZ;E)wvM3T0gW` zav$g6M0IPubQ9WVk_YoriS)GBDjdX9lVsRM1C699i!Oq7g*7~UsiXJ0w zzk73xbiTGNp&aI<){=T@-nsh~`q4!K1JL8td^uf>2WSx;e>C0F%bKp}%%2IV%w06( zKr&-)s)nlz@Tz?{*31CMW2C+zo({?N1!I7&iI!KE#>L5Y=|5h>Kp8+c2##R5h1L&NfVM@Y-i)f&!d&n6t5lO7$@80i(Q~ZHqT$v3D@&cD$Oh3B8&fVAa zx@zIX<37o0sDg-TPTzkA^`)P?^=WiyZ>sx1HUj}d7}0`-+FM|+MnPL$Gt-d)B{}a+ z>JM&CQ1PR`K2813h4>pCsR(Ll7DXFgKKcqBbQ=0mS~jDtdfT`%z?eiz=KS_fQWfnN zhqO;i7Xf@VXtGP@{)L5lLh+AWwkQ6HVjUw+l;KGoG$86o{UsZ=!)924vIDe#34rz6hLQdJcEZiXAG{n!@ z>#=sk6f+5s!#xy|F#EJ8y2Y;L-Z$e1pj+WD)`#9UTsr?^97AAB7v>c%*V@i-`@eDa z7vCJ)UNia|f&c|%GPvndX*;u*kMVDBMxbg#SAa6ER-dJ9#R_@g3Y9(fJ+h*udq&Bc z+(YmjDY`aP4Yg_jK0fR}*O!0%Ib5rkfXlw3sP~H(0?w`jR3xq5D3(N*MtNRg=k|R^xEds zmi^y@_(M9HM)M>h-8m8P<7>_NU?oSjp-8`&GeSC=nRTpNCIg8+VxAZLS|2KD0}}CY zB=dKkE~`|0$G_@mI=YP+*uLKj?M~Y5N1Xs9^uwRgr_v>iR+9!H0m1}L;JOO%;Goz+ zkQDr(VS+}4UV?0W2bXwo8GRa%o z^CudibISqx{IlHlI6vaCkSu?gE=GDH15D0_6%gx7Q-7J3v*q3iqU#uZ2<47B8|0oz zJ;?`NW75S9;Ou?<75WP$GN(3k;pRl){E}LY4P*}gN-~ia0^tM_<86dOMdlNl#5N|h zyrE7`o)s&cnAnel_16v_=;>QFwle~a%{SS_n?EIZ{O~^9Yp(%XW#4(gO$H5aH_fyDluriCgrW z(P#gGLeEFeFLlaNov%^(z#XdT3DU?c%#+>Tf$l}hZfa}v^YS%2TQuv(N#lhzgpMEF z_LBn#TM(m$l8n)FHR{qD3dv6J1rH>L7Ru}C)~$Qx@7vN#*q7v-maY*$*#THM_hvnE zjDh^+A@woykF&^lrv)psyxfp)`T+#z{(BiE*4Khyt^j}xXWMF4I$hh1dzA}eemwhs z*D1XEZV4>TfB&9S+Ri1Q|4^5F8E32d$uDprZIZ^FJ<_z`h0I9d1GoKs|DRa>%2Eud zsO?K8yvOAOft^nG3r$G*>*0f=tI%LCY+CwAE4KaZHBC6A{#UE(GZ=u_Pe5J2GdHMR zHze^XCFoJ`zd=zqG{ zo_K!206`T9lH{~McR*w@Qzt9X8cgDZ%doC!3wblEbsVJqpgBo=SCga9Xsg1EX6Kot zxJo}v&;h}Q73$%eLyGd%Q@Z5BSt2;(8NQLU>(%D)v-aivkI(|xmZBNG1PtuF*?qr* zH=Fv1!A?92?O&3+wV4DmAOC>>gc}tEJi!gR!}_|6{G7Z3s?KE5mN91ro_1RqW>fNH zKi;?i%ms=>s+Sl|7BQAjvi9Y!s$eZXxXuy+4DwlVRDof{U3!ouQq=~3SeK( zuo4-ei{gQVEEn?b<0{d9X)rAgxdq%HTILIY_h(iu`BrQlYyP5OmR^2sV0`kL5i#uF+DWnqq~ z{hWiANOEK7r`2&emzA7#}|J47~1z z&xLUmR}<-f$H|g+rcc`JU*hoGMbN=T{28ZswY^OJ%BRMtU%YMC1-KI z;`fswfoogac%F;)(GItf@Whdf)UWZOCdb>A}HgFuxJ}$2&NG%cIq1KU){>=8{AlN`6y z3tx;uBsu+WNf;v1C~(mQ-$*$RhwxWl@=_{D5B`dA*mQ zK7J-y0~4DZn*!*adqmd1XSfTsgtVgINhdO%Z?!xavHvlwh9C=Xu#nAu`O78y#o9jR z&u1)&l=5v3atr_<*Q+r@Tj!Vc<_)nv-)1Q>H}%%9?*EWyxhU$n&cTesQNYWeMTS%? zzRMU%f0hA0fT8y!RtqYkm!+xL#k;a+#IEE0+!&!$nx!5&~ev{2M zSf+)HP5=X@K*h~O9fwcykvg(`h3T~!~gf=)d0;fu5E44fK3VwKlRnIBU@^!HG zB|>`*C0^57BvDPN(zu3SD1T?CRWs0MiqGqaFiXoNTBI!+dAW?6=IYvSjnD;JwQU{F(8#4LoJ!FwbFixrUn^GJ1$W<*S*G>p?=PGNo4hA;xzz2Zp!beEw)wRy+UHM^Loe7^maHcY`nM z%Nxx%0Btddj}%1*40X%tx;P5y$O+{*Zti}~E+^0!!{DdNlDM?M zy(lgo+!&bHxqJ12()7t|7KLY#FWdB%6b%r$2^{WxZ6Ht?Ny)ddhNzQ^c))!Wit>p* z0Kw>cP2@YhrN>GZ^*};KJe=$d;#G$qCN2~=z}2vUy?`5BKK0PZY+>f>QBw{1P?Tc2 zx6N}gsBGVX!=8Pi?7}5}z(XtFlq1KC8~=K1fr~1Wh@s=|VYO^1sQjDB=kO_4mhEy8 zeseZ1Y+k7602!usp?eGX7#6_-%cm&Snr5Zp(=Xu281*C*N&haHiAziaYy+J)&k7Yr9GOw_q;ONME6AkY zu-GxKR0gzC#T*hlY|#m1caB9`GF%W}LX}uo^B%5;VIZirUMh{{2NLK3UG$0a>>Yph zKRl^Z68i|vJ(H+SfdI@@pO|)b{ac-Rr~G2R?KvzCP$WOS?&Gs=dx>;vN`?3x)b_d@ zV4XjRuza^+K}OAaP1|B0HdJih7cepIZ;y2IXeMi?szfXoa+!KNN$@bXxwQs5!Od9( zMf@dvv+XB&jlSt8{RPxzCR?o{sl$By1nL!6Kq^o9VT7`21a9X}YHm>+NO8pctDZ{)ZMB-P>m@`2V1BVj5Lpc;XY!uxH5|9w;u&{aspM|o}Qw+sm z#qZZTyhBUfs~P}H%-|GZ}` z{|qbD&B%9EK*fr`Lwo^)h9vy#VaU_OHL5nAE<6rOP>7nWu@%3`*h9bUw6i3f=LO7t zZ}wLhgR|@GhD(|l_*pAC2{HMA_ z7b}5<;^M_4=|7B|w?WLgZjG5je>Hz@QC#MVD63`r=jNh$;cs zWM5zu5_6}kMfvBU_Ahtmo%Z#d5)dBmN6&(mdT1;U=lEmhM~j{~UoH9*cNo{E8a-2u z6R(>8j2kq7MEa4JvdK_yvFGYfyJ+xhkruwq#B3Wha?B+Xbh1mIbdIU@WODi*6QJ6_ z>n3#s+FK9L2U2Pg9F@k``A|N-Va_&@N0h|P?{stz!pRUe9CF6Zla?K|$b^W2K95U!Zai2wwm%U)?>~f3 z4+-1ICX~jOz$7l95{UBP8!Y}dSv6;BwrWci7P|O1(5}5kp~df($kO~NjqZ~)wgl9+ z;{p)#BibWQ1ev03MjAxgH`_EY8^$tX#eRD^5PZU2;Qjr_j3Kzlcju-$cX})WsVwp) z%eh@V`UoyqO;79s!UlaDx_EUB6@V-7$OoW%1PEp7Fau5P8T)5^;FlNBvPavz)P`%o zGAVGUeI}pfmAY-qA@>a`peO67C2xxQkmRsb%{2^B(83QB-Xm%b5 z&+C=LToZrm9cikBcP`k5Hnn32x+(-k3g!L-I2%!h()jhjGI+ zP3;dKJy{ciT;Pa}92~`3Q%1Mw&XlcEmF%ij@dxe~9PGQ*M2qKgiXPS@Ggn52tsR7z z;m4<*9Ge2pgFtjNwH%y&Qpw1X1QdNCr+pdlh43>n;QX#yT^gJ<-YkHj2s;G?Nc;D0=x>LQ*>IYd{21YC1D|5hGPa~gxYW2 z<}?|lhM99?I733TWh9zQqhJYVkO?C1JXy=9dESf$eQK{9?=RyH8llLAs~|J7Q&RV? z{rU!qwkkCoQ{xbdGQA!=;d)=U=SRIA)(1t@7i5x#VCk3ecFptJH|&eD5lQHRHA1qRaBrp&`~E*$TZM7rU%bq zU^)}h;en$5OzAbKxrQ22PLjO9Zi|!dIJF?8b)MzKxOBu#^VKCkGp+SBG0{V?d;zpp z3Jy}`ZIWL|Hz#1+`sN>A0)6;l9ZD@<}97}<5iLOj@w z1i7yZ0DjXLhhx=&qiaD+w*L&@F3zQjV63O?AV+(pqB>179{;>vj%Tp? zC8ai&mu}KpSxtPIN_-dlQby3dx{d*}n;$KpJXpEk(dy-1YLEZtdIGA3P89@mbD;=xKoewTqvTV&#k-*uc$?-vMHZh}-}1{C5` z3%8oh+z*FTA6BEW+qy_I_2A&KZ9|Dy|F;C)haJY2z#^ZrOs(KAXFs$k6#fs`9`z zRc_sc*q1>1687CUrjN+m7~@@`?si9C>Pqeer92t_{)UJ=9r7#!?J@Qm>NP0rhOtA+ zk3!JAwf#63%IM={U@$bt*Ve*5>o4DGN{850yE$(uBU~*OH~Tf{gPiXW_KR)7i@u~u z+ma^$b3l&BNCw9&xhP|yRYaQ(^!`PIWvp}TG7!guLFw;dOAsgkV4{Y3_6eMV2)V(X z(#c#&jUSlhYu&ni_t7I8dXd!joT}~U=s)eR7Jr!)5U4d2)q4y8L&gdqiMIY~-u7Xt z=Hj3XvJRj=2WP;=&5ap`a)JiO|GJa7%iBdt#u!wLka{OrqJ0|eNX?i6qC2Z+1b9sm zznT`xSvwq-}MvN=A{V9Bkl7N>ueqBls>vngZwJzjd3~OtrTwlyrI{`x!KF zwqL{b$^Uwq{#)<1&n2GE>zf;sgL0c&VJRhPcmktgw*e@V1lfaTLdx~)Q`DNIcUGJ_ z0*ikr2iWu;;pJ{Bm@MOt8SVxI(tLBAaf($!{~~dK=He4ogWOaV5h-D3f*&6!A;cW| zUo;o>5*G$hl~USgnsZn|`lCVB9RRu0a&@=QCihhKy8LgrZD=6?1o&+v>HpViBr?;A@7N z&$NJih9g#q90j-h0@qXA-Bf`HKsVnA8KlvS=UyS=p6S~ADhJL87CeQsz3tlta9Rc) z<41%;1fk#61sV!CBp^1j9R;Wkv70W3T==A_9vR<(^!KpT9mzMc6_wNveLJ*40bibx z^HY(_K1P<$!h#CE2AX&fI{|}G<)RCtmX0x53fY{v7{LIXvRZ2m=*}Fqdkt6e|7KWT zRouyK`W9m6@uh|trngWbQdzN@fA*AEHFN&zt6La-r)g;s9hBXP4Ta3IKh-~aWdOp$ zb-oHMA+?mYKy)^n#{)e(0R2IIP3V*`{ebE(?dpJH$HmwwKO%A1HxUuFME~i=+&0q&;=H$Y~NqWaoNJ8Ej>@R^N`y? zh5g<deyZ{MVCs3@TlqETKd;5{vB}ELquDF( z_OCvi$7_&8han9UBMaUu8W9HMp8l@*yq{e@gM=l0n7#!)j zQEx1Red1&3RXA+f#!RzvG6e5|_G@Hj4l$h;jg;gUAxDnUl8M@oLB}R?01Bkx6Dj51 zfO=voGwpOH)8f+mLvJ4qCtkmBO9l?m$;sCBb#PuS;qKedYV zT{B?g*_7yu&K8}gnj@;L^3#o2k`BGwtiXYEqe!Yo! z*cJJlR1RcOYRwOZgCsw1NhPH_pyYQh%jARf`PERDe0727%86UODhXB)+9rgx8?u1HJ6)zL`4#gW}5?+N~Ck~$fK6m<|&5UM*5Tui#!{P7F zn9uKf%D!eO^`Gpbq645-~%lE4AFl9G8^V?gUj{1!FEb{rdI z7w#vin3*t(`74H;!buKig%e6$p0nfc2tXVvp4ZY1aVEjWVKXq9MFlKjNL%QByx)t7 zG(Ls6w}p9*wQ!?R3C_l?>Y6a7J`HIkfM|eG{42^yEdrC1m3;m3nZUCz3%dypI@Q=b zA5TkHFxg&F%Kd55(v$^#T{fK0gPxzVT%mgN4lGV!9|}Ws57Cj9?{QvIsdQBTaFm+# z>Su4C+V96ke4xLY(ktD5W{tyy;Cibh@;~bDUTOM)nZu?*tjSrnz2n`Y4hS%V8=(1R z_C0m+Bj9)$zreF&w2D=g4^k8Nx!#!S&Te%RV|foM_~o(pS2QMo#4yDvR!}sH8z9t! zY(!6wBQcJ0tP3ApITojUObCUM2&<1!V=3`51%;*1VRq$vz83oYnKo)uy%b%lD^J+N zEBv=#jfK7z4djsa;X1{n40y|9pXf9a3JlaHU>xS1S4|sEzgb-Rja+S>EiM0G?$APq zb|fOBF;`nG2H4}gn25hyP737X4?Sp&LuRG5&CQ5W_h3w>nD8OgeJ%c2&`;+JS>h7| zH=Xg$F;~s;se6MOM^+oW?IZEHyj9qnPym>IkNMH#pB2X%< z9Ypwmm(ak1m`=4-n(SEXrs?mQok8>9;bb+HysFeQeEGSqK{h_` z&mC?L!awxOSU`;|$mf6bk@)}5kT$`e_Lhe!IITJ5!8)ccTY`A^7TG zuQ=$TtxU}R5r`c1jApplLhD77w)32`sZ^t%GL0KA$Hme39h zw)F|?f|NEYHO9*Thveol{6lN;6TT&A^^JE_i>$MeJyFM2ZVDeq~g?qV5ikf~-s2M(0be`UX%b!Ggty z<)jdCvXFcdX(FJT(OT0|LxGmiP)-1{bs<Lo`CMn! zYlUHBoaR#;EZfS)IPCx9%gom&4rtF(c>uIV7Ut@2HgMqR*s@UCOvC=EeXJEZQk;D? z;W5J8rybDMP##E@)$`xyM=J-@3>_Qn6ar>V#y1)Lk%}6lVF&yGpgQ&Nj+zOuB*@pX z?a0p`!a|7k^heFV3>z8Ce9pc%RMZG2RjRR%d<~!a10qM8A+KiJbFjIKPh=He`j0!fnbv1$& z^ccg46qLY`e4b9wW9pM;N-_H|Up^JN;sQear|-+RfO%57er^_iVaYP^vffrBZ>X`8 zxtcKd!q&d}HiAD^Oh<$$#E`eAdW1er*eOOsBJz)P4HcFI>-{INSxTb88){Ua#IpUO z4hQN&mGT?RmW5u1DxcMB-Gv;uT!`E@A}Z*2WLMD9!pC$TZwGbGv!X-_-h}Z`pVlxc z)=QT4px3C{Xwg^E$r{XY_}f1zc#)88GR+aEtZt14m&1kAO2iX^u+ySp?-Z=JFE$@Q z0ICUAuOfK^>~C6(1nUO1>8vgwl;V+b-NOHB;3_K!UV?^P!D&|Qdozi?-B6kG$4=bZ z4i+qsN(|?603AmTToJ zQGlWR1o;$O1?f%cTK@FJ?7t|hb?&zj@Xl0UE+ZSG zbSd@2mPjS2H`YEFu}-~&$mTf9+t%cG>gNISL9p0T z6QBQTOTC|UqT(W@JBR)PA|Ajqx*ZzMZ-kdI54^H)L$xIQ>X>R9RjiuMZ@7Tt(}+{< zV>^H~%=3N-W5!a469?^%oZ_5cw%nrdQ%yvi@%;(Uf^hdG2aw=rK#|Fa435DB;KE8T zrt1s;+COWNDxi5%%=3SUWV4pTd{MgmP|KZt_MLiO(Z?q4to)>F#z`O`94FAon^c0I?2wq@wn$&5fuGZ# z@flS{8ef!BE_6&Eem&=ayR1R8ti0t8dB}c50M-)nEH)_2Gsq;6U>mko=bkM%YhQ`E zq#1Rw9UvV!+0NF=wH{GmX#kkvsf60SSIRi-k%Bw=hAwWQ|d#3 z82q?Bg|SF9>jT)e9>r<=r8a?-;aV&oO)896uvH|`e`xMnV;~gXlt^EsC+rwxAZDlZ zzg`N829xh68NWZttmYNzAA+uNeBI{24uGg_C~1|QcC-BHhp2rZp0IbEL9MEG+@7<1 zhJ+;Obz`W=diKA7^Umu3VWqLz6gnO(Fd3i@Dl@+q=^|99d^pQeeT5#^$A8|#K%37o zi5q5$v*;NBgkteDbzoP24`=!xXExW5U+xkP*{8Vzt5M`s9f@4##0}*2q~!Iwfn5S% znY%yJf-fO?KHx$Vf<+ir%buJS3<6xuqs0%9J5{;k52{$7!`J!?p`_PIvlhr~D%(pd zJ^!Ai&0)`A#qYX*Jb&fJ56T!5z8#e{KN8T?BclE7bEEHaGJoIlbseKcDmxaXDg4(X zB!6)SD5{Rv27HxNB@+b}GTW8&=9kYUHE@Y9Wd%&YmDu0;$Ho*zJz&L!dO&N%X)cr) z71VDz*_5+<-P~6iEG*aGFnT%Mkj&2qVzV5Y6xIT;S*!7tBzPyFRQt(!bm(6Oq_OQk zM~UDMS5v0${yh=;)A+3q;BabeG{gxC!My8O*YN850yqu+xTWgkUjl2PPpJ7`|MERG zzzC=iF@0^WaZyIt2{7-*2L4ou52 zAOpVvcb6?#qXggS(eUHH#{iO8dE=+Gx^VW2iWlQ1PgMqGO2xrww1I@}QnZ>W17(MF z*%wW!jvv!m!^*kwrakhC zBZ=?Z<&nTU2j$ahHmSxsfZlEM3mwvIqFH8F|8I;zUUT&chX52A+bg}~^;XL+H;%M5t^4afnRWc8bDeKSI==5r2`GviCQ`N% zE#5DJk_Q7+$4HZ%2FY|TgfD;)Fh9I@gOPzL`IVyD-q|d@)GJ9gy#8?TMBr2xW&r{; zej(D(9Wh+wQP7O(b9JcBFVap-F#7#jZZSHXmDH(ag^3){xtj_@^YE~BIDr0;@lqXA zg!1s_#1cRA&vc-yiDTmwa3GIJsg-{QcVz$Cb>f$W*0VTl1i^G6yy=bxm6Ggs=m1TJ zREH@y#umGr;GJ^KpD(n|8(1ev9u|X;i@kQry^(M|B4Z9Mvv_X!4@{vW_k}?2QokNs z(lWRpmiLpr^D*l3LC9Mnvdu=KG$Q;+bbU$x)03U*#Jl(m@!#2Ge=Oyse(aTA`2W*5$sV>Zxy{I4m{HMN8xQ)NJR(w#scnm zDN;}CY`rTZ{S^@n`6u|sV^kKG2^)Bm=C^A1_F%Ao53fv?-_2bv=u8A5PB4)3ivxVi zyKk5ZLE##WGFeW@9k^Nx4yQOjIgP`R%y@n7gKz+~02&P>B3cJs&g=I0Kl*3<<53#r z^(fP|2R>L$8Chu2vw4szUgVm>;$8|jIj{e4UZIMfymrdCjm9us9s<7rmpoEgtGd!U z1ps*7wz$ z4tcjY2y@@yit#twtha7tsa(lOI^H_= z>zmPE!y!c_@odtxjjzG-MarZDShWvgDz_e7z!MZU9gGIn+81 ziG{zU6nh?xwl~5-Nowd09SVmKmLEtuc#IwW%J}^E55(x6SzwYY3^)9 zl1aoZoL)9+2?yTZaZ+G?7|f$6x8EfB8+z{PcMY<3>k+zm&MYz1fE)~!X@4n6|1L6& zoAu7(A&p6FHz%2GXuMoIb;8NEv+eHZ!VMi`%fk07hflGnpTRT?fpl7HtI9YPQ!}1{JP*lXDJ>&T7+ayK*V{{r1f67B zYuqCy2Is>0erXNzP({dT>`GrDO5~vRJh;7}wW9q36(ue@=@%Ou)gy5?#HB5zfQrwz zVLTPrzO}@TikKlq|DT=|To)W)X3VV!=v^pWlGzQ9fjttcL1L&Z%{3md9vGKJJyHmw zT;yHjP$n%m1Lnc?I)E{`VTX8*Rqetm?TVWOX^Czr(7k$9X9fiV+y^MD5B++5X zXe*=%IPs?-H9q(fkhLv#Hm zTZ(E_y8M4koyV4=NVkO_hyhNxp@bFQyBXel&(mL2)qVS~oYY!LB8fO>?{7y0=v|&k zef&8N__!zf2H*Jc)T6XM_+&o0d(Q*?ssA@I_p&bkJtOl2mjW$u+3Hq*+Y?n{fmh^= z(&+7g9HWQ~^mC0n6dUHSLC zABDtAA^7qwHn4IFh2Ed%v;3avA|?%xi@Kur8-n%(nXbK@S0B+Ul_3qG`zsF*vIH1q zOX1Mr(YVsG`?!{sy*~2BW#rafv|%+Ckjfy4pp@FjPOsfA$BuEV^|sm?Q^am@M2ATH zbcxa<32_Mfj?lC0T#+flgr=bu3J|)e=3j)+7W+#GR=I9isvxvV4afR0yiIK30_C_z za3wHj$f7}nz{Jo#^*2UuJItDtDvWQEUwnWFHeEOUC@t$`hd0qkMn)8mC0=>pQE|ZA za1tAy=#pCRoKBvQ52EWRiNLaINJF)xiS#(L%FXQgG!cpqMExd4zZq`F=|O{tD$hNW z0mfo;Z54o;^}yh^t?-0{(VjSC9bx8^=0|krKsN&r2_geRhmuzo)nYEg-tfs{(IRrnfy%Zs$RrXxwi?1#bmkS$=#P~Lh`mFD^u0O=fAF^@d}sT)S1R<%to!Z zeP`60x-l2C@Aay}woR{3tK;&X_88ve6!+%T+G3IPRmEI6}FQcc$U!XE8Fp55-v(2+ye_);3@f z{EMTh26j{Fk#gUIb4!e#ggxSm6soCn#fJFKF(?VO22&Y@bdWp*%lPdg#omNCVfByL z;Szeh+>3wV4mJQ55cB)Iq1iFtOt7Lrd7PhqoT3|eO-vxNLTN)$K&IS>*f+(jOm0Cs* z7J((&_8zgLADr#a6aV;$#-l#eraz8{fDagJ-kT^DK9W=ukAykQ!PoM-yVl85`MeHY zd#AM=lsA7CjlY7FJ&mF_xQuKA09x<^;S=I@Xgq)*Q*N^WhQ}_{v)e`G-|~gMUQj0A z&i^L-?Li3Vf-NAopZ%=HUazRHO+dB&5%OP^ZpHVEak>&zn&ij52 zI@=#Z)Pp_7f8W^kN~P+?4f6%4p9<_VY_!(V-9hPsbMfoQVKTk=CF2_z`NpmV;@s?h zMA6ppfyPOVhKsD8VuOsFGtSTU)%5rUaORjidE1Y)99A9#Yd&|hlWjzu3}}Qb^4NSG z_6vxn?|U*Nb6RIYKJab)o@PDcsn!<_Zom@$*x}T6ZEP<*(l4CYR4u-vCwekt zBkNF;*1uU|<(xr9;7~ho?C^`+xiqGJOwmV&G7km0$^r;ctJ76D#k%fG)13HZyx=@= z))e)fr~PzpIPO0ePa*D+GAA3S5x`R$;J5Ep$~!FXp8!Y{s@5b0E08+&wyPPYw2oR= z;E+b3kWWXYS!$0^1bo7@LWz3v5--_al`E!@rUA8A2L{-3QWMx)0081Un9p%5W*h0^ zG3Br#Hr2SIc;)c)I1scMtX!9nlM^N13gOm zrKpcR64RcXIF)ppUMX!BANl^N9Q|^kM~`IxOtce3vlfKr_m6`K4{%VpsdrIGb{iF{ zYSw|lC9)gevW)*!X1D@3@`hR%>ECyNW}8S6D8o1Nr*|ow)dP%KsOJQ*yXBIh{7FOot_ zA2aOa2KNeg6dZLpeN|oM{xq{{K3uNV`15iC+z?jgsX0W*MWDeRg`L2ji9WyP-pUjvoIU)q&9l088dFyH&DL?d>koGbC50ttp5v!HxttDbIM zju>@6d~e=4cCNj$)e|wC+-m3Tb!iT+%LuM;FVSA>sr0vwbwln&O z(t{{^RJ_J1T2+BGR~H4xJW<%*a-iCqu~UeL%b{OuPB$g5p)qD4)^+n^fDJw%QJ-oB z1Y}5GtAPMknHjCg6qqUSSUmC@{9fz3=^_W0h`8Ebe(m7BrY$I*)ztfdpl2Weo8=7f zORU@H!PL@B_x>5I;?1_K;aY3!O*5LWG@4Td!GTNQn$A~8cLff4sKxBsdV#mT!`E5W zO6FO*A7#W>@<%$~A;sqJTaLn>k9WCzgo08{IP>v^un4fqKn#j!7JrG+^kxqdr{@^d zt~Y0EvVJ&B#j7dCgR64Xw?Gkh!`I=W5)I#=qk5z57xvAgGGyOcK#WM3x+YObuP+bu#uU*Cb(ve`^YJ}(+@ z$Xb^U0&kX5Ex|1kPM6NFje};z07wDJUJ8&%lu^`br902zv2#@2^057}MhXk~FwS(N0eljr zm1PX~FqLYEEOU`?bo^;B<>7i9Nu#0`KP$Ai?hbWe^o~D~5SmF}Dp|0~iHI~)M~8$W z>abcaR321O!VosniisT02+yt-ZZdgQP^6kcYFOkxec!09Qt)xV+_l)juv|XIZq-0r z)tw6A6~>PMZXxzr*UE{h*V0AFd<%#Ht(Tnu<@iVdvIqDiE5*n+)R}vz)+?kWkTa|zq?8GKYh1fE%0cX%3?u5?wKvgFgu*_E=z}dDf!bQFX3y`d2$-c- zd&?uqo=Uq|#-cENve+XgGmb-#90KM=o%_Kccub4e8gZDE7Hr);_2)W#Nn*U@`*d10>T&TCo-uteEt&oKl5N;TQZ0bu3|*K zxQj*#*jxT*K7oE~5@n2Tsd(E1Ivpo{0Pp<1-=Sg>W!Ym3ZW2gQ~(vFc7r(t zRH%JfLJu5Z@6k{zg)4SW%2;Pv>%n7VbO?af0Ft*4(Ahm&*#u~)|nzfS&vEQ&@8wqQWFo-v_4@^9^B5*5%kCs!ce22 z;uCJo`{{KVA|T#MH)t?Z(QcLAz&s( zZ}TT2wJmip)5?Avkw9v~eWwe&@pXNK zI=dIHy~q0Jl$pFM^N@=ggZ5vL*a^gf5IhoNFITD{t9Va^U?$SQnWzzB>~OCKjFoMs zs5KwFPxJMpU}8WRP<++XidMVB^l<}lGy-33A75orFJzi%Ik2^UxB1lw>38WVM^Tw3 zuJRg~st7Ab@q#%`J7U|S@uNuDHo_+6!C^bbs$fo30Es=I%|H*4DvD{|!S3krl-8hZ zRD>5aI%ZJ4o_hP3J`7wX-u6oI%HMP3>Q(>#J-}i!K-QqxCUQDBRc+X9DK`spLC;|m z=xB^A<lgq7;&}J#|W5aAqqprTs4UsA_qxcDT0!!#x@^4 zM(8*7@JtW~WQ~RAHTfyXQ13n1ZPq>^3Je7Z@ugWvf;hHYsj}E{2xNr=3H5qy;fZW71lYGJ zJ!4^=Hcd2@I-VL!JYz@L-iy#-7>O7VjJl*92xjXY>q;M z?2fG(`&Oi{>b4P7w%E1wu^vzPuR0BuGBLRj2Fm3k7>yBl4|n!^Zaz3Vq#%-ij-`zz zDEr^{qKR;3MXY~23jkCrW7yNd;xhC#3+2!GPNCrjwBv@RwSb%<;rF*lU|fH>hNg*} zq0;8e5?}Po#jDm?DhrXUrp>ADYXFe2>qXf0)@JRcvY3DFp>!Pw(gC>m;lJ3JjItP{ zIwwYZRbdIm^~<`eO-Q`D$Fso;rzroPR^x?f4&|m3WW(o_u8>4#XP#uz6LRI6khLT0#7TUKVH6s4#r}>i}C~hPJd9=b5Bb2pY zQECFMG>)HM1W4QoQ!kI?l~rZ6K2tc3H<b*D&>u=O63S-d z&XAzO?QjsIjV%#)s%6~gyS1Md({8O)S!(njaZCXVm^~Okym|DHE_#?cPH^$Pz7Ec< z321gxpD#$5XKD!tFLdV%1$=m(^_+;XMM*$}q_`H8_)5r}M>s9z5fSYC{v38xg zHjJ`w zQaCkcY*o6!lLI#H{RaOhGbPv!1=KKO_}Ch9X5yaq`rX|I$olOZE56n-ItGFXM;J2| zT07Ml_b6fpCR2a}GYfAWB@>y19wpwhkWSH7EzSi$P#xDpqYpX~PEa!xL3iM*;{x1= z10RqZesJaYK>VA~WpG>aWhQ~+x9Lo<;9BID+rRFnHL#089Qb3SEzws-+PN0)M`|h! zR$x`%j8Z0+>0b5Py4U4#JvlPwP%$R7Hh_4B!DUKIDz=&0P<5*{o$1S1?zwE+8iMZ4K!PPc@DxUo&kT~Jc z$ySpAyp@>5`#22nrrPuL_RMKO)G0b)E?(Ocp+D zZJb9<2BeBSlYK+|ts!^`efr0qZ?f7ZOcmK^_Fem_G5-d(gZ)oTpRxP?vNu<)5xNo* zHYWwe@*ib&Uc7nceNxeI@(3dvV=4W4XHQ4#gppB)Y?aWn)xOmq1Sr?ck8@r z#ceml?xdx*+5H{)z~_p23<0jfa3RQLjs9h$1dJ|QJ%`ONZ!kGPjU4DZ`?elct~6YGKh&jQGMX`LjIsUi{(=v;G>OW;f-)7$X==BJCZ z**|L@X;4H6;`bhK4r@=DUrT!LF;#HCMGxrDv8U6>JK_5tecmMW24Dwt$) zu$k8uC_u@x(bTUhSpuZZtHOAJrw%0&B_ly*5xBFB|_^7N8!l>W^X*Rza$&BTBDYttR8i}5CUorq9 zA^;PpgIAoiYee1ORxF)l!p^cDTXt>lC-En*iz3={1ko0cNT>jx4^+k9MKNu78N0|R!vBkD}}3J~WKp?m494ME>D zN7q4i%>|gdIoaWr?izIHaAG=hZVbFew|tWw^xMW1+znab!JoOo~>NtNeX z+)zaU-?;b%@A^RhGcVsvX?cQ()XVKWzl@eD4~IK{=ZBOs`6_C$KKcqo4Pyu~S(dwoFddjiOdp-vrCv1tO-8`umjXvM+4a1Z!ZpR zWec#DN~@ue9oEabH6rJEVNLpmo;F7*sCq`e^w=%zWjv3B!3*k$`Fkp*-SA3VKml^W zovVBlUDs4<-@mAS>i10ys0>{@9}r&SFB)=4d7=K! zYshU~GkwDAnl#d6i(23qH67UcRy=A+Bilaj^P3`N04^2(c#|+~L-PhBS$*9E_23|Q8bAo9Vi-gnFVJE!uci6Tj(szpC$z76l@ zg9;d#ki(s;@re!}chsp5X-r^{Q0`p96S11e-3q30%v&p?G5U($K1fZm(l@EdJr+?Z z`E0qQT(a`63Zq5!YEM|Jjfs2)xr@v31{#xW-&A%CRX6d-YSR;=ylpACC#jCKa)-gG z*bISwF*q59nlwuZjVrM-3kV#6kc@P5+C3!pI&|6VNGM&<52sb(ca14_9X2hl_c>=er1K#Moa?58aF9iG^9pL!w|0;1Zb^k z8cZcJzyzPOB;t&h0`B#gi0Jet2@OL=kw3}0Q6lRF|caO71NcD zTU4ynX&T4QTXWM8{^bi}3Q8MSd*4mC0Zs)snnQK&A$LedZ7$+rx4$HQ{_S;$e>m~D zs!Axq;cXQ(Scqn|tj*aP{Z2)YtihW_sNlf>7+iGi(G5eTI4<1Lx&qKC9y8Uvz zL&6CPMCD7uH~0OTkQRAGxixj(HIkRNKa@dbbjpm@AI+d5UTF>OLMEe$a&X*?6?msK z)qOJ%@`M|l7?A7m5EgO+-@EI!a=CmzJ=~}~T|?U5HRm_>zm1c5?nk`w7`ZmW%PL)% z$ytS+#K*L#I$j46=-;f2RA&x-fZRYEHt#mP!5e#&YfZQL(8fhmLzyi71*;YpjHJr1 z6NfA)euAM!z1`?}S=J`dZC@{LkP|MJq1sNtk830ONjH)G+PGoLhtK=_Mg!=4Ln~rY z9qO-+Yoir7Imd#UWoJ*_X#Lm!br(JleW%UcH@(s0KK+i&2o_FJ z8TtD1Tq%X{Kg(ZcW&Dy;xS@6-r?Y&p2EP~+WL4)Bk!ws>4oc!MCK^2rp+?FdpG?3^wU+s0Y6&7Sx+zosOh>`6r z0*~#Cmc_3?S`;-JjD{?8Ec?gtr0tCqRyezeOZKS1U0VY*(aa)%47lsA`}+>(FBz{a zPO`Bo=Id=|9(~s;E}wSRkop3mvOB+)2t-Q#di~ipU}o zkQ>h~Aj$f?Wow{W(GDEW93Fq+VmAaMGNGiVeClaDAz{!GsrM%_?yr|GCi~;-dl{uu zvMD`Zim9-HB*?*IcO$Jh0L6sT5U7AKD)%h0*f>2JvVQw=OoMd=zk(6LZV$`X^e?Tus=d4F^{45YH202tkhYoH*s4GB!s;ou|!QFAxU)l|N{`oiLPpO7CW zhpJo-Rc~Y}UF<%o*oIF;!pMfaJ}9*24xNO~6{l$^nj&8~wAGh3)Oj(OJat;nH6zrb zh_$!H$m~rTLgJPeG;rkfuBfoTBmKrV6F_@P7SzEu(sv3z$u}*2g6W=m-81Mun=bZi2tNvBqCa%HC#C{NR z4WqWN3NF*XJ@k|PC~B2$)9%0`4d7go**D04P`v`|MtzvMs1_xSeNO~Hs`Xwx0z&NE zUZtZqcipog#g&_->d|*cqL*Lp2vBSdm}S_$fFoUKQmw@rCPUUUGFUqC&Dv2*+&`+8 z?(e5yG+xl?QBRsUFKANO`HtR})djm5`UjxCOg7x5@hWizTV)R(rcR8Al{0)MX}|to z%`>?mN)6eX+niiD&#ZPKkLqV5%aqn%hE1t%^4C<~*aEm<qm)k!9dqzLG16jEeX3lI609Tqnjo?S0QGrFmJt>(*9mR6 z8Z1bN1wlO1pnB(xGYyTdS@7hIP3qBm^VePzrM_5cn~TC%=PkpWoWpG8*@{oaEyC+b(Wz78w@J;vHzQE;~1QM-kABFFXzbK#HYvwP;s^s7~Yq8 zup1>G@CHye48PVlz;6LNYJ8H){GMcyUX%Nx*trh-W`36CxZVAh8x$#;%GgZd(tr?e zJ&CGAv*@w48)qLEZhLqJstPmH@usFeWf^rKM*Q+RJYSm8>D%sY2k&euomZm45pMQG zFYI5aNFE=xbM3n3wFk8at6@Lg7QPp3uP2>%?&xD|q&s3csL!ldKEGr~$MbEDsUY?d zWRK0?&B5sST_`vlj!Ww;ovP-E;+&7=J|0t?`lWY9(+ue=*81h|-0fi|t4w)a2THg}$s>{WcgSVe|% zR>_2m!x{&_pI_!VeXIw0EeB&ykxai_>P(J6j_x~HEqN1mSazk}lR?5BK1u-SV`!RM zG6;<#IiC3C0n~ZGhCk0wxp@NoyQ2;8b8U(t za9Umq(3}l+_}4opINGu%>*bjLY*2gp z(JjqGzoSNPoWomgew9RQ`en+X{P+HXue+G%a|}8d8x46=1$z_3L>N^Z+w0A2hV|sq zKjZsms$y)o;p&wt#oj9*zciXp1IB(q84kD~ekE%dhDzGbOU5vkbM>qYqIOt!e0lJF*U7(#ca!rj9iu43x}5omz7WAj^|n)8P#=&Ha#6z-p6# zDxlpR{abYl`&BoZ>rdISACS|yk2ECUjD-}GL#Gc?dNO6IhKhJ|9mjjiKm)=9hv!3` z>}Tvbvml4}h?7rBq0UtP9;x_&4)nLid#40Qpk^^5@bnrPC^)ZJ;J@guJUAwp1nqD$ zk$T(hkLiz52nU{1aCP@nTUX!byT_|;ueS9k)cn4i_MiE=k$dM!O=L?&xv#tJODqTlI#r#pmfx0Oc zU5izal%wQ3Xxdop6GdVBgh+|1fqbZw>z#DHwq$tv!ozL{h~R;VG{CcG(Bol}eROQ8 z;psv6t(E0cV0;Bw2(uf~qmi7^N{n^Xk+!Gz_YQH&*k|puRYa_jSy;O27}^b0pLmsF zO1o?A9>wCRd}HmH>Cde8UIV2_=vhFPYPoZDiCo$1n&}?{r*c5_utyBkWMT~HC-HB~ zF+cA6U~p=>tde70`1w0Io;<1pdwQpE5_=s7+h5Cpx!v!6iFOBZ$PYz;uwOG53IXQw z(d@@+Mn9+!^5(TsTOQsuNM8;=K!{24mmn42zn51l82#bGVI@A1vcGTeH=cY1+IO<%@BUR`|&j<~iR$#i4v3pXgzJ`8xW&xb8@8fw+6;=Z_BKW zQ1dYsG!1_ulx<#CKAd#`wd-+1TBU#Mkkb>#8{>x^mlXy@VQ$A@Cu@~lfOJ}+S4uT$ zy^t>ijeq+schAbW?+)5~RPwlSgV%JU;B&za=i#s8K8wpzr7|VSuhJq7m^U)Q8UHZ3 zZlq?wS}+*5b_z~VG=iHRtnuR~D zy^(q+8;PB2J>cgWO7P!ahqudg0iv_tgHP$5w^BGiSr#UhR@`a8HQ^lZ=Gb=?MF7}0 z{*hF;`!>#%5Rv=5L>~4k@ED1*c`mvmpF+Er0{4WtsVGQ$o65Q`UCRH)r6{Zmv?}LE zUlKjpE|v6a8o(Z5Xp;J>xmm)%uMZvG4t!IsI_4)QW?1@St|9#DdOsq5e>>-cT8b{o zq3vlgOX7Zgk6&@@UnC-DSxcZJOvw`Q)xf0;6f1HcRhdO4^UoaAU?#=t_b_y80MB4E zaElYbTE;7DoxQ@a=hYru5fAiT9w9%!p3)RR`b74gzk?`AnD9N5F-1iZx-+G@GEf?z z*Gjx3q|XWBo6}EEeU+Q z0~Jm7@A^OFW$gC!6|rhV&Sxm-n$|%adE<@49sbJ=fg^q-^IgrfMlDi;zhOuMnrw%B zN}H00wvTT6Jq{toFynY5*2g>8%Ls0Zyb17DL<9kCaD;dC89Y@6a!o-#t^Hdbh_H3x zAwg}I$BN2ISlAMibXgkkpX;9IktWw8@v_l`1inS8o1-E`Qe8Z$Ksu8P>0RoLcdi(a zu*i{{fT55ei9ui_yvYV^~rl?m+F^N5d{fLLK)ZEhY8v>dOus)~SUw}wySo_cCFbtS z%dKDq>F5U+}mzoPU8Mspec+)}L~%$1c81>e~q^wEg2X@9=tT zNW%l`^^gBZpZZ%q+W3Vrx(Q=sFVrC|-zvtmVej`AhtN&mxj3{DH8!s-q`umFuW;ivclbdooj%PP+lZRSDjb}nM6>o#byDhYHfyFdFN`gt`LFtVEZMc zTLH@iBd|G)DWYv|(1?hX8UlIrDj5Ww%S}xkuc@y$3&9=(WOTebt-m@bKhQnVrLp!% zf*OH9LF#N0n|jO05W*gD8GLAl!KZK32!GmJoru(_RRihg#r1P*1IS({z+iPQ#D;`( zBkK{qBCtm-r1i5r+WZlR*U^s^w=Ub)S2LG--4C*pn-j5Fj zqn9A=@B9d2y7wnCFr0>Le8_IS*0P&;$L;^`)g3r*F!&h)JkBsI3tSE6Ys<4yPGZt) z8>>%Gc7Cc0!Of3sZLl;JIKvkbcLyJ+S7@|HKgEL2!o%r0@ad536exi*6yiND7eM+DkWDgc=(ix z&r1a~49vv1^m?ojpPTrJmaeC@VRxM0y}E`8PK``Rp!-T#)#q zie@_uRj2RT0+Nly{ln)hlXHHY+=#o@!V~mKShamqJ$t3&WO@GpX4Ex1_;+tKgSYHK zYevbxiOGMewpi6O-A$V6l}#jK-2<(>ZTZf1+C~&fgNY(XF^fm2N`yLnuD29j5aUGW ztMMi~s<~%a#Fo&1m|i8GK=JswW{+V$2BGy~s?xr8$j201sgR&>ts_DCpf_zCSo&^*Uofm0xcq~!+=|g zhFAJq^&B*{$%&~BGA9?$P6}@$c^IYj5CBJj%R3xo0Y?yt{`I+p6N-}Ydg5DXGog;q zQwsm?6&6hML}hY|U)6e%JAzMNK(6QbEbunNCvxDIjVxv;Y}*Vg|28H>Zye1AOg5cR zO##(oUG@hZfcAHb0WxIJq*K(cCCUC)jFo-+@RuF1b~(@-S9ndKq!heb>^19l8G!U#6S_;xn4+dK$O~QQ_h{h5-KtGT?tpEA&5tTHgKX1boI=#1UWthi8uZ=7)%?RBt7}LRT>tzE36u7n_GKz^*W|E49O>Mz1(`sgW)*triH*Rzcf_x!%0C#~{vHQ|yD1Ow$!}9B_tw_p@A~Ll{ft!g zBJ8gsms^)254Jw$?(zw=G9Pm^HqNfzGe&-T0eDV0z?ZAK zYNd}lPUZIw!J}XC;rKvynBawsYyY1Kq_wzoFerKkzzf>g96CA?((kKE6PBPUZ+-Q_ zCv(ps=VUsNWZ&|)mlEuZczLUO_#2IQ@JAZV+GCJLWjvL!BgeygyWE%crXL^`D$xv; zIf`mDfhfag0!6)0*kV2aZ3NlV3ZTvZZV7}k#urqn^PYd*pm<(3KlN^wcPpJyh&jU51{Rk_4+H_RRv6|0i< z^DMa~0!0O#>Wt#a`$o*ES#|5-6u9toygFZq5zmmML@(f;x}ZgK?9MDrsCI7-muA_jb;Jmbr<$6q za^$%yr_Xbd44D`lIqXRT`kS3Nz6BW50ln>#-bN?MJp_9A^WqrV%f*&>{oJ$QitMvh z(iVRSZ&&>G-Yfb8Yb)6tl!Pe|0z}@nr08|Z4mR9Eh<+UpA5UV#H5QnvLzNHm>+`al z3#(g>z3vxTg7EXOOM_$`S{F7GJ-O9lhVv5YjlpFT#McZcM)TE}ooa+dqoams&XQ%8 zQhnEWO?$8ax2W`TPw0pe8hVCYr>SsE#!?(#xQ9_Gtt{#dbd+=7B6r%CH=$BvD^j{S z1~lpsjVzGbx_2#UopL@E%7U7X)U)#8UVLk_J$ct%9%J|WKEQlYHISGYLUk(*6aimQ8Bi>XaQf+)l`$w>C+9SDY(l&@kpAE? zKcXOoO?~%yX?X*&^e8Xf#=itisScl8LwlGS5AGn{*<_%{3?@34RztRbC1=g}z$vcY zCfwT{`rrYla&hZ8 znl{t>wYS9WbEF4}14eW`-*f4-s=xEKZ)zt_vhNPm@CxcaPS3^!PR|N08TkagseNW3 zry0s-#4CLHKrAf1?V|h~Y-b0`XGr5%8xX)5g9wI9Au4k*&mfD3uVh*YcQA7}z%Bdk zC)2B>G8He6F+!0tTTD^K?)7sT-ph?Eo)_-92eDR?28ov~>9a!fq0cjD_2`~c-T>U# zqm+@xu;7hVn#het80eX?mj`KA615wXrgU_Q=}I?6VS(d{9*PP5N_N+H|7L4WLUQ`{ zVxX-%&OKK|YC-AisIkxE#LKi8bpJc{uM_gNhX|;E(z?|P4QkZmEnNh|;?3d%nD@HJ z@R9D~c~&lF-ES}jWOAS|!B9RO7;~v+y+rf&{EaU8DWBIxg^LX^` zScdBn=d$#`Yj~ywuvGIp^cdzD7{7`=#+s(`5StD|705*QcB~ek_NvPBy2po)NqrU- z+{bBr)K(z&R@&Jq2_})x`5a0W$UbXjqwhyEntD$J(j0;ZYfc#Gw4eXPKpl&e3OC{! z@((FSWi@7e1r^PQi-qpTO6qKU{tq5JWG22j0)GvMr)qkLI=@KagSTS4*>{a+bbt#i zz2^CM?cvXZe#n{OXy0Ht6|v9fQhO$DrO9()$-4&{5__@l?wt8#oz>Y+H-wd!*Mz&i z)3qy8AL||pJjC}TC2~TZhAs`;vfdUxfxSVANi=_2@--eyyNW*~%n1R;LZCmgs>96N z)dSDtjhyJWq89RTj8mqht^@S)9nLfyx7LjWF?dV$M588eTUhNzY&Baj8|;S=LoCXN znmdpP#gf`4<)e*)!h8|1tOaaC0M1`_Lxl76MG&<&id_opW|?vzhje$u!4qd61zi1Z z$Lq`6L;y}ba@wya7B|&>M+-Ln;=SskSikQZ$ghvU;qCJ3<#}kY?8OqS;}V(~J#eSR zx2ub}8(o{XVy0W0yKz0hHR2||B_6UnybPDVoS7_RBfM5{G3cXoS$BWWWJ@B>GZAdT z+OEM26@g1KPS9hE@tUhgcrLzoaLlcvAcY@epq5N8NKu9h`$xr(4aOL(K?>OmhJ~r& zw|?$n!r8T1d)S(2h4cg@>e5*v3?aK6O~RP6%fRNEpVU!C;=#FypuA)*_F*b7apyE5 zHge2_`teF`g02L&MmMFw>3}Nl9?S0TzwTXh^3T#@-?e>{DzB%bU2ien zPTaFJiXZE14~Yj9q6r>I z$5gT<3%VdEa~%5&0n&$j`Jc%zDdRHGfvi2Z-);0(_vg8{A`n=F@I+>J)j`zz`zetc?xbOY|NkF#0{xlxR`K=U~^&wAWwxko1 zrZ)821PxxGT1yER%1|6+T^*~i%pvh(S;obYj*{7CgDDg(42PWoxf@hXb)fSVV#&zY z-{!b{j-yenlq{~qRI$bOe9i=rI{AbwiVigVcv;u*@kU~quUM8QWZHEBC@f=4UnCy^ki&F&{p^8)6M5=mI24ZV*?=)mDU$1J@G zmLwUp4L?>gKyfck0OfsNy^)PvvlyNNuV%69OjTUbMn9jazVBgP%ItRPWc>w$I?T(pZWNcwDwmZw7r)O{V}qZ5 z@B}2)(_}Xu2_oB7Dj~v&+OaHx2eo|dJ5atv2=|by5Pf*H_QbJb+FX4scLc)u(U+a4 zo$^aW()L(e+Ds?b1UTu-LGytG8Y&{z;E7eT8Mx->V^39NaLBm07*Lq<<@Vd`-qO)e zfJeCxbVyO*?I9G-?Hv1`^=VJ+ddX-Z_jZkAFH?Qv-mrP$%67N1@xw7C@wH)7`k8hV3pBN=4Xv1{&}Kn&BU z3CA2YY8Vj1Hb(Ex#icf&oW^eP^l_&aRiYyS2)fAt{Mp2Dd!Y_e4!mS>y0 z(wG+zxDPAgkq6KHZ@XTsTb!|+vJ37_)h1N&2Jb$}U$Q}=1Tt&B*STI1CZCo2yQn4* zTQ4=<^zq?>n$i4>HS%rl^_G;))}-e7EH()wwCdP-+S!a@y8J1l>i2qM2@fhA7GaDo z@aH&a;|=B)4NB}L?R&a0a8paJw>gi`H@RQZb-0xk_YQ8{qi7#OE{M66yo^S0TapW^ zqx~G0KJh)1Szm98z;G_Mjd&gnqr8{Jx;%vy!9Hzyu~&`i9WgPdG}XgNLbWghN;z}1 z7&_33?idJNGI*K1Xi2GJ2-t9%K<-z>X9l)K7y3AskfmZ>vjO7{y_&vfJl#TM5JQ#z zv`NZl2y8ONg(O<{S5A9X9C?xzwGUWt64H*GS2vdrQz`Tpv`*_CKCJSL7ps@8+J^0Y zOufkTubtx!g!dXmc_U#F_#!cuHDzIwk>`%m=+-YwYSEV+3%rs>n5IFSE>m~4S}UPO zqH2#>jg8)mmC%QPBk`o6X{r{*%rNX+==S^pP7~#(M)f2;A~H8viFNgC$zpQANnfa0 zDxwCOE^%%61VH4QBL4>I@e5x2*M~a;OdWiJ5CpV>JxgSOd5AzrFYG7k;K!M=M1)b$ zgg5G(i7sbf*!11(nj9TDGy-`MXfbhlPf8YROH0+)LA)2Uo?&6Nzhf8!=|$~KU>&$U zzy~M84!O$Fg1ICWiE{7;v>XW4y1HXfvQG!YR94fa2-{HEa2x}5WDrJnvTN;TJg=YM z{c}-{r+EeN=*@4p5DoB4|H=a026BdfFBcNJ$pizyLU zeFWF~8i`r~c_jmWP^h>yjBW)}f(hJ@%o5l;qJV%q(0%pV(D~%#@ z&6+#LFUDmhQRXnEamZ zZ{i&hY8rpdZ-^QapMA-AYrfYaY}RF0#Gg!cfjRxfbCWP&f`4H3eX@q8@l&D8!+eWq z{(x$4HhCOapQZ;Hsh*T6ay6$7y2hL2HG?0j>osLD&v>fu)(i*xlqKS_mk=w#^SPw2 zqnH^O72QbBg_~@;<5CCX`P~9EJ==>RE)$$(d?vd)RLGF3Ck-)->*jA@g?{Dxf zMXJcFh6PZIHW8DYdaFO4(`rxHInRkl=+xrw+OV#05aFT`1X{XTh2N#G}xj-%bn-lqo4d z-ItZiz@gWU&aYIQYL}7%KJV`%+@_p97ZeG-7SUNJi(vB)iL(oiBYm1AqL#A>cOw_;xfE!iM8vJRTGNF3L* zW7p%STpOe)vmISj1pn)p3aL^Qb?Ay&n~ z1vSl&!z9 zBUAy;Po6_j0R6v35%Qij&B*Jn+SuolC81-7jbHYQ0(spM4gi3=Yi#DZmohZZI$^;6nN~=~+qdwK`)(f!EXgk{i^~bz_TX7;#HD`j8s9#xplG zFEHZKMVl;US^j1XZP3M|RxRL9bVLD(i=Ll&!eN{kF>i!_%~nflNTj5@Tc;rXcfM+? z`vJHlyzlLgTos^s15_cXXC`@Z{4>Sw)deQV;6>x)lOZI#8}RDb-!NpBJq=;-?fsxZ zATiOo&X!v*wShNzf?Fw*d>SkAU)>0J^Ng^VHf-oxT3GD~x7mz2X#(8~sTEGL zJB6m@A!mc!)_niX|K4WytYnayOyo7*kwk!l!(QB@4Vq+@u@NeIgb=$87O^k<5;n}( zX1Ir6qX}Am8>eK1;pONxnV{NlTUufqdjgS&V?noIW zi<8;@ICH2#>b-`a3tY~9mZ8g@Y%Hjt1ygB?hoXpkVOO;x{Spo6V<`4imIEA$V$!Cn zI8E?5LE``D^lyyg$Ixd;Q1i*fQ&y~!EP!41%i_ZGV{${;mjEC2h;Qgy^=xC^V|POHaE-jUx)#AW^!U(CSC<+u0SI5b3WU_3m7Q<64Uod;6BU zuaa7ImWjXLV<2}Vp;JtJqSHZ8%>AtoaY9G*GJN+ZDACphl84_TtP!(B@)q5H`A&hC zzg}%kH$S|BTzA;SGiVuNrW2!7xrmj*HQ=_`llt`2d}ljVdK4R+rq9b;_2qsV@GP75 z@BL`=#p4flq*?8t%sqHrxkQ&~`1czC&p?@Rp(WtY7e^cy@_9b*-qO%0Lohidw#E|+ z1rXN0LmycAJZri8niF`Bucy|SQGn{RS>tIEXG{ZxextP7WBW~8|FofM8<(dxInWfi zDH9iRWb6EaKqU|B{7pV_*(u{})YCYq7m%OVRi|x_qRw}YuJu|w;=HDrY7hJT92;s} z8Vt zjF;E@>(SUP%KLVvXnX-ZSl8~{Yc$?hqPXe5nlKpI>uED(R~|++r5fv?IQA@Z5+W~l zq}}MVK3_&P0gfU-seAANAVeS}E&?%yV)AC7lp%^dlnukXFTeJ!h%3(S=mgeTcht&J?#dWR5jy-Hmtxug&{)>Wc6?T4an%fTK^bCvNA!^C> z0?L3&Uorj0^z_&JyZnW|mqX*r7CLBIO3m9Vq@b~Z2x6Ju zjINs0s&R~RcBx$47*>De-Wf|*?qiNA^ILxL*mRkbH!GN=a!|UhO-ppRpo~u@z(rK? zfB11lzXmrbC|tB0CPJ>1_)uvJI?Gu|D4NO&iG5TZ@t9FCG_K+M^ zkAYS4IQ?}zBN4v`_;-!bCc^rkyenDyEAJ3RXm@N$R#I>QAGr+PwtX#30J#x)cr&T} zS8iy-5t#6--M5rcTIs$%PQL7RiIMzv@BMawBB#uUXF*sJIS*eqoGH)}W6Q#v2*L_| z$3J2Od!B2#%#%}dp%bLg1(!bYjPngmsuW1R5@9drdTaTbr^@;Zzq@i+WW6*Mbb2Cv z%Aq|qJioC1OJBsIm&bn5vE^w$|GAJN;4f~Y7Xt_ktb2)Ghcl4IR11vAy+xDgUhA1C z?|BUM^ZsS@@IUvrzOU(9DK5M^kb@B7>$D0T%w=f$${k4xElzQO#KPBg>+iJzQ`cGr z7jSk-#!YiL6Xn_7>jYOGe=-gp{%SX6uk$#}0iPaTE09bfJn{E|Zk|As`=WR8qrzEB z{woiY?>vl$UvHK=N9znC>-(LypSe&etMLA_my*5DqSg|6xvtnaP?S#>`PRu{VAZQO zUf1n=kF@n39m~rsrZ~uci}jz=`O-cc7PR^MJmUKRSYk3b&ryuT-q;27@veW6ix`JrSq+4C|F>7L_Jlj&dPRSTu; zuQ?!{C5?M`ruXgy!MhjYReh~>@E_xjBSgyBULpY)ld4$xvls3d&~e4OGXLhU><|80 z5ftWLz zH};<$@caR46>t-k3FgC(qDofO?!&^pcEoXCN-Qb-Bv73%RdD1H#FYUKZyu3TQA?albhq!Tme|Gpi zsY6&6pt%9kk~$8}2}pVi6q-ZK;z?~`WHA8lwm)$UDDr4oBCZquoZsag=K=PmMG@}I zg^&tqx&n5GP(l|j_;)^OE26XP|LLpb43-UfpWGdGPChfKtDC>1AJ0~36(rKHT>nP{ zB=8k|HUzhl7l@Ou>)+pQ@d}aeH6}7|W%5EVbuj$v+CuLJP$H8g3aIAgs!Y?P5(F%d z0g@1P(zW(~V=nsQsz8Kj?Vo);E@LhQ=vZ_d7|V|JXUxv(iet;g-`($<@E5G^mSyRg z?&mVAU)x)$`r_dH$o1Gn$+iyg?PZFuMmc`t0l%oHKSJ8Boge3`{MN2UK!Jct>W~8* zqMG9K9f9SKF@z(E;%sdH)uw`p&H$%}7xBgYl71*4NqVc#Px7BR)GUtENfciGW{2bQ zLl=R(0U%5M;9RPVyJwu*KjXAI&#eucgh9AJ@aW3LY3ZK#*Iqmy?o0orb&gnNht*Z8 zA9X0{`iQ2<#ZDgVp98sCs7s8=WzD2ZKBXy&Y_NFmI;hB_R{G*h!nK*b2+#c4q~Etc zdZ?fKed`5{z+&Ng3nB{S{WMufOdButXKczwq^NBkL4N^N{t|p+$oSJ1Cx-Zps3A6= z{U<+EHbEV+*5nd&7HS2ZSp)r^ny&xT&zE=bL6NHs1VAx6A`J>M z-lZgRIJ%urVOGm&hibe1FZLG#cSgq5?L0IS zEmS6g6bK(BplL&FS`g2l@7&ft?V`O<(;GL`g&@hPGK;2Lwlje)uW!LrNxV)~82*LMrFFH^XSxzwSl-8r%CNpn!gt;|jOa3>I-~c>i`+8oM)d!_USJg^Q>z6n`uX98ZbmWn*)&~32eczhfnc*`d7!ID zp;S-*W|MkmAaOFYL^#TWB@6HeeeZ8$fQ2b&rp0?x$BjOt6DTw~BS%I#{HG+eYHDBukOD-yl}MBp?BtjJVQ^Byy{cF<7ze!i82kih71-+Lv~Oi z^B)~>m=fPw23zg1gH8D9U_`X^{m_#f;NW(?lXQd1^SYBP3c6<<)P(W*ApX%CZw<~J z=MuB1^yf%(+g-rTsoOIW*_kBmXAU!fFq19*A ze_Vr8)$A4^ne6iP@r0`>;FI*=U4P5N-?4f4Tc?6Tn~ z`AjqJMgFbUo=vzsueUII0Q+?2xzB0SvUZc|&?Q87kHkup4@e!rq347{Qk)YA$p;=8 zT`%Dc`p{zW?;T&>^E(&n9f3>DDrbv@Rizs8su(VI9o8rfo4~#zG~}}g;dJI5=3dG# z_Vp)^{f-On4!Di_QJ+tneJ~{!&@OwlP_Fh&FqD9^}B5_l!p9egBAF%6_nutT>6Yi%bfi%fV_Q9RH>pzQ)C=8t}ROq-^Fn)-cXn$fxgn zxE3FQ3&-H+d}h#aY2og_=H{R8DtFVT3kneL#Gd?bCg-TID<0NF4^0pZBm;%F-w!S8w%_+$6(odW}}|7At3^5_i2Ebz<;3hSOBsf z7jM!%w!*GbJ$#~n?-BSzx(Hvn-@CTaJu`E9Kq_pd63^^wrH<$N9nrn2w0rL{HvW@5 zeb4=!pK**3iv>T47>6L4sbr7`p#bS*|1Oh%`Cyfd9(53|MV;qt4HAnXVcMXMlQJ3O zR$7ElZ1~{NDTj_z!Y!sK$#6g(yd&X7_+i$+$y4r31rBHntCI{9;Mc7jo#VB!D$})F zBMjN4SAn11PLcqWksozm|K!MD?RHJh+PvO!_C-FMNE}!M#2KA8d}>iNow-u>Cg#pK zw4=Tv$GSPUzwn6fmV`Y-T!m*zt1wQYq{_^avBxc2$PrH1+c^c2k^TLjsk? zR{vFCxUSp_`u!kEokTEb(LtV#Y$Gx^7*LFV#pk6gga-yWj)x|oj-;ykdNQ>IRmG>O zu?0WK(fXHdF53v?VQtsNCG<~JP8UMep3y!!I9UniF~-OT>}7_a`nYb z(zy%4vj4MV>%0g0#yhzj9CaYs$Q-~{8#DcKM%m^xANKddS{hZ zFbia-F=Jrvh=%$0I80_r`>OcD_5dxO#y|RbaQt~D*^1|AS+YyIU^hu-9doF1hB8cZ zm~G~RN?9XDOb8AA+|No9KmOhse;$U`&nu@5C+78`%}i@aBkw)KXyRix&>~qo{&{7V z_dxbgGaEI>peIv70V$!czv#KMDLf?QAGLK1hmA>dZ!~k^#b#yLXIZ8hb_^tBTA6+K z9Bg?H|0qHnalN$Y9pNr0phXdslEPieK8MudX#jOZc~Emty#Zq~QN82;Wq3}@?@@Ab zt|w1Q>(Equ3Dp5P3IGmQWi?b?RHa0ix0Ohv`ub zUHroiU<&R9@V$TK8VL2j>H6<>Z5#KWA9Af2{&v2|Z|%W{-@5tlE&Rm4oi+Jed;ZS- z|7T3^q?P{_ncQ3bp_BjG&UY*T|5x84S)?$eUqv0=Jn`2vQlMtV6#%Vx$tgD>MPC2y zi!Tmu>js zet6Zke%y=yTeJD)-vsc+|9)o4|Fp@_ew;n>m!_T{{wrrMFO9kXGofD^@}Kw7{%lwD z`(E+i+t-Kx)Qwl#nUMQ>F)59yPyWkW(gV6^tC;>Uc`uF7MKx4$l`)R~@i)+Ldy){X zKvTCnhi9)(TOU8-X7Tyum%sgfdjhmX|5^JvUYTz{)?@s=J^ru!mbTxQJp9^v3H|qn z&kOeZGp1kLmBZfEU+yRWXhPfke}|zx$QSI|*kya{kt0Rrv9DJ{EXhq`=CTx#X3qhP z$v#XpqAE3AQNDm)Ht`3wCrq6>pdK1b1mtWDG{cc}vfBONDoOz<$4zQ}-D~KSXiq+$3aE6oU`M{(HjQZ#i7tnoKKW^n9aB|* zcmfmj!MKQ+^h&3DOWo{l7O0=d)P(q z&u%*s|FOv$G7mE&dV$SKdTD$70wZlAzVah#U+eaiw^m);5AThyH~SO~RU%akC0~zFC7n&ejfxPEW_*4V2@Xt^I&j#1g<}KvHJTWWimI*<5Adq^V zh=)cTS@^*qOzHMOGqd|_PP;|=l8i=aO0^U{*m_#?P{l(N?+;^wnh^o-DO(aa+tZ@W z_8$YTG&3p(YnVSini&W1^*uIl^dUk$l6@dHptC8s<6hT>dhVRpp4&TA-D@^xHU9xk zVokRcIjB!TKYe|EeqQqe)6l3^BSL$mP_U7n93J!_(G&?6vP3eZ%|PhDEgIq73kC+5 zEpm}tJhR_fJ=>6~i1Z4ph#!m(Zs7VHDVFD~g?YKH%kM>9QX^jg?&n+_mX_d{4=1x>Bg79QsW{DOaOel;@uLH=ti0I>d_&4y|duU8WhSfgw&{Eu;;Y8r`FN!yhQx z(xJQkn72mhkW4Nj@bAz0g1O~O!9df7#g*)JA*q56z(2y~`H=O1@=JYWi<3_L;;kB0 z>J;)27#$u0x4yx%Ov{jxTG{m-9g*u4i3!)Ff~X@-1^|zfy{UEpwpl29H!=Xp(Cp~P zI%)zy^wS)(!;(hR)Gbjqx&_SuHec)v&UdgJfA1ob9iuA!pdLJ2I#oXE~Pc^+^p|eX;LOi+>gIsHmbu$f^`K4IqY$09OVBw3p~~%Y))Oi<23X=WlLN8kQ4t3R;~`sM zjA6;Ms4i}8M&nKUq8BrVsD=lrbsz$vLnjBvySKVE&~$N|5so~NE044S769=#N93Z> z|DFH#vGw9rW@!!qydcsiFcaH5UtLG5OEHZQbLA1umBm0y%NUsyV*l z1w1UvhJ53F8;Pk1FowKBJL5u2u>0gPF0qf)kZvq6hgk-&2OPQsY5V^p#+MF6SdOb(fnPUKI4Ju6byyt4Roo^0|Kh&E2Zo%dz;Bb;0i@U@s7iSj50{G0>=i zbCKTz4zZ|{jENI2DhccpegyY9rNd!0Z8S3M@ndF4I3WyuSS>6jH?OG|n*O@)*+2$) z7Xy>qnZP$QQ1sy_M06>thyv4~m>su_3`;Eyb%y=q%aSynpjn2|X+H!0Iz!E&Q5MwWJzcTO%;5B}#L!|} z5mD?e?&4Yqhz-TW*&&aRk8{<;h)bq1MSL$%e1jM5fFHWhpu^$ndgRH2JV4XSJNoi< z^a!?+Q!J3UiAx26ezGNAbboy>a`O1dNtb+9vdVOeMLxHru0JAMJfNbb(RaK-2qVj7 zbLdE#AVeZ$UebatTpE^p5t<&km^|~wr}TpD-ZjFiape`FOb!*viuleXXP?;8;4fIG z=f?CrHqIB?czkH1opwAV)U{SoFxYdfOej`l=4p3mW)iiXg@r*HF=>zVU9EIia`ZHn zO4LXI1Yj3KLa`vA;>B2Zgu3yf!7|G^o{twjV6WuUxqk8BUkKI&Mm^{H_^?oc!pS-A zN6tdofBv7KbO&WE{OT2sBvqqGb-ZCeX1=%$Ng=kYE#){iw7>SGfXj2%a&iwJ&jWG=nUvun!CL z4Uce%FY$UBRUC>%tr!<_DwxzyemAN-cb~~mns|7a zXN}d8Ie>ZsI9g7gAF`nkO0(D_g$JZUAunc^pYo)}ek&BbYkhxQc9r&BTD|x3XTo|0o;JGZDgahz1&Mw5eHgZvhAarTz z5TofA`0fDFb#6s0nP$?!+Fpze2&qjjbmYEB2cqNz$whT81I zTbyVcKGZs~t-F}?PyU0XFW_GWmIbCkY0V#5Born}UlRMWjecBeQ-TKw3R~O}2WU zNp8594A0eH57B9hnG=P|(Q(N&1;r z4& zwqjDd(g@JdUniv?F^fo*ai^yd(UctIo-HLvsEV{O&Nv0xV_rfh9Ld^f*3<1H&%JS1 zpm4z0TP~)9DezO7aaVCKoOGo}Wb0UQ#7B@5>N$WQ-sp(}yf1NUMFgpqfc^?unF~;l zs{|w;z=!fpOmPFJ&~RdEUmEUq%|Y6kM~nCrMTut)nv^=)S|MJTv=Ad7Kmzy*s-?Kn zktQkWy}N-PFioYZB6Y-x%`pd}Q&*&qIbU42XJuvxNheJz;m%qfITTc4Zs_9o+j-$>NB)}|3@V4pwAut_Jls7@K4^Vau z;%lyUE#4>W7_(Jhg5%C;0K*$c%Gr;7uPdVhbz^HbRQu{534P!L9=g2dI2ck1NLF2K zlb?1kjN<5(@_H0bW) zEuv89)83N$V-t+VBQHA2j73)WfINr+*Qw72D?v!H_Eanh4Q!}KvN#RRrT~J-%TWU8 z5@b!q$9u7H45(;KL_+ApB95~78Y(-~M|bKfs9O)PJf~X(dQpx&1I@vK@)*OjKQTpz zIN>>tX)FkgM-pYEs7YZo1(@#VJUrI%;T}zoS|*a)M+7m)N4H*{fC)+rGN80qe~qd4 zO|OI=&OKu&4oVO7uXrKVrPOPk4?kx|3yW6(N8M+N{{CToCd-dUJl4yEJL>Ao^nuD z_SPsVY{;jrZBiL-8bENhwLq=!FG@jo{5EeIowJ4$mwv~ z?p-+yU8DgYH$m>_sJ}TZ_WfNXid#p}_>~nj^jcNwSf_4Ru>PWB&x72Q=lOuypN`a} z(HxBT<3dmorocBMo9qx2(IU;?XJg+7gxx8+sWPV5nx2GN3BHjHV`Bt;CqZPRm>i|M zOG>ix@JPOFNjZkxg4{`kc`{8_RT9K%MJ9xx4tOe<<7812*B>5h9n_5CQ(-J+B7GQ; z+%=_4wkK>Sm*E@1wK5E-5aC5+8WP@TOYV43Q={tsNY6D{@u#UKyMY`?0iDjE3=4X^ zjk{=dBFLkydr?6TQLlT46-I*jc00L>11Ik{m9&TsD$Fbv9Q-EaLTD&G$Bkk*0P_12 zRXmOkDc&UNBW>c2ZfvY0l{^TLJKFe-#~<-1L~SlacXkrYeEfHeG|<}3B?Q;-lKTFX zkGq2#KRC~IQ`N@jlF771|3DSxJRYNmAPsyL3)D&7UATrNkm&22W&HrA|BP^CTr->(y! z_AZ2dG(4nXyrwKtolW>wcBG-u_>%gRdR6!um2xb2J_DfdpTdbjX)-WYd$SJ^-&Gl9 z4@iAaV$g2K5ZNyx_W2D9k?=NIAqsr-lFd(r!kt&1_gBl*B+ZOQadlqIMM9?pkhl46 z^TbU%03WP+keikp^eC0xN3=x((3KJ}tPQxyEflB1+Q0JX3i2p`4d#leu$CG1Auppr zBsH+3oHnn5uk`}-S8(JMrmy6z(||+Qpl(iucbs+8Y>hI(CfU|z3tAMiL;Tf^+^UzI z-kQ?^{qOt%Cvics#?CQ}1Wf?~QR>P%E>n94 z`q;u;a!eb|+)R&XcNSJ~9+rA!>{#}Ai?>A0&+T3>evS6Rp-QX`CmpCoBZX;f8z#4_ zoDA0sz=}-UAAldOz+W#L_=^L$*51?zdETwlDF~^@JsVL7j%CM%?+^|Mk5Rs9wK>nV z8cv|Askj2z!S9)91MD}roCZqrMFb*qxx_x2wc0(Z6<%+lG+?36i~r!S)uUI56Y8l`eq0$b%937D-7_|xO2MYbSXvj;7_(;~0ObdJG2#{g;x7=w6@ zfd^yoej5X&#?3}3YJYi#4s+hW4yg@tf@kLaKla|N*-<1-8@!)i5tdg~Ls_wJZBt_d zLISZ15LsF_(C3jzhUzoK5o$OjqW3s| zfbt=W6e$#)pn1+I+*_6vb-Q(-J!nj0>Q#@UjV&{Lv@&2-hCM7ao)=n{Y75kFN@S`6 zoUNu}K|i7PVZZa-me^ZBdu>KRh4oyJNSLdbl=kTX?pu2h7((PyrgBuu*+A_Hi0z}nKhHvby@7{bsz*A+_T4vKDK$#j9gsF^km%x{Xa?jA|LIpcFffbZxLnYE zN`5tLOAC;>b~Raju=nd2@@b5=Z3HZqilr=kzLbkc4zmrp7a0U0JB1LtjRwUFHsB@$ z;H9?aZTl3}x&d(esYCmzgYuG{PaSGd2lpTAa5@T;eV#*{y=zG^PcAO=%bB;!V~mE+ zYE{(3<^(fPeT1{*ZL(wlhge;k?1oiQU8_@@fjlzE1H%Z?h*@4yQphJSQ#_EY7vXr? zzS)|D%#9MD^^8)yg>5JTed8eOF$M^ny-Qog=JQk~yYrsZtiJoyEA$FMkNv}Y$ariW zWolLra^O()D!bhP7U8M!3X?b_i}-neP$0K(r%Ochy~|CqD7#;LeO8!E-0S(oUJnfD=`&xU%?g~OtLy{%#}>2x9rk&Z@}*BKFCf*p!wB^hy80 zQ6;Sis7DmhO_j24tMyud7_NQ0>+KpJ^q6|vmfxDZR39#x*ljI>>uXwrO9}>Cr0mz| z9RikuB3CRS9e}0RjzV?iY0wWNVZ9ci6n9pNT6Oz!Z9DywXTtbIrjK6P0`YWQNKSL2 zE@O;=D({q*B z=9ohFh!n+)j40TvfthMEzp)*XraOkAvL0{Nux1HZP!|808-~Z`tXbB;hp-TtDw#XJ z;r$-Ku8GzI+%fJluWumJp9%ctJQ%1QG4h@lY?yljvz{RKP|)_$4;>DHK8=+fVuzR( zPi^+zn2PmvRKfvbzC#n-m(%%yh+MA58>B}6HfPXQ1JE3%oVVU{>U2A%*~s)~P>%!{ z2S;Bw{jsG#&IN5E;?3~-VDNK}-kEyqo7L|aV~j$9ejf7!iiX0zos|pgARJQ8Ju3lw zCJoR}9b$~Y7tkMX)M_aOFdmh>zKuXG0`0F$Zm+-CE_~b*;vo!3Q&8yVoW+6H^aftP zBJkQBH8f#?wDAz?_Q7B4yEggk`gaUe`1r7PVBiko++gg}?R7+po$G2st!c}aj%s2H zx!~*o1pRd21{sI3U6-J~yz+v48)2zKasd&RBrxfe z3J|iw4MqN{->0n7ra(SHF6bxL_|(h){d(Qulefos= z*1@{jCDRDTM45x{@l}1#q{7^pH)`hud1S8K_Idb39oUI*v@9QHY@AI6r`Xocp1rpA zdAYMN1VcAcW=@C7yBj;^9^=7;5y)oRE#caD;(3O8hN8C)elON4QgfWg+R0brvnsxF z2fmXb96&W%_tub;CK<>$(5SfuzRamGv)Oo z2YuLrT#&x!8PL}j>~wAPm1kZPK~S?%DDYUL6Qf^xU%n9gm{mkH>7>=cJy3scC9PVd z3pD7Ds2Y${J|*l2KEzoEG(Uj>Z#M&g8imLeBtA$%4omKAywdr|fl&u^FP0zplR)2T z=ilz}ym`43gUu~?{&9tFX#%%_qRh0Xg-!Xu%VH`pj^9*9gtTJOV&7wd3LRO=>Q?-5FA<73OGo6P7IX^RXdNM9r6dYPiWSUfoDBG3K3JRQ8nRbG zN;~tTmG$S2jn!y%EpFXQOo6f-ly|ner#-S>qw?3a44Ekt5$5h3| zec~si-Uxg10aw5Qxt?Mmm^Q9jxG9ejg|2i~C+VO(nT0trT&*nzoAbJ{RjT=n3xR}i zWq-Z}>sa099!mFMeT1N$Qw(LT0{8%7t|7ZwU{*krAiTfe5Zv_WWJIbc7Vyyi{#kVu z(@i#klwX17g4a0hgh+1PBEIX|1 z+1bdFT{fm;-bdRb_8IP7J0u?wjX^D~Q6%ZgV_(PlTv_66mE-`g$-Y{SK5eE@TJ2UP ztBycLpl4Emr|oe=C~a|Yv0tE|dyj0r`IJ#w{?b}G5GSmkeRJJXGoS{x{9Gpxn>ofM|khkoF zINXj-m6n$aU=Vun6dZjZb%x!lR1$T-%Ps!di}uMkd2MgP8=m_`Pa5M9R;dTO%`*EI zJKA5cWOx2%_Q*|(j+3F;iJBh7irK_U=^^Kh&S(rEH6kAz%LE{R;_M!TGRQ0Sb-q+3 zdxHBrkSXtd=q&vlfcIw(-R;}Km%P%-m&QsghP42fluR1*-d=5Nv7%?iV(TPWFbH;n z%U=Y0_-}xB-700H|M>DSI{#G;+@T-cZcJ3SGieW`7QBN1dCkP@1-u*kUL-@Co;1U% zvsmRbDE_?pBO=hv0_MlpJs4=#d%| zW3;P=cV-4&b3irB2A*zmTc&dI&m3c>PVDF*iNCgf4#CCSJTaV_0>BktI7ODZSJbAm z$tskQ=0Tznt1_L3qRnjJL+78&IW?pa`!`w1lD&^lBI+1eCSDrV0;K>)lZ&0l=Nh;8 zNe!UB{%3an0;Qf$!f&1(Cz1uC-wXi<7e*UlPiClPsZwyN)a7=bF%vT?D+T=8=uv7Y z*ghp8=pK5Xo1KHY2M6#2V~tmE_Q)tZ2Xa#tf*}ES$XE;b6AEy5{EVRwO|0!x2KYA< zUf;QUn1RM#&>nHFv(c|4)jX-sQ(KK86b@oDyUS zG!HB}T^iM1^hXbT=3LugpYq7xHkyrfc^%8025!o~g~}3D^*WFVfiw<$cqfhtC-Tfy z0fCRt=2XBU5ez8+Y+S%+?VBQ1CJ{|qq5wIySo%Ji8W)fjgdeTT;kqvJxJIJ~^~5Qx zUh|wr6=()S0)9;rAU`tk7;HPYYfS`p9Da>kVnz0v?VC|zb9QYd97(>nZd$D7L z1i>OJ4QsIT98zI8>DW-BaQp1ZBy(~jPpDVsJy#NF6gG`$9O`@Exw)i)!dBatUdQ|8 zTnUL-E{|1>JVr@cQ^wmJagx>kj6EakL25@vOX!OrU>NW-kfu2?6;$|HA0tdCf=3dd zY;T9P&)6|LFAB3G_I*YMCG=yzyKA9ze)PZrUU(KvP{uQvr#Ha*x*{j%XwxW(c3cqa zWAwDox(;eq$^bh+#J`d8C0xERLmzMCv_r*eJFts(LHieaT0cg^0OXkk4OuH;m@4i$7_T5!j#Gn*CEj+L@93y_qt`&}y{u5a5?=6U4yru9G*EBo4a*to3M*XcoHbjFpP( zQ3BdHfnbC;3co(2rp=x4Cy^rZ|p6A6@UgfD$MK}-{aUg46Uknm+%U(4RpV*jI6J^X{A+k z8yy)n8e-(!2@6GGjGZ7nkY}f{?`jRvFNS@oKh}hiR4XKuE^s^BfcRw+9|%a@Ar>kt zPLNxxznmM5DAHHEtvZ?OSDA+40s#OYc>(@Vx8jIEE=sKeSJ0E>Z)}R)&3sS3$B4X| z1ax=s23jDX8f{|vgdJuGM6{n)p66=&nM3ZcruZT=AKhNLC{8R*-&G7HOnt#iZuEu#SsuyFPQG5NOQl{7B|MC3p(zhP+n5xXzQ zsFLRnG(rli)u-+IcdneQvD9+%-nlXN?XUTxYQv8t$wr%$rFKM&>AlK%8+pqjr8p#d zbUnYjEM-C(|Ky0btT2|CWO4^NN~EgdLJ8)v0E-mTr2F&z&eCaq!*UC9F!yl%JSQoX z8S*u*%Q?z3fR7v>1p?>9&;8u9vVRbOr>fg|K(G-jN-i~}bt_OFu)|>%;pIhaCnZk? zm0qs6O|}&Q#j8NeD7Y3*R{}%6r_Z%6j_#W_ANAL#6OJTxm%gw<`{d~9xY~PqL`!ClA((JQdEM0|)pby9) z1nA>A+Qs5+pBN_MMm2NNW}Y&$&jv+@6;E1qhTYOWPMKDgWXQ?<4G203sR~wnEfj2~vZZ9g$h}adgsYav-d~x{=OVbks|`=5n9;eIEagsf8Z4tUK?y zy()$t=YT`*KG1R(nPYK;b(at3Il+ab3Zt;x4tZwL2*3_t)$3AmZ1JqmO82)ru4s7d zfS5zfLK*>IAJ5>lri(;YZ%k zq{&1;1fTfCm}&U1$J&2)$$Rk@8#`=Lo7(sd?+eHYO3g#s?}5&ZYx6x$^o@levl=D*&OX&FbN(l$fBE_UGp2PM<{7qK8ceVfWN z`$i!MvZEw|eA~+T^$q*R?b-By|McVF|NQ>{|N3#spPCF9wrGyP_5SOZH@ju-m-(;r z(P!ZOpVD#yWgdV1I_~R`|MmIzKfezDY3i0S$$qKNPi510PFXv3(l?I?vki}fsa40{^O@Ve(re6rU_K)-~M*d&p$~w zcGI`NeEawR{Kxn6@7?{EPec9r`-?w(YW(T`zkK@xhWzOp`NuzfOZ)OKID-7~*BAY| zJ8qkkOp@Bi_WmDQjL*X-MCY09*mkN^1TKmYW1pL0!IX6^iK z&YC_OqZw2W9Pz7L=*Dm5&nJB=+izLBG@paBKm4uKKYg3#Xq^9o{_$50^ZEG-mcRUH zi$6zc`qycRKX3j4{nIz>Pv6Qv{_{Cs4f^M(@3S`j!{7DpAHLV)dyoGKWWpbRb#k;t ziU-yOS&}se(q1% zo+ZmCLP4)A?F>Fek?)`UbFTi#)ajS(`>!7v{PSTy14r3JMF#h6@hPlydBfTeMg00E zbWXRQuj>;a-xc|=V-sG!v*dORbNl&&m-LJ6KJFK;xaZvKU4B7Sz1g?=^OS<+4wz3Z zH9k|GaQgKHo-<;(FXV}_&F5J}N%Q1l?}jAezNX^d2PKb%zI;X=yJ!b-s1<(%=XJV^ zFC>*XNWC|fxbALCseEn~K1zq$XmuLCEbF5vZ*S8(s z|Jz?7Jaojiej$8jbWy>6v{7?D+Q~v*y|3Bsbe=5K29#^*|4S#$X&n8;U zU3>q!Zi7SG$RqJ1Bo&!?FZR2oVf{dgv7th<`r{bPu~3BTzn2lEgm-lfUI>JiyH05S z3OK2_W_&~3;v!tmX>0l3Zhr5cdQLpGu=`%`Y@o|qamV|$u+;)#9fJ=C#;?~ zoSwB9+Z0w>L|Z!5V-uh$x%3;emF^fWvA#w`^>dp#Ps`zZjQde$G$YQnorJt_46bJ7 z?0MQ;ln7^`Cp^AMOLZ^S3Tf>3{AjQK?X*P4Igv&<|B090(RBAXGPt0Hi*f9x!MsSR z<(0kdqFl`eVX4`Dt%Azku}U8%t;K}n$GNTDi+ZL1xE9K%R?gwXHRcD2iW08d{rkU) z5vz|8Lc+Ngl1o0v5=a3x7=xbidnFOHd?4_m28w`JScm7VbBi$A)u5l_1sNWI;5pfr zKi5;8xGzrOd@-p%07n2AU3!L2St zFZOSckO@qw7mEhN&mP|l{uN|IzQ3-yWS!aujcKlQ6UT4nl|7{^aWzrdB7eTWo{8^U z^Zjp`y1j1nGi9FiV^rvlg2e#~fSL1nKe(|C&6vuXXU`F2L>AsEOZiof_S#r58lB`+ z0NRLm3B%`}(=D!9UgbPX+FNaBh5{y~+m&>>0K1VBPjeMB73}DysD#-sY@Ez~s&0{W z-FUy&Wte9uDOVIZeeY_4CLqvdCE zoEmJp+hyboLWEf-jsFD}AX25C=yWp1$jN>5k;{0&#@KS*#h9C*@dfhByfw0v(xX?R z%#Ezl)I2Vw^fGGP{Om1?QfY%3U0<%G_Vaa{`@a0h4dv}OsE$3G9rJMR1ntrFldQo8 zf0}z4j#P_6kAIHAR4qays5VXFQpan37L(+Fn$)6ZE>4MGXQsXP@v`B)3vVIhcQuL; z_G~O9LYUWu{H4F|jcom0T^7{4o>LF15wXbjFUnP}Z?Z8t66%cDC9TWp(D7zX4!=Dw zE)#e$bUjP*T0{5G_9|80ABIn&*7cmj`zHqCAR#UC=UDEgIs67XnYC*%1^P0I^2lZeN-uqVfFlVej%eU8{BzelFvdeNDC{w4%Bz2H3V7Ki}Y zAxUriS!f_Jb?_QQ({`NzLa>O-1*W zQ#R1l+4wd%K3oi#Ji`3g>IZKM@U8T3mN-6ndKIqYj2tRgkal#mtW7QNOhU^`Zr!a5 zDuZ55BzLfxx#lwRI28&X1;cnAwX4$0A=ReylolDa89eO6iO8z+jCAWZIJW!M=gpi4 z;uZUTKc+iC;TYT@BeOzXED}J6oYqyb8@Z1sD_Nq?T@qdmcpHX{!Wa=}6)GJ9C0xrN|TMROH5NUe5YcEqbnmLCfzbi`PC z9`}}z@=JG~pKnDzbwPx^w3XlI!n|IW#`Te_!NvAlU)(;;c72mqAq4!_Zn$d%i{l5i zSrnv2hqpmBJc2iil<9UzKT5d_AP!(V^?bGVZ1S76QZ~c)DYkrZDKiolaxjc4LaE2I zsEj2M;;Ed<@WX4a_`sr2PLW*ZvfeA(m$cePwp*jKA!U@h!Ov%w;^(7m=TslT#kAFwOY>!f5iU^CwquLv61z@0 z!)ES-whXjnpb0NJkw_P=OAU6Tl$^mM$NJK-yg`v5&~`i!*+Rzdv`vb{+d<-MAKGGe z!d+k1iN$Yvt`;OZjN&K*+;UO+>Gk5g-92#u2}aybC4%SKGalzQau6Yg^%Z3)c5|;@ za@jGb!E@Z`T)c9WbAsecYGEkt8=Jj2Cy*V*%RYEq8a6i(kShzRQ7aiM1)=g z=PJ(!5w{~!zw~f{~V>m!;CF+(>h(|$ca!iuI@U1Ql#5<_gbm0j? zV8s~e#p!aXwJ-=b87_lDUzi?|uKpEz-F6P=>fV;(xjXHfg1(IBpc5`r5^H&n#8g|( zb{6Vg#nK(^rMbzHu{qN8wks<&`viasWgdR`1m^7G4*9`%H#&VzeQzVd`r<2jn7AA0+rfVsaw#VK4ZTFS4ZT{*ev5(;BMM5Q3m`9m zCZn&KL2og1W6Pq1M3qA!trUR{)*o5Yzb;DXkarnDdwj|meYtzeq3TY;!*9N?W?vV2 zW9@i*8`JfM836-CDRY6!21)U`6p$TdX6sbuljE@VFDoFcR$#pn#;|~ zT=e%D=!zsW++ET8rjk&3r^K~Dnd@5U)3`p+KuC);+w@C0a2~)kwWN}bNwDpd%6tEE zQ=elKK1DTU^+KmCFPY%&JeJmn2aF5wLp$(3dRWue29MIy8qhO$R|43ili|}^M+lVS zo{H(F)@7HY43Ncy_xZ-by|EFQ#eTk@seShSKBgrR)@#9>c*9&e* zXT9Y#@uQk9!|pFRaVJ1j;V#xNl~fQ)T;=Fhi4+2W^wsNj%UDC@D6q@P+9k+Fs>YLN zv=Aq>RJV0HTMkC03_nv#nzgdNhYYq|X>D{~s55ezCGMUVK!`z8fGtIQW)b-MsK#yT zPb>8$5>KhstD5C`oJ^whIv~~_-|{f$=aOBing=M&@Y-U zngg_QFcIz($<{8=2r_wA(O~$9nQ*kZDw$7)Egc!YGF$Vb8T7g7n{#>Zt#7c^uQjjp zpmf1;M*U4Q)}Efut2ZzX zTbstK#HpmzQ{Be`#yJagiuY*Z7m(l7k^$c;vR8m=Arxp?(o`z1bZGrO5Bj!A|K^pI^(?fc z+aIvLzBWtUo=_XU{mOe@uKBejG!5+!;!;hOwz5$IkdWs8UHF6lW9YZ)hOIskWi1Z~Ml zJEr)K!KuOp^0MG%Gt!L-n-G0mZAS15GZCCR1(LS|lu6Yu5RCZt=zUtbW0W%i7m6<0 z1>;tNUpeNDwN*FVaV&1CbJoJhYfK*8OCcMFc80pQ!Y0yHo0ME5keVY<#ve!&$8YTS-OQ-VgA1c6~rdbI}sD|bZZ!`)=rhklec)z@R>=586MMF`M@}T5$4{Catx0I1MLjudcoA!}WO zkr}=yECcj(Gqq`PVeMv8_1R^ww7i5N?u9!(ljMpXrgJ&>e60zfokH7e$t9#Ye`D`0 zOs4_2q9kPq@R3&p*cWY(wXJDv$gd6($0_C)Nyf=fwh{)>VOgQ7IJQ)YB2R zI0!uTdh0PYtV$~EIMHe3&`Al3TH4!SqaD=yaBQ46pzY6f)~`?D&~{o|^?4IT_qorv zT_aPnlJLx*u9)yV*VD2IR~fesU99AxiY7@&4gF5)J$=%aD81Q+oRZE-(dN1J@ogCB zw0F>&N)WDDF&z^s5bd*sF&>Ftlo_Mu)+Db4OHcbhSQdl>sdfyav?$ja|{j6=K2{88```LXniRew;x`U!!A_;AFMYaWYtRG z`KXaj^nL96q{=gv{-?3qrT|*AjO8$#pJ8{p?`RS44dCU}N*nTpXz^)d55%6Z#G~%a zs6j`g_x+%|1;|5tYiDX8MK2QuZK4FaJg@y4p5v&C6)+;GbCKzEA2G~oB3L^mGm3&v ze9H|U8X;fb(X4@x?3%50Cq&w*9It5l?y6ONXT4+9!ye_8><9oXeK)zsoHS!is=pe) zb{jT>B&zUGV>_@x5LX}Ng)OxSw=ky3-K`6rQ#_*xn|}?elO-P#f5LAY_&AX(x%!-At-O?CPACTKxP zjoQwLRXJY)idf?51&FRBL4IiFp~bA1{(T(NLC2fKP1U-+&qz|a z{bT!FNFcWiu@aFNC5v$`_l-%(59euSK#eo7N5)qzTp`!9T@I=G1@W;Bo*~~n|vD6Iw8M`(=_)XV0A`EYXOYA)<#TYFk%)%T%z(BY}M$uvjrHO&A z%$SHPq^&2-A1|+20sgUHg{=yR@o^5mWcFE7vzdM0?kbS?tV6 zfIQw5ZscUVj2}>6mXWqn?kYn zu`ufdq^+me7|7##?nVsP9nyb^*5z~~ehfz7y(W)N)jm|Yl^v2C7dKsTG0ja!Zsx*? zQc5m~B8Emyp{G?o#TJ|xuklrx1ixk?QawCI4tPuKhurpffPB$~WPfr4Ey!0ZTVXAK0bjdf^iAAXn$b78yB+;+C zsB&}fNXsT}s^RZuu>{Xbe^1G{KPFD8fql86{dK&0J;iQ;cV7=f&I< zp0WT7A5Gu_>ntKUAw-;>YgQTx6Qq@j7ei#@|K`Vk8#W zl7OlgSIXWIl3a4A-*Jy%XIy1OiDzqEPl1*SqRD7`+bHYLSM|-@RpZfaMyr}h&Z%Fk zz6i&_HdEV=j4=Rp>o3u@quPZM26lsQKC24Yl^1sv<{G=Y*?x8l7rH0S4ZX0wxkbRo z$7QUXw@*Hh1q6)0#Gu4K%zcc_9ph<&GyK(JCQa|x%z8dJcta8=$NX2g%pATYhQO7= zGy+`T_v}0NB2RZSBz>NNo)zy{U-tCl)C3&{m;>`{xLii2yblqMx#b)OXw=>q-Z;a{ zBWhGw5}Ytd{a1^u+79>OPP1Bfp+=DJC#pr`grINWTidID6^mo$wkI*MW~!=2EL5&@ib0g5N3MB7LjNmyZzQ7dYFMQI1#Vcf6SXj zDq9534@|A1R%@?F@2xMBc*?+o_7k6N9L;4Dj;Tccl6G|3n0fNaWeHUjXeN4e=MjV( z@aiwZWUX{I#}`IL7XeF}0LG#mHB@&Z;X1GKr4GWG@UFm9B4-!O%~)r*Tk*zdPh!Ml z)8TlPLa)Xq#*WPH*4?Y37a%!-lIj>CnjH&WK>rY1!FL6BHj7!ij+O2pR zoQg-0v(E-0w_?O`=N-CNjq`5reIT;KK<4jz=-yBd;Q8a4B^-Zxx0Gn^wWFTwOBBz> zA~yK$UMnSGpQ*WY!%=yE zpMS}fTfUOzkF_rK-~oN#^bLGYn+deXS==x_Li+@sZsMJOQZ~re>=C_}JHS4b#B% zHT=?@0#j+Lqo1b7tAsW*6d6eQtFtZy>nvaSsyUy1ola3K%(rmj@&h4P=h$Ro{^+V!5vIr7%*%K~Blz*Y z7X**j))~FxEzbBY;OBxL{2sBDP)rbblY7=)^4^?qr}BDdxl#%ObqtbGx9S<1u(vBf zpFef$k<2%G-AIE=y|K(UQ0r{dO`Z*|ZgKHcp)qsMl3FdOjlOj+P+mm1$inFPlz;J3 zQ9G!Nx~B1FEc|Jg@cZ14_q9gv%Ox&e&(9_U?rT@t1tgh6W)};Jn+NdV4enB>d1?(G z6CA4(zQ?D;p4LBb7_Q{gZK6yNcO|mu6d1|kgNH~aBIyIyoaMcZ=+p_37{x%Vd3Y4q z=RBGZDtSKMIl5LW5&Fa>N3(TfjbP+a&q}x%waORkrkKj5jIk@D-Y2o`tQ<;OSDMiw zzTYk;e+dLvVJPet?er?Vuu0!9I^XgwH?3}K5@{kho7QlSUEnJ*3D0IqsRT5A1Ik%p zogAYd`u$qz-bgTlW5Q-RKs!rL8zQj5b`QG%brGp~p zM_YK>!O&N%Cp$mwvXP!0KRPAl`a%=vEVdVQjd^(6G&o$Q*@mdtIStb3j#NqzZw&6+K~iQB5H#M^vZSK)F=#}RQo zNH9Or`krbj zMt04e4LBbS4{E-`a8(^i_rxX$a<9Z4)pvZBcEC^!*_X~{wACa99!U5u(J1XFtT__k^ne8hHzzaVXO2pC%oxx2Q=9GA`XC9Xbg?^p8Nhi= zfwvUv7Hu-)DmFVxl?W!+(npuY1JA)V7fa|s zaTQvxH2BI%PI~3)r3PkAxAPqHXg?~;Tlwf*h7#*ra~9%I0clH1F>7a0*36~GJgKtU zs7cZo(Vxi|W1$+prcYp_o(Gl|cwV&HYFg5gJ%3r_Ctg8ZP*mTP4x&xtj>5{Rq@qaL zVZNmh##<3Lmu*XY_fE*$v7$?lDkfi$sioc*1!&=f>_#>ee7yj=KcbQM$((9I4e?`} z_`Xh7<6t%#8d0n|Ld8!*`Ed(NjhcKb0oM02jYP<{WP{G*sI^ZCXK^wMeds6@tJkV( zK&WP=ff;vR2yS%}WTwd*svta;N9oKWtpBk-O9(v;`FSo7Nu7BSN_LN39A$v(WM62| z8IgBGoWZ4-S-LYk{0eTc#w^?aOWb*^y{T;L`hsYXQxk*`B8vQBkb)Aro^ zc%9}^$B%y{s2bt@szwb#q@a(mGUt<}Id+iJXrKsA;=tR)pWEZOt69=Pktnk`$0Zd$ z`>?084v7_QhR?V#L^x`CK#!t1eVX5V1s8<&hd+SuT#3(C2}qQ1{x@$wNi^1W4Llk2Q;yr-Y_0SaIwrBJFC)zT_lhUb@kmC--2<`cgsiO$$o zZgK+zowTd;2en1-*Vo>2OW#8~V8;FvuDqH^_{W#Mh{fy7E|Lr9Ja`DrBfZnTF=Zl0 z_rAy6!21F%0Qqg2V>;Q{lB%L&quK{#d{6rRicNYGUO(@#ax7EioR|(0{Nti?iUNRJ z)w6qGzM=&q>KiaQg5->iR--MB+-g)m*1;k)fsSb-MZq@}=m2Oj!X7UG$v)4=M8xu3y%r$P0j!s5E6Vt%H@MLRO^lhoZ+oFp-|g#&<8i3|Ir_gHJTPG z0CfwKQ*%!&kgru?-ZUrJ$S|mc9z&{dMOO)BrZ%X}^g*czm9^2h>ERBN#9}piG4srW zYqF(EVZhCc^~qtl1-E*Z?<=6(Y$m%xraweG2Nb+;3DP3#i@YadJ`h?NHt2gtCSsn? z6d@r5ZgpsKeD6Os&F%Yl9qY4ghr&G`)VyBY)q!~qUhQT}nZBchZIiiLa&)Yi3!!NFu) z#;8){h;mPW3KQq10MK-WBX!2X$OyFNL-}1;4MFFnao&hZJD>(OR~8EiYxbrJ#tL5$ z)?>%M^RkgqD}2;B)(4U-FeYiY7G9idf>Zw$gisG@I33656D8;658uFl`Nn9c7E{Q^ z18sFp&*I%A&;gy6hO2fon!*UgPUJ=V!AmEK(@)hL;B}691nyR09n){{JfGh#*gg7P zB`w1vLg*gdRb4QM=O+YSXe^b55ze{Z8-gf4cL zJ1Z1;MgY2*=Ps)0$cRDKG~i1=Z%iF91W@6D#SyA4`*8vSRuoj<^_2Q#ITXY01euLL z_)5batWjC58>xa?5XZQHCOeW54#RIP8x)dSzzcD*HH|wFMj(ufe#U15l04D`^)* zhXL01dCH?`R%+*4rh&b_g>j3v|Rd}t(VQhH}JU;Et zwP<`Z!BFwD43@z8nEXF*#fGRCCjxY zZ0ORvGrv0Q+B6t#WcT+ul8o%$MpB?KU>oG^rQO~HF_tyc6+HkalYB6R z;H0U_$qTqhMvXC9%_=_sS;syhN0YO3dNR*Aj(2D(Biygf*U4b?JGwlQ)?*X0mnrg- z+$~yiWZ{X`A8(3Q9;bGw4~aG}&cb*x-i|xmhkY|9c~&lJO-8+XO zKk#L@9+!P><|0WyUDo?* z6Q$Z?&jqpW_>0DOU=RIAI{1}W2(?BVdhfJ@-E@bz?$`S^N+d~I0e2xq`~vS?#-~f8 zFV$Gd4!V;k96TXLuY0^G~0QARBJl0CP_K9Nb^a{ZLm<+Ep)RX!(*% zs-uu!wpNAkW2g>E@4c1Z68+M?8exq(Dx0s$4EDf>bq3Z3LMpse*^&y}5JwG0;t>X< z{m417qpFwC0V^4d&0$J-GUeE{W}Z5nHBW$)KPrhehM1Nyi-)_8+8;rbc_iZ~Og3@N zIUX`0ZJ8k90>P0@_Mw4KRZrIa1{i+71>AhBpVJc(9|V|TmpU+D*z}6P*ge6}1aIuR zt}VBKfQU&wRZZTel=6m3=R;HNk3q*1e&DG#=ARl|JE#gm{yA4*OqNGLMOdou z2olg;4LCEsL5=d@}BsBVlfi^zO5V^md$f!F6AM1lEyEz z!Q7O>w(F}ndhk6aG~zPwLCy`O=#Jl;!57lZe^Q@`U7cOIYbtu1^m&<-uMuRL$L6=>y8Xf^u{ z=6$NcWljCYKYJD~<;k*ZA!#cU4h@g=?XjM!8+{|H$nd(tWumj2DhK|8qpGZ?%tRoiLe~d?6?8Kjy~Tg@|Jy%5u+^ZYJV*&IAwF7paOw zjB!H9qu(uB64nYweGk8DMIQ;q_tA1IZm&y%&^K(PeStuwmO|@(uThjlACRTa!4v2- zJ-rwNsxFiDKOIC$|E#+`Iw-Z1{RQY{Sl-GmuiSOT26c>Xmrb21k@vW`A(p7m72rFw zGB;||{Q2&8<>&T$|3}vzx?&y( zpc%>+f&&awe1Cx)nOogG9Dp)IE5FUTH?3akmz~0oiWbjl^Mdxm832uxO!Dkw-`zCBSzt2emL(5F~+7pB71jb4Q#}xHx-Ep+a z9?-8*6An~YuQF;Qh~l$=hG^#*x?MqQ%uAI=*Ct<%l$4#MyR7kO#Esllh` zCi6bKR8XCkRrlbIy`WVZntN7pZ1C%pWol;$V4jNQKHfB_|~BKq6Ykc%@TtfBIkZE~+@ zq9O7>XBOl-<&&L6hS|t(%YMIW3G+c+z+u`uB0Dj3VtlDkyz_cvJ^fEPFj=?k8bo!@ z`;vAZ>sO~J12BGA(5`x6WbtZIIEl=hxa@St=|e*XBz!^6V;4!B4ceC<`DT{J06x7x z*sEnQYxsG_(81+PXB)DVIA*>XyYO&LID~QSj%273j}XF7dfKPP8|xtE1_ao~$JARl zmx1&xA0pH@6tO;Z}P5x z&zH%YO&R-02p?t6f=h$-^9?4VGej{}4azrJvrX!X;ncVIjNnJydf3^CY0U86d}-We zUQ-S92 zOP-JD?&qrt!5Z_LEBX=`!3nFJlT)`Q$g-UUE zTbKGLF1IaPM~yl*@stb63CRr|?8;sgZ#?z-78stGRIEtVObqgnJi<@QcG0S9?gUOM zxN_+$mxK@86%tBH>t&Z1fx?P5!IvmIxRW`KcL?2*O1wJ#ofEaH4oo^TuT$Dd=DqzRQDJ? z^Yvydvj%$2j|^`D7fGK!Cx!1tArhxiW-6zZ6uYS{f++k-lwz69J-{(Q7*r=IY7giP zfMr3{SKogKr4TN=tE9^~Q0pSfumy@T#m*{XL?y&wY2+CtpQt>!@89}0Qtt3;Qn`9? z%7I9G77F!UU@6spCEqiooXU|y+U41U8|55I-r6QHmEQGj!-y@bLH3bLO{p-ShS3>@ zk$@y@sNeOb0!TC%YCw%Z2P%j!Jz*X#K#xjC&F>ktb~NVo>UKSyHWVpN(c}-}VdxaW z&c>D-fE8?&XnxjkyuLr8MoqvMM7Ffu4yIItvjE%9CipBNG_@&W%CHpQ3dXVagulgm zUu{4votJVE1Ulx-(LL4xSB@EDhDI2j7R>agelOv24f(Gcv&#BiLkc*^E{XTXwd{7A z5x$vetqwx{*ZTL5dOEInj0SsGOX9*>v~%_9MW*cA$GFCB6K~#c$yy2s{I|kBh zF^bX>Hf&rvjA}mnKl&nAa+LphhEAsLmZSndcK2_Y%0Fj5zd73Md=u#F4vc}i8fgAV zAa1L~SO;t;SnruiUI@c^A?XMI^K4=y@D0K>&wsub5635WCm!OsrbbI})F1t6hG+M= z=IL19rW|&!jr&Bav5{<45!m?nU+1h_?z8^d%Z_udB$nF~Q#wI&XD-^cZ6r@hy2>S> zn?L(O$TA39yh0AQ8OR99eKaZatj2d*VDsDmU;T2Bw+>wGpZl@ChX{bMTyJ-fifYRM zdRbe1_1Vg?_1LX@!3a3#%${Qg{-s_-A{zeh{o2~`-|%>xa8~ls!gE%~vM{Y%I@?ge0pys#wo6OuOJfo{Mmy+{hrk> zglSl~rFGhBzdD}>(SN9-TeTZW1cfM^mWTNDM~Q=GQFkC6i=d?DhyU46VW0Y15wPvoAOj92r&*dnaA;VPAff))7z(~QaSrp z&SuU{l=^MC;>gtxu74)DDN8z3koyNY(<^q0h7EvQF&E3uP}T-(!Qbh;0s10{5%ot~ zs3!-}vR6lg8rempheDu_tE;L%)^c7vZ_a@Nl$=8ZVj2kjr!d?kHgvtIjPKqHhz>O zQ~C3YA3Uw}Lzy;r7omsTwj->~rWZn=SWGccHNE#UM>4E299X^gWydUKD=QN2>Pk43 zhU;0dnA?0_r?VbAC5U!T%FH;|=DDd%38AC)vxBAnjxA5p zY+5b6mcG#BIbYCJRkubi2DN_k)I&l(XGY2mU|PGn_ote6nryn6Oh%1gSjW+?HmvXh z%IGpY$ln^0hb+yV;au{31F{pmJM>z=fIds|>mF{L>7v5)nt%N7eapQlXy|$YaHdTD z@=tR{b%o|~55&87WU{K(@Bu`QG$a{_Tm1H(BQu#Mn$hQGI%$~+pFI70oP-%&hcWmc zjUJO5+xRgtp0MiKFH&bVx3=N+NFEPcA(gaioibVz$Vi(27yz|;3b?;vxei0@-@iLQ zW@7F}UN`-_+av$}oTbv2G;p5Uu&XC_=I@#!mDv^mS9`#gY&zU0?As|muFFQY#(=sT zng`~{WcvJ6`D_ac_xDGtGydN?e_mPOt$%wOJpSu@U(Me;jy?wC@7+rISNf07{9hh# zxp)3cmsGd=d+ScFH^TehyR&kreEhu&=BTz0|C4fy7rICMu7NGT7Mqt-0#|-_0~NwY zjmkr3^)UUMPsm4=cgW$2CjI&#V{gB|koev|k2f?vMhFID{CgbV2L1-j1_i)6IlZh_ zH#L7fslT(;VK;+nr|k9D`{3To-@Aym?b>Ir$9_kv*BnT?o@F&TpV1Qc;;)xIZt4{w zw0^QI<<4|g;(cNhARY)S^7`FXHS4oqPOq(5!#f@$v5?{agxI;wu97^=P-%tuh&vFanNtw+U| z)*foo4e9^Y-IlsP|LBG*%zYNmK(&asBX5V;Z_p7)k?}#UP7Cq`Y!I`rB5W15_tufy zphpyt!QS(qWAGkOF`)M6@B8M_?TUJ|by#?7IAoL`elsLmcQJ6x#`74s!@mYfnDsyB zXMSd+_OTaLTjFMy=|z3cpZMQ%pXvPT-`|OKsy5GoTJHY&i9<}Ute!~QToOK1e$0+2 zx|!X-mWpj2e$;@Qox~AU%Eh1VAJsm)?*r?U=QOVn1jYU_)4C0Zv#&fF_g{f)HnrEEu|6knD;VF( zA_%v9hqN!=-G|ehk&;8x$o|Xa-U4R*=}6e!aHFVe$u%;H)Q|*;IiIM8x|zA_v&R zah~Lt0V(pybgi}4734)pLn&~yI+D!PV*o!uz`rB2b$cpvcazoJkDO+s&S}e*1Oi;7 zYGo%gHyf~f-JdVOElD(=^xxvN5V9byVSDXb&Ye16o_y7{=Pz+m0p6{Gz=_{q6XRv; zF1om!)IgNa=4Eqm`u!DI$lj3oT!xg?PlvofUfx)I+q*3Xd@QQ~#43?$)my6&V_(x> zj_upUc+LO!%Xtc!g<{K%tsK$yj(ku^+a~3&j<7wYAhma$95@HhtO=af)+s-5)faZ0 zKDm~qG9B6Xcd}pzPl*WsSfZG=VDu;f@l=0DH@lNN*Rnfdd!>Jy%dCcOh(GqqbNq7a zR(E3dS%FURTELk)qch!BQ&;}pP!oKfUcc*Xo#$GoQbjYDp)PYuH8)xoQ{T#@4gbb& zV{`&Js67vRh-E<9*%B?Zox!oq*7&(8&)$K$+4yx4AdFoR1Dg;_UifkneceSX#IgwK zxTvA@%Ln;3lnbZ^E&r9zZb%$|P%c=*ITyF->PfRjl6j>Tn?u<;=kroS7soVKFvkU`UW z*N4^&dsD<^%`N$9*nz0IM`i*OJ?jojf5&8Dsc!evdcF1;_0`oHnF5$~&TsLRl0If$yE{N&%U^SRG`lJu5 z^R(}0EU|`>uyz_Du@1dRq0U~c6tfLlG^+;#o^Kl14aC|%f(yz|_*ILzGnf-FY=p&x zyEhroyxA_$V$*EkIk-RdB-1})KfkJy36sZFZQCYMQs1C3T)0Eos!o>HO@mzp_x>{m z2>mchKA#^$Im*3lDotk6d57jcnFTB!YxB8diQ(&hy<{i__#$nhs984(GmW?}O9*SF ztQT!Q%CmVGPT*=57E4g0YTL#Jl7WrS{;G%5B9(So=|Dt+gT}nboNm$l$F)PNUzR7S z_)(l-ZJvXOlEd&6M9kSrpf7zOVyaXYxx{Rtzjano&Z&p88;CmFE z@j$Zz^o{#0>{WPJIEE)I%~wO;_3iBsqWd~zrtfoh{Ww6U<6`X{P9z6Q=c0@5F|osr ze;7`WTsV%)W|Gh>>%z0B;vasRs3V44vM;8L^jFpn39LK3gSh zV>`lw9+-B0RUs5&iv7A4Byp<~+r>EzFgv_Pq$A-PqH(S82s4Ja38k7bhh>~GZ>3^} z>j^6dm+w5M@)sboH&iq-9g4jbpeHN_GAb9ra{D>?`o{sc6q4+0$~BY+imrUQJ<&Y& zOngZ`fX;vmmPzrYI&)SNx-~{Rr{&S&@q0~!6Cj|~Q-BXklVKIJowS-BZJOeW$L473 zkNBEmiI%LB)d|pT#^C_3)i|a<73TwcGAK5|**Y(WuqM-_&L~#aM`{Y(pKPFVl23c1 z7iZX)*DAZ`Ii>u_Nm`=^o*9{vZ!Dm-DNrB+dli5w|ep zWjL*mq%L+l-UfgPN9Ly%<*}#lMdT1A$=qcb3uVW_!ltnW69W@WZd^2Ykp0VX=4vNW zP1+vW6hjL(@-Hsr3wskTk_F@rd@AX#4IWqL3FbjKFc|)G-9WFk9qUQdlM5^W{^i`a z^RQnXd+~6*ET}y^P4ONaknL=Ml~2cFyUX})9l+e<1CPju1mW5b=kg4)b)U;tp6f|W zaxV#>M0>0}0az`^C?Wr)*?K-RP4KDew9RvOu@nlMeeJ9Ha5<=MyEVczSg!oo00OC5~Q5nO~Yxo#K4=ky_^ zUrWkC@@l1D1&y<$?EyO_m6>9nEQkc%bnDb~^SG;?aIEVoe&^pJn)tuQU4IWjVCs5Q zLq*U-?DQ~MYgC%j`RXi^U4|)z&f|b$hGA&+^G1@ay?G!%(<2uY&WEDXmY)icm(Mgo z=^O*^t1}5Xpj;Hr0!dpIM=-@(@g({~p9^UJ)rvV;uAwg%&LjsIWO{&+Or~Q2@)4)1 zwI4er<+N5LJxn{0@GVhe#*&t*I^tljYNNug&L;mVy2t2IYZ(Iofd2>{xu`@JC4 zXXNAa`rF7jIDjX+!PRxm^L9zRYt~}z;piuFze`bGz51wz3!GdxQ+g!&Nu-%c03Zb3 ze-}43k#SjP_>SztI3uHk&e(u$F@ziAx^$*}`fg(-veErE z5Mkbyy;*zh%e?&=b1NR1$+i&x~(*7PB-7U)B>hDXh~~_-@!GUGU~F|Kt%g=|6sm@C(auo;c@dCFvwdm@&k+ zxN#JH_Wcz2S* zMG#LT!9Fk;=i(||mI(pho#nb+sw7Fvx^%#lv2yOZz_RPr!8e#?uL?ZwXeFY@{>o?y zoeB(U_SP9rqV-di6S+!A4Ul`NfR^+zT@BJMOdHrcHHV62@gK!bu=-}w6t{`Cz^+ga>hH~^jPScs~{rrMkeT(kgVU@ zmTgX&L@~sm3M$yfV1TmMa>tcimIqd5?>>;<9}!m!HmA@j>?h$K)0i&UEowfN{jP(hh* z7*A1ir^A77+SsD9n=YCoq7GD_`J9jHJ^364H03jY4&-`+TK=V<;U_vhT9OU$w-Z7vnykcrExQOsgv*fSh@4_l1T5w>#+F-C2#Dm1DvkEYs*$U$%Dvh*@4S zmMhG94$Uc3Z_pfD_@^=Qq#?F>~0x{lw!Fc^a*{AId?EU@RUryI?y zIl7xE1a!jy5&xR!r;zQs(%3kV)Hzo8S46SK zJIx=w+3iKJLg0cZ(t)TrNtV7{UU!a`9}k*@0JTUpYkZ5d!RtN)*2r7Ywnyk*$a+Hk zuXOsBQSC(`DhSDpk=BEhO%qR-5CvbnnV#eb7>s-iW~);T9HkJsP~KqZ*>UN#Au;c0 zM{D($UEcN*EkWLUbnJLUGx~IoP{0fWeBCvo5)Ly=jIB4oV-=ec+R&gu=Qd{=p>{ab zXn}hKB+)XmtWHNCxJu&>r*B4Ub(5K#NuF{zq-%)h{7=+u*EY+v#P_KA z=)>-ThV`9<5|m>NeuW(U#u{iv#geH)k?zcqDeAU|I@+4-gMPkH4vy!P`4z9;I+lm( zE2H3WrL(&b=qw7aPoR;mXb8YfS(b3pa*8m_RV}bqG`M8EPR@Ca5u06Us_7avi5yMRVldx!k~4#5C*Oqka0&aAIV z^)C#*HN)gbcLr9mI##NOJTb`VFEft8`o7wS0hmpejl8>T9ZM2Z{KLoF_J&CL2D_tI znNl4buw5!#97IXGcF=6niwv#CdY{X^`0m@YlPy)%cT-oA9e5y*8ZhJr2M2phHGLix z?XiaQ$O@QU0ra2q>oN2H=-US`jo9-1)X)P)vyTy5=hv**k^WR`!e#M$41gTudnI$9 zzMM(HaUj*ZYy;p#z!40B)j{6%zUvumXxI-w3p`X2BNji=ffmqhs5;be`ug3P3EVM> zD9MLzBoEd!6O3AiiB)Mt>S?qNDj5MI(-b+2N@n~a)d;4#ZXWMUgD~XtQHM1S9oYZPhzC%+^;=U$ZB^}+~u?d zmLhLNKR&2+E!1(mVRpzUM?<~<-{v2m(pRrRa~KEV)z)9DvxTJ2cL8Cr=7TK9=afzcJJFJ&>#W zU%6V7Xa>5|OAbM7#_%*QnWh=x@%@Z6Oc~=ZX1?#8X%iHzY@PZcWluPr%0bQ?3}X$P zYRf!5Zvm)FXux4%;(3AKrXFj4*2Ae>hTZb)y_jfG69*G_Usl$1h27`}64nUHCT2iW zq}yHd>R8Lna8j3PAmn&kR@jE1MC>pDJq+Uz)@<(bY8)I**q{oFxkWYvZi7rD3o{bo zYyrwgl8I+0uXReZ1jF>)m?*?hlb_XDBY4`n1|M6$g;i8~Xp-dGgi^0bBKk+5KiT5<-p2f#?Mh9m!fCvRKJrP9IVA;5 z;&!PpbSy8x_jh*k!H~d_*I|$s?jTB)MuQ6Veaz&=VpjL(c@mZpXS>9bsx_Jf4`VRT>_T{>N9>8dT zBW0e~4*)`}H;NU=zZ)AkDzIr>K;oE{hmOE+(@Z%n>^w-?qgBLV+VDlKuf>;WuQ1}H ze02et&-rx>iQ7KtX(RofrfAB7z!d@rO<5XtfD<5r9KtL}Sd{E^?<8$&m))caMip%X z5+Z#TGGStN8>c=INUWQEkEDkm@(Fjc;Z8ovI$luJER>9KflJR510r&~t1+;n4R9mf z%~=PdJf$?HeO)!{<8lD9LIA9s3*dU8}8NjA8J~X^j!p z%@(057fBvHaG}raS86*e*5H|2iuS0y#t#ZD5A9Qv%A=3G5c8u!IUw~{ebEiOr($oQ zfZaZ;+E4HInRs%y?Lakt>-H2_mU9;{0YboMsmPQ=3c4J1P9Fdt>#poVHBWZx`5Z=+ z4P>SGYX8sloN0*KVT!903@ECfjFG3*8|iE$3@NN$s2ljy;dp!ldsJdBBec zwFM-v;fsN0vaILzbBCw*@Q#ne14(`4@gg5j5U}$t-eCmOn;hQ1YYRXe%eLO$Jm%;A z{f#rj&wJtf{)Ck-$;DoB*cA|QlY6=)s;tQ@Y5fBH-Ly8W&TCSWhXu5t&|Y0d#7|&D zNxhbqo&bK6;YI~)g3EaQKI3<7ov#ST0#YC~jWj5!K>E{Qx(j1ReT?WN|4QszAfKh< zUP0ptKubFxz8oDPzH>5CLobg zN3M6mM?Q_zO2ZRM<1iO_@u%2fZe$*pw>=!;oX9D*&Zv^ucHYJxIb?B~Cixv56cqy)hTX{jHt=_jj!w^&9nX56lOa=9hIj6YKh8suW*WY22$jE zjs^}!YI93QMOVXcx1d*@l$1J)TUXb( z8HQoeEDHcB@;L`I!9?V7SRKs}2iu)8_t|1F>EE@cm1SvsO|aUt$OpRR?2Jtq40L=m z#O`AsHQI<7V=bL&B_P)d1)r1Li-ZKS(B??W10wq+ z&`Imz{1~1_WguY`>w~(5g&=BE zlRDn@Ez<(fHNMHJiW+|#N$;w09M(S#o2n{?_)b{VoyxS%@ z%LOi}_uYSEUR1PEUw)u^wQc#v%G#&|W5~3t1DuCh&p@C#4JT7k3wS%D3T3ip=f*k( z3D?i>+q?Pwqn-ryZSU~JH1O@^Ovz=)2b+`uWH{xw);UR==+``JH-m-Bs=|_dlbU3a zl6ZN1&pxma6E5UY8To8C3~f%+#6Yr4QsK|F|F(T-)D(1OX=f*sx&g@=1>D&k+~q8V zA|xsE!ZMb|R=rR?4+w&QO)&RYT{;)Zz-EcU3^5!qytR?;FaGEKU3l)G<5@czUhTvK z&AC$cdv`!#Le?xgg%OPZagE?XCf15TBBX;0)HtzztghlY5G<-=!=hGPpAoWs)xu! zv(aNudr{La>`8_CtRsMAQ5PLP&~LWhldAuPz+bGW)lX|&kFV}@VC7qr@sNcYI`db3 zCpAPyTbI1Ejb9{t8oUH!H4pj0d|C9iR3;W*OO-`{Q>GSGwOLxASQFYT>vHE?yMsA6 zaLBrmKclN;_}ri0dY1Oe#r9j5a4~1o2fwa`*`tU&kHg>8Wx5GZU=_~+X2@H1!CTi2 zw2$g;^J6WNWIt8K;9BcwR}Lq$z!QwY&AzIYy3SIeV9i*jPu-fbY*Nw0{$f`sGQ*0S zw@u<5O&sk&+Lk5hFziF#9+CR}tWG9T1nJ_5f897bKL_!2Cb10gqEe$-ct$x6$i9h! z0NRwLhf1~UT9#VhL+!(Mn3&EZ&bs|f+IeR-eB}^Ukk9xL$eXd*OUU3-GXrg73;s&+ z6c8au-EMfvWtN{|q+TH1cOQJmJ;~@cilWvfiCa>Kn|fztzsqXj+K1RlF$p)Aj0GA1 z4dyn2SX!#4x@!O}U&0wio}HQB{dEM+TwHcxwqOGf@gz8S z`46)IiAg_Sm2`~h3MlE@iO%i?;K@+uw$I5i@gK7SLc+4`V9_z1F#7Js|Z}>%mTYnWDdw-4QN$M+YDw&HZh)> z$-Ym|N^iCvwmg5y^o}aUJ(1K6&Ee~7Mk5vc)LN)s+7G`*OVV<^E4JY8MbZ&89a_?j zY0F8M2SZ7oqYT%v#k12>oetBnLfzknaFaE?3w*0yPHI^i=XueLKQ;L-T^w#t{ zzC=**{a&z{rYTSz#srZW3`IHk$2daS9PDG5By(A@EJ-J12uL}F#%!@Qmd-tlnxm>2 zt0f-UR~v*!#%Oi_9gzM8xjAgD_!M2!Az`A!l1DeaVMl4IkHNo{;u=WSP#d;58`M0f zp29s-c#`D1P#-YlYTB~O0UGMNZg^f5CRfN>Y~SY@D%@}gzs?4kXOz7jxqG^)qdj~T zym|Q$ThaFH?*8mCbWrSS&E!oJgCD3a)7D9Z3W0!7CWOw8@tXI1&w%F6%2k`?NFU~A zS1ebd$(8A+b%A1h`+-J5GglYiHkX_6q+qZv@C;aUQfQtB8q0n9Vn~CYx8SHR2j3^F zU%Yk)`ipr34%6gLHBsYZ+I_9LntdVwU)r!hvrv~=bqHPw6mkM}SXtnKTQc2&MsF2s z^_!{U%%0EIROT+m!Zth7d3mUW-jnjO%^)Hm>lqo>c@Bz|fEG7e zWByNFrYoQ|GClU!JjUK3B;W3H^Slk}+U6mLyZa_AHlQ)`9e6JouP147617UQ*JW|d zwG=S=*LsLWY9)YkKz%{S&pN8Gj~$a_7aRw9C2H6l4~-Y#;aS}mFJ<0(oHWzz2r}&W zQyb=3OyepWqJFxf%px&>y+)yASZ~0i*hkm<7k2%8pP|0*aJz~fr)Vtz`Ke*@Ks8NM z7Hh6Nhc#@Isz@j}AjlhrO&bKFA}I4cU=73BlaCq``wu1c*Npluye^3cl81&b=l0eDu8&j0Rkx4c` zJqTSt8cbfg*_HQ=c>=TGGQJcRZ3cx>yfK<}JHZ%cEGZ!@;V=5`=lq}@900PI_Kr`- z3%8a|c#xJck(#&O-d4a7(Dv(#1XxAYJko?&ui1;6hR|-0V_<#j$iTiYkkHtg=^GSq z0;B8GL#V&|Hm$L4O?m9e>?Az16v!iVHy)>YRZEe_PcLz4yJdJ{y=} z?h_XUpRsrRE)X9-XK4ftUDsRkk9lc+=n|kBtCM97k%YDi&^rh|~C5E5}-iPn7FLJ6rLU=RJ4dRqkK_Y-R~9 zxH!$AF^7)f6mM*KIsUv^waY+VA^>7#+RiDiUURP!)#i$c2}nJ)mTM&|k&V>iH-3K$!=Z*_kv^8ncQZ>Y zz)dWVp?3WInU|<`U)6!p4LW!)CkWkP%5#TOU#N$e4l$4_T3?x#G{i3{UnBI?(FtVw zheZMH2SB&i_x#?&bjEk5qxv}_n7(A(4g0G{D%A9UTQ_*9VZ1afDrAn1UWI#8G+&j; z9@rkq#@^@(S~Z%^8Q|`w;431<6~^enFDdarp~W6x%yd5_Iqd9=6&)}pyieX8Fy<3q ztfuK4c!!p}mO}icwv1l|JSypjznD+<%YR3dvH{mq>0UQuVZBeuoDr==1w73aTD9~o zKG;5bx5SmA8IkW&fm@%n2qYwPgAsxtleR`J#hQ)4$F^mQpudqOhw$D?5whr9TX(%A zZ`qS5X6?eavG;1b(HWqL7x4U3y}_84q!;C+jfEHQQBfUS%Wpz3=lOn+coIVi4(}Uj z1cN5r_h~X+BcbjdI{P*+Pp^XREdP)ZyW{!VlPBQ1oW5(1QK4;g^~s`XFOc{ql+ER~ zKof@C-3H3i9S{1)AKPH$@3nTAOuv5CXa3`lu-wmy0=z|p7X}97to9l-9&_$QX8j?# z9{$|eHX)1&fMKuqmF!G zYW!-DR03f>NIE4Ol>Vf*5Em0W75B}8+X*8yDe4m!CME^sePAMl21NZnk$jE=nft`Z zew`-dY*RRKFA_?P7p41c)|1Y9g|E4xVdy3GNQXIl_^WnNfOx+dD0$^9xgWPV)9WTA zR#?1`kHA9RM+j~UxXH+dDaMnQRAg^*mRpk@FO0U{Ag6KO2J~m9Z{vstJCA?U{wJOX zz*F}*+8mW8l0-w+?-V8NB(Usq|R@l^+m|12Rl*1EcUF({n~tL zXkf_eJJ%?Y@cipp_lJ@;8~{;lp7sJ(C+ggsP($4+ikHG!z*D!R^@&o3A?F6F(k4DL zzsL>CebBID?G*B1HNYob@=4=f4EQBM>h*pSdRL_od5<#!yeca6{TkK4)lf3+^ZTR; zhTYPSoi+%=s>)tDISRX&>68UF?lf*p9}p*Gn3yrp1ZE-JP&rBtHScuz?z63%U1*ZM z0qT3y%aj;RP-Qu=QVi6}Fy|L7z?TuF&33V))DQrp2%?(YwTm^4I?a81_tzVSw!+MT z{h4^&337%k(HfFf+9zu1@6R^Bs6Ho13V|l+S5HKMU^97nMulN8{AcYjAfA7(rG^z4 zqw9sax7oztl6@zrwst3Av`4bmO4vz+F(m1O4`thJR0>P6pKYzW7D0CiBYs*SRIVxO z@tGQq^W~67?-?Dh=NROGhlyB%ts~coWv`dk_TFyX&tfPfcaX$Vk{r2qzgy@3?KvX6 zUE2&1It4UPc~+0;%~x@N1VD{#dt6E>@GCJjy}({O{TBHHYpseF7z+?3LPxX&M`%J= zo%|8)kf48zXYgGTWtxJz#5iqXp^f|mP>XcRUc)P#gq)+7g%%-zYwRxTbDGzW16Aj) z&{g_PHhv96jnDFY^mEU>oSu}dFy{FfD#VuH0*5i?gm2TWr-0E|x=zCU%P_3nhlP;o zc^T-?J0F4y*poe;7fpSN2>-snWyj#<(W%{X=|oPj~4#rdsz(BAy=?5O6WzsCky z6rh}b@4LMtoynHrzwQOn#KBu4ZlQw=B|mdceAWVr#!9R2YxYr=II&Kbe_Zo^3fFYd zsZyrSH|3dvu;`%a(Tg2jzeutG&DvHnYXDJS-ZMnB5_E_haiVrtGaI0r7yj3Ti-| z6`C))>7e=LDU#5Ne74nLlrWfuY8 zCu~4DotU=r_DvCJy)n2e(>LWP&rK;dNzse2iowP5&7B7&{xAkgN?OXlinP@hi0qu9Q*+vC z>vuWIJL0jq`o38ws3UEvQeAV%AjRpThW=q|xeu#dnDgIzJ+-=Z>i_2Vz0%Qa40Pjd~3Ix{ipF9J?{JWxj+AUjk=|=<|xzTh(=l+$jC$_ikv&7O@a?<;VS@{SXDOx4-_^}GCmZA;1xJBZjz#)lSVrhW_JJ8@ zX*GpFNyCHB81r!OxoF0>rIrjZ0b!UU6mF2P=ZvI;EKvWm<(T^8`X<~|WLya`Nk;2`(aH6WWlYUL3|$tYT!wS| z^=^UUMFs1{U@W=F&32%1FbLU;vE~(5pn?wV%A`Q6H5dTF85>5#9UQs4=+@w4v#txBTg!DstZnAi^|kwmgARWmJjmD9ylG?Tb+12RLzJ|wVMF%2Q859R);Mx zW9~sjFmMq~xNU&o9y6^aJwrdean~C4Tx^JZXO-8BI|MXbOX#v#vOQdT6(8|HDX~B_ z<`2wDzL;tqJ9$m&w~Y5D0%g`%bSL7X9Rj*`AcfC!Nz@e2BIGV|1xR(IA+Zi}F(u5m zW{D9lbROi(_a2ZAUH5eKKCVs>JA+gflwU(SOexUIZZ3di&fUc%gT);B#cVCa_~;1B ze1d7U3Vhy~L(FpsF3(Z|{KsFmuYd25bp7f7_gI1*5!Uz*kSR>ngtBTrjc3zPRwX{1IB7 z`@vQK-}J&h1izIs4l7(FMJ`Afr=r9P$O;`<$`bx^bLAsA4+JMT7CkuZ1f21}f`fVO zqnY#`^J-#DXkp6PO$afb(R(q?SDT;E4Sn+pX!9>j#J-ztvdF)JiTnA-%1j4#rSR};W%@+$o5&Nq7u%?A8WVd7U6gv&p;=D+aMf8k-7I304A12QbOJtO=-=aME+Du68f(X>OsW4*V-7J8#1B*qNots7Cggt>9#bl% zCyYJHV%$2lc=^Ix5#wKOtl>{wlFIawK;lIzs{_ylyfNYe;p@BhT*WL#hLCNA1(z+m z4ZosBP$RWEtmHAXa|>%T*9|w|ExtV6}a|0f-GNw`*03mq z^=XJxPaN@TGv!Ov-hO(iA1&m+`S-!SgHHw0Mj2kKNSu$koV=oZ;4lY)9Fu8Un4cpN z)c9*EX@!|O`+jmwULW)11@2XdKQgWQCym-JzuyVz>AF3dzt4P8yz7gk$Nua+G>hb* zz0=o5%4TBV8UAirETihb#sO>6A3k20C`X&qP3HFZi|tAXxbVb0hYoP2PdI$4R-RFp zNU?@1g3dB8UG8Pi6ZLo;t=CQvdAR zAH5nINgMGi!asX(+zSb_nvbj!mj=QG-u-2|JhEzjuRujlzOD1>|I#-*;eAu#gA%q3 zd`YxGa9VTJ@XJMu&g&Fkn!j=vhTA}_BdU#@dU4m%F19xomeqyzB~TJ42IMUSDcfe* zmI*g&w;1LgZSS0=UhPL9w5`tsgQNHn9w;hc$}V(#2~nSZpK7j97VCa^{XPRE1k2t>2K6JrF+Og)Pobj^ zkaT%JXROue1mlMIYQ-FL@(%m4@|Z=Q(Thalvh-=6G3Gs3@tni4RW#lTAVZug4y%kk z{D-6$?dO>R23t)e;Iie5hBh9Xx!mBA94A`y%jIof1V8(FSm z9Gv7f-11-^%vSic1*C*9-o&|DxB;JK$`>Kx#!!okHz=+V1jJsBlW??` zQ|RasAZA&R;hJid?-*UoS3&_6QqUuzGs*X3UVw|#-*3U6ueCfc6F4}%ga{3Zo@-WY zgg(RTjM4O&UrYFlkMD``5ki*Jymfz=U&!O|F!&ZM?mn;<=5-P%o~;lfb`KFu*mgwo zki73>4^aRnX>XADn_b9hH5ke*^uWF9;+dck%qM^0ics+a;{4igmR0LMmjB*o_tgj% zCLllaP3;#?Dja1CUmlP~v4vL@85orXZ#4U{7MWTM@1=j)nRX#S)+EmW@BfZfyI}eU zL&dD_8aD3>SC;k44KL5xB26-q7h2E=HqgnWg( zZkp+bPtFHk@lck1_cXmcWF_7){_zgfS{(@OS%Nvxkwz;G%2HnU4MZC#pqKeP5PSvV zyJtbMZ1TOsLV^#O?F0B;uf7~)Q%}ec2UdFHFW?qp(}?{W&sfVr8ucg6Nw~0e>c(`pVV6LH>uM5Fyvr2^vnZulqhtjv#%ybk-N;O~g z5Us_{dsbD;UL1c}VdJFaiU0PkZOC-V{B>rv*_GkV$N!%Lwn`(GjoqS|60gC0#gS{_ zS4B~qHb*PQ#8{H8avBs)6BoGk?$oy!(XYSo^OJYi+#YZPa?g}jU%6l$^vT^9HV8D^mMe6u{8UFp+5!*t(mayt#ESsw|_y1?9VAQZ}lTQ)qd}B#u%64OQ6{n(u4e1G85wy zo8_6*J)mYpj>IT#95c_c5U7#S6AyOaHAeN@c?2n=1D{cAMhFo`?eAv-a3rsD6oLmn zW+EoerQvz_B&BFT4v=*8iH%F-DULB#Czs17NbaLR$acezIQVa?*bw52BLD2OoxRF; zF++`J0LCzi&)(!le6o6co?dxk-i4Grf4J^GYMCysP}a^3MM)p{G?IVfPVR)Q^SiHN z^=ZyOe$*NDlL@4=SeHA_i((u}21-ymngW*x4%DT6!@tL`bwt+BUjBTi0ZI;V?`b23 zF;m-KRVMU!6!X|LEdh(xam$%gxK<&Q8~pgbOWMZ{*pr8zgZbN6>0%;ri~)ilH~5sR z9_xcQp>x!WQ(s``$pF{-l|J0Q; z4v=)L$k~{m8TK`sa0Uh&@Au8RjakKyVC+6>lJ6e+*31CqvmCjVY_CYSNMb61#H!g{ zh}2Yu`=aw;(eof@?(qchnfbgV(Ugvn_w~uX{!0S>BKd2^L!a}hPF$--ym<6tr3sQR zmd{v48AXZK3Mj&Z0ER3UFP*f-R$D|EBa?F^fIH|G;k)fz#ENcRWW5ea z!XmKB$6GfANR%zK-rt|9cvXwp+I!WN3#;V#k!jWe#qrMc0UVBSAvqA=%HSJ` z$&?apZOszUSox}VcM z0N(C7tnFLMpOi8K*=S?1I;);plA*W7&^QSM6QCb$NS3JWk~F_i2>npCopQm%2a z!V7?ps%}tOg~d$pgKoXbwXjw<ct)laY!x2xeh(s`AD^Q zb`sC0&$bAqRHGv^H{eZwYJx992MpOQq!X6={Aa-phXS)BXSLZit*wg=12P`f5kMwlvyV;29Wu%!1v+x zh{u^x0ms^_2fA)HltZ2U)Z&4Byd&rl4hg%UBnlG_JvXmr1zfH4i)wBP#TsJ@CzK4u zK9~zbid0`Gd*9}qa2hm}NDdduYw(ZKw;~mGnXksg&Da$HJm+*Eey z82WR1f3pgr4BLE=(@k*1r$}!2Wi#CCt;+Mn>luF@H&a`ijes=^c2s@zuT6r~KrR+hudZ6PKI z99{OG^I(C%?3f1zkdKV`-}> zM2h_^RR%V3%Y}T}d$F-b0e7ld=C!=Q0*M%5aGat1X_?Q@GPQ^Ed2=3zSy9W*um+Nm z{f*m24n;<#XZ#7#639FtH%5)p1}1oo9O8(fuk@>rxJ3Sny6f*%@8e~hnUn$%+f}^7 zW_v!=_f8Y*pR<{skOKR^Y(3P(`QiSqAys7dRK@2aRr{L!(|H`3Qiin$g}N0th!{?C z$yD(H=MQz?D^*o>Gb;v5o_+`=!!?6-%szZ1*VQSn3FHd)sr0=y)|;h&G0Q_tz!>=N z4Ut2+KM|abvJPmrC{yg0vDVPXPnS63VlG$2XS|I&Tf@Rt!TeaWEjm4=r!A}svx+ua zxooU{aI$pM4ThVps8-mlw!333lz5FS^K(kUec$*dqa6My&dJ|_BM1e@6pZ(njP2f~ z{cSH0mzi62r7+*EFqdP=v8`X4?+)6L27jDs*ih}&N5V~`(S%aatMXsmESxa%6ntyb znjBtfh_&#TVRgdg>EQUHZh;wU#R%>@6;sW7&Z5l z+V9UfIZqE|%xFJ4&O~%I4_7fXr`bNY1@M)Fh%6hHkEh6QnPs{w-3Ber2^;FB>6{ba z&I;x0wTTc4xmHgvuRvf{NU|J?V?%0$*?uX#^0bOuWedSBs4pWoE3i#I0A5<u82z%ml=4C5&}n18 zZVbSb>k}~&y^h#vB*sYc<)Wyca%-9A?N~vV8L^%Li#1`HbHpFscK{(nbzdG<`vW>3 zqoUH4`$v0ndR6_Z^%91%^Ww6aqWKA`w!bAlq_V{m7}URgvTZ|*@z z0|e66V91nOmo7=tO@s?Txf8t2@Avr)rE$_ zgg~bSgrWLdstb^P*$($!vBNngd?jgmcnE!vEa&5DuMj2sh$%@?x_r)Vf>GBK;z>%067>@|--1+Ue`Vm2ktsGA(lYoKEYCbW}C{0WxY z#hSnm8EYK((US!DySMBT{bC9p_cilgYm$Y95WOxL>3VyqUXwI9r+E@q7+4<9 z04QINM}`tl&4HTv>biVD{38%R;ch#PW?zM{!qKDDC zbg_0!70+!DZ!E=Cf9|=N3!Pdw*JHdfvC5IeFzbUzA|z6qULtQru7!pyUIeCv*(xBG z+V>Na%U`R!e&gGh^HjA&XG9fOap-j}q9-e$rzy@u6EC)x2?Ph=7oUEPi8PZie{+LU z?s4S=nDI~jG6OldH_RHA)!q4?7!DM<0>S$G_Ez<-K%(E+sAQpIIT8`W#Uwu7AA_gZ zeYZwYC47yLDgNT&bmwLoB_tUmtmj8}?;-y(p$UWx5dktUt~Cq^r3weuJE6wjJxj}DgdVo0#R6Bq@jci2}rbr7|3fw8Ql)U zRU;hxbj9BG#4M99srfcl1$2d_-*YkmK@>fn%=PPxztMt)o;j#AEROY`&+huy3#r6S z9<1pdOYP@w@YNJSE^}S{c9A^v(bS|_#5xy93`(i6c&p!y{IS?op2J*((1S&MO+L~f zsb1q)Har6*Q|o0Bug`y;{B{{KjM7t#v<-Nn7oUv|fM~_vYIyl%wUJGyr+)ICv zLyjAeW>i2mmJ%G;YfaPLYpm_NN{p_6Rohvj!upI5ugbI)L^I*`I~ud=4BT5;Wk+Nt zOivPpc^W&?LTp9w;hBh~misMWc9dRUFi7fFv0?%98Y203e~f6#hyVT6U*T{S^q>1^ zdI#S>);rW~whn3y__+=f>1OgL{gS2-VP5p-F#uN6TgMy3QQ&7T2l3%S$2fOW7bKq< zB&s*V)6rIjUn*q<#@0g4GZ4dqSUQNclOn8HY@zV^p4TY_28toT{!JN=iYQR*1-O1_ z1u7f8$jLTO+Zarmp>=7FPw6sA=2=62;~^ZE0l)71_<4$EiOr!h z#E-7hXLQwNw7fB7GQE!5KJERC!Ld?8O1`5FXV&)r2Yagc<J-X^s^^W&)1&kI1r~ro#j7=`m*Z&ZURuLhGjw1nun5 z&vWPx&$w8N9?=U|vB&nV})tjrYkc4HWomW-cmx;LJ3Pw2GpjPOhLX3!d zUGRvFOt_Nty$(h8g_AzemO%zkaNIrXz^#KIm8VDe{ce8qtqy;3(Vnvju&ZpH(_g(= zO82zNg!nyYa-iNtBl>@gT_@8j?Nn6(`3SPIyn4$FSdFZ$1G@3jr28SBLP|Pr6Hw$m zxpnh{E*A2hgmU6usPt^CBEm&hu?qOdf5uX?&o9PdIb%XVkV`?`^l^WBY4PYmJQM-j z!;fU!DkpA-82Wm}LysUSfBY2Kw7D2RP{hQ^^F1WcPAbDrI=&@m;F*TU=O8ThDxh&* z4!`nv#3*G(Xkz4$3oUgXwunV07IQ})luB;#k!UlAi{BM><%ihY-H7rNB$1R(uaBwzC5~u-`~Znv&Oiy zimLHo<)h=Y!Pb|DRk1V>^~bHZ80Bmwq?P@!Uoj=IDLgS#%tTnrY@D)(SAFs zZG5pCXgyuU52fB&OcspT`6hgB!~9vZJVu1}LrPB-^(`so9gC4!k0`*ymhW2`d!C<@ zmWtB$`h=SOa)YzqjQK$FTZqRO06JoyZD^b0hbDd}xiY@RrzeeW&lEO?RD{) z1h4bOA>Y0#7Uk@6Yu1i)P3|P)0*2CQ6VC5q$+-i>qdMR#9W=k@3BmLH8H14%PguPE zV=pNfpXaB3Loh|aaEKgi5ZGH8z0^i*x@nZ2y`Ybb8PXxklfg0ccTcSE43dKw=G7g% zV*wZ*BLyG4 z!nOo@UABv8q4}*=0W;20)h5od<`|@kDgCgBO+S^e^n|VZUAHr<Ln*iA7W5*H5>faY{~PlwI2o2bRdqD|2AHqd3fH%Hq{YqhAlZsq_{~;-g`O4Eg*`Hy|LY1;jw{O?_91E{xJ`{z{GuwD_1fM(Jcw~frl3CH-xA+l@=Kac;yWpk+ROg;d>loRY_2>o`h<`I~8{MduyWdY%A-RR%;aLk8S?D zo}0v39AxT?DV`gftazX@0&6z(-J-`3)Pq)5m2m_9sQAz&L=RfxCy7XtpL`8jW+~bh zDdlq8rrZ)fh2r{s_A*;{|D}iIU$2)bJU2)XfP|s|C7}^l$cn9vrS(F!IS$j61sYg} zp|A+3MYNvNGhx3sgyo0kGS{M@C$jRFO8mmVkN-Kk-{)a}tC9V$?>$h|A$>_koRd@t z;ezMTWGMOw$tX{loIKm=h&Pd>x>H!(7Pk{((bj?-o{!g8PcYj3rJL3F^`}?ne~fWO zlY^kg8J8EiOpr-1aD|&L5IX{zH-B%UNTe-G=gz+9fW3o_b-CBt2z|B+GDQ+t&I_oZ zQLl^h0g`O*AFOvr@vk{Q+AY-owH_xk?I{^t=C##n<8?{KV;}eFO7PKGyW`(MEe2XY zyng0uiN!om@_U)5Dz>$QR?K9F$pc- zB66mGG>_pX=u-O+_)+XGtI>D>lF9z7)n){|nD?hvA*;K$?#swD$-+Pnvy| zv913sw-SdInyUceEJ46xFZ2HXE| z%lIMlOY!*8xQWaC#O)VJ&zL;uFs&fKN36@wgzK@NRK7=Ox*^3N4^?k5hh?p3ZoadU z-Gb^1zaKf4*wtn_+S?ky>mHhe4BBUb6SRu)z9jLl+ixzNK6+hAM2J_pnI~5Y3`6o9aeMPi`sa`#r!LD+wWVgR9c|RNsuL_=c z51RnA%Zny70lkVG!e$H;Y9$Z?HS6aQCd6!lWGREVvGYlkRZ5k!syx3_AW@X<6ElXm zmi`iyB^!OKVn=?jDRLYA{ioL4Le7;bdHLUBuzxpSCaEwT7W9bG22XkWW*kx(5S2xD zKrw5ZRX5egeskU4VU#e+0Z`L`qs*sjLRj*r(jPA-OVnz>ex1{89t`u}a&l9mO!FAUW$?c&;7ld+ z-Q*Py5y0zU>AcyOUu8lR+&098#w_usNzKC>9hjRC3mhR;W&PFj@d&*-)Wtq50420c z)hd>ytN@QaoJok^gTmj0AOK7Q@k21Xka$F-Sc{aK-}O-G9Y_Javi-stu+?-G8d@c0 zQm+7lPw)KcZM3ajkJd))=a@UYp`A>)VELqM?0y9dA#uwu^5%WCW7Jcl>7s4c-oFjCCcQT+60LBm>6+bYa{$@dm;Sqn*48RD?j z;BidQ;m_k~;X6Uc9RxLN1vi;{-c~LcfpUZ)Y%2t6NQZnD{+Rb-Rtt<`tkiq&llr2B z4&ZLDjSI91I3^LDh-evsN<6< z?PYIC5FdD3JjNPQKChX&FySna7bEFoXIsV%!eFkE#q#dm9{Se)a8{i1fRh`TV}0sX zfu!*PlnoueMUtl2aWNzoqHSyqjRYqU>u@^n%_urXJnev}(c<}?HN@b%t)i#r|1tJn zTaGGA*XRRrfp?b}351vM++l_A!U~@LB-Lx}?ysx%{tsi+7~NHv%*cotb4Dh~eS1Y` z9cmIUvGeQw31`!h|2n2Gsn6q2Y8Juql#cP-BO(TPFELZ|m>H)i=^E$+-s6hW1p_eN z*lLY$jeJu#$atlIfKnOzya?$1ZqHd#Ob9YjiEyWSU)K_=WMdgO;Jv!+JD-cz#eSI> z={VC;&aZrJo)60+O5YmS+kIcp_fmTh^sPlovBB8TaARHB(_14S^Sg%_M1g;jp}5C4 zdKELw;=&|(vK7$iyqiO^8Z%~o@+)V&{J9S3zx^Pd zuR756pE^(r+aZnd|CM7o19KH^K{OW0L^JtHy_g4oX?9FcD#5n%Dz_4Vi5X2>IZm^~ z+ssTXL3$`CjuwIE(J$d7F>|0xpSd!w_YaxqrS}BX2@aXyn4LLQKDtRvFQwp*SN>c+ zb=z_90YC9wMYSsLt>ZRdH;leBv!M>Ie0AR)w3%IgLD8dxERj0*6DaopZj|&~-ywZ0 z?)b0cl-(XGukx#*0U`^q7l|wrcNV+%JMm%nXt|nblEVw$6~Syi-W}6RwdhRqQDH~H zzZ;Og@sQ=11!`oRDJ`=M_j3-Tq^+p8B1bQ=yLDx4>7EozML3@Zp`y7KJDq|bLO7)D-$XO^=jZDZMK%fkpq z|F-u2Kz}A@XCWMwCCaw_5)zvsxWm_rsvr{LR7iG@CVSGkDAVx!{G2iQ(Zb4gaGrnN%qwAyn3fjA=N%0VOaJD& zbuZr9jlUV;N6RMbaZFaT>?$P1Ss_A#N5>6T(gE@C=UmEH|8+6Ga;hfm@-zk$KC7F4 zV1XFfQtARM4gYzqdFut{Zb(?;bsH8D#!1UJ*st+j2t!@z@rr&w4Yry@(C{ z;^F4Gm%~|XZj>~Ynb|@yt*&_%U>9lhkPV2DO=sz-sfKZjo%Ly^+%hdT%4oDQ-?wsX z*C7UD@85^Qhd0v4?^>pL9CpD5OJwqd2ISlt9P1fJ-PSy_RUYC#Mm&&jtpum0Sbml9 zh~pv~J?EVC0o5ltBGt3yTmubHMT{F65n>=t3PHuzD-Bfa%Xqw$Ohg$Pf!^E;c6m3nWDc7B5y2pzmUGv~zv@2jGSg!y=;f zuFr6Rc;gSyhn{~^Z7XIYVi9hJUh8Wbv%?TvM=DryIyh^4%zG|r8y4B);&iS-C)_CA zfpY6pB(lxmak~p+isgitymO;1M*+H$+abB3<}+Tp;`zK_?nU@4@qfqG&IX3|#l0wa3kbdmx9%zWQu!^3d!R$CJ|U70b`Uk~hF#yAtRT!x6_W>pJic4mI+&dSyk8 z1`RdXW*Pm93LyDVN*J^ES!QHkMCu zq{-g`oxAJ}o5-z&W(ch)5p`7EyuRjC7C;GI5z9KIocT zz)wUO3?X&cRg1Bz1+=yZNY({ySD<^L3TiJ#WEVStQT0mdW zhYmus)vp8O`N`%ViGy#?aecZOhAQlknI)44bk;*;B|bteYPoR<`R8m=yjnHyvYnci zsyDxHX0!>6CfC#@St@E$zwHGToKkfcTm@%W1JWqdSn~N-8f!(T(0izeS1FN zFCyffYkal!SNS%i8>>|YmA0l$DYvAr($&ao>}6+Ugd*FPts>c71D-yzJ7-J2#%NKvpPd4F!)0f| zV`BRgPss?n&W;p>PR(=nND)n?wJs3J&(3>a*7RB8>cst z!0}=dof@(%r=Y7+a*|KmVQ^ROlw~?>mNqO(Ie|53d!8f%u>PLW3Rx|!j4sRr*W5R$ ziwE*q;O4UC+MK7gLVrG(;&Q>)-gOr~ z$wIpNZVRp&ZwD&(ql7EAtzBs^H~l+4XSmP+>W1anlTF@p*T6oCBmwEB%x)*z?1dE^S@gk4%c)6*Wsa5dWcd7+B~9wZ`i4I=R#+F(@E&`X&shMe8j8xV&_VFT`GMG;41!hNfSvzWtw6aSvgtzz@ z7y}VAASk{Y3DY~>rp35iS`nc_&5hPI)V!+Ljc65bB;n!8V6!ImG@THhSkvj4D8pxl zc;O13F-FqiR2|dWWiWFO+H)&#bAPqEiU^aCaq14sTVbPBqag^^{%kl)##Napn5osf zQ6NEyrn7L=)w0?qP57hI+llf@6754S_MTF4Q2-0ni`>{9 zTWQIQG4INCw~IV;5CWbcJ?Jhb+spk2M`+WL3bKJ{`BKl8*T!E(`4v`g&$IGl&nQ|alzcjdc0ou z$byuj+jY_~=EI>_oQ-e0J#}zM4TT&h%gpXs21WjG!{vmAy`##f@)$N&!ahWO#=4hg zIu9s`3AI*zxSdhN6dO(;XyHsv_etRxID?1hEULL|sZ3@>AU~kHbU4BkGi-7)m-e)CC5-2(vy*G;#KTPQa!MgNu-*}7&YnYPuf!IXBexs zE_T<-5xy)^RNHZdsWTio{6xX0McqE#ln$2M?DuP@R2iGMBh1vMZG`L_){gF#HjfdZ z7AO^K$fRW@&6#3USc+S0nnnT6Q<`@am^0j}W3E3EK!RXu_=6+}f^zDyg(u&D#RJ3A z6%e>cw@{Z!&7vl%tAHw3Ac>jN)!(_jqtqkOnh{#12M5&=b6O76R2mcdeTQwF#7N)SFso8YQSKDqo6?CG3KqHP z$;zrs`|e3aEGjulLRewKoCR@5n@nrKtkP>N!RG0$lcwuv2U=*8rZMl2V0{5pcoUCo z1y_-|u8~t%Fdee_FL{0Qj}O+tjdgT7X&Kp(P}#viX5Lr|lp7-n5XQzM<>*>5ZE*aM zSx8Gj98OUEK4=%lQo8sCB1jYN0l{WR$9i95$&vU2|Yr4 z{D9Nk`JLc#7{m`B$7q_?77Wd#k-&}?FAkj0i|<55V|9&kOIiJp;$y6KQtyK3HLW{E z(o9s3r0G1|r5h`FnMpte+h~VrTuH{+3If=TNj0&^HD%ULS^FHevW{K!#L7u1wyc#R zEdcb-YZHGcPrLTJ8Jw65Aca(B30>d*&`nTU*1Ja>U*DYcvceoa_7k(Fg~8~ZG#Y-l z@uIuFVXA@KeWTy}1u)9af0Sr~?rBmC`(z0Uz|}E=i9>=uWn#&CmeTStx6ZJxcqDzo z+vYz{xC!PvMRPy+)l&yBi4Z2-`y@?UJEKRV(t6Ve6%ggxGCF`s{Il{ATmbIab-<*# z$g-cKzgitm7tAA22%FW$wc}8WsDeS#HDva!{Xw!^?(FBz)9^fGDeF~UK8`fDGwgtE z{s+*^a)wgLU}+6@$(z`*?yb{S{6S#%ISy#WG{^dd;>xnD3G+#^nyW4n{-LKP2*@yH z)uSdgwy*TdVvA=CiO7rPkRLFGvwe^wVAM?LPfI`!ZrrszS}<)>=QRU*g}#_KUQhvM#SE(@<3xb?09Z02{Nu4_+3Z9#VprOK4@1HR+LMSa(BnyyvfqiwSZ+yM(X?Oh)*z42#O5i0lv`}pR zf^9D>@C0T<_xZIq_}xTCQA~ZHMXt+kCD?i8lQQzkVuL-|n<&JhGe(C7{EAFVPX4E>DeI zAf|ECIzsn2usnHBAqd^d#DvLtFJ3C-Oyc!b{fb+)*mUMP{A9EnrK49BExZzPI&0*& zXuAr`i-Vujsmre86(jt-bJibl`)vA!*Z{ZWy(eG)@Mn>mxJKeOfja;hb>e6I(@i#c zyMOH)t$79ENB;#Q1nL)O<1Q`t0|tR^;>Bwdz_m~FI$ns6Z})j~pMU#`q<-wZd)YO4 zV>G>n>>$#nidHJOU7S^A{bltD&;7%(h2!?M9lS_geWEq~1MB>A09G??O;O#(?8aB# zNDmJo?@9c|WHFWyp7iXhrgseKOlMT7BeRVmvRB1wM}L_*9=-jsxxA=z%oPNec&|F{ z`1iNZE9$FxfG85H+_ukr1j5*Q^$MiU7>xm(8Zhuk^6eXWOC^@E`2SqXKNZN= zG+<*y%Ql_*!>7b$INSyTmb`_J=wZJa1%5TooxNay?~4i#^>aoLM>IBe3I^bPtNkr{ zD1VIg!53ft>KfCfRos0M``=@C16&Q?);-IeK)ilnm$DI3VdAhvm9!h{YNy`;dera2 z_1{n&yVA@iM19?3a#EaEPW>^g=Ep6}%b8PbrF_jJHvMPMcuCWa8vdYT;5ih+MGSyu z_3ftZa%UY6OTcr`z%JuAIsz70ufIPy#Bosl+$0butbnJE^xN0Bi{i&LI%1-aFwU%a zRgB_jGp>OWe*P%SY{Kt6zPv{6KlcW4*pv3IPL0-%J*LRrTI>DqeeQ1pe+kbx6r%ef zoOQ(i{E3|52;>%QE+7)^#&x>=c^&`Hb-#~EM6 z{AtKBIa;VRO=vf~=+pO# z{aEc)WfY#(^f|dgBWAB!4p8`Qd+Z~g8S*Ip=ocd90s{Wu8}oBEAvQg3Zj#KSbsTtc z{};pfCsGnK9eD~|QBLnaaYb&5`ptkmZYk}{wj5X)?K?U8Yhf!|+Cni-s_)&MTF5Sf zANcl$AITm&=i{r z6`*Bo^x6Z#+9@CH)2_#2&G+9pe!nuxiC<6Sy@sOA$N#|v5lJjWhZEL|Sv*b_`2z8C zvJ9+m&kY{D`rjdV;~?q7VyEBg@-cJMerbPyXJvB@{o1qWJ%+J0DU-k-S=%0KY=2x0 z+y%09y^?PeXD7DmcHtfzllA-imcVA5e*FzdU&kurnS}&dQpwFZ6DlAjLqXl8MbUY& zaU;>%MpFxZ`%U9?;U@9(KW*I6BYUPmyJi@K{H}i*CUr}@wi&4;XOC(a5-b??mHz`P z`8xf=8bSOG6X8wjXP?xV-t_4?2DF=u0UOQ=_Yb}#a>N%O7lbe0{O4|=tI-)UQ`HCd zX9j}O`;Pp1&Gs*c2U<=*|I-d3Y+MMRdDti5vGUm-?p%HT!$6yUJ2kTK6skYkd65B0 zv6Gg4cg~w@iI*X) z^8gEW6e=RAaUdeBaT4p0KX^;8GQYU>8IL!g(0<#Ku2Drzf;Ph^f1mdtLgoh)?_D!J za5MLT5XSJK=<*pYVD5Kq1n_`^J8?0ru9`}`><(Zbvfr-?`pQW)t?`(`g9A3Aa!*M; zZFzvjAVszYew1V!<0!n=jIaq$7~gRD-`h%j;MF~88V20q8r-ZAq2~T3B~cV$3mYEv z_#VC7Lq>8#HmS2wg#l@GUs;`b%PkF=-l-{9QB&l-h(^CncG64@l0|=GI?q{KBS{o* z?+eqJL2CNsr-%=%`y3W-7aFEWY3DnZ*j*L}mfD$(!0=vYRZUronZjC!QEBh|rnxaK zl;9-%yoJEOQ%DcO|5#SFCKc)YtdiGWaDu}DTzXIr^1VEj5ei7*ssxqz2!^hP-7fds zH>v3@WoSeKDbG5m?P+ynMPs9QhV4@OV>~Ht544TQo1p~rqojtuUdge}fo5yiEVkHHGl5Nj=;{8#9sM3-XwxWpQ->VZE^)a= zx3rCuAxb+lUj4k$VQTx$xt>;y8OtV6Hx}5mQLMoq0G^{j0CiCCvX4C{dkm1yJs>~8 z-%y-c>{qLSwj(AHzwn5z(~r>=w&8$0gxR=K0{-{GBSPeW4&$cZ4(luBdyM9Bj9G)3 z@5s6?_?Y4dy@!Ambyca}e#ejov}p-&(YBV4TQ3wQLr_b!jdwEv?^P6SLNgDt$*Yf| z?vjyJ&fE| z6y`lRI|E|#Xs{GG+Cxqrxvo^d_QC{E(NK7RaUoI zoIn}I!tc@p`A>KNJdtcij8g-(V;X}*c!8|6&7B<8>SIUI@jc|8I%k1tTRYUiVx=hL zBH>M`LeU&k8$OG#7Nj=0M$v@|P<~t!9!=gjx&yp+&u<*-%?9!#2J|kLS*XNmd;7 z3*2XZ7jG?qrrV6d^wPkoV(+sWDMMyAFOMwxl+7B@Z)a2n@=bkavzPAtGgrqSwJ6|< z<%QTW>S)IyKy!nb0R*KD0 z7Vf9Ei+3Zv_6rHHXeAY=t=`x$)^$l?5D0zf)6C>RN1>0RTJHvnBc`4tRQDt0a*m zlfv!O^`~2g%3XPs%Yu>*du@1iNhEiAw?HH?16d3}V?w?=labvuLIqD5%Bs*X6{rQh zw}3WfaRsvYCPGVbEzVlZaeQ*}qv}fYW4VXxuWPmKWrQ?iM=<4 z1FJsJl)*Ar>sv{%3STCYh<&!9nnnbKJ4n$CGzWb>BAv+(e@P2G|7E-M+|pV5Bd7j( zDC(CUF{_^3^GsE9W*VZqnZj8gXRyB`5{j-sHI5!av-H(03eT?!ByA#WlrSmIj8fyE#C|i%4rGoDv@j~)X)Xi{mdyE ze^BHu3qOsEE?gM@65QnlMO(;qD=Gl-ZQwr8AL$K2HosDGzysDxj(+xt)D_Y!84feu zo3Z_5V=m+Ye>RE2illzSUPjwm`O&N)v_3wz-L#Q>w={a8U!4g!1rKu36Jcd7Tdz=o zj7CHOYMbOudWNpUm zOy0{kniPfMFUxGjo6PaAl;5mJRGPX{Z~q0476Ez0ggcG4qO&7akbArPMIyCue=cC2 zaF^3U!*=K(nwqZ0K2uz=SlF{mXIOUfMk0XA{KY4Jn3o2w$Gy(`L&olsZ?$EC)H{;zk-MMIiJwXPKeb*g0wJlfACz=KcbIw(3!hm(lH@K3u7jFAQ3ga^IK0 zaGd#+fu<3GjY;2bn)O2ms{mr(#xt3sP`nZyAjC!y@MoO0Q6F%g237sJ>N*qT=Qtl@ zAk^m|atH|NmIQkjE;5kWFdxk;Boj()>4L)0^<8NbAprZD{yWPfTKCVn11z4WfAU9Mg#$1~i(ny=k zf$*zx<|i{rnoa;QC8jkLR2o#V!r(LJ;hpliLqZF~`miaYULIyAjr9eT@E zHDGkTL+ya_qw8X?5l~8!4aZpw%&xS6@A*z&xPHgRAcyAl#I)Fhyl2hZR*`9dN&H+r zMJq==><%&SFf;GjOyw7L1$=f>bSR7k)?~^|!J9~h+}O^6`qG1|pE6a_ydE9u4J*A| zKpy7Gw}1v`Q~6dKKZ~tJ`y)ZCAkMsbKQg9PH`c1U)k&r48^wU?+lH-z4!G~_qb|-1 zs6H24**M7)K&Ii~(u1tk%KGP|N@{9ZQhZcQn|uD8d6PwA+c+fKwuiah83-~Jts3F&X#?5!JVcx_p(1ksoLL1L>tbV~$%~Zrit5TBz42e5BibrV^5e zY}^nVm_vas>FPJYh5-)k*BE7E5jb{8TFjg&blV?na;pyt0xs+LOMCH2YG3Ds==b~7 zvIB^X*8^^HhwzuV%PYXkC9apBpUVZmoo(1$1BNH4qfwNhG4ZdG3Fyo7Q5V@$s`@#h zcE=VD;CGm9DI0l9&+pVK`sxTEY)k^-CTamvbOr4|@?%8iJqFyWBS5$}fFmT4Mc~i* zu{ech`9Phg2U!yoajUO@n~62MyTeVasSmjE6h8wYIQ7b*XVFL!={Fz> zieOQcREP9!wi5#BHFL3#+Zy_3jdqqg7unkCoD&3b92kGp$^SW2qfP#qyL_(E^QQDN z^V9q(CsMZaYyE}t;QmLOF5LYJXlFKR?)&=w={(Lr?5~_?qLX-}PWsDNp7iv0PUfE| zSANaSjNKD};1Bmwh2q~eX>;yU?a%XWTqfMYb9o^)^f!Z=h2zJ$qThXFFz(s5KPFf1 zDHFfiFQEpnY94mCE5Xynv(_|wT~==2>__Wgb0>m6&)WRJZWhV?$nlUGJDqF5Zir%{Geo)&q+Bwf3#j$^~@5Qp(b3 z&pPjgFK|n}hF<#Z8uoVma`H#B4vZoZ=)3uab(0ev>Tdq(YIC^*5%mo~Zd?4dcH_2V z&UEd?gSyegmHGR$FMItnZl}Fo$Dp^D>7Us6;arLMs`ZAN?TIC%#3V|6i=FdOx%JEc zMDew(=uP8)j@MrKRoByvK^+MAGUq}3+z0*iNsyIN_ivxkh5l>aL+5+yW9xH;r;h%N ze!BO+b?H!lpiupsEi_YXQTkLspZ>!E zz8%)Uf6b++=B%0h7TUM_cps!6wXFH<{*9Lk#0$1H|IhREnS@q}upYdr|Fq_gGkEK( z_Rg0x(1Eh>Fo99suiF21(_Yr|Z-3-5GyDfvGDPYbS7d*jPZwF`jHjFU@G1ZeD)nnV z;1<7@C-WE25jfY@zsB~G70nY4^PK}&b1k2^n*KFzA~)9ISNrCxmyAFAHuC(1#l3y} ztYtu2y8Xfk#}oT&*QH+?IuzGz{QKNVpC13_3`?rkXE1#&$WK4aH{a`#Uv0~DSA@PW zXVIYJZ}1UA^nT_>{`rwTqSk2t{R6h1$I1WxfA$sRor0T=`qHCb8K37`c-1}sj%gk< z!e4VHU5=Mgt(jlHoj(5^pAF6fo%yl+#VW?X_&;Ce()THXO&m%y&MwP#L%_(lj!l~W z-JahLfm_R8bEx#ayqtb6-6)gAtOfns-y}Zx;#xNjfG8%iqd^h|DMCNnE4%bxYf7?9 z@DHC<&lLUldL#b1ePJ%o`JX>x;=-dV#~$7GHo1JaWeBEu&eMg+83^vY`H@&Z} zSKGhoWl_+BeG}feuulN`o+D>rtA~u!v4@< z?ylySv!9qmXgtIELToDUleegcsek^yCqGHpx*&zOD%~IC*^BwhK5l4t*y^zcfy{3TRSB2eQA7g zHls`+0-{;8ya)K3+{CkCT*`hk)>p?)JIJc6X*SHJxRT%>Kb@ySPMNP{sa;}S`sTlp z{I%wWqYoxX+XSCY9R0EVoT&7_a7axs>nH95+V&~=FAQ4H;G;j!b+R~+`hW96L3)%w z^P=;h6y*OtM;Ev}5C6)c0@pvTU(edn<|YCgrh?)f*xzw4Y)R<+mo?9zeFmYNIdw9< zcS#ltW1JjBOpZ$bmRrRevHfd5JZg1_{LXiu98&&U-`lJ=3(-uw!bG&E%WBUwF{CXi z!gu!a-F{v7Yb|avX5pf-ba}2dAh?5ESy#U*bg}{<3w7 zx)_WlH2f*kV*i{A96$hdXj_7X~5lXMGe8*iQFNW3645us)YzD(L zGr;fsdAZou^RGO1Ak`Y+T%57>1@kOv^vdS4tpbeyt^Q&IajOM+2 z=^;*c#1xtI|7n}Fx%B66=odp{`oHbNb9ND*=Q?ahyw8#FO(*<^CkkFX$PghQ-lLpp z=O_Jo;j}LsYjNuGo;=BLmrg~HI@$5V*(cQ8zVe**@ zpSwlUuQk*FPC&80Lsb{l6HNw2lF;2d^5e__qQ+FycC6RG+h;tnuYO279=|WFN)D-S zQRyh7>nm}F`wUz$c{!ZiEcZ1sre%hANYw4r5?-M8Ez^3n;wR} zLb-I{zYYt}J8)Byr$6i^Z%vyl*>j$ZKhT7b`^(~#l^7pOOT)}|;LE)H$SI6+12Nj& zf!+4k9X9A-;N52Nt!rE%<6e1YqP-$AdgEwe=;WM5!MVN~RU^l@KOsABHA^-WoGUR! z%?Ul40jbooj^ev>&w1l6a9#fjrdauG6damV?zo;Fj)feg&r@WpvK6yGjPF;@qNRe& z>UJ`Vk@)O|X{IW=+S=`4i?;{bf@^`8R}97!T|W%5+}6s&K3)$Jd&$9a*=II|oK+g$ z2u3emd17&*k-EmvvEgJ)@gU2SBMMlsH1v1l@TM+FNH=(P2jJPKQp}21f9djzeUK=* zx~nED_E@-?4cr-3!?DIcpM7r%Fy4?$!9^g=EQ#ElprRdg{}3|BbJ4p+>8Ns3He$74jBw2r(E1G*`^LtiRfgi&1u|NeZ+Sq#@k5ynFlugQJYb;0y6-cA4 zQrl)(fp*%|e8@c+*5b&pBPbMdh#pq3C=7Sw&}kO(YltMbHl+s$h9+hszutkI?Ec3* zP>kp**p{_cqz3dM{gGCdeMKk+jdMgM#CnWTL&9vS;rVL5jH3-H7xEV#V8604^|l@} z!J1#XOXuT8BffC~?nXuWb+GJLd%lyvy5s`A*@QxDBWJ72F|rU#THR{q4+=TxQ8F2T zr$QM6?uDpsQeZN~mgrYJ`ZxH0=xht^6?<mhYPvl_+_z<8tAmJoS!UfSB2SYRP zn;#;FK0c&tcMVrR)0FY3<8!d@y#W0%;>xcp>s8Uvv33cI5&q+EU;gSB=g~X~2|P~p zwq2yKcr3PK1+#&UBuN(Ov@2{D)BCIGE)0;s5)qJEBGR4JC4rwZYZ^1;#G>mCYmKVj zPb}sd2VZM*Aq-CDNF)h(vtvhwrs+WObqR2z%UAvE`w;^XkWC*|4OxYG8BR-*PK@J4 z`yyd9J;wFnFH@A!B`ZUIU*N5itk!!aniptuW};{QURNnQidpjZJ1zPW0(%~m-9t`N zG@#)){Z&4{&CQ8A*3+AW*>=-3=HqI+L7!5w->LyY;jYIr zR*P+dxEF@k3JqR231QH#Sq2ffats{_v2Wq5p>G;W4qu#FFn!Dh3r52TAV z%?%3Nb0rX5pjK{9?liFW-mPua9_QL_+{*qaatYgO#vq=3`XCm^8mOz-g$R{&N za1jLeTb2-M#5$uHgr&WW3@M(b0nh|jvXs49YcKC{W7#Fm;%QSA z6*mkytUM)TOP*~N1XpzGOp0)RBgM7XMyhKx&L!P&^b zMZF#$anCz>C>f|KaPu=I`$eI=iXVj7G#t>@e{p9s69N|=1#YGHH;9SiBH1)l(&8UE z%vZAqz8TZY2eGi`T~L99I*!2>AdsA*%$KzLK=Gnj%(@q>!PKb?!A*~3PGaNH10Hqa5@z4m6MNwh`J<*H zj<@iGSvsl1#nIRqMQ@c0WhqH^WKoyzE|@TBcTjkj=fYfNlHO@~wJq(^2Ge{&;$+Rz zo!r!o&ff&R)nVPfOUs@@g9skZjI%h2NxCtFryjy&wP8i%mn79clpU$Xn0O!uz-{xe zsKN^eGB9n}6y2c(9JJW;&mZevo|+r84#LH--{}-nc*vWiKU!x&?VX|nAS0A(f+~R9 zY6?Nd#B~$XmgGE%G3YGezHHg0mJrJ;5PN5h&Ok6-sg5r}2}ES(#R#?@%8>orLs^OBNFc6chtLDBLmNYi3*b5w1 z{YlYU2aY4ai77#4*~n4#38C>~zfOWZV(EY-JC?XW+nhB!FL?vUbed#k+d_VEf*} zjsIAw)eYq4Q(aOh%^if+Hvw4HgcOXwYucmZBNL3@Xbz4Tw?#*n*;$+8+4qu?XDdQ& zaov*2NUd>Nn!?d;&;s}m2)}SaX-E=DGo9oDa}I;OzjXlIj2xjfT%p4l(tZi9>*^*= z(;nBF>kYawjWZm{tiWBv=b`u%YTp|5QZsJF*j+`Srx6wS?y_8%-+K3#9(~?W*DmWO z_ayrXvk$$6&Lv~SO8lY6R4xG=S#+_P^++{vB#gREt!D4F5ruKxSej=?1Ucu;t6tJI z)z(f)ni1IRIM>djfm$F)0};N^+9>IQJZo`lDm>-YwKK-yjCnyyUcx?K^CP|Tq4g(_ zBI!a+{g>DlIbtN{J<`o$CN<{0<IL-A`QFxHwj%J&&VF@8 zw>XUsNMjCskOrFKodiHL+~EWJK#w!0A^m{B(s9~TWx7$sVvWuP5_VzoHn zba?=5nH~QhUEi_gAhKoqK@9M2h!G%!lR&r`Ucw3QzWxQuy4_iMU+1b?m6ehZL>#mC zaREEOWR#omm{vX_+S4vH0?utbYj7`3eK(r3+n24an|IE#n_bA>_LM~QqgzO&GM`IA ze=^l5hC4gq-emCx+#so?i4;}?31(f8OMiJm6JvJ zScFK;gy;t3Sn5+%dBV3m@4`316+AF$3UOWGnD>z-gC-nb44QsgSK22fW(%3xJt$_O zf8@p)qTB}Jxh5>!nvMc({V6AfZ_&6|z{f6-&96SWqPaQ`z8^fO4}r*-&LWmLEO=El z-&G!mo6KwMn4-|K%ZP)1KbhrT!8@*^2tH-4U~3pc&|y&F=xcyeRH9d%WA^~toQ||; zSpWoy#E`6|7kY6jJ)qMYdHrHT0Yj|`qH=X2U`ypuD7CC1E^#I+#JD})Av@kqHa3_o^xIx6UQOrij!J3J9zfLHGgMK=7L&xG3{dy zQpdWi;BBk`p%oWQR4;%-_@p@Gej+Rx`8f{~2X>5|`N%o@O-lo~S^&{AY-fQ>UeIfM z#$97=QD1o*r(2+(@uyV_DVPC39EY`(+EzW1hR?;o^YTUFDXZa2Bami*t0qi{K+fTY z+!@bcoimp&?+;-6M6j^!iOB}dhn_C{E7m7+Nm@?XDmFdsLAPfeuDE*^kDizhSKHdI zs-()EZ#zLM2y7$e%@bYXeO}-*dmXC*=wn{b&SpQTh}1uog4DY)whM}WmSHwBPF`t& zgm}OXfz5fBk3{`s(42q!a;5h&(ooWh6HQ}Cp5e>>aaqlpkr4ip9De+eteGr6e_)vd zU*6WQc0RB+m-}NHZ61+#W22oVrQ%S)Ho(z?9-*oB!}FK4EB|H3v+&rU+_zSM!}Wk* z21Z)lfFzY>$~rcE%6*_w!j2 z-F}~2W55t}>ErzDY)C^uih&g_n-(&Fllj$$y!Pcchf>$UKQc6__w6-3e&%p^8=-!E zXCTk4t~a9CQjnI^IO`O@=SL4Kj;Cton^L&Z0Jz45U<5rw z-@4-|4dSRrYs_KQwq%b!%ymUEPylf8-?}?~oCmzhEFW{b0*58l1nqG#ueN^y$~w`b@ZCQBd0Y{n~b^05_g3X~in2O^1IeHy&^nf@bd zeR|?z?IICzD9Yb`kE#{xi&rTIk2Ci0YRa<>>ha`^;!f(_rX$VKfQR(wrA^;q@eCsV_^?ordU}A_)|QZObs|E35@e^0gB7~lYMgo zzJKO{bvyR%?aR|O=E#?~`IVI$%Am-qSP>!se76y2yu-?3g8UQTECjTi9v^PJUdB?6 zoJ?a(q`#l*^sWDy>U)iel$yb?o)hwMAYFc$(04Gz7LZ_0N!O%3-?QI_+5FX-#WF(`L%NSrf7fkVXK7~S05P`MD+Eb65fw%>2V zikYUa9r=WHz!uC{5*;N315|&;uP?}waIs)n9wPWyNtU_wCpUiK+cRfW=x9mU%DqEs z4d@F3>~P$A1mT}L%@^;$u_?l;a!OJLi=hhz`*WSEFn@E-{Bm6@%j>gQVqfttG9j}8OQSn#9)n9|1t{(;j4>{3Og$f%e5 zHH`=?gW5lJ1jUW`=BQ+*6hewu2pW*&xg{+Y9`dtpLKe7p4@KPL9o5S#jE?{6l_i9J zalhY>j-Hy_cC&`BQLl`|Ws6RK{e*KyJNsnh-5uw+yoxQ7J^Mf~Up9tiI=%m?Wxa97 znIl`dXlK4&zo<(Md^7)=zP^Lo?iXhj1G$Wd=Kp@ChRQHNA}^uaUia?WXg{$4$2zhL zlEgv;>>qeniQN6=2A+M&p7fPvt$*j1|FgcFp~{ZLH+B5br$#QpHJ&kUC&Tl~#%2@5 z2g?TVW#u_~wMR-;#>b8Ir9IJBL~}pnrk0p($Ww+$z4Xnnd#v0tSH}F z*@ilZ{?%}W*V5vo;ng3NMEGVvfz1(J2XFVhHs# zGC_O%X(uo^_sat<>&w4Z{yNq?mi*&)iZlO;WJz$kL10jg;wp6+9^*du=Q=9#wYQv9 z%Fy-onzV2@G1$O)aP$iAK#t2v_vcs6{oV87e{#3)%V3iq3*;T=-=Z2F{uSTEk*dyEm)ZIYN}I1qZcFC-U1zV|WE`jk+z`AkHG2bg zJB9PXqev}>k^%MkF&Nd@`WWGV<>eFJ`KiIs$3URYe1)iv7eK?)xLRVCfbuxTJ1t>S z8ZCjJdSDA6@C{B*r&+B9>}hRR00R z3j~kDcCgSWaFf5aDBl@>>-@{=rzgsMdyG-OfUj^K4*#BN*=bp8D}UlI9B^%{CFDE+*kL*ND=cjw#I5vHsoa!$&dY?W{yyBcBVjqF9RqR7__>gjMU^~5L z{I8MkCihRR+cdrfsIk(IX$}mu$q)>DCUL056^qf?F0cLr$Ze5nceXmacsx9^N|wR@ z*5XS4t7GsBKPHIHvb@56^5*6J+Fag@trid8+p+SmZ1dM|%>(e?qtDLp5~ux6=TmDm z@SuG6cf4{a(7hfz{2LN6mME1mN#vjFA9+a6U@EXXTAFY7DfS-uYwUC&c%A3R>_}QU z8~|CM$TJ2h^@yeFz{c3cBgDq3_+vN3!v5a>m9GcE)6Z4zFzY z-UV%16Mh&FWbT=6G@t7S`Ke7Nl=t}@DpW|5H=4IN|5K}b70S!yr)FwfC=yC1e4sl9 zL&#Hh#&2EiHS1r5-H7Z2QzBUNixAf%WIY@b{`bWMuD<_A4m(DVS{l&G$!}ZI_}VW% z@KvOmSm;h07=kw=cH(VsctH8!O#h`D%?+o&wK%*#`5{{n)N;_5sKu5{{oybQL-h)< zWKzbye3jI-7rC#yWqRSE7Osuu3W>sh{Viuq+Rxha4~Us%B%yT+{i$ix+N67TL8aga zn)PI;GB|D5tz`xLD_RyNGRD98&Sa0uf9m-llwOrUz03;oq%8}Nn297$u85Tn&fO?_ zY7&^fc%>ti@R2|M)Oh_zCbaIUh4-}9TZwG3@=2ykwC-i=!q(|LM&s#aDFN`W;h|QP zIt`|EfBQu*$xltRCVY0EK9)&h$z~gbn_+zY`0es&%-bdUj6PVr_;W#H00ypq`#b0N zPajy?kKQ=kF4!xSF&h21eCSz8hqWbh=m*K8^yyB>-&$*vSAS~mR0r@JUOzG4<2$EQ zFj4#VqUf*$k`o~}(VG;gCEzjp_Z7s?``eo!a-aUECO%d}bw9|LaTC>RCLh=mhkxtr zlpUA$a2fRdF+dzNNt%h)hZ9Bc0X1s*Z$l;!n;;3~H;t(9~k>)~I$nYzpQ z%&W%31R4`e90itc@?`NpvUmhAVFlkku5`&s%ClWjaqGQiIty{U3PVMFncz0TuuYle>1K_XjR1_2EjDpqb@eSB=a1Hr|BMMc%{>ZoX`TC+*jad`!GtPK5 zjw2t>6SGA?Ue%x?U_)tFz^}A8ye|q;10mJ<;ob>Y-(1Z1`_Hqk(&Yy`L;l-`1D1Q5 z2XfJv4Xx{Pr@4 zMJV^0eEPX3VhSOXp2x)f`}4e~24CLby}@XzrQx z>|a|2$>#bncrv%X@Tx>sjt1xc*2#|VZ|+ezd;$0tw=Zz85YwZu%Q!^nxrfq zA86Aenz6-qhvIBKk**sSDF4-GxPJR^flQdW)wyoYeNv;oE(paktUWyxK9c6Lm}G!t zNCP`6v?b3n^yo%mrWZ>a@x0gImI9J8A$P(4#GEwlbM|c(I zO$0nI(%08<2lY~Q<3<^Q_$Xdi9V*~^sQ%d(?Vn)<#f^$ihgKLhBE&Z#JNtR7FW4N zZ!vOTu_-vuu4u!aIk87Dz`h*ww$6_SS08_{whnIU#B*Y(*K4Dw@24QJs?6U^_bU$< z>avTxuj8cryq-GQ=mJXo0S^Fo{`lsiN5As@UHADV>)UWMOei>eqK}Ie{GCIiUC+-M z#j4mr(sa&M@5q3{4({ae7@xy(tfcHAI)qMj?#6N4_Ql~`=6S7_3eEL zFz`Fp-SGNzkESs?XUtjlHHe?*d{ce}LgW`hi>LbL)DS?t_hfwQ%%8egzPNtZSWv1< zqpnvCIdu(UQp6F=!~H09zQgms*y{G9517a`nqw@&K{ZWdVNbbr z_?w>MIK-a!ObD+%PgW*%`b<$Qu2|mj-`;KEkQ#QOo4)^?b*;=EVorM@_awaelM&6H zT)zOXPa5m44~FmwwEOh!<<$glD*_+NSFX9Z3;K86bm28wG1xm7?e<4*#$wM$7#blN zGT4q~FIuHali1);(|7dKTNZ;4?<#lOoiQ{s&WrEzChP8`Up^$3EDwS!u6UV$kUAo6 zTEY37Y~TMr%mpj5Qq3#Nj;UpVci3xY7^vgq>>;_2;;=j_wa#ot)mYC>-3TIZvR*47 zIM37Wq@VxTone|`7{FV<&nuwU9TqM8$`=G(Kw(Ew%7rbl<*frnR*B1>XP4fW!F~FO zuK1yo2im2U`L1)(ECDb9+D&Habe^AL7WRCYmil2RgX$x3e7I~?YjK+OX;Tu0^N9Sw zNhk$}_nlwQuTAQ6j>k1Qz_;49ULR+K!mT}g=!e5a|22DZ^{0T6Z&)99c%>EQ05>n4 zq4Ek^pv>K45=E-4%Iq2ou@EJ1iEZ6PhCQ&p4KW-c4`)D^iZw%j^1n z1Zf?`>>+pIlUFWkdF;#?|M|GS%ey)1xjxeGNoMD_zJ~{@Z|mAs(J=ju??ZUw;zz?uaeu&*!5erL&wY_B`&iSUa@4gU0M6I61`e9c4D zM_a#l7 zy*&cBp}AeccAJENcjY<3i_Oc+E%=hX06TWBvB+xGj68g7T~56=FDr#pGudI5>NT)# zj7h0qjg35eS42Pq-@Y2|5gCx0Kd~_eKiJ;&pW}X?9bD|`18&ey$lj6ZxdhT1NIiMDrK2<5i_}C8Y z9^!mwe(=f>9}5cpArD;$xIu~8>{aEu23~ujZe;T-HD*&2kPGWqBdlSzfT&7sRRa@w zOV0J}ptqNQ&9B6E?W251B=9tnazw?KPjeF9`n9*}ELYw4^#bY+CSi$-H*Lt9M!(hdov0zV;2Z?fS3Tx>pgM z&ij-SQ&Zq3FR&hnm>QSnO1;q%dX2iv&f&)$7Ts7w;if7^FmKb9ab$oYiMR` zWTzCr<{$ZFF(A(}2dmR3muFOe3{>v@%zUCQ&j-5Q@Hgz|I+t3XWG2@Wj}*eg z2hW!W10%b>=cp2cjOJi%u#E$I!H_M?{l-2owvKqpLSc6Uwq1&)b(UZ9Ip)=#l^PhhG z1G>p%>hS~LncbRi9hslpdACYpwY2m>J7oWMVmR|WQh*g!$&Vs)hp_)$mmvm$Jm#el zMj6uBH587f^f6%h0VofIpkq);+2fI+NRxTfa4FA$FBS>R_GrtnPA4&-Bn|eR2hUN) zu%tabH^CKBy7i_aLWv$fYv?S1kIyQfK2Zn9quf}afsLyrL(rZ`5SB@KGJy3U|22a` z;KbO$07qbPa;Q-Jiit96sZNuU))YrOlT5zh=D_w23?9n&e(@{&0q_{53(do}4CEi~;z|_|fPOt>B?a`+zf3EzeM|DB({`$CC8Ocje?i9oUh) zbfmMbe^CLcj`B1BKXggm)IL<}9(uX=hPvPWQeEEI?W0k*8=5wlt)h-Qk~(AQl>|TW z#fCK-ojOH?%6EiY7`8VK$-%9^KLOWS8x25E{Y_tD8R(AGxnqkkSX#F*jC(-Vl4z#8 zatPhUf`m80sgq0Y)N-B0N1B~8)CO(wu!?kHkFse7pC7p@R>MyB3$gAVw#!71)hV*v zWmL`ENl#J84lOQz?PO#dzc9EiMi>Dwy9jJ@%&JVkc5FLk)eJUpzjA?qpw)Kc`LrM{ ze~8%*yjO5S`E|zWZ`c_+N2^$Y4iS%#JjM+e78lHrS!)x_qm6Ou<mo?Q-xvHwloB*OL)$^mSDquhGqw_@0hm&iq2` z_F}e@m9mZj!T5q0a1i{gNBM-{8I!ng9F>-vX>nq832%(9S15Kz#eTPQ+fp@v`4NC2 zRoz8?WXi{E^2&Jb?=vDaaV~p|Dz3&8wS9IA<7!6%4ka-F*1(!)M&?r(Ix~A|6?~zD zZ2)`_7b7d+!4XNo$VoLcc3S! zUc>=q0F?PPqv6UM;{rI+rJYd=PW5_bHzKCEg2Sp3E)PkH0U|_7Q3}e5M6XBq9ET^H zPw;g4Ph5sy$>9T8ljJ7~?Pv29)o!a!ywvU+JdkBixNA1c&g_lp390@)S6beKlc$_p zRN0i%bMAu+mV3H{xxZ$Y55Sr1qOd5Oe0~3m@M&F&3IxXBU^9YBCI71+%j2ByyfjY2 zbny}oi8P|O*K7Ko+o^~bLAydk9dGc52@&{m71gC$jGvj2zkgQYnt1q=w{gc@Efu|; z=V_>~N6j>o4D1GNK$d0-<V^QS} ztt|p53pxGlzZAM6z>5O-+dO1FL6JBhWi6KDD`oWkTp0r$e5Cq!;zHiJ31HNo8Z2vg zxz%i&u8ZaMv;Uqmz*be(%y$JaSQxeK^t|WJ(5vWWO_W!36?{!g0)Q^Ih8OSKnEr`$ z8h@bpOeGPP#EdMeZDkGr#9+A4MFXaWVr6{wk~_3;i96Ruy{Nf9uhq<52XZOj3qq4$%0Nmz?@>RFo0YzTzSqJglBd~UtpLvF5dPh>f`Ve|H z4N?Zd!Ab?I;NaBrX9f{{YkC!2kI89m0hAm;zJ1C!Rf6+RIQrt^Z0SS(*BrbD8+&~* z2G3<-6rgWA!tU%x9;W?4l8FZKcaf7zv1^>?8#0x(5vqVr9Ee)Ik^`>=gP%1rKBE8( zTHpKR);{VfU2l#N9$~7UFpiZV@c$FAF&4mctP)Su=2AYedt?8Ja^?QZ=w7L7dY@#E zwAmN+0KVxSd!-c%cMhu$U|UqHeBWFBj5+5Pj8@1_faf73X&06A9oQSPamX}1PN-Hp zVAr1+X7~ZPu)fSX-nW2fRDd^*=rpK8K9MQ@J=PK41OK>fzx3HCs_it927GMTK_3gf zoMVISi0&~n&nAS0ZeuIiDSh{r<%;q^AI$l+?~h)NO71#>FV_O}ERU&*)<5O#@Bvwh zje01Kq_{jAhH^*B)Zx zW4Hu|=e0}H%c#qS2nj*rQ=}bFt5Nfu8Le|ngT0vOyrmedFSm*TnGb}mPIRR-K4Upq zt0%zNyDB{y^v@YaqRNrCgc8`i&1_PKV;l)r<1s8^sUW}Wdg7>AT;6{?`<(#KQTVXX1NiO~%K81j0(}boV-}uMMi@8G6I2hCJGH7Md90 zGOmUQLy^P6Qpo3+r8?N+SKLb8KLIt)pR1*a_6C#DSeqO_28H;pKh!tlnZqy`(ed7ywISx)5H7*+Ge;03t&)z&<$$K0W=pSiA|Ebn zvq{_jVAU83acc_qxWT=uAWxpp-Gk*bLg^icM2Ss-fL?yp4gkrgQ1-->a9VOZ$qs{y zkfFoi0FzcrnoX0J>)vbRMovxDHx^@;%`aci26+H%V+5z%jh;8DXw(lJN0cZVjW;G~ z^lPmatYTNyoVD!1-tJ>}u7fdh@OPbG2Q{n})*h)&UH8 z#}%mio^J{i*=ar(;FkWeBlzi~B`ul5iuurs1Jf@lsYnCCXV@q!WnopD?^o`Nk!|;- zI_TDHUzzF3+G=x}fX#CrrD!D27EXcv`}93^#^0!>qWXTIRjbhp*Iyd#N&H?r9mA&i zBba1aYbdehoLC}`yfpx7Rz%5Yx~s3)i6d5^FJxRFDHP=b^|VtK|QNeZ=w#aCP9tL0me5a^8A6}mMHY0G{l(<9ZjDoN-yP>HT7P<6%+z5D04 zNMR`T%@uI0+TIUwCEKpNy!G}0^oolKxJj{v+7VzI*}f!!hogF`lhmd3 zXagFjJp-$Z{8~O)I236@x##rcn8`V-f^*4t-}VEyah0#iu`(Tq#>tKhL)H4m&OTEV z;f88Q@BTcZ@~YRZO4sZ;rz960)dU7vA!$YC4B$tB`e8nf<8D@s;B~=K8}K^Hpoa!{ zZcDVr%H5DQ$NiM7xWz&KiAxc+2c?F)8Jq;f6c2XBY6mAEugc=zI`YmdZ9bx8--=B7 z@ZfbE^6$!yC2iMA^QK%7$k7yM`- z?!!k`8p|Tt)X(Qr@+=#^xpqdyq(G`uK?h{i_t1h=3;T*7YV0<6*VPMb(WB8$+wmYr zz~TA`;0LwaUgd`*&vPCDeR&25Xc0XIB{ot$J&0LORgdggwC z$tVehr_A(BYkD^!eNuoi=MPwIve^#kG*eoXQ+R+k?JOVn0H_G}st~6eif@jlxB*U< zM^L{E61YE;{@_F#n#_mlGO)3Dg>QSNLOs;4m5AUw{%oNzAtB1EHD+);Z1%OD|HWUV zm!){|s%%|;a)zp3``R2^zzgZBSR6Wr+3Z#)<4qSKCMryszIdY;%ubBhsK40qNDck{S!eD1 zkU4M;T7(0;C6b9?UQqOwXi0|s6EON^&Nz3Q=d5Q>9;v7IkYy=9_E^rC03L@M}#^< zJhgw$K%6F*bS+y`6IzeoT8Jkxpd9`)_LTIU7#W`qP<9@nGS$E0Ei&f}m*?u$9y>J_ z0Jw8+yI1k3&>hktmeTdOLq zH(vlPD9_$P#}^TwX7+~_-O$uB#2FWyyn>t%%Q5eGJLGGj2#eJ=9DX>nPkgY}XXOs| zy?mM`?xz-UFxHc3_;)YVDbTX$cnA6dk_xVKwkARxbI%jg~fD3PMKp* z*j!A$2bq|F1bpp{AJpWw_24cJmD}t+O@6qAdaZ`ob?gV3yAj~P)4gK1!<{UMhDs)P zEVUeBKllCJ{ojQXIkkRkfp)J%X5ils*(Ej7VMUx6LPKTxs?x~!yTuzK#FlA(6NZOP z@Y8)-POdSk!9b%~D?q<|ubJBoIv`fCaak!@^8LtBA0}c&(9eF}PxP6A|J#cvYV}c< z$G~KT(r&ohZm@i60GfF zV`nYGdcCI7_3%vEOw5lcI(hN*lY=$Q*2c;A{mLYhF7FXTs9&x)tF(uGW_!84dj-fr zf9^l#=O%!;0Fz4Z!0Bz?vTk?+Q`SsVjdn@U{5&%d?6{) z44z#E7$J^O!M#m2?6fo7^VE9g_NZom2646|NIITAUvnWHpAMPV@BE<>Wgkfk5A84` zs_&noXZ7s^S2zGZ1tax9Gk}h_?lc$x&nO-=}AyXYG&byCaN! zbwTP^AS|WQg6GuADPxBZ8_unww5I-$h2Xztuel8}6_W(+b1w5GidY4njT=2#CDVfE zz+-@oLx2NSv>R#)U)!V6oRwm&menyNF_)Y&w88|sOPWlVh&@Kx0+C%?{yQE@egX6HK3Wx%67z0z!2g`R_bJA^ z0PDz?1YgYDp>W{y`aKEg5fz7ng&kvgjVW!XA;41;z*T9g(j|hRV@9!s!acp%))%YF zA1e*{?B>mSZ{U7K0=SC@3GSC!iIB^!n*iVa zEML*L2<$d)TUsRKK#4D9&n){9QZ~yQ9*uLfzcI2y8 zo9Ql|q*;k}57T2*`GwM1-`De*e+l}<^lXnH3A7Yx8%h#|0WcMRK{+da2rN(x6a|18 zJL`&m?5*Z<;J+W@nsc5wyDbl^)~Yx99U<4B^C^D+=u##iZuIF}V%|fYHd;2VX7&TP zC)AC&@j@vp!bfq4y#e5`XEiF9S2xzPcl%H|N1(Lh4INnx3fj+XbAeW4brmmc<v}Uyh_Ms_`^rOb zeabE7BdhZ(R={ts0$4~K(0uEbq3j!oZAaj&HB^#mribML9VT-^e2eUBYJ=KEo88X! zOqx@&RWOblZ8BHic7So~xF&}fF@S#n<0VQxhHVYJ`0<>W1z$*cKCH`|v*X7W1fNn- zZ1%KYsp1bs=Bf*I|6RvMJj4L|sd@1$x~k_Ydo;EkMQO?do`6cI_T+qWs%EM)r! ztAMS9R3rO+Z1rQ#S>ur>`fb!&9|8D^)Xv|^3*(SLwt#EFSc(iCzT)hA z8jLvoDv#wG&u$h)Qk~@&TaR_oBijSt~=Orup>s^I|l4i?0;f>PZDceIXV3r_u%uZ>$_$(jcw+= zZDqp)*2n>0{FS>fic#K7-L1W|mJ66k+F~V$#g~B|#;5*D<46U7H0f9)Muy!+eRLJ> zi>;`94rB0vkp$Le24&s)55Q{O`!!@L{Ia@)6bmt_4DJY|r}v-QCrv#E1Bl+%4JiW8 zIu{rGKXqt%KM(sOq+C)rT;!mmltx>wX13V=mABW$=9{y-4b=3u;W|e|zqHC)RnRgBb)_0czg01C7pZ=e#SR;zyLysS1=#|hZumBZ?>xemMq z5YJ`PU*%Nj!pm~U@;o>3%t^fW;PfH#>5Gg0ZO**Mzyv`C{B4?`a|RDz_`b{14ds!r zg)M-D=YWe?7ajgBGp~A~1I_Mdz?DdV!#+{QzDPK0vqx<|i3W;l2qEJtdDe3?-%Y@m zbCOd+!0qFz-ZN6IRcpX6Op|-So!?#O6g0*fESjfzxMCCb^f6^MoT2|C(KT^=Zn*p{ zAc$-63;*@?-dV8fE3qd4sY zj5Yr_V^)%7P355?RAcs8wAk2)A5DFvot*VlJb_2RX0WY>t9i8zbb6~L?q9wo;+b9dBFu6O$f^Gp^ar`#6}X(HGZe?WX=shhkfz&u<3_sE z4e=gU5s?5Y`6dDW{7;R$CJioRB42K)50xCURgy4V)r$Jrt99e?_5K?>BL+tCl$DM! zM5{3X(RrLD0XA$Sjlh}AlNl6EF<#H-@T|CI94@C|j^z z_iz}x^6UmTJ8eW5Nn+FVSeR_(i|ie&TrmQZjtAaZH!VKjt@XZoj89uwsBgQz#<$@p zT3tQs^6<%`Erz`UuIi${&!pj3VOz<0tZ%p?y`e~jr}fZ{@|}>g%PIhCzCSamE)jZ? zrU0J$9TVO(9QJhL8#;->wL1!;e&^!|MGVcMRP7FdN9B;L=`5ZyAPZ+`@c(#kchT4n z5%674pdv6X^>jMkXBdU-HcU-fBbvA@#e_Xw}88I#I+nO_Fv~htp>C}PeUyjqaq>ffLTKv%#FU|=u_P3EbjX&0OLLm z{+(3zXj=jJx!H#9#@E=efOTg|LTWGHEjm(&lU6yjF>2+Q;*&;e9oRcTrg5aGUy#WZ0N>R z$~R`2KMmLSq5c}WX>{w)dRP;;*j2k$P=53O)r zpElBYeFDB4$B;wKy$IfusH&yL6}IQ+V(D`&hmdmK<>xvN6^ zYFk$kgzZ8S2!;Ck?0VQO;2u|P9W}n3P{lzx<$Fwe*HfM&mxI26#3{{Q&>k(G!B# z9i4}&0w8|-aTNG*{*Ko{{CeNmVN&4=9X{JNXV2+^ESw8Og5fssyO@LHa4daeptGwg zlN4o`&IN+hwAYOw0Zf5oD1vprtl*sW6^*K3y?awu_vzRqz5DvkP*)q4r-WXnFOO57 zB8Ocr=AGBno72D51&3IuUJhwet}r*sttl|4-{sfXk8&}cY4b*pd8aha?vsH3P_MUK;_YPef*`zYtI94W0XV|f6 zvdr!&PC^VhDk}A4#&uLs=7}yHI79nS>u?&Nk8)?Txy+7t2Xbm73K$r7oxIKQ= zS{cRjTLZymi?dv7IP(-0ZpAeKK0W}SDza%d1*CDXeKpeC#saA5lpUCn_=h}Nsa$ZS@>Ex)ZVLm zO5WA0R!!@?r>+Y37x?(3jS?j=`k9?Yd-wF21DI--GLgp4iEV$L^TL6#OgpmVeD0Zs zbuwS|%T~b9n5!E~9lM^dHuva=Qk2bpsJs>@j${${eeUc<*si(n;eH-|QW)vP;)Wk8l7+oR%1Ne9db{arZ)-Eh0`h(itZS81@(FJl8W5KG@N) zFx*e(-7e|y3Ja^J*c|>8US1G^x;6zTIx+uM06rjXuZQ5Fe zZ)(-E*Kshc2ALg8aMX;}XvT10EOdq(TB@D|CZA_@egr1qXj0gCS}MR)DXc}W-Sd~m zai#czD0UDXrS^cv0e50%k(u)1+Gnqpr>DJf?sIyc@jVLt54V;1ZEH!HP>H)N#u5Cfgsx1KvGiBoM+1gnPpyobc|~ z-{jOcGpB0ip4Gip_o_M)WJc`RJ2EoD)ES>tYm`)&`Pl=3HZJq}`uq=0UHwe-3AJ1V zaeF!hIC}?cl7|oGIn@;iSpjK;$_N}}{8(%J#MpF@?%c>RIZS~+gJHrr#~eN#l9S*D zJvU1C-Cb6Ywk^Nf=ecp>^uudT2*Y4HEOd!?#qo<>Gapsus^8L=bAjM<`*4{%-y)Mk zWdt=~Pd^xZ0t#n6=^ec1)!mgsn#}WT7meKzU~l)aO&eF~)s90zhM%0r@Ow7oJ)9%&#`H^QakP zf4v1?DS4C$a8A?$x>*rW62^7^T>$ZlI4ic|e#~ND45qHL1J|$%BrN4pWW?747Br^` z_wKQU2!2y>z~M;3gLC<`7l@K5JT(*yW>BV60pc>uD*^w(ip;mgPn7sveT)V@j_~X5 z7I3r^p$|&1SIO&b;AmHWXd1+mW$4M!eI?V3{yw`DUALsP=Bm=pyIzr46@2cHb&YFA z?Xb4uJ+-85TxqOT(Z z@HqrCre%A84t2Jynf!3jQNlWR822TLrYS0EayYjqiZ%U^V&HbgMD!+d53cG>xakje z0Xzh)FC8#LP7d%}-Ve0n(8q#dKX=B8sHdWzIQvF_pOqc-+t|F4eombZ{8OxZ@EJ|& zvTxR90jGt!OSk84Q{)_0RV;JyrrQv{IBeQ9x<}FlBY~z!+u_Ixu1zKpeM8gSZwIFs zbl*N1V`t5v7EJkZ^3$=J0z|Ta9KCaBLE^Dm*-vI4CW$Ur!Hl8oOS`;U+lt{A`i-Gm zYtuHcQ}Zc-AnyYH45Y;GI#p5qnIHbpObtR=3Nq%p+J?hs+9mo7>aYwr)ecvUzwf4R zW#h(>eGL3w(A29bgb^KI7#uH+gqvdw)OCekxiSHFtU0^`f8!SXk-v6(Fm69}RQG-) zP&3aCi9$#yH6gI?CzVRt&kVq~`|gHi+}+&s?Uc$$b+K{zv)SR}wBNu+wk&`8fMxIywwk*EfTUvayffgQ zhlx;ab;6bI0}V}4J(8^+nh<(h46Q>$CLO266$WMm(Saz~AYSnmGo}C3xuZH1=wDJM zxX4TH^w*DbLc8+r9O|MD2DDlBQ_};JYwZKRF%b%VZs~PDQLfR$A~{l7t6X_GbzJKa zSR56Dz^^u#?}@+cP1WG%53gg`0oW{CH&eTKu)z;*+60D(RK$72*BqXA-GDt)Tpu;5 zalpX8V!blqbzkx{t6s{uC_A+4UMO9DwC3}Q0ZwwRQx(`yp-rPn-1Ge84Ngdo@RAZD z^b-cZCZ5PwUnVis+!Xu5$C*nYhNU53LC~u;@>vVaQN4P;Qi65eJqA#AEXH!wJ2=2+eZl6zlEt{- z7n#TMB)v4oYllPjjar$#3bYcD2D6SX24z>xE;m(MJ9EMw{-^$5U)Jo*or8>f7`@*6 z<$S;2+ijBoG4eCm1(0~g2KY&S>chMUGSWBG?l+*B4bl9WjXVj`KuwPtC(YWRO}dOa zg|2icLm|VPJC>N8+*zLq(Cc>s?#D64hM}Q+@`ft(Y=RIr`S0`hod$l0c0<#LEpJS~ zt0&fUSr<#crY-kpI;obdsGULxgm~aHAHA;GMT@N*FU57S1djv+1sLs*;{z)0!S`VZ zvQyQ|2+X>asAM>;cLqln=9~+jo$%G3AW^UWKlarVN1F~BpSEtlamg90A;ZupZmF+j zog1<+K)jAem}T(8aA19%%*F6K88gNWV^*L6)FUUyG>%*sr(?iphGB#O7TsajyL#CE zI`0)Z4@9*V-HF)H0IV4iW2;t=ewssv<6x^-3S+0XSxLR#4A~kE0 zO=>U0P^MrJ4;z~(I#R(RW3M@-o$<^WpG)_`=(xK*{&Vi2KX??0mM-9%WFkoH&)tRe zKX(_(RTkTJaT0IG6X(zDV%fR7X$@W#kZD3u^Ux#lRDe#;X91yEAN6^~YfqAhl%OZ^ zVAq{&gm1{b^pQHVT}!8 zMZ$N3ropo!>#>3u9{O59kwdBdg3aQle*?mNm8&NrGo8S2z5bjVty2qSLG2Lbb#lj9 zl&Ug-UKdeN5f+N*9&IyoaGUo&eh@!*b=zS}i(8SiYdAG9cQ1m0<^h2wSC~23CChH= zhX+`q8f=#MFA~q&rt8bA@2Th^Xo#s)7@tK{!)|Mn$BXoGh+MmNgr3~*9uda))|^U> zx}l|Bq;TodN-4m$5qoiS#CGKnsboW?MiWNgYQwL7dap*4R|G4s(!{Z7`i3RIT;<6?&}u|!Zn?$Xea-SP2o72e!PXh=ckmV>uH>kFonoXg zL__22buVN92uqQ?l%o_g7m|6RH9LPTgge+6Z8JbTNr++dWdY)uFuQI}kH~~3wXPF3 za8f4dzzSfBw<_?e7%;gfE7~aS($* zfA<4X=Y}G#Jp(`ktCP<)0z^IPj5Xv?4lJyh55=lx7aL}lqN;ThrXu4cvQZHc#K<>t zKaJE}%{wL{4$WZ8%k@cf0y^tpX&7CT_Vlm0KSEB=R%V4J9UbO3@*Y8B5*bU7uof?7 z@*y89AO#+_hvWQ+JJy-u^_Fbyn#dd1i20`zgCs4$8gCi@Pd`DKd&c*lb~Vl3Y$@2A zyB)<2P$F7|VD>6DK2P1*Tz#`3zGD`9J0?yZ#X6)J5Y&XXtEy$HuaHF76HJtYqh%jU zkR<*AaXJ_8c-NU3oSQK=!;l4H(aU2rmLzq&^C~;HXdrKeB*_J3NDYL4>N;Dd>%TqH zoUf$wlmXlx2=8GB->cB!63E{S=`zn)_@~Tz1CHKK!{9KkdwK?U zruX%;tY)IloQggdtko7=K^fBYl>jEK^$d7&rdOq1d*0$FWw59Ija^rHl{66}NYZgf z#+{_3e`-^@`?G0oR~|H|^HWp^(nuUw%@h?%NFDaQ4?9otul3eA5A%!7>z`)m6BahS z>zJwB>nIduIh>OO?Jma7p0{+3XK<<;Y#j*TGpqa%EVRC!d-y`xrW-VBbX91o4*z;%h-hXO*J;U*D z`w@~4IvR1T^tHaX9rB5EP}HkqNS;fMl!tqCjmm~mj^EMM`sMFh_>llEoJ)8#$sKv< z!(Dm8Y6EZ=1%9JqM-gxQ)Q9nBzJJ#{N$tySA=7qtd8Lqegb9IBE`ZQ~!+j7CJ9MgZ zp7~Vim5-L!QkBXYg94q8RO2Y|BAZ8rz`YniKKFSu?(5-#jJJEBnCfo z)UWw6Kw##|**XJa8dZfrM-HW=Fh8Fzn@1#4Lm2@$v#hF{*KVv}m?z9m3$N8Bv-W`C zpzDC$^X*q1ufWw=8SXJ_?Q;|n-+i#}4KnpOIzKZ%=*jr2vjxVDsp7q!D|hd! z>g=J%5~vwaanV6GKsq<$@r*J@as?SB2PobzjrvL;lC~Hv=M)9;F+Kj!`htHn-n34( zf1MqU=g2FWqUAt-`rKaq;>iSrdg0^e`+Yo8mk-H~T0aiiejM07erAtC+C7oK9a0?0 z;=rX<+QVa9z-k6|Si0;D8z?#X`>~zc@UBlK(lELrR7AWtH9xe&A zmaq6tI>zrtvjh%LUAw!-BdxRQ$FpFD z+Lvq2{yE=!VC9v&jb2(X1^06Y3UA4|YvwR^!Vu6a$0AlOtur-UjU@0rMJC^00&Cdk zm8dRvc7~9TeP>@0%;1Rqp85=Fvf8k6MeZJmm%&r-9O!)<4K!!c-{;tB{NBIjD;iK! zrQSfJH)m4SH`-|wb4|Z2ZX;*z$`DC8B$wH~a5Sq(`o*kd9=5Q{gMc`iFGtIpKMjiG z(^qZ3EW9{xI-;L2^&+-cJ*lsDBH-%t9`v~GatML)>rS7<@yVW=Xh(C#T%Q%-UY*R6 zn=^6f-bBC$5P#}^>XVGadQaaRaG+*+DHOZhfDQXKi480)^Qrx5l=UMk71$qNQDp^g zvoC5+3f^R6?#&9rra!iCXHBCn&MNHweev_oc&#HeuKGP{8e={oFB#1vR{~OFbgk~{ zZbOb2s^sJ9WurjKzvg*wvND-`G20%9443>p1THc;)ecJ`s*}H90J8f}%Jv|^HRi8F%FcUzTD*2x~;tzhFOCNB@-1REx zP2L&cV|7pF5_#)Y48NbyH|lB%z&?MZBsxnujbMk5jAZ3**P6O&ku{wQD8qIS3NjMV zkHmYA^EM3Z-uldgIO7nSJhevFp4`$=8HUMFL*$CR#2{*|H?V=38UtK zAqoCQM25gHH?3SNz#+FAP1b`6qX1W!*7{=OE27X@edf&P2qB>RPPmzS!m{TexHCN721%&74Qa&wKVVX{UAynr%$5(j4q*0kZgEwE*y5=9DbpzJ6f%a-7 z#7QEaUYBP5p;BCC6g1yR3j)N!clnBzuaoZsC`2pG_k&5-STb^Cvn)w%MIF~QbmwFg z@rN`x$$gN}&XhWx6A`l;G81=dgr_zpNl9_4vS%JyH}0W!hm9N#X}r^Fh3-C&Y3v*s z^lOvH{#{oPO|+g*em}2#&H{`)+Zc=PUp?to@a%ZqU7FHSNRlDg`mk5>tS96PV$C>m zM`!$^fSWLw%qO2CYReq>u~g>KHn}|ftdY(%PPGxN6gpT*zz}SB8n8ygdOnLLZ>37P z9q=wnXTmZQ@o9@C&aQm2=q!fy?F?Up)(4D7z`LkYTmo<7g9by?SEremok;wbF?@g@ zK-1DWFHCE01s-zssHaRx9Vix_6Z2F8u=`Vp(mlZMOv}wtAMZeD=uODVxZ;R_8@@?1 zs7LBR@y3bdf&h2JMjtT zIl_5MI!SB;Mnz6rntCF^A>4{qMu&Z(4ET-7`H0pz`mkdHawKj^TNgI=dJm5o3dux; zu<#qi3PhDsDl--e{)A!Ln}DtXm~L$v8IM!2fL2oSnBvy`AX?}RNM56iaNI`}F?VJ3 zXl(Fa&bx)QsWUshLRS*R-SPb7zcKl)>I41Fdv_cmz)fOgJr=>f>iBL72WRn<;XH-% zh|0N-L&}xd#61{P>#WWIerheQm~Bb=$*;T}?*&*UAn$MQlU04yF1L^q+AoSkEP|iJ zVSYu^()RmRoNo!t5KXg65BtbMWB>CXNt>sA#OVduOh{^~=b z3C~J=2V?JSl}o7B3jW@g3ULQVQ;815NzvX5L@`e7BNh|#HdDS#cPn_VwO7-~l{ZYs zXPgQ|_T~ddpcr+*=Fu}s&nC0iN$!Yz4s{{h^1muWDVH57xR61BIj@qtNZe#X{one zIrYfm<~RiIGleAK)5USKEvxjv8qG?8mj}ZSC*Q@REOBA9}ZU7_Iflo z>(aWNy-sSukEk0Z{rqu5y&xhE@RTL+_1p7$FHgRckF(lq?FaZ(YQiY0S>203!0-132p5#mGiIJJ%H+F{uTlm#$T;h4}s%x)D zlD=R0gNUF~)bURs=6r;3x2%LS;<;=S7i-7!LxyUU5}ouwO7X)yU*&T4KmdcaT+L2| zvh02<$_4PnO-*-!5}t=^1SzUP5oZ|Q=AF<_=iN2m$ zG9&@XZ15ZKn6w3&E{6e%8CFd9yP2-otyq8gT4B8=^YvL8_--vcrRXrmJIx^=6;Q-! z1Z+IVIy4X7z`kD6d=!}Mcd6Aa60a`E>lHP^3k{@O-Lq>=3?aSoqAJv(`aZ>oG)7qO zvN{CX?#K^v+rP5+crGU<3(^fDMfZf~>fV{$qZ32KSIVDU5JI)`eC6-M-l|R7ZR+Ct+K1`z{^X*@Y@HNNj9<6g z$ZT5(AQ28uZ2j_bBy+ta(LgJzPfXL?kSzxReb69EcYI`!=XO)ulg9-g@URxarjP=9 z#v!D$Y)}~b!07zL-)nQYHwdwgW_|DE#gc&_1@Z+@AX+A`Tv&{jhe5C^Gk-D}Uk7dd zog?8FjJU4onX-A7DE!bZ_Q=WRwcWqAOWG7_gFSm-9b=#a`e7-Yl15-_NAnFIqR5cz z!o4+ww+#o&~`Jc18y zD}mcNhn5rJux|+9glwm+ms8(6;MpEc5dPsVE5Ny~#!vi{Ah0K`?D@u#-}4O1`6G37 z46lH^THP#;N$zrm0Mw#~^^7o#_`S#M>};&t?MvV>@>O5b^zh}gf;+jBa*GUh^&qW- zU^#V}Xovjf7MAGpD{GA{@1j(^a&0Et#bpN#JkZYR=zBeOP$F%Oy}#>q$Eg&@ZH(b3*A=eX(Q7GK1?J$G%Neo8~WiyT<7puw$g^i7(ZrVroI`3AI8Sg{8% z&7X?tQIZLfk$k|TSYoj|ju@1r7m+FMG$9VRicDBiPfTjN<}Mbf0DND+)hdD>cdVDwYWNkr(b~ zavNT_slwW`M^kUv#A*K0{4}_YY}uP*1PMAcsOX`r7;YP@Hgr-R8oJzAVv(8w(|&p_ zW}l%kMN?V9b8f8D>VS3=Kvy~xHsF9;l%&E88ryx=>{qTsL=e?@%A0^$?|E-0A$U`w zsspYd&b?4A!Tny}Vh~>|v~et)eF@cQxOzTh zKmE(Wryl^b<;ZqHOrdqB#gXn<@8f8OYk&X6Ra7Ot2K-6G(<|Iq9_eL9svy$}GH%|k zw%s~wzXcl>{p4DfD1gQW%5VYqO^R>`S(Q|mIueeOz7D&uYaMXV4{ycpou3lbHDdwb zC-ofO3{VcRZ9Z>9g25eRjX><4@NoNmek@tnni!_zjrQ=BeSFM|s9{wbL>M%V%~%9H ztaAGbtd04i2JE4}DcdHQi6U*M-^v_`$y^V0C&OZ&^L-pc) zUjZ7O6}Hp7GPUdPZ}N2vnTEt?r_S6`>XwLgvN znCerxK_Rvtkk66#1)HkwSHIALe>)WybAtMQ_eX=_KAMiJWF@W`HFY9bNVwLxaSPPf z?xDfv&Fh|qO7h=15>lA*6}cgDVrW^G_~k;fg^CppQ5U;N`m54SnKvym8Q$e&({ z)7^bOowQ*m)-f0P#$u`Ze6ziwAzd`!xcaQ&3OSF@$Idm{C+jPR3K&ywF(>Md`5f%f zZ>%zYuu8ZA`%2>mTbO8+iu{IV0xX<^JZouzxukEwC z=@+e>NqVBr;(g{|!zpYnq#A(l5y&UdU1Qb%=^H8?;T3;Kj+XOxWG5R=$2EIkq)IV} ztE`K7o6E%kp+q3Dl~ny-edAO0nHgqf)DpG@Rikj*1NhB6dP%RY6OAId#}anW@F|Rs21(q5uH{=)TQraiD&IAanyv zENrRL;Tl=uNbhKAe9;Ep&;~26CLwW1!MVs%q^KYfoX7WLfJU?4ooQO`+|<9wz*jAp zr^{i{Fi0Vue|;e*V3^+MDZqd)FxTxxi~_~mnut<0jOr{Q>|XQTya}#G2!CuEBlf7_ zvp^7mIPr*fi}ISQOy8odVc^X^+SP$f3sz!!z2e{1gcWvN|?WWzon{wfu?2ct$U1uD* zy_bGpO$x~}DV!JwR<_3l= zQ!Bh7y+e(@X4lweNNJ#9*-u-iAPLzS5;H*@$K-tH1)ZJVF7exI)*{nVjDK>Xa-fy( zoS}2l7`Efl?Ps3qU+;Nd^Gx6-j>69|$nf^H&zZoJD zY*oNZDOu2bq;Zs&8e7!p)yaP&N_r~^6PJ+ZzyxfV81$l_|IF;bq^E#fvyXtSdeM8( zBnMIY1iMnkQ46$!gTLN4Gz3@zowp+4oZ=bWqQIjpDDC|2mHWC2;4>~YWz*sRd z1urzoKsdZ%P`~{>C#f)y=0AHjfA8^h)ci~!>khAl@@n;$z0DGZcg*}kLP+k4)cD$} zFoA{UQBO~)boiz;DRE{W@9+X|!I)P+{a^pG3tqeWCt(6640xFL*u;eV_HA{tzZ{z` z?iKp_Xy}@~qNS)>xqf&z;Xi&R%%ju<3Z&_jq+NSbThssb9o%$%ha||n8|CrmYred% zE>=(Yg<%dqWTKRK(^C}s4(hQkC4pOr&&g;CZ{v62h0V0u_d`#i`iXT{x%j5;J0{*D zI@927{%7w4F6)mXElTd?Pw(%u@6rhOxJ_DgPsGAi#c~?xm9^HtDC}@17pz}RP7wZm z1$gTsylCIfFdC0x#_1psMigZ7pBXYUhE!@~75>+(EvJ$}91=7KoxYWJ@oiq6w2Vtq zK7yr^sZzQ|iXhf;@()hV1Wr9SEw`+*`f~U5UdLB2^m3_a(TKw?e%liVBZ$MTrYVn0 z&wh~V7SM^B9##qs`Aq)(3}Vsn!gV*{an(VfZkSmDOT<*FvsE4}=IxADw_w-sm}i!R zim3O~YZ%4tuG28PK)IQo_?`IX%T8kSn*Tf8P1)?9*;qV+ z^c){CI%!~7u}Q{Y!2m(6m^PZ-`mcN!3JtJSAgpdj6q~hu9>>LJp zi83Q;4-6PX78zy1J&GGOy|eQBVA%Wq$*mV_B=300iIJBzeXQS|>VJSz75{nFp5QN@ zj(s4Z{EwbG#O4b{_@U$23oZyGHYwd}ueyj8$Ww?ZW^bajRXn$6_YN)8xn`_T*h}At zK20oT&B$)W8*K?pH*SM!5zYnTgdWhCL`0z|q??S2K#Na{RCK#qpX=8g^yPRr_~tmZtqD z-eaW*Ff>IezgU9ul|TZE$1$ltB2S?ARA zwo4MSK3|xKSj5V*rI*A>(!9mM;06$wYrmsVh8@!rwDvoEYRaCBz0yt2n!egf*%n}u z(z1`MJ6++Q7(F|qSZA>04P2=!$Y!IKmW}*E4;fwO>4gSN2 zdhZ_Fc6b-cG@Al#B&C=#f&0W}1fYfN@a8l}s!l9|YhoGZo>P6cKuN3vmXZW_4uc+` z=c|W1n9Uikf8!p9Nj!Teo_*gl#moU35o^wPpI8Fe zSDX8Dhq9Tuix=O2m2@S*+`|Ygs2n)Vyl019Ok_ZQv#oiisG-qakSeN5;+-HP%L2nr zSdu#(#Q*}G^WV=(9G4E2Qw>0{6OtQdzg{MbFyt1=zM-?;w%1m4%w9u&v> zHpP=oUdZo*r1_7_;31z2Ryay;Q$pcV*UOLAFFdpweaX-i%fD5_o>GD88&(S_5a{f{V77JR#r7ulF^X2b z1UR|&e9zJoM}&7oBeG!JnETg(DJ(P~3QO_~N|YtG{+Thr{kJW+v(W!ne&L7LAQJnB z*ZiD+l)BiDcxUf}Uv=kA6&`A*%l1~>HeCr3a*x`rdNJf?red&y=NKa!@Su^zi4qrz z9ZGX8z)z9JOq&Iq1%9pXe@2k%Mft-c6*#)jLjh!2dB2_OA@Dn5 zDj|Wbj9w1f-d64gg=_{*#%ov=9)&_!ojc{jLbmx(eX?Yzd+y;}S|~K$N~C74lIpA$ zFAY$3)@?Svv0X=DYS6NPl%da;eWeF2_`USlvBZQYI`g$TT{1}Y6>BGO2rlRtf<1XL zPve9VSU;Q^1;Jo_s3%fEaF}!~oihuP`3#NM@1$PgM6Q((@?euP)d*Vu-V`o=TzW{p zlN6jA#+&CUh>U@@ThxF<);e61767Qd5HbZTR&GGv+t&x&$uUy#a~wTra$0#hWa%fa zi7o4+eN1*~UrHdyy# zrO&|sqTe+~xYrO@W>#&vsb(Oc%3(_vQRAGDij@8oN@K##@+jqgbobXyR+*u zAMREY&ciHbNt&SRb@Bz3gvk>E#1T(Tc7^?aHpoLB7ZYbOMqAWiL0poO0Y3mZ`DNSIpag~yu;jLzQPT}Eg~5xE<28OVxQfB26J@PMf1*; zH=oF?7R4Dx&gJ$3EQcA2wH@&l@Vm^;s7SyQoIY0=Ug<7lQ}aw|XaN=p)Ac|2AKm`o z-t?JVqd3lYrWJH#R#TYVDQsID`|@{_z`b6$`kBI0uw)F~OKNVB#lyiDE1Qg*bBa{& zZW+0HdIf}|s}Bdgz|*7@vtW}@8i&})?!f6vf5$y_o||O6lRi2TfAb=dd)g1M_u!Ez z!4-uAiPv@_RD5rteH~l83h8qQfNf7Lw_$Axv)J=Gw0m^mQCtM<$T}=(gy{}_L;ZXi z_rBWs4s6B#nMaWeXuE;?wN5v>i%Z&9)2d|<^;p$#%l}#%gL}U-DudjoPiWUr*`P<*?X~9di~fj`T-YNYyK|5N@tV z8LWGmC%k*@XEX8!-cE{(!w-Udboq==xu3HK

kljKgzE{PxU97Wtb?-2}Tg-W|i; zi;}kydL#`LuO0@_r+~~{Xz-&)z17{=H98v7J}|K}@t$MIJ#zpzO>#p?n7Ql}Ct;Xm zgnan4$)~|lW;_;K)(ySg3Gsut5y_VG%i>^hq28i_C zYxv8$@8&)l<0!sf!7yXnKoqGlpC|qp4yBNzLw6|V#}G4|F)v?zU%wVVxQs3%|E;?tB|Ad}$ar&M%!*55SrODpmb7}=eIpSg|| z{Lr!>?wNtdds7~p2CX;B5NA_Sfh0Jx9GhxVvp}!67mX@OU6~z>t<}8hR6Z9|cW=5s zeL(+mf$4`oJ{#(>mfnqyDgU0srV#@U?G3mRD*w?k;@j;rD)l|7`T*`Qzub+Z()jww zdk{ceb#ma#-d?j54u%uZ@+$YwW9u`FT$a6IOl&;Rfo=?-ZLoX=0t2tRIn$}l1pD-3 z&(8m0&(+oVTZ^hUEe*vSr!%AMnw)8p3xPM21#8i}*%(XOKt|DGetLAgL)dB{#l2Y^ zO&B86L`(;K*%vXsCIN>MeSA?%L_~Y|pc8zRH99qipXa#h(!5Mf{w9|y*SP8=Xu=~E zCYUNkn$xpLlL61hg_yo#Y;f7JKA>N@eubg@aRD#46z!^m7)2SmrA?lPhi|$=?zaQY zwlHjyIh--@m*n?B-4pBGq}$D`~Hdj?ggX8cdl*4QX8{7sATuu)g6WY% z9vB15Iv|#(0Jb?;;F?7MWI1Qx+3iLjcL2roO-Bu3_JcwY#h89~%o{xl6)^h z2W#{w3q8`+N*)~>xh0%4VrbdF6^u(S%!06e%50s)!P={FY~U!;9b?Z#XqjLEuJmvv z!Ej(I7)%;K|D=~@0(Lb2n*j5W;yU-O9_2?5pZ77>^4!0xj`dBY(Sv!2>_(T>%zemv z7+wI4VFm$USQ{Cf0*FsxPkL^>Fn5N~xe|sqcIYTeQw2kYvV6(w-|sCZmXJ!@1laE&qY zh1zMChD*Ed=e4ErbsdvN#&KsdsV)B|{&KwpyHIkPW8hB#RUK09A6+Q?ITD^R*_2SKLZ1!6O78(JL7d%(Dbtrd_`Pn!joH9TiSl+Y zx)?ytiFX{D_Cg)N`AX!5lqGpqemZ*XCDI(_illL%4ek(#_!MG@xA+YH(Wl#^B0pZi z?St+Rk411hWe#$)CPu|rpUye)wKz6xxQ}WG@$KBNt7%V$c;(t8`uWawa)W@drnaFn zCg004OxGyknx+b`dCdAD#wLku;vvUS?tHldtX_Q*QHpV>J*@EAX~1&Lt%;poxc-|P zIj9o&D}P%`OMm)fngL3I@NDMY7 zr6vD98J_1k-eWQ*m4}&0zbXb?HtILLDQzvCbp36xJ*x`1>U$ARIySEiOh-<#7 z53z5Mlqxc?VKU(+`I37zL9vWXKVdd4>HYq+JsLXajyBgYK4J`B@(+o2y$KS3BFxwubE&o4ke(7t~PCOTjKZLVC{o>xPHp!E{T1ZGSKKjNmt9Rc` z;Ir_`TMI&ZBBh~Xs)te=BmoI{OGWKI*tp!$jA@*{2NZ^CV*zz^e?8NG^Mn$4E-#>q zO-FBVZO%GO0^r2DQ{5Xw4RqyuHE2_bSi)VOaen&Yio=BAwq`%6-87Bz^O{j0s_0^+ z5xw!FW&(QI9LU0kL~OxkdR72ej8^BONMASO#2)1a>DzHFlAS5#9~HtuD|bJ8wFYsF0Euq z)Ov$qZ+&7b>4E*9-s6Lm-k6NExr+rP)pBCSnQO{Df|awXZJdI)VUB(e$XcZxNf0Lm zz0=RzHMeKU0hp%KnpY(W(`@XN^Hj29xq5QEAikOY{hZu~`%{i!lwS5s;w*kG(E7cS zAgIM;qw-aOJTQe-Su-YHyDrS@h+|SfM?dJHln%pv5lViWvrh16D;vIHh7pln{+o3R zyVdGVa-@a=EXsJ5>w&8n-b(@kWHFSi|BtS(Sa2R$)_fo>#I&?5vW1q#J26MC=9Xu`oR-hx;bVD| z1u4xoQ%E5fYtTT3PtmOlc>*1X7$`P=9^ZhU*9@!AL4vX^gIN_}R$Mibbg3A0xnB>` zWSg0#mp^B#j?etFK8Hl!D$59m-*4Oe@6ifex08CJdd^GzyDyL}69Qw(5$&KXHjV77Fo`~`BwRET}Z^ayxJ z1>%kM?F}&!zec!s?}#A*Tfvhc=SN=LBKCWRcA?w{n^a|vh%lB}p!tXeq zpLPm|xGKYVw`@HGDR~#j-!%oCCFvOaZb<7uIM<7{*Z;ix`+xsQJcws$ao%0?{;Wxt zxzsy6Q!>-GvZOr6J#F&iP7^RL0o@ulY&svDoIU`I4Jda$IR$&rqHwW~+MktuGJO*B zThl94pP8#*$Nmvl!;@H;i~+ZXd(^(kwQ z+!-X6+5FRd>$XYn2IRn-qL#@l?6*tWAWrVx9;!+L=6ZU3YI2MGr@<&;!e1g~kx#;w z;SGE8to`0Hr$kkyjZ7$K*Qal>2J>0uI7Ubph7cG6@g(j8={700%f0)f%RM}f$KZsE zXgOuyzW9hr069R$ze7io(YEvu1!!?^Oc)js_q(d7o7Zgy<2<621^57RRZID}1Nd%b znVZycxMI|Cfyg1_IK)nt(ai3qo){qAXnNCSN?r0={8^XJgr>qCC;ojW?{l3C+70%U zd*qUa+eo{R1AgcGz`c@uU~`i~ljJ`kG7p{gc)zO;4xrzETLiM?o&SB06y3(==l_je z$PJbF(;fI{ZE_{2(RWTtH4U3MLZ7K?=JWxxut$xHPos{zea~u>ZpIL}WWIWf@7?CtY83cr?VvSA;YY4WKiDVue{ognUL!ADB=E+behyIr~b z;z#?xC_1YG-c}i3?0N2piQJ=~!@1qy^x1122W7N8wR_5CC*W06-V9T>>}BfmEVO5t zJIa2K9b(5u)x^E@pK};$p6K01lj8G4iN!}xYC?~YLf20~6TkgYVM^~qy|o}ea5b;3 z9Jeb7N-;<~^SA$OscnH>Z)4#Xl|$FuZ5!k{^T4+Su@3H;li#B7h88VpoWEh^938Yv z=+3;!I-4qAP(wOrA{z&&oep(=VNmENo1fFccTC`o@w-Ad1}9TOA{!I5wDdHCc&B0J`NkX2F@oW;XY1WK-u=6K zteqkHE%xkv8C|1+K4H?n?t;(j|tRG0ehrq8ZXA&-m>Bg>okG@(!zd7S%+LUVZ ztKeXHKDLgk7@{ld@NMKc_&i{j~W4wqa`Q^P=l~zW4EXns0vMQb9bo_4)1?v9M zy!Wg;`suMg@~Z`&m2pd*VVT^^`I9A%fiDK(^y<*vySfZ+Ok4qaZN=Z3#1{dBp^EXcJL6Lg+i*FTTszggZZkG|m zbOycwn!ZOC+la~IPA1FKtUhDA$*fvytSLDj1Ly00iNMNkBxsbY+ zUp@X=Upu`%di3zPJ|N8tuMB!rPiRT)q_51)ot8}!UOGfbJG(Y zClB8V(|cp8TO~R4FfPU~+Rxd9A7j9J%R%GOpa3@v=4jytnGY}mkS;Q|Q?4FBq0?N+ z-ou+1eIKvkiy%^l6HeK4>aHij&MC^;UOHR)M6NK+(zsP$#O%q@{(9(ST{g9MN0N`Q zx093pnls=LTh~8hI;s?f(m_Ae>Yf^LOwf;p44TzrbqBr>?eZHs?9X*SW++LR?*sJh zn%tuXa5#o4Sv=0geRiE-fZV!;zgVNj>4kTLTMe&11;z+cLI?gvvk4PRmyOKqVyff-w;8=M8_|I+`y2}Iyn}d5B}1# z^EcyxkvAr_=Q>ey4o|CyEvbpIvD=G@g*Vfmu!3=89WxPBoz|CAF)5Ym0$#Y4m+I98A>jB2vvnMQ#F;<&$7^>XR$rpvxQH(pr&=jgg5d{aspq9K6$4O> z;@Sw>qO|f9>;!?{LBAFgb+h|&eWb(i zrqvhmuChk1(HsOuzv5=P zyjY((ui;mu9W-s|3GGW=;KAbG(2*-0utQqL4+M8dxNwP+~#yMiFyd-Zdd zj3^k@vp1_p0mnx`$h;A|Rata4u_I1#qRYBTo)#2Qf_;PpBGWfhT_{-LfSKq6>W2k{seY52Kg56{;uBrp9Z4sQVj5;P7^+O>O5y5#J;lHUx)f|7HV>Dlc* z=Gh~IHaLV)he7q#Pv4Xtp((6ak0(tc@I=u-x(Qg2N%0G2J?pJKw^#J5LtJsZU;E^g zwm1MzT>6?Q$4-9&4#b%8%ys5Hz?2GN6do&}osT|&Vdr}t6rtG$Rq2O+-%^*42+?^! zceHl>g)Aqi{=B~Nc(NzF0WY*{GYN)V5knQrHaIe6P4RodP@aU0wG|_dFtw?^kCoH8 z1<1jB#fUmt3IrGo%S;NU*u4^ptlB$LJxbn!!VSMZ)>mtlEdqo}pK(Vb_IP9dw|TfD z;=59aK>-|yJu;Ja$OdShR5?{0x-PX-=j}i&^Yljtk%?K|m-l3La7U#_$go{9)eZhx zeQAxel>Nr=b-f6ADV#c30?~oC#SX>GMZ8zBWfJ{qS&YFNq2IAjFr|k^L(O3g-!r1( z8+NLkrC|NLXT@iguobVMP<=p`+m2TWUl+prvu^Nc`&2*^EwOBnX*_|fbr|}@U6S1? zOu*xI=_yH;>j=uX70OfL#iTO*B59*J`R45j@vIh$H2>Xu6|CAg~Jq;M##d4G=Y;QJg2bxvt$&%7zxls;iOE54piyf(gy4vowFd$lEcs;!8f;{J2&(aEB z?kz$QT+aK7je{>2rT=UGTUD1fs2;Ok9=s!2&`4=ym1wpMCa67~xEc$)M=KI!jsIC# z{@LS`kkS(Mnvr^^Tvp5Ma)*R8v8yJ7;$_ zdfL#H+KfI-H!ddM@T*Q=V^NYX;6n7?G6hC^yvH?eQ4vMqr!~fQY~bIX=*j(8*SRVvA9)Ed!eT7s0vY00X1P1o3)l0#ll&V- zIzVe|)G(2ZEyQdNu-hJL_KV@7<;n~}lmx+ChlxraX`!xob}G}90&J||loQE~g_=)}Gd?SvJrswj@pn$eFfK z#l)%80aNG=Td^z)nD3LL?A^Ud2eviQwNQadYANR=+wq)qdE%6C^Ie;5Z8~M2;Ruc;f{Zwh4(}?2DZ7hwA+j2 zo%rjUd~AVe@goeCPnCvEZA={Hsn12vG!bx_T^Kq~nQT+x7OIValI0YOigzt#f7St> z!W(#k_MB9P4nQ1yY-R)V4ik!*SGUSi@sb|Cmscy2 zsqECYxyIa5GrF1$c{(@X7x2EQ1wFb~B>aJ9#5LoALMTAzz(3r+-P}yBJb)kqsnF}< z3-}Q{1Tmol8u@MhYyEx4si=KpZpaSr*2%VrMQp)5L1GsGAJ(}h=ID_LPoaBM4;zVv zl37nvr>!L=9N`BCo-d2v>&Hl$l?Fb)QjhhnRdAz+O`B0)OnijB)bH);wJdt4+qNTg zqoNtme+@OPM5?~Ur?a>^`Zb$6mo(XZmKMnUZ;+zu06-XOv}E*kNA+6jGaA*kaZX}p8`}q ziW?L^qw~Zwa)~p7ci-FVdA{z5)Nc3`ECBd|3-GFln^jajU(H z5DC!W9lV9&5j8*evvt$*O;*%R><-=bZngcc_pIMYGC(`~HVH9wy1W21?@P9&4n@Gqs{Foou=B;!DzqY|K6_ifMBiAKbe2w_ zXYI`p!P(Q7cD3mS|TM?)L?3A-T|`|1ZRs=jNch&%13Cb!1Yl-hG5 z`Gu26NPI)pL;9X8Z=Yf0o_VgYF5#1w4McE*B5uM`DhWX}fd+NzFa{PL8k+l=eV-Kd zealG|*Vy0fEX9Y>Guux{e3HKXQARTVHJ@o_=k6*mi$ZfU+TQ+LawNFQ)lBjZb& zgX*6()KNGdustI7A;Tm7h0Vmro|b^;Y0iK-hs{j=3`DqGOgI<@F+;O;t<>N$aN9fxYZ3HI?(^KTz<^OIo;%I! zwx$=hp_VsK3vu(J>-pnx-U@9+VBT$(4%fP64d40zoIQn3rX|p}J25Zcb}c{c5`N!L zFrylfdO5(V^==7IAnGB+nYTB+hl&=Pk^$FdWHsDkh z|9sZ_rf=Ex=S;q^KYp;1G^D_J-;p$oaZjc17wv~2$6u3rc=hu$ju2$!KVvBNhr@EC z=Eflz{)}No!7vQQkehXqcJD?V20-;^^ImGeVE+#{QZ&`1zD_yE%PKJ{+#ran5gX*Z z$hC}iuUJw=^Rd*^_cOMA8G%i^h{s)h6OwL{iuVn-$A~kvsK4{i>J>;5@lf2xLOh?CK zjNDH?FwUea?mwFL49d<(tPEEpGGdsPC4H8w zH1rd$56iqI{KUdb=HKoJ;&-Xb+CKH@gG#$a!Ka+ePa*bqLba+DYe2@+Pa0u}_3kp? zeVuEVJ+j=8gq5l7nl1kO&gB0NRqm%w)hQ-qmBb=qI3J?aw<@pujcAC2{p!NJ^oL0r zm)Amaigt{9L!-F;(IQH`gE3+ymcE=IcElqMAJDxH{Sq>s^Q-A!EX&1Vr+a~;-i{v) z{nY*OAhc`_fH604EKQM?U0!<+L*adWQ~axZziT(Hv+tUTI?Orws$TaeToHq|To2V+ba~I>ku{h6 zXH8qSGLLOGDgd}&JE3+*4!C;p2p7$`zpx>DFLyfEaFkwwCOl3;!%7=KVg6>ugvgVP zUxnXyUW4!1`J3^cs`Fl9EVRRX_pl)JK8;N^JCwQ|c2~36o5e`W(8Kcy(ZeQNtrLm^ z;u%&#t9@3=rhuI*Kf$n=5d37@i*Zhr8b}+^_E&~&$&Csch_Hm4K30pr9-D7n+$Iqu z5QBh8nLNo1egWa|nb`*SGxwPO+!wf8-x`H4l>n+vKxTiXTG-gL$>$m1Z#6)Qv+y_^ zn2+2;Dv22k>AOGi?|qE+U7fJ}p}CAQj%+vVF-P~o2+k^ddO)iJZ3jZ9S(ub47D;)m z>i)^UcPrRV$a9#A`Ni|+dD53r8%5B3U`tJyZ86H^h2DTyWa#*W`ov zeucd}tq`;U+741B%+#Nu;HD#H#Gn(}=ee3;i99)+3MKblPgqJeN$F zh)D{j;Q+UU3&g^jEooTca<}(HW21S;YjZ&U>W6eszW1O$3j6F5C6hjMf+Q&EsTkE; zaN}yC-ylNi2R=H#9(uLkRm{61T%JSZ`rTi)?eKV;v|Hj1$3P8IP857o@9ex)WLBb(6NNa1^{PY}gMc*NT`#p(#KGhrxQN! z9xwf8-Q&*eLVw8CW|q(}aVQd_xl$f#0w%_3O-t)VVu>wcD(nSV#3|!X5|ZV#E8yTJ z;B@bK{KXtJ^%%N)Sb3mX@0(Ytc+u*rRWAhRSUP;Nz#~Fz96cP8NtYT;DE-Akbnbq~ z`oGr#{)5S?)r#Kt-olhSr;mbEWI0b6uHwi^Q}9F^ksp_*biDcXuOo=(P*x}m);Nk` zqbeRwZ`aAR7t{fSiqir+D{+x!!W*9tJEheO9U7P5=gc{Ai|5YjG0Sq^pcD?#PdJ_1 z5L=S#`u}*u+8>lh`Ox%<8pU-tO^mdG=E{mm4hl}MAhx?V3%$abBG86^Uq22INS`4y zHyFjaNZ|N7F;=A}^E9TDeRBJUn$iur(8beLwoj^ki#dGP5u{ewvB@_px@Lx-^>#3h z_fJgu&1Pp%%wC4!K5G~_x!((F|M3VSG-%JU~?07buZv@o=`S}=P_Dqlfpz@9^uK&8D`cwDlKt<>E zkt7TR>=ASob<(u@@N7P+cxS#m430=$exdEfoa`nz^8 z9cM6BeZ8DeykXdPT`o%g+((vv-Xu4>QR&P6``#`#7OBmLE(0c`4$9u|c32`V51~;X z_(vEOE98487Z@z{rr%Y$)?pZV?b5=%2)tbgUOx%{vaMjjd?G-rv zUwt{&O7MNVXzKBpV>+92$yB_Gv9+k>U~*L3y~T%90qVwX9)dxGc2ZK|4ID3mfEeA-d-Az0g3m?zqUu=M@C^|% zZ$CFXIDfLlJIP`Q(97jkleA~JO15xr*j?w!0Cop8TyMYYa5(?!BGd&52jZP|B|4DX zkx(}Ev1ZUd3BgO-Zmp0QG_++3LTh+sSwLQXzIDQMu6TNPT_>-FCfEael;z@Hw+In! zKL6A^mc>du6C;SbpjpS-`T7lbM7F|oAv`8d^IATaW~J~I%@Q7pf@3A`n^miEtd*ty zXCd+HlfHF&9_~46!`P(`izOxNO&(LDRh$Z@$@v+|JiZ{O(i9AhD;*`t3{Zr8A6_Uf zGwZYEoA;`Mu`67J&b@h+Qv2QLJBHCz*ios$@C|5Wr$x+{N>TSwu8H|o-oDRj z361b_-x08Ng26ijX->;ToCF+ZKvNR$S`E3XSYcRI;UuT!Zd2JeO3H#yW6lEOxs?D{ zJgy@AVD=2ey3P#j9FZV)Tlz?5o`0d4QAt_C66ANOubs_VRG&a3n(hY$D`88e z8F>OTc?i>i_TuvkowF+zf&KtKjUiW`jg|R=_kvka>$iU`MCV%{_O`XX%Pz0ti`_b~ zEFjQpc&*^hWe{`-i-i*>uXqu_2T-k)O1{bB>T+O=XZSo4#HMh+AB~ESqPu%91LVT3 zJ%_l)%~)jceCrwtJ#Kgg-csH%{SYW;QPasq1Tr;x7uRI&zjA$HMtex)?8pE z`PC-|8az?Aw%0Lix8$lnK9@h(G&Vr%21_^qIV&TWd!3-KQt`)I;Uu*&9VvS zg=3>@t5y$EGA%T%`Z@+nG$BfQi1dyVi+fcy@orc!}H+w za6dikAez$mYzu>Nt*aiQEePs`(&=_7rtK-X^fAoA76v}W(lCAU-YJ&D(I9K!cy#e`nyk)OIn`WK&lJ0NNx zi3};%X9vGkqfHgNJF(9dQXnP9OY(p?R`}T)lUO1EKn?r1ZF1MAghHubCyDW0V`1YE z%J1wHZ0`>4hzm&>T4w=zED_+m%zXVmKS0p0Hm8ULkgSuI)_us!F3--yH*j>t`&J6X zsyF6-*Vv5ORtPg_a&NIadVSZ^g@~gEhf~a@<4gQ%m7cL~!A8XsJr2-$4N#srL;(A8_uQiKAOlp72 zDsG=+;vy~hYpy<6W5+kYO!-B@jKyuu?$## zLpAiBjv7;%B-z0Diq3MNY&v+$PlsZmFgf@?>GGeo82VlWlh?dB^YgBSaI%B>#+?Hp z2B){NHl9aYF&A;viO`{7=XxwKoI&RIEj{;|(@+Jz3P_@|vTzSVxc2jBfH<{bA1qxnx@Ka1bG z|K38Xh2sTrllxz%Z4V6Nlnv z;l}$3J6)mayJR@c#}#wRA&oU0Fw&29=PgzR`WUXh*ze(+iRm$yl~9h}4vD#l_*bL2 zV)$ndV^g(TD5BX?vXJch6O@GFB-nW-DP4`4lC$Yn;9@ZN1cQ^`C*<~UfM5jD6Lgk^ zF`qT%6?ihFqwMa&ZtOw{@XOC9Zp|Dy=2F8Lrn4H8`Z$2P1Ys-#Qc@{w2@1;g23W^x zG-Ysg{ax?nw%Z+L%LK>RajymF?FQh{lY`ys!*X8uhi-2-hJ3SVjRR9U>CTNDdP5^z zhY@=#Qul2!NJHf@V}O6SrcLN=e9Ll1rgi(>-+!RpYxnyQqQ7fwvCR@;k}x^1uU_iw zQ0)fEWacF9YN(B!+Mj)M=^Z=l&HRk%H8Tx-FPD%LHE{&2>F`n03x;TOBTWn$)ooBr z0pU5OJ}peKa!Cn`4?v;|h@=hD4ek3@fL$@xymO-U+{l<@+VQUGxaa9h1EYLBn&8WI ziiGnsQ0RI=s7TbM5$lcR={$hLLr1IC!hYv}jiM0#)WL_c{;UOoL*ywi;%*d+Qj(~3 z>}TCQV>iu3;rw2ue(JCAtIq{w7Jxo~?%i_99YvuI+#P zuGVu(tNR2Ul2Q8F4CZ}V!~5WGae1S<6|wH|6+eZrAHjAE=E$ccFLzPRQ^^Jz8y9@GX6LUwE0dglZswz$B#Jpmkv`7YAYt z$PFB45ZvlvoRozm!>pOZ%{yC6>n%{MC(b-aQfSe{_qqCfFTY|I+hBMu7T z&`2e~C_D(3-gFZnkY>=(kKu2;cE3Iw#vum#JjUlvXCL;!;UkeEfT(Ul)(+HOUOc0P zZv3}D`F9P!HCQZtlkx;TozyH~mEx7X-o?hhz5ARQ;_tiyU4gITS64ittCv?hAtl^2 zvdS>F`T~-bG5CRaq}9hR;aJQox$ZM#Yj4)tQdhHt_B~2dU|{XCTiyZCy0aJ`KnuUg zopn>uH}QY=q0Z^HJn-w^d0*7Kj@fKNPuG9#LH`H8?ZwfNT z0*K9JQnYICjw|3sQiyVRC(@ARLDb~%az840%MGlwt z4JVm!W4_wrMAXhzZ#qHBsu^F~>*qYzhfWon)SO4k3=w5g*!={!p5(wmp3%+UE)hQH z1Ishq#0lyq+tbS&t`2TZ0pv7>GBU;;>BJ`EMdnXv;L(q^(Ok=;&bp0DAyX7|wkYy) z0E-LE_sm4=EHsbSV-B^*8Fr8F*}YK<|K98RM_1pV^g{}!Y|qv1_8$^ouMxRL=5gNh zgS?Q<6hr1v`|p}xAcA&4I;6HRMTc5GcH7G6g2F#wm2p4sU z9FDnX#E9`DY8fDFE;OIJz3}CcNl0oZm!b)3*MbQx8zA&J?c`-|7!Gaq0{IDdIvfWgMjmUn$G=Et#XwiqNmB8g3zHU&d zWZDFtjow4_>UJ?Os$w(-IW%odqc7Dg<$wCG%K5&u8^pfS;#6>>C~?3f)=gv?Xo9n( zLS>JD=5uBCwcM_kk7sf{U-`D_#UY{_pr)m#bAUnKa-FIHJ5spLV!!6+A^h<;W$}Gh zfTMEQ+a4`VQ$hX2d>yEZ*Gx3XR_O(cqzEdit>Ggy&PXPlF3!@cl4J#(D#klzic$Y! zfr6m&;2&+MS~qEo`3l;*MMmXG|tGcxI!Sfr^`|C z_4H=VzU>{^wiXWJ+98|wfo3fl9KKOBhkL_n*X#R!O?NZm2pi|I8X5e;?HDy~dMYAz z1KcF_Av&BZjn>Kd@bsx0Bs9$Tw5BZ75fp9^yrxK$tkM>+{RO-kKN28ULS{`X9sPlx z?frXCSrebo=YVdgzZL5D95`IsvP%lLl>)Gy+hCS^=*G~!!!N^SdH4(?I) zb583~NeaSX7#kO+|6=`dQ8wO{zX4uc*OfKwjpm{=CyVyQvjB&PxAc@HU#2@AddzD( z9Svy;iEz$+#Y8*l-SKMJz!W;-Gc_>$)Ipwe?2g2-sEn``yOber+YCqF^=8E zvN)}jxETA3>FMsCI+l=u>Gf_%at6Pe7bvfvH`Jxq%dB12u-q#y7EyXaNp(HXEY3p} z4v#Yjz^6DR_%)=t4_4_DMl^V(uxl?{6czSu z!8jphjlGwAlrMMQF3NN>Hx_kKuamgFG5P;;BQpYw29L-4{H*GhK)!H3dD8 z?U7?QwwFI*-~M^dn$ptVgPQUKlm~P~?_Z7ao}C=b-NScUSw`8|Z3S{f-0VS3HrjM{ zF3H=oLxDRZBRYFxqsP3XOMDmG4gAcNn!qRo)W-ie4m*FmDR?$8_u$#gdhUMDX5OT2 zHnNPZzrEU06~JNe^%^a1FYe{^RLUoENhQYwjNG(uab~%*Esu!ZA=%HTkktfYO$@~` zca?Atnm>5D`m%~%X<9G|Cblu08=42xAQs&J&56J63zWEtb8DzqCu0567RJarUA5kHWp{Y@3t0$8Jv0Bfd=Lx{|1+Txj^@nAjyWH!%KnPUHm z-x>_DUqx-`6aC8RcP{iS6lQg`Y@ zUQO-F`B>f`HoN9xEoaPF^v_a`c$f-&$8yx)>!#dH2(u-9p4Iif$TSLj|0A-3 z?BsG06ITm;=&U;B1ZZbLzB=qJDD@~PSKb#vr7z!%4ihxw6TVwT>^q!yJ2xF7yleZd zfEb==mwjcfg`e*e3}6G=9LFx}S=MvCY@3pz`8KU|j@q55Jm1grN&Uh4_)xh-H-~yL zT_*KiCb?J`M`c$$C#tsa-yT}zn3Bi$?JDY}!k1L) zPR1)Ott%&MKq3ZY8yUkyOC2J?f8fs2S|_-PoZI?K%Z?dS0DAO5iQ z24%)?3&FY2T5as5Tq>LktL8%ns19^4R*Lr2_ZMlN7kZeOL-!t2ex>1-s_fb;De2Fc z{Bp2^UzowXvjXJA#?a-oLsqR$IE(v54kIB>A!Q>ZJ@LC^**j5JISugBJ$yXYs9M(u zM@pGc%Ag1<1E7sRvumGS&#g!YrzZHb;=5kRuI%5|E5)JhID``uk(aH*SsRwbi8_a&i!8^u3 zhYReMx=|UFUsa8_hyQ5)#*6A@B>lo!!?UKm!0}53aW(M`aW?^r9@~co>jS-ZgyAEf z;V^ZdX4^hF&B9~b4bOheb6NGUF3caW)!DO7TC zKg z5oP#tVD8h3-)BFNkJm6CALuiF1MY%vp4I`6X;eS!A^7Fjk3X!xb>De<+wf4ReNT*$FsIU(I_MhYAyM&tEBha*n@Agu)@J8*z-;186C;q*a_5@_MI&>pYuv%y-Okd3xZ$qBr zoj2MAESa}h7*gd~Kx%BzQl6a_f^bk{D1YDd;u8cTb%4<+7e}PjnL_GnLY||oadlHrSqm+WgW^;autAP z2r?_nFz&Uv-Dk1oM1aMSMwp=%-@pBM@I5Rtu6d!F^-3>`?U67A@a%5>MsKU${1JK-P!Pn=>5Qtj9lxymC&o02pA%7aBh_ z^kY88C;U6U!OxC_ZTqN6eaGVxL=Ar$&frHz6F=A~K8pqaeEEi|;$V5#{6!htQ=)%I zm!LAM*!C6w^y_=b3ygVajRO3XyjQ1Zl{>xjOZqI!tbG}O+gDj}(x0Q?S0|cnpc^dZ zPfi&Vm>o6Rclk_>Vx+Hj9$?`AjP4_t=SW^L>#wSq8=ph5e(};j;cw`#g~(QF6WOlb zzE+q4p7yOh>2v!v2rU!7!aOa=;>uhlzL7GnD8>ONt#KfwQr@GM?Sc9gij^MXl ze1RAGQ>#aCcMXh?4Lmc-)7Q;-%k$x%VvjTAzi_atlIB-W)3;J3SMiVD{CDgq3KSGR zgbXf?_i8nR98KBJK?DDho)fRyvYocqNk+Zd{rm#N>S||GA5uiyAf!I@@}PSdUr;?= z0q0FFhWw{4t@8gDJ3{5WY|(|DIV!52-?WPS0bD+&R0oX+dIausy+`=W5RxV{Y6=h@ zpb>({)xND4wAx#0a?F}b=m-8102?hI(8Qf8+OU!33*z4Oc^U)tc#n^ueMpK(TqO(l z@O9U4^Xt{a{M9UW4<1aOF`ki9zZknu=ab!OW7X~7OEO72;<^;TTi8=X*4Rbtt++U(B}DdH2Jv5 z0~(q)vrTZ8Do8R>>$SNNxpA%EV1AwsvwKouIRCZJCop|!W4!fZV`jeP=dV5$?#ONB zYq+Mi(p&F~{u{TNLM2WY#W{fNCrP+|=fS_p=b1lsMlAo_H{?ak8`o;`wDIwI)+=51 zMmD#V4XbzHiQQ&FX_B|(^*rv32|l&Fl@DC83)TQAI><^TrE#ctr~mlrO8uFtr1iir zo0ILAdfI48~DJ<+gU>j-Jhj+0bO9JYdg2j{TM2Kze6)DAE~m zLdV%)bKF*o?}k6Yd3%h(^*R3d`*}B5g#j(~i08>vvw!(lTIYfHS5zGx_qG7x#q8w5 zhI>A2f;n7!*%TK)aN^ zYM|`W4_J`EvG7rFWEfNp}RJFU8!#veM@b@B2XBP69sJtzjdvO zv_AJ~JCgedY2K`C>bEC?JUMLdW_b58$avZz;D^ndScgjUwz6b1<4iHKJ?~}{f4!Rr zeLs)C-+NxYj^9~qz(%h3HU;uF9Q*({S%-ieHWAh8N!B+5wLI~u_*0K&-q_A&Yu$Xp z!om=m*@l^N(%-ooYw5D#%|FvO6D;9+!Eo{+x0`z!;RNQpGx(5hBBg0_JApqExmMo@ zpLEC(#l)|Oy!JjA1%&*U{`H8R`l*!=!N{q_&&I#&(PvHfz^9kML*Z6)cNg#;=s<1% zxoceHe)pg8i#T~EDeuqXeW1T{X@}%`R)xN3{Sc*(6 zqK8>PTNa$^ZUJ=jCPjyAiRCy%&=4$U%0b;LM`G@L8r9ip^QI)rfc?P&(sQLgT_KRy zje9$z{JP1$4uQp9-bT1E5r1$;R>5YepjM4r*%P)=65TM;(OM9Yo>XSYGl?T|fV}^_ zC*jD-qq7fT&KRZyc(HMemAycWLjp2+pDQ7;PU;#0c3|?gR>orn2#gciP_qbW1+uuYD(;>W(!lA{pW8rB18TD>X9hO z2KWxM)pfWz0+MOU9s_~e1T74)GZykm&p&)h_9IdOMxdd(4m9;j>w8kKlxheJVT}_z zyc*3*g`s2Hd!d8}Lf7kyRC$}YJ;4K&VKqf6UqSsOww;C8uP5M5fxJ{}l|Tw5VM^T! z&was;quX-;w0y(fnQNAKO{`O`^W>X_gx}e3W^LwHnh$^KEdSx~>(3pVKzDEW2_F&g z6TiAwCaw?Udit3wSLD^+6Tmkvn(FnSkf+czF^OW2A+#uw`3(dwed!3Mc_{bN|E`&Y zwsZU&H#9kKfQ~#thM)2gMh4HjQgnAG)fxr+@>Gf>>HTC+92&!1oPuw+AY^2@%Rctr z0G_TgQt0%@L`|BS$-RDo(1a;_ohN*DLX%I$>daFSQ)xw|^V8gKv-9oV1Ozmo~8)^U`%HCO_Tn zOz*#5HDGKKUbo&8cgp6GzSNBIBts^QQ!vp1NyATYmPP;D8wJG27T~%g%nxf`jqwr% z=fUa1_&ci9FZIB;NhF(UJs000QBy73tW!260AbOFj3bOihCR zJw`b|nfPuq)&mxvXvHVB96Z$kub%yyhnaKVu;As`x=naFUVB7?M1Mz^SM^yhbHChI-EOo)rV7_vT11ds2#mxnueaxaJGS~+5qi$Iby(oX%6 z<9pxETet93cfAB8jh@DnydP6PQN+dPW`FaN>o+0__0|;s*_%m1S)DcwO2q36jb0fQ z`-Sq(@n#V?`PJ*{c#$LA8}P^kaY9R_+?XVIP!Q|g8D|8Q{K|8^wXY1jgcNV?~v=j2NFDG>h0!cgW4jQxO;^>;|Ro}{B93_&;85MJk+mKA+8NX zA=im2mrdsIA&{pf_;^?F>APSKOSy*_v$`)U$pp2H%4R0UdB?ii+@RP7X7#VNgLfiU z&vA{1@{It=DT)t2JV)TC(s5?BOD{~@b~)IDRv4f+J`UJtsfoez!kg*Tl?)$dfZuix zGrF!83M+*ohC(6YE?KMnz45Hkc)d9IV8oCkn5F#Z2OknS`dL=AxD>)v3Bfr_52h=^Cwe~KwoH?`P8N}QA!+lw#?0Y4AA+o!U+3~k zX;LULOTiAVb-&(`S*y!*^}PFFqDh4$UcwClhtl5}LO@y@`Qv=R^5*yL8}X#udn))z zxbt-z@A4M@eoo8!%y7tgMEyJA4P4q9Jsy5XDSc9Q%rE3x2DP4R{MVP~E(-e^w0i&i z)^M(?U8`3kxgnpJNzQob3aL1?S|(+0Qszr0?%9jc!L$t+Ivd<;M?2#J44?ox_5 zaf%;G+rNmWAp2%1A8c1%jg#?Y_H>u^z&W2AwBRyCCYN52S#z*WE2Hij2cxz`03o&u z*G?U_bwCCsm0o{aqg7nv*E=<_=EMjgCahAzS1^00?3Q2nwM4_e)}FS8Ds693+4!?% zV{|P~w_7}IGOD~p7GX$#x}zH%6MevL$zN2u<2Zh5M#x)fasUiKjf;wa{=o7~dz{oR z0{ua@F3?!BhR>%lz5AO*ZncAvx#K__o({#-9nb2Lq=^tEm0Bc zCNv5Q)3?QJ7pyf7?fk7xN1)I~clnB=eEwXD{KU4FAHG>1*E$xUmm}&|Q@?(9HN`_Q zykvtucg!QHzSJ>FH%7~ROi#x(7x(6XbV^v7*gM22w$6ZATD6VPwW9RjaUI4pi<^Cz z-l;6rp)IkTEBV8S3CR6HC}~$>7J^H7=X&4_?|EqE5ct6k*O4-7uk&K^8Q8kz(d)~6 zj+MMDtXojmtTOT`!OBO1!;kkcFT0-H#|h{3<{_cv{)TSx*ZeoHQdz%q|5J{d9ZP?0 z*nlgCue#N0Nb~yy?2Lyl{KRx%<@?`zeS+k@Q%QdqPn4RB!2q%A3KugnNpq(j0%F#0 z>|}s)V4@G%Xw~+&wdgaW09lxsJr~ghh9KF8xfh~Og!7pxMHG|-B$H<^rEK^*>w$^s zp7`7`N3dFFW&!{5gtXuJJXlKrP5<}He8k|p0wTqDG^he#Rftb8?2bAFn@Se~qc=d> z<~wjxmTv++<$=}*yuymB_>lZv_*mNIJ%(!Y7h$VzWyfLK0yxE^XkWl^P9hLqbW$oI zfgnG$Zh3RO_Gm>x8r+8<)f9L6zN?{H>qbwSd#W6TSE8=Cea8H5O=lfr{Cs`MlPY83 z-q`yA!n2dzRDGGsDy%Dcc`E`xyN>eM0{1pNEx@zxgdP^(0 zxTCmQwO>E_*&cl z=ph)~N}?9Fx$#4Tx#98paKAIFh#q($1LUKgIz7H|;OqX}DYl7x-lC@%Ryc0a%an%b zd+HtKdBvBi+Uz?cdQQ_`B9ia!6Tkas9zLhwy=8V>n5jc_NAqEYb%f!r zgHLM%UzH(wHG)>8=)#yS`d}{_1<@Ed6Og@6Vm+oya?qW4V0rh(S) zmk~ZKpMGp~NKDm&7rdE`&1KM0tVJaLdCmHjn>j(1@A7jWSS6_!A5ZUV-U^(=u&HQ! zBOREoGi&UQ*ba}3-jaK+7B$7KaH{L`Q~ z6UbYTr`+?aNqbel-mzAJp?D89WB9^`;+6XA6l%2RR6+B2ozeg7+xY7vi6SAP5bz*6SH*eY<6Gs>@_{Nt z*RA72k>4KRus-WB4pL&lNoOcUpbWUWMSB@TWj<;>0({aFZ)MM0+-4K$`hY+SA=HZv z_hTUoxr(l9awd2COdW$UD0>t=-D$m>!(%2(@41Pi;NXJ10e^EY=uag9tFNdG$eLI4sq{#rjIWj3fEY)@Uxe z0{z_?1+SAwHw|}H#c%FOS2y1^%q$Rb3Vtkpo*$2k#R>RNRLhH}yZX=#V(8vbmI!L= zHrKnWzVP*r3BXn3uXpPZz8cnirrh@p*B^G8T*K{aW{NM?9fSsB%8`^61!Lh6 z9msoCGTARDyvU|OI@3uVN=Vocn{vuH7b?=E?$megX<`w`OIi5m*YJHjnag3gmjp$T z_`)5v7#bp9mWMeI^<g6-g8`UpEJ02aI81eXSAf$Kc5l%;GaXg}WrP6PT1gy=i_>rLtuY*`)%E7(-8*j|$geL+XencS{~I?wDx;XNvC?Uu??fpL zg5zf8p=g0V?zD*la~N|UR{wG@fo!-(ax6hZpg3^dO7i_ZyW;qEg=gdm4eUUFC#Gla ze|U0`w{Q99^;8k%1q3kEpg$g!Z$@8B9&M3q{UUDBfckceqK^DmN<^DFtp~(+LDule z&!>LA*&&a&qzng!D<}zY3gN`JsRns~x+7$&6OstQc1FrjUVSD>-Z~D{^^-jt|qV_&hu3Dc@@DIqv6lDl2ued@zVf-J{O5g z28n-fVN`JqZTFWLc1DJ=b3u8*r-|p5wZ329Z5JN!-cShG4|7gdMt+z>yE96M1`6PD zw6~`z>OAei$>>{q-h1+63Rm9{kC6Eth~{Ye^ywBJyk)K1wKId+Pv93<>UaJRH;1Rl z;O+Yw|AxC3gY80>>z5Xb4~>0a^tl?K)~VCtkj)o`=AG`N&TCWlwe zDp#5Jdm7rIe`%JTqZCGTBVeX&uR^<$Q1FuVW`q%R@{?1m7 za4F3IU40*9I)XGwiNgH}1bLD5FPYSAjjDoYR^?Gz;`lRj7NYASVC>}BwF0-GV ztGPetrnSXb=X;;aee`_h!2CyFZ1hyVoX<}qHpH*@|DW*31d{ZxxgVUzW9cLnIllH~ zB)B~T)erJZf78b5NFVJ{DU|pK8bO5UP-ketJN4E9^7`=By3R#^`$XuWA1-+M3)>2pP22OjM5V_ntNG8 z{Kc;2i;mbj1c_8FC%Tw~^p997WJLE@Zcmk@dlVReSu}_k_I^FrNjIYX4k?@KH6+oO z>Q^*kx`_!DXJ?oG2E*sOsXnefq$qWK)&1^sFth}wgqsPwE8w)~rt!i~$ijR~@84RE z<==dw2iN8?w`pHDw%KqeUIzKwQ_FGJjlXhY+WoiT+2(bD2o2#ra1G>>O}KiV>ObPRV%yyIN(0YaFmiNLpnQ2WZpfvx*mO!kNAHG2Rkv|ReeCT8RAX~?B zyeBOch6~=QlB^&J8XGCg$yP3r6C~m63NmcJ%YiN2vHD|J$>yukB3KUTZSVm$iMnma zvCv3avl%h|>gGFDv_}~hH(eM z;?30qz)FVS-iP7ebsQ3mFIhj;D$F*dbRL;OhW+umD?HZM(;yXw>Uw!8IuxT+OYU5u zdH}ZGw{H5Ph)rRgxn7x97T?Zs2MZE{jQY@u zYPr?o^;_xUv(2W6%_p?9>`Tl(Lo7XKW4eb5V(vMdG0DTVJS;A4;0Rt=9Gp)calBMF zt9$F$)Q0an+}g2I`1R}S=6+`m$>^2r6x_u{hKGw9(s_6du}r*uE;MD{;!HhJ%}Zco zt%uOa(3!TMJqbAqe%;ldP>@G3Kxzyo+91Wxn>*^;@Tb=Qj-j+&|9w`O|KOy73Z-Q_ zu~(Ms&n^vZ0(x2U%<1*IU?lN6LaBS%lRm0I;I7Z(-kz_$!&CNyd>TB!Mw2z33w2!I z)L1&o%Z+x$pj}kBm2(_N;{X8Q#xUe2hCd&y-+R3A+-2O~${CqOz>55tUf3)%sUpxG zN!a-v)3yoi! z7I9a{;-a_~5PxhL+=BCr!`?qn@zn#4QbzxfotP&?pr1v>srND_Z}Tzl9ji|p<%sq; z5?@5s%q3!@l{xt1I*lKOXdJwD*gR3I5zzUD=E)kcp?44v3-nF+LN>!4kYs$zjXQPd z8VCQge^xxIm?1rqZ-ZB!w0*G0?{BIJn9Dvatwlamb0i9g4s_>OwfHJ8$kU}^LoS~+ zY$MyKGu0Q{QL~tG+aS≪IWE^wwmt$!|*?V1n6lV8lTcgoj22N9R)UT&a(flwkX7 z^{g8PN@)V)^+`;m8S}?3pO>z!zU}BbC(r($I--w%#4oT-5tY(7_%4*uhoY*>t2a2o z(C2XYIM}JYo-_-z0o~%9=LGr$y!mTRIRaPCx_dP4ffR(be(=|~ctbUrb3r9OV)}gk zwAfT9rRoKC{-&^1u;X=kOMG$OCUu z&wfOr$dYN7fkJf+QcZf|>GCpG?Z2j8&4%2_bm-G?_d2;4=uXIEjPo$Eq-a3y`)>2h^8bI5UL4A8a0lz!7`r~(eei*SL6Ohi=tImGT!cC3# zI$)L+daf4Y`3Q^s)K|#DKnOvgU+lDiq>)o{65yE(KhX83gysw`Lg!u6 zUSl}XL1;=6kFjNnC0nSs(f?>Ql~;cAE9Tg%{k~8@BNsb{h=6=o4vS!|19O(|%I_$> zlTKF_>616BJ-$@}N#P5)5O^hU5!Qu zkhfQZnY^xz+!0g|M`W@RG4-Ha2DIC^teg*!(@-8jj@3{pZY#`VIbR=*&BuL}f3Y1_ zzot1UnmyrHQ~79hV54N<`hRLULz5g6S2be3P}lX$FXjdOAi?xUC*3`eZ8#@!K`cuq zXHwk_d|rwcE$Ok(wMNgSn9O%vBo%~(obqRh2dONOb7IPd2S-NMf)T-g3oAmCKW2rT z6qvUM(!$@}^XHz~zWs|CxvYLJai|%-)hT3#EFG3Q&}7c;x}p0kzi=a{+mVR)M^9%9 z1#eiIu*Z}5v_XMS0ve^%lU*^In)4P<*H50d`@49Rx$*4ikXGc^Jc`KEVPWmy9}nR* z7}D{PH|YbpDf*&rv|exurPlifq(xwPu)b85eYfM~@Wv1wWpJ$M-n_>Kh=KTwJGa zc$VYhM&^tP8)Z7fk**n$HVr=$m0Dkc%6a1$@K$^E1Mt>w@KUXRc_F`-@wC{UmPI7e z(D=B8?FeN_$urcy-MFQ35w@N4;C_3c=A14!Pr>*&hPI5Z zW{pD`35R(9YLe<{A;B1-9***vfYEUe%gc1_7@e@INu3<;x?jLrKG2Nvixxgk?mqAb zDf-Fm!>4M7B(|5%nq-~DdHK`))K-F8o$Ns=ui7qR)PKeK_}gDHWh9!@L$?@}tR8&w zd|z7%p{7WO>bqLi!~xEy@G@2>2vXZlpF_GA<<)-NRAk@QZ>xXpEab0ZOJihU%|y=0 z8xe-G+9L`Hv483=94F{=vdsx9MqdHQ3*hL#S8i+Fp*qhg>Bt3*7Dx5s>TnVWhUW=O zS3KFN3t!PP$8&T_%aFid|9uX=C5Q$2g`70sQk*k%b=S_9V|!19{9tfg+QEr?AW{@_ zyBZ530y08F%ZT$bIzJ#LW~8PvMp%}8PJZh?yffc|t<>r--s3osypT`q9z`Lj&Cm_x#J0m9&%-)p{v#bQf8Hy3zA4)yHXOPcx{LEV&quzSol5Qhg80*CKaU_iy{mW-hoAvpu z?6Yw{y2@XIXDp3NvCj|BVACG`&p87}Sf@L}Er6s_q*>(K8b->K$_=lNcppS#+lrve zQ;UFx8N=v3e_peJGARdDI;TI1$R(;+Ilh2zHb4~=vmLCjZ|U#6Uenq^>^~r@dta0` z2rXe8r*oNDmCqkW9psK!;kR!5N?$QKU=@)5()sDzgrpIOOc7t7Me*e#*OklnqC4SHlf+7r@t}~vWaAKp#X|uSz*m%WWI)NFbb{ZW2h=14O zTEt5mE?HfRtcJ(OqSk+T!1Mj;9+1oSTmHxQXK9T%2kh?3D^=vk=^~lfCtd|w#7+qO zHm(KvpjL2jes%Tcf_fW-T6;%{fFm4}ME0OUy9;j!PRKsZQ<+4p%$6za5Qf%U;ndbw z&+#XQW0(lX#9y+J^mXJ}M&z7!G(8aIm)+;J&#k=++F#{OUZ^65uX@YW+-@Ym59g$yHv1{1W9G(_|ld%dg zb?|xjaRC23PzJ;rJ#1dbCA}&w1&4CVS8NvaZwHF!#h~^+Ju<_Xg9vJ!i^SDfsF>h23=3LTa9F zdDNYih0%9KorwT`VH+eXOLpcl1P-GnawQGd;}LGe&dP}6YIX>C@oj-nUllTtuEGhv0sNU?wLfAGY6r4Nv+CNnPzZ->+vV zH)cLP+x_oj`TqSG)f$JQwM|VN2^uE-@u>IKRt=0!WXd?ocPwvU1z82`=^~1wNe{!T zEC$-P-~|hxbXRM-V*2k6#z`)}HGJJaj&5N#s|pD$2*8(mgc$*O1?fkQkI@HO6mI8| z#!A1xbto#LI>Qk!!2dcBz)DBvDVdUorCH_fqZC1BpK5&&=K{TNg)P8WmX-Bci-jcj zjp0huonYx4<0rnmPwe{nr07F<#_=mj^O`F?{PpYU2av@XDeV5|+y7(zTH|eFe2=`La^4Mc;9zcJYH)Yu z-rQbe@EM}ylmjh*;5|;c7EqG3z2ie^_6$jeC<_GGyUb;VR#)Q+L$R-JHnzLiU+8bQ zDx-LrZ!c4RcYVV)68>YbYlquB;>CHZ?lK=%C1^2>ybe0kB_ugn-o$x@?al^zr;srt8~YZiO!M@re=N*a zJ+K`*8Lw7uiyU+{z_2CdD<&1dJL^Wf6~9uVVO~XnKQn7-Y~Zr9@N2o#?uGtvIoz(j zK!$t*p`k_np%RWpmF|4X-biqO>#qgfuoL*k^-~D_S6cumdM?n>@oZM5^sZW&gLr;= zA8_)RUPYzKH%PpD>`WG2h@KE-a(hFc;EJDXPL_K{Q4wDL)?##}A*BfJOy_~!V)c(D z+DbWoeP)p$B_7gaz8p=1#$2yp9R%8BXY(=T z$G6%KFI4->5yPXxu9*X7*wT6{3;AXaqnq*Lfh^ToKpSpNr<&E zP@W96ut@4W9ODs_Ddn8uh@};VmGJBW@qymgKGTlr7=#8h;BOnGX}=k5v^A-&LZ>Be zJBLk7b)Cc?!9Ok(aLm+Yd1X42m(OEe0_#{`vnC~STVq&eoo-tPYm~1TyRwQ*)gQ+xnvr$SUib8eitf; z-D-H9@uZf&+mF{Ur-2{gzxl~_FzW(P{jf+6`@$KEiQflJp!thE;t?|%sY8P>%WwHW z8}w42Uv$R4a}$W0oZqj&7sWHFO zbQNQ5A|a+^+8Rxr+{qt-fD}SFM2(?;+to$pee)M8p+baiSv5K!o1QsoxPwjy-20VQ z!eJ-d4`|$}fMy{q;L~3p+W(9Vj4?CHPFYNqq=LL0g?e9mP>zhD7AqI<%l?1(^~fFr z7(nA+B3EE%`{YSD5uz4Nqh{o9WY-#0<1)@U8y z|DFQt<>p@>9`<*AmoCsF`970v(LaSV*)wH$)&k$R(XS`QkWF{ZO_E3ggMc5|vds%H zB?w5LuN<9n6=+@OQE9Oj4~&;h^z&EUhwE3fDE87liJ=b#WrtAX_|<^$MX-*R<7f$h zs>R8`n>;m$JHOEpG^AzA%3(4r_h%i`RZC}}Q_onVZhzlNHuR&7K!$rT_e@UV zRVZsGh9s3Q`zW68b;OB1n_I@;`9$6U*F0Nb=T)X{ylw$L%qjcVc!n+Xt>l`s4MSgZ zxUYtmKpv?q+&7rZI6Wb*c=!~85q#AR@J*jf;O7@za?9LH>7Sm%fA~D4J$aOviZ6OX z`7DWL02Afzg*WdC?PHCl+a;U8e;xbv3E|1-EbnBBXACHO$#I?xz@K>V1@q&c&nRYG zzB9@0QR+CnrEgem5Wovp!`;{EJtbpO&MG)Re4t4kUUu#KOG5TO12dWuN zf3xKNF#9t?*Jr*R8-Ev$ndmF#jUZMQRB(GlaSQ~i7Ir01?k%0;HzxCTz^hSu@HOvE zUvY_8-t0QQt}ec8u4lKjjCWt|+Q1zQZ-1YC=0Q|rovprZZ5p-rk}%>6i}Z%I>xpbwMy&Obk`4r3j5(*WpnJ5v$}xxyfHC@x|}*U!5*h z-p|;a3$7mQ9U%f`<^dJNdv_!Y&2^y~4x6rrh_CVgitmE_{?)duF-9efLRRH>Mgp5% z_sehb#D7QVG=B&dOVHmrTt(}d5_kC5wCIbHAyQIOuWey$^LyMUktEpP)t`6b3(Lht zx>s{BhvgCqeC(kQ1q$-D-igO0NAq`l9xvlHwD9Y;i!CR(WVN-|5@zMEp1qCJbtwv% zzHml%fB|0uRQ3;ABJ*CIjAA&M6e6Bx=o&A3g@2e2-vvPH^J&7Uy-4C!0e3bP+QAS} zf-ZnTAy+o;6&-B-88P~gB$d%4TNeWa|(G-u^#^pljSlo82jn<2wjK^ z-XSQXQ3OkrRSA+P z;(!~Yda2WTdC;$nq0DzttHwvlYBy_?cz&~VRXl5dfHtG;?xV8o<`pKvLuoye@Ozj# z5PHZZbvQa>AHE9d+6_$V3gnuZ;BW1yZJ4GabsLxg2mpBF{u@bqTF^G6hh9h9uhsVwnD)(z#kB_og-NWnx))aiSQxRerS?nMNKl;0ovh`zf?L z>7nX-VGhxLb-T|bb~{C?XbY2qjCOnnbQdS2#OyfsaR=uepe2gi_hdr0u0sH$(>93$ z_t>|PWnhH@!br|`42F`%XL;o<3EXdvp^zRq>0B^sd=Z4!jKhkXr zlh?RE(w&?9g@KNQ!nPQmx^CN%WI}(}B-mh^<4jt?hM+{`1!RXG`IHZEN+vo&XVM2} z5PJ93%y1P?qm$w&%P%}n;8{q({Eu;5GQ;=0a|yO@L@#iiGt?;wH}x2KXQI=zKu<3S z6sdq=3ZJ`JYG!lavMh%VB{;~hs#3R=J(_5xX=p}3jCvN3RXqEkC>#&6qA22fVBFw< zt5=t9T@VaiS1gLhP^6lNk~CE8n;;(JoHa>Sf2|CDoK1#Y7lxB&5CnLZPN+4uqfZdzC_83 z@^#^)eS#}O%XmAicuqSfvn ziG=XH8;0Scrt?sxOM>r`yO*XBv`Y#p?DiSRMPZ1ZGH)(y{RE;r@nMI%;fEEW_uaH4 zomvi>EwRxzOlAF=Cn*|=D3C_zQMd=p^e~Jr@PS((s|7yG^Em1oeQ0`+lez@s5PqH~ z91KEtSMz48rvG$$?vlH<`*sE%EJ_D8_eS=vhv*yf^XFnU6_v)Tc$ z?XFdU_svw^;+@wjq_mQ_*)w@C z_Nyo%bdev!A{A3Yb4AK2N<_*Y$hUoy7Le=QYv^n`gjIri10Uz>mfvj7Vt(%E&$%w) zAI3#QnEg!SuJSp}`@b`Fw$`@$zOjL(X*ghl*~bjvoe5%6NEjX#{kJ!Wx`6z|oj>_n z;736*Fy4SvR)CSBm^6R^B1}Z^y3lxfrg`q#cBV&B1P${{!u}=>4mV?W48&Mb07PSQ zp0f^;!12XrU>nNwV!1kJsu~Uvp@-Dt7G9B>Pkf(6}&>$>1T zaEf%4)1v5VfNe0w6vapyjpcb+hB{29Odj$G-GH3ls=7%K1krH(!jo+P{16n=IIcUg z&Yp64Z-!w2QYGd8=zS#|bli|vdMnsM2v*K(C z&o>6oD4pm%6P^v^0TPf;GFA2Q3VV16XQD8MmMMjMlyyTgbjIwT8SLZ(7(n3bxumn1 zgqpqXkRIH_vwk(hUUem*@Cd)qhx-kZa3BFO0sx1RvC9De4JNe~Cj377s(A#={o@CL zZ4>mKsL$?YiypIIhnYN2-J|82VB!`F7lBQm`Z{Lccq+pX)PlsCXf91%0gb1#y3Slc zJ3L7H4bs0KU|8Ju-A#r;G7O=CY5M8Jlpcu9XYK4L%d)B8_dJYGJczMvLB^G1q z**nV^q_gA6Rh9*S*eX?#W|-;>N6$FGcYyby`T}*-90xE`Am-*7P>mnu{kqbWeFL?e7553Wu;-zW z_m=QRWMIpLamU1l8CCkc`Tnz}p?-!Zegh#UehP$D`_*_F`-Q>3UVuZD7*5d%1t_M1 zCw?(eWQiaZ_Vdi`gS^m<5+BKw(jBY4$1~#Xo$c24t}L0H9qIk4^ma>96~<@H=$L}w zM5i1)Rk2!Er-^bPZ}(` z97XUvd>(YZWZS;e$oUen(!NOI!-Ca+a}X16g&ip~8qfPtL@^$K+)qSIe^e3J@reY# z2DzUX@C}5dC5^~nQ#cIgnD)gw-85tO4?Yz5Vo%SWB;z=dp5}*J76fVkY7^%uvW$Qw z^hjU*;9=PjnE`%mTN+s#0B>iy#sR+DH_(L#yi#_6RtW=QmBb*30lK((VE>ehY%Ipj z$bDI4(%9DuY~kL8TO)?BEk7n%Nm^H|4uSo~+grgO_^9}{4uI6;UmH>kg{3whYlt3_2W&JP0SeA+}Rx2^e0u?*2xKIIl__>IyRJalLB)#9F@i|EN?l*33$)$&yIx2N;o<(R!K1}tg+x5$J$0cMV( z@L_&f8BYKS4-ugP7$R`m=obn_yTijXB=fVqrg!%!(7tmI0N!K-@bWRaWP&(1jN_6i zWpow5x9g@QRdK96;wUDa>qDlcn!$;S&}-gDkHdg3PvW6fbIxg&X)*~opk8(5 z#d~0MOa9M0gV~(@&l=lK3bZSP98EL!v`ViM=90oVf>6(a&!s8$__pHp#?B8!H(0DM zmFW6P?^{}=-F!$mmDt9mg^M9I>;?%d#0w>@W6)gmnw+O>7xbyKTGC}5Ltuz^fCt!1 z)y&~Q>-YllTZpu#0srKmoh1;x(%@_bI=d!x$=`o{LKEd&Oz$LG`_aM&->*KIXm0u! zfAzU{q8*8}-iG)74C&P1%j6DspglvQAMjF+*%4!FqMLZ%(-cQY zK>rdj1tNRJ)F(+QyilmY(u;;cC!ahCgv>mSb%X-7gAdXLQa7L`WR4;1pXc@h|9JfR zgxFsXV0tfP5iTE*m@^jfG^^G#5FpSC<~~4L^YVDCCqjY+?Xrkx2iDc1auZ6yY`#~p zr@#I`EuLXKE3l{cau>I51>zQHK63(EZ-O+#UJvi8sISQ`1x>DR+KxzeMM?0FVvm3l zq;#WoC63VzYM#vuOY&hZ@Nt8%@mtdjx3Gc;uLa)y)p|JOU!NV5)$rV3VP52q{Rq|14ulm4ZL;!d zjMsBI$jD;j`n7(sk%!veo!Wi>JmHZsA`>I1U@=k}xX2EJzI=PFw5insuo}4CJ!w)! z4}4Y~6!k%jqI{^iD?XKPn(F`h)~DL({T=Fk^|+()22AzYTPm;?PoAJ7>-8SaO|c?T zrTQF4dgjMxbf9g+RDokCY5^39#*jn(&!sAl|HfJ&r_}lS$W8J64vt}bQsi^Y!tl0j zHB>E)?@RE|Kr;Ybn`2VAheLSC1pR536ofj4B}lT|NL>Fx*$k zE(2yvviiwcO6@X-nv-2X+>?P4C*dy6n-*>=H|dJ$vqC0Hva7uimuZc|41wN3#H*zF zn~CseEjY&C?NjfkH>MGslS3pykiw)h42{4k6ffBXa7#t)aOm6_J2!5DA7rBU_;rMk zF5VgG_b?5aqA*nq3`zwAJQT>P$S+K2Veta~)uhu+$ zqu=T$lUtiOBIVgratgE$?c9C9uew>vR{^1Xhu}=os*kb=k&)^%gH0^E_|PnM;2XAY zW@4gCIp5bi56tN`Lut{E#_~0!RPoPAurOFde<6`Lla?E*D@sw_`PwVLERv=2UYs z)I3;Rc?i}+{eZmgA(JgV7@0T^H>CON+eS-kMKj{7VY3$R=Oi3E{^?}dLPqzaMCul4&Pq+bo zoT_I8efPqv`5X}Jk(*~0w#7ig1-u(ht{|=!W5|FO8H8?xfQhCK{eJ?CW3%3_#)@VU zxuUBJppKq=9V6FVLS+8D7sX!G0OGD-9b4wQs@@idSFxHGpag!Mc-x0srU>Qc@H8$l z7>QB(;tN9|^24EHH=tx5kZUeS$!7d=@5> zBq?X!f(4EdD#{^7@i^p!DNIX&a3}$3_@=SXqm}76j$`5xOSszS1FIWEdjbxP(&wLNoX^cpk zKrqAhJGY84b_=_3vYgsA!eq^%635d=0J_f*{7lgrnoLStp&eK_Dna^3QNA2P46^6Z zp5(z;BoYh}Qu=Rw_Dsjnuyar0bNpLVBeUck(XijTX^uHCLrmL2PUn4huVI2We9e9y z7TX5%~hU z7Z60ju#duzZRs^8PV>zgd!=fP(z-r!vrPAjl4Y$aY~#===B zLn~y!_WjE62Yu(kqMfct&KnLz?>GPMXpDK#yOmp2=W2E{YiA0$ZWNunjy0IX;oc!*XewPHpQ!qQ!we zfZnYu^MHx_3&jP~bsf~p^5gN{2GgBi5=lN&7;Bhp_C5#%Fop!MN>%%nw2ax{)Z=?H z^ErMaf6@CUTVm|E={GWHKfj$7O;y2}nK1qJ$r*quD;m*{6fW+;WD1Z&(9xj;X&1kD zB=mk9RqaGH6xa|1Deu?^P)1DMkT;ZpDxJfGS^w5Up9~l5A7Q_=f~L}VR|C6`0H(z72Lj&Dlm&myje4U zD+V!4`3Y>Lg7e~XWfO7 zzOc~rH%*?pPc-7b_5Ur-9^N4Dnx5Mz4=?NtMqgm#l4V&ob1;vT@Zybm5R7TU7!s{l zIEI>Gw2d<%Ob}!H5)8+tJ2*kSb)j4;!^mAX2m;Rwd^2M_&%=i5I|lI~_4ivGHf-@o zKt9Ft`2C$qk|gn2mB06w-h%G+`%O?5v*XFz?Le?#02YT{T(Qi!i!Xj_`_Jn_hkq0# z9<5lhpk7u0jf&&2gJBpPP)SixORYy-A)t3k(Y$<)* z;uC&Ry#FX4j+%b+lLMu}c7(>S{wqUWslUwgt;^1|mr&#Li1vJer9w|_M=`azhS)bR<6_#*)VW0H4U3+y!Q3r&1%np<17^xDAaeh&g zdE>$C02AHT*&Hy*qd#1$FDa`ZDR)~CT<5y$p4$y5Ye0OGNz1tj;n*MF@dS!x&0zSM z1JM;sE&-FB8f_R8!Z70n0fd-vpkAcQz7MeH&AfDiQa{Q4Y;R$YK3q0dn+ugShDmYFlp%$>Q7(Tk z&WXNi)R=O`4hx&Uk@&m)B&7eMnK7KH&)-M>-*Z-b<>A|0K>bJZ5q@t+m zrUKP#=;ZCR_ktN)x!{7QqT9Y8fo0IlA)bOKk&itBeY5-Az)hxt~H0`M@kjN`cT zu>JqT-R~dV@amahwPAZ(TkHmWjR=%%xyZ1Pu=nkHjfP6Frvj7as!4F zWQhV&cM_oNc{4FV33MHxp=yJ`Vi0;$@X6}&H>2gO-qrc>_}xeQn1(aWkI*Jgo{m1a zeR77KFj^@Co=N#*+~zeB)Ag@6G(j>@4;npCa}cTz5VJ-GJ6i(0sdK~3_995q_BWr( zfaJk5v05KR6h)qz8E5|NW%C(63JmMl!-){m zvvZKgszM}%sI?E8cAdyvl?#r~B&J24^X6~(6wAaf^nUgL_5!at6z5~fAYV5w^@*j1 zF5Rg&B|aW-+@~1Ja^1m_=^`9RCQN*QVMuW5b3Tv+WsYbjwEELG)j5_Ag5Ws4zaw2n zVvROY{GS?^d)9YB{$|P0uY(PYJP=0%EdhSwQgf0})H$WExK@-n!DXVl+%x|7T4;ml z1a#s^Ez2J!f*Lu!oN&!~=JN{JymQ``BaYhSA|7Q(*`L3QlH}XJ$n+4D%0lQJ` zJlav`%1#?#!>DY(cL0+Qk|oIAL?i*A_|BpGiJsTk%Avf|!=q@AIMjwJr?EN^tO~t& zr#b9VZBVg~&t`CY>4^fDnrXi>Hfup7WUG4~$@`bM9gcQ-O817ZlQnFW#QkZSY1bp` zmBOE|31}l(-R%nF5kre}@EL(D2357o5OQ>MIZS%+_6|Km;EEeZl+-XkfBl(%jas-L zBdPO-?_B}u`(_vU-1S`U^y^+Yyz^dU(|bah0g_dHDs4q zkJmh7NFH*0U>#_7H=x9dZyq)DCXsvk7)M)?v0&Q4nyVlD(J<;;AdbMf*Ot`?4Mt(G zMw3z+E&Yz|(=gO|LT&P~wMSSbrCCWYIK8F;^_T3iBhUef<{7hvBrV661k`LH+!HB` z4z}UtinG#hb}Nyd@>kUPJ9)}?KRJ*F>&^dfp4kqJjE07Pjki|+w45Io6b*%DKLkad z+dazt<6S>*z2v`hsp%JDiHLs2n`hB-M6VI>FDmda!Iis^%S;juRd`E${U&`m>5c%yKp zV(9rEKd-YXManE5U+S;i(*za)6U}W~IrYMpqf`dJym_)p@oqEG~Gvu^& z?2g7P0Ni%);HVdGb$=?6?@7eO3-1-7JGMg-j!SKPa)=76u&m!Ns zyWjP}#j^8c2d?DjxF67!rV69=U`h?c=cXpit3SwYdL8b0*6gp=VxykGYmNWWtNoSb zn;!%?iWW<+Q_$ohG~@m8SqJ*(*-ve70HX(b0(94o#`?2{^C>tOHOm-!%V~~!^1vYG z%Sb-!llh;%_Q~W#^UIdGD=HnW`CQYUujE?=k}u&6IyG=fnp2XkszdC{TQeZ1ta@4~=~ zwh%O#D3M#8SYzhOy8?zK2?2#0lpG>*cv?*3$#j2mQSE+{mX@`KrCh+|gvCEo$}ISQ zy9fknqH;XI@t|0!vL&6piST@QHrX z($?j!*IC!QIj^Q(tt=TaZ4ICIs|vKIz8rgJ38J%BmliFz@l4)PHUh$30*RBq)_FrYRi$Hw!?>21 zkwt=#H=#TDU^UZi&;P3{Ej898XY(Bw2V}E8-~&)lAqWC=tSb!}v-i*WU8QnYP4HkX zQ|4dkpQ{Unw$<^oGrnHP-Peqj1FTIxExUM{dW{ib_v~iRk{gOrhTA@j?z%9hTp5`a z@CB28pW-Jdff*U8y2vez*It;zasXi?xJ?c0t$u1fH743l`T|?5MHKNtm~wA_)0~iY zo1-xk&Pjw0c`2E+hhe5&SCiJcLNcARXBF9m8EG$m8^!;GD-;nZ+HLXb$2#DQPWs~` zxN!4l%Tv&3e9*B@{?51$q54t*(6h%}vOo{B?Jy_+)S68{PX;dZMgJ$JvTY;$(JpTu zRcPs1gx2JiGxGlO`z0%9qc5M@9*=Y7Kd$lev~Ry}gdP5Q9|Rqb$7TXWDmyBNh4H)9rh|@18lZhWn2OSKkA!R;O_QzlR6=p65OO`6n(~ z&!`(?xnOl}WJ^yzKm5<1mi$}xz@lunUg!Q@$`;tkC#jYyl~@Xq-Rh26tWe(EtP=t| zD=pN<=hC^7`ULnMh${*|6}o{j^!eoRRWEm*W~UY=UQ}~(F<8w-@ zE3f7Jcz>0d!jRQ{KgYXw%X4DjrI4V%zW#^PeC6CHZUM^sTf6ZaKXoG^{#GL=j#2hY_r)c8>g@xbx9{Cf!qxp2 zX`!wR9EZ8{uRZs_+t(D0W8ZQxbL>!o@3)aMPRN<#CdMGYS(ZRQL?v|*btW)`==5*? z`}wKJ$Qg0P6SQ|{hM(@P@_-EaJ|w!wSlu%luruJgIe=CsqvSpH5UHV=w^@_TfhO`F zZkMnFcafO@6ga?fM-KL{CgLrmMRN(E>eMkX6w`D!Kkhy<#n6fO=AaENv)aEr49}Kp z$9^1|9Ssl<$Ns1AWywn&%VZi`t~JVUEB77>g<|UI0^wX2&7RdLdce?A(Y`-y%%IH@sS#4rtp`(~4K`C7CV$3nu*H0TFF~FVSr;X+@g^EJU>KsHi+HQ`^WDmB*UJ9)Glb!5Yd;xRJ`WU%o&oDd(}&Br+jSHAyKB5w z&Kk^}_h+HY@xj*ecX`?b=b5Tsu%b-0FyC$qD7a4Z~5uCkV;Hc=;5@-?<{qslh1*x;-}uPL9e+Z?#mSw#ONde@08J9!&2z z``6^q8lx9K=0mF39qqvXy}wK5pg;LyD#4p;bbqTIS3@h3tuN0po|u6{`l^X;2$WfI zxFj$`*S8aCtMo^#n6rCLC#%R>j0FwCv}xXKDtQo1`e&i;+k3 zOes%~HwcA~WAvcl!Uo)ao{&upjOHKc2p2hQv>8dUrVY!C8WY49ze%@*Me-#?V(NS_ zvU?m%;1igWrZjJbPV~n5ih`s)>V7xCn6|P18mxEz&a(CcAH zsIchj&iiufzb*}98h_6~#Y^EqT&gu2F3v|I$R&O)58CcQ+z=30eV5v?{mth<#qh$g4FgPz)x>>!ZV2>%3Js(X@`{{n zV)8U;9D1OM80dz#J@Vbh`2o#*kG7tLnfSN)rF!^Z=VbF`_5b37t~p8t{C~Qz{+kNp zZdtX@w1&rWQbnRN-w;8#0Qx{J2!qc-N|vt_jhZbK5IjnF=&|#{X?T$I7~36MTqnN` zFw0Z*?=>F;MZU~#HI|ANq@~&zb+9){Jz(eX6c8%Tj)VuvKJL#U-@z2|C*YyHD}$b~ zJv$SGcvLtOAue-u9BU9~|Do(YQv7-s{U~>b2fY(0(y#DEruv*`$F?KU_Wd_*Vn^xm z$3GJ``WeMe4QV1Vr+$@Ki|U@H9iwQFIQ%hFcQ&ow;5}KwUMb6g3Jn!CJk+nwV&3w3 z>4p$T_Bk+0VE1^F0_j`fn-BRGTC_x+zIn}#>B?j`h%7EA_i$6Zj3Dv4zBphqA|3BQ zhT=Whf#$Lpf$_+=8rbuNe@5T*tOB!E$7a99xZaQQ{pnZ3W$11T5jCKSaqBOWu+Q{2 zU;f`Q5`UGC2?E;awmnu8aOq@I10hRl69NEkAE^p(Jzw4^zG13d8h?nKULiUkP` ze~qh{wPv)Dn#<9Ic!TYY&Hxc@H(Wvn(1r4?JmXb) zx3@D81FIfFxgsH^*;~%i967&pi^pNv-_;PS(j2)!C04KPe6gB)n*j2>6B2V^+ktoJ z3+7=TIfVbNiCPTDs-uKQDK}#W*+2g^zGasBFF(wH#wL{;U|F)sB2$4DMMHF0oK0PC zq>+lGfYh=Rm2Z~h@;({D%YHr^K5TSHz%kPJXRL?PWR2U7Gc7gD_E^^6AT^FEu6d zCIv&EfFEXw*(N{TnI#sJu(KZJfCtiDFngeYK5c&K-YueAL3r)I&x|qEYN8+D*#}jr zD!m;-%5N6pO%Ji9BCB^JkK4_mXCco;;tVeXg`B6erlM3V)<&s@vSbfBxHl z_P@`oCAEdPFslgDo9!_BwT3S})>`8YLs|-$BUF@dwVQX0I7DyQX{|;0_t)!)8sFu6 z_?Ge+SNGWKaE%z7dQG#shE$kTL+A10H+`R5;snJP;=Yhq?l|-sQk@KeGR0ZuBZ&s< zX=MnUige9ZHq~5`E5(SY&kD}i3&0lg^h=;ubdH=L^QOL!LdV324A2|!g#0XUF+1*C zQIGGxjyd8j_E)PX3-sHb(yU@#Yve!{HoQ+x+aq0@%CTDNW%Q+7#h&+zR2fCY^QM+SK*@O-JW< z_}%|qk|0k*bD&2@V!3+#G;EAFPE+I&&};;rLl%YD!08zFaf!V2 z{oQNw$l?Z&xb`Wxt73;RqOVsGBSF#!Gn0*C~8#N-ovp z_;`>#D8*$=@yl_;CgMz(>42ovo+H(VBl)BsjlBm<7;DFqQeqpET^bnUs6bp%6p$J@0rIrZqt= z?0!s?gFo-V#BAEXvsV2EPR`;GK(^G_?Kql-`<0;vYqs})^LQKjt9Et%etJxn%6;)t=KhUU zh~BzT8UKl~2?>7O+ORL^rS5+JFi)qdfvA{=%Y5CNgU1j&lIz{(INR0SY6K8hhSam{^&l)gLUe;@ZP^^nhP~_O#n-}YmJ_#wGVDfiRSKBNWsNw_)W~wMWpX34E{bp(fKts3VNq z8@fcENJUA_Dg=Mkx4D-Fk9-!J9`-g0GFAP}Ml>@yCr&Su|IHiltiy>KR|;}K$Tjkq zg-~#KkzTmhc=pP|n=jV3*C!M;?I1TV82AE%5}x5rMZgyn^s@}_*W6M9eJQm{cm;JP z6AERj0{vd}-F%~s0}>$H_?s2NfTY%lwJ9?^d5TaNXpIXCK#9cg?cb5^zHM2MVR2u;zXXH6^A;^CxG!HAVc$zhok*%10o?>!lH$V@ zGjB&?jx*oH4H=}O`$@yDcK($!l#_7vr^y0T`&c0*=tgo%7mnM#|Yd1#7 z_<%ZmmCJCSMJ|}KAfUR8;UpmP(R3glxp{cF??^d;mUHj&Dz&JCj;B^`VvItzGyQBL z$t1;VCktm)H?`1Vs>b!`6A!SHZmH&T8&K2~(88a8oo{H#fA27P*)KkA9p`y%qh>MB z1b(TDKGOh0sstE~LN_QjGO$SmdC0$q(~-w|<$r@vHpT$Z`4JVYWf9q#^(!akdN+;w_$}H(T1euJ<&*74P5-@6#<&Z zPkD+8HD|2({&Ocxv(C6waMENi`Yu#7o-711CWFL%Z>mU(-yE+d#Nduvf(E^yC=n5W ztTgsl_m|$E858WO0Yz(H3ZQFLBLH_6Zkat`CBz3DY&(H5_ zw(X^TeE4glOaPgRkEE@7&QYeQo@uMm_V*oXtW}26@?kp5z*#vFo8T%7_P_l$&O3vl zN}Uo3>T|_#qUytc+($7!$gEDoJAlqV`tV7ds^8^3N}mgHkjo^gflOw+`kdQPHPMJC z4g<;Ui01ndgk}H`Ub+)Dfwe+qh#wZZ&>gyN9Z^n8$i=Kretzc}-hX~x>F102I{Nj5 z3E$SrVS(cw+wS%kj!TNlYz$oB_*tW{D?ey@?EJ->`{9Ju?0;v@z4J`?^L|fnTg5vu z*R6EzcP}@453@7QkVBgL1#JE1W3=HhKI!jSI^gx=>J%};#bN4{m)s)SOXvpOj??}S z(-0HQaXMqF3;C_SQv>r-H<#dNCpOIRvcD;vEIg)9u$3kNGviWsY|II0IY5c6!$T-E zKGy{Nc2e0 zq;6v+1H!=Iwj=3snYt@e9Gq~mMP3go{PVs&HIl)EAwpe_RU15142U$HN=d>4F?`BD zxMlx8y1rxWQDoWnff(T3P=N5>!wiIxaKgK%zp3hTcK7b@+!|F^ef^gd85wJ>$S_{u za-n=49w)raqIeN>_V3kagd_Zwm-r;3u^b~NDgN;u{-o91n4CYSnq#E7So)NdbPZR& zPF5+} zoGoy)*|STE96^|U@}q!h z{WOi6_{_gO_xriT?~5+iPRto)6Rp@s1eN=&S)$gtcM#Jw&z*8m&&t#1`K#>suin}_zJb2R%}H!Hd^a!*Kh&K6?;4cHTL1P| z3ayUH@7GuV43Q1ZIKm!L(trzXH*FpTr7{x_az!(AG1R~KW9}zi<32_ z&zr^^yuaoL6>UWU+B;Q%7vJSZoAkIpZY>~mv$(wGYd|CV+w%vrJ&!~q@TE6O_6YZ@ zJ(=+0hHT|5&oA~8IxKmgh1>?e^?;O)&N4$>L!BkQSySF;*fCy)7ltf652=W4iSQKP zmen?JjK)lopv==v9XKg=Pu=9V``#n(yF!!y+UVC_=Wo^|bhs}6{0&K}r^eCg`ArJ@Zy&?_^ z^Lvp({^l~9lfShfnRILHzP|O4O4IB|bAdaPNZ4uPr^EE%*SD&yD;6M>2CrCT*p55W zrLAIL?xXT!dtY^uzqB_}(BMkPCR6g3{;C&Uxd?n{wBn0$$!()!H0FRlm&Mzj^20(R-QMv{*W<*_HY1;Fo(`8(G(eMuQwX4dt2Qnl6#}}p!P0KO~(53 z{q>Ig&GC8D2L!|S&12tx%^(CZk=IO? z{`}3&9Mi}2n;=Q4(fCl|PYJ^bG(PNKPIGU)GrI<)@bWyLrne%jhDRcgAW88`ir+b>d{Mb3GCpyyGp&xvE#G`Zf08lO zLN-^xoYRUumRbaS_UPm8glsiiX&<5YhBj^r_uOuYbGg9qcZ7-$g{yyDg3s<>P2f$p zY~hW;u}=KI^aJE6iQw?gj=17jw|b2ywA;+2+#2+6CIuIoXEKKtp)50J^g&I*T&AV7 z^ontKmNCVJ`XI|`Wxz&JnxvB4%|3_RVkK~BU*^2ZQBKApkJM>b%?C(v=+RCKx@69# z7-|7qj;MYA3O^wccHCv<7hg6<1dnCFZKEuGTKiL>2(9{?ed}g?+$)&4ZqK> z_%$vlttM!z`Z%SQIk~V2H19ccE2KVu?+QwQJG~w%_9t%kPv@`-u>wCCOObqzGx>C$ z2zfp*2Pir#D-;#^j^K2mKH6S3G51v$Y#xM85s5c|Cb+kV^s_uVWz|(giH*fC1)X;v z0SUCtLnS^1k!t=_<|TNsxd$S~zDGu_`^&Ex-+Nrl7W$IztuqW1Ex<~~!czr4y*w5B z{mK5?UR;VzAbrNqrSZ3#tLeh_U*|rv{0q{gdaklRJw#l|6Y9giakTs28pt`+;t(zR z#vR)|&$0_DN=s9vX2o*rWYPZ1EdNS=nEY!J!Ow$&)l1c>$ILDmI27D4MH@%n{C>aw zbX=A9kwf!kcHn-!Jyrg5zwUMjYoNUYl+~UM2sTDwy6+{q7)Nci4&QMleSC*S%{x04 z&^~jS-S<(uA3n@#Ww^ptIFLR4{^B@8oYprip2n@4V}b+Tk<$0{I0b-}%?q2Yzjh-^ zlRNb3Zy#;N_mW%69A&D=1QguMFeyw`nU`_2+l`yQzQ=#q>Q8S)M$vRLvcI}}^f$f= zu`7h7%lX%@kK%DGTV~VXSY%mH_c_z=yS>wQ6Aw7BWd;Hvjicd?n>c)$l>V!WMW85p|1~?9dpxtx^Vg55qt7Gy&U`3ZZ@Ug!GJ0qY)mzv6Djvu!!aJ|e zzjuuJA%8X)c)=?8i+wANj;YC5c$BmoEKPGva=ogt+^aQgV$s<=kMQX_1JOrH>vaD|62rRha7#;D+58 z`}3e~NM1etMc&@C!u#aAMh4cDx8MPe_eTIR2EnrI)%3nOP~QXq0x$iBeHD0#lM7W$ zkY!m2^`}<79Cos)|GRGH!EK%mToQV1v}7g$|CR%2XHySTHy0}Tjp7jJO5Rv zcho3u_T`PVin(8&7#vD72X+|?l_8=-^_X6@IJ_R(uqI@iR2f@p91sIr0@?>{t<~$4hdh5`^K!i{%V!{f4VGi^yj^aSPm=F5g{3J?NDDH@uRS1T zl`qej%F3ii$obWDcm;X!%s!&tHduSL;rLF?jcv-(5|XI?&1k5lJ1D1UodHk&Y`J3; zaZ#X230Wk*Q>(7iXs{N5A`vr9&)Y6EG?B<5Qbo(lDEQXuh^L zjt|=&bxY2|O!Y4u^$2c7AI}H(0-|88FfJ}Q*-+=*x1Oi#27_Do*_8Voa%RcsbjtEb z@bT#-VLT-FchK#(k}C1mb&Zqg0bNaOMvAA{hk~NgZyP-Ub6%4}i!nk2HiYwEZGTaA znq`dGO}pFk#-FDB!fv1`n*&ncpLMBPgrsHEOyP|89#!H<=M!MKBu&*$Y9*{xhhx3P z6$xy2FruJO^l&rNAh6%1L;UJEuyrOTICdo@L%+iI+PWpRbov|m&3)g3MZvbNzX=ev zVwxbT8E_`*{p;OIUT-?2*m8cc5Ib8GRA%{lLAiyOo4uFh4fPa75jnF`V?g~H;dBv0 z;i|MO6I$nZpL3QCQ5?_WrfJsAm6t#BXa3X;raFR2mQB4BU1u+d{(k3q6=Zu)P67rZ zKCY_$MZ^Cd%g+4vS=W!c!rQnnMqY^~mQ73{;LpZTzwgel(DL(as$%~JD5<Y z?8R`zo(fhy-jafOJ8pj|f<|FQs(ZiZj6DS36BU){8dZDUw)10##|d~I&`j0*3=yTY z!0ki+_cm08m~hV{WkFZ)kRzjuRpWjCVitzc%PpL!vufzu2EJq zO1oTn<8z?UxrD~BztgSr2Y3$HEry{9hNpVjcafK6Sy$K|+@%c5>;b3P_2sMWkt`Ej z6u*dM&)oSX3JvM95`D(4@>0$eUp4!h6s_yhE)^A zcfrSR%8Pe|cm&;ry-escG&mpM#wK)diC!(xDUf2}GAiYPIN@TE@t*26LeM7XuFI2!n9-m}^1Rm>+R$jCh$P7eJ^1h3o&q=wC4J;WaB^GO zVm%X`PEhEZ^)K)}l++i@aCe5*`F?oVi>2437d@IBzR#%pr-a}Hxa*4@C51QJd8Hft z^A(-DX>!!r0r>G)DjdLG%gH_c#QDTE_v4*grKF)O1$4@O2Pq|2S=v&41@g6~(9L7S zKM(7|h)dI&F|PbIJWM~6a#Md(vJEPU=P{3LuLR7H!C?*>NFBuCZP3m;7Yza>keS8p z&d3)jCpV@<0J#I|^SfPE1(@C<;(zX~@`&@9Whvo4loKXDcK$+cZjh~1kKx&C%>u{c zDBk9o80!CiGOn$s;sXB@d0|Mpcdk7=5w?k&n~d-;Kl7e|;KLC3gY+|c!mk-zp;iHI ze{)V=*DA#zqJdx!sQ=rDV#&FlTG~4waos#eZK*aU$0^X#3u_3)q>l&#QhZgIR};Ka zKYngmdv)ORy7AP_lHbZ%B6#*Or!~n&1K3>^+Sttk#FHy54}TVdN+wTUD}u)vVP4!7$A7aZns)Q6eXkZ}X>L z@!~BTw@C`4)3t9{xa!mOzh`~$b>Q-U<D4(~qC>rp+cb`(*lO?sm*~^%p(`#D95SOEMQgH8-L&c|Mt&uY9@OPWl?I zuq|+Qy%9rJ*-obAHFL<`(a*+yl^5Xgms-!B&t;#MYf0m3UfH+;uqUL3%uE!f*nH~- z8Wp2mtJof}vo7}5F(%gxUvdLJf4ixA6~uV8p4~q0O$~yZI}=-HzkD3Q<}rl{}AQ6yhD;3;I?^>0i0S=Hiv!Gi0l#aV8~67m z!3ypRk?r>u_#l~q0^(2VWbe$x9@A2GBL(~2c*gX-R`$d|FB+47^EwnKt!N&hZrR&L zo@avy_lV*ZAXmMA&_pjezz_b|ufVQ!^tIIdy}xOCWKD%eeh7fovHk7E5#etQFZXy- zG8o4&1`Z=dir*|jD54Mpg0p%fy8X+Zncx7_dp`J)yI(1>ii+wyZ7AheOy@t@B;Kw7 zu(}HBsIkg39~(#-qb9ZK1R|ftApy;eTY9M-xnyjH-3?i$_Gl{gQf}@m^%q`vcbpAA zM`}}3kCor>84P{JFC4BdJ4V+lu_>!=uYo`D~e4=*^kpF&|jP$M3Mx~ zK4lVcrlxIx_hs5rd3kL^gV;_uxyC=v(Vl($KFUT<(LVPlB^tD>On-nKV9tE}c7JL* zmOpzs*7A67do=&q;+pPE`(i~rICCKCGfFWPGt9r)G~ggbrpJNbPT}R_-nFfZ{-a;4n%Qoqw=)+sLPoiJGWfQL6-so9*P1=a<;{5l#;|KRO|9TI;Nl`haUk{{j zJlA?p2kgmQ{#| z$uXYgR+TDeV6-hH-M`jIq^Sl zik>r`>WrXJB`$}@_jOMb2kL+0eo)sF5u!F#0lz$EiggnU0K_AN{e6ojhp!%Oy#FtE zHW0ewW##+M-<-2pLb~Le1XB=EEH8G6mp^$^w}rQ3a&xyW_W6#;G9|7j#cl!QC4$R~ z!;e{l$g^n`ukZG=04Dqy05Bi~T@WSCu5M849O98L%PRR(q9T znm}k=U9SL831BdzF~(=_zvr{uWbRGNAm9OQ1lXlLGzS@`|9Zog-cP&pk;lPj{#XC( zVq19wMG(>RQ=>BAd9ZKgS`o4@Yhx&;sg=e?9F=LfQ%cUB9~Onz?W^gbcVk#7KRaX1 zL-J->HW57UvF9hH*buMU7?lR572khpllHrQ87*c31tw>#_CMUG?H@=zWqAwr3 z$5crrmsn;mW_bOtoqums-vP(*N)*EPZ>AX!G(C}ICuH0E{B6w&=oZsZdn6Bd`H=rB z75Doof4!^RsM}hb=w!uLRLH`Hv3110vD(}(#+RJq)5;8q83dBL{%tLayPLuUY}FxV zi=0pu4EH{y^N4M>DjIVl)N}1!@&-vJfjog@=&m-={=ILRBQ5DeP3_tSMCm~luIYFU z>efP;v5|hh*GLrs7kbprJIe!7Kd3>by^>|zc+L-2OBS< zo(Zb!tiKta#Bxk06__7LU1?_F*A&Ff5BukRTJYJo-u}U+R%?C#KF`Zqem$=ZGbj7L ze?H^_RXdEMlqoeu;kqssM`qh*W;B0Uyes1BemwuRgR~N^k*Z%0lMDS+tEzBbRXnj@jEocuh81K|A+~ZN9jxE ztWSM*vY|Tsv#YdkNe~3%g6||HTg7o3Qlg?EJSzZy)8K`Dc)CgnCy_aK-dMl_02svoM~pO4psNDzLx(p4pN^!SEp3tb6?8 zhfO-G^hB)BrMZm;$3rb6W31fon976)lzl?2wQm73k~laeMBvA~UQQ&kMn?>8uENm- zKM@n7zEOg@%JX|mRn}5{i8PsGq)%{OPnh&1A1bG$uG4OD327YCU3^o-ppJKak7LGa zd$@h_upGVB*xH3G6%}Qg+dm`QrW@g=cDvgk`#t<>5I>R@J3kDm-_;5?SkH^!by$7Z zxI<}VQ9(5Rwy}yr5RhW9EeIb_qVhAk^y zF}T0g?zc0df`_@>qSBk%*|#uDe53Jwj#lhjfmt`=$Zc#Q^xw6U8-DRlwT@JOjy0Qm+4- zLott?%O1SOFjt5yW7UW!#HcZlQ`LZ4xV46^Jp|1E5M&!29D`2O<^ z*`#dV$yHR*cewhvsH}mcD8I8&X(_`&m!u&|3zdVfH|i@G6erPRXWa=eQ*_)4@L2?3 z|K*%}pOEGKq&*pErF^cT;Fi;1lr$_(bWdu%Ea^LL{@E{4YJls|f{VaEdxD$m8*B)JVMtMo$o1bidZOu~z zGBNPsZbuiv-{nGoeW@6nRo(`=hXHxAOjLY#?I`2!V;7&;^t@8lCg>+yAG`OiQRUe; zD$>z#5EI)J!1M#M@9#R!YbqP!EO@qEJa7a5+2c^UKW{3(eDKO-mh7)Blr? z&RmGz?y~zsV&uLTOw^L}Uhth1hws z_Q9~|#AkW7w^)$~fbsDWh%=OHPJ%M(v9R;B{T<-v6N)nfQ(h7!S1%78{VBiW#d+yP zM9B1T$E(=5ot$R6FALhWXM7yQzGUZR#0JF#UyHNI6FJfaUb@2yZ@L2**rjpnx=pu zUv2TYY5Z!!VS2@H7lwz6WzFA0CzM+AiP{?XBw82n^fCOib8E=UvaAw_ru)8Mk=u`B zRig95c~!IZrw-+0|HTDFC9KVdAYPg7JfJXe&5tn!d>(KD+&d%o`FtpuIBQdfIzD(G z(mcw)H!6smHA~^0z0$OZs57xA!ZCQmgg}m4$9hk3*}RhQ=OxwF4{zfWx;5Vc`PN>- zI)v^k^)>Vggr=v#o?Kif2i9n|e$d68x~E;TsRe2BpPJax{#hyRx_>L#(VYZh#9KYEv-Lv++ zb1Pdt*g7wQLTsqg1w{1XfDQb22NdoVYU^(Z8lVDm-%FO3*Wdp(pccvo_x%+majd1o z>V-q`z&tLW9=xNd)G%Oq&*ZEr|JdTn#VAm9J<2=PJ!JRWMZ-rOc}8+O+X(#b^=_Qs z%%W`XNP7L4?M(Zhros7RLjQ+PovbfewZ@Ao^Zf7-;-PxA_MV+XDDpb`x#W2jCW+Ec ze($wpXPZ-8=#Z^^j%oKBdvkRNmZl^l`?y+NO{6R;6j$WCS91%0`OM;zLR(-~#rBnP z83=?GW-E=v;a}qSGIhgaGy!p4#iNP+&Z+6Hi3{SNZv?%}-vDOH!UDM=?Pwo#c&$Qn z>j{kVO25#vlXAuNiYxPf;`zUSb&nhH7=d{nK9HBJdgJW-q!sfn-)K=9>_)29V1c*nca8LbN@vLsQ|K_Upvyq~}Hk+33Wl;b-Jie@?-$oITexh)$I2 zerfIG!V9qK?MUAbkHxC~Qqe;c#b^qKC|~_!QLHOdc;q;PYrD&8nFw;thQMDd_5pSjX8gYUO*pm$86^XcP)LeN8X}a_ z{mtFo?P@M_J2zj~|7Br5X!s(89sZZUe~m3mkriacI=#GERfnMr^Iji$@jv^|zQ4Rg z`q|rp8%r^fMn_d^Q-BHS*Z0t!r4d%yZZ^fsm8!{M!m7m6X5?Aq`=!~s&JXgV4bCg) zMIZtS#}T^a;(a>TYfFooo$pZdpeg28ljokD4IFm1C%8;dy46zMO^vX~7`Yos$7YXW zJ~|9;Ldp7e67XG}qR>690w^_Fk|qoNbXL9_Jn0|#hmwSG!^p4}0eaWR1dZ)NnO+_6 zGeQkqHNx95+I6CRC3Y8UbHYB~_mzxfEFI(iqSJl&zgx@d^w$RrNr2t%#Ag*ayF&E| zOV7O|A8c?-%bGoQH8c)Ri5U=pMZ|QK;y#y=F0g8D$n#|$0>mjA;v#ozW%%aqWqmt;%WsB@Seak0AkMdO zkh@1EeD2I793^`0^%DT7-`pi=A>s)I%nQ=SvaWp3q9PH;IlKafca--a8#yg4B87jK z+~ZPg{s3W)#wLdB9y0Hr)v-ly*Hg0&gp`sx1wYAO4?6z+<_(uTk@-7N7%NwY1NPq z<=rAu5BO!8wwbOLg03K{C3-py_K88@CNTU_-|0|{4PHKHbf+HhdK1^liwSN|^zPB; z-mOq;BVVTXlnrn-SO42VuPY0;8X!SMscN3FbJN~Y!HiKh@81)L|53BWKYlHVb)ckt zgHLa#d+Mn5*aKWDFZz)N_v87lPGH|K-<)gzENYO6DIz@t3UVhy>|+A1^jPMIsx3l8 zNeMB=7im=vEk>yZGebIZye2HRCdU~4y!0pFabBgT#e4Z+zkV5Ld;9ozylA&&niWF~ zbA-&^N_%^Nuvom-vFm)HHgL0BWcCMhd4h~^1gZPPtbTh&yx<Xk>ID3UrIO6q1dUZ0+q&PyF2j^6X@qH&F?u7vc?XfXbKuFt*~> zHn?1)2%i8}ROqw}_?^Gnpm`?mon@!4)-ZQZc$&Dr419QAOK%U7*}R@@ej1 zB$X6TCd}K0+W_X+2S)lU*!Fic(kwfir8f^%OibVAurUc!z%)+vP>it=q@jR4s?6G! zra#a{eH>ijOLPG%{`pJXqBkP5vTT~yJ#KcMUWMxk%@G3Ui!51Rcle9yvb{>!d_OA& z)glJ+-*9$N+S)Ss?QJT`Pez7Pkvii-KWs>$Uox^>oNJiKotFK8p@m6$R95GsLXG~o zq!Nq}a$%ual@1IbCQ`fWnKWcvDbL|b3`I`&^jb3-q6Yj;#>M0Bwc?CjmaV9a-Ar6WEaTew=T2obX<`gO_hzEP5>dv=PZm}#$L0#Uv zCcW}!jE^%yMk~(^&h71L4mTf6EpqnX=Vme)mD z+0*b&l4h{(7F8u7AT2youM@H>mB;*B>(il4rV|~5%imt<(7{dvEgBF9=i0Xx*Lo;+ z%Pf(i`!2ZG@Y-utgZR0QV_@}^R z9RHC$Y&hUyr#>{9X^a3C7E77FX)b^N;*}8-s46y9txl{5*=lz*=TN#_;TGm8dUmgjtSr{F`!qy*paY}ePj5hbBPd1lij*<#oWAqejMpkg07 z>s4v)d?87OYD4pxT<@1+b!hMqX)Q!^i#Z~(&jQ_jZ|uw~C1=L`jDC!D3r&g$_IDCE zSb`PmLP5bevv$^ZIC2wl^AKUyvZ!1(hhatPIT*!$kWSV*L&&9Lk$3fvKuH9>{DKXwUsswyzL9&QE*NAIh|Vp}M4a z-+gid6t1hg)86%Z4YV6Quj<8Cx53&;dN*4h(;BUxt>q>|pp9=LC~0esFP1P@J^kfj(w*n;FRb0l0N+>eqDV?gsz7v zZLcxO7LRLV|KMmU(DXt9p~H^yfgJ7o4I}1nlzTRVp+y$kAh3xr0|Tga{J_%<#2N?|2>lt?GYdl^n8NcV2?O??7GU^ayCQE(!upRahk{9 z`Yz*vuO0H?GmHe`lNKAh{d?aqlv@!sB{a$73FVp?ox$&YV^%GL3iAUwqIz@AF+W=n z7+40I((pG@EPQ2iYG|7QvcoDQSbGFK_u>4h7yci=W6T)+xCOwufo0=o zTvbh-EHN#h03`nQJ? z&~5tZi+3b~z%4quWwF!7IcF_lFO?@A!K{SrT~E?qceX?`GeeLOwdW7czJ9Ybj@7BT zbdEOwl2M+tkk~&VG`gQ<~ zJGIeOzd`grk}}_C{j1~r%EyJDb@1Nd>qjQpM4-d! zc@MZ9B$t~bKqKI0!*)eTU6n+(*t_I{olYQ4M_@blkY;c0N}BURGd$osHqb-1v8D`t zK5T@tfUanNGpi8r8JC`8!^KJX#3EqnA5|>sko@K*tbcZl{l`BZ&+C~0NFxJ7a39ZK z4wcZSAKp=Arn{e&kR)RcJ|2boXT>9Y{%(Cb#*uHSgwIk*-xuILwdRL>|iN^6sQ<}5x-Z_@>FI?FGqEK;pC)d)v^852EXW^q8qLi z=5P$8?OgTTtg<7Q;r9Py5l$L=9$_8tAG^c&jQ=zDY4TaFQngrFZOlA}#r!nVm;)^f z@n4Ne>pgyPeJc{t>Z$r1+E3o20JLR_gciK~>8r^>emIvnclRz|iPe1TWK!2ojy*bkApG|4-ZJf>GP3=67?Zpx z@MWA)ns!5NjmNl4@)(D@i5!m(Q#S5X6T>uT*$0M5{~g;Hpe3J&D6^XUDP72LXK~Jo z7{ppr6hzlpYG^ad(DBY+qJU(rBe|PIieU6Jxz1fXGxZt9Dsu!bJFQi~r6s!-CU|cJ z)o{+h$a3RBbXG?$^P8ztH6b|OX{%d~qGPCyNutGLR@+4$2~w*)D9XRPWs<8*RO?f0 z;r4c3e1+!;ip*yG&Y=6wBW{#3CPp>(F$V^})(YZ5c&x#N_&okIhHD>}OCN4hVz)L- z_bYe)QCs;8-XMNGpvpzX72!uQ{q2Px_ow8c4gIF)w{oH`qQkB0x4zTpjN-OtcD^}V zpa`~Ya3nML8Oj5JiBQ5^X?i){(sa()QeE&E(h|CoGy%l~M%R`*ZCGEFYq>P*l8Ocj z?&3cF{B4Vx?!s6<90|W{RhZ?<99&qC1UcR}Z+XNAO|MxOxTjklHB1lPXbXv^bT!%*6eVy}nxY;(z;Ns7fw>}a3&E78l5D7NLID%u|{ z!h|z6hS8j=;8piwid}7C{@qzmXP9`On*y?MDJCx5H(zh2h!XUUecMz-zMKi`wLoMy z#yb45m-W^tH==$sKs=hw_56Qowjt}+{}C11311S+5U}^CfSQdnBEyPNvZqrk>m2rT z_FLA`mmACtfRzE_2ZLUYjLAn#()L2{0H|PQ$bAY$b=%!~5X}bI3`wenmgavCgHTr0 zLSIN$R!8xIU~%(v=^uy1Z>k#l(1RSE1GPRTKutK~;4ZW_*Zdqx485*gOD8^J3A(Jd z=DQ;C+>({vt_^S6zge^Vf@$QhPi*!19AM(7e;Mvzyr8!v>mJv_@A${%UAUw#$lMcW zK|VBNc=Mi94_41k)~FsB#XwfrVn8E5pA%9sYeL(BjB`YOIUb7?APy^(X^>>WW| zDjJ42btg?~Jr25PQHt73FUBjRda2bo({1?$%=qh=3zXpWI&rC>0KndlEtS@rCMh4! zWhaOKzjffQFu(P!e|410+82+m!aAp0pV)8X`DF(ZS`MX&u&O||HDU01fxm96&ExyN zsAX+o+?LUE<)&IyI~fNs{mS0{Gbylv0Ymq zhaNa&JNr~y-5^H4sTFBva;d6(IRK|)i=4Poz<EG_Zzy!C@^|NxFkv1194IY}vj~)9nOoHeQI`3#1AdpAtUC{`&==`q)1y!*j0_E3p*Ge4n9q8EA{Y z=EvPT+|=uP6c+odySr5ghB<37GO-b{Zrp!t{=n(TB}fp%kN??^{nszy`pqV)Wi?~) z<`=6xyxa{6&Y2fp$#eMC;vSy^{`8sH)0OnG7!s8U-Q%o2AG>-ubl^v=MN2k8)Lv=4ui!^+1` zZwrmiH^TM+SGNM+Ox-VG6LE2$Ify5iuJiDSvHC9KyiX-32)Od0X(xoFbj&Qt3Zaim z9nAdJ8EdhISBx}N_nr0pE%l9QmRs&4a}J!Gp#jp2&7*9WlM319JH!q5L2i*zheJVO zDW%iF9R|pa@7<}S^p$jdisaFj)uTky$R7s5KgSt2^u7m*vDbdYBMX|Gf~=MOOa9G zng5Ti_tXQjDFBL9(4eQg}EC{B4bktPx$rH>A0Jn0}xujSY-0nL}I0jN~}9422(NdP0Ma^kr4ei@*h} zwZ0s3B+g7`c)hXIuVC8}PBxACF~1#=p3g6((ipp~0|>M&dfmeRZrNP5Jj(J$p8EXv zxTMVV-@>*2;u|1Kmt}u)7m1TE;g~2i{_<*Xlp*NoJGCP3UjL`9(S?;5(*)Jm0*%hp z%nLZo%~m}x7y|51H2BvGXo)mwyLEe1kughMuvP-vNWbNDOb+fb?-0!t&NK$jZ!_DX zz*TYa5@XGGPyH&@3mn4=_XWuF)(-elht=fo((=R2=fGbL6QZH@*PtwrP=SRbj5@RD z_BU_tafDG9h8{AjQTS$d1%8>mj+bU75L1Z5D)5A*8^R#2gT>dt;b6djbze+AMmW0* z8F2iI1Twg>&n47zc*)B92tYEo;8r@I~ zXNvv4E&Kf|%BW97n5}mQv{u$!=lbx!^?d?^_$6F4U~+r^*J;S3Fq|I{WA3?In#Atb zpN&MDuzkI|f7uodTzgZIxxsX}m|9Nk#_~hOSoGSL75inU2J+PM;5r-5ykK9B^)f5P zLHexzTjMx(wo@IqP#EqZyXI!P{Vr`L_zHj>pffDm`E^It9x%UTMBE?&0v?g*z+T1W z@q4B2@+%@=wNVF$5M9G3PJeN##H-~K@SwP2XZ27m+@5{i3hLSe9Lt-R9tKmMA03|L z@t20gn2ePb`Qu>>0$-I3HS!-Yfk`Jr;iv=OuL-OLFsh@$q2b!2_r2*fxo$leCs&)_ zA^U^t9S!#M^P|Efr%}f@hU-iJjZwe0oI_^#JLAwnRO+wceLC`p&LyV=+8suQ_n$kB zb4$PQS*zb4LB2@m4n=$XGTG#{=#RTqPWR{4s|q;t5I|pm|9if^e86=qzOpbAzo?*| zw_!xD1%^Y5rz64WQAO^GpkU+MB1?wloBnzy{PlEk|JAaV0gLaG*YpQ0z$b-DLgg&e zyxHIKZNRJEpG@F`NjdS1R7mBA^8-wJvkc6#IMN=`Vsw{3MFPVH315|tVJpQ{W)mEF z*nsUYqn~MdJua$mj{nPw{J@B~=&TR7wSQ-q8RmY2Jy$mKVD?)I{S-hcO}3eDg||l0 zhyE}C&vM}VDw_LnD#2`HJ5#j$C8CV_wgxSw>Vqb#=sOXXcy8L|2+8>D3sE0;?h?^? z4F>d$5R|N!DQyREht(-yPvHy@6Cr)_rS@*HqpQ937ImJ9yl3w&Jyy`3dXYX1L)SzW z?|HtD6POEDL34j~m7yeCk;ZNxyEFTrAp!5-A!8W!-O&w6pX^^9(4GbXdi$$2Ds2*9 zedm8QrD^N80~a~`6=Q;L#}6uzBrn#m2qQ`o+HabNnDKNEV!#rcc=59J96mLjFXr%@ z-pF}T3-)*vf&?ppPnXh9nHi;D%zx;Nw&cY8@9_^tX(gCHIq=B62U=bSy5U%wJH+PF zGIWFb0l}{~b-pAymavzE_9i9+@_hV-5O%zY-Ppk9569vUAbF4LsthisLUT2Om=7&d zB_>iyVBamYNogZU`dffh;5aeZW;aTBT{e>F%5Zbe8#AYCzW5-M;;B!|2ayhI{yXQF zm1s;MjVliS&ZK;CmD*}J20EOi#wDyGf`*XawtyoovmR783fWEmqu*8OIlOOl`}AV8 z%jSL?X)JitJ&GhlvpU)Cg2-cSaQS;cJhA^%ABbfpPnp`lK_|`p(_kCncZzri+YFN5 zH53kyh~&OAC(poqRu`IP8(}AtDd(G-J{>&KvitKu-R387+(;Jr(=lHoc(`+)ip-C7 zt72oQd0vRWn$l0jqrvhr-TYTCme?WKqSDj~W(YkkJvj41Rwai2^SxV*Xol-pmBzUyw;Im~?E@GQN2; z2B*s5^YvkDhc@G3ERA+-IJgAVDm>bp-CXCdjytCCueBoB1o<%Ak^Bb(n#{GK-jifa zp_)>px}eSF=6V&Sa5#mVPo@M~(YnqcT7Ual0kHukIo@8WI2P5uqCw{yuE{<+->EMBu^bVPu4`plY6qBs4LK zUF88tNFt-%;T5G;hB27*n4N0$OS)~aipVxrkiM3tUaneZ8c@>8MFM!NI4^F$IbMHQ zLA_2$#S-HuyQH@}Rz(SCys+H8zZhUEAoS`B(rd7$@}SqMpu1QmE;CsL&oJadQR@z; zro=ffZ*4u2;OiZYPxs)jiybl0e||-=aHeJPny&{SK;huBuIuhzjId@KNoQUlVB_D3 z?!UPCP@n9ldC-6NWywV>{iT=#LnDV?U{M_G#Ib_JL;M^yzh$g)QGb1Q_QwNj>uYUz ziv30LG&0(I4IT%5#7z8QgF%e6U4lZ83YQVhrH@sEphQy@d$^n?AFDaqQof}5-#k~z z2%Yftew_>K3cV1e0e0cGWai%jcw=RYufu$*3CN%ReaZ3(7%I*R&2Mqa{5P2K0jY}N z)u)C1@|)>`|Hd>y8ahOXoZ3+;+$E+l!-=sxp;w9O9VUEYQf>v1F*4oK8wQ{zdKx&W z>p=i*6m`}-71lC5ZA=Pb7}i)m>h!$o=1TZaakau3Jr#K(9431&z^mf)p(p!k;$)Hm z4d{3=$(DU~w5mn`>(xKSIg!QN58`cSUfj80{hJ8P@Q(y`X8TN7U26O!v{cpjKWD*_ zVa=@V-#)v4b=_YqCcR`iw(0M5KIDkj-fhm!%nM6VqyVI-WSOREgNWDH%7j;{H3TwKIW+gDU*}D}(eA$6 z-F8k#!E{831XvG|*%U$mG)=&9Kp<(LcrV_b^}3>#_FleuG_)AB`9asx_3V@t1lg>| zNfc!(buU^gwKnZ1VG+IB<828A?I@ zfHu*=3>*_U1UKfvjr#|{SlxT9w8J!%nOzUB?aDA!7604&zZa4yB6;_>HzzFu&qLo} zjPkQMP{J&9il(mzm7eDbo;}5>X80vF;hz0T_(9N)b({0|eN)FyUoRo`;=g*2;(}!{ zO-cm_2O#~*tQ$p9jO^0~N^va+f;5xBLALKX_THTO+MIybNtwFqLr|5bGq0Xv?EiVm z-=@44L}BF@Yf5hH4;`VNVZ=uX_y!=R1;t@S&*GGwJsD;K5^eXnSEwW}2Sa42xD}Le zlP+v%P{U07RPt}Fg7?qXF304o0Ia-UfqjoCDw97K0(Qixh*Gn6$QE-JF+iX(7+P{} z{pDWBq7E=mtoF4}(4bk4LvNCx!MWzWAx5AJAZ@(X`i7FF!bH;g@tmggQfuZZ&~LKJ z#MrCXJ@aW!*@Qi2snuAw;2^Yu4LhLepHIjRHQfqQY(p@keusw z?Sg;1k78pg{JA4)GH}obx}l`2PGNG^imNg{jnC&qvuR0JgwlS#cvO{JD3=j#s-VnY z5Uec_FB>~JJ}OMITaPBYwahb+dt)i2IdETrRAkxj0RYoX|LWVXRFtKu>!DIn6uuvT zY1uT?85jGO)YzUPEBzuBijIk&122BcOwB>kDOen4;JfX&93z+Y|K}PwK^A4`Yx7in zPRt~LLaeXGf|0I6L)DfE*)9jOnz`(CrH+`KWSSgK9@iD{LH%&(AXmASTF~PkVa+o# zPM?rUZII;PHw4Zomqh^?mB`O6VEfd@+hnOd%KNnz?LyNa)Y^mb0ZoBC%=vZN`(3#e zYgyLqCp*yk-yt-%0Sj@1(o0EB#DN+*@);R$XY?Il;q_q4Rd5gQ6N6wSH@34Ip3?TX z%$?GqV&rR*R1mk<_y)?NhGl9VJt&ca$=PGGs1cLld@P|J z6V!VpA3AH*(gvbjR>n=fcen16_1YcZ?}j08eGt?^kTQuZU*~(bUY7w5=x`iSy8D`E zOv`@U6ABX3d7AtbryB`?1s$DJx}~Ic|LZH6|Dr*!LZD-QQ^=;&|LVj4ad8)D%V*CC zTH~q<1enzfk)3vljm8n6NeM?r#g{u>D(Lu_@P*pTUu+C-`jTQUcTNx0V$>&wU)8vJ_IV%%ixrPT@><6OAL$5+s{Y-nIsVX)|6AYfvHbi%k z1M~yOKD;k?UwrDyqiFId6#J|G;$TBbp!lKW-QK~_liga1{1-z9SzM`wljV{Vlt%#n zwsK2jP*(J5z5#-282%-2X0=W@NDTiEFsXIuoJVcxCzwn6R*Jecg85 z!6mp5o;fo{os{FQNDGY_Ss;fmt21F^RQeGLq@R7uqa2H~auWZ2KT+TF6yua#J2QswRj$c8w;SrCZXoZja$;3vv$l zC+0os!Hxns0$7pS?{HuPVttNQ*jxhuV}p9N6=vl+9`?p85Ql~Rl-woCKBJXY5yIb# zm98w>lsz8v>raY^Lt5^m&uAQ<*_}Z8_w7$CZF)Sms-R1WadWY8iZCWed z3+LrilEmcc(x&_aQab;JN^h5;%tB@h7r{j(212%^W?4$5Oqj6O|6*1b23DUb2=LJy z;9!FssXRtMSBK+mB$WSR>VI772`bzGzI;t_)aT91z=o5pZ>i0MT-EuTfELBc_R`M8 zeRmIDFqb2TsfMn-4oq&7ML?uHlR1F11lg@n66 zjHczn2Gu~!4RaF+gjm`E1~>|GqL3bD^X*fVz5NoLz6RTP+u#k+;L2r`RleS9@!xnl z425uT+Jj@x@K)@pY(hdKcMWQo$%Ys6)Yi@9HcBMxldUEsB2xR?Kdzik-w#1ktO7&E z5T|PpTpS(LD&#t9z^VtZU$VyL0v;A!nxS@=AKo$NE-c9xO>*-Q#Hafak^jP1(0{Rg zAhsLa^GI_;QYe~ftkoFr$WqKX0krr-B|H=MMlk5de#-0^jf?N}VVpolTQvXmS7Y)A7a&h-8P2g@po zG|!A<-`l=av`Y;^G9fpF^tI+1;ok}5X?kKH`2O#NMerxfb$TbW`}|w^#%>!8ivE0ZLbYcK5pdKGy+*acUo)wwY zT~Se>z^!VZQKI5OQnI?MKP-%Fsr1xM{K6R|+$SgXg-bL45XaK0vifsm_stVKaoD+s z535K$({g_t4CMb6+m$nS`>3rW5W4ev_c^%KAN%_sqLNLQBU-0L(z5{+(T zkcDXR-sC9E={ErC?*nyFT!pIvc)$u>Lr%6>E0A3BD0Fa}?@$B6U1rNwv@nH#48~;C8 z`FAOx&xLe;+N`fc0*qJ3D{wdM8oPdP0rX`;BZ9fASSrOXp7v@CYHU6ZF!nH$gCLP_ z+#6W$XW*fY6-(VakH4*gsZEeLh|5vkYX@PZH-g%3j0FGwe9vt-b%eX@Z=V6i`)}&I zdf{BR>Dow|NT~olC}b2n@M}Vx^OLyslDe!j!sYukdjD54pw+a^C_fm;q=ZbTeSt*65~FpUdQx5I$XY zMcj0hn4j|p$+Ltmp0>i98+@?IZdXo z0`wPObs-F|GBOV~Z89wMHN?-JkyIm%bkIrZn+=Wy?zOd>`@SP_$6^NiYmUt@-p@lR zCYi~1bam?Q9H*avo4?hAfZPxCM}F1MYoC{6%LV}2Y zgYouRk`4{v^7s?Ja1uXb8Ox@ZoO%mQi^9vVuaQABIB3Cdbb`yEt7g8{ z5L&EhIo9{STB;=DsG-Lsii4Dr6!Nm9%C#DZoyAgg_jnJ}o3DCg`zY^sG4+!(i^F*( zW;8lqvh%Z6eJCoOJdhAugnU{-1nRJ-J#D!|imqn0UqRUcXkZCRuH(SA*;bW0GFbez|fBDbF z36mS=RFw*6Lc6buTtFn^PCtd_-HKcv5CgQ=)jQ7wcII3B1W|Vr;j*U8%ENCT5P*)K z3Ur|nJVp4LnuTCe_sqt`I=B}lb|goKBRvwF{Tm#r6VdS!zzfFm2N~wzgXuUES3>p1 zoowH`F*trQkhovi&3aOGy;@?SoR=`40ysQlu?x*7UIDc|(#(?&U}Ixc`W`oa&tdkr z#`vlgx9N&x-zLQ6&`)dzciPF{`FD)y9S;{9L=Lz{i+R+1JM;trU9p2OdSI_z@{CfAz`XWXTQN znNh|u=J|{*)*nEmNqJkstp`WvlcIHByfzE~MV7sYutgJsaJ+o!+K+|~ii3oPf*Xo7 z9INh;1T^J$vO&ZvmSW=<>;Xu20ohzvwGUPQlC>A*;GqT&)ju1Zt&3!trk~Dau4)>P z1P4w4X!AlW-mgBHW8L*ip49bH!X6j&$Oy7Qkbc7ncPq?3BVg3S|8NGdV)UR;!+4ud z-zlp&IDUOUBiT?ENXP3mpTWw3YVl#DjXGU9hPxv{-2xxp!dbNsj`#Pn9S_gv**T88 z@engc<9mVKev^lg2+k3#6fLRQ*=!hmj&Am|oSb_XVYE zrLzqTM=`_aO&cdr~ z!Ni@NyKjwVDscsOFMJ3L-Ly|tv^u|x+0B|UBnqZuCf;|{aEFzOP;fE-3@H4g7)6Cp z8a7%kexG^`uFQzyH*1B4Ea`BnF`0EAI^@>y2SM89h67gAUbH>qr1rl~nf=BLQlgl# zw+-(4{29^n>f?3tDUNK@!GXV=(!h(!bRo!Vq$6Uv8mP|IVI>;dOYPtJ%O4rwGwXUY z3$lh})L1GSK|VNxXsulLZwMhbS;X^IJ5Sl`?Q^88baDpUz6k{n9vcwbgkfJEf9>?t zQdb{PYc84xl7lq%FvRS3{q*vf|4q#wUco5ujoT_*g&(Ig1ygHsx36mm6T37{k4cs7 zg|9mLKz!0{^UJyhlOoRqf()$pR`QLQ$j_Y0-`GAvJ3iI8_3dZftK?uB_zv*UJdA82 zFB!AxM})2io&nix?Ft|V(iW}0xYdh#J{k<+_6rf@rmydviU*(td=mZV9dYU}01=}& zey{kiMGhYnAUGrv0oje~=rWmWA&DTCi6Sd*%>%evBqR4ZNizR=j8yzpD@@XVIj7&X z40+#4_ZC0LpYlgONS_3P=cy&@%ZaRg2C^wZ=g!SYd)lx(rdu=Inr(~$t>BbHdw`*~ z#D2{kry8xKPSnp<@lU%26 zq7_9PAcSLp{fYYOyvIKFl7c~wD(EgcNrT;U9J8D?S=(Vz z!~sVSj#4;+M}Il}FwCup)MIu_-!9@4fufbr440t4xj=`q=PB~EV+$gu0Zcfu*>Szb zkH4|xffroo5`C)rl)0?A?$-G?knW$KW8^f8eU@^leHD)ZrnzYw9hI*RzIyM;mfQ@~ z7tA2q__ic&Sk^G)c!ENcLv;dEpJ{H1bMZ5u6_23Tr2dIKKvZI%$hFq3T6zd<_t3Xa zd+qb92Mbfs{`Xjqb-XSEUCa<}{RoHQPoHO*9lbwHWCD`EdgEn)XxsO`n{(Y1`Rqbb z6v>H8H0))lUn<8a>U_)`peU&B+`is`Xa@m%&+|9LHTBT-OZ^vbtNdUkV3iXeoUkkr z+EH9Z97sDl@4D)wU-1`U)-&Z$-WMn31<^!J9rz3+co%EbPE)-J<>WN<{A@bNvfP7V z74=6`YWz)K?%?&v$ViOlFSO?#1$e^^I7M3uZbz;deI)wSiO zdmJ!~Z)AIM@OV0}S=kZ)K5s7Pz;Age4xDxU_g4V8p1m>rkoPLmZMH46dBwo6QrXfc zaXiIOFQUhanUhjKQszv?+PCw3_Sv^F>~5P~dGub3h>W^q-iA@XnOSIGmnn)O3zBk7(Ru55ip-Ybl;1d7X zHx0NJgven+u>kj1>nH5QgkD0U;>b@LW29C_GC1v8cC6%6{>`O1m7Z2Va8;dA`Ngbq zii<8#q~v}PMyF=Y^;_KkPSpJ-$QDxw@;TJpK8XRR%u$bV_lp_6iai+9fM|wVwyL-j zSNI*GM~e>;Kqi=zHhJoGEM{Po*s;j`^nBu(g8up#R{fxwAt)fQuq8Dd` zmYs(7-k4>b0ErBgB4CcQW$(igcQHtMbs=1bVo`Af!xZPgkQzZvii%95gl1?D&`jPG zZu(n0q60Zc)r}Vyg^{-jc}h1#@*|jPXi?=2eqzxZyWNm>l1Bk3mW@Lhv%*9cS>Gh= z(}0^wxdJ32&M_%AjWIquB#~Pj_+O$ zW^p!1!5+1VNSzt*t{w0NfkEjOGFe~1Tr2y~Kt3(_Z%jcsagFEF=cg84jw!%P z4gNDQLCXH_sgq_9US^I%W^T34P^yUB$Q}>&{O90In=?OWFWCgJO*mDkaTUYKMqzPr zfFugjPTfWNTGU%{n(;a;Y16>5^|!A%ABvGX^-dG&DH*mn9vI`*qra@YSSzN-rat0P_bLBL@ZUh!C;)tHphKYZrgoH!BImPiEvlZn!2@#p% zUKye*l0(0k^)#bsc9Xh5={;VZ*?($&TRUELOp-Guac3E`{K)F-BX@Sm<&wY2CuOOu`7mUZOdj z?&thxPN;Jf3;3?E?F_KD^L%Nf%N^#PyHV`2ed3&aP}}Bj+sH!_);R4`2(j=6IdBhB zg<3CaR!psc(0bK|_MHacbiy{Ph}W@ZOG7XnV-(UJOW`LyhmD#784dGpj3n4|@JkJ< z@_-o^gvCP&$}v+YDO>OgJd~XJ`K3PPGuPB8{JLrF7f|9(VxQ^{G3F?mctv8yBl-Z) zaH_8yiNE+g#u5te zg?Mm+O4!xsF@ICL4EazC-tqqPV(N7jC_^UJs?!FgY4%a>R>q_7@WZaO#+73EzTLv< zs%@iUP@5(9`ujYh@%{66;OKiNr{ul9ieiE@+1V2>_p0BR4l@I0PJ0~OBa3z}L@?xmfjcTs$xaT9TCK97_b2xGf=K9cJ{-1)hb83dB7OgK)&Yw#2x$4h_{#{^b&KW$KhB2B~mFKGYPZ*<=fNQ}{#Nd!L? z$%qgl!0=`3GyDrA=T6bRgJI7H118Qk7;lr&zf+;_3{nNG;e5jq#z}@16~7s`lp6Kc zVgcV(XmN-G?KLEPWS+4%f1A1{;!4v(H!*}avC{nNqDr0~Vcj8H1ZTiw5LduYGkIqS zBZrROZ?#`K)B00gTKp{fZi((4tT%S~mju|fGDf2y;2|5EKf6`Gj&8DgVgR9F*ImrI zv?~J^XwFZ->cg!@OuU`yt+e;pjgZ{9FA<-Ap4$)`B>Pq6J?)CYRi&v43L-@2hOFQ5 zudbhP43G7dF6U&<;(TM#=H5ry({Lp&rpAo0mVdDplYfayag!a>cMc23Qy?*ho z`DqT|lU?mUQ3G`A9zCcqKE+Rdf+FlFT-D2t+qd_IDV^0j>W+&~4xQle?w zpgqBT3`i3#?Q614K-QlG5>4d$RO8mQcTC3BRbSfcH+i4>wFVwSR7_5WCYVem`F&+9GDDR;7^xvy{{D;ngJi0X`U$#?hC6!Iv#H z34IKuHq1^ZZOW%W3Ltt|tjpJ=eP}LhUKJ2`AC}WCg?G0p#F`l+2WtpJZ+WA|l?qcFe%BxWVxq``_;#Dg8a z0@cNKWKd}w09NhEt?%b?_q|0o^+`h-0WxhU*7P|@d-rrYk9h*OJ?$Z#+(H1br5-Ls zk71hgnUrT}Q0(xmR|lL&VGJCK?j2783sm%ax2yM^gU8Mg@2_k9L0+o zDYPOA97M7c8z#^K3jr#K)M@|a$ak@tU5yMw0?1et@6F>%UzHJ`Xnb>|zb^zVuTj;i zR7CoN0_wlq+IZ^zSim_ewzCaPhVj8Cgkt7(=~u&8#)8OkK7h{7NY2~^@f)#zOowbl z+r%oCgt1JNqli9?V`O3w8UH*&Tg#{^_T?*kX2&w>s`EZ^_nBskORoEbJ1XXk7>>euq%c!IL(N3bw)Q zRTKjw4B!u03)g5s;^2gxyDZX!!n#-B$FHL1C_d-+09GQmV1(3PC%RZ9|Dtl^$(4lU z&~(Q4mkkFSx90D^aVPzi3Je0-PU}JN6d*G6D_QSzlEJDR*!0?d1{@0?s9s3jl(>N1 zDYJhk54NpHmbU-;&d^JM3X^y^z26+Lo$q1UXa>5ORr96m+~ zg?{u7q|zbs3t*T^#}vRd&aSE*-^pwOI~VyuiIZn9ijS$s0QtQk5>fug+*Hax%2j zpv7YYY^otghpT5qO<7RWVEZ%xd|?5B4Ydr}6aACR@G0p3jL!whoX6*8zrNI=mDdNK z0hYDLSB%?z=z^h4Ul>DHQ^^0;T6!AXoAd{pn*7DvnpK^U#_7?=iZ2 z-#gO2T0i)G*PjoK*uOO!O~XNOYpAm=mNAsvdC!uctXoxf$=AGL7&UPHo$mlOK+3=D zwCg6ne0G+=n7V|xj;K3+@?sFiv|L%DErQP!w`#bar1@FY1~lAGUe#)i=0cABvvX$K znPBrlQi!&G6nZaLD!sr3WLDm`5Hb51PSOC88O3vVR~p1wQ0+C*jD%sRG4uPo-$MUc z$5;S&1L_t)?mqoNQEUPbnBv7Tw0dyeA-mT3sVM?y`!3+wz)Bmy+}SR#0tW7qqWwK= zR8!&!k?>~a$9dn88O5@8q?kKCb}aVN(~TeJGU-NfBIZES~c5 z5r2}XGseuBb_@P~&fmrf4kHx2%}kt8-Fd0Edd2A9_jTXcK+Y4kSPWd+P6Qdu)Eb~b-YCn%m)}2GZ)tC13-FUNH!GccQmJC00 z{PYmtKwC6b4))p9uZ%2WEq#2b2hp$3Gzqj#OIRFV^7s1+D!qD=Ct;6|8wOJyW{X@$ zx7(Tf&^glRxN!tgFU!7|glR0$b6;z{HlmWuds3dDq4Bs6+zn=(NLBDP**b*2-fHvF zP*hZ8G%Re}&Z|xvAuZ*Tzr!aACTN3LlgHd%o}h=SeCWqPpfqW2v=Oq=cJ1#=Ge{DO z<=7^di^V;nW}yA>F0}Hg3_DbAW2NN35jl1m(dr$ zxsIyMm`v_EqFKr)u}WODvZ z!Xh@_CWNkV_YeB{n*4ajNzu;&@mdyGFRWn4Rtq8h`OPSA48RmCLVS!4YzK>y#H+L^I~S)nN$yLd4_@gm^V5^%Zc;=x^(YvaAX_SZEnO+e*h)SWiR zCU=j!gT^roy8OMt!<@MLNMRqM$NiE%^_-<|dKv}o5hAFvJH5NadjDHv%Wrvu!R^F& z#73EaTOxz%h0!&b;Nvd)ju`uY`xv~ZeOf5iF5o(eLi85dJU6NFU$RHI+N%uS!MsN7h?Xcvn25N1MYz0-Zx9F^g?B-u~_xx{_6Pd@<5<3vGV&Q+1%amK5b9q z)hnB~$g62-&eanJj!Kb6X8`|B)Mt+tA7HqDvIRZMq4-|J1J^Oa{6LKJ#PIrXFlVxO zpaR-iyhhN!U-@o}3zA-_>!Zu>9FjN9XfI~Dq(O)(8 zx|I)a5Pa@tw=oS9q>ablVn+-qvVOWUT04hJ56O-Ti7aOn1TAaj#R34ReEF)ESI=CJ zX_rOW|I$ENbMePJTZrcrashftA{_VaW!4d!3Tsk%6XYo86ERZJHo7G)6y*r5iAuNL z|3{RBzK!8k+lcKa87ZvJx|y>fuEXDX3MDkIpUHQ}HB!HsSR2#JXZQu;wtNo?E?=pP z+aPH!WzW9As%_jFYlb71DeqFn+dEC)xLG}=MG}Rm+4q8m8CT8xjE$2LM?jgHhkE_t z-mFA!lTdmf?{dJhLb4U+q&I zAYal0U5O7^%E8%-GFx*Y+te?Q;K_gw5D-S!z`HyHt`#04?e+d(RD3`CU7R4)r_WX* zC0VJ0oyhDL#-2X}mN^+qtB>9u8fB9&x){>hVw>hvMo+L!v>8D(Xy;y*`EZ7AwGbR0 zw!Hg*;J}m#)W&x;XkN;Rts`M)!c7tBBA@SrlP{-SQdfRnw^HUG9y0J|`Oqfcg=yrz z6zp6}kmYNHuIMKDT;%F^m@iApejV&#A&ym=s6$9^%a70~syM}&4Zf_t-vC2?udQ$`O1qPItn zV&LwnZ&xdEcS0e?wwiconiFOXplI&Rs)L7oN1dgW8|}PeF5Ut0;~z%)3$JjC5;bb% z3%9hj9J7Rv5AEKm+(%1rh*Xn$CCI?kgkW(QkxkPhCgP=Y2oulEpQ!`4JtY85LttE`}Ua z((J=;K6xEy!BSZ=TK-m(_y9)Ouw=^=HINzDis^2qu8}aJ+oS?&5YwbGtXor8i7&Cu zQ0Zy=5EDoriI)Qr+z$wbNB+h8v*(-e#y%qNA-!+UBRFXQEFh}-#byKt<_fJD7(vkU z#q{7vAE|k69EpoPLW`q)rh7M1Frwm~$e(ZZyq2mV65a!QN3ngUJu&#}M%P;Cl&iC&HHIVJ9ex6||GvBi>yV5k z-&o@!HgR^Nb)AM)MC>Ui-O#4e(B9mk@wL=WLOlRTE1wbhW6B6-pw=55FtA_C=H_TT zd7kU(#h&@kr?TTL_4{j`Z*9^CS8MSwI-8{L&)$B*@JqCHCD=yHa}C3)(AC%$-G!_( zPCvaTkrV!aSwFM*U;9~}K&W0GL}a}ItT$!4%?&Kz)(~F(%5P6-wB*(dZR_)51Iu#; zUsjsNY^wZaxLw|FsdmO1<8NoL7?8; zC3?W91gjqMVSHm;{Cr=CCddjG@C|M{Fx`q-`X=p(-;Ew!@h&Vp5u&k>2n%^v`h0 z!g}S&s66sTgKwm;&qb99dnn$)SlmTrngx++xl5e2IyWuS%io(MOeqSh0HOWl#-_u= z<0l$MgB|CujDP7cjz-5D&ooxAcVDK2KbOsnMqjcZJ8yVz9BYs9Va|V_51`dhrnnWW zzFNy8U}-4In-Jjb+FAx82V~~_v0LJaR0AI~tZ;RN!6@BL z<^%cJiPQY9N!FnXK1QyOqVBrIAUU*Rr}H?M6(^NnV5->l=*&%bzfPFk=LAE1r8bH2 z%;k#`h7IwnNXlD}(5z7IMvz-DSqkrb&X{h}AjQUH9CXu&)MTIE01%TZ`25bpOeoM< zu?Q@VgQenCD$8u(#?$bgXGPdgfqE*a0Zg-^o2E=0zGkW` zs!x9$2J`w`tTIp=)T^2=!hDj|6cG-K-na#$`yxgZK>68zs2VohWLXtrb_5jIA4bjY zzLBM3t@!Oof5WI65aCQ~A``J=@#Qne-*i0|3``#`Gp6hH&GvW-{D9A!?hyjjc|rAQ zg?xr5Z)Y8fk<40&Mb)aVVNayPd~PSwfgSxJfQa9L#0^3&S{9Kk9UW{2Nq~WBQ69Ci zpM#_mEL^nx$OTGhEcKqN>Gv0fxWwWc(Sl7e?`W+wH`g|838EQ?x+z~=0k`Y*PpdF{ zQT(b(iI>zGbGYcjDRch1om{UImky>bu~nClp7BuvQSKWT?z7(uI5wJfOK*$k zS_eGa))d%FY=B8t!AyC5^9}YPF%;ss2hFFB9pbSRMdUOl1z~^7Z`>wsn8skw1C%jc z|8y;rxc-O-35j@7Gg76*3YZ-&iX8w!Kd3|GMGNSEEqu+F!b4zDL3uq@X2sKdI9Uym zUJVC?8d7}$XzS3Ay?%Qd6J!_@k~H1@pk^JIudQzVHNkaNH|N%Lq`!)C5RSO)gpbs< zORR|hS)1{TYgamr;HgSr!X~`H!RSFgz`O+e0(rlm#B=ZTys>UPn$-=&?^^0?u)qX8 zfW-nICdaa{K4mlvdl1UUfBWl;e8n8oFuwY4{$fW)l-7|TPZ18>Ng3%#&Y}-xKl9 zM-6UbD>lA9@n&+1k&vVcGp>KL*)Lq5B^0vxYaLENob~2Qzt!jxn*^Kpk`D0pfLH@z%%~h+K_5mLihePY9HKIro??dfUegpVNv%g; zMXVuO{PvIOGA7sxdyKW{p3lA!5}k73yG|y5Qf|IVg=XXjd&hod_$dkTDrAQqhERT0 zOIYKu9_B(FpQ#E%mjwCX7VbLx)tdQa8rk~BpC#a%#Q$+>R#&_taRw=zV&al)UZy7+ z2JaW0QI+1*+VR!;?;1))W6F^!I%8(Cd{H=qt!%Hd$ra1L_as^Rak%XA#hqa5YyRaK(I8@RcBT&fZHSjuLmK40-?eaU-(9GQdA!y|)Lxm{Ns*unsl;!LS9)K=NtEnY zzv3+3l&|hLaGU%7vz5krhC^z>{Sc#EX$UPXI&Cy{H$GHSgq9_a4qSvvvMoS0zLBNH z;Eud+k1_655ACD~+3;^*^Kt#Y^HrV7A{;-En?B7VDZH9x)O?+p(n_BvQjK`R-3x7u z9F+-?KzBxjS~hRBS4`D*Xk+gkyw}5O8LSxvL-!4!D;woTh~M230s;1wyK#%8DMHlq zeUSKaEPSRfQ7Z>y*Tr{g6#iF*oL7R`=vdNr2lC{|>rKGjh5X2wc1J8^dXJbnu0CY8 z-_tBNO4D4yED+1XpwDH+Q`Y*;&Ov|i^!#2f0X(iCZkmI`KE*ixEIxtjK@U5=D zM_5Gpb6RjWYtIhWOB;X#sQqY`o{E2U2Rg?5>s0J-Bf?R%d?3yWml6M^E~#bijI8R6 z>?)nw^p8IV1FHubWjaT1E6A>UN}&1Ss_);K9PTY?y!wcUqH|8&X}w6OV9mea#~RR+ zDvQ3Nt_6hIwDr>8Y*UUFB$VoT9@63p<0Ba*gXs_dpzPTvR=o?=IC*tZgi?+& z+_K(pFuFKfwCuR%u_u!9M<#0~jaS`&j+GcM7*tazp>b zICGNKX69CUOT(!MSFXOKi;%yn3pRX!#HHLC+tzgj$9l1}yRVV4<2a$?$Aq?4{k#ev z>k}Y^8oQEvnsHnxx=MF#)$Q;?d}o(7d%UV{Q_rbA#&N*76xt zP8yT|F16(p;;4K;yFchnFL*0^UT-gTjFtI@O*C1ZdSJ=#N6Z1PgX4=6bnDj0Vd&tm z@~U{E`olZK@LP~tZ9%M+70+S(GHTlN)*}@3vynz=wAqE z>r0RtZ}Mam_^n4B-o-r&H|cz*5`36(^+u~$@l~(x8E6aefp03ZD4@GFq556^YF?cL z`*}bdaovduWYEOIRVXDp0~XUD1bcX_{jWW;NngM_w(=iJLY~W^Qau2^lLX3^0k1!y z-OmstAyj=M{~emw(V8kTbm38WfA3zY`TMUn6qYuv41H`0FY#0ElsSbwvnSg9ciRquScU$&s=7K6j=krbg9uPdR5`d3?Q=$RAC(u6rf zaW~!%5U$hJMaPRRiy>?X8C`eX4>0Q-oxKIlI9Tr7x+?jcpK3)CrIOMA?weKw60(~H zPNaq^-AMYrmep`T5yP`bq0t7SWL+#cM5r$#EE-ns&X{WXP_-Iipx&!ys0f!G$c4}F zAkDcD()I?kwHQ$9B2NI^jhVX19x)yR`3(sPZ)tT5k_?aP0qBnd3glq(A7g{AW+nGw z+9a`y2N?-FCKSIdW;0kkR6P1J(tHmbcX?@CO@c3@>Bm5_tq#%9(8D*LCFA%pa@kjI zbe|XzP(4i~Eh6V+`rDN3mQ458X=$0c<-MLO1Iib%&c~Lu+$U_6?3$Mn2*HB zl(nC`x2HzxleIaLe`PDNm0NwYKZKltfP*-=wfwh-x9Tm!1KeAvz8cL%PBri$;E6T#9y)$IXKAE6pd7`6NVa z=pe}4&wn5iEh?p9((BSaYDg}T(LV%QE~aXYhjb6#w?&m{jedkVpS^+kb~8S}>4I?I zrI9T8!2z=FZPug2PAK@D*5{(utf5@?Is<4Ca-ShEX$GLU_+75Q;BHCcAA%y5Y(iWP z*(J++B~D^t#Zk>J$ea=F>M(FhAqmD$Q)y!ZsqX9am05k$<7)Ty%d9lAt(mI->`E+n zdqmnG9Rz1M8{q8Bc-QJXwqG73Tj1Y180KbT1sXa}EtmpdtwWZ|AP@f5gJ;fj;#K!r z1nY}qf*9O~6$C7j)unIetRu{Es!vozB* z?HH}gs(?R3;}p5gy@SZET4j>v$Z47+~vJW)@#qk6nUx+4d>7<$h3sN z@%ao48!gc`Q;7b68@Xrd!by^Wn~>*Z`)q@@*<-1rHAkNa^ndHhVcOH4z@uWB1sde7 z^y|aGecETl^}*AcD%hdb<6ee*k))J6`j z_vE&8`KJesAk=E>9gy^pvtzH&*G>bj0A{G_VYuwOHxYhnBy5M%{)%r-`gR?ASmT!0 zq{*&i@$rgR>LQXyrH_hqky?nh%~^5FzC(diiEblwuR*by8Y9xYFHT6Jn|9#7Nwwx| z=^N=?8~dxXAy^GK&s|$Z_y>UKDUo$v(Y*S^mHJcvtAS@F_-vhX20lG5H#ZaR8;dP! zqrJC^TqyD3g#nN;*!MbQiBu=<8h4x6#?47|Qu_JLjahOrN99P(7KxRaxD&#bcSC+L zhYUeAJJEOUZ(c{f*M%#L*r;LE$6~6U{a4O{*}Sn^7BwWuWhV=IkDel%8VKc+r=&T3 zpzZH{p`>;x3!j>xJu3;z3YZi=Fp{|Z+OHL|Nh!C1suI-}5CF_8uDiM(rFJm^9(@l- z3z^$O;%M7%OP9$ae||$pQ8O%MKppmge_|9lVd-X9=ESM==j=JlvSjl-%|1X4NkAcZ zPfbqOk-K_gGNQu>T+@q&Ax1!AM! zV`L3zN)B=+QBlGs!=l@AC*n|c-_!VsPMX$jqy0AV8+}>IlD^R%4Gn33=1$fi021u) zwX*m5p}F|u=0(LVvmsQd%9XgGo&}hA3$bj*uYGmKcbC+?VCkeV#h{RV7S7QBRp&(i zjvub3Wz(C0Un`FM6Yf%uVN#A`PoZl3D<$S>DC%HnV=REu;|pgbfAp69x+9yF_!JED zCzisngc%FJJ38cqU8yEuNe^=9ZCEre2_xcf%}=x1_6h_ihP31y1z~Nt6vO$~@CaJu z7#jk61U71g=aExDLqB=5clYM+9Y07ktx2Qfi&kCOScQu$qz-RVYzY|<>UI_?!6cp& z6)8VkM?00Yq@C_e-232Thy;WXk1B~dBh-=;GFp!NI@$p&DCr^Z)AlNI!Sk!#7MY(|t+*>ZI6n@E#O}PHU;GWIbPu zv1oS_6oEYy+pn*<=`2pIma){H6Aj+cvVWY#r=!2`nLW2jX>Wrp(ScHU6{c)4aSu%? z$TJHvFs7UlbYjc^*DR!lY;lgRx>?Alq~^)N#6r*))9IdY_FUGi8cfnZ2`uE^O*6$; z{Rz_ZSEG11j$;o|)dodRw4fX(6h#HJ&MaDaiIGD9ey7HnoWGHT=ZI1KTV#Uv=Y5YO ze6qj85WGl=KAi#%_=8f$X*QT4WJTe;-Y|pU{`!eZHsxo;aJ;JXg2u4#MFW5+0ze8M zRF#30m8(y;{?%&x#bXes%{1RY+fB5%*CcuWjz%|&S5@cxHcQ%}G<%j+_o>RiTe4u- zDEsQxt<(3S<7a|S@aVX^Pv3VP5_Y^P`bc z*Js0-9TsPpH|Qb1B2%b`{wbaogzbHtYtemMu*Kw)B`xIFrG--2`S9`qt(U*%OMlW* ztwSi*;;rq48Lr5ae0C)DNS&Uxm0!@ZOmxcR6@}GP&i8bcPW%-n7)tL&mo&DoUccyR zJ`MJ*Y%wd3@|zijKw)?@_2^a#r8F-=mT>t--QWv!!>0E&zw9R0YK`h)a#gFz2T{35 zz7YDahjTBY1?2CD1JZemQfFjF@H;2AhV)Li?lGN2+lsLqvDkNqj6gZ94h#x#@!*q}kQKu^aM1=QennXo{ghBQ8{5ayXp zAs62Lf*nQDqWS*S>JSkyoDo^Q&g+8b_KF{n__DH+O|MK|&qS2>`1OSmdXz*1jG(iQ zqXthzW+Ss=KV;|iZvy=p4k=da1>CdU)9^-acn|Q3xr_sdaajY@T6IoY=U8 z-|6Sj^$Gvsa2<(`*?KP-Hd=MUASkdvo)QoV4Ar0u19(FGZS=_pE2a2OdJ zzIJ8NgLr>bSR*=eOQl=G!^tX!J$$C$znWkEcZ&`%JW_=ax(%EFCoPP^RDY7*p9n}5 z{Qe51R!50O)o z$zu*Wr{E|&HYf*rnCl;ytZkfb)n3dP3>njm2m-E(uYuuyi)B5*y*_L=n}_oEajuRQ5fc7<8jt-uGO%FOysN zVfnf)_R-X?xMxpnCs@k5x|C|w^ar(c)=Jm8Q8^3#cc)yL!k4NX z{a8neU6A^!{xJ*K_7iRQrN?LpzfMzx)3xn7=Oj}$XOfSK%0Hda#IuZh zSC=^8!O;8^ke}pEAa)S@6L?n~n8ix;=M>PGY|vpEob(%aAniCcY;e--T2h3F1a*`W zfCEz?;SMb`?POmne|$R9F%s$lu^#SE61*D)tWKJXP5{cHZWF|gQNqB$!<$zl?Uu5b z`~GUt%|)EXP#(T;CJp;pIbQ7psCCy1#Sq{rzNyB6$wq%2={XyIk*b zrRcAX|6tX($L=eSUp=ahQfE>OMjbpr&(EO=EX$vLTnL$*U1yoGtrd?-kdcOAkjwQ` z#081Hb)aA5zL53)gqk$f?y~fTfupFY+UNfJt9$$8AO{>=@CJdd^hS%AW2Y)+FUy6d zBAux#Sz-Rbv0dwpn&&q`dTYJN7P;^3kLJcZq*j>7fe#aBZ0gDE!^@o?_<&4h#_ehdGZ+uQNe zhti)0(lH^%i2V*m`Ek<~gxe7r{NYkQGs2}y;V8{&pYQZY5vPbhrufAlKZlsW`A@F` zK=h};qX`u}W@m)651hTK%A=@D(~z3uiSO_Hw9UwrZ&a1MSovQ1%V)fM?zMxDyQ0Xf zRpY!X%8HP?cCP(+;d63ZIYO%Q;~ePYI4SK(MF0tClY?|P5sQJm@ecs5ip-@ak4V^4 zU>H8QeapZnD0V6b(8Ad|2wxC4AMWa7s8rYJ0)bI^{F@tcS)n|yUQ;Enxp;u!LY3i{ zqBt>U)uVyg{goO7G)n*V8j7<3?*>8O70CrgBi?1;L!I4snxi@@jhHE_?}%G3IJ7X8 z^{fN2jO|SeeJW(%Ds)M&D<$zQ$7~#kJUGEIL(2|2(;OAI1gQ$iRNv^Jx-n!I3-lC6 z3}Ur@ix!Vd1du3ut1@F0!ivlBl?%UUj=*&V>&eixX%O$UM+A_%!S-y1X_WxI&3gFx zLAF=L!^i%iSIOLETrVLsfpPMH6N#k5ZPK1XtTJIQ3UfqS>BwtB)7LK>76o8ATX8Mi zP^Uu^;6e(Hl*_%CIn!wP&WY4xL*57)6Yfp$vay~OX3JKwc2Rx-hcF-`JnC~64~ zQ7McJE&6odf%}fK~ zw#Tvmv7B!4P!-lw)CCelCl6;$sh3beBLeV8d2_P-H%qqW;%~7 zG7e;FxevLZItT#d{0!Laei@$(;VWki2}1Xs3!-g-@Mp&#cZv1{Tv#wj2O7OAqlg6W z_9f{Jtwm!8@HV=PUK58i`1AxVLixc0+p0#ViD!pE6BTk~d;&7Gu5wMvDg2O%cqz|a z9E4t`!FeKtETmIibp z`u%>tDO|>Wy1r9n414)iqRWt^Ls7&H{#*3M!r${`gKx4~vfW%advu06(^Eqn*Q~2Cm6zwQsm5 z+j@CRVhv;uEH!og@LK8>DqsjzxsT|)`%NiAcnU1v)pUv`{^hY9F`e$xnhu%RF3(Mw zPdCwf99)f4QWhRCAkFt5TJxk?_n7=SEVFeuCpWkQ&v80`*6QDunC@gMzO& zr@;$7pfimepaAP2K~hlS;K;-cIXM_{Saak%N*tgc_j4YCzyqnxbxQ=BElHnh_mF?w zwm*A^3r}p)ltA`i{|Ngcs-WGWW)MvaB#}L!WG^rg)bku2^O9FqAk&i^;L=Pr*U&kA zNZURYLqqwx1`_Mguko)HVAK)}G}(byr6lNP;M+sz4E-eHYf}euAh1M{2TB=24}`7r zw2lQjWzkNUaz!U787p*X1E0Ui+KUsuW= zYK@cf{A+4(OfRf%57^>eH2+QVJGeLWZ(1DmGyO(qZW!j+l$<>tBsy|o2eJx!CX4vR z8~di!@%vI+k5}=1M6|7??AZD6FcbrrTj>VoLUfZ9htt-AfdP=!cc<&c`mvY4Wo@}d zJS}YOB3(q+yflyUGP#~evN+f~k_q*-IOhx+kYW|JB!|Yg!!Ex>v)4S`2gSKl(tju$^!i@sljbyBI zCw#wmimQW}bS+Fqy@{qYB0gaM*&WH-Z3LiIvO(Ne1XvQ+=Mo3!DR{N7n0(eAc@<)T zMB2fs9ypMEvzt?s<}IiTdF}@)OCmlAV!2}g!G#m2p2jL-IR8Uc|`=TYc~_1zsVS90n5c6uBz)l6#|m zfUf~JeZJgL+T4kAfZ$~eT|@^Q;wffS0KFLuP#bNwI~ez41a*k!?Ib4PG#EB4UobU% zj3-C6@(r4XHzN^?4K6G@@9`tamz(UR*v1+)xBt4|x#-P=GqRnz4Ne+;8xkN3( z1%O|A(oEc|BL_ld-%ia4+6_G5qG4Il0jHcd4a}EofevwvUZ_n(Z$AMf4D8Ey^iz$pueQ-ymtKwF4yT61}feQXaMH|V3 z+9qGvfUx`?`&$V%!<5;j*${ii$h@yJ8U=w2XQV894eeu)cSLAJ0K4G!73fSP9W*`) zJ+kbl1#N;Z-b;*RjmyNpmUFK%w?J7^Co>}C26s;2l-$QX9`WuxBdwGxqPB!1_%U62*A+Q;Zg zcLGD~=7GOJUJ>6+2X4q{>q>u7)P#|ADjy;9V(yOc)E>IT?ecE_Egn3;M{ONWp(_4< zWM8BSNIbKp32cWuz>oO?4|>b&jCkF_hv97(QHKZxg{Db=e=-2f4`cEcWLDIdiBg04 z1jnoMfz(^jN{|i^yMX+@Z&F1Um`nkHrhyni5K@&N5WoF^?4#GpZxFz0uxC*4WT1lP zzex|rG?4iO2o?!N_aI2`UH7m51Ze)%J0}I0rqYPSF1F}V$uyscZ!AAz}Wgws}5!jb-Ms}riD|xjlO1Ar+iw|m$Rhbu3n%R*1 z@wOfUlXhOy&4({Tu%5q-5K$HG>PNZ!Qehqm?&+_-Otcei@k%mi=K|U0b#AD&N^&6b zmQj~G>+x?)2UYF};#+iiGQ4s2^6S1+!ufQ2k>~6(2qq!T`2ZF1b9PjT9F#zP8I=#H z0H0RnGfY~y3|D$jDG*Yy#|%rZqMJ(tTTTJ~OBdN91x570Bu)?miqe{EJI7EC-iy@5 zUzRb4&{bjrmCfLEbY zb+t%ryZ7`=f;;X;bXLDN(#D$x}jeJuww&VEU_G@+9n_Se><;y@qVu7D8@9-rzx zt%C)s6~=1Z`!i2(;PllLX?2vIQS{0>ZrW%~-BO$B(dTPo8gclc*4OpsA)i>4aMMT7 zQjo^yb4I^8M=s=2Y$w_5FOJeDzg}xYk&TTeSpviTwFbFKYFu*IU###KoZ9lEUn+dh z8Kh@%A`47I!M`#%vY+^fj$}VDA`^i$=nL*EKGFPev9336L`R2#g75$!*moPi4MaET zWP4vh;lv$subpva?P1%-jkPxA!R>Y%RI1n4EiS)a3)endmXPgnt?fi@lXu5B+sSG> z-!cW2_o>TdOWv)wERVI)TziuPNKONVJ;Nbtp#CvIkJ1qUjV65s+g0UNC!%ts4=gLM z&!AZ+QfUS^gX%9cp?Fhd@vie4o?Jz*NOakoHj{&P5eSNcmq_CRhC@xojG+~$bTb#w zr@72*`3yj*<9mQ85U9^_%vg~K+l(fsV^Yo#04rDOTyw;)O@vC1u*iLB;TtZKLxK_N zohMw9^44r4_Nw_}(SZjy9Maw>Q4FLm9lV*m zO!oY&uD{b$mJkLR_#hlDpbNloQ+WOcplvLVAA}5WWZp>PhQUK-ca%WjV^Uw+E4=Eb z!>_`|pK}<%hL^$b%k6xU7x6RTsNT~B(Cq!@lSS{7Waopbk&)OVf#g{c`L5{W^tXnC zn*8HoQxHfy3IsE-pfDWAPZ*{FJVmmc`hEkPdDS`3Jms z@~^MRpNwRVgJORTicJg9) z&Z|txJ=res9g1Z#CLp?q6|ghEM+-iI6>h*rC&by132gy3Ew~Z3YXykbZ}N!aVu+aS z<&fbu?f#X_HM!V^OY6g70+D1&8@SS`Xx?aF5ZSR!S<$~PO9L;giLL@Z)d9Gmj;a+( zrPZ!o;4|TO4M1o(cicwUhmkEUWfU>FcG>Hc2?XTemROO7&(6!w?`e{jJb+1sUT#_M z?s+!Vg_tT39>6qZ3BBZWxAU#rSe2T4T-iX494HAx0Ypo4M<-u-X9LGY(rZ4LTe&+p zdX|U-i&ot21$^A2m3Fl6Bx?MoC3LrwVz)oYM)6P+4br0{xU3E&NJV5p7gR3=)d`bS zi#t%C(;3+@g(Z?X20HKU;nLwM0R$-l{7p5xV}bZ5UDHAyKms(J*MX_-rFq!{Q4`lD z@GwV0ArZijX|UMup&bEz)vB}i5AjrRJoj{rKPH&uxm$*T05xB8NV1mtdoG6SOEIgP zw=!k!(cA0Mw2lr408SuUuu%XV05)tlumh;}`WPJT&J7dcJE!<~0Znm8R#qPFGkua| zDJutUSpEu+yj3}<_%uE!cbQ*!O??bvFO~C3XEd8gePAt1O zkb1IL{Y~5PY%q%ANMm7iPtfu9Z(R|nj@CmFe?5bfB-)1rI6|6WS-kb53a{)N|y_x0+jVR-rP!ggX+C07Uwgvq{t4HBl?X%>Q9O_Qa;dV zuK}E3_M~j>Zqtz%|KYTL3|fzmW~ir5lH}r*&V8h>g6&T?)>k*UrM*Yekjdd#R@@b? z>xZrWiB;P`p`+jGfE>06nc+r$+O+RbnoJKec>li*TL|z42e*JAU@f>C80A66x1OYu zwN9j`bzx>RjRNhkq-oGF(z#56Cd1UN+yE*A$$oB|kn@fknMVd$zXvtqU3Tss@K4T;oKzEAVucQ065ndttH2y<4RP- zdt&DPe3Qj3oYXlm$g6+55*n6caZ{Af^cqsL0i_LRCZQf7#h%ndlr-@-I#-7bT7WqY za6>AO+EP29Cc{Wj*t)-xq@|C%Z!RpvwMKX-6bYu>MeipuNMI`(i@{a%;6$9Hblpwt zWr23&6%=Go0l<;;Vv)ao6_RR8BPN+2)#6vXxebq;b{>ic>l}s|n-1CHm*8Gy4N$-#7Xjsv#HP2)&<^76C?vHY4pJV3wC5dt0{{h) z1f9~aA22CBb`uqkBuP5B*;HrrEasc)olOF8vg9PQ5q?}_^*j{niLCzq+oRniz4p!> zwHH9PxYoCw{I?9diDqX~qtK6; zA~?_7-Vxl)@Y^CE1l)J<<*9Vo2I$;(7!`@pTwuG!b*HQtyZC{BPTG_Cw?xaOh(6=1Rs1Rsb7-Zdp5KzQMyhZWv~fTyoupU>W` z^EWa_cB<|kgDrz1h*)N>IRS-491Z}3P{k=`+tP}828D-fEq0b!ZlC}6rorPiRL=m0 z%Sw6^Tf0%C!+>JF(AXNl^m4;$^EV^CJ&~r+xM)VZo;cE(;x{;E<6s)>FLlJp>UD4C zaAyJI-oNXjtyHOJ^%<797K;pux~?C&%}O@PYdOr-j`z*^&vjvKfYTFSG3g@9Hk(*YlfaLoY1E|2JjfajG|C0Yg3l^(Kd;}| zms>%_Pj7Pkun&ur<{DR$6C_Ww0e;8InNLZ#%yfH?W+iy3ij82RK` zi-%8^r|WGNEaeD%6#O)a1XU-$bH(dmPY=OAdShL`b5&27>j3GPw3t_P4K*r{#{2+tf2TyB%0Ect$P16 zhm{*vr2oc(_Wl9fYY)_holXyEAhu2noMHwuxGQ4LKnBmS05$ChMUPz3xtsde@y7&R zwEw`Pb#e!U0`r=j=?+GqEBFk?RYAGc86=*rc-pZLo&KD=V~>RXGJ?5oH2`Ju8i&}O z->-cV#7iZ!T&Zh7xv##i`+1_VLH|0Cq}>Di-$5zO1J9$F(<7Nd&ZYUHGQYETQr+@A z$6>%(VTf;LVOHcHP1yJI8clQfR|kS&xX|-ozE=4s7N?_g925=03x^2u6BwsmzeAd&EJ=>B*P_E{O9+JF*8bUNFz4u6c1n^lPw8-_^Esle`*SLyqZ?b9zGt@$MfA3;a`s}vMb!aQj9a@xAMB3$fqC zJqDueKj*OsxR5Xvn_21?#ebh?x4S9aewU;C*a5Emo1NTS@Bb&i1VeQTezW(1*g%i` zu5B+m|A{gGY`gp?-v0A1lJH0LyPf|>nDd}6-UGPZ3wJswU=rs0sHB&7OOA*15!Fxm zpKR9%mLh6YjaZ5B%|3U!?r&GLv&Eq*UgcUvfAAx zF{vS^T-X$3V!Jq2+4+*uT9UC^@e@5lQZb~wc>}IqXv>UQqvvc+dlBYd(vuns;~Fka zT!P!!Ti4FR&P)ZL8QB*T?@5P+UHw3=Ycoo>q+u1u;nK_{ko|X#v%9A`w<&b)2Z5%9p zc3fOV_eSEpUk|LxY&9y*5chK}`~F;vh2`{}mB>M3-lXD7TSw>}HYmd}b;xi8$qL_C zC?i$akMxXv;5fS7@HwN=bJj>C47V=qZR2Bpqf>01H!k&zO>N@yCMY4bMzESxSwUX5 z)&uCU?xB_&Y!CVE+YD5)+6@!MOf!Pf$|U7Zf;->xiRy?ltJA*(+PO;?WSDf;bpZj0 zQE9O!6~>kneDE7Cpz+fQwWNd0T++G-t(t*}|LB{RUi^q5Fm~OyfP)#u`Wck@6(_Bs z_E&$zhGu$jQ@v_WQ8pljl|O;+g=8n2+Bzc0APaS9+X$DnjzZLwK=V1pSJYd`y4DWs zMv*QBFV-6z%BW_JMw1SA$Q+O0z#frm8gKT9IIeTRar>a#L}-SpDTq~d zvFj;E5{su(@}+29mBhf0?iUuJftAwD`odV!LXn0lpMZl1S7i!!7+V&Dfbx~{?*6oC z;|(bE1IjDAOo32bm|lo>7@5n#2@vk8rMUZsEXN>l6N z>aSQ5xZY0N=qT72x>`m;)LzCcl%8{4`y6euEG$xKI}!=%H$y~9TvC5@E<+igYi}Ii zGeWF;W{M>C9!q`SE#eW`k==JFT!n|o`4I2NG*7W=Sk?9Yu-*{uM))d=66k9#*sMg2 ztIyMW=~XPjJBLzu_^p1;_wk16Jn7k7Swo4R>yLNc3C$WJoq8jcGypc$5`tf%q!9D5|8huetS20(f%WfRWZ+Vn$awn+;(gR-LESVR|W|n0nb5lky@v)69ECE-M#6750bzL=qUMYLFZ1iD>3^&zr1ve2iEXWQWh@B!acLBx;e zm)6sFr~6hU-p4F5VZ457Y+dW!5eaT}suCP&OEMP5lT{2*BrJM)#tJU?Hm>v<*CNK2 z_me|-tW$fP6)D)`^VfWYf~-(q>TUnmXFs2A5Lt9uPbF5KtYiQ}jpq7l!wP4a)P78( zFNqD?Gu5 z?bLV9c6@0^POgRT;o(+qxHo5*+<<`i8aJ5DWsCfP+3m!$j*;r1LH%{n5|@n5(`3=b zqNwNyh}X6~*>S;8HZV#P2b_bJIy{>*1hPuHXUFbX?PZ&&8*C{`xV5zTK!sNedNpjT^;*VMqgIZ#)w(J9(2ZW=~%y%V%oNdn6 z%LZd2VkBz|3*ZajFktSq9$YJ@h~G_2dN_mrJ{|+F&uq(Rqp=Rl1TeSCki@UB;u*e7 zA|L&*o}?z7XAm6}gsV*fS#MFAc6br(02}FBtTF)qCyn>9Zkaf(f{=He!bzCN+sIez zmuav#7NC+12s0nclG2$&Re~HcC4;GsHvktq)Q05Vaof#js)S}c*RD6i$Ff+|>4#k@vvSw5Qk~Kn#4{EP&iawuzy?6vXoF0zw>3oIU#HXaDo}_`5vqDQh4t_UG`1JV@z;%7pflk|rlA_EHWS;c&b>jESQVVyZo^-bAVU7Opg zpNQI{p^g3GJHVAc+g&%W1HpTW6Fp_7>1Fzh*mUu!dbS59AvG#;w&XsuLNRTEa;|Fz z`$8oBQN!#^)RqU>e^Tla}}=ucr{%u z{>evxuQS+=y7lt8#6fjxR8+Uz=ksWETjo3(UwTq!^CgW9y{|r7SzDGtwKA>YPC}s> zjS2A<71`tVjvdsiN6w-%l+|h62n~ITX}o;GC#4c1yi!~?>U2mk->zfkQphV5o^*|f zSGH=A_rkKv8`}Z?;)#ou1bo8n6PoHa{bLT?89lW{M>?IIu+bB;5*NZh>-_v!y` z)oDhGfG08= z$Nfg}hg^CAIW>qVesb+T=v<9jFjmkPcZ{Clc>o>}oc15F5}w93%pJZV>%!_FsLFH0 zU;W_Y3tr^(4z~n3Ils7OjdX@#n(V5&eg=0Y$O96mYe%)Qily2td_>r|EExGk*c3et zh*PGJv_eTMp%7l!kaBjA*YQxn)gsI3=3NUSuM_M+-OYy}TGWnI0SKF;d=F!~hfPo$ zz$AUwgr@1w4~UeAjwnpjCN9Mfe=r0%W#vSZBX}dtfzNbS4R_K&u-X_cZ&;qUR62&(2-75j3p z?1p`U8Zx&!Wnz$e$N~hmW+(652U0I=zH-vZ-g~&efNuP2+#0JkajIT<`ZJ#FXFSMz zq~Syv@s^U;n>YYk9{HK70;K6lS1i`+{ef+|GG5 z9ZBs9$@fqR3j2c1`sq_x`OwsU4a6&7KA0u))426C=|>n6RLbk(_?9BSDxl$$>kDH% z$F-urUAZib=5Rigi$6Kj_B?Xw(K0?d6g8tC5r401RU>watsRgnV4oV~NCgS@8=k_~ z6R)tx#z{n8BM(5PBOmbZguU<{H1uYZ|G~<-*hfL$*6PX+LPaW&H%*RmL2OH@c<`aS zcplw4Nh??qp3X4!%&IMis;$|mR*ZwVMFN*`SH_dCMl!cF_H^4I;h@B+D*<^>|6-BFATn%;roCFx>t_6EMh?H8C zu!X)&kPg+8y>L(f=32D3E9M%$XtI1*4^YdVz%?)I{QdE$fhm*ikPG|s0Q+z{-tFHTiP2s||YoDmS;LFyOmvPz)t)}mh|LOZb&sEgc zHac@&gn{r!p-l51@%#?%Q2MjDiPL#Y=PJ$-@h5cl&;eS zK+}x+?lb8ARH3QWphm=Zrcq=8nTP9lSJ@%8sv)%KW&}76HO-v?rR6Oc(Q03IcnJYe zy75tw+6;gLE-VvPnCRU+sS`CAyzYm`-#PJ@1$P27Enb3K%nJ&tG{ND+&3$8B85@Kpr7&vrKBW) z??1Kjac`AZ?gh(HrPn!;5B}r<@qsIz0kH@R#Agt@rGfOT&h{@owj2=a6wqij;&7^W z55jRL=1Z@Go&+%FWgiFn2S1*7H33l)=ImP#@JGW-n6$Of6=Q(7o@YJs3!D;|HdExx zEJJoKi3xFO3ybj6VdDiN;ntucAO|2U1)94@VB{gVybBWn%$*hU&LB+bvKb!xbeWLh z0NU$|hgxmS9r=Kbyv=OX@`!E7&#p+B(*-r=(wm=?SHN7nbAbk*T2Zlp-`kj33O8u{ z2NxCrD9ehk=kkF9v-8B3W~9U_@%%nw0$z$Iw$V-{q!MCt0Cd8Qt)QUr?{%t z{h+uj-O96hYLlAL=Iv~dw)jSs&}lEA#Y)|NNBI;6&vU{a3&6$nN8+ogN|JYqtw690 z%ypi(Y!puNjQ{M@jnjYj*+<%E@pZA{)?E?L1YOVs)ni>e?6o9_Qt&5AYS|cFuryN?#J;2vPs&FWRZk zKl-DDfxa_xk6>?S9&u^wifVRX&s*7;L^Yk79fP*+Up!rBZ04Z7tU26PH~QfuOC(1J zjoWA#pj%uC5m2~8P{#~z?KnEs8{3tybQyOh1H2OgT68^f-SR;aW8?^FYIl7fzdcY; zZ@5XykbZEn<5Rhs2KZZ1!2LHkTcn!_88xAPNeSj-pt|C=Nbxww?{}|3%M1 zd-a)z05_>O?W#SJ$b+EW+&eeop!f`F{dB?SU(gQ*M|1W9TDbta=u3b^5=Yg|(?93( zy`6vZqqpQZ1DOm`PNNmG1AUzBS)6`DEJS@d?%qPWCXfl?ID*={A-G1pL0`O%nnnfS zuYF`daU5%@p;ivHf@dXW^%SyZ>MW~;?c)tRh9h4b@<~aGs1w*drbcv|R&QOzXhd)n zo!|w$IW^O?A0(uTNfA+;bC8t=&WYS)1EW z=%rR3B}@r>+6xr^18N2sn?I#Ad=sw@bk<4qDFdv)V3^|#c}^GMcv$SxYxQc!XWP)3 z)iz)OG42Jsb2=0hFWU)ch)NZH5ctjQunCZW@2xG`jZrI^F<1lIw)e1ChyZx#@*;9d zJ!W!w#1+uw=9}4GeNL*`mmWk!{S;(uo^XHCp1yIf=ilQ>zHGLxZ!-a(-)Pk;e(Kl< z)C5)3Cu0J5+V;E4A_0gK9mI*T=(gp;j#ezU=6&It{Z126k^zpiK<8P9wCHl@-t+?*Wp*y+A~EE?x3S3nM8d3M6G+z4 z8JloxompR4*esM_EElQ>U>AW>x*p**B1%BdX{{V&6k~jA@}Q#p;3VuDGL>8xB^lYK zIpYuX2OC9TQ{87*LQVQo>Oa61gbo4^P^JfGMP#ILNO{`TdpUgaL^?pWt8FgdaFdyU z-n_Sn64C&fJ;lltt);wqE(12Z(!{S3HP)OD2`FNLa-ilVlhhMfQ2fE0iM?dH@0qTZ zOz-sK#V_D<-ENU2)}1$seCg%c0NW>`HWFU)DPYg|g5q>QOD9zBQ&%1Fulee)>zY8) zdEoQP&*ytE5RZEinfEggWG2y@TcPfC-^KD<~tUXw^ z%8*djjcAl4N6gXFdEbVIl#^$aLfFZjhfNN{F&unp!BT1+Q`U{aL@ii7COpN=8ex$0 z&eOOiDGi29L^@5$JmykpP3wWFvF~~KGUo5=K2gXTmI)0e_8q|(sZ1FRWMVb>H)x-T z9Bqc&MJ5s|ZNsB&q9A1^1p2+T!33Tts5>dpY~6N=af`yx8SfF0OH&Q_Qab_d*G+Ky z0Mze^fzKvOh`wEkPOi(_H_I{a?)_<7AL_cUhDH*gFC*lyG0LOEwGA`ku1cXoD9KUIZ@RjU?}s?K=Yz%7>R!FC99+$Jg@rRM zId`B}C!k%~c6AaE09g*=tZhxR!UD3Shhh?kCTR-|Xekl!&@fDO&>+btzF#}Ws zZNkY2&)O$Lt15kvgsYMsImx<;?3^({JCgl2qXmdr)GR{u3@h{np!PbqqFv|wJ;MW> znU6@&eb}N`UFCxBiNYniCNUmmYbL+w)$zLwR3Iiw3f6mX-QMkeFe62{K0mvIyeu~ zPnpp%?Wh2G$S~6j*uDCg=U5fjwnvEX08>0$J$+xCHuVyufFl*Y<^fbIzL%ERa(6K9 z<=6JeSHxYOeCLWk+vYz#!+HE_4>rIQC`_KS8vUcqHDAL9w8k-ug#)@3Fa+XzxT>f4 z;L*-KP~)&0z0Dw3Ni%@slpzYj3rp>+ZWAjwW%XMXE`= z4N;px>mE@QDv3+Bw_nJZ)Mw?^fK!FT*WXSWE*1%1>t2RHO_hBw8#7aS z%&Mqyr|GaPJUz~pasV;`z5NrTAXX3He``=S$}Q)yOGGby$Dr0=-VfI?D&UumRXntE zW>0my+7YhvpCGmbcAVZ!lR2QCx9r>>C=kh4pu5xcsCqHLBc1)hF~m@W*jTF)_y+J* zjM}?P|5bMb=s)_!D4uqlF4O@g3dH$d5kW%rNa781;>{GX!_yzf9a`f$e@6iBL*wSj z2ABf!E|mDc=Ck>Nffp_CPj*BCz-}%V#^Ul9s3ih=L|jv$*=oOO&d+Qw3hg?_2CqpE z9mu3e2q3YFocBwi2i1s)BzzUg_jSC%U|EE!5Me$p<&&Th7>IRD=9vkTp1 zAo~QXKI9?+ez|yO-CXBd$yZzCwj$km;mCkC(D?9sR5|iJz1ZAADFSix1$^iBS6ghl z8|i%FP&J>7XaD*Tcq~AzYHBsUct6n2liEfs*IXP0a22;fii)3l0b3b!>x2nT1fH&T z$jRE=30U&Z34knv<8$Mwtn)h{L9qn3t;zHi>=krrH_U!Bs}{V8{g&BpaNL3fkHyr8 z_8uz6qchC<6D>fc!kfT>u}FL%1PQ}J9vwzu8UXwCeHW8DbJ~S< z-t^>7UV4sP;yQ|gMcJa#(0%ooYHR4CvyvHbVzX9tKn803IyX+QD7wwqDnrAIScLa= zKS<~4>Ta;XfdM<1?GQm)1n`dpp%wvZ4lsxhfNwo?8BFI&mFjh!$G?Mm1n5J5ovSSY ztG~De65e^BIhL7y!5@vkFi!K5?yJVQP{BBjd{#9BrKArf4m1)BH)skZNOy8I|3cJN^AkY?2pG2a77=dRB%901LyIh?BmoRJa=6S0*>_nf6yzS&ufIA zgw<#IiVIq+?BaU*PKOQb?i0k3Ya_6GbkZcCO6-eSc)mQtj&j_>NZ`3OATD1(O&lnf zR0p2fFFi~`X5c4a8>m7Hd!2Q)4wxecf*)fH$fvMt9hkR66u&XHC`V-vlH zs4RO)1Np88F##)zLT!E{`O;Af;B}I9NKAX_HRw%&n&d`DB%7cPEzwE6R$Ihj?={cD z*bX$d0L1WA)vghzlV7ZRMyd^|C`wkA8EMU9FWn@X$@K98`Zx^dor-~b2LZ4OvZLUS zpf*6CSx@vLFT3W`GfpPhbv?(d-}(~esK|kwuzSETB!D~Eav6P?NO*b%dX?G^ORM`? zib8w;nZq+%j!L@X$c%QmHC#|ARBx9!YA5;}NLa6zdWmk`pS9bzcD@d7tkq&nSf0(%v~g1^WNP_C>*3zJy5N9kxY zS*G-UYt05aY7;Q(8g zGhd<+c_&`E?~&4Y(v4u}E@!?2l7&oA@FnJXikZl}tZ37uR}GO1yP)vx+D)|UR){xC z9pBH%yU-fVH9%dZc>1KsU~dq|D)&%Pgjdxyt@0-34_Al=kVAjHuj43tdu>e$?+@diOz4Qk!!<2WhPqBgGY=b}>CCy=>aH5plgj?8V@aM9Qr=*_>If3y#CvqYKfvk;f229F?|?(uoqgKmIFx9%W)qAGgo>^aL_kfy)3-UFbHo0e zdAx6IRWWWK=9G^UI^vF}DlI@gRK?bqLVax$H`^;vk z>BgzVtU+CXSj^8!BFIH6GRn>x<2Y5ZHA*G9q?@B zrU-MSQ0-A0opX8&6C1aLGP8|6)U8%yxdaVKnRnqtS=T_+QYCx3lmdeS2H|Hw9}De# z6JX?LpHK|J-YI+iq#Ny_?CcCXJ4pLO-mS+u#=J9QMLY#x?_~nOnEHhWl-M&-Cv8`A zr06rr$%0t`$!8&&+- zAEGsi-tQPf0K{qdU=i-*)Eg4rFQGgzf5NWS@|F%dQQ(mu16WjMI2gaD^zd^?r2G1 zC1!F=P?D;;UNlA{^^VbKy=_$r-z&;EukT75>#%`P?4T&nNLUvh8#FJleOk2lMkd-r z(yx&3lxJ;1_grEqqKn*+0p|#=@6@6UY%p!Qqh|-l0^DVGN}1HWS+*2?bAJ^d=?Mv2 zvm-!d0MxYj-MXLArz(-Nattd>KB|3YaF~QQG;TtIoXq2El?as(=oGC4X9R};fO(xO z%!f}=1R3j0+Y({WX1rJs3nkj;I|C2u*^F4umk*jz5`gK?KEue(018sb)@2?~$cPn&SmX*#@*^<@P$~;#Teb&ioP+j! zADx7u`=gzkY+1XXns0H9r1@?)+RP1LXi|ah0ye>B1x4bu4Oy=;_7wQyYZcUC%swl) zp;X;L-KHaKBtR@Rx;=iNP);`c6O!ij-JJ$qCf++?t_50}lnM>d!RfFd9NozEmTQFw zu%-mKamyOa6{ipKTtrFfM18@aX0?kcc5&P9!Y`>LQE;Bykk=aMR3WQFZ}*3Imqm9L zEKrwsD_a5DyRW{RDd=!E*ac-b>{7cj(ei|wbWfEvOT#(z_5}-5D zp{SKNDC{;t=o z@hEQ6EnGTj-xHTTf>`n)RT&u`IhiQK*xffW801chyJB1@bwvQ@3QrH~bqf{`YKfyP z2J?)ES00TR8zyG~pSXmOdeW}f54y$Vd6NG*WnLqvpZ#z#LP()AHDJ* zy64|hocPi)O5{N|ZSMVPnQf%5 zuyN9LJ|)^W-PD!bB@%K3%w59n9WaEQ;bJ=ozVY~L>59jP#K_Rw--~5YE@@P}{qftL z0){dq%xnC`%Or+;Y!6XsyQ@X;z<#YI^m;7mU;h6*8>Ux0ETmL>Tt~{vsFXB#DP9U1at6t7P*=mC z#g9LzgS|6tTeDAOp=m2yPcmVupe47z)+~A4#H=r@H$5z|Q)|A-ybDwC=xJ%YQzLGmkIIlPmBqMDeJU*^*DZTJXmlK=3bQ_V`}Rj1 z$#ws04VU}e0{xabZKh^&(^K0h_iM)ea~&UUvmP;CHS4?iS;s|80)bZ!xXVQtq%x+B4@ zGxxr!vg+M{*B+Rk%yje}@oVfRxoKS22C39u-RhPo^>qui-ZAHKgtBqp*#fe-K1eh% zRFap5GaIR{L9Ve=?3_*2;*%S?1?AH8nd<4aVmD-~k`AS$g8FFe**Hh1xnK0_wrv*D zWr*9;8AID$J^Y+gw(E9nAS=4owPzNm77_TU(=hTNiQGdO9`#d0my zV2XvCSZp0z+V!@r=Vy3A*6wIppkw8cBS)r%(p!yE)F@NFlF`jj&$^vIV96!r1ZyT5 zX};YCX6qvO(Id^;>ZVNPvIkf5)OM*0w6~Uw3!(?W3~2J9p+(w;vtFKl{cwG^3XMdW z8?-JCOKI|D1JhV(7ekvc&yQ>z3sz1>4S{^tw|!|{R~ThQn{4)UWpY0~SS?Rce?8o} zSv`uv)u&Q-2f5^trRJM*O9^loFO;5Hx9-r|lw{To$g030`y}?W$8DUP2sG^|E2co) zp4hVFF{?XFdgayKeFi_vc4~z+#op$!en^?Gp#Vl~H({h^QWA%}rq@>PBfRr~+lJCM zA{k|)VVLY_9j76#*N2H)xHQ-8G9#<^7^{9ceBIiFIQg`soBE^mVp9@I%261z7t)|n zgfC*HAUK|$c;=*2oG=sv7erk!QM3(Iy>4pV?v5KnZ&LSIa?Vh6BgfMqE{x};+jYOS zCMnZ)U$5)@b6@AI6hTags4Nk=vC|!{ZsDApz7yUg@$Yz~y1j{q^#!mPZ@J+8)-oG0WBaVKVAM`(CtGD0bu|ZrS)zO@1$SBQ0kPWk@5wwnwY z9a4Cc;D-lIvTzUQ)QdD2sCxSXWFxS!ZjcWj^DT%W1K)rxwPbeD{kj2Hgb>FQGT_)| z-Hs5V-cyzs3Iy=!b-PRElXnEp7&{|rp$zx1v9-5g)!fwEu@J&jxk1mZdDquMzUd-q z@DaN#tp)P8s<*wZySamsr)E!BKQ5F{J|G)5uv(zlwRx!M!KZX4Df!V0WU8vGxY`S> zlLF+B9D2_CmOwp;LX)=PFT14{F@{4cGlHW#`7|Q&1H?S-FwL3=!a$O?>#+(m@4K<& znU;rj%fdvN4=XT)Tm}xunWQ5e8?`^ZSESCsV=g{q<9S z&pL1!x7{F>eSsXd-;r>pM@R--u$Du7r@kP*K@LL0I(k#`MXRrt7CD;?N+;pXO{<}o zB`M1A*fKWh>u#?Y#Aj&AO1?gaOE$w0UifitdtT5g)rt~%j zSV|bF;lfeG0>9Z=p3djJni+#SJ=jJ6vBsHJxYxC}j@)WApLMUDb1Rp3ysC{c8qIq! zw2tfJ7Az0feWmHUAGq{eAHh0NgU@E~^9XSQK7!1G#nY3cH6etvz?o`!L!HpebNz2yL8w?^d3X zxnKNQAoocx6V!Ei|qI+)h(u#o;s|hDjvfE0ZCqYrFbq zmS=h>wa3{kXMW8x@Ek3ug;8Q-Mll8Yh-OqFX z=$HCIzxL$p_zf($#Lp;k!R)dB*w9Ef+_Z20lS}Rj>Q8Lx5XaQ)K6}NFHd^$H^~zFX zYQYfqMU!9H_*?WNq-^DmC6lq3eLA;I{5s+GS6X9$J<=9N;rKC@>d`1f>=k*QS~O*= z>6sC)PSz3+ub?bdFY-@3{;Y;T8b+J|BQ@uRNw|^U7^oR1K=H?s>x#$mQ{mh~Bbi^K zpG@C#(7n&kL<75G7s)aAoI7r2Ko+kxjrVm04CKI-qAnbo;P&DB0+-t#e-Ib<=2E-y z`Irn}Ovg#X+_yo^z89`!&ult2W^z+>L79PBxNeQz5v$Fy0@#XzIR7a7Bt%(+Ntj&0 z4Mc0SsRoK!H%q5{>)d+$%uAfOJ{!M@`a&I`Jix$?$-&(hO{QCX+_>}#f(zDk;Zh-Tau=}a#b&63Bmg~b!yd`1_u1G4k8F+!(_mb?7>q_!Oe|#1W=}!*Mj8OEfbBkhSlryEM#ZEtS76j$I?U;=I3TZ)bB9}pCr-*ho6vUO&d5l`2^b_)QBG$pl_m@O7NTzxfD#vMr?MW)wNqUUI6raZ^1iu#si?1A(`&uZC!Q zb4thFUBsh0;`)Xj_B^Tl3o_~Xg3?E|VUwU|WNco_%nZmNQvi2*MmIcTgV||zyGRjc zb_)UGNl`LI*r`IxNQt_qS{ooTEn(9zFC;OsA!i@+XqPV$55&BDnO`okbVJ8HYW%rz zXQU+@+$o`XRWvZ^5#}++dGPK;vH=vbYjt~n`Jc68JEQWc4`+6TI1GFn^38dTB%8Sk zNlb%+QF}Sc39i7ck&A5|dr>TCa=T=UB+0={Z;mgT%nQ)p3JPbA4bi1|0#v}-wy%av-PPZCR!CRx4GQN(pNr=`#X>CmDfs0u<_s*a=1fM(qo{xgn#FR-^Oy7q=E7xXL9Z z3gZX8g`-x@r}HOa_CzV_(+FzQZx&$YP5K8*#kps@rH;8T&iQf!d2V}R+E)6*Q0C2p zxA%SXl%zcOX=D#%Z!9m}_!dEhxZ^#r0|t0E>5VjG75JP=QynavK9lD&hp+yfv{%6N zW6w9mLdvkmVv?|Eu*wyuk@J?(*;e1SfEj}z|Kc*@QGoB*T`%^gN4ohQBZqTlPVEd~ z#4(Q-189aSH{Pr^@wmMg1cbQ7JMNEjK9J8Y%$&{)U+Trm9Ca2{uJFy#GAP!x3lF2X zgu;nAiA^VFxj_W&ux2Th^LNkRGSY3`q zr1wE(1!Im}S95tBak(QJ!@M~+G6PkznFtfK7$XJblmhqo@OV!?Py24>;!WR|6T8H% zNb%H;G}eMXm$2XoXm#m_=~yq8+a$=0!ZmCK5gX8w;^KXGq;cEaEn$Du*7XzDd{zhc z4~A6k?$3DCrE!TMu;Jr+wJ{+ajZb{i;6~qWc#43uHs;yR7VrF=Z4Yroya^trY9f}2 z%}Adb!mi^Ok;EW_V?vOWj!Ql{x3eDRt>Ij$3R1(+TL$)-yE3my&YMY7a>QEkGJZH) znPjW|?bESJXOY%?oxB#Mb;*=5p=;g>UJlSn3N_^TkZ?5VooRmT2^*g04kbyyK2vv` zA`mUmlia2e=JWMx2z_ufkeEq=c8oF{uTk3RABCNyBEwx|MQ&qS;Xz|FYvfzjtX*lD zFT0%_ruT!6Ofeg;e4RJB)e@iOQGaZ44*E$L0o+)E;yQFsAHtc>49#VMgTsv=O#OF( zh?5wW3mcv2<)fsvs`D?x7;CDyU7Ah4#Vf~L>=EQXTnN|o@6~_=SIZy_%{P51+8%Mi z)VZ`N%B$-oVKhQe>K!;ct8?zn(;LFrR0h-l*;*dkbIyG#LN{t%1 zF4T-9EcS>o9xs?m{IE*a8qfEO^63P9R*{;yKuJ_J%J!(fIT`#dNdy7s;TVvl=|8#;a#&_^CNAvAUXNo? zziJk{NB+08nA7S#|5KM_W1qjyqE=7!d4ykR2MQ5Pu#M&=;v5~Dd0}%TfvJwzq%rQj z#_^h0wouY*E$)3}^2GQq9cfIh`s2e*ceCe$tq5volpB)Ym|35Qegvt~cYMTTTp#NBcR^$e24Wa^MIhQaXUBk< zDs*#qzie|7K})#JF(X#QCLjTAd9p(-(#<1$Jy|BRHBn5Md)a~Ct}2NMdoCP1x(5j* zVl1QLm+w>PhOrSc5W-|b7zZTNL}F!pW?E4efq+fj?PAY*g241K1<>&D2Jei4JjRCG zlF~mhhU<30bnA5i`eYJ_9(!kmYxV#b74^@GWb>dUw%^WHHG*C*gvPV*jfJb;DlEc` zoNW*X3yLi9y(MMXGk(r=a*PKyj_$I6x+X(hGRh4DwF#3MvI;h*w>{n1I4UKJa~{k$ z?$~D{&+pivmIoXs@=U$Y!68BfT`_9MtC8(v)TSJ@DZ&vGL7aJg>{%?s_-7(XyIlUQ zRkL3`FG%8HJl6iB2ikG4O}0%T5;v$c5lu!<IUff7LM?9%7i1B8%R@>W)&xjt?6 zZd0Rfa*+aUMGi}o1h$6nx*=2|Sz ze2h_i`pmj9!3ip6KcvtiZM{EZ3QlJeeSV;y)F`&Q^DO`CFT13`h`VW8#+KK?gYnXVp5kWZLD;G*<_f;B z_K4AHn@OSNzF07!sUv?sx51T91Rbc@XF^i@><}i9@7ach|iSX<%A4j>eNhffxV;wq5 z#|DAr0Ya@2VtV9dneB$hoRx}DbI^X~&8q!F4)f5pn^QPU>hfV&LB=M|K0NlUsAJ-z zn2N0dDZHu&o$d;@`eMXSRlv88et19U>*R^vyI8Z32L`C=z9AK1j zevjn#U0I1y#04WjPKLy~)R2gc)|aL@Azq)76Lx?%JX7AUb2meHd;Ot*r2*b{ z(KDW%n|KaxccC{L8E12E9=Y(VVANV!`ch$zQP`A%bXglirEq@q7;7E-5%}?fUo-i_ z!Uw}3sgv^==aWs|O7Z7dYhQsPW#gC&1xA^g7l;-NQMCX&K*YajDwmtb*q;RspHTt9 zs4E;or70*^=rjCmo_uVdQT}s!tPBFuIO3Gx z7=1;=RGF!H-uRbw)FlY7-+yW z_Ar+@`$^^xGqkhuA{0C)Ay!J%S_RVWF@Zh^v@j9|z9x)@GgA}Yf6)vtynpdWtdk6} zud35Xn_g!V-tQOuSm%qcD|H+OM&6uKy*ZSqDs_OQC50g#=|Q9wrH0Y55##C;jTjwK z;4NII7$a1T=iVoE`ktxJ2#lqY<8jy!fm!sFx2cU*BnYQ4sH&r$k9f&mOe*}$UrVBl z;TIdO<;0ZnV$ejFf81DD==4EXkfv}$OO zN42^=*46n|j2RN?p?gkLHr%YFqR#ZP-sWnJR-1X?#D^V*4l!{*CLcCo9{YI)*uO-$ zrgCpqfTV08kp!BC_ANjCDY_xYXOwrGs)s}~10>HO+guIa(5ga2SWqp`paT01c|vRn zoC>u#(ifo~%FS2Kf_a=LX@4=IOb4e)106^AG4lP5wC%3ZNGoOB+KbH%JQa?{#x`H5 z=G%PAvX@ad#sSv#U>1GLk6E zgJu~Z*$U!5tZjjMV7?CEO@20Gy{iu%1U=mwt9_*hvuTH=j}a!oL=Xw=;&=!HElDY+ zkqK0VYdy)tn-m38%|7wc7j)7WTrKg`l6<51$aFkD%08!g$9ZI!EPA<2eX4;fXUZ zrE&}Ux%in=2ba{Pb38~c+0Bf#JdW1=J~(9Ple^zmcZvzdLb@-%`b6!A6|VbhbWArQ6^QGE=6$O_2(8uli24hZX} zwDUT`PpKqGS2)c)Qz94=0J9bO3*uA99%Syx0z@_FA*%3sr{8^3u+(dwip8urZKQ!`rhk6LChUzOiAf=uxFAe!QV|P5 zG7v(JU3b!}{L}_;kY^il)Q2<%QZf@UhLxA-dp`+ZhUd_#j*nXgL ztfFJS(cWm#p0gOMBnu)~Vkb0PhLAO z)dVQAVV|XC-a$iLeU5+a!^pf4W@A76>$~oyjGlXYu;-LEwp~dRlBALRr0{XWUd@7g z{8;157SYEM>TPrvhDFz0T4#FVKEnI?&=WozzYzaIKQJkX`71?@j~KZ=0pN$nDzuPF z)d>Hy-c&tp=l8stqZ1TY$u4=0=2Z`PH@fu%gk z_2WP2>ME?~_bL6Zv~_=d9?SW$p1f2NqxvmLVHgZe#Kr}+0#Bo?z@xn2m?swk3z&0C zAUHCYeMPSpgm)0=8)|_Z1Scytagl`h$GC2l%n?p-{XpC@8>A4!0O;Ygmrz-wOI|R^VVPq z5wm;7=??$f)S3Z>qQ85NuLUSb3Z21$U9b%sb#+G#DbrU@-ShS;ZO((=G%8j0r zng}o+NX;K-T*wXV$qMe|1?FA3d=dq?M7eKEtt#Ln_+`iqpf-w6++HW)D;po3bAHZ6 zYM4c8iT5M-UVwdF5B}d=++X$VqUmu%Suob+=vB=*Zj7a$w@?~)mBKI2R!FvuYU*W2 z|Ei_D4pGapO+PkVM725U=OOWzl2a^~68G&>CpRME*r(r9B)^f>vV*sGCWP2-Yq}Ql zsH8YMTsDRBwpXp*Ut0vozF!%7$Kn|tdhFW=kD}grFefqutyy2I)-UJRQ3EYeE{r;n zlrx>FiT_WH-|w=!aOguEn;#9!-m520lnPF)T{2~qhx|=5IK#hHY4!xkdpySERWpXe zDauJnoH>L4?$REh);R)a$rGZ<)}}qUdUtgdhnvY}o0-JXkQG}X_xe7#Ijv9o{Nf>- z+^I~n#-6x|<8FcSi&sXX74HL!L~&;p4dADr`qKNT$E<>=y1%S!yft-TnJ0>K!<^@* zU}?vFNakY+&O%u%U%i~IURtdHL%-lcG&RE~CC<@TS3qM|X>m3i7@@F8SjwlDpn-xD zJxu+CA8U7dcj}G6bJ_jJpZm=h%%IJdZPQUf{=rO_!l>iYG;ME_Z?uB~|=J;kcrxHx!w>nk0ym_q&s zB$cwLP*GdQEMkLw1I|=woh{blPLMI;{Y!)`H^i`*Tc(FRY71lrWDkPeonQ9I;1DIk zXCOFBXO45vTjcMb@bj-N`YNYyCUw4%kHMWDtj`aT zvwempHR%TGJ_Vb_o}7xFdTVnTQ&;M0Ex~(^OOwj=2Nztqz)wgAkqELCKv0BavLb`&NJe=7Sl_<7{0; zZML|0zio%hH+K~K$Pu-Y=95Q=17>BiOIy!W$FE>XP>kvLyjQs-&2v!S>_2tLUtHUJ zQa9CQ8(CxE?Ilu;VYsXwC_1u4WQ4J7FviXa`6pyxRi0xG)ETtNp_`vvfMTyuHkQV#&wfd-PQ;prJOL|Jh zWL3@re%?9JWe93GHPkF-_-M05A%?q-xw(x=r?$cHiyGv4fc)nBm{SB6->y$Ky4KYp zUw?2V`WIKUi!OPeGw0KDmZ13K^u3vtv{~Y;=ZsTDZA0DaoWeFfvIB~T_P{E>_M=*= zbVFP|AHih=Rhz%KFhnR`=EvhXwS$2jb=a&k5kV+n51zvIwbPVN^WE8_O?DAF=0F&UVJM13O(ZMbgi#X?>Wg{Yw-@SW5eo$jx@J|VAfKAM?S-% zt5??3&_~;odCUwg6(Mbg{m2qyGlnv12U*LAb8c}rXKcu)w{>?ocL3Gzkbmj*+~14Z zvk7v3c6-BiFp~Fd1}pSi;KWvD>#LfOEnqDY@H7xGF%6J$_ak8_yRW`Ech> zV^V=Hz7>Lk&ocG1_Rz$4_DQ~fI!~li3kuh~$YnlqoKx-FYTK%X zQLz$|-X<`yJyz_Nxev9(3inxh_vn;R!#YVti zptiiWq{F3Gn74~VX26o*f%$>zA+Az)zyKGd2RfbLLa9PIDC;d0>{C0Zfla$jWz8pQFJZl7A43*(S zB%iG=5I<>YJPvxNy1A{v3NCNZryVEWv@TWrZ9}g5K~7VX_9Cd=9Q4QjRcElyR z8Tt1wnzYsuz%pIOIxgGp{$d@1Rr zjCeD#^7)MTR49k`uf0X0)*P6Rur2YcYk#Lm2Kmr&MvB0tG(-3HQ49@8Py)EZ)th5V zMYT&{y;YyQK^EP}PKr!*?Of&#?7>vR2YPnH33Y`Ha4T*>I>-yol(1v9cz)B=%a+>= z6Z3*Sa-%E_w};KlB!{qYwRIpF3sClI+X_afX`qmo%i>LJKL;#bU+&@P9_LjeAApg; z&v6sDivuOGa&}1d!W9?bK6^Jty?+TQ!Po5>!fX?iPFRMUeeCLkSHLq`uiyW3?t_Tr zDVK%|b>enef3L5&Od^6aUw#SgT<4XSVQoYwA<_PLovg5=ALAh^} zP7CKEM}sg=ku03>8}(f_%TwC<_Ms@cESO$McIe}Rj;-D}76_Y4l%o>7%BlPjuQbPp z!F|W-A%C(!S+Y7PeznOL1 z;bNs((DRPWJ*_YnOK2ozZqeArU*`R45q$A%8M(wlHqwG%I*kcGkG{%LC#|2aS15zhiV23~ICgv}P&VB{zX-!2QPA=2^dIA?Lp7@o4!c*WqBqsZ<(SCI{4*qa`5q>E^*-jvZTCrH!{(Nqce zzNaO4U{@bI=9C)Az5Y{seUAs{O)p<0-02ZTVM42WanvT$wdNfcyA8su2PXy7n#BP+ zkAJ%~_nS!=kNOZXt#ZU=7K#w}kb(^&RcR`H`8n&QDqMdAaR(YurAUe;N4*K`Sm7e! zyw55oF}d)4sb&l(i$baFOVy&>Tnxa+5NCF9ZrdD$En>e$Yd1oU-nLL5MjM;wjPnMr zZw{POnLDpfbKZ}ODc0G42Z8U?liF-K40|k(Oe3f%rEk1U6VhDrBOc4i+2+Gu% z6VE|d7*;RChL=$R=)RQW3=+1#^#^&Ocoxn+H__IA1gx=>{KrxoKK|iEe$2PhQjhWK z)56l{`|c-%*HHw~o3^c`>}81-qnH-F&MVCBwY7QZ^)L&^xz%sBr+L^Xclkm))_{ng zlDd^a);G5E(Pxk^1PmjUm>AgwEo>=fj~a*HdNPYkT;Pa&LZT1O1!pR!yymSBbOc2~ zIbPCLrUm<;%fnRm>+H_9IU@GQSd{P^6DYUIt15a?t_3oZQTVr@w6!u8nLb_cAc+@; z!xqdoFAnOPy~M0`pmj&LWAs@VRt~!nX46-dcaWxYGi69G634jmvbhwSTdVaqC)Lx>=5~ip*14j zyeq8rZFzGTs##}!?sEI{qbY6I)rc*Yg?PB%{=*|o#4ov?yPX*O)(b|F)qHaK2q2SR zHv%WThaatygGuMOcw(x{mscs9rPs`X(or0QbI|*qkX5HzRk-S7IGmzOKmbdO81Ev+ zI{x?+idi%2nst;Xx$eXm>6~;Z6^?OmO9O&a4bYG2z!9fA&$pkv;=Mjb94(;zOc{rU zpk~t~hj>8u*wH;~P65(Rr$W`N8qLXBohIg+na450ufs9rDqhsf_1D|9iV}X+F>!1j4?%DLl0Q?E3!al4AeY zrp}+gZ%8*Tw#OB^yrQ-Ova`Pb^OdN7|2|YH>J~~7nl{eA1&V2eH!tb`{QL{G{NHl` zUMfBG`5M`6ZC0Z&k*%jzEm)p-^?!ctBxv%bc>l9jL=$lpP^)Sq>G#i)8%_K6>-|FbuwGbtHw>fhIK!?`Fj@VV{& zKfm4FDitIC-C`#0RCBRO6b^U3Wf0zsSUnm4^Cgpb9&5SA*Y$ti`gL7G=9{p=|61wa z_fNlV^}p}ExUXIQ&oljd$$0zsvlztA;BVdE?)pRw$a-mic~@ke^4GY)|Lwx%{DS|j zP4^3SrN951;yM1?TUW98cRc<7c3~C$JC^_F($Cau{%cH~;M>s7 zfBUX!XaB#7DV_SssXQUgdTNSawjqRZa$oZ8@vy2;y1x28!|FfZIG+gMbf?7dK>4qu zUQXMymR@W9jCoQLt!2v=Djshnr&qf81o(3C&-Q0c;XW$$#win-+@~Pv-TV6AIa|Y) zOX6j*8u)#l#p5J={m-|Ji308nMaef=Z>X3s1pB0Rn=ab!f?=3J6-5!GzUmDwK!2J$ zgitoX_Wk3lFNwn0)0MkJg8BWTf$M@gof-}LNS+t9JqPjlx@7GqLHBuVy*o}6Ctxib zoc`l8c7ggJFvS1%!SuAtZxC;DE)B#yLicrMyEz`P=O44bZuPlb>2Hmd=I^{Am#1$_ z2d879lH*awg5TvHk5)MOQBq{tv@8q8#>fBr$g%rxcP5b@iDsj5yoO3@YB~Bqv*D0H zipi$e`wd>vA0I!T0u1FTDsnOS$H$Zp%85xViq=GyQtjFbvJI1o0ZPxG9@3%?F0Jf#TB7?+vrqZ!+{Z~ zKh3#(&AhcvSQvxg58nyDM=UYp>?#T3+-Ch0@qH3cn3`(d@E@WlT^csKip+Zy^51=b zF8`l-vti!wJHMjdvTq-cvHQEM2o>CtuF8(Rqyt6NJDIcWO_BSo0vn>IW3_KK@xxt{ zWvqk0{kZnkU$e~iinXPPmsRU`T(?XnBfrUm1mOa$9jxnL2apM;9p5H0rW`d0Y<2f*k}|K*NiqfWO@ z!{*hFXyLjV`dd9`RpYFKA;pY1D@D&#LPZUby>WIdLA_XTVakQuHS#7AP6aWG(ateT=@QfSm#Ruz zER8#w2`eOk+^Ob+^!pcF70>d;jgvfD?Bfg^3(2C^cq(=j)>xwDJCsO8L%hVp97bsf z;*II%Q2NJKZ*0WuR)6E5#(eipZ{$(K<8C^aTbOX6FpN0{=O<0dRwZH?2UTk{ z%{Tv>PcS8Sjzx2PeQb{Kde93A+tlM|k;6=}KYr|;AHMr#9(+1GPgi+3$UhUZC!Cl= zLR5|Cda(De`artp8_xx)_{&mX`S0EsHj?54nM3dXJ^u~T#l4X(xa3)5;1JgH)|l|J zE3aBk01=HaZbV+-vRNiR58vw-T2~*=ROi{XBGyk!z|m2ZT$Ab{w5Gpu3N55ni|Oe= zmk0nA<9G&O!^iBp2B*j^d48n4!na1p#o!nNN!`>d2hhJQGCxzM{d}fbeN!KEDFi{_ zc@UreY%}|Z2bzEG7xK@y)ZqH#@f05Xyp-=UY_XsVYVI?{#Y`!CNiLC*8jJ*c51D%u z9D8o45BM85zl0&;RJ%=@$vk4um?FT3GawuF7&t8q?4_PDG(xt-8}(Oy|6NheY=|i* z5=%&#q6Oq;vou9+=O(@Ug-^f4dI=L=?H;L-WPMKN0W5Kl+@f=ECjSG9q_L*d>|< zZ)ROxCJCNsSDPSgE^&8D%U$BJ#nO3I@lO2pe9cJoquZ3~OThl|A?0+p`gs(ZGKRyF zR46a7c-KqJeUcrY&l%No!j#-O10&iV=#)VW5=E&K|D#nJGxHPpj?5MY7BJLrBs7Lj zWswS!*Wxnan77Q!9fQ8QCE@+5zZke(eE`}sHW@5Co`syC7dxX~q90vk4%%O!U$KG- zWpyX3NGOD@=#q4528T@QcaITbm8jox#e2G_*J8o+S2`K-yX8UhXeM&xvAO`BjxCUt zIFqY^yVlvo5A(^IQu9`~=s@MSlJv13T)=i#2+be6|Fo8?o>^95QJeuvyf&zoY zwqmo&$IFMT;Sz|;=2{rXFX}!$11t{^5o3jhrwD>`5{4EyP>sWtOJ~u3V_q%pU5#xt z)){c5)OID{Rs40RfK4;!tPKsAtq> z6}BCQ-R%e8&txtKA~stfM+{0x`1Z2Kl?hYt5etIF4;L;;U;hRPcY0kr9-o&znnj#@ zOPv-;^zIMsg4__rRIe>ZZAr7L{Yj2}0@T-XfR^YIu60gZd zcE<`8`CHJga1iD^-DR$Qn_z($%VrMKfA{u6F=T!*`4>jD{dE_qz7XmUPH;BN(?asW z<4g){j`F!fk_H*c`XZ0t6>#EKDm#OlSxu&DGe1!l;9dr^3efa*1nORPti!j0Oi-?q zR4<9Lte{}9?ij0TjXhrWdj<<3C*4O~B;%`RSe!Tglow>79`S$^#)d_m$YLyK^oZBL zo{dR5C%!ST1;djCHiQS3@yxKct1Sdma4Pn0cf5qzblEm6M&QQJtXDAPF2mu>soM+l zikge5B&|W7V{^d(dXCvF!|{#HfSE1%mhWurGAfusp{y7K3-Hf6O_wN&)KfRYoeIe; z@g=U6?bAZ;rvE#x`8B>M=Mqc2aHlrt2WC#M)wbny^Z{*?e_|H|t(|fRy}Xx$I2u#J z0&^J*nYdtBmgA;TDy?Nl^5G%NC^a~3(@4g~vaFE5TLa!^2pyFEgDgu%IM1)IAvOtw zMPY<1w>Rf?UC-A@l0HJ!k}Wr)tKH|A0ID1mX_d<7Z@!`6q8ZG%h&=XeO$sSClB?JE z4EGaGQOemHh@?iUY}puwJgi$atcnD?A@X@NO50ON{{ z{CJs~Qp032;dtES03hcF4?GeNgC0QCY^kgv2Bf-R!N`q0{k=&fj?qQHyozz0W=CjC ze>RG__JjqKTGhQQ{pHTg z=R$$K(W$mI1T4C27_U8$Uh{iqH;|;FP_|2pmQzi0?~Pn|*v8mG+qR4P^_mt^O@t2t z`1>o(vfEi^2!*W*-D# zwmRKR@ym1LDhL8j^$Ze>6)gyvy)>+iVFCr2ihy}-EYMUR^_-%{p2QTWih`wcLe;3j zOxmEfn&k|00V1hM0)Fa79@wqPk>!%JNbRy|%G1nJh?fgxa$J&ArWC!x%UPBw0^dvI zqvF0dDVW&tXRjTizl1o0q%t~FWI4UzG2|8gr_gc(NMkn>4tP7pJCLZ!Ik#eqYu!>} zKqojR;O0GCdZyTuJ9~Pbo6kN`RNob&x{ypla|=p`hEfR21izz$-kW15RG%El?+J(4 z97gpdXBMJBvY4?h5<%weIaxF*66O|9kMYYwFp7Tv8mC7AH_L5Q_|5j6#hlDv>?nX* z@$V64;#n1Bx>t+74>FX#YJ;|*#_U<1Zb5U3ld-C*dE>RK%y2vE1ej!sTRoAwMY(9( zfLbX#&nS$*r)31GauYq5(+vSIdx_%O1!~O!o{3`Jb=!?405Dpx-YCqvaa3nnRV*zd zO)i4KQS-5(TxPm%9Gf?X811rbMBB{bE63j6!5{lz6 zI+;GHCP6XRfBU*njg>kTwi~KW)iMe{PxCHTtqm4hB(G9d0FKF1Vhl=SN%PP1`Q?;u z<%q%9cpmlQ5-3P{puTAKXljB4bOO&@^qZ%a95hcn(VIOffPA}Qxu)^leG!1bRShh1mSM0M$8kE*0oz$S zKD<|g^p#^k>ES(yqCvrn@^Co&l&b4lQLSg)+;x;2MthO@Jc<}L%DBCheN(bOHG^qd z(N3CSY`a>2D3wL&B?X89(L&!MPyN1-A26ufMpae&g$Oq7n5*K*eNPu=Zq7AKNs$hc zMJ=dyBxKo5RPjV_98GfhSOj8LrvmA|{QwdD^oshOqY}up^~zC%Hw)h-kYkbyRV#;% z05j$|Opp&?AJ6inPuTuNsZkWVQZS2^J~{dVy)h|tY!v<-XWOqC=I;wNN^Km>vcAQ> z8#o%`rF$+eNwh>Z5)Fs`U>lOn#XRZ#pGE5)m9;nh!KQ(0dK#7Bj8A0=)Rq{#J@aNa zB&p7iSeO_lvYfTFGBan^^8X|2yS5xfnr3KLs5!Td$@LK(P_@bP+z%mEy;~$uy0G5^Y?h_* zP0QRfOLaBr+N*cqji>a!uEK5?* z1`A7jXtG^3yL3t#EErlS!$Ve`;F#H7GfSf_=}l*A$;L#X3nMXJ-G|=;ko`8h#>a(= zI^%ng;EhAqz>5mGD$*fWL}<1MU)ncHklEZdI$vBU3U?2;W`@lN3{}8ee&B(u&SQib z#c0<~rh+NM7-;s_a~AB|nVB-W+9cgw68`4Ao}4FJx}LNQGc6~>5Hx^!Y!5pR%6Qr8 zpMr2ANP>@UL&wGnufWzwEr3VI0t~Psn`cwa=y?JfcW-mp4DlI7-|5;O;Ik9^3FT-! z2PCU#8iF|hm=5I$)0kdJqkSW>p=sNGG@2bEq`VO|e1B`>*mZq8S_2tQ&ZB_Mo1DS| z$3caW;N)4XW`g4`BS`?uqBu>b4g}CR(8R`Z4vJKC;BT#w$Th1T_V-HSRnis(tp$#k9*H8a` ziLO40t$0u+ZykVFKM=u|0<=rOf>Oc=I0DvEEfypvJX*c(`Lp4?S_9&F%A44JfwDIg ztL$|T?ZsK6*3hs^|EZ;&vM#_5b!(f>RH_9zVBJdQA&=z- z4JO!g<1*GC_i?1RG4buzFL=zAkV}R8(Edv=50S%VV2}UO%=s|ER!w}?PfR#ivLIUb1r7*-c zE?Q}^ndj-3kvR?{z~3Q;VLL1cF%ULrnl#J;ULA~f&}5#@c)V(j_~$Q#~#>WB-TR=)?URi%28w+Wlo@YvgP19;o;`VPLJxzK1-14PR+f%T{G z)33E6*jarnO1&A}JzUfw7gkf3~ zZE2dzr%b?hKp;9{fSxre3wGDiSaL_${!6@GIa@X?XOjCL_Fa&UJ$}+~f<8D^}!v(Hf!#23`9Q3PILnx0# zqqrqmgYgJHVz~S~pcM)Tcht8;8`+4Y_Y=u!5-ERb!weBX>#gW6P90~%u@o3YILPU3 zzk5h_zMSReD*`$Dsv%wKyD$PCGgfzm1fl~o`S2RfXdH?q_y#s6)KworQ7jdZv!sS) zl}C&H)H%~F#wnaI!w4tDgm5vB=zAj~24dHOuIqVC1lO(B8Zu3wT`S^w(#JPjAwYB~ z_E!y0BPf7%eYax=h_jL=r$8H@!X3nzEGvq@3(>eL3`q;-=kw0i-M*tZt|jma`Mysp z2bm7bdCgKWV=0@&j($D(?;5|O0bR0&#St8$Q_UwwWwA?%FwhX4Z##V9Sa851X8R+n z*WwKbV(a$cC7`lsbIq0&Xhi}*n}EfHFtN91ViXHpD1eNK`6`2;$@46oWWfk$j5`^$ zp?R4f@dg9%i^~QEsUA2T9+<(=yAAQL}<_7d0=t}GP5k{=CQbzoV?g! zaSEw9zDUotT-aG3=isdlT}VU|oOn-x`M}CiX$c zy+bY0sFERU_#&B<=X+T;3|mo$B$fz{3on_p_j_h5WVw15i~=PIsI_jyt@qnv-L0wR z5#m>!@o^*FN{DgG>=hYuBVB&5<*cb;;rR^|liC5t^9a@GIKJCZMuAkSQ4KQEZ(*Q# zSYV-VA`DqE2XRPd zC_hnq!S@c|mD@b%$4-A8h_G?xI#xTpz~5?+JoyR1VeqyO(Q(jG?2Z?qW#2k3xO2GT z&L`C@qa>{Cz1yoS61o-`5BA+}4(W~!OUFgQqMv>m8|=YWCo_Ubwpm97{EPYVue*=K zlKX*E^G|O`V=z}fcn5ZqIG=BzSgrewWzliTr_Iy}ud(`0U@0g*wfk%!< zIgvC68`9MEV;)Bb3nG50wL5+=krdBsAC86Bjv-adXqYzEW4#K;AE-`JpNCbpT)ctJ zEkB}J7R70}i_g5!=ONC^P~zGexJL`1bOdY+aK~|gb_}EFEO1jiCX7e93Oea{gdL9SS4t*vYA9+It?tU-onlr<@H!!R#JW2jT_-tGt?(&B2Dtq?sDcNCe2#7i9Z=T<0l+ zqP-4FUgL8gv^QlzO7R$dyaHz39@G#aPcVUpYt2m}@S zH00H+txPXQpa#mX-bXr@alymAMVV^J@Gn{5n z>dt>g>;T+%fTKGbYZm7!Gavvsuqph{ewEVhjh&zp^dsnE0D8fe%&dZ-j$aVVZ@4zSwjAb|7%Q z$82?_7kTqhv|8xqwuHMv(sWffIfKQ9hZY^&q+|-TKVh?;w_vAA7N`)y`x1MWyFRIO z$Z`l`S+bgAz&Vs}nq{6FFjs9~0`UeNOpV-1NyRgvIOcM|W3XNjgwY?IB^tgnlVpAK z1Ikm1SUYtSx21;x13cJi@RoB(V)zqRnD=OJcOEX}7TrCpAWrmU(?EC2ap5?jN}K2l z@Q4;q>8H$>7&bo?d?|2;%HAokmA=^(iWHWQt=2c2E615Hj5DAZfTg3>*AA^L-!*-1 zjDEhh?Kh`$ZZNWxCRU+s?|t9t*LS^P;cfCUHHs5aE(5l_McU(A_v5}J&j$$Qjp=;) z8mASxUcMEpGM%FfFP~PK>loJnqsx~85y>C9ik?=wcX2poT@PYZ`hP?F@O*>ov&m!bNNZ#|`0`7VFi+71D9dR6jL1 z6%k@HR=Lj{gxqa_crk14Is=@WMP9;(R<~Ist8g6NVvg}*6q>Z~R365P*gH#w$%Bf% zOLpbNCTZ->cE@QqOXz9_5M-V`zt2m`(!(RdHouxJz^BH3IpgGwma@|-0reQ zZ@EnS1hHz5<%m^*jpzu9pZNzb4%ReeocuaP0G1!@sNJ3^dgW3(z0T$%N|d#si{OoM z5%Q~ap>z73*swS2#Vc8Tk=GZhCFi4c*>yMj6U32v&JthFI`^c_1ziWnxNA1x9GJl# zF8MIP7NO%s>+%rzn+HMGBTdukgVDjdt}f7)vt%vfC>dFn>R3Wwx+Rg@^r~$cO+tfM zv(mxG{K>DPxMy%?4x4rhm^4h}@*6e*$!iLkWXbb90WhpNjI+}Iyh<8MHETHDJ3Ic< zzc-0Mut)Pq9ZB@`y&Z$C7>}#GkS#jpaC2Yoh8D7O##l^Xq)Q=*0szGR1z|iFg$pKp zwWE7X8X)Sekh3<>aZS9L-IKU&@{aBKX!U@1lL^_+d99bq5KH3gGc5+%_`+8HC(`=7-`i{K*;gZVQbB&cQ5oFGzOG;nlwed8&1uKHPQ| z4$O=_wSgEWjZG46KOzkS!h1i-sI>|+4(R}fNE}`uW7D*;EUy}e{KV->N}0zt`I_;; z0K{0u)jJw^!Tzg<Hs8?D7fXMxu(e3408>`_4UH1O%AT`yTvD;KdvMEa&pF2R zAA?;5{S%KNoxFJawjpe^1ii72TJs?jniW^p7iPHTy*5@BZd?{IPZ6I!51V$Mw`Csj zyv1NoTloor^kx{b0&DRlzR`NSRAl@t?pGcmCGbDoprZ~dgq7+I^!4w1^45zN9N93w zOcecG=R}}xzLu}>fT2b3buZLpJarVe*lxaBM($wg$nW{{y(p^Kg3Ej|82newmsDAc z)}vv{dlkSl{5jdN6OPni<)2#p+50>{D;b6fJ(~+ie*|VfR?IZ5CmjUAygnz_>Pd%% z^C+BsI+`I!)iegEUX+2TpuutcN;=cnjHk>AYxMzJM@_Q~2FFyE&j;3Ax1puiVWf@5 z0JCDp#Ye%ufH0j&Tz|lF!#r+=51x=Vm?e;~rGe^lRxpf<4ODEBKm)<8d}|U-!ueGT znpBHA@da+~=v-7dbqc6;+;36LO<&Y+3A8=~3+S7gP5|4>Sf+8;;GB%nU-8BteQq#O zKK~{xTJPnQ!U19;Kp%t!?6z)*Up-M_6n}&QOJBdv&fadb#=Tz*UcfW_wycHG+;#|T zm|2QL9)oEKUuh%V(6Xvp2r{j6(Ni{=SFEYLk(t4IR}SDP7JOTMhGA%}kFtDeFuGPA z__|6)5;8C~e5z@+Oo83LX>rwl3W}njB7IOvGIsrlpS5~qG%sWO#idt^24asnvqe=D zC{b04opOeTPZk7Oq;|yM1H&Z#IMq?d$C>h;gVety{~q0*w*LwHx|VEPl!LdQg|C>c zItuzMdM2XhZqC^pbxy<+bXl6WR||b*B4sd}`%|i^%;g6g7<}7E6Xkt49jZF);ddf>lWMT$4uH zqr8)gr8^f`FIDTv*!pNAy|rnJwNEB;$F?I1i5{1P8Ikvc6fZw6?=%l(ZDMdh^9yJkdZ|6B)ti?eCt^T#z$2DU`9QFQ-C9@<8?{CW*kU9($ z>9`1NQC5;=EHr-+f^uwNPC9=F@;3orD4_H$vya*;RAqvx6k?rkmgmm%Y$LNh$&AL& z)ER22;65}vPOb4CngrpOeNCBTP=l0)nmR1Ll2 zTJ82ENewf-S8dTsRF)K!gn@?~Tag{NA=GE7rF5$7pIof*{H&yIzdP{4{5lS`^GC z_;iXLSo_;hOSa%|^M}7pZ%T5PP;-a!ouw>3esf>|A)p(4x^$v3KGg*Qq?qe^1D+ry zz-l=Z>kpQ|S@N{nWn^JL*6@$x&g!@2#T2#E;Jq`2_<3ZcyY~q;PDbVPF}VlRT_3On z(R2}857<9{k|&z|A(s>tVCw|GhuA$HN_#9Uqrbh!=6nTK&pS_t7GFZ8C~J20^e=^F zSvc(MXh*Mi;oC^2iTHjH#GzH>Z-Hsi;yXT@^VwwueD40Z6VuQ7d};*yvM_v}`6_VS zk?E|^vaDgDb<8q-uA%FydLvXd4aVe!qg7X-gcUQG^|E-CKYLZ3hhqg8+l(hUp%n4B z%d=Ei^0#%i?xnFIAi%0#x5ybGtXW-p-c1)@%S?dz(^tq~SHdX5cCT8eRqAON1_4cy z*+8VZc~|g3T5_J}>1U4|QI;8^*g^2~I@>YQ;JIr+WWML~%43@!G@R~yUt-`_^SVyi0C7dndQV&4gSRs|4W0DV5Q zwOZ>zYOW(1g*W0b8{;^!?ZBYj0z{-9Kl_bb)+CPc!1w*4M@SgT#5Q8h)>Tn*B-H>> zK(4>0pmBW7X|G49^)t%xP&Wb4RI6NG<9_b)@khB zt7+3Rue@i$kaq7&w{J5T84CQw(eLhyxDM+)IFrdg3l3Gay$bl_J~wdxIzDkzVem`E zAryIjEG`x%ps|C*rAUOPOvs>!8}x$%I)LHIihq$h=*=b{eGV9eW`i|Pe=lS(%PctD`)M!-#g+%_zS@%Rpjx& zb=}->ryB)Zf?)Wouc?6>KT!hsCq*Z&o9Qpl!zvb9Uw}6pry{ld_fT4}XA$M~Yd)I^ zYaZtbjaQ>kfV|QoaK-YWcq$bFpPB_xM4{>G>+;_qY?$&l_}D)_HrJufzas5&wYNiJ z@^&&A>sBU6(nbJS;)W9St zXxtwkx(k8C^xjzOpTFny0FDM;5)}GSrqnBuL*aJWdiL46m~PvXh1Uc_nxtm*O4dNQ*&Dk9=Yk2@M^Xkp%nr2y=%-J0h{7m$yokR1A9Pl|L zfs^oj!d81eP^N8P^wmWRO#;mjHZ-m@TL8rhuP8}TPJjZ2KEC*OhmFs^sleAuf+V>c zAeoo(aynfbWKGyKzXOaG~L(Q)pr|(~(CdAk+SjH(>8V6veNvJ`46Xma4FLPRz z{%6TiawhKP{FG`LpO}Gsc?Ed`?`iN$`zD!yTTg1Uw5mtC_pS7P^$@zj9<3KzspWDo}DdrNGsfIm3Gdlp&yJ> z8A-B-YlaYQ`E&*ET}Ll|5KqoNkQbnj=No<*I@;ON&rF7xA}G!$_qvBch{2>{z@aRO zfGLlF$gq;mu;euc7E4|=*=);vhXZB=en23YfyboeDBnCUwC_Q(w%GWS^WUtt%{rL8 zQ2=)FC9wgmz!tlLlRo$7OdUrj*)-Dur-#M4a1mwZLcqml$poXG{P+vKVpubw0JVu_ z#U+EL_D}o^vymI7&hHOlQPS7qEa>aOv9lG+2{%GnFpEV;v`DXkO7YXH{A4D4dqV;` z%zQP+%FDjyPnL2|J(7%bp`A1}VLGWC3I=$=eVB*)`-WT60Qkc!>oUM@P0Dj8t`{{K7^950Uk)IfxP7S>!|D8fFvQ~+H5K%Zg@hm+H zskl@ln@wo%Ysz5c5hR?X$!24yJx482p?2aAv?BqqsFGm6v0wHdS4B=q)N)cqRXxUYcD;MC{DX>4K#D)U!y>433!Z_`@qFIyCN z1rhY6M>DQp7Idhpeb zC`VWwMdi68ScB^wu)2oBc*?Q09XCy5ku4k3JlQru39hR2ry?5#m(e;zfvb+nY>%v* zC?r%ogli2Fqa(>rI~OUwOpf+nUkv~GrL}m6dEcR(cDeSv|2gYK-RW^IuN=T$=u?Qy zm3S);C&9005=UjM0fo~1wRi!-)4*_F$pdmOQ2nHT| zn58Aam)o7hQlJldA`gOfo?qx>UGEFH#4EVnyTdbvMcwI+U$>NlD>nGSiom{0-bkp~ zw`BXOz|2B_Z}!?FK93Oc1l{}ON%PFQ)wIArt~xq*>(Pmv!~=3V5nxBoo>|?du)mJ+ zc^E^EP#F!)yPa2D=&My0eTxC>(~*mf#%8pqFZ9czer*~_hV|#%)SVlDuiG1F0w6DW z3)lbfPej3elO*WO;uw3D?ZtjyI<~Y`(MBu~&S;N;3gyANW>jf34CnATsHQoz)~}fa z_uF80+VfSv#Ew8SnxmMn0J)SwmhTZ@0ky#cN32D~#l8f1GI(~cY_-(FrrJn!dMkMXiP;bccUAHA9LO8+=jaV}O3*aDQS*Q2!;cYQRHQ!3S>kUrEphch zmcz+!)13-pD9HLqE?`-cR09 zcZHvW*LVBx+y$UpM$Mz5@4R8TLRLPaA@@p&s-O9we!5U3iT&uqc=A>8ssWE_S`_GM z0fCxA>q^(@TGx90MU5ipPne!g*mayd>jj|kM7?d>_Xk+?&)APnpI$@ROX-1PCxMd& z15Ac^iPC+;I(`p;9*`>A+25g8llMV*jmr9(^QHEI@jRZ?j}ENe?Tx$mCShEZ>5h&E zOeGq8wZUTmNF~&b+4+9sx;QL`)j$zzZ_9WTo)bQqnI`j1!*f`Bg?QJZARwoYtP@x! zh%x-(8+SJOndQRYrsz{}fX?=+yuAfoFqPn0@=OhTZe`Q47gNgx|k;TN~@ zXTkZRXGM77*j+kq%b&-ymF0 z5`Xvx1-&Xxwa9z{EPw#(k1&-bgB zbmaLEIE+b%@!-dKd6|^iqd+Bf=$78S?}kI^47Y21=dCyjo|F9MWBT@f#fmfo+>GxR zrjTr+cnemBmJ4*bZsM$I&xb?t=bszR@m|FpP3>O))2RJ zW$(Y@r~F(fBTF8DOE}s!m_npS7I1L7o$w{QsVFY7Aw^fx3u1!?5iq~2qkMq%k0GbvP+X@i_Kva#8$J)RSX@Q{o<ssD;-Pc)TW8@Sfg$?OJ_)v115zuXO6>P*2te83w7;`n?tG$V zV;O4B*YQFIeS3>Bs)U6d&w@_Z?8~&C42hkTn%+8qieN!&8&V>a^mgnZr8-#yPvsY)k1@%!vH zck_%Wj-7Y0#7Z%=?BDz7G)IIhoJ)_9?!T4P++v(-%JlDinQQcou0Fp@)OMr1yyJ<4 zch2|ch~{Ws^mt!L>NfOFxk_Lw%-KlCfFFFxyWjy5cH=q`n&g(XixiuLgP@{f(3+l$ z?p6(~3Qy^`jVRAbKhBXN4XXzH*@J_)&e4*E49OfTsz?bEov?zDWOj|m?T@zYq?h%S zXYQu|Ij7Fw?tn_f;mnQ&#&`oa{OgZN8hVuyB18D=Ss+;Prn{xq)58b6U*PD0qgc`~ z)=JB~gXUC2EHXTLwN}D|{eMX_E*R&e2|&ZMdr0CyNF^O3=~(tTqRN#@8^r+6%G?`) zjA&rtMP(GRPI8n=Y&7^cEYJFQ9`1mCe&;{|r-baPXvygDchuNz(*%exa}*FLsrsgW zWU#_@n@hwM)jON06MWQ@)wgvcL{JP3rNC4hn%E0yOCa26JK68=KA@_ zSiAx;O}g0UFk3#aj(!%&VZQF2kYTntjuyu zP>oJt`5xb<0qY(oqvF8ke$V;fZrWXcu26x)fP?+3J#x9m8JXgdOz8i`4eWb9@8Q{i zC=edI&pd93%xiC+Qy$F_Il*U6Zo=ZljLE3hP~Ao6^v&ZQj&306gOXcl`uUG9nE@~? zb(tQtJAi#U!9H0i8>><#zXtR~^62Aw54t3&7(#e>TGqnnf!e6lN z?){JLRElXqRs+aaznXu}-1A6f%QDkr&=AMFVBh2FpCL(|j=W?b`yEdw7k*;r z@dRU3a9f98?A^aHvq|AgQaxIj6wm-ZcS{$0z&ts2Y;o8UM|iFuY(#KjHwLmNiPhR{ z{Xp&GXjGqZ`+Y|c*QrGf$O#+c6nonL?865p*sZwgM`ruj|N2oZ7@~E)ziRUZ&TWv& zaL*B7_w{O?=Qn_w2xwcMdJciSm7jGA+l_cmlhiRjQH;Rv!CJgjENxkTpcCeynX`7z zM&SzV{#w#ZCOVpJy9YTUj&0^p#@<1I33Cy`a*rAUHZGMGKq+R1k&h_wcQTCwjpNZ; z4s{E7)>9^Q{X3%5$N(MP%(H*(cRb*E(dB@R#uJTgwJR$Qi3b>)3=E7p7bnVuZ#bL8GWwm z6R6pL=ZV?;NP6>>z4o(p1>Z>Q(+>X+pNStS&r&%c(Tl?kfk95 zh0-mkSAF4J*G|YvTM(U>l+ll{^W;o!wktmsON<4+9^4pj{^2tCa85XrJ!4$R=tW^z z%A?)~P<9WTJg59PDm+(JZ!yUppBSnn?~(d<9@zfBHCG{Hzp{cY{IL!Vc#ie|<7MG( z;ULm%6js~Amzaz_zsA!eH@jez%QIT#ElE)A`0BWJbSxqVxg8YyZLSA3#WDWU{I<3n z=rWja4`My}X!_VcPih=sm4bqqwvMrHrq&@*-Z^&E?*ZHjRq;(j#f7w5(G zl!by&hZ6>$DLuX_<`d)DL|sl?>){%qTM}^RB9_HPVP--4>wHz_u#C*uQdsQ;IXQGx zcF}-WcoHeV-dBrQfdR4dl!@cvGc0m`jqYu$XJC4XZmuglHh*W6aeVdd*w=Uu|FJc> z-xvD2I7{p(`Sy>V;^zJB>oxeDfM>9nhGgO@2R>R7fdw91&O#e3?>NtBe6;4ATKwbM zcX5o`0>L?m!1ZcCY4RA(tBwWHgVo!#h@jHAIe-pn^bwh4f=hg1=@_|f-PtE8i8Znw zc_XdJCr9EeylubpZdcv}>3wCU{(MHEi_Hb&?oihXhS&5VCisMbh~@wP9INx;22<36 z&)FL@3(t1e600H1p=XLsT5b3Y3|_GPSbBQ9;fg@tfzbUOFD zKl7){20?82U=gfnk{sj<;OeUj?IHst@*|FEi6xa8EE3MTdAURN{y*Z3nY-xa(Fvmw|}{qRG7;cKlJwaLNmtjzAup{`;dpZuXwvWa5R`#_RUSKkR!! zcZVJ(g~%W*piFo4AO0-Z&+lNqgs0-nuM*fBx@j!1H!XNEBXYQb^a5AA4_IgPH^DFS;Z zva@QwV&uau!8F!~U2?%@l$2y@;)R*nieA|yD%*41WRK^x{)wMl*#eIGlQ;M~Bkn=b z;r(P0Iu$8F+8)R){X3h|<|c)w4E0%ptw!moU3Iw)#Y~gqpc14vdr)S=H$>6Ew<0F% zhq%m(OqzjsaQRQ~4L*3A4%gAE@Z~FqJrCI%w-n>P-NFt&^39AT)6)oh9=Z^;oRPTFhFYsQp%L z%A**L2I(VXp78g!VU-XR!A)$F_RhyQO~9U`TX8XNu96U4%gA;8jD!E*uRDoxkv&tu zC9R&OpnlFy?lqwU1qb|m?6JIvl_!7jaUtx4TA+bush0zEl`hV>K~EV=y4rGIfAUJg zT&*>E)kuHkdw*k%i?qR-PRBPmPhk1C)|U0UxoRoPj6>kHk|aqd?UN?c!Slx+i3>e8 zZtc~0jH77qC+SqW7c}Cn4V#cSBmwx4omvTk(!mt z^;}EKy7RKs)$B6OnGbb8@mhfK#DYk^4ZF!ak+rqzChMT$IOiyFPD9|{1#MCJ2j`Yg zaY{GTBFk^mK`vvbxIOBh;Daw~kV^2lnuvpc!uZ@Aqa;zTn0`3b7;0qxQ!@#|Ze7l~ zdi;y084WLRnnJZDz4O~X@y5NLBWx3H+Gt*9vQix1${o@zvmNMhUA1<0$n+Hi=vi>( zDYM{dNrKEu_w@8(Z(KJr%wJXMR7;w6X|WV(4xtphM?baC7Lc`a zbtx(s5$=~?KgcV;2tFI}jq@u={=r)T<-V#%zUj{EM%(sRv%Z}~lI`E4 z9d6y~!;4Yrn*hldoWG%${X}bPR5jaYSlx!kx1U&OsJV2mgpcX3uYDmrk__0aOBDyU z$aXBo(|={#6knH1_NhgzCRCGByNKk^WySX!`;&Wr+)VrYI}5kGy$>#4T4T!t+MN@9 z3h(0f$bJd~I{&qb;Pt}CX-YF`X21(MS?Zp`aijjKKd8bfUR}XrcZAxC0XUPg=Md7hz^ERSGgaR6r5Sy~ z4A2;Uey=+WqEK|9!?9BP=#hNpO&ePVDdS7;Kiyfwj^fqaci8X}_WPMatti<8f4d=x z!F~>C%d;GRW(Qk=`1@HwWJNyKZ~lI}Wr~ApXfx+iG%yH>w=R{(VYk>Wuysjrt^qbd z5@*if$LN0;Kyifl1U&x2r8h#OjYve2*NAuP-bayTs7}yOq0W2dt||Nc{$7Lo?=={n&Mr^?*tL-F z=+d1A+OpKaj3XQjF~PR8t$08BMH}w37g`p4Z0JB{!+|FA2Lujm%~!dNuQNEao$}WlHSt#L5m(M?$q-Ztr!gWfLqw zWN;#*iDU`ykn&JtyOKYrv{d%~dx{>e^5=3Fho9%?v#Pje&OSb0NjTeZQ~z?d2fw5X zLp|+Y{8CP28Tu;-6|g8mml_L}WJa*Uy$2V(Y_YCCdXqrGF2YJxG&Md2nW~m$*R-|P zntd5WUUb`TvdPqjX*%8p!#TvB*fqpv6`Yf1`Wzm476i!EOer#5JVmPy60Lvgoma0z z8+WO|4o^UQ3~jruacA30)I8S8B){~`E4i&SW3d8(V#fC^m;0Jejd5*OODfjbKoS^xynFOeSa{b4XYo{@KEBe^wa<03uG9g zuP4*1c#{JXt57#CpLXyW)lcDL6#2B%JXdealG_eR*`xF9Vrf=Y(U}q0l4Xj}3s~jV zXF@)>Up0Q8^oFe^wx}|~1Vn0D-Hu5*zrxWx?ix}pwqStx)6Z9;V9x@`Prnd(%9)&l z0Dt3RECLMr95r`g=ozAe41RIbb?rF);;*?f(Hfa4RH9=kyeTVPMunl&vz60=Qg+N` zt&~0^qwieq)zZHc0kTb#OM2OH_;21x*QuDKwq-fyST}|Qrcbl7#n{ob=&Hk^df|B} zGz<7y-e84Yu@k;#$o9H!S?K=Lle>3F!sfgnQ2k5oFh9WCy1x2)W7F4AXo-{u{OeA3 z!H&xjdYJ;WfcVxtOARy4`yjul=;Y&;^igjDB4QcTISV7rj441wgT#&kIl%a~jZqmjRf5604BscS%pD@=o|MEASwZa!8MI$Q-$0&yKb}5TX5>9k6vA_ z8A?cijNWkCA`KJI07nOunFo6A5a+={&~bL`5(Mqg!;22Xje$VdaK_mJj?TcHi=HGy zd&uBv%B#h3!1c}whG9cGu0Ez02g8t_XCoH8x9;TyALPGSlz)VX_%^UYg+0=qlg7B* zG!p}Zqc}1S@#mvC?^+!hi*u*1dP3VN`>TI2AohKz7rpmCewUy3n*jaFd+`euV?0?X zFaAL2)jTtYkuWrnalKU_P1fin4z>grnS5R|Xt72meJNxROYpZ^34?mC5)SyYs<3q94Qoa~d*J5;G~L8FS8=Uw2$VUuAv-gCw$w^yOLhq8ucM|_>R-mL`7Yt}Nw zGYT+y%>9?ZTkdKeHZ|bMugYt0xw=)dvupQ3^RyT>p=%$Q&;b- zqj!u}y|Lj2C2rv!E<;Y^qRy=^bbnUwU*FHSCjCEWF2qUM)g&6<)Ppu^r+WvRj+Qsk z{OVTdx4*W|?uCB~3Iq*)pob$=QHOqBT=`O~{+7|-YT%A#RE4zGLtw`TtKB3boB)6NHvh&%fn4yV zY*Jff9v`ggSKE8Joep}i;U!;KMO_*vcaJoCty)===)aLF*T&+COcs+weKyrq{O!Qn!LU2Oi_lXgE~!3m+#we~`R zj>PdxElJ3}$eUGLWh7X!{abI)(0knS#10DmyQ@dBc@!WB>s}QG6I&a}($OOJ6%p6z z>tpehov%b3q}q_j^Kp=9a&+|$X+VL&XjPzz!vC$A=MVOmQ}lSl_VbbC!dtEXdp^#r zy`l_o{5*{qp)pOrNYNxDk}{s}*O!_(9=$rl6u8y!3|B{*u4TC-59t(5-%2R>tG%7S zef*!-gTKBh421h=Can#sTYnsZ2pZm36}r|D=)y~#gLU)693Ih`yc%ZNIp%C4>8?8j z|41=U9J7`y`b+&Dh4R-^gLVyhD*(A~imXc4v^0$>m0)VM%_<%`3@<7Lx$? zk{(wz9cn}0%?i&BA%%AUT}rX!y=f!x5gt|UkhvfI`95j*$Je5*{rCPJu9!e{y1W`T z_Q(8^jScC-%PRCI1l}+~M;949x}~k9Q{N9+o*z2*V~-4%DgMu$X)iuXOs{@0LK;Xp z$n$q{n4wiXoJ}W6);w!iPr=$MGQD)69Yg$tCh~9ppZp>^KY<%EBEzt_Kx^JA1Ujp3 ztK}Ta>e0iUMlwr(q3mS5Q#=&8Z*)^5T<)8W13>BogYSjkEfs>xs~j14regaOvHZaP zTL--Rr{84zadX7u$3Qff`$r+pGzr5#&_C;+G-a9j>w(L>;ptI0Q$Xlf{rkCQfwy1I z*;rln-4h5Bp+hdJo)#}+>IjD_a){v@-L2KVB-3h+(xB`8rm)JgT~9R>-3P)6U)DtfFGs*6N8IG_x*?P(ab2tHtpGdd0Unf%1a786<)2~n&z#t!F3v>gdXWZxSHSwr0Z{5wTlE1!!%ZrFqz z{Kj7Zel5w;ui>LqiZGdtSMMzngSk3SmZ}@r{X}OssB5VEAVMV zEN{oNsSoF4RF_~Nzo<1R0EzX|Rw$mTk!~fy<9lr01qD~`F+zWSMA(h{%lO^z-kahx zxz+5gzrDzc9EmlA%&HEnM5qZ6Ag*nncga%!`~|@gc(HyJght!=Zf#&M$G*XFKBa1= z{N;!7<~N@SV408|2IpiWb-z0sM8cx&_oqCw|+h0Ab%4rlUfHukYD|j3y zn;IGMOea@KY?dpn?m=+3`XJ23QLZN`J~;@kv^ZO_Vg z$-AQ>Yl?BDTqJ2Ur=i~F0Ra7tEsc;Q*t2v1*Hn!@I{jCRATT`=Tl_MRB~)tpqn(Bc zs7a<%tzWIW>^a#kw=Dua+R1m8Vt7wevWi z9zcA3jV#5C?72yqVE*|pNBZnd&Rs9nF`O6(F7@-wR*CDv+k*V!YC+U8GWjhk7!;caGp0v(M`3;a>Jg;y~lfX)$ zdHz8GTe-m)YAXZp{_gL5Y(+{=(47<6uNo)iL}&&91)_TSd*sZ7)COQ%(QfeJqY3?F zntkTWKpfuPII$K7Mntkj0${xU)mI~W`pY^et35XMI0%s4UQ1zV{-Yy^(po7^=bJ0e zLb3EOEyS!5x7DxV>mzhaoLH&ioJsL%eynQUw%x0?^;svvYwjb$um5t3Yw$CJZrjSZ z7C$BgOffC`CSVS4vucD9x+}a90Wji(r!r}YTt>RiU+|fLsr}G%H9WMp<@0Oyl-9LO zRI2N#V;?>h&b9`d+)nV<*7&w}G=}x&nv(b;cHTv*=Mk#s@Na^|!^bzYV5BCGMc;Kn zw(BGcZq-P(I<^N}{D@#LuTb2inLW|~gedd$%?`Ee*gu@RtoT$26#EQ}} zx}gL;YfuMz?N+msyrM>Rz+sr;`AU6IMBb?<7C2sTP`Y0|7zJXYQefn)YE1B&91INJ zz=%t24K~;gPdzcyXY}F_;qx%l9(i6W{ds+@`4aT>QIu+q^T&OowObDDuh9V#xp7QG z&9cL}^Y0!#jUTHycwm`svuFC=z+8cH7@r#T`Ua}yi+3qL`bytz?5|EnLG>ozE3TdTq|7d+zq?7$M#6ZTx5=*>xXTr-wV$WkYG zc09fyx-kkk{OF4o0cbmue78Tk@Adnl39Xe*!b=M#&oVDN#{8?-dwiJv5OL(w>!lYs zILYsg%(rEq9D12^JW3U~px30G$nWZH-!~3M2syu^kGn4N9Fl3cyA+7>>FsQ*)?Ihj zb!3}S_kFyX+`BV9Kc6*5_Gs(jPHD~krlA23eQh{4VwMCD((F-uMuE?mvt&MRMXt~f zbj(_~F7|xV=Oa_pBHfLB-LRbGr8Sp!d@nCO;JQj^(L^QzdY+L^GF7$d=zn_|in}3> zkmPx6W_fN|k3`UAXNADM?+G9QL9)4|Jmtz}*|x8ZqWwG*N^n{`2st4ArNAJ~bdDvq zeuPrqY`6!tlga&*=Et5~TZ^fGXMwU^6_ugByuQj)+gEG!di1j|!^2KY3iha9;!R7u zcwQ{`sO3j3^yzog_+&j+pK4T9ah(j2PGGVlRzuL#%H+ctjW{6iO6=Ub9+WTT0;yHgj9q?&ih$6 zFUx{>w-^z&;EDro-z(G+h&Yp9sT3m^_|k${-#XR!4$(!gu1TSpNCM~AlF}x5`L}?G z+Z|(glumdH9!^NkaMGKOO1^pW3KGnN>A88q$J=D`zdjs{>)n|Af-d%>!srLclQ3KJ zq@N%$d7g8v=meW{9=$+=2MQon3~&Ms1qMJ+SqS|75I%)^B642Uj9y(H?B9MQA?yH_ z(jJ}wK-RQYAZvyXFpEJu!^rz1nnF=jIS|S|kfIO`ZpuMVf->eHUVO5eCeZZ3H;G=I z&d@jHc@|2Nq7`;h&y&$rgd@`5+eXdWcYK2qp*%LGE2kJ$^LHJ4kA&HlPI*t8^?aqM zr<0-s@jKYD-q~-8gn$|}1|4jlDNPkk?$OMba|Pc+@GWtAnvXSffGOG48~uF35DZDz zyKKuZ#VQ2mulGbncTg0n52zK#UP@JAx+ovO0a=@;M4WdHhKPrtiu z;2{BMPDpcuXS@2-=Cb_y^&)A%#J&6{AId7t^ze#tzH%=Mj+5BG*R{{(g0sZ0H}}E1 zOCx`Ua)AAhTdTPX`!7MO3tGPF?a{VPCa^r%Jnn-q{!?=q&~DrXY2AL~QMV zKLZ_3bR(Dog@I~5Jkuuuer~+k?Kaz%dA!`bg3o=AC*sh%E``CDu)sxV_K{SM|YxuCm92>YkZO6TWcQprpa9oQ@BIcTP|+0KeE;6*Bfx46<8IRhub!r>=`66 z8eA~SxOf_WoZ>vUJBjR}QI#~+M05Ud^PU-S`8%W4xRu^E2b`-lso{A{x4h9F2Swr= zNTdR2EmEz?d#A;Lbu*Fhsd1HjjI8AA1_)BNMbBi;$l3CQCw6Qba9qE>Ix?>8{FMYV z+}+mlU^aRD?f1Vh3^TVD@|MR}kw=yrEGq_k>*G_F@AC*OqrcY*F2XYVzR9ynrMHWJ zpkVoaX16+DGr#@r8(w{9gysqUJ3svEGb0#$^V@rTyc*(BAIsw*w_c1<_?@#xzjIc9 za>?EggwJMHEKh!$TE&9Dyhx;J3{}>?`c15_?WgfyoEyU;#9xP@s4MpEoqDF32>rZ^ z*;isKk6|zP)9C8doYNxf<>gvkFiP(cxqmM5prJL%A3%(%}Bg3}oVWZ9+vEhY72x#>0t@k}bB`kYZWesop6CYCyUe`D0yyb?%VhzJ2tU5;e#Z z2)>Muxr!3416I5vDV(?aq@sHl2vMGRc-*b)J!mD2IaHj_XG}m_PNwcS<#>)PpEKvc z;Y;t2JOMj^A>jKF7y;?Sgy#Nql>B&6t6WbUH*5-oJpc^g{Qv}VmoM@WX}N3Qx@mKQ z3~3CDPRt2n#fJdFe$=`MkJj@Q2iH>+M^y zv*K3OTD;of@VbBX8;cbC(f;)dBvy^wbg|z+V zm}6|S#XqVky#3@rMuLJ<*mzJ5>{E|W`~W&w&k-+|!hsEZkfTRQ%|~8fbYVlST^Q<8HuiaDptS#k75F2>~xnCE<1c0O}pk zK?v4a?gLBiFTZ_Nvg7qN8POBmxgMDlo>R2a1DPPCNr~d;&eQw`~TJ(Op$k^v{Hz3W7T4?Wz`v_d9q3H zyB}q6)^{+-dt?)pi+B-I^PQqTsMp8|pE(`^Gk!4XJ*mN>g5l${CFN~Fuu|79m0{?L z*6T_o7+f%d^Y5PSQw%060^<9~w|#G{3G8x8@fQ?D(uC}G^CowKLP5-1`*!1kXm|E` zBQYBQpsW)MfJZQpZX%5-7-D1d9OwZLm3?pPnHwAl+UO?`Copqbx`(p4ZJpD5y4|)# z%QVH$(gyPw#lfL{2a#I_gpMb*wfyoSBfFNR^TKMlgU5WQWHkGR7G49`j}gq=R7ORM zi=P%+9*q%y>HNO&$3Or2GENTz6Yv^67ESxhMIzvMy{2C-(uOK+v`UrLR%bYDy@OHt z%kS^=jAslRmR}_Y&);<7gL?#DA^q=uT^1UkmsZfiC43cQsIC`zhh^Z4xIv`q(Zbmx z7?)^WnOir1`R*!L&U0{t@+n#}K`>P)GV9BFrYDD@rPTY6lg`P%a|k`el3X-*oKJ+d zgi!2sG)Kj^_@!~1`fd}HKn5S7-A?3(RaQ4W16@lkNap#h#`keM!Sh_=X$wA{x-{eL zwAq=qvR2N2=TkiMuBdc<*6GR-J%|H3B9n&4R@ueQ>y8?Mr3RR&7x7K~CwJ8*`eRYP zR~hvA=7C|9d)o(v+_OTVJ%`@JcLCRUZu$&GGtZt0jdsAVGVmbEz!U|vD<8I$i}i>a zAd(7a*SxC%|3+emkD5%JDLO-WEU9N70YSORLgNVroh}z~xRJ}N+w;4D&-9_5PQASI z(OGuB4P+GTLA=4-BRp}gr=Vw_%sv1A;XOWBq_d+rrr@e<(fB6Ow z_oZ%HKhKkx1B{~AwblOZ`?KnI>Aa9dN^ff4>_^9sGMBhwVF@^VpftsebB*LO)>W-7 zH1U5tR)Eq*8C{{rg#@AT>8NC9qqYC~Y%sU)${>ZX0EVc}wva0&tz4E*1l>q9=tdS) z9LQY0NvYXox7cww&5}^iCRZIL30@{~)_Dr+qckfB-+6UhsLQ`+RYe>lgM6t2NX+Ep z!SOk0@jVaxM=2HMzuY1A1+vAQGLNV8$!mH4_Wt8)E3#GT`~IyhBAsOK!4Cr}$V*C@ z*&&+^F|$J@eZ~A#8=EOYd%61-v&G(=irH4-L{H|wOaJn;ZX$U@yrvOY(V77s_tF*N z-7N#=xkq(qdUenSd?ZgExjv=$@2}?Fd^3=Xoxp8$FOZ8Wk+%WzI*1GzkG-;3;!MFFn4Qe8psk2OnN@1sGI~05-U)Yv*=v zRB47Grg7^5cB19^H)N3qyGuTsaq^C!`v776W=;g|cNP@#-c)cJtgcc-$6B*s!r z)pJ>3PKfV0cXFBzcQgOq9&u-h@Qe?dE6%j$bLdHsW+|+i)rEbJB zu!T-nu^wrH6SUmTP_=y5fxIuv2IC%%H^92_Q`A)1XK7gtdTPp^(z_kyyB(Iw*p}v`YG&NP) z4r1t?V3t_ta4eONhZSuv`JIIhY`l>Q_^Q zf)u?+Q%PyKB9Hh3@_xmZ+|$JwTQ{zrC1T_8gQRA>xmwoBYB89-zpgl)&Te-IK-fqiJ?48gs*zO-YcF%F3Z6zab{k+|ps@37`1qjEZU z-oE_hYsEr}uUUgfR+IVy_hlc<&v`t1XrP&Qi}>|I49`7?FX~l4kx>2R{+gV&Nc6On zXtwgzL4IUC_?3tu8{@fYFg@bN6Hi;!_6`UiU}7`EkcR`&*-OQXZ0{bfM(S@+TkQJ8 z>U3H4tu_6xGt_p&?F?K?qIYOQcP8Mg+hnli3RI5%O@cs$L3@8!vg|tRU*EJBhq%`) zPB1n2SC20iB^xkX%~FPV3R*I3e4VX-&2c2xO4Zfqg7_b-5WNrZP#KhA<2Tpc6=i*j z^6g=~Q)NTn9z+`(P1oq`kVgTqrY1F*q^Gq(h6E;d8V7yjbry4AOX6HZk>%@9Z1EnV z1QfXUP5_za)g)v-tf$2Dn;>n))hug0B@p<$QD%fz-9Z3^iNxW!0*5aZ*}k`?hRHsn zy*}DCba?C`=!!xq-pWpIhRaHF%Z)-lSaH&~`z z0-@eJWK^y+mkZ%9hw;Na26@IN{}7dvA>%y4c@Nh#Nhr4z4a#HqyuyeJRyoNNfcoXl zVqd^WLEktr!abHyL)`bHp!$5k4ixs=<%2C3-~A3-SVmK$V7M$ge_{f;eA>kv{yehU z@sw~^K6W@{NpimcMQ;_&DgNXtB*F{sakn~nbOM+s zeIudqeLcqxSMhd1j{IDY+VRD(8$*w;*^`h()CACKivbzRI7c!#U5y60ooq1o*3jtn z5&CJua$p0WTejA;PC^#hLVcXJqvq2Roq^U^qV6vPiEcOho-S6bz!BWlc`oX2 zbSuRT#8RBPgJMB!MN*Xbn1PPwJ?sSu!Rx<0!T88h1+SOfH*^|gt_j`-C%OZy(w^YO zYVc+?AGi9EuRIS`bA~$EDph!@j#{~Qzu!WqHT9Y(zA}?AjL5BM7h>Z%D%1aJKr|%i43;y4XH@H$dI2z5OIJ1S2{grv#^66siKlEHdEkS)`_9>y z0WI`y1&8|p&cJ(ynvd`8i#7q`>o&NA5sWM3_XQDuId}p?1G+aS1dz}^zB)QG8!7%J zbE%8wESy#}(-dUdgx&!|Gy=ojw<{2{``Vs|A{W3!&SCql`UH7oV_(A!4Zd&pwF0yO z8@)XXI1I0)O~btn$Y=$}oAC;bATxrwm_8y3Ojg6-gHsrq6?tCr$@NYVSjUJytNI<; z0Sn{gJe7TFpb6K^gWbLOy*UwE{T2L=PN_G~;$c^xkscM)06Rd$zmC=t4q$JM7eTyn z>#?`lUf$@Vqx?a9>%IOa?k&^aQy?-#{E;EL(^Yz0>s87h!eZZ0ZT~R8|9^T5wZdOd z-OhCu>M#H7b)luT!qno>ZSt9u0xuSqc#((y0{v?Y`u=*Xu5cF~y-!ssWLUBN<$g_J z>NCor@TcvJtM+_ftvUtyc!YE&4d6~wv`EfGkSIAvoOvL{bhDMXf4kvFt4%4Eq>Go$ zL;6B$--zrJHWF*HA6t08O`&-esqlWiO!LKkdyLWaSdHV69n|q`5Ie)a%jHHS^hkIT zqwgleJ9?V7eFl3h5zysMNMzmPjzr=-O~e@E*+`6pU?W1<>68<-;(pJEwL=XmZc|ZZ zB>i~3`ny9lxYV?hG~ityBV%5x{gsqM_4b3jm0Ti$uA%9PH$I|M} z0=E8M1xv8Letfd4)0V#`%HA-+i8y#@!kPpIFInI*x92`$p*xN9>W4nxX@!*a7<~jb zl@18YH_+krV#(E`)PBBKN(bogb^qss_Fir+MaD1phg$p%3hW-YjdWd?xc+eUgwcpj zBxJ(fQ^4EtHi8?cZSrrNKkOqN&rL~ZWSRA~|4>E=2KXll=<3niHQrK3H`?7;g%mdS zuE)=|t~JhA%gAg#JhP}*eUAWbeiZ()JwPN5O+p((0i*Bd7hFxsRq~684<>*K4SQp3 zJ%$#nI<`AK-^(ALK-4vGyxemC{(B%KL6_Wjw(Dx)pXcQ@%V$Zf zbgy9$(VZ6QcizITCFF?okQRsGY7O~AP0!cY4yz-su;TJsqy~048O#=RH0NLv*0K>mn@Y=P)UM?vd`dBn}>n_M*+)^!-rbkvy zNuD0(P@SEFCVzADKOY}{0!AjQtw*gpWqPz34IvbkR;;a#1)f#>5ZrDceB_9CUvBGt zkUqRQ&RBS@0Zrg^U6gyc>5l)A*7S!Af_$jE3qkLIq(U^{tv(R`ylhaM1-RQ_G2-?NXmf{NsIzj9B8`Htrx*+Gk;vV#QD z)4cVq;*-b42U#z7_oL^R>c+|rrl~5J192pJoWve&L;#1#*)zi$}2pl9loPn;segH>cAo~E4138;3h zP|#_sTl&|<@iguPm^nuugly@v<7W&6Ur>6jY^7Swe;0Yn`Bc|EM)wYa*B+2G^mS`C zYy&ZSEJBW5gdQU75$!BLXDdvrk{FHd;>es(U@T7-_X(NiMC>^5L{u?+qd*M=Sy`xo zC{eze4o$aZ$q1$-4XF8B>TK7vRkxkVr+j7!+DpehLBgvm0hs+z#;z_R@*vrf@Uy=0 zL0yJmF5ZGASw+cJqRP#TLfQjaXb02UR|D3O^4f4i8l*RsZ~djT$_uW0?B9I5!qrL9 zUS4iz(Qp6Am|*u<#_q0Zz^dNZN#=U={fina{;Xmh7K*h4m4*QHN0*-OLF{#Db1~?YmG4 z;tPJ`^s9ezrwt&voD0i#_R`zl) zPZYbVg0&9eAW!{$-|_AvB;iTycT0GkA6ibQ`Ifb!-Tq>^P;~0+Ql=>qEo>6ew?Q6J z&n;hAea42-7*sWIzLGyr;6BtoWcM4daccP8ZV&Xvniimm*sw+FEZINuEuV6sKf|}8 zEd!MW6X<^cMq#fGoxu++8innAvg4Fq*M9-)DnCS^nB3Q5{p`ZEO!I-XSj(C;R-a9G z>Yd8M^*hVj=7U*1L$jnPo2=f7Z$Of=`va*NOgR{+2xSfD0%B7Cp0pVxmFDLl zmO}7t`s`$kaE813k}rfIu)2LD$m{TUB>$bLp7nvlekmnd1az1 z2T92&D-Px3F5#05x+vu2@ZFc(LR)4^3{z^r;Qhv0y4)zT^b?;_NN9b9ysp%>zj1Dd zIGyp8RYGPqR&0+KU{vHm^CzX{O8Lu9WY0u4)+Iy;AcuLrB=f)}KyWOSoM(}}Mt7%? z8BUeC`o7}6h;x*Vu?p<%vpDk|vxVG)!XX#Feik5_P@9Sk2u@uZr2%eYU0{__fz(kC zGglLW*TuFT3V(xlAHVh9iQzR>#WDjLP9T&N-UVr?JVhCpRpU$c!A-C0 zpZ9KwRz8Y0wtHTd48()$zr$2^Zjc?DC`Y9es?VN)8> zzvtm9*HH}r06s$r##VrGs^4f1sS5L>wX8VFK;JHolu(#s{n{J4QlxWLGGE@+!j}Q? zCJl=K6}e|4o+8bNSGe0kX%0hKgWn%6g<<~Ng{g}V@%J`3UX70zx+8p5a~(2iD;``f zQGQ;c76*I|A48G>c$a%X++EHl18lwnOMIAF2Gf!lp918s$Ku+;u)!#JeBKO}lvDfg z}PHwsfEHHBTexMdkiso<)Lu9CG9zs(H8i z@Ftb<95r<~Isz)+uFQ?T6T7Q_Noy(Q=PU+Tf;0qD$rd1ND9)XK*lL<}!5R!*qyt^? z80$P9V1K6{q?JDpVZLvM$@fqEswIU)veD9R2FF2Rs6boz3(=vl!@|Xkih}ezP)-Wp zS?)S!;PPl9I{o!B5S%vky2J37>FAv~CFkl!A4IE~Yy~j3QZnuRmhz*IMGtTP1iA0MSERv6N1vem24?Iwm-( z&pj#bWi?KFGeXx?%Hfs&+ir%(l)SB3R{(|VJ~#6T*c1UiJ^|O2RjkI(vr3Ll(-UncatqT1iqvfao$))#~u!I!eJoBsxc^}^x} zx20j;yed{VYCkouSEx)Q<0<$<8{H>uBStr-|q(#A)-PpbxF=IW6{COVWEf5 zO&}?EOWvqYtn#m9;x3UZ;a~*`taZN}d!TA8Al7I;5zS56Rl6GC?&^E`3O!BQz&n?r zYKdHH?;l}3F>w~ryx*gxNx$j+3?IB6vBzWiY{Vtmq?32g7|@OM1%4LRJ1T&q7aJuo zte?kphkovH5t|{In`1I59w39Q`u$CLlJYvIbi!q=37tHs0R#>@1y?FTl}LiUte2x# z@~dV3|M0zk>Z)5Y&;kJ!#2H-oG z7r~MJ1(o>OR@B0&5K9UfYHRua!YPl%Her}<85gS|i z`I12gj1Hns@?)-HbBsvQY3dwPtc(a7V$wWsl`B~md7^~V6;WPHkU?DK1LGfT>M0&z zJ!a37(}302!{Y7y+K>GW$cBvD_V|ot1pf>E_v43ux;E&;#%1rfNkUwcM-zctK@-A2 zq0{QpA!tzJ*j|zM(mml@Q#mZI;A|kKceWT(5I&f>!+kO0a=m88Q3;tBIY%)4+Fi zu$DWP3F@(Nw{4{ypA+xwCgb$@ykMat_9|I>@=I+Su)@Mk)6ov1AiKte(aer~L-t|R zC1!(TnNw(DIXzJOC}C%Q8CxZ=G<*s2xm`s53<@(31fBxbyF{+e(8~r?Z@@G>K6ljy z)s%kzsz{csArTIM9}Z#^)jPv1u64#haejDH^OEL~XEVo8UD%FAQ;a(%2u}e5l1I0g z&v-OIso(hLKoS5>91e~|7>6(}E(>pW;w9lWe~%6*VGR7JlbzuAgO;Wb#^Ee6&-Qq5 zuIDrO8Xw!n048L9cWMO8_bw{eI;TLqhp^fqDb%W&fxhQ>vHR5cyj2(J2M}ESH_&kq zJ7DF9`OFEKVs(TT_|aMXU|9cqUuqf5O;Vwa8=V&NnaIlOFZ(e@Wykv5;usxy9bWIS z9MxtqsSH2~5HnneJ=&|v0~emFkk(Io82wy_VZZvm+=fVYj97D5BlV%dfteeDmpoh< zYd>0d{L#KPF)gIIZ6LV zH){?sD*5#!U`^jP1+*5LEMNRVh7I?nF1JxKT3VxRH(=6~lK7X$;t_PR;tqq1C{un! zn%>fO|GIPW`Ns1*`=!LaMA`>^Ut{y?-ZBBLsJ3VGBUP(-?;n>HLMBRuu`C!_jyyKr z*P34WDwY5mp(tE*5(XRf(q;U{`7Z}7^%S8A2vACRR)N-r6#AXESDo?T-183{a+H@Do&3DO!i?d@ z$v7fv6%%>tLt#_T-Oy zoKUEDeW?8zG*rnI7<90dqIRpnH9EkY*^}H>qi3Nmk`}fjH*~Ar3{)=E6GI zp4sO`lNq_-ZCSt{ZgBm@7n&Ew$cKE0P7EINBD5p4iz0x`wLTyLZ2KE~WPZ{m2Dta&AU3py zMu3)QVY#niDG_+4iSn}1vGl3f5bFvJRqlFo`w^YbapRrGC~KXWZwMNVQkGd7%3 za%J+^M5IWC505xRy1l(h8+>zYdRT+AkObs%;FA%zBmBvRCPO%$;fV7GqFVpAwjkJC3n=ZVL z6<)ToUU>GCdv&7VZ|4W3z`k5osyKtg*cZ%~dzo1_)~`Ksq-NNC(}3fJ-XNP=sMkvk zMrfpCI$(D{XN#(*2(ct9I&H7%xzaS2z2e|TMv%ro=1W4plRr-NCL+V~N3r61=BS9u z)E#+T5c%W>*ZoW5qxnD-gUn3M0O4^>~iCtdmxZ64gWhp9NFE^PVu z;>S%qN9VHR3tv>>z%hS3KNz@asSBa)CuW5JMz@jU#Mc{m`EZcj|E=hkfBl|^V4N~Z z@r=NDUG`erZYgFtw$4N+A0vi_5>$ss_}Jy$1ZtcY$P^a#yyBM0o$8`j9mlJwEE%9U z)@72UR*g8TTeO5Z^=AWd8tg*!@@N!&Q26xC*VfXxJ0YC@kjE%B=K*&Y^f!N9b>LP~ z+Lgr;pJC*j@r;^SY>3ex^i$SHY_*f<6TKcY7vt3N=(pMzQ4lV%bP}54viy~;1ERA$ zRua?c-0fwolY{TGDuHAS@#@7xoh=~WV)@=w&7~i_DhoY#`zxdfE z#XXu^=ozp2R{X#;t*2QdTk(6>3Ba((#=oJ)x?jZGpIvMpv``AT_(~mL$=LB*_~c3W z{+ih&F&I1c*_0Z1JC$dRHo(^oHYuIopY_$t>F}o#1ZtPniTJY^)%@}8lQ)|Ri+SVz zh}#CR$|xBq{5c}PNE_bwaR!MX@Yo!>C(a@xPxmBgDjo+V6D zY)p14SV1H8o&u#v^|~>;mji<(xwyHe2u@}5iaL{-XM{XrFqym#2!Hs?i_5uS={M#5 z@e$+e%%@O}6uHII%uwm5e;<-XJhDm8o2)21=cSZR)Q1~ctHv0b-#Vh2g{uNtu|b5e zojRpD1Cy`jy#juiZ@&=6bUkG(h{Y(E(0#hk%XFEX8c=RYxQl|Vh8?Yp8bI=i`0U~w zq+T?W5CpEqAdcIgnTow!Y1!VlSjs8ZwGq9^(_o1FByr2kr0*H_BNo$ecLNKAEJ0VCTfM5u3@_k&7j?GGBCMJIj(7n97sur&yO@Z<|r zgr=qgJhV$!_mBMgdm(fk|K!sNrZVGrk5#!}NfPCZ$6kdWH zWIhZ|k6qk~STZuxrs{`rmD{&A1X%s8pW12wdpLyE>tJ&c;DxyT|4hscsc{+tIl~L|2Sfy4e@maP!AKoZ5;ktvuU{(958QtCD+4~uwQe^v}{XV_%@q1`#H5d%ZoH0w96b(MS}+OM-l_H_OSSY zb(^g4g>H0xV%{!5eL3Z|kCKdMMD+%vkhd|jJ$V1~(BXBG_UT#NMG&seD;c;8aDm$J z1;trs@(mJyP-~aU_98I*2IQaT-1^<>?ElOd#L?w~p}xQ7yxOEy8&Zp`4jh10*0(v* zH)zzZ3m|4AHD&`0o~(eNgAIy^o3Jn`D1qE~r5B@P;reHdLKIKj?$N%+gRYA{%yhvY z&hxjs#Wf)zfPu?VGb((|GDyUu-_`~S`DVLcYGB^2~>=euA*~9Q507>Vd|157z-V zB3YpwX-V@U3~@D9P$B_2iq>mVSZGiwMSEkZY{-9+by6i`T=%~6Rk_MC-)`r5|2P~1 z9&#v+SoY}(>$#yj6W&OlnsK*Bq!dzWw8KNoVWff`LaQ!W4cLl5cm3f^Nmnx~!-*V? zuIiOkb0XO)30M}0%uyzvOUJ;K`2hH*r@5oFkCbAPAI)yL|FyoCVgwKXUA&Jhr0u)- zd2IkNe<28bO#%KGi=$dcST-R@oqDMaN|R=>sj15C7GWBLA_Fl)_md(E0^7+XN=JD} z8Y-JA7MRye0l$($faDz;74GH&o_dNMB*}3Aj?>s+^es}7HWZo0iiYtyk_FoxyHv11 zI#6Xt+fqT0zEmZ8h_sJr*=R*$cHj~nW{J}__AG3N8R=5#xN$e1(V;S>lqsZz0|5%y za`*H98KkcU-vxaS3Tdz62#g0@q!MW)xl?~|22f9^e7&qWG_}oooYG&;lI!)rGWPE? zSDboO+Z!oU-0eglhr8pEzmNo7KV+oqpPIg1dsgsj(?jW_ytVMhmzHAyUMCjQfglED z3;K8K{$PQWgrZgLd_O14<2uea1@!qlXys+vJYo}TiKZOYCT6pShnzvBAvYB9{Eb z_og%f%KKxGk0iuEv}eT*Yoq$3_YgG~9W6<}zXbnphewtI#>n?SA*yx@JE{B!x5Voy z&}MS!rl2qo#Z8Pt&ab%PB9!lhgz_XT2ahs0C;<*0ubgBMYC-;Tfq2|Sa$MD@w=9ea zV_5ySer=qe!ASQDUSPFAL};zuk3C+n9CP){beIz|CH3u!#WGiC+CYPfBhOc-(&vaB zvhlOei8W8?mk4R;wP{^|ujhze&mhEP-E4=*fSm};2jm~ZC%9-zo|%Cz$iFa4tAEzZ z8Q#fz!C#rk;W)n1JM@#wWC5-K@c05-^^*R(+RCy&Vl97f^dwi2FNgr?xzAC)spQ^4 zb#-_eEjF5d5xm$n;3Clt&)dilex1=0VM2g9&6!4kYOB9`mMK7yT3?>;h+`S7kqUlW zJ4N08LDS`%X`BBtt&Tkdr#ISe7zed4W|y=_$}DqJ##bf+7|!1gSr)>HO53?$UP$UG zIeu90>rPq%ZUhM5#cKhOq|wLE@<7g&k+V*HcCO_^!y$R@S6<+!c9VhBEGfjRkAQ!Z zqTl&a`8qlxeroRP@;9_3=$ZuNQA7{#R54yRqMqQd%l8MG2zQ$)!<>WV8K$4)eN$s- z=hwS)e>Jqt#ocUzS}*5u6O^n(pjmup!e1vy;7g8|5F2g^7y?t43nU^@==0FuN}4D`k-hWlgEq=I3ef z6+K~yvnpRkuDNME1LVUU-W6eVq`PFEdS#*@fPb@dVvq+#NS}boZLoG<4@mSWijFX_P^&FmTyLc=7uE>Vf zKo$ly1%WSKynwPFP_*ubtF1iTxfFKIU4Y7&b(93o&RT~8knowX0JSvx8CHXw;g?zj z%qPBrcSaLJybeqjp+R4m9(c}UW5&W@e~CYVW%fOM^ZY#5l3N*9TqA>heRv%cb>FXOgk02gBXAmmQsaTo+`D`E3KN#C6Nb?oObK+4jd z2sDTkCcx2m>#SIF;$iodPAIhiNwhvF7aMwNq*JdXoJ*;Ac?|-}P8WHL z#HUgcqFC?M+iP0S+J;{f@^R(uz*&i4;@gqwSApK4OtCg9qc~bY#Zorl4?@Q^Dqq%& z7g-EoABst5jyfxe^7|2O_yD0-eeuI#MMU2Dc5(jhH2E;B;s~OD@}>v1n8PF#WMRKo z^f4z(hY5^Hmh}zbr+F=lOF>?c!7LYtZ+s2)3l+M{z|vD0B6_ow#6dZlfa2h%aDpkj zq+uGa7w$BVbb-Nz#6Ky`c6sB{X|i5)diTy{>@&rTm59b#W^y+C6C1?mYe4qlL(G2v zQ{SO7*ximVs+?|%*f-nwCM)I#M?9~{i3I4V0)1fS$9xmVh<-YWL6K(R(^s#hnTB+6ES9ObdDVC26*TLtC)qr$G2FPiZh3l z2eY{IFzcF_3IHK=$Eg$ZBtt3RN4Km+V$*=<0+w;`buN^G%1gQJ2F7dO<_j!p`+8an z_d=Fl(cttGav`SpV&T{%?7}yz5GZhu;WI!yu(a$aiM+sqy^7`TR??@NH&ole!^2a8 z6bgi2A2v1@rdj$@cdPC+W>d(HY(3B~PRDZ^?rUp$oQ$Ddr!e>q%x!0^h7x-O zBxy;5q*I~q%ak&gUspGB&NRRqx@Z_*pOJ-V&7W6Cs}uK*z<31|SlMb+ff!MWaXCI} z`v2A%Y?Ig8z>9g;?@!M{V}KKXiFz9-5OBbbzuHfW)vSvwiYBMN!^vupLt6O(g+d~a zmCQH*d|;W0T#gh`$WicTATh7cH4an+whs72bO~WTOXw;|>*BbE=n#rT^yDx0T8~-Y z$MUBmuO(F3xkbm*oj=H?sD?dbD1 zQ)p->khcvo`q=); zGWG@KjjZSQIhsy_*l)A4*mYPJe7-pB$6@p4a5)X>CMj34%+Ge5d0Z<^D9?&;_{!XH zxOu1-l3JmA_ian6Kiy)|sq=lO!|vs=?i1A}72aIj&554fK>9uWv@YDzM>^Wy|Cww5 zEFYWGJwTSr9|^l9pru3s8y-{dNet87vJWG?6#=nR*3S!mM-~PMx(1!C$%CC=E4l#O z-yH!}0w2}43vv`OU#Bk{w(W#G-wPs>#NO+N!IgUlck)SCfTBE!hwRK~*xfPNI?s~W z70eQx`;!eHHk-97{WO^M>f->=y4LDLm}#KQnWxIx1>j>G#(7F59-z@OUr!gwwu@rJ zVe*JFrHY_HLFa#1Je0MF=5YutJuaUsJZxc$3@`^*m<1jnE>rDqf&9hzCUf1C zXIfH)YUp`%r>Aa=i2+x?j#&bADtmJhHvR2ww4djsJpzsU z{Ipit*PW|)krG2r>K+%Gx}$=VR0x!Sj~WSRX|)9nP)DU;`%NlxHn#g=B=S&vfGMU? z2de(BpPDI~yyO`pB?(^(bA+FfZ%*2{$?1W=fA_-|LGHf_XfP3p_aNc*|FqI&r_t1fD#BO4Y4aO-@A&j9d)`B9wL!0-}woEL`y zfy?$J)lRdlb}16R_PcCNz#1$o=_w^sz^;0oqu=LeE+yzaU_s4Z1d_94=|4% zLTThD@%6Vwe<2Fs@*VOnl+E@7@QS$AL26u!7b*TFOeVe61tT2 zPKNr2iDjoBlKXP&fwvt2vDO^{sr|nyp*EW$gd&}(Re(=Uw866sg58_8V)MtvCZw7| zVV)olObD-$2Y*zU9;IelUf+J%pq<+NsmXYXJ%|BFGjV4=A)bj*UK4a0jH{=ORn}B5 z4)K*?xD++bSBk>DkWPQaq&!H^VL{YEZ4y%7I>9^qpBCz2Hgf+w{8tnd+hz`=*+p8L zJquq587gAY5-V}BDxWJi@9&tVzUH!fUR9O)bL9fgqD?&T!W%$ZTrq2;53VY{<- z5>5oP61r1uE+4Nf9&gorm3-^$Ocm=)GcO1}DLlM9L49{i!ON;?*f# zh1ja$Ifykj zk#;0QPJek81J`%&XMx%G$5qW#fRKp$C|rzY}`U~B^y)AGKxaSnxW`Wwdt}@Y+IIYlOzy0$+fjh&>Jh8rIr&}=Kxg>)C zh!{e2K|7f47<+nnt~LPz2ul;UO`pEQ%S45X#(Tpbh^HIEW<{KewtAJ9h|-04IlDhX zkjxB2bTtcfk)S-!ql4#nMCkPUKo|CR%XO{<6ZeC?YBE0dwH)yl{dN6I%k`d!HBFPwq`$w8!xZauFg<=)8!!bHG!Xg}J0F3xE+ zF|N2)Bu{-vfMw{u0C$mP)@>h>tpgw1P3QdP=(k9G(-LgVSgs}%$$x#BK z)|ab6=g4uAta>f?nT{}6|9VMiDk!d@))LYx0 z{4${Bgd>1lC6c$vM)IQ71}hRL{Vwn6=HS3Zc_`TUj?PF6O0w#}G~^lF$gcnZSXx1j zx8RrDlZr4FQg1xJFljs3XktV1!U~2f=)uSNI7A8iLFHuG>@aTw&R?CR=Vm6&hC8h5 zzzS0W)@iIOk~>LFJ-@}8W&m=u5WL85N`Qm3C&6tS^#IzZcxPubz-gII_W&d@nS#*h zPt|1H@g<$BC`mw2IsT0%I?!21W1*jada-*=`vdQ)o)Q+rkYDnoG?RY7VDdJr(Ze?} z=_kvqS;nyE6ZQO9S${VQ(g~}=(>h(xy?t|GE%O-By5YwR{ViV;La7gnl>pid%NwiP zJWs6fcXb2Zs=};44v#^Rz*#6o>}}cIJ<5;`p@6?oAyI3|p)o57@cV(;Bwoi4W`@ga zFL#(c=$NSiQ2i)i@;#@fhhL}a2dax`kca=B%lNk*pt8&d(|^N2*=_sWTy3w>xr1ne z=dd|J7zZ=21LB( zmx~jZ7BSxuQc)$oh8w16JI;h`!k4HUR>lBIjJG7B9KyTatW{nC+JJOoIa`oWB*gRs zW{-=1_ZRK!U+4vR`B%7?i-UMH6F=QeK+PC@QtAOFW@OEKtU$S zr}9HgR@c|@gs_y6|1=n7;`?5!ox4?=vsA^J-aIAnLL;Dr;^N!sm+J^MXhBaFq?>6< zwaQI!YN?ve2ug#nh&xSi&PwGT*U=$dE3S(aUN#Z%M0w87Z`Bl#*O1|TU9I622+oTC zTvw|{7889gSWehH?G|tZq+1Lvh5SV^mP45jQYvp3bL8mf2A*pg@t0)eSj1b6xZE&t z1+S~ev^lCbcZYag?J#wGF$F_QlEY%E()ApBqz;G5k@7+wDk1BNWswD3vd8{omqVQb z&41?aw8$&zYm^|B*5&vKpAjr`7Xu;g=kpai9Y>@&dyPzl$oI(zx90EIFw;Xn@a~6a*y6eDe?)Y2 z(e5IT6G(qPl8z}wfq|nv)H$-X#)PdoqKKrj7S22#wV@-@;8 zcfC=3tSNz@YsF(=LuNmkjk9N?FF7Y`@S5+XQPXn!aHvwM?8vafQxONP%Dhc&3k?7a zTixZ~DqIsaP6nVbT|~C5&vl4_?#ew7o5_!c1GhssU@ z1;FDdbndrv*9oL4#>pawn_sxsS7+F3FW%Vdu0ihdQ-J_cuiPsuxH~1^+hYV*N9_^f zHm=5#d~kf)F>D-{RZ5M1ZbBM;eS=BhILK!iMc2gUPJp?UAU5&*gFr31es}t{6^O;x z6~t8H`*SbTz!6QP!#IES#_Wd{O=GYe8gj&n@mea}G{AV@hI;*frs66ehwm5hQL9E( zYC6CTco3Rk0+15pz%+%ng};;c51U?lp#~6Doj(HhQ`@<*J zCOFAt_zM77QpTe>X!Di9Zk{*#*S^kLR~14BT=Y37pe-0=wfcRRQP?^wiKl|re!YH? z4&!g(pRnS!oJy>h`?+0~#Wu7$IgO9&)?TsN@+DtgD0;hj)QjKCHQ!AE){HNj(u|)n zTTX}JMvc8yImb4&z#QD$Eh0-BxGVhJwpQkmV3az2nrM%}>tqZ(YYVIA(EW8~=b-X( z-zIVIuX+o5LSA=)7m@6>UA%CgvJHA`_qK`P-II*iBkND3jL$Hs~}-loWba`b7y*KXI&iFaM71?W~;tDa6jQE%k-z z|MMYZ8D$cy{5t=k21>8GH3vROIDSOkthIip_x7Q50!{h*$pvvGjc>%PjKDoGJh`xD zHS*}$e|t5~jv|Sc{`%-9j0QLkZ^tfvPlYwFx>2tMCQ1S4-FO?X?c10L6EzeY!qld$ zUlU@2|8d5#&BQV%LzgY z#GJR3!~8aOQG{byUg@$mT%FA%rTBwh-lHH^SFbzGfPyYEk}K*8+>% zc8C;DA;W2eX;RuwO1q=_HS@yupJ;H_L80ZppA*-I19DA`nFaT9oKhFE8Pj#)TZ#?_ zgVHKN>VU$d9rjql+z{nk+P;li4oF{_D8s#n8(Wtx1eN-Xqz^Sq_ONN%E9%ktYeD#} z_>nEW7)|;_FIhMrOPju9DwYupdk8uenb^{~5|MbZy?UPR42%Ozq(M4oUW)GiN?w)) z*I~V5n@A)?mnsaklOAJy1Ll<9DrPxyTkHXrpGAZXTHTl--RGPSwOjrz|L6*3B#7pY z!~Q^qAc_3UtY4jpp4<*>!zms11g)R#xV~-A+^n%}EO2AYDq@O2-vM#IaFK@$Y{hL< zxIH0g8%=+t5fxrH8DbSTIFM&jifcd;|C>%WR79gLy$PNJ2GBv1MS%DZyOt5F$iYFQKx{y6q`;x0*U zZ(Azp^U7WeM%~TqXcY>FrV#uyeOJf@Azk|nL}f2f9KoWk_w1SOTtj)uEqN3)9DKS#OyTl{dl9G zy)Ts?Z%~Ozbb!Q&EjG_l^Xe5Id>kFHpf)5GH6;C-hxFY8#U}>EpvCs)Q*8zL>x|4} z`)Ar)N_ z1MMppl`!6ZO&QJ%JWSlW_4PPk)~&3+(SAdpU1`3b?!y={WU1M@;+<&9A8;@{RJC+N z<0`-Ib$EZQzq@v4l1=|_ek(9}%HsYx8;JC;LjP7=NAwJ|X#r;q9}WMr1@r)gCPkz< zN_823u~3@c#RHe4B@i|0Xeb!y`I|N&umD?l8`2gl#)dnmHWek^a+Ki7T`j-cUoMYb zOFrp^MGLLBer*vFu?}|9A=g%G&umIOKfhcK(ik7f5PBKEm#c{#IG>w^vIV(*abhI< zNdBG@dx?G78xTV1lSwI}cQsnESH;}HN_$=fVo}#nz8FrHCQldAJ32~JC{GJHY}|t! z2ocS?*{s0;m^Y`G^!UpccOs~7__gvOI!#hPc$2d zUY|p~22<($TG?t3u?AuY6QTq6w-p}%#BLu)ATP-G-Jt7`$`;oJSo6}$6p2A_) z{&(h5Hpv7U9T3=*hb4fFtOz)L>h2PO$qoW$Dzp@67d-j}W1w6dQuz>CreO-h8$b%E zUUaRt-Lw4q;KGs=&QoDjE()M5n^BX7svh|#{@L2s=8wS6Cn6Ae@ zAzs%&i6{{}^jB1BD+HhB_n;2Hpotxb+P#STMBq~YV9e)!r3+7ywFrv-tEI|522Jgl zDT-Xy7nt)=3#=qJ9d6n~rl><5Ic46|;UHhIAME9t5smU**iT*-JxETb{s`~cp0 z13gi}_GnIn^fvBtNXR((^f7A9lrnTC1~xA1X68em%G-qHiSq` z_OFTq-}_n;e@)Tna{V=*YivPYg*Cd+&X2N`#kVw{kP;cFdpV*C zvXZ3;K-j{7IgF@YY4LASu?2sMK>`){95Vl#YKPW33eDT{H{qigq%i#vMOjuYDp1^U zFv;nKOb>lY$8J#W{NXQs91H=c&Zc;G0WKq12G+)u-}zOXO?HlkXA=zI-Ag zQaJyU=td{Z)R-Lh|kb++Ys{R7wn>F4L*OcV;eWrhqJogRhNdg+J-?m<0my zO}2>i|LRV4BRoP(AD0EVf_$|d2jGIY<5)KyfWK9aYlPDJ^fj^P|Cx*4qff`^4CDpZ zdD;<18-}HawQUVg>;8LY!6%L4=|%(AD5W!5w=JJF8&iSb9Wp^YsXD_(YDE66n?|hn zOd&zWDpxvb&3K9PO^c-UG$J51M%Q>9g1(hdK6~P87dE3F_4+G?N2?WtlB1Zu)>n4O zaS&f?-cfdqYmX(|IOX5}7h<-DuJ-pc$W>q}S~GSTeV!e`~6n9&3hItf#| zfKnEj{CpZh;oB2cl5Y+I zir>}(lcM^9*g_syezXA-FaTQoDz|XXa4nf!u3~eL!B)XkGVuydWUBdI7uD6xf^=pD*ai#bAKC{*97pCu45Dj z<>;A5C~tIq=}6naXP{nON)oMxgJ(~1Qt|XSbvYh#Yok75IbuR4d~^dmCS0koe2Rd! zzts4Ev<8|6vO|aM2HFx#sI|lEuL`q+;Aqsf#vb-n3()o#>!-lDe^sv(J<{>{rF`=x zHpiP`;W4#{{^*nZ&)%Eg{3HZGi#3!3HxtVF{3w81jY@ z>B-0#rtXRy+<#aON)^r}yeL=c-fSWxT78OY;S2QQUmr+TdZMr z=@@Rp=XliX^>6EkP6X1e%{#a14l^33S~kWUcpV1Q7nvn^YP9BaSh+071<1qVMH11(Hj0?U4TA4*k_p43Yo0;KDizD9FyN?Ou6Y&947@wqqe zDb7zk(q~74-7?^&%u>ZTftQBgao~Kjkfcd}a%4qk7|xOz-;fzR2qd;1>&<{p!o=E{ ztNlVfp{PI6=rk(%9~|2pwvp9!zmWDaA$mzi<2+$@Wy1gx>7gPT#bc3 z4PF*`uhvp~8uf@_407D_<@I%+$^}5yyP{>)%#aVX+9xXz8Oz^~CnDgNMb58+!aX>= zqPS3G0x>D`J#VIAi|>pCG6^=TovNqxhMxiS0Z}ImcjhiUt9?9o6cVkb_$$)9h>tGJ z1EephTJj^gt=|8_vMRT@5y2Ijf#zt? zPz5iCOR&q`6o-NM4aa$&xy9(8V)p0|Ot%Wwy5?eIL~r|PPyN?cRO_O?h=m}M5S!?C zg|=M&tAQcX5&n3VsW3?!#=#tZg4>sFLVIJsI}mh##ttN*#AV2Mhd`61jeDLKaZcvj;sov zoFm|fHBUD$tPY9^{kx`*d0W^H>|cW4H6P19C_zXZ=e%hMIZ(YOf(N{j_5+A1+R#C@ zu@7PJ)L0lN*+lTJzasw5$^CQkW)A)ORYD8RcPaHBo&G;uo!642K$oN+hzqp3M5{z= z?h>sb(eU(3^*=MaJ7tD-m$1x)h~w^G5JVV6xo)h7sFpQX)lSZKktgk@rRD(IT}O($ zF&h81+#c=9=7X&z4&+x^V~$YzECjoe^dwbbYNdYC`+m-kLn6(hy>ZHftL@`E=Wip3 zJrmgV8+OU&Qqw>x7EP5=E6xbbMxzo_21|AfSS}J>QNLS&HyW&%9Zb`SJqX-h2qP$c zfEXqBD^ySjz=@$oydlefBM!(Yjm?Ozo+)qoi>LHwGTdZ{g?wG~Z9lkQ8?Mzu5XNrQ z%-{T|u_JIaZyNr2{eCh(gc*Y5)Y9%3q=YB@SZ5-YUv~w!BNh5A@9^=M(Ms@?@#Wj- z@ZkCiJEM^t}a8si;-&S+0>rp*$IEM z=}yD8tdDT4e0kKs&VwjSr2tUI4sgJES{{H9#6y1HV*8%C#>FVPU#eH~^>J|0y>|FU zEF}#u?BA+*hYzzq-4VW#QD2c2j+kZ$Bi`(a|F^iOcbh@2H>tKNSZIO@oCV9xu%A)|U)+>uf-S&MQZZL(A z)Tk>Ui^Pp2;g9#Wm}b;?{?>Zhg5Ysnkf2-Bm)M_01&w(%y4Mn}eHcd!D?zZ8k*>E_ zq|Qa=`2JKh+x=fXOL#ZFj!z#J1cEs(MNq*5NwY z4fC+07tPyE;=#H8K&UkUC_xvhJpX>g`LA6rVIOOye!!`zKuv*AzXYoD_pD7}dK zvj*OX)F6rlxh*G#U`i6YPA)4*Lg!Neka-)0K`1&k*#2pldwtAjP5K^w`_D^;`{uXY za%*Zgf80mhkk(t#bc+I%7$L0R5HhLXW7{o~AYd^Lr8*ALbVrr$Z<#n)qDiteHVlbq;}&NY zn`DE01zp1w313NO@BPD0Z?B`?6o(^*Nzd;#ky6OA|^0dOZ_9gt_?GbTb zSW9%j&Ie@M`g0zk|fR6f_(MMsW zG}eo{v~tNz%(YlwI(i0N(jw@ykbOIriPWr6Mvx`so3zK2zk~UyHT~@*Ctz)CEMspw zd%VyPc^@wV6$=Q(zC|kSp5)j9Btl|!c#?7~uZkKSK}7?`QvDurs&2{>#WuOr2;|Pk zn28(@J-EuVe0X*d@B(+FxcHVL(;OjmYgb#$N}xxk(Xt_QRM?Bg@Z_NA${!acti}>y zJ$hHXHQtpV1S*kupS2J?w&8N0P)}Lio6Z~#2X%Xll1+%U#ypZ#$q)9|S_d7kkny)c z7LmmILQ&G&eu~U$?c1_!t#of5AS*}{`E*_PBceNbCFi~%h8&yn-f+M89W zZR8h;j|CzeoDJ|H8Jr49+4{~#wOWJPj$pvTsKSaVps-Rtsal=M*Z2QP^|Jo-(`dMa zO|QeH_u{gm;z6_=23_*^KJDNA-QEd;P#zw&$AC9alwW*-zjH9~Flp3NirV>21Fgd# zMOk|Btv^P+(!-fhRIyzhkpoX$rDA&_p9f!2<))4&g>c2pSzdRtwMe1bZ* z-oBi`&6mFLbbb9FQsei81~*ytgC$dLSyEg2MZ8b^i5 zQmRI^kHEe<6xJuFCyQB5X_))g63+SL*74q7$a4JH!1?ir`ip*`rG8-^8&HcL#yS11k!-CfQc~2N3ySfx58}N*!OfA zS|T9xz=~-YJ6@=sw84v8=Z*m&ry_#C9<)Xxo}q12e#BgT=40&*4pHuVjV{?HCL^V* zMf}R&(Ivgey!Q%gOsRX8aZOHmlzjsV#Ci43%|i@#l`z`>av?Wcp$v^u0It|mA2C}d zWh;vcY5a7~R5rN?`uFHQvy|-gy?zo%#ifMF+FN}%C4buSBp2&NJW6h-gEZ$~oJ~@J zLZikn>?LGGWPv}V%B-i7-y=hEd{N?@N$u_0a~1M1)7>pBdtizaxQjWt_mF~>!Tk$5@xyH3J z?fDAqlS8^3c`J{vNLs3~F)q+our#?1e!X#w@5dfUqq!Kwl3HHs$`7=LABJfk6pJ>9?i zX4Xn6`%qePe}P~b>~>JT?*qysNWP78Jx|*eK$;&YhLhyd$uBRjFV|;QH2E3uLSj0@ z1j5{PnaAqcyfRr=N*(rtavSC$%CX>K^_(!5BUQE%P00F6Xf+I!^0S5JZ4zv-UmvTz zaQ9qRs#Qo-MHxTFFTG6O6bjJQtiCe}aiEiR_xpbNFmH>W@pE(Ym-NEsB6|JjdQ5-r zDKv7ji#@xIN=KuX>l$$OXYy~M6iid-qFR-oL-{G>YQ0k8Tb+95MI>xCf*HM&r&Py>>r-K8@vR`~J;Nl4J!gAn{?OS73blXr`?e@u0WEnzDmBd;D!yG zla+NDV!rr#*QQhH$O9jl#{`hhcIF=29uT28{M6|nCa&OZ%_dGc45w1XgH|)cOM9hM zmyS)X+rGlX>0aZWXu4ywW+9_9;zP6;UQyb$Cumzju|_}m2bHOYr{l*#`y@fdM7upy zdo~%>y#Wn$13#wFoHa@aEoJ~M8r|q*PUVZJE>JeNc^2C;kk71wZlqzGw20%R4K8=uC5OC+zxpC?vF}5 zFy^`nRG7Prns?T-!5m*6;=M&`=y8P9Z+raUAC&H6w6GO(4iH#o>ow@$f{@>x99e(y zR?3ds?`x!~A=P#$cFUtv@mUuuaTpL)Vw-p2PD zu+6}f<$b2$7wS0jJ7>aB542hx5$Arpp6`Da8>250i@&+`qj~+6Qx|_FmmTIU$1SgJ zo#*-uARdTi8v32q^_(6oV}TuOR9icNiJ7l`kC701->|-0XZK;+P%nbSk_IQK?aH7K z9-i`RL;_tBc`bIc_nYf?^HP7TvN=S1itxwutrNiMbY_0bI@N$OWDx_hxC-F z{izKc%)oWeJpNcUw_k+zva-0iu5aVMSzj?x&c)78f=jsL%#l%0mw2VRrq4zbqdSao zuwk3Qm4)hF3w0DlYZ*NIA*qn> z%JyGzx{Oj>>w3FvvNUe&;hZ+_0ZDeQfZ7~-%A%Lo6t@n~Uw%Sf=W{H&*$M+5{Zo%* zF3E9@5zWm+fpJMtuXS@>Pv&VtBHszQ}7E^a_VsM_U@H+Q{l$_TR{Se)wkbptP#9l`}pX$UY(2i zV1V3z7tw{b8I72+*gtB8mDctEH2u~z0VTQNCmq#yw{q*h-_q1hUS#5d0Q-J$n7Nzd z2Zn>PZQEl%mGwA&4Y~Yh{2*F-bQ=kPB-_Q9v=w=z_(5Np_=HckvvQArF}7vixTEom zhP}SWX~Q>2#r2t!-gbBb7gZ;9x=-vJUuAKa+MNUuN(bj014|htPjR~Ki(@9+xGuw2 zSXWS3XcT%!Ps`}#*YJxUkyWa4`{|sa zCct)I5JG*-i1bi2Vwl~Q*E3G4wa;tlzU61V-EdO=%kPyct_$s<8rW)BeUR_u56DS zU9JS7vWSx!!-VoUlEOEEm*hKMp}wb+XynQEZU|J)z5_hKH(Gx4$ejXk5sT-@qJ!VQ-0f| zXQayj0KWYxE`NJ*ilrvwbi=5&rm6AubInUaJ&D7Rd-gW)kJuSNVg4u}P=!M^dx%HGGY(taUhzP2&F%7;;@)_ZJw=)oMZ1PXEDUUqp)z0O zy{gl1W4c2BH(W4{dKJhsvH#>g|1*L9L&eSV{W9yswb23-pgj4ejI@9ydAg({r3rtc zUBOvJBHt&M$n$aYS}uG>3K%RTS*D+_=P>Vka+fo0LaQd# z%GQS3J&tyt^(Kq=3_CYV)xFPnHJ@(39$R3$3BYcbEKYbUd~OmoOkP8PB%D)jny6DG z%9o9)Ir4!&TGf4^v~w=vvQ-5bO)?2wS_w*IDG9nCOau_QQL>B7DR|V=j`9vreRL%p zGWPu!K;Qbe0F>g(?axb3$!7sWVLtWzf%Tn#K3!!n^6(K1TSGZPIhJtxzD^y>Zd{2Rkm*cWf)o8iLt z<+5sr))*oI*in}QBoG5FGhBZ?tZti5L3pg`qN)dz^NlnoTRxPdwSUiZAEFNe*b?tJ zz#iZgQO!m&ExqgCfR%ED@7R~d*_bsB_Mu6o5Wa5Ice{?ULxW`WgYZ|79B}9W!5ZY` z*;+&HE}XcBEMM{M;e%kFQffz6QBm}J(w6Wkgl`zeNOd+&7N5`PgJgsUEq74GVejy6 zmfa8L3DI70-0}CLw8gD4DHhi%32SJUGXQY4~8QR7dkky1{XRm**UvB{=y@GwZ7L%BBt^$_T6#OPo3NxDs5rWlO^ z}>P8DI1s{kRj=hVyOeFn2WHEoQ0KEh;5dY+RM-?K#+KLc_Vu;f1Aqxh?7h4&Wfg^M_N*8%5PRkhJ3^T?en3( z0gQZ~xU`1nW$_C;lL{s2L#HPw5k8-h1%GK@pXaxPo9yjiobuIFRrE9H^4HEN-!4Ss z(;Z9-=sBNb&5%S=mg*JZm5On#*5}%u6EIjfncVzViji4Bgz|P{Rnj1D%aFl78>nDg z-%XSCFhYYIia?8lX*7BLn=Y2hzb3JNYHYx()q+v2ggGPS>hLaaaKh!I@49w9P$JOn zT012j{Q%3~%~%q0br8A@U8!o;OPtIqb>!XzC=s8-8skyH=$**FHQEe$WO-og_l>`^ z9IAbOc9V^AjIHit=?D#?$_ty_{ADJWf!u7A(q~vznkGDBZ6dDobo3+ z4G;{a3Tc=+4W7Q{Hk$`8Kf*3zs4xG7;`{ETl9DPZOs_56G zz|}=QtUC^JljPXvb`NGnLeL?fPEN<1OPr9yO@)&@i6SvIw0E+gXkM^LW+YD-;}!o_ zz%ex8l7YD3N%M`sF>dA(s4dq*$l>^7pC$SuFe@s~VUnX1u_uDVfVu{f+hggUS>7gZ zoiB6hM`}TGc~B_^;;@l$jexXX?PC!ayq$*e1FAWq6Eq>K&%x9#L4!z6Q>5oBE3ESY z=4*$`M|W6LklJMG{vb#A8~+Z8@{1f|g`(8_O(oC{L>&AzP1-;B>p;*i+D72bm=Cr_ zB$jRTb#q9n4~kG&(Igx;oNfpX1J8w!VpGC3Mdr;FE-<+nIXFDYR&O{BFo|1^0Qj`3 z`kU!daJ!|`QR?3St;2gQ&JeS%@4rF?>Zi`Tt{##`@lHMjNj>0LZWCcBQM5ZF7he^o zoxmqfrm}9d*t4r_!6!NztIfaKdZY+izjYAJ<|Di6EPh&_RmcjoOqBhr!RCJ z&1M3fHkVF4~z4EbbM_c5$rv_M~2T z3-W*1vsJ3sBWdA{s&P*JrlX8L*XJ=O@G!}@BnF$fx%o{ay>Mwfw5&Q5i0)nI zPRGEGFWP*=Le2d>(bgJt2ySwT$3qEL2eni|MMX+0!Qf>OG`y-5$W>>-+GoMgZpK>4 z&brrC8DlfH!p2<{B(2wPc}+`?Q?C3CujYrq6OL>X{3?h1)j|Btf#GZBWH}W;k)#ZK z$C#q$bi;z=(;E(uV%LXWOW~>1Kt4H86Qm3pGR9}U69qw+V0bML+zQ3fx?7N?YYboA zo$p2i2wnL1-{bpKm@E=_ob149cC{z!CDnm>^6HOfd*tbN>j8-NF3ml#W57_ex(D)$ zTyztT0LVG+%Mu>iL}Zjvp&U-DLKMn`IsJ=b{QiZ-{TLIMQ#+WCaCzGN&Vb;j_M1&+ z4tuZ=oGFOA7fiX*ktWv(3juUBx&!Qp$I}%Y$A5kg%0pi}DrH;yhLdoWX;|8XJ?PpE zgphcdDNjl|!_H#Eu4T`-%Vk2ZxE~&Y>L5s#r-^xZ9R@hFv@L46-Kl3$x+l9TT# z|BUQ4sW16yjPNMFt4LX%sR9j5;60AhxUdlusk5VOf($Ty$9!%KV}QN4EX?EkiGE%7 z3emo4t?`o!jXfKbOY*p7zLNlmV?ya+Z|oMA>%%Nkofu8-40ULNi7exkx-M?>ayE-3 zz({)HJ&No9!=8fp0NIti6yssJ09!eQjEv%1%Hau5_!q^-tIk12;6-O z+{$Hb6$8B=66c_bNg&6J3yo6IKR(J}5&FJ>yc6{Js}zH*jAWQhTPFSA%4J-JVrt?+ zkU8L!N*ieeKa%@KGq-x9_-1_wgf-hTqJ*z1Wz!6+TbGU|Z0^66wE*~T4m-}Vy``oX zY1X3_C}BI8AU^2zLDx4M;J{F@xLqd(3{u3kpeI8?zEk3$UrOe^NmI|%k>^S*k@{VI+NqJ9BcR(pRS3RcKb`tQj1?Lw z2!{Io(J{ovDlc4nnXS#4wP!*bnh;CG1)O>Iu?vWZOxR zx7l=S;q~~H+l&D{7}SQ5lWnrXB=QX2q@9Sk0+`%!^XO8d67)tn+=qIRRDMhOm7wNl zu6*5u99(V70XrW{Z0H@__mskLh@Crs+fiKV7phv&6wFZ|b{)0gFR2oQQ0fNqsNV<| zog1PLT$#%{Mf92z*f9*8j+N-^_C?!1gqGkm4L9br zd>TyBBk?L**#a^4WJ85c%@VXP6pg|t_KYj92;GI?*G)!x``A!ac0cXjXsypIx{Tm@ z&eebSTvdtb>uQT?2{bJ~8oZ_(zIIywn7*nM#=Nsj+J#d8b#`@XFTGv*FU1<+JX+Y}>4@{G$bfG7|vTOGw7QUiDAQT&LDiiM7kgU}aUI@Nyeh(V<*w zDeM?X`t5%a+%41Kq)SU5F@`Si2QAYg<3PGH;ek?iLs!9FrI$%Mf2%`4_%N?T)C?l; zE>VvDoMwaSgk*>e755E9@xJ3jm9Huf%$x(ONRy@d&oS6i6iRK!hQtR^9*`-h)#-JA zmHNj+K~qD{XhMAKiatLOB)XmMohuiB~G zeDCrgl5M57`z%HrYrW2ej+uk>EsdMcJSz7Bx?+={$y7n3J`=%%$*>Q&9BL}g+grHr zi5ZiH5{#Z{zQ}&DK5n_#YHyiyM9917OVo}xfq~S$)TG*}lO2MPr?j7Hcz|GDgaq5@ zT&Z0TwAxO09SK2y3P#LPz&=-o6YfBzPT`;SSO}?gsvxzO1)CRtbA>2cNk^)A!_j`q z8S578QtW6$5q`E^w7dR}cC3K*dSNX#?dB0w>VOi5ak|dUb;4@lpV885nMN&olxX>n#!>au=kl*j}Kow}kg~xLLYMq7WzPf*G%wpA9hD0r)F9WryM-e-VWE9bqbbKmS zq&R`A`19mqM)7j^xA=|)aOXkrl%1XMq#1?lv;Ez^ zs{8#Y?R~(_J%6m&ZWB3vBs!}GCQ$9euSqm19 zsrdsm&D(+YyGTHIol_~MK+Pe3mpEp-%(nfw6 z5Ww%rNFOrkJ`MzjdjD8%cbOdo2c8_Yv z#RqsjS=Jzcc|@(Pv~+PnAxR6fmbyXpyYyjAsr~g)$!|Z5|Cp?K|dyAn+nSfhT-FH^h~s%Rl;6vnUALDNjuqhq>^Di^uitFWWF4N`Z&M2G^OS8Pn`F z?xbx7QGN1sIc#r0vQ@VfBkhb*xbeG~GV^=zn!wTN@z8)@d?33=Q z(w7vUN3M&@A2(f6n9~Yci6`?X5NWMDDV^$i<(ebg%x*h!g&q$H)kKTLT-7_|Q1A>W z)cZsv8JMC6FtEkYl(idXSU|nr2)5n|lXeKIcaR zd6S{YePCufteQx>P~T=5Nytxo`nx455(!Guu2Jr&nDqVV7v{R024>pyJX3RmVQ z{urm;uk;}619h|MRp@aXPPxDYEvF&09S2E#?<-yzHi~3H>}D%}p&H)OFxHXG>>D7m zo;Gr!M5^DMvA4_Lp0vr928E~JBVnXQ`Az);eEJW-Wi03&k5`toHf;aqW3s|#@OwH- zci3t4z@bM`YEQW>!hcuEz_h4(bJgN*y|ghdtN zj|xg|0l5$Kw}t$7Y5h>rXr7FHCk?{<3DKJ1@vr(NSnW$B>~x!?C#Sii?v~xvuEg~t zInaUhGaj-vgqurheV1b*@=YD@f_nZ8Ardl$ax5eS$@xhTwB2{UcqFwOX%c& zCFUMl+>bsK;>tyiM||-eW%1rMDgW6tHIoL&@@Xzs{=YdW<4D^jON#jQZyt!8WC?@LQ+2d`-!-iW+t3yix=O0DSUYbEcQY>%S$~4NL_A7tDU7VQ896 z6YPD~pe*Q&!e^yq6PBHO48#ZUPIIW*R$0e1Fm5_8tGhP#5p(2#++227N(yBxz488g zqLnFzd812|7|OPh78Sb!p>%RdLCioFycCyfj?^+4S76}pD|e6&+=72AZ4e-l%u}OB zt)L$*C4YR+_JjvDlZT*G$n7V*tT*Vo%j<~D6CK4zN0Sug-j?@OCDjSdd6LRY2^cBv zp(JB7T8Qo9o%t7B7h1lbW_uJMgi^-wf_5fpY_)xGZp1N9kPW*EKIFsHMl5!2XWPh! z=HINpvE%S%gwW9*7;BZ*u{Owv0tI5M)(DiZmR!+VP#<^!&x9?hr(NukHDwmRXsjm` z_SEn643ztnaKcvW3=x$s`dhZ-=)?CjCvujL1?9{SN(|>7vOow-TX9t9T-<5wZsj>Kq? zcE2N}L=3HUU)2O`(UCB5@-z1 zW~I!TiX3zA9zoJrgU)#5ySykrl)c>z@kVGM|9P4`_su4>Sn9|BYrgrw+NFs9`}-cGozlF&Wx8?_{vhnggJShkG(lqZig z8^9JkKW7Uo0EIKeUm0cIx~2if2F9rig6}7Wh^Du7;OOE6YITeZ8-62W#zHXBT?0yN&q*hQ$cCMvo&WAwQO+W3C3j z1pPyCScbrl^Y`@slmWFg(TC7nc)g&R_MF)b(6E5v6kp4jES6U?{%s^k@uGLe8%oTk ziPs^cej@_@n}osGSf#7s8n6d?j?6F84uH%SEU@u>jydakdiSH;Ek`lMD^TY;jugh?t#1D$a~c_N8mv03io ze!#&lBq;sbS@{S^i1F-%u?0i_4yk;qs7L#?B*vxdBd}U9O7g8RmDY%K!NWX|1|@w# zjt|tuEdn=SU;qFz-Wi0FK*09aY2WCG0*m(*_Q06cqRpvkJ37v`9S;9n>xWU4=?z{K zMTZ|}^2@zi37K4av%e34Pk3%y4nT}!dTHV3s% zwBOe&BcOJqy)=jp`5XI3yoi4TR-e?Vpu5|5FLKD4U~>#ige#fhGaLC0y3I_3%vAi` zyA}j2#`RW>XTe2q;X2sR_ogt|;YghkzxW19c&Vw%&Vo(FJekFxLE80 zDslPpzn$;|+jbSt!fT^x_X#uYn>j~d@r!dL7e=Ai7hJPWxFrFDeHX^+NffhSESXQ?@+0l4EOnM>f@UmD{n9j*b=D3b&t{nk##v#yy6yeT^QnI5_h2 zXn-9;`glGRZkwlQp@UWsX9a>Vzw>R0v||A+U>SqP@XN^bc_F;gsnX6gk|~7So#gGH zgw`aNf|f4#Z|vX+k6+)WWRKQ9+n#5AOD~OC;OcfVfchl}>n&sKGMka~i8a(N%9pFu zjLwP~dj4EmviVCHG-)B&Y_kx50>AG_~4YQdCb7J{0*R9Qk~alE9J0jw8u4l!$? zM^eN>f@1s?EnN6nF|E|EAf~(m{V?H%jhOT5V`x)+T#5jq@ac)aGQdb~PW;Lz`BH3( z^&kZp)dI_<{o~eqW@;PdRW&KF zPkMlV`(g)80>tKSSkZxC=J2vclIH8WZ8!7y;JK{PhSI0__JnjAsd2JE5N{!RTjAeE zMgY3WmAUhwOIr>U$x#r5fi5DBk zI>reqENnL|i%xP8`tw~8Qol~Kag5>(UL#iQl&wpzPd0Ecz0c^pnP;cw)Lh=_{j=%h z>}$g5L_hjFyAW~^x-v5K#6TFsVs@ z`2&O_luiU~Qj9oFP#h^yQ4VU9sB^8sdA!a}J#weJ| zSm-rm@P6?eB#60wv1zhs>Ze2DItt0CTvAQ5liD|u0VQ1ZbtW*>{-ll4MkG|ztNrg?FZrCA~tcNa^DxU zw$O)7{zni5S3$;6!OZe)rjw7NNU=hA)AXns_X%=%;Mvc;L=PyA?eque1&3S%o|EdUB%cxW))2W#h_gBYk@~8#-!}GtG9xYJ zgOrT8GLQ%b?v&%%rw^0#eKB7U+`0@#N>C|>MwRtmuqUrA!h1GFzy=<4#?__X?LAQ=~KuDE+8Z!1uo zc8oy*{ptaGCiw9@q^FN8%uS6P1>_b2roaBsfH-8u6J05rwaOn-z9?JH9Ymfl#sS+m z|M2bx-Z+tykHf)6_r_YTP*j;eIB0$KTYn^l`t({={3i4Qz9=YsjfR%I8vk(ZmKD~A zM^Wur=s51%fV7IE($T-z(z4T6car&ABbWNoAGSN|*8}MI|B&@w%aUqK7Uc)=fL4!a zEd%|A)(~iduW$A_b#GO7r&*+>rR7e7h5Pg|mvFG1N@2hl5KJRGi1f=A0L$xJS8&8O z=Wa@7D8D4B2(nG}a);l>PV4iM;KFSGEdXkT^dqa~6fxiL`UXm(bYqdPU2dpkg8)jO z*2_aDYcB^!?T;L*&;Vn4Rcuq$yc<<^b|O{64-jwc6cO-ZSsVw z3LbtU0o-Jcoh!%Lf0mXHFd18cG|sC`&`!k)o(74A%9v7hH@`Wco(FOFMI- zHF}0zo@oVx%F<#Mf}&7@?E6L8Bbi%zS+7W>52L)o3tST9`c-#&8vcYz=HIj=A(vi!PQ4)jx60X<;g+Sz{c$;wRq7Df>XVbDf%U zB&kt-ADBlu9zGaId_JX5{B{tknCh2rDrjfSEDp_U_IWdWfNsbNMGZ~jD<7&l z$xNKu3wUvtyHsdVqWK9PM3hDAumm3&gX&5%lPuOvEyARc9@yP*YVP5;@_kIM#6XsN z+;f?De{F%j-Y$KW%YFl-t*`qrks%#Cn0n1zg7R2gg%bCF_61qK{434oQ@P;3^9nB0 z+-;ldbv`j%B}rX)f*ZlZHP7l>QQN{ADGjeAZijH-ID)o>)|y_>>wGpn#cX-Vk3W@C zwy;DjCFz5F8615C&dGs%t?y2W*D%vQKh+43C4buW0pQ&$%+16y%~okJ7E6?meY!at#-EzJbA&UJv4dE zB}Jgpmg4wbXtI?F<~ZKW)TxvQfi0m_>zHx?1n+fm=$v=gK=)(z(d%XFOvhjZ4)K3i znWqiYRJg2ol8)x0J2#?6X?8pzN(`VM-zIx77FDGcQlSl&8%W%Nehs#!p}fVWgsZ=* z|615DYNdpsZ{Uzr=K_RGzE=a0+b;r-AJJuB{X@`C#DxaIzJ7~-;&~vxU+M%~nky8*S0I)|Ma`wlw0t(31E)%@><#E0(qW)0PLIp zHN&C3Z~wR}pAV|@&-t?h1a8Qh{^?`WZWIMjRF@(9qPg)FV#WPDP>_Uf|1&xr${LKp z6h+r3o~(@5F97^7z@W5`XqH<%^Y`@%t)tNw6uvh_?5_pK4uT}1q>LK;IIAG6Y|nM^ zFB^&nk{Ob(1?C0Vd_#}X--6}A)>n*)Cg~P8{X#ef0KWi3K)k;Pd8o=lV?+2Q#-%F5 z=lN|UpJseay;Y+1CHZvWRfYcESpY} zBw$;SJ1?Vnt2IlQltwHr#tSo$}df*tzkkdjp&<#S(z`l$uTl@d-E z?Z1}GKgBh+DJE4;X~uw4IR*;FIv3SZOc6By0uZt5EH)<7uU>#F&h8Taeca~TdSC)~ z5CiulnO#A#`_?m!|@tB1d05UsOP_X9$L2j_Z)spbpuPu{XgqLh|DVYxQ`fD$+4Lh;(Ud> znk$rx9L)XA;xa2dJsQOI6Z%x#cX`v>KdP2q5tEwluUmgVPYNHz&QnOc96w#Ju`>Ig zL_VcSirZJzcQw0e#98w)dwsp7pSDu~2szdILowjln3!#h^|zu$naK_v3P3R}Zd@qo z@wulZ_jE&w=_lLZxynG2Xu;MtPuU3XJcU2j76XT2Jjm{zOoYMJ*od)uH8)E2-c-{t z#OgNoPzo?bDtNvZDwR8tfdGzXz(Ipl!MtrW&A;sser0x0`)h|X0d*&Zs}fGX2Sz3f z_xv(YB~eJs$SXRz%!OX-L7?@HT~csfCLjwL!0jNb13#Viz{wE-{PK@7F5K6(MY>i* zu@v@)ig~v9+#)iDG+9U_Dt4lhFHD**9t=>eQv~raB2|KHs=}V2`(Whr#lOAO)v6Gc+&w0s!|LCqi*kYVFbkv`9$SAY`_k;gD9l;y zI!sy;+`u>eckUQ4@vEMjpEA+JA3wJo`A;vwR{0sPh~crN}Wg+BJLw_%etP>&aEIKR>CKxO^7N1Zy>(?OTeR27uD z-qp91UHu0NrMY+dC@B$Sc^%PZ{0t6fhDyorrglALysZc04zn4eMWMy9{H;;pjHwUI z-}u#18rYDLbytgVPT)BaF%`AAiGq12w7XPD{Xom9QHOMkQZClI88FJfcr+x`E zmcd(Kt{LTQ0|4kQyJ#K~nux`Fzo7qpqU{`MHJ``kS)~x;-e5h;ekYtzO{Q zOY%SymOt>-a`54Y_xjnvzizUR^*kbvMrRph|6Vh@iN#^Jn*SqFQho_Rg`z$Ws^O7| zjlu$Yn8!_J^uGxyKTW*MXH)=Cpttl-Hccm>%ThY-(Z`V>Q*mho$&p=SpRbGS8yHQ1 zV+km2jL3F6bBtW)i_(@>@}SSafhZFgQu9K@0>#XUk4r45O`(#RYkR!q&Ln!N1B%@^Ju%bZ=A3) zAF^iks4EH)j4h=17;+zlP&^_1+ke8^vLHZUecErh-tZd%Qadj?f+zPwnglJ8J4(_? zUICucN8P>``9D1o&?p-5BWtgV0&ne3Hu@f|_B!-Fxwo>~+!H0}++N^xcY`4vj|*cy zLZe)|I{Y4Xh1)B)qt*YSK6yQZ><5yIJlLmC-v5;N=bUuBNdgNOrTcfTGd|FCPwG3q zQtNN;+`0a?m3crQe>Kk5rY})+c)kQVzZCYKzd!c%GZP`im-QawuSe{e4bM?{#}jXk zK^Dhzg>!luSpNCN4B^4PaY|w=MV-(Am z{IT3VjMAwBO%;RwXU{vS@1Zs<+AQ$s5e^|J9ZtKL;D_CbL|gaLAIi_o0E%mM-{id^ zNgL@6Fp3mq*q?%B8k*JYSN?kJo^SE6aqF#wxck?K<@Xw-WCKx^)F0dIlsAW&$ZGWe z_FZBeSO4q!e^dShRd@LpB*MqZUsu@UUjsV=;A)AI1Ic3pnhw1Bk(@cNbg)AE5jO8h zsi({m!w!uYP<3axgU0Z_!2bSxFWpNISQvlH3;&%=Bm zD(=nzEo6!}xoL)gsb8o)$1$*NdHV!x8CeJJ?SqY(6~q%=S)5Ci`4^tWKjPwijaAvx z#@x+)`sJ|{KHWl#V9V|oW6i|}SGC7VGxS}jqakpum8RzPO9k2`GWXcJfF=kpz`IgA zv<6%AG=v{F7m^vA%jYQJz7dQplnqu}EHlfipxMImt?b zW{sh{uP;n^2WE72>e>;oZ_`&*C1)&dDPQVJ74gwKq#9`Ac%fWbr=w8g8nLXB3BF)1 zqU-l9Z}A9FjXN5Q+eNfUZy$I1_VCZtJMZscfjP`>hNT$=O*ve#OWZV4G8!PyC@1^g zyBNqYRZlgmzToxDpN9%$8mQ;G{bzsX8$+@GE376U>EmJ97xQYqDoe(ELCg><~c5% z@w+ZLzyyqPmA3o+=XwY5vLi$Rfb)6t9OlZX$FtWrnmqG;%YymVIamzRGn&zVdQMxf z{f5n}VtDq#1pc4a)Q44;CCfwS|U zCv6D2T*RV0Lm&vEI24+Fe3E*9WHemC4gn?Okn->Ta7SDv;9mt(A;~qw*BR#Qrx@shN6ob z=Is#W7M{F+CjD`!TZ1z7&ye(_;d*@p03`Sv^Ej%agKM=nO!jQ4=9X(k&LbI#!W-aJ zNiim~D7KZEX2jo=iTxGT8{hk?Do;%Fz(@(q^K##+Cn#<{s_sCzzg(Y4K$n-%W0}^n zir6QEe3X(V_iC_uaUi^1G7)BJ2)x9uc5U{#)xM2yKP>+{Z>GyH+mv zs^GLfW3XFJ<5I?7+;u4uKySv}e$MMBsy@2JS{o9JnY;7YE6M4;e#z{)+?clVbl_Rh z6}1c5xBgkF`k}B1I2U#Ygkm1qIMAj*Y0pzXvH1>Eiphw_mu>8I6k&OqVDu`c413KXRG>XTdfygS`QN!Qx2Ud(_P74? z!Q4E>=%v+Nt*ZG6)ms(%&QwJi>|1`|)|7}JffOQ=`dDokqL%I`GsR)oepXico#=}r z&%gU@KNEQ!E{0&;v-6yBGCYnWK=C_070QfuNEtr=3Lzg(gx~I>rpo#6*S2Wy>ee~z^tu8(;i zhxa*IQx>sg4{H>BjEJ3ensp?!WzouFY!+^JLwjlw$!s@{b~RS+uqC@b!<)ReiOxT$ zM;T=hXQr`57{RuvfK)D3Wc>D9FQ8SzSKb)Sj-LlXv8=fFY`b%m5PvS=5`3ntC5$0z zA!kTV&wqI2gWs~dB8Fu+nyDNHdii=fkeq@{3HA+Vi=QMjviyjQy8!SUkuD@N4}|~Q zJd?gCB(Q7xJGP+RfBB?bvB5AMd*Q;6u4c&)>;9Jn5{CY zSM~SaPyQ>6Ud*S}IsS<{iB~m@{GG|Uvm2)#_C&k)^6t=${EZuJVo&wOq|$e}jz0+# zKmM$|Pm*Mk)nbh}^I_40$Q{c5ndAEFinpbA zb-|@#iV^D6e}*)DRL&Wu2)_sb1eoC=V=FVpq{j1KnvVE+lUY?^C*NE|yRC|6CcXLb z8|7cGEw+DyAuBJ2{fO7M|FagLr>UAMP_7K)N2V@nEM8hGr(c!^6(wlB7u~tMr&iQD z&fywoQ);{QX&EDr*sJ~^8bn#9nKr>9BqL>~B*POuWEkGm457+m2FGsziuuUm1(xE-Sydf4~0$bp5{v+fks%sk`+{1y;XJrr@LY9x8b zbAv?Ep-9i|?c}znC8B{5Fc%=RV!uw?pW2G1%o~gg}Kt=IMwS+Zq^DQzIluxObtaF$%ZvPAf#akf=< zMd4{}G=}(~_`}DJkx<*ofLlNqSMfF{Qixs^%z;gdsCyNjXYpYr;Ud?Lvq7mf1E7i| zPHGr&i9?j@3p62`^M&!f4?ezmk$m(1l*qTB57L3pM;%)2* z_H*Yl7EiICH3WS^)w({#;ir?14=zVfRh)eGoFP3=*2KIborZ6nKrtOWgZCLr-9x#_ z72-6acfX1g;1^x(`*#A3U44@JcizK|4^20wQMCw;|wW;$I^85WZaCj5~2b?=SMEEij1C@!%bFKx9< zaXGs&>iDrmiZ9jV0T%%*UQ`c$&R5I(o#MKeOA9tTSR{9#00u%Q1x74JP<_=M#*YM`Q3=|x1swOV?DbQgNdTaBKc^7WglRRrgcj7x{nYbVNb66qO1Y&Dn1`>m^dMV9$wE)r}nclxSYv zjZ5=ct&-S*0$)8B z&Xq|ce|z2O<^7KO3in!JA8w{twN0(dND!|zI+?TQuOQT&_(U8ZiC^ia-FHx9S)WaG z`IWVWj=7WDjm#MQH5~L?bbP(!$yJ{L>T^+Qu^76Z`Wjmqn7wXWrTV5UVr;_m88-M$sd;06c7K7&M|71uy@gBa>k&y7?{$N-agCLy;fyu};L{MXFl&&C`l z>+W!!VZQ??*#wB0APkNlc%Wi`Mq%}>x^?K@XIZtfafqoksFyy`JW5+HgGwsxwJ`Pi zxJ5l*s8HAQ%M^e3y@MR+Ej)<>YQWww7cP9wBgC{^yt1O|s6@hIi-vOD9L7Y9)h6@- zZ;VDUqhZ9rJx!Y{7^;DIjJKeYCq}Uda;{1FAqyQGnph( z7#XX&A|0LFfD$39J1%?h%~!vTH-bN15hL~AyoW5UX-8-ynrjf2PaVX=mc6t*q|ipE zC7c_hovJIF^%3_Dy2EsgZi5%J;KwNcyVmvZXRgm?5H2HiR&JyJ29=-K<^#P>%4?~= z_h&i<9K&txvyw9101BWijh}t`aitWg_T#lR;$kOZ&5=I-gnp?rmQz|Xu0(~c&98U* z@t+e;+>3z6Ei|X=LuuP|1vCxGJ6<|LJ$e(#T#H>k) z^7KHt)1pjlu8vW$kiYeoCLdUglK=*~7i~mWmh!$XaW-e{2;B}F)(k8|pa6t79_3e8 zMgy18doCG8_X#0NQ=E#02;TKRSK|JGIW)+z3zxvmAV}ZnFRa@BO>Lkr*#>C!dM?5lCX> z?mmKYem+x;PjqX-k;rpOMFR7)*Z%wn(w7OQk}X)5$4C=d^}RUf>Pel+sf0JLOsv^D zfP$Y`eAzYHvgbQ9t9UMZ-ysuIGw^Y-__TtYJA0=2>IB`Qof)8-+eDa6l7j{UoOoUM z5*A?wLWcuySO2>>&n)niu9%9f3y+9i=ECTf_{@!P^N^q3zxKsci|H;Fn%d0d4>n_7 z8=@M*;96&)M9{D1Lt}HszsBc9kwA9LkIcakx)t*v)76Z^qVMqWg|&DU!*PM(rLTt} z@a(_q3hyUxzJ79uzuPp*C03{gNiMB%jg5;Sr6{j>EIyaQbH2vC`I;CXr62P~g{G8r zIk#84H(!+rRn|9I%Y!RE_kub{7N{pAF^6pOtow=I!XJLTbhf-Urt#i)4Q;7BL?ol~ zE8cd(X~Gxz{8aGG%>k8CCVq0E*laVrdAUkz_b8-=qO5~KeXvOzjzQd zL1uGohN?r@<$%sR!323J98BWh2^|bx=!Z|S#Pjzn9B1nXurK%w2R6 z6I^^h!80Tn?C0J)92NF+?4*!Im@ldY^LX)8Jz2mG8GwedIK#$FD(`E4kBoiU*nEMR z`+u~7$qBrWxcyadYv7cYb9M%rVFpU{pfElM&=!Ad7sobPo)e3K@nK`wVS5<&L$to8 zg5m{~1qbE1uRX8sE+rf>bKo_Y6)?aAaMyz4umN3vzu`A|W5n$; zCJ+Q8@z80`t$P84G=sgn)y}%-{|@mXT*MAaBdEcEMRZJ{m?e@nu?K*w{qH))e?N_7 zM*+|~+CfrcF;TC#gvQvCraIpx)l&MTUO7l3D5qwbI6PF-*!2k2^AZ(bgwRnpek2~i z*b}fR2-Vj4i`LN(;^pb$GkZ3tbF_bFUbug+@I$OllmHn_HKL6=m7KjKuD@n|-BM9s ztYf9$oa2G3vTL3GO;N(~vSojyf{YoNBom8D1YBpx?`v|&l?Q4}no!85Y@92j;dP$= zl_tt@uba(V^sZxJf&hYZ>#JFcxCnTLb}WJLBF8th73~>Y)t4$vgib~Vw*-0F+_* zb_~Lu@SC>bl{h&(o4$^w2WN#+G6bp|w&*PR@@#3O=G2FVowT3~B4l@3uiK$yu$h8g z4R&&WXnJ~Ww=L0-N9GzOojF9! z$UF{tKs2xNXefl}W3Log=m`vUzb;D9g@{HlI?Lbg9i)Y;((ya@N6K#kLFtu}iCttGLjncK4qDg2BU=%eDiRICfeqlKjOd|2XZV~JK z2~J)w;w_DO9B&ul_xBRG&|aK7}8?8jvvX5OHa{6VQV`x?)}$r7FKe33PH z3Q#C#7h{m*Zo$__C%jP-7(JHFww^+gtzok48dwZm9AVi=r9zn>f83bAmKYChFH(t-iOO%}pdZ zL?9I@!ZfKEYiA5;GkEq9_QaElq7Gq}Ey)n9LEQ#)R;wMQ;@lTzbqG|}DKY#5oz(`R zkH&2z&@6q8TWgJ*6?khCn9;mH5K+K0;*5s@(>O-05~K>gCd=Y^i3Mn8cT(r9(&bZ( z4(ZD>{~e;Jj|h|V90Sa`&jae~V-p_a5Qn4JAJeMunY#9fu=*W8Q?`392uv=vd_xJ^ zSOsRQb)pL@Iov5s%|l3%UUOfO^`?@?zer5g%0+)GivW4e#u0I@Mdsrb6aHE8nEya~ zsVQj$N)Vn?ElvS*1Rf!LFziE(wyk%hgxd)GA})MF6zT3b9m>dG*C)JShEI52>Bu<; zduA6`fer|v;jdmZqCr$U43Z=qiHPQJoOgO6hD6mN(h%z=j(B>W8;e+ zNCl;Y?^+fm1J(l_R?7`(50W||PR%c;3s$oRh3mwUxkCiwBe}=7yMj^X!ay|>ho)p^ z)(fZ=WbnX`z{V^Z#|4zJwD45Eu5ofq;T-0tu9$+f%_JviVO(FQ#oWou!OfN%ODJ`< zQA~{ifI)i+#~BLNQO65oS)cVfJd3})@;onLB)xb^&QW~z;0Kqmh)hsU`dL{}Mm=rb z8GVz35rN#9zNku~E$Py5G<~s$)qM-S&c&ms36Ju&sN&#K37OIDl6`{N8`wy{#tMa# zkb(Tcx3`>aZXg{<+HIrXaJ@d>hfrqj@)||oaMpK6@YW&FB1WxKqw3GkGDNNLnyZC- zbxE$1Tk>A#pNlM_iECK2{_+K(cnhws4r(qMt$F%y9;sqVzNIpH^XDNm0LU zI1w{NNN()gav+Qg*p~UsZAHqghm+fp>k=81Os=uE2|42HK^s3H&B$}bw?a02w{b_- zAt|#AME$Gq*tEs4L#G@;WC}K7@v{)4&9N9r2$>FL8Lm*zG}=7~_^eUM-;~9vvmtgR zPiw{9qG}_{n+!w!?=4bA^S$ASOW`^#j%&mEQ;ZdyZ0oPARvBDdCs6gJNo{?oXZ4K4 zN9lKDcCoB)T>&t%X^OirTpa{vr|{w55ODBB2JG>ZzGiX$zdEBRzQ^JH-;0o#RK%bD zRex}UWS(&tk<(Z(XY3HDGf9+so!JEEDo+)4q%*x&2>R`s`PbsTIf-lA!dhG@UkKdF zl|#a?R#Zs>JexBQ&M-1P#|4u;@oaA7q;($)Kbaiz;5r6_!;~LP4B^<}D?qD#gLPZ> zF~^%gJA0+EYebDFB0{Zm?_UaK!n&EO&R@5$L+3dJaXHN~#87ZnHr#gvSI6%-7 zG3TxgQNNX7kfIpYCleowy=b4cmzyL$Nexo6y7c_`h*$~ku%6KKXEw0Q(^UD^S)ZFj zhV|@tI~ET8Iq)d_OsPf;sYTF@joWtfz`_$2ThI?!>r{TkO~&P2_2NfYxKj3D=j*3; zjPI6pG#0HIV~F`F{1~)-Xb!A&?EZ_k`w-pYQ+Fagjq+M@S&*HX&5V~c50wKw<h-E@_xr+;=3oC)qc9 z1V6<`aU8kuMLHK}F(cz{{p(X|s-`+$qq$=IdY(2RQ@Yq_`tYI?IYcNZ(Oo@oo)+YQ zgpL2N+SN7=0mWY2a<^uv*RkTLjjE$HQUx!k3##8;w-B>ZK$k@pf| z9$YGu!AHoeC|6eW_dTH)-sMWZ5ih&MjPDWjC^aOjd$C6SFO7JY?sn&N*&Uz%y^@1T z8<~NhMG}t5c`_(YLmmAfO8eKed-Y+!imdAL6X4XCa+x<5Dm!{3`VUItUHM&mc!AmO z_`qJFK2i4l+qG(%_!3Mw`vdT$&XHAC!$ZG7LsCE&3WC%DYs|87W{OtGsHPjQ-AWZt z_)@YR$5T^8EcfWw)mJ4(7RvecDQX` zP#s5?o+b*G-P4t#p!Lm}|H!F>Sl1>5^h)YwJ_i-bX?rW2Vtjn;R~DJVDPpa~q9=Vt zfw9otWd9R${iokOgE1J^P2N;a)!6)A8jGp*k>AS#)i3A>c8hEjNas=FJR#M9A zO0f9II2`GJG{+W6K8U-ryQ`ER`JMWD&RagL(|;hZs_jb&!|$y_(jQZU<}-z&X=fd@ z7oGL8;c~6xlgdArm^S$!;2$->*F54hj{3h`|C%$VjhP`XToj3AB@wGoAp%g@|)jTr;J8-)xPO4LW6qEmi)CWA7F)jpY*7^XD9W^3j0_gN8 zy?`XRv7l2@a{=r6z+@hyQ&_vFGz6r-7uUtWui6V6T90U?duEp;T0lX?`|@{=g}B7W zyqg}+4_W=dH9<&T{(6rg=*YZfufQr9BTFFV9uUsgJcV*t0t1-bje-#Sk9}Re5P1`8 zae4>8Ub5zDyr6K6Y!*LXzYN3Fj4%jJ-~y`4f7ss_^3C^7*JPSM&*b1!umTh;!tEn6 zfN2u+N#p0fGVng>qd{5Mc8;Xn0V_7zBqosQb{r3qh~fHszsaGYJa&tQ!Ol!4Ls&r( zsx_WsvZ-I5e7)4Rp$sKDc}Lr{j}mkh{n(H<+lCy;o;&RqpY3feX;D%--Pl6m2J=;Y z${Q4_gw(N@XO)viAm!85;cznamezV4#)fD>8rnGtZGR?QZ2X#8tE(*RP`%8uYIM+M ziwfqSHcy|!&mQ9?1%3e+l+ zzro@-$2RWi?#@pFtxKmWiYG||7=-wxFK}nyTxYGjD{Kl6iQYU61lanvKsC4>1O{TD zYP6F(QejlA&EYKo8(lPSdD8s19^BBwri%aN`uJ&bACiE%dri7DG2VVNs_)uliwyBt ze<^HORp(~h1xW2hCKM;Ll6DdE0i?*kmna{wA~GrSgj;?LTL=G&bbcC1?3M42<3Rq` z;A@N#+tI${sOR>1h1q^eZ%*PZ_Xy7-K^IZ|fNurHtyz{b{$!4+v+ufqZEGRjyH!$*8t&#r8v zV)@)i6LhEZ0jWy|I2&jYa;Rwwa-fAgmcuev4(jO4(xxh0GXtXy1>CbOgHCrC9|tB! zLWWqFz>)JO^cOPhHpLsZ<;V-{E_46Gp>u=tydq!=q_dBN#OL{wGgBnLfLls{&e7=# z(~rEE(wg(ajn9R>`cYxxdUgM1+X_}qLg8{*0DuL~mq+yyu8oy0_GEq>{o@t1{=2-?39I-8B4 zh$G9+@+k&Z-VkU1j=2v$))zsJZ4MSTMKhe(6}@>ACeIhjb|e%X7qAANEr^m7wL1?5 z$jE8exR`ue$^Eo7Ed6LD_o!+a|2Df;62bN`EvL=PoJYag9@68;G2FcBNE9tNI2&J^ zLs;Wqzu{LMN%!^&eu{!5Z_mk<_qkd>%RWY%GHzLp9usY#%Wdr-sI>}(GHq-nWG22B zIW=MbSwhYg;(q(C{4)??8z(xORcL0}-Tm?j%{AZVtEaQ+g#6FH8%Ri~Pd^tQ1|)Iym; z#+ajY!HdeO%vYfIw8!r=vHf$~UZmNSp9?vNDgLb|j)Hy(2rVb)Ah9X`KJn*&ne?B0 zD}+<#$dRU_*yiZ^F8TkslX+ovl)Ai63Bs^s^vJ^;tC z(%!=3@An4%vHXxsHG%FM(UFKikGLRA?H8D_M~c2v$5DnVpn_TX2j0 z3N%7M2=8Ar6q$pdX&hi$Yh; z177SG^xt_0$kI3{{(da23;hN|WDapLmT|xJAwYE>JImj{k<*~>rTR-7hs2G9jcA(N znHnX|QkZK9|K_0^4u;z59F;B!rl-1C&w=27mkW?f07)GPIqWT0+0;mw1N}T{u3=(C z0C;oZ_prmvoGB$l=`UF|H1z8Kg(H+S3hH-H9`v=lJ;etKlNH{QHskdE42Sa;c)HO3 zNF{nLx$bTUz;8xdqOTNtUs7gCkARA#_&i5Cd2G||7YU6^Zsqdmbc5*spB#M0qZQg^ zW$5e2jMk5~a{jhcenKx{>^4K=b~gZ-nWRHh8u?|)0Gj^oE2)dasiP&er6vSGa#HP~ z^FZBtfryc$Ge22-`9}F({XcA-$8v;P)}u>804BZZ`{mpf!hF(&M zjt9~<6=e_oo}GkUT&O>%S~Pc#rFhd>!)hhA_851TsItsprxOx}+?MGnl&kNDv-&~W z!KGtw{|c#oZ7zc5au?X017t|7Jl`P9@ic%6v73Miq|$4ziI4n{Zw6J{VWld29@=m1 z^|PNBU9sOp;#b!e@axu=@!IKO3{m9QjheFt!I-ent%#rbC(#w7_3+2m^xq*Mzm$6% z3tq_Vjlifp#5?t^8YlfNta8AEuIFY6vBEBy-!>;h#HsHQgGE=4?IOMRC;+Jj2Scn; z;sC3>F%7jU?92SkkMDJ1R6##8d!7V}4BZ+4@vo2c@t|e>J&02HJ#=?||3BmpgJB?7 zoR?p$)}s3FIqa-zz*a7yx-(SS(B(iZB}wi(EnMKJPO7t>`QQ0>cfk5j&EaYv{488f z8v@hBA)?smgL+LwAq+&H!mKRxm1e6qO!mjE%#UkIj4<9okp)tulfL zpe?c4Hf&Jhp4TonhhG^@c{WfXuiBGddONQuB~iWa&kJn@kHq8T+%NY#vZ-2QKokMi z4?UU?C>n*W89^cgo%Ms<1X7wH_GmZXCxR@+%=94uaPHP`(#*HexM~O5&tWk)@N(!% zKd%dFL{N}TZ3D+PWS)f2*~?);>g;j#pZ8d}4>-RL%Z3qnibI_~n8srhTotLs7%1Wq zy!li3#`Wd0iYj|Sj#);&nwBFTY8!SQ_4g0_4i!u7M|iGXWnzQ0nL zxD{~~V%Wf#`$53jw_-F;nXan+kDrR5c;I?a{Z1&mF_rho5xJl99V^5zd^p>+Wx%b~lJHe%NB8ZH@ZcD-~ z?(fEycFnUV^;{Iw81cUW-X{2urjJQ*8GyVp+|SX;(l_7eEQ=?!xb2@H#kdF`Vye@U5>MAvnY3(&UY9 zP}e&|@jY4>!R!qf4wt0AOU+RC+|%mQZ@j~|o9zcxzLbEZMnwB3ThTifc*oJoAta&hzI=MNZ8r2J#wTK#9x?oJBDXcu8+^~5?!by>@t#}q z3EvZCb@6z^Y!XFrn%t2&7(CG6npl~jN{Ag4MRJ7i(j)O<3Wt!w4L(Wt{>t7P+N=Z4 z(M^wAAr?}tnF#l?|L--?zdnS1AuQQ03^4bI12Jp4dPvO1W(ysQd2x z8!~DD4b-sA!6Rn|TerW}RY*+wHXLn+hQTO=P-}0}-|O`r?4~@csDa1-Y`W`@ySfv( z;FI){U*{1`q;(nrY7P4?ecN&-=;l?jA>%P_jI^LB4pe|cB!$+DK!4al_>3aT0XSxu z1G3#gS+sFaC$gcZhV@_UghNQTznnYJCR!73KkZBKwtZqc{TKrgKB@#E0keUpJV5i8 z7lm6%oCZM1xTwDJKojfp_cSYMYN#^tZq`=;@cUIb15rf_!_oSLsB8{v6*Z7tLWYTC zVZcIk;`7#Fi!cl$%dvS?3X(xDx1yL^jP8_qB{c@c2gQLLd_(7;&V7R2Im0E^uV62(YoeXq+Unzdt)@W`5 zRK6_6Af{fa5}=mr>e_w#`4EJrBpUpkyI03z$+fUgrGZiaN0V<))gUDSIZq}nHMsd| zc(6i@^2-*gD=b<3TaO7U5(upupwsQ&+W(PwL}DNp8D+RsSm)Oh&{W8-D(t`L^E+m< z5e%uRC?B~Eulk6l@)PsV8>Q871lt2E05KXsyVLewH>8faS) z>SqYy%AqFvLqBN|K|3Un#VIBj3t0Ilo6fh896de7FgM7nRJf>e?=_k(PzVmlsO`7n zu?$Bc%=D&6lv+j)tbu;|j<&%Eo+~(o-r)H3KTX(^oo!MB2XhM!(KyI>Gz9tgmmo$x z7TN8nB*xsAn|Ia#iEcph_+);e{qaRU9ajCWGHLg2N)d~qVn|6HN7|_lbQX zE*pc`>9KtN2EEhYfomb~%-;%5g&#C7?p zv7lcixIb&%xy!kiMpg$Bhc^L8)=W&0_Wr@jM&P{7L4YEB!3-%CT-=!ZJ;VV5AMhiC zG{W5bBAmUm;Db+4z#>pSQ@BJKLO@6OCa|F8v8HY{^a~*Uc|XdpL*ErCV&TvQP>c!r zREa@XVHLvGNW%AXQ3B8;L*<_Z<+kWOcSDmjMkodQ1v4%ML!UR-J-;j?H$@-y`+R;* z#uR+;Q7`$QdmEXb^c;69^NLOR(b>I4)jji#f=JDy?#GSZ*BA`^W(T+{_4}rGm~kqEcwPAuGVAAK>$p>n!1DVDymozsAM~o)t1rB>6Gg4q0u!Qw7g(LZoo1OC)z&)&9&E`5FLKjMQ9wzt|A>Uk0g!8tXT?(VIE*#WW{Hf!)Jt}&C z13#qBVD?=lKFq^D!AFnvc5rtlP(vGOM^~7ndYRAW;><1K688ezPT;n=?xC)6re3nk z*v^7sifH7pHt5%bEBnav;kL&#oe-koME*mEZXQcqTe6L zydQQaq+6Q6)1ZDFV?C84my1phL#A>NOLIS$x?AASk~ixywNsUhpB1QI(6~+}(mzkl z1Ar6PSRHvKuhTk!PO~{nBH|<2tp9L@GVz*UVC+o?^LV(jc35aRCZFoTCNjnRFJ+g* z7>(iP?FmRQ#LN99oIm{Q4RZ5*~|C z0wO%a@=VZ^|9d^sbAsEiPN~)t2stBy+c4XntJWX$&W8TA7SymwqlnXI0L0>9zD^u1 zuEII4{+U7`{v;n571(lu{o4|7*Fjk>VRvTIX)Eo7MD_=`@b8RFNF z=WQ~_?1p|6^PyMV6k6attN-3pBPOy! zt*)NbGmZiaGS$_m;@z%y2kJv6?99M~M8w2GkV{`WZjs@^m{JHD(HNtymCW1W2Y0*I zc~<}?^8;(WyI-mcEr2S;AbO)zc4T}j6A4{j&;-KVmPxV#nnOxM*wqK}gCOZzMF815 zVkArFo@!e85M*VPYGb#fnb>{^#1n9Oa%bLFv^18Lp7Kn@5C{43B%dAw92DFZ14M-F zVXVvyC-yWN97GUVTZ)ZAj8lc{3j*sELoEKIi_-I7=@N~SVmzR%Ac%g9s9QfI3|E-4 z;(M_g0jAt?s@Wn$gObso9cbMkD5oGrnkIhH0?Sq$<-4%;>tFpZgB<0t_2TM|ghYT0 z_2?>aJVRHM$+~$>*(0~q@5l`rEMUp(a7EGqARXFGf@6lWPH9smjCManb?RK6O3#}& zBp_-Wowziy)^rIUw(=#?>Z6W(KdD;@QK$=6E4TXl<@3FEnE*mYZ@Xe>uACM5XO~jZ_J5 z_kI)2?rag6nR1!+(T+&+c;E8<_%{KUkiO!7y*EUOTB$r1^LqA8jYNJ@=@(C$Y@-RRY6>LEKt{~6ur z3ZPd<^8T9+o(b(gUxX`#Br|&I5Om`j)EE6l8;tG6dhcPAy(OM$qqTL1Gnc9UvrohL zn?-Q~CvY2If}@+hnA682rsG0ls>%zIMk$s!;6yy+Ig!*V217XvP+$wQp?>QM@^fr?*mxHof2Qy;)lHFdyty>Nmr(kGzygsG;znT$jIKHymg=eH)(8(;gwaF1)iu$>js!)GVfmijzb7KmQeM~-mM9{)@#>9DHrBRBzffsnNiyM@k#`d0 z*N4kj|KIDIlPLACAVe6;^s`__yWM*nU75wCD^P}c^~anjE;Ge5vO(wOT%Jo}KLW8w!)T^494B%ykq-QbjI-zuK;I_|~z5nZerpy}xk(Jjpb)a_n4aRPKK_DAQML7`W zvvK;Z7F*mySEVHrr1k_JV4RQznLF$;WjdqQ!_h7+H1;?v!A&+>b}c8RprGKo^6+O^=r^(!)M>(eDO!?RGd{WSjyL_Mo_fN)VJYBM#d4t7y)3Y zewjpdvx->Jf%cr!Y+L?!d%kE`>robU= z5m6s2%r{OY^ydKc4cPW@E)gBAkPD_iA!P!jG<4OkpZ(97it?&k$(~pd>Kj-I+dd`G z9cIc*3u_{`XyV8Djv}MbCcJhkkc~H7qFBEd%$k!tEoT7m+2qpkzm+C#<}f$CZK6W? z#anv}nzp`X^CI@p6t_=?-+7in=(9y_EkQhQV`)kmQY5UoMS}DpI=Ce=d_AUbGg+W| zjKi2I6V$ATWTFf{gE4j(3l}DulH2(G*pN`n5rv2IQH^3adOW)yL;I{%G68ThNx;aZ zP;fR*v2@SWIGI9xK!&ekMzaPoV94s#wVg?sQLS;}3A+ulX?UaWL6tmWOruw02QOJA zNBcUBhQriZFb9Ab|E$|KJFGLt(hzskNkquKg_b$;`3YZlxT{dn;ha*Osuwg=uLoe# zt<5JizSJsPiNX7m!lv@7fIMV%Ky-UUc{>5CuKX$T=ol>vpeMHR!_xCPMmea2mEu(q&$_(G_t`Tn`H^u-SKOr)(U)*kDgAVhL z_&I7G0Yx0U-0jc^pn3xYa*NZ_iGcd#RJ*TyPrp3{#?F?&d9Q@+2dui`VAjj( zr)o#_$@dRHrVb2noqI3^5oBMZIi&=D>;i!kcZd-y+yxn}PfT{V-^-(ue-UqLf4~rK z+tQN`!OhHwzA~P=T}G{NU-%Klj_}$Sxnqk&{K3zx5JbN6{iRP(YAaEOSNc9e*624| zcUDiN)ecNV$CxS5k|xr1`_p3fy>S|Ns7Tn%wgR5`-rW?>v}!nUc1@0Q*tP5av4 z8&qr4om*Es1=ZXHt01X%^b*WsFk;e4igm%KNBXMK!Rk42mte^uaUV=5?P#Z99&PCxtf?~qbVv}>wS=tlHHyUzS|2#iz-V%ez)2jU>N^fvv4o1p&fB~4==4ZyXnS~KfKI36Vh-@g+J#a|?hj!*;<5shs&HO1s zKU((?q6Mu7H09qlsn_8XCQm-h4*tc2tATbykB#$FMwbUioRg`a$TkhIF6>0Mn-!m) z``mlAH-dJD3IKaB&HG6lobC)1d{NKti-U-H=C|mz7<#B&ECm~>KOjYUE%Ev0*#|w# z-K{`=x-;l+rcdWxB1ryuI=BNHHTEBa6TTbYpH+;?Y@$!!59eSqngA~yZ9|>`@f%vW z(lD~=u-u!*M86RrQ+S^{BlkKx^7icNX+!*Mx!!3!xjuTUxI=BA_4{C9siSvTzNR+(pN}= zK+N89Ks@MN&|d~0Q3k{}VCZ?O(IfZ!6Z7o1>A7(rpgrXEZXF{sE%0kwjOyE7{%(=eC4z@mJ@3_qyrClE)2j4;%}Dt_)VKj8sorz4 z#+~vp0t=y5D|SLGKA04`P1+5T{f9-Ls6ij*{E#&W(^ReaAP7120Zo-HfYrF_ufoAw z9@Zt1_aqR(ivAgGsgRAF@dct59Zu&LGNh&NJg^Kmwx1cQ$2LgDYH#J`$Q!5xvt!S1 zAQ1oUr$utYHYJX45VM=lS_zt@^>nt`5>$=b0|&oNcVhu3g95*wa2eh7m`)_C%54;#(;|P^TtlWng75z!%5~ zlJnxndlK6=xrrzT^>59#Nq!bFtP|kdY%#RzW?6spuNm>FIkHJ4gURUlLX>KOZ}_4Ncx zu7~PQ$#9B<;5v`0Q*WAMA}rt-f3x6`RnpO&_(+6|oRQQ|w>mmO_X;47zkG1(j-;XE z2UE!i0Q&%C`CShlcSaA*a#h0c$qqSrpn%R3-rpXk3DM>u`~wWLYsWAl6fItm;X@ea z$5TrxH_NvCjy}2^K}D`T0yZEFhDVrH(r3lGP!=I#+u{J{&h>|ZBoMnsk>%mv!K|mc zOvh6v>coFy`~+=0lR%sy@IA z44wmu+xA8-_Y*SJDn192@qDhc{A>GS^*T*ou0s@_k#mgv9-Mb&uEk+s1ayKUwydnv z#UVWPVF>2c4|=hIIC~&cxpr;{Si=xf+aiMWQ+9~+$ywUjnE1r&c#Xh;D5iSmOVkDx zAY_y2#rC2Ds<IwWxTS9gsFbGLYuQ(ay0`2r#q^m~r3gqP?@Wv${eBbM?X+N} zALE6Uby^;@H89~EY$8>n=^4C{0b;X*WPGAu@Mw}G$PlnA2$|V4gFz2%+ts?thm_2T zyEQF_y;xEB=Q}`ELUfN0#e)%4B^bdFAFz7-&>kUps)|yYk|(+_P6sX$fQL=M&44R~ zygcH~bl%d9?V=;fi;iB0%JhO=AHS)*NtRh)e4r`yP7#LCg;vf8YfE0MOw0ZK%521c z8-Ni9vwLjP#zNzT$N`r>6q40m??41xuE!^0R&4~@za2Qq?$;VXMSuyYksaX67hTt@ zE-6#Y@ax!llrifW-YS0a7gba94#eL`f56#LgQ11)?vTemGP%FQt5|jR{It|el*cDu zh+5K}J|ZzSHLn;1k(BP)yv7Pb3&|9F1)`&y@D_?-*3^+kN;o0;22!7C>;CoQCaAy` zU8wyHPeKCmFaOF!<)4#sY%+_&fCz>6KYMTGyB8oN=pWio1CJ&2i$Sx`r6e#H6Y0u& z497+G*l4%#9GJEGtgrk|`1`vpo>y{V>CW*IfaPc8Pz`$@pwq-szG6i$TRi)lcMaPN zC8*&?0sfiW)7N9yU$+`A)&UJbNie+m)%4eQ$ujjM;Xl_?BS%p$ zf0&Kn)huMUU-JBH+-3o(mIJG3lYwNk&Tm#a6psvJJ))k`M+C@6k9zVVHE1 zvjT_(z(*O44NxN4sy<9(OFe5h3K8AmiW9?+K`jegzKj@=u#1G6#Roa12P!Fb)&dH# zs4-2Cn>C-*C8|gAhN7`6%a-v%s4)O6Am06{BTkunqR10jj^>J z695z9+TeA2Pq_>M2*&e!a*FkmNDj6k>&nOxw#%6|o0|M-zoY7n_8JD5a0hEFcF@{f z2`i~9OAX=tp@%+!!@6cU6WlV1#%PwrZ$@Yf(Ra9zkJN%d6mqm*T3x8;SC-|K)PPYx zpG5{+jWzoq{vPllk!1uTLRh30NqC&LgCf{xTu#9b1iewX0KFPAeYvVhPyzYbrr3wZ zcz{G68+wrKZFF5)A>p`yYa&;ha zX3hQVzdhY+pKe=dZgbm%47^d|eitwG{tfi{MWIo-_kmv)()QyEaCnwbxkwT{bh!z> z)axlnWxkFydZ|mtAihG^V_e|Xn^zg4da<*!{bL|keOxBwhhc1)FYk+73iqHF&w$ zm8An!#4hR0MchN9+fr!`4tXRzgz~5O+q)4Y+2?N*8tDIC7WatT6Sr`qq&Onh)6==Wb#d*o(iVSO>>m!UT@ z?hkzHu=KxY>R67H>=^0{q+#y4FEKL&NUtFzsof{2b0=Q4eUD77Ckwq)AQc`n;bYy4 zgugNs($*AG4?#Don9)%jGEj-xA)ef_lkp(F#`4l3MXey(koltJDtG|E;$ymQRR8+Y zvHVN{BMUmmz9M!a#Ll0`h4m5#ML3^ViJ0Tl^Lc{+J`JGziF$U)kTiu%#lSnROx!#P zWG-b9kh(|nVy_kv@NFIf=tMNp;zNmTy}PpGeBkPDMkP3s4HA1EW=O5(INj9CP(Qm4 zoCu;?Yob0D0BCDY&IQ;(m9-v<|)DGDY#{B{`Q=Se?%@@Nai9FI=fO$ACWYQQ?id>&0gV#LhmOjw=|U|OZo=}L`B}o%`4YvZ(ct} zl&-i1q`zlOc|S|3Ue+W5z{NEEGBl3 zsNzZ(Ia+BF(D{9jK91V)?J2Ncui56`%R5fS5Ep9b^_8+VpT%Q$9iGC-`=8q48ssgL zw|Y0&AnAww&N!d`zGP+n0FxV|uhOkAWy)^F3{X?y942tmLE!-7DDSW4xaM4q(32b@ zj1(YoYmO?e(A(;X@=uvEPpk6?+Rg1F-`cmHLoxWGhr^;L zpbrN-^1;$JP0^1?|zOl`3&?VA#B$Ip@%y-ANueL`&rJ8H1LpElZ2; z84PNpB_+{^B--vgRYxl_-}Kt8IA2S`Yfz8(HrhrRXFi}r^HMCAJI{3Sk+yu!c-3j# zP>~ymB7I4Kyv{Q+`RW+?jh`Z98D7Jj!34vrsuxP|ejb$48#jKIg(pR8=56sVsA3L) z67L+3wZ6NAiIHWo38z^fXV&4K!7wXJneO|-|79Xc+%WvUKyz-<3^Zx*n^ zA~!{s&xN-%Z<+zy4is2!kMzUAbd_Mva*dzDMNwLMUm6cbxx6UUr{c&Jz&DAe@`J;xvPJk=1IN4^%)eJ7Z zIq6IxJ%%jD8vWh=8@92U?%NEhPqKC+f(vGPDysO2o`iX+$N6PRU4w~p%>=ZZ743;v zX<`J3!N|?+eGOfuv_-!su?**`+EqDj}|DH>;ZRS))5SFGFpyRxJ zrt-@T)mOKu+!!6=Wy6;xjuY9j@YpT>>}0ebS}>p<^R7YSo6_{Jgj(0Cth!?0WzD9| z4Wt7P|DNw9`Crk_BzV`B-A>b2B>@ESI4@_~xRz<~?m-Y$bdRrp0oVetQN3!gae;^F zE(awo-XvAIz(60#JR(o9pNu!X=#Z{eCQOI);G=ynZ(C}K!&0HXZmkVtwJBmxV&;9A z_bc_QH4RbnJeGaW{;i+?y#sFq|kqC+-=K1#ox#)moH z+nt9;Fw|feF9Ey{qjrDigz^K|BJ^*@biEmP&sW@$>fO-ZdhWsrlEfJPHfo2)pT;pF zQb(>Wkfr=++X0qg66Z5_enyG>K4Jc?H2u30AnTyg#WWrHm5t83&Y(?$ksD&fwaPsM zA^grOJQN8#795??XiyNF!$Wf-%28Tx;5<2JSPap?+#9ncTK(1I6%334sw9RRZv>FD zgCV^)7rx)-K2ryJmC&*e`t7Ug60ASj!cgf&2`8)%RKJYgg@h{N?9W2?*e99C9@js1X4+d(h`=7N1SBVK&*FQ7& z{p}<7ap8}M2-Wi@j z^0T(kdhKFgp@AD#`?@H4j)%^?;Ypvq&Ce@9mrZH84(H@tpzq%v#*T#Dibr5{)1EYX zM#h-f&xL*qKe+v~FL6ZW6-Ut0TCe0hikXjS+Q0SNG+w&|UEZQc8Y4qTzK4-dFZ@bh z*DZ$MGJdL^NmAO@6bM1djh4Rx%dG#;bKEowG8T7=*6RzA;)*!TkAb;e8|?)$08uwC z&msSGw*W%2*H`o!1@NeYxGI0}!+;T7ULC1%@QhXr)|v+#fmY4}pg(eraZM$Rz6r2t z*SvP2M-P)DEH?0_ekH=-C{X7|5CcX1W>~h1R&flpJqwWx;ODEitMowS#?4Z3i2G#c zzi58x0EzXDY@>!je%T}vb5N>g5s<=XEfL7OOYjn}>h(oCIYHUgNZPe5l8$qfGq&Wn z9Rb*TO1#~4_%x^Hs9Uh!2Wi~PuM4(Ab%>6!eBd=YD4x4nN=*%q4|ZBoyfkKW zoWv3{GQG<*?1L~NrBwvI$TQTJ4KD$s5{~ln1Pe!QTlg-Sx&1i%#5nD15;Mc$rBETBFxA?P1e?=P5hs| zisPC3;`S4htb-L#3k!Mvg!O&`ZpNyO0_u^-F29fKjf1w@Bh~8PSW(y`o6}!AerU30 zR0NF;%@-$nyF4&|LWIE4c{Jk`F)qwQMtS6M*cf%Z=}k=*X!aN0!gbxGBdO>|Oq z?D4K5ikKP>`yJ_U<3#&$_~i4mftlG>NWczH2}gYIra;tQD%))!!z1N@fb^}oAXCS_zdq z!bn?$&u7r^RL3*cO^|rE;~zrV(g^!<3lZuyep4o5l70Mp)z_-2Y$ZrjWAODE#Ds-^ z(?G7jKgOaL!0L`21E?pz(aWYx1bm*LYRZO!@X{^(aO3r;E&4?aG{Tno4JvdNsL*<& zb6@{TJhyTdx8Su1u49G3BjKg=)=)V{s30{>-CL-V0xq9)UN+(52DXD)k67~b`H@J8 z+G#VCk+o}ifO)}m6!G~|4iO`!B_?l?HKa#dYuc@d#`RPkFf5^Z?aMRfV>t()$7k5^ zhR3b!wP)ytY4PDkCKB?G$Re!D*9>wYL1>ht*CX#!tGcl-)w6j6clU<~ zv=YsVJEF8a$XijIXU`d!6K%-cGf?3xbC!M}?=|3W^HV2{bpD049DZzOIr&O~7QU+Z zf(@A$t>BNt3~={=unNm-d!z+zzS28GL;PgY%x+%(%{h%lcq3HtB z`F1_e17rBq4Z3s$n)Zc1Un+~XVD{4%$EWp**E6EcBjis{WPMg8%ZnuDen2FDcyPkt z9KDY;@MSCmFWes`{{T7mi#5=shcrZ4rr~<1|F<7VH>@*aU;FVLkg3i(wMt;|lET=j z)wR+{bryBf#(qCiDY$>Pw-+?*zp8@{bq3bJq^_G;LDY@fXB{8*In-TqBg6CbPZToQ z1Z45`A`5HamND@LmdZ&Iy_fYpT@w+Vu!9^@S>XB@DqJjEM5PgEr~Ai(eZW3iUY5b* z-+s!AiMm^8&i9$sEv(Y7px5?yLDj5OvUFo{rE>%c^2QAbml!ZE!zt08xCie}gcBoX!~m^^Xsty6vp{PV=&!$Io$k}mUYRkd%E&0deeb=N zyW{*ldq=Ji5#sdkMNI@+D>VimDuodrU)~cX-CqWj(Jwp%|5>0y!W)em+gN(hwGyA< z^UOn5h+{Ob--3t92BmL23v_aZ#CYuX60IxgcSH9h;M+AssBpyg_F80 zXJ#0Ngan&@A|kgF^OmM*1j)o0MfV4X)b77|zU-?@>6Y8R7%|P{9xC=y7Du0;twc>&4AQ} zUbao^KlsQWZt9*NJ~MJ}Ep0X-E5rAmC*MpfXJ-<3!1?B?RfvSj+L?;N9sMh^o`(D= zR!y%DCl{EbxpxGEZC1^RsjzZl`ZAvwj%p)tbJ^NME&Cbb__{r*2S*d5KtYsf4iaA#l=zfr>)JIOkqg5Q^WbkXfmTSmF}o+SF@g-EgG?zM z9+%?84^GPKnNkkC?T8mw5~pHzF@WXj#dq?HKa~t=3bF8Xj_@s{-rEmgO`GS9u=`s_ z-)RQLr=izZ0YSD;b>ex8_izk6+>TlZitHby5~7v!Y;q#_3B7h!FYO+l6tuU(jkz?-ZzYM$o0kFyIo>6b5r3 z`nu^6n!uREuf_*g%`+c1jO%{Hoa{{#$=~y6I)-2jf)52s^(_7H4or2tOk8oJl0n%$ z_em8r90J_${L*tnql8Uq32@oSnq3)q|Mrh4jvtG{*tBg2D$~O}mT~R~o|9gH-FXOD z3w^ukZ{Cug^Gw}uI*Gpi6o7Ub1p;q zkW;GM3(Lq5r$Pi9u0Xj^4t_UqCu&VmvFws%6cOyQ%ml!eTdD}O&@#p^#!T9$XFmV{ zc!_0$FeJe~N1>A7hA0VR>luWF~r6H(@bgH4Z=>I`;~G$PJYb zTlY5MSbjPoWK8&`0CzV}C2pE8GFd<=CK!2qiy|uQwmE@IoYz@6F`ta+SomAhki34Q z!aF_ucdsk^e1XyW=NCd!hIh{CG7OY?Y~B4Q5?Nl}(EiIK*>0bzx#~}_1Aq_FA|@-1 zLfL@@KJn~L+6g@spCR>1(}MhVV3H}nOh~c26ynje5}oddDB+$gqm|v;AqN*}Ro1%B zr9((okmMve5NfB$+0s038z}bedy&8SI1F3_CdtINmP8irWen3@c2CB?^=^y&DzQKw z4a7k9$uJ7Ts;(dg_y#BsN+u_VqxgHi5pDtTrGbw(jXfQML)ISMQ@M=C{vgRJ*nJa& z8na;@KAgX2mQvgyL$v}A$Lg?|;tqg>I^}TC0;WldKYB6*$^;=m`j>BHw87OxNsEo7KA&u`72^mO?Qs?L z0-UUqcI8G16w_~E%rGvzAeq6rEvfUl! zF^q|N*eU+=Pjq7YEiH8Y!HrS~_!|A}N~bCQELP^RP$rfxC5tH0iU^O(tdP?sfvPWJjmI-vC1!OSmdpy7cdy znzT+H&Nwb%gQC#iMrL+TTF~DsQO;v3-UtNjso!)mBfx34cKgu_pdHG7FZ%}{N@hy& zc~yl+E6cU0!N@2ZHre@@ODq~S?*EQMMJk9s|Hh^)NrBVXLx$y$Z*Nw*@l%pT?4>ZD zm#y0G`9)MMu!XlyR5N5Nrky%#8|0XuB+F^H(h2XqBb?mbU_1>OD83h9TpmMk0W6FR z-2zaY1{PY=X}scuuP&YpSFx#)>7eTf4tQqhN=t!sYb-VK=--ZUdgYRRsmb{7cz@TzZMS%K1w!Wrh)Bw<+xEsVWy)^ol*z$eHNMJG z!Y9nS`~h-!&8_?%XoFdCgki~QuB=oqD3|0KJQ@K@MC2XGC6VT|5Tp_YBQUou|?keX#7>7C?ahOxk^tfE9%s>QF$=-BgM3t2+i(y)obf3=A-m4IJebWc|}bPb04eTbp7 zqDlx1#@LyHS<8sBnO?%6k3c7$C!YpKki2Ey+<+LJjhOYhVgZ2WCVE6N`x)^fFWnvr zr$N$?O0X(l2-F|f#X39aDZRd_H*03XaDwM))^(AMEp>3;nQ=q zTuU$Z2S?Vh2#TL@nWaw^LkT^6aRl(yfe-bVni7YTBLktd7&z6lIGip9@jX5&a+Edq zq#y_QTGAq(btDUrO5@_hUFyde=#nPX(-L=MKSGAXP0m1B%sB!_{tjNcu)Ke2F-1rZ z;n^AQ6BL#9NiA-+4@X-t*t0r9qztSH%g<~1#2wo$we~i+*?wWB-chE6iOU24&26^u zZWrrMLjdatlsXf^FsJZ)TLIbq{dUMr>6|03O=X^6pNv2;nvr!?fQTuG>vRES?dVCS1BmcI~Y}NxTk@R>2(qFRe z?mlkok?M5@-0Ay5%=0lVn3KGVI06id9lzT2{jg0-7l&K5v@0a&LQb8`+PBWull(V0 z>a2P>cr{Y&zQ1;YMd<4}lm|`-* zNeeK=qRO#T97EvnP4}#4JgCtiWE#5n(wJZ8CJi=6W+i%A`|e?ff72bWgF%zaR5KQ5 zsG}Mz&<>1eu2VTG?PzWWkOK6SuNC$waj8*>lX%UOACJt1zT%Y=J>c^fa%aOgyz8|~ z5tK^vJFr701wi`%V33R>^)}0AavT*r`q%Ux0{FdpkVaV_vswxQ84`Cb%ETz$64T+E zo-#hPGW4gsBwFv&{Ovaqmaaf_Z~0 zw?lg9-5s?cSmtghxTO zru3tEc`Drb8z)vPrSwal8pbGqPHn4{#Y7)s#QOtJQV@=%TZAXP;3N8Q-Rh=ZpV-@* zJXS4~U!Yl~!zJPVF~_Shi;---7tW0-sU_t<2hd>INM$GgH~eEdapcmAT9WJh2tQ9c z-Mrn-yLbEHK$*O`X%7VO5hj+td&Hqeg$dX$HekPtaW4IzJ;W$Z1cw!rB{ zqgIKPdH~SbqN(sNWY}o;8SFH!i~@2P`{@;OvLc^BesyJ%B&?`YU)lkxYn8nQ2~3>L z^eIoL&8mcZ)Y_bXKNPHzx!#I=grFz0w*Xjk>f4PGcC!$)RI`E&0vLP3Jwxh`Igey& zxOnG0k~n-uy&aeIQ!>3##UaF|es3}5?o-{(w95^G!^9?Y#)cd7pisEjm-drQQd7p7 zzr8-*;79h%VTgusF3-m&&H;xnhlw^ERPZs!&ft^A_%pc94=`r}9ex93<{sdaxeTeS z5qp~-OuME?u!;B-%Y{&`g}f!I(Dm^N4$^%eE+G~OE&mggwktHY_mk>i=1esb8avSIHZ;AYb3saGp0V z+1HJONU9f$cS-a4kg-VE7&7*TC*aUtFp>Fbq2+N=w*7)bz8*|`TFi-v zbRfg%HUx1!2ycvc%gnZK#yjKI)#k!}maG*QP3YBOmn4U%OK){GZ0UycbeTKWvbx$O z&%ou_U)%sHQ>-xrry}?WP8{)nIt)Rwqlz{o!U~ARN9^P6|j{We# z3zKWNqB5t5`63lqvUp<^^-8`LCcDv5nX6mLT*Cp$WlwzIM>F#8Le+S*23X*yjnSUp zur6vVmA0~StgT4$bsmbWhHxUsSmg@4>I!CY4nXRa4zbCx9xk!)zi}yP-!+rZ;y*Q# zbs-$Zx?OCQy_~&xQO@M)6SsmnnU4tp0a4Z}l_}(!Tnvomcha@|S#KM(E(2`HN_ByV&Bol8iO2*8$Xk&n z$*XRo{)s3WT2!l}8w4jzmN-k2bllJD-u ztXUKlAxZzmK}e;>iO1`^BK#AW?e zcl@_(uc~bEPa1u7eF$RNu)jHA%4B&Skgn?@dF}?NiURCN1Ab=2^WYENd8&gR#_fu zgN6*<7|{LJFoZ7Fu=WM))UT0(BD6Ior`kh<|uAMwc?<3%t&3q0#s-Tv4JL^zFf;gyJYi~qj$dxGnG5Nov8iI(W zqNA(;{{H*70Y!8lF+`|WPPzG&;?|s(+jD#bXPc|fK4#1ZWC0w%1#Ih~SBrr!`PW@@ z80|q6UIWvUL z=i|99++WfW2Q%7bB>i=apsCyXMBA`~+JFR!HK#Qh7dl8K7#e2pt_N4&xzv^4_xbKgBhK0C)c0fIWVdlJ{vrrN3OL-4{^gX)K1RU=%ib*_yP(o_GW!1DG( z@KmZ}?0ueDg4uFRcv@Q~V_2EQa}%SD63yw-+*_WcKO_ngZwW22!T35SFXN8vL1#mO zqaSgQX&Nsu_=fKIqRssA<)!}c42Xr>Hzb~Im;oV|_o8r-1TnTG&-wuw0)fdT*JDI! zKoCTa-9GmH6qx<5WKNa4DJhA{b|~)VIHJ&p(fxk9$epAYn4>J22k2~UXIPu#J<1nc zR$wME0iY~fnnVE`hH;XQGg}~yn~69);#>6nz6&g9P=@oe^uwRn<4#Hwl;lvr+k=a; z%yZcM%rlx_dw64@t?S0;_~^>{HM9BN-Qhp(=0da{eA}7*4ZiLxN!y6pE%$_lPAr#M z4hT2ry`_EeOVpW-Z%py3fb?KaBqqvZdZBTMH|s{z&r?0^;m#~mny>-zZVHm0rIE_5 z(R8}nIwYFzfhC`fQrE)&_3up$zC@NB!za;Q5&_NOqTfnm8p-1F>#th(eV~h-=+h)u z@sA%Iy0JK?@36s}akno1{F+YaT+`4YJxa)Ju*ifkZu0BDWXPPe$Fu53Ym~fjTN*VH z%Kn64_w#ofPfC^WEQhYCU>kanmbjNRc|A1m=h zWQZ=xvjfokbGCr~D4lIo7e^vRer{LG!fm}9_5SN7W4Poy+8Wb^Lj%_+?4xFwl* z%{B_hO9llno?(5A-xUzg%eq-)h_MzKovpZtdg{T0`|)-M!WO>0p_Di|(O`Neq0w38 zrb}wXol!UgY~Vv+BJpqFjslac^$q#ZLc>BVq$w9r8oBXWC@Tn+l~HT*3%F}7-t-`x z{`Pj60tY+fOozben5M*X{*=ke?i*ulWs`g`UjvEShBy;-Xx8~sZQk~raXw{ zGU?ZuF#yGnwc@vOf{%pRDR$Q)sn}h}LEO$cmFXLPbcgyu%%(Eh>vC&L$8xh0K=g5m zAaiK!KwFwnP=v}I1RuPC2iTn(5(uG;uca$HHT^hM8qg}EEM?1eT0xJkq>XQ{p6ZKM z0743Nh=YdI&_buW3S|lt_A#?R@noPVV9DTh*a-?- z!%;#ZW{0X}-4}V;+lr_0PXzLO7qBYy>S0zKCSL_7mT8c;QMXGWf7@N(c{B}f>GMqhagm8n-(28f{BdeqcRT5b?6dr?F9R?Igoc#d zErvTohi}l;mSBC*xdR@ymdaP)YE=3f{jGzcSz~G|P4+-HG8q7hHFy2hW$=4oL(alu zLVNz)o+Poj`kwO+!C%aC!ZLh`?TyOUm)l-cn@wn1E_F{ygN`525N)Y!w)w2kTzN^e zchVM(G#y6M;ahUXE*0QDrn>y|nSX~&$n{+&7h*k#@%~+k8Rgu0J-ic0oo2~Y9ir_t zhsWU!aQmA$!9XS`__emabs_G$8mn4*%atYRAzxf-ScYpfi$ibE6P&3~?Fo7e*Fxyw zD?Cn|mC!m;ZI+_H(rEg=1NY){fnfgT)gO?Fo$Eu(e3txlx7}gBl`(qQoBRlI&V~Fg zPv{7%BfyZy?Y(Wf5?t&La_OfL^+EYwhA$vsyhCZz8!UmU$Sq5vwu9dCF(m4%+1jN7 z8I>2~)(NM>6=LSx+@JlOlfRu!ip?HB!f94D(Lq%7<9%s_=?UxwC9vhqUIfpug-#Lo^6i(W9TbQT#&k zFHL~i*EX0BJ_>xdLVq@Dzf2VVa!nRBVb>T}7Z38mKl;0_lG3$+KBK%v8-vRmc#~64q+g`XTvCR!wt0NUn1 z{jpHZiT4n2YR>Pf$&lHF@|#?uuu{k`^t)z66jRaFzf+1r_Nw9hEEv)m{=iAKA~2f`$;A+BZAyvv zoiZ3cC&jBL9nQpf0$zv+dGSD#Bskg^sOK*&vPo(`bvtGp;5hYtor$qq)whzGe&`oA z3JTVUUFTK2WU<mi(C zU+}Rg8qZH#R+gyezRq6Df4&w`8WoA z*)RO7H_kNFJbuNRt<5q)R}oRa4XT43encHIlq9ab=HbUEoxKtDdD9-G@CLkDG|BK5 z%d`;&s*WN47RQkOU`ZWUUmbe=^)7i_%~m*uKZzuA0R*Pp+T_VLTnVBt zs&JQ5V!jvDoyzA(Fk5WUw1x&hS%hg(8q%C$l1a}81%Zs_jiv!WkXJ1mM4_JyS(3>N zfLamxXC3#yKPOR^AdcgxUX_(GYx`VW0BBhNWpLy|;Hs({vOW01{S|p4t&!pT(feBs z-`{Zq>Thlz8Bu%Sg;slOo_7Cq11YVGLtehnjMidC_Ae(v??+vK-vJ6R`2x*jcYKmX zgdmLM-PdPiA+j&@e^^7V`Um%>S-@Uspk-lIF2&_Ji1gxsp}jNf>p_bhOQ|_%67+dX zH5XjIVotd>jQ-eaTT+(LBRvtCa`^Q++CguA2?itCWpeXW+(Qy~>Qe^Uu)^cUR+&V@ zpnVna@aem(m48YO8-p@~}7_Q#tUQAD}By;dNb)O=r^FO;+Z!{dKim4#DZa}nw|I7p8c zUK*(gnTh~w(?gV-i*f1+n7+7DvzPV7HzgW${zi*$*pef-$a{`P^J6F`lAWMljw_ZY zJI9{``*dn3-wV6@2c+cau!rB&EPJrQ{05j8U-$~k6;-w8EnFsO1|BrLhit!KX>b_U z-pjYEHh(z5K)bOnuK5x_sDqMN`YgONU@!Ml^h0qZK}W|W(D-TiU-b2r@3(;onk=** zH==c@E#8``&@;OL`lG~Mtj)!@fD@Re{T|dpFg+&l(?LtP2KP>j^vXJ$~R{;Pb5~f4-1o3%x z&!&c)pEOe~AuZhQ%?K=G_3VB`m1V>B)lsw*xWV@8GTxj@c#3Qt2Mex($to;ol}xY) z9G(Ev`Gu&4@8lxuSCrdri!{mqunhZcjo|iz5Hm%S)@>VZ;$Qmm7G#isbahtL!4 zWf!qw4)E!9NM4g4P_!XP6Mfm4FXP9y-rY$>6}~z=$rOfv+pmwuX8I3F>Qa3|Q3qLtD!f{^hc^S%CxB$r|TnO_sG$!y_n*vwP? zItJeuV!n%xH%-&m$$Y=IuPE&d6MVcCy4(3RIsvMvM37X)fKTW8=ol}g$~Wk)PZMNH zJ4@eN+3EFGzZl>)i(e^X;Gk$Z3e9iS><=ytv~#+0_n9!|!%VnuyfA}*5J&NeVe9jk zeZGFewd}Vp3CpvpbcYbB(@cw+*J#~)khp!k!mPY6Je2=vmWwdt-^0)qBlLn3`k(NG zz|vSCo5{i|`Wa4kPwI_`9?#KTG?#jq21{k;ERh9qa*t&cP{53xZ=@) z24I@*z}2eyf5%a3iOtGUjftY&S*;-+^8PBO3T1IS+xKr(H4VKI4qtON%!H>qS0l?b6s*bTe$x z?W(5{xczhJiLW!-s|sv^a0R+NE){mus8+CYDJy>7`$2+cLtv+8XdBW!I=KA|UwHAz zwf1{s)@S)KOOFV%mw$@M+0+K6+yw~i;)Hcl|EL#(G02{0esfD;PAWH86tE8%`(lI> zqjQh5e$gg&}O)?6LwyBw%1_8vl+ zRoHL|ASg(rjR)D11s{f5lBxwUlNkY z3Jj`JFr6Prc=M|38IVQDZyvK;>&dedB8qW8a9nfKB=7v_o&I z*b_dp3LL%;UeTqFqOb?N^5lox_3rPd7yRX0GYh0!$Wn1(e>YoX2$})+m?%FY=f;?E zf{p?z-}rA{peCAyYhx7$Tmgtxv!dh@s*z)zE>23d1zl>nkiO{&;dg9x03}%v+xpdh-2}>*AX_^R@a+$L!?O4 z1`kXdBgUJ>BQRbv9W_r>Z5zH`MTxGcJDZerge)!`+?5LyeJueydo+i}D3; z5*V1SKSli}mmdAr;h7Sfj(&nhuHK#={B${xefpsI5_$7YXJwxo`6YPWgwYZGUKfR5 zMpM5gqd-U=e-5M2z8zqLr8Zl&Y^buj<@T5p0czKhZ#4pO{&!6gYbZO9+0u5FEcx%A zY32*743u8t5S>xo8A*fZ|9dJfCt zTJ-oP)TWa-s2Up%2jh{P%i3WGX-JM}U526rLN@bRL|J zJH`}<5q-1zw@tTg#G1e$7aL5I5BWnh{(e3DE(#WKzk_gp#H zK5WF6T8(4YwJgi_H{c)TAB(#aD3iDBkBTd(Ebc({Ctoz@_-QzxmIOv$IQ2Pxtl56| z@W9hgnO$Ssof2r-LTgUj*GOMbR{d|w0?g@qta-^zN@DW9lq~TGK5n8>rYIe!5w4hR zzcy0lvff(vNwixD?P6;T$E%X?{_unSw^qTOd>Ng_pMg5!=vD5d0rfs0TPJ;|h`vNo zGhEykt5X`VeS~uu{2a~{5+RG!YXuq51lZze>>;G$ z-FawPmcumi8?u2rXmJ#n#M9{EucyyEIzx%QD^)3qZnhg0I~3!UhdvO5N`E`~;3|Ra zqkaeaT$FYVQ(dH&b^{k9tlB&CLy>D!FPI*2VcZaORWo-I8*l8{*3=!FNWBw^kI8R) z=l1+KZ|D%7ohFNxYcFAvhzxyfVUP@9!8TcaB;W7ko+EZ(dcBHDC8oC_}=qUAq%J91b4_$SoZtZuwl!hDtc|k>nYQrv0>; z#Z0%{(qb=Wc{_`1PR53dXI00ir~Yq_t(?Zjy*k;WK01tLoBY1HbJw@tlnR!1DNID1NTI2xRPY1A9aPX;tUtdM zEcb9lesTyi?A!yA6n*P4EM09y75Y5=M#)G%VQEUfSCq*3HpN^!0L!hGIpyD6rtqycVa{azo3ED`c855fsc5Y^#NXB}Ed5WA8u z0_kyMZRDYE-d}Q7|8E_jWWhWkxRXNWnVSOUg91uGjPd}@$Hz0VI9GH4Kx|>AaS)FSFo3vze4QrrN!kF8nmWk z`E7~V&69qv6)Hh6nO|}-C3x!-S=>nsj0stz^&z&rtSxbwh-}I@hI?xDN zkRKqN8#_w3858Z79r2aqB2d6|97RnXHtEa&w7}iG^`>+4LZXA;zE7fMk&6B6S6ZRp zjL>mXfOi5T)+IkatLIw2+-etb*Ex;GPWFpE=TPR^@dukI3n~5u7&c*P>*atYfl2`R z8xHd}2;xxu^Rfp(#l9#x%?oDj+CE*U2O_Fm*BRtA$5SjAd(kSktuU{chXeXdVS`AS`PmGGG!;g5rzJsnw|FxM}#wfg~l zhkD(pXyR`?J9v00tT9|3JEf6NQL-L7;(OB20GS6Rr1OlPzUYVgyotZH{{H98BG3u{xno2allcTa3&YuugZqavid)q3e>b(J54zs05 zS;alK8ajJj5{!J*H+hFJa4E!xXwx{o$exT|PSphNt@`Em>PXTK!t1)>vb(VX>o(29T^P=a6s}0~MI~SCibg1#;V;GZheOXL*S~s7Cl}39gt5U;EHuxigrn zX~fz_K4%;-TDK>ON)b{@0pUu3DtM7}TPnyo&f<5@7v}tsz?Mo&MZm7xu*}ibZ$_@` z9^X6t4ETa==|0s`H(SkHA1B^^(Rk z5=sxKFFV@cuUb&Vin+mf)Jv!u?wqD|q)ze^gupJXkWX}dqeE+S+^K6@c}VVLfc0%Z zZx*C+k)5ipn5O}vSssbTBI*M^_VP`vcYR4!ohQe#fkjK;I);b94|nVn%W-{+`n{wE z1M!XK&zp_T?|Pv0$--Ip0PwzruC_O$HI8FswPv2$L z!xhzYK0}pfzz5DxL%bl-11n3uI=_7X$F$eyDFHCuICuj7YUWM`AoRFy0NcKH+Sz~B zsKzMf3-o<_=DM9GrGMkD5VZ(Tc3q=$k?(zu+g6)W#XT>CCrNiRJZc4UZT)AM>@5<| zZ>S|EnYt%~1OOI()9&PkDiY(#B0taZWxf8bql-1>&_i;gM$oQcN~a5>AgW@QOf1|4 zi6DiyKoZ_K6)rB9kg=?w8)dyRbSRB2c)0zT@%Va5=W1~N|Cl^)qIVVtL%urXS-N^DSp zKxn!luxw0=CgXV{R4_3oBm-jPpgnzyid-O)Q1_Ob04mo_?T6%vL;d{hfrB-KqM_Xj z^uKF+oT85=haUPHv)8{Km9IzGodaKZ66CJC>lnSSOdqh^({eMPcpwN>Bb zOa7e)IR<`gp4SP?wq!7wU$4RDaM&~0Dd*^6jrJfrg#`+&LqHhA=F1?b7(2^~k}rH< z*gA+To5S(<;*k7$xari{8gCu7HKKZ>Roea>eql#O9WqdvtHd!@@AJ28)N=#;Hkk*N z^c`W~O8G>ky~%yGZh5V|5oh&YFh_+U&z5ebAVngtSykSBqDI^d=RxKfRtM+aK7?Jl2C@2`CWP6|T zj5(miY8v2E~n_575v8=%5 z&vZo4w12#3T1HNR*4*4)pmv)6cN?p**7b<86hg}0ksx;2Qhad%b-;bV$SsZqlh8Zt zFAXsE?=LY(XiDkqN~AN*=<^{csDJ zA6Eb(AC}Y)WXXCigtB`3y}#dhgP%bf%QZ#FayRfbKA`9a*LOiY8~}Jx`nd=Nn71fH zXZHS`jV4qPz4y&`g88M*3*6-!)Vir@6s-+a_gpz)1ah;o)n;9yORlIg3{jWl?GX&c z7g0G4*PgXkJ~kQdI~Bd$Qa-2<{xg;tV+g9Y?mUaB>NkNIN;o+ieALsLs5D2r)qK#! z1rfTS1i!Z0Vvnwa%1gA@AUcdDU>=Dk-^iw+p0vG8a!QeL4wdWai*hx{xmg+rTrMu0 zx?XGwyWc1m>~8*;6l-G!@~~~~I?XSQ?LE2Vj#}<3XIegzPem5o{Rw2JsU6nJ7k`_W z1ECD7OS|9~dY>c3MCujHSG_TKoIcJL-0YX-3D}B7_x8|rL4qhz2WXy6G`k?jnGA?u zb~!%zlrwyO&5hhThEWzVBRzWc?_8a3L1DX6n#4i* zNS0R-OZ9*D5Q}n78`Ksn&}Vee-F;*M#JXp^B8fX&5)A-TXM>7(C_z<@4>}k-VC8*P z_*Z5%8hz;r6PsD}k;xJ8;OV}usuM|N=dkIEJBJb85*MO59^47`lu^sqh2B6Ah0IAo zof(~3v3z-w+N6`GtBU8=qS!hW`GTcfA&;IHyhWcHomUgN39K zZS%4z(tVyYKOR3?3nLWKxq_#G*2>-fuVI@EUT*VQ zZlI@(zU}t?*W3D4M|PigfrQIPFXReXlLB6iJlvH2S?HWCA$+M*gve&R@%iD_+=-0# zfcr18)$hhlU%p;dC1v*nT-liWTu$JfBqH~WY~akNUHc|Tdz5V%%8P+bfZfCy9Pj(f zW_*Q`_glQuV0)P3m!YV>@M4U3hq^=z!$@}GX#MTym8z#J(~I71(gCc^g${#;+BWC{ z(WRY#*VdvmQ#cufpfR0z=q@bow|?EuKl~1?=OFmcIFOCr~ghxi*hqE><~z=o&7%OFZc~H4|Dx4i5C?f=V-^j z1;2?|KXqsP<+PMAU7ObBQoosqVK)P8eD~AU{ao^JFB5mNcR;Q|Z>CH7UGXO#8?W== zT@4vrG!=0O*qml#T!)?ZlWHph32`n_g)W~6q^#+mXu`XR7aq=qn25YKq3h*0`h=Xu zn;}=>G?S$5z%UsaexjOyD3$|0qq7rt6NbkpROAK&`XE{wV@9tW&1bZ4^$n4%zDRjr zKUMX!)d%r2_N!EBk1 zfh3pZP)^HSI-MhV{8-nX<-x*I`FWTNdpWP1D<}lY{Sr*ZPnEIgr)|j-xffRM;ZOpD#=U@JH>o;$- zXD;)JC+$kk=GmYWTJVy8`M2ly#-FGj*4_N8_2`%2wq;~mXts1h`XfIEXkUH}jiR&R zAZTnWEoeU&7o!6HJ-NR2TfvyX z9$AMi`Ze2ixddXF(Kw{f#G~cFS$8gWzxRFSn_bame=zv7;mR2ECQA3g&tX$dHvN%mmihG2!nFk1(xpqRVng3Wn{DBYyYinL{{ddEE26mW4MJK)iPOa=T2%&S zuVmy>&shhqK46vez*=R>YsO*_(#jnhv6avsODArjMtSOfgbo^P@-|5!}UGB zzI6|--IQIN0A_!+fg%RS;K!aaL~meM32tpVN38=L_T|lre7$#+YEzw2iZJm)*Rj9u zc69-c$73ku0qJ8!W9Eb-!~otTHpK89JCOGYUoWgYCu{8LLltbIOc;r5=`5O4Sfj+Kx=CPI}M<2afj88NV^9ZzL=L5{zP?T*kF%M467plx7Pg8b%OQ-1RSMMKI! zx{v9fVGkAt@>gqyqMp@fwMu_IK68v04F%UL8oa~@8XtRdm*|tDTZHbeH~4MZgUZF_ z_`vyY%|>Ch92fS+P5izD3D1x{28xl?EbuwYFTOhCHyd-{ks9Oyp5G>=?CW+uG1CXn zEj$hrf&9u*AId|Gr#0dOtI{%H5+J1#9M|@EpkMEVmVN{b4}InzHO*{pfvd@KUeB(d zA#C>&1&PSEvblP2@dA3(m=6bqJlUhnuUVay3aGn03x6o1oF2W#WEwz`t=8^GLyf){qdl2J&vk5ei!kYq(E(|nFPx;MRp4k#z+?(6*}JW zJWcIZP;3>Q7S&ICx`xI3a=Pk2>#&MVnA6aH_&IJERl#hu7F6F*QzQ>aAhla=8sH6%{*KEpyCI75Edcx%#>9oq&Jw-+V5bID!~Z>xUuD^V7ZM8oJFi!F z%={U4zUg6HPZU&A5ES2PzF$L(ZY^_qT`2&;)tRLGaUV&LNQFcG=)++Y_?MO9eU@%7 zT!1!>42cpz{zEpoc}1V5Or-ti*12d)oW8J;=1C=N__X0H&n>%FM#FV4SdBjpmxrhg z+1hOl$MgtI8CxWEbJL%L6y@xyB_mGDh2{RpUJ6g-cgfP)9Q?#x5I|e4vDLf&+tO6& zMvDXTOs>2R_cy$f`PpeIw02ZPD_g|FUo)QMN9Gy;fY8trro`o_CoAU90Y9NlY5Lgn zBeAjwN>pv?ZoHwVst6>M&T~7;(x!_uMVw7YFBwO?e&lC2e^a){lg@uKiY`pW@tFQN zu?xvQ^R99%Ke-6sC~vN$R+)50aVXUNHhcSh*%8(Pr~DhBzV~ZX4$Ai{m5iWV4#S2V z|B|^-aXsyWrQ62d@%r?)QD=p#vH(w4W8h{jAr0t(1l>68-bjrp*_mFcjDUnlSbcS- zP7Ad}KM)}U$&{W+0Og3-@b===28$}m!)YgWqDh#x{)u`u0}|*oe;EKxh2JaNFbkit z(hQ>sft~o~?4sd85FD)PLL=XIzNqmV2H+D|d#U%1{yj_|*+GeuK>Q5AV^uSh)WJ$D z$=-dnC8YpQ=}o^PuDXAX-@0)bccUobE%>t`eC=SMsYo4ortZJR@k5$W!oKH`VpDO8=vDS65%m;I0ZzrfG;(3cx#N0R-rJG#7#VF~ULFQNYS+Wsn6 z*%CB$ew~H4s)&dp&Nel1tlsMn{%6fPeSQ5&{oi@N5AB)++Tj&SeC6AHDe^Uiw^LXU zf!2G`;qJG(mmed(#&K<)0(inlKR1HzUh!E5CvxYI?kU98-Dqn_ix%2qiX57YN{u6G z(8CpTl-X>z7mLO<<(R8v;+pNG->!hC)0j!k25ph(WH+f$Nb(KE&SFXrU+1hDE+J{3 zh~r4;0~OB}w%gZ>YMK_AceG<^kmy&3U3hs^c<8-9^IZA0r<6x|HW%48z5_)yu~?`! z7}MgP(3Hyoo9*u|k5)l;SN(?I%y7lc9iU6$@)e6pgw`_BDEF__%mW}J_R58OnX7#6 zhjF`>*PcOm1ecIJyuhf+@}y?cvly+4byaJOq}_8{uL_z|>foD#9uzo1N4UDXgPvq# ze-nh5J@R*c5;7_mA(EkKn_-Ds2Qvu+uROo>J6Rr0`?#>}c(L=P<>R81NU7~5T5LQI zVU}n(7-(_*eUI7$RsA;LfT?LEz1iZ+@pXC*E<_;}_=RN^haIUJR&WoTmfMsp+#^?%U@t_Zf&)6_Y(qnB3 zj{Wxd<6(H#P)?&69~ToxYMfvCg7CwfkEWb=VAuZ6?&J3Ce;P}r!rrXn^kcvIy(}_h z7AOx(J~X~e)+NJL@aU6DWX0b~55qyTkw2bm_noEALZgLe`r@@cmkQ~uf zF=B%Vsji~=5~@kc4!wT6Gm@LHFLI9FyD3PDmYg?(MMk=C3|(`?w&wLyw90ykq5d#3aFrax; zJ)Qd{f_L#<#>JTwkDfo)xAB%Kql?&)_OoY0l{@$7#D2wW#>9gGe|>>Ta15(wXj@`rsn6h!&3jI57t-n3vAC*da zs*7x=qkNT3jdMW3P1y2QYXVI43Jjpz^Fxh4591cg2W{AK2_`^=$9+WQ!~a>|@d z?Ot98PC%bm-W;Gm9rJYNucXH{Wx{D~oi>-QJ!=zB`j)h5@?; z9)2+HS63auSoNcHcwwXOT&u-W}e?{bj(LqV!Uayu8LyD+iN{{}Bm1{H`ppqlQ z?w|Pt==6E%+Qq!Ez>XhoAj$}kh+?`24P9VuuK?BbRG&{95WakJ+n3cm41RqF#{%d; znUuG%=vb?YkQ=f!{Kc{1#wEYRDy=mSIS6-meG?Ds{9KTuDQoJ3zjGw!S&q406uZPr zd@#C6)2B)BEcoex+VzlnNTDNnid7VfdiSJGVdQUG<~j^TkzA)k^HTqxqN97 z`>PAHQ_tm4A?T~Imj*f45R;y^79H#J%_m7I587S15{KK*VL1QXWov17)*S?*VU&sgbDqQKpZv{rFACfM0I=Fk-iFb| zURKkukd{N&ecE-+vNeUNG(e9Y8`!v};Qhj{cty3~6A}awwiJ~Yt+tzu6YXdA8jlYt z|1%%ViKY@S6z;Y_*d=i$-4t}zUrTn6sdeuoOq^^$2<<#ts0pN{#-m`oxu0o%5fxcM zymsBMK{*##%mQv;_ut;IBwJMj@5IF==M^8yLu^dAh=#^;ji`4MGScL)d+<>>9m_V} z`|u^2;ws-HHd^~CE&8<7itLV;7^VjWb$?aG)-H}c9x6t7@MZ*mZSB#np7Q&d_5QOY z8Bs(Y${(F+HUqOdf@B8jyMER5XP#+`S)TXLIoO)$kS!bvEUPH;QR|H;oH6C~7yi&`iNF3mJJU*TD4%s0(q9jWi6N&CPk9yqx(YWKRt#L!8s z!4+P4F(dM#*3EtPZJ@(yP&)G~w|~27c$FaWko$Q>8~(J@7oX#B7Hr?o&q=h63c{Wd zE{rjZ{+1K#T-+6T_^UChs#+?8gRfT{O>z%CBun`O`?ABh^?ExwsFo_{UAxMiaL#jY zt^TS&U24w+2CPVvL!U8sh}4cq8F<|~fRWO2RL&3%TC#_;n_2KdkW&>Fz;`RCkjpEP zmC^<7=TA)jD*Jr1(4^k3i&2wh9ta|yeAPUBB#*|B>LCC4#S~I{4Feg;s)(ELQnwyQSZy*fA zfYl=au!knLrC;BNDauF*;!^-Fa7Oe&0oE2AAvzQwaDBwKMl|vjVd-;xi2cJ(|Jlc- z{N}`qsQY*`P-?M`*FLVJ*J@GkQUK=f*NR8q5$KW3Z&&N}t7fv<0hkwsA6bg=tzxSK z*Udf}xRKU@Qd50T)FZb}zCvZhU+uhVo>zO|6`eZAe&Q|Te%IW|59$^LMRQwL6>S0y zS~(NdDfbTe-cJ{mg6MzVclC(P-?eJjog%i65P69dhH4n=9-T0wNPjHAGbKnVA0WI>kz9u%8S-)7qmJVyX+A#udg6f972f{d=)m6A@ws6zW#e%2crD-qW|`&@TMbS?%oW>?4kNIzm`MPqBIVm@xwIl_jk_fqIlB&x0Zx^JBDS+Vm2@* zNg3}8u)!J!jwQ=TiUPQz06+oJgjNr|@oRb=rn2{1D+IMa3_Qc>38rnvRcB11*++Ww zbu<91B(=~tE3X`<3Q$TCoPu9hH4I^SKJ9UgDqGQ}_5M;`gf*7D$a~@jT`vLvN=Nwm z^%VKrH|OCdzSq-nSb~TVGnN5)Lu@y8>!5W(-7rKhd2nY`k0QReV`fS;{W8bluh@Ni z|DI(6#SVdeUBx5&AS2clUZIcOfNF~XZpa3@{bA^k-qTl*5wFlX(Z4nK-hSpPBPCY9S0we*Em($7=8R`on!p)`27TnDnerp?i};K;=4o3a^l{M#?c zK;!_ZI+9usIJW51kTrat%r=1j9^fbVa4S@;CI8*dt3N&QgDsKB^prsoN*b!!X`<+@ zRP6m3xJ1>W)|A0QCEjRCg& zaNCQF{c`SJB{n=U3F?|}>UtB`t=q!IUGb)CtH*HUPj_fvf!xuh(#Vw+7m!F(nTq<= zI;FaP`}P(#69T}o+II%JRoTUcNJlzcS83Xm#>!IR#zLHjN8N|WiY&tr2Br$}BHu2S zFR%yOaakS9;!FR)E-QrPL8POz&>DCMGK)6u__l(HiD~+4Ks=|TYPjWeV@NK&>&))M zEzla?a>@lji?L<`6tk;W{_HPR!#t{Xznpn{JPqk_h5F-Y;K~=deTZJbZ(`!9C?nIv zzq2lb-8+Im?CMX=JH0TNBVO4rn61-NbjIo^)!l$qq1s~)>|`sqe|IESogkwee1i^V z$;gW{kgW!gaZXiDANk)pVpVF>2JF9#e*rv7;lrW3L?&W}7M+D9ILHgXO&(K6ezKdR zmV&(&Q?hE^+Rn`+mH^E=ix8{=FC@+H0T*v>3+l zeK)`87%pr$XPmCs^oimy{6PL+eT-Vy9gxwcQ|39q;yCURKE&_Q`zNz*EZWxVf|%46 z<`qee6R@mf90wh%;*b%XzuG?j%>S{A;QrP3(E11ams{$}&rRnvcjH4=^B2S2x>h`7&=-boy1nws2#_uRlu{ zwO}qQ@G!9+lWqHe8B0Q{%JHb%o6Q!_<#^Tl=iiz(>ha`D+~6-TJ4MlNatC~X8JJ}P z{5ZcjZUI{hKdS1mVfFCN_=v&c6;CqbQ_?>3X+#qemsRa?_Rm(Jd#|1&3y|m%577Up zm~`@@Mtn9pjIRHBnm#41s|ZHa8mWK!&)!55DC#z9ZJHNKu;+;ktb@*Y>LMW%jA>IH zmPqTlfpAuve`-}T08guRKS~sRSP@KPUjdFf{yG9tyfW#Tquy|VYiYEH;dwy3ZV3Q# zCdatQr!wwQi3On+(d}w27H3$4Y*rqV5a*=0(Yvj*>6@>ydVH0~yb&(pm9li3Y%iJq zj#@w^&tUh*V$5IhxGu%eaw(Kw1P$Vz=pDD^BWp_IN%^|nC03x`o&&4Ptd`F7vsi04 zzpdpvp*d`5aaDexV|BFm#9S0LZMb6A$XtT2cO(YO}tL9{+@YIEGh5mpvrw0XluYVwTv5 zZ1)>mD_>p%!;b@o#>tswu0h7QVkylxe;M0klMS?t<0iAOk>jh^SHq<1+{QAxN#$q% zm9JpA@G=5_vF%X2Am8V&mAa!ZgIDcIGB|KCm)IwwW9LQ1VIRT3>=8}cLyu9ve{<;} zl;-!t>)nS#x#?GnY^wAeMwxBAA)^NZ1PGo4_*yt}4b$;!O@Q?%K+=z+rY#k{Q5de? zuV2w*z`RZ89U&lCz(-b?h5@LKa}ms6J?^jI3l_|19t291Ie28Gmmtk?b%kiV3B2Hg zrUr$fGLY(hWWJh$#s!$JP=I?~EHbKZ_Nbv~8X3HP2iFen*-=jZhfxkiaFf*;{aH4n zF|+BuLyT)7^FWwjlPPJg&Gs57;qaD^3?hEM%ubjnc0o5p;(|;e9c|3HW*oqMtLZAX z1XHENAU0(Pd=uo%WA<@P^r;?OHh-1Bz8?SG7uhY#%LIkdCgMXbZpx)~``N%cv5J#i zHnWQ594abk<;~}cUp-ncZVC4lbHNI_2xCnM1(3dvIwZ#sEJ&pOjN(Nr$`B2414x+G zqs;vCHu{~SHsJoaTe<)|v)ukDt}Wy#ON=17E|_uiYLhha_uWW}u&nzdgX@5CN^ZA3w_a8`<}S>>5ik9y}_3_>i2HYump z)<Ix|#>fUl}Ko$u|_Nzz6UDOKZc8}}#A&WXIUt9T^p1VVBZ zLOnV4>)E@a;DJZ!3M67Ri1gwDs;s|=aT z)Yq$2(`0z4`Q;}t)G|rD8p?jbmUYLb<-T3swE8_EBAOsxM+nlH7kW|(!$%E&hu*S3 zn$e%BXCVN0BdN_|JqZ*i59gp%T!&rEXX((>^&9k!nop!OC1e!U#>q%hDULYIJn=%e(Z{FYh}|sS3aC|tWX|@qUEb%!Qr&uuetJBVZc99 z`n#g$>P|fvLJ6=H@MS>?z}!$e=q!p2u~Po7;Jc}LC4n5Me2yWCyeDuW1C)E+Y3LC1 zhI~1#!X@rD#v2|DNh#^;swEMn19TGtY4{ovUt8UbcE`zL2toE8xi3}73umz=?rSG2 z?*7)_STB)sbakeu!DnV;^TO?|0+iOgqJd*v#fZ{*U6`#gbm-*MtOo@MfoU1WkGJg$ zy0*GJUIZzhg;Fc^J!{l=cP1UsV0L>$V|&^2=UOEr`QFN$5#ORgnkf(6yCJQw8d%_T zplS-LLMCiq(yyht4#sAH8l;z&%Y|6idu{acCyG(6GmY`jx}e9WOZj)f+;M?n7^1IR z@8UOa2jO3B4jb|X#-Gvv6JI@^nAb(tuv$B&8GOGOn;=KPs4sp#tEcy#No*$KD&N)J zYlv={>Y`VYB+t7jk7-(j{$YMQlIoH(LZt&4^sDW=@ppehba*4=wb#X1Ts#B%WpYdf zO0tZCRrk$`Gr{tmVEV_IzP{jA`!fEW7p&x4=NS7dh#ZU?eDd1MK3yUJK*Z>u`lE{e zT>?a4!Hg>t*9HRJ`Tfk|dbRu&De9k z^|xrddPF$>*zPGBpgK!m!{49)0pz0rf+DJ{^BbJ(`c%W}e)vcf*U$ODli8^I-yINL zZp;4fh3=n9rpM}ezy&Z8Xwys$FZfipk+}k)B7ozg<=W?iA|NKM+HVTu5;<^qqT$rn zGXAI^M6cXVh~DAg9uIYz!1ace{{!O^JGw+g#t=nvu0%6O+qF7%oY!ZjWS&zxAua)f z+rRe@Hsc0tqVLoHpF1b0%B#Nnmt$}DjY9|L?HGz3|1}7sR=`ZZ3qiAqW~w-^M4=S!=Czmm3ZU8RUS{*2hHSg7VBq6lLkAfeV~628=|Zh##@^a-hns27B_ zZSaK8MxLXY9F@6xo`4oBY>=IKY&?6 zY|s)AcMPN52BLJgf|0`Ab zvL{o)%i3#o6$0V7Pnm5-)kVGI@InTnLDJMi*B_0b|ij-#LNF`RdtP%QIF3N5y7 z6Q`8rY(4y1s7?JhIT(D~?zpI|xkGty_VqSqUx_U3neH}8=|vfqgg4#B{_4Q_t1j5z z_AAmXm-R6-g!H-gIHmvI%x-r#CYgU;QOj)A@1L#1n%gOMHo(oFBf88aVSE`qAfD&K z!myT)e{6>IPy;WWNE;DL-2IFxiQV#)WDzQ{ zF6X=j3g`9cM#?0lvMcJbI$Z%pwPgW1k%vUXK-W_Aa5K|>b^AO$Ne}5gcvwFFcqPk3 z%D9oLt^yW6e;8rW6L`=KK{Xc$?uGy_K+wNLcjhxL&2Bh+bG&VK^LM0&J}~Ms)@+PD zgwGl?j?jcOxQ*XX_YHuu9u7m7l!zj*SE_9+PSlfYTCCW&3sPpSiRsAos8!n3&?l~L zr5iAQ9L3!G2iojMuGlD3F#ITRKx04L+3|7Rb^PBM>%W>I*>>#)`T9oW&dM^4Eg$(# zx_ol{otX^pDQNr|MT=<|zSTvAw+LMM$D74fHyH!ei5(?($+O$S0Z6kIf{>kwgHc@K zFJa&{DM!_O;Pe}hh|ye|n|;XD`k)g{mi~%s?)U`Bl2#`pxAl{Bc@B~L^ zZ=*5hyDgt_o52fag`4LIU1o;!0jmY>V@`Vin-IiP`MX4x;0IuPZujzw)p&^UEsT>U z_qkyq--mL*1|RuPodo^{Jo8$+TXm&z%lm!`h*BNqpX4FwfAlc{g0T|lVA7P~uAy&J z`EQ?TUQ;Q-mtxt}Y?jcvoaUeXb!)wFOp@5s6=;ewnr&tbStSE9$R_et0CBuJFNAya z+E#j7a$jF^d%CY0;1|3@x8>u|Y@d$OX$m&f1(CpqBB%>0oKJ9Y;7P5-;R-{51vu`i zXB3{C(-u2myJV(xvTb)0P0Ow*)P|d~SjN+h$aE6-$Y)o-KM#tX{N)^rz7&H*;uHUx zV4DmiC&7&ienVpA??|2 zv27w~Za6qWpaL@3Bw3@j2Z;GgLCPoMB@v|jPNbp53wI=Bwc``k=!P5HNe~fdPa97# zXG!?ZRbWQ$m691$W?Qkt9RbqBQ5@zI`YktqA7sJ));Hq|$Q<6`l|kf_k2IWf##skK z?>o3!kenS=K3(nWwOXu`1__|g-`DCf(z8fmrf8=IU)_?0s9d{1b1LjD0&f&!DQwMdx=n*Q?OC-jtBrC zxFN)bGHw}+<)Bi1eaH5LOjM_t|WO!ccdF9}yR)OmJ{URUvoY2|SQpY#+H6{1lle0#Uk2x3J>NDnl}23pT-$8O zB~ID8(HK7I!R36Q$ zJ=5`ygMq(|qOO8wl_0c0An$}ZsoZn@?{IxTQT`=rB^WB&?wjt_`2YrQJ_>v?`4X@T zY+B_H8j1jFWZQj0t)Q)~!SFj}YCcKGD)0if)%E^GKRTOtf;8Dku-LB=1s$;G3qOC3 z%w8_nEi`J|Q)xYH?aQ6?f+A%4!%6#B7c=;~w}gdt%Qh!Xpf8C3oRfD&zudxWdpyTg zo^w|@BMBSzrz4lF+3?(ZKx6SD>qt9eR4@YzW|v5T8m5%+v&6)&r=BD7^|S67A}Oub(=SySfW625iF06)KY6 z$)P&RqA-GNW!qIgypMW59~b-Vd)e`(2L0kh+CJZwaE=-Op5r0GRP~|if&J=rv+;`K z4uwEi?yXwrE?G|9DGdMkJuOH_PYxE0zcfybto))SnRHrhVp8CFJs0N1{ID zXC5o^Z$Ms)iHjyCuQ<>@6{dok`aFJd$>`*`K%O*Q9%lq1Au|X@)C*bm7f5Bng>E`bo0+u&9T5asYnKO;O}6 zY6-tR4Sv&CmxIHb&u;m|h1us53YLPR(uHyFdLtrQ)>ogKgMvk}$3O!SqKQ-uv6yEL zFNzLBF)U1A{ye6I*^nTF$@9qm^IQjg&igFeZ(gJs#o>i7bL|uWW!v`v8I+{*3D#(H z&_T!fP(}FT@DMdRpbe$cpEu;2=-)_AUU*@89lacY78sF*3VF&68?>1GmBQFr!>t1rF`zkOTyqHuFqV`( z*;k6r#_drdxyP$VQ62a@=xP`z8F-q?V)fA$EB_x=XR&50vo-4rqJdizhY1t+9`3G_ zt3TA1|Lm`^p4F);B*%z&BQt>+j3Vu8H~Z_U9%<-nx$i3{juP__H!1_u^OuuB-OT>+-?E>198U++BCn7uuAu2;+b!+2rHBhugB!TNb(m2SpBb!5jiKq0kT8iy{uqtKshi0I@Jla zxF&cmE|{QAUG-J>AZkj~9UD=)ou$g#EdsuG_;4qM!{P*kkAcq5O`o#3qU3az;Gj2B z<+*J+XEYy}(9y9B5R#mTUm2J6y>OV>I4w$g&!8gwNB^Oackp@QZ;WF(FVWb^u5?b= z6a=47tn-E;%hfOq*Ga#zS;HTpoh*s73ddvFuSaqUc)Uz(BZ_i0_V*21Y zXWVXXXXco#Ke={V#tHB~w)!d?dre_w2Fzw7_QfqGVlUi~L-eRVS4-`JHAFDIR3y3= zB(=53m0%vFDwzbILi=iQ5*hT|09(6}>UYqyS7@$S;(A&=#kLEtK>~w&;bXX@!jqxJCR*)hN?Aw3uS^4#;YVWPJ zS}v)_?y?pVwcHd(IlXtrCd;8GV=C|DpQzjkkd-Ltl(v1a<&v|RIO6?-^Z~*|av9)l zO&3M09(j3Ku4?*0%>TA_Gc7VBr9_z#Gw;q{%_p(?JZs{&kO&TTaERtNbkNzZCF%Gp zcHyfkL{~I0T(M;i>X1-;tCHN9qczD(q^%acpvIKaINWDHV-~eRdZO@)#?m{PlE>MB zm+vc?gMp$=e^7@9Cio3^*kR0aQB}Xe`Xms5IaK6&=q27xJAaB6gV9!h&IDIr{$&oC z7$i`jtOm^3vOr-FILMz-v^|_LX#!qi)!bzYW2ek$l5a2C-ghgT=yALBRJF^hI3rtfxw3r&j?W`s^#^ zrO8hbJ24dMXm8O?ob;fwUhWQ3i*^2<%w5>#>RBQT58^SQ1Ty^^n#HCg$;UqUr&2#Z zWB}oURFg5gc1gIt`WMvXoSQ@%n6$~FaxO#z>tOFF{1_{^{W?@Alsuzf5z|}M0UPQq z1RC`cjyP5WDe>yIlLKoqN(%UlU#7p7B)&Jo@U%vOWzcEm8d}|&Vk=R z8v-TTR0?W-p_%>1wT6c?qu->yJ{9B*F7y$)?ff$ijK>z158gfdqcWk@xh$%Br$AAK z+JD7m?&w!%)$P-6PSIQWp!q-vFx9E^@UV*XI@%$kT*1+DK;D{tUm(_=LKuvtvQFO( znuLDpaU-Rfh{H5hqO9Nh3(QadMmdj7rtAAep>i#fTUu|z);;UhDAN;PaE!#?*`zPZ z#v`!EFw43M`n`2mag|8rCAD?7v^H=ZY{EPVsgh{dAd)1K*}s*6t;2r)hCcf~%J<>G zl6i$p1NhDHT!`gzG%2qI#C~7@XOa*ANCyC&Q_{J^CrEi>sn*UU-XP&0Qqz=x9w+b_ ziF(5jv7A#*1g$fW$TG~s-s`|TcXWoG3s>g7Ilb8D9Xp~DDqi?` zd?nH)+N705tbGo|k&i5&=trtADCQA>u)rTJ`}Pxl#MGjEkC^N`-C=Y~elP{Eb1^;v zBo_WI&A_|KJ~moqp7py?=dSVDtBhE3?ehu*!EZg2~ziDZMl>GKjVjZssgc zH4aEi#UzV29^`Gz_t%q*u|^HYR=s*w^e9-FG(;Nv`y(Q~D=Qp*x+9UCCWJ!n z3E8@W?t^vrUKNUNE~^q0=j}x*RKo_bsVHM#>JMV2Uxfl`^&0e{eZ(jcVdd>ui&cw>A?PaW+BVM>~MQwtem7I>Ss-Md- zWMF;H=w(DC^ZGZFurGm0G}fFyrz&!u4ZDOU_}W=cW+ZPHsLvpa^}osKM{F3gIQxwH zuJWa!XVTxq=gB^ktJ~z)GW#>2R`EW9f>~9kkxnniSKhYYh`zB>WU8O>pdPxfs`$j!(Ir-QQd{-Y5F9ymo`jrNwDk zUZEF_Y!pGAW2u^w3wmJ4fx_8(vGXzRnKFw3b8afV4%&^uk-{qya*;ti>F)WG0LjE7 zF7Kv?);W?*qiKS;1~wK!|EQ8QWy|969dJp|v`m!JKm%HchhiC#frVxLeh)Irdul+- z&GmBmZs*~@^(wJk7iq;UH1yALXNdu<@8Q9X1j`X4iPT#c0CLU}jIvgRv7z^gf_!kD zahM*>#*6O_2<?R zQX!^9sSk{j#Wxo@5Tzyr*Rt9uQn?KRIQETud8U(7(MFl}Nl_y)KIFiCduAH`M~Uhm zRz0UvJYJ9kvN&lr{WVal9yrM2D^!L&ZLNI;@$psGp6s5(F}ds?Q$@iU%z)bmU{db{ zFp}vRPeqj8^6+h=Imk8WOs$h){^nwlQy!TSptrqf)ba0~u!S7s_w;W*CalY|n8`Sbhi!4(?R?PG2t#4W`LLwv3^1Jh;-oPjL6XeO zw@__?8|z68`KUcp+HoWudahzAPDCGgS{n5_v?LzNrbUWL-=!_!hNQIG1qM?kkV*19 z=I-Pxj5Y8o(fQ`ja%nzHI>Rc+359+AZA=qwAoRjx29pis$wZ*cOtD=07O~fIAL#^% zyl>dVh6?`z?VmV=1p%0Hj*q5IIxk~r$dppzv_&_g>>wJGZ=CyDE3QprT@h|$JKugK z!Swl<-|e!n9rr$Z6eDKqC_v2!k?M+vM@02}tjIdI8d3p8*H#NP!`=)`S zVpUGhT->2dPe@NXBdeaZi%pA$UJi2A!hWuPmt0E#g4|m+P4ak)X$@oQ{lAl$0z&RJSP#Uj?KTG&pn69lbIlI{+^|l*WcS3q2GZWZ>`=4;!z!;@I1WP= z8~dHj_j|78LycH8+U!z{1LtqSuE7f$kosp}wFN|GG+SZ(RHb$fCEOo5FW@C+1Xp|V z?tX#u=lQzVd}a*GHm^sY*C}v}xzIbh(|$8zxX^p4Lbj+EDGMU-^kW;>`-7q>g$zg1=Pp0BZRFG)%5DF3#jhFataA@V8;- zA#?V~$yeF6nY@K9P5-QW52tvCSPR(7D!D$UE}Jinet*=_WhIZZFZo(uXzI07mp%~G zLVD8KBBEYFYRh40{KTG=GMjd_JZs?uTxS>p;o+wjE&3n_6q8r}!yM*Z=4OQ^ufp3%2Khc(@lm!+mE<3#?gZ2IT`@zN)gjE8XbY zP)g5+7UI*a$YQNH7Sep3cuAx>RB$AzN@p^DCr*u{;AKYYAj3(h7 z-hCGKmWaA*7cZc`d{wcqkQ|qpCup}jD$(#l@5Tc6fh3mCqp=qoMIqKT=PIZpy&Hf9 zsTy^f-nriKMus$pyc+C(wTInd$mqT&P|CxZ;=W@@#a%K4fmMk9 zTjh*^4g3BqaT6 z=s4lU;sMj+kA;ZeSrA$kjE*O+wPT50rHY)5^=k88s(=t8DL5gRezdob;ko!4N5rC$ zr`X+2{Pj!yhIeE)Qu%hz^#Ufdp4dJ!tKz5pV~$K3-?kzs{|8!rh=~XIwWIuun%db- z|5JCre8vjbzfgFiiT#_jnbyMi9KonDmo(Txh4M8k%`DY7eEi6t9sAOx;`B$_@jxqE zs?5yGP=gO;?=49i{ObS02=PaJ)#lOf&WGEz69O@{c`8j=CTZ%juNqDn0Yc|ic5Gxb z%j`G_*UCj@p@$_^EYC~e?NkHQeHb@S z9)Na2%t43+W&rHNJRx5i?!@nf9882fd$u?r?Q;Z0`fK%b58ZaX;zF7=pd%)D$`9~j z4f?kxb|p+OUf=I`bG*})wu@sj-&4;A7tIr-usf`fEtAx`)iX(39iUxnCSoq$s--vA z7q53FKmq#J91?qX_>Lso_h)Z$+qtB%6u&3z+l3NGL`!`_8V^mo#t-HJQCqGRjp5K8 zKXu=zYkh^0SoE1yYBN!tThibypJzVp2kg@!gx6O%r9+KNR@xk3h>Nl;_l{duR!aA% z!L#jBi99*(g;N{Ka7DUqUYfyPlgg0zLqE5S>qMHC3rSL@bmnM8(#q~aMH#~>`>kqo zG-O?@u7H95ucm4(LDTv!^7j6wdu!rsfeYXgi>XrIfBV%}PGt@5XM7F^!r0`!G2MH{ z%cs?j>Dx;j`u9OoQ&_O8^sVrlxtcIw4d@X4(YjwA3p_!&0qWZpnkl!_kCwjA|)YGOf(N_a9Z{Fqa zXZ3L0S4#g(QMiH>#%XC+hD4A7$h-agvYL0hX{54hpfG-4L_;!@%}_^G`$uyrFG2ZD zAF2sb(Zyx&5vyd|gJdNb`@gOKY9Wuh7rIgWAZ}xdk{U-J#Tnc?18W=rj<390CVp4R z7a^9F_C23$WdEh++^NQ8!C0co!CyZYBU+g)aRH)ka&4g^UeEJ3d@zT}M4N`UewlJX zdNM~@5sP+)R*vFI{5!#0Q}gW}yEkt!9ABX9V8peeSnUhp?$A}bOWm(oPGpG!dwh#B zj&~=F(+hO|G8)jY^~v>6V06@B`5QdZK`apLr(r-)+;n(YPHVe$vBC7GvgrIT(@Aq4 z7Sywcr8#?Re?h*KNA?#=)b0$MB%s}EaQkt}3LMW8?#+MKxUVFXrV|$dhZwyaei$db z4h-~4j))e>5;2VKIT0K`1x|f>ax%;xpbfMHJmd5pkD)eTivbfCxaLKU0*rDPfJs7V zwVlE-<73^Da_QPT_JOol3o4txV{kgU#U*XLjYG(|uY6?J2?9NO7f`)o1(ni)qs~x( z1Eq!B27U#lEy^HVPyyKMTFQy}AJ3d@FuS{e+3Ik0#kCk&L}#_x7+KQGa{$B}g7N z6&U&#Or|)08B*+lEuFg2Jb-=7NR55(<_oYlH5DF!fX@wv!&k2ogH7Hp@bj5DO0JeB)6dnMNWwBaSZw~=5|a&%ar^hS(=%M+(#mL61xYPG zkPJ=H{il&IVl|)*Pkd@0WO=9GLxg|X{d2Fx%qZ=U&wNBdLcS;cOn$aI7TG|=*q2ck zBCJtgE?}m+e-pYO+pnjpR6X%GCmP0-f-%Ml))nwj^nab8G}?Y+pvo4bK&q9KFnPzu z{Rgu*=hM8N%zzjV@1LY(A~8`>TYJaywzU2{)+zl7H6>W8BMfgaH?}GGIFzD9trQiQ zs%&3MQ!$I6X<9z+Ev(pA?A~0$F)Lz74uD{vV)|r1?r*tpMt>&(E7ejvRnRpCH&yH@ zL%Q5}%icw|^o4$EtIJ+ZA!AogEA5_-<0-+ceHE0wkN3Qi1id5U3$}sJikS+)UgjO1 z|BrlPD~8+55pSaxQh?njya@)bu5VsyA)aaJdU{{_smHBEdl-L(j&9-khZm(t7xNQI zgm|3$9=~ToEGHNain!XG@b}W{99I%7QXXUvEpCSu3M3D!XZ<0v5~;*-Oi=^V{UP zx#c0bixZM-qj>|r0&OjQPbxjbQacbX6EfWrPf*sx^S=or%fUCX+GV2uEeESmfagQi zFc~0z5|7v}x|P_YWDclX0xow^q%uVwB#3tZmnKT!dl4#D zBv{6Jq%VDdWlny2hLVo8!;hO^-LZCDNykC$$FquP{^k5G4f+wx1B2 zHmQio$r176Z<}~@sYdF@J7QkM0VZkAe0hWoVC>n=?^JyhAf<5hwYuiWCGD*yO);^J3D@yzVO;tXM*O|F@yay;^Ci>ZlsRUo}Spib)8aqT=mZ>wZ|T zY)5+EaL~&@nD8=?P=7j1V^U5myt(tZCelgmOWU=EVx=B2rJ}VYBMx9+b8zzPQK2+y zGroMkdLx(oc|{_Az?A^m335f)kdO%4myQ&+zrAI#y}hl?!#07^8I&pZvA5`*SkH4H z*Eg(%>9rNp_gCY@F0nxZDgYMd{zVM+j~4Obg~0UO3d!m_Xx+0(Y`F;gQSmE)D&pbq z(sXATll`q;qAkf5Cjvp)E7QmiOhT%UDJ}$&RTqTb(`7_0o%0077;c`{%n8CRK>lTm z6V173(uhbX^CdtdI}>l(H2G5O@e!r}zOkZE z>3|B+VxFNJ03iqCltiu-%b1*a+9-up4o;%x+ieElm`ekP8r27Zk;TXTYPZSQ;6jjq zz+mVjEtCtR<6K5i;E;PmgwdTU?i+2<(O$=kr1QukRxtmhT#f-3iWPZ5ng&l%GG|0G#X{VKD79;GrtkkQ#t}MySh{db;4hEoMpU?v;)6=p@l}Et zxz2^A{rh^d#b7RM1E7Zd7O|jcR4`dZ*H$twxIlcoL`&%JJefAFP}>!ae|sg21Cnx( zq^%f5%X2p%_;`RaEq>}q!@}S5j1Tiatu^lH{=-b;j^=$`?4RgY)!$P!`EZ`sSqHf= zinYN6d!hKnKF>qWe-@Xjax{(vHAF*b$Jv%|?+;fAbK-xZszC+kx318OykIu6ocZBD zQdbTI0@wK&w{X9!6&2qtJxN-`V!!J)OPiG4=Bcy7wP94&!r~XmzO-= zYj&eZ^LOV%bM=!Leagt8H#7CQkg50vB0lRv|OPU}z{i{d1qp zChDy9u^bZ9aV#D&@rF&>t(_|&94{E%b0GpXDNkL0fcqO1JRJrr=%3m}aBXX%K!KmR zj4df1`l+BAY@YE&IlzFNQJy@ObVjpdm>E9r{Ak;gKKj^rfvo2{NTUUXoG%|(C8y9b z(e5Oh7)v(Z?m)v+!q`vUXE*kxc{^_KHWPF}`xa{1Xk^G*tDm;(LKEksMSaDT1=;=r zbCoC#2J`rXQ@`H8TWpw}O#=w>D^k74E&{_4^IJU5K?5=$O#Kj)n(;S>Jyeq?<2mz_ zdd8jML!)gS&1IT~GC>uBH%)+Lhq*fqH9tXO1e)1eM?9XCz7b=vEP?4;i=Gzj*V82| zRe?5necJ9Ek&XH9?htEmnyM2k8ZtXEk5u@M{?>AIvc^_&P8`Wu^Eg)0$ zYt;|>h#-l8qVzM?p26Pe>^%~F{dXUo;Ezld?Z2B5*N3tJ0qYv8O{+Yi1>U$-qyEs@HB}?t*}T#ln=DnMFK1eV-4g#@IRT5x4&fSjG>v1 zD#4oP-7Kz*--U4X-xoY70~?P5AU;((@pw6&hYSHecVDh>tMU+S7Ngj&^^;Pe0%SzB z`Cn@lRtU)*H)=Fy7p+T1hKL z!LlgQfx-f{pH5j;*k&$q=zLY+d)o!*@}#6M@1Ph9nxS!@J4PL?O7x4Tj_t_V{cg5B zk=yBtWCQr#)cDLO^PN`00Vaj$UPf{Fsc)D_>Ddb)5|u0UAb^%UUCdV}AvbU1W4?M4 z9tEwpIWi6=kjE}6gT3p~T1VSo!$(HZB#iRV@8SrHFox-LOK5%+z|@;ES0Iwb%Bb5QN` zz{pD%%SzKS62K7FYGh+G=1&G3Oh-mY{*=qqBWP5dAjv$~7w_0_$p{rZwp`c!TeV-G zP|-6`3YaXYkWPV4A1Tg1W}!KMCkn;H;8G7HTUW zlkR%5d=KVg2BMs6l&nt`_=xfiwU=e;9mt>N8@c%m#v>Ptk{$d#yP@)9d9DB#5O({V z>GR=~=GWK-jD^((;6Ei}mG{r@x;mJUURGZ6X^@$@PNa9FqzbI-d^#GI_tO{COcu-Y zG=P{l3^IM1-34W6DpKNh3-XsCfp-5_?l%ba6Z)gOwPvAgHsm** z(Y64UBUk<~&PuB1#82`WYG#qD7-q*(pJO`TPJPgq`?Y9#753cJkcN8tVgi|Hb5kFY zcb2g}_0e^;Ukbq_d{ukUFYCd*o&8Pn;2ohkH9IF&TE8sR2jx$XdLh4gsJl+I!`^k} z5;7A-K|X=SCoFDI3Vx4Z$1a;}N%Ncy6>1~(LVrHe_*{|sO^ZT2#!KtL`reig1@W>uPDT*xv{{C z_&9fA^zx-|$z%&oWS1nl^f(N%8&gvI$Wqk!b3)*=hYLk}fIq~Cn$A|hGa?D;GQ9#B5_}AR3 zHC9YTOI;6k4?`iH2)4YtI?vc*(yIC}A*W`=3NPegaokLTz#QJ?OFTw=IW?{-)pEL7 z=-F@<8DD=Sv5H4vM?P231mG+}tK^wHTXDxRfzv9oF7eH*eAv4vxa^_azU7pP=<^6y z0GHXwFV@R@I0nH|bM%pB+1koedJOE3!Hl3fbv0sejQ0_zJ1QCIm#PGKT_V8bFnEAt znj}i_f=_xq-q)jN>N9Gvf+fPE1AMfGMY7)%x@XKjj~I%c7zvReVV`9<1N5KtQzQ(= zH25-I5aX%CHSbS^BDZ)e@j3*Yeg(0_@!vT-$lMaCD7;ypLKRc7`aoy6*wF8npKO6h zLV8?yw*$)(zUQ?liQG}yiRm?%7~y6pPb+*-w0{y4T=xe2)Vf@7xsf3J8jpHhVj;;p z<}!X>T1zN^aj%({5fU`&sg6(6pX)y`#NC)l9R!pBYt(bB%F229u^ROG`hHBF+5m@YVC2{c{EsN1}mx;B*!PTtuEZ%?FNmuMsjCi}Y2k11c zTm9Q-##Kw-PwcAN&HhAC`^heZfL}l`XoY#>B*f5Cfwu0LGZ#->^kO8KvKG>RW6hVZ zr50->2_sGAr#4n{9GAarBMLGbw$gF4W`Nkq4RHIk|Jgb3RpmD`!ztsA5=e0yamtwe zJf41OD`x!dIR~Gkx{B|E-(A>3_kKxWI8Nqo)1En^4rZSmgjK(AdLBdG{5(-g0{%C2 z>W+QKpn8iz!jupQJWiuWs1&>;$46;>IJP6Xm4d1?{rw?#Z&XK2_UnGWBv1(}Xf zH6g=3om!MX=Yxh=3_xovJ|NM(sliYL_M&s)%jnL1ZRo&!In(~qq<8h*Ol4G_Tta}t0-$++S*Pk8W3pCa zGuWw;}A4qhbtQ$`f;!NFuHCQGb ztL^rrIP%i1ROg(gILtsPfs$*6*_p^Vsaf>!13&o%PVx;^u9foEuhpt)t9hI(D0kq^ z_XkswzH!a&t%h9#82(bl2RBW#IX&wFLur-I&xR0f#8i=q`VnQFt^iD7wcCypoeeL;AM%um;;*R8$jd0yqcJ=9 zeyS)EgW}qBaMfwC+FP+68-KT@8Vb)at{b~EtHQRn=SSunXQ^kp<7GByyeKp>BUo&v zrS$gAD|##Yg7R-7GQAs~7~;Qq=Zf%_etY;Zc+7nBhV+)_mvQ0Vrz4n_OOx)y&<8UE z%d6e+&7b1Kd`hm9BUbQbu#jzv*g*lsZ(g*B3T1d3dO8@S^#J`k&pQZQV^*rYQXD2h zS9+^@m3c^-PQdw*voaO`%n1V)-+}-WI|&{xxx2WQgjO#B5<)1qxI2X9&MHFi`!7Cy zTAXgY+87w8$hDVa2m`g8?7%+Ib`A4{>=(69mvrBNRABB+{L1Hee$iC?Yx>>e;c(}8%rjd_l&bO?2u>lVd^aIi_v&sp;M!zD;Y7Kls1%R!7zbA zE2+ZNhB|L5(IxT#-Jj(I+Ky;hV#*X1qwg3yx|l=&n(SWH6(j8gy=Z?uX8%_m6dE%e z@9|W)S(w_3pcvw}h4(EpU^^CwQhFRd$r@(%zqb4uHP5&}EjdeR;afx_fHkTDqq_H= zT|qlo_7CYe+HJ%kiNS^wC|$bHk4q_C)Jh4C;sy`nOT8Cl;hz&)FbNryIK3wQ(DN<+ zQs+mf{!~XRa1=|pKdc~=}drT(Z$p=T{tN`PnF6i%DhYu5qY{2?<(sl9l6D5P8 zA51nK8^fM{gUh1vOOU?cFJK~uk-xn{FHq`IPfihJ>&14I-2KV+S1of&D5#hE_kIEU zw0IhCG+hS)UiRV;K++S`y4wM$wA{8BI7_D9^a{Lf4^}yWjPR$Kig153W56Eak9sby z2^H+a9-BXwh7V%zm82(=fko`2Eg`qvWm$_v2>ZlbP$XIxXOdK27|aRrAXtq<@6s8! zK9v55h~T82s-cg3C6)GsNKw$(d+jBkl`9|xN&0zNQzXIhd?W^=KNzJKT3hfTXIu*m*f6Q1G&WlRv=fQP#$pbqe( zo=y!zN!KKk@mlkfcG1`uAdDkPc-NMDt<)*O(&KQ|3F6IX(+_?=2q`=(*WXylnp3p8oF{|lM z22aVbs?uor+~ixqHXEib+w_3fw~O&;WV7%1$V5E|@IfHfThtM6Ha7nj0u~QxcrXx` z2n!N8)(S6ml8ERJ=x!gv;g7mUIxinQh<4wjZb6ZS&Cu~=W!@-gaYN6;v_ znu@dDYA>w7c7RK&-~eXDQb`59TJ|h!A4PrTqZ-w${&Fp@b(isd1aYn7^mvc|quoJa zXG3pFzX?2~c(p-=j?#xTRHXnkeU(;``TF9^-1bh;(}02U08PPfZA?0xO7xkz0mO+>g(kXnj)g=~NY2m#tT%tUew$Q2iIK z7Lu5^%PvB`WF&2D1rp#Z(6N+PD0hUd}B{?-R0jpd4Ew6}oYe$zQQzMmN& zoo=#Tzk}<)eI>Z$p`OkLZ-9xYH}cAS|27+zmCT1Yb(KUBk!R7@(<@sWxhgf78c!1c zO&C&KTNU#Q3MI!~;S@+4`Od>LLhNtudTl~hnW@KMB5#&s7{4b%0TloCW`Um`>h9;w zip**5zZhwv+E-NZCO1qI`>bu@yG|=I0vNoFpTc71UYcq>K^Xi_KE`mp0k4bFHzkLc z_}y9L$0qu&m*wgEy>CA8REUzSVFJP?U-r^w-}>stI0j#pF_!7iKVxFS?l;Eg<^U|G zV9kM4l@Q2~AsB;mCccC5Qgkbn9zWZz)Y^v(CwoYvb8XI|5*en{rtq*dRwH$*gFhMI zaZ#fjQ&+z>Utso(WCmfZB`T0ipkFpL#0_`ypAQ!FeU%9hf!Yek#me6rV`csxt(W?! zVYT7B$gl3t<e-s`i8hAkKWG1k&!Oq-+NA#;$B5Z+>&;|{`EZAe|p1YFna=&x-pFB_x)Rs zR9Vloiucq_Nd&-!FUx9Nh%ZgTt#SK<6gnBJ$#feoc=94hbkh4J^S-3DmwW(|aXThB z2=$FZ&VZ3W6zm>AMBSz_b`pQemSdk}`o`vWx+?JPDxuanNT`yQjsmscb~jjHOiq_s zNM_Eh$E3I?OS8m;^mM;i`ui!eW-sXb`dE1-3T|b3WjvQ>hW|jhu$+90t6dRp^il1D zWr2Ew(uz%=kCf7xOEgNqQ@qKe;eBW{cbL`>#q+a7YYMgtshNT7hJgt>%DeeSCXvV2jT_2yQKHt>yF-tPW0r{AI@FXUDf9ou&^)zK_W9EMtmcg znIa$1u@rr|v;^Wm^WP>eF<75A{QZ6_U0mP@z*j2e;NBYDXh4qtT>{UaTeEmwsQIb) z1gLq<7#KrvzQ$e7VpkQ99fTk$ujj896(Ud4Bu3HoP@2U9%)|sH8ll=+}0l_J_x+cwrRCxL`|c8fHi=H_+Fi7(nu2R!k(nCU6ZNJ z|Ex!#^6Bjp=Q+ywCAd(;jn9F6{^nC?j|Xy#`siXoe0 zP6$EAB^wJaV)6dwS)@YY6qtHt0Y)y9wC^~Lzolta9 ziGMpd8#KYx+mC<^JLYBBzHS_{2xLH+fo9Q-lhl`-`in#sPW7gd=OqW%p4`M3hXc#t z>7ckWal*M1=dP`T)*cj!>o@0{Y^l?haS;7;BHcY1Bp&uQ>Im}M#z;kub$B2# zCoGd#be{uyxlC#a;=jGTF+4&fDL+s+0s&~uTag#00pZTKcLB3ZBw{>;ETCWY-?OV| z3OS`F{;X|nWRjQ?pK+dj=6$teO-n*gt0ddcDicPZXgmeh_r`~}Tt0nuMddv96#B+z zcp}O-@PiXnW8VFph|@jl*L@@A;TVN#0uM@X9Ob`F0c2BAn}(S>x%)LLoipFuIkPGa z_vA68C;`*~fv-J!0HaF3qZj?nyPCTTsztciiP@Hwy<^u^4mI2{G;hhUU_eM7RI&1mg zYL6*>jMbNOJ`KzC78Gj(hV!^d+xk1uyuW}aJIL+4d?~cMD$at}$HO#zg4wZ=u%or$ z!Hh8Y+3VvFmLI!U4QPiq3dy^+d#eq;LfQZ?K+wNzr`GuTqr{7R*fR4Y+`5rk++pDu z`Ye#d*XdNURTP4_7?-w>kS)k7NhE%O_m0q6N?=n*DcwaT7x&)Y@8Zp*Fs(6c?Fhac zivc?uS-HApB>(oOWXhkdT!Ci#r8VgZ=`y?CX-H$c#{|8B*qe&N=*A_O$+W!Rsrz1$ zY031=X_AnBJG-u6{3+{WglL!zQKv^yN%Xft)3*^zlAi~bX#IgUb<|4{)w(h$BbvUB zl=>0BDIAwWI78sIVd(L(Z-Zla#AeUmZB>5@9(eX=xO8Strm_&gI2(hnh+7uD=5B0w zmKIFj3wqV7woo#exlgJa|(H}X$rpapIfRpHRUz` zrs;@&W)7sQrCJN!*}KZCCCj1Z8&D5yk`R22p1573iA$h0pZ0$f&+A*MY7&Z;4k-B)sr^w}>3KD-q&T7jRR-|MS{&(hgjdOWW@Uut>H3l!7y{Y9 z--Bas`}Kc)JmWgYrk}7#xZbnB)Gs(9KR@{Uph&r`uy|2Br}_FnH4INGd7pfj zGkU>o|1w`(#0bl-mOwc51PPZ5_~hYBMpP9#E_z1kQt*>7b#4Knyf1PUw4xcFqFQ?V zW-2iP+}Lm;$n9o-{p>H_w4Jwoct?W#YvQ%8uH<=mR4Z-E+mr~Y<&}AM8LPPjt9is9 z%r(%HV{oB~rdG%Lw2G^z7nwiH$%dDJ(+8buJ4@bTA zDAY76&8%ni2W4E$a(}S&^QLoj)K1J&KjVh?Uh*3HZi_Q0UxI@Z+dObz=l2tz>vo&G z|Cx@({;lQOzqDLwvZ~-OPo+;HW`1r(@EdU!MYIIl_t3SC_m3jfPq?uFN`{qFk~-?@ z9}w^%Cjx6(eqKYIjo>Hlqa)YRt8r*4pv61YhHV*#)q$`klDu!PC;-9v^)~D#UM&Rq zVnf9kKTV;QDAUMur%D*@0K3|Oxy{N4#uGx}rP$DKNjuT}1%EL)AgQwI;(-`q*}z(x z3WyxfZ${~Kr9v-}L|rABE1zs_70(8JWMAdIl?T*=hbk$G_v~Kpm_E#&AbF z+eXxvPpKi|rK;FuG!Ljah!Ow(Xj2_a3I%&{_kyO!8o~lOux8iY{N!*|KgHezKVqlo zNi<#)@?4HY+PRQ&6RACt?-D7uWva(OZQz;l;9m9pAm!IovRafMM3(Q@qC*Z;@KVBiEt7JA^Rka*HG{zZ^R&p7>5-dC zZ5I32^iaOj$()@aXG`#CVDfrBP4K3}t)p6C4?(O959 z_{Sm($MC+%6B$+QwkfY$pLsQkOc1}-su!2dC>_aAt%n#71SIS~>%XVqqb9-m#n=*Q z|F!O%5kg1%Y7>m0pHGaFpY`P-Uve#phf@DTE8O101tA&-dle*25p_pLC`m8*IL3u0 z+uy#?UKZ6;1dI_1j#Pj{JQ-m$L&xD9Ws?7FAy-IOx&LiX*+_K)uwcRt?iVpfQD%nq zFGzqUP=A|Vf6*1;$=JiJjGIzs1WyxK5AqeY=_Uc=cLUpb<{3}9x=b}NoHYdo`kFS$ z8nP;gDZ$j?KJDl2cD#@*tQ;de!Tqz(4KfRw1%6A99ewvR&kOxp{DNv%x>onG&4k#x zN5(s6m>6!edW#?_jLo+v&BSs&QdAJtKljb{{HEl|cAFXsc|kuwm~LOU0+7?l(7~I@ z#ra_=jMKX<#hd~i*0PLk#qJ_d-7~91Cci0gsl;fMAd1F+xujvrGpw!*1oQr_sbLx+ zR!@AlnA?;H+VAo^_TCSC{_9StSS<#5iXf;AS1i)7QaC*f?!Oeog(e5LU(EZ)>mAP% zLI+}H7>;4Qz-2=tFi5hUWDpH$@FTchY32!>T{A8{mKol`V@3=|lc3BbAa(ZpJMheV z-zZu!$z=AeYzEMp3NAB5edXiF?>AztWUuKZ{LdVE8LMJVg#6F)oX%?PEQOnp=xcKL zLK?V&;rxmZ?Fa>r)k(;v5^g&B7G==3*HCi91ghaf6aMlKAJdN^35_h z%s@N2OJ9$D?xBF-W&X*}e!Ge~^2Re}X=uBh_7n3XE-rO~NLBtn=-A^EE zr->XNy0BgV+O=*CjBV;fX+KyMCEpR?1ZSHM61#A*25ykRfG;;X)&IN5R4_x}H?1#c zlnB8UD|9SUk`DRyUTGi$G12r>f^4Nx209Jg`eG4E0klBA=P|z@hwk6N93(&<|HWTd z4Ui7{!a>NT!KQ~Ru5+fQ-;|M;h7Mu{Qg264=Or?OCRf2@uWH&vzX@Rh2^=HGzDh>Z znrA%mce^F&9%QGf#kEo#Vwlf>E%FRB6@{wiKR$+Rzkrut9vma^tub@Fi5=WL63o5+ zN=nkrm6r`=?5+3Z7dp(I9%pFxUxbNw)aHhLSv=iK#&9fvz_?mdV~gMIh4=Kzy=ISn zn~iXnA9-hsL|2=}h!?&bxT0F1;1(|B78z%>k^xK*4tK2}6XGB;76k-lDo#XmB(1w; z|1G)={8w9LAB)ugnd72*zwJ3~dJG{ayuW=rUiW#iL$7?zN1DjLq0(_=)9KjsQohZ^ zXaL;{hEmESH+s@fZQfj4!N2`&mSD-*H@`KkF-wNusN_*JxD&;Z9966_fUd&qIQgOb&dlrIqIKkz-%|v(2)`79L{Hh5(3OQp9ZkhbQ``&nGeM89V z+kOjG6O_^yKB-6^>LQa1pGxeEqe7F0gOPV_#Bw-h>TjA9UtZ5`ZKo!VZbol{^X6hB zGB&b7lrvlIPLC;xGKGK{K*14&`)b$Ce7-mpGj|OHGFb9LIvl5J6D3uri zB!$6L!)RVd!6K;33UR0w%1wd`oCc!Gy0f!hsxlJ{IPc#h2pU`cbn*20Y^ufSb@)fnk zILiF=${F=%QUViph?VXFa8lCz%zbyzGOV16^-nj-eC2+bPCeQkeTD3pl1}*idxZUf zrPUWkM zz6CSw!TS35Z(bsrCVM=eD)_Mr2Tikdo?j0}{r@yBytbRJlPTS++x(zcn1glR23~VL}x5u?!knhiA0?m`PSQQ*QX_ZUCJ0kIJnQf!&tA5 zpmc>ui7KITl?(3LHU;==CqlH*vnS~6h+b#@Vce#Z_&FQsn^ExPcswH6(Q?m~a z(f0U3YiZ#7H;&2MhvSmnL8@LJcIi(Id7&(ox;z~8B8hkTy^q~A9~z#j6Fn@)mR8`n z2YU4eOE0rMg^kaKf^KYxb5Sg?F93l0!wNXW<}7l7jVcLLY)?CM_?tLWtNBk0L|FKSs{XuQ1rHRAm*u~GK*X`v9Pv~q@JW+dxqM`Z z$fP-StF&m10q z?t+W0pzqR5{>QRDAyCX0=uh4|fO<9$8P9z&d3RMmIpk z2fPD);Pw1yvgK@yv-f>xX^_!K8U(}1J#Noc>+I@E6O4bdHU59~&dq-T!w_R(|IN=B zJ9tVAGjaDyby6=zM2K2);@S15t6r-LGAL_zh(+z&QR z{(%w9Q%Xt|bPf*m^J{fT5Wk%X=JqnQfr?w=+#&M@sGzns9->#Xa-q&qV%CrOEL(1e zAyLqN;i9Cd#Ue0X*A<3#p_i|;SzsLARB(d@)8d`18$T9$c+?XLNdq0WOQp!91J1+~l0%`i+ z-+_?f+V!HZL*U<4+m%V2t|Kp*Xya_};{oiKF&V&peN*4F4e@O_F4&bhhd7nyk9&vk z;U`$Y`?=mOm?$7ZRZVq5a<_6qRB`du61QmNFB80VA=-)?csJoMd*daqXK!Zw1pq5s z;#XV$_SZsllVtE!N{?y`AB;aJ6Ut)P`4wOq(9Ue!_>lvqLVSEXJe*;SC}uJ|H-@y6 z|2UPdk}1gWDXO;@sqnu9Jzpzj{9nbahMs7Cj8*A^F24%YgYcuiox%2HCcdC1F>M{4 zsvdm^4z!=2EmFX1za~TpgTF%zGSW*xP=HlI(}Cy7&>PA)y^J5syy0rEb+moZD1xzP ze&w(&O78>q`JVV}s-*oDU=m)^TO2KrQQAdM+`s3#2MSyb2JX=vGb}s=G&A(KE<4r? zsg8{NaDZu+FOW5S+x^X3)g*i}GR`IdbFx1iM2RT~AV~CKO=~i=$#gn{LE?yMD>?d< z)`oEBOA|GZ8p%&&Z`D8(0a@B(C@7br%XRJ4$SVXVP}B0iJOM(k7b4zJWxD~o*wHGw zBfcuzM4MeyJop^huAyb+)B1+#(1(vR&yKj|@2r}?dp&wr{rON%Rs;yJIA{?whoyqf zY|S|*R%oNvNsfx_k|4sN-+$&(voQa^{T)`PFfQxC<+iXIs!`70$2Bct@M4yd5|WF0CkNC80r+j zR{Ge%zn+D8IQt3ehVjVPpopTwR!6Qbz?VQd0EWvp*~Y}D#L4VX@-9BL$%5=bON`~# z=FJ0%VZDgal%eW2CSg;ySbxzv$PqLOR_)w^L;*DhTk`*VGL_OIEp7~L6fZG`&crN* zcP-fP)Grhh$4jAWP0h_KJu^}^_$lA?>lVd0<#~8qBd6|nyP|6zHZUO zGBPEO#PaJf;7{{rhPcEy8xMRIe+csqtO=DARDK4ok(uImT;`49Ok=EeOep=0#5PKw z(+}xK#eilK2kiVJa%kA|z=e?CT3Px&VgOw~GCj#AfAxP``et~=4%9y1usJQm+0s1( z8NAMY-J#2o*zRvb%k$+$y8}niWy0QVjn7EL-6~F%@ALVWOg0vu()FJA{g<4xTR7;m{Id=;pIoC4klhM19$Gq6nuzyEC3vRT=v(x2)IPwWns6N|Z<1+099-K|J9MOooh ze+b|+ZsX`PKjVsr-PY)?S>$KC$)^SO;aUkjwqf| zM0}9ZKsD4&z~M$!`avk!l%SPKDAnvAcTIUf)C)|p#x zc)U!VZya8NH)g){vtVVSE}fa)Q%WT-1WaF7{0IT9c0Q`7o0*kx7gRU;p}j6fkWE-S zGut$gst-G($db-C>v{7O3@_h6ADKE=!XooijSRaCdc5ht38;qS3oB5$<kE(N_5@GSZ3LccDht_B3>akE{*Txir^mN5imR!=L{jXbY5BVk1A ze+{TP*O#wqET#@vMq%cf5{ul#WDtWx{%WSb1_o=%BXt&WGB+Dn=YjW?owip;(g+u5 zC(&J-9I#Q5v{Rw`8X_qM=^u=_q7o#lNLuD!iEF>8tstrc3|)*eD&*n+bqcY&Pts1sQUA9~B32)mdm6=6vx4lwKB6y-Lq) z{=ETi;=DHSPYDh7=XCy)IAWp~z^UHemQ0z!$W-OcAok{Stz-ia=W0>vDfFs8-XJvU ziO*}Wn>{0pUoNiQ4F+TW+wDBaD;2DuapsUwP00}i5|KKpa>y=A7B;jo%!%A%5Ve(D zIFWB>1uh(JUMz_WIa7d!zofZLS;jZq@*NqT+Ov{INz#yxN>~U?Tzl`Wxf$Ndtfv>d zFC%i>3$U3&4Vwn(P+auR*heeU1ZaIWaBxv*1Ni*9{3}wh;)Q~O~e!ydJK51y+d}X z^(_3o(l7?>d7RB1=w+0D`(=*q#)a15ss_-)skEqx4%on!tTD%*K3V&J3_Fmpiil~M=i4_$qYrlh1 zA)uu6wrRKD8xkhq#Ah1;U%NAL*+K1TB6`2OZwnD#7StSc%_pq(e6BT* zVq6-c@};B3eFFjr-^=7%ipxP;z_0~dTMCeuwV)?;SzQb!7TXX`AOs0Q%ZH+Ua|1R} zj?qK-%3+EF0AK&y0xBSq@y3dh%G3dYQ#J;AcW_(3@9cLD-ELk)R8|}FAdyL*=mq>5 zWKVm3j_kFRvE{n60{GY`)wZ755MdRsOy9*^`tK3k43S7;>J_a3IN;(U3&fNntzL&croBLX?A7@qaMoGzz@DdW$Ygw(gL7dQeapcO7{bJahs z%;Qu7sLMX{<(LZufYpU^lZW``3GZ-DP`dZseslL;vnf>_PK@s71c)nn>Tt1&@s#LI zgQ@NrkY(oEX*&h)QyQfVp0+$%01FLd)^9kcKcJq5ghqY)(mZof^0--~GjSjy-=CYk zUutSElocs@wg zVvXlhvYF$mi=Z>uUy%`4?U0NeIPaB5lgyY^SpsF)jKK4W)O=$~(ZX7=N zwFC_|oUAX3Q2;2AxLpi;=Aw#<)1yzPB9zUDU%OCfWR>ic^8Q#R>}B(4mwblDAW@Zf zR#FxQmJc6Piuf8ibzd1^qE6}Gtt!jdHX7|v%Ax*Rej4`>NPIY8h{Gl-kjlae+Rtup zdUc;OlU>#ACGMd=lJlD)OFHUiQ#$quR!ptB;y}Wt-R{aB;iJ$p7mRS6L0mNnYU3d6 z(8~gp0kp`77={nli?AI^_Gc@`e|iBv(n)=Yb-pq~*ZZ398)fO(WS*ZGFE%Q)eaS3# zwjw`&r&D}{r3}uY5nm$IH7x?9Zb9sbo~sRnA@ZOhfIjVdFl@=+c;ZYfvXYGdBnHp? zM*9krkp~YL91x5wKr)b*zf~FEp;2Qc^P7BcJG{JMY^PAU7zCuQAPUH1GbEQAh;)QY?ZxKQ01#{Cp{xUd+&V>EDY@wnv)@FXK4X=;*H`$uIqZt2tYTEJ_dC|D^BN!c?3d0<;XxxBQw4 zz|#RiuKeyZVWQG>H>wj!iZE6msF_`0imKcDfr`y@n%PKsox)yv!>+vFd;VVRF^=2< zwr|^g4Gwy4QPxr4TX&d+l?3SDW0nTW!->QmVEqtwY|CtRBZ9-HUh*EPk9{X=Y~L_- z{&wEYzJ0rNbL*!%{PgiWp&~U=#Ff^x!}V6C@Y^+*ooyVxX`CZaDNLALFSDJ|_n=F7 zq}rtYu?CF7rN>J&U2Zi>yBlH0TRgdlW%D5I62~g}Z0g3!$i2L%Fbl~CzV)q&wjR|A z+FmYu#B+lr-r)*gKk3G@BU+ydG2oTR<`#IGo6K!ZlUGdm@BR}G`0DJ$VI#K%ykO~# zI0;B}%+cxd>a#q0a~#V{yrnXVa!09DMV3(wGC>Gk<`QK6O)O+pKIo6t!m7kW5nB^Dg_G0P^l}@?!I;3M|OU_NJNIX)sE0 z`g4$WfI_u=KnCEJK=UD+Y<}eORps&LR-ah=5%k+PK7c``eTvza+=RhU0rel}c(L}k zR0z^8`lZ`vloyE!}RO)U{}*?bg#?a#=sFSYxH4m5gCOk6uVi1U75d>k7 z0s)#NcP&1UBcGfsoGTfeKVLS4vS*BtOm|R<8V@f%bSyeTfB8f>id|PM3uqK zi}UO-q1zEY6SboyZb-6}n5ECu)qfAq(|ri- zhX*s1IENjMaf9WMcu~}~6}jqgrOfFLfCm?0mbpo4mWSCIZ0RPRV=XyCE6x20T`H0Cw)xj;Sw9q?LiL7rK zD$XGuZ@Ve3SO5F{Dz#*@Q-}N#L!BMd@8E9=CllyzRYY5sz5o1eT+4zt>V@3k+gpGP zWSj6U8Ekv%&)Wtpxw=5`PT8{HJM^xrkEoGaP)Q6bmz_zTbZK^Gx~J}*jVkT)gbP$G z_V+W_LT!dE^vGV*+AHOPrM3eZ`vM#i+y=)T0V7FJ*NqfYD9wQD@$MV1lpf;^?%yS& z3?5ZpC{6lv_&0FqKFiIsTFh*1vGa#kDhW5ZG|we*3LUdK)qk<*SruPqaiL{9&-yp@ zjKTIFB@}}L173LEo|kRwKtZ-q_T?z1kBL4r>HBs(k$|$MRGcu*Y$ME#hQq!u?{M#} zWGBo_Vf1RV(>Q<)ymgW~XSC{_TCg@mWrq^lIK7&azkl~Z_bvO`u538yV>1oQ!Kx5c zK!2U2&anW}>y#(ZWAk6FMC>+HHp}Fstqc!A*tNgdQ)8rE zSzc8YVuo#r??BdGT+k?urbr(YDbOt?+E%(>Ykbd2punCc4;MDdVX5x!HN>|Pfc(&9}MnKfqMsTw z!w^TjW^a6pRZl{X$VePGZwMi~bRRz!c~&?GWc#GsjZh_qf1?91mGx~JV^<-*U_O<{r!g5l>b3beBL2wv4mK}oRi!|rhQZjUdPTxbxHAMtf6lcSZG`@jXc#9;Pv zon{e z(^J)4OqH6HoazTI<219vXIA4$nm(j94!bWM1pur5H<97KL7;DSAy%)t#3OumMuId1^<)QrD6xVXK z`};VVA^2L>>g7~hl+o8#F|EHGL>Spn&69tZ+HBi zm3jfI>-2~8fB;NqlqK~lJ;m7a96y*q(MYV;M|({2dPn$E+^L{4h4}XU)ZZA@V#K8# zRYU5`0?BNo2Q94lW!Yl^rO-jaF~sC^I@Dkt(y$2c-6#(}3Yr%1(v6@l^v3w8F2@Rs zD%*U7s-&4OQG;8h({<~AS?@`Jqd?jTStjB>QtG9b6mI_VDQt)UG|))7wC&?^_wA6Y z`8fdRWJPbMzTEfMFZ>?caZN91i}BNb6~-EF4+}Jl-B6teUUC97_ucgSN+)GI{j{~Z z-v9`Vd_tDFh@2}1_w&ppar?hYQEq82Yd|4>`QPbp)NF1U4Oq>EKrldE4?aAj3dq#} zcFG_6!!zOSUdZ>Q6bXtJ@LAukIo1fJ_{Y(aL&-yR%XL6OzHdx;Gl-6UT z0%4ju;xUbdAbsMmqmx#-m%jl5icVzkoObE?PIqc-w74I+)kDEiKR`ugA24~tamKSQ zAul16gxa=Uj=WVa>Fl=u`NAJecMHldwBd~9+g}xiRb4?0{7NPHp76o#mQ@&#DS$yQ zdnw~mUf$w6k>kwxWj3$dwYU0sbC<$PCw_ZAFRK-r18K2;6Of1hYJ~dDev{`L%6~Al zpgp#-QJFo@xQ*W;Vf=4T(KN-p9=Z6&Oo<&}9UO0NY)*+j(2J?vk}pnrs=BDb-+v92 z)cLC|abOGqAX~^9OoV3kT7*tA%*C9Lg$jG4l1}~L03Cj=X0ryzYRhH z_G;IMA0c4$HZCXvHJu{#&VMnXzOZ%$_Y^GrY7_)fs*j}uAM(3sOx>3iZMV7eMqX+j7vHLXf1BbyAYx*s(8r5m=hRNn_5wFmHZTtY}9N%elY~vWcD&D4x zN)b7drUgOZ7gRSZJ%so11n0S?3c#v_)->g+1@Uqw(2D<1X#QKJAj>KW#$-yJ%7f{I z>Fx2pS5p@eQBs<|z^S6(wL%aSusE`VB&^6}HDt&)Saz$-Z z$dHtphB;4J_xRPg_9Ue@UsRboDHAX(?UH?=qmYU{ZwZ?`qIi;Cy68IUqTPzaC3#6#b>%kK)h zGdh!e98HI0y(wm+@c0YAez1A~4EsIj&SGla?`=>1O((V=V zvs@=SRYM%QDhuPIj&jHt(ZhM4-qJSH;sWb4?gzN`Iq{T%AxGfQmqESYTi$#kBNL-INqADUlZw&NBV?V0PP=5GcyP?gf?|vIGee4C}j+m{= zXgkZa;!-i8e168p;VwLA@d7P5qvajWa51}f)2-Jg*R+Nfc~y>QCCgm~cp9ow5RUzq zH>lg9yA7!~ox^W&nyvs_+!d&W=$W@3XJmf6qcODl>G81xe?Yl_ohU*_1&SBeBvJzu zjbdK$W}YXhaO2Jn>|AclOm7_w5(_3Ih74{8)(<&~hG(vmIP%H1i^wnGy*A1Qr%>?^ z)Ekc#W;Vh+>Du(ik$eBPU*!OSE+eu}2SymObs0G-EO5JvrXN1QXItFGhTnbB@b|hx zAB*KjGFD5n#g*>9*z0lCobxaByT&#UuTX9-p9L{VJLgDMJ1` zpJU=sV}B@cR;9v@hXN z>cxS8CIqB;!Y&LM*{nDNF3BV<_P-t}DD3yo`<66JKCuj{aK6Pl`$T9bn%Pr}0Z*dL z0Vv}jMhM_lbe_FP+}VC@iJ$Ey!d)>PUhiI=pOvB-2eOwy+^^sd9RbQOBPm=E54s~8>Y zosQG>d8(y)zvIUZNe3LgZ|oZxdp=z?u`=C~nt#XzfoWc|anO-2e};AboALSjI*n!n zQE2F7rL;A0q*wnl#w_0f*Chc!R3c!^Lu1J&cWI5k56_bQB>oqt=^VQEw)JJ7N099* ztGZW}Nce$zvKxM%l2yLUA~!pR%U?16PPQS)TzI2$ltZl-$p76-vFoU1aoa!J!BctU z!?yd6@79*YF`0FLuFll{juz`=F4gU@NhKy2=edICVH~cW8}{?Yl04U=qil^@Kk&Y; z*!bPG)!{)S9RC)wP`<3Lzs%|sd%iur`F(5%K%P5#-ddFOPPZHA2*uaaUWYs+GVgMl z@xj5Db#@yn$}DLmg|7(r<^4G``&Q078j!*4cyhUAR@JX2v!&zF9Jb%@~S%>@1Him7?R+7+M~ zT4VV5(?^5!p41ShxGGaS7lc`DXAR0{KA6>30OV=>^gJ|Gg6Oix%gohs9d(W@GXs!M1bIy0)R*g}ml9Z7VG3Sho zNXA6PG9Lh6S1}7|JgcuMiQUlQ@>toE0K+vteJspUznomdbKAhZc3(CQ#+CPh%QBd! zhVLTOm}NR#jU9(Kn(R@v#OsI#VB@qI1~*zc9%F zIt8#eQ{p$E2yJ5+`wH*h0^-Y0lEd4O=l)f&Lx1lT6ZO96vY`#v=s=mUw$tXUz5TPF zDTJ7a1WO#@%pjXLQA^O~1v=d0JszmiTjOM`R76wOj=eye zY2yb>WSgE?qp~%Cebj~Ay+RO2S$zc2sy6ls{s0>Y6K4_wDt=MJl0EVMpWU-Q6iw+i zqSY^|SW-1wTY=vV+@JKpj@2*(Osj;#fruct9dV(g|4Ng^Ky5ih z&uiJ_4Lio2=0VJZDJWDK&Ae|d`q@D}N3^qFzKqp%+1qGy{Q>B&_?5mCE`#3Gpc+cJ zDcEKt(QjbV#9T`B;W!)XJ}_lL_@XFsAUeae=6_O<)KCP|$ra0ogV4eCu`?U~!yiDPG>ke-^pYNFS+B-PH zX(Wqj({Nd(Jp9gG`Jm@Lfs@q2hhz9wPtwU2gpS_F2fIA1=%LvVNOzMrcuNb`nz$bi zjlTQi+fP0!i!6GS_Zc0Bx2pIzP8uV}!;dTc*(363ww{`Hk}e*$sWNM>HOk|KPYHrqUbPRYBWwj-FUs`|kt=s{CleyIXyM&{Z`jVOKHgs4({ zxRtE!ycTT)LDye4*asZ@8VY{52_VNbs@4~hK`929WvOvTFC^MvN+pRs%Kl0Pq9$>5 zpHCyNM@o#px)Dn=bSQ@*zWD!Z=8I#s3OT`)3WT6oDq4mwS59(?ySM(5cg^jSK5vhE z8|+skw!J~|i3kg4(Nb$^W*>yM#ACjU+Fj86kZ2rLJNO2gHZJ3Cp-L-t{WZ;Z&I8CY zZ+`RIZJCN36Ps5o+2*j4AY;!XWq~Vp?OzUl^kS@jH=B*RUdssZqFUdOS56!><*x16 zD25&d&>JPO86l!17YoFwx7ZQNnUeN8gk6Mlt!~;+uto8eF7+LK~tbept zfSzJwGH`RiK9(H9%r0BVpG10#BfR4johr?U)9w-#7LLGhhAK)J$EVsj3qRpQBtw|{ zu^x8m&$18R2DON50gExts)%xam83c2l+(3*0lY_tkkU0Fl*H3T52t zeE8DeTARjoDhD1zv()z<{{L~_4`CL#ZmTv7ZOY9s93Ug0FXB*#3yhUw zIkokYk}w8_yO>Px(bHKgD(M-^?|QqXE?Z+2JTpqMXthJ$MHwbP!swLBAy|jm`XG(_U(LJ#+mKv~BV6BK=OPWGCK3^It*plCB8}n|`-P!Y2)@j$c8GGkQ_c$D@@RjM%_V z!EP9%ayWR>K~%()!B7w5rW^47CLw!7_Tx9%MS&Z%J>~%I=z=$OfM6%3ZZH7#Q%#}l z_{@dBO9u21d08QAAEZ8j3xe4865CjIkP^-^?_6af5mP?*9zwREIE)9Zh@Jo~zs6f5 z<<|xZEjF{c85Ms^Apfi*YB|SiO^dinGeAfneOn)A;gW6227_(fZUWw*Gu+MDs{2AG z$~_aoaN|?Jxbjli(rdj1z?ht={)o>?T!Bn=`Y?%hEkpSR#8nqO-TFLo$6TKviWIYC z7nmC+U41#Rjgz?z1Pj0k@GC2G@aS_3<8sS-}jb!xn@@Zl}9VSwaN(ryTZdxc@zRtc#QM<(b(#($rg=>*Xbg=tM-l6Tquw6P#n4R8R&=Z zv`-kEV{k-(cND8oJ-mHA=pEIf=fe~_`q<02{heBN`IjCK3ziwx*{IjSFG z6+=~iNvwOr`oKi*?67eB66RNFUpq5E0(8S6+T9fHm=D*Z>uyI;poJKA^Is; z&oEOSTB-<_UEW1~nI&NN(*O@1(l~va_uTY4kON5F zq7PSlNS&d>Ac|6Vgplb@kyNGU(O+5!aUqJtdOV{x*bra)24)~+Ud6T2vbfPME0~nh zcN8SkbNFSUD-3Ni7S_K-bq6bNp~oOBS6CPvP|>eIMXe5FRfv$!f&_0 zdGJ8ia>IDHk_8EDFlmwbw!XF2_-IKLh7!bM>C0~$E)?2rK~nJXr&N8b5sAA}^NmwS zk5>|S_4}cd9`5VEzCxyuzquxK8sGX=zC=Ol=?g-D0@>Py4KZk3zu4&b z!h@#ea&;oMTF$4kukyefD-0#nH&tnsOTyu?M!nsPXmUAb=q547`L?h-mn7{ z8Z*KN0Vkeec}H#6A@)qP35rl;qQJ-aEp1W>F<((JvT;rn8Vu1UzF4op0MrG)8r|eJ zR<;1B8v;iXlY6OPt;T9n)=acSy@-T8via$PqW*O1;y1 zm|5Iwav$Tj?vA;L*Lm86Y3!j%Xp_B?T@q6s0V`z2yH))(I>5P|HYGAHv%>4>yb z$s?zW(SI9;+K;eR17q>%U24R$?c>@LO{`juRg~(_bQVtn;h$@Wgrmf`g^6Ca-qPXT z_^2#L=Mr=mo79=df3)d`Cw9N9Bs2~qU?+e^KU#2{-y=02nwHvEMT!|_HsStvHzkl91jr5>Y-!w>^F~(JRvElmDdE!$P4KO zCbSSUY(63D1UJ*mBaH0r-?^kHf4{8xg%g4?5kAk?vs`VN{^VQQFS@T*(!U3Ou*;LedcxlouXW?%|wNn3zNRmfR=2T+A2_gr}&<-OF@nqG~i(p&=~p?Fu8w z0A2P(QNt&55Q}W|uJug)73*HN(VzJ?n#Q1HsY}lRI;m?%QwEVpX4pOK<{!PqQqZ)| zYJok(>EMcS(Lyck3kc6XGbErk?r+>hBnp8p7>9${hZYsU?=2F_TF`oQm#pXt<__Ro zR(|@;=&Smq|JHR4;mrS%LSTBlA>Ayn@h$55(ypciqipVRh=$?@()VouF46(sKXs_b zrm~Uud3GlGSw)S4gE=yw z;%{c6OBzd~$acFEL(?5Zyw;S`?M?y03tECl{a`usUi^Rio1Sn;vum>QVu}50%Il@x z{8tjI5#jyxIS7JMq~nxplf;?KLo2BQZqr8VxOoE`$fIKSq~wKxP!9V&AADT5IwsTF z*WAsxQ|Ugh(7kFp`H7^FBtRV^%g0AGzvdk%;xNqQt~D6arBK+M0->;K}z^51>WiD+AHZG}^v z=xo)2s-H}dW%J#;pS%F zQv**)!rgu|@(+gy;)l|zRlmarqh2x(%^GyqMN10lqsi?1I1vF_!rx^)!zTG6D(o8NtK9C1J`83Nt7~XEn3+5kZKp)OvVJIGhv<0*vSkLq;X=*8K zWlD$J#X^9EY@e@egTKBO!DxCUdX~+Zy|yqDj5_4e{8RH{tWkmwKHT49IB6nW?Qu`l z=2lI70sQ6yl)A~4$SNMv=z)3FVH9g-xGNPUTFBNbI~-(SPIYt2lHVu zh5ZH9vJa`o=dTXyVtF;W;jD9&E7A+$P(d7F#00NMUJaPm`oSP&pFR~IQuJSE$G_ax zl@wHxDjs=Uo+X8Zfi?gKmbgkQmg7tvK)Cpo z1UO!Cp%tqg{pzR{iCIz&bLE04pJXLJk4hWKUJ}=q|DFdjY4aKp*!oJ%D+nAF0EZ{- zbOfsZ>Bpb97e+jJDsR!e?YW0bDXMpUc}^R(7%y@Qo`G9^MO?pMq{S`{Y536K*LbB` zc!zQa%Y5$6cMzMhBIzXf@5wZwoW$<-p(tb8#6Nz%jt@6VvW^-dZMgh9>@2kR4LRtn z_n@rd6VGKL9}S)-xkp?#;1MDe69)zx(HqP2`(YYYk_IT+k8KAD^km64%O>+c z(E}KMuFW-n%z;jLwF5N1H#v|lKt|KHM*~(bS%IPuen3d?fN5kLT6@2hiPcS=$HhHq zkcJCZ)!`9UeWta-hWUFmsHxOGTFDq0W)aM5{g)TLNq$}>fdOU|z7FRjY;VX3uYl+g z*rD-1^R}3y%?8Wad*@+S@4-araD;|S*x8MxZN)KQ@{gB=RWWs);eoMRh}H*b!H^W6 zPqC=C7Aau9ASJ$8!aFRy&ur+NKQq~mf2!Gel0LWYFAK}l_a`-g)X=vardkMZNn5W- z{S8^;sjJ0c`3(vJsfAOLU!%cY^O1gmb5akKa6-@bzQ_8`+Z4Hz|FQF9s=zub-Bd4= zpE+xbevj3j5!UE@!w&H?l{X;IfzrZB>_}`E-901qsLjw!BrXD-P2xUySEwb% zsS1K?3mjn`p$n=_W9!LiM}PzaHQe* zTMmR6ek_pqrQ2&HdyX_~{(56W3QO|vq22VzMKd&6L4oXY8p6gvNEX!8bHGA?32ND7^6*PaY@^Izq%?j6UvLDT&MZ+} zumzczz{98q>xuh!ydj`>FC&!bSF(ob@L}f(nXy0hUiH0-x}Ilh)<9N}%EBl>ek#+= zjJ1Rp$|Cs6N)-I}-1X3uTdstUR&D@T=FGM6dXC!^p8)pU!z49KC|cS5$fQdnVot_@ zJQi2Y+kP;Jff?r_^7g{Xbv@e~51KQgiD9>Rg8Izz;Usa@k5qvJ&0Y4`Kc|T!btkzrcFjgJW~U-H1-E5a z#dgLpswtgX$87u%9R#su zIa9@^D}eaqD!hd}DJQ6SBrv&V?W{=XFoPzC{xb)|*FrtY&>DT$W(^gkDWm-X&Jk*f zjWF{kP64!Td~o~xyHD*HXeM3OaL&LQ!+Lz5dtn0m-MG2&OlvNVCHqXa*x1DQL{n05 z2$Hfr|1;JBvXWYX6cVXWozHCWLl1u%q8yI)UrgY_3eUa}!dXgd#e-&kH3dj?qu^&Y z!4)_~FSG*hU+li*MHPM?MPS1W0 zU$KW^>qMnV8NSeU{+~0aXQLyR9E|hp@^LdHAzW3{%XfJ5VI^ygl6*x5eXsFG%9}@i z2M~(78R&Te+AVKIW5}GPA;~AjeiksTMnU)2J zzh-xQn6EHoh60Z-#YuM&DKS)2l&d4WZm`6{Bku21+otcO2*3Yo%9( zAq7NFnYqL@0uJ9Jy6-tHmOy@Oqn09>y!?wr3pe44EN9e3j*tWR@xCdbx@Unxkl?oD z&<8dQ7|An3$O&zIz3AXYgSf;~U^cw<383k3h8-xtSYIfu-i93{d8^sMr&F31xL1e+ zayo07<7G+M@psPW&4{Da24m2$BhxKfM$8?%-0+3++wI1v2_*v5VW_K^H6=ef5>WBu zGwt7FhmE+cZHwbwNg}HcI&8hN2mLHFZUA)$c&ZZ^jcWDoIzW3c&5|Yb=pyZiRKejV zjenxPbl&LruFPQZ)N?w&3eBiXK*9c($Xy6Wq~P{Q`SxFBh9(FW@AJc>KR|;v0sbm! zpXz;)_tN*Q!Z|1!`8C15$qGczd*4^`l7S^@s_Nnd`3jeUeJQV!`*zp*pSqa~Cc+*gy$VKuXD8;2M?174JiC<}7;R&r0cZ{SQ%^|b`&dxwO zuYy_Fv$NX&i&2|j4W!zrEc#-6Z&J=$Xw?=tYxA{rSx z@*#Tm$gONPnhG{M)(nO-2(6&x_sq12i=78M7&wQoU3okO6G!i(I({!2U4RHT#noTi zUS^1xrgwQha-{xZbRQT8_;O;gjl;2Ag_(E~CSPLIT*i-l$6_@|N8|u47+(wi4d+n8 z{q1>Z>v;!lM|NVHpz{zTVQM4-NBdr>nsuWu7yocGiPIAa#P9rdK_}>9c*A(ioMZuj zvNwqPd*k~hlPSk3eF-=p4y{OiC9ZKN%M7(DOv7l(HAcWiW-|CFwKo$ePWf-|1(P@a zn|Q@ldG_}AEO`4|r4atj!w8ulxoNi{*|cF=DaF%0?)$VFt@)kF1B?YuJ&RUCwUw>$$SlrtV=a=$^%T>}*4U;C&Q&NlY zX`_%+Z9|qFjR580Qv=gYaz6Ppzd>|}!RGoXsje!D z_kU*m!Nm{>sxAREh4MfC^WZE1(gxHKdncYG8e$p(xT$yx;7P`q-Ta@PUPLa-Wcxv* z@8%oXn}@1T2H_yi=+%DS$iAkVW+!FKB@%Opk|4|f!>39r}NSN8m!gK}X(%Cgsi zii0s-Xw17ZYR>s5grKWucN1Nv>@@f;8U%Px$ww{nrH+egWEYWRb(t62n+Jf@2mO%O zC4AaC;T{2Z9PXKL1BRka`j9{*r5EddxZNv&d!W&dB^yI~pHQp)YAp%YiCXW z*0j|8E~)>vzxa_c7o} zYlF}hYOG`dhvjB7+}&C0D|-BsOOUfDV=}57ra|Mtxv6mwxMF?Xb{Z4hPZw_DC7bN=Rw9gBgJNeZ-GYs;iD?2uph0Ovp6@iq!xDJz9$&ifhxYhd3YrJu(7R{qlqY{dY}= zwH}O2$Mn4nY@{TmX`c)ejo(J1`IVj&HdDR7cH%0qA&nRJIElApYSFQ-#R-iUH%koJ z+8(1fFj{fR?*@PeqB(+ODJkyzq|k-UtiCyNCtDt=5Mu3KmID-9Si;OwKi!<5qjPt zF{&>(oczD{Jg`jKku<(t?9hu`^t{%!NL34~H}qu-&*DC8@%MG*ZIX)*M#B4LACE-U zfkhEudEJO0s4YT8ct0z@p8?OIld*OPPRRb(FM&%}Z|gD2A6OkST`ecRKN>L?w=%bV z9I2<>fJRcQW+bLi?aN%Ng*1{CeAO8b-^R~}s@=y>{XY4u>Ih%L>R0TJ557TFyRXz^ zFjzDVE!obj=OPIeyKsJ}+XTM=ihM(H{HDN>q8IROo^gkRmXdu8k}Ch6KMEYU1(8vL z%fC&YD3yt{ORHI^q)=_nX38x9yRjEwy&=7YG_E!ZYdWd{w}d*#qr+Z z>ig#7t_4Yp;T>)SL})s})p_Q=UQYOtKNL0 zdI)1whZZYaj1=)WP)!dtYq;OaSwb{}i29cr`M3cC(RwS5u?* zzGDbCz9UvDlKq|F;f3VbmCU8{L}=PU54tp^`j1juulv}30)U4_Y~nV87TKL~p2 zscj_`e-zs zH*tMaG=5=oPkz{cdyHRSan4Il?ZlpgSECB?J@!Oe_%n0AIA7yMq`CH+CH&ufjasTu zd0K_LwXD>hBCfigLR4zkY5Hgp)JFFf7>La%;xsX0&6MKmb`3e=zU5aRWSicXuT+`N zW+nUYX&cjm1i|qgMpn&pRV00UzwEtCRVw;DKom>5UvUBH>fbSz{AuDK))n;vu}!;= zXVq~@Y17Z&@^&+Nh(pQf{3vh$>#xuy-dOMux&#KtFnXnts=0tkPedekV^ZAParkkB$=^jTW-j?BCe;FWGhp0FF=$D!JhX3>w{I%y$zERN< z^Q5m2o%t{mz63qgf@hcQdzv*&A%6c;Pvdy4K!UM2SZ#nGf{b~?!0AHWAP9OI6J#nLYRAgl64%+v^7bbI91)H|bT;PJzMWAgn1HD=4>hcVCB`*(j;`)KtM zrVtY;1O~U*X)lI<%@@#Z4^p$w zg#028JLCQq+PJywjjc!s{JM<{Z&_KyJ!tUA(`Z@{T{`?fef}(QpJ*nF7eZupW8a}XAEayGM2qQT%(OXa<-TdDq;D|G_-j9n#mo5{0Wfv; z;(X_`{Y(@vABbsJ^c-uBm5A`gG{eGxn1iNPv>U=|y4ND(2|C}g z>7-)!v%bdYypM0cu5I?9KlK=b1AA16_?dcBt1j02qjN3cbAM=(1P)czpy|=WE!q(_ zYQ?jcfpi_5c-@RxOW5v%`JO$#z#H8`2YLOcmL8}LMz$tNN`-hy$VQ}a^23g5R^CuB zQTF3^ZJ}l3KW9i^DS;}u(Qs@U*Hs@6ZB&{!CGpv{kwvkQluZXHwBmpqo;H@4J*$Wh zE3Bos#dS-&-cpbCIgbj(Q40aDT-FGGyx^B>-GLiEZteIBH)L2)1Ms=c?QBJlGAf^R zJPK$#Ct{0!ks8S|YP5?)$#x0wd;K?~1t6zW4`>ne-(wT1^nN6YneR`+2PY7kb1op# zkEl#qfo13tdw+b3JJ=Pf2p^kat?7x*7LgcNHhZpDE>r<$m2-Vd5o;fFD^KOWH6pca zN@Af@uOPu!1|ppT{8#^cI}hvl(*hSslW^j_;-=rp!gwDN6G*-MZi2W6=IqzEE;|3q zLzZ(?Dxr6*V_IJEP~z^fLFDBvkep7+%bbV7G`E#GKbxXamw3>FF+k1+^$ZjYK{6Zc zi{Ik@E#-Ac3dU+BU#Hn4{>i;wW~P8B&?K7()irj)2Le=};zv>cIQ2C<3Xn-uQk6I5tYbNKl>T3Xe1tQx&RI>HzRpA-L z{Z{3vzGuCL`Shpz5l{~er27^~{?pg47bcG1(0T%H4lMJifT^ORnYyC;*H?Uyh?6k^ zCmMW=q*ovn^v*;MAL6kkFeLxpFDizTqdk~jwjc2h9~0t;lvhwsM*?Tg+k{|-TEZWJ zkmY~|wZ!1|ymeKrhLbNV1GGoW`*l?C?ML0*DsJ+tK_wL!6`##<7X(eqvh6 z`ZG%~sXo;7cNdO4FM-*t6=edt}Gfhyh* zO0G)?rr%8ZLC?gZmp^?yi!f7PO^W3ZstM1OkE`9NOOr`lgzOEZ^Aw4Ne{qy6MEHF2 z3TA*rpFeL7GxEdn z{`-oQ2Q&Q7>r2Wr-dSn;2$N~Jja8(%XKhFm{3jO6PN}vqXjj$^I(BWp56)It;>bed zhyHqGUb;!Z5{F+4>-g|E;uNgM7)3R2Q#|J_+M}ub=^vdle)x^ba8|2cne*OFjq9Tbl zEVQ2jo1zPtTocD85{Yd(x3<53I_UG7@E9@V96mtwf6u84nbl6>s}2Mb505I2Ya&-}y9S)U$jn{wIlgw4<_?ZIzf*ih)AWPNExkC4A8LiTJ&V!=K|qL{2M@~h zhqm4ka5<6=KBpl5ZvDC{(2TbJ2?i(1KtrQI0AHH*qYv7B&NbpTVh^BX&@gBqMIU@7 zL5(aB#UZ~U+aEK0!p@P>ye@N%JA zjkK_m`!1wEd+?7x2p(Mua8tc`8&o$)uHM|USLnW#gufG|hx#~7=!b(YoXKgApWzlb zCNWxF)P(okAirH{{uR2<^peJEN7Z%)4u8+bFPH%Y2HZ>;M6WM8PyDcHpzSG~n*giu zM64r0442#z*qYQ zzcf70;r+1=u)%y73`tHJA*_c^GH!PS0PVDkz_ABt3d8u8HvxTU8nwXI@CMR2$;fwT zBC^E%KlWdFv5}d;K9C1*!1rv?1=S~iuH}F34lIZ>FxN;b%U-+6GVlN*Nv;WtS;4Uj zQ}u>U3BSBX+4P(s5p$J(sn=0H2QPKoDN{y`nF~!%9&#b0o z5R{1%F6-Q?z4z2f`(VBz*EAx&(1LUAp!O>o*xf?BC5Ka&{(o)I%#X1>I$QppD`msc zdF##a`8}D;Xm+TB_~?*Dv22-z`p9{_STWOPBg|CUnjWq9{F@^V&O+_k$CDwC0z%RrK7<(P2?&(0qUk9?jXbE7a^j@9~^=P zulI|jX`v8kIfw@sanY>X7ub>9?Tw8bTW4Y`=0oJsyAjnca6h)&I^+8a+d2cG%yLz} zrC^vU+j>gT@06tDz%R(FBr`Zed*2c3?c1+Y_xQ6MZdXY^O=PUm8lkC>JeJ#ydu6-94kN<~(mCa2coVeqyT`s}~>9`*)8nD%Q zpZA`naH^rP%fC+e&PA%{zO1BXGsEGJ*9Vj-sJOTVbTtXh@p!3e=A9k3moTFJx+ z`96;aiPm|KhCQNlq@-Os*6Vi|-BCsR3w7VXNZwnPP;^(#P;A}p23m#;HvNHJ`DW$Z zEyK7<8B3#$p^3Jz?Af4@Xp!gGSA=UxZ#=IBu5V`NuUn3sZc`#J@t_eW2NLLi`9O%~ z01v=)-cE8=Yza@mq*uxLRhAnm@}bk|o)|B!xW&^+0HF3>VSr2)WJf$ym0lwqT1#^( zWDIV|*?^a0T+@{GR{AIdUacv@@>Uwbs8q++yE9DaQnR;y(lNds1>?|SyvBBke&Q0W zY&m%O-$e)zR{5lRew>Qc+~_xUTxVHN0>YLE?pt2IVD1a7cY7h$17K>1c?*$|hG78! zHGeOCMcqvIjYwK&7^LZ#pav`L*UsDjdxrL*Vy-vAEtgOR>4AV)PAG|WYe?^ck5B}* za?tnnaBzO0;9?x(&7t;pgI~d8+pglmcQu4qKzFHssM+u~w{3(gI#E z;?CB#pJ*?BxF%P%INy&E&I6{ObeQIs{OKpMc5yT$_v_K}T4+Q#AgUtn_jBLkS+~{w zJ*`CAtTPRgsM~w1r$!l0uKldu6lzq{l(vr7WRvx98k^mfaH5dao93rG45~8=N6d2)_gQtsMkL!JVs%u^6j${pp zc>Z0qTDTL?kK4cO0OrGBT=z1PhLc}?b+^zSMQsZcGV$n+xTAsj&BG7R1GCxWo|9_LktD9iig`LOE z*v)a8$;u)0+F!H1L+h1=vSy`0qg$~I@G1V{OgwB|*FfrWW_7!l8~44N&sEekb*Ajq}go&0h&_2HFg+tDL;dvmp> zx+i2U4Z$*I%SXvP+@;QhX%Q3MXXB~6!8JHr-`cKSTw9OAQbFsi?Fjez-q5ArdRlZ= z1bE+Yfuo>ycWI-$F#R-oLVAz)8rp7RcnX;4f6BupPE zt;cZs0*?nc3>=)1VXdoqqf-dfDS_b#l2oN6--}nis4M2WkAHWP$B2jAG;R2tzKb!8 zsAdE_cJS(6?%T&Byx*fQ<6gI2%O;Xh$Y)B^?VST<YKoG!E#zUpeEFH)7-bVgKY}sy=wUBafJwkEB*|8KbbH40({R<0fJXjTb1-rl zu3@_sY7jmm9kEBnKC!Hloo9)T_81jHuB4UM;R?NRZ|p0;a2l4+nY6$&jc>B0VxE7j zzfIHrID2b6;R@srKGE`B{H-ZSEIz0ivg#x@ZX(G%nub_N^j76U6J7`*td9X2FcF0Y z?4j0*C$+!c{QrJY?yfx!%A(3i8p{HcK-)=Tnijqzo*%$MHT{X9pz-bS^Ln<|t;-^^ zcI82*1=jAp)SCq`1b0es8P$N|@2q1WKFAmid7zpnZs5ggjQP1?V@1#2`{qzBo_3qP zu#KzQR*hly`@i4Hmf+`q`mqp2UxQ6I^#wJ8s60jCqoD_1-kK;u;ppd{tN0R1DolHL zRJ>GHl7G0&&BOGX1+3Y8YWk~xe*S@=1NTU?%xl4vav+=K2x9*KaGygz8bN>oVF#6^ zT>2${G+~;MTGZ0?T+cTdUf*YH+AGKLuqsEV%izx#{a+rOS7Kuqe((`nuAwh z)vo{q?OASX(SKb;OREt^Zv~Oj?hUB*Z2kY(`i=!hk)_=SVv%^WL_&ZNPQtUpOL*^| z{-&zU%$)x&YEj)%ktX6ZkpaMXpc}B4SDV`7a@>w+7k|9al{cc#>cHzJrp9+TbBS)e zkU!C@2tb~DUX?GGPl~n9+>`&k@cr7~$PE`T*PU%f5!pafo%Z;2tyjAcKf1T0sM_}u zyyd(uu6g#0A)C;cfCG-{fz3;zzuX(L{lX@VXHjk{HmNKR>BFNg{0e*RUL^lQZ{-1kG%p|Mh+3lC@p%>C;~2J_=oy;)UkZFr-`-Vi%~te2`Y zCEsPik<*JrWL$F8b&s~o@BVaN*6*Dp5jOiBM|Qav+qG;8zJ&aWT-MBm2D>N@Ly%q; zdHwII@Ch{jwvh7KPwXc>6+NpScTncB5l7h6wZt}v7g@yNhqYw+%AM2LrGv3CoO^^= zCd4VoCzo3UC0NQLM^56kc*hm2I>Po{SMAhH+i%R0b=k)}aw$5$tc0W;v{7*s>}aFo#@6cZ+x zh{X5HbH;5lh;z-!=EVsgNt2?8hbPcKEYx|scfaUwW(?b=<-yFepj7v%(u zY~l+3@7lb}sQgkSW?OBIR?`Blg<-w${IenmR}mY2WV34 zH5`wr`6%jCXU<@qM-t-oKqynwT1S&VpuW0P=_JWHG#U=R(`>jNzwyb`?=hB_Fi!Lh zpdqA{XCOZ9fVUkN?Uk6uSEfJz?|9^e4w>%K*K8j;xHTSOs5LQJUZ3kQ^aBx>2Tpw# z+}50_14>>)Rf-emh#rUQ!YSBoqgQYlV~B-FKq;M2Q5zz7ziaEda3jZiHK)&`>gAa# zBb}47?)ink4d&au&BnnG4OQi4s=|deZ3n4)E@E+0i~E1Zx=FvVAL%&->kbOkxaH8x zfY1BnK(c}I%kq1n+Hpf7u=;^`yX(f8`Czz}FulmW-TTmOZ~={&^i&v3HLw#%oITrW z`6kt0@yx5%r|lVch`=IaIEz6Y!kBQ^%YYxD44F^pVs_gyIq9|cH}xIdnEx3l4)Ph zA*j9=5W&q+zC*~*#=pA}nt9M-bwHW?D^J}2xqi^beY+G=<3ikv!n?3<1PB#1212O> zY?{az(o(CkV_T}T-6rfc0n%O_f929OD85|y&}Z3T%<5@93Fm^axG^soC;MY5bt~}H~P&Z3II1ROK+0Mf!9fR8`iyRF2*L$5#{K^Mol###n zf_m^oZch}qc_oQEHiFQm^5hU-HYuOUSoQCijG;UIr(mlyLzAbQpYA z`UD<^>4AoGd__Hmp#9Z~;{=Q8?C*FUyaLC3+EBv)r}fI$ghag>%L1_=b0DQDo27s_ z+%i}p{Y8{n>`#Cx`TUNeKiW!i)ny%rvSFj|i>%xn5wjGl9UBg7iO3h^*9MIuLQDtd z^TlGAs-sQP|M&~TNwVX6EQH-y!+pM^mxK)ef`({ z^_NKVSUSPSAqF@`BY$<#l^2UzYA6IT7lyt>o+F|-Iw;m*Xq8_bTdXnL+e!&=b43@@ zv|^TA6N!>_Qm$2(Pl}{!#V^Aqx(dp2ia%Pm6P8)LC3eyQs_ z;yG=!&h*tu>W9TrMq*0L@Ps@~q-HhBNh8@S7_LvC4o+e;4A|j3!3h+djb;F#_ZX;g zD%pSIKL^tR+dzW*x^B~W?HerAT-W!Or23YV(NM(wNhB`!qv@eQ9M`fc2P{unALaOe z>P8jEbLfU{AQ}eg)6^#Pcngfj_>C@>OXt*$Qy*bcEl`v8A8V}k!wuDh_5j9I1*a!^ zr1zoSDnfN0(PQ37&S2-+Itn*Fu_mMp5n}irgAuJ5s!X62{S{|wGmR+B^>}#iP^S}~ z``XTi|HiCGkNU&)xpp^Qhxi*KJkEk}%3T5odzj<`oX0Ee-5x~_oX>zQsIH1lI^s*|DsbzZOMwE9V~cN2mSmWze1Zl5pk`;6hd zAUfae61tY^ZsT>25i{HezJoeec~pnf=1Kl^e(*FU1G%c!tev6L9M!)5yj*Rx-bs$W zb82M4V(J_?>jxU-R{G$~OC7B^2CcuWusLEeru~#XGW|O-EgHaKTFoo_deF40AVqtP z#h&*l(_^jwymEVebdbX{A5OlnnuN@t{jH%CVOeI}Dy~tPA zW*u|aHnSC19&F#o@bl4E&Cb<)*qr4-QQLoWf(eV1HGb#bNr;dz)P6KQqPr-?+P@zp zE)u^y7WC+$0qsie<}pJctj#G=NhnFkJ%qM**->ki&D8S`b?~eaSH%iUxlPg|1L8l= z?22yp1207A1zf~x3Aw)F>h}*w0 zaw&*+5!wxd%=9ygA{>D{d4ziYn$cNFA&nVXU>_Ej8LEHAXICy+tR6lCd`uY}Zu+N} zL5nxS`>hKfml7EV&-QygMe6=}xu^dQ z@Di|__d8&37umLAeo$9*R&REoG9454iKg_-PtUTz*E5B?z_6+&qd&TfafeN}cFUw) z?<>T_>EpUamtj={7~*H% zRX;4EJq?WAZht3>s$cE<`*-Q`rbEmrbP2{;a6K;>$G?-y_qyr0z74d(v{_GeJ>yil zjTq{In0`976jLA1rd0wht~!)Zs@02&Ih2@!7;>i~9LRhiX*Ozt&|&H#Wnc=j2kJlg zHW_#I^=A#rw^Ceg2XQ=~3s?LMfDf*>Nd7)^@|gPBv#}{@J~a#_G&^uMimP(v?w2`T zC9t{=JcHUQo;fmM&(av<#L7N>Rhai-U6Br2M@B9gCS7g2CoD5e zW$l0ibgE%vRk7wcseJy^zjK+CKhGHBg>Fz8<#H+A%LNXZTD3fKWAggLsp=VoWA$bs zIo9NcyfKDilxxZvX-VPXxvH zQ@iz-=I=W!p}@4B4z$yvv}w=g#+1RG;9ozn?OC14v?XB>GQ(8el24$baFg+ObK)u; zVy1f-wlC)qw9)d~rUQ(|@|d3u;;(X{AFiB_!k#PbrKLQMV+=dQ=(tsx95XW#)QH^y zK%}zsSDbB^jVL%){4-v0xFft1^SZIbFXQr=*~?EIS?nJdC~k(uWRfxkeSAeuJjQ*c zPl2Jf+ev45-h;LzBiqj07mdP!M=b@KDMN|FY|@C}kaszhaat8;q7%eFUQW2SXP~a{ zzkLj|0=-umC?j^QzsU%7#Cs6CkFSI;?*8fm8e``v&Hc7Q*u2Tl#&-311+!iCxIw75 zOkR(smubK*+KOf9x*7y1*OAE5{ z@-01-r`hfKHfi=t9_ye4ddF2NWkLA^Bv=T zu5PO?51D2z6hR^9+3-8(!HMPLsn*aOdO6oYjo5ky_OYLaa?}_Kdg6lu{!{1__=keS#B1 zV*0BS0zG*Bxu=$wUrGBLKjznm#IM+PgJUZ0Zjp%i!K^C80S;vT%rs6-w93kIrmV~^ zw?Livj?vvS$2Vt&BC0wJ%?%Zp5&3bh!Qb-z_BdfwXn*7(e?^g%zv@NvfkHQSonLFr z^ZQ(*$@xGZS-Z4ZZS*q-@?#5$d5;)~QkEQWQU1C>+yD;)rpCJNU*r7`CPg$}ZN#5n zRpH>~G`gaGKNPdXW2=Q_HTznA1gH>uAdjKeD$I_DfFF0ZJ=^zZ%6W#!@w<{BN@j!GG)Xg7(a{xirQF3J+j@-}6Y*7&78H z#!(2aGspKVYzC0ZbLw^2Zq7&>_|`99u2a{5 z&!{ZTmv@PYyeK`TITGA+y2ZchqBu8im;<$djN(LJvYcU8+^9#x2?{D{vlFjJi?d&k zOEFs+O+oXuDoKs`2$z_U<0jUxb1G-44`QWZ(%!MfS_nF9O+%y9=nR?e{F6sNp7QsY zVC=|H!E6N7T;HYME(Ie~Q^Jy!Tz-f&Jzo`>2Xyfq#}U~zpTaiUU+f}YVr)OjPh+e19O_cdvQ)) zxJ18q@Tp~()Ci86@b^d**AFSF#P9Pi4=M^-P-)2ko(!k|n&-{UXNK-=q~m_FtLdiY=LBDZh#9)$V};?MAUIQ=85A%6`V#70|) zL?SoxxEci#bwgwc!mM_oaX6iYN};nqOHAQ=NJ+69TMV zKq!Flm1M;kY|k~(DW7a3#^|vi)po3^gy}&JQeV9-lw#p?7xA)rhZ>_Zzjx`)a)Ilv zoYLektiAK$KbBDF7L{Ja!q7h7vp&J&)RgmoG{TLKS3yuNl z-OCE86JSM8WpGjz6QeQq-rOD!Ok%g~q<-#;4H?PcN+Z>05|ygb`78|duHiL88TR{x zEgRo6mYjUWVd?oax$RDqoJ=Up$>N9YuhzHM>U|#g3iX2~B*`?H6$ii*7?HdmcB^)8 z+GAz}|6SjbbvKTJ_z%vAJ(GFO3Y>V3i;Mj1M$%)B>4)C~d2pSkSBTaGVR#>_aYv<& zBfao3&I^^o-+{Dd(%Z|aXF#;$T7M|ecW(|Lv3)-@T~D=3#mFbOpCJycM?a9|5JYYc z4$k)c+y(uZn7k1+-%^(e5Ohwvc%6ytZ(Mcq(s+N)m@h#lcKYkB7Z=qUX7ra1I+d$k zAxBP`jMI#%=f>{7l+m|F1Zwl)DLP1u_H}<`{_eUym#U*t@NP}Vl)`aJHOPQjoE0MX z$rO$Kf?9@{En|3$?FkHEYzU9Yz^H|U6=gHb3@&&M2RH89zW zF5kJd1;hk@md7n$EIZCL)#I44+Lo-%tAVVKtS_rY(yg4;4~LSK8r9bdYJiNX#+q%h z^wQm>*POV@a72%^njMoP$g8HOj_a!znldq$d3ia))=Y-}IxClW?{@#)2hU$nUqn>i z2{=6wyQj2xnAu0e+xXEeC_;$=MU}l z6+M9&5J_DwHXwR4Szod-GhWRTNdr!qrSv%GPP$pK933g7Q8xjc9}1BOJz^<9XP*_q zr(#3?&g!5p0VYlJsz6gaRGIymj|_ltm9hhi z+VI>M&z`TT>C2liPoOcVduD#M3Z4&*dW5+8v@nKUF!)K8? z&JTC@eB~`Woc?nrb`8Rc4OtL_DAOno;nJ!+urkYeAm3iFX-&;IV@F7+I3%I>nGx$1>B8m8QWVzO z5;=N@apjJ*HEllj<3$j1m zoltx)Rwo?3x!NJY>-xL+^^6*^w~NsEy&$r25U;MK(CkYn65^3Ig>3H9W- z)xK?l9pa@O8D$+xIGL;#^-JLhyr~D@vxmR($)*YC+gI11XbGO!m{q;`c_%&Jn@<;8 zqKwdelp5d=jdu(&B)Ewru7~+>ynL7nn8QrQFpR?v*PwPP1220tRPHg}I@u{tX6EY$ z7PD1@3@pwuY|OS$wr3u@1B(!f?sAXIoM2J{0Zp37X?}!4Mdj~D z-i^w@a7>U{vz0U-3>qAZXbKG@lrhU|*A_Z1tMzqU1Gb6KY?{*}BU%cZ+I!RruN+_j zvubYJu2vD^W`~{o0*HK|B?hq>(@db)xNW9IvU{!^H=#s)EUUy5a2X-L&!m-b?om&j z`YVQnMrHpTR0@1)l%rSn7fl~vtOUZzXPoa$?I?>Y4?`!4-R9IMB1Nuj!)UW4VeF~|(Xugrvk-qu3`p!Dz(&&fOritJG)Ed!qMV+ z>0{@NXq46xJ61r$&@*2d5fd!mH(`~ScIgVbiAc=>^X|x$oQAQ4;IT#g?(^Fk;=lE5 zU6dg8fbHH~EoAH(C@3b=YU=b+#9to2T_Qb;C)=do7;|Y?9Fv~CpQWn~NiQbA79iwZ1=*&b0G zS2LCV1P!~U;t_M$8D$KEECEeah{mGp!v4eo8=O+KCB#=RJfcRzXEWwfPD|T9$UqhG@?je$0e%F&(>Yww3;1+74Bsc&^K)Aoo9$@V=32fv? z2cv`*>@f}cO|Hw6D}#yeJHldQ1uPuISKQ)OQ%Ir0GgX7qKW56%E1UPLB{3`%b-Q=!3b#~Q>DK>tP=0pOfqF5LaZQJ$j5*iSSYx-bkKE)A(H_?7UZq#vrtnKM+ zkJq=SmB%wR+vuTPwFSvO5LrxXj1x5eG${#Q<+c(TxW?6IMJAt_y(pTLan3CDK%Who$>-nR+Fm(F-uQ~&#-*^Z5|3FZ@kMdL3Fcy3mW5iR; z#d8X3z)-2KdBbMJyp5%c%w>3J8qb-_vVlzHVu;2ezHz0W@BSEgA33)M>fW|WGC^|y z4V^}nYky-I6Kb@BVL!Oltk3n`@4SkvlCk?y%Jj^iw&QtJgT}Mma)myGp>0*&k%egE6?-MK79K8R((;~f*esnC zxCb6*%4?i`^NZqKx`LFiww}@c*u#tRx`|Fb?~LcGsf&!h@W9M?<)~>&ZDXEdd+T7=gYKPWe<)-;nND3P8wT1Q5giumFhH*Zp#7dQxO6 zbj@q(#5elBD~>Fy??0v{Qf|0a zNAXmktrwOrR&^Q#?SiwAF~d#+wqIp-CPL-Cb_~i+HB4>fTkiip9Db3bH9Y;b0rk6u zA8#Ql`>px%j{xKj^uhBdY@0GA)$!G7x=QqN0#u^H-iU6N{mcZd(pF#uYLlWm9*@Go zviV-i$eySh&!XA|E_W;I5eVU4D{6;KP%oH6Lio^|@0i*Bs#hwdxHQ?n>*s^$@i$wA zvD-=N4;(YJ1+Al!PIH&&OV-s$LG$(Dj&@bzIa_xOyRT3{C^v%kfHdb&<1r`X38T?a z|87GeGW^uX^|i)6SkNvM(B24EJTZpk>fL;ZzY7O0SW z?)j@HS-Vg7zx7fnzP)%+G9gzLx61k{1S**CrY`@;yxFp8KhB_t`rh6q*h&O_(9$FW zLWP$5@hRvN{8DcSYklCu&`JHE6WyJ0g`L%faio1@Gzk!$T#=Q8FJ{^ZZGVC-3du^A zdfiepXxw?MWbGtJ zWf?$3HRXJ+sfP-VE+ona7lQDM1q8ahm^Tb`z{)qypSXw^%@AP%cCTyua2I$w0NVMuDR2|R1x&-vCwNP`^FAnQE|ptt_|W`lbg8>$n>hFDX7 zBt$;WyB)1&giqY?S|0Vs9@Pp`7njZ$=AD81l(Iklk%F3P+#kJv-89q1fBMGxC)6^g zjdQ-Asx+~@od}j#!)zqXlHxglD6@nrX#@D zQ<7^N(r4q(o>@YFb4RQJa5XuP*otyUBHIUcTP)Yf(Dh6j0GPzmkbyEjrd@I76|MRs zz2z1`9l=Uao9`;-1YPB4F+9xT-{M7d58|S*O`SEbL zJG6M!$x>Y>Hiw#Brt+{&!tA?H+OIoTVsOyZ_XZ+~j^-e`QUwNV<9j~fF^J!)YnU{{ zM#StWEeI+PceH48+Ydo9t91f45sEZ(zC>C&f;>Mris=F5RS?@o%o$GWwS76U6XdpP zgqj!e##`-~HpDW@s$v?!XS-RMd>~O9_&AFUFv;Z;^4W<3&r~0_|GZ76l7h@oo-;HV z?fRTzf-u*RdF3Vz%rl5eG0^9j{Plb-jsI7V#WlDE^SD}7KjchKQ(JD``ImO_pdVk( zFnYf<<=4Ff(IXp%`5SX&PbG-G3aR2VQ2PU_UPw2tNn})=3RnEPbzLWi;F}fCX3BKo zru$i@pTs4Svkb?^)Om3R*N$}A1DO!h$FxFUY>=uqEP$7??Mu=!xp z3`d@`SiDzzX@{MPO(XId^!Q@zk(3*zk-@hP$8E^hH;r9fRLHrn(UNQ?f}QkY4>|{# zx?}=s?N>!e*#Y>pAF_q`z*4TI5EiugDo7OdKvb^ z?m+JC&lx1$L;beU-&=q)iwGY{Wjs^Mr=OI5uk<4ir`6pLF4{H9WYbWUm9*i8p(noW z&J=p0LbGGUBeVK^!bZ@}Z-~)Ed0-&nD5&*Q_lTAUMkq;+B&v=PKWnoSN6$9diGMgS zPO@U@0+Y>c7q36HUHkf&;<>pTu?%pPLd3CiFGnf^)I6JN%^U1I&WVAb!ask`=5z=m zn@QN>!2m_5nmcDQ;VBTD$gV@jQolX+PqWRx&IJ~wlcbAtc}+sa*@5a`w_h4hH-_Qe zYwVkgW%iOxtNNsP4r!v&pe__KCYD5zJrbQeKrtRGL!w|t*|v*$sV*DR&|?ZH`w~KB=<}B68^rsW(%lJ>kje-l2~)XDi*5EeuA#jomu1r4pR%fp)R243VBJsT zsp@^7wPb$Ykh&f=I#{2()rBHU5# zmnqK%#utGHv+7P|xNd&%u@J1^p%4>rn`mRW1`?(~{He47pt@d$lDsAYqH5X1aL zC3b^6zBAY!z1lrsFhgOru>wYh)(1+Y@^eFCJlA`o=h|bTOzR!}+~a}9WmDb_cuf*9 za@(x1JB{rtpQ|c0&+)*uVCR(Gk2(SZ&p}c*agEdm2@O{E$M20=?LYtYHR{7Sb3wH| z%HC!=Y4~p(WGN1g-qfREM??F;u&%5^TCZ!FdPfg^jP}EqbALQ&# zSndp$VIMXD20fg>ul#@)hs|Dl+=+asVM%7v&O2$^ze7uXg&g{?UJmi#<|MehI`vgN z>dpUR7}SVgqx9{chzvH&&I4QX<j`uwiVFc8 z@#BppiqR=WWO5Tnn@lKv4E@0hC|UuRmlEVvYZLRxu1Xy~rU`uO9^}g~A_?Wpp&3xI z6O<+wzD-@8JTphSCOQ!kqmChN=k?vfG#T1!!tlX*V3@K}UJnrd#$45S{eIvW^h<)o z367!}UH>`9;A&rTPWGsu`>Jl2ST>=^FQQU)o0u^hjavwF8|5>BdhC7pgkK&Uf-z9v z#}{YOQZO;qN6w9szV-uyJb^Koug&~;t^XXj(HAJ4Ag_z{0PH?EK_rT{f+yTvUQKKt zM8NA$B9Zg+n^h>L6m(T!)oiXnQjpZlh=z+?MdP5rxftt;50-6FuI(u$^5@vl_-`!^ zOILKemTf`d{IvNNKIlGUx9hJ~6(%sSvYJvh03)Hg1oY?J!(J&0olyqBJ!KUOYUfuo zty8aYtK35i8n3Hzn!zU9P?b_Am}V&S!)UStigXFJ1NdG#=n1W*VcnqS^;`4gC{+bC z33Y{_DFE?dyciX;4BQD2W7L=iw{4mZWPXrtVmaLIZ}jzgJ>4bE7MFFiu`X7q<=klV zb_CO3+wh3w;+dS|#Wpe_6JE)s-Z;7Qf|%9Pu9zqNV!*5 z`0Hm#6YW@@%4=F3H@?|cyr@Wdt`EjTM)dRZ9Zb+|fAhgDldnuJ3_>nEC|X+Hx2q(4 z((Dp}>?-ByB{A^_hUDnLONQx4hLOL3sY&{DB}L3zO4Rk;hMA+fK6IzLS!XWEJnN75 z(ATy5yG6+>JzIn=cgiY-DkvK@$FkJ_y!w<;OC*0qz_mI%2dV4kM9duAAQ5eOdFS5; zFX8p@FwyLvxmMyFpXsx_2v;@3!MeoLwC&KZ+my;)lNI)->x{}GCy|%JW z1XdRa_D4KBB$nonkV2XsH%H9$sUNa2qbfdU?GTTGIT4Z26m+vh~I(w}4Mr-+b zVi`2DtzY1_Uq8Y;S>K317f9}>C%YJhQLkgWfk(#*W?>WkdNNV7NU<}&S=Ao6&r1QR zhf^@l)fhz>+Y!}Ni#)7#p>yrVa2BqXtw$SrepV!aNY6&*J;m+NB;XL)PT(F^M zL9uu62$33yui4W=r!-jc94t&{_2JbTjdTj?q6u3iz|Ru>J0O33KOObbt~`636s6yE zo(-==QdU(`*^bO~B67XQn69r zo6&5bILWM315>5y3?EZ#O#l;ApGUWT-nVQKO3>bJ-?vH_ko*KLGzOGP>3AJt@=>lm zmk=gqU@qJ*0-J!&5O_7#&j!#Jv&QGRp{qJQ-l6R~)O%l#@U?lkFm)V9SbuOLy{k}m zE5r5mcMYAlTWMHr$V8Q4G@uxVDMJ#Y6-y>PtFb=s^h!SV*NE7UI?PvHW}-pKUZ?kh z%60zrciQi}Y$!vnm0aZS3452T%8Lt6C=u~o%rh9`E=={d3s&+*Ss$wx8LZ;&9+W4{yK)GkDyp!2xA?sygRD~4`S5!AocCR?wDH|O_ifARxm3d>sqf{&aSjj}RYfJa-AvgexV8;rzn{EbPn-O+DFtQ% zh`{uy)&K*tezKQzByaYJ(#ZL7l?5NeOTpz;&EyP+iE5l3k=q(8{({Nit8n0_pc+5-uIjP%kOnX%Re9a3^ z{Ai&rT*bQJTi%0fzVvom$G74CJHJ_3@0iA4WVFbLuqN$Qy;HHM1{u?$ESG{Anyui# z4JRWdmPcaJc@FcUK0bP`T}GaLPui@w8 z&$T!$m>!lXJ3763pO1|h^tv1Zj$p`K>^Bj{mWPB-BF34x9tGdAttcLnIgBLmW^?j_2p4&GVxky=u$QISPQ zH+)k{3&`zXu5j-weP1t;&WFAj^t@j@GpW(g0HLdY@y8#W)Jjr2B@Ph$fc6fm-Q!I{ zuG;o?QE-zTJQ3MDnYI9DxhPxqr+#-u<}YFn!*C^iDTa1Tcjm!}Iw-o^sk+jnbIgY*B3N26ye{JLFDvf80R zL$v#IyN#bK#p`(hrgByi=6qKg5Tx5ABifV-;{{4Gx}2|Z#VmfxM^<6Z{T}2FcKu{}6k+=Mb;G2Jej2JfzbT7=l1H}DX6mIjuY@Xy&4X87 z!>VJ3yC|-4IFx>lZ@mj?!0m4s%-a33!_KP+f9_J6AFa>@N0tw#Bf_ z2wOUK%N!dxvwm{-rzwN-!>vvI=6o2pDzjjtX-8Yib%XtVk%#_B#4gQ zFumFL#mpxsllKO-AlC5YguUg?dcueTs?#s zSw9dj=-nlaL?c>>{*Ioa_wMNr)IHPlpY9HYqIT7;kVIf1^Gg7P-b>#J2-#ewe;5{2 znQ1Nu)Htxr{3`SRU1NizR)lekujm1VtvCp@|ESOA8Rylt3!1g7R@@)vAr!SET*X5I z$fSIZr#h#WY!8e_5S{Aw)6=!^&zm@pO__(Ft)cZMEkaahr0!7e;y@{^cP9G0=81#k zYM&$-gdDNZS`L$*olcdIyp59e*si*-PIr&^H>I_oA<|S%S*W>1-L2iS> zTDwqLLyxW9@sptIo#4aj9=XUO)IMSrfS@s^j#HYDEkn+8D%CJxpNi~ z67Sjok|39{sU>6aSN+D5UsS%XHvjZ|Xuv6L0Rp%j^iUuqR~NGMTtDQ3wfb4Dammun z^%;|+4len*YxK`U%|>JJvf_C%O#Tua2utI9*#BUnC9;%h(0W}mP&$$ONF zQces;&W}c9(B6C(N_wnf1}8?%17Y{ecSv{>(+?!5UeUiEZ-Uv@1A69K?D>CP^EAy5 zoB%=k`*&Y*TGR<5Wk=0qtTVExO$$g5`eunTc?SD7-^GC3uOvDGa!g4eISZL5KneH?yUE77MrM^owyzF2h|SGI<&^*HSaRa!;87b z%;TN3LeP)yQ@4(T03`!YJ`o`g;`WE25jCxwSQ*RVD_e3&3mDrYx&COTBwu&2W3!d( zLqm8pW3(m@(23)Y(2%iwbS6p|y4f86NWPAq%NbP^&wbla>#zRlM=dEb2bu``n0hWw z#p)2N(zF`bb6$ZY=?f!f#6SD>GurwN#=dcU^eJs|kYCCN(@Ht}@Gx_QKcxm35gN%6 zV8?AycnWn(QJKYFdZJ?{NoRF+f)p63926f4$(VGolD*1^f8ohCLNvR{9~SK|pz$?z zLL&N&2atE!#O6dC%YXt$cT*W_W4U zMKF^2tIyadf~4^9?Yc}Lj-U%<1Z~QWwS(^;^&kD)>?vOdAt_gH(X4AZhZKPF7zx*l z$m%J$9&iX6n4=*ae3C$524%NaSnMso}LB6 zDHOQ_?KkQx57zAxl;pP+h-zAU)V#fHLZ}6##LlmG+p$~h8z%GW@-@EsH~~Qtju|qt z)Lq|coi%1bX3W!KMtJ`}%-sAAk6L@Y;yH+0Pwp|yzF~t5w+sKK^WH-;Qh<>C<`Fxm z=Ff+fY?G4OR(Yj}>ANut0><~Dhj|JTJR0I1(Sn@ScHTg+Zam1Dmh^%15)~nm36I5D zI_cvouJ^-qBIh61sNgndCv#rm0#0btx* z$B%B8LMM45FP|(#oM6^sKyP`7VR@x)Yl!rUv>;x$u#%j3%Udyt1>{K6w7^#Am}@v@&B*S=(O|t*%RQ4AJ6<{rPYuaBX{#A`(iSze3{iMuVVs@w zE7D%*swKOge46HxwNLJdFavT(gcJOmp{Jrm|GM63R)k`oqY=MaIO%J9`nHF>al8N0 zZNO*^X6pG_(3IxF_2=(;@K!fE+c^Y6Wh5GK!HubLBdW8l6P>^VtcF_!dpDsocW9usm7{6XPuu+Vwj61xJs_r9+(y!Lla5R} znP&?F?}Ej@6>_|jM>kP8R@;?zqcN3mOtsO$|Cs}trn>l@!En+koS}!!hG9rhQBFVd ze`X%ptLiDkt1nk`cX^$%Mt8AvWtNL|P2%gYh=y zFbC(b>?8(t-o;wo+uqgvRFI2luw(r{bDTmq(i`#k*3$a(6A}0cxo4gJ zFPc0#%5_S~_X~T{(jNj$Ynos68mhYOr$0kMwvN#>zYd~>Vq7M|P8$y!eOaIhML&*V zCFqc3V=rf>*m!z$8T5UzJy%D#3j;^A!a~0{g4zMsCq3a-`IYezx&==lN%9;f&a-8AoJIA1v;PLNsfKHgu~ zE<%-c_}}V+B_Y^W;h(JW_MGrMC0bZl803*xA5^OF7#3+${4Z&*5=GUO^;-RdyB@Tx z&Ua*3ozMg`qgQfR)VwR2!zSZ_6)CjzLR*Qth({7K-C;YmLrt6Pw$ocQI!shifW>-R z;IY-9cf1bY6d_~CnzIs>E-bn#GRHD2V{Ij^Am+s(312(Kl-4f8^V9#|x$GzG_y0E9h-Ch$X9PnimsVHCie&1}* z&?ca~?63EJX7Bxv`4rjYHkae-@~CR_ZrgwPobJ#Hf@+9@kjoF9u#^N0R7;TXjr`;H zW@vK|%>;Lkr2KGg_)Kar{1H$#Z*FbFm>E^D-fZ>^c$cg~HJvE}5+=c&k^p!y)O6E? z>D{MBj)ExGz1!Q-doG;ozxC~)4`30}3(pL80u;zuEEd-P#?z)CJ>rk__{{vqsy_&Z?M*I?$hY@%Ok6@o+BFVGwg%$V;0p8{v?#*fCqBRQx+bAiT%7s zmIWCj30H@LER(yZ_Z|@)6K2184-Qx4f%T6 zWya=8cw+>a z=Qk&%$>HVSvHchbKPIXrOaq=uGE*Sd|IKTUK$$$|IndxW1FmqnHJ2VD5!hAzzHaoN zwLaOYT~-kx!Q6>_H#pd;&V(7sG@avxBGpu|Z?pjc4%FKAl;p$RJI|8XkmB159wBEk z3J4~pQNt1)F8Bxl>RMPEk9EBP*NGEjbC-b_5vOYyBcb-TTij$+&-%`xbnoLx7Zz3{ z+QhCR5cvQ0M|fU=FS-$^6|F@mJloyyI7v$Sw@K z_eg75NY=@%8t3a@^9kNnD1;o8S)UcO zW{Z%*Bt$5$tTedK0Y$9h#j(&=pmGScJI;aARHv;A-q*W}FVZa&9YCe*MZNNZ zAk?W6Ur5%^rY{CAd6LWB`7}`Ye)+ulNlB8$@Aqb4g^Rao(opOVN~V9!C(GNo1HU9s zlj=uqV67+g&oTH4=*(Jgjt|8JaQj58nF@H+R6d7Xm3*W;#PU(R(CLqBex(d2hgn;M zAX6f1K1gg!7W!ckNf@y7wPzogc=obU6ac*-dEqG@3ITJr^qbDNFhEp=Ubs`icjE(s z2=+8sl5Ssdh?G8U99YOZ3xh^s`Uo~?y{#jp``_C9r(KKx%}q>$ zg_DbY)wNCj(=$DnQ^L1>bdW7Nf_1>HDj>;749k8NH9k7O|L35tb@t}=O;tnPq32Xa zp00cYpB$xtl`wBkP5?%W#r3VX7VggY3UjlCJhJGTmqn{iP#mKLbe=DMZbT%W|L8Mx z6`Z_DeHliMEaK+{n#$m=n(q#!u#ARYC~_& zO}xWGf7k1&miR88Kt2Mdt~+6_CS9|=hfN@f1)BtN7@~^s9TW#U0&yVOFSj;*pqX7S zOumoZp(x4td~Sfs9hCWGh@ER@d}6e<@1)OVy=#EhD4Ydk3;1o5ZkGo_W+GDZSYOww z;eV|&P4(!KR~y^7v(C$xHT2$e z@myYZ;fo;6Z@CV2tw}>$k4|K$IZ_7+6WcLWOcdP47yP4OWcIDk3kfxFXVnPQp$?x& zcSEcRHfM(hG}J*iCE_b|6>E3fBUjDtT?hb--Zh*tvOtlFNW?UAyaws;>zW9FtqvgG z^ieVXx26Ct@Fb%t_CFcTdrhu~nJDRjOL}JYxND30+pnU%;w%b6^Q+%$in4*2I*=5; zFwy>M_WGCr|E^IGltSioBL-WxZ75aYiC0{c5TEs6wX*ep^Lyp!V(eo4 zb3W?@^h%SoB@-{2&uy}(SKkYrU)|*{5{VN73C}RIQ)CWJ$)%o9*eY~(QOnL@AUo%v z4ZZgpd3DiN+&por0ls%{P_97Ol~|sS*TC8IuFs#Z3ax+6Z_cWi zmZ=JSfCIYSTX+%2nEamcFq=t6SZL~^;O`s%ad`qER=t2%qq+b9gRQTA{G1Cv-Q8ml z&X0?K=&omR%ZWEWLvwh3jT6w3tMHvXK->?ruko5i4;=&7b*rtJi*8sTIC4mf5JSv% z_s8HU^m}s(5}K-o?>-ljC{he<&OWZm`j94Pr@*EJ1atQM|>xVtnq0P4}!!w^Jvs zQ`~HY&Z#x@uIq1yw8vlj2IfyfS-GlTfU~)}B6(3z5nZtkqzZUL*u?IU%D*#CBK5Tj z*Us>U%7|Z_5kD~`ZZPqdEmlqf_wRn&$l-8WT!rFayC@IJUjY9qzaxwq#3>Q*L7NTo}X0HefR;>WGd9kiC6hOLcEI3_=Pzv+YOMl^XT8k$39Q=~Q z$b{d0NFtro-$$x}zfUPQ-!)YPXN1S}TQXj{F%#R;wb|%7#%7zlG^j@Uz7ml?H1#Bm z%mHl=<3~`4O%1srnzufXpZr_K>gzekDYJqsoU@Sdu0bF+{yTnNz|{MVF1^?D!G)rH zI5|h0Z1@JWiyn9-b8kiuuom0+0dPlDG|?h_MqYaua)0mhW>|2?USayOsqA<5*WYw0 z53U&EKFzjMcm?`Hkfr=-zGM7Q%@?gvC*)0c`$w+QbHl7GGdSo;4t-7(RYFo?$LjHc zcf_Ob9Ja};m(TYi1}EbA%D#*)cPu352ldQbmJW{d7EjvHtd@1~SzemmN!DS%cgqFr zd(gfy!7tz6hK~I>cOSq1@P15JRwd#Rr`_skXVSSUjre4_XOama%f5PiJ1VB9X=tiB zw}p+WCS0~e+q7~~3o8D~7VjJpAQ5pDr8?Ara|}frV*w;qM79VW{vDOv9O7L%P_Pj> zpzmkC6C0+f0}9I_KdcaUWbm>L>)+dP@&TC6mqV%(D{W#7vKpw*1Ex*-0e%h%bLS|e z+aC7GDX{2VvpfH>SE0=u9y3iXIHAPBbjz3f<;|CnBC7y%>{TTm1BKF?^}YcVp+;&_ zZ|d2mutG%wFQqH}YWap!4(N$3PcQL)HyFwRYfOqwFKpojj?if@+CN(nNwnx`%y%qF z*jj!10iAe8A{tC~-9jXu6p!W*N!Dr5^*PLE)5VJ+)3Z$J#(R&RIqd8_mBY5HV|FHp z0BXb|HeWcAeS!@ecmF89gl-<3R1c5!#)F(i!GKCah)0b6c!_5fV|eEGSH^U9kqm~c z{+W5HFrWgEcR?iYQgJzI)BcVGrSfJyy#UG|yRSLuHzb~&Qk;1M^3F8?;xJyfVXgwQBD@f#Z{lGoS zqkgYL*ZJcPi_f{3F@!91v5O*Un`OYy{K(P;V$L<4Wx_QT{H^!iL26lfF1|-0TN|^4 zlA*}s!dRuJEu5mqENX*$0e)&^_NA_?9rr1ThB1Xc$KN;hJtK+m*6zVN8gdBP{8E!d zNb*AXdTF21{=9Y(K}c!{sn$dXec|I7WEFvz8pqx&9LSSXKfm1^`ieSq(i#4GWj_uy zEi!0$?6a{HB5x$Y#}{CMhJ_`-G{F#BnwQG%pL;ghQi$-5Dy84vt&}fH^O;p!$|Z;2 zaYymV?Wb$48D=^Zn{eo>8791FNGi!q=ZZ7^@9Z;W&`U1}nBevWmZSkXgn%>PNv~aw zC56XiA+oN$>u-_tHIs($hyPMxTgCN{|Imy%7Ai2|vLIev8t zk=roQD9K>_-1yBrimRd&L*@#!q1SBeWf=i&9zwh1o(6y+WE-(t8P_^f6iyzY#fkfz>_102WI6K4n`}NeZY9DHJ}LA) z`RbzwOjOvpSl3=%?_H(^zWl7AVtfPdBi55oJ~s=)ThLPAlOS36`ckxRVMURh9|YB> zE^>NVf+k8t-P!9fDAeA10QEYWMfm`3dju`0#`xftw+lJre*?tQ zAF<Wd zFgYsk&yl?@^p*%EV7sE?roS_H@hv2X+ddTRZpzUr)KPH)bfjM+Jkc^?EJ)-eQ{N}{ zJN@22>oSoY5Ftv(|}Q6^IR227}=An`d}7N>bj}7KHoLMzEa{hPfX0~)c%p3;+Ub`R>t6h+QyQU zZe-gNuMwSXnO7Wz&@}~Cj8F8J`G7PdA{i!U11d5}^!;RgzG9f%0;!<7OVk4uNzFPhm{K;qUe#-HcF9**aOEt63#^jU&1fGvTNG6WG z4IZO+BA7lNPa7aBsxzbAAmZ6YE^{yuRS=wE9_hWWSIQ*vF+m>>bBbYS{$8)E4WIls z;7mqUyhG@X8tS;0&TkWkru>VL=#m8e4XyO#{rWH2PBTtBDLaIRdFOdzeGIzQrKJ^C_n= z>HfCPUZVPwuOc+DnFvD}9u#$4ThULGFZIptB)+gGMbH>Nvd*%XhOt$Z_#vTll;^Hl z?>)p4IB)OM$}c2kadVI|VW!=BQs{6gv)wFh)M_K`lqn=6SN@eZN>4v~G#|HFE0 zU9&1c8_KE-*LJ$I`htFVQo#rErIi-f&u6rZDJJs72~AAA^3_{G)Rq}TEeK5|5veV( z9|LTDCNllHh#l|nOtb}b^S5;cw+$YWmI?*N!hh&>=Aj3dJ0#)46_7fWDIy}{52?D@ zBB?rIaeimAEdC+mdli_Fm$f;IIHz6V`!w874lR-U{CN|B1iptQ2C1<3eeN%5=zW63 zLI2eXtZB!NX?9uQ_--IV{?HVYLU(@=jO|9-c~aN((`97jT0jkdYgx$xL1@#{nc$x~ z!@TH}jePu==48kv_u7+pfSob-VA+Mv=}W@Tgp#YwC~=1svQfn40|tW<6_7wpSjktD zzUp>C=+M7g^6yv)Wy878n2s{Bv4;<0NFEtkc z5|$#SjyzxT-vP7#wr=D0-Gk$R0m^-oZXcXTWjxbha~rafx%DHGM-pOpXATx+-4fzq zl5IgG{@*D_+-eSJ}t%rUn z1VtanGESy|Dt4@Q?;&LKqswEP3eNXb;;duy5LzSTPkA9nOG)__?LaG;K_vt zI}`$mLWp)8&|~)q8DW`6c|{0Xhm25|5KpZez(iSHGkB(npsE<1#}E6g&V*h_9OyUH zdE|`Q2Rbklj*?+}1p!mpPDOeOEZLD&xqUy{dCg__nU24`0B?eLenUo5!rZIIoEi~{ zg!SNL?v3JGY219WIts5g1!x?qGl;xKx`q%b(tTNp4;6O|YG(OZharJh6g2QYRMI}L2MiPOhMBU~^c zd?@mT&*nsj-3~Afw+$oq0SqKEvPl`laMC0n%KHYerzzsLK=XgrU-l`5tB=0Uv&KZ_ zH5&!0+@jw~5B8H!WQ5Z>938E91PRFvtb4)XAwkyA3G?^_1d~-)4ws7n^Y)wBb9iTirEXqn za?y!3^|(lXs3&Pd?F{5QL^cSb38CK)FL5dAov?`H;8@MTe%%v7T^u3}w*~00g_yIo zg6!Wu>%LbnN#?yeT7|pMA67O#73zgltGa9^+F~LS4L4mtY%P}hIkNdu;1PXe2f-C1 z8?DywULK)$>(`oz0UKXpPBQPehBZ*kiKw^1hXrpmUmA))_Q;mAaI>3c_@Y_=%~m#z zF2WiyR$Rc|S7cyOMq&`M3RW7zf`1j+DqG?5=X~&3lg@4&9_#oPogSP?Gp(S6&f7Nf z!V}=(`uVe%M8xkd_M&p(2KrDo6bt+DOm{=Vw5eHURQdn=<}uOHiXXR7!+YbhTnscBGU<)HX-dexv5E2HO@{p_ z6Js}*6@@81Sp=%&J%-_KHCZ8GmEhfv%zf$FTWdZeHE)jbf`z!A{CAm z@<6nM=%Mu>*HXtF^Q#IEw*ZrIMgqJri$>QovhKrW<>Tl^_Fo6p3VnNBhnu9s9L6wQ z8L~X;Ok|eERFS{$QzS5pBdsFQuNe6=H$h_%|8kQcr(*JXSIK0E!mD^n5;LYC_aauC zG+&%6v0!jWm72SVOAA1T+>k(TA*}Y7a}7ke4Y6+ zty#=WTN{S#dn$)6bNJP&>s>=7bB5lwk| zEAeU=W==Gciq;mTk|5fNx4v$|U%D9F`G~!US6gBvgaKRU^@EtM7oBX*l^0?NLr&1L zn4I3sNA@Vn->)J-c-ji6YcK4So6_~-$fU!B=?GgTyh+Vk?pnkkVnS7_G$}9y1xa3n z-ulSL8fyY=&eTAHvGl5XZrYxdV|*iy&$XzWV3?aSgZMTngbPc;lpiFS!5nQl3RFmixuEFXiJ6D~3c85K z?!;fITm8-1g(4p(ajlsdk#^UFkryS&wjip@3s^-z-!S8lJHxSklSI~RB;f**wa&0i zf#eI$QA2K_nZs{<+Ja&xE$i80R@o%#AeUFz4>500q=paJ1N5z}HG7Iq-iXZ)48rjl z(z-fvGYV~Cgv{R*B_k)HyC+TOL?UW6ax-0#;cLy*vvibdB@r_L^!!0uTVt16@SVL; zZtn=*QH%EZ0nn2rpG~OSJC=VIy>B%r`0u=Z3`8MxPK*&eIxXbJy9ZVw1?M0tgA)Vp zVAGydC;=X=x!z!79jSil{|6Lc;)mI~)v!4&!;2i|*tXGX_` zN$ia>4GJvcQvOWaoQ#`t#*gPwKcU}QSE}`d#@$bV&j*2*FjG_fyercsX2Zj-p-yiJJg7K*+zh6UgcuO20i#<3sb%MUPfSs{(`-knacz!ce*AR&{kD z5GWkx@rk~en+@cio~H5V56`OM&?FSd0IHy%&FI~xOz3WYdpp1Ppf`d!KX67rJqEla zCVscHt3AtvL~;q*fPx;q4)-WQ!!o4#-PryyC&IS&N!3gD()?EwV$Hn)L+RGZS7~x~ zET5j?1hbyNx!XAl#*xle|9D#D-o)MBo~HSRr!}*@1KG>j+Dco8k=a1yd2#(Y55_AU zdm`PZ;28WiKUKT2zjy;L)DwQ?0o|{%tWHu8v5dyPP0hp$T@OTm|7G=CJjVzxSma=y zOkB9x8C!|ZJ|dcm`T%eLy&o2(=t84l+oA?9p9Q<2b~%M{}nLau7= z9vNh_PojuCs-2uI39c)GQXDXT*FXI{n5K3FoY@CmrP7SK&?Fci#NYCe3I;nPvfme( zm2hb?f*dvn#5)2|Xq?M@s%78_-d(_R*h`<7IgLpsu$S*A5L5CQm0ZHbK6k*f#20AT z{aB`@t99m6Q;-`-PohPp-q&_JkPZvK`$V3z@(eG8SrY(tnK$zASYEI~`=kJbj ztK5{Akt5&E!Zl)#h`~J!+S)PFkgKVHM8Jja(J5dc5rWOqpM|8c%v^G3VvHUPSa(2; z3xAn4wIv@Rai5y!>;5Pj8!(saxPVrqY){md%%Ak0=i&gG&60XAhI)KeGtRhp7{xMc zed!kemWmPqp-A1j7LTO{ok92#b(3nCJ?ye1*j%p)?Jqw%7#6pL^ASffh7)8Ciy%X^ zX=SVqwMm6LJy8MP-bgZ0-qv{KJk8Wre4lJH|=C(OcO{p8bv;-ruuw79c@AibzbUdO(%!!~53iDhkTR?b#-a<(snJ zr2Iw@_lJyX+jG>|&gmuQg; zgX!lyW367^#fnsQr{4!ZQNM}R!7|l327-}lvGlG?+pZK|Sma2{X2X*F%%kG(nZC6# zCHzFk%fZ@HCO#Y#1dpoMjS(TNFrVA}w^wyM^h`ZgZYqZC7R*OVm<6{Q6XB7)`XhD85_###do%v8G<4VaOeYk}Mn09x*ioqR!~TvX$Iq3$O9 zOgroKVkSn@r9--{lXz5-_Z?76C7>2%UaH5)u1EU#&f?K;+A1b8cFF73tCLpTj6dca zfu=n#C0g!X?y%?mE<8Ph_P&7!k|Dwm$PRDtT1u2Lui>Efz^B}w|G_d@qy$JIvjweA z4L!l|tR@rKd;zHJ<4aTw#1QY6t+c?u<_|}1X^>Rf=(DE=zhHL`uTG_AJ6*((_*phy z!e&AdKgWU2aq`>=lh(c(K4%_@J|Nz{N#`4qm@$=n)FTEEcIdlN=aXAuuC{WwXxabX zONL&Mh}itM764Hry7E4>oks}Zac>$py?TH{d+j!E`_kegD3zQGL+*W;wb_1Pge`rpu3)~Z{X3w39*ceT z-@0CJajG^Calao}#5p2%s(8PO0Y9}{l~fKes@fF?sfSAjyF>k4C}}m59@@}XjFy1y zB%1v$jZzD~N{dziwH?2`Xyi|>dz4eMK+1rX2CcT9R%bdP|g!PS0 zg#+?Fv&2(}VLC8tNkEvuchZ3hJ{UG!cc06TMc?vieAoajPe|BM%E9&RGj^Vq_OOyV z&>D1*w{CR+(DmyC%lgZ+=8m}WHqA}Hx$Vku)JZ+T$DEP~_gF@lFiNga3%2kclTK95 zk`spIJ@_hBp|<_9Z_-m=utrMcaTh+HN_DwX0F2oRIsZ^KMzA}+0%-jZgbeSu`|v)Z z=tNt{?=?QH4d`N(#GCUmYHgqO5e}X~-a~*7`7xi@6VW18|uck}we6Nh+ z*@$4O)#q3s7ya62!9JP@I*!J_C0i>7YCkmTjpHv!+H~d#+pHMQFBcu-iye!MBILlz z((CrU{1ccEB)t?&1PMn*6XkF{BVe94kMB4J zzbVu59}$2z&_$GktgH;8`ZmJ%!Y97Pb#FS6<+o;yneEq~Kx1J3^kmML@y%lQMGX82 z7SXjoYj(T2c=BzK-me%dKscE&i{xpUa1tVTqm&QHUxpQXJ4eEs9SVb>&flSxFk$k<60YV?Odx9 zpG**fms0OzGiqA1=A-2cHqvy9d6$$U6j(l4ud5gqal-S&Xf;di8Y8`Ep+x+kAs&xvKg59p4rwvT-&htNK@C$PtiTk`;y zd!+!`Jv!WeW^W?%0)J$n7T($M5GZ+#P0ektsti+(SRi!$5)g1C@s3|x-SIEh*f@6* z8)$oXT|rHIwfpNAW|`XzL@r6Chkqc1N$Oj4bs(s2X0d7VSQVQp5LIPS6OgHBO3r^b{FUi;tK_}GF9L@?TP#P) zSB>l@r?Kl<-ypk7{BDPcn^I($gfPL)dP*+&niG6dW_N|p#r=>hlLCFVc-BR}6HTgB zi)BxgmGch<6~Z)dHwM$ateAVsd_>2{KEw+7zAec(CE-!Nrq{ofRuhtaO6_}oghv4F zP4z|iTg``@cx>o8spvWbxbom7OUxyUq_UkkNz~KrReN(im&6=bG0=_pWY=jzBPHO0 znfmH)2z``E->|;uutq*NBKz%iNj?OV-TY%}Ur1E)ONsBvJqRM=4)Q@c1z&Hy%p}}U zWI`Ci50Vy)dore1dck@yDz2O2_@&71MAasq0QN6HOPZ_}6J50xb1 zn0+!mUJ4;JbD!NLG=;I}(BM#ni+fE(1s|a1r@I##pglGA^ghC`rv#-ky<4NfcG;KT zVjO4=FBh0xz=vg2fNyaCr30SRw`Mg4ki2%${6FgFq?3h)Me~{P?A}}Hw0EJSz2)#k zm!blI3#@A=t?g>O$I{M-LMdO(xjtWX2t$N;&?V5O{*!Udai05;Y`PlzB%0vpL!eX4E^}F%Dz^9npwI-z1MtGm_*f22<62EC^ z!;bBk;S|Q1H(TKfQ>i!8l78Gq0gEQkdVY-CnS)e)Z)=7K@V4bIFQU{!Le-r@Ur^Q@ z-kVX!3lj|&7Q2?d>Gzz7-yY^CX&0ssI>;DGht6wH$5TP^v9%mmOi9MsX;v{{TU!)VSAOT%#UJf@VryT<0Lh0iT+S81{ z7()2thF{Z3VODdqHKSciNDs+t&E5^4M_7q}gC%3SOt&T)A_(WFFQ3o}XhQwP=>>Ky z#1d;F2P|Zk<#RxqMP!00RIW&F08Sp{A-_t|%$s$MaM(HoM0dlKh|%sn1=^_` zF(#jMK~rQEk{NTWOz@4h8rGqdZ;lkF*9{E?oyi5cYjx9w5fegAX*9jgdYF#D&@YN* z;gpbsB&TX(TiKdT8tE-(V#tXdiDc{Z-+WkonhfXIg6VQr$Q&oo$KV0P$Q>`v2>FRH z5RO{bCZdyQUw2CZHLi4)jv?axEU5O7WsW%HKgIE@{y(Yt|1$1Mix6gm=RA z@J2Y{;ps1`eg1pQs7{TlHB?$sGBe_f%$dMm7s51+QBgv8Tq#=5+A#Xx3gbS<)-m`| zHPuxI$m@x-UGpYh&KynZ%K#>TAa~@_DKuPll9zCL$G0A~SLY&H=GylD2#_Ky{AVtY z!QvXLySDQe^db3Mk^JSA9{8q%_;Y*hneT z&Fq-il+bR#XAfsjQOk{bId2Huro?fX3;3oUnE^=oTYm6s>BYzPh!&|4&9co6ZEt(4 zaMl|wJ|z%GLUQTR#&V~2I(!Sa)Ba(=Mh#QeXrW?vk-iO%7}Gtb`8;E#x{V%5hz7aR zo-*s6c~6q)N{@%? z-QQhJvct48V>cqqqzmrsTA&iF1a~bKmc2%Ax6mh}lA=8yaaq~m_!!c9ZO8^I` zM!wxg-UtKaw8TPJi!PluPQ!;u_UT)g&=LbM1eh%fU`bPjI@&vhmDND#AESuoXi88j zMkK`Fr1PcdMzS67Sf=6qOhg65&OL(860;TzC!H93g-9tF=JT^X64W^?-xv;rxRF=} zJr2r~rv7;&=lP^1|8U?Z8tO`F4?ucYoEg_G?=f+xJ}w76*M)l!(&Kro0cE&EUvJIo z@}!>?V_j(GdlOF8w-h4s;Zr*^%yCfoQpb(35bgV(Pb9RRQux_j32?1NxIp)1W8x$k zhW>=j7R&e5*=Ez8)Eh9X<{7PgEuwWstoDG#l_cw-0I9~Ta*4r=H2giTDH15FS~BUt z;_wXvW|vfN$~uC=qFgeBM3j&XPUV8mOHOb-LQsUT{P&%q8IL&70GW!0YpReB@d-%X zp2K3vk0@F%kqlI$B07@22Tq`~-NAZHU^3fxS)IKdGWHpJVHngEAC`riIjRk$1r3lj zJgtR!lrtu3epEuy_Wlu^LoGIZ0?0HJDxNe5! zT_IC-@-aV{An!iVBPBrm#IExO`rS@i+N0#NJ1k|ywZkAu_Im=F{D$Lb4XsSG__0zaj4F>^?zdx2af zrOz04;DyJ%BWjSl1kR40%6aci+6|&DpMuWA18Sus!bEf@pDAPdC6?Q7FQa*kW6CN* zeHGw*40#xMazjz^*P8tdhZ&)Jx%hs@Khn*is&WxfAC9rdHv~Yg^5Yomaw6%OJp&~v z@!FM9Nf=b%^QZQtgzTV#LL46rKd(8iR>Mfkkluw|huS-2`uCti2o^=ym%Yg{F8xB+ zGm~xLdHq)Uwyx=xIgccV$a^orl^cZ=Bi29>c9Hr$3!9=VL!;5qA0D)zXBG*yRBZvp z!cR6wS;;Ks9t|xsEKq^{OLfGO9)D3<23Y_iB6japy~v=)L%q8}y5P2VypD*2$ z7~LzYX-F}@jY*F}sN~X~7ihWJ>9z_7go@@lw2uiF{kT8OS3)dZqabk%k2mgXEw@%z z>wLIo@dVM3S=$ukxBeQQvBFj`TFC$lhbST!zl}_45 zwaZpv&Jh8RS{+e$e+E=@PTA0>vO_1`+S}(c8;iP72v6475Gsx49);U&2M4yi$X8~X z#<$IRS9GF|!7wpCB5<5v!b%Lu_tA&M@N0lY`FXAY)&y-Yxa+ilCg zTT2SfxBul*S6e+(D8a-o2dKn)Lq!hN(f1j*Zd~fFLTXd976@MG zR{pQ+6S@NNI}<>vF#$JQ)vefD0nF{#ah8W8F^X}f^EqXV=I|OL0iyCUlG0oFG^Jv) z1f)JC9a8EgGC=A&9HZ~+PYznzeU-qM*I|<=pm_n)+bgu6{L}-ZxV?*XX0oFsL$u5@ zl1KU!MW1?L$Xc%z8U!u9|2=2ax(X^QStOoRW~TY?HxBoYk@6n{AZhqMOgi22kNP#g z+PuzCuy&js?3!7pL-+=xpl>vlk~=xACTAaaN_X1V`sAKCbA!iNqGdBaG%54&2(u-F z4kDH(!Ph`$)Yw#j?9tWE`t#^s37rnH*pi(Eo*V+O%P!YDj=z8&CbTdq!9FAHgo|G) zCA0$;40YSfMT10ky3izQU;C`nLw^Ft4G5d}IX5yKcAJoy+MZn#mvF+6eHInof zb9UoU5&wRFJ^#jH0 z-F5afNmJ!c8{4+AK;Z$K{z4E01fce7-ny}Fz_^<08g05BP<(xRt6Dvte3GaRW1oZ$ zSIQ`M^c(<-woi6=se@OJVLi6d6P#GATVKQteS#zNN?oRwm?44wz{g<(-4_7f_}`gc zMV2+&3_Z!1_Tc=LadY2R=>UDhhZ(H}@p9UG!^RV>){6^o zC;-Z=^fIekq<2Y~Oh%crdKwXj&^fVU0JbfPSMFcBFBvLKZMlPS_#J*MK-9*xD6+=Ljfr%_|0!6t7lw>K?eN-=fVr zHzrv&ZG-{hO34W`?G=J+|I9NYyyY!dx5E?=;K4SqLHjaaK%V6hnYyW$k>?u>YkQ9K z?JjuVWb^?E4*?6EQ{2lNfYE2E7B}xVzYAK=Tq7b{^{j7_U}Fj5FZxCd06+OVytx+9 z6zBpksKS8uGs;CZRZKIOyOUK5$P;D|c)8If zYukgSNj7;d5BatcD>vbC_G58jsSBwT=d&+<4X!mW_NvT&dKyMgr}ZSfwUaKRDS6B; zil~0ihr$H=-E!#~2F^h8xVXmq2bZs1(aY7N=?HP&Mr{Jod~*y$;8Gh{!+d)~wCeMg0|QX1={{MY>y zHVH1Q08li9qE@wT^+r4?hmNt__i;zk{dTmK6;e<)!Dyu4uWyFguBU-@LYG;jWY(-^ zPaOPdM76z=r%n-@y9%3Et>rBUpFU8B_gcY2cYwyel^%&Z;8i~o;p=83NivV1`!0tJ z2>U4yX&`>87KgixjfqZm=N> zcWZL6*K~Uu)gzkbvgZCdTbzFpS9KTMwiPhK>$T~c4^3(Ql{Z(k3) z-|vY^&BemguTft_JE9chcYqJD<6qbBgm#)qJFQ~L(iM|S4^3pI_m0XLs~yS{ho(>6 z#npsVNlU)Fs;$4(GXt|G9o3DOs_p&H9v9E~^b_ULLFTOKA$Yjd1pGVXSml_s2X%<` zZ5A6nX&3mq0+ja&xvL>ti21!!VOkmsuL6ktUMY1}X*dA&f}YFkRjWxB-eI~XaAJ-GH0MsAuTQu0S|LT`zYX(^DoO^tnWz(f=_8Pfn#ZSz`#IwERM)e?P*h81B!i< z>gw%ThquzUj-by(n3eqzsu(%0*mqgl7@m8Bq+`#K%twLUmu z9-oKqoD?0Ug#JC$fToZ?_qQm?!5pBj7mslsk78549(NjhZTG0H!wHVJdV*v_PU@V2 zgMdRlIc0s-v8W%xwvciaIq{>p35S{ZHX5DDyi5Dzz2+a zEaqoqV6--cCJJ58rUa3%1;JDswrjxFbP0s#y~2RJ4Xrh&t9Hh@^NB2H+!uE~fWIN5 z@cyI;0F%e-&74zJ+fO8CVTMVW2w|9q8zOj8Z}mnLUizmPYqIMybtEx^e8$Y;J<{EB z3DJ<={zzzVK%V%ap6^IckV{LX+g|Qhp399KD8|w^Cw*0sy1ixLle4264BfPpxJZ-f z#$FK;=g=1>WA=1)w{MLC_$RAMQr{nZ;U=i~$cj({F;HFH5N-Je-d9RjfEdIyXe?TA z(jqdVP5@e3q-Lo$2|B_{wv2`NAy#c=>$**AxAu|TjgXf?n&$5Di8B8NR?krP{7!;a z%LA+gDUl4#5Q2>?s5R~Uh&t1{Sly{hk*!#Yza6lxh&TVmzQ3pCy%<(;1o53lC(t?& z246Xnb0Iw@O(>99bZ0qOGuB=kHHar&gWSNsBB_tugWZt2Btr>z+y7;lUpcZ#SC9Md3d2iw%c`HKKP z)6S>`mHS(DYW*+OC@b+}ocF?4{=5Z2u+0JZphknq-T1(~nas&-t<+)H_bsmYY5(!n zwr_2~<3Z=!=CZc#hPH+WvJSQ{i1M%1OQ@EZ8~XqNKoV=_hxK@)?oK1Sf$vb1W}aao z1ex;V_mYfv#I~w6{KQWkN@y^yyXy^+NkY&GzK+n?E4(x8mZDd|nx01DB&UYMo+!Ks zKtlWiUlAJTXaeUMl6V7=(0Xs=(AKghd@$Rn8>{ykj&;M`XSR~fY~+sJ{2dSm%>2*^ zWkurRrI6SHzSv&&3((ZR9>#1h%-ogpt!|W6aflqF^iA&kk+;LGb1rL4HVqI48EggG zJ-@;BzT`dd_YORmd4ZUU(1iSb)9gF!u{G*nt~5u^R?@(dgPxpqpY6f>?V|UfXazVy zh|4SmycJ5Y)Kn~JhmjxnT>!#Kdf~lJm*Wla+YNFcx+$&_E7$Ltd~R)qt;U$9u6vL> zB=tmEb+8=@z-FIsN2YQ46#Yh{@}|8IuL2p$gOr|=E^rNlUoA8b%h z!!O00ZolH!^2vs$#-D#KDQ@yewZ8p7ei_(dj%f`#n!xlnTrv*nZ3&H{*!8w+p)@-3 zQ^|A$Fjo{{ESvnrh*((bj$&C5j6)bqIgqD;HfJ7mE-h1Z*s21duIXCU4XF|!ZyW_)2s0Z?$mN0>;Gl~N)38m-) zPJY#{SbINs zL4RkmDJe{|B$@0&;2t;PTZ|_YQJgJ2f9pcIq?HkGg9daNm;WU{UcFD!1mURgN3(82 z!BzH#H@PU!uw({lqX6W5KEM>%YR=kz7>u(3*%TJJh}ArwI%CbVYQ&#asMhst3vAJ%oExF#9r+~Y|TGoG7nqX z*)+Eww*tc?Jjyxw4#1as^h4KQZg4bSxj~e;LS{ySD;k2n4YQ}iH?aHbvp*_>^G~G31w&FjF9PSZ8!zYWdx$kx^$AE^1&16{1oTSdCe;( zqoMRFuV+5Tp;zbdae$0Z`nC~Mo?e`C1zh84yfnwY4v3mKHWU0FLb&lM+XCET#z1dkuu2;HFh}ET$EZ&x_anvMpHn3Qd#X6-ZPayze6Gr472!H z1+ErbAF-mUz%H;LE;7O+CBfL6dcp&ynfpb4f^8^XGgcecvVV(X&dG2vd)3WgbNg?fAnO2tH zkjKE3$6%Pd+2(6jl>x{lTBSIy>Big}xVZ=KzgCr-_{dBiyX${K$af3&E4(L=Hb=y# zD_!yB1JbV_H(0yz5HOLbe2uWXO{lYb{kS61{B)1OCy~A8$DrC+KP|+liwtqb zm)Q3ghv@Qn2XAIc!%>PS$lqHchV*CZ+A|NIp4O;cd-6n^f9CNiDC*7cBh72nl?U7F z@xSqlVND=yr9q`Sqoz$Q%`oF*@KZY;!0X3`AV+u062oMif3PL9tLfRzl@UC-Q=liL z$=h3%nO;mtX=F)kY8ujAfy`FAl|@?$Muh367@o56xM`1oVdn;|Z~mRm{d!S!C`jWW zF8yKdGD8jbr`yPk{(fJHT>N@a3z{qt$};sFKNYRKQh0@7ZIn$KAO5;7_i{gLg03u) ztU>NV z`L<+(swxp*DQ>;1ENiXIrlp3ipKtmWu#Exj91a32uyc}n^g*mUNDjeFoj8OCJVcep zDTFc{Ym4)Uyw78tY=u#+7(HSf<(Pq@IPz%DC)W*8-c<8*lG6Z2Mbky_4y2?fur!ZFRzEgG-*#T8t6b{ax5+&4Z7h_MomDXy-JNF zjXei5l473p@lXcVyjW?kwVYf<-=u9SzMAc&E3&Q_@DqQ6R8gY~*hx7k3KSKvIfy+E z8Y;Xkfl7d0#YEj)^cedB*6#&;?;1F3XK{ih;f;YOklMNy=YYadZ>_mxIpSpkS+0MY z*S8P+OdLHAvu;NCW|?MCBd7Hz`O5~~p(XvgkqoCYxSwSZ>6MJSag<>0rXfC@4kG&M zrNpP4N4Ggt!^6G~ZxE5T>D6LmO%iv($iv2^YNo zyZ*y)ti84ayoCx&j>@9ffI zoraybfA%qdtE_>^7Hqpi^)A0BO#{=BG~lCCrScAKFHfm#Yj0UZ zXBPs@{FY6Ol>6xhjqiXt*`_N)H2L;7Cc0>O|K|J$u%3iU(w~nwBEe;NIAB$*6dswE zLhz~;pNo*sr#@G6lZ>>WW8TKmyS%ZNc>~<{8y4kL-`3Q?$h1@1z%w&`*nw7n2Z7vC zMoX$XzScW>WOk6IwagI;kC@A+kMAn#pZw?JG#rB*{Mhdu$``YhkvmV2WMlHf8aSYZ z<19n-TiPeD^ezt-(=5~!Nz?m5 zgh0L#00cJv4u0qw90B)BY;de=S~1MonkZWUXm>OIStM@YnR?AQ84Dws(zlI)Jc%;Y z|MY~es)O1CB^G72$G|~C5Ur$>oG_ilkd+`);&@KAb8ym{cOfac**}LFz5|+h5(h_ZA|*f*`$?t^A|@w>rn0fgt3q2(d98nj#kT zZK3tsM~JifGWx^^p&&$>pFa_ACHDoy32dydul5$kZ-sU*geS`hTe%7=$-fm=IxNpzSMo_>$Zprr|xFm{l!hr?R5OGA# zxX&2ZYB`5SMVaI)ZY?HCBk_0Ja->lN877aDvk-&OluV}_QE4I>fVtdJEu~j@n!E5R&bWZdMI2cl@p^JSJydH~64UMzeJ?W#OaaS7Hbd}loSMb# zn?t5sqR}7uYJ8eDvV+>)_nQxR<0+~dB!XS3{~H)DzYUOiV3l%gPOreT`MiM_)-acxKncaN%oH?VVQU(EkV8VZv^0P?zEhvL@Ev;j`|Uj`KawHV zxdAUs7FsH^MTup{+ik7bbVfOA+xZmNfjLhJO$rH6^-RkI{i0Twd#ATbr{@PceWN0z zke$KJdhf@skb}ZON|;IEl)PM)yY#v;4)IIg{!<$%Q&Q4a0cB)Q3&dlLRrwVAN&r-Z z*D;UsB8~F7$V$C@{vEBf6+84=ZGm{UHR#5}S`Uw_E}xYa-!85m6jS(!+mrijS_P7L zW(^DZ7G-b}SoVx)P=M}hpX~tz2Qa9bmxHqBmV?e0VzTUy4t>QGI1Y$3a1_L6`5@^3 z=?ieLvmBV$-43*cW|C!QdXbKXQM{q#g5|?P*LCt4<7`{5yMAYAO$Wg?BiPK1>pRvS z|FKtCOB*4hj#nmfI>br57La@uQ~ipgfpXms^ZWRj?FMR?##WnR_(Xy@=k|A6A;Zux z%YJU(ZvLXr>p8Uq#0msl_<5V4O@lc?6TcJev}F=oBNVxL1xqa1>e0PW+^RP%uXX^G z$$hUq_!WNUun9@-CKLZkqZ`mZC&+-`@)M7VInHc|In#phuk)$rbXqj^q+i8*XlzO^ zdNylq-rV)`B((EJP%tW;RihcRBH$UN51i@^6kPqT#aw^_oEx2XjnGyK=drRzqdiYc zeqWH-BYwT#iu@^`(JOTGn`GwKz7?+pTIstYk0m36HVBuH%Haz|c(ueY22h`$2Qqq; zP7E$NSg<+-tI6*kNDgZT-G;HBAXq?V#*FB7PpoBgeQjVyrKhtN`iVR4*jcwu#jYuB z-2MYiWnT9M`FP~wBoYvQ0ktxJJ#VhHxJWS+-9&$M;~V{Mr9gpcZh`0g+dCRGj0>kj zm5`jcZwoaktWBQF+*wDqxmX$UV86aDp}_GE~>F%WnDNI0jdg$UOsA?#od9i zm2zk*$SBxI)F^VW^CAGYy%COdra3Cj)azK^Sli<>l;q;le2bZG*vG?x#^1E`W^oxc zpt0$aye}^#-{6nkCT8Y*9&IwB#Xe1x#R|ET(*u+cPsrU!@%~a6&&|C!?y6r2p>5Hw2u$$K{C)BH z6Rmu`r)emh@*F0yrhtiEheSm_ACmHGd_cFS9_I*TQpmg!YWq{8gdr64jEA~9x*m(2 zylZWCaIOXT@Y->{%-@qRmviAN3Ww$7G(a{q_eau!yjqvxplJSc8s)>vT=q>O{?||f zR@jqk{esz z0?2s=vJbO*;lrB$1#OZWHiw)h>%vXjKx*4bjt`M~hMpxhEHOyLGAIfW$4X(Vf@l<3 zda(Cvla_kTWN?h{)$3z1XOu)V#&?yGSGLJeZORXavr*!|dQ2biR7XG_Px7eaq}K>Fy=fYp=8>IbeKk^vJEqZ@r*cQCm%N}K-RuSjb9pSwT4v%Vwsmj&dr56S;1j-_%(Of%Gamo_|)Nd)TK>9s#lsV+kD)w^Dp_rneX*oX}2mzc|qAdyl zPNCrLOtn>%;})l9<`v(TzR{RMs51at`>-tQi{OuDH^$3JsT++fC*`cnKbo#0*hPNb zgt*%TvH}zVKehZ^2$+uV_j(gU@#{TG58`pl1iB}Nt&h33UI})i5-T`dUP>^1@vtu9 zCDL6_CXw|IZ4OU7lU?Dx7Qh5Pxsfplf)kz;E-Mfyz=HnCkUdpP*1KKWs!)s-acvc% z2vym2&R-k1DXK$H3yLWBJxNSdKu8xDAjH6*;(q^j4YY)Uwsg2Rii3KO$LuDn=8T&D z^aR)N-S2N&N>T|>nLhd9!Y3}|?EIIOdT*9D!9O)3*J<8nlzz&6xfG9@8MJ8y|Fb#L zAPWH%*diw8p<@EwzLPm)`N}gH?3v~;2Z4uLu5>yRHS0t+k>jPD*u6@+Rfd zdr*Pc)7K>MP&D67U%wF|w2kEDkfhR*Uof=Y7LOlQhVqtm`7NBgXJlt)7}4VzqyujB zVwAuL$fGRfTujMFWOFM{yf8C~ya{Hv3ktI@Mtmxx)4=*e zLvv*4i?Ww{#S;DQLXH5cd(JdeNzix^Fl1Yv)1$#^oQ*q01MuC{ri83GEZJgP0`5*? zghuLLe|4^qcbF8mqa0oP9RzC4BH_hzpt?aPDkxnJF=n z4C8$T5&$U_bF{DUhQlXgDA{0z^eg=JfK3-7e%~|$6wVX2Y+P=LLpSdWHwq1p`0`Ne zxtey1bP9)UVfdf+J12|TQh$tvoSWGozN;Hz!2jr>-3kEL9;6&t6{52xCZv`%0(E@+ zn)#UtZdLc6)8j^|&6%lWy(WPWA2b9P;zdw%k z`Sc&;esSwUqNHqnBASP~g?pp$Cj>#bE+D4x>V~UIQMdE(nWdwjxzVVDjhY!ecv8{& z3_guQ2`b#uQc}-6ptlekwo=%khsR!C{Lh&<(|+KAvn_<4b1DsbB&3-ORCR6$z8#`in5D7lHA;wjVU7PI@6ChoKx#n(VCLU z$fut##7@!z6^z?T>Gk4DLJn6q-rF!TyYk(ZAi}OS%oqIN8S?*~YfXHaR^1C=t``ZG z!9HUux2#^EaQ|H%NDv=ewZ7P3Uq^)xk)zI%=zby~6X`5J^1jU{7>EDP-5=jm`6EF5 z7fWmNw|TH1ibdMF@0Ng$+#?H2n5;0tR;Ow6_CeN4V)=}^Q+r>tnx&ATw6ab? zwM(V{o+Rw^fH%tdw9X6EkBlO^}8qU`h*J*Z;R^0q-iFWHb4m! zB(dCd+%+g3U$98=sWIeU4>H#Gj}ZlxVP{aV6);Tg#}|xg^zs0_aJT_5YN$q!VWejn zSkWUPtT8wjqF+40kq1Cv+ghg!34%6Ub5(mCsBPb)aQU4R2i{$i$FC-rba6UmyvCBd zfn()cu=iqR1|e(vDL#1?5xfLoM;(x1e0{E2u{57(E&~TQRLGB|uH_}VQmmA;@RSj) zl2Z=FFhC-z=3{K-{>j0~nV^Ao*c(gF#S@;9M~em~x9iV3e8Wg{sL#yJwpk%)g;AY| z(a{~1-eS~=Sk~2p2Lnxdg8&3vJF>L_@XN!r1R2D`AVOt^!i)=ce_AptOuniG;DO)q zquVyj{Zh#{?Argmw$^nDj%DJL7gCnIT(bRVpUmM2?{iRIdGz~G1kc5Kk&)i*nTsPv z#}L9R&Y8yz?_(elD>wnVRWVE*1M6Gzp$T~JC2~)@M2io_@S{=TVt8Q9K3#iirN^$j9Axtw2ehDVhUeCa zOE1jC>R%;p26Rek8|?8lJ|n!|I5?d?Vlf2=*$rTH#FRFKaQs?W9Qjcsn zBb~wB=y3zk1|=Y-E}Fur4`5Z)09LwKx&!<>8<>C6(4-;(hk-loCf%~^$CEsOt<#d( zwlc%dexxtYRm9|2a{@G<#D2F>#21`F;b^N1Cdl;W?%&P+c!uxIqt@s~7K{YeLiODra-&xA0MK z7h_ecn;IeF6TT!uj;#~3Y-zFpuLDaiGh1tq7`74c@Y2y`C@57-y4R0-5cKPg_f%H$ z(qU(m)qtR3+#Tr52sn|b@Wy2~-n1qvPkm@I-sV3(KI`Pg!r~KqYwWKZvqIKo;IG4B z*47?D@nD8HYp=oOF~XQGwy7ZbYl*r*<(Db68QD@oT^j(Pdp>GeY<2IWQ<`jvmYS9G z8P2Deh?;$9%B_NYQ zrWN@FuO%A*TpQ{b@0dkq%=dY4-%D^(CCdT_X;;m8&X}pDX3zk0Pz4{N0a+51`eMsr z1XAva)3EG-Gu`9we$~C*tDuagx>t(Y4;RR9!QK(W9F73jGxeBE>i}l@pcJ593 zmjF{t12f`<7GP@uGo_uP@+A(%>DTK^?I^YgQFc~OT>GspvZbBi^&CQp#OxH8w>?z8 zSByPp(hdV;8>{5xm4tz|KhK{nZ9VH{D{#;4H1gL3%pS7Vm}i z%u!8K?if$9!$FgzF&~_S6#aBQT2P9^acxQ)?F%4WWWAGg3H7C(O0LcTw3kN5JtjXMbQDeyk~9tm)A{U3~oPeoEjm@~Z=VBXsZRV&?~s7O|{U zDYUghIWjcIPX5u3FXzKH`_sd)*OTZ;g7W}NK(xO=6~vGTZ@hTr%mEWPT25#Tu;P0j zt;tJXhr=0YVHh4q4})?C;x+2qh*-!6yV{czj$JzGLeBe!+S{lM=D;?Q9yYS(wY{1z zra7|~Sj<4lyv(V3k)r3+P=-?YRC2*Hyv|;-%46yy*)a!5(5$2_K3}hta>DRgtKpbKq3+HlBI&Pb*d{Nx)&~-DJ5$${W05C<>hP|W< z;d4(rAsvr0aYdt90`|aJ;c^fSHF=Xmryj9O5{g_g;S#=UAAd;|NkvCJhSPu2Aos1ryyVU>zU%L8uKi%?z^)RGVXy|35D zRSg{9SRGT*CCxbU12B~Yg52;;XwlIf(SOFrNI%@h=!0w`^I`2$FKoIV&f%w#mNk4d zp(~cP%%cPWPI$$qIYgs}NtEqjYBye_4&k7kJ6_JR2~r*C%Blgg{JEab_G*L*TKz5K ze?3X|nmMkUKQ74Mz+sUvWXRyb3@v1LJJq88ziw&rsv*rXz~v{davV`HcqHe)72{Ld z7dzsVVd00t7rFSl0%1v+k4^J|qYZ5yER~;|l`#YO|eyJTRsWF|Ac zHUV++Kl`^HbU2OoY5n$!R;2PWJBcnK6h29=P(n>(##5-+*}Q-Elqxtz2SxDCK2!T> zdrN4FZBiQ<2IijKGOEal^o9$ZDp-91@D1FXD0Bu)t2?4Vra7rjvCL1bH$VaJcL1nS z2;Q_uc!H&<(Gq$RWy7VaL0K;d;nQ%>D6*r>$1`NV<8c2%R3z$WsrZ8t}n zo)DY8+B=8n7t|kBuLilqF8l_kIBk-RZ?{zJwCGxeVDDjkjrPiufn;)wKS^3?J%13C zaK#Dvx>0z)DcZo@#XxC7G`iiII>J}>hA==9x)7ogW!LC)8*-`@fNAAqmbL-6!o{UA zzLM3Po1W@TDATRCJlJ?;rC*wMFyqu0QDbq%wK`3OMiKkVRO2&>U4 zpG5SZJ^J}M#2C|=2B?jq01Jv_eqoC1VEiy42cX_bhri^bdlWwcxLGqbpB%M_m=j!q zL*F@wRsH)8wvmZB=RF!kVwgr_vxI-^YGXf0t%5d92Wwt{Bpm%DR}aw}fBv_pX=qMo z`duG-YNoyHN=e^bU~He<|3)}}Fu;htBb<<9@TNL~Ys}m6tQA5ou4Axe>Nq+ifpM)7 zaJ4qNBOUnlx*F4F`0xccdFsQ2b$1*@@EI_ZncZ-!GTmpd(PbKpCIDRTHsOS&UIk~{sDq$QK4vJKJd3Exr;&6?nxleCxk=2Sn zO1)pgXabOV+UHNoH4mbF+2$F7bXf`yX6?yY3^(Adxi@9OM$ z&vjroZsnmyztgk=-&YejfA<3``WFBr5Ir5k?h|rPj3=AEAp6lK>AesJIoS6>d%vEi zx)wg(_Ds9O`FnnKd@p&Ia)Hx-<6#6zjlTHE1BbEO*o9`|D%uJbSK##?uhn-&gLwiFHi>^ry@zo9NYKZ8k*o3poeva48;u zFR8TzVUWvLN*M`!f!K;g+?-qH<&Fs->!=%G~nU*B(u>Se-Ys^hW=5&_s$`cuClA=LKndQqTh9 z*Lw`OBW|)Mu!F|^=H8!RZLxD|6p9n7rk`{=!xgk|Luoj?c73y7K4y0x%^v!6|7gD2 z^V^Lqf$$7UE+J=`R~+QeI%_{uo5KsZfoRufVeVUDL!R@HGq00}@c;Ja1g|ImJ#(d{ zUhot9zQ3Ln;%9=ld`8^BROwJcftY5eLg;Hr%sE6cn*Z7yDKG!3I*Ev27VyloRzRo& zq*?HOx~6mF;Mfm*e!*-55fWY;-I6%o_w_&WHhpJ+ z>TbZ6P#ZXtz*?T~6EFSax6h+}q-WVT8hpV)C&rH5R~M*|?UP=cd&o`e(B_d64ns1R z>&driv#Xw9?=CK=C9>KZN_+GvR64TwIx;|y4S2QF8xVJ0p%Gw0R`&{gnn^!J^5mJn??8l7TDq*J$kkW%y|;**eOOd_y!wJZ zPhh$i-aHfnV?Lp7DLWGzY@4vg!0-b<9DH4{gpMKb@2ZOhV$LrUFEDNQvb0E}iAJJo z%HFou?Dy~5rJ%au$JYA8SHYcpd|=-RzIvtuTBF1|U2&L%4;w9##HaE(j(d`MU7>JM zvvXE6D%_{}uCgOEip*H=2L%bXcsB^!9XvV1F*&~1ZB-3`O6703h5ZM*x9edn)I=gF z-+E^O#aJK>;K}bsI_1FfrDczMexRo$xacEakmxfWPOB?7pOT(F3FXeDY+4}v{;ua{ zspvQ7ywARVmBxx?cu6`a{wll}s8)hM>|J&xeJP$?iuZ9jEGB#%_28gWwd&!gq4lp36lpEcWm#pBk zu3=V^ZB!X?&nT4)dmi-XmLAzmqUmbndSZmdTh<${8K&<#-Bl|JEsj=%s+ z1At@ljA-3K)nX^nTx^)B5>qR6 zq^Z_?K5U$r3HXyI;}} zHv>7VnEXhA=Qr`PJ%wvi#2L0{NQ$)!F=yZe+Lwv68-P_7Bt-L> z73i2ajnBi9q3yaF66WW^mQM!>Ts;IRCB5ke1=#U53ahOtll)P*N^r|_M0XO?fA#bY zfhS;?s}y*;am_kVLJ}QiybFl{pMsn6-QKmhVSvoO>5T=h=tZviL6gNVcQyewwe;W@ zw7o1J>Y{*$!01UF3aOz{ew)A)6|7dJ;~9hDo@8`;Edf0%=Qbzp>KO;N7vtj)Kg9C< z=KC>_=#Zv@D23T|H1WS&8zt*JOqGMq2IvA_PeLL41U1D(bWO{duf`BEqoi?L`gPrB zhsrH)Q|z?P>L`vq6jc0Zo|lGjjjX^77q!%=8Dl(w$i}K#>TGSh{H7n(OZ$&=rqm`RlR^gPrGY)XcgPq5mkD*_mmQsVc50sGv8HK3l<@?pA-K~CaE~?&kh{mx1uge9Ic$tGp zjqXtP4kGj(($`A8NS9(~1!8I2Q{&g)o_$1eO*+}-0*+!9xKP7|C%?sY;4vu)Vb~RH z6x-YNWjZE|KMMun81r1~&$`2ir6&w;L9vw=Bj?Po^1t)FGW+m9xCGyhuoH9-6F&&f zjCGC)RzbdRoUw)ipny4RCfGi8@o;M_BpO!PJ5pItC)X z^E+H?e?2hj$SL9i!RiSazCMjfw~p4TiTw!pv|CyAOYvFG1G!4x$`dKbw}A+r%ObpR zf^Rb>TyI|@(0yhA8QGc>kL+F^Jk6k(SsOH7 z>xnG+SVl+>Q!AB{KKQTb&%E%zcbn|henJu=TNo?g-9j@p*?b7^74K#{_SW|{oM*iB zkOMVp@1HFHI_k&AChk!29*V{3i6k~n^7c*WV2+qd7JDC^#3ov|Im=$t#qq%`tpGg_ zsdUNkcuI1>2c+=tdl8Fh=y9dA$LGu@C3{%(SvxWwFKgyb)BK)!eW9Je_*f`=X_@Zz z94nA<62?xr_IPFr?Y8SP?V%}wxUov375kfRIi{EX?2kY!QZXDB)`6%7BGY3(JB~Up zdM%ZY6uUF1Bzebxnozp5@;vPp_4NnagEXnWRm3~9ov-#%csWWr*-3&!Pb%Dljw=5p zetlWSRWn3#vR6}KcUWRfM*=P^H~A4<;~d})2yTom!K$%hO8d_`Vv+N2-&}EmO4xMI z>KgTcD!WKhCy&R)NC!pv=(ony>mpl&e7>-hb^wc%y>`^A>6jl`yM(jHFP`t{H>0^R zzdq5EPjGz=e+&vZu1DkW*f`cqlMgZZuwUgvyOC!mL#$A|TRSQIak~Ap6yL4eW5j>~ zN}zsPyhjuKRV6D2DMd#s6bIA8f28v$^MvJl*W9d6=j)TC z>}rX#M02mnP8$!&)WB_rLo@6NS!Oe_@VLq>-md#$FC-4An^T_XgMDW<6XajYNs{g_O50vEBI03gZ7tbCk z^Yi}fk-P;-w9=p;0nB-#j@XAGT^s@O{2?#e`j+DGa%qZj3WP@$fTXkG5`z)-1gZ_f zBo|>2px+2@ybvk$fqU1VTK^=anjVs(EuqFH7*`jn$Vdp=4{YnXk%UrI0G-Pa`C}Nu z4|=&3Ts4KiJi&a@(FtuaiZ|cygV=iQDrl~l3Cn~w`o?iIF=qSvxbAwq5|R?#!KAnC ze1cg#lI9fqJLx0uo+eX&T?AUFp7~92b8TvU6c9F={mvo3#>PSK_*WY)KXK4!@Jo{Z zyGdKL9o2yyf9;%$s?}NP`SSt2Kq}`D-#`6(xg#X2QGSHLk?}{WS+C^p+YI#-%~bcy z-h44|7wB&jLf=W^=R9A%y#y)QC?|{Ny^e1RY>W%vM_C-;Z)IE-g3F_zEjkE)O=8M( ztZG~T5p=*uEuuD$Oaianf=b2n4+%7_7m}|mk|o~?z+Z3qBF^F}U#E^V67`C4dM`s5 z&pJl--A2#8PWjBO5=pG(zPk>tZx9jN8dixqB=rkjvzQhK_Vv5pF{O;hjsfdQj~h0Wg2c+TGUFr zJY3@fEQfJUVTf{*W?d9X4c;;DEtZx|*SQ&& zd@R9z&l$o8Up~7YfPY+)BqD5eE!H;U;{|-qH7uzNKtPs&W*ny z845P5xDyI1|HgZL^*~FPblFnhoP{cRlvj3kiGI76Ktmtr@0r++wkIEKuTO-V|5mw! zRwAMH04h01g}Dkqig<7+)DM$sQ90x`sEP7kUSU(9i--<3DJ?ohpT$bFdLl=S0b zwq$AvDbaUsZ0lC8NM4qjleAIpfzns~d^LslQ@Pqu#1NTMo3}Q~^CHx-goqT>PqzXq@l|OBMOo&-ZBW$W4|I1W0|MD51Vz=&<srvMQkV7)sR9|N5s7VKLEaxAZXh)S?2uogsImP zHxd5p&g=fTxO6&z=?34Z%=o)chj*=Q2ngHt_C!adt~^)`?BKx-DO{ckMG2`tGqPT5 zdbU5W4`=;40?_8qziH=j2O3TvjLY9yAFhA3{=-GGz65|uvt<78kvX2k?>&SFf1Zhs zl~*iuYd--n;hHNPn-Q)i{lB((+GmDQ>>(o$xo|Au>TetnGzl83m3BuFCT{&7bHh?x z^smisC+IVH*e@5lXXZ;rd<*v5d0#$Rnq)1ZF6Ie(lB*ml0q)s^J_cHNP7i1ji1iNAV_LGdt1bkdXmOpXv3^kmpF8OK{ zGs&9m7;Nw+h`VobSvAR1CvZz>P6rqFyf8iR8z}4I2oPq$yX!5({@>xES(= zm}hlDeaC?#M>zH{$?>`n(xb)px}rruD^s%VFM(yE6e|gB-7p)GmY8OXFlw5|QoTyu z_u0tE^2Cb-xZ(ccG2j8rTVv~+&37C8l?ZfubKxCW2O@bi$LK(&ImnHHa3ATT_1g3K zkxHAM`(V(#_=k4X3}fJS%7Wr{qNeRY+~jM{C&SG%il!>s-wXC zSvRU*oglG0MD5*Iwa7xJqjvTqk=H(+;nveTI}2LS65)DZr)5)*4{{xM5gUXq*hSv^ zCRVhM9^)r3-OT*(?+NZF)Pv)LMPp=^*{4p`%|WDGg>OkGOD6@aMjhU;Z59C+@6}3TOKg+|SqjHN3LC`qyX3BMpW#Be*Ie>^RH272VL> zXk)e8S}hb~*gWEJ(_|~jfY`eT5C-?3M_KX>zNU*nz?G<n$6_$={RIL$-Y0K_iUiyKu@a~^m9p32|3W#OIV4CMzesC*UHvR>dsgl;!?^svIW zA9uq_FSg5=h@tH*^8OeD1ncEE!30qsRo^c7fJpt5Q5KM!665j-52X>25n=3{SNblK zk3{Y`4Vr`*XEb+FDa)(?#0%d!?Jg72o0!@(RuSmMXkH-tO{g{>a?HLx9P02hu(|Y< zP%I2XaGo|(sY~$mw8_&VGZ!i;##yikWua!=IYoPo0Zd2)|VM(a^ zHla&Z?+`^hb=kCUS5cMR!9m-86;n>>U=g^nkazJR55Puw(bQff)4H=8*Qf!0z|8jU zGikoF@lV1UPX_En58s`6+!xnD3J@%&{U&Pir-e8LA6Rf%yc*Rw9NU}KgLtt@cP)*B zwR|3c`zYx(<9TtKSuqGb!^DJS<7A&s>tZ_Qk-Fd2#yxcOBkh}}fdjt7f*13KN>j_z zHr)Y?{3RMvhbXgUb6=(O@7lv?VnTW)0N4B=O3@}+7Dim~$w?H*PQ2;zb<5y2@jgp< z%pqJt^*D|BqutBd(c;Rd61!Ss6C7c}Ify^?hVBITXAMV^e86A9sEyBebdtJS5yqs! zASf8NZI0uQZvr+y$1=fKB{~**TdsSizK*z5*L>L3&5CvAor5`>VPJn9VW;NTlJ8Jo zDwGt$F5x?SI%hm{srtK&dGrl3^`4bDNg^$Ql_Bxz+i8H&4Vl5t>(M<42p`md6-7ug zM}{zL$8XNbehQf{4#JqknsO_fNx_pgcr-66Vk!+J01#Y&cbS-Br19MWcz$or|Mk1% zg2Vl@2bXs@`uM;aaBvs5UnWT^i)BcUz#*}uM@seneAN)F{8(@>cuOM5>>8tD zj3m@*%|RX|fa+4?%GWMw)dlvy)BzIqfTbQ^m*jBsm>H0nnmZn zYvm5*RDhmT1Jaf*bEl7;pm@0S@A#>__4e05K$0p|GBkkNAwAI-lv#p~bOulr`=|tn zq$T@zOHk5yZQ+q77N!&-?M2GY@*gh*3H!#Y9y4VX>r)r9g{{2Rr48cX#!QsSn}Esu z)XKKVAB+0k2z0@`tT)j0G=m5l#5|LG-@N;GWoFIL7B`bMB>daA=8Mqi6MRH(0@>>P ztl42-wMQJRLD$*Y`SQmm4{6>dQO&psjwSaSqzoJKX9U6ppRPbW?v*0Noxr@%zcljcVC#)(Nl2=GyyaeG4_1gzV< z;%E<3lNLm)XmEJ5mHieINob2`&K&ZGfDlx2JZ4ezqKf^2e=E7TdiU`KN+Q|XQBYJv z+m;j5^l916?P^2w?M>P4&$97mB#tJ5qG?$abDdUS`#+rQ(5Zw-X61{xyXgQY2 z-1pw&OF-C2gGclX4*fX&Jr?{_NN$F z@ap1(HT2`hS~a%z34HU@9fs7kpGiVnmS$=sDC#c}AWgl-)pIeal`bS9WBup*KdE9K zQYxSxJ$ajDHG{do8KtM^h1%vtGQY?j7JW}L2fioXdp#Ia8Q?s+om*NWd=C&O^Y6Sw z1ASwRGU)G%=xj7|MbKR86o%0@JaFc1ev2w%oQzL)Z$!EeTFq_M;EJL>RZ9kTjM z8`B+4E2tit=Y?^TD(Yco4;29}Vdnq8gZ6D)+kzSux%X*iV(TF&b*nGVUFX$WSfmA< zzXgHj+?e0GHd>?KjV7D<+KLE`(LILSHeWNmGV)kj)40C(V^_iTzK{xn-mbtqm}>XX zzINRE)5#{tax`9=%d%5O))}+#=o>f%731OTS@%1(L@Q8&^}Ycu{^T^>83#U(Vqw3a zK8E3<#y8ml0It{XFU$#57v;I^@MT6yyom3s=LKNeQ`|{{*_ub8yJHUCUnTDQFZq`V zNn&5c@J2}NZ9kH(DjNs6Lmy42dHA*MF2GHsH2chx6!zvG|7aiw<%xtmWfA)R$Ep|w z%Q;+Gi<`{|xFC*GjT@dK)n`)bB}mQa@3=?5eEd6!3P0J3S$S|sUzV?G|IVB!#X&3? zavg$ zV6$qeARM;FN{yMH*J8k{CwUitpcscRJ6j*l}tddh{@XU9`pkHL}iH-H)$;17& zLZ5m>qHc2k^=MS5Y+~Iu0-^3C!}~K)@@9|yS=N_h3HF3&a<^)i;I%EH_6Qw6a}u*& zCRFR)EBLlMaVmDXlE^@ETq{oO@NE+mGYeepkEKZ& zC=byfUzfK6d43C3&Dd4y@4W9InW<+K0|S0ZQ1ySk;Ls+)X^q5I+Re^T#jI5lbK6Ab z!2xW#MiD>B+y2nyQ4PlxdxVCN;tUMvv)!`lg#@PKc`<)mK-~+@93!6_aFVq3U_#IF zn;oGCBYRZei==aLU1pc5vsB)D-9RfB5fT%7Up2|MNk5~vWz=qNa$@Ym{Z<~ngJ2Pm z=m>=W zrnW&(huZ8kkQA?M!L%;1w!Ez!34xz6YerwrXY14qW&lvhk`Rf9NS0)52U#KDcop=B zkl-S6Mabf=+9!Ezq$#jdE1Z3(@4xdMAp^mbF`QrXHAYJ?OXCzJ&*zWAcBtaQC#rCU zC3`SFBP=}lYvHfMj7S!$|J(lK2Jf)-zGNBw|4NBGF2q`P$c7;r$H@VyLYHLX>LLte zBdAY4u1>5DlE=|rmzeLV_l{O~?E`B$s62j@#{~)P0?{ARlI+c~NMMSC z`6-R2Iix{NF?Ne_H+Cs|@~|*)7Ameev51aO*wRUY^59p>;Gz1h`F-`PdTAf~el*AW zonKhLq#-I7M|~nVo3WbB45iZeOpn>R?)8|;S?dGzU$NV1+TE{=u6N@eWCg?^SYWen zQpYH3ZuB4{peM;mTG6UxsrI^#AP6MLgA>1AB}?P;epfANN0NY$0|hNjRxygn@r+Tu zhVu3Pyq8AgjT|jrV$M3`j7BupNy{OwMafjT=}egSZ=E64YslJ04zk#H4b`c~$raSO zK|6oLO+`of-+2D+NCyUVn*;rNvris89gBfoDGbm}{t(r-AkT%9KM0RYQS*rPB%I*X zh12b^<((#pVm@3)8F6!fym0_4xaC<$i$5++?YPeX@+vEU3&-s=lwkeTmrK#`Ovdp2ASkSX{m3&`>TR4xb&Vg8lC(iT5sox%z#H( zPnnu)0+6}1y?VZOK10S1hId>Q5k8Af$Wrjj)+~>*YHijZhIMdL)g6KtqL}J+5KQl8 zW6#9pxu{~SRag}uec!vl@7-Ze{V}!w-cL7QX90`iiCJcY9%g{kjkm-wU~Ri7^%m7) zu#EQqdnJreMXjE$$?MJxg36y!;QE1&tzVOAK^2msjRZwB#{GVx46csY8%T^xZS<@T z;N8qK?#Qt)Z?K}l9}KWmkl!D606y^JRT@Tr>>$zC;Ng#+CO z=L9jhyD|P9?!mM-fNTDzhz_&dM-N+m_oqMr!IPC<)7ZYOjj@>EDPo-W3fC?V62UBr z_9de3i&&EHo%^GSjcdn(orq5OaqHqFeQT>X1R4pob7NB&zPrYPX3^5;hTUrCQ{{p5{ zg>a8p*!#x3F394Nrn0H>0JN`(^eC5_jxlNEiEuOj_m0TlUD^|v<7!3CA}e2ti(R*A z99E;pj|4y8%MM%$1N$#Vx;mNcJyPHNLL*R+Gt(0VJ0m0A7P)f0NHyPDfD=of7{2tg zTMYefFJvdGt$Fd0DBwEf&bUf4Ni-YP@>1CPBafIJHl!5pPM29eu5MiO)Ffy{Jn}FW zZf3=eNvA=8j~-ZGR;PUL6;N?roEuS+82SM+@6Y{+sRAh>DTjw9y+tCzMY5yKMM?JhybAdAdgnh0^#j#6lwlK zK3f{l+`NGFhTQ~elj%V4VBygGf%J1*u!bm%VxdarV^#a{yO^*FCPfuwl3fFi z#uTWOkk}uuN$LoFx&UK$p-;15gWEl<6xb#02FFP+iUd=B2Cq&$n5lpgU;L_C$S;Z2 zLGa|s3BgfMxR$?fy7>-%H=)NWgGczu%h&t!cb@i(@feH=s9&}DW(^{MKJ|zg{(c}h zg}{5?5(?|(dy@fPJ_$ZQq9*tL_r40w*4NeElh>6+$!h>UBpb0JIxt^5@xqG~*RhX? zUJVx(k0@ya;j96!9B|-b&~jRQ@`3a{j9RT9>3JOw)A3Oqa`f+=Nal6fsM8Ld?N!Le zjK1gTqw!!ZV1Py!j#R^dE$Wu`t)lm-r`NXv|J=t!WEgpZ=+ybVh^mIe|vu4;9!+ zEKI*$($rj0lD+-OJh3#h8vrIV^)AzEOm}XNwN=me^NBAekUKCHfWoW0jsXxw^wE5M z6LJfOO#J$S81Z5N5fv5k83ih+ij19H$@+?WyL(y@btqy8Q+zCS@U9<+pnsa55o@(a#H+?5ip9K0u&%3Aw|MATLQla zgnIrFL40>a}^Xh63 zfIqX>ZPHEn(ZQOEBqQX_WDwy>L|#j4($W|A=_HgCR#+;(|CCZpvxWL+1<*MnEdl23N{14@a3 zd2i{B-`6uqQ&-Hu`9{EB4y=5i6v(;^OwVj=I1r2Yi%5Uzv??B;n0d zh;i(F781-r+?qrg!Y`%}8j=UZ(>zXV0Aew{A230JV7aqxVp`%u)6o%>n)3L3{H|MY zDaVHk?&9$&UV~%)>H#R?mFwn*Ndn3zO9QSt{@0s2vd#E+SNLNs{A3!%y?Sm)`XLrN z^WtR@O|Hd$Xr|fv)7(cINJ(GB*J7WyZ^=}PaKbq)AFXmL$*zWr zkfzl;h*wNzvtMCPJ;+&!P7-j{ZS((@lQX=*hOsJ_GCWiIJ>zXDoLeOu1pg2SKFvbFhX5V_1q~F_Hc3h&CO{ zq77?e$)!R*KJF=uB$h%LLUPxAVFnP+rIr>HBK-HtB29+Ad7q&RKRI!0Jc6 zP%-HsZs#EPo=f;4cLQQaZt6`^k;o)TVZs|^@7O0b>N^#hr*^A=b*x=Thi(ndL){sg z(gshk5}REMaL=DH7iXAmz=+I)_>%#AGSiQ@8V8#8c%w)|)gNE@=*Py7Lb&PRx*r^{7Zfl;Ex)3DJTX-f@)(GI zkh`l^4RG8i5d~IEni)>)-}Sm;KvQu`mpJf~jI;f_gD4`p zG#H-0I}Ap<0#qP}updertK^<|i3uCHVhBD@axq}1xW1C1V7YHbXQBV)G7}9!Qa!2L zhmYUp-3rGVJ(5{pFC&DZL`gA;ebsv+;_dPuk3 zcl}76{SV!t%5!0ahT_li;GR+`vDAt{S`&`|!vLX-@^NZr(*Y>)Mk?4c-*>yM2%i_U z^YG(4jEnp#-b9UkBF97a>3UFrMt&O<@ak>H^U)q>rC>?Te`6`$7Ql5k0v^6<1;gGY zst&oAzWZ4Z2-%O5zo9X8f;Q-*pm-@_!Lp*(u1U(zRLswF+80i81*;Qapc7lXMoD#k z8Pw~>&MQU}CA9;4$kWCUHN|}+zYQihc_+A+CxavnKF)q$E)K+cp4X2u9B}+ZNz|nt zAL#En1-tr|-!ap7BC8@mt~y`TpJ06~3UO>)cRJqM*ST+9w;&4Cq}#`TE`Wf*;Ltc{xLHt@wz_j?meH`^}dtk%WGJn;F!Zc+s|B<-J^ zzlM~g_4-^-hAu zNGQwMfZeG9*N z?S&+MJmf$LNABo+8oHg$Y?3z{=T)AMGn3U!^H1=ehk_*d|KmoeL{z-xsNTT`5+1&1@ihsrh;a(e-)1}GoT+!*?< z>baRWZzPggULIx@kJP5b;ie=G0g)XdAigGXF8@TF>bG?F$qR_qovd2IwD+})hJI+2?_R$8CXDWLsfAjwJa1cbLwoQy}#s^-{HhV zeZcQW2#hWRHI8+kHFo%_cs$u026le_d>vTni)le(fJjwBvgF$zV&6gIJ-Gd6vbad~ zRAK1Tr?cGYcF2gyJc!?{`s|65$GmT6$mj{U{m^+BkIRZdN(tf^t zt*hqoaa0c|w(%x%osJ}9Tud4khBlWF6Y3@4GgiRl_}ffjD~^x;`DFg|s=T zZ%=a^ydP>zGsk-|D>U7>(8pE~_NB1!0ftIxd6x-Me5Paw!gUov`II}kj^ob<(6nl~ z)~C!Y@0)fH%Y}J?Xw3U3f-(Zt${iZZu^Jg0VK2Mw{B&ranzGJkez7&%@b1<>_4GV} zCurE(!zco9@QjNiIWSSXgrT|l#3ax~c7?|LtgXD9_qGpGMhxH1lrF)9w~zftp@Ar` z6QBvpNTc^?TRM=+c3NG`IVX1{Dro827Snbp9!CHvQGHIU@j>iyG4fh%MG>zXsB!}k z+O^-GIRar^3ha~dZva07Ld7VwdHv2CWD6u)X z_#~C;@A7y@CcM|ba|WNMr2H9V6Tc0uEKYS?*?UcU$!*Z!!jEMg!HoePOd$zg=O<5c zSsQh8kWlZ=++bLasx^))r>(*48Hbh3A?Fxh4TZHcxzZ9)C<`VlJgD9Hz|~k(OGBPF z>$2+nZqb~KldtbADsCqA7=t`ol?8x=!NemQ9(xHV*bfNJotY}YFnF$%%|rP;>9%O( zj3r7N4N75NTf7w8{G`k}5HH*{zvhZ00^vLhmM$2jC=q|0-ne{j!=q^}o(6$5(5`>5 zdP_t&*DFP0n2?jHwY(<)@?c1#*oZ%)sFeXvf=qh1EeP@j@oh7ZDttrl5+vw|MkuId zT=1Umd$2|mOBJ1ny5BbH2iERE#3fQCf3JmgZl41agpvBUS)q^T=LWeji<(oq(K!o=8++BybJIM3uGJB{PnI*jwgxI;6xF^ z7z(M}Zn-)ta`!q25aWPsP2V>Zw6n2GlW22nHV{(a@&0|1(=R=XI_f z@a__C20!>aJcA!RJpEy$Pk)@)*a(GorNLBJW_ERD5#K7W7LPv=bQs>}I6hc%h!n`_ zQNd`Cb>FyIr#b$iJl-82tPW>ApUB;7ALUEPr=N$x59iZt-5tmT1sMDJU&Sx&OJ|aa z0)P!G;3SP#Uk0A@DDZ{G2RemF!vZ-dK1Yyk6iBdc=DE# zP~*oHD7qS8>$B#z{!m0`ZTQLo`178i0tzDPAP?<{9dN7$eR^_oKy1gm@!uDBv7|yi zjL`~lD&x=v_%yliRSQOv^&=#M?RW&vvG7el#r_Pj>r8f55a(i*G)8g4DZS%Sp8fp! z6nvPzkr_eTtJ(nDY!Z-cX8hN8M}4Bq_pLeTykB8f$RJz z)JqZn`FE7!;2`$Q`w1VxYkU-({l(f9z3UP_2^AjmN6q~D9&Ctc)Tm^4&s2)ToF>TXCEd%~m7HRl^xpy3;&^atp*(i@o<+sZnU5Gb@iymuw(nHKj5 zB+VtKJwhCz-N)Qe8^lC$r~W~h))&t1FfN2d*Bi7`Q`pT9p61-9Z|tW>^Xx5m1HjHF zZnXB-gJ0hf7DJ?$&g(a-jdsadwplZk$XchO>`o7Hh{nDjU_b;yf25kqEeyRVgfJ-- z^)*<&S$2M9EQ8~3T1e^uPSDu({&nT4^hiwoh3xBq(8W6iO}gphC0~}8s&;4cePRw> zo6;i6W{1QMXEPV46HNnP&(5kZ%|oMMWh)Mp_0GbE^&RXKGYBNVf`#5|&~M-Ei>M2k zz9XB$^msk8?lfh%SZbthbmMs*2M(G4i@)-l*in2Y zD*$P}_@~L}hMe0%heh*YEauNPk@&O6fp5`kA2?V!!fn$S)vaFt>b-6I!=MW3;y}<} z@Jp6o+0o)3@#D1I@<;piPmCX4|7a&(r4j_ieLu+r9OBW06rvE zmB^jfyAGW3O0MP-GNYD4#8OuPD7cF-pKhiZ~~7bU_)ajjOAYEsFR$$r zmRR%e>_W6>=>r`%wY1es-8eZmM;Tk~0dx=Q_K<-FE5oEl1r353b$l*hbY zIPY{10XXNJK#TU$(xOCDz!>RIkPNpyg8`S_;(f8c#iLLRpjYRaByaA%m5vkj)@IwV zVbbj5zz|%YL_9JQ#-o)`@XoYl4l*WfZd-sjB&RYdLWJ-Y_rwly64KxRQh)*Jl$LzE zf)d%3qsZ2v^@exXgY{uptG;?PkIFys*KF$-m|<{9Qwrj*+;gW9wQR(MpL_rQ`mU#t z|Gtw#`mS%CqU3Ot<2l;)fCRPDfTJVm#nQBdwYTEEm#gO2t0>F3mDe{ThhL)@KyL`9(g-13u^mW;ZO4A{%c`k0iqKX5542Xelhxi7;~Zn~GzU^5Fx zyQP$i3FSCRob=asPp68qSR{d88;xkne|3F@EDsB$VH8bd7S36JL-8%4-PQ)$>#T5E zJBNIcQBl?9K>Y}H2$x@>c!OcMV@A6BRD8_Rzcaq=n>01&v;M7zhggdM*>QNEuGQ^7 zI49XsMDPGeK)1ikW;Fp)Dz95TOb#IgGzNtgAU2?s;q(HE%xH3%vQm*!N&o(!Fha2G zaXjl0peVSDKye#GCeccy0LxvcHV|SN1Sld9G&Sfl_Z(t%@D5*w=J(8{3YPGqo@;#P z@9H;7D5t~xk-XOLY+wmO8h{p*fm&FM-(<7n88-MhWq)JX`kTj=E^l-y)|rv$RfjP! z?NMuw&X~F_$WyTkoILItFPE5x+E&PhFzDp+1J*w3q=Pj?lL_2lPFUmHcP+X4jZAX^ zl^IWjZe&cfC)Qu>S`t>sXnuwUwkw)V-)Ag6DKs%w54}TBFU#V=qBlwO3wHxuN&^y3 z8S9Aa&)qkQPV8v`KAJf=a0WbQcmqu|DdVOEj{5$2fq8h!gEt~8MBX}|Dz*hvPiW|Y z8dh+K_nlR%OppvkJ4=SbYduH0hDLfl9U(5^{G*hrf#J3w_&}eRX0^Oy?i6i9v&6vF zsfSyd>|5Pe*(1{a)pl6x;nG)j5?Y#O$_64Mz5`8!u+p1mQOH{0yBBpU)^w{KsyG^c zocx~S;874nrALu>)OwowqkU`5=U+vWVV7@M0!7yaI`6jc{Z=!wL$vd?@=sd(#o{O1 z1nJ`T0=?%{rb2PY-eH63>wJGp5^f*u_u1cRcpuK#d22=5`az--me#ipkSSd(rmKYz zVo4}?4<5Peb-;*eeBrM5>7TDsSU_YjB{1^*nLNZY zp}i8*PWx2{4$Rhwyt!!JlPM5L*y`3eM!HdHb7onOFMu8_2Ze%rT{s-Mn1`EjkY;jU z2%t7Qc+%y0zx+A?WqSD9bIf%w=pktoNzgkGJoIT&RH@%H1R_b(B2Q}`O?mmS`33NP zStccvKS^$`T70LPlkR)Lil}z_(xJWToAc7yuM)Sc@3OF3x+OrBC+Nyx zCC3*#dIkZ2%1*N*&Y~rFSuzV`t6_V6Csfe>rO-<&K}QHa$xW}8Pk{yV$jyL`3`Eb6 zi;;vwRx-(h4M4tD$BG=uBl$e5h=P7Pmx*R_5+Qffnlm7c+ z_!n_!xK`7V&i#!igTm0=jiWYZ=0CYD{dn%EyC~+LD8_$G#)u^3`A8e2A4>6ZJ`2e& zF@S_Sjk4T+MQFI0`%+Rlz!C*1)PK#b7!)%g0H3#a2F^r5H?V<((ig>Uhy6YZ<9yjN z=txp%^JHn~W?vyR-R|q!t@};-1`Kv8j_1=6)CP32&%4yu3!Jo>^_Ghq-9jk>Re^bi zm<&gG*}+lsHyUpX@WSl3qKMJH)OcRw)FZ&rOt)?w_xM{Vpq#I^%x|=qWc-JxE&KM7 zK;6nV_j|Q^@t{LQAmHBl^BAb=Vg+qL7+NpFn^3+Bo-s|gXKjv7DHe%KwxCOlCf4!i zsd4<~w5uSYV_74n_KSx6-(Jf!CNw#Ld2JgNt@;NkEC<%BAchVrLj>=*w(U0IMG3QQ zd?p~><&if)J}^x2uRk-AV8bT8d@#glLTUN$9wW&m2@9S=r3t%Z|geY~#G>hscZD#kp|!c z8eHq)dc1;k3Mqa1VN+3GBh23&F7n_ZbaNP$#fGIQSk2%e`EMLejpi^+;FXQqc(a6w zqrvT`Ch*P7(H626TKzpo$noKslxfv{Z_)Kd?Pe6yXvn>nNON}N1KDkHhrtmqn_W!X zu@a#?0C_=ggN6C>8{t)wlCI;sOvvqfN4|syV$xV5QiWEfmRe~u4t~I}o&KK5ZFjWl z9cA9v2srcJ2}B?VP#S|u!X_+H*Lk)fflpX4nQj#1>xftymRV7ne*auXGZb`PCeD)R z1sE~nd|U>+@^#I^b2_2_^#pM5fZ8Wx?%}TXetl7I&@y%E8w|p?0`ULxhKfqqK`{788#EP3uU9d8ls#S2u#-qi@bd*w{+vb66~o;$ zz$VI)!tbh7PHl2|WtCnq`USG`OvNIDK{u@q=dz<7Mms#ZLyxpCv|Io9q|tLhv%1*` zl=O8@)0H_Uh-m=DPVDs5F4p?j9G-Lzo-xY8s_^JUMHumLVThb!Upd8bPcm=xz@{mT zIq0%yR1G}bJ*>#RJcq(!^XHo{_O}ZZ53s&r<)VfaUjZQEa{)^+%oU1OCx!%D&k)Ix z;pkcURjV$9qIyY!iS!-#@ADh`=!}TPEG2r_S~}W(iIv}`=(qRyLI^$@%io;IKwDEH zPTU&Ptp%a?M0i>I80_+)%<^ClqiF3KjEc!gZl(#sMG|5*BDb(6o2hqM8cuD%MDpu@Zs!sP`@ANebyYRFwGi+-z1`W}0@}2uH`EWHPzbh;Yj0vl z&_5R5^1^oWxH{f|ijKZ;r4i5Elivy(8E^zS5jc|IYjxOPq1;C6|SN z@H<0e(k}IE!Q=@_N{GHOdnCHmtB-teLeS&AISF=Z%JL%I>wonW)=Ir!&Fxvm)klhW z4JphwFdVXoS7-PT^-G`q^|!Z5(flIZ-C^ET679xq939AA!oE-d=o63jqSaB^5)@I$ zi-ST%3vhA}GvU0cmoy=AXmM2%3xK)y8E&%3_ff93i{aUNBPU9Qs$hc*#cU6c)$KpD z?%gchRZv{9lL#;s#f`QrrjS#Ylp@^|Dl|`}cUMcEQju7b;3)(m-7CX-m z`hKk^%{G1NO8`f|$VVe;2Q`ReYewzQCxtjFy!eWDvb>@BdA?r({tWwuuy;lZuYxfZ zoo=wLKVj0L5W7pmy*$>l4J?qh$Z52;8(^)@<;2+ zw0zlq0apTe_>OQ&4y_3bf%wfW7OaVU@bgOznIw^O6=S1;&UmGte8&4-AL1s*4F7A* z=vEx`QW>{(tsb516N0#08>azR4%I@#{-&9qpZ)?YxHx?E)b;C>J-*^Phduxjhz46E zh^AV}VdWgsYl7gl%YW>BuVHuz5k+V(cc$cKhg{E1pb+wu&ugQGoguh=bx0$QDOrkX zBlJ$jlRj%+nFJx=GV}tP2A$IsgIHbQ4s9480s&_61zcW1b(GfV_363*g0msE-a!yq zj@PujO~faM?VY9arOPqG0DAM^KfH^0y#7 zOy)K}Sow%EY`8-H-t#R4X~C3z1t-JKC<`Pktt`GDpf>!aUJG-*Xyz+c3ULB_cMy<< zD++=|16T%W##l>vn;FRCIw%u|kq+t$)0((_l@B-CJ+kEaUMwiajPf8p*1$_G(%N^~ zJY}y6i2KnlpGUj&qV3^Cf;3+pB%S+XY_I(YP}h+hUGUPV*wdd^#$x$K0V|>qi)~<| z=7lZNkqZ0v1yGP7#(+I__cv&>Ef=eTN%JD+EG1YH1*oPeelkX%#=(3muO^n#6ze7G8AyUMcY`{En4A=}1xS3~=X%$gkpunSQ+jcA?E= zH%z4qZXab&_X;PnZK~hpvE8Ba`qg2th-&^=V(osQ%iTFoZmq;NPL&v-tlgiPn(ct` z&EV__QJM2WFxd#CWF-=fk`xj3nw(f0a3cPyDAL<9ZsBBXO4x-Mr4Pr-S7LRwKP>Fh z&FL~Npwo2JgB8ISz2oI700yXeqL_vrwtgWk_Plx*_#YpaA1@OtXqs^ zfoY~_Ev&%(5hB|0?RfJ`N27m{)`1Mom#kWx=D>_VF5rtCz)T**RxdVLY>wNPSwV&* z$Ya@y)-AsWCx8Yp!X0N4G%X@QgFTa-nj-!?7!nF~l48N^6F^0T%YWwBt6^gxiTh;rwkxRPnpj^#OS=cu&UECk;5rjm~pv zrWuXeMgV5Y3q2od)XMj1@kTlltf zMf+EiZ2f4CjpSVE6kvizG*iS46&MY?1c~5n{f6tGqPM<&6%gy_H19uOM2?$`TrH2D zfw^}u<-?YB&Rjuok_aVWaRu5w9)igD{^J4o-NzT-09a-}>v}Npm;k?uRXF@ZtCv+& zEstnIWBbxqu=68h?N?ENTQneHb$D2c?+J|;?=c`CaJlzrCCebv+-{|KZ_5ZaQ`-fe zxwsf3HbSu%cTv0!oMo6id@CH>9>py&LUheL>K1hAY7g3`hW5?M)2uS|;>K_z>Xk|S zE<3SZ2xWQGjahBgG2K#@X-K|aW0R@yHB1MskhRuuwdOn)$T zS6_ummy{fw^rN{f)NY!SD%?j{BbmEKsmhpJ#Xk}GQ6$5AUCY(GOnMKq@>_cG`#MdB zXOnHAsp3*zOUc&MBlYnsCsCox!);fR-`>j%^a#}g8E}I12duw8eM!aQ)Yl=CVsa^s z(JAs3OE4?MgfC{#m<{9MY75$L?c@LE(NQar_bMVUGH^QzhVW4OGGx6#%*K*xYSVtX zu2`CtX{GMVXewyx(yCs*zJ z@Vm@`WI-oI>SY9B@IaNnUDBYSHptndtZK3J$2;8LiO_EHb+OFC=jfCE2L5sHW)$Gl z-t%w9GO@D#%$`Tg^LyU0Zu;~>q&g%@Njy$3R}ZLvYpp6d_cMh5*M!OaV$nI@c%p06D7Rhtkk zzrbwZgBEd5938k*$|0%b2d|6ccE*w7Bf~DWt1V52J%tEDSa^=7dKE@=RIE>S$%J)3 z$bFhkG#FREnRbb|NcO-fPDSMa+xzU^WdltJ{Wvhn?l418u^Yp}QGUps8nxp!I&JP; zTob}YbuVgsEM9u+PYSditam?NpgqE;zZ%?hYh*+ToO0& z3*nSW0>q8~2-U|oAMukdADZ52AYZ=$_}l_Ou#rz&sR(_b<{Lc=TGJnSFyIfFWG_AM zE29>4o8yvx9o*J%KI@W>FH>`ay{8cts7|XSh+pJB?-aVrkO4Y3{9pfdk6QOMuj{%P z%;0M73X%q?=HiS7b-%fR(*NqIt-~|nr=>SQJ3lY<#vag+NS>qcC+`}RRIKp2r8fob zbDQYLJ(|lve2sEm)s&_d@Ju1XS$oY(Q@#bJG&M0?Ek8e8?c30!B1#XWn=;^g5l1aj zI|#d+=AjnKj=x}lz8JK^ngK08uNU|(CqRC9BtMr`PfgZXBGqX;a20_$0_C&?J}Sfl z%<`;@KDb0u@Gi_DM^m4P4b~52isad*$S_Hn=i<@b=R&R}>(?YdY=2G%q*ZEUS?z}# ztw+|dvJU&`^`>o+k+hUj$(X3uv#OI9ONS6b%xQEkU3<9q{C=CxKBnm~D$aVn2epV~L62b|fE$I(9y4s1$d+(TRmQ53?}{AQ&$**mee;i`r2!G|dkUbpXVJ)5 zV(kakSwLfgf8wn`)aOxJ>1eV(q#|PhcF*6>5uL^Fb;=|=)U+eZXR=4NG7M6}SO5Q9=~Ye07a2$CM!(SrT`C=aC#19?H@~HE zqEj#aCHRjncW+vy^73XA@NU-?^awdsUcpU9>tffxL9%IuBX*$B>&B=GGN&|ZWB)37M>+2_q^t#B{d9YKlm)~YzSfah!RMfU zJ&W?)%D(sFC`?y3Tz(-Aq>Rs8wCLg?WKzx%QmtV4E2RTr|vI7iF!8J&g z5Z4Lz6VTS`hii?x$bo-|*+o`2I0@V(4qzzu^2v6xl7EL63OE-`*m^(r&gGkrkXc&`OL~6hk zL9OIrD3up66yq-T=d4G&W6zTqkdX>1a5DpBW?m8fQQI83BY2?9#&BuyQsU8vPFF@H zuK6qm@R@b>(EZTj zoJNUDe}Is(Z!4f@^*y3nmeEt<%ixBE4>_idCsgRQhRLf>y~uX2TsM=zs4YK;bvr|t@)LUxPO^NBn&?=f7l_3>FhGY`!wT<5G^ex5%{Kc8 zFeN^BO!|!Yjs9?1+D4+YZfi)#1t z&gBG8^P~KNme#zs46Jj9+v|Rlh$E|<8!~D;gq28-l(fpMRsSy zZs1eIAPA;qGQ$};OyvfWySz-D1aP3YrD;Wn2cZ5`?Pq3Gkbo{9*)^dl;DL~p=VjCt zYe#?PRYD!|dpU+5Tv7}^zg@^WNJDE|J^2!mao0o8E&w?Hk)T&u;3T{OY>dO42c}@- zET!YT@WsjF_9e&x!5E5aSOAT-A#_L!E2CtYn8yvTWDE%ezH&l{yaAyqsmy)!r&=JTAy#36LCVYry>V%X>f zo_;6myC44?Dp8fs_h1QED*vF57xl4i5Bwmk><(zyjocBKA(tzkztZZ;2i>@ z;}tGKXMh+Uoea!I_pXe7Fc3)6FqvZIM>1Oiv$({++Z= z7$UFM*P(Ml#7lDJm)48P&^2d9bxW4Hf(xs<7;>hldG+gNzODQ%LPW~fago-j2Im_H zKRm?Tj`W)>le`Ib&xw2K8NOfDGM4cIygJDi1)`0pK(j4*_^Sf~S(B3OZ}}MDkiZWIEILwFmK@O-#{7`6IeN z7xYjl7wme1yvDh{f`a(~;V|;J9KiGjL40+g>f!Z$Zs9{NFWvYA7iG#QDikpgu8<6v zv_n`jm7_$~>`t&s-J-RQXSb7m^F1>)#`MYc=?2aeh>;q!>*%w1Y&3Cr)$%I=9TGp_2lVU&XM zBtsCEl~@cbb6PX^5k-vP=rSWnd=Hs>vKs!9RW%7m)#Shb@!anpT=8y|{j4G_MU}FI0zBdbSo!CP3C4=;r1ov?e6N!;m>H3HqWy2~jw7djUTAVMV#VBy zKrmw}Hx$W;n1J$`fuSy^kJ$i<*uP>=J+HIXdsKnQO;5LQt)|+`NR55XLkuj1-}oB$ z?a{fK88_b=WxjcUEVyjL1a_!?sZ9tv@*#i>ks59sW>+*V`S_oaIcA zrQ3YgDbgi5b37CW{J zs{P`oOqVMi_WMATOuTdFn4$Mj;syx-;}AF{td>}4Vu<<3^Q01Ef+Fg&pzm(B>^Ikz zYbPz{G1S+M(&sH8H=0<69C`!>K#@@8Rg(UeZ3(C1~b0nAA=AW~jPfdHlwXg&`=++J+tR3URv44HD= zz3_mes~UnjRsV1xAOH41^4{y{`_F$aUDLI%0Tjtcf#XKKklUn))?NZj7+aIn;_u%^ zgycMG?qb2&s+alQRn&C@7(+&r>*0m6@^C&;Y@86{R|6ab%BTG2KUi0y44$V1Qtqo; znyE9tuYQ^5JtKQXb;R?9@UfedGqAHDRzmamE53s{RvZ-?)Etak^GL4` z{qC>~WzoiK1JxijyB2CAkD3!5AX1p&vz?vCp&f@E58; z_Xn4hA1={>EHlM5n$Fuay;YKroaSd9psNS_9$hlY!C}IE|As7}0iVEo$PD$0)aULq znYJ`l))(1KQAhW;^Wb%wJd7cwfx}!saUp+(3I=R>zS3WRrmDtlBRLt%+dLj@>VN}L z&f0Vn%RNI=JaI@y#gG!}O`r%c%oEz!!_QP8E3x2zRxJ6L^YmU+c?NCg@?o6vjGZ}M z>27v$EZ_h1g3II0bIq92@Q#2rKmO{a)r5yX@5#?A)?&^tzv9>gKI(CwWaZnJQ=1O0 zihiO|bZ4^Fs-e3{W`6f^khJY~rrd^??ymrRV%hu1kebiS%}*l(gNoN-4_l?UXu?kD z&f|TeP5H$^!Dv0?Y^P-bqq?Cj8&8f5bl(+v#&KamEaB}-mzI_Qde0V+`T=>^7f$0S zko4#Mv1npAdrTlQ=6=0GpPqBTf@^80{^sOiSv;08ukXWfBo5k(G8A8Ur6~w~ zrz;4!mikSSJuANjU}<8fh*Y03bN`XtUy81s{;m%bQESK#!Uu zNwXQQ!lgCJs|S+bK`{Vng|MjAYqsJVNP2oMg>`mHnbyOy2^=mPb4Vn&-O6aIrII){ zJ;#iJh35elPPE?M!aASkvpRpqrxuN#qKbGkc-D$T`TMO>WssmmzFLc_o1LYbkl35> zVXa06c#jYlU+tVN(|doI?pdWUS-)8T)lQrlcVL2@VT_*?-%2?brLnGF_JCT5(^pJ1;(s5||&NKmJ|+`|;36kuWYhlALy=}arS3|8uuK#FL6N4}?&u~)NBc|Q8G$FJBZiYXu)Bq==FF%4^k zF;C#RW{_ym1DwkGP%;CdpBOBsLJ*O>pz%Ase>3$wtvu6dmj!8;yMVMdP(Si78G{+^ zQ@03zHR54ExSU9gPhTW#($*u0e)$m@Bkh)!=vcNr0-%2UZ?x4!WIh z*?PuZ5+Pp@;QCM<#X*LzqQ6%|w7vat+U*Zshmpq*`S#717mJr<2*HzI*fpPSx7}|a zaPPetOHplHw}He$d+u`xK;B8j;5x{dS#W#@Elq*OC{oEedK|QG8EdY@jYS6?_5jXI zJYJIf6KV!L4AUHTe250%b7jEWoKTb8i)THRgYudNpR5G?;E@>Td73Wknxa^AuI#fn zt(kDduPE}Avj$_RX;?r%84Z;O!`w1t1+Dl~=9mNm`G>es-ygM=phLr&N@k3=U!y^r zyh)Mz42r`Wtc-Cq?;F&ax`s$yZmyqbPCD)ke|~A( zYq4ZE%7>NJd22H=3R!vtg~0)*nE!7;DLJB{=F7uHtxjQ($&`rhWojSC7v*6S7 z?PkB?$)k6eoXDAzrsbanAe~b1&}Pel2VgPZJH8mzdpFqfRTb(?+DqEM<^o?Y5S)f} zh2AsyvSKtF36#^n(e;U^lG2P81q0Z8W4dB zfH{vq#H2EWJ;En5RpkC)4|KpE4zd}diKO^L@SzmTLtyD?VdkI0(zE)xS>$vzDlF(o zBwfg8sIn2Bh12pbuBo|PE4=n8Z!pP-0Hv0Zu5e&?;Mg@m@%!)(UIWLUKe_g4AMSP@ z`kgSfXdYJZF>fTe0wQ!?!lwm|Lxa0Qy}wew`tV* z9RTMQO-6@kfb1i?MEQj9|I1Tvc5?paAKGJIrayFqFAver!zp-{ecNni3)8*HH|cZxm|)I zoZGq%9_=3g^vQ2;XtjZyc`w+gm(Xe09c8ydl)ESvxiV?2GyN%0xfYxqZ~Ix>Lm({4 z<3r)vL2i;1*xqZ5nIdnBkul0gv&gHdqp#ecb{0m;Nx_!=XyN4uS}fc&Uf)u5i9m2p z68IB@JcxzGlHsKRk^(SaJzx7JO7t_c$iNPY8nFczkIdh2Rfvq@xtpK z7sU1im^Xw(-eKM^f|EUn6B65B;_EdG;2>enqm5PSwdLsNi-g?`@ZyrEXvW=HITmuW z*vK^2ioQIVl}YW~QT2k7iLwaArY|#L`@`q)bhO*q0VN0bWU=k*RI&HQVin z`UVRc7?uccFs+iY{8}N4dgCZYhGba|o$evz^|tsvC(|;N$M<0)oc$3VIb|(mU?m1& zWm+tl^7!CY3w?bAgyIPx4ht|L<12kH8T#he8{iv23>D3(<{{8?LP_ZjP0@`~Ja>nf zXg(g~eZwrty=LUt6MV5k=eD*)RaBP|#+JParuG2=TJjof?+E085ve=S@`p7lKPXmH zLkomx-C1QlnMH+I0B`17<%wmwP6PfzO#lIj0EwjQ{?JVoG`tXLu`Z1=6^C!co4OaG zq&cwIP19*Xvs3a$&5efqyzqq&Qbd|7-6QysxHaQQzoX3VhFiU*`Ei)-JObf8Pe17X z(>=H6)X}0&QIb+bd?pkbndev!l<}`m{dymci}A%`gPfazd~ML_NthmZ#8M+j;GdpH zkI|Jg!=!7&ZpJMP0rgfQhr3sb>lV}c%_m{vvyp`4tzOH&K*nc7Uai7Q|Jae1@AaxR zzjh>=`~T*4|C!1AZp+~Pcu6x*JJ4dXtw6LTYtt{O@{GB;2A*v+{UWUfFXK(B$al#L z8D0w&MAN-ytZPyE@Ls47E;O)Rs*2wlX>XYz2^TBf?0&DXn^{tILP_D1$nQ@;i9_N7 zeT!P@`YAjgD;`TknJK1N(c=yY?{!W*m}TfGypn4PAhD`OB8?$* ze)mfVsFr3k{T&6|z7xim=q_&J(ZJ)|;Ij;K+JBOmFHf`wjg&S6sZ}x1CY7-YLBHl_ z4A{Tl8tyCR79rJifPK%`v~1}saRm2+`PmW7TLD=nM3}{nFjEO~76HEP%S}BQCBJ!; z+g2}_wF6SaHivtLNw zbpnzt^bNifarm8i#(ho3uIJ*VRWlP>8B#QR{bpuBfA9aq%;YP@($h?gNFDpqaa5!u z2>@uD`->ny>iEBNR~0~3EJvyA^5llB+E5G8GGl9oGlRzN`H+OJ_lEecl9Q`k8{XmD$i2S?Elq0qBq^* zG#z7rq*2I92HCiSupA&p@8WQO_U!YwPjie{^k;Ub47XxF?jCF($RxpUEll?b#+>dk zYWi^l0ez5)Wdp$Z_Rm-Oc&I09k%+zFUJc0&OEU;e@09ad8|zWf=19m)%5fc30LlZq zcfJVSh7+zwB#`&h|Fr-6TSH;gc-xZrk_ZORse#=Aw&+V z{juzx>+B!0DlNjB>x(y?NmSXusN{&oaA2mD9y_V}O*krJf@k-l9d>{40`mH0>qiTp zp}-v8HQVWmQ&~e4awn?3GQmo75RC0;y;*QN{iBa(UL$%$M$F+ zWGRxSDM203=H$xX_g59Le``RIM$x~$`6dj&D1x`Y!FfVs_A!e!45M!qZWeVZqGLKG z2;Z)s@k`05V_<^$K50lrlMF$fNI6!wSAGMptj9+HT#Lh#6!(3+f-Tmr*r(33938pL zd^i{Df`l>z3rqTKiKvrkOO+3`6Qa5OAh_L}ORGDgviyKZoqLsLv&$VLXM+Rd!ww(% zXvvx(zAvI=DuHV{aMBseP34l#CKQuiC}yKz-i_@fcbBMXL*}3m4vTRw>k{ADTZufH z{^6yiJiZ}<9Qw&lx|luhTSUzL$@!R!X9J}OK&JQ?avJFetCiV0bf?k>nPHpq5PGZn z_9@1h(IYR;<7Q8EUcX|>5k;xr12gYds3leDg#(|>6`BHHii=Qu>b(bsiXrs(I*tG_ z31o%0L`=w_z1kA-h?Ef3i!Ih#v2<3RG*t^=zewkpBuYg9-Qb;x>ZEtB^t#8H3UB*; z%3F<~vO2wgwH_}YgcuBQk13qVva-+l#r_3(jar%dBonS-zS4qH)=VclHbcta5YT#F zN0qYnt7T%WtBdVu>&AQqz=f_S#Uat7Cw%=1NHAW^1kEHzo<5s;4>x`fTba!}b6aIa z329{7KoFXx)hj|~N>qyTopAJa!U6eGKSs!g@cuIC2KKpgOhhZMMM&zhHSU0IkZFi6 z9H@B_psLdKp>s2)>VLe_g{$eWCvetMiiK0auu}SiluXBhq~DS*`-CNs00$6*=7)qs zkXBwU+bqJwck1>4tb|%7DH(m%QS8g`Q^mJJ%qbS)F8880lR~1P;=JImT-KqFp7+CS zBh98=7J&=;V9L-!wtWMp^j-oCk7{ z?cSxGt_AcWy~rz=v{=H_`}G|G?OSG7z5tTJ7vNVaq;`4CpGh{=Ez9bb zpoEEE$^ODGL}2ih(X|7Vd9v)H{L$V*GnrI_!{+fJ`-3v}Y7s-5ZYP3oT%d&id=Gqc9}+RW$&Mw>;hy3F~f%p*=GwX#plrd(t#tzW-LO}79my^~+PVfg#(A>{$^z7|%c zei)?BHxURciG!Rx!`Abi<0VZ&&D_$M>Y;k!8e9j(jPbsTZSA~C*IzX1lFWH6I}>m) zd&%!}#HpajYMmjg+cRpc2-G=y?_RaD-I3p`xv&rnKAMvJt`LvMJt$qzi!km-g?31I zao5Q#E!ljdp{qe6L?&=AB8C)!V3S+0bi_icvJyNQ1YF;*TdXPmaV??c$s~fYWh7^h zBw7rPASf!244XbUau9~&?Mh3C+!c7ak!mPma7@Woo=&5CboFz*^86>}BSIV<7u$G_odox+d-pXSL8h|BEw!=)e zBc#)<`+5S7*`OjIJuELDcZ~r0| zdUrWBFYw)8P%_}0x^Edm?v^2eTjIfqM=9z`$&U}`-XLDH;p`K)U1)2i?HR7$#_{-! z6Cm|3n84M5L19T<7MghmthE=Vf|8cm2M>JFX91uLMcwR_x0k2t9nj&18}C}FU$gpX z(8>mL;J68{J!y6yb4E1Fs$C5Nus#RMLpQuhQ|C@DBaJ4YD@&;)jF`{{7~%RTg@;xX z0f_NEN!Xh>Q`qi7?|FOjW9w}M4@)4X^N#Pdc(R=P#Y4|6cxWw4-`x%o2;+JCxf=w* zMR`TokUe)~ocD}x8Sfn4K?gvqxbSVOj;2 z&|w2~2txi6xwSp?*nsZTWc|pw4y&1jclMW&S8$_XVE5piPJ%_WN{3OAyAs%C$*cum zS7q$%t4Vu7Fo_sCez*CyL}+<@8?v2bhg$g9gWgiSFk2icqpnff+Ir#DHs(d9h4$+~ zuBj-@93^h#$u54wRSIYAzjeJSZOJoak}%fi^|+v{%foHS5=FzN$E-?<`B znB-D2%|rDTem!z>apo*hJRBvK7hVU>t)*MIHkD#?9Zh%Ye7$q$S;q%@g6HOwe)0TP zAvr&nVGwZH)9~t%!rNogy;?*F&0IK}*aF^t)2N(ZB7o-(Iml#P0NAdJ!20LVQKYQ_I!H`;BHoVZO#aKmM{1>55S#4 zQS1e~nD`7>M0WZ&V05>&B)e?H#Qte;dZSiY9ZV7m{x;=G%vS%aCH9QwO#A&L%!49x zzxD||_^<^6i3?Bkp)fb0?=}Vdlg@u53{f4>ww4;+UI4azgUXndfRICtt%-^(&YGrl zH8d(jLG9cgqIxdrt-ZLwp&2OpL}1%LJ_rVS&_L~;C=oN!{5%`sHN)CTb*=|4qAh!m zqUnzccOi>@r1wObRak7!ryy)Nm7(24xtEKim*AN`T;oKqrbLh%Jd06U8yF7G3(4$u zuOV*6gPX-;*`SdC^TO+(rT7gFM~?sX?R*cnb35fk`U{$S{_%_68FCDS_!1 z*^R+JC}ux`PW#nt1`*mXX|O<-;Fk0ez(hGOK0_V!j@_B{XmPDr_7~l_?Slc=$Vtb= zd=mzb>U1`BS-~b$+j66(bF(%_`jf2IDFJ5X=jye4gU%d})*$&5QyUpO!CiigT-F+G zW?(K(A8BKL3XaqJ(nOp*2LUfj=ba+h@YQ##g=g9e@Sy)V_+%?zHWSkjlYOU z-E$Md5%>3H;;*=&M2`4a{Z70)7+@#E|MC;cr@OkNU7I>9R+n$*QAErF186v?95CMd zbHO7EYv6;TX;5r+g%yX+7kHSk)T1N->rI^ESoPg0F`u&Js;Xjj#M&tqn^d9;Vafmi zOt6L|(tmx9`A+y2rqk)2Q|XXa`+HkS(8})TPXT0K2qpUD21^W=0#HgHU(^d9siBl% zLh%}GHYmBY`jhMCKtmCbU%?9>3d9J)$G-tzayDJa)=-=(eQ-U>noz;V1kf>h<&rVj zAb+K=*X#iNTIL+J0Ycbs)Bqjn5oG`c1~RG5qQbZhBA|9DKm_%phK7QXZprA)ogt~r zKqQUNJ=*uIe!C*MG%Da6-OG4ADgbOmedqGWfcDs{ezUcJNudW$t* z1O^o#65+c`wV_-ac$6~>25cn@9xwY?doWQ&577J&2$2Odw&(smP85NyCDt4 zi#Y*fi(Lff_uuhp3zah4O1`gkCL?ZwwfWkbUI?)zG09^2} zGwac~Ekipmto z7PRFZMpAY6c51Q1yOi$)m)N?uLZ;Wr2S%L|f5WmNHAQ1TY+eurI~oi!}HMoPuN z@^%R-0CEv1*&|yu&(f<2%3ji3L&4cEE}A;6ekHj~4+4UtoDbe9>2TjFFCPI1q}UrULv;W3%5i;~0Afkf9YYd8wv4B# z@5dsAV|P$X!0#_S7>qL6fIIa;CM_!Z}eSm^{*f5g?!e-`#owkt0o!z)BzPL_=aQgkheSjlsEVdaB0JlqeDj z_(c#^cxh3wHR@jUck>9C;oQGBSZ?SI4=hO$$ovsyj0_tIBn!ZK?%Zd7aOK*+tB)Rf z1}15RyuE{O`X>(_UlCzkk#3YN#1iC#bay!(uM2}~2!+Ke(ERWIgQ)g&aje-YXkw>F zU^<_@s6>_aKiGLSCXtD;3<=o>PPflviO-^Vuz-rdrRoFl3D`3KT2zMB7#w1DuSL<+ zCv0G^xb?t_)KwtDL+v7xB}M#>g*E0`lPJ=xH$!p(ytAxRoLs=Z-DR|m(nh)mh~;gX7jcBBDi$lN1U?xk*Wr9EP!T`E5V zy%x^pt^QJSa8t`~Hr#u!7P_n!xLDxdLFEK{RMrB7gXQr3-OfHe3mM>9^TT(USkeg< z?3eRV!s@6W?pwo>yVtzF1)!quE~eA5uP5}z%m6ivA*d=8jE{HaS)a#aWq2!@Vrx5B zWFfSdZzkYcP!c;EGi=@yonU6dM zT$ChzDku<`L}!6Z-bxWtddiWBR_3@M$qY_wkAP_&Q`}eyPl{mph`sf|aFzko&&y39 zVD*+~tzEO@e%RD6t|@Wj>>>JjGv>sVYud-|wpRK~L^wiZpQTO97R8FX{MAG07xQ*) zRHpEI!Hv`jELnwjktPxgA>9IuMnvAjprBJGunv@3db+{Of_u{h_xZrV#DUB(Z57B` zdjy;%)6!7YishQ%4y{zREsC^@ml8U%#}Zr1!8&lT}KV417mA zMXjc%%r>ZmYK^%*(f~ofSg*}x5oLl)iOmQ+4CjY##YCsn_uGnAOM zB5|18GN$|SzUP7)#T?+jR~{*Gy*<1+J$Rwy3yH#W27k;#T4zWDlb!bvsjmz6WM7sj zbz`tTLB#lqKKse?ONJ1|ra zH$@Y$f~<~h+)RLvZ2J^+Z+)c;Y30z(Q>!xe`I??Y=qSr~A4612PQiDyRfTu^UF8q> zy)n!Fwhp~5v+NK6nQZvMPhw2*kFP?@l>0uBX0kYlUoP5gsRYs~utzZjI&VqV>NOO6jc{!~B;wkSr6?_yk`vS67 zY}{@HsfliEZu&#M@GdpNaI}ZcUlsU>fFYE#iJ*b z$Ny?H?YbLfzrj2u4g~y|^WDbz$9bPOAiIx15k)=<_3YG54E-diI1wk3S)LV{37P3i z1DR;#i&;w*5AKrfI-`%MtT|^~Q%ZW0$)FJgtTAlm9wJU`O$UzRYq&v0ON7km-w->u z9v^thk}T9(FwK3T3!nvrnOd%?gI!EJKIm- z;Q-$!08Ya_Bo^h~mt(~)CZjx5|A>-$)Os64RFF6w&9%Lb?X7)ri#~(_6-=8E9SDo;jf<_I36iHG>zy3d?{HznehcWeqrQ|9_m60 zN0W><}wEYt*5O7x=}fNsdabCgU>W1VMGZ$rn&jcLScY?p?~O*(;>q zE66LKC;)33fbRjZ<_gJHa4KVIPi+4EUF60|`HhF8XmL<^uo$FNVf7CW$9=`0|Mc5P z5gfVm*XQg|FudcU*X6j;z)Fmt!* z2`BnPh*M543OpRMBq3;t{x)yPY-0U-8n)|0@BulvP?w=#wLNZ$plT^Qj@haUT*e>% z{OK(u71y&L*V}|-Y>*%Av2>_^6KrQ)7k%Uu?tqsi#$#@c?9bbiE0<<#$#QAo z@tI8kED3{B`g8#dMlK(T0K3XM&h2~P-K=EQ2VnDtj(e}imvv)4x?&@Uc|(Yt6$&n& z(Qn={^{$=d-x(_P^9-`5EH2_zt8|40Zp;iCwsrX4J?cN-IUu3eKf-bT-%SN@HD5#@V4{dfo^`N)k%y0J)|f9KDQc1A0_9n-9f!letQOWmNov zy(Z*0*H+}T&PgBXguQdHMNd#XVVObk(%*ow4vbpu_v2WaxnO+*|D6;61wSMrIn3%G zl%`EJtD*6clRH~jEbuFYf) z(37r)6BuzLNTD7nkQz-ZfQRbt;c(256-EBp$NB&2CCt@0zr1h}37--oW#MnSf1Yl!iHb< zJ)jK<HB zxv-ZIFMLfr`<&?f1?EG(LkaG;dKf{nOOo7RrY84(obgo29X>i zN_@eO#xBxoT0V_QnWxCXCGYTn>{wh)TNZgD`#k$sIv0p|;lO&ji&Z)_+1>bupD|-Q z!Qu8l6aD~`kAO=tTjLk&7Dp(B4=%H-sv`gEZBIpxc8rlg48!^jHCaiJn~#f))1uSJ z`WQ7JsU92m0KuU9YJ?D0IRczeH(!VpKbA5{2X^C`EPO+)D!D4hQM8+of zfF?jFFxx9U>bEi)pCnBXS6Y3D1%9(S=np(0UOHIr2Uj19;L@G#BOQPOB(ba@6nEA~ zM$Aly$qJHY$$HUB;!8N1R!hEQnzJ-k??xS9PEKWr1sh2>`J{yJZfUea@05|_BMuHY zR!6K_Mb7uxkYD@txxX@xeG|?gcji-Pys`H|XTheE5zU+?OEp%M793<>Zqa#WY}oea z@BC2c@X)4uAP7Yt+(E#7@~>ElUq-q|OFfB-7Dqt?Mc9os`#bTqKHu8ZBfVzGlNdCT z#Qh=+w8-R6MVs(_K4Wb7dWm+2Fln^XjvI*eO|T^`sq}=ObdKH@rtWe~*+_%!Z5W`h zY)$69Kk8Tdeq#Oc;2RBifiQrd7Lb?bkxB6z&Z;oZ$3z6m+Okx;ZcTCog^CjMW^50t3`J=Pz zcyOR$Kf6J#?EjrP7_8RXch!IPzT7XiGT0|Rj*uqPtPHBPla%WrI}zFK{vPKZH4FWT z63P4U4vc-R1Ma({#Co_0BiS@#>n*EevTg4A(dYV8Y<@uSZw3qb<#;*&5Uqnf~3lhByqedPGcA<6nf$6uij2qtB{G9 zMpCln7x4{8L8+6E$H=#?x%Z_E7*b3eS6}<0-U)FSBo6Y_)Z@z6YY4^=+serz_wQPL z!Ag3g#kzqJ!|5AkmEHPMVUV-HY;l8Mzp+@yN?+M-vv%46wizjgH#|V#o-aZ_QNefMmPqk@;$J^bEUbC zmkJ3P@+2|Am#NrLez6j@y5l1_mNr>Qd93Y3WBcu|%}3ih56_&p_{L-Bj)SXAaYga@&P-kutL$utyzMHeaid z`oM2%cJtQdwm)^fY}9f<>%nueFh28G;@w zaf0U`o|YA_WDaikRIvJx7Qef@b0%R__ZFl02Bc*V%Rh@)cIr*^zi6Chzp zQFW$b>e{rdoJ`T=9;E`~U1t5Z>*OI1U`SUp1&{GsiDm{PK+ch*0h1r$GX-XHFJ)4B zHg0wIwwvhT=%vt&=-EW#aua%TUrzz9Rpmj1N{(^7(D#?D+4;{Kdh z0Az~Jm^aRMCVbc2N32|f>Ad+*51xIxf;TSPjsDSteDTBxFzYW9IEBAM>HX#1rgGZS z`-sXREmoCGe9N$KnP|{m0&IqrX$ODgN4w#2FZHKE%E4=8L%d85s|_9#<$TucyJSaD zZ^j`(Si|JPV*#p4XY(2V$VvIlh0(N%?vwOoYdsiM;Y5E#(NNI>lh0@^C`W+j`jQ-U z!r}W}Kz?Zx>G6i~WQW#(_D4kTMUgE%vMg!vONiZcdV zw#}RPX);Y9bxpLGAaI=T2cA#xRX6Od5nVfUb=r~%9XTF~z4`*~!)-sH-|!!Z6QVSy zKZP9Gz1Ani0>fO>n*wWJd^v7p@%t;nE5H4FWFkf(LKyC)4ySzoO?c;-XO%ID}nRg zJ}{*zR1FD5YovlU2G9~Rdx}#U^TG|+TjxU{8$I#$(T@!L z#>C-}+x!83@S7ZMY~?8>BO?LZqi<^_=J+aa9E(LS_`~^?`9=dkBnK3)lqahHvlr<7J16ON zoXDd$e|ruS+g1e5F($~5XQGGxE_^vxc>J$FTr{A^ydPbir(gv)>5$Xz@B9k>$kp}8 zkq5_>QON>3I7uhBba5JxxnC(J87AyQ&%N`lJGp!}&B26j5y?pVS{)Jk?h#%T%@dL& z0!2sgg}$jw1w=)%+e*vi2kjn%ojTbJRs!%~tu zSztxOBnL)>zcjgjHL!+riu*GpOp2Nn3+?7!;($;FFj`h$Tn+r%EO+O^Z>-)8@G|df zI_!za#LWtcyS>46X!A(LGwbFv!vl{U|MDJfk>SYFL?0xmWkCRU`|!L4_d$buOE#E! z!wbLV#CcpT-pmfq+Q7Dwl(?OcTpw1`Uynx$k*x2*)B7{qz8*ImMc9|37wy%e_E6hp zOx5rm=6p-^R^B<}CnG!B!6NZnSCiUZGtyX@x>waJUzx^QkpZy>f^lnNQ zS&Y>@{S>45K6)=8qNUKg80umCLu{+w!#y zBz+S=(Ua6Xe_O35HZD4EVFp+&&?FpyAc2@ZNFMyWmNxVTaj#sbyqmf6K>m}wKJb3E zZeF&-ed)aV%~C>jlC0)loh~D3pExxKLc&e}wp$_P zfRw$J;K1b>6~r?Xvgh9}MD#J@Os}21tifiAPyIGuP;SIY@p?Vvu8Y}p-{*LmcPAfh z;SlC43;!cD{qj3xCW0Kxr90Ky3I;sAW|965v@hg;Uz#v>(0twvK@{#08O6L(IGk2{ z7aUvt^P_w4_Rl#kWAA1YR^oa%&5(KGpfm!Z+kW!_--Lu5207o8s{2-@UdNXx4gk=s zdn{ZR{Ma)y#dP0+3c7d1>VfY_pa^Z=QQ)B~(zX(DDj@LH4B(>->SNfTYuW2A$=FHi=mSdVSOHYk{r^j$;zcT}%7UiVFN@ zT~THdlRHunHWGGAH%^|^N1B&uJwhV)a;=e7KnXJ_w0J1mjOqm6Xd%o=u9{pd`r z58h&djezSSvg7CSx_~5zq`O6F&1QCBL*rj(xjYozbZl{u-V|_jS`AgX5f+jpHZHnD zlSH&~J;?i31aNR{oarv7GB(uj`&snH=TQJ{7x-OiQYJ42qt`V=Frzp*cgsS6;K$M4 zgmdq^-XNAymMnG(uZxnN1#8`jKk*`-M>WcHSG=#3$apq^V}1dXj1o#JSp$L4w8QM@ zLFi`;0!f(UhLgl~D+aEBiBhAcmz>;=@%wIcx0#28oZAZA{n4s5|II^hem_{$0?cDg z6}33C_T#939;4&GulepS9Z`ooc+AGbt#l~AFsCXyy$Tw9sxI^aU3wk}^YMJu^ z5s;e|aN(6x!OP}GHB1zH$njT9QE4PC-bZw7ajys`k6`gY#)AW8;I+^IGlt+|b*1;~ zyTvNH!g7E$AZ1F1l>f*b$$qyMfT~BZ^X(guqYmJamV8+Sh+my(v2VqI3h=zYf&oe% zwFmY}mUdDA3%He!m96Q~QQfaq`q#w{B=EX!T0l<9vWB>q)rXdZ`)Yy9sOHH-P_4|c zM#iMz>+$;q1hWggopG|{vxDY`NbSwY^LGz;DOI0i1mUug<}iuSSy^V)yl8x)>2y8y zu^TKU@j3F`w^&1N%9qjsUtEC&7md}jaRj8#V#G=i`EBQNdCE6{hPh!mt64ZVAn#`9 zf-5DDB=GL=Sq-L#Aqq;4Qmb|r^VX>1@f58aD}Nr7TR#q3$t3K4z;U7IR`%^TD$xUR zRI;_GLg)T@ygEyFYU91qo?*Kt;OrTF$3xM4r|E?9Fk#4O1_z^8z|G9LL>|678OpLq z62-??$2?1q;4|7`9x^e|*FzC!1!l%ULT|DMpS4w{ z3Gnb6F7h%aTM7iwV(!?=Wh1+>((Canh(qXF-It13DZz;NFxXo}do!KQoYiw@SE+x! z2@34^ZQm+sbc#$l5OWgwj6X-4QS5Ga{c)+OXe?92>#aNOW-u=fEdU6?ap zDy%Gcf-WUHsM)0*Qh9z<2yc#n%$C%U@hct={oJ2~ZdTS~+`M?N@yXGpYp)v0_$Q8B z=LOa4K7RPNpF&C+V82f#%Hr-u_QwBvO{@`;VmYei8__|qI!rKYi$0&n2xAvNWWDGf zphs1!i~t<}_O5a5<5x>f^`t%cL_BUpYi~^lZBa4c1W}1;=NV%LvE(l=DMh; z$fZEO(2%GvjRwjFeOrf7WlYz5a>zGIx*=Lh1>njs;_abL$U(Yde|^wLMB8}01921y zopYu6h#eDaB@QCpMMKC9ysQXzLmLMI^c9qRLV{{q0uW7ECps*g3Zs;j00j3%fuO`8 zI`JWkCL!PJDTi3%mV2jKDX69MJ^(QyKt8}|tv5jANU_ohbcD?iEt-?KhlF@OJg25J z(85!I6(y!(7=>X~M-boPFmMd4uTWr=zk`RC&~Fw3@Fzv(%St25`%TO>>40H?j)oEy zXahW&I1e5^9diyyf=t2Y7wGiJZB;25+5@aWV=-03yWTm}OyRut?cyru0Un0kfJFRb`)BqKnRpQegM1Ozr}M1bevU=uYUZ#jMWLT&OhzUwv1))gDKHO=%&Mo?R^_(!pgbN?X{jfdGvy6h=n1_l^rQWC4CSNh zrU7k;A;kR$pL~t$nh$c8HcIR4XPvfv?^n={JTCd?nvs#2hsV^?FYL+~9jb(33{}es zkalRkjaYG0ql6Pf$-dm#|0HB{`kNY2bHGRSA9Va>vXX2xD)d=>yn&m^YCOu+&c|8S!4qfY>ATghFf#!${?1%8tpcwc?*fIV|GmG+zWn+XoIdeiWb%kL{p)|n#$ zlmEcvV}8lh2jE4zBblEMYTIj~h6D5v^s<_g@R6Y?E%^s3px-HcA1;DgDR{dRz%wM2 zh2x<^yB%3Oy9cQDy**9Y0CF^Did|32RB6CPX=(>~8=ys;3oCL~|$F`42zhKE5CoG{gEOl7Qc(6-G3}1eHV0TdR z%xB#H)6b4NHq|P)D*I%x#iZPrGkMJ8IR(xLT-QUUdGvAGW?pOh+!Ddop``L4VU)*@ z-xy^(t>69+Tj#OuDz-$~52As0O^g8H5uP3%;l2C%LiyginORj0jd9I6GJ8j?m@BqX z>%ziXQqlvfydMIRKI0bPD;~@c7sihy$#*BQ^gGyY#e=bCMW{4K0oy^hkEZqjJ}2me ze@jYUs_PZ2SBsE3Dqy78&OwII4-0qmV{~^z?}J7P^NvBbM93qmdF&miVHy-UL5vHf z1AJ=s$ACyUpY4k>tLaKnbaXF+w@R7V{$cO_h^>oAm z(FKL(iFIyFz4e8QH$Z%_Z4H83*o@=x9Tb_uX90l3Bp$L591hy!H~v&V8Kd0vzyT8{ z$>RJLrM14!=>#q6)2c1YNXt_=Ln?@|ad6lJ+IFq_t}0yJ9)Q;)4w)~A8iNbA6$?oi zLNmqstS02)CD1^R3Xm+kHVO|XUGM?jtPpDmbPx4$h0-{HwWkm(b?pwh$BTNVTB1J2 zMcN-$Z#~v={?e;=XgL%`lGfDH6ulz?jG*rv?T6sRNazlhKfgm;G>yGR z+qOpw%$@XHU@AcSx#4W@1AF}I@qAiD(n5WozRhWMlV%)Oq*CZ7tN7Di7!ser#0A2%>l<%(U(m*7SIrkpbyY3Cf#Q#K&z9r@^}l z@83<6Jt`WAbSBVP1f=An75Y#?x^W{7`8&?e15LlnVeLQ>0nLa2ivq7>D(RkKwWHv( z@%sW+I7WMU>&J8}C-zc)UyeN+Ik%dS-H~;*QThiYs$KQoN`u31;J#U}g6tf>w;jus z6=HpyP$d#9+T#?OBZgGA&}DzUd_pFa*GafYuRM_bUrln>;oEtDcURSBA6%Q+;vUH7 ze2Y8jtntGOe|($iCPn^H+@_f<6LtF~(+pPV_PL-|_iI0eWEv6{hXKmW@Pj2zGDSYI zNa^NHgb2SKCjb2%Tr12*%9ZEno72n+VW(m(4? zxO;NG!9-6`SZ1KiLbJuQ<^M8Crj#)5#LX_vkzqUmIyOfq&rbNXu#R6omu{N(j#F)C>Yd!JQ z3p}cq5Qr$TNfrSMCSX55LI&eyQ6(I44FJLx}YAzl@YVaR_aDxuN?%M3VpWNSFOYWyR z&pwf6F#Tf+JsN!&^AZs{6ZTUtTvR~-W{&As=(=nDtI*d4B9J`*bN%P%M;^h6$@J1l~gD$My@ z0+dW@CN~LmkRVkxaUJi)IT=LI8Fbn#L9$S!9fjy6FO$t=j936tP{&iIU56#0bz9Wa zQG3{40Yo-~3h>0*sWYXGFm{kyz}rVn*NXjR;maC_yz2YZ!WTbZ`K$0e6#wi?A-yC0 zS0Y;9TkSZr^)f*L-J1P;R|}imk>7X7s2})asge={4{BJ3^{FU@MK3blA3Yz?2WDv^ z&MCV#6AcDbi60?>_RMRBS{uZrH9IbGd`u~wxEnPWmJwhBJa~I~kq8Y*6r>O=RCWa8=mtA;B z>HRA11?tHe3q6REw_$qLf{0Y0gBD;_hYAT; z>*lF14jC3pycxTO>RARfd02G9xjt0zy&evJv`32k(SqgCv%tq|T?URZ%=}qP3^30S z%*olHBn?`o9#-kS-Tu{s@Qe^OyL%ZaVPLeTyrN6Y({t?1++4dnmZ&AH^*BYEA*@OV zxZS_w!o>N3w0=F=+EKSU_i9KxE7$?Np|NAnd#W3%0M#}yc0GFYC6eGGc2(2|sJ3?g zvG1!asOVIsE4g6``##;E7D8!_&2oIC)~}>WydKuZ*P`knkf(~w-AkggZRukOfq{^? zD6Os_R2TIID}>#@=Yd4NaOud@{jMBeZE}If^!>Wymf(~TB_HcO=LH??{f>(J%tw#u z7+_Q2aS;19bWJpw57y6XICH40qh^9hYFcm?YQ;1}ubEy-u42ficx~|s9;Q=&X`Fqx z6PdeB?^_!BCirOaD#wLyCUbgXD5QM@4Q?Gfxr$>J-BZF$>^TE;8`g9QGS* zF@Ssk=}AgS3k$a8Gl@wQoa)=-vBeM3otR;6Aux5`(z;(=&rmf#VGBQ^ zo%BX_-qi)nJ1{52sF=tez3##y>~ol`Njdlcq6u*Q3UKfDqT-YZNMuL1O`#AsaKz^s zEl(AvW!c=-FCJb*bRsp`_7af*>9tRt^N3cK>qM|Qu!2bH_i$ameEi~u0W-+s)+bm% z($7x}BHku=RCjfoM;hpw$;F7cJ5W}INjr4xAgBxx!78#R^_8X%)KK@`zhH6jd+Gu@ zE~F#Lp7Cv{HzMKpBbOv9c^>L*QX>4uHqayN>zlqqP23+h8{czOEr7U;f3c-lx!{(A z_)TuxzE!}ERE0~kQvTGJ7Rik-Z-&$@zR;-$Rl3MN^G@$L6~{fc6f1QC0&E*&f%ky- zWqHf2k1gVcsW0(A>vhv7(^K~~+`)@|_pnEI96FA+f34y757%4X{a2j8$!(Pw*oGKw zHyHg5vFP+QlZ+qZ{`f#wK{)sofKn2K+Nsz{78DD8#Tre8O>Sae53~Z8E`B%Z0iNfxDqsTQjmAjoLOi}h^C;O@cf9!Wbi%V1~lz6n#70? zl!a-iS;jkfQdH`Q6rh<{nj5Arh5*lO|Ma4t2Wh{vvFmj1_)Ig~ zhKE1LENhbinww}P*l9y+d9;+#cY zXV^gAbf_1O0PM8S6g^?lGvcWj`j_rr(l;)c#mPjJFcpVF-~Ib}VT=cZ!t|33MR(>_ z^_e^=9G|Hde}`=i!0<7v3iTBBz2Ka*V4j+z_{3VMgh_)GahuCj%Vhut_eNhqNKzYq z)8HKtT*Vr%9S)%b3+jgj)Ir~+SNV|uFLRj+B(BU@_2SqyAaF+b8Fzq~rvWJV@XVNZ z)qu$|Mn74_C6GbEoP~qb4@MeUi`kc$P;mK;AeA2%>dTG+N(#^krnmcP7JCl0CzEqF zFs6@(@E^uCpUP$q79d(ZB`r1hLA?L1r$ujw5MeX9blvFmBE-XTDTqOzzO}NNc<*w~ z;eY?I2QYLK`o)=F%v|3(sp7AUd}}7w+alCax{cTIcg4!;BQFo7GekcQJ^*r7%TgBC z&Fa@{^o&9!ujg4aDF&c-aa8=n=OmSzW>5;eypgfKW1%6Yuqk=6@aFt0i-Vu<)5HUo18v9-KucVsV0~UPYP7w&MgrM!>^{|h3Xq=zL zOtx9mkSsh)FWX6uKGmw;{)bcG(!$t5J2yq{^5o7Q;6@Qv!e&}yB;%lfxfa~Xp9c? z0clz?{u9Vu%r@@>S>pb!dp63BXkUg>P~r)7oDHMbGy1^(2EQIpYu&@mnJ@l!!b(gYVJV4vYHGl}n zu)L&2B-3mu0tnl3RPqI~9RC$;n*hW!0R$?|crdn7?n2HAq;L@Cpuz_Dh$K_65FQu5 zsWXvvvV20)b&+gKVp41AmD3f~Lo2`DcWC;n%Tte)ffU^~6cl+pfSKBxX=s3nKmVLn zzdmM|p4E@34lq}wsz~%EHv2G|?6;mA=m&!+;{b&x7I@1#mJKY;NZ(QfqZ(LVd@ybfgR26&*mW>34E2j*((gk=7$8i3<#I_0Rl14#RTm?DV>0{gwOOwvGm2iV;J8*f{Y z)(x%o``Kdpw+Fr9l4%gnMTn5T?Dp3d3yt8Q*p@BdCl&?dwP6~olon2Du3nw_1mA^`#K-w@ZP_96FnC_RubI1H5sZI0di$aJkzKIAv@Y8 z&K_iP@*bh4GqE4U^MJt87~Loi$v_UKM``;0ovCzRjs-U_@VkKtC>}1Q1XNUPxsoTK zf-mI-?Oq~5vG{&7^o)h{(3sNNhp!J+!d{&y8MibFH%27JO$ewLFm~!S{=qcsRSVSn z`F8~;2tK6~<~DP8sTB{|F7pV3WT3am1~@LN>q%+MkIcH8Ye5otmRs`nM;r_(a3b#a z>k4)Px4FzbFmpw!NoIw2LR~8D?gJJS<#z|2gxpLG`7Cr@XxK#ifER zj{47dN59i8cE5Jfl0b*?ChDd`D&H1$O%uk{l8?XFD;zKHZT&CL6yqRRDJH5{;&! zBB~9NnaqGm3f^f04~F~dhdEr&&&{yd+z5x^gnFLqgCzM7_UjT?0b!~eR?&*%c4O-5 z6L^FEzCJkNIz3!0bxb@gBRqVQ&rM=mvbdDC@nli}GNe~yOSTrwI|qZhCBCx{G}*70 zkRf(63L_?j1T9k{PLn@dY2RP<3hH^6wn)F|nQpl~xBcb{!sF2!D@k<~3lh z$2B2|rPx4oUXh~^k%H?+Qq>C1-x>p#9Bg@jj=xfd}7$iGIFHl0? z=Rji3TQM>v=QSY+(P0H$`b$|8g8#M(dKPp-wm}GPU(bJc|#IF6*P~f=YtePK||#0Z@eqY$E9(!@9iP(&m#xWiCPysiG*Vv763pIk#z`sA`O8(Bwq#s~0*?lp=V2ESpi!puA z@Dgf$Sod*!Uw^7CT?GxA}C@uRX8ZQL54a`|we z1Z&1pYvQqY67!WzH|V63$cxB9aeJwAG)DN>wSEDQ@6-G-fmYQVQ(}T7dPs>^S%`j8 zb3)a*35*P4ti=HCEfi+r2^s)fX4D2=@NYlbOeNVs<=SIy@&Iq+?<{Tm{sl;XS5^R= z5I~B}n5A6+zo)Y3u0pj3!F51ytn0@+ zfH$P1t&R}(U1)%-d`e?Th6|8x50i6+hmyD_5S27mCF6(pOETZ;W@M=?A||rU;!)V> zQEmYZ-+XW-yb*7;kp~x0fnVStiFbMvlt$KDM6JPz*yCI1fyO@`w!px7H_BNLj**eu zcpGI1*^jSQR2OPmo?9ov;+tgjV~vV?(}1MO(2Z!MeI~fkR5p6cOSU~O6~vsH-?~iw zPmTTGev9}8Wu0ZR;wbY9e9BR32?GMFdh{~f%jTlDJO3TO4)s4)F8%#2i&f+%Gwd!% z>k}IqF&l1l&9*+kKTGKWyU$eS19&ke(Ub=OSERCeSZsB zL0GczD7@6UCX!IX=QiEEwt48f*9CYMMmp_p*#na9ppx10lJ*3P&>HqYKGjJxNK=DN zwQ$Ch74%KIEOY>(sO=uF&zQ-@)=s(* zx2RmjIKXuM3o3l0jP4LQ*8X#Oxt+2{b;>&JHe zT|b)dG%1mbKl!#<$_0LpmEw**YP+dh{IM+7zt@%60e>ZDTK=^MAw_@|{~)`aZdC)D zEt=?dxz^8n6YmUz1rd=hpW2ceZMA3MQ7vu}Ktx`DJ^1boa3VwSnS|!H4(BYn$9JFvdOyiI@#I20$yScysh=cR13fY8NhJxcEP0ZjK+lzRCaNvBBG(@ zXXAtHahZ5HPRnk`TNHd42I2Qhk>$>l>GlISQjN#hbki$I{ho8309k5Qb&mL;c*Ep} z5uQMbjSugqDU)larEu(HJgT5AO6-y2+AKJ9qa+Ha_%zIg!V7AQeY`v^f$3vj{_gMC zBmZD;;=&=gGQ69pbl(eA`u7~TE&bKx;into+%>_W)%fV4H(IXh1{3Y*8yplW(`~?H zaS)R>({sRQ&i$R1u~iZ}mpJ@)uWUtwB@W*7C2&5pDlw6|EIJ^U(kmC!dHv zX(TSvTa-aLU72)M013z_(c|1|z3;O_O20)t!`At)ZkAsIP@fu$z=>EsY7RC)BS*|s z1zQfKECtVHSrp9J1OiO*Cl}O%h4O(B@E`&jg$aNv`xRsc7C~GjJ%(XQ=GDF|?@4*S zKBc+>IsCfCJqB_;FX%8CQ$x<&g2o9%1TRAQ*I3G?J5CNSto_G1XMz=n+kfmYNYh#Q z_s{io=@rpC+ufl(-B0id5Xx*@f{{+INv}yACCF zw-`J9%?(5eP~Y~q|F+?M3VJ^^);W|6Ni3R2%;9UArbqDAhdZ*I@7E`ZF;euBOi;m2 zbu$(_@#B=;1DLq0^)P=)g~9i*n3pLPKxr5z6TT>2v#@wO$)vM?fh?`&?zlv@D6Oxj zB<{xdCRRj571mxNr+4e2=V&f2ykVYzF!#fEAWQ^OJb*78ISdqrBtCI0jKoKQ(5EG37gBNm4&QL1ObTydGa!eltJ? zS2Zm(a$VFL#oQX4^8-j}I!DqY{l2>1o3Y@Zar|m+#CKJuTQz=KOF0U>hCP)SD$pHE z(Gi-l&m{i6rpU!Wku-m4#CUN`?g8uq7c3VP{N``<1BXl`-Q`_V&~9C5Z?S7ftw}_5 z!t`MI*E#M6%|HRaNWLK`mck?E$S4+j1GM@6aw0!%slP(S84K@0gw(+x>x0*8*vZ76 zcE$(HIJnZ}Sy7${5k>f&2()zTa9R_Scrq!a&k*Otl($JtKRFRb*eP8TTLP(%pSnC5 z%zzh$aOeu8NVaJ8n9(2rj~Edb2h3&_9U&zB=-9f~a6kgrBDEE#thGYSe5I`VxJtL(a5^P{JTICfdEH9xW8|yRlN$B zMa@iW-qrSy*6Yf?o5wOmx5gi(Q%$0~pVuh({Zp|0Rj_ULc+~hFG@IA7uw7BhIIu`c z&jtr$gsdN3Rz7IZy>Nm=iW7>9jK;s)k)++0gv(Zb7V`_K;Uj8pZ6-(cj6nlygMV*FBYN_%L{g6}9vKV#7^qIcytXp=#ohKL=R_M2XZQ#dygRRN4kTZz83Hv31 z(|4^HC7@!}p3|u#~qQ?tT)8Bb?_H|IdJ(!P6Xy4!jXoVR# zHqC8IQ6>RuE$bypOXKhZoa5C+!E%_LG^D=*$#eAz)dfpG2|vJB{N4u%%Rv%1Q#?}5 z&1}B?+Z4o293_poa0Q)K4J5H_{GJ#!kG7F&V zDWjIO`rLVuFKj}9i}>Z?2$&TPzbQgRO7wY4^W!b`NxH*W&>_A~=FPY-_jek{8T8xg zGC}{>IIW*uXF&h)&Eb7foAUabnSoLM!_2hPdUev7(u2D3yLs5<^tDs|qPw_-QeJR~ z5F&LzYER6<^4=Aw8DLsiGKB%ObwJIE5k9X`9tJpjD8}vtzTwqA&*Db&<;kV`HKYstUnI3R#2XHcCm0*mm*#bK=4Kci2DOr^-MWg zPX&{GM-_{V?>&B4fi&Uxy&odfXC-Y060U>t!51)}_K*JK{`?*dwVTNkfDaC;JM_4P z;#;C0HOb%O7Q!T06lY=4bgUP3lCESh(L^qiq&@zlXZ&dCsKnu0TROEIh6g7EEC^ZW7fo~LgoN=%_=jWHoq=Kc z^fIBRkM9PS`(89jv%4M|`Sk~@9W3Pc61h#vuldC;1&b*9N@`~;7e1TD&ODN|6&>Rl zyi&fY0x|I0C|0}=oEhF<@Nz8Z~xq4*x|p<195q)({M^fBQ^hg=dBR`)&=7GTOa@R(G}t`bu9S?yT{CZ z?uV_R`qgWt#T)E*jp}cj@>@zdN($CjN`DWnKljJ%kQ=k6>0_BLU^-!*5_u9scl~0y zJ+2@)4(XR|HvKmAyxam<9&nuFT%?6e$8t+0`-$efkl7jn>Cq=^S2%Wo1PqRiK; z_zDvn*6m;~rkONRnhe&0f#yeJKJLrfOy6SQ0ej?8Hd+rd2q_zo^G)Gk*4rfK$?k+1 zVAU@m>V}0^RrB#8)$UdJ2i|0nPN9Ms_@t$`E*~$$7Cc*J3wj335*id(%slsBGhVQ0wNYxJ*aE}`|E?{Zk=!V zEspK328*kcFZ#sU+NQ+{c>99F{z0vZcD0akZK-5RE@-DzOjvZw>j&c`HdN(?ziUC?08z zFDAhf;uE0vJIpMuK>$%8DWm&@!LFfKp}arNU+;SjepJ=Suy_-wM8k%{LBSiwaI{4s z)3mDu*9`8BJv>yLo!;Zd3wdy!2=G_nGx(7Zqn@G2MJIPS4yF``OaN zWSW$F9qjKeKn_z&!Qcby1&;6E&YL4+sYhr_{7J&xj$l{p0gL z#U{O;Pvhn!8;ink9qap2DTrg9&uTM|p6%FmTBQxBHotYqGG^YZd%bBA^VVnZxUOnN@Hr-oS!qrl-m%%OpiE)`pu31@9?0hIS!*>j#5p+W7A{)LAudPHm`7XWp%L98trWesk7P=!Q z2m)3-wW;ZXz~|w3J_MV+2?_bJKa}FKbflN$qcO}MXvMT)I*91^TGE=-qVB(AzLnD!fx!xY=Jg(8V|5?D zj+d!FDGD%=BCc{87VvuT6bWfxCCW6a^zap=~zRA{O~t(37BOV4ws2d}p0fdg2wqPv|*Z1b{c62Ff$4|UUV_BFz% zd?;tH#SNRBB3bZLeTz7!!r^|PKL6z++b%u`V^8~=DFLU*td-kXFnu5WqYzm5%%6a{ z)%L=}Pq{rQ#C{I7VCbY@Ow7f^5#e2*6zG!VHG@BDj(R_auECh`&~lb;$oeihATYT8 zx8~wWILjECA3cob#zMJDmNcpx$eat~!@w(h>kM=SC#B zZxI3mSfLktmnQ)hw`y9_0)tmn)QYX0{;teAeIl>dhfQA?LI_9%Xh*Ac{i@#mI|wWQ z9jG;Z-pm`>Kb^L2bo(f)gt>@$ctUUxmwD`Dahn*1>|QoPX~ArUsRr=+{mdan=?5VD z2gYX~Q5pW_`zMzkoaa{u#1DiIqUhhx$3fp#&+kdYUjC9GqkHr5wZ<(dscl9o;!p}u zWuR1=Lwg>ONptzD8>!z>d%Gq~0^O$DVt5i5|#{q&BXaN@7-OF&}` ztvd#Uzq<|)KjSqRRw^mI%3%OB1=1 zaIurtmc#5(rSZZZ7g}%2UO{=zQjkjHaG<LCUckVpBYh!aIw=_=IAXCTT=q+TT~I52jKD1b83A&KaF5| zl5C(ajB1D3FiK6y2M2QMUi5_gDh+V-8IKTnUm%jyMsEGz_e1(TaacV3nd(TTdl&@2 zJmRXKt(^HqF(k7HU+C(OlLccL{nG+`2EXpR{4T^DFT!4aDV@%VpY|!!gj6@6BpxLY zAFF9Le-3kmri>35v7kf0#_bu#u~Rav1lWuO-?l9B+hZ9|2MIQZ%)E8PsnMG&u+O^R zms=~@iG)2l*EPh|Gjh_<8yfknxo%Pw#?jYu!>lr+s3|#{s;w%l4NAiI2LS8)4fT_8 zs@|TMd%sgQis#Fn$pJ(nYZ%N>r|z&2)T0dYREACajN%jJukU~L4VLkn=j$wcZ69`! zfzyY5~rD6L1&Ky#<}8{zmBj(VAu)a!W$>YfakotF=v#!stgJ@HYjc%^Fou z@&51H-WZt!Y00j>r96vT#9q7F0RvwC2Gml+`~(6!ehW!Jwde<+mJi>W=b%B$cQ?R~Q-`>LKs zhbsMIO+Lco_ukC7i%Hn?@^7ckb1TIPE$W0Y^k)GM}P#rtL3R zr{;Ob|8T^QO=wE#adz|6f+vcMo&I5Qtz@Bw8&~57mK?IyU z?Lf8(iGpt3l5u78?wIjwkddbJX~PFm6d+2qo)fv$fyGKA{ zbN;)R$ze`WBufA>0&GHp5Ce|wyc=Q0yb56NBUJK^-MGfB+{Z`Bt~+-xM7eN=z+!Pl zw}RIf1$-3{Oww6O*YHYa6#nfzMDp&aC++H0YAmOlH-6{HkgOuIB^-*!+HfiyRRA!? zy}@t=lhJ01QTVIhQlKo80XkEk=p;@ITTndd?Oz=Ic;*55AUkw@Hs6RTNs$5U;s-5S zqL$4$Lxg9_|zUDQxJWq_WD5xeA1nEy_{z zS{y+KFEkGI1EIv&3NK*w|DKbA<$h!j-Fh(}l97>JlNNnb(N_)~4BmSaQS#gE8?u41 zym2B0)1FQt`o9{~w#{-NB{2$Z1tft@4qOLrfn-Zbr~BZM7^VYSw%REHJ{j~$MdnF8 zKK`=lM5M3heF8UdKS8Oz9o?bK2jcjqsM)L72$t7^c%MRupl(`a?m{L;`qYWm_q3^u zZ#GtX1-1p*o$0_lS|hhqA1(D~YNZ8o*rpJLnU6Z_z{?SNyv2<@yoI21UO-WTndeEV z(}Nj6TG?7VUF^>XbU46j3_3peON+!sN_Pk%NB|gwK*SnI{&Qc-^O)4~kKyH;IP)F39NSv;osN5Ty zO8!;?+M^)5nfbkR(3l|rF?eh7_Jyg09-TUkQqOK<97woUjvN9sqPrIaV#nc6~s`U7FuHz#X)(qtZ#V3lhWZjofTma(}`-w_* zb?tTSqSKM_Emg;;7DP$veaR{TS~cblFd-;PNzTU#VbYsSJN*BdtK?Uc*RpJz4u*)z z;1$wZ-~*Ct12nv9-eeTX*li9Q`FaF0^6K2dJikWt>m0ltB<7^OMI;PpIhNz@9tUjI z6(5O=EAjYEZ?r482vUCS7>t;%E6&fn2Cebb(ui53i}>%Fo8sm2?_5C?2=5j!NhVa^ zocnq}d3cvy&cF3CeLTheV(guTgu_0Wm+*M#Mc9mo6xMV z@t-K*Yi6zxeZHxMQUheqY{Ph}uj@HIo+z&!$yDc~|Mp$S8VxG`op($SJ#@cy2?7@7 z?ABj=A%oN7!)JmuJmURytMHbI;6V0SdfZ*Zz&Kzj_b!U^9eD`cKCA9_+m8 zr*2HL{MIIU`A|WyC@?NIVdsN4PT4sLfX@$p+Sc~tgAtbq=P>lG>%12Jr?$whV#PJ@ z9#ZDC06Cz{@)-3F6Ho?S*aKsUkR1=xWME8lOYU(K>`U}pCS~ZYx^~Vn#TMMt`XIQs z^2uYY`aNf{_S}q47pTu1Ub|~GCBZO&i4LSdLU}M{3?8JuZFoKO#0NDpEBz{vTZpVk zD|U^XMRh7bWmTt=89c5O+~)lvre3Jgp!}+PS4xy#|V`os}ytYJk!GSy2wQ^(Xl&i2L{!QMBsr{BYfSJy{~m|F@~ zg&I7#r+-{P3P8~BGpNO6_PZbKuXT*hbLk*tm0^>EketgfXEmqSW-9?$ue4ZA7{kwZ ztJww}mi_GdLwUUEp;%vzblGeKlIqYR3LamLZBOJhBpgo0OUW}?<)W=FVIC?qL?V^H zZ;qoC<3`r~Mhb(^jGHoEHBUD8Q(G4BPOIh?75`!tz2zvFBm?SN34qv=iqQHV=}3N2 z2`?gu?>zXA_GhtueXB&%CuCh_@9p+>$p`<3t?SrwRSA+G!~*Y@c<&KzhnMhPh_4^i zx1X7Lqg9_i5>#bnMn+_1!L#I>@d@(n0oi1?pG|_o7z`LyZ8tC=sd2bce~C!)0c<9RyXk-P^%+QI22c>=415_-(pL+mn{WdL)* zTkfqmD7eFOmkMaRjw{&UAlC|xp{p}*1}tB~Px`dvfXuf9T?%=B>}x=&?~6e)iI5|~ zILceKh4_u&>aQO5p__=oHSwHM`t|KoS77F%#HB7n#z7g|;^?<375Ms=!KWjq2PF|8b60>VFaq*vVY}|!W)#wzj<4mN|wS!c_u&QT>Uo;_g*0M=d4R~68F)wlTV`yt@v6F8%1TXV`{I_faKKm5GH5yrhaE(f^W8S4jh+HEsz<7Ir+T2U4l(n3 zVtn&&hIuo|LBRX+GSlI^8;U=070JOhdm+(dY7KvN)%Mj=<4f3xxKz({D@*cY< ze=-aQt?*NmmggIzspAlLf*{Hk2rV~(8+E{-12w4#SoikknBG5?jYaD zaVxPxRj-?m=rL-~p5UcZP0@#x$h!R9dwkr9=pZ=%8J;x?WQ^MtSbU{mm4FeEYr+|H z$>n;zsR{&gb^YEjlLTlGCS1U7kP8$NVAvT!+s?O4ioW0ftt;Z&@IA`BG0j6WAP1LmfhBrv6Ijc>buYwD_Ba{we5<540gk1g19%1(+-Qy_m`^^J8R zQ-Nin>*SePhv24Fh?(}trKKksRNm6d3mwP}#VC4uoIrF9yIEM`GWkg4!MLH#WH=3J zbPQI94)(kw@nTFk1h0E{(&QoUMx>VD*}$oIIxjy&hJJe$$F)Jtkez(F3Xw_2=GtJJ z?n5hDMKfn@iZsl9XOmWHu8jW;Idi_LLA1C8*wp-g<2;q41hi$Q=!#Lqv4`nCw?a6a z2S4I+^W48!hT>V<7cVRQmQdMFp3P(=)|0NLDq4K>tb%d8dMxWHq=LAR4(PHyy2PiL zl?d~fBz5ZqNpB*t_{8UlrhP$k(!50ZH{ay=`-!TUm67*d$cBawv0y@@L}Z-=mFF_( zM@Ju!yS?x6Yp>&`2@tr_NH6* zP2m*E952S~q)(Su6bVwA;ne@JD`dO5;t!MVi6z3}^X*@R2eJrTk-6S z%zk%rMY1xBNOF73QE)nOt#+pHP_k0l*NMC8Qb`_E1E`UfYEh3x2_ z7s#x%?DO%)7i`-I>U|!r5L#v;mN9?l$x)BHk$po{Ts~Z)%=Ag$Kz*B#3w=d}&B(=) z_Ns-@>0V{Ub3DR~tWexpBC*NAXtY7fMz)uIAWY-Wh+l1m&UVlefe8w|iNo_Q{U)He zL^Sk4qYu{49h)jps)qaN!8tka{9h}vX_)t+DOxdao!2wUo?eEWVB0hcY zD>yV3F{+ICM&3)w(I2E?s)H&NwcdpJg|gKG&SU6-7F#{`j!jW~zJf&jF%!r9Jd+_U zZI7Prv|i%p^x8RdtF}EtwvB4Ta32aOWs*Hn`VHCb^>8Fo^-={=+ zDoGzWJ(?K`>g*@DGYAZ(ut>*<4HFYUrs$BZH6S5J$og-Qph94>ND?bYrVpGwEs}J0 zg8#=~QuVy~MH^(k^v;l75y@tBjY#NvMYe01^8l_Nqm< zxoe(tn*ik6fg&+G@5Ox|xR29nw?Q~%ZvcWX^hEsb>7^ptK0QNYmuD|oNmGE{GQFy1Isw! zGXkJgz8=6z7pQj0W|%QdO^uP5)yU-a)$S8G@_#h9+Y6 zrwBsl7n>RdC%vm8b7ekn*;*JsO~V`DR+n_15gQo}0wsU@*P$T+*04i1ojuNK;5US@ zcM9#z-|MepUzr<0qh2)C5P%L6a&x!YNMb03?10}GI!m9JErrN#d-8%#bJ|Wa^*IMG z2uo9JI|84*_8>g8BWi_Vq*`5*+f-AYmcvz`dy_>+D8nhzp~+)rQ@b0E6RkFkCU?DR zC-UTB-Dc9Bd_Nx=7^@IQDFsRxJvSf2A(jl3ywPY zqfna63j)Z+U(^WIB-wVmqw~+{S+$3Mgk%O9H}8$lDEyPB3GrFYy9jOHgZj2)yzVO~ zhWs{OS`ce)w@1eTl|*1yO85YU>*|RHaF+vbKG8vaAmhe!lvs|bNlPGrlhsaT&8;_C zOV|hZAET*rrTyqn$*V6DKRfd#wBQ2~MHx{)OO*-GL`L3c#1{tRwulqUrDvdva-jCb zQBWA-o5sL4T7y*}+7#a^%W;@+gtHeBSzA!(pN}-Nf9_UGN~>h~nU=(gyf*;>kU$MX z+rTmCB(F*Wwfw|8QQe@CsAvm2G%pH~wVE?t${+1fMHiLkfLG|$iT8MO=~NOUgj)!g z7u^Cy=4>#+RUmukpmgJyV;e~+ObtAu=uLS*%n0E*wF*9fZ##nQ25l%fI}jKRXs<~6 zMZRe&L&yc#p|u2dv^yE@(N!qAIu{jzXKmUs{Pf*10YuuCP7p7-(1Od64PCS2OE?(aRP z(%5VJGm?OGT!hEOS|z;?7YIebVjESR zgjH!DULZsr2hSj@P^G@He1#gZ<@AZ<{nmzr6XfM^vA7CBWQnzzyMP6aQ2l@~&lh$)CZ+ zCRWow$J`qm%Xm-(n(bwLQjM2OatXLk&R~D&3LiJotKlG)4yCo~4o8cj4?0POYQ5Mg z5Y-YIKkWi{%R!R5nZ_NMz3-UK%LuS;wNS)uzFyb`=<{C{9$3ws_}<2Wfb8l1h#u{8J}l8Sc`hLma#wjn6aNw=D%$zxjjh z4;k1UHP{!pqE{b=mpOsy{2^&0uBx9(qerUefhU$7+Y}d;fY#h7Y&l>fn1@VxT=e9C z3}BZ%$eW9p-G;y@9_y~q;hclD?&Ufk1f0?5=HbqMAS#vy6sv0Lr+{?3+8}G?e}^f3 z-z{@?GpX*KZw6SS1O2rH?;k(Z+_o7ivw3U)4$Wv3pdb+H71YRu8o3hC>j%*gTjhSL zkI?D16Ao}_yBkkliV+rhxsHcdmY{nqbv5^p)T8AD(giKfjJfmKjdS|3xMi!){+6!t ze_T^!vc9@*x653d5%!+#*o=7Iab|V^RC*XDZ_-0O7|~NT$X!%k*e|j^1d-YiSs-kv zeTO6O({!igFXb&s=u+%B&QI?X1rxlk?cn!L${X3BpY;>?jBu9(tbcWdC*Mc0RlwM z?_$h@+h;s?S^_S!{!7`JEqF{26Fq6=p}5a|%T>U#M%_>9*{6DVa&HavmNLsQ&IeGz zenFfOLrQd8W-H5t;HX++Ch-+f6mCJV33A_#I&4GK60G_4Pf~nQkn_hEGq3nQ^B=cw z9ZDOw@pcg0Hm|4-9eFE{tb*S=Aa@h-v@_&=1GV)a1d&+X&$zl9u;U2d897KkZ5N>7 za2+<5><0hM60VNEp6B#1A&p&6NrGVgCdJDG+WtM?qDnqqR7jFe=QE`I{BLB5&oVK& z3)NA5L=y1YEib)8l_+;e-Cue+J>p>DKbcU#PRvZ?O*B8tLD9CFd&qvpVY!}Gu1ju< zI~5W*r=;QUvAmAe7J>|t&ZpbjDikpApB&4*`=T1ZIqJp_L;wJPe{Iwrfm;M^5m-n` z7VSsZ;S{!>&c^c+h!+r{R92=Q7&tR_Hi`2e!N8W;71KlOX9MqQ#7Nk8 zA109u_P?5KQ$NXj@>bB`0I2X-tE+tEm|hGLkvsV=`P@gkC*o7f44EfR#RWY%J;jiw zx?-uLna8U}p@nS{g_H~^xD$qI979u=F#if<(SN8OP;fYei9O=$C{_;J112JNx5*EM z{lQCteNc}$`uSV;It`?mTW6)F9jau6WDLn8(VaIFvb=QwTJ5$VZ;_0A2p?`_-(Ik& zN)C^FV^nbnAFX)o-B$7du9ENkEpECrzLD4R|LU^5(JX}xY{P*%XbATkK)%m=%KQhZ zNTPWTgZps?TWskgjY@%JST@|&6G$W{dWWy;bcYUIf9rR6AqdE6)WnkO8g4!trm1_?h;N^fuAW<| z^vnA?x+wDKh`{f;rDlU&ssbvG6Ohg6L*7=3U^d_6%>p?D$7}xNbQXDT6!(J_ zdIVi^p%Z1H_YYdNowChgY9g~9gM#qct;ycj@zHrC<)#C=NKGam^Rvk-HC=huz7a2+ zP@-nDLBQV9uV3lFxYpwbPXL(r?ejo}~^>eb#QuWcLD)b=x z7>~t;bE-~I6wCpQM~`G5W*ckE*N~+giH&@Kf2$LCRihE!Zm3H52irqV9H*!9mm z6>io}Zv&449I7@!v&suEP`W4kw<#Q+jXVJ(5}~$+-ZLHnu%dKZnM0$9(R|$sz)AZK zcgY7^b8Z*isZoiI%yw-*my~tYD8DBA(0gww1?L<<>ni1&dqdpA1kANMG~@UjCI-%6 z_-f2FMWAp=%0GAKxRc$A-@leZkb%BcK&WVS6=&B*`GnO!FCO{@7^miGpT zyPJE44|K&dWBHOfkEfT$?h4N>bmRq0iq$_R<0kik?CC|8>X-Mne>ev>a{a!oBUbnH z&0PH!dm!}cFnhP(W>^i8$Mck?DCbsc$AWe@Hr2fk+b!JzucRc2ix}((Ib_&HqX_HE zq5*6cknsYoXd^04GDx6>IhSL;H7}u)osR6&X0rl9-@f(M#hciuI?-MGi}dn$as-B|n={LOv39AS z(od`_H^fcYt17EuGA!^o#d6!Jlt@Q#Zm|*RyD~B-bW6QuzVZR$lJ&HuLR3D;DlPE$ z-4Jxq%05}dM;S{a2$Ecj?SJws1Hog9)1QjKgLlDw_qwGgt<&4b`h=5Dt4TXy4Uv_m z5da}ABsV!I=10t&N$Y#L;hWdIiTV#d@hOa6XD6%3O-hfHVD$Ii>pWDm=Pk{?x=X%q zcOooxz*?_?Jc!Q{{3h4UDA=e&z$iFVa26>7kkUIx5a}X{8w$^~kJ2=#K{H}2vLWLq z=9&bOH#X69WJXMW^5C1QyxIe3n(4xva=2p5NIvmp;}{_iDIZkf@ve^On8{4h3Lu)~ znLa|Si9JrgfzG~Z0ukufG2Ho_IQaZ_Tvugxl594Aypd)3pw)DZkxlTqeLPT_@*y~M z4942vG=1En?C{Kf9V^{GZlsAax(M$n1i zh+qJf<58xAD>_E?Rz7J{1h*s@j$@rR4)QY!b;~td+9RFbzZ+hB5R`;(Kj`phF3zr={fWfDgjsDOv~wUblLDMwBz&aW*adV-VSm!U4@xknxl` zLqyq|nBZP8WYt=Ez>>BNMNlT{jQ!%CGJ?`wDJpq;N>D_Yw}6G(=bIcU=!#miRFGJc zBKX7-6OPWDvDUD7;lL&-6M`&NbP)Za7j%GOH&+vwL2-X`!;OVJ4^jnKdXxUJxHcp4 zZ&tn%fWQowynacqHm|7MN*{6{;BO7ZU+U?$Mmqa^9M!pjdKj`KB^#U%Qc*hr~v z;1a?)W8_EUL_Su-#it=dPsQ`7o3aBCjJq>XX4>Jv-#sJZ?HAF}Wj^(t{y8+TQ}Iok3PBIew2ibws_7GP-)Y^F>W$??V;wM-x{Nem`RHZ!)S74O3u6jJ8<(rv0Cm*wVWm&xmk8cCY|Oe; z-cSmso-uXKoPVz15_OvR)y=WC2gWWAtY&=U54%DB*tP_Kx+$Z))k^^+Qhk_*mJ%s! z#5KGmJTtvi%Kr0`DJ6OTP#DL{G21@46hY zei!oe;l1Kv-nl;D?bMfWyjME2q~0v`eYlmQYQk;k4Xtwv|7d4+ zgr7I=aQ!h;M6fA9{3`n(CV@EtPW*V{nN4UX&WQy&lw16iuFW#~F#(EFvG)+{HMxVx zan#L#j4S{yfqCv3O7lFg3yKL&a>r$FhlSFY1*yD}XJODo- zFD7$h9{@wbLBLx@R|h-}`A8~kM=FRhP0El$3ozqBLA=piC4`RVZNK^;WOo4T6EE)h zzVz~{Rn%CJQ~^v7tm+8%fzX~C)OwrudO=i21q;FXfQD~&F$AfIW&L6?626ve&)huy(bU}QUe7Yd zE_~9QDC=k75qzIP`i%pQDF;Rz@B5(9tuJ*LQ|Cl4Z|ZwXvWP_IQUm9*YO}Y$glhuF zd`*iK^11b@Aw2ITL~Q6GKlWmzI@dA8>AkbEHn(K3rOCd#Ik?m#r*_NfmOHe;U z(1PTbRD4drx6%?MME3kS!_*VjB7aG!E)pC#QPzb=RiY{dyEKuBq;W2dKnji5-J)GXhqzR;W&EiX$dP-R^I4$nYE7ltM_~Y!|RRpZ;gi9 z1|_($sj{zmE2G3UQEh}ZgoDzch_QN%Zt*t-gTncCPKCL%@y^( zbH(vd-eIk$u(k`b)QHn#k+3V2s{BvgKx1${MMxVjcih_I@8+aqRdN4fnf#9?V!BR_I`Z(#kjxgUQ(SrzV8B+ zx_+-F*wk#eUbaK2YRvh?b)wh0%ZQ?mK8E-HU2NV=q(&zb!fm5JCg6GnCI|01AzkC;ZEQ3u^fd`gfyYQo87TfNlNz47QQ>+x9tLGr{ z9!otemv8e^v)~)}q8^bUxL*oKj415ksw8`&v-AjCG*V!nOKeXu5tsoSztVmz-7yv^ z($0YoP_h+`LG6iz#vB<5Ej_hJrCR!}3MmckT@0pI8J5sw$!79>aHUaB>q2 z{BkyRtZrZY<+*GJ@H<9W=E}ak2G4h4Y+GS`|JgT`*46vrf+B;SQ@!_}1W@-L#qhK1YSdhuu&jgz8H~#Nm=e*ebAB?=98oI@9)r(nFJN zr3p=Q`uz4Qn?HRQDk8>zHD8&`=QEx1Qs9qUq2*}{Yqum`o|R6&fCHW#naqV=6hyu)Lo<_Z*o^QK$hVL%qx~+X~Xe}$$L$D z;#B>cZuJIkf1*;5Fk;}lgtmhm3;C74=#y;>ne64{)tF*z9M99hA7ro>^Sv(g9$@HB z!X=$oh^MMj+Z!Kal$)D*{PZ@BFXrzlZp>BXUJ4t91`Im~AW86~~@XokK-e4x0c7+p%yr8+b+_#+AMtu7$u>(W1GnD>ZcaPdb z$XC0@^RKs$G?B}E&lEI%%h74}dB+sY2<+E)uWv3s`;RbsA>G+=_pEJsFR<(zhpr&J zrC(Q0*&e_M&2~2pK)*I9!n7+42(FI~psUXkQT6ZML0u#f8HnRZC2ep!ErS)ICpWTm zm}^X3s3aLVswB#ZKd0upRVbK3$kD_&8G9{Cz~}I%?&<`7PwM-DU6H26x`*IrCmZSn z%ls9qW=7wFBJkfC(uA0%4T@;Cz2Fio?U$j=W~r?j`NPEec>!{bg%1=a-MF6*qCA2- zy>eSSYR9a8cBf!-K>k4HaD#rDt{pDa4e zxh9=HL6N2iy`W_GXTO$(7d2PicEh76Tv-ME9&h#K2+rog=%CR5*+9lV>9dN5r;6a@ zxmk)rI+KIe0euzkly~PTOB|O zS64sjgHiZ5cXO-hy(Blab8$tuvYs-%W;cJpL%e7Aqffv5kP9(?-GRMM(u|K-J2RKU zdyiatMz5sq@HAgh(SCG%$5D8P}aPA2W}tdap*Vm z!+=AySW;t~mX14vn-leeBs^mB{BzxC~j z)WfQ)Gw0UVXMJjW=X=hhn>-&)cb?x5&A~l~R)A%O{fG$vh#*c_#kiL^STw{Xdwp8$ zwgXW=`}FB;YwCNj?KPYj-%O%exp3U(H&&_cH1Lrl$aJ+zCu)mt`w-A15SXHiu1n6mjYeIMC}n?7`-@4@zv6Kbq@1 zJe2?5yDT&Y!@q6E#hLd=^RR?(8}8qG#C+&1s%F#ISZ-gNRN=P<#*S{0rRAeX&20QL zUF{_goDu7xDjs|#^AH2teXs2*13k-j!nnj)DUN3D$A zNo~yFHhtJschZk~!AtL;-FG z3mTB+_dOvN!JkE>8Y$zjOaMthw!iXj0N?xVr@Zx6KEcWtJDZOYXOTn~#{+u7n)pHl z@2?tJsyW&o{;OGnKcA?3^Pe4sVZHTCK{ei~SRd1fN(O?e4~YEkku!HnaBG``zVD`B z_EgW$$L6Os^v!>s7!cnUl2_~^Vs3tSRvy?R5vwb-(onKXXu6$MS+`IMYnncv}%{k?ZPN)cwgpHld)0e>d8fH|cPT@L*3H0tHW zUH|GUMT{|M)a)ZOr81_s_CB7FOVgnxylw>&>na?+-%d46j>Wy&)WawO=WLhV@j+vq zvT4$X1rL4!1@7BZU%`S8Tp*y)GKZ^zxvsX*NBX$Gw^mMNOAojmmmx;BVPKK zXIkcbHADL~F!yT8zk9`Moz352BYE;pG^xKa_q(yiPMH|wsi6Snt_?>13JnTAqoTyQ4}Z=!lR0e?EhT1 zhHy@2|8Z+2r6IRb<6D11P07U}Vv!kHiqhrj4JTi*bkZO8m`$~&uv^3_4aAe0U5i)g z4a{*!=}m9N#yoj1^7f(A$3Fmu7QW81G@?mtShE%~;1%EVYtd*fx z|FsXQuwzDLWG=C(_idvIHYbw&S)AzaxL4E&UA^&e*9=>R97IvT+sWq1 zwspicFIw^xpY<~yCEMEL;LKQ(+d#BNQ%|7``G4X&qj4{DB`VORH?7X+3( zj}G#I!-?p4fhiJ?1TcT6X!t%Q&(y-Po7H9w}}J3r&MzVrQrV|G}oMLcfMa}MqYn?*~D z7xEGEkCeoH5=AN-thi!;e=wb8G=TS|e|mT8MZTTHpVK_K_E6V4tINHpk7ef(ZIW3F z86W;=Qn@p8h3e0K29IhYa0Uj_Aw3ZP`;JM%J8|u%ZF8G{wdE>W`)Fe20@3su%gnLM zLT{UN#qA(@>$BR3o4elAczVTCzU;DAUL?};J|EG@2 zaA_33?B!qmNuI38BN0-|S8KPa(g)9ar$OPy1;1H187dtXztTHW?4R=^-fIhHXB%(* zj|KjSFVjnf(TmPkaop+Iqd;?cqV>ieiU z?rtP6R=A*00Y?cGbc@xw;6=jpGkX7-@RefX^;!RwZ(QZ;lkgq}d!+Qpm<^VRx&ij$ zZ{}D3ohw8DA2sz;#jZSxuyNy*w2eT=Z$VcT)s-1=1qJFfdKes-w-CD1jf8#zT)@6Z zcbFu7boeC&NUPO7X>E#OrEl` z7>|GkkpRWj=mV)sexa?+865^?Q(f{vOxhb5)VCsjhZT1U4|Kz(LyIpISdQxEv_Cyx zO!2gbHh483z`_0jDeWh>daP#NJO~u-oJb@1#imxkT|!*kE9RMOQ!Rw6x(Vi|T;T7a z#gd_|)@YC%G{kYn5!kAdFNo1yshNL7LQ+_aK~!-%fz8~j5_v2)rWjoTf7gT`qrd7Y zwXy)zW&zatxDb#WLRvRb38=j3|NB3aPUzmA)*B#;zCF z_{@5Tv6zX~hf3=C)&ayB$Os2j)6J5X6R33(d3~F;IN(6cN&zeBi94St7U@1Z-v&!D zZw;+Q)cY7L8V8^L_WdyL*0$>2@P&Pm@}>%3oc{T+0S#9YjcGJE^8N8vDg<{7D-y z-?vXj&zAJ05cHB4edb=9HZhkjbtW2$E_R}^#`-xMBGp?Bod=jurS}9Tuf9ZyC|%*6 z;=;~`7(qi!`zFGyH0I6aw%lzk?Dp0nd6jMHtDz>iIELtYE1jLh;iy+jLh^%h? zNeK_}x2MZg){hv$)#uK7|KuN&r}FW)*3F`d~NSp-H5hq1V@$gZ%o6{r(F5$Y#} z+PqAf%)h-|!{7B$>(q?UeG36&E^V37XkCWGSno0g0OAYZp2AntRP%7-SP&~=WxGhR zguk3+Jn{zu0&nXd5PJ@PICJ#NnRVk-Pg*TDilw9*DkF`37?kD3*d@JsgA2i%#)XQq zsHlGDokVPr>l`_n8LXTtZLRwxwopgs_c@jl)~OPXnWh)N^^Usrv~sSa<`%tzy;r zIl`<|2FuUc*}mu=86-V@AidYQv?d1)w>KE%wiqc^M<4wrrfKldr|hO%EoR@Ct$(@q z{o7%Xq~)Gd-3N$}vr}W<_{Ib0az0q^yFVfSy(hyx0`C>ts127ki!K6d0t(sm&F7-3 z;wG3phz-+5^ldn~yj%jIwteg4hw@A>j0ow!=F5@7C$q{?Y@ok&1XpADLpN?GT6_~r z9ym%%sG{BU^LzgHyT_QGqba!LlN$+V5-#Ar_qTt94JsP5DU1YRKZbKyCE@z= zNb5Mfq>8(n8?S^zW*@+hySK`SrbTi>>Z67PE-M3nvD2&nndg>_w=kezKebU+Z!L;w ztL7c~6a8AOhOV=~pOqKCixY+_0Nh&A++#kVT;sGNJiwOw+@4f}?KS zcs)za(0|7VZDha!6{(i#I>bcJAcIyYJ49FO#W~_F5TMD@jxID(ik6AJ6O4ky;~icI zJN-WAMo#vd2K@HKnvg1>EpouiW&BG9`yL*tw|@GbzioDA!uK~h44ZJ|5g_LfDVe|l z90yR! zTndd6#_y4*BjV|wJ+WuW*Jb*RKd45r7VIetYq1Ey(+8( zHo_BcnWIw8=v2!zCPVI-6MdyL-pg=>FUk-i?N)AW=`SInz!gw(R!^Y>Ho$9k-pt&D zT?0>}+bolszeD7zmd{SEv-2%`RSW>BTWX#obt-s+MnYq{h1R_xR}I`Y--z^`+8Ke> z0&HEQp-F+j30LfQIBPTYjO!7FAG?Y7)Hj1a(`o=?s$zjFJZQ0q}Th;P>F~zq3T9iHboFc<`5eFAugai;I!;Ez-2 zhI$C;p)SXBhd@Nj-rj@ zqAPh>2+HUW(?*Jbof5$RA7>wIpvRj%MX?GmRbmLD`Hcs?4BYLTLnvJo?rIIowWkwF zgf#c-lf@#v9Y?}=%rE8*G)(GnqM=gtLepWNf}K$G8zh^>mi&rr_G9s!Goe1T&W1>`+dn_KMriNY59g5S74 zGx(2z_lLR$1OtG8CIC_fU6MX=y@X<@EJp<>N)6n?N2!{O8usDNx3Y@MH~);m=Nc2) zKfqHIw z(GbX6OPEQRKwmmHrZ0pVf~yll)^A%!L~4GGfbQ?!Ck|SL-@c12Ta}T>s-XSk7Mn=k z#tqA^7lRFMO9(&C(D?0cCe=?ucrHaNxJ?G@pEa*TN2F$9GfX}H?@Sc4C(WOaz{5}- zcwFHhww+ONghq1->HP74DJgu-`rP*bKA-%-KG6BVfNeJCYGd%V_HY@7c>dga{86~A zA`=9MoZ-;7)xLIZF7ksiBw<6zFXWy5ysQzj0fn%Xp@k%`4W^S04d=%OizILmcOU$= z&*RVc$>pIm{9xpyYBQgUX^DfLIb*3&zoS#82umPn+L#hdCKNxUv)YygmEB`FAHO?1 zAtaUSJ35lX%o(996uK!=HGwQM9@BBn#ko+*1{zD`<35X3GBG8v|Jz?&m&wxxTIy2($XNY*Q$S+D9L^6Iw3!3mIwtTm}e>^0lo!J0nXaKiu4*lOm4P*|1{P3xk zfV${fj$frs1uWM#AyyrXSQmc3`J;oOC3WzA`R@lXNq$6WqvGe(>aW<`1u>V=L~u7R zUyL?;aLFrd}xc7+&VBDJ6zh^C|KG=@e>(D_glKvBMdb+aFSK1ilQZV}O> z_lQQuR_m`xF5}PNzMtQ89(xSo@v8wBlt{r4r0)C~!xo6WH}bWaodhwjAlOXJ zeWD(!R=98r~7@S($fw`xoJV`(y*Cr=mYS z*!R2Dv7)@^+uQ$dpF3~k;#mhGB#daFZ^AGpXh zzGk91Rho?5fqa6V|9d_UzgEakRBZY#gUpIjO{@OyU7m`-pxL=Djz5F1!gwW5 z>FbRyV;YhM_OjuMTo7wUcnT)I-rQwa>@ryJ2z*K(rm0bxeJ5#I=>;R$P{R9mmINmG1sohd zCC+lK%b$wufqpxZpiPKcay7eLb}0CHWChrlE6hk#Ais|BZf+sD;GpSN{}XKZdodW= zO|n6B96B-ys+}Vjf%1tqah7oTM{oBP#R09e2x*{i`Zrm1&l$KO@K+oWno5_+4-Ao_ zM7IVENm1~_qkCW;P8b+|efBfdDC3R;p+sy}*H7X0@;B3e>uy|Ku5cgm9Yt-)(*Fyjz?;%jiyrpVAfY-1x_m)5Fv#bCfBfGs*ux$E$iVSc zR)n70+E_c8%es(e={dv^Y=kXT!0|Ae;~_@oPwBjY@pFcBVm*l!`EhG8*Nzf3@Bs(s z5xBEz$V|8E z1Hy(0?ANx3+SjN3D^4=?pShp6ktHx7xl6->c_rLN!=9oz{+TpNVWmiiN79d5IQ1x zpbXe1FwYm%r*E*m{Y(enX*us50EW@$17K_OC>!jA@CJA^bpkv>Bqe3d?=tX7lVBtU zeMGIgkw=?;N5dQn#NH(Rw}0TZV1^GbxpATgGJasM!E4vF95*6L@78gSJ_hFtMi zgb$d#h#1nu=nQ5V%HcS%C>D(j{m&eY!9hoVz53@m{&luNHu}u8kh|F@OkC(`>IXdQ znDh6L;}8;c+lN}Ac>bQpY$~_}neWcZCn!ZEyfi9R z?%L_-RZhTmzKiKHm-_bek9Mo(3KuO!E_-MHrWa?99CtXAHtMu*{SEmz7z7TAJ2OaL z>jx?xevG?x_3l6@W9I3x0 zx1b-thhVV2QBoH|VwzbTXamFs7mu{SIa1d0P_xJDJjMKD5z5cQY#;D3GWhXayYg64 z>0>Y~>#sFWNx}8_FbC3Qq!}|W2D>Ntzj5bim9<#!MAh^%#Jps@~Ou!Sph@6;0cxf8PjohI% zvJoob)#=)f+2-+X={?U%Q;7I6O=ILVpBDIZBbkkJE<#%7O`x9NO*eQMni{`Zg^ zBN>li=>}LdR&HpCNzLW#6ov08K<2dd*O_TrrjB-6Qu~y<_4Q>~{8p5BLsR~sua-$( z(KLGl!93bDIa9x)kTnVZCPUfT#3N(^whZyn@`{eDgA*Y!TJW#jn+QHbj znY~RdxJp38Kph>ed%K?3M96^bWcl`7Si#@#@&MTzVZG(7CFN3@zaG6g3x)^G@5{cK z8Vk$g{n4j=4kU>1Te@DwH;`on;$x?tW=Dxq!{4veuGf2gKw|qrL&XTaU_S#hxg-X7 zyEfK>lvheUW@sBZ+`RCb}Il31tRxJ$O{C zmolsBQFJg?WL6#&oFnwP+$D-=r4Y|GrnhoLD1UVf{4!VjZIYycsvRa|ex_Ei5i=2j zUDWX%&8`|jM+{Oy+S9g=e*G|r2?xQ6OxLRMrG>EodZZ9=WOl9r!m@pWbXeyL-jCRH zYEr0lyg^=gqhV>G5TQZd?d7F2#!}f>@n;k|pBi2%a{^Qa#?VEzi|Q={7@2@HP4>K8 z^`1xLgF5G7SnZi;VagrkkKi}OcDzdbd*qMJ?Oqs?*I=Zf=v%y_-1bcRr1L5k-a^v# z*&yq9kaQPtLZY*D*d9ciN_h99)Fsu10lRuqN&v)YTJ%tIQ1O~piKs{;JLXhZ zk1w`h1x8EGwljQw;yCkEc|;%g%I6zT{x%XVI;;o=$rQv#NtCuhMo0_rMUBvJoG9}M z;^R!P#%U+_(aXNo!vc`o+4-4$zp<&S;4Nx0Z}SRQb{+SHo6AHWJoE&V+mH94j49n? z$@aEEiY%X$VB{|_k2UG?`%EPur}jR`!fSPJ98Aes`d-dAb!WROf_#pJp!mx@Ooj8F zuu{}F+0IcM++GJ<66Z=5=eei!@%(dlV`0)LsYl$()_MArYtMe$HATrIpWg&(fGP|Q zLQ)PhUN_NRLTC2o+NW-zECe_xa}lzojc|w3lm{V)(6TySQc{fW(_#gY^zYa{<=2vd z(JXt)xc;4>+ALhXDCx*jTwh9`<1N@ZGp8Pw;>!FXwUcBZeb z@29}-z2#;LKSGA8Hnh!ogp6Y4W_zw2pA|tTSLDlpwicsGgjVn-3YIMDpf(68Z9B)dR)oVe+sIFmk{^y@d#0>3MI`C}3?GIG$vn(g!GD$rm{b?sW+! zkpNuyc?m8yjQw`XmgBn3N(T@&0Xm(?&NbGDikKHdSvvd-|-KvHy#5U`2AU| z!yJ*}x&hOhERpoxPX{rV0Uv%CGD5 z;RFme)!AEbF%`e7h?yQBv0kmBO5|>&;7N*Y0veB~a@35rqfu*{rz-&!RC(}AS?n%p z5Pa^Jcyt@XN>VSk%QCYWmsOw$9V<(B1zzhAXI~%`bS0*RZ`{(G#y?hgsml$=lD@`) z2jj0L~T+f=$3+qN_*Bfxk^1HiC3t*1M(MOEQ z5cklq)2^KfBJdEt4x~=00pRDV55hUSeYe4PwK}AV)o(^$5bAr2|HP{wsRo9i@|*u# zb_L(ey+^JkGic7f)=)1C-D+IOl`(vfQ&w+k4Y&6?sncNl^d$P%y2S3TTlg*5X&u zDOpzDT_|{ zuHRw#X01+wyh(ny}F@R43DU5QWuRQsL zOLzl^gbpWkMtK)tX|rNE50eBdI%9$2GB`1W8BB;4`cUMo-{t1n1P%Lfqxg`# zg+sTgY=;&;zrZ(S3<7=q(SYUah%I2=REo>azZq6^Ebn`^Le$4Kfxa`d-|ztSy`c6V z*Tf=m%MrdTc}Y8t?weY4Cnr~O3*JGA5L4a! zb$^YeIXF|peUgr*N;m=ZE=x9?MYryK4j2`OWl=@QhK{@JffC-!GP}PJQZhrP${~ zy*z6?JgRiPkom0Vy2;O2DbHz1P>jr617TmJ`QcW4Fx~A@u?JyUB;AhD&wYSVKrGT) z^{o(7NEAm)vg@o~BU~HYKUk^uYIGnzPPp6pHblspRdgUXol9FFWf^cAhi0HVtsEsi zIIVn_-}jgyFe74TlC+Z#%9USPxC49F#mU81xNN@oFa8yY;V-f>CU)%rbOJqGExy?pC7yP^O#03S%*eraO$q! z)DIm$YN?IqW(HX7cxf=7ZB=>i9@;8P3&d))f>-+cl@8+q=v|kc<#id$){hzQ)K*)B zB}&KgROckEN?iMOkz4X4-LXrSBfExbv|H)R^DxXlCgAz?7wdvYl#%T>;omX413nVv znUAn1$+fbYAh;aWtmUwzFu&nFC|z2@S!-Nbr_|oxi}rZlorPHbB128a5){9#hcm2# z@Ew;f)}n z(^WZEU{w0~mHR(_#R#fyyQxyMMm%2okRDi@kCYaSgB5<)gkS%+Q#i7_uWLJ9Xqp5;JK3#vMmZ3*~wG|rknAk*wn#&Rq2|ijg+SsL1QF+`F@*R zfAW!j+K>A+01nMQVJDal3p(kjn=G8;aPhFyUI`iAel@Gh`O5)@ke%~8tV8(7j{~fI zXbaFf0eRhqhVeVZ+uV`{=1?;1hD}QW=p2xcIm~DGq=5v+`+)M4`+OY$zJ1+TD1HEQ zQ1ozC&h)Z--BL1eEBOJ6>XRxR(7MI*#_$tlyr2yrZp_+-@Lr7tC)t`?`NjDBPmFb( zJB?5QHP=v8u>*fO-5;>|(lK|gxjmd}@_qPAGLeY!1h=6!)M>w?nbi?fGy3tVIFcON zV{)Mw_%>!g2Q_|nGNPZ53s^{18pD%>T-^yQSg8W_Cx+ygountQ<-eWlEMq-y1>yPl zODItA$43#UAWkB8d2%loX@8xrlJQ}IS63E?d?lk?_4v!p$(MaZg{+H|u~1v<*6%|~ z&qGq*jXV;uDM7`NeWJVfr6+?{E1lzHAxC<4?jt-SQt+!=d{VIeIw60>d8O&v@djjX z5Zl(WUo==r-{KAge3fW51hV%qF)B83NAJeaIG znwAOoas~W)WreP_AM5{-Co&wV)uAQkU~>qRh`u$B(lDn&=0C6ftbso2_)@>kb9}I> z{qA|?6;2I8C|2K}gX9r1_lPG^U}@z(p$FhY&TEDv2YS^0gQ&ta*}eU8oL&k}?FI}p z&^<@oFf+Og?}w!~{ZqXGu%cJv ze{obNdbmAsnK3hmV^ac5H1v_{ckhr zD(7GYSk$}A_L~nR_grfSMO+S%fG~n4I+nNDfP8|lR!v|lxzU2dI`5JJ9qe-toNYdo zK9Ip({o`|zd>(Dsd)@P2nw-REOn)$nk6tgXS;E&-jVvFStCCt*wt{lLz;vpA`DD;A z;N++I!!5=9*p*Cd&L_r`w(sa;3jL<>s6E*si&osfgg2KPF4{;!6)+kI)PKj7=)Ua;b6s5aVb1NSYrXJlbWq$J_W6P|~MWjl`PK9tb?VHYjF@TR~R<`Dznp}7lMM42X%NUc{H z_5`AbuK;|_^wKLS6WWBAcPH9Cs+Fxu z!u5?uQac^?KLMOyN$kWDb@R{Fd~IL1D|_pmI6prjD;gf=^(5z3UI!%noXg*ACYMob z$6)Tc*@R7Zuc7o$P9`6OhPt-$>Wytsldfj#5)Wv`h{$l8#0`KYsDB5dWRN<~)F->U z`IMlS(`fvqWm-nDuutYK8US?i%h}|BhHoT`6RkG8nJg6JLSE4q80mgoDJwwl71jfc z_#zr)Ce`(sR9`P?*5_H(k7%gQz4On{O^(fRop3ZW#o+VRA5lDbzOZt?_-!BmeLmHt$ap*v@hyQSEzlpUW_a^3G4sd!|(SxbXkW#i%smY z-*IE;0FEfg`T2IQv!|RMvvPUk;@DqRg-i z)J5dYS{A69_FfhG@!CPvpLq4-@dN@HKjDg>0{brrjzxNMoZ3*!Pu&@5$h;X&? znkF8;sxjrEo#$y)^HSu$ojmFr;J`GGkdbSZnGp44K-8*qV+6Da0JFqLiqZs2q zUdP@-%4B5r`6fpK@XaP$1eIF@4UuI#nGrg!#f|JL%{5Xfn`#tmkL`THWCq$3QF!z) z1+QX06WFB6;{|+yHU;#Z!pNz`%p`f7p}*^AOLAl?4PR+`1)zl7-~F4zBwNd|cU3)4 zI^h9kwqu6Be)oSS9pZ1TN*@UD%kzR4k%`i<`RJQDvhxCa;fr%VXT+2@L6rB)pf(Fm z>e=s!fl;5zDdwFEhKZ+y&h)W**#=|hnwEVyJF#VSCPu`+{nO04Vp^dnwq$y7GYuwZ zRyRpI*{1?b;6v4Pi=H_37M4cT{=1Nl`)vD)>sYUOKOUe9K6!+_F*HVos%gpWzovj3(}P;WIw4y2``sW;fTpe0|JA@ec4B1PxDDsNZ2`9CuQDyW`N%9RT2JqXqe}Zi5y5ObUQu1{j!n^)WXd| zcJ|tfb;s~NU9`5ZrYLQFu_DpkCE@?>v3C#n>k9O0(T-BVAE@3vzFZcnkwlJmTKf*AU?DZ(Zwaxc;13@J-abX7wP*B8xtp4!la0ubVGgs#1+Fj!(nJ!vLl0LQVYY z*~ctGHd|%NS+CLv>u>OYH!3d7)Mq4h*HFH#(RY?tw)Jh8X8g`+Q!UxX^&kowDSgZo zjl9_rT`;h7y1H0yP!sg8TbS#j(YvYF{{irQRkiQWlg?HxP0sOxo=`i0E7%C&SHAO` zBl=ncrRG#>KDpLb^suPqt(0FCmtGp6lY{D5^xGZDukmUE81J!sm4xJlKPF`T6(94i zh}%(L6je94qa5>khQ#saC9yJI-pf4IRCnC6s((|P)eO$~3ogj7z0lx8q$Qt-@HQ&? z_(mL*mXsXLLBS}u&DRLk9+dbAzf>+t-ILm{!jFBAAoLAz;4QaH8)w3gTI>VfORRSg`{024ODUa~ z{_aS@&Yj69k}dAU>Kk za`7(oT&s|P^66?|uHO5Hu5dEP=r1nK}Y(517oG}vM!4RPV_eFdXIr4HPP!>?-k>Y_u z9*@j5rjBAID6;4m^gtHiIROlGggpxY{4JdHGq^zOJ>vY-ywieYPr9J|57iruiBPXF z7#FKed=$g7Hl%z9T+8a1u>~^oJisJJnB=^6t?Nekob1W*(~~vi@bSObVq<;MGO2q& z;GbB(4^S?(ZMLdjxrpVX!hQ?DrAfT`7!$uktu>#0$$Jjh-!O-^~th^7H|XzPU3 ztvA{#R<8u`=7sjd`79n5h;}ot5L8jR0S!i=tm>VWn|<-htTg75ke>nm_ONU7RRbBQ zo^iROI0*rOn{hK0Q;HCK2RmWhZ9RbU^Xm^!lwD{QU84pV5E8}3nun1x3k>}CJF2>Obt&K11 z>K`UBFtZdms8JuEo+p_9;mZ{)IB^Ek8%YNKipr&jw&!wJz}TsLS0%!Im1jV(JqSHI zQlRfOf7Om-Fzhk%k6%`?xvAu|N#Y6M>4y_vznXCn`bGaZK>XS|h4n9{Qc~prE211^ zN==a*&>na9joGG{J@RjlzPa4LJbLo24T;%fOZ)(CdHXsWl>ROr9Fwz2gxrYM&pE)I zQe1_ph7i9WA5eStF}d?Nc=MyN6QH4}GT=xxekA*msSug9==_M)p&Qbd!DWyq{NH@3 zg+xuD8+}o9MD2WXl@QQvTEs?>VIJ>yiXx+iN;6%%iRRmmGhT*YEniyzxq5xqmo5`0ihV-`(gI-e=e-7^or zm$s9TxqJ`lM6^HaCQN)Cyk<7ZEET;*nPe^dV}*wXekB6@aY~w>3wiPUj{y1MH9&!Q z8QT;l@hq`j=Hi2K7unWq&PYmV7f%u7^I! zlX=z#5Dp!q2Vb=KN;srI2CQ%ciWExU1dq(Tb7(J}Gu0a2-G+1&+oy&xMg9oK>p|l~ zJkJ+^cFrT{mt)`6t@cpx3?ieE9)0+ea{5%ryrxg?K)Ud|0ZZ*Am9u38@mYnkZ>K*AGc$f|sq5Vlm|=r&We2J+%o4FoJxFxW<8oO^HUH+g zW$oD7_PsSei)3^4F$2 z0W4x{FP`M4I{?}=Gt2HlGxT8-IlayDlZn6t<+d-x{Yb%j4~jstbX-q*kzXz@x~(u(WrJxY}$peRFG^=!lSBUhxK9#m?c6f0s6=Hk4>0M$^}gDI52@9SxO;{V_k7H*+Tz zGhUQ7$f-arpag>7r+8$bQgbFFWmfW7-t_h$0FS}&7k_!V*+5%XC(hMo48I^k*#~O% z5|zPk&SfA?i>PfcJGc6LHw=aPe~q3utOcRMKW>lMeYj;Wzb43ud(~mYH?WR?@liL) zk2&BF9fKAIK`&)D8k&Q>f zilGfkMWcA(LtWiGd4{b0W6@I~G2g~|mgn-as-zbS3gMA-_%~nD79~seH&;dSL4G;> z;fJGc&`u#(3li2}dLe$Ds5;0^kl_+Hu>y615q!S|LQ%iOG0#?i<=yx~bo?VkOKcOU z{giL3D6=4K z{A;{OuKBg<)J^24(m5YBI)bc<%)Mb8hKwjCKCyV{q}VqCn9Av`9${P70@-FU?R_4F zoUbmIAW|2-rYlZIlN9MdSncNV30j#=2yy?rs4nM-%F-}ZIp z?K!M($OqK94<8Bs&8gQ5J3#;ojZjpW5%ig&n0vfW+n}4ZYmi zT(M(RYbH&Lh^L2_D@SiBmV#Grt{(J;UnakGFuqL)G6{kb>!L2+2k8@!h_>!Ea~kPa z$n*GlQ>WHaUHq-#x3dpDB!JS90>3iETuG>ffFrfZ6J(@~ax!x(x|TBioWzF$6e-ZK zqJ{`dEM>y1t1W&aWt#Nz4QKmfa}o7H9&c#Br2>%a`>!?U9<(v_RZ96`18b?I1xFI9 zjFDMn_HP4uQ5pJhSqVr9y;?Oo|?;jB-)2lCsDP})?Sl9Y`U>leR7?L@WlgZ9szm6v#c0p_81uB^QMP3Jb%47cHkVh}(`&vfh zmE&Rm4Qd>44rAlmBPt(H#_w-D%uTR*$wo}*eqYMqcfITZIX*MClD2F5D=9Mo2AFD! zncDl4IJ24DV|?E4qS5mK#8`6r5SOU&nJ9NciKC!SJ#cr>!wOT%K$tZ%>;2e`>Qn^v zsc_^5LXA`&LlMK(&SvnjgNj~S_<`o=B(_7H$Z_eX^Q4dZczFWlAeOP6Ee=&Qrf}Lp}Trv0t0y)6D zgKW(SV8IZt&g$}|1W6I0VFSpNK&YyfiY{heEM9J8`aQtRWf)AzEDpR!Z^rju&6rje zIFXAg_T+5h*wq68V%REU$a$4xI?t#Bz##C_FX}(dKwr(iS~FQGp&9+TZv@twvceI> ziZq&15WDm(`jYSvp7{zf_Z`9QViFoR65>4CkDqn-1d}aHyN_htf&rP5k7Lg_^8P>@ zInI`*Qc!Xb^Q>z_4Qt}>NT%(Y{ML*wKWh{5dx$J8n4D>K&E@-G-VVXTCV#CpXX(K$ zdla(c&F_!X(^Hp{q`EdwwTvNj(Yh|<4J-y5<@y3ENL>stsv$oIkL}Vm?eW-PfT^V! z%%+`vYI9g|gop2>Y**Ssu|$qHoO5Q!NO9el%3tq5N)-hT42E&)IT;mgf~uYk+q*~C zYPcG`Kx41}Yl8fwN)oD*#Z|m`LTsZ&qRonJx|QWu1ijBwtX~~w$f4Dj@i@e@=TR8# z8>>ss%}QfMKf;E*v2R`l5%0(l9y1?`1~5Fl0tSlI1{EgrYCN`CZB)9hvB&GC3ov*` zx#6DL0kwvV+lN}iz+Zy4D-L9Ir{d;&psVdhk9T6~YL_gMhFih16tJZi#Y^nRc74=! zR+FB??C(e_&kJqnEorE45c=CW&R&M;8I{9N`dCSCEq84A_gv}RC9|$hGW|%0D!vzA zHMNYY8@)ETjnvZ)|JXFYu-bSED?gH$AyIE-pqQ)X2}hD3ubKxnDhJj-XgJ1H!9^lA ziDdz>5YE)&TGf;{1jYYk6HEdk*#d zZp!hHhn$4Mi3|Yor%_MIQz|Ol1qc!;`LD5u#XXtHWQd2gfdTuRHCW-jAyorjUc7I$ zV+BIw+W(s#?Nc4YTrB}ln6ApN514t%$|ThZe87k?%Dg~)RxsCJ%TOfM50w;R-T1Yk zpJp#dhyUh=4~u+1#DTad{c9mFI}KC{AbwtU1>d{ncXiElvr_+mnPI*_)PJZhD2 z$N`KcX9-%cE56)3up(h>NUfg#qbu!VM|pym zcY7w{FXei)brCWPV*rx(0QcMf(p?Cpfo@?^EX6MX!84^NC{*@_iB)oLJ&`lyqi0@m z6Ju}L(dsVS!oej}vg)ud5WhljR-a}2Irc)Gj`)BcFHs}E{WsD>wMBbB4yiW$$+NfD zidw8y#jRA8|EW)!%J)G5T+C;&(AvhVuO+|Q+b0s{3zDzHtkK+RGkV;QUfF$JTofT| zz>JGCt_!daSeWgoWvS`NC((81Xn6RDppsVxi zukix_eQWO%m7X0RZz{7LC?E9^@3V#z3Gh&4IXA_^&At*NAouMaKQv1~Ux&2!gjCnZ zhZ~JnA!0rQFltgwQblK)0L_jRa~wzDn=t<~C$A=5t2meR^U~b(|G0XKE!mYNTl9m} z5K~jk7~-B7Ld>DBf67z$RPFtmxkl!Sklbv7yP5fc#wHRx;G;3s!b; z=s-`+&VD~mU&;A}m;4Rnk0em`N25p8{w)b6+AK&oOG!VV#t-q@;a0{(>5ussl%oEJ_~&^HVW`%hw`tZjs}^;u`)#O zekUo``}$=MAmPh_V{S*^4&71OaU0I|MB$?U4!Qo$4;@b(1c;{ISh?aIZPyd4+VMOA zSc^1(C>Syu97AOfTWsqIF9%nklVJLnl$uO zeH%|1dSf^?^{T#8>5F=~@N{j^RXP6vwq3|5|5x&!Joy!zH0V(=S|djzy_$x2;UdUc z9q2Yk>(o^1{V8()r}u}n{?q%T5({;2`2TYE+~&aKbS&Q6;%mq}0Qp29;kg$=QDoa! zh*;_Q(|Xq~(o(E2Ohq?rirnxpXzlRw&z&2}6SC5ieNhnaSE=u)ueIv9g+0FS*4tEn zJ6B{`mE%1UP|Qd3AA^Cal(H++nWRq@CnL3{c_Lc88xnSdl;Ph#?{*Nqu4Khu8OPB$ zS_GvU$lXSu(f*s#!}=0uU_Gd(2Z9(!m5Stw#muzetN+@!O#)2Yb{9@eIK8ttdha#%XqlSg4PsSN+55Vmk2G-2$ zn&5BQ0IQuIuVXQBf^UfO^!9UzId;TwnuU==KBB!S8(p4Wcg1@(xuB^eGkZSN)?Z_P zrapefuE$7XMTNgOzhVzkaI5pLmGjiIujJQHO?*f7+)xil>*7%UnLOEaH=mn#jhy{)r?= z`b)7k`a9|X9E5l|P6)2erjQBb@0u&5WRnK7LsxBpO!)i={6FFN5@#ncwIG2iIf~Ycsi3m?!=b-^0EBh%L?2||Q|-qC zxcR5q*lesP6=UHXxbHd}&MQLbI8~j0^x>FU4GEc0n&!8&(O6(!WZWQN`RjvZSO%w= zLRMl%1>B-}MMC<94J=@R6u^Ubo z;o~u-`U42a8$*)&?-9x0%^hUY7bZt z&m;Bd^V_eqEVkFC^F{mNxDUYFxf$MQlr4O5WY`9a@2@+!CMrkwN3h6$JyVt&hW5g%$W z&ajPoN(AIOiBi~+*~^5qG`aiOS^0UTb?63m$crG&2id_^I5?RK)F;jF_M7xL9nhr! zqRm~vAswtcTeDvfO~-bzn4;u^K9|wve6tpZ>BPs75y0W&l0-$xz!DWUr?{|YZ2PlldcIpFB96eQF;Au;paDdMjkmMj%p0^<4H#GW$rk0 z@Y5Y=OLKDJ#@KQ%!=h)9d7kpWxoNMFzw|TwZ6rO$Rzg~@Scaob>cz>Jh`y8nJgO-0 zId~T`sR6Y=#>2E-cLhIKokds2w<+HD^79!y<3ssctEZoQU$uVCU#3~YC1qc5N6La8 z{?5`D`_;hN6@DDuJWtJP(k|ul=!jOc)%%TRuhL|8P=u=&FQ9+0o$jx3{^@&kf7Qsx zyf4uu951ij5buI_SsXBp0wn%To=!Ji7H?p^+S&6%GjNyxeg;BZ#xN}bmnbXNv!+**{d#P`OHT*5SBe2LcJKD(9i;v((Syi2g$&QX-|xpw zNiyR#+_#l={d2?x>n5G`>wuMdj2Lo6*xZr-YnU2*_z*wK>z_DzrJ~^byjHii5O$Z| zS2G60Ao)$;PZ|FDW#@HZC3yA6Y0TVnta|n}Lnba_2HM93kjq7BJ_q~B31T?B2+1Mv zDR5&D!uQbz1jf~%Hhtl5fHIap`GfloYH66$EQID7P?%-YHNY3;F^rcUN&ZV+U zAcX+lld zbSmV0NZ)P8L5+t~_&mltA2gneAM6+6D`KQSa_tlVLPi!LmL?wI%y3V@&NlEEb0~bDt|FdRQAaIC%0DkBG*)6wFdoqc(S6Zm_@&d=J5DzPGp%fiU&6-FAH%`X$ z>3~G%$TN*SXnk)HBT(H+?nDEJiVivo&9Z2GlnYb~IY0Q$&eDK5@fuFP1f{wz{&na* z#eml`IsTAxr}b8;r-)u#oDAa834zv4csdB|4N-vbLFMzGb(w#>@rKM$cgvrL`W-yC zo)x=*n;vZxtI}jaI|61(x#;#jkRe}Ce)Z$H>IDehh|msQx6wol8y*n}v1aMp{M)R&Nj!v zAqV_PBkPo{=3k?+NP%j_qAPrUFEvU0P=ZX84cQF5wbsNqkPOirN^ARCkuDmNAXmRM z@VibM0bp4$6tB<9!Y?ckE((-$CoK#LwIwB@`ba7cZ!lCxVhOI4WRA3WQ!}!T<{!t@ zi6`e$SbkfruHi}yy@14Va>cC~BYmKYcd0Jy=U+1d`~!C1oC5h&bfiBY1lZ4_fnr{; z#$W*UhaepcK}7?@`WOp(56Pv#$&Qu7=>l{i$^t3D?JZK_KHw9yuG#CcB=^kG{&IOU zH4+hZ>5~Qnw_=kZ%jt_;deo5fEAG>Q0=r=&kU)c8E)D5u4zb8w&*>cTnW8jd4zm`N zc7(Odu`2Os|CCf-Hv;QRe!S|V_I-`f276p82pXPwqXyoSfO3acuD?E&Qv~z)%73xS zcGLq6to#1?%N!c1M|ooaQjxipet$M}{77L2?{p!j#9%=bCt zwZ~->zGO2ay7o!H!0yY)IiF*oB#k~n_sk9OyMoeqbgyP+)~~8yWTq0NtUMNYJqL+S zn>Xwj6BWj4T6!<~g#GydCoP|ezqvmOZ3u9cs2^;!Z8qk-xD;f*U0S<_*V%28+pa3V zF#p`MPTbcgul!}}ymTG3RzeS#GVF!@QZ@#U#r(COr+%@Rf%x!Fr~q99=29aNN2CtF z5sIzEJNDe9Df2!I!GMg)thaR4Yv|{z51)GHjnkF`Gdd z07C!!K$rxwl!O=o)?xk{9?dWmeR*wL0ji;7v1crt@jn zHU)gt8fMv?`?pWC@F`@O`yK9QrkzVnLugTV+gRZ}3S@X3?y90N6<+6@*&S&se|H!x z+7-)!NuM-KNP-eapn`;?myfyW{+sn+b+beBUI5B+7KI1~evtgP0*C09dX6CxyHb`( z`t+FP_9)QoV1ioIW<+@j>kdDvOT>q3L`9FV$}8ryj{o4UZMqHf;HvpW_xbjVhyviC zF(v-QFYcwQnfF);W!;y5;AOH`t@tk@>{2VLgK?M=eM85>BNTel{Q2_UYgR7X+sZ|k zXyk%o9>uOgh8&jREVimz;}RbbLvd$U&iAvAM?D{g;ub;qn0^~Lyz$v~1Ag(eSWvu( z5=-o;;T3s95ls6V&uazj$6b|_@T5jr41xAd;qFGNAN*krmtLF^GuVAF(jNBDoQO31 zUF{8;jW!PjpY z)oKkifSTZd2D=L8nACjOFT4UJ9i@b(fnIx(Q{m-sfSH1a-2a%jH3YiYhM$&=Ro$t( zoFboBR*f8uMx8pzmUn++u8-`*0LZbiURYn@(ki`60xCOd@Oi2)WNP%hOH=b96p&mNmcfG;n#mGhPmXR+)dm1>R4@zS|)e>6uFO`auedCEF2#! z$S3&a-?;(Kk-!LEWPV+ck7N1oLy2}~{~xCbA4C{gy&DWsrNIo!x;BGV^K$Z*87GSB zxU@D{tQ=f$7kon2Tc zAfM;eCe`cM`k!<0-j*-Moz9R@>?Wf(;MY31C_gtoYP)Oprmny2UK?|d8 z?5Hnh`Lc%St}7GY3*uJ;QsZ3iA1F2vrb# zFzGji1iO0kQLyK)v)GMsDN6FWkA-QoZz0fs75G!4=g<+6{$#kgNiZhIqCIlDRbNp#fdjQObDn{>9&+ zD{8_CEU5cy_*xEv_E?`v)(=rG9fHB1J6u%aUpe_Mr5ZttwmzKf+Aap3Q*ZL^T0BUZYvh@%ZV8Z>V~j zxZYN&gA~@z($BC`(H+*)6?_;=#)9bqVggyfiOQ#93{ZWj^3VT@hm~B9*~@k93PC8m zP(4gVy}jZNmwndB-N&Ycn|3EmuiQ$`9PD2;E=vDmZoYi8kG6~w5v8Y2OU&JnfJqTl zPh~ZxIw&p$V!+gKw|$B{|LxU2o{loL3EPDVuVeqOZx5l;i1}e9wiEK}6PNCXlAD-W zG-0j;K}$=CjJ&eVreUs4#(;A0jO%&URv(u9_8P!AC{`q zn$n1G>Azono+eeVWd;Nh{Nf9se*m7s6Vcse1Sol!S-~u_zv|{IO2&Qzgg4gNkkBg6 z##$P2!*OK96Ij($WO6Cv7yqv90zZQP_zzx&%NgDS&!mj})O9ZQ*Arvj+}DD`t!Ai-$|O#GytK=JO3Jb%$Mnr}vx6H4ur@UgoaJB@irfbtcj1 z>AU$5r$09OH9~Pl=x_%FXzXi!z~-nL7k^(zkca5-UjN2qjb^xmXCO4x5VrV$62&B~ z+|SGKZ5Qxv!y@F1Sa5!;;lK7nPx#~Z>VImkT|55JMq^Xz=BD}mReu{L^-AIqyL}kf zCG|2)MAF%d1fY^ZCKc|KbDiZ&Y3oNq#ysC|mo=&g|StgH9Hq9x$0t$}o$=hh z3OXtOs6+gweOrG|GLi?-;yQqJcr+79BII#;Lj+>TGT)piMYb!DXCE^7Ys?+a`UT+Z zSGPLsw4Pvai0xE>1@A)1kxOc5IXbK0i2DBPq4th?&0<9&s_mQlNvhNgipgtG>g*^V z5~NO+N(VLEYAU3>W$T3@>N5a-(x;_9C_z7|WeEM?ZZ=Ea&?jhUd02)|vHl8Z%ImkD7BnD||C~3Nyf_H` z^~afUI+lqGH-weQd?L^Ju{@a?0|t_e3m8<)rFbn0jmWewHiqQLG#Pg%B>%1J9>iB2 z4;aJ`cSX$u)+b}8gFloKsz?-MK49=rmDBKH=8Eo6**O8r!ZF?k;S2!yZCqn|O$1?6 z6JsTJ>cM7}%H81@F;o4kcb}-{w0PINAb(sebFxt!D@$`aZ`xn)3M@n$*!s)8FjVmf ze6gtMLRt|dE?Fcm>hy3Iv2}k*K9V8M1R5Zp1L4_pPoIYlorC!}`#5>iPvfNL`zGWU zA+?o0!X5>i!;`_Aas4E`fpLhx@2ky`_*8v}N1F9JQuG)fe$vrU05pqf`2U&(xwxOd z*`BCwu#3C?%@T%}oGjFy*X*PL=2M8cv)1CE{3NZ?&xn)d)Zd-YTqwNyzAxalRSb1b z8p({Pudnz`}CbP2}KJ#B++fC4jvhT`^N4UDvzL&IPzl6 z+<~iQ(t%gFIM9H?CwO5HXZ^}hzcLsXNO+qmP)QhC)tbmN*vor;%v3_Lc!FX2tbGMO zjTD{YX+7F+ogSqEj;iS6SJdpLN(uRN%$2AoJX_u4(Z5QF&NLW6h%(YZ81=**KzHo^ zjUTK1ZT%NdXg9Tn&0Y{gWTnJFw>@=N2cPqEz{UV4(;YJMC>yPR!Srh!jKg++D?wty zJShDab_55CJ&g8C?(-FTozfkxBk$)-g zF|kAZo3E)o?FSn9Ssy>I?2Yv681DaIc5D4-ZgWK4fGi4oeE(l{ni-dNrg%u9 zYq}TZs0Tf@<#QE*yQqCY1 zK_gr8T}@Z*te<><>?p)&!6j_rYQgk{t98=!N5lC6aTM?DUOdbQ^|mA(Kt$VRKmbI{ zVw#PNOaFp8dIftjYAkNORw;rLKqiv9)Vb6QJ~wwojrY8m0l%2>z7LTTLJqlB!C3x! zycsO!<^t7U29(LW#O%dnP8mYal1OjN1+33`RJ8Z$GjxBog~$r~u*7T@FJ32*GOkvU zwb>NNXo`_1%0K(;%un1w9aDp-?*GTTm5_i|8n46ttuM>gsj^fE34n>Z69e)F`|j5w z*TE4PcMe>a%`wf7eau9NRK7j|`xJ9CKcNVf<@SIbDvM z7a^Y7%Lm^s^rHrmcBP9+$QSS*yb#*i52TM1s8>Jz^*It8^N)Gj(i|zWI&dowT@`TB zZ=z15R3pa7_b9*9K#virt!pa8mORP70*}~pPW`jOW_5<8S2IatrWdW(=Z~C0q zpmaExxBu*|cvNXO4w(nVi;S=Oe;lmQO^By%n*JLk-?j<>a-lBGoE!a}F~F?`U_qC0 z?ho}>h_V@aLrH_GW0NCj+pqV+-%`*$d>3}vV{3LX+_&TGsVCNfrg!0_mC+_DIrFz314e1b8}ehHwyeo&fDp!ZyM`W8xLFACGxgSObr>WR=#aHMsQ1 zqr4zt{Ssg-%kHKnhSP~Ugc%Ym2J20t%c319$t#Aq+=_!A0roeGul%c5u3p+qK-*d> zsz^y(3bW1%tJ();`}>+Uo)Y8hTi^j&3*mC-&A21_wv5z@`1xiMbiVI@XGYTh)V}_g zGqf+KuscCRco_uWxad{$RR}FYzcNL|yuyEIm{x#&Bxk;sY2_Jm!1nWVlqBNY@USN13RFfDC|4H%J%K2G!-2Q!^MGh6BnLF`#ghOKv#lHmj(^nAtbq9oXM zisx5j6Lq!|R}A&`yJiytnTmXp>ZTJA$yrlS>R&PIGq-`u84rG*U;qvmwp#PkKTab``wWxR-7v;5lyqctiJd1Jf z?~iF~MD?TE(DpSbmPdXYIQDb@^71Lx#;BaOGBIiWe837x4r@xa>IRS&(&O>z{(T?7 z8;;-9?Mz%@9HpOL0G1fa25odiRY%H}?^k&Xi1pyJsin*{0(yg8ry+A7)5Jz90br#zy?S_o?6#f_kE& z!0sm30x1w2p%EN?gShCjHueO2Z=jc1iKHVL#f7pEPGDIEO`$Q#~0pdxe)L!`|u(pw5lIghlDzMU4QJW%K z43}m0?;62&nKBrf=E>KUx7_7lBl!>R(vO|X2_jY={Zubg?%)>#5loVTdZ;2o7ndLY zz|t#?gYmsEjPyz6{IedDl=4=sqITNhkxeK8d4(2CXEyL^xW?* z_PM4xCHjTry;%RiQ~hGgmpp}6LOO7=6@2_iggZM6Uh&;{GE`@ylTJOZ3tv762%y<7 zFU@YPqPVriOw_BZbTlfPlce+QL!(H1C}f-x3&XE8JS59&8yag9!wGB@XO8yDE(-Vx zcm{*Dh>3i>-h&(Y1}Tq|>ShM4@s=Gk##A|`2y()6rPYzH5;A#U`!T)>q7A-K65GYa7o(o^G(SJ)`q3TsvNPn&;Lc#n5%mYmJ7AqE0q{FUKuZ2qLdZ>A_R? zU!WIap9kDCpyUZ1w7s+zQxLD7{iS-Wuaa_0FpKcee=VKSeu6iun9vZTwNWZ$!IvT? zd@dgq@cHrd9$*#~xp+gszPYj}UsAW~jZbisnlZE^eqx(smuHUfZaDLp&>i*sBnL%+8e-9H|52IwV8Fz`Lbd`C&58H}WxJ%U25oSubqG1IQM=kdlCz6XD|16o$F5kha+|1wlx?+#y6<_*T* zzShTxKWyE&FpJ)W#^${@1<~nX8i2|*a|^7Sj#j-(Kc#;BoLvP!;kA7Vm6YdiiN*3h z%70+zA(Hzm%4^NdNkywn;bl6dx?^0|&C7v_a=xqx&C2nCqh5Ozv-Cr=Q3=AYmRC2* z{qQ|(IjGPKUT;P9B^t$_5B?u}IUhJ?O@?(w(;yeE@zMZA1)VGN0TQN5W?U!F%Gcz) zNW!t-r=HjROD(a8=~&BH_K%TM+>AMzT=fIY@FNAQ$hc#IxR^>>o&o+{3xqtOcY+JW z98I{WIha~qd2|Z!3QQfmRO)cuOQEZmCoeG5V%-F^AYdy~ODkC>$>IDlL&9A(8f4cG z=+wb`Huel5Z6J;a5X_@1dt@#;YW8~4&(7`>6UB=8wjYvFQ$f1V>$QR5VYS@v3VRjY z9T*TjaG`8lc=0D@n`R$JcZV&n`>_V&rgH%Sgte+)C~Hl+fuUt^o6N(v+!h zUQbDqcf8$)LO7dHldbwOpr0f_jDlJmNNiuLu2Cs=*Ro$IF8xaXD#*w+D8+OaHFWb? zSmBdS_3S(NsG=tTW-Czr9m)(Q~O zOC{#-FfAusboK?-f6SQrE;SP~C`YhZbHjs=z(Nn~PykGifj|*PdsUlV_yTtMJ!dGr z!uDPq`v=n*;nWYB@OoAULjpQXdTLi~e3%8dDT32q!yTq-2?n!UZ}5KClupdWJg;^~ zUD>Rh7ySc0U1`Dm#j;ff;wRLnegb?#;DAMkIf3Nx-@T(@BDUa##+iceVABKLg^>G{ z{VHQ2(w;y7GIo&Sv`IiHvQA}QIMr~1ff^_lRWOmNzuCuZ(Stu$yW`#YBVP05&~U%h zRIylLbQwxWlQJgv5AoCnwFB4!73M6TMs;bK?E!)b0UW0obM5p&@ zv=cAG0lo9bqV(YoJd~(O`-|f)l^$0|VG>T$|9)R=!!1h{4o12?J>q5E_Kir$(2F%l zZ>KX%gH}GTyt`O`dd%TuY|a_8Ny*aZRq7BgR~GOcgcGw%A6x)V5hms}wvvz(g&PfZ z%!Ux?moXU!e_nemLcecx!wlX8`ygi}`qv5Pi_GI@8FkgYa@|8tscNVu9!Ng^r3_?< z=Qzb<-cHh;GBA&nR-%T=EcZ)(YkdM1NaF&9?(lAf@RU{s0>7*|jDPnC`{wwq)LDQC ze7%cs^OFf7%m|0}Y_yUtK_lX$mAtC0>@%HnV_qDi#`aa*sMqVShdXooQC~0SSv?uW z8$8E2psXry4}gq^t3DW`$7|sz-&q?;1y}jE31pu8$&Vr3t|f(4gtd zct7#ePO$aK5ZdpNV#09bdFAOv{d51fb!{mnn%#q%)^O(!RJ>U9N~tUsROkMW6U?v?hfhCj6@B9(T{{9C1u4_r;ruw+_G!yhs1f3EwF|D$J`TQ!)tU4IU z2%e5oYwRzqIS7(=x`sW|z{^t0G z1t6|tG?{CZdo?Er5A!^|B^$iusiHq8YoZ~m&_8ULtOr}8_I+{F;)2mQlc@3sy!S&8W zpQUN$Jm=dOdl|oyPDB|ACh+k(-t$iHY2l5Pua1muSCS4EE(SW zplg+mk0{V+v=x7IHA8m!=T#`O%b421`H3z%x1>OGc+AXxf}Us>ABN^8;4lp=zgT)ne}@FGUVY zp6jC6SpA#_D;*^Sw@DbC*a!SZii&*0d6idWiZ#fYP6R1X}hM zo)Ao6O-Gt!-J{4>0-qyQ!3o6p;MMDSx-+ZYUxt9HrK04uQ29BkRf<87`?3|IJ&(Gx z#~JKYipt-YmnkS)oY7e()XorBUGuE9E8to}0HIUglDp^2(_i58cw`xG=vEx#_es&s zL+&Yr1ygV0-LH1LezeOhu#MeX?&A8rdW<&uY{e2;=~EIIiGGevLNmIb|8&-CzU6=E ztW?F!T%3rMFj%t`TI;>FvX!2qa*2B)bx)}Dno(Ai8V*znE z(-M}c_!bQH`&aAz`V+4Em_LvD6xKtSF=$)0xMSCs?D_|%B6|zTz5&&Yn1G96iI`3* z|DLB|a^CnC9pYGDT+6m)!y(PdyCRR~R4#p)|pkmdI5pUF^Xn zmi~g>g`JE4vOYzUw$@DrRL1B}#0bK>5TN2w?7J1l&U~&V2&x6Z(1mult1c;Iu?ifD zPsCr|e8jNVtRy-(k^QkTN8q&O8=Ln`=g~*M2pjB58>Z&GFthCyyc8Y=mqeh5e`(T> z-?9!=MddeeP`B|0szdbUS$E4r-n3OUoug0*=H6HBDoJjX(vs5n{5$z*>j_Wz!Vs8R z3Onc76ivat9$FR6j4!$XOIDrJ`q9&wxZbz`CU9?<3j(6iSfn9rq_hRC<}>bbio*B5 z&QhkyT@2bs=fz10XE-=let}^5Dn(95{BZbZ6&J7Kh_5<8#tO+>mx7rL|Bkq6 z=cZBf64h?ozC^d4@jDH}c%l(E=SlQK2+ujDAJ}CVGcbjQ+P_-6MDSH*$v+_T>R5(%ptzmK0t~+ZwkK%{(tq9t_t6yCl+c|RL+Hiw%LI<>neCZ zGjm?eEsOssh%%Ow=Wk-41aJ)X`uqCxV1N3n2Q6{yR8EbH;A*IHve^DdJ(N;)eDZ@k za_-0@CH`=BafbM}(}*0-`8QgLq}aL0zMFa%H0GG=T~zs(5{Aq%fa*0${Kk+KNaq$o zdeH8uXh7&l=kw=U=!$was@ zG_Mp-ooC)^oO6rX>)tf;jPpH@I2tK8Ia~|4UbB~RkbHHC13?I{P0V`NZvy~rx?-aX z6`!@+Y4owCqTmY$abRgdXnovhUc9mxama7Frt&er^4$ScXi(hFO21D$^iLEaKP&;< zYibNpehlq3ozc(nv$}qT@<$6kPRqoh1xe=qW?E^eB}PTZ<|<5Y#@0C)rm`NJw@^e) zi%?y>e7|snRVDCeNRjtFZr$ncI09>)e44H;pPu{Bt?j>tJ|hZq7SCM}D!0sgqhfaM9(d6F$m%r9c9~ zH0bYi0Xx3-$u_JmtJ#U=V4XBv@jvR4!h#VXcdHXT?BMzeA)CW$3mcCxTaT160{-r& z(tH@~_)6X0?ixDGu4&vmaRGo$rA3G(+?o^(J)6{z`%(ky0i?&KGR8Q%XjhJiJV%o6 z%nCQZ?mTPnLjoIJnZ^Q2h1Eq1tCUz(9X4`OQH6h{FZ%%@cuf@DyuWscbcXwh?A^$B zn3>5cot_!ce|;cZ>Nx}0!A?b)0`lEcZ&bs;2G;Nw{EQxUV07gl zoU{uUhB&1)E&YFFoyWGMJiDYXhymUW@!mrMIm459@27%O&E$O*15HLI;OT1Dz$?-B@F_pU@zZT9B)Q` zxs2idedm9QrIcW$owg;4mMJM*ikUtc5d7(Wp3VNgjjCqOYIv@B(m|a|OE+(eN`)bE zp1{w0irE^;^}`m~b4Uc74Oi}vj6B1X-&kMCV4DrnlcTfDv~={69A4Py6$Y?LKN@Xg z!$JOw^gf+i!fut0dGi3^*upMD3~QKceSo2Rj9euFGX?S+u#r4Nq{3B?>hOT~vwW>{ z(SBz1DVZn}J`iCQTO-^w5YM`yfJiqI7eZ}$Q`1FiWt_AG%Kek=Kn{owSOwRE5`205 z87BswlprxB>4%99@<9uJ6eVokr`*64j!^LvvB^61=YG7e+!|OzhcU}hyAt}6&6#a_+g2kZ_fg#*Rn2(23SAJ z7Q>i#Xgm03IPmO=dY^1P0r0fC-JPnV_wr{8ce%dFV;3E`WakiRgF0FL^Bfg>wmM22 zT^sTA{$5_yI4tdE#;*K~5#|^KW3Qg|1Ltfsqw@^s@A7wU^Bb6H<|@=zKNEeIIb6L< zj3Tb*6}tFi*Mis86DaETLrgu^l5mHpKC%s`M{hZEb042iPP^T2x)2Vr&lQ+26K5C) z%FD#!^KZ71{=qi0W4;%TkC)5EqPK(5(9^hm7JIk3pxhfSo-qtlF+wLeA1_n!sOguJ zGrun}X)0$INSo$aus$F-p?@T=_B5M^75p`lqpJgv`o?c*!T=ci8zP;2V>PV0l>2u>t2WeQqKR9x zgMYXa4+LKRo6gYf^SBLi{rN4j%sEZtz8`F-G{3B4DH&b9tTTEvV1iL@9f?-?Z+tMD z{T7YF^X@dIz|}>Ju60=%kdrEuzQl;MV=a#K9ieY1Sv=aYO?uwvUw;i$`Fo0`;{%vq zE?%R8h-uRemY;a`NqC>}oxPS+IN0KEOg&AiG&0*<_=U!&sgHR-Q43!->PI=v3ZWUT zCNI`e7ggf6FsJ_2Q%n}=3Ti2$^;4AcjuTSw6(uKx_<&UOI!YcV=^G-kZ`xEim;=n5 z(CV^_k+pHt_>WAfG(0O#N@-N0UBYabU>1?M0A63I;UQ9jCh0!S-cJ4AgwO5 zO4|V0RI>;_vep}V&5G%ZZ&_2+*>tuY$Fwpp%owB*Ku7e30+P;)nzN!u8vKA*I%J*v zk##j;QBv&Hs#QVQ1!+N*&77mwMN#n=u#x!2{f0#G5}PplD>QLsxJPq|7{Fcdu7&|H zGr&x8YhrzRu09{euYaG@_E9{(0yvFi~h^GsjN(fMYZ)2oOz63u{g{hDrACGdW;~d+{&KyOlPy9@z$QF#lJlKZV}L!WWrTUvWBz=nW* zGe^Dyav>107ptxpe`SE4&x2=%WHRzt%CL)ck{KXd1-a(IO#-_+z zA-6eK$u}*Mqk5qtUd~-+$O51cAApm$FNsRWbF`}Ufh>$-pyuSL{Q#9FcNQE52XB?_ z6%yZwtz6lUMo`dseg-5m5OcJzww#o4oD!O*ZAmQ*)XBT{e!i8Ek$=&LeW6!neMp3` z9$`8;dlX7Nh944TvVZ$7%G8TOJ{OhA6wGMcf(ek#qDIQN8~ zV^Jr`zANJjMk7iK`hFs)$;wF=THVK%4$O00mTMPhomNZ*@cat2TnQ0-YU%`5SYH!k z4yE)9mkubEdoIUT{KK@1CO!HYb%tPJX-W{`lqN}oQ!FSBAEB^;$ok{M16bBtCuFDL z1`NW7ch%DJ&%<9`SoHqcx|Mvn<5-W;zi}gVdAQDHdt<7OX*_-t$<;nz(@N#g0;~T7 z4(yB8YYs%Kw)igNN0`E1;@~mCvakNT$8MDV2A(>n{}zax@xxIO*w>~$B&;EolJMiN zwtscu;y^MH_K9lt3CjHR({=OXlF_bl5@k?8D((41T{W{dK{dIfUk$UR;bE>$eB;bD zmXYkwNEYQe-T&5kNxu^sLW9K=R?(!4)$ESO%f+;NGkh@Z z$oLDJM(Ic!^(2v&i?Oe0j-clD>=J;iNn{$wNX-z@#`|?Ib=-rtbvR&bhBRWIFO27A z)58bZ{iKBp8i>$x9{wCq(E?E9)|Cq7Ko0FyB#A_$EgE3@6XN>WY|-Lp|D12sfW6H{ z2&FLZB|--xC2A?&XMjj`BLXD#GwI>u(-}ep>X~#qQ<;$Px1$CNTtJQHbE=oX7marI zWFGO&72A4E0)l-$f&=y9uz5edr3~z3MUw8y30p|VY6a5gj&-sSn2O>9Si!me;{{Wure(%j?dw~7T zlfEn?&WQy8K|sF0W9N;v(zkW_2z>ZguaEBE^PY@gV3|@|SzZC#Z^&}(%y3~oo3oY# zhAD?Dq%U$0?RODsJh&)_^?Bxqy!>(Uyf8&PS#(|hMu4Qnhf~oToknE zvuuI87+<}O-Q)4*TQV<@(-d1ZiJnRw>_1wo#K&y!VUGOaJQE|saS0$Jdbqp9c)CQM zi9RS^B8c;;*kv1ALRrUqhcO7iA|-WqtK|e){4t`E7hKU?Nb7PNI1{m0s2NcIjRl|A z8U{oaPXP3T#n7V62UArD^Je!IuHH@>Y2Q<44LZd?$n{XK`LA(M&8-^F@|GVJEpsLx zM6&0eDA01R#L&|M=ES+S4P;M#^2C(

=)div`^AOy$X*>27=_3!+SB zJ31k0-xO)0@RY~aC=t$kuSpVZ(3ly_D*qk|Op~KP?rV>UUyi&N(Ns}w`SQbE5CQd{ zE;f!gAN*6`gf(C0)^-_=`<&s6@BtVB5x%%*z!?)?Auqb+B|Za^CuiMNCvDFqkSS1~ zBpx^5SmBFT1Q+7*!OFT0rGIt%ud|2WdzvRn60oFfimn+btwyq(LzG5Id^4rWH0(gW zM4BSN&iq&C3?dl_YGndEMsL(;Q4K33>x?T&L-X>3{dWQ1&+BOLH&ia#0B`GTRg)XP z5{;Otvi^uAU^ms_D_l!aLqks?KYad(BF87`2|$ke{LDcC6;QHelfRbfcYcXN>o)pW zMl?k*B09(~D9L2gbcn1s#wdy#yemdtSEjEPr)q<_$^?GGoSZZkp#`s3F9e@?AqRGW zeF2NaIy_Y5YN!{R&NBmuhITlGDXjM`rLe>ykb)(c$ZWv=A;CBQr&VUWe*f}pUFl|s z?)HrQ0!~O#)yrw%%{fCHIJ?ziRZf)}EEf#_pf=W%=n0m;au0>m-@$;*-@t^bEJkQ( z3(iOr^W{GJgu*Z#tc<^-{W}dzV5Ex1_vLfEQOcs=Em)~Hq6wrFcql=jHVwUo%@d!o z&)%qbphO72KH2SMIs~}WWY#HQmf0Oyw)q)*Zb-=*>FZ-|! z4iPr%4k4e*AWRc0k~#r*^<~MQmhX8D8rniB?(UT}nV{flYA-ul1q?BiyCw8Q%x@%a z&Tb6za;`}B>i0#gqu=HItr^g;RKS`y2mIbJ@IPn%i8HZsNi|butKLPe?v}31o9*=I z=ym6p^gvz{smW`QCKZqbEzEuiRnYn*J-H=Iq;{nGnoep3R5mO|47o_k@71tauVC2& zSNys9TBRt-oJN(>-a+k3$K=Z!a0`p|PRcd-*}u)Rz8Sz}JXsPGz_{{l@ zb*Ac8^RR!POSDP^+MHe&9qgy+nbLa^$Ceq4JV|#j?Q3~l#lG&=gex4ojhIZwNF=80 z)-sw#TPP@<<#09*D61ikF&2yT+2w{gHtYQX%un~*D5XVA_V-BG8BRuI2_{8xGjQ^7@Y`H)Ik1X?lRj{e+o+Bsb3o@OPmCAisO;E0G_gB>gtx318I@~gcekd2@7 zf6Zgo*`$@54*k(YPmfzwT|cZ0G{v%iTm$@Zpu#bgm{JOue%7M9!zAMwvKvS&(>dZg zWsOg93FJ{drmJtU*>^MYmAGT;rwkSU2U606HL4qb_`W~phGcYWj-Vu!N_?8=VL!B* z$CYXXT(2W!3VTph1TX*1pl|*$KCX^g%8#qPE9sjoid31Det1wCh&_7ua$3Xh2A_a2 z-1R_b9VihBLjLAV%upJ{hdbW~j)Ctdl8+n=uDuYQq~I;*XG69AyADiimV0CVo7?Ve zEg^+|=;zn?wxNh-rA#Yruvyx=pW>*+COW)wv@A+PaKkdwtsJ@KNrtVch~71t9h2*aT44MyDDmY zBo-4V?${IZD}`4tx%J@aTd5Av+5brD-X+5BtF>j({&<;Xx`udhn7EzegL<*&1#;+Z zuldSQQ{9nCQNQa;dy30c$A0ZBZc|5izCwNoz$Bf3yDI3zy9zG#o zye=0~!N1T-(Fz-XyLrtvl-AKIx;$??ubc85^z^~+2XB;POICOt!#O8yoQbm(QOg2D zj1buJ96gF0T*buy7gy&VOoKR~vdz3?=1KX{8Z57EP~Yw_7Q^>zZ@%5VENULk;gk$k zx-!+Q-ps;mcL~#Kd6i9lt~QCX>&`6z=w(|J1`e@Yt~DE;e{TLO!`s}^`iIP@j^|!< zWDMh$XO>oskLKc6??O_T7`E6@WQpZK=r?mt$Jxe*rc8`a9PkcLK_htd3(53waJZdq z?qZW240n8dc+f7#WSH?~VulwSp$W#Ndi507yL;?i_?zwX7kQ&zmTyjY zplvK(-=e-A)DTLaXmtTt%<-hL*4M5*#OA@IDSvzo*B{pxZJ~!<|KFes@|WcSzP)FQ!#Yo~yN|DoZc0gL^# z?lnd(v!~HUUDzLZeY-tCiXg1cb+v8f3Gyp_o3LKFCqWLGPwhY+l$~W-s9;tY2ua5) z?56IpF_!THHuJ+*+c-`*$>68zz*mZVh;d&2>-9CU-jqqcs(99bmwwG#a+D+D-j9AM zC$#m2dt~i{#m%)|QVS?QJYT_=z^*Lc0in7if<*TjpE<`b!ZWNmjs4B&kj&C#kpXGH z(W%Xr{@?|@Ue}f9-yAUjMjcciNUIuy{yqSEQ1GY2cbwCk#dhsU%b0_{vhi;FyYX;t z8ZBzWVuWTUn`Djz(r@SEtDJEEu+1M3I(|u%8e6-AY9qAj%MeKJ4cGk8(5E?Xr^!H= z(d4XxWiYy@04WC8vVe%WNA!KN7t~b;jFifit7wf+P*!cMsDOed_OLaG3b) z`PAJw_P9KANqSWh8`;3C=SFP4h|jgIZ#X)><`)(w!~T2)>^KaSOOZEPQ)kv5T|m7g zvamFsXtMmp71{M`rPF8>#fs|vy8*&@kuE>m8wtowD+Bf%<7700rTq#-VSkSa?b9b{ zJyqC)RJ#!M6Y9qNDu`I-1=!pyi;(WV561gA#P(>v3SZ^WL%%oK{&T&u!{2mfzJ9PGUi;g!w_^rAA|_ri8sDfZ`A+W_ zf}Iie+k2QPfG(*?#CT~-Siiyf0Jv%C@TFNQqd*o}^cZ3B!n89TU zGY@R))`y`^s+vE7^VJWfFRIW(B3WadvLPMdINAPNV!^kwRmeJ@v|%h0g}PkK2@E4=X9uAk0KzHD zbeoS=QjK~%$@%t9p(f(L6dAFE!JaJgRJ#pWqWwF8-H5hrECHt_H46~krXdA^$P&SP zoVSCt-*(Oq<85<{DSbRP@`3pEp&P`e4FL6sAg8DRNE9zHAo{Td1TMv7gP^$xR|KHj zseyowu%SDIE|Ko0lm_yO8CFmne2x_Dsr8{w2djFjFz2}eGphBNA_Uk z2JZp(D*BSlvTXgm@6$|qRI(5Gh|+XercmLL4j|dFX;6^DVbOT6v;_aTtAG=z$fvkm z>k)o@8JriNA=KYm+bBp{GVTWb9GwG(9Oi|o4&l1y(9ql8_QzZd@rgz0tFKLAtIfdI zG*6h`MJ1Ek`T-0j1DTwLJ8q()DGu{9{hVTZ68jby`c;tgBMH^}>y-^A;IuYgntDQ1 zhtvklMiLlgJ21%3F(qAd%V=2~_R8&;&sRefI6=VLhs&4M#E$yc+<3_NnNY#PA*e>+ znw-qg6&Ewh=yW0id@DwxH06VZPVe-S{Gao56zhcuLwbY*sh$=$%jO_7;Y=Sa&kppS zt$Y*Xr~e#x@%bw0G1-F@t%Lu!N6vh%wSSW|1bH?B6peE~R~}RAib&~9%K*B71XD45 zf@P$C-OTaHby|6h=vGc$@KX*h2s8uDo0AAN`z~J_q<;)iGI^7%MjB-FvU(bIou|*J zNuVu92!49=8FVhcQIamTu0J`vu!C4y0j*#nY?ztRzdAw5g{mr$ltgei?gur@FaTK42vBdJqQsm)So5@NBqu1tj z=b?wxyHv?K{6#Ok>%=fcE^=JQ7soSTQ;+$nzu&)kyr5T3sr`tYEC`j_GS1Hc)tEn+ z^kic`VThXWL04yHNIxMD{&&AIB`+c&+bUry7GR|x09gc^xy+iy$Jlk=aywNFaAd*Z zQ$KD)CYrb55=^$Rlr^EcR!mRn!QQKeR(iXbWtfdpE#ukQfjVwwV%b%ZK<1m8r;Q1 z<4)mn678GSh7diD1${Yi>p?Jlc7NW4xoxMvxBZ=+IFf?zle7uU+EH zZ{9o$Z}yx7HfqkJW_6*J9cUV;khe{K1aYK86zK>RSm`T^T3QwTXWUX0RE;YKV=2eiWkM$f&kwdK zpu3#LK}83Skm54&DmB#m<6UnDk&#E2K1TGV<_F!FxMwW>o+u! z)#T$RFoV#5j>^6Lw|q8%2rP?#45t(?ZBFz;`+pnAJTBP4#r32Dk|uP_rzBv~%642C ziOcgnWlOp~E6@hAnQsOp|D8FkgoA}o>tA}WH8X`LRp44Ekp@a`BgX?mHUv~~T+qMS zpj%YUhe!v-r91PZGBOI5J0zUWV>6pVIr@I&J5K+5~6V`$bd zd1_uuebb0+k5TCGCKU{_|C#(^kw+GNavBLY%ngd~xOjY?$4$k@{TSawBkgMja)KeGJ8TMCWxGEnQI9yzY8{beWPa8@TRH>NLL%n-twW?18 zxz|{+L$7ZYxGZZ{t`XkjF7@jZDpWql_gTgq8lm21HL748C5bZ3V#_TenD@J*`L$qasK`AM1POKCWd>8*cg?m zD6ezHVpCGlRQe?I#Ys%^QP3{A*?@osP|i(UyfeiS9FA|`@Tm+oHg7Ywx`(Aj;+257 z))c`-!=oR;WJHHU#F<|m=Gy#2JU-{yVovi4`1p7=^U`RG6!|Ah>nc&n zj^RLic~En@{|4Yg>OttQY*O}Rl@T)WoAT{kKedIx{s733RkW}o^S2HIJ;i%s{bleV z^UT{Hw+7p4yvXR{~%EHulk53S;BAo zOHQkz^0MnfTt|0Kpez=>EsdLGev$5$wP}FZ z1rA#p@pP{$R6f%|GDA^b&o# z`XS9Mz5ORhi!l0kYQmCfy>x*wst3C{i zURojjcbw@5dWiE$q8vCd-KR+nyoD***^f^Phj^D)6s!%PCoq6DRr(m{YLG;r&cL)# zWGUAi4r83J^kf{-aG8gxn)lmJ)=3pY^2pb}WV!?ZcaXg7lT9|EGBQ_bv70i#gB=vT z=1)cizw{^Ee$R%=Oxm$|4;RINmuOBE zPN^3tfjmmAfBM5m=mG}N&b6o;!R?++CvP_J1SI^%joy2g!hxWUu^MNu^3zp0#b|}d z7=5LYd!o8o9g0grJW90QDwF)4AYsI#&ow-kkP0cwo0>p)=jbH}9d}aisjF7cVE;Q$ z@_tjli^JpdyFwn#*B?4#spuiZSbovGB%s$q#ncr{@T?=QZbD0%vm!#Azk-gjU6U*O zo4h@++#eeLLg=hTkGhCgLZfWU5I+$u(FaVIUV3uYqxyKkHV?FB9!ulhm`K6Nc5lCQ zTCIuG-6Cv%19ld|DTFHAf%2h{stPU*I-4M77ATHp?n!CcKgLmfy7%yN=D6-FvarS_zoRQ0qf_w1oFeWEPTaH60l~0o znCO4CA$ME1$*8;Gq>Pe){=p|G{m+>yJCVtgug*ycOMEa^o#Z{njj>-BwOIMpoWG47 zez{9Jx}!q%bALX`{MZ>ckn4#$3mWopHBe1P{o z<01IVX$c%#`A0DsFUj-vOZ4((JFsxA4c%&3=d=7H!+sj6P+}G$YrAgxX&*L#KZ{WY!G+}{k9N$OLqAW@X_&L_j7YvVog+OXkeyiNV z7Jp!xG{`}vFF(qQwo1`45=9x)<0vy}$BvVd^c-+~g@w$bf>v{}609~^Ru>*2`r*M2 z%Mft0{Hb(0!)H&(SG_G?n>^1-u%Gld!fVOH3ErBLd6}laUqjTtSBXr`mg3m3w)uP% z3Jqq`ji{gIMLU?V=;W6l<^TzG7~UxHkM0ylvcO_LuTDg*7|WIW7^xkKuHaIj@TttlE?u zR7bXn;b8jr9KFW64gPuvFGb`k>FR11Sr4=-Xfk}fZVym;U?S4|a*PFJ&q_h^(ys*M zW(SYC0JL)LKM$M8`V+2I>Ys4xHz)A+>rQl-Q_CKj0S92ombxV$-O$FCaQHavF8!MJZfg~xLVBeN*%BG%lq>kiC5R(}=fIU!}~c_{aJfeiP* zeGE@~52|1gv21(qOBKBH;qO+~`tXgnI;Fh=qQee6 zzDciqN!XK!<44H|nr;@_$aue`vxC5BSgyKgVq<6f`QMzjQ{?#kT8+9y(kf>Lvbxwy_ZY?G#V0_SzyZ=-Li(RaM;D5LDJdvYGA)GC;M6eP!cWmd zCHn~u-0uV1jCOvNTBi29jo06uS(l}?HR80^9LXBIqo2#9{b3{~?r+}YtB5?jDuT`r zE)e(crHQG}Yxfk4G)Yor8;Sqd*@Uf+eg5h(gPUavrJYaAYej>1^VnNAX9b9RuKCN? zOeL#tJ_vgcg`Qxsz&pY^463#Je`-}VP4nachb#7eb7vt9f9tKMr|s3BA&w#=)GjA6 zc3?<=BT{(CgaepkWpqRNf9k`fv1y?mU`-r%8uFkcj<5130kb>9meDM;3)Ry|K&+^Z zajIw@O#ka8!!o3uOxx%G8_B>zX z^o4Ce zvJV2Z`36C8)p{T;i6bf1V1(qJzE7(q*Pbl$A6a=OM5!($|FQ)km0pw(dwcOAs3L)x zhymx`QFLU?2A1EQ+XG5DHoHOB6g&^2lj4m`(A9b`LH#ALxxy3jw`VK?A8!i!iJ2jW z0~drzr7Z-`)ShLXEP00L??FO$or|c7-l-`vx1gQZBBJL{9uF|= zDjqTq=y3yYR7C}}0A+H44YZB^wN3}>3_%?s1Kd~R;9+6KP$Q}_ zBRh`|{%Qu9t+4P3qaW`=P9j~l7!zNV;vf7h%Q1c6N=M5ddm)O^%SU~r3ZO2EE)fk# zbGmA^l;bN9o}y%meaXP3gDnJbWtSx6zREB%aRbWCV7Bzs^L#FOk_1{b5?$rVG{nW) z+D(_2k})#u5E9+QYE@{VPZ}ljsQlB9%D^u7j^7fRvtq2a1usY>vOXi$9wRlYz4+8s z_cN=N!*qS(zw+qsy9(F8(INNg7^Oqeg7!><`oBJNYN0COilXXOUqQL+D{e8xXex(vvR0$^p@UUj8|AsX!VHBTXRW=By^AK$-#+zb`!JfMBqU# zNc^DE%W^*RgIqyS#xPrCc=)ptQ`zOE=o1`q<<^BS*8?aC28IVJMzSaGeklS6VwWCjxpG5!aNs1^2fBme6MqA!-VI->quF<R8 z(lK@vx#>c?01*<9p?>qwHw=RMZ@3HLa_WUgXaKfbiZ0)zujOe$jX1*dYb<+iI!QgyNDOiD^jG_@)@cp zUoR8gweBYd9wg7U%G4;Gnm=Sr#;ceVvOPnF`!l_^79fsXL(YOOFkeB{$}Tst#g{SV zAAm+k_)_z>6elpkRUYF?o{3bW8^r++oQW>;rQ>|-wTa;?+2`sj{AtFD5eQcCP$?)hqXAyY+z^TmkrL|#a} zOZ}^-K?yVTz|5MFs8D!=R*C&9Ta-Cou0jfjjn61VCA%8%OapD(!%XT;geZw~(|31< z`(7>P`a?~Z6yOMu3cDSCf@zU_w39Xpk@pAeXu(--f(Hz{RI~)-ZTYxdUbIeyQAY#< z|IT-}C&$jzuFcYb$9@-9T4xTxF(1>xbXF@`KdYPkn~mg`jk@n(hcQv?1`w~h5#!!! z9{3Z zJdk&3tA&eFlvZ^-rG<0l6SEYKyfNuW%xvlOdlWmolyP4gp$7Jq8+PpNHl9z&ubH*p zB#6ZTnECqRUXdmfJ54Su{f$_V1`sGYWBD};~=>3kvm{wP{RSky(V)u?lD(JNQ2qgGGb zxjvb>FzaP#W)-Za@XD~gl()6z~N)AF2VF5n|cf*T}$O zN}-9D$uteC?KR&L>ZkRVpEH|Y#M${U6Yhs*;wRCCm4-G1tZ3nkQsA`R=Zx?ReS0y( zdKAsz8lFa2W(4Plo2E-UnrT`+iOQB-kKt7FPm&Twm_utzcP-EiIOJ&MkCbh=53J9g zf4<^FdLpU5SSy+SJSWx1+;vo*e@KGz`)nuD61pS^5pVV4fE1DrGUmpClAtRC0ubJ0 zJzzdG0Br$goG3Z#o)B_@Gv_}n{7imEkpOXc-8bYX=Z=%3l(#7dEv1#4qSI1diSK1r zjckLR+b|>s)eG`L*=|Iv4SxfQo_jnx@J-Bya)sjn+W*}rIt%K-bcQV@G3a={=FK81F=P_zrqv4@qP+xeXCe33hONx} zZSZCAeCt#uNd`RK+r9L+ZU&aT0!&=;C9j`kp#0Z+@&7aW;omxBim!%J6XmI!Nr-=g z23C8)?*X|Yi^o@Y4!VD4u4cOmG4EGsn?yI%<$1^wEV2J>w76o+u_@ZRo z4%Vq!%)p%pTCwZw{YB7-tF)e+g$&s&15h*o#Tq#?%9xkwRkIfzADXCpJG7+Jd9zSz zQ$dHYw7+|RPhuv!Rs8q+lYi5`*Ia?c7*{Zt`LF#l8Oxg{Ypmg%xbL%!^{Fm8d6{9= z)E*CepiAGy<}u-(gL1p>(zgu%qwR5EG&jF2i;0}@YqBH!bC0)xe{Zj0XWi~lh%LEW z*oEvf(}&4e3~u_wvYglKaDB?8E-ESa_m%1Y@!QMVuS~VBrIcQNC1^`{Hp?4Q{-DTF z2v6mH8*NK9*t_cJVWhRZQd%{UY~f2M2Dd3U#=h|$#fTO@DsVGIZEL6JMZ6CMtR937 zp$U>Fw19htwrxj8E?@EkM2&53zcMBaXwMn@#E=-5h}PH1&AckU(`MHZbYLH)q2amers z30sb7ZZv^w1CS@~o#}~O%Bi#VDJn|T0t<5F`8fMQge4CSdxJ9}X+eT2<5}OXYIf+! zt!D*m$3WT+;IG7QS^pq^Z=_m|;)i<(XL`Sh%0;KijpFquZ8~)f_czx_q21%aBvRdF zIvcN+hwNN05pt0B3nQn6lxg=B=2g?qJRUmHR@IGi5OYEdltE7uF_}^$#8Wj{@LCHU zct1uSRV;lW(XbW~iNpCxSM20 z-k$bN5kI`8gZu;c*UMFp zA?IBW{nvVB-3GPDk(;lgF9&+vLj(bQh^Ce@5?jU1;cxZ#j9MQjhg9U2UE(28@SKfv z^iO=~p+8u3!H34_>lGu8Qdx<@!z)pRX)Kmy_9kbxC^2IMUW@|WI?`~_6bzoBD3fO} zJW2w_d?LyLNhO{Su82`(Yf>|YbFBI(9)ku;xoX^)L~|rww23fEyfB%n4}dr&Q|(#b z?>sQaeTC7+0_}#;Upm#>A660vBgNfgz7#ECR zD)(sU@8M!cE=-+-rn=TuF5W0gcz6DnufUUM8@ol{y#0y(_V{z$;SlSnLP#2NbD(|J zV*+UMDGF+XbAdL`##{>oW>6k0lY~lI^Dk@L5W82il zD}E@eS6;ih>AC}}dePNF%GuGYrsC2d3k<q$Wuj|hV;H7;}z5#Ce!D${DpZ*kPV z5{^sP^-ruXIQk zXgCNOW~m%Ec_=+1;(0(nRKU*ET%>I@v^DFYR`iEZj z-Wp}0u=`qFGaJtmg#xiy+c1LOc#}XE{yUt^SPMO$%1hWCoB9UufTT|_z;~#OKIIZd zi^81t@fJ`52p?!2`gLekF=$?2X?_Nt7~!|BR&vz0zx|ldoRkQ%7MpJZ!3SqYIk4s& zOlf48U$h<^YQ%&~xl+~Kk>m5$n0-F9JxnnMmH-nK5bH>gFz&Xg7_%quPp8i**dz7m zIE9(%tM`H`%R&aePv?S_-jW~)|7fME>PwGh>!m;8i|8;I4~r9OLc(ECc-G-qd4I2< zW^}@ZB*=y7-8GZz?$M}dY?kA=w=F{*&P5jZbRck4cVUX?jqY2AUo3ZiOV-v5=-j{D zw0QfwU>skC1q8;aJ5UBFXp?SD7+<&1WL(LVTVb$o-)@PvH``M2PN%S?;PL?VM6Xs; ztqle>(mNF8MzpnD+Avkr{d}O4h z&s$B8i#toGu#!=JRNdW|yIl@kvOvt!@~^AwR1w1baO9XvpGkh@Pq6`6jPk>_E?^tK zHOj!o!oop}1X1-#=)BMt5X!*fq-TCBVoe}G3LJQ1h3k_JIm>C2M2&$O8lqv_0-i|Q zZ4$F`8n4`RqidV_AUE^xK*w0Q(uNC!X+aUM&v`N9{=K78p?)M7bkT7d9OSn9)Ks0uvKqf?&3mPZ;W_;^Ysvw)1iMDBf&U#?Uu2*mh zhi`T8K)E%;+$3`MjfZXo7bT<Iy?OL0&?6>jdQSEc z4qjA5DtoV&eOB3#5fB@6&bk&Ck$O}YKDO_7yqw3cTyWEu9)zzFxltM|$}yk_CU-VW zGcyP5YOF;{x=V)CQ=16g?F83_V5~V z12pF{+s2ktpO_4_<9t9awoEo?_?c0Tl)W=egj*6jW zZ}ob${MSCne<`|7y@EOsTHz)6Lg|C18Rx|dL%%V(k7-<4!Q|l+e@fjcFE&f0@melA z?50^fEGygJCwc9PF@ZoBe!BED$ksGgjUbT>O_m;kws#1p6e0e?VQfch2uBzsSahZV zkLX@J1gVcgQ!49vahJw}Bgp4B>lls9;Qk&+J~^P&lAM@U#m&xxmE-{5BMc605v~Y`?~E;!KN*G^dq)K zDfSZ{hVFTr<7aHvT=PCRRAOhZj4AXKv)85s@rLcbJ5$uizfLId*&6vw1M^f_Zu5>?% z2k&In=~21!-7QrmQewq|jZVWjmw}uT048>Pyr~_+A1L@Z5OYEi;Lx-5%c(8vI8$|L9dt#(SN_1V*oB<+yD@ zC0q~`s6M}{p=jH~O3fJj`r1Q~81CNcArRgm^U~sW(vyAX%l>zJKc#oRKUz$xO-|ln zER=^>xpTc37%nslqOywi-Snh8xtCDym=;tHq-I;d8HV{V?AI1VZ}J9}2=|yvZX~wX zlBTHO|MbW=9VI-W)~VZto%q3(W#=ErYo+i70633GZfq*&B|e2WayG63>vW{GNL-AJ za+XFB#PTJ*6aaS|mSR@Eo$sLnL;nNk^&QdH&f?g(Z)^hY+FO%Us#(Jm1rLjd3DF#= ztk^@&AJ5w`5P~pA0+1VLi?BrJzde$?yh2{oFVkxakp^a~mx63}9~)5>^{x3ByzCn| z&9JNyYL=%=gXSkm`4Kot2tQ$_d2`>uTb_Z?x^TeHuQ;SrYn!in0 zTv$jIN^dEkN2Pyd|F-%{s~g<&S5Hl!hBW|lRthfMs}?Bx2tFv- zFxv)Ht@!A54VnHOG36i>KmL0nwjVf^2hH%<x!MA&5X2H9ZBK-Tf53XgZ$t=P+lR;bTm0>#vutxzJ{1f;1sfjsKmMReAa{w9MniIuQ9`A z%nU2qxp~Kl^7Q-O039P7U|QE0+X}y%r!dkzvRmBa<0A=}5ZjEok!9^`{5ACW4pkC9 zPfl@efXi^ES1L2V!E=a(O@;zi0sMJX*| zUJ$Xt0xM#6yj@ayDp&@>LxTa@EeJB^5+al`q!7Ce`tYjr7SF_R)*gq+>p;%FJnV!{ z6X%)9OLo?K?(WQ^*N2v1)Ll^vLRai9B9USm-2%$vtQ=$s&S_LaV|nHywjngWm%a~a z18Kc@KO3xBAn?=;MM4)vben{T#~1`37&8+DN0>XuL!SMeiqrwA_&8w5MASsK#*!yq znq@rwllYsfLxcua0Cnh}Y*eS;k*E>|%Gj8-WQw9Fiy;+;$Q|2dacK~ zsR~eD9wQHUookZpP5}B=@|llMtqe+_JA+%mEm;gd=( zT^!n}RA}~-349F@1-*8ybgA5L5G5?j9|*SVhiz%ZKgQo#yz018S`Fo~1P>S|Vc7A} zvHU1VZ>^2b4`AgR$Cch2ChlgzeKc4=%^bB)Xq@w`%QHjipx4JfE2ZaS6UjI64e#Gy z?#DKq5Rab8UW;8yHFtRk{~}euDh-skZTk*W+(cL*Z(N8S;#HjE6ivNOd4Ndmy2+X7 zIUYc+ewt{oNcmP@ZPa8~8hi2M5pf50PC#aCW-jQoC?=?Ns}SeMC*@f+vsQSJz1?mP z;}BNA;gw}g4qQNp{+Y)*>HGo{yeTvNGc^gaPB8kGrCYaWLK5DjB~Q1p&z48<2VXJT z64ULXO!gyg3kfWXAqa+DgeQ?CCU`D&NPLCdMDB!P!3fyUHA;5|`FLKeXKTN|4~e8=^x9enoF zZq3v$00?c{w9oU?CQ%j#_!Qx$jGE}7E~d=HhX6%Dy1$SD5S-u2Hw~LWkwa|zlQ<}k zee1aUbJ0)7(j)ptX)x^K)ZKFLI(tD?h8Zw&`G0+{vLAJp{4DL*;^&-=ArNAVfj$BBaZ!Mb#9y4=lZu}_eQS~CY~P=Wi) zt)k%F(9xx7ZjejI8^4?(hyjlsY`5f;`)A&nN{y}))a_so;|hx=>?(_Q$?sF?ryzWoBHWOvLA^rxxa=P?8>8XB3=nU#O@|hKGO=Rip@{h1ixxr={@LTh=OJ!~i=J{w8 zzlZRQqT?6C8`{M=3dE0BWb<{($%K$ zbyUjG-~1Gao>$G8UoJ4u9YGU#BEckoQ4c87ok6!BT_O6TZOB>$zLcr(I}YDMGEL^D zNJ+0482uDR+$vG4ZxjQag%-;oXl&Z?Yo>Ll_iw52tV z8G*M$$1f_4f(v-&FfmqkB@#mX<|rxG0kAKip3~TK9AK_h7t$psr8aLWcuQoi=Jbw& zf5V?lD6k8kQ(ESuTsLxSaO?M9UiX*h7-!w0@SKG4>}#%xfS27H+wW6geRC+WES_M7 zk)Au*(&_rzzu308lOu(kcP9o+SG7bSdZv#5?RTToDp4mX(B_Lf2c@6wBED}ft-f}x z>sx$JugT58&rne)8>dLsV3ta!hx$j;Z@i3|RS!>ySOal2peiH${F+U~&>C{M5E(i5 z*QUcsBUxZx+TS_e zLY0@pQt5-dZ4><#r`3g+t-qWbVH4wpnV)^U=4OG;L*EgyHO}o??m?)W`PKmW7xz7& z7jg6JLxXuH*+&2mliooDB3^fayQG9^z#rv^WS%M9puL5GahUhk_%f|Y(z+W`A>W`m zC{jznxr!k5yhOf6Qrtq4skU?7MYAC)V0$AQu2~02*R+LG8j@py3x;I85Ew>jxVpW% zJp7G(dj`pjgt@2vp;XqxDnO7SFq#j+IU9U?F{nI3L{kz;U5zP?Gm%2-4U!5meu>CM zb};1Ms~kyhNkQS0{*+E$^15zXy#M;A`33O=Kv)ifXsz>Il&Ir3e=fgo2}N(=Z4jRL z?aq4smDTW-?zJx>Q%dZD!Zv?=ZaC6tjU4oB(%KR~iU$w6&|ed+>%}xkt}ICEfghv~ zWm$QT*o0`T%bT1#LRso=J8+!%V%q#g=L^`!2E2+^rNL^!Ndz(QA&69aZoJ5~ESn$p z@B#0$%u>7Zo$SdIw(Io9O`y4YJBfHHg=V04@CeLt@R4~!NyH1MKHT}!RuIdA5P#A@nT zxghE&)!8;*Yw8ySeq4Tug03QU_6ztLRBqFM{eAz_uKgKar`+{R{F|Gtb~Mt~{8qVH zXv_(J$WLGusE-|QqP&BRwwG$Z6V)5pi^-EG#Eud@2h0C=-4Lm)i;0)7)(7H)qsZi< zCe*#R9k9YwfJ+cm|Js9^Z>@m?F6pCWL;LY>fmz0$Hq*M423gVc^`yg4Yi_ z-K;&8z6wEhZLJ{%9n*5UpVzT*;@_OBQi4rOP>hL?LeaYU&nwN7r6aL~NGxev8Y*Zq zc_7#Kcd0zM)acoIbd{tZDFhHRFB21>;JMMaS`?fEuPBXcp$YrYyWLOIhP7p5^pW>) zNv|WzJN?rXB*vuf{iX}%2t`IP1M{$tR)T?GQn*bE-H7~hKr`58>;@$u$t}~+@+2=L z>C{3d;l#OO{ZoVD1P`RSlPxQIMm$LCyvi!{nXZVBrmJBLFJ!;;6&kOr&-cq{iuGNy z-6c#Ir;1%DRSYSH>``Ihfl3++x+%sxq#*M2dUp3B4G+iy-3gBqtmt%Jq zn7OsAIRb~@GvhrVMv$}{B^>Bxah_8-A55oSt)ncXwBu=TcquFH$SMOZ@Hu{b$P3l? zTNbakolHUZ08LiVw-J~dp-yCC7#*>4?PLjDb`3CArt-W2C_^)mwSNTx`1$8swdzsk zMTh?FENYSibZBp^_kT|N=52F{PY5EM21-y>^U{utfeS#^rZ2{R0##55`9<~>Ym-T^ zIS;x7W%vn+87Wh;*+o6L;d{9By=HsNt-r;(b1Z73_L5ju#9}0Udp}9N@$w~Bhz6il zW)nSRiJ96r3=IG7*7xb!0|zMm&B>;F%wKgw(tbu|@2{oc_c^hrd;4R-0Q=`WT=GBc z$g*jNtCAkH8h&lM<-NMr*ya6zsI1aSB2be{qMC4 z3fcxndhG7vJdKIRNn`XJ@Vm(BaHM>OCMWduthYVExJ6P2WOHAP2<$IyhC6Up&I;o=?9NrJS?v$A2= zFvJ4ojM?QPTkSz}eYM2y;XGuZ<##5M4Qc;SUHqB%KMg##cZ83^h^ayQAz<#sbk-~mU^2< zO?4+GaT4A6)aE=06C+PB8KLZ)^puSkigm&PRwn%EL$)T`@Xi4Fc%#vK;UalLD=d(t zYYjUq%U~`lpS;upL_1v6T#A5%iQ?+GL0pN9b3Hwy*k%K29W_6iY9Uj@*;!Y(GZ&_>7<7j_4{vo;wjPl zw-;&!H=Yz&`fU!QeFWB*lqqUHXoEM7){K)r-&^1D6^&W1f!q>pCGr}XFmr)$B3o`r9H^P0#lFX-TYpf&04j(Sq3?dL{TZ{B7+C(flb!yT zxq|@PP%M%FpEU383%T?o-eg#DOx^bb#Q#$F22zoKFP2nUI?yi@#z_igne`6~ z5o4nEYMc`H?VENO1if;z3my*7rN_z)vv)A?*>4AmGFw3urPBtG+tk|+6g13FgC~zo zrW;6U5rLx4{#rJh{CD<#wT^uEHSy~`tf8iki6vzH?yVUDz*R^cSM2hF5E_#47R*BJ zb0-5Aw^3fsd-;50)vF*$%#(Vs#(Kev4)lVLu zz)HFsz|rWO)zWm5cpq53{^69W&s9Jh?!b&eGh5qX!zk!0N1(*YS|H~LgFGRlCwd?Y z&j1NWjA)=Qb1fg}jFDuBW!txVGuy#haLL;*5thUnjy(i|b3qtwbWEa~{EBe+^dJUqdZaxL z26ro+O6bFtiQn#VJwNUjs>2_>gdyC3uMwI;%IXH$gTF`pzHy8xi~Jc*^Ej}r-=b^1 zUt-ZcI6p1}I#f%9A@&|0i431~uD5(V(`HHHd!ISuh&cFTxLCrMr`Epsi{_LDU};ns zGJOo zwRGpW9}wauO~E5P@i7YYjqJoF2Hs=o8_zl8fwF+c0+fUmLNUF&o7??H8Ae63B4IZ92 zMc)k76grBUAWG($_d~Zh%(k!_uZ}#kUXy43<$`3Sna9IK5hCBwki=D<%PuYy$$HxU&h}315Md(?sL&4XYSeDw1TY7`QN!_p=FR` z@~_>ap>zBy*&6CEpF z-EuKePZvM~+m>3^R)XLyv0r5l3`WD(HL2L0Z@_l6Jqo?#KFed$i-4e3>D+jFJszA#I5#yD%F=6TJ zkG@Xo(#d13(33XpfSvVt`yusX=RVvy&6md6aETifM=3fV;))iSzcra&nJ_0_z5e0d zs5rf31(~QRPqcawGGgRcRj-SL@K!+FYv(>amA`zUwUhXa+78Pl0Qaf|BFNB^1qHuq zS&Dcah=k$GoLHd<#F9^`H{C6Q?ZMCb^@7l(n&Pyy`rSZF&~H!%mhH0wLyYVQu21(# z^?%d(6G|=Oj(&9LK!JTIZ=?(}x^j6!MNEo}23S$TC1oz3Ip8tl>QC94ge%i+wXp6m z;VY04BbnBAoQ^1$MXK9TZ&z4*fifL2l*cKJC%OqQg>dIj7@SlE=Bc8+l_IK~zUyLd zE{qH!(_TjvW>H>K_p~d~F8`tZbt437n{^c)?$s`3KI85-*8jUEE4ciW6M)yxna{@^ zzrkHc0iQca_u3W!iro&ymLSe43m}ndOQ^^3v58)&hU2AVD51|mCPZ8{@bZ?#mbIJFo%3P!*8hrA}3MK56GQsVP_kUe@P`Dvo z0&_j=F8+MgE3SM*|b94BimifUJL6Au#GDavS+|DpVp|8ufyB9BjB7Z`S3hH<0mPZyB zT1X)q^Gw87lJhnh)8rjznuZ>035-9GMKE&eBVs`_{O-y;oy6N4n<{;X{LpSXO1CB2 z7jM6%Ia!s+twrRO?7a6|}XmiN{~v(uN4LHiK}Q zyE)jQ4tSH=6XHMnOV%FhAt4}zIHD+vC3kAjfkSWoPTa5i1I2qwiwl5Q@O67@#5BY% z-1dDNsg6s-Yz8Vf!ft)0`{Hx{YJF=$?K=^l$p_@`u~H~>@i6V3E64FXkjmwWq7Se~ z56)G4?@d!jZj{z>fyx>gsHOejZPn-l9w<0Qycsr-%gqeGIOR$_(2R4QQ)|^Ick9W# z_+63P1hC7#bSF2nZx4JW(wEd1-sb}(DNug^)P)|;ERz~U#?%PULpFi&MP|yt&U}|M z0B$}pVdvMVh^cUu#M9Q~ZL79CL@oh^a{4sTeVh@Qs2K#0t2x>L0C%~cXN5YOqI?lZ zh@O7XQQ7`Fz~scUA>5>I4Pr;jy|G>N!J+yszG1uSt%bNP&9hufG730=SN(GKx&kBr zM}KFUELv_+7)`?|zOyA*A~_AImzM6MTn8dy$?# z15NBN?G%G1qKZNHi_1hqV%!}kS{o*R`h1}a{B)VU&S}e*j`$l9+>#b+mG z6pUvg_rg#p#c~)#F3fA?z?qu_2J^uWHNT28>&JIm<|k1*b-sn*6?q#MkD zzFo>jJ97uiG80Se)2w0?DY%m~$;ld(L^33lY%=8*ycEem@b8-W>Ezibikdl-R(I+r z5c>p(@34<4H;PdB7)_i0Brw5lCcVG}om-)7$I&-DXOzM3{ipjB=J2v?N;Cu%N;{Xo zdn(%v1aYafzc8Vg?eY~dNi(lyIKJyuykm=D{@y^@36}4;2vRidLPg4NsY5b*jnk)9 zYmDNB3L1WRO`=Ef&5Wu&e309V7Drl*7fd@m@2><*mq#?R74>`osaq4E`J2G>vSNOa z4br?yY>QE!F@xc&`7vtBgt))AUwa@JpP`bPfpVkCn>Rc!!f*-Klka8dMtU(12q~8n z0N2%;X#n7$+&dt`*aO=2ywPpL&X&;0s}3TQh;$UKNupa>Mo-g%E`0*94wlyK;Vy@b zlWp?=_4nMB`R0C0Z@Vs#`Hvh_30#1{FK3N5A>LDOAj6kTbG)u`qb-6<;2RKEXa^Wmpz^j=t5@Ru~Wb=+BYKQ!= z2e*l^6n0t+w+HTgHhcdBh*CYKX~}9EG$ACKT>7vLOMV9S`Y3j!kI<(s{V+&Gq)4_? zTGa26l?8px;ShZs(?^lbyv{>P7M)pE7|yltCcqt-ifc(gV1Oawn4AZX)CEnh}K!<5cl8gwb_(^se8S{AW-=~fB1jomYZ%Qmz6R6L{u3S2eX<9EO9 zO+DTS)TQOaB^R3dB+{o<`8yAerqcI1F+aBbdl#%dn82Rts_9>INoa@LOW?v+3#GIL-f^i)WKks0$dE{_8Q9k5D+<;aF2W zrdXHS30|}VIr`{;N+>$28|2a8*bDC=i9Xi|@<2gvn1WWoBX#cVCQTQ7<5ZWu^&YAR zKOtEOAGQEkbpBivn^e-|0Q9$*fUozP>u14i_);{xu?av#-v~Lz`*QZ%IxDc=oL5&{F&>Ywe{A!ob3L>atH;p>Edk0(MSMHc zbxzYXvNX?-ZJg7Icdth|NT*_){le<(XLC)R)x9akKVTcEHaS@OmdsM?dJqO0P-vXe zb}3$AzQK>K$n>>}>7kd`;-FPQfE+~u@^1}o*#Iz&c*HOzxzG~ButdKNK<4;JX$*O0 z*NVbE4RDo)ZX+Zz0-S%~|IS5ax4@qP)P)KuK7VRM(x?OHE zTZS`AAcP#6o{JQZSvz07(8tribS33rFXmkaLDjvH-dG(Qn)wFSEUjesb(O`ZhFtw)x<_408Y@ELCu9MHYODy!+R=T=jCf zBm9A%?f#yLZio}{_g>wC|BfH!tIlTjSJ^!m__ZDH_-;f4Rxzq+AR9&K2Qx#}cyxUy zzp=GM)KSTtc-~!rG13`swTK?BK+w(-TuRDyA!G;S|K8=ZV zN+mXk>~*R6(V7w}fq|S={$3P#H z8@nP$6qSI*fXz8)pGRO{XT_e&xmh}!Fokjah3yek3d}+KFms33$~2Ri$dznAX#?Mn z|K69FNL-kz8a%D5-(4|v(>j8E^6bLj)zQ$5+|o7zFDt-)S^F?|*^DQ?CIqmK%v-DF z``Ai$h|PI<6$&`#MapGYVaQZLpf4d6mfOT{Ez*F&d$>&GtKI!Pu6sfr5boH!LG5Qf zQ;0(9PP5AbI_2qsd#%fVdkDx9cSR8Df4nD@-@SoQDRx*rl1T_%zE_k2`zV;-hC(YF zcA!ruWtlpcqbSec?I3^s_un-umAU4w34GkNEMH8!@Fs+Zf6S+<1m{V46rR#Xr<+hy z_{SZ5xv6!!W|X=`>Nx5KhtW;^l#7&r6VUkmwic80UQ|KGh&klcL`SispnmP3hD6&C z)Bk?o$#7puMeDJuoC2ldvS5F{&l+rv;21|L?uuO!VKLR&x%8jYpbUSrV z@-;^%#W3zb|E%pbNgNiQBnbc!mkHL6Fh}9N10idx7Y5dTioyE<@ZmMT8KCz+Y_Bf$ zu|P{SAH>y7umo^;9U7Pf=X||){yR?i{D#KuGdmrbQy(~f4Q~UiHNg!?A_zL>1XVes z^ZBA<`71|r2el!jYS7^GVTi$|kFT6K_xQ&lyfLN8YaCjH*zwe(zTGg6bNDycD9eP) z!qdXdm!TW40qC@BsFWW-x>vk;4I;a?WX#^0_SsivC(qnV5-!e)Shqlb5^yMJ_^|Z( zLpydHrU<14O;z%{a6LH!9cKMJm}q*yiwjgsFE+$unh!rBQcv;Q))>LSTt*VWQGcFG zm^}z^8nggUOc%4fp4b;z^zeo@HpH++kU+X;AaGK88ZDW~&fLfGE`&%cBVrYPGvWYO{;m&Ut>>Yw7XC zprcd~@eG%CV0nE4ZpzxEh9wv1#ZS~0Yk5P5;~$U7`x2;X;q{_=<3MY99zh8u>ro~o0%{pfSqK7f_Z zB{|jKf6q^D&DFmg>*aHGB(_1k@E{h<+KlZdCd0x=VaR&@gGC@GWB(Srctz-6^CUjG zTMbcyb)~qs(MWjY@Db>Lfbl8fa>$dx&jNkEI`C6FxC(gV2QI%92X8bjExBG4KRUN= zaaKP#x-1>LG`Ajw}Eh^?I8$8l$M`d z__L=@oKSF5{L+@pO%$sbPvmZmUWUBA&c;Y3aewepuTXc1<+7Suxmm{!_Mo zn_hdc&c)}WqFJQj=Xjxy;)zj~fRZ-g28Kf)Mia?^-pw(FaWYW)ee;u@LlN>sruUSy z2JH=bh-E}?2f9fiNw2h580aTp8&1H>6~@j?;@`heZ8{PxI4pyq0p|rFMs=^dqg-w! zjf5=>GN0n3>;a^J!~bWF^YxmG1f2tJA*{owuP>K1|9ns!`Du&h%->op5+OaeiK_jQ zom`ml=31YQ!}%Gyi%jDt8PI|V(7%rf%F6jb<`dEw6fI7=m0@hGwyJz1wG!**_y?o> zOM7(coLe83It&7`s*jannhl%S(lr|GeiEkitL}#R>A!2e$ZnFn$12InX2!pFcYp@) z2-)%9tVF8TPb%vrtVTQi+ekp%`=G@YuoX<81!fS!v#LaZ2$Vy}%&V8|UG!k+O(1IW zuGh!pN-L1+iX!d@bten?dm9f+n;{e*b^e(dKn8Q~N!j z?vAymaIbmtUt3+gNoPQeZ63JiO~tdUUy5ad9m!(7y|=)^IEZ@M2e@Kon|T^k^<)jU z1+}nW(6?p4w%2$&-A*c$gwZEt?W#sy5b{%%>&q^_i`vo0h(-(;T++`%vzU3PQcyNz z;i_V|f!#}1V{IC!!J51DQn<3ecO;><6Xg(;?O)-EkjL+pMwSbmMmV?`SGze*yP^vt zvDMS3N`CZTH#W8^f12!uu3<8uT+B9O$(T17!Jbf$>*pbM(!Q73p+5=tcCbf^x$2yv z&lc4}>C=*(k=DN@%5Dbb-h21MWolQyuA2B|^6FYrcH=>F-r-cJN(GjB02%xptP4dD zf4G{{@X<_9^}&%$+U@kKjY8|S|Af7l%omQujw1jdh);aiKLb3O%B4c^Z-PW1K#lX) zmkK1M`$hVH+u;}(@r4?eQe!7Vg!o1Pd4qOYTKLgMtv%6Ana;I5IOv|wX`H~Rm;PpO z$l4N$F3H!8bH!H~wgEFfdz9-{A574xY!3=#C?dWE^qFYkXt8_)4_cv0S-*k5DZl@G zk9hf*<=NVQYc9M-KB@hO!#2{|;`ie5Y@&q-Dz_Co%Ib8KW{geusH#++?~?{<0dG6Vd9VtmE7 zHh7}$w-=)b1Bt17m>FI|kp{m2o3XPEw^PTr;dR@B_VR1^D*$`$VmaK3pDV10fq%X* z8}d#sfS>Im+ZiBh;P|lsPEjg2V-*4b=y(+XC0W2Lz2dzX+^3vfuwn=VvfXw-PzGO0 zGtXM`xOZUv`SNqjRCfQ(4H|<((`tbZkW}S$FgJv_8Fb5d%{B4gEg2Tmzp5FT|(s ztInB==ArW5{W*7lP9%cNoDz9MTY;XJ#W>0Ysd@amX>SquOS@@vUSjo3M5*@(n zpD4mYL6$j`1r^lol-Ye3UHpniR_JbD5LZl{6l6nH1fG8@zUAx&k>@Y5Ja*M#hXpBq zkR|Lp@_Nq4@CBd zt_$@?Gf5djSHPK@nK?9I$vPxp9lv}3AKJQXNCrq#laRyx zTUT%6>_YUwaVID}`Q5;pZJw{N8q>)7zV3qdoYN(`G8Q2cIN$}2^TZA*TK&^Eeba2=;iXnwh}10kpJL)CNnqYNGGqnd_iR7qJ&HyV9WpN&fg=g zt^cL_^a@6ieJ7xWQ958q9lzU{u1#|#(O!14xHkh2{oYG?o;3x&{(+&8WJhyxlz-s{ zc#Y=5l7ZIJPk*F{M3Ldf0918z#k`2a(9KO}#BPQbv%{_^0wG@RwKv8X*WE9c{5=iv zf9u!uB*5v!mAkCMGWPS&H3JQQoViVc<7mmx>340QyUdYnoZ)hPjAH-N+N^Xp5Pyl9 zIuuEIymHP23Az1$Kco8QIwOq8S9QKSqW#rue@O)c)bX{ge>(ZUxzk%*A*Y@ezH#BWenX1T7yI*)0xQ)gYuy;N?1K2(E zJ~5W+?=j!;_Zq@^1ycrw%LZDXrXxwRta6ah*S(RsZUL8hfPseHNp~K6t}r&2Hg>TO zqmqu4?s4Byj)V7W!QJ@==`5qQPmN&Hg#8v{Ir2 zJTZ6tae_OgBA>ka#)v5ZnC)uiD!S0p>vXrdp&nBH)NV77D_Ux1an06V^6V4?T~8G- zIF(ULtG77=O<*-tEcIrHwe|?je`LbsyX9Y=p_Tj|PQANl*K&!;ov!8dl2Wmgz zu*G=ZR3gnqKhZtsW{t#OEx&FC9LqRNkdH3Ci4Beh7`|bB4HyPo4g+1*E5r>RC6WXS z|IhlJj&)EzAM#QXR-3gF1bw9`+_OlRZ5FFEjm-^;h8%{|Y{4E34$r>!_dH&&hiDlz zXDTVkt0(1LUj@-+_!WE?#-15W5=Z0>z9;$j^P60CaCuv_eGQCAHbDymrQvde`-l_k zv1S78Tsfxn(mOuDn8J_NQH}1KGySDJB$&vL+C{;NZ5P{eXa5hR{a1ZD?5h4;U~Z?T z1E5RsO7FVytT1s&^G8GNW(#WRGx zIYDCrZV>N`O;bmKRdJs54DdyJ5xT+-%0f`3|K*wd`&$F6??T+Ii;*8-l$KwQtl zw&T6Q2y|+&Rnb$AAt8ZrGL6B2z0XTGYKrRA&;bKAorNe)(WoRB5h)dD<+KvIyKZv! znD%M28sMSaJD7K{+8qSm z?R|3*!5JIQt8uI+K7PJr9Y#<*Lp)7&s74}H&LQIzU?fSfTtpu~&v|#_4 ztf)Rh%4nZF#c@;XJ0ejWzMOXMb?INg459GoVf?Q~;}qm#MhpexEeFGQJb;fe9;*Ed zl(`9_VXzhQ<8zsZK%mZ5&IdiDrIN{xaFQa@Ng>zof~i2`0=AwU_lj%wTeWuj7f2~$ z=a+$eY{~51tVdUIJf++)l@c^JH);193QX_2tcQRKu;N!phy7P=ia<%`cHT2E*Y7a# z&CCs?3D+Wow3_B`zPJ-q{UbKhZn#|+Ri7Bcdw-bVNsic8Ud_1n+T|EEidAOE#&Kv_Z^P8zw4wD*gTPFFKG?E}(s+yS%Tr-{35t5dlEf6DS(FTC1 z^?7GD8oq*zC!_3`h(nUmPAjmYzqTnM>GiJ& zS<2~nS058)2v3T-E1c1b$}2u7F^PlT^i?P0`<*Xauoae)X z7;rKpnTjIwj?0#lE;n+jJHzEB_lVAv&hM`K*1(cf+7ZaskXw0Xb@)vnJ)Jt-^*1q+ zf$->n3b@94=;mT!dl!oRSI^!{dA>0U8}@t^vfZ+XH1^&@U8i(-+PQaLgj5Z4>>JMeT?7$mOMlA2HW(;;2wY<(48>Y4bD+pZ7z;0i0?Z4j}5hz@% zkTVd#6WO=F8rUONFeQ9@V2{r&M{fP){~!^y&5SRY?l3waCyjt!A8(AVb-ZJN_;>s= zTRT5szRt;EFUInUm%WV&R=S;eECW~;cby^%{r~aF?daQPt%xtD53{F01ATSi2BvVr z_kLETa9X_qx}YON%+xW0qeY2ul}Qm|JL&HT$9=uuw4^|^utPzoW}X~Ha!YhMD8|Oh zS`Ry$;&z-l-&p|OTP0Z~S^DIfNTc7Sp-A`!YZQtGLz{MSxK0R9wE^P@@Iw8WG2fBw z?eg^yQE9p`((Tq=6%o`4wUUXX_=0G4Yi&4>4h)c5dUdDFVZ;^qpYVzYm3+i%Aq0Z= zzhfLc0I)j~3Qursz}6#t<8g^LcI=Rwji$e{Xz~!BPs}Iz3cm$gi z73~{E3d3*=C%Om4PTJOTPd?QbWsP?ax-qHXB87lB&e`w=K6qpa~G1JI% zX*){-!_m76pbo0Uf{I0>!fHV>r8NUABhLa^i=ukO!6SUbg~c_p8awPXwWHmPqgEXg z(P2!g;Q~evL@(9;nCj_gt?}c+vLp4M{o_B>Y3P3otx&m~Y~}lPV~iq4LSSCU5glCj zX_XwSFeGJ-_@#nHoGs*AMqWQf4|;@DuLf+-YXxAZV0saakO5}94r@cQszB0&(UN^J zw9ZcYTH%{S1vMs$VPZ>{X$A4^Awe89Rgph8s!f~+t*gP^B3ZA48$hA8xaX!O<&V-; z)A6D24~Fn3?xq#OL895E*)mnV2M?lDA>f-+L=J?PKE5bPQ8-js^Hi(*_I;qz_0}k$ zQIESKlIfnoW1Vla47Hz$;%>gsRb*L*%LSd$G#bqa0@l{rGv3f8@Xulo9}L(ZL8;U)Q}%aHVpih;+&nNrTpy3#&Q$Q{qO-yCh9lBHtiQ^ zR9IV0r|ZQ>cdN4adjaTim07Isw^pa!e{Sl!`BC#3U8NN#&1(!{yx$D{UCI=sBKC*uH?Hq^UZ$=4cOd z!2j!njGt_wvZ}RD=lyEu02WWt6`dzkr9|O+CcRZOZJ|gr{t6N@rN~;r=r=uy@GN8h ze*OE@7D+GF`Wwy!PcQQe*xiUD;KmDR?Qd{x%2c3l@MYsVeWsG=eeGuZtR|^1bpqa0 z(mFuY8Ey){T3o&<;D!`wpcqr5onR+iQDbNYoh>fQO!>VDh# zw_;6K<{Qh+rCU6*nsXt_w!|WvQG(wOz8%A=r+l-lMA;vI$3>d)^JK`+RkYV=#VQZ% z9VyVKMkU{bE|%N4by6}prj42)*?uSta?iuy8CRG zF4Zpv?4LMDb_}6F++y zk<+9qF5E1*cQUmLX>7Ik4HI7>h)3u^LpOXgpr)?dc!N&r8L^bEv3wxn)ZV8pB`s4sl!N}NMhfuCM zUvUFZHyN@oQh`WC1MtPuhBz`hpJ6{FLZ2xTS0au14=H{M?DPI0gIoe;E81%Ea_l+( z$F5#&`b~KODv?*31xHP9G(bLBJ|nhA+R%ke&v<|0OL=pQ$+!nhW*V?8gZA)32*`o3 zAv9BGlcoOSU|b`WYi_63*Oh+Zk(RIjH{ds?`b}jlM7&}ISZcD_3$SBBa!pJBY(_nf z0x|k?G(PwQS*I8T&4~FK83VQRFve>IsPMD|cCYI1O&nbOe1BU9eiEs!u@=daM)DK} zr#TG+4^E3fUIf_;D^#tno~HyjU&BPc zI}2;S#>qo(183?TZ`BW_PUKRSQDcszzM{)jyp0fblEu^wTJD@S-sEZXlLoPUQwFh| zd|?*X@~EXgOPU0R`MH_w$)SmS@{D zuNbJ;y0qK-P9+1@V^gUpSh@B-BkmaBD9{b{>WpDD3`kTW`vZ%QoFvo705>U8i~=Ul zi?6?9hHJPU+fH?y>&n9uTX+N>utQh#KoJ)Jq*n*CQ*?rYE~ybL3}cR~75Pn932icV zi*;LC@qsFR+7Qw)c`M8fA1I_hkykah6Mn#D>3sIF;H3X z^;xjcNsFK^6gazs$qXG|n{bYp=)*QtddTaTn6aRhf51%}z_+t#R}kPJf;{eAQ-T&# zv@>HiRpAJ&lBGzB_gc+qvF{b45&Q$64@=q4i6QapD)qi`)45{iUz*a&6=I@nf`t^hGvd_QPY z=61Ovukr1RuX4A>|0=|+hf`Ldik;ZfX1j^QIH9KtC-X}ZN|>;iGK+YXp+~nl`EZ7> zBU8NigZ;VXg?L$%XSWPjV%yNTG)@paDQU5P9$Mb==(>Gdm--uP(mm`iN`!QzS(=ih z)wHlbcL;%`x{o8W49WTN{wM8AP8O5thP6$-i8&2p0$pq#om=5=n?FXv@>3W6)uxJf z71*B$z1_jn)j5~XMQz2T3;OM&n#3b7wwcqPa<_SDjN4(?$hJj0e%dn~p^w*b$te2q z-6cRNd@VENvDC=OY%D0z_)h&Q-bzhp?~1+@z)Na|5jvF2884(rId`MuZGj!x!6z%b zxR)(4v}VfZtjG{lzU4;dyu6F3miJcf41cm_=8QhBmZEn>q4O z@i`($F7h`Q1LcU5)BQm`{ZKv+rm>KnX($+4Q?xp7rh}R}R~gVx@bZ)G&%VVj<-W03bTB=RGu(Wb^v7I*14XNNPK@)ai{p4H zs>iE%jl8b{VF}$Nw3Z_Zu^_E$(;jA792a78(qlQj>dG{i)xi##jIZ-!e&SM+6UFb( z`pu6K*+|opt^DbF!9lHHu`e>&RILT6MXL@ruejc1BpHqGzjMgUCJpazzw9Km`Wi7~ zoHhGOmdW>P20z(|cuCuPJ7}CbVLd>CsD-fBMdde$3cTj7p^)KLLiz>3EMrF}m zanw1SF*PUhMxdF=8k{TwMcyP+$BlIbToNff*C~o)>*6<=Zo(p7-B^Su#^;XO-IH%q zHdu{%{l?%I*U40+c9upHWT8t0NkSc<^#M}}ZU*@3aO@AsQy9-Nz4Q9r_K>If?yZY8`K|sF0*uPDzCDlQMGQ~(LJk)~jniV8()wF_|kW`kC9u>TTV%Ln4ZO&8hPNUEr zcD5&P#L>1fWR<1dV)&t@$$QB8hBbz;O0sm0^825raO$^JL@&Qd2{JxB6&*=NKzph^ zDLl?*DDHqVxAda{_&JO^6bEgI!5A;BX%rbC`fY>*a~p|ez(emf1z9{vxuk!4g(%>9 zcM>WvMN0aIKF+SOwJQQJPpV%mf~~fzC9v8u@PoNI9QoqbxLE8JK0eZ8gtgb#0bcWJ zsw8K6*qk#_M!DlIv1(F(-?VSUx^iZ90ZYdBH8EJ@=V+xQrDyX0$ma{m*VPG1+W0+l z_?S5&j!vhUb+xD{!IovFT8(D+pe({xb4V0nBu5@4D4p!KeYX7@D1WCMpU5aFlQ8+a z#39!k^I^2}XyW+V7D64QSuaut8!APwkIq9tq&M_bVI+_ce4g~7KVx&ew1XKK_(Stx zg;M1XMdUCFf2_=9yY-6>j^%rV{Ol@Be9q0+BqeLezlv2y2^$mtj`ODlJvqJ=7CWey zem^W1H^Tyz`+?ZkJCLp4aaxZ)CIqHs3&#X|)ATU)17-L;kaINvHMHLJJHhyg%1N`< zRd}M)&{E9E5`?+%o3+o7GlR1J3)46LoIax&uu@*D$9afGGFZ$TJJ+oSE3#pCLvg4% z^TDtih|5^2s2^#jV#WAL9BNG;3S=N1efisyu`3L;*p8`bwjlaRf91_e%x)8eReIi)wQKTWS^ih&f%``BQ=ekH+SVTNO#aBt`)McWA0cLJnaPq294aomcpwOG+#Kj;QC z32ch0bd$1-dN-YAaB&+cjz zm1sI|JOEa@V%(DtSD0eE#leHuJCE?sZA-6MY1lFT$#L7brEvT<+&x;7fOsWdiffJD zHih?!hD(BWz@gJ9E_5L$$dLNa=6qiBY$Li+XnDBHrGI9e`@K}Tq!{N*S;xhsFR=KM z1LoHk-Qw?@`bPfitbjP%kPqDa;D|OJE=})i>S z%Z;hoCq<`56PHg2868A$35K0CDPQ!U))g(XvR*!cw0RE-1VqPwM{$GeoNGD{j*O19 zZr;|h%-CIf&G~Z9ZC=AsUW2Cf!ZE}1^^=m5>e$(wK1{KIz3A=GhsEQK?|S*LSu{XR z@nbjOYfJi1^M;dgti-it*gH16HGjASeA{EarzO$O~l+Bls!auemj577?=A`=ly!` z+HhqvsZ2E@#%D)nfqg^iwkBxvsq3F15c%I|tl%IA_3)*wUyJ$H+hhNTm0YY%?%x*r zOuzKJoVC+gN%%y0IFdIc%lZeGl1wK3R)7E{v!6JA8K_$l!DPYbCr2D4Xkx;5%Wy** zT7TjkptMH8`e}9R)2b8rxn?PzLa%xO3Dx0~f@8=dX{Tm}h?XgWh6iAHJt|`_!+C+Y zz}9%(Edt;@5P+ILKsi2(nsl7|T)GA#TI+$k2{GB1){SynXadTfBUeVg{-(p@$)NMYx0!rjYIrtELmB#^V-HbXKzm2OtQJY3VKAa zMtu}*cz))NuK^Pbq$dVpWS-*vkn6cjr``IL!Rog8tM{ZtiZ4VoH!9+o9%R5zG0=&i zRI5s*UN1lRJQV#n-c-?s9Kdlp=xA_@=(CoLb3EO%HsGh6SC>rQCsOc7+rGa6@>i8) zB*0etMya3B1_8r8@?XVeeuOWUHt^oZv}Y5sV)iJhY``9bqS&JC$tFVV9xvV+*GD&UTuGTLK46LN?8F-SBVmr<~J}h ziM%$52|KGCr4bF000yWXl)xHz5&zT28n#j!ZvA)AXkDUu^SWSoBnT%95&XaVOeLzwop9X z`gW&l|HVu5(l_6<@QW=UoTB`=YkwE_g(wjmZ~!9c0g;>f0Hn|BRv6ARYW{#!N`Otr z<_#q0aP0KJD78NtY@C_b)dugeDWCCe8VASeGjH+{M%<6NEI?%euW`YtsjOldJl`7e z?T}ftFOf=>(HReL8<>0r_+Wd!hBwmJ2|i5? zq(u0}NXf|w{}5g3`?8P={6rF9(cVYS(Lpk-oV8ayuvXhO$Lr^F7M4ErnF_LNemZoW z9TMn?m=Axy2AKU|lntOa@}2S>5^~)ML9-a(s#<2iJ0h8z8@>DTAk37P$$zm+0(%)< z*^sA!9=Q>)>xraouztYIJ`woB`UY?bs2aP>bY89&h{G!Fe!n+Iv-DmqqUQPa$TSqf zJvx?$c71(Sg?+Pl_?_Y;%!I2@d2_?QYSRAZ0YfKnLStN4!Pt-~?}~mN>&Cwoj_AUs zaK;cHkc`TnFDN7XTe*$eziI=!kR7&Tn{6t zsG*yXy8b!dvX|YU`sN9dqfexK$(eQPyJy*8&^@sGM6xt8hAcZ21f!H`x*ke@fpdnz zB50C%xEMJW=r@!(gnUwJ-X!b^_1rG)K52P52C)a>h};l$^sEk@;LB647ClBiczB|4 zXa6hS-^7-VUyC4)uCK<Uh z+6X|CfU;0o^NUu5)6UZpfILj8kKXxnG1*Z>tnD@%t zlYWghAHQ*U`veyjRsDtJTBA0^=e-KuM7AB!4)pe>5^-VWuGw$&36orWojt6{46sK| zVD{h3`f=9IoS0JDKje)skc!p~Jk@ChrB>sp2w|xR<=J!jBIh}j1HZ@&%Y57T<>q$G zp}=S^^FBFuoDfWv`zBaYaF~5Mh|~7Z>rx`@w;%mpX^D7(MtTFjk83$Qlht%#&n#3=ED*W=v-1yZ zLD8#u@pk4I#WafFOn>v7pU>@IY}VmwT9f*jgkbXm#Drsux4Y{Oastv1aOS~_c=PyE z7HnHlgymIrydk#pT!-0SQr>M+)!))@@zS}@yfX+vwtcJ=ees!+e-X>U#*y)1XiT}# ztRv{ZJj%I8S*Mgz^#_{4KZu2l^3I3>&eJj8ZGoSaeP97Bx0@X!YDqCEkuXHbm{q+v zIl3Z_!fOtY zVQgITC-U3f8Y|>hWaNWGT8jz8aeiMN666gblH*ml-r&LCkAuF(j(jCBI>mUDYKAH? zf{n2pB2l}pUy;7_%^d8&hcLI(tM~ABOGn5+%GCy-qI(n(;5Z(aKG&<7L%uUcV{hDrMBN+v2=`j-M$9@5v zo$ZZ}WbrdrG$>y<$*#3QIjoghc0F9q|6}Vtwq0e?tlbNufp<+j2roQ6yc6DY^@o*z zep!_@&e%h(r7a=ijXCEN4*vL^BH#o+Fl^oBg@j`wZe~RuLa}_hh~ZNxo_y%r7$t!$ z*tFW-yw|!;jEck8?Ja9HFJbXm)%2wy1uE4e1AnO=UN9t!MY) zOw*_sgf39tk-yDz@d{G{HLG4E=}-ILTFyw?zz*JT(==O}!*Q3O(ZI1xSw>j-5Yh`8 zMlq+aCCVaz^=}$dxNcv0fhvfbh0`oiHL^U_DV2*hzQfsEYc?jm?|*jz6&A-finPqV ze%F+~{W|+QE9l?Bv{|*YuKs3KzLAV+9uvNO@(ZXo);Fw5LGI@0`uCr?m04lZ_wO3` z=86_b7Cg@D3_-PihCduu==z7sKVq){{Zw6iPEw;@v+EpQq4&%3NvspaMyV#J*)u)0 zZubEeiObN~3DiP)CD&V@hm5_ryoMQjt;X(>>rPNZE2q7(8~` zw_ujcoo5_-of6M3Y4`M3JcM?sk(ZS0;%37(&b%DtV%7I0c?26?LHIT!L^ytDia7t3 za)vJZQy2l%DH-7FC()9Ilp}*5UfW z^JH52MW|3FEmYgA3A~tY5r%W9R)fGmN~Ca1&Z3TgFD*W*e5S-b;o+0@;a}mtO-=1z z=B*aILO(8pA}?{jRh~oQUfN!>4LGrc7~c9T;8i)qqElc0>cMe1L(jHDj;??(GLYcQ zb?wO`Tmk?cQ24ahI=OB2>vSSs=DhEF(s1Oz$>)9r!KpbUzZ@>X^Tp1<6<2hjof(S4 z+X49m8BI%F{fO0#PL8a%8~F^Wv7~$Me^a((5?#A95HVWXNnMA z{WiYZp}rWoW>btFw=_Ti`x9jxc_wE3haVfCW2JerE+8^36`!|X3cOdJScu~gxCG3F z1A4r-m~WqK1GnCGiK(TN_*itd63PK6j;XlJDKev{GV_`jSw(w^E1zd+vi11wZZ$;h z;X~Fx?Bur3pqj2zAj{q(6vh4=@9To~Pu8m#gnsN4!2FNS;(!;PBtc4u7uRV?oA~8) zR&Cv#3!ziIOqC&WTTnIOE$<$BdCyMjXaR=#KpZi%+$-0%1D^=y+bL5nnr|Kt?2@Xr@mYQ9_9-e&HYJxYpNtr;C<5(Wp;Rv^Gk1l&KEV@B6)*>Ktz z-#g{VXQRuy8JkJg3t)LXdd19je^&}YMeG^A(gU;x4bK9EU>5|)`Ci{9?U5*=P9XQ& z&_F*UQJYah^ybMp*5C9~=G6kKN8p)x^S9%n&jY|WhFfddvLHAd}oV zQsVJ>5Ie7#mOb!;L2vTJV{51taBKhALU@(iNKAGwWI2}X-fjq-Llywe8cSy@gOSN% z)V^T5ENo&4UvOLyziEYnUV3^IoA{IUl8WvCy#hA)k_8wgnWgw^f=oghzll*a<6d*& zK$aVc;1-a|%-W?;Z1tW4A3o9iS}bgZJ32St&wH(g&l2V@QAk5=Mh)F~%m~0(W*|g% zp}Vp?(%y;?W;Faa2s;5LH)4jwKV$L#{4?TCsKL-LySd@KWLX(px=|5r!fOAggS6}G zVpS#FyGs3*PauqU|3XP$JU~;Go&=xF%T4U(D~R6J>!j*>`(LAILf=t ze;|cssZVZFmXUgkC!NpDMM7Vy!*``wGIOr@)L-8eI)%vM1{r?2E{^y3O^)lC=Vl<{ z7)e$`DHR{`G6u<$4qk<85}ffb+oCXEPqxw|wOdoHFRWyh8|~n0mi}q9r;PRliTy9zPm`WBd3LU)$jON7>oQrI;z)nR`&H3*yF_z{GOPD8v@M7a`opEqi(vf;m1c2Vi);s4wHFB0Scx=yxExaM~pf-qrM?hZy3Uak52Pj zhlWgzOB+VOB_owqAX z?Y3V#x<5a0$-CXFmmlrRJ8_iVZow}bAqJq*P6f1`g!vh$$Us>uimKQs_FqU>w)2RB zL4eX81Z@HQUjH*>%uMQ1AZ?)lzsp>{ zp36V&ONY@m^WI}HWvW@7Nv!vGakTFHMuY^!;kL!pyBQ-guAV9^3aFt`bVXlQayH}u zbOYpP7m4ixSLQQw`1Ka)6e|)7qS983>q`|>cWJBnge8XpkZ|jzpU;JEmF^{TG>v`C z{sz!34lQdXTbRlLxka1z{rjPv#pprKa`g?5N!V9N*dTi&EP@2f&tL#An=VlENg# zeEW>A{>}cEAlcUYl>Oh?+nA{E)c4gCrI_c+R+(Gu0~a?`24NQG2o=PF&N58Eg)csg zz)5{Y zkbSVr{3{4a!|hx?;@#Ys=lx>SsO9yjjs83KAMPfhkL+EgJh$@%#HwCG}6(~yv)M zl!Dz7>kVF#*51o7j@{{QT?&R}8j*UIWSeQmly(sXlo-KJqc1UPrfUW@^1|!sza=Uhjkh%&B&{BB+`;b7f(6hxWK$s@XJj3I!-^3Uk&~!cTpvOG zDVnuWz}N4m?!q2a669EFLa7D5oT2VkVBs(`-L`q~IR|TKu35Svm0>~40*dmTk$ss;D?4*u zKAZ*fA&y;}BL(aJLAcp7cnioM0=Sw>>jdhK<*h-J;Oy2=0&^Iz*9oQ&olmZl-hZ4I zYfDO7nj-)bEWR$~`rN7>D)FZO;X$rG5fPPMonQg{(&wP?ZB|1XvdRCUcQTY41l$?&bn4dkMccb>q@&5NLHpffS561mp{+W!Ie+Z3?RnU49rZYSwwRtyl7><(=n^03=f z=1WrSF`Rs|p|{P}G887`g%D>bJ^(0GRcg8NNp*w??09pAne7?UcsTX_R3K!s z-}uce)v%U#)1g=sX!8a`E+Qk?#80R33i9Q_?$1SDqH;gacb0x4tF>L)^9?WYSBXg! zy7J?AGyCf;kpVMqHG_q!<|Q9W2#JA)+`@(~?;d6xK38=GW-)9v%Kqtjj%lm_0vBVL zl1vwc<}o8oM1#ki$&2k-e-8{E-yBkbrjk{{@;h}Ab;sl)<@L1>B7HURzH`K8&3(yy z&AmM;WQ?SipolEeE||_8BQCV+(W3GXj04oM8r+d*FUq)!PAW{bwtk&mjM#+JZef71^k}IVGa7uRzvdd_ai-iJ0Qbg+OY0n;cR{eS|oWkY3ZV5@N zEB?kNcc4_lTma(nE{^|RuPnwdU^`7emJe-b4{iDh8^Ygt&5q2JmaTK`zE@%Y7*KZ- z_YDW&U|p@j6|}&1uhdIdBTMJDu;2D%Ax3H$MQW?hU7S%tkYg35#Q+4e0U5r`#U$z0 zln%Q{3l3=w649G_uQ&?d#v?!QvdtVfi0$-PJiRQ-Q6+^bYA4ibB;)(qb~3<$X)fg9 zg~R>s`n#_E9l#!lNOEOC8S=y?OmN z7kR;MV{Z@|;j}?9eMR`yp60(X>%@BN;@@v`k-`nx#Ps_{v4(ye_9F%vTTPbiF+!Vm zfz6~I>!0hmaU)~y8S<=Bi1IgAqM90<&a z38T#Mw|Qt-_w|KKg?kbIRTAul2x&o0xWffq6G~l^%CE!8g4?FYWPs-R{OWsPTLR+Z zE4G<{E#I=};^55$ryA_m(N4yyYnJ|Ephc@SDG>w~6XFarPLQa`-S-u;|JLrj*yKA9 z>8qE&@o49yZ>#Los;QGjw>ox7W}XaS9?v2$A#Xi}7oPX87i|TuzNTS2IAoPlG>?Yt zO(_%QN8%RBIo&8f0^pbGM^FuT4Le}d9WDu9jm|Q54`&99xgrE<-DVgOJ+ZVbA3{WM zZqJdjZZ)e!Y>eL3p4{jrH4aN3idfnMhF>+J^^94p`@iwK-riTRLPslc`ZVun)aE!I zeYTMLRfaV2b2GE?%W5}DyaitHRhoG2kEg$<`s?Q{F=^EBVL)K_NCgLkt-gA}b(rlO z48wxOjNVZLn3u}n1u$8!4xXclXFC4%z?vREi_Vur+P?TQEnDuC9`K3;$pF-5umJk? zfXEX2NNfNw2u9Fne^bWyTb|^*i_Rzo9vt$8*dZRFw$lvqi|NMv#wYE&5BY2b5<{#j zItCaZ(RC^t;@yYj!kzh=2l4VFI#Z_(J2sNQuUJyO+{Q`+P{u(c;vLI*ShzR2I0Zv8 za3H5uW1MiBW0SDqzuD(AyYA_*M1f(V#rh~TQNa!bWKo&VP<(>-iz3rH?tjAIXUS}G zi8T9$08O2ASf^>?=;FqlzzJ0DUfKycav2SO5vrr0BSrITnOZp`n zY0fAKafK3Z%0oHS#xB%k)FUkYU82*i9Z)UUFeEjyb`0ic(Tka#dpZngz6HEQ9j`~(}=-tcR)Qv8gtTWjF!Vs&w> zP&HjDjP&*2KC|V{P6V!%s>nZ3aUB3qsn_6Ck_H-+eFm*`j5+O(4Z0hfT1iBK92?-e zTtbz^9Gz4xEFT{c>ut`Y;X{Hi_!-tbUk0$u81#jmEm>y2ZUJCysMuaPEDB;3z8Q2j**URVCK)Nhuw zz?xnUuR`za8-2-it3DTH<7TVuv5F?V>=kX?7)Hzznz%lbG!__k33K%PW*_W^y{$=g z(?s=AM&F#2;G4t)8}g+>(PSZlG4%RP-i0aj*hYkbDc%eY5%qNs)G+b{X7DTRSOX;V z1IuSi?Rt7S;#+YL7xu=XJhj$5YMv&Hv}=pJfCc;5LNtZZtaS%s*(&WM`m(w@Zkfoo zS`TP(+-^^Ik9kV5Fry}9#?Ss5Mwof12!DCoz7Z9e8m}Mm(-5$uij&42a7ONzB&2__ zaWhJYQ;g}a-zUZ2{JHW>nqS`?CdpPs31odrmf{9z732AsJcQ+B@ObBy&BlR@LD-{A~v^kM%Q`RK!SdnuNfcIx$X&^%kg4O=btu3gTZ8@bJNP zx-dQiLb`zPx0j4vrXOsOe+S&);sEJ+IsQ%_0D0_7F;7ETINz{g60#9hqKvOJ0SKVv z`Zpf8&cm=M|7ZPe^Gh0q>TXFzg@Y;)S(_^3f3p?aA3^}e;TEaY`|C&$z5#=*woQsT)B%t^_@)A*>tnP)3ubi8?NzV~>Zn+*rsj+-aFS)CbWdN^I$Y>o?dyjW*U zoDyzp7{2m1>wZ_Br||RBBjV~ZDji8>0VW>3)gzA*UCuDbGEPR|=JG0bw8YU+BOe)J z5vz02p?|5_oZFRMzaoCAT>Tp#VLk*Pwj2ef51DaEmGnE1>O1aC! zkhq6$zo)cHfUry(j&EzR_-~V)`O0hWlkw{*@LIsQ);{ArfByZB zal{t)Z*59{#i1y{lGFTFIDOC?h)Ii3Bk1#}HuR6kBPLmWGw1|YL|XD6G9G`~sUL+M zH5jQcBT#p40a;EW^3b^4w`!A6^U)cjzVrj^nVgly45qVdG)rq&+o$|Wp{}uw8uK9s zYPyTF@-cp(dxSB5oOAQ58z#F^U3=dW%AO0JOcR0FnQyKp8U+Cp6SGYh91quJ4Ju!9 zt+ksFE$jMW7D)35OpO`bk=>UK71M4-B0jArt`3Cc@-$0!K6PTcpZ8h9z5*DJr5k3c(03=X_De4zB*eFUQiqupX$ zq4U|V!gZUP#1<$0k|N%|uOKV9e38wV`K4Nrf#=Xj_*Grg4man>DlfaY%)@LqBszhKzwjLnVC zn%QcFnP2R4M;V{>-{D&uMfxWO5FGV-@Jw2D{V!KI_~8){7v7k zeWESqwg3FR7PGK56SN4!@blANeunPXUvG^n^C|8ZC78?qnzOKpArH47oANxcZg^}7 zyfl9Tg?jZ@8#WYYz5?>ec+H=_J1p1r01R===XK9gA73m`!w%=5d_TnskqgGVZ+2Ec zG92|RKZ))-IpvI~GoZ&BIEUh(U1s%6rb>G@QdUcQtm^GneWJ>SDRIuxgZVm4sPB0= zW#EtUx^Ib|43&M^{ct#*J;f~OoDV!tO4xH6f!&#L+JCx*spnPAz#HG#DWo{%zPktx zy94;W&Nfy>;3k~AeV-hjkr?dPik82qF%S%A@15?H!UL)crqu%{f!m$vYqezrW97t9 zV4t7e$2*s@HkBA*%j8k(7x}pZs5psVXUCgGVzRZ=pt2XK5cQ34kk3E(DITC}QK4MW zd@*?ROa&&Xl9+;M_H&!4EE86R!a%Xxww=c`_@g`l%vkojujXS>ZMMH`FdVhA$0&c- z_=R$`tA@xC66lA=TQtH~ZJj0L>j60nmN^}n2LbFzh_Yc+4z9|Eqg8h&&YoQLsu^=% z8S9XQ92^n7TDBZX@Bi~UtFO*152pvTtL+(vC>I}$SPe|KP->Noq(72I(jKh`4Y4_-vNIw)l!- zVBOo+tu&B=Oh)DlKwGql2uh?bihr&Q5F_h>s9*U&*bhm`Mh+) zsy$VbgRD&c?W;Gwx6JdEEXma|C12xz6!p)9QA@| zEGqe_Zl{$S-s{myC^gb-y=D_d`%?jx-&0(5T5UcPPicL*rv&U;U0F{*p zo0v46_|zkWNckD}7KYRrDj$xYx!j1q>0kHuG)GIZA}f@BTVu$n+$yXF;y{+(=j@l) zT9}Ed`R*#8p-g(~0k|?ma2ukav`w^Nyy3Hoxvqns8C_=|AfB{|8s!zo2C6JZXE>Z; z6*gt0Q(hU=Y5KId;s3Qj$gz#OHPV}k(q#SHH|_V4fSt$@|FhTPYs3&q7>W7z6Pm^j zghqb$h460fc>m?|5vJI9*mO7dQ9an@E>YB`&npomt(axWo3A%hgF3pgo{ahlwJ+N7 zYo3(V7&+Q&1W7H~`uyuP;MeUoNgJgWo8waqg>`WzoHL|L_l3RVw03a{REvV}_JzFZ zJ+Bi>SzR0}<1`wJGgy`tpSf;^q?3@SriJ_08A(iMej!ZbV#tGakqbWVX`8(r;jy@M zH#Rauy2{|-R}qFq?FT=WRY-CQurXYn4LI{@8yI(~4Ns!7d4T-vj6=48qie@{4BJF$ zlV(KIjp2BhQ~{U?yY+_imDMGg;m@4H#&0QGJTH_d*lIjoZXNo?3}6KkAj*ehqv6t| z5{-&C2$@^0QD&I@$c*dMa0UMi3GdN{eh5~`v*cLS-5P+7Qx$JO)I=Gk%Izj zSaX1rb9+8CO)4k=YuSg8l+p*=H=k#2pEO{ok)Yr(m*1-@*_l>Ui)Zun;*@e^LJ7$a&$9i z${Hu7D=blvNt>*d34}sI#0MaUa;`%JDsXJ9Hc_QdPLwct1+8TZNyzX&i5!aW-Fr*= zS4{x=ZS(N%j@HjFrJs)0w9KnTtS57?!U1^=oDZ+C@_%XJNlU`XhNN~{Kj6;zv!oJr zOF3Jx8zy=%KlT&D(E>XU41_nelc2icq@H!6Eve4>%x0;05f*;xo*K3@477Q=0VHRA zZ=5s9C(4s&V5r6|F$m~?X4i2CXC=9yhTTi_d}l3&jHyKn1K3<4H9uFrv$IO1JXAz6Y4J(Y}kUO z1zKQ`*7rWHG@i%cSPc*kxvV_v_YgKNuRvo?{N`+#DizJE!!uftJU;XeMI}0^rF;a< z*Z8VUwi^)ufKm>u=IwT-Zbch_jH+g>IhocT@2EpDGp1Y2m>B*X%L{{uOcToH(bYYv z69QRFvvEA8x%KafLe>|AX+y@wpjoreD=f)d#b9s9JR-acd z-aMVDKQ0XzhN&3g_r|L4H~*(mLtn_^mpvI~qyf;U+u)}zx?>Xax{#V0@lJ!7V!Zxm z(EQEq(+$t88AAO3(+yH_a`SsJFT5Jzxx;DbbM*Gn350`6*=z?16y$h_hjVCfW-x5wDMUYk_|BpB5g4!mH79J_=CWnhmq_2%a3SC{QgH9Bsi@)1Eh-TZ$F!T<02`(OJP)J%w?)=c1>R(8SlT$2*WFq~LR zl%(g!%bt^W8fAjsv*}Ig%gtHBqI}(xZD}qD#S22=TtKfTOM*b5V~cpiECC*1O?AgY zeY*Nmlv?@TN*}TUb<_T($Ra(=CgRr8w?eG9Hd?er>NQZX<>QB$5NQDkiko>Y5mUfHPV*o^i>SI17|F_O{ zE&5fxsQV=rr7(L#o@d)fSC*t=U3xi={5Ua}r!8^Z48E(3VR)wHeIRtS8K$J{0G+EV zUtgKa4o(1~=3bHoBmT7>vDUwY-B*}hOgip66dueV6^m->d8Z_eGDZYU!AsMOIRBGV zTH2An3V^D1i`68lM4P3?Z$A~$T(`K_`f3)ovvZPY4<&S2d{L6lG=KNc;#9vQL%ejldc1Jm2d3--tTn`$bpvPsG`%48Q zSynDFiI}t%ED%{n5?Pgg8$)PcvjFJbM?95}>NBOq(B7{qIj&EQHtQ{Wv)@a$-I0xH zY3pv9ge<23m=KG_x2~k`YZGNDNk=NREis|St$!Q&&Ft2(*7(Vs28aNc(6EpL@vH>P z#plGdm&8^Be5Rda-#&6m^i@4v71e`@mY&cyI4y%MuB-fD%g`D8&2=ytz~(q9?u%Gp zB7C3P7L+|x(Zxp0ZKHzzi{MfeNx%-| zEABZkH5stE&Ghr=pPpAB>aCrhq7eW%FeXHaDsL*)AuM- z(uL5kRAZRP@DLJER@seD?a8`F%^h0(FXY->7eOHOKwa=wKP+T8|BmDO_lQ;ovbzPPQ6-1~HG+O|@`g6qk0T0kdl;ZO2qL(pduA(L!Nmr(+^46i_J z^dQd)YhK*6cF+~-)vl3g^((T2DT=+{C9qf)_WE}Q*uJ9R_S;c2 z-QNgHk4QPO%)c2;V(!ZaToEk*HJRS_`+MveMx>Q%!RJr9#;pAKW$c((^a0pCV(U#I zTq^n{95iT5l~`*EGG3C&=U@|KmDI6~e#Ej&xk~e$9qy3uQSDgVHZ1W#Y`iMmY!}Q_ zkP#EW7i2-YC#k2xDRMHg4_*2>Eq|&$j(OF6LAvM1>%l?>Lz!yi)vP^dtg6N-lbiQe z{%&<2RTa~uX635phw*YXE1Xsx%2J=&t@$^vXS)8dVb|ekyW;~$Ri~5ASI`_Mdkpy&s+Nb(nZZ* zk`{j`x_ma!I)RrCvhEHn^x)0#8SXppAYkX;%=dY=PfUY>ql1}IimwjN%TwOBu$$np zB}cJa#FZn$xCCFo`&cBk<}nSRxXSWB!Z8$pHi5uEp%(6H&>&l=B+#LZH?QFeFwt(e z+?RCNE1v0(!v5$b;F(zK`#ycFMjJlhK?N28UCJBPc?M|9Vo=Wbs+u z>Y3zkJKewceA_UYH6X~t3CSbvdsqekbA-R)9j4-RsV2A7dQ`xYA?7H$PEuiGWvndn z$q{0EnRtLV=Ub$&ile6%6xLHj0Jhiw4fyQSDcYyO`s!=8|7Zdz3(Atb)ZN{NAlEX| zHw4+`0Ubbi1IT_0>rflO5&3!R)yF-BS>ynt=wZS$Y#@Ll{8Fafs%Ak+2rXzbCHA*Z zV9n$Gu`2N6hlMZ){`bW}mJa0vrI+tslvEj3PoEhm*f!yNWkdc;Oq_As1A5A*rZZ3% zz>uA-EQJk!8OkK?(iVm(0%Q$Ug{K;+6M$SmQu>(7GUEoCP+&s^TQ_4$0u?i3}!e9T3OmP%P2!S~-NoOQ|NbgnMpc#0r z`^YE5*eWgc#9t#MZ!46aG|G=>6z6G3&Ef&a1(W@>V*WOa!qLECJLt9A;Ydaje(jQ= z1vVq}0>C%ZI@>SwYQxTF@AuC7f?93u@25Y63+pV&HQ@n?x*|zpz6*j{+!a4i{pCQJ ztsdV}WLbnI31Z-u8f1{|v(7=J^`S}NEdW74zQ4l_pUaM;tO3t1KBQJR1rP0SM`#1} zPFE}pl!YmnGLA7`ef!X={3WOKdYgsPdB^#^4x?L0iHp@Hm~w*O0}UiMQ7-AjVW+eo z0MTbT$bi90hDR_T;n89^>w`UVf|ffx;OE<-b-tpod*41i;R*=GxDOsT8E=k{pGOg( z5*kXwL6nVmYm_wv+618SAT%hCg=96B}!cRDqT|54}ukuoGIxQI=IRdItf0B8x zTRxW0xa^q&op{IJ!)n@~>AaBI2+*Ec)u0K4U#OF#Y0LuN&MN(BvEW1Uh(U*Y(M)+X3&PP*Zd6Be`lkJGHmd-siD= zs2g04g4_$zDJ=8Ncps3?hyRbg|7c^>cE88r7sNvJvc$#)(+!xmqZ-qDd-Z>LW|Gh3 zo5^qUY#-%HW^x$|=`QC!N0Nb|`k71C`;{>!fkvBYYd)7f>MdI<`#>TU+!KTdqVkCO zkc!Mg@^*GuDLItDuQok4reUggtTybL*>);aMy4-gqh=29$mYquq5nE&J%#cNxnU-x5o3v^$|}R>8_X0i{^#T=9OiLpjwM<7{uh=HENv!{@_mFi2f5bgcI9BEx0B4hPd zE@R~|bJ`zQdU4Iw)?VtXJ%%SzXG`O}T87C9E4^+) zcPt@Qg4A~%-wgwTa*>t}o?k4z@RuWs8hn&if_WcAThs*d8L&RSpp21-MkV3s1zrb3 z&(M)pKkHKqm~1+ImW;=ibH{Qf<5xbW+c|qFm0a-oGPKFtuLZwH=<>txIV)0`)H)ccC75To-YsaF6sC{UH_ ziA2!%2#DlUttg6N;U!>MQm_}pkf#dgfmK=OsTl!LTjpAxE(3OrZ8CuREf>EJY;i9Y zIoPi$bh(q6xfk0|I0x%u6dlBHfu*Hr~16VKB_M*6FZhh{lw*JDs-86^+8S2MXg8+-0X>T=}Ykimi&i z=P7)s*4KZw^r(cZB0MQH*X~L_y^*P^qIiRdQ<{csz(OuMKMWLuGH zb>PRE#|HM`VBmUrhOh3tgsFq#2b`mOG95<%KhWi*0fxP+U1^n_6Oikc9xeGMFsA-#F2v1mrj z)-cyoaI>>#rS|Mm6v}Y`rr1#2s6x`-SAH>48T0q?c@YsBaEPXR5~z}PwDTND%21yywq(+HWNjS{YJK-U3t!+Bdj zkGHs8JkMNTgh{46jWzqpT|$#sX*OHnG@rkb0zYqch|(ryqe`!iyfxdTcoSuNr#Xnrg*MAn9!8*bnzA& z3xvI&pPx;_$;3>?(~ht4x_%^AK#tBodA6C)zLp)y6fg?AakxKbFG^O%a^0>!ifK|3 z5V7=GDh5WzdkFwhjWDR=ri<)w+YF+@g<N6o{fIAQyXBc~~4vX4% zSl^~3m!2(>fna>?40fYyNa5+hI=1-{w=D9QZIIO}{^26kEGCq~J?v(z=iGbjqKr1d z^wM)Vt#^1D0>_d%j_n)oMSlxAjM zrf<+;nwR>=1ctn z696{kWgEJ;D$E3e!7eYzmjqGQl@1UR#R-plhoB5$+^~5}n9RSlXMr;`qoRBRa9${2(M$*XhuM98k)&m!^H9O|Oyj!_vpyeXmow7Am+V{C^V zMu&ua9v*?D(q+vw$4=N0;wp0zROw{w+Pox!F}9XB-!}$BMl8gyui1eNt3+7tB>?1f z=NJP6W*x*#Fv(%cqc~xR#g2JyOKnXMEpMn6s{;0CUlh1R23@`qfhXGzQqf;=VYE0$PjuSo5rNiCK!CzJz; z)!&PYiFzbL7|#U8z$K-BJUbP=4~YQzcv&$BAp73$-@Bfl&wR&VnIFLU;cCvrGROl8 zST@PE=xkk=*p~2^R(etzk=wDGf$u{id2&hE^2IXQn)WlF&G(T*h=r)vGYAgDRcx1E z#U2m5vBK?`qmM+y?N)vCjaBw1zHYB-7?hn3TFEWg**Ce!ZCoNs+ExYo;k14@4)_yU zeD{$7vv|b-hneGx?!i8Ct1--0>dlc*~;Z zK^nMe491R|IvZ@5jE_EFt*!F;g7?*+m-xeE_bjeDQBFI@uuk}GWMdH{csxg!Rp5j?$t7WI3O;_$PpOme z((;`9;;b~L3$r~K)@oWh%(GsUgCl=m3aXX4It#*FPOI|)#z^A{P0;t+p^n)trb z_>_e3aC&)`@Kb6`SWazm(|)W61&<(p>{TY#?W}*ft`JRC5(WoT2??i#aljC1jP!Vn zW8{&TE$jt)7Wr6uH^hileBC3T!7|pQckq%v|Sx+S_G#&!SBkF9KAZIFOpU zuV5tizSnP~eoOdknT12TU3i`73~QM_sl4f7tlno!WxU2xeLqz}Ui45n17utiBvM`` zz`A2x7RPVr0?gUU#apDR7|qvLDs!Ay&A>_m(sSvgUJGqOqx&j{V;mc}rep$gyPf0gctr%0q0h%{fl8FFp55Ex7Znx3r|G{gPuGfpbGzffrySgTAv;?D~B~3aUkPY`rg-vtw^QIO z+qOqD@79G5q3)0M^_OY+;D*K#%nPeuLXY?eC+&5^XN0sN_s$L_97Z_r*$tWyBIEZ9 z%C3I4*C=^Qx2GPv8C~ET&dN}4(_iXm2R!b6rDMc%5OVBV8JmgTl+cmJ5{J1MwF%HG zT_J2w-)|r#X{{r8R`^`nk$rg`!O%qbx`t6`#Iu3%0AkdNJ&=5^&P${vg9>o%GxVf0;Oi*2Kw<`?ce2iDS#Wep$vye~E{b9!rN-ZFduS>Ro zW*O;`jwkcFgl&X^yx}+8zl&O_c&F(Ar_Vx(-0{wI<$!zXKGeZt5_6TU@*L z1A&P008}HtI3vL z5t1weZVbXz!QZA=j@#xaFRLFyNFid#f(XMZ=BN$LgK1={v2t!xqln(|9~wy6iWb6x z5U|Vo4ue}Jtm`tcl295BPy*MDPyTLqjURak z@EK;ZYe;P@7c**MA8jo|7i*|-t6&K%qwVjQ-yT)hiyp3F38SB8K!_rieo5}z4}G0U4|sP1+6YS_8(ym=Y)jw$a4Lzq_c+CMJ+;8P>!fzKj=Q%w zwpQ02i5!oPA<@YbmN8lasZvLX3_B;5_~t>LCU*q+q1+poyvxE2u4%8#e!ddvEZ-~j zYC)Jck&z?EgS@|sjZICC>SQUSaG=f$3X_16hV`~MDnWh7%p#!hJP>dKY=P3-pB)&| zut+nXgzroyardiW1>MQUcm62s$34H!&to?*2Mmx4Xg`T3c4!kyUcn z)|i@kuJ01ub5;jWlck!g8gu=acKh8ghIE;^{AJ?DrPk(0a;8o~y!}!mOeasVHfrNS zs#@C?v{Fsf@NM|k=6c5WEAgcezVTh!`zoOVDD&}MKS|73%g0OSGgYpi`h$0#>h}R> zqVOh{HTXUnCOAAHEtEd8ji>o3_Wt$SV4FFA6hd8tKbZB)1R5a@Swg zp{oO%KLt+z?teaMSLjr0pS#L{{BXSFy3`^sV=f9>c*p0|&Tq&oWh0*rQ^jDia^vFB zDPT~1ED6u9>LnY8T3Hq!W_=4%X?QY|0~kyqNzIocP+xKm55}1wlJ@&s9r@K_)5eW? zdh%K(swu;ChnWp{Vqy`Rw6C7QKDEWfRf|x}V&iF*HQS5FI-!-hCZ*JAz4MW?3Zr~Q zr(QylLucF2wkb7Pju7WF$5deUV!UN(l3K`&oqySj(y5TCzi)x7MB83?9 zS5i+eA5CALALt3I7Q+*gzNakudv-KavBPYBT<)B8XxMURqBE*u3rco|J`?k71{?AV z@M;Gtme$4WnRda){>%gH5(FG`2Ks7X%_>nJfA{?hg*IC=F;Enyct1v2wVKDQJPqMs zCX*NUC#)5mnY6Ke)P&Q@VO1MWdCe)em&b}YzBEl3xcBF8XPS;{KVYiL4VAyMl8Mk% z!V!ECv}F>vUuQEeub#ZOt4k)rBt$x3Kgij~>9K?F*?@s2TFB`Na)c=t?+8%WOJss} z0RAPq0g~v|(>YodyLcnHJ|wP<6DZCh-_B6KoK{i6CODe`besy7YF;xU9S1xIt6Rk% zl7jzx%*0YV^7-OUlz$t#>*k&--?@-+$p7(vwbAukI_`ANNRI=LiO^*7f=nd^}v?7!)6iSV- zT~3n)hOn!I@9Z@4Pg9`*MGQ&`Vj_^vZ8+7)%Y9SP7oAZzOBD{A=JeTf8TJEKyJ6UD z$(gbuD->4eat6!=Gm(Qrs#u3!wNd_mP3X3&C`Tz|`vrXU+PELdtz$)nM)<+nerR(= zE1d*S)Qj*oU%UYES{TVgx{lvP>VP*p8S+1breCjh%&*8QQtNmot*W}R4-hFlGKE6& zHS60tA74&OWSEj6%VQC!k!TkpGpX|ReXYG%HFz738>>i#E;HPxbP&4aY=3pyHY2F& znl)@n$LLzV-+>46MN6Oa?YH?{0(a2951wc!I%bv$ycn5@*r08~J0N%~Xhj~*|8XrL zHn8GeBt%K_o&ep!DC{=CKt0N)_aiV`Q?o4rrD+(aF0?pQtBF0 zOKs;+NhxGVSjeVs8%?N3lvLdJSMEffaF50%VX2ytb32TTn09|=kq3tn1^c@nQ2g~# zq23C=dL5??SSOB{a3@CRqy$q_?yZr3?XPzZ#I^?3M_!NS{qxAhCvD1w5xaEY^AEwr z#2wF}t~$bGejdgoW9x82=s#Uk4ryeKmfXNYQWL1KW*(#KersEAwcr*>pFKmuV*#8# zR>#7bcG(_lwhRMiWE`5Q_1;C$8x&6Ir`pgQwYC5Q^u06hfVPY?RMgd_%<9{@T}46R|kwSU>nc@Pt(9rkmQFc^#{P_`bqAB7{W1*$27; zZStAWiuNB^Ajgp9Wy?q*3?!QemzdG(GU$|f0}V2I%wYjG81WB2UqyCpV!K%peSRSz zsV6eE1?beb0PYPu56BYYKdw zMELugD_<`}o44;P!Fl}3|JWKLDCbZB%Y~jbW%*qAPBGhnAh*Pn(>V7|3}++I(m_Ck zQ%mf6uyEmzwZFf4HWm(!g_LLdJ-@du$NmFP{rAc5b$??wQGKvW+-k=6JkV0+K?L;& z`h)ve4M+LVCLBuUZ|Y8StV$i5{b_pqgOW&WyV3i_2hvNQ&*nmAGSh=|8YnrAtM{^8 zHk8s3qC}9LQNEg==uy1&-+a!Oo`*Vc3|~%Ly%}T0)|>mS zZ4daZTfeKHY|_PCW`xzIfIU%bx?9dY=D z?b^{at9l8Nrd6v#1*_%5dT<+e8PSo zoA*e>qq#<6^hq14g)x+H-!ny6N1OVQGp_=4&I-ld4>$~(%`3L&XA<6Q10`a?GA1G4 zPuglFPEOWJcx@qjx!JzhVbwf&$x0wGx;s@93oMS8il;eD$fm;gz2LvKSlG%k@5g5NCiiUTc#k^> zLGIe6@{vw}Wmf#LVRy??`SRA^SNklm)hq*g^)C>=#Q7FEmaR9a`>Dd5Fg=tq$J_q<-nG)1VEzmai!G2a=jyiO zVNO4#EYW^osj%w}7v~S`tv{}ML_0{aL2$SUEi*O(-pQ5#}}8UZczQ+f6R38A;~%g=x@SVXL+Vmh8H|d7uAbhIwoB13|)y-^A%E z>h{m`2@ofy3i{3W+cq@vhMVqvd>8JKMgD$+$^4#0Ypy8mkhczj)H&6Ucz94t=Fm^` zfA+d`3F8R{3M7>ON`Y$?2(VTlnNcp-bZ;?iEA9`}6D#KY-A;j_g;8*N$DVO;KDqBdM(ALi@}5g=FiyHl32P^tmEr%B%gj_pq461-U#vu znTVWSxbBgwLd^|0k9y6UJfFYU$g3XG)*bpAWpqVAbBI4f1@#m6eF%S>YVwd=U(EN? zeP5TyrI-UrppYNFy#!yXX567&xa z>i_W5EQMSb*ZmPkJn{a?vq@sO{49)*tD7v6QPny42s~=k&;OH?!d?oN7_o`zzLUda z@x}`~4x{LZa5aceV#26ZGYO8-@Gr<~FC^ru>bO^lw?gjm;~qk(hv$#n{i|(S04Yte z8cuS~1SijVhFxz#9K-Z@)%ZJQ>EQeO08;u08@a5}lU(xs`?4uQ;QZA4_7yx{ub!xW zoBVZSgAM(@=yBGq_pJQ%>y1>cK!1_J9{d^Oi5KXPyooip zm)^g1DsC(jK=QdnOk4S_yQ^G9-R+1UZM6%Jdq`%A*^9&sIJz z_IK_3cfWWSuPkF}Y8Y(Z@=_xt$JF!ObRu8z4I(MN=d1+pihk`Plo@IYpJ)rjnqf`; z9=b;6Yt${v?^K?A*J#EIcGoWdEPvPya&D-pvlb#Y)jJb0$KSm{nSk{3fOPn;^FI&N zD*vG^e#Q8uJJ8|-WjO-t8BI|m2{HWboG+BaHqWzutqJb?^!nrX^=`+T%`Mdk{JQ_J zZ@KzV}6>iKgTRc;@*cpYSh1a;dyr|9^FX>vERwC-Z9?WE=wnAA#Lp!o8I(a z=S~fsdVpst?0XgboxA^R@5B44Z~LcRN)c&V{oKV1WaZ-p{To|~wv`k7f~`i~3w8`i zy7`B`VtjfZ7e&`$^v{x&X_sME|C*2D8P1WBqj#`@ct5D{{qGKN^YY`j3QhuWsrzj$ zhf!MyNcQyw>(2L;5FysiA?f_l#(Wq3U32m@Ng&6GA;+;K-8oMWQYqu7_Pfc#MicE1 zz5cIu2@F`@r*!-#0cWOpk`l$A$CBK>F(ADEvEK2k-QN_15s2MR|F!R#22zKjs1DrZ zhP~(&*HG?#Nh?ucV{nLv9qcYKwOHHWf*xMw3#=XX0L;p&0o^>Y1EBXf( z{WYe2o?&MR)C{v(6f;2f*HGJ#qnNtm5GiFWT7$4?UhsgnQAkFm3_KKfTD8n1{AuFc^QH{rT0H4Wj|hWHyT^d@nSUwo{1 zMiS0$`si-?AM8A38hTXP-Ofp3JoOV9mj#1dCsrm{Fh-j?i!exk#fzsDsdn$7eg5RL zD=#a?kNBZ2`g=ya;kd{s&!k;w@(%Up&%C|_QB)Y3{^0}RUpBt-wd30lXxnfM!B3pQ zQfyOc`}~PB*A3TanT*Bzhcf?=PY+?^TnjrG z*Z+xKYEJ$byH`PuzM9@>C;(#%jw1EWX%TtMYroH6f$d&&QCy;gTKoYrAt%z)$43s&$YW|sf<1!~OUHvAa} zisEk$m%(`Oq7l!I9RF?@b9Yp-@kyWVe6T1wY=KR6UG1mNCxBgP_c13C#q;(0T?>g_mtJpY7!4Dgc z0$!u9&jMEQe%k<2g|=K_5%Ty~9zf_C?H_w_z>yQHRAK!XJu?vQLiE>JhFzzUG_U!? z?DIj=kMK;``n!g5U~)F4_4MyfA+J7mT+?Sd@%5N~ipfu&e7}yhtg;lwX-I;AMIYv$ zac~u1Ap;0Z<@SnQTB+PhdS|uYxs!So;|r10RTMSJI!&{ao2@fU^YgyUkX}50!#}l5 z>nA5$pTra7oH6mhZQj4d&f|&&^hQ-FQPu|*gLqz-2|2K5@JnC*HIJ*V=ri7r=O?C2 z=PbX^uT|1l%QPvbEKA#C;y>2-c#PC4CO<+#irG);P@+ttsI?l8_yr!O6L6i#V(*mH z|MJzZmbf;Jxa<&{R6bC}VxM-_!fHNJ@NnG2kYk`WUl&xy%v z-PcW!FK?56IzMygr+xXzRpZ4oQ15p)1vfN`1FD97;&_Ad2MV=ri@A1DYstb^;o*dh zXXVwh*twz%!+E#puQV}W(8OtdnSd-zHD>;6rr^izx^sWP zw_jruHe)27{5VqfVI)<~4Xp=4g;m)0sU^Bwb!?0HihaJS#fjCqF)Nt<^~-MSm+QJG z$lm|Pub+MMH*79vYks@&b{tVd#fOeT7%d~!FW7A*qykK)cuz&HyCoAHGUU-i>;oCDF1a zj4V*I(hi7b)pEbS%VItA(x3a|d78YuXCD95lCsJgONPt4{f^78RM}!V2AI7ez&`0# zhh`l$RQlKq#$Eqw?!2;nIVS$Tt4boPK9zlPZim3X4y~L%898YQNzhS4Yoz55ki1Li@kH#r5e49-h09@IfS$zDTYi+-`*3j-9jcq*@ zKdSS@8d}VTVeI>l_gb4ZCrzefLA9tDul>0P@haSc1222mzVr&KPA$*8bl_vY+kpOw z^gC5Dz@u`>Kiiq@F;%HQKFa^c+%~@cZrsq^x>W>WG8m@I?M$~zzqV#f?+s~;!#wz* z7-#IQR_XU2$kVqycn6;@gU$*EOz@;Op7(t_xCz3{2%;WnHoJ2ghslt{wW>z4ZHAxC zP^%B_Na|E-BR^lZKhYun`iQPhCW;=pxjuJFW&HvnnhOGJ6J%ytRe9X_ zVszJ(iP~!M?muGqx;={l;)kG;Wi2zU#9-w2Y>W3j>roR57j@o$*dNA!{~e11$D$ez zFuMK8aH$Kc2*RBD+BT*|ES;7k0ph&=f(3I{PHQv@)@az6e!Cn;v6~CTxR!w`Q<${sY7tTM;Q)K zP%}iwD_MqH>@kifaLic-`8c|n!T3l!ML7ZM7JIG>2$61fnJ_8-D_4c-_T)qy!kn`b zAV$|?Eqpx5Ckp4_|F}zw&A>%WgPG4$^sRMd@Pjh{z{!3zX>CRoN)MSp%PFQ^==XTG zKFF4(lki_-xQKgaT9HC{NPnwhYNqLIs|1|hKO5|X<^qoTFVGT#*rK($N{2DaeXm+# zIjIP}jnB8!t{Ji<8-s6CPICvfmrCZVReS2#ZT4Yp$IzOs{-a|)V;cc=OE;lpHt1ZuvDvT%T?SlOnI$V;E3Z8 z9sjG}4T&$2a@1Jc%Sz^2w#^u1Vw!gUkfiH*nnErMoE5E%Kxx~51dz!4t?m=oSYV<7 zT^&NrWfid~t-Hqrc2-mFc?Fk83`Q$Q@*lNU;GOcrFuU>g8Q-%h5lit5?s+6Rz2=Zu0z=$%|~=?ypub*Zg_itcF$ zBQJTX6;Kz^7yh{1-**V2i*#1?vC}Pvac*RCzJENgdrbs{g^MSMOMeqE|3Z)|M~?mztVGbRY<5nWc}{nXx8@OP~3x5)J%f&R~O$X_+${{Q#o z|JwhLzTE$xSiLY`u5)kd+L-FaU+nD2D9B^as@;|&bfJ!3D>e4L;hYd^^&Art$u?9I zeX3pCp%Y4%BN{A>sYiHySCtwBxs`2Qtb)?LRn;psS#Ir-YmoeGh zLU*s1R=|?~_wF%Y%>8ctDU9;~GLA?#JjD`IE2 zT*?~bxko$Gj#ZV_$kT_gZd1CU2h0IFWG2zWGM!Z^E-qBG4 zC$l|buZD4(+~@a4T&5h?`gyWKi4sTu_FE(ug~=b)dmeIV`645ybt%RV$u;Gn4XCml zswb2+rtV(ebmV`)z*_Z6n@wTqTxxybyeT%7N{$tzY;25$xf!}q5K}CbAsmxdo3d0J z)d=T2`Ql_V1AUI@nth(a(mwZrk<9SHs!2U+pjOM!SS&a;lQP*ze#D&Q>e<>MUt40B zD5YYVfj;d|TCLqX@cS-b3oFEu9mnj)(s0Bwyf;c$_Z&+D9Oong#t*%88`Gm2Z3^Ui zpK3%sL9y%U-U4WiwBxdqoD4eTjpdcC4C+bg?IRH~@Htu*jM8a@2HSJ>4Pqc+Xmnr3 zK{IIgauNt*MnuNV$_HwM;_j8!3fL75x%)8;+&Cfr3daM-hr#h>zs48-=lIIq03}S3 z?XEbKl>5j{V1WJfN2yGT!>6LhT!I&Ei%cE>(v|(zzZR(6np7dLpUCM6enEf>$+Rua zpx}tL#0>Q$6)+^#SAM4(<)}K?y@Hxb2-?Sbu9l8!nOH4~)9?^KZQuOjO zZfGr&c25mY)@_0Cj+oL!a7o8Yj^ytJVLvSFC^06t3F}e7G6wvLQ%@MnxH+LhELq%< z&+LYwpIeF!H@yrH(xibtr;m@CDjy-BP2Hz|*~Cqex<~CtibkU8lh{)d!ah5{Pqz~u z;Qj6QoG5edrjSgE#Ypy%V7tSgj!(9RjdNnmu{f>ZW9`avM>eZU$~~ceVDYEny*@B` zheriTE$0h5b*z0ZpHS)KxJ^jva55}&Bv4?-+Amb-g7x6C0CBkASAg3Khe1g=qst;p~;6-XC`|6QysKh7Ha(J~h^8rli(eyJ~ z9`A<<%#47T%`Sa<&=9j#@nlT-R`rzM%lQY$^XVh>qpRwjPUtTS4Az>2*W0H0f!HrZ z1GeH?NR{2w7+;Na&e!71YfY{YlxWguz6P^V87ft9?VSxJg0MQrnU1q{xm{9bhQYXMNLy~HnVhmKRccrRckm%dS6foneVv!eu=5bef(eMM zKQOAj=DLv}5heGUTt4Z{lMA`x%-A7aHhxqBMVv%GwTREg3?QznnJ%Qcuxz$i$1|sB zpI~!nZP~0PJE2pSqiyOg!rDAjPO$*#owqE%=p;rl8Y~l0e6B>*W|&m2JEbP+)RvA2 z2&&U|6c4CuU;U0{YXjQd7;Q^v{6oUXR?i}mdg8DjoGrc8ruN5-ejYPEm#d{h->iN1 z#fg3X6mfu?Z(Qftz9@5FFj@>p>4@V#kDnMG`xa{olI-L0v2eLiaj>5HtLcEps)0(a zjJC{=QqIB!ky~{6ITmLpNQlq4w;*dd_BS``Z(h7uOfyg!aKCjB@)dTy7n57!3AlwO zNs9=1@isZwZu*m;OqlJ{~s&y^CF z<_D%xQzRk4@K!90zW1N?HvdF15k?dZO8?up-6dEe5T<)z>?lE!Az34Zh$W`yF30y# zBuhwiq$V!Smrt`Jp@v*R#MX1mNdePgay*uAkg_|q<>OgR$@i@pXw0IA$2LfEt2h=^ zpWx=F>qkJ+Q(R}-q4c1QO=A_gm9;{3jPsINO=(OlVJW}-3$2&cc;a8|IH!0gs8^lu z_kbkEM2`({7xrVzSM$vFTsQwe_TF^4btO9!{ePcg$LSwFWt_7CWFj*GN1qN$qDYGK zJhdG=021H~k|0QtbU5NZ&3&-@BzLVOB_WgCHMqK?yKh)_Rc%p=i5%AOttlZ2%YEq6 zgWv89*yJFR&GHFsUtuWHYMIfFC{2d;B8sea;*OhnumNBP`~k4SXmGjWh7GZr_I^|Z zkYuczYtyT|oWafU!Y4i$R`Pm>spX7e}=Zid2h_!{yBDz4WsyK(L&^2 zip9z15`v2~fw9Jf@YmjDPsS%&33x3x8xJ}g7tm8$ZY(y22j;1@**@Fn$m5^3D)OA$ zTCa9%4tQYs#2MJ6<8|Dyy0Ax4*K^}xc~u&(le`#-sE~g@_DMMiFHNJ6GY0ILRf6K= z?L*M3?(WNmNI;mHz^^60^)Vk^R3#Wbq zU_xtYE;fN!lw7urkJfY2QTT2h)rQex4_KhMj=)D~0jB+&uhB7%Pp|1sXN|Zhu8kqx znaMeqm~nTWrrTv}XnVYtcg-<9`d+1WT-hSr&6|h~*nt(-hw)lqYvtD(CUMJ6^Ktzp zAxRoA^VGG?Bq$n-Zn}5P>C$GYA6bRe>)4f`F^&p{W7O~NnB%|Iz`hRb)$Z8uS0YYl z;Bhp^M-lgp&2W{PG=DlKbQ0IfE}@GsZTShG+k=F@OkyM47URikwrZ5m>s4GjF84z+ zSd-emwWD^z%C2AEt@fAd$l|Bc%=70>D{O4KwWPf3cQ0=|KcX$RD1!r+^fuNczwm4M zR{c^njNK^bd+X8IALXiU1Q=uLMEd`wdS3);o=Yjg{Y8 zygoev^y>MOyr0$=n=0^3r(d5Wo&MbqjxfbLaPFZ{_2o0n*A2@9N1cNi9;f?4g? z<0klz8=lL9zem@Nd?NR`2zGjr?ndt9l@@zR<+6Fd6h|AjJsvO5%XVf?*2s=*HgEZ9 zdw8f9(N@19cIX!uGnSiqqh*q8Y}DUuk+*nxJ}I=kG|c7vAURn30Xvk#f%_^(tXF7w z>+ycPs|7rnx6DRk&|Zvcu6wBjK?*)Z`E2g?eG;+UlI&vpnT^^(ax}^z*|T`gY140b zZP3+=HlSs1mkbOBQeCS?$4#*0rF;nXBJP!DXWw`m$CGX9AJ0ZBO6oPIziZ_OlcboR zEu%Gn?$c^LNYmxa+l;|qc^ORV^G)Z{=?7j?={L_&?yzdEK<)JU>sB7doS%bgPr!y> zlJ0gu_shoXvv}D>ZYv4lch?|O(s2+n?|H3ItZz;h{&Em~*ylI12FJWeUXP;Qh|276 zo2SD-zln1S>fiwLOJ2*kjg|VMHG@5!$X^cjVrGucQE~cC)?5U8max->vQ?!Vj7sjP z-w-tcCS~5QdBe~q#ZgD3&%?+K&joMf18`dIck97rzj;6Id;>PCv+vipPoC-bE5`B^ zjLcQJ5r>J_K2Li|d@3Y}{rUE--szlA`-q?WhvTXkGP6kJUTlkYx{M0vFgIJpgUNP1 z^QIB%fC0>RV~8=Z@OuSVILd*H+qjATs?|%nr8e=ad2_Ouify+Pk$tyOfK5!I>L>}} zcQ-T^r1LKKjZa=)>qCzqPBf^8BzYjL9f*(}c9`*R^eUh~33J1ShB4Z{rjMK4IA!7jg_h%RY(jX5E7 z)I9qB$=n|Xe&XkUHXG&mu~kG|3xN76gDq%~{#oa%;1#S;w;qBT59V=qzqz!}E3*swd%ta+gLb^y00ukSwX!kJx7&+`Q+zdG%~RljWAp9k zI_F^3;U}-;ZgzDqp$(LudQvP_K6#{8_i9f!*?x*qw!8aXqjX${yAd3``IaXbEo}a$w#G=J=~b_AYHn6Xr05N*$u%Lut+7v^^imB5N;0uH$ce0 zh|MSc(h~IW>!8>ZC`<8VvB(|h%4j@K(`UQaPFAJmd`t$hn7xelc5E-4+SzItPO)Ij zF~>ML9)`vt3eKk}J@kQTBa?$XSN8{lzbzj6yc*Tx4HNCf>!HdK6a3aNv+30Qe zAsa9Aq}z6)dS{R`OG(r0A1}v}#Tsr0&ZKb?Zd`n=7CYM<@W*L8by7IeQMmF`FTisk zgS0-aR>GukOeDWei=8A_2Y76Q<}<;stHOR3c;nE0iB~7EnUymEV_WFD0Ci0spH^Gr zkOn+m&}vYfS-k0lyy_3@YyWsyKKqkRcQ7gB>y`W>AJO4kJ@)fCI#~>Ipwr*0;#3$I zg&Azzz;umpCN4z;l%1NjdrlWTeVT)h>RaX43&t!BZ!>d9JvV_lJN!K`E(twPgRS+v zgfp~T6L;Z-{;{)J)aCd6ZGrI(zM};HZk;CmX>06tQ(glfHEq|TkTwS!r;)RQV9+tZ zgpE3!c~y6{kAq^(7@G7*X6JW1-u9O3yy~v{DM%;IAvBI7 zBQ2Nxux*x(g|qN{pIAmNcuOvWqO6G`nd*`^F zbhf4Os@IO3^LgAWnTKMRaIfrc>bAWy_fD@xr%hJlwHN=C`m@q#oeZ{4ztdl|)=6vg z9$)Nsj4|M-pVr5d>ViKF5T`6FIa_q%=wx{1V>LW`@Zgs1FW*^h-KY)cw=uos1i~~~ zqdgc0{<<;p#3-m;*SBbsT(UG1TJvk=eBM88gE<2{5^tD{SCeCV(_Fy>jxd4c1SSwp z$n19#2EZ=*G6aF~{Tb`r?m!5%u%$7l8HQvTPWOHa{iF0x%&hEDm)N zdDdlp^df2p`RaZ ziZ1nc@V6&bce`z$xAvf34ZZEMRs>%1Td;@AOFQZ{2=5ayuf5Th3I>*6Kfqn)=y z-73G?i}ER7x?JU`=woT_>{%L=a^x&>-pji;exD{rBVGsL2K3tGtyxd{`DL-QE7gZ? zALQl@^i}R9w?!=QmYdnLxNOg!i}hphHocDNz08KNE5ZB9hwu0C`;|^$cHY_0AFV+FcSjzAy%z@~G1R*}ueTV(piF z!s2*jEO+5J&4U~bSt*Ju^`cDxxReex9+Fq;B_8n6`?%}$jo4iu2KBaiNlWo0A+_Zy?7nWcWp)AmUY->? zJ1b5AW0woL0dJdIvvA(h{c-c!y`+VyXL!!sA=TWZFfRZfhYiq)i?lAkSDX=FIB!ey zd@1GFq#dLIJvYy_+@7M?RJYy6dbc>NTb;V)=j;VQi5Ipz1|S3@@Vmk&G@5R+xX+c$ zQ}xnv8`075yh6N=BJ|~I7H)O9mwRFH#eWTpBd|juIAcvWC_cl#bM@N35$z4n1@&Be zsup{@20S|kkGSL4UaOT}(&*>6fb+LGz@~uthnE%T|52IqVvG2jZX+SlxGuth;}%}5 zVy{#_^s4J8`pQ=`@6BBh+g@zVozo}jm=^4OVm9{cV{IisBr4_OWp-HGm2z=ZcB}gp zI~jy*ylRl<;csAMI;YLir0vv;dO>5`uPxkq&ZM)nk=UT@4u@SZFeat9C@?QAbJTF1 zOHicwF|WNIioHd+&dup;*YHo2Tc%(MR?g*=gTah!zX@v z60HsB#k8_%O^ijS9XjW9@}4d)>uC%4aAB>%5n4n=c-Ej)rYpN_95&IV_|lxLcfH*1 zly+wBsW-6>AJ6D+=KWz}^ET{jdo$_RHWK?j0rm|V)-l)1h0_aN*t`z-ZiI1s{7$<+ zbnUtFot8PV{L<)@CYxsv{>f%pzktrR-wfU~%tn9v+6R7{*+a4eY>^z`Jog}{lXY%q zJr^6jwpX6@f#(k3tND4ec=9kGovW1n!MMI(nH^dYyV3aAF)PjfVc&B_2pX}sh(_Jm zz4WOc@=Fe&lAAn@8{74%)L4U^*eV!q@ZzOZ zHQMKOyjqYE$eQRg+sgqq?6}EtH;Fn?0)F~5tpu^RBmGA0(BiqG6M~&_lkMPiSuQ8l zWAwgg4>&y=jXf+AV~Rfb3!@G>?@hwfG+K6jzmzX|FZ0zh=x;Wpu@J@PX4tcK<$hRq z+hEWOd4PJW>LA?M$0T2>8TB^#UyXRbJmz+WA09~OBrY^++x1=0 zasZa}y0J4ow_Q3o3cG(en0`_SCcY>pn@cWs&6devBf(cSK%Y8p@CG1pb{e!dMey5p zfcH=5W+MnL?jk>+scV3KdrkfIWM7#iZKF05px=hMq}{*y zB#in_RP8luIku=7)scA;&C9e(+2FLxv&9+oKxtaXYa?2qKl^V^z2c96vCnDK7`lgD zJ~sz`sJ}NhuetPXb_zP1!3fq-r0irPZ*(>>@CK;k-7eZ#1>g-BquB2s!o_XuPMrYO zUkn;OS;sYJz4m2!Jo9-gY8(gW)oAISqqk%KAP!xJ+I`V=S1euD(sQm*o!j=*U4{LZ z_7-%L`CJZ;xuEpKN@F@$fJ$eLp!ZxZNAB|6H<$kFIa-IUVoIm}Wsr9^pm!I&#VRCquJOYG!DyE2~{Ce?F~} zxpQuK;i5U-oG+|-UN(*Qq5R(5F3#*N8*kql9ZsW)yUK-&-CzKEZVcG4-buRiB;J*Q zuZu6X574GI=@qNJv$1TtfZf7=HAQ`Sd46pi>Vu6@tQ5wx*sSFai_W?p4&9tG$MK0( z%B>t?N;W*(Xy-zF&Nvv2r$PH|;8*3Gn7?Rp;xvd+&cp9>_`T(m;qJnx*XM#P=idjX z-oq1#|K4G+NKQb9bCpmx*;b=lCcz<91u(g}9#|bo?la<9LFWBjEI8-f5f<&F$`pFYQQ-Qe(0c^*Yuohk;jL9?Xc%8kWzk=;9U4=Igm#7lUzUP~E5T`poUpF6n^}vIuJ{ z`{?bHY6E5$j^YKC!4+Gf63=! z(7&8VtQ$5~fq^``gL9@gzUGWCYd-LIA7muIcTa=ZIu{8Tq|-PE(T^@X11E;|#we6> z#_&C|66*wx8C}<2W|J7@oA{%#Sd2jE7l1KfKJ`C4A44?iyp2`{u(x`>>)L*Tt<7GG)t~-2bh`?Qk%BN#HE)RCmpfQR{m0B~j z{9+Ga*rAeJ+w-XYo&cXua(l}kzD2_)u;q0)%x$-tgy0MxL)y5!iq2*-*jg{|;Pb3E z;J9`wy zbLG;D#^Z`{h%1%TF)7yK_V^tP2RwFG?1Jksq;}qG`3+H=ACG=Lza~Y@gT0K$qf<0> z7E_j<>_vfepTwz}+gil{u(y*sQN8B1j@EcK#I$E>y}VBP`_lDHCYwISoYrO6Si$#a zSnKjqS^&shM#oc%H^)A!nM$%@eOrJn*UHoQ4~=AdTB|_+(r)7jZ@Rcw}b?Q;z(#fWdF{;*Z=*l=> z{~2RS;G@1R^A`7_SJH05`Uk?SAJ>PpXvODL#+5}Y=Y*X>Z8nVDE@zkO6J?#HUF&cT z@+6FSJIML-Ril)yJ7?w|x1EY`_vf&-OD2&$wnwGqYE108x8H|!z>Im(D)+%1Hx5yE zSc9_*M#tecnVAP;G0SaVYXSH}9uMr?cGS5nFK6yXZx?c4@c{hf-g?!F==Nx}DkO^E z$1Nu${=qDgA)Lz_oJ&5~zP^N*QukhkM{`4`9*ny6vHyO$*xk6Fv{s->=4^L>&BbR` z_xoeCc=D!)*vtoMG_DoR=hy@n1pC0;lLPzM1yyT?b<(Ljbo%wXXulp?Zgc`WluQya z?gZ1^B0sGstzLcKDz)O3Jd-{j<%`vHoHkiHZ}Qr@67L)%ZuSn#=KTFcWbA+Q(gnFF zxf_%V06T+P>9}hEULH@1p`TwwgX18ojF0n6$+phkq}Xrw=)~&8lvh&tBm)ed*)u<-OhY223}n2juI<56F;_-%O1Gk;Or{Juvn{24Br9m-6}4{DQUW6 zKLS3eHg{Y#Cxhgyh@B2D%N zd_O(5i^dSJ^mA++cvlowpq9= z*u*%d6aTQdbeF(ilX}`dP6wThaY~XSc*${ZU4U~Lz_}!EfUzc}vsav%MKCTYIZjTs zW3yiEf*%3GetKP%%T2H0ZgPe5**rM*nY4x>X*-kQs0?BPdOaBJ`>#=>R|QOdz*K!S z@}j3)z&bSpya3PXHcWui&qv1%S#U1q;MqBR_A}TGuP|+ThgH+Gz<(R}i~aC;awjLS z4Z@2F=q?*{R~6)PTpy3#PIPMw{91wdtwLp8KK3_#+I;Jm58-AgY4+nqQ^xe(?I-Zx z_`2D#m%Zw7z@p_Cu-1x>SdveYkiEISv0IG+8xLN0%;^+@ZK-oUKVQ5&F%F%m(yi>h zWY8Q(QT1SWUcMB?jolV=MR_Cjf~4Nz@5Sw?eQcYRcBww8AEOH|)x6L*>E0~c+#R*5 z(PGJjUuvJ{^?GPFo(n~Ly;$&>ds-ugIFS0N(mux#J^0J^d`-_`hYvbA+fDFXMJvSIXQcu*50I9rw+@jfK39)BZ-Zi2fPFA3o!zq4 z9$y9*yE5|tD>xW;2u@E?CqFVlyc(BgE~bUXd2p~=dyE-HIZT+0>LZuUS4{)(Ot;Ew z#Yx~8)mM-y!!htX{kJEut6ms4-@pfC4em~o)+Xv<9pS#d_R}y16$-u^)<%{t`9Z_l z6|v5223WxkjM{>?jlv>IQqUixux`i8)yZ!!;@)^=3@T<}c^(+SIq;@qP|{v=ybinI z*G6fQ3_NBm3HEp`v8Lzfb%y44vP)XtkgZ$g@*sLMi+Qqk0mU~DhP_MSZ?159&&LYy zyOrw7gmW)~?{mB?)&t`V{(igNz_`-|Y$FEPO-6@aqr2Ho-jC<@p-l^&9UF{eWAeI8 z&wQ2U;)xG-aV4VB=FRrGZ4AJNw$EJ;dCBeWcV?$iG40;&*of>o@N?K6ILT7vIoVGx z?%Zvr7CkS)rzV)2*}{<>FX!s6E`5=XyI7tl&Y;#14)rF$mb+4g90r(U;*;lB`(*LU ztQv4`AlOY&VV7(;>)yuN`^!EUDTkMqxc8g-wzUuFx!YayHY){1*qcl9xbD9=!hUb( zYf0RzUTc5E&W|tSxAC&lp2x>?y?M0qyvu6Dz8t;5YPs2ZmN+-9m9Z`6L;G}g)4eC_ zi+Fi{IBi14!AEYt9j?DyVaEu!BUx7xce>^3xVSG(+|$NbI-vh^VpR<2^R+&y`sRg4 zm;}~2IJlkbja%mNF(3h>XY8)@dE}zF-Y74(_rq}0V{*#ahYhplH?DMg3 zO7pv98;)1)(0)G*a;2fohpbqy1%WYSuSUnr^L7u;{&0zfX@a9L0r+1|y|%Z!@#5fx zvYv2$+40gY;$q(|98cqGO;agO+?IWzM{_$hi>KxCbeI-r;W8aB57BvO4&3#*+ko#h z`^VYWcgA61?6E`AI5O^!Ui<#!wQ#bc#k%e%%ytK|Zm;uZRGx!MaqdiN=_)p>Pr>mJ zgYu$cQ4AY&`O?qr!y48Fb}yT8n@#r4VCS@mJ8e7B0!|*zbU9hSR&R@<}JE?@w#f zo-F6spXY5(<9fIk)@;5Lja5k@%SuyZVat`ken>l=xJI!LNGenu~j6q#YQ5N3- zoriNN%Y{q+VmIqp$4G~ljRAi8#(0Xh9iQ54dEBp!p_Z6XkO- zpk-@$xP!Q{xzIlrjc&U=u)H(1lcda|u^AlN zjTc%ffZI9QuTpcKlr98&Q7_KIo7MpTO$wX0+Jwx*(k1A}U^&g`-8V?BhHGewmlf6( zJ@MYx8lO5w6%1593R%0u9hUQ>c2sdoH3MKs{%}Y)d*q|n&hr4E7py-moa2i#5ia$h`SURxs;czyvsH^;c|vwhAB!}_}E4oBFxHYrSBY002ZSnp>APlLwb z33dKr)Mk8I1pR3F%K*?GAN0u)nCj_ewJKK6VVIoaQDa=%*5d-!=KFvPj*%VqS-Q%X z4y!}UXotLg9#w&H7p2I3#{S$0wjd&5W4j-=+UFH%)0|lnqsq8mjaRTd$iy!=DVd#M3Yx&ZmU5D~q8wyY^%* zUJKh%v$9OzlO@d?^K+B7j}=xbf&X%RT?%V)7BlLsC?(4&KMD8L6Ys-oAEk4C#=TsQ zJ!iHDTXCqbn(ya)Xm$#1XFPm4M)3kLr0nS%2T$f81}AZ_uhT{kYjChHbe<~?SJ#~6 zPnyl1pM)!R#?ShuF>vwc`gcoKQMvO|?Q`>7^3w*or%iDjKDwvv`jfLRo5q9t@~%JA z8h9^{?yb6hw^@Jp3O~EE}$dtIsF@+2@$~`TP1D|M%=k|4*J)e*P|= zt~2v#u#NNeQ@*|t*Za+0SNYDeeQ2&9-*2CO z`{lpp=hH(He%sG4;Wuts)``M@eS4p$vv1C~r&GB9Z@=7#|MmL6|9%_tmvxx>6F>D~ zynp-raC1nvhxA8!-iGk`FO&Hmo_YQu=_JX&!c&k_-~9bK z9?v(Qv;QSZHtTPP!+i4XM$zrQ<-Y!`5rU_1li*{mN86#5o-Da?WkL4J3*aDNY?P{7P=Ct^+%jot7%P(6y~p*|;cE4%fX16ic>V4#;VB#+myu=Hn%tg=DusYMVF&b`AIAWWL44{_ziO zTU@sIzwe8+!1(rv5FX8R44+lP{g!}lNI5f1PN{zX@$ z_=6AMh7(kXcMo_#jn?J<@PA$VryuW|1VmyFN>?5l{Q1EI@hA27OSBh2@f}p}dY=A@ zv-^!Xl~!M?4xt1tzjx=ruFRFV)lGM0mV2hKdKQhj+h3S|=?9oIjrXZ7_5xr_23 zqTL zj{dhp9QowG59Z*{e+24$ZphyXcR(^U0eLX`Ux$G*(tDlzpVzl?7hs(?)ABuIpmm-4 z*r;c?Ff$8S{NFt2D}3kA3<(-0Gh`N!Tz7Q5S*^lx8cu%r5&Z2Bxw7oXK?rOS{sB|V zjQRl-VRZcT@571Ye?3kF-`uk!UrfBvcWmalEF6Q{q#|?(Hb49)PW+GJ#J>&?{xyK@ zFX5+;P4t6R_(Q6YHJIo*nDrmy8SK*jL$mE4N%Vh)0{#bt0{+iYi(mh`S**XvJ-@0P z@`vVm{~x7s>Hm6-Yq`EN0R?MO5jZTE_=I?_3lb0s;JbkTr^fv|J#(C4I$wu(x)zo3 z{}cuMa)WB0Sn;pW$dkl>hlAbzCZXyYy`oj<$6@j#%KE$ypZ|f&Kb{X~;Wsw$(7*6K z5Qf#~qygWKf1G~1{_pv3RBAtEjK4y6J=Ru_!*bvc;`XfOxSuP@2fykF{J(rFgs>bx zKKQHE8K67Rf|s3!>n%cfbSdzAzv1};$9&tuZ0F;{%1?k>;c(9DFuQZtAtxKKg)t~d zIMWnlNDlFB6Mai(aPIq=zYW!|;BiVCFrdFO`rYMR{Pyj4`#XgnFebm-zkS2cDT7bR zcjC%V<%i_E!z8J=l2ZK8{*Iqn-|g#X{Px-P+YAPW4;g;weD^*c#clcV^-=8ObNZcR zKX<;14|;Z;gmsO2ntXRN zpV_yE@vqOg{JJfN`B^^+~pM{ghpY#U1@3b+04X-|g$b z@?(D8bSB6DSc3S@KAvXb0Kb##j@^c(A3IF1>%A__`k1hD-5i|R=dp|16mFFC`h6Ea zb+0pkP5c-UPFqfiXXfe3(}R!s$B@qTboq5x`FDad75}cXBe=f6i65%)`{zI4bKL>X zgkDgG?C%5&f6zk)mvoa%ev^{*C-jm(c>X(x=lb#Y@aId)zy!jqP!E5{|8gGr;`no( zhpWk#TKo0t5=+4G2ZGG2{RLR2j{S%7n*un}KVap*Nh$tAF5^G+BIk;20sFTWD`F*V=U;`-%ya91!% z$Ueq&nF|x8j+0$FbGS`h?zl)w*^ShLIl@f2ogLJHJrbVn$xZqoWSqDzu^nZe4im(N zO;RYiW5aJ6B_pn7yM!ql52xb@+r6&-W1ASDS9ms+l%Mky4u=68IZv42ZJP*uPMMwE zde3z%>bjiC!~A%<3#?$vA#a3efh^)s;$6>@yH`r;S`-dhu84h7GVU=jUCP5j^*Zo; zTcH$G*q+Pe!)^QabWrQuB~((npOkPE;BCsM!(rbjgiSX-FVWPWN&JHnOdR9Z zbw$MEH%ckITsch802GB>&eL+88zm)zx>Oxg5O|U+w0Tn7wy)E)=;uV?LBI`6PLy61 zgF^w#0LwDv=^O+DWlj>_7Gzr(cW~@4DMBCw=K(WP^aAxjvA}=a?2yC)jRN8+r%7)s z2bT2&^|Hc_unpt_CM0L+d{7brYR|XZaC{_a1Qf5ea zEVDEv3zSU2!d+Xgh~3x&*x2KW{s2M&+LVi{;&!atG+~vX`D}Th?#I(X%Yr`FR1KVz zz;{9`g2_3xaYGzsP{9c-$B}%@K1uP>HdS}t5g;(!&8ixpM4r?Z56@*5NQ<&0VGECd z5>ifGfSRVD;gnqh{QIJ}Cvt3Y-b9=TjwFU=En8Xc{<5hR2~=Owef*2)(SH1J;6FqpCW7q!3}6 z6!={;T3|KcjIIl!ACwHt1K1L|azbunQe+x1&dR2f++;Imxd*5*8>a zFg%jb{V>9?JXa89M3)fzc08VSQ^sH!9GE4~@`mt0un5!aIv6$}R@I>kN*@ig!kX|! zTew2F87oK;0(cz2$5kV7`TGUv?c`hFvsmo~F2AP!M>k>NyX-k1E8>0_OgJr2> z+Mv^@dsXxwtc3dmM|?eZ`+Az(;$U(>;1xnRUhZ-?3)5gE0@5ZFLv*zjAbc79&fpU` zA$>$(NLQOA9J>u{Lxnm?v|^rZUDfvO*oCwtj4HHpR)u)z!RYK<&(dpQsOD*X3+R^2cLAa&FlkR&5I_>JM6RS{A2-eh-Fa<5Q5evpotZR zdjR&4lDjroF$MWB1gyYv8A%69&}AH@Uyk{4=l~AE3b@%>0=L=-g0rTYaU>;{tDHFy zf<6+S%5a$VbF%IO5K=^;z%!@^d4^&k&erR|Dt~Ub4Jg0`(hL;`-wm{_tJ*$+ z?%yYpxDvvyTSSRTNkY(jR#q2rfM~+Haz@6afYNg{kCG$AwC_yc14{vubdgH4J}@=M z1>BH@T7Uy2+RDlVe1b^Rl7!@g(2)|LOw$Hji@@2N|On&L)N{Kq8JQ; z-$fSez*c%-dI?dO;}I8uv4@%1>VjOb9YW(GArVm4K?6b$@tmUqtt)_`nu4KtfM6Gt z1LEk2I*y_ZFsMj1zzjp8AFK+6gYGgHN(2sm2mLEl+z3ej4&*&tH^z}XOeyHK$jfG*FZg3VH9u`5h0&4 z&5~jql7c47T3pwYF%K2zJR}6~2wY2@5EuirUsh?zkT9`Td?#=#;P@3YieW$75YsvZI^03@k;QeX-|d)unTeH6>Xs5_jcDiHubY>W^nvwVm`(Y#?< zfr`HY0-#%~L?T>-1&+Fx4o0XnPZQ(y7|v60(<8Wwk^QeY^9M>tCyHEOyNo}1ujL{mmL#?0i(x`f^q;A=ovboMEL?JnT4xx02a}4Evx}N z8P!5Phz%kkO0KGW8D{U+ENF1m=5cf(g`$8NfKc$DC~S_Tm8p-_RP2cW=nK9gNHO5hH#xFW0lQBi=tQc=z$7zh$W?sAN%ZgBRBa|E6vKpIEU zE&!Cl5^@c^0Hd%w#|$hA=rN-BnI1A52$+h+9sxmMcCbf8jWlAy(*gyjo}`BnT2JoK zC#1&c5{CnlgkMXCe-lly;=64vJ%;y4%z^ztZ7AV)R2<&DGx0zsL9;qC1b9u!eRxN< zES4b}B}d7#J!RkTC5>Uo_%59Qp8&j5V#_!p069#+DX0WhiKW15pmZ^erf~;oVK9=Q zb+apn=YpT=D4D|tYU^i&kG2S=VuL?oD{ebXPYY}VAqITG!f8JCz2D9-EC^etImBS# zn4{=7hGFQtvJ~_@Ff*LNB|wPy8`Kud3a?|KipoX;VBt75jMZcb!8ZZZlZ_=YjML+` z3orX&X62wtr`3z&G82MH*30LbcR4is=#Sc}@xQkg$s^K9Ur&QvB$hkHH0HLS>%+JEZZIPWL!N7~IDqWBTtwancVF`DsqlfDTrwpXU=6?kx z_^fb%N@@a77ixb6=&*;0k;f~4NcdpousW`*Y4p|g0uQ7FD%-kM1-Lg#hAwKmx9e&NmI zLd-^mW+gCPO*KA}?lo7k)5u3~vT)?t*b7btAeO7D0`R)A?2Kd;763S+$0Hx>KuVU6?!8)e;3GRKkSh|HC%UXLRWENGjQ3MP-C|cpF z`WN(^7DD@*2<3EaOPwRZ@~})~3`_qVN2uTu3GwCO*}x$|FZB+Lu?M*uq~sJFE2cVT z48<;+PDR2;svk=$v=Ue(#VFb}VDJH08P=A<_p*Q$DIcLr3D2^42)79A<6VLneIx2* z0iL8p*r=4cA;80$HZHzgDY=_2+I1Dw14LnJRQvJT5whBk){byUOW=Td)Ig(bbQgMCfrpH5<`9Wn+eZ=6UyRrg3we4mq;iLSEe2f2pJ+EuC2y#0TNM5QCims zy?QX15ZI7FNhIMZq}quHqOd0aG)khpQcMr=?Z;H2OdZD&4uy9bpMcw&<52 zqH{31rKT#ebdzOE*O3rxlv=KcNwd3>U!b%J2F104G)iRyMkZV$Dcw8O3X^t00gJ2- zCWz&nTaxJ`Xn@sdaNJH-Z4iN_kb0a5iwwA{;6d^o!y>?&YH0_^4F`itGSW-Y*54=P zJ%AbntF6EE0RSQZ@VW}N5GJWLl?09#yeJK0Vo?C#1+~Thido)vR2 zDZs5-wg+?+bKGoN2nexeLXXs2$mwduFTs8Vtfte3gkzwZiow)BP^p%};%Ku)CZq&} zz(=1sboyr|2}<}{JFbj~88X|;l=cB37*aS{&GtMr`hb|JbkUUM+?8n}At)>i{C*KW zs!v5ihNZt+#VecyMyoUJF$C+(2!IB~2>gr`Rhz39qhmG~_wvT>pQQJ44v587Ytr!X z?1AcdP*sVf;4Ls$wb58G0+XUygUT?BaTmS?eG8tfk~Sn*?u9WNTZ#JFSoJ5kf-^bZ zOb-5wlFJ6?0e&0>LvhR_>h+`;R8fQLKqymR_fqKqCn!xf1glH9aFil*DQd77735+X z)1gYuJQAWh%=#5b2y&15S!H(&)hZA{*7s;$#bddE9ps<+_OB7K6(sBEBcb%cT?OT# z)PrddS=0=!17`w*9@$l6A)OKjCs>4HTSAdttekd<42WeP4ZfJTQ&~3n1z2jF*&f&} zN;u;x``*;Q&jnND_B>!SH8-&`)S~P(vJ6*Y9#F%06f}G{m z`pA&Zodv+s4yvTGu`3YczFO|V#&!fHUJir+(`;d@J7l9*%+#%PF{cl6*Ghsh2*{Py z$nF&^+g4TsJBfMyOvnu=VLreYYQ?J!>?n)5GuXi8G6Js2;$7`95`tm?fu|}Vuo|3V z*5?CWdEoc}o_EEyf#j1ZF+M=_>Li=UVm*>Ix-OQp=<9xDqCjy1ujr9_G!ZZrh0i@$ zw0q~xz{!K$WJ_(4Qu4W@WV$SDL*Pn$7b!WYS-s%N!XUP8rGQ5s)b`zHOOeufP-u*y zWvz)7Nx`Vxobd8~J#F?u(Mh2d)NI&jy&0kYeYdS_yt%^7^wg zx(}3*@3JtE-PO6FM`dC5<7<;#L<(3-l074ej)AstOxn=9N*&O)@F*{P>Nppo7neJz zftjPab8wIzsxH+>a~x3An2^cN67a6pEQWpsrad($Kpw5oyEq)|W@g%g5R2;7g|gsW z<0IEWpI)n~bTA%4HTgwtsn`Bv!HXKLN43RKfvd$oaM+aMm$Rw^G>(?X!F7B05CU6) z(ZN#@47N(CWkT4+ja4;zm79d9+75xP2Ea=+&zymYyMy8Io8xgEvBNO{sM1bIVBv|{ zo9ReY#nonHTob0{JhjS>VQ0BRREGfo$UWkaEsIL(1veA`5YeI>5~M1r1=+zaut7>W zblI52Ep0^DGmB8QkjvHzfRGN;F`CN8HWjR-`bzubS{{H_P?`74@$ksG;{q5{t)IZE z9HEug2rRFX*`SO}JRA}%F;&}Fa7ZkE(^{JZ-UFaii6UoU;8-ia6pp~62s^tRz#CYe zLKVFMwgQl~ifteB8pu3ONO3uZ_n^-O=IuOSAWAINr9n!pdQ#m;&|qN9welH6-Xe)M;|L25P(y4?R!*`h0PrJREB> zm37}&BvTBFf)=sW8UhTfV@<}_PErK=IBB&x0abvfC`%v&-GH8^R^#kYtvMYpG{6+` ztu2Fo5=sn{Q5Y0csP|Pc_wgSpulLb%j99CF2cM8qE?W%;Q`D%6w}+F&7z$C@95|nI zrGZ|qhFL<31xUtcS@42{^1wBag&fV4av7jRh_5pxw%Y(6$=F*Y#Cr?0pqor`AOOnn z1qSg5Ca$xSMDT%KWL#s#w2;uu#w+AmhfC=gg$A(x-DIvof7nlWys1JG9 z=z*6Wz;Alw7VmxJ*m(V6A@IrrSs0-83W0p8ovIYEA?&(PUDEp~01(3W_??rB(LU6x zU-la*nSJluyQsHq_L=vVBVtff?KiN5UPXn3V8&dcwe?_Q4u<%bm&TfdU#r=)ioBno08KyVzbZ(dkhs2&Ij-hHDahL8|=Pi+yPLJO zuWW>=TUQ0?^1cE+=Z<3ne;~D_{3Hd299W>P6~+p+9g9}~V$ z)YKH5C9tVbJ3{a-4X$_P;i-eMCQ8LP-VOr0ruKFsCH&}@RKWRSr`;`+FK(0`T1>9S zo+wB&Q(92*2EKdu2oDZ$A9hE7DI?Seo|@5?i=^763iP}5q10}8pv2p!K5H^=v&0Hu zrnUs4Xc0>d9N<}6=wTCOGYQ`AL+wmb8BY@H<{V9e9;!mHdO|G~lI9Tayvu}b@iDeu z;7zf0(3T!~cHuTbA&awcU6IyWaioVcZDa?U=PO`UDIUX#e`3&jv+rzkp5zKyg&^b;x!#ZiS$#Ih8%PZ*aNL?-J@pm zs6-c43Ocq*i7p0)&``RT!bq|oSW{gx-h(X~nL?Mxb``@o-o0H1LbTvac{)~WC@Bpj zl(sG#v5|oxblS3^L@JBS^t2E9c+#2l6h3|+L>L=_hY*cNu#=i<)j%>jMAec=oT!jj zbZEEiS@2z3vzV~4z+!}|2Z}98uF`QM2Zc{WHoSrf0>;!L5+szd>TK-{k(L!JOB9%d zmm^U1MjD`G*gdMsCPhuI9}zH@tFIi?IM+I?@Y&Q>3zU%%Q`mwkXNk63tzbdR2Cj`- z*oqkxj#06j8~wrXm^k7}oi4ey_z9|VF^Zavc^QS$f-}eM%tAgu-c&1#!AuyI(TVJ> zN)K%{KK<@$L!<=vn$RrF#|t3A{i4~-Ej}FsT}t3lo;Vf`DGsu1($JI=xwd7vB6FFQ z1btMiWtNdCq1F>4p>0t$aE`o=mrT0XXMf;0g8dFcog@|yGv)fDpQ$d_l?6&Fw}D>5 zM5UA6AP;NOmHIphq%1A0B`=;t6Umfk3-kz;d@+VTFchPKo=4USW5;TtFvV+LWTHM( zO&}e1&(@rH&{&rCXdKbg6Xkf19Ts}y4JcXAU?^#MdxE}-`uM<~}r0VQZ( zN4xVwCPlR5C8BBZQYF8i05joW)+ymRe9PJW1%aJuUiamovU_`q# z7EuS*qN!0e>=V`eZj>^;JdPp|5tiD`fypfoPc75UfrMZQK|ocV;bFW$Rja`KLMseM zP2gsOOXNn$AE+T0O%zokK^~J8x!NtTc=3dq;6+Nr+g7&T0drdpVp5fmgEz+XXQOQ- z*{gbx5R+M_hhS_b~sr2#6MfuZ;THA1U;|xQ_E8w;BU2l(LT3A3PrZM~XmGi;ilmj-4*{bdbNpzKxXC#!N(QJNG zPEu&~yp9xQOQvEe^*~4uVzNLoDDT&Oz_HT3Vv~6NTF0* zBjMc@Rx(*;3#HK?Y^CuJaREjyvgI(>Dit{4Y*awjl%TVay~lRcr6g>X`8A@)I&6$19u{vY zUC8o2Jghj+-k*#@30B-y0w?m0JyhXJy#?ASlvb8ih0dcYW%P|fZzvZ|VLbot8es_| zGTk}i#&3)ONkF#0+71Rq6iR^qYCHr9v16HQ0R*g7x4lf~Ij#pUb!8+O(fGD6sseYa5FYAt4)*-85l7U_*{;giLf}=&N!_=O$IrHylg$AU=ST@ zWiyY!6A}Uw-R%$9Gb~+Hq)b+Ds%3OYiQ)5X0f!WEdE>ou@hV3bh;MJ$j9k1E<0c1EYfzkIbk65Zfz1c{{Jh^h!;kC{Q6b4lt3hZ7` zu06skE07yCSR=1UCu*CMEXTTo)krC{J07K(0O+J;Hnei8n~lW8z1o2M@P2k#Y6=*} z)^4V?U0Kg7R8kDKT1titDdoN8R8g!J;v(*38`dzjhZnpnO}o;d;iQ!47iRas=}^Mg za+`#HDFMcSZCmT;mbJUKtXWnVi8y)_#`Q*2t=L1xl`;1#R1E_P^G?hO-nFm9#ASIK zzq`gBxE1x2`fLVViVY;nCV`M!x)KI$YcuWG9})@~5>g#bf;mwy>pmkPs9H|dYw-yH z6`=%srIhRagh+@bb9aW12(79JDY4(kRi2II3AzV>nN5mK(6)j%FsgfZ@i-DPstPae z!`;ge9-a3?^+vE*=uW*6@b?^5VdBk6j#8l@TSq)cjR|8GLBDof;uo9fNv~_Y*d5Y= z)!3GrRl!@(J*9~g2|+|Go{bw|{07qi0HEZvZ)OkRjO_eURV&52o74-CdRK9uF~Fh&guGb;01h#>MW{JZ*l@KU77HOjm3dmC z(?RUbR7?6GaEgTRZ1rMvEZ2~ipnFW6<6RU4t51jyvXBx@y9R=RD?GiOL?#h3xBJ`_ zCPrP+ds5RCctL{h0bu-+>FGYK5CdeQARX%6HKI}M!nuP)4(3nPN^|;Mrn}WRG!|2$ z)5O&))M3_lsttA$yc|6Q13r(|7b;6bfeD#vB{{+C8*6DWplwuhf?RM?{olW1s&t4 z+6`Miwem{LSmWieAGM1&M&izcXeYLkIqJoKc-0*kZYESMEThx9M!-%Kz5S5tm95uJ z!uZCWp@Q$h=dJ>I#3Pgmh!9*FqM%HSLW1$qUPIvEh3BwSiV)!q2wGh{Py#5U8gfOr zMDX@XGm;ls4DZS6QVHYpd>UbPHUP}wQ zBI#XQ7T|H16W*Pxm>17+_0}Im?)c&|u7-H9HA=f9S9$|B*MmXe`?*AiQnrI>Cq*Hm z#<_b(myO*nTHNO9r*ZXd8Wt9?TX&BZwst4bqr}S3HuI7D_cu`Dk?Huz5;i01TVarr z+UO>$)iDg;O=R1d8UUokET>+YV>uX?Rs*jdUcRjMD*j~Y{QgREJ71?twA(0=i0ZjvNv-i0XVZ#GJaL>Y-)S z-A{%!GD@ly3Hkl&aA1R7&(RbOUPF5a^dFk_$Ggc0hq>!VB(J;EED=NKg(@ZsKs@)Z zlod0k+D-PjnRxe;{vITTJ^Who;xT*RyH&I+FHnfFT~sRwgNJkSc_GyYd&=8^bpDWc zL8$MGbYxZoZ!gh+(*2SiS|WxQ6KReUoFwQFs=j~xXOAbFp$t9CIwEIh>vUodk*RYT-rKapBfft2=ry4QW+ z+R7}0+DR<)wZQGRk~)!z7b3E)1UO3!_ETGliMdR^w@S+(W9CtNaf2j%fKS1v!K;DY ztop#xmOI?{pn&;jn{;_DNm8p}Zk zK-Y&@#LD!Sbh<7&ec5Jw2gORiQ;5o!xWWk88gIO4NY=yXH#*=Q3(9@*=sLOh2068X z&q7Vk)omACR?evRPCq2XTc?Tk!Y29NOyw3FB*gbG=r0nJu6y=|7fHz2-94%nyVo63 zy*k>PcF=!T?+ivi5UpWhP zW$RTP^0FGPzO_!ugB~uG?KqZlBNi^(yDRiXLcAzV4F=+SF?9WpITiiJu%GZGUgoL3 zA_WPlW$RsM*j9-zSW!X_SZ_ducE1V8A>O)A6vIb2xqq+5eXG<%6^OY*Ojl+55wAv9 zuQkF1G~O=hs0a#+S#>A*(R;7twP<)1q}J~Yz)!zYA4##4TiZ@-Cv$b?z{(fBv5GRT zcaR|E-5W3E+f=xA1AengY`jI@RS3ZY!8fI;{lWOgBB4b^K#;%Q7fU}0_1Bc( zj(d9hmwY*keup;l5cBSOlQAib_kF08h#(yO&0vpq=z(>-?zwKDP;GGaW!HF$MC+hN zLcq{^Um#`Lon5Fa!HTJ=O!;mjEPqy?j404`w8mS<(O!g(y1@DWC_C45*L9pZkEr(} z-l+j){!<8ENM2@vbSM4gPoEtu+oDJimqL}Nm*JZ&0T+xQuD{TS49sh7FSn0zV8Ytx zZW+>cR8J6UYH?8iQ3RO>VIx<`kqtDwMHol|>>gUWdGC#P!Nn6MHV>?CE}AlSZMlN# zM1U3?Ra}Zr8a{>$wncJt)THjdG6!OqpLW$6;FJkx&`Ry=@-y(52BM1#AnlaK0bPf& zIm*)!dzc7!p1%}zKzVSAcfqCBZV_9OoYWTmaGP*bml|pjut9}sNSZFKQwowdej<6| zFyzqpJMK1|wmDjfRFC}p=&AP}g5)&j=B@1dZ>aNrDUCVZEn;mrPvALLUSB5+jp*m< z6cDPD>X&HV=n*F9`>MDPyOv`|%hSY^1I*`me}lD(bp^!r6t3&lY}h@AtPWxdQJByc za44x34?P%7OtOr-{KgNr>x2?bq{w(PEmni6$CR#oco_1XVVemi<93-|jhF1qw(VC=+A~5tfMapwg5F}2v9~;AE&EJ6V=b{# z1V|w6y_3t%!!05#Y3LWr{TTqjcHnPLyjO6 zk^a@TXpvnH#hsZHYJz_92vY0kBhlOa4oobM!&~e^_TZ$rmevNQTqwVFSiOFQ0eT%m5m+i1_yBSwTae*kO+pk0+dQ;uN`ZZ-UuSGGz=k zZ!}qSBbrEp(OCBCS7f=~1W%4FXzvE}?T9mMq-stWj%@>vwjuYCP;uyvmI+3RifK@b z+m~EfVJU~470D^u5ZW3U9wJ93`$W`Io7ROU#lcNXD%lOJ3{a0SQ3%A^VR{%pW>HFf z@?9C_+>qlVUCvChb^DW;3u1Ut|5}a@3p`yGATaaOND%5!R=6|8v%c}>T+x^IJDlcy zww9I5-YJiTJ;*=O;F9i$e$tJ$tgl*?F5uC1pQXbHu;-7KlQC98KYcAtj^ zM>&pu9SQo8N_g+5jGQoRb#kqI1*cH~O$%T6vx{zNh_ruCmA0u$(k}bw=VVu=aw$oj ziE1Ydd2=lV6@Q@vJbp7!~;0z5R3z4=seIxzFB{MV@B<=R_ z1+5egeW>=#En7#_iUvtgGlhLbTWW|69m*Mdpp4-L#Hf+v=rtrqXHlPKEf$WTV zr5fc8z*Rl6Wy{mpBey#US<_Lf!pYNMGdU>8?ur(u=+tWy6!qZ{#l)e^Qx2T6d+QDD zq=sN|(w}+wat?A*+^HypO*5JE2-D#xm_b@+z3maK3*xpbnv72P5@&=Y0@`Q?voeIf^ zF@(o76n@OCrw|Cbde%m0ezc^*GNXjb?2$IQx%SIdgKK5V?hcW1r+hL~EU83AqXx%8 zWU9dZ?|Yq8FEYZss1?bFo9nyp)Sagb;K<=?J2;kL+rN2WuJLPX;Fl$Ym=NT~-jdIv zi{e$IMCk>7)ijy_dsdEv#zoVd)XELNA31|)PJ145f9IPjZ}T?P)FH}xpb}}Yb@z?l zbgw2gfLn*t>tgp|3!AUmd)KGE&WS4}kk}9Q&R7|8F&uXs7Vwt;2ukP8$xSx+0~eD0 z__Vq$BGru%8JDNjbg(+csS+xR+Nlxc=`E1B;r)hrpzJ3fT4yygAHHoFAv59Fbw3 zS<*eTWV|ZMtn6~l7|s^BB|LPCkRY?1*M2Ah66^g)ODb!SV__&+<&8TMKGf-(UMU;Z zS0}mJ-9IXVO&Cd8buX1fF|+~vcI9l~jiWgg3jeki<(fqPh=200-Pp(NiK;_4GhWdpnS2jgqtPE<`nPTowckplo=Ur{3BbI**6R~ z?ifzE`A_wM{*jk$)U}xO;KBkKS!dW1QlcwFS>~o)apy0H@J9!Ppc)m^Syn5iQ2Mq|`%$;2hrFbe`f;-oXB{7SZmx>4)>W6EZkbr+H=Od!-|m_RqQgOfURmL{cx(sb!*$$_M8F# z)gHa!zT&d^#1bijDC%ySE@sI)4Q)?~!hN(*&ADNL)RI$k2Kh@lWId1A_&!cL&Ezni zoCj59%R8gUx*yv+4CG^JiM>#~xNqTc*7=Wi(Bi_7%~Z8SzN^)HEChN;>)F&eRA2FY zYF+ZWPk}bDL}`XXA1j1@+6t#@XFc+ZuqhPA*pws8CVQ(6nGp>@Db2^tu`@vPBO4q7 zRUc>Xq*TQ-ROzLrzqi7jb{3bQ7gJ!)oodJ<9O^aXpMdo{zd zO_$*?p&9Lu(|U^luKBVxa_^1$0L$U8T${)iR1_6>At@|~b;%sssqflPYSP}j&(3rD z7q^+AD^P|qtau@=XN7FZ*A({z6k*NnK(^TG z9+Uv2Z0WBtQj#|(e^$sPwTg|5w>i^W;QsV%n8Y_+`8m%7#BtpkP?d#}3a8BWa1otx zuhK-0YIm)7ku1T}M|)F4QAub^R2j4Fk9JUzLB@8__QEhRydit29fo))TbdIKY#{Vw zDYPWnmp&t}l<^q$K<|ZnxgX9JH3TgbYK%@ero;R+Zf6gK{vKd@xk4{!TZ%Bwk0l{u zz~I#c1Y`}LFl3ruI{h?ciz+mq>y{W&^IUO)p0ne}vPMsEp{ryIPhRLntw|h)1HJ~` z8gMB#VeO(BT;Zr*E?quxBRs-z150C>BU6m`m$Oc!cBeLOVWiwYvu7a)`t^3|Au&93 zZ!iRdDvfc=Kp?x<3#GDylA;9dsNaDd$lK~+DAWy;Pi)AN=N)%=Xo|3bEKm_LTq2E) z=+6zWE9Tcs*=-n3F9a!lfhW%NSEH%DdsQd+5di(c>{}9w|G{$4#~mL5 zagG#U=GesAIkqktUH*`IKeFrs?21eL>-;^#-=iG374OhJC!uVIr93>%KHAY9<%xB) zgNU9ELV$XfjUbxNu=A9Mg|wqR0F|!IbLOUVM1tAZ1i|UXgf?Y!8He>tq6PYob{bu1 zhoQQ5n)qpOTUnkfAr_Wb)Gc&hX_v><*VGK!z*OU|tXxsyJzCDvscYyKvL^`wyubm> z4XG$Z+oz`*Y--6|Xi91qNt-|{Y zhHLQocQ2oLz|}F2or8!CmNn1Nv+5{HX!9IHhb!rqAFwA_mKYHMXt`jp2=B+jq@J4K z3(Q~LQA(Lb+7o;`O&2v%J-UZm!d`O;KHqU`b^MiVeZjC z61@@4o9lst2~$LU)Vuk1(V{Je6e@H4%uRZe^{`!yhL}Il=Ob;AvdEo+5o;SX$cZ<# z!NfZQbgQN6dMvnsBQPg=iNACz+$|aZVVZKJfoF5&v@JZD-WELVLdC=Zw1k>t3gnEwki18xY;REm_pEXT zb&c@`C9i(#9!lQW)-va~Bme!Ar`|Cp8ixvNIgLhnQ#*xn8+&}q;ReK<;k#?v1QdKF zs}d@E0=P|-^Kzh`UFY84#4gL+yBku#){4FbEAv)K2)_JUH9y~*!Z{IxYjdLR65M)A za2165%OK^F=Dj;7i@t^i%&bm-VGy6qW@|ID0`M@LffB*pL!@o+9|`NDY+u&wN?~YY z9C`#W<+c>&AxJxP}2u0H1H^) z;my?1w%gz+ReVl!UX2>NJ?)Alw0IIQ3ZYtEp$kxMcW}F{w;-;54q4AVoVGDPdCJ$L z`XOtyQk;EqzL5fT1Ir%koEX-pVy$nI=0t$09~aYhHb3eshR#|tM$k06bvaWq`qjah zTOKoq9|@OmX!YBlwV*2KyId9XI|^w#PZ#fS;NUCu?XOn| zp=)#n(7(>uW9k_=z>rQdzPF4!1_g=zCu0uxwJGB8UMwz+p+7JaSGLs?*7IF71d6np^N}v&-kATwJ z3Up_-VE5NXrPR+>he-e$0L>k~gP{bez3Aa7SiucLviV*2Qb!l`KRG z+4#Y29820%5tJR^L2lI;ik%{j`w zu-$U+xKir~Jv008tnBa{3On|i>S1Y)DdiEX0EhE)-#*r>X)~dzrQ_1syM2^6th#++ ztD@zIWs4)P9zO?x(f*JsraNnm2&&BD61??Urs(73&gX_#p*Fe_k4<2W4u(U&}jQr=d zG{;sQR-%i}^!O5c(?!lv0tq|2Fq_VRq~g3~u{vaTQJ>OGP0Vn_3MUy|N!lrVRIFl= z1h|FZ<$m?V_bTIgCct;b?RsUa113#N;|jGLA2-tG@BvExg#~=r!w2FKFSagW%nu3P;>KW&Tu|x>5%DH_okD;M?yl?FmIXDe?7B2B? zB|EA9)Tg$MUsgc3*-?`Xtk0)nwpkKI1p!~*y>|PrEP{Ndg#?ODX9p3c>add!p4WhX zc8woRwz@Nn&JBiew8Sa~Be=6@Y;u=PLpfE5z{OyCGc*1gR_$YBd4v!w}|mM~KSSgzNNU4(KIX zhgq7b9Tg}-4FzNE6uV|f6=;S`9A0hJM(%WbrC_G`LcLS7o0rU;X~0T^L&zl&>~eB(TH{Il7lr`IUDRV>p2?SRs^T zLJg@xRXA^X?skOTu{@!g(TbNf0}9~U>Q{VZJpi@}?DeAh!mh-5sZfYFrs7<_n?_OE zBj($`K5@O|^@p1CY@1JQ@bktbJRipB+YvjOX=4ie5|%FL7-~Kz7kG3Vd2A6V9hTIT zrUSO4K1P@sep=a)>~NP|b;}v~FMc3)e|)HY;3bofKUTAl!IYKS9m8EppdHw;*>l;a zViaGy!L~5G_Ts9y@@EokZ-XUI2|FDk7}$k=_+SLp^Bvyf>9NgmOeOaGwUU7EZqez& zl74azsI808wCMR^C^b@{6^KZ}(7VM}BhIor=#aU|aGUjQNSviKH;}_T`4K==Kn{vR zNK{5-$Roz$-ZPn~)!fTv|Ix!r*BcRAZ zP2iQ4xzQr$OIUXMzd;c+3UwSfD?4C=yT<~S*Y{!w(S6t{aLDEo@s4~Xuz-++XR_!z zRzN-?7Iu;}v~)~+(NZZDt&Ovj6k=dc!_2#TJwBx7DeghE(9s>qroB_1+ew0^fb_2ZH1vmd-54N?Wv=HX%AQgd`d*YCjL(xHeM;y4Sfa zAeHH=%2#Y>0Xp@u?#adOIq#EG4?$iD&z->(%RC{LSKpBPK2{V)jYdNlH_m3# ztBNJV0VFvN2Au+z^A>`_M3~~(l&Q^)lh#X8S*b6Emvlq9GUIGQPv9xOhK@O<@pv9~ zx-|Ew@L_0N2~cYrUM-MZWF7qO%(}IZ{aess&nP8TCXoBq%cH&$1A;zxCb08V(Ak|c zhNY59TskcyrK6d|g*tN)&YA-Qy=O5y-;=#<3vS}@hlNq9Jc8kA{KC@cjhCc@=D)*< zAgxY!7UyfukA6l3n*gjTE0YHifr~VSb6Y`x2VNg;+bHc$9S4&Ca6erKgq%l^N}dHE zWvkP+Q(_O&YR0Z#kK7j|gv`jr3ewhT#n2h614zPd)Kv5n8_lB)-gz?&t}gWllFi3X zCB1!Q!vf9_Hj9*Gz7;VDzEifOJ;_utyZ)e{W21~taY zK2IpkHrcR#Evo2xEN$N&u-*en^Qsp_8x)^nE@)o6N8j?p5}w*HNN8yZ1YKJBm~8{a z@IU}QbUKD+zqzbfezmg`Ij4Pq4OEsMGN5$|Y{GDEluHi2+PKh>m$khrN5cHjoUvO3 z*U1>if=|eJCI(cEl`6Vy50s)z=C4W+=$@<^*T~c6MSHqsz6;?;mOB4ol>`2SG#E zGZU~2A^0^%85lMA@*25j+kth!lmRxE1fP>6Ltj)#=ZTq z6!Ph$Q^wcGAE21sJ}YMeo%DO}PxiU-tF%;HpA-hOR_l>w$IAA~B((CD)oQ;BZo~LpvwsxS7Etx z?&#z9Y(NDI90b3>_W3=mHGp}LXSt#84t2<3``oL6dfgue=ubMt4g(B8)P9x&vR~FB zBNzTS>N>rc;Hr>@bAAn%XS$RE!nV)2W1q#|S-x_>Xjm8u3NT=+h}&w`UOa8beb97n zYMA^^S0D|Ev$KIIu$NUjGytLTQ*~|(;ZKR98b{0H%bbG}k206Jlwlmyu;jruvbt+X zd#?!mz^z7B7O2r0HFaQ|aH4~{{eAd+ zlx+;U|9czq0b0CC1$6QfW^J{$vduSiXwoAWk53V8Km>;cZG#neB)G(|?Zf#4;u+Cz=CeURzei2;7R@7<914Le|L<=X47kidL9 zkmE?0{6Ot33=#|+aN&Je`uIE)RCC~EJOU|?4@7sEYje#%ZgSfyNy}`{Sviki_jK;1BUi%Q$Q^Y z>hvYJEP}=yhsVa2a}H>5>xRoWhk;pHm)uU7EqaQ>N!v8LS!Tedp~1)O)(~|+Hyl37 z7WQxHu0Q&Bboufd4P^yqb`)fDUeHd%xraC6DGE5`3ak4EgweM_Z6LA&GQ+S!c(3rB zZL*JrJT+Vzj&^M&V`w{QL&GwDt$eBjd}WjrKSAsGNQ8HXX2lliRuCI`UGa473@$sp znj1#WcxNoh!lA`C+Z#xMsbVMP`msDazuEs{nC#N&;SEx3(29<4vp!-r-iYM4EuIk$ z3S&Wez|@zN+wf4i~`0TYFufydupm9A& z?)DxT@XfNi0#A${_Ho<+k*jMagn3U?eq;h~FmQAzv$8}gS2BPol(FHy_n2h(IL$^J zjAJr~u~Y&E$b)@jf=9W85PpD!jB+l1z60O58Cod5g}-|Ne)yOQcTOPJq1nE&tMSzb z(gYUama@h;(b96hdk9?2&|JWlADoUO%fF?!N5j$~{LpzzW?XChjdfG`IrYUcWP~|1 zQR?vi`&e9yg(XoH-kak1=cVw1Aqh}qU?6>W-P^B=KED_XL~7QZn-ThJp;HMHVnCjl zB?C9xI(8;flK7SaNlK4u0uX<8yrXB+J8#SdUT+ch!~qB4?ch^g%rv@6 zne&mG#*hz#Wd-8$M0Vu(_jOZl(`77?1*4mmxW#TYMs?=s(oP$OYfItaPgpZthyn;Gg=v;kaBlw8-dNZde!b}Q5|-mIG||bJgG((;>qcg?Q&?9J za^C0sTh#6`%XXqK>~x_WX7hbR3|r8AQaUbLwDD>#mZ>A8q_x1Uqso)tBS^}gD0uk9 zv{PQ2C(1!Z-7G0F#K9X|#U3xb!rUuUeR@Z1vu%SZD+`p zWtrxaa~Fmt9LGFxCr-efAw4?NdY&KsG4Nl9!{-TLI7)Udx7Xpb1E;gKUyzS<% z_b!4P&K$||XDI=lH2yik&AvoTYKQuVId7U6p*_6!aB|vmW$g$12IT~LB(nI;~{3h-7gdyzlV;HVa=l?28 z3ecbz-f(lL>cVlufpzTRMuQ(>V?{q+RE_E5{Z~@ls#Tx-1PdmYyF$DJPJM&&6Nc1~ zBQ@tAie2P}*PG!zmIGepz<~7Y{Qvnrr)h zJR~qtUgW%mj}F0NPw-g_gBZu$D-xlcUp8g$@sM*e4!B-vqxwXhbO6vGW8=+(ESc{~m4oz?XJNluF$CZUZ2N}Q)>s9)r8??qm1iiL)LL7y4Q+Au)KGE zE%x43hmWy8mE2mxSi6q^s}2>Ga63nF2D=ObN6SFu+JdCu*p4y1Wpz96OQ&;jX{PJr z{3!%Z9dty%4zQ5h6?I?+$I@0QieM2&G9$It5O3F&jgYL#VOF5k?b=e2x_F~J{AtKM zhgN^=?Tnp7F}oIm{6=PLHrbmx1G@UvHQDKC3f;HbZs%eljnuP z9PDf(@&=dea_&;LHGk1iNWJ9kSU_+`)D6U^JCJgd&BM^%{|tpJD%18=lEK`^)(m26 zB{V3wc@EN{(Dp>Q(S0o2o_?nD9Y**|nR`QwG1|S6!rmQ2!E!V)OQcb-(=*_gl@Q`a zA#Yp?O`=?8n@V~awr)o@gAqv_{db-?hBhh%f0uB6Xr>1Xl0vnA9p0xgnQ}b5d;83t ziEs@0m+#$Yh+nrJ?9m5jU^@yT#qvPT2!bSO4e#dM$N7Kw8t(x2yrH9t6Rj?~fKIi4 z;GZix^to)s^B#Wt^n)U}a0J|ivWE%%cg16*Z(G1Q%<3>%oymsQ>5gf~G3B|K#_eMT zI+$0r%PR~|KoxM+l{AU39y{aB1?E<1dAO!58;L}=_Bb=Py)7BdSF9G;d)c=-@#eJ9yUHax^6Pz2pFMCOKl;}nGJv5APWd!l>inxLRj6{mQ6 zup0WByGFVhb_>KdCkXE6s#9-g`@k8Y-i?5 zV7NqTwW0#d(0RN7`%$8PHFo@W|Uqt*G(J64gEmQK+fs~UNN8(Oajv$RK^+g;Ka^~iE?EdC@Y2*sD3^9xIh zAHmnlN1hDZLFI^qN2M+?Jb){xW$V~9hB*01qsuJWJy)@_`OoQ_S|s~Dt|dsPZK(11 znJ0Qg^9|hna>^`U* zLdaUS{!XFsFT9ZRACb_m*H=oEZF(&4O(hrYO=W_@vhSj$TW(}_we~v#K+MkK%B%;{ zp6+ztk_ptNzw)F92a!I)65sq_q7-nGT&WX;r5!PbPc+1jEC<4|J!i-A+IjGSX(@-p z&yOswcQ;n&e?+}gjSlrQUm+ZA=t-xW)Kf1M|0$8+4yF=iX~ob%>Pm)`2sXo3&&|j2 zgW#{Djnc{x>u={E3de9t3738D_dzS13<_k)ddTyzzrQan2quWO*ERy5I4Mj={&veR zb;_6Lsk;!WH-(i=?8g#a_=syIG{g`PUqlyNxQI*Rro%_p1OL@L%`a5)_)2Nuo9|4< zJGODx%7pS%i3BVyKvL&c|M?VXU0DTx{m33gOEK(GE|4E-4li70wkvC7<*8I;f{3K= zp%!{K5Vc;m9z&d921gJXeA&2KbNaD^$mv^%X&=(!q!Fk&i-4^5rx__~;ZY7ySe+m6 zgG_;Emr|sDj;*;_rQ;+A53G59bcg_gD}cRCanQdWd=svlPe^kG5vW~%U=l^9Z7j_8 zZ4TU!SlW}#IB=D=IRY#XlbnPLakD*S+M%M2{=Cj-V%YnRFHR6xNl|WsQqTK?Q(PC? zy6Flmt}gZe@~UUh{Z5Ab)3Vc+lNQtb_sm~K&T;0NRcP5P2YGy8HH1eWI>>L*JSom@ z2huF7(}v4A<5%uD4LHm0aCG^sW^YKbMky+$V%VL1Ti;}jCEE!iw{C+8^swU5MGI-h z)E-|qN0qH^dE&z#q|Z(JGOrrt{Ky;iqp&yZZ7XvThI5}Ume6W2WJ<=a*4q^UORNarY^g6Tl|0el<+QfM-2xvt9kdK4| zT`0A@Zn#CZl~8kwHLgu&)L*3Kk0ExtcG0L`&vUdqJ`XQr6?4Fj%Q42vWI-xP_wy4^ zhWCNE)Ny4!ED@L9)@)(>NtxOVi}S>5o8Jd7?sbM2L%SmG&`LetQkBwBlmMW2t}uv6 zl?4SZac)Px^&j7U{Fz?O4%f38hJM}r*SLGOZb!2H+e2sowab=H!1|z!)fhrmxCMCj z*zrnfP!7csk#}*mdozJ%x`>;e@`F3D^(q@XFp%al1$zF=l1V~Q`IwJP=*G`-ZIik4 z9|)d}4C12OSK0zona@;?X2e97GfaF8qJAB~=Y`ERDH>Fwu{N%san+1=BWSj!R|~ zx!~%<&?cjrJPsM1G>t0gx7gyJkNCVIo%l%F6)TEoKJuGg%OBMV@0w7J@g5<^*7j_L zo$i`bODfH~U>b~JncCe}en@s3SFqgo^?=f2|BfglT>p6=^qvc8HJ@lV3CPg(jgPzu z&CN&NH%Nk3(5I!8kWe)H)2?iJ6*AsH*THJ0=&7r7?C2Q!j~z@9r|@G8&DDna*ouI1 zjzuTLYn$FYe5Cmsfw9lyOh9#ZcIH;)HaqTiy0y850KC}|4Rvi6lMq^KKa6>TLDo09 zP55z{(Z)~)Cf+$T?(3}P{O6??ogJwETw1;jEo?yO7u4Y@1V0w8EFD1X?iLi6xF84*ub9bpi*uz+&ur^6K6W2p1C5DsuOzU!OFi@KGGHaCjLVU-qdL@}A zt<0%a1#V%ucZ4dEahBb$Lsa}o*zOfYWR_^83DZ8$ZN4^3{`kYt+;0fKF^s5PkB96} z1^I^|wZE`HNJMBS?8jFhUn2)LmKLBZ-J?))+*r9}lsjOeSW4h&dZW~l?9F7oq&yh9 zw$pexWuA$Mn3)IFVD%*DsXGD>PmrOhy`_FfdV8(fC7edvQ=!$2p@p=wi&sUVHxh+E z9|>cl=0*sOsKOwYHJ2FI0<@bdrjDiEQ6e#o;fRExym7lcWNsS6I}%UTe^lsW>$B}d zY#4fgrSb1^4;63#q3U$p=>82cf~ai-nw<*Q$*s7;$(Pd=7<(s=A zzfjrB3a|E1!R%kp?Hc96#P;KI1T7H5d8pp)|AHIJ7P^DNTzi16ZVWMINDD<2#XPXx zNIU9|#PUG!t^tr#;ZYw-ae-xikb>)Xo38;gDR-U)8j}){T(^l7FBR>{9N%NId(=|1 zu^e0cF@UJP?x2I9n1`z^YK@wy{e7%{oIQF88K8I+h9_$^xCCD zd|Q4Oatr6nKU*`4KjH>Hyc{!4kgt3iLaG1$&>^_Y-aqNl$Xz1f!hBG1KjGfs`lR%p7yMIGzOi55jdG;*<-gthz z>SK4S;1dgN2s#r*e8&QT?Sz`gu) z5vUO2IV@BG^2PPoV-Ll#O2NC8i1K<9_mNOVS;1|E9?Z(W{jnUIY%J?EGi@bFk@{$x z>|6ac#b-@Zw*l zc^ld0>&-@|nF`QUyREbj+3_7y3P9zbITIlMFR(g&zI>bAC@9L0?O6J-R#{X00)lW$ zXwHvgfexV2_~p#C#eIyvna**|e^1|85VQqq-my?S{rW_tmtx&- zk4X!lk)TLEPm~yLSgx(*bN9%E_3V%QC#>+k%sP1;H7@+^VBIc<9l{j1Uca7GI{r$% z?;ZHij|-VQOTPoTe84f#Jo7gB7LAW8g&gf^u#vrvu7<~7i3*VDjFERbm%$wj$C6Hd z9;a>4Fn(ko@dZ_QYXZMD4?gUNY94Y(qgl(o*D>MbO-gp;FMa4}J?(VBYJ#;W;Pe7# z7C?f-!N@W%Ki-c#z#YuAlL`C{@V#J*!vrio_MYAY{5s=2oVsl-=M^8Sy6>dOrwuV< z7hAz?tW&z+f4ZYt)?URqP{`T)7i+R#7#ep15vF zzxk{Z8Qq{O4{GpkxRKYMrt>P$uY8ATSkBMb369dl-lcY<%@-&J=PK~=KfdsI@49o$Jiu( zwh(rsOgN1&@{x$;thFm9x$hmnctJ}RSjfNLQ`6b`~2}4rOK^^cAj9{&`yXRiu7j z66|_0mSVtMi@FfFY`k{`78HbRmH%QVZznpFdExiFi?c{*{Omw^kqr0E357+{_?e#j zwv|wp4`{w}6zPH~AoL~7(ELHY!*zj<)0D0npO`n9g30iSYJBh`BRJjnCZcew%PjvK z4_%e~s35_t{YhTqiHWR69&t0|J_^IiE`g(xZ0CFTz$WL{?iGfbVP9wbNISjsX#P)#_L}(;xW(1CF_R}U!aPlG zBgg(%LM%BD-9ED13izu&NPb5i`~%e=ZO5&70ehf%tZ^wI$S%Xs58)#(ru=oFBqP3N zKWSyCL%*U&ppC7DWqwK=0Osy$q2p<;0&&N6^ZF3Ex-~B6y0O;uI-#HneO}mP10!IC zg7sEVmlG(A;H62#g6?3Y;2iqA7;c(H^uZ6>Wwf+ifkp$L!D?HPP*%U9Cr;}y-}tA2-Ra?iPP6DdU}WsMwp zo^k;g4|}+Hk2|>k11U<+8yBO$9;)wB2syihL??0`xZy-X7AOO2*yS9V6Tv9MV6v1( z$;@Vy4|ZbiNPG7qhdZ$VbDePus{oaA8s9yJ>Q}Gf_%tVvO<`}O=~`qWq;nud=OZJv z14PN@j+K&&Pplh5=nrrTM{EQ?=;82&j4{V^1wOFNM9trY)d*daqidE$8 z0H3;eYkOmd8z6zhj<<^4W>hEjl1y9^A;mv_d9v-ALunGWh%H{lD=KkT^K!|=JMp&#YVkyLm%0zXavsDHEUwHE>*&bty9*0h zo9)p4xY2@%{8cAkO=+Jd#HYl2eKZfo9DzWw1hx0n|I4Qm{BM;a#)EB1F6nypOb15G zu^kcBSTnHQPc>Q&IdfY<;RD05@#Oc~^NtCsjy~%0=!a0tzuRt_A~Ga=ZMFBV?GF|F z>F>{EK3O@u&GOpCKrEW7LlK5!XirdE|6W+P1TtAOc&cy zl3(UeH-rRW1`7}5g^%R23PnowXdrG$653Xwj^{1OIPd9X>{sNiG*fm))~$ZvclXX| zAYbAmH;i^+UKG-awb4k~Akm}M4jKTz9xB#{`a*#*Xn;a#>kAs7ciN?B0_Nod?!fCM z_YG~|x-((;U5Xo@oq0#sUfd1G{P2*G=YM3wk$3fw(ByxKFl!PxO?d#*(Yw@ zNGvVr99fgt{XJ%?Yf!XnzvxbA7@Qv=oY?z@bDrMtTC2}K zq|gH2;qhnk{#(j=BJIg@kgUo~V$2qMu!p-MGYqkDO55=nVJbE=V82WvkIw^DTRLSW z%dSv}E7Mi#c1lBOJG&fP?0+ABXCNK?oO6$m!&y5qG52|G=ou_6Rw?0RoK_xi(8f64 z9dMxxLzzO*y@^_a18yn;h9wN_pLw|ccLUy0`5n_Ml5E=1Z!jrk`N-s|8WP^~A9mNQ z5<(dYGh551_r>w3Tj;kX$A_A^88Vw4QVX~^OOZyO8I~(WhE3`{RWTfyDT^@V_QSPP zFdu&f;ZIP8m|>n>UZkJ$8Hnr8E;})o5FXqmVH6vYBGlyfeSs-$gjmJB?*|g}^<7v} zx6z&klXyXlJi)FMI78hhSV$@5UNZ#W6xomu%W0N0-U`17dfL7?bI6P2q@%kbdFe(*Xc(B z)(R7O>EGN2v?v=eE}=e$H9$+qTpWg>m^cdSu&yBHnK zqsYYWhArIeol>ZMO^cQZ6}$y6-zj?9%af@X&oKkrRi}^Lig)tFu&r^5#7wG9hDiSig$Wv+`sgu z!+-gok9Mj!a6d79QU17NDb_44j;%A~Fb;^6iO=qpPg>d6x=16hoDtWvO0_#|d&n6c z8zC@;mYFD>HZ`YO#!5i<>jOEaLW_G2EK{6$=OfXj2~&S;3Po&S$Z(R< zHkhTb1*Ol=q`1_@4fEu?eOhy?lAPYG5V&u&*dfaaK#uz?2ZHQ12v)fvPJ=#u>V^!FV`;Os`L-9o= z(YJ3zEo4x~%v9+e-gG0Su+oA$epXM#ufQN=Z*{bjk$bYaL< z7H)jB@ffP^>l)cz9cj~ktfo1v3LCcGXOzG0l67a6ik@wF?SryXmP`#xn(zW@&o08b zV2NJK9lMLWwqU%i1O^zI?<&J?g$oaFnF`wU}t&{B`iC~vcLT+nD>WZ6h%*U-$A zYj)RqZ9{k2F+M4amTm`ix9`ofB^UPCq67P?6t8^vXM$2~b`AR~Jc?!r8&&LMbh})k zlUP0Gqj4HT1Lh>FC>nG~{4PNsI2DZcV>XGz#)${c+7HhbpQ75kftj`2=?lI=#1ojcI2?TL5 zDz%*37Fh~cwB11muZVdJ?Gl+aNjuxiJXh8{;Mz$>3q39Jouwn@559Gp%0J$hl05%d z_5piBzBKQ>EQ}8d16W$xtE5eCiN4YU=9<3;L;6XRiec#ud(}Athe4OUrv7YW`;BWi z;fPdn%Z+O8mnneHRCMLd>)WX)3yVMpiUwRe3l0Z5F;zlfky_gLAO?jVB_;CZj6H3$ zq~7rr7kj_F%!u{IG6i)73|+@Ty^Jkz*YQpErY-G^%iekDYl=TY)u+|KJJV5(uF`b) z@#QF?FOpC1^AKZ9Ri-KjdG*c!H4p;@*!0fJ`0x;ZPP%6|A;BSIF9OrWaA#@+dv%W- zA3Xtq*r=PvK*+939(JX1VEjR|y{*Y_vkM0i*rXVj12@kv%j#3rONP@N_!5-m3;Ix3 zmBn$ zk9p#Xjbd)H=dwVjo9o4Y)p#4@=Rp)aKH9CnRkFl^O@;T^tMzW@VRh& zn*$y+YeIH`ivMz3;WuaG(aTWT-3+tohwi>B`-r?U2sIc;B0Y3IDBZM&jiro`v4Idx zmkg$2S|gi3mJy$AhQv`iRE?npTPx8}Lw%aDkch>ZD+lHCE15(vW33X?LJpn-OP2{2 zCYwxAx8k#tnx-fsmYE$(Pt)&v5lrAYv1)ixZW#h{F-tfvl=>_)57tLnheg_{X_o$Z zd+1v=d_K|+-wgejgda`;4b%SlK?7O&{h8^XD-SDrp@HTG3b+PRAPv~sqRE4$b91cW z1ZWt_svl_L=i6(EB4){pcM$Dg>mv2iH%&qCFug8{^dD14lSb&wMI$lm#oE2*FN|gm za#_`9(`$LhmW(53m zD@fn)nY;K{qII@lJwAKy`1QSbe%#ag@|m2uZs|Auvb2yea0Os#`z*eDFl4T_s+M&* z_3sY_G6Z{3pqQb-x{Q>FSY6us^*hUNXxYZuE* z4~(xgjlDUBm*%hXx5 za&hQ5`Hp3acoG-(^&3Lp6W%$*P7iZiUMm-Ti8PXaI}>jshtF(i$%R|2iB#ab@3R*(!^I3W%Z$lB%3^nzt;6(Aeih2Y z+g@lI-(p!|HCdUEnlnXi4j)to(bBhs-r)PSKh`=&@_a#&zb=0a7eGA8K*RGbS9o$P zZ1lKZX^(y^F&q(SE_fu%IcvD>%{kVtXgvQ=sF3m++^6Q#Ym$TTNYGc#x0n3hH;$9v zJnmu04tdK8cbCSl%&S*Hha*~fx|Z>SEoMsy4hFbp^2wGh(4ux4cpZ}?ck|z*W}UC4 z7g+;D+M&qNJ=o!}TTmu3%o1TO0oylkirk6|!*KHNQip?XrzJsVC1*0dzC0-J1NmT0 z345dxc?dDP%l>V-T0)mGaz2=8DI4n=rqE4(Mn$jp`?F)^)QP!7UllTbm+9Mbt8}0; zN2kv##cT7|46n2*kn!y<&4?&ZcqY1?Itq!U6KZ!oAcgcq>3}QLPZ3p{Xxp2w%>Z90nn1QAmJ(lu>@WMUguHljM+1Mc zgyP7|v19@6p6$TnY?mq<0%4P2cx?+M#O@akk#{}KTSXCMv$Q1+Ko_LZ+OzZ5&xB1; z^=Qn{X(`&%3T|HZVbW+kF$Fo0Hdp{fe=Zcxh$BloCT(wWuF4ol}J zTl=-i*`>GR0mLB4tMTk}hKg-HkImRBSpvOM)S;v{eJ?fnnfBM0G81B%Hz382&jd!w z^p^PVG`EqVdQRyxbF_+s#nOI=l67NQ0!>qep{(fhT5QXHW({_ERdp@W5SRDf56l96npe2^;lWPcr&s{1h{yx#0 zuX;W#CCK|vrLVW$vdkBDiCB54LBD>@e6N4r|5h?mR0$^?{B_%3|6pzY1_Sx|%+@a# zG;OP;ej(F0 zR%G9^PzB=PB5C5qk^nwdpJO2hKz;qCXx@+S{O%i#SPTcxfCNKkYX_os8Mu8p4|R^! zEw4ppJ3q@0Uckv&Q_J^ z=^_}eUoF+w_hicILnlQqf=pW8dZ?Hu1t5^*sd8R*8q#A~T-{g~mHO0LBPp+`>pe?; zW44#byubHOHkUSnSi=SOa#cfqe?c0fsVMNp0@_)*!oJFv`I#y3XH03&eTS~Ao2Gq6 z8q;f0e0*O3_ofBZGNE)qh!!d9Tyrl9HC2b;FW(v5r9DkWzj zTidl4_`G{X3_Ye!_IHhS0{8MN#;pxTr^z?3Cj4m^Lu_?u!2nJ|@5W0Jgb#(i{3CYn z&JxuH(j3uj;Fnq!{->Mj9|{XF@xoR003-n+F?0Yd^uZ|Gt9&d$2(-LZp7~5d`}FRgTpmk%rC}rm z%jEI0KWcx{JS*f`n>7VK7q37+*=Yg8b9IS<33>%~a z&yJiUKhHy>2O;`mEo6}Ig3`?6xhF+6 z2lH9_sF`)a_+xK$KC3*K9ez#YIGdT;%>mfxdC7z^uPH6+TX)~ZklUXutOdL8FR+9m z@JIQcy1u~N=cGD=S%e{&so*p$fPYQt=_&^@>y@c+d=l8trUI&^jhE}eFa~GojAxB` zSqYXXWt5k=5xc{06g$^q9b+I2M6fFILtt-wc;!Af_y&Id?GveS*pJq z=xU2HZ~vI0+Yn8f(RJS7PSwtya67*iSc}wo*I7+w-gnhqCiO2)5p2>&3m%` z*KO_pX-%@?R0& zGrCiV;Md6|L+tqzBiyiK-C|l9ip+J1k+JmN=9(nm7NR}X8aAtCK>z1I*Bd7kOSIcc zeDnO)Mozy*9(FyIFn7QLv}@*g``78yT}y+O8;VJ{`J_&t*rRS>R}cFpLw@-aB|Mg+ zMd4S1Ntl58Q#Bdod3u;wy*~Wisu!%z3}-$|VlVaC|L~KhA^K;SlH-=}LrGA|I>&(_ zUV1)Z!?bJRv1G(tP;hKM$Xx0e@;gfz=#$H{+qp+F`i*5ihH-lJiOs1w`@cc{^;i;Y zh}*}KN_2k$+wYTGXaPh1w=8#g9~R-Z=Lfxk3Bo=@rrIvJ=xr}NrG@X87baC@^3NpX5r-`g+dS8VqWG>szjBGiW-vfG=1e$66_9SW)V;)n8mZXA20zLbl6VS&D zou|tMp(ra%*>iNDbwa`{DVV3QjW4bX;W1>-v2gXtJt1v+EbReRcY+OXFa93k9bFsu zHV5qStnF6ApJxu!I7m2Cnv&?j1+GCqHaRU+v=54+? zQF=_Nv$U9&WO&1_@_8(;Tw|Lbaq(qGvF7%Ff5*<#5+)sIKsb?>Tx68#?*}{&X4g_XWkUpOsWo}>Kq)+}C(j2hsa9UAgGeZwhK!WYw4Exm3~?e!0BX|GM;SaJta(Pm;Lp-7qe_wf9SBAD&94@I}Pl; zcrq~mC8)<-UixGFs=hDjHQdBiInDHz>&ruNeV+Z=0RA{A0=+udGs^F@wBs6j@TnyQ zN6M&np@OkMe<=o5)QH8I_^5UnVL^Xb4(Kt~VmM_(J2|#9>f(0t0isOV(#}`7LwrcS z#TU=4lU*3`b>>mV?0R`ubeJhY`Pz+l(^rcV+jYs>+q=GU+V&m9Cu3!tzTi?DlpXWp z%Qzp&2N%9|FbeFs0E<*hAV*a(a74Lmhkom;cSM8Gv3Mr{var7k=P_jXee`9-@AB~q zh@+N5Og_vAU9QbBzn9%>IAX>~dc(ce(;JN3uVJl9%6-w>rLSD7d?I)R$?YyUMF%;( zyr0{}|3aB;;Lnzq{#x!aAc)DaT=MUajJnWf*x=Tjx17t<(~#?2-WFNE`eZoT;S*8C z>#Hil^$!a4@hvC4kKO1+t$@diKd$76pB?lV+M3;MjnxuroQPSyLD1)2ZxW~pIbJr; zU*!8*R$rfWpV32tt@2YHdkse*h%mzeZ}#^R`aCrZwp9XTlm>{)mTFWx?D;h*H|BW-jVY@IWB)a-5<|3gFK*F4nSSC$w#7fG{cYN zMp(V&V`xWEnQ9Uc6JnhFy1?fXalabECn&@$;;p(PI|N1o+H{s4NjA%YwF(!WdeF|>H*mLX2w3{zZF zw~u|t9S#E@If#G$Jic4nHZ9i(+XtB=dx_$83neL$kT=7S)ViS^11GogUq0$*lOr}A z92K$ydNnwJzpZimW61qfR)SLS`%D&pYw3?+jm?>7B%t5-CvbV5CQ(ZXhk==u&6zq` zM_WNd0P^WK*YJs;q@~!4A@4O8HMG}IbjH8|>C9Z{)4--5ssqXAEFsI11$vU2b$k-T z?Ed3p zdB30NbiVhxlC_slMeFORNDiwCy#q_-i<2Il%h`ma&Xpj$Vy-bfc&6$eekD2Q>sY>D zewoV`u{Pj_kk-mublzE}FY3B^8PWjSvwSs7)A_5cbH9cqzQp9bGPm$!CeID%2`*0! z!FCO!ehF$$5^de&*M@L)Sf1tcw;seRg9Z{VSdd2pa=fr3Pb>bz($ZfMZv}8x@W<~y z&GqvuEi2H=Gs9o59*E~Q2b;pV$z3zo$8v6}tX%Qt5E0#V%kh4uAFq{!!I7W|0fgn6 zg@e35Gwk}2bxk$ik7RmG=vFXHF=}83MJ{DCY&fBBsq8hpLy49bKAmRjlV84uGor~^ zOHligU;6GXC5@Fd4~QXU+p$KxSeC$%i~DW}z%gqD5$I);((z+C0rRgD z8|+?U%A!A#%82b?xt-{$gcu$}a0oKLoG3HqsqXh-t{+M7v5TU0*7FTgI94!j)Iu%^ zdz}q_DsWA}t1nB_>XuBkfQZ_>gDx`^Xn5Z-^Pzt<^@RVsBd=|FP78$b}YsPBjpG=R&sGF)n~g->79RK4eYp=&wdX&?Q(L=$MfXNZA*`z z@Go1(&B43^gQ9wNPaBi!7}FNvoi{|5mrxAD8tbF}B0UC8Vt5@~`W2~k zc^VSL9-ILj5lRy09|=XK?seOPJ3#Lab?MjgqC+UXxZD1-l;AfU8Y;xId?ErLMFSFx z9*}I-W(a79JKm$+`yLWt{dn>d<_@%fDELwn@L_R%94@0-vjiHQ>X>49*=>-|+*N`X z()=2$iUl%)5W95CFlT?Fl)v`;U45c??NTS7#mVuEpI4oMQyGfpd9<(Th7B668d?F9 z%Qba9Jzi;wJ&VbV!7Q&AeYZL?-OT6s6ZOv-XQtWS@6u6D5HX|?SCd9O_lE@4&8s`w zh2g*Y2!0)yOwPdzAG!fpHiw{G>qmB|6WcA4Zk<6aq`r%=P#iD|u#(UmYR)$F7RcT-&ZvNCeuCl+(lyQKHq-5a=!(Xt?(tnC6Pv zxI`7bE_2OSptz|xl%1?;@8A!L(O73wk;r1ED# zii=MN!7ZQRnroN!edn-4y*;4&r&)^pZC2Udm3Y^Q8DyGirCDrmX?rPr<(9b-HI{W-#?M%%j9@G~3&vT>?;LDr$H{a&)jIcDytDm>7=&x11{%Q%HJ!ujq( z-XfJgg6ah~_j%#=r$`F@y&Z3LwCmTot1%~W z$C5w(tH3;l#ie$WKFy*2Vq4{ot-tE<)T)6Xqwp=XWuc76-Je9tvj&?@GeE48y-xWFW)!|CJm_RLuofr;MZK- zi{vbsHd^e&XPt1R*^&CTDHGa!ZH-=73x}cWsZHn~3mZ8FTV}qR9x=|{5Or@_9W!su zpbJbuD238drVlFjt^GyY`(>v*1_>EOral}6TWEWY4RyvZ_Xsrn%F#M<_L`!n=e zKr_G%wDty|NxEYAaBYl#lz<_HYSN*!kSS2U;r%vmejNzD9g0(@HXbP;+s73RYH!z! zm*pWnw$Q3-;BqJ`lf+M2)RL3kh~jO(5diodfVjLWiuQ}YcnZi{ID%Qzj^6d}ouFGb zIrj+FYXQ1=xr%D@kh|%S-d?BX2`Qo7mtA0Al;7rF#DY*g0INy&@7VnFxonE7T|YBz zI2(YV=5xO}+#Da%Ai)h%y$agpdHCs~CVJO<@VnG~9!o+D6(4s*eGWbl!)8~wW@fg; z;00EvK{a!uuD(v)*~=^CQ(4`g(P?x`*KrRw-9W{eNrEJ0Z44)3v#Tbb4;h#1+t>57 zlt9J1>|w;WxibCQ^k9Rb-V)jg=swIZ0_^jl&al@d4kZGOAXtxnQtdiPana(v{(?py zpP|l!q+h6lU!Dv-nG5_O?}v^}!{Nv9?2i|9r9oBoagv~XU(*Vci%_^dlQDLpK71gb zy+<`HFkWA<@T4!Z?K2Wf55pqYODLT#mjt3Uo0cJ}%N3A$hwX1+pE>&!=1lnkPRkT# z)8GWK*L^Si9sd0>|NFtp;O=N6g!Hn^jY|14arVp9!cZDHE7yoONOGhbyu1Jpwcj$7 zkLkV95PLs@e)1}&!8WiEDs6L=1m)<^euopUe-9-~7$X~fqb9_%KC`L%RG`q5jflVR zR}c;If6N`4x9`ZIAMB)_%0F|Xg=G0Uvo5QulebPNg{-3BSaNiQj1}i;ZlQ{TCzejE zqQCRDOPKMAWs1^ktq_tc(FWygn4m6sO?C#8@<8#K1k-=QJs(fGNx0A=&8VlYguysp z^Atf5=L#|m>A&s0AEp*M>15o0yrvC{;5x$Vt4F;yY^ZtL&u8RUOf%YuX{7}9HSM>G zI~^}cH@#a?{xknjri52vD~D!Nw#t2dQ7#mC#a-$&T2=H5FwJz7bw{ynzWSH*<0tw) zy$$WcJw?48OE$O2b-Y1~Wpc}`F`eE5C(Bay!g3I$iq1QhPIn!~Qu%dV=`b+056D40 z-qmnZ*ivShwCj##Mz~E_!2E~y7Fm$50z=@+Gy1$Fc&~)w^{TmBI+(;i%w3uvxhPZ(x9TQfh_IE??f__Y2>*+ zP<~3X$}gKlT=}y<_h{EmSDDB5@p*R%{vONfS?0n-;C__aTVOytFtGjHBs;SVrgo{% zK>VJN!@|L=OUeu*vlhw`NIg-dhIyt;xUPrpKq86dv_N&EhU68sRUCn{1lMsSb)$x@ zGQLm#kYvagL$pnX&~$rTbeG6}=kn^JKI85#jh(mkN>QNw$98g(y(~0!q*)MP^`%OR zB|~UqWvSz;${VK@CA-5a-R!U`)CLZs=B2F!ny2*kwjRl>uMir+W9|5FHt`Pg%tnf_drcY^Z>q)o$ zTIsg1oSO;AXD8EA5XRo zJ;UovG{9B{C(x+&LzOZZQ+sr~0OW^KLs*n`-$S3{u-AVabX}@y75{i7+nvR+2y56j zR{i7qYdNQCjk;w7z?&&yEW=phaG$GYMYmwdYADqx{a#qYg%IaXC&`obZisZd&sXaQUN&xLjs}qb!4x~krL>$M{M<; zV#cyg$Y$S3;*rx9;l(6*BJUw;2FW+hiL#R-Z5i&%{_lv(O}smdVb^C1eu z4t5K0n`hgnZ@qQAh9f%g>=k!(2Jdw%GX#{PMko^9REu?qXoyQQ6H8_s>MGyIS`q~c zuO36Z7MM0Y@el8(kg#Q%_BYJoYrW&ZyqMus?kW(<(=Y`TR+7`VU7L?^?g-!Ak>1gO z2?4VJ4|fU5L-IjSc$cNEmS$|#mS!%5Nkj1qP@-MeDtHb6XrO8to~Yb=q5#I#j+HuE z$Tviv6p*2v%C=5PyB$+>Rcn!FOS+Ho9=5PMlH@UkPDNzux;K>5WOfS)SMx386tYB} z_L9!M=r_XZ*Iiv2+2*S2B(qx}9{Z*i;{!$A1`EAlqW zn-g*6ufCr1Fy_E&g}!l4K_k>@J;DeyhIXbGF}R<123%9n%}$Mx(@x(GeU^8|v`=xk zF|nj2(mrYVCs2w!@2E;Q`{k>M50{V!xoggWPPLZ?H7R#^;*@l&FlJ_(Xw_SF!@ER{ zdj}J4Zp&3ygksh#yOV+4>e=@VSI*TXJL4lN+Z8744y!rg2$S&KENO`L5PZSRW)Z|H z-CJnqmT!yhb({OJ0hY+}iQc(imC5NVzX!NL8H+G`xYKtJ3ke)SMt$XO?qAnm37qZy zWBAOvea{7?cB8T7?)Cb^i%%7iDbV=ebfMQOl&2bL1)%)L+5D(j-4e^}x4AP3ZpXsK z?1eD`Ls$&w)RIM~@EJl*Ozn4%Rc{nav|ghcePc*jtN0zJjle#SC6gE7q}jzAGF+!y ztOTKpY|$}_!;-$=lzYXAK9!>#!+EQGsv|bdBM3vef8vBVNZw92hd^CxJ!lp3u0I8= zcT<{csZrnFKdr~$-JUKB2jZ_64$>;L!ufJKvwvCed;i>lFz0!kJiqi(TDvWt)C1ne*-1+~arJ1NA9R)9F8g zDmtI(M6_vLCBXCwpT)3bC{sTz;MZ^$@iWT`AZYgW60qZE@k$Oq6IayBpH9|eY2Op1 zSp6g6=u(fplg;?gO!t>P|NY1W%S^$4l?nk%8^GHTt z>^ReH!_=ac*(8uD5D4ErCKnGOtpwSH-33llf}=9*m6vePEjqt9CsX!r z8OuKRN)Aw{AeUMk(+;92SdOiR=!Cj4G$VIrLNUvig9Z4@KHoJe&={$<1?>DVSqH>J zfpAix_x~wA+cr|wG`$=!FU}$lhD?#CJDr@4^it#d;MMO%0v`xQj#%(7p5g@S@y&|qVe)RG z)?DDp1lJ*c1_iVU7I(RYvX71r-Nj5s$D-U0HOA0eSJBY*^z`Z~Lz=sk7~wde>bQy?6krb7Wh`~OUmN*5 zsv$J1Klp*y(j0LB`TeK<pN!%waAPxh9HB#@@=nSzZFl5AyQ$q&HTIH<;05% zy9tICwAU}d<27`&k*Fn_CBut<(1G_=+EQBlxe$C}h$Pw{uIhbmMn$fg)DY>*usP0; z-N%y7{&|BL6gn|Pm$fG`JiJE~W%~NcU&{^qZnbQC24q_Yw3ZYv4 zc;lV)$Pws!9LUiIAeX&Qvf54wU)VyQ6B{gT- zNJ&He>wOqPqI-0_d+WigXIr@qxo7dmqjS0*G|)?Sdd5e}>%V;{+>f?+dM1IQOMUox zb_P+_ja2-`mrI|cR^SuWbK%tgGWGH6(N8YsXxKd*pSs&EYr(9=*Z!fBBu@4DYVVBnfyxIGJI~ zdmsJyerThlk>BF|{JkxGw|pVj?;aXaF|hh@^%c@nJ74*VVOHg$xP}5(j;r3OlwC=K z!Q-NLXq4JtC*%`g_8g-K_+GACE5m@2M-!nu41MtO1z~**?Xp)!QY;4p7e%TEW{Jye zazA%w%1X!&?G8_Ku5C;trB_72dmQT~GVz}pw30rSSIkl{bm6kMa`Em;_H<~=qNbgS z{r_kInf{GZFk;Ezd#fc-R#V@>|u6TX46MtGSDxfbFpG<^xc+qy5ZEm(`M z+kOW$6cRH&YzpD4!8_+ro6N=ApIN?o_C1?`tGWznUe;q{&ONt+`75Ig<6D(|f8#Z) zQW#?h@GsoowB!4TpV%+xfhGP;yS`TgOToaioLMJq)ts<_&uCDemc>V>7D*Q{%sz6Q zC1ygtH8eCDD4OJBn*aT2%&<|xxYrUQdcsqPJKV1HL{|qi^~2CMP5y_(b0KyMb}ZvXP? zVx0cv_iLF0Jr9OJzW$_<-|sH;4r+LZ%o}OjBb6NSq1X}fkFtixuJ0~Fqt6H4kF4eL z4wH)jN^Xl~yGSV4)(nSIB~UQ54~xwnyDMz7en~+v4e99goyoHYuQ%AsJ2qd<5;$!6!eubrRqZe&l~48Cgv64etRka9?Vrnm zmXiL0c>hR-`LzCOmPvp$ucgKNIj^aP8OHj!KhCBR=$0*i!He(npd_yvnHa)tleEd? zkD+pLm^MfeQ(aRh%Zialzx6ZiyOC&GH!zb&%18Pb_K0-5ECvhQp>DaiD$yGYscmC| zrZS~3oiHCHQ%X=XwWrz2zjhn~?JtIzjj4U-vo|PO^M5_7&!Fhfq*0$XubxL3;%M|^ zQ;K()#YaCTmc@BMN^Hb~pJ$4mXe8F*;t={WmvVdMzs0#Ie z1}){%GegV8wC8L8JC4;gNX&X0MeEL>s9=?o=!#*E4bwvAoZ`-~jJ$4lS&JkN7>-HA zbS;HipKA&rs)iCR^un^wks($33JlQ@m{l@mmq9J7$dDO270mpbO?|&RBQ~xtaikru z$jBxNaCv<8|@_s|8s*IjPm=%r*t7*?kJ zLvCORUr6ulI3TzaU`c78zGz46hihbx5YpPog#ICghA;)^dW#FH;0pe4W!JLXx(!74 z`3l3U1WjF$6lJ+UR{e$UZURBE68AdaX{IgzW*%=5k>h z2C1DSdt^a&^@k%Uq0D2yL5y&r+6RwQc4-g)9>_C=arllTEkTh%)574Z=t=mD6HQ0v zd+{qP8q*Z8i0W7tWCZj|c>|(4^6ez7*y&RsEIKrVygXNuD(Y7fjQfn;mik(PcY zXd|LX7tbimkgasI-2+x6PcO(wM~bWrDFBIXj;R}*APPoA8fE1NkFAc7ON6qgT`SZU zngfs}!2v0a$px?c%TU+C%VVT^fqa!#m(rF-Yj3IGcz6a$XBX@Y zX9DD_54GDI;gh94X~fx3Ac*6H+9XJKV|18&B=DX7ic-2yz(tb0_D;IvmB0f`a$x=p zyPV1SjR;#UX(wDtc2NjoG8?JD#l(vc1Rb{uxkK^;nWr3rmh+y-L9{~h#3(3+R=WZ| zDN!F-fd_I%6tXM5Fbz+ zvGql50mvw6;e8H=hC$?|o|9lmG6GfuCMb&#VmT){J=Zb>aWNATXoI9P+Jf3bL|rhq zRAMbc3PmT5S@#~9G4XhyqJUco6)aVwXFw#_Fm9CTeM`hzstym)GSee@ih0#QsYVCL zOrLC%g0vMY+yaM&+ZADkkhi91eu&XY)QnWgQzi7a!C-aNGp=4H*JmZsRR+% z5L`y&O+X?bW~Wru0T@RbvK-UM(0jaWOA^w^n;gO3!U6(vYCzF7APx90391}9r*o$e zX^!_Cb91C7N08%$sL?Xb3>h*i&@BMeC~YC;80=F%0{4L@898mlS_!C?<^}~k7Ku}H zv71>$J!>2wD;Ws-2-bcey}ab;11^|WzQW2LN1mJrITs^{4I?mAkg@~qgjZg@iRnyv zeACZNOh^(0|EJo^ICr4Pg~EdHjhP}KiAz@q;Au{TQ3jYJotPB>_)hmXGu}8GAez}ra(eqPK)rg7CFo4uvCZ* z5GH(6il92XVAO-KDuK7mf}J$n_bnLKLc-ih5Odl{z75)aXw;OlFF|%BbI(JP&9OpJ zf@IETI4>lPVEdZ{>BzkjARRD70O=({&XE}_ayye`#;m|$yfC=PKnN}T=yt)z1GTA+ z?IRsi7RCaMgpes0qO`3!)$Fu)Dx5b2%fd+jnMH1$(nyabvgy%_C3_(xIRU{9gTlE1 zk^NQ<4M~tarRM`vK)w=gbjzuNa&=+{h){*D+68O2z7&IKOjWF@K5!5e3L+TT3TDp} z)n>(1glKaf%2E>tGQG<(mlO?1ZfU@ECOJVER8kb8;t8XGr3npBrU@C$!0E=P4#g$q z$}BpvW29t~uM&dDw<*|+!2agOIL@$*Xpul%j+khPM7vxeVV|7JiB9LNRbkaF29N-* zGfN$uV8RlF_H?<^OB{j)6paS@$iY8g#0*L#+hvLupm)9~BflgQO9ER21!y0g$-yz9 zW6r|nPb0R-#Q-s-O0En++HB~MASX~FuP9GSM6FA;swiX76_x~}5jfx+^coC^WrixK zXIl}$(d~lS<(*)5-?`@U+3zJpzOE**7TI2zsz1{e;oE7?N(J}+YHsF9_knT)3rm>*BxJYd{R$e zcTK%#F>1MrKQ(-($()x zM|VWupyOV?dawG?4&STodmxi+fx~&A+S6O9?59P$M;+Hg`*-vB^?&`|H5Gcf+MTaSudx7ZVNBJH`GGSOS9hu zW!to;V^?1usbsi{i*NMnC%*pYfqSj#x@x!_oB8kP!c8;YI&VIk^?7Iy`-+P}-|o*{ zH-5Kkh8jIb7ytP=UZNKq&%=qXe0v+OoM?=%8@_-yKFn}k+)9_{e>MHS=}yOHJzcq$ zx!Tt|E>wNoEb8sHZ?-kcGnKEa_uF&5Wr^cu_@GZ0X-%WqQV}GAHT$q~Sqop2gK8I#MeK}toFH^yGEmeMM=z(N@`}{Ro zaCz~a1_Zrppr;-WJ@tGfa=dJJ&3-sl9rals6xB@vx1!G7qFiM2u|H5`dOnSsU5)O-5>BU`|$JOU;b>N4Y*x+oUKw#Z`&{oz3W#HJFSD!ecZO46kACIIF={L&2n^Y zWf5jug{-vbzaOO}NH+AiOG1m}<9mE+Q*t$&5R^W&Vsiwy^G zKK;96fYJ4KZ@V@EWTf>5o{S%D2&RW8@1AXsK{&Jle++^QgL|>lFX-IV+t@TiY#L4Y zM#u;Fo6!tzf1%R39?On%KmnmeiV?4Ubk8w$abR-6b|%A|oe98zSP|lO*wp{S1P69Q zYe(bn-(rB1ZXCEUKxzFES^a+!aF*7)?l_t$w3pRhaaYi$Er$ z3kFWs;GrR;#XEyNCN5^oZXaIa!Y}tTKbbBb5VqNPRz9B2bULDWK1tAPu0V;U-crc` z<64RbUa$fdJJ4$exu|!NuhtsYqAZwHK&t{@D=qn=(E=adQH7oFVuH|W2kd7pnNlDm z@J(HE1VeO5E6th8fLD3h6ueqxfB;Yl4JF@jjb&P7Y3R9)T-!h_VZ&s;#!tH7CD*$| zWXW|EXDx9Ug_=su^QNQ{>PFT=F^IAXuJV%d4J+;muW%x;2UclNYg(3Xs*K$K(zswq zk}gVinuIC~E?KTK1UyGk7&?di$_!M^avlTrlc5+Yci9ER^QD(F|5X6v=4CG-J$X=+JYP@wid})SG% zhX(2!jZm>w$ycn(8NsZGC|j=B9qx*&SinzXw{!=hNs{A^kku)?x!5di68I8m@qicw zITz#Z6+hoevMgVp?Z%@ge*jsd)DF9_XLy|Kyl2nk%9$Sg-M?a>{a|S+9p<#K43JH- znaO5u+KUBq&Z)`8{`Z&9jE;1)I&y$v!@%po%+su@yXvlRhwEZJJ^%V2zWpZ2+IIQP zKYjZz|KZ!Wf4%?xsQH)m9J9OjH_4D@zxn<5`s|Y>+gc6%za+!fuXii_qoK>zD2>+W zuKCx0`%yJ)>$t7o$NlFYHOsKgN%kj2cloQsI8^<*eEZ|KfBmoh4<+Az^Y!DmIQkPs z5ajQ_{Q>?7z5o2~pYEsM|E&;;-y+CQ2=!g$ZzYhQF#P)<i$AMVd!@y_eTGiEd47o-%SDg3H~uv_;1$?eP71+xnlU=8HDuEFF`2)W zA%0jC{(Vlrx^Lu9_|MaYzV!UzZx@aIJQeh3i}_o_ME|t4(9aw5x0>MZi~h5RkiWK| zKaGL@P(%HV2=!wxWZ>8rU%D!fHLL?tp2fi2e{|a| zdAGQqg0CWnJ(%~`CtSx6@KwW#`os2K(t|0aoGF{?tCDFCTWGKQLFMnhkB`JcD-3|& zhgc!YDAVWrdkc=W*75Uj*N<&at>W;8{A`s8ecQx3 zIZs~K!2bF2&d__z$qTkOIn{C5wgls(Um#9e^!1^~^a{o<-SRA>NR2-9E(J&<66kr= zfGh(roJ2kT!8~3)u}|u~XA4*G2E#U0!H5NaSlHdByrhKTRQR4hh$NGzAZEJto|iWZ zbL!*=qmtdyoB=cpkKHRG%@)XT+7OQuzA&y3Y@Z|soh8FRx`)UxC;MW#;t@&IQ8A%7G?Aq9aP-+|x zNuZSE#?zL0Eq}d_L9m_mz_l~RQs|`Up%tC-9H&Sr#MkR<3|jNUe!#c`dodQR`ZHUP zgi{<2Qy%gYHR;`rwqOqXr&fC>==2*pN5ml6e0~a-5Ec%X_!|X-N5m+nn_|j`DRhgP z(GD!^r8VEd<59dAU#M*+!4#HZ-@Y!fS26I6P`M*R(}hEnrB{uiVD{g zwKQvOHo~VLeJtV@v=feLEib*Pv6*o9H7E;I(Wn{0b3(Oos6+k&;p9Pi4!Lqr0jf$VF^S@B_`(ME zXF}0n28MTuoqG)0`=BBS;Lsv9;d8?>dN4c<#-bvn@#!T2uT&fa+iXFxUcYMJf9p@OP%t_(7UjWch0DA!rn6Osv03Nt%!Jaw zuo$cH8N)P>=DXWiZ-#p*@2}31z}&;iebsgY-POhC6F@a%+bm;%?0?fYnDk{t;VbL8 z;*=ZoAlDY3J=N&B#^E84vC57W3v;YMgBD*2qm6uFrp5K1tS?`A$&Ey@ox4B!2b#0Ivh^WH>x)rr=AM&PH*n2z5hHUCf%)^^=qVf5>+)s)4nAh6 z>Qf2$Han99$ak*Z9?EDewI?SVV~F%1AaR{j1sJQwKh;V|w;5=$v@D4AF>srjxfQO96E#Cw_5MEFt$Wi@@B%fjL zi80w~dJpcX#$hw@)7EWzSP0vbOTrutT+JHQK4)I~0MF86OuKtyTpV;HiL7zo%%N;l z@c3G#^pihh*@J2#kstX%z8-&CmxlSLzbY7+#uo<#yh}!VliPRscK6YTB9Me0DWm$O z%k06^>(X`5pYoZ^>cxL@hOaf|plXDAm&3&YnPXFKI~MFATw$zuePuPwC3||InmosF z-C4zq?@Lcc)LR~47VTv)Tdd%f*4Wzdcq{nAv}6%;1*f$OcUbn^(Fe?W9M6 z9dSFc0n1e{=83I9KLkNapti-?__$19QLCekOa%~d|RfkOjtL)9*30J z{DXYrp#)8?^yL>-$%_8%^Nqx$9Th{ThUtD6=9Ck3$IQQ&@*{mDTz{iOJ#1*uF{@~N z$+PT+4sgaBEc2R6Tt{ctDoIF)7rDivI3=`uo;6Xf2oENrzR~A7%o}HyElbT^W`l)CI)wuUyT{1``7t{NNCa( zV<}(T%y%CQJB)bhDZ)}?i@GpmxHsm@vK?@XVE0B%gl`PN*(r```*U92k;#?Ejk%6S zjJ-Q1hnpSC^i0@eC05&NeBrWvN{g|zZ&OELtR=#F#m``ENPC5jO+9pKwf#MqTNoN% zTsQ0qv6T~RQ5Hny&twz@S;S>%Ae=sy0WVdNhNN2{#P>iPPRVLskkzCj0KYL!`$Tt~ z?bQVvQng2oKHJ3;OD*7mw71JCl?(*^2{@^eTZ=vU356>}^8rt(hn|3DjC(fiDPi|i zz6)SWbZ;e${U%Ab75@NArKHOI8i(TAfj|y95)HB$l;NINlfOypf@%ul;No zkdrH)5(d>}E9qjCZkqYQ*wYl>sZlH*T5P-zVj|@l!ix-vTlRgf&ya6x z1^QuYwhQZ&NO(0$7N-_vWVZL0(kjFoA|~7-e#}L(Fs*o|;3Yo*IsmMXh1w)$O`6r< zhSP_X#E6wcW|{?sCD?QAUwq1!4AH0<^leGPox66%L-`~M%cM_fe3iAM zsy+1WNS&8_cxz-QK49lXZXD?$DsEWn!pzmMsHx}s)d(Xz9dF39<3+Sf=8<$7b}tM4G{I&*IPd@MFCc#g7G%W=eXR}aO#F{Wj;-(??#Tx$I|TP;W%1eNgp`V2q_A27}HP&=zQrO%Y4 z7EW2Q5i?KM~*^hVc{5`+>jQIM7sGgNz664;<{Qc|@?TFPuNp6#qb2x!2Po8f;b%1Zyj;WFG zJQ+OuF+I)O^g4kVk>k$gRBt?+F-&kufvm;htLGBb?>nyupC@XY6FaIfJs;%2glm1S zE^*);VJPMcceEs%Yd56%K(oy%;%zFZKa{tsFlaZj&mPDJx977a1A_lEh6Lh%MLU89 z-Boc&4<9lzU+wfq(hQI@eevm1S4|LJUwArZR>kkc<9Qhl5XT1A|)h%_wn$h z3{ND%h^*~c6_22~Ug2Fct;BNH7I@KOD1WeNzk#qt0VbOJ7;nB8SDWuVtH}vLvE3ijB`iC{sr>`5SczynUDyjE z3}|cW`f6;QPjd68QV}vyX?K?3Qf-G+rLXYv@$%$I@@C{w_(-W|{j?_->wBi~5eu6k zOJlE|xC3nfI;dZM=*r4@)0Ufm=!~6AnOfbsJYxCK#RBd9i}l{QlX=>Tar-D@&B#2w zc|&3r$ck=KpFFSmq1h`vb>L8dJAmBM9D~?zYYI4c^$*d;tD9Igoj9%>tOvJOy)cbo zo>6EK4h!qvA>DCLYo2`6rjp;?vGA>MUlz4h|ZGf;W5E*lKGYxT$2zk0WNebspv#(7d0 z>w?lH55?z3F;Mx3dOWB1g}HU(Fe-!98ap?OBB{80F|UXE!Z=gwKJ!Ai2$$J9^Pn_> zo)5vMYiRVG5WEO(W@Pm+>`X+8H z(s{B{6Wg8K9|*aw4n1Y22m+uk&1%t+)QfAzbyGWGsov|1C`~WM9GH_%CRLJQ->vpQ zKP4-*-VZNqZX9$UKcDgGZKkM!d`@p|cgsP5JIBlExue&*u`mjKrz zLPp|nqX;oeJq99uBOjFNhy**U;s%%e`%;ddxmtT#qB{e~nYW-_pYsh91=TKJ6BrP{ z5F@QUS73`&&g5eQ5$&5-u~nLroXsdeL?&(MgMjlwVYNYJT1k`6O=)`+Uhyw;qMj9O zK64vWPsKiY@)i?rgd0PAb~i{u3Y=otx6J53Q6voW_P^r=Yf>0Br=RJ16MQhICmn__ zBPJaHF})y}H=-efeVV5xMebz8t;Z%J=`~j%rf=4r0Yyn zV4ODq?Iq|Z#no+^Hwk&Yf#VU}Ftr8m^R4vY zhR*QEtV_b7xdtYw)2*c%>*2<1&y5BK{P{6<;Xsl$@NPHA^*eOZcV-(=GQ}3+?MoTQ zSHT!Sp5uxE)JfGdX}};))8s%nMgSJ#Wg;elkUkjhGrAS)jHTi;0&kvto5>c|aZE!~ zR1I}cOhhZDi-~}QJnFQSRpx;>*v$kwqJrwAQ|$Z_XUgq)?E%zC+l}%9B73uvA>QmH zY<|F{Af(ryl$FvirGxQE^o)$r@9iuD$Q8N z=SxGz2JO*GFW;v%=97X0Uwc0_Gi=>9`=kvz3V1ca+x5n3{_wo%PmR@y4~+8)oNlTX zDrt~$?y6eo_#Wzu#0+%N1;*)gZJr-ZA`w45*%EZmuh5 z7uFM%YS95j$u?i9mB-slHIy(P3&v#u2SN-A3E>NRIWra`_BNAYT6zn51|xObP5mx& zSb$A-#%}5q$2vU$)++B)(9c%&DKIgugq?bcV+Of51!+n`s+4@5v*AQgU=KT}B%-rH zF+ggOWsQm_azW!{@h^Kn*cHT$h7Q%tRdt;TZX)J+yBFqR-iS7G2J{Wqp_q3P57Fh@ zv4Bmn!JC3kM5Hv$=lR*QC?ZD@!g0m7gMqqtU|Vo9j7@+W8DP#{G3Y{VUP;9cd$Thz z33i8-=^d62=KWwT>EFMD`s*CeFd5^R5U6<3Al`VKi1_bs=55zAECqkOCFzfUzJvJo z?Kf-oS;4W5s{YUS1z*+wNvMi#&b}?xm3_ldOSIU9etLi%fG}?(iHQs_377rLt7Q)`kQ~(`Nz%0pYK1?YPn~2{>%6AzKi_Z z_bZcMzgDffahTU{U37E)VQs7Ur}6xH`W7wU#&-S7#Y|&7IChK#87m|?9kUoj+wC$is4vt{DC0s+157UzjJMqcbCf~M z-ZT;_JIQAY>|p9qkcO3*@$ewVw(`fAVQyUWbt1KK`Pz~|pSll#M5{Y>_!LFER)5ki zGlR|O^uAeS0DexyIN7~+X(t4PVpSWqI-o=swql|PS7mLytshgc2~X_9-?V@VTrwTV z>PCwk!fgciOg2<{AXl~@c&x(1YxCxpJC8C#hNvJqJBp=M93MOr4per0Ad)_w3{yvs zZt-tQdH~5oem^jR2CSPJa@cF)osUbFN_VHzSh)f#<0mpbJsvS=wHSjaUC@~_`N&?4 ztV64n4c>d-rUR=ADqM-?>{~FThHf=p5idU4Y?dNwZKE4%+}!t}OG}gm9@mKMi0iKY zN|d&_K}E|9!RcxZjSEz@SsIm&MAJ~q&WGoVzEf;c%}**Gp(k}Nr^cZ)rDDR`(KRO% z*uI-^+=;X*O`my1J`+gFMey8*{22RY8m>OpwhNGYbX_(+Jjt;PBg3EUC z(<9cX#?15J3e}ro`n@l zF2fDy^*R-M^3+nB4IJC(fZ-1Q%^1x5Vi92mPYRIW#xi`)%4H3zvMp!ef~OvcbVEg8 zo3J$jxQ)eUNLIRKhPDKIQYiq6Jh(HJzg_R^?G^7bW;378X@L%?C~u!?wg|!OAnfv< z04hg8on|%R&|WtuiV*LzXbx7WwXb$RVFB*uQ3pfWrbLHb#Kq^eh2!xo1Y!@N>eY_K zGzD6Vc06Mc=zbj>@IW4(2MHXs%8nlR+ehC7u=OxWY^*}pSdr~vlCZRU9p24^Y!ZDj zG;Ssw!03#y1UlB?kbd{|kBcMW>_WoMX-+2!s+``OI0ke8anTZFQ+$Bzt`I*%2nq3UsGFDI^mk(r%&N9f9!YI2hf>ZEb>0A46c=$8Ful z_@`Luc&b?~rFE4{Cqx93tkg02@6VtgsPh;TCi8*!?MIKQM!DN4Jm?XlHHE`B6>{U^ z0j$V%;6SQnGYsE0#6-O*`=pEC2ESRf4cX2lb*Rx9DPZ$K`7GJ$Q(yh-94Dd38?!Sr zeYhj0LDVbx9s@={MG}FXjE@>~A7&q&AO@83-0{EUn(!mWck^C4OjdvBbJNxi?U`_kaz{NFeZ78Iy+4gomeKAUPr0gxy;EJWD$n7|G04@duN&Z!*U05vHa_Oe zr(H6b@>zbTG&_|&rlIxfO#s$cs4LEi1hX5EPVKV!*v)dt;T^%DQ81i8%NK(>X}Uiz zN7xp_-_ZVf)43~K4PsrG>-!vTARxh~7YRpgi+&$XpSIcuG0p6oRBW3N32yi8Ou72_YO@D)6&qes6;nJ|Bh--rBOi(yd7t)Up($#vx+x zt!qMM*XdZu9z|j5)3UoZSB15y^S9YQaLo7SxB~ zxs*b*m7W_DsC+#JA z;LwT_tG91XcIQ^QV%eBIZl_pyhj5eHaSd-?)-V{+(HpFY%tP;FcqXnH5yr@U;GN_6JJ3kld=Cq;>Y@04Cis?OZKsh=Dil-Po+`}D3RAmtC>}XAVZ+u%lSnLVT0biI5kHm-& zXZG2&w$I^_-hR5Yi5$LU=c_zFc~N*=K0k#RXMHqRa!g*%*0A+1&wF&SPx(9v=_mbWP=L+HxO z!&5}Fxx*1DKYCsEw};xe$;KnB(j^;GTy571CAfv zSh6-!Q%JR_-XPb8y1a`D<%FatAez^)H?C9LQ<+p>!naSQ;!09Y&4FbrYTx**mi5if z)%rQx5LJ`AnDpb!HECnLHqAkhW>bH{k(F z8vE~^fw&J1jAcxGE;+=zUDy4!F+eD}I$Ob?AVK6IwE~6Q>I`0d$1OS?>tQ+H5fC-n zpax~JGww*LQRTtRXyLjKgG|5hR{=8W9Te06UlokaGuE@A*6Ho}=o#lDQO&{xg?jig zUD?At1yYaRei39JOQA-NI&Sy4(VeX$*M;_mO&x5Ony2Kw9)@9(q>`(EiFRn`LIwam zXDpYWNf#EGJG|(f=C4TkfkAw-ylprwm_h(9P@Wd5O_FZKM@9PLVDh{kO?;~O^Zdy9 zGB#@_s;xH23e{$Bu6dlV7(F|RH1Zzak}9(@2BxlMU)lEY?wd!!nM_HPZ1WmPTsV{gmf@M$2lp`V7495-esVMb-D5i4r3_}{ZL!bt$MTZ z72s_)faTO?i8sA?Py)pg%!A^9C;2*tn3Ey^Mv6=UT5eIEF>+&3(7I295y>`?KX36B z9^k^E`0;#4q{i53nAm5JP$!6S<`^&YKG-iNxZy2>8x3O)IRNjDFAMFZW_s3ayA>aj z!Q|zM7z+RPW6@4A<;`V`@Zz>RF84_F;nG&KZmhj@jW3tf-^YaDVdSY2F=m*{>-TpL ztZcbBKi??5DE|2W-iiI+@=oj@zHvkUAJ=c`939`a_epf$@_FdKmFqe# z{{(_Z)l@$XW7aS0z0~#IxSxi(_+AZaf9m@W=DC(b|JPd`_095a9ln{-)(+q7s@Zye-`+|znA#$P558Bs{h`M6C{rOgu)o|%l0+v#y|c^2>jDnziiKvB@rUSN zH+Fw&1d)H=>9@CEK!3QOeg}R%0bftQ`^SI0yZqHMmmjLvsQ>M6zdwx?i2UJe79jFF zF!`n3efxI)5&FYl9dSDpzg?H#{fZ@=cisPz|Kb0qUYs}g51#w+;+*N=={^5n_~P7Z z{`^G?B+W=R^#W8hX{swGo{B4{I2d>=O8p@^E~O4~q`qji;ITM)mg?$ycFd0~FczNy zyBwl8F3(QkPc6CH!oKa+dub9ZwSJ*if+lxN(U|H7lY9evgz@oE-z9{r2l1gvG+@tU zBWRoyeZ=2)3fwhRYw(DmX>tRy{F$$GUeYkGgqTx|K>Lb^~ z&*j#bY{j9Uo_s+oF>5HXpWyg#JJSZoh}f&dP--o6WLZ2ofF*0;(y@<|A~&ng7>z=g z&~3$T?Jw|MJH#8d{Y$#G4~p!U5t#4ES!0SL^|!B|iy4eywbZIL$TEt3no z>8j=wZ-DWR;2bEf9!;pnRo`}|er2k(9?LK-9=gp9@9aSz8)3^>VRHLruw}xHhj0}o zu4ZrlO#&s-L!UOR-e(o2a2Zw^v~h1^=8Ox*IK64!qh;oGUc^Jn<9-b-7jXJQA!6o> z@zn!x;e+kUoFN4aG(xwKVPjGk<^73^SH@VO`n+kNk~22u=}LVVCIhuBt>%wvd}K_9 z@!m~9t7pKIy(dnB^uC@?2i`Tp5K$D^}QD-ek2G-9)- zK!VQpAMKSx?}Cq;Cz0Z6E#0^rJLRj{v?}>gcAB*h!)N-YcG>qLC=b_8yR8}2--~Zs z;RnQeE`0mGToH!~*C%zyK|e;+AVL=gQO8<V5eBI93wap4^3d}qod1D+s@jDlbGv?qI)|QVw>fk*FbEEAPZ#J^%cY5hvoRv}h;RCb zKDbe9x}fyud~jH}W_XktGxUi)OxPGr|1yDae}}i}>z`*9k;+Z`T?^xl)?g?E`#??8A6W(W5dIx$a?RW!Ls9Z{QL1CpsT z7w>^BNSPJ25Z1UAXchD7h%Ju?C_TeH#goX9ub6JJd$JL-kyuIPIe94PN>&sr7QDd@ z7!#L1G>LkfTnk%ku@)Pagpu#~Ot+B;A#ENg0j%UMhl2{))k6156+1p}PCs&KC9Za8(2m;%Z1F~pOaTVkBCopJH|Xm{2|LqYz8k#4BAhm6!k)40BNf8tb%Vsn zYyTWK)3@ijN4<x`t-27uLl zz=Z15Cf?yRrF}W%%G^Xdm##uy3{;p3zkiR5)|-2hu#26iGE#9P*1qpFGi*_eG<3S5 zF+f4^jAC%1dc%eoIcDHAG0NtaHq{tz!v0`J(d+2esz>kL)9BYl5&Tk}Aq-r+B}+&Q z>c`b5tYPN~S7FcIUv0hUsMTfRstY!djX(LFIts`+JztwgghA8~g1U@t4EmB_8W>8$4uG2!>@pptj?uOSWXvX#{kn~^QGiNz_gg)-F9RF!w&w0ELssLSBIx&a1#XNR-0m? z(-aB8PW*el#baaRLze3pHt2U*k)sQ7!oke?yw^QCTaJhtt6RZKM+bz2cn0|c*G=jNe(d{A^A|% zlDiw{UD77e=n{TgngheY+CP!gX}v@i;HE>(-GPgSYj7`kSZOHtRsMyiZWx&0x)aWs z?<}7Ax;{N-%o`j$ZO7H#S}vfezY|z5y@-qA(B~%)W!=J8J>7@B*yI4_p(Q@3QWiY%15bBBH7zK<8esD6+g|H3^XuuWznQI zw2O46Fnlx_g)F!@K+fdJ(!4{<0kHkC#9e6wITPmRFGEb15u-Myf#PgbagI-XOUg9l z2y2R?SPA{Tr%-)nJ-7)%@VH2+0xvj2f1Sl?X^nRn@*8aeO zPS(;^Il-kj33g-cHdj;&3ZJow5_A;YoFLJgI)cub{Fr0sh-?-%pKEVGpGBW>0YK1_ z5Y%_vq_QRDKtqts{=1XJe7mvRr(7=TxnyWNB9REy@bsMULsAb47!NZjQEGOgb9aer zY{W00EBrekq;Ji$ZU<^5s1@$mcDf3`RG)e*>e@U&J648hW;Bys4sidt>f7|3)zynpA>1R*`)A;a~T@`)ZA6k)q^K=1JVK?489S!GuTcMKIdPI(##aWc^>-;)ar z#8KALSeueH8+#@Vc^snEnN=`Q9pRA(?j!>Rox^WCPZpcjrBODbx17)(@+7XH0$eo6 z6%9x~0gwbaG#vdHH3o4ObHF|WKIprUxN`&Cgr4R(2eZ3Z0c^$@GBL{lOr_v0OEC}Z zrW!D1} z24XULLP!|r#&KkGLk_F*XgIk56^V{C@-`&Sb?331_B(lq2eUD+`Vm=?$-J|{P|^8q zFzs8+U7OQ;$jr!28WC~KMP}XD99N-5v18eUCl`n3!UOt66INy??MuLSaC%H#u;1D4 z?kA6k#l0Pa>99Kj7_9hy^vExq_btfdwm$E7O}Sv zk(zpf1tdeYeQ;j8vrm-?4Gzybv32nF6A0dHMXuL{GsX0GF43Yl@Ib3-N+;iyh-N($ zRT0lO13kk8hTD};SIEGqo8U9v>8+z!BzGKewmh9M6}gkP2r|KSuZ56AgveU154^YQ z6=9(u6yqHq2;am{buP+JH1(uoLzDHDx7Mv{>(8B`*nR3*+@O0n zfeJ9`EqzQ}Tbtp8gnC=B?uzrCc_(K)Vy*&HGZr4YjC1kzWqZ;2h z@C%%s!B;ZpMrn<6k4>-Jg<$P<(iFx!MF@11IsjK@*WC^b>J(+f`rIj$A#+Fe$Cm6M z7vbhl5!M^qhw8@Oh}nUBHI*K67b^}PJ*PMv$^G!DfL67H;pQoMIIgXw?o%Q^+Adwg zz4qF_Wb8>6Zh zN>-p)p^GnWXj|3xQgOL+q;0FwW2e+v;Xm?7Oyca9*s}0WhnLCJrIo6F{Ow&`?#3cR zyNsWx#;@endCo)&t^P5BDUCnLEIx7fv08dK61Z@>G<{d`chzR4=}3&iC7zTUwTA%{ zqYiJg*AhMMz)_OD+vnU)mjf>*>EuXxqpZ-NHK&hXnU~h?df=|ry~eT1rck$6ZFDU^ znq?=W&@oER+);8=IW{Oc=^@3&W)G#UX17kq<@r+AwR<`EO4iEjr~n|?ZG2#JMtDC@ zfYL!uzOunS=|e4F;0=wLk=+3t>_`f}!8Tnb-CdsIr?KIjF8*d3Eb%WjVsr!^UQ(?)$oDZt{q9bQeW3Pqe-l zHQ{X?=ZjX5&gyO&aIBv>ES4^4HsTrA>YaKu$iN#?vT^!&C~q7HbgLvi2*$_DJS@&c z_0^_FEqnL!P-^Gi3(y|lCK^!7rskW;^s<<}j0ptjT#Hr83jC&0KDtcYux9i9&GZ8r z4ZUzf?Wy{D*Om}PwVltU(1yxW0df$R=IZItWAD6_nLjv`<%hBaC`daSOwjUf-|OB< z+N<&&1wpny^OuoB%3Wu5&ySZXY%^ooSpu%Ef@MF@3eff#;FlcmmR~fImuO)U)QyVk z$-0g{`N&g?qfSGIZ7hqx<2oK`)T&gPu`i4l3dUqm?V%?bvtr!CEVkr{4g2Tw7Cby> z#e?2OO#L`&4lehzoPrAPZcdh)mm;xsD zV`N7n-vJ{&0p=>^Rg~4j0Aj@b`UO<=$g@Y17^vpT z=|NIff3tD2aQG{uBBj*LSTV_LZ*OEC+%c;OkvUT>mcaH z{2ex{PdLNwH zkb#bK5cL>ftS%^7filgF`M4GOyy~eH9}iA(Yxp5ieqZ=2{-%QBO1NE+48Fwl>Y0I9 z(@GS3-ga6aF#Mqun#E(fcdt(n!eWx#E=E0i07S{$>t*}q)gqo6>CK*ur2RBbFDExP zJA>z6m-7}p`*`)wDEzx{D%`1`M$+U0k@kU#%c z>iltk{7b2yZXmj_Qv%e16oR&}P|NUTSkO&XU;b~u`o8rk<8 z99_A&-PwHy9dvhK`*!W4iQGG3-ppP8q@lB^jkK(CFMJx~-8t2Hr=lA`;kIQ=mE<%L zAf3!oL1lgdkChMQOal3m2P1LplGEJC-a0wF&vFBzFrZO&;PhqEaUWa^*e(A0rXmv*M zz(oG$%H)RcOh%(C1wI}jXpWscIF)0^i;5XDBl{1jVovqcGNwMXln}c^5*v$jwN;M^Fkr zHX^-a?2@5UyPCAq#0^_?xDC0YV^k&|l#$ zwiO&7J@8;>uDB}NNA-Nn0^0D;e1>6M$;hYvZkIAkw6horN+56GwUqpL5B>kKcizel zLR*@CmB}WctMD%901zO&w;5h|Z=ZfR_fB=)4ra3MnqY!cD(Q%=ZPxnN_oFQk-CyoU z?^sNf=`sc^DuU#d43BK_nqocPZiT7(ngAG=jc$Uo#`e71*|w34uf<^lNV9#<2CCNbFNp-CFoizP*U^14 z1pS%qYuSb0R)AoyzE7o;eC{8BMlP&|5oQOTI)qq(Rj#+$$0-xN$Xy>hsY?@|}z>m;sJ zw*JF&=ZM1K(?C)MB@df=?#WH?+}g{b@LIHVrmdt z(G=Q^sQd5;4?WtJl)D^-jTS+llEeIj&>jk0Ja5E`FJ&uL>#L31u$885xM-Obne=L? zQcEPNJ)WMGSON8m5}0XrQ;*S2_47qHTG# zxKEd0E5yyuo%*zyOuJZbrVL*LPNHk?K;PX24IBOSHztaRZYYv#%(sH^$B#Hc2d~78 z;L!f|B6B)_$hvZAuFxBjx>3i(l?`rX0^`|0o~e;4tykbKg2ua;dD+ zk8JvUXDP{qbB38Yj)PZUSuiVE5y9Q}{fy<>fmO=Q&#NX=!9FL$hi$k@mKYNW5|=++ ze|<;tx>7oM`^PS)LUEs=hf0;mW=6yWcx)th=fElhW@6mzChKYe)~v|A5(Nu2k3)gE z8M(oD(tLbtVQDfz5bHg3I~J*ag&__;a(>Oa13}TEiw@cx2$TVvHly=B*+P8m$(`uf z`jA|4aG$qkl2Y40^7=ZmqSYw{T~DG-0=>@SSS4FDfkYcAR6VHL#r9*I0;`79{*y{psv{)N$(wg~-6AN*cV&UF#_NJ7I{t<5gip454Ggo@ZeHb5p50CR2 z_74=dB4o`uPN5*DtnT&xPXk2MZ}q{G-cq6?huDe(yx|`hN@aFaBy@$RwsE+F;cPRh z)ung)K`Ki*dUZvgA2606srN-XNYS|LrVSVGS?Z2}cdg-aFS$@PXnpejA87o^^Q;ubdXU?#h-FC;U;G?g1asLBPcVjDJ( zX$SLzT^Pr{s%!7W+G_?44jmpSWlP!!<6tNppP{(0^#(PX?@;6$XSVU@tJ$z0DGpF{CaF&Uk=viV{S<3 zI~OAnu`rV&^f7V4XFDM?D?L;vIU>1-u_%wov`OBFVayp=7IJor z3;T3(^+0P6W3{@YCflizC|+lL;1-ewN8C?36PE0TEmG^F+tJR^w~RO}+dA5-U9E=9 zKu0u0YTZbj$?EUxbWAdte)VY&pn$k%E}ct=NU`23JI-S>5A!|0pN@oyslp*EylavR z;pXLG+CCiO#m)F&uPqgmgAtl1L;AjbMg4jsQ}kJ=DT5KuL(KDfQKMJ4Mz{>27g`^ev%9}Du};d z<^^8^_0F?Q@0K-s6aO)}Xsd^uT3`Mu)*o|wR~RGTT5hLwEYR?nzEF=NZbGim{L8MM zumlM%WRNInG~EZ1A9mvsKub6Co*wqc=R@SwSahxy&F_KW_l8Z8*dje#2P5{Yx@BW? zMM$hK>+@23keGKIJ8$2UM+@CoYJ^NQh%3fA$?>dRL+Cm8PMwKn#YuShJ%n*MOk-Gn zV!o7MifZD>JKcL|BsQ{+XA-kB9mX(q&Qcom6py}+w;i%o4OK6BZ|6fqw|qgU^eev` zO`kqhCb~qtaY9a1w|k0ZR0EOq!s-YW4L}%y5#ft=A3raq*J{o5N))EMLv0|6;AG1; zzOms?9Dhoei7LvJj(YO|b7R_CQ@>Rt`Q10f;E}mZj9$!0 zQffV0s=5lr6HDqJ`h6SUI zI$x_^RdD}ZUN5U!Nb&MJC8kx`w->^HUoTfb@sz||GHutJY!TgOPvIVM6rZz&Ca{gR zPv%<-^rq!b1uoX9wF=9h5^-l_u?1%Sad}xHgOmAvqHiTM)aUA@f7ei5xg_y9N0zl( zxeL$!{o-l)N>2Y{-`DRq-yY5Aez>?(UL_FU=_5n;ZWZJ%0@kC`RI2=Z&Tr*jZtnPr z>oE_fvdijQN4D9$qQU1=IG!V%_Ol?<_cG*(>&^Lf`$opbUD!%n?||UuUgdi2hvxM~ zgIAw{!lsF$CaGH11D?T-fcN@k^4v7K2(1twcNRgMbt(PT-!Hv~utz?RRk|b4`po9Y>2%B7Q`+EEGSxpo(zlBHogceS1r6?9{Tu9Qj;+p; zJDY0>wN{f=88W|QA-u~Jk?2jugh3+5)~o0TVbr;UL_LFB%|}63CoR;Qcgn@A^3(h7 zi0er|i-K)Y-dTb(Y#mfoLx0M7g_2a+YO&LKA#M+UKiMO=StpwL`O4xobN)Fm*PMi9 z6U1=c+iavJ_69bjCLoK;%N6ZgjIszAM!?sTbTWjEYm>T5`7&O_^WZqUU$kqxb+OVo zKnh}~2F~K&ct>suww_-N7piy)65k!&xUP(MsxO+R5;c%A@AY;Z^BR^+p4{`NNRSjV z?*I-zdx5^jA(K_>n*5Ww6<1E3OnG2!*7>q18tabtteGdHfDHfjy{U!+7c|JBN{{*( zc}0t>`9!g~Sv=}EWi}Ae)@>e3w;b|HVp|B~&zshHvb)0k z2~r4Yeu*-CKYLXepG;n1)xlBO^s5j+Xj*;TYWLw=nsKMQJuB?D=c|=ccsI1t>ZED3 zNFY=Fb$D7TUPDK~6fXlHRBM9Y*SB0P7}89oAW@gEwSI5+_N{!~Qg$`~kOGpbPbACA zDH}E%&NR72IgYzn!7l`!j`cwtwveT+fV1{AqG&^-r{CMmo3v_v%u0gIuVF6ycofc_#4UFkZir_3VnT}0Pf>{ ztmLZ6YAT`@hpc}G+dpR{hU@BBpIG!?MY&nI81!rsab1z^bvs|;)D!KkgWZ*Q zSM;ZrV+@Q_EB0F%Z{8sbx3x&qHeV$oII%7kPd+TYk^eCVFbsS1f&@{jJ1_LPXt$OJ z)4Nqo&DpfGY=o<1zzjvIH`dk-*_Q@)|M1dCMRSgXxT|q>V?Ykg?ljK1r`GPFfqN5| z5l*cXd|$|`RjP~Ei(bB7=B^ukJ2cdz1B@M{+Fbxds7?jjWFt0zr@*%bh?`w07tvYP|C$Q7~6$xBD&xYUV5OS#d4f z88DN_gWkX1YZ}bhgIxYq&xL4kaMA)qMZ)k)tl40~`jdNtFlDadO`Z_alQQnU?w6h( z@-KI^gY#j1?%-d5D&#xy9sStMx!dq{;5rr1bJ zG_jy0WCGNMNsxkpQ_|!fY_<(>@96L8S5P7gHD(xzJ=;jk5~kCwykA>7yu!srZfO+W z2PAxsY5K-|@4!=$#Y3gtm+>trbu5&DN&zN1{j2SIh1|7iEs@?zE|3%}mZSkp4<)3> z)7d}wXr(RfhSJ26TL{aia=u`GBG8QZvsrM5|11TFD-L7~YI_?yi&Fs*o!Zsg zjp>iL9@K3B=%_Q#a}Ec6TlJtv8G9f@-LdV8=5Dk4EY&XP7&$(NbFYHz?bJD^mljui z6BY)L`3Ni%C@&YYd1)4QDCr$bNZ|zpm;L(5REWjYW57j0B3vKO(ttApFY^-GbF+$} zKbF6fwDJm4JSGqoLZW?09B*Uw1$|`g*IuBMpXAbS$=!ZMoNww?2HVfh{(K)&R3=9N zFb4Up?&fu8GmJm>LxUvR9Aj%(#7uVH9PCYeuHg~nY10@LSF#JIJk9-cFun_`zE59a z5iyOKUEJYTalvS@A@(~qE>ND)*23UTa>`%)jNB)FjmJqbRK2z^50ATa+$N;oZ3~gt%j>2!pISMkf%#@jGA>nKuqGJg*(si1w-SQ)bv#@c zE@@_?3pYOx3nbMC7%A|d?<$Poifly(Pn5J}|NGgWi1{eZ%mXASq5_WtK7sK93ho~8 zcee~@-zL*WJI^L=kXl~`NsHo*7I+5eTv9D!?>{;>XgXtwSgE)lOZ%dMjbVyoBD+T} zI+!uC=nc`u&`#yDyI6^tGv`wx%2xA=+y2?9OqW03P)CWEqOV~~oR5*#uqL?g& z*bkwHd)t%|GK)LrD|On3)2Ge5=OWlNF39bt#twj9ONlDI-t1vBzg~{l5$=}3NOHck2!6PYpV0DN5e`JPxkjHeg`lPqMJKSV#O8e5D>C_?BY#e_ENe8zm2*5exy`Nu#=`M$Xx6G zDB@52L14PQg`4Ce(V$BgHN+*eY(!NI3-!R)czS&Vw^;-Y9(EBHy$oqdo|ZMeqj=|BC>Q--2xZFi&d><|0pIwYumvv)O@ z?*iCwr)qtyi9%ZqrFFYESk}z_q4b@85;G^M*EqgdBYU+539+NZbKidzuMe+IDff-c ze36BYtbm&kU)$~Dp4#!PR^~@ zlF+hSUYY-SuHtUVEXQ}%fv$L^AH_wU)&Ed>++n#>)#!EWCh6{`a}GDjXZ z)#~>4C@9L(C-x9DN-WAIL-F9pfjRm5U@+aSI=FiXA)Ke_4(!z8y ze7xgW$74d8l$AD>l-kwvcqcUVgQ3{xH>Fm&rSlqq{G1ArsJ2#@V)StA#*qS$B7CY~ z&+uA$TxFNIJ5oL(duCq-BR*BLyPqtgFyS@)NoD6R+hlccK`eBkoxIEm^s}QW`A&{? z_LQ_QLjP4`!_P#yz%@MTX;s9elI{Q2O-Ay>7Au!(5 z-ZJE(j`^Jkhx@#@I=rdJck3CX^uJSZ5KnB#e zRy6dgTDUrPipaAA|8>G&kn1clI}dU>jlc6bKjXWYOs8+Z`eXEu5gm}2rp#wHLMRP4 z*3+8TT>uiA+lR@+wiC}4q24@i2Z=HlXJhZ+dKB#D@ zPmtEdpB}-f)c|?ctQMjwvm4YUr=XQaag)?EgGqhq3NV{f7KwUW5alJ}fVRE!U*E)x-PQdj*ZKt>Dxcds=w^;f zxZZwU_$LMKLgt8+Wqn><6fH{ks#{{$j%3rJ0!|}{ zv?)3vMA{Lqe3~M#e#Nm6Mtsu>uQdHWFDjbD&JqpB{oLkRhfb@F0hM|WqsSkjAL%%D zcXwIX>$`4_NRDxDQV18&I6h%lG>)a8@S!t`q66SpKH$R!_T*EyaBmmcmZanjcNrfp zSkrbnwyO||luKVdoa9gI*ttD@EC?B|bJ%B|(A@3m;p<*33cMv78r}nMwaM#6ezerO z@XKo;lU0EKd2LkS+ZP_awh7n-csQINF!TZW{Duqcq^s}`zdF_?corOejkc#M-QM~K z6SkSjynun^X#A?24dq{lYpJIB)0zh^67~l;fyeY6lxsET6c^FYM&HT!X7h0W<70la zo+S5^!hLSm*m2G_-u2BcvF+LfR+00gCVKNE@*5ByPHeI?+)yuvqJ`J7Hnq_p4cH)! z(r?XSDlE#Fc3T&zv#Q|JfmuOV0Bg+UxBENnKqcifL zg^3n>VG!Om(B~>0GD|6E<<2TJ2+=23I%OSQL;qz<7gIA?ZAgYS zTu>?cQf~dUigup%QP}kviUBb3w0p~-JlI3$(%_GCp?-Ujm8e>#r)y*+n!P>;oQp}F zk5^>{kYQ<<{-T_Dxd>V+&|A%u(}jc5ck%@vAnduNYpv^Bgu?cBtG8f_F%ggp%iu)w z>&^`g2ogk78NZvkH<|g>YCpkY?ckJxc)+0RYiQ5akFoJ`t-g3B0+n70r;ajK&j=c0 zQ)_r7rxHN-5n(v&kp2{pfKi<3&k^S_R+hV}%d@0<@HqbVY^>y}7CM=uzu-i}!+7m1 zMV@XYhb6hE_;ZY)+lO~uvv!^W3GGkGNGqpvK9lKJ2-*l?&(BeAg(RYj4ZXo8ZbvD3&^Vk|*E4~p)pQ##o*6s%yF8%Uor)t4zi1$R4SuH>tOaXSui z51K36apD^4AZ0&k5a7P8>lqUEjyUr|0ev#1s-!%GPx@q)3Z4up;`tN!- zZ`aEIy^Hjp4gAaXj*g_;i??6@myM_A_&@*cfAs6WqyNqOPs#tT{io-@>_7c5AOau% z5AHv$nE%*+dgnP>dw#x%C6Xs?I~<3_vsO>NU7eM&YnZJ`SJX#Sr0dZ4k%kwANYKpZ zz=W&EnnQSxuX2{bISHacuZfj>CstnK;R zgwkWtzg>h4ph+hdrS@`FJ^J|<2zHlz`FnJ5S&jepr1MO+;b56_YY2wZ_VkGK-a| ztyCooQzRD)t>&`)SKP0PuC96nP?oD@@@HmbFmfr^OWoAV*9Qqgfc~L>2yhoneq3THA_=G(0FQ%Y=rUGy#>I6l)l6m ziM6$K?Ft5eoc2d>+G_V-*)ab4!Pd|3$1)|eP;7)*R`JdSfeGDd`dqD|3`u>QZdXgj zc%Mrq<5Dc`t;-$J-y?DxvC^SH%u?%;I5^X^sQ=YgjU`sga&arO=c2Ax!{Rkg5qa#Z ziuc`c2A5CHYGqQdFAV;n(Yr=(AL^ahDa;YzzqO4rNgrYAa@F6D=5~>D3$0we|6^RZ zt6XX3CrJpv9&p<9V9hq3B%R#obBoy6+cy->3?gD3qlNDm^+OoTfJwGKWaHDo;Km|-(KHP?tvJKMJbB76 zq-mPV6~$Moov6Be==r|4lj2HXd7#eScbibH)Dni_^a9j?IfUsD06>tjFFS4JwEn#N z@?=at2<1t|A~#0@+gfCy85f5WX0$Q5vcn$7(e(<{1}coL{3SV){5D5EAb4zD9tN<> zZ)!_XZ_`({zSzIzk1XTVYGYKPS^`eY{ctaT&1|CGrb_SXgHuz73JxrL(UOvQtIFNp zFcAf{&&vYfe)vLuQy<*xV-e(1tQ(KEmhAC8Mpg*3WFEMZCFU&tJJhvPDn@Ab_t!K{ zzt{uy%Z)`q;5bfB{M@yDHzh8*6YxjKJP$J;3KZ=zQN~@VdmGMEKU+nP?R@vo%-^?D zl-rju8Vm^UY>>4kLt!8sE-e+Emg}cEMRtXL8_RsmU*t`6Wxnpaj$P4oaeBN6J16xM z)e`Y2GsJI0fBvrJ_AXD)W!1aB_vr(WX1i5A2*%=bUw**&G&t}Rz=UOrZCyWFu3#{X zLn>yO1c&Sw*&wyfJrPQsed=6>t}zbm#l2%Gz;Njx)#86|e669nyVrG5gVD?hp1r&T zgxzI#!=MXWaT^7QfjRx!;Ky(wJKCZ(kOT@y^$Y@s=F*`T>Gz*hiDeavj?=z+!Y!5Q zJNJ^W_jC%Vgmb$vFxjh1fhS3N%!q@8IYI1kA(wQf(TwjJ_m9lbR8*u!sP&4|DWe|4 zFpPdh1fZY*$(Q!meZY~5^X>N96GM`%kau(RLJTbBsxluS1fJQGA~#Z!Ad4K(L_!Gr z6ioN~FkCTnl?CFCz_%h7oW50AlH@3FVPJD-dd<`%n!!2}vT&J@HzOZ=MKlpjba5vX z!ntkdcy(I&x^ITXrvBRg;b8(Yqu8Jf!wYZd5&Ulah9!;%ym~cZd^WOQ%x@Pwjq)1u zxcw;#s%vbLNX^ysGAXn5lZV(WlTD(Q)C+uSr1HwCy7ooa5Zk&r&+-!47K*u z4$B2vLTz2`4iCTXU$jy|Qjy0MfU97}%ZXI0GC0IS>1Q>(^@V4=8Mh=~5%{B{epC3E z+f?WCCbPw!^NL?o&Zj*iD$(3NAl6RmNc3XB49^KsskOrG82AGq_S|{TxN#mur%O?2 zr}NlZP^h*I(04bh2*9~dEv%nj^^|09e_s>C3e5oUYffK_kYU=KWNiPZw-xid#L>Gg zKRtJkUEQRNU``BuC?qWGS9wX(Ix7HTZjSnuHTsDZQH^Rp^dz-XH|xOTBEvUQogl;g zYHL1$FQ^z8OccLnPC*m!{Be_fhmcG75vZA7Y@bPQ0nvn39la>^e%|LRmT-cpNnqsT zItr5#I5n>@f%9XzS55I#$v@kV&zN8d6vP!T)RuPYU8`B&_na$7R5h*N7}O7J+P)w$ zOmmTzYrV0qHAQh0Hc|1dwH^tdA;Ed2Mp0U%|K|77>HzCTzf|hRN)9+q*m+OQpiW-R zXojq2ImP4i?Uu2}K8bgmzt1cG6JCJ1`P0t6hSw)MUgoWm@&Wjuf*H8nmPJlA?LL)< z=EihiNo&wM#U2h5${Wi~?f8C0?P{DEOhnCN8WJ(ZW(uC~&|?m81kSvOV|U%=u;w15 zZHyv3&;2gXQIZKoRO-H-MQ{{W^7CXFhJ+CRNkp%b#{#|(7JbwBCbu>q{KC^W8c41+WMe&BRo^p^C%|676uM2Y~a=~J8UedXB9}BxX z9vC1f8UmW)he1*e6z%GbRW+fLm3pMt(XnX-5F7mB$=DU<#w$ppgX6vU3KgnFy5u}8 z3^SV4hp0yu`;m<<*vc8CKb z>Lwof)s=8}HYTs%g|v_Oqrn89K&o?U0R}}vIKXBATTxRSx3U=w7@C!X%>ns{j|vv) zM%Zoux}iYJE5Roy^@#4#8~7-lsSyw-!Ce_Q9_qskquY#Qo4~CaMaq# z1Zoo* z@lBFs-RuMn#|a|Y7wJ|#rz0OT1w^{6g#Hlh;Nq%c+P5NnerF|f4nNOBF-Vf;|FI}N zb85Xfz;@M1?G6JsmkV6SMD8d#l)F+}T!+FnG2&pf`K`Dt7M{+?BUfZhLcpYnT%&F&q?`g?P&}ZM*V#D}^z5?t$ zeY(G^9iVVqDqw;R2WH(z+_pt_5xjPVpn*PxF)lLg3syNL4)tVN7446F@epmJJrJ~d z{cwZ#G^ZcI9S(MBAL5@MD$Z@$Yk7qZP)n>3mX`~tpX@w@4^LoPqx!J{% z6*dP;v-O%W%6t)xv#-q!kEd~S9N7DzjsP<*6B#47?ZkUL8uH?*i#%r~=JPzKrRLkm z_B4WfrE{d+`QnpL7^eC4K^K&=a-G0A^#u&V)J1MmD5f%ANhL?XG%t-J`?+&tRE^_o zJ;e-(9yUeD9e3y)*>0_~Uw#0K$Qj z1DXm#QX)p$%P&Ou$mU>N^y24;P4C<6_7^usw30!^V=TLCRpn&>W!h&sN870n2dN56 z4Ih0ttCx56ASqxE)8h?)8$vX^I%oDdRqIOzk-Yg=0DxClar=7kAZwPoK%{h%b6!irA63qeI#| z_ne6x%oTL zf!0#)tCWU&tS{*Oh8?ZPH(we$&r6&dUr*=sJwnb6f$0i!CTAs%U$Uk8p(PGJG9F(=;hez&$H$*h^#MXC?|CI#(S0UGJ*2r*&< zEp~$(VZz|FZT|f7TTHy=frb^9TW%x+@d* zhC>PTY5Ev03GOc8`4oSgWCVM9*mPL_J_|PUxPldUeU+*C`kL?lnU%r&WrD2`LER9I zTAetK&cPP-(>{f2##Yi|!mxVnp@MxEvsI4gYe;yrN*+z(U!a-;yw7NN`yp<8Qv5EC ziMo0(qc5$bVZ6EMa<_7*HP*RmO>&qAv}4tmb=KDjUyX?q6)hR2<&9JeC9v~ksJ>NO zd0)R2sbE3QsvbY=-!{`bm|&Hz1+R_$F?ht>7vvdN8KEMN4bI-FuM_(*-;#3#XNny# zSFUl!$<}Zc0zwFAdr2!{#YxM{pgp)!#@Swjl;M1ivK$>>LbJ|>lYPV1Z-KMUn|wvm zImNeni&pU_0Yr}V=%*j!cD!FiD!M5%?KpAp1a$L91A~M>+Mc=A8;P=C^0;cUO#_i>=^@1ap*oh2V z09FCRPG@FX|G>g3U7K?tAYY4vUHi%qTj?nA)s*%6uZ)HhF`D|e&`-(-pO62>B=x$e zVQ^KJ%KCRnxK1`eHGlb8w;6(l?h5q3A!R3^(Z4#Fy~f3EZUs9R{)^r`)W!QLKux zM`2qeL2purgJ&-ALHe{P=Wo^$!{SWE*u@H0r-2#y5x=rJ>&yA|z4U1Haf_^dzg+q< zMehw}9GWZ1k&iif8fu&+Svv>-gqPH06ZMBJS!ubVTiXEeQ)hPV=6$9viRlOG_;R7p ztIk~f%57sw86q7;vn_=G{o{UbD!t@HN%fo`(kT4>CfskW*pGF2b_7x4K9rs*VCP?3 zTxoUmA*P;r%y&vQh4*x+Gs#X&QP!sYq<^vfr3DvfO!nb*CK>7OH6v4lGM%&V( z2JnmHzNZSL2FA6XUtN@rP29tiu=-O^^IzLgC+JE@VkU(9^%RwApTjmI+=Egs{vzL2 zsMwx?BbvC`l+2$a>8SNMpe+2W%Q{0aZ&|6}19^|0ftR@w3=}RjQ2PWMECWm{?t?;% z1Oe2;h2dP7>|MdqIRrcjJXfJPq6a?88-`AH|3LCtUollL8Z^2|^3P%HmGPfksW76nYQu18yWH90_LZau0Xa!$0LNuCCRb3(ibf!a#o^!V*LlA z1&O9lPjXU1&(T9;kBWp%`dU`s551WOK?nmYFGrCnfIyD>?Dg2pA6kB1QXbRg{#yQ;^yTBA8Nl-FnsWC<6kWC#shdxQ zjHqw*PK$9~yWRyRve%yAer;3zd4o%-UBpz$`l^z76Yy^e>^6m0o{2AkJ*P^(4_~8F zLl_v+9}KZR92<$?1XLUF58<{%T3$qrL9n=(CF8w9s@?Paz4ZpEGt;^XvTu14FTXw$ zkWE{Qk|Bg)@CjOCtgf!#ndWVN#gswz`t&KQ7Rz*lUq%s{2N!4}5Ewf+6-3IMuN z_lM3Tk#F?L&2-o?<7AK6a$2I5J8$~<`VV5}cZ!hc5^XdvU}F2bS!^btYz#)2v(Xug zvB0_fkRl4r<7Le+=|W$A0s)M;Nte2SJpsofUdaaxksESWdSI&3H5CQIYMxwb+zJ{c zCQ21)9QlD+yiARYSW$&(Lp>nSw>CU4ZzbkKt)IVLlgs`R&(i6uz))|^(7Z4teLp+Q z-=2TH+rU30%(@+v^S9_EAKjB!slBG_GYW6%*pC84W)b7vr{aSA_|BP}ezBKAAX-!qenn&{Zf01E>qZB&wr0Iwhdk647Xeh|_gs6W($|76mk$Spr+ zD7!9g%3Oa=hnHN$hBkN0H$bjbcR$#3?`x8HrBBgF+Lgy4cyJLhFFT!y9PMF?i$U$< zcD~6^c{)u#sx=izcKn*gHPq^~tcVMZ)uI=Xwfig(mJF=(1P;f~YBW(KtD{rL)tb)L zU+Z^C1`WE30D^-AEacCU5Zu-#V^L&Yb6tE~`krj`dr!HO0a|GoiFv$ma( z?ZS^&-I1eh$JFiyz`;dJQ-0*YLYBTexy&#;#GM9My0jKI{O(Ger3ITjqP_}`_&_#BQSz3j#Qn>OWcyYJdoI0D*=Yw4t@u zJbjUQ&bf8JTW?Td#vp#V(tZ2(E!H9sY+YKyN{Gg|sI;d?t=q*>wPXRuid9RChB$Ud z%&9Y9u4)b%*y%qV%Jn!g-eF_IJ+rqP7Rs{hU|d%!I}{G6#KMabog4CF7NoEpW!7#; z5QDM1E?Bs7$MAtAhh&%zkXqoT4>x-FZjE7Mcm#zw3gkSOW&|nNoU#}1g}i6TIsN*} zydcfX_+722`vb%^dAY%NTAqdba}LT-mdDI3szJfl|Ay=2JLv%8Ni z@QRXkE?vV@zqQR#zD?nV@x5G}jGr_MW!T2C1xrxG`RyGHk*0MRVOuIOQyVdvY0J{E zzwDUU-y{EtQk9G^d%dHY{IoCs)i26n-L0)taLMmaV*WXujA%8R+s)gt8DTs!Qb6}O zKwrXdFCAw$9slPLXclibbT)JO`Yl7N74==^P70E=fxmiwXbZOpsGeq*j%uR|~K3x|;lQaU8(fX2}V#&6Srcy*dpWiaX*jsae>) z@T!@>S&^ZYHr+o9-9TJn7;+O;dYa8gCl*KQ)d+@6u&UgL(Yl!UhzaaO(?D{Ny?<`nZnEe|S$_KBlW>je;ixyRTctGv~ryjC-6BU>;(d2%C_`{Z>n0&Q|_lt7)ex ztX;M16yJy)?46gfqJ8vrC#lqX-0y+Bhvp;$?5>ODuJe0Lpiz9O(q%SSeH~j40GYcM zu_Qn<`+FO4%R~Hj#q!PTQ&JY{`XAGdOiRx)_6LhkW&x(GY9Cl1(($c%l`F2X?#qi1 ziF`l|v|Wgn)}j07N1-a8*6{wZ>UAnF`}s=qwjJ5?%N{p%NI8=Vz7gAca-|*3Zg1ZP zVLlW?k}WAzyx(euc#FFHpSoT3|%GTexKFa6fcXm`B%9x4&AaoPN6nAHl^XI@>X#3_JVi0^J_YZihb6saU$M%3vY0We<+2&+ z88SFLHXPL$zvczMC+CU=m|+CF(?nYvE7fh74LFa(f{JTGfMDJqkFooy^hSim7{>$t zb4r}TA@Wre&|#mZCK~Jp3T?TJ4AzF46Oe)c~iJA4>8718+Ob1w$4Z0ar|!IWgBMqUG&f zslh19N%sugy9Yrq0Rl;|^jL(3KwNDH8-z);bD$rT2RBMF3?2H_1dWJNG|VbGnWmn6 ztXSh}fG=lpp4>#2-#*fqBGM=I(=MX^i1KMlRo&zglnQ!T;ew}LS@nc>JMuye^Aj@D zBkBho%7~snnnLpB!^EU*L0ZE`h<1o&jgih@J^C%_#M=rfm{r`_?z+I*?n@@&5spK$ zkZ>~-XHQd$40LpHEK%@q5Y74P<90!?)%@2LN`NP-?F*WwQhjM%HYAF3os|Biuk1jMydO zcVFggyBQO471@c)0{Hc`;M_6Apic=&8|F&pZDCR~XvCN#Y~>0o9`)+7sKL|=nNrJt z`ay>H8JML@o%_y=`X8&LhdGI|P$~^G?q8)ax63%%pkdO0puXOpFZ$ssM;saaJBG zUdPqpx*6&Qj3LN~a(6iQPtJAZ!~eeVPmby4J=@^v0&Z*&0JWPbI= zm;#h4X*BN)drl4byOK9YLTcSL;%{oDs$Kp5=Jb)WmGz(N;DOfa_C3d zmLKz(a^Kw^ul`gXj<7WTYu|8L0O7`e^vnL_dm2ZLNw09BES7^5JF;>i(a30l5%4Rh zlatZ9yD()1jAv+3H|_y!G8v-_>!(BNNY-RR>s6QOSn>Dq@bLMBaf~e%fTkJLlws!9 zVkf(rA*K6t$nhftux>osC?#4kUV>o#D6k8BkAO4~;cF|c7tY4ehv zeG9AwayI+rwLj-2PxtizMd`&`G~?t>jts;7x!&7iJwtU3O}_1|cf?lkz*cfAMFPjudl^^BJJpH5QK8&*KqR3hb{@mUNl|l{bxf0NPk5E-F6lb%N>Y7|g zXP(um`IQ4@Ji^64(2w8hE(ha^wjP1wI3)Y6-NKiuV6-l?P8Ay&k-imdN$2H#AN0!hx z?i{ZR3dbJSug4vOaJVhhv*+@!p~$7VJ+j98+Yk0IQmnTp>9^=OdKVx<9qk zvmkGuY(|@0z5-#TLHRMj$RK_&^}SZy;t7f0tprDXxc1&+OiyW7yqYa~N5VCkfJ}FC5<|`W*?UzG;WvLw8+>v5Kmu52CfpF1(?&5qG(Q!XJAhCoI zz9#IRJ^S;YF}Z&`JG?4>8SaG-QpXIv>If4$q}tJqUFc-C)RWW{4S&IaB%L*Dq2%C| zjL^{K`db#6gzv&-FLjz);(n^!+jT@MKma^I!@m;Gl$z-@U-=#SA0@%M z4o!5>;A|u7?*O`%3GN8oo(s{mMXepan;Z<~@|)cn!1X}YQR2wVmsLe)hfcO6FTW@9 z?7Oj(>@AR$_^M2VvC=P_i|1GOLH#!TVsc+jMhkLY9M!Q12zqQQLDpQdf{Z3ngB$~- z5JA6tN@%*Kym1w_eH2sug74*>?`NLo=zC?3hrY-oWZx{WbU9q+f_H+Orx&)xylmuslMbD%cY@vqP@`ym4- z){d6nsJ8I#df9C^$RxzMIBAoO8fX}Jj=YmpCQHtRd)1dMXCUx>G!TH-7u{_htzUf7 z_JbyNxX*?(+Y@XOdR>~zU7}QhbvvYc!m;Db{Hk1zAzzvB`w)xiw1QH9t=s5*m1pK44vx4NAS4f2~aN=Dog?1djknFX!k+;gWuhG6zD9;7@>cO<8ByG*n$0Jjj*b(#7i;N!DWm^J)Lo2xw6vfOhYOb_lj&VZ3(3c^${R(6{%G5gL;z z@u5f*NnZ6|?wnB=AVMCyAo(;%SRvjaXGST_1aL@J%jV3}acGmb5vc}9Gzwu_Dp}OC z_QV5!k$WlaNqLRu2I271W|@>99*b-=e{w&(BhXiV*X*RBiv6rY^NrMSq{vAYkwO6% zcHR0KP8)9m9@gzDg+v$kqd7h4l3kPJuBaOyQ5`Izpu%-$1Uh6bj#I5@|LyhE)bxXs zlO_woeM6)=!O{Twoqm;W#jc}D`^L8o~W~C%zv2xdFsu;}YJRlV-Lqk)es7h??FV|LJ*Ztnlq}EY zJq96ukW_||rCPf2{-6OY`vea7AtTfXUG~eN@1B|=fQBfV9yak6(q7T(Du6*Omh%;Q z6hA~G0kGa46TK~ntOhKQE@FSwO=!SvTmXEFz!G4V8$%*Fb23CquMVD{i1}C_i)Dap zAjm>rWdI{AdM4@+M&2GOXlwa#g{yd|gQ6R$SZ&?TgUQ;#GUCes4W@z=|2)bR(h!e; zC`}>U7NCn@j@KF6&ID||K27Oe1s>xwM1m*i4|A5Mz9qINY~oM)-5=bjZ|BCEiUPry zb@IqZhoh0Cz7M9cn?)@;uS?x4ee&>~7z{H#!~E;hQMHBwyPL!D>; z6+`N$E+Hax-_W$AW7opPg!F#+&CHaMz&Q7yaDsegtd-dBZj3jS3`M9*D>yACSn@*v zZ*Qqu1F@)843kAFuhVH;7aO7c?#10tN6F4%B{~L-+ zw8X&lhRq~dK_W>m&@?C@*FHcno4Q1f6LSGl+wE*(M>7=z{>o`mb|fVN0IShWE;l~i zJeP0!4*?my09WT+$$#RlJ^Kb_vo9InV(n(7Dt!W!VHtQWz#l$+lYQeI;O!gHA^ZeQ zBkrUuPL|s(^5ugGm8NX>8=GD5ZQ>_UDYg}ZqzdiZ7Q%Tuc5iZhj`pQjb>io5O<(d8 zzlxM(+>#*tk-6V4;YKRZ`A~s=^Bpe052SOw?p&3}{SI(7UX5w?bXO%iWdJ}Wi!B$WE$brU@QH_GPC;MN` zOAJJ?HG4C9nigj;j;#6Ql}!>a>GS7px_Iay4lDNZ3Mk_+n%X&;iCmO&K${hKY}vUL zSypG=hap>J0QDGJCRKX4pWDl$Hh+-FP6ZIej;@Wm8Zt&WvJMdIRms|vhH1JJqkyqt zhWas&{AXn?rz-xSV>~1{_~JQUJNn zqkT>~)_;e#_6E%7|98tEZZHZbWnQWdJw@aoth6aPMn0Sex3)~h{hn%jv zY+LQOo;UW2`0tZv-w;e5ywIID%dI)1~1Ok0s z3_JmyRlsF-*E7T^B>f(Z6vWN5?^doVyY-(RBR(>&e!q8Apwnt*qrF?_h>ak6Zn^`4 zWt(y4_f=wJrp7Rsr9ExPPQC*2=~!$0OB>rfoK{W4-!Jj4Sw%gIAa47T2b)shV zSA#U2Zv$rwn;^yg%vy)hNO`;C`q(}6S)q)Oag40PST$6&&_*#tzYj=0ciiBPpH&%b zQWCIZ_KFLy#-J6|%~aKXkDv%UVLc}6$=W@)dl{m4QC}wBy-^?tV zGilYz1S@;8ui63yix7hc6g14DNYB#^hA+7GdS&3n)KCs{9;QZoQY5OZA3)#XoFFvi z;8(X{H*M1-@mXN&X8=Z`EA?2|8I4q`4dh!!;}w!x7>y(3O5)WkDq>ENlB?*qrFP?|ut*MRs z>*Trsr|FsK1P>R&fN1_m%0|q!PEltPB}yt|tFoqufpqh@ospy$9HjpsrpW{i=XVTm z4UzvHwT~S0I$tkM1QXqlV@fsD5h@p882Y5UueoN!&R~UM$_e#%MQEKlyA)oT#Wxau zx!*2%UebK9kg#w*rRjfXWai4C0nO|X&gEN*e|}>U;9z+rEF<59kGj4YW$La3#lD^PZK0DnaGYO1Sxq7m*t zXOFKy@sO`Z?hjOGqv4zXw!kotKC`HaxGJ@aj!U?*2F`Ai6;V_rTL}(#ev^G#D zk{P5JV7IS}M{k{aU^;g|;A+(Y9oT-)!B~|tqe4(?{QWcmAv$w-aMawkthn(91bdGL z!N^5X^mP8*>)DYYKWf&w%zxfZi>L(tl9E3UXkuQ`hZP{U4SpfQp~}2fkRC0ud^=@i zV9Zv4w+f#M-4QW@dgw-cg2eqcxTwI3%~&y!IcNG|HI|_LInVcTg6AtbpJ5neQ^1C~ zV2A6=AUsOxga>m=jYhYVdVODWQ5W%n>+6NDDMIRb0267}|!riLlMrz*tU5SHL>f~0!MTH3kfoD!AV@g&^`Jb<0Xle9=f!mtS&MgZWW!ts-$z3)92U>BRM=f#ZZK@jP8I=syiba#?+ zb;OoD!75d*lkl8hTOX#&d$Gn%9AR;C)x}+OJHao))LppCz|q<7toY@tSFVe&qs?L( zM!6jc0tCYlq_4zJp-)2(1B^96xR)EAQN%5Z%$w<`eDy05YGV8qRzE=m`0N&jPLn0w z{54>IuAmA1eHlJcqOTVE6>eMjE@-aW^c5M9k_E6xQg73CtzO!CrNA(VzM616Y15|= z3b3foKFXil(S}iVAliJIWzpWXBk_0OD;Z0h9M$>Ap|&Z24KTDRE~-H;7k?#0Yi%35 zsfOeW%edS(2eJ)lF0Z>{d_sPUYIhYJPo5?Kz+iAbhh5njF?}H9BZ_+>lo&-QcB^tU zcJ;IJuby|nTX0O%LANm{?_c!uJXbi)=EBg;EnvoZw%(g3+XgB``dYRNE#*;S5p98j zTyuQeufcfTIik|*)#z-riTHsqNsN4zXkEHR$<82R-ku`ZfDf_EPX=cmSvccoXprlO zdPp_A4cSzyl?Ph-a+DX%IzRoR`z*gcQH`%xG;T$tO!ft3_aRtZ z_3$2LMHi@mtJ|p>Ezo1_f_2vMU6VU9x8^^&ILQF1_%!nY2=h+ayTk3t5ZS&-L}2u? z#LUsJnnNcP5pe3ki5Fyv4zGK^FLV6o*_JIn$M+};9LT>ipMJt2JN5QF8L7;AnX!!k z$U0L-d+;IO4u>Rm$d8_;a<%XgI!5am!SN7mAy@U4KvYB02U6AuYXhm3j=@t7_s-Aj zWPx9Tbq{p&g5{oHL5c1)$`YxXD_?)*oD>PZbcNGo|ezO|=|BaB%V zl885)AZ{c;_QmZ0OyxLR8A|*?oYwYXlBX&9ujI|!E&e8vSf6g-G5Q9Is zjh&1=ir%X^v-b!pi$$JCkLANLS)O?8C}B28l?NN)^dPJ%tx`Bm;5kifHqC}+M0wd* zfEV*3u4bOaO+ZTShb?WTrtJH2j?01=y+e?W6Q}q5^ z?u8&(vLRR|RRnzy(oam4sT2nWBy88k1Y+dY?nVvvu@Dg=JNxe2F>EUE^HTIg1^!%H zBfN*$Ns2ft2-D3tg|(P&r!Kkmh!QOFR?(`fx9#fUCe2YqS~@zo3ej*UuM*diEqgmc zv<^e@?C(~3>!0g`8ixEv;5Uom3IxiLDnb9_^t9s*UkOPW{Lek?`5V*TQ5X*V5=92c zXv28-(cMgF`*plN(DS_nzUfY$9<6(4KGMbQ5r^oD!Icwe`@vz`#0eI^K*X8^=!s>y zi({}iHF*Em<4q#D)3Q;G3it9ZkaP74eTYGZ&&o%Y&zgB?YNQPc3;53%mh8&u9~BP( z$b2b3VG%qh76i_d{_83u3P(j}rKMNM=o04$d;@Sx(tgcGI6LHkSY&-lT3$h864; z9DM>k$v+%?Rcp%Rwc+nIU}0MB@&STq8wLU<#RzUPQ}O-v8@|NZt5Dnpzp(K$qxk$8 z1r6^%I}!K~nkwE}N-pl%uzYPVVZ1P`iph)4PZ>Y!L9uS0W-k!9J-!ceW+UfT30cR$ zaT>oQYDAvaj}+k8No4ky%$nz8o4I@2wOd*bE3UkTfevh~NdxNW#9H+n1MOAFtrko} zAw;IJjK0Eg8ACXYpFp{;bn*(*h2e~vl6__c{QBOaKkV5pswfKs#w}yt&Uz&93FpPR zFM(Ultw0IWrYAH&CWeTu3ca!6Gc>)}WchLS%5N*r+G(c`0qiWE+RjIuy!)oJ504FH z<^)KaWQV_)F#moFRHtu63QL6zv<8=IuYS=m`>mVu6>oxJkFMAJu;!-*-;d`DOnfoG$TWq$p_k4X~s{q z_}a=O2n9&>M3DXjy0SYKN>A1C*(A0SeeYo8erzA^glALkJ1Abgd3w$eO1D`ISW}iY z&^QCuMPykE>@JfhZ$>>VdJaN(FvwBnU`hNW9YYI}K(gLBI@G!iF^MoXplE01Jl{>W zfAhK{vBs#S1(G(>?>GH%>-McT;AtKQ_%(VEMELvGouJko=odRLKU9?XrNJaYz*IEg z_xJXd-s>ywxYS(_s%V0vYF(cuIn&wjp2R$y>y&q}J){dAqDh^Qc-IU^42nhK?VN1j zWn2B9qMXm?qyARu$8qjDWRmsfn`xp_ z!#n920az*=?cry zBZ9QeBZj<(%)4ROrF@~O3IKZV7Q^Nn(m8({^)3#Hy6-=DD*PuSQ}V;ZANTaXu*&$+ zh`SQf1__RCJjI5TAqP|QA#Zxy=4dETiLskxB(Vw@>UvS5CEWS)f z>xK^47slG|2)f}rqMJm8tj~U1vHDoK-{QDO4(!MiV85RSPb;C@ZcS<-fQ%{1-phnp zcCS=MK+Z%Dr6)-Ufxo?@b`}UvG=1gU!+k&xuspI@gBdf^0qSMU!u?TKSu zcy=?u%~73hQ=&*MH;391D%E?{N{&G}5i`|Q#esX#ra|ivvuK3? zWD>+qNVr&n4+h5Z57q)+F_rNV__R#Cl8HOI`@m)F{OWDmz_-;4J3Nt8@}cGUbL8Hl zcGH~PXSp7fL69V%ZDfWnf<1oUj*5%K=Lzcp`$kA#j}cNCyKO4s#)3Pn#b7?h)Git1 z%MDU4JA%}k)h$SNe+S;oBXp^A%-+5UypoRNi1Kk(tDFW9OctI+1M3APzBp}6z9)_z zlbf7jYPr^2{84-osMxEqE@;th%oz1fG~Y#eH~#ZsQstl z&!#;qq=mt8z~6cwWOPzBnD%*t0*Xq^@AwVv19+rg`pQKT>Gq_J2MCpl;&r=d4a)Pp zyur|azfT&vqx}qF5dxrw}rU|&60BUoX z=+GYaT7b8dUviL_YmJJ1uVV)2Dax%|fGxZ#knF`5XGpx)&+Yfn^1ajC%a2O;o;iL{d8_1Zbk3`c(-ht~ zq^Kg)n4cm4uy7hDpr7vX_}9#jm&(dVz2zE8si5VYxv4Zy@&m8TX4qw8#2$~f&z zzQO)-9%V=QW~mo-UF7pkxSC5y60a6-fkExMpow|N3#Y*5Rox(w$fPg*VsAT3jIQd7 zMU1D9Je1sv@)}eh<#*L305c<75Viw7kbinr5(^Yr zZP(V~S}$!0B{LYNW9z3D^ZPdpOX~vb68~WuKFy9!)tGV*1r=PCT-vGU-Q$ zy+{RAJRFy0=Q$3Coj?VS1t}JIMq7N3Ztxfe`Wd38-;Oq;L3KA@o0VRZhq5y^LYTy2 zk9Sp~K^b3DbUh>pwwX_(w9cPLwV6=#1D`o=@et33agCehqx`yUJDK~XE#LF>upHf=^tAvv zO;QAK+kr=>U_=O5?X~M<0Gbq38UM)M2@765Qt2DCHDYoZW22AQpqqZ?kUzsaMR1g@eEGQ0id2jvY^>& zNHXonJW3cvH+bN1tqm;pL0>T|fhRUv+fL0xd@U=1;k8p7M#wp*v#j8DoQ%`6_sc8} zSb{zliNP@t1$Xq%`7iAgA+#SiT~^PBUs z7SDoJt?p+OU+&<3#iuJVAN1QhWex0$8J{9#lyj`;QWj1Pw(kvKV~!7|_RPP3?mvTP zxAQTsmXBpGW=nAZjv8g+jZw2e`6#k7%O4 zfCt$$CTbBQyJ1x=KbrF-aImyL#-Ho;$X8}f(Vxd|<&18l6TOD{P8~J*`f2z|zH{yv zKsqQ@NEa5$n$|n+tczb~A1U7nA)6!<=xa^N-QS_)!=LsEu((gqxm*2Lnv>L`ZXW=f zl$vv9y2==M(3F#=V+*Mi-G;ZC3U1(&3$6Ug6#MmlB#e5^1p9Xxp1S$My*?nN_~&AM zG_@rhkUK6>)h4;_c88^R!nLqC4Sidz_P~Avzfpr6QSw}Ui%@_eKfNAkP;u-m#n!F= zfKJrXfn+PiRDF|?O<=|Nd{}{5Bg_7CzuMR}MmjU<-}}`V4Ob;4@5qC+@md$QqyVl} zm{T;RudIO0iBwezZ_}hl(RXr>#>oa$_3&5@*h;4~Hz1H-?^B|Rm6zk2THfu~MU<|v z)tRhMf>Y_FO6kyS>O%t}4gdxYFbWP(V?$Rb$SY0_Q}+JpW%bs4#dBT}#<(tR|Efzw znI&Z8xJ>r06SkO`Fu|1fTPxJQGnE2$P!meSLsfRrZ5K7I#_9H}^14brx$li@hk|IiHKaAg)9S+5Y4+jrBkG*geTZ z)7z2$dG1rJd2zObIckGL^Z5!*69HYup-d6S=712H>?A1O_SjvJcI4nABeZAy)F1%RRyEE>i@SR_e;BS^fOqlLcqh$f!)P9+UZ$yjYFanJDJ)R6&TuEoCl=Q*<;^5^-!LqOba z`R7@?k)%H<0{*#2$l?H=IV<={w~ow`Y+U916`6R#3|jvv?XB2>fENp&vQ+xDTZ`xzZ;*q{{f8tKc|3bqyNARVII{5D?#DQJ#OEi3~~< ziG#ZBS-e1{RG@g97f;*hTGOi=Jptx071pm1`YN8g>~(STDZl_wZ8H<6PP#X*@^8Fm z0q!+W`&@7Fx&qenH)iG_K+Qd}klg!%$pOaAhB;q`lZJls=5G6-{5q(%h{;@A?Hn`7 zNm>3szQ;b5+u$UVJfXr0_&{X&=T)h}9jl_T=3inXzpro0ZF@x?a^VRsgDEv4aMQHb z*ebtYposp%?YIb8uxzV?xYq-ke%|oWLr<$~`6JxFP7b|6wJO`9+M@{E?%qjFZR-S*{T3Vts1~dRp61CjH@X#Y+GY)au50{;?R7qRM z?Fl6wyrl4IXh)Gv;3aU(&Axz`qtrH)bUc1|u6^;gE(|)L!^X*q--?>QzM0!%XNZ-d zForuhkC^r>nr|V0Kx{GRT}lOa9f9sx{BG(uwT*#EIhYUx@ZfV3YzhX*@dY?sjmsQm z+HE)CqNZeNjgD5gSAxD{3@5i!Tyx|G=$Lm^`ceUfSns|oufs4)<^$$I$N<FiQpKGLw`Ob_W%9g|F^$T8YN%Eo1O0mMe)B-oPNP1MiPIZ|3Q*4 z3L_Yd|3$+8!chbP<0ypu14lp@MPexW7l-}}NYW%pqXhOBNc;y$QxJti)L%1U{NHmE zC=Q`0@^?)7-$)83Q2PCszbk^Ve*xbQ@fPyGK>R;rQaJS*ielJ*UpkHvFhUU+^#_XL z|Ax}9jjyEy{ND$~ULTP(O#gM#e}Fjgh5-U&|FH8-I0Sy3^baI~!SA>Kfy5CCf++<5 zhvVPf!AO|;*XsY{CY+|IcW(4A^1tjPG2$Hn`)lWG;J@93ynjb=_`kcJrZ5PlC<6bx zng5xcdP4#JJLJEC=>LLX2zjHM{?}d-)W47@1)=XI|6LLOUr3yInIu8{V{#NGuy=m= zA4n1`xq#|3Knz zvSB#<568bT_l6AgFDDWIK@xAi6VSg_gwVvlk$;ny_{V0x6#)H{N429nTU-SPlJMkvQpPc&({P%+3 zw;YfZ2LIn#^a81OKVFOeQ5R79EiCUr{r4de=&dMkdj2&N{rAe>kflkK{_n~DBHz^z zuR(vU#QuXs$hXYF|H`5NLQ*vLI{9Cb^l!hT6ow$k>%IRz`Jc2R|CFWwHsm`k4*icJ z`yz4jT{s2*T@n88@OZUQali}m-xjor!kx!a=KE;%f?D{k{T}{Ku zDw+N;UECj0-S&c}&`n+Jr*m>XMp4ae2f=Q8EBmL}-cxOw(!A1fN~c+0n99tE!G~3ejG(+IbH~%dCd&(fdL5 zSF)RVFk9kZUdrb;D~HC6v#fjP92ftd-*q=TXl8i$Oa86VOs1rs_1>ZNYlQ9d)-3Xi ztCalNo+o{ju~~*@Z#nj}F(12Fr3brihRuXk9WGP)7-l(|_J?_{IoD9o3DMgM!0SRdQsci;27 znB>#dawEq8-Q;UedNb+p(!rUlJ?! z-RiAg2~>HzyJ4^CTRYI zDSdzP->r0is;}MqK-59WD?_uu^8baM{P3atGt?X+f`;N4XBfoMrf_S^(bAI(P(oE_HQ_VB?3D_*D_8hQ5R zWaefUAJyrfGrxb0sR&Gso^?~hc0t0|n0C%N+Nv|gG0AC~w5Be{t+`t#;fP7v#kZd- z@BR4*@^3ii``4IvW4BDTn|bmz=&WX5oOvMs)WQ4>M$Dp`*Wy3<`#rWdSkF(~@+;}z zCoY#s&SKtYEp0be_SrE4ZuomovPX%ldp~c**3janw!4OQ$IJ(7E6W#|{`dR8tr5P> zOwZ=OB4^8X=%U*-E7MfYC!+r|zNSV>JHE$Uj1q3S*{&S#nSJ;~9jTo(@7exVeEctK zG%S$HNqioYv@30!F8b|aCJ`*j{{8txwI4zATy2^9euga!D$5?V$AH7am}ci|GgKyM z8)GL}9Cuuc(H=48CRrATHSb2nzOL0N?$(!|{QnEuxisZ8!n5Z(b2IjZr-rd>Z#F4? z0?_YE$xSxZs{!CZll1u-s(<>R;+nNr!~A1fO4h$(H#4MB?&{jD zk9m}RKW`>sAy6<>!(unnwo7f_B>em5NxXu#>ZwRh$^}jDrCk>dbJ1pcPsV0aOzEu< zQ4U&h`<<|V!P87GSbhbY-vD{dY}8+u%EbHpC|)!hJ$X`cO*JWuMCfLICySm2w9xq<5hE_?WEQ{qMCM# z&0$Vr_$m?eteP@oYgR9Nu7MRQW)VXQa@v_5nto-4^2%NJ(N4bwR6U$uv!wRnEA1h# zxnqy5?g-mc9&%oN7qq_|rcUIB69LQ6WQhIu+?^d;%EwG^DRMY&r^t-Gy-C&&T4pix*9~kyzW6fjMJ!sVTD)ZZD%caI&pA zby4Z#mKnAsxA-RKy>4Qn+!TuMJH(3hXeleq@{qh>RK+_au z;biW%%=C(#)}?yLPJwxn8cCTcFzuby;@)z3WZi8q^+uTck;xFqTVB0T%$r^1kf$;i zfUs6F5ev7V=~^~2R3XwNUr#zu{HB|`N@o8r&;0A96GW9Eu8X;F_T?cVJj^dO->|6q zHI-~mK$lZ#reIavzWq1tGLSuP;^mlE5G!;h$^9}{a(7p415$~8t$l+s1B6M<~03*xhs!G^ILvP(!0| zeI#@?Nppy7bEEftY@|url{F2nHg6C@PEo+!oKTCPsx6L7j$bF#j=*}q^HrnyCkJRa4D@EKclsR|TFux94=Z;P&Ea#B7^6L$(Qds2(CN zS}FWyJyQ@@LHiIB?P{RRgKUIl(sQ3@d z%=+QvES61cLtiAH11MmE7{R3xuD!S|e6(fu-$z2gC+rK)W&Js4=2$czX$sEOIoLripejN7*dl2+oTglzs$eW>HL!6^Sz+ z4x3#t^~G+EpdEIzM@2J@6g-nDINiyI4DI79^v|UxyEJTrT=4JH?f)-9vD#s`Cxsl| z?V8*1GqoY!bNx7s8ZX|!-UObeTlY_;uQZqKziwMpghqPD&X-j>K-C0jg_C2Y6X z3yEzLB;jioF2vYp+}=qG+R}x9*bH26qTf1c=mVBQh^7h!p}&1W9zX z4;JT@13m$|N#sgjtLev3mncng`JJ38nQy5iyw-oJFP1_4R5jy^s%8!TP`3Lqr@rE# zSTe#fOZICdF83{5UZ<3NASX9>b09Y{+++q^WO{e&fPV z#D&jRXRs2Kt7|w%9$pWrPIHcIXKl;(+zYQ_F4j_2U{N=)v$88JbKpwMN8WYd0 zw2k=}O8IIo?7BMj=Av}XYTv&dmo?wM9d{@ca7;Z0r;(?Rs1JycGCFj_rG0x%QwH{= z?NT5}YAyyy)k0cHsQc#-^-Oh^Ejn6ydrY#Wv%p0R2U_MY1%e=P*l1mUG7($-h3zKS z(P5!f2uRJe&W0{Tklff)B{MdsyRh=n1inW)lEk^)?mY)lC<~fajpO&mOo#Xo~q+*4_5%2{uCv39AX)Z?PVY^mN%N_DkLl`W z;j~+&e@5RVO{KT9b_9fE2mKa2x<+kYAI`g`{`@q}A#T z7+bo;CD)-^?WLC~;JNGIf-l!TMW)}R0cbSa?zXFqGJ!(IJP{y+vBV!NKcq$MY$~+F z?#(cRTDIF;vGr$B{xMghfVTeA2j&o&10Pjz!c9_4WwGtGC@T1vfC9{4P>g#4*aum9mCO$oo)ars3mWck^keI{sz)OI%5o~zL}kGXn?CZBV_G!Zm~ zMdJ5Q@P=yN1%h_((a(C^N!5yr;P{>pRow4|t>E}qZ~yy6T0!{*GFb z%EiHYWjDGDI7|HQn~5^TX=f#7>M;@aDss*r`{;E29*bkf=5mlo4@wZ3|PXR2+zDJe7AbdDQ zn|dI1OxxO{o_*JOmlDC{4Gr9zhI6)&52{OJwAM^fQ;^x;()``fEJj>G*)s$IzO^%U zaWuM_d-x!H(TFZ|z0cevs9U+o#uW4CQE zrz-5w1bCvona#bbq0PvA6J@zaQFfiq@>VopFbCxHIJ{+1N-r#^IY1?3IowH=(t>xe zPa33T)4efkr0|QjW~o#Ka^(O3LXL7wP}#JpfTa2>`|~Xqr`1&Ec{r|HKH4&8Os(Gp zl`{jhW&*GBYS4Bku0Ls(xN7?fKMD9Pv^Gt600bq<$slnY;Fq&aKoNQW9P>ATr&Q4! zW-H9IR^Rr1*6hynLK1S$=hEk5@7*p3sFtK54U(XqG>kM2X2v|gv&>;c{|+%!i}oO` ztlscz?wim7td0aeJ~7sw5U^c3QFb)3j=TOKWoiD&P@iX@aI3h%^Jnxz*5|4xs@h;!j&f{U_)?%%(6ZCDaoIbLM{# zJZg+!)erXxN&jq32Uj$zM0>m>Ih3Nu+)n-&(m?ND)6)#O06+MBcU}CJBHw~`B+ZK0fmTn$1nuwl zum{oud%^hOG{h!>kiodnlWk)B$)nK&(gXXin7Pd~cGGzMYayUKa9}{_6|(!OovIbz z&{lnFNP1=gOwj&r96>JGKJ@CJ{YJ9qGqzvo?cD#>z5N$SYHGhhnh`~Xpqa5%LR$}w zIi&lxBWW7WT>Pr>R_eskWvevti;WJ|&_rN*o09UDRxrs1oFOQ4`|(FZ83gV7)nU7J zFq@#~rnDYbf4rHa3(JBY2C_I4s^|BECQw!d`ReJc6$Bl%!4hvuHD z-R3SWsP=D{@Q95wzmM+dKV^hIc(kJJA6WybLjCa=O1t4r685Qon2gU`f&lK?63Epm zNfQU`Wg@~ZvX}*SpPIL#GCK)wu7w+PRfT5trb30>9ClpJzqBon$r0dPX&uZSk?$W~ zyjQ3wseOW@bJOLoU9t?=}ls9th@PQYZIpXAfnbaU}$IPQ7ouEbZBt~GuyFd(f?^TGy9 z<6KV)=c=_cJr_ycK>%n&OWJO?ZO?YpN_AqPIt0&(&oB?mV(#1w$-&qA!d}VYpwG#B zOJ#ci()>&5kI%y`W?7oU#P77l4Z596(nG4=Bq>}d@D#4EjZDr_*aLH;67Og}_!Ix+I1$lq<{a`q@;nM+qykt(CxI**dh58Lm-~s!SLlAEo zD}_h%i%%?+!(#`~8wQl!=~>Q^w(%vHpt(0$L0zO>90nxG3v(`tkx;zE>vx`@tiNfC z+oQ5Zvp`L!i%EI4s`a5{_JkH!a#Ob0b=q-@YrREqLv1hgky#&%&ybiEvnpLAuG{oK9vIvi>I3hD?HwVS7 zhh5vcIS@2UXcts<#zVe9)v6u-8Gzwvg0&}?%13fs)X>62RmlWB-4VHg1s387E${$M zK(fCgiNBq8yaTnZhEJ-3!=kYspN(xSJ5>*Y6xG(w+=Wl%F{j>%XB^ojev)FH+VIC) z<-+CweH#B-*gpr|{$JDc(ogN#?4kQb9vePwIrfHPiA+o^*@6CFBwNJ|f7w zNPUJ4w?i@aQaOUIr5{z)_OFjXNBkFKKQ&5&PG>kfv<6DX58gH)l5$C zJ!;~=Ec?kRh-(B73M(&`OitX^86>v-m!NN}E>xjmK z_=uBfK4{OovW9VOzUV8xKo-FKLvc9YAv|jB^jH^_B*|`pyflZ#9>1ZvcsP)4DcU0W z*fCCBFAy!mC2xQjXo1kvxvD4n;LQmwGpTCRa7(%Y?yFhI_O_vR*RedB(fleIEd}}X zvrEsxJZt8EMWWx=qzNJf3TG@wLVenSk-jAN+{^*mqhqJ9D|8sh5k@IajJ z{K;HOv*Jq&}^<^VVx_Bt=Bh z+<(o7AV|mZ2nhtR>iO9^&-ormT|(j{;aAk~k`R<>O`9s*%33D!az_OnA?aosn6-)W zdVukXEaqx!%doV!GcEwsJjpSgY<*KOc!vQtb90^$v_o{PkJ&Szi*m~x!KpAhBuSs| z01m(6&Ui1xtI!nFq4k%7;;`jvTOq)ro14YvBrn(K=0JVgjVms5xW|U z%|@Q{971*Y;+#xjR1GNTUJ%+NP*!$tG+E;m=|$U|9FBFk)kx03@#tp4T&Gak2ym*8 zjihj|4air1c88jp50e8kZC;M&ohnMQHA#gGN#`xEqF57t(P(?a8l^o5-lb{R4H_>c z*)OVl7IaAZ+LviYQUY?oIfssJ$L?mwEXzSEEjD4ijHm(Z;dy0hzf(1gDa_-V7r6E% zC+_gJanRV?X+=Njv%8&A8c1Z3?2@ObgiYJ#9=81|I6Wn#0cW8m`t0E|f~IOmRa*RF zj>?o|uix_6PlzCpxx?_48Bj$?(r>in*}xNG1VCl8(gdBw-yo}d5RW6+t6pB#;TVQ+ z+wZG-D}aR#^;Rt2YpO6|PHKWs@Ya#1X-=3bLZlsc|0S1L^m_4Pho@s-lap3eU_pPR zi4#G)B5CY-1M)YN0nCB&XMfC|xijARrK+{U-J}FazL5=$BUP13k)~&HB53`yZQNZq zlKwL!v!HjKXT<=}0WR-u04yM;EkbLew&24&poUMiUo(wwpyJXhSM0(+%wWvfnhwss3`ak{xCV{bS`5T`|`iyI6>M?={CTF$fTRlA zFn{lfH*YNkq5&^DR9l2;i#Nh)q`r{VyrjT?+^k~a6 zf85>)?p!f1Pg}9|2hW|sWkXXuv_=JvT#p9wh{+&}{Z@&tRBn`=L?NPaju~BO9(=-wQ_H;aY=D-PbE3AB5%v<>PKS;7=(LYKv_o7o_kgS<7S$hx4*E=R~)Vcl}l2F%6? znA0()7jOwU$A1zHqQQ5^=Zt~sgJq22X9puArB(#TIS$7bcs(sB8fa(_NB?Tp@2lC% zuy>DJK*(!nZf=f)hXaI!S z!$ogFBi59fl=d6CVl8nBlHN9p{et0n3X6NSLZcG7f6)d5t1m1eYU+^HGn z3ylXxKaHt9(-cReO>iX9LG&t{={o%yXLk;@Am=k)+Qo1Moj;i_}Rujxyo)Tbw*~$uVJ6Pd` zuNr!#{P9`aHk;SHjz9-966)B(^o-Qr%M>v z zd~3@}rPqAQ!_hiJYClVRnhVBiH^1l=LDkoOXJU^HyyaomY2!M_EP+2f0Jk`6cJH-7 z`jS&9pF{H|-D76a**XtNR*t9+C#xAcwa)KDOqY5)P7+2eKKnUx{Na2CPWR0lYz-f#1aLA*}mF3||@LoU3uRN?lbTwL{8P zdq3i9bR*V?0yONBO+6^UtT9Nw&AoD3G^ij$zq2`hky0N~pxj|OX(wCpaDaS?ja9Xe z*g=BiG4ax;sf<8DbG3Z1Qbi7rYsSHcsRTX=PmGw&>`Ihebui{9p#Ibri2xLV*8g5XNerz zoT2_4y~z}X;rmcYJct%2gWXo>VjbT#j|K|0F?859yI4X8HG<|t$G*VY17{by(yW-4 zGJUoY@MnE8Uf^n>@wT-v2pwI}JiH7~wg6l(f~fvV9WpSl^)uZ*=Y2auKjWg>FcSE`5*+k{!R1JaHLHsQX<{ z8%o<0t$3)CABJ*TV=!xZ9RLR-M8q*{FR zq%|?iGM?i%zNlR%l;|>wjGgH*8%#c?4&}o`kY|QthGP};^<1uVpy_k4US4Z2o*Z8h zSjE(^5vj6h4nJ~|sDN@#0cx;k>$zaE`a$*c)IDMT(SLUEj!`D&7M3QwBF?!HiImAg zk=WmPyHUL;{bQ!a<70Z&U$Q&fkGEWuXM}hF#p1{XwPK65w=!id$I2&TExu9&NHE;{ zB$r(mlRV6Itt)U`tfMiPdZ?}2tm-G;t{9WvM;4rmyF7&arcycX4do^GjSDa=eo#uq#JPz>e2XdbgDh}PzG{MYqVj9%q_K;K* zmU4+%897B6LQ5mlUF67QpYd8+*SydoId}|{%4UI;0qPx06dbXB=^jRpnU@m3{G5z( zFUaweKF&;{b^DVT3nG}ve{I)?1ztWDATaY&ND%5!R(R0Gv+sC!uIQxo4ySovy%#03 zcgka75AvThf9+WIV;&ijRGOq)1HstO!tR1TkxqH0lXNDyY>V!+^*P{1J3Z~py4~ES zm$ZHkBTm_}1|T((GzC;!K5eMmknCytmo1!k8&J+ zyAsqRmGItg88Klv>cm6mhSx29GV_K=j z@dn_k-mzud*VrfbCk(QtqSSCdrAk! z*j5aUMo&Gixx>7U1v;rSJFrYDpn++5Fvd*UzB}_U`aw}X=ywc$MhD`4%m(R43#Um! z2@oe*jOByJWOv+MJluKshb?I7+X{id@~B6alBCTayl;La>&ww0YiWK@&0%{wMdFiP zlySPN<$W;+?wMjw9bo%B>U?*nJB`%+?&b$@VJFH3+Z!?^W=W<_-azs|o{*8TTOsi< zg7BDz#E*%M92`NPo^=qKUnR+~tT;ktjYu2aefCRgLABCl_XJOQkUm*Crc~lYqYlSG zWU4^@pJ$y=FEYY>P%9D-cc1TmQg_}Az?H+-PH;@Y_MdfOu5mLp(aYjOEC_OAZOMDl zW#UyQMd=BCooTcH_Us%79YfQd)XD|_esYDOIsN^}bI*^dyxq%COPeU$g-WEu);$h- z(=(gY0d8GxuMfKqN7!`DS-ZZSb#7d(fy91tcIM8Ii{N}>vw)ZUXP9)}o!sPrKVXpT z<@2t#@Kg^*WK^EQ+xc+F_D7Y{-#K2MUxZINJlcWS8lv!%^&PgmA51e9k51?C-JyJ^ z+4Kvec>nQ{Iq69G+kcxL_J@!B`<8U7y{XvoPYY9hmUe$6k6z{59H|a4cOC5P(}Jx$ zHEuRFRF65;rdPwfwt*9C?{>_^f_r%M);7Y?`l#G zs;@zCb*g`+2zFs4Wz{`Z5{IEp;I}(x13S*lsgU@$wWw)TF_88taKr^)XC1`5NIFBb z%)(^Rmjgg|4GizcF_{DsyB^}Bw|_pQcR2t``oy^`5%>3+o+V%s6Qoh>3AFvD`t9kv zZ_Ank78vo-mtUk2JOZ2+dP$7LAP2_C?lAe{WC=G(kj**T+>^Cz(3BY&Zu}>Ek={21 z5AGOlxam*Tf&P=p4(gsvdU0WajBL<=|$yNKmftIIo2 zqxV81(4L+eK9w=h=J>qK2Q1fL8Un%m94EsRY8_Gccc0o9$9g7*eyX;t-oU8y2Cstj z%*K-rTrkVfVzf)nBNPbk?%hM>DK6y$?5}7N?ODhCaJD-$21oKVZ|_2wBw_c;Oioo@ zi9d8?HqP1+lBRoCtYO~-uV3Tz(t9U2g11BsuC5L_LDKn7RsTK!k3#;AQr0nF<(%UB z#mQkN;6^q4ahqnOg7hSAoGjxm^$1i!tT}_TrFjtV?jhDxRdCD85xKT_)*cEIGHbkZ zlP{+i#I&^O^!w-?a36UG;3AjkEz`*YkA2^&8?38Su%e|#Cw7@oz*hC!{BW|z?I_#W z@mvA_)!%u;W5;Fli#1XNk<>kAx|k$;8p@s|g~#k6oAbZ|sVS%K4Dv}iWIc{J_&#oP znu%dNI1f{mE$)m%*8SQ(p&=hh3+#pB#dQmxv-f}W%PcMgIZRDc-Tx&3AZUE#yFHS^d@_$jxi(ZfRdVzhvQ^` z<|R8E0!=^XtfYD%e2~3=ku;N<6c^6q@)U-sx)z!NfPvtF3-X8Cdn)j`->6{vZN3VU zX8-%%pNn>BaY7Fn{t^f{*&pZY&>|1xXnNb{#b5IjUNhL*(SK7P$M6u|aS_u?)Vi3_ zNga1H;N9DJwS%Ywf^A`rHP5zJOCerIvQ5EQb?8*$>}Q@%EneeMGWTQZTzix3W#F92 z2i4^5ev%CRjCs{kR6R(QQCe`W20d6|VG_2o?w(W%b3~~HkPY4G*VvwXmg6aehOwJS z4uI-A1P;k#);AZe#;M>)9z*mvMKJz{dh`7^DF0Dff~r z3V}&?hTbEAc2(9)x;IZ!ibvEV;U5Xhe*K=)b@DwANKbrAilM@+$zhK(vphVBD01q8 zBhbB?U_H9aP?*q+j#p`Yk^nyQX>SQ*wOeQ3A3>$pvm z_S$`Mp3{GRn+f^^%8-UNO&_K$nIIu%jPyK9SVdnBhA*^Z-rX&R0*7`%qE&RpKD`9V z3y}OF6rV{V9%`RpZWX!p1?95cdWY zVa@GA_E_qkqyQvs>Dw47$-9$3E98<~#X-i~o#`!be|j`b;2TVSDJuhU+>ZuSWg(@) zEweLRWzM)~X(C6ptJbGVl;Gi`?bK9M60;?mwAqe#c2Jc@#(tUYgXt;}INz-V62eyqqm62wEuQ7@crToB1i+t`P|R-NE#9g&JsE ziqOuFBramW;I#|{WOttsq?=wU{S;)YPH4X8EfFN=x#I*qW=D?|^`78D*O4uJd8HP$ z2XP2a_!{(Rz@^xQwTohKgQI#gy8Plnc!b~qmPWEfrWmg;7wt$LPHo&nOS%8%C_)hQ zZFkxwFuYW65CnrNg>j2OAiGzC(l|j`QG#~WpTG{}W%bY$>VnxjHe|`mi95U$ML0m_ zs0bM@p2k7+=YlE4_?j-e1H%V#;Hw~gS53k3NHQ<`k$~cV zkUZmY$45Y%BgvOFk74axTOS!+{~`6hMA;SC6-N9|`Fn(adO2__KB0O}K-n)#dHI^N zwWGh2C-&A3JbEe!0qR)~f@mtk&Ql&1(ysOdRJs?>>68mG>Qf86P0N-v?B1fuM_hKb%8!YgcsfQguBC}4V<9x{x=7k`Lo#>kK zvPGXgVAi162@L1=rDQ_T)S{LBBh5w9mDQo>IYS}q%BgBai?I! z`T-4c;!Q0uv1fp8HC5fN2{&*ArbLtIOQ*s;g7Gh+xkMUx4p+&?!V~Eo&eJ)l7(d`~ z#HxOK_cldAoHiJtpQ>zT~Cl4@Yf)%1Hb@DcQ924GtbJ@ zXj94QDfyjIli%#2!i9ldY3037Ga8o;}rc%j_C}E!D0?DV6?QW7^uHngjq3j5a^eD_yn{p zbqC(keB(aU$D5?Q#-nE_dtqDCob!qN_ivo~M4xD0GOYF18s$ap9MWx^@gs(t5OaoS zw|opx@Re*zsO$mY(NWIkKs~$ny?+9`B7N^JNCI0k`sS>xM@K^N@U+kT{8$R-L=39U ziMnf0>pjC&5b`gRkV}g9uAI#Kn(8pKI^zR__&sd4HnS)I55W~E5nMe)+6I3~SRdv1 zvSulVrj2>25x|t&bLfX4?9i4c#{!%B)j`SllC>TMHr($sBRPf>t7z`uF89pZ`}yUL z+sRR9iiqBgDu`jk<_h+7D z@oXA+lu+=d>*zRbaFi-Or#r7ki`AZ>>(@r)o^*0QiwWN)pt9R?; zOo`}s1!HP?t`c4nF5yt>w?FG)s-T~KWs67GUW^3&o?W!ly5a@}9;T!k_#}5rL_WrD@aB_Gq=t*E&C4KPiPQWA4w0owgMF3L4N)#&43` zV&PP^jL;cR`}|J)dgYvaJSb_p+h!Kki{vuLrG*-{so8M=;OfbbcRLzLQjknF>Z%%O z1gIl0X>EmuU|S64Q%FIG6ae^Xl^l$g5mLD?$?x-;eOV+gPF1Nmdv)N6%-*gHmV2z5 z)<7$nixi^qi`uxRw8Lt3F-US4A|(EHwx(O|>*9K$pM_r%O3 zh*Q9#kBECjl7dnfxH1zc>ye+T9{DL0?fR0HIXP27yO$AFe9jTU4SJ?qAnWuGkG(fY z+9g#+{`*>*Vrvd7(M6|weDl4jB9}M<2{|*EU3)-sb>6a=9Wq-qmK0MnJsdH^Nkmt( zRtn!KRxwEe+(Phj-)iD#mhs*b;3wnpd1bo-CQQpSgEFA%IUu_4!?tpHSBPSbJpKr-*lf;V(1AP7Tn)TmV1o=&K2^5{q3Bpa) zW+!hvZvp@8Gk!GK8qP4f4j95!5~=8rFz3$nsyZZ<*7dX8a7-5E>0{Mc_;ll@uz@e{ z*^lw3gVKAPO?6l4jU-Y;RWs0C0T>8!zal`fK@1v1@{4fmVpb;nmjJ=;O@-mGC(yT$x7``~}=Oi4^9| z$)n+Jh~=0JY(@37(`UuA#-!66TH87~S#1WpVdzcJlu)3{yo2=UO%H^FHw^vw@u}}i z2*DkrN9|jnqulux{T8#lq!|B>8k@42`uqIj-Dx1-tvjV z7;fMTR)|S5A&1nUDqN3zcfZ2!Se}s0=+)Dj0R@nb{1rdhE`Y5Hd%aA3;Z&l$bWn&F zrea^di^id}SIoCRK4V_W{-UNl`=L`i{Jb#;FPAp@e#MR!%9z5wgrpC23^|{h3cRX~ zG7k@w3QO)v(*fJjm^1VYzoqO*c6g3mb;%X^FTNmlzx=5EV3N+qFRNLJVCqioj^H^; zpkLUrIdjFkViaF{z_t)fXL8j``6~;yx5JXBgq;o%4D3Q*bT9+e%MrokId;pl6vw8sI7!+TJ`?Wlp3kfDnulq>D_#*8GG3sbV%Q1ux8_E5@#t*4V2JN zegzO!kb^QIW!xc2%!MI8x^E*S8{=>^dJfp7K_Ta9r{c(g?r_}rg18dEYj?QKpgswk z>Xc9dVhAPaK+sfUj2urK;~=+hc0E*4uY%*opGZ_Qvo>qk-jpyp_pS;CsO1)e%rfF! zw(%BgV@bqfog+dZ&D&SFIV7O8ReFFq9I^Wv7a}G>ze>_&9bn|lRXtb{ZPn~+!Zxl; zo*0ha8BpY)CeX^t+-RP25|-WZGf9HRK^+&)$^qEm88Lz7`Mu~u3~zP{9I~ZGydyse zEFc8og($ks9gxou3%g0`S~{k^YO0is)Rd(-c}S^ zjb>*sZtTsZRuxl*6G(Dw47xck_ag*_i7>@+D05#2C#|QXic()pPw9qqWkK15n!uZU z4Ha`z%s4 z=Nhzn8`PXT`#i2R$K=5J^*BY>eQA4ozF`ql1Efl0WysVv7 zxe}&_){504xK2_qw|4BE`%pkooQPGk_)MeUvabv7&5)2A-3ibF?Ci!aMwRR6-@nq% zU6#ms55f#xk4(TW1n1WjWnk3c;Vp8__6z?q-(${a3)L?ZJZ{=O;&}CiBp)VsAtFIJ zKB;Q|yxqNeL3NQv5k_$L&~u~naDPc+PMsC<#pegP4ti1D=~W~5n?nj9kd*?IS=gwCwLzuxxh4^f5d5j1Nb5z3c#xKqb9>C$$W(FZYp#g4nH!^yD zZ)?dYAs?o_IWGV}Mtn(obJL@`;dhtBY5P}5A;F$}VC39Z2Zzx#;03z_PJkAO9jz{@zEq7q!N!dPB|iC6q$<128}}rgGz9+@ZbuPr4z6$^lc}hoSk)Y;ga&9lui|@ z3%i0j<6i#Q68TipN#m>M4^Ygk&(4`ZCH*<;lVcrxs}#s7c1^)kTn_v2K7SqO$H9br zTzDWMGbjwEt$Pw_p6rDP_9MYZcX!bK!)fH7rS2Uwufn7d1kJk)2#pUwO)B9pE?|_W zOAJK;SIgG-^_gWlGf0jJAuC#HfZHe`asXtR}l zfszw8?t|s-v7@)&a{v`Aa2faow$JUb<^a}ZJj(-pcgRCdJLjGaRC9l6puf!_b{Jp) zqK^AGAbYbO8M)BMajw$`6WkQiaF4Iy^2|voAnf?eC)QbP&q^u*qhW3+D8PWN!f$Iu zYw?sF&qmXAOvB_oeFA9+oSh9!fxWEKr2q(xpHAmS5dM_ds&SRPZswY#c$B%!M;XRO z4GSLZAgj8Dv^PcI2WmC4vOta2NoR@$xH?*2K8U=zQg{u=**ndtJRYiz5~2VLUQYf3 zPG;a#^4|o?70NO<=l;ujUR*+t_+tMzHQ%hA;+`RUhb;Ni|E*J};;lp~%Z_V_{iZrR z{yp;M?4Ql&vmR~Gua-f6;O9{_N6rJ+Fy&40~w%utk*J;HqG*obClIHJDMO=0RIhph*? ziUBd>bCh{*UbuPCXG+r3PAlMbmnk=lyT*}rN=GOpujM^-QM;C7hQybruai3gN!I^3 z=oj_s@Y>j@@XQ?HKiT(;5~8n%59ulnZRHbcRkM`hK(mdv{sd=?Nz!L_Lg@ z^{h$A@FF;R9F)lIfq!zZ`69_W22eAJL5(XWMD$Q_1d>aZu!R`yC6|cSd=TF8_)P;p z>p3|OFUd4#)jxySOE5<$H6y#ktqp@23gs~RW;V+V+)IzoqYq=cPGW#B`+W+s->?J5 zQm$=(g9PTU0y(dQ$uHF2+#tcg0T(`-rLW&ZLbU{5#w(EW`ax8OF`Ik*@enIV7A;dP zcGwl?kJ66AzrFGN3=i%9wJ%q`d=AGE$9`MSvAhR%OKQD0%}$_F*jVJolJA$ zWnb}}P6n5gUd;s~XS_3(6yea~$+iPIFjbtSTwj*wc z^|~0R361MzPvD8(!`Y5IA#(MZ38CMUDL>MIH)%M!q*+-a9al1eDAal2 zzE7WIdOOWQ9E@Tzg|TGriap+0}UTg*1UhcqFYcZ?v@B?-3jq6EqcY#0R(Q$nqcI?NzW22tTynk{;I<-?1H2 zer|Pf1ZiOoMU*zZ{ysO=Vs1&C3hza6^z)W@L686_GB6On``p_<6@A|rb3|IvlUo?{ z*F&WeCd7a|F-aP3j&&S#q-4=86_S(@rwKs(Ih2oO!u~@IG4hVyMW1po7kIu!*b^rl zgpY$ybusfCI?9}%JZ21eGgwg|E?;CtwpcS6kR@P!%%HG zTpaR_Pv9uJ*yQUzo{Sp^dgD~c;#3f-;cl;sJ2{v)m-kX3-;(Q@a^c)*LV=(3c4oa{ zOcK=gE(D=VJF0M(i1ohY(^Or1f{mzvfO6<&xjE;iPi@D-xp4EM-AhQ$OVh+4Vh$>` z(yber&2Da8WsvjP=ilS(9+T`h`ocjK+F>?-J4CYu#V4iXqC^`_bG1mFK}wnnJSwVu z`7^^v*&789znD+TYtuv}Oi?#UQVg;2##V7egIDQ$rK?YE#L?R}>9R7nDYknOFYipr z$l)Tz#!NgEh1E@3!OTqv)B%^yHa-Wo*c?*NG#-p#cmRK(lrWk@B2>>K-0~hSx7o|pFC-K@NoQILW-srR4 z9}0FyZNj3Oq4OgUH2oRJLQn_RvWN@XW(InN>l!gf>!7*?6~Ag#)5EZA9eYS9N?uko z544neD&B3>U%=eD0(`kXwz@icmZAt{x1IHlpS)!8U&h9)hTOD9JxB>%4RsAWxMwLw z^^1utQjL$GzS2by~ZwS8!V zOfIBH$;%SqWFJwc>Etqmp$WyYF5HO=aAydQ?zEowPrtQYuHr~j13GE`IKj=iM09G0{D&!TiWs3heAaT2wADIjekrmj znbd@5Df_57l|06qB5A?H0cElX$Np97JUqVV6&Xr^=*$pfn{snBzB;6r^xb_YZF@o! z_WaTeHo1j$qN?hd5Z#uZF7AeSE$p$*tD(%Wtq?V!0Ij z9dPOglpi;wg&3(j|4^(VceLIL`&ch{l?wyXxBUSEJfkM`5o0H_QHDxC9io>?|H;BJ zoqGp2NDv9;iD$)rPHzP~AOVzfkG&i>>c1Mtsq>5Yc>yGP6yzvOf%XVHori4?Uv-I4+w*g)WO@55gdeJ8aH6<&~N=*qv0917+PHI{s3$kxsVt0 zMM4|^N$@%*?Lo0t=*r%%FYJ@~0P8==j`WgEA3jd);3K{WQZh&pfMWN2CN))b9-n}( zTVaNokiF)EHSS3Mqp^-=>;Ynb*U-opTrLeU5Y^Zs^JBbV8DmyznZaTIht`lR%he3pTU@NY_;W4xWIM@Q*bCZ;GWi8HqYUubf$MGJH8ieG52!WKp0v zQ37CN!DAE|*-h1jp%^Y0L9c!+P2;Is@2sZ(m7EqiL_#rPnEKU`?<^xs@{zI_eW-Kk z*~A%#so$7(=X+3Nx8%i&-cQ=i&6&$_lZplduzJLhlhS*%Pr%t*))$VVP+h__nQm-Wd$0!V7e(1*CoqnbB)&zKmJ&%}^O zhIXs&fz8Z^I`{GO@p@k~_3Mm!Y#aNExd8jmV)k2|>gzOAr`8TIs|CZ$K^Zsdfvn?B z49^t>XZfuBn(uv19lrYhWO7>zZSCFytaGT4gxfg|XE0+BI9et{uFXjbitXytTU2-Q zz6>fCNh4iv=g+}$8lWQrc7TOEOw@%L97$WHI0Oqfk{+o&hxqth*$By6TxJDYJw971 zQWqbThhGKh=g{nr?an+&6pPP7kawiF<`{d^R%{u^mcW%4CKTKd6IY{i459j>r-3QO z)W08-v%YuC0Gv*deb(Af+9HkxI{iq%=N5T5UDTqoz)xWMFCcvV=@vR3!_i{r9)cMb zL~Xh?wQ8@vPh4=@2&0ZFjdJvVzV`bV9a?C#pLb)5w<+Gx*03TJmt1LSX9V)41*t%WW3}z&8^!L1R3>{PozL#)*Xru=Vl0vn=UEa4a znM=I9XZg&PiEs@0!_Vq7#IHvU_Ns#mupI@FB6%Ta1VNHDhxc&rWB)&VjZc7kKG0Fc zj#eMKz?^FT!GEggQs=T2FQ@zM-4BZ3LJ?pKcfw@&$9?X|x4w+UIQ=XnDdYu~<7V1YdjS#bXZsDK z0af`UNP~I=!(~FN9Ti}L&f^u5Qzum)f}lo69AkVDv}Me(1K(mbyq_t%==?^Zh+)<` z3@Tixkqcufu7Xfat~;s!X_-xsDNIqHQ;jkAYy&tfaO~aZddnW3^u0*pwT0re{m0Zi z0D>tWpv%({WPQe&w1mA`aarF4r(Mv#gU47Ov($&3ryEnf)%D{Qt3&s$8k%_)AZTY4 zQo)ljbb*3Cn+0#*{XYoKx{k?Lr!QoZPSG8+8fAeS+D(K>+9$8WmULP@id-D?KXD2| z^5x|GLel(4@b&VOH^F|HazwzRqb?D=fGfylYuhw}DEUaEOE1~8_F-r1$LX7TB>TOt zB}k{Esqy-oH+n?V4cLCUWfrfTDx)57jYXTkX~n?(XYNtcga(4Cv?v1t2K^odL^G@N-ncEl?e*TaSkm#Vk47lZ9EYG zVshqJ7QK-6bvJuUB+$CPxFRajM< z)5yq#A(DQEdZ^t%)S7HPrYOMzjvzAla&R^0^yLH*)A!)hzNE!jJy25?0a@)|Gjp7U zM>;@Zb$-DwV+uUFlqB_gZB5N89Van(V9oQZg9i{)0qkvxgZ}p6$Kbm4x-=;afjZ|8 zEWF5kw1wHZErA;nN&B)D8?N%vM}Xv|lM{C#9=4ZEJ7lz(Kd=3n2##^$i!%gPl9XGZ z)XVwdB-e$uZutZjpDy*^wCWvnf07}8l^m4iq{Os--u|n|IZj`*4q7(JNgN+o4dKy; z4)QN(UL337UEc=XdUh-l3Q8*j6+sa&o;5xfj(lPCwHMf6> zNXo>-^rl{D1-%;Q94Al&Z5%899PkTsAM6}Rjr7Z!Lzur5Rrh5rJKkeCWAL5QIW+3q_gp2f-@|6?!yJ&qI7VNY zC`d=ref`Co;Bz4^bzIp9ON7xoiY**JNmH9(b)I-F^LyjPv-j{KXeQzbrPQmHYNUqZ z2mos53WHc=S(v~j%I(Ux{^jY{*Ys?5FwZ6!>UHai#o9Nss}qTkmkAsdj3t4PC}XTvEDJE z2R}0I=&WEAGN4rZL}H$+~0ESikb4gr^f_q z4;&c0V<+g}lW6V7X=a7}X)%2+PC`Wxc9bO^uzA!yD%R#LE4gibmFvp++rSk~#iK6o z-VD`-c7e5BHxa?coV&Cyq*=F^)j)6-W#Z>ddLNW-&4MYZsheYAObUaEzAR)p`Slx^ zwi#nwBBRI!*ItG;Y1QO&i0Gtf)Ih(*690OK&nwc2pQK!|qj=UkesgI0qdDPS7pgJ# z5prxT&o0Sj>XAH^QpT6@$a@sJ#V(;4prN{Z5ag1>L@jB?UHqvT-(JTqb z(0#{eIR?$Gcf4;H3EDuP)>=bA(d|!%vgI|%cmrJrtC^#wZqBizZRlT4FixDpj}bIg z8~S4#1C&clIx)PqtL5P*P2UKNeO-G3nzOUhw<^}`dfKVhmL44NZdWwqwOLGDXwCi5 z<_QK_ck<})!P348+K-Qx?^6>S5c-Aba1DYVb62(sAaYL+ z6WZDEayYDQ`JB8R-^BveFiq!bnpty3B}-MB1+uNxK&m;AGDUUCNIiumnIN6^QB~U_ zoF^T|gen8TzbUPejvg-8Mf7tI$wJu2SfH>MNx2j0C6p4ug@2}bxjtzq&1%d#slMRf zVO3L>Zqi1dT2tT_f@ejjF*44g`@M;ZmxS$JQA8%mj5J}|=eteU7KtCf2%7p0?l*!F zwd?+n{iz`T5G3~(7KjlMS_%8|=<7CeVPk3my3*4NCB}`JOIo=DCW@s5o~9P1&1^eU z)JVBAl#bhYxn&-S$S^Z^s=?|>%+pQ;9-5#)Q~OB%j_@|^vrD**cBVq989{St*AT7B zgx*LL{{AG4jT##RdPIU0);k(k>|h?lF@WUl*| z&5l}VHn(ewJ_Zmq_7ij&DCX{JkF!Qi)c!tZKkgbm=h%k*P124tErG}5Q<&$|ejMQ) zYMOnVv^tU$$X9*~LV0}u(J8phF@D3NS%!GPmHwdWdcw6q z`VH@M?&|1Ne1E(jiMZZz-Lm8LhYtDCVrF4R0<+3jcI@h&ZG(Txl&EB?EBdJ`-`KZj zGd%CnhDh2IUBg*R&xX;W~lpWkwsln|0+rN_Y7#qtvtwLEz zLZmVKG4ct~V>%R~Dbj=?X}V~L=jg1!O0F-Hf`XnZ(*ZSfp4-%R_s*3Vma76fgD+P9Sw@NgsLgNhnayW>>>ah+4B z0B{o=o_AOpNG_7_YFeC+HiB3?)h``nT0u{C4+QoreDloe%cc4UGya#c8SNcn|M&Qe zr!f4iVoOw(*d9#uo`KC{8t*4w0SWU1N z6`Wq+%mPSoxfn(I<>%)oFK`DF9Yg~E8u&h7i%SPA08v1$zdH6=UIYA7#$`Hn+n&y= z-cf%V#W+xMQ!X|y5N6?qgnP^#obXT#p@S)uwQ8&oP-vFjf`&4m4|8YE_jgF-n#P|(691@Zds22&p5Ss+nn^Q-dgF}rEH5NsYe}c zh@O8SY zoR6`K|7C*W~#<>IupXGLMlA&CD464^xPCuOD8>`N~j3Z{{`|FJlrLZPHJV z9D)lr;3p(>tKIz>&gD7@Gfj||o=B`C>G8K`@G!@K!h5&YBm7xKf&Sg%&O~Br}r(uI>`>nM%{jQS_RFSG$_1Re*ShM=9<)nz~$h*tFWLj$X59;PV#oVGwB!pJi9uJg!<18l$Vj=emJ49 z$m%~+b3cv}ljQ@NuU?0A!4wec5+-Q+pgqA{Fvn?0RgGUP$C!de^NG&*;3XqC-OnaN z;dYf-e;g0pl>DeNf?4a6Y~ziItVJGi6T}{cW@R6Nqa)ewcK5<2=VmvBre@gJX+P3R zFLm0$Vq#kUQf6STQS6HMUc#t@Z{Ega1b2&qtsHDqLAcB@O^{mwKppnyO&9<9>L(iConh#MbzTIInMKsWFSE-iX^j$leV9cM!!9BR1~LoC zl45;SRq%+KhE=DUUM;P{I7R2d*N9U>K2GVrX}vRVEI35NhsP=jv3>Rd`KUKe<&iEP zBQ2`hRpG3knUSMO&UrNt0Csx05yfZD#Uk^fVKUH4l38l86wXYjNQgy}t;T++8?D1_ z?z&&cbB4s5_RCuDG@~9+o(L9d5qim}=H@_3Zf|+?K(vtbET7wROyhKyKJzP@VL7|yZ1N>Wy3YYw312ctXKIfzQB^0tg`#nAia~C8Uj0d9uIvR>g z_fdl(+yR9V^2=yTs2GCTyI+Y^J^d-3n^#_vbiCt#o1+$Q#PCt~;Vsu?ID+|=C1M>N z+5HS*A?vGO${!E2U?P9jO;?lJrwH+z;!VFZ59XSIK(U5t?|J-(U&Z-9GDWlp+ma-y zdW}K_M$@r_A*wNFV5gsKv|Mufw!(xD1n0q%KiViKCa5|3Xvn8uTrGdLS(++iNO)|s zeb@4b4*VIP*Q7sLIlN6Wox?!Pn`%=LoZyV?W=L!3x3`R(1RkX1z)V%&c^X<2oOeKj zGc1Mh6}F%mu_3f#_2|IdcG0(5`g@%$euiKZm{H$=_MgK>xYuK%gdkxXO7~eHGt^zD zG4Y!|Y)eUg=|4RX5`Y=ZJ&+Bb*~cnWN!2q0@d%QbZ58r(UXqOco=(P|B5$RMax#h@ z^$WkdS55=@5Ls8lKYmuHj&}t*9UA^k z(6)BP^x^Fol^8s|B$b+7IgW>=j0%aeO%7LK%h%iJ<2gY6%Xw>ku#`VPOC5ha3Ma;1egmBbp+~rd|CGlTwkN%sy2^ z+)E4>(NaP-L zjz|*M=}!XI3LSa*XB`b%B#qVqvO$t+Y{27KNYg@RTK)l4eUwda`Iv8_m+VPqGz}a8 zY7ER%U8eSTt&qbYnDHC+pOkARY8G>w$5Or}F*372b};g93WY{|%?R;)^H~4X*XKul ziKV3gNs_Vu5^xLq zoe5~kF`@o6{~<~G?<~v_Gn@G>8xb3a5+I2}4^wo{ z;j7u9agV~LeQ+{m3Q3TlaBMB3BXF6GUO<NuT>@9A`W z$e3`*-0HDH6x{zNalXsW4C*i>w*2_OLMTUb z`#UJQ$8lr@#&Qr*zg3CPPd17bVT1Bx_fn6hNmj;a2up>(CTw_{c^xlXpR#VaU{s$2 z&2M3`RB`>`HA}B2_B}j^j`dVx9f07H zp)pbBCuo()Bq>ETA)FeHJ!#sNQ)nI_CTjAgJ{wGH$%Prj0KJl&&M^<}{o>6K0X;Q5 z%3M0{kvK0_F$Ob_A``m{_F&lusZe`NkCK@wcpF}Rko2_8ldc$#F$3GxppM( zi1e;f8xGr^a);+Z2#labCQ7GG&Z*V86VQG8L9VHgq7VF|5%S6==+qE>?I+lLMY}07 zajckc`~-es1bu){6O0$#FTL*YvcaHm+{GmMO-F<)01wGL%h9pKVHBow6Qru1#y+T| zg1dauvEpT1+Rsk*3e}OqteQH)NwRPT#WtU6_N$z;o&EHWQsP)9DCmRN#@do zu0IZiA~q1DIZ0_7Oj6i_^6zVsTpFT=`SMe7P`D{dM@bvh3ONcB^p?MXxg`5LMiGk& zdZp{|!(z^>!@}iz8gMC1=92;@q6`Me9F8*?`Ou6Wj~lu%x{pp9B2>hjwjN=RcG6>8 z6>{@=qPycze3_Ey$2X!D3aDdxs?bb<8lVuRNh&{1z1VZOJb->$ z@JAW7hpPPp;|}cm>1(aD0?pUJXGoEcrZC2xTKNuyX2VDJ-s0_=6)Kfo>)qEo!KZtx z;vUg{lRSF55X6)Pi_dI4nySaXMrNxcZQ7UBG=E8SguR0fMG@ilCbd3G5vw`T5DShp{+lX+&jIj$S$p zG&3-Y9He^A&@7~DPSu)@rn}-8pIl^??f`Xnp3S=?274affjufmlMnw)m{ePQhJ6zr zMH7ULD%LTE8CU2ec8&SYIE}6WeUeQk8VpGM3ykM-;wIdc+8a0si=L4m4ZoOZ6vmT{ zS2gDnvgD59R*>CrVw=cEZ=&byg+X)03MAo$=#kdUJK#8A-!i)Ej) zj{~e=-69#ZNkV9q10;eJ@DZxnT0^uF-HE|btP*(heN{)iLI~kg43-!-^5iXm_33~v zBl=w2z%c_h0Vghcr51DBB1__mvODPD9Wjrf8Ijepl(Rj}lZwUx=_DDg)U=3qwu+d4 z_)%%9KkS#1JbzjC3420G8uuo1&U#+pVY@i@*Si23)%c4hK3horJ(5^?dL_ zOcFgxO61EKYuYABzT}if zdli^2f+tfW*sEuj_~{u4#6jIOCxh&U#9=AV3*!$n+xs5;b~88(fz66>xp4D*lWg8q zy+t_PfiGdQd}TgVYOL7SRfcPxonz zVOTxnC(gsUv(6wnj$#8w)$D+@TXtFop94f^Vc6uV{za9YTy|_?bO=(ZLIaNASgi#} z6*YyY&)v`G+38?Jy~dT-Pj_t5a7xxcTiI{pB?&Aeq?euac?Mz!h%8~z2?0quVZwxr zKKpLx(Yap?!q95}w^SLLceQ7j`ww=_4ZPfsA4}(l{2Xi<7;_c-6if zw%>p{@F^@~MvuZya@Pz+$Jf^~g1bh_slua4Hfom3q~=k&;j|BBRO7@^wX9mMBVE$R z+;O%3o94R201Gfo+6Qy_A?`zG0V7D3sA^Q}>Nnn?TaMV|CTvWK!173B*Kps?I+1sP zNb{TdlJvGvAn>_xeY*o5G-_h(0vZ3!TA?>r5rbet9XmNG6;1TNFqIS zxlFq0FB?mpAz}j|nv*o9BHALGKavrjZG!kw+Ek68Ia@o?P-pryZ6Ohhvvv;3_bur} zFk#ISQ$h}!14$nfEKD|qq;5lJXBEwHh*+U_EWbs+KSQv9=ftdGBHc0tNsW!f`=Jxn@ImF>S)pk zok^;w(|l4Lftko8+krsqKOcPW4DSgWO_L1K|0oJG#j#Mt z@c-QC{`o4J`jovmlgkRDZ}`n~_*kZNwqZSf&))U%qk4Qi^1k_W&ZI}`P2VKVB@A2v zNZL7zdk==pr>&}F+iv~mMFCAd5spKk^2Z`k-s4QMAV(yYHyQuUp!vLK2LUQHFyFoi zqN}DZ&^J+vgiGilcu|>F_W5|CkQO0;9x}v>Pw^wPH+_@zT$<+h`Fyl>&-$j2GL$z< z^|w&ey8kdNpC3)5~iE#{P9&j&9 zYnwkl4je%AYyiwqk4OBJ4~LGO?@0EDC-K3)ZXtA^(9XekdYRkGp1I&B7Xzu(eWCuA zv|AfV>T*I7iDZow6WK}E(V1J@fJu&lr;+vPbiB*J5%0*E&mXn1+VglEUXMvd#4_Nd1)%@Kj-f={xTvjuB!%CQYa^Ck5Aw#E8qP?=^AKWoANzO2YMHr=k@LYsYdu)k5QT2?w^cNKo?jd* zr%KF6^fe*l_c47(Y?Uum=FI8yOz~d)HNlkk31mFoM>8^%CwvptPHlxm(h0SPUXV(7 zqIAFw>ZgdR&6Mp;SC+l8hT+oA1*G6`^QC7|7ni}-YeeuOqIMSk(N?9;H<9VJD_iyP z%)R)XC{#Y*bjI`f#TO{0HzTWita2e~+whN~e0_e?hy4u=#31|I=Bt0+lV;f`TqR}# z*@@Uvd=0X{;>{AW@urR@`eJj%88gR{1-N^$3y-qhvTO_pTR6jeStv8?e&Z1Ntfy(K zI0V@wZHWWWh0$pJJ^A}@!ltP6XiU&)TWSc`Zjv{KFO!7(TMPgHLA2@2N`{`n0NPZA z>QtD|0kya=a*vuMm06AKkaT{syu4Ej_mIBON2@qkB<)3%tQ*N1Xqp-f1=DF* zb|ae~A)os!e919&iKJOrMF=n)&T*eLY-Wks43~^l;VcrCN30xAPfr-{>6^J#XUeZ6 z{ot`>=Q3gl(J{~SdAl8U4RFLn)#X8-!f$@}-+RIW9=3?t@gex*+t&=etJ#N+cR-=C z?EvJJD(~B=gV(<_4X1Nw8myEK+Y2b_&yKFmVU~FM_ns|66tbsId-|pB`Mt&0><|#A zFqW7DT4TCC`wU_5xmza1_mg?^P49<=1m%2H>UxKjrN3~9$I3@d>h*i%n|{3htz@K3 zC0tbS_hX-aU~T?$2Fm-JeIy@f+ILBdKOzRtC*Refd8|Z+!S<-?GPQA1C?wqFn3Qc! zG#~uc^m5TCK%_Z&eJCv;S^Hnl!+1WDxJ@NW0-juZ*1`Goyq2}yHsF@1AK_Pq;LAr7t*CMK2y@UiL~b2$L&>zgw3e*X3Ee!LO$ z;oun%XUJsjLbM?bw;#?!?PGPxw2j#=@A3n=i(Sshw%C3MhvPg*+7c`lDgEoP`kcO( z`cmRgBy;}j;Q5s_|L!=^bQ%3shD}|3MBVSpvZ@ts(tp*_{P|JF=7q5>h`Q7NYi;|x zt%VRjSUi)(S@;*M&d<+M*=piFC7j{*H%s-SdkSgwshy$;CzF!5UMl)Y0SILIs#5kj z4f&ON=da)^MY}L5WTIK94WP7^bhohIM3n((J3 zn%LUZgaMp{UX7O|2tNvY`R}lMSC&j&Ak2}O4ZNvE;s55Q`j5f_jK7eYUVsdt+&?0Y zkLaS77PuR1sanrm^^aoB{#l^Sa!jryC(fq7yen1^I-#I2i;W}=DW)O;`7%I~6fj&9lE znf{xO9(s3gy&u$l%)y@cMX>*0WoNc)$B|s^`+f?7H?0PmbdEI`@RRi45ZKabnJ_1i zlr6#NcmLyys=arv$l3y|3xPb0Q&l-d#<&)s1ILcs)^d!8K#%5|5;h73=20fR)UBPO zoRcwTkUYoA-FxiE!yg3bi@A_Sz67M1+jEDDY6|8y^^r3xf%s!9x*fB;(mQ;L#&$Ln zwVQ)tqhpaVV@^?0)VuD!M3dW{7S@d2^9#&j2>4OHr_!S^_c*DJU>3^|OjPPL%z!^d z$>}NvGV@i4aNHc&+oqyaOA{~Ys9_As(h<)({jy>#5z441aLXBFxtc9bbs<9{J_6-| zy8|7mvc6D&PK-kj#27110T<-{)7W zuxsqs)dG1UNo>x^D0K8!k~14x1((ZqfrkYz^6ga3;_{pID6zi zL~^I_@N|r~bLxrlmvBoF@u^w}$$WY{x30W9>-TKy@(0hP0Cl|+bDT%|0-(wyvs>t6 z5t-9(E`fh2(bCu*M#;bP)O*y_MPOA#y#dU}e#W;D^*x(abde~_IZs?MVCf8j@i(Hdp0g&hpSq&&#UTBvc?{ zX7;xH%`8+&y>RT;0YUnvOQ28H%0SFMySav*&2vY4U7%LIKhaQ^%TKJlJUa4E1$p5g zbL+#SC^oVKI9`~uS=x|pTNNmz0Zw&55l`gcV!~@b&{lsz1(bs9dxW+L>oW;GA!qvc`OQw@CwOh8XtiMM~- zyt`{i&~ii3>9!rN)6Mp1Q?aX?eH%@FHs)Q0mynfgoCXJIsd7u7yLA7IUeBWAg##($-bJ zv(^=Uav8gwdnlt%TjnMhyH^j}oS3u!4Dhc*5@SQuK9WSDm&34qjND8M5b_^kx#W3R zh}(`2It>$ueOBpeOJLF4UN}MvkC#_ERi*RKB+cT>WK_nDbih^#WQL#QM$9@L=j*h} z&3Q9LGRBt^jXNI5RSWt6d>y+46CKAk`gPMu$`jt8OD-S?EaSXq+a6V2J(Hv_+s=$^ zIgsB&^)3!H-TM7-)Ck5Lq5v&P1PKRvTV|htJZ8u|B`1U;tgy+RBLl4+5++H&Jcn(Z zxGn_8kUhu5wZr!WwCRwv0V?kV8{QUvU&9)u345D^nY?dNeJrM7rSjwW>8Wcr{HD_G z%E?42qTiO#>5E>(rrM5aCJWOK*)owE;6TuC^YDrCAxfO3N4KPa8eY#KaLo@qN(ddIK*Ve0c?-V181tuj$JNk?4TN2l;g-O?QpLl-EW z0#e4|&77x%PVG7`ziTn`hV?^NyQ$(`Qx=DT-3LuZ&3_H-G08)Jv|qJzkxs#hT$R&I zZn>Q}6zMkhG!^)xpfL2>Hl9(w)7*}<>cJ>l!BX ziR21A#uyAIY-lIPc19c2PPr&iCTwZvE8HR8B;Vu0)9YjxMqJLa)^%I-@^0`j6N2)& zThC43%uehn$=usor;?|A2k^-{B2Fi;)K?{d#iy6`*`53^gvnO)*|6xR24Cm{REAiGv&Tfq=(OnaC9+5uusv$_WV^!_bH}9Vt zY7Y>^pXhgedI*Atu2n4ljjrHj9_@Oe-+MR=4y>8!7rPmeE=ZMWT7w`Ad2wY98-J`} zp^JdVvT!w1Td(wLG!g8;m)TSU>im5`KB$eUnrYF*HdfrDH5m#^)%$swB#iVE5Ry&AlLzmInNA;|qyM}Si5 z_vtKt#L^GJ7LzkaOTe=4H^b!^O(vES4g)Spt?N6LdH=WBVk6#r4NAoN~(LBj7Q7Bv5T@3HKbq z8e1DZH_eGwlImSzhgl2(Dp)a|!`dYL)?GI*x^yrq_w$Jk=ev(H*_L{XXgw4a&S6uc zcgj+Ean^&A98E~#Tp6${`WnN)3sLv*mH3>eVtKqgnaUTkHp&eFt(8@D+*!IW+PHaX z(x9|wcr{4V<-x48pMo_mVs>1aUGOop`v&9$hfxEt-9oEh2AUH`TQ_-{DqOuR&;0pa z4`M1*0|^!^l}9V!cwt9g&G-{ZbAN@rm4dU1K0fzpX}7O5uRt%)0)Dw_AjWM9HivUl z7WG^Y$!%g~<%&0j2vVl_E)N!7mim%e*z&Fcu7M~NX}+jX>f zk*onD%h$1_M;i5%Gv8DR6})z?>>5X9f+CP3#cOm3r?8Baj%i-j>`quy<{9cltX28C z%Tii6JQu@BSj>A53*M$|54#OIgKZo95dh+`aI2o4vUvuD=R6_^2(}-^F2V%W=HBn-z z7hrx$fsaIv&IZ?omTV!pIIohN9ZdDUkAMyc0##IR&d~Xh#Hivvhv8Fi9RSDO0+YM8 z5RF#T!9nrSy<<^Hj=_Bwq`phkTS{FUvR0_uk#tvIZ60_IQ;HMD6PL40$pm?Nf)mZFK zE3~Kb5{@sUXqZsFY*qj80*kpZTMu7J_BN`yt7l47WJ zIT--7kI5y0a~`dD)@C_imdCHed>aFshospOW^hUDgwO|dNrM%S{}Ev^5UkO0avy0f zbpa1~i+UgWBE=0c!8WDZ@KkKIRqYOA|OKEtL7VWWZQXZ+)Z18*i?~NFY+K z!N8>B_zHC$@l&o4ogXCDSe^$8^@VgBG>c%mQ0XZ`=`tD|#3d*LFd`Hr&L0UxrtWpy zgL8r29^%rcWFkW-xwzf_T5Hf7UK%REvpf-kkE#ZVSr1S)Ychmthdth-i|0MWzu|V?wpPT@Scr~k4KKS5@R_}d@q(M*VpOpLMi6Y5#XQVyIjod> zdVX)-(L83Uv-jeZc*d`1orY6sie@~T*L1-Sj8+S&fQ`#FFM4`B(iC$R8$AYFJ+X&9=TnMmYn-kk>eyB;vV0#Hj8b-O(%ze_Pg|*C~@JC1~M`Yygto zOHk7I$OY)czRR_1f^de46+u=8Ggi*HmuLwRHC0x0_XX4Gsv2b>5Lml=L^Cu@8R0UEbF=E zphKNGp#7$?0LtE~objubqyl%V;aE_tTBL6g`w|5Arbck1e4b#Y&-u+912(V+my5u9 zDQf6|s?g}|lJBDthuQJ%x7xV&`+43in(2q>I5chN18~{&a8;?^&pX%f%BsO(0 zvl?h^%c@0-wyUcnp~>dBsPUs-n}X%AJbThOEP@*ry?$g%%h}g8D58~|b+qv)=r6H+ zYVA|j8hnNegKWKuc>&g;sQn(YC?$ICuqqs-d$)npAWJ)iB*J-j#cz>FA4c_1H+Nfb z`&B4~?yKXejxu?1V12JKQD^5F(C9HlPhNvL7>mXbq+=xbn&h>@q$9~M-y<-GV0Eh9 ztfRSzzt~pUW9qMYd1_NbkXHB}(y~Ctqw>XEtqyb)qOkTk6lJQhT)l{1a20r_ZLA*5 z)#}NHXI2T^nD+~kyH?;IFrSWv6t09jt&C{=fB?y(2iw1>QP3W;g7_>*87BL zWEFT2Kl9XS>vDT9k;a|a18A43;|2$l#5D~9}5~e0b6>$x*jpk-74(fq&l`TC4&+*0U;DhMwvXQ z+_&}{ea@F%`7uz)Xl3ewQ81adX`QOh_;R;E!&k0LU9xJ7M0kG-c^0Y}zy=y~1HdGu zXg;I~@sAKNpio^hlx8vo$Tzg#q|MU>z_*v;v`rI_1d#1Mgy^*tx_G#X zX!9y}(}jDRu97FXgmzypQuamoZJUEw0IG+=YTW%jCjY!Io8aoA&&*Su4TYelb00q3 zw%$Yo1vi!IO{!gv!Ea7#qIbO;zeC*Tki^7L@^P=IFF^+)*zF2e&&;NndVx`C5Y3#R ztJ76>HhH9cQ&jh(bsFB%vE9Q(r=sFQCqb65Hi8>uvm+;;HyPLT$m_XVilO3J_R!+n zotb`2da%J@ZwcuHcptV$1=#JOjJuI`sQa*H?JrgxEltj*mHR1`965$4u2jGGB8=CSF-6t4g&qt6? z9?3M=24+I#sgDw)93I+7b7FdXK(d53vUQoD36X3^Z>o-pDl|nS;`f&nNQ3-`WdY{x z(Q@bqJFBMhXHKw?Oy5GU%gE~FsS`pWBPlqN99;opMR}T9Xu{x$qywwyckXrx(>^hD zQF^QuKyn4zAe;>nRFY+~Gnf?zif3X>--&x}nsTCWAw^nXPaOe+QNE@r0wYceGz|HV z_TCdwGo7?E?v2N^K@l8VczyPW*M<$X?e_V!{EBFS8!?ZNpgyO|uH;Uam!ymCy(<2h zKa?)vk=V*hvk6<3Wn3sH3QTdAI*e8m{sKe`8D-s3Y?}xF<#y8(%iO&U?83eYdpnYB zZlUWqjTZCdhF)Vby%kKBA?$_Zij^un??^h_b!bcF>lTH>K-3;k0(rc%;pVWVOfqZM z9mxW5o1lRChb}#$Ag2mK;D|GNEE2d^0`Zz!Sv%{J|8+Z{li#7siUb(l=C8^RJE1VqMm%6Nd?c)xC2AIwZnfX@N2z`g7 zmpCaDtnC?F%59a4j)@Erk^^0L-paOcbYLn*c!iXC+p?&pasgLd^8_aDiZRcqgB1YJ zB+z$k&_uLVH$C96RUzN6d`urv9cY4X2IlUd)?q^PgeB$50ee26bc5%-OlQtr0pVBm zfM5j5c&0|KMK7#oc1h}iS;r0hsu7rLOlu@*Rtz_7vprT7=oFjZ&i0!1)HT?Q1y|Vx zBN?efsjo#5A1}ROhlfXpENTlnWQ{UTdwm2YWpahs?-ni3bZq*Zw`o4fwxoPv}ln!UWYqRs_$Y*IP##@n(YfT>sBfkCFcCElKF8+r@NnMr_+ z2u@U^+J`D+Frqeey8z@vi6IQky62%UvDxd57hTt;T*Xg@WV^F^Ey8HFtt0>O{*c@@ zo=SSE;Y-*%*}WQ`DA2JFt;2JIo;hM<`af!c+Gv_{xOB)9#6bCsVS&ZE=HuBnlP z(4z^lC&sD7ocm6Vp=IA9cn_^(6Up8Ieua<{$Uztq0KL;CdR2*#K({?&vv&kDhIxWE zd(UEzTx}5+p2Tg}1zjjr*AiT(Ju7|Q_80I`-cyw0m(ssll~&T*TiSHdn&hJ8$4K@< z3nxi=d%YQDTjRYz!*Wm2vjK#w$G8I>o$W@hd{a5LKTF`)pmGDa&&VvZ*9p+v zOWoRJhwp?8Tb%qEuo+2=wh_cX`Ta+mm0ZaLCkO@%WHpXZX0B^emO;Yjt1t|Ev0Es& zIktU%#9P->aE%JQc*Gr^!F}AyGy&zv5eh{&(PEt<65^7~M3NqdHq!Somso*Y81J}1UMyfLFG>)~Xy^h8Gs)?juFZoucMb1epx#k~2?DcF z9_|#B7tRMc;hC1UnVT_1Te_(bIt@iH0Ew2;NO(>G&6W&{J^_cP1eBzI0k zDi3}=$6+i1)e3&&k^@Jm!+L}kXawy{4`gsp?+mb}fScXaM$R*QJMdYa8Phz)#f^z1 zDUp72%WsBK#CeBRy4#nJBtBe1Zsd+W2Rzjt8dRs;%M&+ow<>LBwuwf*RTtcAxw|kn&jeOV7qGedBfG~=#riBH8R^(I_xfHa|0tx%yW|@A-V+P3uHF4AV%um zN;IhT7WwV{X-hQTZFEI25T7kLl~y4Y&dbTn-o4=S{@DXy&M}8_MSk+ z>W>7YOEvZkHsha}_Xm3Z`N&Mky@J?2nWLE$PA$OQ`#k5U0%N4y7NGNkWF0CV zDu9z(djF<+Z`+!iy6N?z=EYIusUefgx8{l3!7=1*F0-mR%7^zQY$d#?$!kGNEzz0) zk}mBx)b2wWmm|55W!1T%1EVcCkV^`rbSAl^IYL1|E^x3oIQdSfG7Z|8RKG%BA(%az zs4*9CGO6njJp%*UMlJ4e3l(o2Uv(GL86AUibEz?cp1O*H&ZnnW|GLd_smpKN$h9{$ z@WC~lZc2VLFtR7N)t0~vR*4)^1l32yRi{cs1Q#!9UL?c_#sN{sk@TQa=1`o*Qn!1W zz~5mFAz6K^A2=mV5r-nbH|;HdWB}uu(}Y^3M;JjWgCF#5r{J<{JuQMzg^@P%cc0UV z78i6A1kGq~j{=WV(5sDvEzu-tUc8qMoJ(m_Y4+y;@QEOlX!p9RbKJCwq?T0>>dUY> zu7|y>gFAcI23uh0L=axqC5zz2I>IQkj7xq>PPP9gNohG{2jT>IWraY5A(_eMXMMYA zOzm9vM}le~ylGxz8;Q7^v)cB02YWvRLC}{z3Iu6VQ6}hTj|3++)|FK1#xl%{1${7i9M(_RWf0tWz%4a&-upQ%O0LsjAEdV@kIU1*D$@3d*{AAj`jLi5!l&vi;dc_3-%=Dg6j+i5tDtxd!h%@y;W!_H_9aHp0YJXa3X zeB)IH|bgJN8{% zbGnTbG}K@3%@AVU!{fd5C1~|xGdET4nf-C_oQ?;L>Loip>y66mj~)v4qfMTkNlMWr zK75RwMwD?QRlo7&(&wmE@I>`oIP|}CeLNfbm5R9(T-+Srbhn$??83)oehS(F3TEc@ zxww8Ll|yGy&}|_vOk9p+N=o?se-cbtSqBcKMa4;%`wZMs>F#$y)1j++va~K#MPGDD zJb+anStkPVXRBDYfM@nx^6HZGiVQQK#_$D*|1EIbvydIwqtm$lgYTrya9`A!!~qW# zPA1sPoJYT0AJQm!Eobn4d%i7ww>(O&&pot8#=z#y)hW2AcD_oAW>({(NUIjET+aGJ zq%37M1}`Ul0Y<6cGa)wvb1Bh^0PiL38X2Z2dF?`!hoCoJo<&$ULA&e~krc_5hKnlE z1CvB$cDbJyddh0>5A6=m+cu^#p_Cpg0?y;uCX$IaEpR2>BvbTK5Om_QGjeh6O7?U} z%fhCetNn`xkjdXD1S66(&IjYxd(Q;c20<*EJN4A<<%xFJD*JbZsJSNzJHkX60{lFY zsAVv2udLu}!3+@5R`k{7$|v3;_70*fV{{GY3N@!i-v)ZD)9Y$PX0sgdm5B%wRJ^&T zsiLOWze%AYe}gV_TEIdjoHvjuu`aLau@M225Y3;BDL& z#U`xB<+kqthC*z{15F{kntJCFVw0tM`m@NZw`KMwz^bmRBrn@#V$Lqu!h-50L8aOvL_tMF*U=XR09vw@Ckg7A!>nOY!f zjrMVxi(5L);5gBu11R(jWomq+E#f2ndI%DE4&7AU@x@a}R+=O+pcHlxz!|G%(#@j| z5O+_O`^n4c_zGGwT@;S^iP)oNp`^BH8UsN-=hnn{$T7lIZg@7YT`iBIgi{a@D2)tt zCrgb%Y8y)4@-#yLtCz0PnFN0_KzdtNJ1h>Q&yGM zp#IkBKx@r+Bi2nBNIWe zZL%hrd>Bd>hiC^BF}KlmGOrkV^j)86?}nmj+`x1mDIVz|xWr1gWHwm94t2>nRSDl% zaBVvsG>tBO$%J_$nL>h^sEuX{|Jrc~u)hcvHm2sCueCwdnE$C+y$3}n{&L&%wF0Qq!&pzYl<2L3{miVklXPeO1OFKj?wn2{6xJUVw&@{KgYJZ4v5*(*Q#-6s;EGf6YGj*j;W>v&pF4PVIFy#?y??1 z91vVLET%LBYQ3*16j61UXn_}&eGUz&!dD;&hrrgvQ+68EI+6^TphLlI_uka=-3797 zUBord^@_A?!T?vswOJWr*l3W{ha7*W_zUiK*%kmVhrmcbxMt&Ja(Np3%!O_?aBWtF zWOGSsi!?G~)7V4nc6TJN6x?4xd19Ot$-Gk#I@Ydd?4yvvMbcJhyd?U8JfUD1E=W6c zIALW8VR@f(2tvkvacL{A$%|an>(33&#T0Bi`#cb8q}R}{kzO=}(y8tt3%ZZH+|1FW zU_=Nuy8VN1U=Ck!@9a20xD(2f^4xvVFKa)XBXbQVt({EZA96?t6L4<3sGvq&LG+zY zqLwU&_DW9{j-a;M_0SS{8o$JT%82%eV4e>xrSr>lys70d-z508kv56zfoZEvV#9#i zDcGY6da8fiK^M+E_YF0|OPC)X7vj>L{2t($5*&UaX)0(6Xchv#0iMKdoas0^-b>$$ zOlDq)h{jqL7y)~5-sq^Fayu7M>}xBKh>mTcu6CulqJ7uesY>60DPSFs`9x_bhCU;- zJFsd=JnP)?%0rajBS&5LC6sF5uZ@}w0PRiC@(wFG8ci*61#hYWZI`bPR`2@*V?`3~ z0lg~W4y9yR89Cjt-bRp_Gy4EbK(xP9+X47EE{>U>>!VZhmUlxXuIdjaaO^?^hfH38 z*mp^rikSL>ojbsBx+wZi9i9%KrtJd#%uF{?-Nr0$uM-kTqw)d#N}Z#tQoRNPWG4GN zZjC3B7bTJ%bRg}AY0%eDcO@ka_TeQMSl3}LJNI_rL-y85zCt#-_lvTNo!+bmSjst? z?ni%-88Q>4u0g|?+|o2qfg~uRSyJn;b2edDL9i@Scm{7}O2O=e;zInqJBykeG6Xp( zizFB>S{Mi{lI!d`KaLPvG;~k!I_4KppnGr}36q*1d+)6|N5dr^XA%}@8<3b82Vkd0 zT^jH(u|lwuV3@KXd-6IE-RE{ZLNP8AL>GGywB4r^Imb+v2Y}MK(OM)1LNGHOMe04w zhYd`e&(>y(xS3A{XY2!;pMBQn^lg?J%RL}li;1-BX962BRl0QVvK-M$kJvqJMQXjk zNN0|$mJ|S@+c>&|1+jQXWDZe&aBO3R+(jw-b!x@tB4Pl#Bp8qyOkP~`ucNQU%jZt@ z1-{A>zp`vOdT&?7@ni@HkVkR+Qcl^N$6oSC|YWb|B(1j-Y6Y-zxu@WBSL zq_IUC>?9LXF9k^|fASD{M-cuUi7ildVf&(w&BPAZ+PdJ`UY5FC0l*%090joKhsMlD z0c421@R3l%uJZ0|TTuB5E=zoXIP&OAxB_65EM%X@t&yp`jAs&rq%3VUAVC#Mi1kc5 zJ=Z!maXAtautA!PEX% ziB~RT7qLS+)!2+)fvU)lnxV9uqF^5M(UYoX3?`_1hWqT9U>-3ow^Pu;$;X+bE*+r8 z(aAMIX3;c~jN7h8aw;rTsgQAZ?_tWXs6{C;7VAFg{(G`a$XX>1rJBYJ) zV1y#&3hYD=S-lhKEM$DIpLua0O%VLgaF;oEpm3qMAi1%;3?OmW1EP7_i7>XI=g7~` z(b_TYqXe(`y?*{K8EN#6?_?lj>k9{?r_fuEBn{?Cu2RR-jaxHucWJ{D$nullRo^DMbwnBV+LA%2ksP$Z1nQ zZGp4QjHN{`KtlL=lcKuv*1H}gsswIX0iATb_X`MXBVg_+$eGTHw_&%B?V3&360jrX zo=4KdvEnEp+1!TfBAEs4?-VqXdzU615F+UGl9F?nv8J@MNhU`H9_xj{A_EXw^62HQ z2M@xfdd!a|rV7CVcEX61i>O^|HB7tRouSVg!ELG9Kvv+^*|KIVVbil0D|#W4PC)SJ zL2+(C*l%@fC_wf}&j(UK+a--&oGPdVi=8IIP`X;)x@X%r*+d6bafJH75EKUy1h&P| z^JLiWm`aJZ^H6RPIMCr;)}{~*kXvT3&J+{Gn@W~N27VC~D0ZO9WabgU3`{q-Is%qd z-O^;Tvs04dRU!!Arl1*t{#K7V&T)=RNl=#~2knAr*9Ro=$@4o|bZ4y^hhEq~(zxy@ zbtJ(g62yGgR-=leSRlY?utt^qK$a79LAL7zW@5=!^;mJ-+lSvGP-WpMU-O&mZiGCVo8N=Xc-Vefj+U)Aw(0|NGsCUtjFI#%I`X^0nu${P}-A z|M{=4K7RX;dLi=o3IF@s@$EnS^!fAGpZ}Kr{+Cz({QUKm|LxWLPp^LY$B+N`{OhNm z-+lf4?|;4e&EL=8%>Req{PTak`Sar^`ib9OzW?~{+n1N0zC#}~{F|@Ie}4X-AO7;1 zAN<|^_b>kGfBD<%pI$zE`0@MiUtV7SyZzf2zyJK{$DizDzT3Zk z`t`$yAy_u<{AUw(b} zi%Wd@{ri93|KZuM-G+Vt%^%-?`se5STN(Pt_g}w${`%ubX5sw#<9YALx4e4&-!EUk z@z{TVRr$d=4gY-q;pNAd-@dslaubv?oERGT=hiKwLXO zqiOHH7*TDz>}LP+|M|D;TEfB|HjSBK!qfZ7QX*%~!d{y(Mv}LxQn3s?RN^M`Xw8c3 zuIVD8W04m$rtWbq2)Y{#D2<^MQKCX#?9mimSpNzjY3^J@la%BzPPz8+2MGxcd? z%$R9%PxLk-?pgDixVd>hBG+>F;JXp0R7hM}IsB&ni3rpeFbs?XL>J~f@rk{Q(0YaF zRcCxe2KCnVW6_h?HfMr3Dz3C&Mj3*$1lFnl{2R7F^xIyQWz~fqGse`6_riOW)i2-u=uexmH)4Yv<dVv1 ze)_P!{rs{9pOXISTd(VnU!GpqXWi6a|H|j*FR$bJ^8fkCz5evhuOI!?J}%w+%h#8u zZ~pmzfB(zt2Yvgyx3`zi|MI)v>BrtZzrO$7=ckV^AJ)(P#-G;f)BgHzpFist-(J70 zpZv&w{pD}}`kTLc(r=JP`|{!Krvh(J&-&p1EpxqzpLxE&dLRE{vv(<*$Uk=3=(DSS zZj-X}eZ-Y*t<{uLmn+Wn=Bsx#)mnV1Zq;Od?$Q2y>EO$@+r}7&aU+^iLo#93P(v8J z=2G^uzVwhn%02H^>z-rvXj_jZxWlEZ>1(=ZrVT!}wY_h4ml04Ro+Qo4H(LmMrP282 z=Kr_7CJNWv40D_=?NLt~GXGe=c?45KOJ>!wBl7UY+igZ|&bP%qH$O+sv()5y7~|~W z(k-oQnlH0(krKPD&dy?;%dw_}S=2UHL_9TT zqm42a`jTv!Yw7tgTo>))`|)(?8uX;auTXa#BUbBrb(nf+(>T}CC@u1-2&Gh>uK5;` z$4IknUd7?ktGN_?YRja#`EgW`*W;U+JG+s&zZk7E*{syO3B6U1W~9O=SFI_wG1K(M8m?V-a=V9?kpdp8gIPx9Q}MATxR6(N_n2ROhje~kHocAS zNBi*MA@TUK#w64%H|)w~=e%dN*_e^jvLU5BhqKG!OK>73r(ss-<=UDSfFPVgPQOqb z8aG{^-Jl>gmKurQrr2Qup=dZq93%1!{_U%78+y*e;L7e14|;P;I^(*EhmO^xo_dZ1AG0xpUYs2x5&O;PlgQ+kYjL&qv#{>Jb!T|zH@IW9HO(@Z zF4CIT<{Wdcg|9|$W?eHxZx`4h0*eJG+CH|2q?2d%K&x80cc@DPXN=SX_z)mt zKoQ0*d~}@#E8ArSBD4*_+vf01`{a+o)Dw{6y~!0t!+(Vm5$lxQ;{9U+=#9+Pf=#YQ z@Oa1tB)LQ2Hhw{IKDO8I*X3!y`TX_szrB2DZ~OW6<8Oce```Z44^N-G`=@Wtb{O9I zpO@!c19`qZzdj^TUT}+HfL6xcYV1(Yqj&q3{x08=7 zWch}tHqjZIT?l3%-7$*uIaF_}FK&6fqR;py%(U0Kc8DPEUIKcZ?*f81LDc@xK0juO z0mf(Bax;%wh(S9P{+tUJ(n|!nZV#T_o`4M#@ew?TiCVd4m(5W$r6FUei%)8Myb4mhP6U|N{si220OeZny2~cK`V@<;Ja;r%K&+14w%L& zsKv$@a(8K(jiAt=?4#7FG)x6|Wh0TjpO~6~3E=h@%%+8zJT7il@l+#TXflk1@Yefu zVxbB9L&sb#vG^4CJwD34t2gBG@)cYCv>prm#`sYOOd6mFu(NjKs`gs&tI>pzHr$~m zXd#}~@j@>61 z6{c)jxkEVdoxA105zpIqKSxLY2H}i`&xD~i=n^{AfOO8o@nhzT1x&CZ$-#rT8yKdb z?_=hjTXzf0SK7(l^n%w%0yvbE3s5k+4B|wtSPhVp*l;-^Z-<-U$rVcm&X?TatNtE5 zO?0~n8viVvZ{M#^U*4WRJcg|^H|VqTKI0V8@s!f2JNeowPyhu81`3+}DuCZy8;{^a znH7GHKkr9+jwmf~E5|j~t}|dr1qYT=!?avNK_T$1hXAz=xM-h2v7q=N9(|Im*k_oz@X zkSNOGdx2(|+T1J)7S_QQ0hSi|T*viGwL60sV(JC~c>>t<^A7oxD}8ZGLT{gE`}BUj zK7V;kM&8+OyvHWE+h9EeYQa4~d8iTwW{LPS8N3s)vD&t)aW*$_Ux&`xlOO8JoZ0Sh z$*^F*AT9-z7?X1g{DnKJt7gcd+G!A22u1og=EWL~yn-K@7+2 z_QpSjYHg{(0Usf-rFLQ+#um0W-rPsc@=eh^efmRlj|m5o9k3c(@sbXHIVKS%lo5zI zRUC2?&|8Rx_X~1NMcxUD<=|cC^jY1%R8z5s8_dK4VWv<55{bmySA zBbkbC-SC81#!4`rL zwd8xykH77l|C}8B781KYJx1_7m}WPnv}^(?Cgo|&@Wwbe0d5-{ol5d+`nrhp9xs%4 zLm6uBJ;!vC5g2C`4?w`5acPUN9XLG(rDbbFD!y-5cmv2^=4X5GFytK@UTWPTqlELh z!Mgq;qvzN4n1qy_iF4+XS01G#3%o5b^SMhiW-MQK16ORdLj6y?3&2FY%XWY_`Ng@E z?MMY87Z#XmR)hbEIqX!4lvA0uvO||_z;%OnDHrhN<#XGQX^u%g7SIglwJ?RH zb0vUV2T&`SgI(0*3B~w^i5094kHmHGu**k#%t@PWM%YkMHz4>9yUiH_3Jsk=XdE2j zin#Bx&Jzjzz-A0Lfa3#VoF`)EU_4oY)ag8s=)vbeTP$Djsdv~*LhUzynzE`7(Jnam zswNca!|4c)z&Uz0+JeELKxyi&_9 zv@2m48@KHVUu*Jj;rSCtD2BkT8pISQEI94Z5&?4XjPVo=g9Du{8-}=08U^#jL-N4W z;5UgEnU5;?|K9jf?tnKMLqr$*)H&tp(kl>25h$!@4ue|si0d`O)L24Un7;wGB5%uQ zXOsev15tvQ2IWkTm+nS~uiQ%Kzk z2}Wa+9kUGAM@$~lETA!!@DC0N831I0xHzaDBqf1tV<#5Zs33B>bXjIkLll4tI3-p> z2eg9u0{n9T@X)y^9TGc4g@luLZ_b9*aylI?7h*i@%R{goFK4Hy(+cELfHA;dSNLA9 z28f*XnJ#+b)hYw$;?p>xffB4EBqW1_8iwCO<+vesS@m~f0sv?1b)4=iCVMK6?043C_*Bz}3C->dqd?+ybKd?=vlhtG*4+wD$l}O}N8lR!wLhNOBe2>RKm(j97B6I^2wsHHxAV z6rwUJ$UDuTD=0NY8_YV1F?uq-zjm%TFn7|Bv2lBySC6O1MS)2OY0BYcr=xaa@3L_3 zY>3mC690kiVn+gUd7D#|;VuHaYJ}KYEj}wFM2y0zjFxQUopoNo0PRczF!z{j&Cs&W zXJ+j9bm=t-eLf6;Q!UmKd!v-Eq2-%5m6TJNmP;BeH7)#14ra#cy-ma3Qxo7$?B(N^ z4{uNNX*>wbZQeC?MFJv<7-*VuiLJ+&CNC6)E{dN^s0iyJmLXFRw6Vm|lg1ETV~PP< z1UN82jvR<+iI)soQ?(Q3j&pbTl!S{Ja^7jUoF+Oj{mFzvhn;g#!aBO^L>{U$1eZ?q zg)k-^$KYl5_RS=qY@0rqy0h-79+i;`;QY{Li#D{HEw0GrCh}mbHKx@GA?a&mG*%I5 z0>oh-s-MF=PHB?l2!eTdozWFLTPIYc3@~WK2K>3-;3iK{D1!Lo6MwKgUqET%B?R}SoYW@z3a#O{ z@eK}-+eh#ObSn~gkN zo86eSk9BDT)@%z5kFZE2A;ep>ZsH|WGUu$+*ma1!4Yt9L4VK6+DU4d2*C{mzq(qOs z%g_PwN3Rgj3X*|KtpIRx3htT6k!$4PK-;K^2l((1$Ec(7$BG_tN27Zobf9F%u8Btw zYLAPlig&<~ZeZXdCA0fE8^-QVKy3?MAW}!TkwXPZO~J}Yw4V{!3ioP!IM0O^6RD%h zZ7f_Z6~24VsYZC0-^HJgIiI=?tJ{M$Q~^&Syde`oK-C4$5I9?L;!;`F00zvcAvY@Xm6Rit`?M5#hmaO(x;CjN>*S_VdgWdJYUd*~~? z-{Rl+BcV+lUIf&x0J(Zkmdw1fH(>6|>+{E#w{PE`pFe#6^q7cZ@``0vmJc+nb4GDk zoHS3ed9=NX~V|Fe2TfzYI!<#@4x!F!C(X5;%zpwkG} z2G;@6+{BC8VoW^A1|kQg6=O_Z-X5l3t{N(+HJ^#h!5N^sw3U8>^2z+NQIQC;jHir9 z!fB;V2p>Qo!ueK3DE@s}Kps#IKUOR6w5K)JEZd13*af80TRnmrpwAi*wWbtUuF4{! z3s97)q{K!7n;@H0(k1zBlE<7rC5J(+BTLVOA8A+uBLO7_45qiB3QjZ!1MUlNj^_$f zfh)Q(tO2Q}j!POjoD#PA$BMno@1k^gK*H#_=(I6FRi`X#1#D!MfGqKf6ieVXuz@{~ zb^J}Bw~3g9CZddgDbD+DbY6jv0YAdZW3R;l(+JnlimOA#4CiJ&31k{W^djsJJPof3 zjRJN;>y-Iez9wf)1$8$aUeBWZ3;aKfB|(QHScgR!-iVb4Ybk-R5)iwG>8l57jVmL! z)c%lo0mVQ)6X-N|qlyT3OaO2fBl7$McngOE`8z^$i4j<_z_v4j(z4E#S6a&hzzDw( zFcW#NN7xJLf$lhOrb-O};%ix?t?ra<5$76)NNCY}ZXRh(!59UkFd(D$o@3*92-cs! zj^~&6kDVKX;B*$bR!9w0hKV;|3W3HY=lrZAWo#7m%B$ISJ0fezpj2qz*zw5z(Y~w$ zX5b=N=BkQUPN8>@I$|149~+y4zJnxp(g6mB)JqFZWzRN$?;T3;sz9^2N*5d7kwz)q+7TuN5rh?GlrRAHfZ9s zp{1OQT|^3AG2pkHupRirb#Aj{SU{gOuI@#7(K@TD%{l;0n2-};4*|C7uY4wcIE-D6 zNgS*WROn!eaS0^bW<5b7M}Yu49YK=^AiyP=3qKfvuHgFyRZ{8w!NazYt?G>$N*y4$ zO@X#dkAp3#_K_Tpa_$8BUu!RfUc(}OZvtqK$4l$5VFH;|;Rm}+VXdxyGgPA0iMrdp#KPm#^2y%Q*LkX$T=((&zlWLB@6 z<%NK$PnX7e5iK-RiOj8u-X_nK`d(j)<1E(0Tu@@cTip;&=2_~F|r_0+JbM8sBK zhS$-b{2nr`*>%u=Q2!?iL8Pwy4a6K(+&d=@b1P?j@~|-4Iu&z#ojQqJ8)9d!llP`G z>|hZ3;xRIe)#g!+*s#J++$J8~AaN`?_>h|07IeNw9rG9HbWkpj2%c0-nW|I34-OHf zR1uTGLE3u?MBKY_6IFeE|8aeKure)$>_xZ|ZX13E5MV)t@h4`MJ+;j~0gDI|LCT(AyE+;>4*Wbf$W*Q>*}G?>NmCtuh=$*@@R|0S(|M z+Po*90k=puL*0)>nzOyFhaogL7Rp>_zs~bKKvvC>=prhx;G~XM4vUg&s11+7H!aZF z01hlj>J&S&jx}MqunX|6wKeDD(E3)_!pJ}z3QWMsruN&=LG8=KTx!9&;hOF=gqyGW z5|Uc^9_%i#DxW}KTWNqJg7NT#C>IrP2iVc+I3DUafxpI~5GonR&o+Fl=<1225*AwO z1A?nEjSS}PuI(I!9APf%As8Oj!ECI@eGj=K{*$01JaM}8uBDq)y-g}maBD)JLA_f? z(Zfs;Z@_RRrh+hvwR=M_j5W|2KIa}cWN)_+sY3RXe+-NP|C^h=61i(Z<{7kDy-I#? z{_s|(mP4b1Uczi1Lj({2lu@fN;3KDs2o-L(Qm=wHV%ET2^VSw{V8ztRh$U`FQPtT$ z7w5A&?8eIIbF?SyL7dwlW%bugNE}pi8}&ub6b3#N%%vz|h*t(glRYFdE|sJ71%B$s zvW46rqA`lW=@bB*tz=rO_?OYjw!pDw+X+9KF*N0_K}Zj@T+5$0=!^;Sj1@KXHOHomz6Z_?od z!3ytmte}RGEQ55#x+}oiCZm&pB>)LlC1hi^=vh=smT98Uz6~(twVu8!}Bb z#;>NN+v(EWGnAsC8oeQOxJ31%pvzg~004(_6vdH?`&Fg zF5hx(|MBsUkDVp-4hwW;t4SpEpmR^1_j?Z)YAOVb;7kbNaB%XGi6+X<43D4QJ)h9H zm9rvDDXHVtg*m(cNth5@m|QK&4dFBWR3f59&01)pavS|^{uHZRa2mcLt+IH+jK{Fk zq7xpcu$s`Is=*;`Fdwc4hMT;tjvKT%wv*Z_VXyK(Q!oEga#gVjF_ z*@4AJ3*uLy2p|;oJtf;fG^h!`rc7o|$_pwV&Q+|t4pruy4x?5T(^fl^^Hy0mow2MH zjum@4VOVz6F?e@2RBl&I^CqjdH>s!zq{G*SieOFj?V6flBi{k~pL}MBF{{=^rFgSM zarn^do>;FlDkUruK5vmgg{b}PDY%Zw!K76(aJuxqQlOHgAxJc#{GG0uB`wO)E%2S{ zvQ>bjgGR_=RecMlIdVOPK5iJ!S47N^$|AC&4?tj|Qpg|~UY8vF-UMHS2a(?qHAVdi z5Nn?9I$lY?6;W;?eB%Xqcn03s*m-#~V-aeeV}m$($zY>F^s5d!C**bnN*2wx8%Nkh z?fS}TL_n4)e3DQBa(BIGh>#*)*Ks>C^E!sYbZnmSTCnk|SiYcopnCN4G->}FRx zYbszBT$=T9p`QSoDeHngob)MYEtaS_9r z*u4pHo}(%-vAcjpdn^Qy9x{I1j#}(eS5okJYKu<}I2Ald26LsMTBk8bKGsg4#n!6p z89dO329oTkOD2f}ee_bC6afL?ub6g3`w~nrWhIf16?;5w;${aZ1ySduIYEjVVNWI3 zu|xjmt}#$xuM0_`HG5eiq&=RD!%iv@%$cF;KFm(_DYC+fE|xLTI<#fto(Z95DN3!d z`24Bby?LDJqw0o$R@EWy+nUNca8}!GnLn6?5Q`2(Ne_ zopGTMs&uU|bUSx9;Akunl}2^}WCCoTL8$1ijD@W#kNkOL`T6PJA4^O5)YXS3FrPG- zY9`w}Zvt}LvjVMMMafL*c&hw&6TDR47uI2Jhll;R8e@fF|bxz1vViF1ui5K&=w2nzQ$S;6Ztf1hP-bdke)NHmV&yD$fL3 z;@&Xzt+MypqDo(djd}QrOGH*}>s2_7SO~`n0v1O&Ah<=hZG*FXC4>%R!e+e+)jMCx zngY{^%v)0~U?^ZDxb?C0+JUG=IyLc*2#-wEoPcw0dxKEx;NBK44L?}z?&^&kRi#Y0 zi)4-^seZ}vIaCnBtYST`V;ALpJwYDgnF$Fry?tjDN9i2Epzpp?o$uYh(L z5(!T4!~!90lrl@WPHr8vUo`3}C8vu2g=X_ZXW-qf4r+ky*bLWpK8_`1T!}Yp^A4># zi=+62Dix->i}O~I#ga2W)?YEg5)iHDtP_NR|ONpd1wdJLPYdN{KF@;X%28x>5U@*5#wDuMQdFr1a0q zFO&eV3UDSqVh5wv0$%kVn8?)-)d<-I>NA5?Yvk$D@TFy4;#WHa6lPPA;SR71Dai|!Sj%n z2Gz%SD);D=!m_;;*aqAT3(UggID*0(1>_RXR8QwXHphhLcx^RbdnvzOC(HB_&I#_$<4dqBj}QF;iKu%_WK z;BPf#R^EZl%>)GRmGC)M6gaVW{K?WNASI9N^1Ugsx1Cdde5XB4y5_*afe8g!$!LtD zk9j;mcNjxn;4ptd{GguU0V1)U2OEe7oHA?or`7cUk+*FfjNn_KlF z84uXusa6$eQ3G0S*cwCytv{auL94lM2Li#jMc}eG@P}ET2&Ii+RTf25#+$Wd@!8fW zfujMABjsb0KL!_hP_F~Qo>c6cGIzrh>+oE99QclJOLe+{=aw!O5IwvYr*gWq#>2w* z3+`SSj0BC94;KpW04x3n0MJylwu!j`Fp-pjFH!Eoog9kLhDSddTmh%IRry$)Rjnxj zvqQZRZ*MIZpcJNxvf8S%XB|=Ga8HR+x_v12_S&A_K0G=$2EG&kmumC2b!O4~64G^a zE3{TCG>hQiRN}?6ZB(-0!|-A$?{z$!pL%Z#YM`VjgaInHblR!r-km~4-$PI-oyOB; zO_t+UcE>F&9|^2?)#>|NJ@;>4U!Fd_|91WR+xnzmc(8_HRrob@1)`h*YfI%&YWob* z6OB!QDZ-R$B98M{sB{O2%DS^MFsEQz!EXF4glaSuVAsBtw&rr#s9_H@0PZjvg{pKl zOdR^F_NiD?Jr8~?nub~G)POn2ZvkHtZ2}kI<|c_3j+iU#TKguK;JVJ z)4$8N2hRO4et4R1KQo8@ZyJw9^spsitHxBqf=PfTrOGE^q>io;)~dW(VTW9CI2xpq zVy&thI`(s_GO;9ABvG|ugEV(_aB}0Xo+THjdSt8W!-y!bT%#-j&>9RI_dP=)G&J-Yb$zPx{oq)*NNoZVb43mHPB%vlZ9T*RZw}-A^GK{u{VxXm zm=+OKc!|(aP`W{C>W&ApO@%^x4Gx3bpb+>zsHi3~YN|k=8rW@**l*+GR9vkT9Y~=^ z;ORMqHK7#@h&%an2zsR1Fe z1fSzwL#*L*;4MScgCW%zG?vElo@#T7_a; ziy6)wb<7&hppv`glBudYA?k1XZNGzNMO4CPDV5JcC`p6-H986?A3Se$@nOeHcL0Zq z*thzjw&?~kXm9%C7*SnQfAy`qJE zSQQ&+u3O`4257h~OpK35F?sD;FK|3p02ATAA-II+LDhG{wUpJ>v`r|^R-zIcA|zka(KF%JTG0m`4g)GPT=+P30oq02hs6Z3e>6F( zTvD~fJ}A!x#IzIE-qujn6E9=%dl|(`i5GnY@D=C@d|8mv7q3%Y1rpe0~)UhVl7}e*s=~kOMW{cvXY`I~B!_96=^Jo3>jCWvH?5 z{Kl*&t3vn)H^IE@)Y%j#BK4dpw-Q6kA(;MC#MJEjF%$wL<^6pTm*)+1EHSoxQ>Xwb2VRR?9 zmM@nQyOxuv5>SjBqP8^5FoxbDlsk$jD$S1H7%?`pK;R{5R?aWZzGW;Bg%fMN~YD zQ)+6)23V$@q)4f4%k%S*;O~KlO=D2EIf%UtSmF+{c~S~K#u7;)jkr)Z6^F4kJz)y8Q>%6 zljs&YX;dE`G=ZIW1r6~F3@G7sRT)Iv;sS+S;oRJ}AI08WD0Mr!My~@Cx)vf3QSWIG0Epq`BJY&aWF%ZiwdB4JrRv)O6U8GM@R#_Wr?Xt7cmbKMmd^ zui@o&F&i`_Z;e(}Od6`AT|cHx;E+(lfd;C-`FKVPwbBGot+E(VT&p)trP`*He&vy_ z&H}Fjja<8!-h!}3^}87FkDZjb10n_spbZxgsWW1kGhJoFT+5Lou*%|*_sAOSkX!lra3mmx*Xilq|;tk_YiT*J2Dkk zF^Q8s1nc7%8Qw&+_Sz?@HyNzfYN?s}Soq>FGxevAT9z_zA@QJS3)D^r8tQsU!>ZZ_ z)SbiB{LZ?DRRzmFwk=_-YI@Hejuy0Hz~kAr%I`I9Q4@X)!d6nlWHl}UuDCis8hI&4 z4T%s!H?2-M*I1wvbx>&i&jg`V0^*zL*bbviFI7X0Y-a7b@Pmw$2PycBKYpqq4A#!_Xf|t@CO==)7qZ+RT*& z0H@ZIYKBCb?pV96LIzlZz?05xd@HJfLBBOePUXlAT^wpSD^B(kG=rpTWPfXW9=p%{ z_9+IH+6rl@$4(nl8^%#LaB>6YwIUUDFv(4PI4@o=!fHp+k?gdh^{ZWz1U%YTq$`>V zRy7f|>G+@&ZN$+KRzd)L8x7}Q1p>Zt6v%*CXw*J*d@Hv{5X1IV0glt)_3~L=a|RQZ zvjE|9tEgc^*kKgM8DrPr*Acs_;B!#=6i=jS5I&*fMQIpqZ%|K0Nh((BF#y9|P;Cmt z_f)^6LAe?Xi)LAM@Y$--%$kI_m7B1VZcrhm^*i!+ogfgFw6B6kJ&!MRgjuInj-+*n zb*J60qI-~J#wQwqm1^@Opl7s2-Po{`x@^$E_0y%b=A^c|)f~nzYBcc-Fjn=1Xy*Z* z9KTYt;&2F?PcBg0mAH$R{Ylot!x7t#dtaNtH24E%rj=1fo?c6Nd0`sWTBhJUWLaTU zLrZg-N4=inK&f457dmZz9Dl5hB<0dIbh7iDdfuVF??0^9i;NYF*YdI zUhu1`8pz0`w?@)v2Y|M$-={q{c1=EgSRbAr%|hdzoYRgUn1Z?w;nCX4CixI}Dxh5F zKLHmFc5HJRtsv4u>ZX;{C)rd7as_BDspmv*EI_Nprt6|R-K&!*6T-n2+jeVatG&QP zHNh98e($R3+p9RgU*#d;gb0{uRz2OLs1*nJxUEajAkFS2E~=>c>VShihM;WFN`T#1 zt?KMf9II-Ig2pWcVgueV17bmmkSwd=nN>Y>M09i(&<<}j&Z}fYhpq&QUV?J0T{ zmEBrMIWfGa{aELY!+vrylX!Twqo}+B&jU#JpnHw*QYuKh0#e< zVXL(R;59XJTm!d>Fe3s;hmSD1YwD3H-oa_o1WYVJGZ>(fPmrd24`=O-RN}9DOn+W3 z->utk2VRbC!h-sW3PEY43iGS>xMb4UZCS-{bN<$>cZ1i$B|VLpGmjLJcOzP>!>kd=efjCOChN2fWVZfi@h+L3yeLk`-% zs%%cz5;)wa=6c{?gZAPc+c<2!#)q$=UR>;GwA>@M>a{=?{WDeUzJUkpl_d#UWi+bk^(`qXyQtN!;G%g9$A|hPK4ZRGIG=* zg=$N84Vr(USr1wW0aYwpy`ME_t6A1NC>H{04pXy!&)b<`r+Fuxehj~^$p%xa0<-p^ z3OWRrmG0Iold<_MLZt}}15P%Lcr2U*iio3P&*sWB4V4z6>e@#YAhA0P6jXZ?x7LkI=FALP%#uSL7lS$n_Tp!xE_Xvb3(ASaqoDpsA=Iz6Q!z_I4|6o&XWk0 z8fkFt*aB82)p1?Ril=&PJC5s;eK~f-HYFx<9&;yPSid%E#+{p4UZXIH({b1x_5!cC zX{X^um(?BaMjL33IjpibU1RQ87iK!Vk1-92DZjCfjOUPKqEzTo?`4^BuTT@XK z&8|WozC(kW#|nK_=?MUpm#8VrgdY^go2v@Yp2D*>wkc%;bLzwInvl+l-K`A7bC84L zgGa{1GvzS6Mkp@_S`e4Q;s2xXuz80!x$S!Y-X<4QiLWrmSg~TYmhjl}$-Zke>Q>GL zR?!T9I&H=S%~h<+v=WlWq#qB23K~$e+__@==BekW=egFW$4WDJ-D;h7OWPXJE$p^vrk!>@S}hs7mjBckZBa34Txt(i z3ex%(oxKm(`Jrib})@i$I4L%G|pHNjoF_2)rR?NBMs6_xc zK*ztWY_yt<>RVC+deh|VYnS3SQOoXtF{n>p7!{IEI*!@fiKc3b=Y5Hoa&y4z_bASO ztc8~#qLN6WfK>>`|M7+1wd4{Y4&MRC``n7&byX8+fXmM8r?l%077F>ZJ zmzF2QrB=$ie!;f>_So!h)1n7SQ3OKh6yGSRX94I5IGv!rSfK`029yC}p+%g4^@dSo ztwGg(6&z|iHa<85IMJw3t?+C@-|A1+-u4zXBHh79Ra>}K6gNijy=fcF>_lxaj34pj>dEcC^B9py)ON>nc=WXT&~U+TPZOcSW?RHU%A^9NeygO(N? zH>zvXM)g|w7jV#11;}3csj5;YP4(!uCs4EjplHPsn6n!#zvMq_zH35}lT*4SpesN8 z7@D(r0?#4Ss$$QOx;XF=yLBP>86g}x)&BLkB8dz`%TeEt*fgFTccMA?MAFI)-&~R+U$;M2p+MyXh{MSC-snPaP z(@>P<$i&dD=w`2RNh_)29`H?Ei1!V0_otT(B zf56CKnD8|HaLvEqng8~17InCA65O}#^Vd(~=`lE&jQYHw7#ijsbr6GtH3U3_)~?k= zV=6zYniesxSq%Uy)C8o2rW`|C)YP=?H4bz-1A>6^G%csjB`m_EwNvb)E@RSkPP04r zRV84nItc!8T;1NRg8#Dw$Ma)UbPUZN#XBj@d$rwXEh3IPyP-8n3oTL23iKjsE~?XM zZq07`7IZ#-lHTkS5Vn=`GetXXRnZ$(^5ECiEl?hCsU?a4kF7I8lR`x66Kb8@FC2^B zgQgCs;VOOpcD#Lkc`!7>Wv;SiO{@_ER_!nB6q-&1*e(SPz0;ZmL!fhjjAZxpVR$%4 ztjEKOs)bz@e}KNJ=3s6ct2Z^4&P#*%akV_7T2_N5lo2X0V$);Mxaj%|iH^U!ApC$) zzqXGL&JRcpq6a_(2Q7`?)S;NltfTaeN7H$|RxqjmKWK1YSOIK>IEg6rxQhy|t!3ob zY#Qb9RQ=aeNp%(t8rPX=@!rD~oIyqRNJQT{;v8$DoToGHt?9vv6)p;;RO@rnRb(i2YbRhAk4~M)O%i@y#wlYv;V(-Hp5~9v;iZzg=aE zIx?)pQKZxWPblAU6Sa<^Yrw2?#e>Bao7%sfX8VopHEO0zkK5aTE;D1)MxbtifK?O! zk9+e%F;#2dyaVMD<@X%8ljOA`3t4pycCVUni@buiL+J1h_N6o0ZI720s^WsJz`=9^ zNN6h!gcVm!r4L|3al;yoI8)*s=MooxRSl5O$92(FGaIMlCN}XF+ESGCOTK4Sb*x-0s}0Rwi+X2%4YeuGS+C}69U0g%Iy@HrpVQ0*t#vAn z)*f=4;wc?EhBAdH+#YC{#eu>wv`!-M+gf1`l+x5fAZj1cs-Z%a770ZGnVQo{AbMqE z+;DA;4OE88YZDl@7m0EvYbF&?cbEyc)A3Kx0?wiVX<7w%54?)+ZsrSKSDPQ#x33G2 z|GFOCl#`}XtVzwHGN7DN54=nuPtrciebpW(0iO}B!||j7R-@s|?wB;tu*MWzfHhjY za`FfXs9w~bi&(<2D!$Z^f~-SSe9F?CN_!>7$Gi)o-(+{M>-~CcG%t6e$&*GKp}VGI zCScLlEDErq5@~2>?gX5ro%OD(+i`2^hz32!bOHcIWz?!fL-t!gJGRPfM~Yq3-%P~0 zWP^v)xC^B(RgxVbNDa#_$ILyv1WzqX#d(|?aH^JK?_`^D`Kq{frG?ZB6jqgy(P=1!6M)kJ zr-m-)2=?&<)38T`;~>k(I$XQd^SHK%cfWaIxEHJJe+4hrmhd+YobL)2guZG|tqL|z zF`3uCEkTxdKGjE9w`!R^#O7MPv!m14Bw(+m64@R@NJ&M&2yujC)pgY3-KjP;CF{co znp|X2SPZ8}sD|i<-Y#0R;#Ol1&_t(rJxNuMb7r_p6JdHdB)8#zLCq|qsqA`bYNUqX zgrcEtKTb(Sf*8`&A$&Uu1f4S?gT8B>PxKm4HPGT=+H6HB2~1I=(cw)=t>FnTsVe3K zxdu|40;dYu1ebVaaQuieXgw25fAj!lB@SaCm5ULyJ^l~UUo~@L<)-;)r;L77V=>n$ zcnzY}!dBEXHLfkBQ_Vvu_eGS>-Y4hLX>IHzaP7dOo=}?(ix9I_LbO~iBM<&i{TT8$ z>VRK5pw;pR0DCnxc;2IS3SUFsPM21zj?-AP=5Z^_!_HyjkyU}~fFb-I)*>Ku&FzPDXh{lq0yIc?BkWuq9NKFMEyc5Pbv(>GURo)V zSwgk0UHf34o~W$OWc*M99~Et<|+dp*VFv>-rVDgbsshZBb9c;!)tX2J;4NWleWZZODr~ zFb3d83Fhni;}=-|V+=L;s=chK3o}=vk?k8Kg8WOtp(GtJ^E%aA8HB+NW)qbyQm^wq z!&)`&&Y;mJv-NBK?#f6B0`J=Dd1~vdCYCz!wy3seE?t+|8zf{}#`+ z&c3e?k7eRCQct=*Erd%Tq0fK{#cOT4CZ_?<)fu2l=u}6^MF|rPp$B0DkdG&Ckd%ra zE9ff!%eVpy^V;eLMRWtenXLxxy6Dux0$kPk0KBDXVE0`oZ}k?C{&jo9FK=)7_Ve49 z{+OL15?Gvey7u-Cc?6kmXlNTwY}zzk zbciO;sWN?wf&gs{mZg1&_-wnZfN$en5N(>4eg5MTk+&w}K0lc70c~Si+GY5DV7Z8$eFUfOiLvP$ZXXgj9j0Ib!`Saed1+QN2p{H7CLykBXt zBO(tPht2n_#$>zts8%rT9;352cc#4kaejPoG=fGpYIoC>&wvNG3ruO$U!k7lq1Fg zP(gb3*x@{*n9jvWvw_JhmDt3qu5)XUo8~M4b=4196&su_)h25#hOQdXe_X@L&C^O{ ztLL}v(G#bXQd5>)El^1_?|0VHAgi@+`8xLQ8O%PcU9bW>*RBBUeN7wtrMVamax1Gt zhVbLAA_6o0<$_8b_Y4VB_p1BR1WRDpQ0d;W0Zj`WlZLNCz^8VYU!BFvsy$rW zh+}J-SQsNf5NMXYhJLDr7KoP9v4Vk1*EqP-g(gjlAA%cpjl{YR&?e*ym+CMt4V0=q zYv9`0L9gAV^Wc9FV$@nl#ZaU5eA@(LW2;7oB2dq!)atgiM;Ibra6|nO$u(UepJdIi z`=Zm$rWRbS)lxHFo^#;$!Cva)7RZA1Z`G>vhgKvgGlksD$vp(ke%(r|XO+IHf_dT~ z_J}HJi$;sCAdYIE$a=R%sCxIyI}{ZP9WK3~XyTh=s5^FVfNz7r@z`c6D~5=DB*G26 z`%x~8F|le^PaQ1~u-0dm)>nX$Dp$4j@DCdKhS zPG<+%V*9}UsU3LE8sfXtd7%0~HEcv9h;3bRpoHa8a15#w%K7S*bjMxf>eoOYG(zTz zR(!Q6oA2Tz0&H!8!V7muU)RcZTs1CCMXwHSe9UBNlLF?UL2=PS<-Ha#cA|-PgEg=5 z-DRz4mQfWYVuPYN6;p%5#(5i&#x`Yb zcFkS}Kx*cXS6)fOLpq^QRl;gJ>PFLpVa_XzaZO|9b@=VgaYpN?TBJw#B@DZ+gJ-wa zwG~wphK*Kl?SvoLnr^EJQ40j8?Km5jL1;Y%Bpr0v9yA6*jYvULT2nTL*RNIg1ZfMK z!y4gTeLK+5g2+Q-( znCZ`9bb7CDYT!f%!~`t`iRvz?zFxUzt6kf9C{H&vA+!Pmbz$w{+vf>uW@~_aRo{mu zKyI~N02Q@$&$=Dal1nF1Kkgqmzy(_^T86ntJJ#C}kBo@N0!`@5UxkGO=iHI7>cY~V z^~VX=YN;vLwjYhMaBA>f_w+v5+f@<2?wR=izh~mh>xU0d-9MH|FqmZxtFMipjM+8S z$r}~x;GI;o)Y$q#+uz%yJ}I>5f-UKnz)}MoViq}Tt)}2=7E_Ft~Uhyt749T*a&<;y*Z}( z&rMZs;hy?99fVY0kNH5xcw`oD2}qvKnS2 z8}L(&2t?&DS7JQmXu)Ntq;J=FqTxaW?s)@4(k`K;O%o;H*{XxOXiT2g4DT^QYaMop zhGLPnx_gG3n%iSvfB0^#$1*CA`Jy>faj$F8g-sxMjpfrWaZLwWnp6f+&F)$!I}?Th z(a{jHw9hkvw##|+C=>O7X3&|6Wl%jhMKv0zCEFX2oQ1HIDX5`jS=vPFej%fBR~qW3 z-~QTOULKn#96^H%7!d*8F6b~MY)t`4XjX1g0FSR#=f0*gS0P}+kJrcrT>39Xo;!v~ zzjHr12l&m8|Np;!^M3)uUwJgRx&nBdl~`?W+eQ-p&R?-`Kg7ODblt>`V!*(;@uBBK z4mDa|i$hU}D{@6{v*a?nODX*KeP&-M$uEiPFS5v;*_mf%o|(}%?E3D8{USQ64dZof zM9m%k&9ZCO8(kaTwt~5aJN9W1MheS#U*$Fkh_33j>>M6;)g+EHt`X8OBkZ7@&9m%B z(LuOmR(7=#^NKsZ;#ROycWYS>hC8V{oco5|q*qqBq0h2=&1w>cTG9%gp9X0}#U>s2 zP`Gl`18WECSZM?u<{jfov@2QWvXg8rm6$PZ*;*^5xArp282)~bXa4ZtY-wcgmP(i2 zAa>=QO@86YWjr2Ee^OkPjcCVwFbaozZ5@u{`M13tOWoJsU!I;q#Xm`-YVexAWf`Gm zhK?0c9UFQeT?y6*UKKgJZ=_|m(Sri2%4)U}tkNBvS~~&QH^PjQj9zsGqP>nlQxmzC(19$Nvyg1!H63u&!# zcI_>ZopoF(k4*+CDB4P;$lgw~JyHA*i=aQi{#ZBTRmJA>YV}eSnOF48-+az{IsYg| z_U`TaV)a^_mtuAChF`4sV)5=`QN1l+zg^(P;>%h9lO7EF{IRSqk#t`=+&I_6PSeXb zmy7QfXJ0z|0kJ}A17+P4bX>7`6F2ohcrfXUC_P5R2BiA75gh|$&QWa3h8qAkMQk-l z<>s;rFK{BGP}!JHkhh4kBXK2HuWZt7dr``@j45wN>qI+4x|QA#gbcM$&RKZ3lh3uO zPu&2nkjT(e(q+;|-ndo;|3aW~7s}C*^~ek*txK8qM3(vYMXXPc6#a91!_Hs7d$-`{ zXBXd9;?07K)!Q?EjyRUp*_-q8_4oeV|9-xGIuzG;x9r6U@%};Fy)Q5!MrCI$9(q;* zTd~#XU#61F*{u(w?$k(0Z6$b$B1xIPV@~PIck~FYL05wRrq_qNZdPFB^$=R#EZv+|-T0fVYT@iF z)J8P?AaE(l`Gi#Gj8@NBqp8VGcTMRJh+16@G~(EyYzP6|=`Zt4KsmWrFd1jH+<=Ya z9QU=9pwVwk`9O!4DX(XA&oUGUiF@Y{P8=V-u;PwR0+AvKFlbHfGn#$Hem}1IJeIYn zmK^+n2XqYyj$Ik*q^FoCqmECAUvVtbK*w8gb#?T!AR66>e-Ev!5QC#I{t?U5P#Osp z$W3(GjqGj&Nujyw3SM{Gu|H|rOht?bVx{#*OT=-VN{GtT8CloD*w94wW^C>UQExQ| zTXyw4@*z#$C2$CHcl?6xO$1^ppWnV^(An#AcxRIJ|FjGJ}fS z?sJ6?8;>r|NxnL)tvElY2OJ6n`7?_zRkFQmEC|i);VpHv{*DnPG;gYnU0HeqApG zfkxY)ms;#yhybkms&EW;lKz#eLEJY;{zj|nKD^9=b1=11$O}sCDccXOJ3g2peeNFZ z;ratXc(yp29UKdmTs@1&@c|rQ=tJ@7z}1tMA3qvuUucxqoRnRiEgrw62El#kuTl== z$~``}U&#CSKDcnts}uj=sO9`YY8Grx#k=3WUZCU`z7h92{f@A&i{2dc!o-=Y?2!7mzEskR@_Z@T zVHGYtDJD!41JLgeaUeiwXgOv>R|%v1c)OwUqG<>^eVaIqZ8%)#w`;iY+hZdB&q|fI{cds0+z2)Jr8pI!kZ_mYU znOn-LV5F}VE;@^$tyDwhQyY!_UiPt%7eo`qZeOQu&ClO{g_=(*)HHynLiHm7DY(A7 zS>F7x#KKx&pV>&GJFjWOu~Gx{jCM-;fkp5t{|o5Rz!tEG*aUc-?7YXW zylt2N{Gb2vfB%pF_>cd3-oKvwuk{-9=jnf@Lze&N|Ml~Ee&*@6)NKCHf<^Bnlb5vmH4F+X++s<*m#3_kHN0!4{FZUrMO}dc zsW^2&5pSg1XP!pU`|RNdO`?4-z~`Lzd4_{;=Vi&?`d__2dXIFR^L^Pe-~EesYn#y~ z*wOp@FW;`IM4k9=l-b)~RgSuUr>%|sP1vyeck1WtE~(sqRrk+6aaR{r|9YG(85&=g zAC>>Q@6j6?#lx4s|3>``GXOwH-=qYX?#vrG~BDI$8tw(%{_H1uOqNj&G=ccOeU-?tzO^DQ)bA33I7! z>;wmNHPJ~#${~>qLGfT&rGm~E+)=mVRc0T0=L6cXlmq_wt1mgxmxAg)+VPc--??j# zDxqT9&NSg00vztEcgkH$|6R}6zVl2=ShwrGh@tL>Kg-Kd|T!|Lx=oYDw&m4 zhWp>dKSu^+NnWU-ez1ij?hm%#@u7dM#n(G<7EHi8c$J$)z||UTFrqGi;~5Wx@?$Uw z_&H8QVCYwx{W+edCxt41{Tchqdyl)lmBKNyGDf1{U=Vccbr>WgEf82m!%E}!svH+| zso>x9u=#j_tV9L|!yngPnB-s#W(-$UCgPkU`9gGW>4G@$n+8p5SWS|4Ww0>&b#ch* zp>7|Uk`Ej}efeI+JB*$OWp56SRY0fiMir(@99rtH-}sv7Tgm^44KN#8OmHFi>WqgJ zN4blU1}L<6X+(K2c6)h-Qc&J04}%Nt{x?{lRT=_nw?Z)vVY-44uP^eNp17{V#w>{_ zI3i4tlv(2P7MZJ@Vp4oF`jfXDpuOf5VfAP-$U_E@4zB+kmwZ!>-#n1dUN(L*8lN*( zyN&yulbyrdBt>dB5_AYU>i-n;KQPM0JG7)yRye&B9NWTc>e`s>!^m0f+E3wugS3ak z8JLSF_vgjOk}n)c{pU@=hL`?sOR1dy*p?Jo>k}!uJu>pz{%XvnQ1F-xxpO#(e*Ok1M=$YB4Ei{jH^}F;+6%{)#|Bai|8wZd->uIfq zjOI|fLb^V~I;_3YMqcf?&?zP)rLb|YTRr>I=yXV{;19xPq0pAEoXtZ9KX{NMpP%pF zUXFydo|GsX8|MVN@rydb+lUV_VTgsj4hdzlXXu`O-jU%Rh|0jrYiiBH{4Pv(h$z$F z>WzH+cWCvcm~zCyDJ~B12&SvrE)6f3hIs!CUYn3IQdckejkbDFLBkqtvr2sywmbNQ zxt3RTm>}2R+|}QOU=ID&c~4@qRrn&in+g~>?Z^I>w-3v`yZ6g@jX&B^FWhzLh)Yt^ ztQbJ^3Mhl!U7-EDrf3;_yF!F}Ov$Ejs^QW6WYcrjsm+dLR@_>C!i}h5a)P?1@r3~_ zf{9U+8&5M*7~3F16l#np8nY`p>0vuaViSIwuD36vS1vwfjFis+L;TXdRHKW9l~vO)y6fU68FX(3VS7rmCahZO` zoHrcE>(qYr$ARO?j}a4b`mgVt6_^DFm43u80>`6`&*FPy7))xaY8e*k8LsiF31&NZ zlJPfPL#)jb4zXY$Omnn?@Kqhd#6ZWq?b6Q3$@Ahx9s(k__95u7Vgz_sz4Y@N?ktR} zu^0LBW!4$RNg8Ns<17UlDdXs;i;QGbCFKFZfucmcW}(TR;3No`IAwck){uKmakLSO z8bTNv*Ygn6Vos8{^wpO!hzw{OSmL4VOds}{@|~lAd~Zt7>P2~!WPmU|mf1d)B5{t~ zH7M*Xa&<%j+i#%MDP~R4*SnKxdzXp@6MDCrwOO^U z-v}^7#vB4O)@Zykb*O4`Gx`l)10nFr9gS=&uD#IER-9~{Zdi!Jt)K1R}e zlV5ga5EAM*$_uKSGRfidoIT(49SkMr85;H2Oqlnkr69Z>a_7QeqP)_okMh@(-?w7T z8JrBr8^RbfGNKhsi7JS6FTTc~eRgMkEFqlvV+HfsR4GeOGR z9~@hW0~8j+nzGj_Vji2jNWm7z_dR0?AMU6YrgW(-qXF&PSv7)qpfh7o3|R42a^5}C zM|bydo^*UR#>2Jxh*ZvBxZq&6dZ>xBN7s37rvc{H2Dimj)Zo`(Tm+5g2jf~)YP@}w zOjdivB?eE~HtXRd-h``4!C2$=Ol8v`8%gMpB{x%d%9CI<|}D-AA$$A-+0=|zZ$zEvcR9XfRW^8)5pf!UorhN!x{K;`*&qk_t{Gt8a2?X8Kj0^g8 zF||~h6bqNMO^C^HQ}6n1kRt7?KB@zn%ZBimGhS&OtkL|g#FLd6V~i#9!#n&oT4I=j zQ))E8!Bb7R@c?eJJ|+QdlMLZrImZ?@SoF0t@)95Q-K1$Z`9)VgRPKXy7VB%E=IBY5dp94Bxx)Naj++j;;i#x(wy}8p6>2MyTHOmd?ERD;#NZ?TE%h=QF`$&0uo>f?PVjLzP2RimwKL2#2L|bTaFr3c#^bJ?XZROAdefNoW zYgv4o(3?{74#S`jNV>-dR=xN@qUU}VtM3hc`r?JN9_&E>P|GD%6pya)W}SFLoW3j? zkU?EaeD{HB|GpNZJ0GNt@5C{gB1jLIi>mCE(LCbRH}Q4KFN8|hgBr}295Wq4BxYTp zz@kKx8<$TAiDOQ$Vw{JLVP#(X#V5#0A7y6tF93hEu|2kUd=|J=%GyMIh}14j$D9GGJv~&0``VP>ch_kw;}QGJ&$H$WU|RKXL5K zM#(?m7-=x<^%a;D0eDt2AA@9dd8S9qga7VbK1kEwrDojJ1;WuyKB>LfS5F}-iyIp^ z^MPPJG4KJA8;no#NTI=k7V4(R9>lE#lNP6c(;HJpa{>tu8$iv_Be9lH&M^TP>##Sz^-1->g@>7F01heQsP^|44pI zqEM})qC|ZuK0}fcVMNJ!2vUT^bJeCrY&mQ3>BHUb0Cfv)+E7n;BG0VCK?kImTr%eO z^gYo*N8KRyK@LBPVMkNRenTo7H4;py@TZ zwU!u~PJPCjta$Rfr;@_Zgq|S;Q@w1zmrF?gZ zi5+(=JY1+mz1$M6I<@TFlzYNb6l$Ve3YX@1_3laDGd)Kpr`2#70@qTD$+a-SA?7GT zTnxw*kMLKX76z-?ETE7#(XQZ!kq%9!cF0B5^nz+6nnx$S;-INty7MB>ylCI2cxJZQ z<3j{J1-9>=aJnQzyVSs{sd<3@M@%aaqpXM(rGI$g@jXzzC%{`;l+sb0!WlxJN4tr8 z{jPh#d-4wmAIx}#W zb|)IB>4zeEF23@oh-Y{sfqAkN$P>HfP5YV)%;6AiR{FU`6UNAH|5CgEB$}w3EGgd% z?T90)Kk-hgf{c<*^GIK7Y}Q~AJI*=xVU-Zdk6=dWI%4Tfe85OFdR*JsAeymAa92#m zc6f3_y6H{9D5GCfFLWwI(Y?}QY~-ZbU546|m&_>+fgXT#Y_EbzCoTD7&L27>?mPy$ zhx_Piops9fXQ~6s?BQps(Lf#|S-;b_6qDAnFy`?jJ~sf4R}?=EqMoj~%F|cX6<=`9 zNU3wasCLt`;>62iNJ)$TpiM?SF%B*NJ1#3<#b#=6@|L&I!bD%`bvt1DD?-8*5uWl2 zt0@Yk`PT5()~F-2c>Co0ch}Ep6DEi7d3g3v{<=Py)%Kqtb%$P0x+04PB%XG6#w;_= z6?$!>?|v`Gjdb5QS34SA9b$`k;n&a=!{>2}mTWz{MaUihiq+d&ZN&Eiuac zSEC9S@WY&ZN9>KfcD2_Coijn$h+*=uC(Dk>=FSHy!+?QRf&PK^Y}{w4Yrb?niX<@O zcc1i=S<;jd`CP7wSMFQ4ast)5WWdQC=`zkH4a6Tc)d41{ZpS}=tclq~Yb- z0#D_1XgoHOIbBp@tlK}( z!;u@Uc$95`h8NA>^_O2U@ z`B8~#jks{1xS=tLPTXRQ-)ZLsC=WKODqG0G;f-;d$}}dSdLRJbJ%GR+*h8;$9HEE3S})pG=CLUmjl6yK4);?95O3HVO$JVA4`u~J z8-Tfnzvpd;GK@;Fz*cMOU11hvQ<|+JKh}&mXFz{(@8n3fRud?}uo$0|j=_4zOZBJ_ zctoe$#Tm2}(c=kqsq{=qT)9v%eaL<|AXL*WJ*#>C*v5?6vyth8XC~J(_?w$WF5C;5 z*G2i2SHw_i&CrfJqD^WUyVH`Jv7~P^v6-3qk~>FN<1c{}dQfDre0zy|lPHT{vFL^| z1pV>}pKTyQ-T26V?4JaZhMw;F{$c`MG6rjge7oUgH~Y-@(rXXkysqdEQO`E6KI6K8 z4vkp#or<65fLxmo?nLuTgdG0$_yUV4?kpay(|j+O*fa9-Qd%Qh?MLS^gKBM;{K|6@ zK+@pa0lan|>m`JdD?$KFKzHd`h%s4Fh{|@P(^if|xQM@nJ*c@NSjf3cPIjSNgXy`nL|SZ7IJGoK~qHy&J!s` zz_yVS2$135r!t*1*X-`yn0kK^yaLTgy-fMfy;TljEzNdH1z}Wc2hr%VbTD|#c6YNQ z8=se4^T3Nfm?eB3FF=;1AF`E!%!q)r{El_@Gp0&3+#}z7bBNV>s9W&`uZ4!L0LrcH zDxza{_UXnHHjV?^@HIVqKE*RYqL9tYhUuL-%Dtud;vwAncwLf6NF;(~Eo@OgO*!95 z3zb0^7Dd*EeDoRy?yFz9(H?k zhXD?ze?SYTIJ0u}Q*ZI|@yYgfKvi=$NPeM9{(J9poa;Bjw3q+{yG1RgKJK~Yei-r) zjd90Bq)TSzq}ZSuEEY++;0iJGXWV^bVN975brMCnD@vZj`q2}&b{AIa6lLMZM-6DT z+^+hgXMIBRakyaA0sgqgP@{APA-?E^8K~dpPIhh%atgB%uv2RIr;AKekH)JD9$wXJ zbN(=bK|Gym!g4Lu%o4}XsxM@V!QBJckS|n{qsYMM!A!iFd5z!`X@d5FPrjD0F(N3w z93(kBNxnEg`1Nz{pHdh2_xX(2mA`lkDiUadfaXxOQ052|gd$yPNWux!j+L0!7-k%Z zz+6j~=O9mR`bi90f~6h-AOUWW6~qwjqOm`5Sn9Mt(~k0_GDv&aj(!#m0hF50Sg`FH2`TWh=y4whdInk|N4`=NWn{wU82(;=p?ydsxnz*dc@VJ+2m>g`-2@{rQ7A)b z(23iipYiYCO{hOStXZvW|JXD2-UaH?bdr6vkZVgg8gJv!0*i8%o4a7>aGz=E%aR{4 zuJdjPjkA|@l|)cgn8=kWj&=|hHFFy@P{9;ky|=S4F$3;f8y{dCqLL=RT~No(Jt(Le|jojX4CH< z&HT!G*{l_SRj&eUT%`oCn4oXx1YOb#P@3HEbN`Z(Lshd+OL8;F@EyIo&y?%CI$MNG zC}skgZ$ySM;U+ws5nUv2s(kJzy~x;jFG_6FC<{&_QqBKb_f_(Z#l*RSA$~;O^-GIT zyIBm1eTJyjql)-+#rnm|gn<{fb+UYA%>#N@aW+bypZq#`)DOL($32GJ%k3$Wrz~fm ztzuSTiv7-cK8OL#R0Ury?DUp^wrnbcoi%#`iDYhRE%H;~76uCC?(O|8e9l9PjuX_ovPqX}bk_+M83{Oc(&YLIxW9GM_LiRqYu38q7^X z(tV9}IK+!Jd_wYoqgnZRKB$dL{ku4S=mO3=A5(lk%B>pjyz@#GjyVPLL6?i>giSKv zoZ+pKE%tagE9qeNE`5rv4)dvvADTgPFAX2TQVNJx!{670y5h3Z`qtI-d-5#`tl9dX)y52=UL88$uKX5v0aPxxXha= zP^&RMD|HI3B1+rEzFx-9Pw#$3d6eGj&5F!zf6X>3A8dHM%*+t|?C(?ND^i|4pctuc zA{%c+ow-0CBjS=un4d97i$IRp`368ypob6hZLHTlNSngj2I*|a5N4&FdEx4dA)@0f z$i2F~(hoUjOH5cx#~r!&>(4<)8IO-azYNq(O2$rSn1UmE=n_Lcg3I+stUZ(tzHgrg zCl^{dAGFDGjpJWD^pafL%8)LU7(bR)ZBp~lVE%(^h9itWu{D#+$Vj+HYh9t}iFzx?-K^kvO|Cbq zS>nN&GuOi5;~u5p8@|tlq^b2h9_!icxm?Q#JKlvLmAcUlFL=8{?T0Y$9xu!6Tt4nE zkuOB;R<9%a*6=s0QlvXN;e0|Q2d0XpIJA6%$}tnvVsB-&tKE_@yY>*Zc-hbIeM___ zXs?#G97jJf2DkRFbBKfAH^C+Uc}5A>b}hfYIOJIyBnmRRQ1+!K0s@Cf22nbd1tITE zDBmo-mZ8B%Va^h8$WDJX9*h7&Qs+wjcB9-jjgFIVsb$w@_KX!+9~vkgDG=#dCDXL7 zDwKDZtOfa_Cb^({dM1?91ylG$0ghS`VkU#F7YjBn%b`PdiEI4X#zpx$=mdVpx0oGZkYLn zkM3-ctc$>hkJ~%d)$Er5O$^Cp=lhR+GzO}EpHrQz$|chqr4Apaai1slEn8!`@gGGW zB3{0W>9zCEfauw68een!T(JpEl0xNty23`5Ii*XW6?wJket&DB{$8Npf48||*9wAW zbLfGwC$?K7#aOzDp6KEc;0V&ezzqW$G$a9<`Ms8CP1w`d>)pp@&1(&|J-XAg`2BU% z>u|l-Zk^xAdkj@w*<>Rb7hsbNFgd*HXMei(eNj+S?vCG^)!WjjFc!~8*QKZ^ud40n z7kFXBEGe{aI5<+S$$EO68~H((r7yfKSoQH^mff9T_->WioT!Efh}@v~eQj94?8L1k z)+az8M=)cjc2WDVkHGGQJ$-WzHtMwq{^Xw*GOg3E^Hk&OANeQR$QV)9tnq;=Gez_usnwZE4~l>JyYX^C=Q6zWYYB;PYwZfN;U z9BCaO62O{ffxAtVNh^fCq^>>5HYtlM8_*cjLJ#)WybrX60otrto>)sUEzM>@T*>4Z zGYjL& z!b@n7fkaJ)1z`KBCJTim{qR`&LgRzr>PjPJZ8VNPq#uQ8QJ6PG>{sHGAEF0H7vHbH z)Y>2#Zb?Aa2>+mk7ABrVj8DsE?kgpi9x9LSmPJN$w=V-I(Rnx?23oEW#)a7`IlC-AgZ43%MtULOU^}^9?p*F0kZ*lIiBJ6%G9eu$zN`ModV?c{DvGl!lhxwGFRYb9GxM z$R#0XFy7l>PAv_u3#ivT5j>3{@64GZ`BHK#$VsX|G$=*8U>$WRZC$9YF@s#}pd7Hc zCRW~=XnElT;5T%cWT1ogoW{ZvTNwHEi&e<6p@493&rw8Q%K^ViyDq+?gI z*BF~AM6t0cChX-(No2{#DiLK&PzsN~1kT1W;WsXAyGS=93?rb6S-;Ni>bjqD=C$(e z#sTZ#y*t^%)Xt+`sH=nAD3AGcfWwjCaARPH2{jKM6>tzWI0F%9-b#qa$DJUvq$>19}rVy)l@_6}91sH)0 z3`2hTy^;KAy|z)B7`p&HQ9dvskxk59-0NF1!a>fQ*K|H3lk9X{Ems3_-3|E8_kJ?> zY2mi}F_#atyqyWdK1KkqN|Mb) zk=88|iF&osYwVp#;x&jSv6P7$FE%0n*fV`Y(LdZ%$!E8x)chH9tk$;^`3_as1j=pA zfea()Qe zC*R;iyE{1AQW>VXlbOpv!XNGK%y%RxMh1z3_*A0>9NMix*C#S^mKvbCk7sSHO1cB2(h+FGv`}Mw)LkGOklu~dx z3&dY98JM`?6-bk4l4N#MQ%=3|U+oUVB|e*6Uajp(5V^tNBY_ zK~iIS`Pw+p@E%G3-s`s^+j1OE$V*}g1ND=}UyTTK?!uj#CChmK#mUu?5kZf`t$JEN1Y?Fe7?-F1c_8R=-PnU5q*7A0PhV ztU-Rm)Zwq5b^|fDf-0GD&%hI1EGeMgu=|cSJM65k0>5V`nl6FjoTT zM?J<$!gCq8>}98nmD!uUxrN3kG^0 zgixp5NTZ;kL(cRN#bk7F3pcD_Ol?|{>@jhLG}WS3%jruvSTi2%?$g0No%k8^KmhM- zuvjtH^>}6cp*O0i=&OK<+0^Gsrj(vdEgu7{6OP@pBfWexlTs=mC3>Q1XMb}G&-SQ< z1ApEp$dD;HQ|ROahE7@GkWq$ApSa+FOl6Se)wKeeJ!VTbYUp;(YCqD0GA}jf(5p-z z4#BkPZ7>BU1dJ281*(Tq&twbhMv##UUI+FDl_i_i1(|q?IZMNlA$`b2vZR8!Fo7&> zf3)n6DFasZf$!2uuWe^rdzrQV>1%~a;1r!Pcb8VjF4hXa;!T5iuXDan?7UN^ZfY`~ zxZH~8NA_BSWV6@S!=+#_4d(HA`f6cDu{WaM-+7SaHYVpjZJIX8G>Lk1PrTQ(a*%gd zb+=O{=_`5S`h{@?(_}U}8mh~Z=(KQ-64LaU{veuIZe>X6@Xb}-c0?q1q*z^XQ=~Z_ zyDf~5%wWccl)-3Ih$Ni&f(Z-;kJcJFn82cJ`cP?nmz#0F<%jl2UtCt}Fe8S#2oAbB z(kHR*yf(KGq4^L9dl#9wP^caFLxpejKn9SaDkwUo*a zlZRm();33g_V44>>Ma7&?8Fb;P~gSc7kinmF)}#1DtI&%kr8ISOQc-@sI{z(Yxod+ ziE7Qz>@G0v0mu zb#LO*jZ^%QwYWap!IcSnjixf*{f@KJ#xJ2>DbIu-J@AP}JXo$ZLCD>I#!z~1YH`SE zxV!t0<6CSKJ&>#2l#Lkuo@o){f0S#0%`69 zFiH*Y71w~2nEYY11um(y-DGR2MABFELA~~rbJj~-92OE*iWYK=(0|Zn3}-$g3T`Qf z8s`a0I}^g~ z2~=%U?}Ftb`YBSgmiax5xK^r#r-Ca28c%$@Dy7S{o}I1Dn{;xA0$@Ptcq(c6dO?_8I1$PMJ#9DIr_b{UET-Lsz*lZ1CNY@ddW&CMSVne3x)1;!L*^oO)lgnmqx8Ey|Cb&;he-g<0N*BV|P+oP+_E% zkIBx;T06igJH>xkr$XOKbLS1SD@c6`WaM zMM6?K7YC4#?|`KuXZqtlc^ikK)w$c`O)IAC%FqStqoz+9;Ih-LeJJF!RfnX}IVWyj zx|ym3+3}5ncba^h(^=~tj4t)e(Pt{V4wT8C>C!+0-Q$CN$t}*#%tIQK@v;-`vy z8jOv;_&Wi}OFQl|L>ToJ5T1PW)Qh$sPQfYV<7&cz_h}7} zb-T<0jeJIqs~=|$Y_#3MD!?oP6g*3--c|Torw`PRi|i;r4uitS0eq3e|!{>H5g7OsCgmzy(6Xd2}od({sn{aC9qB^GH0^0CBowiZA;rDe|qPdnUbp9Mn7J&*Ag2(%_|HwkW z?)%f0boeU!@zv(>;ya;Fea%ea32JChQ)hSV@E$KV@(oYDgz zM(WB*JMDhTeEw`N3x!w!7U%m%+nM>Hi+V;JNxr}3%O*z?2a&3CM-i~wxCbR9%I#eq zzU}6qg6-q!Jw?p&t0?i(hPvwHtR3HE9tBTbwU4BWZ`dMkF6g4JGOkhI&Z@p6F0Wtg zQkHJBg8}NFZ$_CUia9N(J<<$*?%e!!z4>v>k_b)P*v4d&O^;}kWU_&)-|}0vLVfjD@0`XSW4p7)vR{Iv zIiDa+0Ug5qkj$1dC}G{uuBK3214e@Gon;GPzwKJHKj!>TKRr$HHcE&8@zMHs+rH8N z`uU*Q`ndnEAEo!Zx@(8e|NZOp1l9ld9n19*@43(Gdnj9NP;M!GMeo+}X`g(afBzkQ zEX8`>AF2hVAc`0NG)9NZsXG2X?{U1vU5q#^6^wg$^QnY)?td;M#YYj3*D!U;!NAfd zJO3FXEjlB=FMQF6j-Nl*{6{;cH&s9WS1Ys2S?nQs$PO}w5^kRJIOers7^YA?{=tFg zbH{9V)FCmK)%7EYq}Zhx!|HhXbFWXG%BOtUjl(Q;DqKf%o@Y84X-)RGr}z8s-Y3f+ zLP0%TSLZ*DKT&okCWs2%_VHI2{Kw}kHOAq8h3V;_)%~vjug02X`TrgJ|D$934o&u7 zM{B(~mfM~$Vc%T+i1+PhNu51A==!+1d3NHve|Y6|kosbl)H2{3r|ABUPuZ>_ziH`2 zX@bOld-h|({(_r_uJ1l}GF&(@Z^Q3{6eIn5JP?c9ksGbnf8{A{sc-XRa_tQ7KY8{0 zmm}$sbD-&H-*=+8I8%Ue+vko+k1w!cqqD#`2*VolM?ljI!}FrKgah`de{ter&7ADu zQ+CExR?ju`AAUa`AT@8%xoLOEO^?IeM|z-MqFT(EIM6PQ!~1^)wt6VJkvr_^HNZTB z0{i!g4w+;OCq7Zfex=pvG&Mm0ZTnIG)rTMGUzlUNn$zfVi^BWvpTiHFv^GJWKnTU6 zqff&$V1xKcP1gbh@QoyZbE&GmcMDdCWrtqAykSJu$__in^^?K$8z;8e)=(5Jgu49u z#OG7knXJyKJ?AlW9<_gPhrE$vz{jKGT+a3L^UzNRp4TMl(wuL&zx*ViCIWY7L(9@@ z4)DG4+Pe<4>ob}l!VE-n;^BJLlzzq)BU@7Xmw`B_xpc6Pn;*H~u?e?8hqrFdM= z&ysmtXWx!)X_nQm?-;s*pA|*otJnLV`@9>Ahwj(pxzVCk6MyA^^tQWqnB2+Kyhz6j z!sfYrZmB69l-4qe{qcw6)zjd~=`}fVG_>9V_GZ6-dMo35+Z8GcePdk)hNp-oQIC8K zxZTI!HvDbu;obPtiWBJ?WHf3h^5!po{>i)N6_#Q?_#BH5ouc4oo6krfa*o|7QPR~v z=aBsGxX{KrVn%@N+xva5cd4++X0gj&ec#LI;HESexmY4~qxL7Bq{rAl`NRHT0=g4X z8@&$y<3pbP?(+O!lyc0P>;J!w4XHuK=HcRbYyQR1>mlp=FrVSF$Fsv`qXt z(H%<_FaMW)y)H1WvM*+`?&<%11L}b%ooy`Nec38*-H`3o&_>D>8pDYn^^E%vc}-5Uk|>cA z)~MR6dL)`+<;~KgkcXC@@X1J=Z1)?Rgq2-A`!3cEHZ3R1NJdIaXEPoNSfn6|Z%|2t z)xEsVgY_34zX!41BO)6@FvU{Ev+NCHkE4qD;;Z<421R2`_mk;z_)8;ckK3D!jkr+@ zBV;)7+N0xT*3smfZ*A<$St;sn&l35i*2vOEw0&MhP2n-ph4EbT-0KP8MZw@&`<(SM zp(1qUuD#a9;2=|XC%15Xm5-KcshQ8P6~rLOR|4gBR^>O}!NDQ)=BAlrj1ph27cmmn zRUxZIF+AVqFBtIeqmTa5P1#Mc-(=Eoab6_v61mYFd_F8c$ZsWi95rpIYXEEuK)2ao z7MiQ~*I;4J^&^+RJKUSQy>TatPmZSi(uLlo4P=_`Jim0B>z5gJ%@q30I$4VK@=}2% z>*u;$bf^kTc&$b$3q5*^atS(fj0er;B1Bm6jkaYZ=Eqo1TC18vgiPgQla_<1Tn{ z%21PT0%!&LO&$bI4((Q>k?XQpSCfC4@b+C8uvLY5|*Ay|^FMn~po$y-|6Sbz#S3=bb5IhNx zH&!HI{vp?i&*w&}Os~UA&F~z+Y^_eF#vL zw{9An+G8jiBaW-1e<58Ac@8s@alC0qVJK%cR`h(n<~>yAZ1JN*_4`WaQz9dVB;Eb< zIp~IvEV&r-0x(lB(8~2c?&>(t-Sk$nvyP0%V$pXSEt(jGm-9XjU*8NjpEF-WqzR!t zX-s#mL(XC=+K;S8v0wAjinp^$eJNY{!T#Bl=7Sqr}InP zUCUtJn4hzwIry6m2(sA#L<%yIzyHM*^!b3j3U$b+o43Z;MzaJU8BT)E$VpBuOEJ2x~hBRUQ{$O#xF}jjW+T+ zd1B3(AA_W=9;yQsG<+9ooLdAQsE5A+QMzxYb}8XDAGAJb{flRSRjN1;B+1)r6Nfp;J!(_W|C>W z@*?fDu7TiqmStfR^1|ACzwm@YC$UNST9v=cW`@m}_& z&Yhd0rzpq6Ec+T*qPBq6xi+>CGGDHz{LlL04Yn-eHn$3DFp38a`lqJH#%D=xLOt=> zN8+xZ9q>#e+zX2;KfmQ+tYwCmIMmnUxY40I=*Kp)+S4=(OHpZ^#dmx9+xtuJn`NP0 z5U|eO+-)O(Wm)YWOsm^tYI2p89i0@5(5K?{W;nA;wT&;BBbms;V;!-d@L|n>pOGhS2 z)-FM@emvW$yh+e`E5iz66%QPDbc%PAdsg4FC2o|nVhuj4SYt5EVA2}K8g0%@m(R2# zbTFPjVP~rE>Dg}XBgy?_Cju*;ZSMW5YG%SlkM38~z5g0U>9Oc^VeKM9^5ts3Kacuf z@mdgKC8y&fiikVb5{(Mxa{)?uDa@4DY4=uZ`;Kx95#N2|d6bWIVmQs&ll-E(^@Q`1P1kX-1o+1#8E9%Mjqn@GK)_u+md9Y@rYVj)H`MNwA6`L8+G=XIWE zC$4N3m_(lAyTh97` zoSLDv?Enb)&ReX`oUi{7G9I^;XT}8(1W~jtEzVhv`-36r2vU^)WbwF4`Zph+kbOBJ z&yi4UMYFO^+!TT8ri+qz%PNuLG%Y*4$a2?O1;9}m_Br3LXtJ$$G(^K?$+Wa4oVOi} zgGX&ncaus^VKb@?H2%IN)CprAS&>PV--b_ zil(6RKY%Pi{*qgl;7=n!4{&#^>{#p&+pQ zNbk}3PI#XZ#SG^O$8BjQLdb~>KZ`(2Mph7nm0FkL@n8x4>gw$hF3djT;~0!CMOIUB z=eO>qvfp?Nr{_;R@F8ao48A@2;f&(90gYQ~M)vt-O?SS3E`4x?wgXJJc@v^Gu6Ll7>%$N1Fmik(g0 zoH@l)sEhzGU_g7qm7wj$l{THQU|-kp@*Z2oCII?MF5atS_`U`%0~&q?=555ww*P=s#Z5o%yv(gpL|$&9;XWb2=<;*5hSJ@AY_?l zT)1h^d(V$Rw8k{g8>OU+YuiMTrUEedVOf~g{XS3=APN8d$qd6Viaz2CD~%;X^1f|0 z9(1fpO4WYF)-M;l6wa%XuQel9kHt%=$XiZaV6Q!Py1IieW#JbaHvl%Tkp; z^Xm&bU3mVk%RDCiqM1$8+$hNNnb(iNiV!3Mn!rVU9nd-w@d#&t1`H873 zKAjsWV>|f$va{=X&pW8ga-L)B(xBA5O6iEPx{|6RE1C@u z*jKt2fEUURyuRLYA8Ulf&s`+=%*05PlC){g{rfVfp&ebTYG*lC$gQ2kS}nR`QTHsJ z;#L4~E{J?Z7M!z8+@5)ab2us92MTeZO(>{Pm8F zTPa3sGF6r}4D4@j^1ODD(5@SDRNc)v(cMDPraZnRsnT2hNyITW3UzXRrp9%$>)|_f zn@OTD(gGua_IpJV@t_;vqxSmw>zeR8RI_SuDK~4o(U?;a*7A3 z8F>A(@4~0R0!{|zgIUPd`OamVb6yk-J1>RnxY4k@It<31W?EP`iz&}f4B#g=Y9C&+ zZ5z$tbQ^gE$H~~>K4$#$m0*}KhF={P&>!qpp5d~bE{u$0KSAsI8i!ruh%Li9%o`JS z!92kO|NE>t$rcDp!@AB9x6eVQ0E~rr3VI}CT~MH-#K60dq0IGY>P$T6?|Nq4+SG~9 z35trV@tl|rqN*_oXs6K3%lx2{l@BKVrqk5!Vnwv=)%(xfvGF`5=iR2zk_!;`(Uq~k ze)^JO*}%=&Js}eYCc?XZ1zN*^@Yiv-1NDP%r#m5LwmSl>*Qgw8j|FSg*v<9cQ~j1G zHS+zfim@fde3;J0$1Q+9YmaW0e-vs7lPT8P6c5zbFON8&EncZ-I zJgk_$^cgJ#Vk0VIyCX4SP4oC?E-gMAjB313IIcEvc{!77ytyu$4EFt-|6=oNoy6sg z!1!2+Avc-F7??X&|GY7}T2nGwQD8kvUt#ueh@zNU>?@Q@DgqKNIb|K;7Tua4*;p7p zM4e9b_;@RFVp}hfus%}tT(%3J3_ujiH6xZzd$U+ecBOjl1S(sq*K5y&Vi~$_H+XSg zX-rmT-aPnc0Ka=fj#Ykxk&n!HEI1Py!q~_HcH8Y@+(vndP2lUET@WKJ*u&!9V(6@zbvpn*$WRjq4Lc)k_-DC zB~cU=BsT>EyR_1AFT_a{!w}UCz(^j_MIHivYuLoX=P|aP!%2#bs+C|a6|r8UC=N2= za)KX%pqZUpqfzXzhOkfpG(`dC)!?^R7*6B`_LnT?<)8IonR}reGxUn%CXh{5U`mvA z&|WNf68f#s5bU(u7;e4F&R$&=!a4U$=d~B*V8-yzI`uJmn(#gyyaRa+scUynr>&33 z-iq7I<#!wVI)2|zSd`8xa`T(7Qt_x0IYm*tHnyR5oo_~*tUecYm>=5K33rZ*3nUtbm4FOZ z4)qwXr;2KUVjPwsJP3^$EB2yo83z}O7p)UA6Jwr+kSc|UakiXJlk^3360>JEJ;I%4 z4D3K3zvpJKA5i$_L>}+by|b~|xI=*Ul_?T$kMq7m7}xhZ6Ps(ZJC#O$uI}>+^<0ZW z{r4K)W!}EpclKIA%&DzyJ#yhWv?h%+Dj5nR1`#!!7efJ)^3fQ zTx4I&`HT?S^lK!sjp}9Bc+Hz=jWpo-^=D2-3`J!tZHy@QM`+s@g!#Uq0=5{%R!A&E zfp$Z9ihVhNTJ)mSiVWS6mFg9wDOK*ovM1lig>JN)1k)To4T}*)F5j>aA|E^XyDv~o zw~?p-Ukmn!WY+OvJiHI%LoeA#7?Qe6X3Wb-4lZ=a$W6(C+-en0H#KJ;f6ddV2j5PK zd<)~M@5pP*U8ZTm@mlPv$`N>cK^uP_mOQMsnfO2cN=|sRwiQw7R3SF4;xwQ&Lo7m1 z$yy!jJ)KX-BcJfrsdGJoJkOoEX^LnGV|KmszEZW7e5r9$X>o`$-rsY@@&^Taw!we^x8UTlffXJ&iGrjwMg5-!-EQbJjffSP{|s zO(~gcXun&`{gF1yRs~BC6+zDYKFRa&)~|a!;`V+$C6%+HEHgCexGNS1hX8``JI$di zvesZAT#R%YvhV%NrU3nw>*nm#s8)P=6( z7LS#>c*$qoiZPL5N*CUvDm?%6i&2|dkleq^JxTmb+k_{dd6pM7Yc9@{i|g0Ms1u@6 z64@;9aT6nbtwn_y%zWXCiQt*~qt7mCrimUtJUNp^Fyu%2M9E4CvVb8llI#Ak#Y0fi zuitet(r{$;t27GZJmY>jt?9h$x@C#mYy}ugjdRT)EF=6mH5lpn!SV8Wdz!lQ)%%g= zag&)SkkeT{8|XXB*pUF3XX_G+*?2u3!J>u>btkhg|9MP#r3qool|7b#@u`Nwg*Os3 z26{ASFL58b%64Ur(_LQ@+>bk;CQTU2PvPz=B>mH(D5-B}S5&!H-VpBDt_{jbc-wE_ zfE22>V~btY+nbq|s~J)b*f#O{WWcQX=+FAwfi55wOMx~J!XWWKrv2d(ubyK+hiU`f)P69lmi zrG*#{s?<^hvzEdc;Mi_=rS=gpc?QrkJG2?h@$by+5{jZ}eZ%s(tJIVc`cz?K#fQE8 zP0WX#c=VW!hH*}b!W@d{NZ0v3o?(D-y;sz<2{P(UXw$_DH=y2zCq|o%bE0r9O^ik(ywu@Z zk^c9+0=K5eW7WAetO7V#zN5C2di=9qHLg{UP4y&wA$%rVp|H>#V29PT6)8>c7sESk2x5FX20QiwIp z=NQ=GXQJJ~;IPq6xq`FGbRKS?*jkt(Nvl$4mOGTDt-JABsMK@rert-RUvXhbjT?Pf zJrD^2Vt?3VdG3U=9A;@#!i=6{P7nlOiTHb(lER~XvA+8n`IG~~L6XP~%VIKS`|s4o z@H2nd(y0KJsv^=mn&%jlclM#5P6%Z&`F)A*x^hXJneCKxE!D3W0<_zWH$IPI%4^xB z=^$nLyx{3nB$^Uazc>BNug)Nj%+P3)fuSfAPh7x~Slv4q(-v1&)Vd6eS3CdIC*Mev zH?)JIacLE)6*L{2L88S3W^nbAqBhIk^BI#1RH~Z)R9kXvH||jr-YaTeA(&J;%IVEf z;gDTBzV1)=!dbKcE6&Am3x&X%d{G%E{j1J+_cL?}sHr!umCa@0K(U69*d56$<@$J= z)+aqYG-LnV2xstOQC`x#eQ$*~p|}pQeYGmrjkF+Yi!K#f&Da7)?x=Jm^{tCzqRh%= zBB{2JRtRo|GGZ*;U%%^)IO;YoOZSRKI+{o=3@Qc)>=siYrWIEJ$Ky(*Gl69|WOg`W zhfjUyiTs~+kQ$tS=9=hmSr&gWQUS~A0)1XPNYAPmPtJgU&-s)v4TEF%iQ{Ii!zo%L z+}JrZL#vG}%xO6TYvjaO(sC-ZOp~8U;G3&Ne7mt&2&TBr8;%v}hEwu*kP)iuY-L%N zgrIO;ok>Po+OdYPI+DvQX2}VW@`Zh5c^-a#=GWacAwULzW$Uf0SJ-n9MdM82G<5Vg zp60wP%l&74O_$w~p2T%?z*tPjr3-Sb#|Es&WbuLX-EdN97NPk$U>#B5$XUI5R`q3T z!Z;U_`CAW;^#xhWB=69jFlRWA-KGtE9@7PxAnnX=b$ojd^}cB&x=yY_-Sa*vYqH-M zC0GAQt#7??n`CnEdOg2$z7El=)8T`gDq}J2HMu7C9H*+9FvQFfGfKOl9saDJAvgfQ z4O>!i+Y-~wNyO?vz2DP}vZQu3zV$D;$TQSpEjirjP;aG+!MyrN`OZtz3@73cV8i-w zkg+Mk0l_TBM{mXJh&rgZ>&cs@cnd}?TOd1*6tOwf;=%{95WM)VvyC-F<%wp;=J_xU zn?>sq!wI4+L?BCro)g(z(6WY0G%YjX?f8H<{{)R=zNK9~^-~SsIf~frS6}#MkH?%( zSj}$&CsM?TVi*d?!6Sr>nG%f{4E~lW-#PT<{Yi`s`|P0`);F8AJH!Ufi6V&Q@{cct zdtYLRm$c$Lw?^ThF?fto{wj)@AI)wY*crUek@wi8=Ar1#ni*ThW#dhRTZujDqn8hVw(f^!`R; z{&<%c3X^w`SZH8OXXlf2yeSIdUM>{S@s+pckt}3{@1sM^vg9I{;Sm+__d`~%wW$kcrG@tf z9q)&vNFyl5$&7Uh-msvst;ny5$-N*$8V2muu#O1U^jlI#Z$+dop0TgIIo4U^BTU5h zpBl8Ygy?8frz-KTL7tM?VbsoT>vnY9`zD&I7efzrXXe}IvqzDJc_#FF%Nkqyyk`Q) zqQ#kbKC(0?^qNSi0&0u<#>wbYWISI^CfJ+D7DG#@VzyITssiOb7o1iJ2AwX9?*l7r zI*u`~GW^cZEu&x+%2cQIfyoCM(`Y177h(;D09H7Ymu@00Od@S1{;H+A9n`{n>_|XQ zEEV?66AAr2h8oR23PM$s^&LNwu=XI}{1ZnIrsh#oJd5lHtIp@k$B5%&vqa3#F&OOk zg8O!{Ec0KnF~XFHNrA4p9S1nyRY@|8QwK2y_4r)#n}#1Y(o4rxNML@~^?0;*4kh+! z3l2{!0N!<&O7Z}Rw6Wmmg(3ZUguGHaIfrwGQ-v3aHO=uN@bBSUe^_eRUvDvtZL{#A ztftW$W#byTTiDfy=+DLx{S>@+^JnZZTI>kzLm&dRJGbu78bVFc((`zjM5oGjO{k4z zxsbuOaYa9DPNeS?6c2^+9&;xOzbo*BFPd8@8SjA(2MZd|ty#~?>Y)!aKD9&_5VfXZ zIl6yNq2i8d+fzkQe5j&u)<|eSTXxx<9L}`J!KA%x;+;q?DmtZUmV%H9Q!H% zXO2$7S(04$$9O$MA-%f-A1sAKO2-dBk|T4%c#$MYVf?I{iYqn_bfmYw+SQmhzjO9G z|1B2z^EezUylk%HKGKkLe2C@ad3 zr{i7L@VB2DZG0h608WuBl>Jzlb927??#u&rmI3p&cMSH*(dqbH0nEsVdcS*|kOJARIo&cO~^R2o}p+Hb+C`%8BPz zMI$!ETec@P3>ITp=ljY&Flvq?<1-P_EmXI&XTn9Um;=5ZYiKK8WR8KdrgYjTGXwT+ zcHgv3=jt!5smx4}VEvY9;_D+6=!t#uN&2ZpNGGiQiNLm39@{pwkC^&|=O;6(du6k{ z{#{SQr1tf8!~2qnxl2*U_7)-a7vF*5P#U*|2-`)f60Ke%6aHnb!8^RqoiI(ySnK4wc3*SY z;as=D=Rh8v{UprVmOzcbsaJWN^E}@lIX&p(#-?=K=m+}n>P7SAMNusXu~nmym~t9m zGFmX9I9@N#fM@SR%>$gh+KIX`R_aX~qYhlx{#$G6hrrFqC_53$Qbh6ViN_LqtM5B( zvk8CpecMikzxN$Z5BFOX*Z;Lg;%>MeWn>Ki-`_q51p1OdMfbW+m;@Ys$MUqu2A2m@hqL{>(4`i#w)u zovc0~;wy7uK@tWnPh`8&=9a}v(D3D&Q7+?X@pX%-Fc8{l2{2%aFEKP2B6K!FZ)!N8 zfuH6o;kEq~1KDtC*K)Fnz}NFjV#t2iJsuB7X26~ZlVQ^!!>)Puad(5RF(Og_#|9ng zjp|40BTVhoxlVQ#(S6TR(KJ$8p1beX0Oy)H8+EpK zJ(DO0@^^dn*HFKGe0Q{u*$(! zgkcDYO*<}uI1j!Gb>woe6f5UH_Tqd$_j55AyBZPJR8xgocTMJ8tgt##o8wACA0)wO z&Ae?8$X2+9CyIcg3CxX0I<(~I1&J){;~XhhfqRSHA3bHx>lZUZ8Hi$nus#@vb|RQW z1cIohV0UpFG*i(zUHq^8SjNlC7kj?G1=f&}^$_aa7d_^jEksxZ#u{;=(lsF3mG@4& zvb5P+NN)LDtqYu^Eq#L@VP{n zbo%vQ`!r5j9FJKoQdY7L^sBY{f%p647A**}LUv|10_IuUz{@m25rmdXc_{nz_Iyt? zf3F*(;u5AAxQA$vv>LqWFk*j=^WC*6Q8ccRPG@FUb6Hz0m^*aKT3%0tc#d;$H=ZPn zL6pYuP#gu4rm_D=VWNKSX@O*{u_+RA>PhN5k{+^ucIN4+uD#&y+N;ERn9_3$c(;7X z-(crSD$lRiP8aDdKZ!Mw5$(Qn0Ar6Z@(Le8m+Oh|S}70BW1+BP?$RtU5NZZIlnKnf zWx9qVcN5mvqKyf>VR_^7i@mk}b@R+Cw5qBSz`Cwt!TavRQTof_KlYv+M`?P{-~Am} zsd^#HR1;joAO5A%ydQ{bRnNhK^VhucE?kmSOc9`3o+XAao-;lzv!T-KpmnyS1#YIz z$j%94`(2Q4y!6<9{AXRbc4*W`SCa})`A``r-`dDTBLtv^HEI||3dDL17R54VhvEqj zP!FH6mTw(J5~9l53cg6hUHDxadwQS8f8grj#FZk%=r1pY%j8^EwjxZ0W?z{wQO0EW z`bw3zI$F?iCZ_aetqi;u97zd9p_I2q@qAPKYlAY^{#T4j9>-^rJ|{Ir7_S%OPEjix zOsLcx$T*3t&DniKStB9%r(X1aaR0dv`1FjzNzg-7vTcV*_ZlqF6$-3%MKDaQhHX2E z>>Gv19P6#SQ0F1ZUU|`k=KXhlA^8ve_8s4tLI8Dggq4xz$8EmF4h3-zuZ3Z*9RQ4& z3VcyY-ROH8Fpu@jq;=svYAfuR>k0L8zAW?WFnCoFhU#Qn_tUT~KA8i*g?BlxLq0 z^!ZLI!RPflWvzQlo4Q#nA&o2@og6oFZ)gLHm?Nr)IDVLCFc1@GzjZDWAR_o8h$9^W zO6xTm4ZTf-122O_)V!*yw-)%A)=RnLygmnYy9rZM?=VH54^+4pCIn9SHC6|$&L02O z?r32z?d28Fn)1Z1hM;*u3}?|qC=$I!j47>HEQb571>`9HjDPm?J*3RO=suT1tpD$E zc92NX$`>QatL3`^k3UMZSsI_3ifbcsdKUc0CdN?l$GWU@sjVcM=$K|nvK9$8JGjUh& z#>b9l^PP||2c1<+jwLr;< zXlE}%+-tD-v7p$E>t6MCyKmAJ^CrZYw%L{YDh2r$H{1^Of8?HqUHPOs>zG{o{#3$r z4k0hg*xY;`slI&;q9NT$e4F#|jvhzx_i4X16PGfRj_mnY>`S~sP zxOkUyyH?)i1^n8*UlLD=O_T4Kg5X1iBOdK8iUDds=)I%JcnCAa6_^_KPbRd^5gPUi zAIHa26w~Ku7S;L27kMa&j>}71zG&R&#?9iUG0-tZOy6BxUR&wc--P~%b?pxaUJuN7 z4~sZKo)@qQ-E!agK1J-Bp=f=~p;BH>YY~jn@&NG;O{(_nm`V=!(*gN~*5Vv6XvikT zXQ;(o(0fES=S$^e+M}sZ!x$4 zrkvdl;V@m_Zm3Yq6nRqeMzdQzLj@tik*&aTLQ3PqU$tuZJ|gGy*Iw$!o;dW>#sC!9 zWbX(4dRZ@C;C%nD#W>Lhe>@&;$Bcpfb38c_(O>HAnL8Kyfs)7^D5mG?cL21kpe@Po zkT01Fu!qg37FpQLjD~wbZG^St8Z)4axTX6d9(c5<$L>n0a6p1w$+D}f}zcH)S zPM<%T_i6C=RyVgOf>4R*3=P?QWIR|sXp8=?XWauFo0r3YrL{7i(6EasrCbe5?dQd@ z)8;{nioA55zRcVwZ&rUV2Cz{DFETgdp5^U%6P05_VC_l%26budAHkpfsG~CVNx&H2 zxj1r??K%jxrVXJm`_U416uzfZ=ttN&Te$1qTVj+SLrR%$E7f55?yEbFWpI|2Edw3* zq5O&qHLYKO)>U^`qocIFFOhy(Ha@gpL}6K{H8NS_D)Re$ogFyHikzoS6G1~{r18Sc z3$v0!(P9ve80bk_IT{1`8(}1`{0|;ze|Vtj9B0GjYohlO;@O;BXe1 z&od5*5%3mW1o}q!l#+L9>!ql-?-qTPX21Q2_@oqbP5(SgXZ|#=KhG7B4nghPoyHN% z6iq)ot8z^mJR_{JnVY&Ti%%rTqTb`8MNnxAr3RvEHZhtUM(G(|x#&cF`>?kX_1ips zpR7=04#d}eZGr+{HczYwZ3FxO zD?rr0FAYr};xI&Ar*@%AFIbX6q9`|xQ!VVFf{e*8_nCOR0uU&BQa2IHYCbCnLu{rH^6YCXi3vf%A;;!`$Rm% z8{HS;FgFDyKL0&;WNvgca=5W+QOMFn{M6^K6#j%CmV36tKcD<`d_E3j6k<3m7^S+} zdoa3(sA$WLl?p`;L_Fvvwy^J2**tkE=?GX+y=Lpg(Q+q44IpiW6bpeLYM8;XsnQ<% zzn@EXK-ulP|Hd_39wFK2sY5fi|Mm2#<1@AH#@U|u6lwHBsI?KALFzS93<4@kX^9fE zeId*5%WiW5=y0=nUTWBXZ(%qd_H_H!_V(6QKD~||b$I%SfApe z%`Kk}pcwint!;*+)qLQVmHmY&-IU~v&yvY?oreE)?<=KyTLKqH;W;lRc_+ZKvERh7 zqjjsql9SdTU2Q$p{hKEB@<045rkwPc}>qTamA^EJ`X*$RYBx|Z_*IZ^| z!yzJ<S6Xh|1b@9y4|!zT+9OPyz>*ce&# zOvg(z|HzgU-&n~n4gEM~pU;P6;J@}vZ7>~~d}4Ykp7!q^60CBPWUTq`d}(1eT1a-% z6F!>^@q~K+2Uf^YY6Agm1zGgS3tKMZBUb}H9ZaPAeqBSVOjzl$T}|gzUMX()3t^$H%YE%@~HEn0c6aii3a;recF1m;$u`pe+ug z_27yc{nOLavOE!NQi~94{d8u4!AoH0BEn4SuGX)M${16t%;S8MHw+-Eo?Y(PD=L|H zeAGHpJl~$ze?Nypi$m1&8^PIQ$dPV6beT>L@8>yWs?B-NIdHMe#WMW{5(80&rKEcioO))S(|Yx_1G>C zJRpc}#estc(fzLNz4Uf}OirjF6c+7wT{++v`nwxT|JKgQSFrC2fs??nP7Ildg>e1+ z7k|dD`fECI@64c34$Hz=JKv6JeWbSgbf!%E#kraWmzfV(+v&0|M{dkeJA|JKM3oDg zWGkCfh44*Eu{fd6?~cDP<{ceHhbt+jpgqE4NKhPoiX^?SRvjpMId>i0oS(Hvx|tH6 zS?J+Xt;FMJU-fq{4?2i|(2W6p_vohJr=8n+k!9^d5B>G~wl(B7A6~95rEU26cfZ*{ z4NHvG!rN;dIx&zh(AHJDmJBmJgHQcmS(9OV=hkZuqPgz&r3*S<2TZW7f>THSx~*__ z^F-9uiD@RsG~M$ft4XZxkG0p7jttJshGEZiPa@W5U0_w?C+8S@bdL}YKy|vCw-u+3 zx?jrAN7T6aEsM>+Z^9^#ZX^)acW(|@wEOL0Tw$^lxyWBXSZNZo<7~W=B-m4S(>#}r z@}rf7|A($GTXqx&w*4R;#3VqEwy}+w&1~KnZ8MqKz}H`~tNNVos&gID(Gk16H%Q7{ zxmGHbLfEEExbII)9>c#fO7@R`kT~_Yb;@Yg<)b9P((-6)O>*F>HKjJULL?i{Gy#At z=|5P@#!+e#thZ)0urINO*;7{AE88(knqGlD`+bZ$Xxm{-4ACY9V0*fQc@Irz*~fMl z9y%+R|2(@O@`#x!lFCQGGi`?B7UYLLJ9ABlVSDWLAkz$Z4rmhq=P9b;AdTnbq5fO% z{(N@rIu^7L2OONRUy)25APn{IW2o8I8lS`xVf{8_ph~yx8QJ}O-`;-nY5*7#FsHJ+ zS0r6#KW~t=HQDU651~G-?69Th-ejypFbVS20|FNXWAez(P?LL7Fs99Fui-Fcm^<*V zTqX~u@=#6UJN^zC*F%$-^EgtO&H%+9>5ZNrNt#w~!^olsBjtIH?a+%xAEvuzXJi=) z!bfCIkK_5TCF4zO)vb&bRo`*K2`KfX7bTW9kV`icQ78yRk({q+){dXKt3%UT!Yn{A zT{|LaP7^bT%Q4QH;67d9QS!6tLMM&3!GsEBRKnEsI4qBB7fC#LRt?D-b9~p#!>{o? zkIaJ|d{scNqTtB1Sf0zRG8$*3-=@nFL}pVD{~`>j&#P9Nr} zoOa#sKqkpmzcxRufyK|76-Bw*a-@GTM~Z8a`-daN&Jp{@+6nG{?$mmp7$ICRO_44) zDxY}>`3$Pu)BF3q#lD`!CcM+`=gnfy_6l*}@VCaDoFz`(g?x_n=WcR^3#wurU^-=2 z=Ee-Q%&a}%b)$(2vbj28B}gCfcYM=(%diJXd{Qgp=kX!$@%ekAvRQp~rnIrbiOC*_ z;xBI;dCw%e+oXK@laeU!%hHD>bFC`bt*f&CekT&K^o5bxd9s^a?k2x|JC;m$JDMy^3pC3ua(Jsn_*CnV@9^C*|5OZ3LWc!>Gu~vIQv7hNn;Q#m8 zTX#hU(?7pNCVl)STj#P3hN;Mg7Z2T{3ABm7465O*ua*jQ^*+@B-?v>3uFuUBjudsx z9J@&{iXTgGnrwc=I{BTeX7y=ey@tPS&)u}Qb=&lo?Ct^@UxgjsDjQ;L@cD+d(^6a= z&q;!@g|hWx!+hW%jYBS~+Us@xcP{kzcxic{i*nZbIn%MV-WeyVQgfNMsA5+nL~Geu zANw2;t(XWgUaQq&of5Ewd%;XQU$M_wkX207e@WhunlOb1tt9oyfOqnZ= zRlBSW(+t7`L61}1u~Eucq-YcbDQACr#NjD3;czo-!B5H!Py&e(Jm4o+(Hm&y*5TZb z&v%&6z`ia~~0K{Vw4NT=X%rY!az+Ani!kSlu4jP3CGtH2;XZHLx zub+z$1k&+{8PXVYLK-lpt_Qzrr!eJ^VxVUBN}%!D3Vh!*{VSiwh`JWXm!${%UaKyp z68PBEp9Ur#wu!Iw)nVoWN^5ke(Kzh%ul5T>)wJ}L^-Ws*>#o#?J z)@>rr+)HF%4vf4iroyUX6E8HI@Ub^+LeFta7`lh}_p@RutD6RLKO9xuw(nh*u^>{a zpWXqCx@}I{tn%RnQl23atf7h=^HDQOyt7M$6ClFj$P?gjz`B3mtMM>7Z7?G+8;UcE zfhSS%FpOjKjQ?a=dkkm960@gxeMo^U3fza0xza}wq32b$@vquh4Q`$zYmLI|YyB3P z!|)45(n*q6)e4P3=DI-s_LF^#5gan87;U04s_ss$eA%~4ZhYI?joKAZMgax-e|nv! zb@6ldW7k}>7cfryWi_{13m*x$HA_=njqVDJW1gg12)U@|$<_wd>!=%@+BSQig(+Lt z6{wZU5HOnALITyTD6mvgnC?LvQQh|IfO(Fp<9JCD_Ffw%(^;MeaRxHTK<*@pW!p#e z>>+G31&LH!m<~vgrn~pIUG%k@jK*CT;H{cTfYl*tr9Nmg@ZfH18LjPU0(*|poIwNB zzMZ7X45rk5u)UeoYaKABFN68JN#Ri0(dIxK9F@-Yh3Am(tTa8Rr(dz)AWqX>#~gFb z&{w(4Z`xi%x&HKdp3NB>A~g3gL4D^iH0Che1FNzI@**D7sM_R|WmDHO687Z`>zNs5 zh#NB$wE|ZeIX!n0eX{{bClFYJk9jl0NU|FDO;tUq%wQM}omUKpG>;Nxa{jOR=y{(AYPf}!`k9J+aAL#Ev&ZST z=h23rCISnyyio(l^?m>8D2ieN>wy`bc;uE(eEsS3l2^kpOsh~f&G!Aw0VA*rF!!TE z`ytyIP%+7?k?$Bk{p*GCn#PEJ{IEGP1cESXK{iP$+D8_7hGEMb%qrB~i zA;mp@qHEo|XZwy!hlaa05x`!DmSfG_v>428wRkDCS~|VtWnJG@8_`prK4zCRV-8`e zmT$Z{GwzXAUy8G-Xxw8X-T(Hf|G~YlLYGmQEtG|+8xfo8y71F^;pv)oT8Yoc!Z0Q~ zii93)9K((yO^;$Vun$7~o!`>mp9v2@l7JvMc$y5oXYL>ET4R28-4gbhoL~3r zKCB7+0&8KxNOTPy_;3D?%@UX{9pd96QdG$Okz07`lt;3!lBcp@v@fE(Mh$T65M)3u z5mI*>o;zfUn8zxQzKcKtOjyA*RZujEoX=Q*xK9y{$^CVHJSOR%EisWhA0OAR7E+sn zsN)||=DOtzP;YcN?Yhv;Rh2@##|*L zOw;kh3?nIT9LhAo%4D@wo+PlLJ*4@~gaB>C0X_ej<57P9MePnmrMath4P+)0Ftn$8 zjzYPPnm%2=6LTwc}ZYXEV2nsBD6}vCY2bpBZ;hY(-E92|65~6Ct%t| z?%NRR4TB{m!*NE9SM~lp5AcRiNhnii6%R)xpI7JNesw0E=VH&1GBegdf-2>6zK9XQ zNTID6MF{sm&Z-yDgt1Fl{~Sa)@hTFkKW+VaquY)o_PQr*cQ_`rjeJJPsEXymaU8uB z8bigM=y)?>Un*Ic#Joa27jNn`UY*A+CaLry+YIHz!T;oh54XRx=k2KPb$!hyj1kf2 z@+jnWaG$!s3no_ZoYgbIb;jD~dLPepC%z7GT0ZgmpUTL$M&kKv;+_U|*b^Q#b;9xD z&y@R=DH+m1bM*Rne$1ZFm9@LALZ?&yFtXd@erv+pFr`(VUee`rt zgW&l})Kgm9J!~-(yfU5uJhAK_?TmH6m&^Q~CMEe!<2X_N)8~}_;bHQ4|JyGPse|Sc z%FkIg(=^x*Glz_919l;@%32>?6OCF7vN5ae4F+E2y=&V9!6+_f>#q>Xte^M4HSkCJ zKeY8Ax(4B&){Sapa1pB5Gi=gEI#=<+q_I7CXCWB75~NauhF9Ia@AG!zd)k}2YH6iP z!Q(=Se6~jJaZv;RHr9vVT7SDg)dPKSl-`^E`_$ueK`z}z8wKA<6K;e(o5xa{2s$(` z$j-7=tE_=ht+MzU_HpBE(xUGn8XLeAe6oi~7^Qw<*lFbH`2!96vS1wDP&^Nj%T?=L<=3_E`Tjbz=*6-2O>_n} zvOYv+{*D2vsQ$eVh!;;7GGa}npcTvK90bnX)2|6@spFm_nCuMkxv}LPtyooHs@j%L z)n;RxS2Y{->V)>%$^}56B)rM-({v!@-p}`B8z%sh@aK}Ma>i7MU`E>2 z6MZH;5BX+=s5#|zbtTdsN3MLF`j9s+0+9|mAC)RepHDJv>o@LZH{G#A|LphEr{vF^ zC-%iN<}{_S!hovMASp57b*kbbx8Y5|B&EdbZp%Co@3}Us|CV*004xn5M<9nf1^NTZ z-bMq04m^F0&bjl5G%PKJL0uS(KzrWEd36`rV@4d8cpM&wkO<`x6Y!dk4JV|zj_J}@ zvE8)ZE_{sJ`-6_)hebZB-SkF+_gvHyuAF%T9@*~X7z6Jc=VkH77*-D@B)_R!iP9{#{S@y2to zS8T0$^*hH%v#rTE(Bk-7=OPgTVkk|wN)x0$s&Zom+9|c9S^cDb6GH#(o(WM`Hb)d- z<|JWy3aTIJ^@fD69{Df5ovCJ+l(01!OZaS)mo%&gqgS{LYbY)2@?vC-Ps*9$opu(q zqJIiTw#|A&rLJv{XW8K-EG2Gf!#2>svW?wj`V7aI%VWyH}A5)>M{5JBRnq{|*3iisywg z0#{pwcwP0{d3=4hT9bFN=gIwhq$tBZ8vHl1>w1Dyj< z>HeZf)hm6~{^-k-HsJ>&Y`}bQpK)iy4&0Z+N zv{TiG@YX0WP?lpyj#X$~4oO7>CtF|LaBMHCw}h7@nCzUZT%{1Q%6RO1(6A7(4De0E?*Uq=uNs?lIldTpN{L9wsXdh z&VL8hqmpB7{L1C;wZ-~>!AU*Fd*cVcl~wl}or|a)bwKv-?)F+8qU0rS%ja;jWjT<& z+O>Z4;c+M;`Q{IiKV}$H{V`RbNn67F92D1-u`|ubXQ>xv8x$AT%%j0+W8xDnl$h3y zQ62~4B*}x)$fe4t;qRFKP?Gn5H^9V4V9_4DEs@Tj7t1?qcCLu>HJb*?l7&xFCh#`c z&W&6j7g_vZ_xidxmec*ieXi{1y_b8E@@cN;*E1PQZp@|dn^7A~FU^)$C1SP{X_VIB z#GdXY}nLHJJZ}B|JhT2hu@OYzJ-cd_tYOlXssQB>7A6;`N`lm?z%2{+IK7 zuUzYP<1>4`q zm7|35#59mI+FLcRs1G8B_nz5J3{f=qk)}f7*Bv^y!+3k|x`+A7uYdc%T7TX}RN_Fj z7njPHJm`+(&MhSpouUH2njcVJ*4_eG-KDoew_dJYM?G1VYYr&-VF!-wW?!0I(;&|VSBc_s-Q9D{=SqqW2T~r^O zs^8i#+^=St+xX`k{N7A#oz%-4nIRolG)UXN7bvW%y*$pvY$6E4_^Fj)roAVwX$G$Q zb6&aPvZnX@0xZkX2o34-E^8+muQlZHpQbwKDgBMRO2xlwdw;#VdO~Rk)>uB(%AzsgFlUJGX>eqpy180y4R7RlfK&0aUdO?cQYHm_VFI?GDE!J%Xkycz z`VJC3O|?-{_j~_{*<{98Kw$`JityCW;CWLUi>_txl8SK|e;XlC4dCeh!|2@u~ za1ez*c&7BY@ArnA5!936z>WO9yoRuJTX`$1#k**(SGj%lW=%`o z&yw7R?p-^#p!RixqqsiSkneE4zAZzXP)gRv!xQFlD~;YTSxgvFcxhY9ngmsQ+7aUe8WJEhQ%Tciqm}!cM805e05d_kQGS z4mDY6Qx){IcHQIT^+SmzB}tX;1rC#~>`;|l{CPc|LL=pxgz+F~-rJ8JgUk4r9y8P@ z`l)*~zE^W@WQT~H25e>4T~f=t;K*sWwR3#k%gB^k=BJ;>?ibwGSD3&wO=rLRMqf84 z2;h;KGYtoNW^UUs^_!p}h%9eDpJ7^ip6A>7x{UmMV98M9;%;u54Nk5afZ{|q7ssVE zOoFZ^O!j)l?J@YegPofnXDm@Hjh+_aaoX!J^!HhHk^Jx6$2fMkGzrC$`8G3-$<7)> zw^ieET{P|8%Zj`ARI=U;n6t9Bva%emU4Q-Qk)t&aHHHJ}8bAH{`AO|L3Ew9Pv8 zd&V9518e$=_CbSM*pb%=Qa=RpZJ1SKm_OaMy;5uQJuRJ05K{XkMT-!?^Oq0bte@Ja zX`cJ8>uY-K!z7#PD$9+S!4|&vVVHv<%X7!djWK3~zS(=>V4or7bLICGm!>?w;rV>M ztaKF;H;93n{Lh^u)R#ABQ_~nT#UE_c0>em0ao-19^FglHE8b(64+zNh3g@ zraeBQEJ@1lrw+%FpWhD#pP#y`(@*cEpFK}zF0MKeyBk0Mm59S2jd*)SvHMz^S#7>?s1HuDX@?FM61yHPEMvEWl!=fAJ6c5&rbwif9}Qh!?v&N{b*gEsys~mt%{u zv}*GCBua$y`LMv?#-KtBo$bAxbE9<{q4zv$-w~$JMsh!AtTqR3KEYjhm%>`-6tidY z^RE#--N=>=kf@m5VTs!EX0B7IpLCzn%$_yLH_D{--oDP zRO^KTuM$v@lYiHNf-L-`_^as&}vWu`TiUXkt2U=+hJt>9U~x zPM>BY5k{H(TD<7^ZD|dx-8rMG$ge(E;@mu><|~~a|CiPv2Radx#+%rMqFeDf#nT*& zNNHVV5SlE2D*rB(nfva)^^hf3x6`>C<_GMUcBJx++PShBuA~VsN04r3t_BaC>Z}xc}HVs43eP6uaC8ngczY%o&{WFJ5OJ|{u?wAvx{0O$; zGV#kM_63>F?#}DK8aIXh5@rxaW=bHXY6yGJ-!%5FA*TzbhXIM2VYbbk^Qmb-7DA?Dzo!kF9UbBqGz|Hkm;Lkw{2^Mph?x~#kdE1KFq0>6t zG3t<3VAy-+Wx>xqDJ#{{^3ud#2D&vDvbp;_*{ zsNZ=}R0=;ePFYXp{wB(Ffbo>4L|G9ch++`YN7D zK}cc}E$p`i!l`z`iB2c}XWsXFu*M)xFcuPWxju$VU=B%yF~WZBM{c)b+qTPs`Kt@} zexMXT5&PNP{Z6A0Q&}bhwT}Qtl`->EOI#)1Mcj*~k3V;b{q%7}s!vsTxpqGQW~DL$ zmJ-ET=H-rxKILk8K_H(Ur+B`4h8ZJ1U%B*^{blQy*W}EKZ%(E-&LV;Nd$=K*PIrEJ zdG}H9Tw&)`C=HxCz5~)u5Aiu#k><~MK{ZUny{2;z87tWoRXB22S{f9OdTfhFB?l(+ zTLY+5IR!?~z)z;rFtI*DR-5Ab{h}Pv%vb35zO(`%-bwv8Ho~)QbU6=v!jy^*#eu%} z5?8%^5#>e>wj~F~E$D~`foH*lKX*>PapZD5DhtYz1jcG(v2dEE>8c=e z%vns;K|^EC7sO*`;;#zCh^bA)Gn#gFZlwhJ`-@R++s>;?gjj1YXx7yITs&ce%G?Q=fg&&jNjbtQTul4a9iVj&EzNdW=vf~ zu2;t{`w--YxAt;3?KLk2)md5QTyEifWckb6*5H7N%E!aewNzk2!cb7ZEA~ zk@ziqJF~;c7r2#r402!uzWc#iBjZ~flanUNK`CJR+=9#If^7y9lVipsGNWMZcLs$&{r1RgI({ElVdR;)NwH3$m>i@G zfx}z4R}%>jW~Xi07;Vm6zyR=7AaMB0{#4uuQzpwF|4C72j_arS!viQ{x0a?eMQXvheYFeVbrn>%)U##+O4jm zfSgWZYP1E`i~T{y?AtDGe;ERrFbO)^(%?natH3n_Ua7mO5Oa4 z0jH}@J5a!SUYOW9S0pIFIoNx{$siE+do_d^PX%E1-q}R?b|6<}V0xb*)+ow<@?JM_ z^D57)XotulSieOR1Rf^E0jE*KcW#{(mTILacjS6`5Z5*XxUyO!Oq^%Pmru@j*TiJJ z3e)w>YD%z7;V@sy$&PJ@6H0aGImgeF`xIPE2+i!z(FAq=Okc+Zrne%*R86UAm@d)V z2?Z8Vqw?W6LHT|O?`3`ai~bH(uYb%xxS${D{eW6jeNBvwBWKPGpNGT5^!?0X`nIeyA9 z^W1l6+}EEPDSw5Ew}yQ~A-&7qYM3)feWpcCXF~HrQ_z#&<_28%e1 z7b(oghPT~LS$QGXq%Xk?I-a2$di9$78NZFGO#5Ab>iFgtA(ym`C79|J@8_+aJq-d2 z^A%OPqC3ej>hZ}ln5#UJnEE+SWSB{o$u*vqHHL@~c*X6*t%`5|#W7L8E0MR`gVVVf zm-US@Qa_-=$Q7mB)Thl-Zpr z`|sP%k|mx|R*py)X2Ns3IKCXuKjZQ}x3X8F3lVARW>#CR`O4^6{jw1wYevlRe)uF9 z)ez~7H|Hjs;%?%W@YaNEHs)UQ{qb-1!EfJ}EeO#>#SCcuU~Uu-^6SI{s`mw|Z<8s& z_F@_dY{8Z--eY7n0h8=UeVLZ@1wH#Ruc;|9fBW{kse~fJ^sWbKEws=b<+-vjDgKmL zkFIWbqii>_O_?uIr7AZr<;0&HWoGp~EU7&ANV=_!SA{iV6KP#~i_hblTvA?RS;Es$ z(a^+{a>U0Lv@3-64S7VEN;adfI|Vr1Wxf7BTn$UX_nl8CMxttdzcc5;-3R_K=EPYo zh^8?!io>G1TGt7Uj3!rR}3R7UJvjipb)&UD`jm276j8 zd#pXE8fvrG8QqSXe@>eq?!BD$R^cI#=*v&eCt{=u>yw!vT5Tm&!Yt?7VHlJ<-P9__ z4o;WPPl(!M*Uz3M2GU>*9`}9w=yo{D*7<@(eCrXB28d28sO9ILf?xS-#H0=nk_=^2 zkT+Vm!Hp8D=EGvG*S(fqGo(ZoZp>Cc`-NxXma>HYv<$g4Fbt0{_Rv1Y_?kCFt^cb& zoVpkrdGK zX`DJG^^~MOO1TldZzRHKud&cXnck z@8l$~{A@}2T}J!yU^W=t3V%_Fq}A?W3gQ6caF>r}2~v5P;n5d4dG28DoG@++8PhGCT1cai`=7=NakCJ4hz)6@(0J2wbf+iyf~ z^xSxflF-Hs)=w_OGT}F@9``>d;&{jy*OZl+upD{}yT~T*X|oENu_3X>?`B@Vh98>t zF?;bmN5pS693&8fi zFlJSGdA+`;*;JawP)Y7m41bx+;e4{Edg)oCFIlW9W3!{6ROXJveb%I

Vz;k$`5jNp! z;kYOWF@7~Oej0nH=JkSswS8cm)tocaq#VWV-Kmx$Nre>3nnQxdKma-;kN75Uh-sR) zFF@o0RRoAfhcKPQ>Dum){59oUv!V#9*=0?FS$#vZptIt-sINXL@uRz*O`EL41NI+v z$z6F4Ry~)uB@u-sk%ZjwxnBU-E-nrc>rWs)j>3%nW)pgk`M!r&tC4^9 zV6e`YGH^p_nm6R$@B9Aq-JQ<}=qQRbCT<-i%~8fr+kOK8;Ds?_<~~Rz;!0-wbq;XG z-_Dye#I`42DNJ-DA)7;2skG%l_E zf8d|^;?w+5D-ebbH>@T5MfCe?8rxS&`#Zz3=M*^`(Pkm%Av8R_q8Bf#lbR9vi$@%W z!307B&=$I|}vM=Z4anYJlx7L6UXj39{nzxvgP926{OHilG{-30(>Vve03yp(^ zukQYQis_=~z#RGc6I~8|+HxPvAF-oh0d#(0ex)Ki*zb#BTZkdooF+xqkUSJn&Y>!m z#p*&cwAaa5ny356q+!nMT_{%f8>`R^3>wh8T`-I%5ea z&3irJ6j}Zaby!P?yC0u90(UlZ`<3r~<+aVDcop#oI3&EKfVkyb zvH>Px8fivS}y3I?A0i?AbKjHrWmyBCw4efZE&+%r`fL)x!Q&rkntC|=* zJ*Wum@y+n(W(~;(i?S99m1Fqj%kxtD4y8%zd4S&$RIk@K`I>c3ZV^OofN?a-X_cA< z?O$h_cRQ$Y)3;W_TfLRXX|2MrR=Pu;xDoF@JB5A)Mn8yoP|&()(e;!>#48`2Zi z8?|piIx|0$vwgVBHl!FczC~L{_0Zu^K19*4dzJU5g}!24uo{#sGQfci0b|bdtfsIn z*53Q^zU})};fRHF-!n8_VEj#xj`7fZ4CydIjIHT{KTJ5(p4v3qx@KEGZwTc94cXgG z9U7@vimmq(q@+yFkPHv@duK{<@1bn$)Lp?GoZq*x%E$Hij28U+Y^>9~rl)CA3cQgJ zW^?NDe&d)6nDY%N6)$#E$4!qC+k5%!G8R2NIjCM9m7|;RnW{>^I;N6<)e;&a!irb& zys}T~%*P9t6Le*&u-r=N@aN~u^~D5BA`U31r8Py4vN*x6`Xni6Fd?<=Dz{40Y@30o zKB&mPXiW~(c2}0K%gA5Vld)s-KmCTa)4ZSx-h|`KkY!gHSd-%A?%1sk&REFOOtLD0HdOI>8*G)0D-VQhd%R~rcE|XQvs-(ho-WU|Crik++v;OvGbbOBCVXVk-Y6M#O4s2PcCqt+Mu3M z_HZ}0h-rL^8*!RY32YRQPLf(}MbZ#HXMX|V z910YBsW(@YI^}G)VT`la`quopK2OQqbDMHK7ig?D)2)vD}{AZLq-> z=Pp|hvQzkx9&A?g{pnW@>u?p1%6-5@?fbI*Tt&GswEmZWW*FD#Sf@35B_2+vYG?+H-WPcwFHJ(1zH6R2P$0Vk` zX`^ND*9z^qgheJ=$i8PCC43edVpKhq#mR%_sy=DX>wV_)D+LCZSM|uUOoC_w+1bgW zw>$LM_Z$2!{UX{7CFeyUhb+IWr^y*jNb)a?ao7xNQxa>NRBfmRR#iS4weF(+?ELx4 zU$frx{M7|T8=j0Pql{wB4`|r)p>)`5jq%;%{sMKBqQ{2$Ql;A7TTKmqn}qo%uO)vE zp)WNhb~ClyR$h*(&bD%stuTp*!=XQvlha7*bL1%p>-g?Hw*#aJ5dka-JSuK6C(#<= z&z_6;^HGM`&+$`ZJE~p&It~Q(J!))bhF}$*4zVccWL`2yJevzEOyzM%E~cH+fla1N zR{Z>xW20TY7p8;FhJA5>_ceQ|CbRJk@rfJ*yQqv8N%4IWFZ3+e4O%lzw?q4aW#xw( zj&J$<=bIf3uS^@VK^HR{=XhdMMkciwlB2i{0zn{kEjL~(SwoIz@Cl*sdC8iXfo1us z+LM#tUthWTvlnsLUMj|o+*dIuVBo52S(zN?6o*Y_zvK&2g(9me1tSzDbq%8<9xw5P z)d@4E9r;xf%KP|fL)-Jl$mv%c2QxDk_wV^s6+5GnCc0pskLLCnSTA}Km!VU&i|8YyNGQadiK|Zc5(z=ItOG8<{ZPN}hXnTs6u}1@W8S z;_pspg$ACJ(Rm7%SL@Q)-C1&T}ij$>cC02ms%9{^yxP{PEp7H8t$wKl$7{ zKh!7Y8@2Rep)O8>r7>NQP}MdE@?)3@{&VZE#|SD@n=$&Y8Z7a!=U{Q<(~^4hyqNHy zOjnhpBpH=!Q^3E&1KYLPI(PL)uzjEk^~s(CeQJW)@K05Ru8vW^^O!xCg!tDxp2$1p zR_n@5P`Kr>0rld2FVJd<3E7{m3CjQfJj>O`@B5RU{lO@)5S9BFOE;k=yw#3Zy#80q zEZef|peE=-4eVJ}s(I>V1KluPz>+(KF(4A|i%B4wj=DCVjwN3h5mOsPR(hUC-9rTj z!RF!J$3_3M_v+!4r2I!JvFiS`(ASVDa|csD^wJA6iaV^Wx3dglRrC`6x%^;2%3L}e z8XjzHHrLRsYoeaP#jT}4IRErr-d+pgj+cxfm-H}47q|StrJxyX7{K!|8Jeq4S&tE# zAr68b2*@5H@tQT>{MK`p)L!s5%r};&wp+sT%!WB$h55~Z$>HI7e10C(qm8SC z#!eqo`rqDGrvu6Pg|^h})N(4Ia0CRK{2}M_tIyq+2dlOrLm513hvAB*jA_1ho^?@O z9V@K>+3Xv`{V@@NE&sjsaYCjL2NF*_X_!=y|&!m7eg;=p)&HX^ZDRd z@fPI^k;2f#_QH84i(5pfU-RNgZj-mUm!Pw$&q?zNrJ^Ts{KCFs*O)Pf;Wu*fP?#WB43)6t@bchc zPw#haJe92daAwh|LCa+o4kyWce|3j;dtmy`xOB6Cs-?yqU!Fl3@I8% z;}-Lsx!uwmMv|AthE#=zMgM3J!{AQmt!P@=vl}eT7p)YMl_LSx2aS2nW{DxtJtr9A ze#udvsegEFBTihkW<8)?)ca9g&I}__{LF5G`FiOS0UcU>hv*+DiR zac*Cv$c2R$J=?wuEggAhEn8aSSmR>xQmXAGMJ7C7&dngj%fm<6{Qb$q65WmRu~lT! zyBl6z14A5f8iErbHgk+-e76fRt$nWm!@49RVvGz?)@ieZaubSPjFDm+QfCsC3?)?c zv?UuWyz+i~ew_y~*0(a`#@^{2ne7yPT-vaHZA)7qPl2T@USPFu&Y^xzJB`;(Uc{Dm zXgoiCj5l|N`kbOzS)tB7tX82~Ri1yI@<`YgWmC;tU2Ng_DLU>!V5%*c=OK-g!_h!#CqbWqlsdXkFTCTIS^N2RuPtZ@DBo^-&j z?qq6_x_eN4>xQ+oy-EE&#HwtHarHTtSb&Am$$KmZ-)ske6@XX}E=uE;FzPfd_ey|P zCbe@O2pR;yPm!p47P1oD!dAe%X*|tZ*M3@fo-a&Xs_%$FExtgMC zN1n$k%(NO`?!HSte2H$+i^`G^c<1Gy^~Hy5@{;KcbZpDj)?jF3JJQ~vTgCj2)BIDc zT@h*15b(7eOZOO)5;ewB9|GZQX)E6jGSkS4R9GnbyQpVA>x{HJw#yKW9$F*>t-Ji45TU z%IIMe)*a0;Dlc2di0dX&AY{6atc_5DGLqwvqiV5k4fLIocFI3v-b}P;X|LdOo?4f;8?b}fkjD9tzGq;`{ z@wCG| z|0^$iC8bN5dkED#p>b@PGu)=aDtX$$3Fe;ercPHy1|fh`(llcTGhH!>-+m1|C|Rc|;Vc>Pe9UDBpM$ zZXwIllL<61V|_Pw1}mpNHLsY-6gAR?0VK&=al6@^^1#u>!OIExgd!CAJ9?>}bHZ zJ+#$Lr7d32U3>8y6j5!rCuecvLF#7p{zQUWK9O2&r9Ct)Fkew3fdMIo6i<;*yc{Z_ z^Do^^th6ik(FmhvHnlevHDEv{%OpW`H7k8=dr4*Wv7xdMPO38z9cHO5x{{nlR^Lxa z1Nplp1)1lQc18CmWx*@Buy`w^;!wwu4QBS;XNV$!5t=lT3PiCdo2Qmfz`GB9`nlJo zt0oQQhPcgG!#B$kcc?bR0AP&B&DkmN=mbvbkb-Y*HBFEtw%Q8;DqdvA|L)$GsPsVH z4r-v@Eu7%m5@>Wa3)7n!cn#?PLdRg^uUM^z_6UDc%B$Tp_3pt3F-PYN!;LK!fWmX@ z<+b`Qo?^Myl)&}P03ViEO(HD~GU z>WDnYL}-Kre_~)7pyhVvn8WA5^?QJcVM*i`tQ=i<5H`-ra;lv^UsW%r$$VTvU*`b~ zp1P4FFlSbgU4}(`l_M0ut=7!&yD_sinoLCnJ!l914ZnnJZfjq{-noNd0~II=yqp?R zzD*;`8fE-ke6pfkA;PqzX&ZcI?+nr1(mCJ-^3(~Dd%=Hdh3mDVea*I!On|plNR)B7 zVspv@o6(s5QPm{Q!I37#6~4b*pf^cce}VTtKtyJPwF0A%l8V0zN)F|rk}HwRFin$< z2Q1m=cd}Hvgn?pcppt~0(766jPxM)n2+EGGMsc99 z8jxebGgnf3#5WfN)J$sG}{?Iik+R$(ZK@r>N4Bo1E51maw_}V4Qv%2M&|L z^T}h=Rz0xyw+r6uy+?r6Sz%C9PO&RYn@Q4a53q0B6Owx;1yizm(Clkg@<*U-k6(Rc6`|AER;-e& z8mM6e{*mD|ko(G$1hkA8s+EH6^Sla`4-b}|x!-y&t{mjMi1Y#!&^NXcyy4bCNeBGW zLh+C5{p3Q57*;9`>bg*8b*P8tf>8yHcAUb+{PfB${_&H$BFyAVFA}&%#b&fL*KFb| zmx5dd1Tv&u!H+vpYh@fPII~siu#;_-Kxn$f^FY;xyw(4smsL)3F2C>X1Fo@E=`2*8 zgKB=+AQFF&Sa=^JVvp;C#=>%6KO`-}bVTBl=kxa!_cj8X`Fpq&RX8gHpMM}U-1mUvY1FCJmtwX6!@F}fnLJjOC}3F)2Y*T=n>We9PkCNTPx^I!NgM&7s zN!Q*rI%Fl71pe;n3o;1ZuN?6ux{u|TSQ5uk0> zVgr_rWp5gMpf4eWn-@>!8&awTQr3?ptWN_a6!W(n%C8~1=0CMhA82&mJ1EMj2m&_l zpA0?bH%})hk=(OALNlNQ{;6wxh~-w-P@Ebb`d5EuYu>+&5zp;W(T93-XQPeId~J!! zXNZM?dRXT?G?5L0z5*FYrYOsCPVf-Er*a!d*?kN~euW10a*nlGpZnZjR;?^oO8C8& z1hnbRMWLN3+p|VxnyB5YE@30~WFT9KZY^f8SE| zyu>Tzny3VCfIce_Is55qA2P#cFKf(kT=F~$_(Jhlb<7k8^~Pxn7S0r2BoUJ_=@Fz4J) zi4soQhvB>1ne)ULC@6OE;_rt_PXv`Yo zR}5rt;*Xx6^H+r-s;7UF&&o6&MAY(IOCCQDv?`E5=mQ85H@ z?0!Ps{sVOqAn(K3C+cW%HH+Gwy#SA{JD-W9B{|d0MO(!PO~owL7Bb*RkNWJ}zWkh( zS~$P$&v{r1iw%6jXN&mE9?288QN}!2J^;)K08z9npmWqw3%*&UF11dn_NAAr_W54E~+Qpss z*KF=>#{cO%am=q6#9hywnx(pC&4Y08UpZK#$U^bNQgaON0TeDAleqnpcj35}Gr#nBp7+>QdiEviy$q4<9CfzApL_MvhP_taUW{pr@Vfe8 zjx(%&&_1qrA?`j3w3Ju?NNHX=IfxyBVUPm%TYUuBwBEW%=!^>$WsBH>0AW{zbk;}! zA;^6nd1iKPglEa0#&RFc-a}aLPab8qT+-qcr%C1)PEX&*=rNalr<`@5gprg6pRCJ? z|0D7qv)i}>YYoL_%D1kOLcN%?IgHY=Wh75hP&UiYCDZ|T`+T2YUPWjJ@$zQO>fUWU zd#ui$E+wcg8#%;Gw3*NlLW$pGbq>Q_oxfaGwtoR!BQ(|pSkGW= z;o}mcMWw}<0$t&z7=)pp4p*hxa5ym=Z{d+9ZRIPo=;C7fE%`j)&bDa zzW>*FT~|5$?W~UcSaXR5SWRwo8CnvdPDWv9Qp^m=3!Dwo9ec5&JWl|KPX1 zu&$M57TW~pd7XOmpY=C?o6-I5nt+#NHa_^QpXl@pXcjth3KNTrIIl^&V;e6KZ-DF3 zdgj)yueQ7k-`v7NBShJlGe2*Aw9T~qf5*(1>ONgyZY=O!=rI7h&2-appi3`+2yDNDF%Q zege&A1I@;&0Lb+ElW1c8p|X~>!m0NYU&_a2S%5aLXaHlwK{^jDpwQh_F4M0b(Bn+* zeu<+1YZ646n|5%Ps3(n|H6$G}-OMGcUfVJZto}>89o5HIagoMwR+dNrM3^*=vlaC^ z+c>wgU!qd}V5d@wvc+?V`=SNHO?o-`fDG5Sk|6uvc$VaSmLE$qPidaC+^=;Vy12YZ zFz3Jk%j6uT@z%J%?VEdE2~YiKcnQpTcGrGsc;E}lg^Te{R&mKtZ3WCbYktNh)3bNq zcLpS%oCcli(7_q(9CPyze#}Wdkm!o5ojn>&&RLYx)jP zJE03~Z}9>HxmOF*!YYeUSZIQ}qGXaH&y%wMs_l*KW{<7O!s*X`b*B8=-pju(yMyK~ zY2*-$S3j;*Kro5?qGEMTvIv6(j(|M|F8p)8;RLb9L_HGGx3JXs=?`j^>^tw`_{qhc zDmRyY&I+-?NBend^s=ghZngnGwbjW3+yzM71JA*iKJ-2J0B7bCVz^~>g#W}nJ-L6! z1fBy*RRZL^fuO0=Y(1nE2==T82Br|;kNi3Naco6_aWL1g;2r~(PUCTmi7W=EOZ>l1 z2cYo&ZcH4ZpT5lioxW#F;{u&-*6^pUinM(TBDO8tM+cz_1OK3Te6EYU+RAWX6wvTw z`mef&TmOEB*e`oM(!S`zxu>$!Vh6gyG|4h>>82glXbMvi+r+8QMRmpUJpJJ>O|$2B zEfs;oJB96Kn8==c2kw?z_L%IQP+CYn+edr{@6DPi!l(gh%KY!$2H|@?ZHX zYN$q{rW54Bsn^0Wzvg!&_cAl-KktnvT}uzV1^*@)1l>-6nS z%J1273y+lf`Rw<~t@pW3tARp_C3;E|w$=XB0Zh7*iKjp7@mlpizHA&Yt)X>wP17Z#qO9us82D>MH8`LK4ys#IuFVZp_u)o`|8Q#k7AMP9FjTXY-w zpel(L5(ci00}UAzksCvT?wCS)H&Oo#H@0wNiCuucysp+CI1->wK*5vR&`zjI;?1!K z2a6|u;bOrY8WR~!hXv(Lo}#pl(WA`4LnC3hBzV;loEx{!kMF$V$_4h7QsTD1Bq-9C z4#{9|8!ugSRHhr4u#)xyCZYClgP~7`qeuwwEv70aHYAS0eTHsKB%{ZWdtQa|519WF z?w&O$2ib&kcE@piX~NLx))e?AE8i=!D)vOC*wWD3YSZ($4;9Og^QC?Q4cNwPY3IVq z1K3TzJC|@Ru~N=_V{s4PjGEh|8>yK-_z+d43TmX4Mm&XUx{dirwV2a@3_v3)li7og z3080g@cfriTxk7EkK_6KhhWyq28^7X!^N-rMYCHv6f+5XI3(l&psc|(BMgvb6w^fX z=#j=Yqsiwsfv?Nzg%j3w|Lt71UsohqR;)mC6Ql5mPfK1#z+WHE8$l*{lVgKLv+d&^ zdurwyZ6swk(;zl9cN(5&r6q9?^WWX|JI-?#N?Qb)_)#G> zLS*1Mt%l#7!vwB?qO<_)RYFKGj=eIbhkXx1gRX(Tl9r$aHa?wryk4C@#Ap7sPcN#; z4pIQVUGJRvD#}!n_GTn_Wjo6-S<$f_U^@7rLA6^o#h4nBtlBQ`Kt=Iz+R?^Gf%hN2AQ4~Jf&WbTn+cBD?ol|gHBoA~1Upb3>}|*D?J~g4 zTsvmBTu0pjd<<|f3iT&4F~IYE{^SdoRA7FGkD22fZ3YIwN^4d0;&fcqTVQ@O?VR5U#N~tn z!LR55wIdCE8$nhz$it?2#t`ir4x(Hw8ATF2Mj) zSAE!avQoSBM_Bgm=-JFL6W8%M zA89PJIpEQf^tvCefjPAY%G-qtXT3wL~rC2|4!#z%HbfL^UY7{^_E|Cubd}d-m z#{uFW?A(k0u4TFF%Z-e<>Zc63?XB0TM@f;%qm3yGLYr2^#wN+(UYyueNcJ& zGpTQ4hBlYSMSIr38E#igQP=iC8La*KeI8aJ{2kkLV4QmQI_L6`?iJx~w2-BSv?mbm z?0z-xR2-ccs&L4hP8m5Y{PRjEr$0Y*(45Ob*?4wQZ7o$ptxj*iog}8Cz zu(f2st$GaNC=}=Vp;;li3>{2FhVmW&v!Wu%rqdkNwl8bc!*>a3bt5#7!#CrEkDKUWc7Gnx5v8e#UnQaFg zX;xlP>>E2pKv7j2z>dHx{nVO;En{K$Jnb-t9{E?>!jv}%AgQ1K#Hj9?EWP=|`Ea8_ zPM>R=s!0+UR}g3_=MdAh+7xX_aGydtIoW$Mm{?TcV>iWo_ecuRw)n(c zqcF5Ime!?)eqY-H@WY7Q%Cmij>`5k@X_g@k2~~&sQEK9??R{|!NrY%@9O|23-f@;V z`9wxt2@3;ob>b7j4No9(IEHWO)R1$1A>XtL2r3R^^=xb1=?gioT)yOg$NPP1oDzc{ zD6ly&wg>@bq99=!2yMoC(3v*?t^xFneNZ}!&=?*gD3Ybk9o#-rOC|DePj0Sgz!@L0 zvBB`=9P`}C_o{{M`28gw0pEy0%u?ICq2jHLv^|)Hs-4G$SK1XyZBvRZxWuf?mJZsp z?>QDHErI{UZlHY@5W5SE#+Xs$cm!aa_JS@4y{f}-fm#0#d13w|nH9v64cn3$u}J19Bqrr;!b@;BVCogi>^@=8kv()0_x$3H1)`l`IPjI}_WrJ^IR4oJEZI|M0i4(N zowuGJLP!)Hgc` z0CspFM~cuSLRZe3)5Xj5$UTHemBN2`SzA#KgCV5LYFf>bs6=`~_QtemILB*!M1Kh2 zzy*aZ9>5GQvK-or(N>*m`1iHY0O8VYIQ0jDY8fClnYCP4kDWl2+<T>9_1X6L0|qEbiYp{)V8Lp-uGY<`Da z;G3y$bPW5c0hkgLHtrjbM@vk$;~A?A?E>T$DyoBA<3Q6*xA0Fk#qC0|LvYx{ZC3(& z4LeflRs_6*nK$Gmv*ziNZ9u{7uAWC=$^>T-Xy`NFx|1UxqeX`q>Jktq6OTV}4^GN< zIvuLH2Eq|*q4=%_X@6s4xi2kYo4b>zd31;CfY#ublPgqkW48?X_%+{GD*lOo)lRZT zob;YKy2teUnoV$F+6LmSXR}8P=0C0uSyL`9l_qef&|Z|}(H;^T-1%=fZJcAA={JZd z#~ccqc=DV1`cs!w&n*ql^_t)FOcyREJ&RU$vN5L&rBOUDqHwmL(5nMr%UV938=(is z(UGbR#7bi!HHd1VBbMM_mW9#r&}6Ira?hS9?frsp>iz53VTY25iUtJPFW#2Bum9J= zRCC$sx$-zRXf~=6D@@HPjgGR#Et0gjbWa(G09>M{*}l0B#@#cyr8$nhUoBLmL{F24 zATHENQol-NbTS?hFG231;yG^M_`KV9!2fNN?XLsgKhLc~Nc7PzhaC?69wRNV4PyQg zXuoU&{B~jl56!y2Vy+84vr}nYM?6t%+_#Y@-)fPsT{!Xz+dyDfa4p3LhBlho)jK-||+z8@PuXh%;XMY4a?98A*5H>-X<_ z!vG)iJhPV45?dN`hL?6(VDY)13n^}c5I#VhICap`p>n&Bj=H7w0^=vYlsKlrqBGxf zT(~o4BdY$YJ=o1(>FYz4(DM8en1t=>?U5Csum|+qodLLd*_rtkj#MK7!#{n^x{*-e zHsXS%^ngy;4(2Qba|Z2{Vpd^nG38U8L2SCOk>{PqHFy?xb9&rH3^<^F?-M-h>Rf<@ zl8S4ZiVqgzH`C638Xd%5{W08ap7LFogyDbV?EvuB_(v26Zw6Ojm}g>ga$O%@{{bIsEbF2 zT^wi0RJ?$%(51Zn!r+Cw-8t`4aRvtm_yj0YHtjFvvANmO+whllxaaM0HN>QQ2KQ2} zpW_QBZbePk{WjeBJ==bAV{mki`SfJrA%O1Eh6$z!V%vA&ymICPc8+qk4GHilYX?t>vxFtfzy2*ZdZVpBMpm~;j9BtD-|jlTr% ze{#yBLCUg!_R=@jaBdtkJt|_ua8brke2TeKL5HF zuNw33yvkB1KExkXh2dWXbW}dmfX4j=e^f83y#U^Nz$_Q^gc&6;5v(Q zl`vVVSiGSH2RU;T@r7QTsoH11c;I;xY-406rD|M%@er|h-;Vn~T%iX>YXPuZ5G^Td zMV3j0(O_Kv+a~zy)2t#Jj}ts$)p&-19d;=2HL3xe#4jYAS&I+Fr?Ck|ZPhyr0zOi; zzV)ND=NA;K(CZ#cf4BSFT4QWYQ9T;;h2@1U? z82=al^9zhQW6wV$av746mi#>@ncd2L z1DXe?1)>?NZM~=@+S>_{c>70h4$1*>YFs)Ra)vPsH+CSGw>VF!nC?#-I-k)*AKT0V zNf;r`CJ>L#x^w=e>+&c41Qr!~VmCdRe;)G=V|ej|U2jhPm^3dljvvHoSnZ z(^Z$_^56S3@Z46X^0??t*wDm0Q!H};+!b*NmBm>FSalu)o}9MKLw0MtRTV|$ah|c0 zXY2v7j~?#xF4bO)>v-aodf%uz@LjAT^nV`gD)>E)nhH?vH>V4&Lprd$V{sTt!2jnc z$N4vpgyTzXC~eb|LpSl)ycPS;$=9Kp+jE;EA=FYhZ`!Hx-jpr&%CKcXo#h^c*Z~n_ zWnK}JzjUzse5|3^JO8zBfeitYTXjJ~xxGC2JX!zFldg&y3JxyN*wK&x^6_qBlh2tO z)wGYBPiWMvrLiJc;1gEBtXhtFan(^2h_n826)Xrf?{(z<4<3ku<1`@1 z^$b-{q#Mx~Y+(Q7l7#C!mO5$h*--5Wk0f=A|BDl=fWv(hl>MPspRg8lDy3s~MrG1^ zh|c?;Tt*Pxe(9MxrE!;+kALYVnX3(Qs!&L27v$Ip7?GW72!V}KnoVLP=|BGNYgDHBOm{!CfSvtjqVgviG< z|I`#U;l!Pla%NWP-}S#SNW9jyD?>Wd4)>k$t9CO6-nCddBdpo)HnxGp?pQ|KYus1^S_&|EErgy(Lynz~3e*O@b>Y|L1(+>*|GP zT`T*kckn4nlO!p1FE;o8=3;}Qi^-nl1HhwJHo9S48oe{*?U-uZ_DeFj0KyC;(EPuc z!^Pg-);ei0bO6kfO(Q@=2b;)p8&JRqKboVkmt~d0zyF3_fLM^!K%8cO>i}{nMj61e zn(7MN_T-R4r@;khOoO-s! z$G%6JWYp-8dqsNCA9i<>X0}?1E^HB5_U`?LmMJ9jgVs5%GocGq0#3P)^6OuvS>Zy| zu7XKojc@E@LD3Jec<{7dKW(I%_{?~8&m*7@=I^*nsGs=M8nm!9^@o6EYVkrN-u}v~ z_K^Z~=|P!>albL6Db8#vPQcb#{OK1CKH7WyH#gM59194r?{lYDoteCYj3OGJ)QLp> zP{Ng%UYaH&NeINrUh$v~_MnBVX}HlP9{e52H`Uwl1v5%AXZeqFzQ3NXComRyJ8~dbRxsm7i zAihlXF!Z*UjmIJ#drTg03imssqMZg>LVK^l=NC5J`RZzQM)2XN8EwsfxrD;&Klrum zzUVBlN6Kjz+HqEH6dEf7p3IpS6{xXn3G??J1w41RbxfvPN+y@TaGfGP$aM^`$e74w zW7V_F9MgC<@*riHXw0l(0yyCSwnuv%03r?y&_C)<5&gXjJOQUa_ocI=oJ^8MfzDXp z2ShQ(O?Z~%=ET`YMw9RfVka0A3V`4L@NE%O%g33M)(SA66nM4|<14fEgqzvU{VX2v z&abEsJ(PP&<`IfcfTMcz5=uIAZmE}$d_qqxwF07OPia&dwvtzwP1idPbm%ZZWS)E2 z!sgeuPMr!wUjI4@v%Opm$w28lyV{7gx2!!~CwFUtKlQ&H-h@PlM8=1nMis7$_p#^a zIYCf%)F5LF7$kv_5{KqO4+SOPK%6DuqzaBDI+8bc&LemGbU^Pjv6@>pn7=~+z6lXk z4Ap_&AJ(<0|}zYkjEs(v$?^X2MF-GkRjkm5 zF|l`+p?qA+4P30CDa$h7_)w7Z&RtXX+_>skLmgy-)yRk^)Kvp&bk^ zBi*JtaN2z*kWIFw;tkLH?HeH^apBix^1F4!+jiDwoz>j*!k1}5a6jdF{(==1eWVE z>mx0P)LUZG}>Ws&PDA3QM55c z&N#S$``B$T*R?QPzM&=u+Cea&+xdkK201W%yvzU8xsbYDpJJ+Hsd{>U%%K`C% zCXQNs8VB}x)UcqdP&Hq-8Gg+v;>}I6!vbri)Mn4j_1(#T>{I&OWvgN7Coe6sr7(Pa zjp|yuRR)<>7^GMoDKpuI8Qz^PG=B_f^qmpF7g`U?xOKlKl@B|bfx3Ul_kt^a15K8; zC|uRan0Elg>NCBREreL3FCcjuCcpZ;j4yZHkkm#Oc8DFmooR7i+MC;!PZ}udr%QqG zR}-pksRCX4Ftur*z?DG^^R1kHLlN1wfzqVxPPd+hT#t20XMw>R@7Zkv3#OTN4-D9o z_vA{E)DxFvmWpEu9|NkiHd^ylZ5T{~`cvQIi$FOK{YaKowfl(Fm{Jhzc{Y~|T|c(V zcy2SY?Q9cXM|SY+UASEAL}Zv@s;MdPo(9~0aHP&yN`yl5gG^2mdNRv?z1@R*tCO;D z(sE+~2bcl3nE+NC=zdA4$n#wYuRkd;-swn!)>o;K2(hFK(=n4a0PL9 zGRxtE-?P=Gvz#1Xw*kGY-+TMH%lK#vmLD#_N|us=m}ZV4C#h#6#K<5mF>Eb$1FZ)m zb=TaBLzvo!!$=p_J~ijQ!+jc4F5pq7Bo8_n!E%MBh;2; zK*^%$vo8rtR&Kd0TA1c=!aE`0vUEl7OaRqRH396ns<|!74FUIV0kJ`O5)_om1UqWI zWljUZt&ztdXUj_cXs;w`NhsV@LO$!tHP zkMhxbPDVodFkFWc2fE@d`~O)S%W zeVEH@4FCgJjeeMXssmbQvTQ0KZ&HU+=iXVA!}L|f?^XzSwIylEl)*a=p6?-iXqvE| z3%I|qW#eS!lp*n~Wi5>&@tQ=}FQ%upjk@nv4D`JS6ovP^NLlAy+^A%0JxywdJAiT_<#Ytk&yWwTz$#ifnIG15{O>Mn{z)=Nk-0m4e(*U8esot za?Lp-W3jYS(u!dG6OGIT>RV*#U2Sr*(5W47dtWF@$_iQ7HNed;%*?}exY5$kk`1Y! z9qtvcm4^Jacl3g)8i={~m7LNz2LpDMc*rHyXB{utA!)1`!PxB0bGIL58v_1y=G*YZ z#f@-o!8p>=6&k0U&b$%2ln!em`hdusX5YtPofoKuNc1&}$EK0GvG8}2GFVAm@QIWR zST`C)gf?9M7MIVy*8a#j_Z<$oQ(DP~TJ)5tKvZ=G0^Wc2haakU@w2_CMQS>VzOtM; z8YP5Ls;Zf#I}=OtxgS!$%S>Hb0ntFA7EyGI>fDI6P|gq-Us88R=!zA-s$YP))$TyI9!Id(l|S?R0!!L0 z{U(NlsCk&qcN<6&oXEcY?CUyxI*qw-_u}p>eHuJ?M85ljX9Yrhf4Aa{;@{TspYwU1 z-xdhq`>NR2$Ze44$-VT!$nz1FeVV+^Y3l154L*3CHIXMKa@S#@`Z@`LK6zn^-RBDP z+rH|*-hZY4>h*Y;o`;%S9Sk@Mc*Em6)(YFtxsbwzLWlVQV!N=8E?$tt6^6gX_y?z1 z_bLFaJ1|Yr>xL}ycddTLmk!Op_jUf%XU=@_BfMgf*(#{!J5LL1+La#BhyAbF4JEiekJ4e6s1%;o_Iwt=(B6{VG&+??7 zkKDaKZrzp8w0@=g1O3_u%I#D#@&fna@6y}dps9NmANe)&yo0>I<|PzfI-f_lJmo~} zV%rpgvE+m0(G}*m`8avgIlkOMc^~euu5PoBGH1b?>I|Q+txoanr~h35IwEfC5GcFg zk6^D$=Q)@A9hn*Kh22nKzk~e#vJdBZU0(W+tzRYd9w(nGp=+_}z+Zh2VEgS?ZQXFq z6JP%P2tRdT%D{AndwMs=#N>~>eb**{AL+aLxW3OiYrtQ}?)6qZ^F79QZ+m>R9py^? zJ>K{5t;MYHr*$T;$GJAAJeQr;_*w~16usZlcTc|rp%J97eS3kZo%=5V@e?7OoaoM# z{JuBFx!$2ye{7`|2~pqTi-}k;d>s`C`QV5s@w4Ex$7+3V^ z4!7q~kLRMA&yBl=7a%38*N1qkdvoQZ%Y1HljJ;mFUr@MJM%aX6kwd1Qz!s0st4{9q zC3YARw};o){sQ3>ywdt` z^wfb;Lkwmr^`h_v$M54!fHooB-<553RaY<+Oi?Xdz#d#H6f`FJ%lkaV=eJ=f>(M%~V# z`ZBh3L7&gyyg4CFpM=7_|BtZuT6z>|qD3Ew3!HG57zu>10^#oP2q(OI`cw3Oraw*W zZ}wJ1$8_`vQ6_WcT3JxhW4lM`F=DnydMrG5C*t>%uIJ z0?!tSbSMog3({NTa`(Z;ixNQRd2HmDHt{TK=I1zx4wwsHxT?H)|If2c6ff`qJKg69 zQ91uw3E^ekM&Ml<`+wdqb+%u;o3}h%0f>6?t0qlO@GF5_mHEcJ>52N)U-fnVGwy2q z<}y|7ug>p>+=1`q>z^1#2yDe)0q4@uad~~%Uu#^fhHsy3d9Zdqh_D&%{}<5p0q$G7 z(6_ZW@_@eFMHCP!fAY=wS6dNg^Uv5@QWeywkbi)^MAw=#%t`sLxz#W4KXYs5vshHt zZ3q^K{^gv|`H}PIX*WEku~#jaQ8YGy`UgXKNEBr7;Y|M@wU5saAQE?e)qKA678W!p zm-*cEZ|`%N{_g!grebp|SbjI|uUo$US1jPrKZO%4(v%YJ>TY%TNuL?p=K(GJ%29;z zt}1||1UCiC+2gG^nw9^zp()(KgSh0ffkTr-Zkp>|DaO}>^~Yg-J=9;5bG*;GpzZ7= zuqsLZ59|J8iY4DX$8(2x9syXg`T$t_yixA^bXT@T_uA~&e#@xjawWUgc}eKLq7Ypo z`t!)G7AK^Ypgd@oXMgLG0H)%9{io1{!RnWHkfdJNelA}NU%bt4qW)cfv%L8{?N)z~ zP&i#2@KVlnfgd(p3+Q$D>w#7UIO;imoW(>8c;t^xAy128LM zX@L106LF^Myp;^m6_Pl-gBpJ|lU%O;oJr6NzthC}qxjQHrTBVTj39M>+sDtc>dp9H z3^3=5TPN8Pc}%W5HsBvgldajWFM7<+DHqslQTg&4@H{D8-B}M;{#X42<{ZGw$Xep_ zb3IKX>9_DgGoI=HUUNox17o}kwQ8GpOJvOkeWBFa`KU82W%7Ie+1KOe+4t+*aJXrT zh zyf8ekuKdn_WnS1_1om>iA{2ABQgQ+t(4{=4EYpUZ#IW1v*Ao`N=c&^teGyMi%v?t< z{KJy}qs)Mm>gM9ZMgwGB}2#qPI=8~~l z{s6%@{ttfz7@CjStvjoDXGEPzn@lZ~!bBg4n&h^;ZA-~GU3Wk4(=mFoC!x)WyxnIp zjLEOEz}|&m2n9A7(acUG-iGzdqEO87%gfkN?op)h-7RLCn-MzlV-~ZU=Low;F#c|F z??70W(4as&EOO`z9qDc^dvFhT3~`>VPRXd$J@cA*_HV8O@Wk3nK962++c^1o8@~#i zPb!bSk2;|u?oE@B)DwO-1Tn%#`Lt|1F?+HF<_h9 z4^Hv~B{_Ix-nC7r!a*l0M7!u4JNkGD{J_Lf& z%Kb=!9)~nj5M$3-tKkcUQ4%3l=(DLU)Uuvv+vO#K_>idImjcJm^P4pw80Axs~< zV`-jP;Bn|Qgk1g?AOVi_VFg(!LL-aUXw&K|IrAd z&?#Q$W8Br=h;&3!D7`?5PEQvUYSHbo6e5R?uT>}aGlrYkcxraadE;bD{_Lfn>0qkR z?KJng8cwH!>}`Y`LYZW0l9B{E=JU*fMaT;g3u5(1CX@W)G>Y)LmFRQ{d-<|!F6F&) zh2Lajkj3RPw&jN=`}>ETD!}32rI!~2DGq0>e{b0>n(f=XQ1Hl%~VD~mxH;?*bp zJcyP@(D(zg4F#eMN`lii0e;ggL19)-)y|&dc^FOcKe)x^n6;6vR@|<1jC)}%I00r6 z%3JO}(4rV~;6;-(5BwezoNQ;aGYHHsTiM>km)) z`@o)$y(lxRGFUOgajm=9n{>iRS-;LgNTL2TX$8WcqIfaMJ-q?U zEQm22Fu84aNU`ipdMA*3IpXX?FLizMc>eb{1JB;JOu-zzww>zL&YC76i0w7lk!+ckH)Q^!U4UL` zKe54YHTiluoG%~MzFV`M@v!U=cUoan%cm*r)IPw5$jef`wfni<-aOLK2a3WMIt_gMq!>KgBToEgX` zt_X4E3io>Z)Rp=`dwql`igW@Q^z^-@fZ;D}rVhGz{8q_t1cy z_Qn`*q9TqIf2NaqZcn1K4F4$P&)d0tL(2=0A=|b`1ib-!*5;+E_mmJAgn=ekL^nr6 zmi@wQ_e4_1JvvxbUQC zfyo|1+VUSs*cp71N3T17(E&BgI(4o7_K^Y4WsZk7Zwqe0jFx#^L9fkOY+R0?)vZWz znS6vfXyyXuX^yI9*1Q|E4gO2`;xiWZ>DE!fNa(W2Qp=hCK_UASo|l)y+FWEJI)7@N za&Z}j+#ov;{Oe+*|6t21%VgHcnI%0EI;#vBZVEb+pi1F%dW>dxT0{ES5LnyfWjc}@ z;6cOJ`$xsbK#V?X6OAFqnfy8nQo4-jzw%XrI4?6T8+5a~FXGBlm_lSy1*oKjtt< zcHpf{0K)<}1)Ty~P;`Kj4AsURm&?K@7#dIPS64df55Hsp{JN0B+xR1;7F;xGVmArZ zpa?K$6_vgX0RIRg&uEz;+Vfv)O6!Bc8N#v*D|qztC|;;+=g$2Vgm|?H2oA9M8*>Cg z@iyO;A7_k8j>M%B>@x$+rXg1z1&T@xCXe)-oHmP}^VdXk5$>);K`?B{26Hs@=O>Qd z*~E__nqPVL;#)V>n)vQN)}w?o*Kx}M=snoUEC?5+QvJ8@-bxK`D^I=Zl3i?>9>qN? z6c@vOs?Yk11gq@3e{^M4>`A8#R4cXKckXP*a=h@pB-E8lit9ivbD9W*AiB)hv~Ia+ zBH9mG=kgh~9h1=GW;P+~MLfnPq5H_-+tKaycPk%p+SWL57%F9~ujabKgF3HvGgG6r z7X?k9K0n@`WEIPJ@d-~N!vqnlpvss1-1+)dzYJ>uK~>2@{CKXUTFY=5mZb#eWI&{Iw-lD%c18AMqfU%zT#DJM0l2H^m`OKe2Cz8bNXQ4EwTQECG0Q+ zAHd(EAcMt^9XC+a&h^{m#``X2?W&x)M0JUXe{Ao>IInv!qK9`0+E^U086IddB*%4{ zXg7!lRyH=%L=s=Zo%6GHX}wtRdnUXvO9^;TLI5*VI3Qf%oxI^l4YcP2CL!_=sE%j3 z5b$3vS28*OYsO+&_c@`&%}38}E!BeeUe@?<@Fepb2f$H#%zA}c5qW{EFFzK!*1ey6 zgo3ujot?xhV~jnJ5D>|uIeN2aH(N#cQ|QZ+L+@Yvowz7jf_tpmBqXb~q8)9f;rATy z{fiy{E9Xz`9YNd<-rQIszioL~D6Yc9g4f^O+Zs|;vi-x&xV)||p@FBC4aScM=9nTM z@`Y4!{rRQWb)c%xwF{Pqb?HXK)7}Ff#GQFQbP=?LKymK5B6;vnEacZhyj%d6)0CiC zj(zyb(eo?0qcnhie8GlPGlenA$Ja$Wt1bb192R#OXWLxKDA|4_*GxAuf0Xhm1Q zU!x!jElJ)uS6PBpOFtkMFmK9$E_oI$i^~!EV>zPrmESzV_EGs4J8r~k4l8rvIw)2e>%@3I2MrFmEvLXF!* zN^TbOpl77&_L%rk^MdsXDpcq`>?W}Chb?n)3%x=Mp#~~M=WQFG;e-@>ciEt!*8w0e z6$SJ+;9tXp-zQ&=1M%&bioUb_K@#yYw{T_bR}4xc3t6v}1KobkA!7SXSE=(9J;qOg zY!)2P=@Y2$XXs2W#E_@GM9Dt)C21{6n22o@rNvdC&ZO$O1~zgPO3zpQ^r^C@gU|T zuO>wkyp1q_@|E~p|EZUSbkDpih+J~|Pc5W7SECx14P@`hQcXUKk&3`?y-*J&-%l9y zjVJA!lSFDIAjeMdCS2zlUZkJufT)?qg6B8)P-Npz-#Ykq$VBbEG;fiGx?o}KjL}#5 zPG=EWl1xfM;aui`m#=bZ>h{S2WIW z4PS7!xqa1!T4g1;0q_ERa*!38Kr)L+lh;mUlf0aFeeG5ESiL>=Im*fK4vQI)}ip2805hY?mAGs*d{!v2$+x2uzap8Snpf|3}S z<7BQW^RV{dxe;DN19sq?sqE+)Xo3t6%rj8n5Fdx1nsPi#L@(2KZw`}@oaZo+6C{(b z5C7vver;1J9If0Ik-@!+fSw!PW@h0E8TPl>$-L4E$c$jG_F*y_{aGsoEru%W$uPKs z_|tLz6a0H;&qk}iaqI?o(@+)9_AEauXAMbH3(e4CMlQ~JJoMuc`zVY}sAoSm6ayNm zp3U?^MnX00b>EWJOw-BC`Ri>}g}DiMmwT_$xz704C=C}60QYibXR#JpC5$*5-1!2< zp+S)racdJe7^VS#5MchEfV0YRH&z<5?SPLd09H)GFsl~A=N<~Y`coi5;SNQ0q6to%mFh4Jg+26T*v6v=8UVWhlX4hWnc-#Ed>_{6 z7L~^f=%dwc#k|W?dNI^S>7hQBMJSyOO9ehdBm~4bAJj?Wv9bxKhnIHF=J8?BaNExx zPBeikFlkjkB6);#y%KoLdfehS)_p+CfG7(Q@&^vAfxiAT?`_Ca9syU3an8YI8EEGj;0gvXr+GPFYbSu`_K$1fV(sw}sjGBZb{CK+cqeYceSL`g8)nYC zG9eI;54lQ>hTKEKBV>Fytfp_sgfOnQ?Zj0Y%g9SBUwQ*|eVu5fFpi&%Uu2T7FN1a* zF)9t{+C9YW-M#?M=Cy2e%X8~bOqU%v$Y!INlgVVUD<2$86uPXn@9seV=nie}=L0ec z);NYnzxPA8R1^Go@WKc!`V{n5f2K{Jog77t;8)Lfg1m`#B4pid6`z~lS7jGpiaWvakT}_~2cR*CNoYhjAC+6eYXWBAoRtM}XChnKh&T1&lMRaL%)Mx}0 zDk%h-RWF_;mF%YFm^{=+F!el_<#fIXhy@12h$|}f@;BD-ehu&+hRbc~KV(!G2QC)- z&|_m9vO|Rf8XeF8w|Z;F0^~*0?LmqzY!L=M#sTiyXaM+4lAsJ+eUcfTZ7T)XD>!zI zlT6=7xU~Mr-tlf@$1t<3O}+w&CJ)g&6wyopzmlqHV?KQYbT885E)6Fc34WTWSbAb2 zeV~(OL0X3zE{N)pDWQO84lBLT=b6@Gyl~Xb7gqZIR_=!;F5Obbukz>M0hbpu8L=p| zOB4yX$0a)mPlc<6azIFQy$oIr>e@`S*6%=b^$UQ*!DJJR0lXxwbvw1(3lqD%Hi5$FTM`@}2>HE-xe+^xzC-gIqU{$w*X6(elkm|$_{Nc!6DLI(}P5oCb z;9P1$9in;t!S~D?;8YcGolT5#P zEfZ*QMrebbr7&Yg5=+h2sZ*s)r~2cEuPArL?ncsRk@0IU5H~&mhl$arqaef1+@-`I zgz5(DWf4455;SzFqfBCivzpYg*(rh?_TNRk2Vy^BwO58@7OObrC6^qGDJp+t1N*Nii1rioCg~DXg- z+jz}KnxmeJ>w~kkgIyWu8~9}AyNCH2CGl3Q(&xJT?B5$d0qvi9JEHfa;_&?H7;Q@w z%J*K#=+V@CJ`a5{RW~+5XXD86l*YnB;@6J!i0jKHkn`&BNN$5Wt*9+iZ6M%@sSS&p z1AC&?;TgVsqyzAB#|=K)`ncfCLle$DCf=yov0J=iMbx)IJ(0dGcSJ-o>U4aGai;Z!-K=WW;VSw|kzJD0bKG%DlVjO_QSDDs$4Eux(c;{3C zk_!E`n=5ZQnrk-bT(M9xB#alZL2a)( zC$%x55ZIObUIz!Z?*MG0F#3QN1Hst^rK>U-{fRiAwvNPKtE8wqor<8z~9eadX6jx{Z z4$Cy5(a|NUBNSK#q);|Nx-hoT=6;K)AJU3APCED)1r5#8E(q0c-~ zkvy^)ZUe^)$|@}kO+%QSct>v2UlN~v{f%AMGXKf5iE6gbeWbO-ey*b!Ko^gn+mUpN zqEdrQ$bdIaLLxDQT1C@&e?3xliKaz#xo7lI;NLaK@`m3K*Qp(E4iVtH9fU^UZ zo}6nBrZJEM7`M8qrm;!A$-!Mcpi0We(?lygW3s%5B0mx>2@sv628ZiXl1OZVV4_co zg;t7?(-es7s5huq-d#+2{r?lY~4gIi?*j?<2S zbLf@{?8hLKXL?A;(0%~|zjFmZV+(&s@-;QeW0C2VXsVfjlGUJc=$ zssxRB!F6oE8GT~32~_kwmEZ}T&1%S?UA;h4R{_4oRKv#XynLp_#IuOYi%leImghSP6(s; z8Pi)EQM9MFdYDoMmAC}JFD)fS1|5UKf7N@S?@#f}1vrTScs)|Dv!$UMWy@CIm16W}qlLQJ*K5mXHS+LkD?Vp~od zEMtTdNs6Pr5_S4`sfNkKq+7=0O)1QvPtigxyxm6bQ*~U_*1j-rrqg$EaguY*xa8c~ zCNoizsS4>{4LM&HfTh8yZRt^Sl4zN|rq!RB#mdsy90QaQ60{&ors+@Ct=|^hoSW2v z7Hsw>4!8js$mmAV?Ps!ycP5br&^+47$Ct>p3{e8C8xgjgt77ojxt@r}qv-!LUw1Ab zQ>q;%NEw``Ga>kH;EDzZZY$$;o~+aORgcpDWZ{To?p$`4%hK{U^4weE(X~gc7X#>$ zN7rxt)Z4%Z?IVR}>OHw)rexK;N4ms-Q9#KR$e}PD=m;45IK9XO&hU!biq@_n^X4%x zV5heIOzPBHIL4GJ!!`ltFeDs*=kx7tSt5WYJv3h{3Yqrx(l*DQ5q)}r0FiaR_NlG> zWrkjEybJna-a-P70H-S?ubJ`k4XM85BsZ?_yQ~lUD3S#A^J*bOZIf=N7~1X1d6^W; zxuA$=P4WX8`_b@RJ^quw0($6Hy>ECXZF=<{+oNMlCrsxtrV8-PHZ%=vK=3@Qo6qlp zj41rtQz~LUZx+(dID=rWX>~QVP2CoiQX?KvDAeAWN;5yww8~xo2J|Aa~?^;!El1b>v*nHFMr-iQrRs zRl7S3&cLnbrfq2PJ0P?~TV<&2L}BFW;ofI&PbPu=!VJ*j?F>LqNrD~BJ_$%O_?~id zR-W@gJbRTo@kv!kK5qnY`8-(9MY=nmgsIT}%}pxYr>x+8;GfwLesCvw2?UCpb`5Ni z&OZueyJK)+14U`HM99qm?i8nX}FA@K#Dtvm6cC$fY51-=1HogEt( zf(y6j9S=OA&@1Ji7gDqVXJ44?TGcCk-e6Z9$g!Kik7h&%QxOeR8#l9uSvBDCF%WJU z0asT5&={a*0j~|EmJ+ivW^HP>8?H~p=U$z4L753>s1G)?)RGnmp)Je46ZfN)A()|4 zD>DvidAF3gycZy|#rw%8Hs87_;S2C@0_T3}uyMLg$FvXmDZ#4bLPany4H za_MVw=t-k_=^o>tj&49CWy924%}06Gk{ca$3YBC@fT4N+V{NSRM@(;JZk&6u$_u2$ zZ6xmu#%#62Bz`5(^`~OQ37Asezkxm0qIDteu{sm!v94CNn4kr%*fTtL z4Z1Z8Fv%(+-@UtAgoXIg>JutGB2@t5L@33JCEra&X$GYtbeO=aY=+`w_dG^H7CFx1 zXjuSpAYl;DuICw$*V4Y}=ZDrk_5-D+y zh?q-wpAHQ;ig1`PERVqF%arcN`$Gvvxsivv@QTb~A%fPa9bGF{jCe6-X!LV&MXt5A zbI-Y3=RS4o91>0n+S>-Xg_^%{O`AV619^mmI!UNjHqxH!RXC2*#0N&H=Y@(|6liC{ zuI$t2&eEWWAy)?prVP2DxCVTeju`S&+06T$&g6?=2|Ieljh^Hb4}W&)D@VAeSdgsJ z0OH|MO)I)5m<5YK4p|GLTbaxPJ8GM04(B?iA@WKg!@f#4|3NAf{l59%%=12y*VUAEJ>Cf0Q28_SOuJOOgL0NQ);Bjk^gBCV{D2d++~jBdbtSf;xR#J_lt?Hv zx$8X@m3`LxyT6*;)zTk%`4P73Z54X;ZnLJi`cB7nrIveBOJ<8AQ8DQ`=uxA?{DNQf zgpx}P4G3so+ou@?=&(D$b382ixkp@x-NRv#y_~$rxoK1EIj#XPm6mT%Ks;_T=s1X+ zci4jEVTfKZB|S}FE9S+fh#Z+M_aNykgPWev?Fb=L+NUb1W#BGUw+D4y-P?#SWlF%f zZqe2J{L9yFVK*hAwFr_d0&I#w`~-g%OM1WvF;)83VOggvmT^y<%*EsfbEk`Wn(Wy% zj<5WZVcUD76(C-VvYcvBoodFLMQSDrd&^p+1Yv_k-|(Zd`Er@2Vzx?ZCDY6_5)Y=K zAcf&MCy&yYG`D;E5s$(1MpZy6s7qsMdxB^5yYK$i_GEL*U8VtO{tR^)S*?$8Lv)CE zZ1#(QN&VS39#|M7lU$GB;40NzvWrTw8D>uvv%}(Z`mED>@wJc?% zf*i+L`o{qNbkgAEv#((^O}{7urcw!|X6b6UX~wC_eXU8mqn`kE;2@J-VAcRH|NgXp zl?Tds4wUCklLa*4z*aB_FC9=cpMZC%7w5`RweDHmKn~|D5!tuHqi?=A*oTG5D?3s{ z0DKBEhiciXs)VM#0$kGtT(ds;rZ`9@ePNVfcH!5Rx{jkDm)7CLtws?G>ijUEQJE-N zsoM%flag{b7sLuXdpK4?gpLdK{b%;{{cC)Tr_f?@aoONi&+v#%A)5f?32tYL0kLfY z{FdwovgOzd*Ozo?B?XWNj^I|Za_ zfIj^I`cnf=RU{7T>#lzItaT*Q`e@|B6t~;Y9xdc~dokw&F7Y_)ECuovR-2eU?@ggE ziX&&GAfMZ!47$OAZUdlX3+@mJeh+nj#?1cO6aF~D(=UL}W)X=pX&_VJ8S5BrAsSnV zj#x=HT2dAOW~-XRq(Ea$O@Bt)d7&+P)!FXJDlF!2KsWpyw)HLo!9T0UxZuqD38uh~ z0RA4qaj_ds^6EVy{NOH4NdV1?gN=iO#n>|4LJWO^|7UlPVS{}NOdVCXudkXZg2~Z| zYs6ePMD8R@^gb`>#d!ky*w6;h-7=8U=lUCQp=LGnaMDD8_b+$tgU&r!X|hr+dx2Cl z=x>5DNWk)Y-=SiJ_9@YI=uKg_`@#6jUq?0^(>d44M-NJBP1bs%^)n>$Sr59`5E*f2@c1~^x!M5P}j zjlK)m^W;zirC?gxUa+eH?B0|$=q2AAG>Ojdr6^ic8Ii5*aAR#A(>N!amUZR)pZp!~ z`k75EGw|6U3*gU|#dC0EB0j>)Y@Pen9pLa$*J6w_4Grp{2+$akjU&1_8sB@NSw@Lm z?OmZ$-^u!UP=c)b&!vWGCeqTKV+tjeUZ9vosBNG>30Hrr28(fKm*epJ{^IuRIsEJ+Cm8@<2RFV7Qp;yOp#y_Y;&Bw;`8^>-#$fUn#^oZnp9;%;w# zsAu(sQ*I1RuL)DtXJ!PL(h$if6{x=z_&6555EZnliQ=Yj-vv5!xmU{}k)FnI{R&?F zv+rXKazaz|9RV7|tKR4Su*R~8JFQN*7p}sm4pB#-1rx+S%Z5=oUdXcQ4aqqWEv8iW z2i7(Y;Ca1Ube+B&fct17JuH-&ZsSIO9aa&ANf0isQ+sC)C54q1$kR%fSXHA38jB(BPn63g2AwASgC-{xM(J@*N06*5s`<8=e8E`m-Lyy zheEV^+yeeQF9$vnrn*=Jb-~e?;UcYPQ4Id=ova#;1{b)FmuPfn#cy9_?%5)(E)Y?T zr*EnR^#GqODz({x+s8`)M+3d-S=$f>Wl)Wu`UV)+*sh@W+~T*dqV^Bg=;se)IY7Hz zYk<4^UZu|k@B*lsm|;jTY+b(Zd=PM_ICIu=$$TII52DJmD@qu`ta!PavD=da}1N z5wa*`-Vq$WWFXj-Xyi;(J#mRBCpz`_=h3=ItY`U_-(}zYNl0@372qz$nC{t21t;1#?UTUx__N%Gd?E2E#9B8E>1od zxmbY=ZJy+dhhGRRi$6Y7v{MIHwAK$fn=l$O8cddcEvrkPu!r=q8LHyYjsg~EL6Ebv zUjAbs-%}JifP349f?_~2VDOE_^p@FR#%8d$)sleIpxr=0aQ?k9+Sk}7qn7N^;m}2e z!3?kU{z4rlo4_CN-^A+mCcTZTguIw|>y4C|w8aB1O%v$EK>et@{J{M!JbUMFP6F^L zYwE~gc4Qm^I)qd_q^kqyxdG?~s;VJXOr*63gnaa?0ipI8spnm5i_z09SWD+4|EfT6 zk4EhAkt|6@t54P*12fTA%d(IZm$hc>OGc+B9{^}ZT!4m%;xWATe5U7Akr|&-g~%1z zA>DWtZ$D=0LT*m{p8>i8!ty@z zc!yr7EYze=!b*YTw38J=_^E^O9WYH#$U^BFQcfY@*Xv8>X-xG01{ zTagdf@OzC6sHH3jMW@UB^HbRwjDnNZnJz;9(7D$B8ND z{@-kBAE*naLa8>OO;XfjW^y2(D3Ag}eI9NR`z6YP_w6Vo z*wqWasZ}cs(HZ#jkI$3b1%?K-PGhush)4Wj2dqC@s=g=?)Y+1lz;k75+IM}15CXCw zPyJ`JOcw;uIq#`B4)!8sd4%_fJGn)o*d26FRSL9^2ljuiucWAxG^sTK^05pNT8oh? z*dl<6n=!cN-qU#7q!~7|Sj4_Y3^|tPSpMA8=(nF#%Q9SiL=oHqrV{A~l#)Ju%+=ks zT;d>X>Zg?gixtIH5jS94Xf?I8a0%(g0@kl!8Se*YPW6qDu1QmBQ(|yZee_t56(8jx zNxfOB%`?*zN8|%xUoi2*kCl1Od=#g*EemZ7-}-&l=y*Pc6xj*kiw_KURJZ~t0x~5c zG`Dnt`NLDA7agL%C3HRtFk7O^qE(f++3UKh-8gt3)^6sXJ?R2x5*L)o67_{KG@bP+ zI+bl5$04p`+2gz3gfAlTyDt4si^5YIz_0TH3%RJ4u?0?wzSbM^Nilf0Wd}WQvF*@> zqUuz-`UiYlaq1$asTSh{{`ouIzCe}I>JwV*VFs-LkCs(gw#Q)jb;i$N{cIUnoxU_u~ z!oBB30(=dXEGQyiFG5GjV9ovN-tr~WxwCG zJFy`3jwQMF5wqr<42W`n9yH_0#uI|bchxZZ8nXTz$j{H`Hs!{I?gyFwUVj9UJ`qpO zeMYcH9I=btDj6MS67Z5qXoIO5$K(Ccfd(@l`Bnb}yErm1^P$VupfZ+?iDOYjv6#{a zIkFVp8Yv%gzt(mdJ0aah5Ko~4aGf^dAWbVhh;})6x*i`=04zYdtdF(2U`FEYY#QI; za9fpY)s?t|!&L1UrYv8-7T!f_F{P_Q=3xBkgYvyH0ouRM8cKy>8)*HnzOGZ}N$1=< z)IH&!3p}bc5=R1{<|`UNfcZkxAI?eEquRHxxRBc+lP0Y6+1ruv>9SA{Y7FwU#i{vk zEjHeN?jGUc#u&quicyJr+x#D!yYuJ>%jfybWlyS%o~m$7$9^*5fLPe01 zUZ3g?1uIKTK*E)6u99?r{hap|U0+Up6kbK$1r$3o^8CxTc?R(l9}}C_KsE##H4cd8 zih8!UHIQS}84lm#S)-X-r^LDTiNU`1vf0Ou%U|cM3)-Yx20oha+=-C0ncv);Kt9j* zmMxG3UebhP&aclo>hD=J(Zn-37#*h}ghDTiu&Xe7(M#r^eE2F0jFWAW^5y%(Z3RDj zg)1GoV9FGRcsi!Vn>Euq${*g4n#AqJqB-uo|LP_GQH0^jq|A4*#4Bs~jW|siw30w` z>wFPO5d>Y>g9R*mhOyuL4CpQhzxR2}`rMUyW3jyEToN8=#1L%gehbk2Hay=90=Mz6^}i&M0Pp1mbWqLm&8i4L zGVX48^-TZzedT%|g*z*t(#s4w%Da&j=knF>ZM(hi=lW0u1bqQeL>Lu>@(v(Yy!T5U z3WDjV4+mer>pA@Wh%AWiS2kxt{CcH48n&nGeuG9VLUQ!?B3A!v8!sU6$1gYl1NFNL z3gnlPc|7~{-#0e1MMDssHg|li2QW`DEwPSci~n95%oVhAj@0)xH&u2Teyu?(aP--3 zLCxb!0Aa@<=7~+92LO_;bL)m^^P_xWg735s^ui6?=;< zGy&M0=Kr`$q`scD<#cY*pX&*;D%YJzsFf?3@<|DK6Rv@E-}7876c=J>UcPTU--Z`VRW)fj&z$*?IA% zJMVoOy#DuE$Ny_S!Y#bL%;5tE@^@57db#{s>#?Zl^BkgyzOn0wQ7z9LfuK(;26g|} zF}$#xvw>f|<&k~(=1kOwHHr9^)>p6V>&m$~Lm>Vwk za(lTQ3ag)*JZ}19Mn(VCqvUT-o)lmN7Ry!UxjykE#>6vzt^X;o=4gWe(!Y&$X=lZ8Vtav8^_QFS}|NQp*<2h&M5tf=5e}WOc4mRfT@V%&i z#{*T|{`l)I9NUAwj{0qDvMaN^Kfl)vU3cH*MnP}J+>O~{1n4z+n%nQI17^|9dSkRc*k$n&N>eG35}%+^&)yhBDM9iGwwBNCy&s|9|v-3%W!6 z3?`AK8^t>a*LZM@ZSillDS6g^s%K5mw)LYsG4Xina|Nc9F7*4I5^8gfqcWQ4de!p~ zjVfkZ+~xH<7)n4(tg1h;q~JB!Ff(bo6Gw|xwsDd8;BsJ0oGJPCA9W$F1F%QQ-<|~D zA_wo0S~hxucCVTpL~ztSHN$ToQLr}kE~HmI3twc`^7$c2;==u>4ctx}5XM2o0DRnq zdwCZ_jIsaYq6uI5)2`?_(S?gcKIim`Ha^4qf7HAc{=gc5cy6#8K9iBYfe+z+1F+Lr zLUjF)mz2QX1%ErMXu#&?y+fb#Gey$j?yx*@9RgjpGx+H#LQ4?Agmwx%6T%)N86}GM z>u>g@zbT&_Q(%`jMv!#WRx?;{E7pMs^4+jb()q9VF{=L`Vehr{D6+H*Ul0d)cPNAx zP6&U76(B%(clCeK>-*O9j;+~$M@-Dy5&c3@>7FMmGYf~Dz)B|ak>JS;!6;@rDospF zq0pal&8=XZ()80LNN)yOmA1d$rSP0dYXi{pkn*sUB6&T9u;lZF8ETTuw5ii^NZj$9@Ca%KgJTKyU!`=$dTFZAk*Mny0$ry$m(BpO|nP z6o567`{{g)&&@L96vJanZnqFQV%2{6s^*#ScC6mt_jUjE=S@c@pjWpiRcl`(*NJE~ zt0>JDPTRr|odRRsZ+?{NH2yQU{We?Wnxi-YEM)>-K)yvkWWbJ@)@KWeeYoQOFF6~? z^S)W%I-$i${$eLe?^ByIA>N$4-a|NI?#i4f(FAy#*afGhK|jsv5!To2^O!@VHS7J1 zVp&9?(w5v$co;hAe&3aM^c`{j9n>LJf58_?@q!eyCEb4NgRfk(C+`HstFjSAEV)b7 zZS^nTf$OUx;JTV^-!)@c}ocG|el-)DV~sT;J{U&shC{or=Ti)X^IfBf<-yo-PQ(6x~EgULTet52hm^c^Jo!S7i=g4wu_+l?r1Q8YJ^vx&*wI-g`6I_A2w;m-s? z$oGHZ`TkJLS$6e-!fP|I2(92w+;@SG$BlW!Z^}=ebZahn0z&#IDppLPM_1+4gwTH6 zG;f>2;@SrC9}SBJXv+LO3!cia0W}L$CV{l9`KzxC?Y4+bl^6rTF1)+^C5%4pQkfJ!cj3pM+7xr}1jX7@@V%M*X~UcB{K0%lgxq~|M#gs`0$1?#tJky` zQtcaMyceTSdD{X$GG+Bx@wpvz5rwaPik8VmG!6PSOL)6$ z|9!tEFBx_AVzyB)iiu;)Iiqgps=WApo`>v!i$S+%dw);}ncZ9!Qbb2o?(`AN7-=Qr zS`tDO9sIz;Y|;n6X5gFr8-OfM=Xjb^9>R#0veH#2b{^#K+|}(CUG%dD#-_c`eLJ#q z#^m@^+YvXjN9p(zY(!;;!q(gIrH3No%=G`jU%-buw`acj_g#P79zKq#cGNo0pV+Ha z_6rx3m5#KpwgR}a+#X3Pq6ww1(@zF?zfl(_eLZd59`0~L%FyQU;v3Or_glr(QJyit znU1;WS@`pVL!tj4ACs2tiSr-=2PU)v?|3su)53FIJn`i{{L4()=Y?0^f;@(=`b)l9 zgw-F~KB-jx0C>!Gd{ch`inpEwIkVuCW+duA<1bvK0B5JToGNtVlYTY)si*H73~%eh z@}r=CxAKhRzWE`7`X*la$Fq;%dP6poSSwC2FpRx!F|c&wE^nl9`{ zX02!ZoPqr(_9VA+{rbv0pItM?l9B`R7M61}O|%hNYO~-Pp8K<(&;M5(yz|)^xR-ct zFW2TS=lB-<3lDx?!PnngMTQvX9`{V>WN;NB%T+rEjOfhGl}sJ{DyGZ-;2yGbWu2KS zbm{3C0le@h4=>j1yv-LgFLNCANh*vob?l!Wx)@cHPkA_zGWyt3SPNHoz4fWCx`(Uh zaz0+9WT<01%tijX)o_4cvuiLY!-8JDdbE+l_UAd9ET*Y8{B4JyWh?HVwelw^HWM+> z%>9$jg%!-izYO4?o_BPqhOU2qmh0SWc=bn2?mLxq)G*A4P5S;i&wI+yZQ4Mw@VV|6 z$H#d}5&zX;)eINIeaCy~v#=(!*qJf5(9jX{k+6V*qsPbBxtNO8!p4ZJUjr@W4&u7U#G|GjaayOV^`y|vc;9$LX z2&{87os}=t8G8k;Q7hsRk%1Sm=`{l=r0WjI0zOtXrVaXWKWZrk6@jS`ovqY%2JPI{~tro=u02y-!&HK|++uyfW_PY3(!5r&>^3EFYwe)odS`p;dbEaLK=*zch|oU zNR6ydoXtMn?4l0ak3MST(NVtwu;)=`SeCD(k(e(Gi%66&Un>|C?|5yg*z<6nXrN#|ZSb*8=QqBykU( zKVsBuB@oK4?>}>Uj&H-tee#(-7xiqZ8%pX)S}tks*EFb4j(I&Dw(DGi-;IF2JymUW zWR1q;=(^{-IPn`~k&p9+Sk?1ZA?}^8?tKYBDiqo`ot=<51Lkdf$jWjC0aS zbYyH@BBt3>Y(B}_18^Eyy$`_pz-!Qk4*YR$ z_Ki&-pxoH$wosBk`u=dpp=vD_F;u$tFqrs$91NNR2i-?;PGXpuk0&tv6*ArSbvo5fE96}eRvbdnXGgCK{)6ggC3 z>YW`%A79dV!&R#jr?4>3;AxL!`Z4`tf-49?JMyd{V^ZbLjvt8=)W@R+euqL=B1Y=d z;q(W^uB4_L5b*n)@uYUMA5!e@0;kpT0OPzB@>eHC34Xybd*VyU2okrLjmF^p( zi8;qH0UREFtFAb3_hSYW+(mFg3BvD-H6#wu1)0s*K!9z-%L)R5PVoAbhC4I5jfp>g z=>4Q060HWEB##rLGflQb6#S(Fte{d7eG{kU!w)#V)z-6AXPee_(e}0`rLh;|bKfkI zUGy*A^de^a6^{XMRss~?5!#aD0C(bL_%1I?iYoYoVj`#l=c-mI>BMT60{l7He!m7= zkHdTJFpdokVwF%M+;J5KR9=HffPV%ka9wgG#d6{~14)6H z9?V7Z6%dLvve%QG+-cH;59aK&ZdulV+h6V1dRWy9eT!iWNQ0Wo|2P;{FpdB}VI$Y} zk?mSGE!cOJ=J$GaOKg6~QqfO{SBGXp7i&RLF9F~o!x>^(Woonz_m3=ZbF|k#?dk46 zUqF9=zgh3kwd-oafRl&@4*`I8*e3(ZObsgHaR};F&lcvxqV(pgR$}3f1n2S_mlJ2G z^6+z(#%FjAe{?|8=Qb13Hzh^si~*T^Nb(3|dQ47+oMic5?tHnph_6Acp*La(XRBj9 zP6z^Ad~#R{3jxtv=calAGzb?dG1kQ+M%kr_>fWVKI&o6}M#2kgjq-5sZw*ZQolViE ziQ+j7fLt06227R|9GiJ(pka2uhBE%V-|rqCw0PBNn!_@XuY_cYMT8M_po^Z(PI4jE zQqrT33Zfz?QdNQ{X!nY8Z&G-bZ!3Ksi9KNFiWbMou~n}>b1 z9`}+n7AMTiWMoOA)jrL#00ecm)MEa-4?L!lx@rNM+$iL&B`pT!UbKV6jIpF)2o|sw z5pjk(b2ij!hV1GTkJk-nTWPBIYG@4Sz&%i3d?uNos&VpV2tYMun|8-N>j zSsij7xMOUvo~GXqJnQQc9`$C8AxY$fxEaqZk!+kryA5lr_~f1{dY%vhJJ9yJvvZoh zP91vx%Ik1Cl~n_Wafz29^pP`Np4H)Yy?b?h?45P_qX90%XO*cLBlhfw>ILUdUM@do zn;cTI=5gO!p&C$V-J1Ct&@j%xbEZR8^T=RrXXpf8EkYZmt+oUC=h-9RZz`AgH`GJV z!@l|;zf+i9v$>lw3GlNh4+FtdnA)P~{Hz&461Y=~X->vokc|MtQsrc1y6)}Ktj5bh zt65@AE~bDl3FCd(+i5CL#vvqi_HEi>EkJ5D4BiQ3Ow2^fK&tCPX{-~~7>4AX)>>|Ef$mcrmsgBadTC4xwBapOV;HJxP}PycZy zFR+V#>>KYmc&&b=!XqByera1c26uh-$qov3<(xl@`_J6o?c&U%Cwlk`R%l?uZ`u@- zPkqpH5ih0(W7M~!d9vAI2Fex-hE$sznbmur#d9(=qw5~?`j~ZbBlxn#)p?k~7Z7YQ zTNBnEX&__S@&ElIstZydCKvX9<4R#shG|h zbD;)+gN2Cw7JN@M5$(4tg&KFmGIrdq-f>nuq!l??=1m?+hvPw;06mtr;Us@)@}@e% z*2mMZP%qN*)N2wy^FUSj1F+JQF)98I>wyeQRGiX(?m=)ccJ~gBiQO=i>AacO|VbNsqSN-NzY#x4KRFw7hb6C?bltH21fX^%S$BQ>-rWs!C;?oFrj!+=50E7Y@&YtkjQY^=!7z+F^ zd?K9++|Ap*y>e`RtR7I8Sas-@&&`we z{1%!+!+Wf$NIbFe-O4vZZQam7j9sq${9OLWW5=eb9=5aKX@4_n;!|7HLQ*K7| zIIYkt#nG$|nES_Zqz9+jnEnm%fv7||+@d>d=>N5k$31Hd<#dtn`g*l23^)KeK*qmA zL%rOtma)ID+hffF!ET0r$dFNS>8cfTAQX}be%FyOfMj%%oO0nDiAoW{((5!|Y49^l zqAzHQQ-)-7xZxgDHYkvu+Dw9K6wa>a+VJg`sAj^zJ)o@BHAHVu;6xaE(w6t_>^csi zCyLf<;*(nu-Ay4Xtgm zH?P-+HD3=%xj*uvIM3D=cQ|aV;$C;K{3wp@9Yu#xXnB}1=7?Vo+!Tn?)0wa zAK8Q!MuOgY6N_8*Sa`@PiMj|X6`75i!u@=2_OElF5H@> zgkhLCvP4mjB*-w<=N)#&T{g={8DWSdOf~Nd_y5I)%DpNAQYefre4@7ch%mLX7*BB7 zFkcq1hq9dJ4SdwZtn}nTjA&ti{yb4&Zx-uS77TPlWMaW%+4X@8EU<%upp+iUQ=GLCi@6{2+X%&dg74k8 zWdTULMNnoit`f{>?NkNS^2=H&E}II#Hx%6*VSQcA>3_F6)bg|@YP@!u+iPiDu+ODj z5|8Dasp4&e>=c&WORwW%+Lt$!>1%oaC z;)54KJH7H-H#>|rWDXDGbRi-WZSKmH+*K?3=V<9zeG2$AuCt5^3NhDSC;C~LO(uH6 zDyuz{&OwT5ItY=>LLk~RXT*%#oc>(Xk zI%+e&@QKa4lWX|Toj3Pe-%#7dOjCxETQsELX+J#k5Igs;JAd`t_c~L3&B74XehF|N z#gK+DlGSi`5MF9#N^2Z(d(+b2wL+WN7gOO-=)Oz~d`2XOpnunkfro0hqmn3{rN9HN z&Z|NYcbkvnVXld7#H_Ja3@POc7q;%(QU5)#;GZuLm#}Y1P_tIy7`0W-5(G2wd1K!$ z)L-10tDHY)kO$M~(cr{W?uH7~^bXvf>tL2nz~CRe&(EO=xBtaq{C96ae0|L3%2NTb zGXal$%Ys)M=-pC%Yl~{%*k3P^6fTrpWyAEy?K!V%v&Wv8^%rK}&htx-)_d`9ga&M@ zi#8Td{+Yxt@OU?l2sE*AA{k_t&B^)K{Zr4I{HOMX_de68MT~E<=Wz-RCS5D8L(G@E z+_(!}+vfkw3*!tc7<)GP_!wH|BoX`5Ut!W!cqiPL+olPa9`As%6tr2_*xCUaSSYgPtGY@}eJAXzJ z;c`uU49-4}?WUWGHd^0WgqgyU(=a(53!#$N1lKQa*J1x#%oeGyZxG z@Us&y-8&~Qaj4V0$tLC4cu10fH_*hHaWQAzjK*+AR;5^l(f*H|(3~vt8eOLlZ?Y)H z|Bo3#^@nA_djf!yCYF+bK6Z;*yzfI=2!TvN-%9J~^8l7*qi|vuxMZYZf^~+5hXW?(c7rPHRBkFIkSX$vA)cf$aOIV4nU~qwpak$Y@Yl zW?j~M3kBP}2Iy`ru$Fkoem(o2J^%973T%-VDE5kzS%4Q!V?1hQQFe6?v;U*U4N%sr z{%|n$dOhWvGmpY}du`kUx;;>r5wQrk9|o50g5L}U0{{0e=KH&f&Jzkt0%x^K`;V{j zgAwj>^{*p8bNgOmFlU;ye8YOG?nj(s0J!sIu-9-H2b|pfebQYJn>dw;|EW8OP0@H! zP=R55My4=yQb_xEPiA)2CCfp|rYlQR#=@CJ`M_Ps9tEuH8AFeHpTslS$(t~Y{RhcN zQ!mzGqfwoE_W$kOe(N-|%^L7FOdlj(-{+Q97?_m&mCu_b>yN(?Jb!PWn5`S-sC>4u z565mBw?XW}g;=U>#sBfKU#-OfACdtYgbHzsZr<8ZKu^;qzGj&0%WcHt~=9 zQWy@-cVi9@gmZ`1l$g&@KsY{&AV*9g(RbZzWS`Vo>~|o#xMh_S$MyJspQAi{w}DBL z9!HBLH%oyO??nK+_Ed`Kd)DHG3ZASN(Lq@XK```JLgcBlW_=>JO$WG(WA_~JeDMYa z{r*aZh<|N3^O|3VkiqC<#jIO=A94;hud&O*ZmQF6oqjQe|CQladiOoRE7S~ifkhN& zTm-u|F6Y_cu#eDv@1v_&P*i4@S5NM zIvW(ixA=~pC@WOTI_TvS*k9tIl8%#Qga+){JjEx(uuDvcoSIA##!tHdEP_ss=nH?D z=YQ{)y9wjb0?b@;Ly@DqP(1i*%`$P<7fPz$m9k_^BdXLB;JoZ(Gvq2)7?9`rYMTp7 z%M1YSy9~|BpZGh-#G!~#G8O3UpZvMG@s~X;U&7o;@?E|8y@*)9Pr8?m6rQ^Su zo=jxe$;+{(egse1KYo*o555Dk)Tjll6#@U%oU!5o&74QS0x}qo>IU#>_IDAWPOwgR z1Fx=){nYfmAjXdCn<|WrlE;PB(GzbB3WGq%FH8WWIEn<6-}mV`r%Ub-|6PA_w>sFQ z0G@pSwW5^Vg5sK{SBN)?Mm8XNzn_24hO7;v=C}K160{^=^^TwHtCmhXVlnr`SBLQUKJOYPocP#v2w24JiTlM3o1qo&p=b?` z^6z<6+FF{oZ_EF6550buy1gWBp;UY}8o&eSq7L!WM*#BsejTln(E(^5+h_-3>G zQlj&!Zi`9&OMU#JmQUG5gE<^rm*`uTsA$_LgPZA9(9RpBbx_N+63VRcOO%JE;hQvHTqF^?)$@R^P1KQc@ej*vvg zB`y-LU5a}lT%3mk(Bfw)-7OJ5fBY@p8YR#Q|JIb_7vY@7Uvm+6VUF>?c?toqUgm{s z34=ceE1iaV39tg5i{B0K#ou-5qVNVW^?|QGSB}YZPpU9Pfk)1ZP;~|hCFSAi>JD^5 zBgQZA6h*K)SUp_8n8nt=>+0!OwdtW`3e>7~{IrB2{TR+KtN79!Y08$la7wmL!U#d; zi_eM1up>``x(%S#TDx`n*^~0%l&e;)v890w8BY@9*lmxNYDx$9>af&lPn%%}QQV}v zCJzKaM$(^QtNH`Ssgud`A5R5A==-_+vO(8gj+XtamPT#xn~rt5uC)SG+q({?GKz(Y zDs+vZOWdFJ=wc}XGW1Tmt(D=BvHK~+BD-=>okG7dB2RZ-a83xaflr@l>O?QTMM<^d z8I;=i2J=;aEpL=kPWIK|^TH!r|1R^L?P_?hSiv&m z6=hd_yeodz@fb3iEn1i#D)B>X{B4_9{Y5YAOdQh(QxyxNP5^u=+CE;>94>|2O?OJ5 zoXsehc@DIiA?3g-2?Mq^;9Gz88(~TxN&=q|VzQX&;nnb%!4u)w!!pw&PHjBSo^LS& zz?`&r*14`UzTIYWs*aP!ifUCIHyxE*mw% zJAIw`E1rh~7yf9r1M!(NE?ouq<7K6J%d`@Vu`KHO5+KmG=gujd5k!U!7n7Hm%CJN1 zWnW)kE!XZ>O+0tAu0BiM75pncwVYgqUN%HF-Oi+E7q51ZK13>$En8@!tNrf7_>aK3 zVaFq?UbWA5hGXWC(sfQuQPC4o9nMMh0|%JKkKUpA-#N(8wwL7b<2Hg zysSq6-n@?jFO$&X2fY50Y}p& zcCp;=HSp%gL&UoS{NW9~VHnHp*x?pz(!pKg)Nt(T-$<-mI_-7u`#JajVy{@4u>DuBzm2bc9^Et#drte!}F&fyyX`z zb0_ryC452W5H&1|3piWc;?FH+MtL3b*m|$6m`K~f$sLSqWBM}&->Ivwz!knoY-nZQ zVjrOIUf(IYPS1vW?OH zYIOZvRFOjcOx~sV!JcFcxDfQb+6y_=7DP8ITo@w7g2Ev4yWlEI;YuY*)>5Cji)P{} zk$?pPg;|7xi76G! zSUFWxl$Qo~9&q5TA5F3(egm={*9p)m;vQo1AqYOHGKQv<)7Zs1f3M;rPZi=O}o5l=@ zzaFC8%&X>qx|;*>A<-KmSFU<~in%mo55l3S4>3V5CWrsM7vkNz{8r#~VGkr7VxmI? zr#l^RLE;Emzp0P777&$B_1F(<(ZY6i{O;fQa@3{wRb^2Vpu|ii*%?uvuCh{iOAk;| zHR7pLQ?Wqr_;pN#fBu`lYX8XRYiD-jdg!OCd}E2IwL6Q9fVCWM{@@ftK>oE(pT2q& zBf-m#KB>5`(g|NCdBtj{z_g0w=VrHl9SYNx+yxTGkrZj6N=XL7E&%ThG z`@Dl#poRDE31D47|M6?jyE9Ew5TWT>zyZ#mAHm=Ps=(sI%8i^+$_UHua`g@t8fV$& z`LijLyEzvo(&ot>r6_P{|NT|lRlQvKTeZLU*`MFpV z`A=R8|L9wiBn5#SxD`Wil4N#PkWRkV7WGCEfOvPKr{u`iNsU>AE{I&7&F1X0qWP8r z>?aw^GyQ=H?*9qiaujupRQojbSuqTEJAZO=BMgs{+=q`;!AY}NMPq8?lj&v*O_2gE*=YuGg$LlA3rIl4qmm{Ww@hq$rC}A+cCw89GU3)J zQjlq^7F=m}>-n=O#hqVMBi%T^ZPY26%{}>65@7#(_IetUV~@)N0&+Sn>ER{}PQ7Jz zW=<@scm2`Y#`9-?;9Ln8HcH-sR0dx|E^Ty06Ty@gbr>LktIgxJ_9W>6|NGv7?S(4( z>p4#Wz5KTrbEesP>eMfNxF_N_M8=|vyO3x;+jWkh1y|1PXFPJ%>+DBNeQ_UyzA3{a z1Mh5en(&+2Iq$Ec_&_u>@3pl1S3DAK>uBFcLi)L1H~N2c{`Eb#=4@U7D#PCAA*KDg zQuQ7FMg*Y91w0QbwP5gpq3IM9X>!MvU$*%_*#F^ug#(J+_5P)rO6FyG{^A?LzMplQ zad>nLSZ*i!N$q(7UL&|^5Vy2o{j5#mk>~NBH9k*{JsT%xyu_HcWuFwa6K`|f!#0BZ zp*JOWrP6(}Sd(6U|Fpy5${}FV$Eha#Q?-Uc#Sp^ZCoE+cmk36osv>g+P5Tn?GZgy+{o-f%OL_k->*)LhQTzR2(=dk2{_E{lb>3KWko&cntyH@GPDX7 zV{%R}nk=dXJQVNvSCM^_<5T_c=f@U@PyfAV&3 zngkTipo+3!_+P+8xnih# zV4qzA0;+FwBSF6BPP9qS^JgKPUv=`*jm}a2ar3J&_NsO_O0{xygD&1wQce%7oD7-( zpm5SKGFeW8mCmL6GWef(vhVYdX3m1gKWl0w?8*~5p4X>C698cid+Xvd0CK4HXptPk zJ_TQ6oN0wEQ~PVV%OagH-Gl)?q^zu>}Ca zTea2$&)R^Xs&R+R3`Y|dU(|^|mlPR;v$*}hSqeAPg5Gn~JwtgePiLlJc}q6dha1+0 zx8pq{J6V42vgKt4o!GNMZ|$yIi8#;DiN&}_?>Hh{Iq{kK$<48=Cz$6-KGhEz#>!%f z2v=SHljIg%d%UIm^QlXV{Y}y_ZUG4Aiz)o#86~i5(wNdXFm#{6X{8_po5C4Ym1rH} z^YPO*p9U;!-vS27!mti>A3J@^PLodpAY}!`se%>r-&~64_ABeGVmiGNF#qf z)R=&KH`@n<^6SHqU6I>`STz`ICkoc7r9#bPyh?5Gw_21KWTDsjTDv(8P*8UlpRjFc zpB_zS{;n^cFMZtJgH|T~!*`M1Xbg0eIv(0B2jU5eYJHs>TRKqau71d40EeFt1vHEMT%UwVs0*9BUJtIW#_3oJ3hO1kAps^9z&H56;vcM}PM) z`qM){b#b~`V2}C!HMs0;UW9NPjPtq0y7o=KuMP=r$3g_1Qo@+-COf-$Fh)9W3K9Hg z+=TWW_|{8jK6)e4zw^FHA9=@3NgUg&q??Z^r+?^3xJAR>Z2<@pWZKAZy4$OwRdxhJ z3>S_f{!Af^`@c@52<&V)0sqfAU{*z)_puplf_)SGn-CDzU6%jFYy--0eisLx1O>VYdB4n2va${s)8@ieqc2I?cV*>8+;@+&upqKV<9qo}nO>&xC+@<;Y@IUxDG2W)N0-UrCPc*2< z@$81PZ^voIge2J7rPn2|;lf32z&+Xo&532XIPrr2%q;=cy7+|eNpjMsVEyxq%K;Z8 z&ZCoyAZ(I?R3hXH@rT<}{LyGRVSSQAPGmiI$f58PoC!t!I;Z;e88_&{yq`TpXilqM zQYf@(>`!Ru8?4<2K|&vW%sbiwF!W= zBde0%KT5AbjQDeACq~b}EIBo$-4FFu&?R`fH4$HiYJVXw@uk-k53g}fv0~pw%Bdt> z=l8P$7%cq%m%*kyQ9c1`8ASaAqpuJkk5lx~GjU4T#m5ZuvQat}Nz8i|vCG$Y0P)Be zAJB(jCvWNB>|zBgChMs~ajXTj9&%eKK5a|Fh+>RhR?WI{TdBkehLPO+h7X z48RWmm80{2${_{;b9LLWr-YwwY3o)OPwwX4ru7-hSZRGZBOR@vh!+T zzCOHgE@Qy6DBgi^X^r$}CuYYRST^Y%Xnw*5!Kchm*<$~hH+ zie#t3C+L{{Jkc@4JihD{p@P0Z&WC3RYtPkX@NfhD9Cj!{k!j@RK>itvO8K&{=>hEP zt?^n}tn$HC-nSYEWbff(NzjGWl`JpO0DyBxA9sUf62Rw8et4SWVGTeY9EwZ7`>_6# zhf&)NfMUTGih|v;w=){Nyu_D0#tr`P{tj?z&6TstMZSY{1$m$?7Oh|3LwGrd7^RFc ziU-OtdgISogW9vX&OAMcwYxq^VAcq-bCu5eV+J9TJI)+4EOpak8izminLT5pjl3#A zR0G15G|21C>gi(cM)DcuzvuWU9OZl&_NE)k!$UG5h15!i^vbwu^(ke!PZi#aC*1Nf zg!eC7-XWXcuF~g72r_wB(yPWMWe9g+H!q3p6Modr^}3e~fQ$}2m5A9l1zHg<6@I|OSs(w};I@ww#w?E4p31D6TA zW?IEboXSAJOe9!jbQG8_Ldlm>JR}ibhgS99(ZacpJu(Cdvxg79$F{YNQAUa&Dhuyb zJC}DER+oZ7d>rF4Jp7<#nBY2aWV;ten5(TAL*$>Uw~Un;h{UN9qN#dwmPa2mc^=+g zBA&6c^FjzCbN=H?pJ@gR@7HJisfmzK?m;CVo3YXTVc#)*K0T(Oa&ec|IxG{TJCXWZ z5egL`pIzQhr|XuozGv%;r(xzPZm=J#e$eYnz!Ta|qdU~s z{m{>SNn>dGU{@4o@m8vL=&RII2-f~=3LnDS*#8iFnUoB4ziPu0S;mlB$HhWRe{#rs z!~vceb~|GSXCl;JnvWz%sifJ|bi!teSjlBpu=sD)0WVjd-44&0v_Fj3tAV_fBE9-^ zwFv=kK|sn%7YN$0(#``NTy&d>oVxIkC1$r+@LBy4p#8aiaB1KC?6LRJqi`Pr)TbNP ze54x0M{8gY63WLni48S=7|d$B35LxT;9BMQHO=|zZIwTE3QLZFhAa?W48eT*Gu{8t zL2!PiZ>7>qn{nu6?!(v8?Lr}+Ou;=dajJ>-Lz39l4*{hqOdXY6GC&@*Ep7ypv}>)@ zYck$xj|uoECIrgzC~V!SQ-&-+Bv>OP5Rk*FW`tzuc~Ek}06Gy$5TPzcNQkVBVsWyv z!dE|w^gw7QqOA|qjp%Yx#LCj$JgOPVyO73Yhl)x!D)kuWu2hP7b}|0*{8YKcyZ(@} zL#T?1sfzkpt@Q`U$hFa{cLk4$8vReLTyWLOc~G3~=d9gqYA2U0?x=KhGPo(ok#D@{$2#+(FIbyWUJAr*Px`pO?Wi>0C zhrwhR@rLMiKoW81(JaoeOqzTNjG5(7AdWX;vZssWO$k+$F>`3kUbVthb)89f|Hd)R zi(>+}|1Akmr%4IeP{Mpk80SqWM@Vv;Gx~LJGIt zVmis$(j#oJbmKlRbse|TZ5kg1g`ckzUmqB422p<59|HVnU}0Z0XR?fQf0u|{@lM)r zW}eX~;?w4;ph6&fRhGgXZa@x!qws>is6Fo*De`25=+Bo`+4h2^p`S7|(BC)Gi9Ke% zPK&>*UnyS)^G*j@@n%oF@LPH;q83rB&|i3G^Tol7qp&(AR+?WZjjl4j+`}gl<$ zVIKjG5aA(oF!f||e`@e`Im7ecGjqe6xdZ0;a_g@nL@XZ8@>MH1z7d>(W^E)XoTSBU z^5s06nOB3oNZS64J^D_@?JTJp!B8*nQ#qa}nCj}M$c-^Y@>5ZmQ*h;l9sU7hF)9Zc z!Nhqe-S}Y4BKx&ZX%g3ReyabH??;?!pVo6{slqL;8co#aS(D6ii^93JqW~{pZZs!c0KLjswd3jcN(oH~0yWl`ghtihCu)4nfXGz*V>p%+ z#;sQfTN!41s=XHXdv-!d@wk94rK@flfw1qL(HQj<9>h)-h?0n^vu3nG*LHvvZ zI(N+r!4K*Y1SC03ooqtZq4+OiUI$GAnwDREai0K}o8+-#Hy9mc74OZ>ak6!G?wRe% zei~;=KU_NC`qCg~v2?D9TZRlCP=!LFb>&D_4~d`6qzwuxnp1Fd8P6%LJgcAix>O0A zaAR-%PLZrNymu!wl~%=wH9)PL?s_qx z(wuzMn?J8{DhA_fJ!%9B#%-K)-AV;jI8Qin(Cx%|x@~~mR@L6E*0QI4#REki*ZE=L z2t|}kYFD-q{=~GUu1N>12{|JI-kaJt+o0$u>I>RW3S%A#RB31%Nuu{FWy^+*x$*mv zBUS|v?~qQSBdRlV3yQ`uW4d&SF|1J7=(WqxWojN~Xc}nKyP*!j8rPxY8BM_AuN)S! zD872m3KvOzkhALYSmDgv``>evtB&jGn>>1b#l4t%e2%HrL^C4E@Sy?<5qjTt|MFyu zjgEoQ5DMW4HnlM%46yz3OudZ!4{I&8%E8c{%UG78?|L}e^+l5qY1$Jl!< zJF0A3yAQ+#-dzeLK!EW64v+BOJ^i0!uC@1CqvqTvj-o1}szNn{GJ9|RYiZ~CfkA>p zY4*tO&D#|VcS_?hA2Vm$ok$M?cNEn`8HV-$SR40XM<&h77bRD2zyOQOI3Eq|tGAUv z=Kw>OeZX4n(0r2=c7F<$Dc#!oeS3oSylLoCbB1IoOahsC9_oc;;JuF;nkOB@E}W6J zImY_(-tfiwINvv#ZZyaxud|rvKgk{cwS29DprW=Za!Y1lvh&VL#X_WJCW7W>84X+Q zVWkl_dTY;~h_AaVzC?99StKhy4!xvxa*+4BgL08=b=n(;KAzS|jnjKLGQUutd&o{z zN=F~{ePxSH_~@d+H48-gVVs)oeO6#36#ec@V zWkI0-zt=(iXw?1JGXQ-YL09jvTpDYPS2Qxy_1jrj(yljsZ_SKEs&nDDWjiP#ptQeo z$<=hqpl6KXukeQDzp)Xwi)qbc2>toEvua+vdiM z%E!D9Hp80Wp133fmyF#gvRh!9n99q49EbgRy`L(7Y@roHh;B!_(gAS`vhyX7nd=k~ zanEX?d0)Jr^2yUSq|TB!aIxh{J=04Fr9O$Q?+Zn9;c17i>QH3}Pu+ls7;U)MO?XDy3<4UW27GL}_&)n)K zGC)l5<5t7Yh<@pSt6N#?C=8KZycuG39slRMB>wZPkLy^}PW1PmgXs#@->0T9y%0IJ zm_zIPy|jUs_!=*bkLv|Oos=6aaN4u2gVyTxyOjfyn&NB#>@rDacc}3b??V;5l=d!;y&xw6c4v1c|CKgtJ6j0{(tlfKh3kLQZF8EdMo|v zo^Rtr6KZ52dx*a(3YyK!Nlv~!k15he^eMc0To*pc1Oe?Y^eT^*!oxc4C7B#qt z+zNj#>vLFUt*2i_`nMW(KVh<5gZ%CH_@G+7tImzacM0$8`tvuZnH7-IJUwHGg~iVB zZDZo>M$7H;K$6j3R1pjpxa5%N_`Gu(UVXG9is>N!?#Z9C)3&Hzz*jW% zVbSiP<}q}_CgP{A#`k#rzSpUHF>fB(!nH_=uA4fF ztsks(AEvNJS!6u#dRbW|i_A3blh@ZIpiiRp z+?=RIqJPy2D|hLD3^#U#y)5?m13p;Kl?@DHA8*Oxkh{9y)HfX`x*2X7mDwvPI~CWT`j73^s2HIU+j}C2po{?MpAJT z(kMxk5tN6-$>w|~RD~&2Vf03}uO^-+ir_OMXMZkUem`a!XDx>NT2gTIzsEVBFRLxX z@l{T^ zP^3o%e+qw|0na_f?IJX3Uhuww{#d=mhvQMI4}$OX$MyYIQx~pp<)miGbhr;o*co5A8mGN+$?;qJb)|qKf1Xr6s#z~%!LQ9;eaIBV1 z^Yi{dUGO;nc#H9}LUDL&0`HHfm=pHuv&Av1HnH?jej3b+dg%!^8t%8)nENnu1)+-S z9&~!dAhy=A?azGR9^5^BXFQ?vCmrd(_>wD)?|XSZc;*wr{Fl6dgA7*C-)E8+H_A|` z%zz>sj%WeYH%0RW_m9+|f*)a}!B^3Jq3ru))v@-Ex(;Fq%~o$Cu|J#`|E_7E#xkzj zG3Py>v`3(y^+U+hr^LDjQq@nm+SLW2@>MHZM*1wVlFI%_b(Jp20~C}c`Bv}0?-OE> zb@w3jG&ueBdw!XFByU@IV`;kx*-(I%4ZJMJg8KQZvu z34b6?1>*bs+nCPHGi;Cq$$9*-CGh-%7oqYMQ$D-zFh-^3o+sQ7bhW|6exeBk@+qr+5V$B<)czT7;*4t-9I*-Z}PF& zOaiI3crVz0)n!ya4&)ONVC7)5qI2&EmSVzkD_8R&hPoK*W=$h zr4*G~Ua!f9T2Ql&{n0~TkC!ys?c;<<<&&M$rSxMur=MjHip8K}*T;jh*{SA>q5rI5 z%G1l|?PsaE-%Nk34b{W?Sl*9JA>V}U>JJ10DcTTx+R0nQY-K0%P;X|h%8pg+Mf5Em z?7KR_71ZMhL1&0WQ*b#ZHc_gt(-&8`&elJVr{^9WRLk7LB;>vSJ`0h5_&=XN@Xc1@ z4W$-#@41RtCC&Tu+OC2s;w^}fcC`2hyn)z!H+4=duzypZ@Jat|?pu!oM@B0{MA-B3 zn=uTH_pMC!D zrur)9>lx`ozh5Oy_3qijw z9hl8r1^_P$NVt3|C}b|LS%1zy#1i*~ipX~XmVlLoI}5W(Z*HWgn%TvAgd>60)-IM3 z0V!3V-=5q2LR!O_e3+aUu=$NYOmMQt6`G~j`zPkip68+I#=X$?q{LoY$)TRt%1fbt zqGM5QR~<~sdW?6?*4?=W77n_F3uWsOcfuNNIJQ{B9}7p7=PHUHU+i>9$s3w438kUz zwpodevdH=d9$*r;cI1|}@IG3(D4iilHhBeEG#n)6dn+Kl74IL=-Y&oQnd<6j&miVs zmC>qv8E!jZO^e-$4oaq&&H^79^Vzb@?!~P^b0Oc3m)vwyKCUPy+L}-)aIT(SBrQ(rz#@K|XaY8Lt7VR)?`q;8xT7h(|Im-fC*HVYA zMHJNAK-sHm$Pt=r{(4OlwKl_Kqrl91s7exV_Ld7g6(#*#gLwYJ!($L8)^)DGX}uwL z2!HU8b$d^$auDQ{6xZwhqG1z!)x7(nFSZ{TH{Ns0(Ke{VLxC@hu`pWq3o(2RLXiM^ zjEF|=YkvwZ|FCZAdrkadyDcpHod%wtMAtF!#ocHVD@P`@yi2l8nE8m{f@%tyc zUH+jW16iiIE3gjf=Ky=SeW7Ce)a-UFjA3VIK^5N6i4FwrFKrxO0lO$O*~*c}nH-98 z8w+|j`oH4o0`WBb6;C&{JZ+$Me!?67{BFTtr44X=3fX;IEPp6;T>_fZnAE8tyXS4K`4|7l-qmh z%gw7_-(nSdGP0K7F_+)-$7*%N;5i%@TXGO%h1Mf40yz~-4m5G?(ZJrmfj_q_QY>fq z;1zEJ9{l+`F(0L{0M9Mi$B)JOezAS{I{HD2#v3bBlrs^xt943I8k4y?=&9IOlv3o^ z3r;e+g?2942!Fr{wL5Jc#zsKU&j<0Fk)CB)cpgIMVvq^3e%&Jt;vq|3bJu$}T9~90 zpL7BUGQkZ0QSw!!4!XlAW zwxXsEW#VDXCau|sy~C;LlgEqoU7`?;RA|(%v1w%-J1gK_%}FDMzAa!2eM!}Xh$nR{ z0rAJV9xtT+f$wgUD_{NwZ~K7I4R9d5FZRz(O3K2;<;n0DJoq1v0@@&pN((d(B?naE zkGkH2Z|RTPo+}c%SB35HRIp3mhAnzL_I}rucli{$DYjcL#glHkx_ob)q0QXO8wM`ZVy+)vLaM;=eE z;wU36flvRd-_)`)Q%G@eX3Y8#mY>LVW@?D<&h$%rxQAOsffKS}OymhIYB-29>yuB> zfsXW-G6Q=ZZjd9&_`=2R%_Jd7_Vu&RK#h(;?TF5?0`9|#kkL@K{mYC7>|7(L+cNna zAkp7&C}5SWSoT?tmPlVC?YlcRA@9qG>b2Sq_^h1v%9d#4dmANL*SO~>k9hIov1Bj@ z;jcF81Hb(l_gFc%;10s&4}z+bu5dtnyD|%KS&%ET))?a%o8lS?aEgBYt>+Wr`M?ZN z(Sa1R$f!DBXiG>2HsF^K!8n_~_FF{ey7}2j3UW7vocTz9wH07z-wE^2rgZe(JYRk( zM={16=Xg|9%(T0g*u1C1Fz#n)PC2YV&UBE)LCBoZ+%*F^rgUui=pj8ECN0E(jAF`D zjZ;F%@YM$JRajq^99C%wb1oPw$tP7(7j*ne0JPt=qPbFTa)%X@mSPAMkY6*80z5GS^&(I+OmHMhE$q}bM0r&ag4e2?Jc-~1?D1Ob5gi-ob7g}K z#&PL#e;Y=*hNs2g&##KO76Pak?I+|iSo64Z{pACm39`3d`#Z@a`;xLIR^B#}e4caf z>z$s&_(&sYvEZ|VLW=eccE=?U2tubi`NYl=Mj%Wf6U_`5AOuFc5dGS72#WR?Wji0w z)FP-|nr1%mJbNiDiAfk5!qltSI6U&$9=7aEnSh$k^i(YYd+btp zn2)~DmrSKlH<`VrpS`ooHaCj*s5U>p+Bp4>p07QHWA7jcFYdAU^0_RCn$rN7%;$u> z4OQZ@*ChZ3p&W>uzg%*os)%M%j+E5%MNFn3nxLo;_wK^t=TV<6M8LmImy~|%3);uk800YCF|pE?TdhHx<6gL zi)B^^pC^Q?^Ud5ixb3N{RKhc&T9b$oAa|vjgM9jmTZc6;kABrzEYs!Kn^5`U$wi8W z#)C5qz%XxlTw_Zs^2cP^Z~c*BR9tYQ2TAJ-bSBfz-ny<5=_&5H!0~8*e~sFMvh^?K zQ6^Ym(^Tc37$bvqPDgihFX(;J=9Pd~M@;A>UbGq2dLsVSLkLe< zJk#~Z1*%2L5;acnhyh>yrTk2-fBc%)Oq8j~iTp(Cc<#}rCoACbYQWm_90SL|JF+w2 z;|KK$R?VVT$mDpt-X9==HpvWlLTcDN?V5oxS?tv? zv`LBoI0XG^51ud{h+$VlI?XWReXsF(e#kUQEUa~G^NsxXfe(D?hyNN=lzJqJ^|G9~ zDdntMAo4dcT8E8(YAj}z?GP9P9)Rbi3%8$(7N>l5|27#+jZI9<{7LhN{$?^7d~$&x zU6!{m{iLaHY{h?S-zlR))3f_^-po# z6#g8uO=DYI_?{;-f;?D39<-}Oq2RZN{JkAZ@w)mHuw1g|K>$TQN@WE=p4Ql|3AC?M?#%b=4h_FmCn2Oi(-x_x z#JbFVo^CB(iZ*(`nftN3nuowZ(;k73ZLbb$t6U4PgKSj`mOm4IKH=%dj}fT9tPylr z)mu^{qv_<7c+(X5dqJn}{fKcm^k~q0Sc6&ol{79HsS{erFRFBYPOaE1Y+@d~o2kq(!Z=)hZ$o$_eS*lSrXDDF9 zri|S-VrbDWR`#VandkVB97JUU1ZA?V%+;Lq!+-bt<@S54nK)?g?URQ~3}KzOn$n=^ zKUavC3LgNAy0$Y+G53>YeJFNirpn<1kDf3Z-F^TEno90|F;0!Uqi*iQ8T!d_$jFTF zM81fzCM340p19rqsBXB8Oo@L{6G-Iujhxxs5VKD$ceUY;b%-AdSJ~8`BSoh*Y4YKv ze9{;7aO0~aT^3ZFvk$6f#bYCz>XV3QPX$RqFFF;T&lTE`DAFm!Iivj~;KdGT-A3#A zMMlYJ?)In)ex1*ksc>HZa=$AmN63ax5Os7FQFr-<0Xz{_k@7(C5|EuI(4gtFykk)7 zLq$_>eRbS7@vYe_sx|-%<^n;5QHLZ|(EoQn-8}TFKvM<+CA5qwzuj>*P8oXKI0CtI zRTnsK8)}kpS-mmum4%-D$Y=1`A*&FpX>#5f3cVSj?@?WjU*)Gz#*fP9(+0oP`Qyu4 z_2>CM5`5-JgGbw3>O$3iV1=7^w;aQaxyqkR}qx1q#>1<4QkUE1y*w=8}i92O%fT-jc zou`xXQLX@&sdNsWQ zYyMEXFU$7n4ccq&P<`s-U*kB0^|J-k7)lS)jr!oiKr;jMN;2p!)YC63vX~=g?TzPA z@%hsneFs=lRahg>Oin=*XP=`n~iHV6oYO};IBDJ-K^^J7bk zE`w(D#Hp&MNJ8wXB4tN$*^xUvX?A^R;zBIQQ*qu^}M=I`EqExyR3iSoqhr}BYm^+V~r zvI5Z5NWckrN1`kS(7X(6l%-6>YiGOD`8n}pRknT6x}0{mRM9gOgj>=ErcZI&4LFt& z3F;Nw01+tL&SFLq;({L|#()y-rfA5$sfOu+?iSE?@TtWkQ zY&n5kO#BnFto$|UzW);HPca~N0!LJ@h24Wek7pCGv}d1Jw_-&6vySCsc0$#RR^mGg zu)a=|W=)oDzvt$T7aZ8ZsA7fLI`K_=g0COhIm{XEeW!OL#aA3ud{q;khaev-K3)$h zI@R&HZuYz>RXJ#T?;J_7z%%rddrwd)HuOESDjq~ON9$^vxPsvqgjJy)rmP9H(7`=X zp5K-!vT9PY#)lvCmZP%UO=5N6;VSBXdQ{A$EbmR{wrwiQU)$^tx>7+p_0Dzlb$0zT zWtBQ`ny>w>Rmv}z7TO(qXLk{LQvRq!~izLsmm*a*km38_zdOxs?JN9sl`QoN!Pq2zfuB;BIs-HR;{l-e&w+!_MuOgaiMA71F^Iz@p&a(F2gfiJpj}Hy%Vv741JX9)B z5g1=n{$yFEkQ8OH+<&u|#_6*Ppnv?%vVo3%VH7qz-TAgeAwqeqtX$)KH3@AW>kG4= zO%;D?KkKOZWIzaMOU$^MI!#+t0QsRF94^hzN`%%gx@;^HW>br*9#p7?F0NbSB;Bp7 zqtQ!McoOED9~WaAgTT)X98jz1_LdvQ5VYy~8b_JsB9VV0?1sQUb>iuV??QRFk-FSGmfEd|5MW&T`r-X}Qlxn6T{h5dy%| ziK6Ah1g~%{(aEPPk80wNkF1rxP;T!(H=AhuhJWGFixg_4!u`WUX%geC8Dm22yhz)F zeDp`@-#*Gt0wvy(=&7&_ALmTF7~0N(FH8}CYh;SO@3C_N;tmcJck<;WIKGlx+yi@V%Fl~>zkYIq@Er|kEa88!*Ao@yPg}0xQQ80F zPfTO^Yfh)&9yIgGC(x^(Fdt>8!R$^HD#;Qj^wHBD9~uYqrfQR|!T?!$&|%+C`g`)! z;ET10D$sttY~cH{#XoC|;WyN%KXciX`>(a``?ns4S#DXRr^>fs8{qF*q*CJ)1~xql zqM>b|&n|SJ+@FO^R3ssB(-duDFQAmDQU=V_;}eCH-S1vau_P=9yTDN)l~7+6zMVK4 z?X?>>1cfh&MiM9uVh$djwjTBNpcyz~knxYTgdnniYYxehLQXM|bY}+6gHrz?4d;7U z?Bo>Gc^O!BecS#*&$Gkq)e$2Mmt)kM=T-0eU|`j7Q7vT5Y}ggXd+8m7_hh`LE%pol zY(rFRGJDGu5W;$3-w+)d2@OOy!!Fw ze#82TEJ$oW@s33wG-n;-T(;qyS+200y}5yD^BGqEKF3^xP;MO4_M)IOi7<+Cl6lSb zJ#wkAHCiMVM-9&3M$n9}HGcz9FuPv(#9m9oSGyWwfb7o-GxY;5u;kj2qQu^`@q zhQP-R9x{r!`zN$@*#M6wJD}90gSd40Ua2f~C3^9TBqrPl(;eEnX5~xNMbOQfn)P1d zSxhFD)m%#0TWD-P@BghI&$XOEVsQ9pqNgC7X3*}&Bk%Q@ZBt5sQS<WAN#)ppHxd-(cEBkg2SSt*%4e#`IPkN69 zX_DyiGBOoI^rPH-5q~V!t)=nG?s_%w-k1XGALD8S9`!Zp{_MqUe1JVo{fl0mNEfqy?$?H}pIN`dFI>E1ELdUpn6hrX%w)gxOnMshb2K)!bicdvRIy&8(qeM* zw2<$GlHV9>^W(=}m!fINRHh9|7D0jf_JIlqO{BuNlJ|je^=O*EsV>SHFCEtA9U69q zu}H1uN{1)!eb;I-5S79;Y-z)68e$jAd1#=RUhYtrw`vq>zX&W_Y&I)NUnJW+Io_r> z_$WZL&^v=Q0*ZqJ2`bhK3QPL*Fpgz!a=Iz}1jfp!+48h|sc&Pd&3CO$Nh$Lfb~kbL zlSXfwpklzD&>q+zbj21a{XnZR3gypOsqvO`v8|2X?R9OvbE65_z|ecWsF-9Hh8giy zCAx~1`yjT};L@^LP?U+b-pJP3qXtw6*t4zQ7I^zQkNl%c&R7wZm>EGF%q@+achJu# z27ByAd)s=j!}q0tvIyQhZkd#u{3D*86Gx z58K9nv8}lt0quR>VbcKKndgOTjd(XM@dG*&fViO&*;xY1POhL9SH;Ar{3ie5-MGTX zhWANU?nJs6vvjwgHeJ9?7tkhk4$SEE{cZnY9bbEUO&hy+K01m8)qN+(G_Cr@I(miq zC~Z4-l+e}Y0KHOZM^*pJ+=5lMz=qij%dRPCi5sEQYc!KL1w+uiK%F${21M3Y7H1^= zsVL%uL~9fDEIH|3eB{ZE>{NzqHnEBq>WH8bYegt~r=Th8vsSifh91%~tSGZs&#m6@U}wow+|e=hcNAOnAZ{J`q)jN+ zVK;;_RN%VOoRxTb5TmrxH_Q9|sG+!SVtX!?9&5Md*BK`yXPlNHi3UPfsd|hAT+Fy3 zYTbAOOTPd{b6CvMx{lC9;*GblJa7bOT}AE?}L<9S14TG!mzrABo2NN#RY#iGZ*P1 zkEL&EBHIHFO}&VB#*QBGzcqXOVNUR`m*SOU_62+#E{z7eFE;PFFSBtEH;kr`{&|j0(0|WERf#MtXFIjF>bdDt5$cUUKeFL{YImjM+~AT#fB3m zK7Jk1?}f51&~+(N5v4OeUZmzq-tpxtz-@Z8k$qd%V6i9g7T`V5W+zjmTG~DXx#D3q z+#2>sVW^Md0e5ik8tSKJ1mT#lAMLxX`p@q4NVm8u4&;3_nvfu)oKmK9XR|{`W}3(c zn#u{IWAOy^Z9j;@GUQu)xHFe=3SscF(i`>Gj>8FPMSE#wx-F`H+t>2mY@n?nUQE6E zqS->o3UtG9*bs|0zv04{_K6N8c%*==8PeX9x6Z-~3^}zs1x;q{*5!@za4jf858t0* z5qqKW@4e=d@ie{`NExB+S1&b1H~zL-6-mPLB;HTNzqP&Egq{s19fizq<)PR+Mo+W# z9|VVm6XvcLQS9tM+dMLSl>4%(< zvyy{_E&dTO&fy(Wg@!=g06RYi*lHIB3#KrAIL>-yJ*&QA;4a-zZnx z?3G2unbEpouDS@!md40ftbEfacP%t4v;uCZC@>XR0PP=OEJlRbHfQ>EMmGP@s0;Ow zj=HMqE+^}j6#%TSr|mRtBKz2ZHsp(X78iK#nGQ%L^jgQ#$y*O8adrZ?VwzN6u!`UBmQ6a@3?MS_2&rs_I_ zZ{X&q+9;ZSa`E6RET{~oYEy&Ha1dIS_5*!%wBUE&%S{FfBa{*72C9k{Ff2T(Eb=t^ zPsUj`_&EHb+ur1R@S!^~?eVXr^)GJz*-G{Jpofs2H9=E10x1-+k$qDNVu})tV^qRH ziP9J>FtS;S*U=OE!gEU;Vn(e#=GLkeDijQeR-Zu<|HNLISh}cXZlWG{Dt`^*n zSa7oKHnWi&XouqR-X&#y#i;>?=|tuKIA>c2dB|3RTvJwN-5zM~NXA%w`|)0bpoc3= z-HAln(DL#UOLMiD@odkUA|?!@IORQQN()8R5L%kw?jcR4FSNDm%|dv;KA1?&s|5)? zxqrqL1O62!2if~B7tWE7?rP)7DYH>au9~EXqU8{YGJOp<7e&1m1zUjB<$FNwyVZLx zH*KJ}BghsqkxBkb_e$gO*IJh&IDrY`Hr4MJn|bf1(ZrMLupEQ!A%@WV0Y~zK#Zh4# znVxqAZ_Vxf1TBgd8~1jFF0`MI+_haVcQ&tIYOY%&ssMwq(qL@o?F}d;I;y zM6?`rLBVvO+l?#M>a<4G=zG_y=PQ-nIIr-s7C^pfTC^3#_~*bVJQ}|{pB_~`fA8+v z8jACo5fUo|%k~rO!dr=(JWZsm^@-Gdz^hqG?TbS*ZEcdW4>7x%XiFP7SC=WA;VD~y zPKT|>yiEmMNh>(qmJ}WKHo{9Iv@@VdpuI;D_cxd-OCy|R`Wrnp2qsE zDXm@&FL`<41ROuMRc~WH4EefKk70Brdm@BRQ?DuvdJ`n8tb6`hGO7(5P`=j?u;YKf zuIu$kK1=l0LY0rU2=xMjIjMtky%7yJTwf;dJe3%qX@woppZ&pWKe8$0=b@JzY(c;< z1F@Z4z?DrIpq6w3fNtqwjcU#?KAAW#*MKVuvL*a-Jv7{-^#AII&#kSUHL~Zi z`X2(PV|zyCwBB%Z*CZK&NUS3 zzPcykrAQ{7Y(AZrq;vQY2WDG^8~wqmH2a5JviQgAtw8oOI#j-SWHNodpB}2S9sflL z$F=WRPlfO5suDHC1!|(nLWou5f$tp-UXluIb&TwE>Px%juxoN_Yz$}S-22eyK@Y7r zO!k~N*g6;HMHh8gzHQRei|62zA~?c05b`xefJU9p{7au~m05CR@%f;WU|Qha4&A9{ z62eZDsDP>P^&IvV{aKHZ6}58S{P#*fmIs>$s_ag=#5~uRucuj^BhcW`e~mr8(Zp;m}qt7DDt+p7rHSGbA`=XIK zP;#b_?!ElE|F;7yB7hPYLMMX3X#!WV0Z?h^f;G0?rsm*;FBppwjnL6;?_HWgpOntl z4LrIQHal154FXS>x%U0Qul$8lx<)djxre?8kkuB({DKP7@OPw8Hfg63Y%>Bf!?=IC z{^3=dn8p(XL~swiI=b+*YF0NwsV4OJZO*C-lKN>bQ_Q3OApYb+;iif=ZNou;(&A5t zSn|jVSm?`DN3tu`xgIfG&D~Fo$WpvyMF+^ORydFv+QG0BM{N-yQ8A_NzR`s@r!?F{ z8`OWVhkY63LDFDKEhhrdhSU> zrFEnJ{y0_T2C)({yt&UY0>b1o_iD`ybaHb39x$1{zAwnGR{qcZjz2Gs`!qj$w-GF> zLXbudCo0C`0j{b^-SCZ`fa38O2g7|dhH4J+PyG8>oKVk7U%a-HYAd0H?p^R6;98MV zyzf8(BMSIAr=W{RH$|wATxiEmWfRGTm(cJW>5;u%qbT?A{P(zT@w4aohnH9veI-TL zMX7AigRUdd0e>oGyQmaSH#xO#3|QPu(j!Q}Y3F@1tw(TY6~-^YD8pXjV*jTdx<}eQ zzcDhH6z%-Oy{hK(gVU|6(ckSoH}K3BM5h z*>&wY)&uPSvGpBWjw(yL55xfPh9HD@5}p~}BfNY1A61*Z_q}J(Yt^b&2}mM86B!wa zDs8o#&rH5OUHBQCj%qc#A<%V;5e|M#kLx`?>)KIFe2Z(mi9hYFksk2))sF~7U$VD4E8z|0Xtm=gcu5cMi32`f z`8Cyt(Cw`uP0b2|dw*V7Gvp6SeIT{eJpV^OA&C*ff)l0dj-8*py9OP{@Or#&-kmo`L+YcAYYA}}G(`-Owm3x~fpjxUy#zHXsDE!`s^mty!wqvrDN&ciOMgA7RyJR*W#8E6C)eDeQ5L`H(EV z%!WO%Zw}vOu60lPyQig-U6gT`gV^}RKXx@&4$Y{J`Td%2UcW&A>dD9dc;?_H5Q;wD zKF<8CO9kpJSf%|GqBicfv4_*Cq(~38U)gZHn)H4*($BlCop|En)F125K}U<~5kI)s z0ljG0d89+N-suAyDv;v#o9$dWK~58rTLeQfh04$zD{V(lT1TS@1Q@-nLpG16l+}TN z6TAM%OPwM)v`f7$<@Ea@l}rQ=dL#2!psWzZyv%1t@X(MxZk}{hHID6W{a=UIU<$A8 zdi|0Hz+%5+AaVHkkfkf=5zso$#GXE1epC5-stFwCIbIy6C8|;POAS6mY#L<@p|iCA z!u3sb{K1T7jkqEpr^xb|etYgghb!#XvcEn~rQ_h1{|6$;ADwGwRq%07j1F%Us_S#(YPY~*u~^JCymc%y5$k8q zK0~;;y+6BjQ@2lWEv^LhAa%STl{&jwp52I9C`={m@P?rB6%u^uw|LF%F3ncS`_^A^ z=TS4q8UO2?m6rf@fplPv1CW3Em!0pbo*o^Kk%jDZoB8D2L2s%hoY|nyA6K{Xt)5Qj z`!-4y8?>GR?ZZLEx2RvrA>tmQQq5SyP0di&BBH=lO*dx2OHqTAGOv&v@ zzc=>fQCf<}W zXqV86f`%9p&WWbR8;532j@(4~_1OoL4w@{mD}gz=4FBO!iN*Khey`)@w7!S1Zju^s zmOLs&74B(<3gL7k3*spVQ8y}XG$@36=Z1805w-3A5_nm zLAw2W*q%`4AIM;5;4-%}Sp=E!R9U@o>h{yn3eqRyoc2TxkH57!dwl=uJ#-rUfORm{ zN77!9m>a%`|C+Pl0o@J}rBEoLrjxEwA!6{K-Woigmr^g1vG1lqK29|9Dz7_U)4s48 zME%^h<L4WHSdfHM+!Le4gXAsGt-}B;8 znlsMf-WxzYR zN31`%Doh2Iziimj9;U~af5zz{fcs0e;rAz17Z4(u;})#(h%4QD*8BV4htpu@6OTv{ zH|EDXRlDxQf9kdh@zB^;l zN{{Vh_V~*s%$|!56M&RIpMstw!P3h5Vn3m(qX=73R`hu{a%IN);WYXNU-E~Y_0HB@ z$$G2NF3I6CkN{L?|0*&!%JO$SXRM5hq-_b3oIg<^-FD&OEcSynH_{Xbzr%^7Ve-8W6v!M_?0oqedVj`{&*n^&QO?*Otde z%xXtt*wv|4eIO~6dLc#h_ug9XP#7pz7j%4ZexwbnOGdN8%d;%W%Sgaf^E_UNTjCbH z=qknjBeE8@zjY=H%}ia&$t}ND$*4OT_HB_&&~M$)IOiY3($8zs?rE4=7%;E`aqTu& zKIFV734!&eZrYM&qhLbvs}+}Ui^xS`0lv+e$(5k=Jep4J41-KP3hD2#s%1U7ub_XS z!&xNHTz3>&{>b1kWa(Kio5QE#gnNIJzN!_!nrC$TO#*&D*GxIor9NKMLt$cp={#+p zJLcmPIK3!4)j^odYYRlHX+!^g;3rFe{mF~hDDJh5ei}tu7d=NSFDcn73MEB2QIzSM z6%6f-kHa~U7dtxE^D$%1=k zA}f-Nj?fwIAad1^%|w(HQERMEqix;@RTO-G%l3V1xbb%X6yO zVc*)Z+O=oitIZG~?$cjL!kCSbFXJ9-q;Lz|$dX!0owlHLCn^(NdK&C`OX(8qUx2FG zq>B3SM7WFW@x@1Mk^YKh-1_cC`+XmQOzdx~0bRC_+K5spO4xx~7x8<#w|uW7jPcws?Pbp0k+jo3!7y(-1%3k@tQHHJ$)j&jh%ag?)Hs!;+u;!|Ga&d~DhS zO)ZNAKfKpBfoXn)KYcO`S}hV3$`qo)dLfy}L0uUle9ddE2EMU0T5uzcI%Q6|IRGUO z_&C`I2X9WDy>6$1d&Dfm4l=!axpv^0baH=JSg0~k2A27^wb1Q2v0wYY(iE$-wwL)~ zh!5CVK5n>C8Al-6b5%dM{gUY+-yc9@?*NFzaTP!FXi)?&IKinv=7?3V6Tz76=PMlv zwj-J6^HXrEwX?wjKG{y=q=d)Z54Z>cxa{G54Y|QBG*yYlw=$6WjIJ}n?mV{MU=!ei zi#5{AuIHkItPqRV!fw(j1>x+@GfLuI_XYiNoQ>xWlGFgOnvzrp(92$>=cP%oaVy|5@uR7)vT&d~n-b zG<68@B~FnG)#&!XoAz@)WKahTj)XZn^EKnNBIp>|&7E!(MlU-w!)1BbhAX^7p9lhh z$`Ut)uibn;TMWcgSU6AajpAteJ$YiA!Kj>vTXI~$;>$P%QyDg0z4jUSDSllCWcbDJ z@>sqY;buzR-hPe8+=G*|(DwbY9coAvd3%AJ=}umZWH7jHruxIoW9iUuR83a@co581 z{qY?Mkw=U6;Z`2$NA0!ZO|0xNC$qRoFGcg%XQz+$mckTu(v9<)X*w*grY*@=fV?LU z(B4TX6tVcekozg4SqwT8u=JLA5%K5Net&z#G>`B3P|PbeBxFr#-~UPl96 z4^6?_qd%?@wvMh)Q0XvXJ9onPnI0sVP$CXK7uYTE2cl-FX_@* zXmJw1@ly%~Ea$2^B#AN{ShD^Th_6RT0D#C&UCU0l)%C&SeuQbA8{ne~lTInDuUhub zza3`0!V_f^#mY#s0}}7gb7-t?k5CuOBy7Xt>u5WVEHMM?9#jD@O;{$5AlVYBIj}Ss z*DdTI*XLu8>*Up-g?p^;S!by+!tBoj3)s2kn~S~p^A-7AmJYxy-@Im-dU4>?%^Q(bGeeupF|lFm-KeFwfmzo9=L z&3wAg*1m<(!(7)j#BcRF^L6Ye&HQ?x8>SOh$|6}HWnEw$h3er{&)-lN9C;6fhaW4L z=EQ4bh=0o;3j;(mNylJ0D_s7?P25bPhW!}$$7d>#+UK6aHs=P{BXjJ0JX5Ro6~1ti zo|31 z;y86_ePEi-77Cbvqd?dyV;v*N+c@o0&?nvg%}dBkKa-zsif~z`0BpdzLlo8}Rk`g* z?8qR@TlOz8QCyE;gxO5FmI_002Jr!g@3xl46?N1zn;vmOhN?rKY!6=F+$(<8h1_^h z0(J;H#}AoVs_vSHNg@8O32-7CKX>Li&sYcD_BIb@Y!q&nUjni%@_EhybKKAr58wd$ ztOK{@{Xt0<%Fj6V>E0OAe9J(|bKx02wj2$FlGMX$;yM2@TjEsn3^hZq4hY zJK&awIjx8c@Bh?0nsX3D9-10BLO?Z~)`A;Ggil|6`J7aU7R&cUQbkrKAtG0L3l>G_ zquAa9M46h+&FZi6n&8=`vu3R*L@xtJfMPLMpGQc%XNQQ8W+sV$+DJMTUxY;#_u0qe+QpU}KCY;HDgc{I}xuHUYGfyssV1x4qM$l8is5*82={@%7Y|`mdR9gyH z1`4-V3D5`a=q1ZqY^xvlHGggBbHgNdej>x(ZnW~)d~>^{N}K%M$MMlEO-pYfeXZ#> ze`r5ATF+ZsyPIF!v6^)NRROu4JGD_wEYz0VZ^?Z1fliUWPg;i4&(aZl#Aq;{2wyxK zUu;ro$`yAt{(|++8*kI-{q2`77w`ULgo0=AgHpTNez|mmCPon9(yFhlGo0v=M13$S zrRThkpd+WgU3aYCz+I|i#E14LtpXUnW$4r?gnbKoQyA{Jd)~q3HaHQ)Hn3;c6>bF9 zo`tu}g;=mY0vx}!_Z`o7tYm$?eel;nl`fj27EHu83-Jb_JacO_UUII$ixoyFMqeH? zsU4E!5&CyN^96GZC94Vp2QB_ec+z}=F$uNUq;qk%QM<7tHgNLA{?fx+jYfurtRRL% ztGNn^EQVODLdQe;=s~B~jV*54qDiF|8B*un+&jnG;62RZPmjw7Q#$v=(HJWMP(eSQ zc~H@ls+5gLkR~n?N~Z2g>%G&*e)aFC=W2B;NdR_IW2((`dk^V>@pZP5biZUCL)SPq~?a15|rqFfsXV1)C1{F#SBY@5f)ugEQE z8YDq+eqMkIzRjQuQwHaE!p-3|217S7!FT*VY@fn>dip!39$rPX&h{vs;L?e;tkro! zGFWd?4l7bNDTP}@-v)V4%cP}DfJULVXTv!5=?3#r*?e*z(AA;nm>r%`*`m;PI1e9t zAPLKy4Z@i%hKl~leHm;Z9f9x>cYrcXOY{Iosb-!_I0^JaRq%B7tk~|^CsgPcwUlAO zx!D147oLM5ff*Q_Zm2?KDhl5>Xxl#!rqZ|2H^CaZCu7b{{br`nHo8w+>$jY$mzkO7d<~!xezYAA0Md+UX1nUz__p~?Y!+E}jP8c9a znY~J!aRvrrr}tn&b=Y>$r~X2>`EN>!Wr8t`T01l{CHwruB^r@Vm-alnOk5(@JFOLZ z7jgG|mMy(QQuUEv#b>>*yr$Ua73~12#fl#A>?}N(xJ-Oaim^eb>mX8F1C zqI2Fy(9^kHgs2*Gd*VGcJU##yWNsZnWI)d@SeP&95Us0EZZd7>Cvm^A2+1q5tl0)g zSCB@AYO|AD+{~ZqQ~a8&yQ*C7`pvM=#5;+=bh2N-K^P4@**pL!LjF=Z5|1vF0!{4U ztRcyf0`>RYwStrOB^;qF`H*i1@&mX>D2?%j_beP_D4Jx33<L=sK}Lk^EV=Y24d%PE4gh@JU!PBRehTA*5}CqU%naV zrA-WiT;=to^Q1sZazie z^F#wzEv0|Y>XJZoRdlZ9&;ee~g!2jUP-zf1OAt~qUm-TDa4F~wn6l~9>q}X@3f@D; ziz@(=%zxnlyOVNtTcZBSr`QlppWq}V5x70ztuNOUZpk+pz?s{A3gx<4CE;7x162Ud zs0MonJv6THXwyM19QXKs$Vc#q+gVpobiRe7h4}EFEAeG_Xbjhe;%4o)S4MN3V_zsk zyW!KF1v|5;qz5CB0Mg{5h?;mEbuBEK7SpAyEP)-VZ8$mU?aNkTXLKc8IbBe5^Xi3? zBMA~Wbs7**t4_g`9O@>tZxcgL0Azlzm)(Mx7S=wTsB2wD1G$KLF}iJfczWr*At%jv zdfxY2$vvI4UXIItWc@2^Cok>w{L{Nq%UI7vYs`khrkx+Ql;M9ZAdAJts&R=3~pV zf3FEkkL0TZ9iH$>3dGn-tsE*o_(mCu)&ziHAt;JJOz@UgxVwUKy*6=0_ zc-KL=wB!%T4%k2wLTfRR#9&2~sSL zW`dC(tPOu8@ol$Ue6))V_1R?hjR@USrl*bo>l9^av+S0-UKeY?nVUGeE{gBQXBN}A zOiMa=+NqXY@UZ|!jE9*aZo@ML?%xx&mnu36$IFy~G-i`VYZf`u`xAsAJ`%?uvx`+v zVm#rRAm(Yu%KLMj!6rx`NECv!1hgHA(H;3GZ$kKa1CC^anOX1FhYH*(393vY=%$be z)Y}91V%S>5uvo00wS~9K^0mD~clNJ;Es^tD5D+$8_8GBnPz#abBLER#(K8SEh(X6u zA9xwxaYkvw(&$xaFZGPq_uZ4w%;Q8V&X}`Tc%Df7h+!kV= z>X$2u!n1VL^OUn&*m&)#vC>RaWp1-Q^g&3%C7}{g2g$(=BVJ*$+Ezf%E!=Z=$sINf z7cMnBTmKO%QAMJlrMHV%lf|c7r&r#-CqLv2PdfehC_!RKyAH$`@Lm1h8!lm2M7Y^; zh)Y+hkg@DxsR9CgCK~+E+vBsq>n#_TkYn0&X56-mbDvU~$4U1p82r;)`N6OrGq$&` zi>lw+a6#J$2lFG*`7Z^{_uT&U_ z1tY=w>0t?>U$l`|EK__KiOdsWX#3>gJ*ek9JxRcNvJfw}G35uNLGu zI_gX%!)X$oW^EeHrrT`->g!i)KD{KD78(A{NMZq-f%sqDL+mouM$6Q3N;WM2tLI$W60GehQAOsqY+J@P3LSfSH zEind&a^W|JW3ZV^D?4@Bn^);;eYSt_ZsD^!&yfI z2X#RV{vd}`y)F+eyY!pCrSw}{caa#_GI)O}Y`(Dp0f1)4)EkD(({2D<##*}7@F3Lo zoIlo7C&&OXALlWKPE1X^?EbFLlwY^5zfsScj=E8Mdp>7#egUDIFJqRfDu^vag!_gU zY#5f`P(U239Qc`XoaWAyyFYY%MW{1)}HcC zUPvo@k1YiQb0q+pa=`jhR|qZOD?YVRP6fJm*Tt8^byHPg_q7wN(HU&=s@FhbREB(r91qq&l$d} zZ|-f6SS>-`x9?f(snmYQHs1X5jTJWB+Ag5NQns6VjuLR>p)#jZq=lcFDXW3y?)}*1 zE`YaXo>c;10(1K zH{0(+lnf!7=|oPZk@fY{-tq82hC9}Gmt7=Cd?~=2N^O*mZXgXb0Y|%J!SLi?9Q$Av zxsIyo4I}l!+wZjY@^}x}*DC^O0*VFiC*E&jdf*z*AQl(-$!3x8YE&yWnZrHb$)vXN zPFkX#Ru&iWKfA(4Qq6ftD8;@WXU*DCL{7ZtG(h)X`j{=0_fussMt;V^elb!#m8=)O zUy6WZW}7P_0c-M-y~>IKaGKczDdLw~oC%w7rK~j`8#gqFS{3C`$dDZ7yyB z9G~)yFi>g^hD8BxZ-RqintW^V)~OFa03YU2jWmo1 zj|I)g9g{cX1>K9Bo9sR3qI&C$W^?fyqdP6D;o%krXjO8PANf(W?z_YVZ;9RLmaftx5SIbXRLT!{*Br|p_qX3c)^GY;kkr?XBefG5;)q*pTs;=}I@*JwP9w zQG_u5=DA0&1Jl3z6eb)eSi&};Ywvh@3Ta{7mPwAhE8&1^mcffvS>muYFsip_y z1oVxC3{`;ZNjBB!Rt>gHNu(sh+piYq%hFDub&Ro{Kc#(BtFRx0!ycx{y0*_R4`8s2 z%3KW9tBcFI0=XcRkRek2K2;FhA4eiv8$nlSldT_lJa0c~O-ioc(&=fHg<6sDf=`8R zqbq>tFx9Pz-d9&H8lTiMb6_^_*rX{aeDSwnFBP#^W6zCa??oQdjR5Nacc2pVG4c6X zXE>koW?s{dzXrk%ulyN`bu$+5j_FwtJU1NlVrTN+HnGRIe>gp*Mzw#JH5%%%cREa> zHlb|aaSYoj^buq0}}dnwz08p5v(FBex!S7YnoGkuLRpg|LGf}&!zfI8*t52=yEFq-RtOM9GEH5o?|mHD z3#a#au#cdR9CRYg-duI5G48!6;9B(pzr7iTIPuSYN!)`LSHO{z4bi=n-wLIRL(nn5 zIbvy4XjQ4Qs&LQSo^*DE+#HR)4FCSi2BU}VBJuy6qY=HCY`ikMA#lV#ZtRTXyamGu zBZVW79`j~>+kX*eEy4N>=qZfc?(c)E1j3mH3{!jE%B0B!w@-NS>~{O}=*ET5NADt` zy%Gcsg%kLM+VHYP^mmTcX`a7$YySwVAN67BB}wD%#cE0lqIky-SJC?8+Vu+vTvuM| zHEektkY*him!dckk}lbSlTwLSy4g8x$gRjY>i``K^N^S})eYDf~$qV4I!LQc!!L%;^lg~_=v?*J?ASl!t>PPIC4?l~X%ll@KhJ%6xz4=SEX9#5u| zOA3p2Xv23fIm#A0JuM~~N}7AFt|jG`A-+I7=;WByho_Z^n}#DMR?h?9Mh_qz?79HB z)%D=^W2%!`7qylvXr}|=Zu0$-aqxCM>Ud^S>3PT%B}wEg{Q1I|6NK=e^VFXY3+9%c zB@sgUu9q4PJv&7TE{{N#_*IHVoiGy=?Z<~uT_>x&!pE9T2W z*d4x}mHKiMCYJRmhRPkueo?u=c835#K)$~wF}FsPe781Y@-h^TtGo{1Z|(E3%Lepi z(C?U!GJc@n9G+OqTZ1bABI#-B1Oo_x{!$I=?JPa_-YtJ%u5UgFZf$>BIVw#Y?L(40 z8ariM1=*^K%%)-i;(Bp@Try?L{$~8}u;AW;R7TTF4R|a6(fJz;LP+zlYymn6-cj#B z)VYAY$H~uvLi!eUCM4}0@$s)SB?LC?_(4bNYv`lz^6qm+E-3kx1IpPs6HULhHM`mE zXVsAAv%Ci}bC<{@b#FWkZ5>_V#Wk^bd~Tm$8j;yto(O?+6(-OU`Cj^~w(!9WiSQN~ zR#6Sjte=T+qx-FWrKmwxeD}phOqA$Fe{w)f*6Dk|kfOGH-FYL6DXkBVtk9GNvNP7v%EK2JY*)=d4#Uqb8}|STgZM_v+GNow8qFqZtOel@7hJJP`+O3VQ7lII_YCy4T(%%Zg~e= z9@4y@;@KNu8iAo7J959qm)CaN9ygy^HRx>_z=>|9ECNy+DpFA2PU7YQh#;2U<7-8v z^eX>~6Rl%Cn6Ol-0YzFb~Up<~cR z{+=B^xLC>-cAJmI1vS4p^dTTtKx5~bFkr*{wzC-M$Vw|38(zZ&2I&-?eF?>ngIU&& zKi*@k&0_G)4M?rrxovF!$xTv^r^j{=`Tg=ZQQcr<0Hx?rthINcN$zH5ud7%Z1*&kGMgX=GXa5k;IaGt5AoK}QA$$b zvjrctk5YXm_&$k&fXi8PAK$hg330n~;A~-pn3gB>l_QTn{y98dWXKnD|mfljde2t0m$uW|(S^G(bum`G3!d(wpOG%88)K0hWKS zXTqQF*)5L%(ZyFRB0ssu?$Jz~5l#IiCXX{9$6vWe{=s|MEmvbpD$@QvX8rTP_Vrad zvGUCW=dRJci(l)8g_MCe4>+UrW}i^^o?}jXOTG#UNh(>VOC=_(WOz{PhkU<#;Ot5< z1gZUW&Vi#eJ3OFzSs|6gjTM+qh^@63g_1cqa1bE^_Oua}D99p&8}Y3h?yF6mh2sU%&oz8BOfW0ZB*OA!@Df!OpE20D7WpUX0?}YSMYh z(Rkw!VUOzfpT`azc^dT+zQG(SrweS`QNU!{Xq*q_7OAX07=-CNw)7AZmNr5!A{x+J zUTfdIP;HZv=6?>8l7_aHMNhcjL)Dvq-$Uw-9Hv(Ye;9EkUCX&mT*w-4Z2`?r1KF*A z@BTDE=&iHRCzT_UPk6#x1Lr!xgm*H>yb!3vsD~*0<2`srx_uCHR?E8-8t)k|mb!q` z){(vB^;efQMwo9L7N({s*B?M+X(a|^gP^$3GqX22n;~jm>kjJX4CWvS4mD(0T!m}> z8IOUUnD^ilxWCx~MnMP}boY=?6xG{tDA*?5|p?$%ufV z69~_s&KH|X^ezb(W&{GCc!*Ze<3~~&w!?b3)WsSa4gkO#o!EZ^ogI3h&rP^7 zXH-@aAe&jI+-8M z0`c*jSWn@YV+W}T;!-12KJ{8n>9&7ETOh?aDP|NzIeq_oeY%6yl)wL=!gjsr6#XS! zv%;(0N}Pb?>c=f3fAF(VzBx$!7*^nA*A!TgPwma2==SQ)6@Yf?B6E5GA`^T=gij71l5+DF zt%+2*{DCh%R=c5yhmsqKwCy8&zcCv%XpkO#s|C-EmeO+&USjcZ@vBEaA=drWbIXFa zzyi#FHQ}BcM&xhHXGw%+%C|6#eytzg9Na3y^p2>X+BRp+BO68q^`d^)sj*BH`LyAE z^NgH!@UPJ?t#P%ybW4L@@6RR82L|FFL|c5cnla4hCys*jGAO=LibCxshp9UNUaC%& z`3az0EVt*5#pRrYO`)Aw(CH$D95NjR{`xEJz4PDtD#L|Wd0VJ0NsP-F30l0uShTV9 zPzML3z}0Sf8uM2H_9GizI65_v5WOw~guoGAvLfH*wij&82m`klsAySkb4LWAK;}Gn zW)_$#_^p{q&2gR>Xa^Zg8S14^-Th~z` z4W6&;xXe69A(-;Q_OT~z7!&pFB`1bZ#wF}~Ab;Fa9sI^au3h$n4+SG%La4gc0T>|P z2d+P6ww3uneB$R8DGz@ZF&9nx9WHJQCNCwE(NQI^6V@=DaeLN}X5!!aSdCexlLDE4 z@8?ySm#sQu9A3NK{;72h#Kh+Fm$84;>DDo9ckM|XAe_Yode7!x&7|$bdhZ&AmsQ}=V2iyLpSPc8a6VirTQopyTk;73F!q9X>Vfw@}eRO9UO zGoXPn32P+zU_Aj+n?V(*bZaN-T6O4oO|Z6Z@cB@#ucUJk%ax-` z-S?oFfk%&~q6Z`x!k#d)wEHHk{^4Xd-XaRFEh>V-Ba+2=DdYmy;NoW3DKz@z2Lp3= zQuvDEzC~s3I>0x-0KT4+7n;UjoRXitzyp|asIaHsAUh%bF`dY;wlQ@6ngdtTBgb{A z3;*Y=J&j8MWzT

_X2S9ot2#e|ZV83chQQ59$+ss45_rEY&WMqInpBmF=e%d|bY@ zqBQ=k6=hZv_FnzXJ>1CGHy7a(H-fn_O|!yX9%TgRi0;`BcN$H>7g4b>*j0ZV9K_Fj z-sY}46pWzEV}DmZg|FBH9QMuEs4T!rN-Q0>gzRv;&1L##ITzePs0C>Uv^NTA%q=k= z*Tk&Sd%Jx35S?=wV?NFCfjo) zlWgcC04y}?777p?#^JiyI>ZpjV*A-we!P~gJ{rR+hVXf7Sg_DVfdJ<<=G&Gm^rQKRd4Y$Qk>$iwi zr3ex$)>2ti>amt9?cFC^) z<|85kf#3ss9%|HH6*KFfQ{!H8lU9eue@+K*h}IOsp?L3^C1*L+U`CSB7%|;u3 zbGgfam3;d_EYrgae`_6rhJ5S0xOZji_h6k2SgpK#0;J8Pe49<^lvzd#`LzAzP{}*t zV!7BrPj`a#btEnbloQweYBlD7j#o>(6Av8MEhOzx6D;V?jB#*aqif* zdo1&`SrcMG?e*umeqycljO!(Ra~0e-S0Q^*8#haYB;^Wtf>zn2q)Xp*9Vo9WYUaz( z_ea6^JXxCNq%V-lrBGsHO*{>&JH9o|RolrasMS8Sm@u<`6;b*2AbV~BB4C*vzA}~B zU80q`;L_)(UnbMdHat_rc!FX0Z7o@Vir;}J2dr~LLOm`3e4toW97O3H+xo5Hw_e-D zI$E}P$X@9A6MSyy*EhV>_($}KVhgG?AmnNOXFcbm+StZ^eJ=YFe)dCIl|H^Mn5=%{ z7y$s2>C`1~%lT(N6e%3^iWSZps0{;c2(tDIuBy=l*1d&M z@v^#k7W{dKQqt^Tq_&25ajCvzGm?J=cXsKEzaHW29m_4j|Am{n7MWh7#7nsz_c$urW?$ zMC(6X$SN1;^3P<2{Nuk3IG$SQC@uCHr^Yp1L<`e)h4kxEz#_90kXme`B)@Jc*l?ns)AZJrLpfj+@y`fZntLcNdF!!9e;Z_@_dpifJ^)xNsk)KCn{+guW{yB{aD8=S>>*@ zu^#j|Tm~@=5IB@1?lBElo$E$OmY+oi)ZtcGtmhM`Q_PrAom-Vu;7qC&U;spMsxRAX zq3?zX_7zMh{jKw;a_uLtpoHOjvRe{*Y%|b}X$=2ba&B0#-&zoWi~ly18MNGq7PYf7 z%F%zuuwOBY+4WDQFLBh~bC0@z){s0z0(oEt<-DW=od?o*oYWLSp7z$=E(u*{oM# zz>H=Y84QRk&OOKBetp(Of7j4WCU;$RX^F8ENawScRSIkoxsf4|VwZCfhJjCpJpB*2 zcTA=;)YI%b1_rV6ZYSB2I9L(zNcAVRFx`b+n<&;^D zlQ9p^Mb6PcSeb!m0m1*oYV(Y0FEXG1(la4`kM;KUYYT=(kn(_*|D%3EF2a77OX1Zx z|1qBaL)swo-f^QMMvzQ(3Sd!iE{;~5|2D@UF7o3$r;^6sc-;8-{c)&>ZPYJt4N)SC zisvP{p^56vsr-Gn^U{CY_|1vh?bLV@WnRZefVNBNy*_`r(3dWBknf@-T;`A^Dx(jfata zF8&JBPqQqXxyJi{Xv53Re+fUFEa(-ZBMj^A%QWUyAGN|U=8_0yu5M=~6Z4_PH`mbs z5)n_JVflA`X(fHQKjx{@NTuMPadLyluX*jdAN$Z`n^2yaP;c&+Yd1#p?ZY(j?_YMU zzIHtvT}RO9nLfHs;7mwydOCKKC--wa7g_y?<4V zxy5P^jgHr6U$B;KPECI%_$NX?ah!*x!4}PZa}*KYIa~ zO6*gK^=r+fd3}Ay9I=sbhQ#{!v0wI)2-$be9WQ^34L8af;$dmsHD4~>Mk6CO1WAFvk<{H~Bx%WkpB^c(W?E$hAyzzM+BxTBii@>H5$Jaua;@H^ zmfYkuv3MT4#=XGDk#b-?@_Gb{lwT@l2B+ z>gxK>>4Eptk(5yPQ9Wk7-N7X(@5O$58;bY9y}V~rOXDlvcVgJXs>WZGC{6X|Tub*T zk);B23DR=&YpU#!OQ?S!Uvdv^z1}qyPp9NcHI{N|sE%M?Pe90JQ+BJ7xhpYna_qjH z`kkPGYCR)=Tk@19a*AabB`?wRpjcl-gp2XI$tO1S*xm@sI67oQUui%%8Ify2Im`8D zcX8q(t^Q}fVC?8)N~7gDz<-y0BprL;{>cH-ggEeD|GcWl^HpKdn%g;5-CI-G0mRLi z#ia5(#=25lYhC|i-4!ywPRMZ!U8d~(+;FL{?iVuIr-c2z?kX(xSe$;ZZ=2RZbY!oZ zANLD;)BWpkAwj5vll8*&dF8BR1CHdP zA7!41lR+^cO0?2}#kOGOL3dm;EHDPjNioDyVaBAb2;)oC)puBwD63OvnU|-=Kn|&z znlUK|sbatQ-*=v550jzErwy7aNg8ID+4ve@yF{k1;8M=ty{3>$@$;_jIx^Pb(#Pk| z@#%}m_ms6Y;$M0fhGrYZO%R)=_}3)W`8%lP=J@uaxa0;^jqd z6p9UWZ}LOxV|Rg?Nyldj6~)oSqm5i&KZ>xfk$7FJ<{d_Wlp(P^QEu06?GEyCKbeEo zJ4yq}b3+sR^%&XF%e1swVy>bSeFf%&Q-p#~xCPi_Zx-Be&NE><)7|jrZFoP^OWY&g zBwen-X!b=D>y&vXxrVa8?{!w9gmGbF-MCX)35_b9TR!7n$^_u>TzoHurR@_vG;%pJ z0*sv?CHl3lbJGK=cqfeZm)?C33l{eO7~eb->$wU0C%jHY_|i5~ zHt4y!_xXJeEh%(nda5dIXr8r*Efx8FS@0d-#OLLBJXV%vPhLjmvDEX+#_Q#`H;$>H zJg(@TaG4mhDU^g*1C}I-bLU$}_nRdp(g@JAAz7|3dL9opi4iCA%3a)S^+pZI#%Mul-sAyhk9OWj6_O3otpo_+k>lCR2 zEg*axlMDWH5l{rsTZ5lh4ZEFf>Q~cKSKGyT#9VwrP6CJnQ$07W|L82Q#A=Ljqw8_V zf0E@3^xpp8^Cj*;+?#>#xHWkpRS2~SEtK~ceYU3Qx-3X&G-qq(8I~9)-7p2p>34|= zhjo@yNL&ro(yB?RGM_^xX7G>YbG_(;@$Jb+t`5!FAMM6M0}wsLtS_R3)kIr-j9K6O4q%4Wo|M@5yPT)znY`vzN=JtH7EFBA^Jr4 zF|C8~*SoZ`NV;3_Yi+pU;%i}e#Ow9T9k;7DzJa2e9`pQbuT^=yjw+=L_-Y@HwZxDg z?vNi!`C)9(2CVRUsbZ3th`CQ$jAPeEJi16E6B+5YHnM4UWV{n~O6e`}%@7|;_5Rip zDBIsu*EY?=+F|_-6SeBjtnn(D;N4x^p?Anr+sh8SnHFi^BsyF-sLKtU*}Amug)*YLt&nQbx}1^^p!2$TdK8bQ zW}`L*E-}8fBV4FR%R+;#iz znFaOunwh=I5kG4U=B5al@4QViMP@fRb^gt*jQh?Wsy&h9;zfb1gI(*TdI&n8n0zO# zVY1NQu>n3c-k?Xgi&95l{`7Jb(5nZfWG)f;eVsfmFDE$$xe3HpMV=gw+re^#lq~O5 zi`&Iq#t8mIWY)SJ>jQ9}RJKp(KTbn)MH+!}Psy!7_5;SZq7C7m@1uCB;T=6%1pj## z@S%_uxP`4i;(Ta(WQnl}IZh;293Y#dXJ5swM=>V2w?PD^sQf(Mk6Pdjg0reo+;XS$ zDX{-qk5iPGg452pA|eB^HhS_96|bQ$Jah)q$YL==1&SK8l6|l9iU`NW`?CsK`E;SU z;e4dc5%j8X!E9$lMt|puT`a@GPxh0y=*xzZ@{yEdIsEEd<7LZ3T@LY=#^qm#WKB5k z7V2MW)}{&X|C$H#(_er};#USWmI?23(WJ293BUvr{bV1O;IXx zK%#VJNu1#i#Jn9OFB;|8-CQ-ePmWBHP=FQV1p1=?^lTq=;a*f}I$`WJB>M8<<=%3G zG~{%odu|*Zx8sb-INF5x;+z?&wJcCWpqSmq7w}dL5jm7%Lgz`bWk2houD+c;h*poG z#E&nO{v*BgpD}I@`4U|jtrRuGr#rvBGE|Cz&dRW#^*6Qchb j4^RwK)Ti%hjO# zy?v&3l>=)=py&+#k~mNwmumF9Ir!(DYg2qA8d$HXDc%#wuVy>q6+W7rYb4(m)kzCF=rsM;T-W@`!e zt^1p{Wu7ZK(c$+o;OhQX7|78KetO@ZcRXQR9n#^!i;&Bl)Em@jyf1y<|LeBGqCxhg zYYEGfOslQ7K+YLmJEFXE$Q~|r%y8^EPt#-G!eDA#jCRy^c8ZQU7hRrV-pG-a=kM;# zJwuy{qM`^F=qG!k*9yI;`76Js!k4rb_t}{4Y&yLC4;yf5Z`^{@6DLm)fA?$HBu(SO z`Oitesd#cPDpMt5FVOf;tkVwRF?^27#r-uySuboB4FC2Gt(mxA$>cf3W?wdt z#~>~f6t>Sc4dyo#^jDGAq-~y?|CSHq)0)*yY4$yhO>JIWy2hi!3~v|J*8FQ_v)9-t zS=m$q-0CeL`Q5aw#wASYr7n)5-$PTw-VXP2q;`S%vI9BRu94Bq>?S=u|5$4fNz(i2 zOI?LHBv}mmBuKfNxZBGS?u5_8kehdA?Gotin0F{7IPLd(dj9eent$g8U~Bl1jqlFkIXfw@ESQ=279#GP zPiU5%&^7pY== zA<=uAuwv@Nrgi`#8q18M5;IX@D@MDVW~SE`E<+OOgP&(rM0;q7vk} za-x4Lr$ZPM$XnPq{bZCFHMNz(Lw2`(aVpN1h8VL$?xCdUgLR7J3WV4Fq_8*Sdl9jx z3JnvewU_fU18VQ7IiMsIfm(Q)_p84b!dbTFlbmvweeGrA+*_(sW5GBuc+aoL-SjvW{;h(697`;T;v^a z8!GAQcdg=Mr_Ed`=4M49gFUw9yncjqzFRl7l2~ILxLL4L`VU={svE`4>sdbjAO*Lu zhH%bMM$THDjQ~nt)=z|f=3JQ#w77-NAAWmBfAr5_6vHL-C~JA(3a|5;J|H0%ul4;9 znVr=H6*s8?G=z4BMu+CJwkSF4${t0IwX!hwI~9~om9c^%4RcO_rg;oobRukk&zElfVvXZUgIb{pPa;jX?urz z_zKDhEsoXVIVeXzboKF+kwCX&pY$qmigs_0ly1_dqM8ASkVFh=w$*QX9n1o8W$HQy zEnx!|2jIHe{A86iAUGAV$F3?1E%OGYO0vE2B#FI8yPVtOhZCN6Z9o&FwfaZ@<{0~Z z=ohX#LNMF&>E@jI5ibq5lNiD|-(Hw(!$4{!tbV`$^xx^-?EQy(RL?Kh^!#J)Xeu6I zi?LA89kMc@#L_j;6(EM9RK}K6-c)LVX7oJq_wZmI;o}c<{E9qpka$qH(d^ z=heHo`GX-iR=ftjaT!I6ja!0}ZU9d$lp0PL^Fb>)9x^*%W`ASf?Lx99)=?f;{8iuT z*F6e<_unX<|JHv4$9{Ok`-K~?L1oebpWkT}(!_;Rh|CPBxqLf4d%w{@eG=)XWO#1% zI8V5Y{9Ue2mnaHI)LV-`NcA}_Ns9(YOD`YtqNmB^@H&Z3HwtiU*>#0XwI-ZQR_UJ=Bkr8G?zx;V1Q|Be^I?O6ON|~Ovmf3)Brw)n2kqS|=KPgl7r|33tex1l~Jq zPOuy(XK;cdv7PtwLY%P$I+HBAT6N-9YQ?(O9QAGYMhWHkQQn`RMXZV8{hcK*=o6krNr0xP^ja7%QyHrKJgeb8y-?vv zMs50iN63Bmc_AXTA<&;QOS*xVVH`COE=WVMQ9}>SpJ_?hO-s5Hj zTXth+%k6M*CVj@yq4+b^3zjp3mdnEYqY>ySFv2OjLD`(g{IOYoIs zmR{5?9O;X%r-9JU6zkmow(s#h%>osPJKFwuxEpS&mXv$ydgBp?m#>Y(OW zvZ_xC*r4H<$(O?|pa~iByiW;rmU1zw7sZY-r>F5Bc7ELDCqmG3l(Ff5IYD(~Oo;0- zvvSoRXvp!7D_CIdaaThMU8$YdW1}F4z_Um6m=r z)u_X6zj-Zn$or1-3ab*Gzy`+EG+*!T(=o%twg_kU9dscIf!k*a1lgF%I8&4>ca)A6 zeD2{k5;+J%T8SmpMjkJSZ?3q8)-hts<6m=juF(~fCV< zI*pn;XW>sjPjWPItqL*W=r*WB$aRfewt7>ny~fPiR5T9piMU@j2+ma?-|E*WZtKI* zZhCTiO|wp}h|S&fUb__9sEyDHrS2uN0O-7&%7|NE)##BFVy#5~9pn1;%d+EPs(NG% zFhV!2V~CME5Dt%&D2(k^=N{~jv#Dgw8j&H!6tGfI{+p8Tq06X{0|W9aJ|k~JC&7@< z_excBZ*i8LhUdL^VWQ8$-U{jVU7NjYbjrq@F(iu38J|CGbO@fyY3%y;Ug3Wk@Va+< zS@ubWGF>v-KXW0yX6y^x)DGFd|MWesXlX5$)b_22_R}Vfuz^(MGurz)^NTef#tsF$gxuR9H zpdDPRS>_NNI)_k!P%V=FCSXmEGQFdtPjqq)GM7M;J}#9hkS{w+=AI!CQv|Zm z$BR7&6R&OlBS17;-gIPY^S^9(<1bI$xmC*|{dKO+_h=nnw9U!*&;B7UJ-Wgr;WwQ6 z1j4E>lZAdD_3X~TBmMd5M+TtHQ(nMqzMt}?xNkl0Cd-wz();mR^?O5h6*EOEtd9uP zf6NQ@t;n=-3>`)VvWE`LG@W6Pp$GW8?6fgPY-}LI6+bzs6`^RJEO3A9Au*O3$$`xR zE=&6}g;t4l^e_D$(=3ZS`qOagh`}`aApwNF?eAw#K7bOKd3n$<*m0u4fTgD~CX>QJq^&Y@ynoIT*y>=)mRjz2Vpm)|>wTO({ zADp~&>Pd-^So#eOlhjn=e$f?Pe?AENJDfvNcQ3MN6JQMgRnOM@*7>cG^S#5jv}6Z4bQHD zj>tGFe?wKwe%9i#{?tX{sO)79>^WxxX{0goSpeoBY&9!np1=v(<`hQG4$u+yr%39d zQ9GzQ(9vBbh%}yR2gFfi;5qiM2%uU!rwWC$RyOa3k37b89_V6p(oi z@+AwLy6*x?o7>wkqJ16MXNJ5%8uGIrqf5aJg|j7SX#qKKV?1T5LG3xwc_GCn!?@*PFgy9?XL&I1PlR1@P%9raC{~aviQzjv6wDy2WJWer&7s^$u!8jilq=T zNJfM{LOylf?b(fcLVTX{R21qHOC1qJ1D!YNfq2RK>S|WH=*@>y0-{`KTPiRV#(8EJ zC(?;$lCwx15s>I>JxA3=%0NyCoVMp2emw6(=O1D{UG|BvT>#>x9ZnFK1UNHviO&8G zkWc0yPmQYTghcOx3wIT!a3}xAAS%8-#(a^_#Kkg<@eqK ze8?~|E1V#ue)nG9eeZ?@w}M=zRoTsFV{DXBvT>;SC#}gf7~B`x25G@>*WTZh~KI$y-^fP zkzga7rq2K8Kjbg&TldSZONFxnW#BPfV658PYnt)8W?$ zT?Qnj0fCLM5Ny@uuj5dEbC~y7F8zDXP`t}V7?>QXrTXfG*z^J>(&=yce?EzPt-f=T z?xW?;?|=&y{_UZ70_*pg+?#?}fkd zZWJseax#@@^M7)$;qdXS$0fbdh@UA-t?hXFeIan8lsqC&%0z3XZfTbjTe}hwjknz?wVHN#eOTTT*K;gx!*haKDf2$d_>-L zY7~+zrMaF_|A9jI6yNc(Ul!%|A%kb_UGEo1-0$%{zuc3jeNk;y55=+8G#5MZ!jQ0R zUa_LfhK};Ge4K&^Sbn$c&WK_3vUeCk;#tI;J~RDy-TNL&|7|9Td+o}3x2_o|i**%s z^^13>QaVe9jsxC~qT|Cnauf#sDWruSI}(z4T)AOpWvt8NK`DgNHO5#3trdjNe>l%e zbV4mWvSG|Qnf*{4xBbI4)oarr2XpzS=hFE-x&GP0{J)Mn?w|kkG#BOdf!O!=c84+d zH0pnCQuSYtkf_n$=%U}p=ECRur+a?M?cx8|G_6?d_eE|Ae*r^^V*BxPI zn}7XBQyC4+jej_9&{T`?U*mAUkL?aw-#-S`r9IlH{HI^)!X3Z;ld0sJGBx!-J4kVi zzuou!dx+3M|JSkn{@9?%F46mP?4d=hG1Ra4DE-?bif7j{JGqz$#li4?7qtGb-a-6x zB?zSOAdZ9>X(>bQvcsdc7_k2Pdlp8&IWdi{M3;6KzDz;=yQk;(Fe`VEkRoH7P}u&- zr@S9B|C<<9OFQN;Lc(vW{cZ@y(uCUqI5$!gj(cRd>PpJmQDv@o3ehp$`ngs271x##+S<1Td4Px1 zPK0!W)t)R2@pY4IK=LNxWNS6SxGhNWM9o(*F{XI>UpulT^3t+s{@2f}*`DqNS40j3 zM6MJI{g1wvF7*G$vERr4gk#HS7eRV?86s=24Z+Lwbvt-K2E0;`Jnn02nd%MrH$T7{ zbg`HPye6UMN$LB&8~k2T{`vD+PT1@AQt7~778d!ZYhU!7j0`sW$KT6T_y6(i_woN$ zn+Fs!tBY7lYVP@vpSYANC`=#JRb3<9V)J%J=al4QSh)~|jwK3c-wIU1>BQC&N*n~G zq#nL-MZX46D)y8wD4;v+1b7(JAH$=PGpwQZw!Ny4uLYPus;gm6B3n zjCEs7V=IAMMD>P%#v><#V7cwn1!Z6g(RcNn1ipixySZi>Tc$^ga1i%Y<4RFjG(tp2FGSw`CY5!A#<2?NEeX%IXe@BdxG-L$_co^=_S8mB9@RQuTe_8YB2-AP0BK6k!OkcK;|<`DtyK&M_7?_%1Mu@--mD7 zg<#qpTTR^(I4@*QCj?LhQdOvLF5LC)AQ{8v_v6SaYxRkOLR;gj$SGxxFN49M%`rin zIt>Gk7fT=$@{}+UB^=`pKO#|M>%zJGQAjw-`XgSvpTlbS7ly=NMl4+n+zMD3xxdfI{fRanWho!7Dk;iSFhY~km04Cs; zdjPi##DlKHm$Pzwt75w4oRdXrt(aVMjwKfFyi)nfizm5aQAYryTMF<9ISGE(4$-sC znYGdrU@GE7ta+qWr-&J5miQO*UChQjesgn=0Yh3AV5IiRJ=Y&U!q2P-$q2F=8|(;Y z2_H5f+jxZaN?b3Gn7oE8ZSjRRK1O)ki2edd03LbpZ$6x>GZ(6HS))$OPUBH*+}Su1 z$>uB_NUeTS*_2g9k11Ho(Wm0(A>Q}vm_HyoFtpP{U+?{!1H=}y@Orofn!ZsAtVY}mAOZG*?S2`*LL90#i~Ku+7W5maO`B6_1gfu?#X%tgVrsU+8GnAC)x ztkv3>_S4R3nl(9~vrYH?o6nrk^wWh^Hg_zE@vIhqH?u@#;7_qNMc5k&^7# z9l?#AhB!&s(D8lr)Z&3C3{)oe{cU}*oIS;rpw5WrrbM6Tl6zB%)d6JPi&RZptMSxj z)LbNI3(iqg*KMKJRdc&Ay6?3TO6w`;h7k9*3FaJ=Q);2nE<3~f9F94sI6(>eE^<=) zT|taG)BRxhNRfJ{CcVy_668tgy?ykMo3>o8Cr|9KSmP+TWL6v)g1GgLEFe-EnDJKw z*gR%wT)*PPkmkgq$FWfb{#q|i4{b%}AqR`stEL?z`1&YB5=I~W#0Pe$orE~^!nj>E ztflHa{rZ{@TYw{F@zO63m7~{Z0RaNq5a>L_bz-_i({b&$Hw8nJ4|1_+fm}4;jU`7w z;sLh$WU{6q%7$!<&8;Oe&ye}n5=%U-rlG4$L8im|=0ez}X0&V=8jOUUN!g}xm~9t2Q58v~ zu_x7W9bn!$!;O1Bu`E?0*!w{!L6?wPFdF+C41|Jmi2eP)RL>DEr4(Qg)!LI3!)!D{ zQMmQQL%_Z%cCT|ANH=?>#(JJ|c0Qhz-G(s9GY(%H^0d~C2(6K*jsj4rL9E3?QQ2&@ zG7kEJ+A4Rk@Q4NYhRg>Gs1>!Ko_U85dVFV!FQ8t*#x7rg-#ay`q@Z}R*)ZX3D)(cMm>t-5tE$U4Xu%aghXH!L% z>Q-6lvdF-m^PBpNI9v^$)%TYODO5!$A7oTnMkj8{bQA*Ngr=fkJI;}9K40t?*% zYK`43i?^gJ_)%#nYIo}H&`ImG`t!=Cxxd#E0wpegTHKSG3fBKDMV6xrdG->4*Z}az z2VA-F9MeN;hGb0hUtDXwa227hdIg9FjD74Z^LBYKRJ(>mUVv;NUOEjTl-USr46MJ# z1B=X9b3h(8J8GvO1O2kfgda3o){NBl!lKYLuliz% z2J5~A6B~yYl-zmmQYD32fCl7N4X}P+Bj-T5X0T`?wsfB;a}Z5u_evcN`d-l~0*T1T zgqXBbXP@Sw|J_2JFp@(;u$EkZbBn#damZ=-eEpl(B=$TrS9nh?PHE}vQYW!qNsF5T zX1tjX&Sa-nNKeS~_50XaIlCnu63O1lbf;ah&BU-$ayd0-+{n3@qspsJ!rFj|aG$JT zxvJ8O%v*`8QB`Zw+)iWrZe4O!o_E2$r@2mIAZ3G!rOhjSVno@=g-#*I_nJ@YB6OW) zo-br!Q$2tM$dHnA%NG)cnK`5s+W^D?Y^NkgffUtLT&Xw3VT{dGW?d9xHFkLc^XbLH z%BZ76Es_D2f8h|JJ>xpg`aSNCNlH06{>$zg~~S zxzJ$++!;}Z3WG?GHOru_sCim{aSSBF*GpOfH^GNu$&@cIB_Rg|hox6^mB)SC!cP|; zDojoKzB4nZkmB4@YM{Ek8;dF%R^2$q%RM+5R}5ez6G$}=DSXC&`@rY)Auohw+QIz~ z7_$$%C%M3I?P=!9>6Y|r<{4H0a1SlntY|%Rm`jefBPjmmzVMbtszVZx@{FIn0nX6< z**Q-1_i-^!_2rg-W{(1AV}gX>Sq}?I3Tc#N^fn-w7&hihYB0cbDuiw{m5TGs6<01) z39K(+z2A+ZdmrOseB>XI)HSS6koxdybU zKy6o~rn7B2&lCpIlsgIS#%M4y@^N`(!ZBjtPSBOEhf@ksS0a{pv3#s@8*h zE>&}mNN48e-2CV=$9wTrqk=a7#na;_JU`XZ{Nr+2^AQWC>O_1$KQTz;yS4V`ykN2C z_~N}+E~72>;VC2YNExt%Vj;oE33o88J34-H3_&3c8SW8bX_cNI(rQB3f8k+Dt}eqx z%fw*RxntA#<-$i&TbwjxSc-`-^`NhnVY|Y6UOzV!zikFiCgYX$F-;9pnxu}7m+4|* z2O%D?)rLIxc5qppJNrN#Ob7r+S}!lAzG6iKZ# zHafwbjRn(+iQLldpdy9^-K27Yy7+MmrZHx9ZXZk8g$TD9V_ zL1QRmO3Yhaisk4~ac2;Q{nmTv3%iB9^Np=<^{zO&2?O- z7A7)g$pXYZZYcZt9(?QX9KR)i1!W(Ezc5OP7=wSd7L&jB0OpA5NL~5WVe`NIhKJ}c z&2&}9O^ZJSd&$3pX}Ii4d`QCldU8E;0y4BJf^IQltVGTuzjh6O?AoSgRUs&~c05Ob z<=SCA5nPZpSR`y8&AmVl`qQ0ev5H%|bZ6=XJV_RFK46fctO-r+%)r1x(E=z%TZ>wp zKVk$x+6DM{HPT@J+)=38Q5Xxhp3}g-EatvEf7RRjYH+rRwI(s@Uw&r8{7VGH`l$tS z#}a$;GbWVJ!MJ7@+EPFvbx4s>52&7%@nHbhFh1|E&NN2<0q}vHRYuB^71~9!s86i# zM1uZ|`SfJb#LF|Bd1VJ;ktQW#ZV^?u3*q?8)L3_$EZKy*wwgnTbsD*x3Ipv+~$3Cr^X6HUT z@$s^_ZV&mJMrs;^_t-kpShA2Q_%Wp*tqSN6DzUp}QFG7eqX$$o%AyTE%zuU@Y2Qtb zcf(uY5``lq@@Mh>z*^3sRB@0-_4wCVTx9G_^9;l4&wR8)1~s5$UVmvN!Fco0%ZA7p zsVQ^)#xrFh_+YS?i*Xx+1re}CqQEsF5$32c>1{<1;)BVOXBba1`f|iOusw?&*-WJ+ z$Y#FhuoS3iOC~}6FRqqOIFZ(naerdc)1oZfh8&A_tl~R1H$A>%e1pMUr0@H@c^KSu zo$7)pHukkzrihboBrV3Si?WS28B9@^!i+mcn3Uk`?VcO8}8XoyqZGE8-hta6# zh-*g`5OdcZuc(5(6Fg9isP--h?NUahjQv&s7OhW6(M#wbKrDGgL3WI@C1A3OT^n## z4G4O@;JMKyxiJgTQ$Zk$a`BY?Gp}(K;pr|*?zx5h zBjg>` z^KLpRx$u*-@Iw`9^#!AypJC672q>*(l)IYrN$CeV`IbVR(=EU+lffw&J+9F8n}h$dz0) z0fUWeaEW^^0oOIQpZ*uIB6sAzoI z=xP{vjlWJdEoS+vnbJp0LTp#kk01o|FgXmjIfBBs4YCQWvFFg<7Qx5i($y?DcA+g- zo(kH|*=TH?x5SSNf-mt+L@c_4O&{QQ4xx4EGXKo8ZD~68%uDC2BaI03TDH8*`8awP zaNn(l6yjTEoNAoY^Eao3=CtUIEInw<)MfwW+8Q7++Jk@a1&5;+E0hCb*h_TQs#31#SxfZx1v_i8j7X-_6x8i%AMY|k}PN(Gda=qYK=9Zh}DWL%k$xsqr z4xFK;AS0=P6PNp^+ai6VcA777T}>R{+&`lv;(D@iJpqOe_7tQ47Hs*)oRGy!3C*SK zep}_i?tXm9)1M4c)-i92x&14TC-ro(TAXlxC|bYfAkI^yO4f@Ig>b4$R7*IHWZOP~ z(>08EIG+}C-~+$=o=m-bFl+bNAux;RKd+zECrGgf>=+h8M_a1VW5o6{sY(klQU84Q z1A8S2w7+;ea?e_R-yAR!Qub>u%7}>bH5Z9#f`4fxru*{Hgz@qW$2(5y zv)cgdzO;eZx5G9k*0LUrbf40DAj+g8?&}_7T8Uw9pUf>lh{{s$JfPv^X`sAWt_ zq5v|4RT()5b_59+^~BQ0UglAg;IlL-#({qkQv9Q;K4u6u(QR(z*-}Iyu-^^GTF*BK zz!@4)N0tFUdku%Nw*Jf|K6a}H>UXSo=iU5ht-=J_rxTis9u-NCr*{lR20Zv_ZSF`uWL@{6}Vbi1*#`{gZ+iQgQWln(ya z8q&VJc{LALM-Pj`PS-ZW;}5?e{NY7y+?Ty?e%6w{7r}G_cOm{A$Dex$KO>fE53GkS zhx<5m>4zRa>GIx%_jk=L#$(Jv?9u&xOz5a4m;SC8JePgv9p4QE>V3z5)7W2Zik$GQ zZ_=cO36Bl<_jZRF6t|J;r)5_*kA47=7`th!E2xdQ{^*iLN-`%(w-d#-Vt@Gt=^pm5 zgrvMd_`#sSbH;{sPLPonK*BfX4GK#6Lj%^kC~yo-b4b4Na-j&|1?!O`ZGlOejJ#Oe zU*v_yh09*7l|%T>FOS>fNB^2!m+jCP?&>FM4k%m2d57nN#M z203`n)UEyT8;>-IU}HuC7@6zOoUH=#Je4ja5>r98cp6BmbIYWI-N!3OQ^sy9-x@+z%s1NA`Dbx0f%HKA)i$BAy|BGUn-7YHy6(B4mU_TTTT$TR)CL|ttW-9wai0l zMO>;SflCauDqVMZz6@&R`Q!y7&C+ibpS@pcXA+eShUi__)g1GZ+;h!J+RKi0w+KXd z0d@ZCJeMh&UwL%kVM79E;RRfu?B__f$4d#@xCuy`*|Gl=1@Qz;;gzoe!+IpXhWOvt z0KV5iey>5tzWC=F^2xA=e(SsN71gs)uqK(M^{fBZ>=3M>=Z>p?GyOh=hevz~CHXja zp<_9gqS<$L<1LLVi;cn>-8USzpI5=PJq3?;?ed+c1YKP6YYbRN-qTK_vHRg{k6n4A zmz}0qOd)RF3jar>4_&YdWt~{T!XEv3qz8CjYi5@z%lb5wk4np5l{1*87>&Hf#wCY2 zF~o7n`PY^w4M+#H2n4y=z;(Y{hSM}O^Nx!b4SuQ7x?5LB#(ckhf{|mNm8>>6UzLQq zHQ45M$P(DE&(#tRVFV(JTsmCoE}7R^?<0?^ob#hVXRKwWCMphJ3m@9Rx~C>lM~;&3 z)BWk3XahJGBH0D*wD|FNf{ns8qW|)|r$+>jS#+_pofVqHh~pU)L3kjT#_^uk-T3OG z*V@b&S76+kDTfJWS<7X}s*RSIt?Po>)9-KV?D!9jN_+hj?s-*djBvrE6CVSya-QGy zN(0J-PT`9vYd4;h8hdelcOT{MJ?p$RWaX#{6LDIxTf zqbV}nJW*jDBk;8P=>n-EXmG4$J7zvxVA{E)UR;_%Tb49)Ab-G4(%y&ce-V?wi%@IqbErHu1gKtq-YhCr-sUPmR&K8_IL-64T%E`?+ zg6Vd}^cm*e5AG>pAm6uN&5S2&qALkr16o)(nFH|aCas~^e(^0Hc5ZY@#(18zw>C` zbT59^lbbR}3l(6w3VzL-=^jeVl(jqiiho+sfY+!vc+_+I#IbDe+E9bk6wdK5dxUM`l zN3t%-&}0dxaoO;IXz{VeD4-+SjzRoRSZ$GOn}0YkK&gc zHpbJjzWsbD5=U9vK~agC>P+00@AL-gI|fa`-z^J@pJW+Gx1}BqA25)&NGyP3AesS; zCi?;ZXxGBj7ggBiTUZF+c#Yq9`8-X9)JXT)?=gGt{?ox@cIOM2AQASY2@ki^(_=7! zayMlMsb!#mlN?O$UMZ5bZkPt?Vl4H)r?_3QzadKv^ia0v7Z-4M{Kf6mB>b$ep!=D_ z+k4H71s(bi@~3}CO7A&KN9n)(`tYsgsL7v}lbSU!KPMuLnSmW=JJ;pYwh9J6-XoR* z2~SzMUc3ON@y4Q#A83ZVP@7HE)0k70l&2&A{sCqVsWaBJlSm$^Hgq=6t$?OkX}v+F zwjHZB05SNk#y|;=Ei<@l!mH=JK~yazP%4v^Urmdvi~!(Z_I8cEg;4-tQ=vd-wehk( z(1H~t56-@v_G<5 z$=#9?o4Y}k*GN;SlCx87!)zBt5?Vg3KY%=VSnTcwIE(iZu8kXi4hQxUd^fM*(9-bk z-QcYrO4%nIK2{YT7&c;#!|hZA*&Ezp```1dn{%Mkp4m^Cxn>)zwz3Ngea-^Ixn)io zF8^GYOIUk;wEsaiw(&*q>xxs4~sdzW&vxyYp~cI~U6ujqvBW5hioE z(nbT$B6GL&d{G2?ol}fu`H{a-L-01VUkA7Vr+Fu;^HV`t={tMkW_rYhE&3|KXao-Sc?7| z`!DjsFObKYzayou=6rh@ds#D)TR3Q$?HF<|?D1}QBmK=$cWhE`|K_KRSvx1>49(HA z4m^MRI~tp#@A{$jQ?tXZ1}Ufsf28g3r`I6ju2S>uHRxj_tmT7Uwq3QQC<)c!Lb5#boROoH=xi)Tg#l-ei5nDF@ zTk}~-NQm7}9F*U2z}KMzKj;lUZ-340nq`7yp%5yGt35!^zx+VBkB2C^S%lP$Lj6ci zq5ZA{C9jck71GRV3Oi=s*pKB?V}}>4@gdKuc|PrS&e@-Gq?M+rs--712nWV`q6{>b zqPyF2mzN>Nn`sd@6&bu2(Ii@Ef_+6_->|+iL&oOjq4rEDA7CS>+H22}!sAv6LzTo6`!K0l6(3WLGwhSBxB<552dcr9m z20xoDYA*cQ9orpa*v#N!47Eoby;4>6K!VK72{i7*H_+q``Fn-A(=%9q1=!0Re6eEE zox8s5t^Cf}2d~cMYmiiqGgMS!t(Wh7;xK74wl1`3vBKB;k^2iOSce6cniJ@5a~)Sw znBy1L@%<(xth|KRrH1)tnZS;v=N^-@9Mh6vpdxrL#M3FpX#bf*SoDoXSx4V@@279c zK-lj_EgriUhVdunD|;cZNIz!tJ&CGsVAw#)(2aatcK>k3BCVOv7^klPjZ;{;h+FJa z55Aax=Aqd5pZb`7dg}Ie!8qlQ7^iq@qJH&aH1~{bPX*S8&ui@YnAnL2Iotjgpx(Zd zZ9u#?&%i#L$mMDu47Z#u5D3o7@(>sbH>59_Wio8xNr~pN&YyWKXdGJnJXj*1vl|*? zXR|GFQ0|{77ufdO^Vk%6PVgT|@4Eci8lcy&QN^F=`1vp& zX?Y*WW)^`gA{WqHkVu1Ax-Fo<^xrmY@vEl^|0&X^$$O~vvEn!(_^q|eP7Uw8j&vYU zEgvGn^5=u$i+1cS#Tn~3hGm-X`c^Q_kA!0{d@4rKPR-Qs>&uF;vCdq7``wr8gLh#% z7&TS<2ukW_E$u|>!WwY;qv0*~U)M|J+Y~Oyz$Wrryi|G3huej#k66455>cdcb#RLC z+ds&Tmw`q@Ib+@I`4b?YG|4Gs3}LRPl`8OXXHMT|1m8{dxw=lD1B1=3Pgsej5qY(lMs+iVD<*Cy>CBtsAxhKL7LD55@m|gC_%$A z3IJ0Yvh=;qm(}OwRzGF$XzlX6xdBPS#vQ=X2SlXe#^DJUEC*u`G?25hfz|dQq zjEl9M+;M>Ae1qhrTbAYcRx@uem-U86lzcAOb3d4Uz-CWPpc-Eg7M#y=KthgKA5(S5 zIQU+*vH^)7?qM!*Sp#g2EXkz^uHQbS#H#Z`yh5&P$~E#`V~Y`Q-Qe@4Vur)vMKwN6VYHawBD zjMebXaahhZ&dE%CVjpoXg4BfL0&o2EUu#Mdyo_=B;u{}0JXJCSS z3ly#Kq~Ve-jQ?nc{FJ6FjT78bS} z=akp5Y}qcen3%IW$#XRVCZ9V{4M?sqM*>{=fK-A)%9WkpaWUqm843o*#q&}w5O~l9 z#ws}S0?Csd5cJl*Z?Kx}OC1sG3OvEd)kJ=P;~y-dk@pLWOvAt&PI6dmklQaBw*^T0 z*vpgD+Hoqs$-|fyzx&g6E2~$^#5FtpUi?N`TnPeyTg|}VvX^;XCkTr3}UGnQ$$0O0a!1xV<7~dq;p~_7B`r zta}SU;;WmH6)JK=OWDpo&~X}u94;q|ejT;IcaUc<1x}@ah2bpaL%DCSqhSK1m-|=p zHN9ce^bWDpv1Kj%%+q)NozZzDgh&~%R}F?n670}|`~nWNBP$n{{w%NA$uH(4IB=fD zuQr35OuZ~@Q0UVx85u6IqiL@4Mwi>rMQ{DbpNu;{A$?~3wos(vps+<^Aic-`ekt%f zCu%JIXP|G#V#{OZ7I6?g4(#W6BsRl?oR+hP?q~kf`O#n88EToM%~gN>(O>NTpYJ?3 zSiWmVl45ORQL4bE&*6bM_>H4{p9$12_aXOc`?clhlYFvWp-U27dF%yQtl@?tGKl#5 zAi-FXbw>CZYOyX+Q~S=f*X%}+mlpc0^Qo2g1nzLYVB9?BNSrUC#JUXQ;3tEMJV zEFN?`q)!5y_;-0^9Ksvl?Cpzn2kldBK~iNdWfv^T>@(khG}hB)pU3XxVS9)~&TdD} zo7J;-7FRd8w-?8j}jb(lTbvo#O#^T<7RGf!r&c3N&>aTW;M2vCqWyD@w8F+aE zuHW;3(v9)(NWOjMXZ{7j4G>*ykhoG}Jt(P(U-1z08i>{TQeQXp)ooyvPh7nXukc-B zs&|JG-ERvTdkjXyRXV6dhj~g6KJxR9_3gHQZQ2Xi8GEN97UpQjTsjOUjKhicUAJJ0 z%{HCyb6SnhFFW|u=sUqGN0X3{9Cu^}RSgo0uZwc}4BOpP;_)>KunE5WMNe1K?yj%` zx9_tH5fV*17d7RztFg+0VTuvX;Ix0{Ta&V1y?y0Py%bB~!);h-B?01fz2-0x)I;tI z8Cc3@e8Hy`6JzsOqPJh`8S?!4%CA$Z4*gbCVWA6@hk<6f+XFkc2;cfaE?kXAKCZYn zh`;BlZp4>w|bO25-~on~!}_-0=}73y(wA=eT|~Bnl@#nBwUk(Pv~d zi9X{RVsSq2IG>X`!8HVQ4*5y#rbBWoA)md{#$-L5-*WVm-`$A*$LGfX_u2kGum63v z|KC6U-)H;(^ZMUh{`30ZT>kg#|4uHOA`AgEKa|b&!?5OL^7y=t*ZPnhU+2rgJs<1i z`SS+iwQCtof8O3FMt|$?!{v@G<1zPyv#Z>~%kdC~mfAd&R}*?Cx4u1(;pw5=2<-|M za%IaQCj?LQyp;A}F60W^G{Uy;Ld6Yix2M>|1{s!k|HoL3>dpQ8eIBar|8M`r-!JXd zT>f6OM@7B=y=HBqU;mnjmzVu+|6a3Yb^UwIDv|s6Yt5cM-SPJKnmzf|-xCoJRTBKY zX3u5!_nJLw_Hh1dBKj9q{d>)xZ1?^5nytF~`>!>toyyDM?=`DL-roa+hid&FYSy;P zzYo=UQb*@+AAEecZU6V0RTTU0HH!lzDSxfm|7Uag`0o1J?E5l-3RtN?oV&hcvL$Do zbf0UO6x^bv9_cp4&h&z=!AAVgy^2pl3j?0~*-w(Woa+Cn2KvBS(w}p?4oTnl52Wx} z`mQGzjv&}p+#q^Q~u z$bdcFmtO6P8IB^gp8snv}|vzbnZbX&v4?Xm;QXmvYkI8n{$Y6Bi^j6JJulm=XS(L2UrhT z$Gg8}-6ctyJN{`9rvXp>8F+$YjEUCR zJkt4CxKr@E_k{AFQ)Ycz`@!3XF%bg&ZSav?SICyWUFP(^5>g!PEi;Q^QBFwZt+5V_ z;rVkWxFmK>Fw;M9BvOl$>X9>!TZ)~bY-P7->BrLzHnaUul=PZRm;|-}C7og^Rugaq zYUt%0^ic;?z43G&C(t!c)$h*6gIhurluKxxqIwhiqJ!mYtY>$#?e9^6V-@K8XOO`@ zI{>{iWwN~xf5)ts9^c;Jp6rS!fti~uDxn`!HF0=z?9R^H+i%E0nW%2EB?gt+2QF|&8pYuKs?=Q*W1Xh9agZR_p{{zV725S(bm zb!$*%wq~bXMu$Qi8K(hp=z+(engi87QTf$}9bXmB()aCL0Vk4ztEwUC6&YKAaptwf z6Ll>?+cyle<-QFsC;PKoW#15BOJ^2 z6N;OLPVxBIWJ!MJ8{nQkzCOYr7D~E9GZEuf9n2ayEFM2`bqqe}SpRB6igrvrL9QM_ z>!8zNUG_q`9WW@-DGYh(_01jbH2iSO^*E6!nGgNo=p`awoE$SFB z_aot6iXO}a$n+&vB>xH-olf)g6D7fi*&bkyzMI6nU}QfP(@P0qdrb0vgB@4EIJBTx zPM>{?DH}?*&9mgrMVYgRj^bjhQK4~JM5J zl@EnGzh)fRkLy~@sc>tud^$^ci8Ov6dy4BB4^iNTbFSUy~Wn(}#4tkg{UGr2CWNBPbskKO9N zXT56xYvEO^{dxPIWUt7RoW=;>Rs>iA9qe(g;zS?*Xfc$6K;qI$*` zJ=QE{=AM1Du|)|}&E<2f7+~s$qz0Ka=L^X`zI)`EAJ2v0c>PKT{d98dX&lM$*r;`n zQ_o>4VX*_19xi;VDc|@E8xsxe#&*$27VfnqsWx9v6dV5Pw`uDywOS7&{u4Qk3^&z&*q<|cDQJN)+L3031NuQQqJ?s@NB(j~o*_H3)b zV{je~SlLQDNQD4cDMOSRv2U-kK5Yp3PeCyFp3yf?9^&Bji4}$Rj6m#|bq_DTVCnTx z3Lk>_%oioG*ck&=K{}omCoVjG>Rs4iNId<(6m~wnhNpHAGSW-qPkQpXLeaXzB8zU0 z1t8RCTt$dFa=X#zeR}%i9gZJctk%@pCq))GMm=#B63ZKF3|!@TF0)Ya+4E?pQSP{I zlj+fF#eF4hEFRcCC}#74srbvE5OW_IE|(-SueF^b>@r~L&zOQ?hWfd)O0*@{Jnf@K zdcCs|YsJW(h>tpft;IaJcn+~{QTAPDA1<4xzKX4^sra#4s#ty$^UV}RQZ`vNJE0#> zH(ylwic7Ej$o60$FS|zMUg}l&yDqlFVq8JtLLMJ_y(XES=o}b_p6UzQ(2TV{Py5a_ zW4|jBd6ay**Cx1QTZM$cK)SpoZ{8n)6~^~OuRV1j^72tEP4R$pl|+h!F*ukQVl%^+=a&& z$Jt#jhjlQR){m33R?_Q2$`Q)4eKUUFr<{{*;vZdD}rpjiZpY^?>+;ktgjTyGP;FC8CcC6g@Sc^Kc)<{_-V3NTi z%QeFJy(^(vE<5Iy_8iU?@%n%~Y~G(oRm=3Mo#oh<_?gN{dY3IqSN?2FuOBkE@`BAf zm0{!s>5_LX7dOR&S?XRs5GSRWy-d2+p1e=ugm&Gno%VCD-IiL+^KgL)VozNO*UWQB z;?-1vxNAC0uBC|TmF0;IX_oFO_eR|wmo{giqJh-B4Q6;MdLfT`FqPBVNR_CJZ@PA* zp~X1zPNy*AgkHsxCA)q1o4HR;CI>p7>hnDh8edDiLK}I2G-=rsd|kFO)2d;=>VwH& zxA3ww44rT+^a774hqTF5&eHkhh9$$+U|{E+egAU5cAZi{WWV{&#H8#q|C`hOB5SfR;;>H#3T;_C@Lx#`wos=b9wcE-r()SeHM}{ z7eVJISHGv%etY=Nch4P(${&(XR*&dbl*?*(If?UHpql*r#pJl$h5VXS7q8nndUp8x z$URmu7}%Lvyfhf}w-d>-823Y0;`epMTV6`6-P(>3xJ31ET|tFz-0EWFHdHM;#rSs~ z!}Q4r>S)esjJa+I?t-1x*@e%o%5vY(8WlZTObfNIS$RQ(wd#Efk)Ap9$sbad=C&_q zWVeo5Va;IN95xRz*S>Z!-sGVIHz-C0_AKpZQ@neUr8#i=rI$s8mvdy4p@Z$e7uKIu_)&02xZ9#bGsYf_!3tXbkbQ&#r&oSp2UNJ9AobV3A81m{N zlaH@x{ZCC?PXZpTF!1heaD0xo$GXUZC8J&i1rNve(B8Am+BC`Ew>`6$6B4fxwh75g z1L3($dFsY+v29`5SmEG|&mAeJY&PXoEvK~H6o{f08}R#NuCJ!qcYLQ6=g=Vt`Q7C; zy<7(I39JNj%J8ALK(Nq&*sosS7{~?%r_@+qnG-D({#I;mbi#V%tS{k$7J>N$xH)Plej;$@_SCKHH_Ev_ z;ewpUO55fQWBx%#rua^MJf7wxWK7ub!vSmjfe}r}-R$V{nb?$c>U|4N7LAw}3FE;| z*qCuRc)x~5{}l2hqpEV)sJ`c7I!Z^*{>~+cV=)gi{a}9iXa9`dvb#y^wfE?0$JUBq z_P6O+a^phFEiZU{l09xS-qi!{mQRs}xYHdr=FP$!ps~;voKA(ie!e`BRu)*BKkkd3 z5v#wzn8Sj9C&5Uw`MfGeXpW~PuJ_1^MGc*o(Zc8`q-IajIk8L7&kIXVuvSfp;I5`C zz=|0Sg`8roVn+ud5(LsC!Dm;L(^1J`hcR9q5^uZ9s08O@p;qur|Lg* z+N4D)t&fX*CHKX47HM~37mvB_Pk$z?bTM8jlq<8&jXcXgo4#m-eixq{rQ-%bDItkPJv(vZ4>imwN{YhL{o>+itADpQ2x zY87WrxCc2T-eLA3s<4UYU2pQvbSscBbdX%$l6a%?$_OwT!--oKLx)1mS4^FI;C{{0 zp$k%-si=WBqT{oSU}MWv6?_lrs!5EAgqS^2M7$?#!?Om5bB0q+&M(fn;yg|1dmrE! zR`X&2P(u2GdGUi2hiGEqPMg#!F0*pcXIm}Cl)*Xg%*|r7*bs|8l{fR<@EZuX1dk&q_w<<`g9d4DMOz zWB*|UAxqWcjXF^nVXHy$6+)o-285+A7G=eY-Q9Egg9OlJ^vs(_ZulnUc+zeTMVP59vMO+%n&Rf=y&;ao!P* zpFjtWRajP=_fn5WqBBF$;s?M1$PLRi+~;NPu-6735alW&Z=S;=1V3@#w{qBEGA{%z z87%Vsx>k0O;y`J4_KM@fCnd;S^eLK8J`nX5T!wG_cZ&)Y5nv9fD2pUL54{R*p=;Ku z8P_Q2QdkH6wavbbH9|aa}CY@Q!;`WzlR^N2Q9fK z*xsYy$>w1a=3@rU55~8T-v+0$Z)nup<2Uy(!~rUI)t5_4pjK#lUz9VBaomX|+8^e3 zPWWM!?a#W_aeVXD9Q)WSx6Qrxg@!s`h88jqYv{TKxQ1aC8?Q;kSm#|I%}d?pXh#@& z@QAPdhpN}@^LnQ>rPBTL+-;C0FOz7p04Kf4){`I^*t8Pi3w3@c)yXPaR7BKfAj|x> zPJ$k`MD?QcJytYkiv}c@LN}%lMgkSE=US-ONgFu=!G^b4CFAR5Kv|jahw_<~9VQG- z(W>XGBktVy5pYU*6MTq#Cbs&{HwU&`^$1*gwasl><9n-gus7IiTUBulJP}_C5z-jr z&Gl(c_4D#IA@Bam8LYyGkTa1Li|(I2%q7v1j@iQwHEg>qp+~Cz25~a5tuOd+3^3ng zjpLAzqbe=boQ30}b@V8=wz&ndWuKY#8zhg=GP00P=m!k*E7s|5CFhI~kgLQ)G51@!zHa7-Rf-n8mD}F?wcJ{Swpgi&u4x;|L-A(H5 zk*ROf679mvlEO$cib6t=18#WvFs$)CGv1vjmQ65F4A0Sx*vI? zFY`;^DUe*`%@AIxPItKhrsdAZwF8Z(j-}Juo~lU%%dF#kzsWhgF>$KEY+H!eM)t+@ zaV%n?fW$P1!3qrR-)A>v1okG5rf_a-KtW3(hx~@9z*;2km@A7GSc5ltD1H03LV#5N{=CY|{ylS&xLC-0Dg0^mLvYLyZKqg=t-^bxn9W>}=-_(uoHnGm58RCA}W5+{w?WQ!&Ns z7;)DM5?48w2do~&rKEwAbnLbUn&5Ia> z&AO%XHupvMX1hS+Y!cr~vusN-DJIC1$8I@N6$6>dIqAi%p1k)U)Z=BA#X~J;Lc{QY zIemG;jk4Y>V#UBU{5@uJTodn4)4=H?m<+^`;WkfLNVVo@Bzvp3&!*8lllOwP!5mg| zPLNMu*C`Af+tP4WO1nZgTW0!QN>J^IA2Rs1?A$i>4p4J%(ne&e#=l%y8o<;JPd&gklHvwEKvOxJ9Wino;PJ3 zPPMpT4r3a1n61A3z0$3#ngD2@mGVOMtcb?a4&P^QZV2plT0U7N|24NZ8`5rLztK|a z^@07zW75xWt~Mh2K#u;N71@eQ_e*z6fj!(&O-uW9*Y5A~F zjM>2&N>F`jzZ9WXHV#eUglg>@{=2)*Y{t=8j&VFZa{Mfo%Lc``1(|&3(>8klIdDxp zT%%JTcSFhcR{iaDz$u7U%XFa0sto__gSHfcd)&ykwgs;TxeqJSXsa4Awk3+TC{AO& zhp@{WCFX5CGeAK8Iqfn(z;=?71GlDVC~1SJHcBlf9p5K$qR&Z)2PBT`^4q5`edM1$pVPq) zJ_E7pkG(TqDVJ-GSkbwn(ca`LbWFeYmT)Sx*lAB1!bFYljbxV7UGYMq+3rH4N{=0O z3L7+IEk&3@$;ulr_Z4ekOl;q8*w64$?gjgb8%6oX#ODCaEfM}c0AEeJcvjt7+ zlPotfGmh|3 zXm1rgKjI3bhs}##D8fk?lJ2I_Jkf$r7UwC--Zvtpw9KM4cw{mo@}}itwVD>&DcSH& zsA80Cvk8-{LdA?p`Bk`mi0gmahmOzaJBi~qvsn)y>$D)2Bb_UlYD;P?4yS<3ed=s< zr=)uLmB{Y{5!9o*Yb72)ocvv2KKL#s-!z7n8+Dj8U7(FZw{i*d&f6;6pOr5vZm zRu4=-=fT$Tzq`ey=ZsE(kQ%{9_mee9ERv5`eGf+V`CfUv;kE4u|K3q`8SOfBfMA(S^wzzv>BT}X)%0q6N#-V0|k+79&=6nWa%w6~A0fTIr zk^+Ky`CUssrs?CnaV*ZO_381>>y>*KPgb->>#YW|06AF8K4)G~^pa8MS*vfIbIyk2(g|!&W(8* zlqODBDEagzZvOqAa?+f*N~2wb*60N2KbjkQ%R;YA@t%|YEn&=x(szMacCz?|knH8B z`BB4=yG%Rwnh>SV5|hU#tAS>^kb~}BrW)~?9Pq*xLQ_vz@A4A0VP0kjo3F37Jdqx` zRB{}|*e`Qf!-}E@E;WiOH?>L&-h_t!>fBOzVWCM#$+JKN*1|nSz7};_+6-(`AY?L5 zVdI&Yc~PA3~%D176~EU={JJYL?!wczpnS+J(gM=>qz0F=}vXgmV1_;sXkp?3t2<>jSP)5 zi>&rSHl6#;-W5H(EDX|hrU^_=m$_#W(PNu!7ceNmy z#BsXR^HEOo@@&>qkN~2zt%cIBIx=nNBh2kWEI_Eu{Kbd{My%wg-|o(MwQv%4EUFpI zQ$AlH-qWTRgx%Q&F*D=BB)|6*P3c#??E^z|M`fzaFbXg6f`AYf97^3O!R>@kqr^Mh zLL^T6)Cs2q$fIf`>jD;EC!;+n1pj=L56dWQBjZd1tPD3Zs;?j%nm~x4~g^! z$A$a(ViA^}ecfUHw&84AYY)Bb4;=-WnW4+3IHV}lnmteHup3&Cr!x!EEd5$^1*!p$ zPDlZ($$4>68}W^lu?47DWOYp>y84)k{MAAJXrO>%`j(Mq^=zP1Zb9o=VD63HH=vAZ zhJ$nF6K(fC>14JW(4W?DC8N)~A!x{7=)07|qtTH7_=*;{4yGyi( z`e90<9D>;GqLWAa271~fRa!mc^u;8T#pHn#C^T@^2--UGN)kGSV$x2@Fb$5dd8gg# z8MaMeYmvqea{ry*+GQa=G~b-hEg6UJc);dnvyyf+ykt&3jNN7+op6SE#aay7%W&5N zNJnoJ6eE3N>+^ZlT0|O5zmo6wDogBVF8f755}gOReHMFxz~LF?r`*Ao(}dhxPmUY| zKWrh;Ir*T7(t7(*acW|eG)yvEUvS@5iQq+cczkVcoIAadP_sZ;x_%DtyC*1Qz&aHy zin}rr`wFZ%g%NZ5$e7RXEiJVY)FQf(Xbc)s62T&c2{ zg~78*^o>e=U@ID;on`_T6_2WEnP`bHpVWM{zyGdP^Lg@H$|1u`{(;gZ0Rxh9+R&yv#c^74}G%bdQ|)Blw;JH`Ytk2IweYVa#?KgU2?W;)&nc z5HVRP;$}XY;+-hLzwqPLu?S+MVqP@Ri~B%H;$^{SJDgnRLs=0 zF6H)PPE@^_zv?9)8M8_ae6{0>o%S8U=v7^cCb!rR6xI!WKxm1Z+*pkdH1H&98iUP5 zaOR!>wf3!_$gaSi$Ih@fZjuRa4Pi!iu#Te3;^}{;t?04UQxK3aC_a zhUXGLFxx3aHCUpae(#&)$;YZ~{pA)ip+NzA@%B27voTR0-eaxpVs)lpdSsz#4P7(# zd}}%R$ukpB<(}|{X!FE<8s6@RZ&b^h<}{A<#p#_FVbi#hzLyz!@a3b5-~TM~e(cg2 z(xCn2Ikw_=oEBY6j6JPFpuOyi3czN#KAEcLxtZ4n-_LwEA`8k@7Fv=hSq-J~NWQEN zGe>1AK;Hm)Z5BAtLfQp~WDX%lp1~;TkUcth8C8u8vySijMJIR(f+vSX&AoU_1q1)!*IfHwYnM^vT@I){)2k>-Y`XqEaa9{ts24PCD_yyWmc@8#?HRVb#cAQ4p zH7K7pfHeuw!;|uX!Dm&vk)?_u16XlE?xN7Zxnu!g8b>XodvyiKclFp0V>2@iRA`My z5_P+wZ<#Fs0qPv+L_|n!<*fz)hn0X%2@85@!>9MEW=h-DuY_JdFLEep#G(R{!|LTd zH$T=g%&6NrunhP=$?EAtAiF5@2V+MBfCl& z(m4)5*D9c8Vp0ucr{Ahp3oe!8P~RA-?t8W<-8_&EYVxN_D25$yw4B)~Y@ImM#;3vh zy2qwc!ya9hx2OFC*prYt1H3B|67spBqm4nuJCdz$4TReONv0J{0Jyzw1n+)!=k~jn zs=VlEkJI1`pptr^N&IgSHXy$I%%)EN4B zeMie6nzVw*uHU)-^b#jin1vdR8kfn-XmkF+1FR78h{{Rxjb0PBtW>dl-oFJ5{e(qw z&-m~0nz@+6Ir?-mGym4RpRx)OpRHl+98eR93G|f78S|}m__N#b3g%l>#fBZ37VITGIv%SCQLaC86>sAilY*_6$K-V`i zEIBy-aB8=rOus`3*IDDYWb;l}e~q6=^g#C@4&F^ved2}HsxfaO085L~U*A0c-46}* z3#O%a+s3|&36>-yK8C5MRhA8>J61Y{CmVgI1E)!tX?S3s^ybH>cP3=QM=)7s zm&{AQ*XfB{TzO_3OmCf`_x*mPs&R4n$9v86qlo}hPqRQ~h}X%d4A3}KLI$!@P%F75 zygtK}L0@Fu@Ep;ck#n_Z$J8eF_AxD@M6v>$ECCw%eFD6O zEO8(Xk~VCy&hd}Gkm66j;9wA|2}rus+AFq&ffgWh2j>v92QD49Dnm7X?UJ5{d! zt@p@)3vcSn#z?@mt7cf*Wi7ht@iJ+M(w|KfT6hZUvu4z));vU@c?!|V-e&p$7zW=? zd5*JIu1OBbD03k6oAGUO+3ldnL(ZD)4`le z9S%ZY9Z}yhz!4Zv*HISgGdR#?akv`vffy{xL}_URe*fjMP7k;?v0%EqRDi-IGu)5j z`#RVb7-!-~S4}dqhJ*2xjgQNXh*A3<408PNKDRKWj{IiP+9g*r)XH$-4SP_`kv!PEc zb_2<2FC@^`d1c_0erLTR*VizfMGD88ZBZ}M2x;Fg=OHJdXaIR5SBU{TR)i)mproM^ z=?n)~wP5b}Z>$4bup0D|`oU>*w}HCcnXqgSCesvV`2J(vQ`V<2aOFer=o%vBS)Sm1 zJ-QrAv+h&{YWHGQhtPJVeV>KL7#A3F*KroLU-;#5&m_TMgZ|e3d2+H$S&dfMt9y#h zcNia8&P-OsC@A4;8J;K&eBfcqPtr_hb=|bAA-+p%Lk${;BL6AK#l`eIr24Lz3m&R` zL{i%LPkhZle@Zn4v}?~kXy`WDAeBu`IcTAJRWgn1vbi{!$by`GBT&HcJb)JxBLi^M zT2ebLv*1j5AWep(cv}$mYg~uej;V|^WLX`!vM7d6**U6)hu5-U^Y{i0od7=s`ipv9 zvRObG`2_cw9`nPglTSS4z2U41`JqnF!xZ}Yd*a-;96@Q_pU-{Y$W*F7RvwdJb!I7-SeCQQkhV`i94H)v) ztaHEmr*IK@-3(_$B*58Iv)|90$}gQizI;`V^S{@8KTh4YMd><2vH&_o0IE-)X7~BW z^6Xt#qvWr-b&(+wHT|`m{Bh%fKfiyh8S0(v)c((k`?uh~|6c3;T)*?YA*pA=6|oXX zk=f&x{>L}&Z^i!WE8K1F%L;_Nfo)U+;wh^A|GdNP)_(ZE_a~s0aa=pV_3c1T2-4^y zweger_59D}<{D=kX14wn(z_zG<3^lk;r8Y61AQ7j4{Qr}aNn8z|FbY(yZzoXL3(7_ z;5H~rzq@Z8GP7V(`JXp@+@c@}llR}xTYuMQRrH+wpN0F{?fggE9^z&ot>F}^A!`6r z1|8Rr|J=XeaU(r3+p_ui&&&P&;p)5rKKTTHe@=S%W-)y}xJXfPYT~fxZprheJ>wa9 z{dP-vI*f^7oCje@@cK;d2g{_7Bb=4H!~QW3f;?&V3R6IF$+ousSc-P`Z_uqZpF#gAz56#8?eLocKNy-1Kf8_tM zrwKv+k2j^m`S*QEZoBj8{yqM<_x~^>S9@aKCx0LrRtYVyd!z2jN}mwk`!1ZSwAiC% zMQtBY-k+wCZnFKy1~BhiH@IW}EZ;~HE*O<1d=-&9{1>@_s3C97k(% zJ|ocX<RdEA@PMirf_Fk*xc1hN=qE8}27dd;a~{{9_IGY& zvUH~`yQ_c5;o@HdtL*os@g$qO{R!=lm|AJ%_a0F9n>eq5NO&Xa?&0ZC&juI8VcX^AO*Nj^pY{f{s6V!ySeyMr@L^KMS)h$KcE zt}SM&ZG{{m6KmW;{KNk>p7M+y`Q3*)r(u&fS=braqe~FdjVm?f_OJ_eUdnBQv1*{Q z{xIpj@7MK(r~h#5TFm~4>xY(8dL1UH};*7+!StkG;CMNB$>Z+qkNI1rljb!U&ke_D)%g&;xpmJ z-Vsy@k}f3C`8*-vHLKJ&C9NSQ1Vd`w&mhYBK!Vh?)fM5rne(&ci%P0+z3eCpu^Ho3!5?*| z?XDGwP5Za4tu!6v(hyrD(B4HA!dO^CS|6p311>>~5_GB+6V{<=%ei3jH0LZ();M$5 z1rY_V9nU1WR%+E9;&HTs=rzd`wuD2kBm=95VA+BYFZm;gqIN=%0r%+lx&NCDO4}YV z=w?e**ep*|kJk$GqNQh_1(yjW5SEqn=9SnBhR8AOs>}FNq%G#fKfPzJuM})C4(wqM z%3&PI<=>G=_2qFo@2-^uXRGF0s`tB+M!?xROg@gRwU}kX_ zHv2THh^;XcyiXm#dC#W8ClT%62@4Y0=U;QPVtnmVw!B)G3Cbv=>*dq&?Q1Fba2_8`L#m_z<;YqGs+>yR{c`a>tMk+QN9 z`y#Oa8YT-?e`-e`v_tGX|w{1tAOA!Bek;~rb^SC3t+KcLF;6?0k80X?flG|8r()oQt&XZQy2f3U7 zrR_i3FNYQH*c7b$6U~GE;a-6eT*sIr!hJ1>nm( z8iyK5?Qhrp-YOg0*fMWDUxR{pI6CQQakaLm78BN@QHERJ8N|NlR-7D0T@gB5;|a3B@oQ!3+XQ(0U1yoW|C8<9a@`U{f!L;fCE|72Ta zaFK@7(-g}u(y{?5gK>ZBT^I9&`x}K}4zF_nIgD8}#AN)&IqvpA6;uGqBCr1X<>Qu> zlG>pMCel9pnQP!b0qRH5Qh(mjjwc&m^6ZC*jlRoj5CUA2v?H!B>pf+}P(FcZ!F48w zSd_6(xGbnf2|g8|d!N$EnBb~nbE(42xP(CbT%SS|A(9Q&E8c=FU5ccGbYVC00-^6( zPj3XB=AS&FND>~k1U}c*FFG$5CY6B2iYm;y=K8IY^ls};n*Mad6pbSjnjU-%_%tDd z-lq6b3iQTJ2DWWx*hIs?r~$MF!W}ZG)`MjEN@2e0#u@NNTCBaPDg>HANcmLGRiHf& zGFK9#bh{j-9WTfP7ZsW-#0AY5#iA3|ykSj@0zziw!n1BEt?NjK=xY>k+s}r!iF>Hg zoWp*rUJg&Q>z+OElvZ6jA&A|2Ce}F4FH|`S{vs(_%_86GiKJ`XA*j{*Bi3rrGj0i? zjHTnGjynF~$ z!l}5odOQ$Ev11}^gBRX|44+Myj}ekeJRPJF6$g~(P_`1(!-IKvGds0dI@zhtF@>Ma zjKTEO>8}_@doQ7JabGL5w-X*=DE&Ykt*G{;U_LEzzOF+3gForA4CO7>Y%uQdc#^WQ zE`8VC9(-C{XKQ$Sq8a>w?I8M_? zs_+lY2!d=vEr_pas_Xj?Xv5S14MI~?Rw1!x&P$f%OgIGFL(bWF2&}kuv5}l6v^u1Y zqUj_dE}w;-E#s3~6rmbaOZxkL~ZVFM+e4uQkDSsWJBa_Q=%; z?h2vM==>ddXno-c48Jgl`kwQqAAVz{EA*MdPC!VtSGvAh=P~JKD`=z8tHQ*Ct`{A< zJQ_ecEzFpg1X~%SXyG4oGD7Xuo5|X;-Qp%VGzlB}E5F_ylp4Gdl4}uO!oonOfLJ{R z1b~qGNSv7!$Wum@&g*&}If&MPq=86d>7xb$GS|%)8nld_~zif zqWxMUUzxamW|eoA4@Q%ind6c0FCVd{3B$UjhPR7kvfeDFXjLA2^_d{p#3+IYLxLR2 znplqOBCzlH!?9_bUl>O%60_r6`%!FHEwZ_myWUgfA;>i8ae|5Qs;}!Z>WyYtmQGoQ zto4J{dGSD4h#3qD#X$_kMcp*>T7eKEYyT+B{%j{o0NQLT40qB37=qQBVdiZrXQ`6L z$%~f*#4UcTOU|krP1G<%Ao_Pcg=-d}vf0TDx$`6FgUhoM$YcB}nN>wDR^e%lHQa8}3&B7@tY(0sKf$+g3MITV}8bn;=FGR&7s8rzl|KX`~M*vul@S zsn$I97Yn6AO(RdutX<7C9Sg$&+W3Gl_}M{{BzEM5*?n>|2t-{EL{*jpktCxO--@_5 zVSHFk?(v|D2!@qlyLQ9K?N`TAq-ygn4Psy&R)(WzI-cTxP3RahdoX{zZuaV7n!0c~2n z)_$gn*Kdm55UN*4ri!&JrCY`-{eDd`0r-{vm)LR|GSE zCW5YOYol^%9z6vDvht+l0v`L~nBt59c4TbP-0Tw4YtgKujwP?)y@O{|3xIRW(~?09 zto^}+ENtEgnpSUC2v4AE6qd%(Ef8@Obxqpb@WEkn8i(<<naqOG^063&SZoh}l z^_$<|xkrBsxKJ^x;3C8(7;GtjWbvwWHflcgVs$=-mnpkYs- zsxDqA0r*`WkR=FzKuTk_O&Raz@Op~R%CyeGP>u(>kQ5nV*O3@xhQ+~@<3dl9BGE~w zlw+_Z5y6~H!#E-!U-AKfiF2yZxGRjGdkx2l5jagsP>ZhPTHdxW1O?Ax(dxco}cG z=1#|I=OEcHbcg{E1n<}H_4}Ew)4Pi#G8n#0_yGPLpa=dny=y%OPmxs|AM7uOjg72; zX;O1;yQW&~QMUcTyTgk?uJMBQq@9Q5ucbbD8YQ`_6PZWCn{wly{po$u$4 zL9wIJxO-R^=jLMm9CptPnwp_M{n491VbZ-$tNcl591SrcgNsFu7x0Qpbo3pV?$*xSzF52(>$(y##awWxzhvmNP-x5W=uVui2vgBD-F8adV9oStBm~77vAGOc`h~`7+Kswo}CpDZ(G1a zyw?Un-4b9F?K7m*-}w-M7uUNYxTMDm3gA8FM8 z$s_}_3$Qn=P6j({?#hZ*avb6WlxGL0*WtT-vOc*dD z)S`PWQ2F=EI#3kVIqWM}2$rO23{SQs;GB9}cm+IrGp&rx(pdUE;O;mGCJHy4WUoK~ z?#|?Mfcw5*w0&om`^P8W*oosfNhkV<#C}a*9I)lxg#?Ih8idKAO#nQSh-@-l)!+qv z#~q@$w?h%-GZ;ao{efHu3(Z9wugiDEP5Adb8_jXq6{h>{?anhyO$;Y{%RE1r+eU4P z_|KThmu}%27?@Hj^=BeF=!(|!xznl=AhtvTIhB8Ce>wY`dAsuxa>;HV)bNZCn#?& z9J5>UbC~T8u_gd%-vHb$Mz#V#0Rc%-?j1Ogdq)6F<>W{KSP08l#{tlM>9;g^f4Svd z>#lHN;X0bJ+{Ac_&N_SsuN5OM8cG2d*qj;9IXV_>}*^%qtCktBde3&K;qO{}M!J$p>Z&#_~} z6wkq(ENm~*`CXO;Y?GZJicVDJjIZ$7!Uhn67#r<5PuM(l_)?=n1-6f7f#(vPX7)+p zyjf22lqIRL>#gpD$qV1A0_d9ypq-3G#GMbcF6fH-8Z6So(a58CJE=G zy=aN2yq$Xxh2KItrPP0NC}D7V+JY0fSo&clYld8}f^xP{Dgd8tqWL?3l6?G4E5?+u z;z}937@{A(wZyaU=vB^w|3iP9bC5@&FkbKhC3YB%HJ{4zEiM}5t49#M0}z7jGp9Vd zf<}7owen`pUJLai2-1ssb3ECZMX%|1Eu5wcav5TWs%==!jvGWQ-|Yo@--)-Y3;cn6 z#k}3DHDC`FQQvErVAV>7zS;&x_Q7=2IT$1HkXimvGO;h@YgSqn z*_cz`N?$ZJV4>T8sFRky^T|RbS6EgQ$FtyHZ5Mofxqc>mV%>M|8R$Y^&}^l?n*&Dl zyl0;(V9q$(QMjd9Kwwtt+?}*aN&Y>x7`ia@;6ziLeZoAc#9nt_Uyo4YC1B;*$#a>1 z)5B>=?Kp;q!{V5X<}P%EQWo`pD_`2-J05eu6JY(DDV z>$X2$$d7scUAFP#An95!^A(R4;ybR>6&S6zs5Ql_Tejfo!V~JYnS$o2knkK|$drJS zIHnj2Bj!LQ$hwAIJiI+`p|)$SG3VzNlIiW(?gGcG8y+YL4TsX0PoLVUnX7`wY^>?6 zgSW)QljY9ee__cZdP^vHY9D`UjB znAcd0W~)%BSLF(DqpZh%3M*-$ayOZ0n%i%V&GM!{Gmd(UE*ZXU)K-a|pk1B4HGG@w zC<Cu#!Ni%=>lo?auQovPtHdNy>2;k9qq z^kjz3aVvN({Fn_K;Sj!9Q`l9Xx#BAa9NdV@mnt2u`~-ii9qA#>Fi?KUvEoiNuhKV2 z{}d)+7v92w_yd2GqcL5g8B1sthT5^%>L&Uo+Py!&?E1JO1~T3|K>>`Rujqp^z!=<- zQ^%_E6_U*&jw6T@h;%YdQ)OT%bwmxm8ZbO=@Hrq3W|o~`7(y`|i#O^%2C;gPlUstZ zOaZjabp@CKUKsskKftz%nKIv;AYl98KIh4}iOw!-db=r#O+)NlHuxMCwX_^_&MM z3#uyzl00GQO{CDAitL*r&&HZvR-uy9byp+4zaP#^eeyx$K0-C9EWDB6=~lBZYL5Gg ziJy-x@IR~%_+Y_z_c!1ND0@OaU&qikxR1AUJF1T_*S`*)0tw)&4^z#-P#T8V?CJq1 z?mI4STag+`3Wb`jLlB+8E0lz5VD|M=LX;wi=?q`{0YjQugma|!`B2+b0#yqyG`^MTI6c0_kQ88g0llycTcELxr&8AvlIFyt z*RVMD*80p#+KJe&<^*(FELCA5mVn-ct|u#VoTTzS@-^Y|rphH3Th8-{!l#dF`d*6E zgoj2Miq<B{H5(v5~trUmI;B4eHNzB z;SCkRq|Ywk)0r*N`MPZv9f(|!=Yk0WzR1=zHipDB&3fs+e!qygu4l!wc8VM`Z6+c~ zQm*N<3E`&yiPy*XUL1yP-+DWB0)5y?_;+k;QRp}pG2XZ#`{H1LuV48cD?E6`Iw_y= znrZ*8IW)-c;i=p!8~gWw2!8spg?k@()g5kKD`3J`5&1k)_^4WYj)U%PNc$s31OxpJ z0EQara^AIynn{W}Sk*_VLZU9qzi8)|!`)ubKva~tcs6dD8;K1vHy-~QXG-)A9dn)R zO?Zn|gQ6%R#^&=>x9{G%6hXsFS=R&>X&CTLkG+6)IA#)NC*zrd&!7`zE(y-k^9hv_ zP~=_d2EefQN<@3`7(Oln2_FOi5aq^Bt~HAxRrfcam#68gVT6M(A!rD;V*+Xgra!GT z013@-7mm2*g$x(7WH$ovl>2-0>igoqZViKV%u;I_dvELv{atU#apjLXJOK@K0E}n( zjD^8QAp=#Z7SO7++ZOsfsi-uLd>D_yQw&#r2QR;vffwb+1a!=h1SC728v`;>I1-in z%hw*xP6Pia7qzX9fy&r>08e&{squII0iz3`k=HcUB>C%Q8HQZ=kNGc^VHn6{X%K_9 zi3Rv|9Dzs>VG(R83p8EAi|}<9cL0~?=;gWr`sD>fi(oEg4@}Dx0bDX#Ds4~ z%FaG_fA=+LOI9DBJz}C5-yQ*O-ck@3cLoNqD$?TiW1I^EWcA}6a1jIt!`)swdbQ^f zJ=-kLeLqd-&+y}VQ#}mBsua}oTNmj8Hg!kEz>zTRa_C-ercYr)C;QiFaKH^#XJNj5 zM-I=p;Q5wQqDidw2<2au%6aMVdt7`B@ig=1A>4e15$FErud@Z>Mpm^YXg1!CW}2@md}07f)T z)_QE@7cW0;-{S~oZjU>+U#zI30NwC|taI4#6QjR(Kjz^=@cb-6W!dr>&=E~|YVoIV z{4qB~sjdLGKTRUCgl~@&J^}o^ z`Pi!5e;v8}*7_~TS;}M1+;p}a0*T<*CX^xy%!H@U2hqxjpCIxHL$U&}Zk#?;+`~EL zbL_Hg8(bS1O*jLPJNbAd3q=p&k67S-+S~}#_9&QmPK*kL8Dgpz@U?0)O{2nq4vmu% z;{b2uG+*^TZh}uv2gxjm{Gt*J;5X=KEWpK4CM^$e5B0kG9MU2Zr0cGRj}MX%1VPht ziEcFDqYQz5&jJ;6>%B!~C~zF#dP_(xA^hY77V?>zi(A)a4ICp_#$?>cqFkad+3M;1 zLVwWqSi!K{i+jEF=kA^T50G}yT!;845P~${4KN|~0IuQvylva6`KD0IZ@9oIhMoMa4q$4)A?2&JRGmhKx_G_3SpK@n?b$wG zp2b_59qaxg0F8^|L89teng9S4azl}2NL3UH(xmV7-AYb|QuV``8wNxXt8tzuBnKNj zc;8%ik5RUHeaF#VRMl;%eDMxOB@jOofOOAr!|756MAEp4;bVo>U#Wk0vj7(0`SvZs zyIUF2z9z(`jd{tUVZdbF5lNQxJpDjHCn@X1XX!)+l`wx~ok;fkTpfy@>q(q%lZ)V_ ziAaa#_~RH&6U8?9>+_Q?Yut1B=HC(}VR|`9rpRCzE{-l`8F{4uh>-*-^CBRd3c!o@ zB$F_vAU51!5dRSWI0|9nyUQQwde*eBuWy?Z`IGnY7M7&q>tb2mIMUn{FhFCs?~zJ7 zq&*RWkdl!O&>BlKS(Xuy4(|nGou4zCY~UjV1^%I^Au)oa+(Y|FSD?Kx3B+7ie-5pbABOM06O6lDXaV`uv5s1}06Jj)eOHkisPKd22xaf14+n_ZQerY(l zQh*kGyy@2@?vvVmV*U>FtC(B1{CqyG;-!&*kMJSx@jb;;@f@JcCuXbpeQl+cx#3`Y z!pQK0N5ES%L&FY<2a!OIw*uj?j#nnyRd-&7^m9R%a8CwL8tNL@iK{6}(Q)j4&~)Mj zut{$)Oc*On5{oZ#H*yu{6DU)W6e>eSw0X8yjw~jyb~UFSmC{Y`ipwpx&JJB+}ACrs*H@N%8WAAd)>mm zeFKPn8IHtt>XyJWtfWcmL!hCB@@ab(@2P&1Z-0DV0|Yet+WT2QeFj(6g&-gFr&ktg ziD3hY}i^HD-saZK21nwyUCW)2*C7xb_iH?C9q9&5Z2;k&iP zSxb0sh6>wt>t8_I)lA62@UbI6e3-O7=VKbd5%l==&foLNe4B<KQ}X)SfHfkQU_UG*FY3x!{I zZplIV4pnsGPJCXwJ8c7?0o}lr*gff^#eR*q;Fd+*=;|8HYvrp9w6zM%=Pdxw0BL$D z^PrKWtK(0eJ~TTe%r7=Ye)L)Mr`EXQpV?V4^NGLtW9s;5~!Hv zWN<6vuHq zUq=d%389l~wcN4ZRr~(VD}cU{t2yp3o>^=#4w2>nA#GHya+`?`5L(nlL*K0!U)zLv~2<4 z<7}==B8{K9{RdZ(S6bGnn>FNVyfiKc(QZYeA-)%ysy%%j#9g0$i5{`>QGxy8gd?qK zMg`p5jY>3)-rp&G)BT&VV4`v0l4h7Ky~W6tZES-eZQCKdZWx(-=P*M2$zeAsJgS_h zk|algF8SHci<|=r@*%hINN6+2j{&!An zBhM3+!tT)D?=N@yK%wbd^NQ>(^GI#mfLW?jM@p*8YUY*Jt z2zljevlp`=6Qr+88ci<#)A#=T*kZ}uYi)s@p&y|#7&&|%r5g+un@TLimFBc?H1ILr zu~N=a>)eXa(IPq19XUH(>gq)9ROEG?cyP}%Eu6tNQha^^R+zsyqd=tp_Qu)oSvA_{ z+jI}4X2ryOy+pJEo`rvQx?T${Shumv! zly%p6(VqC-FlBbc7u?{GuSnu6&)OJujM}ZcxjQ^^xdS6`&~o_RU|dIP5k*@>I6)%f zF`o$*_p@@n3E52KKVFWzWLxqx_EhH0t40TNdx5j*l`myeYsaW^*Hie10^ z1w|Hlef#vaeq3S(8_)G#x&hz#(yR3PP}r7%+c5K4%7&8q+8ptOvgAS3PDQ^9u_$i` z=@WFoWfw(;XwKA=8Fl)6VFBp$_p>8M_Dwkcf4l&s&-=SBiE>0|^;jJ8&KU-VD1;l& z7gtiAv251wworwo|C?v$;yU`8Z@7u3d6Og~GX_S-?DiU072yV$xD(Q{M_|{frY6}C z!)GX0sy#RCyGHWLa*sOLxEI05pP!%#953IpJ}{!0`A@t3Lovmly-By0vf@@I56bT% zKE`jdlmDI9{?~eR1N8o}I?>LSQk2`Ty)y@K+X`5vcg@z0vF+-V1lR1gMDN1H?33z1 zZU&xQmR8fA1U3;2usL!MWyycq$)w5}d(_LtN_%jczl386&C0oF?o?tZ zcqlidlPFSb^bDMT=XR04+k1-XMlE-^_zQEQx#*FRnzga?LZ*Ms(nHfy-yd9(G@f~m z=!4swo98o|ms=CqT$~6t{^I* z;Fh~r<~SA{p;}EB$s(&Nzqd;T5i_}LS6$IjeGifC((H~V8zJ<}1)z>SLV4wAtB zV5Nv|ij4BQ0uIB7+wC|+3t!4~*vX(Pa-dBhVVZ_uzB{+@aG&|)rMP+So1J3+aj9U( z=y<5Gxhe!jA_N!4+?}-m;g*{{G90YEJEEC58wE^6O-xT4d)Phrb^cTD`YQ!! z)_%FwyD}cI=75kk;E&z&Cc)o!g>q@t8U;W7y|>ML^so1g%q-rgS;CtE1r`hdmq@*r z_YAU{_prov8cd6R5c9<%K*pb=@#Q6yhg(g1ja)hjml4p)V3v)X_FDA;px7L_@s^$U zkL`UeWhUf577Y6TOFn=r&(|-{@OvJU$RnZa=IgJ0 z9X+-lpH_1!;tYbHh>BF|*6Yl9lii+j2gsfFN^Y9ma~D=NPjVA(S}QD$wdruShf(E= zFmO`N61q2UeZD!+gpqdMJ0bd%qD)5{9dhKfl)Bn721j;Vb7+Jy<^-u~JvAmgwr%s$Zr*ZTI) zdDX4n-WrSLuG7}m3)6v*Cr=?URNT!hrfB0S+M$TWEx%{kg?xA$bCtz6Uh>NK6lCr4 z3IEqK$ONzF#O=NP`Y`Q`>WVd=sgEB3nRO@~09oFB3;3J(rn#CCztTQd3ZWTY?6R_H z_9vDBw>4uf?h1f6JGtTDPnz({SjpY8Ho^}xti?`rF3tgA# z{LBy%6f_VtGZaMgct9f;()ka;Y;E0DteZvCpOy zZ`^;v?%9uA84nTrY?~nF^RVZOMh$N1YQJE6-RFhHZq7ZWC1OrbzdH*9zSXo}BN@)! z6duDEcZz5Oii&8+VvH`SopkN_Ki&|Zcl!yR&!6+V73>A#xWdEk;5I*~C9m!-I)5qO^MA zTW)ewfqeYetE0HrP%-ki;A|HNZGc#k{qs0 z-#iMNq_HzLHyW=T)g}_i!n0iFeDW!Zq!a1)XZ-lz#BQ*xN;&z}*>@w>YaRKfxWb;n zr$IDqPzG%kBTx6r;SlBs%(<)*KJiqG$uvF!HaY@(yq2H2Sqv}t$|3Gy&~=#$aQ!YX6=!b8RvB}b5{fBVSQ zIQu9I;b5Ri$KIac6nODCh(a!igMY@3DsEo1v(eaooYB40jkFy~5UJ*DGi`5z&spPc zj=QaXFvm*18s4-{ho#xEJJg=F@OON?Ibb-fJHCOX^}nZekC-SYTwjuSD|wf_-tvEX z%b#{jKa@9v!k^|IUhkq&q}HwxviV|Noe>4WX%par4dok~lJtg@j(SJMy~IrAAjF|0 z!Q7Zy2mq%rU(n%?m&Hy8zxZ48?pKiMBM|95Ngg}B+#hgxQR=nN&&h`xH}_D5_AeTP zX*3zN#+i;KnISD5YZ)BUI0qbR`w+0Y@OmGQbna&V@lSX^bj`Slp=|=u^Lm(ZHg2Ga zVf>?xD=~I&Vy#E~iJ`23{F7Q-tGqF(@t~W(5>I_OM!3kj*6orWU=mRP z@k8n+`#q111cJsl)y*I}U#1vu6{X33<47$nzj;>k+2r&F)i2Jvn}1GhP=T&g@w+uC z=f{}5M%X5E6A)5r;sgaQAJr=^Kv&pRCs1?dmCK>l+aVYzZ~}wEN_e@Iueibj0?#N) z%Rlv&%uhcOfVUtZ)fk2acJMuC3+NGwzJ*081G+Fxr%}4S?&s`<*F5o@$nwu~MN)~( z5q6H5)hPlx4dYCEk5ASe&v7FT_ki|T!3QtD_6Zt~gCezw?!=?mpEJM%X`5f*4)zQ3 z{_Sz~JPF{J=S~f6=E?Ebu04C-Z4WBYd6PP$!l$i0e%KDQ-5O%NW#>2d4Lq%ljk}c- zVrx#cy}}bU(yZjqbBX-{DV>P8n7nbG?_ZoTNc69XQEC`lS3^duX*88cI1D*!x{ePw z2UO9=N)V(t-UZibq2!<14(nC$uHDzGulndTDOMQKi zh^<(PED;BAv5n}&HJ)D^@5#h=V636xM{(G@TLsB>D=OfUlH6y0uLVN}kvn?}556!l zw+K4Fc&}7ojPqNO&-RY?ic;a=DVAT6tSl9v#A9q;Bxj9a%#n>1fp`}=P7iN1skY$W zyb1j9@MEAi?M|gf)yrT{RIdLT&;IlKOkJH#5TL~LAg8XwKLm&RilY2p2Mr7(NI=lv zG5qNK$flte-8t5wOD2!+Oass%HOoeUF~5{HyGUjP0GOnCteO# zBeH!>s-tJ{ZKcdnd^`=vBgNn6F$}KdW%YP753Et1HYUzynu8ZjqzBcQoZrVFj;`H+ zEeQ6m3(iHvZ11_w)iYe=fTs$8nG&p_hTD;Pn|QgUJeT>Q9mvwW&=RjKFQYFG`W(WBE9tqPN+$KPMxr?f#FuuV#(U2khy%k%g5n1 zeqD*0{p583|IdbidNe=%v9G6%giox3Xy@jIBY`KbW_Bc#y$ukuZb?JNolY5kO8DMQ zBt;bWJ2AY@!r#iz1euNpqT0flYN2{_5HjaV8?A6CI9;}v{ zlS=-0jy&4a0T+EBXTNo8d9B`Am5i5ahdnw;5Ro?<%}!CGryTdID9K^J$B(BiR6YR7 z0LW+m-j_+^Xa>P=BZ&}8Zd2|vRX>5(T=NYnC%6>Hh07~tUX{uC&&a7KCQw7 z?&wn1<|@=yS1UaMAGmnG&PCoIlnmkJ$5-3B zo%vdAv3-#v<(vGLZs5N`Rge1(bk@xiQZLS&e|*Q6d9;D_&G`;*;uC2g8*(_x38fpc zkMfo=AHsP0uc-|j@SfMe({4)sj|os7hpAlW(t53drTa(|8-SE<@eS$il zkAk53mcfYu#P0-GU|2mr zJXr6)E^YeU3J?44-L#AjtRl=NF*C1%;#>Sac24q+Uu<(_5J7*U(x=_Ca^8=5b}f>w zR3d;s_J92P_~4h%qRb4~O-P{Xjwh&L&DoO~uSUd*b*9h5OskzOe6sU6P+2%cPW1tz@{?ESeB{uo6tB;Qy$^5=uX0S2R0}4Io zUNf@77#J@WmXP4xg*{0^b(+!fqH8H4RF8vs92WuCP=4#L$AInR1SC@Cq_2$zv0Ku; z+99^9_HmPY4yl$qMnK6?N^FL)dj;mumHl(%eX8qbe{Znoc`xk&FkaBjJ=gGD*R>yS zedN0KG);;IVS(ezgI2UZmWlURB%hes^~V}DAjG1`eDj_SZ6W#=gQ38B=K0EljQ})!_a!n@+a`kLEl{Ly_c6|p{)~W4+06Kg7Ahk<9)!mx_4a@Uv}2;`(;cUG zZ`e|up3ru#!0NF*9BmuRzRzx@GgQ_?R)>RFu*ekGBbVqLk4`iBAaX-NaEbm;l6X8I zto}Q`F(CPju8U8yt!?Fk&$DL(mw)z=C_c_#Ym}4_;Cf0Dxal~Wr7lt!9tFd~G(P=C zu5P@G8&>Q&tzkcz4-vvW{yxIYt#`cslj+Hi{P?goMW9Y{0H8lBx5y_i>xCfq-!dAw zY1H&?xjUfw*SF^QUEJJ6;9LSBqvh3gouKR6hAuHg%_}gDBWO!Did#5NgZbhS-!{PY zzzIU;B>)C*d`RK_?fABKg198zO87huI!G^EY%J6+ODmP@mbkGbO273GFT~jLo6XR{ z%g9w0_oZO-5AukA?L&T^4fU?LPw-*8zWC%xK-0hsb7)$L2>u?(D!Z8=elxpnrF39R zVZ9CV-~!M+we>B$FyCmC+2>K(s0!8PsT-ej)Viv7$pM)o4?e{gv&Q#0p=9J<8D_1I z7$EVv3juRV3Yiv)|Jk$tJjyG@gY~PyxQ?rWTge*gr-_oXSBr;diY6FKGh=Gi!9Hy! zKzK#RLz${G3>#qI!Kpg3F9G`i(h<+CbddH8!(%Q0D{-aoUS%(!H7(56{rw|V%g3?p zTRME4KUl}k4>8Cai_9}}G=eQ859fOgGc9l?M_{s@1qEubpt^x zVY+tKux;KFBP|H#v0Ypsg#}&nQxlBZUoVyE>l@O!rFVK31j9IKr$@frIu7>K#U}|W znl9_x4=ugA2_}HeoA4g8lnPcG9{@FB8h)w0OBa(=Sk&f$>no#n zSLC;s0l-UY1cTWCz_5|@{qH7yQvmsh+f2qL5^qEB04xO$m{3OKTJ(i)cl9^UHX#WA z)+OG*S^@dlqx;D5`Sd~N5Mhw_w7QXGjS)z9tj@22nIgVlv(7_bX^sf78SmID}bZbvPS_sJinf|8e8Z6J1?Iq_Pw(O)YJwn0yGfHIaBBJeVe-tGe467p7^0Av3+91nVdUbz>?kddCfwPV@4qnoV#!~;?5TyGrjs|L#p-^ILd_Dr=vEWr+wHGF zYssAz3<2-Oid#an?48g?$_bI9-3_}9sRwe0$s0a9D_zOXUx+*+foHjpyGsSPI9=>R zUQ*{jbEeXXacgOI{L+YwCYNvjmfS?5l|1QFf3HH6@~PEGV7O*d9}2Ac_1t@Y z;rn5o_e3!LLdvzS2yVC2nNqeWespUG@N?&$=M24>U~!`jfXIphH_y09>gwe*RUI~s z_oa_p2rK2l7$($v2qi1m33=8^IOLCR8X7HpoyYb0-S_^J=XddYtoUFexeMm&srkwF z;#zkf-wh>Q0|$yb{vCg9biYd4$0FYyw)EgoZvsjlBANP~UN!bfCYbwxexAF28t_ zD<21p`kZdOe(f8ztaCFJ9_JV6^Q9aQ%Q2s>RPBcpVkFk3Q}y)G2}mRIB;S|RMibu* zYU-rhTtV|d@?Y2|FfG+allIj&gAqe^ZE!P7)=l;;O!`1>TTnhyX77cK7_Qlt;%$uN zl_E&zAV8f@Fzjsus@Vn_{e3Ty9n4>M6F^PuAAL0fy~HWVXt~wZf)lGa+|vglH+wMb z>XC`F$mKwpb5~Z4c#nT}%2b4DLx1F{=!3beXO2{&8w9_Y=XHbF8xv714XeF%@}=xP zoSK6Fyy?|_ee5dhP3ejzHf;v8M??(E_7lvjNt)8fOL?7EJfZNnw&>Sf1crZ}YW*x9 zdKR^5DopOHzcF}#DWz!XAs!Pks<$ec7WF`t&HGC^+xWomCMER(-SqEs3+Zsw}go_ccT=14=r)-6t0R+ z7CAq};;(kpp8B7Cjw3`P{C=-BFBzL5+(*pxlt?cQ_7HVE)_@;fLARx4f}nh}8rYAL z^8_$xAM%;mpd7(Jt$eTN%MX)Z@r;P{Kks;!`SJK3@3jfu@hpHF>+e7H?k*TWu?CU& z`YU!mNBQuUS&dJ(rg2bzlHDDU0sw}oGTOu&ny?LHOx90SlHR6#>bIepD%OXj0yMy; z1O(zdqu}Azb)+&YNls+D8Hq1&>Ptt)EI7kuQJ#XgR8=;bHHr8Qqc!iTcv~ZOzMC)( z%Vl$4v3%2lmA=AH`)ThWmqS4enOo1;z?f#qy?$w1-ih}bMC`sgFYEPJzrMcbhWGE0 zJYsLl^bNTRk^Su+hYMG#gFJ(B501KzA47_^{7KZP(VSLeSUj12vMy&{011~2aT81v zyky||rt9|8f8<+CFRI*KtrM@Sn*zrltPUQzIg=Yy_SrYzw;N90`f3)vR{8`oJA(7q zZ%_rz6++r8-MU5m^}Q;qVxMJxJ=U0rPMGN6oKDa7d4)0qVzgu6u^hQ}@fshxAZLUZ zpt)=UT?3;9ECdpv$N$t{{JL zvWpp?A%b%+Ab$3W4}e2Kl3ENylRz#y{Qhut;qFDgwN|!hnFTDAlzMqu(H@9;lLQ)U zE*^J0Kej3P*s8?T;>0Po@Z{#B(-V7WAt;d6$l=ilgX;;Qj+qgPIq8G;4Qb5-#viTA z2DB)?Vrg)^!!G3gNAr!-vA~>;PQn#O9PT4*_)nLJPee3-<*;*(RAPKnkR|#)&Pv0b zqr*}wgBP!kPou47gtH?-0WL|AT9SNsp^3xD1w>MQRJw;t{Y)m5%^X|aAuIR^rVJ)> zwom~+YVwzS9`fJ13jPLg<-n5ErzdwskB(507QLC|*rs10&9kklMzxedT@-k=Z#hfD zzT3!QExm40&s&9dx(v4N1dASQs3fds>Cj5sYKtGzDwy0{3O$|)7jcjEf(yBhZY>gb z0$3?H*wfwtK-Wf4m%&eN3skL{Ks$;cZUGolL(zz__#;cpGP_gxsRSnnm}CXLx#7am z1cO>oVSW8V-H)!l)^LKMadJ$xN!3_*Q12!njrA=y&sWjHB)~{r&Ef(sB6gE-#Wx>X zBZ<+x#ZLkO=r!l*uk#vg`_5FgV#u>!*@ABwBeCQ$ z>d@Eb)Lm!!V>+mwo_d5u^X^1OKsT4vqm&c)9Y1y(Igf0invWZ2GJw!EXg|55rLnN6 zeT)$54-%uE0a8acr5BnL^M^)`ZMY+MEKvYj*AG8pTtTEZTUj{Px!fj^{CmyLXXVBq zm1~cjY;wK*_=Kr$7SJ>Wg;3vZZ{}8jseceS$fjs;CzZ2>)gnY%JqwD?0OEHp)GKtk z_=Av%Kz{ZD3Brp?(<*bevr}+&tN{IrwDstg8dL|r*2yO zn^DT13-|gVsv(m9(tu*p1-A z2?C8e0bsKBw--jF4t&fky9W--oviZoXyjR3MP!3v1k>`&0sg5BPh2j?(GV-{Qz9Ob?&g4NcK_W8^~gLt?( z+u5XUb<64+q`#`0?-_7M0+}HbN<2M@TxCZVpttwOk#yp{>~PTKXZP-Ry#Y{~wAg9k zv73abywgn^cqtRm#jpJU+Sr;}1H=W*y;FUC&R)}YOlZp+bU_IBd?_9pB6HPZBG`={ zS3RkVA(ht%G1R^jp>2W;KIFqqucJmd#qbfT28coE zUi7>>)rikot=^u|;v+nuRK0)xhO5`ZzxhZ13ER(vzw2m?-foU>4|^u$QXHRL&~jp8 zK6;ymG8Yu;zKgf|=J@yMIo{w z*WabdvR5at3}fEZ^3~o5CM)!h?`u@VX}0>&;*M~rp*nbjfqZqFHxC7Vr{Elxu1YxO zC<3+{NMu%i1Y}b|E#cFWEzhWizH$q571yWaOkNuzpss6*T|=7&HlR+aE{QvxxBdXf zR#ex9)$}#t6q0pLJbD(x#}-;Q3^)62yrTvCc*dQ>?1bvY=IzP;h8|VlILW(qCYdw$ z5xK+}^db#@rx~J<`;q5>(}9^Ucs{L_57@)$CtJ0ByRC5j?k9PFTkH*u2|;;MRkiB` z<-*Wily4O?3ZHPEMW6@Nl#V7YLJAIy>AGA<5EeiTTsc^9Nn!X zGEGIE{67qN{^yLdv{zhymG1QvL;6vJT2_LJ5l>QCmFI{D;t^Z)%9?Q8aW#>o3wEtp zPu=MRe7$y`{!ECqM<^OMVB9b{_F`i2Gu1#Z`X&Jpw!6USzxv^eJGxHb`FyKb0U~cP zKlvL$qFYAO-h@+GW+6X)&BV6;^!*cnl0m53*Pb%27)T{=+xFpaBll-{#g-Y$>!L;L zctFsx?ky4O)-?`6E;6-$3{}@=%R=CG-e0Md!#o`EJAZmNsKBX5a@jzbsI`sdU`Y8q z;R)0xO>SL!y~__oIJS`Hw)BmXd*c@r*{>U<%8zk_ZD>_8!i8JHT0~klGpL|9=j}!x zME6!tzW@7x&tT-rP>QZwmRql`!t>5?shVlHSkv`268-(3D={#nM^%tSDEf6LD zbAJ-r3DIX93_$8^TnR34C4S0&4x(!D;jr!yotu%ErR~t*&(Jp zh+YR5V_MnB@6S-ep*GE;+}3e8H)L}2Jb)hmhm5}MAdH=a4Ondy@ zpLqIQ6}&sfRLC2j*U#zJteH2RwmT&&n&Sg(030szuHfRRo9SI5Wf7`mOOmBIOj5~jATUl0Czw14&?vl+j-N;Pri z>utWlsGb1sk!G39>v|Ri<5#bM3;eA!B8n{sZkb8-G=(!NK`Jc!DiFcGq8R@6vk`zR z!>L^VoLN2nO&8s4$w+kczm5;NVMDZ=&6`i+iSMGijeosz7!Zbs38wOJ=O&W%4E3Jt z%#Q`^3P!Oon~ENCsObkzcbaW_BOIJvlXEjZ_FNGHH=${?(Bo>_hgfmkZcagY%~ze- zah&&Hz%wMwcv-rk4;V%cz^3_wc>7zNf6NHy>5px0nhjnJK-S~LfEWeX75$-QQX%6g zAqCgkiL`n(FViWq{KbECiq>8c69iX(kp=5oE+x|j+d05Aw$H9JRq_VfCcJJ6Mqm^I zEbT(4dAJb71Ys$){HLo{-@; zFGt673=lbWTDr@^#;i~yf#sdl9pbMr`}|yH`0UknBb)j2wi4+jJM?}s+5U0GcCgrz zXW&BA?7-JP&e|PW*7N6>5Mvm**Cb$`y&O|O43ub-6_a62ne#5aW>OJAc?kdqh2eqs z8U`Fyr3{B-G3)8S>0D*i6r6_P%rm&h!P!9i9wV)O*a`+s_QySp1^T4aGAx+Sr%;?&VYV;_qWzA1r|ZP)VO1^CZh4?fs*UO zkh`v=+*k{Y_4Q4#kKn5lt~(g^a!5vf2#{B;#fHj{S-%A+T}?3peli5;^+`k&Dhg<_ zDzW{!OD6U~Sgpid?MTC7#2h-gl38VoF-`oO!1EmJODGmdh%Qz05z#!T%LpYHMMJFj z9K9+m)kSH!;EZWL3$OU2N!e*}q(VjY>8?>ZZ}5jqKQ>nP9`P_3Y;I=vH6Wysqy)50x*2WZ+X=vI3v4bC`LeT?Gf#jnYv zEdJ=V`bDO~c&{To=L^TH`;gd}0QM_WE!!gYD}$tt#X10Y~11uole$jAK5V z5u`h^Pxm&K^O_W(CqR%gWdJ&k-awd(p>vK_;v_tBB%;VX{+_`EDG-GrF>Vt?-}G#Y zHTHw)ia>qdNd`Ss!_e7;T;VMzSAdS-ZHx?-qB>8uCm7}o7)fZr{hCk{gly)-`q-HV z?-kmW!)rk8WduOpbwwSVUSM9Tf=XbIBM~@g zD6LSNHB+D8y!R5a$O>~!!AU{+fUsx1Rrt#8Ol#DPd%r)6QaPE__hO+BLt#xLk6&)v z8b|IcGz_-r8p9^Oy?3r$Nbur_VcE3j1aCTB1J>J7^~Evg0`Ut5F*i{}oDz_#{pRtn zNr`V9qM{nJxgk+cK8EyHtPPHtR16G07t-7ZlPVH5=FWmSDD(;S#K|##_RYNhnb+@M zH7>$?yG(ISkkeB6w}aHL17g)9+H0oQn&*DUFF~|gaf~Jdp4j2{=1MF;PfUxRYy3K} zFTe-OZDZ+tkdM!fk+lylInZ6M|y)A(*Ah%lQ)J93xwXkqHOafvk!T%Q^3#b z#@ICIXD`ezmRF<{%2X85s5n4LFRDaWg6id^JdVdmR|H@VIf1T*FZIjWoDjGromxFWFC!z&VB&UZq)=YHG~-OUMwmP@U+F>k}t zEz&(nmCcVQl#i)MLc$RFlj0Gv{@tskYKi%C748diHPUXFea9E54%B_(cSuAe_UVjP z#k}Pb(PL^zjjp^jnFu5N($|rSt~gIKnIs1(sc{i}asj|KKt1s+8y;4BFW2EfwZWy{ zQ)Czh`}v!XoXG{iZS;%{xk9x=;SmPih6JfFf}_QmP*l(jtwp0j;SbemW#}?0t3{K06 zzgfY!`t)A$&{LF%D4I_VP4bbvhjHR2q(EsAhmVzxd|%q=_j<1C2Pup=+#y~yLMf%-Z^mNBx;3iGRnevb?)96e=qlM&J@mkz()6~zp{(Qp$6(3jB^K96^!1PNG{t^ zOo;8fr}|VE8lbL_Y8o~gB-a9jcqzLQmZ5*wQwC~gTjPzQ8h2CPvZ`=$eSd58SR;>+ zX+@EkMyV3%*BE$Q0=k@JNxhj*=1tkvVJL}s#R#G+JI>o?$9UYAoD}D69d)i4L>_0ratabh=x`gOSJTrzp#f^n649xP4BI>b=9Gax|WK$ zBC~L(Dl%d6-T!?+2KVF({vzC0EDHRFEn5JjErp9(7?yqEqE|dl?&56~6pGQDl2mPp zzp=HK+TV36zi|C2M$sBT5dY?{SHKr!K)C%9lSLaW8^7k2f`(9 z50TUwdKr8^g&VoM(dkmH^P{ruHU< zbOV(F*@h5Q>CH2RFAOp!HgR!74x(V1Ix7b;9i=RS)i;~(xT%hCif>-7_t7pEe!9#t zmo-m@olLukLw)x@K)$b)6H#ZA&Ku^`X&gzQ%AIx~*9Y^kA5M~zhv%yCyQ2FlOHuZM z&Hg|muIkK2N$vm%Duo~A)F#@dDEPgXZqSA2_(kg0S#Edkm5;Fnh4>BVhKZSTHoU9w zxuOLI-5EgfkXuB(@D=k-s2C3nO>fOhRex$j*oXgeeu|tm&c8!Th+ao=QjRC(>h$a= zmOSFi#PA|6dhJ=Ioe3#CPz}$ZWpokF$m{IVWw23GX~6eMCGkBBMs3t(_;zBWp8L>M zbexvgnWOvWe=Zs3w*E}%Kq+NtNPIeA#n(KpN?hTn zKxA*gTxtA!pk5f`xRpSRj*P4sJ|e&{8>83`hDryQNR-~V+tY#VJl?|Mn)4@#PLn_d z`87Rvy~Rq=PV86Axxply;Falu(@o_pA!gjcm9q7GFXe}eKiSrKb`dKdJp5_*zYE-hTmPJs(6%`5 z_qzI8#Q4@$sUd|UXw2f0#)qWC_3r4au25b1z%gDAU~xyedv$mS9)W)y3zmCs+`UMj zuphm)#2^d=!MHH7jsnQ{-`9{cfe{?%2(^Syp;Zm9vj(M$K7k$BRLm2~gI)%RLGiWA zijPLp91zdjd|&l6re5J(1PK*h@2I(htZI=!7|bJUXc$WfdAd8;_PT@@#WGpUy zUJc}?K%<79Wy--VALxhxeRL)nSH)EQJc^+h{f~M-CBsYJ=X}-%f0y|yX%P_c6l~4B zM_@hCfOOEt=aIpG!E|v_w@ZK(ecS*!Js>|3&od!3`1NIa;Oj=8*XDsxgXC>8=0Htr z$8X++)@^F@K{Vrw3Q1Fk9|NZXHprA~(yOqO@zkyPRJc^-Q3Y?U2gD>(E$B3bi&(2* za@S0-3gtm4IBh2Sf41ac=1)OnO&9%?I?LeZRm{_e(x-^(bt%t>Jl@k_S?@yI6B|*?9pplZXBq$7->HNN4~^{CFT$~797Cs z5KrN>csO#=(B|v6v`r|TW(vpCJqO#j3^IY#%OVy_)z6AqJV?v{k+E@R3HjQuSXi_V zFjIXnY7g_pRk*|0VgFSVnb#Ji|Ld(8Og#Vf*tXs)j%>yI^?@z6z=n98zIUa3v_0P? zUdct96Hs#PWRPa>-Npf`Tv;ByuaXw)*@F$?BIPG$Ya?lY{8>wzQ@e&qeHH&P&ice( z2F=7C4XppAm2A{uZD~a#-C*|n*v|0YeGCl6(hvQ1ywTddF<0ZH0d40D$26@&oH#Pt zL3%HAdvK8ac@% z>x2E$SDC&(aZvGS)?z3OT?%+a=^LKC*SV6HFV|B;9_Ru5_K2WukUD$m!bW8SNQIyL zc922$wS(vX5l*|gv<5X17>mWzxL4&*{;S_%mYym)VIfJipUC>V=a7BX|MZ6Pb~ZJj z%vJb=*VdQENTHkFWzg8K@25MqU!T)Hmvxkt7Yz0xxxF1vEtg<9Y#17eJns>hDgow> zsn6lsR=?B%?%cArtmJ)h9SoG}7wS*64RY?U4XjBCr6xmUmkdLhky z1tf`5cn* zcLoIGVr5iuX$Mn%dj4&b3HOzDK<{`@THQtX>eLb=k@TP37JR0E^y8(*fCHDwJ87B` zaV{ZXZ;$6J?qNznjUTaUtnBZ++wZ)<2{s{4o*%mMA2O2@4^}RMTKreF+KS&< zihaEY=V3Gw(f@=AyKK^NR+mp(>9cadPRcR*_4*a8r7W6a;fSG{2$OTAM;G!;17SU; zTiS5+kYjn!_hu?hZfQ6Jnl~}s7hZRVz0~kZ69QRrayVm5~s>#y2ATr}tBYJi+l>V=_U<1``pOBh~fiT(685kBj^N-E^TgqdvS3&Uo0FjzpHt3xT1D!P? z=&K*qqx5`@c+++`2L^YofS-9|eX%ssMwB~tpL2ii?^4{vmA-2((PCXTzVu|9DL^ble@MxwF~}XJFYLi~@}zzu{|+Wq z6JHYaB(dXuw{;u!+xzv=GT-j|<2?Vx-T$2T2+Q%$9X`XSug*oW*smo-lS3VrkO%C+ z@JkH}DEix1fpilD469O941aXIw(!26JquDlhWe7GocS1>TvT97%krdRer&*p$yP?# z-qhb``v3WOn~%TUvik@?w{a^nm9trZ={?|Bv<2@R?w_Isq&up?>-2uB$@`@ViyO~x z1-%tHtfDkQBS71rigdk}KC3kGQfQGfB0)u=f^$hkdj*bB!)xJV#|854&FS;J8P(v^ z8{X1X(A+uQ7j5jPl#9Wq&W$fUrXaDoI-S(i9^`0O;`(uRE&7tREIMh_qy+%gH)k%M z8n}u!2p|-kE$ey3*pf`q%{r&H=fgIEAlEHTH6)E9$s!$apE| zt+99LzO~GkL0R~kHWBfsKf>39>(U|1Zvh}8n}l=DM<1H}lL}(><3ZY!`RcjIU(UZ{ z@%1v6DDayWY(#T8Gx=>2-8FfpC(z?FnO+IS7K{{5sKqA4ZoNNAG<#$D z$@ML{Cy=Ede(OoP_gxA|wmn5BqNf8eCv%6In(3yb-T2*Ano@eodQGa(k1mYzoE9b= z$fDfZZyYBmy|G((q{(IOOuw$mmG~5?AIbQH0M~Hq7V9g8#=6S_cr5Bu9t1Ah010}@ zD)>krF;f(-hU=AfX*c%GgICI#!j1#b{@`9*;Xc%mbO>feN+)X?JnIK0_6aq*_8V^q zh-xgzk*5%6hWC>}LX}vajE?l`WFE=uCBKs}Fqe^jzoK1|ya@jaCo$Jj8-~PtxmfK_ z{#{v_aZAUZj!9`B9fM{11A$6JrMM2~==OI%^zyy_K5yW96nYcA=y9zGQ`ld&fAeSZ zlo^6wB1E`fOM;_eB7-m%xx{zAXSeLYhX9;zQ>-4RLwA!{rDJf;jg8uurck}gwrB{e zkQc?PwQS2vkebcm->mma)F_CX*0>K;tsh;U*N zXEKnwC)~^_#38t28JG`>cFeSbxgT8*tjF4_1k0mXG|)t-N714-Jb{MgQ8KujDBjW$ z=dXENAQNMfB(G%^gdQM3>-$K{r+R7`9cE{n<|v492gFRUH383iA|DNVXAdjGFtX7O z+1~&h+=@WRo@n8D+We+5et)^QtZQ~4M-}rPuJ3|Q!Xux7cJ=n&)GVA>LSghO{ur=D zKOCud<)VqrV`trFn(VLVZFd@`roAC|wU&+1rk?RnpKVx%|I6)VKPG|Y?^*$KRq}BL z2-pB#3tjF|6Dob}D}}Ff&2r!MES9u_nLXgWi*YMWosM$i4TR&^e#g_)T1y z59*{&=>{E<;uxW~8>TA;x?<5Lh{fu$Orif4%l2<3HMUthKRpfPMzgiBNHm|)YdPug17 zRRF!+z%85KgGMJv?F)y!ui2Dtd-%|L2}`ixj&4z26!y%(^rXRG_PfB{_=pBJN7V=b zZ(x|=!;Dsko9sn(t_x+MY)MvqSB(-N7LYvglP(^#nGc#aN-CaOvac8lQOgXW4g-nm z!Bqigu^4P6_cw)8CHGhD6)OGu)oG?cfS9iFV|*Ov^y;C|>d>u&IhYhaz>V!2{`#r& zba16;(<`%ww?b|)MBj>c^A`%KXZMe$E*s6O+NnP$%ca7lwS$O1jF~!{4kkhv#khC84Lal3efVqavCF{LN;7|KH6Q|Jr zZSO-rt6FU(VDOq2{w{a367}QAL=|sDC(Awl>h{)Oee5^^c%4ZM49JIj$sJ_8ax=%T z@cIOW%^W*u)ZISGZ~R&QD08 z(CIKn>~zSUXJ-K3%UWD$Sm4H(@>D9G<6MrKpuX?T>r&XJK`kg@wzWUs%T3H#SmuM>gy6ypbZC`Dks z4tEH(`HP!W1Nqmpl2zfD@FQ%;c;ZtvG_VIsfiHh`zIiuWvkydDPiPXNHW`rLF|{Lt zPgb91=5$7*L(ZFeaKbUZ4cVFj_`2R~6kjy_U!4{fZEf>YTWQJsFq1DUsQxe$uRa_- z$LK>O8v9hn+{Z1KerfgnTAx*->zi5HJ$5U{A+0QdD5YQqnEv(3)apxnpTPMPT;KfU z;oB9OzrfzCMjf+svcq(&5K82f_d zjk4pi#;ll0R8NeR5LD*6VUpR|>()pljZ=T!n|yq3>rdQDZ&fJI`%O)PM1?en6DnM_ z;>E^dJ+k;o>LD_}gO4R4GqE^Awv8Sf(Eg04I`nsMmB@Yn@AGTRmAT82*;i*JBDQ=T z^Q7x-dTX81CQB^xPt2+@eD~>Z{?k=iN?!T-Jd5+AGKo!)%P2IEa;c*BP z_3;a9*OCR0yG~QRXzwHt9+{nRGd{7RR3^#|%<-!+&b9`}>@gX6S&vq?o3^*|(Yo_6 zU)BH+4IO(VT!x@U5KU*n=Q+EPxCBK4Sz2HohN9_V*sVWRht|EFhN=gAl{rQI^Qd!Y zwl^w^wgwQq?TnF)#bF)w3IN=e#)=knWk`#+5^wcK_B!zTXiDALD)FGj#nZ}_B@+N# z1NHXFtd8fIN@5Q|yLV0>0e$;9cPc^zKWnD76iruY4fO_^(xAbMVrn#L9nyIZ)L^e( z)V>w&Pj?k^bqSHSnA*i>@GcmQHU zr-b=ETYR+jU&;LixxtD1_{S<^&|*AIz@zdT7^vB!q1fB+J5KPOY0(S@9>dwae&5yk zG4~pQqx8hN;$)J?2qOLf3m!|ST;@2Sp8$8$=I4_^^w@{#d~oJ}8T!?R*mnU4@XP^; zu+k5_m)>JCDhfcHhgQ$J#!kX6KaGPkl(Y72eV10W+%Zbf&V>p>rug&ayr|!mK623G z0E@jcV0@|;P23!W2=T^JELmI3!+$bTlsVEsfo%=|pClMiLrtZg2-zl~skvu4jeY$t z(kIl9Ca*yKrpjLPK$N_Zn^mKGgr~blqnQ@Bk0jh-wKB1n0)XxA2#aNF=PW3#8nwdS z1_8=`8KaeZ-|(m~x4!0g6vu$abo7}28GHLKy4fMVb>#fC)P!i&_io57IxmAsv^t-~ zV-FFAN29RzO*TXb0cYCyGeOs9M;}uiPpgq!CRM&w3(V%fBi<(_@p-ACe8V`y=YV5 ze=NvUH{9Zn>TWftpdjJ8?Vm*;&*xDY;2Ol+?EdLrNq+B{6e zP_Kewhf}xj2}9?}W{qx(X9@5Mf-j=W&~;`$F!BXA+Mh-wLvoS=cLF(KstSk~ZHpvM z0><8eU`NAF`UL$%r)fQ%3_#3hns>}5{>9#3t8QgIrHV?y%4?_r8Y<(0J5)Z7EfZRLqYu0e`pf;7wD3L7SrIev_{N& zIpIs%Ru~WXt@V20m^`-*R<}`owBTAUuWU%8Gz{LJ)38g=m zuk0xO;|hyxPBi@}=dmPw2tKkl%=NZFlhq7=n;8#b2I-oVb4o^L)R|rr=fjsZA z3Zgzk)C^L6JXhqnEFZy%14oU<-z}R_wD-*C?cl;2fGReiU~Nlwdpu|D4Fa8lhR_J6 zUZg+S?Z_@9Qth@W`&h21B8}P4LGojKXyLHt3i2E5G1EC}#l!j$K~oP_sG~{Or?;?n z(AjM=6m$tah6|6#5d&l3*Wh)&g(aDzzy(b!mZMJYorEcW+da~oxg-F9Wvyu^{ndMB z2o6j!85zmoWkA9BuyHZivW!er?E?$uqqj&SR4e>^7qkh;1PK!wAlHPljrntD^1F-t zM|ZQo$&XDqolsttMJ_$urMScIOsiH4Ui+|q%gF7HzMbLuyWjcojv@c_7@|v>@1ZkTQW5Y)ZSZv|d+m zkxmt@E!WGJS_wNtz+40zX*j=A|Gy8^A%XOe@oL&sqs2#_9_~a(``)sN&y>A#;%J1u zYAdXCkXz{Rvx7Hr8t8VsIpsseU@{{mKV%a&Sok#&7<2~?GwMx#w-dGKsu9A%cs>^Q zL+xZmK2tIL#L`KBh%&2$RNY3Y#3|Nti5ju&!xmD40<%T_>@7ol6@LV+2&Yn#(r36G zX;R5eitu!#HoW70%2Gl>z!E){q1pj$M}H}tjR65QeT#YP(Ra#|R!rmR?^-PfT@Mn` z{P*7P^L5gA;_ z=4N^QPa)yH<)32`@-W3y@g%Uqow;dwy*EA*a^VY$cq0yAjuG$Z%W6S%F2=%YyLYR87tbI~U%0zqK$3n%d>33dX#uVoFX!G%Ng&3d^*hhVax!nleQh@e7= zkTubU?W%me&wGZS3P`19btY2cAjrko1Py8MTVYQ1Nv1_ZZ;ggRJ0y*%bB`EIJ!R0C z>Kz`R%9BIcjHIkhH_nM13%W0T_0$)DcK7T;Bjij!zZo+vwC|ZR7jBfQq(```g=fDR zSrtWWiue=`PZUtJt9B+Q3wm4XdCr``2PqVU5Smxi!{wD5$h)4LG@nvN7323<#Z!?q zkg=)r*r*>F4-ml&OHrw|Q`>@PzbRM^ z)*GL%_qQ*W`9s&0pOAlg2iDSo9uDe#hIDKAQNmCay3$ncN4D~)AI)nWAODXhu!|ZY zPSeNW=!?h&qIcTTj~0bV?A1#|XiDLJ0Ik)bfL&&TxQZj`u4W zAbcGp5_PmznCC%^>~7lmAngxIlDjwE#*hF*@He-ze*O|O1g`na$GLCBm!1E>P`8Pu zs|v3jJ*4#Q%m-5iINcyig1WD7~>Mxq**U_D>n#7pmTteujP8 zH)z_LQ3~$wN--b7;Q<#egOIkkS3YwWb^uv4n(~Tb0k~!m3?^akdlX@7Uyu|d&RJ$Q zopEC*C>-?KPOj#rEMWH6pAe)({u%gq-Yev;lms74fl+l#c82SG#X z1Z4r$9~dIb4Y%%qCgEB-GC?6oJjrZlR{UJlfCdito#@Im1V2XfaL>6w{BTZwKfUP< z0xSc?N6^L)Rlm5Hb_i#L35?0Uq-mcN7O_qUJyIWpWg3h+nezP5C)14nj>xDyTF6-H z@d$ZRdw*48c)suc?tAo}fHba(7daS>rRaV5p_Q{A+T$2|r;b3kA=^jTIU$*zNP*fj z8m%)7zpj|VSEju{-BfKx)boB$w;jfsTA}sK&lkLaySI|f<`QI3zS}_dN@DD;s!pWiUkf*wqoWDxi4G#W9xl8=+l|D1(jM~e5 zrARt8VUT!Vga;Zx9OeYx*_&_MP|f|>ru@xUezIxE={Oa#K_iB!U9$RR;0feRcDumWsIiDt^MoIM@ zAuhuQqlCX7U%o&({Wv)`!or*NZP}qgr*^l!b4%pf6r27GZ3x|SPQRlF^?3--highf z)k8&24H}jkQ!4+qYy^`2xd2U9(w6+jHyw34KwU=Zc9=v8JtZXR>q6LVMn0+HR4l{H_W`<4K)wRoSf2C>t{EiAM?DsF^ty^z_CDj^tWlVPrE|Un;+nu!VKL?8c zw}B9N$W51&_ZzOk=8uJL-&agT7M9nj)shRpFV2;mo;~ufQ^TK**WV!k*)+n{!3vBx zz!Uw_CE#&_)F)X8qZ7Un^2(iTBgE$i`OW1ubOP73ozo#Ll5j8T_ipt~bORsC35gxd z715;zPZR0Yxhwy{K=Ru=^geZnBac-5j-+pB^tesmPOwrH?NHzm zb(IDMI#@p3vP^z?&>9x<$7GMnw-##KMim>jDdH@g52*Cy^<7Xykq@bKS_|D`2u*Up zI&w&4C6gJ|W`bT|w#&1(^5m$8JwN-<#_ubC?%;S~j@&%;i3XY%I_S{j^}An0^)zQ+ zgB&5dNLRT|GTy|TAi>$jof%%PY@6E_0P$q%%0&L0H+RpcYE${_e45@Zn(^MCx$lJu zA|9?KO#`m)Ji*^@&xRv{+L5uWF{wpeRe#i`umX7mqki!CLD6ir8sNP)jJL25+`?D) zp5w!SgQ>8SD!P02SI&SH6l~H?=b6V5Pmzo&pEC$oxTCVi9imWRPL*Q>&3nQnmPJm1;f$MlOI7ceWeaY@SyjI!If=c1i_PbtOIWo;n{qg zys`5;B1UMk{oM-Uu{SnD@IZgWiR_F}Jat{4`=HoL9FD64!xUgO=|^E~=9m4rz(FhpL@(T**$X@loB^R~ zB5b_VPx)QdsS)n2gT4VMy-P|a;3|+^UGSiM&1TJ-+lsLLfwbZoa2}AA| zX!Wc10ZyFG$4>kB6nHE`3!xpr+6+M!&aCCb32U54PWQXt*wa*U@{F(2Tb8n`2T6GR zebO#poAzBlbbMb_Glw@d+khd{>enM_a|y=AuM4d%x+Q5!(#a?ht_AK%9z0qUtUq;4 zqE58#3XSLK-gs%+Tq(Ts&F`L}KZ_zvjYA+>qqJ2p81dXw?5z%EThyC=24NDht8w)QqV*$19uKLlT}?uNRY($FZeI?Y`GQddkpY|~5rn^w8cxWprpC+whmJm~T# zXyVw&T$P?tj(?PjhA(&b(m(G-WxmZi1jtrmIcNU=pH7_h)!@rFU-~}tQUU(fgMkW) zrp%m^=@*NyozQ;}*(u>MAa?SZSO;ks)q1-DGD0 znlrM<=S5(2`RuBk;_1numV`rEA=a{%cCBYnoPF^q{P+gg|bXqdc}L|erOQO z44m4yuK4IgV1K7~-+ui?OMt!=0gQ#Kn|<`_D_LydHh{%W@y>d}#7b8W0;6@B;i~f) zqMYwe>ZI!Tsg_{|#ZuSqY>+gj>eE%{+{7lpc>D&!WjM@b`zXl50PR|W(cJPEbD4rk z%t}Y6Zb^_I$Ai-u9)P=C^T0DWTdIbIP#61ENs|Pv%duf^TT7k0rGei7Hl(eHY zVC#x+8xs<0w*W$azev=kE|A6W!38p8(ra4jp*p+xbairU$ZsudAbd#B2*#`3Xhv`!h< zov`i=w*dfcIAXLEJ|JYcY9j-Ngn>fDO=8xQOo16js;1k9!sbAaC9O%=A}D2CS<)_23xgFj&)?R82`?M<{X;Ny#3_R3Uk` z7%n|jhnn9`#XIznQr%smiPIgCFRd}TZ(5MtAyuDB`^16G2nY$C5Eg$w(=o#6jJ*np zP2<-wpC;-P_g9_l;$`7;H$ayYc#6i@)q>L;UMGw5O=b_#CmB!`@WyZC!JWBAB@;kU zb>82|`vs#1@eN$dnt2`4ClcuQW?YBcj@f~ItUfyC z3ROs^R7SBA0j_+AK86(tzv{Pj#ihn_w<)dV$tK(Ua0r5@88iZ&IBb{`&4o)-6^92UwX7_*j*S zTAtiisJTvyf>vI)(U)>BtfIMchF_za&oF&hqQYtn50-?~>vh`A@7%T`wNt~O6Ti%b zKXhcQPN2e2K0x<&^`+4VKHpP+zu_ftDsEYj6^ozW075(NA>w$82mK$5LLXMMVU1^JyT-2GG|rz)Y+3tHekMf#g2$&YX3?;UyI zb8G;1u4mGS$*nvdZlE{%Vav7)i*wH>O;miiIz`tqt=Gy+@5;k|n z@cgyk4sus$#wCu~!#g&!s~<5s za+=k_B`>+1?CU5C5(uTq-8@TIGlLhUK5vrzHCMLpbM@TP^vs$6KsqV2TYP)SnR$tU ziNHx_!g%{2G$an&2+REh1$M*JmcD5izaDbmgJxd4fb4HMXbrX+$?i%XU4?uDn*3@` zAo4HxoNEn}26GcFP((u5=bj%lIK*SJoaMsq1Vwg4T^M{WfuZ~`#8JwhOUZT;9;7d%d+p-A#+z)z|$EDEDhxBW~lwnmIcag zy+6NRZ?-&09+};_x|iZFiz-v!+1;*;p96z@G>8tcuJfLIjT&`v?UN!dVN`39K;Ez+ zZt*JnAHE9mPYuKTNMF6Ahv&myet4=9bR!G0SaZ5|ME%VrgT4}Ap1<%Cvnl&!iLIm^ z<~#DT9B!{N+FQ7y=Gsx$qLKKx07vn0im|VLQDrK^ocZ{b{wMhg?ywT3BfTFA*gi9wO2c;5>lEa#s@zz*gLYV+u;6xOA^fz)#<)KRdh& zMY^QQnpB1EE1pG!5HPiBeeI9Wd?Jd&uUXxg?OxK#JVAudG8FQb>-(SrU`U!xco%4V z(ZFpNtz?srQ||mjds^%(#9jl;4J*nj@f+1{P3ff%b?s`noS%=tZ4)LXY~TDV0Z+kp z+g}Dv^I1aQt+qA-wp?c-3v`hawEsPoodPa-H;N9V9f2(xw9}@<`8uN9;=qGTwq>pm zQyiSPre&a7*PXJ=nZf5EJPUW4_QoB#a>8!h$I)SR)f`U5a8Qq~%Mzb~b=sb1(ASc9 zQLwkMKuhX+j`>b*-boCY00YRvz7;XiqB{#m?zRp(6a;s5?})JxpAH6jBiBe%pJl>BuK7kq1s+1P6x|E-ObpwmCP zQf3`O9wUU=rs4Fp7zd`vvrLEkoJoTpS>1g912>dDhI7u`c$U8ob2C2(8ymE&wp0Ut z*^o=G&4bbH-b}r5iJ9I^~Sr5dL3@&T@z(h-1oD zJ6p5c-Cqz>N6~(ml^KPc;t18stb6=7qUbY@IQbZq0xIEkq@}JpOvRBXx@RCuf^mJG z-(a( z7S72mLL3ccZyM~;D6Xx0-P*0%#;)j8zvf>&p+WZ&xPiZxUXAdb>tm2BN?fW^;^ejBi{BWkl$*R z)7dtG07Fx+@*1n4ZMkE!1vqVWYp96b`d^MqT>6uf`uAIwbujj)3M0)eN~W5tj6YCF zP(`W}2gwbrW~}c}#_z^`>{}K5xU|yff%pQB_Hv+gwjY~gbRc>8NaPPrmCRY^Hrtob zh&O6uE%%8CxaxDY8P0}H`1X(Y$(GVav=zCu)sb<@0G;wTlayDK`ci}C9Q-*m@~}7m z(pwsNs%#FaAXX*CaWy86^;*o4`$zL)ANHPgh|nF0XY_Nh2hYAe>))FgGAjP&&-Nzw z(ZM(fKyg_px`ICMH?qS*U0$*e-W5;Q6t%1;xc7Yk^wtZm|L>_#v*I$7=E&q&%rmQ!?$PPp$Zxkn+U?Wuqqgtc7Y+}phIAIpZf0y2c zodYz7LwjVARw&;$gb+}%UY>BIPaZ%tMH9_L_<&D>KN5yNkCIaPr>IeTOh33|`e$@x zBKe{gG`w>)|9ncX&)jLgYRP%>>r66(<0xv1^xT#`H{gGhrU zdqXBuydhpHxk4CPx;Ltu&J3=H`WZXH*v}IIa%|^x>X6=Xm;7)}_N2{_8yeem!UUdn z1_#EcKxY^_nR#{fx;)#NZ3yI7pt|K918uR~W77Z8tVJzzu|f!|@a-$yg`bmq^!xt2PzSpmpXrjuaA@t+gJAF$}(xc#kQuV4W9uV;OD=oL#XA?VIto= z<45(@up*}u|Ku{02OpMCUVWd`X9*v!hH`s6jQ&%rjYk4(+n%H_ z3=_`M-6yWDIEEb$*J~mR+q_Vl6Hn7P$-;VPtAg*NnEX=StAIcCz3e=N@0h(u?(GT2 zzk-1`Tf%$Xt$hjKfxX|{v7UGReP!y~4e7?_y55#%X0DPE*XB1j3ev*#39Ng7ZP!h3)92UV^8?X}OZUOlA=lE{ehj?9e6rIRInr~!XeocjdQ#Mh0QfNL&P zD$aQqkIAp-gJ792D6kCWnlBj(Wr>sDs%44$LTE5CfxP|Rq3Bw*LZMz98nBP=o)Zmf+)FDJ;^G3pUN18 zc=;U{_ zS8_Af54T3!R#|n7B`j?T8Ln}@iPvH1lP=aJDfrwFzW~FMYMhw~r-$;KO?`t>|W2zo7ur<>H#nV%CdTvK_t#KHd3=knk4b}nepG^OKH+?8ta zIOR;d0E&{e*%iw4ca$Vm-1iMw$8pe-%6!Nt9J)`m9`}u+p_%C2+s*WUq~4A5whPQ2 zLtPy9$Crk1TClss6Rn!_ZK&r~(eQcoIBM@z!y%J#-gAN3ug(@F|2US6l%JmGh?G{uDbp??*c#sBgkHa3D3 z0j$bX>i2|Bfh(&?=a`2X3J(OS^CBp9@)o<;lgEr%7a!fKmE=vj3GpFhntIdw4c)L1 zqafy?3Pze>zb;^oEyfzroIN2C>X~3J2pX?dT0yj)>Oo!XxOy3h4hAT8p&G3g2vG82 z4A)IR{>(*B{*AYti*OOro!C+dnV12H(ta(-M~1hp&f$lOf7u@pfAp80GrO~K<-)4> zm zn$nb@)Mx7aHo>ZXT6UbVz%emoujZ5JT4B-ClB^8*pl(pxXY;K}9^#P-?KcsT`F@mHNk!J%-?|P2Q78a~t*oFY)Qkz9gYS)C`A z1{`RoZ=Mcr5rL^e5wB^1&NAP_VcO0j1@$sGUw!pR%5hla>l3E~Q__%hEL`~IkDA)X z4t$G5y+;h7yskh9YWDw^AT6^1p>88VT+1s1E%T5c&O?h%G&hXC}Z$_fB$&e`0G z@^F*_fzxziUX|B&ljrx=Y{lmmq~_&xVKu0sGURDtf6VQJA^90nlb#a3gnUN`ooelb zRvs359;FNROu(~nIssPS?{h3ethXdb>07zeIwrY^SlN&96d^nded zbU1^b)w}aU_6Ou&^9T3-UFZ)D5MLP#T){P$TtoQ?vt^voO5dsw3pXSYZA}xZYcvoA zeY+t86-YG$2eAb>`ZORLiPypd_OZ*H^Ru!T-HXW_bd*q-Fcgi^+d9CLzWR(piufOI z`k!f~?(uK^yGjhooRjr>=wzFwUH%0Cgkl3PJ-;_5S$j6G;C=$;|NO^QKI_0O4;!j>8i(b9awO0tgq;Kfh51 z(D{RHBpKAx6z50s1W#?bbPgtb%{2F)`4L0{!6HL5_sUYP(v|0Hz6J^astN#1StEl` zlKSsAnMpiqPnynxBd>d-{4-r$%1&XR;LxlUDEKw3-|aU`v$HZs_gC1Rtd? zE7N2p9E?VIil;jMn^l|kOyAWsl#wE@vLB3x=F4(RdaFj8R-35c9CowvE+SMRgS)+o zqP<9hCglFHz9QQ(4pY4VltH!wX_1#9%d}pHWyk2A*W4n~XcAPU=V^4NG9V+HbfDgy zISU<$4=r9rX+tho##p3-t%J_iq7p{5tz7Z^VAWS3UFy5~Fv;&w%}+%;{B?dy6;GN+ z4!eh&^0PC7^Drtr5oO<;rPu047w~Wz6v)t;1?@**?IDo-@K4em6CS0mYj;618`;%{ zvN~}=xNe>Iyl*mk2$s4pK3N4d&W&tOn_4ICt(r6U%g399PuW6u=f~mlzqvkjdam7O zOBB~^8w(IlYQ0mwhhzxrEB^79)&zojOhBMfks!bb-#CUObjQ-8C?clV6R+oj z&S$hia2;L-K$CkB7RiDHb=!K`WvxYZhUL?bU^+vd-3AS!aUE7Sl`ce1e_#4 zt}b!k0|#~IpLO4;o7QsL&JGWh55t~O1&A@8Q`wAHHod#fiCDyFO<%-y%FNgSppmu5 zH%HMj{Mrq-<=(obU43rcqHhfWAP*s|{#KnbD? zoD9zJN~KKQqeb@fy90L>8}rw9GT48BH_R;lcB$GpgYGjR572lh+LcR13|iHsi{tY1 z$~ztZCO$fJhF^#v(Xm77DzYPK;bzE9^pc&PffiHqrVP`@#`s+MQF4{SGo0IZSTgFY ze&Z3T6%Kzx%*Ua(V)5OJcp!-`@UOa z^Gooae&vP=0v*!){loh|_GYhMp$fT3wMir7x!O&3J@~{Fwc%N5b zlk)%aDw$0s214?`brctmvwWLI=F=mOHsoC?Yu!zQ)}ocVbOH1XVOxUm?@COwbsWW5 zJhpitY6c>OJ%H(g`yDZ{B)a2k-gXpLdjS@@ra&-KTcGJdFnQ)3x53EdJxp6~3dcQX0#sz;(C8$8F$~u+erF+dzkcQ>hl?l29b&E5$dAMaNG^KS>VBx zwbQdnl{1fsg<3SQ)v<-$rF@5+)5kX|9Or@8OYg0ma=g2VkwoFu1y2@^GwSBr;q z2TJXl2=+sU$8bv$bpjG?kg!_QR0#$*MIX|!Cuk_1i=dnQSp6z`P&ni3fWv}UYI35K z>jbDjPuc%0>KTT*oq!UBs%ik9c;u{0pfsB?HlL%4()Kh&U;fy%)X)Rww;J}*T%f5V zaRjY+-A&AYy}rZqiJj`@FfB(Bl%kRm{CQ%u?waQk0pvFyMN5gRsg&-3eyuHHef)O2 zND-m%cnUVoN4nI#Sqr;?fHt!cJLEDujCz-m#azC`ikcSbW0**f1~s56SSb5ZSnoUk z)&YDF%@qQ|+|4Xyu&4KoQbO^ucdk7o#P~$lBmoS*4bi@BvN~y{;|tk+Z1Q~xv+0m* zL1X1B^)2lMzv3h`+GM5zjbzc+Kg{^&B$jy?;saQSaP>$|`|$9`5Q)?nc?(9DYc%Rx zC1xmr&4EA|8-^Dx3HKh-|GVD5VVgQxAy2mvDGE@YJn15Q@-(Pg);f`VP6kPN0a8&qjFu}M{Rfnv|KH)cskM$vy0(yNQ((}S8g z^#wZjoT`J}7*}MBt;;D}6MB1RD4I}7nL9TcHp{O0B0>N_ND& zxEUT1h^P2TmgxiEspP+f{<4~;03OW>+!<78$M`Wp4X2Dm01mHfVl6j%*}Fk4|6MFu zVvi_C!Qzko8HWV%Y9UPfw0Wd8x)?SrIGVqfy@q9RFMdo;;?#?rz|OI~@)E$daI90W z8W9@}hZf^zx4?d_AYP7ZGoDcp%K!*|s_1 zFIJRP9SoqyYV18q4jot^Ca~-ofy6eQ&u8(lCVUss^_#QCql`w;zL8`oH(?RmOP&4Y zg(FO59+i^k#jVGBzHvZ&G$3{qcX9fI3iTIv;|t1F3}5SyC52*LBImm1%JX_Y14ii& z4?a?bSp&6paD5I(^wY@7_kQ>5|GamDfbygP(|F(vMfHy3xdkaK=F2_7pIZ0x;#lI* zXf436zZ3MtE<@HyyH4Qq)8lX1y4G>*8;)C$6(m^=^R!#Hn`;EF>l8HadXe2{j%W@K z3nYYGOs`w*3gia> z2ogMd5Z*iy*TyVFv^fKMmsZI~QkMC#z9734DG44#=bG6)Ai40CAY&1cVgnF5nTkN` zPw6oe5TDQOA7l^NV-_mtR5u`)TJD6k<>ffGJ14?rA9XbM0`yV1#2T<}b#mj>NX&CR zTQln=FuR%-Fm$T#jX43Y;w!amo!2NF|K97QU&=^C{COb){YcSuCZYp>S5MN>ao6W> zSB2u^pSRdm*1l-bPvc~z{bF0+dqrMP+G*|TA2AZ0QmaOGq&tz-xj4Q@eZfncf&es0%N49 z&qhlxeM#}shA2KhwlVY-1PvfkqOjr0oLf)&Wy@6l_^RS;8t|+cGhvl3T)rh7sQw#= z@-`sZMw`1k-Rm49q5e>+TE6n2!M}_6rTZ(pk`X3OxscFDy3^?GbCY!*ru9f*v1b!f zhiOsNWsCSU2*7KrvUddJc~PGrg}pKiR|F|g=$YQ`$k#?F&b6Dp019HhY6Tj^9@GR8 zr)NTA4=@9O^yUss)~(;1^xw5sn=KMgES=L zYsM}>n2}dFX(6wAWRC-ejB0vVe)^!T`m6EVx^Eq}i$By$e@W4DwWS*->0lgalLly? zhdH?$>@ZYw3xQDWlTK31yke>hNOqQkWNj0)bgs6K99wt#IHqd`tzElgf-rrLX#B)J z4ndfxJAsYS0IZx0vTw8^R>!nWA=#zj)vqD!rMa#TrS?Hf{wmy4SHDJGH0D>c@YBPtcacmb z!kXW@eNP~C3cn>7y}QPGPcY5$!BJUQBSJEA=GziYDXr3}vbY$SN3ru%e9eqn;I)wo zK!*=#-Vi4+BZUL}$@aeR9WCt=FP?0vdMr@doN%`QsxFCig%W%p!v9#wu8SO(@LYx{5JtKCrtXDfvOx*3M?WK}gi>5U!+r2L>~CR}4F3QSL7tAO4#7+jj{D}<`>Iv@JPvB5>3#HT!jvU}pf0QM=8t)moG5sRjt^Al zqKcW~QLv+tR6Kwz}_NPE%Xl{1tG@I`LCY~j{R{!MoYV;4SzFYBD zx_~q4tUWE!Tg|y$;Uo6fZUfp*?{V6Lj8tKh?-yl`RlNQ*ExOO#&dfW z$x}g_?~m(`BOx^BX;!xa;qEuUyCLf@(l;R~G;vmJfi%3_r5p_rv_~8JMNs2BH{gBB$~%mB9; zFbIMc2xR~s0~W{XUZ-wP){C@2!xss)488PJc7$;pbN>LS?gZl6o#i%cSMo)ijd?S~$MmU3WtlB8E0ojQztJb-lf;sYIypNtBI*%k~` zI@<#bxKau0(f%d6@cT^Fi=#jx?A;jbk<+??gaNzS#hAW@OxHtf7}Tnd{k8T23G#7O z0{{RP+_(an0kJUKSkhj;5smTmbE!^>m2?D?@mNy;yGQ|36Z+y`hqZ$vj04b|rP9Fu zmHcWcZE?Xy&ej(uxnqLE5QNTsRe32fL{r5l+s5{H*pXKXVf+KLI#^Mbr=%KWAnFn^ZMp?pc6WoVMRiid;X zOm~Cm*HxmUK^5*-O+310Mo%>LH2>USm3DVN{bx@-Pad;U4Ys{YH3bRcu$(sj;;Xie z`)c78@mjgZ<B%yQ5I!uoZqZ)@zIf-a4JN#6u&fKN7X8cr=}>Wbm5fvEzzWBVdU#@&O); zl+vr`W0n&U+cwfi7_z{!{a^hAwt_?`gM6tXtF|^Z8&A1|UzP7DuN_x!RJNtr`lj}o zSZvgp?ngl7n^WD>R~3l%Gx?(q@$D-`Duj8p;^A`c)hT$gr6?pkww>aG(XVwWT-Os`OXyTw61gbmAp1wN`lT5&-;gBueFLNeu>n)?Fm zwE$#;9X#3zHCu#y;t?iE{_ma!SdAVZB_s5Q+_mzXd_`~{Iiyhqu=h1oC-seWtBVm= z#h*AMM7&h%J5UZ?`eI5X))Po-n{+g|b6xsx z8ba>HJ+{$&X-a9rOvJrEl$x$Emh?z9xcD7}RMNebz*MOSE9OrIr?Z-n$l_&%e<+q1 zN^fwHIT58j7q!@q`?d1|R(5YGJH3Q8u7HA=7tRC&z;|-{g+DqfP6V}F=#b0_0L}sl z{BU=}?m-1OL~knVAq%e@)KfP(KXVzFOBlQ^u$Ktug!!fZiHXOz3_qLtmEO`Lny?Ye zpCHLf!HO}YKHo-@{8{&5;%lFEOqpHDOYK14=Ur~$a!C_1yMv5TY~wV*4`dz)tB+H} z#w&Z)AO0vT+TgEEJ9Pwpe**C_GJv2BL??PVj=Lg$VmeWuxi`FrmvVgz3?|{iX9pIM ze}i6DWoSbtQ!C%%`8?O;D|kJR2NU8Z3T7i{O>XbggHXzGtcAHHVE~leJH#8-kTMFc zjvFT88Ssq46JNl7c~u`vo+KUph{phLZw2ZhafXvv9VQ=B$V49a(T$fs zgTV|FTQ+Vm@oU(G26dW<=O7o&KQ#jot?Aomk3bSf1QO&7XBK^>Ucs*%r0FP3#X3!` zTM8t9jCl1{!*45)L>;i$D;M36Pu*0$^Jl1)9HzJ4$Zl~SYYY~`p?`-<3Y|}Wcj;{c z66h|Q^s<`7PPuN&$D@r3%vOdHXot0e&oi>R^X_1ZLs#DIBWPR(O6;wd^>&R%%J&=g?X)4k$pXDYD7#%3at7HZGcDG=}V)dAfLBu5})P^;;m z%=8!`_fwJ$Xzw!>7A?p@I*>^^V>j7<>H-9%I%c7nPhtYvhb~S*T3$}SvCB zX7QK@>mTNI9JVdrH%y*Yp{~{*K?{km2SAuYGeR3CnA=x9sss<%k`AIrA2e8w`E_~DzUL(lbYuSsDgd$F=s$o@smKvA2}lKPh`L4$XycF05w3$zo;YGIs|)QrvxfB<#BY!!@(vm}<0bW9ZB2R9l20JqDWX8TxZLK0*V^JC_pxr$`s63$ zuuYjPXl@6vd}f?bS20QISvO+83JA1;x>OVCC*2C6tD~=*-&sik?76P5E_Fp&_sUX` zu&~An6Ih6=^;OR9n<~D@qU8`*2sS};R{#E-EMkq$_1I~FqrbVI)X82f>lnx4QRdVk zJdpFB+LyX~v6NI+AR$tSu8;GRlapkVM=GdeL(*}FtYUM9uXL>uXsjg`iSq(aZ+wxb z&(9wy6N9+&K*{Ey`_nDdk}uTg;eEp&C-YOI{7Mr%pazrMEWV1lvf1UnRy1rjoqTOL z>mvl3QdTYRczxu0NXbK?;Ca|60g@Y+KG}>46uVFdFFym_r5s|}EF&KWwt%{Y|BU5~ zc#U6@oy`I3i8D6Eb&F_INkf_WpI!j@8w>R#dX;aI`T10SnTw*Bm+z7=DB5&%Y<0tc zJ)bM;fv7g|iiyUhW9Z@oZ`;;%sPy@K-e2(x)=dL}2bHD;M(LJC*}t(ajZ@s6T13(S zDV%mz)RuOo<9Xk8i}y*6taZ{-C`!_kP*`9NHqRS96bVkrrU4?!1=IP%Ey;|+-dgnX zKXtYY{xA#Evy?s^`tWJ*OZV}8C7J+lmvJI)PI^p{sOoW)%n=^9>dQ#artSc|AdXKWgF3tFV2J_bT)3-9Y@; zSaZ0^Z{>?|TnVS*nAKP77aI-wgCij|{RDlKrv78TO@AwHY7ITrRqkJZ0C=OMwSEr* zxHs6um4&W#5rumjW3jYdT%w4h$Ks{4#R-qLfjg$+5=C_-->`B{%%A7yj%HzSXcKVmoAI?=kAd}1}cvabt=-31%NI0mu2 zi+;7ZxXlMJ&K#&JrzH3Mq`S5XDF_}Was9iAlC6{^oCLp^G^>ymQ};OIngmX~+jp5U z4u&7Ub+WJM>hoI^c7Kc9J zM)8S_4^bE9r6~M^7K5|BmUzKXe_6npSaT3G@xn9yT?+g=MtZ~%5d}$P#d-?_Ysmss z000Q?#tZV)-r+|PnkQ!I)_l){P>hsEz_#%_9kmOTezlsq*gJ}GLeEPs zT?M03H%N;|K>%x>ACva{hHh@5Fbr7BLIGlw2S5(o1h7x;4d=hTBc8?{K;PXKhKAtZ zhooH2320NICQAx_RK&zlK+L~X6#6<9hdQ<42ya+dd86cu5SaG^Yvmy5YTYBtHMQgy zI#A-ICs5hreih;G=@+l5qF$;a7GUC?owQJEI=2ArhS_1gi$`A5sRv$zn-O1I&S9N`36Ws)uN+7BWhxRR>4{!WVg~F66ZVi|HI$Sc$)7U<=VGE zd)GlayK1Rcs7)_77^(Bp7n?aMZ}5JLT-r{Q@iAzUoXBpCHMpI6t|j*5#wpue4S4O#{|BO%gx-=G}#-m_v6S!M#D?h_6C^S!GaP_v9Cm{wD`zNY>@$PQNnD z`oc28_{}#}O9ktF$jj#YC|nfH3Udv<%2E|5)q+w6EhcUX_BdU}zTwlggMC+ZkmI6s z9U{g&)9d^SKwutRt?oHMETqK7i}#K5HhmXc`y!vnfp*Nr6|Fxcss=zISdEdEgk!wf zoa)m3ySXz?8`CB9wMde?PQ5}iPI%ssB7~TA(X0+m*I)q{l9TXHFl${4rlMDk>B!@Q zAj;{iE(fBm*LOIdaGLJ);QK%ALr&3WyswYxC_N68AVS-p{gF=B$&WnpS9^<4@tJkN z7~Fo(e`{t&D&B!kJYFxk@+B}n-)dMg7k%KDOfTSts(>_71ouy0rDp6{3qD^O1o<$k zz@MF&xp&}etYe$(#}HoUgjbmgoPcEZIRb~Z`ag4* zuz93e#xSM@!VqY}djTyAK($seD0{J+$)r94s+xHN1X>H240GbLA0(dV<>fr#<`$qJ zxI;HRQb!o7b9(s}5~3G1$7FrP+!5c%?Ik-p!zbGJJ(i1-1YwI$8r{bu&P6mW>+>)W zk{5*?KGzbhAVpRFj{rRJ;yyL1kNV}=k7-9;Cq~Fo)L{>*%0}uBN}>_K z6^kL6D5^xmaWXT*);k|wW@v7_4#RDb%K<+(K(9G43jk@2d;IeJf>T3b0 z%HtC5rmBkM-3hNmKLQIO>rgbj2g(1Lk$6un% zQNa6be?2Ov$tCL5Pi^PciNN#7E$*gyL*51sGwEkX!{E&U*B+n+#0t6OzP2fVm*~~N zuOuI+tI;Jhr~US0({3|F6^8xK95!3=JZ8C7`{h({FY?lh*!}3F`&Fr(qqN(`#>zl+ z?1V*iwf<;8o9Bjj{G{ED<()a6~G2nR$K|>V?5rEiF_@y^j~IDQ@g1KPvBB< zFLZ2V%R0OUcMFwwj*=pOBF*NcLUauBN+aXwmNcR_ zKup_??V6@NP6me8eGh$sJ##`Tmp6;n0-0Sn4+w|I;RQg$I0URl@5heB?%MflY=Y6{ zfkh>mP4F|;h3ZVoHOuk?{EX0vqEBFM+sT_7Nh??Iyu$q9FpQvz-Y{rD|JAWr)4ntR ztldF1_h|Wa!9Jhwln%+QzTD<|gwXPgtiD&7f>hTxsAC>4Cd_25Om6{Dsiiv9G7{}y zK-LvNN71#@>U)Y&6jMIzc72DGJr=^Uf^vGeV954Yhmo6^D127xK?W`@K7nSy5b*bt z2TpXr+F00v+hM6>oy)gv+vK+Jvg16(k7>g0N|4F*Uk6*0gd0Q>_@&JJi`U6}J-a#G zUOcmUHW83rSH)!;>m!9;r*`D&y~9AD?9dqR&P6W&24YV{mFv(JeM$}Bc#XDVcW8jv zdbPrY5M&HJkrH~WEnaATNWFZfN#B_yg-URj`mdbuJmU;HA}}oGM(S1V-NU*|#em^9 z5BupUSA)VWIJ^qbsd)inD%6+R!~v#9mpMin&^`9quJ9+mf$W{yC)5@v*|L~Po}Y~% zO#}kSduXjmqGZk~q~m)tM~JCV%&bF>j^OzU*lPq$jmd!iehZTsBL_3e>?%9Jf0KXYbP_h!I`FM=JD&X39RgE z-rVFWHqUd-!b#=Sc5^Gca4L-UXaG%N;soMb)cv_HQZC8kSLes;D$A8y-b#Y)8MZ_4 z{Qa^;Sp&oH#r^8EL@Q6MU_qoFg`oI0v!ZWX#DWMzRBjTasAfxZfWTw19InT`KR#u- zq;LM8?Sod_6%=7=zccTu;B$&G)dndt@r2&1N*2&UCgrilK7;;kX@x>@%z5ODvAn5x zotH3(XLw&E6)$$rG^s@AE~^9%tF;~zQ9%*cNC0-AvVu|!kP3@q0RSS8GQQ~>OgZLz zAWq%#t{Q#YIcJ2py_Eq+U=bSHONodQri18FFL0fAl#CKHPkLabZ7fWiGd|Nfum{1- zEUX>{UYKZ`re^%HSn`xal!mjLIA3kO0_fmHd` z1eP+)NE6eovz>hY%FFuZc%8OMkLN&5Y@_(Es)z{C+{Ay7DSV<94^1x z>-CafjAHYGiw(=}u1QvaAl-2zJnbT71v_%eN2H%>@vBYhrM~Nenk19-UcZR&exRF5 zvy(OiDWo?fiK}%E0`hmV;IDo!T;|?;Mz&x-aQS4aU_QbL&i8Yj;P|vaGP|Q}{o8Yf zAOKJrbdgIn&w~NOgJ~MJzot)?ha5*{AC53VhizLv|6%Z<;g7Dj8QxZq1c6G!5T>2A z0#yDnO*0Qe%X(sk9=XMQpMTqLVF3Pa7F53pB>2z+II-u+84K#t9TqO* zmsC4!c-}uARc`{d%{&jNd+hsWA0747aJ&JYvdaC&5{UZ*TXBv_3z4Ly;@*y$`4fAZ zb0zf`SM9gY@f<*Nx9n2{16mN>Xj#Eo9j8VtxgL`Jv*Fc=tf^R)c3>9<@(yTsM59$t zt}U49soin4tn(R<9o8}+V=bN8H5K|ZGuaFXaB?vldaC6|E4dPJTWEvD1B%4m6^Svc>1u=PQS@aBWaupCN0L`!jpz1R)gE_861$L}BFLdqpSBp@03l z2o_n(1V#I0kIY3_FvO^n8iw2b>_HIk?`QnU`kz4r8;KvT`4)H;nv^K;W30%&B^)$L ze7T~{O5zwsG8)H8auGF+B;;Q_zFsVn(100dW*6okxv{^`-{0y*ZD*1_p)FL$>$wW~ z{K;>x9S1(c`UbYmlvNl5cb^6cp(l|Ar%Q~AjhCpFb78;y^?2g$Vn!S%)GmmA`^c$Z z4_H7`6dd6Bmt5Nz$^Z6#L)wZaXhjFx9k1_IYcJf8IAEKmLES-gP2fkcs89c!>WXlZ zVVykv3Xe_s@~^eKqi;vk1iTG10ZP1^reBYs^G-_E4#mzJ1itR;o0Y;mKM|i=;6slF ziGo}HFm6^@9Fv=(AfOz>*x8q)$&e|IKlNlBN**up9_$-rpC6*u{g2EW9~V|xe6w4U z-fjklX|R7n|1aZyhuXp4hIxEF7PNoUS7RxRAtJFZ2gUk#z#>ND$4|zQT;^_W*A5N> zr*kS{s2)OuNB;H|vW=GKQClV?#J#T#CJwo*(%}NLqYa9CLKNw>pGabu;4u67tIUBW znQcPM-#2%t_AQ%X*!*e)U`k!#8`t5wo;-|fb{C|V)y#oH6FF?(cg?zdAS0g#`XPZs zmh~avSpV&e{R{J4pE{#2b6{Itp~V{!Kn(|P@wsZicC#5G-B)D}<<+IfS$9R!yy%?4 zPt0m;!Ap}#B%+uQ;PK&CO_60AGw$=X=0$53fkM$CB6<=F-knsys4w&mEowMD0x*L0 zWPp9BE9tkhQT`RqAGgn3t18e@JuHI5MjGuOk1&}S(u^8fTs85|>Y!d;21jlx{u zL6_s?TD51s>bZ5Q;`WJmZs*uq3EvB9{QuGQA4`%d-PSgGK{U{+iPkdEJv2d}HC+8q zZt>Y(?^&m!k!4nyl>t8I7|(D#+}YpXvkxwwj|T{Fucjj0Rq`A1fjFDK>l=W+yjNA3 z6&JtCFRsr@SD8tWO*uy7!I|5(V%y8i$bZj?_4Y->V38758%^6k@NwS>9KVP>Hxv~x zgg5syfdFu$1^s2&Cwd{>L@$BPJ z(_se3{;iub*VK}eBLWiTzk9=eO$?PKDJ<$6kGF3b{q+_9-*es1R)W>u21Qvqk(=5X zm<{@Ue~K1LRdKi5@0S!uDAfh3uc7ZZ(7T>jf8Wr$h}YY5lsNwP(NMDXqG-C`aLVMQ znfPgW+)^6L1+}5|MrVRx>HLhY-ryW90HiP5S1t7Mt^;YqR)V>m(7}XtY&d=#d#+s^ z`TZT$4#&KTq2cT5dIUpn-VA}^c+Q{-B?`twTkRuJZN6~@rrdazqliUNbm0|02tUdN zkF&cj<;O4@*vw1b1yP zA|IUOmCm~vH}Ne7;bLL_JhDLx$pgQJ`4R-sjpRo3LmA+(RVwR`5|#I;M+3dg(V%&g z9j$!Q>Q|bm{(tw^4rEkWNLm26JH$AmtiMaiL7LW(|Gkz~Rh8MHQNZ(9nPPHyP`}@n z3ao_-_`qOv4*`A`Y59#X7TjYfj?>!;nO#P;CC6pq6xd06fAR&;P9Ne!(CGd5K%4qo z``t}dwFoB~Z8CLOO-Vv3XS{T|_<^J!YR${_U+ir$e=Rr9FK_UPj zfF?m1)w@TChcQE0H|hw>hp0DRfcP^MC){-dUb%<)EsKJE^HO&!14u#>`u92YyiUrv zYeDoCc=ofojMM(FU%9Rn_7%ZM!unnUSAXqCrLsioABWeSiP<{z+QeR^vD?{x&rMSq(*_ zI2(p#o)b?AyW5sq_yr@65# z4e9MmWMZ4!uV(@_$K9Y{ zDxKLVnZkGnZ_V;5uzqmp`_wlS&F%Y-ID-9S`#}Gbxd};sc}&t4-Ug@>?LJKF3KVxS zOw1C@UJE(fGs50=A{9~m2{1;^NQ_$loy7_t=HFgWc}TR6z)EmK)D5uv@MUP<()r|` zDC~ajDR2D5S5xWJH=pe>&)IMIx470~sP)3w0F>Wbu2(4K?Z(u}4_6pbuQqRP;1AyP zJzs#x`LN&KnsIwF0P1`GhBu0NA~|Ul0mBKoMEP^q6S^L+Fa!U9Tod78;1Jd1t;^rK z?~V%`7x0!9DBY94tf4LQqsuAD=dZ1Rqaj*%L^UjMl3xE{< zdU1{9)@>cs{I8!O`Q`-WxBLp0csr(Cq>k&}s}(Nw@n8IG`@Y}K$BUxfoJvlS+xDT# z>!LxMVO~;eY9v#;P!DD?OLo+m-`q|$tTfGO%l>YbGo&ZC94xmA4=E$gERVMv&!1u2 zvGccA3zGwxasKVEMDq@${H-6Dn!kM@EsMY~m@T3NjqR-(IIO1Gzs+!|>hB|sF0^SJ z>#SjHB1BPq->g_sRSV2BvAH3<>;JXZalK=sY`qDhE&LY#ySbWVrHeE2gWgQLt@ugZ z{&jTcp$6}-kDzq8xy?`zFh)Htn6@Kond-xi>cxc&d(zUt_=N>Ip3iWK)5Ut@CJ^(e z>GA2H2nrj?mYbdFzL(S=>4WRFH%}PNS<6x8qmNb z9>RMjJjnPB|Dunl0g?apqUuCfSgATjYN`xA(EYzo8#sQ1mEo3Vssd0v8ucdA(*0rg zgd$`(qSU&50PgLL5CE{sFe;E>eth|U%Sl7gvwn(qOmgWTpG^3wUtK#%K~QoAU=T*M z8Xy^U#lv_?rFaxP^Iz>tBXKr%_b*K939u5< zldMPsza-p*Dxq&$Ylj5q&N|al{=`U*+9Eb{UuuZ`D3*g2FB5gOWH3S#YX2!saw)za z4E}aACs7XBQ}C9f3t-P^dvG7ut_u;206QOvfNrUbYru9`6W$L0@1@Ox=?8E*T)Liy zGyqhQ3;<<;-miW5L6>};pQrXb*D!-9*CR9PHzk`^@0I&W!GRxGobdMZxZ1}5?xjb+ zBP!!bIIhzk%=nZ&rWI_NbauaN+l%MKTcL2DweN#<_3Y;cZ;rCp@6FYxz2s85?m~j# z?KhY+xGNV@A|}zO&6xRdqU>{eSM?M)5M}G^mT!P6nlBBTdu!;Y`1B%TGNX3g@%M~F`_wR1#vkzuh|>$#;06k0 zt0gXV4xT73iC&PZk1#}IWK*=Kq=nqT5rgYW=QsH^A;gD3wD8|-It0W1Z5mJ?yvEH* zVhPlL==1;XO(&rf*_pW?`*VpGcjp0d{Eown_iui2A{>-EBMAiaPLAc}stDMrv14?t z518FY8N>2t;YH0-uC&M-wZ|Et>`p z-Tvw&gWWx!v6&(SC|(T@el=B?cON+=LUi8F_*G<0v_MC&P31K2WrG6Ls=+irJ>D{*}Xbl_l66wK!Dx2dWw{e3yvkO6A*9Ym%|>@YfC%&(iP zo!q1o`@cP+5}0MbR9zn|^ZCWwB-phuKqSez@n<=bnoF(Wk^@vw;l4SMYC1C&8nz6S zV!+*a5?QNN{gl7PnDaAC<+z#IVs35K|?w{o@ZTp4~N(^XSyD4r9Q{WuY z2Gxwl3nu*N)-cSesMkST%UV}{ow>$P-+S&(b!`oRLOe{Y{IeJLmLzDVHZ0&gJmQen z*Yqx^MyKDL&~{^4Ooah&OOw~iV0~dvGP!H{Nokw;h;_Rh0H}S2b`KwY>!`F5o9ttk zq*W}D8ts)XpO{t6T>%p=Af;Kn{;Ds!Re^_m0Y5v1{WK44-;k<^$tX5r+_bC13fV&D=!L?vj`l&{Du;cllIICX9s}o=2 z7a4iob+503TW(Ba@2EE_=6AV2ZG?0Uwn0j2a>f~LpAJ?pO6M%nThax^uUwN!xKS>ym;U8sm2~Anb`AErka~e z_b$w~^58H>10H`@3%yBZFuiC*ojP3AVu1#Rp2!^T_xz{vn`6U=?J59k`-6 zaeXrqZG`Ck=|BaZ%X{b$NK;~v2a)V}EN+-B6r>gitnB<@9{#2IxAw+w?ds3vtXJ(V z^sR;!JiRVcCB6AY^)DENcCM;R(eqJ4s^i+PM(+L)BLJB%K|q4&MgoJgJlXste4iJ4 zqriRG`<4Pp9}Z~G0jOaZeoj!(^S(TNInVjbS1+sn91`#GAO*#o#Tl6#pbZHae$={# zk|{aeib5LJU|Cp&sWc)A8S>kXR$q0Z4lY@Qm=hEUfm9@!)9K8~vZBLCzP)*#&w5MZ zESvb_AZFn`Ml0(Y;+AIc?d1#iIpa8P&Mf!K!D8nf0@%9>LbaVob8-9x12 zQ<8sQAE_v`!fbMNb23@EG$k0Kb!Em3CJHD$zI35{>iOoLDlXJIdhmp(TU!U-BnNgiS+{0zE*VD(%a`}NL|YD4Pn~3=Iw8bO<&q^dfr44K4t9L zYkfI|UZynKKqE!~fg<&`7%$kWy8c#^s_=DlihF_pbCyz6%t$5|%!FxZmgT}igv_M% zOeZLDC{%#{pzXeIlY`ELUU1+i7E0p+w8?n^SGq(tmEapfZ%C3I6y0~4Sq4b{;r(83 zjJeH1@o+dnVsN+d$+?tGnwMPWcLetG2UG!LN7ls#5QoBxc1xZ#fi6YrT<6x$CJ3$p zjl&xbfLmD~2YbY%Qg-A2z3a`m@ywc8G^7QbuiFwMvY&7wqjH=)LRGkqP4~n1mttOg z{PN?eaK21?h3lu*u~O=sQ22ortZHa*pV8$p$El5(Ip)f&r0ZGySeNyk)G@XXAFwi+ z0NbY()l)zi+xgU%!891xCZ7JtF3>q?*g5k&N-Gmu!i6fjh}sh>LDZIdjl($S8}&A(um>nHxI z1Z;SEyre~DLixNF%|IY9THR`*$*^zOyrz$t3eYE&eqM8V#|om=NzM>lX%gtJ4qBY! zB2M%`-r17WBU%d(N70FkL_LKYE&WB}#yTmB{}#bU;Gq!=RdgW<9X#IZ65B`~4%{PW zChXJ`{ay(53CZKnWEVkAXD9Pk#QR6{5I{kSa2#<(6P!`zW482RV?gG-t|yL;G&&4}Va`1Y6u}IwAOkI} z;g}J5JnA553jb^-7Pk~cK;S~|oZYF@+Z~Ouj$G%NvHeFgAG#XdqhxwW0A}8A_=L*> zTK7U{M0PToefxj5{Jn4N?Xhs;vtn5S5QfYM{oonse|`b=sFE_P#EJ#LTSF(G?o-1d z{{3X$8~c+7@Aq1RLLAe zJ)cQ0izaJ2EUsoW)reM=_DlXE_8Tux?q!!w*8;S@2fR`W7gc@)<~+yXrJr1*=Z@;i zDWOPOHII|;Kz+KaidhM=GzAmq%e|H@ye#+#T*WfA`F1@3DTjf?mw;|R;T;3$>@TJK z_=S=-7_wxsjfm1u2kjyMp5GR4*o2&CA6hJX28M57>*yaF`#b&gA!O!mDVF!uSnF-Dq?XVlqjg8g4<1J)&@m|qy`fR`gVJD3 z>o-il544~{9bn4Ha#v#}p={C}w`Xo=+d=cK1d*t}H-6Uv17J~*M#HdbVS*d*W;=6{E@vH1zF z_y-BJ(p)DJ;&+>92OfUCz7btHqxSrTdzh?5A}Swa`f(t*s9HINq|N6suJvs#{zf<)^bh{$%NRGE=3{)nJ8CaBty{1O9CN^&Yg}9V-s@OtyvG`y zyFUvGXC*`WNk#Eu_=Nq}d$tlqes?MU*3b8+J91U$v?c<>i0Da8@x2K=nQTM0LeS51 z4wF^s%)C!?vE~8#4)L$%d8iMw&uVkvq3Ahf5kb!A9_}6kgt1Z#!n3}SFROPLvVD7S zDYJl)AJByD|Ip*R*NM|4h81z~jsocqnS&1ZgU^gDh%|pR(hIAWq)YPp0Zv^3m*T=P z#OHLN*ma|E<7ZZvM-|t(qsy<@6df>a3ZvYw)%?cMnL9rX*<_9x%~=L&?rf|&MpI*<%R4x?1;|wfq0|#*?9K&}Wgyf{b$fbHaqF|YCQz4;~ zY^Ah+h2TYf(SqDG>{=2dXXqM)zbkxjU1ZVZIm)o2wSq1H;I}XG_O)($6)v4+m{Y-h z`dhOrvB4E}L zsLfqQeuTsVd4r^`_7LbrNw1Z}m$xB{cOKe|d&6};e{Z0dGa!2Nf`H=yvvvq=Zy9tg zdJfc5ToCq&{fEW|4Y2a%1b)1Dq^b&@QJa2vYZzvcv?IH6S=V$=e`^eTVP$SU)PNO2 zy!&zk;V`40o@}56Y`@`LKF>w)jcJj5IaPe4w6jQhRXLjc0XJ0gq1{qLZtv3&j)ZSC z-Rm06i&UGI+=#4zu>JnNo!FJmjIVcZXdz>7UWTCX(Xy21hW3A+3HkqCaxyzR=;xxv zO;+n1;|JH7MS7(8hRPU8J}R}lpaYo`2F}Ka3y^tByB-T<4x}W1*Xe}|s#Us!Z`7^? z-APKI-T9n*yWqyZHv-LZWML27qwc8QTF@TFc zhr#RZ#TaTNztokmZ=h)eC-T=@Tc|QcvB69?wA^D@#Y~V1uN%~F>n$Q4!$JlcxH9UJ zLU9hC>}M72Ai<{}D(AEvignMN&q`%D?KA{v?TkZGdGpTzsC+>yqtLm4p4po0BS*6k zNcTQK?n)&F5b?cwh5gSEV3iTSz5uJ3f8vfwPCA#SKaHMLrjF$g_XD+G{^`f{U@!1LMivwIH-~%eHTLs<@@WkLtx|HWN6@X@SoRV@XWT~+Y zOAu8meg~iMu%a~6(<^v$rB0f?TUrN;p>oZiRDgh{L=XTklV+)5k)V@PR+251F9RYr zRu9`JZQI}sQ&R$*2E)f_3De<8v)S*THwb4z{ybtp$Me;LP0g#y3xs;9a1Dc?C%s!L zoM6n9cra#4=(?}QM(M|qh1A*uFt88Q*z=;s3sgm5*iotOUPv9r6z#K}@>A~p$((y3 ze4007yjfC%&mNZ}aKJXLMUW5%;Et7c2uUMtg1c4dAnx=D#&IsY^9T*2!Pxa(1lB>- z@?LOZYDVY;CvdH8YP9l*A!>R3ZOLkrDJ_6KEo1oixx85#XOYQD`YVFg8(|#&Bi&`c zU3=OD@^C-%V$wfLJA*s)b>&{&IR6cgiRd2XRkrZ*%PF25^kKw4di}KhSUX;DrAn8v zfK5gmZVaF69P&%%X&dj7^2}~33^POa!dRBU7^b?_A3$%ltNB=pMs}3unD~C9$^cR& z5PI7S^e-a<%VN5t;oM%;4ImhLdAG)@TP6_l67fwobxXLdkdA3k^nccY8rj};k4V^W+x_i=+89CB>y(oR zo)E64!oe7pI!)bA;3=?jI8rBS<{4%lC{KqmZ2P1w#r)7`F9r?i8)f{2&Ys z8?B?T8{ynn8}_$8H-7K}Ji?6m%P`zkb3maHiYJqZVXo){#zr2wQl%yY=NZ3$_4=AB z_bsaE?kI02X}D4hrkdLW80qyZ;kW7*EFo%3E(K1rfl465N)qcH1ay& zsfX*?&er6-HqJi%JTzNI@>ZS*9Pe!q3KT^x%I2jt}>6d%r zuTgSmj0tMwa|iB}F~o$1^Z++%#w;V(w6VSkGnG8tH#!I)lY~R@gpxzL49yJgMwIM* z^yUsSIaV^R3=?!37Gx5>a&Z)n(~9`u3|RgLLXX8s>4^6xR!T)UJf!9+BBm|MaF%H+ z#^c%5#Pv{ZZ4Von#IQN*`^byoM2vkce2nw1y^ijAXLpdQA4UAYv4bL23^&dSe_LmV zp5YYc?@tl%B)BBhu8o;s$4_8?AAo^;Z9{-xED9sq6#-{YrqsouIpwN`}&VFouJw?MFgY-atHWlM4a(26{5{T8s!kGXsH7W7}iWVK3uUepL+iTt6w@# z;F~z-gp2b_S@MXWl>6Q`m~$&<{~-7aLoF`6vgJ5n2W%3yWs6m)7=!VJ-RD5?nj@X! z5JTHO#~9=s-Rd4R8IS~@glNpYmyd}RwsJFPHsRFBP)di(3}^&ou-*}{@8{;wDe`KpZ_r3q-sqdLp|PM2@cOP zrnr|*9eXn6eBhfi;(3@+qpF~c+@byZi|{ZWwvTdCmH9QqKp4ofeB;!QcdL3{(%)%$ zttB+kPccPpzIw6I2S^fhPU3(Nl_GLeDsJ_4=2vSCv?tgdysp%yDMWY7W}Nfi?m8y% zY@FViCeW}U{?)F)B65Hk-XK~f@9vIJHya^st*tjL=GcQ7%op< zEvuj87U<#Qsn;@%*(X+$E~So01}WFzte3p63wBq4(nv%Xg4 zoOILthj;$Zb^q!DI9HkRzlQG$lm?kc87`=ybNHSj-`mj3WJx)gtuCXozwW@jS)y^c z;%ih-=j{h}U5{2pAzDTYIp8e6<|(JU7(wUAFtiJ0>D1^(-)UK;b+=>ayW11cQm%c| z9%XV!{!6V#FRuMfe>D1+2ZPQ;Mf$@#)-2!5^HI>JE6@@{weou)>9By3F*#YDD-)S z3xWx?ROm*t1eFPHCQv`=3lsn44OxH<*G`wY!i3-cWbq>oB^Y-{p_!SOoZ?7lYL{x( zF|fx+Bm7kSjlaXIOnr|qjbxY3BK=~wiKk1R+mpy@T~0ia0nyBXq1? z=_OpU#Yteg1t=Emz?fR7q#>Nvp+{m0h&O(PQIcai|pr3Vk}WlsD#gWNS}+Cut8T~c^B0Ja)>(4B$I!BkzBtK zfqFs`@hdG$_YjL);e+VU)R0fPyo|$H(ks7p1R4uk9huG-yOz;x)EO2n15{&Br^VB4 zKM-eGy~GR-%Mbex8EsiQ=74^yuagjWwK(+I|< zf7EoQQmV*a-v~?wzO?5AD<{)LcS^-^OBC1H-wXnOiJ;Pq`puQ2muy21oC^HBaZ^(B zftm{e_|aM6z^0qUJIY<{J_qYtC28dhjU_|&-I$ZRAccNKnmS2^ZFBKjz>qh_ z^Pm@QRjD^{Ca(e+`hz6|0q#u|cbBP+(^Xz)Q41oDeAd!~JN*bzHf`v{EDynT=XBZ&si&;YF&NpV5m~)b?TKxU zp_=XHc@IDd6c@yUk~DRA{i4GOXd_Bf2}Pj1+XHkKl}$7F)fgGw)8ir3f7)%W98V8+ zw3+H};$juXW{z5{MW5Mg>BmSXM{!@~b29n3M8KS5J=9!bJ~dtQv%qlCSEC8czRN_5aLt!1$WzEZLuU_GB@@XdGV@$p zJI4Ji0aW6<_iax)tfh-Sg}Lnhvas9|zt=~@-;cz~x0r`>7bs1PE)dy0N*xrXGkjmh zh{?W?lNT{^4dJ=5|Cf4ck_2@?gH}J;gpWD8D*q;0ZjtU1J8+1jXm}LixMzS^7nN|YazDsOo@}HI; z_?ZHCfY`8I+-{8I#6$2k74MCJ{eC-sj|RGdS5n6NC_>Q0p6+GbCM(`&8>@>?R>;); zF)(z=%Bn+pB-*1q=J{v`Vcc9JU~}?UuimJ_;Z|iYhd`TexO)NsEs_IUR~mexk4v0X z!7>b`kk1kt%ddIv;|npFIJFrB_%cL+Tkb|8INK)LR)Fw!rMeO%+fkawEcNwv7S>;(?RB5U^ox&& zd?n;YR0a|6O2K|2?rVoxym1oDv#=t0V;C~AhgD%bgjZk3 zc1i&zv^>IlHuy|d1Tg?ul2tfTK*(!+82*ede9gPFNb+XhsVV6_sy1=1ljcfJ+W8Jz zGtB0qRz-WdH}(mL_>wf~Yu(TijJvZ3yBteUtLM=ed(t8(RJ48a4gY$-Jr2Uczj%zg zHlXS904LXosVW*7U|vh>MMrb9=v`vvAZSl79KxoE;m$R@=>mhK;##9Z{fMbj*}rkd zTMhr5wzz481ZCQDl)et4l*2JTW^iEw+Ub8%eV1i0L#7gbmFsf(h((IO-EZIa1?&ao z?w5I$TS>)0k3AlXKlNPX>8NC=o(1RLL{-$QXe;Z9qciHK<23)1)ndoE5wt1jw7FFe z>7LZEY9K%u+IO0jgfl&uYGRf9rXrBVVf!pu8k>93qF(1Ig1|2)4ewKn=hSgTl|&o3 zE@NxgD_yD7zuL@KISw;q=9Hw}>wTM8P2wAq`Cw~}BKsBfQp|r*>l;&56$_g^=eQlA zpU4>v{JJ-jH!Xj(T1)NEM|>#BM~5^Y1t4H5WI(dSKTC$X`!+xI%-bI-xDr_6wMxM? z6g>iHpEnTJ@ErN+dTWXE?spI#z}(4geQ?eQBFn)*IBfqjZ>tzKLRQ6D385tRxSB7* z=eFim4!fLCqpynUNza`%S62m3<=9}WtNnNmkUC`RqfCUXZgdN7DxninwnXkZG^>*s z|NIb&ZE18n9Eu^#$FAI!v3d(%Uv~XZR{!olKCtHRZx5^f$v$CENvo#TfzvXYM-pN1 zxhoB@tGHK)HFoP|xSc>@F%KyE&#MdcgJhA5`5i9x#MXM6m`0<9FfF04#cd}5^?WsU z`G{--h`f^!tn-4#w0#)y^Kw=v9v8&5qt`>|vQvf!s)Zxfp1-GWKi^D0TViqo{4!>L z*;H=-&LwtN;XkwX|2~Ydc8FI9z<#m*>#V%DUWW#sD9%|*z1JM_t)bdpM)_^Mgn0}(tKfJ36*#gi z5dB-Aqk-)D)4w_2lXe+8wL1Dr3C0ja=RPPx)B3~Hv3+3FaSKf}B<6&0OjsP;A)dpWrlZAM8DMQj)_Lcg9iTZzBYertt7+dQuQx;IzEdM8{Cb@R$jMD4Y&F{ zNPc}8;haL+F=MO`{w|gfD6`KGQ0)YDm^7x+Uthqu()68C|6#hv>l9EjL+ZD$;k}v2 z<@%bLvBrsg@JrK-5}9Mzo4^)nGpFU57Y>`>o)9-I9}9aHi_*Mwo9xg3^9Pko>$!Vj zR*hqrp^xkRO0(b;%KtjItqTN4sYuw(n-c)t59w28gqYFr(|h+poqPS&NjRrPJu;`l z78peHMrGlXbu^Fcsd1*Z6=TTpC13_Xs`_Z<$WVS0^#*Z<;S|ufWdx(ItSyfIEisDL zPG=G`5^bmlgHa_rZc~sY-8+uS_H9W;3(TTbX z1YA}pSt-coC+BK6(3FWEvn#)=@aP{%@M(7N`fl}F0?fUIWY3~=ifJa-c-D$!l|9w548bN zjDFhv{_5$=(YxZ0teAcNXTECKNIL(R!kyCCR1)-{n-0m6DP!XnGQqQ!MpjrKe+haGznU{IC;0AzJ9@vY-sO z6d~d zYub#+q(_ce{|?TXmB={qeCr0|*LXkH(KYSY9vNM1Yd8Q$K)Ao^_vcfaK6scus*jQ3 zdP@MbDy74rV$VUnr#nHw`P=Bim&#ylYvMFnph2tVl$bdA>6){pK;|b@M*^O_q_^fV zHCC7e#6@kfYoUr332N+|qz)W1xX5M_8)GTl5z- ze*`P}-+9Y}+Z;?c;M~A#+Xofzd0}!r!(WmZ?x5xWf0ngKix}QW#x<3Hzo{VPIm|OJ z1cvx)ZCWKhx0PxvCdgPjoNC4p)lX9)y8=Y%hNi>zWbJoNu5;(TcrXtqBpv;?OFs*W z8T%Ax2#GEGx`RR6c5~RB&)YrPOiO=DEWrg9$p?*mMO>GF&p#+gF;-Y9q1={Bghf-7Z`KSj?(!fo2((>Dwhug>5Yn682?j>BcAHB?;Bsvi{ zLi2=HpYun@q51u!;&()F1q!7$)%9+>SL$$eDw=YTuVVt7a?8Z0+OJM=fYd&SKc9a2qv(#V$}Qc3_vg!a!J@ zK`avvW!4A?QWPKNyOYul5a|7S38~!NBB`@zz!^%))gUooVE)Y)n&+tV%M6gHH_sal zeB%pMsmXm)x1Pf^%C}Sh${#+tj`e@n+)5Em&s{yn9JYG=kYL|)VhnP#HXvd}m*JV~ zDTIXTj?rZP@7^Wl#ESoe&HtphGlsop;909b{RUF3%5|m^X4uZ*v5! zdK_y7dZqBct?TdpIWOVxuc2-Fi7%B`+R;|O!>17#S>?-=g>8HII}-z&&YQNSs4-CK zS+bqm#WHycd8z8#&@&V{Xc7~*{b0l<4Lz|clZ#0(<Wr=-@||9<%s81ka3UxKu91 z>8Oa&`Sq*21G!L2Tn6)lwaLj6*QW@vZu;jfOGS{U6^ZUn^^`_lWb}BR0zCR`NZZ-7 z>F=ZU){w`@F}E`Vvne_a*DBV~3DM()wV83oL?`1|vOM28A8Nf{{^E&__70XI#;keF zhOZt|rnJ@Keg2t+#3J)8ky%28gP+6@IjhekXepRl=~ZFK|JEZmp8g+%x@_8b0o z#$nhi3-m~OE&W?o4WzAP8a%983)_QH76goAcG#f-e7>F4GwSiXuW5rt zVmNTOpzuLR>p^&!RAV<9eWHjxoFco1uNZv_CbSv2qt5q@a2nf1_2s$SoF!^(S$ZVy^DGfLUxV_76kH%qCY!+s@i7N)3F z#E*QXjw1vY_YJ&nJT!&hHy&{Sd+5udg!4bv*ytLi9uIKFV$7z@dWtz?u{0xKg0D_# z{wW!O^uh)F;k%g-TFj#i-IUN?T#Svmr}|^mDO%}nWpLz;1)FJorSG9S0m??^i|@)9 zwEwjxg9#Hd94{wicd&6oqIm;!eXt)5a5;!o9Z^u&&)r7C!t<2pjLq-Z51s#P;_RW* z)J;oV@@q1Q9yIRs{!?IYTy^Qnhm&@4^gw(y_N{jaq|l{o-THSP5wMRMiqY!Ej3dl% z@l)e637KfcZELN~p3};!5T|>jszTU5UlXCEcMSmxj7gE058QlIE1_-1enFaN9c90) zpmEHvRVq~enVAgZ;V`pUeTDACxa*q90OG^r!djV>-1yG5+;2+f19{#psFRd_zTa}V zRj=wGbggh^Mn!tE+Z#8VLkLz9h+w3^VuymFE)vBfV=<9E#)udW#J$bg@vniJ_i$t;PI4zi;%3IIvmAW}e>5PWj0t`wRW7?aaaee+yKySM4 zr(_brc-1FcJZh$B((`TZF(M0ydDy-M3PANqD$VgR{^QyC>xFeJQP#I@5&go}5Tmzg zp%V0{m@0~*yr_3t@^pinfholOUy-vhK8 z1px{#!AA!W`n^~@6DxF!pvj6J>#+EWJx=fc^!XGkZ|z-Qk*h~xH?Oo6j+q?a1E;Ie z%fJYD`-I0hr^g_u{5UBkuJ2z8;n_m{+O20OAwdhmjB}23yOxS{ylh*DeT^5n%VR%=lVDtGyDCm+vQc-DA0 zU8Q--+fbx_kvOE?0P~dh?`KDF9OjBbYm6_l^7aQP(%T3N0T^9HH(GYdcrdV`uk$ex zwa?!FuIri}Wh9y^(n0Cy!)RMbY(ea(vID~))LReq?-~O# z>4Rlz1@c-8G3;xW-T~19VzAw7qtrg{PdLwXQ#wMEX2-=EQpa-J$cLMDAPZlddcuA* z#uv}7xV%M@<^aX4DE3}lma_@Okf5Z4MOu=3a(~--2RES!bZ}o+iWjxPwM8)WP-#!# zfyx}f0{QnQ7>YLUcV0B+2&SN6oUs&i*AC(eo`#^3xSx(voNJsx+9fobqAn7jmfuHmQ4)@yl;({9p@5tGU|#Pg zfx-Nbw4HikVsAI=6EBWYM1uF>SyocO-dGG|08Cjzl-?jzQ2=$B6&u6_?@c>{37qa^ zddm+OoaOrw>Sa>Ur@*7X7}#adOVWw9 ze2Mie3K)_vASon7U zZr@Z%hGz>I#&)e=+WU<|K82nmdL&*EUBDq^~93#a^K^On{P1P;NoA$gh8ou6Ip?@;vVpC4_^(s%L;g?#nX0pYL_a zv?m0)E{44s{>2c6!z&i-1;3)TWJO4!MoDM@q}JwaEu-$u*?LoJWT_= zV_^U3!SgVxH(d5Dfkx{|*kxeo(B3Y*tJUWFq>xzNEe^JP>6B4VdmFeOiS6@>nTObh z_Nxee5iezF!(P^-*&L*KOm+M=OHQcNDOPpbu6FnYN zL1qs(>_ey^(Au-|u<6Zu&`x2Q4T$4Ep64dbI$JL#@)vw!R+I6hkcPeG=okcFs6KnP zBmzRoX~+!*?z`EkOd*dAgvkynGDQNdP-Vs@hDT5IF*d`OHdF%y0YK~%=C}2k&+gyE zt`@~dE&hoX8Dkz@bd?Tl6R!itTzCVJ(ba=BsjMqJPZz45kK`Q74!R7csM2RXW-(lS z=&+N6ka7E%<5-(bdzEz%JDNh|*1!{j>d<3)Yj3M>oqJ#2QzBf2ae;P9@q6}oY(wFa zRqt<3rIvr?w@n`!q1=aW-H)9CKrFzCe?Axl99JOKRrP1SSP~f%@JOEV&s?WKDzeNi zn`NbB$BrF9J$qv?0I|LsTGZ})wf~b>qv>OJ^WxTz^(gekhrJuke@$xLJnx*(e6fnUt9Zxv8*U-??F(zh z(HIC+`Kcx!ou%h(QRuKkD|jHDVHXIS;C7vs z%3sRsUxyzwSyVAmXw0mTgGH>S8tB1`2pwFL9jL7-Ui%e9T;MME35(>6YvfEoRR*>_ z)MsE$NZ-3_L;nRZq}Y(fN*Fn^sdyi=gUcep2JhxRXqgozbqWsH_I=S*6#}z%gu(hJFn&A1=2R_4@)F`KKrb zj;>>2;?1F(xHwG|yX(2s;M`vguKbem5RSGNxxCS&l= z`;%Cs4~l}&_V9&1P-NNr4XJbg*h~mBA){WoVXZ-cLa;ZTVHxx{UiolQpmRVK_UNt| z024?e^cFSueZQ?Z`U$oTbw;=Qt`$fd|H-L>#L*lZab}U@#RPf3p8XRT3vxk`m#EmD zIJ-oFvfrif>aan!J0#yir??mchPt_v{4rpO-{A||1}1F7MhAjAO>{X(K0M3LDMbh9 z{v3h4aLg1WQRV#gP5-!N1*6-xAnyE4l)}**kL^p5g-w6ahSSzX+~JRYP}K3>isl8} z##gNfZVFjL_i3B=>u0Gj=MZa9E3j zLsCxi0%276gv5ZT|9iIoDFO3$#PTX-Fr6MDQn5e1(6MQhm=7H!pgo1^nw#n?I01?k z;g9KW9`~^D()iFo-aA=+*YuQ_E0fUi=K89ZtJEZfxBHpv=r0bV!Z*1n+@V&vG6qI( zC1fE=mS;0FaBW`|Fb>2>{;Bh;fdmU#Ccx5$LBd@{qB55NTXB-40*Lqxbny+n=Ua?Y zUy>RW8>$O%y&2_kf`BR|4>PBdlqUVz+mv=j5kE)%zpU4ZTl!V`2cPd?Sey|xi8a8t&E^=w31H&Ld>IG~WLynZP>*oWFDx9>Vn%@$KjAK%iB z&JM=3%7K+g-)66*kOj<|ZEU$;y9o(%H3J*+<_Glco0E>_^(n=>BJ_{?$6!K;YmqtG zDI4{-zCYoJUL_0DACoI?NO$m=J784Ds}=EURi-vUyY?Lt!?owmU_!1A#{Ij%2ntYQ z_8cS|KxcFo_nx{!?^;DR690tw9WCoxWy*=p7&G77tAdUUtm->zPn1_Q^b zVvO#XX(%ag8%*P45kK#7BiE9$Cs7PK^mz3g&f~cuQX)iOdg25lio7AZTp@+cbzveVPf4vY1?tyQ1gnnJ-oh7i&hcn9`tA}ag zcDo)zYl4XLGg_cH(EvaS+ZQvcos%lhKeY2VKk0oYwE)F`H_D^sGa1yw`NO?CdcRU)~6oe=D41mZCeO^id!4 z^9n$ZeWIU5u_z2!ejz(bv&sn&9E4TQ&D@f-5m|7OkF=R%2}r;GWqX46MgGeDXY(gI zym+f8+{+71Gzv|CBCXAlDtihKGwee7G#;+jCP`TJ<8HDdGsbQd?H2|%v&d^J`b3SP zn>oUb6(v1KO|tu2(TJ)w--#<4tg8am$E6zN6OWYBmpVkCXZE3qX026n-(C2hi>pyE z2m%;{0Cx<$GXCH|aEHwc*>L2hWsYN*M&$~^^5zh<3s5?gYbUERhUNOZtFEb<2-S!xR>URqOEg&rr zS;cLk#e7sBUCf$_$*3Wj?#g333yjvtgY}?gz^9#CaQ6U|pQ=#d4^kfjUgeN9Wo{a1 zOmB;`yQXrK*NqmSc18WVHYE2jwRPJ2!A#(q*(k{#Q6(ZX8ZJ^q5-dM30BKwDl&4+9 zL1*eFm4ME~U{DxsLQgmX=GchvIeN5f*YNBz@7eRX$rk;L{x*|635KGT|fD zf4XQWSRgTH^ei2kG22g&&7g98rrt0(Bw#Yzdmnbmnuy@JFJp%lH}68)KUi~b;3q!b z6x$<_NvknMY@ScC&*RS{UJeQYb;&`!3A2Ua+@g7VAqOYlTu{FszOf3UvFBNjo)Y_y zoYovB$@%f@NooJ+a;$ny`(hJ>^=UwU%SbRm7CIc2K!m-lsI%^l0R6FP;`nKfL+8u4 z{#QTy-(U$uVXG1i5{HZV8AaC^FVW=0w=I7-pxcft%pB4SqR3vfp@P@aZL)A9_Xq}@lIK!=WpinYw~yyjB9Yo9i2D%5>xWU4N=CdB=D6OBA8z3xGq&awxf1PVDVJ3;p=(vY z2A(y-WArG^f0&A{2y6c0L79qS@$J@D-W{z3pdrifu{fSv!UN?JfO*$5MQ=L{L~oOU zf34ySAPl0vNH(P6@L}w$;&}Z5Z!<9fAF3+oO%K&l zthW>@mH9e}T!mrh&Q~-UAMUK-sSbV!+%vkwPxSS{3b8KuWB4~_O-uY3;7=6%Zt*XV z2QJI((kBkv!j_{mp^x1fudY>o8@2Slx!FH3=7k*xy>AXp@8F<{!==X^O9Xdls%(H4 z+-z^LfoR#$LSM`_XWe4Zzsto(uL@4D~%Md!|NISglnNC6?!Zy*OCG@M`s zY}+ouBtSj_`+I7Jp-4+7z!~B;i|~bGO}RJFFpLw{j5;`?<>6OV92pu)oyZec3lN_H3AT1JFA0d9HswF8TkCj+_2Bbl?O!04 zp*3;6#95v-e+zK8`^~to>wZD40eu0_3xd#foVsKq{DIEF1^;fOqN}Zse+&LpPg+6@B znZh@x1nz5oU#|BAOG!F7nzV3$Tw|zMeGKQydAAUf`Fb!qubOB*gtn!YvK6}83@<>Y z&~`sD3fskOzwk?4TbU3s?zJe|x4|iA&Z5U2`)I0@hw!qWcYf90v;6>T@7Q<19>yQG zih3bVRsi6VUU$!+@Xp_Z@Ah@P!PizoOTb>dLD-aSTmx;@l5c5x$Jeby9bKdY+*71i?1s z`H$9a1#-#~AKsoA<<+NfWh(%C(-pnjhlUyjd_iQt7r==#Zp<= z^l6%?S?q#ho|EiL<%)1n%dhW#*?#d%-m#Pl%Jes{14bp=wu^@yYQ{y8JBr!+0|(-2&NKyC5Fai=6RvN`otMTYrZul zyS)SN#qgZD{sp!libc#ZBT+H0_u?Q5L~?Io&cIo|>GlcYg^|%|^F?E#iYH@YMo713 zw9nUXWzJqyg>g=aXbmY~wcOMbfZZ-=od86Mz1`@NgXiOI?T9qLp}0*Tz^N+2TF*vh zykSn=a{lnhi;aAE&;R+4b4(9#rFdh=^Qm-bY{rjj+i3L*pHpB1w zhH-()Gq)!iy#q_+_TeO47{zEJD=6O3T7>Trf)eZ1_K8Pm&{P3uxtMd9y5D4TV}M4r z@_>bUka86Gb_Kx1TlEB^OX_A;@wrWmeF(;;`E2hU{hg8SZZ;Gn^}Ubb=K+L7Wlrn+n zv)KH_s0#Dil~je7 zL*fq!9K5Ms{PGg_H_ECX>_Ur#2uq%6Bxc9oV1#t|CQ#{>PQZln#wS+28sGgS7z=bN zOdR5gaoLf7s|q9HKs}`X^dxk|<8!9X#|*rPzeEl6n{49@?P13URXa_I^u=6(n zJAGfMMDE4hm2V1$X|0{Bh|~6JIrTJp6z4nlmgwqJdgTfnTNhi8*7XCyGm$PkHXN!+ zaec#AF^uxjl)DJkLu)iTg$ln`&mHgt@1ht~=3nRg;xY3%Jtbg)S8f@MX_0J!);l3s zaNO$8DqGhWObrhunN9SMPKZ%usZJUYIRF53<)8*P2!^t*@7tz8{L#7Z;0q~la(*b{ zIH}+Nu>V@&ubokbG`&FuI@4amruH-hsw}1CimLLt#tjdSVx~kc{bk*BX7txfN?DdQH!(V@(<`X2~bOWC> z>0mPX;74^B5HLYAcQh217j;ALX@4h8&`(0l`eb+Z4>V|qaht4SZhJ`+0I?UU;=g$r z7SW|vq?)8&%SelR+tEXtsbpJ}+VraLzQZ%H*(D;Vo_*hWWn+1YrVlZ}vPpK};xMP& zB6VGr>0+lx8okl(>uH{k6vz!`^tsZH>ZLAfpRkqc6Y^KBI08q&gDbs{YL>@R=~W7q zj^hH{_4|Kf$O&=@^}7>g+%$~hqhP+Sz|VEgoO|8{3_v`B!IK9!f$*0qEBsps`$gg6 z{cbyNkQk%UB1eHyqAEW?N5_6Rp71AwMTRCU`0GPOXy{tAMwT6RYM&VNX&*JwqrcG)~Jk|pabF>0Hg z{dpbN41@S;Y`{kD8bM_!!|*Ob5yG}9!C{mUZL1dtz0S&TUj`8C(^+-xYGMpk?Q*0H&mVVn^`pIEq`4Q& z#Win4<9R&`=Q#LTU_f&skME?e9I^juo7B7H(2ZD&u!s1E>OiI&ZLjFR>r*U4Hqo8f zI%~i01^)5QUmnvi`%ZKY;PPoydZY5du&7FqBtg7G1Poo{(n$8F>%==+~9@3Ux%)9hg}u#BpgFU zK-QC8EUjcO5fv53d@0k6d$$@nbtsp- zQR`oQNNlJ^dfP#McwLFrrMeej^HXdwvJL*mlFYQ6(8VPP93fYUAXUb$spVJnX`pvC?SJZ(fkkzQao#VXRpv<1rT00|e|qF( z8IRk)`@w(Zn3OU@SSZtVOL({R4&8gY5*_-RV=LJ3jwEkEM~iKKb&roN`<^>73V)9j zDNf-&$cF@==ji6!nINRr^9#@XWeu~i9ZOwY8A0P0NsT%DAS{BAPO?jVD$ZdRz@}v- z!SN%bt5&25JCAW`BH}Uw+B?cY{s?DI4+-o~=T^Deu`SuTzF`)3(cGFpDhUh^MJ~qB zVR29_38a6BnXjC;^Ig)3AXiuE`GHc+DUEcXnXVc9&fR7nUk0+jtp${jId7{I_YQq6 zF#1ufBpP7jEI z)pRdOvN3X36JXrlJ2J6$jSYW1!|W?;R|vHF*Y&K`SixWCM$GsgJcKh^n}gnU`jP10;WX;UzcnDt;b0y%+YQ z(`lC|D;Q3K;+OA63%|V^T$9gyTTkmGY6KPL>*)B$onZL8`sBIWn1R>Dz~AuE%y_)| zWVDDWMp4u?)g-(iiTuTblBy?N*Qa@U2nF&RiBx=jXDuko)OQPr|2}{%Re8T35!b*0 z6QK9K0SXoiNshtf2|D!r@HuXtOeD-ocSVDD0Tv`RU*jOU5X;H01s?$l0MHjNgx8pv zZzdEzT}9TPwk7Wz=7Ul$`1%XSpj7V)C}nn(<75@?g+}WJ0bF~tYgZYPmdzT$++TP8 zxmPJ7@c`I)y@jGw*asvaNL>sBFv-hmA(i^GtxIkzRspGFJC3Pv!v%klXJK_pR^JYd z1ELp>I5!MNe4lwQdE~guA~0amXnjb^0qP>?s?9MG#cbD@SbA<7&XlDfj0^hn8wsdX zwEX_88(+5!czG3-6+MAwsL7yPnU(@@oNxZI)OO9j^X>SRN=}Y{&Jd5xN|@aWplhX)?Xed<3(2%_rcJ0d9a)qVU+)-sew)1Ih z7txCXr0FwVdz9z6@R7Qkq%2-A5#Jf0L4G4Qf{^&d|5C!aRL15R2G}`T4|gZ^cka=* z#Qwm7QXt)?Hu2k5=Va=3#$;a8R2q8zektsXb#$G|fOD+;$}Mf1vxT?X-==Iz)a{}Y z>9ITM?_d`}!R}#iBn0nssWdw|g^BGpNmdbRHALRkV!zDT8iGAT)|=Xa_qgRsyTQP) zD@&<1?7^$35mbz+IS6fM_i}siRSL6dKY;nO8QKq(i<{%Q3$VznFYDvmm8lyK#Gv=0 zd`bxLH7uMqffO^UTJ!6IPoQxzri9Nix(EAXO)U64L+~k%m%p1BNRaSx$Xni zz?cdr`}0R-zmIJi*Q?=FcWut?*AwSq%=e?sv8(tl5w>BqnGc4}jbjWiaCp0H4@xrA zq!V1RjPQv&SC7sygEEitQm7Qy-vCxk8@@@Z@5p%ri=%lR;`66uON)HVC6Z5fzK8y6 zeFMb^COb$fTLRKO#o9**%-iXBuC3JB_8=DmRz9xy&ByIcTp*@a$OosrjDtken$kS5 zJq+64>_>d~;-LC3^-&z;@xM*q`m+PIzt41Ea>SDk5sosq8%oNK897~k*1$O1r$p1p z#;ptS+COxS89d?Dd>#e{Xlb|;f_k+)=50Sd(k7|^-FCl4Tk>J^!HTqd=RMCBa*Orx zQXVVLd*3jwEMETZ(vSII zJeE{hlc5om4bwT;QSatAds_Xp5s2-Ov%OB7U<+?WvLETTfuS%i*y!)pLEn;(`f&%p zj}3kRb<$rrXQfEe8ds>~AuiR>=k1|*ZY{#}WnMAz5$Cqme0MNQ80#L#XkPLf2g_SF zPqKK3)Lp@Jjv7d@580RZ?D_MmR_u8S#WzM75peAh>4L_f^!>%>1VEFI@1KkP=YHv* zj?--nienGgWCjeW#qGult$WLtwa2gk)zH{4lelU_6?z}c&pT7T7_Ke(!&JPRD@SS8 zk+(a++!GIevET|NT<_p+vcnH|?kX)Brs!};7CMu7hQ7N+-1xTJ?jx`sAAh(tU zjh-9-%tP!^2gAam{>_1Y-WN*5eh_ZEKU;2=0D;^lHG*_c2t?OkOVhy5Xc9EGG;-rP zN;`i=zaKKSPKn=1vw8dW=YCw*TsXU{BDas+t{OQ!BZtU*$&4oxHnb*oYbI^8wMxRU z?l883Tt2h`QJAKB2TQsv6SBX)$oOe+9K@t znG8Bd!FgolHx&60Z$;cnOU+YIhkFw)o-RJTzdgd+hXY=}o&CCE99J^jbz| z3qV73aYiI6v3MjBZ6m=UB7-XkTjiC0xdfH?a(+DmL8b0ld6t$7l^wv}tKa}wSw9~= z(yE7#5c!KnM&N;wu_5#RLA&pg)X$mPuEMaqqYk4zB*7fPHWjn6HK*j(eYqi;3I_J4_aX=qTkF` z5>{4|d*#^VrxG~s?^SWkz1sjy!iM2MG+cNz048Ie(qz9R;@Qesggi*}%RM5HZrl<; z3KW=FJ%WJuqFdXr1CXYHNZYcq%o89m)j0;;?M_3yi(DRU1Ye1U0NcESM|Fd)b%O-t z-a7w#?=qtS3<}ZHLGJU2;n^1)`3ZVF?J}Act_sbiP4sQ+GYs_zD6+fm`2d5s&(kf9 zlM!a>V9G~gSFBGj0jBLG!Er)0!Z1UL(yhgM;dyB`BTtF<$0yKx|D6O`x1IFaLgW&5 z5q+BbLe-H`AW)A~EJ*l)X#S1qN7S|}GG^XMLYG}VAq%FPL71{3IOD~Mjs*lf2Q!P; z>H2N!G5uxT$GLJe*gSHJ@qYaP(4hRU5%AymWrZT6GSpxSk%~d2o4#(rbtRoe2KBn1 zzZ*&}Y~pPTZ5Ru&>k1PcTIl(^fD#{V@REgNP~4?TkY0)J^f85%3q!^9rOIj}e;ZUh z7+3fjUdceo9J2b1fb`2t1tLi1AC^G>y_`}ue0YKr+R8x6N@0W~(LD!8>UnSQMT0=P zzHqWe(f;{3+YbntAjxUmmg`h{uzo#IL-jiK5~MZ}r37hF5O2}B0B9lrjQX*qYz{l+ z+!2a=v=F+3=&EJwpPGy!$L}6m=yRe$FkcDm{gT{@l78zNUWkWNGF*Ml_I_Mla3Co3O zUpP9e`Xd5_N0jrhfzv*UIPQJk8;tD5RU`Qv6-06!%ct$_*NF6Id^NkhARUUu*B4Pi zn1V$Sd)3${wwQiu!EkznRMxWvWkl^n$wp_MAdi^wy}AWu-5Ed|F`Y2ypLhTF*Nf?p zN4P(Lz&yJgV(Pi5g6EoomzJ8&whXK<;AN`0yDG+mJkl*`+e_p7?p3+I(2&7Y2#wUe zgEJhI5ouqe?P&1}I9B#9V4nZ-O-diac$pLg64l#n+aiG%UVSsB`L{uun@>=b8`F60 z?^D(zeNIyry&*~VYwHPbMxnglm?WV=Q53c7ntea@F|>Z4E#d^m zH$70}`gj6l=+lVn3&9@1aYJrBDB?nOaP3sN%$EL*#Mr9#$Q(&X5z+AUuh^lpJbE%E zrt|rhk|^BM-7n?zDB!WqY1^j(3g6%)Taek?P-oEjlAi7eqw->}DlmTsJ6u81nmsJ` zu_O3bFK;;u3A|9{?u{I@=I6E2Zx96DpqF@0>=+AZwCU%wAC9Dny5ww7qBWP};yN)j zegBBsl?Jx*NR3ZDqwEc0W{BwZHs3u+Q(3n4#_o>48tR@_4oYElJ$GHjd+g{FwM5FX z4EoFY$)JZ^qp|-hWBKceO+6(rK$)M#ulNaCyKu0RES}1=^I5ibcyF+Vg^t3vzwTCD{uLF7nbtpJE*!~gD57d6Y zi^B3tlwF|o;oqLUh5`w(ds7r)+7KZ^qQn9QI|jZgaQ-lm5?^+yT$F~&h2zd-@os@W zU+Equ&lFfblF$JlZSU2I-A|yxw^}zv`r7^Dyl&qYv)dq76j$*SCXS-5LZ8j5(EP9U zMQ`y?pYQno@=(_M-ll_COyHf2i@_G;3;R&h`;F~iY9|%<&1Jxc+uSpCbON@ehj}r} zvE&zDGl~oKaieLX-Qr~R_O-T8rKF;->W}?xT!+89z2GA-8az`=M`%b0su%n&CEH#+TxCy+3=I09$R}stciy-jy=fRQ3{rOn4!2<#ys-~X>?PSw z++qq0xTfn(zZZH+diLZ^`;zCtaT-MuhUjltftM9UeD}2X;NqI2ztlm;twK(%-{4HZ zB#;yAMemO!tB=>uPniyH0zp)pBsvL~p?vKd605ctBmr2kR2@(e-K*b2rGN9sHf5n? zj2R0!QYM4KJ>+dJD`E*LK0a<{lLY`g#$4@g_LqKC5qB44w3vpu&S?3v~LFp7tN6C+u+ zNbI|X_YFmlNVawlK~O|XG<7#pFK{UL*KRs&RVgsHvF0kBXVxM#F|73etE`5a5Z2qD4e!rxTLv!jw#)DHri3c$Dwl*_$&bOE}bdmm!S{lGq4;SbS9((~WBp+t8emX7f z*DrKL2vu%dYJ;0PAnH#fGIMI^TN6J-q#Nqz}ILrhr49xsB+(SX(^sHy+oVHHg_ zRPG88ynA5CK!C|;T2>1<$sgVIkZ?c*5usUxK8T{I7;&2hw}_-kG3&u&^ON))4*2@S z>}D@^QK4fT-QBGK^Rr)rVn!e~OMITf# zW1$Wka&_f0GFbN8iEQe79S}mR1Ht4(z3O8Ow+h?U9vjMpKbjK_NdKmUz6OaHCC23N zS0LeVj1Uc+j#{`ghg=od()~0YO+BP{Y-9k;K^Q|9B1x#Po_Bd2C39cydCFx22mTJ;YR%Bm zfhMbZ*_dF`3z9$InH=-sPV)k*QKtt)n0RAWRFJWBvzveYOqXyj4G|n z>`Vq60_xbJ{C`X*m`lfi?;jq>J4HGe(wSy3@_aqwhB2m=7$#*=v}EaHq;ci!_gCu#ZTCyQb1-?G^4T0+_;dfD|r z=$G=^AJd291&Ot_BeQAKpV&hncLHe4?@Zv8eiy_ZKC9I^MSG$i81{M{COds(FOfdH z>*fb=-qmRZS_SmN#vqF5d$v}OVsn(u33Y=oT(EU??9%K1*gB6jSCOV$Ul0Sl8ww;q zc<*L-?>$$4P=9WBpI@VT%BVy}#)@}EX2R}-)`4(kwodo>1(R>n5P2pGP2_DpEWr`_ zPTM8gHkf50i5I)%m{Bl=CCzGuPi>e;PvQwCv-eK(sn7M9o?C)9^s%kar&|U-XQ5Sk zAE|%gn8(>}FM=ofbsTH(Ms!zDeW?fHiW`n-8%t3-pI+1$?5fCX{{0ag4J>U zgC(SYvxGol43OMMSf;*w+!|c#w9QaE@!-1DP%@iMYR*q`w|h5QhM!1f@Ui{arB|bi zjuI{T25ALBM?HGP7K1D(ib#S+sbE$k@Y6;wM7kcxK$v}sl30#%fQ7lqFD)j#pR zEc6vC+XyEPO7_GK_BH-|cB~(I>^tR*f1<%IX+*@DX#%n`(8wSh@NMb0WeCKhdxr>W zxXKbG(bU`1`2pdEz-?~zDf~tNw6}1T=}aQFKi2v3#%Auzz)|P1d|);lEzbkrYw@lO z0tO@V0YNl?@!&$a(?_kEzPxRouBVP4Egfs!F5a_4#ZQtyUYF9D&kkP}>kry>@sB6S zQeUNl?^ybKqXRxj>ZiRup3OvZTW%Io2->{+gBxBLKl`PPG>xdoAtWZlQ^g5ZuEaMIxVdF=L;6n5- z1kWJM`@a7EdVis8P~pU5m=C8ei1c2xo6j0kNeP<33R%S0oa~1g2tTLUdniF2B3zFE zp@Uqx1l;88P-)hhg3%ELZ%Mk<9+WQk*2Bvft_P@T6zsJw@SWccbI=+H(ub+-k-@tl zDY?sj$)R8d9zGXv;F7+upA^+-uKMuVJKrv6#rlBWt+PX2+Oo?e)|QGR`K<-wNzX-x zq!d&;eWQ_OpvY$)(j3vz$_+eI3LH@Jz_@1`T!f|kub-hYg8~1=e)lj)Us7y9WkYIR zE_;aUw!lweOvdbN5&Q4DTg#`*v`J?dyVkP2mb5^&G?fNDkXV zMcX5F04by=u?|OMK67{(!H(;K-8+lx#Zxo&Sad|yn zLT2MO%9sx1bQGAujNXyc1!RJ@k8poK*^t~KHeVDZ1LxVe=q=96T3R;5B_bIe|6>qC zkeXk=T9Nds#4@f6f2@AJ!-rJhE+qE)aBc3hKTe1soXC19bVT>pDnCiE3NRdmNVexE zw*~juZ65ff`qqu(dc!>sOwe%i5E&zEZ?}W->f;d-R5(^M&&*Qt2qr%wx_g%Ajpy<> zYlwNWJ0!xEjYr1~6N&@_hIT?}!EM+9m78}9)Dag0C5y*^wI9AaBu(IUtFpO*t$=|k z=`AL|4*0Yk4W+sZzZQAA{We(v)fLu3Rv(LtVs&^5u+S~73IL-734fmm%&YDv-(^z0 z14|KG)I>+3>nMUAf9vtxeor%??G;aoPI{bZ*lqnbUuKX43dlWm9ajc%aoDp-o*<0Czn0WxW39xn%;HsK)l zzf1fwT(TGA@5?@E{fx`Lx~X6d;vcu{zg1wW4r_%-;zQEu`?KeBMK*MoZUkg+7^yv^ z646ny!ADPz*ED9t1&L#}!2q~|gq~_Z*(1G=>*$rc^t|2SWKoosx_z1%XKc}M3$&oH zHy|p=<2!@Khjr?WbmutrPPO(Hm)6D_oo@0?1MSb>!Bf1=?wF&@5j@VUT0Y^f*T6rhu%Jt`{8CDnt_}|SlFGeWjMxyQ9tw?wa%0-dtZE6*!KooP4St}0pF**bBBo7T7dwWD8F6 zgyp&1UlwNbXXv5GTGyNqV894c1Kr|--?*;Jo}>I$kR?&klgiP{zGZdqIczL*OHMbL z{BJAr#lF<$U(I#p8qC0XFp)invn<19GdbqFw6M4AjRz%h2GORwk~YnuG)k+#`KJ1J zmW_8r-v%99Y|&V3TeQAo`EXB27NFeUz_rEHozq{vB9|rj)h38kS+6gV69={vKusb? z&>IrxDx08jZYXNpJg&7Tkdp3Ko&-Uh-Ptgpsdt&;`$Pa0<^n{GG6%IeYI}%Dv)+Zr zm0S#-;r-pmxa@W-4!r}@*dL!B8j2%s3SZGmP$RZ3S6zzE1uCn>-%r$jk-<9#1Bzbsd)EKx!RMo)Y>G=@%DAVrEwE|tmx72S5zeD@unUwco# zrsBg(QT@*H;)eA-Gjb8p?{e3$;6JLBsCy~7fcwk`LZ~S~R_^n{5CMu^Hby~}=$Lkf z;&lk$mFCBmW`J|1%R+QW1(y+lL6IeM9uH-MJk~k3JtwXvAsNtt%(?m=bB^n6u$NL}k zVh})rLCRO6LxS!rd|XTPMHGeDb>JE{z4c?XVHZDxBdI0Z)6`B*!6+5Vr_oPNlvXr$)+ekcmL zyp{F2G@U(%3Sd(s@dDQY*&*}h3_MobZI>}R)==l7&h**|cNH4pH^578ov8)^xdUTu zn=ep--{|w_I`-MK&rrTP?(va~pmt?$gi@kRM_bEBbt)E01$Vo?Ucl9W7VrQ|uV`nM zIc-n#8?%(u<-nIsT8L179lZRya5b~XF5T1rrEkRV<^(^V0SZ9?A1(2QrgTk6@zYs^ z2{@vR4u_Q3u%8MHXS%BSeKN@Zeh7IeF@wLul=IY54DS@Eizv(@&eW(J)MI-~KHXF* zR5`)q?r0Y*$Y9bve~kbWX_Fk|$x4*P%KHOsOk2le&rLj0Mdn{zc$0toAI)hL; z3&*w7eroMFXjta+_fdSb zas7g>tP@ucgFL!@JH)DvMy#LOWR0@2L2)PKBRj0>Du0;Rvp!%pTEHUDI7LfOfoOV2 z>m1{OLZlb-tkUAukeEd*@6YImYZH*=;JY6vf|C|iiE%~t>*1!JXQBe3)GZ=lEZ!(6c>^WT8#N*So`1xg zT1e9!bTJ9=UD0#T-*g&S`2Xe(`#RJ481LsBvc=7d0Z<=Oo-qV5dQWJxTWgQ-@#UY|*gGO4T)0GX zQXfrnA9uw3(50@pVA5kl6LfDHhHcb6!>2l!-wdnzE*<%sJ?1EBCj#i%_cEK94t_2R zX53T8Cap1Z(;b6`SN8M5p^%%y#!Ju%U%$T|$lcth&~z3WB=o4~=@{|8O6;-NQ%M$7 z`(t^U=Hc(Ve)v1Xfx*jN*`Z~0KgXnlyjM`X?35<PQ z_mkrFX+MT*c7T9?Jhh?}30aES@%kl$6!uocC#GR2XHPB=iP^;nv&bkNtWk~YmV*Kft6*AR42Z#qL>=!T1G$d$~=}k zkAPlZnU8y4P|gF0O-HR^x6h-W_6!W+?sLFRgoONRUfyK!#s0pa*0gxZ7?@IWl>OPp#(`H8Ljt+D+LVf;+&ADaHd+p*AK$CPA1 zj}}8F7l+NAFEvEXLk)p3{0_Q~2@o5xVb%K362Q?j7I9^I%res1cCk54ZB=Sg`X^%< z%^rEhuLf*KE44MJKP6L;3{{=&c=>D3*WbpyFwQ=1_s*7~+27qbS~-{iM&}~Ij=IIh z7jIB(S9NkHiUL@`!~=oxr3JCnU2ErltPwM#aI%3hyns98fk~8xgtU$j<$X&Q{~9z1 z6zd7Ah4wtZX;alN`KuiYug8$bG3<2w4z%+y3qRyH*DSh^N0sN2I*y8Ouhi<-pJ#zj&fZSLfv4&Y&osO=S z(1^mz4|Uny7ikMFmV8>f9;vO>rB_>4WqiD_b@|OKflMS=GY}>8Q7XCcLF+XvY<*V%$qlFiCc8kDn&C>h-z8 z72s5h#O2``e!iGnFAg8u;2&y>gH|Og6;-~_xDf?}=#k;=E@D+GO^aig2Erq?0x2wr zb-n=Vj2P}yV|SLF^E|c=QEK&2euM*LsTxh;hr4jzU3OYBzfR7}R$W;K-Tu}m!0hyh zRGz;VX_TezXj@C3!P(0Glx92p=3Dji)W>At+1l_%z3dO3wusQ9G4#_TnxN?H&GdSs zKO_K+VDQR-`VYR2KIwCvO7u+1D01o1dKV8EF_G(i4{fAtR70K-Np=^obrr zmp2adX@SWV(taXLHmQH<%=RCh0pPY>Gev3t^FO3ghGd}4TJjU43v0ZRFHoK`Fe`si zz`(03!c7n3+~NG>@sToDibmBj`@)sq`WpyPxl4$THe*x1Ru&9{);5Np7H-s(MVIP5 z;AkU&Ft~gJ4`WT}e!rIcx!zSSX+LY;dA1kU?h9y!`rHwLLp$;)0c@nardABnkl_-g znQLtMMCnCvt&TQL&WMtQ!GCmw9kC}z_ zP3!xoif2oYsh2DZHud=V+k}x=9UnGI(PKyKM)Cth{RZOciya7bG4Z;0I5+-h01a^$ zlkf11AgkFDHePS{)(PtwapY)cw5SomK8jPXz}sl+k7xj5m*1a;)VmqbP|`yAcKbw7 zuXn&qbC$(bfkNL66urzSQ6kp){%7K2Nn0=vMEcU`Iuc{BQ^6MsZp#%4GMZN3?_V6> zmDTZ*&Mg7@_GeP%W0avIQaKg(@xWBuTv`rO$hlNLtZnK^M?_vVz$R6um0{9qacZ98 z!BTVFV(ZHQ^wZ?_sVj`%{5G!yWmdo7nBCCbGvL3E#_cHMWLy`^5b?_M?S$;ey$y`$ z#P*v9`*Qzo2s3464{!{2aG(q`i|0-_O&+H+jDU#9k5%`4xb{>ph71D>08sY97|DhH zVz(xy7gYo`zR)G#1kpf9l&(O!;DFiHNj=%V1tz_-b=oLu`kN zyxlm3L~*K)1`@2JsXUPP+5A)~Vu&zuR4*W$CG`+`f6a6>Ona-7&wsd|h5DN79Qz#< zhHma;A-ptri=`XkKuj(j5q_1;F91a)_!AQ>h@MFsdm($-z1*ZAz%E9zV31xS<2p?n zt`&<{hY(5u69(zWVl7?4g#nI1&g zygP>IU3R^1Y6MGy0|NN(f#my3-xvAiMzoScM8ALk(0`=(*BZIW)!n?lWS1nSuwA{w z9b^NiBP1{PPgL7V)9(Os1wL0}O_U>VW0_Cet8njnu5*P@{B@&>WeyxS>L_rtee&=5 z&b+d-2zaRsb@W{n%G?4RSTF&D;Q9^>>-!DvB+&4~Ut`Y7G95i*j>a|`L$W*pT$%-W zZmFKp?~0yV*>&r#ta_YVn8TMPRzY=*)fQvAva+OqWKB+NA6DAHt)1i=`k{|^vI@$Z zlXsVNOx3yDn`|&u%O}?-)(}iIvqKbpGQzU=A9#^&29nlpx)tNTAEAi)sm~jGqcC04 z_NnpvH3NpopkQq4mzoB*eZOWve7B%qj`gUmc?%GQ-9!2Rc;{_|+mz^q^LmmU3bv;f z&La6)y-k{K7vC`3jV&UY!w>f<_MLt3h1wPEXooZ>y~0MR zoPy6pIBRg7NjpLD!AtnO*_zbtY{mUlxr@kgf5kMZKfq}#8VFTr8e~GsI1YD4o^JxG z;)H;UQBY!4M51qa=R!B6dwX+}u-^36LPfwhfruYR1Fn7OBgmt?Z6#Z)#=Sx@_NXA-eBD&sR$-3BF zGXt)wZl4i*)M1d~T8yIRHaR9Mp_bgwh*ye#+ir=yw}_b070>Db&|NZBZ3i6-Bgvc( zt=Hg80IO|7mmaTs-zo>Qo}fat$=cRWt^8|WGPbeD@9t$W7sRSC{OcN`m^+QmN|yN> zv|6)a zF{23E;{c$aq%Pa~8j;8LgAVo(SI=4hMJvZk?tBiwZ3t%b8jVb)=>8Ar~W09QYzP1 z`&W;&iT>)5zF+@d0A*ia3Y1!FgCjcG+GKBuI?n0a0rVELzeVus6C)UIcZN#_`ZaKW zXJ+o5+fOE4(UBxI<$ie5mABre&`Y1$ope&Mv~Z<~-dakK3Ln7+()u}9S0!!)fHs;G z!I)lr)7#)Q5QP)|%)~NPaq;fvRzVobg5*mI%t++D*Hk&;?xI?IQ4)L+0Ev)o36XOk zxt`jZO9&FF?G&YZh!_wgf!^B~NYhk7S=1ql-0R&Mw%R?%w*6Q52W zbNaQ9MfQX-qt>!7!#{fP0_$9T_5HrSulnJ;QX!);c8){N&$@Hi6rMkS=^%dTi{JW@ z#$Jo?PUkQok+%8wSps~aKD9B$F;lu5ul?8OFd!GSf*|zUQY~&ZVF~+dew|%S1G_&F zSv%71zhZ>XJ%)_43ujJ`4dD1Y%y2F8c;iOX+YB5dR!HDki|*u*JV;Cz3IN{e><&P@ z)pTdSKeRU>&ouwo_5kdcy%dqU;Beykg+Pns)YDL9>@ENN=}? z4~V*ApW~quwT-4J;sP`UG;OZ33ptXZM*`jFe*Rpk6gz*vSP0-@o>VN@ka3A${J#d`+`f&85be36f0Z*A8=_BenGtlkAzYZvD;NH|fmb-+m=;pg7gD33XJ95(@ zb8C1xNuA334fq^u7gByRTb=pf2)*B#O#ab*eHW4@LD^r|Yd!W)g5!7ZQc@a@gIB7B zJ*^+o0&Xmpx=1Kl7vIM`>}1iao=T*2Sv_X#v9Mg9h5wQmFu!2-^FMzPtQ|7PkA@JV zHF+hKbLS)JO2nV5J*E=yxt2%A4VNu^myAW=nP0xy!AHB&}Gj?jXa#hrXpAnu+TgF8o^XbD#1G*TTPvDq1a|UZ4 zE=$t;c;#Axw@ZyNro=XhU>`~KK|SGf3FxwFfx4P%du_w+hdFyPv;hLx$0rbk%q!@KfSSxvDFqq--Rt}Mvddp*;y#Sz zHf7+PBU3oQ9k}e;D866nL$hZz4^eOwXrG0nu)rPJOO!8uj!kxL);#-oPF0t*xc zih58o{GYc^H0y{TbZe{IY${h4KOI0)`>pE@uoD44$WRa#gmIarU z8=^UXhY`0X9LfEc#;+|GFOZ{lJ^1TAJval=lc<#2MeZfn;n)do=+^)aglse=OmlR) z1wJuDS|~jSlkxqrEj}H7FC3=Y9Vd>35BLp-$t|}5_{qZT4=-29zn!OV>#4WT2>T)L zpX&4hEdU`^Ro*!L*YzZERja%`^|%tCRuWGd8GYx&`;~4cxJo>7en0HLIYxP#=lR%g zAkNEw*NTYW;+4o|6lGX_Q@+VIaZm#QbDFQ9vD0Y!{na1`eZ~%9T)J=K_ZE<$D{IlD zY|C_~luyTN<#YLdS#|CtXg0V5rgf~YG0yGq zE)d*x^`7fdX=uN#2g~P^?8*OfUYX;-K&r7#hRdhQ-wpCHC!@c_uN0 z%drzn?rXe+%OqAUre*ukj9oyD(PaTJsZRA63NO;}?a{;Lp>DJ|X*D44;rq{eWslQesh+ns;s zScCw}Vd3{Af`y)UAvl&4wng1AW)(v|WdKoYSKCOCf;?9e7)j_>9MFO}1uO2)&H5

I2vxy#kCa8KwBO$hzN(Z2K|I0wU&@+^k-74xcaE;+A?Zx-rNT zs8e)t$P^0axD|cMyuV&#zQ2t|=21z=GK_3KJ+6fK^MJAKuauIUN^^~ z9UOCG1tQsSt@@CGM{m-SYc)NWP4cV^!&EyW z1}lKglKAd!UdeO6b31OHy-yfv@ys8u;|tqwV3s$6G`C%< zZ3B{@f7ZKY0)l$^h#$c`r6eSR4}sG!ofh5HrPd@@Vd%(TCzfTW^2{wA+^uePVcf~# z8>1-m+&W6H!kkTNRs*cTAI4nhEf{P3oP{@aB>F^hT5Cy&=8#=Nx^Z z^PAkW5k5Ct7n<~*S%PWd4f>h;>0Ijh!3694t z^?q76j`6>>i$t?0N@};?o&~+y-hBQ54p`~f+h8=VyVz76r^qN1C$>{J{wA<|KH|u? zl4t3(ZxL9=mv%3A^%M)&nw%JXjk5)|Q<0H0jKa0No z%CDOpASJ$r$HWkbw&YMv(Lf`qor|kpQ<+RH0M_kazx&rR^I9w&TWqUzGNe9aa(DAPPU@i_xaWR6JCcAN_ zZK&qL!`>N|B2X$$EtC3-2Fk^@_ceanxe5P<(a7+Ig@fDHyiUdpgN;^*tcryNbSSLEJn**2>vI zrSA%slKDbZ=gU^*MA!FF8}}TcqbkeU6EQ&>P_=}@Anxc$J}&f;qfRZBi#FeL9;{jq z0UDc-gXsN@qt8Im3t!vQ{XTNT!e%3RNA1eSOQHQ1SVUMWg5L7fe$r z0yHEPeD(c)$$=4hwvqk0M*Bi#)9;Gs8w~nV2e^-oC_PAfr~&Vw*vIAJQn9Ih|Gml~ zZo>rQin*0f%OWVyTd}|PF#ewP=ny`BYx4d6$J`!1Fic!6B ztym=T>JH>^6Dqhl1R^Pr)sJm&nUl1+P0E6J2hbL~H&y~B&Ou11^xz}>+u5dJDmO5Ch!9oqzYJ|T!lBbi`B7| zFcl*Lx6w~-qH>DEbb(}UULEiS%I}UNx*fSkKBn`fCTW?Uj0_%kEAVF>ok0(+Nob;g z4}u0G{Ag;(Zq%*nQX5A5C2$6r%3T`T#PnksP-K=3VoL_spzk#(SK6R2JP?7fB?-ddBDP(XBk9i&g zBWIIeVNFQQM)#HQIq7b?E}V(l-4Mm*O7l3K>32-;^m}iuiX8BSe!B}&*@FEUr|?6l zs4d0w%U?VCh3qP}tYf!Bu?#=J#L4p|9DnRD;|o0Rm+awDXDMo*Eruk5y`fIroPlRe zCtA$aH-SSs7j(;Q%U+N_l*ey5+^cG-` zhgI-VtJp_xGHY%raXt&WQSenD8`{H7tF6Ax6q1^@+aCa2wZ}$^sL)r1{oyPZFbnBP z;8nUtU9?G!@^bd*qbK94qzkUaHcyb4M0K6yhm8*8U2O7ZtLBYT)|&>>U5*2sXE!z6 z8gLN~(8>~dRE015=VvZR@VBP$j0yRzj&ZSj_EjB<-9Xr7GTn!q#fKj|q7&I^n^*pk zbEz3&P-ta(Le|@`JbC~4)$Av`l6`u~5@*&_KK~e-?;8n4@`A<<8YS7U1D}U8u2_PS z^!7#uQo(e#iv94@BOF;`J{QS`K$FLhrxCz*uDVih)Z5<=M-(f*VEiBR82Zc<{o9Pe zwjpoZD)WuF)hmFlwi%781S@BhI|wo}@W{;k+~Dj=NVrZ&>rZqQ^)RP3vik?k|SO&EA$lAMP&ao>vwxDDaD_ zp{=~iKduT3>S`5!<0wLpVSI)E(w7R76y5%GKUNMJNgqDLJ^#07(39UlD%{bl$D}r)=6> zq&M~5EEnLwUDSt}OzJnV-kN~!bTH>st0Y+7xEDLCJ<9@6J-mT0xgkF7SsXl0xlF+% znJlV4DJht=J8a0uA}LDxg=d__@zPcI`;XZ2MLs)C`}l;SKpgWybm%>*wE|(zMhPLT zve@)u4=>i3pnbF@#By}8ZE5qmGH}*-Pa-*^w3#^}*4XEei=>-4mZOCJVHsGXAbmk3 z=+&?pJ>u9vWZdqYb%6QVgT*IX;(@pEif+5qbaoBy>S_l0X8L6J#{~L#O0lVvi%!(?KX`+c_EdL8k5rBzAngx z{p@Q&KSX(1j>)*pZ@nNqxek^;W#uy0_NLwnBsQ(li!H7{nnl#7tCXwlHX|^3zAyY9 z&iQq4K0%`@48IiKayZQ>J9 zL>6a{Tgoy)bp>}EjCkOGQBtR&;n9yaOW7qPNn(8w$z?+VjG`Xa%Cg_vH~j6R-OL1k zt*CXZY()3}JSIA+ib<);{9JG(VXH9{@0VgKPqHlAQWT(pXcnsPAwKg10Q)C$zm{8E zr^|O~luifDE|yp+A0J?w-_Pn*Q?MQ7>mTucM~EEV4ehwwrp`(iYTM0FIC&n@t}Xnp z9}fHD76I1Wcib(4Kt)}yOtpxjtlmi{*jyU!Ap}jy5nSgdpgne&o_@-@1w2&i4n@|H zO@Fhh#36AqB^e(-^w*>U6MNnZ*c2xqi12LA#P9M42mklkm~XS{f1TNY_`BE#oeWnt*ldqTYise|)-fpp%5jkoETg zA2Lq%2B4#|Tvx9u@|YMS?l*WrxQy(uqD{6LGqDQ+*VcSxef+ck!8VN2I6wU{%V$ob z;mhwb>yQe{(@%KNJd06$6|K@3OMo0lx3IRFIS9BkGnci-e*I}n=U)-i<+h{t^wq{b9VJw9tu+9g6_g+WS2zwq5Auis+b0+A z`Q!M_R`O)}1dwa6pC@lgPo`TaihCiisiA|o82;{>&gjjiAOUQTr%mR(eS>F)H)*Ug z$)BI<1M}Kny`?sk0&zMDgG0o^yKTTX^CIL&y+IeyGgV}-MtX4EFjXz|IT$V|w3b&jtD~Hg>1=tTc!^l#}Jx5Bb2#2b&XL z1Nzi7#pm3(pA7VU%%|lLWPK5IC|rRk(0zicf?|X?)vmV=@6t7HLE+fo)JZJ4a_$nHZ zoZw3y{3&?s%lzHi$>7Ja=w_>zRQKgXA0jrhX6&(W(VGV(CS9g}YcLdCoASRrJDxvK zwEucxYs4OB%0&N{&cXEev)kwPbve*=NhPtj216r=)F%;1aA;9yGg>ISnT##J#D{$z zhlxoiP=pWt-JWtjE_>Nw`ju{e+u~N8Zy;Q+=8~?*@SZq5r9x1kGMKowJ_Pzd;&3qh zszy!o1ReVM+||2oO`>nLxF*CMTxSSyD@>#*doCZa57;f0V4Kne{RegPq(8V^%^kQD8B=k{K5i@sB`37bj33=<$HsScm7=TlXSyEY8Sc zk^AA8829KxaNF;E>^IL9>UuP*T4d1&Cd?88O0N>+BZW$%%v%FL7xKm&2D=ZAW%nW8((lHI+ZL1m>Ri^uz+>;yP6V zQp)SjkMNjo3c@iD9ev01dvg!_4wY^ZKmQEWt9ZvKrJ^SA;CBx zfntzA2ftaFKYWYPnC5aY!~MFHXLOOP1wu7A+*jxUtcW_dcw9BAs%ryN;C#1W=FwEQ zAve=r>}#J>zG077`Tl4BJQ6gwdo_X(CpdrwqIgCH1+BiUB!} zlZT#V4VOX%C&F1~Z4{wGU8g!CP4$ZX^L|{FIebwd^GZ zos}W7`2S<;Iu_j4k?jX@!JL*1A}MBxnL9>F%sGAigM4q>o_V8<)$W#vP<85@LIGI9 z8|*TUs&!5qS7$xN`tGkef*cFBt-yyY+%0>3hL^SdSSBaE-oov_bq%r>1#5LZ+`Ffv z+EyzfS-5iHkXV$DrJrTpD%lPhCxFOkkIkntDc0&7ap)AvI|%(3y|K9cN!*Ug|9mgc zJ+DZzDL6!6 zum5OEDnX(5=N&zoqCg^PO+s$UXmwrMHtpIe|H^YgyN4M;VCzRp&Rd7JL8`WM+|U2D z0fOiB`AP`tt_yS6ikh2Gc^z#zi>c!JnV9sN->BVQatPxCTKM*`=WmL{-jj9=S)G9J zlGy^$ykb0e)g8W}UAa?#=Wwe!{bI9Wf! zafI2&Xfy5f<^z4KY`ZUMPlQ~zD&%I*`M9AcX{##$eFI(zFgX=q^d_HYiVu0L?fo@g z;$61tFG;MMo5#61N4ob#SjoFgpB(HI6x)_%xJ*3lZ?~z9kU>MOcN8e3nQgNkF}Lqh znedqD+s9=^Jth3tf9(g=#HB5QsRsfEyvh`Vu5kUqNt7FtevXDdJgI5 zB;hPPOjNWzw$hT>E^7wZl(h}$-*l!cjvf|oU+rq1j>a8TZ0$;YCC&4$MH`4EkM>Lf zW5UMozTkEV0EaT`i4RD8`kvR>T_jqBPj3^A`es|1mWEGxiG;}Tcb4e>3#vFu5N_`b zjn~h?bdagJ_0vY*w?g`W`KyRFE1IYLOat@a%ZSd8iwsmMwGd+(2gfBZ+VI%_5Df;p zn>G~*z*XMu}~SzX&O-Jhqb zE7@w}3R4@yf**WFrW+xi-jcP_+sP8?s+!Hc_CISxoXHzN_w$^}1CQWCsxxkH^A#av z4>uzcgwOn{U#@gL7*E*OnZfsMzNBU^bG9iDhY;zIG)*tp-=}jg*axA|@AoC_J#lj$ zM*7!YkAM2ZU2=QF<VUjS8Gl^<-G2~We4FM&YQq2KgoesbAp{oUdlcz1}cz@^8App{_p*#kD0QM z1O1lfJnF>fP05^z4;?i^bZHNi-{rWUPUpCQ4(jgLV|LZhIEIJh9w8~bh&@9vOmr>C zzHk@BJ~GEDvlr)VeL?vhtMBqn{!c)#)la3gvQZ?{F}&D%r9##&9Q-2=_qt>CCz5f> z<7HegFupJ};&GKzu<@peX~s!C*;Bu&;#th$ZdLCt65A-uwlsr_>NE`nu0r3l5^buW zk&bJGTdfK8&1pH|K7O><>(vXKAiN2{yQR*e*lRnpquBNpB|V9EdEpU=+-o4XSW+ck zetNFTkyV`|Ylmd_n1!KNYlRpE202GAA4SUg_Wy5kI zE1SfLt<6!~ZbH<++}ZwGW$a9?t%~B+{pL6l5^gxV(3=8gp(3^5a+a6ZzcnQWKPvI! zaW5V*qZilK1RoZLCO|V@+{?EX;`Ktt4Gm)Dj;&a5gM;@-lf^_G6N;EIYCpTJO)WYJ z8~K>%qte>`2)12T8vpq10Fm-4I_r@h4RYJX$H2nd+1OdBC|O)Xc)xe5;h38O_LzNTi-8$WA5t}S(DJl;-A9%Qg8BR`sRq+MXz59e^Ev#~g^>+-4?*aef zCP{TY(;msH!hD>I3CTA7(H;%_qYy<66e3NwTFR}XuL>Yad{3P*(Sov#@U+Ym%Wj*( zj`*SkwZG7`+ndZ|R!H&q!*OLw7Mz6CGK+9X_zcw<&B?3s#gVf(!)fgTNk<#+r1^>1 ztN3ZG>FkD%?g`9T9cLPM6K8$53-52hD ziR&|KD)^Lpb{(}fjBWO!ab-N&Au;#L-XLp}w=SM+dqxim?+PfmiLW^&Bs$XRg~$}+ zhx!_xvSs{3jB?{=_~Sl1O(m>|Gm0hzrxzCIjoj2E&>QU;2#hspG2d#8ZI;P0 z5|Jx)X}Zryj?twpJl0gI@eL+DneqSZRYxoyb$rrC;ecGiNSYJkq|2-Y zT$fXc5B6+}VIyR$UgQtAAR)$-8u}#Cwo&HJL@`%YI&RMxOl&usT9VKEqObyI>DR`R zPQua?rxY*J4>UOB;-4Bg{*wtMohqCVxf;UT3O0M}+cdLJ*N&Jl>*Aq7E$al~*G9us zXx$}|rm}6JIbn1DJqP|9j@!xXw$6;OJB`u3ydH3c$on1p80`4d*Vm06*M+#~ch9vq zw86`%=3OXedaVpiOm&b=)Pl;f?e|oF_p_f*6%YI}9A~tLamccoQDF zaYabY08G)f7q1Yz;(+XvgT$EoqU0-nK}d3TqY+Lp|JgA4^ZFC&cJrCGz|7*zbd;?y zRvIn?i`^76UoY$(VG3wBjl+>`pe_Cq%c-iFt#rI6jbC?p{mD|!`~-9=|7xnb|X z=0e8q`=o1EN${9FkZ@Rb%{@#?+$HZbI@l;{l)rE=rKnkk-;@LUPC7vF64)g>CHpLQ zPf3mOOaI9B`4{IC`K$TFQ_6M^+rEw*hv|=vl*#kNd=BrTxNxWD>7P9ebx_2A_O;Tm z)GyZaQVg-cN0YgH%M}h5&CNL`sRzRXOkejOOy|bM$bn80jlPLUw#j$dH+%mGcx$x- zAFZOfM`kyHWABqrR0LmaB3rcYCy)Joj+2Q4MLrLk*$z+iTK9rcz6+UZf}`Ev)L2CS z=|{UaN;r8KTr|r;7FX)=$EN7MJ3Z0LkA=pDQ`*~L*|`QxS7DKk4gMV!L49S-wh1Un zl28k8PsLkF`cdA^3+dt_A2{@9@3!&Dz4 z%JNR#Wz1{~lQfT|iA?N%_GJg$2EX0}cZ{NcPoS%^x-bJaZtaI{Bhqm)8S;+iC7$kB zZr~wv;3-KB=mTxG3(>#VN|W=4N`q#V=TB1kRA|qlP^Lez$>0&oDS?K+GltP(s$!~c z)ts=o*Bc4fW20*+={sf*O%BJksHr=vFh^aKvuUi?v|UdbM7>V}9`H%plY_#bD1Q35 z|FKj_B(s4~mY4oBhTqH5IGHnoH!7rBf26+C;~Zs#F8e(Uv{VrE?RXm+%XlA*FFOy; zQX>popjMYwTX_BY&6cbZzw$$!OxKxn%hnsx<0l6rME7BJU`cQ)GIsQLC39ooc}PD< z)CJ(bC3os2y(EvQJ?rI<4TCaF2Dgv{FaT0r5N~rhFGCyc)2oHvMPr8L%%QA0Pp_SR zjQ~}9F}X88hOu+-z5uCiJd!zs&XwpGp^u7}7aDQjxP*X_iJgR#*{lhYEDpqm z97rDr*VBjP9P`0mYoA<7AvzNIM6RpNQtrN6jpT(==S#LKXNt;`phnKp4$ zl~G0{ zJ~`$n-d>rXjt(?fvJZSP_MLVfa}=~t1TWbV5O*4msO3bE_dP)0k#E*$QUY9pupi-i z=iJc8!;O73ntYKfXQE-r-s+*4DP`#EmMI;8p|0khmm0uAPa!2_UI1p*SXdYALFgL8 zQdlaRe(W*q+EzLhms_TDzx3ljuj|)+Irk%Kim@lOY@_lACe%3Z5r_4~4#1C=05v0| z(Ezzg-8+AdA|B7(xrtctL1UP1s}-TiF0x}6mwVVHw~O~XO8Wf9chmZSc`BV!3#1I$ zl#M$#a;x{ohstc_l3jS6u?1;p{S>7bA{D6XY@0Kl9-`JTQLQvf=d~p;E511g$*T5h z1r+La;Mu5&buI<9Jr!<0-e7P>a);=zpPLEpKzY7x`;B;^vD6zB!9ERdxsJzV)o4KN zA&-K7377Z9MGP_S0=bm!3>SyPVzjwEB@q7IcmjeVJ+a?)Dxxt;tjY|}=0Mq}vorw; zhs%rnFw?rGHJIGCvt{I@j?Q6HvLjcnTBe zXELD&Yz(D>Q+B8yKI|qa_o!c7qW>M7 z{r<+7?+355tqpAD4$`DZ1Tp~Ez5Fh~qU9w>022)2Bjb=VN_6d@@Q;bmXh?O!P= zb27xwPr#iIIy7jDPVw6TM2{M#uT+`VsBWG#1CQOqdidkq>~Vmc+>G8cYMCKF&sq+L zSXydnz(goA5B0z=W@UY+6&ef#OaY;7WxvM}%+(y?GLt!n&ly70NcL8v7Xkc13E;f~g_jZ47WBjv0x4R+DEU0_x?tn3M!nQiG6THAM$V%>x%o5ijQu zTSc21Dtist&Y$tGE-M98{t5t?)$C>Fe$Pdko;tvFo45g{9Y;_+Y)L`RVo2CBX0-Yb zsa0RR($^vh8-vdHs0evGDr=-d`0wlA8Sy^3D2Y*@S7C9qAEw6hwJsCq`# ztG>=&aSH+NmE6bS#~VhujQ6y$$eVI_y2u4V1*+uNwFXYz(Z}2Nk|ST4722twLGs@` zVSoPOl85d4wp0Bg%_cC?F9byYt(`u ztW?5hJQ;35y~&^YN8Zrdf5v{Sv=wL=pi_b0SL;6cJvOW$-ZR%{m;2;xH`LbJG{CFy z1qXbeK=72}E`-k-Tds-Ohkwr4Rd>!F?7AThMx7h6#;%zlFIz3UO4Xp1g2#Y}J(&{< zYwk$#tQXi0yWx8klys-U`S;1k{4YMNmAzW=qYOZEtfXzYpP!XfiNnv#X=$Fe-&E0~ z!}C5t8?>7@HUoOmwVPw023m+rY8NZhv4DOAFF~c5uv$?kFI=-rnv6eNEo2hoL z%^zHSe_XnT4mImAr}}dL(gG6a#>wLHXRmT;if>Y4gmoL;!yNYNIp0w-OHK?DsOXt83IW6b@__Pkk3S%z6ACmR}t7 zc52=ndD0Rq9v_P6_cmMme)w*$Yy$2vbW;&!!lR+bP@khQ9&-+{Lz8|UXsR--DUGjA`9o zJ>M%7SAkGc)Hgp>C+GFOn$R)h_hJt$Ou~JM{Kq~`f>=(y-Ij#T75~R3ja&LF&-7@X z4XZ;zaLBE(1JW0b(^;X___i6TrPiP-oIFkNug2(cT43Y53p0%R_XFN!h=oRP!_Cxf zOAf_`>;L?&y64JhoDXlFWR+vBX;F~$^>tfbecmLG>A4ys&Dl{@rT%JaWpz$yq^4J~ zU(M+}&w_NxZ%ynOlX_n()HXq{O|dSRQzAV8fhn54!i60;S5dNg?^&L5MMW4 zDYtZpF=_40QYDuppw%r4;Lvcl)?FLg?vr0smyDzj7+6aQBJ#m{D;*pQ%~Y1MLTrt0 zX~vYFZZ(sbEvOruQAo0newZLRRABFTrK@#AmB05CTjI@2=_Ss(SVSr|LLg{>kj*BS z^Qf9?;`)F7PUex~le?L5p9c3F8(RyVfV7$MR+nT|qu^~c=%u@9vZ}Ir)_DV2i6j~ZQ)~1h~Ve>aYEH@7_A6I5XUwkD;zm8Sdy@ozVXl-%Gu zpE8ZLv8VtoOG0`5N+zJ@V$*f8eJXCVCGy^%_)R7KM)PzqkG!# z{kBXkYGw??Mj`nbjIzO#*g-nAc+T5--&WSQrgqDu0cLl7IS|HI-d?^X7HsD+eBrjG z*9Y{ZY1o735n~yMg0#jfR;ztOxkAJ8WCcnd)U)-DSO{U*?L_mnsMR8aO1Pmpyi-!! zTBkcyu{d^xop1q0MrL`pYZK5s?@05qe1ogPCT%(mkC#(Vq8wX|GX%O>ANdfO}X9TN!JQvFtqsrux8mwgqN-!T?i#-!MA-o}3 zGuh~)N(w6lA5D~NJEi3|!9>(^|Kqiv-jJh^wZ5EN|2|9!{!FTI0l{*mYW&SH(RcdH ze03R_C_5{40kH*+2ng+lx$erA5{1*6TUe#*&-p!02x-rR35FEdIjWCqgO7{holV0n zr)9mq{7ZFl;*`*1-=D9EtBD$Lm#&(_bfyB-^gXgOBr>s@m$Xh~XS&H|#Uy*eMU#L3 z2+e}H$TKR-r03H|aeocy*YGAIEA|1dTnR?cO@Zs%e#DoD4Oj5lguyz>^)zWoKV#LY z2W)a@ly)_o-1=y;%ZwcohAJXBS@&%$?=(w8HJEScNHH>k6fBB8%rLhuZ+&q|r3ya~ zeZk6-SjahTakbeJY-Q(dg%%geuxZ`P6;4aHgq?oZrIosPmK-vRj8jsE7%1H8;vb$b za6#z|E{=>6N)kk=wZfNjEDrIF-v#_<0r4f*JH4SK?cbKec(X1+m_oOd^&9E|M{&<% z(X|4paZ;%lQk?-cVD!10fR67_JYnurH*qIjvm|0OnJ9Smf}j-f{md(8Z$P;*MG?r5fEYeMc3Wt=!_c zfg;-?NWNYR#uGp^kaey+(^GFdL8m@qG1_&t%OQCBCkZPEg?4HcNMF z2+`jQi1pSg>*MrOF!w+sh3urr8X9Fb1wzy)mjvJ%auYPriN_Ncf7rBNfuH|(nc+X7 zQID494DI6;D7Z;7B$B&BDX4L%cS;CXNJ{;EeORsXWOXC5(!gSd+WZSt*tT36Qb zDR`2B&RAh!90VXjVa=l%vQgw4;>=KyfNc=666R!Ozl2Ek0~_$70?w^bn^2gpvUC(Nr^YLo}$WV365x1LX?F0#)_ZdnZ#tL#A(4s2ue^B5CwBgHz)$;=0%IeqX|h;4IW%RM2VPIsvMbJOvN&Zj z$8Umbx#YJ`IB)hHc_F6%FZ&V2{C)S$IUND>;{nxj9O-n)?enl5Sex%CYo;}Rwnzto zAQCbtE~h?uYzkwl1#Kfh;|FZCAE=~hNmgSit|1J;;+@A6fI?7DlJLU`ajB)a2a`&3 z$?)HMb$-2cQw%_mPYxVF>8Ez5zD=4lC*=ZAMo9s1b%Jmbz1+}SDp+MdOlA{IU>Gzqw{0xeGkn<-~%)(mZZDU!vDhC+fGuC!5sk+&b_W^3U`h(JXE*t z0NO$Q>d^J$bZXcLHSq1geVu7nI6j#>@F;l5@U*hE&i)E0zpx40aYSHV0$^WM`dd{Irup~yT<>v zvvs>Vr8hTJ$-2prK#rZAQ6ZD5Q$Rhe)$5@A#ZMd~B!Da7hR(-g_87~^shjL-m&fgY zG=y*8V3erxQ8{6>Sui=*ZRzJB_QH?`4MT`%Y;|#R3Z3k(8Dcj?JD){}=^diSv5D*C z-KMycZEd@-l0+Z>mbY51(x1%056fUA_6rebD#l9K_XX+9m8 zubIa*)Y*zMEMEVwe)Ib>EVMQ8=Hm>$V}3j`N5X4GGxAE8KoOyH2hcT%9|%9EaJ3+f zK%kB3cCO{eB?R_s9OvCnLK+xbcD??T=ec^4;zP+m1kyBdDczIpF%=97yr+S{L ze_Z7ns$7_tA;4fe_V7iOAoNoKO#$LEoy>#;@YQKR@5@aW0dHS&y~5tl|2Wg(hINN$ zYX{7B8B8^$+#r9>Vo(I3W%2q0z68(+NL7kCQRuri<|KBXD*2e?E$k#FEKvim2Qph7 zTTx?#CTf`F%LH(XGVJB3^)Zf?lGpP0gGr;fs6e-XzMf#lOst9j{cGOJ%x`=#X&(%6 zNHZN6WDDS_CuR7S9u*WLbfZyY( z)&hKjR@FKCY))`eula0E#7{`BK811_hm6RC2lV~i>3sGhs0{tT1g#-};V=DFn1BD* zORJBSsa*s@Ovj}lT7T6=hzw*1ffz||`RzWC!RnS`r4ne4Y>5UqKMIKFK-O!>hGbWV zAinD8e8BMFob~E#iXuVjS5O6hSVYQ8>q2K-CivWyX!13N_6E&qntWvb+?!(XHweC_ zq6dBrDdC@(!@IqRuiX2?tRoeE$H}pEUe&TJaY!{BrkY3Q0S4{({F5uZGXqx-co0!5 z1Y(h{1WVz0167bJs-kanC_Be-0e0KnPXoO zY9TnG^U28iSMsO5;w`{gjlOP5TK8C2O-%5+oCZW6A)C|N1ndKiwZc1`lBmxt)Yq}E z#fv`C@J#^_?w|y4^tGe|Yh?jH@4mTNoHy=%Pt66ch)D=NNoAYXhMrCLn_HeoJJW@@ zdU+$eqFUVLH}QAr0{6N%I2$iig?Cqyb#9967|Y-0zwSb~TtgQmZJVIU1bq){2-uVr z<>Iab+=g7c?v4idc^LwJ4>!Tgmbt3e*ExQk^!mEkOjWxt5AJ{tW?_%Ecix!MbSUc? zJ2B~vC#0#RCLR9ee(ExGCAGnGTx9KMUqp@hbEc2_5`JNxBKmoXJxJRJp_bLKc&dpH zP<3V-#0utYfOpYbsH!SM7#+1FEas87FCJ#imlw>WmNo6OtXp8O+PP8;Qyv5(0=+Y^ z#(SH>@%HhsOB-={Yii4T{K=cOGQi}89*+jT7N%jh&Lft;@KfTsz^no8Zse!#3OiC! z(J9FTvu1ABAN@CmX~+`O<__=Jz2W3SqBxDt zO7M3ZhOe)F_q$1xuvY^R&#L>48DIX|S0&2Cg4qGQk`>-e**b-0nU@fopx2-EL(W6UNCuP2%OBrw&9W`N zCx0eX_{{(F93woucs7RUHKkP_#;4Ua;>)qIuxzk3`@LrXG!Xke{=B9EP3h~Nv#hEo z{r)oRGfsn@+GLZJUVFkY&^Oq+V8iNw?v`*zcRRT$VY%Q=iXm+G2OFZ>pnjdM<;46! zORXgw#)totKikcIR_dvMDO?4z5P@`d+nW5uk}Wis(up>0!|4(WW)cb)J<05fo=G~l zExIf}Jc*;0dqn0G?tg4*7=A5Wa6&GQS+fN3_6a6G_bz+|EG;)jrnomM` zXy>_KszU+CEsENfsMP&Z78!gD+kz-Ka0JqZp%p`?$De+B*nrjFdQ&03`~GB>u91C~ za9M}P`uO`UchTNHONK2rd{Apa(JMNQn1cIfWLk}rF(X^0F0 zXmG7%#zeUK$>E^P$>xYd|F7C!S68r=1M@Ek1JX{jc3BzCPVD-6>3^*|MeBPj@ch6T zXLa*@wn`ZGOB$n!j3ohmJUXmeVd&n~D`JNW_U8ej(EO?cyPcfB*3PE^o_9DCg$FV5 zJ4M^)`xd`({2~T=U2uo%9dCll-+0q^ls&zqE1mNj6xm8YIANc>5p@oNqKAW-?8-%?Ju7;#6xFTfc+2xWL7ZxlYX!U$?o%= zi|qFbVHJ+UHD2O8@;in~=)c&*gR%2JS3pLs^_T7GoQwimRN!pRl4M0B^a>{#03eoH z+hzfAb^RL9yM>S4R?r_?x`Pn`ZusJ+r?#NNjHPHZ(nH={8jbFMFrn8r@@onDfdl?j znhI1E8yxU(UbLqX?kq4wvG?+x1le>@WO z({;l_ES$LzMj9#>f3JDQTRBxN^S|*>|q9f z=RkzK2~!-d){PQz1zy(_VgODqp^qRa4d^}gPG@=9BMwp9-^O6c3W9Orb3)^d`Rt{R=Q=j4SeO`NeX8`2|HOv7MCj-;dqnaT4WoFt1D@&@Nw zJzT_Enw85oT)dK7RaL$0N*L|B$#l zry>I4jieikk7fGugtoXn%)j=~6128&_y)r!Stlt8T)A$rlSo1VHG#(Z^0gP*@>pn3 z^y%eA1Mrq9+!tU!eu`WL8^3EWf0>4C1VCC}#y3aNI#K}U zE;Q56J3t-uHhJsMV16f&bH$B>Etiqbti#jgDk=C;9e``6&4#1?G*PQdv2cv*Wfu`< zo*b`${rGq|C>gsbH6i2G)TgPvj3k`(c%?_yOHt_Mfcuo)(ULXkOT|LPXO^F5K6F?4 z#p!OHuVyCN%(f8J`X7fA;zCQj8Y)=T{2Wu+0nLaq#MJ@)R^IcIoK`@lDU@J4cX*Lg zgyq!wD zF@kwOIH_2VFQeIltHbc}y3}khXnf=uM(or)ghPPIz;{Y}bT`~^cRjyc94|Q=NI@|& z_key+OvkgVlj_U9y56yqQ2H-c^#b%8yWg^k`dvVV1s?D}Hf!*GBWa^50+pT_^*5gY zzl5;3$<9f@Mi}c1@)EoE+J!Qo2CC=O(_qn4i?7q3GLxla-$ST^i#ahJgv(qgNPEC@ zp1sH;sK&^rL(_OzuWV01xVvz%-AWgKSH||Q%{-+2R~@|DtNsf7_bQkT7UmDtw(S&HM3v7iOiRV{0@}6@Feg_-)wXW z*?3kqj|cYhU8DG%!yQP5Ga-;f>yETkDwV0c*B(UmBX9s zFzdgX=%o?=Ovs%ZaZfwqDw`)WY}W3f2b}SHK4O*HX?unh>rRE_NUL_+-V;JZuuw0) zV~}~8|SQoZ;nxTJbtfBwbFMhh2_xF z6tH^q)~B4I8&lJQ%*q@rQa(kA(;Yjts{`UD#U2>Zf7f$6%dMI3rb*;mrw5Z0Il%xa z6N>hk{Bb2NteaLHywvP2>}LD?*3TL^?xrNGh23aoUAW2q!oW-Z!@DEaD1P%c8fc*P z)6Fr-jn%W1e#a3}rfW%oo4H%lbEU9VS$tq4Y~gtyQqLx)av!XfZNZNA)-V?V1Na@S zBM=sb&l#YHSCkh-?YZlnWx4@HOH;cD-&84M0O?*t;|M8B9>i%SC`xl6O| z_*7Mo+*9FIz*Zy1Kgi`e!}Bn=R3_}CF=nOo7>Jzlh^8;Hd?V(%P>~hIWeg%A)Qj$ zzkBaqqCdH#_pO<#zudI}dMr*>DpWIyeZ2nYLQN3qY=t)LcB4+TjM({(_J$j>zGV)u zy9V$!WCf7@b$EqV4)-pPnyw1Hadpk%99P)>g2jMdoxD1(0{`AFj@Sp~mxwZ%I|+*u z;Hh1E!H+G3r?;1tA-vP)!-VfkbC!*^xM-h>d!dy<5JJRlgUVGedgdobB9GNS`5B6* zG~ZX{z-a0*?Qh?G7Qguo|Dkix4}}TbSxvS%ByJQVA()~TBqr=`i-%hREMSY(7qt#G zh31bsUkfEaJ1jGD7}?q!N)`RPVr#-oZmY{{l}#9$t&Xq2oZv84oJ{Jz(fz*bUCyLk zSdDmk5)uQ!W-!pZZKooIhxNs zt?MTyan^E8l3;MfmzmTy`l(&EtYi*?=}>w{1HX^T3ITkT2N79pv8~(j*2Y3NAlQFx zU;~aa?}3DuGT9SM z$bK?>OIWg->h~Laqu&kf46MAT3GYC&%1&)E21?K_goBJ!%`zkmeeNkm|4{Bk6K76W zY`4!v&bsxBVSVgd3W~09R=vn&K>SV*7Cb962v7MbD}G{lO#>_W;qJ_F22wRh?*uaq z_0JlXRlS&x4eMTKX=9kB=u2;W-Eu<}d(#0QPD%E~;hn=(03>uZvXBQGnTXR;ByZy& z_YHQ?-daGXzoR%^=IjYg@$H!Hvujp^+7Jg|xW7^0G7?cgKj_CZ+ zOaz=B>b-C-9wEzmbnxSHf_ZieD{&|B9`kJ)HJg<{a9lL&L7bMdrTAepGywF-T1Ky# zcB~45gj#DH4X2gL2K0PRCQGLF7H&4MMHn7Q`T3@4sgkxVzV!MlonPFoxjlSmOFt+@ z!D*3}nhLxgFBbik>~f?w9=&GJCHC2DPTlosU42cgN%+?W(wXM z#d)HC)`@np`mSsBjjh^FN<)rm!7P-MGJM}x< zPM>>T@(f4l4r0YDb#)8E>he{R@T?2;Ms}nz!PiL=G`uFxy2M5<*6;?IgjD_5>ibea z0PVq)E`Au$dR+DMbX&hCzBNG0|IR%;?iOs>dTD_$tm+K*7JbMBGWX0;_*K%~1AU1@ zQ~FL7;k?2Fr|91BNi6CDcvfj->czeo#YeM^u+6PpR$Sky6Is+1W``xn8Hz8d0M3TV zpcfVfG$B}?7=xFXm`M-8z_Cfx;RQY37R}OdN0Fvj(4)PAkY0BgtZrSVkwyxy3>&fq ze1|(vKTDWpCFM=Ley}|kzNP8vi~Dl9v-%XR*uR6dcBCc^tME_Wx-!mEr90@fv*vs( zy5=(EXaE>>p@QV{)4K1o6Hvx1^3mqtT^>*{^wuqYikECrm2Sc0`R;K9Ugj1NT`2^#Y6!Gx zsQGz0!88J+-2hnpjeFgLTiD#Z;NduTLD2M~*(L+PF{FXKNAv&qd7&W%}^}5q> z|B?6n<|S*ZC@8hWbfcEudbh#4Ytud1Egtlt;wt4YjS5*6%kmhjO9o#BN6`L{tuI?{ zRB5_>ATF4vO9TSMjF`D&MoeNx@bstD`~S{%_wI^thaGO)HDs<_t17cyoY3tUtki+kx8T#rXPa}-y%|sL? z1ypTZ8z?N9v-OTO-DskNq|d#^tirm*KZi%_?*iSv z$VT}iN62C*k~-adUL@e(OqE1^90q=06VLo)4%3*;S>dr~E_Ij|gyEj+WR79kYU@qi z!Q2yG=Du9>7mN>Xg8)7b$gr?6rMxQ0uFciH4rOv3>vNX?5aKjnGj7<-_!uKMo3||^ zb8&^8+KM7ZOF+kOtp^5+H02g}PO=zD7%NUk+0QcwiU0N91SdM&A##g>E5cIDElgAG z6L)m!x4ZCe-k>ktm6z3_-2%slY*ta@*-fs1xfTJ1vXLsDrBixqoxt$6GY@)Z>qc;q-Q0n7tE@tl zB|)?=yLtaOL#uAosBgbM7nR(8B(uaw_3!5!-1m-dG}9@xXZyIFC_h&ugk|;(gv%0k zo_Vj~+@4n7g%F;{=jaf2#lE$yHMi74Q;sEmW27X1goTst z17puo5jgU3B>cLI7D-UQq z?b-Q-Vb-EagH(L&^g0g68j|gpQ<9;CF{bi5L;gL#Re1?@@_){nRmX#Zf-q}IC9^>J znaA;MlkA$?lT;e)xpT?`A??qILfSzbFq`w~F|8j*$YgdXwyv87kxu1F*&zspnRZ_@ zmU%wM*@G(Ihj8D>qU$0W)Y)K1d-I%HWo0kcl3}GI+Bc3Y1v-^J(+e+3bTb8r&UQ(zGmDAo z%c>fn7B5;U1@y;V%m-KBeihE$fg6Y&7bq3znLcSuPqc` zKhHIPHJ(HC1Xk9W$fCj@-^8KRrw?Me`OF^;P2B?q<&;#>O8rp4RQqxV?U!r`Zpr`9*A0 zjz_tWS)-4wNs!6mf96pO_4u5H2E*eSf1U0ox=M*KEM6k!}l^~euM3Etvx!yXD4oxw897RY^V6sUt^5_`|{ zbchL|zTAo*x#4*a#LiEsY`N2h0}oBHZ~&* zKCm2|&9Sz5V*cA^?Q8A}m}E;I|Ik;#)861ySSAYxp|+H>0heT9lXp>3mh&_M@%V-e zwA;q)uk{@9lrrv=%U5I0d8|j8=qDeZ~KXCZ06!j7=HS0~!L@k;g#l-Z2rISS)l!tT(>dC-n+H2cTUQM$Ag*gzFLnRxW9GTuk_6;6tY27fXuTzgK$kRoD4` zpuA!$=2<*o`<7Uv7@4k3}%7{?tic!~d8pb9W z8D z-P8DeKJ|Wri2!k%{Za0?@mZ}OSg6(?|LFxv-(#a;UMwS*WEIcXL_f>#{NHQu+%Gt2 zlC5kXu}ZatM{Yg9i$AWmy>V>ZK~wHV)C$9&de?kpv2|#$T_i~nT1<-lmQ5j$1u!ht z@byb?U>#XEE*|X^ySvzc$=u-JnVD>z1&P?{jheIghR4~mMwvTK#{>0VC4RRz#o-_zZbC2p>4B+CuuRrn&6&y#!(FcCds^qPbDNH< z*gwWr`S1gs=&WP$6jOfHnUg||(fmNcRLuGzTr$xOVebi*1cMcn)RoVT;yZ8 z_R1tD8V<;n5~7A3R>AoDOIJ@-yq))Pb&58Ownj z#Jkzs0ibz9^45mC5=jp}A+0U9fb6(CHaA2s<~F+;X%ui`;5eKPql^|J0{wV*^5!kU+vIWMc^lWb zqModhqCV2)=QdK-a{g%$|1`zb037tGqGFUE&P24aAL#=*!d$-ztt$iZHQCwQ)jJPC zKc(G~(c~eB8Ud?MURBG3R@imAXnT z0;u~2e7{`jkZ`dr?Vb!<*5k0vB?=6Fda;6#27L|}$2gIIIEsYAYCLDy6?1edZjE|T zEN^sk-OBFDppHkqGgAD()j7+3Mcfz!;BF0UXAi~HcXiBGG4scUP*PmlJWUdN5i z>RYK`@-mX5S zUhvFj!-u}EY0)^$y0$iCSqYPXA0KfD2aC6?Hs0QtE4xi{# zlA#XJHO*uoJX+MA`OVHJYifB|I9lrh|IilRtleBsgaSE<+o|DbVoo^P$mbgHOb|ux zKV#y#-JojMc!e$e)PRT|AdkB+q;%kOyzage?qw)%yK6}fK8lS_UqTzQ`%zWm9HM3l zbZ7gS%7C~`>xs~~40M>bQ%T)-GYhc*t2(-xDKe(&o$+!$*UpbVKD^r`i0QBkI}gvx zOz<1L{mL~w4S&5_% z2p%U1$Vc3<`Is!N^GL1*( zK}LlAdo|aSH=-QNin30FBf1+*qV$E$e=b$I_n_FG#{v5sPVCZ_j;)8`#Zm@f3haX0Tc5Z+d)RZRXfzCG^$=+Qr$8XPKA zengeI#Z3$(&z*E5Mx4c>H0j{6RbZ;#(Tl09IoQy8CDn!bzE!-vKzQhgu`5v=py*E+p-~n~^G^NAnUU2UWK<^+hU;w=8-?@J`)LZ8-^IA^8ure{cpBECc zbKETb`UR-gp2<=#Ap1I78(s8|*38=BZx^DkG>kP^XCGRB7 z7-^CV;QNM{MZY2I)1lJ|7kXADT_yn3tuQutZq&Bo_}A6BS^u>eH)Zu=A1`>v@u54R zpw*N+S_NwOWp#p)V%Ne2Rc)^?r)aTmQss!vR8t5KqqbB3Q;N|4k6mij`_C+h`#5y= zv4BzCsAa^z@3XjL@BdOik>jtq@8UVW_x2|AlT-FT}kF-%qzYv<;+Po~hm}Zl8PqxUz^E~v)k?!j! zQ-(O-=1>w4Q>AjuR%hCUQbDfxotSEFML0=akAKxwVtt+%Ye?@(atW>$j<2UUNX2ZcI73}oH(D(j= z(!6(Fp*mRW)mD`AJuB2=4hizdO=>E6yO$1qXhEM~H-=CFJSYAn5+L5sS!)AmcQ43% zEBa14$0DgD5QSHMj`uG%>kr99LlGFA(5?9!4?h{lw?ZT*V}{;&(t9Vn@(dgwAhjq< z>>^p36f0qtNJ4G=@BQJ?^}lb!%~ZG-3@mF;wfBsBiKpi5os0UHm`Rwv+&09Ua&O(W z6R0DM1qS#N8p1VlV<_^9#920;K>CWn7B*zGwYM}G&8G_DS2xnC)J>TmemGltVw#|9 z7;VL?P)DATMhz7o5vMNFi$3H0>vvtE!>-YwioeL7!as<>cphvqJsfAhcdUznu|}S-;-9|zU9SvtSmAAycNmCh2RFAIDEZ9)@5qFMAg|e&%}Xg!5vk=k zUM=qF83wXo&c0E2J@!T$I?8P!EWCqGKs3FXNk7QyT%#4@^>c%9ymJ`Fblf%{SzG))r zbLQ#B!~<$$d(X3`0xKQz>(0MQx<58VN1080IOVuq=$j&_O0gqoO2*JE zI`IHpV$=MwB$arA(q%w}_xbS!4Mn|7=SjUK;i`L!M@r&vET_teX-SkBs?uQ2=h&fk zDterEqtXF+QPuvS*s6#zmbS9EB%2#c(d5~}!&d5%wPj2>YzK6O3q?g)PN5yC3$}d0 zWn$7LrZY1UY(53Cmo@%#_QhBH=0c$hkHMScpB(0?SV#ojqb>@caD%%*0!;U%dtIaw zGvhKV6~lh}@N!bUwG&25__Zni-|hs_XP`H-adNHEtZv@jTSt$-MPXvLpT$+N1bn^Q zR1QUyMTNwx{gL@tnRS5DqFb>k(Bory@ax z8@J@Bk_iapQbqDd*m~00g-UXK_aSb!T+VQlU;kjh9r!RGKaX4T#UxJ`&u5fSzs7Xg z?fiKNq&I)cSIYLkaP{WZ>L{7`*$=7j2L#x3DtMVg6$2^oN+P#63GGKzIq@B zGxD*uf}2Oo>i|mOG7;R7@_xWbfF~!J*Y?ehfSy%Q^u`u*O0c`{=UFv5?6Gadu3d?) zQSTOTwlvKkNyc~HMb_|F&CcUS^j;?+H*E6F%3kVQoesn;QN2g^Sh_$Zd3)FR=H;~) zrssg4p^yVD6+7DBIDXAT*&9Iry?{>w>QS&Zz;W2g|K{H^+jpaeXkPavC^t`q+-V>N z=E^l_FQKwAY3%Cpm3wwvD~v|;F}Alhp?NuCtj9tX4-{uu&)y}XAF6w*;gldQrI zPs<~~Qzu2_He_Fu5db}7YN++BC$IZnYUSsTq`URWqT)T-_uBGhD4bd$*SJ85^LEot!b3EH%zI(8sxwKK&}Hq$x;7!Lf3A$P>y9_Qcpp za#{lOnW9Aq?TVSB6xoSr`l4E(Psip!fxOrZNWJ0ER%-tLpKJaW7mT$jYP%7^gX_fA zuOnZ9hRoQf+Jz~p_F}CVG{mpw|1y%V00&xQaE7V8Ei}CYwPs}$3FQMs+3!#sl5kYm z7QLF=rA&E-uc~)_F|B!ib915lj1=AqDKm=QZY=HYnVH}tN#AW2ACk%+?ESj-y!Y}5 zdr)GZY-?~%CSOUFAxAR&I00<0i8@94r@vkoxwi6?u*`3H_rrv|XU%+K$U$cW59@hy;*oyY!#FaX0nQKZz1!uPWO3 za*fE9?jMQ|KZ@}4)>F_g^^ve=$I#URx5k5Ia^G?N6iRZzg#Z(oHAl1#dcVw)fDC1R zO@L3{=NWZjf+bO+DO~)=9s3;6=@~TH+RJ?DBe(pwOB`SC;$0B0FsGE0elrc4y)6mQ zIZ~{+mLhMK)9#Q0Pt364&b5S24H$fgnwnZP~ZSH67MBGe>EG zmaSiL6v*Q+BNoJ*-rBi96G_>ntqmUHA_!z0lW&kC&)dXm0px3Pva_E%L5v~tV~+US z2T6(g&m50m-%>M_ge6Qe;`t1RjJOt+Q^y+x%MOw=@6;q*nM@O(c_wZbMr+vY2Sj>d z;f~jE@kcWQCA|cq`1U#dIkV?H!VTa^X(rwX->~l9L`d1sn)7!EFyX)Zj6CP9ub9E> zMKD+64130iQuOQRPnKSEyEqgT+&wO^XDE=Xl`H_w4C_JO-;qu7vm;z1#8N2diGU zP+y@jL4NH2-Mqnkg+8Zp!D>RGI5T%_ka<)~o&50(Njv$xp1BC-tyP_3$Q40EmXux? zX22zqeWayxmt^Dk8GmoyYb!4HOh;WXQ*!*IVR1`RQb*K%kAM)NmkjviJ&1E<_6$*; zu==yX>X?pN8^#OyH15PZ4KV+$vJGOG-&fXqUo(acwYVZSP2UcDGU?bYbmhyG*AL39 za+!{h72R}ATOm4W)t~4q`2h>UX}m@iWn+#z>WK4y{ESo%T4!X36CHuAL#Iq~b;!Xo zCp7({T}<2h8>;K zsjyqtmJU6ceG;_0v%}e{1{v0LZ{PbXxnU->|T_0mz71Qg^1B+TaZltX9S1yZjI^6^!=O#hLG0TkcUpP1wrIpVg?~oc#TE2dEp4*E z(=B2!Mi3WWI zU*&%DyQhwvOyr(eE`Al(*g-{sXeY{s-Zzi9nd#9C;BHPBRq&QHK_DueZWoU7$2u?f z)IZbRD$=yaw4kkYJLt~047eNGz6rM3U-zh{>xv5e5 zIOn|IriU$i*}p}XiE2)G9~wZ4m5d!|c;S!3WIsb_t?`gFBgc0ANj-Ck9jD5-*EH1~ z`ny-kA7vuKI1$NXq{G1+JKWE9b0sq^{YxMk${)LH&rk=RVlYP|<-|(GD&1v%?oN~| z#k95j=@>{RkcU7jGVYprTnt6Uzd38mdz{r%tQ;xkg;E04-b#krWqb;#&`rlj@>vp? zBnhJ;X$trXI*wyY4oIGCrMq|e{zRm13QfVVGA1c@CNp*1Iz_`$`(qEr8+py+wU{m5 zAwmjBXi@UfndDkZk47?nYGKW zysU1ri}$lf21P`EaF5%=76I^j1J$T@EHw?0(LqZ9ExCX9U}GLpAe+jr=RufNrISmR zk^kW6YxNi4W-2JCNvk6W@kZvCBj0@6!e*Mc4LZy7r4;F`y#CqQFeONm$tq6~m(A5%lQuVyCwKmH@6w}jH{CiLw!a>sB?iCiJpZ~tE!}`2+5_ z1A%yZu_$a+-C4Qe^rD`mMF42^u~E zsGxwWKv5tW=&MRu`FylvPsJh=i z(GdRB;`jPd<`1!!{Qil|6MUqBlTPQ!2O(gqux31U$M!R%>bPfkGmFiKN7u)l3U9{9 z+*&K5O~zrkiX6Tmr4JfeBaP$1Onas03#g;tCg=6=uXGApmmK2mbXYxHXj@c4{E3ww zXcZt7qY>ao#%}IZdz`wYU`p%|M)rw5(8(JrC15HiBOw?Y(%`?l-xwRH0xsiS=>hYLX4>Y5^DhUmJ) zWkj@d3gL@9`19L3H0t)gp;Yn*Cf7JneEt+S%buG^s|~pJc%jU~+JXa}n#U>TFkZ-N zm93H#bcs+kz(NLAWcgAQ7EMEe0rvE=GFCGcUnzZrOixL$hPs9f>UQm^3vrop|A}Fh zpnR^uBfi-Iz|;)0%x@%nh}Ya*gAC+01HN)QTt~#3Q#cfEoALXO#^_VTwAbvQ=*2!X zM-YAT7v&8WNs_yHD~}1gAifk)Qk_!wFi*ekds3RR|(v=?5?O4ve9_`)5s06)I7UU;S7Qc z8bbX|r#u+F_d6`Y8!GW{ogiCy!CvkwPvgGkKnZidSeyc%vPmls{bbKTHEq#B$kMRsgNZmSgEoqt!P~9I_Aut&X zMH8vfuR@}|J(+S968H+lWwSH}f#JC_BEP$%|8_#*?eG3SMqc1&9y$g25JbPbdIvru ziTI&Q-+L=8SxXP%lbz@U;d{y_zuv#QuMoLn5G>4qC_{3HmH4^U^hUehn)fsf%lH#z ztlvk?SKasG`4HB(nN?Sa7*e0{XqK!iMs2TqnD{H=;4I1BGmZCJ#KF{{Q&_ zU~4o2mOAs6Sc=#7O+S)oCYjFT&LthFo~2WJBF+w@47}bhihh6Zb*Q8&C^LX21)c-O z6c;#+>?H>L>Ny_d^`?H)dfela9SPuVKp8~74sU*+qkX&=fS#es_x>?4!M4B!a|y{3 zKA;}=T!|X{DD6no!R&P3n#oQlK`bqfbvaUWvqN!>t8bl1gvAf7T>D{lEGDPtv1GzI zjj;i<-moLqBYXuVM9n2}?N;)ZF8mxBt=IN?{iaKyCM-B3|J(kIGEK>`=vh0ariC%r za(ThRI(MT~Ha1{2CaT^-tKPf_7vOXJ)^eT2qTPyL`dztc4!ZXav%(56MZkNLlHJM{ zj+a-H3<zsb|03A9IX*=@_Se-@Nyh3jgrDyCr>mNy`dtB)8i$ChobzQaOS&8y3oV&wjF|#zr$l=PTwH+2TMI7`c zf6A~xZNsSYj1yj^NI~j+P*vXqrc3|KZQ$*<`c`<{GSk>X;ydlG$D3p%qlb{4T3$}L z=lC$(7x_9Adnpx`0Olitsp+76O2xZba^IYto!S5$)keUB-Wmd#p(CeeE5gi7B{O4{ zyM<&ap2tov{Kjbnp*Ol&agmOCZjRFLRW-6T&iA96KXfO{Rr9rPPz4y=?Bt?MF4swq zhhsT0m>jF+aM##W89cX@QIBk?+X&u=P=4|>r)flqA2Yy%epm!@*0YL65 zRIyT65{GFhBivgB#H~XwzF#2pyaX54SuNv_c>D75c`kL@gMj`)uY-a^3>_E>zg}-v zoiJid0sp~Tmhyg&;kTRr)PrshnnBM72Oh~z?|vP!%dv(b+3oiJz>@cwxTp2RZeXHk zE8QJ9lP(C4#S|$3CQWComJYUWl5t_zt?1}z=Vw~%_T43JluNs#9+dZR0>CuCB7K4I z0AWIuglppY!NlKl0R;7WoT1T$&O`4@99oUU9i6Yvec<@Z7)AWOOsDT@r7VA|_(n&A-z zDQzREPYSdC+nyC~>Q~#xZ$iIHG*-=wp;@fyal2EC3BDG?Dd@UwsZ&4t5BeE=m%na} z3G61_4cdT>*|7Sx6XPaosQk@!h75_H2x6hZ`uK&c2m$6Ky2aPjMZW+!%th*$xgMwa z!&fX_fnA-np1IJ+3hGd{T=?O>6P~U5E-}5*8Dh1l_rVW@_J~K(`k>O!26=_47 zgkyHDU-$vRLotO0P~4?}I_}$oSmVyD;pfLbrOLg0AB}q1*!sl16cr80^=844RF+P_ z>Ot{#$|)L+-s#_k9y<6)1An*zZ=Wq`&iLNVBDCQMT{Ax1Y^JYp@0snIrEh8(+q2 zQqgzZr0&HN=<~dooI1XH7f&hC z#c*Ok_qSszP1xmA#-A)dNs2x_dLFet+BSUqS3IF-jxTWYdKy-PR?HKxUt2RX8+1Kf zUoS(GFk%y9nDAQ%S&HmcF4+Xnct05y@tA-}p3*xCE93{hT1j0(?Dnmb#FB8fe{3R( zd_28~#r-}20qd>ol%w1a`xvv?HRDC@0|IK9EFl)he7sTISQG5xl$ z`LW|6X-5k|Go9YgmkPx04ES{NOg^E0NlA+Nu#w(3Y;0H+npD7Q14GM1C?!qAGaiG& zdEFErFUpB7h{S+PP&A1B{wRw~7JcjVue15I6Y6j|8^E{diXg>Ai@>jqc6QM-5RGp= zzmP|53zxHWvjcQ>`<;beDN)SSC;0LpgJE9RWo3nvYi0-VC_vuU?pV}t&-V68$xv{P z6*ZC~vS9pXz(dsqfO|g__&{KV$|=h7dC?J4TY`!8afJPwp2G7-eLBy*I>(QK?|H$M z63U0(DBD#m)a;YJ>oay8FD1O1T`XDk(=L%u8RI<6e?;Q;lQ;3gL(e-}!TLJG z$ha-m^}<_bUtZ{Ikn~Z@CR3|sv5&BTRo3>E4u-G-n$=TY+-j3V6#9m-?M_x89?;MF z$?<#%2gB^rx%RGrPLIlw*7pLq^#Olh7hVD^?N-N~_Hs#(162#pEw)4ohtC$Y+~IEp zMequy?djg*&Boff58hlrvbv$+$%2dFEk(0;@fo8pJ$m&AI z0vv#*F>%Q*s~QY^dY<~_ev|(l{LS{L8G1ZwfT6>HfA@6Y6)b+^NU>I^Ma!P`B^5E& z8e5r}Bzk2ZeGxq&>vrPAwHIXN^h&wM?IEJ+d-ViPzdaV{-A`$r1Fb%4&(4e)+e=sWc*{YEHoGU2Y%<)%aWF6Bi6}@G5+B=b5F0{B1+yd&4yD|rwNcz5T4&htcI39~D`q{|hG6|XQ`05IEB!k9-W#KX zkI*bL4FI)u%>%q8S-}#sN!1sGPD zvXjNvu8}$*Q}ShXGxd{ea}Oa|-CyNhnpoA*qyU;yQbVD=oe=g=aBoHMUr zJWWWsV<47U%!}2$h0q4eq9MlIaSB>8w6-I$j}3j-p~uD`q&2(9Nh3I1?(*^45_oyR zG@Y?$7!p2YEA^2BM|llMr9Ji&teSOkPv)B&koSW`0`){ak&zxUPvHeBW%_hy-|gV+ zTS2?5)s88v&Qq1*gHXvZ;2DRIg zp6Jg#E&lC*d49xjh0`}$rzOl0+nK6WH>gx;aI{&uWO9fnqnS9S@jaG?G%@clql7ui zziM6T-tsna=9m)j5?$ z03zOfFcAmkw|7LM0W0phr*gUdkGR|xB#aA6N7Khs?ffnsc>U~Ja)>AFV;BW~k9_m%LY)jy1d`J+_vj1@C{1iVRh>~SSZy!kj>pffaD917oq^O{N_Ly zn%;uez3JS_miI7*bP>J}R=FW`=fJ0J>v7{`j&Q*CUJ4B#Ild|L1$d0%ZppE6Nl69Q zTstCN{rmAeRdovxTCs_IZTz(GmiXkE@QODaL0ESA=L~ohKhMe$%MQ_WO*P}Dqh0;c z^|;s4&Z6ke%D5!IJe@^mI;^bOoShE6@Z8qNTkD~Ce z^ZR=9B>APmo#2c@JHNDco%8u6+1HnOkKY?PzUCESS#0PFI9@pBI9Cc@p%7UA?62*5jgE=?SYq{cP?N+_8ZG=gKM{0t0CnoFxRPX# z-cm7-;2sz4l886O6e4~MK)MkYAy>$m&mFpWpV_9(rK+@gGx>CVLk`3PMlR;-Wpnta z@KWj@Rvg>dwLC)XUWTTXc_(dI6wztNT>hsPyLkJWb*;q+5(0gY8e5vW(i9fiM8x#G zzc1+N;hK@-1$yyZ;W4fu0{p!$OOPwwryr80mnSLSTEz8vi3OH12cHZlAbuFMZU&(*t zMuvJehGqVwLSk3_t&*^p@zMLygkzI!muqIeV;k25c`tvaU9PD!^j~mn*_zIj3>nzt zm`|D2%4ZZ)kB z5qn_Q8m?N#BEojZ>X32^Dv8OO+wY&e-xg@lW3HovwN3oep(Pgi99R}+|Lwzg<25Dq z0s*cKtT##*LoRVWCRxVH{qd|orRO^^kw zUao}uhz6c&x#%7dMRA>Ycv>Tob3kf-wI=mc0!vW*p;X-?T3G|$zB zWM!;J!`u}Aa(LE@JaI~?BgB=(;g zKg*t{(Y6Psfv+^l?WjW81~Z2 zh~$z=KQ-L??>!Qj!~7N*?v~xwdMlypt)HD%UJh?3WVU&DpRs|FCO*tGnAUOU!(e^S zjhlUF;={<)p(jqR3Qo_OcMh8;A59{KLNJ84W^2_o8^QRadD!2#CoB;}lW3S7o$P7M zTlw`ohJ)(xf&nXC{|o=YXp=z6M~ z)qm?~ZNmPhLqUcm0u${Ep5-I^ySmO;k#+wA($#mWUW0s08PW6DV~k zu}Sv2H`~(?ls(!AY(~<#e&p@eU{k!JCwIfp`oqTGc-1pE`ILg#{(+9WWw@RzeByz9 zzC8toUV=j#_!8$Oh8iqnST0P(ZjDG6Bq;D72A8mpN-FZ6Fgf(Rxj`_8B5o9oWTRA@ zOv6KK343hJ^EL!+9a%E#CDen~-{I!5-TU|8PMMqTytp3UIfXn8@Vw-^c9Ai^uY*Ip7?^c>E;ODD4yI9Ai=vv1!A&#zKFYv1X<*tRsh$ zeof;=^v3Ln!-X-jG`D&X=Kc6UU&-rs4C4c7TblNfoJ%s~WfK$=TBM(nw?4%U-lewV z=$&d>Bw|HUN!m51_~y9FRQ!8Y<4ol#ljvtXvIRJ^Zm!@1S{4K%@&$$!Rvwq!vG+Q^jOKkks;pFvgMK2;QA&JA0bH<}#rSArhb{>taQD;LDC zC)Q+DtP6R|*R#(fbQm1@28HPnyab8z4hAGRAJ z^EOYcLDMqo$R9hGi{^n_!seoX(!90UJBGLb%vW@yz!LLq#5^WNK(^hItkD;3+e-mUFqHj%~+!E zK(!r_t-BwT)j^k%x`}Y|&_v{?mOoAhYC^)a5Op5tOn~m{OP~?xbRzsk6~2iAfCB^M z{i|S;20<3+MdF4j;V?HP_cDo0D0Y-(E;NdS`;`v2V8fW2>DGp1=%~CO-lM_g(qF}j zVX+vM@Au_*U4Im>fZj&Jc^$bNUsTd>9gmx$vtH?jw)Y29Fy&Z44>xRdS~6V8B6Hck zb2e`1md#c?M2+YV+fNe~bWEO$5ZYzxGd zvF0-dpikb8MBkPt?@H0q#AD~Y8Y?}Yck=^Ng?RUrwKT1}{$V-rUYmG0mbLXE#Nf0` z52D>0pUYcOabL>`u1%@=yF4tTjgu=^j5&)k+G)l!$knc+zesC1W&Q#q4cQp_)l^6* ziFx7nQq^}#eiDRO8)Mx}lsBl)oBx_2?CgQCq~0^UG|(j_2uNM3(k}90B!iMGVA^(E z^|3UbImb-g%Ia9^3C(;EXKOQk;|dI2a4^knejdRD=ZI@dHv{PSkV2h|p6{)me6>cH(;gWsNs@J?vk`!32PscNewE&K`Y4C(;A z^pwMW;)03jWS>)*ks`mp6Am?-=0Cm7{@<7GSiyhZ`_kxqud8tBt7z8+QDHkVFh^NJ z-xQK!xAY5hyvY^wXJ~;JKahL>LQc$eLN|mK8Kl{i|7U+BdF(MrDf`x{&(o==ws5wf z)9I6*)FtnFqsmW0yNGr|>EiRxTRi>~L3E9s0)#L|HFJ95+A`!5o>K7 zD?Sd=RL*5$vYI}gW}bj5))5&d-k1PfL@~n{&XNI{HIj%l#4YC90O{FWSoAPOWN;j- z9a>+ed;?u|ByleUr=W}ti}CGaW0Or5_aTkKwfCzM{-^vUZFZF zIa_n+XF0PZ`s9#V+M|- zTvytHbz3D6X2KS)4b}A(_RjuJmX^Wak;Q5k=U5Vt#Bz324f$|Q!ZsGLlrtc3S#&ZM zW-3dzc?%@3I(Ik=5nL3o1vn*@oUgk3+e@t+!(}+J{n~`m9vaWe(NquNr7R zPTfiROF36pB)@n%3d|#&gPOU*m6h`C(>F+^ARdJN8vdZSI=9G)F36ZLM4g5Jp;?Cx zeFWsW2r3z2${dU~VFpKpD+l4&@WV4vum)lYwX-%b(uYw>WJO9%9oQ7d(4W??(kmmwIq~ZQhWD}Et9q!Q)V;5(c{m6vwf4;y_|5!Y zfFl9|dh-JQZt;dWXQ^uFW$XC5Mf;q*0JS^o>dF6!JEXf$+yCgOVbeYB_S%>2W!De# zy1~BG^w=kIqZ8h$5kt`*#ced=Ot}-6hp_lbBgAy&kdKh<{egKa3(ND@EDyB4Va-5JO{kPErKd;Gow@2D^w!wL3@qLMA zhnzy-c6|VSE%NJS_eG)4Wa^p;gA7v_neGn`n7E6aPW*y~%Dwt~L72@r%#Gnu#X~ja zBr8;JnL!gr|Gew0MS*d`*$F86#M)^8Bx1*CC-oRYDR;z z4?J2vZLBtE&TUiDHG()t>q=$Jg0AVU4!%ZYzzO4|T=kx`p?54Yc5oSGF}Su8D<0Tf zWKpp>zMK;hQanQgTg7ckhobB4VKrZ_OMsAFvG-Z~MuRP_bAn65u-?I!m9H`byP8Il zMT)kBiAI9Qm8OT(ZFun>qO8ji0`fP}<5$x%k0J`Bg^LaBOMoe+iBhgSA~yfr?-Oon z@`>h4n9`U$C`VV{GFgVAsIN0r3sH=+h&}F2O-_v41at-eqo3I=HmHzA2b$6+H8xR8 zmY&e1fDbCy>JrbUc40bE7YQ+B^F)fV`vRaSVV% zoPo>@TmVTv4W2}ZZmiHaC}`JLFuiAAG&J3>S-nfdr{I=rOYncrl=vgL9_ZN&3G`tC zCVyHZ&o66B%``=H=>563>D@#g?IaMaTyUWbw_*0zrRpB$&naz~3s|gr=K0GJ^teKK z!Pl7K&L=d=o&;0*2$p-(!O{9aUNpEXVz!OQWAiY3L$ncr%j;m;(REoqcD+Vsu-nJ+ z)yXtDxJbN`9LW}#LXds?ANld*#*Ks&=9H&G-srj`3OxJd8n;RAdYf4od zoDDm@Kq@`>((V{djPBEj+WW*G~_yXu2oXGyDzfQn4+@t-yZT|0#m-jqTT!m2=EDCS+!3Ll)=?Rx|yJUuTmiB#f3l^kv$A_=Eo-9pu*e z_j)%vsgQdO&O6r`hZwBD)YQ|@WdLbOy-g8$+8iItKHAZ~AU}o?_?*mR+?Je(C5|8H zZpCLK#S5A=rgJ@?I!d(%Bk92Pak?ZPVhvR2n8|R~FvO8yPS@G*fZ1RnxTxPJzs#u> zMeyQtS>Da!@#`5P!8%oj&*Om|1Iyo#Vnx!~M62FhW!rfL>5FM6z<0+#T5QUcQmmAV zzVvK5y^O$LT9OJuHKS8ulBS{EMQt^Jhzz*LQP>3sA27Xu*R8j(AF1?eI%}rQm^tyc zXS8z3*dhrV$-Rq%)VBd4q3g$ZOdWV?QN<%W{f7Otb7%8=cSmcXd2`2 zYsmDmW&RAXxEzy9LhB?An&0;@-E@89Yud1C!pQI&QhpUdmUiP8UKMTq9S*J1#_PsO zv}uPYrW7=PpPe^<6T#^GdJO3(Z67?XS?}+kLDiA5W7o^b34miuKw$&M5|@;bV1uJnE<7 z_7KE+2ZcG}zKJrkO#g|e{$1{+On=c4idmVRI*X4hP7wEEl_-L*C=3cR$PzeJe_ql8c+X2ta*Fj+I^qZ2ImpS&^k_NT19pZHzf+93!Nu&Q~)t) z21t1MZKe)S(_9emQ=xFR!jK2jFVwd>S7Q^boJKw3;2O5r>ii;8m_{`h;J+zbW?g}alg!8Y3HQ~&(tF?uT55o7_tf3i|eYboNYArf<9w;A-ycZdxMKl3ke~@FlGP+m42+&*T<@8Ez&#w z5Us`_kr=7OZikaSbI3Q8r`z}bS@TM%5GG}%wR7v~`=R{UrJ1Zb>PPkUT3mSlQ*@#d zgJts>r>DYVCyH1rQp67{c`4MenO=m-5UQx^+goCgPBOUwUl;dy3Gav4rwPrpOWjQk zN^1JRvR1$1^EV|_KcB8ab-Xh2^|N`Ct9BhRrGRy&3w~S0C096|aj%G@1q{Y(>g#FG zKr?d)eYwyPCrMl>sE9kWA}ffvi5JYZar7DH6V&*4L%zYirnrfbqn7Xg^K z+xNU}mn$&frl#y$^I95=X4STucDslb@0rlPe^1(~LGsV?iV+#pWKMJ>2m4b?Op3UtaE70z?mC5u#S$XO$V2VHO=Zj43Jw#X#- zOLUPkRMv3sV+q%D93r0eOJWn&zEI8HzLoCn?V%Jgd&tB7AW`be_Je}_pc+eH4YJ9;q2L7Dy)C2!Ci_6T3HjUG0S+y!LR2a=7+k%U zORLzRfH>)s7l^jGt*?Jpb2 z7cVIJIuPu zhUscdEwSaHDszSRNT7vBHJndtB*O-gy2Uf~^cxh5T3Chlr*7|!ZuOG3Jnw8Lrh|Ii z@OJIWYm-2C8nZ(xi#Uq)v7bn-e;l97(_ixMJh;9do^$nKbyRgQLNc`^Mxwah)NW-I zh+jWISbSRmtsNrdxk`~2gqvEHHoKXn=l;cC=?&zHj9_-L@oZueoId_rV~G_V4S0P= zJCwYhf!+{~I6MqZOIP1~AE-x1L92!VRnbY{r(!4fC-F7njyjx_JY)L!bSO45M^Gdx z+R!1VJ}=Whnw7+l{)&QWZjuw%o00Z%5i<}N*Nd}o$2;5o+3Ty~ut>A_%6>iovo>H! zYz{zECC_~Xn1$J)pNi}n&iF*7MgX2Rkrvs64zcvzJbj#-z7#k0g-})8J#}F0=4bH) z5t^uAtEewQm(iP8gC4P%Vtoz2yOU*x`b>u~a3*-tV3#@Cn&!-l1EJfwXvCrrLu~O@ zLN!wsanL(8oG%wcra9M%C)RyptSB#~PkF8>{?;9NwEhJdFiWCG)5izPvZ+Gk?Lxrp zHxHw4I&-hA(6DEHZ*uc*T&eeza%sZB?-5QbZ>H9t2@WM^y2D3T=7E~XG$a3s<>xEai0Rc38+=OJkeAIw?Cv>QOrERJf+KM(hc0<-|oSgQYZ% zNzdYu2^WKlDuzyn`nz8N6A5dqtZCw&%tNJ+-Fe!q*X=X_b)genFAC8U9YD~8MI)Qz z{+W=wH+(;)mgPwSbKCoLIZv1Io=!}MnQj5hdBwTk!Q*w%#cgYG0FH^s7AHiEQZ3{y zD^Ss$R54r9MXszY?mx_>FDF1r!bR4h7-X{CNIC$%Jt94`6&qZ@EOVWCSS(0!-yuV5 zS@w7zn)#?>d_wFyk!Br+HvDHcp9lISLm~~uvGCLCbTNP&qsDSrqB_zi$`v;1izNtz zUek(Z@*M(8w_tXOR<`vq=V*z1$MqGAsB6<$rLx}s=Pr>rh-Ko1PffuuA)AsAZ3Rqy zn1g+lfmVs6GQ%vZYc2?Lsqg&uaxQW|24>?o@((X8a`+v|djxakq?ul2Bh&95Oq#JY z^?A;ZXMj>etW3}gAf~^xamt-4qF*MYT^I^WO}4K4WjFUZU@c#8zL#ys-?JDvRoMxd zPF8mR%Pj15rLl@W15^9G!)q^F^1ej_p=6R>tesa=%Op)32Adr#iLqT%SdD#UAT?SK5 zd)#zxD~LkINZK{ikfT;p>m}Z84Wp1{o680pP5QGN?jyT~GFysxp!`*m4J=_45_3O{ z0b@24f+BmFUtA!F*C2TkHT(J(ybgvnuqWMt@5uhC;mmvX2MSBzNtNmc>D|N5>V3KS zi!#z2313dNo$gRRyGIXRr3~6%3`tY!Gv?UfM{O%>t3m_cLt+kt>2vW${RoDe@~mPU z38$egHu|7iwn|G7CA4ZeyOD((QaU4hyP5lf1QO8SCGxr4<0jV#e{bk>`XZy5#7d%!ZdGlI3#Wjz# zJzfqg%53pFbqW}_2R%=r(GC;Q_ES*g`BLIi9kJDIA{_VPxYP-zbhwU5EUZwkOKgzt zweI2mvm%F_S&E078!!6>9Z@h0sFk9h5>*ar@t$tCRNiQTFpCYP;#Dl{oc<1&EUvv?Y`PDWR!k9k{+Z#@uXZ@mq#UfLZ4Wa!npd znmR}GBh1@G!CqvR;@PZj&`bJe9Xy+p{Z4n4g`R)xW<}4lM^B`l069R$zs`|Xs?dXk zuv8up_jcf)F80ah>tT)QbRzEFPtZX8iKV+g{PxHpw~wdAsdM`ZI!AlCx4FMTZz*u) z^b(h){5>2*9BRB$dr?wZK)yGf1opZh?)7T)!$h&1~haC5v3 z(q^`DoJ0S7B%rHuv{NUVK*uK8`Y%D@5H^F8P?$>7vL_j#%P>?uREvw(Fq3(W48= z4I(9Qyzl*CmIb9sAhkTgC8Wjrl5fm0Oq_!fUntVf`UtRBp^jgh?~pT)l4IGKny2s? zIRq^ACwE~3J&pPe=rejb6EH&Y`Pj?riNo*~QWma*eLX#Dz&Ud*dTbiRr>lf{6g&+` zsp!D~uIf=1`7<|G7<@aGzv_-;dR7!Q!)Khb?TF_f13%lTNeu|-#b4-~Z9$0fK>aj4 zePRN(Oe;B3_wRmKnaS6(Xz+Lb*5=DrW6zA(TxUZ^s>7%PwAq09z^0;uHYn0W#kaR{ zBQ z71_E4a`$HV+_3~*#O$p48G6agfaVfi@L+U(>f!)#V+Xe!pD1#c(6UD4AKNt}Hp8?7 z>rK|dA~?||c4Xf1+5gmi*>dt`J&oMPRAb211P7t_kxZ_om;xbjGg#{>X)FL~vyU0O z>}qoM2R58^z@Uxe+e}*^*X4{iX6%WiD+ST#A5)=SmXwMjdo(kLF>i|p=%k=>gqt-tm=d#sjp+Grn>Qb><1iRg_-1QgMpgDoSdfd*-ekqx@7%~^43Avf~AjRz@aI@Yaylx2#fstq)bE{Jw(Vq}OxSvL2(fc3~dnpaPz-CSJz z0C3ukLcav$U2NlX=r*5|d80Vc_T`N%c6I-<80+34&M!JJC5Yj#5$5mU?!RVyo!O>* z$vin@<06oE)auHo`ezINe#?{Y$3EJ4+FSto+pL0+d*tFRG{&@2Y@#Wcv4nmqe{^3fB&cd z&Wk^&3`H&-bfPF!NAu|sy@T-^y%6(sgX_ zAzPZkL%nF(T!Z7tSH0x39=o2oDOehk_XER*My#@5^zvNS(OElW5;AjOiCI+|zE zai0mNor{bsOr)2ZuWbef3c0(U{4V@r$NkIE1U@{!k@ctl@$EYgSM}sDErSk%2&jO2 zk&czWKreP%lR87QFN(M>W(tFQw=HR;tii9n{$S!K;arwR|9pBgqkY7c$l z@2(J6z|BdyUONCB*J1;*hG1a6cSR*12-+urK9uQHGBCt%CZkIE^398BV$#G(ddG(} z2K%`G-Ew}2l4xpxoXKAB=@Q%x$DSKC6$6jWZeO0)8$=-#FOE9i!LHayjOD0Im{2)L zeU_|vuGC4S>psbTEkp{r77@2fM{tT7kq={HBbu0*99%+e#fN zAOc#^p`~`fv17Ch9zfU*1m;BKBdjkJ!ztQc>eh(ci@t&GOS2;*bvM)jmqy?TxX5l< z61pl2hx1<#g2V~)Y5&jBovB@IK$qc=9n`0lO)5tl2B!X-cH{Zw^$|>>TUA{rXxlh1 zD0KKF^ZigL%ccn}gw~i`2C?z=k9Ov1jP`WNFGcSu*hQ$`yCASEpV(jvSj$6cPp?^& z-6+tXOd&lO1VVcI*l*cMP6t8MAM!t#Mx+v4-1}O{NzKm_c3Wo1mrNV9{Jy2ga58#F zRhDNkM1|B{%ayI-T%xIrVt8uU z%CbHJLoX;YT`i-X1l6WKps(s=NRoj_lY7cn3n~BlF%DKyDg{%n4zZJvJONDNX~hj$ zD+w2cdontmbsp;3NZhZFe?2%+Yi@5Mw%j+3_g#ZhS4*UbSPj&C5;7$A`~FSLK{z)T zbdbQ(nIroO$?CsC`xb`(*w`cAVFI}ax!Zv2#U{cU6ZC=y&z^V(XbT9sps7t+BKnBf z5qmSiuBXq}*b)H&Y*)TpfubykJkh@fX%yCKYDFN9gi z4>M!+i%KaGUzi8WFm<`&--Ow}SUZI-^D3!D=utQ@RU!08WNb$=27Ul49;s`ig)HJm zl|*n&a*$+rUVfmq+tDL+JVEL%OSVwhjU?3AkKW9NGfJ+^bV;-ULSjgP43IOQT*@G> zu%aKKV&huc?TwJ9EUvd}Y>iET`{* zsY0T7VKZs8Qj~vL|K=hCYA`?--#kxq(6TNb=HSG2PDKzc8v}`x-gkEc0GAw*xQ2{^ z$rN=BPPs?_@YRDYACD`K&qhVZWRe`xM<<7*l%knz1^rNR=5=sl(V6yaS&BPoeC1!= zt8w&OXQi!&))8GIRbO0U6pYUYv{6hcgCX*_BwG?4+=+_s=#;+D`o5P+#) z=IlYj#2qEI+{9qIvEIt>j&lTFG%uRgu_;gV=nR`_WfN{geiUe-cYcy4Ssta561xi;>8&ZG-b;F^l%75UHaR;XBG^Iq$f8KW>f{sg1r#8U zTxPKM>bjFdM3L_O-KTlpi(_~PP6({!Svec+62A+5zcV6kUHZwxV(1g?{PlqrH!K+B z-A3%u8U?ntg!3GX;)D|LsijtBOVYbN9*XYKLD%IZb|zd9jG1rllt7Skp>Mc_WNaRl z)sL&w&dDsS_s^T?a}KcvYknq~neSOl0ef@KYUA+pq>b%EkBta0mJthfyy|iEC?w1m zEKIm~KtwJFzk&~TyEuAjrY4f^m9K8pk0)Z@D(ZryNll9Ge0+`@=qoa!%R0wI6VK(;|gpY{}$F5RKj-_$hTxKeXtwvSoug>l9 zmh8E*kc>^QKGJZBF{hxmRFTsA40D}rGn%o5)_s`x(%loO7SMJ9=;tC%BQJ&wl{0qu zvhnLqAVO$!@AvV~29C9>+zW4!fqM{Ge#?kGz5bCfvX8&> zdmTs5NmQOEdVAd*qXPmaF)voyTqs3Gsahxti0fV4VWQa3ek^5QQ!dBT=4~w~t)TZ= zaF*)j%jn!9`BJWrn3wU?cZ!XJRB~2w`Ce3fN}qH-5no0Wiz=dV$DCgpr{1x zeAr)uG?kGaVXzita%g5lGK^i;)Kc%k*09*gWcFL*M{=47&bTiirzDo$`@wFv5wXU% zK4O$DZ2-mGlUWU~n^OClx`C5ux8D5FUjAqNAMfL+TorHjInhmY;v_N4la=+NjKZ4> zUBf;Vcm9l_L4!(xDd4dk86q2^n@sNn|r`V#ATpNg!}1% zwfRI=C4)_i@6hK#lwp5^?(oRTyM;li|CVlH#l`CT>cp7JGT`55Az|Cvu!-}mFg6x3 zE-Wa(1(+>xfo`var%znh=gXT#h!=ffIWtV`$!=%m$gNpc?T*JAF!VV|t@2OZbxZP( z@^~pXJyaOhbgEvmkLpB9#s*lTAPRzUL79hR$}%pu7zivxu^wuE#i9FbFVe<-T(hlUiZW^|L>20JPP=+Xte7cTEJsJK>>+_XzKv{-RUgt=i|$ZffUNhM99rSg~T# zb$W`U`V$zhgZZun1at|g118dTlSrMAqZr3ENcQqR?_Uq_(4fQH1G20DgklFsBpG$u zWSc}xo&4>?8f+By{LH}>frIaQE?aGH8g!n$h=Qbr=Ed)f#YMDy{m5@XgI6Sqy&nML z{?L?Su`MNyRt(YzWsGLVkcf6ZazaRVVo1f`-O*#j%v z1Z*FF7Hv3JrOIWH9Gq*?>YA`+1~Pv{6}4aRTsOP_e|lPJ4LaxXTYh6Y35Hk8wRu8% zgDE^~`&X0yd*3(|asb|u$lY|Q_iqPnjR=s*;jF45lxvtt4R>1ndZH2d{?M|SuOiyf zM3AtjLylfQtkx=eUP<=BCag2q)j;Nbo)yMu3E=Azn9^AcUn@Xi5;(=viacEUX~1R8 zvL|Cyj#z>T*4fSs5twfdI1jx<431O?e8hq(pkT8>*H5g!y+B`3+(^s)s_s61i1R}N z*ABHhO%0m}xGOt5GaT3(w$WzEe0uQJ2|9N zpxBs&gQyt))qXC>Ft%qcBcuL19WEm4ll}hnd{%kvoKzlZn&XL6Fo%`KI2UOV6 zXSlVCp4*+qN@6I=%`k|tF?3~_;JerMpW5c+AakZpE-)I<#23=g*9Y6T((h-CO8;z!_7mBcOq@P&ZM&8nCa5(-skGdK>Ks=8>BlJ+KdyZ z^)cjBA`O7pf+wiTzpw6rKsaiN+lTW>HshO4+SeWie``ZoCxDfxJfnGP2PEBIHz)%$ z(Z)}%Q65i7FL&i`&J}UjU~j{AYVy)bp)6i%f+oSs1r-8@8gw{e%3+kb?$Z)yyX4n+ zHj!*cfI)hl9Z*lbg1uS);qZxOrpcm;5t`#+_ZJSG3h!TapEA>$HZx9zm0PwsJ}Dx6 zKi>!S-@>m(%%hb^Sifj4=M7=;(M?m*3V)c7=BD&Blr5Yay9h3qX_VOkF7)fFkJJ_) zc4|z~a1yyZMt}UEm#XI^06k!n(^dia-gs1*O*`}aB>7=(e6HEIfwa7}wp@rZMKp{R zyfg9G06XystNIugQDHt_2kk^*JG4o=t4xy5Ku;fD94OGj^{_;plK1Vzh1Wd-P_SJ9C`7=$C2j$k4UIP&Vjb6iy8)FeQV5L$!p5_8ZjLCJU6Y2f0v<0AIoAIT4)t zSUS5YDufKm^vw)>LJugI!TJm;qxGSV6K!(J`7_fDCfF-#2ctd(PrB&j3hIgDEFVWU zR4q?9yP~dmHibt?8o=wK8wbp#51)ALF56oo$cU_H3dd}DM6cwPC=taO)><1rUuh$` zCM>!^_m1EI9+OZsO7h!yAB)ZFG4kQYeatK%)CJ#zc~Z=`&2oBdHDbOHVRRowVB6di zL=#<%c;AIhikt2=Z_SwM8))%TlHR_sGYT4wZeB+PSwSxj|B3{YT{X=o;?G`~YpjFQ zNhY}q0@a^&{xzxz?*K$V%t=<^M*<81I)0`+Jz2 zPYyQ+^mUvnd!45D1v&EBc0SS;H4J0m^FJV#f{IsE)>g9Hto?7XPdyO;R4x)`RdR{b zn#?-1g^A4^@la|+IL2!V<5}TVXYbg=JltDF!?qB6&r|6UGaIJ&0>TM^L+vL|bUNip z;JBpU_S@AB*!%K3Zq*P_2Y+?sCk)Y4G&fY`TaRjqQsW9Mve!qKk@LJ<)Plm}bc8mC zszK}2J?_)|CxE1$xfPD?KF0kbK>xI(Gy7`Gbs_Ncit561%nWDf|wn4ey zrqJ_2-)lb_}Xr$5Y_<7H2#?{&_bRO1%u zIH~2!Pjr7gqjirVislbm=dFEcc1+vxxT`A>PYa))P`?*hPU`C`Lub#eB6cT9;`v)( zroPtabf+UAhq#wZ2=veKw$Yr@XNes?1T#xsg6tK%aicgoGYTi% zdfs~gs$noy6g7M>z*2m(Ahkc^p~&#Bb~9q&ozt0sx9qdZk+jr$J zDE#F{o)O^nn>5aQvB~wt6`1!A65vD|kfa#3z%Vk1fl2+f>KdQI?q##2lQf zsKBu(Nl3kzWdSnr7TM8Xkz(Cy2ilE7MJ^3Pac@vPx5Y>YO+1~0hK8S;`3s9745s&h zb1{e8h?(mfMaBW!t&ZvpR1Z9CsszRJb5wG*J|%;tX=-x(2;~FhDZP8g^NDdB%Z)6W z_hJ?zcE#y8%E@8%)WD?zT}=w${&W17t+QXxlO9*$LUgTj*#TL({JjJj#7NL1m%r?t zoNR4dqv3+j@5bX|!qxOGXV)_qwT%CYeqNy`SHee^nvbq1XaLq(xV(HpAoG30lO4GF zuE2^BjVi$6#lmO~N)^D;*CQA#>N8Eg!(UyT#tEk9Lg?RVSGc>q-8Pg^^vq!Q!%ZU# zt@*M#psaypb9&#IQ5ZswZ&X~Bkm#(T>M2nNC7{tg0$l5nDcqHCAlm)t1oyiFMZ~Q% z%Umv>;)ly0*5LYrd{HscDsS%@JrXSfe*ujb)azZW^%t!hFdF9)jTY(FK&$OgU(i7x zZlgfd(_^^v<_4|`)_7K))#io);|@j(A}S#A88|_c!n40X)=sNe&wSAD4X>N`o-2AI z2=q(+PafZ|5%y%s+rz=50;~fFXBo*|(PWI#z7?DUTOTI&{S2$x4}=eW9}g|^`}2-F z`<2!+d&GJ|eGBGfwN8=lXHH}^cQWZ0%y*B@Two5|ey>|lfR!nsW-zZJfq=mSvlmGf z7EKidM&cXVM{LT$SN>n`W*W|)R{?4Rp*MP49beF(Se%?g-Q>acKsamLMGq)F3KOZ@ zs)nu%d|ywl(T_@S`69&xjl$^WKRI1i1EU+ly~!dJG)X>iH+T~06UNjf1BTts0Z*u5 zG9*;$T5bC5(1h|;XwB^DcRu@|6vVWC&wOrrNCg(mXR-1gBvCTGQ1>Axw1>|-LiG>a zX4ZrorPfRuI@_QWdErx`{~rxgej2u`&VokU(KKS@z=g0_XQ_XlacHt1{zq+M*2J(1g(PvqUH%S_*OG^$)r^rq$ zu>Pskq_T~zR=)^q+6Mye)6O@d(Ty2+&l?PwSs5naG5P97L=+i_i zQcgs+TFAP6RiW)lzcU=OC{MYi+gj|_`-G$WHR^`KV)4NXJr#g$LhBcBT8q)IFD<%C z`J1&*o`SyAH{8Vvd)SqsGG$|1gZbAV&TU#pd0U|`kUc7~$qw4IzfRTs#7+*pJ^J}K zg^g0-C!qLKEUdb)O|NeTIKd3Cm$`GOrGn31DDwRPU}XN)cDCl1gy@teh)=Lzx3{{b zSg1*RUC`)1KS|>sr+%#QkAouID@(M9C;4G8Ufq&P1GZGuO32Q7I=NN{Pr(w*)1zSC#b%mx5 zwYl_dNGAfxy=eza=8|973(a20$+#M}w$G`s=s{h?V)mGo6?g}0g}I(_oV)tMh&VhT zFh=di%?X%HDY=E{BSVXXpvgY98i}SHFudmed`N7vbVcx-x^!{z^|w8wrQe~=`~FTg zocMgFFPZ}De2&%ctS5PV&!*wJM*-a!sO@E0a)e>3fl7*Wbye<|!qkHs(5@?fds)vu zaDy0s*;gc@>}UPm{>s8U3B z$RA++Xg;s?e9c*49eThke6s4f<*oJad19tcbe07CC}$%WjJ&yOpoH$+MiKi;LjqD_PC%eEM)tUv5a4bL|0Dayp+`&GU%^cBALy543)KAWJ& z#zo3CkLQ&AyFEX&j*w}O1Q_EIu-gh4Fy1Farkn!}=uT^jGVFPetYeZ*eC(t8h{WUyny3 zerVJc|5fN!O4=#c`xw3ZSxylPW=+`_77$%ogZZ#A{4FzjMRNMn&sw2?K@WOZ&sXj2 z)X?zg`sWFw+1$e_1vXBydu9%_1$h#Ok&G6MZqydkoiv#NnP4#RDfYBVC|S6fTMaIa z1}qQ&P?C;l-L-%26Q`08#3N|%ZMhCoK``yM!@fjHb-Nc42CI@pYHj{q^fzJk?)cFmXdUUVNvTi zh4)zvf7dM#pM#1lf|0vlUbd5QaV6^N0kdge3y6y`v6#+k%WPPHQS3e&!X6UhLae6g zCr@@R(DGj4^myt-!ga_uXDDJtL~n^OKv~viGm1_A`M&tZI}$m50D{T>j7?a4k28WQ zVt@S01{G4`q*2w5FeQZ6hO!`g;vNbEpjb*wzk1T;P|M8%%UMCbUP3+X+|ZDzjJ5UW zP0p&yoq@5V@szKQMEIAxr5Abo5h3%YU4xh<4s_FQEJDwOjSMG{2k`9xjyP1iw!?1% zt{`XUfQ4n6s0b@C-VrP>;LYFH(ET$ z^mMT;DhtxELtj-Rjs|3}a;SWlX!f=C_w0;;O)LB`j|R{Yvct*bd=@^;TWo8B?@di& zLF8BNX61e5;VEIGh0C2FCNH9Zi!k0 zFv*C8OXTtT+xycpFB-xV1md+=or@MRDwb3@Y+Sj;-J z;z~Rje+yLvqFHr3%KX{)fbG2JIFCV4lAjR;1e6K_#ATj1ebsHX|dYI=zo{dwqMxJY1On5y?h`g ziMeMD5YIT7{ETFgB(aCV2x;g!h88rkeu4ZXzvsrGb$NBS%qCHBSe67Cv$vAdC^?%h z3-8}zqDccDcX5XDC=eN`f8IGkG=R~}O|{q2C0pcx%C#yi*0!+Cw!u~R)qGz3b@P>* z@dt^56R+e)pF*=#sc5oo{2r$v0Ab7xg0Wv`Iz^70SG2xOACi0TSGpQamI8#x9kn9Z z6huJX(h^1b>*>8Ho&a)GXaSnB%Pj!IztU=yCij`5CMNsZA8|)BMe2;{>(HC$>?^{h zdB_A`gY{@+90|3N-^kWUT<+bZ;AXzy)vtQP)wGk1!4 zj;!4+l{ZfYcqeeA5ly?!Nu?n}OoAjqqII1Wvk#F;bRYxH!nrr4`yh8iA=m`!d@TBaoeDpi2P(!!-pjnL%1IT5iTqpu%Pe^!;dwI#nuhQ=OYUBp1ic><~8{7$5T-R zmqw!RMStvx`9P34X768_{@fl5G1Fk8|wXBhA0bv-?>zCw?_8zI+tnuy6rfJ||w z-Bn1GAW9Ftc^{l8<^y4RT>SxfeG0OObPD-dcjaDFy?anb&Ynv0=1QM`vwqV=-}fJO z)>*o_g{2+h>~i%cYir_$dn`o*`g1AKCJ3tym7AtzsE_Q3oK+zM=~j9;AAA6X&!gin z&mJaRd40J;H?o{gG7N?;eQT{7^X3VG1Kc%$&o+WI-vVp+m1|Ttvp$jZwu9|>#3clz z1-N;&l)C~ijYzC{RM(um@cRIH2d?12SEOP;I9}q=5uKjzY1ymuXYQp}`!H#UoZXj{ zjbZ*`o0cISx=waF%Bb%zxu+bAjvrq};l7*5kuXY$t5di<@zKo58IedCddHZzf zjD!-jYkGpUHQF4MIUUDiL*MeE$g6BU2l4IVZ_lhrdzK=10=}-|@H)LF2@Yd24MQ@L z{ra_kR`GXtw61l~n^A3cXN^$a()$~aXQLy>jd(%Wjk0&PXl|_PF&8j$&{*gT$&BWK zQG}0Yi95T}y@c0Lr{S^*9~I}{hl-kG(RTi}hUYlcy#dr0rm}~Ue-s;Znhe4;XnewY zB*=yM3_<;;)=Or!v7}Uuim8vTsImoBaYlae3bDmehgvc~jBATr0<16Y;Jm`aC$ z0Lp*UAt7HMFGQ)cs)?@;e{Pi+zQ7 zFe4rgRDbSrwxwUafY655g6#HcxO~k&v-{Z4U`zI|hsmq&UZN=Tc!Zs)|7^@`rR;WC zb>{}=5)54q%XWo^Rt_PYSINCqiULxxdh*mb1KFqwS{uhHra%PvtaHfWHVvTl&cYB)-K%$x98p zxua3u;?6zJ{J_$Kp6L1AROOCU!G_tF<}L+6V%a*=M`tQ+7y{C(e6lF24!YTnB);wx zz_haP`rLv&ry>Vokz`XYL^}jQSdoaWMSC|pJEmP=ee^U`lA`!^$U8mHvO<72ko zRdYfB=blb4CeY`ESr|x=1yOrLTVxf!+<=+4tLww)O62M5j1*$+>Iqux1G-+zl5x~M zFJ`7@p&cvpL|Fn#ENPPnm9A#Jhh>7)`uxMr>EFZLX5e(cvx{RDJgywO^Ddx>3uc3l zr0Wv3J%*n1{qpzy`KsT#WSutJyIrJPI?uLvrfpQkgMN6~TOjZtttO~>`dc6?l^f_r z$Nf|PAM;0=qNjYk-|l%VXUI~3rBQX$y@A%apq((`-R+d#g62+E>DQ~(UL|TU-W;#z zE?z!DEWtN?CAyE7ElyLx;{I?kN;Y~7^oTYmL^cBSRpuHHBc>UW_X;3Tl%Rq9cy2u! zdrT{hgVa!+ZweEFRp&va_rcty{ zV*8H{j1$uF(3TYAsreB93f;9(r@+3fbFdrMnCy6-r*c)<+reF^^jR|iQouy-{_Hm# zn#pK#i4QTC|Gr1ogrG+PV$JyRMWL|AV@UYwX)YB%CrV`C==Xw0wwZ|CK+q$=G>9# zo*CHtd%?Kk*<)+QI~{=_6&Ch42PCos)_AItCmYC{&riu`r*vX?ACL$$UX0{tL!f{* zT15b!^{TFrwNIxE$5c_ifG3M(#_7E$+Z=$D;hW;iH)p}#9fXr>UFsxg`vxzse9YJI zM-`)%l0=}0)r1D;|H!>|6YiR82!)cm=mwk6m=`-$a0ft<>z0W?cf#Q>D zO&}6paM`2zNZ%5Xc> z&c*|12(4`gTbuN5erPy%+njHrMFG6mj`Vo=$T-1bHEeK zGbX)kB8Wy4G!D%hzA) z%@sAnocKIrU8Osv2vyQ*3De{QP0e^bX+?a%s&SPtw28a3VUEt-fk|ag8moWTY}eK2 z(ja}^;_jI^F%s7$01O(SztMX;bZrjVSFM=|F%)5yXVQoQL$RTzr$u1ajV01fsC}X< z6-we9`3eL0%o6th_KZ6XM~$_-bc6aI+c$Da82yV&g`j56|hH-HZW7EEPn7@23ip2Phpgyf?A?x49h4MCypw%SNM5E9PhRS5G@>&w!_(y02TW+@m=u%-u z0M#AvA}5%|pI#y6(U$`Z-k9w48Lu@=2IITn&OQ`h7}-T#O3h`N+GOhJe_HrJ6vcgE zKp*8m=rvDH3*!Q7z1&WvQ9Ot7R`3yLplnmpapR=a$nJo`O~e2 z5h@>41W?$3l7X#<#3#YW9M5YZJaug!z&wEs*+*(B3Tf<16poeGMX&@E(~gev+OCCtpHYD$ zB%%z3Jssptw2wAjhly5TFRGfN!ehxXrHBNn(f;zK9!&^cnJn!OC!5zXRCnR2!6y^v z?s(i$kM55zSqzmcCH2pR}N+Tsl1KbbdsZGU}d# zMk1vxq~Z9rU7}u64ZG-#)$!}k?|lFtUM{LUJeN6b_&Nh$F7gt#fpKcRoxOV`<>e})R&kcU3>b$z8eh0R zkwhP1)0J$OxxR#jZ^o z;-bB_&CGBx>ha|g(JNwYX$7{*l>1+nIDlko9jYg5F~+q#emr>oV27b=b|(jPfKj36 z$(O`4?_-zfFtbMuZYh&>zxdhdvH#u{r|;bC1W?T+VM1`v!b0J9zLyT?bdW1>wZ-*C zibyb;58oD8gds}**4)rKzYvFVDd$1ICoc2h_WUx?%VEiH7@R`bE~7zyP$*1Ic2;!r zOvN()f?!QLt?UKyJh+EFKKdoS3g)9FadQJ4XJ*Ih3M(|5V0Xm6LFtLyfnKHYGIr%U z`2?L)K~VPiJtHI_Ix@I&a>mzcb}m8K-3&+d;1~%>-5sqWDAmyxxrvUMi93RQ_?qhp z$B1%K;ri=$0JX0QAgf4~+6S&XN(*JiGKYHD&cC9&*DoS?SOz?){`Ea@hD!U{C{WpC z!Q-}UQD%hKlNIkmoFa6Y%f%87%D&9)KkU~>`1c$AuP>mc>eMHbNm)aJ3=lyRgU$*X zh*9+rNvZ3HdnLP|Cc>14d^xs^nirGPt`bgsNsR*A4%KNmV z%u!ML(84P^O3?kXuP9W5W*0_ir=}UrBqMBsNV)IRl+81u3Q(bwUxSu2ax4bh2P7@2 zYVrhA0449NA6EE*$e;$`8#JDzL6S_~pEsVUH%B}9#+##kf_2UGKH$+kO(pvT!|2fk z^A1>)fU<8i7OYZk7|E)dS0?mZ@2;%%pJ%`g36|>nD1F^3=0ba!J&iWXVGd)~;>we8 zHSTOBzWE~Cc<&hc-?M+O5}8$>tEvXA?@&;3wPS}w_RULN?>0?|&IKOPN}ZCZ zI8W>$+qAy7v< z=y|S48VfJ|M(_Q}ije}5{XBlPt&MD8-wS8}A)Nrm)ehZP4A%2_F|;~m0<(Vyameem zrzSHxAtw-%`zG8cdpa{hj&r#eJMe`e^xj&H#2PZ_z6H;QvVedebiS0Wmv#(C0)xT5 zPgs-PGSe1h%~LCax14T%4yX}|%)zU}K5a5+HO)R8ST?-9u355m(R+re$=(N`uG!}s zu;;b=<)Mo8$5hS93nFN1=4D<9-vP$t9Z0_JFpJmO#y^y3F_GD7| zW@SeI{lUfE1=#^UMoA=*Fys18U{C^U%ETXD>f0em^Ym>feJsJUKRm-su=Bq+@{9RfL1m zWudS7<$S+hp&+s&CQ&2?%pKAv9=)9IE9n6;z&>>wV694!E3Kp$G4C#Y@={J6>;e)b zo#b#6hB)9n*f>-Blvj@qM$hQ%w?%-OSONoTsyA(n@w1X)C&Xb8fy=G)0Ki4I=uHT$ z6v`kBL#=4mDV;_E2(~F`!;eClThTtDr6Zk%&y@6ic5gWzrX1yNhwwW7%E(Ln8jZYd zd8-NQ*g-|HydF!J#smSoOQmnmt_(wYgt+IQc*F%X5L4}YpXUfd`0~6PoGy+ zn02nxBYlu+R@3VLsvB`Jiex@-$k~939AMf)#{xKMxT6MsSKhReg;vCeu=)ht-+A;0 zY}K1s^QgW)T;i(0Ky=Hh)*Vz2MZ8goZwDKA=jXX3{1#snO~%L*!tzZmWP}EZZMV}1 zaF!LeiwPjXZ78U$L)O4bJ|bsBH1Nb>+5|Yf&lkn>Q6O8*Xa@I<-RI))*`21%!A2Vz zBQTn}_LV>)_K_f*iM(mltJitnsQkELso?sal4FwgBCM@FkTQbB=-dP~?Pz-R^e{X< z&q0pjfQR|~!?W20CiH03tzmx+E~u(ql>0m#*)RcK;UP|lg{s>1=brEP!?XqRqz$jJ zk;|rCT2d@pI6cYDe)rDPVmHseE@&T)aSTQo(>@+}34n?9cW)zdE4Cd!`NK8}(4Oa! z78*DhYC1Dk6)iRsK+Y9RRVXc#;NcQu&}EKmQwd+D4*Q}!sgY3Jl!f`Ak9czR--c_% z*Eqg>FMZ43V}_S(y?Iw-SpAKD?$jUN064n^xvMJEV-iPs_Ar2?+rO(PcMFi%5A0{n zp@0H#()^`g`Xg9l`-gHs&1cvdYm{s!UM62FUu#K zeTBAXOj>po;$8V@&gP|Uk*?TyB`J=^E;->TPK7&69x1bOV>7-laits_p}LqvK)3!p zcKb0!VAMfpLY76NlUI|xC*c&zTOQ71No}++D3yBs|2#sh3FTQ+)PMx(`o~biSDt6^aT^ zHR!ZF;bs}MlLMFt#Yw_%e~>Too)L^`Z>OuSlEUA$5MHR4KN?Mo{fhOXSx_Kt1r!n4Rj6Dg|+!+4-2Bwd@bP6A|nVQVJ*>j zT>!y!q%^m_$4iGj9zLm?KBYkO_`2C^m|@u;qLa)~?WK^rMa+iF@?82I`QWl%PWao;tZ#_=xea z1vw35GcFpS4vYk}JCmaTraOJFSiMIU0Vf{Y9Fy_Ra#4&Exrs0O&%EEFBjh60M8n>q z4&}RX`{j$+FDd8Z{eSA~B(_ZL0-Dwfopw7QOy0;kE$W^?Q2lc4W5oHxK8;O%Lj1qA zy+Ucg>vxb@55g>p(PRYw^bhn$_nvJ=xJaR9H)SND?$Svlo+~=pPDcZd^urm;kN^~( z88fMkaJx+rL~1W7wky}Lji%8C;o)I)Ycd5-m59SC*u|BR)qM=&rQ|PWIPxylzuD`Eqnz0 zy|_hZn63j9uX(^5$S8?*pGdFO3*RiGAgntq8ou!W!@f6b{&q-)CW;R5_0i;0p@4Q6|yt z!8wkAzqKzKLjh-ozd8MNM4+!PN2sBqWZNrMg!Q^-?)@M{U47k?{`20jWQSm8`N-?Y zuSb7~5RkK94-(qDD^t({-NQGU)p90 zw!ILykV_ZWiotFCX35v=_IRf<3SH`q5Rq_-;5x)^I9BE+xi(2@z?vIvPI>-(|Cv;d=PpD zF$`z?MwM` zWP_5frNz(b9iL}u`UsMWN^H6yHV4mEKdMZY(W?S?chj)Q4CcSr zH1v|Fbd0WcZe!63aZReNDXxXrR{wf>Sf0Bwem6wg{I|}3R#h#vjf8a{AMwn2J5$T!9T2v9EC6ALjLeWp|%BHV1esHWV7~25Y>Gt?D*>pGV1m zVGAWC@t=Mp`R}e=@TQ;NbHJNSbrJfFQ8_F8Ofc;ufBP9p%lgBqK<>o< z^Xxr&A4^{N)8T(;f16$xgs!OyK%WP25#7~01)0yI{nfszy5^bqzur-l)stg?b=TNY zswsSliq~&l3WZa6LDZoB_AmZ;CKbmWiANSZ`GOy?HJwj61RTPclYwi_pk+p1Vcesb z#H!gbq4zxKwZNg{zErT)ejB1KQ3`?oygPeoDup6baS~~g)|zTy$7m_P3eIL_7aWA; zqWIq9U__buN=C;kST6$(Fz-GzxS1c!F*y5j>F=$YC{og@5kPzPU|~kX@!kQ%r+IKC zfjaiS#H~n!S0rKQo2=P+Q{GkJE_6=<1)!+EHt{VplcV78KYyuYN3pg&*k>;n^vign zefga(jFzJt+bMv_Yy)LE|k_0tWyK)nGYaglVv7OF6tk zV3q~?cel3=MH1qZd+go*FDTVcM?;t-$V+H&QMEhrkqB2GyY+?kn}c3jR`X&uzBBIZ zBa?ky$!1{E1DmJ}690W}TZ-TFoPJH)9wd%r-X{;jH%?;CPk)kFEDudK7D-MIVR(-VFr^5FX)~;SnIbfBLgk-Til;du~O1 zQSl9`BsQ5V*GjiPO)qrn^sEEFN0SWhfSWBdQ1V-k`KSX+;q1DUD%K@l^Q=lG%swCN zF0e_rhI4%lcA!t!;pDZOVAhJh){-vRxUKi9> z7olY_Zxc|I>(uANt=KF9LR1=%koo+b$$zz3Qv`IN_#$eta(V==1+ zznf=CWUS*6n}x@uMLU!fR**fagcTo^#xsboH{QuhjZV$^OTb|r&l5K!H>S*S9~nRl z-F&_o_q>!5Qk70UN@3(SLT8CtOxAYwrPj%@4Qd6EEb#d?g!Td^6!;^Z8Y_x?^Pb^Ugl6>VG6@24ieZB6d&1=twCN}*88$(sda<${!G8|3yNU=|A@)>}8a zW9O@8^}j)M?$I{#mw$F;C%XZrMlZC;Ut4!OWR^q$(D=AN({EkLxd)GY70G#BHvry3 zl(MYtl=w7UOPf`*(`g1UyWC6yo?S15cJ7&hNh5&qu7TKC7j{BRLVh;R?kWccArE(4 z)va4C*b*-X)kv<$6$81+t=l7(rjU}w3tP$7y?3CJIX-&`Qw@lp3`Kn`hiSLWbr}@W zJ{!Id<&w@F-#zpJh(~$ai*plu*6@v<6-&8vVocBelL`{*Cl^VBCg}u|I!noe&xA=D zfyEy7hGiCHX!FUR2EXjcbX^y3NM+Tq#&$^QSPU+U0%>FMGR*osJ?@>YXk+p6`6z=P z?Fn~AXmn?D7@`D-I2d)}a)f27exzQ|(}c(M+WPf5Tcvj6*j7BQ z=rGvc!Ulq2Hg$M2eOhJ;k3w09(Flm$@F*ko(DwxQ5T0pSyefQcjcKmS?3}b`om8FA z0X{LdpFjNp9(YJf4pz1#Lpf=ItuLFypDn@FutIvi&^H>P#sr%htoUmH{3R;hzkb1f zL#svR{?=)~TK4z3bZ}g>!srXfen9sFZzJXap zID2I59sVw*Q8n<$t8p&ZTl|`4ibD{j;Z7KuuB6XBV1?Rf2{6h*$IMd8_t|syf4G+L zw7V**^kfq2^xH1O7bml}nZqXCSU#PRrNF-z9eBL9O##2OMRHHt@5(#J-pzJSbF1&@ zB&+ige^jNyWXn}aQxiAQr!DskIqeXGM`U;eW6hb~T80g>xQd2Zmx0c(Tlx^jRG9M= z0-t6q)}ZOfaoO8;>Bu${MZSiv+faaLp;PC*KA1Tsl6lg61jX^Mo_n3uh(O-j1JTya z&rVI*z0`&1)PFhnP-Qgf4a}+zVa=N2u!Cq+q$n*kivGQ5a(qN$v*oSdTnm4)+FHMm zf5JAR29};&ey+J#hzJVyOpr^GE_yVu#zAIBdwy>v!}dg-u5c{cggDObmmfrV7_aol zx9d4*V9V>*UCzy9h-`<;6Ssc0u4O!DOKlN55YJUdja5A1$S;@qbB-qU`EE5fY84io z15DoWlwqBoV_mrj)Ln*bZ3NtZk_NIb1>EOxwgc(5W@q<8^&VY&6sPXBTt{wLBU@~; zqN0>XYpdqY;qJh{F^L-~seXKAFg-K7%HO&P-oP30_Ds)K%;le_;-E}GzqE>c&Zi|- zjU{yNJt7{27BT5deJj^uU_}khX%nPJjYDCxldm&M?3qDa7$sPZKlMZmqyAie`}oFV za@tUV@LczzmxxS`^<@trcI@ArTqd_YYR*gRkFiqVry{G3%~+pvAi9BozxO}!P{XqtheVNE^9 z2|73a^GcjYTu1gJxz6Alzjn@GpW8=fYMp)!Q6Qt}+%8xNBzHlwb|U(W@o`vvzwvU- ztAKZWOD##C1GFiB6u9@By{WnOX`~8I`R#k(?#kOe($i>C-ge0&1TCfUhpfDO5}vAj z#;ur!*&yfx64lTte_F4HOVRRizSZYD{alQm-@h2h5nkQx;)W4A)`m6ZGv(bfwALO= z46u));TKkXkfB0=oq}*$S8^sN|Vnuxl3QS$?EUDga&`X9qNqqp>=Iq%py{D z@S98^97@JuU0r~izU#OIa?0R+lpumjUsP-70pRJJ2o39gyB!{)FI_ubRw zZyw$j70w;ZZ=Tl;;~2UcU9&Tgzt*h~|853+amnv)1rQ%WkkT-C5p#`Q(;lV?2b?P1 z)m%|QyGsLV{gf#9#@v-GzAxh%(E_7Fc7{87g~w%MQ+Uad2nv0%j$p`edKRYD>@7l* zxH5pxjh|PQY_#I73zLK&d1I~(VsTo2Sqk8Z15NljivVgp)n!P|9JFoi3#KTc!emJ9 z3ML*XSuP|8mUr>jNuzLE%f0~eMF-HyMWbY%LH2mkOp3E^^hO|qix+Z5^8k)TvaQF;=vlXIx@jv@p)C#7*k&K8R(|%7^T?mgJqWrx0ni{LO zz}LoR>eltHvmP=G1>2zKe832aFHHPWd3>KJRyliEj-SQrQ|1IJp%tnJtXeWse~cOW zZsr>Tv0*0PQoesfzMKk0?weAL`Ylbqz5NmFfFQhdT&~CJe^nBK2=O=8=`3U%6gMDm z176ur{rSbWYqhN6$`=b}HsB@z6O}6d&6M>y^-*$p4z9&#TjVd@ti`mw*U`J+etQ=_ zF7@rmGN&#^peWfloMi@#jEVTuBaC?}=nwb5^_D=Z;0;co%!km!v&B{QSA2}ZbF5}1 zL{k#P@RT&3zgTh$oOoi64c-x9ZWdt~xFlzb^bk!6;s3L9)a0$-2Q-DJTC^h4R~&TM zxtHbKD5P)OqPd2;IIZ45+I_9oFW+BFNj}QO6(B`XazjtDH(ZdPYMA}919If`^_t(M zkb);BKpVZU4?}qPJkpd`YI|71unRkC4jnjKwqLOp`1=091BK%OnVT_Av1T~dR!uT) zqE=7N&qoR$cV0d=5b5rQ)c9kc%r@{cd~AOGd4eyQ1`D*_+NERgR@qW*Cvh*RhaQv_ zX4X{Z2qeim)BiKC{V@(rK{a-7|IrUGeMu0YFC)_4{NFvzyPJ&cgrVqJHyYrm)G8X< zT}q^Sp-uI)e=%_S6=0NxIq}a|Hmx;PUM^IL4>_$(4@rz3wTI~e1+DO(_BC@d|D65X z^TaVNX`nX@Du>{p`%dnZFRN)T8qYPQN8-JG?Yu#h?8Zz*C;K|!o!p~#w{2s`^rlJe z+n;ki2v7N;+51PN`i$t1n=d*XM~GufScn8-q-+0ujA z!NK-HX}!BVTYvmA23Y^zY;o1M&v&j!wj#2MX zjNvXolWH$ih47ozX|0zZfD6n!+r-qLVmq*F^c;odTN9mM50DX%Ok^8zxHC}ykB*z} zRYca$68(BD*|3%rHZ+}U0j@l@Uur(^=i~9jrsT0f7;Bmzzs@T+d15vP#1n-qd~6?= z^Pk;Vd=;;E{Gj+V6tbwRMkk74c;8bJ@G0v$`?7^d=FaVMC0}!(q5)N=)cV>hMuDJ# za-o_kHjNB21MTGPS;ObGb^eW{*7g{ZmiH9PE94nBzoHxL3FNUXyTd_Iyba|eJmQ!+ zL!g(K7AJ!?cP?E#f49kv7iJrQ}n<^Xm|0WNf;1IAeO|`Q@FrF(GI%9<3`5lXx4o)r1Jw5u@Q?o>Wl7i{e8v* z5G8lxcS`dI-+Ss|q)7pIZ-Wffu&Gh~@;DH`om{?)9#8bybuSpXsLpiSwt5`3f7Bn* zN^0Vv7*VVKC&ymFfKWVGE}E;y5|Hlo>)UsqFbi$w1?j$9GM6H2R*5q94!>gTnUJlyYPM2gp5!no!G0R?cKF{Q_%%IcckaMr`*nFN7UuE)82L^*bh zFO&^jgaZANt0i9k!zp!qxL&ioQ*)CQq-Q$!a;ZH3!;%rJv>l*MGfV#5K2qs+Hm>56 zN)Gfbz@$ZcRR7dJ$RlvcXf`@S&jDaXOJhX5(q;eIOLJ=Pd;Ab^`tl9KaEJv|okEFDmk+&pk03 zzmD8}Q$DxeK?Z7V7mL&|bo%(}lesbz=dHto_i1+fd?&4ZQA(h8YM@l}z(am#1J`5T z&7XQbkL!}j-hFUcqZz&_GM6mMy7;rwo(LD1ia>bSn1gR%F#Xn=JfvN*D;y-DJ;%j1 zxyZAhsjdBOgKX+h#4ha={>egQr6z_s!ROqzD2h0Qj!?u3c@$28Q4)&HJ^TzQg2%u4 zxkCn+{?lQ-rc->Jwnhq#Fa)_Tli$!3{-!RL!2Vdk-8{bZ?S~z6y6F@hOlYJ&Y;|2y z95c-~!Z2A_!O^m}f|AoaHip)_X|_uZmm*AP&OKGW$@Bchp=d(f&m2JW4b0%ewpi77 zg>_pieb1}c3Mph8Go(^o^T}N}vF-*6lt<08;UK2H{_Sfs*Mbn9cbToD{U$nPGZfq**!63|2yJ2M zcbz8h%VqNKKtT2*dQIfrS%%EIBJ}qD_YQ#1HQM8RM1avrIof_$4Im)PVnAfoG0t@5 z^!pproIY0;1ajAz9b_mTOnwZOgC1Rab^CnYp}AOL<)Xlu@d;VdK&5;4_qX&6rr9=y zwSu&a0}%e45`^L_`4aEqpxUpAaaTvOQ0x3<;FPe{s}c1HK- zQ4R&FudH)!RxFU;l>XJW*tWOe=43qM!+5`58m1f`x?YrG2l!O2ICcqdrTc)`6Gc&^ zk;^-Pc6)wC^j_o(Pvhn5n?oTzSM8SRhE?y!0=?9@u)cp5@Thz@8e7-2VeuRT)Z4^| z8E{Lq0Zg{}tK20xjerFB!tb;G_)YAt>QN{^ZFS-H8?OEWlSGbJF@k65odVyIh&`fZ zfF;O~)OD1Qk1ya=FbB@~g$BEqhSQGxo10ZR^sn5k=rpTgmm@^GU+J)VM2Q$FMh4Gv zgbcXPmA>(-g0<=(cp?uduaez_F65ypsDoD1)0o|tC1ruVCUm+4?fC6 zG~JUD1#~00^ede5a`~128MaO;SyEMskeq&rFc` z_e{|K+nZEBh4Yx{7H3T@Td5gAp$50BcOSTNg~Z<*sWa*RY(FlpV=VIL$oa?in|EaP zka0iaXUS3dSqXq+N@pm++%h|7&ty|C>eDwm&zwIoWx*G5*M6FgFUc6*`$;+N!4k7o8f%i5>{Y&3r8lMNg_tj)-xyXE%Coca zJ3a{|oJ*g6in`MSBknlw%(<~9q!mHuice1bEo4?^^c@nwee1&K8jjmMHa9?L90 zmTa&gvNy#ktoxjB-qf_dI%f$sA)+6B9nscg679cybK*`_U%qiQw>>$HtrcYK`MYb&bZ%`r8tc}kMD1LT3 zgLSsZSlbp9F7PL!nLxIaj&OXOF?;e9acZOQZ*6A+gI4er07H>OukfIQ_vif#(1w6Z zu@6^CY51yS)Ha+N@NY#cmGGEbK^VTXjTwEoDQ4Ade)}o5mC?p~-i7UpeJE$$k27wA zr?q!~=AjW~f&KIV)Pr5Ag?5MCbm`6p%v>h?g>+5pL&u9Il%;1=OshkWU;?=M{KK^u z@hv6eK5OCAt10JCY{m4?Q`h9jL(}s1gR~I-QiX72riL&D)%9t{T=~vzqx(g)P)=|5lfewz~UjB#}+OWkiD+Rq`4EG zuILn2l2E^sLQaS+u*=^!tsc+rY5R_13c1ovT1JXvXB#GlQFf=DUs%hCYLd5I;L1v* z(tU&}5IBs{Yww_h_b)}6sD4INw|(tAM-3Dt{s^b4O@oVm1cI z2})p9o`HaFRa-kgVEgo0+8_KqM??*F&GjPb@>3e+AmfF_++oGH3CkHeO>TdV$b9s; zL!#?*$$82O*Pq7PE4g`rcfsq=T|JLOTqJ`D<{rXko>Re(rPWmh;)Z+g*S}K$j<3D- zj5ulg&={CqkWwQx0)&ivv<%OWg6E?&HRj*eUy*}Hv3ex@-SE%f+!F-2CAPXK^tt-C zqS0i!?V<<6$X5daLzp_YDjiy&_jCd*JJ{n(jRW7=`!fzAzy>`kfuQ?h9~caw^Zt3| zuq)zwg5f}Q9J-jjTxNK?YoNir2`i<9?iutQxtk^} zTdxrL!bSJJ(yvX9Y|Oq?lvwdnOp|IuSgWdedFAYwJX z(K>3SNa0DdEt32-U#z;Fl>Hg30w9+LN30q;fcZ5v^(`KlIG%Ai-Yd{W&=+=}I|2L` zZs-(krwYMZRGsM2=&kAOxHX);sSzT(OVNL*z-d zjYCK&-lUmqv>$v2zm{8eQCWy977ICj)?z5tr7DZu3)EE^?g%Gt;jZM8(cSaaa!;k! zB%AbtNXVHRRw_EQaGLPl(?;E|d)87aj^W#oTat?mjK$;-%%Jr6rd9z&GM>c#;;mn4 z_$oz6?P@p=W`jD1H|}hv{i7x3y=Ze4By_~-vE5a3}LhK!U8Y%XRESIxifK8Zcqd!M5^o8)IHy*ioMYpjlVsqp4OOr zZZ`=yeR7(-i~@vS=WG2Gd%MtNo!gLwA9P(}COhOag)-=IFCXzmxIo0*=VGHF3A{aN z;JsP4$*19JWnXD%ePnlk^`_}2N!~2sT9T(aroW01kpKfO!veSXtyG^S8Ez$>A0A$? zwmUal`=&bk4l`&Z66Qm>8H9x{suBFBERcm1WxY(j;(DB>NY3Lh-}2)>VF2QSTB#Hmmp=;?R>>p z?^6EwWY6_%Kk}Zh>9^JNhuVEt(+CN|;uWd4XvzWSX_~Mk5cwLzC=SzvX1$@_I=Wm< zG^ChyT9Y?OIsh>Uamgsg9wwsST>&DFb3l+YojOLS#1Lre?hPO3W1NZFU5eol=}&Hb z1KNbN2qO}aQg=5T25ijaa{`gx)2ExyX)uBUQ)zDOBC-e)^+k(Jf=Q;-LPuvA6{lfE z^o-^2;B1H#<$A;38bkP2*?IQutmiQ57t|z5jR4)MbD`|8{V02;8l)oIw4V z4^}z9egAT#b*2Lef6Fk_HOtcI?605+5XIAuy88dgBc5sCpC_mm zTPoW+*M%?qF7mV@8K!}m^@b6HmHA^%%ddCB$VcW|KBlO8cZdQS!w(&>6efK@(0Ku! zZuNBP$k6N42MpoLZi^f=k22A2u&6v+V*DatI&F&YX_=k9TYO$-eVnV>uk)%uAvZ(aX*UX7|!zu{=n7d37LgCM# zyrg4sO$B^!xONlZ!+TC#i$GFg41mAKn+Nl!Xll$;Mniuu@jS#gupJG=YYz1vNAw|m ztTC9YnWYqMyc(!#WD8OPGZ_B_v=V;&drzRPA%E^mUEasNHSJpBJ_~iCWk=%h280c@ zyyjBw1_-*^x=AA0SI336Ee&n!Tz5LKY|6x;ycA#w6<)8T|H!D;EwC0H29Zg1(fjI( zZ>!JFgn>IBLc=$lmJF2H=XCn4U&DG+G>&C1ZtvTNk+2QU;4l9GZ?U>b;YBNVte6lT zBj~y3G*B$(#D;)vYopys{NLgCJ7%Xhr(r<wYYuyqr;(~VB#l5-3&ek1ifU~VPdcp}CbV{}LdX8>(9N!;xjuCLqDD~{3s z>@YH?zv@@9r}Bn&dFQpbH#{Yo9Me7S+r#JUbliY3f;1JYyeIzUeZMV|B0~Wu5+(cU zaXqzj?pwL$Co~m3X}w##fvy5qB216UTByIWooy0tbj9yhF!;cl{qx9iVmqo2NUg*<`2TOx#6*q_HjiejF#G{|C@sY zQrvrQgOI3K)$#+p5YYPPjPvO9_Iyf8IAQWF3_oYLox3{{U1qzfuU=`=q@%W`AtXeW z*h*q;0MR*4Jiw?jd$Bm>eF09xINre3Gh1=E-)4E1LHtURd7b$qy4ig9Zo7$KppSLn z{xA#~CNN=igdb&Jhbb=R+Tm{f@dQ>|^im$8s(EO&_ipBv&Q;e(Krn>Wek>@zrAy0n zNQ}LYHD8Ipay0s}Q1RvUzgcpEEl_kCO##GeU>Pod>V#6wynKAsic~AYazG3@sc%kQ zt@s&iaM){dTd5EG)!&Ew;>Pja9GH)*dP%=cJ^6NlVw{im(d5}Oz>wZZQ1x~9_PD3DxJB=-GWALbd$+a;q+#ws<9(eOt^v?*Xbc@A~4J%agmLIWbL<8SIPLl4XftbCUz%g42+Yt=D-<3_Lo*xhD2$KYb%7~ z%+yOdta+R?!3vHDJJos_rL#1>$C7MZw9UrZAOG-gzS4$)BN)MH+HP(FGizSR{dBU2 z%ZoTACUZE1RizA=Tg&06MUNBc*Y}68V*fK z=T^sYDGt0Sa!$=4Z+{!N*8FF2kPlU z6M06Vsi;|FdxSa{eJh}GUzXIP+O)9b+_Ff0hIQhqQ6XFJtTjI3q4A%`Y`t#pAFd`i z;_yKzmh$qJ@{$vA0=j+_52*^^EgSu#`S`p({cHF9;~d+Xask$L38kYm$?iQ$Wx2<{ zbsjlB=Hb3-_4C7$S-WG;oGq&~=+n6B16fNnF54biH12b0{GrPctmp{61&V;EA&nF) zx-JZ?Nw@1#fuCNVoyM0dtF)wbmd@ zv2SAOlTkl(WI1cW23$_BT%8T;kE4*9+7+xTQP}#U!uA?!U$Xq``M5`}c8D3-Q`2b$ ze`;2J9MPAqihNYLZ}tfGXWN9FA^VE4$tP3zbxVk|Q}j;QL4zs~|Ku?_PIK(A-{*H@ zYUkN-%;#4dS+Lz-PPg~}!9>bZ(Ji#2(W7 z)r;y`kiXsWK?#R+MMa0%n{})}Y_8)oyd_(Yq+}UFC!?U=Vx-j=Y7;HsAAj8uD`6!A z|E9oHElNHyhGuK14IF5I%Vyp$YsA(${rXWx-zL0h4}zqk)E#ZA`|S{WA{0?s9g9)p z>w&KF8^(;Z7Nv0}isybAZ1yc9W5D?b@=5=xF!PD;4D*`7ch`JWo3gklvFa!=xM=#t z##n}o^W;92>0};YMENTVoIi`5hbl4Ia)jM~c25a{Alf>#BLjWbReWO3fHqev3UBv%WpqxzE)S7J6LMhMClEL?VM69fv*xiL7k*6 zLb>M7_2!yP?${m~j&9vpLKfd8x{*wurm(xS4ScgyelnephHVLx)HH8H=LDIB*?P?f z&%3IgPf>i>wl8s6<{ACFjq|q?dhc(@!Qwkc<#!h5(mN}}!i&%Fnb@a|JRgB42llH@ zA6&d>R)J7n@+}pS!hfdHMA==-P@%VjGp|jg0%X5D|Y2nR*<)1=FY& zFH|ZkDVbyES#QX`^5+zX+>7+(=GSknuzAYIFG(Uxo2MHA zU$obIro$&M>HqH5<{u>Y47iCWp{)q3c4I;-fEW~VN&(GPC`nK3$paaL0IgN&YU}l~ z+fbBq_ry_pbrP!7`_edcBk-JAh0$^$Q!#iXp2AcDrn2wK8R9dUJUnHm4| zc|mmWdX#YL9Lp?JPP*e=dcfg~Mz@bFGECvfB|~~2Z`jn*vx!G+BaP3%_yC1u%ho4f zcNb*_@w!PlBc%GJ^4Nxp?15+hzHFE&oZPv>c}vKCL5z?zg{|H38^LpitGuWXv%M10=llK?~{ zep%SlRvtXg%jxV(f%3V9cKyHhhd7SD2v6>glf<(ZzJR4KvA4D44Nv9_2iO+pSg};HLT}Ws|xV1Fz*K3SCpB->y;kIO|5-}-n>&>!DPP4{- z!ZZeyuh^vUY*pp!b*rQLZuW~<%U6IvUOX}!HxhY|1}WPwog0w>Q3jt9y_1fW<6>Qr zKD2~_gx5GtbNwjVOEN_CM6a z_Nh^(Ml{|Q|1B%=Wily$;4eQ4RPKif8##7V}uOH2Bza^MCa=NKyTZ-^`8UCaW4Vsbe7* zW+@W$m9yH>mnliSpfEbk@%?iw(!d3i#RZW*kG{Eed{i15&1x{@xFYthWu)0-GPH>M zWYDMn%h@9H?T&8~lIiUOfJ6;;!9gahs0QtqBggHf_dwW&pI2?AQR{qf<<}nqMT`PvjFhL_1UlWHCCU7+{nex2 zA`V;Uv1ou(XXXPi!JlDcJtL3_-2KO_+u!|t0DZ#VnONdEk2M+=hk4~lTvOX9pM3Eh zxpPO>32q<^TXPG79RLHqFc$eBBDYuqkFj1WCF0gcVBya_j%8t3BozBYmLzp}S(Od3 zo#>Y;6YNM#!4^#BCrZAzDOVE=MrM|!%HHu}W@U@kyJ0emOksK6 zolpxM%ikC!)%Dxo4=ZLcdcqGiD+(LWUc$j6Ja9GD&tB1F{w@=_`~svduhOI zsV81u6`Tj+PDO^hhnKiQD;_~n0l!@Q(uyy-A6x}TT2Wd@9W>x zLoDcztdtYgF*sK+H-`lI;w@D4(Z=Fcz;FUR?qOD+mqX47VFKOW_9XPHGd)@hm!w*)W_(-q@j?tNl^mZ7pKY|Y*rknbx%Hry0JAno|` z^AekH&^czem(V{Yb3GcTt){IHa9+;;G6;AZ#Dx9sqIf9tc(^zYDdgT2OTH;&xk5Hx z*AqO@oKXVOy~acmB$)uA=`fmIKYd_7WEkgP4l4|Sc5A%N+s}D-{3i$CPF`%}u*&vJ z(K*5)r_=Uju6YMEFY)#Asf%KUCPCYsXVk=&i;|NdnX8?5vRv@Ns_7m<3fc~I>}ex82ICp@#by4kYgJpe(4Q(omQi)ml17F+;$W8X>SDL#u9eo-f&@<3jT;lt<#Ncn^_1hYwy7xV7oEX%VWYS7FqVcg);W*}*+K`Q*n?Wb}rE5?x^(ojNxeS7N((43?b z->Udvu2ssA1f7;8n{B7slV^4nJ)yWDOx_@9s;5X-NPU3eG$mZ>$gTvAR{XH(ac41vDwauc z;_TlY-A^I?i?=TXz3#?534&4dQ=#?0OKeQu$ngUOa+obt8NCu1)kY#=Wr?=N;@cM= z_FlIFci4WNrfYp^w&+bZVesU3g~o)Avp5T1#!Ney?3dI-g8E$!3DXwtlyHT1e>?1d zcP~n{c(xV$pn{ZavofVn4->pU5+&m=c!5ZKO7JcR{!yHiWvxl;^boEcf6auf8$;k8 z{5OZ=EAs6F+L|-i;b_7HiWsdEjT^c0Av_X#qJl6FONwhx9M z#pjtZZ@?LgtsSCLXxJ~RG}S_@&mBd{uoXur>@Jvq@C`NCmxbcs*?pQ@&-H{!nt;Y( zeLak_Hrny?4*z#&njsj!c^bes(@_uKC%%eP%H5iHE+xZ7Wcq9}^&&=?#wQ<*Qx8>$h`9;mB?R~(Veo(kwbsNx*;12 zriZtFu^|r6_N`rzk@9p-v<>bahkKEZ*w~)bJ~4xB^73y#3e|PuY50ra9DsvoZJ~WD z?||}RW(|A374{Fo)`WhB=e?s`%S2-pifwE;H^g69cn}`DR$RI<|7Y)aWzziJEx=rz z`rt<|CVz8W=5xOTBMl=C?#JGFnX)4+rC{VRaFK0oaVVwf5YMI1saN;~AunFNFCE&5 z*c?Yd6rlp^N%ML)$q3JF08!XIlLzW?{$b{k@g%R@`(N#IkU_k1S~h^DR1UFa^_6qu z4@P^YRiJMy%!jw|^^ zzS_A=$mRQ*v=m3=?JGY+5^Hvf>0aYuv8xeJlZT@c8)DRq3fs-@L9rzvX6Dm7^BE(5 zX?kY@eB;0CVn6@aNSr)&$q{gN^mlkSn`VwZ)rKtLxMty$wRB96IpgmqPD->Bh#{4x z{pbA=+@jkV>K9d>!pXh_5QT`p{lCf*vI58c+C5txgA)2l$aPp&^8O^rf}P*JpDRT>&tpL|2(rCVC;tw{ zlWnFjo<#+5wFQakPh}>!X3)_N{bn~^;auT#H;pTIFro(bIJbK{QjoD8jLNcZkBo_hRruLo7a>4kH zX(Z1|drl{1auFuO?{)A~vpcT<3W?@e#&5P*(h0XpV=d11&J*wC& z=KEChuIq8OhJiy(t|_<#m1?&HzF}ib?iZ~EYj+X<-67jY>MxhPMlhhcWwSd?0mshS zQqu!>vSmvoGRGZm3zXVA439vE1)rI{7%?C+sTH?kKiK&l3Iq#lzt_sXdfA$i-LgD0 z&2S5ObS_LayIc-mt?1}dz2W-1^!4Dc@DpcPCmdTVR|TAeXt{AJV0_czaB)(IUwjvF zCflapa`;djF%owWHWOK9-)9+FF-GHZAjelHZg-+^=EU^D$)8DP`A>$~p=p!4|D64& zdsEuWo`eruZh%}_t^4>I&`BJo9A<4WD$jNFmyAm3lL$nv3c!Cxc0X-MPcv@))$bxi z_ZcpvJ@6`-U)*aVA4~NZ#O^|OcF)gF*2V0OeQW#fFN_3u`}j}pes!L|oXl(%9|IZG z(DB!;tK!fZbt{!)5qHEbFg|)jXemWwalGj06NuYa+a3|$=ixEopKC$cQDexYEGBOc z!t{or2SfK$?$Y!b2q)kfhVl&|A#VDmzh@bm_GWfi<<>^eEPZ%nDHh%v_x_qg>2qBK z2+@{Sl}3?myBCin$(J0Npn?E^3_^PMKmlB!10bI4S_-RHmv>Jw{3kZoL2-@1VNI+1 zvtuGPM>P;&DkhD8_h!G|pP^whWWtNrAZ&o$uS@a5xg~({62iLv45Sg#Yy_4ahH)|X z`a72|WHDSGfAM*2e1JH<_?(z*C*17DH74-!xE|6c=y_|f$Xzw&k3#{|JggTsQpbz` zKXiT9vYXh}?gMc_66um4Kx9Pbjwo`@Pk)fT_wHr)e^livSGU*F3}bv@rtyd5X`e-g zI9NP?Z7gj$Z^oth-bkAP+V)$@!F+Q)j{^3?h&Q(H`$##DML5JcGh|aZ@sPXr8L~F}= zAIZ@tD2mIpKsiwWER1I{gDjHfRGmMjshWs`oPsY10xWK-%?4Bc=NF%+a~l#I`}#Gv zo_Ig5qR-%8@iXVw)Em;$s7_2AlZhSy=x5& z{&9y{7=-VgXHyZmeH^G>Fwk|VE`2?)O${W`a5BKWMZ^YHVi)6AD$kG8rVy~YBoO}` z-6V@5{$32xuSY9R2jYVOUM^0{%ec@J)fDE|ot5xNvRictm0%Zz-7BcV{4x@m0j)%+G#a4SS)A2ZE0ucLlip>mlf8 zK{2EmhXneeMgbE)hU%7 zER}01Gvcz_(gzY`0*-oVV_=?A%v&kma77>JmQ>?;Ysm6Y$t8r{YD2ApBue5Rq`pH_ zwdO%rQnV!L!OH6#{&2ki;EQ8b2z0>Eu&?aX)@$#LkEp_1v)bNxR@Qy2S($`e;sy)2 zn12L3us1kMey=0zpK)s0Eq#>>DL;Ve^Tn@^=aPlzaEw3iCg17~34-f8#r7Yy)VSjN z#s$rmeDJMLM8jLfMJv(

hD=P`?9^Qd>CvoSy`K8t5#(wa}Y-EyU3fVtNalwFwBa z__bdMAd*ZSl}*$qI*e(!%;^<9=-8v{81yyai~y~>C<+epJZjzX9klF!u}5YOr-Chl zyeuUk%2~2w^&MnQIU7%W_Dm(z=IxQ&IwhlZHROrc6DO)0mmX%nc$k35RyY0*6HZ8B=slk8nM$C8o;fTY3^ggPl{ggttBj+<;~N5caec_` zmX~4kyRJ+B{OUuLEdn2lv19-_K*qm&etNA}y~jS8=dksB`Cf0&Zr?`Dn@WGZ{D|-L zgaqHW23-&M-2v@pp+7KMG{^7RQkwM@vyOx;Q%I7~U{@yMUoGj$L6P z4YnvSA?V3uwv*lKNShh*e;Y76TU5vL5C!*R{=!jJHf@p(9>nKN@7cQ4C*CMJ&EEBy#@J z8buM9EUo5-A#1RgI}>gND#+^X4!37N)W{3sRSvQ+IbAb*#J4YwL3DFqQ}LI0X8&`(dyW*6I!F97 zbMlbc`EfZN&ApXt8*Q#YfTi$+Kk76 zL`A77@3YX7mg*+VJF4ubr~~~WdmVG)9`jD+Od?}F#8btBAAW+P_ZK_>Ep(h4{wZE^kYWY<+V7s27UBj4O-O|CVEB@gl-XRD@c9j z1c76saIRYd-`UZK@o(^Dac_Bgxe9b9a`N`EfyNCubi{;Yf2WLhj%i}Bp!o9dJjr#B zDrc>Fq#LmReCJwyecQs(Z#HnJ27qUU?k#KWZswz?S{oh+&~zs70CtEHIznf2?}1mY zg(BCmXw*$Zl$x!f7v;zuOTlYs*5-_ z(n9_*&iqclnZSEy-%CmV{oM40yU=9Ffs4F7Z*jGqP(6CKbvBTm5a?CYsKQt9D~6to zRxUwTIq~{ZxFb*HH}lTr zRW~_?K^31XK0@7SXkA%OP}EAi@-qptIpmxy&Lsxgw{&VbDulPOMsD5rs!E5*iaRE< z_>Jnphc(LvJau5n-%%E&vWGm*1pZV22@*z8X9YITHR@h!Id%j0h_1_{ZgtgMLiCq-HCrX$C}Oztv64b$2g>( zMc#otSQp6!@UALoj;;W1*GGJo9qKe2X}(gScO!zF_#jRQS2tpQUq%hZ$A=M9*A=$h z5TSwCt?6dnW6i`!ktkjs=~N#`hhjbI)E9_w<2a9dS{3SiLC?e;++ z=*CvyroS-U7FSZ_NAQNj8>3Bmr4UXXbX(r5Vlwb^MNkpUbOS`+49Q%vlsL8i3 z)TrJ%R>Gs%9dI%PnoF`<_~jw>K0JUjnYq8Z*mK_Fe>h!z*uy^JQLfu>{i>U!@@92p z%o~x3HJ+E~fWCga)gSkPeq#{5Uf}Xx#Rnokp(fO1*>Ywo%$~q#4L$&Gm*zFSAD7sH z`PFKUFQZB9TiEkAe(2n1o;ZZ(l6{|3C8xmEt$cVfkPQw+3vdQ{sjTi}kE5AJ-$A=wsj{8C8vjkHE}*g-&Y` z+xb~I=rgJ(Dyrc7DbXGT$uku-SNPm27J5Q$(lJEdq(e@v8=fOeFc8r|aya{Hzi%y4 z;p^}Dp^I{gJ}ZT}2NwVw0en1(2NF`ERm7aHrt`?)eJ<{dxb|;M%m-I7&)FOP7>mzW zf;uYtN!rdGD0E5D{Szp3r3ja9rLS;-=FL0xH0^b#dq>;Su9x`I(EheH4LkyO$pbVsI(&3`}e@4VlU z5zwQYk|xi1+Tz`FAOhbq^ShV3`^+RS??+zUQTgSSk3N!elbbU}R2#b{@~v_8=NQfN zp2D1uzEgja*VEHBpvWeWqU>tKbjQ40JGe;>GrcaQkTH+Q2K(J+;g%ij`E#xO*M}cD znW_}tG?A$Xha@?|&?W0zm)!Bjc<}V@J*ljeCh3u93C|p7d=FXvm_POPhIpE1(#1~m zHxb}MbG+qU92D7TH{y+pP!ji{6;QskdZZK zfKU0w=C_*x(qGM`nMvle+eCj}cd#d*qwcPGBkh&Z^6jE(o1NnQIk6`ml|^v(Ad>mW z{BalNW%0Dhv89MKLou=YEM@ojxU?QCO@3K&35a_@Dc|?g92}qfcK}@sl#e2!kGEYc zK&m2gmG-S5B@KIf`wjN9F5vfL3R1GW_-}5{ckXa^CcOEKd)@=;c6Q(1=C^oy*!0hA0SzfRrNA0v+m)e7yS0?(2<{h;fXtryan%2jhhWA*<-FW6eiKQHJ{^r zh~Ny}_L6rlau&|sfLw0&zZ&;sxHXV(FyucEaC#XqJIe-1s~@Ikn$&cAP?8y^6qIME zmf!b9s%ra~eBZkR^JD$>drtA@fIVp(Tz|@sPEWale=Pcxe&-v1^urEX7KS73`&W6B z@~wH4Kg$cNm+fiNy0nK*A=gE2GJnP7M-30gU$Hx2g}b58+e3V7a?xI$XTS=&S22O+ z%}x(_()fI8*y0&C0YxO<{Le2@hF6JO)g3UAw*cfrjJsi|quXBzE;QN=>~9UVL|Xy^ zNp*<2C5};GXF@6u8~Q|$i!~7Ru_Oa%3c}r9;U%3PwUYP!&&J9$yuN;qC*~@G0dwj( z7#-56w~<3zc2VS^=^wYwd3zLg)ZXBid=;cW`fTzyjjMqAmJ9%sI5^^r60eQIJw2P4K;ddm9&rz_-2(A|0D^NcDUp%wMVVk>hJ( zlL>r4$yBm?QVUElKFsgjFVY2bR3*1XptF}2qM*J)H)p>1>5sNTyfVl)W;d00tFbEO zn_a6mwJ>q=9@okMJo&LL&do#uTA1|~?ZW#WbFY)WhoFiTuve>#$va-ITe&4NN6$(` z|E0j5OvTVH&X^uUWMq}zl6Xe}4Qz; zA3A-q^ zV?=n^CPajnsSEfXAXDdW3{Kx}b#ZTrhX#Cv2F5QjJ|NGu?yz~v(T+6?qvhXe-eSCn&W z>6BH9_MmSxE&-H=eLZEqXcMuKvpYAB3Rfp{oxQh*um0!v{Ni{%-HYmyZ}(PT z=Jhr*XwcJ_SAGWf)_H0cs#XfTH93{x?=d}(Re?aLS^R`o(oi{^yHO^N3+j(rULfOVck&Q z+|e7wy5r>PPGuM{MOJpWl2T}mBBYMOTP`;?K&*7dDWh)xA#xJ+L|bxU{#A@&ejy z$dl|}gZz2gvy6b2HeC3UCfd}A2zzrNLhW6kbYNK2OB0H=)940_P2J{Lk(=i6qE*fI zmeOVA-zY~x}t)9xF;XCL}RH$jqEgCqyo;6&%!k7wElgRsR zLB5A=J&Hwr^h6(T2)zSCK!II`*3GFZU^aA|IO1fDZuOwBc(u$Q#D5QuEk+HT&{bdm zzFzO+tI|}T`14QB_sm+i4Mf+ir)KfDHnf{6YZJmt-`szE&)baKNMsQXQT`%-?p%<7 z>8wLYQ8$>g?8^jX{Sa>16-V&*54B7-oI6UqWMXRZhamxPqd8Q zRjhJhB16zzH3pC6csYx`se{Bme5yzjEQp z*|}&?+a3so)7=zx8y47mQ*davg$30;8TY94P_1djA>`NMZ}7XYIM93%MAzaS@e`8->t^82R2 zEh1Y7hvM+ZdyJ->l!|F5g9wMaDMsJkHUn0)u!^WlgWfd9 zl}h>yM;Qw88*6w-Ny%B~^MH|r0Tw+yI;CYo=OY8H7-ngPI=)?pZR}gBg^{A6=BU;Q z78;;PLQ^VRB(-H+)A!4TgiS&(GD1%r?f!O~KR--g76>2vLrs9N3&4&-mm563AH7sJ zC}%*2t5COOMcwW;cRID*gXwQ`++UbrkhsBeNJ9idJ8QiLk?WQ)gjK8w5q5Sq3(4qe z6)cZn^~ZZ#V?nSxcgG?gicsuzi4?2rti^z??+N^gI`Al}re5%bYKKm?uPKGm)yhHL zC&zn+EssDfRLa?VShARZj#&9pOXi;6jmrUv%su@8!M>jM86gNAC}HYVFO}jB9gw9G z?q1zs>TAnU zkGLcJX?uVBy+b&h^^IqG`CzjA21b1Coqx6)LEIjGP!C;01`cQ0~j*p0Vh$gZKKOX zTv2vwbNRqaWtlr1s}H+D9|40CPwloJgb|mW?>%}5#d%!TNyH)m{nm$^yk=m+m%ci{h zUR8NuQZK7dBcoLN1CHmjodmehQZ`kM2o0qlmI>mW7Yi&&lhtSkVV}xZ$Ew!(+HEER zOCjry59_9t2~OWM^RiOWqc-qVD4q6S^X|UReI9#(f8>LfqtTg~Y~^kz)i8Ju61%v? zB9QD-`kCmzj0H=>h3dR3j|#C+?@(dAhK|A-<{AP6F`D?LS@d%}U?)3{lQRofMW3tn zS)o2+_H9dMV6l8vdOPfCpvmyWR)%c3X#{^|k9I9p)gG2(sqr|8!?W8k=q7ag1*mGQcw)Nw18eWaCq@OqvhK2u@!3spew6u+gN>oO$~9Hv*V@$1cKOxloC4;o~C%( z7IW=73wL1uAPM(`=1HV7IX;Ifq+R&)EaR6IJfyQ51Ran+$l7o+2aS?%l>q5h3YqNq zO9qPkeEA~)seiArnKYk1uA0G<(fZ7{Jy4k>Z|t?6w8dc|R6*XNnZNkLizA1iZ{ zM=*{QRTYX;MlS0^ac(`(qc^kq3Mf0qf9$E#kcg5C0bQb7T%Z$5D*i@X=e!;NA{})R z^%SS?@AMT}>CNjUH4$-dM#teL`LQ2NpO5w{|46Zoy&ylZBM;QO1=>#El2p&SF`vzd zSR)c3P2CWpqo^=)uV=)zV~!0~_RIQKUD{&naz{zVO-3^p+?yd^fP;VenR9*5*Orp- zY$_L2Pg5X|K2RQBU3d##Av#}#ymw^6EtIBL#447FXcQy+3bk1|2GBq5@KCiIctRTa zK2L6!*qYBSueUebfw)3Zu-@dR6p#mK86&;;p|LZQBKMEHf~zVxd{KQs2XxC!bgL9!0qa0LZe(W)c7UC+ZVzNr>zIWqp zzYV?&R&Jeoa|}!T*8RzKr-j2~V;eFHWjMWccB1;j=!z|^F@0+8o!5m7m_;L{7ogQq zKnl9Rc;T*3L(>dtoCZB}E4z`Q!WUXeUlza3H7oQ*9nhRC%`6{o4p=KMPS8~^(g&@67YCf+ zL{Gn(TZ9%R_bT5F;Xk0&K=u-Ut5~W9(fzjux&3cYNfz!7Z)l1MtP7}lSe!15}d z8FdU89Pu0fDwF47a+hCW`!+ zetLm<{7ubg=ik$(sqvtufX9tliigm-QL@xHxK>AzIRs6uSReO@|L-_=Ojo=1?ptFP zF1?S{$dBU`#{l;C%@5(-*xx%@(&^ye*+X>yS*!SgkKFS49-LTjD}=7%H^!;S@bdW) z%n)Z~5|Fz)5iaYdnO?J+b7W>gWB6t}WOOc=$F}@%yWA=m8blj+RZ^h|lM`vP~)JRkfb$k9Un?1^(CCikQ-#XbpR zQ`M>8(Rhm_%B^$y#ZaI2)wAZmHF`DdmCO!P&_}$GW^l`HzGNLLyCn~dRROno<_KOD zLCq4$2Ct#;0?;3O)*lrUJih3V6~2fHp_^N4s1UGy{np9}KNoK6Yfs3IWW&HaA~vo6s&Fx~fz>oVUX|1FEYg z6$>&dfuHnzchUEseSzS~J6dN-FiGL4p8VK{=1jyNBj2R0*+s2JQL5^;o#|T?(DND; z&ld}Df)JNK3~pmVP7!P^e$EQFI9a?0IGRdAV;}r5`tP{sD$TdZ4Y0fEffK$KATmH1 zwtfrG)Usbglstyz7P7DB65WIaRZPBj(%k(U`{;q}9R0?19#yh{MCAipNhkb!g8-l1ll%z5{%&r&RYr>+Wd6ixfMd)FYv~d5p`!ydk~nVI2hji7xbOP#t&Qv| zaMkltDb0f7DVGZLlYGZB$bv+>Kqk&U)>N|8s!~7By|JJ9czW>Aty5KIe8-bvPIb94 zB_1l0ieRYb%Y^N5Kg9>*@xEf)2I^1wv%xW18PZ2cMRjAwq3kUcVkDMCJ1mvayfMa2 z`TuF_4S4aBGZzIW-s`e=m;QWHldK@s(XY&8O`E=9)gOL>`+RP{dv%sO7)t-aZ%$Jl zugCobx`>~1ufu6?2nD9VmN;Yu=jx+f0`e>cw2C-q^`0K-C~ya6b(b6|eA=fU=N5gJ z=Y7yF+9`vgUzX6d0P~kFk6w84IzMCF6}rB@dFRvi^4wtSo1tDemb^3ANSGBjwWsIC z93W7BS(NHOYh(Y30ftb#X~?02kZi$eyZ2C))oZGRJD{Pw zvThQ6fHrUMv`M&mh>mNx9xWEeKKSp6ezNj@p7!gC7g+&8-#_3U;<* zfB*PtNUMK)OV~-a6I5S!ypX4pdT1=yH{|r-Y)Fi+R5J-5<$g!=Dat(oe(w*6asbdQ z^l`l#N?x*myca)$ivZjOxbgrq8lGsOB{xUJ`I>Y#gJSdIV}xv9M^X9K8G=W{f=_ne z751|!q`xcw>YLbz4sRk&0Kq;rJ~?`>`sZM+YEs~>>MlNImW*P`fdnYT>lX6Qe{%Q9 zbg%QA6Bugo96ujN5(WE<+i%^NT;>t#Cpg8P0T><%kNBI?kkf%13B5#tqP>|k2MNQn z^sHN4l0PfWqCzP2F?y|&(YcV!&kcbDHTrArXxH}%mBXR3`2-JRN;SZ z+gPs%cB^h;=~WSKovf|TwI2FkeLHW!J;1DQs(J#bWfabl(TW_(u;)Q0ulLXQ!NXIX zr>7Q1kJVC!wldN zN1ck_)Avr$HLS5182T%3HVHd= zd1uM!SDzn}k?Ujq9;b(egfc?GMRE0!xiujSEVzXVh_*JHxH<(CZHBcGAMN52gPS~lZ?hnL%; z_H7Ti0{i;@9ZI5ErjV+fOABP)3D|{W_3+=*Nv%TdA zfH8QPQYQ^)=&6)Ndy6Glx9;dxF7WgchbGH5J1AV(wTfq)W) ze~de`Fq?m&H_g$D@bkO60N7{truh__@OXT}WFY}9VnsXCt0kCsqF*sDSAvGCgNaOM zZt*dc-7~+%Sud$>a6M4wcmUQ^F+x4^9k*ZVA@XDqXY!fu z_4!%&1b@dZYX9x?RJ&sbSC%6ey7Z-fAGNQQ=j1#bjS41QS6%Ej=17%CBV7p(dK1p# zFa4uX4`TSRv{EEh1S&L4WnjfIUQX0EZe{$6?9rP;JKo*EN2@Yt}KuJKrH#O{2YJx5{pv7VmJs83~ zLAF^_23C3_*GJ`EW%ivs|KgVyC!9pbCeTHa%n=jTn1$|D7%9q9c}2)+LE<{4 zG-8KV=X2&5R2Kp)*g-Y@5sSZg6f;%Yl$}b!M4T%MFkYV1kadRL5?at-pNZr-yrIM! z_!rCS9RXIwn-hbD^vC`J;X4919`tzp+BFQSU!1DlPOnlP_*49|(M+!kx4$U|AbVo( zBAk5U2;W2pIJCl$6}^JTrw(Xpkgkm<>RW^f@GkxQdHxV1Pq7 z!VlNnS-Vdzt@*xWO?{)_ndJ%%g^qLH4X?c_)YO2d#qZtd3~onE1s+I8QHyf$aT@!+ zp2G>4wXWPA*FCjNcmr2A^KaY4wcD_Gp7x0U-6x(;X;+P%Clj_i3^X$}bK~~9`vvL( zCR(q26EglJjQFE<2?%GHusrfw|M5E@ZT_AM;ttz=j7B!wmAh>Cz*}h_Imk60M6`=T z3Q%umzz5Mz44A}$EVbH)cPE7JTfEH79Qz4Sw92L#l!eQg0Njqd;i+$}i7mFHj6IcJ zlURf$db!xY)}oQ2pI$eHjHNSAJa+*LRGu4ZAn@7e0|A>`lDg2Ust!#gIRb><@YsHy z!37kC)UYls||!0Z)_!Rk6Fq_(X`UzowN!TLRAFBN-KgFS7xU=3c@rF!EU!_Wxk z_t5oxXL(K%*>C7WnPKmS0EScmj;}gM8g^_#QudiNE>5Y6N){q0BlcEXp4!CFJ!B&> z&wrd}F!|jV1QoaypJ~}@gINys0_wx^0h3~vi7;VpqDeX$qU-Bb9cT$Wj)zcuMZu;- zzfaah3G7T*jEXo>4cH?R__#$PX+^gtHsXp9R}@a$Mb5@vzk?F0hJpOlXY5DKdW8gW zkDVr*C!)t>;g$$W!~=svNmid$V?PH47~%<#+b(J*qvES;PXVE}QV1uB9FN-fftjal zp`#y7o!udKqy>5;hJzU8=lA6B!}b6$e%*M^{fXy5N%D+Cn?gd6#cR+Z4JSlNdN&h! ze_aDW!!r7}!I4kR4K`MG%ohu8PY@nbvR@Cu1o9a5;S81|14k&WAQ?2ny*IX`rmroC zK*0MBr{(c8%h-5x{*&0Y`s8{_kEIm^#breZ$9HrT*CE9i2UV{0Vk2A+ zrMjKTZ=DF1^HG5-sJQ>xvm~ftDPWBns1*Ty5zPU;vq4qhiwiJOd@&}pSf{Sd&lY^E z`CRPNdOl`phUGOWq6ZM*Nwhq3c$uc@Ga3ARleAI}@0jXi9|@6l zm|RzRrfcblK;z3-i`4(O;u0CHy#J**mD8XPQ`;HN((LqR)Kw=HnrdF(9q zGokSk0JZ}h>Gp?0;q3!DDd2P|Uwl4Vft`H(G(JIHi zKyL)r!M93bKW#gqsLTcJ`q$RNYt1cxtC8EEE z3Z>1pR(>$Nl8)%NVA$Z`;o-$5W<-&}B!Ow!@J?2}d2!%K>wrk#$uJbop<Aqa_Mps7x$KqCBr zo(O;#Up~kmI*_>)*Z@YK+cz^~YfY(egi4&QvJm#Rn|@w&&6=*L1K1y()|et5h?_#U zD7o{-q4f&qi{PwRI5dDP%&jy|ixkcntI6B+RT8uoz9UgV^c`8R*v_jEU)L5Ci5H%C zc0`QpSgu}YF0Nc!nKqRDVUH{GbF7*6`L(Jt%e8D@Oqf*R?6#U7-rx%F+-4 z*Vk7+X>okx>*$mDG(V49-xo*+F%bERtiD`UJ^52-Gux~J`880>$qbF3eEzX0kQjQ5Hr| zaD{|r-54qS`Gy9)e}13CO9y@$kIIL_ce^#hC%$7~_0R}sNEWfL_ni>JL8kK`Yk?mo zd;sBPEQH<2w6}?j_F_FrA`@Y@TUm(_kDNH!oB0fe;owCBGuc3l zrL{r$YGU}rwsDVdIh0cf4X?>%dCAW^7V1m;wQ=J|@0UVfy`JIN^zyrhX>+ihueYe8 zqBTRD=Lpz;;4#xnBzOU(N5u(IBey=0?=h|^=ESlX0!iZ>5_bR_n*ZtA%^qzovvQT1U?cvr{kV3PjCs#fF zUYD}>LxG=f_Zz(=r{(2MCEj=X9Yk{GO*klrPT7O+^F?AOdwrWW)K=aCVz2Ruju)Z@ z0fB%G!e;-U_)TLz32^>MZML4@=#3X?y_{S0X$Uu6Nb|1)EvB?Qx-IRxHCwEy(zDY` zRU|+82XqL>fPU}J`LZD8t(*|J8>RI7sDLq1_L5uI5G|*D;n%Rap>vI9VO=%WQ5>#a zKj$$UQ@E{hqpN@xT&u6FPx7B{W@#a@ziR;fOAh5ViabHZk|8UPn_Y321yL|mo_ljt zWnDv$;qm7l8Ry~^Zi|Kr5a*_o21t`JSt7ljVsEs}CgGcgVn}%pxKDT$Ur;4j_!LzU77DY}e}uMa!S#0S6jl>--$J6^@vC zSfR3G9-xKN0>n{X+t0h_AGWvy@9}NqXIhKk>KkHdg`puA&SbKYFZkqS6n<~}*DDT6 z=&w!t^j(^%CTA7JU7JR|vgWc{*|G-4v;49c+{D85)1si8dP8B>d6SM_m;I)%nB*&{ zLI_>m`c*F8O*MWZ|JG1yXVI@7&|>elFAGDa>OQeA5s#&A0P3o+j+q=~6#{QDb^6sB zT4bq{)c#mHJ)GSm|Jgn#D8KhOO*0z#=rQV#_mtndU8(m&(abkYD{rH2InONAcI8R< zbp#$SY1{J;oM)qNh3Qkmji|+4O2Dd1k6W?$*7w7E{Q3NBLpnllJ`fitR1>@&WChNI z?7>JiZl(`U-4uNCg)JIEjjvM~IJ)jZD2t8&QcDV{wU?^L7gh5--hK2EX*QFvpKm!Z z^eqqB&j)@_bm1fcB6tsHw9422BkaAFTvf8J?F-@n?+zt|5#GBqtN`IXT>YO~{dM== zyWfak5n2&dt4al#Gsk>J=FG%<;zk6Z{uAQq*kcggHC7eFYWezOn>xd`!=>_51x)aMkfUMK_5oXxfaeB(LryB^l!e4 zdvKVkvA;FI>t}3Z#Q-q{k8l8aq`6 z4-3(@y!exTf2V>wTrPVb?fqrncR3SRSo>7(eCsKCe7|vd547jY0U|57Emss~sY;lJ z6u`RHanHY*4DrV-PawHk+X(t0>F-!LmRWbi;c>ilz+i#@-J^*e*c>}RqKN*s^fTz9 zrnyTCr%ir>{+(?up&q}DQ12B>*}jgvQK{077v6vP#Us^yEm9&O1N?j+SJ+0eLvwTV zPy~5)L|i<6X9#nKpax5Keuho&G9$lUKiO428{LxCMiYN+-+DC$+X4M_@FJ>yY0x*| z?;Xo)d2l=$jDQJM;VA~EnM~^vAk07S0o=c3T)L`ihck);68xE;_<)ZZn(gWENFff5 z%=&VjZhlmeX`0^O>lZW9zhY)k4rt#TFlM8V6N>WHW6F(B9K?+m)f6Z-~L(NoWc zdRLJcar~QSubo*!k%pl$jPO$a=Ngc4D)K(bT}w!>e%a55^LrS`{Mk51wI-h}*M>mJ zQ*-(h^1hDEj0rp9`=>V(3gCp_=pguwH%LmIbE@WFSBEHZ$N!8gsSqehuo%j&&u`#Q zA6K^fC=SEIL?R;v{-u1Y_&xp(SIa{01mo7p-V;l$*9!6oFm#E16;68o^F$F2)rb+= z#(Q6#C?IPHbXtjxz6b6Us74jqLY)VtL)*M>d~_K)C)* zNpo@DCoxg3S;IMym%rxVylMZ;>Lpi@6|KSG<522S-65ete zaF5UlxG*l3clM~uf;OI-S3Jbpk^$S69Cj|;eE*N{053H#G%sm}KyJce;*1#Ix_Gf4 zJez;~B$Ha??M@w6f3PUtZw8~=;9Ue5#*pU8GcKo^ODD7u+`?H)(%&=HbNSo-wSM&Z z_{H#pe};-Xi3zG;4{vjvRcI#1mT`D1DakcZh-iP$G-cx<=cuJiv^Vz8Hs&=nvO3Wr z)qKIE9U)$e>sjmFL{GHnA0yoZ1rpB%;hJr=g5V+a$#s9q4#UeL)^Gfi)XzXdP%5uG zi!kxfQW3}M+|Nx*MF^Ryo$6XX-^17CkLqY587ac|NK5_~o=7*8QP?I~CV0O0 zG;L2NHE9Ss^;Luju7V!PuYJXy|69F|Bgp0UJGb=x48*l64Lid|23C^zTZnz9+5+{vY4C#)zVv@8TqIXpi6&nioPtB|aeTleh6YQxY zUY0KACGwj}`#gXVwtV~Xxjj~B;}#-9ht(d$4VlIBA0?xRcvVp+SK+kQQ9)*JjLW6Z zu8KJD0LE&b#Gm{_-Vr1Sfl`N&cNmQW#2uRXajcR#*X_*R5JnlaBs(;l@Oo}>?Y0^oFk8oQ0#;-mF z?tqrBgPiJjKqi{a3jer|haL!LLs|z0$BS7Gq1^m5bg{f+n9wuxl*N6@$4LTsFy0#s*Yv;5vG6nhJJZnIiVLHZ z;uDtF>mK^Ue{X`2Ebyh^Q{GL0r~D~6*az%Q1`3lL0s+`meL9`+^q=*RmZVhlTmO~{ zgB~owI@hUrDSx2Q)2WDJ{WQ-kXO>)-8WfVCwj|DFkfCk&QC3p*pK?pJyp+P z&|l)IDL^StF7VsNv!FKnpg}IpsnS8eM+wgA&8JB!h|TYE=`c(m9cN!KAlKYb$LVEh zDhHISFE%CxIp%t!Q8oWn`z-DaumE_lXbBDt_P7IyF!KG~TYanlTyrW&6&|*=y>%P| zT+%b~c!U3E+4n>1gc`V}B0*wyqvNFG?S}H^>MgnY$CSu?7KHs)+99BjF&VxN#>MaJ zOxG-shBedcq-)=d+&V&G4u^5_-q>j*1mnreZvS2%`R~|p(sDQ=6`joJp|APJ(@)H4 zLM&H+Nj^lxO?vSXAlx}Eb-ILsGF9ukum2&0j~u4it@a2ao*mU6e#AC~*S6rGHUP%2KYXWDJMbiHD}-~lp*44QenpSV$AQzW7k2}Ic!Pv8WF|)-a&oVTlr^Y$tQ2rb zZ%^93#XbE?tqEY-TqjM};vb2uK)$+}!%I~3EP>+16>?f;*}iq@59B=9=Vx@M9m2@A zs}MC~E9n1@>1l|K>lLd<@CtXFkI(b}~}atMa}zV7!>!mtRvB8YgSW*(Q3< zlniCh985FIm9HgS8V9bvSp{p85V>AEx#(9HGP96$KC|vv84#M@)G6O>f4k>*`#Y@n zQ(Zu)gy#7Mesd);0^;e+luP!})rL371Nv1Q`I!JclO{4$P1*k6T5WL>&y$gvHHaRA zSjd%&Tu}5Vu#$VoMi;|TIY34TAZ5RsdtDi{a9_~Gy%NBDZSrMVpJw;%cvUCiehp(i zNgQN)Xs#gAY0b(8DBud+<2oZ$X_$TP?rL$Gap_)hC}eOEeZNZLL3`-R6YTU8%!-Nw zQ|M)MPGwTC9GjFZ$xqBdau$qY1d?7eX_a)??<1NJE%;oPI&GbmN$yCNjK=G0(F_$Y^2St@t> zmDaF>MZ;!DIs2>Me>@eSSI@@_=_OP9EU!1p>@aFlxH%G)yAqU`Ra*LHclWhP596?} zPw9hZkj=iiNO^|;$eRiJvBsN5b0hi^j3&#CXYK1@3RbvXoA0rWu<6_ zVXAhY8x)7#gEWDUtCrYwRq~^d6jP}zn~!k*qPG0A>VSSIrcv2kx>;IvZDKVjV(9NY zr=LBmTgfa!<}Qe5zRc1@3!^RrF+K+d+Z{8|vCF>LIxTik*ge2k`rjIj z{2@1u_CDHoPgkM!NFJsMOgX(b*A8cx71!FIyeNjqxuj3d$tEn}PJ8#yItnGYKD|(i zCcTQo1t9n1_QM4Uo_@!1j^Ap_ZAj$+D*~x6|Ewu~WZx7!90dv*^KoPQQ&ii`P<%et9C8-siKa7VguDMW>3tj#f~Znlq2eslp-uN` zY){N8;X(v~2H_x*7&ZU9AL^A4!edB)WpPEliLSxp2Ef*mwcN1bxl@LkuM0@IP>nfI ziaPbxbokcC`(c?l70vYgv=N8sB@(8Lb1G+y&(h_M(YR$HmGt3subA!f-ekbyy6-K^ z%?EucF^_+=WkhKT5y+pApOE4Do|+XObK`azB}}l!GB$3C1_l9q zLO?r^uH#;TPk55k@w(lT_n-dOc@65>Qf%xUr4++VI{Rz$JjkfS3;E4iSrcb*TJy$d z1n~+qD|C@8OpMJ;a3d-I;P{X5V;$tvvp?2hc2SyQXvd!8#`K)N)AiB&>; zcP22=$a_O&H9+VcDU1+!U^Y6ndP<( zYw0PjK){lTZVX;}XQ6BhjNMPHUD@ipn$LgNEx#UNB3Ou)=;H02S}twYAwIeWP+~07pQ$zb=~g)n^Ru%x=_#NvZH& z=5mMMgcA9$d#@7e&>Qnk`uQHizHksm{P$Fk_S7feb;d82`rL`JfHJ}NgvD>Xe|>L6 z=>>Xzzccjx)sm~D7cv*odzAc}K22a51=hm9T&1{LH!iXlj2y!1L9^|*fdgW1Wsx+L zvASRksH)qNV0uK1kAG}Oc-iVC16wRAg|LpF`#cC6m_!0){7U+Q5y+PXbb3wfixWlS zry+;b2-*;8_80sC>0Ew1ZF8v69adfS5Z>ZkRZZa=Y#Oo#X6 zTQx@o4a)n(a9TsCbnQ~z4-$lLD#ynN!ZYma@T>4^jHeyC*8J5~NzUgrydv*spv9tW zaPq60mj{X8bC`XcV(oCIzk!Saku;Sm)~+}cPd3qTDuwV84+~~q)d&nlNE(3uwRF8e z_aW8u_+lgW^Rl>C7U`Y_3IPVLH=d*i4{3n0;V?TO@7h=lRDsNTV2X*Ww{^q;7oDVulXxdIdgj z#Su|@>cOMR=9|`wN-Y%}d3$o$=T`qF3cp&tM5eR1h^Oikr78sk6&&sR5)Kx{^#8jT z=&=kbZ+g4If-b7PEH#zMSeBi7kk5zu^QQ~W8qnFbZ7x2{(;-vwl}L~6rX|*%`uUL< z2?|`{19Y5vztkC4n$V9%GGv1*aLro(_eBz?~5SPJa-R@9j_)#sL$q67v97|#r%hn2qpHEt`FxH@sV4J8<{>E zu^0eqGq31nv`hQdUluaT-t1%ZtNI|yXGYAO?a+kGl`)o`DUa9zLxm zxUbY&Q3*-%@g;1;ggPQqKfti5|I_}?uq8sX?2<63fvAe?%!9O|eTAGLoAnECA5xpL zOoq*Fb>EG9S33kdyL=!2=l~#R&-YaHT#7?cMW21CMwj1wJ`XI9){2+DtPshnxtov- za3UKCc48%-|DE1_h$cO3=ry@x4kDbvd-+2NPOi8|ktA%_slfy5gsmIK3=rD72AHBq z`O3NoOa$B1-~(&r==tyc8&3*hT;A5gzTW`k!8k6TmN+Oo!j}G@uUjZ5h1~4%&7g$z z=j~snV|GREQ>TT=mAWeev?lnPrS+rJoImx3f%2*vJepipRHS?Hi9WcpQaC0G^31tv z!lic&%Gt`bBQYEwK{nz3xvue4u5(cswxKKI8aSc$ribXLk1c$K0xtOq#4VnqNdh|? zOdzzA+(ZFsCcT}{m5;Sdj9y7{vthHLY}^V{5G0~c?My|wP=uqYTW*q0Z5fZ|j>k5c$c8`bkhi+d|T(dv_81 zhRwROjh#O;73q_`bFYo`&*z;-|GNgka}3h9K(mR0Igh|o#`Gq4m}@yiiQmh6^# zZG^F-0aUDx0y{q*mfT-Or(sf3?p`*bVb)d?z3+e^>;HXy6py(4srmiI7Q0&MHegNG z-;hL*1d{nzoq^T^VC9uOx{r=QVwf2rU`pVe)v^*silGkgE0G&jocXht`}Gv>x9|yO zp&nFRUZ{sSTlMs;)|+eItc4hwsUF{Npw8?eM3@Qy}R- z12SA6lYe>-?GrpxS*V1mir>Segww}$hq?gxVQQ?J3#58>_%T51b-TYg1yR*u%xGGpI7I+!ON2^Ur)h%s679yi3ObTIDkrv;i2I zdoI`RdB;I3Jo9prj7HdfaihQx6K9%Eg^16eQ&|QRDcimxA!IfF|zH>&3z(-v~VCyIPTKABAzzk2t=8OE6T7jFW zn_3%&s%}|jL+~uFfcg(Sa;$9KJ$$aLGWyd&@()YYc|0>}x)1Z}w;l+zA9@LTCyjL! z>*N6Kdw)VGlt=rhV`QxIX?rJza~yrz7#JmR=+2g&czs`6sIuFmGh7}JJ%CSiW_ zYa3*SR~r4jP8Ym#CUQ7rCFv4vN7X4af7l2(mu7L3gT>=Fa#)q=gC2LFp&gAe=iqa= zmimT6g)euxk^TTkAvn^14@3xh3jG&~&e(2z8qDcZ6#Q;>u{`bBiT+ zZaM~KrJ4!@uAX6i+p>SJkH4${xp|dt>2Oxd!*U*OC8IB5qfk6Z|6OA}$BNf55F@6U0P6!(kJqEKN#X{uQH?8&eL|GxzYJ(6n@1_FM={EJd(W7_W#!a{iG> zBNx2Bqxx))RZ6aG?cE0k@BLBqqXQ4ENs$xxk62wa&Ua1wVS+}unH+nS>-YVUgS8Kv zPmAmR@OdW-{x;sJjn%kZIJlff+(6-qu2=GcIzf7`i9rk%+J(5Azzz^d=x(PFXiN>w zAbydS6rbMaDN{GF@H49pjJ3t(dSaEjNK&!O5CG7~W%mva)(c-bNkSlWLCIMytiPbb zyW)PH9(kFySl=ix-ilV}FXxNAVYT5iL#ZP+jsn?F0{z8h?!!zQnWCNimReBp-wN%{6ezMZ3BDeD>AA-AZnI1p+{WhDXr#{~ETcNPS(%*|9_eQ{sX!oy;B z!pSlr>G^QzuEyS+w~-a-!8?o#4w4uYjjnVs_7LFxs1%$G+k3~*P9TX=9`~%a@AC&< zVPDhP3o3QyM$74z=hf}ufH#a20@ROpMbom-Fp&_m$|Q3P9r6SgnOa=7Z+nZNdW`Mr zkMaG>Soov0{oDStRupFrwnPvH;Z3_k$^4hB&dLbQMim-vUN`7NNix!e zQrj@-qKLOxZMd_Z1Y&Go|CC-oY^~{@OCc_+@q+$2kFU>9MVd4lnMR>v zWjQY%e(OGzdicoex3MO~60T7-h=0d85(BKP=Vd{!F=d`DMp5>qw|Ja@6qcI)qYTa5 zRtq9sYw9*;W6J;so)ir8-dardRs!L>r+y8rU&xfA< zYn}IfQ6E3G_}{_!bB$|$wqfxM_-RukqDz8yp_bw8nRmJ481*)p6)m;bJPHXyzow`A zRFJ%4V+e$LRR?;p{tj0!XECuAamkWS*;w7U%D$TMB%y`_E~Rf_wjOpD0hH@**|%CM zvP3F1kD9owJ4P^*fO?L7?HeN`hehi-$ z4W4H+LR_Xqzp!|-@^dozH2Y0SZWx6q`x#9SVc2N6U1ADa-cvq^mOt+v3A9B}n=PBo zv@G4U1z2e#E^yTLGADCFval0c6*l&%j7uLj3(@zHJk^ zOGi#enXxRxqGGXh?U)K`Vgz4Aufw&MWel{sbdoYuLLVPWR0K5}=s{-ORfrIpF;aMXGW=wGv#48b(Dh(At=B|BaK{w}}Pc$w~X;fcLbVbVe zVM=PV0#lyvUR9lRNq)`)rI17pS>t-a*d2Dc4Xo8)&XO=b%lUhxhWzwq&ftZ-jGXFF zGpK%$_K_I9m~sx@SjoH=7{x!4*UaiSDjtLX{6)B?C5=(eQj+-;yL{t%^K`geXwNe&DxI$M7`x9>lEHq^6V zRMa5MK%S!F@KM=VQZ9;)VP&WRjd2j-gJZhjPYI{!rxu<|()3M^R5}374;U_GzrXEb*1COehLB{&U?TEd1uTa}owc~K zyoo7R#lQV%8*t4NIlumU=4>rV&F7O(N0gZh3GLzh+jF}c30ol+!vAaUNb!v`RPiJG zehI<~IiuF`FPOZ!3?hKG)-88dtJ;L`(l>l9iUy>>orqo9h+rIj#JNli+})Asb7zmc z#P;sH!-HghG1F;bc8WrZ{ZteQcWDkQ;RxfiypNRd?HuJ9cW^m|E;EPxzL9Kb&Mb-M zrMiig45f5GMABFYPbzvTrn{{vaoThH2tcn)HG%5>H+`QqVlOMciV2)B78o3X8?t=S zPEwfxy8dzcI3JhcW+l(|x2_O!6Lvn6YAn3n-QPD!ft(U1znr2l{(Cb=SynNnG$~Y@ zh~{%^rPyzBWohiUjuX;edGZ6;=4nW<6)zp}O35n(NE|{p)VUN+`mC>;k%dJ|ASE3f znp(w%{n+gV;6~kmZ~aUee0ES(q{%!yD6Y>-;Nm4s3MpHXD=5+-CfsnSlVKxW-HDzj zvZ0XpL_vD5DFXe=wOhgeTZgNLZah}YJ%%}@Th|HX>a{s(&zOL63_KdTmk(k9At`~B z5h%O~YH`iRwZFN93l$PqHM%WwQe3L{<7~&B^8AdvaL+m7Cia9=yq`-b zsFipwQ$Gz$mBj<-EThW}R99^5tls{S^5dX42rZt|qluB`YcGqaCDqLQ-Pb-JrY8$8 z$i2~=K7)&_dg2bH`^%E0H;yjl>k{+$a(IFUr)@c?>?{R;yOXX4N057@swLtUjPaf4 z(6-@j+kV*uXA39S+}ej`6GRSu>CcQGuy>YwZhfy16m|Bms&MN=#NP3dYV`^46MSj$ zvhQ!SD39dz7tNR+2pn5~z@M1-<%9;2PuETF+}wB6&)T9@bacRD2Fo(b)F+rr;%HIY z!X$@%^<;N3>0S<`y})^cRm#ZL{ug9OsloT3XI1z4Rh0$G_45ZBf&CbD8YYi}Y=KS{ z3B%ql_2s54S3(;gW&rxr+V+HH2XWvaHa7&eyjDZ8b49U3v)@#diii^<;X*v%R6O}x z(1rC##cP5$Nak4Iv*IE7(uvV}5LzZiY2J8CADHxtOE$;<Dm>zQ`v$5?2b1&RQ>7+hW3S(Hbjy_%_guXk$M($qwz)KuL!hmsx>b+_KKUc z1@g%KW={Bmbn|50vFdNw&UEN1KGaT~wwBA*PGCM!KmW4MuYBU=ckP1RtK88oYoHx+ ztcqN)L1=L8LY&&-DXNUi?R(QuvU#lGrr-Vd2I@lD`AIX;KsOvs9c+|4mnq=h#)%c1 z1kNW(^QE2r4zN-CSta8O`cmESs0|u&Y?M2r6ktcb`-0yWMTQRkg>o`jk6kUO5D<1o zfT;b=zo*KusA42H1Dd`&ht38R@~!oy#0~~N0ruY$<#}PbKU4f>T;6|1E_2OwgfFiM z)|y!VBEtFibyD^@rh(Rm1;|A~oJRqF4hp2VdJ@V-Zl=O#yJ@v30>PO_2k(t*;{8!g z2?a!6rUDjU{XhHdy<2lMs;N+@&nW_!A->w*z+lfnQ`ZtTd00|!)(+W|V$zeeebbW? zvqbzgfV(eSu{lcXIY_|nUutxp5Ax#wUyTgE&f@zwubzlyJtEuY09aRRwzE`g4ALCR z`Oh*}UNr9a_xVj%Sh#U^U>VHVO5M%BZBjjP(7YbQGwYH*VW?m&3H`ikQ~=7RGJD@dU27vOmXO@@HuF5|n+wC-YWS@j~ZLtZ>bR)b&T zW`A$+s32@E&AT=M|LBAeLZiPqRfO$?=_@B)E7tHjOW&0BlBMi`-vum0@=Ky-Lzwrc&)0@K@pNFU8OtY^N*HNpw@4{ct^KM?U z9R=q(s1vR31F!$Kr`Y0F7tgb1^zxhMSreM*=#v%{6mY{N&+-7@sljbat zF?A5KM;@emn+W<0#AQ?xGWTyuD(v=wEU_l=g14(F?@i!Y zq~IF9@W)dlMw_EvZqgxe^lt`6BOHKK5kCGhfA`B%CrGGa(3-NNy1zBteg9IBXRTie z$pWG6?)x*;hwtnWyRJI#nCW82y65=r)Hmh^Y<8&VwHHzcam2X^s{$s5#bVxTu`E!@ zPRL?8vj*?8jvDYR^{n0BY=hEN(W5iqj z5%;!13a+m zXqr~c-h^S&*p&Aha%t8@-!Z#kX*t^sPJLB>!x9mAo^B6jU3flE?E5AdX4%Nq#(RQ@ zN)+KWGYRakZI}&#PEe`#7=|&h1Rz=Sr!)G7FP1Im|I~x24L|8L5#ek5b%CX`9qO8|MlqqcA0WW$@l%c0M~p zlUb$15!Y^$!Q4jRP0-ba>nI0okEJ^nDcmEl5?aThK3!|4*D2%EC34Qzi z$Zw7Q&HG%G7rl?k+=!$TRZ$EXy6==2y|OuYaASHsv5Zx-VS8*|Dv zvd#aVkvRxhQSRf|hcE=Cz}0sPqBU=4^A3=~h4VbIK4XBuUMvh{TfXl5meXwNqu^EC zeRJbj_W%LK1HTkNAe}^c0bM6Bxn;%>q_LM-M&T;(pBkYDdpY~t4x^Zp%X!XX?eAx7 zy3F%&=Q5Kv&o)_u$-D3SbVu^MoJ~1U7{_r6cHNuJDYn=f_Qn9)&#Xz~JIa($R!OK{ zh9hp8rk|B?QAsgW>>D=rc0l{6^IWJz~U(5|Oo_!#@$czaM%M)zsGi0vGh1KbD_T{xF69rvZeyI*qi z;4R;}c-yD&oBoc}RW{g>n2KhS6`{*zcz068gs6ECro$Mo%n0bRA&wIy3d{x(`swt> zyW+ZQtbn(#G|`|})2zkdI65uQ(DZcCCb%J8gWPs^%@;xFFTk9)vjDE73ln1G=7X57 zR{s4^d*zu{Tui-Xc+b7Za%;;Z|MsPE#3Pp1zCONaz=#))TcI7@_1$L{xrTeogq+0b zpScC#okbCzx@^#+IIuW%d#`6tng~?+yFFKv9@3z82 z3eEzF#jz}@*XRvjdB&pu#g*5ZX_~G>zY`#6XKwMkY{cEF9{jfVU5AJF?Ur*{uylXZ zEagG-OhLDX%zckT&<%7om3@UB+1xZk&x7aB^M(cxdLc!vC7cYGm=?pSWDx6gd6q@- zlJCVXfdtdcvnt{E#=^c%GbGILgEq-*=S>u0N@;jXlefk|w)##= zB=Th6!3_*`UuaT>62|PCq~z{r0!>g}O{irySo(YvGSz>w6R9Kz9&P{b)!bH|lTKd4 zD{7_Zl8O;0f7f`O)kbe`d`iAsSW30xHR~-}^XGc2HU@;1q=M#sn23VuoXqKCWxL01 z{jH`$f5Z)Uotor7RP8pMm(;v;0|IU^O(p&lAQxzbm^-;<3ycCXw>;_${X%w|II6AK z+X2QTfu$uG-pu#T=5w3kQjs?J)I@#@my{@JrL%87Ma6PRIc2jlSi0U49KdKt^)S+F zQm}DEq7Y~OcX*@<#W3HAWq~yL?x(M%*Kt_oyl9$%K(Ej6ia`ddfkvIZ z;ET(R)7ZjJM3#X2D9}B}j)Q(0CG>U;pk^ADF{V*imK3V*w>>1{ss^*aqhAnNw%TTC zpMv3&moxo)Skw}Rp>3l93NxcoqVEib4S_@shNfQ+7GitTZ;}+v5?#bYz!JsabMrXQ z`-U`o!B`YawV@150Y$5(i7p_%XHiLFx~Jmj>$Qq^52K6fQ%s;3%|OpM-Y+P~7uUud zAR$~0kawKgk~D?rXhubxFphsQgUAiZqa8M@YV_(}phSR*pq_X)G5w(v&g7hHTqNw* zpp5z0L_i<@%tc3tDViaPj1YUQMH-U8K|E}|9>VonLQ^6kr}`8<4Bzlxwe0ex;cXSA zaD_h)M5{Y1q*iv5+2K&rC*Ws>oi8cIplC^#5f$GG_6kRJ1JYlAQ@cj;gG}3k)4YUc zShHG8^@E9LG)q?^yG=05)v%Jw>_+yFf;Xw$toy+8U# z6MsMaNQS!fw;BZFB?{es?QR4UzU-XCVk&{h6!Z-UlsVF95`r>H*>j-W{5tO*W#vM{ zChdtDfuZdUeH95(?oNwsE?lrUO0nr1Hv;VD$-3kFl`>XPbL;~DUL~KRVa$E8kiw07-clgl<^_|@r&BuqBKM!ff$k(+&}`BV1%&Mq>Dv>mp2gr8iEZZb6m0 z`-E;=t0&vjY2OvS^~-7{>L?I^dN@WGCuODsQ(nmWe!9rs*;&oho!`AX;O|xb{A<_` zLKfK;yD_A{G{X0e&6_xQI4kvy`P5#AikG0h>nz+5G#?crB9Sz4W;xBdO7-JVZJcWE z_i2G=8`JP0c25!-bsx}F)6%q&q>xVZUEz0OkaQ-r-oc79z-f~6@^D9n;zEkdY!-MZ zHrs&F8P#%nh4JH3gYZ=^o(ssr=du4>uV`qg9Fz80!k>-_nUuzMR)(H*N^A05n*~cY zg#4iy=4hI}6D5$!S=c3v*Jl^~aBi>hPy8(`h0ZzxZC!sO6ig|K%4#IOw?Kw*vNwVD zoCJ}7Ckrq{^%77N@e1p@$Y@2*0%9J44g_~Pt95TV$9HOAg)(;HlUkW}9qz)4U6yH|P_lPF@e zC9*JaE=_A@uvhd@sRoY9vg$M$Q5#`m^uwCO#_T zpV!3l?Ro-NwL5`;R3%)mjTf?5Sq}bKW>QD%D5B6sxGG>>`L_Rpp-g+CF(vnN z&EdC67IgF3kQgpom**PkN>f!x@?lMEMO?#+m(?X%UTJoL^@4FIRHvWSnMeM9bpz7Uyd_IpM+x4 z8$sdpIjlW26e6^mzxi}J!sNmpiuz4iuMCpE9Im)K{CfX&y6^omgmY8@v&^ti{e%ji zp;ef%P37Dm)dTr!WTerW=|bF6zt5DD*()Ln2~d=v8#xAM?LIfdWX|o@+`nW}CSzgt z*Mi(cn))Ex3+!ATF$_m+39sopkUw8Mof~_{<8sQdT!Qkrqmc9);dc2~{}%=`3hfX? zrw|4!4jC;-_``@S=IZ_bBkMf2T*rYe`#~JgyCFsIjp%3eM)Y3%`lfEZ?pL=ubCgR` zk^%!K_5lI_irF+6NRNk$9{k=v{o9wLdRZQk++aNRL*wwV1eJ6>E61u@_gP!AAJ-b! zs(lDIO_#$EtDVGgoTLr21P2$PKomhBIt+)ddoHq~W7aO=Yjvy1EjWT|ISm=3aN%N{mNg}}MEuD5w6T^@rrkX$w3(KHdhXPTNdctvzc zyHh|5-K$2`?5ot_0G8uQmFRrVlDO%%_E@u_gh;tg^1(*Aey9AV{RS_~7B4maRjOaB z+n>GG`kyA29c2VO6}o7vjdN?uQ5T26r$eeyVD#ndhPEbZ{+Z`-*5YH0K{7&rZ8%PF zkFIL`Ir$T%SccDj`z|^aW^13%y;Cpc`N(pf2k1ZDP@D&fgUjR%wAD0#LABJV&_oEp zF1uPs-`M?U{c;A1B*~N?^h*~c=;r$S9X%c#KEKNf?4K|VwjPudfLOcx>ad|AWvM=6 z4LoAt1wQ~if^e<^xQ*uVH~-JrS>w;Y1+Kexdk}^@!4WKy@I=IukMXZjKf1I%8ZcAq zalm(+iX~kD--iRR2_-Fjmk*!aRhP!bfV(k)AT<@ENTFo9wqqd)x3iZxc` z?Or@ggMZu6H=gGAUPfh_dsQ7J_#l3s__$I$gb@-`@HD#*(CT9#Vilkh_~7k*VaWek zm!hc3UgE$AQq=d|cK%6mm*o%D)DQ3#X0Ic_q~3%xfy?yRTlIGkmU)(F*0MDcx@^07 zCH}Z-uM8ZpmxN+)ZSvs%A!}tUUE8;;b(0tY&-lYNLE2 zGLjMBh0F5YKz!5waG*;xz^NsA!!7|y+NxK}y3g9^$G?%}GJ>x_ja`CPo~}wKnoxt&rqX>7!!bgqbO-8`OJzq%JR)q(N>LiBx-SS6ZxFW5 zE;776OCV}YzBK=P1S4mEfhQ~}LcM7aUWN=`(Bn6Dx+rfNZwi7WZ(Q*jB7`U!1P49; zjVW<1Di+nLb7q5K7=DKbf!`>)r|h+6gYw?d@_=VWXn<(T9~0NP09oi6iS8oRB2T{c z;su^>r)%JJZtzD#VKnKdnfy}caiCj@X6k@@B)!$`ukJ*=nHNhrmh~}%}U<^l52*2F{Y%t8G%m#u;XAZxe#5_ zzD<`I>VP2vhKHr*9PGonKg7d4TaWJyl(v5$M_7TYeQ!x?J{>t}Ze80{SC!NpdN0B` z-GPYkYx+1X*sr5G0ch-}A1MYEs5hRz+4Y5k@Mgho>(}`#@g50UE1= zZ`!oJ-k=Fd8DO?opyytNNsn>Jbezsnmh8k1jz9@^#-6UU?%GEVUcrvA{aC zij}kEDhH~6Bc>LHp0frrl*qq#{m z>air$@IaO-@8$DEtSj%V8eDI6Zy{ePr0s&*zNTmMbXB zQ2Z0ydI*rVmH;sIT3-Xp(y$e61O|A)L4(7tpxn_-n}*I%bfNJZ*=0ULqfZt{c9&@>puaiR3p;u- zuOfzZ-l98Z%}{GO+`%(l4yc8%>$;yv5QcsV(LuP7=D8+M_Px6QiL1AgMp5N~>*dkX z)J6v*=@}gLB59MBfRbVX1sF9qvwx#0|Bev8=urfwDjjgQ%^}(d%j{99-Js-Pho0Oo zc##v|#U$Fj-(4+S^8x8KV{%u4vC9j{G{JY=Y|G>G_{=Un;7_Drt?eY#oLF_a+l^R# z*ykzJjPR0f7B_;NFD~?|dFN2Ltb!jrWyjSBcgzqVTyv-zVwUtFfCU2WX1yKc>bLDH zdBTx*%&I;iwaJZ*+o2Rx>Vzj7?(|+G|L2$CUiA@~k2spoqkP*gSZ@~zA&QQogS@g8POT^vDyGi>6i~h=rfIS&XXVyn0aZ!w)+}8M39ygXZLB{yu$~MJsDr#IWv{EMVy@)8(8s>a~yynM8n{(<9)ILVY(uM1nmB0nZ60T|7nCLENBy34 z{5$iI4WcI2Vc_IAZ20PbOOYeRIuXKm3y7lCMS;%w5l8Q{UT{Wl;a1hq9w=D`nj~>gnm8J zroP(c-QN3zaKkZ11Z4-+LAvZWj;+ zH-{EY(+nQgB^N{?91rYVsl~;_P|tOKbQ2fEWDZddQ~di&jrHCB_S=2S zNij@B1LGp-3R@b$LmIO|ED4abJ~VXAkBrP(2<1aOyJ1-~A2(|rV{59KX@1WWn*nPc zb#M+|joi-8B3w|^!YJ_3o@e9?gb)SXm7t2hh;pqORQ9i!c)6dHI^y+0`wA=ped;U@!Uhw{t zi;^#NO-F3%Z?X{!Z&e?Jw5}JwU4SVJO@2?+8UdmvIVBTGd+=ra%#Kk%s~!ysiyE_B zAqGOoh-eMC)enGWc`P}307~;h77g+Ng&w?t(>j)G72shdR-=QywAdbGe(ebHy#vxr zTFP4v{kdNw22boX84W8v* zZ{#aHPaz?Q<&#kEwE3c`@aX|upMUGAlNefoPWWAv;S4_h>&0ORAICaEDPuEb37(fd^LDk072Qt3Z+zRxLB4T}Tbt?Pi06mb zq+juw!{>n!^+p{1xfwt;g@1>f_$O)io9dwZD?$-uFqC~QnR>I=3Vh#4D#BWjN zVHDr|F!UaWvbb)2BoJG*wrigMM2%z%I9_?#e{?&|wMaNQUB&7Wa*x)B)g}@i@cIT# zG$?~O2&tuP8HWAk@-dC#j^^Jh0Z^o#@;j|pWbh-i zWM=pi0T15aHx7(qCTT}V9Yv1ZJ%+y^B_wM=H_6M+p!Sq(KX1RqnsXh=)zChKk?xmo zx=ss+Q$&v?b5cQ6x`sEd1$ApWC?N$Cs)|3!l~Tr_=N@AO7FTo!k8xcRMN-T5S}c}$%& zWqC=)qP#hV+r2=$$lz-XrQ=E5FFxH9L9^RD`LM9#e9kH8RqPavTV5Q#Y;HaBp^E^a z;k!p(pDm?3c}D0cE^<}Q%qAobHDBaa5~3nQOqq|?+*LS|(154WeF3ysF|9228kyrY z3@Hn5ShMhZHw3P%6eWaa`lj57RBH6Mp<~?o`6JhEUQP?z1XJ|e9_Wcmwc=Ec@2C{0 zQF&s~Abdys%1?@?-^#>H5H}}u<{tnUfIx`?t;UX(p!ed{%?}f*C#*qQPlFu#`cM4J z?Gdj@zSeb%KiSGgMw}LJKr5XU3~244PW{$h=;TlC#Egj49`CICzu2yu!9fbutr67v zs*jmF*`;9t;lA~<&ZwKmA#it(AQa9Iet_p97Wtx~>FHosRNNv4h>MxFWRyt&IGx59 zfv_0vzbQWT>f=hfr*FLGGjGVzElxRAL=~RPmJ;dx z$t4HEJGj__(T`Uop27@h+nbn;oIcH+z%cB079D$LrofVZ8;zepAH$4&$t);*^vuW+Q=8MV*%Nyp>kLXBWyc?v^cIv za?OFu7BDDc=?rC7ZM@?{F*Q_-s*eA3yTpr+n)Bf|BJ?RUT77@=t;DRx8v;!sHY2SG zXfJoeYbVyZn9DU92NQ>5s1%`%(u`NGzoAeL4!wzG=#Mw?&ggG%l6yN(N90C!_G9u4 z+>#S(JtjT1zH7>2(S*!tQVG`19|_ncM^B5;A+`6y>a{H~A-O&<+PfNRWHm6t(NRQP zQ7)X#zP$lPf;zLXH~;VWnKJ{&aYS;)kI!`oKv7;y;rCIViKBe3Z+H~*Jfren0^Q>a zH7f=YoYHwo!mqn1hWF&Q$6@K&0$A5|fs#r96xOz7ChTX#i2H8JDs6=@W3z!K^z3!f zpu|2Qt7=%G%ri`bVJOi87 zx)8s>Hvr1ng%Jh@A(&2Gsd*(ry`a6y#yfq$6NLu%lbh$fF)6PcSbP=Mp_Jx=lsRhm zo6h{ahnyAs5>L0&XWsWu_f%7ZfEqL)o5a8A@kChGd>E7d2w*Y+?$TdfN;;KBU@Obx z!)6axEmh>va8N=0guPrCl#PfJyA}2 zOKf9&#$wJ&Y0#T*z$_s$E$2-mN>zWDS&QwEe@q$kh8aD~2=in5)??Qgsm`l*G5N-d%({Lodi3_ECR__D;2TDV~SGjE3qm$JjzlD@3cNK80f64{B>$~Nkf!U=rVgVGL3)Uf@AQMl+X6f@-Lmcr3Z7i?{Q|!gBw!R}dEGN-BQWEO zWqcT2wk^-jgpO9+l^?ohUdNHZ%jJ_FEEYUicc19VNkAnC0!#ZN6*LrcxEqCdGc|`` z$8Tl)Z3O(QZK!_vdNvQ@>(M~`P^&&Dc1$AP*}B7A+g?FsZmQ6C~AwMDkK3@)_y6(KnVg4J!kYj zRz1@+g3X|}eEX23D22wONW`-_ghac9R=gIV&*zsf?#Q-TYi33Uh@fe_#|1G9UN*1H zAlAxgW&d+NtmHku`th742*4|?i(ZdTsYa~C_oz$`oo_kdMog&PfKL@hX}{s`&qL!V zDenJH#%lFe)C&b$!LCUDv@c%MziX+%>gJK2v3ZY`O2AWoPnrqtgM(Jf!F&AlB0`KR z@+u0_viqEIqbd`*2Uw}+IKA&S=u`AoQ3F=qv>h?;WGIk4>I$Z^{@oeim^Au3Z|``7 zl{Z9|WqHMuAYTRhHL9)J)CnYL)bXp5&*W;%Wqj1}thy&ldbVWs(-?@S7$E?Z~r+LG8 zd$Hlv&gPt&dgqAmhbWlNBT{$<(ah*l50{aqZ5a+^=J+>w_UX?2$)7kyR)W&nFCJgM z4rn(X5lxT-8eG(L$5c##5C@rhhw?`Yq=Yod6M^NIqm==wnq@B$QxTo}r|`eg*j0qQ z*~tqZoJeCcOc}I+vo)h!nNxhN?cc$zEK}$5=jZ}R)=F$2P;Visg*lGmFDjiC$HZXe zxK32Epsq>~P1cmQ{WnvI;9q3&gRgQdykM-bAnZ607gK$zh}iNTp}xrX}XLGK_}Z6>jkrfXyFgO<$H4>!s zJ+%gmu5`KKxOSBJZ*Dp)W7`5#9Tj?0&yKOg5_O+gZv->F(AH4FjQwk@y(e%-!Q!+(O!$Yq0U*( zff%u8DS7RQ-mIA4`iUr^iSmIZaZTY=JfnA1VWAay!Ip*q*+m~!=@$N!^Ox;B`2#rD zH}8o4-7bPI*rzgJcWWf-_|rb4GNBzR*VmV+h(EB>sHV; z@kCM1%{nA&|C>`(=L>mWI3~!(IeC^b(r=}Nw4nE|&X$wk=OVy3CI^r9Ix%LwNQt29 zX~L1Su!LriBvCBd<$HbgMVn30HTuZtzj5AtV{dmhB*k21MYxQj>FeD0!hS#e`MspH zpbAThXt8nJ7KR1usxFX{#bTY4L7~!l|9|?vv{hB@XAxTc#j>@>JcMAeEPOmSo%+-5 zl>wk+k1(pUc#qd2-EkJrL#WVk+L|oRxjzYCC+~u=@xv?q@cmsE+xlkT zjF|~U8Xf~%qFss|Hm83@CE5vaH-cD^%7TZ)C-pTfYp)NOsSaLdvMY`+W$`~Q9fHz5 zJDu4Wu^bBamcCX87aosIUIt|>e5KHQ{0@PY$e?7!mpF4M)@7r-i+VMF7p_k4?JaDtJL;MF#-S+C#2)9#{FJ~+esI{$Gmkq=5!#0<4fB)|ALo53}I=GVxw z;(*DdUx8ueB@}1$W>)YPNi^ek*fOlN2ZWg6wa5n!dy4re?mPr=p0UGU<2emeVF2*G zv(j}OzjXy{9$l|JE`0oHOw?PEkBhf#7}b&%*{l4uT-Mg^1W_c)RI2 zrDKOQ&;6Xj?5#YxA3vBux7jbBMsw61mN!qM*`_E8AiC~NzCaKyK}4$0(SPm&LbU?q z3>lOv`jJJzx_}UF$FZjkwO}vej3pBi=c1 zk}2@+3y>iK)-|j4lV(8Qls|ji8(jIft80>zqw!mBS;bVuS8)bz3)mcETkKoKi9*+! zPTEhexjqC*k+3(0-G23*NoH`AC@hSTO# zaM!?bE<%~+sK;?{BDE)GhjtvJ;w;Mz`K|5I>E?`VgB=~Fcc-uX(?(2f+IG~^A^Uvq z_;X)(B6kT86{YovZJ25)75T|N>?#&QgeFmPKM&$T7b_B)yblD9*Ux-Om|r##*$D*a@4 zvqazacq!^k-`JufdMSKx{qZ5p8>8U$G1C+^&bvnSzvtI_0?TqPQF#%lYu*+^4k_g# zCNZ-#Wk%z#;w60o-nDYHmuAHF21*AK)mPs~XqGdUlpOUJD-HaWJVuagiN;V ziZYoWq%a74KLwEr);X4eVHzxp_IoRz`;8Gt>#Qg@7g_e1J7a`0{S}KpJ2uiz6zC=D z%FeDYEPaq}7f~|j=ue8g60!|8gwb|HAamVJ#VwKhOJ0uDcNi@rD=X>(xh^^$vKF?t zkrZVV3h69j-)EtFDWUasE(Fxypf6RmgfIw+_oIr`2V=EljJ2C{Eh2$jx_Uj=))wlX zOUO55HU*#s20s_2eNp6i3@U!S3yF`-MX(b5Ro?KQZi|;M{Kbuw&F44xXy8p7ibu$Y zURUwMUFwu6t={UJkIu_Tb<(S8|d?_Gd~dnJ`A1;Ux>k{9#{ zRsW}^FABTr_4=!3!3o5YEvn37sOU_g0Y>a#iu%Y)yYk7wlDaE$GYa-{=n8IqT@4RL zYHZ`g(7H4e+j|Y09VbP0^^j}xD?bf3O9vS$*yw*I zH(yS)iIro|k`0;R!`$2Y(h9LzMbLOLj+aB@>Ubjays!~oDLarGHf$iCyGz^@qv>MWZ^C|XvUG!Kw z4g3uP?;<^m;t2`3FPq(=J(9Yx=>7!w;p)pL8kg^HO=DsisrM>aR$My=hD zX*;GDEy=r5XHZ_K@fo!m{Mwq&Zc{aM!hh=4pzbS*@@3!=ID(1YOrDMTb!8Lh6FesE zLg>cAwfF^PW_ez7Pa^?fp%8y_$^7qhL4FHt^?Le98>BD(@k!7?r)YY`bo5vKf!IQN z@=smLtP4@kqme4cA|KkYzki8wPT_ai%~mw|#EvX<)Fuh19FNQV@i#W0(0>rOQ zW3MOu0icH=6Wn<_56pS$BTaE^7GM7rR}-SWY6c~L>*hN5H|}Z~Vj}KiApehF%2_2! z1`15kcZWd_%W}r0Yo7>xOwU>hwxph+W@+Kd7$qh~x*CpY@wMKscRKOC$NQ%0HzMCT z;F;NH-#OK~62{F)8}iccUFx${Gp(Y$Y@lyw>LqS=biXtKd4bZpOTvdoh)Ub3Xain-m}gs9AD)$e-I4#Kf?Xr^gtQP};w_ zqIq=fs^UwJvtQ6P-Ok{IpN!I-D)^qeNk>k1FRqu%s~n^ag#!N4z5CbFaWi}GUx&DN z&0NV<7eev%TDWM=SfN8Q_5y>IO^Xq;|MpqIoAtbv`(XyDDIQtA zmOE&|msvBrTu%X$N>UQF`5z|(+|6vxa|w;YPMac6Ax$$7_up+<-kVK|5J+%GQV2vQ0SdC zxvPL*2~CM|+1}-aeZ|RqE8JCyB~tx02s(D(-q&5$VNmhxA1ge0rl|W`!yY~}fi`OJ zgG;~?%qQt@%rkO68iTQ5-V*$CJxW80M4i)t_sK3#ssj3*z35Fb6r0LFAwmS;=Tl=?$?&Ph_ z%8(5mHdLVbBUE*pbp`UD0We~W-CCWJz58yqQL3=)bxp%X{L|z_`lKh^?(p9QU%~wK?>a-t7i%k6UG{~H$AU1yy`r)b@`uhv?V(${lx^sWv10!clI3nx3V(W2-`DRDDONN zfwA>cX^S6vu-7{()M=SLYzM5xrVWpBck-(oc_3UO=7~ath$q?&MkQ~LJN(NXG|h9v zX%uR>Cx2&$eyp4-%P7ZjZeGFj75n-5ovTzlAAOibLWeaGH=ho}(EPbtHiCfN$CBeW z*lz$1Th%EJ1oh2zo1bE+!lcPd3R0DcCcWt$KUqsaYHS8UqRcvBp?1twnf0UsQ&KI| zSc|qivw%_SXF4wA>sG$qT18kJp zCu2a<>0Y9>AR+HRJS{j){#%m6KYp`$!d9dQuz8}bvEo&!e_l*e+9104nmC6AyzwNZ zluI^Ft~6%X@d!A9Gica=0s~qymy|=bXnf zrrOgsAx~M#My)DFij)#xds@QmliOWbCxG(b@vq<7>{Sdkp}i4AG%zgk!d23`_k891 zmHhGT4lBzqMve>w%kr)3gzNh4!GPhh<7T?;IM@xvovHj^|BgBDdY)p_zgFh7Za=@6 zx9vKzQ$RD!WD|l-1$eIIgWantVzGCs`(YY!USP$LG=Y#Fq}75I2HF_sym5(kat;4r z;ECazL8QZ^Vicsl9-$ABNYE8b4a$&3P&fU`B0f;>F*p)?wW0_`R$q*;W>4^qNM(xi z4hq?9fexcemVnp_uwbt#%Q9)4 zx+pL-;?i^>Z&5_m>yTXJ>~oql&!7gSEm+WGf123xWZAGf*TR1rHuio9(rDNJ#_pNm z9%rMrXD%WU_2I+=a|N+B+=Jy-(d+(<-8*YZc9Y&6f^)hREnX;7#|ey|3+piehrl$s zE`JSNx&3D|$k%zXuyC#%BZIYlI}>kj?xnm`J}&1x_X$DY(xiDZ8hZ?%@1LzgDu(ZP z+kaC^;qp9_m?D}H5x&BNB# zSvd(`(n`3ApGlCebca z4PN!5$VuOHnjpA8CTZFCJS+<+M1edw3p`u136U76!Rr!~;2tR3h2gg;xS-|0%?qS;VOS)a(E!>(af6Rwf2?HmA^+-M@`mLWrcr ziWINtyllNw1P!FHzl#NqdcWSlEr08B+&d3HP2hVYqXF~$!S$f?t}>8bi7MVp>Or@1 zRb7$vt*iCZEyNiI7)Y;4<{5d z?l!@0Oi(YssX%~)i}%>s8oO3P6%+R7g$ClI|CrGpk?ySf&yP?MD-IOeA=X%R)f)k4 z71BYYPh^+7b+v5*i-3N0lL23G+2*(DzZ1pS@{5|lD8;>ILt|UEu6@13KO2E3Eu!FD zNKaqd#~cxXsJbpB!ywp$pfHkP*Bt){Fu4_Ha`z+t)_N+epM3AKYm7sib{;c*>miq8 ze@Dp7-&AtyzuGqg_1mbgQ6?)_8MJh&DnYylV%Eu*o?Kt02&DC`5t4rCQqd!5me9&6 z?Wu}d^p&N;I>7YDb5c*#V(VJ5Tqtt}JN)PjE?q|9%Tb6m%SFTr2Xy2j-~)(v2`h5~yQN!pZ~?~X z>KF+P2O6U8<-!I9(0+>?g`r?*vI;d3q{TvtZiQ$=b2+;9f0|yLIi7h^$IQL{H5ReT zx#$WGr#X83u(QFfsYE@wg9lMFFM35C+5PcAQMY$ z7*c98x7C5L%K!p|^$KwXpVTUj{Gs}~qt0Mj)@wW7(rDa7^U7iu={WBzx;bML;-Ro<6Q zAc?A^jlAiRkZVQNOV>6S4o7dM?I@VhQX`CbB-XelL;bw1yuA`VeR|0$&p?N}8q&gh z-EtN0lUgBQU5L=rI~eHt!K(8=;|{a%{WI6)<*3~TJj}(ouI-H97}px<(&4@@;Bc3e z7F;gmZeM?uXbM)}dnX@ReP>@DlTR}f$J$f9yc06?O&@0%!R*sP@({0hf&^|7j09x+ zt?dU3_HH6ySSzKLGsr!mu=&-R^=RLSyLc7-3zbL|%EI8-;mBfG3SFlta8G%Gp$R}%`svaLQ;v+VT%Ju&1~^zuE~i^excR7>jfc`z{3M zld>bJRDDl3RU6x8VDZF9q2BLvd4q759kW46Y~snxU6L#&JYCBQe%o2ejuB&c2j&#_ z@39EcNNYKWDJF|m24U`f?gd}xKGb>(M&pY6s&XOW7YF)9Ds(|0VAx^cey9X1CG*Ob zZg}Cx0tlQX^w^3tR5b(WroJI`8!RPkG48K1W!~wc98CX=AI>%MaIb;vpghwlCJV=2 za>Mp@dz5GkG3hcK`u-oXzGK;Kq-pknuz)4Z65e|dZbx`Sc#o&Q;LJDfzdE4^9qCX& zbeYWTuBxU4LfisOQs7Nzr${f>GfH!z{Y!bU znTtXrkzc@RKH(k@SqN_Q1^?*?EwgR1yu~x)?SmKK^9N)NiZ8Sd9db?sAZ^Nu|4c*U3 zJ?FuzUrI#px-xGtZbkFu&O{FV>N?Xt^gq^rn-YGg<{>CpMZoh8wU*4c9DyPV7#1Rc zwRInB3IrV7Y%_^?%dH29oA0MI9^W+oQs23uI>BD%C=2k`g@_-w@6#ujxJjJ&WZUlp zDj8YggVD9l;vuhbc;oI{aR3wfjuM)I)I zxa3P9Gq|81;L;4^BhtG^74L=#Uc|oBW~jVT?*6P_*cdYUqkaKIpy7{t#7fsMJ&~9v*Z)(Gn8}*F=1s~RG6i_R zKJ7rIevfV4>|aml)97)OzqoR0Q3Tq zbLen4kTy`&OPOda091Px>gcO>9QF-RQ=&AE!s3mGPU13lS3kfvTUygdo?*{t7I;uE zD=Z#Duu1U-M9!j30Gz2&_dg7)e&_qI(v3i!g;7UZvNkDGc0j)%vjt3ME^_BQd~+_Q zb+UDt&uF~cL*WB{{TUqBx%J3`Uk0P07jz`BqK?Ks3Z(eB&7w+P!oO0c+sPC5X!y?n z`E`UPK`J%rEL@aZrFnX^6FeAR@~bTPSe4EJ7h~BPfeqGS!t>3Z)nPivXFvzwWPE0S zJZmgM^HaYZEH?1}p7{w58t{MZ<8SejH-NB`2e|BXQ&;bCZSapw%t_|bPl%`uLs=Tr zIba_~XJ|kXGRE1S4)a_ zL#B_`Zp(iUp@ICWvv-IYW$DA2*MPObbO`Af4TJsuqWm$q;A#33NMJFGVM%sH0HW3? z^g6?wfj|XLsd@Ct{S%D8zON%S{?AE#Jy_N`)91sn9DK)mP^tzhcaldyz408FaYpp> z2SeO0>2B?EQOh+h@{n3!B&y(^kI(u@$GE&zqT~XKd(bC=VLI;RZq*TIGw4MpPytnN zQ37ut>(9nfrJJF#q66s{#e;(pj^LV6#c;s-l?4d}eWf=@QnEEIaVrT4X(UY+%*q2j zaN_Aj9qhzI!(6ze@SA`gvx{BZp=nixl!I+9r$|2S1GS!gefuIf zlE+kH^xIe41eA2*&p)fme*!gt>nMHXSq;V3GGeW(9lkyKtlH+~x7ql`&?$#;#bZYj zuZ&va^cJr}j!?+^w9q58Tt~RLsQ439mJh_q`~QQ-VUxH&`-{>S+*S+?mC0tTIz2*V9@T&0?C#l~$YE{oA@ z>7R8_Gnd!k`F)Ur|3Zwf7I|=Ov$+r?BlfU=Bpi*z6<=KkU;-X8zK-(Wb;_fsHmGxo zf8IjH94cKY%dNL=0xaL;mXBj2iIX-jInh072CfPQv)KBF&q&zh4jU)@Sw z>-}4&|1YNgu6dxTX65E(eKDgUEi-kCk2)Zp<@4dQi}J+hCOu=uKvAVCEyvJHr!?7Q zogj6EGcnvHz=R?_2?CwWJQuCWxAMtl2;`<<^lr-h>kMn89D=o%dkWfsQe$9%+`Wc- z--pnilcrYB?>ho>6+vQPT{1f(KCefJW@eIv2y~FN)Z;hscmSe%Y$Xab(YFU_5%YJ` zw<*MKY?GY7mat0Btt_H$(4g_x&$wQV_kASjNGtWPMya1Uy>}upZ{HwHufpw>Y zkCG6T1gD8^6TTPFv3+yn7}#inn1Ov~!f%GzuNMuJxoVM$aro!x8y~x|HWzwz_DGCg zPZ}IEPEzP74$s_ZH%$^-sJ;T>mBP}}nubJeD1HsR) zz#>cakyO0you46W(CKXa?9>zbBil`K06#kRK(kMPh^r~E&I~|Ig{$5ilk9)>9&bYhSO?l~zqjfz{d^z^B_ziR2i38%A~D%Cz%~n; zyz!i4h~wQXLIfm3p(}y8KKhJ2#|{~5FFtSYvqT;JX?8C`?!vW2;L&I>*iccmFEYRu z@nGbkH<1~XgZp08)Y4#ZMMu;nu;`5lzAd#zJQV4iUg9Ef414SIy|C?rex?wv4ja&w zo^f7L_y|!AV9rjI#C>7sg3wd4o#C2*RL@KQ_P6%mXUeD{u14y3Py;#T#6>q;b)LDN zSIov^WD_3>eoqOPq}&H(#CdbkkT2|jS)5OanT#3jzq*klgJ-+OM;`fCytp#(#&@); z)aEyi={V)}jf2W`DuL__W)nali`_qcQ0uB$ICTb$uj$+NEM>2A4;{PZ9G+pV8;XZFJ_QQ zN#Vw`?pWh|axw(!u;$!ejlJWc;rJL&2}U^ao^&YzX#tR!5H-qF^HT-C#&#%OBOrrA z#&|^J$(FlaQvWY*4PUt)hz2P?zVSyNuH!T6ujWS? zF8?=!V*>XUv_SZbx~q{v6{zD3QN*v8+p6iYH!)=ClsZU%^9R_YQCOH6Y47oz zi@tD9I?8|5d3>- z;%|=qpe#J3To{K#I#sIe`Ir3RB6V}B+sT_7KxhALM&z_Bg)tmWn?%=Ex}B%<-WTn1 zcd@V%eU=Ho=>G!TKJ$O^j@yYWaYs}<5MW6yK4eLrB)ag$oY9!EqhBS#>N;pof7D38 zp6U?k5f#*udhv2M=V7T!qqgsf0u&%Y9H$ZG*L9m)$3@?Sg>b;|whGu^Ra{CxS{=BCk@Fa&%4bh5bh}O7?9cdt zFD`|i+-C`ZSjp-ad2-%EUv~|)!1m$8XbkTRH7O?xO#Z6cl zRw-nIJ!)iFv^^fSNNXvbL}Hwnl_X1!08b#`o<-(>oV-EIpJU==@_lqeuYP4XsN#6C zc=X2vJ_zWTIq@Ato=S)+Y$2@AC)>agKuky+D|)P`&KOWzGRVUtUF_S0$ zo7|nZwBv9Y{izo%ykVl9OjI{uu}A5k@#_jh=Pf4uQG<}}4iI4_ql?X2Lzwv)plO}J z8}z#qLV;0@O!Y5SFP~ZsMeKRE*eD;GYlFi483RP!rMs8v7eUcdg&QGP@B5q>!sL^^ zqbh8e&bw^Y?18jR5L7J8W8RfAB zo1O9~F@`kor9k4Rv4gSVF}i%nnGLeUuV98-1n6OVyPPHlc)YlXYT|%Q(3sCToMIbl0sPvt$?DPKq=2guu&@4Tl z{nzrUCk9OAe;JOY0a~WHh3n|6lt{Xx*{%JGtC$+5Tx(7f&~N}827jQO^0|j1fC;(*Up{dIfenxt}h@`J#a+pDndflX-zLS`^C8iCIOq z({D{SyFM(MQXcYC#6H}53U_Gjl13u==JveF1 zX7E)7$)pLPbepM{!u^!74cy)QxV(mZP?RKu^#Sj2#5?r85Qavm)uN^72qCY9$L2I5 zrCS5%FcemsD214O*|Q9SC&*;FRnJ!yvPqfx$KN0fMb#nN%F4Z�GI0-O};h4!Xlx z)xw{L$HY1g3lC?TDMHl(C)em#Qy-g`5z{u_-&7m5TF>}p`bzBvfC0Pt%=+^rUAt}hzdfvfEOQD;O{eI)+I5CTX56Duf@;>{`wwCf$b zdKyL&@q(!|$eygZeZ&EI=j(fXS%o7Rfzoifpn|s-Pq^_aL7RI|dK`f6zXZk17BI?_GUt z^{;)#qVX#*T(#jkCYkY+YKcE(7P*VzQtWFl4*mS69(m8Bbo>#liYcWmu%iYfAluDQNBg8_aDS~c>O8sl6M0-oNmJ0|sAi?)J#3KY^YL8Rk zG^Hn{H#=7kq|Zt5L)NL*)bjJh`E90>db=NaVSoSF=lSoRc;?Z8)4d&gIT(^*X+m>N z#-j03CYhC%F;-{!+2RFSnFL;ZU?*$`rV{*KyQ^h9ZIR~W3&L4TJG4@#&in%kAojWt zSEg-gt;L&wh%XUPWrvCoY$Ppnz8X%8KS$@(=JzD!W&TcZi&+}2#6^;GdI!Pevch=3 zZGju!+G}v|tQS}3;c=!MV5P2<(6SWf1$f$tbZQ+1-vNJ{0sK%KX{XqhqKRcu%e8ao*#V7fR@)!>ZgZ^u2CR9>P64I0kV%->1?smg(o&=O^v`91SKvI&hu<+Byu>?<9 zoc>~4w8K=d)DrL0v?Vv`n<`bh#@#o8B*yE(JkNfpz{r^P^T*O$Xi#Hi!jeU>+Dxa?a zwF?NaAm0o|TULVTdcm4=KAd1gSY}ZV*YdsVq3*`?H(Py7Hw+MZmSD_e<J}IBW@X45CsZ@T-oVfS^^p_CO;~)JovC7;2Tv?Iq6#|>P zG|%Zve1O`&xz%r*vm<#@hDQIQE9|V~xKAo@2|omG614?!?X95aYs0YqwNcP58WymP z0lJ8qj~F@h#8mw`J;%JoXf?A=+R$W$%%Jc4K}~@~ z7n9ad7m2Ox^~66xC|C1WjGQqM`DNx_57SY%DOK>|m`W|*uliuk7FNWi%iVVyF`!J^ zQH9Wo|K-3-cab#3G zSrb2TZSlBl!xvB;C9vt3H>ouOkB~>29RR%ov3kS>d4BM58uEM_Qv^6iS1CmjB9vf(Ao1zoXmX@4!CHi%xBelwcLm6I#DLhQ~m zBU{pRT(xax@S90}Vo$(F3;WG;IG{J9JD(C_ZnM7r=*8gz&kzsy14fK<+2Hz5<;keu znhjvAR(@Jm+erAD862zJqNnyvZG`k2=lGKlXTtQhzz?YR`a&M1CrB(US}KdZzYE+0 zEYkbPwBO(zMz2Y$0P=tPdlFTE$!77FIjuAcXuS`RXB&@-Uez|wvQEX?%Ijj}(xv74 z+Vo21UNjxNCEMZc{(()N_67d!#17A3;`ifAwl1>~=>G-_=%Qe-vO}-SxBaffyf@Ue zP5A_@#58Sq4i*ECZVCVh9y&%tos;TcF6BRX(OS zCPo^#F`%vdwB*x{t%mfb0PtJA^Z;X4DUr=J8&PK?j7?ApiV_wqwdDI7L34*=zh3W? zgCx}dCQz?MTy`|>PTD<@GC_o&5A7!Q_F9yz9lPGxPIe_6S8P|2-mXE#?ELF(NkOhG zz9sss3{~pn2!@kq;GnyEp07J+Mvyczw#nbwjqkc=gck*ZLstLB<4n8ZUT~p8-;jpB zZpUO#tgq(ou$9H(qjwRZ4vqF)GyhOCMaSUS86fhHN{xi zc2K2#aDs(vd)Hjhf8G>wrnU$FOMBg{z5oDW_%}5NdtoDeFUjh2DLjlx8L%Nw8V=D`(L=GAV;i*b08~CD!q98X;qeM|?XCFc`O!3DjLWW5ACL1EX zPXaX2c(nLR{4o6uf3YQdbjxYdj`=C2)ik_2dHLrp?*~t616La|vsXCLRIcr(pz=26 zcT&JfGTi&D!iz<}QLEn13N|IGQxA74^w}6nGNZw1To3(qb4L^PE||t>L)C)cozh(O zZE6c4%#z$l5pM$?D6WxSjirGSSu8hPMR@>Z2XtbOeYwQd#j!59lUL#V-r9fN9Ro+B z#OM)9KTLp-b}GCJ<@G`5%}Qw9U3E`MmJb9><NJ$rVVC@yRajYQ&&t7~Zj?tqy z@U}m?#oF9&{#9mI;$Hu$@5}@`2ex$uIUL8ya6QN;#viS6XFJVjk3c%WEvci$UR3nfUe$ZuX8;dthK;!U*k3q{$YjsX4qr2#*(` z!R~M(sK`|z_=&$TzxdvdA`;c~mG}uifr;PFqy}Eqc{u5t@%D##ok^$-Aa>sA2j9u! z($)Pa()}RSyICVlDJe$!B#ds?q3QfnI4{^57ISnbjisj{#A$%AaJAoURjDHoldasV zXjWPji3Qf^y4dXCa8}!8q5B}Gy%S2^hw86mv2spF9UTWBGuu{)P7yX)e?nGhJ-aRA zN8?I=?RgguJ2qUtvOBTLTETL_EoHSVkBGx!42Ckg#l#k3SIP20%T4>wHBXX{Zklj6 zq5GRjNztrPspZAdTXV>^jUCbwubWSUj9ao;Ff{4HJ@CoMAA$EpKh|U|w_X)-4}i5k zK2%deZ-cqoyjERX$p-0&n;z-L5CfJpY0t2^%Ow^Re6!*7NL;iiXqo=9k4(_xulQbV z;WLg7N;vuzzC>@VNA6e&P$6ADeG@fwn1E^2MNrwUUq=mkRk0q&pQ7zw*)}9RCjNdN z`vSfcY%N&~0NS&985r9e&)7cPiqjAa>M`3zZdVy9FE8ibsln!&frbRKBU`ik0E~=P z4Nxxv)Q*j0&?4KerYdIyd6|m%H+FnD+Oa3P;u?=H-<>HU1-4_jcefKHV4Bd*tWbL` zcT(dj2Oe^8g1>RE7^Yez`?i)sg}z_BeHe=)`F-m`eFh4}4lFCo{@~iD)8pP>^Y@tH zH&7^u8;-wfVgN!`;z6F|fgYyfV754?iUKAQng7N;0D7KxqREpr3~^!|UI=~y`(391 zwtj)|y^q#?2zl0_duaNE;OQYGVZB5GT`4?@o?%DMj*NP8Qf!L=1>HwQK0AJyjqx5a#Bgx zGk}QV`StJQY2+HK*|B#wPN*Q6?Hjsv|}%K`Q3E;1Kml z$_LfL>=N%xBA0|Fy+=ZXA9mpD`O99)n96}|=qWc)_wxPg4C@_&@+F^F@z@w2!_k%uoj6O?Erq`0jXr0y$HPUdOl-~>p!RV92qx41}52^KW#u z1KyB&BuHngJW8(?F@wzFwI@Z0I~h4GS4Qod{gj*(!iSz*kMFC=`oaX8w&C}clas8n z#|jb5cvXk>>VoO~bke^#dIczh=&U&rm12fnH2v)4l z)3I>6$txx7`A`RfY2R!J)eg&P&ZLuk__JS9Jl;(Xt_(-n_%3P@^5d4FutoXzLS*Hd zZgk1)%XBp5_OL!z4oD{Gg|tJXqh?LubbZzONoCvbRvt3a8>BwLv2V&`qCj0Kh!h=)GGl&+G4T zqXA_SAfDu0V&SV236)BQ^Lj(at4kMFiYGMT;iiUwaJKs(xkM--eLO3=$EOwz56NQ; zzN{!4SlKKAW2x&XEW`08+HVK>?M1Z%R51>7A*r-RikkAxc|+g7zXj(#)GYrysZ+ed|0OQ zC2_^^Zp)EIHU(h|u8+mzpcA$^?!SFw4H;+@V0~}^=w|YFKlq`IF#dAjVdaNEX2|PT zW}eya{uOkc0AGc(`geaP94A)i8PZlz=ngKK*UY0LhVj?W^4i_@UC@#jCJXHSn`3vb z=Ht~>PxDL`MpDVmVQTh4p) zdyw&Nq7+jDAtK;7-#+K}$J-F-F zS{#Jer`5k@Vhb%@I_;JK?1Dr|F2%1TGb4}g_`D?A44;Li1!yhas1Hi@7zEL!B)&2~ zevixY<)E&myU%)uq=!hpyKs@XWdg;_%6=`5Y)B_}PmJb^#}J*hg^+=%uPV9~{;^g!+i)l`I;sb=DSvd#2_b_o(=w z24)SRBI5oxXdE!vY6g9=T^YYz;>@n_ZLn_~A~AXiv?$QhyHYPIAm%C10WP%k!cAru z-mJzeKGfE2;aDt<9NT=&g(3Y$goqO)OsNkhR$}l@L^?G}g!x~ca4aP7>hb~8>Pzx) z$%eR~rrXuUx;@5;=1-KrCNY1VrE8;=tNxqY_&k^w%_HBXx_0w=z%6cpv92X05-9Yu z0AFM;5jdVS<2Wuhx9hk@!(gGjtpr~fi~g2;#C)H0#_F`FGYL(Ux=u@?I%@}$(hE(e znjq~5vJp8w8vbMFMAHQ*M4?_H z24rM;=yZ4j3MTr(3o!iCAR>S6Lgzw(@TK1qalz=scChq*1Fun4(H8=s!HQ%S zil^(NX)ytZHOt7n4@MR_N<0Epn<}h*5xBm8;D-Ot&~>`u^)ik4U(di7tU*#KRH}3} z)7GSzduTF4WAKD24@T-a2k)cabY&4_@M0+0TSPO3wEd2WJ~*mHa+1w+HMQI1BP}>q^+g@ z@Mft@fjr9q6@nm~`*?FGy@6OSLvMsADfFStpWsjR4m6<_3xa^p<98=<6hD8RR7;xX z5kf~?xRRAkSvA56B?mR57vos>ruQ>u30f+plJgQVECfg;)yXFv!wMwl6HFbeyEfZc z#k9a$N{52j>_auE;Po||U#wqJj~{v|vXB!N zW~h4t^WH$y34_OC8X*_~O}mOkre8`?yz0VZj?qn7$L(aRHN0?ajN-{szj`?$$*R7w zPE8AXZdhhUZSZT**n4kinP0{I(M@n-!On19BT{z+xsfXTI^I;Pj?kQggb}Q0KA-Y# zO^<7#PUR(I$Yl3w@KTvvJO0A9fJE_5BV6I3((Qgn9o=*w;UJ(3pjbBA;n;vgC;r!YhsS-#mfITggA1b0Nr6X;2IiCjMXlp( zn%lCRClh%_ck7H{PzYZXMFztHiY6nxnb&oJY=VMUw}~JCS{(*jnwA!imb~}L8wZGW z*I;I=4gJlNDw?l`QZcF#DB3UQ?_8zbMQGKWlG^T=mYFa_A^$w#Cr?NVDp}SU<{$v0 zD|{=@|6g9=1v{@O=@X20ymo%YGK<&P`;k8)Np}npP=Zx4tmWeUYt(1o%N~xh)?&@q z`y3w8_aT+l%H`5^?cn(y_8p@vTxT0jsiK^hX_0wg#P8QnBhz`EDJ)&!62#@-Mrx_@ z+?`vC?j8Sa8G3B8<1{H#!~R+pouB)O%w|v}iTDT!>edQ^T2lA@P}M}jcdY=maZJOW zPvMN8Vf}aaMd)w%ej6DQQZ;%nSRgz!q2g5|cCf+$1e(Xw!2d>wLhOZ;g#<8XT1VkR zNsXWMZ7|3JS!CbSiuRHBja^_i4pEpPys9GEvwH~K@KPJc=CkAz@EsR^WfpKx^zdso zss>4J#8PZhDk_=f@t+X?H8MA7@t^(~-l%w;jev>Ki*Vz6FnoR7H_nd<7D&RPJ&ahe zT%kUH7c||~i&@=i+#jb5o|RCtjxjbA*@;Ox@B+6ZoAmGlNz;hKZ*T&Br&s6fw zr0CzZCnAHuQJ^!&Z1UUZflWB2lo#pNjc5-dCD2fm3u)2*dxntlrl5k3sLiCetl1j{>jmg#vy2Kcu8InXqjuuO;{v2dAaP38! z{dU6FTi02_x=D1N5=a1_B}}2*dOw&UP!vQD)(C}6r+kNx{$R9-jW`osYVej_e=GK3 z%B@X3j}Z(3=U@6#w(Xj!n#Shov}?l88!)k^k3#|Dn1?Y`#Jic1HCWk;`}Cjv_2umK z#Z!$Pdr0aF=??oT4QNE6XnPY?uAb>LXy$&!1H zHUN-6Yi*hqeK0yidN2$FmI(ml0)diyyT3+$k*4WK`^wd6=rlJ=D_E;y_-&%wrgP4y zI(A^BPw$X&H4OWM8HR|z7)!g%i$VJXKEVO9HUC3@(fjbh*;HEiOg0KMpEww<&_Bg* zm=7<7ke1(Y~^NdME_qdsVs-I04=lq{IP6^7Y6jZLbu}6Lk{olY!H?;Ulji zCR4pwvJ2yzYm;)4)akoR6X$QQ4JAL%3MNLSY?a6)9YyB5dyA5W=Kvc>#ueb!itHYR zDhu4m3!!h1bjA1X+r!yTrpjwOr7x1G$e8wF0di6AyrV%1RNj3a6lS{PQ`zuctN!RypA66J9AffRY4TMiyl01@>G~O&^9>E}fKJP-ixu*}>v1djmE(`E#Y>N(2ojfA`ce0_0bkb} zP@g!YQxo{jDF_1O#b|nBIbwxjQ)3FT>BS@Y5wd96^Zcu*}=pV$VrGrU`L)!BTy| zp@Cyjp#Ac9Aerf)FsJ@38IvhWSk)vw?4`O2-yMuRZ(n5(2W;?y#=tNkJe$t};={b= zIbYzipt2mv@mi|FFDU~kNO>=`jCgLw_m!QlKYR~HV&N@7Nch@{gV2KFW3POj0VpA4 z7r`ETIr$SgZwn@V*(1XR3D(?g2ki(1*&BJ5X~$CCj%7141$h^HYfWEo*-y=6lYz+8 zfaUSRRRXy5pN_hWxA|MvA?s_p$MmP7=r|N}0u>{Ww1c>;# z{B@3-Ssn-0i~F5r=NV%BiNbYzAp<+pbgA~IIWt35j+m7{qUFoTf1CrHUmB5r8bl7i zRvvNH;q1eIh6cDTxv83VPe^lvKyFZLM!jA!Z~*}DiniV!X_ocfPWs&y6=f88nKs4S zr^g*jwT;1=2#1C=-AZ&AC#6|YsH(rbsi>8A<*|uI`>RQ>AXo(fm2E=s3aJuAEwI#b zt|+i<>1>V!{l17!T9RlX1%+J(5R!(cgU{Bbz!o);RW0X{l^-hNy706D&62#)(Ls`( zbrcME`I=nez28++r}A zjd(ZS3zLm78q$)xnNr`bv%HF&Jr}Y;x#->TEPX863JuFT84i6Y-^b!>DC$96C|-Iu*|wdY%!NWaXlBQH%P3 zLnT99m%Ev?#?k+izSaETSyFp_OZ~KoU^(PV5pIjitNv@hg+KQ5;8&H(IclZ>KNyGp zIL*K74QX+mKcqoCdNxGG*On}?X#&uDlBwqxf{IKe(h>*)6d4O`!U+wv%G%a`?yZ`V zLSH=y{(oGZ$D*THvPD0L0p1PqUKrtLco5zrzW$-A?tYb}9NwF{LMLL!+Q$VZOGt*G zpoy^L^QmMZ!Wq;O=KD3kwusZt_eoYKd;)Jdz{eI#)+jmncPIDK7QTY{e8~5UlPF|4 zQa5i!q3H8PG=`l(t|jC_Zb;!*h<)Q%*<(wz>)iLVn|nppr}}|gM?$F6lXHajI&pVG zy-MYv2Osl7Ai#0<_$wl}Vll{!1wI5Z7VJKHFEr2a+d|c;_leg!Y2o9RFs*;BkTzC>>W=sO6~to z-mXon=nPH$S41I^8mO|4D@e2f(C_?^QTW`WaFgi$5aWqN=wiFyKwHE8YlIdnT*-mF z`$V@HMqya>sbbz-Oi$U`+fJ@gJ!i8Cz{&ZsAhJ3?H75#i*+2)#X3j?dZg+YwuGx3%a_07dre$OBCnknWqlT%=DS6-%XYWcFbNo zx9j>akf%ohFJg<9uj@B?ILHLM<(f(2yOoRZUr2tHK34mk#7BXM*cmN{M{3&HHR2V- z@sjspX10vQhxcAWLGKK(;rydc&_D2I?ujO1Yl4dYJIBEeqwvbh0N&Fm?WdXBzVc3? z(#P2sskWTRh%Je#_mnP?ivuIGHen_dDq=ETfG-WOQ2p3!p91TT zf?t#*9t1vV=k^kpG#w_Q4=wp>0h$Nxm?l77Tf-%a-zt4n5G>BXKv-tA)xASixN}Mt zYPU=y4g5KONrsw{++k?j1^jyuBGJjCQtR0f!LBt~IGTcRAxbE6TWy#w`vY^XA}EX4 zcX~lpaGZG=+i$13HI2EweVo4%c%QyEZE24X4CfKWWj=DGllel22s)B#M>slnwq z)e6dL+#7Q)1ZZ0s*!Qy`=m&n2PNec#aIVsV@d>x|pJ-hy7xn0o1aHoE>1l!C@+Fxb z|H&Mmh9t=SHCFoeY-&V-Dn+^|>_a77)+l}w@uT+h*U%rowJW?T_k_JI#_c-Xv0nFL}eE;W!V3(B@w3yHm7K+rZa_6 zQ0i}Aovh*-#2TVo_b8di0;C5+uN?W(g z;aE*>>3J8hz-!w%rhlG)G)zyhqeQJhNRt|+oe8^w=am9piR~=re>_|5us7o+Wd878 zVkvI%co@cH+J{p$LEsNg@|FNkvRwEX?k+^_K7F4rps2e0i~%k#PJvOYYwHQ*mhTB& zEL5Scy1|Cn|IkM5`Ni)V%>08Vn?jMmT!s%@7*#>(oYIF6gz_sx@lK2$Xb*guB9kw{ zIv&~L?GiGe&l{Oma7CDA-;I=~7S=phv_p~fF_4}e1=f{eax|+5Nt9U&FbQ9fhTgXp z)na}nBuedzR}^^U?E>qvTdT#Td=Y*DyUnK|?a!)HOP-0wL1J}2Rh150P8mV#2+Lc5 zP2~CnE#a-o_df6guW{!pn|&y7(G-`01t&M)jBnUVp8BhO@hNzRCh*;*u^Y*9p8Em< zJQ6oeQ;l`S9l7^cW9+8LI&yQ##lUHwjel|MyluCcx$m$%Ra{HV9Y5Dz8~bE0rR^)W zSW=e^uH@Zpah;v}d!#7MDl|<9ML{5ve$%|PW|c%GAWo?Du;3}Hx_K@q_5Xbj|BhLA0960yGsNMh9OD6=tW?O_ed~@>(xkSDd6mXFq)6PtGYVcGu+szK$U~3 z$|-V(C65CsH&ShThVnL&;TU&)Js++rr6-pDdFZn7dQ1Aq;<}Lq$^s;h1}Q|mME?_Y zqhXrE+_|T9a>yp31LNMc7g9yVQj8{FO&;5JG|k?lt>s0Eq%F)b_i^5j&VL==mPnbx zaC1GxGFLy4XRyaPa9Den@a-e2{Z`-W{vK~N{a&d9Iiz~X1|VKnNIFKKeyB(uu3Ksb zQ?2pnCETsD7mPy^e97z6mzPpeBuY*?Pkgna!$n}i*j_^Fv_7%pUsyFdi*}U#$obnd zi5OoX<4Ka@EV*Ic$&s%k556id!D>AUtu7kJ2@MWOIn^_-82>2JY^yo6bE5&<==TBT zTS@S6xqVMTJ{s~;0Wh||$;mT04SeRdKF)8xlhJV_@^@KS#4}?ib>^4IAn??++0`qY z2ES8$c2E6fxjny^nC75ccMKDlA&0sQ_UoinO(eV*^Er+%#m(QETlJ1P<;^ zYS4^6jRl_S`h%1)4HNwpd!N?zH)Qd?l=0D(TmSQ}=K9yI0lgQQrnl{Q;_tJhMaF@7 z8bC*A)y7K%zfcrcjy;_WCbiR}dn_`Y62>ecxjf9nf+Nya6MBgp%Aggl;<;zDDEAgj zX!JquEdjjArCSHZj93!#J9E5%yY^jmA;9EIM`+Pq9#>+G+sApABCpfN^}SL3!XE!U zK)-8iX+^x^zNz`I!SYF95ga76$zk&R_;@YI?kpeC)Ow#bxYuD08LM*#zFem;#6~ z+PGpfV=XLRCgQ}9_?TZA#lg-T*a4+`EYz4VekT}G#% zKn-RyO`+^Z!N>mHDFuu@KiM}krrPA!UPzz8%IFNXpmB=t0 zdypF!HAm=6eN1eTp4mAw=vmcr<(`bfi4Q;SzUS2!i!pj7o|CqXuZSrD{u78Uyg6XL zlIKw^kfwM<;9b6*D!(Nyvt^dSgbxZ^+TY=KX^GLQJ)qrq^^f`edP;-Wg5YZ%7Uu0N zps(fNj`h&C=0RU&Tm<4pw4skO?PoLG90Np33B)FT383cn881Dbk{PMfWYvIw z*>Y2zsPB??G>{nw84tVN0|L{z$c%ybiAH`UGkG{dGbs%Z&hDjuF>7YEg$!tNLzeGt zLeY7(kqEjd8pJCcaLO5zbnts!WG>PGRLC8xPx6b)S0|-Ji`>55$Fk_}D3c|5!6E<> z&D$I#Ylrv1AlN!`C2Ig46HYUcF4R^Gzs#TW-1pj&*?i3y2%3^Vs>iB~i7`~A3rt>_XPx}IP_Shus(`m+ zmAB4T&9X8RR+??fh+nQOpl5be^$dLq(DR@2ldr=^&)ASn*YD#Kx%IQU_W2!Su!`EI z{CYYFWYEkKZ)es3g1bfJkS%#JOh&wD**7QNc9o_X-_Z1l6)lttuvqSvXI-?)LD0aP zpI3jWO%7J^)&hIXSaPwi?CTBP`XQ~fSun~4l0;=$s$In=)qL3)&qM2gKExrK1gRs# zS3>ZKlf$|5 zD||EwErf4&>jge>iNJ8`V~GR>X^!+*m(QDiL3Pwm%v!wvi?30`#_RIVt@yi2(j4SR zv;csIijUm{($k;SekCnXomWfqHLHdzAY5!6PSNLoI$U(1 z3&>pdACK>?d(7{-PqNrK!hbO}K!!SUJ)Nv7cRk**se(U_y64FxTdD_M`@R7|8)Cimkzu|N@ggwM_ zmimh@d<=20cRyIyQ_!VZ=wq#!lAWWTqF(!aHX~3AcXunSc{9W3PN^k_qd?>XCUUd$ zqiZ)Ouy22Jpf{Xl5?k_40nT4ENPJRQ$eyr9BBKW>s5e=j*vMuWbd-Fy>1s(##_{=v zM!zJr5!)u){hC1$1^nFc?{wjvds*I=OLxreK3cd`^vmP|ht4PUq^6K3(s|S$@Mo#f zuTI}P-wqwW)kIKAe~a8ii%e}?`8NK*CMNw;!2a3_Dgzz2aEh_|nkEfGdk1)#7ZB?> z!wcnhX|2T=wO%@hIInZnp$t{|P{;XyM%E;|Rb}VRHJ)){A~5{axySl!rb%EJ$hR#- zHLX{V&rd+G^f6o&pD}wlSiPRQ-@*^6BF{@s__yX7aWav0b=qpX!kwT@QX*sfD9dDG zST`lC?95mzix{yCzA?rnk)| zJ45cMXSoYjbevUIp=`WW>As`5>Xwf&hpF24UK<6M->c4@AMHWx3>^E#Hwi*dn<1A{ z9caKz<8X^Rm5EB|p@y@*-3NFu0mnh`aFtUu2Ei%6PdnXPq#*`1#R+Xbc)NN*UNdCq=G^HU}p&)=(_(^j2b+-}?=z+E&* zw>S!BBNObCf5n(mH-Ho{o{Q^u#9$LN2A5MW$`ivZ6?O=}hc!-crB!>55msk+D3Xj&W`n!dUKQU~7++*IVkjQ43n2!CE{K?5kcsad!?I6n z3d*tZur8DEH!QCT6`%LRXQ$nE`N`kxoAhxGy4#I{&RFL(YfMIK!a=xvjdk`sn6U}R#Xl}fgBE^NLkyH zA8YbrmUM2Mz~?|ru;gF6P-1Nk^G#ylsk6w@YPA=8LZyuWh#or?QaaZjbD7-Iya!I{ zW;$0N8l@>oDKHRmez?`v9&(?nY9_w($SYG7UZ&vlJy$z!9g#4s7IS{Y+j3)HIHk%- z66T&1ii82P&74sgi`c+E?Kjcz-}=i&WJIiPBkT}%t-rOHI=Mj-V3UfX z+BaIue0L<|<{vHD{mh8p=9e%N_RG#~T|7vRU?R^}MTYl(^zo~gUx4mAwj|$}kRft8 zj!y@Iz?NYYb>2}t_75|vZ4*RhX!KJ{7n_?QU;Par=lar>OP9{5h1H!o*td02H-oS& z5>0|*!NP}ytWfq!ocB-yI546pbd`2?kDGCw;j2YY(@b1a*{^)Wp565V8A`1&#Y~Qh zs1KNRk`VU2cwP%+C8rl2l6XKJK7f_JCq}^o|CI02XC$Y48n!UJS;{88*Qc6=@1RJR zHW)~dz;+E07&ZNzVvr`+YKd}g5-@mdY&xB3ITCUUwT8$GFQzvV7FB-!4&Bw4p`yZCyAcce=b*HQGM z!|lz6XHXO{n?Iz`T&kov%~{v1-%2CK?y|Z%l~3>(DQk%SJE)KMJf0_= zf#E`j)aT=WdoFnsKOa9&NTI(i2O1t$+_^}b&y{W8TUN_1%nj2>@|GBm0oU!I_^*Cj zjgV9ep9ENb=@uFeFC_dm`kIWHS@Kgae` z&cbrWVF>NF`PoS0Jc_c+^TRs!ot_XCrzxW+XxfjTS}On&z18)FNHU0y4*6-CX18x* zJ7huj5h=0 zM<`GrC0!1mhrv6s2bmsSSHw4PC1w)=+PLJqG2^4#!b6 zRr#d%Aco`@gLujD^D23zoO~ttnMnzl*c(@shr*PNNW`rdONzM|FW^NPc z9GFonhf?u|p=rw4Rm}YTwXu1r8a{BFp=+Kcr&gFnh2KT*JSnG(B@|~4>>Hk6O9pVg zpFYo9T}n=Hk>!0?Re7(%lRo6xE)Z=`q;AOF182n9eO9jc{;My%lc{mth+gGoFR&4( zf^Kl_>wVxN!p=^C6o%vGp+f2yq~nd*>Q(?0<)3|N>#_ZONFtH%J;OmB_Ve-+4maM* zG;oAkF^LK*Tm5Yaz7K!d-@fDx2Bm!OyAIG51p@^V1;K*6DQev?06ZrrWoDM>z6RcD~VzHkfJCM!jLI7ak!!K=iA}sMrA2Rb_!+q7*09VVhZEK(0J5E9H9X#n&mJ zX?@u#78U0shlJ^I<}MA{Gz=e*=>xJK-y&Z|S#$Lz1CmQ@a+i4_oQ8Lt<>ga=rOU310N z-{%bTefXU-e2qyku#?cchI9nFawekt1cXUudt8w@LW&W-0;N0edyyo~wz___mnO?N zP{|B6pD5ohf4q<_MWu5kEz(#W3$J+q8FjEOceZ=@z62! z!v=5|yk3~y;_jJ(dTT%kXu!N$MY6}Vq|Y<=SlRi5ynUS4CS8O`@!lyJcpRt1>z#pM z&cd!03X3#l+5BNDchzEtjY7v(0K2**q`4Y@uc5I;nQIO3kK9i@wl1p9EEMr5@+*TS zmS`ueuH+7EsivW&a-O5;U|xphrKvuf8Oizz_%*YhYlKQ)Mv*!yT`6fwqu%YDG2sU* z6!=6T=&vRJ?Buz9)!5`%WW>Ml;xD~%Sr3aVDqgW7nf$Aci~dbb8UPU(;XHMHvBDAQ zE{7tP;&GfmKJxzNqqC0AP7c)WWO2i{DY%(DvAa^7AX=vpIJubP{m=N(nCs%^NHI&X z(;r5vKbo^UuSALjSW@=kfCuP}wSe4q|5Pl`=cH#qEvqbr-<+teASjbZqIqJ4BXdZ{ z{Jg3$RN;XI&sdkX%Irb^yBkhAv`_wh0x}98o|A`{#AXBruxnA`^7`7Th`ykyKrcBn zp~^MNvOyx+$RDK9{p;)nrnS(PIs0t)7spucB>n0+5EA~-E%KBGU&jsoK>lnE4YK4} z$MAw^5~oBgSSB_&2D+xN3r&=I8MWZW@myaX98mA5a6NzVUOHq{a@G;ve9JU)6*9c{ z%I%c(PFj#Pcog2Fdp+R{WAwpW>ho zzJ5zB7P#WMJmpLOQmO_&An03O^A4DdaX4N<(GB_+3l|?{D_#}>kX|e zGKAmRpWsu?+;CU6kjtlfzT0^2X(oM904S!9Y%^2#u2Jkwk**4M#S1Qnc}*U89I4C9 zGb!ov5pmsP6Zz_?(j|wm*UZ0SB@ezg8cuH?rr)nEmYw$H#SIVUyd~@@z#Qf_GXhh9 zJJ{!2IeREik^C63G_o%5*8zI6Y6Qmw!&Hh2V$CS*D92))#2Ddq@y(%Xk$p6IAV5M! zZiU$Mp0(RjxfV0$OTvhS1Gta%DwBZ{7g@V&96K^wSV;@>lMY=CR|0T%8>~?MV;)^; z=F0u+jB)bV=*ROCg^*%FL6A5l!173Q8Fn1=uBR3N@|D}Xz67MBT7plGdw~!HO ziC`LARfA3ftf0^jJX$*|1@woO3f%gy(rLkS@PcuI*X_!K$@?1Hbv_rTtAsf0q3LP}%fx;;8{iSiikxdBv*v z1P+C)rhI-L{?l;A2oI*$W=i1WKmL~1A?;`)+j)l+Ed z1$I~~fv9JhL`TW_#-WBm3@iT`LE^4jfd#&P$>njCbBE+ljNG!XI%hZdyXZ%Hoc^cZ zL79GRo+A+Uh$dFIY-f;c&BB~AXlBYs(HWJO-3Huy+Jsm6eg?gD7+BrDA03A@#D1Z~ z5zD}KQfgxZd_I(y)92+$R#^r1X$J=28-HYK3Ewe8ln@>qNp*qy*5#jF9=00dnDC<6 z^mol2w0`(J+;4qdsaqw1t?DdHx>taaJ5frTG1`uRrGddyin-4T9Jjo`?0xZhC6Goa?07EBIHv z9%JMW$k&ACNhV8nmMIzV0*gnifV|pmFrLeC3)HJtFUW)B1C;JH2^io18cScW?JsNo zVq|`z)7Hxt!TIi_bmDqU7%*?>lkYVzhrfoEn{IwN{;?8!xx@q?6CQbS#+aut{^c_& zEi2uXS;gM63nV4Dtk)NS^D|0V9Po%^^}vL#t>Zg(6l*<4FD*w|4}g3It|lZ;NEc3| z8*ScMt>O!kym5BSS_Rnmh3?2xTJ)D~P9JDNzQ}`}A$={2`qCfPjdrQX6o+-?WIXA& z_W88oI0#0x%UXG-C9t^7w1sM%qI!#?$=JSjNCxP}Zfsa~>8MxAgALO&14nI9nGgC7t71L6beTOv|W)i*Q3 zl3Z&;)cCFR;hcUeVhPBh8ENrfb7tPDGrvBn2{^tPE)1EjX`W)|;2}#HZ(cI-Dfw~; zF9L4P$#O5g+phpZcSK8-%Ag=7dQeE-9JT8?8Oo z6|TahlHOBn(74#j1^Y$w>X;+Qs)robU33f@@&$4gr#R<(4zIMhZ)GAuwe3(9b)cmI z%aDjWe2B`ljj7$5&-plZIv=`MJ4oI<+<=Hzb_mtKKEI;>u09V?RUQK~$tZr2G7kT8 z1g(H93{}3#gZobWyxy#6;sd#JO@7mA%i%0f0+>uVH$Jd#PS$)*&hGE`gi0JtsVN5T zTTN`7O2VTthQDS((xr(@pPK&tqo-ZMd@vBG8pzSJh>!&1y{&!ze1o6Vyb{ae=3`Hg zu&TDPvt|^xohN=#;Zx18_`p^P-rzE;&tbszZta~zmOn1>y}YvdcfWXrTb$_cn%)W; zO}={OaRm~3=nVo+jV;X*6MqP*tW0is%_f;54`hh)+;?gkBJKg@1qxF6b*Es(nZ0XU zs29cdJ$c#(LyFs{uGznDvI#ZzpK6||lm>`y85r-*w zUqsm@3-1!HSEnTLDdJ7e@%Mm+r{#C>{4EWrtZ<03T#IMXgvMktqdE6Yl!Kend@k$K zrW{K0*Szst=mopwMt=N+ex3kL|I)Qc%;4JVyZuzvcK2D;g1csas=YEPBBZG8fouXz z(zvudEC}(gDZZ zjcDcb-ZV^Lr$mZ2$lQm27oU%3Ki}hrJ+b3+L_*5D`qwQPV=}O=J*xf4Q*z!h;A;Jt zit}4VbidZGnzP8lOtg1wfa94yn#uPxqGw@Wsyl*qTfQLX=P6#u)E{Qzr89ogKul}C z#KO}Ye$Rhtj9@wcnSaD7+u%d}(+2ny=cG(4GDBoQw_ez9tV+BggRXee+~=69SDhr+Ph?vej{7l2)L06zKbhL{`M zwx1|n9jSviDV1hEfXGMMkq*q5T(#^O!^k=K0Ih{GVjgI8I{TFNc8nOiE#}qXG}$A16et+!ZxVtPS?cCXRbQ+_>p`Iq}50 zh-~rwoo$ovHlv>s8_%GV?UOlwSBaYgM$-3@SJU6x;L6=S&&~SPUu?{DFYMtPnmbLQ zh~@B~o{=#-CI2b{6@vxA$wqQU=gJwLYg`fS7>vOuw^6W;RgektqW&m@M$!D%Vzae?V{_`^eUu;_+R;cl9p}FMQYL|`-k~TEOHzJJ zfGkRXoi$@v94iro(9NktpK(TprZsfD06TT$GRpOFWRVIIdmv5Sj==8lQ?hu|LQ!A* z=D9zdz&1-ngs=SS$AE|To-QC!p!dJyk^|H27URd;BC}apG%ybxDEG;{#2mkilvik?4LKwM>I-aMc7J^D)~PiCdrPy? zz-{(XoH6FL8pPXs8muOy<4Tu47M4N(YC5ln>|gt(>jkKl#|6V(I~uCjQ_?oNiXyvd7=K$l}SrA0$aPr}FdX@aHFn z83K91rRM~4G301J2V_rLNq1!H5wiBhW3TkXI~RcgJXxmx)}U7U;=;6s28ES@Wg!ks4a95s=FZyxcw+xcntLvSCNk?x3DGrEKEivP*^dRPQ?bWIe zcCuUL<(H=v99P>nfp+{mpVV(HT^CPYrFT~w-B&OF)|mME$x616|ER}i%rQv`I#>60 z#D@}z&#)C?%`=DIOWh`)_x8uSK=TZ5FaCA6Bp=dTq?86i)+d%i z_FfN^=y*CK$~l6;hBg+o_JZw|RACwTTP}CNrdtQiHknrf5)A@@zy-I>h2YmX^=Jdj zjr=bU%}r*U=Xf-YHz)Ald(3T~9C&uRS!~8_s?e$+47T_ zA2#HhQLl5mj=*?x04}nkYDIt7LT-iJIUfIoX8v1qYLHUyA7d^6qQlj88U5~V4Q1%{ zT?1hm4j!~to(CQS_9w(gkg>Iu`Wt(sHn^Qg%Tps4wE6_;ngXS36hj7@OdPGAT5hjq zt6~s}_SuLLqQM^4Ai3uWvYNb6(A~%NuoS<8#( z7W4WcW>d!?_q{?$jR*KZ>|Bj5T3nd>juG?5-A@!{Fq2!**#!4#srtS-)q|DaMs)&$ zi`4ltyf5D1#X8y)rIDUqgB9}n=UkoCFtrfeLb=}3B_*!PPO=_1UdUUaPUW7ynr z-S2rTeYl7D<|HA}9F(KbZ2yO7=sSoE_J2GVjr=jU^E0gZS4HFfB-I)p5*4`@CHNpuUt;xU^X7zSz; zUD^47nx12SuaPBE<<`9hBAJNV7Dyf@orx1bxNwQG)9)ML1eZT(9m zj`p8BEttF5UUOyCl{oR&Ti0w|LN)QT<~Ud4ee{;v# z@BWIK6WP#yOwC-aOH0HP>#2_^d5YkwAy)ibOLqdHBl~ix`5V5|ct^NRY9qsgDmZ|i zz~(pqZO6?o@9de4numpyaC=6@5Rp$$&adA#JVkdNGA|k6AK(0oPb3Bcflt+nqVw{e z)SvbUCVM$wGw@6`l}TuePWpyiZm|F5D-1NpIv-bMrZ~rX$#S+B^trNxQN8Zx02&vj5Jk0NViML;G z(NzPUi|;!6bq-t_L4QiYfIaotyK;h!QESfsc~>U*j#_(^X9sdXmv{!T!;D!5dsqK( zXM6qn6tV*({IdlAdaC60=>6^&Jbgrr`qzi9*wLDluZkeOerY7h?zeH#Wwv6qF3W3y zD^qu>FOhBLZ67mSLi=xU`jtz&E6R&FbZgQ;|q#%-ed z;O0nP+*JONfs>}`>$X0Yfkr``(I7fn$BlXEmPStk1YdCTwcX(Eodg~KFrpq-Yz z#V$=FD?D_p}dEG7w$?ot}%7_Q};+s zxe4}d(8Ba;y(F1iSJCDaY$J`39{IjtsO`eS{Wfz)_1JfEf(?O+Qtw_)SFCTw{`KW# z^$a^d3X}(9TGJJgC^Q5xBH#AFwn*)xOzgF7pU3;QKmt!E^S{@qF^*V8%vT0geTZ;u zav`{uWW!65Rx`UP1gG7yo{%>3Ti6FHrvuvSR`3P?P$|XZPwlnAwY{LuLHa?9dR#}U zG)^&KN6?hyb7?=;4)OA%1<5-_hPF^UJ;jAd^Y)Pzsv5%!JjLZz`Sl_vspI2R14SSy z(%^}aX0(C;Pe8E09(nQ}UQm&GDK$MmisB0vA8ZMAs*FZ-K_grNtSLZ^Md`1Ri~P&) zfu|ll&rC)tbt88mr5~@$Fyt7}=2D4m&w@?O05~tS$A*~K-lZU#l%-sM;S86ypsb_p z?^w{tmnq;&@<@9Y>hg3qU>cCS^hmT4GON)$t9yg#wopLvVPk~-z+U?j^E`jMBhI7z|Djo2A#%bspPMFIc=Fbw1|ekQtT19XC)VMZwQf^ z=u2|Iq!e^0$#6W;uobt3PeGFNCWzp*y&DWJd;)T<;-jx`^sBvHSavFaBr4T709rB0 ztg-9(YoDNFMuQ8LM`qR+G|0o70|9mR@mtaTC{5?Q(N&UBnys%zuAV`;_hNn>$4@5fYZtlH5c)KiSl@#0C#nful zDl*s>qLB98HeJ*w$}cOK;-C&Y(jeCUsiy#zee13N(4++}k@;w`$5Hs_DbpV7hfpiH$Je!AnUZ-3s{~P9tx0~NIm&b5#?(rp9 zu*S1t@dsleEf8&ONdhV{^c*s*hWmePy~o0Oda!yx&4gT6<;z)bA17p?0nN zVps>r#za_~a>tIt-+hPm#lH~l&rCcYK33?M?MJO~r9sj`CdQ>5x|cpKXtJ~p@;wIP zy)Cm~mTV)obU7jNVZO$>8`*4GCA}4$jV+|Fo@&W=(SpZv?d1xM9}~K?pFiX7OQR$o zM!4(!baEBsi;TBnsf88tXB3T|Gv@}6cN9GSQ>U|>i+8FDEx>DjJzE}O!}EDJ`royx zJf-U8Js*}@wh*_lE4IU8Cvm$#lyF`kV`<&{Dez%fF)W3>t)$~9AJ!CAy{NYfWIss> z*;Rk79D2D3C1KZ2qbW9%u~dsDxsT-h78Ch{?@02DyA$?cKP+kOck~kTrD};jNbbsj zoOG@Vk|CWyW=9)Cl8;q}QcF=`D?A^PrV%XYfD16EG~C^={e|K@ht5zAq}x$EJN7K= zQ$$3d0Ui-gi(k95JlWopG}g+3K8ib&ivk%V>>cA3{~L%^zLA?YR<9u6$&96;8g2uj zdjG}E(XU1!D)>F&z;rQjOE7$fZnF9WrcDGdfOFxBb$63R$oXEFWZ2GqmKb9=USDug z3djkfXW^SjT9bwinLpq2_w(t#r$EH(#9iL>{nhvy2f}&;-29d#N;{{BaKvY{wvR<# z(EqEsA{+Z%#d_|XA^Av}tCbOk!bN*<#M7@W@pk?i`=9Y!@9I~djm0=yP&JoD$6PV1 z1_x@;5f~?HJvL5A2Jd5NM4f>H5<_327m4Fm(Ps%2QoXCTq}TamS{hvGS-}Uc9ISDi zjh|HB*uKj(^Qk(w%T^dnN@sb=E{&NIm((VCH)Z9t<8>(j|92I%WSym#9$k4 zW6a{hXQTcZ$E!AD`ph5I6XCdq^EO}DY-v)&POJzIJ<~c?p{)A5sGl!|(Ev2@x((0r7F@+mx9!UwhbEn{wb;JEd<`(zbD7q@>6Zf|BSKpAbzH2#aM z2~6J3q5EWwcpmKH%!TLj^FiIvW?a)W0r^T(8TRrco<bhmN!`sS8?1T6{0+-)Z%{IwXcMr_`Xr2802Q24!0&s zUi-xN^>7vxq6|LPI&x~=G_--h%$+_F4U1FP2~$iKegnO1d4F&{My4F=$SRpr7?!A2 z7X97ZM#hC9Toa1)_`u>ZxV5mPdO}!*PD|+*nuQ`Zv}Z5U)xp32Z;C`Ajwt)FSiXka zFW6c_GW9kMeZFf?Jt`o0mo$WyMSDq8Ds061H6KAhH zln6vo7(fj>#dRzz`ix_#iiH4hK>+X{QUgZU_WWZL7ZH}iGXA=h}G5Nw0gRHq(To_sa@|h^7g(}-ew9P z)Kq6Ce}r)$zdn#;s5#bh8uL+23I zvt=F#mYqxD7!J@@EOLLK@YknO+*$3z@D6lS4s4_TPos+7+yj1QyQyzsO*5uW@=SA$HK_rfwDHT`rKes|+=in;g zjhz;w%*Xr_rTN&!Bs;)MCPjZ6;zBwv`oR*%-i7VQ9_A5t=mJo`{q?p!gO21}SEEZR zZ8K6LEBEaSQ?ADs@S*VU9vB$DV7|u~FnBS8@YAk~OsGj%0r;+LSPIww#Z2yz^1S4{ z#1DmL&ciFleMP$fotkm^yqBeZEKc=|(>+Oz9r~J9QjsP~pL*SW$8j@XDIAnRIL;peAbAODC&5<3><000%X>`V7ez*>pbf6q>|=W*&}z0X*WJ6@_7O1>r(qzP>l zNZ}AHDKzR)I3Y>r=NSO7KUm4V4IEs79Od^gJy5<=_c=N3L^^06_}<9H9{bXhK6&{dFs1o0I!k)2O2Ey1i(grc^ zK~B~6%9HC2H${&s0er`i6lY@s2(OMIn&{J<`DU+qiAj!c%ynwcf&vE;G<4y8P5f7JWO(Cv00`eGJY%{W_~%iG~P6icHiEEQnKR- ze-7bfY|;^X7hm?%CnpCbI;kS7m#BqKu<`7Z?2ye!eSH4X*XnVcO%1)xH4Fm(im3Oo zAD9@d44ric}`ntp{9z$yZ;7;jVY_=iKVo1{t2s!4tK$4PH1qZ{quG|}(0kA$=gkxdKR zn;Iv~zH!KW)#EZF)D{EldRzs>%nWJv$GKW&4UNm2NE0=HPnLiOvw@+GHe5VZ$QF49 z5G>Qx<{%#FP8DiyVMN6Fy!p~s_UL%t=#wuf)SWks#`+Qt@^yoc7-luNUrQ3=-ht@& zYRP?#lp(@p&CP~qfz@7e?IWHZcE>3HST(YkSkBV-%(shPkDhzBq4 z$FrY4Upb!F&pv$N_`MXr{wvx}~wA&-l_=Ru8P>EV!gQy2* zxt}(aP(M&)hUg?er{W`BBB++8be7(b>bA1+c8g^Dcs-Y|?H3}~4xg&q0LH@ZaNo1% ztx>)igZ;m?X8cuazurW=5i%W5l+H$w6RtFOTz8pItYFZXLk#?Tbeu!D26X+FIKx`+ zcQ3}7EL5o$qdpY53euVAr7#026XD0i}oC&qC%Lb2vJZ^pu*}E9icu%U?WEx{s zj?-1Z?<#L}eJt7c^gZ;;r-4y!n_hjE7G1#?0Jj#c^3}l_NWLCZsdU?$IP{0dak^dv zjy&2(K3<#U*!ipLD7}c81VTz3C9(&{&842EU6XU)f%nW%{jTkj!Y!#r#FdsuWRREe z*Zdx{agzwm5+@8JufbPo`y`OmN7-T?Ra-#w(3k3X>GVXG664b-TcMcSFc7q(QV@g8 z@j7St%X%$=mTR_s!ueXGG~3-q=j#0nx1QU5>h>W#UgGOn4FPEt$(63n{35in_yCH+ z%Q?N3%&~{I$i%m=uSK19v#G~90G(M~dU)ZVu9t*r+u#Yg?SwgzzeCWR%Kwhc+7I7A z*P7#_QK-L-aZzL@>c-E-mDlp+tP7S0l@+6(=x=@bJkMTghEWUV>kSo6jix@G;@l-Z zBU0q9WX_Ie{<5!LP~5nrPlN!9>g`ZENXL(uMNv<^dnHDqCD`~;%i1&!keYg**lt)K zY*g-ZtjD&RLuL(TpqFk-k9#VIs^|MTg~qp+m{ka~A$^}>$gpzqWd4fFdj;BX(n@$w z@UC9*d8ezXJ;_gX?F}ZgQExte7ztjl%=3DMb^i*PujX7Jw|VE ziI{YpZ&2r%)7taN`7J~o4R&CGYqAV&?p>=Gwo*A)%rkdDG^tY6Uv%-vg;1i&k`cYW zR9-$_ft{jVI4 zCP=G+ecF<*md3FLzAo$M4`W8|Z>>Z%Hw;4=M3IW3v8E);_&kLuTh3TfmVRnk`?j0| zkx%fx?bMH1hqfs;7!_pUo)0)w6cTP$Kq}2>%@6PqFTVcWC+X+RTFAD{ z=yuH0a(Y7*JYEfsuN_U4yxNE4Bu=g7?I5GzMW~TmHCl`t=qV5x527=CSv&^r>Ofrg zcn=dO!4%x^JZCLW1>rnaUbnq^7J*+YSHz?X@L>lQ8b4J)R!wVmn4VvpK=Av9@r)v zr8=axvHB&+v0wHe&CKCS2)YcGOOFdzREDZTNcRiFRA1*I6nL5!_y@538QdZ^=#pJWt>` z^~#tc^@qS=(CfmT132RG@qLMb84Zqzxd<*|D6-kj@=rW3<+N@6a+>FTI-#)tc?i5&U3a$m>K!k*iCXSbqre+>OxO75+P9?zHA>tQB@eW8TrY3 z>4C$KK;0T8Qg=?;jC%#JI+QtmJ-6oBAV>Ml9&>fL>UAzRia;Hro(H3Hd?)_hbF?(~ zMKBEV6$bkC`N{gazM&1?ar(T^jWW1u+q$m9-J&SUku?kp#R1Ob1x7<4Tx>cZiGiY` zD96dX?AjB2tz<3n$i6$R{3KA3c#i|cWt7M@QU&`dD z-GKt&`|MD}vQpwC5$M5)W|7siKq#!iD2YExMfttoEJ=0QR8X~JCEG^a0#=M;9Qr0l z91cw^|JQ^4?@Po@U+7nhxPi0{vGAm<-ri2jMOfu`BGrQThI8o+_xi*xDOxPcVU-@B zU6mipOaEuC!j@H4Cp?)fOuB8Ip0CDbqYQ?10aeut{MVGIA_zk^c?n>2Sff@A@FFaF zuDJF&=hEY#$N|a-Kyq(=VQrWf?QsyWiFw?|{dQOez7{?NLsccohhdQxDg?7V)`!qU z!K7laNWS)Tee)T1F*j}@P(W6Ns4y8!@|NVcli&7_7EPISji3|?W5w&Y2Q^fQ#T{XN zSMc)vX7j)1NPd$ik}n!Ee=xCV7k+bVSC)Jg#0h8z62Gr?i_W+3u^ax?pW{RWw0GDZ ztuM}7YU2U@eXV}zx@|)uA~)Fy+wgLqC%{+j+>(W-)VbNaC&RM2?Q)+4h)HxtDcY~y zvgoup`Gl8SLCpZfzwmu#i!VK^C{%#RiMv`Dmp<6Sx%vbEqHQKe4jf9otzpF zvL-D-1NXv_1n|EH^88B!_zN+iR?H3rl8aSz9C1zmbxHLxLu&!UQ`q-71I;EL1Q_gx z{l2!jO}vo8L_vmxs*$F1*8=1G%gvzY+uIj?zxCC%&v3PMcJ!|IJu&fQ&4JEHH(hsz zRr7r`Pd$l0sl`hSX-XZ$Fb&k;-w37nVYo_@pKM5y>m6J4t_|Zf%NC6j>zBU6U`)_v zuq==OdpM)H;YPT6F~E@`Oj+9iryEn^g`O_0X5(4I{uv^X%cJWFzuc;g$x@B7(`gi; z7qvdO8hY#k@k2?0*(4C;vgOvqpwG_Im}UT`%} zQ=5_z4+!k6Kge}VCQjQHn+hhh|68GOZ}F=GpOSTjb;{g_(WI*%@2mBn5B_Dw@VTyu z3>fH>dz7B>#5|D?<8mca>eQuvW6_`-*}OL5UqmZh1VvGFY+^-1t~6UrEq6hTu6pN8 z-bXM>OxMPjc78%)0agJZ5Q>}U-p2Vgrz zrQwdzMwjSVVN&pyo`C|`YEOH;()+&Il7Ui#V)+6wxX%XOEjSnmQlG&r)>SaV7Rg%R zqB@%90|GM7_g#tK2r%sLmt~e=PJx_&Z#qj2jPmomENQ&EBg4a@VY^n9t3T%)62 zQJSt?xbN@Q#ViR~U2lA403&J~4~r7-aU73pmR(UiMA7?p1By~rjkGfN19{?oz8)_N z79Bb~$wJ!SbSd|${!y}SIE{p4zcm8EZxOLCE#ZA-FKN!1Hb!hWG0z5>>21ukCS~nv&S;lL7dH`r*M) z&{okJrlaSO*@otA-&0uiCW>y3WAL{o(BiTnz+oJdut;kL3*iyV8c)8fS$H2wnx4Cc zL?CU{U+7U-I9*mmg+6kNgEkc-O77haSLU*%*sD(<6HzLQhyC!3pyFrG6BLOuqs{ z_>1$xu=g9#QNMfeTapi+`0H{|5E@+_0{>-L$2yrNL=o%jWPd)P0)f(eiU|bNaNmRQ z=$hDKmqa>O6t-kJKRznON_B<&z%`tJ%N2nOUvZkudmM(gINC#s1{%Q$pYr!Et@e_` zeOZ!eoZc;%3~EEi&l#}}Tj0eS(7E|Nv)ymeym#Xjn;h4@$#`X%0xr?rU>F#t&+b;f zRqw7iaPc^uui^7Vkw%^oN|h6=9oCR0GZjsi#Mt1}Xs+63;BZ(%4NXBVU~WM@#MkHV z9%P``XFe9}Zps=`=&1emDwcj6J!#S}%`#8R8Qi)SuJEkgPc%`9`|VegENqngtrM}U zHD;q~Qtv5rbbu{-;$w3;4j`@<`TuCOXB*11n77P3YO>r@#8#6qLzj_`74CECQMZ4- z`Gp8|V2Ed3I#cLl-A2Rfh7 zX0jo;oW~yyfAKae!k)0<^ClVEXSPto=t$=6sp(;uA@3Q2Osh4Ycv;YCkZip(hV$=C zQIyejYlI|wmBuMqm2ih=e^I$(|5MNuO|RNGl1$+*n<=|1LXs#>ZAqH42^i;!&}kSd zwHyB4GcVIPCNiWrNnnIhZQuKSG0K7MCvH@ujFH|=D&MjZM za6&F!8=hePgvZl)7K_5ml>%)ihw5rnR*4=47Lc({Jd$m8Ku^d46mY2-LeZK|D~blo zi3dkaRv>rY)wjHtCz}*K9g_qUp#Q2_@D5_t1nqKtzs&bo^v~Jg(l{FJD1o|dxc4p| zg4jE+SlpY3>YD2Aa>vVe_Sjv5lRe7(@zMU<%LFAHA@gZl@JRR*t*MU>&d+UWy)EC2 z0X@Y78s$3>KjDO>MjtE@1hkupG86FPdPiYm^;0z7#1^|_E9DLq0hhoy#XdhrOv+mc zaFQ`hIB8pyb`VwMBLF#PS1*_*{AAWr?oKUVjmLfcqI|kIE`y+d(G&#?xngX&muZrm z!xal(dEdg8i~$SLk!hO1^Mzp$}tT_wZ<{O{-zGY zz({m8Am|PJ!Nn@Y_IrY|8$|>>?v`aT_lXZ#|JV9Y0CP?aK4aR6>K0DSIenT|KaKRW zd;6ypaVgj~(W0)kXq$`jx-|Fh$%C&zse13xTS?B!QucS7KL{j(8@@ZKLiq>9WgZ$&^^SK)3b&OThXOE+pc;oHNZfr37mYeFw7 zqgkRS@eOW`u8)xM!iSZ1`?6Rx&VK{R-;~z(tBMZGY6NW4kfvb@ZS_QS>i?Y5hdDO6 zkT0zh9d_Z}O$R)x)>RD_e0`t|wla$YcOf0adqVm}g*flf&zG+tYpps(vpxS(F3(G? zRc6A0`R|(C!d0gG!O)8;)t|m+U}cwKmO^3la*A@5fM~mO^Y>iPWy^Ay) zx0%$0i#-gpEXzr%UDJTt#qU|*X~d)kLh;W7#w;ak#%Lt!Idysv93E7X|Z5(I;b@Yo!UC2%-#g^!77!xIt0tEI8fw@4NlQ2&Q8kz{_n z1-yXL(ZouT!L~HH0p7^u@~^o^^meK9&t_za7X<4poL^wRT&%6^xtV=zPaFZr?#w+l z>XC3aB{EFFGa1Xn36h=$n+TMX;M#NAnZ0m`>bX3f*HvR??s`{+1;*#}le`(KzvcL) zHiZ>VLK?uiw0CFT0my&!u*0v{KG97tTP9Khs%AHAhxeSu=I7@VP>lZ4@+!!}A=q*z&q#RX<+NUBk+w_)W=@T}N_4)ekTVST<0tKK&WJQp; ztu^ot@s{wrPo-&@i`AH|Fs@|H5I8%r`fD{wWuK6f)Q~H*P11kdAbbB4H=d8UZRdnI z&hGO4HCT$5+40X;6ib@KzP9k!tH_>78{7usU|9`c0d+8 zW=)mMyAeQrz~>v`FUImDI%|6J5(hdASQ9sP_I-;YU{(=y!&hD1yuk_isS?;4<<}Fo~q6=S$1QwZ2>pyJCXZz+knVjmSv+(UTvrQrE8^n zE%x>{%r&@k3l0Ft0}qQ5`-;&;UuGxs_CL{|eGP%p;O^XL{4syn%PGZs%f`rvpdB7k zXt5d^XUlH@S6(*mBAP-i?S_UQl*;CAD<__>eadFE(wVF$i(`2`o5v#St^HZ<)qO?w z{Xc6B5=**;SVvEx(RTYBYOZs0iSw9Wu9=+e(n9#G(|G)CYK$EHuN<^`DaP+fN@_E= z``2e^Tm_GZfCgpz^TP3bVZs(@k3QAD&4?7WJ)nAFkR?;j?6&W17Xo8MmNPoz&>E90 z>vup0#8D#Eb5ToLdyT=LzDcpZdVrf%t7`=oy_R-reBKajtI%e(F+N+s0@Q7889hpKTWyT{ZpD22{)__P z-K;{icydf`q`3q4CH8qje&;9wd@VPDLxA5;S1l6C}cO6)jFe-(cp^7&40PDTc zKft7k&qu9;LL65Paac&NmFv%X$^X5YS0?e#@8|K>rAiA}$W*n&?&&ek3vOKs3#XXR zB7TA;E#@R>l?1N~-_OGYn`fF#fTx;6+D9ogVVNufi3p@E?oLxuOuKe4vk3>l-Jls1 z>ze;PUZzh@)HEG)f~WZwAeNYdghWx51xg&$16^j>uq~_8vcEMTjS>^?X#ec#JGMvA znBnyfsgSfM6a6&hOtG^@42OrsucOe8v!Z^O^1X^ItQ|Yrjo{6V{=Yu17kH*UQtE)0=YI*XQ?uHSOy` zH#&P5_9}<-`P&ovUp|s7Sw30d7q4GG4jBEUYxOi+B#Hmeb8d4o-z^#je1B)S(F3os z%k51pK^yp@{cFBS}eFQ=3v<<&ym$s|<7-guzc@jh}(Ft2v^0#`C zFvB3YRRSj|i5w;ajBb|w%2Mrt@Xntad%mUifakExQ9qzzMt*DVviWygxd0iX2y!#% z=b~8vq=8x8>cid~Vyu~vya{>TC9&cQoSQOS5HNo${XrEsbmX6@7RoVA;n2&Shl8r> z4%Cg*FOQNDt94Th92SW_Eg^OUP}e2Q>tBXkAXM2&QSv{Y{L?n zPJ?oEV&;e0mKwUW9IkgFN|TA1R65VZKYH0>CDqk63J5{Gl6&323!z7pB40@g_ZOMY zEW7SJ_N9Ok(@@F~>SSl2vK$f9pyuDB;xRh(w$t~T}hv^!C8sO#owyMl+B6m;$ zSKFpUR#DhRrKu<4nA9Q6Zbk{ld65(5eO_AstxQP-sy^<&2Fy=kI1m;eR(H?DO7}a( zH7iw1pOrP)N%##_Y?HALQh#*ev#L!eZBQKEN)>rN=A~@DAtVImv;-kwEk??3Euv>HZYRfu)gDLBbfuC0 zZM_8@%X5|*kyUfn4Os&^9-!SFv01EbM5|Ndd%S}p%Ob#aaKYg0gr_K*|N3Hj#E_85 z@dq7+T6+&kLcs7YS;e-k>#0ujAHRr~DSHv#PXId<>p>-6(GZOD)S^8*S3%%l5G3Fw zl28-7FG;d6z5?$6(`S7e)Na7!-Iv@tK_od&LU_POHUI9DcvczE9LN~VjC$(XXIu0U zKNyfZ@SC&e7j|2BUPV3$wbpx}^QwCekO$=xs&6^uW9jkb@wGaUJ%d7Pw3KZ-sIA?5 z#k)0@9U2m-p37RL3p?G|ZtxQB?yTH<;`RUf?782aV1zLidyMkZl)(1^Q;z%h~Dlh zrH0h7HGu2$y<|l}9nf$7*E*H6(gi*OntpwMJ%aw=OCa*G&M?ey`C7X;IR)SM4d!@KTbl}mK_H{y=Q2^NWdN6T> z+22r3UGX*8;y3+=4&|GjShlUH|LkKs*s&-e1g-4@Nb9mFrUh`f>rQ&Hf`V{h*e_w~ zx6+o5cvzNvzTy~$;Z$DLH6G-y@?3rmtk>hI*n;S-l=^+wMt4hfns)7octFc1?=Zx# z^UcE2*+lFw-sW~42WT6=zRW^V(Xdq8KHZR9(*%WJQ!gp#x^FZZL}4DFQX@-w1{yE-0>6*Z zJ?SkNRh}nF3^ILwQHZd15`6e{{P|;4zha#ZalGH>-`Pj*_OQi@a!gPspzu$qc(5@f z#!~SP+U`w7xno%*KXWVRWBl*l?f}J-rv9ujUz5rE6PF$*d6>DE9#=qGWvU zkeO6_DfY4A*?;>tjxU2?#T|Z5CCl_ib!lZgsi`YLt6?_QHQp{UW`Dm5Ws^OeF&Zjm z8cU{7+0BOhwWkb_x=FDtN`i2OBRQ^nyP_!25*VHDC|s~`c*Df;W{_;NUvvr#?F3$} zVz?0+%qRus8m93Rm$>(v`|%|RzM{lA(e0%qVX*g~I!DvB`8w#t0*%}LKzu+{fnxLr z@B6kl%0Mn}{U5E82Kby8ISpt#Oy_+yMigLoSI8_B$0Rk%Fnv_$bjJhMpcA)VFAl*o zfbaMXVwCNGU(>b25)&^ra-nh+Gxh32U4j5bc&@|9L;5-v zH61woacMT+#{-``v+_O-`yLHA>+;tdXKQAs$7#OTFWr|HBV^sb@=SjF=sNWZkG8-w zE>!STLQ?URtxaCT_ZHM*(mufA85c9b3X6#`Avb{O@fq zZD;ns=P==UFzq0z*pj9}n793Wo-DJN6o@Bf$nG96UyPjq@bfuj& zoL5(EorPwf3{z-Nh^6;3$uTOA>Aq1Nr>S1-?@Y3;j@NEYwlLn`ODrv`Kb=t%M%if_ zKW%KtFjT&f#Bin-%IEY?tdb0de>m5Fzt#@qF`Z(0u?JLHfU#jR42)jR<{%%iz8#aG zGK)m-0`+%J%rFA&jm^K_8yF{0F#d$4N*8GU66D11{?kbyFQhTOLHn&UU-+@f^hH0T z_W!i?iz1wt5MF#JCXYFL@BBrHpZ-}FA9(EdPkNJaGuEi!#SBVVTQooZ*^>~SVML*M zoS-b$j&x0jnBVQI1^6WVzy0%$%0`3_8N=_sn@|XZzpr@Tlck-OcU|feNTMXy-{CTQt_sLa325ZIsUwg z%NbHFR0Q8Nf7YDZFTeyq^~_i#2B_OVwF-QWv$q-Z-Kf0SIv*uTJI}!w5TKNu_ohR# zVqzd~DC&2Z&7VES(ENTMtTD9_J|KmKezLMuc}<&FU9>&lD>tttOHky?hVc8otA^5C zQETPpd+-2HwCkP}GFSa)53Twg=C52E-}6!B`P#O{9{T?6|Mo02qE;llWCpv&;i_v{`Q=vInc)u zX4K9wsjY(MX#hOs)_o2J!bJ1o^EVK4aQOLn+A7PnJ>%E)U6Tb%jC`ZBshFqa113`Z zx=Mqn95hhW^sQsXB-|OhmiEuKR%aHw+p@ghI^sp@U1G`IrKsIDH}t*(Yh&&6@WO#s zw2Ns@Fkkl)zm2^_m$(OC-^crbWTx@Ft!N1}Zzgo_yS{=L#1_NT8D{e@nykVXkUs8^ z3zh;V!BaTgaTEgMLY?5ZvlV8W{(?rbH~U%+-eBK z;Yh_XB|8qSYf&Nd<qdlnecT$*#i3cjBf;1% zRAdC0r^Tyjs5<`l(|kBr0fIDkV`KfUL!qL_KQ->h_ujvJRX>pK_{x9$5I6W=8rKbX zS?ux;zCE?Ctp`TmCiybGyyv@TDC%qSE83}+m6`B6hT!3Z(Q0>G1wUHY{@vqt6gUp?BlnhIa{w~qX@OpYk`=N7&+X}jhLgtlQtvIp+vrXemqc4t5MbX=UG+S z`mdf`d`#IJ_$@9HZzpAMEcg8_@QaEq)qg&?nGkJItQ=yOGH!|N?e zN?2{|Q;w(0;B;V7H*I#tf<(BF?V9V|$7*Z-@4JJycYq!Rnk|@A3_8v^`uq*KZz=Ku z`K3P8=Vyz2+XU}Qu@3-I>ADB7EPJ}y80{Qck=CpS-}iTBzYztngt{lt`3hIme$*81 znHbdC&164p_T&A}Am02yINzJOt}-|u|9HNUe!q777ZmQBy%!-nwv$>kJ%=Fo+w8cZ zINpVxYz`4>wpn$5*{?%?y8{WkqwPCAOvf`;02j&Aa7DIQ(()EyKcsp8&ln!&8}E_k z(75{v|1(Y^d0yvlub*%Lw5uSy_2Mkn+nz?(*(Itxl?$Wtx)hN}pf+0c0Ynhfe8QqD zE;wd)S1+^^6?8B&6_wheN;@&87aTIYV+&|$%X*vCq zJqDg9LY^e@-<)iUjw7;@S);D4`Lxej7w~6FlMsBOgkpoW-_yZU*96nsj7Rc&ixj>>F#JpWJY9S z3n9JlGiY*?6srPF@x}pB{%M9lMaWhp8!-KeQhfKk~C4 zTz|3$!_1_==2Ltto)_sVEjXPVh0*3ARqGt#{=yXKHndGX7lUtlJ5X!!p<0JV`yb5s zDgUR=&UQ%Uzg+nqr~mlvSk6n0j$$EEzt8t`;G4y}THRx6mJw^#qHz`fYV|X@-2U_o zDZa<60j#W{_OI==S%-i7EXmC#f|ZD5AhrS$j-=71@rVMI&PXx9>G1sDJbRkkSG#|F zt>&J8*&B!X*w(UL?kUbWrk>&aWw)Z2zU-x3ax$BFs`jD#`JeKzCG6bGHGt@8#PsDq z@pL-W<%Ky)mqSt>3TGiGR%}jznLFyra3&}^5V;=^{ehl1r4^1D_n?(5JbnMN?m@oF z`>fhcIe(8_yArA&re8+Cuo7xN!lD$zcUB+?M=g3Sl7IN0zB@=BVSIjKW5Vk2_!lg^ z$~VC&_h5N1$Fzr%o`8!wP`7jWP<)Mi%wQAM)Z|vbZ$pbe0<*4{ho9=U@&`DZUcIVe z2@&NnxbJe}gtkC-!|68my6|MRXJwV*` z;jd?MFo&Ss4KJ1n+9jaky0&LwIsKsxc3kJrMp$LpWNhHMcz^Y1#~1Z84=7D1=cpym z7kFJBjp_0#MSO?L{}v|6x5+J5Ept({=>4DSq+oq>pAUr~cax zDPRoh_E(Mi$u2*ixjw1kSsT{;<-VVed5b;F0dGG37sK!?x8zGj9YDb7;$QDKA1^;k z_okbpU3|*G9OZm%lH;c$@|F*ELBk*GCmmTq>s38zHl^Xte_3aHkUoy_t3xk~e$fiK z7tFy(%&Ba)@m!w53$VtTc2m$We=1l~W$6b`lry1R|HA*$#m7(_?zwdHvN&`+;?7q? zNeG|qQBK>2-ROE)$orMor9bquB=Wx2@BOL;_+oxN)!Txvu%4H3J4SQO3yu=d)9rP2&8ZOprhHXlZm{lcTIAAf-)7tH* zEuUF~pQpQO)gl*KqzG6volal%&TO7qXq`@GYVelN%H6%yw-7Sd;dZ-U%#=M|o|luZ zgvrw|hOaRQ0)p;6GhIUrJm}%uL*(-Iu&_0swLPDBbe|D#k?T7u0nFlvEA9IMoAiA@ z%r@H3M>XHyi#w0w*`{GL&#KygK0)J@Ecdu$&nM>hc;Anc0-o!Ez(LUaBh<$+%W9ak z6rJ2#QgrbR@_8FZ1ZHil`hE5Nv|>-*1?sjeNmEtTxQZeLBVqD&&zd1Dio&a@xbhuV zdlkh{!+G|{F3Y=aYBhp8yXJF{pXZALZ-39X(0ChdVgRSuawd=7zx&1%tfMRw$qWEL z53r}WX4`5J7`rbW;XIXZPfurDA0mTj%AinBK&;1Yo+8x-{T0!VefIgp*HhSx?WFBZe7zjY4^QAP|x>q(7H=S-fvj)k`mR~#2N{E_6>@nX(oNs zIF5rVFBUluB?tjw2=v#No8Ng(@X=%9EQ{bThmHR}<3{+DzAm&eoR5#DX;5%{X2i2TAZ%xCf`l4N-Op5b^tSvZc{Hp*%C4A!zm#xzo!9?Y-T9d{`X zg2Tmp51S<22VgzKY#HWdHw=oRBWO3XLJoJTAy<<<_C<|M9TH^U>MfA%!n{zL15wB$UVKc zi>~Bp`iS>&U1D>!WUSYS&p?=Mzkd48;>ITZnz&5f$6hRqJL%u>{}R904|ho=Pv zN%}kX7gz2V_D|wB-F}}NEB7o50l~6~kO1f>ba4NaxNVXOxBo}rVPn_e#AV*y^HK&k z&NoH2d?2zT#$va)*JmxAfhZDr9{{Qg=H97@*!O8J60)zV!tWP>w~E*&e%R-mWpUk` z5FVT90|${1dxHhGET;nQBVlc^*R~I#IpN$PF#=*y>+#X|@7&s_AxCKJ;-q!BrN6E{ zFEJ-(QIcZNG5JTj?^k1B>-=n3i_#fcC;b5$+^#vl>w(7-PJ#J$2`nr27{m@(58C8M zZ}>b-ZyV3Es$%EVMnl!cFPv3;gP&nu8vxjbssWnmf$R54r+It6a^Z5o>~~UiA$;g( zBGz2EV7_3}I`#42h^A>^Yf+Y#6~OVAxry6T)Y;mSk>(mzRTK}xGF86*{V7$4l0H5E z&XxC33!@&e6#q7Vk4=WRXh2x%_EV|AuyBSzV+Q2_QuurZLEzrKA-8N>zciyOIy@kq z6|#GT+dp%%;`(!jK^|N&&n(MpYB1?bhmE`K{SmD_s8dnUN>Su03w8}|29z1)YuPsW z>@E~f4=t)7mJX0ZD@jaQGU2iUyIaUTrfITw!>a|<(+S#&;-hlc4fNCtKiI0z2>3j~ zPk_){jETpr?(LE4;h3#t^eSL+xNN z`!?dQz&e$^-pZztWfd0Z%dXKv*)_)FIXpnH9RJSEq3jzOGDHSm!7uYCACE~z2e#eW z<9Fp0$9}z<+=?|9qn_!gOKJqa7zAdS(b85C=AH>8Q0KIj{Ui#;;Co$ zIcTcUb9j5~8`0-8}4d$j1xqBvRXxB>5D3i>;)9q2&&QEoQiMyu%()~yB+69;}S%JZv8XGmr zOiiPM{WUtGhiwhaqfz5$1%z(mt^8 zdsr?>`mX(KU7b)1O_C&xurAc^^#;j!r1t^8L-+lz|0Q(KLzdhlA6!1a#?Z|}%179y zcoXbvOe-Sxa(8TYlqWk5Ke;o2hG*$iB&hZRb}qmz4fO=2WUB#;JBY44(dVOK^(Y9v zKzFlBsUN~yIy_B-CNJK!kjKAy;UlRG^Dxt?00&hGf1O!;J0GV&+j4;Z9>1YZ)fCGelA9}}2)TEEp?T5N^c3v-%J=1p*i((2 z1L?YHkbcrOZsFiZ?a}?KGZV%+ME6%t_0EAOY+V%aQGHM((zc7ISc%D?9{~SfVl*IJONGTgg$>o{kNzf(C-e(%Z^EQDd@q*6-}UI>V^9o7AJ;+G3bp#( zZ?ehFVCv>^x&bk+>?pHp*Mr{VCuZF)m}AQ==+bFF7Xf0e;&~YkrhVZN))QO>e&WhS z2w|?~x{yc?q4HH;j9{qayd~2U{(V2($MnLb&P2X>M7F3oMM3lUZ~1V*f7hV<;qwoz z>SB@VHQ?p{+W0M%pVgxgh>H~dTBCJ2))ujTzfeCOot#wFdFO#2O%swl^>hA2&|ujL zl63ldJ$#+B5nI5mhG}%n1$Jvj%f(!cQmA6T=h7_!uyn!o1Oi0hMBz5_@?UNA4#ULw zdlFv`bjUX1p_U8ZJ^lypC4S!5Y7NkBNsOOCfU@eIi`>bJX2^8cMSR;CdA#O`w7=DeV9&R2ZvYTSBKN@$1SSj%g(_&@$ ztl3>JMpU3?_*KzZCb<#j2S`!6vJA;t*s*8*e7q~{W7x1gB(~wZ03tPa&4+Ak%Xe(e zmcPxywHvz1T7Ky}ufhg2_=SWX?!#W*u!ECSm_IM-~Iy+4It&!S(C6e03=oKTmI zF#l@~pu70XrZO1Ml{GxD$?tK)FZOZlTA@0NMLtNUg@;>XZOt$k_S!eOc-{Am3A;qz-vdm2cw5`XJ2t@vcaZFb?YKjOV@(>aEX*Ra4o?>ZZgpi#Z8$k|N z5Y9~hc=j-OE*KcSo)1w9ANEh9%qy0 zO2XaGZ87#U&Oo%VY+JHCwtd2gH4F}ZT-c_nz520BOmetYZQ`}wZK5G=U>2!$vbUYi z+`sp{6h^*TC1%nTEsB!$`)i8ke1IzGZ!cckwF%~3I6G(0b0TfWZn*DH&1aq|b}7D4 zv~T|&3&QNklp<_jhl^Q_yPy zfHemZWf)W0^v4T61Z3^`+^9I8ym|>sAIHqCi7tXD4p<(Zi)q5Z4Alg`8jkCxZQnD9 zQNjhi8R14LK9S>K1lK#n3odpc0Xft35mkqTNQ7=^WWH_x*0P3lQ>O7L@rPyReh({L z)^Ox;>;#QJu$)KnJUu4OzG|~Bs?4jLX`W>bOV_3@`ANFOV?lJz6Xfr%n(+b9|hJx^dAtj%)LY7!<*#4kk6 zApPnidUF2C;fGtmPlhhc@1ef?EWs`5Rb-PV`8x>@7-g-zxOe(K8(VdE}>tf;|lF}dv!iyB8t2}ulz_fNjB4qoeu@$2Y zp^DzQs>>xKbJQ=*cHkml*V|7FjdAg!*7bPep?%ZF$;Vce*F_%pySMCE77cV{nl+!+ z2KLl6nrDQpPnhQQJH^0UMKgw-k2XgcHPMMtRTWNc6~NCOH0%b6T*QPP5qXvgY@QRe zhn;L~1P#Uq0{x7q^$oGFGc}@}6dJ!j*Y3V%GxC=~H?aOqM_ea5`1zdMl;z1-?Sjw0 z3uBI;j;U`V0(af^xf%1cu)tI`pUN9zJ|rb30vG!%oA60l{CxhVi{zFR3U1!=s0&vX zfkk8uZG!ns-Wg%uY!DL5Bl^7__Ml}Wi-R3kA_a!Q0(Qd=JBr^%5yEOcTK0x>O)bh< zbV2tB!S%C`U#WFl6X(}HhAJuVXF6`c#c()Gu4S=$CX!4WWe4-G^HWc=jZ8gc+HG66 zpn9$hmK=U%uJoX9V4}CCVcvJ(Re{HD)2RMoKKqAI4vvX)+N$D`@qJ!cDV5gsQbXn<_ zb-g2Js?_lQD6O9ByYdW zNH>MGgf7cGHLJ@haD`Xe*n@Zj^YPH38<=z#alY}PvsYWybXu5 zq@-^ylL=}tX68ADgZe_4$Gw7ns< z)47Ne(D<&$>f-FEnsSCdc93_$pP7B4A~TtBbCef(bhg}0K&82^c+v{<`8l1)kpnbEZU`qsm zEHU5$`yg|m%U&8+o=7XL&Z>7`LT@HsdQBhxp?)8u8qP%+Z)LHRqj)TE44I$fLzCf2+g4GjT3Gg(WdR3ZPUE@<@_6y;&rq z%*m7f+)0#V!emyP%^Pys%#gQxKc#y=j5aAl663Fky1p=hI|BOp$Oiz_`-*u(g z)u-%y_eHapbO?n&=|b~6^Nyz5nOD@G;~jCMO8s#?$yK8FJsIWap`ZC^7*u=L9rdzd z$q^)2D4=0KYr;?VvCKqSo=NC@j$@M5s}>Cqn*mPDN6gj`Cc1a0jqCZyn~acO4r9#0 zpEWbpo6D5avaF-jyP+X* z@8VH@e*XT6N%LTG_d0pGf$okrf&8nZ5ZP^6E%?Y;%?X&V9*7i83~C17=AB1XPjvqP zVDi3)V^n^8P*&|R@uV5+t9^$+e}1ucg8^sI$8sFbLy`uj;v@KNBfrA&N`w)r8=jMh zKNfwJ?dr{D^~bQR_tUoRgT(iHi0|WpFq*L9`e?)1xSD4iE)|_<)z27jviJ4%@pvX# zt8true`X!#;|S}4l{Ex3>$m6IwH;MI=+}X1-w?PP)hT~$PxS1lHcAPECy+6D9mrxNBVU+VBU=T%vjs#USR&*=uSc2*{9-Hbe`F_ zYJNw(tg`ZqIkWOEc}d(_oTr(|j_V)W<0J$8KCFKkf>T1N(4FPx<`O-(Wckb+))OC2 zQI+Q@$f1_(Ca^PSXY&7%Hz=%4<+{aG#j%=@j@=7u7vk|~qoF7FdLtL;>yI8Nsx5eZ z{EYOL?S?=`aAUU~MQeUyM3QF8m=HQc{q z=~>iFaIfO7)8A_~%d(~c{rjq=YK;^(_6DLPoCogDys-uUk88&8i!xF8IgAp(SSn_Z z^1iz4y1IQ-6x2jk`2%ZR2Va9(9xTuQ-6Hh!GTrc5p5W8KTsrkfZ1+?VEkQYApE`24 zUwRyu%IbVMf5{c)eb-~jO$>i759_WIjv>-BJ2F5iT<4*w~hAKGPh(;4LL1fYCX!c6D*x0|SbqJO=l{d?f%<=8oBeb-3NtEBI4RT1{Z2fSz1^Eu%#1S`LbIyp{Kj9VT7+0jaVPA-DwpPFjO@5mm98w zW;D1EZ{(&kCF43cY#H*5cp2WMD-u5EnkyDFBh}ydL_;ipvlqKN&qDa+Kj*-fUUF|p zX#b`=pHaoTeIn4P&2j62p6bt+fG^XH;d~9{A1~xNPmJbzd3;<#y!A{A+WPhE-F$I- z<^|#{-M|e91anB+(kE8_g!fgP3Jyek+_Tu~MDZ%YJ26V!$4+(o6me*U;1Wy5^UX z6sHf+%X!ht7FeVv@@4bw*2hUkI%xQSDgCG@iQ^49jeeGg$T5R@-pX#>m_xxFJxy=9 zSK|-OLUeiHEkzt%u&k`;13=~1aY1c4j6Hi9uu*M)dY}vmKo`RHvsG4O&qK*mWj}Hb zPuX@m!TPCkCXw{1%vD4eHe2?xdCIckd;s>f81^G@9h=-%?(r1{dTA$t*AE-qkBG0A za&QUSH7LLmzAm4gtoNk zrsB)VZc>eIaR0vK8CCFj*I8Z#Oa+93+5{1rLUuS~&Ea_h{LY)C)=y1|CGerxXxBL4*)?Y_UvfTCJoP>HA+ZW04Q$&;!3lbfzyb8rA!Cl(-% z>><-n_UN^A8J-w{TjFq%Ax!U zf<^f3snW!D!1{H;Zn=En{(YAp)?J&^HZ*<5@Uf3Hy%bK1!1cp+ zlCcieC^4z0ThT_&f^{bWFIg>4Cb45YI?Sp`C+~weCkC&|{DIYqb`yBgq#bZ=A48jC z?ht8rg$7wU&a1M8u`D${7RO_vi7QI-N~)Lo8X*PF*bjCst`7FZ^JZT-mmJrd6XusL z=1rjj(NR~<@07KS@*aou0@$kTDgFA!|Z$`1{CL&)%s{PH8a7R$UVZvm^{nQ;!@`Yh+(1BGR~r zv42I=J0V((A=2&m?4q92EoURVkf>>~KtX=B;)Bk9q&AB_a&MollPzYaS;U;6|D6-W zOfW}u1ySKF>aTl6!wQFnb6c(ciS6tGg^@qd0x$iFHStEJg7o0F?56QBM~~HMt+>=Q zR5KAt>*Tx=@0*(BD7~)<+tI6dBXU@>_b8~vY8)9<)b+M;cC-60t`O5S49%JRA7U z>ay_@v0iy&^`2(=XkH5ILC5K zDh0Oh-J{;d5$7K!m1$%V6-T-X0&`-UDtG-P*=XUZSP13C2dT~?Gm!v%LFLZ`39_F) z=L$X7guzB=Q;Cu)!XNF>-}4n`^!6meiBf*}1pjc2*>SyjLvn&dFy2QZk9<=UIjyfH z)s|L+Jb?QLKTsYAZAt|*W{`#i30+Jt$^n#dXD6l-x$(^NiNT7rQ8L}X@UR5N z8`X}b4qu=|7f2%m_@AUzaWQ>O^EpHHQ|2tpb)fu#nG?M2U&Q*LBU)|vD_L9oRW@QC zEw(rXTcQt(*k6O_KHBEpwt#R>@@#fg{i$Esjhk+EJc>A%Pvy+cgTRBV5S}@-*lSwVZsSKubP*~q$#RgFDbVcXiHa}h zZ{iKuAA==`M;{Oj5XLC5P_>^JrpXm?puKB35LA^6d~y>~JNei@JVfh)NP7atUrdZ- zu+=$W$0w085*uFKKkJJN4h0A6i`J}o9IydlGs}8!+<`?oj`gfQCygT@Qhz~vVJCe3 z-G-HDOi7=+;v2-t{F{%e`9%2r!xns=z`C*g!G2j}8zBRYa6k7Z`-_kE?;(Cr7JB8^ zjYxP@Y*WmJuXR0cR}|}`|02*mYAPCxFQbP%W5Iik-u+Fq`+Nw86|lX} zSHU*hJiGvY@UOJZAE_#skLJV|51ga+h5?|5-mtzl&T>K&7e@PbY*;GM#%CGJOj}|K z1daLwvo%|K5dAGtQsRIBkAfZN8xXKYM~hr=M^?mxn$}q_U6)2KBpj2O``+qjKwE@9 zXSngij_J2-k$H+y;k5GhHPV|A)V?blih8nm)vKw{Otba24D-MGFNBOFuC||Wad1N7 z_QT&bTA=u`F#dYRkA8#Q7YzfL2f?oO@!tOK>%86KsoNeh24BM32o!PgYzQO=8hG1S zV&couOUxnqvO8Y|C6TeuLqBT)a|T3l27l6&d;i%si)9s`crWU{>9S7?rhc~V;Ef7Y z9^geVh<|I#-*v0zB+OyWpm?ln3oBwe*m>}Pk;{r@o7tZc(}+fwgJh0(FZ0ZF-8d#m zu-?w@Yg&XA$DR#1GOn*beGFZ>_Nf{}Ph+__SFPUptr2V?5g@+(UY{SG ziIuc6_NFM!*>jM!rwwVK^VI!H`=lCq{I5Ck?}(+EN0kkMvbtzA1DWmg6>>UCKqYWj zdoo>X89;k1oVDSzktpf1_J=0nwR&PoTj>=#eE9t(KN! zf|^o|@;uq|cg|d!xTf&OC!D$NyL`XZrlO7>Oa{TxAvW_ycxum{Wj`2Or{@wggJSN>@ zZe48OHZSKoP7`4060E!X^o$Ts3HIeUPr}y7lf+Lz8@$Y7=KyE80fDnL;a45@=UC9w zkVD=0hB7@+ngc~vsp#nOuWa^@2`FLblkw*2C|ye z56KfUDl}*w9ICJe;zrw;w5ge1bwX!0c?K!db@=S1CsLNGQC4m~%A}$YsX54L=($Q=VSrW~0@|;c9blq+uzt z^94DIP35*YT)X0ZGp)D1e|@MZIgk6nvwt*YwKQLz!{Lhs+OX&I8|~rydwgQmiChTc z{Wx+r3my@7wg_b+(bYG{GMaR8~n8B1yn>_o1FwO}(LIgi*Ypf}|1RHLtJrR#3- zW^YbYy~?Lmt4X*1_`L+@9LeK$CUWH@3$l1Qw2|wz(XGdL(>w1nan=gDRsu$B5+}}o zh;M?CkK^`~>!(J4$OF7_?39=H8Ao{C{Eo9gL|)uVATLbz_jnqu8zXNLBu`==^}%`W zTmY>)6{bFIh^{9vJ>IsM4?!qPr-N%EFX|2kQ4_)e3Lx>H(9afgyD1loyOeidw7yF* z9`?M`bR4*U#qM{r(B799IRnFfZFVBG`-T~jA zk#VqZ#`V}Z@0!=t%A<+X%y);7Sh?JU8AC?|$)fbrI@>&4*xVN>(J;1e+q~5~iI!fyJPLhE1#3o|ySmnt94H^Mt-#UYv8kR% zT<)FBGZkQI<*c|}L0pW2TX`NI2=}f+@q+t*Ujx+(21gHQDl9R$ z%yezCR+W7<9>eE_^GJ5qa=u>u!ELlVwtNh&x#hk|NX`sTaf8l4Ll$y#{8XJT8?nT#xzPf6S!5nZN@1`9kECXkR}4No01=l%fl!CDGT3B5?!ImL@+7K zWJV#@VGt~8&F|%4eT6;7|5+Q%45wf-SI2(*cdWbYShsy@Prn{nOPDA4Z73{z^VE9x z$;>n}P>*j^D*1xCcr+=esj(P$@p`*!C#MY>$yQm+cA z`F*z?TVFJ5a#ZcDsSFnWxf^TetPEc$tLW@)65o;tI;W)~PfSa8RL}VvTQ;T_bP0>X zTUMv6aVZlLuHbmLx51s52e>YlP7}ONJqP9GBy8>!^%r6EHv&^SLQ^^upB3Zc!WNV0 zzTtELf%~i7=(v5dBY#BjL;lXUx{h}p+3du0RerTyNx82rww`4?!0onpZ6CID(~(B} ziY8Lo_eI6?dwX2>@hjoHe>F4&?G!#S*nauX_wycOuP72HAjU2EfcfqPxsH^#NMWA; z8QZA4&`R=eBXXwxOJ_xGU3BCS?IOf^y^}r9So6W8bn(%Y-XzQIFYilnRc1y#>~me@ z!K$ibS`rAvaz)(OqgX$ZO+0Wt4L!E`08;JdkRu2Z8NAAK50iGFt`yJCd(4q74AD5t z_uLul)+Fivm57>vZJ_WJY9c3D-sqF}L$SVJPa7xqrJ_S43}uNZoZG&inaY=VBVv5p zV3LnIw(iR4+}Q|o=+<#9W%{Sr50*JKO*Nt$!MtlXX8TvnQ@ zO1@rReYzd!?W~%|>=OxCc5GX7?>T~0MN?Jtq`u-Hl98duOM^|SUfh;o@23SmOlH~p zxHqBw_{I4m{V;{^*sHD5p9%7}*827NXo=7DFD!i|Pd|RSJC+s`Xp#(oBnQ)zi$!kk zBt(jr+qXRo#{IH{%7qz+r))ZrGODd1-k9)|KH5_kS!I=Q(r7Jw$dL?AVer8M+!~7$ z+aJ6!v0f2+NaOh(sl|^7Z-LBJHI`r*b~5#DH>_zwY0kA?5^)e<%v) zJiDD2z^lQ`Hy*)mH3$g4&o;P!=OH&SIA|}IIF*^8jq}&C;#^*Jpl&(~OjNYNL!>4$ z53y`To{=(aVJuri)<;2HdiO-y+Z0lRzzeqq{v3j+{{@- ze%gR7O6u*{0m`X->GM|e9Q2m8Y~?ak`lEO!3z-O>9DjTW!^>F<(G69r7*2%B0py-{Igu|}E7D}E!2EaBvHkbk!JW}@Cg zg57@*;f4fD)~0db`}~EOf4&crq_)&8C(hgCM!;g~OeTt%A1X7KNYg*S6ZbhBIHXRj zE(E~()fT#c1F#duE3Zx?Rk%{l1p@%OdqO_(SpwJ@+(QmH*qEFs4xcnjIajGAik?}3 zpZ~yexYH1kX+NKZAAgY02O1I;sLdeV%<+27Qj8j+))X&DbWCZAQEc;lMTsjfs$BrK z*%s>DpMenuZBXVx#f;*998;!W9q}r>Obxa$>iaWF?JF^}v5Gd8duTd)9|CdAB6kw6 z{-fhjRvam+7}NqW7p%9yg}1Yhm5bAua0QP9U@qnX@Uzi20X?{+hiI!5`d=LyNKx3#I3s_!S5h8*8$V6!#AC{|+=u1C)zi8;^2 zWrA^Qs}-@GW0=m3Wa{PfeMkcpp2QxFW8e4#5o!Xb?(4E%#afoL+shVH!)odZ)GIC##Gx_}|u%5cjKG7;-xyDUG z9S@QcV@aT+O>7j~VJJ!mHMo77cE+NO%9ScBpwG9_E1s$}dV(?x$eA5F+7ElZKJyP! z-5{Az{k8IG>U=hJ4wA;4L0xahm|vszN)a^WX$HR68{8+xSHAvXT8GNk)pB00<$M2P z5(<_z@fi_sJ+GkSUwNlpYs#)(*W6bepS=huXVm~^Ypa!zC3cCZdSyb zS`SiRs0h0f6Ux`qq`1~q&OVms~2-H!AqZf7!GMgCPb zWYS)0f%c0-Z93ADv`~=F>EJJi?~&{xccqW_*#VlDaw(|B#%c&5Bh&z7L_@J(T+H@h z!EN?99fUoFs}&rb9_uUm?O|rL_Aq7zYk+g6e<|va zd@Ys2fR9{>=U)?tf@>BO>v3lr?luRadhx46j~rQB*(;74o;+c#nNAY3kpYpAh)C!Z zM;&p6!gHWj_Wxq<&34;ZmUQ9!^Av=yc7uJ)%9?9o^#Wwenyi7=U=8gCQ6!5L#Zgrx zC92Wyej?}0iY(fF@!$Od_FhFw4kj}rWBei_xjy^8JvpgEU{Pba0rJAM;B> z%5;1Ar3hXt|06hFUmPv7-75%JaGB4>+wLIu#<%yKn{GD0`3UAW%k;f}bJ+2NTdyUI#1+7HqBoRGz6o1Q(KgOS@Vio?Y$>vX;(5BD!INu&3ZyZcSMguD6k?5KSo zU1ig(JbeEVE!M+se0FvM_TTOBtUvwOt^Cb;xa&ug*LzTU!{xzy^z^-WIGT_Ao6Buy zw7MKDiu?I`{TPy$)zvVJMh_oP7ssP2*xk=|!MAo8oITAu`RMuJX}%sWNm)KcmuV+E zU(Mk@F54f|^HKX`I?5JvuWYZ|r_)ZS^Wbg33wb*KfK5EU`_a83)6>hVi?4aNz0Rjm z+V#QY4vO%7H6_Q}S@G2EUcGOxlaJM)c)To6=11+tsQ-O*@^CeUzX_(JXmb_xJFAPI z!}#TRdfV=&nbf1-s2;7ZKHvghMi0^PC>SQN$8ULc__Ugx9^Su#kqC}NpN!AjdFSM& zy^hPv3T&L4v!~$d{NrNe7uD|JWZuo+&sK1!+hAWtd@ZY!PXBi0C%gXYf@JKoK|d$- z{BC~^isJ3d!Mzvx*L`oc8;&j({V>>#E?>)j`#sD?MK!vOZ{D8ToyqLH%-TWtF}`{Q z{Whj$&o5JdbAPhR^7ghpNUl5M^Y5om*EicqaCYnGe$ly{b)(UAwYuuBrzif!mn?Yd zK6U2(vbqV*;?YwyD{lNvyZ!btne{fdK=qsv3M+bA$zXre7{VadpqO^V!)^ z8Vozj?zFRey5DTJi{h&6bhbBfTs+)8ha~KFDc~x*ykf* zI~%>co*$E<{e3Vy&tLt~)gWHpzWT%H$LMPg`~0@udWXX-@QbVahjp94wY^zg_T%{G zHaI`?+r#QPIQ;t1dEcFMUZS#7{-jZi?aAi*IKMau$>ZUYgr^`c*Z1V?B^|Bd9&mf_ z>T;NOZoY0W-=ClPUHL+FKHQb^^5~`9{&@7f!`;^NUot<7Kfq>rd|#b*R@s;2?eSoI z6h}wzuP0BPZhN!_GY3r0vw3-NfBEB}`{=FX?zi@BHw<1+A5zl3nhkG(39h4;<7)D; zxqFz0Z*N&N-E=R0km<)w=VnXhFWfK4zeFePey6+retlmaBC@-gr#qq`4N%!XA zJPWQi0U^t7XVIP>gGi2^s-2$(S1(+icI@f-t!pF4Cvb4B&Z%K9a2=}X9dB;~9>Vq9_t~-yNk7T#H+nj@00T#*P%j@oW1X|`P zxp;g0etEN-fxk2JZ~DD+z2>Bm0lRDhzS7HMaYKCjNEv-9tF;A}l@7TyxP$uH#nytB;CJBzFPBY*Usb&BrU`Ql~z zWq5bs!FPE6c)B^>w$t)%-hFR-s}#)e`^$@~_p*F=z55x>uZ~W(SKx*{`_vBi%9JwK zX7CC}a{?w>R(<5#_FVX{!`&$TnH`4*2UnAyMSOByfcw?$z9z46djaQuepnn-Mfui! z@q+ecoFCbK^6NF%7lZHJ;_3Y5<7B;K`Xc*i&&pwR_u9QE$Z4k>oowT5aB^0G?;U|0 zD&x!S;F$JTdD^|s9?lli!@GHL8I0mPZ&v&~UT5)pxXnh(=^_H=AAG+(?mS)2o;&$A zKe;cqo%Zv~{pPM(UEbWsgR9QN=Huk)Fu4PHbO)B?Xn0nx!ld(*?%Hn;@8ja?BAy?E zZ%spzpUu94ue|&YK2&y<&Mp_Ds~dkc9CgoMf2Psx(@VE|1a~j)Y_ops z{QxxzI`bqNrO|FTn_XnxbWuFqZnH_*zbn$S)$7~o3#j*t{$St*7uWi1Ht*#-oXr`i zY)_rdfSyhELroi2YVyfn{ag&f?Zvx4>Au20Qw```TXbh7mbDdU-fJxmxW$ zva8{b>BmRsrSr1@x&07jNj87``1yUh9c)KM9!y`}=abI2Y?wZTqwT>#x;yMdqxR9R zlfFlj?%8bj5Jk)5QE~VECLp`_XqD~WPF{W<96pSHtnUvlhQsu0r~8~=b(X?TE#4O| zZ{TCB--DCBw-^#L`e#S#>Iyo(oGkc{4_+j%1|+w&jZ z`^!4$oF!*UuYkdMeD%=zHhemP`!qOQjt;|zgYe|*MRC+Q0$->TBtdr+WsCGJ>->E0 z1{cTOBFXcwogz40UxMJ__wnO;{+vbK_1Qru?sGfwxqsh|`Y-cuU>?4|ysYxO_n=(7WFE~O zUhX~$5RV|AvzIT&m&L(pyz9o7Z^_B#F$JY{SOA0WlDqBVVYQfMAg8h)SDhGsiehxX zjXF=audkz`a~|j5lTw|w>Ob6ff|KYLd`^ll+}&SaUVkg|*awsM zrM+AfZXWZ&D-D88CgC3cz#R#4q22B(}VQl?tYsEKhM9v>~16Y z?zdf%eQ*CGg z!`1c`zF&LLzPo#lN6~rpalhMsj7UE?>rNMb`WTG6z$5R2O((j%Ce?t}LC!%&CDZLk z|LnM3(b&Pf{Fa_ov&(rw!cJ#)-t8n`Xe;5eTpV{_$6vs|J9>RPekr^2<7nCSv!e;P z1s|)2i#+@pEt1aR&$DtCe1!4l;bE2~@2k$)v;VqYWXXI!y?T0iyW@BM$v?mBXQ!R^ z<1@(S?=K(6!%63@b301sH%~nN7VXYEN9~s(t;KxxlkM{@sNs*h?aYr>^X`{h@bAL(eeqb4t@qN2CZPYO zuWTKi!|XEQ>o{lYcz=ES(M^x!Qo=wGiU-Rs>=^fb69-RS)3JpQu1>3-i#6Y%{z7bnxjM>f9N zq{Y;~7=oON(`nr9&u_C)dv#Q_lWscuh|W9dtdm`S42s!N(diUt=bh>1`Vx3|N8@m> zAID`{hV!EEPE(MruLs{AUcr=I7f=29kL;vKhmU#ivYM}kySMXl_~^YS?ee0CNivIG zg3HbbY|GB!hj)L~&b~};;r@H0tCta&$5A&4(rs|jeGEQ^pab7K-RLa47cvMImgE5q zYKA8V@yT2J=n|tsS$CA>#mCdU`!)Io{{7SR<93jpfYgzCi(Ed( z+hEom1f6B)Jo`BGFVo=hkyN9P_RZ+$rl@={L@sX*vK4r&$DP6Li$8e%$jNngoFBig z*U`_Lht=V9csFe)?Q8F5bpG=!9lUmmnaEW@mNC+#hmo7dT3Rupj#jL@F0*01F#i{8G2SZrT^1mH`)mWz)U;Fp){ zs@+b%O)s-y-hW@eZSUr{oz8jZV6m>I^Wiq_C-fd)f`8Px>V64dz<<9xxH?#GuOHWB zbD9sXli5xF_|m>yo&Ibe=aX;qJczG56?q4dT>ePzet>^9dOp~Ww*K__XZZAb3YI7B zL7yB|=b3lD04bQBcCLdLZveC}HW!EBRNZtsAIW$%p@Kar%_UiBHJ$VA1Yh zJ(c~Rq%%1@d)fVr?q8`(a`Nzc{%}8vZl|x{xK`0F3np3e;6Ghf-$#U8Oyb)BT0o`0 zZgSpv+m2r*H`|--`PJDO*ugK|&P6&cFS70XCS4zs`A?99%Y*gz`;X1apT0c39B+<> zs|onsi|79CDIfFLF8FyT-v;NK+q1i`A17xWaA=+^#vNJlyPKd$2+#|P&(;A$?jGP-|!FP|Us$3=8?8r=gQo&KDE-$l=( zRS@pBv!8EI%hmlOsQnPG@O{4f`S3g+&(5~fF6ff#ZU;WyY8_s#({^VVynr5AF0PYp zu{|9vzxo-uB2hWGoiZOT_%DLG4asJWNq3Ymlyre!!Lv`fA^<}+Js`2x+|NUv+RKtDn zc6Ym{hWm8Bqy0zSKVL3p7s1ztUmiSuKdX+$jU}D8PxZc`#?SogWKXT=mv8<}Q$qmQ zs%l?t{g-RnU)KH0uLqO<*;DfY?(Ss2c>MDP4(QD}gNgt8a>n|mxjz@SYU7?o1V3-z zXl$l=t9J9J=cZp?9DVb@Hf`1E*Ry>!x3_1vmv2qq=NJxXAFuoO|35E_pZ_m;x%1wB zcpkirCvkAPVQ+ppyS|IQmD98Fc>Ev#@oVwv-~UgG{d`&%@9WNLmQNO+{%ZZFc(?WG z@1x0hQx>gi@=>&6&-2~`_`lZMWc}O)w1bTTfQ-YVe$w>+0WIgXLm08CPnX+=Msl$xKmw*{pUzx3|j2MQ=2j760B^ zl}q~2qkGod<*U`?-&^cI@JE9w{kwU-9y}Mu=Lll#uk^e6iETfo`>%idOaBf1Kl-&= z|MB~;`mcY(|IU1`_Q~i={_EdbdDY@)R$BsF*ynMv?u|B!L9bfp@Nw{O=)WK2vl-=u z|Cr_T{xEORU)KJ)B2nM0f6+hw_tt;@`cylQU!VS~_HF*{^Qwd`=)tG`i?5OX!T%8~ z%UF&v=qGTCW{Two%VEK(d@A0H!G_ZA4S;Fa@LR%vVX`=9UBS4OVn)IGpBDL?k*(H4 z_>)f!d|s`~BA=_@(o1Pv$4|dX^U8jmEeF#U{ilDm?hnq-?cZLN!=fyPt^V$>)_S?l z;lSs>jl-fE*neohqU&t^_GdwluGLysn?8SI4Id$%^6i*E*@QoT9&OejN~&MK*3a-Q zho4uwzaqcYyI+>m({(ZbTy7SvR>J?>`wU{n%luX=`0RV3ml6727$u3H)akNQ|0VA? zB^x9`3#j!biyr^1R*RT)qX6FcoQ7eL`ueF(H%Nc|I-m6AdMAr9rJY7u>z023wqU_;58dT+2FMOi28OTw^ag0LUg3D1hbdRczk z0{Qdhazz)|1BRW z^mKwq9DR4WoPA?bVOf6e^@{h&y4S01f+uz~@zYp8Imr5f=OSA@Z$MVOE$U=5MU3dD zI$0;{W{G0mm*oTzR;x^W{ZuFX7xCas1eM-f4qqI2ptq*txacv7WRoRom2se->STrN zwr(*vT>SW|Vo@#YJO)+>Pz${zU3W>MY&_wHf>QQM5T4F4~9emly`IBID;90 z`AHbdC(gwDsZMqXD>YQkFZD4YQ6FOv_R}EB*roV)YH+X#rs^b2m7*-BoSmolCt+w zkA#RFG}WL^wdW%1#hD=MlUR}sygFID10kF@-+^9lLXC%>wGD9FLM9iZG~k3u1Sf}X zF%SY7EeLVFUi9+C5L5+lFo>M0Miw*)BOAv75oALw(I<=I*ROtF73`Y90=_O63;6QX zJ`|tQYGo$fn2GTOzE(u|KKQnLh2()l!G6T0lk~s4Dogkn;(4DaE@NB8XFK7>g%ixakFHNlm_!T8A#2Wvw02w+( z1$vB9B7T&#uG!0OxqRP!9u;5|*F}RD1nlbvaS+A<=LQcfD2EDy9kL1bB*h;1A~mvb zVHw#7OdI|UqAbnOoiOfhsO~Nmj(yPky}TUPuNvP|-;Y3&v-dzm5~L|YkY9qB=Bpm{ z%s}8&6=pJ@aI#@0RvRQCUak1IY%^e!fQ|XA%3HR(>& z_coSfgG7=|(Q22A+cIBNxwsU+CmX6w;M>8-x;O#;ByD|Lj6tG(mcn3@&*Voqj1fjw z@G^g@ljU^5)RuJL%6!#Zfw9v>HsHj9IEwWXS}hRJQa1nv0DQ42s1fzKfo`Oz=}$l$ zmdgule?XFWEifR9!4#Y}hmpg{g{gi*f}w$On0c)R!a*p>1-^cA?*zT6jDLx5>_iWA z1>Cx(1xIP5pRk??yvU?A0JD!P33Vyl2N%W0lZzj~?r!z8V81Q~%W_C{`@&&L6HUz1 zPc92RbW?S+L#W7dMZ}+w)OFdW)ZY1fHmTOsvHGXg3N6vV4vnNBciEE{#t}A6NgB2W zvmyr{wV1DpGN;~PZ#3Hs;KI>QtZHPrY5=l+7D%!Qwxk_aDFLYht~#}w@-?-j8|eD6 zq#L1a5T?hkU%i(~$jLZl(T71^t=XGQsrkOpjKXvxDSXjbog|{WP;NFQ0ptY>a1S7B zQ3YC=lmjpl*d-(I_4#Ko%7}X%8v!T7!e!Jxr?(IEJ7x$Hf_29Ad*Xp@Qm5NHE*5+v zzjFC_0h}=|m?O9lrYQ-v^X_}TAWOdwe=p0hmpx`yr1|~fZi*XMu;13bcTN|Kz07z* z2PXn8T^iiw68L5f%P+>e&zySQdru^>#M4hmm`(bhd;R4SJU@`;|NKSWu-=HNcK9DX zHF{_rUy>#KE)Z%%@?D^hn9T&Ws7|f7Sy1n?sF4+sA)w`@p(KmlpZaR!2!#1wvfLmI zfO#cZc&wBC2ebm%3M~G7G?^9WKoJ;$8mYbca=4jMv!79wW`7{a#*x^B5U#Vs{V4=H zRQ#wWMa4~%xYeNA_@RMe$Tbjua!OusY#lDeK8?wU5&eV>Q&4GIK$sltH>{T^!a<^+ z&=sa<<%6z`tYz76_5mbAnX_Yy;cooRgWUgc%b#2MJ`olaAz7G`X2O*2 zvRZ>|uU=>RGniQdOB?p{)ueuM{JN1KOJe=>=O;&6e{&B0r>-?QInPf#qMxvZs^t1+ zGhx9^@bg=Dcc+J@mRDO5XTI3kEDg0($8ors;a0OCA-%z1UxQ~jC{`|;gxk^Z<+-WD zpB$zRD9PSAsB|jbzbpM`o|j0R$>m0Ate@&+ z!4Pmz>^)atOBB83WLVWTydsta`U&wa5;z%%6>6HX#G8X|AWtpwJ^i%Dlr(K$&|$+e zf1^fJQ8OiZjLb{?P(@MA)5z|OiU&*RL@Y?MDC#zk zQ7IKF5rt{-%lo;PSHsCbTw=}yF%cn1Fd|a1aAs1VOPtUCfy&ksd# z2%IWmpC+EeYcuU9mIdfNvq%{WzEEEXuA0};;w1^?x{1)mfrm2{Y_(b3uv#8Sw_=e( z@Wx&!t?3xf4@LK^B1yp3`8Cu~1>7 zOM}m)eWFYR5BU?~1S!YC#oCur11U?|rl2+mIT|O;VxJ!%P@u z@EwtOqygl2E)q!;`>lrq`brWObct_ngD>fdE9ZrdFmGkcM|x!ZLozUg1$k%a6bK7n z6C{v_wPh3G5DYo`!e4CWHNvS}F-fF7?O}ffw5?=dpSn0(mI0c46o&C+@tL^8VG?^n z?vf0Pb4HIup-E3Y_BaH=AR9=NDWtJYK{mxH%wNAo4Adkd=~;_ooY+;XID6F9C6~6L zlDq7wPM7~vVKUhl&mGp{E)@`qJ>v=8Hhf^4gpEh@HlBXMgmZ2=sKj7clR>k*MwlltK_jQ~ zBj{68f{7x}U^DW?__>&^ic*Lo5aQ!y-9D8LXO;%~3F%^N`-5FHnv~VLA%w~^Oq5#U z>nD^2Nx&p`SiY1U;5~{hblSZ>N&HAZ)yeu{6#uWt3Wo4WoEcAOdut9hxG9QukK5Qa zr$XEZ5WeC{gSx=xG&pI_WUlF}*oWpzvVrl0Q`%r-{BL$460#AbgQuVBWTODSb-5f+ z*P5Bn+q`61J42?YCRveiCSW!R(m{dNP=TK~m=P%3dz<<#HooqQPsdj={{+bTA--zF&t#SxtV&m)a{#U{NS)_= zRcIq3Y$Qx1_xhwrPd5ST3(j9 zgcrf9#g4tvY9*%CCohIC{WlssLc+{e6|jid(iP*9o}4Xp1gC-XDvV!nv=Cj>;#1}- z6`cH%aJrWB8Y;T6^4su@%g0U8&c?{02=Eaa;?qxms^~*Y(d)<|Jc;0leqz!S89X)b z!Uv~Qco+K41%`VOBvP8kM8YzH2rYQI_`h*FUKg+Nlv0O};I^etB?evYgnETE_$YTG z2;@#gQmATn5TQ7|EEASH80=VOSn&*+lrlMOR*Z{99Wm>R zeFfvvcxrGA83AShf+=#&U%72R6>!Li@VVF%2Co^>GJbu*y`m;+uPoM^a#4?O3A4=0 zWSEvc;k0?Vt|x|4xJx|oBx3}|?#jc;JSp4hBie;$NATN+yDx&@#j6Z`i|Z9L=u); zL7y7p$p%g86Idr$6Kav9mSoaJ4lt}n9T>I8m^S(cgnK}3Rp-fhej>^G(j`i9Ak|G4 zTxzE29b{9LWb%k2ix|Qby&3pv+B_M|CMyvyv35b~%rufBIP@_8cjbt49wvRalJF>5D;s^@ZT6z-7@P{>)dxw7y{M^Tkz)bEO7zA!i0H_# zkc@@n^3{@7EiI>J5&(8L_3BS9k=|Tm0#+>r1I;IEyV^zoG$_h7mIg5BeH2r6ZUQ|M z{;J1nf}*TL)Rpz+ianL%cDTnP1!5Z`B4RB)I9mm!Qhkcp1A9X3J7C^b8n*<^8;~nk0^b)Zy$d)y_Qk2ID(d)$(3x7pE z4a0mDL=0i9WV#i9kOov7C(0thG3C1BmW499!DKuQZ`5?Wujoos()V$CtVY+T=IP^~ z(T${GMni~r8~h~vUu=UHN!E&Db!v6lU@+Ms$i*&|iv~UMqhr-T3_rPqB#VA$&gF_I zRc*CWwZ)MqL*OZfsPjN9l{hud>d`u8TEE(AWl1MhB1hUeahNFcAKN*RbD`S_NHJAw zW3JYhPHP-W{SIasx)CNHP!n22q4L#gw$p;w2*CvErV(}195pdOwOrFU83QSi2CFyL zbVC_{igakl$6m3sC==E#YSO@RDC?jPx!@>~?x3GWh<6cHAA|$g5ksaWKGRyadKyb+ zilap434;u=gA+vI!@o7-8EH%dae^8N>Q652HR3vIqd^-)GN@5e)OTW-P(h;TdP)Of zJJMbE8i6s!N;Jhr*r6yvE()c?31R>-a82mYQx>v}az!=BnVoKMgeR@@NQPoq>;&0R zrU{uz6LM0~jC{drtAT7_3LSZFK^!RNL+9qOPqR!BAEDrjk`5733O)=lJJ66U^M`4< zB!v-I4CFdmmf&^4Csp<)sF)6rm7&xCCqrc9Falr9O1d#IN%y>-43TF>WW1g}xpJ_n ztcfZGX9?4vvt2!UD9DDHG^B`+qmnhY%|K~fg8<7H<5?k$J}PuPNtY;>I7|X{Cve=C zs*~Yqf1bB=#=xzuPJ*mq?!J>UiHez zrqcMQ>IkbK^>u|=2Fm_mG!k-G2r@(B5E&o|Qsox;SX0<0Ste9*O=Vj63>g;z`KX;t zT=kkHaqYaA8Pa%a(s!j*#d5h=0U0EF%2C@x)|ZZZ5Xsv?bA;%!$>_N)$gEVJ$qRlc zHzAUaAW3j!psp%;$)o%NU^cKrO9*@~uE9KM=mv(m#3{Fi&Ipr*2sqGs8yiz2vnsx) zQ)3P@$I4vAAPW~%L(qh7Z~DeFrHMAn{7B@PC|wm82r-Whrb5c36pjGvJLg)+3_e*p zST2{yG?VMlG+A2E{0C&!YKcM&5?mA`%3VXxs!o+Dnd)8`}luUTVg-sJzL` zx{EXi}mwzDB5SVdik98iLeph%EFURB*2OSe2->tg=wRj z{*lI$A8Q{7M@PncS4@!_3>D^#6Zw%ebm-H*JSh#GGmZc)b4#D4MG~7yJegthBNasU zup2}J=)7eSkD!}EQ{4VH9JD;;C#Xl&afU#4^~DbX~Cyr zHnhbof~qp|;Mqv`oz?mY@Q0OGko)QfTFnPIkB6ELfbm6>3+x^63YM#eP@EsgXrJ$B zQDd49VH!zKo-UN8`8kZ(3hGGd1JtDXkl_8blv{T>n+$fJ_byk(JpDA%PbdS>+yKap zmy}@=+Tlb$VT941`b^oVC-kM72RSB1r5`IbPw=&%U73Vs=C>}`%bWGiy2gQF>_{v% z4ZkUYhVAqkXp5fJq*~6{CG5>$hwIWzF@W!f`l->?wooP1-EFQ~R(mQj#GV6&DS#Pf zyMzetknC{4z(;OyG9|1~6qw0KBQk8BPYVoz*V2rrJV=BcO`4zaY=;LBqOcsL6=!&T%J$X#hi%;1{mhs z5UW%<3IBIq0ApP0bB}tf$qGSS)oL}z5eHV?Hg*ii8Jv}PMctNI3m$nLe3craT#e4n zp@%7u?3%v#ngc_ij$7(Jctk(B60kwgItGQKGHq1*sB{~`>PU7_hBbXc>?>elOy_8= z41VO_v`|V2H1l2%8PV`Ph29GB!I@y4idKR%10qVY7Js$MC$)_r61PJ#752@r9#ZN8 z_|jAtl!NCv@9`HJ=2_q?9BQN(4F^$i!V&Dx*6ngyEWk5lRa3Csh{(z&qBI8h6^bA5 zx#4R}8`rE@zZNCX?C5u_=&CdTj&K=ubBQH~IXrhgL#0h>PZh{2!~)m~%SK76kaoTP zZe8FaHw954X{wE1+?sJuv}mxISF}LJvY^!FrV4Nu;}(^w@r(32H|30*5~RhX1iWt0 z^F*Sw*%Ov#1~J-Fh3DYQ(SRgDD)7{{+)>mL;|bqlDROAN9LS)eoDBGffS>xCosbwH z*a=r>Hz!@t=BzCc-TWG1X-$$e(lIWqFBCd%SgdHZn1POqT5ox|pv?k&((zSrBvUI^ zipayg{$yvrD9C7U85%nMMir2$=mWo#$n_>lD5NrsMui+&Z{rq&P+(gzsl&H?wGj#d z6Jx=SazaUn;YF#oR0)wmM3U-slaB>^4dqKq8>xd&#d?FnQ2VQ55Gn3$!1Oz?jEbL@ zOV&$rSd4*xX_sg_ibz!0AyN4dQb%F_HuRe>C`{Xo#7O2MiL%ce@Rw#xE-}Eqgs3p0 zmqdCvY>|c`GheD)W_fYgn>M@M78aSF!pf0 z=4K=)t=_l!YQ2-44$P>A)x1@c-Lt)>2ODLk2TM&?;#h8`wn1S89X;+u7%^#m=`Y`J zWqA4sE*`9x7XH!YnxSeb!-#_1Q3nR83l%&Bx7lu>r*^?SG$J)HkX1G{4plojcC#pR za0h!7GWlM=Y4S?MGKxr_ev`!-EN4quGnTa0%U(I|=U_t_{UpOsZ9}B9Zn)~ituL9Z zq)ZnqE^al&5QXG496jrF{`3vYE6W;vaF*ZT7hD$NL!J(=N6ZYRxwYM zC3{$b$k-`7C~1zf+gMA2_+whKEQTA=iq0&t2qmhDC`bamYIVA9tP+n>%QR_Vh%wm> z3dkzhmWR^-meW?Zpa^U#RzIrJJWO;H3KvYFYMT`9{t0U!axlzS4kaw_M5s2xG?q^ z6rCAMIzQSQP)$7AH44!*c!HLdx4S^yO1WF8HEn(JB zf~ouXdy_#zNk||UP7C^Rf`!GACj(_J)K^{)penqJ%5DdBlfi&8Qn8b>vqP9!Yjb5> zmiXFnbycy$vE{WW3HT5k#Xir$z$`CEDP~afnUEUf~qHI#i6-yH#;cpt_lcg zfjo-SGu_L=W!0fbtbAtuYh{<@I`}eFWR<>j7&$!B?MG770J-gQS}1i{)g+FpR#w-J zhS2tL8OZM%m-!AZQ{fz6d6$lUhct@PxDkU{jv%OkVh812I$&E?zBsm9eY*iQ(kf@I zpoMdZ8-y`SNgO__5Npvo4%Wq#|EA6hG6+X}g`x0qNz96MFmvvM8#bJ()hY}H7$(S$ zrfD`&0>L9%q39&Y0EcUy({=BHw-5Nz`#P)6X>vxbQ&^_erY{c7bbbOAY0$Y9hYQ%$ zh9Zo4kZ4%dd)vvQB1D1h2nKXo2y%*C=Ey3sWZ9_3tlpNU7{$V=Ek`%lRbichj-k7o zgM-)`%z?>L1>*A(bti~X=ZGtStuQ)2ujNwCa;frB{nP?YRzp;9bt+9`k3kUXq(YB< z%=cpVSqjLo6KJ~17$GVm>*JDeGq;(`ohCs=8YwM8@?eh@%rCYo z!F4j1Xta`}b5o=PV#sz-2AQvc|FW?VE#lEpNk>~zuEmLo9ieMBR_mKE1my=S*18nGH*NdD(rEe5*VZPY0Yl++mjQ0t5SfnH7s+F;sy_=O!o-rpfxa z)U}?X0ja1{G_+Kk1{p|9<*cBlJQVfhIkGfPw8UGd(!iwzHN750 znUo7N)-`-qyS=gtE>Y$w=toc5vf4*4=J#u69ACM171|GlP$bR}Vh!v+=wv(;f=G5yEz+6=Ij0+3c2f=Ijkc z!yaCkYZk%~RimCMli$M*iW$o@HU!K+(aF|`T0>6#%wqfL!Tq!C`2XrruFLbKxN|jnD8+d;-g7XcFThLdPd0fb+cq8 zJ6@!BSK0VRA{4un?lLwnw%h&aQXu%s>eO^F51(4S{uFk0vyvq+A`)%;l)4UAc@ge% zNxS-kdNs@#F>n$_4#n4L#ft+(n@sA%hPk4VX|b z^>i=~otj9BQ~zEfv#9hcxL1vbaw&VCHV~D&>u6DG2%ONF6RstLRXcuFq)xv9wipZy zcH)Ij5Vo_T(NleBJVzfIt3oo!C=PO-ub!8*o9N(mGoj%SyI5axR-!9lu-t8uHw8_! z?iDyXca0oiBlIY%g&jY3shK9L-4nD4bry@VI*a-B0IWQ!L`Cv^++ty$FQpKcMl{}6 z&Q78td9EQ1vIk9)nLTLeAmdq2HW@ZotMW04N=YO*u+giDmngE4I;+In<5n6K6b3>V z1T7WklXAdDC0XTLDlr`EW+qtf*29B7ZCow`PKzFI8Xp>7yY7b<>xc*jZR+0Rw0p1- z#bLjohOcc#`?BWFi&L#E5%VHwJN%I`32@GO=D7OmQo6o=YRIlq6W&4xRLc=9?OaxM zu%hbZVxUiO%Sg7y$n)e9&6$AC)hf>yR(V(Y-T$bkY*M%&}8)u z#)t#gpl90DM$B$Rp$nxOVx8~7R%uQ9&=zG6`wbkuT%{&_%nMc{h%hr6LFh7)*f8@n zk|kC_XovQ3RBM3;r2r_ROPAHsQL&hUwR>1u5{d$D4rk^x(QccMnyiX3V9;M?HFKvs zx}nAiYgn+PdBJ+5MJ23br7Q^!kFgZ9nO2OzD_06Mr$B~!%LXMEv@e0X24TMhSd7_W zRgZZnRQXsTZE9Wp?QvH?pN_6)SL1oPoFb5Ih{(n`(N1V56*DtOQyW|!h(LEu zEa*mJdj5wam{+S!hsD(FXxoO?wO_FgJ>vVz$W&oa7Q z_kxY!w%uhz9hn9q;aDCUQR3mDBC5Mwy>M6`naY297{efXxis_}gpK6g&l(8pj0El( zvx2d0xsW%${>)Et6i zvPgvmNF8ioxe{V5GxjB%=vpsQ*1uz_t%(NcfUnO?yQ?@sW!y78 z7YF3D(Df7vYI}f2R|%D-^BhgeY*ROmBFBEXm0G0gFd~e(*x?FM8nuz zhXZ7m4yNsajkKa}h@qpUfjX>6CBz-$RhSrXTKq;eigjv=%XHgRT%{%VHML@6)ZWV% z6Oi?6&}PCgB7#_eo;=(N+uQ@+Xpu8n$jVb21?%g*HOQhn;V9Un;5hLrAJ9RN_1bYI z&~=#r2C}1Y@u1ucYeg6~>navgx5Lrf-);e6u`aW8CbVaT1xnM4)WKbc12|dBa!xvp~o5xoi|L zRMq;et7xev>oE0%dZ5my?lCx@EWlt84c2O=Q|4o`j-l#w{+M$FWRrYUEJpNppfjr_ zspxm?DcG3GQl+|atcG&{xjp%gzi2~}`y!uyFLs9$CKK{pf9qa}(Ifx3pZ2qdh>rIQD%?-Y~36Ta{WBmg=TZsl6 zCh`wdRwL-oAgnGMo=aio)oSBP;2XPabX6hig{fvVBqViv2AU+Pm&m@)CiD6n4TUFF z#%YN4rB;@479oklo499YdQn}5Fx8<#N6R1{#?0c@QN9@Ls0Y}s<=dU3BY>=4HxA<< zucu#v$Hr#Mvr4|2Y*1)7&n(2i#hV&~Lnqi7Ayc>&Z<8ULR2ZbHSTE2B22B=gVT82S zlWT%j&keR#UtXEg1Q!v>IW=kPtAHyjxvpkJ1&06Q>kh1X^a&nWZyV^~PO*Z9VQ-=` zx^}!&cYFwSNDq^hk~cC(F3s~7OY)lS^?V0e9~~MR8j;XpRE)VqoNQRjO(=8Upo@*1 zeVt(x>l!inP^rsMS8ifvP>51Lj15F7WeGPcsOuFf$xb3H&uRVpK^MQQ3E@ z@4n}l+e2eGBxvY}BAOFB;dusGM>~I8+JXXP&U%l(>5{q%QVGMhpKJrU0` zODr{-LDO}NJ-6J6G;q2Tp%HIU-7maQcPGPSE!ZygY#gv%XGdO>Z2blsE;h#oEXyGX zp#H99{@6^WhXv?T6bw4x&TkD7-D`$KtEQNt(Sr%Q!VXrTGb9)*FuSZ?exM?cd+AcC zH5sMpc%RIbjpWAkFLn?OxSeuGW(|n~C~NwcWaw{4$yx>rzN$=+!n= z;&%6Jt}biQy;2cb+$bqkm=Vnv&XPsilvzI^X)ae;{Fynx*xUwvBaE)v zNIp(z%V^+)slWxtzcEBq<%Jij*r|srTtspz6xd8YPl(Q8Hmqnr)x1E|sEknOudxPJ zyBg?XW|lsoqDJIb?Y&hys*GqyUr1}bGi^*`7a!1!oqPHtn`o?<0iy%Vu%=!+_!Sn| z%UZD7UM(ZAmr}PFGT1&YzzjT+sf7JNZ^WMNR*o?gX`;ZOqK~CLX-f6zR!9s-S4fKg zq{T=AUERwo(W1F5MnzdLjIFb~3N2_?%f&S#O8wR<1&ZO=St+1w(Lj4Bxa#;fU6d!I zQ9U`4VzQ2|&vqp<9hiBU&x_&hW;H9miUgP)KUce;Y^VUI+nLh!#6SRhoJvD8X?apX zqVFFvMN|cq?prVJ1C5l3%&nQT)U2SZsIXGAxhu;QcTua%!C^!>R0dgGi=un02T9HQ zqvh>=CLT?LL4gATWlcNWKPxTn`&L?984PCSwNk->HuI3d@Y`-JG(cu|KT%|Li3`4F zACnbFF8o8y2KCCe_$>xgN2ZE4os*qwLzig^mBrm=mFmqLL>)y<$K(SYipE$5jv~yQ zRs*fep{;Oish|ptbrn7iIhnKE^7XU8MtA9>>G(LsfS#eZ4Sv_xuQ15!lR zQLJc@^Fih_gp2^SukKfmo_c9U_o8h0Fa|0YuVsXlT{4nKq=CQ8=saZ1%nK<5DG8An#WgW zQ(#268)_>fFxYNb^XwzJsSR$AhO!4_4~9GR-4R&TH-Pns)#$uH8KS|yK`%3!O*4~J z0c~L*lT;3rA_)nmi>0G`@)2)-(x1?^*P#sR)U>IKyJ*x$Rz<`dStT`^Nmp^Kp)DNH zDcMFO#!*t|R7%aUx{)@nKXBJG@N4GkRIcOvfnk|D+nOc7HuYQ98!mh9o2K-yins(= z+}M^KYX&4nQtEayMQHD7*#|ZU!_aX~FrrYZqCGB{;p(_@jBrV#x zM+ArJs6WLE$}V>}5@>u`YK|{+@tChSReyq`?;%Zh(Z=_SJ)r3zi+7;`#hux;Gj^s)~>t;xBt`a`vqxg6gxG63H54Kq62S&)i8jg+xWv|;5I{4=tlP! zaztN6@Cx*lrO2vh;M$d}5wNCM=yErm|8$HsbhkZ88|xK)&qWv)+cI1+1!gE%F)NMM zHA;;#Oyk&b3pRV_2dZQcpra#wXPGq3rwIk1nkGXq^k6|?Zepm`(2kiZxBTfo4=_6PPy^ zXD}D6+mjg0mT=&lZZ6nEG(Y`Ko z!4WcbVrF>~p%b%sUd=I1Ruu^Qy1*X?v-q8$1^8AE>f5DhJvnnTzP~5VK!^C%MA`dZ zQD(H;+GFsdArl~;bO$3b1dN4iBG^UnHAYlX{f-8UDaP`3(Gxbx>>+3r@U6C)4G;ysqq9K_y1K6&(L9E; zprwVQ^GzI`%uA5eH#S!zj`xflVT<$w)R4kLmYSQZm{|9(anxv~UTxr$$kH*YH+(p& z-RnWGRu2@wFt4UzWvW4;-E&yC?(vO^ZrnXkhDqbh43ou9}IAKy(| zB8Um;4apgmv-MS=&@tX;E*O=n;V7zW3SOWUIG3yD8oE$vjvxc^LN#oASf9b8aSTKW z2!bd0S$s#S+QW75F0{F7og~}b_aNjS6(NXv+|nPbK4x|W3qU)wXq#=(;e5> zcZS`F4!dDluA-!o6(!xnVgVxSn9ZsYA{0?yE5aApT03N{n{#SWj*IFXR{3735CoVk z1}O3!0IA>SUH)86xYGu*+7EWOxJyEN#FJgcB7O z@NjvhLQv99tzte!Z?WVkN>(>eOM7XdV03wCZiAytaQu^52u;1W+Ej29N?2e@I#B(j zn-8Y;NEC||R8TC{9ENtGaZ0A4cPwLH!&5bc9fw4W+Z)*-G6|%sb)r*zWst=NlOx>| zP%!XwK3V)G;Y0M`16+d7gL#pUf_XG??}+A^%Z-~a1nu+)($0=IiPA4Q3&ip$wSq9h z#fWU*N{G`ob4=ojQm5IHW$8?pM}2kOLeFt#ZU{qYMOiEegRfV+hjUlUC791NOTrnK z0tq(-1x_`>WC)_`=qk!)tVc%jL}E%=3~QUu>TMIWY)mv$;1ObfWuc)OpJ{UnnqW6w z2;bV=2$6LGKatBrTOBBuXI-$t(urX#XblnXv2vw3PWuh3MYBE(6wfecfk!jjqk-`z zS=?(l$Qlv{MgJyt>t!Od$(;3Q(UlWT*a!`6fhVWbrMPB8>Q>9yWY~~H z(M<`>2Jh&q88cuuiv@5-Z&`w3Ur$CmAiNk9wQ^V;9yG{eTTD#=tVaS;u)h^_%mTW_ zny|(pA#TtZv%Ujf1*K}xFS}7=3L@ACrg8+?h)EHCT5oHbcxAZ;fwNbasOI#}vJ zZa0pY3~419Z?j4ZhfH}xFk#FLW-Afi|Ai$}g6852ttC`;ieU6jy-^DdjA)}zCWBq` z{|tNDA$A?Le|`eAo7qeufepHeD>i0KIR>AO+dFiz($;D8SM>~Vd~gksi#>u&Z-ZiA zyuG5ya6^b;R*cq7VbZ;1RZ4s_=Q@(6^2f#d(JUX+p_q#yA6H=zR)!7H$v+1UNh~-N zl?-2J`G#S_jj}fzhvYlR;%Gqbt{w{MS!EfiV zwnph-3#BJ0>&^->rNBmBD0bL4X~j;56WU(dknZmSs%f>}3Nc;04LSuHrlCWgp*93s zv8j|2!I#3UI-s#BUUnct^56q*XzJRw$x=ku;R_f4ca=MONPvI#Hw6#9ugZUFjb_bN zHu+Vyr-Gbd@#8LCC92<$W2l~(=7U4#yeS1!#8zn6oY2>7NwX-6mA;PE+%tF3Nsq1EdAa)r#s_MpXphg*onW;AiMyxUcn(70MJj>}CiR-mfwu|;jOFf`{Vgg+q;N=M zs|&HnU)yR}*Hvcv38w+APKq>gySI~~23{Cb^_pgiTao#Urj%G?jsj%F3PmA3OxHch z#T+>UR-twTKUi;yT9(ErvQ3-0*S60I=wPHW8pe~+>7Cjc_`~SP9=(=evbYMcDZ9uE zM`*~Trhp;`Sv-f=?xR7|$35LhgY{3Vm9=Z9%77v{Z8BO`=a7)wyqx4L`D04RNb}ep zd2U}c+9+RLv=Mv~hnCv0oB-3sXU47m&?(VJ`FuiWUR%ozlRsIm@_p$56_!#Fg+C1@ zq{fvRWbp+Svb$8;n`VC>TUo>_71XpB1OE*t&gR+RxT?XAX6L1aJ0-RI< z3Z<=_lnQEy?djTBOxVo+Sh9!q8)%R^DJG1ij-zpFS`7K*k&mK~}0LAw=Ll$8Sg7PvhN z>RUA=?lf7v3*0D;0xTE!zK{5)6|<)9G5bb&mJZ`Omy877Mdudomic-Qq15rYxs@M-Ujxg~=v4x-!1A6m93 zMggeF<;|O`PY;=8br&!N3;iotdY@?>z3QT1trydEbn~qTyEALZ&CURMK!(2&?AG?4 z?jL}ep|BN25Lt?X)neCCrg|o%))RQfJSvr@*hS{5P;kR)H>l-4bly_Kqp@0Z)P9*w zop}8hA-c1OK}|nlNk*Nt2)FNyWDv^FOlWNE7-Iib4uoL34euEJY2 zYfr=P4SYZDcPBeW;X2QoApw*Qm`d& zipkMjnkc^_97*c>XziR{@ zE5_1g4tV@#t@eqIzSe*$jx(&)!5NU)J>?Viv0oB9;U^SUxHQfo*u@6R> z5~u*HOi6cD)Wc#7Vg^~)EChkciNW0B_&V9oR{>qzeu}3X*x;y^hGN*+JG+mM9Tf;L zVeC=VtQyilQ*TIl89vCjM>^Pen8)UJDx8Zvl|TDNkE~T)k%@RoiA1~%my3FFk;VyV!kB^0TAhq`Wri&PyPy4s z*X-0=pKIl_$96D%%p^(d*}uRfd_I%aT_eGCv9_SOQym&%0kcYvp5vWNEpE^STe{E; zk6ah+-;su*I z=NN2Gvz<1T>{Z>(j4)X|$=wx-l;AxcsjVfoHEL0l#oQ~LOpXqan!d-JEIK;qb3Po_ zElCGmJT206FC)XfWR~w}wyB=$mZXo#;)H_CIg`*%g{@Q)t7%Ti-qkV%%({LTi%PN^ zt*UBn03TsC#?Wy$9FS(r4LBenx+|AOt=WV!W^qmy)L&W4nV)G(yio_H=xHW<`e^gL z_1tJ85t6kHYCYIyPbIE%AZrq|n3L6CZrGi0$M+1nc+#Ae9gQ-ZC1h`yrYo#X2gkf4 zvln9Ex2hao(;!Awyl!|Od|UEHn5<)3iaaxLU!PSQ0knC~c9ajxRb&pxR zI*HkE+xF~((7m*uDNf#rR+F|N894R<4+t#j7*CGy0Ch=U&>)co#BLI0eluBWPs4uw z`6NH%P8c8HbXM#EI$5R%=!l@KH9W_$Tt`|3W86uSd9~6>yCb4&AF!EYRVCAYI<)&v zpZY3uP#PdSX;V3atS%Zh%7Fo3CyRWnvvE9qE;a(WySnvQhJL5=0@P>`% zvdpyb-M3uR$Mgcr*;WV=E4QyJaSgHJ$G7;*EjEzPMq9vkLWTe@5Pe9W0;4`Wz z)}qT`!5sMB^sVj;y67SySt}KcL2uA22g^5FYFqu^LKj^e;G#!O>o`w)pNz5$1Xkmz~b%8%k&-3eOk%E}*D=>tt` zTRvv`CxlHHpwH*5F+Z3k#AGni+0WA?izQhdIzjLAWLw(hZC*)Jq!)_e;rQ1GNwL{b9lO~JzRydbwgy;W?5L7L{q%*|(dW)NO ze_}^^^TF$8Qr4A^hNZ-N0+E!V0vX+9A#d)%v21qb=(MP_HAbHa>`=%NoZtlZ%A#7% zwxU#&Rv+>Ptai30!DO);=xWy2Tjx^~d21UC4zf53*(AWsp+EL~1g+SA(~d})rXWsv z_KuGsVXfsR^$>;@H_@J;X)Syng2ocz^WvR)6wKhY>{9KuYP#6)r?czlx$uEJImC_) ziFlsOh9#YXY+v6Dlf|6dXh-{YV9&`7(VlQ@(FkoO)Q#vZnB287y}HMQw#e{2A(Wz^ z4RpjF^MpWCN$y^{w$B=QMx=LAfha5TI&eZWn$f`?F&dw=mvc}G?|D6kHBMHdq;HKP zh8ZS{0rYcw>YOamB`HZ8fcZg!>EZ%J&S8FlG42geBG+=AGskOyAKv$fNBD+Ce>1Mr zP5*?hG|e+$p5B7mxE!Jd!a)^)*m}ZsXh=lbU4v5E7o^~`c|_N%I%17DHW%BwT^6%Y ziB}6n0h<2$oOQ0V?fw`)VZu5%FSRgG|6tqP`kSZN>dqx`5XJ=x5_zC*7zK^fM4&Mb z%gzXTj`iXh%ivZk25XqV5OxA%wYru>8@#T@?X;QYpGP7MnXU&-iEztu^7q3?gA!N924v4I1{qbg;3#EqGrcOUQ@M;>!0RMgA%Z0;Y9-wId z+_c&~V+dusN>Cp$2WC*#mGS%+j`x1cAwdRDy0 z0N6KlG7`nRa43dZ5EZ%zqdVNBFR9BaV+{>9q%r-+(QS{%LtxW%LEm~ZFF^3jSB|0* zEgHf-9#Bs>J2=!}7$eT1z23grO6xJ)e(JBOO`x0Wd9CF_7nRt%kT`Y$ZSL!4Ny`^0 zTAr%l`4a5tp@0(gX3IAQrm}1tbrZrpae0f&=eDavEB9DTJq6*g1iy2ENo$+Yf3jScJw^iEOsOm|c-*nz z&^_lOi0X+CIRobzcOBHHw#PhGI9AVV)%_tSlvNWm$ht8!Y=f8JPO)7GT4JqlrSMg3 zry|C5>&?*q21E3tShOZ{ItUCt!*0i)#H~TUW=#iwv++gPs-=V(vf0r-&ySz`6{FN^i25S5x}+LrFu5d zv0C@YG1>hq<5~B-Wb>L#gTylTA_rZZs?nHJDSF`kmdw}zTWzzM4C_3m*Q*2n&gcl6 zTzt%j)#`YW_FGBZNnOj`SDLK5jR#q1bsKMp5e1kmZhfT#n`!E|j%oUj%Up1+`ZGEc zwK0fctkyAjO*G!j=r{s8EBvcc#wuaeARhPZZKH1Yn{~T`FiumfEV-Lt!9xIfD5+S%=-csr-vQyZ}8#y;Q)@Ab+h8s4NWIGG6M^XPpmHlj~$j|b$8 z3ee$Q{C2eX9544wC{uBw^|FLBNCvC<6CHbOVTi0SM(9{Dl4Nldwwm+r)EBB@@-@uG zAd8KEbJFKFFIo1QDKvqgsrN}C4zdm=bM)CJbe3*2k}Cd_-F0`{3sZacwB2G&x3b^k z3a-~2E+1#D-naQ`y`wdlRH}i@0nIr>ef$C!S*+dprL~$*(g7vS`X_RI0JhHqAHElA zwpSIiQBU-AwDgbXS}ksE$xWxQz6I0)m@kK{Xw=<_(=(>3;u*%S;CzXoq zJ<*W61XXWJNK0L&_{kv~)V#dZE<`nOb=J7nz_DCR)(FmvyT#1OY+r9NqajnXdkGd@ zO4}ctGGmWssB|wh3H`G0dfFxn_GH+crXvkwjHspKnE7FF!=6T`S~QqQ*(j4ehQR`A zjKOKT?l#*7MT&WqU5n=w;(!&K=hy~JcU2f}4@igYvm@GVGMNrz7~6osn~rY9DKH#^ zJ@J@M^Bvv?*vogSE*}nFChMwy{_>epTQBPZJ#>)85LRn<3{4lO ztZ-ip&|A{U=GleD#u)qP(xJ#fZ3rqYe*wqRZH@dH+2%G~4ars=^556QT;-c}!`BF0 zRPjn?$(xv0e*{u%32@ZuuwYZ&v~|wLSkc0SKC0`~UZ5uXhj%!Rh-8YvY}A;`-nZPn zg^~>OKhNJAb5{HMt|J^Eoi@vBh(V&SW(=0!v|@cjaEIDGokN|&{)`O{n;GJ-F!7QW zPql+~U-xwL5zxiF&yQvGYG1`5izl%u?F(vA1I9UkT41GZMVvV{7m>Bhyu>36fh|h2 zpII}%vTl^6j^(1wt+nX|`Ixo7u{RrWtkItwnqiaD7QH>R+^T67o4H(^tg(Rev?-jx z&9k|2Vj#PFPRZWwWoV~BN?ZZ!W^Jl|+aqM(E~vU1Zb!XR3zdW2xwZOvwW*^Uh~wBW zVOx-8f{)=|s~(K?kd`5Q_uS!n-Fu?y-ucM18QtH8?hX4c8%B21)~WEa569OV&2kzU zu=DQ$esWLu&gdv^0Twut0RP6GPcbHow}IAfF$A+Hgrd1M@G1(hN}hY{H+5BPn2~k5 zoa}$G|NIaCkpJfIeWH1$Pk*&ORqNq$vz9CP1kb=2EThMN3&L)$eoM_xc>6z1nQpWQ zQS+idgL%H8Kv@RKZ{l8KoADhsiuGaRM6v$iWU&4$hpO0jSo7|lEV|^)&^l*nP5Uvf-sVh6c+kdFzmoAS_&L=9bUy>kuR)98RBNefmW6JZ^-lFh|Lz`tVv@zNdDE8&(yYaC*sN-jHjJdrtF5%NYjg2xRUjU8BxT!*_tcVUavYU5 zJhnaUHf+;0PE!d(F#T++`o+-hqjThg1==YAS!2%OW|M1JL2aFJ1IKEy$-v@HROnR_(0sR;43@*9QJ6dE zI@*=ljlpFOBnYiAZ{kkW?AzX^5qeP;wf-M_-`S(M*X;RKM*G&%I^lG+T8YpE1IA#$ z23@J;NN~V7f%)`%j%}iCn(4W#-4}QCJR1HpJ=Le{)Tvy*+J!j)&+}1oE5ppyL5opvcl51Yy1Lhee3R*Yf{7%acROc}`r#Eq>A{J7bKuud zC2JYaD(1Nt%=|InJjL_Ns5)`QL~ix8*>m=^W-RQ1a7jT_N3U6%R*u+ZysWPIjKfts z=_r!9nm9nY+#iZp5H3T6R3xC_E_EmjS5zYIM>docS~bW&_R=l<+&q47-+Z&lC?gBa zu6ir7G=TfNgUx29ZW@_+t8q#m=vFu-1&RlCkADhqNAMTl6}toO*?~LVvhslz2!uaZ znHa0SpH(!W<+vs~p9^h7nQR#x?^>*a4X58lF>C}&#E+`-DR|{7xKIJrOI){SXI1As ztMPrm#!~%`svuit0`$lKX3^U{Sa~N4AjJLymCQQ_>bVPntRPzfL;2X+%~A9drd9!{ zThq+?APN;IpHHDS#bJ*daWr#N?&GWwu?nEXip)O*{ki5IHqcx=$87iWzS+N9iH3kP zB=hu!nJ4pBMYvqQE0+ZycAvwEOxQV5)4g{mTy8~x%lQCTAHZYF%|tc%-iPy61+NwD zIgK~%Id{k8fo?gE`~a5&*(Wv?sCEHev<8th4 zRr}iKP&>qR4_(T=?wLWaO{hn^GFm+O3E84>2`6x#SHxzh5P4p<@uVV|@}~+FN#W#E zVjes>U^c|3`Ct_dBg0`?0A>`q-<<&qB8^7sCfLfR@ zJDj|1`Fr(TBk`uP^1rivUe(pG>mu=|au{AA31!~C)|VQO&~;j@X=PFPNW$34sa&8V zU_4w2q56@8)u3rXTzA;!TV%DKEztd;(e>3?JXOo|;J6%Dx%-$>72wO~3 zXEr{M*s^5CYa_zlODEox!(zzJ5;At?HbG1X9Xbs)K&KC6%PmS*AR?~8ye@hE0nYtS zwp`J!#7`y2B1P@0Fq*HIhKG}vJk#98ecf8~gkJsZ zda0^X!H4p3%P5A_pLYIVcU+8`9?o~NoB23#kauMOm9v9liHkd$YEtsEq^v;#$crzlrD5GG(&mX^I-(sX@H)ov4cQmf=XR z$rlnM?|5a;6Yx*te3fKNs)1-=k3oA8`Q)PnKLqga+3+-E1hjRL-OHEPLPe&5KzmBfg}C9Tf3D#hzG!tV!$Y07F;`R_U^RR{v(0a`;QN1;!RN{ z4s;WCZjKIW*14Hy8L~|ex3=bI#fw#ttpH_xv)|yl;`xcWYz5hJyFgW28I>U+-+c7f zHV?Xja7B7PTbFljrFsVVsWcQ7=dE4>NjAue#AyvIQ{|;q4QM>N<+lz5xP;94u5`{H z5a8~gN>Si7{`*$79ITD_Q%FQn;D1f~ljTq4<34LJz>Yh-fa&Q6BTI2Un;+(r}yeX0P7e+bszkiDbm!VHwDZx7e%TADWnmKltHLiai4PvA6NxW1XQxAXi% zJ#Oebx)nA3M$v)#Gyc~*!Z$C6tnzYlaQ~Vfu!rT*RqZ3U1qTlsTZmh0#^K=C!q49c zmmfw6Efa1uFZ524;;ij%exO_S%ks+YJ`SUNIBo|$YVeJ=X0Xd3mS1yP73{580e=Gq z`QC?l;hB3F(|~_gA62~J@3sC;LRg;yLI<`)*3VPmRiDbH4KA*O7HA3U?bSBu>9pi0 zWM3+6c%y1bMGZRb{Zm=%lvilLWZnxtB8t1<74gl1v8&!|9Ek!IR~paZx!KN8yxivADcn^CnhxT z&n@X#1s}@bfLFbU18?D`7_V5bxq_@S@NbUm)C}#=k2UyT9G7DMh!yCI1tdbA<$Zp^ zL3x0N`2?#+CQA{$F2?&!?0u8N_hALd}qMn_z11_k)MT9sGqL`{|H}eU9AJESl z9R8An+QPql^?UCx_YKa%&Iq%qb9eusNd|5@dVqE3fEo%TVSpDFZF`v-ALHjov z-1Ct3y+To=&);$3WwI0EByj=UJlql|T<Jw@!A8Fdrg_*os`uew-L`N*(a~J zQXI;ik&mOZ@SInF@>a-w?MSIQZyCVu9%KWYewcwj@xR1~m?BydX(ehkl=wM#!C{X7c;RzbET4AsKhps_b=6+b%f zt?lap6C0w42BxE)fy9NcGtZS|%N>D5s{q;f>sEnxw^nxa^74DE-?zZjOefqwm6`C= zRtI+}7Q#@pKV8h=P`hgA9o+}S5sGO1F(77}8bK+jS?l{CyAKC{@0`L1Ty{$gZMR0Cp1yb1_Z2F9m(+JQydzug$YJPWA;p6yLj1(s(hGhnd=L#_ z;j>b6QGIp5Z@=QgwxM&60S%QQLmv;{Q$&fi&067rqomXSdiD(kp} zSj$--dTB!Nt{C1Swq4uxUb2N*1Xv_;>Vj6P{GVdyt3bV`9GUp}iUUt_7dT_bp}k@K4faa z*DjxaK7w3iA+sWG4(0gF1pE^w6dpeign9_*y7=$iK>gpY(5U2X#k_Y#|22s-^@Ajp zbj$DI!Sd3uQ~a7VuUnLSPjlmM+7GT?E`9TI;ox*$T+7|v+I;CdvQJ6w+lnFZ^WFTs zSGxDEuXl8->iG~+y4Yq`RnNyhp<85Jp8?=L%rU%aoq1A>_s-*|o@1iAHt|5V5>uem zVCfz5kOw$7K?y;s>e4F0lZxg-1`g9az{l3qlOE`nT(K;2;NT$g;k8Any1MvaA>Q;f zTwep6X1oms=Fh~kAl=t8)q@s$gNq0PY8?n@>=$+SKR5K_I%v}e(S11h`_37f#D8vP z{)q02=1rk#NuZ3u<3po+)b1^$zr# zTl)_JBGQ*}SMnxa5C}pH6Y{T5>;30{zOE-p{c8g~Mg7@%UO9Eae8OHRTtwC#{J>)i z1lC(v9?yHwYr5(l4qV=_THu*tf5zEnZwaEz=T4J%h_+dK7Fm;oy^}42%Vkn_uVXWf zyiX+1GfePHdEBr{cq_Z#Dq10N>J8Fu1$QeHZ+L}&&huh_zU4z;4}g@;JcH^u)fgsK z5>^)7d?R^LQDg5}fcl#7gYWc)4Nq2$rXQ_kT>;@E(XDn(v4<4o`BjxwoVNmZ@>X7a zg3KYvCs=_eF?(=G-oTAyxbQCknb%G@uK)#nR*~!{;!r}!2mU$sXPzrfLj_S_ee2s@ zGRpFxSIwq3X!3bH@(H&4LD1g7D;ys{1#lb$@AJX3)~ zJ)hKh8n627ys$%}1Q+^J4}A^$CgBw0cm6l8t`1j0w;aIVrkk-xWVM~AgR6|ax6K`I_f5k?pIs@Pr}F(F5yf33fs|RU`nm}aqoB629;TOZEO$ow)uShO^qr3jO;5; zCdvHCS~{|&C*S5V&bHCjsGT>xkk278dt2HG!9w!}zSp!1R{m5qh6|!V7`Cgy9rFt+ z^Efmo*-Eb0S(1;)=F?zgHdb_BM*gk~kgoa$RjTZ{%amkk*kzjcLhiy6dQ#BipRXG)eEB3eMV=r*W&;ULz_@sNW z8W@io)N3@uJF?eIYz8fT&BUH|(e^$F_3TDg+*;+<9)bp63f=u%gxLl9yw?6SJ~?eZ zTv#MIiCgC;#DGe_O(R<(LJ~jlwtQ*s)9zMaFYiEb(6YhZ3BQuDa?Kr*%2H3?SB#^& zj)pg6Yua&e?oB(+M^E^+D}a8@I@I;deI z!I;1o40lG?W*e|Ky=2dA;(xxS2)O8*nQ4K)*{b0dGNC4X$KJF$U2{$>^9X?uK?Ij- z@PoT6{qD5&>jMc8VdTZ~UlE25*lmkfUJf_Urv42)9P=9l@aDO;^X(nk+wO4cx}l_4 zl~A{v-HXsPjb zA3jy2j~|*NfSGs-hqIH{552s*w5nws1ms3w-g>Ei`_{6f0ux*ePrzY;d@W(tgk8U+ z<=uI6ca#Q_P;@B*mHTB`W|qbonTc7-n|{PzxE%qjK-YWhoB5f$WemfYP2|8wr~k}A zbYlFxIs6^nB16XFRX~ogHMo90|E=OJR&r$B94{+5t}<4W!Fc!79unpcohU`k?mJYI z*EW<&JytFN-Eu78=F|vMi@tH=d1YSXr_+{9@JkXBf-aWZ>3-yGIY0F1GG!}}@~9Hx z)aBz!zv3s-~oeHoE(#$`&fNQ8}2Aga7`D>FcbWgH3ECe%l}85dx28thJSb-Vi10H67tb+$o^5ay-STkR%^AB* zcbjJ)wx`{j3hQjdo9^hGv)msccAN(U@M3nP*l~{kblQr&SQX%y3_;ayXL%6aH%z!0 zb?U{aKQ^K~F@g9*!r;=u2Jn~i7AM#laf1=7?sWR>%5G?**bPwIJA7x*N#BPe(NgC% zy&-#jxv!lw41+&xWT$>4T-gGN(=1n>p1+g*)pBlX*?;dcuADCeuAIGK~ zp?stmYHAZNFicNj`-iHbYI9(QeNc;U`(P*Dw241%(}6qFP2l3dY;gvOlI_*`71@Wq z>2%|)NvU(I_1DrV0O0g<(m7V6*tI90IRSNj{vs%!f)Sa0Up3 z0i^gk<s{VA?ebM4mmtC_MlP?JoSGGt?+D)^QK(`Q zY}TR%KENh{9M*^a@w}DtKtlXz5JzTJBqPu97kg&&Rg%n4WGhQb&s`XJ<9VxfspwH9 zXC-l{9Lt9bQ8U`7odK_{PN~14`_d0vRBw$OEB{*sCgWGq0Qa%`DPZXL<2F9vCTEy+ zRUPx69rq@?B!%T=@m+ZDgv|3pPYW(SyEPiCtI&+WdzhDZdw)i@lqx*jX6`c3BeP-+ zUE?D*6xch^{V#bBhUr6LAbwO0<+?ClHt(=B0~930-Lc_@i)S54R*xVa-_>Trh zJ~;nb^AHR*VaSqacj~JNZy1pob-Ds~5<u*Nu7vc~YZn0_S!Y`|SFDB)w@}2#YtcnikH_PFx(e zz|e(xjqkwHzj0vTzGLqgAId4HkLX_em>CeheHX=wCPXHF@FahsCaqk1QI$ZMj_JM2 zq`$*GF3Bznx9U7k2R_rS65kSCVEMkT59?tvAu9`B7oPm$wPn_)0`ixFtCDYthv)pu zM`Ctu!KQ!;{%FJ9XKeTnnq{saE9F&^xugCI8GFPE&5BzG)EjA9&JThMj8Edwg&1ta3oVfnoLi zrc}kJ3XnlKm+-9x;3dFH-FMav7(R2MCe8VV?6t`h`j6Rm=$)4wz;EVRhpseuD)oBd z&0O5QJ`SM?id@Ot8hI7j@>*Okf;|ThQ=M=@<-PWt#T3s@L!*Lj84@uoc)$gnJrMJl zFkN3P)cm*O*6ki(*gqhAzwXWZ@w_F%`JEA!dv)^q`zsr&&Rb@~<5E$U{&V9&HdK-| zPrS@$d?sWMD3$~RG~~}M!XI(rTCKsjPpdT_k$r`CBA6SzQ=KyZNXQL0kYGl!l0L^YJz5I(hx6R^!t>=n7PA8;o}8|lk|aNR6W91J zTmI?69#+7I#0(r@mMdWjK6(>Z=ppPHW@pukHvmKrWZw)97ioa#QltR7yR&KJ?a}kw z7+;-cc(XM;OBE88$eTAHK=$vCTQgDv*D*ZCYQ#^3E6_13awFG3w!!@2D_~7OV#Eth zC{+c;R2O5vKVdf(Bl22lp$P=v;%4L~2=8~4~qHG?Quc~J3GT>5+F z7R};VRkQeY%hYd}kk{VJkQES{74E0`9TSSyB#y?O78+a^_oTBe_2ZZBK-HRo(8R;{sLQ zD8mVCiXjJ><9#h>f20?7Pq{)Iju=14LouE5vmz_eeNi=c=vWA~4R3H(1{L_|Nz}{? zQ&~e*Ui~O_0)E8c+X-n3%gT$_Zn9d?m5&}py{iXNJgSpqADtI?&mfE_KQuGE`=-Bm zZKVw|&)wtT@b%{X&9iu%hQl}zSdP`5_ips^GqN>3a2$8tMB$ek@;~D4E6_agMgAAUP=r%75UbMi8$a7k`72entHFYx z>(f~u>0bMa&<6CwBPPb?3XLDUk|irXmB^k=y?W81e+Z*&s^rx}uOeGc@7{TNt+}fO zOJLWy3a2?6e^1sfI+7r#zQ2r(ndQwlZxRhvWXpY_RrL;z!=JjI$iF{s-sw~1Sc<-s zKer+|oRxi(F@1C1T0FJzj;B`lBHo~lROkAkL8?XL{frMagh~2MTiHj_>r{8bG2BzK z;TI>qV(W3tBeot?l$jaMU4QJa&->csLU7lPaqxz-uGV_<{^sJs>r~OJVgRD%gz&$9 z#ocmndH47r(AvN&H=}^D0t3UYjEMp~L`DbKHC1E(umsP9|2dBDLg@3|@S5+7v zjDZl_3A1^pdqVy_D#%A%I8-3);Vf6I@T#1zs(NW9y1BYBpKI9^o$u@X7a^%1aP5zrYG#SU93okOO2PJnuUST z;k%Bj{6eW;UoeRkFSvNR8J-Pz&W`abambPTs#n*-j;CKTp{lDH_6cNN&07;KAq z%IN}K7!})D{=l-}z_Sj26;_muP^IMJ;8E|w`=*3nSfO1}7|tfcU=goEJ2Yy@zCq}! zU@u4F1uS5;y{d#OP(`;CuGFM+t|N`#R>iWoj|hL&N3Vfd8N61J{k#*K_>&tD5FPyL zyw@op0-`_{NE51I0IhS-LNiF-x&Lp-LYZwmtW6K|ZDTt(b|K7ZMJ5CPgzPmx()f5e z@JFYuYiusM3t?pZJHj`rrWd<;&KF|8Zp?GnQ8)iHfm5%)dKbpM3iR4L@-K`?ZU|j? z9tN85PqLl0z*%>8da2$2Gd4WSZl-9i>smmF2$6$I5x_@;^E596Da-ropqObuH^4-O z>gn5ex#>4#U)^+u`Dt_0XSY@nvr<`+qMacCx76}R@{i67EM%VPBp+M6AzT~G^I8?S z%AY;r!`(T%r41Rlrsg3<@|)vchb2h}eFjzSx3ja&r#84>yor1LmS*mFE>Ma$<^lL+ zL8-6oBeInhVghFSZVTFf$Azn>{=DOXeY0rlGh6W-x7|V_ya(i+{ew1p=x8Q@H|eOl*$4jPn^MI`r@gk;F{PrIrzX2i1#ZD- zM(8EXrmhS5wrXO2XRcsdg(tFZuB5PZu!Tc}6bp%J_wztahnc^6FB<7x$0Pn1kTx&ue>ruN`hv+Bp04kRcn= zV&?2OE^5A6m8R)G`6`)wT<59X{}-?LQJ-HSk8rrP^f4Fr3%WJU6Ckd*`z60(@2+x$ zmdoAB>IvG9_*6n5KfeTXRgHWLW|1G1NE4B z_+2cNna!O6UO_&L+V}$jWIBO*`e4lH4I5}27@+zpYz1h_N5>5x`~Gp3_<2GZuliKd z>GxWEly~-KH5<6uEN^spQxSSYwz6Q+fTH`LB^y7|EvH`|0A5JAgiMd!Fm|6J7V_`O z)`Z0Hz)lc<>kxMPS9}m_lhg!_Wm|`gQup*ngzKng6N6g315rWAJNt<6UC1c<+69y~ z0M$BCACbLBRyYZFWWniz0y?GUv3*3gCJthlKPJTX%fi`T30lb#6TrmJOx3Bk#vdKH zPA}|2xWUt_7%BLOY@WcOZad^vA6(b@J4<|Cv){iUTfMlHW8O4ne?+(1`==ZKO82QD zAs+z%Rv#*M)v4?L{|81ejW@o|M|3L&hygJOG?onosm|}zZ>{gZ*82{hJ&U~Ey_gyN zWZ3ni^A;f{L;M-qjY6?K<{>y8-wjxlCd&k3nfky%% z?W@YrAj-%$QkQlse#8Z6hlv6sF`FpP>X6wOZOsJFN2kreD2uY-rgGESuTJ{}>5?N{ zW~%ZVa-qn*{DSNq!7XqK5iXLRG|~7|gXr;@|5RGF1BVM<<_dm6x26r1VBh3*K4L|l zhjY}YRoXa(VSf&ulV-5|zq1t&@gM`@l%L1IKT~Fp*~6Dp!zDy;IOJD+2(CrO@2m4W z22N@=WAHEMt?IeM2`+28^MN~ZIs_%mpHBtivCc$+NBxMr00L3scQ&(bNfJdoqNe;k z;Zi?t5L`F!)NQc&_{2Ht!dCUo?}u4)rar^SrL8* ztixj=BiIpCdMKX}65d zzcJ!L5`bZUiD7>q2W9ap#XW^W#m4Jhm|@erlEtb%m7Knp#c3I~{^&v5OalK8#&W-2$wu*+l@XCJ}s ztRMpj_>DNgf&!2wOV!Q7?Z^M*9(J+isN_(8rXEUMpl@85uYb>nJP5=edubrVux4(- z6Rzy4`G~AuInIMq^cx%WnL4XRt8LIZJATiI*L!2BqVu6}ee`lN`7?cX@N&mDH*oA9 zKRCcS)$eTEWD29W&*|o5E5VWBoY?>PkL!Q_`5!wMgfyt{Z6GG{ZrPg5PS~)wIW)m9 zL0W9T7Mo_XZG_-I7h$`(0>5{FV+o4tiV6=r`$6%0(+>cG7wrruCfN$mP;?ik_2Y3cuf``Q>~~m$Qa9xftepYcCZH zMH79!-MZ7+veW9!rb|p^SBqJ1Y)`knxskSKt%;(x2eG_5yJLNQP=xM*-A{NVBo$ss zbZN2IyKC#qTJ)RUxiMXLjpkZ5dxVv+Xs}<-Jp*4Fma5Dbc)(c~P7n-=qnJzV9!>hV za_6SCAdXRU+Pwc7`Pvw<`G-Ggo<`Gov>D(3V9+$T6YSwD+M5>f#XSBS`m4X{Y##og zf0+I^jsKr%v{z$QUM#SKZ6PoByINqRb_(p7d;L zGrXMmLmPe{Lh6Ps@J^eP^Uw?W<4`q~MR+`3rn$gw1Y#Jr;LqDWN$JiZ+aq4mV;%g@ z=IP5sD^5%Z*nl{F!LMU>N8OeUR9;4*Il?V!?<^(tLO8f{kS!ah=LK&L=ONLA-@CtB z&IyjO`n1F`DlTg3LQjOHyJ7P$9EG#h9O|IfhW3{d<6HJ|q`6UQP%@rqr0pO&zHnRF zkvmPzR&xFen`P8vMVXqg1J>!=XlkDsJEz%cr_p+17W_}8ox|{?Bgv@fsYgPI2DIhI zGqJlpF|j{OmqQZwTC#~#6u-Cebe~G3)=|*O*i%|tmvKfsYP%DOY?FL*VH12{r|HZH zf;p?xw504ka>R>>;71ydyB0M$U>D9-)FY_`$-EKLyM-RI_BPe2$rxATohQ(wf3|n1A_r!~ zihG$&I{SGTt71Fg2MdpwYXdx;$vEy=m}!xb&7HVZ?(&*XyVLj}NGiqauB)14=YsTf zga9&2QzL!E;&j}VRgMic+dnVW3m$CxjmexD6BL4+M++c@$*3cU*2>>^#Xh_fe&uLQ z9p2wK#yRn;(OS_xJQ7ikC(xe9quzcsT?PI+ol=4jU8YDJDYR=?XF^)iIyEvSMlhW{ z!g{8$Ojj#TN&`Yl+H-yohoWZ|cQ0*?y#oP1}nG*Un zkt{mK@lBr*Q-x2@CV?-5k=-A2ld*HL(eu&XO_YhUWQL|3@;z>-JIBb7nWk>|=oz;b zvd#JZWjv>b4v+5Vyr@N3s7@BFZ`&i<#l6Vun?uuP=FX8t9Ld~Mjt0J`7hM9sPcIfb zYNCgFyhYGe!}5HpX9fNMJv08&B`s=bN5Jnvj=e>A@a!OUJ;cPd)oC6c;)GgKfvPHs z?puiOb_K>4?G7cfbAP}Xh`VbLkt_wy(ssBJ8#V1SkTYY2_*$EAJl?bS3(v$5Gzph{ z0DdY?Tx}*ga-lqjA5P{TFLOtg!Dm6DZEtRxz6 zBF8NV2^j0e1-wH`CGi8B;B9!{6JgiG?d-i0!7^!+(cJbdQKWacwG(-POD5*x;QO+8 zSkENK8S5@0(~^ko6#a`CeSvc-c0dK_nsUb4$o5WADkHXZ*?H8o%Zm;-G>z_IjG}9z zA1@XWy`nk-Z|xo9w6`M;BhwLPBlzin1VbOl3i$sno-5$xZkOQC`7ws#qTd8p0i;!5 zZd%8_IBxJ`Td|Wf6K|}@j#bL~+DRj72_7#o31wpjWPI7)t1H!;8q0 z65?pwvJI!pn>Kj%D7m6r2u>>+htdp#DE`RvMJtGLQ`)8qCAB?=rRBxsbfWo8pF(BY z$ZU*!B%{WeS>VY9k>gmFc~jyTkt`r06D`@-$xx!6ydQUl7CBc*nG>o`5E=_sg;NKQ{0o@{Bg;Mk>< z9+Ampz%u;BzRZ`c<5!zK`r7&EjJn=J@|`1MsLE;B)!kyFI4w*<^ z7at;)vpsKs&Ka~2VzH7Thuq#;ym0(5(Hg z@n=%U-pu3Cmf5nRHBUxs@OXIke6Ul!>z}-~c$o}_Yb$gS6X?W^5ClusSnUD^$mqe2 zVzM9U_Bx$YGoByW#Cf1QZ8dcW)H!Nx%;wR>BA^yS0w+k72bz^yvt6BmYI!h{d*hgj z#@2bNoX81<&L==U>*L;8Q^|dzNQRbrj^(;U5~U<#v~)W}JX3BYYKU){RO2gf=OhY#^5zP=p;MVyMIxvC!v${#AnY7)@i^KWbx!n4OWn(6JLv z&^eTyjLD0E?W7iMP~_I|TP8V?Vq>@=OcF^P@a_^QuB^5WHdK3(#>0^vtS7o+A1RF{ zaXacFe5T)aA>KWB;#ALkH6G|Plb-TlDXFiMQOXZ2S&ntu>w^<{oqjU1ZR5;feeOIO zN~YbOE~2QtU{I`&b{39_@7x0x`7RqQ*Rt0?nuJT>RwTJmr!|-D_88?P6~PwbXe-zW z`1iAM$c+&kkIJ47^06{>$zeWUgAlHO3pd_3}gZYSInr^C0=1JQhHHldgXbVJJ z@6RfYbIbW4@U>GS(V^r;Jym0@4dI(-s*KtO=YnsQlZ%4;qWeS*p zwA2MJFbcu)y6s1X8Xxqo1Y{D}bB_<0sbRX{eJNkud5>-JgdeDkx4bY?n9j&`PrI;d ze`E#B5;^KX8*)okAdLe`(vn8Yen;H-)@G;$QfH+AyR?YnEk?xA9-(kcjm3yqk5%HR zGiTFr;Lq9bwlEHyO|r;%qS-(v8PiQa}KCjZ;(g++BBfwk4kIMR(#H+{|qu{-Z zDouK${X`+a`y$ersLm6NlBOa(nz}IFTXiMEo-Uw_xVSV)C%v7*Pf(yTX26bfjVRUl zRGz3Qd1_D%E(jEK5lH+ZP?n>>T2RuQF^zZ|gWnf!H0kjpZlR)NU$c8npx2ku3<&bj zh_)29k|Kvm1#T<4mkSDb;xWvaxwI5umLoUxrvw*HJno{Ny>1uS7(~FL4hRS)dUQ?? z>xO;QmgbTGY~QYx9u}(`LAN@co`INFaKfAk-BK~NfphwL*!NX$6A7J;wDUTer&AI~ zFV2e|(_gqI792!}CMQcG<_2S&nJRIEVtS4vhT<6b!?DprjIdCr$e`h;@AHgix zYnZJHMmh(wqic%Hp-Zi&^=0rVBW`ZaJ%J}^9?mZ-PxvotEOAg;b32RZr*>13~Z z>z+4d4#1~%IAi4Q6*^9aavUYT;Z01ny9c(NW(d0jV}!<_h_8CyvLCeucAzIZ+USR# zI7&Q6RPiO*I~a3t$7sNE7lk`+8M7mE7c}lJdERz{Ad>B)ni7~rt>v^8e67KGEUqu^ z!1+70=>wY|@3GY?p(81c4wy`iV{X({X+{j1-SC2U1IvzQ7C{{?g7z1}aW}#m^LD&h zlHCKv%-5@)7^!yK>_?FeVn!@Uw;=B60za4JmPwx`6%;k4sA(k19ymV3i*pY6zyuOR ziA&ydT0tWB2I@t$@ld=dzU!`{BWt^Apr3=}sL6=tH%GFwNKmF7Au}L@DtKNzr_!n8 zM@QUHg*}Y7+G1>#S)U}RHBhOMKzb8oW9vd)YKSYf_Y$DAf{=~37{pWS+1kG z1#h8)ol}m{+&#BeEzbA41Shh-KI$LA@A1^u&fBdV3Jaa_&s*!T7J>_SEWHH5RY_Yq zx~g<^nHCW*oktse=K;fHii@FT5L?C?hOK~LMa@zJahej7h86Xr-IkdWj?>2WT;IJ! zq1j1}jI4WHV9vnX7mQx7AJ0GxJX5t*L)`ayawiZ5)|R!X$HZsPjTEQpY*!s*0CbZl z^xUzv)mCgj(KDZB!xuTNmEdDUqT*hP+Z2QCQz@Q1qZKkcd73g$z62wZk36@H(hE!O zn+m=>l1>*GR&S)VbgbXGxP5KI_*kU+)^bPo#SW`BR{9!G6Fj{fIPr+L2&XTY`#{~1 zWJIZ+z95mcFm1_rj3j%84=+PRS#ku0b)ux#HC>D$F(2=Hi=8$#*>je28{0&f$z*3S z94f#eo}V?HRQSX>B_z3!cR=oZaGys(byjH)mz;3Sw17Lbr+Z7DIcv*Vu*C_4jpF5Q zJRQq>{Ajz#G7xra2USQJ_^XHz80`44VdS=vAOwE_y2i2TWsSxn*>w|&fScv9dpiw3bz`YO6m*HTmO?*kk4529koa(H%*<~cHA zq_J0$w8O71M+{B(yi1LN-$cs(!F1bFKVHgV)MgM#?C-xOdU{+fX-(BGSx)fKwzRZ4 zfXS}8-yLrl5Z??n7TpH4wfyoa<%r|hc~28tC9;vPV9G4|gC48v5)(}V%;kX}AznJJ zzT6t#l2Mw#kHTq^p7*qodb~L9@(AJ;5Tc;xu8fKVKL+w1u2q%cw&S%TosZUBRJ25n zL+W^G%;A}OgU&G59W8iI`hfMs0BKHJ>5O8U0U;uIEQaggd?w`h=ywQ;?1@b^2skk? zqwR4{40?gSR=r?>oAOX{85rDlWW;0pZQV5WXFemW_Gpat)nvRvTXZs^gTrMhkK+p$9k^gZo}-0l zPQIon@aH?qmx>1qQ45DXN?NV@YXmc4K6BMEw%7be1K4dd)u=$z++g8N`dT0GdEA)y zTWt_XP9kG9njvR$NzO3aW+%DD8 zl6|q2B|z0}xXo>QXF-j12k2K6_{5fOQc}W8TtJV$Tr=7oQOufBs=f~hMK4 zipmi>)r_Kxrbqt#Y68C%A5qOHm(Jk#Z4D>Y6&)aoi$r9h;4(f#_oDRRB7O*DO zT8;GUdz&Ak5gANaYswIgKa8i5(I5D0#bPJaSKsLlC;f@k2D*_R4Y5YtA$gu%5l0F` zuwg%PT8q{C92mr~8mPc*C3Go)&(IB+G2JmmY5sCUF*QANm>DyPO6bc^*-#7PKY9B|nT6 zLQ)7SKwVefdeh$0jX6Ga`XIg&C2J5IP?g)E0n^k`l)cPF90OKyv^2-6MvcT-BB>Ox zqjBtr!*+MJ4G8C=9b{r9Im#Z}(-yGUhgo7BfiHqWTd0NEJ@kO_a|FXfOq6O5W!bWJ zT)dqn=;|;(pBdFvkN8E>m>Hg=2f#Z4L5RK6=Xdr-7se>PO6Hnigo}}=xeN9%zCHK+lTQIX=rhxXxv+g|IcGE5XPc7KpE4lw>`so$Za}W* zlardF!{dTob6Z48ZE-})tZD7m!73Qp&c(tLZ6GaDn_7kjaZuGch}UV%GcgW0wA6@n zmcw2osw7!6k?k+qR*d|lPd}`iy9dykc&Is$o>MmlIYhHAmAz}a@!6j*0l@@x! zfzL3Pda*rfq_2U)d>M?E3eb_^PP1%UAvsYP4Ha%JIiAL-yp;N)6pTqq^2cPS;~}wN zEo4dz)n3HRfxFW+aKyt`17_y%iQloiwsUk``XX-ZL{fM{<`TgUQU=I$0_+Wfdq7y$ zwBvMj7g1;l#V!)gU|BtNg9LQ5Q;9~L!8c+}zT%|s%Bo@jud_n?colg`%I!rw*4S_Kz9 zboZ@+iFbB>d+IsM5fGf=nxE)itob-IXkrZ&XZX2I+Z@q0mV4BT=UYw2lDRkndg!o( zwHC|)dS*4jao-fobco|Sm^(yAjnLO3j7ibmOaqKpc*9-s$Mk}AV6G4KF#%l$G8QCM z%U;b}p|&2N63X|1znk!uquX1=CBS7_>pMS?ngd>v>adYkpu`_ z=pH+fAiKxLjGj`Hrp;l@1@$@%zCOS@e>1)q+X;+Gdu?grlHMewkH#he&v&g6mq}_i zlnC8X!eG)r2fD@hCt$k5NyG_8PVFB3OaM)!1velRnQGE zFO|%>IGlGvBPNo_=T;}hW6_g+POY_1j& z5oxb)s`0K1?4b}6EO87?#_!wc5lgasc4uGscg^_%9AGeZ_LK9O#!rVa$Jn;RsCa+r z3<;S;SdGS)raQOM%YMTf$XNHz(DyiBkl^ATBLT)P7m^RD5vz{p@yN#JU%r2g3?Q5% z#H557yh~m^lGfZBp7;)kiYe6dPu@6bQ$kneW>#C_XP9c@ZR+slMpQRi+kvIf!lZ|d zPbSNW1G_^L_}-Jyy%Gud(oZChZ#yp2isQ4R>O(c*9Qs1pDmYt!H6%fyhT!tB!^I|3 zB^AVW)<<%y$-9*9@SN)h2tJIs6@Tt<)1gmJhpZwWgN}It=hal26s7IBfh;A7(g(5v zJn0GMAo^VH0J&Mp346X+>O7%D`wMZCV>HvVMK~gmb0nPt?31@N5IHUz{6pz9SGU? zjhI|tT+hR2_71#d-5mEkMs*hWab%)Ll^My%af~^}#I)(TqLW?T_H{Q_;)qj(ea}Ne zl@4Unlcg5W^HYf-3C-T83m~^6;14Hfzs&`L%8^Qd(U%AW(AfTj%4pm$`mr>ohU_?W zfefq}n1@Qd!3EaOSA9cv11@MmKKEMW0y|R6_0XC#V$>K>yk>8K_8TSvHb3Y~$#MEi zes9wk#+*dpuU5P}JFlo=V0$MtwTvKGhpu4Ty(O?q<{B2@Qk~-0yyjE(f&x0p8rUQj zr7Pe|d3eW!Hpt^gHZ@H&^+-4;(w@tD%pm?D^nug5c9Zo6cti{^Q|F0wsFw?dYm~O`f(MdNlr@^`A&EZu1`g4ET;mRZaVkJx1bmlh@pDzqqy# zKAgYR>=ZHT^%pjnoc^EC$nq)ugAXp4P3Qd)v7<+0Pi`-;{=?6>N`S0&9P)&WfSrsZ zWks~M6QH}n7;Vz)a14r~bB|@m zV^5epoV(X)TS>dqM%g)XeMGfa}^WhHXJQ5|q zb?tD;;PKC=%_5I>{Ux+JMUJ)j)xie6(*qA6JNMdSFWG<7_-`8j-_p=J+OZoF{+hXL z4aq{?y|l=B#PVOpz7Obj!ft#}<`~D}J$&w=lPNy7%!x8dOfNWcF){ZZ-fuVvfj$&A zRJ05%DxmG1Zp#-f(!@(624Pu3bW{5@xPOnG2fxQSu@Td8FIIE}YCoZg_TtpL|2&&z z+X!1@Q9N2G#ZjlR;xRG(^>|jNptGTt%mZ&)yKdNGJ0ZbPIJSS#$^G^DQ5f#DT zufI+`7z?&nmZr{H@@~#~2dILY(qh(H-l_I@z|Yg~2;A%(6*FEAVI^?MQ{IrOY73Eqqo@7$Ry35Y}l z-_Y%ZoRjv!G7i|8macL$N!`r$4cfjTc9(*NVnpERR$sXworQHIz1aYZOv4xryXM{u zkGPAj8*S^#>-O2na%#QiF)_70CmXGpbWm>HQzaUShZoJ=G6=PDutK-DPrLIZ>o4@9 z0cvUM%W*L8oqUV0scccJ{Y#^ive+#{ze;$*86$C%W%Y-57WDH?c= z6S_B-5?Q#OX%siEJ%nLDW=vZY0`y|V$|b^L?M&e2*&KJiG~oz{2ob^c8Se|% zmSn@c-Zj%dX8DWFz@^mHc0*9M(%EySNc5PLZWxJo6^oYZFiiuB`Pe`jT3_iC7e+y- z3yR2;fvoK7WuDS=FS{Gw)%H%z{g~)j z4J1(~AUv8ITx&v@sNGjF2KB?DFBbgjZo%CXZGtg3`{lIXJohf@B%I=a*V<`=2)Tq<^Z$HAe{pPeRS zldI05vtDnb^=9Z07}eQEM7N_~jHs_RcKw?!20C`$(cruCqvOdjahYcPZA6FN;yyOq zCjT0(JsypP1<^UjYL6MFqzZz^8J@=Y^=E0hdw6#vL0He@=22TmX{V!wyb`rGq}Z8< zlk0a4F)KSCd^2M~2KQkTqI?=?VZ2#s;dY2@uKwN0YydsOZ!;aZAjp8*2Ma@=^cthp z1R3=<;Z1Hk7x;6yJ&ehJ9vA#P7(rlp?-qP3OKnYH+i`Q#S}v({#WhcDc`WaoSn)dB z7`);rislkcA6-q`yE8$W(#%@pi9I#YglMTpQjfxDLRy6W$-e6LURxQs@XpV3VoGg} z8(bq~W{&&5&GH@XFzF#H6gld|mf2rG+!lB?)|||Z%XvSaQSdm%_1=QfL>M)J9$rA< zX{(*3?`sitTxwddw)J2`TI)!+_o&y1mpEmex$*hR(*>4fJQZABlUFTY@Mcb&_B%#6 znMBlCAgIwiNtfYOKaVGIW=AwB(3*=BpK1o~0m-AO&VH}DsRDGI7lbJ~9bAvcJ@eN& zE}0d>vcu(Z(IM?~w7kU`{1(q_S4Rc5uI&;*dr5^2b+Dh2*m8k)ah4iI3;4ui_e_a z=ryHP)cXpEGmf4o9VHP1%$bs!W%%<^lT>M=3yvohg=fL z?e$2MTqO{ia&*ieq(pYM$L-g$Wm8yfg{<68FTjW0)a%xY?;ryWlf9T54)A+%{WtA&?neFa(4? zk>+I54@i|>EEV2ZdhLRDr}0UGeoeITvim$piPlm2hGn8t)Y$I#+XJVK3`!K6f-X{_QX z9gh+A>yU{klx?R9DNE`=XlzCS=Eo-6Y9RJeVrlwd>idB5M%~S}W5vM&XHbR{6c0-l zE3w@yWK3wH;LR34`>L}V^7K-ZnH1~u(wSLKmTh9a+DB^^MJ3BPOIt_OC&cc^t~9F8 zOsw<-{!0EAaF^K#Y~$c**&5OWCvx}To>?7PuAU(LodF;^sjMzugzxs z>i0*jGjSZZnC7{C)(BWlH_zaGB~EngMqHzNi38LcoiBTLJfWA|K*Plt5t6faX`#pr z;erd3wAbgtpp9F{uK>u+NW6q>_8x_2492da3jo9pT_Z&j@NroYH zYRS=4O$ZTkVvXkn8UjCO8=be-_-ci2_e-`7@Eng^NQA?MO>-+kL=c?psA&`2jkAwP z50yt#A`;Qn0w2oaFq~rP8S6%*)=jNxp&wz|9>hN|4=oPbd~A;BON_Qm1X(*>P1P(? zHJSusOq0N{c+o>J7T-=p*$Aiu!Y$b&sfgaMLA*Yj9-6PS2 z!2w5T^`)$5+x15E$YU~QqBfnZo#imaxnOe8mgkn>5d!IGkJ{ z0mp9S^JGPn=deL(PCyY!C|WDzM3Vt>aR<|3i)36jK_>*0G}o=-N<;qmXs04(p3oBl zO~g5Ht+_xZ$)w@Lq(LII2&5j>FZ=UR7~tW^)HQ`f_MxDM#G)I~o10HFl%db1YGI3P z;$k3oAoDM%%^X5&j|V{1y$j$ix(zjk9e-6x}sg^MeBf+Y4JTw&pruS}~A{O}H$`HHQcCHBo}>ZwLV1`*`Ze2KSB z13OZQ5*)t-M#FlH4g6!x>ED0et{i2tX0O%drk8o9KgUD7$ArK%o()%? zV_eXA=4zC;Z-5?w&4cnm? zV<&cyDCg&(nqqlE)XEZ(op*6VrgTMuaJ>ntEUha)y;%bIX{*Wgy!0}o3Nj@=%f)>D zJ5Ss{+4Fz3s+v4sU*OwdJN}^5up9bE4pNL@>m7i|OQUm$ z(QSbCJ;Ys#3_Z%G=rt>nw36u91Q0<4Pz*cexT#Ww5MeI;!k_D5cQJHfCF==o&XpFc~yy}8d>fZScV%~(Ty6EgQB)*!2}gz z|K@{ABmU9!?2p||`-jnV45nmmo4g+oFgybPgzu!KE}{ zm+ZhB`W0bnHco2ZPAb)O`XZqS-V}u%PliBb4wUHUV~MSi&vn@%L0qmoU2+4o?c4m_ zz`bzZ(w}n$`pD;hd0qZbHvPSNBZk(F>SqGR#mgR(Y<`cQ^k&c(cca&B$-L{@$`GK8 zAlGg?=jC-T{piE&WeDj>+m$G*Pr3f+2Zkq@b16d{!_daI*Et`{`*q_;m;P4)xc{gp~ileSnw)dX3L0$IIkz%XVcb-R9e7j9_gMN;jNHF98eNoa}wA-^fFfyjc#oj z!h*kj{tl)h#=ZyQL(yTJaS~t#{*+1J1uxB}hXyHc06qjHNu?+vTL0Fg#7zI|zt-+Z zWer#Wad68);lK5m>1`*NtoS)*w|jb=Qr86X&9&($AZco=X&4Nn6s5gHZowgmggg07 zcnCm=fKT__x!?A`NBm+hxZ{aZgA13T);3d8M;dgD*Cc239?}IK;&LF%WJ5PFBmoFt+m!dqIGwIni&iub2=FOM zntom(4LbC#r@L8X(X2= zI~>s4AA=#%aW>p#o}tKI?z?_&Ksa0!iTd2XCd+W=fB2#p!*`DB)kh9frEt?8XyExu zsQbgHxqs`mgn8Wg(ju8yo8OW$`2lED_06aocu5h~!E{Jr;sJ~I zW0bwGK*yfb&7OT}n9tWuKu;31`2Ftz+!WqM^VKvKfKbG2@)+vY&{`UxAi*H`hEzTNOodiU>*#ez{%*p;)B9S+T-r^rG-g_w9$& zb_6wPnnh@wP~~6#_ly#D-eSe8mJ1r=%;%-Kr*`)a+&BPK065_Q z6OU`zGdZ-nQ$E)600QU_pLD|)5Gmsyj_%kifFSX567=d$tO{6){b+L@1|96DeH#Fr zOtKw$c1fpQ6o_RVlHKhPLv#+@&;~&;-a+HslkqMAzVu)?5Az@|9Z&tK%*WsQuk3ds z#L6u1`QMKh%j{XmR8lnUsvCq}Rq1G07^7+9-Y~kZ{MMfxaUaQHIHBe~LrlZOJkQ6Q zGFU4N@)2Xq(&S#h`zRg8VRYf>&~*8AM_Hw|NC-(*V_|=({y0PSK}=p$wxfZk$E~_MVYjYzI^Ph zCh#!k$(*m+a3_1p3g3332C^U@&)PA+7lK`h@Akb~5Ey+Om$X2#)-xlFe+6KDmI<5- zt`V-~iIRRNYL5XekgsYWzfStRb98IKM~4=ac`{0|H>A4AVp%wW>8cuwaRrS{sc%X1 zh>@d}`fywf$k~Q%V_uO<_w*Y2zs1lJrmcm~=X80w9$>~=uousu$`Ibf&jI| z`+k^dM0$Hi(mumQ zw~v{S^whybUoW@D@;d$=!d`~K99n>n{frCTp8ra#v_0pRL@R6Cm(Jhiai32d_CCq} z?p4F$sEtqk5|1)Xz1-f6tWmlK;QSU+2mT~izVIl$Z0QV8j`myRLLp+X!Ql}-I+ek0V6RqB*eZW6S$nUeITf!87fuuGnx7+GY~yDUn0V!?O_y^%9;M4^#XiPJKE+pa2fmai|64W&R$gEB z_ztEF>DaZT_8^IxdFad0APhpXgO&xw}N6Y}WrbH;~s#tBBH^ z!hx?&a9@>pF}JzJl^r@?(;4w;C3k$q;>Un{a~}7~wsuJ!70(ck>Udqwe|d!|=h+J? zv@%!l6MOTNK>n}GETB=E#6N8=-+WKwmx)Dx6mTNFB0P7I2{?S768Yh)Hba>U1^kOJ z%lySANeUx!o^Y?$AO>Sdv6BDRyw58iYI|%cbV0ZX$(BKe$K1$eg|>#2YTIL=U);;S z5fYG>X>Y>Bx)s$?MlN5L`IYwN&3z66AzJ`L!8`V-D6q}iNn7%25t8rE zEx@!;63v$Rd#&_q;+sbs{+vo+Ud~l+rTNd7){K!_@8E*}lxF31i*4*Hdv#~77#b5h zfT?sY_xf?K1ey?gk1e&4O2h(LNNSz}5=zZX!d^AgtLb^($^Ag|QvmKuPh&5Wvt~vNrin z;jnP!fkXTM&kxxTT<_?tO3&xnjigi3%^l~V&Gq*i`*@O&7ziWR(-Q`Hz82*nudV_c_dD?%lVy6u z)I}%Sdz4y%pjJL0w{`if>3w}T=llpL6b(;cru(_FKbI#Nd>+ne-PnPTt@BWKK9S+= z8={^C?B5bp>T#0nXgPY{Omg07ez5!d zu5@@uTmnA+C6%%Gy!fviTKk;Z}x2duTSx{IK$F* zOV=q44Ou&LG*3?KkcTRwfwKReO<+%Ur~-jh>cs)smyh{!kB*1zxb;n10Kk>)xrILp zoV=*r<^`xIG&KZk0^q0GBFskIZ;%e6EvMoT_JftEtAebp()gQN>~MH3K*$p-iFBXY z{EE-PdhI6@P%1%tDqmqTkIx~&?Vm(_OE5{>1-KK7g|dN7T^t?^#pLM6kvg8h8VzP2-o zDqw?A`<5bI6s-L~<1ccz7u>$SdxM|*0O~EqffIacn12#s`#52~ z{NF%)pzM%Z&`QxW)yv`Xz5({Mm9CfJ3E&6dvD7PNeE8Fm5p?wfG%-vm%ef_h$nI?^p=q${4g zH6~VSLy18RuAva2nZH`A|6UYttSGY?em@hmfHL0NjE%)o~9_2=Y(wR}iX)?+<5HFjFqs>t}WjIvjg zts|PeZTj`mg<(3k8vPAZR!POVn*F&6n3F8CR@4G zE6;OSf(W*};$oX-`*m4EWT?@KOVWVEDG!}n8wUNq+N7~9-6sJF@&SWB0GKl6c}MDY z#VLL8y2%Sg=Q*>-7Q$AyjQ{cT+R|K4tOR3gYxSA8-|&7w#*-v+7QZQyklD+v%yUtW zZ96k&40?1mzO4UB!E8Bg#tNMPYiZN=&Eh;6NZyV{&%N1E#wtN?1AVY79ye z>9_qqhO1xX(BsAX%~N)YnYW}Eacj33@U9mGAPqYwa1ma;BM^!h7Ev0^QHSiGO!|JG zAv)LtSVg2_0mUqImUnlOy#)6mH4+Af9K9+KM&REZsv}+ zxQ1uzMz$~UYI&47$vQ|KF0(uu2xnx$Cm#{Zbkl>c7z zR~Mi9>Vno9fqe1*d2XaAVE7#$p{21e>1)shfT}}%vhX1=O$O_9U5U+gCEblBUGc&A zIr#d`h4tNC_>^W1f^7U0z>7w_a=<2$xg}JabaPCrXZaB;m(`=W?DX&+DilsYh^+H@ z39m8m8fDh%lRcWAsAvO@@rDCZ;|#G^?hEqW6;6|fbCc3n4NnJPs zmUZyt>p7B2Z}|@XUkG?h>8kfTXs?TP^q>8ns zl-tl%J0gXcHr6^|z+RW3$#+Su=q1(b6g=&c2_#uQ^2-2}*)HJjHK#%VlMGbhJFxlt zxxNh2b%L5|G#i{3SK9MAAR}AA6la$&Epx!7{rQ8Ydj|Cl`GQ4Mu%C!4J5=zkBV-W$ zZ6_=1|EU#IRnFARg-%pm#yDleu%3cPm>gRabu4a9Kj7iWAHF7lM zaFA1d`@6{#Y)g|u31ANbv z51^ZjfQ7%ntEYa^RuxfF#yO4bM4APK8m`imzF`Aw-jO3YLUP~eiSkg}yq~cA!knTb zuz!WG(#Cz5g5_Cn7^}N@TwCPpBkw)pOPa_~7VR#{b|BWkGgo=n7JtBY?W;_*!F?=W zsdq`x4aRU&M>>FH=rbo9=ObStO)ar%^2vrib~ofW!~Wfj3{zN&sl#`Ki5esOdq420 zFw!P`L(T=nap%0*X!?ii$M$z06wEDxdGQiOrV^ZnuI$&gltvTyil+SE*ysn^pC*m! zC*csLs1$>0$fEX4anG`L$|sk$+u^rHH)kU^Y8RhNUP;h)9S+!;G)56Rzqk~L=gp0gkq>uL%~jub zAR>7YKDg1m){ai$G0ii(U$6e@1kqGqAFn!r60Yu^Ym{X1T7fVcMf9^ zRbYbMejAD~{;M&`nAiLHGR+7{83!=RbL;u3VBS0QO@MelC8biRlhhHQ&98A`FRGPl zuG{Io$3~j7_ZpZP!l$q;Rbr#ekz_N+G=Y5vlra&QUg4+xz3AE&t}-YCr;n^(T3`Ab z6eSl@@$e}!QBN>=@T)FJqpp8`xAozf&IOmBjgV91}&C=@wd43-ldEFlM3XkKVWYc zt9~sWPs3Pp!Xo(%-`{USi)Dd{ZQ;~AeiP$=fe_96v4t%8L+p3HTYAt^kF^Z}_kVz&;KGI*f0&^YlH%fEAkfsAqD>)};LiP+Kp4b0nF_PY z*CmjY<#r4h1#pFsKflzmTV!0q2Fqit`4@ky(SG|-`hBMEqn;whxVEyBOnS**Huj7% z)ZZ~L7xg=fxWrr?#J3d?wOBnSO!q|+0$pHkdug9>Cz_v=-|}>EbbNydVWg}`{ti2n z6+==AeT9f7&IWqi5MU^=Pm_}k;vhKM6>UReMwCQ~fnb?dP|svu@cROQIa27+9)zIU zHVKzX1tv`FherDJXFkh87az=r%ts(0rBtIn>E5Vt#87y~#Mcv5j5#xAspZG7pJV=l zhm;*~%(VL^bOz(Onm)2eK3R416Q^c&jk__uY(@Y{v>PrBEz%EHD|BVCspgv%gZ>aALj0$W@dKH`<@<)Xzij6+g(c<7`aezaT(d$n(&|J- zW%R#ZMjnf?E18vWn|L#klCpni97Cp&R~2@WmSVo|_~&W2ej(RGna`GS;L#bd|1!YC zz2;D%5tG?XQHlDlI|8eia9WfBJ&t*q!60e_loQ%wapuc*+RpXi?tYb|0ncSH(tE#=WB?L`k z`$zj*KO?F$b*MXN&Jmxri>(Ge^f=R@aXecrHP6Yi0K(=YydGR`-oL+sCg4GA{Bf=e zOMHC7A^+YC&z+8k;=t+<<}1~vlv4(cb5 z?l8nY)?TJ&NRfpmgi8qh3mda?+F?{Vi??{<#Aq{Iwd*5put>z5c$lS2p@D}vGL zFcSW8Cb;KTYMOFP#zd?5`ai~pVmy2cz5Qx^8{8d=Ru;E}0&kVUasa})5F``Qc&7qgY{!T)7{rrDqTSD~^r;yDvkWOPdF&;3L720IbZL>-lQH zxP6|B|G1~Ha^qy@w~~Da>7qO7Z=nBEuH*V`kQt{-2CPpc)!t;?jGa3A*-XNG9S%no zRw2W;07`-U%9ow5gbh_KR~&d=54~z(S2gl7I?M|G=u!IL8g^rG;!+LsJ<{{{=WWwo zr3uAt#>YDbtv|cc((StdDS4>e4XE?XDFBPH96H$EtSi#QT8di;N9oV+k#Aq68^f{g z8Nk^6SnHeF#x|MO9N0K1R9TDSvvqL_bBFK0S5yagV<($&gb1npc&~YXe&;*~q`3GD z#2*=&#>Fmy%7<%?_fGhMaX{E-fyUDG_bnROs$s1n&7lXJa#llXXPpctuZ%P0--i(+Mq-XCV>kdgK*qoKeiD$QIM7Gg z>;*&fdw;z+-Jsf&hSBB&;G|Jo6yb}Y7)I-;7M1*@nad@q`A=d`7_p>BP0GDNhzr=j z(O_=v>}49g$EGu_8>zl+i+X({Vf&k?0dn3&cMYYV&ey=bhX|&v<2zM#DcPNEM)!*B zQMpyC3Q;jz?>Bt_j_e`2&86PIW+QuU3JVc(62^a+Yt?ft)z9IICI9Iq2ao_^MkxR4 z8;yEn`;gQ}B~@t8cW0RpakN6D>%!6bzw;L7iT*v;7d8C-w&WO|3>5L^XJUjB0f9E- zEvEc>%Flaiz3*o19umLq%$xCp!#)-y;|dR1J!hNO=40A!0Pc{tc zD`O;^1CeSjeG0*H8VDIpyM0@^9$dpb#6g=96vl&xa6J3{Njgw_Az1-B!=PaJvX3u? z3FOx9AxXeD39RN_VrPgF009Iqn-@9Oa#IL;Bw3!;{v_Wm0S1x}v9jG&j5oAGK>oX! ztt4Qeq{N=e6nvE5O45MSaX;SA8AhBe?)t1o^Q; zYz&(y!F;Igwj74O?jL1rwl+T{lRhnrb}M4_fR5uIv$plmZLYOLg&^v5<&eIE+1%x_&+r)I&;@ZZ#&$eoM7lBkpA@O8b5 z+3hhG)yRZ>y{HWlB42e{^$8zZJ!8Z4@-vFy!TpGTH9}xB9j|}u#6jE3TWZRbxelaV ziglJPrM+j@L{nhq92EGn@&VrJ_3#tvLnNZ17i!9lF$=SwKFBNeZ1~nfehxhvso>EV zZ_kAYcvbqK?jY)X2W_KkJ9m zd8Yi|p|vVF70a|MtQnWlIdeDr?xla8AK>7ojq&RSNi?>31O++NDV9_fMHYWkA}Uc* zjv}^20+M;_!fg?L+UdN`Gbg5o-#@4Ev;(GzepPL<0$-2&o2zZ=kB?BoQ^UPiPOV^! zEm7#}Tu0;=^3&d0})*q(R#B7`%?$h5Gc z0!J~@y{4&DaJ;l%HYiZZJib$-J4ebCu{Kt@l_P7-U7sR);eQKK*BFf< z{~d4X_jj_wGpVWNiaGz!z9x)^wUwyS8kHDhZ@7c*%5w3+UqJs`TO+gdI+spF%jn;n zBKvOvA%Ar<&%Y|{@gpLVZ^t@dEr4?woW>Cw2?t_x6& zwpzfVCOwKT2@yT`70pF5BM@4}em%AM`EX4b3>b zKIK84;}h%zZS^ZiMY>$3=t16_Hx=7RPH!b-2S=W_7HxwnzP=)gM_bC~P^B zI&v%>#19j!gKG#WC)- z=`8cI(*aIDlgqvEOWG#-=I=roX%sQH@iQ(sb^zA*sAgv~yuKvpY+!uIYzh*w-O#k1PA+s~{*Q1%7@Yz@kY zh6!6MISoJ8%e>lNn?$EfP8qxuFYXd>A>?$F4Iq8R3-tE15ngYnREdk>i1X?DdjYmS zKeQAe0r^z|R`wHwyQwj?N*J*YX2~f1X(<9UdQt-bNaa1+Rb;hTjQqm3r4np}dhHv0 z1)0ky98Fn<(!57xh$uXe3wh@WL@nTK3fnL0kwd9cPA?KmXTLyx8>Fu8W<);O)xVPB zy?uERRM=8#TLZ4euay7RJN&cANViG#3aRDzWgUARwfEmxkTm|QxwGY-QrqUZw(y|f zf6$6wLfQR@d0?xhj_iFuISz(j$U!SR?W+g{bLCs{;L=4Yc2_2VXA*!d)PFS27ij8h z1b^2@+pB}NxnqeOwa%ucrsB4L*Lsbny7v0mP;1)S3=I1gVqz zqE2b(o;rl_DUcq(Tguh~w#{JDtyz>f(kL#mc<4SU+;s-Bp*{5mx)M0#map6b142h z=#5c-|IWuS)N9Ddmbvbhr&w(xuV#TT@VB1cc8vgJ7TlXx5Fs%Q8$w!{_^(zd2EbOAIF-=xc^Zx|A?F z>1;?s0XMI<|MjCwaaivC*v!i?g;#%%jQ`oxwHiv#K3sjrRV{q~^BQ4ho zWsDATIH#94HX;*146DGn6XQwkgO0Y;Y;O+B_nE>;v+RnnKeo3{lk$i^nD-Q0-uOE( zLt~ilm@=sU-FWFoZu=~+RqQ^%T=iiPM#7i?8YhelnN%AaVI&p=r5RxuHHUIahBGAy zL@>{Qbpv93US)5Y<=HGSVIBqJPMV z_&BMM?6$hrDKZd7HXk3z%;7-wz>L@1RstPIn2RYxSS~PMhD(Bgta+^RfMGK)O-LL= zuNiP)%4n|lFzE^B4*h)r-0p(ihh?)&;kQ?QUv0?Uor6*Fjc9c6Uh0H4!vpv2crS%r zLCRWS{JrLh_@ouT6r>~HUYlIXvEv147*CN2UzHU5n$XCt<9#R^Z{Nc0;k{`Q=uA4d#g1)kXEIn z?Dh7sEXAY>)LVKvMcStE<=?pwC!BU#jk?W#Z*kWsZw4?L;qTn0QZGHvK?ViR)hBm+ z(tna$8EZkRsB1^^Wz2nLk58R7$V%Dl+}h~md>c^8bod_D9-xX3d8p%I+5RkX`N-i{ zut!86FjmC)-pe=Qd~E&uOGb?1{+0|;GM5wsY_SBIm94O z4-{siBm3{V>>p1k_4PfP{&^=KN;@Sb3iQCVVhyWsj-boR)2?~JI~e4@bC;Ydv&q=N zuadrTTcVawfd9_lDK43t)$@{t{Pm3FpZVegpjXsQkjPY*oN2dw-y*gk3?HQ!k?FCu z$;pV!o3}8oncveV6VZHKE(xIee7>ysev2zgZy(`x^21G4X*t`Wg|Sn=?eiO7Cscul z(OeXNvdv7s_D8K$)d7#7Xg6Y8)pBU_5=-FxR2=KvLoq$Wm(@DRH1ck4u<+~iUvX6Y zU&d?sTAFi-(k4mfwjM2E*c1q*fn#zUc|qU74+-q*Fzk<`Y#(N$N}>eUqliCN7@%$Q z`|qhjsfwC4BoI76V22b$#3RFh&X60wOUuiXOyDf}MA&A?0F&^=oG`;pGB7O$mR%|t z+zDUttN(}3B&9RPG+4d?WGK&z@D!1Ogo$0&=hN|ZA|jucm-KkhysrKpq;J^a`Vxl) zM-M_{Z=Zj@p@{s>`Gt2H^Of1ziCIp!tFAuoPGWjP z;!y8hzyrT+3AXL{>TcV;8JuMR7)l); z5iU`&F*wu$3;=oAz+Wk#zv)oP=w)^JIpqTL8D{C0!~V532*M&rwmIY*iuvY30A4tM z19huQ)*T3jpSS^1Kg~@R8c}*-Z{Noe2L@hUEgV4Lb$KPNWovIX(D9+BE;s-}7^zn2 z%F$4qw$9k&!1|vxe(RS61mM_fuC${6oE!4t{w?W@hGPo7^qf7gcuN3F@#=c*kbT^? z*Mjvl^m6=_bu0eQ{?61O3h`bsLO)2q#LBB5Ax<4&XNLLNwR%{)1>AV=d|6~V&4eJ% z>31G5Y%M;i8p4?Mn2AiL^K?;#Qinqm+IllFcDx#Dx!%qy36n3KGJ9{5vB*7i}3CeRYW4%N);;glPG+C84@a zh>nXh>CtRE>1?39V3ghsmjD8Ioh^Al9~-UVifV_myag9J=gzUaP1{+Wlc>)eM&}D| zkaX6!gFVW_a6M^{;OYO{j%QC42hWtDh0M&(TQPCohc5A zA;BJ`>2EPz5o2rA&Ao_!d&=fFv9|2L&nNls+;V%aMUPZ`Z=sQXWAu0Kc-&KwQKyozDcmHo#9HVlH^xnIwYGab#?r%PO$l^441v zMg1M)NY2o2n<7GL>kT?$h$V|TSZK7Ol$05i|C>1_vVi!vh-Vyp&ePSa`(>{>efnAX zuN^-L9w;vHJ?orv1Bv?e6Zv<349%%lPQ<@Ilv^=ECw%;`Wu6-}tzP)%R_mX$+9viH z5Wz&~G}zr;W6~S>RLw!_Dpw3DEr4sUILxz-`c)mWlC@kK%3l*%3DkV z)!>*@(dgr;((yZ#{%EED9O!F++x1J}q6Pyd(ko%d$vl4^K$+BfA+UUd&QYiV6hUs3 z8bs0Gerx(^w=H@zh#ktuDTQhD@LD8&9>Vx(;tWljqS9#>)Y*nM+qu+mpI*eUJYaG8 zPH|MlBITCc0eRWt`(iT)x0HJB-0KFd*@eYBtp(x|!>K8*GxCJcK%>1+lAkfhD^Gz9 zLhZfemJsv6So!yqC003Y51D4{snzpMx-R8?*~PlvXHP2+8b~JjVh{5C3cHwBx&Q11 zV1Exc&A~(0vjn^hbC}9GOdo;5mNtw#uF)uJ=Zmw9{@%|JP4!VBxWaM^ zhQ7$~&z7Ll>rp%YA=3Wo3WWJI{~uT9u_h<7trVJ zw9$X-t|aA|At4d}FwEGO3$IfNxrdD_WL1bB)UvVLD|0dqBFIyQK?R{G@AwQkvNicG z06emMOg~5BBjBHexM<*o$1q-f!uaFb5VrQPSTXAGnhh)|$9>ay28ka)nBl9GUSLQ* z>9i_S0}5im4eO8iX2(J%106ZS@6}|+kw=ShfbFt`>1ELj8N44IJ`lSRuauEG>?)q- z9S`BH`Wx)<<>9qVXpPKXm{~nC7|9TjP+fo&1C%gWg&3cfb?(aSESPp4@e`j^r_L}MzhDG_;v=S2d zmZE;`hHqyxw=T4m0$lwtXZLx}N-+6;qeH$EdcQG;f&pLH@%xZMmkgh3s@ZA!UdeRH z36A_HSE%1aZu!!hO>+!nz)5&HKP*P^{PQtyt zQi`=i@JXS2T>p4sSkp#6v-cy^{L6RayHb$?5RFKE@?Ii`*jz3cL{#-yl#oQFQ4!q8 z83#0myK4t=@=UDps~ImQ_WZuLRvm)z>q(XM7_8aef9w*_cb4=ei3GewuL*rpJ6D9F z0;4VXk$>oc8)`%}5Orqa~LbUqhxlIul+hmF zzVP=N2lD=QjWGCkOL{6*^n78yQv8FSo&BPE`#y~ay=?U0ne-F}7u_(^=RAP|=TEe^ zzuG7vgO*xc9LNz4e5q3RF@5@U7k8O68NO-ol>jGrxRYeAC&cg8)uf;luHa$IIDHOi zLcpp`VzC_eghZ1e{_#-5qJD1ayQ z#_^ezj}$+%4Ry9}fF;)iWPmq0Vt`?3kGZBQ{xj=T+i@}d$o^PmK%{eF*CEZ^=%c9$pE=x54~Ji zJ97H7TkaeGtKUh~VcHYok^=n|@u}2I9m^Qm`<(|zWh?pgRmH^O_hr4_4Pm^JZheAh z^w;w0{OkX?C4nl_fYzFwsV@mQzrSNk8bwL#mL=^&q5Us?*nECvmADRhqwj9R4+48~~0s`p7FT?n_fguw<3Z;wrz2 zSz3&8JT@SOfN$Aeq>?(UNoPnmVhXL?WCT|VH+lKQ$DQ*RXn5@VJtYnMJI8F!6BnWa zx*TrTa}R*X1eEMZLH+RDCc(NGR?{jK3`5@jbk97U`Tzwt_b%XYUN$etLQoH4zl4Hc zuP0Uv+rX^!2w-7}59|mPcM4~YgD>SpoEwYUXtmSauHkb?*rME5@wIHCrTW33{Vtvp z_itQ}@awD5vwQz)`4etXHrU~5%zJ^2CQvWwJ5<$Y3fao$a|sP;7{PNd2yDc8SV#HA zVxcwRgJP#ICvs&YKMuM0oVnXc)t}VDRMREAe}ZudZlI7tMi;W`ek%IhX^J`9~-@XsX_^&<03?G(DzbjiK22S|E-pEYoU0JeXK zy=!mWNZ0}*kowW~JE7*~9_ZpH#JdTzx;VGd&Y-?PukQC}-y#J8x@mO+*g4;b1cXtv zPP5?nhSe9>@udoCrS|KNg0go3)OSYMe6M1WoWDI$<1CCon8w3T#MzONF(ILX9chLo zr6-7DJse11#oLHjnJOW^Orm_9jEo7+JE8sJa7ab8M^d|%} z1Tj?R>?h<3>>l|!@HR4*kj@_)Xnr|X<+`?!4zZaKm;*&PF1MLTg5NqFE4*lQ=hu{w zwHmonUJ!wrkN(qN_>qpj{`HZpA4s6Vw7#_WT994!$aMk3qfC0|RS+?9AHeIBSC@Jq_;vD4uV{It;~NOb^^dP|!2;+c&*-~VVbtcohStZM-yM#N z1Sc7m7ACmmUvFq(>t#vbADs&{#WZDcqh5}+2STCK z1o#^JYk48#(!%u7Ctv|9UoHX+cTC{Virj*F-jj1iZ$y}$m)2 zRkX;tKdIPo6sxEncg)3U9qqOXuhmwqkMo{Ogcn*?sd|8U-c#0?WO%ZB#WMMU`Rp_9 zFqUZ_b$B$*@b#b2gP;@5f067vOcM9Z2Mj*2V3W?9pC*Z57Pf7DUVE*46_97Dex-yt z!trd_g|g=3(dxnh~*wr(dm+PuIg^;DG6< zB0YCR_VByPEPvNfh&`Y0v*-Bi9B_16r9GX03`8bC@B_g}=NTU-m><`xayVLakdt1i z{y75LXV>8XI^#0|A5c4ni2dXf)Z|dVQ5Tkc6HWsVFhfBUfEefneBE)$KU+=E@A0t{ z5;O?TIe-_@&H>-MQwuHv9%!GSC~fY_uI&J&gGq^XverUvtE@0kt*AslMKUbFmHT3_ z8kKD=+m~uZ-7rJ@C7o45(V60JW4fDD#0mo?>b+l(Ixv>cm{!VBUSyK?|!voP0bc>m)mz7-iDpU z5ly;9kIZ?bn$sk?Rod322g4r+s_y-e{d9YRdJ!43iab*Yi$G<)gpT+fFL`51-`_VM z@Xgjy5TEh16T7pynTyxE8~nvk878=+56&b2Rg(1RvW18hh`1|7&A!@ycLVD=^r-QC z4G>_wgj{W>oSJ|`k_vxjNf#lwZ||cZ`?}zFz+;IvE|_$JGnZFfwc@9;0APZ1z1h{T z1NDtSB7Hm?U=a8QX1&`mm?45LkmQihX^lY{ia-2NrZ-2+G80e&P8`zx#Q*GyW)ax@ zKCIZkb}xo?tR7dn!#fl_Q|1O~Qr4ZTjQbuu26fgrxV(oAT%vaT{qdDY$EX^K7?Id< z-`B&30T=ElcK%?jbZc!z^NP6&Rzb`lfpUf1& z6%KZ>&7QeR(&4}XJ@7Ed;UscRO}(=)T&P;`;HYAb(T9koCCW~K|h>cCp&!`H3{2n5j9Zo!g5 zM2LUxa_9E`Qu`pF1qzzF!G|Ty1tLqVrT1Dl84d#zu%ZQU0gaYmQ;5LrdJWRNGC?Tv zO}R#iEm{o%&#_?N{k=BPOtQW?DmnAM>lz89ga7MUBF_`4!hK;PJ@3dsfoXuV|EgK? zh5DyM`d)`mo~d^7bqr}BW`E^3P3yWzK{wr)hB$fz00Xb;QZ61wHvP7CQdPX|5Z<;y_guDsq10ni-uSX7lF0$ zv7GG>3d@A>?(QzfR*%rnzt$o-BY5u)JK}_1&>rRyweF9i($9UF1UOXlVpy*mBxFpH z?iS;%y=i2}lVqkNO8tE)Wz2rGO*W>mefXv`K)l(knsfF$PLm&hJ}Vo0hyn&LEtuHy zQ>=@7F^kZpl#r6<`3@6_rWQv6@e@Q!Z_PT7@YA-jV3N%}K9tr6AaVm2`jkO`{nJOW z=BousrG#oUC@R3wV*pXRW%1}R6JC7Ve-c1-Qr#D&eZ?q+%St{Qy6@JU;cSN8pssL# zt-X7XQb>YisepAjeL9}Z^y_Dvh;qqw5eBOwiKj*|r^Rs0zf`rV9+q3>W9O?Qu#gu74srdL#>;Zm{jr6P=9bOu$AAI`aX2v`@=W+(t&C zd*7%hapgfX&xdnKHz>0D3oe;68PHhp@9GOQ&VYf2B5xHLXw=#G8Isj9Pua^x+_8eJuUO?R~Z*kKJUhG0SFjaKPnCD*~FxJ z!gCq$Aez^Q>fb|>>Ku$_^f_tvuO`J?huiS}oC$MkLNcs4^L+1eKs-IhHh-|Y^Orq% zGzxC@@COnL8cLpj*Q|3AXDapl-#g+T|3R0B6>D4BIxAFKEu!+^i_F~|Cr`rUpBS3| zbjrnL|MU!}7l+{pVoXRE{(Tkzar9&%-K%?0CfL(`)e}rIBw<)AWg{S%wRcN+pB62@)Ya#`i8pl z))*ZH!+PWLoqqKRn1*2J ztrg%rWvKem5g45Lygj&k-fzHo#+c)nNijBmjY|HE&i7XSc)v++^HcO8W#b!wF^ps# z+iN=d0>$&f^&g@@EE{7Q3$ZF|ElPB;ygU@crB*S9wO&Vs~^?9h6ziD%{epP6@`s|QgHXO zTh9+{;;q20CX5GoF!5h?)4Pc<)V1M$H2_{>JN19|O1*=t<{XW}-5rgB7`us6vru!O z48IwhFS1MaHj0qV?Z_F05ooo8(cvaT>=S}ZO0^Ex>v~b==T{!OPYuwYN0{gP_o|kW z7CPWNG5LkPLwQO{e@|uLCExapo{ik0z?rW7YRW{q5Xplchl*;XY8i;dxNMq{DZYK> zcJ=LxwZA<&1llAifxMqCzebeOw@Yiv6+vc0~87~{NsMVeOGJa(W{$F55leAc@%$f&oa_+cft+0ql8%mpo})1kzL?qkTzlIzQ0# zy?G{yif){4mWlE0IwlV@9c;K4V;Vm%Y7JdwT>0>1x`!Dl??_xFeUhNxMow=XMzNgI zqa$v2N(_&zzo~`R4nUAHu9T@%=ILWw2p)`}oWOpX-c~`BrOm&0dz;G86@kNK^sN8n ziJ~;hFn+8XDupj0UE@eLeTJ3a2l8@i*PD99%JlP}`bCC2q)9U(J`~=IDcT7VXm2FT zh;UA(rK&olC8hq9#d?Lxo;nF<8&Mx;L~;@=NT`r8uR3HdpG zK1-utIeF&$-Mpw0roNp9dLSTw?%K86vw$kAds_@V|EV{Tk0%yaFMc`9l^#*)cC{xa zXkkTo5YwX{^^>9d!HW2eZgCnja~eCac3v=k-2{Nf2P$js=@y2q3<|P*06_TNv)Asl z@;;bCbL&U1UYl?7BWa6^t_qQ73mt#(foLW7Z+}(&Q=N4@!sCZa~ zPIM$=)bnu0uUzhS9Io|v$CZ|gV>TC>`aq`;Araab?^hglz^yU)f-vpF9XWw)ltztZ zME*M9h5WLSI62h=(RCaI##561u1zay>3NOu_KP>Qoq3o<{_4LbdU0zS zOpc9l^>1?QONNiMOnBS8{c5Pep|*s7xAq4bfbR}yps^_w91bFb zXizKg3jq7ZhbofQ>$_Z8cZtvl7?=mBkF(}UB;qi=m-}l#AiAd|gg(Fr|Lg(mIsk+Z zu-J<^7X_@4s88sAa-d{Dk2d;*$^gm+Wal9@>oz)&IH=XX0WuI55g@IIwf^6snOV{M9 zK%=@MBr^Ee2O9r+YpE`KA(S8MAFZ9h>nYJf#E0|CA(Sz4JZM&+8SB0G|Njysef*7za|l;~^8 z+}aSy+IgASI4`@N2AETPhwtg$tPx0YaatxcN5eRU*qL}IgDS*=FX0Qi-!T;tw&BM^Az6Rw59-#P1fhb15x4*-`CVm87OpAL zN5>>gcjwIJo;8=x=nUVz0nm0zx2)_jDKE`wnw?aW?E`dIDte&SSDsUM1j^)U*MOc) zcza)0<;XSTdn}$n=qv~%Bh>Ak2UN(IWt&!aQ^IFf`uK4f8D7oohDdCYL3^(b$KF{3 zdPaOd*YZl#xhF|y^N2&FLpZ?OR|0rG+pa03&+ml@VsaegIEWo&4-%U?^%{Ee<`bsZ zjJfGU@B2be-*s0c2pO)g%`Z@@w7Tk_lGsPX8@@jnOM*HTZDe+4AHQ{C*sl0h9FTim z!)?N%^DrMrNaNocu_MuT6Md4XJAn$7^vK<>X#JYM^+W^yorMwDiL|jzeF}hYxXlwY zIK))k6S&d#ic{QUmUr>RD0~%V-e)- z_zO^b$3i&kPt#J>+RGL6lVH9crEA2i!&=2IG>AJ6A*bVO4+}3&8G1z-#kjn}fIM{< zW4#ZF(aYTmt5~claVr)nvRW-uhnLYs6ur&}JK~mHM2|fzg?w-ggOGEw?uxV+h@U1- z9Yd$Mw_iAY4A7`iO4r)UH9u~Dl#tfYnMHU*qC}nuw;LIzEDzuz$U_qLqVv|o0Ol6oOR7dHf(5vaRq+rge5XoE zQgTp!?16PXA;~xy95|oTvS(JU2bHQNe;f$qb&~lMFh=YIu8mMke7=w)hFjy`D4y<5<#&4 ziXUwiRNoZEB%^zLasA?Kc0={_68^6B6Af2sBsR5MC?24O^M$CqDibQG}pvZlwKS|t-+i~&kz<@a+_7N+1})`nKdID#*N7gd7tND$;t zINnJvPg8i-U>>6t6mgIe#~@tz7{R_3Xj&m4@Mr)2KZpNR^~06)BS;Oh@f_;A&Z~1! zGa)3y1ggUXCDBmR>~G)0!o5hkOSijp7xY$?>}ZMN26dxW>5KhSrwKJt@O7N`@W{k1 ziuIpP(&eVLVUJ{_YK1)Dp;CN*DawSL;Y&uTOzS=}qgt}^_R~7k>A({vp*$ZK{&E3% zPsrYiSP8&W3e>J!Y1n?|kL;0mdoKCKRTVFn~uAwcH4xHHfgLMqvOX#&~v&q!y#VY?z4bEe=&@d`2E-NMZ ztEnl@hx3s()yj-R__BU-KVXJcC?gt{ORv5B{u-^EI$clQjaNv-UaS;e{v>?v^jF_c zNs*2m@`HD=_ikzW(gJb3#RWdC%$}V?W`@YhF|6k~;Sr>(nv@TKg|SxmJ_VE;HWfMk zUC!itOLPiXvPeK|U3K}+K@jDM3(fctN@?-@ z2JJa;I~)uwAl}2`i-4X34q4ej&bGm?QK2*xB0ebzsBT4ZL3?_1T+s`URGr1`VstYB z)C7?ByNCSqDoUOW5QL0|5?+4SJuz?3VSU-;isE93LPX}m&yWmzuf2h}R#$*{KslBE z@9}o(fUTxWR{MSbkS`KVn3bAzWIi4e5nX@pZ|2u`F(BNW+D|=G#gNc+1q(ZCK^WN~W0MYX(%N){{|TU@c%6k+!WU z2qC`{Y&XZh&=atCfJhr5->TE$HP?U0Y@^Bp^{GZnL8z`9t{+6;9k-c0Bg%^^pmP{E zDr?=x0Dar%1N~;gvL(s|r3$o~mJ$H@*ni-iTXDrG)=QeYXX?#%yVONf+>&PG-_O>9 znN&Bc3-n_ZNg&Qjok61l8t?Tb&`Fy1y{Lf$tZ`KzUO_u_x?0LR> z5I~Z~=|8=z@j<3jL{oy-@=o&D3%!e>t+WCWb7k50a2qBsV4Be#p|R7cUv9PsbiJ)C zP;yp}jF*J>^2VIf4i(D%A|KaE(NL*&w>_Pa*uaT`YWh+6X4>dL!C2kSVe-TM;6>Xs zzxRqcs>SS?ulP9KEl9H(uqwT^xF=#Hf>*1ZPWDK-)?l-dkS9FW9^79$G7geMA_?{jU}<@}#v zcO(bR-!Za;+`_{6qCm?pmZVfVrNi(;YLtKx zUn?-MijN##V>VCzwF1(E{c$0uoy|^;=fQa6ZGnJqi3`(@|IvRXJPYpukegE&rchSz zG+#7OSJOxK9k?VpD#J6vfC2^?WD8n?#8AazcAkn5Q0O!<9P}CC);7L7b?DjxGOe?p zKz(CYl5#f-CT{c0>m+v_unhnjaX;0vPyK$_zMLD` zVpA$t)_n8^zW!?X-g_GOW5}Gox2_wp?=Cuzh~2}7M0@LvnZyTmf&gqXohLDswxXB2 zu2z(5!`CFW`O#yk(lMTa$$Xn*fackv(}MtK)r~e+X24fA&h6#G9mmRoGW)-A2G0D7 zJb20daNPqaaBkC|74I3CM;Iy9(=u?M==DXEOZ{RQ$;_)2`o`%fs8I&i-IqYRIhOn2xzyvlwZ9Im^_~wBlV=>oz648eRHG_Tgcr$=TSnOck>MyNSd0DSwEhn-C)LW z3c%xf2h-NObC*^iuyTf-pH809$>ye|lVP zylKaXLqt)-`+Tl`dVAfX8yF z{Hd_BAl+O}$EE4$;1~2)Gj1;UAv=^Xv65 zO%Trty#;nNAc>HZdfzZd9B}t5Tz@GfBRrxHTn^e4NH}k7YW>I+VJa>}4nV$COqV%e z>_ZOjL6)>j3@<(G%-3Me5R)k<;G>f3&Mwm~_8GdQ@0@{US#|7~Fg9QL`b;`3Nr0b& zQD`(za(IUa~!rbbl-==+EdP;E__2{sD zMbahd=@ogR(#!QvK83{_Eda?NP=2|xXI7$|TQeH#!NuCEUC(Odj+uRTa*Pi9*)pf> zCWoB=e^FKN0`9@9Kl@r(xB}ljU7ckzcfUc6N$3Wp{rcWc9NCh32JCfccj{o^#t4hx z+vMuL^Mn-AyD1?rRlLeJxyRmhF_O-_#cw%hlJ&dIDVMWxHeUGBcCu|tnbk7F z4`PE^nON?&A>R}O2~r&o+e_W-h#0xWajAQR-L#s?%h_C`GUd6?)9iWQ?ZN4b0>+&q z-D_zcz7hxAVmuhop2S3p#d~@mDxZHihOp(i%x+}*?o`9>sq7WcW=lbrY(&Dw6XxE@&^HFt73_;D3h2Up%F z{&cthyPBdM$`xu+SG{qiiK`I1E>hbhVL!%=Osn z-1}T7oswu(Zc4Ak&hjg-SfWqE5X@mZ(h8Hd`v#hcw|d>2yQ6ge-zfR4^e4^>UzegO zsVD&bh=DuDiVPZL>O24`Hq_vuzZ0Cs<9^Vw;owY5}T87`;kb&UKYI|8yzowpq8a6?gs_7VQ;YP8qpHesi{5JgT zV=|}A&I+*Ehif7*3rUY;JEu$uRPx9Z-gw4Kf89=+ZyaZ-0Dcq{?0~4^>xK+GBRcs~ zKilEcdUXB}mPlg%z~NW0jDOT2+i-)-%g*K19BCiH)s zOD*@Nib8U~`-J6z9}>D&g*t4}JxLPvEA7?ncS#CrV`WC_U3}fnWH@aTIj`6en-{Yv z8S@R&^pV^Vf*7?FieSy%u_@A#^@4sk9MUV3Mvus@bfNhujHj>_qo}HaKGa!Xx87A7 zu%ixGju0Uua|`Eah;k)Q&r6aJ$p%bl9{O`BB_{xq*ZF*(ic6i{VS=t|H=uHm?+V}7 zjVqmOKavY9r^nRsnjW#C1` zGzxt|!A@&D#FOTGX?TF3H8qAS|BAs|DOk%Q%Tv_B9DF8Wra;`fk~@`6TJlpluYn`u zjD1{A;FReV>#cWy;xbNg$a~~7z2rrxQxPH}ksZ8UTLY0BOjnOWt`@45*`O*4Gy0Jo4p?!nhL2h3r(-_+p~h16W~timp$bcfLdz>E~yTs^a1R0I*+Hm;~KOvNZ|PK8d0pF%wHZ;Nkdc+75M! z#In9mE-EsQG>{6jywe^n6#dRL(1KWv0FO$Qh^2@o z>b1;|12mJP!#zy>3Zn`0eLBD$*3@Iw5pF#>aDJ$~?gO}{8!nqrH6-)Ti9xin$6s*L zTmK!TqFJ@Ctxy%GF}WU<(@Tg%N65Npemh}UK&$MhI}_^mW(EK*0!6y11_>L%yvF!6 zq;ZCiq5Wv%&m^&Dn1Sr$Ti_$kmV~0lX%vC59ADSEw5U!D1L9zC$QD;HOG75``63cU zK0)EJhP0FEIr!GLqB)aYl~KtcpMB4`rvn;@*5BpK~yUjOoS z07pQ$za|mi2y^gynx?9~`Kkr&F5PncM9k5Vh|COr?gI3x1l^NV#{sC~CCNgsYv(@5 z3l+V~>I2GH>N%O3&IL#saqx@C6OFj1wKi>lupPvW(j~jgZBrudz4rOXDYhFq0eIf! zl>{tot~#PDdfBh-Hh4`PdV?cwX#yEGb$3Peshk#)y_zQW?X3#yg?OA9Ag8-7RXu9k z4in}3Zs#~%!5eCI>lsvf7&J5_%1;5)=A!c^XT5MX1#fd}Zy67fss{IFavu#cC*+r; zUuz322u|+2KNr9QY_Y#mR9YtNVN+ywCJuuF`YDUnEt-$a+^>M9R2PC6$}6pb=XPuv zJ}}f9$#MVgL)a^exa51E0oN?{N55m*zsLS$>XfnBZbhJQ8^Cm`0N;k*z9$yS2$o5W zqPP+k!{vKc^gS*gPn;#0eUsod#BtaZU;ounCGR0^`AsVeUPcnn zUc|3{if%Xgju0@U8!F$g7sSbB$vYI$xW&FF2|)iEna3LNXIRvAu*Ubjt_lPo3Ub&0 z)IIlj?g1=7l3;ytzAV9w^&W}ZUlT1Txasp~|3R}r1YPnl%oMZ;!K!G1vCC7=n5W?G z6_CU3I{?2qVjSsXUl}I+*1|lIKgcKgl{=rVS9P#XC`a&xf)Gbl9&&{xpc>SgQPghq zj{fiPx!U>ffJ`8R`62B87xnCHFznwBXp`*gK2AGpe$JpY*SK4q{o z2mncu4V%lnkT-Nn_w6b^#pjHOm?V}E3k)ml>aqGPBeLPd6aIl)MnUSl5IkM^GL}3t zzylC^%Vck~@5)jBJ4zB4D8EAqUv=JfNbet5rz;eS6sv~eQ zs&lL1DiI9%RHY@KeVlI#y4D`_9j>5QD*p_Kc(b*SpFe!kOR9*8hcwBW*1LhzP_hCk zP@Kf1=pJ|co`V;5#2Xb7#C)k*2dcPXO4BkaVefId;0}v3;_$c|oN~lOr%08pLd{zz zsfq#h5wRUs5%8!SZ8(i^%KEn<&ED@UCgzy%7IL;|-)T}fWyM#7pTL-vc+}^5sx@)P zUP(+vabbLmi?{u`+p_ft)?u9#V1G%R(Prp;WB$t3HvmjzgDf>{q3=DX+WggC+1hb~ zk<(^X9!}1r-xer=8`)`dn+J9n~6k1pA=7oc`pkOLXd`9+fD2dk77MYENNPah|wL}JxCU)X;6E_OGuI)zxLSB;br%gc0D0w1%#Q0 z0;_vhN(llqWpN!Bjq3FN-nkZnPEhC+n>f`%3WggirbDw(w$UOWA+TY%8 zQsU}~6gltg{`=9aM_%S#L99R)T6cNa@%ce$|1*5mE)#O_Yym|gnfa!H*xh?0o-y*s z{$*us@+Fy^F?ofy{Hslk<*w#sX#?>~44?e_g%O!Jz9}bUw&T+4en;nQy`fO^`c13* z#6{xzcTEi0iWxy0-1o~qKrh!A)2~^SF<3hhOUhxxFW#f2C}8(YXnt4hdhd}-Z9J1Z zibbb?zbK~CUGAczw|@7i$9twVO4}%RpjfL#qMO|+7zMeyrWbc7?EK4F>f}Q<{$o;B za!LC>sWfhi^+sQPX^ISOA^Vi1F>+?OwZ5>=3Mj`ZRGZ>!2lxzjz8H?^+Fx`tUf-!^ zKK~t=K?^w$@iIo?@U*`cS}Haep4;0=5a~R%%z!(!(s6vWIXmy|h`^9d$B?Cegx(8v z6HcI5L&+((Fcg1pEwAurzYbCrU;4Ty1YkSBk=J5hedIs|mHH{dJ~d2`C%)-beMkOx z5S{R`J|t=M;s$)dE@snVP8H~h?n8?H+FRv%Z^gn=+FZH_B|>UGQ+A95`4UcUu4}PZ z4q!UE4h45AudgWPY@PP^BE754ak9=l*gOtXlZ z|0C->x*bKfZT*92;9XOI0O5s)9##nN-LHS4sypu4=e}&@*rQUJB_h_E^P2<_q<&-k z7mG=8+27ztaT?9v8pEERCi4<3-VBoNf>3Pj?!BpVA}gTH&e=&&3gG=3Qi3+tlNBGG zxh?N6K|*U4!%XedZ+(cl(P?~pt2LUt-cWD(^ffKp#zHWxnt;PvY!4Zx->V7UaYdv@ zltxT{kRWDkPv#3?4Uxm)wuQP2rE%gr%h z_FX?oED=N8Xht)3JpTk&uH_AoU0)^$?SEX_0)P;;@lBZtTbp;IA_N6+7@Ti^Ep-&^){4pKy9tMg#&2~xq{P_SF!_V%p+hAz>Y47~(y zs}#pRxEw-;fUlwa<$wqW_a4}I2}Hk}jc=u3vzVJ3_N8Pm4`{NFP=i}*J)`}3M(O_1 z)P35Z1H=~E<6`CcYiK#0o-l!Tz+8_;FqYhesi&g1O>jOww7}64+jqY+X!UY($E`F? zWi#^=-nBFs@R81Cc_hfUhO?UVieZ-@3Xq3G&T~J9Nzc!Mr`e+ceO7r}YGUxRh=|)3 zNQTq!Q%jb=%nPxzO($bLkk= zQqR7cxUiSVT@@@0pcqo#=J^wUtM<6zN`ss;XmN%<7Yz1ry+Qd@U+ulemAG9%+ zyH9m!_(Gr5P~ws8S*1(!pDy#C>pLw<_0>?N#$m|I5)O)dGRYQG%&eMq&fN^TW|r-& zTb9TDZGNyM$@R&JO57&zP@EI3NbysD`yzxFw2~K5tV}!c`TVUnxP1bi;Lh_F^P>Aq zWo{NoUfv@j%fEL3)UfQPJO%qsU|N+8FVv_xo&A~nP+8Iz9^j^=4*(8uL^0Doo1q$ox=fg|h_PN-QhXl6V8Zi`bY9;)s65Cq+<^$s8 z&1Pym4V5~?;`Ksd-4H@!N(uc>~|wJ2HgYhl2q*mlp;XPPGgo||^7 z?3q^!VW}s=P>4^w#5Z=O*$RZccd1dg$ugJ+F)dqA)P|MYtEE_8DOFC#>W}cLadG-` zAO4!tt{@67RbcI77F9xKAE(%JuQsR7ywQ@227}xjq}IJrT;rVD`=lqShKlSW58tfl zRtRrDB&6(g-LP@JPF!z%YVuX1{Zt;KlPp;KogPp( zb<2uxBDugcG#N_*^>0Y@LFr>Xr$R8($OOuye{-wmmA|t)4_kPKpzjP?PNGJ(=S{4l4N8F~(w* zjrfF=sqTkgHxWSZ{FExwGB#4M%<4uyAv|6l?a*syLc_XN&)8j9(IVLC78B@;Sn1ws zoXxT=?7mqlU`^<*L%eX;%-{_I0U2ri1d)niSRpk!wuJp60XIt3r#IL z%DOX765B4Bv5ox+>IzAC*j4B&(lIzRS+q?G#u+EGq|2;F&7Mj7YAoX#?b1t6vx)&f zS)Jw!VULpqxovb@(zP0QJ3VSa`ff@bupPZW%i=&Z?!(NGu9Z-X-R708K}ACJqlD?S zJ9x#a-p8M@dmi)AM~@G0XgH)LD2uSc7?!DxLwPkO2l(vk!727r^bj)V)pd`trIM=r z;{d-2Sfdt&8M;k3PD7c$p$E@V=&k~vk9c0o@}cf99eveUO}zVX{=zlF6M ziwV!hWvX=$wppfI_F(fdF^ejEOL1r<;ac@pdf*nrQnwYee2Q89%9aR=)C;Z(E=QzWnzJul8w&vXAF17g*oUTjIW?87L5BWc<2p?UO-{~&RxQ__yk>0 zqnx884-rI%hZaJY>jsV~ZmueCs1u0Cm* zltl@NM)#Ij9JKUz?PM4&eMd1fuJp}f*?Ymfa?N0RD-g&rq0Ev#L?w?Wi%>@=ekNMuIg*bgZR$Xh@z8_7qNg z`Y^*zKUn1O3Kd$B{giGQV{ROUwN%Q#)0H+%iZl{B!Za0?>`nH@<=^BN)KQob?wb2WSKQ!1m%uEv*cuaVTMJ zy+~~-6^uPr*Hu9px1dkr_sYaHc#`={^zW!e=KGD4&BOVOFWL6KyS&4wS-iM`!0Y_> z2xm}EZ||Y)8a{hbxp6iJP#wQi{)2I+(M#-()2MhI<%_=#?JDi^t(y z;hFFUPIYm z9$O!1Wgfz#$*h2xO`t-V4v;@LS}x3_lK{bx07wyQ4SkF`o!tIdERS6LF2QI-2$eO; ztl+T}UP~&^$*Im6zRLo^u~7ww0X}a1^bwUi0^Sm$;mu5!Eu)((45y-Id)ZhMos3M? zAhQ@EOWq))Hl@z3Pn_j<8S~CRn_M_;OOhM>dEbXl>)k4_Q~da5kLAluZ_*}1Zt^4+ z3Cu1a@3NPbc7uwmV-!ow-%w-)@D~%WGv>J4w}<7%(kx`%>L|YF<3@BB%($>c`}sL$IbS&xCIxO0 z3!+@Mz!0g_3N5kg(#Y@8mBO`zLrRiMG#P~0B;PaUzQ3z)^j10Vv&dLzEsw0*>=J|m zu8_lkhs!TP;(2q?Wfw30gcDI}Igu&nhcOTA@b!0MMnmHcP8zGT#y zOoJ>eMlV)Ec@BzW@Q~%Lnq9-*UVW4*Bw<ti~%X~7p=zzd0{B2 zU2ZbaBu*6cyc_g=VV(i{<@b!sp8@)4(ItD2Fe#$3Z=yH(yY@Ny24Vf_TbOt0r&q zI{{u!Uai@&;iW@0B@CqD8c2vjus(`_Ara(e83a=>I-=(us8rEhn0`<5chVcKpZfmt2x7-%<(`;sn<(9KcJ^nrD~4CN~tIx)rut_fPH>P*x}8cgjs6jsDuqQ?_vdm}c&Ig#)Y10Xfg zO73A2?TzE+gd|LvQlhI|U1o)0oh>_u@2+T$SH^lfI-k&4^6XF;m^`ax1Q}2N4Oc$M zy6(&nSyO*_{U&^_y`7}_q&XJQyzA1+Wkb{r$ep#2W_mR15aO0n)docDO$d?K8Lrwn zG29-!ViVShjM)H)z7h=et}c#e3SKuj`NSadI{9YmY&f??cfm3Z(jH{YoWCxsgT0CW zjE%&1FX^W%pGyhw7HdnCc6mkF-^I3(YzPu)7;HF*-PTT)-sBWTh<)X{W2$Z8pvAmm-Bd=#~#EZ zliq|ZlBesdZPKdNi>R>%S2!K$l@GPFN}PMZGy#?;ha89NU&Dz%^S}2+NMhv9&XmKQH@Ae$+SC$* zNfp2lB#u5$#dcT;NZ;2qujvOb^>b*k{4>4AS=h$VQOb> zm#_9Hzy-kYxv#HjHe>2-u4SF`?dYh=gw0sxn`5ajzhzkd5e6{B3jaUTqX7%c?-P zW{3cvMg*3PFo)Wyoys7cRjZ>dhm}E{1f&b_m4G+q?-;!}1u)*@u}q#C+nEV7K(r)> z!JlamYLkl%!GPmvEs5*M2f0 zU5D?SD#1}t$X*T)c!fh@7}9O#+d4+~IynLsFt3%{k2Q7*5Y{eRQ3!^W`jLsz;M9zr zx~rSaN=NM4vph4kZ8J2xh2*kApR-v@MF&D_o3A5Qo)rL{gp?PnTjpqz7HT`FzmB_@ z2Ci22I~)?}R$>&)8tyigTeuSLT6XkDWe1Gy1*D2!P(@;wHQ!FG)DsDJ6udL4Tv{st zlk33gKDEB4QEvL?%-{3fzv056hjcg0n;7=eXPG=gRKG+`ngd9TW-uWS8QQ0pmK?F` z{r{ZzR@_wLcX>Id54mM3|t^dTCgu#I5e@K7}Zd#EX(KHVJ!<*Uj^Z7a`jq&6bj(W-dfd;Mn=PT``E_7Whm4s6foKt>DJbcj1IC z;fqp?$LV%K4cDyxHqjs|HVw+q1;3V6k!WQ$xy^S@rW;sK9nGs+LN^8*AGF%8bnk8% za4@!tc{pV?K0&JoCke%ehL=Ui)q35;5*9%Z3)>bK9E+cre!TxP7|o;lCqq3miGjj$ z;fU3};x*H`h&q9+gn`qps=X>iNux#fs&4FFVYi=ne-Y7^bg>DF*5X0|K)NNU+PXw>r58rT%3(uEzy zCT`)3wcDS3Z5Fvm;n@vAwq@Di>ZJlnrc=Y*pgIT=P}6u{vb8Rrp#`1mKOtndi;|r# z=h0>}8cP*2!UkvMMY)Kxl_b+NrG94y>}shv_t%?V&3pamk6ZptOV6kfF4s4COE*O78t-`6}l z=UeJE@)773n_$n!xxd$Mb=CzOsi!B@ebt;DYQHvnU_sDGgpdJ~dwB5YRqAsxhR+^pDtnyGbv|qSE0Huazo$M z4Gc#YRfh(s27zdcVKB6r79N*eU=GD#6x)RnZyed9?`MWa&ql47JwfR`%w~wBG;*c9T z%G{wzdG(_5=$zCg-%Vuf7K>O>lUpP;ubs^DS z)Ii+^t&iSSNbKeoC&{=N_wn9)nAKzY=0FcC-<2w6`%YILU#t|}A0f7Q3>yoGx9RG` zj^IAqeF>uFHleis@n_xOc&z_2NNaMUn59=y;v5@IQQhrVpDMq5rP;Is><-uqz#+Sg zrwsaEF#vY$`5EF9nUOUs?-Lj~RXmo%*wOGV)-AHi)0rU|T7RdyQ-b&ED;EBSbMtDM z=&p}L6fTE>sl~tvRL;I4VTS^>{vOA-h9~^-u#v2?0Q;7vp4Jnz^gVPLcn~>O?alJ| zo13Fg=)PMa5Ek7_I^St+Z1;RDaNk;G5E>3{2E=*Q^%tJMrWHXGW?%Ost;aA(gN9kG zrs-lYeQnvFeImj`z<$q|JnWltU2ht^N?u(UXOr^?xCxswoBeF9b1nwe;U;%cFj87= zNiu{U9)(ZNy?P($>jYSohC+C(ti{(RGgfbXVQCY6#vsn!(@H|6DO>*fRyX(GabiKi zPcEn~vXgBsc=ca+!1!>+ZTwRSo*+H8O`ERtz4_KG(X3QJkqYbazHWfkDOrxypM^}* zn1-wjc_xy!mRfM{$8U{dVWA1HHWp?+5)73%eZWPJwB{O#Ea?_LP3gNnQ!Dr$BFZk3 z%&wgUxFntZdtb@4gfMqa@oMjxdoR~>*8cj7b?bD`#@w6#`00y9mhWd7Bvye6s~=4> zsAA|=mv7s(+}YzG;&17#L6DVmB|M+()aLDWy}6~=K&&vHg)#3qi0~yk2;ZBY9drZ$ zT&6@Hb4acxdgG>mUDtriq23wG!l~aF1FfkeQjzh6#e_7bd7&A%>--G%NOHWZ=Zp&< zS2aWB3J1|sLrFX{M~}}vPG4t_%GT231dEuf#n30TJ8zKigZbDC7*gC4wkUxpmrzrl zBaQ$S_J$G~PXxv@54P+r2~RIxo(>no(8tOy*Gc99%#ras^Z#)`EGoqpOGMWC^w-^D zW>@M%r((%Q9_bDWurVo_bBJ&1QT){@m;_s!HGSXg|R;7i$tSzFAmLgI`74|X%kcs zuF@C=4b&V7Bo*L2xzQ;lXh55=J4_Ee_Gz#0&181*k|YLwGuNXO!>7bz+iv{!6-=Qs zCR4G`26O8Q74j9i##&)ivpu-G#^$M82}>-+>Wfd_zYRwCw;QvrkK=-ICh$KvCu+a2 zMa0N8EQFLNkW?*&b{i?LL1yw1ou3))P%j;~7CzUn8j^dSMc24{j`%oE zaEc}Nm|TPMKxtq7B7Q{Aoee=dJSRI$ghaW*tOpCqd132o%U6bj8aw{IOZt!Z3-mv0 zE>GSOznASl#u6(ILX}tF7-2P^(BXyex&gWno*@(f%o6BHzy!tjCfQG2q?h-B)8t5? zq(W}Jl_tPIk_vsj^@T290Zt$$F9>K(S#sLYoj|YgrZK?zb^Vm9Y82c#dQfVjkTkY+ z$Dn$B!GDM7K2ptZGtB40ZOA2;55ZR#!^$hkw^L;Rxd()s!~2=KBTWiqE?05pwpu(- zvlBjy&{L6RdEw{gvEeSZNrt-X{>6I7%uCUwp{v>j_J--sLXvqe-lO^YuZ7@Xm<}0W zQq#NL2zcH&AxH_`m*z66p-j!vA~W#DB2yBqc2QuvcZzsvFyTtpd^nK3!*8>^IEoZ{ zwpnW@Q?NOx%dHHMZp`-uSR@+^eCzCif&%+YNwLlF(zJL5;l+|KdL4?qvclo+drb1q zQ>ow5DjQBlpUTstwR*u|TywiM;c(TBQ7~)5g0X1#7jTjaWc9_s0*}5VIxG-vr{8!D z2eSh)+J4}A*0KPZ-X$3HH~3V2@oA8bD!G}sgRyLnyXHjsCHyesohJRWRmXcgp{4Y* z19X0^VUYjH|0{1H+VLbEkVlnDnAUM%>uEwwByyfC0jS+bj}bmL?WS?brFN zf#Vy@T;VJA0C2eP{?Mq`6*|lGT>~+}U(nm@eGYh#_wF`z7XkvS#o#(5YMTDvVJAtQOC>2ls&pF=?b%Ikg?(i6k1 zzkVpcrTDjhO5qziVm$-E3~h&8zb@ro!#%H5{>m#LGMaSpG3ckhiz;&k<4bW&+qv`^ zPR*}fwmL|mNus;w_YecLsqYCQyC9?u?=cZrH0_*Y9*y*3z zom^V-5t9c=oGK|bHD=xl400v?8{=j2kNR4V4Cf-=*;B=V)dZzkbV|G4T`!t-wESa# zrfHb>jy@-UuuEUkF!phkMcUgY?k!`9%9$ULl^`O(TYAQz#ePFY3zx`hiCrDkN5599?SV2~<(s2XYdIHHU`)tGkP#(5dl9cjxfezGC|_IYugbbQSODf#FtDM^(N0F&0$qsodD{>i zDxQJcB7u#CwoJx5AX7(E$0ZDO1;cR$3>~`IVznUM@lvQHogNB#tep>PL_Tn~?v+B{ zdRC#?y?Y`C&cS6S)foQ4o>)ZO$htC`1=rpOlIiJp&*@L3P|yEil~04P))%Q%yf%`| z2dr_K{j$t~y`}+ac%q%ijr6s_oR1q_?W)>xDmNEHHepETY-Noa2_tV?EZofDG#Q`T=ofBp6^yq?XBwjLG+ z=sOK3wGWzlI>TA|dvIz=$X$ue~p+n`HP;49883QCb{z?3|7 z>!G5K^+XswTP194r&(awyRR@N3hrM2>Gv@eWR6_c%j zUF=gYI!n#zep)pcTMJ8)jXDGNaHo%mf|qmv^CXc8Kh*%)ef~K$E(Cw-@)= ztLwU&X>b);_(}7)dJtqbizR9!t?HIWIYg+OYf1c&0&IiQmO4sEWq~qTTgVFeK^N%( zDCN^FS%gr;fstK!wwp$~c=ONRlmFyCU3t0d?_P9l4%4>d2E9V2kwQJDG(an&C@D;! zVtW-}n!y}&s=RBVQ-=p4_d?Eqd1a*|%xI@xUzLYqC`G7qK$~VU<%MUoS-%3$?%bZp z=Ww05T-hHwMm2}>d#3um?Ne~=zk?D@q^H^w!Uj#tXX#US1X6euv@I*@e^}^cxcCKs z115!1Rbq6@vT}koZJ9psGCZ>*VO^j*-z1M(Cy2_x{54^gSI0o~2frf#z z?fbrAXqX3V8H@Eamx?Y6dVKNBErRRxqrlk){p=ipIoBKSEyPnxApQaP)|8a;KG!9K z(c7)M50}3mS5VU}?9c>K7hLpYE3RFjTu)8oB!I!O3uHh{w7>^a{nqgRGo5^WzZ6(~ zzaPU>m&T8RImaSL4UY0N(+a6#NcG_rIF?V+(L46A;F;;36=hhtH$RQ<*HgY@L9#n# zv0qZT^lRI-;)ucyefqQT1NDO48QdS>D+zNGx3w0zrV#HrE8+GeW)0D zFlq-$dq7p9!n|Z-CmS4rzs*`T#Z?I?1}( zxK2YR4iDOsJ#k$9lbYG9_t0q^@Z~B>u}Afms@HF`QuytZaZMl;V7XS#AwlrBG(;fJ zj$^fFf_F^e(|$APw(0Y|BqO-M&*RxX-@Y9Z@4t)z^2?7gB*EDdko(oRp)z!A-n%q> z3RG3OTI(U#*zEFK2R%xcYx>&{(w3#7HXi4WC~Jz5M`P22j;_=ysgPQi`CBiweHOf} zt;jU&Fr$5Vq#Aa^LXA}P2E3L|e1xK!e+O_6T0Sj+$KDSHF=`B* zV+dP5{9mn7HR}@|1NSh$Z!%b?u%%NN3-`%J*B1-832CTeKVtf7$Qx+1ljnoqQA295 z2V}7Iogw1DNDlFq>^i@g|Xg-T-OC6qa~5RmaQgXJ{>CJ zPxnJ-LX722^lnlH#y@95jDe`vA58N{P|Ga;0NQ}z zX*auB8^}j=08*LsCE@&YTNKJ#K}y075a>VmD|J=>XAL6~ftTsWusqHMH2_y_;lr73 zG*6~0%suwjzc3w)c;?%=wLt*drDIzd+6Mrx9M^Q7lO>L{F@1&_3NPpk)DQ2i+}gfU ztf;M*;LGZ|`L2v$46zAIkV+GF;CJw(dk~Vb3_`T^@TG*GpM7IBIEiO7jzt$k9b;%N zB9eZngk>OHruP-2i~VFYK7aimRvOO#>D&1b4F{4p5Gm?tj4Cd?jAc-!Ki@vbDMCIsJFt>8+Q>r)Ng)!GCn-5-qg6p(-;=Hm1`l zaRC?l-DN8vhtW(!2^W+qIA860j}$*1#?zzHS4*~Z$wbGnvtoD-2y!di~4ncL1n9$M}8cOUxA zNlzL`RcAQ(2F8#Y+8l4q`{Q_nm!LkH3TpcHEjh%af*A3iK4dS{Pi=~Q;N*GEK##;S z>}z?(-~?MK7EP!+)L9=xR!>?}mf48Oy!trj=VOw9h+KV=))PxYc`B@UWw}{<>d+Q# z_JwscG>}^`!4kbsNjHGcuA9X4y}dy&nZU~e#WR@SW_Q(u(Qp`cWPVAeeS|Qo-~PFl z|NSLJ-fyqL<9SUy%91Ne`qj0kZJvQ(b$5_YIowC3Gt^9vxW)~WIU;Ts@(wG>OQ-Xa z&3d-QuL`AlkjZ_K+x2u{Y4n;>shoDkgl;laSw;?X;4^Gc~-DY&tBY5$RULAB{Y>M&c_q#zdM(l+}3 zJ7V(fR4AGk-c;cAsd5I*T6 zX8y8rBNh%|twljd>KDmzG0~C?`GV_!f~s=#1)r6Ddvj}?!M?!`M%`{Xdut$yx5?D1 zwuWO5Rs?D8aZEfj=ESiBy;Y~T@%O%oIDWRdQl-NOMC`h1HL!%__~U7Ec!tkM%3SqsXUO6mYK^ zCkJN1WDIC?L+v+X&6#)2dI!cgn7;_w`FjnnKcg@sRn@oOq7T{vjFj1P(Ea|-TLV6k zmmn!)7GCl>yz}eouK~GnwAHEBerMfxXN}Hk=ScH^yz(Dzi-dpAKY7m%@kY@s`zkkx zZ1x<#gElnVY&s_TbtD1%c-P22*24$TmUM>OT6rq#WHI|0%@bW?HAvP8EwHxs=SiW} z{kU;d$(bY&Mwk8VwWCO*m5gt#_a0~AVX2$gd-~Ni8pMLcHcgLp7+sT8Il!(L$)dks zkSUY$2LQH=(+_b@XL{;JWobc9#ZiXc?dfo{X+{huu9&qY&PgQc) z1S>)2U_7uLRc19XJd-9E9N)4+*~1GJ3|!YdB7atv8N&4}UHzv``;efRP?%pg`8!8+ z4^jF?gs4??X9s#dkm)OHdZ;&P*V_#QVdy(pUl`hiDQjD$#k1_5Ty#QL#nl|1_49dX zOt`4El>fe`u6&GtuRD5XjAzsd;{Tqn{H^)W$U9xvgs~(XIkL|fj^V1!XD|*PCx_M- zi`C}I#4uTVkVKqXhrpL9i!+RkM_583sBt4W_ZYb-)xha_UE{(+PJd!&t=fo}?7pto z+vf_T!R0FgHY0pJ8-noWgUAn5 z3Rl|Pai-KHa(|7LXzA@*zW$I|0&Hzw`xxC~8()R*2w7Ejbn!-Atc1yHm zo>W>NWtjJ7FWV+*`3|_e&DRolH2pb2Nr>1&ym(^s+?_qVO)2nN9DCpU7G zKa6jo#2lVsJb#wqS9qf5v-PR@g_>);I!jtVHxh5vVcH(AQ*%HZI=88vyvB84T@^TA zVef0U{dHN;5`4)%`96Kydt4vCMmv$_Dm%tJlKs*?0UyuY<*~DFwprJTDW=d&gYeu7 zJ907~FOV0;?sKWqZ?R<-k(i!xSY2nyfT_3OKrnq7G0-b?xn*oiv$k&g%0^M zU(Z{0Z`jIl(!nh31-o=C0R8%wbq>+$Co`1->i+J1l=a8&Z03h-s!rlJXm$Ic!I{mV zNnR)4pRe4vujGRX-QF%Oc3}rOx+rHNZL)}tvue(PV=JMIpMi6!@6k=`Bpj&6ty{1q z=eeCoRUm;jp=6PCZCFIRTuvd|zdW2k)%gvu`d`1UnJnzMu?@8A0d zXq6i%} zodY{eU9WH}g7A9!c!L`HFD^@*pnU8V_;0z$y)d?!xsJWvsj)D!zvu2An?;SzY-ydM zuplk4?{bo8f3%BWwim!x^EqDl&5jV@+%6B&q^00^=hC4tH>s?5qybrBU5zj>gx|9q zi}qBe;ya~k@m(eUv}XV=5b7g^E`ch%cp9e+P5S64|+#b)Npoz zkTO@Ul}e>{Pps$8NBp?TNOOU2EY|M*RVxPMGOYQwDV<+DTbZm$;DhvTbN_el`5!%X zet8vncN7hSfWZ?2D5u$Qw4LMJW=Nfg%-r~M-Pyag4fj$e30C`)k0p>{?ugf5JY@I} z3!UW7CX`E^0Lfo1j_*$~bVdw%V$Na1XGDo>mXW-6FOMehev=!Hh`Du(vPK{x zC5k2zdH{I&e1s32wg{$DE6=Y*oXhb{@U5D`AJgksPuSDz@wp=Hd=jSc{33YevyiF@ z+fTTA)-a6)PsF&Is>4L%*T(L&%rph_Ni>yyof~Q_JUTHd1V)iB7OzH8vp@Qvy1U}I zUITovZ3;nQf?>}F!+Dq!j1?R(P8OsmIQPuFE86fs-mJ_BveX6coF?G7KfK(unK|p) zG)gkKaTJ@3lwnhBSc!Ba!KR*}qeN{gC+{UJtqhyxR~t&_X&0kii@T-k7mcbI60`0( z)?w`v#c3t1CyKM3qa|>(XwdlGW5|rort3&Ze+t+66Uv|k*T>_jn=(!zvL~PJ0N&Nm zsUrSdcGVI0TFYKVo$c?*qH_chP!uE?Jb0~*53Biz6Pi+{EdD${MK?g1OAWun8CYbz znH8NsfT&`;5Q&d#<%iB|_M)4pXEnq@ z_RhUu_z8I$U$q-3rR;5rdZ{B-@Spe6c&D*;nq}vC4yi5{^YA@bYO_2LVm);C@@}40 z60c3T35`7%i0WgD-+Q$afr_*q)wfnLxUM|Vy3or#w3elIZVIAv5iQ2uWpJ*++GirS zfJ}29MSMzmuUu)q@h=ykM(R!n14*DT1MvA71*kXMqOT0RQ5njE$Y-)CLsnjZJf!E)sC zg&w^Od8EMK{J?BCU z#VJvuGP#P9owbuF&0G|2RJ4b&7?YP%gLKB!nPq%oqWa#R=9$Z{D$?-L;<>c39XvLb zq__4{{PZ74YD^;?i12E^ye?)cPPUL>`%@(Apg8aluDQ?Ku6r7v2a92_r(sR^O6{g$ zR9&N;F0G|?ZEv%TEJ>7DKYK~#F^1+|#o5HM2Yx!HQFqeku$+8hIR8(6Nx1&e9qpC9 zNv28=_oV1nPkh6ElZM4m$bj;n7hoq{y}$kU?R%$4_E}CJlO*%VyQasa0AirH(x@`p zlg%eRbk?bnUD-WC|7wNN8_-F-!--^lB(rs2eWxK6G3&J6V8pT{Y-`$@cUFpJ~ z=#)Gn;`M8DLs(Cn@I6!YlDo#AqLpK{x4D~59qSPbJg1Jc*VxcSoAAs=1&185qf6x) zCR!##Hu*OfOV%m>qM}qZqa?eqRf1d02*daHjOLTGckfXZxY|FC=qeOz-QDG4r_Sbs z-@EsWS*EJcvZOTr!c7~4Xv@CX%*qkR{k@#i0?+Z)Z>lrHV(*@=%{pzsag9FN;36l4 zH~P={_s|#~=6n2&U&bH(gz&3>i*cs_fky6RNboIfffHoLR`xb6=UkGIpL*WbmLnh4 zyw3B`l;JgwhVR|K{S^3pMW0H_9ojJ^^m_BJw$>-EU1L~K6k|uxkxTU=Js8Dnshs#a zKk}Ayr-X;fEgR|AkT9M4a5aha@)0!eiE=VX=XU={ZyQUz`2)v1GlDs!doup!i`_9F zi(~o7_;a!Or21?Z{s0zBk0+z*dI`aLMJ0qs#=rCTg3=x--v=l#-M=ZYzK`BYbmdrL zvO~+;V=YEppYFl<+!!Ro-&7_hSwnm%cg9Nnx?oa!F+RO6onfP=O@)!k)!vHYre;~H z-AY+CTQm2yJ7UV$^XSUOus?gpjBl%&nk;hcw8Uoj^a38Z_Ff8-eL%6Grzh%gJY174 zLjx(1B^CSD&RqHJG1MHHiIe&?aQ16PksO4U2QbHidH3@)nHS;G_Xrju)+Mt3L832KTPvTsC} zbHr*_gfit0)$N42d)~U_9Cmq}1G>)i8&lFA(qBX@4tJ?n5~7RPSWNMYKY3TVQ9PoU z@wjE@7@`F#Nro(rEG&7L3TmSSzlVVrgHz|=n=Z{s~ zGJaz|WI_u2mQaH@@Vy*2uKw*K7{b%q;mW$kQWlAkI+^zHNIjj!KL4DvJ6sCd&VUU{ zFmG(ef*b8574gf^gz^FZ#Kl!%i8!WrYCh=UBMEax8WqMmk2gmb`b1ZsCVaf&tLMf6 z;KE(go{=2%!Ggp}e+ACqKdQ)14MZOj0;h9R9;2vsl}}GjdD^mwN-GK( zU!cGAO?4n>LSEESa$fh^^6@^y%^|UBq{EvxRc1M$=Q!T6 zQsYbYtgBdbfW$D0)90~wiQXBg22{+XV*62al!G+* zUWBl5X!&W{9x~ajyJgE^dG9NQROB|jo#FyD_8sgyOx2jCa-4A-tkZmcmBc>dpM}u*5&8Vms0pz zuLf+eadE>;yo3b5n7YzbO~xrNBkEkUk;*F+Mh6tI1_Sqb$6Rdp4*4a1ZesQ19ln_g z8SeEev3l4xa?Ep8OcnV3f7&jJnr|J=m%^6SOwF~7^ft|>W^wnAjYz0hH9VPhhlq#t ze1zXZ{VA;h4~LV-`B&Bv)#c{T7Z9~$M}~8BebeybP{1XDUQ38Jw~?}{AwVNRa# z);m|&PH!?I>>GJLb(HV;Op%`7RZcq>w;-^bHNC-P^K8DY=$Y)a4mbXHzv}aA#NyY& zF=s(JCv&bz?}ow?>vPPDd=C);#WP=9IOAJ;5z=1^W!K4e`!pvTd|dR@e);U)%g$p1 z_XnOMW7@ha(c6byKA3>?+?E^WJ(Y+7pE7O!=3_kgp)~-XlLkoR(cKVr*S@XF2T6_< z7+%HWRxgo`k+BW<8Sx|+#S6dc$-qH&GKtSlI}2>T`j;g_|C}Uvkq_7N5F5^o#(PZ4 z!$haK(gGHB)D7*!28Q5h)|7kt1T9!c5EginX8h7p!)WJ}ud0VO;?Wyl=WZ@tK(Wa> z{!i?vwwS2an-B;YSp&%i0h$RUt;@>$MBP~8>c|R;rSsowIDb;441Ng zkUkukuLJ!FArGtva}3b(gEgjmD@9bj3-YCG1G&338?g|8b+!(qmtE(aO8YGp)!*XVInxdew^;Y>rexSX{mgBon*G1qFH8VNb!g_(=oy!q!z!XmoSLTr2xXMOP}q z*{I<8-gk+8$Uk!85@hNY9dEXOJ5(?rYQ|SrvyTy zY-m-HLYM_njUm zDstuUn^Iu=lRlC60KWG)%3y@xswbb7JuiEXUlFi1k=X`wjldOpD_kSb%hYJBHsCmy&!xpF?6A zuc34{vsW(<+brkW+ZHNcywZ@DWGYS!qUYD&vyU_|`9}k~H%&xvY`*mcu^ZH128d$O0WmxN7eYJhvD9UYY z_?o$@8kyMSf@r}hsh&mY+LkE>^P{T8OYC3m=d8Wzb=OX+H=ZBk zEngxkOw9qhE=-u545^tLh6OR#nU4IPob$u7vd+U&nqG3gA9}85H8A-9?6*X7BxY|xAjWRMnmGl+kpRl(~=#brF_(8~OTR?$?i zWCqT20_)H@%>vYhg8>IUnYIpc_Nws}xGb*u7Gu4fc|@uO>eo8lBtZi=)S%*ITs zCrO=+`^?pGn>w<^;cyO?mt=swr!m9>R9boQFvf?47cZ7`0XuvFQy?&-8|K(bZ?BJ*KA(O{UB(_pWz^*RZ7KLFl^^WI z!^=he_*+G&e>MF6zWF41y`Q<(e9qCK>t_Af!MQOwZt>{_BNnr_BpzdV(@kUPvjoH+ z)M=N7BKM@cWud&iI&nWt4CPDKdjaNs_fRmibTWtz{J_{CPE$OpzAqG1Qq zWp|AHD%+srBiGAmE%^$j#}jwxTPSQz9Hgcs@ zPA|l}bsh;O9D*c!9;!?eqnUXlmy3~ZXU$?Ycvl>R9+TbB(H4V~@0q{kH!!!dbs{IP z`BXzNOWafgYV(@~8Rt+{ww!31WE6Yci($)?HOu$XgR;jfK^N>b&2f>?6K9fSr~SJT zEq9}Nh3P3c&7MeEe%N_hs}&c9=ca+9lF1uWMCoMKdn`Ds?w@?wlL9QAwRge|&NJLgC-NoYQ;1<43Q)gpp8CKulmNo+U>i>1Sr`s}n!pQ>t1^je$P*lH8V>;Lc)c zrV1A`F@hB${(low5NntUqB-@;$0eK4n$tc44${mM$V$}(!~=rFoid&Yn1Zwt6cA5B{V&~`R2^s6-?BMjiEVLZ6V!L(`GeiLnt2&-8+>e`T+R+n(o6r zEv6TRfhKg{)ZcS*HzE3CPf}=R`aD;`&X`Y}E{kzT#s0|Os~ciDBTxYfwsaYH+xLY~JF15E)dxUJZ@#Tcq>K0n`^7)XQBg=X8 zs-|Q*0lv55Mx4w!Ht6h@E89U;-}z*nzxnPHx8;E&7^2=6-o&n-V3OmuOqz6pz7J`_ zlx-c5%)YFS?+#y_h={tJF5=pRjkU8ZBr^xcx1ev3780B0lQdzmEpuxY{gly`|5V;H zsi^&o6#THfs24pQ?sRU5pZYAZ{d3om=s3>wp5O5)wfD(0A|5=3I4g89;QEF_?<;EW z73AkWc8GS)N{@E7DqXJeH(yUXm-Lh#(@0_*o&?%odl$uei3CHqa9+wQnP7WJlN_Hu zmA0IansC#_Xu=u>W3hPv5uGMgVAv81$<5UdDg`; zRoDuI-m)mpW&Ux!+(I%l^JP1-1*ETheSno$w+{kBcR%Nso1~v|q5-{8& z&ITR4+rrQtdWuty*@eg(1f2 zF~~X#$S#6f0$~IFY>{d1QsNY1gSzna ze$Ga>!u4$;Uebme%-!p)hU+{UD}7z_2rl ziS2!eVI~ArC_TtBtwm@xe=8+U?fqLql6KpkHsr)$F$QDl={#w->id+!mta3BB)ikJ zg;Q_Yg|peXdfG_T9yDIU1f6O`1H%?_iVSH0=i~1gLftUFdw5iJ%CJ1dDRhclMr`h@uvHm<<6re2OO2uO z){_z*Kc6AJ&;PvYmcX0ecs7=qIJPZacmQZI^mMW(i~C^4ry5D9Dj_^@cxqw`UWvXo z%5Wc-{OS*OWQf<3GY|<&v7v{P^l|1+H%$}%#$O&`sV*2T!A~9CEy$J$9>a13fUl$s z4}K0aO1j4xnW|gjyVx<3(Lm`ZOlty=S5`3Kp5^*M-*ul8?y=0We`-m2k z2)ut|m2k7u(b&&brI@xQYRV0dFw4%BLwBUqb=@Wv-^(N8nuJo&zos*P0*J3yV-t$} zbl}GPqN+Zq*W|HtQ-zk+R=h$7x)ze1%r&cad9Zw8jy+I@b^zkl4~8;}-3@=+Yf0U8^ILJ!B5R+mjSY|}P z;1~wsK;L9!tx}8EW$tqO>|}fW9CS8u6AIa5lu!c)BZ8gCA72U-xh3MjC&d@oUA>5e zT+k~QJne`xDflv4~s(ZIgKO@LD{U$o@RC~`wPX-cBAB_MfWR>DQ+`u}d(kWBO`lwB7waQoe!R`FhSkXv!mYQOP|-E{a5;>?Z_ zFITN7p>+$Wr%o&H3^J{FDi_6xaYwuT)v7Br;dm0x>w|q<{7xSHcy|@Dx&v;`jAB7F z&GxFryr#Va4u_$%azQG1u~*vFpk zRkbL{-yxuJj(hThV(+yi#&1MERSKD=kmwu5nDo1kNN$CQL9^9Pz`M?7=F_G)chbKt zZGYzU+O36otR^il0T&eT00@lKk0QgsUK&l2u(7YZSYz9^d+cFo>byozFO6%De6o3PBcB^eJ`gfoJ%RQ7^u5gaFzy+yU#Ed5a@vX`%C{tUvDx0fzQW^& zo1R~%B)^G0rYH(D_%tW7z3lHhW*m28J82>uXxneLC*5 zWzkpMBg@elc+Ln9#BF*jxB2&IRUyq42SXE2>r(vf4`SJ87gHr-o6+>0`~HIvJoml6 zZ?R|Py9RRQc~JYlh93Iw@4oM{5_1?ug4%PWn6xr&k$rsZ?Jk^VTd`PGKPD2v{IRXC z3o+uKC%mJW`7uTpO$~N;j}y#BX9HM=Vj!_kSRwq&i*M)bq6P828AZhXW^YQ{KUh+6 zKC3+CN@o?m!Z_LpKv`^M)8b7!l(L{iLNc$N>Os~A+M6)z6X{KkzerSNnVFFm(zP=k zc|rmD(;+=Gu^KUDm^#22=hM7#RGD6hF!>fyki*ioSFUyb_7QH+c^$tOajXoN3^DK7 zaS@jpHN+cMG4Y9c_jH(X+w`PEUw|*n?yZaf$h?!vAi0Mulb?O;+!w`miPP*t(zrCo zEd^da27>97?CHkDLJ|~I<6+#)JbE(u9Ii;W|BQh+8QI4}T;*t9xNm6ca~eNeBD~8o zl%E8Pm(n?Hi6p-`$BejxxAz0d1xbnx>nS7b|NQeL6l)QW3G~Zpg$zzV6e-dBQzEpt zX5Y^V-R!4v0;}@(e$30sIvevtQR_bX3<^Y08E@M~TM?vf3BS-4Bt>aoIjFQqwv9iw zWeASnRz=ql@}j}|cKzNbN4ev}SI#uX=B=87Fra^r%|T<+Q~hxQ8@>@|?t3St2dH@| zf<6{=qJH`PpFWZQ`isIildY)FXUpD_>2_L=#A@H@TQqOaY7!>j3wwez8zG?~UH7-P z#L6Vsv_dxULflICh?Pf?dp*B;0huY=i??j6@+bL!kF9jk)IXan(Z%)g4Rf#fA);9E z?tBC3HEMcKoXY&N9Rs_7AiSxWM?A;=VClx_KKI=5wP#_)kut*T%ns9FhNFR0 zGn7Z^TD|{jF7tC8pBEaDuJ3m$43C5EWo7a{SIzZw)D#McDg6knqg77)+_}5QnwXty zUw@u@Z2H{Uvlr5nJokd7F6h_E^hrjmE_`^oE2tN54Z+9EB^_VFGk!cZj{)4}@v~=e z;#Paw@I1RJdPeIRf3hR4>ths*pL6WX6Vk^BuZFp*T_qfpIvQgzHDNV#>>mr)5r(~yl&hBhqM0ZJeME&T8=)DD>rKeF}hY)b}?B{^Q z^S}B+*l+dWhvXj~EM^dkSR=DL<-V7*{Zs^8M}dWS?~kzY9!)vSPJC&0GV1$yhOULa z7wT`rg}FZrI|>#*wk`_#M;Q&yMiAVo$O@ zxMQb?7>ip!W6}h@5Gd{&F9R8<`=!`VI2QSG)%8OTV@)|czC$blRIfW9rqbVf#C7`9 z`{eXG+kK^|SyJVSe_b)|`ZLGZmnWZp_nr8MbNucBhP3n_F7)@uIG?}$cmMl26Myau z`2WxNe?KEwjju@!(*#4H6)(*N&QHe*n?8u&=2sRWNB{hA-?59gBsF%s^TwSWZS40w0BeqH>SbQm*|+Y$`w8i~eff@jw0tmR zsb1t6CjRoPcc-qhBP7Ez%VcBC_;pyYUwBq zd3^7o%|F#{(>Rqc*{^dUf%&>o>s6y!A6H;?#PoDnbd@EDq-Jom{(IX={MHhB1_Hj! zu?-$9HKJ7Qk^Qb;`{O?^)txBlD?_!^IZ2RYPX6xW8F(WawxLoi047@BEueGo>pibt zXky{H#8nIFbVC0-#M9qBmYve_&x_wc4Iut(u$we#>GXpD*I!Eist)>=!1z zBzKC9Z-U)ws}fS_L{%~OS*&bAb9}Mt25Flc-((=D4V)atMdCw)+=dK;V0oAHy-{Gj z3@ovmB!-#)#c?#Rb=a7ka6DOyoI+1N7KmNo9Lom=xJ5*SgJ)E+c`xAZPsY^nz>G)? zht9Il|DDS~HWf>UoSwt}o1AuT9F8v&<%YRL){ntp5bYl`PLM692MmD^+-61B0b!CR zU?4818E-y2^cM$gknkFf(AgXLSSd>T%f~uow4gmqdj=CV)a8J|+~Kg=!eTl{N~P`g zq+A>h@H`)rdq}6=Jwdnu=)A~TXf+6%rl#QVsJW+II>G^VCe`8pM6L-URACmO9^Ni(EKYP#D)Rl+vYv?MaKVPEFtFSv^+IvE!8}t zq7W7{*W@nA2b6Li&3eM2_pVZcE|5^V3HS5jJ`jH7eNHJ?6JRj;H7?`pM|B2Z>~AyP z)5~C~hhla_^bJgc*gc*2xuN(=|K*s*iAGvO2$5vq#9NMH?&uddwt@LL%8mMRKJyd) z?N>BjzgkX8J>NyrVYt90o)dm(#a?7%TuO`(%I8_-`E3Jm}0uJan-2*fF_ zFZ)6fl6%An1tACyKkYMLV5m8EHjLgp=-u(&F*ki#0&Ne7yb;*iGR1JWE!?`+TRxpr z!CrCX8&1w0ETnU2Cy132ory6|=J5`GzJa|A=o<=iADbG|F8$G(>BuvBq^TM-ei`<# z36X8l3Tc3{ySR&6`eNg3HW%Rl846tZ`pavY#opHZc^R*Vd&(#~G!}Qay#bt5HU7H#sIX58&yrNV8{n zI7Sqn4Ha6uWB!&v_Uh8mk3DhF_wRpW#ATMo6SeB9F-R>&kHAV{Jp-y7VzHpmlErXd z06Ds60EiWXfm8AY7I|PH#H6lbtiv7fSTNi*qA90_J0XxHT_g!EV5x zWasDHi71rc*tQ?~^L50AZ$WI$(|eBQ(agJ+D2Ch`Cp??4SiI~9(nv1AhObW3eTLZlmHHe6VS`Y>PY76zo_&25ErH z?E?B&)Ttvq*|_yOdovhkE~DXsFBCm7`M-W8EN=wITUgWg+St&uXDznK8Fxv7#k^-e zO_G1;ST~py80mOO)5XN65FC4M+K`RAjYK@C-tjh1ArS&F^!wua3rDWGkW9I$t*`N| z(0^^>-A1b%3#&x1on-psd0f$TT`WGvu@Y)FZz z!dY%?42?q|;%ftrg(%pFEaA%m-ubEh$!hfea{qzfrXrM9WR+(PbU^(QjgXPz-r>=#TDa$z%V?VQy<3-lFpXv z(H)57c7DerEVSCszF>pgz%hf?fw(`bthiIM>?6wu+WNeYp1=OYTH^7FQ^680RpL)y zE`6xmZL4Am6q$D0X}rB(C+ORs*6JgWV)K#@8gEZHkX8<)yr$NDr#LfGPJA5Cb@nH$ z;hbLJ>s4U6s7RZ9wD-W zW?6=ze);ct_HP?C>FC5V;-2s-jck66pAB$<6!>zV#~&m1wQGb-eG_ z-`scJ6%^}F2T2`KJ~T}g0eFNv?a$5wFol#$x&L=>e-2%G7T#_}-z!Zj>+TcR^dMq` zm<}o5E;4fo@Xo6zL-rs2I0GiMCNiN$2d*T>f+V)sjR!*wXB;n`S_1cYK=g+mikO*& z>@)N6LZ4t6d$}php3y8j%_1|6aCkU}j=sr60!YO97iPbd0sBkPSM^4Hb0x2{JBQ~j z%qgw#Cfd|MiuXB-ZO7Iy4n=bCph+X0aY@9nqPSxs1;w;Q5{}BbnTAmY=6K~eVLel% z;NXy~aAMlGVE@Jn?aJP^+zB`sS>3kHv)$1InI+Op)(gflI>&AQ?*HFT*B}xA#k#iL zX})qTVSv9Er1H45m1)b76^CB~s=B&l#xJbG3K!ay`^mck4`7i+!N-&m9hXvtN+Hfd zuNu^sUck@J1Ml!h7hByWNlAGjDQQldY@%ovj7?X>^my`ghBNOBWd|%nT6R%72Cjo< zbaLN!D@%dz*-n#`nu?!#B|$W@cM-}wzo)b9%1e&(r}K*rl|Oq1k@wVDD{0t!*STBj zrce3WbW3}?7~LMT6KIOmh93YoJLhmwo;bIfx}7&0a`Iw%Uwj({M<)i{JW{ij(d>@r zOI(x7#CfZ6MPXaZXoI3da-93y`d}MT6m_Ku2?Q&0lN#Jnk@+?L=|yk~+E+*w(%OZ# zqr}L%48C-27ucKaX7z0MOP-*Q1kvV?qD~P^mtPq_E#~(pVoBbzeE)^~uBS#wnH;|O z4^~O=43vxQv#TO2M~A{4PN^?eKXMMmjE4?bz)Q3vhv85Z7c8meqn+nWO&1hg1Fea^ zNB02TJh7xXg@>JwoGAkQZ@z9kzjTe-T{h`%jt;275B>7Hzn*#|_(Xj_eNq+#`};|Z z9ZTl}J_>s3Nx+YjG6S(G4@)!FjOus6*rO!$PnmVVNqpeBgtK2BWgMKiW)ffaWY4AKibhAmnbFvN*d znE~$)w6t4XlE+GAA=1^&mCOFyJM-k5B*h`%gQKa)hYOSItO1dxjJFoPcGw%!AgHC4 z@V9Hee$$pG<#D+_sohs{H~;EiF6a7uraK3DY*6oxv+fO7%bdK zJJ-3Nh55kSYo$Z0!DW7+d*&EeQ0rG*v5G!wh>h%OO|+pfx#c~0a&`dH4mu9M73csg$!S!MX&yWp9(bK4^nmAW z__GiCQklp$K6522eEBhIQKpDDzZgi2KDzKxWZ>m#7rtom=V=ryF->Pgn{bPL^$4k*5s$DTR1(+qT_+}^UhR7c z{W2{MA8_TSQ!+)gEA16vHyqcY$Le629t=IkvQm$93b4hkqH*9LWRjFyaD)l$kmH7t zRnEb{Zyg>DZ3dS*D>vc_WA2k+1hN)l3&?5oXXj+$8V(x~FZr;DPECL`+&xQXM*{~1 z4f&urJY8V%&7+AqmgHvC3C&MF=>+v6dZkWoW-@!oFal=MC>e_s`F7=6n;i{k88U}0 zvhSWC-G>ADj7vz-2FHGdhUDUDO-Cepc!q4hIJht=L+2iPY&Mz)6MBw>8)1ud+pwgp zDIRQ*ArS3KY3iLU_-2)}nbG)~c{{YGW*@O|@93m- zb2dn@yfCq!+E4W~z2FdnNeB-L?^e1!$m3Ir*mB}0eI&&vY34LF^tgMFC0tM2=%>P5 z-?!PhXD&`a-L1irHyw>0?d>5A zGmt@gA2Odl^ew|4gPxwal*2Un;hizOd7WAsKEC?*_L(AZ41U2$3Bh?+dR!=uo${QX zBeOT=IU4xpXDntBwWC3qQo_^Z2>Pb02B3b@lmD3MSVr-R_LXn2;@EG~;{@6%xkMf% z=Uj_TZF69YQ8#JQ$OjTi2#2j@en-%;J3U(lXT=U3M>gIOC!|fzwqqh^yzR5S;jA+* z+6(>e!Hs+qG1xF5Ciym<3>?|)=eV_pE>7fZMB{~<#ZT!+zu*G#-77sjBQG!@W{2p` zAo(+ggh|8{UqEwM1`S(UG3R1{Cx^_Lh-ifbG)wOwFob3J&S?96zwz6dF2f_f}4MBng2=Cntu1Lar_w={8`{=ZG-#{{L>QF0-1rOO-KclfPXLB;laj5Oc=g@)~h6@q$4kCk67jXg1w z*_M)d&^1tuMH_hPoX}-j|GS4HVpy%+APz*83urKOC81&+;+#zrWgsG=&B6(r!Jm19 z6j!;#&yuiUYODqcT!QAf4gb9sAZ<}5EkGJ0qZQVKOGX7=umnWVQh^M6vLj6rUyhVV zu4UyZ@@T*#qreLHdt!|W&eMdEGBac%ni*W%LTS{XkBgeQXMK4RIRzIfdl(xXNEo6iQ})o}Zx+GCELSAi)~ODvg5<8XMATyn@nffv0xJbNbWZ0| z0uF_?a!0o-nPh9^X*BN94kZ!bA$^CgzvuBG6Hbsy!6PoY@P8Oazaye(th~Xs;g<7S zJ(Q8(uwY77_&bx)wD$NQ=aeB@1za zMM?`qF~h*RKK?3!yq@oyukvfauC;Ofo}FVdJclCy*+_}wrkHCbAD;kA&Wq6fd5`f8 zOQhRpWl4F3UJ1h_HeJzdp&b{U7(Z{n9e)yy{8ZF3MBIgAsEm%F>0s=SLr=xWnOHBh zSeXJ{SmD$L>-_0eJehP;IG!8K8dwvhA2>YtmE8{dLdzS9^Dsq&jL0}awROZWuDaZY z{KmX;%=B4q`!3yfA;h#vT>90L-@A%=`@aLqiL%nIKOXc7#TvZioo$`Mw%^9m2*2(# z;!1Rt3G?VN&?WtX#Ie5-Sa^a&wSs4avn@-Am9uj%s|6f>8^{o?Fb1|()5tjoHMqQ2 z-gez^*Gbmg3us?gbVwOr?#HD*wy5AnuuZzhb!g$f&HWZfT}Iq{{6xOy1dL$9f z2iXj2>0<+(p-_Pi6;250emgXJjPxt-nv&sY^mSu_M=IYP?71y1nZQRwN6uGS~$a0)r@H8Z=(w?nc(Cn?+kQtS!Z*O{a zCYMvTLGE|&7oSBN8Zoq)T1o+U8|KM;$|U9^0BozCoo?3g0k@^F;v@B+bD?(aFi5+& zCG@RC6TDW}(pE)8Tqe2YbH{h<49nlNkv@duumvse@G3Vz@S75R3Z-`m^8@;FGx z%QKt?IAn7db7YK8Vmm}ehAAe9m83dn0U-_}=v8f-LyowSGX{)@6}8s)Dk!P75)*O- zI9{4)WNpfUq3G%%^c-m@BGYCOBI8D)pz?X(2QS^UfEp4O+3({d+N2~svfL3t@8vNOR;sHm$X_{tu{GdTlL>td8=u5AY ziNGN>KO#P5Ebnt*n(wU_1 zJc+Uh$IfR*S3zfa_-2-dg5*%x=WjWWU&OL?y-(q1t}W|q$pG6NLY)hFJ#Sm(#arAQ*D{8ltZS1B-|{^BY*_w_DrDpR zbABg-5m*&r5JmD!?&W&8coVCWEQAFe=&uD0L^bb*4fK5oo9#s(p7|il# zEHLAW``g<4cocMB2N2dQG{dU{u0~%%D6-@0f{gfkjdZl#bsC*P+8TMCY2eU-0ScBf zP0vc8Y0kO0S+)SlOqZg0K~AhG9pe(uJ_l2jcsgI-CtGYGty01VKleAuAO-6WioB^3 zeVmuZw&>=A{m#$X%)NM$5$xBtA;{;UocxPK z2?Ou+wm5@KgC1$(DGVi}E+rMRrUyG<(PFl;_ptdHeq8>5QLw+ymSnAnH=iu$F%yk; zms5pKWx#^nxL3*J!A#BI&-cr}eRX!)dLeHZj32GFtUF||G}Ocy=+#`)Dvowqh-At+ zU8=`*>OAx4LC;m!K!SE4W5j@-WA#jOgdXCCAw0*EK=tT6Ujj8F$6G7X>6Y=?W?s4S~N(avt`riY+(f{#hv*KyxqhK{i; z9}J52aR^(>Eh0f*NPWWD7ts@v2kaob@y4HaN#8+4YBPS;41Jdsj-f3m>}kH_&FSF4 zebam@YpP1W0%iwA6q#8^vmA3HJAB!0i_c0ck^63o=Jl7e=Q~D2WWV%b%u!9N z&k2b`sL2HCnJbxSf6h`c!tgO+gMR))IyfHns^z(7#RX1%N@|2^@l*avSo$4l)I+?O zruc=-z!OB#KNfcjCChZgvpgzP^ zG8%FY(I6us3xO>iMw={7_Pl*1m-P=tL5f23x$eA z5n`qlS|eB<(VZg;u)z(!UcgQ*o&|7_D6~no1s7u=I|o+X`CC*HqgmESDpkVxS|2@CIzg~=UE2~F062`%S&^Q=CJ|7n#a1v>|D0rFgDA0hh&*U7E zCMG$mQg2trJ-uJdFe-bLkaJRsU84ix{YUDGDe!R;0OEIJ?ms`D;k(Pe(0SY19P4kh zLpz{9HgSY#VU?2SCmC=C^tbQ!pYPE|hLTq|6TdVdN$eb2)Q6go zTI%s$CJK!F8z+ zc@Z7)ZUlV_j~KtFtvvZGfW9XA-?Os9e#G7?c>Ru-!4o-I?ss^%l#9XMa5T^0$Mc_! z!D0KcRqQPo7lM5WmxD~xj*EoK_=)V`6hAB|FN5g6=UCH!azf!#(v;{GKZ%Px_zZ{W z%PuQ}VF=r9Ay1*x?_Oap%Uav1a?um|qA?4D*_)78(ACz>a@Q5Y^;CNNadK_3#GmtI z`rZERxih+_zG?IKD%8zG;GnbTSohshm3hIZ(BCYP`tW!^qPH9xBcvI0p693{UFVpv z4PqJBc3pgDw^WP=nnWS1+3{46eZI5F$_Jug5pq%gW$at75Q2g;tOXg8N6|M*!UWAG zn!%6}dW}WZF(fQdd-<*k!t(5Jeu|!PI&az~qh-jr7gCAr8u;JC4E45)X4v?GbC0sl zpr?OkCUaV5enMYTN=@@xR5j<;A+ss^c)o=oF8u~!=@um{9xZ9P3T>E6&?)c73j4IK z2p7$%xbkaCl&r9)L{x;&&-)&Z&V~*d9TvRD`inQyR6n7Zy37BWyZH48v*Nopn#we? z=2j2jC6CuYdu`K5s|W6pVx1n{oNmBDFA0BlRikEMJy>I@iLJNqZ~yy0xvdMf z^jRl6AtX@=Hn?3FhP%W*#zfV!P2jcEwf!8*-=A~g29DvplFTnO%A z@#M*FOU4!C7&bj&c|n{v=9LiB2SFUJ`E9gs*MHA4>a`!TGfucP5umxr{Pq?{sm8{^ zIa6986O@(p?gQZd??1OGm#a!-O3tXE3yqcZL8%K)k;T=%}uEi18$GLsQcQss#2u-*2$-S$#k=?|n4Kox z@I^PFb>DQmK<7`5!T-k`01Ygj`NQLqsA_t9Mzp@yJ>4L5xUkUo!P=;iM^S@Co4M0B zp=TVM-<_!q~uPGnnP?F($0pi2{p#xL#A6rwo8eBAo^^i)WgIsLY@hucq%G8 zm%p6U@-$PpHzMZ6YaQu>FtuU4@%CG?t! zp{n+8%rrti06YA1OB0VKW*Eb>YZ|{^$!fvEZ`Tm&?>@rEAh`RlKB`0@i?m&?po)Loj=)$Qm}?Sfy6co@iS!eR zPB=8F$C)O>jb``zo>{U#9NJ~Ig3 z5@84EGK7h=eNa2i>6`;&|3%Yqdb;IE-vbud85DE(+VR69hY^GS7ck zMW+&A*jlA{XZ0<35Yf9#XVxh64x1-ic-r!|B8K|Unp+7IW($!FC0;M>LGfa%5bJko zAOppn4rId+_C(3irfZ)ryKyt{M(%2+f6k|CH(xW-oy@O-z4fhM_d`poxg}Y>1vNNB zGMNF8qYMH^lJ44w_yes1u_NDfPZ?BxI)Puu+13bj)C^nU8C}B8_0OnQLZb?k(-0T* z+wFZfhBGCtQnaJ|CO|8|0(8^ZRhw5AyKgkE`T|8FxA%H2v)H|4TyA*phI86$K2&4# zPzWqo!6I@HXwC%yf}0Ru;x4RR^yZ-oinaC_jiVs z+%B9(^3D>!mDprDu3!xB=q#|ja zW7XqUz;@WrId^i-U5>BVzL;-D@~egNocSK3-#d|Q{O!Z}r$YwLKZJQpMCJyv%Q#L5 z8Vk@gMr4*mwfeiG9X97i8?B`wjkII;OV-wvRz#UjI21aO>Ocuja%L2GSDi%4Bj!!7 zYv{R6Jd|AXF)<4k4p7u-J5!Kb5>yapc|yl&DQwu1yH&}EQr{AY)02M%yQLhAGfQOt ze9K_6>01Zd4?#&dk;!sm4h^bz#l*f>wxkhAsZmgn#X^%R8vK~_twuK=*mLS(X56KW ziUeP>m9C7CUy8%{Y!P)ipKyW%hpC0N`6r@SKLmuww8qz^Z^TdcBdGgEJveSO;5Gee zb(tC2;A|QY#=sz#K*W2gnHINx10LI)N_DE~B^@M&l@GQ|s`D&H7qMs*xr%~5>LBS* z4w{0ieKPrnYK7V|T_x73Z~s!iLVKB18V1mk2f2?rO{k~0uk-L7+lEnc+aI6m{l4_u zBbGH&zlefCFJv^?fmsLETks6RD7&v<8F9WSa)zd_19k%A{hC8PG(+Jy$4-|S5!U{m zXR(`8`i$_+M2Y9g-(>gchWR4J;$tIDr9_`?^^TSJu~XVGCq#i%n>DY>>(gIMSw`IQ z$e4E25hF8@Xx09s`;QSCX0rFQ@l*i&Y+#BTk+i>VKH*-EWS-w{5;jk9zaMHo)GJP* zHR|94pa&D%+_<&$oPM>gF>VEaywah-YN7->IYn-ulEW=mpLb4ZUW_yr(l!Ez0M94R zk}$~JF@fwYoE_vT4|*%ZB(&{FPm)(Oe3D!>8CO*o@=4#Mkc;c{DJu3Q{ZAX~1K-DN z_K;GK_T@<4eT(4JIraangS`#aMmO&Espjw{l!qc|Qs;f4b)v-p#@1VJ?b*%LV{>s@ zadK(1s#F~ycUsRbyvQgG(j%t>2D)$~QOyP<4YcD3jy?GkA6X)^tRw8Ej0&Pl8EF&Ychz2$~%ec3Yek?m9L0*D-J2UM= zu6JGV&5l6roOfMic;187)|9?>9Z~F>GmXF7D^Q=8{pmhvpF+Fh=!h0Q)@J&`EI+30 zpMy-c-t`EjZ{M1DKa~q9h;B@&oV|Zs_+bPw^9dofmf4VQH)ss<@zVh%Ad=z8!rO%s zup7Zh*ayKf9L38J+51oz?ta^vsB+hZU_9mLH(m2h=4eWj4;pE& z&y6N28CT>KX`jVQcnVJOW#FjQ(AL3VwttU>xeLitdf$|Q(O1_FimzUO-x(B){+oP6 zBnuuOWFBZTeUa^d*4@Jr1fC6nA9CET8IyaPQ0ZDmwGvO&2p#-IvPK0&_TZB~e$n`(FEAFz*<%WH6Qg z@qywu$S_q3#d?#}*R6Gf&HM0QLUxRn+pZr2icNJ(Pv!~yGfLe=C6{{hDzZoVY!ESq zb@^hBgXeztH#Hkp=>Mpttb3M9qw{Kp85H)Eb^~T8c<2@TG$E#{TqACyuN=V63wKAw z?&dbe`)vP@&v?qqc(STQ*1es%UlGl5CnfgKNtIS?5G|Du?Wz%j`26zt^_>U8eOlNV zW%O*Mgd6r53p?1~-?;bLU6e#Wi-;Nfes&&>P~{eeUj^f-gQpRFB4Ju~yCZqAyXP%632g+_Qa&u6O=9_Vf{2ewDtT5#cBgUAkh7$)q=U9xh(j zC!uqRUSCdzeLl+Tw38GewojFh!u@m88O9D4iX)$r-=V1iJ8m-5V27tufP-|lZySAu z`x|}MQx=iA<)Q6rIA|e_u_4>X-}g+HU0N8m-oJ}t>vKaK!#k-*#w}E-mh7i?`$m}* z8fHy8Ez6S&zD(QGrSHFXU_9cNtXA-ASz|tsBn+WlIX0xVKkpf7>$OZ~I~mQ(ol!sX z7P{8ix3ej)y`fJ~7_5ERe?3?Dbw2~kQ;Io_KdQaCV60*BnC-HbrUPcjpYtUm`mnIo$JL2 zr{#sct}!byAr*Zk9cuwqUZgyoZ|WJ4_o-wS&RVU_Z>4r{wD~p3kD5U6xRw@Q zc#7q-yKYtl`h?17@$WBJ+^w$}q9$E&kPRlo*QQ?M64onY(79pNhhnIZnoJY&DcowQ z3n+Fe2sXJBma_oOjP8LzP%HU)EDxJi{h2@t2CqRbzBQHP{f>;}=)!dWuV;hbg}DiT z`7X7Z-fTX}yHUKk(HJZs!BPZ^6bozVXM(c);$oW&rD3GvJrwFHtL9o(;^c|3@q24J z)u{{jSlGVhKACAus*CGQCBE92Lp*JnGZa9tOkwEIsCbFA?>?s=MJc+FXAxg5bxSPv zt4*hU@`jFniUM^%XD~Nu4lb%lB+q^Q>;Ad?>Tx2ZPnO6hHPR+RxU(2Rkq0XP7{BDs zAj;DHoVNDxoVU|$oo61zH0f! zF@1MC{{G%xefcTOj`O#-~S! z>TVEgqAickKdbjZ1Wi3c1Ir7G+#uctyHW z1el3^@X+}KvBtS0oIHECR%Hkqhy>NUAx@Ud;s<3}X|P5ixvwUUV%LeH4;OC)$8~C` z$%acjMf>lu5`rOsaSLS*z~rSrLp7`+f3bH z{^XOXwplmr@vcfwP?|;6tMfM-^Sv`t^kbpmfv~tn9b~27dgGoZJ5K)V#RvCyh39%< z-)%)mk5ex_;T#)Lp+~pzk5-fw}ONd1-+ljH11~;?dwIJFwmisBB)X zaBf&qc9!Yw4BM^^nJ@_s4?$Im7Z8RC=Z^}KXptqnMhIHBAmeY5x4&CgP88EUU1Qri zLmofmGW2Dg`Ft0#C?BTH;jV1gWUC=Uf!Q93T5PFRc|+cI-*BI0z<|3|=p)25Ylw zCjrvQI^OUq%YncWELsyfy+lx`JdNSH@igl$o@*uH0=_>zd^l>-14Qu(zw3TS?9G9G zHkBB6BxY6q`+aur*Wg?*w$QT}8eDsVw6D>kjyaUtpT|%gpQZxeZm5xd6DQ|}&7AhQ z=R%-ltyy%DqRpC&m3F2#*q3FT@ts7fM2G})G0?P*kAbdN7HY-f8|-F@1b}4yS=auCjaqKEA+$8kPl(_=vt&$X9hB-zGracBvDmy=uAl+#<}G&w})KAu^mzRor%2%)|b$q$1JMp8dh zEN!eveBsN;-Vg48xh&kn;`R0VfheCP#^Y(LnWUxA<2`_GVe!jZ?%Lhz^yfg|%qdZ- zLRaBDq`}Um+>|G`PNrxxg!SV|-mLubo8z|)y_9#IJom2$ z?WphG3ASYF5uD#lm;8pm^~;_o4aRP8;19SG5_(Tg^t4c?@bd6{u9hO) z=gc%i>4uH97OPFt+rAN*a*IPyKks-GYBNjr1N&FmI-xO8_(iEFXddcXhFD#WsmpHf z{n1lTrRea=^;@*=+-BjxpkX9cjobaJZWk13P-K`vwA`n+b)avn4(dzOk5H|#&!{`NtFN)T(dZm zCuJ2wj7^knN$>>1`&|F09;wnd`&?wpb33Z$MBbsR#>DHO>CdQFDq zLVC}9hN$nPZ=mp@-e?1HoB0hqgtWwWE@4O{KBteiSd59AV7bU8Bi8I%yvGAK?YC|- z0nCB0fgn5s=e|7B7Y>1zXOBQ=F*olXt+=8jz1A4Pc-fX>u$obC+3OSJ#m>C5l--?r z?RWbGv0m(dza$8{kTdi$1IW+^MA$;`@_rX6&-)Zm$RbMX(9MT@ODEY`cv zLqqn~WOiCG>i*cL-8j3{>m&z}0(=mWe6WHBYC})+S=CMHkYJmmp)31=Hj_fax*?Ba zcLa02uKzFgKcZ5+?*jS4Xy-HFiT1?-O_%NM>ym}`&9IQA=h|{L2og6`n?IZ(bt(bJ zl_I!z>-=6F2wb90@gYyp1jl;v`z5Ru0pqbbi2R)k-iyd}j6em0!3-wsD$b29#)L!z zLCKf!8EO8**S-IXS7#IpZ|l^}@0G93KF%gtx#<)mwX=o{%Q^%bA%&|;qU&2lXJUR# zScz1R%af=3jNNAtB|KKJQ#&q7iiv@75sc~5)(puCB&GQh)S3y=WAPd&N7>&Yc)x4R z`hfppsJs_Z*QZ-3ZEFsq1mWxJE+Cs@dpCsp6t$AsJTp#Nt}J<-;pmUpRr0-9^ZFfe z`*;bl*MgPp7B1(?F_c|3Xq=TZz7SI*asl>iRLAgU=E7S`;x>XA^ zd2m7$YZy9D{2`l_0h>GW+;LC8cvJ^~PUxwaRI(B+nWmvtYZ{8wb$3Lr7~bTM3y*?=M_0su^Xy3QKmSlos2X;2UOX%5J}eRw z&>8I$mV0k3Cb?Z5ZMWTrK{PT#pUnu|aO3WdvLHz0E;fe@n_KDIN$yC0Q|7XmQ3DO% zbJ!Lw(<{$(v_4*ipOd08@ z+`;+S8dq->e5DKY;q3^*jW?bmoM`hs6sJkqMerN$>go|&(RnP}ooD+2tI4R8aAj)D z!srml5g#5(SB26GuPEEjkPQtjYX!D@+i4UcZGt-mziooLMOb=A`Hqpa+u!j5*<@6# zr4l8`Aj1oLKhjW_P4(fqT^0}(EbmyKm6BZQ!b{+?WZs}F9ncQX#F`E!Wy8Gu1aem9-!xw;ETt2U zE_Mdb_`N{y3z^o2xhz=sK<_d_cz!=YpJYj`|0uyugtEUPmvO`76S^aS_wgT2xysd3X4t=1dHElD5lj5AHgr&Xjs74CV2pa z-b1Wbd@c(eR^?ZknBT2_=t6tp;Gki(jweOiirhoC_Z*&9ciKEcbvwNyjhyrHMkLEA zxvZ6MJV%mXqGPeAF+fMN5~x$r4G2nCjriREexIW-dds6Fu#Op@+7hAbDW;59yiT0| zfROlvurOOIhl!h9XRan$`bViMC;)lg=2Nh&UgAH@ARgOI%gBr0JCbmi21XvS1F|>;}IA10$D_=mIqo> z?V7jYE%&t0s=~T=2+E@G+l$De82)|5jgt0%Sh#Cpyji1$INFv?nGY5|b9xS`7C0c^ z$^Eu4^2q412^03IhU#`(;;o$TH&pbc z3Md+h&HTA;C8v)O{EcL-6Q$Hb0^A08qOW6yKA!{o>OR*(?;iWXZ8aFl^IQ;iVZlnv zpOgCgS$>eS&#$M!`26hOG@Y3FoRPLHL#9Mt7e`+c{)YXIv-qU0qq{`OGT(ZbMtYvM zAU$79avjjBO-hK{<2->XQ4wYB*m|RS#tEuRwWRiTZ@OI+VlHX0PY|x%w>#9HCV?h1C5s`f-M=+QQC$`Vo4y_ioi7|W87F{a@c4z> zrTAU%~VyuQER z`gzDDwOAJ881K@cKBFwH;4^+u6sd&EJdjm@O7Gt~vtb2zx0xcrzs=~A=fmj^!#AKd ziO~&{u2Ghm(DSyeVv&mv>sEukcaw>o9WnZlJEx;9;=p-rQJiUM*Nw8a5P>(4_j=g^ zCgsU&sPnaUPTJaXc0B>u0%{Z{F1i{cHzViYpyjO-Sbyu51XV~& zH5y-3YNbY9;_u=)3lbRW2VbUY(!wZgHw)T71Do@D$dCyo2PLAY>37OAGnL-~c2Gn+ zN7KW|k@p+ALYvWu8O(PwU*5!RrwN6b#bcWX;#lNUzjeOTWueKFopr2V ziXCzG>tYXr-6L{4y`m#Gl+V+=!HFU_J`kzy4zo!o2rAkrm#flvuO*IG;fEpVMHTydNm3>jI-D zT@!j@2l*;f7MD0*4N5~KIZDGZztzX_Hs6m=T^S_@XOSR~oOvvP*n(zf_(LA%DSLlZ zFl4k=E|RsETK^1?0s*yf|0-cul_vsg&1y`qTT^0g5NH>x%T>L2%y)6iFcYvhgQg+3 zkA+;elz5*+e@G$)z*8@X6oF;!Ce+DKD9pBi<;65TK-%D$N}!1=ZdhZzJX;kgbMVVKmBXZLfnItRSJ^bYG=`$f7XL< z^~98StS=*)Rmx5}Lp+pLYgtm{!YB4YY>UokDPc`dDb&qcaY|(TK#LiLVGDpQZ3~+b z2cNcH^8nJ_7O`}of(($Zyt|gkj410_#LevD4BIM?e&kJQ*KX!lKCu)=MffG91h%H6 z)%8@(Rs#XwnS`H(4<8t(c{|)9~o%-+i-bQUN-j#JK+V903Z8iG6}1a z$0I=&xszN{IGe839cc?KtcK8BiyZ9;{uMVN>DhSKqF0UOj(5*y4y6tgdXW0BoE6^6 z9HyCASbl>J-$|C**O$Kw1+}p5mOby&pn~h}?f~ZLvW+g;KKGBB5jyrkmL*^Akp=L| zTBF|vnSkea`}y(EFPS1+K$>oPD#j8Rv5m%vny^z-H?%j48X5^N10Aw)gpTf`E-PKH zILAdr!z5mbA!#X*ZIAN(PNN`MTrZFM=vy9pn}E}c*K;DJjlA7GLXnsAdo~`0dn6oD zlim-1*ir+@v1le(>q0Zir}9<&duib5&OhDytyMOt1E=U7ReBTR?R$s%= z-`~5cY3L=Hc)8gF1JtNN&M4Ooh9hYP8Q+jaDni>-%LTNIFTlxRv9OB{>=!w`2{K@w z^J?ULgEm}e1q9Czjdk=KKFP`k*qTJA>TGOOk3JmED?PH`cz)WyS;RgzE+Je7PonRt zHYI{5o`z=st~;M+7@kpz{P9Gmmjkg;#0T{to()3~K%2O=`8^;=O&T}hE>e2!oFX%M?d6+ZAqdXo&ws|L+a?lHPl*Q3 zhdRGLKnXJDlvm(5_3f{ivCT)2Woog2ICKFzZsA!HXG-FSb>?qAAm8RMry5EVs zVB1pUk;IJRSuI}I3|*U8J9e~_*%Azmxt!9`S{_UmPgeAZu=mZ4Q8o~BsX|wm)?&m2 zB64hN#UhByiPxHE;pCK2&m;n2eQqn84%v{z_WI5pxG58};jlWxMxEY!fsr6y0K`TeBe~z&e=%gavv-3>8SU$#TO53AqmXRyJg= zB-#CS?PCM1X-uReBtq`)35&!N7lrXJmeGfH)KIXiY1` z-M;ElFupl5BnHJ8(?_D}&Fi#n4a{ZRq6U+cPhyas_v;Zpp|I0rcB4>oF++UHg0N+0 zV!Z3g_TZ}^v83RE*!RTf|32gJ)}RA`{lJ$osyu0{Q5%Y%6?E55hJnI_4p%V%9~L?! zik_%(yqR>KS~P596aD~CATy2Akv}uxG|MFLY;c4A{?a~o=+LebWrqr@WbgoK!vRQr3%-o8=lhH`ca37Qp2B!%qiFcB>u7)LHY7Oc8bJMz2R z;1qv!YjSZC(Ul=jUUIN;ZcIF>dSwW}^LwdZ+EA8-e&EUBzKRk<`Ps#2VtHXF<2*a; zDpjV_0zY^Rk*16xAr@MR!(Tz5Oe_b=AZ-u43Ea+6H|cWiB)@TpQ`pK_MSI$WP*K>x($l&G%HH-Pc04lBMObsDLT(L3OzrA#~l* z>ni3cB00Eg5A5LuL%2edZ0$&&YxWOGwS~uLMhbDacvhxqU)Xk9Hyy#VL`YwgGqUz! zV#_DT51WeGZRDHam4CAgai^^EI@8Jk;4;phPired6fZM_UWXd- zVBPcP0-(qOtXWcARknxm!C`)|5Gw+YE8ERDu`DYs5Ac=OENf~^BSQmN!*QbA10gH0 ztZ>MH*Bj|Q(QAvp*OK3c67et(>egLI7y3SGKMrhSTGhRpbXcE++YQ!SgPczh zUa&vGd)Dji4Fkg)F-)ux^2>ZTLZ;QVYU@o<{nfL=8iE+E@Jr)g+(CY-5DkcwquIS= z2vmXgHwlfMfWqw<1VZdhC*h5icne_f%a*$!TLZ6a#rH|Gj1T@cZ{N*XjXbwNfBKT8dUkp@)z0V0go=1$DHPe?W;FL8eOT8PRYq7 za#MT=%8@DF2iXYbg7(nX3cS~Nh=wISx*`Q{f z7pDu2#<;GQO)*0h8d4WqK*)=4at-yDdEHWk_Vpqr~A-&s8 zXNSMD@6bqRik{~6_i;Ud_>?+}o8|w<)tN1^iG$nvfw&N};L;opj0u>DOA{5)!JP4t*t|$D5qmYezfVebq{jx?X@d-JVSxYbeQ+DN=kn%)Sz(A<#?jv&0);&jskb>~?q90#Q zR|2qHO4;HNVKq)ts5S#0eBXX`O};l_dd46E(szchTF)DY7~YGV{29&fC*nQXR%@_t zKJSZq$3eI3!Vmt%1STgMuDV{5B?rseGPnsIgcjAG^m)DU;IulR0^f=1iFrGvo$u~p z>nLhpUczFYNHl^f7bhzCCwCiPo3U_)o1Q_nCyqWjQBD|rCG2<@v5>p9adHJg$@S)y zlixI_t-1JNCfXC#U50gk1@9LCL!2^}m6uuP_dZYeu%q?ZX#`f0dr+ycN0p#NdAyRm z89H2(YpQrRn-3(0-laj_xbBMP@^<0H!x_@Rs91KoVE+lr>LVDS7kaHkGrGClG0fU0 zsQ=86-i23>k>fnP?)B=p1bPjL(>_TEJB+Qr0QMCX5GRY{kkYEwuq^GJGm(k zVm!CZya3m_tWX*<`;70at!Kw%mATslmbv@Bd{jjQhGUnF@v$QX1y+{v3P z;DW^Na>)~(-rYtSI!7u?3Gj*7FiwY-dZU^T&2ifyhOLi$69-q?WZ;c=$C*#72lZzi zsi*xe;n3mMl%yZ4+Ep*osm4W z7Y=H&{zE?Cil+WOIm~Zvdr)IsAO5h1kz$KH6w|{<_LZ+crNsoX3lPkwN-D=XRSwV4jcvCTy3{i zgckYDiK!wF!7M(dx6)@rCn8ZTp0rV7Y7=#|QRk9Q9{cp2J3on6STLAz7#|m)=#s53*F0B57i-T9`sBz&X5@U)RUfb$lUkG$x9oh%JQwmU=Gz zefox$oiyXUwH3Ej`s4W;9#Xd`NCu-o#s9Nbu2(qN_r)4XXT^+bj_M9gCT8Y~eZRYX zGQ~aa(>l+OLb3+mtE-onQ#toSS;tZme{)=jM;_4fRwcqMJXXFlzuVFrq5;b6_yqTo*q?nG zo-fHJc3s@~s-`(=g5zHcTuE}F2YE5OLd?((Mz$JRAB+AyABjunoe~fEKAcz69{7W) zC}n4IKcGjF@yuk=a&(sNf8^GWs@&DbyyfanIlG62`Z;`dQ`cj*c#-czH!b3Zv+MS% z!=6)G>wEgtIJz%H7L=$3IO3T1EaYWe0C4J%O9!A_JFEB2T$x^cSkS-yN=qpC@hC3T zaUu(dvkUZ@uw;PyC2)!uz--~~JkP|+M?U6w08;HC+GJGT0=^`@Os;u?cZ+FgrR_T; z=&XfHJyxu3Y4Ag@2W`7MZ{58LcT}`=Z!8Hcb_rv}n$N#`_q6hbqu#PS9IBhSw*r>n zx~%$8Dms!O7i`>#c}0?hI;s|p`W=rn8IkfAyH$20$Y#t<+q~x!-#Y1dS~8x;DdZ37 zd)~Zh$2t`vF#XmUhOU{t;-{Jr6hFidkDzSry*?K1+{7Xv?3DbTZnp^~R+-gH(IyQj zG98^O7r}YYl{6<3o7>zlf~unhoyGQ7%8P@`aG!m`)Ico1Xx5@7(*uw1QAV&ns`6kC zA@ScA12YaAmlcKti*b0>Z2Fiz#$mnoo7CVK_AONH1jEce8qWIoxbPtHdakU?prBhA zKFh5$aAG~XJ3UP0h78*GeU=NO5MbkTq3es?LZPR8^d39C{&)s*JGZJaG$!V;YpfAd z>+B4Uk=;!&GV!qA3ocIhDa^`j)OqR^#wh~ z?^p>Vwi#tNpE7f=Qwgs8(z9=dKgWk@J#0BPk&6q+g*fvfFBDb$6_ zEK6pt*GaS%-c)^(kSWvWu9u>`173eV_{M3o)_U%!uTzH6-`8sA&0M-o^bulS75f4( zv;0s?hTgJ0d1LD4n^lWxe~LBFXv{zP`x{{vNMIOnwkp@Avv#AtWOI}e(RZWVxqRyb z$QjPT8RyJ8tTvezyAU%<_w*uNKeAQZtRW=5^{dD-AmVkEGFpQ&_v}*|N)fc*|xcp&XjU1<_vz+T4pb z(1gyi7S_7wZ?N^QEFQ$wyvSC{;cLhp-fw({gAaxvI2uHQRkQceG7Fp;%$pwW;j8)F9x=#!8M`Z89>|mXG?{?m~sizj5 zc78U`(|zwk^HLN<*MAGcD4aAA!@G}>lpjo6D=fn=sOKWSEX3=Y9%;1K*~YXx=(LU70dL63emoVs_;lA&}UxYB)P=sfP|}5tQSjr9rv#LJW3HqUqW3B-PLoN z*f*+!n=G5u@R(b%^mFUp4T>HzK{tnk;5!P@i_Hj)#o`jIVd??c(@g`TvSN>_ipxgQ zk4n+MV>M+NoCC+vtxF8C`&_Zhf4V%3B!y8MAEpP2??&9swF=r4%JJMV(V7bY%B%S) z<&|r?a7RV=^N&x+32PBdn2)cU+GR_@yb1GKW)FcPV!-texyZ5Z$))dYmz_$RZudBb z^TXtm|5jeVmNH}xS~vt;w<2}mi*G%@o%%RLNwXvOqOsz4@&B5`ybP(1bN)GN9d^tb z>!J+yr=q+)5ZU1ky{A5rPwIuir>?d3Mz)mdr-?h<^=1v;I9Fq<@tRt($y!bIW;cWe z1jK{D$QO>Lbu7}mQ#7;<>}yKDZJ~1Y2ynfxMJ9*KdqJtF^`|A50+?a|Qj&HUCYO2_ z7p{IYg>(%G&OBgsgpvT5i8-gG8Ci7xwl7XDl{i6LwagO`G&a>%mMRLY*yP066iqoq zI|>Bc3N^jQ%4~qxC({%|)yjp9DLrS!HC@%JOtjEDGda?GF+yMM)akT1FdY*YWf}X& zbmir>o_!=?l`VcK}n|fa^T|>%JS{ZKiHQ67|lpZDh8&)fpj^0|Nq6dittwr{8 zrg7IR9ydOJL1&)yr$P6?eJUm?vCutqMC^e=4&p(-#*jwEy0+RxbFv_1s2mAnkxz%P zBUx&28O5+Y%QS6xXOF?HsP-ceoPG_~ij={%1$uXJZOD*n*xcxdTa@~Fj_9#rc>TRf1rirEVMfxJjiu) zK&UZ7CbaZfAShXJ(|$C~w-ys@+i`tt4Z8*UzF+w#kg`|to)zLwu~mD$&(VwaAyfu3 zPg5c|iL~;;5zYH_=)24DgQlR`R|_#<=t5I?og&)9siD%)-B79K&z!8brHuxOqDD4@ z)l2>QADFSVg`?)cu;hjfcx;QWjya=2-jJvSPX9bTg${YTs&vQ4>d-Wgkbdl2CiQut zwsnTNT@>Nj&qRUBlCgukU(=J*ETq$qPVC|FGj8KPeS1g0&L*K+U$Q$2I6!&E19jC5TavpUa_uD8MdYyYmFG z(~-)}4ZHi`OHA>OgJM4^9{<-o!C6%e)R;o51$i^@kyh7u{H*qaB>AQqh{LL=MJyx) zVk-O1Ev~fdYsZ1__ge5`(j>!9S=@MuY&0qP8;^;1Fb=qp$b{^1O*hGfJI@BK0DQGF z)!Njgy+@3q&bF?3Mt4@`JnJhL&{lOvrM*c-nGW<@rl8_E58}aH2#NZ!!d3>Nwk6o# zuM@xA6@-T*U6YJ3T?91a56Jis8e8T3cUH+iTJZ6843SlI@*a&@8>f912G?BWG8N1CmIxh-1}Z-mNDI{FsX(VF z9AG|rGwzo8}lIcJ>!~y1A4GBFF-P;&rZ?iEI zo_zoDrM`dM$K@n6#V$WDFT#2|HPYIKy7;Ppn37Sgrk1DxSNu0b> z`_@NJUkAr$?-R$crYm;I>? zz6wY72~V3{A9eL+W=^3U@iQcm*=%{5T+YpJjc#R>y?|rOdy?=ly1EGKf|?{CQ_s{^ z=T9;$u!V|T57f?K9!=IIqyhq}c~S}8@UEy0Q4nr;FsF|8C4|&Z=zd1Dd5%12h>VWN zPO&bd<+`8VFX?p=gJZwdZq$8ib@LgN+74;ptWvBlIVh{h61l*gNHz~`ap^O;6SKUS(JM7e0U9=o~{6pO6k78bR+hnIU!Evr4|eW3gn6<*Rh zAlb)X>npj0`ZPFu17B4=^yr&5u8+Ivq=QY4FeG0u_4H{UjE#qN(e)_AY{dT78}fF& zF4XEWlQrfTw#YG+duKHZR&Ew&PVa?F#_5y6WA{6PvykMEjiJh7ovwZ3OIb??)IS;n&8=r_@wf)B1O$;(@lMF0PMqyO6@SmxihWVBE-JDvFutJGOV zoY3O(z4llecB5>lCnwInNPgr}8Tc$%&ly-lhZezY9a^8@ME;dNNbIon=s^1sK* zMB;d%WnRJlG|WQ8-~or2)CSB)NekpcGMgsK)jTk37p!q~D)$Vs*+0kser$f%wbx=r5id-r-)-bA|L5vW|`O>sMjTS@<#}lR9h@~=X zeedJ5*){d$k9PDlNwxB30WtRNt+raLT@rLox+7wO`~m9gtwi~6;%$7K9+%5S(LMiD zVQubB##OAOUF&`n73ALxl2@M1=h%EL(a0vDT`I^8lcB~4R9?MGR+_ir3Sr7L0yvmU zC+}xuvE@rB<=%H9;W(_b*Kd}bw#oP|ZVc6}A@wRUHqyJ7wFUKgeE--(aldTuy2t!Wi#?e?h-q(T@6&F(*IK`6cdwfilXmR{_@ccYIVnT`OJo7$7SPz!o z6v-%0DR4`MTK&{xRfO)z+eqC@%&mQyPi2qNga+&)MG>%4OQg^8mow3@!nv$X>2lS? zV=XtH&y;k1)BG|%i(wFW91%0f9`Bi+mOLi-w6aoQ4YE<2N$S$Y2*Kg;`qA+&m(|^$ zXJMbNtwzoYX2p6+DV*dsMW!Aj>G4ka9)@-b>ASR|ji)IFY5|zHq<}Of&TBx=bK}Mq zX*b=fD*jERV@2mNx#53T&QwBtxd}R(GI17}EkZI6huW|efe#or?JV8p2C+a9iAFSlXZ z&vI9)iGN><{AwAYUoJUPADlRR`ePEI zi|uVzlMHB;%cQ~5#Ut3JVfxbTXkBpqP8s%?4@>@0Oy|?!Ov&##tE-v~y@y7dKN0UR z0sRuAgu)SjvI1qKsghI3O10(I`d|V`rBLZM_~Mj}tazhi*o$Q7mg()-^Y1u+Jpl(L z=avi4cshEFSasbJ3`zBmChsJwwCsmACis&u>^kP<(ez{ScNde>>WRvTSvpJ1*gs1gvL`o9nyG z)w0Th`wqOA@e)Y^!vgkAc0S!0JhJMYgCHPX_@fusv5gY;w^!JKfiYd(*KAkK5sL@SSX_-6I!Zp3-FXf-AdG;SMvv~ysV0+U3AujRfwW)o$zNp!l{EFYGhg*36X;;zPoVdgWyFgxL)fCye8 zEZx5M!PVB=TU78Za2KqZ(YvAOe0n&o7EbFC)cUlqP7|^R1MVh_LIdB|L4(rvj?c#W zBhFx%_Q@)S=RC(dU_9XRmTgV|r3YljGv$}QoCd;@**V3Mn8}3KSm0fGXw~b_DBQ%OPu?@TP zNWjk-T%p*{?(~*cAPk>EQa-$MBa}YQNidIK5ZB$Enc+srXEi8vGAZl|a~KD99JrRL zBc?UWc++fdQ7$87M?PQk+lJ!n;`rMCpZ9+2fin@732#|>(larvI>RVt;!B2IasFN& z4zDE3xLvzd3SNcLGZ)z?!m>IJP*v-By24@n-l>pE?B7~(;S%X>|JzTOlo>lfNC5Bjt+AbkR#{q=KETF3wQ7lH+{j^kOW@NleH`1Gg>}}sr6X#n z@2Tz*U~NQI(9jHQSVXzwy%Qm5ChvC)o^>6_Id=5sDohdqaefqm(Z2SO z0JI0bmt`>o(I8CKw-lK?EV)!LY?1x=TPYtQ>Xt7jeg0biWhvqB z`FO&7fJAmj?cRD$lS6#HfQGiHlav}jovWdKI+|N2RN=45MjS$9b=(#el>7602zbbG?x_c8Y;|^zeq?8}H^}B~vo?Pbprp@DO(e>j_8Pn~Y4CJU;`-=% zW%;cI*{Eac+m$baZvAkBPi+v}a&a>W>n5?qg39x=EA`?xr$w{bQnwFV?D7`U(=fz> zeC!Ojt_x2Wgete@V1kGr!-OmtsN|(oAmWm+mNXV)%f-{y@4g`#7qT)Z-AQ7?j34>T z=-uD1mN>QdF4+1hCtDsHmXZ&#+wbf_-OMz&7AO&3f67&xpw#5FTR`OMW~jkUxPx+ucg>~nnS zyJKAr;WHWE#5w@+Ah>a4PeUI&l&#o|cr8m|XZdFHHwr#qh0G!A6|7bkU^eFZ7lg?7 z5KWK!`LB1yeYBS!r%FBn!f6exjkc|5+fbL?TQ{>gA~}V7xpMcEEd9)WH<#@BIk6Mb zDHA5RAUS`g)3rFm??J8P3Nvjh&#%jiyU~!og3^%Ir>7S6+)~}(*kEqS81q#szES{m zc*h_HWz&r7bsLdfse1w2Z=u)MZB5MEaBeR{9pU7}$3tgpL?>TeBi8{6D!WvvzO-5z zLvdSw|Lb9;KBR5`IKD!j5bS5;5bcyB<$2@9r!MXQQnJ+NbZ#a)9TSId zupTM}4wUA5O4i~wSRyG~{vbM8j^;H_e)EB9D`?L>6}e(eUYSwx+#IvJ?n)!gM`+Qp^zNW<8Q0RYJsKb zcq?r!q8^W&GGS=V?ir@T)Q>5<9qRy(gWXJO&Q@4Kuy=wyP+2bi6$r%8b8!|@u>6g_q!AU z(;d0-SO?EBC~ZiVB_qdxLV_{q1E9`Q-+oi+7W6oBp5JAPKdKmCcE{X3TP2~l88(%Z zgBv0P04_*@i45H?uG)ARaULKo@?(YDLnwvJ9%Hc5E!M}>TCQuE)wj7$#lna9GZG#K z`x>{+Xt${&ewdkqvAp7BY7tV)Oir4nq}EE!&^ha zDRGpG8Z>v}{J?$^ys~&8tJqu0d&7eSI1(%xh%)j@O$nd$j(@hEEjqDfMfN){8PnxS zxr1jCC%}|<@j^#q`hACq5{xYZ_JcSY=cNyKKQds73g;6owQ{p{)UNCh$;=&4WvNP@ zM2XZwa6wWqrBH+V>fI)$gWAJ0luO#!#}~=< ztBz`R%Vo){9xtF$YbWMlNe6@0Q3d)z&iEN1$bB z`$-w^O@nD3_53rTfdFss$M^Qvi)ejYAw4V#9|{pqt$w?zm zzqjkRd{fgl)T}@EpPgUC-9H7`BTk>(ADFDAsUZI1YrP1?!cLdp9)Q)hAZTdJXJ&Z| zv4q`#sSoEoD2z#)Kz%2(*ty9v7oeFAo0@SfmZK-E-YQA5IKO`PIoKFRwx+aF__?Xx z!LcFUhwhLBg%uIRu-c+PVcGRQYhXF{H!;Fv+DdyU^}P#pW(U&W>xdI)9QWTDVncTJ z>4YUn`x@yeif-I%^6%J0=lHkxBcRsrARc7b@4#4Vm2NPT(P#5QGtL5v^|?`+o}O5s z0v%}8Z?4MF(#wW#<+}KLCrE-vyULIwt$>9eS4?z7`T^Q~rOsH{fx3(yI%$QEpB8neN}ZmCqstOS|ld-9|N8PbHO(gA$q9(#`|fXenb_lmOK!7k5rx zIhbL*)HhOyo)lqs+lM}%ZR#tW{&Wq`k%E-+1So4HutX<;!Hy> zI6{KOz3Xn;l0{Nc3VDTwpSC_9x?=k0*u7l`)tc1bnx@}=zjS|!irG`m@@c#1YqeX} zlpk&7U%%G{oE7_a_g0^A%-zr9=!+}qTAeT(YE4N!+T5w2xrcd2H8xrGq0flsY=TEc z5-lMOs^5@7SMV{H5|@x+?s^G-ixqb#Z5584pnYV)UfpAVC#Yty+khg`J~0+9r!8K3 zIwNi+)PJX57Rd((erc8B`w_d#-+TOSL+&}{?|sOLqSG#@MVN1FpHMKY06ct2?E8=@ zrSnUY9#M`J+kZYyyOZjtEeWKujE2u>wjzBT`xY1q;M=Yg;dB!MAf2}&41Cy_Yt)AFtiUyvZ_nxwpdPZU7n_elB%f5gS9w{>-V{}`b zC1u()EWiptz2;#f)+NO-Y08s%Nm6d|N(ev6pQPWH&z`5wPo`D6RWy$9rIYl|lmvWv zM(L#gu6es&;n34MRD`Ao9tH7YMrU{cXVqv$Bb)WGPG-r@JWH`o`7j)xC78E&`Kql7 zy|9fZhgU_j6<2mck1Rh^J3LAQbW9%MJ ziu&*1OaraSY|y^%iwUQ$2Wgxakaa|fs1VCRw9fUpKKwlxLv`-lk^k_xJt#80E%(=n zRndgN`Mswxsx6SnBn`{Ut(UY%n zdJO6jM%omwDDUdu*&7ZAscJ2xCAOrDle*OzAUShJNF zwG?<6-#hpYSz}C_M1I6xU=|lA@`PCl>%PbG#|NSQRCd%Z$53 zn9?HawS&hID+KTv!9vviPE27n`2};$5zW)|1RS?a+noLHY}D?=xO8_g{n-E%*)G$9 zYlPTI93o@ElDG%QYNzw)cORsFBIrm)lhgDjo8MwlI{^|?>taq4k9aAekcRy_aYD=B zgux(62p7t7kM80!7P0lhTL+e|-RVz>=sJ}(+rE%DhCViGF0)PPmVf7c&mE1w3OXB17vi(cm<2DA@V%eNVAAkdHOIVL?o))xxU;kXKtU59^vY*49=Mb)l-6gUhy8sE z&b_^bLLIm}TrFAxzi*fkDTTOm zpRP5#pKB8x_ZLO5Om@0HNjxxy0@QDgxvw8FtkSZUT}o=_yYGjZ#NrNOfczFy0?S=^ zKKfFec;2dOW)Pqt0%Po`oYNYj6qr6)qb^U(i@|;KB^5zegJK3X0mKPOi;+DeI!!Tp zcu!G^%;O|5PMaM6o-O;8aM=*-{ch}#E%f8f;Nd+y3|SOi<}{zS?$X8>YW(Nh6Cb~W z$Xu}|ceBJ;i_ltj>R0UKgZCq|gyID@A5_d1+y=mj1rE$aes4+yUK~eCedad|5l+9{ zK%7bp@BIvS*CHMa<6Mw6G zf2-B4Gf6Hojf((^2sjZA8te67%1a`q*F1h3pM#k$N5#m?TE1_a@IX(lJ$|niVJR$F zOi~XLs$L+ydgfp4OCh2t*ZRg#fumx#Oon%k#x7K@Jr_WSQcNL@gWG9VS_dQE49M!q?s}g zxm>)C*Ec8P=SFw*zjFqiM7dHLLDuzpF!D|*<-U)Ngj+7-SPx41UKIoPTe`jt{dLhd z`cuLCO{E!6{cNhy6rpCWmO6nhHWR0`JvGx#~>qMvMv4CCMV z>Z^{_#-K%?0^Y@eBy@IWh^E16a00?oKaSKMb9|PHBR}!P@47tO_X`ng`mG7Ml4|a} zA76VV7i~&Qz0+5T6D;c3*G97`NQH*7U1UTIt&k4uBgR6Xf>8ixbdDtpMwq)3sI{+B znz<-#mmfQsmQ7t})-uS1rsS{szt?(7l{%U4v_r|E$l<8TH>?B)t%(#Bw6t3@nm+Ef z&=5(3udQ`go~IN;O!3V<1<^Zw6uP5E_3lkrUxGKSlSxp=kn4Vj{UUE=!f)v)TEC{U zsD}n@_>%apb=dSjJ@cXPK9Tgl@BA`1)7xm;;Z%O=g=v2-ht;aI)9?fSeg>#bA@*;d zyCEfP>rf2lex^RBd|JB4EllGY)wtd60aiJ%#HCxrNejhBM|mZ-%>G&IyH;|>z8S#m zdpq2t&FK_dC1+i|) z`Cf9JV~122VvcN9>2b~z-mh%){Ql{Hq@`}Em)G8squt;75{b=J>wa|~^O+4=e8y3rbae&#+|I^dx>AzzK-Br9^eH1p#2 z3TpIXMtP69F`65hhZEh2<|%%&(LW~YZF8fXEaS-fxy?A?+q-7O!^_Fi_|pQ@gaTsR zFK*6aHumCay&tU_j5QUfmAp9YZvXp^%ue=>8%$FiCMTXVvQ=azoR#H-#_%wCpF3tY zPET={;C^SlD-B6Co~aPf{XTUdE;V8VfLcOh)DwrM>L(n();A7(4oN9)v;X6KH||tj z!(;1>d@Sbo3-YUZzASeb{^s>G>y<3Dh=HH5h~Mw-Q#n)M0s*%;PKr~FpFWevf#WSj zJF@bEGw`-Q`J;oU{PfuDF%3SWCk=X&1V)uw44RIE06D!H77l1AK**ogE_`lZl35Bs z*>&vw?(@adRu}v8_P?L0pLN`G*VpwnB0EC4HCoM${(Wq#KyF`5UHxQOr{qJ=%tF?A z(HN%|g`S#nb#45|%G#4!MN&)dD)Ip-JhIMhDD2_Zw<$Qwb8Jq}+QR8LMKJWHPsZkU z($d(O7)J!M^iRgo*(fMSPO$o`oR3ukUR~KJJ@Yy~UZnmDpH_U*|C6-gJ1daF|u5HsZtc&bJfr z9}whY3=q7(TCgD(LQi{y!Fwl)kSFvjtkEzd1}u?@>c9M9<$Mz@uW=kfOFXZ^6C}P< z5|qpkyeSA82LND<`dai zoYh#^*(azfg!`g!Nwp0mltkiYpYnFMu=iBGx%+h>g zm}&8X2kp3AbtNAssLS>-E{e~a;c_?>@t+^+G?#V+{X5@yR4(B0Bqd1TYo4(O^c&kG zR{qU>rVMdks8BDa>k?FCs+Ns`t4-jB&bvO1yUL_6o;p+4bR)6U1*atwoAGgBY>X>J zefo&;wF2}dA97J3+;A3+oY0Q5c;EpQm@qX~X}L=&EMvOr5la5sM{$Y5d=~9BX%)Z{ zW;sy=Zrc(qABAToVx*L{2iGFDnll-R+V?!ilSkT9R8jX^@(}049#SK;YN6`L)lnw| z8bZYJ-nfDsfLjmZNt@^!W)T;E)^^=6=cciUO+^*)>l9uV|Mi7@^!*@qLcL2)Vp|E%J9AuX;FZ+c8IKX%O37L*WTkppo-#a_2m?q zK4DvC3YY;>@MOcISqiZd&9XR7AMViu(;a@NVKm1fwj?K}7UA!<0TN_sr3KF}k>PCo z>Isiv0I3n8aa}oWfFa7qF41ZF%S?S)h__ST!l z_c>~5EtR@c$*|i}9IGN@&^~%BXHCm+uUR%~A<#d?ugC<*j!S8xJ%<|g zF)N2CX$BOV#l16;JDPgRnqn7m5%hUR!J03A^J@eT?P3qlLRoye+CYoJ&kO@@9nR2T zSc0j<*UJCj`w$bR$C;Mn4t62oKBnWs9OZJsIsj50XC*%7tXn$0+xaY90@V#u&2_wS zOH!C<+xv7UIaFL-r639oh5EFN>ePREF$LIidMmWVW51eZmh%1gmIo7Ai##VL+50}( zNXGo*j|(9Z%fShZIu{JstU|(Fe0=rb_P=WjFDEHgP=xg$)Yggx`OJo45vH#WGg6Ky zI1!){kbe?}@uMDLDqX%BDSB6iztwUG2a@yaOO8bP`~TSbt}aKBCdwbg15UU{5CVip zAlw^P2=Cpm-=wFjX7=0dGkvDJOI0KhkvHy*jLgh)G|vx#pth=HPO5oeW=?W=Y*^@T z%=2w5#t{`wrbIFDoy0bpL49GhxDT)PKzhSv!ng??ehn>tvJcd#kD0y^5M&VUo+tTz zOknE%iV`}Vq`U05(H6l9O2DTYwlVsZfA9I)8-&W?`Md>@xl&&NW$GK%ElRdYtO(K> zl|=)69k&(i)43Pn=cyiW4m74cJAG)VHAy`INB4<=bTM3Y=nvMD=xy=U4LQ%T%;FZ? zt_?9=$J1C|6(j(m_^jI!*41Rr56-2e9$O7~iIawhN@1g5%As$@8*cL?%bPVzA!i)HsFvq_66yt4bK9MSBfI4yTQri!x|C1ra&VD zn4DI_zEe;`QCZKRP(0*m-h5JW&yBO=5GwXR>#u%3WoMS|21PsR$J-mspw8lUqHzZJ zgQ%*1pA%xQs?hu5Z)=8l$DGF+#O+%hDQ#!s`&Oh0_mP~@0@@Hwxyi*p6xx0shz?Eo zi&495NFPP_SN!pT8VBda`3>Yo#CmSULJ~d6HRP`iVqFm#=@)C?BcA;yPCZ+mxQ#2{ zbBZqCMyuW!fklK9jlt>f_s>el)D5-;Dhk)v?;6a`Ul$thgX1F)pyD49mTyPd!;fdD zx_2-8V$B5j{Lkn0Za67BE@iF%G}k@Pel65^*?kdG-R?;TkS(TMwUi%%sALTtEvF!E z=e3XT$2PH)2Ws8q!|Ft8Oo&oy#H?O?@wkt1Jx*dV)6@q`O{Xi)qtygI>yJ-9)IMmj zAl2iRZ{GdJ&M0!dBM2HfjHBjZZy&ykq3D|quCOEs|HCtDv3g>M3!Rq3@+C)41hP*b zZaxK|2cl2(SNnWqrZgrU)gSSb57@j%7q?lcW`Jd&?E;|pJdj~WAS4E1fY0e?lkVnG z!5j-9)rWqZdI*cL1EV>4%s4>0<&G<1U>%6bPCQ~_G!dxUc{f8Xuq%&f?1Xfg8X1VE?T z)g`SLqi`1*7k{tBYwq~9uCd88f|RnLFF^0>0=b2^ZL$RD6p+9hK7Zpt|Hy@bu)$+j zfTpJ!d%@7dmBV10Ho4G3DoqvF(*OF8jXCkptC4BU0L~S?rcXn>?&8FutU+mh)EfD} zc8U$ z;$?C7sl>h$s(TbXXe?A{xzGX%2NcGal9wJ*e@dyuP_&ZiHvF2+Cc4Jf# z(9)I{6nYi^?!N)L<`G|-Tk89nn`%fB4{^X)=)0y8l+5luhR(kR)40E%eT4JeEN^VU zhTHq!?gWvG?m)8vzaS)Xr8rlfP`sehPv8YSWH(YZ^rI18q+7Zd(cdwCgz9@?Sa8bI zgd)A9Kb>oS4*PC5G`aa+oo?;Vouv2k_1C5iOaXm|PH40H;@224i~N*Xqhr16$(LRJ z#-;r?F87iV-4FP|G89HsFsjP5@vr2^SH0~0V@rlBKq$VsbbKAZwTbJw`t{rp_!0m~ zR_vm-~aoNUIEn(gU%ip&-9s%a3GXiYDBoHJ)NOlgH z0lVIU<y*iKKMn!$N-DxY@77ikEc;T&UDJUn<<%f z-k&HoN;7P>(zKD<#Q(*+4;TG|cWMV-s$KBsTNTGVpM5n(#OaPbYBIGU$!+L0E}6E1 z*FG)lHeVeIX7e@2@_dKkxJ&6Ys(xb!kuSgybvst$SO(gi1gK^BaB*8@;(k1!kB&C8 zOZ2!&y;&Lxk;fQiiNf_*26^9N@yW(7P70qgim`V3?|x*CHR!*w7LRX``wj2@l6z>Z zxC4fVAU>H7ytCPcDHM7r1{URSSiU$O2*gqT$Fz^1jt#L!$mLLE29bk9XT{|uq zs_KK96d}v0FsD{GvjnUm1935+8*MU5PmCE%VMMyZPBMAf3(ix$8iTRAF^u~7wSh)q zaA_&5nCj}&JNz@z0b6d~E;ec`Q_M{z_jdxT?-5ZMkJ*J!&(Nyi?|$4nd%XU^MkRn= z?F;T8wMB41;_v2zqxfiK-u;eY&*I=i-R>mz1Rf;op88#r;;nzM@Kx8PcshAM&a57w zMf&uN+vNCKy$Qn#McAf1>{#|jj1-dJ-1?C(4#j<)D!la6gSv3s_S=N4&xWHYA23AW z3BJ}$vE~l7=oLR#3Ela>bO-1Ts|h4ga0& zS}|TRf69l3VugFp!g68LXc68**Y7-l;z9kz`;S(={^GrGtHv^T!}-Vn9*LEIZ0xq( zn7^33m4#;6eEmQD1^OT3HueaxmbvQZRsZ56XMq7XgpZ#p=98Bn<3IT#oUDE7T&o2f zf;DFE3vfl-6->EVcN^08l{%Owpp-yIDnD4P{l&)K(X+^wwB`0cT_)tBg!wq8W-F=^I_^7vph z9{%!4*8brUrytdHd~Yc-2RxaR760YkM?r6J<;3l)lfdc9Hg9*Gbkj?;G z7N2e)PZhP0D6}O_`runwqH4MhhSLV6&P?*}`po0FUp2(?@xX~ZB9OKW5I7k1`Ojx6 zCqc1k7lF;*cN7|3h8q_qS{T5~c7>RK_t6CW-!aJDJ+U+#+d&|t*wjbV*rkCm$;R7i zvYL)gr~g*(MNoVeH=^GjDkb9o8Hb3+%@;iHkYXShR0{W^O${P1VnF`s1-*RxbrQAb z+Wp3c7XIb_V0L;WqQ&Y+93a(L9QH+(E>^|UFhrMEGQhEKNuw_y$q;yMe9#|#r13>z zY;5qsZV|9im^}B%I=-utY|cTF%>5_C1NE=1wfGh5$@>7p#-zDra>nxX!xQ!QeU=I*P{^LSYL@>#r~l_Ukq)o{ zgpgoj5wv4(F!={QiNSwCyntAzd_gW^d~`zRnymlK^UtHZcnYg!O+C!TgaG%v|7aZb zPBB@Zxu128x9LQh!>^wP=L90*B>5BQw%<0v++pE3qu zEnqxIZIGz0;#B{{t-epiG8f3t{NDeuv(SmFMrMHDB0$pvGRIPL@P2(K0aN1FrwM-b zWMjMkZ~@L1$?d!WIuE!J7ryuJtjj$re(>vlPGq*A;|GgB=HnkM&c02)7mKICxp=CJ&1A4)(^I>6@YaTUhjD(kykE<*#>Kz;ADh1%`vbst1ka)p`O+1SxiBj> z?N)awwp&Bi%>vK}d&{4(Ue-Qbo6U5U4cC6O9}BVN9~xR~5j}s}*ag3MeedUwjxA)2 z&6983J}+PEN878`ISm&S8}PMbs{hA_SAQRoiW{6KD;O&RVvfR)zBr9OA?h`csMMK& zp=i@{r3Rw-9~P}>&OiA5)w2*CMHY`!n7IcJ`;=lnuG29Vny5o+}2Jh1+3GU6|FD7Z6^hZB&!+Z0^RJ(BX&$DV_h=~Oa$3+-g`ZnoKGM_se z{o%oXA1rIdA7i6z@+1}y#25Hk95cS6nDT-#RudP@p^@>`VJV2-|G_bFvxM}x?z8={ zkNRP`_Ts0A!Af^UCGn)mlPq)BEHjgwN%1V}K#H>3m4O&K%_$ON^K;-a^T16LD%McP zvk&9;_;k>8CLvI2(o_QFO8jnYdym$G2cOgXWL~n@lVGSm&XRP8AV5+f@cG3byRVP? zKy)}cZjv-XkvL&$X8!Gb)g?WGIEhbxFo{k*(VLnMb&k^`ykv-($JTUS+9g_^)GYN< zzF=N^wli((BZCp-S@!6ke?thj&gmI-G$U`lEX`t{kBQ&PjPt!j7soHHS)=Rubt3p# zWdyVPsB(+jFZ@CEjH4;26KKl#Nc134I8npt+M4%y(@6yaBY`{Gk*wd|eu5!SOLG&ktInz^v zFwLCv`OTl5wY13|YdHf0vx!74yv6ereCCb^V@5>RksxM%V7E22-^_tDqmTaFCr)$R zpL~WaNe&x!13_m`i8Fdu5}$>1eA9=i#7pM3N~SQTFx3gBpeFjQLva|EScsyCwxmPS z9X1cgq3unhaSx&O#4riG;Mw+jK9pu(`1TADFqlujPINlcjz^#;0`l%b;pLc+lt*F7&khFmaO)RWzh#|EI>na{M36zl$>?1krpl zBn6o#@MMM=L(*EO7prObeeS3N`_0Md(drCbZSlO zebeH}yvVg5%$KXvlm5)r=-u<l;_z;)~}upg8MR4NUud zPfo+48-I_eHqTSKG5Pk)+k0%9hCU{6Yj?0J2RkfR8Og9a?AvzgQ&Nqn^+2mK1Jklb z%+e?U0t!V7To!dT{1{mLr)Fl^mAKUCxtV@T!$V@E3Bm1j0dn!GJr(Iur^LYk^S2r| zd_?gL#sb0xty$$L)cpKvtNDlyub%AXDut>u}h2LarmZQExA4chdVuU z68*FT@w=JUu)YId>9F66j~qDy8jRICyM3U3h)|F4WQo`qn*kH)?+4(mgA6nEpeB#v z>>7nW9fSUE`wRZ)2KFeF#6s;4SLHLiPxBaXr5sEQUU?tYCudLgtr`2yDie=LyZma&VUG?;zzP3Q<{?x}FYB&LD zpn^O=j$Hq60o~Gso`Y^Q!$kw2q4{Zy?>b>-b2PC1R|GDyJr*_WoLN>#^_HWKv^6(J8;Rl|cR5 z4|BgrIM6ot$Ga&8)Z`^!@x!=3uxV}N4@Kts8fAV-SprUB%w;(PEi5JD4v_8_0GSYl@D3?Rd=p=I(#WAP=oCc{>LgKfBFw z&9#H+;w?8Pw4u@YoB7~?s+1f0tD$)AA71@@*^$^6s2EX^8pJ*Go@4O;usc?2Z;*d^ z*qx33S>xal@IK-e5@i=MQkTf*+GLh9>m$(!=kk2GzvtQVf4EGos~wWOU)#={ZZJ0n zEzXXG*k55vgJPew`8-YNKm(AG~T!U`MDWu*U`7+C7h zm31h3kwJP+I~Sk3~JD{?A%YF>6xd2RwB$TxBHcmxuiJ0DeSG#tf8mU55dz{>^MXoMRce zvK}ABE});$1c;&>m+A1h1>rEH;6>48$pKmZU6Zpr>30 zF96rM4J1nMnjkN3$2V00eR#irb4&pOdp_6Xo#tqnF3kOTPlK`QV?G@w6pwTrfZFNy z8W!S>ksXTfgrS0FXwnHRBmavl{OdIUAFIwAZ8|)P^|aTJ&;#x$iImzud6E)iJ&9jH z(B;FD*<;f01cge|{4*B*VFKfFQS|9m$5%8;7?`G}QYouRgQ>lec%<`O8#eb8U3_3v z!B!vWP5$}*D>f~0)`O^iu?Kfv8z9g*Iec}E;+b!jS99$nx*_^8PKO^>^TLb)w8R;r+Wd!D;Q4bJf>d zYNlJZe#<;I(wh*<4U{!hZU(@VBpJIYvJPlrpr1hT{V(>PxTp*YD)t7=Q{T<~(vAo@ zX-FHjU$_j{->Oa8%+*sAf}?$XbEo{WA<^h3EUyxpajBGyO#Fm1{JN66maA{?s&!4i z?nJioyX#sg0?VmKO&`C+>1EAd2RzBb;;E*aH5#Vfa5bY=sUU7RqjX2F*7z!72izQh z|5I;+2o2b&Pdtz4lNhPGVrp&y^gm9sFW#Oq5KnNL;dzf9W{Hpuu^1~wNWhm*q&}{i zI}Rh>Yd^!^yr7v|Lp$j$opNTa?dqe;Kn_(Aq0-)U4-GON^mz4rjQws&TGM-EesZHE zYPxZtY6!ygjcFaso#;#J6MnkFgiF&Vfw!xAyGFi|v}Fx<`ljYECq zM4>jIuB%Ygbs67uJIQ^j?#oTzz!+(UL7`aSt^W{TD6NeBJ+yp(s(23V!;rkUX7eOQJi{1VSQg0XhQqbaY{gY6)LY*=G-Gp zV`Lit(_7I4y;LnuHrsGLV=z^CXzh|VeJVHzxzIMz|&Q%qKbmuTjo;3C)y@myjW z^41%Kk2`H`D=}%T&9`1Q7!aIAamuRJElGLP5W2*}d$x%b2NQ%dObx@Z=5Ctftw-&~M{eI^nv-Tp_+^&POf)bkJ&)ZHox8KBl6 zZoaInHmrJ@i#I4?(n&IxV>Ntz3kr-8M|fs-1A5qU`hB(PC1}!66g4djo|ptIQ7zH= zEj*=ATD}+n69og=7!j_}sz3wmD$=s05sv9+@SK~?d-Zkepm6+VX;^;UNN8r>yGQ~% zN%^vM9+8-mjY}haCmW|#=grDv9ZVzFX#mDH0?(?dQF#;`P6B7)kQNWVFDc;&)weUR z5E$C>_N)%qnaIREXVX}DZ8gdyCf3jKQy(+f0>oTp17E={;4Nud=lMC=Hmo#&%Uu1U zb!IR6l)h2#J3AjP?%f=ha6b?|tsn(}1&xj(|ssHO$;$$y02W1GJjf}k_R4rh$JmKdt(KXuLLc^8EW%Vv`|TiBk5?H*`X;{`%uu!3PF1jKJj zl*ZnSE_s>{NJznrufMv8B)y@{547HzN&5GCI+-z|U#AfU1R)4n0zmz?sb zIcv=u@`GCtRV18z(#0_xud7B|I1M|dUY7pFPXJ?n>zXQ?_TR(>eCS4tVooub=USY$ z_=5u2hbYD$##Xqo?sTySTJ+1fw$OFOOp6gL57}~a2U_5*caxg891zO~aUUT9*o2tz zM-IfCtN{Dk7Wdl^fqf`86$u=lGzgyW*vQJofyZOaz|tJ4(O49p(m*c#>a(<7Axi1T zsvl#*Q=%I+{c>kJmvI~qHV6)i;mtZKn)y~4JFap1PCe@A{Taz& zyuSM!N9ESp1GPhM63|0q8FxwkbfzQrkqHB0_u)*84xXp~hrix8YhH{hC;STeV0lUy zbl$HXTk`Io9=Qu2n}`Ko++t_EYr zgyp6#JPzXk7@!L50iBdT)HA0TiJtCet4#_Ax9h3j*0c}8U-hlyZLvCTu z0#yt!gL9?Tk36wn4zBI99gJ~COO$6;onAG_MnfDD=Z^r!%M}Sly#wT@PP7S8bnU^N z?mi~3jU>YqG7KXb%g?ylPXj2|AR#o`csDRN?o>4%-MCDYJnHX{UOQr$Ms8}n0~>(+ zdo0BY4#V3O1LK@Lm(&c9*$a%vKnEx}KHpDWY4oBRKa>?fHKDouqZ>bk0zeuqDM>BL-dT3SC9 z)n-Vi*R7v3QSOf195@Z{2Rh|!UVHXyJ2selROsOn0MGrHS(U<)CP4wPNE4W@&+dg0 zgcniUTdtckg`G%W@C1$4G{iA{IDNmW2>Y(*q$|#9RH_vi1Dl2{sm1c++XB6F{JW0^ zg!#>x0YH)CN>4{f*EaBfczA?9wYB%6!{vZS$Io&3B5zS<=gP5=@Xd8B9zox8QHon5 z0YQXg6CUVX_p0<<*>F91ENP#F`*;KPM#eHtC-GB_qX(!{(|x&hPEM#80yptJTl;tY z$>D@z*|BL{R^ZCcQ7c3h+ze}tXmg4S z(!HNE>YXRS`Nz*-hU?-{ORm;@CCX}3L&#~$&c%I zEc1mmG>o|Ut{zaH!;Y^V5l@mu9Xp$QsNRY)^gQI<@^3zm7)Cup<-dJm*3~B_i~|~Y z8}0-MhI;x3v#ufyhs}DE22MkNxneczg9#YhyPLfMxnx5KfGyy+Wd9oDHUGW~S_M zacEh=)dWboMic;EvJ9jk>y^(2vO7>NU~VoP7-%U#yB>S0`h9mbG zJ*hSD(sQHpi$}dTp8+<5}qk+vkm@Uyqg0+m*3iF|Om-BQTQ8KkmYWC6CPRdBgeu)3s_Av?tZv5RFRXG*wM6MW=ofavOcx zc+j0wU9T=sEC94_=>7QL{Ee`k;vN%&A!R7dF~oV}UTI?QO9y{@$KOf7!!epewVC3f zW(7t@_A(@1m1ZPl)TZZRJeRBI_^;hL?@yiQu`sDQL1u&N>Ga;Gav`vY+=veReek!l z3G*1!K7%6mV-FG07l>W|gh_h;9FpYm<`&T^7JQYc+2UyZt&Qr1a@BJXLAiQeNW8u( z%}e^HKS>h-s&dYKVJ5vEkj2MF7(nhG_3#3uOB=wumsRMzf1p{1r_~CZ3gGt-)}7C> zw?A)?{?4xV;b5Exab~PZ7lF9djE9Z{+c?nP~Ca z7m0Zo5YnyXc@(Pn3~Vb2iWMOr%Qdqml%7JU=-WG5hHA=R`~Or17P@0{hX82t{ z`iTGZ1FN||z?GPuBfwC?=hN29CjpDm(RSG+*FknYEGFcE|Agmjt?lOGv5Sx@BW5LY zacQr9!p{M7H?11;3VTG)?YEvfUiEqqM*!zmgIAAv{&dml@!h}_lZ&A#h}n&DSMdA(roP?{_P%QeTA7`&4U-9dKcsx zvEt1KFs=o|>f1903m#EMO44s2AH&LFEIv98KA$Ali8263K)ApB85NJBrJeWoJ^wvN zLc1>y%DR90fAmgt^{*q?@F2Pa&1M(%0fF?G?sn}R+yqTQ?|vCG^Z?2#9p~IsgV(L+ zjwjB|L%8AE1j7_Au%h1QCie{~08~5!Q4bwpMF#1v=lZI8`%34GrBLvv_oKp1hNLLG z-*Fty8(a-(gh+A^`b@+yFeN?VElisU)Y|pim=mU>5gvPyp*+#+Ocz%heOynoE)zB4gOVGXb#z2pG zluW38i_dGler(~-2%D-7GgZExicb^a9m)*i1qe0!qS2bOjQqXB=E+id*fNU}2T+HW3%meyB{_OXl35rKgcgf+r zAQo7?dcL8od@&nCuU?Jd(3nDr7yGTCAO=~@3{DYbJ2DC2uKP~x%=eyt-zKBSG4m>Q zVJB&G%;sDbZ+ZH8oj-7(a{uJ#r*A8|P-Vn8^Ank4X|d=SiK~6aYw22`%RAN?tgWaj zY5Da$2zqs^HN=<-o=Y#$9VP)#7vIj1!W%linbUFbltcEEYr(Am?EhNOa3!ggp=OUt zh8N`%YQ^+kEK^DYW-E;r=PdQ@bM~Xb+ZO=M?KU1ioSF}mfB4*eJV;Z_(07G1082Ui zRgfryKb(ajl+`)*2+*V6rNUGOn$VwZW};>YR@*ij9C;^hI~Xu+Sp2z%^>E!qiQRwMZYnDS8;<{Ch}%5_Px%8@0RGvgGm*WZlLz7_%&6V&eQWX4IvK ze3oSyp>MQl$>VQt4U7F*^u8mA&dl=(AOoO5^};y_)$j89QBHW(&;0y1qMF!jyO zRnm6^$0!dOa35-@5smRT?|^xEQWF1+XR1C3J%UK+J{ulo zrcv`?pmUOF(l8-2A#zCky1L&7c>L$x0dUheWP=C+*#WUiub5QSQx;6p-MZ{4uYf4T zGcnVCz%W$iM}kW+{o&W>>JO4Bc$w3csd1d}GkcAVHYfAAGelAydx?o+cT85C*z0fF^g`EO`po&u*TOE{@u;|i{0DUY$?RTTPcqKDG$HpRhHgl0VmYD zUHyA^-FVnX{I>&1tRa&mH=~EU{q7xz|ExK4A*ondJT%BuD%hYD$>R5&DjbaNr+MG& zX0Wxn{T}`Hz(k}-i2GP}d({F5uTXwhR@82LG-j52VKM%FnP@U&&xDq~dpKn|P2C}< zZg2U%tK{M?Ubnaq$rx3AKrq0R9QDY>pU$k+qZ_b?81-02dbbk*EJhGvKwvz;r;|fQ z{YYi)stN2a4FZkAbOXcV8ph%kpNw)?7^cKw&k@7p2{QOo*wpW{w**(jzK;j@ ziqL3I{b*_MbbgVzo6e+>j>G&dJ-3;!iCy9@X}DvLX3Ux5QStuXhWodEajOtM?pwzZ zucuZ#=6hHw=UFhyDf4JUZs<&&@+!dQ4K{A!j6z4USvUN=<&VigbtYL7l3%R-esQkWi*XKVRfh!VA~&*f%VmGfx-R?#={`>cTJQ><>jsey46`)GyN~Wk z-v{x1>;@+{VD+=S$+;bx8%54Y0Hf$a)lrI3Z@Ils-^bV*|2x*3b=4uar(VVWgOgx1 zNM94C-Qv0W*rvmZA>Ob`r&hWM_xiNt`rx{HQb6BiUlkHT@_EEo93z9?!FN9a*6lR3 z?BJC&iw9sq^R(b^AnNb#s=PK`AJ=B5%Yzy6(yp^TB5ieF3-A4(vv+xmfvZ*kSYmPH zRslZgIk)J!*9V5}?OlCWcWMbmv|lqGRfj)Ez}yN?Hs?kIOA^fbl<8l8!)y`EYx{#5m1;V$9()Z>t`T{~p@vDt?qN}fE{Y;aVFcgMDyE}jV<4v!K z`gR!#{_lO@3cu0_JzN29io7bRfeIO=6ir1v5lCNii6M)1aNKkd9-BcD-+MVkRtGNt zx?u58NhZ7b3$zsNcOH!={;bKIKRVo(5o3Cjs}hYYZKmgr*_S(~_(?VTFjIO>QfnW5Y$3Jl8BeE!b-*o`RTuC)-=$!bS0#jpa?gZ~guF@|Gw6Go z<*Cu(0bCrtcj)bLc$Z!Gxzvr{?1;kfu|d6Y0vV+(2N zm1~R+BN3m2@Hg&`ROE}h+2RrM?Sk#|>Uj0+f8^}thED{Wjg&cXnF`e$n+bh*qk=p@ z*khCb9pIf^Cj=g@IczFyYdb-G-;!Efnn%o23UaffPfM(NwKR>D2FaSD5EwucP{a;E zoklTr%JpzsPmF-y7P>Y^AI_#2if5RkWgz(7`yioa%S6N2H9@kzm`p$>sW4_K`A>wCnaM@t{iMF18ETg?-0>sKz zhyl1}GsZi{uq>9Cr1Uc4nI)(SkI*wp4wN?d~7wL)mbw`X{ z>x44WXa1_8k)+}=9qw;6Jp?BPbeu8fz|(*ohFr zw=`0(yCov%1-lM$Dk5^#Ywi9YUw-1_YJ$A892qtSYJU1LyTyK}>I3zfH5vxCGM>k` zhD8#)@3qKs3z!2NhAu8SDp&i=sLoxELTVs^L4hoR6UK;Rrp6R#K5mm_dnkejx4j7M zsFTrb=#HT=ASRySAou10RZ{f-Z?o4w`^ik_Db^puTP3oUt=5wF!=2~S5Y}lcW^`BZ z?r>M^kp^`6!o;&px?@V_bP5?jmFE@fWQrzavD$GArRIqY6W)IV3Y_}_$mZV$>N{e} zg6T#PZBsCM>eP%s%FWU4(EptixRpkeKQ++y)Nl-L#~0c4ik{DlU`JHG9j`K!H8jjh z;(>B^{;G8^fH5@v+!}L(GfP&P**Fp>(wGLGe|Bfsfr#(WUMHp7@v5U&A=?@{F57j7 z?nBq7$B9uZeTS3T|N ztf8>YPY;8H9y3hd{B%8C0O0jUC0rOsP*;YM%Abt;2UZWsw|PHFeJKix!ZVZk#E*#* zqNNSmIR?a6bx5YMd;2-ohWY>JiLCBS1YS>A0EDzygxUicNpbagLx5L>5t1oMy6t8z zx7y;;6ARSVO~Cj9D9*{u_xjr|6}n~Vbe1dc#-;HmCgG#DdzgJ1pU7>zuoxrC87KaW zhj0a$KLn{z)1C7F<+l#|wNYw5&yF|q!SXnyPoywaCKP|m04I^SI3eX&^?4RF25=*o z2vjDe16@nh6e7T2H0vRxx?x35)Y0l-;^T)l&jetkO5{~v2T6320`n%QcHVbHoy$0@ z^8kWmU6yc){?DNJ4ucQ(>U#r&y3Y0BE}&dqNNEEsqVP|OLrXo{lyjY3LMbIg(HV?t zeQE=KDhRaz%~@eG&zIn8N7gX%@TIf1m&VX|q9DO4x{5c)jiS88pqM!GLdJkzDD%B9 zcmu(c|6iBo?)-`m`cFO#rpcODJj86CJ7LvV>-b*E#{7Ts&mw9 zeZjER!Z}Tjdn2p88Q^M;4eE@?F~gkLj=KpH zChz(A3>Pp4tw#=M`Eh8lyGeh%4OX!9HarrE?)bLK@=vDX@)J`fqI+&jq{P}m<6Gh zIo`h}5FrAzP*%>ELEfb;ArnT_^@9*c3bK)`P_KPSh;A>->=1=sj?|_O13^v^W>>E$ zG!V5h^hZ?1OPw(q#V}htGVt%+YZ0Aion!tj4Dc5(9>c+7Zb8(=)pWW0Z&<5UW|RinKcmVSB3av{9GW zd7gm5&DDha9vQfFa=kCLVU!lloB_2?C0-k3kOPYXY|H|LvrxE&yz5e9+97!JWv(5x zC%-YH4IZ<)m|g~GG+~k6^g|>(>jxyk8Y`V9&_%+tc%ZuD_Gj3kQL|63v{2>|wV~Bt zd*E18IG)~~UUsDVibQ&qJ(I4j?a!fV=XEsd zI=mu~J4#Y?lRHn4kJEvC3E+uh)nCE^So74(8|ELck!e-3X$%a4^7}zaRCL2dq|ytCG(+V74_n`{?I_Z8`#=ovZiqmD@WR6kD}?Y)z|-I4bbno^ z`@b61s&yox%!nO(M@B?OlZd=$iFs}vc-pHe*TxM_7bk%+yf}brTNjBoR`E`-QnzGn zmr`G&XS=wPLlz#~znm?X+f)x)K3{5mV*9{lOX zGnU&cDRHm6FE;U*O{&xT{Nw5I@OuPt`lh_+vVMP(8k?GPz|$318v?fUcMGRj-r~t} z?}Tdf;3XOHYd#UD^Fk@L*oS>+2#!+ar0hcld^~l=^U+~QkbozK(u*%vG@oyea=G*v zA~86wI@Sa5(j9$DBOC~X3)>&_VRs`?;oTSlZc>eCy|4`}m+>ci(3^E$x+zK*plxji z1EJ62EWM+x@~-~k9ydfJHgN%=bLw6ByGq|}<3){n_iyd<23>e34)hIzAYrG9C$8>Ib=Qz!x$@I2s*4P`Ej*XV7tEhE^|R-Yb) zy@6*vv=}j@&8#Y>6Y{|q%P{mE147>bH;{JZznD!H4>*Zdx4z@%H3P|U$1nSs6VKJ8 zEQi$2VS5{P+}dEyj;xD~x-%ur{KJi(!i3RA>&_AyH+^Ku2>ld3LIE~(L^h%NVt(w; zS`EPr33iZazCS)E6Mfw3LSA*~t|`bFB5(_VI1r!>kbfwu{6+Gf$q zWIqL-L}cy40XbI^amwr)0)|)eWfBWoJ~cDX`TY3Wd={^=dC6&GnLJJ3oKqQ3*(ya; zl|>V#946e_J30N+hr+2m4g1@2%#$i|bjLzj!Er-q-u58yyZ5HK`HGh~()P!W|BdDP z>7};oeuO5Cl}Kh(-vgC69{0I*4Ow^!cFn}%xL%j;?&*krMrfWslo=gh?GBzF@Vi?78h1MsN+{O7caXrL_{DohSuTO* z(nuvCuVJt=BCWRx-~Bf_6;3p<3?i3h$Nouu@B^@&boT2v%w(J9;LDJE+*3-g;?nTV z_#X_9w#kW3SjqIOPG(2;+T_dt#;H%$4fFC@Aq(Tgnm1xML60@C*L|Mg`9TkBwB1)6 zHuNA^v4A`wBsH**7utGFYCY417yRQB<1jp@Vx!|`VOO*Gh6(T=lQ@TBxHr#Gm4TFA zaO^f3T#&W}D^Kv~7Pot}k$Vj#dVt??;VJ9KI0Nj%}r0X#3>4Iq#Td+4g+#w zmu!ijoQFs5;%1_&rZYd8BL60+5hk^2E0_$M@)PxzbftlgfqutHwfQF9cxdVz`mYDq z78XLHZ^&S0pDiQc-@-$|oDmRv`roC3p!(0!<63#{=mzE>FCjMEzv&qs!o_hhvnFAa=%zhJrRID~)YQ zC)CYyHigh)TCly#;jaharkr^X_-vwpSX z%hIwogYU*zzt*W_t7us4(RsT6;v|IOz6 zn`1wYt0$Y2m$wA=j1!pUU3|x-Qn7+Vk~X3Cp+NEpTPR!M@tBF8CXNS)Rt-lTjWbZP z;#xU4fe&AXM5&_4PbXqEwB-YhQKbo!S-fL=I49vjK67DOgahq^!X>v@Z*I^+eI?Wj z@*5>%%cj28U=)nFkFlM0*1R*1DhYgN>5sLek|2m_uyOzy-Em2A_F2JB^2sGUUACZ` z%6vE?3Ldmjvh%q_<4o$*c|&3H43>O9SbG+sUWok9uN4rGuq3q`h(Cm6wtD=%9XMOZ z@~lqLQvfX6!L{_hr5!D%7`@Y2QGi+SWS@}fHSuZBcA3>kbg=(9+uBBwn^(M z&lGTP#?opwYMvB~qi&sc9SE`HJ@N76PSBJKkx)&I8e~q}`t6^=@qSE$3VUJ9Pf9Uz z$VW%U)qa7!+34mN$@cA%*qZE<)T+z2MM$fTnMr7e@TWiIXJ5F@ni2jl?l@vR`nvt( zrguC^Nv%lXm1gHO@o(uo5SA(|!JV1g_1QMQ?FLjaJ4*og>6oV*9Odu4ISe4$5v5e@ z1=CNtoc3%(U8rM?3eB>~fxKGpM&NLbVN{m2SI~^6YpC`XJCcEYe)mp$PRqvxHpc2u zIo!mcdGCOp%Wp;jqVzSt*)f`fy|D8{5UX40PV^FQG=#{6SG!SctSCGPxc2*?OC;8OQ z%I==mTQ99RV8PBgYyUXr zG?(n=$xNZju>rNc6YpGc@+=MH@_%~H(JS{g=fRmj-X>aYF*jx&YeQ0{f?H-JI0 zTJt^!+VO6;NcuZ2-sXlnV{KZEKux776&m?AjR*6%wJUxEZuOi@bKD?@n5duzWN|GG z8C@J@|H2!8SJMeMSWSq1N5G5^f4qs``1!JS*VKRF(edEvZdOqLDX@;~-52DnHCL5m zy3^SuPSHXp0C5IlW2;AR_m11$3k{bUF*?per$~sdZt$)z9aPn?8R@^)^x+YKdwuVN zGjyt@UF<$9?#W@ z191b5>M{+tffwwq+}TeKg7BX?bl2-4Fuq&=XcPT?TlvT5&c9!;&-k?u2=5Q{89fnC zl(fVhBz00u|4h>KtO&V!xFZ8gwOke#KfYI&q`V1OkA*`&L) zi?ywrzVH(|yI2?ie_vj6|In8s-THrpQurZ^m-w_Eb$ZQ_1`ZR<`Rw~^B82jtPG9FC z2FI0_ZC9Fn`DS-BM*+F3=u*&Sx-B`jCC{_Jj)o2HMZk^yW$Uness3U2<9wj4d6wzT zK_TN;J-}B2G?k5~iN;zqS;7R`f+-lb6wUK6#w4M_#;T8`CN4r2jvSAUtM4~i0!`$l zGhcmiNn31~5iV21lsq zPZ!VxEr{PehKcf7%mZTHBC}!f{uz02G2Poq&%SuP?`4>=uaLrK0gl}-&IS=p!dT0Q zMBB#G@_KnlUH!r&4NjL9OMxe&evK2v!x)oxI4nNOgm#naTbo$niq$nuC1M%EWrA-M zN-|K4rX5TWQI?pY`WbOE)Wr5pOPb>j_t&TI zJx#=>gVbA!R1^(0^y#%4w3=VYrbQH0}@MuW24Q&{PG5BpoKB`Sw z3Dh}5+>;rVKx_ikTsct0W4Eq^1jFCV8O5(!n)m|8fMVHLB ztWe&qTe#G_Pa+2)Z8`f1oJw5iqQj!_W!l|Ot|)zoAF`MJ;M8#zbpKI$jNPK^_E{=Q zRTb(|kKAaQW=l~-;Y@RO?91I{K#PdX=_eI6>WDG}4TaXgJkJfg!RLwNqbBX%bG}^L zc4=1L;Iq;2P!QZ4Nh_9N^g9KaynrTbX<=8c^0RI5aj+{5OuB*L?IhdUpPH6};W8>F z7@I;ERZ(<5-L#Z<0!fFj4opc9_skzt>Ga-}H;Iocmk4ZrKxumV0GqFCOJ;I|1w0L- zfUPI@{WvvbzRNQ86@+ttiuN^XnPgX#WZ68p&!z+ZpX#q1Y*NU4l>(-*J#P5z)B87nFQ1%m0Bt*iTh;ur+~c9Pb*fob`o?`$?t&6VyV@pViP;|5Rurag zgyA#{&*rv%Kd#c&E3UPP-umiy5)IeG5+hgxdb(QwX<2-e*?0r^C`vfq4b!=#Gx~#< zNEqU~{ps8w2+CnumK9;&d$gM-27doaQ4rMjETeNm7r`vm6fiOdVK@v3YT|0+EGQm^ zq2hkAH182S?7GhG;j%k<0znNoo%X$2Q1HU3$P2@TAN^!zN*h1P8P#~B7rB?1ms{7Y zYmy|V{oWt%dxYUBh&Gm$MAI}?d>sMuGumB;qrnWk5os|TFVbP#s*G@+mwtS3lJOWG zH)y!Uv7J8j5Q8wg5gf2Zxv5;UHa)6XO6%E6-(d+da;ml%JLG0%f&XkZ7QC?!t(9q; zughv}+^-miDD%3m?{_6gweUoYVr`p-?nT;hhG`_toJG+Fq6mVZ?mGs-a0qaa>E0L^UCG$@^{KAMH<7i>tyZ}67W z*YhT}g+a7wuJb(k@BP_YQf)R2`~d8C;bj@8duSpbzVJ6!nmMeF?@ND=+Jjd0$$udj zy94rtyV8gWz=9cus^X0X|TV2*A=yxYJ4cKZjU`hKS#Ogxv4wR zU-g96-ZF(I7AuCL=ZLGvJh9oUuBrDt@#j$Fd6p5VX~8&ht|(BO1erncCyntTk*Yp3 z!k(SX5_W)Sq`}Xvb?{LDfhPPo-fNB#x-76M%Yq#tNI72nL?0z&5uax~@87cgg5P*LPysD~R3=-v;sh=OZH8)?K;yV<Tn9o7y1jhX>|6+DSU8+eYTf5tcA@g+u{N+-xq4l9JkARLP?NVi#k@IY z()76-H5DDURyfaof&J=L4(|u}RmQkB^t1%5h1ClP?g?ZM&m0g~Rmu`}l`2+nd_uqi z2qq`d0Qhp;GXp;< zg3V+EJUFgaDroE?Y{(ol3)nJ@6Cgo4Qo-f-mV`{BX`1ukAM6Q5*{gaIagV11+N~4{ zvnBj}W@Vx~k9$n5+%>D7yAk&(iyy}tzs|{CWs6Wy#Qx%;DQK;N}zzR~QV!a>noU#~Y6et?!8bqXRQQcL5ooH_u)6xnk&9?Q1 zPgssopF7GP#f-^9)w_#IL5$brMUjLZgoi$E92vT`;`^^$chM@-;!1i6QA1|1YdkgE zqfg~`4n#82o?U`6y_D#J!<3VZ;ahHO_`XshYP<2EO<#g{jQT`m{b>Z=-48zQG}E($ zrw_ADflKPX1$ZOF8J@S2sY#*6=`9{I492RSLh!o=2K$TjL0;uRc& z?EczA@{F!MtJzhh=x*T;Czf`|t)t2?b;4_BoRY*wn6JK7?vJTbw*X6>d@e8y%}7;A z;405T`5hma4Nzxz2DIfAVPfSSTtpfDM;Cv?nVTk?8VA$a!ZS?TS>!79PSlB5KOULS z=qX*=R~{8FvxVB5PZ;C${h$F}hW{U|ETIjs30laJMSDZ`M0b#Zrs|x|aec<$gN?yo zWF;g$g)%c<0#KAuoAPYBd=4y4O7x@)7!GiY`ucy>b38hrrzJnp(({G82^EdA$Hn2R z{XPOt$`OmzcO11%>JjGK7p2QWq+HKiTnjcRlX~~fzv|my)mf)ESwS$4<8aQ@Wmyyl zTNRMNy&}NXY_BOR`iT@WvqqBZ>&lGTPyJT=2xSN+4UiqW^8nkhV%lV&B|t!L>1Thx zE5NoHn|bTs&vpL}|5O&>S{{D`iXN>(`@n-eJWS*HC1h`(-_j%tH^Y_N5&8H#HII~a z;Mn%__Sxo`X8Mz`hCv&f|na*5tR=oJ8ip{FsQ zG!aB%Nu&`FKk7O6{RXVH2}g5gp;k_kqdtR!@x8=W#k&STiLZO zMFBuo8fVrpjL0K{8eudftf@EGx<~ z^yw_PRe<>Q0Q>KOMz(17EUp+lO(|WglBMuXcMsm zY%xV?-?b%?Om-3&uZm`rmVN!iasp1!$o|S*3D$zqqu?hl{j+~aTYb*Bt@(;;bL;>p z;7;3SSsuD10jqrhcTD>^%L+9v#vP#1_fdMtCl&;kbYSLrLs>rzN&E|OEDYWCJYN94>iobL-5#(6 zxBwLUs>w={A|J-0ET;)zt@yAlfNK=fx+FDg{)&z2RV}yTij;#z8Jp*qVHeq;NruYJ zRl47CcU_Be1Pe`Xa2Ny_JFo@dryJ0@c-S<4KEhVL7h9RNUd!{HVt5y+-P5-819Y9G~kPqAM-a zJm4m~8vQnRcpDi&#ofhWe9ia3D&Z-n^wC#OpJZCckX%E$__~h(jJc8!s?Z!{j`MhF z0A1oP0J0ncycq&g{j{%Ki5XAD642#HDu#s)uRX%uD2j?<)v73<;~8<*ZBrj?0mqNe zI!zQF(sWwV^Lk%pj-K95Q6P_RtkZUT+Jn;Jqy@uHXF&~kzR@MlHi(06#kJHS_;#{^LG z<7Yh4q;9OuK`@7V!%uCzPgr~GE~FNAyP{8#cim=+J9eWqJXqk7aVwX>9Gv)`TZbKN z4HwFh+w%@E>W|;@#Bv=vjC)aDe5{;|6sPJChAH&o0HYrOQMe3a)Gld(k930hvndI_ zAv_6lQtHH=0{|@xh=nZR#QBC?F))FE-U@~#&4br7(vf6&_HK+^ll8?8XCYkzo1|0r zf{}z7#;|an-`9;Kh==5zE!rpI?dS6&6!`lRlEB-VqyW#C&>+w%PCw72f zDO&;~#Q^Ah&@pYvz_<;55w_&*MP%bcH_cB~?*s`zyp2hU5%E$|uD&*H=#o}-dFjwo zy|)p0oEArbJec-XN|Y_*%;Zc zbrqod_jNa<4v-5BKyx#()O(ro5cnRHFU3ZqF#&K2gb|8G(~3oq`+cbPl4cheeNf z+fk3F>n;KyRM7f*>hcJ*yrbjB8BSN6MjIMt?CU&5xdCXvyJ|KnfQb0CgQq>1$ECw& zg~9U)o}u{5Md^xcT1bmo@x|?x{?trp7z^pca_orkXJVC?b^2bH>{mS?ikl2pnPbZZ z?8HjO0=&Q@Os(pcB&vnxKiJ5a|fq41p9BSc>iU*qT_OeKkSgEpxspbggJE}Kr zFgT5`U;ypL^y_9%%-Rcgq@obFa<)VY&qYP0=g(>m)XBbq=k0*JcqL*5UG-STvAFxk z^RV6@Go7+14P_ivb$YFtR?6Oh8q1P^EXmEW+m!xSOy@Xev46PA#iuF#4q}YcG${3R zzAo4d6k0gN`ubNAZL&xk5YOM$=$jq2z2H*H4>v5Yztd^XMJ z>%Ir*1L$qqXT9OjCkeM(+AYqFA7E%vxeW7TF2$X>snULjy4*osNRPbo_I*m@`=kz1 zr$~~01}O1SiLC55Xn;O9qagDUlEogkCECsX@Z9yQ-&FA$7=zn6@8TI{-^UjY(Pvyf zF3XPhJuh}6}R zOlj@!`tN;*Z?A9EgLrJAfct~En;wi9WX~=D7@8YmWfS;?5RVR9yu*`njEv?WPW(3( zk{^J**BVSvqj5CVt~Y!u<-ObSl*PVTSfpd1hI`E~YwqEN&GoLN+&{JRqMuD>Y@Yy6 z`Gl1ZT0xMW->C6<3n2^>a8&qmQ;!@~2<;#)$~9?`NH^wu-zf_bVyG&M)kpcM0AMVijnC zvF1WVEsZ{_#Urg`+80{jLYYn6;H8D80E#YCu@%iEB-SR`LFM1{3ODRiia$9 zXT{%NE|WiVGG09KW}+I&F}Up?gX2-+Dfc`8jt$qF}_Bvk#X1)?B^NjQD+)oO3*?QfOmSri1sdJRS&E z8e?BQyFIr8exeBl`(6v$%!|a{Ow~iVqEgt^z}yu^%m2RD_}_b%8henfi9k#_!SDCH zVs|9>@7?zf^HLpQw)o#Q60yJ5NY|3#UJ8ezgqx2XO6`|zT(1RxaH%GlXZTEod~Ork zbNaO6XcA?uOww)n&i=*Jc=2MTB z!8qp~TmI#j`b+-F>6@>2(pE0dN-g>MjBX^*6@I(w{umMAF;Y_XNd~{&zll=%{a2~z z=l0jk1?mAzhuI&BEre(gG<7tFijy`DgwM|I!5yGuBDAU}_&eR6c$r z;r9My!n_`nPQr3mzg{_6JO&>8_2*}8mZWX;DnY>_IB#>t>?Oi#MM5{NY`NkcCqVHi z)3&(4-uLu;r_ZS z?7^*%P6SRnV}{2%yi+9I!ELYi(T;v>a2TR^e7bMqx>tLx3@m~ZC1|mT_&s!l6A2o} z@x@3}8u!-_AIGE|`zR}@+4H%A*spt|UOEh%gRCi3i}*DsjPkRL3<@|X#?cy|5qO-# zXdJIw40jOY_QwC_k#kpnB+nG%G#&BW;g)Hp7;>LE`mcC!N~rp5FMm@9;BQ2^Ov`88 zZ&eJU;4I5-D#hDkYro?FFGlkkXwNSF5|KesfzKJlkKYr5*(!CQyp%i~qr;}{iGSzI zZWq{tp*_WVDWr4sCaLcmPtiA2$P-7D$$xR(1MDOP}KLpD*H8Voy2E-1BD192OgZmTa zY=&cK1;7LRB7ULW4PuISU1JkM8B(HSg{cRx&be~W9Qgdj{T#7@9!?OBswEWJ!$6es z`(xJ%tBBi8jh%h$OFemi<_C7ljtITos8;ol{p&7xj(;}YTSm2UU(nKKNzeFv71qRt z6NYh|f>cd|2#ngmwtea6D$BJm#=$VBlKn=@tvPngEJ~V1&+|loYSvyaPxD3BTWD5R zrGr^tcMf`d2jUhS-`5Z|x=4womZe7C{BWR;04Py4HJp3z zKcRWb!;kB4n)o84&LM?>WAt4`KvYhTM*mc1^6;rDDs9|(?* z74TsMCGx8J66x^$GB9nN&>65$&%zKp6*&g}57xNWCFv}6u`6wo_t>ojKep+@vM6Gl z{>eEuC`rblG*JPxO_V(C@k5B&k$Vc?HhERVJ#d3|;^k%L22 zIluB7cn9pw&W3y6AZeW;hWQ=_l5_&Ui5JY8sC7WDTC*fOB0Zfjtet6@hFNx5P`v9p zD!&N=gff!~bT)6u^?GL0NUiQv1!ah`-;G+2dD9fHo6r%}3hkiQWgvv%W}w#d;-9g{ z@R~A(Ucuqw3UH7=st30xPbDMmmH8e9JKO)j5@s(!m*m6)y5K*Kc&C8=2t4NnN|rZYHuTPBO`K!>??n|ArMv()h~|C zPucH$xX(bT;jnKAwlvKM+{axkJ9s-g3xT6@tE-9ya%CVtx8iwPi^p>}M_1^K?OSho z6DQ3wX)52K4s!@}blr3c8rCM(>#DMihN+Y}eNyYWIeXEml~0Hb@C|MZ6e>*lWQ+Teo3wOF7`@=rPY&oa zcvSq!9~dX^mo5NXK%~FtyxK?!pzd%({y_DapyQ(T7_34|w0 zj05xy{l9bJdBlvK`fTb%Eau=YM?!}<9o7S$&I_M=$f>(uyl`=&eYybacHN)O&}p~u z`zhpC!wZ|!Q^3UMcYFR`AIkZp%7E_?aGic-CW%c`m3gbfnBKp`={oK4Q>#M<$Izo_9GavbcWbty0_1O?2r3|IsD%(Hnj-#^kmn$W~a_ z;b8zU4B>M4*;}_K{EGC?J*b}II}~E9apSv@EC=mRvG8OO$UMhn354`X&~)@6E0dkc zRLnwYJlq?3!Pk<7*LQNgTlopEVX9C4o&@sf z*u%3#+4`Znoo|;r8e=(6Zpq$!lJbGhHY5S|ba`4%E02CX^Wjax3`sr|Lqp~%LNpC&9di{4ISu#Bheht#(yrq013jc)x z?w=hz;PZ7C8Z|Y}66P%xHj3LHylGuEgo@e{rgcBRaEy^O47lAh{n1j&&3#6&xUP3D zvQIAkD(ZboPel5LLdCa#w1@x}g(8TDdZ*oO+e9-pFc!-T8iXXMoGr{q@uLpT*BV~r z4e-wPjF)4rQ7+AXwEjyu-q@3VlwVncrS*RC!d*!2bXdW^YE)i;611nm-+5c7maDL# za|`eqrUY5QuR6*3v?GFH(WzO2I9bmW(w*>^dqk_XybYS8tm|9!%ziBL)1c z%8No3F`A`wsC-{N07wjIIe~X2l#zID)&0|J4{N#B6 zaSG&Ib7|tc{Cu(z+^a&T)L#y>3(s^xNFjh^exm=Ub}DBGlH89a1Qy|6o`}>LYxDViQ}>B_Y1=q279~~mZTgOJR6CbCPWZuUWOy>0DiaOw=%5|>@PnI zhY8ps!ozxZ;L_gl#6B$+Y{oPD7W}sraN>r$VSvtAi*A~MtQiH^Sm$XIXz|W_gU4Q`5TMAYH|D2$rbN5etPlEJTT5T%pFrw+1r2f zUVQMA_j-DWtbO+?4n~H{Jf=tL|5Ls16MF!QMHGQ6-u3-zEcJvl*{>SA3fzzt8u$JBR&U z$4iR#<+Hc)E(>vb%TU9Z{lE)~_D%c>O+d?h(!YFMaXLMH+^+T7kP*im^4{KlVJvqe ztN%Td$JQ~|)tpB7Gq+bJzQVJDRain0o}%r)`!d1b$M$vi7AJff?aC1=*h^$Yfj6rN z>9fba?hk^N?@9D4O?>0F4k*t^hrX#gd-0=nZvA`oPe=K5lj2}!>TXGk%>vL2Qh)Q0 z(%Ea}CBu3hrkF#ewEc30Uu*M{uNps+3zQhGM`u!Ov^G^Yp2uBQ47A7K1jAKC=fqq8 z>LX0!GX(p}5Sh~PSvRvyzW&LFz$C<)1ayqYdF~~g``%})c>5!K-Ve?*lj<&WHusDr zavX-lyT##Sz*MyGVtc*c=FV=K@7E{tXL?=#lx!AiCr=e9vVG^@-#U8<&a>xT^{z(I z^Yf4nu?9Ra2XJW)ln)roXYj2G4#L%DPn?psj3HNSEE(24ff`4QII(GfzplX&4BD!Wj-6*%o`DX zmOU3||Nl|<9?OpNOt9bsaRGX>6y+#-iJm)J(TiRrpMHST=I<}!&aCg8MMrlZ83HI| zWfrOmrfI*tQylnOI-kI-26cKjkI;KHf3>f2&ad~ww>KBQezEK$8}mj8n>q8txFLCd z*i|EG3|nzeepc1Qk*u+H4Q{g|G2Q&RU>}x5waU)^_Z&nQ&9fSh>&_TjcRu(J(ReBM zA}6NtV)n%--@5(gB}mEkbHPu8+zr}1>FgARryKDi_+ftCjYv#a`LEWxp1>n57ik}q zV4Ujyutw;jg|u};v-fLZA_uX2G9Nm$PxQsP9cujag(rcJZ|)K8q^<0Y)4J{VJBj+A z-nhTlj=>Demg@<~>prTy|IFi~?LBj-N$0Das%VtsOZxm-r_uAsh;_&({Tqu!%o@cM zP_JnM>ZHsgrc51sBqMiooNb+^D?GkSvME@-}AGl$XBGo=1S0)t}MTfXvhan zi5W;1skIJI&be8J2lfhjQrMsmAQlQ6)W)N`J3nC|mj?Jau~zB}Lt^vd{0C#qC-Gh= zw%a6qAB5E_2J$|U;F^*JBnsmDOyIJ*q)+h(mf0hw@`VRS*v`$u1b&BMac9nHpFPii z{Fx{m!6ob7Cqn05Ar=sZpx^l;7NPudW#?sA^=F@_xr-smTTZv7!`{aO8@4rJ1ThVC zHoAnTP_T$v=$4g<;qG@wFc(Aiy%T@1Ot^SwE+2Acx{<@NzFt6oFIXs~Q@~gjyF6|F zB%HJh`wg2Th{zm&>dHH&@cVu`+P5$X)ICs_4i14o@&GbBuKKf1zRN&O?(qEdu3B3F zdBZSF=uQ5JvyjYCeiE4y!~eupRzQ(ED~fd^;KXv5B!+<+iKGU1_rf^SG-@R|aoaZW zrZcD(zbbuSlI5A+ZX2=(z_UEbEnNxy=zZT=><7p^}I(!H_r=Q z8OK;fa}?XlC(@vPY@iBof7`rzp2<-xo`9=NKvyVbc`pTkCClUsfVCRqB7T9PK^a+d z0AL(2Gl4t0f=%T7HLJdGfv81JO~WiWhvV_4^9L<{u8Sdcu63Wshp*N zAh-H__3tfiW5;Njg75skmKwnC2P-gr+0IEvygDv1x_*O-M8voEH=_9E5cSdW+K8Lx z9nSF{-!m3E*8HFdj*NDF-!J%R?pRd?ROt z4i~ra!_7wc=P(c8rbeqghUM~JPj0*W-*|2s{>}+`fWNQIU_wf}^EVQwlbmdc<5zy$ z8A@aV8ZqfZCf&L7Q@4NeJeRRGyXzpp*tLAIx8KOE= zrJy-fPw}(I3^qzeenb6Oo4X&*sx%}2X&zKKUUp_*V;zU8nEUdl_nk=a1o<+J6w`&M zA?~k*_!nz^RFi>&re**iUj6j>OwvY#`$fw_lw(_fAwad_`3m3;Nn?8oO_2%R^ac+s=gFHFx(}OmL!U`Q;(Z3iKD{Q_c1B z?`<;|4#WykbfN4g-DjqG@)h;LAl~297_A|nBK^*!aXi+|`y1%d&~tR)_{rKe4Mf6m zKIfPcjXCJ$`XelE#q#ACNxdl(e7fwan7cvqKt3Q(Bm73P&K9~g8OFtEqjRs{KCqpE zz;zjeVJxR$!%sYfQ>&`#sUiM3zwO@d_q;Qq>+7>Cu*910rRV#y@_OJY8AVLoejW9; zSP%#~73Fl-q5}=-3AfHS)JnVBXkem#8SMzgZ8cwt_t6VoJ9)9z3IfB$4E*|~<*{WL z?{>QQ=TK{9@p7r!+T%mOMxM_v=gS2PO*mc~)nwGe?NX3&vPkz(^YnWWI0l4byxF=r&;CK zxlp{q0Dyl9@x}i_FL1de7$yiu5)))m!s} zL_KHd0j%>+4On(QpMhFjD4srjV_F&#q3NZ$fIK$8P_mkkgDK3}!ahDdYO}_Z15xHo z{3bi`EuKu_7KP&keP}q5s^!Gjx&FhI-wMa1GHyH{%=z(vziTRc$qy5N&FtYTnnA#XXqv_O z)9k^=Re<_aW<&aLWVt!|0Aq1d6VN=8o?)7~x>Xe970#KHVO{jiF^B0>7MK_MO=lgG|FW<29zjk{2*OHu9`nN3G=$p2e94IJ zDuNMQJST25T$%se46AzNC*7Z6Hs@?c^nx^1;s@>}n;&w(F$^#@jTan3gdeJ32{vCp z9~u~OoTo(d!sy3Unp!Sh-rvMf&$`+G#QGZ$6GleT>@p<@dW^Qvjh^XzU5Sbho& zNq)Nu5!XGmi+$V}o|6Y6>X$ZI_$=3VM!rcQ%ENg11gg_HC`gmS1mZ(jUZIC4Vf#K5+zwc$JgWH`jZ-gO5eY$*8M zx99y)9UL2-;O2RpcogGoZMe=$Vx;2wZXpRDppP}T@TS?OEJ89*5f5jx`4-N8*tBat zo_8f^2P?;g9lyt%S~q(X2-@v^KACm;JHPLI8k1}nB2bqU;Jv$Gegurm)pQL_`^3jM zTQJeyIV7|ayv<`!Ng4K0RDk+=FoJ%QG}63R@`zJ}!Wal}BNJK-6c4!k5^$G(MLKV8N#k8=A8 zc{@mk@ZgCfqcyP)+M)&qGtcjcL+i$Y0&S@Qv&9Nk2=3nz^LK z%+P-`;_tZ4TVq(TcAdhHKmG*O(L{nu`Q17bnM|86V$w>lTD=n$8kh5LT) z9SZvP4wB?Nhg?S>pj=S%k7G#8qNpm*WEn=Ho2~$GTQhqETj(Dz5!=18okDRSm80bw13YUD_`Xm_RxNMl(rmMzDA%~vB< zpK%mtTwUY9FtRLh1UEqQ<1x@aK5ffGBn5ybPZ*Wy_si)m9mtjpln>G_!?NaaG)!^U zyrE{oa%F0^uvy%md=-I!pW+2>cjkuK+zsNSBe0=_eD^CHpT4d~@f>=u*rVv*u`u!D z1M@v^*XlJ}IKW~7C2d45Kv^lm;O2Lb!8KYSHRivEojGui#5EL4j7>x9T^iMAKLc%G zsK3&HbC~*>3fCnlmyW|r@#XXlK0d>G9|__DAM^}QW@j!AUZLA%P9Hb#w54O?+gmp4 zGRmV4_ng`HC)ao`V>hi=QuEeAjvb1KH)>+<%%0eCtr5C+j<+Ka}A98de>%$ zI#qJz7Z9vP4aWGY6I9%)kEz4CJ-q|-^gW-}fg~=HKZkKNHp1UnF&n4W$9ee;K``7H z#ezyKSL zIsi#lUPEVmn8KQJ^i`6kl1;NE+Q)UCo7HWzI=XMuxOag5ZrBiw807vaZyJ)!h$TYL zh7Q?kt7L<#_~*{+vX|Sk%QNb)yxI>ZMa7 z&dMV}3A%x506WRHtd}FE9OQ2iI8Z&W0cB8@tF#wjD13TRz?r2l>Ki^$+U26 zcwnDzW^fqM<0qX&c{=5)sw#&iva@)^`T2pHBUv)iAeh8?g?DJ`G=pkBlbmBZATT9< zIg8K9gW~2a<}G}H9H4&dxtWO<>idT7f{Q17$12AxiZ7N+h0FPQ5Cnb7zNNT0`fS!~Vfg9WOE1 z>w>{4fcxnUZBG`(_cwNXgQw!OdSYGjpuCR9%qxSmC@-MaQb@4)P=^5lvLnQ$;m`m_ z{phw=NePfU?_}3e3>%N|H6?2rlv?kPapxCb9mo-oP?Dxz2{ca|nxn+{=`%V^*fbpE z`P{w@W3wpKVWabNS0M>>$7Tzd(em+oe=ZfS|Nh3h3!d>wmXRAo$2G?s&Kup;?`_&w z2{th>_|ZJEQPu1HG@L<4ZSXj*w0%==2!BTXx-Ng>7SOjcAdX`mvt(!80UVS`7_EKp zqJBTr-01BN?-BOyORy~b#x^vj@) z$~^x$gSm{$50B8CeBOm@y_BeQYjAr02zhoo>s5@nJkQ+CT(NI?keCv|y!Dt`4ir6x&|x`afL69e>5 z?WxA>=RX{3LTPrk)A`VrUo{ammWt7Qtdp!N6cq87> zpj6AU;OAZ_$lvvpUCsCVi!F)-R=6BvqOZ4dOR4P9y-_V~i0rGKh80|({_3DE0SO&T zA49vLx_}dreb^>#mgi&r9a|MoDKxMq66#$(6?Wz}I}?p0PABQxZKfMn|t0DS%0szB^%;C6k9N(-ixBv*Q0C&(`8u~FW#cS2B98{~&#-)~_ z%mDXync~SaI3SC~ui6o%N)2^+V)*)wxPQu4a~P(nJNsL{Dt5zX`x@gl#2vo)8`GKN3tY#wMqF)ROAh7qB*M0B7?jlvSRE0dz7=NeBw1@^ zd9Erw%579| zA!K}7L9T*f3-SVII20&ji+GL#=gHH@~g>;0S`!qF~Ds?eu*C*+l22vFqr#ThH^;|C1KEk})C@yd<#W+bod(!w%9K&q8dsO-A8C{A+Q}?`%%< zoFeX3v4<)JATR7xt#0>V@)TdPU$4ANn1l7B6bcf!C(@~V)Ru9;ky`L!rU^jSM`7S) z^B3{UX$Pe5Jb*aKZ5NtgFf8*K`U!>F-B+8^mBEU7R(L@`b26i~_QdlT##+V4x~sR6 zQr=%4Yav#<@U`g-_YAQKLh8CQ=bow0#a{$51MMuL9^f+S0W>)d`90q*#bU)2*xCZi!{&3n zh*;FNB&R^`k-}$(uYbvYH}*Z$MR^8P3{qX5hI;g@L47J-ZY6|Q9q>$*LZN|Eb@}}H zf4Cu8wmWc$wKIP!AXGKoPi(b^Yg{%z{<|)1(*y#4RFG838+=U{q8b&Ag7|m(=4Q38 zD`42BB;sbsvTPVHb+Pgi=KJ*Jz9KA1x;8tcD2SsXaT&v>CIHquMr!^!}~=&(WM zr#-=P<47Tq7v^b2IEp23{KdVmv7B128;U71!UmxPXZYl4D~HmmZuxzjCQsFi5)cGM z**?HR09waWZ=Fk5XFH4`SLP?E7poKMX<7PRRTR+}=}qQ^Sqx>ZuvN{lqy9#4@Nqn? zP^*Hp&#&Z+!LeasXM#CIeUdTt!0~$41!$0JGQfRcRcapOC_c@N#{n69Fe%b71vJYJ z73$~H^^AaJlfSRU1QmD*afFRt(2QmsQrL+&EoXB3NmRU@2{;pkM|Z>s{Vd_6e`_h( z6C+8!>-_X{Waecl8;I#mExxx8_66_z_KA||A96AB^aK zY!+hN&cMss?2a7Sw&EUOry(YXWRY4x7lJ$~pbH6A?40l~u|*d>q{R$t~zC#Fpi z0t*3=Q!kgx2+4dmA1LZ=BMx3{+3S|Eq-!8OqnDFX2TMrSyVr=am*IYB^PnW2r0 zp%_Ah^i!zJv=pPb*%BI5x}ZEq6SE;s17m2s(J5ZH;?3vXr?zD>f}bACo&Z>)VB>@N z5YZuX!U7#jZrfgrv|VIK;Ur&os2#4FvFFg{32^X8>-9L~gx@dnNwJJ-nB||?B8HLF z!I!Vcp)>q~M8b#o;F&qDElv6E+#Zl~qF&&T?++jtcIZ-X51PQ&Wewlxf-J0$cH^Mp z5$caQL^WN%VlCrUnCG>_HPf^$xW@gbqQ6u)?Lj9U`)=dA+oluJ&#lb}*^um*bi< zf9`t_-CEv`L@$3I`R?gD-CpYXo5N+5lLgdxK z|KcG3`3`a#CxWWlA|AuPeId_pb<_WhZH8l;RZAQHmwzV;4f&rjH1`xf)B0x+;yc>& zpIo!yHbT8fM3*rdD}MXiuS&R)XEf%w0v|DLmnn4L2E_h9zh^b=x88BavXpNMm)N5h zkqT-3&Hwxuy!G2}D0wRFoMVMk?+gEq@^Amnt@_W{fU{4P`u9#qT>58hOW%Zd@Bc90mhzVupTx=f{?c}xD-+?k zKK_^Ibjjry^_RUo72mzh$@*AU{LenfcoS+JEQ9=$`*G(y{~1TpCfM2k@x5Bd@z`|_ zwG#CZOLOs!N3LvaUAHca4_&4JG<2TQvd|fnz1r-YzI6WB7HqD2vv*YR^TjweSNr*7 zYIFv$AbtQzKdmW{n>P>)wk4K2z_L;Dqn~80L%mTl#93yn-KKIIwGR6fEr#s)G2T%_ZEyQke#J+T9UMdMXB@L|H3Jz|~5`i-+ zs=e5GQcI8z+v!LQdq2z+D`fM5_!IL8;&`cWQa{D&8I^sCxV3uFHvZh<33Vr^ZYssT z5U*td2*1-?5QM`H2QjUOEnDrLqNJN-SCG4Cd!Shc{4)7LcqYbP6R=N6JKcv9Mp}$% zVha$YyQDdXK_=-~jm}cMQTxgeH{aC;ee`+>r^A&dc;RW=nU%fws?@Aw0W{Zc}M0GsowhmtcL_)FEGSzxx^~+AvaC= z84vnVME_U4AkJSCJXL!mP}x8>57u(1Hz_f&M|YJ`{3 zyHRZrqFQ>iM=v2es$if0%rl`4)C#CseX8@N;%HjiV}0j+-+#SI`bJu|jQnYmz^xA_ z8l?!JvoP0`VyIQpPFRkR3uqza*`!<_ea{>g?KjlCP$>iU^I z{iFSJ>Hj64BT4A%j@73z+ z{OW;$pBsX(=<5C#lg{s3`BTR-`D(il_Ev6>D#?~*zC%hG-F%@ECrTZmCa$OZG7a!zPcOEjZ#=@@s5SL;j1=A7#b_Zq1pDg({Q%EZFcn zIb$Y=QRs0tZcy*iU3PtcZk(Uw3~TwxL3@4Zg!Ghno8r6upSdCp@&oZ zlADrATlkpbFT4EV$HENh?D52P2@*}z=Nro)&TxtZ0KM&SpF$=}42Mjrw@M>Bt5*+> z%78&@_e(^5YvC0C#(L;hpubGaKYTz;b>D0c`PKa7yO5!FRM6(m9Fd`Zx0naH6(=KH ztV?LZ1Eu_6&S_fLizxFG#0=7gc9qU^jzcUyUcpLEUTj#sMlmD$zG5%Q1pUjdppHca z$?8SV?Q|k#5nzuL>^I1SvD2lphN62#%q29k~C`P9rAO0HN zSTq6-Gkb;eKgtbY81$kP1gXu?Tbw1V~gU z<)rMo=(@l?P#?}#2AH5EuJF{P%d|sn#m48C*7nN1cvu(!(gS{WS*#}9B{*>y3&!)D zjI*hnBvak^HgnH<<`2(MltOL@*24(f{*59ce&o7Z3phpyRg7a51-hc~tw?86oB`(O zuL4`f>xi?q-(wrnf$0qkaEh9K>D`~RHch#n{SNx*ESA>A&q3>#?`@`j!newja>Q63 zoK)!z{e9B_nCEtxb;Hn-2| z4?7ZwW6{r?|C}qO$OjO!u#!Jt#YT|(`6pKkVB7+B4*HONB=gMBb)XU>#S1>D z&NohmzWh_~9(-*WTrSo7y=?^LpEI+X=@Rumf&9*iApi25$M3U;Gs~^0aGd{C8xPDu zmnxQ#DQcZ(H&bbzgg#t@&gpod8lQIQrAjPbQ;I?T&IG()98Wqi;(VkKb|@P&4g}GG z-0Do8@K-Rp=lmwY&Z3CLj|UAjcJ_YGT+G$$ZOo_8aSpqD*lylW)RKp2j~Iiu zuy6)m5>;^2Z&Ojuqu;?j7>qmWcM=Kl&-3HL<%t_1ohL5Tt%T>~Ob)Oa%&+D{2>at| z>Cr`nZ{n1a`$EpJ*l-@eIJ0Bd zeLbLQ2|>B5$~P7hJF|&pyk1ll;Y{-}Lp&FgJojBa>p0XaFARU5#rF{3`$iDvw)F*i zdSc&x>$*!CPU?es2>yAF`?%2W!WwAvd;9-B8z%G&-EUK_3gq2PIKeHcHe2BMoWBU1 z+vham=|`-$yIFM3qTv72ebGmrJ9GTShc8e689O(o#``hto(>2gK}!|>v#wy7UD_rW>9=hHr>+IU7a!1VtArZ}s?XE2pL) zaQu3U3FL6uq|NPo4LP_+e}Ys@TyqTP5LZXf<`G?}p=ax8d+1DcGnbF>+Xnx;PD!R- zZTU-2k-DIqipZfLTq7PmD&n?%pQiw&a-%a|tG(Ra=*8s77UQMic;g~Q-Zt5{*7MU( zYlpovf$jyKf3=w#j`R6%uPddzp?ckUQ28zscp2THm(5m3Lkh;TX)16bQx(F7@}1n* ztEO6F^DjNi_A#rF-+#E)CBQ%i_rktIZB}hGbV_aupf^)M2cfEvCJ9d5s1)v1hIoDO5FOAI|PY>JSuNuPvB5K2%ZeoM(aCY^~O+K31UbfBgZ6n{#sRS zLz#bc{M{r`4@zIk)AZ#Mzb-0*>pZ@Bgy&M$SLj|eBUc{}VAeIxlc@g$I-aCJW1!v- zo?tSuH*nfvq^yvlA6$EG#t`IX8s| zP=EL@JH~kYHzq-DT17F}#U3ZDry&Qp@=@Z&_tY?=i{WAZ4$SQw0`sE|cdDm{-`ImI z8^HKSew2>De+G3yIkY?XbFS>VZrad^a#Q0lp6;T!uIHOd!l}=5gQj`luTp@{p*p0G zRW)Yj%?9fOYIXIeZ{sV)Z#QCpuAq%qzPnrwkOcjDhdO{~stoK=0zlSHXslTd^$)Qo z9F6pNDWP-EepR7loDal#86I)&o#1vmobIMogRPSMQH(XEx zakX)Tx9?b3ATY{gELTrb_+9t*5a(ls6rRCe4?J&o0$|BB?6#~xEW4IJH48RJEs4;O zDt%MSCgcVP~>HXB8Pmi_SJSqtT{S$kW$V$?XLFYL<$`_85 zfkS7r$&B)#oH?eT3D5BN^fxo@{zuE~I|e!}f%x@>y5smbIsifoKr^^%gGH!UQ{e~% zh3*Q=O|0UR!5@R_6+6TXbz8Io~4qx`tiPY{J$Dv@gz|`!-RP^ zX_~Pg=7>+NfK&dRxEb7h1kO{zuR>I~2`T?9X zpDA0A|BEZ4HM|__Fep&a3oK7bHvH-K{j43q^%7%o65We_NB4Fx=#I3hObp*-{pgam z^ib~TS(pPt5=WsJirGU+ibuqfgD0HeUwP^)$~OVm@@2+cz9OBhp?gd^AFw?Il%E)X z7k3(Y1e3TyzAQ21oMBC$W?5N7sN5l8t3Em0b&B;Wpu%;wkdeEtJb?DJZFD4(=hOD8 z|JD~j4RZE5411J%ST9IRaI;u%Vg%WT*L#vg(exQk&~88sIsYm;vk^Ggz#aA;L2mySDcb8D}2Zl;}R4~@q0KN z*Ym=3>ZSX7bzlF~*qg%(`mEgiK-+HLhMC(>s^=6J^4hWFP;cmUt~U(jaz<1PH%Pj$ z;WEGfV+Rn2fBUn)Kg#J>Jo@j?`7H(NKRwd^fBqh+e>tyLOvr9SKBwapl_`p&s97H^ zGe^k(`8<(zT$lC0sy0nN2gTRGF=<4v*Y=-Yvie1B z-&rxGtvc(9oD6dujG^%hzsKpXvhrYSyA#gBmjQ z4f?d##^ zoSzRz+Yu+ti~IA`i_=B5Vne!>#rqrL^K1{#PW-oTgh$uZ38U|q;s{7W6Ioe-&zX}0 ze&)7|vj6jpabux8g%^Ct8A`M*tT9OW$sB&T8!l8h$2hNkZYT&#DbroLXdRp&lvrn4 zoGt&?&gM!+>;9#+Yl!l#w+|jS++%`35}-WXjGBkjZTgg@3~7unsAIVp$&LK?d6ww$ zaT+0~gw;OjWlQ8f`EOsJ(_I{8;r*W;4`eC*x1Xv0DSkBl-=9nLNdJHRp6#P1-RX`8 zv(yyd;Bi}R$Nb+5#J3`d=Zk)SH)}jzYBy{uNU$5LQ62-Zd|8Tl{-1W@mmnHR3hps3 zBOmXb|EJF>G<)MeJ{|g$%QQXs*&Fs!k-|qZH=X+}Ut>nrEG}le8oJOY^VI%=6y9P^ z0DH10>PZn>eOji`ybfn>N$3-m5QMlC%UJ2B{5XAfi;bI%pLd`TT~W}_E3ch;a$_Cp z`M{?BNeR!})jx&`b3(hNbSyXvS8UO6kxCd`{3t80p6+amO&YEfNl0H7rutljvjMn( z5LN3xEjmx!OZ;z7X9NFF-!(WdzjLquuXs;@>yv#_#P(KZ%zUfEj~xCT!fuZ^9*ZfyK_GSt`QCl2zz*WeH-|I;gbz8c^E^e6tm z={|4za#xt@;D?V?x>=S*AgzQ7q4 zB~$gBS2DF`??>LzE$lw z6Ht-Ynb~DJCNSJo@u@>&d4jPc^oY4hn`4-94!b;`g}cg;8~LQrE6qnLdyq-7Z(!w1J#+ z`F{3#Egr8_C52}_Cw&Xg^sve7%FN$<3RZ@co`%0rbwoCO{Ra4VnL#A0t7}VU!)OUk zH`}E?_6=u~2IJd%s@e?e#K&lkm9c7im!)jd!6nW!pA?pw8i!S~E6k6e*-&9W(1)3O z5x1}1myE_O4Q-B{ylo-LKemZU8-;PiTkqgnN^dfsJIh~%PRP}f0^O(0&4d$J8|3$3 zRRD^&2l|8iXD;e1ly#a%Fal^^d+6jByYNm=rs4l^>@6w;gK7NOf>lztUU_CcFkH(Sqeb{o9StY>U~ zzhUiJK)!2a1`bWu4E0l$n+o^H<-H#2GM2vct)H?x1L|scz{ecnuxV&N`n&Fhmc}WW zX#z;?K!}OVxN8xPQ%l2F1ex{n_HwU37)8G6jGW^~8bzvq&muwbNBe;ZW?hxgW*g|Y zb?BCfen>N(qMH1AnguP(bfoQQ*TQc-%MCg&Jx^R; zFP$pLWd2zD0?tn~c|t*kjM}#t$$X+zSTdRAfWOuBj_EOow#U>`b+L!&0y3c_EpW%l z{3GT0l}q!ACXehMg^RIJxy?$#Yg)-J)GCTp@P=fkQ}8AxdS!(*YjHDfB{1(EGtusm zG&i%8^~Kb)MPuoM6t9u@+V6l_TASIEkigma%q&D3F7?_kIYZJwVrJ~>?ha#axOt%{_G};RhXSFrfK-p) zxv_hyCp@Wny@PpfpwGJH*m^SV2@wfKkT&us2A>9d<{+n5N~&DhNtq3p`Qtpz`mMeN z&-*R(~xp!g>onYZB^Gy&kBX_l=l`Dj~f2{axYwYy;@Z;i8t+B zs^Xb{sMDx> z^Xb0O??=-=68agE0e)1rWm2QGFTyC;_DH1O&A1v#8#^>kSb4=df_JM1@Alvu_7(Ko z2V?MP5&fCr2$d8*H@BX-tYkY*SXt7Tt8VXO*376^EKQxhhxT}buHi7N;p3B6N&hC4 ztHkx*dP)+RZC=_EAGU!$&Le5x8LcOV_I@xmgrEyRuUF68OC50k{qSymOx*DPvGEkX z7*e|`{jF=G*Sy$!EL-?kXQ2AVSIjL{vzrX8QwA*OgT>8*wgEdx<)GwO9AGwKmyn{{WIiDkxv--n9QwRu_A%4klbx0 z&Z)YRj;ohFH0*{2pU;6lgfh7uBR<06_e5$*#`T`IY67PWc|u zYHt<&ku9n{ycUqJ-YX zgVQ?_`<@=>aLQOaRorjZH(@T5SO3;NCMyK3e!Y4ryODdDvuDY;XfL`xfEFna4TpZ- zt)dfKT*@W0ZpMU{L9~jQzpQNGd>`>kng}&7lgp=9le_Wjzzifd_k zaOu84(`G+34iCPx@jX{bd`jQaeK`w|lg-2Xec+9V_1|5jRO-IFg2APOi+57P*IXF$ zX@AC++RVniXQR&4a7~z39_7bkn~C9I^Hjcz!ZgA9bpap4$`TFBC{+~3>CU>dBGs9d z7i=xC`%~Zi>phdTE*vzCeoILZ&<>jf^z^0km|X(O+sxp^_R@Q?;+x@&rvI+)Z!=R~ zzs5pa^gdpt+n09=Xv1kJKPLL^m#wkC>`@kP9XmY|>2kU(dTo3!C3$g6issJx;qBYh zifa(-}mOeg|85`%Wv7h0$IA*Kg?eda|Vpm?En)sO={viME+QrTYj%`W6kTyM(HTAwr7xM@DKoKN@U zqNnf6oe$sd)uF7VkYZ^Y>XiUn8dv#QmrXbslvmJMZ(u`v0STyUyE(gL;A0WfF4dRg z=p%lF8AXv~dm#pup|kLWeU^O_+k@+#J>%f_wXkks^>dOt(@eWbysI2wEADJL7~ zbv~ufV)J#m>^!R-aj!Z_^EKd|jkMqxAAt*}i#GnZe#tZ5tnLQ)`nxOb!oFeg`z>}S z)N^_3Zc43k3iaZHDaY;i`ZC3qCMc74IEB|eTE*?cKMG-{J`SsEoFQ5EXYnMexuMRP z=aX>69DU7wsuoNwHnQ@>RG}3a+lXk4qq0rRyCE9uN zwRpiAlf1R#aXxq>8ayZZnTN;lpdHRPtKBPw_hqOJ1u`&)wGtvb^U+E86ma1*xNyB( zDbq8dE}JF&8Ea+B$sxL-`FCymlGDD=>+zQ1Jlm`wqI=A&#`e!1sfYPy^NuK zX5koin@>5hPd=$ZC_#7OHk^4jeJMEeV_9-LtxGoDJ~#Hp<%Q^R?pi>VO&&q9Fj&n# zk7SrKIqU3jjMe)5-6u8~+WnmH^tpD4WD0=w(7t>LZMd4?^PZlm>J80wZH-s|NELF( zd{FB$)Qq@xm=K0(x+S`6`%GRTHoh?XeS|%qyI3CogI~4o^D`-V`0IevAwyqTH>LmZ zf;T*d(~XUp3_rK zzLsO-z?i-%gRk@D;Ot#`HJ=AVad~iXe{{DQ9`#l?cwRCXf2IAKwA+C%ckVyIe)Q+h z%G2gX3;OBkI-PX}9odn4pV6K2HePv~3;Y#^^Vj3fu=jD9iVHn*deP=>_4a-MvH9D0 zettQeUtC-cFP-tj>#G0cexFFahl}A1%)#OW;*;m}{`WF8fiz_>>DKMtC)&Hm%enP> zusnJjoaq}^JLrp7Z)SHsIxs)f@y#@_HdpeCGww{5&zq->m|TuOKabs|6XA-9%hgq{ zZ#|6-<-NE3GH#!A*?%`eV?MgQhlFgkeoAIny~o%)8u;Q;pE=Kwf2O>~ey4w~oc2c7 z^VzkfSjySe?d93K_k04;`SFwEecmN1XHu_z9ZG3$dXeX!I!NKk6gE>hC@|Q7szkQFLkD==I-pmO1{(XY{PbU{ga(vYted&R7 zaiw~<&*Sy&`_ea_ywBUw>}&3AuGZS46?9+T)L8bfdgr6 z0c_BDGMi}Mmi#b0dIMYic%!@@JfsiGmEu?%YkW023JtigXmvG9$Lr2wAf7zmZ|)|M zdy;m#58YmW{r-5cnQcBaefc%MijPMxpR4y9Fw2jTEMc(ojibFNZ^Mhv2g4C(%QN2@ ztFAU47?bej;NYqsInVR4{JFTdZrsIuHhx*m-qu%(x6iJzv_?UHa)Ysrw|SW87nkll z`gFBd6te^UU_DYEW)II_>bV8s+Sl3FQ!o7he`T&Ng4J|%7Tox!!OD`NuC8olslVvO zqt3y2bqS&WHPgF0{e80dTrcr%X7q04`KYsgQO(Uu_i^<89xg~c`t15@cjX83>+V@U zxj#)N@o{*!><&(>o1^vnVsf|nlGl$T?LbrfyUpFo1OGHl9=<;}(}!gF-I>h-XSsYn zUJn-Ix4!Is^&WcB;!=L?4iAo8`9Qi$j`SPJ)1S?ot~wuSM~Z*#^*cR(aCtQvzv+S4 zc|P4p>xFUbZI+#@@zH_S(R>g)DLj*%&f|EV%uai+aR2AG2XEcQL6qJMd#|ILH*d7K z5kaGaugiF{{O%8=Bv>np+q15*0Y7=^K;YRsyZ=1z4ZoaE|NibyGnVQ}caymCi#6Ju z`6KabA-!)Uyq%eXHm0s_tQ1wZ+-n{ zz20>$()U;8Y!t|g$>Ks^K1S=V5^Md={VB+!;p)rCI34sxU!VHBp}sC(AIwAy^rt6f zxjFk7gy~FQzm5j-$Jk#!Kg?!Ebo3@Id#~m?HXnxLvG}36qN&EK5On-^AzY>isd6C*%J0 z^Yznb?4O>G-fo80N4j``+~{_Fb=rNMh2Nji#oev$%(|=L_v2^x`~B5;K5=g2bK`ve zj`79i$7P^hUc@KIpkG&Ua?l$~H>vg5_eTde5Gh?Kqwn$JNqUUevhEyxza{6Z;inPk zxRv_mU~xK&dT;CZQ~0#sNzX=u@oVt#bPsXTySG_P4x*zt0K0xMl-{n_$ZC#p%$ssP zR?kCh9CvY*x{X26!T3NB)d+!-xoE(M6y|;s}x2_tVUyg6D!SajRxq7a~ zk^dn}_s_|-JG<%h`?D`~_N~Evu0J3yxEqhPaDFE(Kjq{5uP3!Lo3EZHFHX90x+nL_ zQ@2O`2`O@$doV1F5!t9fH^a5n}wR=3gA~9HZ^$E}3NoSwE=wS2) z5#{XM?3@0(rdmhZ$;J5oO16#`#x%YhfL@J^qjzO&os09XzkCh)5BkaSW&H7?J-V(Xrz3l*H^2fSo?}DPm}NOu97~*o@E`pKiuEos*5|>`g-q(!7RKxFy)hr z_u;b@zfPZZ2&ARX!FBpL@4w5FStmZazMqZ0-SD+P9YmrMpF#fq1^3pK7B6sbi5ool z{kRkLPR`A)clPiK`TM1}zPf+Dy?XfEEZ#ILKKnX{z*W13gt|9VA%EX|b**Q=ffZcgia#`5{%`a$n|M_;ce2jRzRy}5V=xq4n)jV0f^xjJ$E<(cIN(oNUs zFZ*V1d@whz=gIxpoH{S>pqcl`XZ-mze_a}jU~}13mVtf`;r+#j65pR%w=b{Dqo;%S zk^k^^u=(g69Qe`g>gN3hauu_G72M316Xkq5YtItDC^e%mf z&adP&JnqcZ+wgM}udafV+1XGzK3;?~MgG1}XE#_Y@H?~6xR1vA>*5kFXEU7353dr$ zsW%YUcc$ajL&utqU#}JqPaE|U@|k{kDSh_mgNNDpX|SIu4NrPLke+%1STv zHgWIfe(?DPXKla-=##UVdVCdNo#A)}vC`@KZPbx{ZLoZq_l98nbn79WTgs98HZwrS zIydcmIm4L-veE6oSnm&KJ;hzT%`T2U=J9B; ze(9gM@7~pNpa)021JM~7mbLEm6_BgZiL6TUTsv{o?#IEw+seqxSv2 z0Dm3J2i@7xTR)Wsa&PJ1JkLkb`a-jpaZ(c#Pwt_`uZ<7JWz` z+^J^`4&)RzoO*6JVMA1F_*+r2Q|uK(G)>2wD-^O^GT@ap%CuJIIk&-eG&VCwuQ z_v`2^nvPD#8}UN9oDYY+zW@3Dq8+&R(l|il`lv=Th=IQDz8pXLe*JvB@}$g`uDTAb zJgNZyz2N9ANuOP<+kYC~9BEg^oANwbt|Ussq}U}o}1(D+2TTcnH#Tnv-$XPap8~pCkN?bW`!@` zeOFTZiz^7NgAoMC<^uf79Ax<0TLj7N!7Kqg+fnY6!R@&<0{OnXj&(6I&kwG|SL68V z_1b)0_fQ@n`8)tF=ZU3WIr8kG_X589blg|w&eKT#+I&u~uG6z;_3HJ= zaWwgA&^g#h(s(0Zt-sajEYLstXMr=D8~*xpeERrsYne!+FP~c8fYyLxRTQ7}-j%mp z$WQN^&dop!9xtr%JQx_yH`Dp*CIJ1~T)erC@z7l*$HPu{ScL2~MJrKC4}h3sp5`FwG8 z;2Yif<-_}Ou@L8wd#+q9RgdO(%j?aR)3c5jH^#TJURvYPV68o0p4}OXv&Zk1C*F&b z!GuwzMb$1&b6=2OU< zd%a2vOjxH4UIej@wwUc0c^wpnR@7DET_!S@Z<^EA84bFlfzKgY) z^`6{Z`48`}_ipSj2g>B~Qk(bJ5CAIo_p_@f$=G-i$m_-(uHue3U%rg`@8;s@)t&i) z|0Ru2AQvLid?Q_=8y^`&21 zmy0p0ecespA6`GtzO)sMF=FxD?R3Z8&BljHA42(dSl zlkd+?y6gm3U9EqezAmlhW@uW&@$|X(9*6VQiS~4JCiTpPJ5$o5-skBi>0jU9Mi0s9 zJv@y0b*k#?=j39zOd(cD`ZovHZ}aE)GaPom9*2hVtR$lLu}p5~%9A#?KKuT~w=bpL z&B(W0F;cI(;M;C4^v|PYc+j)XlN&{Pm#yx!*MApRM{7y;bdry(XYo+$S)J%)xmqj- z*9S|{=)YY|Jbg42AqJns`csfDm+$N8dg+0Wo_O z`NChOFYo=;kvF}W%E9;I{{9Lc)m-;C5IYZV&)>$7qFBK^jW+S%@#^Jzi17?4$n5^? zRqaHJCvo%j?1RnyPW6N2>BGy zAL5s#vD}Ovui#fTmhM1)OkW<}uQuPwdTjYu^7-l(f`LxYi>}{KpXH@-@M@$-;WBt| zdZVk=iL!v#{e){$-aj9QkNxwv(Od?b6!@B#DxecXV{|0H-)b+jH|#AOf1f`0mKVeG z+5PA;`hNR7?j*Cp$H!{^^x7TuZib^b2xC2Q^?W@4Qop9paj*Y8KfaH=^VMf}{`K)S zc^*D~9DASg%y_&$o}Ve{`0H}^xPG->?q)}hI@bKJr)T9sdKno9%4~S^YHhR|XZ?J4 zV9cfOuIVpd9(v(Xa5Xw})dR7wjJ3;|B8}f9)zMz8PJcGhBukCIuHuK$5#$Yl_Y9G4 zPhXk`+T&<;t~wW8GX#H%{msX71@iUx#c4cKUWeyfGH1@@4nce?7Z;^@!eiTGIX4+^!Wyo$Hgg`3UUuLOs5Roakfz`f!kZe>oqrp;%9I*$Ka6b#!y@Z+hRuFZbzU9vaYyOP}S z^%wQ>!)W;W?Xa{TKL5B#@5=k+$j9~ZsZzmjl8?1rrR^;#V z+SgyMPX|Wroxrc#JuB}qWFHszCpjNl@#8c&-CQ-C^Z(1v@o!}3Y;yE{@#L@0Z~L$A zd`fv}Zk}GW^JsQ6nN0ru?_a@R|Lgw|$j4uayGo80zT*Xd{Vn`&_Eq7pe_eQ!G;)R5 z+qi-visDMrL{a$mlBpmG$16Af=P&ln|A+qn|FR?hn!AZJauNs5`+u{a61eUtwg-@$ zPNFakM(}rk`QBuj{8jnKVVW$`#7@==7r$rZ#qexvo190!<^SS;{}1{0zv3{BhHn1c ze|hso7$w5mSuDK#cl>Mnr*Ra{1!pljbS9I?oj8dX28T}I`0Ln<1@^DK0D@&_m^cI9 zwHJPv*z?p+yajwVoH|hw|1aS*gwTAl=ea}Qbpkta=L5>i_xA`f2~s_&oIO;jcJOgP|QK4xIU)hl>b)vJJ2B zKmL;_3u-3OETV^h4PD>QHES4-TzcGJ?#dme_-^bW=wm-1iUM%TQwu;0RHb`3&(7^Q(A81&o4Ly>$4f_11#nl5XCARQ{2r5IZETz@!q z=j&g;!f5{M*H`LBYdl(!6=I1P z5}xUcBri@rlFA1whj1$SlXQqLP!y{NM-f`?Uk!4h>w^6aa^Xf?2g9>E@j4iK;jdrr z5`IXGhZ>e}sabj;fk66 z#=Dg*iCAOiO^W9#cnY4D=|}dbnpQL&tVoLRFW-w3yorAVLCw!)RzW^A$dACU>4pZf zTs;@wx&3>OTRfIMqJK4H@mM0KEYUE|;9Ev7bQSB}5?DqWrbxrdN`50X&0;K0ZNV$j{9zu6!t) zR4l|pjl92_?B-Sne`B}}hyc9AwyCgL0-EEva1mNA4n$_R7opUR@2_8r{FcGNMh=lQ z-PA$SocUnn{6h{_4WhB+V$s$Z78MP8uxwNh4!6&orXI0lk|GK(FV|;>+2iL2OS!^H z1(6^J*UZDOUn3Wzk%%Y+xV4+!{oNV+68)>fO%P$F#!)RjaP1~WplXw*7pO{km{`!{ zOxECFrqkJ-ZKCo1i;T`_iESrej z#VK;;*ep|Jo>L;1T|F4=tdC|AwU)V2fj;MA_F4qYf=;R02Y|pNXP|FvQ$uQAovHYjzgW*ujl|bLBHzGl(W(V$f zL58<>Vk;cG4*vCP?j-0Te7uXIHcJ|brvkTVC^F@MAF|XJ;Q}Kcjq644EXNM8Q5nw*xamC+0 zuHKMf?0RjgC<*w99Heuu*H(F432cA%yy%D)PBP_s;L6q7=>i{g>;ktsTMp0?yp~&5?c^T zo`&EYh$lLvg%}WCtKr;20IXYTO({r@LbIVmn;m46l1_Gfqv#fnl|)slMSbsWX`xPA6~*|C@+6-yc%*8mZMW;H)^7+@W% z`K1*?R86i&P=9NtB|Kc7c@DleJB!;7N1>g|f+YR+SXI{R_J#&|s#vO(ETRy8{n(Bm zZEk*ACHIyhL_jrj1G3--6C%J-vBp!5PqznekNe?Z2t_iDP>hOA%PmBcu2p_Q^;~)e zwYh)r*oFWHJUhAwXMtwT4rgf2OSCcA{pnxw#|R0Xba%tN~)cUqF{h=I0d!xe7MfsI&6j4YE23^PHr=#p;fLgln_PFzb=!r;GjbCS4U`V1q! z0h&tk15886ZUn=T-#@Tq?v9?=^=@l9+Yb(Ls7MxRu-P&B5tt*V^QKC2Vv29cnCMaRbRyd^;>37l#v0{u)74DCo# zfAho*fy3qX2yCp^d>=$D&;u#I7c#A8dm(OadS^>7_S)Pp2^+1(qghbGb-U*7>$MaJ z+3D>zIT>IlJ_#Qu?Kl*&)sy}=%Y5br_E zwD7jT`O(7`Gkra<;Q9Hl5{){*?%`!$qW=l~&ll)y_Tx}Zp`tVJ;|-h!1~Wc~LF zr;9atzz$0oClh#Ss3BWhhCfCVMgwQzHHVUwFrtDkfOIJ8^>%*DZjE4MC4* zl{&g2ix5Fg-QmoZMqK))DLXGXuby%o3#P1Ocy!1XY;0TDX@C$G7q3Ai;=A)$O|KoB zm$kCeESP>K!rRxzp=`w?E#26m75ksd9yZrF3e^}UkY#{70^>lukRgGX?-fy(TBD+& zWI_Pmn3Z%eulT+6HslpMkON-8DlgdBZ7LKMZKPf={jV{Ij3Cd9r_RFNR_j&4NqiSu z+$g;A56`P>bx=)WkKD17`Vfdw?TtxYiw3`tZpU0oOmgBh@@W#JW*#^i55c0E%;s8fhwI?^A{RB=iJd5NNM*+~1^6sjlP`dm{~!r@h70cMr z{h)V@&58uPi6AJy*NmoGCwaOIqZG0B2NMTsHCj415j&(mIJai2(;yH@&HQS*@cs-x ztq6A5-#!!%gxmO_CuSEb(@rMG?QW0NvC`0SHfub(gT~k<=i~Dpsrx=}-m{YRyk~`~ zHg^!dM$qAcQtw=qGeWrzTAGw`Ds}{J!uDmiD|N^=l1fqCF-B719k7FE#yN2O_@BS! zw!Y2Yb?!KYsLc0fZUZvz=a`I@n?0?JG1q?hohY*Xj(0GzSpuygN!m>m7}opB@;ycS^A~g5_gOwbGar zy>?XjemE8}fsjz4C&PZzX%5_i>jm-icUj1vj;-RS6*IH)mHr9GgdtswQ~zc}iwW5V`k*pZMX}0t8M0L10rAJvS*d_c`9# zmyd{E>M0FN5uUHR=e_6S?nAq$t#{hc!R2k6#6@HZq?mg@?v5fdc*wE0vd6wNX$C<3 zbTDfx(3&y6G3w(D>&M2z4+qa1d-1BJmkw@7f#EE3u-r+t#{JS90X{J9)5anTl|xn2#F6`3J7#0!-_41Xg8jQsgF6u z1SDdRPWbK?yqCvDjzq9JJ@)xe0LdSY&1PpA2CC564nY{Omdtf5#-p+&oOqZ>oP*h7 zPYa>M*k*dhVIN7K6&tNd1Sz+J?P${0KXeuge{IhlK66t^*uEhXirg_ZmzqGcOfFfF zz~}DvY@eYQaLIz7*L!J}m1W+lB?=@33R6A>F8E7Ut*4`zdh-a+fB)cZ_$XNrGCh;e zDrp6e3OBk-3I9#g;M{-zV7!N6h+X0s@n&P&q|;qEc@<%SD~Z;8ktCWg*3lk^5m++p zFF}kmbt8|pgE%gtg!Dka&M;7*cr1_QOJ3`9c)AJ-F~Mv$vT@u1#3U*+ z^}Ub%4O}TpDU|(#Cv?N`&zj-s0}x@pmnPV!e%yih&d&`wn_G#~!O(XQ3})=>f(rP^ z*W;(ttK+BoY)Lcb{fDRB#?cUdZsX`VfjZl)|MA~EmYz!Kav0&wAEnQLthL@{G)2=q2(#~R!$1Pj)V$Q1M4hYhe08B;f^2O1rWMvWQHVmU)jfHDm#ynSDyg1ugc(ih6 zXadPH$$fIwWV3Tik*@}!epG->;bcOy>+|s# z?|JDG9pn;+=8Ax+v`wohYEd!3MC8(N;dtdr`u@jm?KuU$qXBp5@QP{*k>ka#%~jqj z<-n353%zvkK)@IQ2GkS)W!7pM#3Um<;p*i zwJJ}DmE)HJpe_D!J6 z9}eCDBSzTGJ^jnK@6NlV>Z9@h~%N9(E(Pf$f`$99! z@P~7=T*8n9!hZSf;(tkVd}Jr-!sjbql;*QFP0FjhR3WT6U$kO~n{{K@}71c^*tWFkzn z@+U6z?Yv+datUvxd~R3}?Z=_NB*Ys5F=t%QyUkDPZ3>9eGWMqidZM3B-j)o-V#&}8 zhIIDM-7#76ld_f4h&+p6V|}qR=8GNHjTj}_GE3Bn90ylCaW=dXqtS3|O2o_4OQ2!^ z;le|>NPTc=XA}iD_hRe?p*C}bz0F7gaL8>-S|zR&Y`vEFa1k-U75J8Jm(Xyy^bg(; zTkj5b*Ek{_=7wcWxS-7y5Zh%qqpVLz-yU;yRGM*c21Kf*jtYk{Qw^|YHUW(OVPS|`)g^%la8`SQA2ar_57scB{F9JnQ`D6r5gA@0_ri4viezlN z9@Fg&xH)WqtGe0j+EvqR3tlXgV!sgNLA%-#MSL9E?tGE(^@f|382&{|C2poJpwV6n zWy>-)OD=Rl$WPglN^uz8#xUJ7rMA#ekHL9`yVUowigC!ou>v%d;}*auDy57HU71br zZ*7tlLV46YNg$b+zmjCo*gwZ?R13+{w9@@@NUv-(Hd{%zige}q0-bq)j5)ywM3=I= zctH-$r+jN%fXHI8%s?3SpMiMiH)dIZmzv1^4Y~|}S;JCQ>J2;^T&|0V z$`;ze@T^>xcW15Jlw|?ZAj)LH(PoTFb4wcdjf(j1a9yyU=JO~pd$Kz&mTZUBcG-f7;!|;|b!4l2lCE#qb6LGnp68|FNewec$(BnBa z8u^}g8<-k;WvxQ4!W@?OZ$*KasS%sRq7>d@S<&X;fKnam!ST4e!W^+}m8jGkR*Su1 z2q(Y25g~n5OvZ=s-#)gA3!b~t1Oo;?#w9mF81UtRCJ)r6+CZxqrkvLVz9VO0 zBkHmpP`Uu-)!?bKhA3$&u&yY_B~-|56p*p1(LpZ1{Y9ZLW(B%Y9<%xl9oi4aqSR&; zZq{G|Pwd4u?K*p8nF2>LtT)EHSq9Its{N1E%-_V(Ed6NX}K*-V(Se<)JMqEsLmk|yfHB;-UxHkJKJ^$kUrP~ZO9Kw80xs5l+0xbg{NaCEjT zfUtIt?CPi)M@*I^tj=!;_Bp1K+2m+J*Y?I2f^#ptB^i<_oAm+d1}?^vvVXC#EMc;0 z3ELcSitYo;L;DAMbvc;i5gy*}YRx4Jc@SdgZ2J`ZIX{qM{B*Ys!*&qe+Rl&=eR2=m z72$t6hNKx5r=8htTzg^UYcFEjcIFV>A|}>$z@tq90?yiI0bHV63`8WU7>E=H)U|z& zEf&de_=iBrsLXDQWcw$U`J?J;`B5iZ00I{M_B>WrwZ` zPJ93Ps0o;ZZ-<{mgKD}`>FtVL0pIOG6f6lhj-@Lddt?#1T;VX(MBOU99+ z%$q0eR7lSL1rCV63R}b^NnmsSRAIBJCJ%-u?++6?7oKWA3wL#^9`5G!DEr3@84S|W zgdQG_63E<@yRZA>=KAa4bbY4T!{I%}38w zL8#HIV3nshaWG}&2&HRvUDA%oi7<%h@<2D4m(UuDBEO?P{^8ih0f+AhVrfL{VdTIi zxH}_Al@y!^cLm10dmmf`;~?dDNi$jyY}CiREzu%dZAqpQdLzEx?KT%S%eim?jL(Bm z`%Pu2MRwUp4P#1-(T0SOm|yOHaHaKw+bUlu9=4rn*uer}7#Y(zFAYSNrxNl_hvjRK zUE|_IhYVkGs9OQQnk}Jd_~6ju-6er7!!{4hr?ff36tjfFp1JF6nFvRHs2cKHv>59p zMK&9*8Rycxnkk!L9wzSU!gnShW=LwuHzkVcl&Tgx%}?$S!W=sI&)ow19U_Sq9rz#( zyL%H7B!z4<5=SwXDAtZC=N84-a@kl_ga8TAv7TpV&|cndO4Ah>r2w6SlB(KiHZ6v8 zLGXCKV`u;8&AQl?3JJI&FD8kg>+m%LtF0e2yF*5a&}#5<2Zy2Fy769tGE2Hu2mEtL zS{9$@^lv0)ZylwV(qUOGts!ecAG>oklA>wCmJ4Ek`ydY-6&fH4*xdKX;RAX(*T z><FhAytY`zxt+L$(i6X(*TdKE)$+mh{M`rW+ zT$t{9Kt?*4?P^3j;VmFsSw)Lyj3lcHfKm`DZK`A?>&R0fDy*@}SJfDz*%r!N!Y`Kw z7(wTfGz$3AVH)8zhte%d^LaTB9KqJ|=2n+ZuI*oJsJmVxV|Oh)?*92i89=n1pio%J z^N^Pro&*Q-j;)vIJ9D|Al>kQ@q@b3#Z1qi;CK~QJ$X- zqj~YBT5EOfO+btw(8SAT4egT^PlL5p*!TMgJzBh29vvn>TJyr>fA{?<`&6b#Gd8(g+jR1cP? za2T^@4oA50By3lgE&SDxyIM7J8J8;!E>!kR)MR!nxL5Iwp2pJdIRg(&9 z0tD0$`>|Ot4%QWTQAqQ2&90J6(KGx6impeuW9@xxsh6#4S*?r`Z)O<~M_jgzct~^Aiw(Fs_%S&o zg#q{WPb)OV+QIc3g>?3x%b3}9o<(pFUgQ>(m?t4F5CCdYWhD}*24_OtgtOd|*RcZJ z{>PR;!g?7b9I!P@94O)6O_Ct_2wpwc?Xn#}+I9y}J$~Zha`BqELR+@1>ce{mmbh07 zOkXHNF(1v7+&GUtjUnZ9`J4K?`W{N_fy2T$I!YNawrm6FzL_9B^?#D9x;gfT$n0OJ z!~C&7+(Dt3Wobf2{YC;E#_-DF*mk3uHNlHBd^g9&xW5&%nHIh<@F1&uk7p1Nl~txz zU`-X4XmaUr1=R4Tyjpn-$^eHJE)s8!ZQM3(bE0KhnBvX2O$Xtu2*Htt23;rp4MoZ5m+>c9-M<+l5eEjj)EoW_jX}ulG^rc+$&= z%WUwUBL&KKf2v9m%!))};nI!9e)!F2A!(IGGyZVJaMvywx#cbyECm=_FzA$Rmn!oc zaXc@1*3X!Y7a7JM;`_~4$uCQ;2np2+o{a}QpW)L)qh!?yzXpGB+Jv*jnIl@LA3CIx z&N05Vod^>v6JZ6@z%dopYA*Bz@_g7G!5K)Gy!4#I5SW}ATZ!`#`46o z;jb`2fXkLydZAfuuYvT~bb(HA5=u+t7%3C%@hvoy^c{n2d6Lcbw7Q}R&!nb<_K}W9 zkrCf){*otQqlGefZCQ`0>ns*{$E{35ArF*9h#T#$;|28D4@VAUYkWHm1{K~43D?L& ztQX-9Mfx{<{e%ogW@ceXb{nLNH*@)D+E^TIvo&#`3k)cXK`@eHI3u(;`_4`4IZvaD9l)6uSJR>t6QKw2?J09PJ_Lgmhl9Ov#>TLfl-?bzfxcIT3%c)MhY=N6cq(X?Vn#=5w6?BJXg7bQeP{G_V68;TRo z$Sm{lmRZ$|j5n08;($*}HmO2TMrBtK*iuc5qZXXPkVQ>c8X*f`7#TR--ZTXr<~o*I z8}^&CZA(IK8j{c+^DV^F=Ml6WJL7Qu3H~Tf`#^1^ zS+tRiS`7z(v75GIZf{)gm&G%_1ixK%j44hSsJ-QKdM3xA;c zf`{gH3syc85Iau790XT!u4pW!6_#2^E0{9#j^!eCP`%9AE_ubm0DWQ#ZV>FZFq&P% zf$eG}bsr&W%ty46hRoK~2Frp+;lkyRcRj>mU!lai4TjnH*1JkCg`RMs*JWvxj& zg7`ep!zIb}N-|lI#qqe+sH`X$rX)O3=1?9=1pAV1)d?ep#_f`g@1?eaD(^e1A<3F5 zbigjiXC(8PJJHOI#?H_khJF}1c)J`UxmQjw^4*9XoUdA9835w$xGn*?6~v}p+y&x6 zu0ou%q8YXhmht1+8_o{1M-5|-4zuw9h9Q1dgyWSP_tF6-+J|d+!i9&e<9bSs-J51QW%%0uyW%1>Yjj&?eU5 z)?Jg{F~JJEe3#46TFHi$o-VwVJGviZ2=(mE-A%|@qhHrIT$?2Dqo1mM zqRCiYu%g3Y)2g-axfB@5Xsd^z8x37Xx9*PYB^D96VrfVyOj9_|z;GAXD-SW?Z@Esz zNl+6Qaf6>(VOeVl$zVr1t8ycxf??#zDd>o=iKG}5b^Jv9FUoXIG`Bw%+le9^*updz zp=vg*$_0)e|MRyjBy{#}|EHyQ;IT`!gm+@h(6SGG4}x?j;oCz{v|(g7n3sSR3yHef z#At98=yOqs7g=nIJ79eH#EES3MLyv*44nEHCJwSd5DQ5Vmv(O7__)y%#IBM_APE1F zWgMdD{7BlS;8?~`)QPb-Nuz8wx8*LnNp5;|L$FC&Jz~q2a`tWxL&lO+1W#OJB^eL8 zOr5qv&+so9R2XT{*t4?%_`H6s9!Yz$3fI6LIsBhQ43Kp5Eq}@AC-o}*WIL!969WuB z*loy?kjGDWM|`^@vPDRGIUqsxr6SjAXDO?^N$|Zk?q49x-PE-qK2+QLt@%YmX34TZ z)eL8r!1lngvu{4!DGQnxlx*YzLg@!O1>(VdQ|?8c%@Jfy&|~mOr9}1Fu2T*{lPsVK zz}U_$7#oPuL80Msjs5Ldxn7FJ(^zj}e6JLuz&mASFV?;@u#5CxBINDv zmcoxq#4JegN=XV*{9qtO9WY-u!RA^G&@m?%u1^Nx>Va^pk;nBHQ-|x=6)g{m!dc{e zLtcFh_ez{Z!Lf713mGC7{bVh>jNF*BiBMmt7bz(_ba+82 z%(+&YG3M@uIIjhgHP6(jqtH~9m0T#h0NjPd<%3zxLL!L3%o@DWW-}#4;9KY{%ThKo zjAF~!^|o^{yb~J5T7a%df=%8Z@-!a~(!qc;0jy08>zY-d4dt%~oMth|C0**BUvY8M z5(g%~APTyu6h#4RT0Y4Dd6E>C`AB39K~{7kP3#%<4W?B^xUVK!ta%=X@mTqwz zi`PJB0vY^3h5R*4gO(6Odg_!$d6Mvee`eebgtVFvLU0HJF}xsPi#2I2xggDRH<^Yb zHts6ePQZ6^)jELmR;+`}B@gU82{{nnkMT2dU{=AP8+JG@I4d+6rI?>`iji4FPWB+D zw2&d69)$ojK+C@{cS8FBE|>fgeZ|c}_5dQM86|D=-Eo2_m<6RxzXvToPZOH-cw zcu3M|g`i<~hk~m;Q4um7QY@4)@Dt-KoZ@oChH&B|gX8EoHj<~-(72mJQN*^aL_YY1 zU_?PfXeUu4=-2Ei>EQ5H^{SOD8M6TTS*vWA;cSK8f-G*OofHz}44sS+LJ?&SAu};s zC04=r=J0&*-X@f%3x_2+=aQL_1#VfAYR9Zi`mEn6vV+tHg1+25tln(`e`x zO8qQtrLi>E{4iWBLKvtpWO=+jfowHsQ+UeExh89wIcFU^RBA>!vj6-Gvtw!GQ@{`C zL^K}SlA)M(8hoW8Cji^8S{zl&EKVz`qx{vQ=C1H`8bBA*VXnrdjO-5$nLB(ECu>fP zfE2GNuK3Jr`pny>m8~PJpzo!>c>+lFmcBYsc*0L`@|!cu-i>_Qnj0QoT3Wa%O;97J zP0NtM{jUW)5lxAQ>tQxhFB>IBWlA%#&$-NotEQ1zFWUcsP{H<{HSa=-!14b<^%VsS zP;F9mM0<t;qV92$MBX4xGT;m+u^PTJOR?&HqSY!dvhH#>9)B-r zJ3aM(k|ibsFJt8@56ck_*s{+|L;=?cWibL88WP-OongLy`y!0c_Z;HNg#>;(XYtS9 zCj5&r5*FaXXfEyBLC7a#)_6pE?nZ7Eks zWRqX9p(@!8BgQla@pJixy~{iK|06G zFJBFXjGSH^r-Kn4_TU=+$)8mhHQ^(76_oy%)-E{Gv|4il>34A8@U$J{{I6f7LU-94 z>!uK-KIe`~f(<7X8+7R8viBrC&9_G#Fj?(mQ{?anL=)}kp{a}&Q4!?t<#R;yL2MY!QEK${+B>% zgR)ZV9JEY)vRbJkvRWxCl9GALcpCa6zBH}22T9TLb;h>sevwkZk-ER8(c&vs@tEOZ zg@z)rkGX##t4^#fnnwP>{HxL$NaZMhFdcUR&Ev~`ihe>?w>MjeMmVIQ;wp9Qgl(HN z$h^mG&rY5)VCblN~n{iVPlLlY;N9Rfc}p z2vpWU$Y!ZI$nYA?c^X8{65J)`maA6X{B4y%#WV{-Jp>$+Y6I7~PRu5MiiF?>BOGag z7|Gzv3a-gxaAusyXbDjhjYd>3A*IaW+rIwt+S3q=HtE zMsA^nus5o`F!Z0(Dd%^ZfAEw=a^gFWwA|VF4D!YzpgZ6k&TsG$ia;8nkvmFRsK?gk@P1fx91C3QKYE@{{ZMe;_o?`m3sDR*dA(S+GQqV=>l_{WlPt()~B~ zg0o6SFF-Y9q3Z=`WpK+B2wux;fM;cD6_;I{CKnbl@RZ+1SW%$Cskog`X*;{u0Gp8| z3Y#gE-}aAr{pP6w&D2{?Bm8bYAGsksczt|6zMvMCF5EeDcl4Yte7B`Ul*(BW@_T~e z9gj;%1xIF8f@c-{rmhpe$?r3Fq?bqxu@zute>h5p4OSX6mN6O2;7C{KxKDk(0onM0 z#Uj47gyjILwCh1tWC8KwUtG}G9TN#^+lhqIq=$l=xJfG)?{+(B$Dwatb5&L<=`jyn zys3I>$Xd(lDXR(SvL)ad6oo-pHvEw8k>EJC5R){a&)EkT+ElWHhv_=@hK~Q_LPAWR zv8BnWa@IjC&4zo2s2{%1Ns?b&%!sXp*crQUxlx?hEKlU}6%Dmh$%5nrV@Z-@4zYVl zcgeR%2Bklh49;>+ZJqS2vVIlOwG4~DzeTSU;E+o9^}(rhvNw_)xSvbu#q_e$(y!5R?K1j>- zhzsTN5-j*f;8Z#IcSn;f738S%Hu(sMA4mbC1#+e-zLCKNlV&z}jE&1@cWbdUTCp6J zpJl`x-7p4Flrj)p-VZAPg!g}3q0A-Vj6TztHtvx687zatB@4xtm85`nvGW;<2t6{F z?2?IK%Br_?B9Z}9lM9ig%`5|ldCcLUen?5aKoGKZMG!RL>S4aYHMbBhS%STsl77b@ zjr-|{K2E!%(eYbN=M%)S-x%&e)?x^lv~WFfgR+@&6*z({)_a~?pgGe(sYbXR7@{W- z-Ru`=Jx0GZk(jp@3jZ8x;TFm484ON>F!klBbGUHg_&bdFSSOpHRBV2pPS>CZ+Mjg3 z+|-WJdnnBif9q{o(6L#p1C7??1v8cOPt;3LJUA~4nk^oiB~`_m;#AQ z&R4yEK0&rzIF&UIY|RWjWeb*#9KtJVR)$QWz?5(hyU~)ficw5kap;!TMGRy;%Xh!? z70hz9t+}=7lQR7Q4`d)$wqm_gQ`!QsoAYc*#O{i>!ipJRU>4DIU2ZI5F#b1=GDfMR zjk-2;K;~%r8WXq*7vN=EzR`87KD$N68F^UI$+e~#uYf5D7(QMHf?0+x)31{Zzd ztUA|e=PPmAjdf=JrW~DN0?%g2W8P3QbHS>XQLa!(0{lth9%0KOop|aL!ZfJ@>E#I~ zt8=qk1W>yRu0~LZ6(u1QAz%qT;^lePepF1a24E~@05tNEsilz%!wc-{JM`T!|I4z(ZG)b_B1HKuf z8X!T>0SV82{`N}UGUyB%NcJ_JIGh)}GX)@BZW^s~t#XnyRUm=7hkUWy^?6&G6fRC> zNFlUbwH0E1<-Nz7x!KNXB57f}k5D0jli zpKXKCP#tFj>!JF$ODA$Uwz1Lbzadx3XKficlcweGie!`$A)ZYw6O5<>k^^PSMpaoC zP`VJjwsH9w_!C^ox8*@2_4=F*Aj^x@BZX7d%Ha-jAd_(C+Z!dEoEzl^Ko**qYKBn< zv%^)S&h)GZNw#uGGHq;g96KU$DJ!eXTEna-XSJw4BZ#B_E#bX|&K)S6eIJe7$Q`v_ zSW|mjvYfRl;PKf6F^5u=FezYoi(yn70@*Rm|Fp&(&)Htd{g0(JPQAw0(DJ1X8bnvp zL{s<|m`MKQwWedbYGpIIK5dTilK#pj!zM9nOKVTLY3JgI+yPaR6}ctEfk6g-i~Hva za#(XvtnhHQW8f^t3!+l2q#m**J6y+B(jT-A+o#SKZ>i$mLWUhNkgIA(j8cpzk+*6w z!L;RwL}Nzy(1&)CcUO3Jp3^=`ImG*8>}rOpmv_HYU{nx-g&$*Tk2}VIv`GT$0Qc;!x_?Qo{Izu8R=Lnkxl3+-W{9dbkCL(hp9oA)bvhe4q_8 z=I6@F#?i#9A~t%Px+8*RNqvZ`{muM=Tetxe{sk{5nZZ)m2g)8 zKkr7hu7?48F9{cgf(GB%R!!l-PeH=ia1ic;=Q@@vodJ4xS-$Z8&v6 z%36$`ZIhP@OVZsNCfBH092KX+DqP%zR* z(Hj`i$mlxhXLIOU1t4H3q*C7{51sRc@I&V>yahpck45i%5HTDNN7iTp{TNFpw?3SpS84D#D$tB`UOfa9bgn%4l##h|;Qo?t{t(aIc{+t@g7zur7 zv4I013*Ki@8idzz6BpQa0{ybb7^CvlTnZYY8gM3&3Z@r0wjXo#YV0OZikVS7BBKYq zwEd6WQE8BH0r8gCo(BfUs#%6&l{Tl5Q7$5Ce}MTFWY{Q1z5M$*C~!nCH&iabinR^U z%iIOv-|Fygj{LGo7<4lehJ{aJhW#yM!>T2SPZNkvV|xH!8uHDum1!L{J!eZKB@Bl; z%l+Tkj@mKkoI776YcLQqzKUU)@YT?^31%zsacRqtoNXDRyDD*RXXNqWzlv-`av?(9 z2B`e41gmkN4=KyZjyH~pKD>ppt2B|Xn8wiAR!N@FDLYS*ksX2!xsJV6x_HQV?0B|% zHE>C3hHyuFH~jMsRSX6s!CPjcO&HO21pBKnMFm@pg-DF213qT#q6SN{b;g0%R?V;?CxRGURE6M&}nlHbwl){vSO9Z^JVkwqzAZ6jJWr^S*O9m&ay&yAyO;ai!h)dCsYX*e-4BKE2 z)``nq-o=HuauXVV6xuE7j~V6ySs}9pk~RvK55Gqi^zVD@zicW|JIf*jf6Z|TJE%+` zlw_NjXYQISa4K_jK^RWw2M9?mAuJeiF&0pzRgK1k6?1I#J^#(*9F)GBVU*^v_~@KErJyVl5eAA;;S2do1X_A&QA_LnMYsp{F7^F_ zy?WkUuO55s1z27cc<$n8$Z$T78lp65Pt31Um!t*MVqh?rzk_(|Q<4UP&dz=ha z%&LWLv@Of}5LjAB`^uT+{*PN3qt~;#6BspCdE$dBHja=hirSLKy%IsIdU4}L3!9TI zCNwf|X};`_Y?dUpfrl8KRpd?KlZK<*&poHahGL|R4ie3TK0a;m< z&5_eYmI-q70znQ69$YeK{8V70Qs5f%AcxRV@lQEduGcV2*@Y7<9X^CK{p}$NuR(nN z1VTD*3gf2p(qIB1WZhraSgqdxt5RgM4j8vVhXU&TPewBxze-@HLmo$q&u>qYTLu z$R`D6E}ks}rKY8+7y`CI;hlX$Lg0R-oB(t-^MZX=x{3meH=_^%$8A==?^q9|W$U5F zyc${a#x$bvIJ~lCc3& zhqU(Bx2ADUMqI3$f(rt-;Hzn|eLy<6pGqmCU?unWnFRobzHQ%EA!R7u@QK(M(A?a{(2*3!2Y);X=%N;mc%%`VrI%M1nfu44 zS!dDED#*9Om>oxth73(8<)Mi=NY*@^k3epD_nu_i&aK+Qk5<)&-Ndn=!EK69U>a#n z1iV8^CO)#nBFkO`LEAqKY+9wFLkK~4luRH~=A5ysjEzU`geIAEZz_Sselgm|E45_)R$hn+( z3$kdFW{1SEv#;=_ueBa_6+OY%6*LU1si`00=szpH@RS@#;Rz=_m=KfNQ#MP_0<-;( zt@6W@SznqHw&RD-mb8@c82L;I+ex?ou>`+BgXq$rcaE0kYvnQw0x`kF)Dl(GmC6=O z-la8Lc#@LClL|mf?g~_CbzbDo!=-D-fwPFGAuru}U3o>hxCWa$mIpZpa*aw zn~)Q{n2x~nO_Su4c4~#((}Bc=&1D;;YqOX5mPQ?#CptN(n(IWbno=iv-9OLFrOPyh zY}(%*tnHBtKXE}5Eq39qNrcX|a+Xx(^%Cv}0w=7+<&Ee4 z2VY8bE8`lynk6{FnrjX!Ul%P)ILt|9caDv#5i6Z?iCBGb&9X!x4I&2u5*w?XD;^Hg z9|5wQw@}(?ps9tO2JHsvsbAMcO}KD^;Ti!G4}`Cd1bP9|wDE@hx`o>~oMh@EEh{r) ztu!JJZR+fZxcXy4eimOKoikZVxTK!c91s*qxF=J#LVW*YXBj;v$bWHT@)jA$g|K52 zFDiqR(V9Gx^3bqk>2-u8U-PbcX++xyr)j;jiIv`V;E|#| z$5g7gnY;y=O)0Z9M2WqouL9Z=S&s2irtrca~D2M0HkkF0rdH2GMvjy)e zA95y|=94H|+25;GNgF{ckhQUlD%<}OXa`rR$gbUX6%u(XjP6)1y)@inODnPF{&s<4 zl5&Z4M+CJgbahG5az<@<@LLk&guE!+_3&=>TscI0Azpe1x6X8ArB!UmU?mQv|6gMpla*`eacJ2jfcq_GP2a2hQ5$oK(t&qLqz# z20dmoB|LjySR`VIMUbHvlt702yGsZ|!Bg1Rq`ZJWok6vV%j9{GmihWqv4BgNlpGL8 zxs<_uwzX|iydkALJHna~=caSIJ09tx@*J2lYv3FZ1s`*~vSRt7pvQ_T30NiLA5E_` z02x&uYXaJ|@y^>H-zHVES)v1HWEjf+ldVqUjv7m5xhCajHkG}RfcVY~t;*R>IG+g$ zZam_0!u6gzM!j1HG~rw&U!EJr^nE)wydZowTuDlX>QH2emKn+e_gX}S?l^}qP@t*r zly-7RNNO1d{@M;nt&oqxq#8FVN z>~X+KMBHd}*@W1!803@~c=*784XKshI<=~j{+HXlH_$2$T5(Zo)17eD*_v## z1F>&h3S12uz%XP%L#wQ{Y;VAX=>ec4rTHPL<`&hg>|bkOi!Dq@_Ufyb zF@EAJaF%zm>jK+rjb|Tb6lEMqc42H-*-ojH6G4vlk8qw<&kL0JEDxd;L#|60fh3`K zr_~VwA=tJzE)!YuETGej`nYTct3yo6noD%C;a=b7K$z6fvy&S1f+i-P8S1?ZzUOD1hPm@JXhO~PLHwSqI>n`f>drt~$t5|!{CfnTFn{$-d56Xx> z$>!g=q~T#F5E8eOdokr|<6pbHWAIRvgg71WQIJNAtU+lmMdBt{4)JZCjFTBrHO{ed zO~&mSh60ljgQ>t+iq8)d8B>10n!eRitSoQEp_)8x#bIi$q%{o2-h|j)Qhq`sPPES? zAUn{$A)lC)w_+(+>a1R1UkF7#UY&F+@4TLIt52)hSsno)3+a@et~OEGt7r=k#D)6N}7Dj4~+haw9vPaT}5 z!3ZSr2;_;ZX6K8^7^R$I=~akuD|y)ID&Y!nO%K^|$RWPXD3>z59M5{$+Ju=2K@NpA zkZlq6fNx(B*>1U2ILU-O@SJ?H?dqGtM7_6gMxzMq#UH?F?Vy8DWTEBiS}c(wf~tw1 zH?!({E8M>@c@HLVv~ZS>X%%jke(-PcQuBGDNu5WEXQC#rZDx!vlkEzI5w4}<^6$mf zH-^eq-`LsF6894BVtL!bX>xdLb{dfXWu-mdHB*)P2;?iYK0?a8Ji{5-U&{hWU6)FG zv06=0G$h%G&L{VqlZ@~0DjK;Jz!1}e=WsA*`MAtHDP~M)3?G}#0C6;Nx7Y*GfX8Hg z5C_B47KL7FAz9IhhQ1o9Lt(5!86mjN&05$}p%yTPKys0DKDC+AhoGc7qrWA3<+8iw zjn+=QZDQ&I`wYi$^?gqcM&WmyL2|aRVOF6>cq?D3QW$qYFytTN=dDx(R4r#;Cu%_f zN_=~3x9N&hDSnR$>XLJou^vhiN>2J2#F2bVuSKw_f)ioGbRMVk65f=D?{-@p*-|{vlfrhpgDd6IlsoZ^#2Ay}+!N`_4HSia5lwX(}L^;UF&fAiSi zx@i=b)09VbXf2(ex6TAV(?r2fRy^=BSCl=mjMOG=X*hSTRc!~wz&ZNG+II$a5eQd7 zA@I};u?qwbMX`IPfYNnnk04bU((RuvA2O#w*)*)86TZxm6Hh7Hl0z#>#2tn}(S@|E zGsMEQ&l^WJX7QFtu7p&KAaCR0k*btsrwl+s_itgxh7XpH@88h18h7{q$KIPQDUPgb zqOVfcx3XiJ(6sLWfrQWmnsrmA5upjqNP7Bq5fB-Xm9ua#k-tdcq)GZY$?Dl|5ENS9tNYVkXKA3p8M)$XDps#Lp>U+-u@Duj7$rk;8zd|HS#Q2LJ?hQBR z?U$1XfVFb-Q>+a>i0qv((5Ec>3eafu)fgjul$5+P&+EAqiPHZlDVd%nCI6wZkLWV} z^2_nQ)3)JLo#DiX^|MIy#fSFyX9tgW+)qDR&VV~tb1#VaTOLM#*f#Vf$RA$wXN3a( z(ekNFUUQ;}-%mvNoU==>{+SdRMpc)*70CVf&J{}z>IblXi`hO?8;EbI4Ii83jfP64(#9FA5>=lTk6PTPO{%$^X~ed1^+LVr~pp>sdM_r*rL^9xjs+k z?;lm`f6`KzA-{WazPae%HQ;~fVg|#%hM>K?O1!u7rI(iee_Pjo@n&?_;=Osh&m2qo zug!JI+S~yN{*P%^?+zVC8HD=uUi`Cj_Zx@H{I!JY9*^DrC{0*;3I9<>%CD-vKl}8q zsK11_hw?4v**{A<+mD~$RBKzyE+19&5hRk{-ivfE^rNz=PcSM<2Z3 z?^y7o906IfxnF+0#eI=~jDUH||MrvWS!!oxVEu-AU**x;VX%LYZVdFzqR76z-jFxn zVwVj5f(?)Kh9xQa;q86{MSo<562xam(_hH3H{!Uz9-u+vuK^lw_m%$9c9THpZyx$T z@=E{Qagroo9Vg>g!TuiWfP&dUqt!m-smKt*hrBr6+x+NB`XI3XpOB$|-w; zg@3>$fFmEFl;)OxqzwE)0O&*BqJL=**WSZ9mIHj|M+ra?m!)9kJ%IBn&v<2UQrK&{ z=!a9}z3AF^pB}n2L%&sva9`g1gQmQ%5^@CpHn{1LJCa|4>H!3*9}-uq5b_AA|(q<`L!jGCqg210Nh<4VPE~yf7EXN z=kd$LtD{Te4WB7+e_pzUV81BcdIO{XvKERY&=-LOdHkL#{_p)m*EoJloP8G#-_u7Z zAUFFD>;3mbxb0G=?|nS|kHOY|T%rEmBTb=SJaCV}!~Si2YwF`yiQax|cDh6p{$PU0 z&)L@qLjCCX^HC7=CKLZE^nnueU)T0UCGU-?|IlPWf~a3N zRYr;LWe;!2ov+J2T8uxV`t-9M95~?jnq~esQs)oCtxsMczfM>3{bh{E?QgFPk~b?8 z{sogTE8;6Ac_ZNZbTfQ41_5<7&z5*^r?UPd|6nPr=*uOD^LG!$sf%Z-_6ASKBzf2r?Ac#L2y8E$Bl>S9ilOF);_cifwdJ# zM3`?z;qnjnYq(^Nyjku1&x})sc{r*6pbO2X8t$9?>6LtT7$dP2z)y95>)y<#`UnA0 z4;6HH28AD;gZ`{F(`RbkPvPA5M=Ota`u;xe{?kR~H;W)&y5=luIm+L2@O_JatiHKr zU(t%UU_M@D=HHG;V9DOg~`p+D63>ZUyY-4@^a_nESSo0`;uZH;9xDM

+Vczi-VIsI|rY9b^wA{f@Ku$8ZA-`%Vu(+K~Q! z`iDjN3kUrh zn*B#pZJYv<;nh|9TgB2lmAFfFVE?RsC()1U_sd6KLo+=_)x6nXZUOoqR7()#U%*bi z#?wb1kQ_4?^TW&7yb>i<_Qqveoa4h40Xu zz?Vj^Ret?QGW~-Z^0v;w!e2wgtHt*5me^qbC@p%g6nCjJTqZz8pV@z32WNle@xImE z^rg&5>PMga$2jNcRzzL%Ue~(CH2vbj0%q@ZUhq>6G|;7dPBZ)cOZyBYP|Vjr!UHY+ z!6founLSI>oCoDz+eg2kcl_rJx%x}H{nXj!L;2*^$&09 z4+yzfZA%RP+5}!3z2zwUbi2|3mOtv}pHtmUzg< zPy6&gmgn;`aKy3y3~*dJ(7s|cTdy3vcC)yKiYosx>T~bi+(uazhRI!MB_g=7s0>y$l5M?q;vm1`~GV>`=gw*y*)fw zzi&@=&tNT%;{TY)(LR29YuQ&18w6p#((WDzu<11v`5nUjjIIK$_O0dFN5|LY&ff5C z<1~%`!&6au!}aoPO#I$%f1Za$A)guk%cPHIP1|HhyJK_E(28aCA-4-W)6~IP+ zUkg7*U9SG)4SBzlEwaMCSG;_5t9Yl#!TV>cUvx1hK9?WgQWYP#k@;zs*@FuHWR%&@ zsSzl%bTWML#H$4P_uWmuzzaZCdf^A?2MRuZ>lA+STmWVKPtV00knE)!2>gK>mW+cj{%~Kf#jCW5js_fFmS63VvzZ_U#uOnRCP87WeQS>d+&F~XSUJ}X z=GwySSxhfYt4T~ZlQZwy1D7Bnzb3_r=^Xof_c;dfx%?^?%;Zk+IGEG&eV6qv-<{0! zs#NAMa+A!o5f~l%AVH+_x_o?Phu2?OmI$IldJIE$9RA|4blf z#eeP?laT{<-z}e`u62-EA#9ml8;NL4q`9eiGnS+I&5ARW)SqW_8;{s}`EK4Zb&R26 zp41r1Lsj21fXgTLWiQ(%E==RZQ*vIM?gb@%liUy#iVw==4vRZ*-jzL~`p+&8Ou!2W4Hmr=Pc(d1uV=lm{E~tKow4P$n zRhEflftFp#N5?3m^t`5_T#Hg7_rZ6T-P}|>X&6^R3EH4fAlO;OWkqmtQyt)us>}k9 ziDT9Qbr02?(ca3enTisMP~W-h?X4dOlW088wu35$s$wrwm71}HO6%2u3Zderk?z*n2buLN(%|w|CM@26Mi>W;dJvW1& zps;kwVuH#7Kr3X(?lC}(90l$uyjOEPbO%Od7z5LQvNmSGhp~sFH+n#~%Y7^Il|!=! zzhaF!Z1GOd%2-v&D;i%_L1qReGHz96sW8u$r3}CT1n#UG)067q4sjT& zrWlxUx?UkgEBELTit}W=0GV^xK$ziJ%Lx^ntImvY(#!r1hzi&p=b=qggudOgYK2z( z5Q=mjh(sxb*$v9JmdFTF8F|LRNf96(7hDnYU){^CIxB~x8@B}%0hxG_o5rL==h{$! zMsHcy<9run?xYiEK@c-+JOugHn{o`!Yk!Mm0&Ex!VH`0O!#x2=R>GzC0kw$bgJ^M5 zPjpf|p6olW5U{QQ@f=9p=zDlN*jngMWgZs=HgpqCg_|I2p)#^ogV&-7HEDb$m)90Y zDO3bt*b>kX=ujx73REJ%J+C{R;k;poX$jVr-ZPgb=rQP_Eec$v)xMh+O5 zRwR55k*l^LLjq62Y7^m#)`!On7U9s41HKy;a;1H@xe!}r>W^a9xJqDWHQ|#unss|f zc*wVFi|%iwdI}y`O#reiB2U6@!UJ~@C*crVRv(Zh4|Y_t{2*poI8q4DjN(y?vhB&} zx~)OM2oJMH9--IbhICayH>PWqd>vs0hQ^&%bnHgAvaJL&ng=0hIGm~2HKww1WX&O_rHkng6WN1}|WADYU)4;tBO zWyg6w6<@IOej$%$MKr{{IrKVy>{vO_F_IYou9*`WH?1s%Za^=06J_z0T`*MFVWgs< z=nbGXjB21nnHYhf0&vgZ@O%4I>V?vNP-T+!J|rZrnGiC<1XjVv|EXBLzz$=0BOjWo{Wb#7$-HK zv?^A;R`KQNHyZ2MKrb0xpCDM@r4WI}UaxkTD|uKQP-B$m%X9Mk4Z?uEX))d_egWO0U@-LN{Xjq zvG<(4hGi#Xp^*aBlu6;PwxGa3WSoH>XI9c!!{AIxijt^#V*|C^ z6>W9Gm{uv7*&ECK9_ScIMmiQ41WM42)6HFFwQoiy297;(Z4T+ZiyXu(%Y{%BH+Ljg z$c=}1E0hV`BVT#trIT4!yOyk92870t#%OR9Zxj*I+|-=J6%*^3gM?BiyI&C$m*;A$ zN&pY{A#Yn1ImtSJ7ejT;a&R8axk-H_^W<>S0qq37Z85Ovb3ShYrtBC!(o0#uNCB*~ zqfEGTd76Y}8ran{bhEl$OAe`5x?FjpZUEEfOehwqP4>gl>bs!|OC|F5DbVdCg=Oqw zBdiWj`-&?~zS|tKCKv*E#kZv@4rQ)-sEKp8PzQGmH#9TbOr1~>YcVt2?@d9-@}}vm zto9}hi3!)5HqFij`-vG|y@LI-WK;p2-=~P<3}mNG-3_sDsb|E!M^b9D-nTQlZ{n;! z#~4w^7+D!|eHD?FzU?n2zP}Na?mC>>dD%ANyDkGZBQi`0uzU6Z=i-bx@FZ@-aHMtX zaIjMVe2#NIHbN5t3L;cfDDzD-Slq#z)eLRb*{+Jh>1sMFye1f%q4q7vuhycK8v{&j zJLn8(&;#rxFdjMORac{-C#U$sKHOie4?A#u4}rYf0Nyh9!;FGw#-SY3JrvalQOBxg zD3nv;5UG}4?{aCMO%Fz=;)>oe92vktAYv4Uz)tnL=@yR1&8825O=RtT43m#XKM0)@ z6{;*Jb~Auo=VnXFL1Qto+T)hCxzFc$YB^SkX_u%d*W=P;Oz=Ft!&e~U>H3hxb9fUd z+wzSPs%xCs0gTG@=sBV|D}-t^uftJaK>1LohbXvbz&fEfXg3F;>|6=m+fqV#M@QTT zW{o&pXvfLKF`3w!X(N0d(8P})X5-%9KKxqJ8i|0-riO!uHIYDhXPxjnWgj0n#>v51 z8mv7iGFzYn=dZ8m+7z&ByTUDe4Zfag8J}#7UGMEp#JfXwv%@E3%a^S%V`5B01~xEv zeI26aZO|AI>cBY;mmv^dLj53?!Da8xuad; z1ACS0t`rbUrPfgc#T?gmCweE?FEAqKBOdam@PNqCjotv8X02mDN}L|Pj&%ZffknoN zq5L9cTrXy-a*r`8T?HavgFpLI=8s8YwXzXV)tJOLS8is&EZhL0p5~i*;Mr_okt$S9 zdUpw~B~VO}Y8>MbOQ`tRZW@eM{n%^N(}XFjxZ}HPLY=TY-y$i)7jxG}>`+ryP%=$) z2D~qa9LM)(U<02$-&v_CFW^@h3z4nmcO2D^WzpIBI!_!HIsn;J%3LAEiSN+-5Iiu= zMR@wO9JxZU!9&Xl%?JufC#~0W(SgqQ(zo?tCx@L?3rx~YGmWQf8#QY@-vh;3iuNWz zcy=y$|3Xzr=T)(J#d(#by_FNV=ro|yd}Gua-C#K{M``0-al9kEGB9w+l}{TB?V%y1 zgmykcw#i@w!gd38dy+M#8&V_rvN7xvI9wTFonoViBeDHRGr0=Nmcs#{cS zHNH2kw%byWrt;}d38vaHN#FD5hfnafjs0nTSe#vYwU;gwuy2k&4JQp5o4bmzYZOJs zl*AId%b;Czq744P(Ltb5ozftM0C0plvqfMgVQEtK8sI3D#7Uj=MX#Ro!mNS40!$Qm z+*`1U2@;_9*7ZD!NhH_S#yZwj+aIjHCF*&lFMHw+?D0c(Y?gZp4s@wD(E7BQ&IGk? zFcm_3wRM|u#H_xqSd73qb?r3`qc%~O)H-(Hn!xqS#y}(Ms1?*=+_Dx_()?Dw<&%bU z$}y}YDeD3b@XF$M<<|J&=_l0>gNZ3F8ZyL@xh08st@B12w2ORJ&lM#*DcmExH%Jb= zAqRzQZnJ4g{mgVXrcv+!MnJj0u`|j@*_~j3=UIE_p^c&X?U5ri$KhQFi57pR!-mPr z|FHskJDPl=@%^GPN`?1%aL&?7=QmqmNGe_Eh-YZTP5g{x8Lb2%Kx(OephFvMM?J`d z-0F>JUmA~3@k}y1*yY1pltp@1&)AvsB@f7Rz$zNxUs$ahv**2IyjhK@bXDu_VBg`J zj2S@g35PBQxB)Y75q1XWO<0w>c{o75q)k3_J8KY9kOTP&156wT5upu&#x$h3E28dN z!$^E0ydZ6q0%Ib`x$Usr_82T6)?GLIL09QxRw}a88kBD-Q*Mo`BrG zMW%5Bc4P{9$9ZK{)JC?8rfXxHm8;D$GA-@Aq6sxkty~re5``18ScUNY5R8f2#Fi$o z%*~rgEN2CSFqW9q#u0-Tzv;J5#2bZFbXFT}w)G+uc63%AP zB}Y>@_BN*37}3B*VI}2>GmD-P+MEaWovOu$<_3Gr6>g|?0K@dGt0)4rqG(2v=M$oO z9yE^tdbICz^|;-ilLpIY|7Ky1mfI(^4u%6xo>b+ zSMJ^fA8UhlnFP|NOchCsj^eA^IE|R)bBqrDK{KX|FxwEjd7cjJbrLBfgaLq-5b@kR za@%3?6?(Q&l6bC)f#Z?!PV1q(2wUAIAu8q|&7>kgm3b~H8ZdwaDB(Gt={>K=)GUI+ zN`|SGNeFlxdyWCE?sxj;x{;Kg(JYC zGRIM2uR5pFj}q#DO#Jx@Fv>-8$ni*A2Y%46Mq9(-vEKqY?HWi!WRpJVX9d_Z*RBhF zAPm<5PUs4Dub~^jGea&OjTl9YtR{>Jd^`9apLB%E7}<>%^VGGEFNvf)$-D(JVBc(Rcj=i&?*UM*%IpI*sut-^|+4G0o>V# zC{&`(fjZ~HP_fxQ%j>)#XZ4Z|nk`@!GssypQGligpl=|w1jOQ!dA<({$R;%ynKhI` z9`V!*)R6o8M~tV2*p1~^Au$vv+NhjtY`f5CE5e6#m6ta(K?r3fW(?pScZ~1t^$a6$ zLlj09+2A~4;xGtsE@T%)!-1Swf#@GO%V{z z(G`@S?EMO*4r^rPp_HI!WX53I&`ja7*Aw4D23-|_9J-lHtOdz|oN*Ksts*&^jwpIv ze21{OYAe4(s0qHFeQ@x$5EhP5PcyTDbK*w9ssbGJ(xzGveUyA_Et zwqMz~3@lPCLQz14K&1%=W_M+Rld4FeXA5fj$}PPe4jHbHBKOmIKi@J9ksHc)a>zlD zm2W1gZOVe3kJ&9ONV_IA;s8@KXCr81t7OSXUVq&KeJHmWjn!>LReT25$nfxIv*{Dx zt#t!z;2`CxGL9sAzex<0WjW=cyqO;{3x{Z*M9rwsGk8ufLI_DgIWE{^oS|ke>P}v4 zml+pYLZm%O@5Kz!cU4t)As|i>iU|3<+@;{vc&x|AyTAggn1IXbUP{B3koO*Qj<>dO zM!X2!61QE^5&O=~n%E{~g+ru!L^J9kV@V86OASu#PDagY&`M#O7u2Tj$J`5!-oWJK zOk^I|TZ61L*(Q$Q@{rq{;gdbd>h_UG@)?sah#(i3qG}-Y*fEYUvdrmN;in^QTXn-m zGuW^1k+`ZQ(h4#)jR+2w4Un{g?ZZ`-ycff!~(mQOy z{VL>pO(Kr8)E0mSTx#({4dr28;^z(@T1CS&o8_Fj4Q?PcVY8hr z2GMVUspUCu3TZ~pRHSs^pB$k$j}CEcvhog3ao99&TgX|)nLsZ^?h=5T0zz;Fzalb& z05T~)WH{1I4!}|+%0`P0Dg`kkPJ{2&SboPd-3odNs%~usK&x8}?gbzs3aF{s^eCL1 z(71rKVC*;&4hW@1J?sk0B)-{XDZm<@Y+Z@|uwWLXnEY655$aC!f?Q}s8B?0u;K>LZ z*3b&XV$)0P;WNME2!!Y>w`1?|zIEDs$ zlYM79*d|ec?52$jl9c>gK9vErqo$K9?xMQq#QE|s8}c8yHpM-iW{vU{j%6qqhV_!B zC8?CpU-r$h+j!WrJfvkALUIMK^ zS!OtVegCw6`q5r5dCNY1tj`yV9Ju?JGgyu@^}ptl{m&Zzv&R3kYxt~R?^~>LsW}O? z7%o!Hc;twEyuy?R>$2^>zu7v%Fer!WC9IrKDUK9d8KSbOnI6;2FZ|mcS|AVQ3(=WP zOf+P64Ki!?J71kwJuu4#Y(Hi9!;kN{mdkfYLk2~8F~?mE#Qs2HTjS3Cc%F;74cm>R zs&xz#3~`t2lIqFb*S+S?buNTSeL0)Wb>D7iw#6s{Mba-anRmx~>8xjw=$1cUuRFKc zf?Fr{z4OMp>P&fCM9^9@&KvW`s+<7M^RCSPVn5%xLkyd~Ty$_q`^wOugeJ^L{`z!P zO+e;uXP=G~EuhzzZ8?##T=Rp)^@iDv)JTdQL>c{B`S^|PntJ3HZr6BFrFg2_ZHy2V z?)HyZ4|rX6`a=(4653+&k$_#bY@!wY`c6!=+A@AP!Poszj;wAEz!H(GFvtd6$Fo}; z-jI>hUUZ{O#Y6WUwpFO^P1%PLtjU9zw`Yho;uG2$9T+Y)-s6Wnrkx&rfA8sMfs~Go`Kfod7m2VR=YNeG9VTz^mbv9q>=A^@ z!!jG4dv_e~hQ@84-{owA4?Vh@jf5hJsI#-CFUGTlX}*m0ee&YRjkwS<_(5-Rl%H(_ zZ$e^aV(={vNKVvRn7zMf)L|a9DX}|WuE8R5hcP@=?oi*vSJCUPDZYOAFD{3I@SNm= z5t+@VOr&BQHIb`uC|_i;DROEZE@Uo+(8}j+9-Ao}B4!w}h!AqJ*Ja+Pk$c>YQ21%y zazh_TU6MdxsS0!Bw13H;f_umasoPhka6dY3)njbDf(B0k=8+yU8wHEtjQ0=KQyMicIjb`1D;SKeNqmv|1~H(+<}-P3ycyxBN@SPl2)r0l4Gq=VxndF`p# ze>{ua0UVG`sN+XF+!vTh-E;Nf_LQIOn#yp8y|J#FbnfMtV+g?}9kyqKIqZ0Eb>%;0 zF_5u3>o0s&b@e@uP>ZChq$At?^FA)j<>NE{RuU!Iz}T_(IO;gz9xxuy=+vXHXW10# za(ALEyL!K_eYcxf)^7#7+gxy!)m!EDtt}Ei_P6kiBwOGpM z_h<#=jF3EJpn>5HlQu>eDBMbP6iDPQ?I+!`^YR=8hfp8SQ-J3|Fbw&~-CB6X^j!=| zr1fQEn#ANV>-*M{tZUxeC7bksi@UDVHIl3g-%pFPter^8^#v>?4!+!(L8oy9LSmZH zR`={B+qtcMD3&`Pb?ii3>I>>)7Nw(AmC*w0-xLmVV5knTgi2>%w>4#ktQ9?+$5cNP z%XY%oy)~jDi)$c|F$F33{2T=gbO#3Lh(uQN4};c=#N z5%`v~spRsU_Y=>Ct)g_qC}V`E50lxx{ktsqerPgWv?;G;o1a(5fxC)l5L}t$WGn_1#(g z_R@s)e%X(Vzv9-K({Z~78&P;vSbI<#BtPMP99Pt_d)W=FBwaIh&G~*%*&W(XV>C$X z+fh!A%+Og|S5&paZsfJqy=3+7&M!ISZr3gHUo#6jTJstb2G=|8uam(dm0q=Pu{n-I zP<`4oEiymur7Kj)JKfh~(Kv`aW0DzR*4%UIn1@k|-#+yeyM3NBE}FjA9Fz4%mm7-; zMzxTd?5kNdo7gU{N07)S644wE!ZZj3L6goTSa zqse$nYbb{e5gc0H08=+xrl!%)gYbr{;-?PJ0h49ITG}41((x^8x4-O4Pcnm9hR!~1 z=QdkXa_Y8JN5J%UvT;lE4)W?EHb~V+^kxNRwMLWVEeg_xD8>CHVdK6rPzt6P*)Ea6 zaMbPkNn`RF20Z(Gc87J20%`gdH6gs9jg+aFTg-LR&ZS{ki^EY%ay3w}YfU>o!Ba{+ z-ND~%8Etx)v6vb2-OzgxJhw(47)|aiY-%jIIjnb-i53AHU>f6PupAFY*bm5L_6kCc zg9NE9p+6jeG*I7}r$U+t8;w;yXC*y!WV&^cf*b@?7$)(bzxRLaMC z$fs1Or%GHrqpiwg_)(rAd@_eUM9mn>gz>SLfcEUm9bHZ|?(b?$grzYA_^UnLpR~SN zmy0Zv6Xs)mtsnsHN3$POxWZFiPl;v7^dmZVQIB<65FpMx;)h6q+bE@RNaNLs?)4d) z^?vfA?pDrHIh34R?J-RcJ375QW!mvxJZQb@)_lMkSaX(Kzad%~rx}DBd^qlS+3~m9= zNxCtKrI!}^ykC490(PvK7Hf}2MluejLJ*3x-n0gHlcybC!j^c#Iu&*d^k}Ka_Jm9$ zvhQ$zKgFk~d|cf2!2VhM(CT3;^pQx;J-mq^$j$e@=f}7gt}!S)4NVveY6&4UnkcFj zHpC5LOu8n@T%JpWb9$B{d>B#?i!Oj1^1CAw;4j&ukyyw8Amr?9_nf#Fuf*#?qPi_P zxVd?pP^M9CzBz8>62r)DhDJrTU8&@&!LV}qIO*JgSKMHy!U|qVyLBIhFr-2%z);&y zS-NeHK!yUDKMtpZxXAqs7pe8!<2EIaz@%VM+<+Q}zF4E;koefH2tRKKY-rWkf$k*U zKyz_89XB{t&;zVs)Ub9p&ns<(`m3JmD19Im3?5V+Kx?M4aC}(hJs#o^sRF8pgE<{* z`GB@!6!^_fhl7m7XoB@p1 z_@Gw=LJ3s>$2U}oy1j>sdz{1tWTYI0yy77+gWv#eI!X*B{)e6$L`yHhnKaug(5V|t z(ILo*`P2wxY!8zNMD2Y_mSY}Ptwuu#qG1bSY_T~u=yY-4hT&8=@Zh7CrdwqPM1W5HB&RI+g+r*`ali_I0k*W(#mQ zi$Ad9hKp4`I!&b)c6ie*XQZ3xHVToN80@Cr$&`<9R0i;|pYuPScW-qMTa(-DnbWL4 zf)UNsmn zs4)vXc2y5HQMEvmVYUmmEl!OLZZ;dDjX$3uYaSS&Di7g(uaWez=|_Ts?vkA}*vcdU zJfI?)8S-{N>;ZORaOf@wWofb#OTd+SW0GSxpgh2V2W(z2kUvqf+JqTEIar{^vBUYJ zzXwt}hbGFTGYFWQ@K8YZ3K8hnKAH`;oF&JclIvEHHjQ{2Y-VPLIF8G_o^X_4k{%}; zZpQN~gYgAyOr!*q~E9l{eXw1mbyNlw;7DI}7 zIFWPc4p4sZs{ZCDP>1r}KBs)|KEm9!&IvJy4fTNYOn;_Oa%9x2bpZ0hkB}K)9!Bg6 zY_NP)Ozcb@W_hwH&UYCfJG1dzu+dz>xD_(SDj)iY@BQ6|e&LZ}(Su>J_^-ANRjFmD zg9Bd$t$*&(wnNSxLO`*kYD^>bWDk>ZJrDFXYGxZ(0&l;m`+bL1ev4UlJCSr8D`R*! zY7SznE}`1{D8>ODQ9gNU#`WoSPuqv>`AMsS%(BS{0|x7f8K=u$5>LG4ugFc(LkQ&! zR3gDBEEl*3KtCKpVXCZr=U%#aS0a6H6FN=V2CdRe8$_Oe;TTtju-zWQR|MAYp#%HW zb0$!li~TyM+PpT!99u!`(37&&^{o|&1AaTnYUOojVorw?p#icf38=P(I|RE>c)9Fj z!BOv)s7tnRr_wUEkH`4(=ljkbWH=kQ0A@;dTDQHqC&%+1pBwi+2xpBY-_B zUOo>Q2W(IPcO9T@sW8vei?l-ml4|qrUN=B{i9=xr07G!IpSEOtImKe1-`AK{!+&DYglt5=3OzdQara3YWJ+zK)9fT+4 z)xs+}aFStV?-KR$;vMC|JG1UhJ%P+(eIcmSpr*NC7%R&M7##Ik33fhvLJJF%OMJY| zH{NY3vunCBz?n4cIwcHf25NeUXOJ4hZU5eQx?kD1q_LO@f|#%!hpXMU$1sN}Oos=* z4<&m#P^4?o9Fc4}IGvfMzElj}rLm3f%nT?rjyXVnr{N<>(I zhtMZ)$=9d-(UD1C>?q3@S_JOwjbB?4R6{01_AqmE=R`^(9PHc z7CLqm=7RkN{avS@^s`-~n$T|Ot<eF`S`Sc*@`Wy>{?P0x~Mv z4ulm)`9^aAL}Mb`IO%uL)-9UU^&LKrH|2l;{wSqA;|ApvhXIcDao>yg4zkOUrf_rn zRI=;s{R3Y_Hyhk>(wf*H3p63CB?HZ84%f34T^E2}W0WPdGefb1;6N*eG_wrF$QFv$ zgnW)^nJuBKAOIV+gGbI;%^MDL}$Xxs2%%E)8c02q|!3x_i1-L%i z-DDusHV}ei@--~^IFEo31OlV){fL6>ly@wvvrNU?$){s7T*w4AfL+s5o?EQTk&TJt zXk3qw!94U5upCLe3)wdEF{}i#OZ(L4(ze&Sq(43KLr;V%WlYxH`w0LQf0s|bdl0j7 z%F(78XHM;lNZV);c_Nk)z^ev6U)mmt*eNcxmt!_wfc$NA6OQ+d%*_zmLQu-qB~e0A zKN&m)8S!3=3sk1ze01m<3I<;1D0tlVLxYz$5%Ebr$suxy0i6L@hx?&e-wBjB z)6fRdXPryn~tYWaQC7-f#8-{o) z;5b2(R(wPOuHVCmyJyZp)S`C>K;fDx(i3&;F66u1igt*j+O`08Hno*xiX1f#DsY3r8!x18VtOh+ z6vcga0|sBWuiO(Q@Ohivf&vPRY{HPbTk5$RM!@r=QEhw|oR}khyJb3(OxKAjOM%bA zrABFWpY|74P;^+j)od8cy|3or;BF;ETaad#C^_qjT2o~zYVoWzGqi)v^5l0!17oq9 z5qQ4>0uUwvPC|g(afRK=UuBG3m!$|7Ro|5mL3u%s%{?bFIu5zKi12zh>}|ZZbX$dC z*zIBI-g~zxhS=CZ(a;X9FxCtq6V@lQE6%)`?~x6^VGZ+qGF*Ohk9gXPu4yYuq_?uIEfBDK(S*u=YlJ?_1*RwQ{6h(OT?)=im;;-?3VQ%k~oW`@_po!!h|Pm zY$^za7s)o><9oDe_7hZUyFD`w+g1)ad%uV0hR${L2H$kfn>Y(t=Oxxsc)*KV)5<4& z+?_xFr)MMJiBh}f@P)nHrXA*;_IKg7o^w;c*M8!hS=VS~XkN?r^&Lo??R|6S4{Vz6 zkMIU&-TFAxU?EiJ*u3vA4Tj=C<5CJtC1N1iZWckxsj1*P+Fo~KGdo_+gy0Yum zK*;&MKbFPf42@AnY1pv#8-VMf^)1<{jUmyojpP>_ACBmVKtfCuMOiZ#2Y81&p30F7 zqq}b*!O`(oI>*t@Em2i$r9h%FkGt^4d9ivXaU&q8*2!yn->&ENCeizp$=2+Jzrd%o z1sIFIRVPw2bgPGm)6q7ji%4%Z{$g!cY`OOCYiUibozuFA0tem{Tgm8e!Okn_VeOoa zP`Sn9uoPi8Whs{_#JXm%we*5Lb1m1+_s(*wtYo>@$vUjRwBZC&>lnJ22ke;J(7wuQ5v?Uz2oXG?+!X&5hDxZSw zrJzNeISs(%x#eTzTJ2?vIDW@8(T=peoC-UOqbs+&D~>8wh~?uRF&^a5=N)Hvt<5V3 zHMe`8ZiD>p&({IPT%`2KzQ-!KxhLv?;fJFn&{0uSzUi+^ve=d@i9UZJ&(KirxF@$~ zU@zSH;PAhxI*(;Zl`Y$T5Dm0yqP2)X(?g3uYxw%dKKGugdX{FHjh#kp+}E0OOvjzL zb^SgI-)jw~WNjvXZk>KnJ|;rXf*kI5i`tw+EUGNdXre7+-oZ`KJuXYS@0w{B7q+#W_zIi6bm zai&YCN<45-(OHoC%gL!L(a06cqbP%0CokD9ix)ySG9y2f`yq873~_@#wGhP@Ij3+R zlsIobwDdataA?q|44=myv3Us|^p|D}XbUlT9xL@j5i+=avQWPDN=nmuwf%E!2oaf# z_cBT^1o$cVCD5?j}JjA0;nuo9vo-< z2;wXS%0i-%+veYyspDe!otKrB`iWjemb*(7%4Yq)a|3y;w2COrDIECf1ou^m7jv6i zT-l-XHJuTkR&vKzEPf2QH|KG$Y-^X)QSl7nsE*g={Fhgla-O}QLMw9xKe0DY3FQB} z%mNyvN&M61^3C@&ewkSGM*%0&E5dUZnSjIRDUlz(YBQ9%P{6+kv&>&?lB6&q=Lz>} z4Pr2c6f5~}&HKFap|;1CLKlRKkZc)bc+8DlR%mNTskS`^`o+EM8zBK%$yr}OsH3AG z>)Fyii})5x5W9_ZF;E3E;B|8? zCcb&J;m@fA=H*=FR+|6((V8(*>m6M1pVF+nZn2GhWv}kc6+>fU2QZb+ z@3EyeQi)g~3rWpWKtidRN!Y7qdNn=IJGmc-e#&w|L2Hs^NPGgY>Q^}-OR#q}j6+Rh zgNsG~${C&Oz*yR7L2G*3kT(B-1=O8+FH@r_%`3()S2Bx_zjWT^A{;g{YP^~e4acYZ zlHHarRe~4X z=-1AbB`8C$++2UZv5zMSiGeV3Jw0KN=W9_O^6DzEalaGKFukbIy-|LecO9X1bp%`*V4c!RO(e){Pzb*g6k&=Mx#;z9Gs<7^poQo;qDK zXWK5+g2?$tV*uy(7e3<8d^3qZm)5`P8GCBfuo@s^ ze^2jLft%J#HKg{}_3A}d#2+_J(Ovg-{tY;ieVm$~eBr5c;Po-^u)MZjy90u0I9Nkv ztSxw@>4M}3r@Y?iu|N67x~#Rsg!X3fM%pz>NlA4i{l({D}BilIKq9ff>M!Mp;TVrCSHk26D;2H`M zn)$1>`tL>Y#)>kVQ69BGugUis!Z_F(qmk<5?Im0_KhKp1p1y=1()J|!*Cqs57#$fp zG=f&ULAjyCBXk|pNnKV1upM*JQ1)ipemfiq5hvz$7mPTj*#BuM)d-&OQoqi4vee!` zSNf6C&M&#(g71wuv~mK*jvWtW+qmav3NU+RK!YL(jpdJnKmNH{b{i$& z&tGD_j$Oxa>e3|Y#mXB9(kX!xNTy# zF9X}mGMdA)IVK8U>HEDewp6#Qe2fF}X;UvK6Eo^Iqp%B&G16u+A!$n1N0o#)IR zTL@d-GXBTUYfE!Iu@a1}t<`7Ve#83Zx-jtK=O7pdhX4RGFAzC8yDY&Io4Myx&*M2TRp}yj~jYFy?qsj zjhR3+p5T-LH{#7;-(wP035NoF-q-`M(gy=Td z4oFJcW1^hjgo?23$mZ{Es;fJAqUr2^j~p0Q{R*PT1G`@zt;V1vk$&6%Ww`o94n1DH z-#lffn0ZTz5w~`m0q=T20Mf8?0vF-cI|8AIVG*Ul9CgV4$)xZ18KQ$dfK@~)7EsJW zXL)xg*-LOAQX^qt$kDsv;efmrv;$pOAcqiC!-9;*e=}qK&_QUOGc6lkfpG0p`rQ6} zKsihyWCxBpr7z#9gO2pn5p~LkrAS1t6sVlGM+~>aC{f@iYup36)z%EOSgtMws%RUA zdkPZBvlUAJ-el4QV~Me&N}^kW?{60DQ>7XZDSN$E`twko?q=?Ii)(ncZe+_MWRE|M z{9iLb>?mFPN&OJ4!5;UO+6>6(HHE%0C7rm6s9B1|Zv2nwO!@Cce|7PxuP$h<5y%(+ zpK~Kc0mJY32rZ3$Nne9508}07lZ6j~X);)+>q=~{E9q`5>531=&%xJkF0AkF!lyKA z5M<-00A4iWl>;`3%q^kXq?=<}JTdN)ax3WRZd)kl@6G@Jrj2R9nkGSQ`VOX|WAu&je8U(bLo6qO4a#){f@S12QT_)*D7!gwMWh@M#L| zp$q#WP%Yzp0ztrHU5N7|m)edDkVdUx_p5KG;cC_w$e0A}P$Ne}4hK2ax4${$xZ7|$ z;>yG4GP9yvw)PH;@BxDB0fA?DPRegjSxW~pSkuQmJPWzdtCE?63jy2%z$hj6spbwn zc+e0ih0IoctORW*^JV&=+Q0if;b42SOdcf6V}DzYfX)!a11HW&9sS7dG%m6){?kqY z`OQS_1g|X%^=dc@c&XL8OkceR>cPSPmpRPW@m^gLUR~loJizx%`2f1f2w3qD0xQ6RC+XIkFS9M&h=e+Py`UTX_ucd{zvq|P>3toS z*)ruD|JxH^SzgM9R&N@a>~O%&q%n%n`NgF`Ja2A{jC{D0YOeae0};uK@WGAdwRUt0 zk7=IS{d)CJCy1u{`grwOU_{Z03E8W+D*foKou_~EAZWp;zH=CZr~(u0_S;Z|@vp`t zV_xs)%QPb-WgNgL&#mXDf_d-IHv!`Ll$1)LPEtpJHowM&y{J~Ixo)TT9vf-S-fLiH z2%o~XREdo;N0QAP(**VzP{u@HdWE0%_o8cCxXPdmoIbLCX?^K$P?TIq#lxq_L_NXe z!LPa?jk^B%-Que?+32Z3r)e|V7TFZ8;+r`?wv7>)`HQ)++>KNL9+}x(J-)<;9h@Gq z-)^ynorOblQPMW`0y3e^Y2nhF@M&(mw0?*NASC*a&T!dIZpF}|3h>W3CY&?HZ^jV; z{&_teVqEY6IN~o8_L8NiQo9K8McbDRv35W!3kP~MbUnY`p~T?^ zpDEa#F<#mmGR_hkns60E4I8Lc!E}1_DPQLSHbp^`xEoK$m_9Jtyc)_Zm z3r`$KSf#8(W`C4b0{eSAN5~!I4O%P#<8N{6y-OGUCl$z7f56@@R{dH$o`$jHghlcj zzMpSGi)Dd{ZQ;~AeiP$=fe_96v4t%8L+p3HTYAt^ zkF^Z}_kVz&;KGI*f0&^YlH%fEAkfsAqD>)};LiP+Kp4b0nF_PY*CmjY<#r4h1#pFs zKflzmTV!0q2Fqit`7i!fqy6@w^!rTRM?FQ1acyNMne>vsZ0s3jsJ~-gF6ws{af!J) zh;J((YO#7unC^=t1iHZ7_R>D%PBcF!zvb!T==cT^!bn+>{B3q7D~6;L`U(+EoDKB2 zA;3^#pC%_8#6fVhE82#{j3|i|1Hm$_pq|OR;P(XpbEMFtJqSUyZ4xe(3QU;T4~_Kc z&wQ4HECB1-y{(9d0&wBE0u~5qv0rHng;==oTgD{2tk9P7wW*|?%c+IF{492MF8ce5@ z>CPKkcnfW`%XJn=!7Lv5hJwco=p$= z;+6dIkYwuFn{yTF)4mW)ceiO?UT02coF<00O0VCNA0Ymt7qTA?e8 zO*P-F81#n_5#m2}j33AhF5frA{bf6sDJ&^p*8kBI&owJVBdtzUR7U^nW#q9KyOLQ6 zw~03sDJlE6$1!9Yc~xO2X({IWj(?tZ>lbo8l=*BK2OgaP`!54L+-nXM8ZnvO6qTs& zx+AcP38zIF(Bqhw84RK}Ksli;7H7U}r|n!H?(SDf8Zey{@g73RO8HC2qtn2-Op8M7 zs%FV*;P2oKN0-{`IfJe7AJzK^GZ}fqSeTnOxM>QF$PbsJ!q_)3aQG3VPcSnMoF-}j z?cG+g`($?gVK%z*0_oUt{nLsB6zBhAUAm{QZrI}%i>VNLiFu^XZ+`OLq00^IgWjf> zte+6sbuD2-&g$XhR0;GDtP^dxH%9+gDrWZedcylHB9osS#yvLHVT^n^U*Og=xS-gQ zv3S)viUoHP?bdZ>Nl9lLjt#37Yt`FV!)EIeSzUOdWmUD;wuGQbZ2xF~>t{rDrVe!n z%{k(;cCppKhaP7-G>&JBrRF(V7C_j1gx7=1&HMLP&;&e)jX%zHVTq4VION}(;kncC zP#jntV%)U#xr0!mo{r$BO_qBeVhxxqi^zSE|8b5b&%j1N-$DK4(H(}^$9l|BtgU}E zSDnonzUolCBJn2E)=31DW)k=^EgHS4gkY#31%!=0;cW{!oA<5t8%i(A)}X6h)XtZg z4@!m7{x|CulAbIA;d|UU*1MhKFDWqtmo+&Q;QA%T)8r6B#)@FHI*f#WoC)r^m71m; zlQGdMzW$H#p%@R}LT|rX-v)PwqLsxhp}<>ZupEGJE(FPhH2HRLL?9$dtauK586NHUQ;?E3?A?n)cW69S@|w7CfP9hDzTFxxC;>Lt|cPwTW#n9PVN1 z(qu24#joDC6v;@aMG@WKIjuo=?Bk~oL$nGg+Sn!9)8}8`Sn|a!G>*yujo+Z}-x(|u zHVqEubQCLWkt_E@we;-a|B9m{!0yWs=hEguD)>lnBmgV(=6b#wFm9jc;y>;wtlT)+ z`K@H%LAvNp`Wxu~l=1 zv~>F}KuR7ecLVA?a|*y>EQb!ZH|vTtv6kW%!cqG3d*s_!>BexZdj>FeKi2wYwy{m7 zH3v3M3RTvk_-tLA!rbBe?-kX--Pp-y93es~Ki+HJ|G#sd15#Xk2I7wlP2*yhK;^?V z$9pIIz&If6vp{2M`ui`(I$Ql_9IpGMcs7uIGR#mCqS@X+mOZUf@>RoH zMVdnoIOVK{)Xq8?OkNph%D)dIMvTN9RmO1c{UjhqaiEW~*$al|_x^fuxI~k49n~!O`0k}in;;{od3N<&Xo7r0lt&EXu4n(TC^eF_(X&_`Y z?e=ZudT^tB(R!yiJc)z z00a=cY+mG8%S|EZkz{#V`;&aP1Qq`Nr^p`DflSAm81cu z%ikf37vVqa;9^O{elxob%$M5hUlssP1q|hd4MZ&c-`wtc0rRAMXuJxQJH*?^OZ7eF zDoyVxCWV#t|K8Y@yDO&5D#3|EoOb!=hhV%1GaO^%=bEW1fJGz~SW7DAW&+i2PkG~% z?CYb)NI}*WL^{{0B>5?d%-YsJx4G616@sYaVq#(Q8B)m~KHI$dEFw$q)j;+H)Ur*M zeui=#QC?OKkY4-7ENR$A0}cR@G2XWA8IK=)ke3#BbkQo{b{Z3+B+C<~Y4?SiN(A*= zxO|`$;{VjJ=*(Rsz3p&=a)P0kl+PRd@>DTMMMiW+sN#{3+gMf{RLzzSb(SY@iGc95 z`wqQv!uZb|zGDwZy<%GDkzI1kS?u#(S@(jfvtCk8D~@2aQ(Q$>K>ODF<2BfyqkD+# zgHy09Ah8a(v*?>$Z20^%J%eiP!pnlaz4e|BWJy|+n7E`CmUuiBhR?u6CykQaxJSx> zH0AF6C8$P5q_iZh{n`?KjRD-UFP1&LvMH(ezNuPd!`JmLX1B*&R3j7i^`bUJhcF$<~opeDb`uGl=hxo6HS4cb5P*R z$_IF>*TYYw50Qw5UZ^QI#w^T!`XH~=v*B9{`8o7xq=H9dyge5p;IW_9z+g*B-QYW$ zJC}kFkL~xMaL_kJ3W9mKUF0Cp%xK`>_0N$hl#T06=TsZ-g=r04K^RZGUvFhPg@h1B zLvcoN_TO4Fk!)8Z&}r&WY%5I3d-;)sF8i;f7TDB^Gx}_O>0$fDwb(iSTio8 zbLMXL-An&GKfu9F8{^jvl4xx62nuqjQ!J?}iY)%7L{y@r97Sx41SIp;h1(+hw9|Q= zXHHBFzkg2SX$MRb{i@nz1->5lH&@%#A0MHFr-pm4oLa#cTcXgz#SG`)#@Ozwb==^U z<8BolRV|M9pPfD1BG0cQ1yt)7oR5zou|4nfMF?k(k!fK?1&(5*drecR;CN}jY*3(* zd3>ivcaD@PVr{H)D@WFvyFNwq#BKYfD8NI_)TuMet}z-z{vB`W_qVgcGpVWNiaGz! zb4?fzYb#NuH7YU2-f#!qmF41tzkvR?wnk>@buOKVmeGH6itN7yg#10*Jd~k=H9{8D zyuekblSK`57C@DLLzMRB#8Zw(a|~b7&2HfkFUVJ(%P9ow_#Cu>Pd^%6O%#C1iBVvu z%x^uNo1J*kS)WS9Vw-+|`LugQY_$i|egLv1PLIaDc3psKwABI@HR;&|hWBl}Hyz3t zt}N9>3oLZch25#7`%!{p?@GD*cG>=RcmR~5{h)98ZfM5g^(hbX9G_q(XscgAD$?aL zMGx}cys6kma(XKvJ2>*ZwP+hu@%0r^Jlaw=hgz){002h3qiE~T5p(Yc3I8&MpU|J- z$`MalP!G2~jdl$H-zH*BU*S27a=A|fhcK@=fLEKoga-Bvt&h#w|c2iFj!S~hH9 zat7YE^;;=zwAAoeQtW|ZuUP1bK-kMxZPqc5AGf)Q)Dcev(plzZrvsdRCYO8Rm$Xgv z&EJJG(kNnX<7ZrO>;SCqRcA-K11LHc$C42qkdr#6U*!D`R<55K3AO5JC*$97A_nlX z34ALGKtp=L(DJJvPAgv~yuKvpY+!uIYzh*w-O#k1PA+s~{*Q1%7@Yz@kYh6!6MISoJ8%e>lNn?$Ef zP8qxuFYXd>A>?$F4Iq8R3-tE15ngYnREdk>i1X?DdjYmSKeQAe0r^z|R`wHwyQwj? zN*J*YX2~f1X(<9UdQt-bNaa1+Rb;hTjQqm3r4np}dhHv01)0ky98Fn<(!57xh$uXe z3wh@WL@nTK3fnL0kwd9cPA?KmXTLyx8>Fu8W<);O)xVPBy?uERRM=8#TLZ4euay7R zJN&cANViG#3aRDzWgUARwfAo=eaOt8HyDJmGGYP;J>OUIi3pDjLg1_sd?bSis+_6NC+GoWO zd;oPkOf1xdM8ve>*V6;m1|Pp*I(U5T0OC@0YE6e9g4D@VJ%qi( zF^#FAuouQvT3RaoCu5L1y=9cT>Q^rcXCbLrL0Y4DE0tLK(xPKGI8J& z5U%Po793f8_vQ5xq@Y5KwPmrv!`J&@GRenO#$_T>P_Z%}{v3*b2fZ=s@8A9yhI$Pd z*)rGN@)WCWBT;gG^>#ka zGPNe7lPIb=)!(du7|puTcUgw1X!v}8^EW4|aEal>1AWa9NtY5vhg|`1)Ju+9zu;JP z=B)1u*hqsfKCaYAa(0w2KwQh+Y6@Go-{#P-Wr1o_c??coW~Aj>p^VW%4(Igp#ztfU zh+!2NcVaxLebCXCn(fVD`94!PX_j3P_Q&?tX;L2X2lJj{%Nu_OW@rra9a9GN-v=-K z$ZenHwTj&bn5#Yv!blhsK;wjwA(LujBaFm?pfn>4qvlXf$#A9wf#|@VNflw#B$!@D_ogxEa zWb^TX%p49>56pPIZ6(lggt?e9gyjPBWw;~=$ePD04;VJ{(uBk@^qK(&ri|u#50jp7 z?$F;C!0j&BeONZj6n=Z<_tl2n-8mQ)--t#B@1;&?GdytLj`vd76{M^M#@}n6h;Qmy z2no~OFsxG=@E444h(&(vh&cvrIoGpI@y1V1LgJD2e`iE_SR-+QdbGhx}p*?AzVGNE_1i@}kT4 zx6GQ31iI-?LG#q?-&r7it-psf%}*}!%0XZfg8WEwC+^%vW?UrdTqn?NtkCr{uDZbQ zJOqAytJk&@zg4!Aq{|f;h8!Kba@V7II9l-H+UH#$;0eEfF+3TI zAevInDgXPN%NI?UUj!KUL~FC@D1Cs}iNGoN##E?=(%x!K52RHoDSN$rEK4z|0`-<& zPLZ~0eED}S#0jUJR-oS8D(c#i zd>M0J+2d1Z4YE=;JGVAEIo}49G9A8$wFju;LmujQShhb)Tt0I673>kw2aFXlzW4Ht zIC=*a$eUG|SB zl=}J}P5-=;52c-w5(Ro-TCs*zI7iTB(J=FM9e*Uazf zlZj})E|&yQeLi1Se1F6hrMHjpI{D$Is9uM?`k!)PvwKiOs`U;Cq0 zs_KA8P_!Gdt!g>6d5I-(ekzW2?xC2T;mc|rWEy!lH(2=f`L8%C{x9RTd@aqnL}`;G zb6by=Fl-8h(!en}j=Z4n;D-cubr|-?QMM1WQ6*7=>ruoXD-6)K`Te`AP^zM44G9Df z5ZECF5%I|IpFQNp@6z(}BojDGJ`uJVGQcE!F(=G$lMGCYfn}FU26w_&{ObSVGfC-; zF%6b)02#{jB0NQ8AYo#c_4#ysoruWi!&gII#Z5 z8o%{R0s?UCHCI~EfA$UeaQ~KcM#C|MUV6?RSiB{GrFeC{cE~<%+iSsk8hSbY%DNT* z=lRamAPVtbF+x8`zr@O`A0bX1U}uK;*|mCDy9L~M?|fNgI?aS2&gpj^Fl;S8sT#tV z^_YoFrt@?1wf=RAeAL-oErcw(j`*jBn=vLxj|dAw4TS$Dyn#8G(x$k&+~!hmrW*61 z1>i+964zr@&BY z{H<*LSP~}N@xpUwg7+T$<^I*Lv3^gHa=zh}zkH?g+t-}6cSJGb1PYtbVW-&<&;-x&SvJ05r0goQNl_+Zyh5W*{G%gPKj z4-g&f7mVSTjfrwdzWI?(-H2+RLq{qVD53>g_*@~g7S8hx?J}{59%dDh_iCS~4aRl{ z_`QnW*n6`dq<~P^{{A>hBJk&7_tigof4yONCVY@XJ4_D&p#IK#&*eY=p@S@9J{(vW z6`e4dH;i;0o*V2cVCOS|uMO}Mh?ol=cP5G8a~v64=ducHx4iWhMNxm-IFd8;+op(+ z+IoYI7-Gp{4i*}%C?#bE<^N_*i7X)gE#esmpYwF}>VDa)PM>~O{u5vX($5g3SjYd-kkFtNP5o?W&w;)MxLv;lE^07fBE1rJoXqp*0hCFt7Xr&S=p2O_KoR6dsX-L|?YE|%cH5#i zgV>>boKl!Z53fbi=OK)rCeF~bDJq?IL7i=AvzEK+XC9gvqT zzArX|a7(G@&b@BXnq64D(^?=dF`Sy>IwMaA4K&*OB>5S0yz&&-Ak^MVZV53DjFo>+ zSz?vb_K<1Do?1QMr0Y`NmtCyuefG5Spn+tPFZLkMuds`GmHW@L0POE@(;Pf>JxjpL zFo&s}!}Jj-Y-z)|;~I^kcD^{v=xY}2BfRdPfqs&^~Qyy%KkcAcO4iX>!k;T-b%>tSy0g2QeKQUs$V-Mn1)(VKti~MKfB7K*JhE1n zpCj=Z@UJ1RI(XwTjMr5dSMCSGwgDDvMjO?|#FBD4cAaOC_zegPe3z06hU9Cfb(xw_ z5Cd-5R-(gBg-iwpa)!kN zZ!%vH;R}YrvBmuARrTRR!LT=YPSr^4)Su~n{%beOz?VV{&-IA*nzCFC^|z;xTlb%; zHbeS%hAJrj&hpLT%UkA|V)wR8$tx@99v0bO29v5$N|aK(-Zu2TLGnf4_;gqewia`p zeNo~yStuid-8<^1v;`0N15qqbLj)!7OD_TA%pECM_z(Fe@w@g)8EM15=4t-xA-vr- z!2#bM-pYjjli3@y>KB92@4#}DU!lpu9ncZNHyxQImhaZrtNk(%^I7s6dk0u{p@6B1}j(YO!O z|6~idt+bs2T>ECuzH$~Nn0^0eK>j!M{>B^%Mto(b=1mHHGFJ86vh&>B$$ZNRj{NHt zT9e2fU)qahO@R!U8lCPibo_ni0aa=hdK6@7n=}*etTkBlM1xBxDGT`|;nCeG#o8kH zTIdnCe|cft(w}@~&I@Y(?Yr?)Ye)fzW~9Bom&hTulq&`ibvqR$BvENp1P^k>0gd7A z)MNrkja9e;Dk|fMEQ7t+JhhEjxzlQv$}plD;I7fVUbgVa!_ZicnNwG^Y)q zYCwPIOqcPgYB$$4I@&_N0Do6M`8)q+Se}pXF*Cjf7X1JbOtM!&6S0Mffqyg+NRuA{ z`q4pH_(S8uYm2;6wP}zh_Pi`v&&>1BOrEudKb9u8)O^V72cU%?+*wo~hji=3Am#!# z2Qo53*TIzR-}^(}Tc#gm+TH6fj`r}#R#_k3!p+kSqAq{^q4jz=F})qbKpE(=b;mJ- z&|Y0D{IYFm|9YY~&9CJ0$yiI#JR!5TONj(eq^aKsi|xJ^pV8kp@mAKNl+h7CzVP2Q z4#a8tpD_AQM|v7n418g!DPEyh|52&o^IYZ|y*}v4GwCIaF1llu&v^m`E>(1Ne|w{Z z3|d=p{X$>i#Me4?-_oZqcXih#li`O3)daY})14)2yCD9s?_UZ^;Rc=`8K4+iyQ#-x@#4kU$%0rcrzj>GU(+;4ux%+@JuS&^yOx zc0N)3!v3hMa{!jy5|9BLa>4-9*57);p^{{GI^e~;t*{ z#VwDW|J%QlXybeQDe8u6+0n|qcqGsnq;v;HXg+-PEA^T)c~&W|wFq~BigjQ&|( zUH;C0Jd!|_X+Z10gK2LGxSGHBgvFw4srnX2^4qy!>g)nwPV||Q&CbqL$fw0nvB}?& z(_|P8P{l#VTz^ zIo}$PLcq5_UZjx*tV>r&|HKs9xY-Qu6#nJqtB(iguh96`w=*X{_U}DrOP;t870~7Q zxSo3gL?)nQPYPPabGrl^Vpz|cR4@$r`17;ybm{{X{Cf@ohx78MLNaW6Ru;Qr=H*Kvina+zXuV8=u4MmjKf z>&E<_bFmXyo*uD&P=q~GkiS3tmXm2S3;`Mcb56q)XOPSEKMvi3ugVLknr6HNh;B)> z4ErPaPuFy>Nq5Dq6*k)?uS#ABZ3+Xk9dLxmeEt*JaT8U{iosTr2}`siccYPw_CD{} z-feJ?tBA(zn>hXDj%Ag%8`x6GGcSbTiRLdr5_a=Rp+`&C+zSVQq&Mekfd>Szqau#J zdvG&h3y474m+cQi%gZA$#45!58MFI1|De4|HNc=9Pj&2(f&l%zeFOM=Ifw*=QMApA z@byi5DDJbN3TmT{`-y^bZ~@f+PO#-{Vv$^b&qU3uFau$pPCpTsuZ&Cy2^H)_Gb|~+ zdRqUnV$JOQe4l|tZJXYiS?kAn%Z$@Aa6ydns7a|G%*6CP5rO|`mQbN{S zOAQHlL#6sS}Tz06|g zN)~^A)-xQ-m!@k-0}%Y3YwA=67wC#*$>L6_U;7Az!k`II zorZf=k!kH<`WzClfR%=e0MnfkxZ03M(5`3xUXg7rJv@N!UrSBgqeb<;AfIgeGIRwkh&aIWU$2o*H{%=Nfa$0rz4S!(^1I5c z|LLI+2R=U*&+*wM;OMkU2Ri>5h)jUs4}y{2Gk#96ys1~^aJ1?mCw)@=cLuc2ZsQ5` z#%~6GpmvTC`^#sj&7onZZY-%2P6H4yLqQaP80Z7k?zHB=y&>rD^u`GZ8U*K@z=!CT zfFIns16KhLv|mt^Hg{+DeuC1;q{KE`TcLJURv4&ORHC0E85ZEmb2C_j%C?prYqgtHQxtBL4lWVwFWx#3QU0qhMK>Zj%bL`VF9*UqA2o`tt)Zf zL8U2PEUSOY!{{8i!DI}MyeY8nZ#_oKt8++e8TT+_@hIDrOD%5}9IHw1?tkTH}f z;7;Rps)OXq-*E`lWZ1HuuF@ES_%k49-C@S-9^VUq!o!qV8&x&5;ol6wU-@tSY1<5C(^#WiRSH9U zFGg{{e{;>L-+9!0gn&vF9Di?0{=yw-6@A1ls>D}G5B|O07o34lW{ThnC%f9_z}%&2 zl#i1a#es71A!B|(uts&HFwI$3S?J{Xa=_9G=njl9P|(64AW-F)D5Z2>shs?ee?Ul! zXB)xPEeq-Somp-y`bgchjlb`nI$ph5=t8f0u#x%jbLasA0km~ku%r+X;$Mf{yMwRIxI=Ff)=gAQLj zQyt{z9MeF|{-tl4*7vi5?z%CLar7Dh2Hw=QYAeA$`$cgUe6D3;t~{y9_gRS(88q*$ zn^9j-w|y(_sj4aujsJXVKi;`bTw?b9S3iyRVPbfp?w65o8e%bA1h&@4a&|Z=EEB?~ zfBGETJVL+z^(>Mzg74w56He#_?O`6#=>8-s!!ndffI|&0hRwD^LdF#7VKLq|m_~NK zA~T;+>K|(I+F;>~u`oNG96n*908RoU1}6fk&e!OWJwVq4vtS%p5O zgp@R|ZKPD@G~YR`T1?pb%p!avv==x3Q3Tx z6|jw$Psg*F)_%5&D3{zfVX!KacxnW5S`5ehM^&rpWw|ZB7bTsg*KW;S0VqJ|4omLFVvpTa}=@Dmc&;Aif9%8 z<_Gd}_KBQ-t#L{luKyxBdMyi{?y&9BGo4J=Lcm50I?D3sI7S{%`*LhcV3*&|Q7=XQk*Zxax; zrvd3qk0x(r#LY4+)|7?#VtqfuIcxcVjnxF0WJWCah|?%3Mf9;@MAsi2q@zPIp1t`h z099KFNpd#JR6td7#Oq+_z6b&IvdphvWn4u0yc@#>AYfqgx-@KH6O$SU&t<@qXg@z{ z_>M`cb1<6G*R0upJt^KcK8E-2Ghr@GNX89k-rrpgi03!hmLK-?{(1zjN5QQD{y}0v zL&^Jh?Y1Owrc&>}eIowNA9Q_Lv9XoCw?d`UA}SARWa*bUc?FYyYiR!GQ*JK%@1EiG z<}e&Vj2Y>}|D1<3#lL0Cm7J^JfnVCFWLz)(pB_V=4=fD00OhYjA(F$;xGgSTQ z2n;TK-ksdD91mc;W6W{PtQfn$MJ0bl*LN@fc)v{_^H&TZW#c=5F^puL`)59f0>$&f z^9Yh{5as)(azW%~} z4ct(Lja4f?CZ!)w(1Qc?thM|1-l;|X&SPba(yM_g;kV{GZvLHdM@PLib(*=xeoJKs zLedsi{oiwIsh{4N7MJm@$6GP~ju5#PTK%c+JI>^+|Qg*7=c!M7#$xn#C{>Trc~!}gRU1%e%12W{~Cb)y~aF0>bqJeTIhj#X7U^R zhVq=0{*lVSM}F)Dy;`|Pfh*mH&6J6BC6X6CP8HQi)iMx^aoIE@Q+%)GZu9M%wd(;L z18tU+Kt3*)-y%vGy0tUq3av^ZKXuJNwP-&>!8HK0TpCKlK!s!&ew$i$e!-l)$#e^2 zLLI!ltip#>=6WIL>z!Y=)}x@IPqipk69}u6SrIp&c|O{e1^1 zC^CBjlTpDp1;PxE&dk=IOZ@(`G$$=eJPI$D>jJ1~ixNdLhj|Geiq-+&p&JS(H|zY2 zbpPgvM2(tIkY5??2J9;rxT*K{P z$fSYG?5Mk;`C-ftjJVVr!2l#2Y?}LC0QSCwm%K7A0%@v{(Xplvou6p>-93{;MK?}& z%f$F@o06BAPBuJ>DUII`YK?tm-1+z_-OG%WcP6fqz9Q&%kuzAQQLLBr`iRG!6T>5$ zIOc2$y7DtExvj zQW`Eyiu6xK{O4s!e_w+qA%Evz&eCWtC+~cJ z+YeR3RNZT!2Lkf%X;L(_TMVRj8j+{VtN~5MSBL8;43;Au; z7wKvMXfVx=FrVaQp`9^`AMDF7G?!pmAD|4D9zjtHPnfpyKgXKDHn1qgEY4#(O2_A! zqc{=<*YgF-V{5^H9hSDeA_UzT>iXz!4JuLJ`GUL}(xR4s4bST|dNI+0^^Z4$D6s$FgbU|)$8Ou z)(oF$neg^y|LdU!$HpqsuX7|gi^06-f06slvPrh0=is-6H3|7OhUE8k_{%CV^S-5A zo}0HAhUZ9SHgG2RcKqcQU;l(5OWNO&J9Auyb>ojT06#s@LQ`8PI2=R<(V|x17XVhr zrz(=wr(W-@zeQ*Q49o-6H(B!}5^7Sh0 z-K*j91zq50FaX+4>5i2>Cgr6iO|y$?vtxvwN<~l9s^ukhC!kF3ZVTweg!k`#SB~5; zzQ^JTgf4SF`-CXUFnZQ(v+(RG?{ zBBb%(Gh#=g?Kb))QGWpyD(R7X+|gE>f6o&Q`0p%?z)qx{ZJSE~e8X+un!zEadMtUB z(0MQl=7WN=JE*D8x(S6Y9e9ez;zU65x*7e_G;`1AYDCg_0t1zO34lV77$VBSH9~a# zk%v$0Q_7Vn`VwwQ=ri*E6c4MOM&R`lDhfNFk0P$g3z^8eLHq(&h(SF-Fhyv0)IlEA zz<@Gcl&<0ppp6!Pc<%YKYhXiLo^KDn8~BTCd%j;tfY6<{!%@2bVBlMK5-a0sc;`wu z+n=YUs%?-f=+A=rdX#PvuZ~+4yU-{eID}k|ue~h1I%Vh;WfbG`1_Sck-;DJ=B}Oj~ zE39I%p~SsdrO4{EOdUT)A5rwSAnb%&auL1puom*kwG2Wo$#y8xY9M}^I86*);?dP` z`UarUpp>q4w`=~~;VdDor8A50#zcuc5$<*}Oj#blLy(6g>_g|Bi2=-49Kk5DM9B6H z|7gy^$ffzOKN>XxA{_K%; zJt4_B85}vE)3SF~trwN5HGdNb<#m$z6);8|1g=d`O#Euf^RPzvi7@wbyA6LMH-t#y zzrC7&Ye0mgz>a3URia{-I3;C4W%hLznRi|QI)nYzf~sH6Z}QJvb3^MLSX$K9NJ#&=*1wq)B0~uA|=xex>IQ}NCxmY?3u+g zLRBvjBo7)A8}`=`$>I^vKX2Xq3`zuMa&zK8F@=;mrf=>5yZnr?nLLq&bu&Y;sIGBB zj9=Oy;LwMfcB|0z_{0qGcY#G|v4<>wD27Z#ep6#(H?=zMUF9Yt`#XdY zsU6>bwbN0+=IfT8PimD+cryklm6bm%ZCRLtgIPOTA=3nY2wqeP$|FILzu@>Fxjaqb zMT2>aR#3!2N*sf5;b#QLUZ81(fWW`k@BioUpQ?Gel70=TLAIVl)!VW;C$$hlGR~kn z&QKDK4bA?odsw&^Nl)qax9)=8hLSxkQQWBR)F#!~fBQ6{HVSIT`Hrtm+@o0k^GUkg zb~fyhj8tuq2fS2@A0I`Tkt_VjD3xjbPi9n0R=$4PWI7#q!Yq{6o5D30kk7n+pm(Zr z549m>mhK_Jytr-EstfLrI_S&lfe&Utauot(eps$vagYiu6C08@{aoh2Zd61Ou`tXb z9hhU%l}1m`MJn*)T*?QMtbGn&2XBn5tsSFE?_F{3KGDrw(ZD2YzV=EI$l+Ta42=Js zNC&U&{IbfUm>O;d9d3QlG-9xx!3PPwH*GPQCcRnZf2F~BqZS$`g~es1B>#G9itFWk zq)W9j;}E`VUhN0WunJ{F!*c0!l=a_6E2l}fOLyZ960r{}g||NozbF0c@28|lM^5?0 zyV(17G<|D&M7lvWaSt(@SN}((oIdu7r??;YX+YJ${m}F9Iw|asUL|> z;Yt<>h;6DqKNx6RCxral1xki0@y%zIj0r6^V2;yz*D8*fGsu-@d|%61Y7M z1{M$>VNoNX=YV5Y_K>sh@Mlse4TXqbN&>1|QC!en9vxTo$|F^8afcW^OaQe3r2XAP z{`(Xq&jtuWMq>%Df7d-RU(aEE+2o4iW{5&Wmcq}F4Et__fw@*+fOtSTmHyB1cA9{# z=37>W1$mnssD3UlI{r{}>+TZ{Nj;a7$`C?Sh;EY}C;Gcc&oD2*+@m)~^_& z=(@}%S7l=Rj4J*W`JP)ID=FYTQ&YEPl~S}g^krfIoh6oGHtW%7b3AF6<^aoVY@bKd~; zZJ!VHhY8D$C|8s!&}v>w0OVu;g?Dbl6{Fa0Y3|>tH@p2-S50wCnvwthZ!K6zb+`IJ zKR1yC;;hseG%BF!***fDbm?2@`gQqc+Uh{TSpC6a^2`0;P1`ho42n6a z#p0Qt_`KXbNV5j8D!sGi2Ag<~Bejt6xuIlOnJ#{dzo1>f-j~qpM&$@#j=q73Dta1x zmnhs#PzP~t*^RW+(n}B3DNieUxS)Uemd&qT_PB3~`iU3C?`4#>>Uvb+Gk^6;bKx4@ z3xbo>M3;|?F8Sl^&$TJGqXD`(HWDzDx(rJkki^FhBMQTWX9`)KYwNc4`ai?&NDi8R zV`L4vm4)$Df!4oTl2YlMo@1n+!t|QPZJyz^douaExuSn^5Bl{?5RRTu*Y{1AW zK5}}k*}nQ~1*8Z2(@M?I=ecUHtUw*mnhFTGudx`p#@5 zuP^ki_As)5+I1jSNrc`dM z`T7lf`|IKR9%&H^1XFLOw`7Xx*&9g;k00GWwT5YM!fUj(vJIa+i&y59T_W#xyIP)v=O*3-r(cHrMBM?+hYX32$@VTWVIq`h?@-BPFYaT0B+&k?WWnfm zWJzu*GIGSL-yk0n-yq58O(S;^LM6J1S0hw!KOeeZ9>_q_)O^GG%_QvsGlo+D9@l%A zw!Xc)j_#GJNU>4A$)wIf-zP=z^F)in_ch4v{~1p&^=lD?$?*i(>c{BRR{}f!m*@Ze{rQI{h!=(4 z1G^oOM94{fXqht(xaSjYe-e@r9x((i2kii|2;Jz5LIWXc8jsN}kf%XF)Kg)ZqkS72FI6FVl1EqA`XlMYJ~;OAfz8ttBn zgBcCHT4)FWemeywA2r`D#`gn6r*FRwgzq+4BzWDJTV3?mw4Yl~DK4X4A9id=x+Vj? zA#YXsxclGT1R#0S%W+=a~w{N(c!RI=A1p`nDhT% zRTaE|d-3Yu>sna20rin?&N`ci-=fAW^rO<%zIPC3wx*r|dp+7;IvBVy!Xo%SySneZ zC57}JO2|tUud-bpuy0dLq_gbtSI(JatM?`4ayHJU8(+JgR!Lu5XyO=P(?fhFgsbbV z6G0Iz-p?ySt*<{3w3MG6A%-ZS;)+jGf6R2!H=E?DLtM8jY$}c@4$jQ1)(L(Q8_deY za`zpnQw$_XbvkV?b+a>Kp-_I(JNZWd|Gk?59qtoB= zDCM9;J#Tes8Vc4m3hKFRIi=UrGmTzS9v*FXN> z)fC-WZcv9Jcd8NC$uW4;;>aGlS3ib4Kz=j%4YNdo7!2d$9bbm?WSRz9XsZZJe!212 zq8kM>cbD!Y^kEGhPWBWX@H(pI^*j=@BvNjB^Y43&vW>vuFx))S)g}ruw{vfD?{{Bx zN}^S{D}xq0>tB1t8vR;^U{2GKHkh>CFVN1sHR$HjpQZEvjgrqw|E}{w?NT%)6$PN5 zG4SMAkwK$OT_+&Lh8n!|cY*V?zJ4ayAS+sG>bTi0NKmww5A@Ysh{w^uzx{gu<#k_3#xYXUeCIScP zsk`Ysekj1Z8e62b41c&W1Hq5g4YH)xrk;cvHba=I=@@O{MsaMvQaA(rG5qXjGMCIQ z3b5O!Ya%cUNv~zQ=1d7x^2`(7c*jfsJWiVL9A~Kjeijt$fT-f@h77zTI{Q*U>eddk z3ezB2{=p&En0E#FaQ`~{G;+Rd(9;*D(j?HbR#KU*>|q5rqI)Nx;` zC?vN&W-Jf7ZtRm!zOJR%WE$$M@sRhSRl?^NAg?{V=PNF?Eop zujP&q#Au{Y1RL&&O_7eQ5A=7#A-yqa^qTBS7uuh~cnVuFimEE;OP$UA=zX;V2kL<3 z1Q9Z_ba0M_C|C0IvL*?U?7)oXp}&+;aseQDU+?d!xHj1nCg`U2BPs{^q3}b~y3)lC z6S=~2dd}|4S_g+h-;CV#oFL4ZU9fQ1&h%RtL~&aS5&^QDY~%xN-hHiA2Hr$WqfiYB zcG}<}p0xF?;Q@j+)D&*~Ck7v-U@eO*FHr|`@STK(0&(k3o>Vqz$xr3H0nUswj%mGs zOQtt$u)YC`%Q(d$--*xkk{6*~MTm$*4)Aep4MZL=-8>4pJE&0>gQ_TyPba7;u`ppx z%6v&@n#168GGS`6rv?>d7$1fD8V{1d_fqGX|9)}5q!^~~?~Y`p$Aa+yXr=sazk_ce zL?XYpPbSXyOOYRt;9*XcNaM@Wz^G>5~*0;D2@nprI6N^5>+ zBaa*Y9jn^QC8m9m&rtmjEUSLC zsK`9hKq}1gE_7&6tH~!uy&5@bRKfcs$Wf>{KDOX0R z9JPWIi`3Zizn_c-%}9ly;oEb%(%I0;#X%IMTX|4+;q&_jP@w_@W}tk;H>-IUFXfPx zOeiT7oB)I&hga)cs$p;Y zY`{$rXCFK=iY6y{7l^zd^G_3-0}@7BL_}_{t=VR zZ`cOl!QPFSH0N^4}q`PX6un{acluA4hDy8aR-YuW&)qDB2nZs6rNj1 zJDHw?Uu`eiD>+mdl??I~oE^nd2QdH>S&e}^_sADPlZd|rVdW&rXb|Sf zr(5r!(&MP1AyNJcm^N3PH#zHrvnlwPd-uqAh*S-Dw6ptqkR>5&lKyNRup&5l@cvQ& zFR;b_Mp0>*u%}It*_Aj93h0+CT90VHHuJaxno?Z|Vkob)MxHycb^O85U?k`BcOSx0 zS;Q?r#{#%!alHN=)BZX37t^GS&Gs7th5HDma|QS|^z}WlP$sZU8WhEquo!P=>T7tX zzqxjCz`b#nF4E7m{ycG!WcEvf_ZY`vTh#uir%K*Ky0T6y3tlG@&pyOo{}kQr@)IFo zNVime+#iUO%aV5}qIHYoND_el+sHgMfWN?^u7eGJ98Faq08x_!2TXmQa>g2_Bq>x6Oy-zW%iROKOeSOTg+Z5c%!#^C7xET5a5|6LHs zEqz*2`J}sFkotrl^{OZwK^|iVrmS>EcT082|BRn_PafK$OUqa(WobpTp?tkNYQxDSdg$XRiuC=!YOHzB zdZ!R%E#jE&n>;*D8D7v?VS5WK$*p5-{asQv^eh~*%9N5+WPdIh>~x^4tdH@=J|j|}htguXI47~QvW zl>Z$ii3^m!LkT}k-uKAhpIEP%HL_t!p2Ie>gU06-t!G=O*Mhm5)^*#0;cY^__~71i zJq7W0vvcqb<8*DK#;-YZ#(y31emsP<@+t($1N{y@cn4T+_(63BE=KikHQptHA-}4$ zTd`vl0#-mkaK=Iuj00hrualO!SIW*(%h2b&{$WP@fRnVHE+7 z%E^Y)2&b%n2GZjFoyEkQGu}bY9vufw3YV<-ituMJ7A2narI{N|Jg`p^Q&C(Pb#e2y zzw~>yoxwJ4vjQ9+i8HzkT^`KexaI+XnQW1@fi3iV^*Pgbe z2_8c=TWrliqP_I$8ySoRqQ1UD%wW0mC~)Lhj^ZZ-i-%GWd!Ui^)b;_(?MITod6whl zBr^x{Oy1I^%vrE41D-0M%b=+tT5;NI8FG-(Am=`4>Fhr};$;83c3Gj-$E7gPaklV7h!XO@&blcXp^Xwa zAgLp)iJhFbiX?CQKz^cUvqp-x%$nJ8fcZ)BR+#U)@*o6hsI||98PvzIeIwm8+S

C2pyp8>5HBG~daCWIrNi4ED(!wt$_5Av4+U2Lt&|c3Xv*Sx zE}GQ&TR*uLf=*EA6q~$GRpxsDK$^3DlQNI&j(M)50AwD14ej6BZc^gvg%mmO9RBz9 ztY=>4eL-wM7Fthv+VS;6X#Y3XYM%)?cy)jxk<9YYKzj}|BqJTXMq4|Ar=z~YDjqy(IBo@71*C?jaeeR-@ zx79~9-~-bcrEQc4P;AvI(d}UsjDp;KJBWu9_WtdxP4XjK{|zZCxuxTnRT?+NW~c9= zG)0ECkYi5L7`Zas+CJEC1C;X;s$KE56MP3dUkyie?Hb*UPdzux?|(;T)IttKyo^ye zJRR z%PaiFZ-P|C*P$5*0oYG);$q7%N+ha|0DJb*9Q z#bP?lr2+%d|47l_2CLkjy;xaFTS^z9L`cmS%8rpBU&GnWbuIRqk)-oA_)NjqZHOZ) zfgLApAO&gT7V?(oq2j@p7on1){$Tdxvv&Id?5~&65GQ^Gm)0e38})#UmZ=Li0<)vk z^vNJ5954Fc0aMtx(*7Mw@CG+&Oks)M7yFA+ZK@enfxdYYLH%1G*~Y_C2279OC7!2C zoi*8q$=#sjK+E<3H?xtd)+EU+Yz^KH2rWJNg`87g>`cVee`Bakxht{f3bQ@p&#nlrKw;nl6>5g}Tp88-zOtXmE)NhUd?_ zah}Y-HHIU-OiJM`&J2?N24H0CpQCMZEGvNB$?2K@6tDJcQ2C~@o^0s!UApqAF&x;c z7^E7XwDmD&r*G>!d!v!;Z3BblllQ#tI}L!KYQ8?KLynN5hNGIn1O15P1e1{Ij}kyl zE$kf84{9uD|8k!eZO79XwwcR6B6OBwK1DYs7S+e2H5Kk~;-Z&pw9xe5-WXqWjXXhG zW8;Ff+oV8+X5$+W{f59p5|s(v>JLnc&qYJ}0z=!W-Hn0cr*|wxcua+6%QPK;X0iz0FjaXEu7>3t>?>M z4suG&v8{~D78Bxg1)}J5w*)!pL;vytly$2$~O9e+ufNq64dtJRYbd790^b)YE zQWW{2atIhax`lGhzC}2Aj=(|7x9InaQCA;i5p#1#YC`t%fW(IgHrTDvGtyrcm>ih4 z8PXOW0lLtbo0gZ_&~h@pKn(3)aXnk!SaTC3gpb~}!NvSYo+TxE=>N{3)yvtP_R=&z zyP03$p{2oyPGm026NcLwN^6o5gDy7~FAs;T=l)KUT!exn>9c+Ftn&8MM8I_wA-5}_ z3?)H9OV)pS23wK@lF>Pbh_CRAfAky!cDbx>f@M?I-9qt|+js71XqQsbHWSX+UAQXrg+|B{JCQ2hHD#f$@q<> zfmYh}>QdrakKq~fefMlM6!G9${%YU>0dykx>4n^ux2Py+1$6nQiS^kYXUDaC)TUVO zf7Pj>D|r!PiAIiRl`hHs`pg$LJ1t68X^B!}5lFH4lfVTk*<*rQRI|z1hr+kaa=zQ1 zflc(E{Rs8=%w4f2%rV|$%`od%m?=S{WIRcPI&zUdtHy17yWN8 zbF+Z*@|hr6{<{O90cAJk2+;oqrd2uMN=(|fcYezde%7=DN3bo)^ED1&L{QfOX7nYa zSD;9@eqR%DkSs`VRzbSaq896$AwgVza@qeF5AeeT<7fdAaCY>n3BoTj!VUG4*1 zAAxU^C|h$_0n7wo0$^Qj20*MhGoaOyq?^sFw~sBcXWdj7n&_3*sz-ul_an<`J9=Yr zF_7M2Mh3r_YrLLx>wclO+*fZ8{Wn2+L)ykWBXPjn%%rkNc}CacqnJVbK(p3Cg^?^V z7t%X;OXLA>=I_FT@~me$wQ-OwU{F_oKTh)Y-%W=cz|-a4iXo2@8|KfI*fnaMkC2zQ zyQy&`Q0f4UHYkeg}gFFcSoKIX`TdVZaUrP z$h?LROFiMoLKM&v-RX^_s~7g{QX?LdrVtOHI=Uc;9VvIEBWUhZs;rJQKmOOC;#{*o z?q1TqzzR0~fZES2sszt|-{Q!<#+-ZeflD?T4SfGXjqXk27U#qPnrVSO*54MMJ z`RFxFsy$jpW@q_e$n^u?*AOTM&>m$gyE*8z5vJ&K;AOVt_a45^G|c8f{GK2Ip6UJ| zGFcjHlx{jE_NJbUGyy$73cFw7Gx+PkfzLrUEgd)8%nrt{!IcIc=JK4r$%=IK%mDq| zuN%6H_zIH1Y^(_|*nsH2p^pr#3V>8AV=$HelUp^f{5!kzba){Q{er{*_vtjl%bxL+ zMa;ObR9L%EnW4&N3v|U=V7n-FUWM0IuL?H9`R6TDspGpM*X`wuYT33)a;`suPNz+l znG79=^0M!!PnjtwJ$Y9kv$bdLGtO|=@g0p?Z~ZB<1e@OUC-FcmcDgTX-{cZIA!3?* zfyzW4jg5GMM2%uhw|<5_#Fx{sYVk{TU9XV(qjv2g_4&Jf=l1$D+fF|ShibTS-LO}6=^1^0xvm(2jsyCO4GDxaWNl%fSD{~Wi3 zAGp7DX@xo_kq&@i0qvk@H;$e7&+C8P8Cd9~_h!K#P%1c9hfJkQUCoDWEx6QdOmMma z-MMuztn?M`VK|7J&IDAVKRe!}Fx^quN%RKO?F5*j zs!){A+jd4!_=n;^Xf#odg4bu-~K}4n`4d5xM13#Z`Ugxma7j-iDsJ`zyMrfpR zARm)5)%|hXF21IB5v0nrj2-7KvwEOk2u`<0e#xyjfpOa^A$C_zk)iXSGd$7P>w> zDCF%X5P7S4!BO>~%NteGJGJ|@JXgz~h&a@H-6Z#|XU2+`67uF|TwF^?BOqEOuY;xk zx;g`z+*dfes8E}`b#KT+dtf`*3TpuK^}G%=9D~VcB0Z#YEUZUwe8A@O3AbWA__h(h zpY5Q&N$j|IMz_u{Xeub-K=(u5k&b|&NyA-IP~T}bOR~%c*c_;IsHQS*;6AL=VDqPTh_eSu3f^ zf8SSc0@`SJBhV`X?(tJ5_HN9$8xQ+@cEgIrfH**#qw=(K11(#hFY5o1^&VS}Dr?v7 z1<}B}rUU|n7an?8;l0256IyGJf9L*AHFDIb%B&I*Z_N43Z~)ft=E~gS)?ao*VP_d` z$OiLpZk_M%!P;^=!%2Hb4rHv!oJ*u=#&aUa?Sh_|X1lM$V5h2Vs_3J)Rc`M3V!*S0 z8A|O3ZJKJPHCS9k%z^^nVif3cu$H}<9JtA_)NMvAmtbbUvIW8-^@1zB!;Njv>KbNH zp$p?6Ax`FMWWr91;7NL%gCxo6Cjq}3H)uLEtnJ_7%fG{!`u>N*!(L%mXQOi3B8j@6 zAzl2u-rZXJrzu{0k`+Zbos%#Z(u>irL{?h$%W}_7nFb} z8-GA_ubw(l8klb+WTP?t8Nr=?VKzGOd7!_@(CkmT@x1du=rnL2EzuS?EdN- z8T@~=P5)QhgqqG?`i30Tn+j~BGm&rh7#)ZmXYGwiKH303u-qtA3NwXi9Ew>>%M(jX zczutQb(N9E$?22$y)rTJUt~5D{U>aZ`TpQ!^RU0;Te940mv$I6^7nHf@H)F)!XD() z-Fs-ehVP!2PL$3*R7Y=x`(n>i??raUX;jAa9#jm*;yv^2lQp;RgpBr$Wv@op)vdI# z--XcT`^L&hin+dpb0q&pmjTV2=+V(kNQuRgFicC3QCw^e!#xaz^h%Gy#o=%!KcQp2 zqn*M(f7W1Ly!uK){sGF08Nj|}_3Twu&vnTJ4@L<(0$|dQX=iijN{V@E7+1JQ5 zE}ZXMEWkg>CE6bSnRW2&sS@5+_h@&A9+=Urzu%!U)qHoXIRu7|(W7(CSkrl+jxmU? zy6H|%(Tl7FrH8`5yM66)Cu98051#LkIg;B@o^kty4}~g5ecny3fwPJcH9`J6#?}W~ z8VCPqQqyN<1E^4{0p!p0_8Fw&Nq}HT0Hlc2hCarOj&E(L0&fY>;AW=FlF&`!hf`M4y=csdjz^|!kXZ{oIE}Yu(DTQ}n3P$5JuVhqTDxIk_T>_(tcG zchO67yFvNYF|sLSA1E|^xWa_%jGoWivxeoyk~CnQ@+hi+-KA;3?PceChXmfDyB5Y9 z_inzM|F#nU2>zo*C(i}DBQYN-H}SrI;{$b=t#ciNbfif)Ox>Ar1$A%uRL>g>54(3{ zDQ^g!?Tk-Tl7mj)cSh4#bDoS{ z)RL%Uy!Q0u>}!ld7Vabn0VQ{bmSQKp_}EklmNg$mp|vawSpBl8g8L3vMTVWhG|0kY z^kT-8Yoj;@4{6pa={4-_)rW~p5~dlPaOm!OjOIgz$^&S_2#_Lo(ORUF7lxAR<-`L` z;zUl*yH4L1=IUU){Pwu~X`rtfev?P~FeEknlyuu@t!<;vrKd4EBG83+Ris@c`N&gL z&M31bd)^aeMM>L_X|24Zk{9ow;^=K2PmS6R)J#5@i4j8Gn2{aNSLJu$YwJZ%`TN}y zJP8nrM!f`sy&+z&uO!h~-+gM&B9hlY*<7JM4(b7YxSZMz5-x%Q#8Z}9RcVtxG4OKo zYK@K!E)A+Fejs&6M*w4`T|z# zkN8yjD=Oc>$CNPQGb-}S^2|IuHTZgysS8#yZ~k~)P7n&YT@xKu9>#-6JRsEcwShSl zp4H9mM+{AyX}gUCW_7fquih-~i5fpb_mgU-FRYQJA-*mUb@tsupcG#Biw)36x;&^T zQMyb835>mJ2&LcHvc^ZBrqxsjHwMM^hGa32erPvp^3eO-Vb!9mKJ57YGan;x{O^7C z#Jen$m#8)j<;f~KG5Q9c30kT0jFm^?Pi+)|6*mq`7XMEjtIFE^m%^%DOu`pU_!w?2zl2G%H02=`ZgCmmbKvⅆL zQ-3+_CcI~R+i~+vGR&tr$D!rRf~XsiJ8L4%^k~*0z)iWVb%@xT03xq5Sk-f4p1c2! z3|J#lW&(e_>_hywZA7kn zi$7iYUaD|TCZ1GSq%L97WhG@*i)A6{;K$G~Sg;>Cx0hoY6AvdTtx(KJBO!^j{x2`*A|Mvd+@~8GO~o5<{Z%dGRIcpOKSX=^Eivc9>gORKZGQZ zr{gJY+$!dqsIdl@pBm69#d#0yWb3nHrD#j*)VP_>+n4CI$)(Cs1h;VI5c;?wsM)#w zs-|`9b%iG0R**sq@@)5UQ5046qE9@{@w&5paAAT+Dl$1Z781YngRY=No{^2}=qWU! z&&&t^s_0#1b5FON7FePALVe%32168Sz(8m5$@U^X5$S-55*X#pdW-JX(r)nIV26SC zg8pPPoXRPyiw}en<{mJOk7e;8MZx;laH8-0@4N^}jL)+(q+sWaEhf`8F$I58c+do~ zt<6)u9cB#D_chIH^2H1799k^<4rKp9Bh9o&CBL48lke3F^~}Uii}8IJ>RDUGJK%YA zoPzj@uydUAz`9o6-Y}qM4lie1*h4sVZuOy=EM}RA)N@nV-D`S4WoEjW$0FQ0pQb! zz>*$hP&>6#;U}|VcC=};5~vfObO62*@W%XYqxVw=jQ4mfldD8lYQPK-EzxH1SK|9w zvkk2rbBwIvX>foh@`T7z1@%@UC7*Q7vy#Q5kK&mPVQPAQFa&Q25cbw<47LJhindtl zSUcb|CXVs*@k&G~yvLLJ0^}j#4Gy1py>+boJ7fHX?`6`h?ga}PY;q9>2HxukXpApV z7y}X8dyidAMKGHUJ)FFR3`A9hnxQRdQat)z3Zo~8_Smw1s^SI1LO7b1S1aY)4E4o# z*!G2BLRRTIW2L$)$T)6Yn!f|*W9eVxA#n{RT@~zAo4~7b+$hnTzfk?zep4b@hiXn_ z|EMQqFNO!a!T~=F$u@Is9ie+2A3h71*UYTP8reArYnLU<1jCB`$V8}rs`^gdCz;wQST|$6ZK#M=kmt z4v1tcFbZaMXPb&GSP5q>I{K@y1IG3|Qbup6B(ck!Z#$CfiG(`}-Wf$I%oTvib>MWL zn3bUyo3`0=b$vj`Mm;^m6Y@1(jBzz`J14E0Jy1`3MhNvzHl zt*Q15sT0Ub;M?u0SgTAFG@7UH^2Y8JcKV6)76ENZ2b-X9%`X%%E^7UjDYYDLB?>u1 zu@-M$x!vM9e?n>mF)m3;c=oSl#j7?7^p-W|&yX#?s1$vJhAl^}zC~dQom)X<;3m$P zyYTbA{&Ud)krI#tZ^%Yz^RHI4Trnd{=}s^2-@3qp1)FWBj_A8k6L zkys)ltUt{xFBV}o<9M2;#On;7T}=gl{`IDJ^I5;zH67q%qSvCX8=#ktMN@<5_Dvy=*X% z%!;NM8m%vcc1iH2l<9UO@gU`Kf=_`-e*95ESb#l?U8-LH)j9m+zEOfBtKy@7YT)sz zUO#>dHR3K{s?d5&r9Wn;Qs;tw<)VOZFa54=jJjCOJSC)#uMtI?#Cc7Q=WF8Gm@~vT zs~aT)=W`So|J7@k-CEX=0kr)*E`uZPtnH8WGpLqDO7=9xp1hO@Z=USo1$xahj1iDj z(?xdQrLDAe5-@}@#`Rq8r)qTc5>c;uYK&o>pP@ff9-T)RW>EIvtbBQ2?jg|Q%khEwGetiEyl zX`t7m`e(gSGIFC>6qewo=H1QEx)SEfze_H7d%HdOqm9)5wRu?MwU3^A;gA#B^4y_u zarJ`y=x+`U5Qn|saoy1J< zy8m=?WFk;>lz6Wa?aH%gEWJ(!EiU5WBHOaXc>ieSG#FX0?dEpI{8j)k@{Fbtfx_FJ^-7j{sX-hK+c{-8AK4g>awl zo(R!W8&hik__JN3!n)h9K9PTOrRlT+?Dp9Uz#+Sgrv%2o ztOM-YvopXaG9_zP+9%L*if}B4zN5jNuUlvqr#(XwwEk{&r+D|>mn>WbbMtPQ@UD+T z;4hnjsYS;LR7xv>umYZ1f7|iR;RSzPY$VIn$Ew26l6r!czK1Ry_e0yP-B}uceRK3N z-FGVl!lHAD=O?N4?VgVX?pw3)1Kq|ApE$3&uHd;c%n+I|>$)FFJqCW_H_T!-O&7Vz zdrSYE6X72`_S<9fux`q6+-Y!2X?0+njnBh>PS})M?00MJbJ3{|H=Y*-BZb)(BtvMy zk$dFaEBArEPk=>9zz4_5np|x#WBJh*mNw8=1mfI1tt3U1Ta%`<0_X2l!|6B}w?_AD^!#vNFL|@bQhk>}WMwEf`_VA`GJw3dFyU6vm^F_ zU9w~&jdTb3*ccbgIYc-0$p7jT`~8qb7+RmW#6{$ZjwPsU2yS1!wGj)8z**u=EwS&FA@!tJwH^#?%X%mCXHW0xI$wX zG*ENMla!D5&&gmRKS(w8mYNn&eq`UDw`!v$uE%@DQ_ZsH-!)UkLS)GDjp4vCI?QITj$qek&Rgc#i+~(GHI?bgHXrlFSc6c=qe?{zH z_YSM$Tz6|*%te69WQF@V6SqdSIv-*aa(m^3odN?rw$%n7e6$_?<{1JR7&9HfQ)E1Y zPc*5X1(@SLX|f4|5T2wXziZjcy36W9zckRwYYAjugG)Ai70F!Jq-)$cM|>P7IKg6T zjITj{ptPq{h!@gxXF<>o&+!fu0a2_l>%zQzUfBBHvXyy4jTQagCH=?ydHSC;trh`!k&kza#X7RPyXZ*anN%mXk$>o0GBtBv&E|FVn z#R)Kws6dswzR{)P;TU4FoPg$pC8rJD3G^Co8UvhP*Dt9oN8Xvk2c^U^Nn=}g42s+5 zTs4IEk*HpqV%{^@hD>z00DN>IDBXhm*kuZkdqAFZaK92~q)DF4q%umKR*mLqwu6Tr zxC*i?Z~WX`HrRzWPElvwE3CJTtPmU;y2_nrZ5u>>HNDe~ zfamoSg5m3S?! zu)(DFi8MW0v*&fjF}7Rf4@cP;88au$AM_Pi zOMIms01o%v8ye-h0(+UN)fZy?4Sn3+djbz~Ki#J6yiZ`Y;9rMGZBxv(OSU}hA|Es> zvocA~k~ZkJ@%LWU1l1#!>DlaL>u5w{kLwj0T;5b^4|4g2G(>_?B(MvM+6h6Qi<< zRs$(Cjy3134#7v8`ko-N^8;FU9}|Iv)Bd!L<9&E}o@!=zcsQP5h8~mzOcxtWHtvg_ zyj#B=z0o}*+M03C;5>ib<3=&lTc4GCOq8s~LI`0p*wZ^^-ywC0^PW^IvKcMorN+t5 zl)%5UiITsqr*8(0t62hU$h0AmMwsyV{hKSE{XgpnKwIt^428bs;WJ+j?DS6cjxRO- z3h{#^PK6Yk8Z&Mg2Dy^{wed1}M}4hFia$fn-V@n|l^CU2bV|D3SudKk)$D71r)ik? zjy@9*#(2Oilgf0ht;dpAmyC3-Wq2 z47t-Px$j6(-3Tjr6@<&0{e08&gLKj4^+NkwS|N_y4LyQrgU=Zguh-p2hj8fr>PFWj zzw=)Y+fN*i^Q+m{O+PJG@wfqPy?|saxGk%OXtpxQ4s<_9L7anh>8$eB4PTSHF`Z5& zwCBPAFec<6$cPf(J&#ts*z>%26z{F@R(V}*%m@9->)6m`XeXgn+=RkvG_Vz~aJiON2s$a+{0qwxY}ZNGFPrn^hMV zCodoypNkC#R$#(s%<6|xvb~0YY!EUcfKX|3=9ql`DeI4}y?^Hy-mhjxTNev_^pgaW z()&$4oxv=-tqE91lom49z;8qSj*2;~?A#xtc$vD3ZO|pp@fCkAGD?xF&lDVWYk{nc z^+f1BTgGf;C8=m%TYMcgJuk8-W7{O;?glBAuH_FmM3~vEL6(I8kLg=VA0utjsuvXG zfhNAij)o3<0DUUS8V~S+Ru8$RS{=_BLj$c#eUFcY-TUG9a#=^?PYJpab>1qP|pcYA)1y|S*W zk@#1h2Hzx$$_GKFvrwQG(kf1&7ek0jnHonA(Z@C@X{n=t6c#9xxdkkr9dw=?fKtBQ zl7bgMo$ z3=Q*uEn~i(#!}KnPLFSnxdrf?Ug+D~pq-t~Gv|8ay@|L=0mR=2pPCXA&U<$8p!Zg* z?8D{l$K}^_3)?h-)cG@fvE{Q}piD~){Um_Fu?wU_Ot`=YQvTNP|J$8heZOT``FtM3 zOB2VhjM>K`g$<5!Gt=^ktc&&G<~Wv3;?djIu;8iToF%23nLEGqs&eIO%t>~qOtvEB zOS`sR&5tnX(3dy!KTtm?(yYDJMqf#c@fst%YCgUefSA1%ZnJ;Hwkv5gxyaQv*%9`f zz1GHJ=zRx4h8z@K&V8RF!0oXMlxtw4_l-6QjAY~!Uy}fh5k8vFr|kABG^80sL>9ir zz4kwM0F327n)^kz@`wU6pN{bzSNW)AXpov)i3eb_q2sih_3P9n z;&7oo-ecR*zKM~(dl#L?0bj1X5PDQ=sd}xNmBMekh-w0%0L!&f2JyVNB>@7tRum~c z<9{LwpZ1$Uw@sVxB_6>8ejl&)_3^BL`21xIkY9d`A@cSXgWRt~4V9u}^V!AWo1=>I ztkoWJ^vx=&+V4@iSd-s*khUmfrE#Cmh_Z$dx->RD=> zAamJUt6oZ#v;nAXFJJ zQTSxJria)e&?S8*kz$l@?k=9aX7t~6r;k?X-<}zt5ALfmmtdmB4V9@;uo0b1u>-i! z>n=-%A@ghEqshb*BVVrhiclu#f?KeSoNzqZbOZAtEb|8wJk?EGDx9Afjdh))?Jn4D?7Sg1(k! z434ptV$qnY1C8}CWOcl0Slu1uQTFqz&?#ypM^xjw!5rap=d%tg$V;QMf=zq2 z#jg^jdXULI;kj$cz|!b7C1Nq{i~-$bpsjoHf3=RbFtfUe=d82&{y)mt3~RtUz%ZtR;Vry+eDC*!9az^Anrdf+hj6C=<8Q^FASy zZKq7p9RHzww@-{K@OXr4rq%=hN}FTcgZ4a37-B(LFcGkj4ATAcU<19^&d+RGVY2wR znp66mqWnh4_ziFQ12Pzam^(!`*Ah-W)MeZMvyQbK|L!HZnrqU(wM}Am?b~pT5DH>h zfmQQh6ixaX9xQpo;+DwyQOD<~&6VASzjqupmoL^a_DXzDaF^~Z!iiP%_6gyWHe$vv zD>p)J1J+t(grt6v92a6WPLT>c2jrKftu6R0@7w3OMk(y+?4Z}}ma(@AqIermtzxM- z_Fx5&<{rnyF=Iv?JJ4HY`sjb>O@y%$_EUX>nv)Wzo8&2g>H6*?!EqZYpNTQy5G^B@ z1eR@c{CCYYqE}X5tgsxecvi@X$spAU1O-;Uf;ubob2T|Shd8WX0Um`O&7y#Nl_)+i z6DA`-n;U9<7;{eDYt}l@zW!VxWasTQc>a{a^h8lUUW-0x6EIS0&3^a$nU4y5A}c^r z#!S56GI;0K)mwdXd(vj7nERb})z0dj+0LQr{dncS+!pfx-hc9$ZQ_HXX#=SPSAowcJ#y%qJU)_V78;z6Mq*k}6HHR?ya$Tm%nbr@ZfR58Gg8%lz=Uyvb@ z(iZ@>gwqdUPG)-QMtN;8nZCKas)=*KTHagRjqWe}FPq8V`k!oN#A19Q9;MS*4oe2Z zD2{G3xHBIgBXws*jlNa(xlNXgrMFtT-+J!SvzuX&3}1H)`8RS1kqeyq+!KY|Ro;w| z*&h#VN99@Zb=RN?2FJHFm-pa8c^%hOm&jhFX#{XRi&y_`lRh9QCgA7yP5$l?-2;@q z5k72X&EA2Y4`lLAn;z;7+HrRsK^Xe>*EfbXLBd*QVR9_H#}^&bWqvh>YyNy58slf! zn)3h7smove-{%frDdXyOjCjBOmA^F~8u=va8Z)MdBS-ojgE3gu`Si!ZeM*5@VUg0j zmcJ@dyei05z`r=N=&!rRX?4uWOW>$mvb&td<+`mYnzX{&-J9 zAs6Aa*<(^#eU|Sx`>cft8uAQlKRhmkF+|3x`^M;i$l14VJG3(p)Sd@D*(fd>lbEr} z0xJ59hJJjBy>^0P8AD>BanaGJr8~1GSml{+>_7KG{pA_v;)<(zJvc5la*yeX4E90B z_YOJPUU&B;A#3^!TOMKk+{k%*p5q80$LIY%Q5!E7@*vX%RGVRR@#?u!?LpuMDuK&w zhQug*sa@BD-bFz!vgkW=GEbi~%``MLN@f5k!(3ca4rzOi>grsgWKCh6M>_>tFfS^p zk0Qu=qn9j$G(8(U-sY*XGaB9;qa;LZ0iM6GdG5|0-lhb2EslLMGe6g;X5*g9L)gVl z26Oyfz$*kH6XkI6zVi0Fz^5?72?Ew0HOtxz{|19dy?ZZHp&*y)2_3MNG)USgvIlwr z1yUolBE-KsUZq!AppEc&-s3H}xDEWgqaFI`_ny_~^e5Uke26lU$qN)VqdE)6&97}uL6_#K?+`D#6Cext@3t@e`CuZ_f8Wtg_d`&4ZZht6$kC%18ISX20?C$sl8 zTi&`XXaPQCA6GBWav#^%tI~l1>`08V_AmP*^6!);$wJ+*h(*`wmwV};ViDgaE9j8E^YywF z=Z4J;CvD8c-mpVQJkYPIs56LGzNsPSQ1|!jqoh54cQZdEL$PD8LCf0<^rz7bs_1so z{jH?FeaByn@Ah_Su?suM(LtXE(#DHm+pB6HIJOe<_#K`ORUO^5PW*wo&vo;+_&m20 zDRabECzQ}^fU*~^&ITrOL zPkA*ZN?xrZcUm(5mtwV*%9;#ku4#RZ0AsnXo3+a|gK*2~6m8@zU`=V1U7TI7bTKxY zD7H$ze7@Vp0Pt~}qsGpbP@;Y&L9J&nWJsg5F^$=MTVBoe!GzhzrvC5T^S^nD`}!^V zaby)@X#!3WT7GW2qh1u{^>gOLXznGIaFHMNoIj0(BBc7yd@KSA^8#E0F)YDUB%;%%G-nzasZAjQ8*e_?XzJ*HBgaD~rR5$qW)5xAcZfu8z4-W2lW`xXUBy}gh0IR@jnLo% zpO&L;#VFgk2LuM4#_E6X7&2nc@Ej53&xf#8kwg!)U|FtaNH7LqPkMf6_M=2j8#7!p zws$hA11aztIepSyqYxy-Fcu}?@O$(D+irJ~;+VYVN#$1cII|L!>A?sSY@IVkUXQ^{ z$1UMUAbbdI5INt?kDI z(dY8*yijf=|CE(i7b}mz{WN-+CF*mN9G8o*G2x4-oK299?mENY|4qD@#8;a48b%7;3kug=%Ol_EVrw`*hOoQpV9j(cu(Tr z{mvX1uH=A8frZGpPelF^Bnf|n*j%)totXi!TUCk%nVIr2_Y9x<&B0RW{*xZ9i5QT; z%V6C#Sxmhq*r6Hj%p^7OPfQ)~xT_QoCs3YO1PMoyr$)}ln+}Udh3wot^f#$36&&`# zXtjhGHIU=co|Bj*bEr47wvD%GH|%1H`yjKA7;B*(HVvqFm+c*DyP~?6GdVbIm^nob&d%6_W zp!sXEz0scfFQ%TABFXcr#>~3RARE-2X8UQ3%~)>i@sT2=+p*o)&}m7l(e-5^Lde&o zzz{WsFgdDip3sMbl;|}w2`tXdPv08Oj+i}DI-umPeU_L; zF+}U?5CeohTgdU0!`*m`oy#&FKC3kH#do3T2o|!o;?%1waR|e@=`_#trhc9*;S?ch zcyuxYjL1^AW9-CajsM9UWlgq^=mna`uk42Ry&cIYg@NeY-D*DK*Hn(1RNzHBA68!6 zs5m;Y_=*xfL0``vw3>dQD=e;hPlezQ$3?4K0Kl4iu;h)?w2;^Hd6a@LC^?3Mv$xf#@ z@4AeJSm3^BI~}{L49fTKog#U)KPv-8i`W;kdzEQq#;8VbbKI8<7oSJ-*-M_}-BBQz zQC!k^nq2IPk^zX>TA-9!gvG?M9&a`#*bOs+8;;QB>rJDqM$MR5R0x@mM9q-9+w7Tt zko_^4_Q!DFDNO(FgTdv@-JJ28pwJb=dzeXg<&x$2&mCRa&OGr9y<_D2XK~|kJkQ7P zOx0H!`(TX^id0MEGWssjVv_cqF3G=3kJm%W5GNMiQcNx$R;Unf8U)%Gzqwen%a|_~ zXS@-o`HO5**d!J=C zBmlNtyG05}aeD=T~WZ(Ed=ieiJwv2N5t6%y* z`3dOPRPxCv(+?aBCtYMq@eG|X*Ux6MajBrv6s@}LJO&E2+U?l3xo;vNiRa(Df2TDJ zrWSuTm^TkghG^Xx2(~( zu{>2o{bHf}a>bmS#S43~viC_MC3C}&Z^UfD;uD(u=8L_hSn7MPB-q_;CT*+p#oV+> z;>%NS$4LaT-eM`@qsia-`-eQ-88d~zm_ENLuxW}*ITk1qS?$R5uS87%>*Eu>xF-Q( zc!}kFn)gVBc^lMd!VZbUORpwPk&8z8gs~2BQen4oVNKSIU35OUm?x;7?8FCCj+@9Ea;#HCD8iLqlRJA z0wG8ARQ>G=mj78#jQ_b03h+`bu*k{VMvdW9%Dfa@92*F@m^>0 zRrpNOe%I%PRa70KF^P>g33Rj@g69`BirrGbNr}SUDzkp)%t=&eiaxG0#b$nHCMoGX z?RSr0#6FJ^mX9M5^O%p7)v#wP^EDEx{yk@Rdl+jwGc?QLc9Jk-T=q7cq z{AzwXDAX=^^!C@*XjUbHByEG$zWH5SQp*yF=|$z-cbUi?yti)GCcKx-#s){h2tv}| z=d=H#9U&;G^Q_nyiAdB^8l{TyH%9GA<|5)5tMQn`ljE=NoI?_f+lDceIVC-OA&zDr z`|bUEX5&Be_xl5cVc^r;GI_}4%vevi#Hv8oU5}UpGWbS6=3TI*U!7xV$mw>6xxaam29V+2+v%QIRE* z7(Z0hsfNqB@$~>=-DMrLm}9o=?!t+qSHHV0OOqZyUrFIA?akx7g%7LUAY6#y7i0S} z6oYn1^ME~;TyPU)mVzFOj7|ftVCj=--?1=-&qXYrf+bW#CgHW5FP!Svl@tnm5waP$ z|DUppqT(7`^_8%BF|uPR5x)(ESkLb6w$Ks#D!S)xUNO-jtq_2#uRbrcC*bbj@a~zj z#M^Xr#}f+bzG3_^IKLr2SuC;{q?Q*Vwl5X-2yRmDzG@zK|HU30SJeYbm%7KtwZ}1Z zG+hs=HI2I3VhydkmwKE=^?A4X2b8qscvkzVI=u^~6S^^a;%jT2aXq}5fHtqp@zAiY z#^%fA)>g6}3%Wl*N`h%=&U9;TQvTR^ zjAPe)H?Hx8?!b^J<99yB!5^p~{2Ua-XpiPfq`UGhRo-2sP{#gQ+^*#ms1y^LNEnGu zvI$?fMay^=iIYKmHp+3&wX=Jg0`li50$JLfk6ox)R|s0_lKPPf`P@JTyOkAmafN-f zRddWgT^jC<&GR!5#fdQ0Y}cD9>)vjg(u3d)=CK)b8?jt8_y31GiY26r`MUS^=!UJZ zH`}sKamL(0htm{G84S|)oP1Bivfr*8GGngt&KAoV!&a-+C@BP85os{+QY`b+K=L3q zx_VEy&F%Kw(sAg0!a1X;=Woc}dun?2K5i*&NPK{jXtl}EgS3nJ7bLn;-{K*39-7T1 z$C~EvRRvY!ljS7=v$m&N86Dy4&RSv{w1Zq;w{6~yM?kTq$D2Fn>zz|Z5k_$@%uHw{ zRZ<8yBCYBg_CWP-qgePtdn6KV`Qe?tx*ZqZSHW_()K}bmvEJxGU{e_+s?H$q8D?CRrek*wb6*igJE$+ z9nIW#0?n$EYc#2CIghtJx|Du>m2dVCgg`WDru899$0J0aB_SEeX+HaLs#h&DYdALT7Ag$A<=(4k*p6P=cO_SxR{<(e8E8{B#;@)Eu{aeChZz1z> zxbI)v&9injn=Y@TbG(42D{mnOdFzqh2`PsL{(B977(HuVa&+A>3YoEDpHck-(TCEgz zZS!x#Nz(mU>p6(WM%2t(?u84Vw5ONtjFYV{7o$?a-wfC%kfUXXVNUu($V7gSYj(Y>c#l#i~?>nHoz zsB6q!n9t{m(Wd)H`o?nQsFZ^e21E3?9ijDHS%(V5YL_RvY6R>4-!nZ9Y+y_NcS?b4 z59+|&J^Wt7Ai)8FtCo2d<~Xe>I1^y20<$@}N^`x4bfT_~Pww-wALnog9Jid@;&BZ~ zpB{4A)MpKT> zN68NJma5o>cM0ZbhgSd0)#KrXbAJA;i;d#2x4B@t$(TW&&$qZo{fF2?&UxZ$Tnk*| zpef%}6x?^tw_ayy*3-kT{j%lI!Mv5UCDj3dm>U{Yf|~Kt-KI`^CwAt4OFoFDq{=M$ z>2>F9GGdds;+j=H)`#u=-Ei6u?}Sm=f;}iyvkSEZtb`^x$;s}yJbcf;$>cL9z)8$7 zoJ-zC@FJCL6%#orY}64>iCKJW_Nydr$N3Sf5E-G}BvkF3-CO;-vaDU1_%-rH(eFZ? z_kszqmvR&@FQ?-Ui2y?+_yBBoemoHU4>$_zGqvGc*By)}dQ@N6YhCZMPXF9)*-LC+_2;O(%6U}|H>W>7`fEA`tRL$g zwrw2kQpRUTzUwBUTt^tVEiT+!AM!hJ`@$ zkIa{uc2Q7EwAD2=_~)Lcw5A(FBfh>qO8k7fF?;G;9OOZjuGc9OidcGZCkN!y?c**5 zef#zB>-*|5%=v!gYyCL}o2u&NV@1bGE*-FiJFdu3cRy2*r)F5dNlhO#ze9Fc+`|fmhED9Of&5Zh!G7g-h z2a2|XZfHCM_OlJFa?dv~%&f&O4TWw?P|0khue&GJS0Xj(@k^j$f#@by%OBf~0mLS@ z$y8QUZWy79$6#`XW+(1tRmuA2SJLgx=i^}im^S>mPhEZ6pP88xrD0o`nZ5C9Cf zPw)KBi<0MdlOWyeiPQ6`7^r4aO-2QpY@^kXX}Sg)JHWh0;gnv{SWCu%8Jy}=LVJ0zW`Cw(#+~C7h_o76!$q>{--T$Y>Gd;? z58h#PMAmTq#!+e|JM9F1=y*07oIWO!PU4)$1i0J!NvAc+(9{@fvmX$HGC=> zMR?orY7WleBg>;4!QY-^Wuz*|{Ix!*aA>#m?Pr%#o( zGgVh;sisD83NJ}m{i%X9O%PYlvF4sTsY|mD-IGy@Zv#yBBwcr`T%z0kKmJztccHG? zy=ZO700Hcl^GUom;+8}1k&;9j>InPUlR?Y4)4E$up1vLj7OFw0q-s_d!veH4NrB~} z4Ow{Pi4d@Q7-c%LC#&mtJG4z_bna2M#)aKN9z&4!A<9f@JMrp!h&2J`03apxJ< zYCx%w?UIa~boS;_iQz{wx9aEooBwJK$#r;fmEi1N^F{(477RPaIL@4iT6&wJt~G^0GIXPa9?WXL7}f0e&TB^* zV#U=ST~%PD51|7~+2J!(KKh3v!r56J)Crz{myF0EsJmq*ZWaKVzve?|vui!no6jYSkPo1|ExrM#&xheHNlJrPF+{@w z39S)U;-HVA29s+lFB@BY$CI;u=erO5l6ux&6V*0z25$a%gA~?zRK){!T?}bmGF8Ov z)@im}yZhoqK$rP&66eaVjFsaslUM*OURx0_Bv#cYs{Cx3##+zXA%TYbl;0yG-`bHl z_-=Z!FF0)WaIEN`{aIrD=d2^qvaI1fzQaRou7jfm0(x{|lBuG{w-rn7mzB=TOOI`6 z(e;?*4z!jcp3dQSz8+eq_z-VH&rm#wJmojuMX{WMy|zE`PAtgD-gJm3**Q;BwuH?8-b-y~u+#)2O~;`}=O`1eCMe==`BNW`CVom=kQEBp0{kQrPo%5;!uMzZ7ZhB0kq zg%YG8>+qKo%}pWZ?(c-<0Z3{|YI2?~_5A){&8&-fJ;pt;%u}(NxHd}3W~Uw950Am< zF05^YqgZ@S=ux*81Ph3O0Ri%h$rwU07TZ-;3ty6J1jK3u{fPj2@gdMyoAB%%t}D+VIs%=~0=$$Z;5B2(l_A+=vR_>DX*c68S?N zs$t3WwcIh2L0ri1-rqZozVDkl!QcdUH<>ljLdKQVaZ4FZ()tQpptcj^y|?2=!in|0 z3vsgdSpV{1^0*YSQT^_eIMny=7LvGG*0^GZ9TieIygaQZw2QWlSulC)L1wrWLIbdG z$;P8z*=k%}*ww3?Xy-LIE$DV!CdDL>I&|EA-yu{r?YoA@7KemNL!K@56h^ULbcb>Q zXWdGJDO;VkGLA2jA7JO9G_V@jonpUT-R_hmu*y`HnR;q$3%|bY+(memYj~-&n_xWI z{o|(_m-q31x4K67>Q;_PB|4y%sqr_2jU5~g=3ww2O8XQ&gKx5rH-HaSXy7y5mRjzw z{gj^F&I~m1e6Tt?;#kgi00Xxpf4C~j{+E9Rf~D$St7&0qU^9_erUi;h2>`yL+~0)J zPuR;nOqlq#M6OM3J;QVdxKZ0c92}uA=8T^)^i_uU_LgcP*3zAn-P_00n+&0 zj^IFBB}{o^C#Om5>H1lj`uy2oGVlYT>^_Ltj>iGb4a`q2d9qZ~q31H<3$3=A1^aZb z7BQXJplfbb(o0bUQflSZO%%BKt`D<#FB;6xfH5kxVHLR+y3EktDtgr|;X^dDrG?X3 z$#QI5J@%Hwa{kmSS4Q!91_c!ychn)0|6xFvuCsz80UOT+o!PNTM|F4r2G5czp@Yi%wL*< z(`so1T#K-bvj%E&b`=Pdn~eD25<2Kh<<=ZK2^FYrGc4 zB$Ir{2m+pe3Y~1OifDXC~$Zwus*zQPCpq^ z+`5SEpQSmWjpLwlS`Lt-uVK}kIypiyCf7ii#CPutVI;>&PQdUd|6hmTgq|NWeino> z^UYjy*DhS9dhorFYI54q5}uts=eY5E8q=;{6QG`lPM}k0gaPXs7ke_f);z!b?MIs) zUxz5YiY+C}GS-CJ%Qw1Mtwy%;Z0=WAw}8Z(?9A`D;htA(TSyuOwAcAHOt*E|?xSJA zGjN!^w>p8>{EcXv)<{j^-5Z4u`E1)k`e~f9-})eid9TYibob=X$sD^MLy$)2i|4$cRkI6~#!h6+=MEi}-5Z8aOq~Kjn zeoBSP$wEQ#Q1eipEqPUgD(-S=F9-W*oSU12ITtB!S}zZbGg$6)VGBb~v^cw*8{Luy zLeQUv_?dxI=pmtQ9Ug%Yr8_JI{UT zNpm2-9OIgf(v!7~L_0WZ+cCTs#Z)&R659NmpND-mXJH>ua1MneVBDFn4`}$g~ z>oJ1Wdguo<%fIJio({%Q8z1tmY=ciHV*-`ovYeEeK-v-s6D%+zUe=k%a!qVo{}Wr< z-g4_AYZ_Xb6kJ}<-}B^HyMMUy5mH=Q-(uu@@ZYvsq-|=fJ`QLB3w`9jXHq(d9jDA| zLoubxm)riS6Zv1h$UAE=<=gXFbJu9N9_B4F>Nn|&;;c!@;OKi`j~6FBrWNAre)pCb z$;H+UpYt3a81Wi#QZMqa=hrWgFy&hDnk+^7Wd7f6%WX3B&nk&jaejPh?iD^n!WHkv z)renXhxfqWcK^hVMxBu7UvG&+Kl^s$V5K#mduqALGt;F-R)Dp|yZ!6Pbwj87y+&L! zmio)Nc>j7X{d4Z0CrCusx1aJ(0H}ExiL{PIbv|q*O9(NB56{?Y`5=sqy*ivunW^&4 z=b@#B&z(CuJ{+X6-5a-we4L4&Ofakak03P}`x1=K`{?OK1(SaS+f#9Nh(A4k)(j5( zYz_-Zle4TQP)&q`8SqUT5;A^{p(_o<9}~Rl#-fl$D-|bMdRC)}uGAWy3PfniY0`Ihwh4~N&c2kMA3v# zu#(YlL8nN7V6tl;Zl;Uii?0&O3-cR?uXfAn(v(JpoKkFi2@=b zlI!n&g88(t`6tSCqGii07^&yQjMtP~xi$;#m;EDXd)FuT&4eUA^y=LCh%ZMsMGQ!P z{l$L0mYeG{e{`^zU@G9W#BAjInvdpF-UF2o3;kXne&sx>yc@0XRIN;JqHcHKLFa_4ev z#zd4z+l@320riuw*F*7V9%_GdN<%pvsi9LK?xd~%)dbwr_)}M?XgbN*VvgI}+ah3O z_l+!4958;`r0msf&+=cs^dxj!PuY3^RNzWQ({?Ei6?t=nhNuKoyzYV@Uw-!^&cmPD zCx_S3Yzz68L`5pQ=b7TqKVy7;Inwdpx)cA?9RJn;BVPKC7W)0tj>m8P-M?Q)`p=mG z|Nk}qzpvrV+Bc-SVZc68vZZ_wd8)jNi&e~?G5*~!a@@;L;{V^TWTdcaRQM4ML*?(N ziS=iJ+BJEoGkf;+cfHrsi!D3Ov!S5*)fIe5n-lYCL2VhP~Ouh8eJi5mH-+Dr-YM#C=?+q7q zNvvjRLW%$6)w{XPlC_VzX_T1C7{R%lsDFO%5ej0-t-aK}FqPh}F@k@`UEDtpH+H`Z zMeFfBhc^8bs|f*{PRT#-g?Rew%Fbs6axRc@v4wEh3|J%)5vd98jlXw0h~K@0jz)kl zu}n=sQ%NLMy(RzdU;C3kubVxv*p<6tDpQ7Ln3Vaqj;H7Jq}key5g$Pn#3>31A|gFbW@~E2ZwAe4p_*22?HvpHyZ5M*U=?HQEhpY=g?( z#`)zY0u)LJV7#?l9NFU9N>M2zCdbpu@Awh;Q#!2f_sF{{TRC<({u9^z=g=RZHS!%5 z=#Zc}rwk0V$y1&vi%MN%8gHC#y4!`cuwiPuNj7M0gE zT{;CEX8{tIO2@%~@}I2_E2qfko@4i97|8g`$fvpvgJp3Z>m-3+jHSi&80UwIJj+`e zuz`=Wk*`vl5j<8t_If!0?7WMZh8ZzR*ZuuC*$;vrX`8b0Sw|F({%M!?&7(3wICPg0 zv~cQ-+a~J`9ejytFE&prd@h84;jhNj4v=__y-zFyFJ4o^xxJeKYC+?+ zVhkRzV%V@O5{ZE^tYCS^AANEBHk#_gtRFPX^emlIWEho6N4_aS41aysaSpFE(G=&G zd1C2{y@e5rG4eJyZWDLEW5>{1D7ZM-xr5fy7j>FEW%cN^+H<9$i~edFz&MvnIvnG@ zIRla#R?2T2hAB29qDtvTr*_ZXE#m9?0B01ycjJPGAj*Hn|a%<1#gpEvuEu%@p~_G&s4X`5(JqTeN$ zLEkfm@1S~eVguaC)k%ZtYSUSCS57=7_{_vqt9NNDL-KlS44PyF20r|-t> zPV35!*psjunO0|E7)de?omNO8L(c-?7}EuY`xPE=hl^e!X*XCpJ9g-4am2GH!0!VV zBwazC-8O!=K(@E3f{!(_NdMPgjyR2%{=m-aP3tZ-1$$(~xEv9iccGZE&^@Q42 z(A;`Bn80`)oe}jTpFli;iG{;1{V%Wf)0@EY;+ODVY74pcsDuVH0-K>Z%6X>4aB(-4 zYC4@oJq)`zo^&wyXj@a=#9Y`c4ADX53hFe*w2x5Nu9NLfJTs^JXh?Nse)Vq|{>H?+ z4rVFb&lj3&3~kqjVoVWl&<%aS*j`jEhle;B!1IR!Xds(x|kjc!0~;h zDLerYSLp!d6S5IG+LaWj!O1;Stk23t9{`zQ`rWdTFod@q%IhJehn|TC{%Pr`MZdaB z{1#m#lJpqAN0y?{#0;ql^4+S&14l5aCC>}tV&KQg7Q>FFDBzE=3xLMJWIAunMnrDo zHUhyyqyDTD)kziZ6Krfm`*ZRPteoQ>N!mf<^WIwF{KK{M;}ynxV}B|lclc`Q?Y3N( zB4kmPDAyH&`hFg;Ykq2@4Ny#tQ`#wlIRJE-c@zuEt!x|F8i{if!f-5;KePt;{W%-M zi6{xsEN6-V)1*7xwFbypV`t-INduzm{&;h-KC*-{E>cUhr;Npm|K>KI#6dMpU01%` z_c*%Og(NPanE?>^VHI^46AqKKW4W7X<=}!EA(>J=J)-aam5Pm&T3;H$b<6MEciLnu z=MEdgZb8~rRS_V(`73ls>w$LJCB3BX@7n(8+i={!?E>Bl<&u}pCoEwnQk@ugu~1La z?&N{SDF;n*A8kLPoo@_G#P$}R8Hz(uXmE>wx)P57_pl@K2XFbx3StW70-(un~Qf$*Ztm)udm0)4(++3#G*>u8Vuaq&}D$(#Y| z3W`CSa@4Xd)y`rW9&eD*;t^a#KxNsT5?L(9HL-AP%8w8S2^zzh=lAoGW%d@pOabU& zUA*E#m{I~vpJ)FH@k66w&%|>zMbB;am zo`}oi<644-CCQdBdu(yGnM9a4ncJVBEwzJlMh>C^gT;>_rW-zHvl~k^3!D|KPVF8X ztp{kpqX~`X6vd1*G3;fGt7KrIjryv|Lf9W1b;s-X9cy~rjxo$Ew=|%ls<%?twF^VW z@6n8-m>sg8{YraLOWv6;3BnqWrY%h=5Dv!|^yNQm27&WbIU}mLd(+rUY{yUOTs2dD zJ!#Dvas#Te*u)=%7c=F7C=I+_49zO&6*D-Yv`(%`$k7TBKlbcsB#>J{I)x=O4ZJgJ zXF}Ub0yP%;Oh2~Q`N379D5`Sh(*#zeD%SX|VA6B=Q;Xo>)i0mTE_36XmK>7k(uCYL zZDcN{os^^5PH99siGs!LMU|y@O?uwBaW=j`0mlf2;kqx9cP-mvR_DRwJ~%l73Cbta zB$hSN9OCo>WvF z{LM^zUKbJgov-VUFI8bzn~R#Or6RU-eK-HEug4C9K0(_KpO{15`hL=V!@;xz{a%fo z3v$CKPf(~!-Bk6ZWlSEdD)6z^=v~Kf=(uQx+QI`4D-?FckmGJj$~F|k&y-pe*j5y_ z)GhDBT@@qK@e>P5{E54a9WY2;K%dJ=(UxMu1;1rG;ultmnv}-d(Fgvv>p;7aN4tbM zv(0Sc6JK4O`Q-1~nIl~t}3$SQg^Di}}$Y;KKD_%vw&+!h9}9lf%UB=?GIh zYPc}0Z|D@ysY%C2kw4*%iHq{ZZaW0n@pPRpd;o7k4B}+6PMlCz8iyCgOjZ8p!F=%b zHACO1fFyLV-EAF*iq$fZe&Ty+9SqC!ow(e^r3NAk0CsFkbFhuP*i zs(@RGsh*pS0c!FtHJpdQj20r^K?V4`10A6$I`r~3jGY7V2FfIY9Y|~cXC3r)+Xbff z84F1k@{d-E5=*~@Nh4)1PtyCMkgNz7MM>WVRAh1 zlYt5ZhA0Ap!V*!m@Wg-bU}~fc?R0Hxu0AWG*KHq9yFqE)jatA4^^l>G#nU@t0OMei zAH*aWxA*D0Nom^loT0kb14}=1YWK6C2E^_3AfP&5j%?ett&j=YTiag9hoRVg(3u|& z(GWoUvKEM208p{Rsc0G=JJ^SkT=p-G{yANs3QRD23#A$7td!p6ZD%`EW!|4T#a~HHk(`K^u!TX=8a1PdNL| zqlqaMrFziptDpI#16H%(6Gf^rJJtngeocH^H^rPTZd{fE`{R*V zCE{SWH{~12wGIaC%o|%p6WJ9*_8m=NG4fGQAea+p#l}#rJ>{a*-1%tO`x^_I8P*%KeR7eS4#J@JjQC{q6tZ0l?2XCsd{}xn-jC&-&vDem1u~Ne zzqmCxSMp=f3DDe?yl^CJ=fJOBK$UT5Cv5f7_7Y=$wi%duaB z^^;$YayYyb#=%`FmCo4ny~g*(90^Irvx7PEVT8(N_NKIIAi1=&`Vc25!Eo&o7jEj3 zP>)WH4}8p1iu7=f6sTT@8sf*-|6V^sfVR%f_)A3d&KdR-%X34T!ZFZWZ5)G6sD9d_ zXF=U-tbU0E$n>bKnxaFuPkeA6BMc?NSJ0KeWW{seqQ?<7V`d5*R!aGr8tQ7JCatXE zsFF5fln4$R)A$asWj1Oub=FL6Dj+f5&ogz76P<3n0ksBz#_e{0rFA-?h@s(b9}UVzP<$h@wAZNb7XS3K`bB zsZ*$_7E?Y%Alf8eCqm1ov93ejVR8MPQmx7dQy}Gg9;G0pZ#%_KOkq6{+|e|Nzk8kR zcm45+8M+9Zs)Tu|Cp5<}kHX6>@V*OM1*qW0eP4@Bb;A~zsY_UF5G7c}^Y6OWrna9M zhTN9rt+^vyCWE-GZRNJ-^oYJ3hFTsR>HJ7XDp@%#G~&u1jAdcc$>2E`L@;&QHZfVi z#Hj&pGT}K7;~-=Q9Vht0u}Ii`^M$>{YeE@|$5Ck~uKCE0L!g{RI526ojVuT|0>Cr- zUAy3*p#8)^_!yq7&V^LM6GuS#q}00+p(Ra7v~2cF_F%}_miRPm{=z$qs>-rtU38S!W+Xr*<28WR4*<*BR< zN`rT62ZnC^UBeM+I#&)v4!D__a%oc~?2WFd$66F_n7XVx84P>pnR8T7@swNW!U6wi81+brqBdepD4i+7O5P;yvp{L*kK`vG zatGH>8Efbs7xsmBfomBcU_8P~G^J;fxd+Kf_ zq;Y*6o;N(&Xw0?kTRTVRvA|F%HNlG@be>RNo=le_*bn>a=N#h$?OzV>5kYArUWukJ zC>TLFa1Rr7{4**)6<*mwI?K1jq0B+xcOmBz)4|{053Y;fj}BRmfuvnpIT^E?2+pro zhM`||PPH+m29g6{FiBB6WJ6(pyQ`F@ZFw>^(Sg54wEjfG^ckvY zqu6e`2*F43zh@QW`|p4Xq9j-2R}WgTY&4et3a3g&<)<(d_L@f>hqf7UPMN$&H0JojTPLDiE75eLi?@<-sE!7$Ekb^P!*uhcVJ9hoFr4B(@8CV=sgn z7wqN4Z`&~bsf}@{S6UR~YQhisHu-M&Lft;^XtV-?Z5i=MB6%LLXl}`qZnzK-23l_9 zfk5+90r%8$*QhEIUf{s>fKm&}pE;eQ`(+3X^oF&i=#zUjh$A7)W5_lZyd>^iW2C5| zX*#MCrk3zg9A0*C8qG9}7&I_}1GD7b8_{05PuWEEK-zt3-O58L>B5QVe)G8D(4BzG zb9!LNafxP1TH*)32@Mf`ozHa6<&}{9AiiAp-^9#fUQkkjn#@6Od9Avj zijt_N^H_F-yXrBd4nrd7noZLKwu~0>8i|Jy7~^Z)%YiYn9ktmEljy)TCV8O&7%htH zT?J4Qr^gP}P7ov;8Eg5p@#b^`GNMtOe9L$o{@aUiJ&w+OMl4VGWg5wM_po%V4x52u zJ`AytCH*rnB=HDkt+Y7_Kkf9H5sNmUIFh8OVhK1cg*I zQH=D2R|qf6ETJf|@Z;wri&7+{?3{^ru&=_9iE>3d1h>ZdvP4cV`kw}J9a0G25?n#zhfDqnolkcc*A-xbTW~i zfneq|qmpp~Qpj~s()`pRnu>~v@yK_4PCWW|{xJD)O3*{@h#^3ffcmxKGP^P?X3`T) zrXoV@{U_<$4`tj{wLtwCSX&YvQZLLpj$D+$9q`gif_9MW@ibNw?^9iAe10%?EYV}~ z8`5Tn@SKCys4V3xHiX{GB^s>Ayh9n67^8E6@CV4Su>S1d2}uNIv17Zgbd_o;Z#Jyc zxgRB$_MGjvJ6rir57CwawJ2w07&)G}V}P$3?v!#f&4w+f&P zbFR7D2*kY+zMAP7GRyXC=pE_rxrE4Yv3^E^#djR2wnyeXGK~OsVQvX#?0(m$Klhiu z>*}bR>U~u3G;WPC$t$Wc6reLa@oJ`S#7o%?tlvd~ddb_dt1Nw~(^|;32Bu{LJxU{< zW3+VG5)W~pDJ)=^-YhPP2KyGm_E3skFoigr^o^JqshNyQg8=UdH;N#86D%f3$xXj| zPUPAgUOH*Kl?xB5g*+Tisel}pIi+xD8KD((Aq6W~jeMGf_jetG|4bIUP8|nPHFa^& zbz&^(&S;k_1$r7=ZR!!>q*kW15kSoX{|7bEVohlN}j$5R-!ye z2hoJJpLSh7jY#FXcg}h4D9HlP8HCt_Xo!mS!KCJk!-1sSZrs)8=QMU*J*+q+@CRra zPY@N5NUVg3G4Z$Z9q>pf+nGw8a2k5x+L94oEM+9Qa$;~8)k~j2+qdP~%j0%dZybWGIh})xPsgEL zN*{c;@a87UN^+elnfp{jhiDz);z2^K6A>ekI?irDY`vZ7d=;=4+VW7FZ7kQr;al$W zENL9O2w!FE6%#V<|E>LL$7g?F_BR^rB4gMtJG0FPYibnjBXtw8H|BO#r5#LR=OKbt z)iZb`>E*#SlTr?qzS}3Gk%n1BpgEQi7m|n1CoF4}FguzCr5TMN0W0Ac%O&x01jZ!( z?18^}(RH5gYk4v(j)Qk_)0p)R0W+?AP|0Eno>{h#KwIt*CeSt>XVj+$vv+{vq<+P%O zkRN=&0E$n{1Az9S`*|-}JZS8me@V`0m=T8vQ9(elJtuPti!h}=meBrx$U2W@N11fd zJ`e-E8zLba=WFKLHO-9i`9S3#1_nIy$QpXcf5NvO^lK}D0{LlLRYw(ANp_O6Z&eY9}B(&xPgeaA~*Y;GJ^Yy8A_qg0&q@3&|7#ytoKSB zJ}EsEFH7vVWA5KSs_}bB9@o43)}Gt%W`}wLKQ>SZ>p+#NsXKyyYzJ6_!kGNhY615d z9r*31`{#4ii6W%UN%=2X;y7}R9qfUgkeJH(pSeYZk3l_o7?PR1p>+shX3rJ}DbxGH zaZIEm0G@?(GxJVkOMGS!o!`|uC>YZxTcN zEu?(3b`;K1@a@@Zr%-VG$i@#QhzriTx!Z>3`9OJ0p}bhKQGy*; zn3c-#f7Y=k|Kx=ik1T2-N1NpBg`3NV;9yikn+LL)pAsvb~(JMHR?< z4diezE61$*g5uwJ9Z3&I*E^STD)1nxrQR#9CoGH8dzA8YaW4Le5x@I5a?45_Z{v6V z1HL%;?Ntrim3BdmC1$$WzrXw6|ITfVv&3peI0R#i1r*>Og(C9pQePl)J+WNj=C&%R znl|N<+SazuAAkBX4-c=zxLDck8Cu;wolDL+r^(_My{{>g<5SQMnCbda)*5$=%@qXMO#8dh zzTf||mQicGfL>6{Au%7$4C;4paS|J38tp3~WjuyyN$UmB@sd+z2EnwSEF>rtv}g+)H0{k-7q3=G<=$DZEb%Ev82CT2M`_=0DF$P!zPl^$V~M=!L^j76IWI=1 zNIC0urzFFsW&y_I*aJ=sr&QFv_=LmL;4$6Xz(B`p(?INHg2RV0GXx|;nlns`xM^WC zaL2*mFDUA9)q%EcG8A7kNe1x+^5L zqZ!B+B7>C%-Un)Eo&lV3YJYpC_A-M)7NO_MCX)KutpNJ$xHy2s&I6VT!f4KGE0eyA*s&y)I}a>k`Fk6m*1@ZYftHeFNpM>Ukxt{AfW5OBXYk@IKA-d4kdaFUoWxa}?QV z7F%)J@7Vv@3yNK5wP8lL3yeeRBy_$vIcr&`NU|5W2&kVciko*(RmZZ_4zKP-5B!4l zYe}va3zcO_b#KTm@02_zMvFJRjkmr1^?Vc~0mpXPqGOK}UY>|Ppe4O9zzVbcCEd^% z?(~Z(FI1Tco%wtQO?^H%jDNj0(tR{KqqG17H991gy#!6ftj(BZ(|_|p5+vZzY47e= zIE-})YG0dA>bmcHxObZ?#t!9Lx9cZ8c)E?13@XxQsekK#hgur3#hl-vlm=MTqZit4 zeNG3}iqTZ2nH3Xzk{q{7(X}WcZg~OGBd`qaVnWY0m9{@mL?Cqgw_N3LanDUyZObFD{~+2RCC+BZm7 z{+V+tK*H<+l)~8it-c7B?__NIt}S4osMktK*SRB>Gq~+L!J&6%Dcy;=+xegM>FUE% z_2j^_JEtE*=QYFFkxFKY=3s&zoIBPH#rgtmIT}Pnkd~{ zjttvz&t1Kb>81IJYR$C@H`^_C1K;kRhdy2jZWg>1W)BXi0A0enN^k12ImmM-QN`m3 z9D01VdtLbcEum7&x(}35-^;1!yDJ4@U(g^petQAr#60Z@+pvBIEZ5xfKx(YEZln&V zt7rMKKTC6YLLVhc7~H<1W_NyTSn>TvNhs@0{)_LacWt66ZZ~x?lGm?8Ze?jG$-b6$ zEmS1>0%?}>WEomHA2~PKLTQ98PZ~rjmld=~P&xDUu&KCLT%dWx*5yetTijA>_wLYKe&qfy{1SmE1 zb39*3T!H-`lYW%&;g!~sxQG$;38g^(7w^P7#iX}vQy!g%ea6NNCxT(>KyCgtQDhi> z%%wX0>yQuZ*Y`uv_w{D9op3}Ovg$O6nrQ!O+cJns9bbJO9mIBCo#s=r$Zpq)UC(dv z#1W);(M4QeS3WtANy5;b=j7S=aSt;<3hqvzvWn=q#xxu`(unWyR=!+!8$=TLK*{~g zgY7oZlE>G6dA4PND0v*Os{VX#?eU5v)zEG%r{Ei!40@!tk#<)!1u#kle(lLqOj4uzZg@4o+l(n1STTo1+L z{qQj7e#Oi3apIsA_~Ush+1P9-0XMLXjwLx7$nHd)sb%E5bM$G?+4G%@InrQ7so`_z z_zFHgGDUbYT>GZPDHr#tw6RhUP#On8=1ehQZ|>>=Pr1OYbOTfOGr4e9R?%5>lz7?{ zjmu_j7Xv10E`gV=Tm08CHYa*a>Ec3#79Q&ve})c1=W8DRnFssmiUse?qpFwS%@wCC zs$%bcfjW`A4`S=1b=Kmf%DFozDchO2n{}d$fICg04{kh6{N&6?p8^)H$BNOGaSL=D zLJ@(z(22%U(>#NI?rAf~E2|4RZg@ukIf7tY#Z`vHEht+!fkqo4g`xqM%2((3LQ*_5 z@^GZXtB3{@8m6MxW9ZE(k1JIxe0yq~XY?3sWvt`Kqww@QOO=Plv3b64uO#~JZ(k8^ ztLiIwNPw=`8l;A=t)0Ih%g=fLXCafN^#ep``?tY9f_y_c)=vqM(a*{O-weYRHpaxx zG+Ny0N0ovqFBxGBAQ=j+td+|?yr)bUY z?@krV9s45Iws&p-)nRP z&5wD83`M>t)Pmnx2~M7S+6wYC_9;3R>tCKBNb7XbiikIZl{#M@&QLqSj=)ajj&C6~ z5h3+%ARViIdHnt^BjyMua)l|m=n3WoLrQ}a9G)N4t#%NCW4OX=2vW;qE?2+kNmyt( z=V>_Lw8xCwc=cP~T>BQi^w0BOjP+Y7w7Rp0BhkCuI8qC zZurG=Sl*xKfA-nFdB=LLRIAEau)ad0>aIrcMuwUWG1R_s+hIcmPc#CJ#FJ5wH{1O7 zc@uLANn7s4%oi?t9+GUur!AhNvjBim-i23}Gmyl)~wtO> z(d*$v2PbY&^JoQ^otGzW@82%`a?cMeG;mja`(j4Da zwzQ?i&hZmB6XoQJ*oc;(KE7cp2D;JUc1N@Limvl6IOOwp90&_}1+C`nRy2rLiXsA$ zjuh$QHeAmXx3osW(*qBe^+_p}vPP$DeaS zt&F*uyVr@`XsgS6mR=18p;05Q9w+dH(BBU;EQgrL7XI&t%g#PD6xQGlKT0~4qFdW+ zQ32|eK5ERkX=6UtP=hBiE^v=V?0te>bBvCkm}#%2YJ^Xp!-x&9UhB)E6>q_yoI;y2 z<3Fl`vtEyfQg|bp_vhK*Pi|?0U%rc-soz_bu$x$pIboANVUa_0pIahk8AZojO@B+7f^dBOH?tZPTvSXYmg@XSs&RCYo%e%6V@6Q9Q9wDCnJHG^$C z%UsGh-Uev)BOrO=7Yi;DYjHyn*fJ^z$m}< z`tbfnhd(%9mv)?dYVE~dYyY|Q9#AYG zFB;2cB~)jOd(sF-;3v(MAb#|afcFntc{kFVp@#l({{7rRd3y=Saxq27Gs^8G@n6NmNr8#-?c3Um;^ThfGDb6GDQ>y0Ji! zk?9^8#Ik}pVje6OC&7`=-@}TWa-f*?zh9vA926}`QZ*y#GI~J4+0;tsIqm%EHL&L0P`(lpVdEz?BJ?FNj7} z;>2t1G3d`EK2ZF>UVQNU)M%#V*5fhLj$GfuD0`%@Z07bFmF-J+hUR!R1-u7qM(Rd4 z>aF@5H}Tf`jwYR*E#Lf5Wo@xajWXk!(2GRwSJ3rcKn1aXx)7`oEC*3kuvAJJhpQx_ z4TO=J2^fD5-Q&|aQY;(J<>>p~>(W%=>o^om>al%D!)%bWr?b(0n{GM}8qEHRm3&Xk z+8wj5{|2iWjJ~Q)9~*Mcx|;+`dE;>H0)Kh_J=IngzH@N&P7053a5QE9i872Z3j7qj zeW0-#){Sf6CdrY?HG+4zuZF0puXjw35=bt-v@b%R}or6!y({%2Do8G zMRW%&f`3(ry0N>U$W$7r(cI0(j!W^PZFhVZ#fTv>5^gb>+oN!bTb|vRJu?nYv zF0@O$?s##w5W(+qOH7CH&4Kt(5PaPbo4@H`RoI(UaDq*g&+K3UT`8JQtKeMvpg8e8 zY(DiP&TA?b>2OYmmAy?BOCsr@SeEoN;dvN?_>5n1x>HOPnB3oT@(9{u{_u<{1@JON z3k@~*)%iKbHFqp}fuDj%8Ww^k^$m({be-tu$($gUxo42SzwR(%g-{?Ynslmxn=&~) zeP9c#S1eNB9cHfyBl$4qSgvzT0oNh%4<=#e#CCIwQrM-1PFWVGg1DjmEIH_+@-BsF zFPf#@%wE51{IP&bx%b5~|Mj39XlO3yCsC*2f~6(d6J;7R;l*S@ zSUGbtdvh?kYM>Elak?JUh#~4RMv}s0OGj#lGzRYO-w;oj)y9aQJ3hF^NaN!~{;O2oN211bY9<3d(gPYzt)-XO?;Fp#}b)jSD%i6Fzw%MzJ z#gInNNnCa%c7FmR$EdV7*@eWN7YiHuS=>0Y?Q`{{UZ0mhimRL3N;6!w09b6lO{_9_ zJ*TOtz_^s|Lr{}yu7pt4WN;Rj6a>sYXcpyz90*zf!b@pC*H`jJ0noDa>2n?8Wc{n-Hy9_k2Eiyd z-4g^J;1m4iZnv#7+Ub0XaoFeNYz>4^^k5RzP`>{rb}cUI`^EzPBdB} zW#sivdBdWu!s8<#UR`MdV@3%kpZL?H@%f9D(F zvC?}FO2~bZq-ODAP`b{M<-gv+_4u|g=jvS%0ITdbHL)b&-L0}yG%o+y=KKxypy|;$ zutG8s=}*APPte$M<%Z9GQ-f3*?Epqvip*kfOc!}XmL9(j)YWbl*2%8=xjkn zfL|+!b;;Oh+WRV9NMsKuxVNiM(B^B`k{qt7s={?==(5=NPe`gM)?m*Y4gH*jH^}?2 z^n|fLf2e0z3Hl|=g<5=$t4R4|N_v>-JX@2BA9qh$U0+d7_#p?6ra zXyJ1tRBts5fWWocUek{$Lk*UCa6R_c(K;F3$Q*vT2Lv(GgC#IK+&vdYNnCOu^np5> zaz0v|~JS;?1o?9c=dkAnu#e&vV!{o}!@_tZwO9ExB%l+B)DglW*=gj`^ zHbK)tGmPl@W|Z@d6DnPhXVc@Z$k_(ndjB+w*7dAUxX`dAIhJ2Iq&C>0v_=9n~I zc3`C=+@mSqkp3+1sJlZ{o96G#w%FXU@7(Psh4q?c4!|G2`v!8B-C}8Bve0frmr$id z%R$QExnvrplor`H$<`W4$e1DXgF;jG$l>RTCyj2bE7HHv^7ree(S5GA3XNOS1U>(}9M)###j&zElmptN%G|6sjN@J$TqKN4!*dA0 z;x`+LsLjfT-~)FO6!5K$UnN8y0n*4GlLj`eup5ajpH4e9uDj9lBtf-~W?9|y%!T&P z5?p3~Su8~K2YEoPl(Eu|#p@+Hw3+QJgX85)M*Kh`B^fTVugrNrLNHmkym0(|pCdQ9 z>#M_%o|*)84dLzL6Uxos7s^&;fK>q~%;v@*{4O=Aql%_h$#o4HK-P5G?5~>}doRO} zrf%m`v`87t_7FNp($YlrADjns=g>3APi<7!5%duGJ6`YuQ*?E{guf zmTKSbLQD$E#ctpNX^1PPTXu%hw;$bIpGmIPx%uoNn1(-(H>&Ih__F{QHVBQn!QdV(fVXtj37;Or{Z#ZpUFrnmP$?PSI4NXLmmoU=r zzPeZPaOn!Q6o106YlY~QE;mxDF5>UA`~YWPUsnb3SsmXbnW^Pkpspwas({`%L*6s` z0p}g1(M8;6fAgYge6%15wJhn% z?GK)dn7BnMKiK+jp6imrXszIVr%J&HH1YBGh|)ty@2wW}0Mc&*gX4ve_yE-I-<%__ ztgDR7Ul#}F3&u@CvC`IA^hPcGK`=;F_Q3{=7{L&wLe&sOVzUG(a1JF3Lbx;ztH8F3 z%-Hbph&uO9jh;C{kKsO5f5&j1;bsw#V4VNP$LqNd&4o3%?fvG)l0-z=&0|0TvGaaw zGBkLweiCfV5-n&jKD0+Fn^-vNT3b6cSJ*!hu1Ea0eCe|q?QYW%bL!{#?Y7?=Bg9uC zH>-}om>hYUb21Ksk;XN%Fy=~h4?;e)mNodXn1m0*dAr8Cu$E4+Q2jc@L^1c~)R#UG=Dg%@@GOGD957t!K)EtZVpXVcjni>hl zLT|qzF zE3@|E1VMw-@<>pa_*RY=%E|n5$Tcx(8eu5+RzZJ;X;MZP^dtye4%TJFYabRrzj)OF6)sc=9rd`gL?ub8|b@!=+#nZ9Lw#L3lbI<7QD$Cs`CT?cJyVWxzwEr6v9T5D! z5S016^P4j9qJ3^ss`oDBxu)n2}S5bm-_xFN)4*_!4=xMcVZiL zXgIGL6`P3(!!V=x)JVHy-&o(7i;Xv|ByJ{b3&Zc&YxMyKI8Tt+`%fUO~vdrOHWt3yRUHrO);T=B2^QEA`8GoK8Mp6Az1$1>l4Yb-4T8 zaCy~kx(pCKqd69r9`a2k98@Kjh5R&hW~m@hI@#(c)a7bWkAbn}8Qf#+J8A>mwa~tU z?*_?i_n9sXOq>RAkmgU$avymKl9bO)uZ73&EQ#Iw%RafBSZQZZh37mf<^6Py66EQ+ zPY&J*N2R2ghE&kHX6rLFOSCq(@OOiZL$jwPR4)9*6KMBw!$~e#Uwu8Y;0RJ;dTyJR zbQfNQL+-7^V>(U1=qhF1$Yw(sCd^wZb_)bb3K8!Hm>muhF5}g4vv3H%#d&mbdAZSc z&A7PZkEe^t(t3Tb)+JCE2P0~b$LWoGqC*)HE*Ndza7uVYw()~jY)|5=twnF(ry$-BWYf7bKw?_Jd-a7ij!AJ#~fO4veIn5iel;3Nf2AHX6trtXUA zl%#~NrJaFdVdZ^!-1z*#aGw&EP0!dCZkgWnF_s-$^Bfp-mgK#p8yueNtF>S)tQeG) z2k3aP?0kIFkbdnh$TwwzLb3f1XRnB0^4fJ3caLPAH zUCOy+Rv~HYJ8EY?1l+zH$TZ`EXe(P7n2?>dflH1|AD(|EqO189hO;E7o zu%R}9YJ2FMqBJsw+2Ig$xXT|&hzsVFR`S~G(DHp`)gGVU);UP`vlS(Do^ahRS$0G> zpoG#8jV?;zJyca>gC+7@&^V#IiW2dliTQUyQv;P`_jwfS?*Tzd+&VFH0_G{u!r!pK(Av1?<}uaeciK#_))d-@a`(k3TVE881Igm3%Fuz$xKr50(aG zYQ)goN!D(eXGtV?ruM+M-SlSGFYs+$W6^Ps*^crSm*4_)?}R94jg}3|w7kawDnSsB zWL3HeNm=tO*>YPY;@ntc|67sg?|TBh;)s%6vqPJPA{ztgrk=D@O9Y{@6mv3}>x)XG z*$iJH@_9HBO#6H$*6`+#Y6KZ251so~(-7n^{JmvqFxy2qP%(#@)nlWRF&$$v3$Vx> zZp=XO!J+>;C;xa^d!mVVyf?c;jH(Dw3bI*+JLAD<$f8ke_XW3-^BHBWL7mPY#2k1V zRIA+IBXS7_n!^hXCN#D*&&A0&;cO8CZ2tW zF0~dL>oQhn(+O56V0z%KbU@v4e0bY7M0&X;5tdAV2$`qLts;xv1j4>SF2G9fD0e2_ zxW9_Tu`4cLonZ#3Gt_-jP9Fvjuu;~hly3A-!%>&6&L_G4|JWv+7l?W!Tj-IyP^ez@J^wX^syqc4pQ{B5e)_&V(@a_TNq3^H?^IVo z>hjvp&B!{siU1Jo;bbNh#uDUwl#$P?y!u|1!zHA&6vbK5peMY@3w@Hef%R@`6w4rn z+2hYGkq0L`{S@=7ysQzFL+ zz8cWAB(ASjDXAPC6^CgcOw(+wsUw!a;*+@#-x}W_gljlXw;uPH_NZ{8%Uw3r6M(z9 zP#cDIBl~4OGzd*&E_u)PL|dnUtW}1d77=#)#J2uB`=%-6%xUfRhMAU-+x5yL6YdKq zB9o`%B`15b0)77*I!CuX$&;l=+{MaV!tcCr0La~QpPYJzI(}k$3tk@hdo9}_fyNSo z6t>?O4U%eFF!!PiqjjO+`&2@<+>Wfh%Q8=Wq+JtKk@uHgp&&nKfEB*W6y2_0NSYR= zTe7v=u3Mtd6GfJwhND<<_*|MJX>Q{_&H~D6?+-M%yxZk}=aN6V9I_w}n$B5q2Y4TG zoF_6^Hg8+KG9^S(tO6s=O4Zt!m9-4dkJnNZ zeT&oSR(kfDhWcFc$Q`h8Kps}xTfuMbI}qtq){?CGzV27a3u13Fi&R?<#v`;x854t# zMu;$bR)!@UqB%gzfH0}+@r2*oX&{L60kh#oSZ1XM2m1;=L z6IO;tNKr0-MMibM^0i=6IDCGv_d#lM0B_GyGRYM(8z(6g8;9Ri-yWJO2~C(j0Eocp zHv>nl<&6W4-%U#Xs=2^H-`O@>o%m9DU(^>6-LeY@@QVQ(B&)m1{!F$U-u4y;L-2;w zs2);_e^D^EJ8%UbGulJT$)%m|USaFVN?$(1VwsV3f~%aJ(cmBN)(;yufy2#KP+f_m z%}$gPl~;rF%9&J zAm%6NKVex7j1Koqua@hwzFhJi7j+2gzYgg=DMioQt$(^M1dHAprm3dot}+Z5mXXQE zvcwM zs)*q6z9fBmU#q+ZW|mRN{2-teigkJiTIq>nf=jwu-F%#`FB~?_xY-1T0YK-5XaN&& z#^S}u_V!G(Q;w0;8>ioZ_+Zkvuu)&1ARs|^dFBa)U2Y?fog{b_EAqQB;(EHo#>*Ivd+ZhsH&jq)|}H6$?$ZEDzD4&Z%{VZ<>ICz!2h< z$a`9v8{nG-*eAVholL@e`|ZN9zSkC)?}b0b)|jPLa}7P0MfA`7!~3cD(=F$p-39%{ zmT3N~Y7?>J@QcDB) z&MIME;k{FxahzLovpQU6_YeprbXk2GKAy?Rc3s@~imEzF0`#wiT~TytkEYm+rvXDd z0NLu*98BzYe#x0uIPJdZJ1A8NSOQ$^UON)On6W43!yrr=fJLPcBm1toz1 zT|(bM&8NP-%k5O*D6cFJ$LeKVEdxq$T~>W479D~k8))2#!LOpYc4*D&^*5d{BtoPE zbgS$IA=Ze;*K1xAv&`zPXp;smGHrcS?n*CLE~hz^*yQPk5v@3C(3wQfqh1_5 zM`7_HLxp4MgApbs8Xo*U?lPk5yDD$|W)lDV)B)oVaajRKFmZ=cjHZu?dm4AXKg9-U z*ik4dM~9hxH>5fEAn<7DW9@{CuR*urRF<0$*on1FaC$nG8YF1H!Xg!V!O)FQhOWs&a{$nM4H8S-t3hKX60@yV}T-!IW|n@^gI zK9Zy7gNq*FKxJ3ZK&eRyKm_+E(jT=nN*fy{Omb`YQt+Hmsw=FYverC;$G87+yB-HRp{#ld)Olj7eYMeG} zP3v0wI>mAA%U2g=WxTcQk#juUm4@~e$-j*|{>oCo0$>TH($ ze2v&G%X&k+ws+$cD=&bU)N7U~HFc!s-#s7>P3%y8&A)lFSOucV&%J7noN2Q zYj=N`b}59fY{3)M!3Yo#JwIZ`ReWKU=}dDYOdPs(BF?109k!sjfDO>4xOFhDi*n zoLhB63+M01zL>=Ub?STBdFQ5{QgrIWYAjB;y3lwQ1=RINq3eZ{CTuA907+NMdzy-yiCspb2)gf6fI$fxBB_+-ESJAph=R3L;ma^px_9r6X!^n zPAusT1w_I}Q_L9UOv8JQ-eI7v8M{Ji2b-}7R}lp_t!H5IK%6xPF3oupr@Bzkn2xHk zX~u8cUipC*wu;mF+zK?0i{EXkyLL|ad;HliB=E9n_)N88zPMK5oy>5bd4ZGUBCf#* zz5hS1&THFEq}##|#6^({E+r&^$RfiXQ4&ey^z^6X_V#a|9>c@!_HL-KYOZe<6~ufI zO!ax(n&xvacw~JsW!5!E%SdeBhz4$wWDwnbtog#r%v;mRT0r^D7<8Ox%UH`-J=ABD ziIIjW2cS<^74-6ga?~pqHk`b_WNqzVLz=?Tw{6W7B8alj1!eh9lLetDQ%dE*FCcaFd! zz_fQM&yem(h39Ur5`P3ga;D~0EB_9hW2uRO-)yHTdX6FRny6P%9q&d{pB9=hU0 z7?U|qoiKkQtqzgCEoA$ zkQ@d19aamHj@F#Tyallc%~|p?s&bYK8aEy*OlKDNhE8+AZO8{PHm6%)^C$;$8HhUV z5i-aTFd z9ESQFG%QlS;M!tI)zg3HJ>|mP0%ND*RVcJI$9w+S-0A@`XS`7!g29RDb(qr7o$tQ1w-zi zC5OPqPZx!3*huNB>K>5yeM`kQ%ayuJ5x4U^JbNk65oz2vaQ8}bu&Wuj+un{`G=BQ6 z--oreHG!m9YUAqs=2P}31GG*b#I%h_T?j6%**5SDlm=OSZFqi<7uL4Rmx2%0wv!AJ z4-9dwF!@X6IPGITWDxo&3s}xLK$Pil`RWACt@A`Ge@A}4pJbQ)XP)4!DEd?xT%!6} z)v=*kmT3Ge)*Z*$>eXR~`66aM7bg%A>342%AstUW4piSu&hl{;cROJ+y%1W{AZKqh zCf@EyhSlx#R794by5bXv=UKU#Gt-=grfGgELlo6W@oyhECgw%b zk#C8BvTNV5J0oBs@nwar@OgEMQGUM+?0l0aG$hFqr?^4jrV%|LWdo>hFZ<73CBL-b z<7o&YU*XBUS4OFy_L1ux+otxp0IzmhIMxuhFHd1*yYOD5_oYW*B%L^vk45s690#hk ztfWpK?9f$S-^_k4afAN`Gf=Lh~F*gACHNM_5NkI8}ft0mh>IxCNrsh zcOnyvvGP;--G&}XNnQW~P*~Nry|8q#Z6v|e8U!AaiK=Fgh`Uca%=qhE2Ae4=3F;A& z;1rcP$l+cAd}9J1LZ{p^6w3RodXCB+Qz;-Z&F)bK%U0*tgd*CNC7S@0hqJKJ3}oS2 zb=tOJ85u-=E6xuGa?Es48xFe%@?ckInWOz0kkfnP+g&I~*e1 z@B>o#2ui~*Xa`UmA&rh!9Lg2Dry=3or#Wy03;&)>M*>%f6`hEshl*%;GxcmQ$G6ni~hj1h5@o%U>DO<}<;T zfPPrcUIG@%l$YtjJW51S8*sP_pdDN6xHm)PD zk}nS4$qP?o8ONM(Itwg*Zd0k@)0d-8kEY$GH8$kDuXd}b#_s{u??{@lVpgv$%IdP8 z&ytE-m{-RZ3b%}y7pu=&U;ZvC6q3@%>H9zHE18)1RLFY+Pf^_I-d1%~9yh~IIt%Y% zfIpwg=~Le+3k~bMX{P|O5&d0n$Xewx6N^I)W}hM0!uv#O?ZwDxshaIEx#bQXB@YUX z-L(g2F3#>7MHKlmT-wSLn^t5p^BJr&mb`Hj^QmEDzh(?Z$iPR6`bd3#Im&?p3)X#n zWLcp*@k`ClAmHt>hmcHp6+dfz>QMYh%jr3R|eXw(N=#Kz2{nB?d6(jslx^`ask3_p52{*el~V^e=Qr(g+e zk_XqNt38b2*=KUcQHCvh8(Q}W`EG8(V%rT&;{x`FZsa@y57*!cLmbTW=ekxBT< z?0N-M6UBv6Hdpmmqd6YI@j$3oY<-GywV1N+#9Mzq-339AHP`#RkT$ml<;Z4SFJ;^F^5k80oRuHd=h!?oR`Dt( z9m3CagChD6yxejT%_OUX1;T`?IB-xxBkkwOq>Cq4NUdjw+;Ny^x7|!BspI~gUn!zl z0^)N3qm!7d(343U%9wq{%$@X$p#ls;VUv1Ru06TCX`K_F`})@&ikq;#%NFr3$+viR z$A-Nc-A}#kZf$<2-Q8x84bt|6sVf!dB1d==d+IWIi9JN>T-XuHskG$(R7Fom;(#LxwhdGNd zHhGx|Fgr;vjW}`0yoca$S?y?8he^xk@4K*1ms-U~8L?tHBm{DDn=BFc9(P&0cz0br z1msOzri~>D3aUOBw>XC+!H;DqR8HrCnH&75xJqCD@G#5R%U?qCJ&5> zr!yD#g!85o?}AmXaMF){BeMcO9>~D!l4R3a)_OCsF#sfN0+IPYG3Im~m}+KUQ*@th z;9*htv>30rxz64eDhI`fd0V$|30kQRl6I7uLW#ZGl4loVuFMFA)Yf*|LeAn&cgLlz zpGML>hU)t{88YsK=kV#^J@G+~!y`Wi7C0!qjY^yX_2p2BKQ~biwxJtVvhGa*#qW@! z9P^>^zk=y}>g*x@erI(Qqayb}ud~O*+LTW|`7kDs#UD&x?n$CxWc;OAQf+<^0VHA| zHyeC1@`k@yy`gA9)HTy^ca-yQ$bUTm14a9qagS&?T7+0-Sz{DVwD&4&M4~kZOi9V{ z=?erPCY%C?NSRW~t2@h3$5AX23;Fc+Z0-rwZ@i3h!XgzO_iJrycjM)^d-u+7_<|r` zcSiYOrX{Tn=|D*`8`tUQ;DQ6%HT%u+9O`14Mb4}p%crb}6F@hCb(QQ-)BAU3_u@<~ zXu@#drZQB=|GmcHVO9g#JfNLrccXrH8IFOZr}!YU)gkex>djiyl|+6zD0D8?4&r_I zypq({p<$^x;D?o?*YLCnUZU`A-;GLU=B&%=nX6+MBy+EKqcXClnEvh+wxO>N7w0)z zuj+{SgQQHRL<}9qpO@9RHaB2cjfvN+XMOp^bk1&2M(?yT8s=5jz=T zZ=T$xj)mo~Mw%JED}v01yIrfn zupEA=4f|qO0ew*5X23AeQN0cl6qb8@Hrnfv2TRp^hH~HEn9_U1cW+O{dfA=s(%v=o zI_YdC$k-w)K6-h0NLy*Lii0LSKZJX=gN~*jiTfrBfeq@D*phWF1q9BeuIZ1;)}Trj zQ9WG>YlyF?9|=ct%mGzw^4?J zu?HQ$?9NDaS4=u9ey-thZoLqPFbjNO~R=uj2r(*K!^% zus_wB9jJfPQqhw=EJ-K`kpM65zrm;|X-iGuv6x#&EjGXW;X(`8C$Os#B?BdG7 zk`&RmX`@xl(8k3Wzd=NEKr1t+GIETdgy9-t`+hC8}m?K zb2Oqx4x(!eA70@h+g8oAy^J*(5?y&qGzSAq#VedTjlhC=nAz?-=KN}Kzt`ZImku8z zTdOYIAYu^tM;_?yn^T5&7VAx)EGPy*eW1F`v(E84W+$&x{16JPHbyCrl#Q ztd9zpa7520?4#&yvq-6SS3wuQMv>4-c;`^gDxX{mr!_ZgcC;{j^4gCLlRICk)8Nl@ zCgv2Kr(gb-i+eCN^U8>yf7XAQa`62=9#bD6;>}Sy*OpPG0F@Vz(Bd_mP<*H{CDcwQ zBWOtZ>=9{PX!Ch)&hf1pFdcbux5CK2*)3D+Mbg9!P%PQb=J6x34HMwfXS@!=$>Q+? z1Z%d6mshbxc_9s`Z!&>aC7D?*CF*UDaF-*2Hev{-Do%3QNK88wj!ILMsv;d{-InBi z2JuUzOyl3{joiMG^{JiiZkO4RSz|j(lMo`p*al6MjHokB7p!nJL$=;nCktK@A))*! zMhg-i>?R{UVX)gdaj-1$AI^zi?oBJt-?bncaSUy}u!Y|&AExt&4WhK1Uk%K>igZ3t z#re?`TK=8WBI$H4>$}A_Sq;gd>mp7%c8Xb+nI&^fk!qteK*;t%jOP@TvqH=#Oo(Yy z?DM{6qG4-yPv><3e;I>j#}Q^k_iUuJ=HH_wPW7$vw|2@ZDbRcY*GBBD7c+w ztIgX8_;}_LGnr3+F;gG0G1ERFoIH0T$$mfob5`6(eR@$MX9K|OT1VPwS+cryWzoDf zBOODWk(s9>H4o9$&h)xDc*~Bl74voxQ@$`s*&`V)`5CSUvEU0#)vY)`g(q_*A$b9X zE-nvO$;+`On$EVsSmP1mtAu|h0BG=rKnzNT5tYld7P>M- z&WVk>#!|6Hx;T2KfysYag+jE2S(6Bg>vEN@IT`$qWhKBEU`0RE6}K_g!q=b#ERPaFd3 zK}G`hS@WYGlj@|)ID@t5ZLj_{!-BWng*0bgi+V;L5VWSZ6wzVgMTAxNrH{tJZp0;H z$u!4VJBA-qQO+BDY$L?@sr0%kKG?bF+sieG-9x8^{`1e+5QtktqWqR6v5(@zb}LY2 z_8ZLIQKU6~NBVX~vNz52Y)9yah%wv17UMI|CK!V5lXmjdJ2lABe8HdTj9sGD@TNT> zziXnJR8(?}Z)QnHEHm8`qIy%#I_Eys9GQM!I@i_-wTtID#e1KaIK9(4K%B+4UK8=^ zx5#py-$jBRmG@7pp>D3F;LzQ4i^%ZK2__u?#!rAT>6(>a)L!V3AHYrgV+PxuE4b9^ zBe0M)(#OP{FH4b@*Rf3a+=J*DF$?{DiR!Ai>cr+h)X2a{T97j}F|nowJ4q5;t;K4v z$&mK)SSFWmzdXE|)t||{K$&kMSa9?MGjekf>x!2bHTZik^3#wl-r!QdnShK{YiFtN zytLQ2rW$MG$~g2Zp6CV@UJ%zhBYc{S`9n6ivF=u^HBE8Kf&S1e1%m*`biY?Q(zrC1kx9opw+v9o6qFikdb>DeJEP;Kk z>ZEpu6S+^_5L=S$;RE}SWsE?$bkN-OtI2h8sAAi*tj&%oU9&cR)p%F(uAlFjadqUG zk<+RDHniS+Xj8zcDCN7qvrtf+IE2TNNH9M40v26&$CLe_i*{-zZ8lhvX%*WA%Fb$2PGZbh_Bj%@D)7#o{>v$*%iZeABkpSPzb2 zE3B^2_Quz!9f<#~BaZF9-@kW=b?Mn7V;aM)OQ=m@cx9f0cSA{ZjJ|t6d}3KU{=l1d z2l`SfWQCZFJR1T@*)zzO$401Ha-x9(G@!n|bKOppEb~Yldy>zLKlfpT&l_d$0GQGX zJ3Oosqg8y1anv`#qe?(5ly^du(D&je)h`$seN-&MB5F#G$?~aB zAn5YkA|1>IYjJ|zPuRZuXAARFmvzK>=hNW<|LxaWU>Hn)XU4HR;=QUJr)o*v;l>w| zM9Z#rFK3xDW`|vTJ18L)v6%wb!NYyu?Ja0R2Kef1CQd3(E#@sj@6jhDPD#9P0mJ4f(Zdd-LwLJ7c1^| zQp*fIKGLJvV@QaHW-Hyna|J~zv z?K0OczULvwvPL?foU{eA@<8A)cS2cn>qA*xut|SdCadERn+(UCDBQrw z%m5KPcWlqj{QyDm9qbcMK$D+`Vd$eeC^*dmbI=t7g|an+$_9)1WyeocdEeP)71+*`C0RJxxlU^H7Ijc?%#9lN%eMj z2lk?pvWi#BVV;bF9$A{8?c%Q69*t3NS6G!=fo@Po!(@{pD^0D-^Pk*S!O^Zolo`s* zP(InRhpplEdb{3oQ`V82Rr)NJbY7YWWuJi4AB9%*#+)|nJ3hYgKEdStV_GlR;U6??o zi+n<=Q&M%8V&_qZkJa5p_}?Ao`p}HU z9ZYYrJg}TOPsVws;@();@@-LV@y096j0fzWy+fJd-sOTK;pIJ;vAV` z%81QkcMu;LJt3gQ9@?Uie3%<%aEKI5VTC>H%TjQxgz65~F0J%o6Y&q3vnI-lop4z6_-V(YO+OrM_yq<>{#R#_J$V5h*DKdA4R!`^NYd(|m385|O zRYsDVWUTqDG#tc++CiMeAJJSuE(zLYV7Qt>4uhHqE|>|^IU2#COl)hpw+2j2y^)_{ zBFjWlEla?!6nSjKSfrcW%s=zK=Y~YDf;Nmf^CoSSfPJ+OX5gNnwg(Pzzk z8$v|Jjj8$oaw>l(7dDm9z$G-UFh3pH?eD99ZmligO5fSxVv-^N&g0-80jQ=OD72-P z(Unw?7BmA0(Sw=3XQ07pH~1VD=kNYah>1D3$x_n$xiqHZ_9QTxN>7&ujs`}TgYwN# zx8=hJucRm?hY;)W=6QiC(x`(dAiennLvk0KkG9|kmNmNv>pK<^tOW7G;OII4}8 zu*qUW(3v%x6CN}r$VX6OfFCAt*3(BwCJ90h_rZ&yahy2HuH)n9ZrN2tVS~}Po4!Lj z*N!)ZhIe<@C7ySv(|Fn%p^gyLc#pTs-@g};IedxlMuD()nwFwbR=$xA)(edS@&c?r zQ$Ct->j1;&$S`Bsttuw)WEfm*Q?H`1VEFn5>{K9lZ%4R0CU&O?Z@hps2y7~rrlMYI zD5Na`wh!00V1kEj1>X?og8{XdBa^VjHKlN%IeDOOm zfGut8UJ1{eBBxTUF`paX_ZRBJ~9BdrJr(glFDP3N%`}5t{E0RHnJgq<_sEkDNU(p%0=7j051o#Z_NxPlFFXzx@P4xL#c2ZW@) z?}t)GQBGGS8BUv@G~i@1!mspBz8NUQR@tfxdS z zJ0N}W-=v1eei=cg`Cj%rxeFDng)OV?l1RK3=&)i7Y+cHrYQK8sLGFFR$)7X7jLmR2 zlC&9x9a?VKAM;_>3Tanthu%*CrONsC?J?I$4(c-C{jnX1&nX+`=6(&5sGLgFZZ{vP z9GIiR$)mW2e5Fm{fzh^Bu!n&e@M=BjeJLKVw%qS@s*_9+IX_9D zn}GYmNV`+u01hC37?a!g2gR_`Hl7y{X{MCz1=HA8Km-Be$Z8Sq=PYKumt~yaUmXzD z#7VT`(wb7Zds|yfd^MDs_qugbHZsnc2NYSSRYb5yM9taq$X6^7lPE z-#oc&q)MJ2nTHoPxT|)+zWRQUWT~F3adujHs4rYJ5{B58&KA zZJdfgIow>UoH1S7Vzji*?S_##U8~x-udXLGiR^*0c_4|uJdQ?(e$g|W*^zDLGT?6$xJ2E^@J-I*Pk5sqd&SE5{NsFgdEKF0{n=PIBc4T zEsJmtz@eJww0a#pgDv5u#90i~1X91Xzf&a{6TJx22)5+nNP6KKm;V05wXgX!qm%YW z(zb6s&DKEL6?s{ZRB*?Kc^NjiT~Ff6jo(C{sNwLECwB5f zD2#NNPR_8tTKRooR(8v6YLSQy`>?FNHXQoH1lb4y1nVs(tneArl6FGiy<>U6V%i0k zQ#Vc&m_uVK|H%&v;~CTZ?E4efPXZP|99QW0n5V^a|*h3~;d z&pNL$_T<&Pc!o6$W-EdxmENO0S0dwheLV1@L>h3%Sj|tmj@ZP#lQi{RUjQ7{$j0+e zY@Wu3?$-brO^QjX3!{!ZTfJt+e9bljBEw;21E~4CTt>XXCQ&TPG_7~k&jU;LY&|v{ z;hr9RQe?SYunF54W<1Gr*< zq{K;JHB#KD&|o#>3UIt4so=GA^H2PXdyybyK~PPQg1s1t=$FVU-0>Py(nhVAEg*pR zjl{y`3&P_g0^~b8ym<8A{hOU4!LA6zAAt1w|{Y!0FUIFab)W3*Hmiaab%}VM}>D_&66eMrsy{yXnO+B@@A@I;}}$)Cu@q zqcuH883S6$^N)V1%#gv8TVrZI>)AWIWCLEAj9Hl|#}|QpJh7Qw%0*^T%ziIvZgG^1 z@H(%;tk<6C&6!)N+W_#V^z;EH64FIGwOa{w@vA+9wuWQN!%|chYv4*9E_ype9*IKg%9#1oL4N z*q?l;kxbHHHDJ_;cWvXQrzxRwEp8O1UsfU_Bu(Ex6>7S)K8a zSJ(3x4K8jC;fuIk<2yedR+s33S#qxiUua%3+892;IBGSB{hhK)>)|WNZ>*(b3ifCOxFKv z-!dtldg5iCT{S?-U+>vjzK#Qe^meoZwy=|1=QRils`g~iMu;8VsCb@GO*EX`s&eN~ za}nHjEXi}Qls1;uPSL`hW$IgWa73Q3W?KxQ;bE3(B!KE50Z$e@syXLhyiw%G>BHPx zU^w0PHjL^x_!?*U#KgSa(m_0#YGJ~&gQdtDKU>VjD1fUNuU{5M?O-rveG_XWxl%)0 zRQto}(Rgrr4I$}PMr*!lRL@>bO0ht(U%j+KLch0y1LAd_QSIb? zMikC0)4S0tJ)5_8$_QNTFDPFDi)&tp!?H7@9TLN*+$>iV8zf6IMD8t+af;sN{8(fO zf%efNIjd@ld5)4^a=!M-zd^=9x}OVU+B2vUALC_X1xbN?GnseFGe=bpX_fCh3W7FE z30SiEcYY0Hp_T8!nJe;7Q|i;Kvm-@;YlA#A=w^Q?P+8gkorf4xE%LMsbI>ym_de-o z>L_Lb=>SMr+iLN!bwczDMWe@sLP86*+>UL9wg5OF;X@WaKONeo4ga(^&jO35>Z%HoOdr2do85^ zb~xjeLN@W_S`^BCkRmmT)xsqnVo~gum5PxF+(k5aO!+10$$OC~TSB@uw+wwR+ zFKUOZHz-ryOS$N6XvzI_C5(EXIGVvQgYmW^ErcNjP_W{Z%SK6%gEn4cpb!i=)Tm8} zxBTaxudTsh0j7fvV{?J;8^PB!{LD(eN+%JeGnmIc_dRYa+{R;jMbEpsg93R>dvdzS zP-_<65u*o8&w3=KI^2`&Sc0Adb;XZkDD$Kx*YAdy&*#FCMfGBl2qj0|mOxk2so2jR zlsa-Tz?`Jb1uJhW1kmAV!v$@T=0&sQ8Rkqw!u?rN(v3X%nkj=SE?ePEbQ_uN&?)J+ zQ%>O-cgZ(OH*IvhP|h94TFV*oTJw8l_lL%@!UVG9szAj~_Sz>>bmisqTITVWiZ zGY*sBx%~0ZhwMy}U_j2vp8nR520UK$K_ofi2T@gjzb7KC>ZNzD-%B$@fpo4*n6$1s zKyBj_VSQ!k`6)TW19?LtJC7dqghczi;yN}`7O#HtKD)j?zs=tzRFm-dGQWY-OrjT$ zoWkzz+ zUvDbu5=u|fM9ekydV=HOiPP|C!k_Pt_e-QbiPwx*SGrhzfj&(H{;eYl8aYbh=4!9c z%O}C&ch-BiImItOoLP(2o!mX_csQp^dFDn2-^S;8I&R1h#LxJ*_j$^EX^c9dUz7VK zJQW==d(8}+9>~bsg~;#uD8mlONc6WJ9OKU>-PMQTl-y9NkAfug@e_IKdCe&j-a*!_ za6C!%lQt1D#3z61f)Bic`s*`9b2B0-qX^ogKI~09UE-b{I)VS;WMS3T5`}{h>UY+1 zT;mArYj|%~$rUe}{-dY*bo#F^ACM`l ze4`X=)x!-dtU_25_>4oFf9gg%(@8vQ#A~=@BNCm@rp{SC8!vC>DDlsgc#S}PziX`W zgyW@r(`V%O^&7iJ^g2Fn*m1){zkmLY1N|w#4Ez*cHwAfm*w`~k?4BHj>$u7xJ(3F&~)clkf(m{?Yy6|NA@&M zT3nIh9yrKYzTa2v2*MMvY?PZq9Qnb#{`%%|ZyQVUJrep!U6Mn`Gl8h! z^ym4P=-am^QQI@UH1ex>s+(j0eHr~JtC&8fZxQUqsAA-$AAb1KtK`rA8{})Q$=7pB zT{oS_8k59b?8y`MUNQ+wCr?PQ<9CB;=ifhjji#xYU9u;8+Wp_^1o0dT$g`n-!CCy9 z;yigIs29whp&wo_yOFBC8;s}+-IDN%f0yxjtKMG?3lDi53A~f^yYn5N{kGW+$F6~2 zXKVX&C#i5)zuU9{5cxY|B$_P{-^M^b*k_qHI@x)?{B4)tacTdK%dO-^?};8PV^Ivl zK~=`}Vx>QQ)ye*UZONZsC=}guHdyUr zwt-X!5c?Z77(e6p{L)h1HBJ{{ost1*em3E#4fqtpBn;1wJ~x2p&t!qQRhEk5&BWOn zVgRuwpW$T85u|ib?DE?3`N-O%<9J+Z^9+k}Sce&rB2)~nL)ofF+Bp6CfxK}3mui}K*w3z`%zldZ}kjxyzIm2OxF?kepJxxJa z!c7;!VSt=V7Y3jEtj|ofO!MW~K@JR^`A8Gqp2pv6%7o`L`8DSxPlqLDo%SZggk+LX+?=njG$qzRaKw?)6 zGA>*oe;E%2b9&^bUkrxGyW8m{X&^oS^l$e;boUUn{VPLNy~9ztfPUiBh?WtH?Btx z+KGQnO(k~%L)JpfRK|7kz~LKO75?6jE1Y)gKW$V(%xW$0!PFL~5X1}S^$aiZz`NZ> zlK0nsiFErToetE4Y~8^>-=r>&|FqDm>ry<=V+OaJ87r~GB8^V_MSub;ZYua4V6o3i!MoFNPlA>Quj@0u~uyuKFw*Uwc#!sYk8 zW>*GtwzH^BKkhbu-!CifgRE4IKle3bNt6@c*htk^>d#=;Uc)!$4|&%J^5qG6RL-X? zo^S5$(`^?d#l8AR@1I&_{nq;%T@7XEf@0tiN0Q~QHul=jP*{A?%C}}-1O2b{1^TbX zZR`PQE&rWAuR7}zJ2OCR2=<>@%=<;Y4*%tgXnbtr$9uGhAx_5RzmcwJn?fq|L$EP@ zTj0*$5mF)_sr+cM_FEe}@0`lJVN{tno*AK{M5N&($0jKP-;vU@bmnQ!n_}R_d8I}_ zae3Wu|FP?HxLvYs^wzS@64yW3kFF%X~M++`t<8(Dkmk#aT8ISxdMR=9)BKY zKAw5RWt+lGfA-OYm)~WOKSKJ@C~`xAkdb2-!{L*Kw^26SN0ZlFd^p{^a_5^8oG2sy zvxZ8EFaMQ8q>|>1-nUB$G7KuD{CHKv*pGRXf4ZAqxs46%WG@y^E3~#-`IopHY%wsKR&>KmJI&yk5q73ZEn$qc)1t`!+uI z_oAe$G~VX%R>`e!m`ERs#}&D^xG$1PZw>MG!#aX|Rez14aNEkrskG0qE#LSZUYFqEyLlyzmp^q58Y6 zwZuyF)ZLM>F}d?RIzxE`(Ln^;Hc2lhRM?LH&RPENJ>7rriFKq6D1>e%8Dksi{vTWK zwdJ<1bd5d`FPPJ%B#NY%bGl;`#hlaAAE?)IFMs<#9`Q|J?HM#L z{qBSU>7>OA=(gWF-b47oDDG&%)Pt`LqZmyeQN7c*qD`GlxW?(4B@IA4GXzmY-mR08; z{QhWpgigW@PcoQ&giret6E118DdF3=M{QE#t7$pr&&n~%n2*~sJu4gvjeTFo} z{U!RvB=s)-=%@SW?tzf0UtIlpR>O}8xuVgu@?*ykv*x7Bb==|~9{lfvCAIu9HhN26 zVX)V*gzTAk{p6RI40~SpPk?PY~QzM^E5qs4KhT(i4R$! z@U$(`JomOdH`0R5@I3E9iZZ*6g;*vlXbQU(*T`YUi5mt~ZjpxPZ`K>|`DB<}M4-%I z=oBjC#BFW+h_{mipVNkPS##?}vhTRHI)gp=4uI;LHTCIbsxvIbUDx60a|M5eKnYF~7UIg|W4X#YpO^ z2K49O5YlT3WUV&aIu%pxgCvV)#|(Bzpv?OeEb0exq7` zXK1MB8Crjf%qY@0*}&P>8INVxC>a9d{lIy?83VbB*gFM(zPLQg*o5ifE#Er^D%t9Q zDO_IJCbX2)YJZ zSkS8$xjbSLLL27_uUKLe4SvdCy5|jENj0KJaTpeF5KWU^#YB`h?mmt~yUU=-0HMvy zvMIdc`Tl!8lxlzR?G+(lFz;cTnQUPkpF}SNupTd!*Tycdh#P6COqG#J< zd)*0Ii~!mk5J@n7{s7?KMVlOnd=64?Al>?61lY1QQHe}xXU+YA;@~*zq?_Mn;Qml zkNsYJpz%8=2@+J7NO!c>}z4ka3}(^z74jyFsCM&!WHE{=y&K za63ymHBtM0uZ!h&%*zzsD=C~=y!PKpKrOx$m<#q<6gHWj_VWH$vj~s#hcDkMg|mg# zb;E?K1|gfguG06n_fB7uOPx~iu$5rkzxDJ#eQhD%|J28xN;Cs$pnyC;O??hsEp@2% ztxu!Z^0s=ZPf$A+qx*j~7Vyg7y3JGT<9bh`#401^-mce(*0IS64=2^;7F#n{s>YM= z;+G3V^KU-dW%Ea7KLJPfKe|?@=+{P4Gg)`;F4rygxjIKU5ulrJ?vUsEpBQ@xuW#+= zsrL88^he5bJtsi&JQWfpQtnDBsP4y1I{)S-2AkH_KZ*@JR z?<=}^$@^CWVWs?~<7K11if=0bMtOjf5qYv*Lo&%!2{grlb2%I3o=^sCpgK5QdI zh0DHiKvk+8{nb$1{U2Wavg}wGN>qsHSP7GXb(aME9`)x&A1(494}09=f7UoS1iX*1 zM`YDUtk|d0wY9nFEZRi2{I$NG-tT#~+z*#&G^IyU*V+&E^1`Ln8DViu#QyMe7M91X zF4tv1CmMoO4m67U%l*|y{m8zLe0=p~RSoT^s7b__lYp~MN%p^Vwv}K7| z&l1!AFC@M054>vj`h0x| zjY~}ss3mAoxBxtL);)P58_P$2djQ{pDq%W$_dJIMtlnk!0WPqd+HO7VEBbBsqCyXqSm)N@f z8v_E+&TP@C>I%J>j`r6B&g9v@O*d!a!sk#&i;qoCBBXVks2D&`sR}Is*M$uv%HSCw zFYf0jQviK%-QOHj0>@siEp@X3t+JJUydGIN)kDH%C{>DoG;R9Tl0;$Gb=~a%yJb0|>fwn$qo@wFgO~ z;=KGB3->gDaqn^b9uy~#Rhl2!wxKgIZz!E@{EB>L%hKrf{Uvz#$SS<8JW)dW^Z&oT zX$p%L#*KA5@7H$&1iGYWplornaP4Zf-+e>`qMajs)M~=}zy0brUVDCH!vFMWJEH+Z z;avJ=@P-k-T{pftZQamfSK#4+NkE+DhW@=t<;5ob|JEk%YWK~#isg#!Oyt|ADiS>- z_(*D@yrl~x1g4~@#LJLvL`xlghjI{nu)qAG)@i6bTC~UluLvqTCZ)8cY}B@J32r`h zmv*_QWhey4$L8KI$+96qA7-qmQ-<~EjEW8Xf^+M0Qwdzj=}jz20%zs^9Fzv%1nh*{6Yzi9)yYVQo#w)e zn7PP_Zfdr5Ow!x&wFb0Wtn?l^pH6U;4219K+<9BGpJ+(!c0>Y|1 zhs)&#!Nst2>pQ0{SeX-;arYA$?agR&l*BRY33HhS3K~bRGiPMRf#K@@#_RL}pS`RQ$G@CKp%m4F3ZMzG6qeFdPqp0Vx zf#LO{_fkB|%UocLEXSb8sK-v&ZrCk7TUE0#HWub|fyA%wRA4&eHf^P^YuoaSpG>9h zR)0d44KKurpqO&S5Tx1kg1%6kcA=Y<*F?VXi zBlU8KqmR~kVF|i}-YH~k9Q44{m$s{a=Vlt&!B|I$woyFDe4*Ho>Wsl06|Qd^NO`hh zw7~Q@j$7en1>X7ep}(chow9;5Dl(|@Y+>V(MIq_(HKi?bz(umA6Z*3>6s2b| zTVMcv`+%Sl8MLT)UX=ukoGxhxq(w+9q2Jm;&%qW&Bf~n`| zY>^}q=jqVln7#9nDr$fsY>M7>1f#dLlvGwvH=NUeR0atWhkP_4C^H!$cqq1Y67(kfpEyD`s%d4F4a_zpTLAdeZmorUA&MP_kwZ1t$Hb%wlq!8D~qQF35#?`_CW{F8I)BP3t*yT zAsZv34ccUAggseY_bkRS?FwH@yZhGAbPft9?u~&Zi=d!|bq|38b`pzq?|m{gL>m_; z=0UYir!2c!BpL`K&uIb1wmf%J6utIoIGXvpi9>2K27xF?6Vwn_Q6n(47u{8#o-_vaq6a5X+m!A^G|(Dzm>q}Y8%WI+yUN_Wld3Bvu(q23%Ja;U$n{XRhu&x^*@XA zz9)lM;36J`g0Geo53r#1^L)Ea4&Kd_pE4T4zy#fPAf5v2g2JEmT68Q5S~Jme$0r$g zVL;`kg`^Xk3^&EvFZtVs@V$NUb9PKaevWL-dve{PI0y=8fl~&y9&@p?V2*8$(0N{C z$pg+=Z>um=)&A5qU)Mw6Yb;+3&gfu!8TUu1ej6_k3WH?~s~{kLGqTc;cJippc*+;A z4H2zhQrPAP>IfZ;W>8Ruw7u(DNKx^HUL}6b^8+unOGpX^t@Tc&KJHW=%BKIfclNn! zp)+Ia#+Mxl!D2YyS}|tV@_~(1(j|#IBw7ymucG;@am>e#_#bL6;`VA(e=N@XiYNl< z6tgBw(e%A)w1cy#XPb2$EN%uE^IO+cZrSijJ-~+uMi2^`#eC1at7|aIfPDx;@@8%M zJ~h223_y#1SkLDBzFZg~hNUrI32$V0&UD+%APPV%pX6hLNMI9k!Jh>XbCL|~Yn%7q zehBPM-!g&3@mYo7<$+B%sXXyyN?2H2VkMr+@?Gi3SHA`~MynCI3KAtqF#e^|fO{)8 zq@g6Wkr(e>?-SWc^I@rp?5OD{j0Ax`?H9vB97TGo5ms(RySRjJ@usV`0|-;7v727#JvKuQ5|Cbl`56*uM4vp9wp z{vV%F9v4R}5T zF%iY%VDDHZo2kU_=+p=S@G%TUNSI5{PdISi@A}#8(S8&zyEdJ*6VmiD51z(p1dPz5 zZFuqd!1GYcW8+LJDwULC^oYq@2JDvP~LcS9S1ygOAw4M!32^?_+g zUu$NB$l{0kb7Vr4nqKZplUuETtnTFqT6=aGIeYu`R6I}dv(Nammrf{Tr(?8BR&17X2F?6)Cd$K+ z+7oBs<3#7;Ry4kC?dJ~D&l){F65x4|u$x?(;>^nc78w%Lw8i^k1nI~0?n+I2Wv~-# zE1sh9mPI&*k5>@XHEBPzg7Sn#i7TZBW4L9}jZzco`RRb(Ise;71KgZ&764Gxv@!D; zF^vu8KRSInY!=@2H2Hu!wf*P5E$Ic7W9X%UZ>#^UKRI{4Tn}uX)(y<> z0eD4vpEUz{lwFhfEf%9(ki|W81$kA0XJqrN-QtdqYq%Y^22qy`=f%gc_Y02ldCI(64CK6YgW6KJA;AtW4 zJGaR?5aFV3sAK2L05yAAMZS-?9p`dI%(BWE$$$5WncqG!ej3rx-*G2IFx1!HnE5Tz z+_6P#v(Rao&%Im`$w5E&0+4v{y+c!bPVb6+YOI1|TlDGO&)WR&7iQA$oqFK^~8+LE8rDX$?iqC<XZT{C6pxBMqJ348PHH;&~lO}K&tW7bT}QbNoM?$|X6oejs{D}K>i=x5i?6ki_Y z?g0yI221_*6u9tqY>e5jc+l6kp=d+7^MQR^oV0w0KVRN`2SDW9>360@C}*!8`~IK$=xu4zFw3T- zNfMvLD5`jSD;rfDvUnGP4I!qf^}?$!x+M^m&XO!s3_nBXVdo1Qec5=}UvtxJ9#AX* zv)tx99j@yWjnvI?r=uGh>E~7T2=bJ?3g9v6$M)9{ha__N$GG1XJImEDX~C zk?{wJ-Qa>L=6Ii?=yS#%GYS@dAr5YNh=38lAv!DJXRRE}Z zcOEM{Yt4wP0XD$^a*ud`S0G)w5I+38MwjCaEgC#;X4KXIzyDy}^_m9z?Sk}o^+N!M z(=rMR>yL4jy_TlHg*h*i$)w(hP`Pc@HJoskK9@#sVIDTFRCP2N!f$VujpH@BX5_&S zIiRys;6f$wr{DGFBi&CO?aT8nALV8gbvW5y9Sr(8M(2Lfc)}$B>t3|LBrm>~juyw* zDo2wtzo#`O27CS%xQt)WE_vm*-LBuiHQ?bT06%?TUJK!^G@UjZuYPAyn2!M=-I=~m zqjJE)ww$6^8F7i!uv@IS?3osk0t12d$+XEKz2P%HsZki@h@v@?DorJS3Z*`%uJW^tG$L9zedd4 z)p{yw>>0oI-+Jowt=9uT0ywwnoN_M9yN@rQ>qoYnJq*o&&+fFh38z4Pi!ctp?!41x z7L)`)+&t|+_FfhR8GyzP)yd6le%5va_}~fx9c>lZ@}RB9v}N^f)tMMh(V){_?s&`t z%vh`qw>uEWlw+*u@moin`EReGP!8)bEq+f~iSdpQ z>vgXoG(Iq&5QN?9>||+m7E)}h#N*TapYQt_{JpHRcqAV&Q;+Eot*|3urOSmdu7=|l z*b4^pK3T9alY-8;DRs*FB@Dq)!s5T|U(GZvjp3E=|P;BF9^Wj@TNzZVWB zQbE!l0UmPN!GcdZNuahfdD#oI;4Cj-CLi3@XAX0_s+U&ON1j6zO5(8?aN^an#|bGb z!vf9XdQqS>2jwMK)%mdOz8NMzC`F_e+EXCUptor$3?;OP;eNjG`!Ys5uFfz_@@K!j>~)On0}@0Yq3bQp zi)Jg5REL(|J;aac2WM|25B>NtUV&Oow5Q+VtJ<3-NuF~l-grW**m0do@UDyF${UU^Yh!Qfr|Oce2mJH*Dt zThV$g3Pl*2=8w{W-~rpN7O?&`&*1!3pH`Z090eEaW&mQ5i|LGNL~?!C>!%KWPq3kA zFk2VfB?k-{J)m4CEkJN$cqNByh5PQ4wc78Ub1jzuz?W{1o!!oC>|F-c(uePOR32<} zwJF)kR=mbQODSpq1SFH4mU6k?LJ=}2^0VKAA!!c1ytROfl3Zcs+w%?OmBsEXv-u5z zLsJH&eiC%NjObLousBUp-NdGVyB-I5u%AcvaSc{W64t6T{-79R%9lbBh$4Gi*B>}g z?*HWHS76H;U+3hsa5Gh4S-EN$g)2kOso7SdtD9&n*41>KcHDNIB(r(-7GZ1+FO{Ea z4x0j~ONc9?@s>#lV?IxgcBp~&Ot|BL{jC*^Hj3U@dhzLWwCI3TYIg7wiI!UstqfXT zi#T+zC5T7=SOGM5`*i-{)Lbb4!{;8;Nf|H|IQJK#vBG zjxq^o!eFu4nO-1R>AHAyq=O_5FknVEx$Bt5RV|hrR&JMvOTw;`8*jBG(c>Vd|DeNRosw1Y?-e^xIo=!+sXM z9|)qc%W?t80BBHKxFHcAT`)Fky0%j&G^R1G!DNK>LbSY|9Q&C?O8puAiCK^UX757< z!|VelC2=ygkF90-NncPBD%*z*XnMg$-M}wErtK4^Kl!zZ+JWF0?IR-|KrKC?3GQ+Z zh|7x>xmU8#%}Hu8L_wBMMi6ce+m_G4{sDaU!4_b8TMR<>WLtGcYhgllm(ayG46#}_=wXS12xiDm6dIN_*wATn#-yWJbYL>b zs9=JTgJB#;Llj{ZHymcoFI=4W;JTo-I1L5Hp}1IdpEk0%eX`Isiwvb3kdcxFBz!zA z7(zVxd3ONZ3=Y}ALqK*w%*rok1@+|>6E&}?2HGzn8u1Oxu%9ptRmGX&V#2(+E&lcg zNi@7J*~T_FP6oNXC3;s-Mbhg6rA&j!#)&tj8%`d@w$)uqSu~AsG*0s;MYKlQZ;27m zg$t`(L*t*rC_dPuON@?2OuQ3|7?ASlQ+>FvLJ2a=yP=X*rSW}b{KGFLJ-%4NC+L$B~Bs|8sx44M({U17UZ(4Clolqva`s{W`u zFu@yCJmd|vy8%tu^--E^@K|St%5PW7h@T^x^MautkkfQTaU2S@daK{B9z?Nv-JB2% zFr`3!Y7OQq@3fcz_7LI$%PF6@0Kj4-8HFUq0ergd$fTW_M14dqdw**JhsOX%qcKg# z@T7sUWW#5@8dsLBaM*W*=zM_;{^ED#^BPRv6R^+odADLTUa}xwTRdAV3iq;w(z9t? zK9%pa%Qvtq+@o}F8ql1*GCVHb4>3MIjdkDn==s?DJ88Yt^0_>sO1`d=l`n}yTWUua z>XJ4dHV9ZJq6LM{bTLR#l-9gk#Qj+(Yz(vVwe9fqdul%~%u66g+K}ZTnt$QRy zSE-d`qL6|u@B8Q-X2&vfR0SLz<~=Q(xy|BjU~zjes{rPWFByo)dzX4Z_UM6%Rx+i-3|gts@jS87dw z2W?&pZS*`XEul|(Y%+x)#WG-H*I_3%a+AQcOy~~*_Tz5Rc67x>&HQhgk99=O2%cyhce6N^_(wYL^2L>1Uin0py4GC8Te=w^;U-^q& z98=VQZojo&c}=Shf!JTsrA1MDOP5GZ@Pwp<$o%VGU5x{fl6v3$R$^aCqOi+n$yU)L zz(YrKt;1^3;b$XB0<;$>h#J<6AYf~*uNqo85rzwc_oo1 z8v-R5suohT%$2@FD!jl)@-eb%+Z+{hp<;sW=6}O6HCFugD%@`HC(oprJVQc~13$SJ zT8YK9A>hKJdEY~pd+`sD1N^H)Xf7KoY@^_`fE{ZHA%!UFVnoI#F5mawn{RT=-$6>! zj`q}t5<)5AqfU0JDb~8Z=UGiz8bhJOTRy?*G8>|}9!tZ2-v=&p8-p<8*TD^eQ$!_H zAiWafxol<<8Jc^lOF|Q#ga+JW*D3PzsK(gr;T1p^ESw6(=0vbUYuSC4Nq^z5hAOzT z#{&t`XP4UKc)Br0b{&}goz6LV(XBQvwAN5`*WT?eThUvD(=4gK!}xEvFCrFpzjr0; z_B~RC_WgolI@^U3Im>3edxQLtMI+-u3{>fixX3(p^OJr(MHA%hl@uR(65Xsb!Allp zS>!@;d^`;a`eeQ+Z?KkIG4HiysitBXrj)p`!;E5b=&Zp+HUKj~%)i|EiF(_3E7i8- z_|~Rb7tFTaL1kJI@QhdU-d5(>g8W*Ta_Dmz)ul4g38px956JcJc%Ogo zb7|UOI1IAWb4tO=C%ZxVCTAG@4Z_WPb`2x&83J`-Y5*_3<$B>bI{} z@^kBUThiBE4_OWPatLj(ktTY2T6!)<(;8&eS;0V!t(2+No<2FONWM=p*zXUdrmQ<* z3unZ2D|RfK<2Ot2mU7FBUI@168GGUq9VrF2klN^?yfi}CbC>=b;N!N<2t0mc*pP3X z?S#!^Pa9!vp9x3H2w}(Xj@-0*ZCf)7(=9_GFn~6s$pe5ogJQ~DXwke~7zw*3y0zyJ zErt*YS5%-?C)elzk9`)2NzM#<$L}LnY_aDo{x5rs@oML5;}+mK&*U&Sb%FbtGfw?<%!6qm7kNZ zJVh0Ff~I+0;nzIu2?a-icu@H#_5ijv6dAQCF zxL`7YF_J2%`XG0T&}V9fqoi9%?#)OXf}-)eHJ9p4oERYkQ>C<~Ut^M4vF{;HWlU{a zqdxwc%Xe~qn;;*zI~BD$YP^RjCz2piw2`(Jm4Sh+^w;@mV1dFOMTqiDpPis1F=N>1C#(lnY!yfs23#+5FQ&Lr>0mI1@D4wI!=%PQwP1)Sle| z{okB$-xxIgseyKvieqp$SyVsBTCuFW9n-~rT2&;eXp~pv6TLsUZ>@U;jG-NtPG4G_ zUGv(=r-{6f*3j|deK_L*M0}498YL2^)x=gQ*(y4%`}YprjYiwj$&mzU8oxvS>hb%* zFWK727vLTo5okMB>L9w>Jvi&f6{KZFJ+{D+1-QNkm?0^yL!W}EYbQ_1SLA1GBV1{< zuGUl({hDKjKtM;Nx5XXB#@O+@A@H|ie#)L{PslV0M(z3b?K!cYXr8Xjoe2??;nDtm zNA68Gfe`uL=f>@NpkF~g+&ll+u^j{nxh>3ucrvJ;=`V2TK`?eYMC zH*baXU>rd`2}B5MRZi*w!BG*VO37 z|36Q>Y0gaI&5VUWNDF18K9PwMwt&-lc#~N^ozt}631cN1^PXK;sB~Tm#uq|KLFIuz z5QkW5rl~P`A-k=|;4e(XC-v|#`_kXB*ZNU8#k4cc+y{@~8ZdtdQlPfKr2jK-J@#v( z%y?ZrXB4C9-;p5|qfDMr+?4=MB1w5c^0{ft!mBLcMlcyFY{rC|nkpGYg2AZflg~8W zjGee=l+nPaH)C8Wz(|EG>Y)kK_@a2$CFyQC4n$e1ByWlkf+S56ahmySP+X6}r}yo9 z1B3dW>v8`ARf~N$y9i4p}Jsd8~K~!E^BUloj4$B`5Qf55svj zmraX`3av{I$(qZW$xB3<@1;pR1ZkK?a!!YNla^_B+S)7_HaoarsOe~>n}<$}zPWS- zA-IZ(7%dET8BL42`LRAl)F1&|EwE8p@FZc`3p;QxWuw$xUax5Na!94I9B5t${zA6z{ zm#|v59m7Eyfb7yb77U^>k;-yx?N8L-gHKXSbkD8`y)Mb|F@Ol+p_MiZ)(DF}>qv>z z<9-ttoe-;vzv!$Rfxtj7HjP= z#{8>!LL#i*#LED>h<}w&RCB!Hih49|kJ%Gf+BoAbGKcRTxSOHe7n7~@2*h8qOxfN< z2lAeZNY_-j;FLgf%xDdbA(IaKZX9*w$!TkAhB1u zG-Y^X(=YF(i(l7ldjQ$TddzOK6Pn`0NB&a4@5DD|Q=dH~|3yD=- z;KGSVKC{4>TL(t_-IQzL+D+vrj?vu6hbl|ui8hk)jx!RcU@eD|-=p9*WCF~STH_!? z8KjbduO<&Frh`Px)(K9e&%)(MA-tG@LzD5&Xe&BBY!_&(7aE{Ps%4^INc9KrtT|He zAW!ly*n~t6SE4sZNmlMrcX04=fdp|wCiNN9SJ+R;Ywl>g!$ zcZ4T4egUa->K$=kg?-x|yh45YkN6gE2BVaWF`^VyQ0p`NP2Fabx_7-eAmBw5h zS>+q`WD1!1<;EsAVYJpdvw%iT9~vS;n_SK1U_wV^+d>HR@o8(iinNz;s{)(=eT4!Q_m+WbS*~ys zgyl+0--~&RsYG#0XM7XZTYKCN9N&_vl9Pbs9edmJpzYOS_inU8ybiq&MxFQ4A^}q-Jn6n2QX{nL`1% zry}YVqFM5iW^{m+Cm28Aca^$pPb=UGC{o>zAHxB^<2@rSUxDV(NGTxiVX#snskR9} zybn6%b~v#NA{Ir*{#W{V48V7i*{ePCOf=fDOJCH zG6!;0`c3y?oT|%in3sBm4D7~N4=r+H^jv*wJ?06XU-Yns+jGTXP4)d1^T`WB5)BI; zTwASirKT$PhJRvW90qgBH#%w-cGdGeh(Y}5#5Lr@voQl%1X6mzvHO4}k8O5BN2>v& z{f`&cuYuUatu!yL-i%90*<#Du1f<36I4!&!yn43sRtmNrh{!_JT>mFL-I zhpd9O4_{$qVZuZf@7NyBNO%yhjGGqjM0-DX$SqQvJG4-{fVzHmr$lVoHmTluo^4yY+ z<`axQ==xAR!>3_XtdJ)?`V11n-4I{EN$wmQ8kM%a@tDr_7EkG?yG0Z9gy({c4*W7S z2Gt>YO`uhR(?f+JTG+ZK49DoO-XKhdYpu*OU9(feh1!|JAW-He;oZ z%rK0;jD(v%NCy&tg~cy8NJT?6x~-aG%5XwIq1e<#;~w)Q*voS3;V^8b^!ubEa=>la z@p-Fkb!^xh7Fp?&WCjg%Bh`=80xwJ|me0H|#(DGSQcitATNiXi;7o9*rS*xT$ndUA ztP$=GAl2o%;eCr9{!d9-cDRE1`oW!19tkJ#9hnf<%p;RPNz7Q`MVeuk=iCsTgWyAW zquq-xHn@c6&p4t1>>kw zC0z$nEcuK*Jbn^17Sq1G{~?UM2|_z#~V_s$hcZ>FgF|BoFmzO z91>gOV-i|<*|rdA<>da`AM!IVx6PQ5$3NV0#2)DT{!^Pi@HiorJb_o5os-zR zC-XoUGPn3oW^PxrZ9L2IseHB4rK`$7&^- zrjrf1mD-IU;2KRU4dW=G8BNwe?hSS%ee2qfPBEvY)`5?)DpU-2-fun!py%R;k$@l~{mD`^g~ z=^}kc9iJ=P9o~KdL&{Z>L?35UJ4=V>25ja%hBfL=JPYxK z+k9k0DL)_zn`sj|lzo^`l)v46=cs?{%eVEb6$i{eZuZ*0&N;~ht1+1=kZ-I{ZJ*e^ zR-C*F4f)1DJ!j~*_BChzm6=hNXC0eSY;RlU*y>XR4dIoa7)|IH>P=ZIPT^D?VQ;Qt zAO$+p?L&O?P)BnmeFQp2SC1Dm8^~PQc#CM$ZPvU-LtHvz720JcPZc|PvqKIJ&`akD zBo0LBLiB=O%5wYv*!qrjN0p`72V#JCLyQ0c0)&SdRtVvpfTzF3+NRe&|J7)H-4doM zGcqD8vkDDYfTIcY)3b}Q`*jS^<3BH|oR98rKhXwKIm0x*O-W`G+fT0L(1l`q?{kyb zcv(?K1)&qy#7~uV06nU;;B8g+M(7unqq4rh)bwI41PHrBIyGW4zsR{qV z>V?N2PTI{Vzj5y|d);5dX!z+FCX&p5CwDU@eRjBhU?0;kR!l221WjN3_bt}j2sLAS z)B3^Hb4%lSY-@^Fcxv3m192ioy?K9c{Ai~QVBXRJ@F z5ooDArDCJ-(|9mIU!n(m}PywMY7|F}-_4;9mE=bH)SAAUa)&pjKrxE zJ?_d!RlZn;T($l^7}GFSs|nYRW(0KD8E6<@IYG8EaRzHo%K@k44 z58d^-i;VBqKicH+=2zkVxe4#r>ob1s1H$_QeMV2jlVm+{2U(j`(?63mJu5<~?(WFI za;=ob#gA}#3l@62CF9+9-Gt$grcT`GGdZbHB>y?1)#S^oo{Y0Z4wd)tItcLt#;osB zEC5`ucXT%}R_I*p2f5POcRLCwR~~S~>~ynvxMI>>+Qs_TO<(v4on0&rfWI%VxxYV_ zBi;J{gi`n}j+gkf?saL4W}4nx zcwT2C1$4fm(Y$Tr+p=IXN&|F}YxVQKC6+Sc>gOoBGC;Z!+!$FvK%=mBc&7`lH!fUm zI0}jUiw&QM#_`-Y{=f<))i(&a_{LX^5bWz|T5yEwJxiD=t+T3#;?sjFX@q{HdbVkz)s z)UR=ZxEo{A4u>T~nb>Y}&9{jau2@~uR3eojTqgKNp(F#vXxhO95oL)PYM&7|LtSd$ zRBm=TMwhu^7;TNx%cc-hWuSEpLxq6G^T%-(`HUY6iXaF|(Not+cNT}?9Y+9|t*b1{ zxJ#08PK$HG!rL^hTbd-aPcVV5Bwr>qKF8Iht4@Gdn3d;CL3iacD5ywM6VA49+9QOD zjSLSq_oPW1h`=n$iqhiwvUF{mpcS6G^KSe(Y`4sF)i5nfy16K$cf4<2`I;B^{nj-z z_bPv%2R>Y8prfm0NuIsIh8}{!US5&0g^c3Ydt4dLX!hD=ULX@%dF139i540s+24Rb z8;yDG?^J%7U%|K%FzhJ(*Dn#3n$^l> zFamGRD1Oz_#2-LFeXZsnz{a4S;-s8Yji4MYx@5Lxh4OCQ!lmAQ5;+KY%h^xhRMJ8h z9TtTz)9!w9Md@AokiGl|r;f9r`;XdV>=s?8&r(sUX;7DXS6ec%Vz|$}a*m`o?k5fnHo1#!(Q9SpjWM5k? zlkAF;ESm?n*>u3aQ~i~LO$tS*QouB}JCC2AOFMm2&x%gKC1w>HfH2dd<+WZLyF|}a zLAI6>&frDKx#AU#q~CMw7&M8 zB*XQv#0b`ap03t^T9MvlHu3-;B^k%NVLF#|Mt|@U2}69hKb;!{K{+hTvLftzk9O0< z!27Qh1wn1kG7nDdBABI`0!GFl42J=3O+a$d11H+qo2%7Y2zn3qq<=968Dnwa_gFPO_Joa-~0W2i!eL|(Z;fpXqu)< zs3SmrM!V~9G?;-mA}xmFMLKL-l@ZSK(vNpeHtxfnhXy{5?ezW#F$l98(E(GGo9eaK zrbiV^X+3-SJ1jv)PSqA;htjMp@Sm;5f;aY|^)hYqby=;A`xWC5bzax?{jNm07N3Yw ztZmcKy+k|CFpZ>{vnbj?6hRQwZO0%O4gs!~X&U&@p!@6Y@pta5{%!IET@L zg_!4}B2&Cz=njhofM&L68k9~}AI(DT3nruzHh9bF>vy94rtyV8g z71UrhFh8*g>9D_j*A=yxYP_qjZjU|nagIvUb5nPszv>CCy=4krDpm|d&k@&-d1A9y zT~qIQ63(H>^DHA!(}Hp2Tv4Dl2{MD?Pa5MxB3FH8ggrZ%CF}svNQ2j{AK+2|fhPPo z-fNB#4@G2CmIX6Hkbq)S5bM9eRVD4h-m$K?)dL(PfJ&?rn=^m(!vNa^J_|et1J8ro zvdh;!cpNx*Zs_Xw8csKP{P1C3wQrIK{!lXCil!OZpV|xQ)co+YK+HNx$ml4R!%b}j@n zEF4ZKweEASxKR1>SR2@^QoXJ-9%og!YsuT4V!<3UdHURpnu-ovFPvw;z<%{AhxZ-4 zl`*ajJuLxiVf6xndji?RGY14#le2_f<%$&@pAfMC0(vT3AjA9P7{UI9xX050?N$nf*%JOfvod)&_ghS@+_hId#}l_H zi|@x8zs|{C6^l?&#Qx%;DXdHBG4e+ZyT^K2|ew7qu8u((@69y%!GBE{rH` zEsDV2&D8ZqeLW(~_5)4&69FIZer@FgURM@xNC`(XeA4sq!}}n%UHc|xMWJ!?0jo%z zO7(ukbIM|rQJ`p?>kyH)MRn5vcA~vuOiL@GG~3o2K4CdVeQqdw6f>rXRqrku1uE+}hI!rk! z7{2AkhVLsCqP80k`t&6P$EZ(4c|484yZOP#oo0HL@$?SahFhk$^pCH>Wr z-Ja)XEP$0CK*XWGU!=4QuO*>pHF#QQl+OjDZ*??{@19W(o+)p!XX%_Hx&dM76}SeV!v45dc>Lb`%uklkK;NS@I(XEnQO6x}Vt;l%O| zxph<-=7aFs8K-2a5$CIKmHT6=6dz!zlg|Z)p&6;E30&n_sJ!C?vjOT1&w#d^B228j zgNrDm|LEdxICIlvQ{!MdTX=>^J4;-p-H1Ao>ia$OnMX>O_LWD)%WR?c<`c#^eLHA? zm*M{hD@$ktY=RbZWYOP{J<%Oxps6;eb6lVC_h4i2jjV*^r&wmjO9YBCYEywtm(PKv zNr|3x0mA`qQD6VBdX9Ss^t9|JdV0QaH=&|&_P98FwcmTd$vI-Nj~z#Cle&lb_C@Kk zkSN#l7T1Ce%B0?X^Pl=QSaa6tO;!+$<2al%by*h0!Bzz%a<2$*HQQ^-ihd%6!mN?( z`VV!+?B|28eS|VZlLp8R-2{MbSTSu1&=Me^xAe2W-Be)PjLp0s-_Ldaj__0$;98!* z14WNkp?%=N9v-Ig{1S?{&u@8BMBZ?fc0@k@PR%1_9r!k+b0MiTK)H-1+eD@3JpN8b zyf*B1zxMAZ{+zdcaU*`Y^el4egIuOJ5PC(xVCZSgCtU)OSe9r6#E*K;eZK)?ZNkx< zS*VqhB)Owj!i>@p15AfW+T!VuVHlW(r;J?Vb}PHKr6>T%YU9j0hFnMdmOXR`UnqHA zz2nv?8=WBZ-DkZH-MQ+wsMh>A_=iSYNO<}}+W_obO$bkK!IrA$Ts)wKVfRCP0v>ej zQS#>u`kyni_8!m*?JCRb?|Ip6+XiUNNM>!=<)210%e7{9%x*ebnM)w%ka9$8u-}@HV~x4jjcol5O-NhZ7esFnY4qVSZytotrI$*1 z-v{0wqqEM>>ou>A@rD?NpqH>apSp)|cELj(P(eK|1z`F#Ezi zakNpRErjS1lfFQhou}_hHj;iogdiEK3_b6}3YL`=1^RRr+^RtQdVu}+KqFf;dlpv= zo~EvqTS&LP$n)#_MV^p7*hNgExpH)p7Q!<)L-dK*0k)Wuyzlyw$R<09j8{c7N-O^3 z#Bu^o(8&HOT?xj5c|^faT>5wZkhc1qaa#)&*XGy(P{5tG&9XdnNdi{?0`8dhbCwkp zdtmx)0qQ02nX;3+Z@L_aPzDaiOZse200y;U!Osnb@0%4O>XvA4Aeh5Yk)&^H z0m8Yi(woJ)hWj|h7EHPIXx#@}=Yl^N?HM1%O}60Lf=SVWC%fJq-3(zYn$!_>Mxd?k zdNRo)+c1Np`*!2PzCt$v>Q1{>MK{Hk zq{IL!Nj(d~{b2HA;@$%H@0yPA953O7ZTZ@H1Dslb3zqqSi@=x}t9kEnKQ`_FjlPf4 zLq4$}xTFI!&l}46VMyX%h+|>s_Q>-E(5uc5e97$rOMnYNv9Fq}Bq{P?EXs140M<%( z+XA>oF|A8dv+l3hs9n`^E3V2p7?iPjei?RA44P!9++5|`4R_bIC`T~R^ah7PfUyHx z0Digwor{M}Eo;vaO}MniET*U@&)^3GJEY6nFR9^8y#|m!?bTGFAPz86?TkB=Nr7y$Y=a z+Q_%2d&=)uJ?=enA98x5lm_Y$QNJt5r8pQ5<(N3gUoROFAbne+yy|ELx3McK&qeil`Aph zsaOKK97)x%(BZX5xEn=LF|2wO1#~doh{(_{#mDq!b6%)OL|^!tHROK+bIg< z{*52B-JbTKb~tIlu+v#k1DwiY=*xZ|!WxXeh{MZ6s?$G&)J4*|=j6C_;%q&GM)(9GLoOEb6I-Mjve$;p_qGsIGp0udoM=6)?g}BLILdwhB4{fsX%O^}xmh5M^1Wx!0PKsw3p>YX3uo1WqUS^Q@a>#gk>4>bJ0j0a}fgK=^{W zwx18|I?e$PSA5I%0Ku?QuK6a}x`RAx;8?Pm1}K_$3B|Gvz^N=s&DD86&mC6MCJ0ez zyRUE`vEZ@jbT=JJ=d7)FZd&9bnWSzZHn(T67rq zqP+N6ITKLDa|8OEqx(gGjp1oLN87JWl}66U1Vi8}`XS{4usS-^?& z4Y^`q0s*}h3`?2^uV?f?lI7XEF>>v!FLgKzJ!CLR56WIJk}$&<7SHqh;z@$I%ih_d zeIoHc*N;%(?@LGmZ)=hQJYPbCK&v|aJg+NqfLNBq?Xae735*m2pz}e;v?T+BAN(S0 zN&ZD-y~y@kk%Nja)rqd$C7A1oPK9OJ;PA zrvxd@4S#+tE@TzyQ-bj1ny>{}W4zB*yXK!Y-ri?pWWUB$gl^y0&5%1lE-(Pi&BRjg zWy(X~dr-a<8;!;Uz$p+$C>BjC7C~;eq1sEDg&+Xp3~Ts?{@j5`ylRtyyBt}0mzKmr zKq2|~d7%(;5fX%c{r6Q{nLIUqR8VmD8eDvedd7G-~z zw`e&e55aHclE5xH*UI>sji&WuEkVvUt`=D^(nx{KUooEhPX3i5H`>~pi1eoG)BDw+ zk*HsL#Xp5_N4|0dF;f!6`OX81huvFr4~=|)Xb7^>wZ<_Z0u?GclN1^uH_Uqna_V!= zMZc-asa&yoWcR6du+*QellN=$2QhI7BxY2Q7sI#iG&B)g9(B~-#ghnx0FRG3U#aD&H>6ajc;3X z&(5;whebX!wEvPQSqsO1?CYblK#Y&TbSTA^mw-&b$`0X(=nd zxV_S!nh6bKA$?eh9SQzStopJ}-|Le7ss}`Ilff!;Y`K7)SlL*B7kGrJSKX3Cwb=X* zHgc~G32M(lqxr_^(tH2r;XWiu2SJYvrZ!O&8TdE`Zm44KryjK`kQ_U&uibm!L;I&1 z2LuAlr0*!{2sR6j-!|>WOeuX%#2NWKlp&DG_)pLo|#XvSbkyTlhaaALeg!67}^)XY9|JI18!ZwcUBt3TuqRtwV zO$&X_fG6=FUVb`K)W&hy4e%6_QD;h zD8#LtEs?@=QAzEEvzh~KvU%{l9gr8VM5>^x9?LiucmH@E*85}jpe#y98AsEcUT>zA zvNxc{vLql&a&zo9rT-JtIgVNEAFguoY3gwUF~(^cl=@j;7i|U#Eu3Qg$5)nYvPc^c z&)?PPn;o^lfDu7RZZ?kYW0Zf(^4zyKeMbtZj5-utn-=nQ-vjgx^fv9Y-f%o78Mj;7 zEzV6CU}({}4D(|y#htmS(td}!+(BLF5qTy5eahqeqz>{yktF*JP~xKzS=n#U0DX9) zAoCGYq#n0r+Rgp&+#grJsp>T_2DfwG#WTvjk1rge&$xUlOQLk*^rF6f-|O&FN{Pch ze8`5n`IXa!1Tz#XPHd8GFq*^orVaUQr%HsKagsnFQddhdrM165e$PA1zrIlq;<1GS z?hoQ_dN5LuJ-Yy4Xl_WAP2d+o+&gUX4o}W8GMa-p@!wcTegO7fV=zID&e2r6^7vLN zd$;2$i+!`ONXI}6_gYxi+`|i->s?vBeQM`LKby?hJ^`Kz39B5miXgqPQR9;jAq*37 zRQz&Nj~e4fv2HR^Ia9|fH>Ly%S?iJdTUo&Dj70-(9_bkYz?gS@Oa9Xj_{x6r2l{X~ zJ{pDzgZ-87!b+MePL}WIz3Uhf7XX=DG)(Q~=T~{xc-d2|E{##0+>0Vmljg-~+Lf?< z^yvTgWKOqhzh32O&ly^oU$vk|_b5YkT-Onhggsr}&mpy>j8mKTXzg~p*5uoWMuLCO zp8oliKmEcyCn3PTpLM$08uG5(udEKcu&_75B?L2wHJ}B?S~!jWsY}Fv&X-Uedofzm zsKao(r&afeHT5+^*IBHOnYqqtIRB=v--X2!r&oP@97<& zGqlmWg_sJF{J!rY{+zMSA{c%VY&_?$_MG4gpws`73bSHA9)=|WXo2)X~xvvCix z{OJcYcnRgj?|nI&I?uoTlD8(4-npUagk_86=b4%*9hl2CXsonJx>#?&KCsV+=zlp_*yUemQE^vtO1{q13h<2Cw@YP0 zuq;02jG+>yG$_89N2-8?-~Q+K*WiJ9;PdvDgttvR_I4%^r{%ua%NzOe@RHzv>-lu% zXWapbf)QiRK3HH91>=eSp;*v6(p2k&2bJP@pO#=d%Xdu|2%L>CM8y%w~Y z7m2-@nul^lrLwDmxhss8|NC3xpWiMub|+gCftYfF-|u3_#a z!u}eghn@_#Qan^O+>- zIO^gzaq+YdzqXl*wb7OU8!L0hi-P~+K>imF^k0KrrHnotSdE>TL=Au$&k;GLyl(ns z0x02$k@(xU#DDCA>^)|ExT2fd#lt4C?F>0Sj)DW5&quTj#yRiU@*lr^yp*4uzWI75 zZRHBA+>)Qq=td%4;rvzi$4H2Pk+Sxf6!7joFUjfmKc%7{{;xe3s5>wnX1}Yp7^cy8 zKEJ`!W1;~_3#25h#_EsfpZ#Bi*F*F$W1SQWruN}O<>N;d`S&Li=k=H#B&>Ax>y?wm zeGtI6KR;u$ByIDk5)=%A^EPM9ULvekWpvZamMh+I0u+xrZHo)+eV<={_B${|hRc_;c2p`4-}7dmPt! zs2L-Dj4AjAZrTMBVo-6qx>u*g8~kUakMUE1Rm!w8prDv!yUx9z46a}%ipvC_#06!)ACt&zKTHA`UD^Y9 zP(9}BoUMlbiSILDJFK!&8%0!|>GC$j^45!E4+g+%{Hy1W6Yo5`VrgzJ3rmgs&NANB z_8iel^|&<1Ykyw0$fmZvv&&{AR9?(Kc?|-l2ZYLKYomZq?jTr^L|>Rti$PG}mSw41 zd)v>U&L&8bn-7SPyq|ZziWue0De;n{R=1=YuWK}(w@J>&CLSrZ#h7{+l5(sUgnFlqzS_NAYz zqSU?=2g97o_8Tp?=GZZ_C}|cw&lCNrS$n-a-IrW%p;<+f4`zMcIOzTz2tGKzuOVt4 z5+#*-mKu5U!+|~`phW2@OYQF(Y;KK+?w8jUF=!oiteo*T&5aPfasP(+~XY4V8u1=v>aJaMr92Ab~&h5!l z%}9G?zK6li_P=LafKM-G%T+IX`Eao2SR4e6(siF(R=lo5%|gXA+!{RNgI)^pSk2IC zV;Rez@?Tu@D;L+ERtYNUZzFLdBXY&;t9-g45LXF(TpU}Nvfue|pMg@tVc!sJ>ADfP z_nTC9@OE|<0!QUmR}~B7%0Pbj;(1z&Cvd#;Q0a{ATW@(2C(SZxs_;;UIRrYoZaM`G zYZL2rRM|$uRLYz_srTHRz39}+C&Y$v^aHb6(Z+0{zRhVETPF?`nSj*Y*wBTHJEbiD zQ{D*ohmj8pbYmvdfiqy$iR zxS@QY`b<#t?ku+ttZXcZyXTc;fjyu~4fK255EKE9X}B|s6_7wL@8Wt+^0Y}KSW;?b zx2iCFr^ICpPIDl^2o{R#qhx+72Fod~MT`W(lO@Ih`iB1Bx$rz(0-G0Guo#&H@zM{UC>qY5OnOlZ zr#VLbQL@bV9{Z#GAY2Fa;iQU>J=WIrPR_pI7WjzRi!QNluAf@3G0PwQ@zSH)dkpta zN-;taOf6g|xlHp}!%#G$Rk9`cmH&%p-l})9d4oBrfNwI} z{eTR;!lnnd!cD47ihqOb+!)q@WCG^o7elf=6wj{__Sl8lV05A;Ua`@R>{1bjfkIyZrp3*xM zW2|xGn~^LB?N71zWD&?b$7Bh_^hwZk^dT#goykoeTp+h(Z$3$R z%G6-_9lp=E?k2LtTktXLYg|R-Tn|v z>#8ACwU#ig+xdlKjHF?}?Vjn6mQs258Nt%J-nhs+rzk$o`!G}><6`6g$dtadefcwYYi>{9wS_)|b*PCp<-PZd)bA@JvJX35u6351kXZL}NpwOe zh2ojsfgTH^KLc#K*;SkRvt~B9rs6ioAhiGAu-Ce@14t+VuI3;p)94(-W7k@W=& zvGhz`wduYe2TjK_Wr(rPX8$OS4pGd+ogEO) zdH3RekaNbeu||kpM@8ly0ek-HZL`RO$-Ho+fPYnaQD_oIvvdxX@2dv@i2*Gq@UDb1 z63>l1&#!f;)?d=(s?``EXfaD_OwzQu&*+Aqf&d^+g`8_&n)s$XpKJv8n%JrJm&5GB zGhGl;2q2lC=>Msm${B(r_hSixMfg`aKmbe<=$y*CS6%2j&egLJ=YVA5cymx}J?aJ%VSlopW z@HSkhHct_&qsQU1HQ))IaA>)F{!&nA@B`&^K`&1h=8zJ~imMooKvHxrE+sF zbGWtcwe~p}WFf4aUaPk&HAj*O9@lTqByI(-Uf0Q&>i^_C&6oI-_qz+3(Dgk!hOxMD zoyN4=4?r|hedU9*|MVU{tsh-12;H?uOclIYuKNxV7d&3+#(o4r*i>E z5`yqlegEB;3BDiO*V$W~_-XVjN33EmiIGIXtRke(?)$pm30k=&(XTWy&utx0p3wvP zrrPYq_txS2_voLF`spUs!Oqm(k`|jqpc&+z_m9%qYxSkTk2*{-he~Pt<%++?=A~RU zek2#DF`2N*Lm@Z@p_EjJG{1{B%83-528y+r5P3$Aw4qUia#%ZF409+(5TGzZEDjO8=jx4>z+W3BSxIqG(h0KsuJlD;-BsNnx18%W^J$Xti^n6TY8kpVLmxb zh-14-sftaDgFu@Z6KKD-(jsL3Uh)&4%lC~@47lD{Sy^W~2-&lXSgS7m*f|rjRnu>4 z0=2SFZcAK=AHtKz%+!;1)SATQPQJG&se(lptQ3>KF%||(tfwdZ&v^`*u-$?)+)&IX zt=c%&)#=pb^K9B+C+!9*sY5p)JJy)b#y0atM4x5PrP;SE*ABQe3Lp8x!HXV!a@jiL zz;6E4zM4?pR=I!oTAd zNsFhD-O`ItPhnTDvUmKu4r1_@pr_MzkmjQkPNqkjAg66?CYvCoY*PDv+Hd)WbFA$} zgd5dvd@Qp;%}LBjsEsn?V#{X2=bQSk*1B=28?e}>bUK!|4Z){m_r{ID}N z^6w|v6S2z?q9>ht`V848icBy1o*bB~9gWxe?e{zL#y@-G{yldjWIC?;nPGK1CY=eN zWqP(lV2vNl`)XXBOlm6T&!2gkf&fb>4|@`SV-XKI6Q9GlJ{_k+^=+?A^OD9 zkH}bH) z9mD{1#i3De0-}?d8H(vVLZ+E=@{k=fm*JOxFvfbKuN9}dT``W4-GXYw@CKWw*dWD30BpWvk$ zi?59SgJrB32y{7?syjCb?^Eo0NhgzR5!?D~$q`q-;MhR9TPeXg9I3ge1 z*}mAB#pOs}JMaq3Sw?`_(e*#`6#694jVG(qd6@?^$M#AvXKY}KIgDq~zVN4d1!$)ag z<~S*q9Nz7cb*SCZnb{3HP$WFEzrG31tS4_wPS7Uwyc}SRk5n!w5LnB8#r2G`aulQg zc0`#^GpKFA^j!6ydGzkw{`~@)eezuO^}Q#CQZw{>kG2z6EQ?Iqt{bN)WvI+_yYH7X z&Z`cKJRT+FRhC-pK;IEGb-VtQf6%O$LsvD?!!L1vVR}n z8eyKo0oa#V4ZxXP=MAvoXR}x?N@vdSPYjXV4!d&W z6$mY_tSlArswWJu^|kTgbL-*6meL$oPW)Y;7$#fs)rYE81by{W{P>tjCE3L6*M6*x z9L9^TELZ%rPCTB(gFLp>K!7TyzYO=1(G1D1SoXm9d__M1_qU4w7i+_-Cj)_-4+%5z zEzFDkqayuXV4#V_>_$EZr3(1W~jGjX(JiTCeMR zz{m7w{kD6(UdutoerPN{OQBnNyn`@QHT#a_Sdx%w`}K5bbpR03`c>2Y;XPnTPvAP= z`0;k@oq(-tzl?SQ;U9om*UmxuXjzt|Qxe>MZ5e1CC)v%{P>3I`%8O#%egYB)|JOWJUdwLfEHfw5Wc=&~O71nCTKb%4Ts{jD*dY6*Pjb6(@tWW_^{&GS4d z+QG3RXGwA`k|d$k6;J!mkqkbN*P`f_pYLnla9J;BhM=^+)`imJ!@zL(Y=PT(eJHgj zN#%EfAo{Ukt{eq<^%J-437;7YLC2{@;~Py0nAL6;nMG;J9`Ewnc)9FGpN0|{qlkNH zbtlH2HWCg>F&8A}b1yMj0GYDeYGw}_afv`<#3u8?FMV@Fy|2OgPn!)Ef;TIz zDTE;k!5-{2j#yw?R;lkb4tRwp(5m`@OPm1n3qUJN9&*@Kl?_5lkzmiddc(M{eiqXa zjoq`xxqnws5Qk0YoO5WqH{wVDCr4R!LxX^{Au5l7_ONXAqPrSvMq=QlZGmXZKPSWL z0oLcoGcJ~rD$s#d=9=$;FS*QE!Zb<3*5kpj9?FA@8aI?Gx4tJ}Gfm4JZET3R-;}wf z^Y!)3OkFViX5E%x3(2LbYX)=OlZ-u=1(;XQTUi#e%R(g=nTq=IH8lMUz%GtyCmC8D z(PUWLY-NhlI7n4e;;RnB4$-Sm=fnX`iZg%@@drs%sVD@Vhjm%T;1BBOB~VobLy}p> zAgCW*$K;?m$=a^V;L}92g_pvvTW<{=uyBC@92|UqMB@er_m-aWy*_Cw;ehkpIp)f7 zwl0|GH8XR5d$oXsk08ccdn`R%OXUHX$I-jDyG#p4KW^HsoP@o} z5|sVfqo-F&a6Fsl^foj)jD{p$Q0QozVv*kC{0$T0vePi`=iVV;ZtoyT&U46hI1I`K zCI2|ONG-CWuvC^I_<7S60B%dCk5=69W{TDQ+=q|q5GuKPT6T!_KDP}m)E4-TK;Gf3 z$uji)5jI+UK+u_Y6h#RtP;>COiW^6Jv+>m)Id=8JAg;$R*b_n%i@~R~cg>*dUNx@= zzM}o^ugbJ;ZiRlWbG>e`ifHZqz)_;3dK|1^{w5!y?VV>hz2=_jzEmIiCo{z2`zSsU zUhJzvbU5y1F<1$FW)SYgI_f+lhr>yGP*s5I%Yx8!IreM5>ap^Qqc~&g8U?zZWr@SN z!D%0lg8uPoTNWZI03?1vh)jFjE^qNTeMvv-LE2?l);x}eDbAWV)J#Y&Pt6uKi`(O7 z5pd`wUSPOW0%9`)#7T#vL-EYrW;nilO^f0=^vu{J$lq&W{Kp5zd*1GqIa??|V(u*3 zh+J@1rEr6rKR^cOXo1w2{T_Daz!-^ZD3&Ojgx*x67P9Zr*82#`?FnY}%#dXC3Z2weK&c@m$Jo zTCXJLt%V$e;{|N=EIh)$>qKGAKYarNd3J@n&*;E0Gi2XPP6xscdE#{q@r6G3>11|+ zzQ{4f+!|sv5vI9;^y6bbBwjARF=X`$JwJQf@D7q^_(F|#(;P}W5{;2ht$}P%|ME!4^amo$;xY(j1PlbQ--{Y z;#AUUwnY25&U3T6ZB|E*Z5sCuklzg%q7i}I|E!yaBr~G1(6eDew%RJ$;4J=gXLrAB z&&#&>I{{M(t{DS&e;E+L18082B+T?^lo0gU#Uyp36^_c(h!Lfw5hFNFKhFSmqHS5G z!>0`7ZxJ}o^SnBgL0PWUqG-Qfen%`ElD@tqOn-W34+JIh!R$3q+Co?-qIocIUv4hU zJQL7uKI8s_4gLYnO2}w9+P37v;~pXO3;MG>dPpVjf7X-?3q^(}^7&>ugJ3;+(eSfQ zr(6|9VUR>}77x3=J}@|vCBt=$N*ptMKvyTJ^UP_Ag>U{Ms+MUXE(~e4aW!JQl=#G@X`l-GV^KI~yQ0i@kQM^1j?} z?BYN^*%^kRspAMSvDo(gD*WnSl(NEggW~hVO^-espu_ReRDtJ_26@XkU{r^@AvVJI zs;@tF>yF}k>b$t2r$g>U48-$y+q?U=- zaiCm`*na)Gcf|FkdBU*DYq*E|r?)$g60zB%gpwpl>S7{+PZZETwWsK_pZ{>E=`6Fe zoz928Y}Q!RSPDY2v4+zMR}k1|gE>eZsB>RcGce}7E60t!8T-7=C!tuD1)qB(Ab;0V zdNtnfFS5uYSmAVxiM9&mmJ->sd!J`%!_&XoX;{Gx>aPy!5|EIw_|aA2JQr}mvJc&) z&GLG#zt>jzO9~yViMV=~E`^=B%}&KlFKPNd4X#YDLkPrjv%97d^!+UB>c=5X=TGm0 z(Q2@Mo&Z1)EOQuU9LG1UaV`Ly%fSeGh(kZ-C4aBlm4Rv%`ncFqgb|?rE)gt#1qWoY z=v_UcRIZ^ePjp|~Pwt=6)f|Rt>dyX_ud?0I-;Yn+c;5AZ*p_*4o6h^;hVd20y?u|- z8sZLH{8`hP;~SjEwLZDpK$px})01%9wjoefQ($#?aQ3Y*YA4BBE6a05?$6prWd_vI zCHuJm=FU@^=~rF|1jGPGaXYl`=r?==5tqsacSW zrfEhgXK&Q2uXmmOaoXmYBhEh6spF>pj5;quO(35aa21K6P3IZOM}Nf_*W&>c&e^eT z6r)LAo*Rk;bRq{W?kNoxxi$jzEy&2~_=co1pZGeA9$r0mYkbTJ4%Olz{@%9|E{q76 zZvk}4Cie2PK%$2*%KYf;WOiK__hBw_U~XN$!To`-PiGBvgyUGIstzt=(+YAOBz=-B zJ5AVDe9^dRG{cC!etn3yVm&Y)a9D{h+1TKWRzWU(hwLe$h%kMWrdd--Yl^p>lalFW znwaGr2gH2w;9w3l&YIco1`syjD5`I|b_}65YMWr*j6Cb@A1zlgEcpW6xn>kq#+Ml$ zkQWS)U``~b#+@6aqOT3qG$PXn08AU)f6vuS~amx_a z0nSg-Hw~mJC`vNQxvuAW=?F#|nPJ}9QK$hn(%}drU!#LjU|L!`KL>=beE|5;t_eyI z)B&|J%Pq*hTab)l5$7d=9Sbvu|BD^CHD0;cZkvoigZS6vT;JK8<~e~qs$vfn0zh8a zDQeyB!Q{!lXq#rpBtv#_Ug3wm+u^x(067u`YA}z#f7k)OK zVa#9~$EB_t#s$=tYu21eZ`CwB@3Y(x1?BZr31AgB0{xslL}7HNXI@kB)f?44(yaN^ zQ#+-0;koXhw#vP{d;|5$pFO~(vj@=RIQaJ}+=|7D39z*Vl84Rbe&dm-ZE;41+#`kW z4nJ>7emC|#)J1s)6a-RTmV|orszQCr--Hsvs|HxAN}GYTUbcM5t>Tv7=VkH~ttbJ85rpjnBm|&!JVoeS zvbx$~47oBpLA_XA&YqT~-&I8sjgi)5UYNyD)^c0b4Ex#N2o64urxj{dkoNf>CU4y;PagZx~dX2#=y3_h4-ahL*bgk6>^zWo#`3RetT0`tfY8)2Tsob=CGO8P>HqVGCC{T!)z zS;_`tdQ}nZWO_;xV(B`5qfO%@Y=XQ@C+DeQEi!*@pPzZJjB!<wCx*`GYiG>c);WuqTY6}^qd20 zAP7H1XrV>U{wz}o=adP{L%m*fUW3#J(VGN8zU*vtu{sFG z?$aQfYM)cyI73B}1h^x0zQ5L7Y0>aT3}Q?i&4i!ltE2L-`D(e*>`@tfXO@PVV%al8 zEMYohwDVQX8sy#H+EQzQ9DWB?d5{oOO-{Vndt;`p|fzQ8c|E*u)v(xXd8pxrE^KBsRODCl}j^6*RS-FbWpW3kNfVE+}aFJIB|E`1l=Xc=K zIAKK97V#MV=?i&%E1UMu*k(AkS+Ugd-}*bAYw-V!p?Re6oz{N_!M~$D|EV<_gc0gR zEV_-+Sh3rmepQ@+U(YeWW%!C|yG)_`)*<%)^Y65({?_ z&RW0ohMcG3&Nx;$^*;CaIR2TV^xlu>dpH~5|I|7fX8JzQG(LHKutU51ng4%&|Mctk zOPJ;2UaL>*^Pj#asFX-Q`zW`e8HZy3@BCG_U$(ubPUp7EJ`(@%>9>qazd5%Z{^=pf zzr9`gu@x;@wA`{C{a*eDe}KHEw9A3+}u z*Yt(IZL9n>HsI`2rTn=Q5*7a%+tN4T!}}lXZOMOl@r9qP?=NlFxe^wR>+|0_r&}(? zXMfq-OZHu1PS)qLqW{D}#u`xTAQ|MJ%uhOJ+0QuQHb&3>PwrJahDGjssFr6Bu{7u3 zXyi)z)^+Q$_%LO1Kt1 zK5VBWHthW{6Ev62$H||lXAs9rh2q*JR<7rC{e-;ey~6W#~Czwu=rv zb({T;i-?62OYV$}n=* zIh(vv(;>ZIP$%lkx*lYXB!#F~$6}gLpWejwtgo+Qz$^?=-_vNVcU6%$#;r4_w3x3Nn6ZD0_fjU(HW~A-bPO#+8{j7 z(w{MU3+Yh-`}~icF?AqTK+MWZnQs+ClIk97JL~(tX_lmbTefuO(IdFCbb@2{c_u!%iJ-Xn9VBmd94pO$4ziRSzP$Qgt*p+k9vJAg z!7z)g9)B?D`WDKcb1ajuwEJLh<@T(SY+2?9q?D21a}_@k$_O=aJw0yb=(t9Hz3!ks z`$fi#ky5SN?a7tD91|NhdGu<*5u3@cu|*C3H%5Qt8R3{Ur!pF-%%#{1j(c%TEoO`5_bBljCiQANGfEu{gri2gugjfgrjTPOT|5C6%`D zHThqD`NNO78PeI~g=!)snrEMHB!f7^$RYsbw!=7uOcoms30H(l#XGB44u;5pPO6Vv zM0{)R692|}m{wrEOpJf{0H12U(H@f7{M5VPp?Xx%=dKKvo&9bR4{|F;I&rZsp$iX$ z{DV1{XQGnHnKK93dl5UM7-4?%7-LIV8p9{w!@0dG?J? zSjTk{`|R1LpL*9r2m-=D8xu+hb$WC9nHZ9Uw*h6pK)jXE@(&L&EVctjEp2{t`}w`T z@)hI9X~Tqtnud8%cEdSM>n)2e%QpO#dU~!C;PKlJ;n*R*BBp47-n1*IW6uN0%1z7d zbiySbAkP%+0_51CzvgSkjITIa({4TNJnwDVJ-V%!C?_SC4eI>!kheF7iWrZL<2KTejE^z1ZJJzGGv~f&^-GU9pym0E zd7ks9cDMKU-1p{wbVUBM))GSuS|+bTaELq1FRgv<*UB5D!qLxK#JLRw@bjRQlhW&= zX&m!B`*5}rKsY&ZxtA*5rX6Z4I=-4}+slvQX(0fJPx$PzSPd8@D0b)z!m^Bn(y5dr zQ{DJB^~ieaAD$u0h16iQhhVn-8%22Z$Tg+rPz2+u7)2@qbVcJ^kw&K|1&q;OIl7G3 z5v6UvN48T3rUDY61Tp>6yFYtvs(iot9n8^LEUt^6gVrzK+f4i{-^xqMU}JeOVx=|Y z_e}y|T-#;VbbUt+V=dke(H(h}z#J{#?Sc?n7JdeN=gWfY24F~ER3s^^w}1^i9DvQ-ivO(pJ!gI?HVogdKebu_VHU76Fo*0To@ctI0R%{|C>yMjSGccI+ew86Md1E{6O1G%7@-sH=-#Rae#G={yl&dt34CbML_7!*asIK6? z`B~b=nZ|m2zxe8L=OH;aHO0yuTnXlmz8#SH&9XWIhe=82vM#-hwS`RMA5GGnJ+Xz~ zy6%>Slk%jVoPV9;J}$Hew+8C`-u~}(&%<$wSZv{Yt4>k790tZ#IB{k`b_H(&l!)h763+pG7Jvt{IAPu)CvW^LSpUp=Il6d*`0&W-K4>w-5ezo{~(t+tQbu zB4s&iDk6t~aDDRVQRcVp`?>^YDfhX@YqhtB8<|vo`eM8^46EPx$lE4cXgxpuw077# z6X;Cv`lHR!iewZZPd{Y;=l9PY(a0E(>Z@>Tr%`Fj zbK@~f8_5|VQFIUFOvi>SM`?ZfgzY#Or#G(A_IPhiwF%Hn7LiF13B0F8e3e(*Sh z;zqmu22u_Mq|f%=n#=x;aXC1q^V|nUm*B%+zHvQG(=yN%bN1{!4`eJfG3Yrng$Gc6 z_%A)iX#8hQ0^ih%pze!3PDoEe4sd6q#ET!Pu17cBL;M{W+cgBnM;RVOPY%Da2bDK~ zu+RJ`9gh7B%5v7w?#$1=vg^8OLngAI#9=%=cz#{4f`UWS=ebUjEbvz`IQOBtQy(iz zOwF4O)+f~J%1_@$Gerdf+g~eab<;W4EQk6BTN8#n z^>`_s`=0%(K*=~CC+DTulXLGFv)keH5N`Rp#>B6)5!$(*$Tlh9+>|=cd+42ja&o}0 zHhSXiJLVP$j1nG8)eGl-pL=`q^RYq-Pa)-=R3ZZU7xKnWFG)k{+|Oapdf`YO zm~(G7na?^XXO0Qz!ZZAL@|ziU|D$F09RZ!1K>Yeb-En*z4FIkMpc!1HL87x)Q{iwJ zao!b{8)xhh!Q>eSH)g;%&xD{9^g8@J+n$}ZH>$%Th-WEyu6(?&9shfVn7@dGPf=ms zO{%Kz$GP`pP%M%V7}OAL4DlY1&z|!0JfFoT#8G)1`}}q9(lWp#ayAPhM3`pN2L6XQ zD2oI7dAEW$(~Ro)KD#Rl!vu6pp69#+4@WrdyeAArm-B#9SzhV0Hyec~0Kr-jnG2W) zP{w$rbbSwghoPq*(^^$6~_7>SeUQS|$HZwGbWkv5fy?i;ip z-O`pE%Kdy7>VS~M5a$|-(L+g!M%a>r7c}s%I`#FeHv#w3G-4)SPo1ou_n34(pnC$y zKWqG5+^P5xO#BAS;U56ORXgHI8er;|T)z+SO zt*mjL1NJPOLAlCg{D)Qr8{{C8$TA&_uN|6Ml3f`~+n+rJrr4nR5yftt(<0uQnK|q4(#D^h*GmqTOIK^q2``{_UB zK+=T{m-+o4KY%#=JD>gekuSg2qyPL|-(sNr)g$fy^Y4hg>6m7WNp6F`rsEQo>A8-g zWPP;E3?}{Oc|7g7FjFu0nC7CHCcW^Y**dcN<4hMLB$9pu>=}Rk+xLnSg>#SmyqCyL z&wd%p4u8+hF;`>6WuAZkwRiBdcR@lvg@xvsXP3yW-!?re>NNQb6kh{Fr4hN_+rN6r zYB!~QXT>N$C^@gSdCC`^z8P`?$u|QzbP+4Ti-nwh_rvDJT%c22{_3lMGb8{0rX8tX zc_F#?G8Rocf99-26%Udv*3^%{Tnl zHkUEEzMhV{pPV!=9T?R+UjI){hdJdoO;2|AhP{-<@R`g_=YC6b%ZQjw z+96&~Wa?i8_Y&^@F;s{X+AX0W!Iirsi;D6@LZSReURmYxpj%{8Q4LE%^0rXb=f+)i zzyuhtSpR9!d0|ZczdfCG^gn&qpk02~UjIMwodDG)`y%tLP-fID)Zs@8|BUe^oB%kFrq5`<5QQ^Y~mAc`7$1`~K}?*RLDv|22kU-hS3W{{0LJk@7#ivgf=0{ZD`5 z|Che=&@K?0F1Yw{O!tw8qHIM@m({H$N{_`-?!;c~=CO}b;%4f`?;({^vSj(8JXMNR zq7C9vaicO$GSG=*#zI$jxLw@|tJdvCQrQmiVH^!Jli(ybSfyM$@B@m()QuqVWg0fE zxz(TiJd<)$P-?xRuE|J)c5riCzc-C-WGkeM#D~9UDF&V8f|_Bg2L>kHf?p?zHta~E z3mtFX=1;UFj8iPDYIek|*M^Zucz;W?u*%148U>IxY8>fr7bUmFZudDhEQUVH7e1e4 ziq<+#&52NC*}fUKbr@@vDKpdrc@2oIeT+gH#2L!}_2(q)lKbTd-7boiaL&~A;d6{` z5fV|)nbkb7iKYxzSDPHeZ^`7eNY|Ru12H&#>LlOXx_P%cX{_5l`_?Fjy(j5kJQcR#aM8TC7aTl9^CwhJg}>M&@W55>4nT=jkfQ}q<)`GrpEB}TN&VnR;% zq$ufZMQKs0+Sp9E+c&2};MAC_-{{M7PZpMOsA{K=)#hn*Bi4hYlM55!dyHXY+p~Uy zcTuNhzLnCJ;h(qO9C_xl_~XDlWvmWPfrzqU`I}G{!JvoDTb}4B@cz3zX^@8D~8o$RqFZ8OLle%`@%J6{%>2|r2h7F{g z$@i<*tMPazDlxojIqq9%riD#rS4RG3Q?OFF_|pA_s3W}T>o-8Z%M2n(SzTK+8cI!2 zve|C+v2Q4yGzi;1QpKidCq71Ftn^jYx-6xW4o-2N`8c=K#5k;?T_Ju1-G&JJfjo@d zi$qGQ3DAAo+(;OXwn6>~ zRvDb@?Sb}W{<5W(XAQuLY*zD2?4tDSH3rG(Y&%mKds;+#ha#LW8+}`^UQ*xyrLpPSCOb*2a9?PR>1H%Z{dh!nT+4Wa# zrAtk`*#W9sxq^Pmae(3#co)u?%3R&Fse1~`=!c8C?j_feP+M1ba?eu(D&toPR1ekwu*BkMHnk@qhSKqsTCg@;>a|~T3MYX`&B)!|9m?2H<3c0Q20yoF(MQdeI*V7IAuzHqs{sp9Xp5ASYHrtX#=SsSOzU^E%C%Pz%B9 zA%uRs7rgwGYiy?A+w$Q-lF1J!~efM3Rhb1RuxRVpk7Ob zzp_td8Z{3$&GLF>l&2|h@6Z5CK|v3sLpowYVxSj%Kwv(hD`X%BW*Pcr>}h{sGE!pG zeIeh^rhg{nE5rlzsBFt1MsZ)bk+ba)OFcoq>q#3sB#K#iMLV1)RD&lx*@iZQe)}L4 z8ZEp(Qw*ly+(&ThnaN7JW4M*Z^||WyKBkR~Fk^A*v^}&(0j7q-sD_V^-$m`45Uw28 zd+W(bWVCr{i)`2i+BlE6{h-ty8`{S~)ewSi;QYLD-ArXb{rA%o`WO??{<*OPy69rN z%DvFFkvT8+9!nNF))}b2@f~qX#pos->Er>)*i0+5DhV`emR8Y=^_tVHDr9_V)E5&%)!xec zBVAN`crPGdecU+7ybDfDNG~2xy(umzI#bFv9X_;F7(h!Q(l>N>94)Bw*3zqSzDMeZ zYTuOIqoO*p-e3fjw}^?jhTOxE(JFOvXe_@_cRY!hf-7$yT9A@Y1DMskJR)_W*;GX) z@x8t_DVGzuZAIVsD9p-K_q9W`x&&YK>s8bEW{Ne*U0uo@PXKacSrXai_46VL$f8}i`S$nK~n_E~hEh!By*%znT z?5E10!I#v(*D8rG>05j(R}ONrd3e7MwBeEdyYqxXJa(7UnRIZ`PHfnk31c?xugFpx z*|_&~)EO$Oa`Vcb^|8oiASl>8h3%p+O^|+Fz(=>TL`5<};kj{o(C#dYb!O!SU32vQ z(l-D8$RxE32UR8CViE+TLni?_eaSqgmw@m#Be>AL_+G47(4Eon-__%7WU~2dETl#5 z<6RWKtW!WAPDANAk#E0j_1&~bi5EJ0dM4uSa$B@o|K3Xc=9UD>T(!g7x2efPYSnTl z6Uc!y(9-mGdzz{@FtO0qX#@`?gKg*RQ_@b9;e~-7aq#&v)ewrioJ2U41+>6B$bc<*}JZja zh_Sd0^@@QljjQ~sNd`0q;T2@o>&VdFKmzL8ZmupK_((*xOZ8eu@!pR15oiFLD*nCYYJI`uI z)T=Jyd=FS>!!0<*XW&9}k@~;$m%QT5>I4|;@2<29TR`IXo9`}X&*iNX%YLiuqt!ybd zcsDfu%xzyX>i2a&-V(H>6T43^m_ZW9ApvuONpjarRre8-gOqrB*b~wgLef{ne zoeb@MO<3|;yI3*>z1p@n85=Yd$;UqKBFXG=~IpW!;qi(+l3@{KsCKRO`W;Ui#lS zR)3(cd3XKRzfpk2<>qbn0r7Am_XXHqU_s}Jp!kI$*- zH0I7r$Tu5tDDFvio65){_+iZ%geg2C9`0*=^D&pT;{;t1L}P0uOC0q6syl}5l8Yh%RoZ*RRMP@2=}rB@NTUP7xhAv&?dV*l#EY&5 z)Wy2+_ywFlyd&r(GT60GhnM%O92|2PXApe~N;HEG>^6&wKwW z=>NrA0Qe-T=|FdpAd;nQ=ez8$4P%y-oYq5I9^y{DxK4FEa>5(YT6zsm3XzS%^$VS) zf$T@OBg=pobf4=t_2qCQ0UpHamqhr8u^5C%MBKsUVhTPCwAZ+a^^)&OAEUgjAKH7& z_(f3-)e3k2g&g$}Q1m+F;&e%!YV#!s%dZi~&c!NdFIsv3!ewg={4H1TtKE{f&$9jS zGF0Z~Tu_Hd|JPjO5(m)!C#)Ml=_I0S>C?`<@X=+! z)Sea`r6yY-m6q*<kE|W5jB-ymLuh1A38OabfxL5&t_`=rw3Yzo zD|QpQtw?X3)Lgrb!$y@R{`IA>x29A<^6des|MPd;X|(_Dt9?CfQ~$CJ-lod#knG{8 zuhjQH{SP0tvxZc+rfZ+-Eu8i1{GKi!ZB=8QlfdrxZ|xZH{gqM(MKs!>Z6(Z4#cX`5 zqcG<6tJHNDt*d?6<39I7yc{gU8v6(CstE!z9Kp01&=OYCHY=%Qn^J&io@J<5P5cnk z+@m{Gv9AZV_spd{Rz=JKLMc=O-46TQ@JM;(?Ob0i7ux?WBc9qL<02)Nn@V1p_7Vys zx*HzTd;NwnHg`MG%QuxdV4i$Lka$`*y}Db;5LJz?X%w@Pyn4(T?r`aGYf^MbBe{82 zbUNW3q2h;3s->C7k2A2Txn8mVMeR5GHec$m?)6{^FrdA&Ah(7q}F@Mc1$?S&) zl~6e}no80iX-H7Fkjfhk=s>wHtzHNnQr$%!zeYd2PT*UvPZO~EWH7>k-Upn)vZ6@Y7{h?j%syFzOPFC`YvPhkv!d*d+VS4 z;t@PL>LE=01;&>+&4`s_(!#yMCPgI3lmsIE=Dmr%rX8mv@b%{VmQ+kfpSMy=NPn$I z%iH}c{9~vrw=~Y(&MK;L!MOCtVoFmH^`59m9Jm#e!9-4*O@@MIXtP(*sG(y-ND&`%f-vK-aqm}i`ES$1p*!@(CV z@p)#dnOy#p-ou4QS?|(>aMld~B>Ef~jr{Qse>FFB8~vpYH6L|P`i8VfX+`d$*x3{A zNmUij{{cb>w*tCeeO<)m=|zbyzezlP5I*h`nZ!i3oHd z0GUPF=Sls7AQlWUx9>!X`)X(b+}rHcowgaCE&PD8_CidjNXZi45Gi>3p*fhA^Lg(B z=HRSJL~}i33gf*x!~5J;=Afj7$upJ0gHXq|S1WYeifMJki}Q7j)8{SXi6V9^;js;C zw-F%?^z@~gl+M7lhDqCEG`XfTmC{XUsB%FQ8jLT4sU(F6=xhltieac5*uNu{Yw=(z z=kb|MUpLF@ZP-*!L0(isMqo!?DD)vZQ^crS4feNLY12-2+{~w4$&FMsZiv>p9U+pg{2V1$W#pP@+cDT-5@K&L zqe{^2u2sz95EDXRNh9uk-)7e$nFz|Un+Ga5zNetZDH1|D7gi8C?pr~HwU>T=asWs0 z{-)cHH*#}!&+*jo^~x0DmUVn`a(Z&9s+Ogaf@b>(=Cts#jGFx!6Wh!C!JWp@sH3F} zr&4z^KtDkye zK4^ZOEsx(OG)|YhZf_F7o7@yeur zFqjByoS|90K2D34#u_uC%zipX$c#lzqlcZ=W2BHH+f!9du3_l%av^1ASG6|M+OB>f z=uiRwK}Ml4JGjeVdy7S7ctI7yn_?z~UDD&CqzsTTJil+hPEIjSZC*c`K{jH0wUkrK zfp>yt+SsWr{p#|>^6r${8r%BfcR(spquF3qO3=NYyl@x)m+5$f}V$|St5Z|J!xH@SfHL6H5Ju|(W`fgSDA zV>Q!W-!}b-m4l3iyJ+x=!@RlhO}gZ_kDM9igL$BYhXxu-b-s28uA)@uchmz1UD`bg z&r;jfUoL?i9Npy*pT0q(Yf9OUnFB&Bdb4b+u%N3~QhNm+pOM&@cM?)%O_GxEorf1T*&ngDo!R)AK8b0RHuli=&J0BU@F0e3!(n5*8ImQ+E+!66Gc*<}xgR|BN>KjV%u-ULDe?xXs$^VpiB9K{NR=^2Bu5L1 zwhtZdniHMuxAzF0STE%5xP+k+P;Z+w^_&@U1>o1y{^`%f8&;^6+_MW{7N}J**oD=t zF*E+Oe^NL{sxYM+K2YSiO@=%^HJl;SrAQRb+qek}OUMOmun{#)K`!9aZw?rQuFP~e z$IfFW!vhMgmYeY@veZqDeXyM8xus(ZMI{~1UG&yygvjzCTKAX7<>sB#vLY5kaJ<*G zNb;pgk#Low%2m~LM?Z$9?PxDOc1y-gN{@rQv2xA$U{4%>savC4KsPt?p4rNnDY)%O z6)^JB4o!*Io@3epOt+OX7Ra^ZkBqMbC#MorL2p*B@Y?rH?rrS8HjRC*NmXJ+>esG# zKxj_S*0&eaw-IqpjfqEp`p5AmU)u_!jcF;H=P6V_ZBhV!F*#~voO z5QP>VSfxvxmyb;?iUfjKXG2)yDw$);zD{PkQfKN)OSv>L7d}3zZDZg1<#z|VRnzso z6r#QhhH!UG&I!RiHm1GZO;HAUZ6b zMXNYU!v>+y{7IUn#Z`Dd72L?;R}-&a2f+gTJG&c}Wll$`>o#>#17~c_{)-5|b5(O~ zX+Pi|FFNb6xuOctjT`GF;@3|Fb&pW|7#D-T^cbJn>JzDie7(#Oo)6PtJ0Im0wTsCp zpO86#Zt z0QPi{rO8Eh1t+wh$gHYMtYbVX5SE)VtZZso)tMA4*uN{CZX-|mM2qE|mVo~ya2e=+ zMpp{*}$j_|Tcc7Xi#Pp2IbgSfHvW$ceWu~WM130v(fqo8P5-xF2LjDU%E(D7gYZJ%zX}@^85PYqf+-b04!ws z9ei3EQ`Ae^C}vYq&!wy*C8*@kO^Dom_pzwKTf)w^Ge`vbo+l&D~kcKl48S6XD- zzHJ=hcIo>dwS&t3RkASLs1VdV)ROorbA7evF6`rkIX!Oww06^n*;UW>&-#q2|JrUYI`pLSr-fLTiJ!vo#hM7<4fdSp?5^MUc? zZA89gsYqDeTFlWZU`9LNS+9fJl}R2IuV7#(Y~Qad$l~*nXb47&9ZNaZ$=a>aOabN2 zo~Ez$*fExkt{C2t(b&M#T}wO=(8^lhst?bviw*FatUqTz0VC+L+fzTIGuiuG0+i%d zhgfP|a`5{lv>SXu;Jo0xbxs=_rE=`w-}qE78yjn@!?YmTP}_4MU$uKH9qyr8ZR@|< z{WgX4kjQJC`SQBdmtJP3E>NFWW{i3|ZpAu1JZvG7&jNXU&Jg6@RSfT5e0x@o@pbtW zz21{bsUT;PxlQ&jLNP4)UoIRm`pzMzoO640vU?+#SH$h3shn}!uZa{-{rznY&&kC+ z6s-pZLe&HJD7-yyIT^PIr+KyqRp8zv zJt7L)2tTx<-|k1{pDI`Q$AipVJ=J{?BDoB6;QMz_y=5xjc6g0HuXcZZLN537H#Z=o zc=JQURyth1?)K-1)T$d_L-DCsGtFF?Hu!ABMi}QI`XgB(;j!xW^18L)D-WL1`TD%E zWeoZ1w1K;2Maoi6O-jts)KJq(Ohq42O43kIQA^UO)~SRYD*}NO?=L3I2PAxcW*Ly+ z)~M5l-4_iWUM_Z_Xf&Y!*I15Y0m-Lp?eU8Hj6iU#W5o2WBxpvZfL%hype?#Yx{{m#3d?CTXE08 zqa@s)T?THz*~%L>i}V2R7qwSVGqXs5SuroQwO_Jix#pl0s>p&7E5pUcdZNw13X|-! zpcKC1JwVGb_b%Ph)ME#|KcMe4zdym3%8Y)T>5a&VJRv7|vEg@!q}vwDIH|MtMG?wA zEv{JJ+-7A3prW2u&s;fboVA#78+?7l(;{1CnpWjOvQ!=X=qy<_zp)6;#0+2AZaFU- zs}IQiO1$zToB|O6liOf&+%xReLl;jP{d-{MrF=8|4Q+*|dHP;RT6QV$#lpa?mNa(l zCCFZIO$wgsQymI4R!mcad)_P)IG3z+MC*}(`{8AT3_4R>9<(paJ|(c0$t=SUKF&dv zTQAIu6kZ{XXT_B7A#-Esg-YQ7s&meT*4s`7$WUGpmUsmhV#qSFU#w{kJiO&O=EF3< z`iPcnLq3vn)USR4g()Amc5LBRs@R^?_Wo_Cm7D1a+x^?w=ZT~j_c}H5;q#pPXQcMf zm@vdyqFd}b^frDQ3#xM6x=LNY*FOJP1VvLtTc7dG$&-K*zN=hn$Wbpm?(>hW=fPKU zs$OOcrogm`!=PkGccw+E_pX>7Z!{;`e(Sw)kg?9G9^Nr7FT=V{t*l zv3@rE+cX3OC;g)0TF0j2N>rf;NcDu@h3uVItIecxUL~3gpD^%|CL!M@GVh4gCDlph z!kocj!=BDvlj{Dg@URj*z?B2$u2O3B2&wq~OLPfd5oI8z&W!!XVSCOpMUrl?WGF5q z{(U_*oFW1w@!Bt2@U~L4v>s=V?OB$n@4qfwR1{al4as$vm3B z$L1|{w*ckb!O55WTkii(dweWdd>l-e{NxVVQ7QE--HL$QTtsyXJSZz@9_5Tz2SN`- z6e-30H=UWDo{2#rEOuscf;v2Qg{sVmp7Q6o(7>f(?6NRey|S?KEcZToLK@DGpMasA zn2E18ZI5-K=OEx?k<+y*YdcXB?>>OcF_TeQMApJa(S$K@qi-sPDfflDtugN7;z20X z>ZejQ2ve|1a#CutoO+rXLgUG1!s2Kml8Wx?bu0lu=4P}Jv5 z)BG$O#^7+QEW_YdX;%nETEs_I*1`c=JbC*Ll+d?^ii6EYqp8h1WB>AS>$Xn48OxibRD6f3#L8mi%xsv3*G;ukMjg;1@zFD9WivC#4`MBDT!5 z?^ZrVfrQ%HmbT45oeNm6Jo6(Yr5GLmrX*j_w3zrBt`>NOZT!pBl;zQC2o)ee&qw+A z$Dsa}Zdt&rKx03tpsAp7EGQEWRrl0Kv5Y>KJg-P0tm)$}6V&k%YAEiBB=zlHLE#^@ zyl!v!bL;}|$aV2e2ff|cP!0c30P6@3^ZfXtRHq`(xX3iiB)<;=M8yrdQw#t9Jxe#% zm$^$B^jZ#2SIZiz*be(s3AtNgp|FO*!~eh$R}h)VI(@g!6@4MLw==@_4L4? zte|LMPbm&5QhcG-GpOURvYBeb6U?T9!~S-_^B97*|kD8#Q1p;2si2uR|O?(s3GpY;E1)(-Fva2z{I`s)DhVd=tL#M*xRKNq8C zQw!MIcxerkEuQjfLO!nK)VzK`Yl{b5qVXVod^_o{9c*8Ew=7Vge*?HF?BBL+sZ7~y z(8Kk7P=x6$1Eu5tRu6Tia-m!Xrm7pDCy$WX=tmh#J~eXxP)PVmFfoHg;hGHny?-Ni zpIFvX?F=@LFP(2yGGCuW3`^53#)nK$PJ>`-eW97oIYDXK8h6rXOvEEt+q?ImRtX0W z5xj&2i}e`ITr9db>*~?uemaW_5$Qn0-mA78mhIF%#y#XLP&L^A1dgi>pLUOR#yU1E;FOcut zrquGl5W&c$HM;vTJiv+4UmupW?ljnaCtpz^7#bp2w5#Jpi&xzTEnb{es!<0feBRCd zO2o~9o-NXf_il0N1rR;2a|X{TDwK-t(EPjcavQu*ToX(e=4iumNADcUU7d%&gi!9d z+1#z1Wc6X>9?`)rlk$q(NJFH%!QZkp*cqm8Se-*(X3-D@=T}*&q?h;vw`^Me6@>a` zXZ76HcEEjNkVDa2YyRksW?4&hjIQ=2*~CKfz^eV+vx6M!{p|%Jb~5guzC0v562OhE zv_PiU!>$s?>jy_7Oj(#0qQIh>deQqpI~o(McJPrDi?}4U`gU`+!WXIzlQZ0z6GA4! zBQun0PZ58dxw+TfeYSJ4IA40YKStVslP4NT8{^Kq5>4#`KQlEoV(&m_@niX@uC;Oh zbn&9G3fAvDe5(o&7z)g~w%VlGtHGnm*kxjps)q03fJ7RH`ivGC`D%k>p^imgL-L8@ z_oWTRiCl2s>O>fE-z=$q+JPse-u0r(PEWkmCi(_qk(}_o5DCI{%W_tfvHa(&PQulp z0ojYh6JBRb)BrmMC@dWU4}=tuCkO~gEpAj|+8C35S=~x>MoQs1U7~xZ?hEYw>$^M0 zw>S2q|8gnDh_I}G>i(y;V*A3Q_ZgS>29RPRXfZ1?>;|Xo|NO-vnvP+f?d|@0?LsU9 z(u9EsYyrN?pUikX>mOp34b}+G~U4{Ri;>_*~myf z&fcP4ff1~rFbc5uY{3V1T8<)>kAXm27s7z4xknM&ao(Z&8!gHq12cqTq&S#RLXojk zDYnqqpQpQkIatQE)er-Vro#9)#gml%IR%;)>DLH3Xp-V6Lb^m+EL%g4WBygtXf;p? z-RfL=f1K0Q%ERF1%ks;K(=gFoIJGxZ!=qto7YeUEmN|}8RJlpO3}vE?F&Jk_)w`Mh zQ*9$P;{>b5MF+>-dS$JhE%BiLLpzOQO;z;)rZCjq#HMxw9y!g)&5MzwN?$0wiAU3F z_O3#I+y#1BQg-EnGwktg1(&HC2?esGDS@XQ|2~5n1MBk;apha>gi*Ug-NhoC__!qC0 zt@WEPFdx3$LW7T6){u&f?Z1TA{hCh*y6H)++k|6^z8jDM7 z`F<%h5^2cv5#0D==E&oMBXv`?^f1q7$Y_2|PR#Nb601w#js#kad@jku=wD>`J7s1GJ=_M492p-l&Na5g! zh1Gy@+e1E#GIpi|WPiu>+BAg`)>_vuECtU@ht2fymh9W6g{1kx9=V1iqv3{0sAcjP zuYVhWgZYY*2&?A%q5D3Yjea={2W@a&^AuSWuaeF9?TX0k%y*wNTqo|4c zp<6EuW*jXPj;WE~EhVPR+>Wxip%W!(R#tp+9Lyc*2JFE23Ws5PE&n7A9g`e%|H8i8 z4?n~VMy2|b8lrhJ!2Zhba^A4pvmrdbZOLc{d(2e-h|cD;{-BT3Qn7W2J(}c2EU%&# zBLVFa$q|;GGW^TJ`PObwYk{G|PWF)#{}b zFd}5gEKtXi51TdOe|RMua3^Hh@Zlm+_jmX^qxjo;nYYBeyBNY2dysPxkNLu!2vPhiJ{H8EZKEHKpq))no~1+DCSH zU_*zx^jg!_hbZ@q7Oh_!3o80_H4_`kL6CJp-wUR_^*$?wL*6yZvY67hjmR`n^U}v^ zqo?M){4h#~!W!dQ#3lQ1kKjn0t~7K0M#*e&zfKbTpiBSXM+*!!>Svf@WbmGy&KL{T?B7^};RbLOH}AZN zjy|8@1TtKwbf1|ruCwt%Q8PZ4bS_M@m-BO5QC(!O3u$4VP=M^fn!fEIUAU;>AsaC( zmq0C>*dMlBH*JXn%)zBq0$TLP0?s_!%hGv(_7Yg?K}^C**fj9UGk1c1Hv*V$HZ$?_ z*eze$BB(u2NM`(WLT`NOHuMo_u!CEcC&8nznGnpzp_?-)|8p6-|vv*V(Kn-scTW_L(SaE3Q(;ndXbMO0N=BW3I^lrIXoT z`j767C@+_RHL(gmmE5w_O;03{)7SWfvGa_qMghUs`<~ zLW}yxhzgksE0&QEmFlu$L5DufTSO-&_<*i(W_tz|!g{8dJ$V=8c0r6kcPR{T`vBe1 zt}grHe-8YJ-U@{|)qfIJm+bjnKb{w`o0t3@o?OmYypz5vP^hqQcX^4rd0;3VSDUw_ z>fabd2P>3-aOnTa&mfrza%8-FtD|HGJU4yW9V8>N=j;4OtjXY`_X}hW_yI*=U8sWI zlPs0duV8r3K{$l=iKkBqLl7H6QTo2BI*`eH-mi}bOEVOBP5L}^d!ghAFF9fzmeWBK zL+aqFiJDX(v7kC7_|)_ohE(Q0t6j`I&d8SD03LsRa0SJ|$p+F!j<9ud%^!$Hx_D94 zdQu~kR3}st`S!RDM2!4R;bAgL!^T>h$ywlfwzQi*lbV`{Tt|TZ^jW@s6{ZUZ{3(4X zgn&yiQv@@sbFoI`1rKo?;`?!A#I=+H_wwQZyzyze!#|_M6{Y$ZkE}zfU@^h?4ysP} zI!r~oUz(l};hbkKH!|Iz_-v>zIMS<^!Q@0^31?8bBWpZZ+$Cu5N~E@{^jn-KE^K5n zWH|2;E*6_yOR`pMLc3$ui}#VE%RFgjx(5lZcozL~;c7wAs8+axSrp|hH#ClUck0T$ zOHuP#aN__`c|1S^dHn(S{rGufCFS(&8SSeMVc>noF≫02!gOG8Uhgr>plwErwi& zgYOTG?yao*wZ-SORCojb4=Oio%crl4H<8>A(3vKZ$T3xjrdyV=qKp(M1E5%SsOC2m9?B<% zDs^WuN*4^OfIL7zgy5f)(2LXua z-Tvmty26Bd+gHc~hJsUdzE~iooidpP^t1&ss`V?YJ#-+}PZgy5;iNI$Q{|7&y2C}j z6xrutM8l$j`Ni z~N>!)qeP5qK#M4yZjYF^m(Ad39V(*69C9d!u|whCA-;e z=CYHo?{v43!8#@$*(kYVB(oG>b3ABrh`v_q0r&@7?UR6N$DSmY4c0 zWQ>ceqQzAZOuAqOhV}5=l8|;^C$;q}clg%|#{*sel>)C+Wo*~^0skKN(qlv7LHK^c zD&@?IwC0Esp8TU&mkd=++s!T`=JUEcTg~v622|#rWBDn7I{%sQ7T9VlTZc-AKTD$q zbZ6UP1OAifhD{oOv!Aco)}2OhMWc3hh{sCFH;&F6&$WHxHFq*YjwRRwZpg7a_^=wp zXd)2^uC`k}tB-7YB>(cjP-*%bBlp8C+}gG-^>7i5G++`$H08si51+DCYkK^G zpEZsU>Vsf7_)1cY+M#Ni@dwYj6FIbf;nJIz-o=tkCybLQz0?CCBW9*`z8MCi73>1% z=g$I)K;e7>VSrVB4PkCS#fR{?^QgL>l6kK|c^Cw8{0LEfk^#`Xa_Jld_DPKs7Q@R(ic}$BE2J2WHeV{@tq0>Rh0aZxFhlNN8uZC&Wj8%J^_5I@7`ot|@n@!D z#v2IYma*cUp?Rr+S_2(p@fRLqDx;8JNuT)Cx=pvz-sd>iL{k$Ib1Er#Xy`8)< z53Ed_j*WpUS0I#O@^8h+qMO(*I*6j z2%-0SI%?RT2ek)GT~Hw9XAUgOs$r*p6hZ!Xin&3@@G!5MC=jkZn2|a9zxUI`V~n{F zEfEnq5DFbAbcdT8aI|vYe^tir4=SjeSrn*8U~mVsR$Lf3Aq6K>p?Gt#Z0h!eELM!? z8zK@8*+wg~c#!Z%aUNdYh6fv zbH@-rgCYeS%D&>FP6jk+mxZM9Lins|siGf3iC@9Eus-O~ks>Q{8yTg~BZiV0a09|D z2O?rP2TBEBhMi*Awr4X1lCrYqn`~yhZym%;?@&G6+M16wG@#6 z5PC`l71VklzBQBCZn>k7VQ1XP_Ku!%zwh%7pDb!>Ae%iE;6Hu4n&&2hCA^3Cq;g+$ zOAWON=)3MPzlcBGK2vVzTl8?V)n7BHyGj6TPn}0W-lN-C<=_xXDCUwGah>F zw@R@@GO`}@rXWWQ$%%qGzcfv233u^m>gEUcC$_Ezc(_tXwxz6JgB8b2@1-4>R0bZw zd-5{~%|XuGahzC9YdH+VczJR+b9LaxFBk$c_t}RMl7ggN6WM;w))=<~{1$1i`=k%Z zuPJdKQ2kjSdwKD)FdZGAJ%O=g3`u1gms;R6$@umhRxH*LDK)6Ae3l9y9iZ;?>U#V$ zLW`??O_^oj7j`xH<~Ipxiby@o1C=l5)}*4cEZuK9P>Jr^O|Xxp=S8C zk2;FiYdk?xQHPXVpau)MWnJvwAf?4|G03?%Ko(M({-dc4Bn>18R|coGCezJf5+5*z z)~ec2{PY|c3(pUyq6DApShTe%%FSWY-N!hJDa!BOBs9v$NU#8sVgz&yY${^;MGe1M zbj0$>S!f{1GcpPakwCj`q&5(`HD1|M`@5?$S^m{da2vHT8i=e({JGyd1kZR)tWEA9SMZUIWg?-Q{X|xQgt{Oz1 zN(}#X1Y3M$4}HEl+Zqc_N>))`z_ZzbZdUf4Kqw5A8@V!6+%wD9$X!A}t#& zCoK^^GbtreElv|dHx?@=K`lW&Ix|T{vHXvebjzjnp3s{zE@fAXVQWa zbgH@PlNMnVlaiLEl@Mc<4w0c3lcp36qn93|o}dq(dG&b{SlD8IfuMoDp2(l77#|f42ESk9# zZ~>^Y0*mYh28L%*G{U+@o9;;+xnfm~ifBPmwh%!moRT7mPCDg{Aj;7GGEL5Gfdlf8|IOy!JU22A+5Ne1uwnvzYCYbf(A*v#U z1g6sz%M#-s>9tVS^Pz5q=(g=~epYrmw(%wuqqC@dMkGm8cShc%heF10L+-o6loR~Y z=J)F2qijZh7mItkqOY-vjA>#lmrvj(*sBXrSwo?l44yp=J%EaS86S<@YQlqQ&f(9+ ztlW0$)6prk|3B98!mx9sgCHoLiKL#m{x=^}t&syrAv02KHbWoCG*t|p>=e~BUBryk zq>Re^qJq4jIK>&cFcpE+$hmZjv4bdMMW_T?cx$o*UigcjL=5^E^*;vR)QQ!tp2aOI zTJgpbhxn;4YgY3jx-k zIAr@Y&r*!0DM8v+D>KqQ0^=>eV zI0h?u+H^<&fsk}fP|aI8`9L@>fL@njGVKZCsox}y7rR)ZO?G$0`@YGMk&7L(1_ILDWR z!?)fIbO4!KR_AC-qO}kQk?FsS$3VcxL}%>KM3e=Ty;dD@P}vSn6=;rA8%91ZOE*KU zz<<^$S3wXyAG(TqbAV+OwFWp}IeqNcSPKZL8u7LOsXg&Fa)~xj&=re$9pk@fRgkef zpa*ncsKK2N`7aLYAGC$wNDAgtCmFkXvKpFaMT{p@#?pMhRI-~V(so;&{2t77m&+6(Q$PlN1=TvD=J?Fp0_@X{Z#v(T zacua}MQ&OxM3jRSO=F(Bj<^hvf=Gz(Nryu2M_LxZc}5^HZp;v%VF#HV?eEjBfjT`{xmZc&qBQ-#eQ35WqFM_zwGC07gEtM%-9E|7Wkyb}h zvs)i@yhZLbCf!iZXLz`);OqA@_(SY68|aOQ$jz;Lv+{kjO+jE(wVxS-S4mo zHHET2G9=*Bx5_Yei|#R814e#!o*Cdo8nvnYM5ttexcIQ3u<|)y_8y_uvUMb@axa?( zFS}Jq&hW*+I`j*|s*0JxAYY1*Z*C536SZWq%l4kUrXkKxA8P}T!-ngBGbtuNU>Z#5 zY{OPscdkFnK8*3dfIm@9Q+L7q|1}VPjJyY`s7pwUwUe{d6RQyXZ^kP~LukzHIS?gt z6qRk;Jyso-7S&;IRhLMF1sbqN_2~Ks4qPb`uOdfQ&)S&cE6c& zoN}g7L<8jk^*=bXZv-qZ+Ni+)<1R1yTrTY%ZZyx|qt|i85p`nDO3gwjmzTTwQe2i_ zYGVu_4ApjH4q*zJmdG7=gLk3zI|D!NR-(L1tNn974&bhIiKdSn3$v`VnV&Le9i-O9 z-o~&D?30XUBlGpb>M$&SJJre(P9;PLaJNhl7nD^aRHwt|f9>T&waR*lxqB3W>Dg~p7<=i{Z2BniB8D+uSO+domz znhhR}NW9yg?;x-8kx^hg;hB92S;&c%*(-jO%b5mGyFiZr1O@uoYGSO-d-SJjJMmQM zodc7eLVtkhfq~lJKn7s^*UrWoX+0n;I-N9_Fc|PT*_ANnh?yDZwl2*m-lbO}O}q_F z>hAe3l}RK@0YlxxJ}O4s!|o?OI7&J`Fek;KoRX6l7oi;vuU3uf9r_G`?GECQ@HKmNGk@`0po;Dj6?0 zx8OsXC|cI}YCkND>zJiiO-v4SGyW(kvr%3oaUc=D_l$nE@O|DMi~Pl_%xGXWu9wch z?X_1>>M#y$UF*J1a7uSxACSn^KgEVyrGao<8G>IuKIu*%Gt|M{&>0h9;>duJ|3N(%HSTev7!HsBjM>uO#jFlhr@ zv*GF*yf&(=NS}sRVy_UNiWSHUXRNY(7UYjDPoUz%$dEp#E zxf1w9xm&e)?bOB3!u9ce`nI_Ni%By8ESDU;0RWbMLY~rCe%R8RuYhvww41J>U z!MSC6Mh#t8=kR3n{`A7%j&$!MKCIG1M~(fnT|(zVvUTWuJkbdzA7m`x?P;tyE0sdJ zoKD45(_K56vy!$i_C!M?AzqDf(y@nejHzM`yKn=}!vS^G*V{V+^&oZEY)9{{ue%n! z?2FH~k;~@wkC6A&c-tNUF*o5-j1~-~@ca#7Sd5hWLGC|-4jCB%8{8NA|p`NW8z(j9|=hqW0)%hzwRi4dPT!kH?wGmIU z=ITUchO4zUp;>+zzhZu%X!OqoRRz2hM>^x{LA5|blvVF}W^JuWkDe6453H^CcxJeu z=+Z@Wg`QIAR$P{Cm@WS-r`y}^KArbuL%~m;y*{?N6JiO?I;snkBcr#%!tN_4ixhJ; zQau^Cum%oIu4`@4n!I|zUH;DT5R9vw3 zdN_C&EVJvnD~c3fS5GIWLp$DVZ9afHil9LK?hGw5{JO-eO1m;qz}>AuX7}G{8e6y8 z&@gd3+iL*-X%ssRyO(is z`zOM$gAWp+L`F#{1TkG)0~ch&14%`|>I|;mkbzueb!*|Grj*e!bP~vcyB``QX?}b% zhD@ij$O5H8i6GHR(Prz;DNk#!CEN9qJyiRk3Ms-Ab~@M0bF*gk-0_-6l?+c4!iXKF zWcQ7`%?WMGLa08ivt%6|S2XWp)54fG6dog~U){q-vrX@U5|*+%!^v?V zKcu#-)==H0+&%ZBub2g%o4a{^AvJC#esc%axFSun=Ceq;)MnMapx`SUFq!z{oC*#+ z#JhSo*+nGG-n5-cYxxJG>8&jzdG*rw8z9&0Fg9N8Fecw+JiMaPA+;=ZS&sjsyv!n5 zWiU}e5Q)Cdera}`8c25kr?e;^%0`^X{vDFB(G46DwXoki|KRMhuZ zZr%JiH@wU0($$^_mo$lO?2@Ima6YqDlUa^k6cAi^^x6=`K@Qi~8YH|(AUHYP?MN5K z2tZFusxA?@lHeC~)H=6bl5m-{hj2jwHxgV6Oq?IM2rVa$>~3g(Z0f66WF4($5PKAM zi2C&}2ErWre%jrAX<@a(}B1(CX{_G!-6lE!OU+-bs z&8-1LThU{mWxRT}*<*E90K9hzx{V<*(6iAq5#`Ti*}1q#fv+8gIelol`6Tv-#V^V+ z+CP)jR34nEpz5-F#wXYVmm0gg!{DnDj7q(UksV<4{S7OJsk`86cGJKhhZ@<#^v6Dt}?75jr1KmpY*93{f8ii|TmD#|~1O!MjQM@k7^~Y+QCP zqAJM&lBi(PDOz}A%k&p{_}{fm`VU&tD(uB##SD&Xc#KVBg09^{{k4jM6)Ql*9sr-S zVt5$EXfJr>)8~3%nje^0Lp_3*h)55hFBB8VuUVu@Pnifu#W93jmFXhBExpE3*}g~KweK} zu^$=`wm%X_Ll`gXft&Ozawa%+!|mr3vP!wtoi=2EFEa02q+|LGF7Dz+F#U_U4*GL=DM5|?mkild|;=~doenGwT( zKd;gyGJ9N39P?=%e-g*@_W`I*c+!AR5GuK+Gafs>B2O+wnAMj2965c2!{r&U>CYbp zh$%nR$r*oZ@^IhBxR4J$om`Jsb)Bf&Ld&9mQ7F5BOj<7Bec5^yOmy1Y3F)C_QYL9)4gyu8+Umj$VviD3T+jZ}7 zZY{2@_WY2GDoE7$@v#M!OKjxW7`IdZTEhaT5i#mf&?j&~@M54?7%XSP@MleO4iB;? z@2EA^M|i2s9kxew#b_8?&+0I9#G7liX@z?!y?2s^pw#@iW?23f;Ws1el{qS`<*<17 zWFIWl246B@lPIxe>@X?DLzT~%Wo;xyEET2;e?2k;tLN#ZPD=-$E3F=1r>Zmh-pWdX z7^-LPCf_u=d~4M(RylB`V677)r9{kx6Ja*4;O<5&JEXN?5O8$D_?e{?Ii`%o(3ScU zZ+F+@H`o}Sw+uQ{P)^hxKa&5owPNi1dny)da{~t4e;RAL!RJeiBU6Y9yz$2l>zeW; zKwxt{xH0BRX_1g141E@5b}kPxWX3wt&#UAJ)6SdWqnozj*}dn=AkS{@PRBNV8>YIH zq+4qhN_3P!$bblKwy>?&ANXEBzYr5x{5ju~;UgXumhGC-4u9x&tD%SIBMx;wpB{is z*h-)J4~7B9=cQAZ*hvO1tpqP9?&164qVE%ZPbu9eRuT?GQ(FJ6d6x({wBVy0|E0I| zBVMlsLU)v6ALLB7b;^*g4?Vz{f>+)gbYJU+TOiH&|F15%Ckj`_65|< zwN)Vaw{{1{HsnjsmF8xXO6dnAvMfgd=7>)NC z?fRg4I4Z`bRP9NB^;Qd%A!2`UkBS|9gr>U*FgZJdST0+#68wGqc1Up*A4;2OKjyzk zL{Y3uEG)1w8LN){r$8r{B6IC?sm)7*)YSo_YYMDF7AIFB@=3hPstB~G;b0lcT>Izt z$`lPu17%9VwwvC-hK~ zm|G*iu-K~v0NOm5aRr}Z5c@@em|tyH0K$tBD>iit1jvSW<#+R6mvLuyq7Wm%fI3Hb zhxl>&5zW4|x*TXk3aItbZ7YBQRUC-B;nd;|ug_Po-x^J%yYFZF2BEGtk516T5m1{8 zrY_!aoo(R+L(f-JrLI!^sa6`e_CxHfot1*9x|C8<~=0ZEAt{HTNnqZZ=md2wy*E5*MET4 zKT2x0R{=m~^a5D$4vaOP*7D<4oy~#gP@VC%NI*qKtc7AVnQJCzyUy-m1SyT!eHB*~ z;YU(yFF}yyGTUxP@Bv6U;#5|3xCt2v5spS}5nB+{Hrz=yde3QS3eQ zx5}3Px`g>Sx*;Awy%9eZayU5K=k6kM8$ZfEjTWv{ogEzk)k3GAYr>7%`u_4x3FFUR z&3xf4N`c|Ak3&UmtVm;}3y_QHKz$2fF&Dq2Da!5Nbgx<+`nmxG>bbi7 z0_yXTi}<15iKNviswFsL%2A@jmAQ^5{48dts_bxWY-`4|4NdW{qs07zea-+z0j*zO zf9lVfkL8pX2vDfKUUNEkL?aJ0r&UpK2Hybmz1Vn@!(B!#0DYSULlnSMI| zBtF1sbeRfAdyk+waWa9KUK9KWd& zHLveJEgC3{;C(>XEN|jsoD3RGBQ(HX8G>vJ*ff(SM76O~@YU5az__fowcynE1CVWF` zKRiQ}{}^~O)!UIYrTS$DF~@uCN*CO)L(QSSHWZ!98UuRgJzqA|QlAi)oCT^f4yvcX znSNkm!4D{pGqc#4Wa01P(ppJI8d(5Ch6bS?QdkK6RFi-u|o-^{cxyVdPZlu?&G9m2K2wX4GQ(U9AcyF#sG>(^v+!kEUkGxM?C`KJDM zhU4w?b0)Jd54_;`!e9V45EBb&2-v3>?gn>SdA?zTX*Kc!5onTPu&+NM3R6SG7mG2U ztADv?X}uwq4DdIuLjTaP9;MaPtF~QLi4=kA#n{AtZ_aRgw5rPbFuEwYDL4Rai<$O5 z7}}g^GK`2dKa#yN{N6Q1_T9+Ci^|=)Ggzxmpvo=&hxI4kE4AEc1B>2ULpsWZvQ-@d z-Lw0#n8Kw@3Inbj`GAc+Ll9gPeMw>_nSb@GSw8 zKBC&!xvT#qu!~pzVz&l(MbOLz8X8Dcgi8l{kQJEeBUxhikm|`{cu8g7RFT~qy@By1 zj(|Li=^ib`LvnZ|yP(R3%E8fSpC7vhs+O^f4y47))MsS}EGMNW#X}bU!c3>)D#8`j zkoFtAbLhxTqW8LL2~#BmsbHw8iJg67O+jK_a<2i!ZbkW^Y>V<~qXr z)jyiiNX+uo+S3$Sz(u4Kmb3_L)qaq^^!JSes(UN(DPLKpT)52xJGa_UJr@^{MXFQl z3_ymF63=i56iQn!UMk`I0{%NQ(hfY1O>}~Sd=D*To0%S2hed0)KY-Sv0c2PBK`6fn zS6rXu06#*=o&I8g+ns7qUTz)6Kf&HW1o-(#i2b}Gwu$Dn!pJe3&8;?q&bjY&2jV_xNp9{$3%scg| zlrC$>n@hR2Svx9r-9>$&zfr6Ek28rX*i7L<XE zm~5A#Z!%NmPUbT?20L4wAI>lF6xDt4@-yMD!iEiPPoSDRhoV1RZehXU5^Fj~LEHeZ zG_`CuMp1oMYB1>GrN|f;baLrLn^p&>ZK7qYS5nX-2?#_F#naP?FySo3AntcQvK&pt zCF`?9*vMyzG%HD`k2a6ByP2YNR#X-!uUJh?E5egUMAS^JRZwYRM%@ffBv#gmqR^Hc zEGA6coLn@{ed@OsQ-MvELO^xQ9wgjmn>CxPaq$}ZO zmkWzQxEeah%hH|IPoo^0DOcW?nUOV8gW4)7p%R;Xl+9?++6&Ld=a~(r!fl>JluQVe zSh%QkmRQmtsZxq%94loj95mt))gOaGj@O?iWTkbKGnyzi%Emu-D9})K;}3<*(sdU+ zH>y)<5!0kc`{QhiJIj!3y(f(9)Bkx`&p+xjrhN`BOVwL;Et}xs2LWzTbM51bO*6X| zhZmO*re@&!?9`N5G757myb6bgzHz7D-!xe~W!ad{>BY>wG>I3KN>7}?p;S+W7^JU_p&RjDo7u^i|6cd|4j;c?H|)y6$ESdBHyzw&&$Y?XVF+h1er6F6%r zy}vYM5wT~UB1kW+g<9;tf=k;-!%2QJ6b6T`)t*VKyrt~Q%J!!G)>J5Il$+efG_LaZ zlYx|b+c?|F%2mOIEiSZ7y+31Ow6Qk0oY`0_K`eAzo^aEVrO$n5# ztbu9IA9X6&Wllv$k~oW9^4LUR=U3v>%!Zk>{VbY|7cs*-2wekQ9Gw%{%0WbxWKk7Z z5E~C-%FFUq^J>;K9reVQ?gZ)7b$1ObJO|Pe=D9P=aStc`r0l`>t#;ucS}O|At#wLDVq8xFQHU~T9N@w;3pf$=J@`t&3rL>AR`SOZ(s$B(+=^h=1 zonfz2t3X6qh-oP~W=}p{f?p>qw0gwi-S+VP4D1jZDdy@J z(`(iFqNc5fVEbliz1B>;WqB~4Et`oV1cy|2!Djh6)O>I#IxhF?@jXogL`fg-cb1ZG zS9f==5aX1f85jq6w#`K4sRNuN#OwX_5&T#VN)`||uY&IdR6T?My9N^EC*)U^h}RIhdJ5^Khuf7nNyls5FuET}g3^vSJAd;>hqVTF~-l-DHQ<9ljs zTA9`pypGec%mRXEiD*3&G-XLRF%ZK(3oCf;GIN5+q9I4*uJb5BBdZtKmd`Rh*bHH$ zGb{|LWx=BScrJ#FS{&{lx%d%u7tED*9edha!f&+cpKD`nS?^pvr4j9^_>1^pPB*l2 zVgG|*S8z+q>IN;Csi6_{f1h-NoR@*AM3_m|8lz@mf{^efw5(U2UwG(^PyQEi%evpN@5j-c6w@*3m94aeTLX27wi}F_unL4c!)5Yi-q$%hpiv z8IP7lI4=KHuTmLlr{)n+U?xS~4cgGB%$rMkE-Ey`5)Lnj7l>OP>vhoGw(<<(M*kxs ze1NF6CLwCX&X6u)9LFMtqhTg>KQTGT=pWFZ8`qnYZ8oM=Y)|jjNG&xfR!Zo^bI{lE zOw`+vOfA<*#Zi<^(JSg$=tmNNtMTVv_U5ieGilL%C8o360!+Z%q=2S(1p(`hi1WBp zgd>cEbQ925#RTGpf5yYG$gW|>Ops&uXhI= zJ!+?2xz-7y9wQb29Ts2*WoZ@&>>^;fw__lE4fB3f8C2`OfRA)s-Y1h$S)EZ`c9)ne zQWv?tII6=%DRuScx0h8`VKdT;Ev*!tvfq~u2zcDK3K)x2@iAV{j#2#gM)e+mH@5Vv zyfRzqm>0i}pp`et;|7xqEzI>Q@`4zJrU3Vrm_>Di-7tt@&V|t`4%N!k26UFef_FS1mpk_kEmvXbQ}0w?2Y{Xz zQ=n1UPuQ;{&mG*QcCBu=2&l?{0h)=-R(Iz!KMqqUQ1l4=DdI*g!MD4eTPQr0C>Bqyogf?z+BdcX@e0Oeu2StljVBlYL1-hCKUgV=BjkfU1-SKZNI3b- z1@}%{Y@mks9I4cM&X@D%sf!Hlc@UP)&eMtwH^W_M1m)0GgLZwv{@yub1=eGaezhdQ z;9je%|L`-*r1_R~)?>?7-ITW@(3sh4&g{})x(z`3nn7x62LiMZ!0N5|@)g5#S<4K;|8@CNlGTGN7E^hx7td+!C z+;_FOtECP(Q0uBkUwYw;QJI(LB7u%2nO6` zVW$20`4%Qsu4BVA=>d571UYKeB}?enJKJByz~bYNGy#_OG+aRXcW3^M@cMHuX@qEU z*lu4 z*WwSsZ3w6JS%6y&dmk%2tS{C1qwalON<@dq)}eSrCbH1ZBs?p6FAO%He9ahU(f&=c zL%IhFAic$17I>+TGs^5zZyp%O;ewfhWnM0PS5H2ddV3L0eL$r*dc0EC2%1+YPvO}@ z#_Ewd`WM7TCu;Wg89Ia157#9+7f+YY@~zF=SVky6C;_3)Z4GWhM#cj2F20_>$kt-h z-|}Oj4A%8=Iv`|?(}EN@wl=Y!h!tUP%O?N=BkHujY1B6r~vMu^v8;RQ{cvJW29S)H>IjVM}mdn;v9jQ1(MV z3PYk`Y4HHl+0@t!QXtmb(&9GuR7p$HhyTp;NBCP}X0veVn$!CXt8(sCyNBb1>*3{D z&a=ns(|PG$5V~(MD4Rvl@(?fT*rI|0xU5wZ&y&MPlZxzI{b0{ zly~`+KO%sf^sq2tAErn^FplRFZw# zQff-nXeB~t{zGeD`?i4O#9$e3u_S)%JjYrZ!RwZAM}oc#f~Z-(6{Y~FX;f0FN*7Dg z!9Gg!J?K1(04gZOQe1#4F6j}9|6gp7{Phj)@-jv=6i)S1&D$AeegHu-BnNqMXyv^H z(vhTr_oPT@xMe6Sho|FfKuuDl+pK~CvRgeJ04oGpS8)Id8G|2+C9D=!wBQ-6#4vI~ zbw`L7k~yp^!|5)G69y&;fcFDUi76Y?N5(`8G{f)$Qt^BWMg-Tfgf?fX?dT?x%3&#= ztYZHu)!zA(MeFsOMnPqTYUX3m@U76Z-C`+w-NM)_mwh;=+Vq5zxG<(m9a^rXK+VD}FiNPh?7fygoaN9tfDd zlo&L!N{Wj_cz~zRDkbQ4ak?}|tP$F^4lX2G>Z%VKBodIh)&&sX&4Hnde~{tLa)Raq zX6LMqE$DeRJsVqm8?j>Q?}WhhW&1hKT(+z&Zt+(392g9 zIc~mDvJBRK`wcgZ?lTjhwVe4E8&?4e^IKT;kq9*GU(csX@SlZ; z>M|?VvZNZH#*R*IKAqo&mOn^u8^ACCqs`CD1x!!}9Mz;;O8!))iMXaA@uMxmQSyCQ zk!DbYV5K@^m39u(Z-jv`n$gRQgDwIqq`U@V-w3DtSm8R`L8Pg<6kP>0AX`R^Z_-VN zPX+_kj~OHZe|pE+m?c=H2EuKSM_f(r9^mUoVO7nSsA{azGdhBd@uV0bT(rjS-;dTOpz4SCZ zb#vsw+)>zPlpD6XzNV%)LRGFy;|AMBR90YA^h>|oq)xN$EN=~kw@XA9+Med_eGEXv zW0xnT^F-6Jhsq*pdT`f1s6G)WJ2<2y;>FbHMNd8Vm(b_r*V}<|*}=NT%RxRh>>cWb zhJr`bkp?Xsa?G_29y3|skEV#U}}cUi`&)P}L!EJ}KV5uPo$SjBns zL;VlzDWLv>TR7{dveSwv6RYk`=gYy9FCfseiQ*wl1j29Jby@%_Kpp{1f3umAZWi7K zW>BheUdIW*oo57PFoo#>L@g_~14Oq#sA#_5lX_NTL6?t40b9#Ba{8Lf*8qx$@M))qqKDUyiHb0n|IsUpBF^LqtKk0-U+?YSOsVqZ93rZk9JtjT9OeHHbJ-QXjzYanqkYsypr#bh8ir0old7zjz1*hyABpdnf4ufg zkW{3u{bQO=H`lY`O`t-P&QjJ?6A~}|McW)Jvyjh@LlsZ5i=o$kO^Eun2$odI?5g99 zWn3aumC2e*UUZWjUDV`G@4gA&K~79|8GLqBoOd*xzKe=&m_iDHv7n{OhQl@@N@qee zowdGy&Wr=*Q1)tp9GdhQBqk87pQ{sUd0uM`-}uR7LeLVb@o#JfHyT51y#1i&gJ)>`JRoR320}U3O${Y3qr>E;4Eh z>hRu`quxZ%{n;Y<&QVEE39C8F<#Y2wQaM?YRc3ZdFS z(eVz6=9{ui@v@H=`=A`NvnU>&wmcY2(8e zDac~>!LlZBs={l=2Q{WG3uF28`k%xQmW`WAcm&54>ZsU`mCptFjvFI`0vbf0eTSUh zC0HpO+5;&4w0amV{LjhU+YUg%%kCy(gk!AXO~CvN0XWoMVHmRzd@UZA;tlaWq(H4% z+dUY4Of>5yj0gjshQh&0#c&asrqXv%D*l$d4NtC4F_-~9~4?nnysZC3>i#6&Ma zih@_!S5P91h4BE=OGf2>C2gX(v;<74>m@wJJg~t)W&h2tgYrsYfhXwBfI_>)A13ku zd=qH2;{#Z3G+2t5knDJ@@_+A_LQgo@!iXV81~E$sN6!HMgYalk@G@9GEL-F0A; zz~3BPuS#;Oh$hBvu=ABeQSKY~!Rd+=5*nWQ_Es_H)baKh%@t@df zjR|N9DIwJ95BSVM*{T#KCi^wK1LZ}ByJV}tS|C;Kp{x+}$3uYj9FmQU!SdDC7Q`!!T+o zD<1ULBlZ;%5EDsh1g zoSaRr-C5=W&9-_+dnR#>`P`*R&V}!KeClA^#%1P1tWIgh@CU<6mh1;89wbKd8YcYL zaU&AL0M*ZrBJ4@XCXZoQK!C^31>H9cv92DRb4d0^&|&`qe#ISxUibKCduUt+A zYSQr)kEi~Wl|L>i4Ev(V;c}(~!%*JX;=*`tBWqY3#$^YF8yhswf@#N;UbQGGQ@JwD z*-kdwpvg3JcrCLF9)@E$Sa?YJXBk!UBDcv6rSOsI*&ou{vD;yrQf}YcVYM0&Cx)2`WiRmM+1<*2#I054%}H_2S-x`4HtHr}u}NR^l5+ACCL zm9R`G3qm#_t_0C9dok9$C^v> zG!NZ%c%!AHz#`A0;k4eG2GEsJ_;mkznz-TM;@i+YwDNR!w(sKUc>mXMvqLu%d)eDS z^*oRjzf|aRx0yE6eiei$n~@o;wT-#uZ$A=mz93sJ9xM`~X%Bxqnn+4uh_n^a0hT~w z(Fd6yZLJ=34J9{o$E-yPx#glsIf8qZo4YcF6yjS3YSOe9n}60<+{Tw_6;d;LX}0xP zHLj>pcw64|z5qI|`Ei1Z4t;5iXcE_cWQn{GgDQnC`DEcdk`8@(G>qX2&&C%+1D$=m% z>#_=0(Nt3lWtoYnC^6!0npal0C$g{^exD8eEO#21iFt?O9XpQlBX_CIlu16B252S~ z`~dWG#uWr*RoDAj*rz&3;yHrn85^Bi6~W<0r`d-MIJ;yyHz*!CkV;<{3N8VHfM@Eq ze$^)oFwbn_3pg!q!V@dK%(4)XhtaT#!j6ZSYN8vP_lOh3w}*EsFq6{XKB*V7))Zvj znZsT;iUAMo2a(4o*)L_D!`j#78WMaLF=`tR^3m%9`6UZh2Ybpl&J4>tIgx6BFjEs>fP9R}&gcKN4V2tFDic2vCzwhQ0y3lpd{>kPB+e7b|`pQhW;1ya7h7(Lpn zed&)_VFA3{tw1j_5BsScqOBWUiYfArd3ET&h~j~C4KtvR(gxFN_7Sm1FnGsL@8Xc& z<-SiXCM?fj-ve^ndZMlx+^*I9HUYL4_47rzZ98uF6<*XwTJ$93cmMovz#00ld|R9v zk?`2P+B6W;F~PHvI%U}}guW58nu<1;Qh$zrKqF~>A@%ij>}a1is2^|0(V3~BP~MdQ zNt3d&0p@)JMDbPm^_kOQF18n`CHyp)q|b;;=ED_}q-1}6y@hV}X%d$g8cRK#&56=9 z9AT29LN&R)+h{FNTfh@Yl}t>TgPD}51Q%1Ym-ZX;F*=(;NNJDTPepP3uwC{nXQo1tpOL zRii4J5M#-6m6duN)WQ(Z<5mC5OQVfE2%Uy2x_0TQ=JP?(ab7=FWcJ*oI)m0zCVyF{ zL)mssooFVdo9j*i1>bw-)Q%I6Y$HxmH}(x1?pIV>NLNiF6!hYUkJ@D{)@Dto#PgsR z3gLjds;3mk+3>e=Z4D;IJ`HeOAGNdIu~HxBupe;8@&e0G@C6)#+m<~B3`6?0T#)<7 zc@22{FPvzq19Pbr!0HF0{RW-rmz5;@=64w&5uN&f*kw?yU<8D!z9Ik+Nea8O{jv8+ zto<|!NlvJ|ylmRv(fh8bD2<|-P^73VJ<*r`oIVB3M0VLM!N6W>k|O(ZgoKA9Mnh0r zjF5?rw5cDBB(=OCPAxqVn9=7R^pAV<;b-ROJW(8;5B2pOuX4UJm#1Q}WEoi(|V7YKPk=I*s_5`d!UKMVpkdFuk z&PIlYc>aS3eT+4hXAmSG$Z$fw%a*h|0`D%-HK++ zS678w8fdC{3Ui!h`*}crEt@_3*fI3oItJb83KVPJ1abo$QlGFnU`5&bpb9fq@I0SG z(E*#vwE%_zLb0BcSQkNnh!WlqCQ%epynDUzq{YuC;R-Ak(V|0&Y`^im4*X|b5^c1J zr%d`J7&0PBMaJ79%1g^C+Ct6C=V+us^2QMNIW1#Y-i9pOOvKY6M7D&Mp9Zb?uDcxm zb$xy8ff#dD62i75+Zg&-&j?g6nb)is&Y_SelL1jxt7^G)Pi7!HhZ;{X=L_=~S(@hR z+}EN-+`K6u4G8~A+(HyjhYo|!dDW;~J-8uS`L)La=UX&zs~%ZB7pgiL7P9bU2wL=H zgb7QDI1c^K$PJ&yQ$M9(;Yj0{ofvTEWDw=gQ+U}va4JBw|`u&un5vh zR7E=Go`+D<9H1ndoSVTMJ6O1G{U*KoP~np*h&75KXQ#1QRx{ih073WlW#0VO^G2lW z4VKQGX{g#wTnzyk0WdXkVcZB+%}BEwy3kc$9SqK%H6tp?6(bJE7l<#NMhu$?#I5~= zIPNK&BD3@TQboFbug9&MJ+g_o+J+?hl1Q4!k~x)Kv-&HLanfLw9d9V0*YAx)rp%2> zSMnGU$b^TmNKq;rzA@Pbi$r1Zs9@EcDH-PTm9g0JR!?{T2)oxTpTfSgmogbOq|sw~ zK1?#BJyRnxVH}EBwx*N|R=-QO=mh~FiODXLAA~8SbFO{hWAzj&qW&ydFqHC4rSN?b z+A%eZ;&TqEIy!@YlxCNEI(7uOk3-__Cog|So46+lI6obO5i4<%(WtDzVKy zg$lKB<}_{#AhELuVW>WykeE(+FR)8$v!?R-Y6WrDJFTRtvQG5|Ao;UbjA)N?^X;BH zDc?Ov*(HW5i?x#Fl+ID?>(_fL%obKC`D(&1d#zI^yWDsPIY%Ja=ut$6#4bDt-zj%k zNg+dK$((EQqQs70mO*j(#>d{niQra6ad1fWMkRZ~?8P%Xk*#VEc0W_$qXk(7vJ;mA zu*9_YN}tDPh}gLp*AzcOhru^ARMrDm4VUC zT?t<+F5krYQ;vYmQVYtpHK?M*5nM4;0KmjNKziMY3e z`_wDQMTkO+R~qi`Bs81+NE=2IsU?@Hw!@~GXe|t% zNj}B-ICWy9WF6##zGD#CeFpMPdd}-zQh5`9hEi(hkmvn+)h*GAveHtJs_dHT+YniW zprIn*$<6%dw82-Lpy@I4g~j!FkipbybklODIx#G92j}m$TL#xWM+)esA7a0Z& zreX`z%eE@EC%Cb;_l{IXKUUDg`+^trk!1xGReWaCHZaANo7^eWUFk3Kor!?Idq`8( zRC`Vpnt_V}dBdy2P%9Wuwu@ES&^j1Sw1i^89*a|o@^0dy?RZ=j(MkW?8KFNo|f~Zpn1M_1QQh*R*1SBqgRo5Sz$Mla&=&$#n)#L-$nP5Ky4NrN+ zp`lMInBu^brhuQm^3bYmD&2=ffpf(@O!#!FZj6(Q6hct}P z2nDo0iU8#bE0{LT4Uv$wx`_^edhZN_sTBF%WF0wVFtg#Wj5XEbMQhLebif^~zp4$1 zL)Jr*6fXJ~GL}$?DW6F&_ZB$`$Z0Qi9x9C-bkErP@;>&IK0zJmK@4ghQiI>o-N(|t zoLV>8#{p>cuf&6^*jxK=Aa8@0ghCN&3J{92Y4LF(IY!d7pt4J&4lnHTYwOZ zk5Nm|k_(Fm$%>N;(T0AlG$-gqzYw-MMbhaTdXn++3F)!0*)Nw(xk~wZbW(I~=kEl# zREVZQL2`6*0x%>LA<5?2kjfxoTx`H*doQhuoHdC8%9Xin;ov_7iUq*xagU=KK6bJe z^k>IpA!~BDnnxo=$H7_1@_`@5+8byOf^2wm|jTmx$B*KGqp z7p@UFuLl}Hps+Nj7D*%*EO9lU2Ou%e0F z$!=mtn+aTIp^xLnPAd{XxHX;u*v?6IO4gVd&B|gO$Xa;=KuBx!M8@bAVfx+lm~Yy70*M!A zaOT!UBCeN<6RHuZVoN{LouRvSI=4`ZlCgz$hL5Dq2Lf8;k%lr3-DFzyInEtvL$CoY zz?)T&ThI{$`Ee*%jkAHK$EE7nz6_74Lw#S8BYZNMGmF&_wQnw-XLIwJjBHHJVz06W zvSM&3uMItUv``ISmUaIHSEuXHCmBbS=@itdQt5V`E4er?>j>h`hWn$KwaVUoSc0XL zQ=9!V&cJ2m6}ycs??6y3k_W+1lp8Bti8mGoB6)}uNnaY%T1D|*1`H2Lq&@qCmK2Y- zZW7F!(|Qn%O-~^BZ-Q3Du3y8^6fJl#svzn##Q~m&ylW-G%#R9dPjgmq-O&>32?|=8 zxj!&!Nm1Xee%6|S*kz!w(_1Y9GH_`aeiTR6C7GBuGVSm813wDU;KV8+w}PEm-^thI1Fs ziE;^cmyY;Z&}NDtsh>!N=w@Wzj-wL6-J0O8(!asq7aoYcmlKhNd|iZhI5rf#pS%yO z90htRDv;}Ru`hb~D^DIuzTfv=Jrb|Hokee@b@&{fb5d7AV}}srF=5OTO61$@+A+cW~9` zJlqZQh6X*7{Lc&s_WmwNRJ388%?Q8Y^JOm!ue+zz<)Zf|sOqSP#=OM{p^)+lk8{XL z+5w(2ve8Spb86Q2D(@>08)hHo+1DAF40LvLLZgZacNYl|?6VMhlo3Tg*b02&2ucS? z-jGi>dl2@`1U?uez7scMjXj25hTlh$FkE3J&IAsu&HHh`Xve;>5W84SzUg6_Wq*Qi zHJ+z6{{F^*!79JmT2_?bY%RMT-k%OgYci=sOvgHdzaao!T%H&a0lB1-rbO{r?u(*7 zKB4Gq)63O9^rHigAKi`$CNj{OYCO-X4shjHQ6dPM*eIn@E*k%ggXhTc>l8K=6rbAp zjj-6D@{i*~7!Q=F?AWrWwgEzA&#;1kC+o*g1YL0&c6)j{-=1dFTt5dU_-xo*@xSjQ zlFYJ9)*!7&1a}0etO;k;`KcN!qO1wo*9l#0SaN(7;3LvxEkji$twctmssi1F=uRW`B(+bfe)#Qpe=qvxnfv54)U z%;@$lk^#S{ZHIVBTSHFJ)mDD%hMLu>_ajNxpL7ktvPn%v${-?M*hvdNFod=tK1E?v z0D1bMTff6~hHH5nQ>p@~2cAGZ>&Zz_U2qZGduWcO*aP*MGWy<_&7HYe$}c4dcn30+-cQqPICKt>lY=G|!!U)X z^p)ksuJn!(kfYDtyN#hG{cV&|g<5%_TPWm3jWM}%v6%$(9=K6Tm5l9Vn|XnKAAJwW zFklLAzG775M69K=3L@Xu)t~(%J|=uZ)QvoK!wkuUhQ_wcEaE*w3Q>KyDcq`1pNphr z?4X9rH7&Li-9Q(2OZ@tmk>C@2*$yD(k#W-cJYW+QmwRLkQ}8E8QZghiOA==%7@mYE z=>thSviq4@-R8l3q}M)l&6U}47IO+egJ9v4^2TBTq}TB3N+QT5pu>ucs2WR)V1u?^ zw*2PrV@Ns`qbGr#j9W;ap!W+Ht%M3HE;d?nhze`TZ4Pb|<)}uc4zi5%GK)v5U!pyY zvqlENNi&f0`{QXH6?qRMOAl}vep1AEOpC}L%5pAlcF!vB$Y0Texp>2>m3{ypht1RC z3UP5C4fpp(BSfJlaIYNLOs{kp5@sQWapvGcqY(w%X8;w88qL!WUW{!x>%VippJZ0U z_xsce8tN5e-P=P%VVm+oqW!g$JVFLqLc8&(v)RKv%Z=)#g242A{>Y4-4jfVJ6RMnF zV1!BNaLQ@%?rG1N+fBC{F!K0Cc^nS1Q^HkkDr(SZLZNn!h+9Y&gyp{T;D~P>%2AveGv>)fI_NjQ)bo=Eg;bFspOAQKN;`c90{0(ev=Yp> z3}*XUDp$}GY{DUUI!6tS+EOD|9ireT;l*B4h4tv9gssDKFq{$AmD^%nyN6#Pamb+H zYU5W0b8U`7>Og!UFsUX4M{)fT_K9wqk0_ch)5<{fN)+QhrN-pgHN)t9_A zyh>*m(b&t@9Wy|$#|wMPfKMCbrXV*M^XFo7%HKsJXpA-le?-{^9D%`4r8k@7>Gq?{ zLbub9kG>orIOBL4^fN1EXH-ck6Kq2ciFPU!T}eE0M(h7VS_?6>V)j|+y5C{W_O`+L z+RmXDvrv+F*jg!TZzpxmG085YgJKd8(JW~Ca((Q8M+(%B7VtjarFklvs3_G?h zcx{g^H^!qrSgj{gydviO`ykBgCgdR3Jc=*;b7jml4R1I*Z2EHXLquZ2Dx2VN?mCRM9vO*sw}{}RHG%pJ}a*) z8RT(Y%b`e>R9%z1)a zXz=ZfgaR}u#*>{V_J2|K&Ow$v+x}qLw$)|Zt}ffQZQJa!ZQHhOtIKv5x-{qe?tQ;` zFXGO`%=zm?>>ar?7c*C`^;xZ{5>?Za9}2K;LuJqS_b8gkWe9nTnyBF1)|7`C7Qg-$ z&QFlBKpMgs$_%20>M561&#!zb=MQ0%=2Rn(5hh*6qaH_PpD{6&C320A`x3hs;TM(G ziguFyL}_Ibs!J%K*hoq6-k@$2Tz)t1rGWvY0cT-*9_6g_GkIkXjgRxE)`Hs~y%W9(ZONUrPV7_|`&EBP41Gj-a^vyIyUduwcQJ4s=nThAAg>{L zv#ab7EQ3SbJZ=~pcy@$aq7|$FN4KLaCOg8y2@B?^3EI(W6W&N@`q5xz7YpkKmPhs` z@XWk$%4zeF6(g=p#7Cy-uqIJ%LVEKbSbB7ZdUA^{+?A8{kbkZt{vusYEZAz_gRLe- zYvMliDA@uZ=Na(%@?V~hRNuGjhyA&Ft2W1M%I!tFeDho-bU2xCPV@F-a&?~3|9PT* zT9Ie`Ng=+8PK#mLi-mY<$%H>!X~|zqRXmiPdiaJS<}86Jk7ao--RSor@jg?HIcM(s zM&$or|I&?&D+urIT+~l9J{pMDnG|??X&WqzpJ>G}+J>_aCIqnP zgrk+Bm8H>a7M9O|!P$a{ePjU{HRaPXGm?q{FoB};E&=e1KuMWdwiz+$?FlM2v*r!Q zAV7Wg0+~&3|G>@z5?BEEm42sn^?$)oge^C(3s97*u3ayOsIQ5mXdw{}(BYbL%-(L@ zTZsp#B-2cFODrj)26_qiHuiRa>$b$K5?SCg*N_}ux>0nj6}T(1u9(iuw|-^71_`sX z8QSL7Hzq4E&)_E1Ps34bGJ+Q?w>LSD9q+7LhX4;;>ZxRT-y2T+gq|H$pV-7O>DKL~ zVI7Zy@;3Q|^$rS$z{~(X1Un$Y8N2rdcUtP2!&C`W;*`%zkCBAVJlL(LKN%jD&oEdK zb6lZGArd4(q1j;9u|NkCQe!F^2c^af^EUpy+vzI{^CeP8y54~YQ>YegAAhbOr212C zSqDWy3U4E%ze$VbEuFCi8QcCUsHY9VhLsJoTW(llrU3M&1aBA*`R+}!Gq8@%I} zaD%y?9+&1Ze0)iW!ytIM(#rBO=B*5;?VkuYF(~v91a`c4y%odRE#pJiGDoo9G5wo~ z>WsJFW^9IyDoqpH5Ju!OaFDVyFZeH` z^O=PES5^eKBfMR?b9v}l3yYq1HP~!kS``CQMO;<&&1y9H)mlxz3h6i1>DY39aZn@l z)us_y%tnJ8S#uP(nNHMEe%lj&PJFP?9bMSB#ZNq9F#C2?#q=oVEh&s%<*2c{ z8Bnp<-3Q+Lei@Is4!qF#!St2J0QW?sG`Tu?O?N=%8}>BvG41(AOE(( z=76UQf~2Pnskn)E+GlYj2+Z$v@R2He<%ngXI}wVu+O ze=YFQ!Ud*|HX=o-NLq1xz2GMn60|mV**TRP_NQ|0@%DN)R9g|V6Qk5E7f?_sUECB@zOa%Fi_S zbE)s@YiOfE^nlv+5urhY^5(L0_#gG-k})03=WfYrnBvz7{0rjh(MPF_XP}3Lp1Sd` zv+u*cN~;5}6@$28QUxw8cX4nUh^1=FM!qctbGvPTx!F7@GORVp7eiGW z*rHVtK{1P^khot(<}Rxh*3FL8fBLS&4!AAUkcBM4jEB*Bor@YE+Stb9A^fzYb}bLU z*NS;twm8tKFXZOY8c26R*m)KbKbm0}#=2dRnE!P&yw0}7P zLR|*(@CRHmxFUD-6n)gaEn`Go=T?Hj9}YRp#21D}zD-8$MJMn)$od>vq4$#zo78&4 z!)!BV5?*LYt)c8`qSzxjyJs=Uvnj)5r2+ye{SRM07?8X#nqJ^sts`iy7{O2d!^+Z0 zu(n~ft&9Z10=%f-6gmuRQ|a5oCZT(-GIxfND&78Rv_(4-ftNZeEDLk3SP;`1_K4}Z zav{k+`NwX_Y58c~Uvq#t8#xZ2TXTSucVH(T2zN+SHPd~LEPKD1K9x3d zqHeaYM}AbNMSEm3tnoEz(`IWK7^3}Zd9};hRx$3Yy_>Omo@Ce9!Ys=ux3a2(!}WKU zfbpf`C{It=VF~_jTOewfToe-uo7QK+6%*?5Q>fAM~f(1-6m@4sAG*>~sj z@MU}b%s$q=TinmeO279>5dAj&`StVWmxeMb-MCfcCd+`cDgL6k#r=sxTpM3Ecs6=& zA6I%fnvkLOe8eVrWbuCTR&^?9(Io8xFMdsgBO4cimmNfR`<5}Mc<}ALMWzjp8}{AZ zVEDMq{-2JsP%OE7JH2nYj7|-Zq=?8A2Q|*3yE1NbE3;`$o$FDaW43@>$NQ7P5r1IA zF{-uh$NzF!Q&C%t|J-qgsIy}wrQ6{^H7C1m(BpJM2hR_$#cF9gk$Do}pX_-bs~4LH zpDb9GF_I4_mN?%obi{E2u#uTb%^~3Gi1$Br*z?m9sIdrH*C3jqgM=qC>&fLcHK{2x zek&E*7~6BRMWvBZG8^;H)kj$Ff%7RLqAGhJrt($b{PVwsyxR(Lf}qlB3F%eF*| zGdk%9=c{KxQ-Glpp8D@p*S@7se!-kSL+$T3$!E#eB;`y_=<~2u#$}Go)VWCF;LMZz zAqLZ_$7ny|$^>=OL@kEC&_hx$%*+`|mg$wfvSviSJ&KVzD&t?_P zz0W<|bcP35o4KNnUJAL?l(-QJZBl1Y9>|HEKTMzp0K2%~TQ04Hncl%o8_NBUWdSUR zJ|`0kX|z#J;>6mR(+TperIuYYmpKXiT`(1HCs3HN*P-IL09?~8gS40|ro4Lk88ckj z_;nFDJ>^waqK9$u!4$>yDZJ_-_dB))Jvpw=O@^C21}ilfyUmXl(<`uNv!PaR^h4k~ z^6V#gOx`<;`!a;4qX2Q$ULZkN;=>ledE|tb`1y9=+3hisXrU_5Q01!iN zTgqH?=%t{0DdivM;{%sMh*#`#6MX_{n0M_b2dyXm&%!91lThChgM8k0x=u~_UrEJL zj_}+UddC9PWUAeq4t8`C>(%6KBJ9UKnN;JqHP zD;k8NpC2qVU#nR}CAGVgl_~1$>YDsocj8aJ&2jTQ#=8ipaOE=qu_KqcC zqUKD}H}91BEQO=Xmwd5$O`GCA^{p%5Jxi8^-H-e*0v-Ni9Py<>1`)-v{zc$#1!cwF z?=N54BAcIl?>v9c14+@sx4v_tP4w9j_`ND5lwEFopOf_JPRrgcMnD?OaFHXyDm~EG zTm%J{es2*Bp-1Rq-L`@BOa#zjS4^DGxiG4LU2+;a4MUi~(rv|0L_|{VQIBSBMU-UZ znMjuzNLRlog#cHf;ZnLi1<_;E9*=u9Mhz)cGb4NWwW{=J)+r;GI39?8snNct)qj1j z1ozH_sAwO z!`qOC|+P?t&Y04R?erSTMHN5 zB;8L*+t)wudZy*^u`x)EvmbVvSo}FGb_;T`TholXin>GQeO~KltWF|^eNv9856gB0 zU49f1_1+g^{mu?I6o*o6_?ezx6?3FaykqrR()WiWVfsPvX^(mBH`J$JEM)s7q|u}G zcU2A$oZzaWYWSuy)OnS%qLMkM64r)L#_{%(cDvm6-zwT|0sR+byQ}+G8&WO^m~v#@ zy&zI6e|g1iNQ~o&piP*aSg1CU*Y44~hDk{H_uMrsJxlgp{p686(Zm6owC!0K|NN?q)>(TvURGT9X-|!m z5G7K*_~91~^$##?`&~=FN*#BBs_tp(n_X;$$CLMI>Rw+Xq{*6M_(Iy}-A}jkPQ3$h z-20yx3ie-g0lB&OAJ&E0u_<@7#_VhFKjmrC7lbJboT(+4& zJ9)DeNWJC7EPM5)Qi?%g8MTcWW?+xJK7T?0^NdQU#-aJg@>t?4>$#!Q5K7v_-zL5` z!QBP(9`1}^;hZX0VbvBo=a^qsddpH*`C8NLMyB+*xsIx-dHc;ni?Ys}(}=X{FqbW^ zal3cm`1cEta3(ZMb>W*IQnHUYX7_=f*+JTmN7NsAT#m)4*z4La=vTy%aIG3i>=yNy&zRjmc^#`Zg6(I(+$e3@AO=^{ye z5Ia4mIXKeiM6{pwWDfDVd6S*cPEfor(4$Vo3nW3nGj0A@US@0l{3=X?*v#P=D zj|q#&8OeYVa%&1Mwc&`^oVZH9T1)MZRU6Y{G$|Gp6Ax8;D)D=Gg67m5yt!yCbt#_8 zY6tW&$^5q}t2HxmyfLIL7lS8p*_uuzmzByAGLp_@2c4O{;Ah@P{GaM2{nzTt>(n8i ze0miq&0^TJ3k#-_F4Z@xNf&);$n;g z(3J^1t5oV|flbogCUKciS%09ZT7On1I-uv5I)On`_tIY}Tq;w*N@X8XH(okjW(xa5 z?_1&_4@$ix*#6pu(s8Xy{v6xJDo*Rf_w~FR85{h?uT8X1y`0G#T^puP)1cQdWt{+( zY7~sWhdr#=ZcYgPg(((??%F`kYTCd~HF7QI>jNY-zBdyYl^wt`w)iIxM0UN$<-Miy&$QT8U?9`?WtfST41{B*7Xaqyj2pzhQJzG zVVJS_nH1xeEtJ?O#cBi3&HwNjO>JCMXaS)Q=|qQT0K*de>Q=cUQmnKT<`XOz>dxk6 z#6vDR!7YM8Ncyv_8izz1z0w{lkIwQbO9~uRD~!qQP5VGqsJde zB}WPP#4N!bP`Iqp6Su^Orj9%&L@G#R@irg0(iQwug}jDS5Iw~U)d*Bfu54UZPun>X z-$wk*pgdh8VVbai)aOE=KX!OJ1S?$=8Fk$9V10Cfs|;qYdJ^MUDRI~9opqrn`KDi z9Y$f~f~G;Az-OFt{<*9ejD?F9cqA{H5mG)uI!2nZQl4&z>ah0OO_2V^e8FE7FQyRT zD1K+I-}d080@e&Tf2Ss`)>4S&3)bL_Nlce$yclQ2kbeG55Dao68y-?Z5JQj<(At~t zi>;>3N_sdYf;*?%W5`0$4&R{$&gvnu0lP^heC@qe)jR^WdwS?AER}vn6{?QlImw9c zX;ojhXAr?f^uh`^NG$CqS!*$%duq&xM=qj{&fmy+JO3&X+tDVOwKmK7;|3}JXXNb6 z)NHc`Dmo$}X!>=Eh?EvfFkbT0<}g@}BQKldXZ@bAY!%1;Oc`&qP~OH*vCB2P^We^^ zg%$bErrot$_PEQswYvuPUgK1LjlMpws?eCWI%`}Gb>Hm<={62KdH-tL+AP&!ER!0FjgDtK21x&hWyIqe)U$5a!h6k<3A>j$G!?ah{T|+)X8x zHPyR$VNmVA?R_r6fc^;9QI>ji9F4~r3Zhop4v|~Lx{}S=lAR{2B5f&8l%+B!??JIZ zp5t|Y41itPW@2-4y3f!Iq$+2UW6qHix9b6cgv*n8v zeCl7RGQGTop(q-ZE!>D3O-|o>C&SGSzh%vaXWdV$DyALFKE77oi=5Wn-oCA>Pl%Xd z@Yq|4e^j8WxNICb9RzG=$XZ<)=P3)U#uH95ovkvB*M7P zQoisIJ_gn3EH0~3d>06LC>-RBl$Utt7g=wh`O1_z9GJk7fSqhfv&i4U8AH$M!G!PZ z0Sb43^hy*dDxt9eQCG6Di6+L~6gZEp_#?%LRHJg54V{S1K(|;UHFYwF;f}gT=5QeB z104OCvb~`Q8j^%3OeFF$nBX~ZfBA!)TEQ8?C7wfUzrs*3rnIf2mbQQa=`{wxJQG>VXpHy zanbnHf%i$5fa!L}S9gmm@GgcJa%WklD^8^hBan()<6^bA2*acGbHqcnXazNk3{QF= zWP^bT-Lb_5r>QX9v8FUY7LXV)itY-+Nfb2`tAI+DGxbNPnn0w!N{}k*XrVShOR^E_ zK#c2hOM~gEN{R+g-wj^#R>8=X|2kD%pOAtEZWy6^bqFXIsu|){Lq~LetHwY|8T-1R z(ndDP(S+c#>3*8`cu?nTWAEVQMWZe?s*QmU$MsFl3En+&cIYSPJN10?`m`KG#Hhaj zy(AD&iwl03^=)LV#jW{k=zp`x&GOS>thv#ob}W_yke}VdC8(}$p^}NMG0D=czx(0v z6j3T=E`*e(9n{@Ylx%@en;^NY{J?uSP`}rp_7Z!zMK4nplh7%QW|+j*5Z)^S5#v|~ zw~#o;+9C&K)A;M2jdwPCCl1)hU!XT~uxW|m)SStf;s-`vwmuM_S7VyaJ;s9d>1yY2EvhHUg*Ms;=$EDHyFzR zb@D6bhxr{4n>+Um)HJ8(Sb5*zEOV_cPo6sgHo+KGoC{_^;isF)XYTWs#UB1q1_C=h zT9V*&8Qywn$wQOF>(eh0GEL_@`RG%Dy+3w$tYMR7bTfzkt*qL~maI2D)(ifFeneN0 zgL?=eJ}jM9?3b-IDsnZsfjM~~aYNadcNdASv@ZRI8m0s>_Ves!;4kjR%j!$}TX9Se z(XCPp?P|g$I6KtmU$#yO7hN3k@Kwv?6@MCO`K>U0fe&5(_NeQ5TJq_>2yem8d~Xmn zTSZ@KHJSAY%P*_l_2RuhShM>g)Gg$LqM3tOLpt<{iP)#OK-+H7b?2|Xb>jFI72JJQ zPvrM(yA#0m0q^=~e|HQ4^k_xnU&Y^R`a_f%IBzDTNV1)_^Ov>JS1YIs_CP zr2!ro#3o7Ekzhpw>{T0iL5EB>f^g00Er?I%{NRT;V8d*XF3aB@s%^)SJ3@<3*n`GP z7@8m_D0kTIv;K;-S1B_#l#psI|2HbS7$t~e8QLu}xHEUPI=;; zC<`7BD?3a$h06j%D`h&p*GuScQ`5=~+!t@GL4isZ9NB(5tO@-EMlM|7Z%U4x%HQlf zN4|}D=bskyGt$)4{dcHmI2;moGi2!ZM6rX3Zef2E|8BaE)>r1^-FdRY#HivuIyzti z4P2zGP(5c%JwE1UPsNSTP>eT>typdoQX#0)pKYzNtRdgbO!F5mYXC)Fz=Yg0^=Nfd zrmpqT`+GOh=3AiG)qYDbNJa(r2QJDhKiIh453#hpHwe{QfHNPCz;B^{i}kAr4kQNr z5kVGVpVEzSUmep9I)nFwCH|hif-QfB1!rS;iVhxnVk#PF9>}U71cU zXD0rJEB%`4bUEumD=z-bwZBc%FU~C~76~H3z0y^C12vo=FomY9WlX=%(p@VgP?cg< zE3=4`j;9%$54F$xafTZJ8@Axvcpn)7S^S))U`yF5{!H$h=mcN3dflZ&w zRZe@Um~)lo8pvnh`V%P|m76)7!^U#C+sy`{T!!p7usOG?a*Q|%MutuaY zhoz5Nyf|9mSK>S&PWzAh6a!)?xHRrD!x|C0kkN6i_1~Bn>&Ig6&zZXxOIYuOrwgM5 zns*)n55GewttLaM6h=nMHGI-M2Td#XMN6Byhb+-mfaBp)1$gQqkSg^8tf(9U@sF%+7&-lAzlT363>ndSj z&!i&^xq4mwebGx)k4=9U<9o;xu*2B9inaueXF@| zGG~t}j+QFYZ)iP^C}pdH3=gYxWu-YbDvQ?^7Q#)mykCq3R%4oae`C{FztQ4m21*`9 zvLEnMHS!GK>#9MAlSu9w*bWbXGmsDY1y-5sbva$zWrHLczd38jc01Pn;``p4q2DNA z!T}*4r!j@UW*p(lliC!)C~9N;`>zD9a*$U6gk$-oEw9#|2VbXkiADfTWW!|+{f}fi z<6DTzLNkksK^57(g^XkFbvwyK)*aZ4Rk{=JpUe@F77FoZ&S$TZ!^_Sw9_bx=Nfpi* zrZe?~ZD!eaRVzVbk++NJPrF2<@45KZM3de5sg}lGB78r3?+R~UhQM7zJ(7(T<8L># z#(v<5sm|6NMOy*q-g1Ba3VC(9V}_2RlyJvi(n8y@N}UCuY+jWR-Lp`SJEcF-JLIlb zf|bM$PW8fd-+Y4*JQeX3I>-gdyPrZ*-g9E8gu-@}5x1Q#n;KRIsr^ut8L?ba;66rQTi8e+dTU3n8 z%`PX?vK7X~#c!Bi%t=P0xYE+5ovTkDVg_{$&uK2)751P{vntT zP};W8B8KLq~F%@ z-To3G86Q(8pX=*ok?^5_QAgxa*78OOv^xUcW*d&QZZHL8Z_rl7gfyW9e{ZXiEm!BI zXLmYW-_5%%#o)`cKi_v&UeA8NM%+ds|ma%ecv#YuRFq#zA?#>TJRaBvrvN*_P2O8M8P|LnXpE>Oz#*u!V7Wg zIuNjyHxujt>0-2GB-OnF;c(KGu4XzB#_i~Z3_tx91Q7M%OFtm*2ylK=)dl2iq4@&N zZ@fb0B#DBO)S{WCQcJsSWz@ptIwVy-GwixemEXSXNI}H1S$;C!>FA>Cy)Wx8uiM_1 zY8W#4=}<_lpg#;n!z!ajBiMNa{Cv9DW89Q(z#I%&)rw;%Ou9_#$$~K6j?BSr+T5Gq zNXIaKQWik-Pv^@->q2xuSxz^Yp^J6x`ZZyS6GP6D`FV(AvD*wWvQz!W^G)M;gE`RR z)>|pf%i5Af@nWEc_{Bp?SrsxuEPFL70}ruCa*M#u`W;ih1^v6rMX1$Dsh?nz;4qC?{Cw0dNutag^p^WNop0s4XI6ug(%ob=HVmw^!~3oH(ULK@*@T`V-PnXs{HXXNx-TT-p@+4J3U1JThZGTu9HiQ`^D5ixd}Q$vs;Z#Et`Z#A_o!_ z`A@QTez54?(?fyc5$AEdO)22I5~P-YGUAWgO`rERn#cHFrf%}L+Me}$?)@z|#5mqZ zy&E@b^)V>m1p(?YWLB! z;H!$xFxMEh3SvPt3O1Os*q_v!qur6?{gniFsetdbwZfoHyY-vCFT=^j_x!5!Fk!E6 zBd!tUzyI*IrUE?dvBtlWu-?^?xF>1~cU<)%fH5^~GTFn)g*eVe7@?#JZQaO}h^g#D zh`xJRBN^wOg&vYOj{!g-a4sIt$ucMam4u7>>MMpl-7HQ+wIK<|D z1iAQ3Tpq&>h%0%_EvUa6@CO#^Kvx8jX|;u)Ji6YQNWQ2Fai%7lkWNrJfXN@G3AxCO zGe15U*SrLMiGmyNS7$;A}?bdM*H(8FH*vjo)>GfyHskm{HSiOjtRcitx&_j1@% z4|Ieio0;=`_Hcn?pk2X})6va*#zj}@cuY5e&S&{|)bHKQX=`Bj3w#vU>+NRfRx3@N z3lxv7LX`{+O;uXr6*u*wWszC<&YYzQtgZ_sIsoSl0K5>Axvr{vedLUuMvSd zod)Wk#Xep+8H%O~k4h3s-jB z`?e5E+|D1If-B%c6l3gPKBSiet3oV5@72nWnlyvc*bYM{$>BMw&dpja;+M~*SFZ6j z@#FYe{A?t+*k`QmZPxy1%5JNCel%6aYl%^-t!8$*5` z%b%KVG=zjp$2DwLRJEhWkVju)V69=rPv;syX0byOWzms>uq_+qXog_AjGp0av6}pN z=T;5plrbO#!U~|KtKVG;%4-lO7>GxfV?%n3lu!Xgu;rJazKibY5ZWWq*7V&24f#6dH3>$KeUWO z%*BCY8>TgQ0?sLsj2}_XRlZ6;NzG5>0(h>6X@?Lq#F6&O01Lv-c5oESw#*wX=I`KQ zo$LT;NQ<^2T$9c`&U)Ymon_U%AI6s2;c(cEe%&YTX%$NLoCW1Mu~qBBTRkT0dRw9K z6<59o0%Kr@h%&{vA?>DH*CF`QJFcf9^5#QI zn{V;rWzZk=p$nYnpIfVcbThTO2#YTRa~Lm-T|r9SaBuq;Y4@mTeKUi4@eiNS9BEA! z7(H^pV`Lg1cke;RAs&RyMMEq)F?(RAxV2q&)?r}r<;5L$*j-egDkpWZXH1z$VwZIK z?U?a9zu#6WX6(NEJ4helx$Jn@Td!UO6YIN2E2*z!Jq@0o?=MDCZqDaOir$Pm>H3#x9=00zB^R;jO)xZyMRwsfwYM|jfTvjr?{TU#9gN&5y+zZ z?iL{r;?ec;bW{E2EO5w3B@5vsKK~Wz+_oTR_e)$T4i8MeCQ86$5adE_^o~NZYD@QM zXBwx|-??k=bzqH_V<~~~vv)PxSN^*4blez}pWY&Z(?y}OzR3vf*w3We-8P#-YbY}R zdri>3?=K-RvFz#z=XG6{qWAh&s{w!OR2S6-V=nXX=@msC$;IC6R#aJU01i5B79xl7 znH|?QeSt_!9QeMT11g-Ak`L(uqV0(uY(__*Uawk(cr-eTFru6ZVE}8RnrwBHlU4Y&_*F*?Xux?k={H<} zi$}I>3?B>#6I#d=IIcVqoJPdHys_zT_~v`CxmTB=n_k)p?V=QQ6r1i~%zLb`@_n=+ zMjw{B4P!rCw6*>}hC!uECbKG~t+Z6Pl9n;&Ft`-mSHG)>SC42cCNf4LAwzY*t+2c- z-_(ogs$+%2YVf}OS`iWqF-W1RBZJUgJx#MI^Ux_CQr*~oXwm7GMI4d!gmh8qeR4#S z3w-Z`1f&MTdt|>)JS3S0(oPbA2|0Nn;7tk(jz z=PXP>AfdxSXknlosroKYb2(e;RKtVKFOCz-m0f8-g$i)prGV)1zg~NKDqMaVPMrSW z4dZ&mgR>vK&^x5dd2af6{TQn)K}Q9KAxA<#0Sz2g^~eTh2b%a!15E>sXG8lDnYyOr zM47%)%(MGfoIB^bq?kQHQXLHyCR9Mo(IEtt{0N^tO1iDoX?!Z7`Ovcn%MdWiko><# z*#q7Kj^{*MJ?v$r0O{_p+3{q|Hi|h2j8=+BkkLeg`@9@1;&TbAa`03>6R?1B!0QxC z=pbK=#vVQb4(!$gl&(}dDBBGQ<<3-hugE0LH8#qhU?PD6DZ4<_-+%=cIRL&R2h{NW zg8zmW&zv9>)^OzmoOBM0faYmwYGXoV=x%7~LgeUb>S{`FZkm)1;*x|8>z1So+5yH$ zMFo>|154E;47LQE^a6|7qyte4+{6pj1u-XxFR~9D0BB>At$pA+>pUbmFp($>k@Xo` z3j++qX9eN;54*wu7nlEsT@fCCs|oWsJJLw$WNeKRK34es3vZ7k$iad3(BUcm7rTbO zonc4_=@55&IF7fAC#$hn^Gd-%fjX+-Fa8t1ApXEh*=pO*^lF@;(h=8vOI)shnYsgk zfg+XzC_M@2Y4-nxU)IiR=LFY~TU8O{DUoqb9Wtc_q5yu?65|a1ugMk1pWAKQuH1`9 z=lVZu-`!rnY#;gn6;8uj|EIZy9kQhgXVLUJMJC(PRXS~VFrI$I=mUXbAfEn1p$Gs2 z|C>VN(<8s3W5`}OSh7DmV}#~--rfqJ-u_FVPov?T{?{bxFZX)yzUMx+Fbk70{XcZI z{VwKmfI2}C%>UCQAOfvU>#dP5qm0R$oh+W&8X zZu`aW@5qb#){|Gyk_gkZuwh2JkWDGu7Co2mS-y6m$)iX!;6K$X(V>rG4NJjix`PM;#I5`tM9_&$fjwJKR zY)}T^&sM}=w_t(uMgTI(1J(aG8O*~lH>@Sh$h%m6|L}G z%M+VjSZ~9%6HpZ}k(PuBLXUXnl=K2l^U7*! z4zm)|((-gC2TE#cYK+S)^DGMUP%|`AGm^5ja|0&84S*bI5E$!~vQg8X$dGD=P&x&QCW58wU z@c+>ahVdkB!*=x6Rq5s4Ni3XadqD*E$6Nyel_NO(h74S#18~9-DE8l?%%016xDdyU zn)f%u#to08y+7Q_keZbd@FOy`F|{?aGzO{#ksnAPe^S$&hHQP>WMl5cL-0wkW^ib8g@L_r2Pg?ppFQ z%>a?j;T$WVRZ95O6Oh0zfJg(3iH3>r(~)WnNfL$gxcoYE(fjhG zc9w_ztWk7?7y@?(&gX<$Dm>2fDze%CjaHq zKta%kI;Z}qdne~&wyx?;A4ju}r~b|dD5V@)4R_q)T7rkboqN&NiNodA2^bFgu?Oza zZ{WZkfc){yzK56(nU&7Sr&ngM%bTzng8_*NLiAq&2e1R4PWmK!4vC2&i)=)*^y)Fw z*1K$DT+jKtg2fzX5@{c$F$Gygjp)IvudE8uqLz2JSr&V^2{<(XF zhH20u1c4hyBD;hMNX-Cj;ee}vRQ~-w_kVhyi4g!S&q^dBAtWa*s!VTd0`&jeO!4oF z7=kHv)9zzt>aUANZrk&;O8sM|SSJhHW>zir_{{RYfmvp!)Jmhx~gQgZ*x4isg0$&{_1851gC`hF^xBe%whtD;bi zs-mj%yoX;?GH?Nc#7q=y98@eBhWJU}1CdtxgCukH_U}$p%NA*H`oD;W^M|{KvnLOx zjpBu%(}HJBD<5)<;p6>@0UL2e^EF}D^2VcVnfRz~>{&^EKMLv$oy8j{hE+Nj^@;hA zit)J#Nm+W}io~3@d@|S0JfN*wcs|4zz248A77_SLYO)4WCaMNb^x`Y!wykA%I`^L{ zjU3Z!yX6FVV~*=EmDTmEE#)Z1Cy!A{1q_R{h+=oXorYe|%99&wquvEpQqs)M{j>D% zNbc0<&4bo%T)F1EY8UTo)_(q=K+|?koQF{V>~FMZUBWDdV>Uj~h2BN{Wbf)7+U+Qc z)pLDf^sRCW0s}K5BZZyhO7(=uL?*>jvg`UfVWIwfq3|a=7*`FiTD~IYA3vZl3u2`bEdRQrb{fWVd(U=m}AU z$qEc4sL!!_2pRwjkW&_*>F;TfX^?mww43ItA4^4^i|ub<26}|MdB1MWLK7Uu(Omni zc_6QtLVgUw%ICRP;xsG|kYzJrQ|v
    K~wFaXK}D1J3aJhvcoY|2~W%aHVx#EyIK z{Z~MNg2>9hMg1Sy(>Js;wDEMdbf$Ok1Y#|s5hn3mc6oj;p1X2xBFLQxhDt&O&P8Lw zUr7J6$mGB!)T%9yxKj)J%SI^(hi2;r7;y5^9%=^AE>ohl=l7}r+eTtto$X=w^7k5@ z)0n_@q-qw>(gGsF4KVfpc{AdLD@E@%_@j-*iB9@@gS@@?fyr5>dJ_z&&J5=30(c2P zg{;lF*RnWAKnaYA^eA7FE4C-OzYEeX?ey{y3{V&bG~Yf*m^xsk|8tMMHd`1nx1478 zAu{>L>i=Tv9D{ocntdIc|JdBIZQI(hZEGhxwr$(CZQIU{ZRg~@bx++>x6b!fQ)^~c zPj|2BettqQ9D5yfg8vBy040dt|I?C!7o1Y=7I`Aw&t`b&y-c4U-YNO3nt;k#;A;Oj zOA6+d7pB8?K-D7nev=vcxsh8|576KS#^pxZy8`xS`gsX_puPXzF|LroFV;DPu!;Af z%ADZqIeiGYv^e|ClU&5UeQ@6^)1Rl6fU3T`9P%A%#UT=~pokKLAOHzLsDOl7M6d)L zS{w=|dlMrI(?5hJ7S84-j)Z0=&U(fM&IW{bj)YDowoZ1AdbS2OCd8BtIuI?u34Bmo z4LeZV^o4)%Yd12z ziiyRyMkYQEmzJ!%e(ueC;OakcjsNSK0HQt+$=dzIV3b#MH4Hti{X9F=xqw~?5kxM4 z{ZN07@qr(M3IH#V$f%6D-pN`jd%~m7Fst1hQ z{D00P7~E}<8Nbo^#$K|z+o@KI!y*9Ki4!Q38s_eQn+F8nP!9GrpDyhm_7JzV{qY~+ zm8q#GAS6Y^wV&*R;J>{s!4Ih^O&fNFa_H(rc{4~f?Q@t%p3PHMchDUVXo4N?`UtA} z?kCH&GJp80m2b-nstYO$Y6~g~Y6_|f@`4Sy#1lI>4f71D9Aa{Uy^D}S1;8pj02US^ zlon9_gAXb`-#mh9XsC)FQ=Z>b0s{F3P7$g&J|#~%B^jkyFSHU^-s<{Rv4PvSvGD}` z`2&hx5}?8U2jM61v)d*>=|6656s#5rn5O{>LvMarz8es@{Lz2MqG5#~f%kunUBSZM z)WX_?&f3n%3W)u@qeuaJwUL=$elr7z?N2Qmk#~X&Fik=ka3(4WhiyphICt@kOupw1 z(Ge+jB}?&t%m~(vBI3Fbyf*&l8FjT31r!*^(3(D==f~?UR_@ zq-r!rp{vfwNTqO`N}!adr$8hT>W?u9`wv%-ABtiglm14?P;T%99`zge4Kg*<%|o<{ z>2`R>-OZ-(a;$jEs)}<2_u!BB%-@xi@0+)tugkT|kr+v9`R=8|&QnHKGt<~*BWk0m zw0>t+SH`Y({rs>6#Op{}qSlko@eQ{a#Lc#Q{tcgPr`2q)36hPP;(@*-1J#P<#<|ES zjlwlL&c^kFa=AhlZjXt!8q16pWo?9kYNaz4Q_uR$oXiQUz(INmS4O%7z__z z_0{z0q*HZmw+%b(jvtcG^NnJxDdb+Mc-G#nXP)B z4Xm2lHl^QO`jfT=R?WXC%U)yEV$%XvS)|r=eRf_2D-*G3jx}+DvL`|b1UX2*mM|As z)0m8Ix26H{6=?%ER)cJCC3j8FdYSED32N6{?Mpg%Tb>=6Dg@<^5381WFhij>LH}^B zW!7G~TlPE-Wcl0C1Wm=b{r1k=Ci+!2e z!9~p0oq$x5K50RAQW}cs&Gjkzo+JZ$8iRc$Ki!FRn2ud9DUg zdL?O@h5#qO+V=g~j9|U{EAD&yN7R$x-!USt@}&%_7H;>v@T5m3Z$|I;;B2W(vFuRe zpbzDwBKr_maBs^$<%x{X-q$#>d?HF2in(bz=|E`xOUc-rK8d+5VGmvJAq#0~xco5G zWx7Ot&&RKfmGh#l?C$5jOTU<9lFu<}(r1CW(@Rxpmj2*=8o3cZg|58_Qmd4IsW9-# z6>#1$x@+8lF}b(1d5W}AhGi5HjZH&~vZh?1HFu1aYw(^pB;`k}3A{a*Ha-o))?E+v zUEbeOm!~mZ&xe)I*+GjIQC1U0f>x60(sz)r3_<<$!{t0u*)76q-WcNMczK`rx5Vfg6~+NEaczU-|hbDOZ;at zUz7CXkGM!|b1O4lN7mcVat`odZ5~(CHo8A2H?F)tgY-DL^GxOnITFn1lXP|kLJuOT z#Zx%kG@>qL&=nnel3rq#47Bhrkt)_7XT#JWEHO?uQ59g;v%Ro`cba^KR(hQi=Tij_ zfs@o_yx`3##`ndR8@MMnvM}&ByFW?fac>SenWp+23SKmU%9o88c=fB}Vq3d1o%9>476Kou3ssVS3KrBW ztfpH#!Yc?ld6Wha3y$pm>V+)GBnlOEpfkDHt?AFXpL=@7dB4xV2z0t2L#`FYWkPw4 zqLd-4{mLd<7bBw)0KQH$RJdf0v`w6m)|^8kmL4iwW>^n8b3P|50gGTj_#mclR((&W zgb0w^bCsAxkb%H-XyCMy7d&7Y7VGDfJ%HT@wdw-&=~WMje@fnwM7 z)oB92+1x`s6D)bma#7DmA&}CmNP_SkbU8HV-c@ezN&^L>=YfMkfu(K)%T`4KeW6%U z#^IQr(F6@ny4w9YTD3o2kB?_!2Fk*j$!#4o`;q0umc+oI*T7W5fQ*x34LE5}jHMe% zu-P1RD4ubSLlBbZ!V!SeMyaR-E71M%GaHwQ8A0S;VDTyruo;mh7Rt_~9z1y=vLh%^ zjscJ?xfH7@4soj-lfQ5&+F;ppD}3QK?dIEeff}yQ*L6QZ8u%3rf``olh718GWch+) zMRhmnmcY7WR$1!<4<4_5}?{MGAP5$lU^J9fsi7h zWkHjHj8V7^&1QkG9rA;Ser@4-k3oTTpmWH|GKcH0W0N9={Q^`5DTpx3G8VVetjV)4 zPF;tk$gJZN@qKi(M3+J024g)5Ddz?U;kn4NjzW=91t2owGQ=f`g~7C8*9Z@a#8Vx- z`Xvit#?=|aY5LPk1b_w5X>*u}Aoy!OT;(ETocI$Nyxs_1n7nVc&__=p+t2 zU=FGayx^k50ZRK;b02K;4d`H}ES0u&-#$p}UyWAoP1Yj5^m=^GQ7KqvvHzHfAs`JR zzh1_pHw3D>W+;l z$}sD(RkPYO>%6pJo|?oEaHDkvmFYn4-wW%U7TbxdmlEaH5v=>%u&z`dYjcta_Khe5|VuZJHmqOiFP9BQ41w5k zh@dlMfL;Ly0~--lGsYsYCEA>(!(=06jX95(WMNV~133(F@*oN0dGkmrV%s{I5CJQQ zY$R|{-^|?*HVjC zkZ**bm3bkyhu1c#Gyv*sS|#^$It-<5qzLF{LV2OP5b^t}i0{KRxcw&=nVzs(PApo1D=&OOR1uraB5*=1UN5#aoR_xaomKz#+Yx|; zAY}z^;;d8D6|`kaNR1TX_#%{ydyRDkb>^}LZCg%x+l~-iYGw7}n(K1JdGJg8uE;_jXwc6Q5zb=N44r2AA$*dt=A*N#{W+Z?*8Ul$EbpgV!>s>P{NOb#*XWgj?UMJh$QGVIPS zm(dtZ=1G4u9h;%yzv!H=d103qh)B5O^Xp(UNR0$$5wHL@?UoyfSVk|t_;WEAFf`Q3g``!s(R zbY(RH*@Wo%E(m5t!dI}WREOA#wxMYqT>EZZkhjHqlkzm;B*i3Ng zKTy!i_i8Ggp*0EFe#Eq3I&4fsQ9bUws4_7`V?ub19E7kimS1x)m3MF2=Tq-H?iM@d zr5Im#*_Ro5wB$;wUz6oGo`GmWcy$EBw3A4(a?Rto@ZUc_e||Bb6tN3$=tmY5ebVKC zFN{TUzKg&MJ222lT}&y!j{$2zJah6%(OQ|wi*X>IC}yzZe6@E>ZY+ef*vNO?y#NcL zXO?kyL5&@{-6*jXk@fo%Xx%-^Zd1FqA}0^__-Eg zw7kI{DO3aQDbnu8-nVbQ9||QhCBv$zC(-*m2gF{N*~;uTqck3X)`)h`d59&@?{lFRd=2zy) zn12pjqQEX8H50?G0t4orFYSQe|^MVLho{6M8y=&}F)INm7maZZ^YZ zl?98iZ3*R>O}coLS*F+M1tYa!th4A++PuEKFvzigt3h^RUudQ+&Xadux3;?p*c4*U zY9_GT$|$u!toJcMt4mO{drw^oo?dO)@i@88LNW|d7%5ZcL!iiidwP-i5(7nZfveVZ z%!#@3`f0IN))E{&9m?xw27}94*J6uE@R2F`Mhin2Bg}vZ?wh{>QJ>2q-T9p`X9TLf zXpcZMcbnEMqh5dAt(8fV&&Ippa&gFzU1rDtMrSd@+01c$3AFEcks%#v9Aa~MQkfs; zJrMf_&a)h#i)JAMN`np=H4Z6C($-H!b4>+}44Z`vXg9>fD zDy0}4Cm-&7xx9RRTr2xd8%BXZ^T|$NR$o5lk-HPbIx7E)APoQdb@oeqi98%wR=BTM z7M{Bq*YR8MEU(HKjJWDS#U zxT=-?8zGgPMMHqq*hRhO3|er(Fy=~^%P2gK}jwS5Bmu^f8n z+ot7_Legg5gma~hp?M5CAy^d8cbqH#z!;bO&>II(F<}k#UognA`i_PGZax<_^C#zI zOBVz>%VvgFV6qWYNfLr+|IB9p`!5giYjR9B9aI?1%t&3QMr{=H?XnNzeJgpIVY zB^R;(d4K<9NgX?+MJ&(4KJ-`Bsqx%-Qf2;*A&_pRca>P^>b_I%$geoP>guaclWw?; z^PRU|;9g=$8Ur^DBYllbw!vQg1Z^B`2<&nw%s0fFIdU2lUTBYVM;8sSe*u|j%n!eF z`ovskV`0o&&sfX{5s4Pw-?SN+(~ZTI0?9AOX*Q&Dd?H`Y_D$An;&yJ&ZcAe_;@l~s z7)ajPK~Fpp@L#JFdImt!?5ArD38C&K^-JqX0(`VM5Z2Ak z&u-v(jnDm|wo$%j?X+)1GhGB+Nzz=!=%^BoojPTOszPO|JWy8ajq;V^Re&9GR_5zr z%vFF*dDEDlVNf#|f7(uaPT!gKI2~Mlr0DT;6VbVx6q$#=H3@#?0!f=-?+Ph@EpF(R zE2v|5{*G7{F9ro>p#$$iZR3FJGFr%x=2}C381tVx`-S_}!%_fhXzU_ut!#&Yr9B@? z%!{qI-RaAavaOf3`?&MxY3OoVgUf?Q_#tnsx65rg@~prZ`;+cB>kWumxR;|0aLR&6 zKUZmb`o>ZMRdA4V)oEBaGU~e35j?FdIygcZbV{a3(!O}f*D?_@*bWLN&rM$fYcU|rzj8Va)cVYLy zr3clyDxYM)dQTr>!tm?VvdvEIbdn@4jv;WtXsm+t8hTcJH z-zu^=L(!9t@>T(jmNmXn`>bX9!1Sgv4Yg^9Qs|1F#}i7<-@BC<-M=@NYBhYFU)LEA zJf11_VIM{*QG6X|$840`JL1}F%bK#3E^YfVcHJH$5tg?_?Y|cu5xc(*0e{zAH!u$v zY(-R2;-MRYvHMpylJg&v@s%Xnj<+ngoGS5c&g%lt?Y=$|IxOGP>C!C%Vr*=#Gqy~? z^#16}FyBp}_v>1)c(=Xw*wkpqT-XG2Rr@PeWkxn?@!`)G+>UwhTibEgU}>>UC!S*0SX{7{@VcFHTheaNGz+C0phz-HuX~J| zAT(5^{(gk^-xrJWQ}3umAwqBJV=64(2S}oPLbv~A%`s;pBpW`W!UY;maixGkH;U# z&O*z2$bAL<$~!&(%gMjTo$XZimFw=eQXQZBTX~+htFy}i#K*c8e(Rd<&m=Sc_oR)Q zt!;0czYHmSUqMfI&)WogUXS}-k9{LGjl;*LFN)U0J|@93Y-ci_2_Z=0ZZ@+(i6e#P zYPikOnMsaSbXN@3{O$**I`&J^!}BH7AM7C(9@xBhx%obu#y%{-mr4l{-Q_OBrNiyA zA|GZO4}-UxN96oZ7t^R*UWEb{&A6&iEUGpg>gVNrs)hJ^^RwQbt9~9_XWom zBZ{>d-MACQsZ+X5#jC?I3piHpQfp(E_?o6zU|sLq;{RSzYoX~5llZ0kNVLZM=Js`a z?hj7;aNf6`?%qCI=7S*0HkL*1)8imH7@Z=F)Hc|B4XUs#5p=Ed(P#p#FI>H5&ITeO zB?3pcv8#-L%UE1>O)oggcIB)v`2EDoQK6(+$x_$^3%x$dcl~!x#bJiBk^g>@>%ER; zwCHwaUVhqD#qhnn6vcbpPP+=LrFT+tpNE0rCE=Qk;VT(c1&-Xj0B6_wjgLFwP`knO z>h5^o9ah6KS-X)L!wl9eSz#45(6r#P0@Q50mbHaIUDdKo=5l!_EzTzMzWA+pLEet8 zJKewC)*pSg3OjIl%r`5xwz-s4Ed;pe?yP;CLKb1bxf6apA9_NH`zjIUEe1Ee3rGX- z#zLt@9Fbcsox)?m-;eetf|H~xNn8$kQFnj1WOo-Vc@r$-ZM{9uz3J!w=2EuZYrKvF z3bJtKT3DCYsldgur7hc%q;vvY(NuQfhXODl;w`|;ifiwi7w85ozmKMUF1nuP-1xq3 zeuerRj$jhb{Mk#5$O^w;#ZnKT(a=0ch>dfF|>b?SddWhBq=HOHK(_EWc_JH)3$e z=8>!Iz;N>hBLr(E#gG)@(Udft4|!;}`ZA+HI5gog92pBoXHBA&dRd8XX)Sb+@(~cv zqc*vWh^X566bRTqdM#fDGJ_?}8C_JUCc-J@eQ96_yh1qDm5@3I-DLwlBIkpbQ+9&+?P74 zJf{@tTk8UulZdf`3e|@0ILt2u0-!BC3q7G^a0Al@)}3`AGG6z%`8u3jlqscyeQ|Io z8|FV@g#2@wJTCC6Vr5PEr2^T|WkMOesV2P{%%m1_&YBERp|Usu>{b5+1A+}xNRAx@ z*;%|pq$%5jMEpcGe1e1CUy=O9eqRLb3qWInX52@HlAS#$Xh+=L|L)BB8+o`^;AW^! zO{AU4yZ^?s;-4(!^2DSSe$t^(stDiZoA^Sg(@h)T4*v4y1^qc8jIiNtcr~2dR`^2;nwT?+* znof`QXXL3?YP_y@hg#DH$O#BwF!Z7Lk6Iz?q3yAw9^7#G7_3M$ylAFuVpr&XmH6*~WSpf!a}^^fw0QVaa>zoO-%K1qL)vNM`_vGNT~ACE6CMitU}+IL8Lo z7p+LxiR6<2Q}X>4*DCSucK%wG^BB}<0lE7{#BXqLa;WkEycRObC;hNIu*phPm6t4c z2+8yP&rLwMk)Jyd<`%~4fGphDAjwY+J* zXmE_zzI;Mlz59zGvsmqU=sX^=NnH9aX_$U+?S?KetepOEuhgZC zrYbDCjWZ#;-fT941qJR^l(PsvCbjfoU*x9~h#$~NEo*c(o#sl?{2UGb+ywQzP|7GB zC!KNN!hJw$ca?PUc5kk9J)VzA?Sy8G6&5RUFG8f-JBxBY$6YZyUXO;|m?1*l%+Y6! zjv;jh%7jw-3`RV}fE6Q6LVQhvG-ziKKRzJA;L5Gcth`q!^|MVq+$VmybnW_fF zOg(&yU;4Tg4W41g0*av@0<@rXNHy4WP&I$@)N4OM^aDz;)o( zh{!(-)NGW4)xp5%7NxmRIyQiQI68ahet$*s6nF`uZL*k#f_Lxc0NxPATWMRkI1xL#T3=8Y%)#S>(i+rZSb89%S1<5S?oYiw zcq37m?nadH5~-i@;aWT)frAb_6$^#8Tt1=L=Q;Wb9Hh5_k*)2Y2>^qc+O^=t2m9D> z!YlTj?u9-Cjl(qFirWZ8GQhBK%e3RjzWsq?*`Y)b>oJ>uL{`=>#QMOQleSU&7YRgG zfgEQOS|N#5#Ej^Mg5J%?Ej3YS0uCMg3`kdN-lO1|9gidkPHOTT?Ze>nZ}=pE2=rew z(;aUb4(fVS-)!Zg)FssHvG0*)!PJwN^l|^Tj%+!LShq0E*Pi0ZV(>)TkzX9oZ9$Ec zy~36DpW`O`qRJS(`x-F3`i1&#feY7WSd?fQcIb*BF4dg|@Dg<|DddFeL9?{No7ySv z1M#zVZ9v*}?0b2@08bg`0jZzZ z!X8_)I0dM;8pO*s7}b5K}37&?G()sG>D{?!_AH@m4ydo`6p(BpA?#hK*f z>R}FAqM^i`0U~B{puZ=fkRnA+iYFO3I(wK7aRb~#Xcs2*zRjMkOM|YwO3MweGopim z?c`oSR|bJAME6wrS`+tCJm0KLjtJIPwvCY2kjK-d02kf zW~o#e&@oO0m5+YEI%a;-6qvmV#D0UocL>`jP>DuO+^p122=+|ReU*Yfh-8XKH*s2?%l&1gh17iTsKK#2JVC|{@NfE`VX08=0I@A{z^ zZTaC~V=;1{kRd^aLH69+@hx0gzM`JQgksOnhHRR5W4yvIOF0W&DxqG0g=-uF6=9mZ zmFykoPsx(&Ul_=iSI?EOy2rR;$v$|Ini6%6p@5;!)!G9QS6oVbI7mK_bku;Cz+)Sv z$Hk*|kKxd=t@OruFX!E|ZQ+-2tbG5uk8pc?Fvsjc26jP!F2n*3nU~xOroqc zEu7yeL@o?5I|TTb;0P)W3D3}DE~sK8BBitr?NIQ#XUHgEyoY><0|AL#&O$B$`+^tb zHWrPy=Y4|OioS+fK5U^HLf3n+Z*mh34qJEe*FAqC%avP0gPE)N*4+ZGU{DMz z-SJ{e4Fc$RPdai3^1i`3fm{_wFkCJ8A1m;}2kd~5wh%Jiy&QoPHgDD=0vapou(bK0UkPVt?Tm&;gqibo?2qKZ82?|7kl$lK$}4p^ zq>+6^JB6M7B0T2;;zlU#R3a8nEVr)Mm&E-Ex%WK5{^Irzs|7%}7%Gd^9*AeS4`~8e zy88KLNaxDJ@`_|HvhMod3;nuei);Y0DWdOudxE_7acNdNSC#^KMIW5uYEEPi z(sWK-RsUjUH-LOu?5 z365R-Qs){R1=suqL$?U)Qg(FR%CB{J+x&$5L==%&V?&0fV!Ff$n!JgBtng{4I1l`- z$*(y67axk?@wvgBd5%K4@4X0cL}yA+rBrJ znv%;NQdfu7`@P@f4uU1*GRxDS5&RVTZ9SCt>7Vdn`eZCBzwHUGR`DYCd%s6N2&cGO z`~uT?8xwV}lQULo_9tA&SE`{&DRe#c_lqBCHoRPq;aS*OzdyXb-+5_@5HyP+634)3 zTo#L-&UH}m!Rv24bIg=&ac80!HcGpp)%lL*Sp}G-P_1Pet~2DpF_PsPvh8wei(RXS z8m&g^V%?#71(N|#qHF5nQhd&X;kV-tpKo9i2cd$PsW~xM=~{Rh z=EfZiF)KF=rNo~FxVZ-Iv7ss1@5DtFV-Xe_O9>+(`~%!X7O{G7P922*&16Bz=-_Y#v`L{GnAkXA6e-bLlY0Ld=&!gRE= zYJyTlT?cz)=AyOFq&VyOFca~f<{`scVog$xXp|e_pqGrKGu+_S2l^{KQ4$-fL$d(W z`nZ05b4n+qnqHoZ$9xYA^fVoRukd@HuQ|bXf>2*9i9TS zycs2fXJkGDzDACH&TheLD*FU8hkxow<|0Bz9tcLz+{v<{CD3N}&bNYL~vNp`<1?_~dj_5V$}AS>}eu zjCZUx%_T_sfdj~jz`-`*@S}j5dk%IHsq|BGl$nZRu@z$iodA_YZg8RkB5nxU5N(k8 zF}HcK}qTpFR#<+Z4p zr+fO&I|2cIMc1XU72F0`Hfz-B#Afgi)YZT>P=jaIqL(?W{1DL#m{+N8&~$Lr4q;n< z%#>I!xLTq)SXl+gdQU82V0~NI_@1QgZs^}UpPw8FHnI9Vs%Ecp1p?MlW*Qxbw7lkr zD#UUoJ2~Y1Au0T z3;{}S2gR<$Ac6)c0?ENKkF}RWsg8KQ3+E&!-ZjmP)7;+^?p)AXyDMDxy-=_;Odz=I zNd?OG!(POH-xj4J2XHVl#q`N}6Ql}4;3WeO&jswcsXZh81(9U3Lh#OQzwEnaZi49O`v_P3zOfpUnzDtbsHS8ED|O5-bZHKp7bO0rX+~4v z6sPRVnm)Ax^)|xepy2Q4Pb0~e*Z6VM1lpIqMcM^nK0C)pY-?%g@*P=Cf}}&6J3VCm z7wN%32LeqZvRqCas5%)I8mxK<2SZtB5URC)+0iEi6%nbcN>h_V)8&A_aEh&!6&sx0W~ z{dVG5yKy}s@m41>y#yO{RHd{;#$$RRb8qN4NXk0qjc;_43t998$7{R!Riq0T1&eEL zKWiM#h{g`!yM3(Ym3JN8{?ah~K3@i6eHvw<+bB4bk;a1X54=D7D^jn5^|?bG4FSA~ z6S!6Wkq}o(@f?!T?RKM~u{+$doYU56JlT*wJ*Uw3=}qr62%jrM=#JWj^Ps@cL1gf1 z<^>Py*0@7}JB=#2e38+b6n;DDKC8`TZAk#)9(*7%Sn)l}p$X{I^pTFe|8&u*-QoJM zV{X!WH4bL}6tzG(H~892n?0rMV)Q}3^d6&{iX+{RS~<|++=cK+39N?HuLQ_S>A5w8 zU#3)W`3Dkay~TbVxkfy)?vo%QFmmIpMyDd@)-Y~Cv%2V*!EeO^?C8zr_YpWvA$W$bZW3ZyAn^kLoKu zuWchSSJomsLWnnuewK@nO6>27ndPXRH#&9Yo2Pb{`r{dekxc8^vn0*6hbU0riXc3O{hcw9uEZ~KD zKnmj^b8#HO!As!6y6ffD<(Vzz{?!Z!QEl+Pau}YQ!;6w%AO@kOc)SRM48EW$N}jO@ zURcQ%&uXT0<~fRx>1^zwGq{kryQ-rnnPHsO#Ch7KbUp2+$iI)nsA7LNXh2Hn$D`vE za+F-Tw`C3svJ}6T^V?bzbi?C_>Fg@v!*2)ic@~MCe-=?afJjKai5)fAGb%)b8b2d{ zfZkcqybzHmA0XqDqUrhzk!bfW^Z}{VB?!895-Bl#VcrpCPPLo{tUZNofxmNW`cTyV}yg0wE zY+ArkDx~s|iN8RJ^kRfl$;p!Dr1ZLMNeDG0WqDez+UIE;fsZPbS{3*8hbmgkIOcbY z%n1x3v;hR1paizEae_+p@n2#58fgKokwM@+yRjt1n#^nErJ-fdfz!Y-+faDPiGtS{MsYDZ?Fa>ucP=p zp#<|=?7n702d?Sd(FAOFFf1!wsijhDBUKxr*mk!Io^LC9pO*wZUq4-hJzw`5J3jVm z8eP&{<4av+zfoQMhT#$bK&~gIxa1FMG);!Hm|RIM$`}>Bf$z*(>%WaJ1mrTiSDwk4 zobmRKWMp%XN1sTIosfO3`pqIUlGl>azMcro(q7+2|$3ZgD=^~|3z}bGCBo2C8&7EWtf{~!Ojl(#(`H- zPCc6k(rD}YH|&fJNA=eO_RWA}+N9h0bK)aXWYp^vy&B>0#2}VnM7chb-J^DP4_#RS zE)9ZbIk19zQ#e%-tAu2S%bNz>N~n$Xw<-|vY{o(}OC1{4SH3%ng>L(hkQXc-jJ>fb zS1HAI`-YK%mzUB`8!qI79Q!H6RE~?;78#KC&VFwn2$hO|w8>>KT&+SL;VjduC6S#Q z!(ply9Uk~SRcWJqmLufaSdg}8yKCdG2wNoRD1lu{tU}6vaeMnl8i-pqf4u%YQODqW zTYXlG&D(>}gB7_rYO>)a2&!xmRB#CoP0#i6=%2hrkpe)74C88B;#RW`c$4rls6f9p z^X!hn5JcaxLZ>V9kj@q%ls23Xiq``}h0b#uugLXg>H@^{ny~z_B7ESSTFzc7P2EK> zD03x~X*gJqsRLzd#8o)0y*~TsdAb(Vaz??&Aue;n^o3UjOKZMmcqXq%<Hwh71c*ZE4^UJQ|a?P}!4ItA`dEbO4N7%b(ob0`7mx{Y&IKYI} zhQhd>v#y1w8Zu9YSBn6Ydc;78TH`|Y3P4y5`QtfBkx+w*&)$8 z1Of5bu5sfc`*O(daXO=eU?4vJ)&|Sbjz@aa?%oLs&!!m_uAq)%g~sOMEg$f4b>9@8 zP2(&>53}RobHA`iT?`Su^pg-{$J05VaGvskBxPl!8Ikkq>6xbWU$V(yT${;NjTnC8 z_=1i-f(QB$uw!0_x2~B;I@7lwb9cY;287Pdf{Pw{I*G32*2R28T~!;0{~Ew)lRv8_ zkIX`AI3Z5!P8ICSjLw$##Ji;fDFT6E;-z4tAwlr8W+*5X0M4vBFp!ncv*8FHE@rxp zJHPgxHs^RceKz=d-QxGWX?Y<0XGY-l_^%@7ed3D5PT0ErTW%pS3~_l%DQim$H%^?w zojI!du+(ayv~?3m*T{6r z3Qss*cS@rO-FODG0L1bR78Nc_*L8Y6AL6Gtm)K;XcW#`E7Xv|xMjp*y&4r@6`**sU?mxi=(GbN;R|o4+ff4smZKN7h9%OGl<%z4}X%KzW0#4YQdCB?q^^KC6@3Zrt!5xd% zP#z;qm#3r=kXB#97cps0$C?KF=S|_5RqW4S<+L6MeMxDf9vIp>3l!(zYW2X%~*LugPTw&?MT{t!HWl0 zNdFgWZyi=u*S?F+MM-xGN_T^FD44klxcToK9Yo_45?Q(cBv`prMs}{Rfcj&wPn=u|%0`CTTDuv12 zTjCPa2ziM(^x*4Y>%`XlV#&fRgDtt%(tcb!Bv-zJRfwwYGzJM!iMiWC&P^G?7PFP!L}DjIJz1@YrCv9<2^RN<{jCaIi zHH>O@ivKK@L_S?PP`*8xrb#MXx_-@IBO|=6?NDq(x^#C{NP4%P`cgX|#Cx2MVTvM@ zk{Lc%x%u31T|zJMJ;KqG)imLt<~WBtm3ZZ=%jRp|QZDDM?+taDl~8PNZRV>KU66j; zXUUwH`ojmC4@TMA$Rlqp_)h9uZl@BXL^a1!57{@0g}OPkbZu+CS)tktv#T~(?hbwk zN-|67&QJRgpET!Uzxw)wMU9q2S%Pv?L;YbVpMC+dF4o7Cf{2foCG9VZCF_36pCzqKM zPv*oigPEJjiSjWn<7G{kteIAEf}DBk^JQ4S@Z8G^q3eTv<7k~-jd6A90#S9NI(7%b z7l{@RTe@OV#0UzujR)hG#++)_nQaM3Nk%5m*<Z&CF5*n&x&5+j@OO7(A&t8U1n< zDG}(4tEnhjTG&Go$`k^2N?`6yF#5DytL@!X?_3|kj)EVfE4U!q)%+0u z>`7^Qh1MgPd2K6unnzy*USuliwUjp8e0w`*?l?s)d-S1rFx*Yqf6Up0^RoFNb5|w` z8{Bv0_cP0MqlQfAc5|DfEl2P|l5^0Ix{;@sBkxK{u-sVk&)5>(O+Q5sjfrmXcR7hh z?)Yh+_lvLkXYU2P;?nG17=5*p(q6sjxLR6VCTBc#YDh`(2|vLeb(7E0=h(OTr$ z_R1ykY+0@P^D!=zxzwVZh|k2gu*}<}v62dfyY$k#5`H-hj9(~S9uC67* z)SMPR%cCzw4iOZbH$%pnbLuFGVdLbTbnXr9E%jLz8O>#l{7wGb-%<s*6TbmxHHnPGA{k;BUWSbz1mnrP;!zubj=1m`6zjbdaGtjD-89UF3(39)6xF z4OiNfd)Urj72uww<2tgdcK7{A2v>#B1qpYths{(rDPF~3Kw)=9c`-E$*4TK=Z?HRO zg^e|F&g>)qkxB9=_P4PjMq5!0+^;IxT!vvwK%!@B3+sTc_sJMCWYhZ{3oVc3$HVrU zF0L8NnlDz)z6$6s9{A{w>I zSB6M1rTsRU-AyxjX&3uZ-mBO0hu7yliYq>s5Mw2oFGPfBIA_A|7dFZP_5x0_b@JC8 z6^sH33PGpu6j>LWz4J^`LJCC94MtokWP(}8MA`zoF(p3_*x1}rz+u+%dIscoXSsOj zIMQOX{P@wCxo|O_Z1AL~p&kXnV&ZaPqbCBd^1zbxTYzS&am2g0%@H5optCnhbDqvJ zdz=aQNlNnAvqW>|hD#0HZ*Z_+qw#WN8HQqCzrlG`gNH5C!6LupvuY_gYkPY(jeiCA!g9wa?5MAC!i00vD#Tj5)8K$M?i*wy~|vdG~r@sl|DnNlnwRtGUCP z{WI}1;(^<{l#J)%eGgj^R&amfb}?;;IjA_XzBx+fl2ns?Lt(ouRKG)n2a)J=z&ng? zRL~4AQb}}yz065__Dp=r+w&^53A|7rx1UM6`1SVcr$bLIJ2#BW57RqtsDdF!mv(8T zdMu??6o7aiNy9+eXYgwe15~OrkCLS`yF5iq3uC>5NXRygVsKhtDd{uBImd8Z2=&! z1y%iT07JpSJ1^La+o**dxWk<4KVl#2G@dW808QL*(T}Y=8LTVL#{7L=0;R%`-rYp}!n|3}l&b#a5;cJ<;!pxWb+ge%H-=r92 z+Iv%oDWzV1T?6S{YSu>Db?Nkuuacjx1VsnBe1mq|ml1b+2D&hL%gEV&a@hF{11<<=Ps%>UFdO(h_A4oRya??Uq!Q7rMIQ0D@7MTl z%48`T>hhkjHFj_RwP@40TV*8{ch*{}Tm?oTt1mAB$bdF=b)&u|vw21o zizj8p%NJh+ReoZ2Ag$l^s=jqUN$$>dNx{UoFrBLJ^-a}wDD!W8G@}+ezTB1@g1F5} z>==CvLN>*K*meT#4*sSfa#?7iyTNg9-re>)Y-a|2ne>M5Z>F9e_df)|v)7)ZGyT4+ z!QBs!57RRgyq*fFYLHQCRC2tR_<;gs^P*V)bywk=C`i9vGGWZNl5x;vbMh~goyV~P zD1{jMAS9UDpO9e4UGyJ4W^tnXL|MA!{Rd9V4{(z}NU+aL=(}5p{*fU1oM%jvuz4pd z`N2_FY;5H9c#aYLTt7~bH;q*ol?DhKSI|?qL4}W7SU~rM0YpGA*o9A^*@!nuP_e`< zq}kle$L(BmCL6~b>lb*gLc4@hVGK!T(^OQE6)mIEhy4JUyerVNHS*9ileCc9F>zIF z7`Dif4F?!(I5yW|{q6zG?qMDK?lGi3LU7wB)_+4_k;v6oy&gf^A&$7` znht?E9~Di-&?Za7Q*gsSeKa0_+fP_z8W8O1mZsgFBuGvKz~8_C2aq>uAZY48xNxB# za$I^GO1&dCG8Y=oRA>Wc{WTIQ?{VSkeNew_!}x_Vff7*iDs~Gq>-i^&1FWRd+VekFx6qs;uC1qqAk@6i zB}pUjq~mV5={b;ihcffm)!lxkz1z1`$DPyZ7g*)YUafHZu^|DVVqq+Uo})knobyO^ znneIxZeQL~%P0#`-3OPMv?DfO<5P;u%#Ko^Y6Hh^wHAbuU{|{_AE!;_d^n!DPhw|2RhIH5I z@(NZG6R&c|2ep{;oos=Hy|vyi((pIm5@KUNE0tWN?)bhp-%@2Lg`@0 z&ga;~*Wum%QG!ltajd2XBVkM;o=%TLN5k8ezq->dd8E#)nMZoiTsjA#5DR$cB{Aa( z9I^-6#fB#q|3VOsom`1ELLi+U4W3oh>)GHVv6|WO_8Rw4c?ttmJSUf3hrb8%R0T@@ zcZON{30h%Gcgz%`hto&cO*+rHC?ig@m%q#IZzf8Df!b{AfiXCQ8xR5xu>%_&64Ojc z@()ZPa7g;a`pNvrFnX7r*vuws1WpkCF_a2Yipyo=&qPk+!yUD;NoK@rxe@bZTLubB z>&b>F5}YWeaniF|-snuprPPoAAX`awjbPA zOrzm#pwGQ3WGf|@Z+v014f_T}Foy5}J$GH; zWXt6sxN(`)VQVmmJoEy%?IxnfGxVdSq);PJeP|$>g0F{~jhfV&7@H0(UG`w{x1o6u zvJ^*xhBZ_PP<=YC!`(Y*QqPZg9ApmC1O{EHmM*UxGi;aDDn^455X@+3kRi$N7GU+* zgYU9`7ImY{l@%?zv7-CS;@yZfLe&78S-3OKQc%M`Oev-trW_>A*VQeyL47*hyVs7l zqkMRsq%(b@ZyDs6>6t%E%SoFX%(b%Ch<`CMw+`-3-6#|$j@lhLN=@r3GN(|r6_S+Q zsR(nKhJH@S;Ut<#@)2SO;jZDM;k!{=)BTS}hrsfrAg!mSZoG0LYg-Wk@GVvG#Ubh& z&?kF#d-a=;>KHgo#SFivDXs^~^*}^{_i5*Kc)7=Sx50za`$Ad&Cjc)e=}H zXZ_jXRF;VjM9vK7otpx!40jJ+NwY}gS>OTp;x-cbZ?HZp^f9{bT{jCi65j@)N>`8B^xg8Ez4z?-=uuJc1G9G#f5O-^_K$l zO-eSWA5V-}sx9p*oNsj~{SUM#rkoqY+4jg?f7p+9-6gl$Rz4!W4cL=Ry9@HW&TtOEm7 zc0NBgzqjHP%5PNrdX=mIK#M+l+uz(xa5}NPJ%V(g$D-2-7r(M4ST4HN?7j3E!= zZCA1V<8C@Uv9#f*cQ*r4QG)JzO`f!ITP^(PVRYr-%tZ#KXVIh%AooJJN5n0JDZIxp zUUqO>^1pzeX$*+5;+Xb~9HvUlig{hP@&&{500M@7zr2`eWN6&iN^KwSwio^&)Z#*< zEsF+8XD)ArfdJ4#h&pcV-zxxuq-R!9n|DgJ4{O6UsR9fQ@C$n!gl=i^%EMA5BADV7 z$gy2hHz*NC4e!m=g4sP3FgNl^m_@TR`;ZmQ_`sQ9o71TbMZ#yuGpVsO%PvX#Fs?HL9Y(-ory|L@ZZ5nQdi) zi_Ti$+sceeXv9--rN?;Yg|A%aA@wv|y38xsNpp|LTdnvJf7phaBSIzhR|8vvS@`~| zEh1x{^OUJKl<2x=@vyMn59kHqKZ_UZU0_(UB)&(Xl0Kv{+w#n=jn9*x*jV@53K&Ps ztd_!N@a;-*e`Qo6(HjBHgk3(bRzS3s3ZwWY=fgWDB28zzK6Zv^5?Iq<+8JWPllqPk zPQQB2NkMOkO`NIzWZ7>}E*;&H5!t<$4^Js|przWWkvVaz_4>9Z%#%#ctnsPvL?Ta` zhf6>GBRk>u>py(9%!(VKV^8_~1Pz=9#LH`M{LfP5KJiN#tQ{MEbT}=*+^h^M!KZi|w7KpUX%v47Ka-PnkYK1xo1WVS?wYv_`=yK$uhC)XY*YT=cc2y}g;w9BstAPh0d7ZdB{)w;N7&-s#saEg}J}9vH5F{j8AZJKae(feN3S z;Kq+r%{lmd%;+y61ZNnFd$6I1_x2d{E}h)sQ1vuYZw`IgnYNAN%jL3d*8vRvi;utP zpnk<5!5Xla{RLdTZTSyf27S`IQlGAd#&80zw!~?F%y0IA7Pfc@c_!;OA-v%}br^Y!2Ve?fh8;jc6z6~}=r99dnbU|8XS8Hx&WBo=tFwo=VPMSlUMC?^1 zz+Zz+GZ~r`mtvf+prcfMnHY_=WTwB)B?FzE8V_{BMRqun{(!skh*2pb9XmqVnMPh! zIYV$%#rlYvE5AQ`M+>rDO#OrG=PHz8RawbzfYDL;SnA0qgn(!EmU{L+ie7p~wk0+k zU+6s~MEQ}mv}V`CUTk+8prxqkK$nW73N;RU{d zF^bel^|kn5l19>g(4Z-%okk4AD(QX&lj%m~e=O<;7!cCk43~X!YO+?ocP*%?wrUn~e8;QTdSnSIA^xaLt*+-BQk0|%-f>sTRnkCJ2kXJGL$Q%Fwfr|2lmAghEIneJ_uCr- zONGQ~7X>@t&!CSJuh07n3GslhF=*kNu%JWu#aMJdo#;y3zlEVOJ*Bvji(+Vd9Xw2y zEv?LggcY<)Mhf6~~|S-R=>*5!Iw8Fd)~9}ZD}{`G_<@wns^QlEwKTzl5seM=-vm2|Hwga8<( zm{T9n{_iLr+6~nQs+yo?%qBcqSLA(d`P7>$OL}6VBK>^HWSlZGnLKh~%dFv+gGCEo zTQexTSuUDM;n!(tlWW+~C5NRm8=KlpR!sbj`_oTjf-BRe0rH}fe|fW`E1N3fEA0ZK zh6LKE%|ilUq7}$~r!6p(e$mWOw9!&$>n%%=>N)+DCfY1UQkxg!x&i(h9pA7~ z;y3*{ie-VtVZ@w&@(7R$&cXej@<5+rQGYA%L7aQ8mFSvlPF@}p?1CZ;qr)b=12~{M zP;?gn0}iNzyY%2_SN97tzgv2((~pN}0W>scG%>HWd4;3gUpkBhSLI!X?;Kx7j+kC) zYW}Z-SUg`QSv#%GB@uEJAJ1ohAmitnGBrS3bO130G2_iF%~CKaV^8(%i&LdL-~K#L zblws~O=)4XKd20YheAG=qt9(4g@GnL^?-ZKzEf0u>SQwZ;$Ey5c>@=5|I(0SKMFb; zibXAd4i+tT*7(IM`iEpwVq0d_B7ad5(Qc!D>66oKo2%W;frzz}ZCBP~T(&Y@*fnkZ}fb?5_K2OQ9L z_he`l@&*r_)Yiq2VW;(Se`+8Br@e*k2)^Pf1W@uu*xiN!8GJl9*j}3ZbGw36kaCs| zl4d@7Ke`8MJES{XJnBal9n9mADz1}fb6cJ*UAE-L60bGL3K>+5=eIKRL2L4 zW%`;M954VQ34GBSqJKD8d72}yQt}GGT{S`JiRBC7DN1QD2{hPdt9NTo(!tL&H_LVec zwV)U;Hrh!QmtG4pbv6cz zcy>n0jP&XDdjM~PG9IkVeZDW{QO+?nktYPTaByK_&6w9j{9ax#gKQ&JQkAc9ah5nXoC?0?k29xoJRaXv+EL{p3 zsg^}d_tO2LYbn3dm_-I;6`>OT)v9M&i{NzJwOo0L_=*KdQ5^@q`_Og<0r1E$ak)N;Hjwt=gR+Z2=0C(TM&w zzu?4TWGy~tm{GNBrVj?^sylbvjNEttP>UXa00{?Us9!1UKem5jc0T44tK70cslfKJ z@MINVLbFiJYv?jHhVd#~C>Y+P<~k}l-`gunBA(u=D+k97nu1N!gt&q{xkXwsmL#1N z?G&g+tY$(YR>l@xwTX7!?#UCc_nlo_O09yFp#Dws^s&wuw zc;Cy$;qGHvcj<9eb&c94EP%^^DSQBVOZi{-Wn`2By=Jp4{65&@96~9jSMhv5VLeTQ zjR>g6M=jlg_|bqfE4~tO^FI@Ba+OIXbxdWKM_-Nqy4STdf(rP_BEf-a0m*-teq=w^ zurU$7@xX;dH-YyCPkmhO4l_7RbpiOwgDz$s2pS;I?eBh8Vh~0EqYCy9RSgb+A9|`Y zTwA&oV{0=)|6bmMwyhBp$cRSS{@WUZ3p>tfhR_^5%DZ0~j=OwR7qrR0+=O7ZV4@vB z-hs8re>`-K*_}&%z3FjDlq<+LQl_2WhnUV|YSeB5G#H~9t-}|~f?D%OC|%cT>V?DG zp!+^mH`M*I7Q-$UsS!EBk#RwDBWts7OF z5C<%^J%@ht3tEabNI)~FZD94s-#7qyb;GuRqo7~sLkbi{LmMLDjqqpo8$Tgx3iFdy z|N3W!fQ_nH`}HTrhEw3Z7#j6or4UwTHl)uTp<65RY@<#6&SuyIUrrl9$Uxh&h(Wy< zLSrW{xq*>827vVwcE%!H@_w%x`+3PNjkJXTYOvJrd|M_=nvBU^8a@0mPD(B!<{dUnloVTj))!bd!<}d)P zVtQNpg~Ef%Lv~Q%U$F-eE5RjzgS`gjO#-a`Cv};I;F69Lzu!Ak*8X0E(}9dO zewf$hCfaL`P6`g^{QGdB3CF`(-*dcTSVJ~y1qTINxt#Py1MY`A(ZZx%2Ro8Z_v1}< zb17z-toSGNL-wwrb(|>j2}UUC)}MB|Uh&OFw|G`Tb~R~$6I_)2J%~TpMES2>)-8BY z*eKO^qS=;i_6l#arF!^df|-RxYsCa};Wj_qH9YB`63_5Q zcKDVz*nHW&EEzM(jU9(IXmw9?x4Y8V#i2OwY>dQ;0}!0TM(#lZKnk9Jhr_Bvs^cy# zmPV`}7$szI=K9p#mO)Me)c2r3mto$59_}|eC!TJn(ihMUcqTrHlh-;MX{qq&Uc6s8 z?TU`~wxTYMf&0;P6Xs2Bypr;Kj z159imfe}f+8`R!EzHj~Lqb6TPvSTy1mm4vEw|kI1f5|Y;|Y;YIsM()KY7xU5U=s-!!dH?b1xjD#>_h5q`{3{!7ahyZh){JdSEfQ^fA@56W zNz1!-0YRuN$Z3~NRa2jr)Ly6j`Zl@Y@B?(yg!TPRiPu#V`@#LU-mbeQkt zrc$$yCB)+K%D^^8YgZu*&@_YQ^0%{u;KDfZdXDSvmOoUw)#KBUh9e#L9uYWMMxWb- z1c5PHQ>R;qeFqZOW!k(+KV!kHxYM?jh*s;PMl*qdo8nWm`E4uSGWzJ;0R8cbU z$eCfD^usT9BmK6Sw|1X0UuR*|{qC0#c8iG#?(97>eEGRtPWROxY99^N?t!H`F0|dh zNjSJJ*_u=Da2ng|Ld`48%&FicpLq`SV<<-$KX)Oatp6k8TPd{M`9^}Y@!%UCoDs

    2xmj%cb!!K209!+d2q4T<>u%Ycl z?4sW<;KUjIPqOL_XA+j}kVLC=Ppb>Fg`nrmEzs-{AXg2Q<8SjvaGe+rCXlA&snXS< zy}JGCv+23X-3AAspQd#40r_!yyK1id0Zt;Ma=XXMU5&%`@2%YQu;6X_=@|fk&_$XFJDk2(}z)q z!Cxl3Q~#h2ljJMrM`n5E2Sk6`U=kNA==ZxWfzI(t5pvP$8<)WVkJlgnd4Zv&X7>PT zSh~_8;nh_;mprRshi0xPkbRAc|F_iz>;AY|S`> zQw^;P9#!W%@B8CMps(;s!VAJqjf=cb%${R!Pc^B#7 zkD6BUh^MeXZZ>NF-)4cZ)Q_QAL*uUdb_d78eaFkyY-fGM1%Q#n$UA^!-)BSjr_jGR zbZle3@N5{5=LNyApvI-KL)xi|&umx*6fy}#YXoUrceTI>?;jr5^~sM>$vnAtRJ6`= zCXs3OO1DE!RzLVdh4 zF)vtfw=0Tp$x17*!%2r;2{82&-nr^%g z*JQ&x%4EI1-)%2n)(Jme1As@D*i>eIU^?8?Ss!5Efes)Yz$`7p++XUM`&92|??3h2 za62sffWmXohUdo8mQR@SlgJCM@z*a5U1nK;B`&nyJ=g{?H~;VQczZ?9+rrC)_sZQ} zi){`w`=tkF4^sZSyw13p9c`vIJoyvFZb;%EiGN>Eq_}dLcp4GC60qh%9*XaFVti9)+7Cc7YhK{N8c~{yXF1g z@}*{Lu9hEt9PgUeyG%y5A2;NWmuW0d5^EGTgL>;VvG zg~DhS2o`@+N1PJuJ2U~rR+#QRq%6?>Y17|ohO++CT&bw%VCCcV&B-3<>RNyv6Xt6+ z;Jz_%pv_H*6cv}0^otiYG7}EX-UO>BDeBm1S~_XTnLL-|O?zt-k&8MASKY<#-Ip)A zub`dD*W8)LXGSW@5+lDTUnOP3KNL_pxw~35_Of%YT@k1s?^C=cHZu z=S)@)A!}3LaClP+1q{0|y^xVXo`SxsqJKTPLr3_KNP|%B%-jwxOvpSjAdE!`9sEdmjrrraktPSQfE)it(KLheW95!`kwS3^(uq?4?UNLX6?N!=O@R@&UkI5}tw z@?@g0;uf!ypCS#-l2GzOCE@zOI|D=gVe%ua!;FgMHL74)9H65zE7*7dqFklzs@th8 zv85~4WL1Lk6ctYeop!q#`NNJ0So_m)spHstZcA)OBOZBEYlBphfdW3h;7-%Zn5=^h zSCSy>y<)uL{(S1ERvSBuC%m^wd?U_YJ6=DifIvNPKB*ZDDHbRF#2vgA6@Hk*boyC4o2VBA!}@@4x^*{(JKFu8g6Ey@Y#f zPFLb&^Wt$v5CXT*ujCE>4g9nsRfq2TDR!mlefa<>i}KLWvu6K3EtX^ z+O#58?LX1?r*5-K0ne5|J9~(?Xtx=jIG!0m)CKGLhsnx#DvM`3Yn#3M1n(e-mrmAt zzJw71q>Lh${mo(pJHI^BO5GP|mXWxSTuq7%vsZnE1kw9dSQbaKHWIWBa`7zH)nLed1tBWL@`yt)2*2;$pKi28rb zsLp%7FUaM&uWj0HQK;fsn5oHSxAV@RD12otXUHEri=t(|YtIYeQ4bsJ`^C|_!y#|Q zjK(&RtGQNc>0bdkQ%w;s=hLzz^7f^E&yIjrsX>24ANAzWm58s0IY3kjpZp(;>JnNi zcgOzTN+{?qb))Hza9$~As{B9$@~}}0EuxU`?b_rpZ@a5e+amx|4%ToN;(s4NgQi2) zn{>qn-2ndn{+}onpHdK1f!M5KqlAPQs zRvJ?;=|C<3Z}H-?0eTrk1&^EM;ixQ)tqis@X$gMJX>{^>(7(8Z{}IN=_psP~JK4QB zMThO?HD3RV;xOuBM6OhV;~5UQT0_p1<`6NfqepTh{mA~3&^AQ5q-!k=XNPx1T_)aG zGs8U{1cZ>%qi6cxU;-+o7nmBE_ODV|c z#9!?ERBj~rSOA8&|In4QNwZ7I%E+?BLSS4i! zB&QgQOukg|Qaztz^fBEE>!`)Az=1!`tx|^tG`$~gf{_~NAAiyuMOum0IsCJA_J(ps zat`8_w)uJ%l4enQUcWaiSXRSA^0@~&k=f;HO*vqUiu;w519==P9+}SX^;rxc0pKYki4vX`uU?6kDPd~Hw4p0`h{wZB0D>Q*ov zmf->&@Bi9B(P+p;TnK|pCqH7&`K38&A9G?&N7#jX>3Yo?ZMYu?o{4t!TVk4ZuW5H$ zQY=S9#(O}&t5 zAn~8d!k5XTiG&q;-5vOh0eDK z0TgDkqjW_7(;wvti3+{m#r`qT%2~Ycf1P1{H<&MwUGnQP19;g$WMF!5&wBxjf3)tf zlZJcgW97Mi8~@28K%-n55v-Q5-}jfn7+bVHG;I60ho1fVg`y2nO)AEXhvB1176JA- z0-#d|P5c1D`0p=2_VtLh6zj*UJO13w*uAD7#7QqND6n05?hJf>i)QwVl>I;7{3u}_ zY~*L?Q}TMiC4ic1B1xG2s_0ZEtq2_`lS8qpJ%PBTrK@Y(&2i)UoR^W+6CgR_^2~`D zJnLi`{%WAB?X+FqjtHlfL)n8{937`?{Ka>PkBVAaZaf>7!({|IWdMBB|Po3uZ z1?C7BFn^LIGg&Q?NC>i`J*Yu0JqTPWe4fmWMs!lC_G+q}nMZ!iG$yO?j*`jTj~jM% zHbrxhv@P(|lQ}MR*bHweTHql3YXkRoqz3lxP}*dg>iidK`&ntl#`vYcUK^J8-OmL>+JOOI;m*$%f(^u)yT+SCnDUJ7ldJmmB)-}@9@pi zR+bN$2Bx~aC3&$^`=~oH;WIs^3Cq2_Hr~}&Ut^7}cN{)&N3+8P%Mzrv&c5OMpx6HF_b%y7*_u6&LRA>l#|fjSnQZIBE5syi0<>m zZ31H>T$FDe*>7OFMGV)HQ3j0#TtS1d^zRcY0B=5~E zM2zALG2Zc8jWuMS=BdIQ8o|#meRiIv!-S8+{{eh9N-o%+;;-<)Xe4Xmbze{&W)rSm zDZQ08z0|w6j(h4(-{M&013mk4(pz`T@m^jc?ay!Q#TLN+sP?&dj|wAmYf`zYPIwv! zQgpSaxH(heLLE$eiYS%D;-!sapD*Fb5hSEO;*oUg9_i3hw7!H03^w628#$ad^iZ%7 zl*3cJL&ct^7{Kw6ds!Qzd}JeM@bm`PnbrM_kCE_yfc()qosJj(2V%qRB<*)PH2ZxQXU|M|N5@E&IUxQ(@}f? zJo%COX#Q^2vz^YzoJcE=r_dtLYNDIXd5#1O9y_N(Td-KXe#le5bGaDm`fj!y{~W>b zGsfKn(#lmk#N^zoknU%&&U;CH>d}*_FTuu3g3F3xFA@-8<#FLcP%8{~-p@vfiN!xi zD@^+&il|f1zl=ky883S#_I2&u%TOPgWD1P0>d;WYi2_<7`sXb(mP zz901?@0}X zO|U~;bjB_vd8*w-D~KWXO%v%>0(H$gIxHjGfguUKKQ2uE+!rdF%CI}6 z9CbP)ZOPl{I3NypbxYG#Y>|Q$!K9&k{*KCkoE)E@FJessaoSJCGDft5fNy$m-hJbX ztjnf9xdxIbf2Xim#;5U~fyL><@9=QvK1OWHd+5hELwkF@%gskhx+l``8lUG$o}Myj z7@&O)0s0@Y868Ljrp5U%)SeYj(8ld?ckFV)>QeW;^d=QPMP@?A}P>et-NHUh<&A|KeooM@LJ}!0=%$`=G-UmNBb86PY?|{T7 zne4PIuj)rPH50r@H(r5Jgr$W?Z>>9W2+7wNul0}?ot_-{aH~DmEx)6ZtmdvKnEsJ4 z3w^9TIM~GjrOwbSxOJ7`Ny;J?urb@?E?3+_x8F&6;FG9zRirZqm8e)tR!L^{n=!o1 zigxiXZMLJGZd1pOo?W5$18*$bC=N=&vg4Y5Esj9Up+MZB$l1bme)d^bksybHPGd}$ zDENz{O}T9FTGYGvdR%qt`ZJ8@-yd9~)ZIYNS44+odJ@7lsT(#kJVzSNDKSKxeTQk6Udjg#y2vzm@5|VYRnKG()v??I~3a@*U5$(G$jfNf+xf*!L=vI%Zo#VD8G0B zC-wk=io1lHV=}*>_|YCQ1O62t6F*~X{lU5!V)sd!jlCj<^!#Oz0AFiwruWG3anGv- zvlayjxSYqAXgCR%)>wIc9-S#IGD%xx!JUh*1n@*6YL^poNUcIik$V*R@VoN&=c9Ck zpX)*#hXl|F*WD!Jjr@1d{XeEQB#MadaPH+fux{|hpw3@BBHQ+Uj;E$%rW9L3_pAtJ z8z*?R)wK}Lbv{hW$+)||Fxnt5ODibg=0>IC#nS^~{VT4v{HI4Db|@$_4PPhKLcXg# zyV>g)QmHKkJT_$vZxBoP&cR15=QKh z%KmvNtkzwp-By{udJ59c()08ul_vV6tovwe%brxI^mcs5VoEB)3YrMm9BtC1Rgw)8 zaC4$CkRI8Qjl}P^NG?TAQuK4_QPjnes7+?vR*p#6Efv=-mb@G*QMUNp&i46580x~l zkf#3Gt9=-MOfYY!Jk^*l!F~==34LAkGD2r%k)78{JDKz0^9CX45 zWCPGW!HQrX*sS%WyOsL4A~?cfdpmSr5wyRr2)AB3-dxwORF7tmQ;N#Lo(}?#Yt26S>Xn1NJtQbR0#64_ z)?tr0!7IPdEV(|`nPM%T*3UihR&1L*?|=Zkh1 z4oc|vwcW@PQ3I?ZifES5IJ4i9&DWBOVAF<1Bb!6U0=(CCfARf!4FmerKi!*R`X6D` znDIH}8Lg%5Nmmfxf=dS)IT0_Q zbZ1~Fo2G)DsJTxXT-nF~f*%a`H<%Q``%1l6pnCwy>KaoINes4JqE|byT;k#vJ!}vA zHMBB^Njnr^%mJ-#2T}(1?eG6hE}JJ1y}#JRIGq^oaEWZgBFDO;tL%*mWFDecS*L+@ zl%J(8A~u~)J;Ofq;8iCIhWP67%RYLf-jGJ-+smr1vNBy&SRhae1s!}d3EJa7zL!~L zA>Nqzab#?vw`NZl&iiF_ck^%&1~n){Fh&0L!J{~yta2Y8Xk(2=OVXIlUHJ&<&k-0P z@F&WnRcgOQu-`LRY_H@@=}Q=q0)t5fR^}PLFyzsj#>L@kZ0~Na(b8_1tPvz?s1mFZ z#82)p+Q=Cyni#<|rp*sb4vjx0aCb>dl9Dta8i@(#+$E3NXn@ z$%&HL|{vqiRRt70q7C(NoBbG(wK%KFn#6hIm!3;*{1 zZxL)p3X2_xFu z_UM=c1KcYn^WjBuBpA9fsznKwHMgJ-migebK{?#NJw0?*=4P;&GrFI>SDJwxS%l>1Qq{JZ*Lve z)wYETuOBImbR*rMASES8N=hRoNJvX}3)0ddrAT)P(jXy?(%qc`(sdVX-CNGb-e*7O zyU+c9J#&pY=9puSd`DP0Y{@E|4NQq6G9IMlE7~A-2?_%WQVBPwgGOH*nZhij6^xqm zG;D{O32p0cPtQvHE4s2IG{%TL8)}C@(Pd1E$=sLO;K{ zCowtK1IxIBR}v@$_tv7L#`tb6$AWCoUExIS0M`fA54gU^AM4XmBL)6kzX6VN1=8_`8SLGeJkepKK|?9159w(AG*|e*Qyx02ooqvRg9YRMp))ifgol?*c$^(+y`?7 zir6*Zwz$K~=H@c2-xkB=_5dU^=)KdBDey5<@2vK`JTCqz|Kwbnn7gac08bZO;|lbv z%lxQ%<8Cmxv-vJ5c_|zm5DLuyo+VZqPINj>43?~cj?!%jn{&9`>y5$5Gv=Iil#=0&Hc7DWVq_hqei~{Y46^=pFrg4Eijq+Gxt^+U|y%kI^MX_T|yS>{VM+E8LO)T+|XfS+^_vaZN5&uI(~1l&h>brZ|r z>hgoTkSMCp8Ow)U1sV?0^bxnzZ~>$wG?Pt8Dp>RKGaPlRAUyUYZDWv~2qjmgcz>(c z)pqYR#UFD3QaXY1cpB>9{$HC5Q=DjYb~Qd!#}TlM?Bpu3F;Z14KbofsLIkFDP@=C< z+qXpGM7_~foQU=O9-XJ8t6g%~04I>fh?H>?wZ48V;bv8V+J{L3Hu{b0u1UTKzQ=VC z+%@!&O-MTUZv6_L?K6D%xWtD-q#?AM?LPSg!9c5&&g3%8);fnmy96Bviv8OBNehpl zW6I;DCfk5q4Gp?1qX^DIKMNO=FI?QAYEC7beUzf2`CVwSnu3vVIar}@*W2v?02Uej z?KIR8#c$hf-HYE>jCG1WiKe0@=yKVsl(wHJzBhfJviL zJb~X1sP&tWOyJM$w)VbC zGvNw)Q=IC)7W)A`6$|_Lhxk&H|0>Y@0EKB$DjuxP^igOq$GnHG)EnuIR_~7(5K4!= zr`*8FEGQ!GK`#ueC@exApiI3c9c^yFE6b45%~N0*?d4MIa8;Z6 zC^Ubr9WUEfP26^Z#+l=Dwn3|)#=G67>5h1_dbz1(u?S>LCH`1&?|V$%%t|5WMrH}> zdk`CSrwAkC;wr%67{HAk4N%VEi)F;qWK3;!qp$kHGdA-K_iid~L#Ma-){Wjm7xIq8 z_hyI3C+B^vx*Xx3R;BSW5!s2ql+*^@7jqj=n1;MaM;uvpZl8A`!xquFa;sKkF_&~2 z{>?T6odaYhq$71tSWboWNw8^suZ`g1=r>QHq|a0*p*tjLrNNT^Axq&Vi>}yv5h7wM zMF#EYhVV$`b5byhGG%cjZ#gC>`FZW!1z~5pZ%ft~$GFm!l2q7NsAjWD^481ijX+*S zZwR4EA*L<}JT=L1-z?w9c-}KeI7E1K-tKf>Trn1;$ZtB)R(D@JSFBww9Sirin%C=y zWKN4E_xJ*p#M|?UQ3XTvB(0BV1+%gSGx5}k{@qB24*a7j_&!kWhgJj1@ zZh9&CDW~Ci!B$;SKNY{t%Wf@{Z4x&my~3A95A3x z(9x?dRVyH3?SH%wxouedTCelE8vJMg*|1y3jNPKhSIzn^EbV0O!urY#@J07}q0xkV zPWEiiTJ&C~G%C6IIIjR-=qB7(rnWQvn0HD;N zac@HMLCfQpo^f5q+EphHYiM7>F{$oLOguHRD%iQac%N5L?p(Y1al>WNb+4a(?9fvE zbS`Vv#(%UTjt+cSM85gvTf&6G zqS=tsZ)8H91XVcmdVwmp_Uc6Fiv{a~cC{T+VBZ6kV*$p)j}|;i5ug(6t>1zvbb#E^ zG1WKIHG0l$WNrl5-m!Qo=i&4ssaeMM%_1+!kMbwG5tfh-Sc-`w{x1ec@9cj`ewrOW zJuJ*%N_W|LkE2LRSMCYsG=i1XP3Et18eDq#;qTdG=rl*uk!?tymVGslEGa~5dxmu~ zj1$IGK-sfCKXkyeqYuLCxE9+oC)ZjJ5ITurm#^E@k`;`#-^HfS6kCY18jG%6O+*|m zGYTJPXzcpXeb7d@s+dWqYHY*4+_ofR-$2vI$;LrC&m*rHmYr>-A=1`$D*~W?*@urE z>(t{jEy7C91syY5_&U#}WJE_SXCP{>an$f|JH23#pM2Ff*{lN!PVT|rc=%k|!yq$} z_aP8g#y1c8D}%#hV#0Q8^q$W%JPrGpJ%c5~FC6R5$``TU>P;GlWK3Er(P;hD@>Y+E z$uOZZe7e|&Q5yO@3W>nmA(GiVWRsaJh2{+N1JRK~?OD8qyIy&f-3jyXHqV^MX0$wT z&(yF@cWb7<@uVJbN}4f32(3jCO5 zkMt*IMPylt407-+^NOVFinLtP`y&`uVri^N7ZF~pEhKasGTabNw{^J%Rm?GXF1npE zd+tEHOhh8mC%mXZ)mZWgE4s3eh-d5`wg_8E``Fzr-K0b&S4^#&W*_Yx&#s-*h;iaN zLl(yRG%deJEe`GFVSfZYdZhEM8|^udwya8qaB}L3Qyh))bS}?V(t-N8SfhQyyF-Eu zC4OluuA$;$9JiE;g~m4g3Zq7N`jTm+b=5To)*UtqNTbwAK40i21rd87+PFS^Jzo}z zH~TWg`+i}uom&6dj8-x>_#S%hB9^wFg$S9(J;;Sq_B+$7JUPS|jDi~*?%{P&JY!I{)nqDYRS zx}(6)y|b}eclyf~DtPg^Fl&DPv#T zZs%goIg-HB`;>OHPnUx3*STPJZk5-$9wK(uLG_4+oKSMo=fA6(R%PFUw@uNY`pn?I zlZEDxIc~tGZF4d+H&H+u!Tp4V^}b}ulQL42IeI^IA>$g?_}V?2y2=2Wy4S@GtcuvE z{=6Fcn3|JQx#!ht6I2&~wdXLl>8rN{pw{Z<3AS%ENbi!3C1HaGDBi$o{H~#V31{ra zP26dgaXo7k-BcwP{Eynn8z3XRZZPNw~BVU?=B$qpTGczL@4eV z_|peNGXz#4{6mdk1?6S6%X_me$&=5t9ZW74gLq0(->Np;mYLWTMP!W4 zVD38ahPKo8Ky;zsGVfqnN7%PcKU8B+NY>_vnG_1%IW1 z+t^7Uf+;WC`}S~aRzZ54>i0ULLoH^F6jy zOD#-+IOVbmE_IB$>9C4QKVe(w#YgtgVi=N5F=H*c%XUMH>IW+#Le2(!=_T{TWte~y z)YR`-&TC3F7w_$*cocB<4;)`85rx=#(latjGiAeM=^TChek}R{7bjwY+UKQvanjJ% zusvaR`c>m4aVo9d2g_#dT|x-*%&f9=#`ci^Xz7*@Jv~!fCqzBkVMnu`A$ftB#bSXi zpn%0-(v*4sHo!cY3M|8Vg4KBtRUqRc208{hl$`@N?aTO`jmf)nJhnMK3XZO^;~$s) zsHXV&NB~0~CrIzfF0fk}6Z33NqzmrNW`7SeVaJm5I7QQOuQ$t(tFpsawJOYuh7|}a zoufsfzr6(mw$MRjfx@4E!4gLc36WK6F-RA;$fB_>DVBwMG#)0Qf<>l_Rq?gS=XP1w z%=ZTG+Tw2;%JgBSzF72fXIt#VW$oH|ZR_bC-|doSZVN@oKqMk$sqb$=G%rh(coQAL z<47(W+Tr82ToiImX078}SbWB{w&D(UDp4$6QOB7yz`VdG$l>|wS!;H?MQd1OAIqD{q#6G zskw$Eo0hJK3p;gwPj<|@M8r*avOGV+p@Lm()x@e#J2O0`7ertt4<&De6_ZSM-wF{p z*?jlXNx5RZ20>H(T|mIDWMFs$^~6Wb3gxy*r_~>@uVKn8a%STaoSJ~_%v4%7K4M)( z_4-lggS3H0?EIm)d8GPyC>+B;#1^fsAc75E(pek zU4|M{B!-GO^?1e#hbKm)Nbh--6j-Yc@8fL!+1|4*gstXNzp#m1xrnf)3AKhSO= z4Y72{i8qFIaokwaUQoukF#`jZ5`neHiAJBSzx?3~x$J zP^|HK3B#@gH@T>tX{X_-9z`loA=~b#@ z#a?Og<{Oo3W6bIb{%JXd)5hNmNrXkV=Zz5h^hSxLSSM_ByRyz9f-dl~UWi&SBI~5+ z4W!d7=-coPJBtl*rP5Dvo)CSWU#QutIhs76E6sx3BBG}*h1(n_k>D6q%ZVJuW!-Eip485dW3ZN4^MqbPRj$) zKt3*Low^lkfR&InPdwUmiRDO!?>11m>SVo{pv)em9{=$2A&K0b={`Z^WN2hRbog*x zQmI?eqh^yR{w%S6Ke%I`qLL)#r+lSvwaz)zWH1NTynA5B7i)Rz?d5SIZW$D(y>H)( z?VIbw-HD{&<22j+7$>_&IVLV>+*i(m_cdJhgJmSvnvLGK(%{|a82%qTw%R3Cut0W+ubVPqkJjQIni(`=)di)<+( z2}5=^xa#*41m_W2)*5<|O?0g5mHjyVMSiiN#~3V{CV?Y z8(l+4G<=&`P=YYLST%CbifUhzmf0E4X?KVphsF%28Eg>fn8SD>&FYrbYSnR*ArE2C zJPojiV!bY$VAEB6sKyHg6)?H; zB4uMU?knu$8JVYZVlT*SL>BNVjn(2e%RENy^pT=b@~FvrDESK?actnD>W$g;^0hvI zzb!8te4fape=_i>;-Lb=qa}jmZh3AuMZ4{q2@_ zcQ)UFTC^9ejBY>d59q`Qp6#?D_9;zi8dsENV1~UT-rXkEJ;)#<-Q7AQX9Y_ShVO^^ z`V@Mfh`0Ah6rs@3OAo*>z`V_X=lJ|`hseCE>rKT6JjW-UlSH3Qx-kG{Bq*aJkqUpR zvd7s3{>^PvaSxFKv2Cyw*>^Bzz+$Q5ej-XYa}btE_d#ezDm15oRrxyz;j1dg@@Hgy z^W?YngJ;8=!e<@cY42cI&$40c%3H|?+F-p4(pATMWLO;X0{Z#)`Hv|aM3Y%j`641m zA`yfl%^bS{Biqn`kggUnh-!M7opGjh6LV=)v@`fp-QFcR;uFh_WwU{Gy0a?}#xr_# zVSsc}go=4WFmzf)ajt6DNGTfp3;g1zs(@AZK}XMPNCRLV)4g12tHR%VCG?0-^FBu4 zoTMb1g6X4x#|rE;7Y6-Ln3>uYd!NuUcS>|hbc=W8^&>IUwS!!H0wU2#G zEvBc?!aaT%Nwu^D@Og{K5YQsnviYv-*`gBKWtvbMTJ>AurbS2MEYNvqR68=q@KFGd zOCmoTdmVt?`)fM{qC_mRnn19kFq!!Z}nGeQ>Nyq{EH0oS7x7tEl`2^vG+L*|8Zp`VA=m9@Kd;vt0Q zgJIQ9Rl{P;Xdz9^-KymTDx;{=_u9*{#~u$xCQK0rM1eqM>)(}`QLjNAb>2U7ZNz(UbkMMi-;V587s7r-KW~cf) z&Q>R4Y!A0}u>goVJ9vtmea*#TjLI-F$|FUMuGT+y8L){P60tAi0dh1@5N~pE;DQwh zAF14L`7zo3otD4Ov@Mxp8zmUPAVHrri2xH0V_l%l>P_U9aeZ4C~E5g2=hiEgT3Z?oC9~wg!0t zs@5KdWXsP+VPzg44>l!pUNdMEuxUmpzNobo`KAUGcc8#7LSGheUwR}zsTrKBy-x#G zU7t7McsD^eXx1}O-VdY(3;AsA^9Mc~ubh{T3d;g75ML5iiiTBC_XgrOO+$k8zzo>B z?VxodLPHyd5M2D(t9(QVz{d_}10q+0zSpmF6JIUyMSzlyVUD!3?s2V4Kb-Yi7*va3 zkHrGk`cdVtog0s9uq@%2iffIk%?!TSRDp+M+x#0A=0yeI!RbNc1z)4h zldzz?WPTXl)c%&GYPwk+ou0(G6cGI$>CTO$9monOPxi;#=U1B#%!#Sk*;}p>@WTLi z2{ACiYfua-q+bkb^;uA(M`qAuPj?o5t>_+kSJmOE!O;~gX-h5A#P3A-KAhpBQF)Q+ z-!aL52ZPEvG;l@tAvO?jig06_HJo~KlQvIk##5qiT6g#E8}5^;Cm~@1P^xHjAPptp zll>FoEul^is zwX`4mnx-pkFRv~1EIP{X6vO2VOa`914d{2&j#oZeu8jD4{sHAZkYb4}dn4Q4HsfD_ zbH=0#v`tBI?AL_GBF}dF0JKbW-9_kR(CGX9M7@HxZ=d4VGL3YMcdRJ*+~2;ZLG||@ z{oEH$BIZqq?`0d&)g6%!|DsycYV$_Wf z`*!u0NR93?y0)(xlmkfn`8U_m+wuiy~)EQKC}Wobzx_=Xv;3x z14Y#PF5qzhYhNFkDDfwYlGTUeC}<`n6VlAP$(B~m1ex{qc+%>hGxRz}v(Om;WPP0hBiU>;T8pLz?FUMPas!EBGWfcaO|1nba z3C}}8OXX1>Y9MPE*=Y>|R&M-v|9r_4;!z9oDp9E+U|bZPYVFZ8RGB+u^BA;xUTJ!H z=&e*pnCqHjWQD_lH4>;Dq$v-3!j|EIHl#AbXgtG>Vv%k+`6HTT3vra{U^wIigI{wrP@Zj>^ExR~sR2b$B%Y9G2D?{r7zMm4$|4V+D1D7<#!tJHis=1`Y_ zufa$JX)hy+ONFssHnWVDDErJPdG2s_(hdJ|jj(W~aWKtb_LZdb@oJ0-OTiwMGFE4M zu1+ylW{FT+z>sB!X$gGGD&;E@tLL%?3kjP{9!Z2R--W5cz%eMi6s=)lI0heM*lp$nK|^7BW1pr(>dR@dk<>nIF;#kX2!^dEzM- z!_Si?Y{?Mvp5+fh%#-`+1;16i`hvDHq!DT=oZ%jnn!2Fp-jt`GxTHIrZR?X6-dZU+ zJoJKz=q??6Yv?^|kONi!o6SE}WpV9}%11?XWnaqTIe7ls`?EI7gr4ul&=~^f0`XqSh>Cep7tYq`< z!4oe1wnkyJ zsf%((Vu^&2VnW?_%ZJ$rQ8$NtqxJ}e8nx6w`I>3%?~1>uN3K)(-Qf!g>Y&VtZz3vv z7hSADWFX3Od|uPWbq{k7pR!b2NcLNnhjK@l>qsUo*hN$^?M12Ya~dCf7@2Pt92SS_ zdBXT5qUvD3?qbmP;7)Yis`U69dlEizA*Ie-{h8s00LwUktt^hD(#o;S-H!w@j;t1~ zg$4@D4A^4kstNUMSt)urh4{V;Q46D0PleX&zniIPG{QQBuf#pXe-qlai*igTVbt;w zMM4%XrhiQLEuy@@u+zq-`zx+QvO=U5Gr6Fg(sbW+v^GPEP50h2nL%;qNE=Jm+J??J zzo?6ry@)p&y!J>c3z?N3(Y)i82Q0fMFMG;T)C5(C%Y7V^$C@fOq%bY4qzHZ5(;)$m zat>t>u#7J3pMEad{5~+Wb?$Pe9b1%ttxm&Nyk>-@plgShePv(ObVG3V9}*EX?3{FLaqkZ# zxn)PkU%8)p^~AK_hudYVmcZtGg%=qc6RV(>poYwvc@t7EouZnR47Iq(SoB^_)TV3K z#GTAola+F-P5zE>!@JmjK#<%~D&EB@O_e#od^Yy+{nE^2M|oY9U8dk~a0Z$eFDrK1 zI6U!Vp7WsLBbg@htPE?L{lW$%xCwI{7cdYs+?#{(cnQAhkAP|rsq-HI$0I0z+QGIq zMy6N(nca7-cHNFUYw#qI&!%*3Za@w>Kg3pk;bFTSF*F{PV&)>$q%}B~|Eo zZ9geJx&D!la;~}!c0m3nQtS*IJ@{)KAPK}e@4N&Fy?NBnTOlx}Ze(tFX?klGu{oS^ z4$A>5xDRTg(cG|kU)TI6VWXk%DI@ZMJpznJ2%KxH!oAHaRJ)~gn41u=9PSF2uJiJD zZdl(6PdZNKWExGSc4g0`)GE6Q7VE;oE0G}>5?9dbe~gI6X0K~YG6Hh-E_|W4b{Knq&YX)ckA0TIOI5RUeWS9w1)Ld z!1k+EyP#eh;5WN*+oY`%n|`#FfImHdhFhjeam zJmbjV__&*s=e*P+uy|!0Hor%@-g%s~8B{mPFwTp1uXIwozPr1;S3;i#NR&t1x#=SK z&XxCI^&L_WTL^3BNgLuuM zV#H+jJjXscs~-ZC`l4#wNW{88P+tsj(S%i?NcwWr0*B^Q%aSL6Xp3es4e|I27I%QN zhoqew5#P6&_-L6YG3BOjduQzilN@T>7 z=~umxnI2_6Rz3zEhJ@OM7}=u5+CD{x6x)6FzAzjgSHX#)#QB?FFuE zFIicM*^icv^GWOz&h4g?&0L=m0I>z_48$eZ+G4XFw;=Ki=ywDWwHWk%$_T6sO_9V+O8vimfiW4$~c2U zwYDqW zWYVT>>osdoq$Sp8iHhDrrtA(#ntDrdD~)x!_xq=&4@h|!%r7ar-`&%YAPs_&LBEGU zCR8@x^6;%h1UPE6DNi9V_@1Y*U9}U9(i@}n#kX#f=J)Q)=P$hd+E)>@oLIi^;4`=~EaIa30bqDBN2seTRt zC?Yj=)+7*gwxKycga#o`MONse(|Zr;Zd`=Q50s3t!+60ZOO<9YYiU*oh5a^mv`#O-n(Z6w%Zsk8^jz$ zdfWZ({NH1O-((M2y8-@h+6JykK;T81)uzjj09zF7lLtLpd+8RW4eFBZe{1td3Zi336h63Z9SK8$YRUVwv!uw;rVwIpr z>D2~v9YhHi9R3Nd_Vd;E! zS%_W|q82YCZ6di#_SvU!RZiC%t9q^;C7qx})k!WY8^TUrDQF=nn0Rg%9AQTo@cBo7 zDlvgMxuyXGb5pNw4c2$eCu0f$vWoy*j2sJew+C+ zXBUptM_3BmY?%>k!+x?)HE~@C1ma&tcEY4cr$lbtm(aYsP=%%aMRrAY`$#82X8cRI zW}}LNN?|yCyd3V{QY7anAD-9jSf|%QFG_u0qk@y!W{3|>Ld0>+E>p@uw}txg$-)NN zMkkBd_vg%>RTbQ43xLop5jevqN$fz})%7y$Y?(*zT?tACAWDpBoxX+tu4WFdWsjoPK>J~*n% z=bvVpm7<6i}^+dUH(H-sp`zKTqZ2fM@fC z!3#-?6Bhy3B?*Aj2h(i<*7LGX=XVIHza6EaBL)4ca-HWJJD$U{j-7c3>=!YS-(Sd^ zMrquyp}ZEYf_shWOtaoEkHo80eb410B|{y1Dv%KXG9Muy-^klUnjx3b3{H{fyD>&} zRwU+S=v{MT2msZG+a&)h8VZ@C^K-4tx6_l-LB#tO!UffG?g9rj{}K)5zfOzLjjA%~ z>h~d6CmHW?zsM{wJ`1Mg0~84)T)=SyYPml`!q*7{W3E# z!E2~uk=45Xqf8y#-`GaUwN7BHNg6dmLcAs4?&@hPYB)|DG<>bE?`#r&UwHpxCPpe} z-@^OOh=MVkj^XGk&8Nn#n|-SMNWeH3-IGlS=wkk>ISp6N)W5=uUV^=}R(~5XapM#V zaKMC*uz=->$WWGiZd!$uB5HI-FkOQk*TBrTo7+d%jz;=oPf1t%eP zf|xau!WZPJo;vCBDW+qwDFF&tu0TEp!RWz0$)8NINK}pEoYqa`w>khbRe-w{_IL^Ua?ITS-{~-*BAK@RO_NaAOGdP< znVFj~1fD6o)HICEeAKD+hoI9&rh;u)Y^RgweG-eeOtwu5ta@I3#S`2w5n+HVEZ{l( z&MdeQ3PbDj^Tms=)hT?O3m*}+4Zf~P0YynSCs}=GBRaUW&yqNJl%M?gqP}l$RN<0XrvSZzS&&=56kV8nbR)eC5+7zBUpLbe=DKtF{*oN09Xe51U?LsGdL0@}tNi*l zf{hT`%RJqGd^+iKV#$jS=O1_E=IZ_e(*Ig_JezuJk^2lY)kO0&_?0XJlPVb;fR}?e zwGI*gwGN2cJT>P2pp8g}$!$YvGY*}AqSdYJ1r^XJfZT9x&m4`;>9{@u>JGK{w(6WL zy!*FQs2PAnEadSU1!OlF>BkP|*7EtMwFC0Wpf}t??#T%-0O8o}LGVm|JCcZ0J;=dV z`23D3rq;N#g&#vnV!hhCe}Og&cI9)s@4a~yU)HQb?D&R7s>kAB6981b2)ll#&$ngv zLvS0aTk>Ns773QIT(0LUL(<=XR3qe@Lu&Ya>;=!2H!Fx7WpZ@+O}@gJm+x^x;8W3b zK&S3k;N`y$1h__m#y5MhGZT)*!270I3;r_&0FzAhJCCZ)^TNnmhO*_zeB}`9I*WgCByf{;v=J0TX>4`ZDqT=MhBl zV-Kn6@o>6m%N1NK3Hw{II2)J$bp(fYh}{Bg2Z^>j3G4c{N-~q-(S8GvhTx|bXe))KATT)mK}U;HBs*lE?=GR8EB%v6ALFm z46W1`PFd}CeHv0aOyyiyOCHoBlFih)=mSM%@>)tue9TsinQKf13#Kk z{K4W^P&fV}_U}=^!JcHW67?6$Z}+4bHDipKC{oac4_QYnh*drJ+9KBm0V}!y>B%SfYkhdn2iDG7?UdqKhN5s8uWtkB09tx$npl z0H;K#SZk11pm_Wnz;6(s{BoqyPb)aAx_QG^8R{T1wZcTjK##eyW>q8g^orPdER@=7 z#4ajS`H(1K6BzYtsn}vB7NkDYD8vWeA|XcKL@b=n$BErs<%In>qS8C`-xd?r2aMgF zfm1tFGcaolR-FC8SB$WmY_uAG9z|fn3iad~0aG&wOz}MV3pP^O0V~fc!uo0LzS97? z&ro1)Bmi^^&tGf*;3`*4pP5hF-CkNuv`9t)aKGLTU5EBZ{)-6_-f{NvwZn>&OiOwJ zCvB07&T>t9(SKbMDaX9p<{kBIVbZ9Tj*-v$@qLr|br1mW6#?2c`bhnq%epJ+U1)dS zN!UG)t=&|!Bjg8icad~&qR)3jVQ4s#UQ6L_yql=g?6D|G-r|lN02PC(^1m9>o)Mbc zG7({{_D@}&cZ?z}LKTZmEE4`ii*Ddr82s_Jyy(rU)6*r3yR^E4KZ3$N|Lo)#b;#u0 z%h@qDcb~9M6wr4}!5r-G|2@4DRlXIS6X5!krb1EptEt&t*`SGHQ6QH^Xazh^mcRN7 z{}BXm?y3{vPb5!QEYx%bBSc+Rgt>msGKnX-GA}N6K8A&1Vr|rwdw9u1=`m`)Q}8;B zAvA*eI?VYT7h?`u5R~&j7huPVbwuDAPmuzK3yL1fEF~(g3-AtJLV;3ZG^Q>OgKQrdy)nAYrDf!nrM3_a7jIByICswK|kbpo`BqM`y zFo*Lyv^DsE{xAi9{=0u>QWs^pdiHW|ZG)=ghfY31W@D-66~wQ9&1={cTeAV{!v^EM zrrs7JL7|!7AJCg1evL%wxmGS8&})+i{|-eMD}`3JSfffZMN5XaV7z$|CB`*H;!+_V zR1qLwlgn}zH3L@H?|B@OE@nkFONG)7@rRFrG;d_|8|AVBuJ7$x%wGI>T}R!7i+(>s z--!wZ1R)k3G6(I&f1UfteCYy{7J;v4y{Rx0=1QJ&t~Ksla^JAXoxV-A=hNKxH*&(0 z?p*MCF38$NcnBc=Zowtw!sTRwFi03A)D`RDP?zg;+z96FlW6O*j5|HgvR4+1Bv3`y zE-@&79n%=uxAk(eyot@ax0FI5P1<37?u<}CayL?&krxdZUg#M9h183|2pw(e5uyNI zZ>oI-y+-=*y1vYFBgy6Y^z-ZhJG4mSwkKs4Da52}|X7~n=ea{@n^z2T4 zw|zm1^wiYrIRYT@BNFY6Y^#&jM=PO5teLp`acFsEgsuchtAY;#+9g!WNP)?%zc7?|1bk&>%}U;+l1cEGT+c@ECBSe}iI_or@f?4DWFYR^vk) zfY<-GpkM5vDOgd2YU?+Tzc$IdEmtva?mNF~Lbr|Q=2be9t0ZzdH=OEz3ZJq|Z1hYrnn9jNeZs6R9hIyy-2;i|We9APG>(6`SP5PlV{9w?PA)(e? zrw)%;fQIu#ad0*|p-m!40@!A3ko1= z7qR0;K6?0wc6f*5#_!0wtta=J+U%PQC^`bC>!>}OkZ|rlEunwLp8+{;^=~)Ax)r=c z%V#y7jiyAU;6rxY-dHAfxsekK0@`aEf!DN@4}`&Sm*&vsU)k3hqk1!M#SaB!Fr$#( zxD$c`TUQlXq{L5?_7xU0G~LG~?C$gcQReOPO-Lm4pF0u%M{JrEXm1eF?cW_qc!zYK zSfiurGn(GR^eR3k1JkFWmpg%bLGbMNoxl}%QRtr_$Kz(v5|;!Ys5A13<;{=*(Va+i zH*Tc5-5aGG`JA{dcBfd3>z<66$wdwyfQyDcpAVuE{o7(DWU}_ZkhI&!>^qd2`ST() z=*eG{am3QJn5$6$_YH_Z8_fswU;f>OCmo8-t!Z9dD6&99zTn@UFUSg}y4>*2GyH2c z%Dz?UQ!2~@UC-vvODv}f;42U14@%>03t?~1klxe4n$0855pJlyvyX|;)LpKV207|nDNYVQiPFPNSA zcU$qbrP>cjY7Swps*6A+5rK`>Gm^X9$`Lz0&F^RDo1;Q%%usM(WWVHg6t%RBrBH*3 z5&~pCN2b1UD{SrU+{!6nsET&wj;X6|9p7Gx7uiztZX%6J& zuBdfJ+80Pc0d)REu=CI!DUU&Q(_9vB_SxQTZ??aB_B7?NxGABxUw5y~G{`nW9p9N6 z=`OzPz7A{Lcza}9=G`OWh!s6-10?`~e-&_Ck7b1WBf`Jzn=h}H?A?^|^TD+8Pr3*bwK1$(Ku~jZ30g@t-vTiyr zI2lhBwA^z}Szex_>4*=Q{P6DRGa;}5o*?>22Gqa5Y{2ORYPzw9325Xuo`xHFO|}S| fhypmA&@rg)=|+VXz&dV!qI@0~i@WgF+wK1Yh)5av literal 0 HcmV?d00001 diff --git a/apd.aggregation/packed-refs b/apd.aggregation/packed-refs new file mode 100644 index 0000000..36b3545 --- /dev/null +++ b/apd.aggregation/packed-refs @@ -0,0 +1,22 @@ +# pack-refs with: peeled fully-peeled sorted +e68339c178aa92e93e161ceec8e6ad5984d231f2 refs/heads/chapter06 +8a533e7cfedcc03e10a911262af38cc3e2624e94 refs/heads/chapter07-aio +3bc819a982acd8c3e307ae2c9f1894e118e6acb5 refs/heads/chapter07-multiprocess +3b82b4b08833b25bdb87b6f141272d64fa3b0631 refs/heads/chapter07-nbio +9ac7aa52764b5af12994dd7ab22fab778583e120 refs/heads/chapter07-simple-threads +633120e5e65cb767e8f2e89c4ee84d17ee7815dc refs/heads/chapter07-threaded +3fd6023bbfb5e0d75420c7374bf2bc9b52985565 refs/heads/chapter08 +1120f3a255accd407f4c6ee143950967c3304500 refs/heads/chapter08-aio +f96f51f4c3c221c63505765fe8dfb3e0ad397d54 refs/heads/chapter09 +8ae1bb836c545a61871bdcc9a21ab29a24c50904 refs/heads/chapter09-ex01 +938a338266b5d69a348c388791e4de7b56b3b7cc refs/heads/chapter09-ex02 +b889fd324e327fff10d91f63bcd12e69a5ebb462 refs/heads/chapter09-ex03 +376f6b78e758c9974eea7f2f27cf98f2d1aa5b0e refs/heads/chapter09-ex03-complete +4f32c03d95615bf75e3d4ce464a17e21bff28696 refs/heads/chapter10 +50b773a254605eb4ebacd6ecc63c0460e059b168 refs/heads/chapter10-cprofile-profiling +983f8601b003956cb0cfb456fc3f0a248b8c4697 refs/heads/chapter10-ex01 +0be751b296ef5a8c1afa000963db5ebdfa1ef10b refs/heads/chapter11 +855bd8f7bcd627514ebd28b6b3741d40c16209f2 refs/heads/chapter12 +18ca722479360f4661d1a8899ca7057f7019df70 refs/heads/chapter12-ex01 +41918a77904da095a85879064d7c9ac5229e133e refs/heads/chapter12-ex01-complete +523e1bc410b6211a73c2e48948031ac8fe05bd97 refs/heads/master diff --git a/apd.sensors/HEAD b/apd.sensors/HEAD new file mode 100644 index 0000000..cb089cd --- /dev/null +++ b/apd.sensors/HEAD @@ -0,0 +1 @@ +ref: refs/heads/master diff --git a/apd.sensors/config b/apd.sensors/config new file mode 100644 index 0000000..5b38365 --- /dev/null +++ b/apd.sensors/config @@ -0,0 +1,7 @@ +[core] + repositoryformatversion = 0 + filemode = false + bare = true + ignorecase = true +[remote "origin"] + url = git@github.com:matthewwilkes/apd.sensors.git diff --git a/apd.sensors/description b/apd.sensors/description new file mode 100644 index 0000000..498b267 --- /dev/null +++ b/apd.sensors/description @@ -0,0 +1 @@ +Unnamed repository; edit this file 'description' to name the repository. diff --git a/apd.sensors/hooks/applypatch-msg.sample b/apd.sensors/hooks/applypatch-msg.sample new file mode 100644 index 0000000..a5d7b84 --- /dev/null +++ b/apd.sensors/hooks/applypatch-msg.sample @@ -0,0 +1,15 @@ +#!/bin/sh +# +# An example hook script to check the commit log message taken by +# applypatch from an e-mail message. +# +# The hook should exit with non-zero status after issuing an +# appropriate message if it wants to stop the commit. The hook is +# allowed to edit the commit message file. +# +# To enable this hook, rename this file to "applypatch-msg". + +. git-sh-setup +commitmsg="$(git rev-parse --git-path hooks/commit-msg)" +test -x "$commitmsg" && exec "$commitmsg" ${1+"$@"} +: diff --git a/apd.sensors/hooks/commit-msg.sample b/apd.sensors/hooks/commit-msg.sample new file mode 100644 index 0000000..b58d118 --- /dev/null +++ b/apd.sensors/hooks/commit-msg.sample @@ -0,0 +1,24 @@ +#!/bin/sh +# +# An example hook script to check the commit log message. +# Called by "git commit" with one argument, the name of the file +# that has the commit message. The hook should exit with non-zero +# status after issuing an appropriate message if it wants to stop the +# commit. The hook is allowed to edit the commit message file. +# +# To enable this hook, rename this file to "commit-msg". + +# Uncomment the below to add a Signed-off-by line to the message. +# Doing this in a hook is a bad idea in general, but the prepare-commit-msg +# hook is more suited to it. +# +# SOB=$(git var GIT_AUTHOR_IDENT | sed -n 's/^\(.*>\).*$/Signed-off-by: \1/p') +# grep -qs "^$SOB" "$1" || echo "$SOB" >> "$1" + +# This example catches duplicate Signed-off-by lines. + +test "" = "$(grep '^Signed-off-by: ' "$1" | + sort | uniq -c | sed -e '/^[ ]*1[ ]/d')" || { + echo >&2 Duplicate Signed-off-by lines. + exit 1 +} diff --git a/apd.sensors/hooks/fsmonitor-watchman.sample b/apd.sensors/hooks/fsmonitor-watchman.sample new file mode 100644 index 0000000..e673bb3 --- /dev/null +++ b/apd.sensors/hooks/fsmonitor-watchman.sample @@ -0,0 +1,114 @@ +#!/usr/bin/perl + +use strict; +use warnings; +use IPC::Open2; + +# An example hook script to integrate Watchman +# (https://facebook.github.io/watchman/) with git to speed up detecting +# new and modified files. +# +# The hook is passed a version (currently 1) and a time in nanoseconds +# formatted as a string and outputs to stdout all files that have been +# modified since the given time. Paths must be relative to the root of +# the working tree and separated by a single NUL. +# +# To enable this hook, rename this file to "query-watchman" and set +# 'git config core.fsmonitor .git/hooks/query-watchman' +# +my ($version, $time) = @ARGV; + +# Check the hook interface version + +if ($version == 1) { + # convert nanoseconds to seconds + $time = int $time / 1000000000; +} else { + die "Unsupported query-fsmonitor hook version '$version'.\n" . + "Falling back to scanning...\n"; +} + +my $git_work_tree; +if ($^O =~ 'msys' || $^O =~ 'cygwin') { + $git_work_tree = Win32::GetCwd(); + $git_work_tree =~ tr/\\/\//; +} else { + require Cwd; + $git_work_tree = Cwd::cwd(); +} + +my $retry = 1; + +launch_watchman(); + +sub launch_watchman { + + my $pid = open2(\*CHLD_OUT, \*CHLD_IN, 'watchman -j --no-pretty') + or die "open2() failed: $!\n" . + "Falling back to scanning...\n"; + + # In the query expression below we're asking for names of files that + # changed since $time but were not transient (ie created after + # $time but no longer exist). + # + # To accomplish this, we're using the "since" generator to use the + # recency index to select candidate nodes and "fields" to limit the + # output to file names only. Then we're using the "expression" term to + # further constrain the results. + # + # The category of transient files that we want to ignore will have a + # creation clock (cclock) newer than $time_t value and will also not + # currently exist. + + my $query = <<" END"; + ["query", "$git_work_tree", { + "since": $time, + "fields": ["name"], + "expression": ["not", ["allof", ["since", $time, "cclock"], ["not", "exists"]]] + }] + END + + print CHLD_IN $query; + close CHLD_IN; + my $response = do {local $/; }; + + die "Watchman: command returned no output.\n" . + "Falling back to scanning...\n" if $response eq ""; + die "Watchman: command returned invalid output: $response\n" . + "Falling back to scanning...\n" unless $response =~ /^\{/; + + my $json_pkg; + eval { + require JSON::XS; + $json_pkg = "JSON::XS"; + 1; + } or do { + require JSON::PP; + $json_pkg = "JSON::PP"; + }; + + my $o = $json_pkg->new->utf8->decode($response); + + if ($retry > 0 and $o->{error} and $o->{error} =~ m/unable to resolve root .* directory (.*) is not watched/) { + print STDERR "Adding '$git_work_tree' to watchman's watch list.\n"; + $retry--; + qx/watchman watch "$git_work_tree"/; + die "Failed to make watchman watch '$git_work_tree'.\n" . + "Falling back to scanning...\n" if $? != 0; + + # Watchman will always return all files on the first query so + # return the fast "everything is dirty" flag to git and do the + # Watchman query just to get it over with now so we won't pay + # the cost in git to look up each individual file. + print "/\0"; + eval { launch_watchman() }; + exit 0; + } + + die "Watchman: $o->{error}.\n" . + "Falling back to scanning...\n" if $o->{error}; + + binmode STDOUT, ":utf8"; + local $, = "\0"; + print @{$o->{files}}; +} diff --git a/apd.sensors/hooks/post-update.sample b/apd.sensors/hooks/post-update.sample new file mode 100644 index 0000000..ec17ec1 --- /dev/null +++ b/apd.sensors/hooks/post-update.sample @@ -0,0 +1,8 @@ +#!/bin/sh +# +# An example hook script to prepare a packed repository for use over +# dumb transports. +# +# To enable this hook, rename this file to "post-update". + +exec git update-server-info diff --git a/apd.sensors/hooks/pre-applypatch.sample b/apd.sensors/hooks/pre-applypatch.sample new file mode 100644 index 0000000..4142082 --- /dev/null +++ b/apd.sensors/hooks/pre-applypatch.sample @@ -0,0 +1,14 @@ +#!/bin/sh +# +# An example hook script to verify what is about to be committed +# by applypatch from an e-mail message. +# +# The hook should exit with non-zero status after issuing an +# appropriate message if it wants to stop the commit. +# +# To enable this hook, rename this file to "pre-applypatch". + +. git-sh-setup +precommit="$(git rev-parse --git-path hooks/pre-commit)" +test -x "$precommit" && exec "$precommit" ${1+"$@"} +: diff --git a/apd.sensors/hooks/pre-commit.sample b/apd.sensors/hooks/pre-commit.sample new file mode 100644 index 0000000..6a75641 --- /dev/null +++ b/apd.sensors/hooks/pre-commit.sample @@ -0,0 +1,49 @@ +#!/bin/sh +# +# An example hook script to verify what is about to be committed. +# Called by "git commit" with no arguments. The hook should +# exit with non-zero status after issuing an appropriate message if +# it wants to stop the commit. +# +# To enable this hook, rename this file to "pre-commit". + +if git rev-parse --verify HEAD >/dev/null 2>&1 +then + against=HEAD +else + # Initial commit: diff against an empty tree object + against=$(git hash-object -t tree /dev/null) +fi + +# If you want to allow non-ASCII filenames set this variable to true. +allownonascii=$(git config --bool hooks.allownonascii) + +# Redirect output to stderr. +exec 1>&2 + +# Cross platform projects tend to avoid non-ASCII filenames; prevent +# them from being added to the repository. We exploit the fact that the +# printable range starts at the space character and ends with tilde. +if [ "$allownonascii" != "true" ] && + # Note that the use of brackets around a tr range is ok here, (it's + # even required, for portability to Solaris 10's /usr/bin/tr), since + # the square bracket bytes happen to fall in the designated range. + test $(git diff --cached --name-only --diff-filter=A -z $against | + LC_ALL=C tr -d '[ -~]\0' | wc -c) != 0 +then + cat <<\EOF +Error: Attempt to add a non-ASCII file name. + +This can cause problems if you want to work with people on other platforms. + +To be portable it is advisable to rename the file. + +If you know what you are doing you can disable this check using: + + git config hooks.allownonascii true +EOF + exit 1 +fi + +# If there are whitespace errors, print the offending file names and fail. +exec git diff-index --check --cached $against -- diff --git a/apd.sensors/hooks/pre-push.sample b/apd.sensors/hooks/pre-push.sample new file mode 100644 index 0000000..6187dbf --- /dev/null +++ b/apd.sensors/hooks/pre-push.sample @@ -0,0 +1,53 @@ +#!/bin/sh + +# An example hook script to verify what is about to be pushed. Called by "git +# push" after it has checked the remote status, but before anything has been +# pushed. If this script exits with a non-zero status nothing will be pushed. +# +# This hook is called with the following parameters: +# +# $1 -- Name of the remote to which the push is being done +# $2 -- URL to which the push is being done +# +# If pushing without using a named remote those arguments will be equal. +# +# Information about the commits which are being pushed is supplied as lines to +# the standard input in the form: +# +# +# +# This sample shows how to prevent push of commits where the log message starts +# with "WIP" (work in progress). + +remote="$1" +url="$2" + +z40=0000000000000000000000000000000000000000 + +while read local_ref local_sha remote_ref remote_sha +do + if [ "$local_sha" = $z40 ] + then + # Handle delete + : + else + if [ "$remote_sha" = $z40 ] + then + # New branch, examine all commits + range="$local_sha" + else + # Update to existing branch, examine new commits + range="$remote_sha..$local_sha" + fi + + # Check for WIP commit + commit=`git rev-list -n 1 --grep '^WIP' "$range"` + if [ -n "$commit" ] + then + echo >&2 "Found WIP commit in $local_ref, not pushing" + exit 1 + fi + fi +done + +exit 0 diff --git a/apd.sensors/hooks/pre-rebase.sample b/apd.sensors/hooks/pre-rebase.sample new file mode 100644 index 0000000..6cbef5c --- /dev/null +++ b/apd.sensors/hooks/pre-rebase.sample @@ -0,0 +1,169 @@ +#!/bin/sh +# +# Copyright (c) 2006, 2008 Junio C Hamano +# +# The "pre-rebase" hook is run just before "git rebase" starts doing +# its job, and can prevent the command from running by exiting with +# non-zero status. +# +# The hook is called with the following parameters: +# +# $1 -- the upstream the series was forked from. +# $2 -- the branch being rebased (or empty when rebasing the current branch). +# +# This sample shows how to prevent topic branches that are already +# merged to 'next' branch from getting rebased, because allowing it +# would result in rebasing already published history. + +publish=next +basebranch="$1" +if test "$#" = 2 +then + topic="refs/heads/$2" +else + topic=`git symbolic-ref HEAD` || + exit 0 ;# we do not interrupt rebasing detached HEAD +fi + +case "$topic" in +refs/heads/??/*) + ;; +*) + exit 0 ;# we do not interrupt others. + ;; +esac + +# Now we are dealing with a topic branch being rebased +# on top of master. Is it OK to rebase it? + +# Does the topic really exist? +git show-ref -q "$topic" || { + echo >&2 "No such branch $topic" + exit 1 +} + +# Is topic fully merged to master? +not_in_master=`git rev-list --pretty=oneline ^master "$topic"` +if test -z "$not_in_master" +then + echo >&2 "$topic is fully merged to master; better remove it." + exit 1 ;# we could allow it, but there is no point. +fi + +# Is topic ever merged to next? If so you should not be rebasing it. +only_next_1=`git rev-list ^master "^$topic" ${publish} | sort` +only_next_2=`git rev-list ^master ${publish} | sort` +if test "$only_next_1" = "$only_next_2" +then + not_in_topic=`git rev-list "^$topic" master` + if test -z "$not_in_topic" + then + echo >&2 "$topic is already up to date with master" + exit 1 ;# we could allow it, but there is no point. + else + exit 0 + fi +else + not_in_next=`git rev-list --pretty=oneline ^${publish} "$topic"` + /usr/bin/perl -e ' + my $topic = $ARGV[0]; + my $msg = "* $topic has commits already merged to public branch:\n"; + my (%not_in_next) = map { + /^([0-9a-f]+) /; + ($1 => 1); + } split(/\n/, $ARGV[1]); + for my $elem (map { + /^([0-9a-f]+) (.*)$/; + [$1 => $2]; + } split(/\n/, $ARGV[2])) { + if (!exists $not_in_next{$elem->[0]}) { + if ($msg) { + print STDERR $msg; + undef $msg; + } + print STDERR " $elem->[1]\n"; + } + } + ' "$topic" "$not_in_next" "$not_in_master" + exit 1 +fi + +<<\DOC_END + +This sample hook safeguards topic branches that have been +published from being rewound. + +The workflow assumed here is: + + * Once a topic branch forks from "master", "master" is never + merged into it again (either directly or indirectly). + + * Once a topic branch is fully cooked and merged into "master", + it is deleted. If you need to build on top of it to correct + earlier mistakes, a new topic branch is created by forking at + the tip of the "master". This is not strictly necessary, but + it makes it easier to keep your history simple. + + * Whenever you need to test or publish your changes to topic + branches, merge them into "next" branch. + +The script, being an example, hardcodes the publish branch name +to be "next", but it is trivial to make it configurable via +$GIT_DIR/config mechanism. + +With this workflow, you would want to know: + +(1) ... if a topic branch has ever been merged to "next". Young + topic branches can have stupid mistakes you would rather + clean up before publishing, and things that have not been + merged into other branches can be easily rebased without + affecting other people. But once it is published, you would + not want to rewind it. + +(2) ... if a topic branch has been fully merged to "master". + Then you can delete it. More importantly, you should not + build on top of it -- other people may already want to + change things related to the topic as patches against your + "master", so if you need further changes, it is better to + fork the topic (perhaps with the same name) afresh from the + tip of "master". + +Let's look at this example: + + o---o---o---o---o---o---o---o---o---o "next" + / / / / + / a---a---b A / / + / / / / + / / c---c---c---c B / + / / / \ / + / / / b---b C \ / + / / / / \ / + ---o---o---o---o---o---o---o---o---o---o---o "master" + + +A, B and C are topic branches. + + * A has one fix since it was merged up to "next". + + * B has finished. It has been fully merged up to "master" and "next", + and is ready to be deleted. + + * C has not merged to "next" at all. + +We would want to allow C to be rebased, refuse A, and encourage +B to be deleted. + +To compute (1): + + git rev-list ^master ^topic next + git rev-list ^master next + + if these match, topic has not merged in next at all. + +To compute (2): + + git rev-list master..topic + + if this is empty, it is fully merged to "master". + +DOC_END diff --git a/apd.sensors/hooks/pre-receive.sample b/apd.sensors/hooks/pre-receive.sample new file mode 100644 index 0000000..a1fd29e --- /dev/null +++ b/apd.sensors/hooks/pre-receive.sample @@ -0,0 +1,24 @@ +#!/bin/sh +# +# An example hook script to make use of push options. +# The example simply echoes all push options that start with 'echoback=' +# and rejects all pushes when the "reject" push option is used. +# +# To enable this hook, rename this file to "pre-receive". + +if test -n "$GIT_PUSH_OPTION_COUNT" +then + i=0 + while test "$i" -lt "$GIT_PUSH_OPTION_COUNT" + do + eval "value=\$GIT_PUSH_OPTION_$i" + case "$value" in + echoback=*) + echo "echo from the pre-receive-hook: ${value#*=}" >&2 + ;; + reject) + exit 1 + esac + i=$((i + 1)) + done +fi diff --git a/apd.sensors/hooks/prepare-commit-msg.sample b/apd.sensors/hooks/prepare-commit-msg.sample new file mode 100644 index 0000000..10fa14c --- /dev/null +++ b/apd.sensors/hooks/prepare-commit-msg.sample @@ -0,0 +1,42 @@ +#!/bin/sh +# +# An example hook script to prepare the commit log message. +# Called by "git commit" with the name of the file that has the +# commit message, followed by the description of the commit +# message's source. The hook's purpose is to edit the commit +# message file. If the hook fails with a non-zero status, +# the commit is aborted. +# +# To enable this hook, rename this file to "prepare-commit-msg". + +# This hook includes three examples. The first one removes the +# "# Please enter the commit message..." help message. +# +# The second includes the output of "git diff --name-status -r" +# into the message, just before the "git status" output. It is +# commented because it doesn't cope with --amend or with squashed +# commits. +# +# The third example adds a Signed-off-by line to the message, that can +# still be edited. This is rarely a good idea. + +COMMIT_MSG_FILE=$1 +COMMIT_SOURCE=$2 +SHA1=$3 + +/usr/bin/perl -i.bak -ne 'print unless(m/^. Please enter the commit message/..m/^#$/)' "$COMMIT_MSG_FILE" + +# case "$COMMIT_SOURCE,$SHA1" in +# ,|template,) +# /usr/bin/perl -i.bak -pe ' +# print "\n" . `git diff --cached --name-status -r` +# if /^#/ && $first++ == 0' "$COMMIT_MSG_FILE" ;; +# *) ;; +# esac + +# SOB=$(git var GIT_COMMITTER_IDENT | sed -n 's/^\(.*>\).*$/Signed-off-by: \1/p') +# git interpret-trailers --in-place --trailer "$SOB" "$COMMIT_MSG_FILE" +# if test -z "$COMMIT_SOURCE" +# then +# /usr/bin/perl -i.bak -pe 'print "\n" if !$first_line++' "$COMMIT_MSG_FILE" +# fi diff --git a/apd.sensors/hooks/update.sample b/apd.sensors/hooks/update.sample new file mode 100644 index 0000000..80ba941 --- /dev/null +++ b/apd.sensors/hooks/update.sample @@ -0,0 +1,128 @@ +#!/bin/sh +# +# An example hook script to block unannotated tags from entering. +# Called by "git receive-pack" with arguments: refname sha1-old sha1-new +# +# To enable this hook, rename this file to "update". +# +# Config +# ------ +# hooks.allowunannotated +# This boolean sets whether unannotated tags will be allowed into the +# repository. By default they won't be. +# hooks.allowdeletetag +# This boolean sets whether deleting tags will be allowed in the +# repository. By default they won't be. +# hooks.allowmodifytag +# This boolean sets whether a tag may be modified after creation. By default +# it won't be. +# hooks.allowdeletebranch +# This boolean sets whether deleting branches will be allowed in the +# repository. By default they won't be. +# hooks.denycreatebranch +# This boolean sets whether remotely creating branches will be denied +# in the repository. By default this is allowed. +# + +# --- Command line +refname="$1" +oldrev="$2" +newrev="$3" + +# --- Safety check +if [ -z "$GIT_DIR" ]; then + echo "Don't run this script from the command line." >&2 + echo " (if you want, you could supply GIT_DIR then run" >&2 + echo " $0 )" >&2 + exit 1 +fi + +if [ -z "$refname" -o -z "$oldrev" -o -z "$newrev" ]; then + echo "usage: $0 " >&2 + exit 1 +fi + +# --- Config +allowunannotated=$(git config --bool hooks.allowunannotated) +allowdeletebranch=$(git config --bool hooks.allowdeletebranch) +denycreatebranch=$(git config --bool hooks.denycreatebranch) +allowdeletetag=$(git config --bool hooks.allowdeletetag) +allowmodifytag=$(git config --bool hooks.allowmodifytag) + +# check for no description +projectdesc=$(sed -e '1q' "$GIT_DIR/description") +case "$projectdesc" in +"Unnamed repository"* | "") + echo "*** Project description file hasn't been set" >&2 + exit 1 + ;; +esac + +# --- Check types +# if $newrev is 0000...0000, it's a commit to delete a ref. +zero="0000000000000000000000000000000000000000" +if [ "$newrev" = "$zero" ]; then + newrev_type=delete +else + newrev_type=$(git cat-file -t $newrev) +fi + +case "$refname","$newrev_type" in + refs/tags/*,commit) + # un-annotated tag + short_refname=${refname##refs/tags/} + if [ "$allowunannotated" != "true" ]; then + echo "*** The un-annotated tag, $short_refname, is not allowed in this repository" >&2 + echo "*** Use 'git tag [ -a | -s ]' for tags you want to propagate." >&2 + exit 1 + fi + ;; + refs/tags/*,delete) + # delete tag + if [ "$allowdeletetag" != "true" ]; then + echo "*** Deleting a tag is not allowed in this repository" >&2 + exit 1 + fi + ;; + refs/tags/*,tag) + # annotated tag + if [ "$allowmodifytag" != "true" ] && git rev-parse $refname > /dev/null 2>&1 + then + echo "*** Tag '$refname' already exists." >&2 + echo "*** Modifying a tag is not allowed in this repository." >&2 + exit 1 + fi + ;; + refs/heads/*,commit) + # branch + if [ "$oldrev" = "$zero" -a "$denycreatebranch" = "true" ]; then + echo "*** Creating a branch is not allowed in this repository" >&2 + exit 1 + fi + ;; + refs/heads/*,delete) + # delete branch + if [ "$allowdeletebranch" != "true" ]; then + echo "*** Deleting a branch is not allowed in this repository" >&2 + exit 1 + fi + ;; + refs/remotes/*,commit) + # tracking branch + ;; + refs/remotes/*,delete) + # delete tracking branch + if [ "$allowdeletebranch" != "true" ]; then + echo "*** Deleting a tracking branch is not allowed in this repository" >&2 + exit 1 + fi + ;; + *) + # Anything else (is there anything else?) + echo "*** Update hook: unknown type of update to ref $refname of type $newrev_type" >&2 + exit 1 + ;; +esac + +# --- Finished +exit 0 diff --git a/apd.sensors/info/exclude b/apd.sensors/info/exclude new file mode 100644 index 0000000..a5196d1 --- /dev/null +++ b/apd.sensors/info/exclude @@ -0,0 +1,6 @@ +# git ls-files --others --exclude-from=.git/info/exclude +# Lines that start with '#' are comments. +# For a project mostly in C, the following would be a good set of +# exclude patterns (uncomment them if you want to use them): +# *.[oa] +# *~ diff --git a/apd.sensors/objects/pack/pack-2c612f3627aa76525a86c082a5393616dab67f82.idx b/apd.sensors/objects/pack/pack-2c612f3627aa76525a86c082a5393616dab67f82.idx new file mode 100644 index 0000000000000000000000000000000000000000..594560087adb09f710e46cfd76edfc64ec08c55c GIT binary patch literal 26048 zcmXWhQ*<7U8iwK6wr$(Co1{(B*tTukX>8kWlE#hE*tYFGYp?&{TJQP&J!|G*zAu+= z#vmXdU;sz}EC3FG0Kfp?0Pz1q0$fr61%M8~2w(xQ0k{A>06u^KKm;HL5C_Nt6aY#9 z6@VJxCqNsZ4=?~20!#ts04snUz!BgI@BsJ%f&gKFNI*0o0gwzx1^fbJ0I~pifD%AC zpc+sQXaqC?Isv}{{eV%xIA9v^53m4O0jvYI0Q-Ogz#-uDKj*-`2HXN(0Pp|#0s#R9 z`hh|LfPSDz02Bbw5EN(#N&o=bfl>p2cAyLZb^y=}6lex22mpG4N&@8mqX^s|0H7DB zIsoVeY6Jj&FHlo}1;7U20B`{Stw22iKr2w76=(z?29O8<8i4|RKyv^4< z7yudo4*>dr0d2sr0eAp>0MG}F5&$#;qX)16I05_sA%HMI8Xyl)2B-ow0Ga?jfB^t# z17;4e2RH-V06qYJKrkQ_5Cw<_0A0Y60OV8DLB zdI3NiFknAmz<$7{0sjCCfMviM0O$e+GywxP1a<^C16%=a08ap5H{d`IaA*Jm02zP= zzyx3cfF|HT4{)FdI4uC!3pmgNoCClG-~|Ai0SB6ZivuJ83IL!B_z%F(|L6i2Xaa5u zFauZutO51_2LR9r+!Npff_!7A21_>1s4!_n{YLS%|8^3A!=$#ctH`PcWYT{B^YiPB zKLw7qly(LualW4bRB#2ZGkr8Wn|`yy?K3bCAA9!~s79kLjpDIkFq*a}BEqF%2o2{4 zXpdubTeKbB_tz&>ZcXtECq_Ac(9u7yNUvfH9VSH+A(9{^K>-NdV3uhpV%`s9|FluJ zxGsHoQmoHS!GCyw^Z!sTYpFz_G{s3~dj7df2_D;n@A2}|Bf-TuQq>{F@)GAa0|DBG zcK}yAX>sY!Fkw&nGwRG^9D?h#v-^N8TDn`)8UY)jkrcK(3qsc@b_v1V{6(x10fvo` zG^wC+1EOtT)f%xhsJ^w60vE<#NsH-y5u%g&2j;egS>Vp``Ojm^Q_ z-$4pnDkA<45c(0}>}UcD#|+=8$q6Yk0%A3x!8sP|B=gK;p7W+{s0f)rR53uKtom;B z%S5Fy0VG}j-2$?Ofl=Z3k5;GV%_*zu;;25vtsj);Z0yu7Vu9xw7?NL0`=Dn zS3#vP1JOwh1-zsVRN@FHFoO$1>KPa#H}X1*D{8j$i&qV%dvP(Z>gRQxH; zlgAOcUGV!p$ibR%Op*k1Z_p(}_Im*02?gDv0lNCK41x;wiVLdr#ORevZg#!R?&t)p zt@b0oPh(yWTg)q#hy;$q6&{3~zn7TDp3|*gI^Q z%pulj5D9dJ8$3FAVhhO!!QpZ4hJ4q5V6rE8o!oBl3R~K&UeE66vmY1R3r(EzLJr07 z9!qv>_E~v;8TwA4N#4X5Qvc-O(`Hu7mFZ}b=?p9Rwgh%H$BwAs$I3Ie(=Om}ciR^4 zSv|(4P_N73KVsF)hCqU)8*wk^mrxCH%s0Fd5c$Zh!ul_$^XesX`q&sjuQ#?3kdC8B zdWp!ZKu;dxck3qXCg4I4MqN)$yy&xRN>Qqu7Ln0rPe3*i{o4j9{B-(B5P$#iNhs!R zZ~}`#%(%g-vlcleBs5iZPsGhNZy_*8EUl-^u7e7z>d#EBB4$iSrVS#*nsc{RL6z=g@a2)?*v6P zvTg%{o9z{;UHY3Qiz>6Gz$=S7vI~ruq2j>a>`o*aQqUwavsDxl^4n<%4&*Rs$R9~m z2us8U<)t7#6jx6+Q{#O)af|8Pcj@<~16aE|l=Nf%t)^xhz3@TCmu#9a*zjF2ngv{MG>;e?w#=nS|3xqRPDrA^ zOq+)qXg(NGY-{D0X0|XC#U6xcMA+h3=n$a}sx<$0R8X&ZAYy26T)Pw@(WQs958D5( zOYWPt9}ra*lKB-;pc{AcV{bo?{v23%L!Ts_e=74oMlbP+N{pXPSsg5mz@!Yj98!>+ z$9RKUF>ct3tg}AkC-2%7)dmyc0e&fS?AX;idOAaA1qhU z=q_y*0~v+&>dcp=)K;{96|5TY5QQf@sm*e~{xAH%C+ER>daRn@Zt{phUOO3x_CGMA z2QUdC;8^2rbg8d`ROK>{`ALIF5%Dpn1=t`$1q!?uEsHg8(X+>!p_%Q_DA+DAg2v6} z^EvGi#p{Y}MRDde!q{Op?&_uIyoDM4edqW;*Q_#n(r~t9vgH-+?IJCh2ZQ{lzJA{0 z^xsrYF#p8l%mbrN|E%W+ImBRhlbTXcAQor}l4 zf#Y6ZqFSrZc^+1FZsp83~X4}(@Pd*_+CJHBHbwU&@-TNT*#BI|0jV&Qc3Y?XqA((Q% zEO{iQfatp@s~KUhSww@a0&1_PoVWzEP8|GG!Y{)4qN<8dB?Ts8MLIWCXu{(YOBJGB z?_~FeMt!dgFGPM?i?pyyO;_S>20rz)r>GHflF3gCBU+y*=UI}pecp@h{mQ2Im!<>d z=5v;t%tVsnn&V7Y+*z|y$*_^5lS4G-eqEA3P=QW5<-T>K$AKMew~oVRjU6OwiynqF zSxglX#3jt;TfF(K=4+&&A_-JYw!=}mWvb|HH|xf3BRr(;zEoYAF5u0-7WAB}F}5gB zMQh0Ti$yUr{(w8MS7y3~iYzCD^U{)KlsaRL`}Lk0Li8c}mE2#hlqivvA!od>B28<# zTi4a9z#1xp3R{xXOAUssCsI`9L(#=0;wxwVe99nab-DuWEH|t!k8Z8L4Qu3*m76A? zFnc;ZuE~7+#;C4YfQT>$8>mM<@5tLs{V7&?IjQXVI38zhe&YY>TIcwfXCP3w`hV3H0MEUx|wSh0!DdF6Rv^mMo+)bt4z&u=-ycpgU# zGks8HSMqLr+7C6VJgBNtXxiF_fOHq`-ed5bLyvZ9`15-jr~0a~M?^?munWjivc+m@ zgAWGzqBDBT6UG6R7iWb%8yq6)oP51(Bqnfs8{Wb0PvKy!m>WUr=O__o!9Pg(hy;$< zd6Ayf1U=o<&sk=DchVbpm=Mx4g;zF+H;9Wg_C)_g-Gu}odG0DYihHdi>NbARxWx=c zpfZzqsQe5}^1n^_P@UPMX+{3gyp)-X-_j*%LviPe$mbMHGa$_r0Obn%`Yv~QFik1y zC8h9_=8FE0zK3N*bE$t)?kD0-O#hfLZMr%8@_=6-a{g>xlAa~cknx-xZHAKY6=dnE z9VvH9rO92%x;v!}Z9!(%?h|BLKJ3?l?yFcaDrtZz?PZLhQ8u60@E`gGoh#O)qS`35IRZW< zv*y|?_+HTqdL59o#FQ*~X{XOL)bhH?_ay{KdaqvRQ5%ZQezQUSe}^{6_|b(P44~>P ze6e?5>p92nro939k3GdD40bM65Oo=JTysN7mORx8sN&VmK_ z;#)Kbtfu#)Z04@*5vmh^YgQGP-1Nr0fFz6QIJl39x z{<3pOvfDeUE%}nl!kq+-E)VrJvalOLBBxo#q4odCVp0B`65(IDb( zEXHL|YsFXkqnEvJ)u~i;%Qabc2E=s#+$(m=rj&iq_H*03h5uUg$L07-9DY3VzgrH0 z0#71s#%Jwz)S=VRj6F~IA~lY3<`9uNWk_Le9~d#-l5q6v+eePeELJ-^MX)uU2p`ZV z&EX1a31&`r+_fJp7tWTo?Ro2W=2y7GG9sL5{!&P8EPCbAOvV@Jht6EaoKaK8^->A-SPNuoAml7JV*n5xv;*>f=& zm^yQX$E*7HUL&0{%ZQ{BgCm}2hd*#-DM3&1@TM8vL@r39epeb?i4oz-xBNa4{yo7W zxSU)Q!>fcoR_YHoT-&$V8LD;Y$t@=LGzYib%$*bNb}0IJ`6Qjj(|8#&r0KGi4P`B! z>NMQBSwg(%i6OMYyQ+(s?E*<&Xd2r$lE)xk6ioj+`=%y`QW-nX z%in+e)DF0LGm!%d>1!Izvzh45T*C3GA3`2@e{+&Qtj=9gUl^Lq&wY#dxz{YuJDeHC zFc@r?J6ZiXrtn?-&}8zBcl?Pw;YXcQi08xJhQ@BS4PQbi??mz=QxM0oqQ)#D_|Dc? za<)bdpEO8uJ&&YJ@;fvPahsMel0>!$pB(j)DZ=?bf!|-$AZMDA^uHYK_$ucb*QR~V z4|if1`dAM!ltcR@`G0!%Ud^e__rfjrLretoUj38d;MWf#!h93`WVf9D*M~zL$bghm z$Z!4QDj@P*$?rI%Ff+ao6@e^KfInZ(Vu3265&B>ZRa`pi_;cHph<}0Fy3}=z&aG*9 zN-{AL@!sJLMF1r37siD~E60B9FkWCt1nNZ^vH%mQO0o1ErnSe3W#M3J{_Q_*0)fD} zXpR=aFvBEVdz^GLCEmTSbb&712Vrg!_#Z@}CWMF;l{;$=K?196WX#d*HRP>C2G#+$ z=K|V?zXdLDkvZ*n0zEw=%@2=HkXXEt?*;8!&?>zOnXgd7vNC>6WDFQRunGpV1d1ae z8fM(jKBGr*V6ewPwFzGJ22K@)K>1y$o$4F&j^Q~NSAo>Sth6&P(m1I)nFvI zatNs*@!D5Y3>8T1(pQY>u!stStO~^~@1E0LZd(4rPx;n2S^-D3`yzC*oR~MGSy6B{ zO!v7e+)cGVJu4h2FZcc8ub{Dk&58*{-{+tC8%N=g4a1(vsZKmgVj}S;EurXILk;0_ z-}#657n1y*c`GFin@gpO0zctHnXVR_tADbyp>ih2SndTMwbjCpv)^NMt$no)IFFAv zU`@alQr{n4>B;t4pwd(lO&uJf^G)l)4Dj8A!6@+#>@ zR(-|5Cxe~q#RkF$Fy7*X{6Zvtoso!9UlM5qHUwCo!|RmUFB`S~sX`JnQ3*hjoLAiP zNPKaY0gKp}JB1f_kW54=b*#}SJvp0DTAxD!@%kqo5$M8*&A&r?mCeAc>eh`#h{h#e z6JQsS6S*h;vJ^;ymIoFnBRMRgucWh)S(xY5d{lKvxvXb?A(<)Rr>?d$JaB`->KLjn zKvm!y;6fl#jdYVYDd>s3(&XMOawadVs$DM8dnDruzp|@Vd=>xb@Hp?ER+A<1kL^+4 zo5!-~bd@2;fjU42)R0s1)SFa&`A`gk<~~UL>EVkB$}m}Kd=y4L-v5`1)pe#wZZW*g zB=(*(SYSpied6E28XZbJniyxb%F`ri&ZuAmqVE)q>pPt(sxso9i{&-aLakIcPHTZf zG4Iv>?C^t4m)6+Q{Z+7{i=qTo9)^cuf!C^|8S!hfYfj&6`2)g9(S>8XU=fIQk3Xtp zce4iQMs|)_m|-U7N$2^a70@N*ti7>8dS*+R(-_rmZ<3u z8n9hjJ(U^d9v>O8QT*zS1K{Bg^F+N(5|Ojy-nJQHi{Yy|2J0q8PD6tb_+{ASWnU|{ zt@fB&r@79$Mw4~AyUPB_ucfmet1WQ#3K`oA7V&7SI#d2tK%9POJe~!~cv7U(vC@53 zRuDc`Ao5rY%S!qTbCLFt&ehLrB^n z^oxoGkyQP>d0Nd-7-LX9Dsmnj^df>QOneH}Tf}-$IE8HNzxZxgcbY<;<;6(A&BUsx za1|4!V-SNDeNg`O#at*Pjay!+$lvOcjrb@Gql8RlU{OzW^iBz)sF@^+CiP8yNQ|9r zVrK!Kag#AuF^><9U;5SVQ$i}Y>|6_BQpjTL81pT;zd>_u zep^VwDAWCc0EKcjK@$@BejH3*&o|Zdpe$q9Xl8Rd6m0}Dd~bL3p59bnt?UJ}Bu;a* za#?i~A{e=2<+3v)uH15(>UHHm;CK9s>5VLFl6I{`Sb2zIrTS1lf_%j3^mA>QDRPTt zQe|~7MD~wENiLpqNWyTzK)?1UjVcPZFS*RUKxxu2f;myIq#*dmq^fzJcQsTpo)Q}N zA>vy|sgbqGfoe))1(vPh$xw2%RKa30D8j{uv1-X>VuzfRIh?m^)G;E2DT%BD@prPG znL6aYj?l69{4e7X={LK+AK!Vo^^oZ(z;8Ar&zAl@;U0E#DSS7rz1kVv99te+O25^T z{tcCJa{j#v3&cqgt<Ni?c9-?&zdgZW27WG7eq`FEOOMXsm4&GQeVo1`C^H>BiR zHJ#v=?$zJ=K2llc8NSr)j+G*94E*+BE~ z3o6xvmzRKP?_Qvud0EM2ZIsgdmy7|A2!+t^J1Mt%9(0TKgES0^R$_nkGu83j*ru=g zb6ye>6-0Me{*+(cg#_4(SXU?R;Ja&e%|cL)C4y6(%wz>59%jB`(&m zh9gI)(T6%vb%_)Xk>t~UN-rZwwj}B>D(vJ}+UF)+=lXyCROEU2l2`xMH?@X5;uzCt zV;|D}(-)EZn==f_K$qd=c)4B*ntJBa+iWCZJLkDsNv$lA#iLyB znl$FbnB&`EY@bztU11G~ZMbLOF$oQ~aeR z;X*jak^2iev`i;fXLQsPFitwz?3M~~Wy~GUwS0QY-cmpI9)Elsf>Cu37Mk8ZY2~7F zy9gyijzuaVxYTJsx(k|%Ya=P^WvNd03mMM4m+U$Xf5k6QXn(>zQoq<8t^NB}NcJH6 zoYYoksY81&OEQ^0UW1;HZ!Uax(Lay$S4W!oL|*Ohqz6OWzAPm37+JZNg^pZnA>y!4 zr+T0vGHMfjG%GgfgpToT$IdG)B*p-rT;mWX`)*9!iH?Vw(c%X!;r>a-)IzhOU|2MOjA1P?h>Wa7oM(-6*RWF5M2|-!sqAH7TOKo)5p7yt-B_CA zVkoQBOY607_j+uiD#?o6XI$z?%k@tlrt0UOB4;YZ9g)Ge29NnHACoSL>*~+i{bmI3 zztH_*gC@HxA62kw;iiAY1{#jQV5$jgx^>l_(Zc^(h-rW(edPDp6SWS#h;l{!H(bCy z>bHUVo*>cbeYRhDYHId5%@?NHr5`z{Z%Ytkia~%V>U7q5GvNm`T z^?Qh{tPxV~WoCnojS1{{Hy&Gh3vJ=cOIG@$^CUw^bSJVn{ikm?N;t0U;m(ezKMf51 zOYeM>PfK}l0=ZJWyZO?OLGlbkDWqp21mJop_d5Cu>rU@Q&c=dq-8}$u~wm0x}C@PIKepOl-C>Z!YlntKZIC?}>BF!1)RHLfY zX=rM}vc8kBDHpnnzZM&{3DE4xdxR5X*or1iB(%O><@cFjfe%JGd$Qv`X<;3QiD(s( zLGhUI&h^`fY(OUv5CDx8 zS?@Jky`~H$@f9{Dstf&D9U-=`PD^8Ty&*KYSdwZgIK#fTJoibh&Dt58Nc}GYr+CCv z!?|^bKjaNQ^HWyHMPzHMe8|%@gfyQ1ALItNeMzm!P{J5~czT>^S|=9X`cw85FVfek zsOwo^#m0x}jZJ|>LvyZNs=EwHjOzCqaH|5dZxpB+i^K_wi@K2$153|IdI^Q*{5K_@ zWC6io@JMt`Es1FN-mL8Lt651Rt7jZ* z_%XHhl9Z0_8HOUBI1;{YYi5LCl19T*EFA1GVgYa$7gN<<>vIS8ppwK%1DBgkTxd-k z*Tq#H8~VDb={ode#DiH;|MkZE_<*N<8|m6JLxu}8#V(n?)U`3O2yB~in@ZB=mfZTd z8K2xwGdZ&aA@?F1Tc)YlQ{tBq4-CPzIo;+`IY+-oTTz$0yGqn0@hD@-FtD;KYByOT zTXTdejY)ZxqddMpF)+Hg*Z7<{wu7~9)8MJ3>4#Z}X*_K>22i?2cG_C`+F|j2A}WJmX0?lg?DezQ;R1y0%YP1k+NGn( z6gwYa>a|bE{t0WZi79zvwO62Ym$lh1ZZK`oBdFT(g-IhQw>NdFw9*$?@g>z@o$;uC zehWG7vCnYg3tm|EVCv?Kf8}$eT$tF2v0qKeI&4tma-c;QNz2-=z=7BpcesuG8Yl*T z#>(JhgnZI{Bek?6|3QhY z?C2dvaBwmgU8FJ1I+gFS`9X+L;TS@kz~PSO{_{EvLp~k4;5nHE(FqcU=6Qs!f*9I{ zw441Kd2ck9gA;AnU{0nVA`anI3(#3YRO)vEEmt^Fp~h0X_RXiOX!_sZMb_+Za7i@tf%bU}OjkP#F1?@NyP`d431of@G@-5O^->haN3pQ*)vuNmK2l6-F=xqM1q#r&vsM@b7D-W4)^s{IyFiP8$0VS{>A&-JAwrklil zj@P+%9JlE3n4_kKC$zkhHumOy9+Xb0yPy0LF4e(;$o1Azte{wY(ROi=S+d+RrA^(U zV|l^%m4Wm28CoD=BDodu!}J0mG#FzfVw3&P6%f(_@Gc7COrT7T{3qKLh94r+V7uilE= z%-gl_mtGOGfW-g39ZZh4aHU{Eo_MGp@gOFkx*d(`9K1M>(hkK15j;zXcsx(}+YV0~ zIrx#BI`o#!n{YO|lDQWQ35iy?ASCGL%P}N*_?fP3{l0DCD!yg8T}Yu1wJOi+r#xy2 zajJ2~cMPVM#83w8cHCNQ|5Pd@U9m3}b4v7fp-?`J+~c1y%oIIfSVGs+K|eZ2YeOw= z;|+0P_i7q_tf!|&2>LJs4??YGCB{y|!AlU^vDvI+kYf{IutPHzDLlqEM^AJPa(=-! zlt6L0*@b3{K#9EU5P>!fp!0kqM&Xo9-3}etleJ_fiXVtaq@k#+GE{~TbqpgG1V#OB zGb>kmFdi?)tyrp^Hxfo3m?kcM_eTw9kS&VuHl}Tx88&SFP$cKa5<;LEw~D9g6`f)( zC3`rmabMNnaB{9yx5TE3OX~0*Y0>bXypI(OPtffq$R#Z3MB8467_H$IF^fdL?xCk= zl)TOU4rKek~ZCzVAVc}W@Ph&iI)%EjnXo^fRg zo{L6-me$t_td2#W;1E5`)_(a6@dlJhN)Dpq^@Y_Ocuh}jLUizBvujLe$+u9 zk-zHK?7?!epVgAwG<`MVbc)JL>{j!L3**M|>%}#+hY#Wb?WZH)RbA>L4IDEG43pJd zo1E}*R$*_!m&;+Q{1o#EG42vtg(>G~uVcqoyt@@42ME&%e?)Ly9QdLr2_CYOD1&~u z7%z4voCNbvKfkMAb`#oVpa-}VuejkSym^4owb`TC9t#WY82LM_hM7<%vdW?^&+;x2 z)dcB|fA{iuG2@jn21L)8%#)@yvBqn$36sF7q}i>ZM4(X1U;0KtYnft~*^ zu@rZyV~NKT>PwLymUzIgs*qPVvHBsUY8#h}eqV2z8N$gPF z=}j|X4xO!Hoen8=Q#CGf$;9v=fj##&JR(ha#x&jUHn+8C$z;zs4dArNNTeGbX8SYf zXS{#xllkUf1GWezY!?DmlN(qFG@dy{ll|_6xQ|Jgt@5G|C0C z*5=r+5(`Nm_7_GXoWxbMY7&y*tD^6%!%J`~?XM5_ya8Q9CRZL?zMV~qdV+z$%5<(l zy|d#Kr?G~v?`@`VhpFuxUOGa7S)+-g?>3&oAmZU37|3wHGlN^lH5Y;yt z@_I8&%S`t#?d1Mji%fxJ_LkL*;23j0F`K^sGN|;m?|H#9Y+XTi)IIE!XrF!}?mAuh zY*Z@g(|4cNl>^2%7M*@uYbuWPF*hb>7yXv_cx*Gk?V3U93PC`E7Oz&)hyTPmyIxdi z{*vJj_Oi=|g!Tn-_NonIZ(7$**q2eksHJQf75PU;06l;CW*`xpxH)5LVkRu(i;7r@ z8Il4AHPY_zI4a{6G0mBMV9@8X!4!#}MtxwZyDO6mnT7N)+CPb3U(%fAN-05-S2ELJ zKF3$>$qcumGbX~bryXawPBt^7xKxh6iCSlif{%#GG{QWfo-y-c>Rt#M?`z9c8OnYT z>$qf4b07;9riETF?3~2I^EpHFw8H!M*jSb;{y>{B)n8e!?+|0dupfUPwpFt}vnAV( z4e-0qTwgLiLZ2R#QfIPhJ-&7(Qvwm03n{;K1t8Bkr(@N<^x}%_} zC?IG1+VhskmhLQg<0wHx)e6-^(MDuXr_c#)Fy<=n+74A}7_ScAtr=%8+s1^RA|u>( zGSUYtxL6b+ZenC__`&?7-?E9-S;K))Q2)&{A@Y^uK-Jvbk)6W@$?7l{xa zd-QQfT#WKu^HD>^m8M+n={#r#ff5V)9cGf;T+46dd!y~vtPoC_JU=yxX$cGS3Lq_v zG5Bnl0wH{_i>M^zwJ7ECA!yr%M|wN4>wk49nNgwKiaONiOZ$^0gm5SQbsuq@mxroT zTr5}3&+C9}o7{p>gzPBljpMiH?nB(nAI38LvMaCS+@usg`(P+mU+hEAzi%}c#j&Qd zYE9{3ohCMWNe#)Q;); zT>^~3f|e#%A@_W84hM*^F{#0x=Zj04`(d$cq5M{6-P2gSM)BU>(%F1(QCPO#u+3j4F1hiHdKj>X zG#8JaqMhq`sP4bakTK4VG&d?%G}~0Oi8q@CumUFW%A%FQ6%?+gr`C9{q3Vk?C9 zS0WQr3+Egy?@>8rY!`9By(-id&D0*>-U9Vbu9MMi!h`w-!zz4eo_)H}F+y$gY>OAT zX5EeZM=FB%3u6S1lJ+GzH*z*ho(~TxNGqC{izQ}}2gau>rwpW3JMtFP3M)SKWyCm* zP|p|)yXCbKC0;7qnJT#p&q7)j$EKkhRSwb1zSTMx?N&;F=z26xU)a39TQ9DMLbJ!3 zT2w}v6{_l9%E*P(y=_xQSx0Io17{_dHg8CHeQ166K)Z7f`H zwK-DhvF(q<6;;);NJ6SmrRHm&#$*H{$I|{1Z(TKapSaS2HCW>55Vcv{9-B4@US4$? z4SNjBKX~??13#T^9a`6SySwT_zBS3+ir;UC|F0VxZK5)|i&-@sScObs**_eK^flJs za#7ezZur${1$(1a8g2=F;0<`c>KHfoCQuB!1H-7DA;!=b2vu0s zvbSm?ch^HmsB8;$3nIoPcFANp_quAiBE$Q2I^LGiEyXX&YGX%Y9pY+ba{O_akJnXo zR!Dus{iXGU95w31BQv}knEy(jKtc`Kx$&DBPEgg^7x1^saAM(JzwJiQLtv+YT)!$~emRHGGK zNIj_Wn98Y-{?i)*5kh1*Xw5K+)>qMaR3uUV)lO-kNu#8981XK`mLAJJNDvL}8(O+yqArPLVV|@d{-w>+|2ndvMIk(u=~( z164HVl_4f-FH7hqJTMzH{gf6lHI)7y|fjLMe$2v-S%ypGOo?x@TRFCP?z^x zf*SuIjsN9t%6Rg>8l(D3LDcCdW`HY*bU2-E>MnAggXlPKq%4D`7mccXTH3H}>PxJa zYPk@bU*jzDgR`+#cau488WCvbYWgWD$_0&E6W(GcZEXqJY!Liia6r&|B@C~=Qinh! z2~k15xp0e-T9u9+nfuWRck{*qKID47dF9&-!(yZL6eN%A(scrfU_>%S^Noy5JMh26 zGW2fhS7)Py^1r_CEr^Y4M#u~Ai{wv^RmdlJ($;2PEmE4S7UQPn**vtU#??s6?)XHe`s@owt7gU_Zyu3*byZS0a0vQ;uM9oX)Qn& z`vq$j=UDE0nz9C(mFoqaw;MiC^Sn!V6BSTePv%L-Ns{V$~pus6q^RQrt)G& zM({*~*p>#y@x+le)-5GyVE;I8QaWh;+V&2YHz|br8o_O`EPT*2-3)1}+m2RfN+3p_ z!RIs>)+j72)%Bw9)~+-%+bapxe0#`St1#B*lz2f(Q+JZvS}Xh#EzM!7_Nn5 z+3s3vPmND;g9DrW3dsm^QZ<|(~+f+f8{tTCu+xj zfY9?hKM&^Bypy01{4i4Y^wGSM_=BQ2`iYh;t&=pS%;wjEDd?$##x7*h%lW!UX(vT9 zbi@2Yixzj`qpT_eG!9Ipc&9`xulUehT8_%vU#K0MXww!Q{Z4&`ov$SFS!}g)IM}oM zCXX0!(d6Fj*sc)EIe8=| z1|;^MN#FUZl7lsy9J&hZ5at9Oj9OyiVCSH5|1>++jCP&px^Ru_6zTPBJ~;8{-h+Re zJnR-32;*{EgqDEJCUz>NVBa!`Qgr;YN! zrz2$t^_@=In0dSc?T_&ZM5fXK2b^(98^z(Ez%+j zr3jui8NFEX4IM%Dj&{GWYAV>C|)F2%>+5o2z!C-og2S~@2< zjKR%S%n(`Ykw`5vGo(o5A-#6QMnQ(-Mc40`Bi)nD(fyiC7Tr!Yu*!~IjuN^WBd7BZ ziHh0DtTUz3+8#O_)B#rKqr7+mh0KdhJ<@ZGCShP15znV_qw_LPhM?Y`c+0;cvQEVP zrBDquN6*|XqB9fCOqw4u&tS1%-L!P?{{9?AJx;1vdUdqPA}pT5nr1L(CR1~dq}AQ!$LQD=klMUIJc*-enD9+Cb^i95{ea{#gR zPEgcVQJLVsLSsEpiok!lz~XJ9GrnUO6q@jN1AX@p?OKyV#{jQi?RnG+?wP2L<8b9+ z(cPp?3hPfJovh=1k)Ei1fZBEvk(U2eBaAvcA?w-CT0U{P_S@3vC+YJ`L(PFpW+fD)7N1?|MItWv#M#@10m%v8?V@*>D5Vd z$HLCv%(>H?iBh`9x$ky)nxVT>>ryb9Nwm{uy2-Tg2r8XP=pQ{caffMSk=WB2Erc<_ zML5-~tVSiq`8Z_8cW%?OuSbF3rz_fNAbK=1F4HNI)MaOEf6L6gn1&VlFPdZ;X9J1O^#5FRnD>Rrz(r!?MNm`_vT+EMMt zuB+wv*d5JRxiqg`h%L5#G>j;=)LldgfN0IPo_k!LLqb!%+5f8S9DcZdhJ~Bo=_pI{ zlfYBx+(umq{RfZ1ofP(Or2!2x1(s&U%yAH|;Ro6ynz!46rZ}4~{{VAx$3ba=kJ9EF zZ2H22>zFM>;z7!fr0%h4&6;ZQjqHF0Z#Whhe`rR^WPg~A$X`wZ5odafOckKFGpDKp zYpWP?lVKU@Ul31=tthh_BWTLk8PNDxTkSoVUcby1$I@dI9~mo*1f8Tbh#sT3U5$;F zjJ>XfOV7{s@C&Jb=x{!$C;TN{DvY<0vH25x+`R{3JA>b;u8g6yROZp*vn@5XWyQK0 z_hV6rzWJbJsl2Div#Zy13;P!G*)_(qxJ_zqS+li#=^VKwEi3f9{DUTRp|@H7a^}wd z7%hvwqqlM*q#pH?ZD{o5^1Mea8YK9RjE9zoqZm!gy)CP2qy`9`E9O}kQXE2hRj!K70b&#JDCxx)t5ou1bA(Rv znTm<1n>*!37UscrtAgOSVZEV2)x=(;y$F}Xk1Hb8t5vk+TMo}3lw4>b-Ku_`So!K_ ztE0%3v1J`ED{+~d%DEWL(@9QqtA|{^0;jVNMJ$cPtrFvVqQ#e?t2crXCkrEo{me(- zi?)AhZm;r?u2HgPWBx(Q6d_oM+(0I-Qzf!YT4PG!3BShpx4Hf}utk2SVEygMagAeA zsU|3^$swV~IF6{1*eZyGcFh(;RIWmChV2ezrV)FX6)&<^ZLLhSUDh5ctgpqjvb#=O zBE4|#W1VTjGH(;Bn4|(?MO9;_9n^Bga9uNqKVlHXK&d!(!5{WH!Sm5UY+dtQpc*U~ zzrtcb(cx0ERPc^IXWectB*lfu4gOUPJeAVT#7BHUXWefOndp0u31h1`iGlg;@7LkD z_4Vl@8x@B5S@^zJ8hpbQKLQb9>J4h)^GtToz0dh>2MUNYEzV;&ybX6;{~F9otmR`U zsJOI)BnR2vhK)GW5;)9J4q<0yp>r>^s{7-C;EmMm7H?rh9)s7vy#a8v4cP~&W*h66 zcnI9BsiAOwVgbye+yvTFh?{6s>A*{$hj$td!cdb)QT^)TaMKiusw~M7Ihj+;{5vn_ zq2nL+$lHx!`Ld=q|}9rZV25n(zA=P;2^BKQP}FyuXS=_h-x&^G^a%%|Kq@B zpT70jg%lbMD&HVEBY=ze@g1klVrrXdR=@dFlgWte%0Lo}aAe;O(QSKXuFv_0ms~aF z%=&?@9n1DLE@)Aa57+76l|*Jyv;jEF8ta|PSib@*il=NrE&`HwFDVJ+?ed*{ zrnxO*Z6~5ILw04%5JWdD8rq#pPBO8cf(B6~xj%P5<6Du`p>KDg4H$k$_C_zp;7(%j zUTY*ZVYBQ}WESl~c1b>&?`mh|3`>xg;Fj;%DaVtY@^%`dT*crUq#m)Pv!fDpZ7gR zLfJceWbeJRH`!bEDx{D?QfN{X$;!y6NMwhsFQFo(5R$!>nee-RfA~1(^PclO_jBLZ zb=|j*^Iqpkp>H93%OmGa{$DXJ0biyB`6cPMs+OyZsH&%h(~VOrQ?Mx~q6nRriQ%o` z4w>V$f@WVFe~e8fkEAM6PG<@lQAHM{(phciMmkSrRT&+ryDBbQD`DQ`Waq19SGPCy zAsOxqHYA@rSfpTsyKkgJ0<))fCClsO8Rv`L3#dxQsS3YD~RVnse(B^jTf{_*@ zn{4+xlZw3QGqF=5T0CE`FvG_se&$J2kIbEzuELz|TY2>@-50qZJ@SpbO5D_XdS=ar zsQ-=nskkr3>8&<5buOJAo5`Ad^1A=4meFm&vT%oQty6a_@6UYvdGSG4v1z##J`&U~}29(px-= z42GF=+#9t;-edpL4tZ~O)Jr^a>u-2J=d@t;qyDL^_Kn-kD!xM8V<{6}bN3khqLdx~ z>HSoETBX<^wzrf-GFRe9oID!PzwY^=t@btj)td5r)p_GRE0^mp$3D|DaG>EmhB?l) z@Oj7P;phB{Zy)BKBexgRGjC)(OrFnI{OIFcRPU;kF_kQGFKO#BPvZR41A`Msg)(_Z z#03(I0&X937O`Fs3GoVX`eglu%dq0D<-V0hs$JAV;&k&DAGlNd>y3w%VtoVBd}Nu6 z=Zl-BFYye7l=SgR54SDnMm(}ujHWg1=irMwxXbZ$qMnVqNHLRRG4a{z;6Hz_V_L!< zl*H=1D{ME!muyRaIk>cJrYg@H7&k5TWVsN3Sn^n=U8+sWEUij9E9<0txuM@cW9jxv z?kA>Q8E<*ZfGyFxX@@^*lb3c|Cr@oOy-G z^cp5POq$ErK2R=7jqyqoQQRzyR5VW>jC;L8ajs}%_qO%jXr^OktBh;*XJ^G%P8p;V zwfUW#(`J`g>!*2~R=5+p62{42z{KVIah%)X%Y1?|+4sGOm62nf)3>6P@0pmqrNXEZ zjtA`NtX_}3TT9+>OS`wnD(|1~waVc^wl%AS9wIy5fvv>)7dMWVcqHHK$JXK|BNCkF zQ#ei^W9Xp`qL=!qw!L-(F(s4M)2grC`bFr>d`98qeRu74z=B{>p-fSa(tA9TL9^^$ z+q<tc16<72L2J$DfD0bdz-m+ z!_TWBzHWs|W9rO%;ta1%Laj>IOT2PKeNUDuhu=5&R7Gwt*oJ?O)@!GJmz?8R{_c03 z-B+SN_Pu)X0Rr@7gETZ7AGLpXoA8G$h%$Bu^hG!+M#`XeY4blS3peQ4-F5yB-Z?VY zR9;dPHLd%n%(+}biKgfJ`s}mrcK@L9Qy*XcsZ}ejaE&9C9h;5c@>mP__h<3+pUs_L z{cBgJ*;+Vsz1ELT({}9AZXOxz%=&Me>xPXt)Hi~JSNYfzQ)Vog?{20Ezn6$Te*Dd4dZj->xpitp^j@29Qr1Kr zZbrCN%1@M&;%&|Xg@j{bC3&~;6wP|3`eCPTfmuHTBdRlW0DgP<3ILcFQS>_!G~b2HQjMR+9AoR01Y3Ny@3)2 z-L!+>U(?qUU9yPZCNnwr{nIC>j~%fQ`aoOk{+Gii(TP;z+`h1DA76toHo2CP$&)4R zwm>cVW&dVKo0H3a6X|a=Ic3j3P2*}LiTkgV&A<1I7ycU9uxL}8Xn1L5=x{)?qPiYg zzRJ~X$t!x@fS*?GSo{I2A}>2b3Zw2ZvaK@=Z0SlSIl>3RF3}CxV*;y>>4nG$a-Wp9 z{hbGv6JmF5T$@iSe^#Lsj_ZkXBUBxPC2lZGrK(U~Ftco=Sl=p2^D#NN%GmYXShe`t z2dOCmfqB`Jvf-}}iAV!JwO*T5^qTFmJ?$T4Lj7&=kn{Vf_z(6Czgw1azlnW%a2GDI z!>9_$w4shEDn`<9L@c8hl?#-@1xz3BccO+?OO|E^lx`&MfjE#2MH$v7vCl1JBX5we+W zDnHSQoMqM1;auukh+K_qGoJXD@YT*Id*y~doLwqw4`CN-K7{%ecM&a~Wo8gO<>KUFf?DC?&JtCi(rYyEQ~v2F#!DK4eY z$Zv>Fvi(VkXbZKAKAs$QO8;QOfzQj6I{x}zSkRJ~%lRK>ZWjp;`;L;JVB#a?>r~#s z>Hfw7JH_iXnpp+Ia+LL7^%nH$Oo}b4*)vwIW76JQ_gZm#8T* z;2r++OJ0Gzlo0R9qr&Qjf_HfNLjH9BjvqwMmGGj12A+^W8n7FQ~Qbpk9MipmBqvFd;4wjlK_YE_1BDxAkrZ~se zC`z3&SC-6vx^CMy-gviTc!?XQ)34iHe}&Iisps&yCppbCzP5JX(#{ZMZuD|c$kWxC z+_&wedRopITyamxPnzm#@ARd+^N)?rlUbxUh?{(^Db04;BL7Ld=GiLuom@@2=3U>i z&s+m{!<7Jm3fEVxZ**GTxy59QaLfm65cUKMJeV>Y;xcL1ScR$>t_r(7;1PKgAT&a9 z;)tF|&!O;Ww(4=yi|XsXA5}UY;uOYi9V}&2jaI_zh6AxtG;? zN!&s+kK!XHpAhtJ|D;@H2E{>uGuIE@F@OJ;QQJc1>?ESXRl|=ZgW(=3zSZBSPbugz zcV5}=j-v>%RPB98CR_Gg*i}hhgppn!S@D!Pl>KJmd04l>7a1*}PIvdJ=EP7)!kVj8 zklk$JiEV=;=MJsf6t1P74jhghv7f$3QQcYNtkz}v^tSBipqPhCvFmzoG{2QNF+)ip zPHg>6Qme9SK0M8w-a+HnoZd4JN5(qi@;W#Dq^#Sg3ucGYJywMsm%JYZ4b|<|=_@?U z^A60gti6$KJLn_A^Xy*2ssz&|rBdPiZRWKyr-%QVg8oEA+WDyVE2-0*HcVrSmcMfI zneX!H7lW_or_~;0&;2=coiF0L#OL6nEox51xmsu(B;5R#{N0(ahE#ha-|h(;#7S4A zxxIbTFLvv8Sz%tzPfL@hV_ zUA~^AcN&WS%KK7?^wxTm4ElBd_tbkCOQF-3gdZ`Ke;CS_7#C%_TSdL|m8!zaTg9~g zTU+yT&O$hLvbiOaiF4kJIVwesi8S7_{QR)MIrptDmF;vH)MJoI#@AfDk?Q%YeIu|> zjChu4jdNo@08MJI`9FhLi3cc|SYMvv3@p zqb@Z~xk_rtX6}@jX4K3yYT-Z`XZAKIl*E>W-RlV>b@P|1Y~yQl1ofFjgVMQ=P43(jNGN(IM7+RibrnI%p9-A)VXGj{DFc)xkyEI>GaV^{5U8~YipfSGZZ zt4kY2%PMPfZv*7Jb0q8ndmBzp-cKe9EB=)j!jk;`;(f6(t%6JcghyPm<$UP6htG@n z@+$v5@L*Llw8bKP+@n=`@{$SbcPv<^7AQYIaTVywc^UCLLrpi?S>O>9`R8;gffu(N zIy=;q`K1nrybmcX16gG38H^O7$vZ142DrXAh4dz7QH#W5fp1v9=Ehx@dLKF1-VrvL z`S+ZQ(zBt!ycr`2{)dd8G+cIg=Im!nZtV>&?{J!V1@HH^wCn|+7#AEidK4Qfz*;qs z?CLpi*Oq#obmtpet%jt8HBYA=d$MxXe?!$>+)_M>&$r}4wS9{he*U5%#_htwEsb)8 z9=fNu`2Er^`8U{sXTY1*-N{iTy zz|}l%nL;`*4^#22Q9IXERRf*FDz_9GOD8W{flf=t_Z!+ni%Ls27lw07(guj5%5%`K zrO7UxGza}RuXZb+1@i=~P|uY(U0z*O9nu?ko_fqbX3zUcMt7^;%Hat~ZMRwBdWRnx zFaL0!GI&uNlHs-2p=~@fY|ZjE|CQf(^_9gZ?!C&QCx|!to*OxM88nfrmyW=sk*96iCk)Pws1eUARoS^ zBh6}}W-CaW&$gKMjCd$LuU)|SJLdv%^4*4Dj$I}fBZdvSu;luh(H-&mAlcl}uOni* zA;sp&t&x8@!sD-f>o4a@9)C68<3`wH$#@gE)=DOMhj8Nc@~=nU%pDhNzWSfLKRfwt zL0(Mrv-dN}kDGQP;RiwTwv{8+-&J-BTVszuGy1}-tX+Ee_vH?mvCGm*#v)KKe^{aC*hmJxRBGy z_8=fDQ_G^I>Agy@0teXTez6CeWZThd1m=nJGR_&axj(zm9;NhUWQxt!V zXUYDo^xvzQ`ltY1c6MGi-Y_!dV* zO4g&7rQ_?$85&yJ^p*ahw|6dv`4qbxe%NBqjxaG1()m5n`-FO|l=Er<@m!dM$Vu>ysZvWC= z=-GG8sg$RqLGS4Py6fLTKV({*V`w%Xn8qunsVRQTG;04Yzd||wHn}SP?3YgyvuBI0 zC@W4cjGj6umL>UhMRCt2lvMU|-|p+(XLMoaAzW_cl^(^PwFCWz1crNVPxS0nHi{D0 zM3R``Ke>GE%F>gLbR^}~ojw@m#tWk{@7ywhph*%VWkYit%UdPLE7>PORd zY5B`}8}(5J6{%FF(&Yn@@l%{MLEk?#&L_pbe)Yw|o`$d1Y<%}s`pI;%`|fR+pqVeu z`?+LBK85|TDY;g0K8pV6jt##^n%r2s%Dq#2bUD|j?~E2bFT2?HaLTYUbk*z8%fh7} z=eqeao>rTv;W}sV)ZvgM+rqsPw%JmAysh&3C@S9OzDm-QS7M2i7JSe+^Yce8&%4}@ zH21u{``sj*wXca5gOk*`f(goZU0;NrUpnLb-GnbR?1}NEt3T4|O`XKt)pyg(p0n*- zn@{-8x0Z~(eiabF`WuR+JCf2%S&4kRG%l_p{q`%Im)eUU8@-v zkYIkV#a|2&bjcCH%^u+l3kY|(f(T0BLCWfY&=M^|9X}9m`~o3!@H%xf13T11gmLmB zObUEc1+OE-vkA|=5Pp>$VGElGF-sz}Lys`-41`|;FH+0z2;%|Y)NNZtP|-s8O*XI> zeUI?c6ojeFfz9e$gwY-#f*SaX9%DjC=QzTpKZ8B46j%a}f>o&n!sulY#v+Aqs|yJ0 z_=b=qc$k9UE`9_2Ru5tAp;3fKNq{}>2Eu7Zz{a!-;npn(>oSDr9tcwezgtD{N9CeJ zI8zna$Sxv0b{^rmTnP6K1kcouaK=Nh4@M2Ype4hj5ily?2!l~ok3WS9m2XPAXX*Fl^nvo?;zYV9`;B=h^i0aC1VJkha4b& zi1RbTBMlG|mPSas0O3UgU}+nV@c1f3I5P^izY|asJ%p#dLby#G!s~t_WJ8RQ{1{m7 zHXt;jjWA}YrF#;>3$+m*tc1`+2*TJPXNgd2Cn|)U+(C$x7~xuwi%nL9$p#~gwFqG{ z-3Vucyj6j}tV;#NQ43bNwg?Z8gZJwqTweqsk-rFc-9vbW0odQFA)M9;@C07BjI9XI zgx5<6Kpv05S&o8tFVxOp5MhhCkW=vDRf&N$+F`8_uuo<}xXv|1ICTW!j@1aiTm;u* zz|J`ka^s4SvIfF9-ohTG2p0!$*#O+Euea0cI9Eq#QE!dd^dfHk!t z!nhO>ehKQb^a`P0ln6P%8T}*>-q-?s&_)EaGRSo{^{!Q0s4BO}SojeGgjzE}K z9N40NL0HTG>jHYh@eTF`3>`j3xLy>z4}6_}L!AUdL3hj$!P*3Lm=rJs+UuYRT4;&z zN1&H>x54(A9d!6V(CcmjW962dutBdjwAVXc{9>z)T|05TpGlLL6^^ z2cUs2P!r{K=&zHYANK*@P^Vm2gN6WklL9UQ<_Y1@lWAeyX~3%qdpCgmN3FvPDaGlN#Fk}uIZw2<~A%HztdmrLgNkkYUXsezm!rE6sC!zPS zr-PK7g*}xamj=M~+hC_24%!Q6v8O=jJp=F@@*xTR6mW%Kg0mBWe>?}|%RvQd2Wzx9 zLms=p7JeQfb%^^U_^oe2eGFnD*Ba1A0Nd7&p~tHtj1PLnsRY35Px$>DdY%aM#8rr? zAJ&cmTl6&GDZ~>Ih7f-~B8Z+tNC|Ynt{dTH&>#KILSHmR1gCchZvak=#UM;39_A2; zo9PpL%|Q^H1@P_`3;P!X2dx3i0tj2KMHq`CoZB4{>^^`M`!LKHkb`hLm^rjyP9h+5 zBnoO30((40SRQDU;sNM&1ZV-|S-~1KW)5;v2z3XIbccBD2rzq818&n1rU*RMltf6p z5fSXYVNG$sfdayqKo{tNmz8#)Z-B>cIp`BmPj(r=t2<~kI8bk0DRvJh1zofFW@|WE3hWaKas$rZfDpZdMVoz&^M@i?Max?F2WkX`O`3?Y_WrG zts%rx0*?W=CfDI?j}elE8viGX@RN&hwgQAHxWTOE3H(%o*#_`>zzMn$jR*=o&^uwim;rq{Lk(Y50T^P60BzDo$kiP< zpABEjQ3iegGMpQp%j*Ca7U3FbfhF`lX3(Al&=b9nfUhyovK8POV8i({%o6;dF@UF= zl?abyN4Ochzl9Fr=2zkT?;sAyfj{VOED^%mMxhqEP#@S!5nfZ{16&0iF&G1`LritO zh#&y{U8n?MV!IFn^eJ^_go&Pp`42SdGRzV0l@XR}1~>yOxvj$)$Ur+`c6+}AngANt z1?$;?PCBqct|2Fu8=#Lcr~bds+j;}H^EUIYZ-ya$`oV6^`BaA)( zu{ON9M*_~=Zx|5cAZP3~z4m_A(WzdPu;X6o#~b~kqRA1whf$KMONb>#KBj>eo>+(^tURVDR-!2MGPpEJgoWA7rty4kW zyJEChiJDme=57p*uG9cCyw}mRz-Ur@lCW4w0VebFw89F5Oh^*DJ&Me}W#i62OcTS9 zFon(%9+3VPBa;bFtMv$=I{{~0>GE9xkvCJfsvKAFsHLl9BL^$XM!SxOydX>sWV+ia zn2Jm}4ur&%tnQ`7S0XLkhNY$6e&-*y+G_wL2 zGn~+zK&4Y+7+xZ)0$EE4sFJFsi6uvf^ej@#3M4RQ(fja1VI{WR544F0nygSOBWjtY zs8ThV1Le7q@KWEI$_Hp+GDy)~qGapxvaesz3@{#ZOOD90NYFC{kKOaG^NzdM;0@N+ zzxekJZXNC4tUCyv_8t#1>{12jh4U1z^{Eop|N z+rN8bX3IlE!G6sN`ts!AdwtJV)LmiFrjHp$V;cH*2gErwjJ1baMG#;dwQQzika{S? zP!Mz>^%d2AneK(JY2q3ICy4eOT&G_U9zO z2}y{(Wz7CUJ@nGOp6XH7^Etf77P9LIZd+#bB5uBhFL7S`sHA3m4h6qWC^H<;>}KUG z0aXe*H%C|!tQ%dvzP5r~uV8P@!E1OM=E-ZsaTm7HyeUJxDP3);Ni_;D?O|Gz%A#2c z4myJFroA)OWUF&Mwl1Z*e62J^bhuztvYG;aGamIKrZjGld{#}1L#J8|J`)Bt* zt;dKxbnb1iNoLe>DPRavQNkEyn!R#w>Ju_kCp{N`TB4{-3VB}q};q}I>n|M61w20Y!?-Ad->UBQ}LHrWe4>|C@{>ohR|rOHk96E*6lsa zG_n-k-u-(Yv*=1spkwcZ&(g16Ai;Xgr{s_Mm}a&CWkw3$HK@!IFk&lB*9bAXU=b(E zKTl?h$uzqpir+uCban}D5$sN^)CY4ZNXmak(XZxEDKH&3zKy4gre*HfP>EjhbIyzf zfoxRKEydw;SU{>2s-C-OXP#Eb^3R5b-@f;|ydJNy>=?9u`JDtja}`UlyzLQKwi&Lu z3i>)Fi#0ZwDsC&^QFmTK^Ov|p5n*hf&^V!0WL{2BFcDbI|bFH}xmbNN~C9LIl87$4$TtFd+e5y~J#QuTGif21R*2U2rFg$5zl= z+XQZx{0U;JG|tk zg-?Er@RwLdnd39PVhc55JLVd-(!S98w=h^1!&6{F|MxQ9Zif8rw(X~9?aE->d|~dZ zvXp)wFK>;QCP!V%ioZy6Edp0?_YW6jV8ya1Uy|CnxJviL^}K{0gUrq0n<3f?s4Q zEh`v{8L74@HTk*CHe~`z#Kq6216qybakNfX18PArk2-?&i9F(S^{cTg$+1!_Q5~yoEo))X*yY*nA1HF#tFO zf8r6p0u?KtSpXBNdu_4AizgOHTzInXJRGLkl^qgu zwdv}VSvp0wjXxK5iiO(ggz4qPpPp8?j@vy0E83)y{44d>Vla;T`Vo#n#%h8?n73WO z6mXA7;lLl6T>?uhVx@ke@%m956=4m+u~ss;Bf{ze(q&ma?#6ElS>MHt`1!XP?6cf} z?VTLdic?ZLK!?|rma;yFrXK*|fNkyDJK)KN#_7B)1=SCEF}WI@Uu$Atv)r&v2ohif zc#Cb-BFc-&5jasUrOY={#CJ(m&=$#iwsi6$F0_uFSWvbwr&Pr>upE0xe%KA^Xr}Zy zBrc1Eb2pj#uMm_RT_^AY73Y<|u3ZW)?Ef^cGx9U?ozoJPa}ALmf+-U8c(%^mnN=jB zksby~y?l4NB5~r13OH}ApViEL1zGNQ<23r|zWR3bE00dKHv40FPd3^N3Vnc#VQ~)< z+3`hJs0vIz%-DuD<=9m6PfNScLWNixQP7HiN;a#G`g4Ie-3@+18)E$@mzQ=+m`^FjKf>cx>qV zd)9b&)gUN>`JNa_+)G5{qHN05{o7wO>ru%`(`VXF*Ebd~-k!nUoW*JwDOFGdw8yv3 zwyAzxrYdW657n%*sZPf(AMM`kkBd+2QWyg46yLz%M=7fnk34;7;%6WmnFH75%qUmC zCjWyc?>|77Xr0Y7Oz-bMEQ~U5y zN~BxU?BU)MLnxi8`u|c--Zcq@i3{GV)FZ9GX!H_Fg!eA**Pd_Lo*$t$Y^xw-|A$C{ z6QfD&7N~D*4LJo*2${s;HZ(Ru9F0h(VY9kE*c+BQ^gW^(CJ+Fze`81yt(B$C6JOpM z_HnY}cDh07*^g73^5t%zemH~4Oz-+Cdx>u+D!26prXbKc+%Fyrp(=3SM0l^I#@If8 z=jA&r?a3%gc;wjir)<4eZUa>|<)Rj9A>Q0pe*GA)=9x3u^qF)L_2>^Y&iXTf;G=Ym zs^T3u=eqprCmD%jMi>B$_fz)(FG>?Cr88L=5-+Q(4xCyNMmSn8B8WhrPiL2gdNHhW zR_Z-Rkw-y#79BL{ZE65I_OZ_h@O?D8?-$q&tgV2}rKz5g_vj{Dt|L{t*17f$m zw}1;NWQW0aQsOEurbp=%&ta{=@-i6_!aX(cOBK;BG^CiJ^%@4A{51_2HCRTTnC@$v zkp`oa5AN}MktY6r9B)tS1Z3U){niiHzxGds_wCjr(OM|SC*+ns*B3pyPh0C)&xp!o zl_)Z=q#Lo=tG!#VPu}aCHJ2e@-aud-6plg|43ur1^*oT}Q0)K~Qo6jGPRWo5ietNg~Q(Nw7@WA-Fc-$2y6 zr&mo5(oiKunt)-OG={NNE=U{2_rd(@CbF&-Z1tam5<3lF5Ezd;4b~ZX17=+-e^3gU z&Q&AL_NR(bi{sQTwLS~NIOaW!uM38I?Y9Uv70-1aIlEDr3KVREzMWW(`YASVY2fSo z0he=Y0i}ErRN)Ua7n<`|NbVt$PR+I!8iH*{TS+x58D5sbzj=-E0se;gXGMG{L+Ze_ zruIC=3^A`yvI@BA+@@cqmI5r{=tr#H5)VRn5ICNU1AVHZJ_aMP1Qj?k6Z!ZooZvkl zqsL5*rT5xClfi)lXQi;`!b$<5j-hu-?L$z3NFv(Bxc9MKcBQpadLRZr(&N?hH>OBk zb9CP6!}$p1Nm%I;S^v*>HYuL~m|dY=e}!HC`BCfr_GF|G(1wE6bFT7`wkj~^ckBR$ zzF(*Gy`4G2!p3GO;tbL`^N`!`-_REpO{3>p(u)r2n%4A!$x>`G;>yraUyZ6W+oChH zaSBB+v*#AadI~bo6I9N}2(EbzraeM0nU>%00}@wWv(20Ey+RAO_*2bgN~9}#$X$6T-ESIINahZ$? zUl)O7bEBqDJ`oI4^GyEa9d3)(afeWN`LYAA@Qot#&&Z>pTb{`=s})WwtHC}HcgB<0tUBy`?X|vma?g$WFfHix=MC>IXVFJTkZS-XGfm1N~ zh3!wkmtL@{gCpC3+`PI#EME-O6g3epA|oDCUhHMbn`^rAkTJ$B5p6fGe|#AvtCD{R zywbUG0NGnnbNsMG5O~^LuC5?dkn9&1yaNh77q{N2q3#_SCBSDW@}!t`m1kTnZ<|Zh z3in3Li1DK~ohREcu0SdJpN-MzFdzgMwEJE#z^igNvB{kfhJ=diYB_Q&1SYLyB1ZUK zeI3*2z3lJP5}cTe1YPT4?_594DN(43VKoh=o$8)UI2WH;>nd@InnDjpw6^QnD2wSY zZPKPD^aBKLQ<&TP^QHmqjrzxsnVW!S_{Yq-#D&71fK$_qF$5&p-8%bDsfNKQEVt~6 zxy>zYCu{1%pT8Lgtbe~k`vphZ;lg=#U`IN}ZOiH810EWE0>2}`7ZCFe7=BEq;}XCi zn{d%9lg;_USCFFBpmR6+uoeo|hd>&mOL!;W$p&?Px>431t zc2{5L3^=V-ps0zZFIP<^2C~*WHc&tZvv*LFLGw?{pXFbKWHa3UfL{R-K#jb(srDz17?V2+qnux&g5dC*weI7wm#_GO3~b5&{U_x?H% z#oSP#K^udybY#kTpOtwIY?*UMqWG-WrvB^tv32t4eWgI~p2sQ^m1{_)ITm_%n8#NB z`>!{a%HNe#S*lTOf6$LYvDYO0!ExX^=V-vS99Xm@3=bT7frreMb3PyBB=09_`?Tk* z%@bMwNLhgc{5b;N)Oc{`60cbs$3!r_pht8?MdVTP6xyZC6HGXEMQ#>vUiG^EBl9|M z;>NI}9o0?{UQFhQp>P>7Ix6Un=L6NlsMuH*R!ZlH?{1rlUZzWc18)fkn)Th)o=!a4 zJ`r}hZ5_ZQP?_h9lJIF;)>gl@v8%r*CR0Hqa{NX=axV}jlsxCu(p>@W983~;bk$3U ze1RC8P`dc1xIc6u8u+Zi7cYMzsf+>vB)KM_mFkC%m~cr}i{EiKzd)rqk{;0{J%apf z=*1KAMcu2~vMzEX#hoj-FXwWd?TYHWM`+O8!{vi{kwVUwBeY@|!0l?rcu1OlJ?^OY zPI#}Mrio8`%^qtpw9l=tBt5;@CKCGS-wh?hxyFtCG&>c?tySMV!XtTBMCSJLo&8g< zL|8kg6&cq(>t|5t)@2lI_vIBL(o@kX^#e*0WB~w;2K2-&{upww;71VU6dyd+)QK<-aFPJr+4ssDXzUhFp zT~4bTF{(4oj^|=eDFnEy1EkO|-(r>YE?vXB?g^Lv)~VXh#;`45Heg6XvN}H&x#fY# zQ-+p&eo@D~A`oQ`+%etrd)Uc&J3SLUovi;H$yUjj?0MS9Ij8=cv#~|<6G)0g!8VAR z@HhUQjj9NCtBF}xZS4{Iw!O!{4b;R3vxnp>_fGWAW|pSYYSHV3$?nXSUa~vFftQz) zV}mVD%XJvTVIHgB3?fZ0dB2}UMA5I%tIO%b`Gh}x&wcgXxh%7Obvq+Bzy98@0la>3 z%zU6E?wmT!^9S;U@9J0X z7!VbaskQ`{NFgM3u$n73BJ)z);q(T?mtmefZVCFeRf&{Wz$&Ye*cMg~ors>9SV(MB z)Zw`%Pp-a?mLP`itL&taGpFMnWHl=Ga4f#G4XWV&$l>Q%wew6KQX)8@FB9A;kD65nan6y`X($0I z=kdvgC;!WvYjL4)4j>C_TT94U+vmD~vIwz=^GHPeSPs%xt93B)RW)G7{ncQCuJYm{ zcG&8q&M>u+)^$_<*LAtV*I6YJ#u~dgq_Ip7TAgN!{4@Bi@=K5-g&z34e9f!sj@M1y z-%o)P>tpl(Im`R%g?*^$ai}jKhyd;r=dM3_FBmJr4K8>8%_;Nn5B|>}(Ql>~kfT;- zy+GUU3i+R)H_7h+@U(<>0j|9O3QqGMU1||)6_v`i5z~g0R#IOSm)`*L&Q|X=Oc{zD zS1JY^DqZ~CLmr;21MZHnb7X!X_ zKrZ1tM;8U!*B?MoBfXX&L>S?KHB{BL+&qe$ek5gr=SR)EO15s zI+tiqA-3y-TX^1M7b|V|+}b)`;wA7r$~K9F7TTxspXUE~i9(+*u_%c=xgzNEB{m0C ziCNiWvMlI*7tVz>dyj~$6a|CgZja8LVAuM(G_#08QLMzYmQpe4YKC!_AMq82ya8++ ztHVoCfrULTA*U53ItF&{U9Tp~ZE1pICrypfB{cER12u1VeiuPTVAuQHc@BnmBy=+V z8xmgk&oLd+uax2j41 z!l`}$w*#0iUEf8Xgd6vMHW|ge_Z2mW&NR{28_Tnx#5a96w0;8Z>K$yBN4L3{ud-T^ z8``jyWp=?KCmZ7V@e6X2ocxJAmjQx6)b^qr>Nuyv1z%=iAk6{PVko2xG&R+cw;s1U zdR4pLDTkr3bMS7&tp0AW&Xb3ZtqQz?=iKI+_xgy$ifigFW^Fk?~=!n{aMIzB?hv(byXo}>R>F+Lq@cOi#PGNknLF@{SWW= zjfZLv*{nlI2oj5VIa0sfpsIPEnR3q;v)!oL$Et1E)){OYE8R35N8R8yX&P1OSu<-} zbx)y0rQkF0AU3Z&Ta(vmu70(_$w{)Q(V^MdMZV!lrm1 z`BAo|d7?QhldssZ#o5(2L#GM177;LO5D^d%dV13@9Ual$)G*xH-qkSX)#Ah1FW!1U zZp+v+|NPbe{hYxK^VSbRM)U1*`8t%fdxLYQO3Pd?Z+LBieV2W3q@mbMXfn*_2PUn} z2pC_e53(!lD0xq@xUu3S?5(e9kX)$?n3b4Zs~N6*7`h^tEnHl)MW%gAYuu7m39pmI z6#T+x4&NpP0jzPOU|E$Xemoi^v8&gZ9?TFjTXSp~DFLG6Jk8}!j8?l+ zJEz+x^h?TnCMLLUV+k5oCW%V;gizsQXSt0$`!nugG`F~Eg#_d!g>+5e+XbYaMzjqn zX6w?``xCBW!Vn5ub`#6asuSuvja>;6Rzjzl2~NSCJKBlz-{vEZZaUT1*l-Z{{>LB# zlC(=U8!}@gzY}5H<)NR&%?+{IpfMb*9IU$ZZE-p6XW09b%_DBNw$C65jWvGmK?L!5 z<>e0Dhbn(7qhePlo?9Fsn_}XopBfq>n(CvP+8EjxS|p;TpBo}tnxCER8(n0ZVjCVc zDsiCsQXU*$ygGF1F>VwQ(iU7C42+rS8epJpqZ}L}x z?|~gJ_w_x!dO3VgzhB;@BFLWlfW_dcN|1z6l8Je0`#M^@8t%Qt{Dpd26S%@{>8%|! z!dI8nt((PQ+O+pH6z)*I9MH!V0Led(0#0<{xgbpr=;kHH| zY?=QsF0YUP=#uk;YY=9ma%oIN6i_e=-w5goPqyva9OMfmX0WISG!<0MT!CAT%@Lh6 zcL$K>Qdyz%mdC4{X`XYbX_wzFK&5kRtyFFXoX#%9a5lLb@y3eDGTLR!Z!NdR2meK5 ziL~k&H#8QIDV9AieF#@!blbeKqjv0R8{Po!O;-6&R^RUcaJ|BIy9!ON(vvP59(8JJ z3VilA?tWlrLWw9fq5J!h?11~cv)`?PBso>)!4lD_n8v;l2t+IvzpRnn_O8&tcrJls zmLlD?$+pIdN79jhBQ}?>)tmut6@wGnySQITxD$b7=iQUo-hT;8-wKp?%PY8ilFBN_pl&gE$sF#Z6!$zX0Jko)LpAz<+tMQx`K^2RoL7jCOv6Z|YEEfsyqV6N zr{M=*jv@(?n&%RJtttb?Pl{AHX#tnyabXtSra>k-m0Lh?adN*klbNru_J)o4nzsVZ z>GPKJ_V)NjAb8$-8bJykpu#;gbiWt+RAM1a)B88&j$CQfCrJsr3?g zIGiS%=oeOpU%2WyDiEKqaY`Pba{tG8l-?iuG#)MT2|aa$7iySsrY?p1z<>4*Ki#7R z4}}RVhov`KC@#5{oX}78tH*dV^j9P`aoJ+Wp?PuGo3sJ%*}Pa@9!bb{&KjVJVp1HlWY8|;LRcqiktB({vX_UK!uN6H?mzO`MZKB98) z$Xxo%6xjoHsOnHFA1%|czKfC(mb4)ShMk<<8yM+mBRoid@d6fgmgV`>xRd-J6bfSY zvt=Oh7X?t}XlHFNNEaBE?cOru|MC17L53;y7E_5U#IVAEr;Ixo?2l9ZvNo^?@tbO^ zVm{(w({C&yR;6Lf`5;M8L@{LpEYY~KTE^2fjD%FO2)pCddee%rhH~SSt5DFnd?itP zJJYc1@9ZxU*sakYS}Y@z!3IBBa@!atzQ+7TBd@UYp9&1;-lU#mBgef_7AG-%8>YuqsmMDnAII1BTHDco;WxMPXx`5j^;dE zs)w8)AN)`*1d%tHN@#;=NgZtAxWj&zC*H*h%INr9T))t)4g| zO-Ux2Yl+&%1OrJ5PM-=l?sG8!dG>_(1_z~)>w?4-skTjKV<+3h4QUv&Iu&dejX`#9 z?M`E;CvDMMmYsp8monz(g;Rquq`c<2)}V{xZy+-A;5L8_C53l89ccMS_GBoL6o?AZ zM?atPy7+yQ)!iAjz}(zn+p6mvIDWD+T!^&~wBo!g^DV+!2og{UK_nB?Tw{v|Flq6a zcOiX(Em%)1!kIptuRQhk+Qn?jPp}NN@|pk8j`yQ012p^DmC1{~OGPRvF01gc$lrvb z5RNwH7JwQ8wlchNi|LEthU%cB6ed2}J2P-~-s8te*)(p=Zf1AnE2kB!CRcKw%$?}} z(Tz<0_0YFrS+xWWHN6QtU6GPvh)1>#7(e&9*l9r2SE46?&4 zNsd3Bq-y$Kw6RDl{Xevm`;{_+!Q=DGGfXsoqk8skTJtMeN3h0Z%FUmfce+Og{6muq zC^GjDWy@0t5}BA%Ygy+{PWoVOe!WQ0^Y>+hd2FkE=4$&Q;>e5v%??44ZBrvcmH$OC zCR$c;F*?iQY0Cp2f_)~%HJ>|)ERRi`f&-g@IS9(Y3xfz*jDm@V znYF-*orDt{8=Uv&D&GIJt*ngLN2|wML)le0WgJ(`4OqclkHWnxG+)d`*5_?YgLCH| z@A=uBS+w5_l~mWB4Wi|0SnD=7fk#~Im`xnnLU}fp-Ta*fz-jIrk8Cd;@0l&;z9Lahn2$90HtF|rmafSVQ_d)$rugu$1SmE zL9tt6oZNlF;sRUnUHvt#evhHJ4j%oY*#IurP)!5h-2KN*A%inq`wWf$Pul)hrz)>7 z8WozDt8aNxVedkMiIr;KynY6z9q3Y%k3XMe7Pfreex?q__!?i-Zqxi6*IQSF4w&@C zM!i2m3;johOTkyuZJ|S@lc#Tt z*(3OqoJZ@bCZEza5wJP{eS)hu^iIg}@wW)1SI}S~1b$m{dlQuPVGZV&w}>*q+4DZQ zI0llwA?9Ku#$pw#0$NTNehOW?Ocz`IHvfH_Uh8COVvItbTxmbCD;Um6I(^^Q4hguq zV#_*ioY%SY?!IKT`lkLBr|)AhZxcm@`?>av_snxtkbOuh&TV9nys^tT1tZQ%>3_*w zyn5SH{-7LvZK0ZkS3pcxH%4DJE|_HG=1_S5$C%|m81qLsn9Q$|E;xb>t?mT0{5Ail zHE9<0xYy!2CNQSa8%AM)0x~Tc&MVwWaU-Y^lz{R>I1+EU zT7xW%7)gAwiEP$zWxx(DHMjq zvPOBF&wAPRanYh^qa8+Zfnna}ZKmg`9{G|BrZJb>iZopbmnH;7{mOJ#pn2LKBGJZV zo}OApUY$u!R)#}{LxGLGnN61Uo0J>}CkqFQl!CM@dovR&OB0)7n-m+T0&`wfSKid* z(C8x7+$75! z(G=70e4pF@%FV|ZjH4ev{{IDML^gKmr{GNF{cPj<7Ml2ywb)v|Co74ivaq+>FCS1p zzl_B#O`V_xj|y<$=2FUJ4IMt2h(46J(XcDkO5sWWwDTUXQR)`e)q~H< zt(~lMMxa-^O%Q3!(s7{bGPxC3G#z06Qg8s{IB~4qyK`tdxAJGA4)MPGh{2cW2q}w? z0#GwybHDGc8V^K!!X~8tDHzV}=V(gP!p%dsKErPn?p~F~JbeVgPO4P;FU;co@FG8B z6@VAHzF&w&OlEVoXfT6Cr^Tov*DgS{3(`{WWr_|=rl3Ya_rnGGiqy1DO6!YQJ_QCv zTPvCS)R%i;Gd^y7;Lvb#*&^K%UIx zV?SyH<#DnfJNnb=0GFmnC5$=&*6aG^=9yGgW@+Vr<|ou8keeS)<;X*^}QLCdS*J66uymii$f?AQ341!KO5RpW;Z1N8ru8LCdiaj*;Ff( zA*8dv_s|V7ESTob!)ndX<(=|tzvRfJmRRaq+l+zde=S$&c^^m>+D}#Jj4^|Phg@tG zhr`n9T1Kjg$d0w*vq+rcmJ_Pc?}6qu;}ZTENH`!>8@sMdMuMl5UrS#48K z24hzc=F6nmk40P5@9;)E;n4iTLp*jA_>x8h7g|fOZB)p*PRcX8^ zB6^$noo6C0kU+n|6>TtxSZZ?x1~ca^iIhGx88XV0=nzTF#);_-?+oQ)PteGMG9>XI z^1`tlZh3qv(c}?f#k3i7*P@IIaFQB5qo@iG9_iq1$2D({&BvL`q@1h$Kb}AzGyHUubvAMytX;Ncq-KH?WDOQh3&fKa$YnFhqnD=38L$CPmrs z!mQ#p4qMhq!oIV~Iu1Gz-q$Pv4 z7A?ap4|8U=kp&JaRac$NzAQe6qAYsU*v;T<46Jm@WG=?(dYQ)$;s{>xc|6f^0}%AS zl>Rn9c66&Q-a%jdsbs)yyCaVfy(lv_`J4#j%*$E{-`?MN>=WsBu>rF~yPN9zg?F|+ zst0jfM4u3}Gm7v8R0luj!>mjEw4}rV4&yy=^ZZFGl1L1i^#+!x%^1$`z?bx73g$n) zjM4!_-?)aU5%hkE8TELqDfSyVQ7dGP*+I?8T7R9?Nae#eSJD%$Ob0&Bnx&eg2rr|e zl^m1#f=W>i@Rv~~YD=LE{T%QggJ0x0pQ$FoA@~9@0&2hidMx#@t-1%9=Sqyyp!UjX zi&p*8%CsPe+APBPmwYHV1I0ueX1jRN)^S_y8!Bjf|N0v;L~ZEwR}n# zVSwnvNUt<&3fU54wS~(a}mgvdE zzQjQe{p5mdb2XSOo*z{qew1x}o7orD9Pa765L7)vzl7wAmB z&1Zy2+YHs0j$_SBOFBO=`*#i_Kc)s-4z-$cGvq&{#nWDsKKv1Qb#Lb0D&JJxv=ddm9Z_K$!VKs&iXQ&mL?NZ(TfsxDb8^C;-?K7^+cywIc0R?@RahRJ@1?^ z?u1Qh`V4ezIJWdXs(2X&{(4bAN2a|L(zc9ulcCibLnKjX#jtoaB~GX%7CeJMpcbZ| zQ27BnS3sp%x4;3)7Ny4&2OlVB|0oMsV3UNpwAt^aNGg})k zeF#mQ8&A5ED zZg?hQIUovQ0_|RVcK&XaJKekbjJlDWfVBs|HE|pX=f#KVUl(}!nEMM?(;GyV)f?`F zqJ0oFwM{3s=C`S_fv@G}IcWC*Tx*>28g`wjZBpAKy?+{@%umig^czU2UhOIOV^t@7 zA_|c2=dl(1zLJMM1Hr?$nmYD@P$oC`Jqcffjc1#%&1Vr);#QqQmY5;o<0M45v;_mZ`?Mm&ZfDttBj zOVVkv(w71h{743nt6?pU#0g-A*R}XxvUF~^*C^y_lWk8z_lXWzP>-gsW#6oWS-(6s z4VbrYA3(pI7meIlo@cfp5*z|8M;>@=mE+q1Bp^%tei2O|*<`gwR^&{pf|7Ya4kr$d z%+==!6NC{$K1qDcmi#0}=PbpK6Hq>1gA5WeOsK_c|7d}JGX>YIIQkkQoU>M2BB$6&}1|FQUx?u*JDXj5DaqD&?#VG@1Wpsv+6{Y0%=e7Wy9gHcT z%^iX6g3f_c=AYz$Hy+hTm@W80BVuHU??E6Fx4PI4`La$4p*`(&vm)QuD6HHKHX-xo zWLQ2ds&YVmih=PylkqBUaQzUI?oh>)s|n z`N&Ref-an3Mm>**AHC{5S~Dv`N6dMjCkt1{t~h03%~3Rzm8ayCWy0=v=8tRLqr-sl1|@HWqJ&;H*(DvZt?^MjtrFBBVx;^P}7%q zsmtz>M}Y9QDRRB4^3-xY^D&-+TZfR?IF8u7%XN!;@Qy9M=2p^px>d*8J$t0$2$YXs zhWdk-mjix{`UoQX^y_yBh=|B#n}Uc&A$c(JsiSS;#M+D(#-3nX6i<8xPbom4brVQS z4)H`u;nXEo@}R(Rb%(}Hp+X-l4&^PtaY5T`CX!aA+p@dKbYt%pRoq08F=67#A`p8R zas3+3^tZ0r`3ai_4}Ir#|297{=3D-90ly`t5G<2&0?=~vQ-788K(r&*+OHt))V$Yv zyX5Nv^sEP^^+%Aq>WX8Z(C}Yp1@tb=WLSbpP9QtY#^j{!NZ2w!BPDtZOZ-JvaHl!c zq1aW4vdL>I(OkrmJD6Q#Ma=8czvCE3|6<5R2o+;4VN7nO5GhET2n#4-gXJ{LLJBO| z$-nT>=X^$M{vxou;kf-8^d$Q&@o=W#yBk*139_GDHt8XCAFhv>=8E~L#cSd~e#@nL z@#T|ly@@~mEM%6z*Th&~VB1(lmE_L_Dl7xWj3f?-9xuVAD;DzEqPS!+LwHxx)zlTU zq)ATa``3BTkPqwyt_BzS;aV7s<)`1wZ&7FBs3!|j5|;^G680`|=2){m@ix!~$Xt?k zT*vo7C}=$_D6?5RT3CjWlpGdzA`4!FFxB{P(6`19Cwcko#0$>~yZ+R?MWhq<+?s?R-DNJyg~V`3Ow` z%jthJbs{41b403`BcNLUQy%sN(@V3PM#Q z20WVuJX;gvZ)3B$z{#WJGkR#}al!LyH8b2MW77OSg}Oy43<@4yb)X6+9!rpUnT3u$ zgKsM)h3_*2-`(1!R}hPkNHe3OcHp7smRg^N<^Co+jVv4K8myc*_%>TR#uX1;sh9=}m_!NM~i`@ml}Ul8(hyRFEM&d&?(3E7RZrZyn%Pr?O?25$%EN#hkai zl!~jCC)~e=5cFT_^63M?-c~V;BPp3&^>6t?sYWH}((a@6U3gOf8ker!Zq;l%)XxuXbZ6B&5Y=APwto)lWfCv z5wq}X;i%qA9LOtZrMd`F!JULmJeKkKT>F!sR(ixgD?POg+miV6aMrgEkoL6hL+7+U zVBZiK>uZA~X-nejIP{GV<*ZcfxRuNEI)4HcOC{uYoyV;Dku#u>TkheMLPXOSXDI3* zn_QNv53u_^8jO zyVFlK5QY%>z8e`^J-~HgvKPt!*3}1c0s)pO068z#oN+&wscQ<4lCbU~#DA7)9fQT} zOA@#;xGWQis7zXR7B96L)M_l^)@;w7i7NO}ST-|tYej{t-CC&1u-7*X?-%VhFAtoh|B+eH~&F?hfI<`-F`wvfOPTI-yH zw7=Yws9a@C(60X>?*P@zF4Yf?wZF*AiAJ2u^^9fjLR`LTwG3O5?-h2p023#4&@XzU z-nMoUF3z!W%6{c|a_=>E>-M|xjgbdkz^P)lk_(p=(q}ew*`{_RS^OF?+-I7Q>||b= z1HnMrc@W9`~e^KP>>!ivEyr*RN5BXfV8EcVSFXQNSR*GtR{!QF%*NS;cm-k#i<2tEJR$g_NE`jg_COQj0@9$Uq^EFfxoAq z>1=^?N%qg`pYr`7?P;8N_8>F*6HuZc7}x1)jh9lT6?(>3dUN@^G67gr>DtfV9OL9a zQ=TWD;R{%Ey7Q3`lr>Pd&DO8j+$C*zY0RfLq$zquv5ANT-IVdz766xAB!6^jZ7O;$ zAr<<76=IQVo-JG%*F8G^OVGoK%8vuO;!BbFjCjs9;_$i$Wvt&wYJ3OXoX-g)mc9Lo z+JP@HgtEyqmtziy_XhhvD6zgaa}{wSY`vDsytSbt{|OwBuMc}A329l;%P1A6_6^s9 zcCpq3{&RkbquKs-M5U$^bS+EGCW*l-&pu@$r9=n-uYTf}@z~T`Vs46TP`64-z|Llp z!Z#_IN>Q&5`#;yGN0*`}yE-D_ut2p7QHJ&I3Wql4Ms#7uTmA7v}$Y+Ha7jQP7DT8?(Oo zvp)x&oSj~F^U`Wex^j#H;+#6Rm|-CPQAh~s&*mSg&$ltsu49y3_h&Jt?sK{J`mxFwFcnyFntCX$mem0p~G4p_^-=Cu@R@jHuuKjYoXW z$+rVwyrA&@!fqV*X1*)%96!S3I56SD9O6z?r00Gg%43928{dnh$(lS0$eto4o8D?z z3Avc=u*_TC*4=gXD{AB)25tKQ^sPW;&Gx1FNUDOY!!0-#3HO=b$?jlDYsAWOO-*+) z({U-yOcCwHw@$gfm2u3`^_FiV6aJ_DM}z_^D%wU9*L9w(gT)7)1&=Mrp9p$eiLshyUDxk=e=h3X>@oNl(H6~34;~8GII5-(Kr*7^1oc{g_Nhmng`|KrD7 zfQI>BQXnLqQ&Am;#0M~F8}+M-{gL>BA0igC!IF9`#}7)}?L7)y4>-sl)AS_; zRL7&MWGx1?CBO-Dg7l12l9;^?5dI%k@4#4R7p;rNwr$(CZ8WxRHMVUwb{boa8r!z5 z#&@;fKIiW92j(0TW34gAgBPFj*YI&mr5%g{4GJ#2z@vsaSJ9cgM%zPtC*9B9CvUvJ zH5KO`5u~FVTz;oLsV#t)sDvG+ul`9j5sBTRla|gm24*(b6H@@Lh5;TTK3pgHSMxZdcHc;e>$($Cbf|& z<;k>i)JAu9=QJbn*Z^7;d%TTn)L(`{7EcT)iVdDE_Iik|Cl7#XcmQRlI{M7qK7MZ& z3{oQu`%f4vZ$ChUB=MYM{FF)pfjc3kzCb{9&QQe+SHEaTLiG4}{;69qeoenMzgz_c z=woMl3E44wo~y7h!-r)!6=>mF?3u=wT-LojK0aSFxMN)RpRwAfvk*Fmi+#21PnM`rr{b>b9{)lQ@rQZD zA!QPKNzrKsT|OuE_dfw&Q+ax((4lRvVAKXtgULk!9B54a-zSLJUuhXgpecDG6q>ky zfoyslu=s3q;tC8I&*ulvXj1n8um>VynL3#94wA28w_*^U3WY-LI5aBi(Qj&$4xugG zim~cG&j`HS4wEEopB$wrV}Na?}=wbwC^$LjclG@_>V5$4Ud8D ztnzojSB@7mCNTtm`KFGUrON7`PDVXu^p9|MROc0=8!~nU;81HxS6^%vmfDz0B`_P9 zhx7@D6zR^svlE0%5+;oQYU!ANB%1#^u9+04t{^1dK+CoFnbtE+b8()&;_*9o-H?DD z4-~l(W{o6*Z{n;9W{%=iT&BPfYU&mMtfnaV0`k z=h|hk3l)`KpaUKHo{}N$gfK&oY1o1o(q@S=xNTdR_*fy1Tnj((w&L(cIil z_k3X0duIop&63%NWmVGH76r*uu7yG+p6i~9ha!&9p*?V^*p{2ygs!xug47Hu4urY5 zdQY}?zB(SzEQ=O+9LUZ0_Bk~(@N4;Afn&0pD{;*H?S}mfo+w~UmAV`1OSv30@oLFF z*FL8tsRHf{9)?-Y=r6b9|83~SIsC2m*_*q!kYIBP29OSS=`Z5@A7!nm=irmGDjeWznRyqLds&`H;U9HH^^yNrvxT@Db!sz+W9c9)K&v&oMk6x76{()!$(k*Uwq8P4xql7Zy}3&Eb3{A}!|-D>f~CbjguE z91cbQ0iubOFa3wT#nu09mWut;pZ|8hu%#mw6PA_l)^fP2j=oHGQ1;6Q$`@jv!|k3u zK?;ln@tWY09RI~F*L7rfZ&_2#9D1@Ga$?Txfis5&qTSn;A~iMav?s*f5Fhv6z@)&8 z0!{94B3tL%2U($i7%<(ieE`guUg+=`kKcRJuAHjr=;Y2-a)6Zg_p;VCmyZcjOmyD( zZH39~r@hS@p6|2ygFJ09Bpmh^Z8Sfa_W&!MXej=LHvuovzrPOPGyG*4zQvXhF~HQ7 zYoMl^k5~fi))!(NsXp&gr^p??(aW3xGFW;uW3^`yF&D(i+PLpKjrWUh%uWg#6QZ2e zxjFlRRrqA7)i^`)$Q5IT&3_`0#?^|5D2oJrdmLOBw=D1;R_(V}PVW|9-|j3%qNl1D zJV|ehz|u27bH8QC_b|$y<9|_2NK!voj=*iWTif(Ay5EDfu*$Rj)fkuj_a=q-@4+lh zX@vrSE*OR$o9-7e-X!r)AHn&90Bp1lU=3rsz;YQ8d0BPMa_R_O%=9%N;pH}!2C>Gw zFfBXRNWC<)@-ZnDAbXyCP-%u6_A($whJ@YLr*ZST>NS(rXQS_XW{UB`jPuh^jQAFL zjx7R90?M_htHJkEneLgT!svkZR0|C4MO)LfJ(iIGT%#<@e<MTgNmiI zAR|sd@OVFyeclRMWMbQV4P+f(ow(f4f1r_bpehhHUB`{Y(H>OsE!3#SDb~Z zr^(nButtFgn^-z#?z>pAxS?qJ+ zz6k2LQWJ4eQKd!+-ggnGEpS2?Iu2@C45j5PaDf*d#=D3KP3=RkuI&?IkMu;u%fAh0 zRE{;-%Ps_tAX(?4CKclh9b5o9C6ePUOtCtmFfZE${7E9c_}^8m2O#bLm$bZ3fk_sU z(cyMw>w+Mb!0UP(CEy3n2Qts-J8&J1eNd?7d2pNTTsb0DIYGUb;M!ODJ4seK*)e&D zBK#M-WSpq%xd{K|iIK9NyUY zN=<_m>xs#&sAQmWgc;!~s`o+dNrEgPi6qJdAJD1vJ9{CoXz zwqMqSHy8}E0qrvwFPRu8!@ch0L-em)moOhYjdid&mg;OjZLD;Svx86IB}~PZ|Mv5L zL)K?YZYa>i6ddN}WlomhCFSfiBar>b-|`=NCo756e+*tgGdos>k~0xlb-YRqk(3&H$#LNJ6B?nbDwXe>CNY5$IlztP;z)o3CqdEq=ja3 zMXl7_1aRb-QoM40hAOn2nY@;qVCjXT%-&ISPHdF%7b_@4j&C{o{V^P zj=I{1TP6Jh@BP9(?X}|WP8D?pHMx9N(FFQRq?O@+iOB?-nC$}=44N-N0QIe?@0xGX z=7joZg_6U$wja@Sy9L9~8WHcF#N)2ZokBc=h?o#B&!R-2O z`8W0LvPX7sLtiV@6==suPSn?;LZxXOE>gQEx~lvEI?1u6O+%JjHDKX z902Kg@Gr%f%xZHir6jDUlO_1JI^6PaiU%-3_#G>;{D8%Rq^Z9VvY%K|#Hf+q^5)Ep zb+>{MP#y&}caQlkWkpva=6XP(Sj41LA3}`ty6CmJo2+Kh{!8=YB@KZvy|V0ZwKm?> zvgtQ6({PGO#8UtIhxJ$oox1v`G#qsol#4k;w_UTIVXZvx35=e$!L#3r{So3%aHWI) zNXWu}snbAxf3pomCTk^@JY)wrhnqKYTw=Ycs&>}e|F7qW8-htVO;e1nlyi3TYY7o* zdJLAT7Sif8%VeljSLg2^*@5{HnL&!%J%*`iKSO5Hq$*uvGf~lNLKFlpn+R_x%qhG3 zeGI0(L(Agr8TXg%1s~c*XDpy1xLqRfcKac(^)^RN%wKzhs3`?M(65@=Pjp%tXk*?E z5tbWkt>2D%fX-bMe*LZYQm2If{)YYY!r(_~ut?%cMA`$X)>`kUMxKDnVlEtUSbPH6 z{2ZEZRbONk!irLoPc4Qfg+@z4VJjgfZXzZM4Dh+DZ1loEU86b-lL<)$xpO;UmMtRU zcE%SgPrdkK)@t@>!O?lTZt%Kan=Sa=l~=y^@+0|)Rnhwa%VY|CMC}~`sc+FNt0VI> zo{Cvy!as!f`NgN-m38~I%>D{i$6L1i9}zkJUke)O+G}VFe09M#IUoYC5uW}R?76_mwMKo&c=J^#VG3enu3FS;xWchI_DsUmqXp>jNMf&i+^S^0QhtLU- zsA^0*9mS|Lrl+d8(rJ^ADB6S}yW1|EfQ7eoo`5bLFSUFu%M&(tIoILdh*6V>!~GPB zKQTRdTax>dHHEpKVcdOsWlGpBcJy~%UK{TQZZ4Ap{~w|4Kb-VG=1tCm0uF!!34qSB zJCtTI7CQF+`M4N3{Nbn)DVZo&kIPLF3LQeVf{HyL(WN0XaEqvE3!mV@9*mRONue4k zBwP6NJJ#Y+9OtoOh-buOSwW+7%YrL%RXyMFDm4rLw@AjFC-m)PgapM*e54u!)hB{z2+t*s zZ@kPcZcZ)>_r;6k?rOx7wCkpv=}1YtZ4&wo!Z~p3b_#)w?yKJAf5?xQPU)j^oJyYW zUIK*~%Sc8(diB2MTw-|qp$Bjq*tzQ7PaXqj}9xOzALq$8%)49cs2%X7^nHZ1P_zQ$9 zs>1kDdy!Bxyfo#m(lX;x?WJp@hVoLw5^!3j)s5`Zx=w||I~eIuqVl;_p>mH?3=b+c z`OYon-BleBft)=tsCWr4A|71N{=IAiM`g#GH%`y3+MIZnuw(5fscL!wsQ{-2J_ONe zz_ksrG-28fSrN?8{sAJ#I<1tRzwfeY?O14aHA11k{-qlDKMdr*zLQ{p3j4&D3>M3e zR9wS3z;>T~CN|cX$awAUk=5N9px2jC97=|=6+Wc;A<=FsZ#j#Tp2|UMl`IkiQv|ye zdCgV9THbW=mcSfZAfurFqnJ*XVNHgzTm3vLB`N|CHZ)=4->?_YG3{==Yu}gr8sAuX z9#&4E#?}f3jB`RTD~izo09EFxe+VMQpTl^h>xjN4r%MZ}w@d-^XwBbF>$%E1$wwNJ z{;r4#rGJ2Xp1(E!r>_0SDf}M-HBG8Ta0EkN{l1J!JEx_GY{!HBw!~&Y5$N{L@d+C6 zS(=P9hcle7Q=lE}w-t|ukgef8@6;x>`+ijpaG7t#?uy*X!VIZCgJJy)QqByLg&6HP zp9|*#yP@iJ&cVyKpA?XMx?ut}z3y*60MrUEFkF$+i!Okzc`m3!qqf9f3=@$AiGcXlJUt=V% zf|5Gddc9KctS|V-Uq{?fDn`EE=n9EjqK?@npE-pB$NLVH{E@x`wvGjN0S_wqokN>@ zQL4Q}za36WluYJ_;haYFepPN7`jf4D67KidW5U&)51*##(`|eIrfjbyL@2#<*#~k- z&-;EK&2%fA$%7JbGnoh7wxV0>pHz5P0EI2Z;;@-JVz`Hb!hif@{=c<3fL>pgp`SpO zEhsF8XlTcuDaUqFo0L0rPJ0G!YjAs8%nI7BTUaNG9dnB;O2)F5)VdZ9Z$^UeMrFAG z%Bu*Xn=DI_n&Udf{li5prCU^oy4dty=_i*c3}*WVFP`$jFGa5A^;CDaN$a9|UXv(!%u!q|w*w#Tz}aUrc&} zhc{kYsf=zlBqRqs*@zd$+uR1U%uq6`5Pcj4ia*ovl-#WB&z6Ht zDD1OeGNkVKav2-f_Y}V@|MmUcC)jCcuzkG5#sehxHOrd4f3jN4-BHrr8_9AP8KrhR zVQXJ|@HLA11C$@5b4!&yz}(v^1OK?ZQ_O&WX8=F%AJ=qsAG?m87>$~p{n3*jxB91k z6IPo*6+nD*o7Ma0;k6Q``u6})vc*^qMM;ii(r73eL^@u*Svo!Z5k*xCf{L*Uoe5bJ zmI(3z3BxcmDm979UA2G(X}q772AA|Trf+|{e(xhfc-@-d(e~4;^czJZLI16Lu%00z z?|C)*KFf5o#|I{I@Q9s%$jb(t6?knkHJ@Aea!Dp9rGQ*~KHT48qW&+PFkm;gtZj1; zC=DdiN*6CTx9;#~u?h~Ks;^J%D@g6v&Ec^O7%(IyX(6no525c(93KSBT(b46d4#?W zep4TBe9159OiAtCoLbaPLx1V-zqecb=G=$n@Tp9y*(*~CI8>ym!;)N#OM9V~ubSqs zBqR1ss8flTl8EW2pJ(7)jLu{;2VuS9L>K;{gz^8tVF>`G;VH=Uj@3#?3~^`8ElbXN zrX@+?^pXBAHrzAv+=e_VGLv0Ek7UTSLr*KvDa^s{A{)zwKM$KAI$ttmBlA1)H~* zQbCH;J(q_0t0-|T_c%`~2By8uUh`%58)a$eIa>rGcc!Auzy9@vETAw4h-|tQfA|(i zO<9`55jXv_PD;Z`o`75@es~Ieg4*mEI#)+`e)wLT5P_PA$U;;y;qn_hRxXDB6f4N1 zQ%#RIgbCXl_AEX~W(y87mIBX-z|ORuOI6|IVAVk1k<{#qabDA3vHM`yUWhki2+aZU2gZt&4B8W-BH4ubVW;vNDK8=!=g5O@N!vN18S zGAqx}QpqgJPfbrw(gCY@S!JGjr$)AO!=<-&S9m^$rRrUJd_Jgm#`%8S1SgLp6%MTq z%ua8ze`DkfHJaz_|5+|>Q0Lv=Ys*dGsixRXlZ;?Qyi8QtHX!0i^{iRAUnc zn3b*<7S*5rpb|;ZLf2MCS~b0ds-oyR+TYR^WtrOBPe`vXGIh=-i?|xK1HC#38CXDp zBEkw*-sbwu17s#G{Hz=Xmb5F)lUADjDUZiXX#hz(bvYf?*tCp1!z}G6Bt%f%V@ncu z*Y*YX`=3P=7LMQiUqxd;np#QPx`pYP>7z3g4&zi9l{5Ffz!PQ`siw8>%p<5#0WeAM}BE`vs8Qc@j4erK7PUj&jcAgIL zMq`$IfdO4THk(~Q2eEkO0OtUid>w)wf+mQgv9gJ?IykE@`w~mToCf_~8R~0bO4MRO zdzuup;i=%_?Hw)_Sa`Vy-6x;FNzCU)^9R=XI#9AysUWK1=}0C<(LlA)PP_<41MYE( zZjH95QGIXoJm?LW`wvUNxD$81eP(1a9)J`^gBvMQjy~jKyNJhy&x(l~ab2D((4; z>V^M%>MIfH46p$!suM8+rkh!m%=D5!fd+7F`WK)+o;f~a?>xIaJ%3{K`HGGC_RMX)A z2CUr(t>glOAEu1>wRgecs_p;;V0GYO`S(1~v{;^K!%xdx=HF65p5Da@?Koz+l81na zJn7{a55NPM0THVKRs9$7E1Jfi{3HbW`}8zm8%K?7@RBjgpK z`}q+%@h&Vd_P_U*-2;1Fjp@?Gsi*MYMSev6rjiGz)eNXg34+{)IB z!PddV2Iy{7p2F#j9&^-Y(o>h)n+<4?RVi_#9L-Q;pP%6DA;+&gH8tmg>Wfn}E9zeg zY@twOxE&pHaZkg58EFy7Yg}LcKPeFSEroE};zeLh z@aRSZY_?fYBzRFSl)A8QHkBXGK!QNLnbG2L@8MqaHV2DtHn8~`f5aJ@tv$4&mtp3pCZ?dr%AMUMBFlSCe*=4!Ik@xNzhkpvkN)~`lq#UmzkjI0LO*P2!D z)iI=AK=}R7x;sHLK@$kk1fOPAWAto%wGY`(PBx+Ne|E}$CbE7*6B6c)!FH7t=Lnpm zp$NTS!QdxBO3arB+)z%mgcuJo?ZT7`l-IG7Ywo>@kVClXWGz6rccJ9`bkS#;9`k;Z zgUI~}`8sv|$=Sd}lxR%**TCKYE00mWWG|7h-FR@kb_v;Hc@Y!YXCoTLC zZAB9npkj=Z|0h6s<{v8dc?ug$#=`tIlE%bDss!Jf&JmX2TGZ(!n0YOZrr?c*Ht20d zlm`b71PkE027vf1JCd@tR{{myuGqkFW564O55Vr>bW99#TeVR=>e3&bUnN4{TOYlW zrl!nZn==IIsLJSb*$zoOiOWFR-~G0m#pI=VG$iq(Jr6ZeI6kP3@t?3HB{0Ry>%h)+ z!kY^fG!huh@~GvmmRJ5gF-|usH=#_WFiAVbNTV@xBTq*?Dn+jeH9aw^K)-YV0<_(OuGSa^823`^ zQej^T<6~NNgPm3$3mo#qz6Z>9Cff(o{!` zD4CPc)E{+WsROyWv%8<4pHow_pS!cOf#+A9l6N1oQ~jSeA5&NTyKkFCh@C#yG(64| zm4TRpEHEJk(#F%v=*VHUm{zA%m63$#j zPGp7=I$?F+$|Vlu#MsizqR=A^CE%jKt+8MkZ-ST|!MJ~ho9#mfG~o=zlO!Q|NL$w6 zDFP+x9+IhI4+fc7O$4~zih=Z>nb}m+7yVBCMac-1SNuZiEmp0LqDtn5=S2Ykce(xc zO5G>GzdM|nX=C+)$*|fM?n16>msU7;BY&k2w=-eC=H;aX?s>xr${BAgeP2%mt_$Ww zM^8-anZ_ch<|JUGXJeTGO-K;MwdiN*Af%+q4HAS}q>2P7Ppx&*CU%uL<~$vwMqtFE z-qwtFM79Q9W=-|9MfrV-A^J!Zt7;_-MiVwvL7o%qn0auKmIRlWh-gTbAuEe8i(dvmm!@PLWw($aNpGJl1kYe9Wf@4a8qCJ0iY%a;9PXPa_Z z>*lBNtzD5OqiXZ|iIX8ihaJ^UpRxFQpP^orz{u`T%tlb+o}Sai^rwZhMT!~kEcH7pd1fVD&%|CuI{OD)GS*o2bZ>?2|WXYPWIk*C6UUr5N0#niT2f6O8a6M9`{VyqD}|d(+Qi~oA^^<^r9&p zWO^MHH>)6dGVhvw^Y!W~d!KTAZu9-$7F;M`Do0rQP`caxV38@R93H6ea0dxM3qpgD zg&&RcnD8b#T1X3}&!MaGK+ntaGiU>a3CoE))>&1=XRnIQTJLGl3}F z!9&i7mF!MF*u)9%dxIUpni5D03TX$YabGf%6bW8~m?Gs&i;F`@VIprl;aD$Sg9Dt{ z`2n1hs!|pq4gMK3XbC35Vhcw5EmimC&v4i(DrB%S3S}Z5+@E%3mW46MNQAlb*w~96 z)M=55V@>N@`DxcMaA1ng3qMrX7^ICL+O<}G9y4Ly2XQ`?*#!tm@p|(;My&!Vo9Onc z6wDvQ%igBn%Nj4tJ3w@9)!1jLHF^fC0{G2UX1kn-S zhxx;k*m;fkga~`4LfgMob^(cNU58_T(1n~C{<8DEj)=qd2(S32DX6Ssn%4Wsp!b5n zpM9D%k_|HYP3wInAduFWxo<)RgwZi!9F3Y;oJNr`r0y`QAkC^g#Q@5V&7&oo28a9v z<|%AE=R8H-?p%py19*_9-b9ijrJMx+Hj{ET9H=7|)uTpn@+Wzi395($srQUIrUX(DBnpVgj8|on#{R*R zwnq?6{<9!*Y@%$QXAbs02-*VivY8+A_J>4{-}{zVrk4u?i`$^Id{DB$UEY~g%qeKg zoY)p^(FD9t+Y-WO8~a{H&DeWzd;;b9wa~bB*Ceb)<}!uK_#bnmZcQ!C&9H4LJNA4A zq{JGd_VF&Rdjv|U%Ae*gwdD^TEOdJEOsKgN;JHADs z{MhDE`}N7h7(&l+{QjplE%tnEMnZ9TC1>RID#T>s(#2h}#qMhc>h}Stwy5(}UbvCH zzIQB{i~Qxs%9N?;oNw2&aFJX?sU&PysAFMdgch>Sh$n;B%rBJvIg)fxu5ZP_ej z1zVR5ywWqQUuZP?>gx%73&1KgxU%0)!Av>A1mFCMdKB4xl9=K#kL6PlG8@oylJ}u347;rQK}w8A$FTrFf6SMCJi1RoVFoxHy#n+X7*FiwTsEsvKHn?^!>e#c`)WN z^p=_5r(Txdm$~zny&fCGc1vzG&TCjM8EHCU4)xLc2_ey2^Y6NO-Mk6sE5WkH1p}tl zD&5g-XSL3-T@Kcu#21j5gKuK*4XBWQIo0V0Wsz13Io$P0+kf)9p2B!)_QtOIJ3TDI zWHom&guQl&Cc^I++x~QLHJZIs{~jT|N>LhO@%7D6p+fD-CRO?Mi$Mlr%I ztuS%;rdhRc-&VVjd}5R$jZb9tQ($UB>9m{A#&K5;!&S{V%JW+5>eg$9iaX|(OIH+6 z$7v@&9-mPbwB^p5wVU&7#v8FZFb9I`7P`G^FuHW@6|dTaXc(0V8G}@!vkQX6msn^V zUBF8+`ntj$@`Cd9aa>*o=${7dYfhTkLC~k;5w*jHN(|ELI$>tD+3(IJ7!rQ@qp{i< zkK({X7dKDWNwd2vZTqLmWp5`#+K+~edrv+2y@t6Yx3prS&VTR4r}y*T*qS=pvKS$} zZ2#P0Z^?^q&t5<%H_>OE)93a?2%bTiz7 zWvGbU5J5H3-&ae5MwaG#D0JPhk%z^#uQpdE7RmK%PYtEiV<&&7ha2@iY;q)mvzLxc z_@A8QL)+SIqcB{v)9vCcZ@4~#TI`X>kYu~^QCpXj!bs1Aoz+{@lc6KdZ{0Z_oS4bA zUM_S>B#0r?$9q}wXSc!;hXl01_wOZy4I?tPrYqWry1{}vx?3%X2WTkv_4nikSA`h7@njUh zuOVB>fr?XY3*##}mBcycSawG44{i{vtWdp7E|88|wQmv`{~ThI12@>wF@xYM3z))92 za_c73Vn0&UnWmT=WPJ}(cDwVDK=)!O$eUO&4t-|>FNlO;(&K>v7-0(eCd+3m1Xh}4 z98fGXNrP%NW?q1yv)m`S$f&BQ2Ec_5;uW+zWWWVD!%RH!!PFuH3)lAd!+Z+sCc9)# zhN6Af3(n!k`w+p)<@4neC2?z`xHi!5N391a}l0Zrki8{ZSyEKyzoz{CiB76?t1Clf1QAqrW*bquDegs_;4 zITIXq?-SX;@02g6qV*Z}+x8)N_H~RzM+p9DsB~qv-&iI=w$z+q@~~^xS~UqdGNMPc z&(2{iTuMzSQoc+=iB?GHbjnwbipLBW^j&~hhtK5-r{7X{Fz%DhHxA3#jfRs!ylkU^ zL+;6IQvpZePZx$mM;pKtxsWN0BkH6M`@2+P3y{ow9gIW zq}iNlgVECIr~J?p>}^yhdx5Mvr;rKV|Q6o&z7X=tgXXJ}+;rU9;}^7@mOU_k1a z)O_t_7@okFn>xw5BZ*`?9v?6``VS3*Id5jRkFraq4K4sPu^Il8Fsg}+&o@8);s|>j z+CYZOeHji?l=L%IFBVe14StfZW5n&3>FnMv!Mrriub0g)-OtB6SwV()!Ja><<8=a` zZEPPq%i9<0KbHnn6bA&{-3%DVXRa6BCyrM*?!B8nl;l6S;_N&gL%^~@5@Bi@{??7-xFxBZX@*Iyia#RL4?RUO^Ymk2>KoIX$e(ZmE`#C>yc{l!b zygWVH==Z|#()xZp8GiVYXyO0o-SPQoT=MI^)9-73#N*|XFh7rg;Ok!Slhps>@?(VX zbN}}0W1w^Y`Ez(XKHlT_xR+1hh*7}z-L=az#3DX3U)j5`GvALd&Lh6}nbq%2t@nM_ z|9aHVcS_LU^E92(w~_Gp?sQXi>Cdv@t@&#D{eD?z+4ZuA2jS~_q4SBz-$qm9ecB{$mu2j^qklYD2~e#4>;r|Z0v+#`qDfV*q> z!#MCuYsa` zv)xB}ZU*G%{W#&nFs@%$=U0O7ZJD5(Lw2jC`&C_Z)28nR-O|8u8R50y_uj8R&diK9 zckt(nkDF_n10B`#O=^qZ=^nf29(VKC-Pfk?%b)FemTR?^%x&Vwmh+by?M6zjJ4>7N zKe$^LJ!_8}5cTF4&Q%yUnQIZwTJk1mI0ojf^#>Px;N^K2&Yj{GmmVJdo<8*T>pBtN zZsV($uJIZ;uhZlG8}nW+1sMppzivA_5x4ofbn>R&;;+B%{8s(C-fq@Sp6mJ$g7tKjyM>^o|d1Cjq z@_m}wWQ|&DEtcVr7Z5&L@)ucReOmJdX4FQ$)%XZrkMq@~7X4&*)5~A%iQQCLuhAd$ zLU8kXG`Ltgvio`*dVRQU>-2Zp>UE3OaPz4iQCj9WZcsy5`i3|%XW*{kVP8ecY>#18 zFR$hKHcjx-2`}~~T-QF7hINP;qkQ~cC6$-s*`uv)! zO)KO1S!P+~`Z8;oPb%B}2q$yJPye`<^XCqm=L+rVPp;vf%Syj;$SRt5cKyCtwynXA z+DG@8NiL7aRl7Wk>SeE&J9U4?HFU-6=t=gTnr(sgnCa!q-P`$jJ(Rt4yt_%CO6w)P z4Qxp#d$gQ_Sf`V8`xKf={@yFD3;9DIcv)V;*qY|Lq7#oMyG{&@+N-mt5VcZK!)6t9 z+Xgoa`UN`^!Dkkw#oD)@uOC+SVU1fp2>?5A@5)L)n(wZxisP#}ZmkG*z0K=X@VRfg zikAy7nIkI%18P3ob5qKklM9!d0vaG~D=g1;yG7yFxnYfV!!>y|vc5~|-4m1E3-=dn z^w973D+uR~wj%<$@~wZ8MmSu{Ch9#(;`3fjs>1CmI=dTWU%y|f8m^z0u9FAd=Y;kd z{g!;){IPlF<}g(0bs2xw8u)q_ zaM@#Lx6Zk)p*cSzn&QT|l^a?{;J>x?>!`CSRF;#Jp$~NEUX&yT_L+?&xHyy#fN;rGBN8tsVZD zW!cx`DYQ(#^5_C%y4^!|o?~yDsIkR{ouKH$COO(E%`Y#jdwXiEJuk~E!@{a{^>|ME zI#qJLwK6G~rnArdl19pBJ8LsJc$59ljCyqX_bU?BeMJH;*%dfVb_KjnUJ&HGZSY8Vn>)0Np^vCt;^IQvY zDdDZ!ZzsuBCeN)M%{5iORP!&1M-=Vg8(#~=n;Wl2X5Egd12`uQ2kZu#K;XBk=p8T_ zjw#+-{CrnF4ZycQFFolS1-}dAKXqmYIRG&)a3aiIUJJ4LaZI-rQAE_*9A4x+!aHwKVsct@ksJHS6%KOOK%ukWL_B5s5sKiD(j$Z4> z$6omz5JH=}Oj2k(1d_{q3E*c`9qk??dGYA*V$PpfjaTChKSEH$s&Rz=yY&!laS zM(03M%Q@tKgknlx-xp~+w$op7YjpCttjR9cSKss5j#(N|Ki;cIKcCY<#>D09FT46~ zx-GgByuqCzPJUZy2#&xT8?vk8z#+STFrYYN=G$`Y)l&GqD#FGZk``=GU-NSJQbB&6 zhJ;tEo|P>0jqD_eb;-*#;U_F=wbc(0ui+VjWAycHEl^KPJ`2 zcDn<#ChfNE*Vp2c4S#Cpe&JWyD@nS_`@5%-kI*$&GVKaIk{&>{IlHR=l09FdnQDN~ zDye-MFxpnUHLF_pP>NM_etdssq#n9``{$;v9K{*1<&3uIuk%G?KQYo1%wuSKBr#>s`8 zMN>kKY-fK5+3bz&2Aj)jx7(?lOf$@`qg&hMAp-Gy4qjJA23Q&!@_w3F+)j%%i1i)M zA>JB4P)I+~(~l2NkFOh&t}ZPCf~QVchs+`trONzKi7xaYLEep(lr6(Chf5 zEY$dGq*goZHX6N`wYkBEr=K62PxB+4W%;W|2AMMswZ=M+XAt33Pw3~gT=P2=Gh4#5 zRi>z~c6ygl(A}*Q#;TxN!KA8sbtUC75<@Oe=M7p27Bz@{;&Sl%&|{9Lvp4+Oevprx zl;RZM3fi6WY^@ihy)^mvj|l_?KMxJ$);#=Q=RN%2Pp?GR-)}iBPRV&SF<08l%5Yn= z?;(D|DF`;L_OG3}6nLu#v*+4&Pf->G#o#&(lMXlOq?U0g&`MpnL8s=?#K}7ursqM< zEHbVOT-c@JtgmC?yq|&mBHTGyt3BsS_)J`(HXJ^6@VTP8t5+$oPRF7n~T6F)7HT0?>8VMvM z1utlX8!qa`6w^}kO>k*UOVE4e;!nE@793<@QB!Q9s>MlwDLhtHmJ)oSOniM^-%F*7 zWs0?Bu8XFi^sWs3dz5phh)b{eA+6XV`jnrq#i0S%umk_@V-^i*41P5U?P8P=ji&XP zm2f&Dt?gwx;4?%bpzItOB51xy-x!U0)vy@^pD?e)$e@0ZKjSr88}=D+^$!$Y4Z?y} zTXy?CYbXpN-cW8!yoC7k_FIgsk!WgO^(}2Txn?&Bi4{-N?WNHHS4Ur; zy_YIj!d7fuqCgQJ4}wq~`beTlRiS6wo${?0OD@Ada0S$Q{)Npl6`b^Ac z4e3ln$Eusi*53$gZGH1P)$c1`s_l@#%@=(CC{3+sokR}1=_u7lkc93g**fM@9#%S1 zI%_jYrN?T5Vr!-`<(ZiS-WA7j8gQMl&${1e>1P>VY#!W{F6^r$U#YH}##~%7QK6{j zO0Q`J1)uBjyByP9W&g@o@`onZzbFU!(X-jx`PJ6dEANF)y4L-JMj0kyt6X{A0zE6F zTC1O3y<+(Zn?C~8F+f7PR`r@bmdz)P=n5D@;tw(96jFxT#%_v5IsL&i1IeBXTKox^ z`trs;QwlhHTKhTQFzd_C^WAYTv_t~?GSHU0!(lq%9=Ip}JNioEB&?cZy>iUte1?ko z8alpOA951WN=1M-b(&$6oKqXvxn5FEv{^x`aI|_d9w-8~pKFy% zRC)ytuy3)nTcDg(hGOez4KmG!D}~qv*N{>`7-IK^g^8dX0~{Q%W)%=J0}9uj#>)s$ zdO&<6xiEzET(ClIS_x^t1@{`hYaVPeK_x6-Fod}EjyddmDbRGxsV<-I z^!vp0K(1c@=gQF;cry!FN!vHtfANihFk_{tWl$2>4*(rC%$1eCjor`T= zA`pqLz)t&uy-l)6AAeQw(KH{JWlHgkYZ)Kl5(WHjtywX=j+1Jp3g**cjXsYuj4bOf zpOa1Xzemtblt>+f3=FzZ_p~M}P#;L53SPyv49!9HGb10=pz>(Oa@I(VISL0#O;x>~ zehV_ZUrUiOl0uf3PfJmqiQ#Y8y5la@QukluKy8lNS^raxk1bZIJS$B`IRY$Dq1NZI zw2uWeTantr_Zk}9ii=2g>29=*b4;ne*Yy~E78Zl57f=gKxDX1CETu6XZVH58{`e4s zOJ26(u5WDj!&odTIl}$CC#g8*gf%f{zG`}Z#PKJ;^obzW+xlj$Uc5tWPf`Y$@08OrVbOI=il>qh()UWlO z@kUI3r|i)9wCeaDWn!L>m5OpH&tudh!dlBDIlKYiN9~eMZF=h^XZ&tn~1>fzD zprz5!0+|j^R?sXO7G%Dw{{!*6>N7E{GPye1)60&iz*xxFq=gp{~2Zw0- zAs?5uQ2UN#&4+{l%$G!rL)XVs-RO_1RaM#aq80}!nUxS3F(&%bac27~fC}WUFWvJx zG(?p3{D8jjU^YmVl4G8Oy1KcKQ`=%q2jKrT=uC(XlJay0&v=8jh{#^T;xO2QnhEWo zOcB^=M}LWA3}My+3zE&xnTlFpPJ~N&TUURGQL(m^^B&YHWi(u21Y!o0^`aF;Yz;du zDLqg}mseVuV%!DR7HO3E4a0g?6>K{CV#q?g&;q$mXJr;8L59FZ$W7}S zoi1y4jw8zWQ!{^#&4qzQ@(y@wYK7h>}p)3#ABgC}6>KF1r ze)T&&ecC*+Dy(%NZkiP6QmYzgT2vxNdY--fH~PSvV5#-h@=)21$cd(&T9tD_J1H}f z;d=Zr*5#=o)cvmWwbpmfP7hd=)PARjQnh#}0h$F6KwursG$kO>XQWC;X}~YT)yJLd zR!yc3iuA~yREFymzcFtDn@ufS_AL+^%a`cshd9SLFPkx`cnpEm8L)mmeN8I#}(a8Tal@AE!qan zMS2jm!o;MKDewblcUm1m|u{{ZjG{MuO)BNeE!W%MP&wIrpe@#2o z7bLolSg_6w4JPh}z64n$>~#Jc)mal#pjLy2g>h#DKY-O~>0aaZy7j2?t zyrX*+mO1)ubAP_GbDhnhA>(3k&@9UBsDH(*BjwvnS#FRAxGp8~?Ye5rDsx9N!` zNUJa^+J1_yG{V5E>1T2YF_c!QPGB?IEg70IVeh1Gi|h|ztsceNI+3D(R>+0aEBt+i zP8);_J|FHIQz0Teo?B7o=j~~cq%EuHtmGz6Aln$ui@Hj744Sy~`4-+t2v=m}W4~@C zg+k`me*XeXMVq*I_?}d$IgA3{FkKQ>cMDxpBr2=QZ6hG44v~tcVA5df`FUsOAAjl9 zAIj|2TT>U3cfWbpYSKYZcQ3RMBWrRJEZa`JTcT9j%-B$bhFuGKzXhFxAD!>E@7SmN z1AGbvn&gi&Xh5z4;49H9X_dwlAI45E85ZC<{~rK9K)}CkOR#2oh+I`MsI@0Y>mk!_ zUpZOd&f2%6;AaxR^L=%Gw>bd-Fjmg-G$!<%N1ixBlF_@|RzZ{xBS99Ur!)Hw&ACB9gLN$dvK-{1TrE+XW zOVw5KIKnfxAZfVLW1s@E;tFLThrrq62Cc5DwXpG0iYP^~X3#yxTfj^tf{c^F+l9vQ)kEtA?SV zOFUQ{7&wPEYUWsi|40uiUXPBZv{MR+@j73Kt)pLL(qb~QmK?YX3SI%iNwWhjf=GVW zR4Qu^5TF{>3c&HeZU*-791B`brB~!-SBegR8b^dl9q?MfP#9kkcQY;pivTna-(J2)@+c%9wYx6$0%FmH3a?F z<3<;AIBDh4MS4f{tq2Bo0f1@*}bel)8&Fud6NUs{!?|cOU+`G&dbwrq-3? zg$#@+VZp!xt`G`!1%%Zwc_14!3xt&(wP$v|ar%u^`Ise?L1A&UaMb*32x^B%H6qE? zW1p%e4H9u~&bWxc93uSn@&3c(_TzD*5~~owh6ZmBCp1N3M+8$A z2t{nz1iS+a&57WdtJ#s$%p>7YPLR4%UUBj9&EA*pR_jdAYQai1BzhD8OUE5GU(=J2 z?L?f6{V)N#J|0GN=J*x(`5SD0{mg!nQ;v_{)A>Qon>J{V)JPWs4-A{aq+&myX_cyA zhb}}$`;J&^-y@yEf*sD82^^KT!u6$e&sS9Y&fyYtBCzPtQ1vKDP|hd&hg40?=@?Ja z$4*eH+8$gZSn0MU)|GSei!~a!L#~uBfBn}Q-G97If4+F4C}XI9Jth<1m;U=nHz4Dy z?qJ#lfkBd^QOTpxUFo8e4r$$V$i5P*r*f7{?35vPB_4Q1FHxAXGw*#LWf8#Qz?(HG z>BmtD(OQ5NBY@R zs@ne$--FjHO_Cl#6l$-w3v6g_W9X#7yelmdzb>SCDIjS$zIw5uP+Upm4oIehS<2PwiFePzG5tU}I0BzkH$v~J1WDTh| zJr6V?et(#t6;zAb1f-dsFy#Q4IP$T>pom*?u1*|*0!Pn5DJBWFzD&A%X;PqtQz99a zP_6C*ObpW%G@$#8PABQ1NHqLuA++w=elfaST=Yjw!#rC*jz>*>Sc9$vN>YhydU68k zYYGj@DQdXVT%nT+>#IbRQ8wMOQ~*6bLWS<(*;n!B^~e;~y5S>L_b`OS!3g>&g`}DA z*&Bg$XEODpITE6bK+kwMGAc{IQkUjes%5pz%6YP!N-4fcnH_k95- zk}u(-#kEDT*63sAJQzw;OpE2kI9-@yV@Z@Hwj3o(bq%Se4O^kD@elq;Pa07e5u0wPhckS_i{uX#k^Ii}?P!J0-b?$MEH9Es zPV=l4H^TX63#g@=1nev^#sQa-0tga7-Ip`g^=* zZj1@LVRaPh8&7q6>4+?BK1Yjt*0-~icnpuLReEQ2QnIbKn@>@rL4vVL3iR41*g(j9 zpyEPJD10;l<*?kgNE`rEHJ`%@9#0i4Z|leh@&g)Jc@BK>AB$O}WRwmBReFu;N&(-4 z<^|!O{WE-rMQ(iqpiFy-(0ckEu3#E7hKyZ^Dny7RkCkEw&_?e|Z!fQiZ%Zr%esq`X z@gf&U@kDGrY6RJ6!{U^@gIdBuNKZwX+Rk#a$qb_Z#?DaLY-|$7Pe|*IXPOApfJK|q za_3MYUMR!R0u`7Ays*~H95yvephg>;A|<^t-GWbB5%54EZILuhk~KW!prl|RGWQt-6YQAUxM;$*nd8AZQFtdH zE|R9$Kx7!xz==IVLzxW{vJdMmZOS+394Y|zTh~+JshtjnHdeXxH%lFOXp;f(?@M#y zRmm)ZwMGZgh;m%(exPCKaB*ZLvSI=g3(^h15}=PkI2I}58FD^q7CaJ;ZZ*Oe2HcKj z4qzkqHGxK|HTk_{hMFgMnE%l6R*6_&rM0;UG!|n%G-RpdBrWON#|zocF1LX{q|XaQ z+?RI9CGL_B1`a1%0&8pt1Y4It#geBKwNUA#BJS8ivhHg6{IYB#2vo(V7Utrws&so- zafUEs__pycu@ne#T=tok;9Sa$FvtYpFl-`-s&J--*NFadsHGDNtA*TBMdazOe z@x~h_tk85(BYGXvj;QwY?wO8?DjnC}2D_?*SOUAv zp@3)eQm9>>l9G&Ecb9o*%G9VeB zC|3GtJ#-qCy>GqXiZsJB^lI>?&tf(9LxSKApdcVy5hFaZIRJ+rucwmlru5M|&PB7F z5cCxsr8u?=0gn?l(uz(16#^rE$B)PRlKwrlEukljSK*^W=->>X4W1Z#7*B*7(y7SD zio=w!gbG$r&NFjdI4?k2h9fH1D%ch$Rmj`&Mh5qA$$4#4T4!sy*b5c0ZAwKshl_J` zS}`FuUI&&}yHp!P2|d9XPPComgoz62763CYon&fTJA@4uE$4th)U*he7hsh%gG322 zQdkgTaEz3em`9iIkQx?Aen3@IXQcO0l+nX!-j;)6V=6J7LL{ouCSX?Sqdl4qd=bNJ z5suY(!!yXlp_hFX7iuuXtdnP0Kn#Xq75ALoK_XkfqF=lyz|E$)Hl5}@CBbLiQZeC8 zZG(U#+NNPI+Vk_j{C-NL;Jkij@X!d&CB+xZ^v19(Bs!vuNJSKHR)u;U(W==ewYSI? z^Ps{}T#n)l@=(+`AoP!_m&`q)T;i{5YlQ52Md=;e!n0ESdFlP0ZQ+vL^@>J(G z-=NAP*b(ZL6Jzt9Scf-3%{T$@eHYs^J_UiwforexKRE=Y453FdCO=`6jau`N6dGR; zFD26QG7Ald3*m|k4nM7*Q$D?I9DI@epY`c{mAJ3oPS-3!?=d#t>k0k%bbo&%Ymc^> zF7~U~POw_%>1gUuc371jc8=3vad0XI2>CSuEUK%`W8w<1S2$d3WUOMsujz|Cp+?cB|Dowa}e`QbKwnfEPpU)}23iiOGl zQ&qBisXL7tkn8vmg<i?;?6z`OA{@rnZ^=msp|P@-vWFur*C+`iCS;OH@c!n9sE&Pown>0P zA1Pf=kKedz*f7%vPC)zkd!<4mQGIjVa*NL`V+xnrhr? zqfdAp)PReQvHCbSNcW~vQeD1tOvuZvbc2$;X>5~>BvjWv@E&V#%VRt zZCqn36ye(w3vx1@5wgc{i|YVm-yqp@{(+d!i#j(I@$`B?$HG zawXAylbB^~&1+7TpV~NlI0BQr&Lp+H2LI8ONt{=9 z(T6p&SeM(@C*BT1tmqlT04U3NL|M}kX%q@}8*L;(W;$a0nZk3ZA<;=_k~WGX7Ii4+ zAgSg!!_sJ~-}DriVr{YwwX?7%HXJt;&or-?H>h??$D{+UUVg>)i7Wh>Lh~FSf4DcH z>%(o`-J*rJd8+8~cS4h}A0xk^D9p+k@e2PSIaPp?7r#rYc`Y$mLZmY$;1%B>b2zSk zgQsJ?zrStjfj6f9b|B?gTE7+7>PmOVG?|HmsX(nr?3s>%-c-ja*wgo-frK$-DrFqv zO%j79W$jFGog{^qg35TEad3)#ZKFgMl~-d*7hYC(-zNQVb25g%COl;SKMTmu-|vHY z5X%pDAAY#00#eP}f?9&u95~d{{e}=krJ^{QL{|KjZUtFVw_G5cS4|N_1)xZQ@KXM9 z&KU;Oz?dTlI1Pt@nmIenYQiI?0heqVKrMGdSzZ)>x3(=gTgBeLX7eQY#H5p%O`tU|4Ab1+B^=_)Ozp z#7l~u(ULN?oe8ZVK^eM<6&O&X&xnm8r!fl+5UGPgf7rLzKXH*hThW&r=;Py!)0ETS zso4}Go`F$9rRGo?HM53>$P_K9e4Py4i=2v>$5ze63u`ttt+t4qH9P=jzN+~{oFKaB zpdAi+#S50M+sSx*Z)q5#%90a!eX%b{vDi_}MEmxo3Ab={X`X)kWvu_}o9?lF=s6%! ztCTIG-CL-*s7u%cE*I_(5Z&4#)AZ6`-TgP3SN>bl8W|*+*Pa zeY2skY@%YBcnQ5icZM{oxV#QO0~(xPV{8BIoUSj0<(r4&AFe#OE$#B6G5=zq;Hf}q z-L59VAaCO*B4-&&$99m8F`gN{FKMg@x z%RCPR_PBG?O)LAxOQ8~ju2Jb)u3xcrI?T%zQ1W07_q&4u;6}>~dx0ioIYY;l*@qdu zzOWP9NyrhN3JuePt=knwc21Bru08 z$G9N1nTkYKBR(!VWc3o-pv_lI&@cF2?II@feA#U;76)y&-M@c-ciZU_4((*NQK)1otl!$;18IrRUFCj!R zo3h7gTxR=l_FA0>NRW7QzzVB~Y-jvQT_epE@&g|Qb9h?9HHX=rc21@kn+cogrAGE% zb}ZtRt&X9G+?WO9zBx|gj$f_oTuY$0x z;J48iCa5N&d)I0XBa&Z+jhupi@OIav12nRLpBozg;16dOeBGr zAAo%y)?;!;c0T)_Up-qjU~%niecn{`k58Z7?sSXhB?-h;D~J;MmBD!Oz)1~}tjab& zRGM)%uqt<~uZr|wms()*?{F*9}!;GSctGCF0Aom~vl2r#m7Q}+{ zB-J``{xQ(_OECHB0u}CwF-<=0mbV=%3Ost4n3DmWX73QIWqL-wFvv`8>Cz@3Q%ewO z5CBe}rAhGdgx zCCWFf&Q&S--?AqwPRs+z*aCrsLPY`R;*wy8lpP(J>SqK;`L0rApSeAJHq7&KB5+hRW{Bqi2>9G(KK~L%a>YiUxP? zD@PV^w~2VNbA5u^IE_M194{n)BQ?x?VTO=&-N(G$>dh$eSoCSs0?l4@XHqox#+Q%h zJFa_X5Yr8m)SB1`nVg=%z7kJv$zs?STMIig!v$9wV2pK!B%_<*Uv?|lki+~kz6N>8 z>jeQJ2@(%b>;{TzSM*v+I9;QIi-T|ia(PCc7-@&MRwhw*D6{FWr|=@>4e!$|0%1o3 z<)TqEaHKzbOJ9vP3Yn{YUumv+yzP}{SUN%$hSl}JkH&YXP$7~bXZg5e<;l!`0*?aO zD(2=D!Yx~9K%Gg)*E6}UnRHZYtb`XsKj;p?`b*j7-}8UuG63apL{$->oBNxx6odY=-JHQ-s(!SUnblmay5K63DUXn^iNtsD^2te=5 z;gI6Kva`N@@tP7w`uQTm<>|QjS}%R5zL?_JX>f%D)`;3=8ad;s_^Qg1^QK;S6?d?c zxl55zj`EwiL=baf``LE79#mbdxHL%PwZs5okPu>MGW#7Xl7Wb1baQq%q z`o2v>d`-kH0LjaE^qWAW@^k^AWAEj%HFGOhb0qEXle*yyDi;3Y;5SiPM+ZTc!Os*j zUrg=6%69#1GKNu5Cv0!V%|%@_?n4b6OLtuILGNl+Y@Rsg!-K%-G}@zJSqZB2(frSh z$(ihWA&G(}G(a&ha8Gja7>Py6F^LCTBs`F@5bpvqh_Az=$QvQZRPFLG9}CVhrYYV< zF5PMC6iouofnx|$lXEh?6oAJ!1b9I&e z6~I)ZMSQ(!o;-|Bl7!OKj!-CkG|Mlj;3c?aOTb29D(Zwvz*ii_k!_bnmM3 zl>~*41}4QXtDBp3v@LKYF&47+E8lb$0o1Ya*=Ol{%7qVAu4<7E`L(0(6+YUn2Z|TH z3K^}yLy%&R;euWcsFS|JIZ$>mHR{I9J?q)kiN@MsxlOqCuD{02c~Dk!3SfNhdH&At0;MxDaFX))h<9xc<@PV{;*?28LZajVhE(AJ+v_@#XWP zo1LAzs<<_c@bJJFUXXXei8TkaXwhR=%7izb3B{~MSI5z_CwqDHtaxdaE$6?}f|8_EuxgmDxC49}=TS<%yT zSP_d&;q;b`$>SU}e!SQSC>S8_*vhy}GGr0^%U+g&7R(i9Man8f8J!kJ(7D4fced(| zL3&!Lq|Cxvo1@5Vm~I;zAtMP{%C$PsJKX4^Ovhdr%a1%XGCHMjhJ#~V0dFjk*i`sv zNRPV$-9yncuU)n_a+ed12a&wM^KTrnFhadf#}>`l7xVmS3=2v06>8&Il(>KVOD;se zT<-GWsXX2X^ZNE`eE7WFI0i6BKm7@o(1N)S2@xGj9nUM|4ByDEZ44S$Do>M!EyaCJEV(VZ72Op4jZQjzqNF#!ip!O6w{m}(acztOx3}1 z=Dr86(aTM4^1q;=dm;&$nSnTmLGuV{K2TZ_rAsL@b2x2(KFH)lLDm#uiAcYhPF0i7 z5!z%xyPjk&8?)nZ?0W&=2J}+gv1As>U3eFB6!8om%pH_57klWjwfLL|TDrJlAar1d zc`^gKHLqaX4Ynw}Mh{zg0A*F?+(;q>3SzdBfWh|^V<1=|NK?Aw4KE%?C!Bm)SnJhI-C(zLk?o+3BG=BC!wGqMVZwZ!KrKbFDMHNx zDeIlxNfyl!d-pbx7A zU~O5TKh1ZZBORJhS<6D24qU-Dd}oN&T)}{uVRqNJ4N?98 zU(D%%S(@6rGOd-+Xa<)pWpttJQ21ylKr7GBlf5~_5kUAKRb;ZGF&if0D7eA!=xwpE z>xOZz&?i!;%Na^X##*GKE_3WGcv^03H8i(?lu_?Q6f@#j2aUzEVVzN zR(fg$JKlx0&Xu7TXBk}#)#rF?6jrG6-Z6h@`#@*eKQd_;YQWBDRu22pN23F@IGwo> z1-^t134mHd(sK&Xf{(|`L0=rQ;e1aOB6m@Z29<5d*p!(F}MTJwabAjTb`FC+RRZ#r1~}N2lp8QWl!o zF_t!;DcYzbdXRk(vX`U5jEl5rW;twie2N7~?Sop=k%G6SJ3vyb%`ivdsR@@#pma_; zz22c;IxH>)~NlNp0-sXd>bCu`z|lj0a)>GVP>v z8siy9EqZE2Tt=$8Y)-qVePM`3?j=Zn7OF8f2|HcfJ*GnXhH{R5Vodn;(&I8enCj}` z(1#d}1VL((Gl=y=R0Z7|IEhvhpW@m!frhIt!*m7i68h6LC{~ACbm**f4z&C3&b*=w z@N)~4s7ql40`=HCqD)GTO(KBexpdI|Ie9B{3NsrWN|UV!md*v|F@(i8%w_5f0)oTD$Ss+9zXs^* z2rGPa+K{0144i;-m{e497wa^PAP_p(8FWWKL4hPMhDg($nA!4@W${WH$rbqq<#VG>?0-Jn-r;{QTiONUhgWAu00I!>~D}G4P$zeoLXp(yk z(suWx9;GkP{5c=_@%Z7m?Xq+a1M6u!V}jIMtW!@&q(~}!-RVxiGlp5BSG*C4@qGe< zcT1Pz3e(wA3WCAw`0Wfw0e?g2njWa1Ruzh?P@Y+dXnWR9afXuc@iLA1{<+JmE1h{+ ziW~3Z%WP2(n7hp9vDfiVcoRTPlZ>D2a1k=ZnT%?1+m1Ip0N$mi_7R|sQb?vG*Q(xu zvlzPh=7}Am0Q-X|Lg1D?U==c+89JFErUic}qIhDmA&R~`q9NlCd{k?sfio?;o4~?e z;SFFL>=m?6aJ^a$Hpyt0qAe4_t0jnCRwmRIZy1<*oC8R;B=snk@Q~?w;b?`^a#<~l zi=<(65i9msN|TgAGzuKWffMw_3-zKdXUO>sE zym?H+mTYldTAo$lF@+p7ly(Z?B-g<+gE2Z`F%;>>d6H@LovS&R@k2M*V!8X293=Vz z<0u+#F#|c%zEJpRawg9a(#p2TPpPd7D+mJ4){%}wUuO=Vab8FlLp7`vf*hBZI}FEC z37NrsS}<3b+(e{IqQ;MC#`pRhKv|0&Pt;XuGl_~elD@Wb;aqgc4LGHzR$QftE`z*G zR1Z;Wz1XDi z)pBrlt=MW@`QWkPV07AMbbnARBaX+HR>|mqC{C}08_dn4+GGfw(IJ_?&8(Lm3>u}p z9yY+_pgp_Tk2h2-S0v#K^m!@msjh{!M%-kQlFlGd$79F52M)4LRwl9KE>dvPVV5I> z4B#i3(o`YvOwV|6ie!`~>baWUgYv~uPYE*ag5&OB=0)X4yC%q(?;z&!f}oBs6pG@{ zxa!hVv)}rdbepoEWmpDYIMs)+fqxPF1!w`lqiZq@&|#6kvKJO9tZcd>{&d9h@+kK{CfXDmN2u^@S<@2!xsP7h9N13TfbFz1)dOc9$WM zsnYL8#f((SOAq&{R8r`r;U{ygNf7CYO@oY9GWBft>^uM7I(@r?DNX;+>`>1a@bUPt zH%}jz$J;I}kI6ctFL(^daX@s6*^}a%DLZOrljA`5Ooew0Wf+q*$6P9zW}qai;wDqq zX1KYnL&C^#HU?bfMS5BUO!bSqKGFvr7cG%8m+r+ro~Bks`YSeBO~HG%*e}-S?lwFP ze=)2P%z$72wPSJ@sM?0Qls$w3w&VC)Qjp@S?Y_{=xXhH&#WE)RfA~_72q5RJ$Z$?+ zhH+HLv|zD$X1X5w3G0$;B0$RA<6wUH`YQK3cXxMfWi&d!zx%N4x3%=*Xy|h+MVHHd zz-jDRuIxj~8e@QhLH92JNcsZJUj@&U>Bt#t8C9;daiaGrtIb4V*OvbXGKy!>2}6uq z7Q&-ZDWMGm<&2JZ#^5kVeq}iED&B0Zi|1vL4g>|r102B`TN;8Qx*W;P zhsrNO73T}M7_>l>%P8P@Y%;K@5O9pqR1FEhl#htbmOOCe&yHClfHxfbTL*s%dk&WjKX{gtKEI_0Y50 z@X+9SXe{n2!RkjODy|ME9cd-^OQj*6;6#42+9(=XGM+}=I}A$^4=t1IuMGug258_? zQx>jcSpsCksg|q|?#@jWB3NoZw3~w4STbc$sFVw!jI*?1BB47W64!RQxo*kP(OAx=wSmO`P8%mW`9a zB_~8S=I1pRRf0~wsKvwwxCF^^`yHK@sy3N0ee7WlHND1HQmTj3hn&eOB8P008+}#Q zoHk+Zxa_oL=T<{1WNsmMJ21w}<(RexX^o+xL=aF^8ncC2Jru$yv-E)iF@`|yxo{B{ z_vTC>WmL#G%(Q&Se%^Y_u(0DR0!rq#Tnn`ym%FET$Bh?7;8^u=;54x%sJW;O^!1BP z9nm2*pk^_H1Xrn+$=`0zghl-f13Xyl#8SMfOn{%rzaSBs2tDOh$~$4M9i>#|Qkn@1 zL>)S|-mJ_O}Iu4>e+d4sHA$ZYVtc;h2N3kGt z(KC&Sx@3%=T_EzLgR?J@2NiQ7BY})04JlW{77`^hAJ1G0<)Jf%Uh+fN2FRLd;>KG-7DW=DsE2syleg(qu#c=Q^|fGa;O$j#)HL1#w#1^FEpo z;7Mt=8t7%6+#{ytP!!-@RC30g&6e(7WuxUX_<;b1y48|ontCx!s0TFVU}R%)i%M%A zW$dvbMKetqLnfMob}9ruwWt_|1<*azz;I3>Dk>i`PD(h`4G0p732Eqcb7KZg3*?+w zYH7L@s?Ed7tr(h&-N6=8)C(W&$;@?7R8skcT*8g#BXogoV$_A@TR9yVT1h7O1^<&= zjrXJ0P{>Ljtpz*$0%|6n@8mB$kMTXu3&*&t>j55OH|uDUUb^nWjX0>-_{@;Fo{~dn zbIzeb8EM?9U{n>JkR8WYH|H37M&&W5ijVRqqjnrzHe>#))3Nl_x?2o!)vS4-T3T;I%-?iu5M2tlD3&V)$0BCXWL zk46AVH9uR26{L=(-Uk#FqfojUq%#USj3Oriy+|$A&&yREZ0L1qUlR;-(=T(nXpAxR zkAgFuk2#av6P*j+lpYuqnf+(i(+n}JW=(+1rKg4$m1`W-YF2}3)W_^-NF_EEo>xUT6thyb3sZU&3{3vrK)I$hw`cS;tOjgBhhBd=wQ|)`?$oAh5n4=Cvfq{CU^$-%(XsFv z<4F)vGYdx8Gh~z!6of@%jFHs-l}j8FqS*aTYJtJQxG1Iz&wj1pD($i}nNv7hShzdawbpFYL!^I?@*T zMFRzHl4i;NSy~XFg(8VYanT7sO_Xv8O-jja@tI?w3;}w~8s`@A=)^u;J!=vwl|c0x zRC2j-_X~=7Q6GPP(82xhk1S>RWG{`WUn;yfSfz0aJd4`Jp=FI4nwk}lD#4^EkuXx^ zNR;&l6|W#03r{9m z0W8i8Rwph9AByTqWYrA=W|4U>Imn+tKISeD*XU#l@|P9;Du0t3p|5tv{{8Ob)2HR# zturm75Ft^F`-;eBbK>e`cupn7ZcFY`+W{5{oKd6omCLV8DQd_xsFmPK6mR41ScNXY zgv3SDkQ6v4NZeo{idEx<8YMT>v8BXOO_NPYWCA zj42L@VlG=WfrtgvETNJ@s@cFG2VfLL(vBht#IEha11%lCvKpX-FhB^9iv}p3IHJNP zFfQ)cl#~>R&bbDpWm6?&CS+(FRsj=lF{|+7D>jg|xpt-aPh5W=j8JioZyOPU{^V|z zK68DZHUrnkfJf}Im+O}dBs37l+T^6Ab&hXVIK*B>uK;RF+=Z_!jcEOYm2zr>MB_KY za8dQrFyk%APH}Yf~Q%x&IA!)(RnXiyht12{NC2k1+iAi@R z8~(OjREP$E?eJzSZ|2rZUlPWF-+0x;Lx%Ym-1?>2`k#OJ=O6wrb8gcr=bQn6ju&{G zRaQ-GT}KtxOYE4WElCBfoy3lvuxxDR%+EP9LG?3Y1G`3oedp&)W7V}2|ELNqqKaju zigtv^3h}cBDS0avtYJwv>?0@(xjTe`1?%7b-S83VTCSFoVz8M#)iPg4fk`|wHaoMtloRZO; zVyzQA&Kj&U9v$AjY$)vz?btZgzxe*f&DrvUeB5-rSmM3tb4eD!Ro{FkPQ+?LGF-Sw z$Xrb?=ptIGm4k|@rLoUWZ4R2Vj#ocg-^J5_cFmf#88zA1(tRTm2~twTzrmT7wE5sj zonn}5$ofi#IgMw_cV}*VdH2SD!Cic~`S)uV+ff})(!IH-eB0&#~m~xm)h!NnC&x%0_requ|#$$W;UW(;rdehjA z5f^-KK4yvJTOo8+$Lz-XJR6P~0Bf!>`^K)7-V%Ej>k1EBxP@Lq5wLAn;BsC8fV@^aqmI?p8 zjC$3B2~4>;Ee)61UUGvXN`@eOHR@Y8-o|P?slkV}u&PjZ7UXzinRddC8RqQz;*a(1 z*H@g~uBVS5j?Gn>TMu!#;yghB0tRTD@ClZjsok>o#)7ZCn*=UrYk@^`zJf>!#gEx< zHg+4}NQtnBO#FmNgaqD(SXgi`_+tesV?2Ufv;xQI=p#gdd8Tpu+UB^rHXl#!-CTU* zho5}?<=o!W?PEP`daUF2Ht$kl*kvOYmrb$B33CDYIQQv@wReyWx(yJBKOZ-Trfh^k zi;;C>t}O5d>p@OJQS8vPSc!%*)X*XK4v#JxnovujchRaQQu340wDIt8dltt1wYA0K zBYS1#SRb9~$?4cysK%!-S&KB-vW>9^n|VqZDPW%~m<;49%Anx(%#OF#u3!64 zVJF+CM@I)m4<;j>yJ#4sphl*Fj%d9>{vDlRN4AUn^$25=4@^8+0(yV zzWAuU2bsv5%{oTwFnQQiXHvm0j4~B#kVyh#?CJtMJygIzz6O{$stu;ZasTo9-ZZzS zdTw&DOeUroTFAA4$}lzQSh8AwZdY&_yqZ8EKm+gECzUMu9q-SJ`@^rcW=rqyAL_Y_ zR?0or?50Qr<}ejRIAMS&6_YWgn?|YG2ve_<;j#pTViNc?lO4bO?)tn1$Tz@DsEe_J zBgg{q*25fc%Fh2R5t-y3f~UmA3_y7=3#Z(Lb9J3ctrM-ZdH zUF0)Du)wIS%TXX^4HjFCnxZrS~7Gj{8>; z;}Wr_m=II)Q(R!%Kn0F$vIB5<7y<+R8!!i+kYR@%A=D}Ynqj=-)vvA3yA`P=kTSMW z2_gx`S_A8h2t@J&!PDe(1bT#F>i>%{|)m!5iPp2&3+_}EU&(>!D2I1t= z(Y1eg0ew~PZyGre{qDbF)O@(43Q(mdos|1To9G&y+8{y{RaFIM*RWQ0ZP!1b{P*|9 z-sMQ!I|K;E_V~?vZ)VSETJNN(R86x(Y^{d~zympZ)gi+rrlxkK5saG+1!`r=b zmhl>~lV00|Sa2vV3?+m^h^iaY0@cf%)U8}|_L7dISJy(k9{AfSA3zHNcQcS%dliBT z`1^kL*aLn|^XW&L4w#{*NK zJiy^&Eb8w%Y3fm{jUwwjQGf$aG6sR(qTf%IvhaCflFw zz*2{6T1{s+%ZJ-f5BKwj<>L0^>~=m~JkD>I@9wAbn-zl>|G8&&_lZ&7Wjv4wr2q_M zh2mVrM8#^7Nmy|MWreEbJqzE-s(}!{h0KzXJv*>!n-uMJ+j3RVt#Aytr50`IZI^?m z9_*Pcn%Yx-4XvDZZvim(6-if*j~$dut^DBlx8pwus2jb736cFt zp{3YG3QDBF{2~*GW!Yd%9u^0iJQz4~eaS@Z8(lTP5%N0iZE9;V++PwgCeAb(#l|a8 z`73nn0Jb)>;=J8@2`oJlF=XHkLp_C(>Ff>>j|Lw4sR&g%NVfFv1`3UK4j#%xolt`z zVQ~{Hg2Sj%goevF0%c6AlLKG&YAv1ny25~rUX~%l7qMTlIhz&=c-UU#+c<- zR7UW(BwLID+J~+7YSULyD#mOgyvppPQFkijm=8cz)GS0cp0{b+(38}W=N6so&466h z7cUa-`#qz49D?we{VDl1I&7KT5^cB9TOsa&-qX{=Ujx;lcv!ZjdUYeKX#GKKlF9W$zA5+9(M>dTF1MOj-x65KL!&5zA$FAd@?~pdVfpv%=hYw^ zdJ6#9xJ)}Adsc@RDYp{Nl~o10#&nN?+Yg$pGCZ)MT6XRaGF0?RcloiClCJ-RO|^;V z{Cmt_zn@=>8};smgCr!!IaHk=K$G3%YW!x>n;H*~mw|pk z*Ww>(70F-Y0f!cNocqeZgnh#?rpYQ`(Nrx6%2>rK62U~3_Br2X3^7a)|Lox|<(L3*Vci+dJM!!^h2it{KX(Sbp zc$&e#jlM~T%IK8YH&h5G5mQt**Ms3Ay-)N=KU{VE(aDsc_1SYD#>$KAt#mPT@7u&HI9PAbB!SfSKt9Oip7)k%!hVzmOflmYCwc7e*`fX$^9poI&-vIhlfvI^MD zr~)*%)TXNKIyT78{zHEO9^A6mxCVHf70NLRfG`Y3;oVdG=MbEn1aBY?p+pVVRFa7F z_S!eS;alz+?6Gzi*~#V@I{a;qrjVkPd&I%cXv#sxaM@KhNu-f0JeQXZNp06Z+(9AZZ_iafgB6 zOF~{!WaL5}rCJlYHP!>uG6ZS1OloI+JSF#HE_mf@8JXC{D^oU>dvT@KNptP7u89z? z6(3-8ow`zd592k_{B5M9fsq2UZ5q%|oTqtAzX z+4F3P5WUHWzqZhs!A%z>2g-wKFl&LKGEr2@%Ur5YS;Jk z>FjYj`zMc;)auOywry9JZM(W~*SpWT-*@)i_pYDw$!E@$IU{mL z#uyPJ?4l`xc)vjD4OLTozIF@+Rla8q_v#TLDTHgt*tE+mJ%yX(a6{FNhC=$Va?B8l zk9D=Ht@{z)eE*hHs}ti_uO&oywV*kzYML-1NXS{whkx?hz#f?y1@R&yc&w zGnBRWEJ)|02qEYP%0~StIPzmKh_jLi{paKeB+@6A8-)Oz zAr}nKN;LnJ#SvQ-K7Y3z#r5=`k~|89S^#o#{oU$irP0;*J9dV~QPWj4rI{L~jcZAcFvJB{2kJ703A|~%Ci}{$ z(x}F5sBlUT;mY^n_YvV3HW;u}k5W`{O3Gv_%;qxD#=AST)1&k;q2taV07(_x>^*D^ zk4)Xjx_^5Ah7?JdGQhj!5<;5PrNn`hNho5)3WVp@=2Eo}Le)taO_;ZgPs8Q%!PE>W znPr2ngDYxW{O$hw^j`BaKSq)*>EN`^6P#Bty2>&45ZXiIV@A{*?P^TIGLafKGOirc z)a*fw4n+~{EpVJa%CFZOUT#$|2r9X}7Bi0%YDIJWExOavXYQo6d>2X8Gzp`v6oPHx zI6uSBpTjWSFs)YJB`&PgR1stHbrW-oo1#e-BuJ!Fl@QpaPeLHq&_NABgf9MZaVhJS zMJKSVu!vnCyL<2AW!=~AV81xCy9$pRH5~Z6ssI5|ybh8Y%VYN&W#MK2_?7P~L^o47 z*&c{LG_cR_P*ad~f5wzjqv>7-+DjABV8Pp?FntFUjmEs=(G>WmA8A`R$ zN!n3*D*rGCM}JBLSvmj_Il_K5P@#^Q5da!I7=Rv9bRAvE;p|@ie1Cqq0Q%)+;>Bmz z1qv8dL1N4Y-tS-I_7*$$-t&z@&LiHOd7Kd0dRFgKNuL8As%rr#{D6ZrMCJmZ?&5#z z)rG~(0JUd+$E;A7ns_9ALxCDRgTL^NlwGpkJX4r(btMkQ-)W%=H3pU`17H@#gEnEIk7Ero7ptM z0imj|P^PY=8JpgJV{=uomO-cI{B*UfqmJ*oKbw%f^IL&+sLXTdRn#D1(bt9ZWF7xN zyO&y-g0H7RN!M%}ACOimr_u~u2{>m2*r$hQq{Ub0Ydz<$ ze?!Ft5|(dkx4S|64ryPn3!Sv$EjT%MC9_dOPmzL?A&o)9TJT|d71dRD%7mnpoKNtU zb6xXhq%LmBWB@Iex5GCAQMV9+m6y1}xj`9cH4?;LbVREvSm^i6=4KvG@eiJgmMtc_ z@;_0rZ6>VjJH~TJtvTnUMf2T1Opc8PY=wBgbCE8tGq6m_D8pnFiX^rcvNsQ6ezhM> zF%;EHyAG^i=0E6J7rD2xpoJvJS2gAzaU>@`$TX=67Sh#P&QJkdiQElkK7HG`HOZHUNkPO;pN~WT(OheQ1cHBA1Gb~ zJ_6ze`4JXk@I~qK4Lq_2H7Jq56QtOzev&$?OE{umvG$eP()h&p@^m{RI{}{;a?;qj zRi;i;3D~cTs-)coFktNcscyjq-pU__NaRTUH&$C1v^=xs*mx2sHF9q%+vJzD0)w%w zf5wp7VD}7HAsfES0musjVUS_k{VA9vwZ?kbdX@DQuv%(eEbJe6gqo2GmYGbVsa-CI)n=kbaOZ`K}u&6)7Z=0K!lk$bPMg{D(;)&TPy|y1L~_PLc-Nh3TlMgEg2J;k%*!HBI|d z$Z4GZ26C)sA}H#Xye;d%w@3&NuJE1g^CTvo)k5;;89x*QRkB*& zYker)<#Uo^cO}s*;;JSPWV`mbRKZ1I&-0aWgUkn6v~lS9InY4@9o$Yi zy!xR!z@5tJuZqt75HwHisN`Ah4X3SFJBNhoY8t>Bs+|&Z?Nd}KhFaYoe(*6tz>_D$^ZV%j^zpi=$loQJczD)vYCZi0)*GkPh#=yftiji|yZ41rNr!NhYz7!6324$fxwk&9 zBnf`Hrb;_=z5{;TDx7uj7Nc4Y_l)pDo zvoF$t;Xq3lat*nWIg2JtOWmONRSU_v{ABc4>FLTG-tT)J7;|}#Fq?qTbf>Xp8Hq<9 zMC&KP;(Zu6IBNIUM*Tr)&S*-FKQLCfa7u$pL;4LT!>9SL;SjTR-G-|?H#8r733ygs z?l4X&t*GkW_pU?xq2RXVI1FBgSUVZ95t8hSckY#e5MGwNlGQfoXc(;c#G z5Et5~x0dX8E{7*{ev;~v#Tu)}=kH81X%xc&Mc+1b5hB@)upBxD04voXFV$lc4TpzWR`bE&Sjdgrw8 zQ1%rHvFBm%FnU+y=N{mu(M>riF%~1p>L13E@T-(*qPPnoMP(B)kFUizCZM%LVxVf| zUsX;mj?WSp*Qd4B`vbN$kbmtY2D29Zz#>ra@O_`9WiGktyVXS!jH5zXVm#!84tPoa zW%7;&*X}y{Et>r)B~(bIE#H@~z3af^v}B)ZSA%t7dX7~IQEjej(7L{-8rM?wI|t#U zl|_b5=E?hw^g;?9Qd6V{t2d^{3meUow}*CIny}8Yxy=9!&49 zfOqnfAvgh3`z%mVZG! z9U_(*82xpU##@~~2f?=C{3G3AK@6J&#DRF3A<+|nr?Fi3K9s8i{O=c%WllnL4noOw zw8ZAs2jBDW0B{U`+TrCM5f@8!4PFAzsxL1})B|Jn|r?y>ksB0Wc1AmJ~YB4O2cOGtwE zVExG@Ea*WPh7zArEn6_$@a38B<~f78qO8z|@p%_U7%~+wMwT@6-Rp4>kG@Bc2H~fm z=oFRiOtLiP^0$YP2cC~jd7#QesTcIM@^|4O?X|Ff+y>L7V_lb!lUI{jQADz|e&-cl zw(zhe$@=b}sbs5+PL-v7qcW{%r2a9>)oP8Sx0f{9_i!kdwDtHDHT5LWRnE_LIEeud z@7IjTNtxTE9$)~vJdn6s6&`ogB!n57iq8_?bA{)~mo~5Hy2EIwdd`OU_%q=HoZaY5Zn2VR&ak z(UJf=j#~MUl}}dE_ZpUbvJk?6fDRvPUC1UfpkREDwox9fFku`mv7J_s;{?B7`p5tJ zQFe`kcoA8wd^|n7OtlqY=xv)!N|zYL-pAGe!JY=*v+osIviKVYFUU$o4B>*?${ z4qy0Enl(KA;-rnbcrQ=TE|@)_79kJz+l$XWy6^kAt;w0ROaU^EaMTn=qUi5MUg4Rq z$N2n@3!7G?@n$%7E@yBZ$B90|(LA<3NF8e1ny`m}3%*3g#+K%EyT?{y_}y%h5&UaS&oWpT=d*M{t+wfbr6o8#(^0r&SOyJ+Kn%Wqs?SBJmPA+ zC>Rs|&G=_esT8iqPX2Trl}YsNGili)F=wh~#UC3PQJ>CLV?-*RxvD3h_Of5|%PMAi z6Q*<#k=E(z@$AUt5?aV3#?Tf-yQ%UjS@atk7MsNONHNtB76Pe!y^e>`Nn< zt%QO0D0_pBgv!RG)V#1jK`Sx6Iwdn*Ia5=slG78cXVDC%n?w#U{)K$LYr^M|IixaS zhc1quWX!{M>DLDW2Q}6fiRH4MHOwYQqzylAL4%Lt2rsi5DVF8r-qdk$RjsBvC6WLg zRc|~*99%!TPyGTGt8s@E_u_BUkl)^ZWGG-$ruxWxthVWWb^5mMeaW-sHJ^Gd9$8H2 z#W{xPSIB7!dZsxOOyDGF5rT?kheD@g;dTe!;h<~~@)V)lkh1R`*5-g`o*D;K=1U+T zA>sJ`^PrPhBEPqITT~KC*f!QuUG*e`NX-=;pCrt=HG)|#&34)*t+2Vl)?X_i4BQ?J zONOtEh7P-NFnkDkS0g){oA@j1J{kU^H$^=n@p^1Og9 zl{$I%r;zQ4Qr$@{yhn`pCX?`$oNl(tcbF2suaAV|i6cLM1zK7i>CJ0Q(Z=pz zGNI+t7X&mM|eG=M#6Uo}6zoPBOBbNO)xLIkxYLgGX8Y1pWf)UbY zy3+~jC(hyCc1xebZ4#!;rJ^iE#$b6zX-20}5e8%Rl;& zj2Umzrae>I;g;9C#*OM)cXRtPuWjz6^t(|#IKJBwz-!|?2KF*t4 z@HcyoRJy|I(bJrDO@Cee+A$hYj9%CO>5Weu+`^~*>H(XBOZnYh2^DpYI;&U&QRN!x zEm@Vq+b?*=6>eks8=@}v(|x0~Y*coYA&U4H+Xx;g`}3LMD8q4TOen55|5iT5VqW*} z%`#v8Yod5`_h{$ysE%=%EaKOxIQ8KHcZYnQg&}sC0nEkh!BKJ!C}a!|CmAT}>U+ z?sy_8eN;uKzm%Vo9xk79Vt_Lx;m(mtu42) zk%N&Jqi~sYi~i`UQuMx}nMeOa=21-NO?yRi)JmC2N?=^X*2MjG-16?KemV)ZquKti zt(qCDiD??dZ%RthvZ0|e1FQ?#PL!@0Z}G4t+D(3CCZdIs_7HYrYWh-|vC$c7X(1sMHO6+w#>Y7;xEMi4%&cCm_`=HyiK%ez^(ITfKPR+9o6Y(6r}&1y2AKQU zssWm|j#he(J}9ere;DBx$mG&4FZCYm(|5uj&A)Vx4Iu#R-(uYN!2R(&GC_m@U0<7^ z2cU7}97Ki=mio@7PHv`7bPk>X>Gf3R6V)ZQ9zJ7x-U1G7C1=vHIOQkw`^T64xf{R3 z@4W<-V7a)p2v+aKfvJ?gsguNoNT~2Hz7_oJoJuB>S_q-o%`cVK% zL*PR#DgGJO7-bnSG}!11Kvw|Q*?~X<{uKp4%~vz%DJb)QYqy)2ni;yI=krq z4~_1c>!xK5)5;5mY<2e74J3hZP11l`A`o;Zcu}uI)vG@^R@&?x0(=6=RfQi@iNj9BU{ z;WRQ80aZdqg5i4qT1-X8$Yvqd-_+mi5J7%9xRwp+0D@1s9NP>%GMf@*tp^z3|3N>< zO2DNIR)h=-W{v63-B>O28`r*buimwP{(U7rRZ6I$ZREt!^djj>R-#^0BK{^aE0NKh z0BcD-AwQqf#0!S1#4U~>BwYm6lX6InX~BY%*-Wf6pTx~=bAZX@+?xA7oL}S2j~}J zG}vomIM@{aoc*h3y_ECh&fPe=G#2%VLK<)?V=S(!4!>BJxuLGKh-m3+SCn+3+`9eW z$@qeK!c3GNp964POZM~;J^ZoAB5XgL33%NHxmjADjnmvAlK--tHui-aD{92AB^xi( z5B(Z}^uXv4nHOuRq~QoX(>c_f#8$=KJP<@UG9Bgi1PpQ6xp9}C1hg~0o%g*P%W{d} z=mb|LiseRlq+f*EB4leZ83OPZ6L1@Sz0+M<%gBHHZN6IQUlJ7`&o_eQf=IS?FNq6a zZP%CWXz>5lOcIlY>*DmH8|f?468-^(;|u+D1QGy5^fJbnv&@B72WMl)m}IhX`K=l3 zk`3Pm-~qbN(12?YV&I7Bg)wG9s{%1jW@WS6gW$;&0Ts##GvuP7H%vg~8l3n!2pJG@ zI5<5>Bb>@e(~i|w$yZR&jMvg(QdBZ57!gzh1Yy9;9{<;>`=766i1y-r3HDegEFiM7SP zH6avzb;X;KKNZ7(?})9 z96GKcsInQ$$FoNZMs~`UuUzP1XXipJ~6r;MCxmjJYKRenyZ&|aNIWyOS;obR- z_vy|&t9@=Q-N=IQR|+-vu_1=Z!>d@ z90xYu%R^3XbKtCx9$%!boP0CRlk#RB^>Nf_5AsaJ2U5AW8}%hf05{N5hSml-1+DVM z<_G20#`OL%ClMyQC!_Xp4$Z70Xh0S#tnxVsl}D!ap3Pq7e;SKVK?f@w!0!`=`CrCj zy?3#nnLCr95u2}`nXaCxuTt5f$e#)U(9wVz=yLG@=~C6TUS~l6wNir|;*U@!fu__h zl*fSW{q5p>t@Np>U^+RH#QuEv^KUgNcQRgR2xM}~>Ran^ruR%2U1K?=y_1>1x1y;V zdC^S@+f(&Y+}VxhZ)y+BDjVShH+fZ}bQkyGdrp!PzRjM^1~fko`uOXF-p}abzr$LM z2$YS4CvXehmVh9QAydl9fv-LHPM{n;=%iNe4I4NZgHc{5RktZ^F@M$wUJ0&}XbmSRaOHHuzFT#0=5`#Td|EXavzza<+;yn%AGX~PB!SmFW%PvA zkLKHV`(bvX_UN-rJ6tiH8}MdF##8xsT0+;VAQdjah=!0OdkV(K49A^ zLQ-lK8)@*EDqf2tkAjuNeeW)8m)3}p4%p)@??!Pd}BzSlfp;|&!8nqG;QZ-aU zg+duc>eV%22l~OrCgpX?Gh-D`)WJ#O8%V-iG6Sd+P+_kH`|az$p9%WUTW*d&UcN6y zQb8#F;Hqg=u$UfOe4SIWR)}8swgNRGf7)v$_T+PKhk#gs423U+y2wr?YR5B(wNF-8 z>Xgh3syRey?b#A?oCCQI zi0Xo?Nxkh1mg!FEpJPkB2ZTD3N2>(XdxN#J5q@}oObv>cOQ}>%TGKdD3AVFWz={bu z?CRRt_%iVlT#77XVg6`zu<&OBVwVHXVde#iXt)5RT+ne_U{Jw5*pO{b{DqY~by2w- z2_S(5=RE@f(wDVo8nQ$Af$ijbN=5Q=>q(kggCeX0ZpBJkDgk~yFvZ6pKuuiWpbYZ> zX!-v?2&mfsiz8gVj&q|nu;n$e&5!KXY4c@%(Sa5R@qwk z=YBqB9C3k;M{qb#xKUW;2l-l|mjn;Mzv;k*Wr)Jd@HmBQHuX4ZNQPec*Tc@Dew-Y; ziR_+X*7W@BMnXfM=9^xy(zU|DZN#Qc(ZdX1cK=(!@!hz!HFCFK zDO0|r;o@i^l!iN|Fy+{SZYy82-n_jp)87Y+AmJ<5)Z!%&TU|Zkn^nJKQDJi1f#2`^ zRuU`oMO22r+&^*#A<}!cDl1d_BO6p!!O?$NPdELHX+jCU4q9=k{H;@yJuh6sZakmg z4QaEy&_()W-zi?+g4#$(iWl!~bJ+W=7q4=1N z@~Ej?>m~w{k{TzK+-?}Iz5(3;Xlsgk)J+3JlbUg;0#0jJO*L>XM9VTeE{vhyV81w z4Zvs`I<36k9r&k za2p>_+N=Ary}?up^9mJjetxTmd1ay-SNnVlgqRnQrZ=`p=0^=DfCHBDATk|QN6RZJ zwS-`>7-xB~VX9XqaM4=fPNzaZ^zW`fsJvYEO66%}qX}7&W)|?z4ve3u8*}?({1Hc$ zwfPm&wX=l4pM#1Ql)JuVcxH8S$O@`Hg69K3)g2uX-40N zpfXZ3yI(L%IS}l$F<(?E(eC}-0{1_ZMp(=CEvTjPtIjaXjEP)n-1FOaVYO*mzdiWA zmVa(yd3Si`1by34#(hRbw}*RTG+p9`+qArJbZAlERpTVRWthZWjJg4;KY<-h?Z`K- zsLwoLt=J2Qg`HQnSo*|VubJ;{B%X90VtT>7IC#q^dQIJcbhd^SEV60Eul-ayT0(KO;}+U9NECP=J$;@yP{a0YI$0}VmuLVbfj zndRspC{kM&1Mw#34$@P}hgJU-6&2=L4za!>H7pLgmnR%*n2_Nz+)p1ql!ppW8jp?`Vem@Cv*x_91N`P4; z^ui8NvVupZYutofpa6P^@VW(8gq=*Mo!lzm53+)Tp^(v9t3^BGW&%jDnM*A+7)%9U z09(U?`5Y9(Z5FtVGNEJg@!x6EuTG?%Q2Xh%4->XAM$=Vu@E_lXCW3@@9OCaD--RrV zRE41-;7cecr8h**V^X^H9qQtz#fz)__x)`Cw1ZT?#795nl*+Te^fn?4tYRnoASi2b zj(Bq))~cm1V@#fG7lvk;*)|nh_TsskK3wPZU*0Opp=BE$iIQlM1;1RBRk%qm14?GA zHwi5|*%r|H8xGbc7$?G_TPAuz7Frv%q990VE*gnlwDV$Va>qBVmFasU;}m3Jv?G5^ zy^EvXIGP7}B*`Ul1uqXXfhv8Pk9?fwK%4HkIfp?pF-?G%xCZn%7*+uGLH%igJKs=S zj;Am>p`V*sECebiva;kE=6{};#$`QAWW@N&LMmY$gFQS?iaGzYCX^V3XSQLvo zr2$}^faRTopaUd7!ilW7d&!oeB+ZO+|=9FGM z#72`MfGNty7cX!0L0CwJBz035mrqV?t`#^R)Rv{E(lKbOidW$lyk_#wccJfgF)_+H zI!J(xI7|d1&9xW|S{FGAZfx zYqn}2-Gi(uJ6gk!4ah;~>n^3a4S zA&D#Ck0Sl#XK0g(k^<&2@-}c71mnSl979!wch=!yo*bqfErkfUyzbG4_Cj_Kt z;I4#h_=SXTuUbLI6u5i>cxqaJn&DmOWquulnDysnn$!Gx1<4Oss=T?kQ|*y&JUdPV zP30^znf0i=R#+Y9J3m{$-OTOIe>M0W@w##ykW48DF@>Ay5uMFG`=RMiJ%_eUMqeu| z-uf|$_vK(FkA%hD_;KV9`aIQOai{cY+R}a0j#j3fYZ#kqW)eV|X)YS`QxuM&sm&~Z zie=t=Tp0udQF7%R^SBR!llAr)T2lNGYSVZ9Z%m?3@QN2Dl*nO%GOVIF#Z z`n2g{H;h$hRv(>wJpX(0W-&zLX3Sm*Yle9TGz1a2Gmt;!_~y3*1#JI)N487*9o&!W zd|U?x7|euQKL7>pB7bLmv+M(IMYfB6LL`ymyn5c6mWd9fy?Ua3ams#9lXbsx7J%ad zC{B_5E=_^^NK>M`^`ZcJZ`r)4(+yEJ4F^0XYM3J}?`Z#@aKcgz*l;LmoZ>MPcN-=& zGqUC)npfE5jm{T@PLJm^@!6UktecArNw)?zxUQ4l`n2b*_oI)D=l!FUDA{Z*B^;8b z6soiWB?seFw$h|yCcdZ6m<6io(&ZBjn{B`Jh%sxjMioBVc!>`At`~b1D4o;+gM%L$ zAsLZ*jQ#RO60e0SG=koyK7;5_nS%XFBG94hFt@A|^TUZb>$Sh4;npsdrmEkg|q)P6yFLvf#%dV+&|i#7 zQcgoMb6Czbza;8VV{@9e)iXwccVn&Tx0!aH-4Eu}pgmd^n3VjPGJd41EsINYec!6z zkNl?kP|4RI{)IqtD+mE#=c@-S4J`IP0S6==J??}vctnZu%F#Q41tcVyu@IX5Cvz8uF)VYG{7C*)Neu1M-*Qmv=ycoMsS0!1h-f z@UFF{An3|O-Lo}Fy=}qc@3~*bBjSJUdQ}oUK?ol}k@EkIvWv0l-qgeJO-ucYFIh8w z=AL6i=o$%7zz2`{AB^4A#?F=r^J$)Tt_#?Pij(=(>Pk2>z=i}O{1wPD@I1~v>5=Lf zP&SG}-$5_FpM7%iXxXgMVc!DqwaS?knV|yArXvU*fGz=R6gmnUMJ$Dht`C?&buy$q zm(s}0?;U0NdbiLQfkOaSf46&^L&%|8R%>sr*$V;Ncn>bP^%BfBRI^w5(FKNh$nWY9$7MideRLFmvgUiGwoKyV~yp9+|9( zyb)Qd$RlIvSevnaC^9bUjHe>cN14pdTj0-jwa6C%&>(PGEyQrrYzJmZ=z{N%F!C7O zRf9sB*I1IU*1w}fVPP~P?nSz$4ms(a%|7q{&McJR_IxxsesvW+#XEz~lYDDX+mDoj z)m04kD(iB=EeM((tB<4$_~FM2hg>Q5Ffp|M*EhRWpvA@9)#d(3m#?##4*XV;}?tgma|r|Zw(_chf$TOJ-ynR9blAC4}yTs-Z;3lsLorlZ2z$k=L$KCph(| z;Vm$zDc*f$+k*1w^fu{o^M_VJFq!|P7kS<&2Bg`8PHl#2g|N`g4xNu_f}QRZTuP#c z*Te1f15J1H=l<@sxf|F^pkHGApuo~s9cD~;u%7LM1-&q8tB61J@D)xRywuxd)uK|mSZg?Pf^!M~~*qwhHx!%2~ z*O=jaHAa*y;=|%*AoOHPOS8ThV(#Bt%viyvgl>_et6oAi^>Xm?*3=EVh}hv!?32st zGGBbxL)avBb3e&NZVhYXBod`Y*Pgs8{AyofscWvLY)~#4RO`Cta)J%BRCt)0U&Hf* zW^G;4A)HR^Sou>Te!P|S`FZ-_ayUHnxIDAMHa+{9wce~XwY-Lqiem$9Q8N!B6^;>B zfOrdRe}S_FJa_>7j3wYSHSzF;p%-qia3{{b_xmMEL5+x4H1GMDmMYS!lx*{=UHG5ivU^<)o#t zky?Ew;e(LLm)XtP)Ks!)>XC|V5b22x&Pt$0a{plUiSa{ia;PIj%b`6R#fIRoVpGY3%gE9HY>p zih`uVLLnuJ$zW*09~i+wRZeMe#}b7jsn`I2AxA}~0ei|W<$GXX4CXesCGjUdrVo<> zWdr~Q4I6eV#6NI0)zqZq9BnlXo#a&1A(a#@%@mCkty-;W*pU(dv}kWJem)@n{XNr& z6t7x?F6^#w@Ze&x6FrxT#FMvH=ck>OWIieuK#&@rp^45TGfL^d4#el`Cr~t7hM|y< zPS8pkl$PT7nllAFe{&>C~&pdPXF-HM8Bn zF>HVluHI`AATLQoQzH;wv!vYhYXb(MPMCR~`)5~A66*`L!qYnu#nd;`y#!uJ@^fb_ zOP&PeduUvb@SgRDVIj(#^2bYIRgMoqyY5PNch#(!=XKepb(OEhCfytGY_0SW7OXzp zUoNmQT$!C5{Xbz#6XeNaf95QtM-P$R3_NMNsMQs987h89iO=B;0ZDSU4D&t=l|&$% zP`Wbbs#W6q^`@`mIB*nN$-=f5inCt&Ci0=V2HpQME%)t@qN_NaU4!XyR<<#mtwJ@^ zHkFY(%!p0u3h8rLVWllfw>+dWQQ-a4os!Y#7imGO3x(1zVmYYZLJHO|1S4rjyAcDP zx*Ps<-R`tvxez-tc1_VE41Dr$lvos;n|9$f)akOg=4d{k!S8IyckVNG1^>7SI_t?=cQ z|AM`t3netyFC`|jep6Lo)mlEvCL*R{-2Ng1bTiYm*Z)UF)GV_Cuo{Y*2W-0*m<0}2 z(Y5~rggs|!YTv<8!A};kfHHFPRtaRKnC)do6ij2Xbq*J!-IfvMpU<3#Q{w(p^gHLy zGmpG{>^xJ6V)>CH6TW2ICR(Bf<;Joy6RHQT!zrf}xZ25e~K)$zD9ec(Z z495z<6x-jiV8OpK(>P5!T_omWyhXsb#miKp=3!T_Y}Sci2t|XA1}UV-F_8(zmKyyS zpHrCeHsu>?}9IBSescVtX0*;b={tkIoL_RivPsmL~XQ7CBGcs;HY-2&_+nLK1D3&IQxaG z63$PS!5dJAw-|C;Kr7Nw3*P8Tvs{k4S-x`IoN*Mj>=waj!E1>OIkC29xYiIN(KjzA zmO{I%rRotyC_Ha@u*L9$u$$h!MT>fq*j=YrXE$ry^g?L!9#jP?KzhZZKlsdHun9fS}w@Oxt+MQ&w4}O0?&#k~tp(UilWxA(0 zoo_Ttg+AV=8|RlddB^r5{~}!)qzTJ+#Evcfm&Tdc|LJ)lU$E@gC)-JX*L6N|N{{$3r2x2a$^Ge-oER3-`y4WVQ$Jhb^oy9DjdrbC+%$ zV#X~m@8rO<(UfnzoBK-Oe`o8)Sgpw8Z^wzfRuV%-cTqQ<6BNR%7afwnOo2zbdIQ}lL zy<}f^9UyqwJFSepJ|L-2Tf7N5E7V27J`|onC{4Ueg&)DD0vJLQ`i}F(}R~Rm;YO2SGND9jJ3+7-=^(Pmg>Qx3Y%r}lkCJ7@t zSa~yn- zZ148F7JfJ1XkNlJmRi5@Y-8Oo!c(+PBl9Y5xG=j(&xsbU`%3426yD~Uiu`gI+3}T+K6piYx|I& z-D{1RKmM}=aixI;Gkmy!jj>Wz;##>(bk@7?w+*gQ`4d#N_v9Zu?x7==SBXvCx()-tzv^b+RuXrcBGvzfT|BqRV^v6L)>W)zJC4ln*e4rbNAlQ6n*1UW2BTr}wT#goy_Bpc5MqpEZ$%;tIwOvd zKa`~sSc$Bd1XP!c-HB=_ORG0Kmfp2GAVz94Qc6Bk^jdtDZF8QvK1GH1y>l8~`***4 z^2fkdys z)bV0Of|s$Gm9H`l!-bOgU@Ol1SA_K8|%dB`dct z42@ZtxIQGmChWLBAoIsq(dP8}>Be9ARaI>(gJI*s;G^w@u3^)u!S~$z3&b^gDC__! z0N5y_gM5~pK`^I;kej!gq6t{XK*8ynpH8an@DC$(ZrJ=Q^*o|)(g;F3_(X#af>2_D zUda!7nEaRo6N}p9h?4M}etCjMk~Um^ikh-Kl71A()udcjkfM>83rq(uNMfn#J@N;v z=6dAfjY6Iu9*`HmSXuO|_Q6ZgP)JNk&r!@t%hAxy`L(jPi_9?AFsVUVC59A}iRdd@ z0daPGne!vc%92z7Mv6>Aii{aAoIt z7xef$vngajLnBx*1!+20E}4Z}{tg0> z2+NU##obP&S#{NCi9w02!h4jHso(v|b9%1qU!I=Kyq^!(k6FQdiTWbeB_o6n%jU9n zkVt4g1lVydWAmI^38(jJZyUAq5`3Rd`DwcHjt>Zxyv z5tbJmGhUYM$1xRr?s9A974JPrTrTGa@kL{nU;h_zZy8nBwrmTpg}b}EySpX?cbDMq z5ZpbuyORLHf-DFSEVxT>ch}$&9~TN& z-GiX2@1a>kY;V2<%gZMx<&s%nMUZV^zwb z@5$(VFYKp((6<-&M+dfIEiq(V%BaFsbPFM~ zE7x51ESu);It;OeiKy}@B=~YVz9 zdYj=ynh9LRaTqmcph2@Xzt_g;<=<&BJM$D3;`j8qIDL|7^6K-Ksb--bfySuN!nzG7B6EJ!&PmH5VC>n? zoZYRwdfA#Z#39|)KDz3mU^V-O!=FYHVP|a<&NpFmlvm|Nk#O`6{G@qxS>*#0!Ar^r zP48cgb{?x12v7+=*+<8Gp=!CpWQ|UwE%R1|U6nD=xaWq7l2jM9dCA}Vv2jm$$5yN& zn>m-b-3}lnehK94QzpQa?|>s=#FSV!DxTl&CLFJeD?G$7nScu6?W=6@)b(D&)V7bY z3QxENcyySjFWMme5Kxk7|4!yb8~~xN*9TMgg-M}TJ@YzbF5{;k7^o%`z8p@ri3o}R zAvp$ds0*)4s<%$!?wdToJvy>R=Lm*f4q|YbFaO72TdnuptHafc>(5icELu`F>FZTL zokfhf*Lb=PMo>JPc17X^7HeE|ky|w-5j_Opi;+_(Zj1w{qBK$W*C>p_RImOh3ENaw*p$E*~Fn4^!Gvk?U zpczfT+XBlb-$7QBJ3`E0M%tUQ)*Yr^JB7Jboi+HxQ;oC9*(f&6g)v0dlWagr@8@ zASFWRW_pr^5+TByC+Coxckdn&cSZj!+8gl6TQfya>6{eCg0Sc11X-{oqI_j9LN{JO zcKNwXko}#HWm@x#&)w}$Ng}q(asK7<bIyEoQIZhDeK@;n8q9<< zl1Ax|ox|E(bI!P0ggF*Z6SagV&(M`tIUuq^IMpE@v&7$C@s@ZumOQAgPm8!J+?kG? zH89Efh&CpAEz=-VQn&jLox`@tUI>ISW;Wsc;6!~CAIs8$RN{2zVk}j@YHYukCPI!^ zyMu<+FYl}xtHf}BD~cOw-`>M~r@M8CFY`@!t_q}OSh`>-_ozbr>UgIYGREY%c5%f; z_s*MX(k-BzLa=Q%Mcpr){NSs;HNehV#K%KN?99p(=CoxHwLbG0f$*xO z@(Fr2P&v6hpgD*zl|z^GU3YItfdif!bU^F78lL?Z;1<$W%mH-V8}Nut2T=0zQ{|32 z!8`F2W1_b};+hml3aAZ4HZym!bM&$|cX(%LZI)aDOiH$cKuH#ZU`l=_LIC+f+^t<49YAAH?_fc(C>@ZX4(u2R4Fw9VV^k|JxS`Nn(iswQ%S@v$ zaPTmu+@!ZyMyG6$`rKR!h9D9;^L(K!HA_=J`6s_R?a{f7{H$eCCR0ECC;f^K%1Na8 zIlrWh-s+~E{Rek0@%#GcKtrHBVNr;F;QDQc{xX+q>Hw~|euLA1E+S&AY( z+TGfM%_+@}u5i&5AJA~MTog^5YbB&@oMkc#gG>YWwx@(F$TeZa$q6hPTp$LrRl${v5(u@Glv4C$18hnp$F=L&jp2d zsUE@euk@7CdV(QxBdfk7hv3c7+H!`w*izw`^;wo`+UPnfoSJfHF?DbE6sqWFrKD!* zbMVK@xVwl>H4Y+XAk#$Gz{yy-&;!IxoSkh{A|WQI+O{8C>qoBk2N88%zc#_Pv&Swd z37RSXxGSGGUfDC!+sp068qu>2#RK^^K}gv{#|C|%YsYRZd9AigiDlEtGW3(R(OkbW zC2We%Aj!9ngWUJn**sAuGBZh&MXl2*cRibTm79-3$f0kEp{ereU0@Vhwx+WmGv$mg z@D+0h1NcUP@bTI^ThM`K;O{r&6JlP}1nc;_@#3pvqG)Y%-qXdlvpM;(a(WvB`PbQj zj7}D;pEaZ=rom%qd7&=#H0V6?kUU-^tMvS>oPQz79u&L>5lU-0tO3l>9idIf?yO2hXTb$3QSPW@)rF+pF6}DzWFmJl~eKL)U`* zyA@Bdcl=BYF485ixel4x_7`8x*66;cwKLDTj&;idfENn+Y#W#f?#qIOzrueDf1xk| zNKm2Z!ISnqxj#_^zf7o!0AdjpJblT_uq*z#=ZtXcsD*|_=dzxh4J5m1Lka&|vuw*} z%;7);t1P{?)QZ_sY~xfSeclOB(~P9{FU>LvO_W&D{szq<&>r0>`;FG>8kjW&Xrw_D zwJ84eT7BSIdzTpiP6fgdY|{QOulxcw{AE&1;8lXs@#+i>Ib;9FNRF8~(~_iLCOy`p zy8X>0zw(W2&(-S@l(jmxbe*Rfhg>dKAwX6&LfF5Uv`l$4G{&i`_~1=$+|}EJ$ya7JjPZmgvQU)o;oR zajUtZPtV|jfYr0Qh#e|p%c_O_@oz@;29*X}Ysgf4cFuvxf&T9y3Us>>#k@>;_XSnk!m@Eg+~ zwvU%bs);f@SUL0dF=2-g4RD3kBy_@tJB*+#$6w{9tZ-6|FUBo&Cuzqvw__?$TDsOPA( z{JdA-2~}PTd({{g5E=ph?q56+ZrSiPs=TwDbN&N2F$sM*jlaM%7NBhqseB9aR~O=s z&-14v^e>{zJ_`qRv>XPIlM*Uug(7dp{!fmO5W*4Jfet#71wTRqQ2t-t$km@@&I}P77{EyfP#HUydi(Wv;n>zf{ zsX26GJj)dyf)i>Qo4{PVU%uc@_Umeot#;r90tm37vH#|egtBgr=`!CduzE zx)t?xjuL8P;g71RPGLoHUJP$V{}x%~R#hEVb-h5W#FD+r!E|-ONOn>E@WIp#E4cIG zJGFP5S88o-vgG^-jaKcr1?wOAZwmsTs7i8g6Bq)KN!Aub$?KNTL<-H6q7R-dT9eJgtj#GleCjEbFvZC6S}~gC4HGSf^}pj zKS48?oE>>kmZfQAj7BFr!lbAH$1ut`IHKUj%rL|nOrNzpT*!7WkX(tjtlJjcQ`$rU`a_!j3hCd0%sD-CX0F)EHSj#I5?SiyWF?otnkb0$GI8sqE`aZa!(H38z-NoL+#a4>5oX%*?TXDNUmNEyJ)1k>* z@qwM$(;DMNInE&kK%RllGim&*OK@YRSZFuVX@ntgcwt|Z#l8=jDs^A$H zkkf-${x3nlMcMp9^3k#3c^&TptS=yP;Q!2+4>+VleK`R}f$3Y>Biel8jwXTa(mU;E z^vNgFqjF1YY2zIS?_#gzp7a6DDafDKAp&3hH=68ypU+9iId&$oUfPUO)@}T)@pz%y zO)?`sHeh=frSu;S4WE0>cq3e;-mczsQ5kh!)$NF@E{_NW_&`!AL*S%gSgimdiz z8nQg2opPYFpBgWr06IjF;0s~@?KlW-{=vp(=I2AV8*9nYlV+Bm=H-p54_KlgShg)` zD0mtx+|reFboJeN7RaM<_v^(c!ic;pD5cPH`ri=;li9QP#ic+0=nW+2>}jH<56h#G|4~{b~%qDOo5h|uaJxaG{#D%xWlW3q)$d6Uum}3p1?ff?{ox%(pWKt1%f&q zuWt(u!vzv7{w5zKLt9qQ;~2{w z@@{NG+hu&J&ep(&% zy?MLxEDW*MgZht2ekC=h!ABIC&*)*WBM^bUHfJZ*LRy`Z>TmIK%nRM8AV-_0KzHw{ zlq9TLbhXHg2q^VL(*5Uf2}i9$!oZyOfL{vO_a5=J8{^2!sDBF>T0_SEAHsz#`=sB0 ztjk4rvVW}NG`Q3Mjl&Heokj6vj?mz^&gWXOISOjmN6%Yvmi6L@{ zmuy&2z(#@{gwLZ^ryfirj^x@=N1nsr>|jFeg@$Y!_}SnWmawHyV58GQq|Y%1K;#J( ze+mRwpn9YAS=JJ1aKkLuXy0K!dtpkB=bjv_)VGU0pS4H2*#f^sqsZ;S2ae!_|7$wH z>gDJN;(7@Df5kZ1*g1H)cumZ?IQe z*f>ntEi8=9%*^;qE!eoZ*tkth`OT8g&2VcIS5QF-=mbDeAO!fw2G%$lXp|-$3gpXF ziv%hWK%@Xo7#QJz!rfxAK)lgx2%xI;EqG8x5h)M^QH+lO;;%7=1WncB0fTmU^-h6- zV3~|R%K8cjux})=B%NL-qLnyTX_XutjVLZpq5-_86E$c0!cbIfgI2u3uRpXr+$x^y zTqkTw0KoQxl&wblFI|%fMmpIUg|YF`Q6`|Omv!cWcWPuaKhn(_3(Reg#hjEdx8M0D zOT=;bO8W~Exh@0;;v|QwD!w*x9H&_>Jg@MK-u8Jnh2QDf{wqUuYH$Ag!38AQ;d{$x zu5Ce5jl4F012Rh!zz07Xb%Q?{ixzKbB(qzYKNvZUy{F!~;l5r4lD>wFbm|wbdqoJqLW^zTCR8AJ@gG^*SZ39@ zZ<21sD^Lb2HK>j_c^u|c&D^x&z;`H~ zI<8MH^X(l>a{($Lh_yB$gEqmT+A{1L=M{YRO3FBFv@#>jw7LHfxM| zvL%N(B!D{%CKfD(^Vh@vrl9;kpnd*X3TJWV)O_6A1cg|C*O8aHo?`tbnI4olLxY&0Z!fv$&M#o-O3SN2vUXDKd^}`&`nQO<#?8!bZ z&{lti$ls-K9xJ(77r!vcnGGollHi05+FhWoDu`*m1&eJY=4++ts^?_p!%nU{G%B2! zen08^ARI6|P3TIx@W`S^q$8P=jViCd_2s&1YGi3C#Jr!4dMrHD5C=DZe1axzA--dKw>y3(<5M* z#jj91w9NXUx4j{#MqTO$)^~gGB7P+L-Vw_h^MnbgW=87#U%J-uEdP}(Gj0Ncp%vT4 zCqFS;@7)F00h?q*S-EJ;DK&AMYJ1Ek&)X*DZxNZtlP0$w$Cy=FdEu2j)E}Te9{24; zxk*%xpqkbh3}wcO2IP6{vf$R$jRg0kq!dkWZmQQHwh9MS`6gUzJ1%*F=312G;}$?Z z_t<7TzxgwN(r3t!V>Yr~xP1+&co1J}U0k%v*?nhwimoiAW5+$+CN4g58FHk)dunT} zo^vt%mh?eH^J2i}ck%!2bpE!dt>G$!-SVEOn1HO`HwtKHADDYiW;fQ0-Fs=PD1@ivvSDq~d!`C-2e|(!v1A3vrV_bexfIy6NFyek_|S{II1XleS77up^X>MnjC41b>sg%V);eke2(w6kJlhZQk;d96}^ zvC4RU{inv(_|Lr08KESFr=^U~FLQ=wdo0Z+*maA4$ktQT2>N=CzkK&|PBh;2Fs#a` zoF@f}+^_=LNfK=j!B^#hcbDv5{vcP0xqmMl6IllTK$)W}&z6M89MJ%P@wOuvD%5wCAW#IaTmaKmaUc@T2Zy1{VDi@+#uj zbL}dQO&8@{aG@6q`b%gaDK$9BQYU_87~1Vj zo^1!QaG6{kE)*e9`Lmc!9eD&>bXr;=Q2J%tEbb_~ir-!bOy!P}KgEuje~fHQ!tYsF zW}F|*K>s7%cKQHU(fqAHaZ*zzp%Y_BeC!Q9V+Izl^N? zgR7H_i448Aj%qB!55*o5TAq?Ui?LQgYzNpUVhikNkU?|7DXzJK)&b42l_QO}E4$I;_-D zdH0a%ja3(3)T7^&toEApI{Iyc@v&PINc3P9c1ANy7whbIb`4r_KJ$Fq2Kmz*58u}J zFlnu@_EOz%u>dOG#aHb^1xA9qcY-}&g%yeQ9P2M+S(>oM ztLX2-6M}iUu)B$@7_o#J{dfwhuyxLS)&-V-{_iT8+$OKUD{{qbRxQ_Gi2CS5N9t0E zVD>Kt09YGDhP^vFLyO$QgPF_C`efBHxv==1<3)%%prDl>)g}ep(Gl!l9uV3%18-zF z0NhS{=5f36HQQ z>TgwNzKN+#uNz2X%Z2v-lUgI)t6i)0 zuDUmc+}X?#JIK_gszg3T##L6jkgs%SY4;hyc~I#zu6nkyKZJ9I@N7KZV=lCSv0E0Kr^VR zy+QoO7gEBg9X6Y4R`=jy3|1Zy671j=5%O;2BoTRbbJf2peY17go1S}qFgmU`$Kf0p za|#Rr^Fgu)_!6BZDhHxPYDaXB_C-%onQ-b?-Z{G6b-jNdvd8I^-TY0P9dPbj3> zzYZw3u-nE&A0vj$V(02)Yvh3fcRi>ipZS=s;8+Lm!vXrG7IQ6e*yQ#DivK|%joMooMO&t|(DXOjCmkp8#w+6_}8xG`qo(lQZr{v@alf>ea;U z6!CEv=OYfV0jpRMXRp?%KC4wl*~XPwi40S_;?j)yS)xE9cX02%m*!=QH-zz%NsjLu zHqy`178fM$#yL0pil1?A(CaoK21|Ev>9N4I8f4kXpimco^1`beozBO>P6`r0cU0iJ zf3t|1tc5@H`JJ8jf-g>AoA0=uweN+>GYF@Xy>huo2I1@C%zT2?d3@MoZc_KRxfn4* zZ>z#AJpA)=pKAmL{KXW)Qhvbz5j+Oxo=?MvYU4Ms4>|vR`ujn#t1+-*fT&=g+j6^P zW<|e}{YZulP~Q|JvdQxQwTd27th>6w^Hyd6fh&~t4osL7IFpzIvR*8o?8t%M*aItUUFhJqLtDBh%+45S^a1!=TOcH$5M*2J`(vQo=k z7j`aM-c66GlK?QVLyP|>{I&Y7L(fTkvs5O_%jt%9W%c0Y>@>s31OSCVUDiw8i8sc(t(tr`rg9Ffo7ANo(CVm05LMMU0@-Y^PJt=oMqZA-Zu&( zuOkm234m(NcAyb@#m5D8ZjWJ5b5DRy{Rkt6MSAX zZ!dk3YJ?u%q1_aQ9m~L_s8ATB1JW~c@2x+pO&^k8Q)=%m`ls5fj`LPYXr}2T{8`o@ zxOc9&3_dgzo%J}h8iB#usYXX}US5h3oNgP~WU5kV^*u4B zc$M4e$i`l7;F%%6j%;?KEsYX6#BHjf>uc4*Uon8-jfsYYG<1WYMzz1Kj%OfZFMIuK7NZbN4)H z21(;O^XsA}irCHR94?_KULQ7Sb|4@FmO$Pv9{eE$dpJ{lLLjDgT}o6f07U7KJO3|& z_b8y6<+xh#$32?kr;?MIGNn1qoNPouzoE#CeF&H=-7-8q!q@4!DcL>f9&-VpMu2Jo zcjRdQilfT+?laGunEVX4D8mIJOy8yDW$0y@SyprU>q4ACJlRxR+dg(C z$)*dIAo_gm}1uIwkOHKsClcL zHlR0$j^+p$$nck?Rqtns-z@YVeGO$9)V?pa*Wu0f>DbZ(BvK+;eE`4czu}ntPt>m8 z&7Qv>h{9*m+vQuE)s6=yhk`%*$hluB3U;+Z=t%y_DUm*C+qzC3f5@z1U7NxH>AQ7c zC2z;K0D>U+Q_p~bY2Z8o7I%8@7ku$bZ!40toQAPhTHf6ZJ-??*#94EGmrIJ522gv0 zpz@yxl1f}pbA64Y`JU&ilmd{?Tyy}c?2i0@oqEM>is#2a-euc~9>DPh5V1R_)Cm{uENWrab;SnP62d+Z|0N4#l&FDDJ~k_#jQNX+7;hZW62=QqC^^ z;^kGUe_(Zzc6(OI%(=*a;pt@*)aZUIM-Pw44d>taqaeP|TOOqw1e#dk9nr~uv6#&9 zP5jXwSYptaJJgtCI4Iu1-Jwad!qUPy zN-f60w%pz8wcIV%xW8}I zjMnuVGpw14d(DLnNaH|=u?hy07Hut%vW$e-Uy}fkWFS6+|Mb@o?~jVCYG6V5g{N=a zmxNq@g#C@Mg~~Mtc1JIu(icgf2+W-Q|Gh5$yqzv#@+6>XH@^Y%amF~$x%>H`{Zda` z%@pX%NjX*ve(vxeH{t!&somX_{q-ThXYI&{C@U*n=iitm24w>&6K4|{nM4?M%{St0 zV68k#QPy^*hEIH)qDlssfKmct>}{YT_}Vz6jP(K1za57^!vo~aUQxBRFv`*3N#v zHR83Ey$Yo%*};RfbNUP6lsCEXrv~Co7=0dcpWZ#}RP;xwN+ZkmoPBDUQt>)*%>muD z38$1#GTjQXc22V=3Cs3E-G&sy?$WAgCFw;?w2{Y@b{T8SSS3lTBWOeqgihw*z%kBA zHA$|(JQa)`h~dic*bF|gFEh8o#Rbjv&sE_?U6;g_NPKY&JaU>Ptoxd!VVmz2%Gq!h1) zCF4!cn8Q~lirh<-gXO{0@}zna%<-1o)$8r_aJqo7he{8(UFc$ma7&qf%REMiG8>uN2`%evhr7*bn zj!(P&RpriQ>;;%A28{n-RzJ3Qapm!kU(I@b^@X!46 zSF`)Bo^z96cyEC7)PCWxC`T(av^~dz{gp~ldUAfwsFMh@dmRn0()wqau7KN}E8*;t zX?he5+$^mmouuTfA}!^?ALUyI&lLwbXQQ7R6jv%eZjx#l_J}^!{gsx=)mnQA1)xiJ zZ?g?wocJF@36@GkK|oPQKg$qsvSK}JldX?1&26Ld@iA4;nilBwu)0s>j49pB2zp)7G+lOk^ICdWOPt-V_ zd(yP^oG0&Sw6n{Rvz&@2wI*pkp>uhMvBh+ys(cnQpwn`phiSg(iVQd6`aXVZ0GYV5 zFty-Qb^V;b=W$2kKYsaKz2h-@^w~-)Sx%JI7lbUx{2zzbT_!!m>aqBz1g#IvO6Lgx!nQ^J)1$EAO7Z z>^p;E(@>J7s;NKY*d1RyGmNy7I?I$#5O?dl-@LVj`Z>Nd@8M}nROEj2@s{>XmDu9u zWcDicZsGeD!2*=Oo0_hE%e=b0oNw{8Km`4)`H}CENP~X-?c-Oqr%d%V2vuD$_LW75`g$U7idzH6&+|%Z< zwoAo2{rddl2PNm+jVllDnG>_x>ao7y`{cOur@~L{Jvf_Neo*V3l!+T4^!csN>0NZk!|7H(iSN`>zxU1z?rn5GY@TWr zPPJ;T@y`C2@%Fns{R2w;r3;${9XUF|*9PuUJn|ruYWo=Fr*j7nKf=4^)g;G~2wGE{2vb@LF*XQ>AsD^WTN|`t2hx(EJ z?y@-6bYnV_kjUBdIvJ~9R3&em_i$RyOtWY1r?*CjuY1)pd+6d09u8e^R--n=!{6Bx z>bZu?&)T=pB8v1cF61nAFDP3~b&+`RN~J!0InTTq((iW^O+1ygYO50nvov)X# zr1?IO$%O)vdCNK$m$*3;-Y#8uzhhN9o3^;`?g@+WeZKySP6_^;N5O%SV(^x8l#2BSD1u@r&;l+Ws;PsR4h~($Z+)B|S3!;GVmZvOxjtNfTwIdAuW@Fxbx*!{M}vd7jYS&9^4)!r#O46& zNl5T~>?7L#$m=ArYys1Y!R-dwaT>ieNUH5Vo*-?pY*HAP$M-l_4Y_$Lg4s!uuD!JF z4puQ_Tr%Iay+iwWf*JTK8h0hvFMfWU-D#iy8q+`T0_Mpamb zw9W_PF8z|SCCsnAU4!(MgF`{AxSv+AQv?}+W_+L9iTy)d1a`C+;F`2x6rhU)I_P@R zB+7-t$0#%>`d!E~vIfzXTtqNWRqzeo`>D)Y_~z@hhPFrp zTVs`3B}>ig@g`_k)e|EJ$}ln4+bKakae|EgAY6Yu8)nD4$}$pTEI_8c3z6{wAsh_RD(5zxd2aw z6=sMmJYj5(XB4uB-ue<3(detehjx$$A&1u4Du~Qq=>bOzz$YdPYT62XUXcK}MZ6Nj zNm!bDS-w6&ns6@;ey>4H?T*OS1Xtp|*t{D?!lXV*VPhper4O>pHJdftU%2{#^NNTB zXMBoEgcD;^Cp>zz5(X2v3s(4t%6P~j5-j5pWbzd`JP)$0KBIX;tZ!0QF>ZnJ%;CGP(zsiZ06A2>#2jKfxNRxG zhM5HWbVF!gfzbvT17u&e@;k1nH|i;GIK-rGqaq$1sEU~1BcQ?1QDm4y3hzguK_0SW z#F&>bj7?Sn?xHdwNPS2H?1gSU0|!;`98X^}ngprG5=10IEkl z!^0u3(a$RqI>f-GBu>Pkn*anLuyPbnOtlaYO+#}F6UKk2lrfR(h2%>-2W#!~bK$qs zAZnG8^q#GAAi4V?eo1PaNf_|uHIh4emqAn-)T3WyFOM^trGutC>~aW`h@RAq`o-fi z16j4hvDG54P2f4xXXCS24HrW6b*Bko0&Yr(9q!SnOFR{RLLHO4+%U8+^@`FQIVf4! zebu5tnsi)t$c}(-eyq?TRdFyN`l*$$W$!|)O;RAfnaH>1qr8!pxVcHAV#f94w19wL~Qg(47m_@lN zN`%aC4C@T+Tg1KuIH^?jI9SuKEn~J2S%m{M#QBo z{n|k6cn%k&yh8I8sfIF;rkL9~)=H9r@?&UY(e^sUvG(TyfIr8XGW4$9Evntc)_Gsv z#bdx;yuQgdSljR*6yUtFb%EuZkb=aCuT6q-u0JF3)#Eh|se* zarhhq2C2^(+?EdxBnGD=frf<$vI!;q4?2zRuAvAfpEQYf!;poya&zTm!f7S{j z5RRK-*u~U4VX6#{|7hILn~^qC9$B7=uq%oz4AUrx(Yd#lx?&o~Yimn%k2bD9FCdD$ZR_r$cs&a(O!AWX%_q|c z)}4t$8YCTVm>}@=o$FjCRD|EMfJ0*qHDUuyJ+CE|O5@77UVkK| zPacT3)$WIEnKdY}dJLU#GCb<t-~a#umm4ER`9<2~fcKNba14eD61Svz==+{j)nB{d1P-<#%( ztiG&t-1J4X?}4=X&-~8fNjk3lI-dJF9-r3&Ht)7bU-r*M^Iqb3{g1W`1CTBU-Ra?m zkbNZH1dH!;P6LbxKT<3Rn&6-VZ6U1i^3uG!sM6{oEgo++K8%rU@Yiydz-&Ejw(ovwDx$Vflar~Jcb}kF{3^w9)@1y9Q zrD0QXEJAH~5Lpf8A@mzhZ@Afz+tQStX=VlDFPu)vtoZMjAR}qh{W^OfA~P~Jvz3VdEcy^h_(dJ(}``^Tq#7YgJx`v zirEORV0y#NC8zaqzN1Fv~C%JVJf3Db*8Y==wN z6y$_JI!(*~qypb9v;g^%hQY&-Tfs=DngYQUsG`2f`i`cEa~8QJLcf%&tM0uJX@Lzy zg1*FC==Fp?yhtI!mXkVXRZ8kDVZq^iGU*{iuDnV{DL^E%MBpT+L-D89 z#PW4N0c%uTDPVT-7Y1dsaUC_J0c2wbW8y_`FJwAsl)YmDtwv7$SSHlNbVTCnqOLHL z0G^k(QV_uFuuc%3`ly9bsCc9}a#k%sEJ&F$87|_H88I+?vP6(gii>VQ`P{WgCx$pj z>b`ITZ5Il?M65tFcX^%Ud+_Bn^vgQoxNzEuv7t}YBshLh^S`!u>aUiYF#+Ue&J(c! zd|1)7X89v0Fd?!}#sYvCXu4<`IJ^=(1y> z42;6O+P8X68`!64qMla6ZMeKDJJfby?5GbR<|1=vD)>qR*9?@0q8(9Te&+xaE_K1A zprnFUe~SIHUwPlq>P*0 z=zdyBMRtQeN#yBEKi7g`u!3{Vy{NRA$c)>o4wX{=1`JDI`nh^X`vj@w_;WDd^St<} zu62K|{W=oW@wh=`qNu#kPC=rvF?@IAO7FPxYfgU>_U8(LkmRCzoFK0+CXy7@MpBd* zm@prj3Zy*oVW9V?lBm>UAPqR(;kp;L*Gqwy%)@>O;3Rnm};mYVJQkaqO~Kp;dbgVQw=alq?_9>+k$coBn+_$ zAs^&lj`ltqaJZ1+tYGeo{J8#e>rB|+@-52`6*g-KmM;?PB3_d0c#MX$M{ri56f)vI zK5#6xR-v`=1U@lpOUuaqUjA8qf#1-FyRAMRZ@=}>*%kWmN=0vf`Jq@4(&(IwyP>D{ zk@P_&diTNC=izSXIdAKM_W7h2R23B6o+Eo>`_htzJ8bM0*btfDOrd!kKXKebzd%Yz~i*>hy(>=Iye=me!Fp}k+!R+v+q$i|(b zjwc}ZqkuMH!)ue`)$4Rpn$W7m9X-k%iu#9{{KpH^bR?^RmxM%BG1toIp8VHNTMgWT z#vZQ-7;L|)0w)S^xpN{{v^^9>qgyj9e6>SQ4)jC$h}+q5*(Xds8RS5%z}|mfM{5tK zd6oNGO>>O^C06i9QDY@?f}%EO94@)4B$98ar2Z%=UGN7l2j*!h z6QWnV7sRv$nQXy!xV}yj%(#U*` zp_@w(^z&|u#*$e0jPiN4r3yrc?%%Nyh_CNTy3y%U9jI(B{T=>407yW$zg-;`ia#dY z#G-3ulXmVXRitL4nj@}>a-kU;)rC!i7F{KTnAMExd;1R@U%GqW@w=~F?xfxGkgsVT ztqWXcvfrV3XcMoCttGi$LkJ!J>>&A>Vaf$)L9F)!ePhHKV!bR24f#lnpb_q&7c*dsv4HdJLzm>);aS> z?X9;4i>iY^`IkR(X8?QZl0IS=#(9qh1)mZ<#sg>~tavF@NO3w!Y#vk?O?O5HWfkrH zwGvR?Xf!)Ce5#93MrZ{?(p^LQ@cjS{RuPeMo&n{Fa2rb<<;IZpxI0Rsu8L%ISh(?yOKf>U*TJi6z} ze(K~6@nGky1(<-gI>AH^>wpIcLpmW#eW<#QU`}6fnFF2yrWTAv59zMOT12g}G2A4S z1lnVr$8;HB(>W6=@%|Xdb!fOkdXQ-s)xd@oexgfq##^upXd8SmtT+A4iMOdKo(6* zy-#EKlO+8-@0x(oFgokNK4cvK(y<#4qgfnEgTfyI?Y1|3)iSL1gRc9z|(^ML%4utF17$y+~+anfi$ z(jBQ69jK6Bjgk?yCU;ERq;JUsIuQq!&(Zt^!B%zW5RHPugKkg%Y)&kt1uLjSZ-QGH zGlKXSiMol}g*0|Lu72YBcIl!+g{44PT52MQIDO$^-0C7qU{Rbe(hEa2Z=oSK3Rlc8HAUMetFqTCnW(P#dskz|uB zqod9-#6YdO1gxPyA{5?qq)c}Uj|ZJ>G+9T5;WC!dwX&hpl1Nej2eAG4=%2a1HOZC{ zsVIaM6mJka)z@;Klp~ZZrm_J1&YnkTj_hat(a50F*yrSUH66W1=o1Vd8{uCA3o10X z?npuausjIq(txIP!79RJs94Gv8z=Dy)@XuQH8ce92hjn9ye0m45d`rnv=E3IHM>?y z96|{P2Hmrv`PPiU9_FWi=#~l~k(M551b~Qou!Nvc<#wau(Goze3<62@q-@LaK`tA1 zsG_k8VX!QquTK0rE}-i^YByjz+7@!u!BCn+Wg{Z`Di|Bxj3Uyl+jjiMcRsvW^kw!% zC(w3AM1p)9RkQ^6v*=KG=wxJ3IjjOGrdJlL&^;q-^^7~4AT)j)kj8v;3$<)^pP>=> zZ-=w+*~|3cFNFc^;@5oLh~z!Vk$)%qy%uK+bHT9bnjAA=U~qZ2zT%u znGD$i>Z&WSQ8ysKvyyb*79Az1CQchC6T}{9s;2T$8?1Xa2VyMf4%(2>jFIYK1d*>m zPR1S66*1~;Omf^rw6^@UMaMc^!M=^7;R9!ub0y~+aM zFK}B&W)uS1D>Z4zf4t|z*O!FWEV@vNsUdNVY7DxC3DaP~SQ_wGNU=u?oR?UNh8ZX} zCj+)mNMuF9Mi@-D3@~VG*N9LeuvW*CXuLVPZaGkAIzNZcgVxuvlYq*3JtaB)fx4s6 zsBImvQ18+W_?w{v4Tl!Nrm#%gBf6AAE$j%hTkje3j`gD1b#Z7Tb5Xt+UHCmmM4AtB zc?d)ofg_e+DAche8a4AG@dTv(3=3%>9h8T?Lv!Lws%}?D-ND9)&}Mi$?LVG3J$d|j z*-3}_C?Q;3%uyUOQAWfALYC@R4rRa z{AMf`(uESFRHtTH6$?hddCx}-ZTqScq$R^LYeuU7Jncy=~knBn~S*TDQxM@@qbpjJ9Zx{fs z@|p*`){wP;m_HF2U5UO9d@(|nx_lp!2pkHG5qxfFx*82QNb=+tSrJS)Wc|Bw_w$pg ztHu?GC2bprib1Wm=y=kWrrE@nfOG;rk4wp zcHlsCEehFB3J4WVNsUt(29{IDlV#*8h=aU-^5)8Evi9z`7WT#GUw!%I&-V3MU0%On zcasrXTQfCg@w&CtS*I!lGS-g6h&ap8*8Y2_)1ts6e?C4GSB%2_-@> z+eqFbbsZ?ot^>B4-8aMn5@RO4CLxyj>NlP_%!l4}Rdtl|#((|Bk6hi#mmzVs&Ph8g z6Djy`Ucc1zXht|&SBK#moR-ANb}l)&NU#zne{g-L37SC^VNIK+FOifD9hxKy7h2>r zZq^VsU5G%@P2>iwuiN*KZ2p5`)csWQnV-MC%qj~zQPDbPL<1o>35kUZR4;G>S<>VW z=?PV@1!rO7B0mL)rc=A&EDQW=A$Odp$%seT6KiPjasaN7aT`rHus0o`HNd9s)yff= z;m$#6IVUx@fA`THfDhYuSfzxDWoTMsca$X+2 zO{evO;n5{iZ~Vj&QAVWD=rt04h>yV#L3MC)ikK=`D)lN~vvn2a%4k0J#*hBJPhDN` zt)&Er0;R1{3c6p%W)4Fz1_nb4zv&}cWrLqZIR&L%S_m4D$%mn-m#z#FEKLkc!`+C+ zX+Ir!=@kMr3O6rz+;RO=%rEM8R@_mbsJgGjk?~NzE$eH=;jLTXJC?`YabKi zsDVjFK+#{ixQMQ>=b3V>pcYhPA?%)#-Z?`5jtTO{f$yow>Rj3CIJS74WPwgIq6Qh4 z-nt_U4WrBSLPLo771e_t(9EvDrPbNP4}* zX?9LqEKoaZmTh$$kMJEuWQS{S@mPv@aKV(541BsGFF0t|zl24`eFK;8{b zV;6Py19a*pCgMa_Naif(%P+_O{L%M4@#+`m=X9EJXZ5}U3;}ODWC;!7mWHng{j69N z3LWWeaP6`sx_1Qxj4V;Clbm~%OK}ZSVUY2BGQ_Yl6nl#OT@pr!`i61>Dy(Ucj+elb zMvZa|lzK8mxbg06iGTfzx3^W7KOF>=H3|2++p62l1}_NHx*T-KdkNO>&0zFy7J#YWl}ECA5oI`8ya z)040M)Qc}Iy;*hH-E_S5++inDsI%vYMIf!4joPt0bePwTPYg!XMK+w9rA*tY4jjIE8;#;Ee)EqUYW(1X_a49d4{vX+ zPNbTFC37W-IU#NPkWoM<)lDip#3I+!`MO_AV`g0n)Q~S6Kl^jncRKxYA#0XzG}x26 z%NxzS5$Q?qW_YS03wg&Mymq4D0uC$-qEEAeyp;<#xKod2flMWTkXXKaGYCuFk7-U2l0%+_+GhY4Z1k9v0A@MASIF1KMZZbfHa(E-m6j zUw??vSmwOQv%4JiL0d)g7Rd)Sz+E$*qWBCRhC>Io8WtMe zFpuQoUP{7@RL9m$W`(vml1lgJJwr33d-?3FSH!$-$06*3uAd^OK!cLc^A1RZw(zRc zbLygF+h`pE7C+$h5`a#fkjzBL>ZMWPH1Y~#t4lKH>j@VOS5w@B)4QfEp08D*y;snc z+oH?bQDcUv*A=KhrwIvANyiwTr|x-_V}xAKljx||dZ@ob=Yq!z$v()j-Og&JM*WZ~ zy~PEj^Np28wiC$Re8y_azA5J=?2kB79AdcW$R*igKhWZ0DG5ag7CE<%W8^Kqof+j8@ z)Ci;9n~`*r&I>;u{N<0_(FBN*3}&XO;p(y)IuSDTK-5cwtrn%%>p-UH^(uqH*f{(o z9d*72anajD`MeQ@;KRI>q)X`=tkiLD?L;?(U3RuvG7M`?GePbJueI(^&Pn8X75|OP zuYB<8@t^w4I)3Hr<(3|VJkZ=pqfxzQxo95>#%4q_!LvNgCa@m$PV*63pp4(T^kmNA zZIYnHxajgw)O&z>?QnGZqFWuG(4t%Ka_OQ3w!x4e-0gWC8V3Voedw9<>J}}0_56dQ zyTZ2DRaJJUnCI6gmqNOJ1Dh3)ffYIeX$;Kh60d}L5PAq6O=!PR54vw;_ zY>dU0_sU9QqV2#a5+5C+$m+ruMt(2Qln?1cnSB2E{@1_d9p?-DUwP+O-ueFk>P;1u z=adA_WO$rincJ)8*ICEev(pf14&-TrRed+JNdFeNv+WS$Rmr&;HF-h{Xr*` z>xyym#h8~1+XtV!=iPU|v;Ei6l{-dVH{ZPe#+CM^>oF9RG~x<djYv?v>hKzJ6mqvORqHZj?UC3@OganJH^qYc#6Z?Q}jCpZ%=8S68R$ZlqwmakiJ- z@;n^+FTZyGUEh1gn>Xk6SGNxy4*MAcE8DVU!IX4M>lCyV<_f`!ws9t@Ulwo(e~kotHI~)hY86`HP$sllP=bXt5M>} z?*(?6r(4#})ajF}efepZCBDS{E0R@i~o=?C?pPNp%Ka0%*?0 zc4;%~itN-ou->*8zk0H(y;T{jFz#%AvLVVF9S^B1IF7&{=+`jQy1{ZEBu|j2cV#wWbiLDsZ%;v!i4^{N?+|aL_WoOuDgsp2G05U~CLI^0a* zt&8zq49Hj_HLl4Lpt-TDE?$`WmN$9uiS2ieAK3o+kx%c8rBgiyIxT=H*_d)M$*vLx zW6?Y38Zze0rce?)gvp*2*bYbWwhwkEdjlgtCsUSbQYmVx0w?+ClUC7}3@=&DI%Kzto^aFozye~ElIApCF1+fyw&7vP(BzPZkDJeGVi(6ay7GJ5 zFJAq#^LL(n=i|G>xZ*<~yVg>7suESG3_L%UvVd7bO!r}#)e7Dv$5h}o<0y=3z~!^) z(JOebQsTjEn2G|%rv0?W_*H6-F1yrn41O~F*r2wOO?A~!w{JainQ`79LF8BN+aCSF zyuC|uD&w7R7x2q7Gas=oP|9iO|H`Qs0cebE zU^w9dNU>1eY3;y(WwrwCb3hC8qaLtSU3t~%ivqZH;Ad?y$YI3~aBRhiFN`OI4pUE|DOv9x+uf+;?t&`0Ud5>z{dw7=T^?X(qpy8ol~qmZbpm10cY_ zfWl!Nb%3jy4uTtyg^wyrMH7c3X~rR?(m{6YJ<@RnJaEACe|hQXXwL&{1^yfol40H| zW{HN8BJl5{EU0(_^^|c(mTpcGM-Lg=HioWV&>Y%M3gU5iz@bF$)N4Tyfn1>Bhk%^#txu3apCqycy2eHZOsWG{f2!oHAM#!lP zumEqV@QJ~FqC_}$?W0xca%njZP%Qvck zR8v+_&f59N>JSsT2CstVfISNqXhCTK!;T(TC4jliQGgrM+=I%@-xF-CTj8JSbg4?-$6F_wWwim=%llqSI^ zLs${YQZuYVz&4PthC?N8*MVPHNNa?y*;+Phc@uH6@JFFxnuM9;hKxqSFnR4;mNl?k z?J!1q_(c9@EwUOG4oM~f29J`kiJmyL-vgRJvoeK3Vo|Y07DEW~de!L+_Jh25=1$xL!z9Xfuw; zu#ucu-11Mx#~x6^G{Z*&!o@-0PzcGztiq!zZg34;3-$%lQ}c^Cg{vIj%z;=1E9iaA zH3p-ah9A~YxlnV!K!YJ`OyL@uZBPebjzL^g)e4e`LutZ{ZU5Nm9yAaZYMX_G$D9Vb zQw%bPe&Ax1ntOp|3MUO~R_Nd2AZDC;?NQss@QzfFw3!*XQL$a6Azj4xsaGTmUd*LQ zG%`^<=zx)BX7r{IfYzl@I|I;+4Ka|BV)7=*Zjr1FAp>|Yo|uBDvA;nQ*gZy%1TZy> z)6ebb`%d?upc`mPnFi@u>YFW@8>i)F)ck}$lgY0mRh`&1SrP|}5hBl*3nD_~p)UjB z0Xnj46CVo{lBawZAr$8+b6fTg+geZgyH@U-&h_Z_(F@c-T#IS$xj#>20H)r&^fVQxyhVQok zK7x5hH{ycz{^}Zr6r>3GAHE~)w5(a&3J75V=o#rvNL!r?;s7~3j)!7m=PZYkHpmxe zfd>sVC{RtEUrq;FeM*fqtu_sQ;YUzILyW>&z#Q2}BeyUA(&;sv65P~7&NSAnl2I-HGy}uzEGG52zXdKwfc0 z!LbKyQM0}0VaV-x?5LBj07ZxEHOfER+4VS&%l*w`|PtwUBSkn zB{rv&Iswtp&!G1{a2Giz!aq4p5P@Eh^57VwnoD?sKMxjU9WHFJQPS31ZAXz z0#F_A@6ngcKlG06IA1jfYy1zdKD)j3+8>^`*T3_zJ+p}y#XAh( zjUF&s6I0!R1~N`=of9cn$V)C0&FWx~xh(7h!Z=(WokgLgEf8;qRky3orDqHo?ugna zkE_sogsFqa*ki>Tsf7-BX7j@A0bi@>nA*XVOijjZ8CLL2D3mr~aVo}mPwW8h+2bI` z#rvLdaeLu|3L~sHmfo9@U-1-KfDiu+87f%8LjrudEEMP*c8B_aow8W&z>mJ@U7Bd3 z_X0qnl9DPe0X4*~R+zWf3X!1AF-6-Vy~EpNCWN_Aqjp9#;KYq@qm~Z1rs4wnh?D34 z16$>BB~`EsJXi$EP&UN*AtHKd33y2lMSURn3x}I?WFg^HRn91IvxFHA*AaE>mJ)r( zT6lxFliu`_>G9)8$KU^j`_8}n^#_l(&;0V)&XFsj0@|?j>=h}}tlZC-%}9zC<>}*w8X+n{6fal5_Q9!$3*uSJ{&w zd(ey;S&IdTqEW9g4zvY!pdvVQ;82kupc^I)z*7pyF;FwE8JmuNWPdQS@EniEQuo$a zS5i_{W}&Pvt&*x{#3DyQ-!M=9BTFUEdk1&mcJvM!G8Rfr zNW*3ZwB3UH5gl324mDj7Ny`>Gm4kl)#6s$~072I)7e)sT)|;fLaAklEKF>`2UNutE z0MZ2UL3K07o|u1=!~j9o9n#aGF$6x^&bFgPhxrj1g@;EfWXM;+9{e+gpC;>FB0!3I znaTt8Et=Zk9nzt;0b)x}}v2E2*=@KH!}6+Rox*3TRRfy9Y!= z-((UxU@g2;wICfw)4RTCG`f*08Zp^oBCvKI+obf>VQhWx;h-H91DhPwfq($~N{jl|(xd^h zP2E15pFDO~!*=&Ke_{_u6CF^^z>zyuC$^Bls#QDLD?DzQS$vj&rw%FUt4RVRHH4C@ zIov?b!yOQI27?dd6KL3}zPd0zF~pe8!^=Yw0o8?MAxCC>1dO0MBGlPzH*dS={Q0+c zm(IWa&b>$f1Hl*OtyK|*(?5rBP7Dc{0EQO9iHh-1RjXF5RR+6v zB1R`C#DPkT5?8IC-~a+Kk}x3QCt)mn-T{g8lW$<66V4^TOz*%OaP0fFJ?P%ud+qvG zz4g3r^}jzo|N5V2fBEsLrS7?Cjb0n~RYk2dwi;=ykZ#L*>D5z-I<%$MMru(88;QH? z-1zlp9)5Oxb_!FPWFf0-E0$W7NR)Y!Gv&36I3-TfyJVX_mUK0%s>N2XRkue!e|h`( zy=S%umv{F!&i{CJ(yguhN^sMd?EqP9}doMg|2$$7{ zI^%8IUi`z=iMyFC(u`B9&>Agk8;iV*XtPiy)2u14j!R8RUY1zI;=xiPV*BjQb2q%y za+0=M32{oXf}?oM-kW&VPK`8GAMBIT=p`-4OUX%V>(J|0S2v0CY8*UPXKRxdCA2cQ z=e#80MNU==(=z3e3rVt-MyYM(JkxEBQyRGEY`XFs3T>rQah%qHaSxe*!fk1<;GmRX zPPtfA9P8Ot`L-DaI9#%a`!H(JECtPswlHxc0u-UvM)uM@sO7X$roi1WUQ64f*RO7H zVu_1JvQcyCn7FiwVS8__8&4=o)Va)w4~-J|Ya2`zQq5U!Yh+y$7|h|b%y6j@T@%*@ zK?eY=nX6?yQdUz;f@GpSrRY|G)ArFfP@~mF!oAQmA?t~Y7ww*AYs;fcWW#{Mf&op3 zKH$@)YU7pCItaNb0K#I54NrAiZ_cieOlJsrq7oPpZLTXRI4%W46$hN!<_a_wtG45|@bLCXu1-f;G&ov?YN3@_XSWRS zbJw*7EJd9lIQ-BY4;gI+3y);5soW0tRB$eL0S;EB`DEg0JiM60!O$7h!^UtY;3zc| zlrQM7_~4RQTPs)BG~APWhZhWL)sn`j9Y1@jeT@i|@(h>s1daL749sNCu%onF+ADe! zyrsEOn}UHZQEyp%_$s_+m1zr}2KmOy3QF-zn>|;ccuPAtS2Y63(7C}>2V~x&Nct%G$hQsL{qY?OF)C$OpA&+GuH;;f!nbYJk(5EGaXkPw*kBD(l z2#Af{mj=4knRxNR8E(sj;O;tAkdMd_S}jDkC%=1j6AZUi1nJ>boe7k?A4#V! zNo+P4*(9Y#)VSshSrNZ+=v8FNLFx&)+jz`12TWfVl89#@g4&_5worjjG{eXVP2sgP zB>l87(a0Pk8F2)cps!Xj^gzv;>hZ0UVtij=TnakxV?uY}j5Na|S}Y7xQiq{nch{OD185$YAXY}7#kMbBec|(`U%KS`Y#V>? z+5N#||G2aN^oieJ?EiY|xwHM%r(ZkU|N7z^7u!4EzrF#1$QcBD0jI}Si|h@APz@$0 z4>(-XVZ27OZIjDOh`Rje>R4F*_`ZBAD~#4=?1t;iOM!FW~Egdmr5UABv)HTj~aiJb0V|Y5vM~ zW;J0sW|Q$a7qO8i6tmhDnjEvqGkpiMV?1mFv*$qN0kZ`}%^4dsBj@i0d3c2H@#aYc5H~-~Z&AfSvNTf3WglirJ=B@^6c$`g} z&CjjZdDivDb{yMP>Z&GAoO2=@C2^qk>-GKNpWS%grCYeRd_4(v}~o&lzV=*7cD2Cr)R#2|b5pb|jO=3Tq9% z=ga5Wr;D!o8hBM(`Wm6GZF2HG+A&)RA@*cfebW{h}w?Q3t|xQqSj z7r*q2R~(O?4F3K2laJr~!G~|o_b$Kr)pQOq^k`CVohdV>u4Zd%cJXWP%iMd}8OrX# zweE&rhF2y{%7uAejHwS<@NUDgV$eu^x>sw%xX&Cm)9&ndaQH+Tu}?P0jn2 zie-jq#$}x=VTPFvEkqsGc=_XBx_3^dm$bdh!&b&*w>7p^*O#r8MQ-Y`ntkeNjWx@5 zq4C;lq_Any87}S1_a2tGhE1c{Fb(q;^~RgBp4Np)%k5ohfRyxE{xtbv`}EXr?QxmQ z-??}H;Yt&UY(Zy|I`5m^&WU#=BH&CD^pk8TWWN{XpdX#qr1z1~qMX zJB{Q#OE65Z<+-ePYBi+gC~Ml=hv`_Y=*k*3WcrDs+B7!ZkUOHnM5bd(7Z1iTj7GR3 z!n2#pJ(n1brP=A^=okP7Vi!~66XwNdOEQs#(sbNAZy&;7D$JY(d!PxIWlE@Ws+uvc zVM@jp^Wc3L>C8OBtjVWB_tx+t_fCGHh{ao6i%+ywcb{v8us2QbTw*y#DjkVsmMI<9 zxa~nBdw!nAT^s-9r{ZmvVt@AWC;Q`x{Czc^WmC98PDs{d?L$K0O!1h4GmTfbonGA3 zQ$=W{lD_4NJ&jUhsE5uxY_-sA%ma0jYOx{GDFMsR&acv)ugJk{-ca@?tHq>-jF#_l z_VWAp@1LmyOMQlwsJS(Hnpv?2YHuS3s3`Mpr;oLS>bFTTj^IaS+32g0{N=TG-+Ve0 zEC~gD_VFhlttXG#<)_c46AM2Pj?Ijj)q1UI?2I2GRoOR#JobtNWQu|UaUt3e%-CyI zOf|X7&z`z>UMQ5o54!r0Rk6PCn9Qng%}#c_z7I8_U7_W&7^61oiS`C5)o!*DO=Bb4wVokz*Js^EmG&E`sl~#5loD9W#Hf0goIrO z7k4m>Yv$lV4XO*{r&j3`^vp=;Pkne$L(}J)HFHrsb5obY`Z*SmfG4ts00;`2GSy;1 zfyfhj&8Z%pjARzq#-N7yeuJ(?N{io2`eq8Pw(~h|UaF!u6dA2j@GR)fhjw)GLmw9n zvXDnDc(s*zIpWJ}~AX zY~(hdE7RZ`h;XJ-tBJHRY7TOzGO%Kc@%CIjbu}E$n>(%1`sJPH?w=DYP_chI=qQ9O ztuSbQ+HiUbWg;bw#(+L+7myaZo6g^fc4|!4wHoOlC~h!3kOy_$-Y~t?aIut}DK5}U zV3@;|D(m33At5w3;J)ei^&u1c!V*_+Oarwd5@RK{?~R2dO}L47(~Z<|H|P{R=9u|1 z5;MCb22bT%ru?(Nedh7>YGPO@S3os^3gnS2(p;cRdfoIW5Srot41b4?G0)vRqn~yh z>xS$Pgq!Ky3k8X7%rw0bFF0nvf#nU=T_{`ky^qS{H?PKQ;Cz?g|J)l-+j`~Y%Rhhi z!I}AlRuN79TJ!~&0?R`!P^~4Nz%VBBB5m+Y;D;6Lo|nW1Oh+ybjQaF{K6~%xJVu$# zMFL5KtEm;#Az||rfhDs&Zute(>R|-+J|Re_LL^hCzFqj^h5OpFf=niw-FbbfhzE zc$_{;{2pfT(gGS4`0^UoKqoryK4U4JAs`%w>U*FoVgtekLMw{Bt&BO&O^fHrS73QW zH!5t&LOTfz&?I7MKtSOA6TX;w1nn>j5DYjYQ0X03f+LwV##(p{WH0YA`EVB#Sw|Mbh>I>Cw=hifZ^XdGPBLba^G5v*`3B4ms`ftyHzVfI3yyh!5--fsDD zlEF8Y6&>cf5o{R55LFS{%nxxKgq&9e_gX^%3PBj>-5KH4L(5fYS4Zk|oD|tk*dgEo zoYIt31!HA)j5~_bqx2KCT2xO3tf-qv5>v}Qoo}tb8``s<{^^T<Fiy4OQ z8=N#DHPlMWp;<*6uNfWsLq7QrtY>>vXtSFYQb*=sX!x)u(TZqJ{HRzlMND~F=aGlY zJHP(M)9%(P3jg&J0lK3W1w7j^qpgeBWjR~fIBs2ergpumHa9Am32k)n&|GY}ce2CsMUL76>Nj8R zC-IbeW`U4<`e_3BLs@Rne85mdiU9q+SF8DWv2<%M-}{bU?41+gAM1h8ieg~F^m4#( zO$QbsOXt0uHMv~bF*Wv&k)hE@?7*R7)YsB3v z!IB&X=~TxerV_Br?qmgT@=}KheEKh6{ueiA*w0(->QQ-wFnA=cOyDM*l4`4Hf((R^ zl99kUluYG736Zs6hHI(Y8p(a|UEfk*a;3tdfmTU66c$QL5sV~miG%}29gv=ij00jm zLCNNU6k7s$p_l(r#xTP}9ih0f^Do>T3#~63wn$o?5Z6#g~8dAS1_#k45dp zQcOg2@SE4;dD^z3#~kmwX7R-m-80~7a8I&-Z)h0U($YuD1Ats{<(Rt|*$5H_kbdiNY zOeKfKV~3$c%X-qWAcgjlT8ro#zJx`^qP9UidT*}0a=VHOJ8Y^EKM2s9Q&m=)%12(dj#m-bQ;cS_R>8Db21y>1l#f<<@@wCI7?TJ0;1ko6-y7Elk@|!vBGtdKvxP!~c}Bal zJ0LZbptgS9%JcHS?EN!+xGFeFA!GF2LaTJX!X~hR+ESHqLH`6PVst=c<0M1vj$cqQ z;Vw8`TjdL%{_Ksvb#qQ|5T<1k;1+80IwW(Rf#QQoNc?Ry%rL zhX`m+>`(@d6M@4>+pOiZkx2RjS`KRRlvt8d=CUh*&{#u~Y{%~h0F0NXUa91|sBfDm z51_|%YE)tMci zykN^B1VF80dd<|%?1FlRj&x=>AQdUw^n>5LvQ8`YfMiE-4Q3bG96?>;4knT0iInA_ z&fvwJc3Z9L1+lWnMzanQ$M8z~Gt0=RUzYt;GrH#62T&g^B052XmA` z1azJ9poyW=(kpbHv_{d8IwXwDd*h;k7t!ldL^Q-|whcLV0OOF=sr7)P+-Qq2Zr~!s zFjilDvP<%{Ie2AUtoHkyB>{EH!K(R2fvl=j$VeqxLDONdY(l<2bbS>QM9mqGB~DUD zpJo?GTa@QttMNQ6K&qlv0X!lF%unT(CfPunafI^38b+iB&;^|6Uq8#=V^40F(7MN(@p_WsQ|v zS%4^$s&qe&v}lnn!GB;bLn!``tTYp!%xb7?9xmO&m9!3wz`8>>||kNp6Vx8U{@wX2|pId`R5otHW5)pqku2A3>q&VsV=ld zOn=c@Dz}FuZacn>#zyRNV66xGbAdVLqznJkhBlK)79pwcu)>Y;RCg^ zf&@tUR8j`|pu`^%ohjL&qKfUAq-+J1h^Y*_Gs>XZ%7#(4)2u4|9FJ zNI3y+bF#c|jF(;7%}i+Q2oOli{~GK+@j<~zDNct#u@F`zYrB@w1Iq@jJ$ie$Hg_Es zVFJ^VjJ>B=+)NG%^Gb(i)sxa7KHn6s^(1bA$9`HRMj1+ib}YF)Rk6q0Q|U(fU4yVT z`T!ffQZ_kUBhmnGg={3!RTuGCS4SisC+^}#(Ss437k9PAxkLPrSsvJ@08I%pzKaQ# zn)^cX>-^|X*2AVLR%HHy5T-bZ;KvDfYTULdEQd`4I}=iZr4eEn%E-Cc zZ2{NGajF(pu<@GFkxbuu?F#G=zH?gf(7We@fQUMdyj};f4wX`ebC6&fkqwdr6j>59 zrTRp8rlMpT(_LIVJyWzYnJx-r+JzV+Wp$tk`!l*4Omkt6A0R#!=Gw-D%4$p>aT&xe zZj+axd~BTN;@)cF5vX8Cm6&9@;J`*gS$!&1af`C6yd_O{IpMVgerS#HXBUWvLk99& zYx#38*$cL~4@U44iDp2@B7+z4YwhEM=4uIlV=6A7tIMWtCd`AFTq;kC7M4RbtX_SB2{eB^%=^7Kzs0$8J#g#ER}VT^69 zMt*R`3Ch=it|}@=B@5+|Za9QOV>W3!iPZ!W;UEj9QMj$fQ|b?JHJ6C>DQ&of<^&LK z$Sw(n!~n!|fG{)XBbLUAJ|_pOYob~Du)8n8c5Jz7+G0$dbw~ZP%h5bH)g>{}PK7*8kk9LtuwI`1W?pjDgFVit5A#_B5r+2^K`+FJH6Z2clsR1Z@v z6u5B9ZC0ci!x&a;gTmRZFLM=iNR*hH?khGx{sL{EmvPi;%jvz*LFQ!2{5ksB{Ra&% zz~2#+85*lJPZAPb7DFU`Y7DtCYziJWf9v9mSFH^z={0=p*RbXupM8pwKf2IjF@_t| zO%=?rP|MRPq#ijHVu(9B89(nKXf6JT=S|R-ysiaWhe=58_r-HkrasqIpOR%N z25`JOfz_X=Nn;+VUyr-drRUY04cF}WK5s*>`ydu*TbZI{2GYQ=@%-koaFsBme9vW= zHn2#GyqZ8ys4X!x7rw8Z2wykT>9#k1EAc?jr4}gN?j>-J%cHwMJwa1N6M^E+XJDiA ziqW?1%``%KyeHZ5SIAE`fbyXmP7wBiX%*&O=)E>o9fzF$}M#5(l5jmf;7;(}4OX3G6i&Mhw zHObU+wa$7UAz#v+Gd{7oBR|)lJ@5Ukz3yz{vJJoJO& z&tkswa=-y6+k;)9QW}HeffQnO93%+h1O2Txo0(9W?^x1u)_j?O*~Q-+5YU92>N3fN z;(-DleLveaAf!D?IyiUg)Fak{l4x$%aouz|Qnl?13~P}>Qx>-^h6Xh4i9?!BcPUj+ zU|Ua+pB4}cA~^KEU!54lfX*6=A5SQb65H+qj2V;UOJ&P??4wLa-CTTusWi<0EO&!B zWxbg*;D~=4yj{BOD-96x7UF@WlV)4kb+>Dr4TIGQbm_B93i)J!Krf){E{m2+q3i0g zN4p%2pEl(|c%w^hH%{qTr>mwa2coSt$=WHnFE+J+$Z?UF=IP<+@*=58Zgr88v~+Bg zgQ$HDwHCikmnlex3W&vOX6nV7ExO@iqHbzLC8qstH+ON46ybfYZI)%1$9A9zg$%HW z6uy)Uv0O1jJt>b3(Nmh&#_1Lv9c>cyPw<~BLn+mPR!M9kk}PZlU+*ER{@UN%(|Yf{ z&xSB-;sV%ntu-bu0sx39F}%GEFxi1aC?46@*>|d$tn_eAq)aAv3upu-C4Mi}(9o24 z0lm&U%C6AHdP#DS(2*U+i7r+p7qE%&!YYW72ONt#*&*)-KfjjUSv-&@mi_(b&w?e_ zIKW^(dYRAXl53fowJ}<*!wrN)dnwYj@jb~%wnFIK$W0?4Tv1V_T+#w>jrEDajL-bF z{`CJYGjE8eKZ7UOZ@VHweQd$c-21xhq~FoO@A*5h(ED_HdoU^An<+PxkLfbOv50E? zCne@|?9C*bxJt=I+?cia6Ew@}r!p|aBgaCl4Y{6Mew@SUG4`tH&jQtNjo?;i5aA!I zvV;sWu@fFj&!qMa(KWTL#oqVP6TPnYc{`q`FMvZ2%u6%ATb51SmSqqFV(`rgmC~b_ z0nS_Fw*?Husq9Yyk%F0yd@iV$`sc@JHccJ#ngr$@&cX4${6EX6)kVM-rXCLJqW1dP z=VWkX_t$sN@Pf}p=j}g$1mv`^Myt+y=C|}BWz}uE6G=p7Cy$|w_zLTl6iLnse*bmJ z)=PFFB{wEuOhPzKNIN2Y-Og(^zwuMmEo}JW5q~U(bduP%v8YpL)k!i?G)Y*c>jFie z$vF|SD&m_g(BNJ2ismP;;93%#yziu|U$eOQc*5vf=$SX?BE@(W+3%t-waCISV%{s7 zN;uM)5{fCnW8Aaz+$7dCv0i{a`NqJ#3ND<^BY-@P53(Wj(W67>v>k)`eL;UqB*Xyi zU$MZkz;Qx6gSwp4Q|U$h`XfIDooPUSUUmT)GBPl*v9J&-SlF9dSeyK?wllHo{W{agryB&4+TfO z1jqZJYz5lORy zNxg!ziw#Zc(b+yBeTDj1)U+hA9he{f%-r)iy*hb0GjVO|3Aki+l|xgF$b>iwsgGGa zh_&B?H{CyI8TtoSgkN;buV(E{r2qjn4atjeSWV`g&;&5?k-zakXVSA}M?|5+B`Toyt8tdM zr_mLJrgzi2MifxJ&pn&PQz@hHnbw7t>Ofd{Da-&f3Q1Kfo5elj>=ZsUS&Z;jv99QR zt4j5)q@tqN2;q`mPjTc{qmk%+Mm6;9rDCWy@tVJneS>N8wkuwWLBf7v^p_}uXz+zm zEt~gw3=gcH9eQGiqO*RF0tBHK1-P`_o;xRY3-QneD?nf+*x}~qX=l;08 zZAK!NROT@Fb!jH&OAy0glFo)seYo~JHD*0$r?ttg>w;WvR_+G<&t8{0r>4V-L(LL} zSWIgEbEbAE^_l6vjKC|@WYH?c>DD9EwtuYyXf`MgGGo&mMe1v*q{x`&VBr%3Bk0Q@MhssjKAH2}|CW2Qh8hi6sBmtZy2?!R0dc z6iUO8Y2Qay{wtbwY(kOGS2TNcMlh;t4ie7bOn`lv;Vqh9UxUkwD^8Jq{ zHkYg0>fy`_6^2Xe^mioddr31EnF0~E(!_7EHS^-|!@i5e7&og881-5BAA^{-D$rEj z$GiK$6U?bc0Qac1lXKI?E|VltJC{%Y3n|tpt`>|QCyzb%1g!3&OM%WM!OMiRrz+cr zVXwQ{Iw}0(P;3FxVl(5>(|YbkkZI2qH<5Z?G%7_csE~Yl=M-XYk5%Oqm2$IGW9861 zEgbw3>Zz~Qw+q2BU;`nlXd2;^D}{^;cxaaQ10@@hOfiymYPy-F61eRgnR1gQ(WfO3$4!6A1$=}U3tib5Rhz)!xx}-I; zJhGgTfkm0wvSN`$WM#~@(XY&!N zcJS7Yia9^G@^~Btt?G?gyDWTjk3(>jg%g-G7V@BN#IQ3bYR!NLSdG9!py2#Thn7`n z-v9`a$7?aW5|G^RZ)Fs$>$;Jg6CW^rE|ux-ijtY= z`;MpNF42hiLNEh7D&!Wq9GAnECIQiD9hK8}J|*0-J>a#@WU@PZuh{y_QgEj`3P-|7 zUWr$Q6!P?L_IexX=|TSCtcrJ{IMT-ZeXD=tFhPZ^pg->VLA*CgRrt|CI_||?%I`hS zn}b6&1sE-_Y=vshXw>(gDoG=Ov zSA=C|`T;;|1d@aJy+dfMBbTS3KyO6H1Ai=>b{O(23b-aOShp0v%k6^@ZbEef5wsLq zPpgTH>5T^`0fj*!PW@Dm3a$12e1*^T<*hU{v?kiquIFK*yTucidr4Hw><c=EPe*qKFvZWXHfuVR*`Z%7@51iU@JwBy@wu{UdUuWx8r^tGbO+UJ}eESl8R20 zu{XF-xCN4ze`(us!L6GA{rz!JJ2ty*5~B6@_=C$$^2@|WVIuDwI^XmgXY_4cW?(2| za9o_TjBx&$WqG%FcmJ9nRwHXZpmMD0wCpF~cS^`>bRNI9QbgG^%nw4j3~fm*=(L;| z7z?-dh<@3)iGkeqvZc=R>oL4StljtrDR1}VD~yv{o+0ZBM#-(&A1H(Z*+L~jePC0& zJ=pl`B%^x4j5Djd;3XyW%_a~(b;3^BumG7xr^OY5{Y z@ewg=Py4)Vy<;E6+$Nqk_v|&%FYDS*%iNwX)Um+~^B|;?ePv{niL`;xzc#^Jz~1%u zi&acp45xr+_}9cbjp=vtErseu!8jN87gUe~_k}GhHcE$Zd%YgGB;w|41 zwg}1UaOB3|?K!wIP*7{*Ic=$2x|RUuZZo*3&cW+( zsG-t(2h?N3>KyObLqB<$8Po4oiK>|V_0%|c3hd)Lx<9vYQfoi1I~qQwZ*)DMlhf$a#8T*@8#PFueE${9x+ziISkv(qARGXKCPaTv2wRAqAL1 z#t}DlC=vsZgMvy&M75^y=mvj@Q)Z@P2V99+klD^|bu@k)OlPKky$}DzQTMF1!3UaG zX%;HELxuX8l<+wuE`W)L1YJx&6-dp1k0v>?Us_-d67NYia_?_R1K|fg9UW(?{?v~* z#S*1O=n=_GoX|$gv)kdN{C!gxq4#wrkVGlp!UGl!8fjQ= z)K`FN)0C`LgaTk-<6|g>?eUWqDFQ3H+C30scVq^BRXhkJ9q*YotxcVQBhLajln>Yk zO0qotIp8gTMZq)+y(0itr7(PV&OU*WTZNz$EAy!cLAY~spuVQU@Lc)#UXW+8S%Zh2 zk%1>R=Mq6JV?O?Nq?mqOq&Oz68d|2gv(_C`oSGyQceS!YLkaH)*3KCuRpsIk_ zk{~Ung=w)-MCIV$g<;dWwv0ch2yO{iC$ZUE(*W2NTanU8$voPw$Vfq-P40n+&bas&cG3v zm_J2aHO;}zB2m7PeSdafN#B8#HKf;(&U2vbh7|k}V#D#@t73R>^sNj!qGHS$x{ZLN zCrnLa8vEZ_x?KH$mm)~?y3%q&u6TVt;PDESXtIgoe_Mvdy8aRl;QRwyDRx zNiz)ek6G}yr99G5gr=~n3;bTib{hRHYFL5&0Ts(=VAo5R0&`4MAnl#)!@tLmS7x&a z75zYyNP9kGgzmZ>9I}mMq+*$nVn$0TNU`BaVPrFgRKsr8gY}o31DGz(@{#K0fs&+= zo}rC`oncrRM8eeQ%*pi>oH!Lw*X`by+6w*dtcXo z@_1GEJeb+>DJ1$WFrQY6AcoMFz(l4d4$gUkCyYfFnnxLo<`v29_j`%x1dwZ@$z8Cf zB!<#hE42$#1`FNzhgs)&`g1xu810wJ4$;j~HaZ&t;G7r{)fOeU_#`)WzGYQM$tR!B z6V2|OJH8J~o*NfGqalD5e0^&dFQ+>sF>fnSrhS+@XH8 zUhevr_Rlzg#8>-K6Ru8*DX-3{6AFBejM?;d)+p67jhr`UHqPLg$f zXWellVGgD>JOJQU5D^h5R~+*><^ez4%w-$fXk89qi~`|)S1&(y-(=x2Bqonuh|0?0 zb^LOHWQ9gjJ{%~=a@G~W^v{znx2(?-i2W))$b5OszWQ0S-SxPey)}NGr-!&fL}Tpg zUIAAC#8}hKcGQTZuYwy!oOqgn9L?U*a5n@zlA&}p1c|DW`3D_FlT`Vj`Vp$wiOZd` z(hD4fKuknR*%*uQhAAT25} ztb>hA*PmLqIKLMrQouQCgC5^q%=_{2lORj?^T9RuWl{KM@v2|5BTfVCsuneii=|Rd z>TH3=HI61g3=RMLn(OR8y)b}QZzPqr>!<@P@Tu@2G)6>LZ0CmUE)FU_a_ue|PPqSv zaQT|ELHMKGnHHxZ$9dY>PfnYN^t1&_)OrS~#vTUjceWs|5NawSI4+$z*zDYyMDPpr znek;MH)d2FYPNo-Tl^_De)SSv9E~WeUevW{9ECL=^l%u5OU$z|_=kEWwJr?f-7cFWRhvixDNRumpMp z>X@O2^#zcjE+uqBapa8kpx>|Qo?izG!8E|3Dif&2)hzSIGA*#IAdzv#d%yuX;z(D?{u_}tL`s6B&a;Zs{MJ~zh?o$kvy0at>V0@%wS*^G0aLNE5_-bckR2M7Mq2A?cJgGzo5*-)i3Y?!MX58}PyCMw zo=zcdBYG-Ir0j22x8%9q3{rq+;Og~|)EV;UK_ zyG+(IEb32IUTASKC?=czRAMk!9*%sDB981}?nk{j2C>Tz@hU4FP>R!M(BVM%EK`f_ zgWa@|P+rR_1-t5KzEk#Iu-%qN@Bo)qF3S}Ap*?q75?PQRRR+^EP7`L8+yFo(535|F z?V~);_p9lYC@8+e@sM%OF=nW}Ha2-D^f0K7o@0U&N3hokmmeK*VfrQ=Z5;gM;J#_e zuQ8`vuyz(LWQ^tsC3x()p!_Ys3tuf5V(u5@8MgyV6yvsONk&R8G8=}~owXM(K|SZL z!aB@c;hsu67F%Plf3_U)%D@XG^V#P8!<=`9emRX5(hUL+QNiT}QG3KlWUEhQR=O^x zPL^ckY@#11zQwLiY7owy_iMq)B?D#(=hQT?iOaW zdk6L5?A+9EWrD8!t?6Q#F^G=oAYfPb(x^7OL88K2LkcQ3eT{zXb4Q9B|j5x-?Q;AU__wdO}XeYz%WSluw^bE=HrVu>G zk1K3I!a+uRP(T$XCZe7cb2cZm3leFj@W8%7nlKb0KqDqKm=$FebZ2{w4l;HJ;~4Oi zyKsKU9U~4u+{~039WHytXM%81mRm@)W3|bagxYLyHV;$`^ElUWX51~XZ4+TvD;n}n zj=8DdtOY-=D4K6puFJ_Ja}~=>JJJcXPy%CQSw-Pj;FzF&%lG;G?Lwn=y~_P7);<^O z%U-p5*I!;2OFQ0~PP~xBHLr9Od7d>RItC2a6U&_KnCiE)jI&>-sUyi{tT~p2o3Vyh zR7ZXOzhD&xP(c_1fNtnLtk4 z6?Rs`Jyk3S)}{{8SnO4`fJa`Q&LlZP(Gi?feM}4t*bo0jMu|Uc);_q*XXcHLJTHj* zKPqV9<#%K#S*)oSSUS`6r2H-pXY=4&w^{2ly^F1R{hEWCVcUfxHU0*CFeY;dn~t!k zNB;(jDzFn{Z<3u|Ez*ZDS`wz$XhUp%xeWIs4CA0~j)0D2bgmS?V>onwN7pQGD%zp; zn}tg2bADTkwcUyy231DXc-R+le`oYSuei>&z(f*_CgLh(OxO$rA(zl%7S!L!dCqQx z8AaKnIQCgphY2uE9F15$ZWLYH+kiA=%(j32J^U-!npVD+0(+Z4{+j3317s7uK0?Alb@c^dUxNP9jSs8upUJ>z+lCdM7s7NSO4`^ zZof=*rTP!|*%VWwYN*%g9;*(gSwS&rGc?ezZOxABNhl*r{7Br{^ypW(j#f-Nt3}y3 zuYy5W@GUhKT{=|TdKzwH9g8IyIUDA81J}ZF8KfHvCML46Pz zEq8ryo8h;0;XBuLGVO^F1eE*J41ZZJ%QWuKt^c6%FxA(AIfM;x2hsUGhVLP=<7`y| z0TPW0GkgzA>46sqN9NSQIS=bix$qLDnDu&uv?|eC#q_J{AXoHb@;8bhqBJSM-Lg@A zAK2#k@uE=^P6&KEr7IU|ca{O?*)Sr;q|U=q$PlD_2EhCABgzdInw7fkm3I>^3OcdZ zSyEBKcz-a9$7)}aG5w2mjzJz2K#5BD;!6m$5HTH+#({1n+ zd0wP#qC^LY{d}6g+EZTYn8ML(^9cTk6n;v6V>nb1{41J}ttdvdaPM6~3W~8&S;2J; zR%FHTXu?*iss)KA6iB4jDY9O#N2{|%jNxhObd>0z?nXX{)S~(U%@wiT{uW&OY-Ph% zuvsyhbiWLymdR9}4@`xk>=vs5ZiG*>EgEn3T%6yHr0}$n#0IljYi$~Lj>^O0LD@+6 zir(wjeE<~y`%ZY$;r~9y?QE8&^)J3tvy}2Dc7;D<*hf}x68RJ>druKk@s$^Xd5Rrr9&y; z42|~J)`R2&Mukdsvvao#WhFZlQudTBQMUc`;v`ak8oOp!vOgW#-Dup1^0PGM&pnzG z+E_#2by+kq0Ls0^0hh-W?9Y&&LbI7Wo}VK}jZeM4M_&MNJ|xx)pmqzltP8Vqvy4C5 zhkM-0WToCP>|C$zc<;FLz0vehA1HuYI@tbvD7P$T76t}pMn%Z)htA0j4%ob%6${5 zw2_f?Vw3Uxc!2*t4h3$~S{B`tlD<>EKk&gZoLEX!CZ~+*5?gQV=Tv<=^;O%mY3s3# zR_4)iC^HD)yK{KcvQzw@(B4xm24=@6qUZoPuAuQ(*nZeMduN*Yv#$#QXPTj_Ft&}eCg$j8;oOe|?ML38_s{(?0%+>-qr)Xw#6 zd%9W4j!oq@d%|b$8QS=o%d&r zKUa<;-P*Hvwtd#JQ!)6TzJQ*`{B4dvdl|p=0-}J9Z@oYZa9j(wZaYEu+;e1gl3=g< zLpQxA6e1kRf9nODOl+O(9G!mHyITN$@c`0-JL|IswRz|y%Bd7xGl=KoCq(a)ansIW z0v15NH30>jnl1rPL*;i}S)7^?#n$(ZDX3z3arhe}+-O4wT_($83{B;Mah+DyqvMWHI*Ptn*WBHrJdN6O4k&nPZVRMezz7?>s_;iYLP zXHgMQEhJ$gXsKZsAHt;~q3g6SIyf$KxzD2jL<7dl+dYn;p_)`h7$Pj1|2qS^;}`TW znJA)(9hOUbwSZ3EI3XWNCn$sh$|kH@9aiF7x`<|<(D+o$gv5C}s$bvq{K~@U0xM<} zs=GK+rz2cMF(X*5nl37(KNj zrQ9^l3_bPnegFfiwE?lm3{XDbOE?vFh7Oo$x;q)R6cJWAw18kRZeE#?X?;LK0Gmp^ z-hZukNC`Ox0JR&}_&-o~2NwrIPMZo*J{FpOIDMF$P0Dk|eQgf`AW@~1BBdj+(D~o( z(`{xYy_a+Lg`#8qHL>T}0|A$gT-nz^{_QB=9~nMi?`sQq3pg$T6-H)9o6+Oh6=nY8 zYImuTRhrMfD88h1cN`(*KM=a`B9Guba_4weDc6Ua)UvoQO{=Uc8zTTX_*<=$UH5I7XCDXuos`C66ow9cE5JYb_zP^ zJM=kR_~~olfIf1!tjp|#Ft|!F)J}dvwL20-;!~U zs)o#NjbKcmrc*?;|I4J^nD!n~rMF9+Sh~R~Qe=>zUV8GVmk~w7_2hgU*@QoRckc~F7?sR}^JRPuR-4bm?J|uLuTIA;_O*7u2#Q8-`P09G=KuMu zmTAh2&6RDljxXO|^vi~j3V&3}^KKBFI%Qx2{DmYf9V8h8NuHSD*z97LysJzuX4GJE zT7K&?qX1w)xuyRT(YP&q*!F{k=aO3-_pj|ZdzOCnb{Ylzd#50i)Ub=m`R5&HIQVa3 z-*PYHIq&&E0KtC*aIS%Z2)`3<(mB;as0A`|ty0%B2iv9dCVc7`>13^FtljW&=+zT2 zh6e|C0p!Q!mX$fi5$_;WJ;t5Wb@bEcSLoxiAp#vIQ;w1wkvnc^t`!7Zrl1(5&u z^D+<);P5LRC>|)z8@2YW(jnHT?|uMIm5O&M`Ka1$CcDKSp7k1t`d?91h5cIk+(+T0 zeu6K?3-7(74gGd8RU94?0t1X+!6je(dt`OkGM@O_@I^<^k8zEcVjE5NOwZl}Z9qH; zjQM|JhwAiplO0s6jZoeelmlk2b?HBODU+H1T|ml{4fzxI?HXR}`J9bgYdf0;x;H=p zr0d)p->VM)ulZGvt(>iw!eYO?w5mmFdC&Z;TZj>5K?9^PK}UU$WBd2GHQq0_ky$T% zBAqElab8o!2PU-MVL+7^EZ2Wxb{xanUHQuPmOi~N4+yD)@@4flugn|&uI$#>^e&m! z%{J0mr0MjGB-68Zw_jKQQ5W8sQfGF^Jsc^0M>zwb_P71OUMinDNJwY=eF{40TVf;_U!P#f!S=P;TO|#rq zmFr_dJ@pB0S;PKf*ZzBfVO)iB*DwwjSn2Uo=FcyC&i5efjS~JwAjL0UXLCP`6G-%?rO5Tb))F^Zp9uZF=PJwjb6DO??KnxQO1cI4YktmfM z$0Z^`Xd34CFWyw980QJ^jn8A_a>vcZtFBe`ms|S_!PnVwZqGN(N5-g1lYE6`@~-|0 zO%}%DF{9Lq?YSkvhG?o@ieUU@`)<9YBkAdzH}y3j?{hbry7RUk$^Wu&!}IklepBvN*MZvA$KK;Zi~ulMOWaK{G2Q?3+OyM-(SU3aGW$XM*sR=hV+x{xc=^YDeU z)j(V#ze@E|f;<{+89ViHKXs;29z*wmHOR!~%qnQ&;_%S3$*2Wc=(0U|{>44LM~$GR zo^gGD3iI}EU7cX_n=&~`G+#q%eEpelQW`X zv)!+qdsUN9rngq3L@R8uVP==;~g6J>y|2}U6#f@ zq(|A&)MUY|s&Q!@4u&(U`Bx^Vqj?INzMCh-WSUPl+H>M;&)wwLm#XixGjEUA&4V-B za;@C3=KpWX6y?T*cDkx3ohbh%UGWU0(gpX%l6xBqP?32E-ry@ zvX`9SIydLFn)ip(3-{A??z zc;$SmoxagmEMs~?@pwEpx}jMrzeoOHBt7cKCE z^qDQ-Fyl?^v2yqS&6&cYayAko*JAo@yCk-KaP@i=Y8yK8G&7gw>MS8-;>GT6GU2C{ z&z_d0wHalEW7*J_VJRB0S(TdG<9rh&n8X>%80K$qta+zjBJI>Rp1F8PdyXk%)bmuN zh#O05ps*0qx*##r2s#L=oipiCswS)z(@@gwoffkcQB$QTT#`#!A#1b%*G@t$W6V|J ze5(&TXdXmE%+uMv=@dS%k&!JI69c4A_=}O1FL~?PT9Uj$AtT1~NdRP{MxA+@v-DATblMn zqL`$9im7-IyOr16cy@N7&FY}{U8ZYV=~ABm#m$!`zPEO$(Hfe43~D^1idQTvfeK&Q zew7Jj>10hC_={9#Gr z^KP9RAqNgjT1YV0_wF|I;_Tqp%h~fZ=aj1GgSl;j!EEk^NpqvdNJLs`&}u4 zlue?$_C;L#X*GZU{fWL25ZfPO`m74ujEcA-bV|*^2I(#J(XcpcTkA*1R}iV+Oi+xU zUayC@fdt;C5g(qTlR$FRVj=5@bhVB`{EhgzXEbpI8iic3Ua}5dn5;2Mt&%|MI6v5Z zk3I{-z=ra64wzkp4FdC*`(qhzq70bh!x)&Q*F3hJ%7Q3?O75tw+|EWUOFseLio+QTff$~l~4M#T=;Ce$)wpL%-9lf!=)g^H`qEeCZ|uf-F|F#bW)r3 z+xotZ`!mMsleE6*q=WAW1TiOT$reQ`-bc+O`=e<`wVs@pSMJ$wZ(2kz)7$mhe`RU- zM|^AuiW6B|1Pk6Tge)jiqEK0|fdAF(^lO^ia{iQSQZ{O+S(1PdbO_w@=PA2*3^^+f zi7Y;paq!mz9>lFt(S&G~HK^Y7dn?&l36;5ok=E&Egji+%Ay%x8qEakY(@->k}T& zD5uk1jQ@&b8E%aLl6|2a0~&cF&BB93&wk1eWD=*MQ=#SBlOTE2PA__`@8w7DS2}x6 z^TWhss_*UlAoD#`HF3uK|4f-W?B)0UpD0s>V*+Kikuh)F3L=dG(tTn$AqfWPurx55 zHNX9&0AsaU9;9@CbqO(GxPT9+H*CB9UUB+b-2fhYd;Y|+PUY}G@QZ>n3*&dGL-;Y& zNL`>8;^(5Fh>O0wP9=e{6mY7U{e&?h5wMK}q7z6>Gfq%|z$O1K1vLHp!j%49{zZ4J zR02%S)KW$h*CJ5q3nC_EuaKD> zg4h3vcB<=;5P!m{HrzrVUtDFWY?mV@>XQmD16d6}E^;&)l@e6FMNt&64;MxuGZ0%( z-u->7lXqKpagz9a$6EWjyrV16@AV#tp!acHS^Kte_sR;pzTu4e#Q%1*P+oT$_gg@m zYcOQ=tZ-<@0GysKPtl*g)&S1A;QpF9 zGBgpkr@rcxVI^9BkT9eyV$Rej?11pFi@I$E8(IN!fa7KcvKC*fMyQiZDfggg?AHK1 z5XNp&Nf9+BO{3AKViJCFZrM_S2erQFmPkUH*5jI&)yLLc&ex%@_oLlrmS>-AVIWVR zGxqWyf(Wc?TT-mk?h}SSZZa5YcuYbIZ5*rCvhyxtDD$5U#oAb^2q{Afv<7&Kg1#Cv zkdW$-vGWC`ha|9tNNNVj;}zm(Po)V_&U5mf8nF6%Z|XBy4m=Moc! zA^C6M6tWU<&A%PZ)#gX6#6myg9{$?B=;j-?_3K6+5PMi|7byaY$o+j}944z!* z{jyWXY#TyR|;~)KiV&`6lu_>hYaIm>LY- zxC}ZA{$XM>B#ZxxuX_y7q+Qg69ox1#wr$&1$96hS$L`p+ZKq>Cv2EMNmv`;8_pF(3 zj`?3ds_yb#SDlwoq3UttJ$Pg)=*z0u(KTaYysA4nPNhj&oXKNv6Q`fVgH#iX_-G@t&7(q(k2(ekB4!{7dOb)**%nr@ zN5OFl%9qUpd!L)F%n!5+u>&1zTyG^QeK2T~br$;u;L)TYC;-=HD1o3eHOYWxkn4rs?|FS4t=#3N?^v(1A^c1}n1BoqJjB#x z(bVt_L_K#StQ~jo{R@YL#KE`RxjeyZ?rV&gEp2z~GlM%1L4v7oZ zXrWJTgZD#)#%50-9E||&KEvt2xOrjj^K~Al27)m- zG7yGk4Sx@M9u(8u6B{65Ixv=qdbb&-41qEZeb1n=-q%-V3@ML5Dg+hnI9ov)Bu6d9 z_{~fS7h#2UyK@_SGgBkP{CLRkZQslk(>F79fzKG57!86^Sw7Rkn9&?b9zGwY%+#BQ z3jCJ_Ji$qH);K_bZQg0H2k^b@R?hhLFuJgegb{GJTh#>P*D;zEb2?U53W6i88lx1Z z9@f5UfF^GE&(mWa0JDBCm` zyC*=ntH}W3zwcN?A+F$_&nS6T_6mQSzh7TXu#$QM0a3pX5(J)Q-VRM9;knY~3U@8{ zf7Vq%zEw6^qGQk`lu<2%OFl*E>>Z;gosk?m#G)$pp0Y0i3rw|GB3g#=#u^K>T&(_3 ztFH@s%cYAEORcw7WyYcOkX7dQJUFTGJyVh;*aTISRq(O5ArwDFEeuPe^vj_m#hGMT z&EB|&eb{Y$I#bV1`Levqu^dp_k@^M?t}t|q9+KGe;P;cuBVpeuq~Z!dsc|WYt=!-O zBcR;(>7&i zv54{!L{~TfH5|mOt^r6y)q?d6kcb@=+EiqEIm?xFy$Qx0wHIdJ#fIY99Wefu({GSX*Kl4~hTdg#J4) z+$C`z7_1&`VD?@QrauM(5T~@7b{(yw)3*V{&g5Naf?q*2apJ$Of8sfPolkUo<`;6z zG~X$3qIHSgZ=j(M)`FN$?WRaRF!@^q%Gdj?Sg6nbo!5(=Qo@c12=zkoFEblTrDno& zx5AD(yN|HIC0qvnIRg7L*d47=w?n5kAN=h;A;$Oq8FaU|rU*4^Wj*K!P)=H$)HHY` zrh`H3XN5m!UEFMjxyGb*L2_kd?(_#Px|jjFP# z(fyn&EaCVHiO6!;p9${S?A;f!>k_0Sq$<~MWJ-`}-}>DR#998RIp`l`>HvG>zmci1 zLfSus+P0#DPMNs2I*k?5qtot90g1^ywc*UHio_{uhdpfglD2`$n1X-Y{8GLrp6Rez zL3f!WWafc)O@M92lAA4i=zvLFcG<{ zhf@6jrS>OKvueMbu}hl)+T++_LxL#iqVJtU;XFZ-l|U|h=T5Xa9w_QEw`%iX{elq) zo1SI&yNXI1b!cH%pV9t{A5D)@H#@0);*FkkVA2CGq{r9tc=VXr$1-^U%AsF}IFW=6OSyV2^zq~WC2IWSk$9mA4SEErYDh3>*2BB*@na9O>g za5ayx|CMNLkm{JHtMHL6S_c%nVC>KxLhdIv(t>LBSPiO=nXPMEu4UE{yeyz6YK{SQHF!@m11@h`%5a%Wy$T~!gL`vQ|=R)Q= zF$PqeZ=N~*IGfHBRT-fBwjh|q)GEe$xRg~k`zd6no$;XihCScN)c8Nhl-)NnmD8{D zFJ!9ve~>AH6nUc2Db+jS;Ed+OaYrmom)37&YBC(btDze z(hS5G_`i^;k;(r9nacbZGWGQjGWA3-;`ZtSa0XuIYI<9NDzUnj8`atnA{w9m+SzvQ z4u=KIjt7P}=9Q!1mC@D&$OkOl{`O&S>@p%r1F0$;e!;Z5lokeFEE0}NK}indewseZ z4yy_r;%goOV=4;BwB+SR*OlN@vkz)K6M1wL5ZPlpb*iI@tL#r7z(QuI%$K9J8Hw9h z!ru(P5+kNG@p7AP3HvZRC5;_{9us8d6z@Ht@Ri0e7WLg-=LQW0p>k?Wt8CI6lSpGi zTJE;sNcPBk$Fqi(H9Fx{)$oiMPi!yBYOapVWf)b7N@e=(^gC|P>EFmy%>NCUQhi3`+zmhz~;*O0++(%!K*Ey^_( zE6AVl+1~yhvgBKxmNiGoacy|;L)5M$J;{2gkzQ_6C--n)m zfjk;s90yajECq=@JBH5U5RJgl0HaF2iOQU8Ib2s!0VLLXkD&qANX(Z4+|Am^z#L0O zljb8T7suUc`Y1w}f!A2TU%?_45pb&(8BY)D&qOS5K&>u$N`6kDqU|v?u!PtXu`+V+ z0`>hLV+s9*;_>^0B~SD#6Xd~Y1CVq6&cpcm`o1A6jg+Uvf=jTv>ftkmE2Ea`BGlBt zm%p{gJIo*Z^wrax$5$jYQwViV%Z(sEx)(Yk92d9N`5Wc3vV3H#GqF-;%qBM7uBM zV*WB{x(1(j_Si6m;eIV92_Fa{%pFLpr&*$*-Z;LF@r88n3*ep~1|xt$JI|D^4XN{_ zbU3rgI|eyg7NcN39!&z`v5KfuhDtQyp;rP9bhVxwabYwOA%VIBL*zjLm(?s;oQKl1 z>ad$pK{Dwm;~tqt-X38AGG@`PXB(EhCJ$6@TK!-+W!eFdTu(0>~@XoHXl@lgiZ7 z!eQ+XAPhTME_s?Gj|BL=08;Qi#;N@MlF-cUg?{&|tlGCSo~piUDQ5zmEPag_?JQA< zXN0w>d2aBbTu=MfUT=)0aHQj8LCoaS7keL`rd- z9g`0tZ|6oKbOj!CmKb&N*^&*=|%I5w|jxWxI5 zD`|3J4IZmK3gCch5O26`rA|c~JkleRiE*qI_^F^RqM1#!u~Om-@bkuSRXsOMT-4F) zq`3y?-;DmlED+t0B|^C<)wx+9!I8Pn2CO0}y38X#{2tql#{NO37PWur{J)T?OXrTw zeh4X2Y8>wb{Pwn@~*lk3vxKo#41IXe*`v|p zNd=Q)>pj3DMwB_x8H&GmuqL8!PC>wxYp1uX{=gn`KF=7iM~_#;uG|b11qpeI^T04m zanEgfI@itqfi>`V@3lw{erJV5E2e9&%ur6EZSSncIh#x{)Q7fsrH$`2PitFduCObC zpsBaa*v!2xwX}uI{3SUq*u~!NNm3c#?ja>^vb7G2g6YJ0=JXgN-1GWtkzJ3^a-a&21ge-0p^gH(TrWo{vxFbVQ%cO<_8udP za1H`o8bY`rI@5_tQEoPbG-?vZ;w_}{^N(|=_08903t{%mDNxUe#gw`-D3G8g_v8B* z{VxO*g=3d?_c0CI#ZK1g_>sg>1r6`ibdbXqYRcSSP@l8G3VPJB9!lKAl(eVGa*IuA z)grRoa7se7(RYfzZaB9w-FFjr7WbryRiK~+bFc~ZjxbmWhm|63f5+zS^p@KxL!i+= zvP|qe&XXd4;WuxmrBV^BD=AVg7$OWM_=ls#7C~C|Ldq26kBWc4fP07SHHRuLuX);p zeBE9B^>+5SZ%fJk=o(hY*7bSa_(g&+SZX|!S4`_FsWRIq=M>!Vq5nu z9fh-YIL*g~<)#ldI8sDosfYd*rAm195B(Myn7@EX(mX8__mR*_!T18*So3N5=Ru7A z^ZCKn#}MonV%$#%^<9vlyYG+d9f0*7-aNP6gEbV7qBig(m}VGhZE0QI8L_h9qBOCx z!8%=_lNC5&O9uB$YlF{m);vR_D{~;!U9j{#$p2pwIE5%ZvVz#I)c^m%H z=7tJe-`lm+V{Cb#UTeDDJz&4@+}7K8W1M53GC}om{(Rr;c>esZCOwc$9wga!EMWIL zprSM69B3>;J$I-uE`deiYrX&p#PbQU&?M*%{98rFepL|Z?;VZ!ZoFz!gX;n-UV$J^ zA+MrPgl9k<-_Tm>#>M4oPxn^~pYn+Pwv;6PJnkOVk02CTL`qq~ckNYxzL7 z0j!lfuI&1g6jOI8gm(w-%wFCvFRUK=v?a!j7LFp7P>Sf&_4WkWea-P6;F?RGXAnrV znwa}Z@g+z&WWF3=^+X4zR4-TC;D$2TIL@*qL@H+=A?B0Rm^VsoSYo@y8h>v+UjUX( z;}1i*DOz$B@;l{?p3biW7}R>dP>wdNG=IhZ@d!iW6B6fd_12^{%j!>Xx%vAlaUys^ z*La=|T1XNC&cF|bdQ2SNU28|shhZ8;i!j}<=9M%M5H1p5n#%-^>Rbw$X!kcmI`G7I zZMNzb$Xm0hHC%ZH{FeKR|6}?P$GGvqPpo(Q$bmb$8YS|_-^bqBXced=Mwfa1NYY)pf1> zp4}-tBb7cs2FpU5uMLrI#j;pFH3~eD{(?tKQ=gFW_`118Ttni8aU1T#24cBq(oNJM zd?z!-cl^cD)^)#vgc$vS5GDskdj}@kWABq8J<{{HdW8ZPkt6MEYow9<3R;&{ylCIH@&^Bpx8U;i@b&*P5r@*gfYAb=ZH7 z?+tV<#Ld%2<_;XJJY&_*24|j%`%RZ0PfMbBY~4&HY6D zrF==h+z+2af>m`cmflO35-JocwuXs8F0lBN_Q{FBqdJVtkpOjA#_U}s(tePsTvcZY z*d-Rfq%Y64?Yu)E8L{H-ROCW6$s3UKTz9Y82*X=o>i4-qEJ0z{9HcF=g*Q`c*|^?%D9BN>SY%)UugB}C!j5@AdzD`JX zkJ;k^7SZ;N1n8qmujw4Bo-GkV$&Fc*ge3@KAzf)V#o=#Oy|rY^dOX`|-ffOY<|rX=ikl;gz?QGp)0~HD_*BO`jiA zh+juP5xQSDvs@YycU3Lvo-7)edfVf)OO3TZH-09_6 zmvC!7whdmYVC_A;JgNn}KZX`67#6G<_`E+>8xDfS@DIHh_@2(A6!h9WKTv#qZyUOO z&Ay&e7&`Y@-*@>SL#On9(*I_@N_?NSXa>*PqwKQgGjj3IV`ahiJC!S$6^<#I*GKiu z^R(ci=15WoSiia#oI5O(YB{wmrmYq$aGz;sC=H?un2lEr@T)|djW9G7>)q+EAzwJX z^zPZhG?Q-qQW>;1{lhNzV)Su+JI?qEu~z~!v}N^~QFS`RJ|k`c&XwNRed&hXi^G^% zsEB)b+|=ZgQ&`b^btyY_MN2$fYJyj8Z?LM0tvMZX>-5j(#-1KR*=eThJx$cFe)Stgy$6y3ca*-GEeE}8?5VFC}U`?iW=NmgT~Og94|A=p)Z zn1F<4t+R^Uyh`MbcLU?RNaOkGaYo6Z-^pyx>-Di3b+mrF ztYWw)BDq?EVSUSHw!vE^NdZ?QdmWfRR>nxy&Sh%lSS=yV%Ubdq!IR7D(A~OpZ~oau zI^C&kZa}ieQVoW%&{~@EzAbt+b&_}HFfi`sG$OefP(aApon#~w5~7}M#!;ZS9E`ZC z4?(tJWUSn!W?5^)kIq(#q&Fwq-f#)v*nG)mxg^cv_dRl(JQp`FGj>g8dvGy>iMd?( zp0lHrk~L+;=(_t;o{{Hm9@P0GDH@EE{18;t-Mq-z@S(FV3H(4Ndb0uD^q4CpQ&Uh( z?O3j6QghhFF#HsN?G~R>tn2Yl;q(L!e_d-j+*G*+!z8;x0!&kuy^id-?<; zhI3&TfUpxgud;1a$<%UbEJd9)6xQix9})HnqZu6;)6mbzKf|rgvgOM`AT)-b z_0nzmz6D1qOil^1%{kS`9xJ@xHRM5dmar3~}CbvE@* zl%Ew=l~Nzl$q(bs-MTYx6+lA-Q2$XY-Bpz4$TnSqOI|{;UQq@_>0kW7AV<10M!-tL zQHAMKkdbgyGQ|hbCt7AV)A25+jP! zgR^#8sM;FIz(8iaq7XQxMKlYA`dX+uRZ$bG(j@hCMT2cQkcPPct?aAeH7r!qINdx< zqik8XqNLawDa=qTDzS`dGgNAEMlqrtI&`>FGzU({)i9%jkRMO0CC6Wa5kHI|_*R76 zT-USOQG;^BJc6oL4e}Eou{>O~6H4Ph`hbam*_IunzrzZKXtkb-ispK z%|(8kH)I`B2v=5;_K-FTV+R*4$_Iv`bsyT2$5r~YQKH8l4yltuzthw10Be*Gopvt| z^w@7m5O(X7>yuyd@xysYY=P)Zkq~h6(Sf~>sGYun*Oas9j{4COhL1iDl(*v&au(T~ zSCXBLoBk>hlv=zs~&x$D~gzg~;VQIC3OFQmftPkfs zN2!q7LHU!$G@g=>KXlGqvSd#nmlU>k))Bi&=!(B5@-zhjVEhPK?C0H045|z^n?<6 zqw4Te;)_h=7t$~J!%V3h*=~F@u!0#{OtDd1SP*i zT;b81raJ>ZFYLXD4Z$EZ#;(T~K2{K&kwj7IN~D~@{JC|Sc_GE9I*v17iLB%q#M~tL z8iJ4zCg|Tantg)@0y*B->|Q7e@w98UcPmaGEP$%F5A^~nBra7eri398DuI}{`b8=h z7%@Yv3n|=e(b&vC4nbuJD8m`*tu8*QF{#2HK#CcHG{}iT{!Ui@Bnrm_et+RtAl0#e zfl3uc_hYWzANxcAm~&l#t@Wo7af86tWU$s;EPhx3RlINnC~<~0rx+&?fhf2|?(B|qC!|h8}>>+KI1<1?|>LNx=d|v|c9I-;K0xxnO6-+YlhUPJJJ&$PBa5G-#?et7I z&x*#g+m-L3fjRABcD^8leG%QM!OnInxE~EnrXO|=c^V!zFeFoH-N#zAVSFg0S>tqnHX&9JH)oXZU#Q&?@_9#Mf$lW_-aHQ;bacC3PCjis`SD31 zb~?9x^$iBn2I~6kq;TXiaC0HKr9$K?38~=(g8)c9Y8@#@|5o}dXgZQ2^%9wi21spV z4oGsy;;)Wds}K1}j`%^(axxNQ@D(x@t<#3U*c(MNru#uo?|J{U^LgQ?YGnBoWw7^t zzdZPHMSjSm4kl{AYibb(v z3Bf4`zET;t6>*`YApvGw~pnTA3C z>fp3w2zJSi_CR=9t02u`O)c}b0V5Y5ewUzVhQNdcPgJ<3MX@##y5Lnk zWNC`i-Z^i<#d z8W!2&*5voSbpvS7|8@#oGTg$*F@SQF!&j}#4+9xfNg#ubTnrM5d_ssgJQ|ru_n&X= z{4BZyAToS>ASe|LZTH|g)Pv~N`u(sne1O_#p2~tND+RsIfe|AG&O(qjeqRiK&Ggax z_}m$qn;PJhO2#6n*AVhNo>a!SjWPt2Gub2+GiEu6erDOXWZn4Wa$Cz;uOo{!&a5Q6 zF5y*#my9)jixn+tMCfE;Jf`E6h|7q+!F^92KVkxNjQS3#;4n*I1rVauEUL1$DHjH| zv&%+RgIC2e-P*zD*rcn&Bo(e_s`dfXee|>)RCE*^^gg}NF(7Q__eC2ic$DuDtzWWu zppuY#Dq4*@5I3NHH`cXN1dxTB?8oVtPxW6DFgvr>+sKE^lM4C|O1s|02jvKnv*LuX z3zpij6N`_Skn_T|tbbJu>nz7NORKh(>h~HUK>)$DXf@4kzek&x!~&U`IiF?3L4{9_ z7w{Sv>=40$*2e3>7G{)V7cK@gsl&q_$4llIgd)M=9m94{L3-Tis;?B9xNE_nC(2mh z*dUtJuJ3YdyCo8OLb?yq=Fc;4Ar}4=FQ;>S_$&zr)lzh7<9rJESfY zt?jpz^+!j|VfU>-r`LbVIV{E>o|YQ9>^^1~CGc53^}wyA|J~G$nKt z03nK@lm+(@s+Fx52<>K)5dO?!-V07F0y3!y7}s3Na;m4K1JOg)EI`W5NUqZsS;12I z9Rz!9E!-wSB#HE`e#Rf537xcGBCsWA5Q+Zb2DYCNkYnv!O{7DcdTz)OPqj11IVLqA zH&Q4M;=jvhs1|f9lqV5;d)6!YxzQ9@RY0J13@j3}95^tb>w#oh0Juz?g>JD#!VXT* zJSfZnu2<6ithJLrKek*m(H~uh;3u|yq*`;K2l(K?@~6o!wv(e#^(d<5*f?qd1}ZwK z4K;s1{@nU{2t4pIpSm!B6KC5aWfIw+jG)l_&o=-o9(Wq_r`#$?%i~o6~x(5ge zjt{hlvYeSJ0s;kX=!r3~*Amw(4}xS96$G!2_@FDL0O**mZ%QlSX_}v6AKO*$$0@~f;AbujKZ;LOn_7TZGERI43c1Sa5i)02UL97Dmt~e_DK9@{IQbr(%6V8u+WY7B{W_rTRQVCRTCo{J` zByJQ?W~^6k9B2sqD)-$ZjBXB@xfB1j)n0^+ZYm5>Iq)(MahV$1Mb4}~N+KlgXVa(4 zx6gj$v^96s0w;!mNy&hf_~|x!+aNjp{oJ}zLP(R>2 zs4d^`96ZEqb-W+nNHoWSs#6fBLiaJzeZ+NC$cEN~JT9ZI^HYD6PztR)-IxiQ8iUy{ z(F@zAo%i(fw4VwC8I43Mx{>lRv#wN-&`gM1p`%F)LG??w1Ny6Z))A^GIHqm679v=# zkNnokiQ_?{K-~Ei<$?@Fyv#PM0i=nBCq7C+5>TUEz-QYIH?f)z4GE$JsuecE9Rt%R z7W;PF{?g@8pX?Fd=_xXp3vrJWtaB96Dc!&O?CJDJpZOO0L~_v`+T$`|F98Y^vXSAF zzXYY72v7@E8t?zYtyWJcTKzC$IV2yBlzyZ{8YLMpIeP?ks+g+5JYp-n8Z2t|f`TJ?z1kU%LcCt?R7 zAB*vt6~mBP+%*tqfB6FmVafo}yVweR12Q66QPjBmOo}wkLjzVMBC82PkRD<}BJNL% zzB1*H4r9+~DUn@G!)2C)Pt9S@`AZN=g?*Q`XyTM&_^JH~-vu#mhJv+R_`BqZ+C1Ux zr44gsMM(yk+ew9;ecG8w9r}27GMoFhzA6Je*`el~Ts-1N{6}1UNZV9@2PckJgP+@9 zbb^?W43~4!f=DAG)aCH=%UglP33%&U17wp5`sU89**~VOA(Uz>_><0ILZVTPxECX( zq#6!DO;)$FP%JY29A?RZRVYsxh}N!X7FM^v@WkBF@Cvhpgkm7Z2$-{k1Ad52aZwxN z4H-i%&)>fDM7IP9C=+x05d>;ad&)y=LE4m&lZe-}qIj?WUTS2aImt*G%h2>mGPfZz zgy-17oEB@!Iy|Bf;*P{IKipGs^*_j=%^x9&_8#1ZktlD~_c}p=u4M@*ErNFoQ^Z7*cwmIRp#*z8qsk3-qU{FFXi5 zR_c%N__a`zDm7FfZzsdp+c=d=@nuj7){lOH3h8AE)e$REu0-Kg&_X#8sC`gwVq=3?&04XfiPG(W*(wRpAv0T1z(a6-d4oUXELF$U|je z&-e@yZsZI}Oj7kv7U0nJfP^zLzv!Y)69qq)qp4YbGd|nFD;}v%YX`yTng&b%YVmD< zry6`@fB6Ipx-7$kPY^vRWjQwY7F{3l%UH(1EFyVm;N<8Lf9Mw~k9K3DkA` z+9MgBkAL`AoCn}kOwjWwJzR>FTQZq33#6B)r)R9X2*Dp%u=1W`@^oLYWV<%;{g?5^ zH&`3$G=IGDsa$po_IgbPYM2m){&lLCi>7ocx7f2&H_v#737*-sF)TJy6D5H3JG$>D0rRs6Dhe-OXhgo?J3d6o+_7_8D+#962(bHaL;rU6 zUv-T^v;gsHFt8j(Y~t!jH)fq{`#3&$T1bTOG$%SJaa)Xbr$AAZU?rE>hI?Ck)u~tj zxAIqd*dJu3u^~R0>{z(-?R-@sse#3@dD%P1jlw0EOyhKvJ43S)_VYRC*+C zo<;yYLG(9)uxc#8`8g>bRG0+V-@;aBC7;ko&>4v6&*ZGMe=eVt9TYp#ADAK|N&24M z&t`0C!5i0CbNDxrM?fV?%SHWCXihs=Np0og0cjBPL9$4KrqLM83Mi1_?6YPPO$085 zjuVY^nwpqf@HbFV#EAjQ%vo>c}uV&p*<&QAJUEwlz zOgti9%~R+C85@94Zh9n!)Uu{7nemTFQj=ehxo~*deB7*x!I&Gx0s@F_!Z*bp1ux}? zy27;CjLDj=AjVc`km`HVji{Bahh&z~Zh5{K^GLi0N7BM0o7#he@5y;EFldk=^+DyT zYDTi-IVIAUjL4CMu6OIIG}^d~n2OgJf`ug(`-LmPBrD>HMVDS<$D15zX##hxSYY7C zQi)B*_Tqg5H+szp-#zjD1$1iBDTqiSIwyRu@{jII6A6BrQN7x+!SGCB=x8o<@KbP| zmFr}MJ@Q{qh<}}H$v8*DBa$0lNrYs6HT`f=Y}DAtIr)*yNv@nOUgjsX8T(~=!cPJ3 z{Q4d6o`TGfodzQtoR5t2l3YpRg>CSAnW^QZHyqSVPJs4fg8hvxx7G7wtf|6@5`Jr>YQ#zn-Pp#-XLcW9wTH%pMNOvDLRmwfK1jSx zCqPy(SpAXhQAZt(xD=recg4A3T!D0%Xa@tC{fvtu0LeW0_gQN`BBL^HQiip5%T}$L zf!bU>NG1$_61+9q=zO@kdBh*`ljA^gE6UM5&Dgo=a$PIkDVv!6+tK+yr8l@|TDwuv~Dt@RN3KKGiPO9(wo-P~DEo7%f0!g_UL*`K%<%Oh^n36Ce{3IE9 zvv?CBjfM}6*&!=j;BM!WOO$h4=XIg-|^Uah2DYyVjzQJ2ryqQHkRy*#$!MeKSa z&iqtcqB`PqH@d}JAb;+3chGV9eD1!(l0(RmtV4*{!B&X4jj}MDMyoG}wJ53*L`u4^ zHJKQZX)puA*+fZVO|El4U8B>_1df4>)ff5`a#xd%5+>cCr|9-p6u#3@p2?=|Lk?12 zyacQ|r2&&Z>*g$xul=CODJ8+U9v*GkQPZ6p7}=>?FH;^|NNc2!<5@&R)4@FD;y1aS z-oQzFrpVX{y%o`uuVqR8QpTS!!mr>o2WO*|5s_#ODQ05QmBL)Bcs#@PNt2Zix{`yn zpQAby9rf&EY{hZMQgCIl7K%tJKx{vCBytY=3KCd61J~qNihemE;?H-vJi4bu#H4!< zv{D15CK^;H(UpV*=6_&u`w7>BU6SVs;sW7ALE#qEcmhrdgWeGSTm+- z#l4i4E537$??nRamFHFA75DXr=heujjd1*;!Fyf_hy5n+hsWpM#MDnO2E=+d4$FND~U;ho~-6{cv6gjx@PUX6G}nMWqqMauK*C8EZZc#pmOpJ?Aa9X>8E3+ zz%+C`$TB<&kn&|=LvHxie2_(2D$=`vLJs7=Jp2P_l~}SCU3`g!*UIDhTYjkwfpxN~_2k2&LF4ykdrz7t#?>^i{W$1Op4{SdNb z*E)(Ky3+OKJwrQ?&c zTaoE7%q!)M_(X%o0m2xK+7 zyj?Byn&BMYyT5>df+}Ec|5-u)Z$5DBHQNOk)%e{+oSdurxpQEBem7uXe}42?BIIvjco6?)gL82oW#cJ!U)V>Na?OJ25j`bQmnNtV` z2J+&CF}R`+EYfq&bcvskK4(N5jx%g!4BOsqci79Tpt^TG>f5E@^zl1>u+9^qO0z7V zVWpZVV-9--aobt<@PC6_!gOTd_kTtpFGD*U)*|~#xDz-^+24BJ+uu0%9s&cAVM+TT zT9MV1)L#{7QPc3Z&9~MKOjIatE8wr=B*_uxOsXLtQPV*RAz#csrk;JU%3M zi3V>0*8#7TYm0}Oj+R!sEv8=dPh3jWMefwbGy|-_i8E>OB&PsXl{$iw3z+7qB*?{v zA>~cA@H$IQt2VVoiNG_<7e$Mvby8gvxPHdcbuDF2P!%H5XoB>)EE)gff;Q{8vSYA6A$v zMyxZ>bvnL)r_hcoMv7 zXeruQtA9n_UfY6ec9gHqlvPw;6%~U721__NHZ;~ZwmFdoRzMoed2l}dzV+Tv(=g@C zp;0bQ4xtn?hS9`k0&qt*$|{<{Fwx~0P#h180VSoOD>y7@tS2dyhH?vst13iSn~<#A zH)JbXGh=F~Vpxk|Fy;}~#^Y+xEIoyYCxj-6fT{ww#S$*CzMaSXJ|e8;Xj@Bec-%6z zYyxWiM1>+|VWmyQ1JNP5xs{Ijz3MpS8{xoZe#0EaPYJr_!GP+KSrm(V`uThUBugcO z-$H1}XOzl0KzRNgD}~YeFxR>Y)XLCy`;l zc(hZ6la&>brEv)&12qb;CslkmxBgoo4vU!@2hfJcEPWGzNae^U%FlLKi3r-*amRH!h{Unn5;VGD6V8p>WKqK%g^)Sj}BfFN2Kub1079^W%!M>w|xDWO1K zSM2_ph$?9kgS=_{HwbpVggQD*dQoMc6!mrp+$1*~S0j+KgFW85{Eo$anslG96gbT; zBrgQwj2Q(t;(Yx7N7-A3)zu_xpnK!)POt=bch}(V?(PuWC1`MW2o@ZIOK^90cMZY) z?&O;}cfOf9=RTKT{8+nJb@l4%>XP@x&?ya9r5Re`GUlq5{i1e->ULza?#h^UXuwMF zE&8)O&b^mW@imf!%f}{_q0j*XsM$mJPQ-f)^s1q>MIs8jv+ftpJ@0Vcb0~zfkCy01 zqJoz-*4sIBx5r%Pg&q~|Qnq3Ajj=h_8V@TXpZOGLy9|fTq8B|F`6N$zPrnztcd@;T zHS-`U1f}|9c4o&390;_GgGl!?;^X%on`ZlJD)a>xc!s-iz!3sfRmD{OBU=de1j|u7 z8;dSxem1n0!5ykD-003$gT-XgEDaf>r-G-IypLvO0 z#O*C?v=vBG%Tz-9FO>Z>Ugz^?e1$Sg7iYdrUF^r`uK&B_k zX{4k0*)56R*=t}-DH%TaOpx{1GdhnSj2hdYB<#B(`Q9yKj7(c3=Vb}BUB?nOXcQ#1 ztSgs;X0z-&n!?Je5?nOHY4J9mOX%FZuML$n^o6pL>&pDb57$<8vM-eOftFCV4mw`+ zPTFG9DecddEobMLOviqc`M%_R_7)U?cdRp{h&pVa=HK6~!=(9?N<}x{ zHrK<`3E-Lwk>5;eO zI;$Kf6Y9MiSE8VqAT>W{(DLE`s_H=VO_S)(Pg$F4^9|z{cGBSMY0|;UH`yNj__j}Z zswE)iJSyfgUmzG%GeHN4nOs+a$qrP6zIp>Ed=m>0B0|X(nWEKw0tO`?iu#+D=C8eX zc)3&hl;1x`96P{sET?s1^{Y3^JU!_#mtlbZ`lm0qFk5tu9EXXXc`t6`Rx1PgJrKQZ zAjn}IZA;K0p5|(FdR~oQv$9^z7LKs`!v-h#_&_WajN%&g>uEI$_AhloC~;NUli;p; z2ZmB(unN;1bPV)yC4r`S#cl8?8LV`gwn}8aGGQ-N^>CwQKGBs4EBumJ_Ug&>;P&QO z0`~2#n1+BW_J~>SN{%u(atN|StbTVn3(H0U>ez%IUclt)LcJMrlX*A8h8uaUT(Rd# z+ua{KsAW%IA^zv!Vf-j7%PhspCMhlZJxpFkGW_>BG$b<`&hQ75HiAJ?W>|6#bSf>{ zUdA`GC(>}3zeY2_QlHxRD7j(*P-1X|Yb4z>3qe@jm1~pAgq&tH*Nb-?` znC3BnywQ-+B2o@=FrH?}_Uht5!*a)DE!~J425m@!k6$VCsuYE|{u&LFb9!9kXDYSP zX?FJ41o56{=1_h`?%t|mt}TzBv5_QV5;kVAd|jsPeT=8bPZTd*Lz@UtJNGUaG5zgZ zeGeAiT{s7sd-E9n5fLh8#F5h)$VDbA30^8Cwb0b_{z&hb`#b!7_DCQt8Js2OUGtns ziFJEecaLitt6_h#YmWze%u9~=7_-*Q=8qGig-}u5Sz)NeW6>{#)GQ~9s8-U#9g8vr zd8XB-u!&Jbt7P>zX|5`nl@rJD=6xHyJkJ<0v^P^xJw!?gbmO>dzWx4wCA=kfp?mnbZsp@u9TKfeu3%8K+ijD0W*paF4r%hYD;3i>)a>zvNM{8%# z4_MRG%+=MO@-+K?g;jVfySGw(DEP4yvi&r;oWO(NHU1q;`f1XX=P#n+x7Dhbg>hxe z2Mt@cHvz4)^>-uRq96QKQoG0A5sl|n7p>Ov#_Qa#kJ0UL!1xrcJ6kGk($^zcpG&xZz^ zOjAjRQl6?Zj_F!WHGGwY%d*6j8S|eHGDDHLdAgf3^1;r z4eo`y&y6Al0;*Hrk4nId@55fD_BcgUP|&_NWE0c)f|5Cgo*d`EBBl}j`(L#< z;ywoAu*Nk7mWH|TkpdP&kni_1D}y$=pY^UD-__Ayf@7h&z{-wq7IF|)N7|0A7233Z zsQMWJE~>=Mag1M|B8sq&M}q~;pD0fd_p|S+;E14@t4WU_qZi)G6{nUq7 zC{hO{`b@!TR?BDD@#)KbyFmJ1oHY#bybp+vWG887lED=K_slU+qzPRJhkwxZyC1G&)u#% zfzAzLyHAah4Hi_{t0SFHm%I~CZ5O^hMBj=n44HTj6=0>V3*o=*-U*YiO~*G+8l87p z7Supi>A=)8GznWi^3T{vKmeNx97Lo@Y_C-UR!u7>cz9w6`zfz^EFf zDPKshFim(yZ7Q4XVraIhCw+!WX?RQQZRDJ=tfZ&#Nz(Nyn>}!^HIRpLGl;lqZE`+5 zpbyMF*ZJ+cXKi#~3=BML*XcLa81+fQVCdK+Q=c!;vyOPv&5u@X&)0xe27k5dRQWFO zh56}|H)1^4f|H=gmU9J+S>6Gu?D1*eyr?XKs3L(ZI8T59VNJi7`3tQMQh=8z5502w zY2Vhta`ON*!zo6D#{Spq2YNki9*8A0xaw$cu@&ISY|bG6VhOyE#({1m`N8u#C!O(W0hP%dSf^w8~%Vg|f+2gNZIGe2h-SLNkKY zfyG_fJ{fa1d?GC*ZHMnuK=1OY(o%J2eV{x&)nt`|ER3}pj3pzcLlI|L8*r9FAQLvZCDmnt)!u{TO1va1uxgg;4 z!1W$_^qPW84WcYokm+xI0R;6YZw+kjnbAr@ay^VFZBLkL^5GcI{!(J!{6*rlVwdrS zlQV3HQC7Ov1+Tp39jCtv!#E9{n=lhz*c_GbD<#u4Abs6UvMU#j3)}OiMsW!A#nEb9Qw&|C&K!m) z<2pCPm*JjXI2>acaBAjn_g0myWY@`)q^7j5^a84DffQO7q=uQaq5ufILC7{;xV0Tv60 zI%zM&et1xKFLhe9xw!p&b9?D0yw#8bcK7s|;L_5!+&|vy`*-@FqfR-a_IL5_!Zqw` z&REIfbRHXu&WR!|BTNg4`np$HY}KdjI8S16Q5odpkXwnm2EAdzZCCHaOnEtFlu(~i z&HY*}tIISZ6(r0*1gdp-Sew|nif9vIz4w-5;U_wZ(7A4z8gju0QVePblcq~Aam+?i zNOrLPjs;CfK`KNBYZGh-xZ##qMGF9;O*fVt%x=f!F6eLGrcWN)z=;bXEW#O^A0GWs=*^f zS<27UgwjC|xfo{veL{EmVc&abznS$r6@*P)w2fGee)`jw-C1F|PpBdL&};lUh>E2H z-j8ye)M|57jCME`mBSx_7;EWZM_BRD(0vmsir6b)r9<(FusKujvvqMCF$IyzJ$L=IBRsnltZ&#>o+;kAdkgB@K<5H&y=4p8E|w8=h@|&CaaBo7MMf< z=QCVV&-Snyu!d+tRD55gLiXX)SJd4k*@D^LgbY|kyn;q-*Je`_{kW% z4ESvtW*0AWC(dj^m{%t_${sDwc4v*HviW;4Izs|a3%p3n^uGJt(q472`^R(JHqCK_ z^@}_U<)pioM}YVZVfLwVa1}`PeM)1XBki5oBkEeYqyU6;;oiaRWOPHB5-*Md-gLj( zH#+ua7_{Qnx}iZc^6^o$pwF9r#0c3CG5LBbZIm#2Z6~^UFxfZd6y|O-^NZ7g*azQv zh%VYUye?9%Mm>Hu?>Nr`pf_9{mC?i@W5p93VH<#+6^8U-v8ltZGLSoDqJgnHV&k|u z;r6u3;T}PQFXyzx;Sr#o7JNk)WT#NWrmnIv37@Kq8$aB`4Fg&QwjHZqmtF46F=3t1 zn=5LlQ=NDz^%ggD2IK@SNfT#* z*&fV|oHpT&?5Y>#_BKV5V4xcNTMyb=3-eXQ=)5biq1z?NvF1~)qR+B2^{Hu5)6~@0 z(F=)G5Dw_Hx>_V~U6ILvHCJuOSX7f|Da0TKraIs7T@^W3!}66+)ly^FLg0|jOox$D zhB2Zg6V#|pw7%=Dm@aqh{|H05BaU8nx38e4?cfa6(5{@ZZ|X{&M6k+!uo~Cth6Z-? z!Haulh0xW>;yVlE9`}?gW+x@oJ~%vAHC9L#;e;T3&_KSELR9-lfq^=@FX@6NFsZGxE}E_Pdr_T9hz_GW~H*XPVGm6#RHlqk62K6nyjb^r{rBQ(FXNgo)ZoL*DfU%|l%L zer&rYPaRL4@z^WOoXUtGy*tu~5@aA3dp2a%+RD3?wa>M5rjG)t9k;V#m-JDI(dgR+ zs3a78FPgY3%zR8< zl1P$o5zto*_K*^hgY)f+(D+|`zDC3*6Fg>(*s17cqPExI+tEYg5nz@t;G`G_v~Hut zTSeH~Za0H{CD*|GTIVK3ubC#O9(AH#8&FAc(T={eOvv3Qj$*a3JUj+LmUl^#I*ry_ z3{XIyd1p$)$PAB)s_SHf4YE9tAZE{mG;X+_tX=dCU1t0D2IW^gOuj2W9Ffr z5mVd%Qx88VF?;=+V{%Jn<%>&!`%uF$K(`4_Bo^1GxY1hn#k8!UduJt3QsSQb(Myjm zxRenpqefP}?Zh>O)E!b~cd zKQ|hu)!*^kyif@m;eG=)@gg>MfD#WrO0w3Vum|X_4nlmVw3}In;yaz}HbChAgfGGw zJ)Oo?L%~z{a_5}sI?}?%4|B!uE*xK(wMR@{@XRB)IfEE>Pu<{(od3o+e7au354#qb zLwI5D1##H)0lQcCJ^N^~mmh1My>5I}pBk>bV9oOYzq2$T_PuEyZT=X|q=;pIyh#EyU5;-0@ z=CgX_UX9e`cPHdBM#jGcPwQ>X@=b%jlui%0vI~qlHxE|grz}K|I2!XCjY>q7orISq z!nEMgTRY$nCrvBw(0OTo%MJA^qbflPB4vo=?9NF@>oqgmh`)JYA;^?);#~~gM8_K1 zqOG$8Arz=8TCXso_}*2ac$OlDYc=pi35rW+d|{sdB&p3VjFL`QtYtftunVF5xZ!3# z5mU9F`uNYCM=Cd(fsrSW#)dpTsu?93G(Q9jy-kZ zf+**9!FoD&H=mf|m(Bd))P!Z+6Ai5r{&6i&!Y>7sXsTjGU)%fXFP%o4u?ly2!}FoZ z8dG9Bbsm?keqNncmhJ{sGx2?&B2Cw{KAo(qgloP&6)yBWY9m0s*NhIE_Qf1C7dWrl zuY>pXb@uVNN%G5h(E_}(@U^yYMlRiKn{{lOH>z9YGQ^sbI~(n7XaPm?m7XQp9Yr^V z0?A_+nE({;; zpP)|bBN=`(|BObHjF(k*^GjDs&DKHGJ@I|Q{259t=_E4z0gr&X zx@w+D=xBg5Ba4EFjNg}l<4caENz}Yasop+`J<*JX;V6;u$qArIZ56EjvK-TdNBNz#6T-K@9o^~ck5?V2*?Uiz!G)t!90#?J7f!rht(HTqa&|3U^3s;$1AyKgVqu?UB6`T;_9w{vHJD9{T*qCRL;? z%(beR?uCDE4%QVfFB7Z790|78?5dPu&hQVzJ(G(0?N6Mwgy-WpZ4|4V-u)zl0;D zYQ`fcQPD}&D^X5eF;Ie1AJU`YawC$oL=@pxZwyz4H`=UdU6e{DnnNmp^|gktT?V9fd#6yW=7A?D=V>MBvGg>qGK zeRET`RavGAc9P+p-Ukkt`6P392oWaxdqPj)Q;fe^6NTjeL6}HVlj{%vK0Z++6AqnD zjxL;mE)3MM4oW}ecxSN1&M*its6v1BtVPo12GscDZgzmMLi$v?erKWDpJ-V1t-!x% zpW@K=wUB)V)5fE1M-U>W#7eNLCzH*O#1(n-Nj&4cOg0=iLP?E@@!Vx0P}SUtH8f7* zXWYUSk2|jRp?Y@4ILj(ct!BQmYD6j)8g9frhY|`#c21x8n$3R zIUf;7WYZ{SCC{{01Rmh>@E0m#v|qqGnOg;ucAT45?Ob0pyRCt%|6-r?wHNNrzKOyX zdgRBwuPdC2tsSE4d9G<7vti6B1LGjn6<^G|GG<~brOJAl*f$$gBAw~3UQHvLuYPH*?f2capM3>u5q}}*E56M*vVU7K znPoBF7rY{+cv!lLe2zN)!JxY0cn3Hur6W8j6kQM=26@d^1iQ>MYGFz|m{_WJB0Pm! zJP5IulpqRys~D1mAddW^E7;+yek>2+jVH~xlROaC4^qN zS36_TL`Z$EsT2Fn5YoM(zgPpSyZ#iI>URJ!_Bbxbr#ZL_?M(}<)eZjZJswAB4W6}W z=G)tSa-Q?W!U>T;I$3nlqxP9!pLK~0hy2#g4d)$mW?nb^>79V@{hXIa+PQ7ETjw&X zut#osQrL1B)N%+reD!FF9$t9YUq^EEElvXi4#0vy?4djZ&Cx!AaZP$oaz(;sc0#_2 z;liNL+xxHY`cixaqkl{qmn#iG%!h<_jKl)kWBvR&Nfdw4bdr>D3dC48lTt5It1QT6_m!||CQEj7d@Y%dkOso~yBroK?qgwCCz9G{HJ3O`&v$e0rk7D8@1+-#1YsBj5XaOo?G`jzwvb z-03R!I!aiGKQ7jnQ2wwm zEI*>kR+v8*Ba{Sm1xWx8Mx1e~4BlFaa`c_JoAHnyPMFNe~>jusPi0 zQmizbDqQl9m6FQySn_z-^N_-ks*AX~+8#l3mJ%9%{&l6KsPc6mqgXg9rL)lT7d5$< zayPxdyAA{04@!<2QSfrNS}f%c*xe;V#c3+{3OBZ9X8dC?fG9V^esg~gkS99ili=JV ziv>Uy0C#B^1G)nX)j&B0P85*W>EK$5Kq=GEsTVm93SjjWE}gTCNhq5VH>gpZiwB8!j)>QhaITd$x*i zn%^W^*Fy@|@u6!QKj=kvdP!f0Y6yFGH(ukhxm3EN!G+4Hm0hiv@lNiXgDSwqagw3) z*zAh@{m<5&a(|X?Akp@nlotKj5aI+r-RbMDR?_>80sD^#T-8P2DZ~$UlY(XS`(nlg zGLfGb@Hx6rwWF~6c?v~tW1)d9hjfja4$@fs@S~#NE;i?qA_%)j*Ey%cOMTJsn zwM-1I2gGm`Op1`B?6}^^4u-lpmaoUqeIcJ5+d|ZQa4E${iWfrHw>HV|to{OwzGNSV zBnd1*)@A2hc{Nf5Y#U1ON^;wph0uA}ABD0MHCK7-nT!TP6HA3CcFOeG)TTN*i5hvA zq2FgSUSUq|N5AnsB+jv=KzdTGDKFp=ItIYMw&7NflgD{LQD0u6gcC%9Z>rq>P-Gra zRb`=RAd}DR>kZgxEiz)BaWKbOykP=Mtn>XL(up(Yps4i`n(?MH6s=9^Rs<4Hp^IQ2 z#7RuFpf?ufSU;Qp?(^ZAkc^bk1c}T8a?Y3ihAA|A3hAMfy1MU}U#P}f(fg_CoYdq> zK{V=~cC<6|;p=&JAXw3C5!o>~6Z;%4ESYV&V|E8N1l16uG_)}0%rHIDoDXv_bg+Wk z(U@cvY3w>~jd#@{dA&7;cd)yU&j)KA8QN3q^;ofYk0hI-UJTT3jLZFKIs-}pYgb8in^-qChtO=j-{LxjZ3gMaho`dS?Qfv4Y z2or}eEf(1P3Lc-9yEH#g8lcmvow}zjX#{Y)3$kTc5K0(RVkXbPD)16j*Vr@oLS#cN#2gKqtS6~JOOni^NHv~XF%`vQEuiCEHB?fWyYAc%+% z?o3Yp#4P&N*1>vS6z->=`)Y=IlwD;R6OfY*x0^F-jukk(oS2jzD-MTq*yeo$tJt)6 z8RK8^|7)1zzt?Apgw_6L8@}(|-Hz{#pEinJ_Aj93Sm3=nSK!yXKHfOP_sqIO9M3PI z8;oL*qobCl11sHk+iQ@Mi$yeCd0>CD6&f0TF;|%_%@iE~J(buL!2pptT%mD|Y+Yz6eJCV0aJ>MV2PAgx{?a)qFzH|ah8hw%PVr}q~^T>5nns8NIR5H?QRFAYba>O zYw2|N_3c$N(Iz@x`SpvEPy8BbMv!BpCB4xNaSn}H<$ zv9W+Wg+x6CjBoYrrF6D!N9Um>!m;qsm2(}C3l7@^vBUV+knUjgrOF)FGB^fqZtIs3~&W^`Sia zaQe6q!j-ljSd)1}84C+T4mNhg<&xGLnbPKvV5w8l@(HnaEh+fR(cACRCcWK~rrc3( zH7;P(tKTcLRdwo-LU!Rp#4f@GQDRyF!N+OBh@s*PPUna>->aKFxsAYUh|2Wx6enzs z6PymMpYn2YSPmEr*))Vz9NQTmmG6_3t@}8RDOfQ(J?eKd+pQqK$5!utoF; z567dYwZl2lIhb?t0Wi2j3WU?UeY%sG+nJydo3EakuAZr{Qr@UY5)KK_=7IihAKdN@ za*szia@=}^io%h5*-w~q44?pP)lf{J-`5I*wp4#(n0+9j{J;3l>*DR$HUPsKm(+hg0!~k@E8Ej5*4g~xAGa=!$0OJZ6p+l+Q5=!^X zER_)}3?Yodfgu=lQBq=(_gEpq$i4G0B&o5{T?Ug~{xPzN`7=H|%8R;lrP?B+R)g57 z3MWlys~K-U(Vu}S@0(_h2VADp(gfSezOA^9H^+$h{do9Hcup@aMcykff-ID)a@aKh zP#P-~>`qXjmR%<%{u@D`pp6d$ti|yRdzk>$+eLL5E@5x zTCuV1gvg$xCy+B|B!>C2ZWL@IOI}-$nebMfM2*bITL@F($Xg5Qs zHyRZo1Ph`J6x2TLBbXmkdjO#=pUgE#_;}tK<>(C;z^DAQP|R>W$m)Bm-5he<>1{EDEYg(4rQ?~H!R~?a znNAs~LXIKv&HVf$c@c(dWaX3=sC%b2xj-7IW^`sQqIz;U?sY&xa)9qi?#u8&z-}H+ zRU}6}al5!wi+26ve2Bzla3<+cE%WGPKN*x;ng|D${?If`PclyMH2UkiBRhQG z`D^F>;`g62)7^Ya$Dj^HcpJQujB z*_p%qFy106$&zRf#N!$pI8up%PNl49to~^$f3MuMjc0nM78E%Bu>7&1+#PLhG%$kr zb6-p>pU$Jm$|q)FCkyzaAZci5x@%K!b#+@ak(l!ujK_iRNj3!7pBs3}H@`jvfZL0Q z)NDNyK%1i)$f(no_{OOA@;KvAF2N72>U}f=d-3)4LS?93O(vt0)O~)#;1PaFvBG=q zTRJ+3yLdW~u_XEhejDAu*ifJ+?m%C@a;%Z%b&-&;(VRdnkENH(B>xJQ7kQ!ax6Y$b z+joV&tuJWi{C0e~RW)r7jTg1xfE+D^!u(L+AZVQ5+JmJ%=d#H*rJE z8&@&Q)j6@h^BSD}LVlmAuXN201}Nu4DEW7Jp=MH!D$Lu_1X`CQtDd=e)Sn|Dc60#q z6NovWyB11lzd>h_?RVLd)Tzx(UOXspv zk_a0v&} zrMmm33Tza47dTLxK4KK?zbn>RY>V6-_OZcc`aNKu(!!ZOXGGQA51;L1Y`KY~sH z#kPSSfY7(^;E~|50>T6+iEvi3hF}Wak{`m!c!i#Yn9P_M8QED`iCs*cUGxndEcKmD zoj#d5(K~nmybo8|w;VU9@fae;`$x4r3vN^L^}xziJNYd~89paeiS^`vNF@A&K|Y zaX`4(aY9l(f*7GSmCII<^kOF;R6k0=p7n=J7SfBM1fxm4n~`K;%?iIFr_;TGsD$DT z2*VdTgyjt@{s~rONn3F^o#ZpJ_4f9#@x=cvhN5ah4AH|nMv97bhYy=df zbYDmnQ%_NZNkb%1E#1UwW_y!W`r=!ApkR&R=o~;j^%;m|NGZmcFut;6%w4i&386>P zM%q74ZB*YGSAya{ZNzK9=<#xI&lRmL3u{jJ#wVAkA~qlD4%^CrXIK>VM(Lz&^`qW0 zBB`;pBtXFqD|dRzc7_;u{I%qH`qDcQCd}zzgEB~gyqCEYCB6543Q$=z7xFK^eB_As zt*tlT!0#z;Z%1}P_Gj&1?N2{CwBO~6)AUkW?Y&GSP0w@@6yep71TH4v>H_iMU+oW+ zX;1!LRI3_krRG$-?O1VxtXa0+0Wfa~q5nV3PuvfIZ`ZH-x@w=sUpL=BxgI6Ob1Z-Z zPNb3Z_QAqHRj%5-*D;RWJ|4e&t|)&uA2ISflv$+hyi5;eW8*00w3QyW=hPtpsP9mf z|5b?4v>)!pnD|8eN>_Hq)Hw~}i(4mNpTGen#t1k6E=8zChkw(O&;jxinI66VW69y- z+iMv$VEO@R|Nm;hl}ckhDpUS3nqVn4jlS_TzWXawzaC(3jaKzHK_CZu(cTU!H0(X) z=N@kKv&ak=kYK<86}X55|4ZL$Xxm{4I@C1KR+VA9QZ_}QGk+P6r_`dbE z02xr^gTV6dihw$~C+C{l`0^ITGNI2!oVQ-m!(oaF7~DlzK0#k_1v%g3kEwov>!MyP zBJ`ES3$c^LKitjzuonyNr(NN?5B%LEPX@gvL17I#SNt65&I`bN&W;4A* zsWSarD9vbcTh2zG77ZKNYDDc`yJ`a*fAO#{4Jn8={R2q4W%uWTDD_?ZS|bPDg} zy?W>g>9J#CH-Dew@5_d2+q_uc!A1OnSBjLPZpQE@CS#M$!=Wux%uG)xD$TVnR>(g{ zRkvjG0RJ&-0?SWBWD42%oWH9QGQB<8<`R-Qd)>P$6*AfuKb!x(cUPsFiZM1dK2=R6 zT@x)QUNIk=2=5e+2;~_4^!TXCplmZaRXLOUq2uG$E-j%QVOZ8BSrTL^UWWQlM`pS8 z-hz>e0)X4;?i25MLjB?c#gDDIw9J7X{$}~G82nvPzOebBi-&qH)=;8G=#bT=t(Oc)+uz2v z3XpBHhDPF~BG&nkRn410IayF5?Tb$jw;2Fo671Z{e^?82r0+Eiu?v~(0M*R^m?PlB zf7?{i3A>e99hk*8F1NuQ9dyoRGEdly06=XvBJ98Ks?cx-^%TD-Zg<=I$?_fc(HY1h z+&x|(;0Ok(Z5QZ2BKrGPsT0G6<>i~1aj7ZUT5Zk#j@0M?9x5oTzrA!$yNZhPu^g#l zET<@?chj_b$J~z{kOmDe`tR?AVqsJ7qRWRHjr39iU)bBrI3oLs1u{B5aHDzf|J5Z^ zFmXxEZQ#1oSZLc5>Ru68m!#*hGlWr0{+*Ln`ac_4EuX3wtk3V(GTtZ))?bR0p~|k; zp%pOyx>fZNs}_%+dU}@i7MkC|>w8fg=$E6bK+wn{_zUK>aq=aQSf1l`b>3{nDQ1TH zVMKvpCGoszfdRm@C1pUBRG{s-GS~#7=h2CyaBg&WKDC+TSTjVaW*~pxLvM6o5BSQ8 zKyd&Dy7U7n0E=%mz&T*7Gl7E#y^Du~sR>{|YdfQMYFUMZh=z zwm4Ts=xav$qfZGO0<||&%{+GR;u2VaRjLSU|FJmIpSU{q5nM|Ls?tU&=8GZe6z}ID z0M!ccedoXgkXLwOc5ap(OVL(z{w;U)yVzr<>{HNsZ)1s{PObU>eg zE)@T~AjFl@vv?Ha^6wyjXW@Ek;g%nwk24+LEr@~xtVkhr{;Q}^gnBf4YUm2N`O7@}*t!m*p}tejD)~b>IixIL{Sh(qUq=kx$x@WE z^v-&g*!lF+u6EADv4T|t0}!7L*ZJ=wLS zi(>}%Pd%Vt{m#U<^LaB+cjd2ld(Hi@RS>RKV1OCfk6;(TWcGiq4^8*m)0`6Qym1sA zv@WD3vj+#1j(zR&;$R;Pp!FU;4iuaYf&AmrYFmNB@0h8IOZE@d$iO9Jq~ddYuBK$R z(;GS-;$2D(x37IyOl*9%t4hn9G4|lU9n-X&%GfKL3Sb?^SUCa@JqI;N0=WSFZ+qZ- z;MMj(jGOv|pLAN`?s|0`n^n+YJv;@4j|o9QdW^;Nt=(ZNMtw&wg*Zq(iaXno$gzYz zATb^n-iuX8j`N=;`w_OS!+vBI4FKLLB;wzeQMsjYpYjqaM=Q5|ukL4nPa#*08!|W` z{{dn5-`6pe<-+b_OeO-w+u8_o?kQlvp_ow`39uQ4sC*3m+2|kJRyeC>jP3*3i``EB z@X9V)Ek1vHO}KBvLN5RYV>oh#1vh@b5*0y*h!D5W@?N5g(m=8Ks)`Iy6pC$i4F0l@_VLHl3!OyS~|#YGGvrfPmZUJ4!>4bY6ggszi>7+Gc$&FuDgrA1C^hyGqc$u* z-|fpNYXwe$1U}IcSvJ%CPy!Or5To!Eiw~}t{dv_c*a(M!o5dexH;nYU91HRV z@K2GxvsS`vyRgrf_^oU*Rx+DIa6{1WoPdFU4&PfZAvjlr;8BtG11qMcnb1|Xap%wQ z|I1n$;X&gY{cUk%HoC*P%)C1MXhv7=26t)_**Bi%0L9_|xi(O2k?nfnFIXY(Eia>h zg~MK7+1^6I0QJ7`tpA5Y3l)INP<~;*9*@4zL769~Yp_Q?kS`Hl{~Epki(bJTcSss9m7D{>)<7f&uVuqQHY3 z+8R(X(;pxfw2q!{)Oi}2XM82QTq z)=*83IPe7$`OMmX*5@~?lT(Cg5Mai{gPaC{vjwhm0Tlb!F&;4*Sd0oQTSto@#PHDW z7=^y6XtM)BOSf>Rh=lcj=`)1PT7Q%}sV%i(wEpb=DrF-08o3V)5cm!~a;Cg@pw+X5JeVZN@$nXPaSuvAqz>NYB z7=riw>q0_>iVVb@-yc4mOcvMil2e_qpXp`RBLiBmkP`l5w+~R)VF{S6ojvlsC|;j7 z59lPONL2y=J4{I5{}+eC!ZPCiAyBpX#kKq(l%hG(PSU(`kR_N>`ZqEL6_w9xiQr9l z@(k*&;mgXeRXLwy$~0)z_{;=YrK#^P3n^@OPv>KPiHaA#GgLvUo)_RH5&xj{i>1!c z7MFTl>$gs793nH}@b)xDf3d0hgZO}5Y|czNruzY>iJzA_V&-Q|pkimf(}BJ;z%WJ9 zZWl82)&Zn<6+qcPx8?t`wgs%3%(pb3kBXgVo|3?BpGEU+*{3*J89{%4f-%kjsx&!) z3&^5nI}(oiZzflTt8QdAjw9rvClL9dOa@RI@cr#iJjE6R_JSR%=*Z}iU21Bz(eB^~ ztg(FPcZ8%~T$9OS#Iz)nlM2Y#H00Z(Q9-u)(69YE>sHM6F zh%vL(T%7DHiYL>uiMkXr3y;AOANt$2fj1(p{p&{*N^wA5?WA+F?R$B_7Bl)4Q$HHs zc^?QUwnj+%kB`W{Zhp4ZRpY0rnE>XSr|e_N!bYzqVA%#KdJ7^X90lae%TBln5hZ`R46h+Sz&N3_k=uG23M;a@G8Pgy1Jq`r_nzYl zf$V%9m#%RjnX>PtXwPbN*-F#N&JN2Jv-I{3TZFRnvd-c6ee2w40_BoDdwskw4wQ-y*|(L3X@BbU<`MfJJnQ zcKhXq;G{UMsNi%7!^EsKEy_N|EsJb{2pbCN{umI=tT>%HI!M{P6mS5zV*DwJy|bGZ zC;%)X_Fmn`_WykxRbDDP_b3x$eE=sL3x6Y}@N#yP%ce=iECxXQw2tzr+mt@_r zI5th(H!CtpR*{=W^+g1*E_zQNLi>ZNKb}gtE%&Rgvn0+X!kIi7Q&^iCdY47wzwcLar>Mj;^SuA@(m7Z<0UexXaVlAlzM*xs5f zn3({rW>a;#^9D<}mf{rcuMEFjL@7NyaN$XUv|B2cHXure!9-&gP01gR^_MsP}lrgDhk!6YOa;U>zZ^Y)mmcpt+& z8OvIZpX9J3O}^x_;}vp8P83W<1{cHkh5}X& z7P7jpPPIV4a}$p^PXNGCEpHos6BKR980E>a7vX`Y0o5eS*qKi;O#xY?f9?ELvMn8{ zRDmIN{R}U~e07E9oIm4)7Fl<*Driy;Vj~1e`VDDecZ@cmKh2V|1%o-Vt5(h6YH|$1 zN|u%~^*P5B5xMr~u4{RE30R{>5NB7i|J+G+Avge=jTid@7<>bAy;^(fG9>=Qv;VaM z!oFbLD|sxUd_D@$>I09r1q|N71>K%0Ze#rNTc$(_kHSN`@tqH9zyW+lP&P;JgFrBE zs)`fR_(B+FC8Unv8R92m)n5X-zmP|IB2Yp+2WY@)@r4Cfx70ZfpO4qFl$9It!4TRY z54U=q$;R?|+;0DvGPYkomdqTLnhgj@yIa3&zwo+<&|#y;0~dfmX84gQ@5zMh&?_9S ziE^p2J>I>oWPNoaZtmmgvG>&fi1i6V&S<&4`BjtBo!{*%vsr{-zO^LmvbqHvKP z*;obVYMBHS4J=XZ7tx}{A9deOxJ>zc+MPc?4j0g!^E!EVh>!>eaXYg!O!yE{CFO{e z;@3NTu|Qf2buDnGo)S29*)KYld_pBcQI@N-?j%Nqku;m?wswJGc}woBCpRre`8m9t ze*po`q0Bk6h4kwBFdIj!~tbJ)_l> zI-Bs-PmMJDm2uwh=JQ^7@V>ZL+8wTY(l@5h*e3TKPJC!j$IO?OAKvSm=(n~bjU0#>oqJ{PZ8$i zvuJqk-ne}q)QlKJ7-V;6Qp~`NIc2d8rBq%?PO;DCy0l%oyVCsF5Yz2Y8%1VSA)Hh6 z=oropVp`cIZIY)NGv;JYIRO^WWUI<``&R5V*GVCI-rI>Um{D)@@ONAh%Gl0Mnzj%Q{c={Y{dUI2L~?aG zqX7M;x;p>1d=hEDXJb8ra7lK;L7GYTKL5vNhbt4WC3gX?X6iYiivN~L&i$tStu{67 zc0WP|hh2t7Xd9Wg4#>7c`noescsG_!0jh8dItgB$(989GcyB;o=Y$8AQ9!* zx=A)lN2l-5g*e{&nBo|3y;F)h-H8yt`FguZcg+Y7bs^UfWP->6--Z2F_1;mwV}wzF zQP?_FtZt6#q`)^k>af0stB?2SK?8|L)pI!gZIuEk%jMs<8+gu8)ydlvF+C}oHr zD|YylW^e(y4ha1Jbu&6^A--#Wej_vg_*^KiWkX-u7weY+*hfZQ+lLGarvP8h{uN4w zVFtZ2?kF7yBIjImiK#9=r4DM75~<8W2V(MlP&@Mpc~bP=|D2N=m4k*z7Q_GR(sm_+ zSNp-|)bdxbQ^PF(889f^`yWV`UupkRfn!TW z#Az{Z^|=#cc@<)^UB3HNZ$FVFV3iiB&nykhisS34jsDPImtsieTh>hQ>rq#4mOi1Y=PKp7zK~OaT(v=uUyjV668D)HcLU z>TPsJ7Xw9lyXU-i+;)?uy0s#hEn}?=H_(}C?D@oYexND2( zYo#l`#D0IgLEOU0)*QK6qTE|ztP4hdqao19k_<*6bHdRfx1c|#f!Sec40aK=xu`f( z+w@eb`G2kf+fJ8n{V^Tu1}7v~%-Tj$Nnu#KuV53SlpjyoU#16hP0*CB$U(EbE*dWc%G$z}=Ef8!tPiN&SeBe;1!ss5dVJdj7` z`;Z0RCwx8EDUO|KBP!v?^Z;TLD5}5AzB7^I5#XGCV2xX6Gs8u+{a zT;PF2rE+!4-bYT>k82TqUiDu;Etz(qLIa*1P-DTviUtGD|3Y5b_?b|GhE74P_)mIX z$hqo!v}V;UzlU{dht&R;0eF3y6kRgbaKiEwXxSwk^7vFJ@N)=I$A@(EUju-1x97y>joI^b}W0d^CZ{fpe!bDjE!VZ%~zx44LnBf%?N z_7dj&FYo6V<32TNFn5FLUcDY1r<5P;+PcF4$QMNTulIu)GOliNie%p#;cMPqqs@B1 zXGUxG2@+Uqx#FKSV(fhGbptDgcSJh8Z zbuE+(WM8G3Ons$lc6QB4-0C+#eIUD|dm?>?dkINXSX|01Tx~Jo;=4NGS{pv*dYRj* z2y%6+jD>e3dU4}E(1_c(UmBp{CCWl9MD2veYbWz^!vwgqaEBChO*rv~tRjvojjZJs zCS@p6o8r;qN~XSIP{*vu#p=nQvpI4mW`9GBob`SBIUT9{@GydOv*Y^5o4x%Q!3%4e$JlRJoqVZDRz>k@n!%wCBkxt;_2UO1{7qiUY82o)aaf-tb-7AT%hL^=q)LI- z-9=2#wS|i!cEZo)an~0aPq>M)#{;{yo!hA^Z3nClozav9#lpR3BSwW1u|h0gUBK{0fcVoxNPR^fv>bXS&nY=fAZg@l zg_N<-Jx-TsXXWl2UmJT}JvsO)WR`0Zk4Dqtr@5r@R12)ljsh3L&sHlInWwC)KMCPI zdnV~GIe*Qp#kFd`xBP%PPOmLH#(Yy2Ml4(h7b24ZRY98Qj-OdNX@OH%bGpU#xb;2F zp!9mz?Do;WT{6wpu}yoK?*YjKtMPsl-`@eO%@p0P2qA*no2y|%`9)NOMMVT+Zrrc;$?9v zu5+&#DQK>>kH$Fc?8X9QPRspv<7>2ndblCeigx^8qHjP0nym}ZO8mo@7jES=pl=pm z*%e*Amho`T5_ShUtI7@1U_#SQkbS`tF-!DzX`lR{Y(-o?dV;GHye*U+EHA`?2z9>` z_c;-J2CQ>9{wY0R@MNM=4_-Jr(I5|i7OpfZL(izuKddUuBFt1xQA;DpQIS^!_D4c& z6?s}>V3$WpWEmS15{ z@M&Oa5+7r!VAX)Nj1MfJ5;s=1l(A4Il0Vu-oSl*fIMk?!Tjqfse_HlJ39sR5@5~r9 z5bqn*=??Vg9PsH4R0ov2bU}7Oep3Kq!e~!KjBX-jyB|Ryd)GE}d$q&8@rWgB zOcB{)g>lv^)bT2uUKae2cJ<$n(2zXPUS-3l9j66Kw&7<*W7)c9|M?O9Q_{DFK#ynq z`J~{q1F=t%XolJqU&)e>;6A5-Ghuuqi(NK28M@kU@rDwTlGAkbqLb6{Q7Eb~rc}eQ ztgu8wWmOx6FNMFyB7PCJS7yb*(F(E=vA2)`jf!hfiZFArP_mR4u~$&!ABG0htFr#}UROe;E^-@H+g8C| z4yuLqG^nY(o*@JzJ0r&Yr(=c5QsosH!@xHQ&6QZTMhh09>3#9{b<;ol48r zi;spcbZg!M8-_PLn@@!fvL*y-5`R>rvPdU9X3wNY&JmhwXi^A%`0#}4WCVJ#27JwD z>}ehchuaw%y0%N4nBH?0@2@FXu$^!v%u-y$nZ?al|@&fVw~9 zYmv@DFI=D^sqA)a_u?-*$zwHN3tN;PaPEBaec7<$B1~58>n10|Pch*x5AdTYEr3(m^@gg((>nh97V)SgFaK5q;k2%m#<2@Bt1AK>~WpM zD-17MM6b3?`YgD!({Ww$h#wOO5S%#yX(3*^_g z7b5%+^PMzEO1gVK+1J!oDaQXC{2KKP$tM-sz3kwbf(i{yr7`5MwH#tBJE z5Z_psPC15JH{>RudYDvCzc!#NBa0mZftrvF5t^sVE=YihF<-31qt-lFxzGWrTVJqYrp>)lrLZv9g{c|<&@ z3Dvxpg~Sbp_JwwFKliacvy4!Qg5-vRm+Y{c14@pXKtU0QTk4kZZ0=fOO!3@z-J!FW z%FGIBKf4J*J~Y{0V}%YE-W0@dx4CvL#cR;%*>U%gQmdNF_WPXnnwXQn)6P zgMKn284TF>rHKOfQdWdE54R+a&qo6kZhX|fk({kM;r@KaG;j^)%LrYu#fYjL_0gAm z>U^}DL{=h5 zg@&N92oIVTrkT9yHC|v+)qy^ZzR&bg!92{w!X4~la_Km|D!Hg|+vprK$0_^|BI^|r zL}wzf7=_u9TB6bvHiQ0!z1HYvuG`Phv7mBB!7z<)DWN!zi^3j0%%AWcTCKC;7JM(i z$}-{A5c62L$~3{7Q{0}?pq3ok!a? zKcW|x+QKyeqgRu!pKawkZfzP^A>!NbQNaj*c?+(aQyI3~tm?ZJ?>+pa!d2ip?0ukjMwN{F z3ZR=w(DRo-WW)m-$G~Xe9u#-z;9}kPReh~uZ3G%nL4*|aUk+gq(bXc0oOQ!lZFDUKSBIH~xBeHTuR71j3+5mmNy z@cyU|E-MTbHL4WN5p`xM(f)XG;U3ahd~uO>KVOB*#k8Z>)zBE&oP`D`O{PydhK%C> z_jJhE-s@YJ3a6Fk5R55sq}4R1c_sRm{Z6%ly)z~oyFoMkH~*3F{QDgGv#_BOkE^_# zd*D;Rgc@|S1_O|6rVrbJj{Sus{aTm)Ou501QpO=)8?MDhZXKO|_z&I$ z55T7=D4I;OX}fgImwAiqh88E4UlqJ@HUIgfHf8&Zn?hOKL)nAK*-Y8Km_}z8)L&cB zfB9AK`rJhX17L+iN^BV;4xVnqPaT|wYrUFb$pHKTXxP8ljXKpbFlVi%B4rx19qm7N&h#7v;WvrZ0kBK zMA0qoy`g%ih2M60eUS1eQXg*|t}WZa+SdKlaPHaojj?SXhol_fIE#_aIztHzj+ig! z@QS$RyxZ+9KZ63&w!q--Lw#-qf1}&$8R71S^_K!ZaXK+I?;CW?XA^HpFEt=vFCw7M z5-;N~w&3l-l7kovO!4;q z#-u@w2^h*nd|eLp{|PzK_{XMIsa>CoKzKIw*{k&ofdUEWkTe-tb+0$8k|8~$SGhSw-Jn#&kJuAJ^zuik|> z&t+GS6+i&K`XE*Om!(@ot#@mj=d2>Q^e}DfV>sIE&$Xcd-Qq|H|AVEYhZUPgwYt%h0=zxEax zXOos;U{eG47ZDzVe!H&Q4&F~-80P~f3#vDUN5z~JaRJa2=M?#oWOGAi>_!+(x3SbO zzRJY4+I3>ZB+aC>&;Hl|^;81&lm8vxlPc9h%}Am~S|J5n%6*$H=u+V6Vq5o97&ax& zo5G8;AmZlRT|Z6JZ}&42wIn6zWm5<8)O}}#K@-mt-%Vi1wX$=$%;BOueDotxau&Aj zT-YO4BccormR1Ts{3N5q8x9GjFpLeO(U+vu2k>7Yvs;+?4vJB zKT-hG44Xw>T_{L{g-nNAsqbgi08%2--J141!L&QHA35{BS4=et6eULOJ)M%IqPZ?6H38 zybS|*A#)dH<5z@Ri{Gp&-K|%im8iuYTLx9%>oro~$Y^G!esF^1rnbmQnN~5Lmgts! z6;!P5gI!bUl4GBLN>Ufam`e}sd4a8=f9Gt?-u{YtWWB^lO@#^z^y(G=aTTnkHg7P< zFe6A-yJz;}NG+|~l6LIFAhe6*=)l8gA|XEVHY--U&h6Oc)&o{2VN4k(RbZ6R0aDrO zgNSRl&Q^WutJrg%sf`*3^ly-$`v?otV_M(1RXx@stkOiol5 zIq_jNwT@Qel72uwY2Vnq&kFE=SGr;Sda346=s8WJ{=u1S@KTn=_7jFFZ<9b0NUu$g{`ao^1U@|zxc*Zeg z5W&BXhF3!a2})L9ZJQhW)ZWO;->wO5NKO0m>vBhBr z0?tBkY5uZ52QHTpBOcqfwYaSkWoPHFsQ0FLNdZv^2>PE!_EK2cD?o~;*2G%XYYfimK zb>cJr8uOo}Ovn{VkbuTVGU`8%5~ewci)yqTwb5bY$XMsaX5mcP!{M0>&_0LqUu5;b z!jK3hr}Tu18R<7?XWk9{TIV+i+JISJq}767^_5^ef{jJ_A4u*jxc`N;mAZZVxM5eV z!S%(cSlDd)!{+$|I{b^*yixx*8JhJ7wHQ#@gyoremBq zh#JLWNz-l&=BZO*qI|BksVFqn*NrgLjkRvsz7NUvL-j)+3Wo~I{ zwV@kWWYX_n`o#s$ox$?9$~DY^yZ?Tg-BAC45mg&B z(fzFyFw%yUZXJ{j&e`Y=w#0$oygR@;?gVcNK)C|Vx&`~W6D+(7bOeOIL_tLTGIUUJ z_$-l^Yrx?VC69;Sw~uoz7%P8gXj@Z<5=#UA1us%fmT|YTyT{M_Z86^5n1%rqQscq= z@a>dajh#6ahd+dmhGGU;FgH#)$VA(+D@7D#zh7xZ)gf!ZUbY!>dTc`ZfCbi$%q-1P zzqxFhQig5jm;|QE)MjaoSSCI@l&D4tWH)?Uj~b)@U7IGuz(@=Fw!m;dv#RIIC;pW~ zBGGlHB&Z%C6%dq*-~H$2SN-(TL&Gwra01yRFXM`!IK}Nl)WD&`7!OWw0n^|daVBaZ zp0tgs4a(idSS(-7JxpjqZpKHwGmT}~qNaar#8yAqz`xy!X}ADiQ5j2n8J4at*8*9^ zM{FCXA6LA0JUO2T3~(Q*0aw+0W0pY$U}3Q4AS##cn)Gtfnv@;jK;c4pecxViy(Wa$whlx+2IiTtI zJp9E7B%6k(O`*LUpDrA`n(}@SN3>C_2o(+skgew%|4W7Q^MiX}H>`(bBUqCUm)6{Z z78hUMC_Y_p)ILMmu$tHmacR3g{5Xy49D!xdf5u-}_?H-wzLur3J;*yVumD-FldXe= zGM}clfx8x0d!C16np%hjTAQYSVy=>&g^ikpmKsZYd4i{bqB0Lt!b9591{_W2NXl5C zg)aW5osySL7&a3J;Qtvt!`Icp%U)bGhNQS(T*zv?SMR~Q-?{kX9xJ@m08ni( zWc<8o59fFNb7d1qUKemZbX$TYv+xMQz{FHVN!nN0XN`9R1!xXzQ}B4H!fcGwWu_h zA)4zmH3%r7`y-|L%Mq_<+$&po)pgNnFHC>A42iv(tRKw#_X*@re#?f$X&W`;Rc3lL zs)3MMH~EeY1E3nm9%m6$!Sm|`dJ3=*J?kDC1LAB#3!MS6z+BT#c3*eV3Ujcyl%;)$ zje~azn9vxTh^}d4DzejE=L)E|L&)8S3kLfbU@*Y-W%?MHQvwA0Mou0!V;&=8ZZ;!B zc5Zey7E=(2h11lOo!JEJD-De}jEziK3^~BQlG&Kcn1juf%b1guos*N@$b^H{(AbD0 zu2K=FGR6g=ngZz^WOWl70k9eYQwdnDORNuBeM#<#Q60){4^bT|OoUXur$hu2Pbq zcmT`A7Es>Rx!yke3u;0=U~Kd?<4TNn1KS3)yc+<6OEBp9K@TTxxb-&u^lQnB=Fe-} zv8P9aG0&%!W}DSKE2Z*beEPc@{@fn5K*W&TljY0(Mcveiu)w!-H#+?EbPT&g%^N*q zg7;h1NkT%N_ckd%h*a5~4+ctWITTtVnwF;P9%=;hdpiSIACgH6qg$H-b_8eh+i!NK zF4vjHyn5CiyB@q=W}5h$VwUvEj|E*`7YNK@=afv7qI;c8CqiAIN$e8NqT4Dk6h{_t zHZL@IJ}i&Cv!TNks*mBOkHni%7riZ^4J=!%n}jpqpjxOlkz+|Z<;=}1-nks;(mbsy zB~0z!AmC?rgDC;8s6db1mQ}Rd_?Wz)^1}kf&zvEwa@$njzP<+~u${ zs4`iX?lq@#MK9tyYr$y2^x9b_qv`k=6@j))@A3wnlj};op2(4LT2pmC{F_Yd;!)8m zUB+Goy50vOr-!&8E+v)HrScn*ks;&3a=55CRLKy+6e&ecxB8FCl_r%}^KZFu@qS(& zqS&08%yG}k>r$(pmPaL0PR{YFWHyx}g5`PPvFK-La%G44936&TRxbvvIZh9)r}zuf zyaLb>AazLV7Um`eFK2NNu+MA-#7m3t?{Tfz@bKDt8s-sR5g5iI9!Z4I_i_n0pgmoY8Fm# z!+&3TVt-JvynL{a48P(E*4qvOVrrI_a(kZR6-V1^0sU$yph6gsY2$J_HUviL>kkea zWdRYU6OV*JQJ{2e(Zg18?R?vJ0_O|ZqIB62oKx|!r}m)cYsuyhTfL1<+dJhf=FhsK z0X}M*4EYU|^&0}6`@#pLKW2t2f@;$Fw;in#$|q^+`UZkqx_S2C4SQ0#OV#>YYV%sC zkl;!h%LGqRSTM|aAAd}adKgZ?x6ZL0>~0G3sS#Lcj6KnG#2>I>GfGjPqFBH@aLBRr zj+>PGf)c0%#`!-`PMqqPEw}b^0HoMen>1AAWzJ$|cSW~#R&y~k>@8H)OktNCgLvFv zxy0zA{E=(fL6UZ?Mt%K90(ZT;NXV%TEz+R4)qI0NZ4mVqzRrHFEnJ6Pvdm_8{Oya2G6Ib))Lzkt{qRhY3h1Ks z_Zt>%j9EgTu0AhPHB1G#^pRk4VvXOpFtE-VQv_3?;t+At zH4?&^dq7`q#oDZm-)S9iUFB3d7$ua;n{|6vO?6b)% z&|L4UaMA0Q?OG&W89!OSr$@obCldnR$PhFDGv<#3T2rWM<9B%hI#CSL#UBha^vL%d z3l|>y*LG&I_}eHM0alqsJj8RWY!>vTJ>&EmPefqxXF?$}e_V2L6hT%L39O@?u$v6C zAzg?2GykN_=c@@YlY53iOcNPrfF zv1Z|=XiKpsdAY!BBip+`E@^*fiU>_+>L!g=AD^ak7exjC`5Iu*>lZZfeVWb;bIL@h zLwt)3Ul;Smdgkpw&5on3wLuTr-sK+Ucq|`x280y8b+0Fr^Ff*S+oT^#Vn z(Rb~>xt2rku;-As@{@FUM74^{BDrpS3U|7gszieD2qp=eeS zp@cCJ8xX%wBsjPqGR23GI`%#%4C=!nUcAUZGXwBCWF( z+O_qq!nJ6BPWirUDEdWche+O6i(m!DeKz04B^fFLUA)LMqSs7t^WjNj?Ou-cSi7UV zRDM2~q8v{xMtSdBQ7&2fdF{0ZNsPCp@3J-T^uhwB2^bCd?{;^H4ZMDexXE?xm@&27 zJ#BQP9VroiUGqLay7l&O|55uf?fZ1jQFD4a#2RyP7c7-R5ji>c)oIZ~zf^mM6C_KJ zdFMC->(9RWmx3dHMrhj5D4${gsx~*wg{}l^mGm87Spd2pL__Oi`UnN$o-( zFAlg?@1Ez{TLkaU6cu|G)@I}BH-CrIYt?|C|C{4)h7NG%OrqZd?`R^h9`oWT# z%LNl5yP;ja?~O20GLGdQR_=I7KCmFMs*y1#;YMbC(ai(FxbvS9)!$RdwZ%TMSN6o2 zNNrG11c0t~)n0Yyp{$D(^z@_S_w|ZKkUSZIT3Hm!C%F%Kok@(x1dW-ubF->6G| zIwojUrr}rGWHfoKo&DJ~CCvA^!=oMpD3fj1q+7CHHsi;HN&fNe4}N{WNQ@|2IBhOtsyK`{!5Y9=WT|g6AMT$#3Wm?GM?`N} zo?5}pLn91pm&^l6mIX6w|IM(f-T+hw6hFq0x~xN^~iuIPNq z0yPDC3un0;9SsjLtZY$R>Xge!sDYfvNFw_^P|Z=2sf?rB|5X_45&_Z3UCe{B8Ktc) zwolvsdMhu<_wnV?&LdzM>w8KvdnJ=4U09Zswn2+h`06PBl%5&n(n)8?mg}CYIW*z^ zF?ACo%3&LjZ2yqlm?IoRq5x%Gi!nG+e14w5kCsBT7VD9HpRE8}Fv0ccC~g z^N~hni{E@@mCC5DP!t)+il^{IRNe!-vj@b7&`7gIh@*q`JUBMQNP>C&H=rB zf7?I2H?BIl5v&UTHOs0)rOus64xaq&Vt_TWeCo;{;iKuL0cYy~)$xGvg6VN8vvwwl zltEur_i%c5Ui$RF*@7;WrhPYyg^t3_9_G?hkbfLn$y;4e{@rqDKETc<6vj!dqnLu{FNY9e4rOiITXy#p?;`z>N9{KoOpJ3D=VFCatv`_q6G znIK@d)^zs_%@-X^oy)6|@$#$x@LM!r##98P-}Fz(`cJ=m${R&S`YD0zLn1|`EkqPc zBK^!{ER~JWgRxY!qwy29@^aTRQ5rE8Yd+Cp@6)NZWi<=OK&J!;GUSgulK3T5AZ6} z;Q4PN+VS)l8_zAf72q>8&YV){Pz`sg=fDuEM2Nnkw*x0+(A&ff^`2_a$7QA<;?x%V zj1=1u#lL`RgtyKW7|yE&_op}9%-1)xg~%7_Q~w6(*ZY6U`;ROcI}?9cXsVv^D=c@K z8-@amQE`v{AB+a(=L$+>X=~XSCnCN3g?G|AY~iP%-9H7`!WQ|;mX{a|d*N4C&kZk) z&+%+$YyiYce&s#L05H#RDbGRP-5-nXgSL^P#i0ofXlukZWkx$M&N1{_^e4aAroTY0 z9#%~arUS+lxKLJBRi%-W&JNBV2!NJG0}J5!fK!`)Y`XG(zRZ>#18q7(Rc;95-}0bu(j1{ed3_QI@qEVYmF?zrkiQl}M|N!TfO8_lTmMdmmK zg5jZm?BagPgwmBAK9z zIHZ}eD44`YaE6zwj~8(Ua|V~ss7=ZZF%2rvPe{wl(8@9}uBP`@`P)}>rcrEddsrF8 z884VszuA9-+pD-bvfr{0xJ4M|S(;b+yH>zizc5k4ts+6TJ zA^MH&Y$1&C-|%v@4($ya?K4#x%AS~%%VU!q-Ey-6psJs1cpc~qKJ)lWouus{`L?#} zmygrTSZy|70o;@@4B$8Vm(|Pr=MEMN5%KTu>ovl3yhaVaO+`wuV*wIb;luwr-3tOQ zoV{b7M5KDdEK&j>ipmM5{0qzW zSJ=w8i7T(O4vC|?n#4bX^Q~@Tsd<e#yem zv<12=EMjyH)9)YN>urZ<`;ehRA<0(P&pBpc(5Cu+4Rc71(?>JeAtxWP=$coH7K3?@ zMXsL4g4NRvmy#1WX6{f>6*a!vJf~|X2|4$;l4HHZ#j5OZDw9#*C)#(?lWa1#5~CAu zBe=gmUo{$LdQ>9t=;CaiM z>$y_c)Xh2pW@8a|HdssGA2~a?f2BHpKI~4RMwpJ}>6Ty%3SlqXcWKZ4^HlcNbV<-^ zp7(3x!~d9AYw0YQU$LekHiPvCN#_Vljg{T0;^sKhPIYkWhuDRwexXJ?y3XY*z)~?| zf<+;i6`t1dlx`u~)txW~#FT~ldI(bp#_NHWfP@z?G}xN?3mxQUW90#-$#{%SxL844 zCdS;R+#DwCrYs;+Zf0=0%+#2N*~G*MWC#MIf$ZEME+aN}E>1Q!6BcG;R#uP+XPgK# z7#(y)sD6W#N?46Y=LK6`&1MBz&BeU~tXAh6!Gl&HvpfL$ZVS4l)6u7+(p4QGRPUFV z+Tx5f>F_LRnJ{=<=LSUrGLI0w3;&(fgd3q7pdXM?m;j@x-zHQM^){ci*_$^_cXP;> zusxfM7$E_`QO99u`S)p(-CubctG_iIIO?fl5QAnhxTgA zz7?uv1|J`eJsdyU5FYXT3*3bz*2&+N9Mp3CsGImEOEt?*@-~lO?cF~c>4;E@g*QLR zosGwt(K*!#U6{-W<=2qC>G~zy0~WNG3&pd-XL3%nsk=f1txg3vX~F#VHw!AcVfQG028CjzCaXKS@=lY-IiNWa zFNbDgXh3Nc6m8V>*5&1Z*5+g?gHGri3QIw&KoF(m>pxWd!BuUfz3-m$UH1p7v3QrV z+^P<B7iZ z_qUV-JSikt3QM27v>n^eR-dHsu1~o#ShezR1$|0ril*tnQVa@)f8ULxDD|Jb2burh zB6fxY7B4}u{BN{5&hS}X=y-o(P0z7F0$@orIya$xUZz@B}KVyJAsykfgDo*5#3o3OvLO>M>oS6zb*WufPeOLO<#FJDS5 z$Elu)PVHTEX>M2rUBAqA_{2*VlnGS1n%0Nf4^=sDlkHsMf910O39=J~9>8@9vaV_OVOhuHve|5;vml0$}^(?PX7~c2^8r$frNQ|x&IlU)V zhiMoDH&a1x9d3~it+Tk&_yMen@-Vj@Kk!`d;mcO78lFv<|Z{* z81Lv9?iT;0IjIWv0NK_ zoXblX&h+WGtkw!m!SXLwt7SnNOST!9E^w?-uYBkKA6hc(hLu9>T;9Ixa&hEhH5A~M^q5YO(oSPbw0bva1DIB>ah z!f2}^6e(ulMrJ8@>p&n|*BB{FFGD?ZWi@D>#3bW8Gw$Y!+zs~}bWfC=g zi%ZE^SA0zjt{wJ1XdY+<+$q`3DK0_Yc?E4_fzqA>b5k{|c#7U&Rt5r?J-fKUiq22h zdIT+Zt86H4bi}TL8yBrV_I_4GtU2*KjVk#pHua#BefLkt$UgNr$aoQprZf$YkL!>L z{t#~G)hd!Ir6@SMsEFJ68Syq3Ia$==Z6B~Py|vEv0#cw^BR>tyVow-twuEFs4cO3E zV(}sgXPkxhli6Xc{b1n|k9G0YkG4(`2C0J9g~ORE6oD zBTDGm?Qso^X;-2a1l+!O&x=`#@bqvg;}0d!#u19mRVKRW-%Bpv%?g6GJ<6VZJ~Vq> ze6Am(I$JXEcq*6^u=RxTf*<(2F8UdVzo5ug7h~fEl|_6{U{hq@|83IE=Q>qle;Hvn z`01^w#eyFbG;8lK1s~rEG4!cDgEuGG`=<@Fr&#zEe^kkdk%%j+3maPc)vU zZZ%JxcndKp?;#rL>&g)=0^w;!=0ldX!6Hg=61mnUDxq@CH?c7D%lX@kk|*V4$J;<> zhy)3oD}E!U9`{n*5I~oeMQ=tIwFAtSolIw=S^M)6MKlOZ*g-rW z9vvMm6vHQ!%66xlBgfEujM0G}7!%#5Rl(lC@AtYY4gwmXeJn97>DObH8{OI~E|Aut z7<|jG?BH2jn{_@4DqUUAwKn+ZyEg`^cwBR7R*Hf>dw?L_;5U?y3xXBelwG?86}*tb zu_*EciF_7ms5kYkeOH!Mehz~`Aa<}+(4!;tML)`8qkJLi5t?~KLnZ}$wMmHJvjO*M zhxW)c@_>Yqxj?{`bnuxjp4*O702dWnAQ`O5IzVt$;PMam!=vu8cT_5v(gZJb@(A7O zIF`Q`qJn}tDpM9}F~Y9mG()y$&ekJiB%XvrICTotFj+S>A_~| zH9^K#1;Ga)kLT>I;n!xY-ceGywFO;*Itlr=RDQ0Qw3246O3g-GwAb2n*LBv`ZIfb) zH52nxMK~Qwigua5#tSw!Bnx7|#&2VXPH~S)7x_Vc1D(jEbLONJgTeut8#4Hq zWnDs2iB?aAp;*Swku9Da^X;>2z_(H0P)K$2P(hgQ*ei8U`r+({c@^_m&yFd*HxG@k z`_OZ!sSRA-ak=4CmkO@ut_eB^CCSy#UCa@+AGpV4n+b2yejAHlA0T!#eVvtXjvww;gD$-7%&XDI8>dy*AnCPEd+{UCTvtgZ`PcCj$!7`0f+~K+Be54KF}aTb zx_~CMUf0T+jXamtVHX%CTI&?_r7K!j<`0D-o3F79Nrn!^v_|hduwpg=iG>E!U}%cK zxAFh%ko*$IN&oOgUY?aEvUg`j%7(o9jeQaxN~wdz1+2AKM ztn{Y!BzjMR(D-Io_v7${={+z;SEn=e*FukKl@(_}m3-vy`Qc}B$@MB&OKW~U_jtYKHLhfode^Ii*!F)_IyyCc5@#UtI_F{2LgCzLj+ImKN#(oLX zoEG69Upp`Qp&-{TswCoGzEX8r)jE)PO5dB^_!4^?G);_tE4tO2Wak(46d^Knq^6DO9dRUioL)wrM_@AI@bY)|?HD)m z4dlYZzuJZlcUz#$ZP< zxd`LU0?G{Nf)8etCh2RR*eI5m)L@xju|(o~GYd&5$x7H-M5CF)#%Mz0%6p=l*r+Ua zm*=7zI$o8yt?#zFb2JW4XH%uWIxpK}0;f5pnWO7sY)lV?F2gyGHc|t8A+>qtyd=uN6!ngIajC-16pOa)N1$|YL?_rTt}jQ5)O1=C!~ho@nOzv8V#~jChT4& z>~$)5mEkHHyUMo4fiMvpCt%C$+o!;}`m$4>(|X-b8nyFKQ84u6IQhW{o$|@Eo+x?W zr1|pnnAuN3t0-pyt^rc#yj!2gUKNaLmd3rB-k=G-3XfSRKgx|8{~rp9J-LFwM8?eBTqDxk84y23AtmQdl-985mBkUYDUB$<`lYvC_<`d)b#SC%bm?SC1N*UUx zy(fi%=Qf~V=vbNw&MiS)8`VStBUumv2>wcX$%k*1D>cm8G-7khcHZvTMXRPxCe$6@* ze0>w&&EML8&lRiuYW2MRpiy=MBN^?1B3=oNKVSmoN#zdvHQk3@q6p1_@rOR8Wyu2f z5K7NDD8Y035q7yt9n$mjXz6~zX@RkrR$$Ff?Ktbd7+MG2$B6h7L-pfzB%o8l-ETWg9Qt=_N`@Gl-_)vCYm>|q;tZWd(-%Y}~K*i}% z|3q3?AXjg&XApmUR#RZH86UypsYWq!@ro4%%Y$d*M#1Mw4&1BC$R5^$+UU!E$3^yfs@sL zLZ=VkrG0iD>sPejji2?M+8h#Dg8V7bV2OGn5w_ahZETnl%~6NJ(cjenJ!=_i$DBF0 z*l^5{j1=0;tv=CT0f*5k?56)u<`^DZVJ1W%&)h!mLW|FqB1i}SB*ioD_a}ceYm$bZ z$9o}M!b?;Zl0;34Yj2`4?J;(HAecdsJ6q=<_I8VZ2U+&Y=2;tJH6bg&HK=nbQuRaJ z5GstcrchvrQb)M7R2^duGM_QT5?$xh9&dY*K0GR`EfDSBdCM`;u4_S%eA;{Rg_vj4Mo z!5@|o-$|HAE{lSA3qn8mXu@3A`=u!1;Vstb*Rk2+R?ln&G}cv1^HFVIPsQCso^NLa zj*>r`f-M5*O{SO?H6US5vYy3o3eR9y%A+?O$-76@Ch!6YmOnjK%~dQsmeoJEKMv*J zD9;+Iu_0KK=e$$QWOqZcKCasG2UhqoceGt!4EX$ax&_lw%F5KXB<@-dU{Dkp{r^>! zl4FGAM3`W~p1FdbB}Xi~vPFf_Fbw)bntb1+NF;q9&*#pSXZ8Fpqgb)^ft4T=A_R-f z44SF4uqPVrmr{<~l$k;+S%(YYaBfvG51rKXqdmi=On)F2IZFbfhgSLQ$fWovyPnAt#15>YD!4h?>_jdS= zK*R|XJNIg?aJIC6*}C31WN?XCCor$5)YpHKPW|`wLw>$Klcx~5EV+%KD8kO#BPk1D zc1=m5qpKUk{=M({X0;OfP=V91rw`S5-bGXhx;Y)YDmbWcwm9kM>Rp2#9H4@BS8!Eg zlr3}zjB7Au%u2gIvu8jHZ~KyUs@Aw6k>6ljf660pv94wE#wJ!?OV53V%}q*oWY#zY z%tKUt*zjcXfgoSHD>AJ=)?OPa?QPi#N64wImBQ>snjq^xGv)gqBna;6mh9jY64Hey z_!FKi&^elG79$hgBA8&0-r_WN3ND9+%4b5p#KZ|>@|+tvuv1*MPo#0h!4A6f&%<|{$)(yqo@e8uJW0qA_{Spx^KB;Z-4SKDt@dmTBvBX)xVxRTqJNm=6?UgS_ z@_!Uc`v1bne~$H=Tpw{3^q&i#jhXdqV^Pe*TYv{}i`}gW+1zODcyKGk132fp2K3(w za(n1x5~o#1ASIY;)^M})IuM6?CW%1cTI5=~4X)-o$1ZY6e8pYq5cfq4R4j}6kB9amE~*SjwT9FD01! zpH`Xv)9UPxR`m$utd;Zq@=w6H(bK8o0a0qrhAg9x%0F6773kPquZBhn{6iwTC&daE zpcKlhaBw6hUPTmR zpVQ6%=yx2us`p;A>3h;>zl;HisXRng0wmAxc73+?Ze9GXsQ}CR%KJsP@lI|HUB3kC zhV<{$XW|^>aE;>`h%imjIPQNyJHhk6+#hI0@2A3S@PPLlQJ6lCT=qSrFzJD= zza19`TIfAEultMoXyPJ%-pErg;6ZS-ph8!Qx>|aI(s}eqyj=!NhI|v{;^51XpEZc z0(F*Tv&>CQ9m|$iRXKi3&U|^780?7E4#KE44sXb+80UUIMVrK~i z^n`%ex&s`e{8MEyIWx(y51yRqo7tFi+oSUaqJ;p{i2Hv%=cmsBHnUY?Pe4__{NzR} z76zk`zp($vQHji8fi>_*0!AxGb?uod_g8$_C`q?|_la0O^Tf+Bs>X_`G z{TNPZpM$)LaGcF@ZyF_rc8w~N(|PiNGtkRO}a?XDDaTv_6ht5V!OR}N^dkfyz-cAB&gqZLWQdDb%w+lW(CKo zN{~J|)J_Y)F-i5$bj4#j3W%pv&&5M4E35DpJ%}=R$=h#R*H^#dl<~;f ze)5`~?rX@RB^?l?BCUmhm`ZP(x-X>OMhy}KO5zW0wT@P`#&gFy=z>2Y7&DSu{XZ5W z1m8#aV_|$HX`SJQloNtRQTRPgR(}K8rL44MYHAc2cJ8_d?HV9gkZmZ%XBZtMC-#^d zh{pNR4ENJ{9#R%arkL3UwG)c@6;f*%_y>f4Zy9n=B{9`GbFpZl@|w zm*1NeKeM*~zxyDD^BldkrDFOu9gpC4VX%yBy!OqUN<)Z+22O4|t4B{1~W;}WOjSem*ni5~8g^$v&1IVyEReOquD znSelo1G45GCOV8leh*oDnpt^2(H8$C066|h^B2KK(ABsvWsu9s6To zRN9>%SF1|zxQiS9fEgAT5t)EhsiwQ;^zLQz))30a4FQ`Q{;Lt+K6oVHXCDh<1I@(3 zy|QW4`(Y&pxt(JyCU@m6C=kJMjb`&t={;Cc$hMylvEx2sWSF{nU0aokp)MbCJrNTO zbQP?<^lTfZdXpVcB!%l@o{kk_gWc@UjT_rHg4Et$Z9iKk{A;citHbp}X&I}MRu`aF zFi$z~OX=9nXlj`k4084(ujmMP=0n>K@1tVXm^%BS`VNF2`fv};q}GBDHGokoR%z3p z-lMkLYHUi5hEW`2`L6O1ZQ5%7?4Uj#GMp&}psb1CzT~3@juZ0~im~0eu<6H?av?HK zLz{68H1|l>Ut7fMEmG5A&9>Cx+2N7kK8KnW^!9fa<6Sr2tI)C4$PTJghKBnp`$6QX zG~!u)*FeVF=1+^(oc^1B)Y_@NV#xVG1^breE?J!>wfqj9pR!rF8z--t{ON&YkhVe+ zNs-%FuMAbzk_&&)G>L^IxSiDpkgf2LYHJUc8}Q}kW`fReJn7E6J2aNvkr`C>cP`U> zV&$mGajG?vpvWfN@3cDi=g*E2vbNUJUv2-anlX@N^C3YNOYTg>-Trxs{`|81+3VZ& zKHk1>`FbVrb)%o^+wn0MJH8*w;B$Ca5i3A1EAaAoz4TSNZe}%XTb5#3UE!`X1i+bc z;T!VcZ+5tH`EHl<_PzMj#Cz|!7~i@yZcrP3*{l&b>;4|D`F?Ika3z>(ZyA1$C5V}n z$IAJv2;H|MxW?n-oD+u zGyML#b^CVvw%7d7{}$_-cOCY5Zmd*0KED3`quTvm%WI19)1w-%dA}Pa*zW#r-12?< zy8XJmyV;}YK7#nT?O%@-*y!~AD46!Te;GIbIy|2Kcnr_&jJs}bab1`HK8_vl`tGxB z;~krB{}w1N%2~RqJ%6?Ylviz6*leU)Vzn)XTeLN;r#j;u`INVL^TihBEW7jFt+xQy zyB-pJUr!1y-#V|>yvvsw1Y+v!+RF*f@_60~sxysGV~erQ4Rx12c!q|kDyD7kd5t@# z#*a;>K)+u(?D}oJJKBA7G44tPqV3K&9*?)by)5~EL~RA5-~Pf;E3PVTs2(b>DKDtb za0DzHu1?!vJvG@q8}qdkaLLmw*`Ckl^e@4yRbL)AZBN-URLTfUEV4g3a$Fv-$=L9) zjWajf2-se3G1#o*C$=!UvxRoUE!kI<6kxx*Z#=uxdo?2PG<%?}oE4?J<~BD!GO~Sc zI1MjZ56@ikd!(f{WxSVfKY8$_I8+|la923Kb%g0_J+wc+-%iuMV&qS`GHgjc7I!@f z;|uU_k_~wACvU$=m6vNiml5#VF2=|zzh~^vFl?@5c{d#|2j6s-T@)Ew9v5h~*ys@JDg9oZ4Xb@Kg;r|UA7@q_zFx;+Anzuu)fc!KB}mG zs=S<-<)k!lo!jEA`B=5oRhKyCo|k2F3*2L_8>a!xFDlOpY%|KFjmn;;h#q3r`Xmq* zxkr^I|1CB+m)Wd%q-Q>s9{(I%KP+8y$6q(Zi@97WX*fmKzgr2p(kZdLmLlMLWS^_0 zb8bFH`cQ{w&BY#EoZN&wSgCFuyJOC`>b7Z?vCEnbUV8}j$?jnIA^z&-X7WV zW@}Vct(sh$*leAQ4D^^<_qveqhW}h}k7~W1?xgD!rx>SLxL13P0&ub8OoD5y6PnBXxe{+3pyCR~WAcSHy2}XZ z3&71WI`{S+cYPRV&5>rQCV5d^+^?%y+~Ppb(;a@Ry}D$~j+D;=2ez?_wDNA&ZP7dg zY?m0X9Tt(?&SJS1(;e5T&T}rrB!#wUy`Llk^ZS;gNLBPH=Uy`9#5nV@1|n$1yy`sv z?03IUV$C$G-EB71I<~#lvvF^?=Q@m#op8Y(t9ur6yWEblE1&NEcJF&1{`34x%LjPN zOJuI1&BrEI89QUx##VdX*gCZ-<@t=X+3cP?V=){_-kagQY+L^2Cc__d7E3XNWo*0r6dJWbfpHe2MZ^v{Q+N7bh9K0iScj2Aj3ZtH$E- z2?t#h?UDS2qq3Xodn0@H2z|lD;uYg{%<__}2+xK0qGb5+Ugh-DiudQ0bljB5)`Vx_xD-x zfjf@7E8!W({}j+}YW5rx&IA`c{*HkcOUNg~^v zqpYNdc4?>jVD*5<3vT&K+tm6XSq!@)!%UmLd_;FQMsCp|2v7loh!Y6#eI53%AD(vj zx;=*qe4ZkFf5o;x+uUDwukJA1T7DLHq6?;$l;Fggu+gz7%r9!UM`iaQ&_>)?)w;Q| zuX9(x40&V>*>VpFfom9&g-U}lT{)MfaTj&V7XL|@Hg5JCZ$|Lc2D@>`3DjMuyBh`0 ztiEisZOHYIvsz@sL!C{+xIc`~s;P-ieVuRa=!EN9KCWj&emWR^a{<{)^||i2DlUHy zda1^y8?ArE-f>=xhF{SbFI#MLmOf={_6r#U`m+JpIZ3i6v=%VL2`xY$7hiAYSIMkR zCg8Jn`OsN>J7`N;orCMeB2%->4DtW@9~>>45`8DW^Q>4?6VlU#QET zzh)$>v+AxVMX;LAzuwYCoQOOV3wWO^s@s7KC^3ArNTIQB);oubmB)DNW)^LkL=>n+ zxMWYz`1&=C#gn;*D>xI*2iOc_50HR6w5(d(-Gk7SH<_{taqleA;TJjD!Ja7Y$;CQ zLo}RjPZoXMuNL+%*$TayfQo~CgQtXsOZSlq@0&+bjI4gGrV{=7%#7c^S2(x-gfg7a z;i_8B!wgW_rb0UfEI~9y0dY$LraB3@@>Cgte8PwkW2*kz&$1JF{nvd_Rd_E@mytD3Zt`oAP zO5~GvRX{)U(#^j3+IC(2otG*H7z44!rlmT7zS#yJT&Og+Lawz1EEO_$2h#Ta0wXpS zpj5106t=t^r=Y!T+#)sJgOcO}-+)#Ys@dj0j$v2`yfO{tfrw_scIMxr9oqFZ*5y&h zDZ8k0+$+yzXD+hqN zaR9fH&50E;XL}P|+2L4=`n892@kpl88YEh~{GCp9QRl_~BNE*9I8`dMy?hY|9c&?JI-%DSBx`*Va|lP?Ut0tU+($i8RgG&*0yM;R)f_?oshEvC$Q_`^`-y? z>7Cl%cpE~Xy{5tL0y+dv%5{KU|4zyh%WW&L^Am_kh-RCN>D|jAX9oPVPR&!vl zehdJ{J#*Gx+mm2$6hqJUG^uG+pjjeC?I63FG+QZzSd*^;z^1ldTd45>)vv0$j;jQ) z&b0tVjVe1nnLvsDy>65HI&mXZ3MZXpmU@LbFm}!3KvILby36|8GpD?Ku0W@8ONU^K z5uew`M8mfWI|GAx6~C__82ET1D)1KGh<$>}-CVn*VS;8A__Z?R!1eCTjfNLWEx3X} zL(S#^&?vYUI7uwmEoDpz2dd2~a$EBY7p4xjlu$Ql@b*p++21{2dlQ%B()1xur`mE| zoCaF|Jq5gfso@5w_g6*nRxG2NEC<2pIfhCKt*GkI-90gD*gGCI!Mlc({0%!VF%J&w!OSCd8@$dWp<9gtj+Py z9UCczP?V6eimxPL>*;I|VB3GrB+Jt z-SumfGM?!w5o1A~X5XasYO0p^c`h+aM7W(@_UJ$=v5(M#z{D8f_VbsKKKd9c*PI(idX^T%$9CL+DfwOek;@nHUKE+J=2 zHy7_a3;k_4R?7&y$4qoU{_bIceRo>PNYuYUKaIzHOV>jOGzdsDi9TAsp3qC~4bH2e zRR^ub@(y4zqAlc?K;~eqMo#;cm?PEnDI{jWzzF+d&T1)}x`y(jeyL>^xu6~fB{tS4 zQfFCFHZ}Zii+BEe-vE`EAb(nRD#;0!7xGWAiFf^#G}zs1BWz#!6&r-V36AR&($Ib# zQMHp2K9E-I6E9arp5jK1f0PF~|E4p#9u~?w$cI=)E^~Q}GpT2ascMC4B8;InMXq2$ zX0;e>tPq4MqL_S6#qA~8J5Zsjqt~8I$aEwYssOuwCS6D@KsC5Y{4M0MxdH+`$dt_O zH{%7=8NjzITLen_7N%JY&e5o)6NC+saHdL?3Qa?Wpe~%$`0rPM$GwsSZtcy%3{VWq zt+3+h^#(cL{cumo--Rvt*~*&*X=#EeIjOR9un2g}6LzHmNyAFBTzi>DeI&wQgE4_& zhZN3s%5kw;LD3}V_sL~+joalg5JFL4xY_z9(e$R^Vrb@-vuG}GkH~=aGT-3MKIM4= z3v*{YcDG<7Qy@E+W>|PQQIRP_U5#H{G{DL6$gBJ(`*kEvx|X4({j;XXXsYOrc?VUk zqy{4v^JnwA;)xJhV=+(vCjK!8(}2c&I>y*gh2Xw}93lvZ?U#NyW4ls1Cp*mkMztaa zDcR7_L_V~Ca0rM1I%ExNAq#U%+hTh=PEI-Q_hS?4mgN4lNjHN zQphM>H7FUe^h|cyACLlyDUMDC+M^^9xoD#bjSF%UhdBFKqMj-EzVVzkwm;1f8K3GQ zT@v6S9xPDv_vL|~AOBrod$X8YFp(IhUfnChXxC)MKR9uXXv4ymR$2R+X7I|-bThrl zjl&RC>RG4n5i^@Uy~<2IZw_G{P;^_q2l*6~7~MZfbUti~i4)oXXFgBPO}MR6`#a)N zxf83}VfuY@e}29Fu^6O5Xf^n@Z!JC;JRx2t6&dEOQ5llNk0uZctz7Gu?gcBM_^vwQ zrNxpkZYKJi1elT(521ZU+Aq<;^c>p0z*%koLbz^dlqcmzAKzG?ixIq`Cvcstc~z*i z0&C!jNJfe?&d?}j5O9!ZAlfj?VzERiJg!;}TlTZFie|Y_85(b&`j}^Vgk1g&N5QRT zeiQmK?&j2#P+LWW5JWXL&<>Z-k8&kLsO)nRHM${C<}ARb)?*eFS=O(NT8Tx2e*?rJfm2wrB*Xaiu2AII+Quo|3o09T)rR5A6tbt2eLn(zSML>iI*TVE=1S> zomOZ#r6#dDHh^!<=9u+>s!1~~Qt9K$-8^6vjpMhuH9yLOom!}7it)U;t^`m))g&?P zs!J|4H?5E15MzUM<$x-w%z1%F<#%fqFE-jxk*b=3!~4s-d8SQN7nMnrV80u}Y#jiT z1tD!8>C1o%(I;^LqOhm}j?4jW8DBwLCpk0o>Sxse|j; zLikPyNvf|hIx6^F8E@GKm6!qyL|1u%6)ory=ouz@}-G_~AFJpSnJ z37~Fn{$&|88&*bI>{#mnJuF)AgIHhK`)BB8h(8Ut9csJ{%!hnD1kloZwnK3G%sj$o ze$>kG>3A^c(0fBni+@oO-bwsSF9X$YzO3x`5ZyD@apPH7GZa=O=jAp4Si56n_G^^C z+3OyB;&)B~4+{5?E;jzfw1bggKD@W??`Zf^)LY1o#70sR^E@z@C1V%CblFP|1LPZK zrB#fK@#;_{=Bgi^1)^;@*wLmsD&vd$|q7}mD+)uhQp z18ESFE}deEX72+#HbQ76aYH;ANB1!M_xy1-G*!`46jC&PnT2o8A(AxV2L>4q+Atu= zE?JUaR@x!4a&~_Z$I38w_0^r#)vs#%_IUoPk#?NlYt%!nA;a@zih3Vh?mR& z8VvJ4}05<;}u9b40EHm(!b!!AE9{&eb=mL(GyPl*$8m%8;lPbRJr*js>n> zGEMzrL$Jin(X36umzWr_ntCr%3XEe&N>-uV-FAjf$4&mZSl{J@FUpehR03314ttqyNgc{hpB za)n|rN-mCdA6zuMzi&=MU0vp)spec-_~y_l)z9(^A#Y)bNeH3uw2BICT-Z97hP4>d zm{m1QAXhbX3R{%~=l+mhQcm3|W?n#cmyyE$ZRxiL0W~M3&aYF2q1&|bp>j~=8c|>w_sRa(dX{#ff zYYKAkHUhLMFXe=Ue{{cL56q0e;Xlw(fniB7m?Oq&5`@J^zmRuOU5wK#bqb;C^pn?F zdw<+udQQkLQ6F->squ(DAnFJ7$qz*O1Uh}M1y(HB&J{5}f zCZdtvjUIhRoq#VyWO!CVA=H^HXT}iYdtCI#G;*q1K-f(4;7Ap=ZC8sH{!0zGS!J%hkuDx9E@Y%X13+IpX@*Hola{Z&+=ScE+V;+e-wOvaREGEcZIoK0k} z*`tu@NDiVfYRJ6{1x=Z~fQ?Xe#+ODC$2>Cn7p{X;rUGoK4F^roc(39xOz?WL;W6+p zTT%YcWi{A^LV>?%ZnRWOGFrxOKA%QCNi6{04O@bR<&H_?|3`Rc%g^nzKB zd{T48$aDN7m7?)$#g&=B9JFA>`@NJuvnqYvHPydb&m2_mqnBhHHKefl; z%OIIk4^%J0^kvz9x-{SekLBjC(jd{X1RGM?@JmP!huWD_foaB8Ec%*v4UkthXUYo^ z`0X&&jMq*eg3#^*N9BB_3j+vG@l)2(!zse2t{t6X2M^1_>YYiA!qcAuxB@(yXu~xp z=ve>EG(BJ|;xku4Ou`Vqy?pzzor0G@QaPkkLR!lU6=tjan}CIlasrr?C;USd`D+Rv z^ib?r^V)oYqfl}RnSF-=@jy^E;ryeRd|9i+lb=5jb z`_VG@oH6E+YH(ke&dyW1ayaOVAZ;i$->ULqmRtl#keKD8#D0+7FwUB@UvMuvrfP&X zBICDm(^^lIQ&$`LzQIM-*PcYdCLUu)m^YGfq_9#?pwMIbA5F$tpnP~KYPRN7e0KyH zfQ8UHDo&{N5n)uKigUT2=$wi>Cwqae6GF7X31z?IkON{*SxizOH5He@x=ylQ!F;dL zct_@!S6SeTaXr|qm8F~TydCq2W?Zx@4mbtLkV$W8gj-uLbxCqDM^f7jl!_V z*;mGn@LY5?ojj`gM7+uB!pG6&pruy}%mAsU38z^L{iki#01f@DkXC}A$;DH}Loogw zT_Zl!`fS~(sO>`c7^&4%ml3k7xeM?dY3%?zL5W`lWrBmGQJ}R7ofEQ(O~EF*j;2N; zNjAUy%U>4ybZ~RmDCX4F&2Pf(a3shQ6A?>TXy^H}q+6N1M}gpBxUT9W;#5|=(lkT0 zxa(@)Zs?qoT8T;^49k&ck@l*hb;vb%gi+~bEDs2b18LvDiT!D?QU9`*(&I_1O26#0 zB%_@`f#5~xC4o|?7M8oq2Kl@REpZwAsr`-z0b9X6`7=SYeN<)<^$~*MegQTjdb*_jqmQ$aH+|>AncHg1X2MdJeY?c0Kso z&Rjz%l9Oa>wC_Sex*M`-ZsQ5(o&QO*vZGu40>3y(dcB4H%C1?wum$-b^^~BxZ;HP~ z@h3hz8GF$26c=|@8Y0d!8cLUL`D69REZ3|{0tz{Gp)btDKh|6lvw?Hd*Q^t#>m*Elqlx>sFY)kw}-miCzQEic7-v3ryj2) z-lR~80`>?@v;CWy5^b_TH(ZZZb%(r{A}mgKWsfr_B9mY8Q&)uXRW&#n_RbrNJjAKf zZAC`Hr|aOr60l$)Xjmml-HwDb@d5X5>4%j~pj>5Wtb8?CQD`D~RwhV;C^<-EtUz$( zM0}#nE9t69dw;C)38yX1ktyLc14uFPHDdeYP+ZUN(S8Q;RHiu-jj7Eabb_)q*^q(+P^;qGO3mg^{>6C79MmHN3-SbgoKlzUuKJ?7 zxl$wvxKW-&k?e+!lF`;IZnOnyDWkzkM3o}+PeI-~wxgIV1|hpW?YEf%BldJ#YFo6# zRWABgRAv5K&ZDkut6@?Q;(sZJVHQ8#Gec6WvQ9ZuR?GY{BB5!>7KNF{u0vDDZF#oLGN~mq(O~w{P2Xri_nmY5G0J-kQdYZ6lWI<4DqhZ8tX5f z97Jo0wHZ`TBwVB1_!AQ|l^{-rzPzzd8ZIg#)}uG2C;P%fY%)U?+`b5~XG@>3vz28E z8W3D@`M9jdqSy*_X1YdukhS4l8Z_kavjP@_^hx3#eVw(_roKFzf4B}_{|FaL%JropHZ%21GG+WOmra(Zsc`34(Iw86(DhpDwzsYE#IpSolX ztAe#H@Fj%f&Az)vSOI*SXym~+M?9xE`7to9%I0S)_xW(wRtbX+B4p8hnhM@f2UFqx zu&_0lM+=;5)DH=SR<-kE>bO{%&9MgY29*s5!sMui#7@9nrj$5hps1*=75FQ~V8I6p zHDyCp>~BG*vbq-V;dQvMc+Gl>%IX3mU{c$X4(t&PDUSxd>gX+UL^`Eye^=dq;ubl_ zIwzee_jU7tqo`;RcswPNfE1Gy<{Wi44YeH0wI69=M!YVInibL@u0uBYhsiJ51s|?9 zpZ3K<50VV8uUd>&?UT>1m*d3Qs$!q5V$~fRhpRUe1qE*UyI>MHBb$A>kfuvDApF?N z9+Oi}50 zh$S?Pf3}=W49@_JvdTZ1e#~8I)Z{UnU6{uL9kmSeAVi8qunpxqZ$N`I zrEq-r^hK06zfYE;CZG>-3-whB=Qu1UavAkrEC^ET;#vQt_yzYUC`bpS$)qUhM1+tv z<%uvc!BIks!6}=+a0v#nLUbD)rn6SRgKgEMzc+0(Kb*E50OF7?VReOgspHGows7#I z>IA_+_|jLf3)+)#+T@4gZ3X@JR@5B@k#SW|uo_^#(*Xt(oF67Edw7K_6A8e{M4-XJ zSfyvT4~H;ooN?-v@*c4{quJB@NALT$r|;vWo$c?L<$W@tefUvWn!}C-(fTM|_>#sV zzh4T5uvd`|W?z1z5<)PW_FJ}@7_y%<)COKyM}gAoHM9~_%j)|T-)Xu5y*c%+(oo~o z2K)kr%*!>kRmC{4oYbom#(I95D10{xz8b81ZjnuoCt<_OcB8Fq3WB{T%$o`llNIT4 z-av!@wFPQoEC?G~#D>Np2k7&;k*`B&nKf!b-&XDM|Xmp}2N>3$ng*MF`HT4z_8Lms{ zIvU{G#d%7Lgn}1(N25l8w1)-j{^cW(w$YSU?2{Q3+y6%rE4#H^BV;}}2AqPB@X38n zBadYcn0=usr*E*rOi<7d2|Ou>Y@rDJK)&x|M|#oQ@5vegz98d#Cz^(&q1iMJ)>Yc9v)iCU=v65A(llr~+v&k5EY`H(%p3$qP52 z{T$dbFi92sniauxkvD5GecQjG!|O&RTby+=re3G5Vbvy*pwh5*X}!Ow7W^%5d;R)o4nO#$<-fVrzLx`OxcKk>U*1V(e0S zH$exe)5>BtRY>1I>@zHDZ|ne>2RD*$2$hSm8{Wog;me|h4z>4L7c(}wP?~h!0dcx) z;A5jv>?*@l7=x9DE(o6$$Z6URI;|w4I>_nR5kdnCtJ8P}&e*WqlH0rC`GjCw_{c&e zXB=h(9`@hLtNU(%%V_9Rl!Rl12G#f_$>&idh+RaAZlJ60kj=BP7%EoIK4g@AMV&G` zYOir~;vq$L#9|scGRBFDsL>`=TKJ@AhE@L9AfN|>B~T{k8m{hQ&ou#a&`BbD7pE|6Mx6pUkvKO6G7ymEIz*AL3})z!KE zUL8ae5JEb(NhiFGu%`n^KmOw%fExA-iajYsjW})!`A*pE zS6G0(Nd*@~%of+En5d2Ex$;HopQ06vd1VV!9e2s-XoZ-m))4{3tK%N8{S{Xmo%Y=u z^l>(yMBtd;hhM_igoTM5NyYgs&?t5Zz>@4oOql)sH|@qcJT5f7s)9GhO)UWNfJ4_I z0F)+4!LS+S4)HKu6Cj09o8=zR35&{Nm;CB4X2PU72n!9|R3AUjzjVJ}w{>wuqkmpJAV+rKqNx5`KIxyQSY5kJYnfFcT0|n4 zaKm0NbtL?&$017$9>FBg&tA1;k1UCMW&y4laTxT;$4ddJ>!+|W;GxV?9^FO!IX*GN zxd~M2N|Isa9ss$5z?xdy#Ii|7wA;Cf9O&p))qbiaNaeIBY+7RPJsh3LGQ+KNEQdFXYDz%olV6{$q9 z7czG&YGwya*fD{AV$uEY5Ngjs5H_k!{_ii0ovV4%xoMl>2!!O{0Yy|C>uKTR^<@e9 z?L!iIO(gU4FP`op3k}q?U^PSVX&7qrY1+JMUBqDF1o1`c?p}(J#6>hN%q(H4)OT1_ z0p$j~3CN&wPKq$aY3?U%!8QfS4`)xWc$@JfQjXlMI}f8fNgL|s^NuD82p5htA(Q** z^RCIigQdvcpjD9|{?aZg>OgY0Mua2Q8Wmf^Oj#!OTi87jwtHr{qm8yg%1CFPDV)}P zW4RXLE@fBTPnya>`*_h)Ei*c*TXyn2jW<7Kw4r1W+Qd)>?PB*x4T+tB;Z=YZLXm?s4C?zQ;f}3W z$2%zgijYe?O(HR2lO^2W5)GIO-kHf4wQdUeqjxV>!{dkH^W1*bOa8%Ola0Gws3@qzc`B8DRSZs*1ZYf#Ak_9ccQzPjQZ4f z-<>nq^I<~f3lUoPKhrKbG_9rOQl1XPPPC2->(M`D#zZkCJ)HAgw6p;sOcrFHW>n(l zs3JfLuH09cxIvbaFy4$>T&{}g55tJd#HA}>xp!{7e(Xg#z4Gn2Ojb(c`tXBpzn)3W z`vyl#O3^jqUKG*k#Tq;bVs43O6-xA1^i&x$OAYGeEuW6BX#RxlWO^4D!xthZ$BsVT zi{VGA<|U~7h-_7eT2>BGWPusotoC7vDeE}x&K^HKby6pBMu-1tdZqZDO7HCxbBzu` zVR=wc&Xp9m>L8bMO$p{hqsQf~W<@LP7&D7fprjd$_U&0_9eC9{8bB1|k>4glL~SmQ zAn3UsA)lwD2GIzw3B_+jiJLdUhmt-gXFpy>E+;7{k#l)>Gsq85F0x8)h;<+yGjDwd$BDsX3r{Uz2U8`xmdJC5;zP zW4#!_KqG{>@JbsBOFp*+)xm+RPjq0v1eYEk-0WFRX zK$ZSX$AewSR3JH+^oZny61`~IhZA2njZxtlAB0I&6cj!hoD{#TZZ7`TzRR7j!3HE! z!0E6DsngD4pQZml_sLdnKyiHnpyzt=V*deTqkPe`o9TDFv?=!(kF^Pb>KQYM)#dfT zg{vGhk-XQo$!Nzm%5|-K<@#&PC_aTX=d6&JI~pY8+(c_?;pOr(Q=T@tY*89zF=x9I|YP3(6eQl_{}Qei*fX`Eo<}0Xd~4RA=JUhT%E5t$$saW z7ADYr_+(WPS2tx0m8|d)<~NP}vBFbph2;!E3Q8BYS%!xhD`2OIKeC4Ye({q# zk$I6%hID0iks@0LOAI9wUtbWW6J@x&7O1m?R_Ts(ZFUj-!<=meWE8@v+B`W{zkyqC zj34mo)$3e0g^!M1*q_rmZA}>n)h+?)kfZWSJ0-~r*6{TDH<Udtl<344i#XB!i4Q)8_l02^wGbU4=nt%rYZ#HTTP&tEr6Y&cl4L@_SqR}{~GMN@xq!NLRG~inX zwV>ld`iqZQzk#TO(Xi&mPK12>3T5;xPTW8K<^A&RxZF1V{;7P`G{x}E)u{Vvx$)YA z9Q|}ZTS5!Ang*yjNI!s%I`xRq2PuU))Jo3@!ul`U^T7dg@nsscc74ZM4k22c#(J89 z;2srmdM7=g=vc$OYn*HG4q75-lin+a^R61Qw=kE zaj;d!h!|~cFs#0RoxsX_MZ3`k;GpSB`sfNz?Iek2+6*#I7JHogJ@usJA|ppOopXA# z19O;0nMyE|9wDvG3RdR75)jF~BeuUTtDp=))~!j>yJ;3I?{0b{6tJ(@^>Pr5gYCg9 zc>zEiOjz8p>;WK?@Gj<{Mi^a2G4t8!hD@TEk$WlQi}+rnn3JMcAgAC zF6EC5sTLHK1yUJi*UB)MgZ`H}g4kZHr3#qJl+kg_pO9uIq~tT1UOk36+o@9Afl>SPZVdZ z9?(I?i^(%WlZU>P|9Tvl7B!V43GE-5G`v4x=e8C7yQPmtvKXLn<_1{!5;`QTYCO+G z8-Nys^hy;Q>U2}A39uv$R$GpI8W}86_-K0*vO*7tx?G6bUV(FkSZ1(_L~u|6kSm$CX5sI(W&FSP6I z7WFa82bmpO$4w1>KE$YeFD-~SrGd<@QUuDsaIV%MaZov*$b#ep2W<)jAa_c7Y;y^y z%0Gsc^3(^|)7=WPl67&6l>w%^dEm^iG9iG)GPSXvqeY!V)y5PWGklbB)hxx*X-sb( z!q!tO;?j+Igx<-;b4K*#9>z?6K;Y6#NIZq zU?9*0FGrNQ*0D(hP&}6oy5A>nW&C{Zf=eri>%OpFP6V*Vt4;CD_$vIOi8LD3C2 zRiWr_N1(9zm~Pzvgj2S=bEA^u0bl6%vb-#Zr9}-!5C|RY%rB=(g~5{-Lr-c+$X$ApW$_AL$u)92jW%2zu7ELM z=5@*qt>Hxbw0S{qIv`yPnyVkvlOzrC$2m%+@Razj=%DF1zYv3vfpvG2hh%1Yl^tl0 zS^0EVrYwewaa&d<(M3I6SP+$uuMI@&zehSCF+n}V4S?qI7Q2gJrDfg_FDyLy*^hA4 zT?fR-g0(3f88&1ZgsmVt>(jzIga7s##?5UT_;_p;d^$ShPK&kE^x^DcQG?}PrC-%E zkMc9U^*PJ?VEo9t{eCy7CjBrbnvxx$W1=eeZNy<%t_$U7_*qe{rUDI@5 zrSHnyYrGhvSFipEs?HC&BYche8GsN7bRR8DRkPQ09OJg`mkuZX!E*zO)A$zyKd8 zMI2|tkP2HZX>9G0TUHVWM^j3@V+a}Gn%R#i6g$yiDQhp!qrx)7CsQR0AFXZI z!S^b2qYd!p*#-98^eNX}5SrlNU9xB}CClxjIyMcS;wWJTU^Wt4 zU7L%jII zqEX60aWut4VW$eI5O$`TYh5!-FGJ!ODvWkAi9u#CCxfNf;5W6KV<64JZiNNOUENTP zHRV&a*X*+h;uKl;3NZua`V9h$=TyLExF`Wc$)Ib=)GZTw3Lk9Be|*B$uTezin3W?U_YN(yzkDdjDCAEdHz zPEC0bHg#V~W^QK;tVX0UaeD<8$lXE3J55muno+f8!Pa^$Er7pz2J2|5W1D*hk6vQJ zcjm`@fA>2sSXB1lp)!%2*~pnD=Az9V7UF~NqaqIhPK{R`(@-;JJ$}SBIlWls?*cnPKoL=7C=mb|}Jd506^Qhhg#_}?KyLB!L_{@j*asmJL zk@4_0|2#H<4T~lh!Gl55p2~i?uFXS(fHyOa!#e_sn!&uJT*ttVW%Cs_uWb?z znTjN9*qN+lEa13WL-`GTX57zhd*Ebxd(|9Ls(TVS99`@pdq4ZOUuE}o*j~M>@ZtD* zc`n_f>+$wBYpY71DN(lXR>S=B@kOY&eazO#|kB2F<_5=n*{ZL9? zq2SU!O&Gvz=%|(fw2UKHiTp{pN*IHG&|tKA4n%LjsxmHn9mwdfY_S*K!s^X@O$B*W zlQmBd%j1tX)gI{*$plN=Lj92|hNPeqEXlB3Sx9&mM{}#5yofOLjmHhhh$$U+UqY4{ zlafnabDJ8iFf-P55UAtR^vn!_C@{A#gPqa_03U)>RxQ7SAz)g|NASh^Tm}q${{7ES z+2h@9MH$LZ1f@(vV*V0$pl{Q|vl6PXZ7 z|8}~ZOKvZ|ch+kQ7MFU4Xla-Y+|Rx&ul9D5WpGFhZ2{=_uvT zW2^Paqq6K(%%1giHmoLJQWW~2Z!xw zX8d%fvAK0ZNh@=Z2x4V;Rrb8L?j~lvyL-Rvw@n1G;tU9Ym6cb^F6n(R87{46CI;e| zr2$hKSsYd4*evBhB+l&O*bYhuHiiZu!AwSdK7t#?89Rt$B7qUlAft%zDnIj@G5bne ztVQN;ik|lJGq1{51AhjJUzscxGyaF=>DF+D-DLh%w$kh*yyQtlJjzFzL;S#Kr;u~u zkMYX9TK12xM*FoNcrr?9G52dI9uOR~FKrNM`G^xAXT_bJ*%|5q`neeu93C(>=*;u4 zT*>^4XDI3$R_7|}db+>S_mh`}&=8DsU~q{J6>W~Qz)3S~kV4NLja0;W#@CB%zTBh~ z6Jh2(7gmN>lid$|x?DXdvZKq9vX`zz03q%!zBl_Q1IO{hNax(N>E0~&ETtI#_I^#X zQm&GePxlWupDL&vsUmD~2qJso#K0uioWZ9T1cVX~Oc&;~GvO~Zzi`P>^%Q_*x;&sM zm*){VGFgqH&R<})anLYstnk`Cm0@v5SSGcIq9B*22skEmlnyM1g)yyYUfh%lP&FWP zs4yuLo>W~(%LLbaynC55j8x#j3L~ZYP8{*VJLRcLznYEfoYOBEaz>6T+XB<=u8e>K z*a=}l(u$-)ObAhd&eG#n9B>K@L5aDI&CNz`!LrxjOb&}^p6P5<;ybarpp|*>3Fx3C zqKq(=l7>o!s0KP2)ueNU1IGowJz0svljvbLW(;?f@Jv|OhUBL>4VjLJ#bnCYgHT!! z6%@7vyT=t3D%n=x)p6yWY=ZF!>xrr~1fj?F)#Q+z9@?gazr%BHjwU{~$ zWRMiW$TD~O3H}rXJYS>{nLWn2k{vSxf-<60D>s1U9yl-%F92|o za^+ZL9_~;K zASOgVO-zQCh9mhGJHXL$xVfsrH!g}v4y}QnPr+pUt*Ig%8h~s$gze*C)uiF zG?28UV*vJh~#W@;2nt1L>wW}MJ2FMUx@HAxCH07FWpEfZKaySygREAPA zjkq<$YbO#Ek%!V=d$4|z*uvv%GAA%CB{Gy&ReBD?6&Zt78?h!3CAs^aaROy-N+Ho= z0y644Vr{;=&8U-vcRAw(eHm3^}KAQQ&liFQz zCN-KWh$duOg(UwGsKE~*lKDQg{#<}5=47UyR|!rrM3+9=!irp^UokLs2i%30f|VJ= z+>nVn5gGXi)p%$t*+V1hCIm`rc+>=Q)98fQ) zt6{A1TDh|Y{K#0B;z!eBp_iZAZE#DDC0&50B@Jl$D;Wiw>-sQ9Y|z%w-V{W2m8#gm5tTov1{IwW%@#vh>lY75ow40|3!*5wNa4yx3sj zebff%%7UhPmZv-|8m7%~1|N*W1!@Xw?LGkYCZNcomdoJ4f5t!shu5E;aqx)KEEmcl z1XwOY0*6Ak{)~oasW6I_W4stNea$0((ML zAgr-Is26eW+3t3>r2%3*tIm$NAGJ)B76jNcN(Lk9>R}$#xXUCoDaEC#x?dd~MO?1L za2JMmi8Qu$YP(!i$&C0KG?zKBG(C7FGpP3L;)T z)(Ykb<4?E*{3DOv%DkrJL6p_F6EdruIgD{tqR6l#+;J@S z)NAH94Fu3jMt>LfjU?!>P&piO#h5x>0?z9s?cLhmRE`OP%0^cU80Dsg%h5`MEYikM85I}-4T*!-$*f!= zxUoMv%>biZI)JDzWugh0Lom14h9e0nVO3nimbB^M^HlN9qIBqU)a&%^_}@T8ReJ>4 z*9_vS->{xNYe;@xss8=$;pyY@_SV}-gm#!&2ehFq>Wr9q-O)>r5x>Y;kx&&*SS1~h zfSK?cXAJce)d|fNH8QoGG^2*F<0J{&gm(m~mO>}6U>>re11&U z<)Y)o{-IT42cM~r&sXRl>eYu^M*w1<>=~Ah+}4{hM+hv?0;41>iAGxOASc;|lZ5pH zD9NB$fl%$qomDzt);p~SX`p5zaZ?(*IrW1aCWVOfhJKj(1^xj7dP`VH@PhhJH3;a* zZJ+IjFV*wkUX&&LUE$;ZvHjz2zmbkNSYL+%!q;U48vm3Ak}x!djYF`SI>LKwb~&Rn z=bU4g5T1XQlxzyG|9VD)O<{SvMKBZl3Sd8Yil*jHSo@68F6Aa2v~Nj33Rd6)6H3f^*q5ig2x(2Sy(%d6umWL3&^ z2)gml9-ufQpyiSY#aD(;Ot%2SC4BlAvV%N=jpxTn_i_S}iid?-7hgx`MJGr{+Fa?j z&$h#t_STEDmsaIxEBc!ix?gXK+wxf&*b+jibvRoC8X#dqk%Z+my|b{NZrbv%uv+ZblW5DFTsvMY0g4A;v|^qd4= zId(6WCKD#F1*K!Xd1MzhzvfqB?V$iN#K(81j6!a6^t!Lzz;vM`tsLMrZ#qd<%u>#3 zz(EX_P?y#=Z4qi%n=bbgfuZ&wY@yo_U5S7KnnSf}X}UBjuy>LjVzxsibzjl#zda_o zHSZ0){Hr+ha#ub4^q$?VQX8Mo7@{<0jxdf!3YTV*cDk$gi^_1s-;ZTr{h+@G6iy#OR52+Tf z(o)dgXz*6V{skJZ1^qnx2qO3=3`v-sGkdS!TF>)+zAtN^H~;Xi?|=KQZ#;FDrIZz7 zbvE_Yy>U^d?X9P!KOMH!R+jb7h83L|E4$u{A7vF&qK{>}edXczZohqW_s#iYd%kb= z!LSz>Y7_A#S(Bp8ZG|CiW;Nz=!kQqI=o7NY4!#H1i>cKhfH*SCGUw!MDo%J!@G#Vhk` zuf0+?bNTAW`j_YU%FQ{pA3pHl-Cv!pzWg#TANts9FTFBHefjzAgL@x6|I(#zADzD` zj~v~{xc=&`oAoB2eDOE+h&z##M~=}sC!u*M7EAIehf%0`j3KAu%SzoAA6McW)2~V=>@a2d8Oy9g?DQ?KAkDeK zHh=mqd+N7$-nx4JK>mrN^Upu^wWG@~))!vdj=mW8#+4pM^tFaTQAVq)6>5_tBtuie zYJ-h?>A@91;EIGkTX1Y=l(BvEx5vB5+gwkkrx|$1n90Nzv$Ne#FJ=^Rb%o?tEYZ%< zT3d1UZfoGseS70iPj*(89lee$iiVuLzBZ=J*>kkP*EOe4t!5KS9nEC`;fr{oj+CmS&o@$w%?lP5K*L0-@qL_}Cu5`*?3-iYYNHmc5T4 zg$2W`h99`t8ZC-dWbvouS)31M#!x3`%G#6d-RF+aoVebSfN-Xbw}hNm3nR1~r}XL~ z1J;0a@pg%m=y`&hDXf~Rb-4oA<7awl(fTT*u#L(_T%|9-k5O|oHbZ$m4;M}thKn;U z&+Lra+4c6(ADryH73Y|)UKzkhLspmW*y<2JB=?zEl39zb@>ZTib%PHyxDCepa1@YG z3p=SRHAaD6v>;-oO9|QM$#g&nS`x!U5}h!@RMRiRGp1~BJa)XFP135B#T&1@O@ogv zXE=MMc%E+3Io4_v1H2W}mlYxS^3p0b8Gj*|zI2!Psb#i!xLx?U5+Q-U^5oYB5PZ*##_#?P9f zISh>yTOo#$;Gu3;41t1kr0komCfLm1wIZ$Lq>J0&mbEi?#>X)Qm2a2g=B!I!BE-M)8VYz3S+UbE3 zeQa)q6}qXZaV*p+*u~JX%#0ipUg~TR-tf!!Jop!WGOTg(v;h#S8;9IjZ_zHO1JXf| zsa>wp4vr~Lg~sW8)ayZ!j_zAr|;QEd2$ zsU0B*LTtgKRk4Q5r)ha6f%ri#FPI5n3p4t(n$+!p;m-B4M`|RVElTGrcynq zT)hISwdfI}Q1BE;ewoSE?e=Gn&zMiR)_L@@6f^-=58BrXQWiyv5yl&a&k7?DCli^_ zg;1O`v74m|c(*;3Q>oj#Z(ZH~apgS-XN?w;Fl2`#G`0|H+}6LKs8F{7%;0sV%tfCenPnTLMv zvYZ-0ny;Pz_OE~G%K7f~CyuuL>sPMK@%(EqZRU^j4y9zmD{TtUf`@h|gblxr4lP+_ zeb9(*c23VJmUkI9EYi!_q2~^0pHam7AmR|hKRcr(@aZwlZnX72xJK2eD%zW0Uivf0qSUY&j+9NAJ?v( z|I430a`Yqr$0VIG;u8>5117Q#o=`WJavKIO2s)z39PG}s5d1dSK4aOjKZ6Nk_P=?& zD(uR$kivgHtIdMlduME6 zoj5!QD+oJqsQ@b1G@%G==Cm19X3&~1X2uwm^*%AIVivSDl`khU7~$dN@)`}TZR`!` z2AI=&Q^mm-V8p}fw9DodO)6@pQz)tW=*5jOr7_5~Ca;X{EFO#z_q>9@z!@;59@~4r zc!H@L9;L`C8`>6EJrBbqE~Q2Y)r!ac;FWDI=qaZJ5L6t6VuRc5>-ZOA==4mu1omOP zMQn_RNP3Ek_rr2n2a_yviloW{Mh=ApI{1OZ`0wDjkeF9#2_QI5qk;r4!}W74cww{| z09L5QtQOJ4UhsVZvWv2P zA$W?tE{@_IJ{)t}1u1qp^;FPyL}7slHpBUCuVANEO3F+}tAq}}FWxi`mXOhMA)qGR zBi-4-dWGb!&D~fGooe4KIV2KNd_!f+~FxS+YuoN06 zq_a|TMvv9M?D9yeptXzz{aZ{p_Pk?a2ob5V9_7b1U;$Ub^;#?k4xu!d7|*LUJv-Qz z2m^u;qm!6@0PG^V)=&Pl z)QvU@E(d4DgdS34Rx@a3LBtkqFbGszHd9*Ifa#@j7&$CE;UghsAjU9A3_lQy*lhDT zbwT7%5TfCr6g!667f2I$3N~_LcnGt#QQVHlCRFyW-r?mjV->{*_2go* zgK2=KW^}glFgmY}hmp**2p`k)z^6 zYXtIR6yNdei2N|vq>9} zZ87nvoSj&ZU~QYY$gth`d04-zd55wPo~{{PI8Fuy_;&*zXw*xS2p=15B@B>03CTn* zMzqC?HD)B_f{_sbO~&t751oSL!hj@!M%g{%4Y1V;Kz37TZ^sB>XAXTcQL{WuiRmwd z{)*Uix&+lB$vGQ>1;!6x;q00HsyWFd&%VfZ^)QpnCIm=yY6Kw{b21c63izQvxH9Ad zQUF#IGC6}fYFRNkgq7?D?fMmxI0LtIA;86iHy_y|ElPNH#+xz5j2qR1iGT7#!v+#> zl#W!VNTEB9EW=v^bvv}>3|EidQ>nIm z&}4$VXUl9y)kNYm#tio0FiD3Cd>o7ch>y+-7Fdl>M;!*q)}kF`bo@bNYL?nP;(dbZ zsA*mZ3qXOI;z)RE3?RiDar@wYD4SSSP$}A(C@X=|WrNoX_;@T8c8Ll&QY}Qw97^e| z07-a!G+j~yyGOpQCZoX*8sJeuAZJLXh`=^DQemFj1&&Ol+lRl|&9G!1kQv5+X3RSgKcM*rif=`k=<76JS8*Ls89e1>2BFcc=#&>rH@xZ6>C*oY&l*dORpN$ zQ89Jlf}lZ#^<+h+lyT0ENH9_1FBig z;^J^dD`2PrANbJw1IR^h4vR8BaeJjWE|7sYX1bXT7=pMe7Z(!bDlDuv@sLLK>JRpW zp@pGb;1TIu!YYSAGBDq`BC>E_cmU~X6beS+f=gN@i-pI{;!Cj@P-RS=vo9?d)Nnxg zfE)2MKpehB`g(H|7#WtOK8wUYSeABSWa+9WQc}0>h^!p?;wDpvodOW1Bf*hk2CN7v z7;7<_eiHzD60;44i|R_kx?*Y>N!vx!$@ah}ko&2`X{aM@GYMQ;s99((<|S&1VpJgg z3P|zeorS%{=zDtM^Fbmp{P+N@H8LH@;i6>)5%h{iGe5KoW5?QvzuK;fp(A$%Hp^_= z?Sp%-Z|}bK@cAEo`rq%_zGZfM2U15#ST~t;dBVXSbj^vg>-Yj1)e4K^Ef{K4izhmV z*Fgl^`kzZUb`HZ(Ag5M7`oaX29+ShH!zh1U4=G32> zu-(4$iSzH-Up{(<{93xHEv^Mx2;{+`CDZE1NPy@SLxH7QNIZeWkS4$`v#c21-u<fWtGYZ0v=U!E88-ds6?4m-2_%figcle^M`A(kAy`J^zKL{`t}#MYb@^kcJf@ z(An6W;1`5ukebyR#H{S-ie3UkK2Dt=d5OlSaJZ*}g7n6Z9>e0SVW^3P=YrR-vI;RC zgF>vZ2oVy?jBS8bU%=po;WZ|Nli>*D04ujdzd%tbRZ6oY5xvIEl|mDH zb)LIg1!SUPo;%HD${W$CdbCh5@?d60z3aB3zw~hZh}8RcSI-~%!f#zUGrZq;(MZIo zK+qf$D+wf>PLw;`$%5&mE`VpioH!1>h_;o8B8R-FV!{AIHBde#ohnYc9)c?dT3{a; ziKt62*D&MVK#Ww4K^V)}!>=fuy?A;1`nbBi)}KDZh%;aK0E5*dz|%mGE30_pNvzN) zF$`qrrHftxky(iLy&OP`iQL|MpYVvdB{wnTQEz;!&*_2=7o@LO6l7ta+l1^f*iq9c zU?BBo{T|3{Z~W!;qr5%#)obU!KX#YS>zBWN>8zyEuwTdn(M^$A^$rKfI^s1Hvoyx7 z+*Oc8uV^R{wIKj8)C4Ns*bcH%S13d~+OqJ8a7-lccla2?24mnQlBkQI*H(XfNc$ip z%iIXHL_yFAnxcRwD=l}ZZ?|kYR25sRmQFf!3s5sW3Un3DlF-c4dQ9qW()W(KOtE(0gMOGIc zlG$#3=g~8EQ}k|`p`Myw$(t-ym^`Ez+n_hnq1eMMkY;1D5>b!6>TL$PwwWj30QLA) zWlSQqL-3h2zY>b;L^TOC*l{3Ijl*q>Xqc0U$%q7X9lc979vtk?e)BW;fBb)c^XU4k zuYIL$H)=cs$_8i26AH=<74bS(P=@%`t{05tz=*d*n z0yx;}F%vAWm(Y~S;RG>{LQOiMg?xZU)-WtY;KKIKbC2$*6`h$4q+`kx&cG6huu0_0 z0=yeMYt%qN*RkMy;c`72JtGrfXrH`nP8A<=b^Gpj_j|YvS4a<#uffNZ#FLC#U?jYo zF`*#)quCr-86TE|EVPKS)f$uDR_=H>X_rd&YBXzLzTro`78U)CF8rTfKQcK#+w#Z0|MuncfBHc@`fspxK)kpJc$^)Lu?@p8 z33xn!Lp1>8MT_* z!D2t>$S--kSa<=Alud8qFc60C{uRFUvSbfEY?W0H5oNbXg+-;?ONA^GPr$-oYdfXc zU%%rdK-#hr9FR4B$DVoTab9%eniVlzLvXwVhJQQ0fk1ERldplKeGJAe27)gMc}bCx z3w4xgMdZd<4@}Dtq}ed3o%QjU+>5#3m9J%FVjC|^SzGSKg<97{2$vqbhxKLZO7R`s ztcd1sBP9)t6qrqG!_7@{0V1{)dFLIP!=1sxA;|azY}(E$PSvl^&*W-+DMcvv5F*{O`k}qIL@__*bYVr#oxl)jpth9 zwCMvkn;K!Ec}^Ei++xSLy1rDGeM28@>p)nMztXY5t911bt^yEgN>z&^ku155n=O^S zM@&dhZ`=EB6PyEhD`^BfVx8k@A#$adhd;ISiSIV8&C4y4a_TBO*4dIWKm;3cO_nAiKFdRvs$Y@)7JTxf zdw0E48IIE9leAbQ+J?goRsri^>e}it#LU5s8TOZlt=+Q&rNhl*3ijQN^7+K@iR=U6 z`8y5fOc#X^XlrP{9A{3>2MW}W7r!4Y7avOOtH}FZ)IAon;+0Fq*D5)2?%<&WGm7yt z@>nNedFsC)wLz@xS``J8y5NVNbCTE4=4t)-B$`Ogg>WrO+R%kw-O7{md?nmdQ* z;KwHH{sH2R_5|+)~$YonR#NzCDplo7Jaz<)yB~X~TATw`bfyTxoCs@L{ih-gjr8%i73btGd3J7&T zP9nr0uHusXqSTbcf=sXyuz|WL3JWSrGV=3uQxZ#3OG`3yfFb}8SUAA00eGAC8=0=|l$DU35G4I?D*%p;3Vxyjc$_ma00M>L)V$*SqGE;=G3Fy( z#g)dA-=oA{v^hjAR${XN0KX>-m#Y?doHH~qFf%bxh>y?A%PfhH*DI)G5ULUBGP=Fu zU0N=O%909MAvtkpF%ttIP)N*4%}vToX4vq5hiXEkhF{#Xjz11Yvu*TCe)Jnc3`$BY zP6ZkALg~wn11#>#YNBkz8Mm6?ve_QY(^E3raHc^NK+Vi=w#huq{~} z#^CEZ@PHR*}GeFU3t`vLr;2wCqmT}r{)#s z7lBPWT7LVx=2y3#KfAP&E-6&ZGYmpGeM#8V)_S1<~KP2Ms1UMvP5_Rty9ZR>@W=7=POLv zv{LD8Q6&&8uC8D)EEustC9UGP+L^A{bG?rw9*UDXPRk5d*~2ux|knoVA&b&mrinlhjnDmXfYynop}BaqSo zVeR?Cjs`6{#{LhHCy^k|k`9Zpv;G-#@MIO2oeA}V-#+0cjwt8b__IVQ;|?ibM7{+; zp2)%6L6eEo|I%0$XEnF6S0{V<5WJI}x1(ZxZ}3yi+?>1JH&mBj@eSnde#RtYixjkX zZ9MWw_QT_tiL)s#udmkG7|Z9qD}H+z%L$}`e=+Uf=zd}1rc;5-?A01xPj4PW9;DQ6 z@G{=3Xf)m@7XnFVbz1Dq6Y1_TCzE=-6!#m{GNJ3gDUzG zw`gKII`|D-h?iH*i5H%`T2$f@-Fi`#=?j7sc$_=Lv4(4cE=NjYNoq-EZt6zWU}k~j zoW$Z{1&_?)lKi5~sPQkNr0p5o)$1x#imZWYqW5JINeJS5R^pQY$Q@8DeoFZ z|N9QV^kF+di}bR(SR#kRna9UBW7f1nYD9V0M9jUrpPCh6Kpj+gZJ)PTQYAWB(tc1& zQqqEy&;7umWqgZ>LOKd#WzE1K+DOr$tRk8eL{SuW&_YtIC|5#aGwJQzhze$F`|0QC zza?!o6TF|khJ_1J*R(XlH&O~YL!T6t?@0;qEIuynSQJHNO_W0SRCkguL`79%0LYeH z-@tD=j}Sb!A5e~dv9Is0uJQV2wZ6T_cUKR8!T7Jgft!kM(3a{DcyYij(YwTdn)f-R zCR23r*2n&+vnzghavNxQa4+U*MAg+4bJEZm@*d0w>^1V2skUZ1iRW=@S2_^T-=yxS zP0oN$r5yZ9!T{$}6q4S;Jh2N8nLSX`DUAv^9FFvkqK%LZ(Wnwy(<-x3Xpy;i=L>`6 z3gV1s6Nl1bi%S4EAK{!GAvr8ckv&$3{UvMwiJqF7d&6!f8G$#!WofNm1I#8~h_0>> z7vW-rXugg%{T9!@H{K@1w3a^22|Xt1UV#xSI{hjtj5FRaULg{^qOYTk zzZrV`WDM8_4Y4rAxYC4|G#SG&GwR~gHV=UanNnS0XOB!BtEa{jY~SQTRBSjStZeiX zG@x)v%UZA*ET=&U44CzF_G-cypMZr$V{6+rNZtwdQVng-~Q>}cKQ@ihZs zB?n~%Z*SC8A+fPveXwDruvNz$aC~u5(LJq2YuW#$W0F?+djcGpp$4w)p2$2lnhEo6 ztB;Tq9ISJTiUYbk=$+tJdgJJL7uaA=Wg!$CKX3$ZYO>8AWJiO$^-lbQNL4XoPHH%d zjW~%FyeP7N(S@nLsC1PRh-V5g(gK1Eb^7Jx3(v|v*WVYntJTfoVR^g4>xcX0>d&{{ z1h_}KTIaF)0yT`zFE1}g6+d&M-qr>7urpzC?h3jorKYWzM&|4(-`m}(i%xjo129$?QqF)p1yzIHSR0l8I_Uf`eQep$^m?DerI$ZZgwM zn>OPN_9yJMTG`8XWE2Z z$GUpe-Cb2(tLpBqd6z&O3y%ncF#ImgzN)$LDy)K^KHZg}@VQuSz<+m-q>`X#2$qv( z0Q*vE`dM&j(RfvHcKpI4*PchPW2yM+di|qm=SVVWzygtFD^w|TNHO$d@x4!nCQYYD zSk+Eu39%H#X`k<*jOsvf45Fk|D8`hMfQ8QHv%$%jCToYq@a4?7vTaXZhjUtBDLZ)% zR4$#_K}#@C+wx>nu~duhS#>Ur8`i)(+F?3zX$fjcdInkO7FXNN@O`gU9>G$ZgO{Xe zv?RV6wpLsXcL8GwQE$SDrrxA`cjC*mIreSmk>k%tPnRA!{u7_`MN#Jr2k=7B9XDj- zOPeEY-47>jj!at@`tN+)DCYYxiA(5ZM`_0xAzHT7)!jN?|AMx%E|F;f z0_?3L^tTcH2;5RVyJ`b9RwjP@80irv;p2PHSVP9ATag*Pv9K&w!=cl$VLlO7zNzdpLNDXW&rB7L%_OKo(iqW6LSs+4`Y(T`2!f^g23wlg>W zYx7HUHd$RGS$i$n`vRP8lo-qhdXxkR_2W@X&Q!XDdPH!KL1ch|k<@UznOka|vW(?2 z)9>x<8}C9Tjt4y*SpdToIs$wfLK&}Y>_Bv+=*m$?1)o)a3AdCax=xtsYHN~vj)Lv= z$2RnD>yaUyW}!|K$L~qDzH^CSlXwX`OtGQFPR+`!QSU$OqHuZKGQQE(WTL7~uENaP zc!D?#5R!LGi1cL0Z8+=Jv~GYuS0b4w!D@&of+taH`jL;#i1Q)$OZx7J$}?}3Ivffc zwt8=&s>9yC7hLLyr!_1g%L0M&q^MT*%~wjZDhJ}n<3zKOnt`}unGDWB0`Q%C?A4x! z`UZokh{^HhI;k7z;6>wK6Qm7eJV;KWt z43|6jJt*c(1wAe6JP4nq6Y7`=mijFWQ^iP9NUfB<_DPki#k!0Va;HrQyB6VHv4GyI!SAneAD-rCaCdl>era2wc<6 zhWen-d|Iw=bn?pJH0<{nDZ%ps00%r?Ktv3rz=>z>J)9CBgS4)xrlFlRgs)an@(7N6 zdS`5fu`$=-$qCQ_!?JL=H_Tu6Be8)VIqh34d&P>n&afTiL{E)I+yuNNEcqS#7#07N za^L4h_NpVp1o$uRtJc~RaB?)hS1=Z%Ja6@PVQy|jmA*LB?K$V&5XWYoo3+U>9rc#+B>BPUw(q1*$c%cNiS2=66d%{G%Z1Hxg#>8Bn*6F zi0FMHhIZ4@dlr}$G-Y6g~d(jS8dGI`g_Ysw{5XpU;BEn zk{s^UF%~etYq0x}w?6g-3cBVo%)i$y>{*&!J8B+=Q}(b>GYEEF#M*gs3i8);H`4-> zMd6F_!Zp|DREIYdCF}E|l}5wYeXjm&ORZcJld`7_uK)*X2PNAt2w7dg43Mb2%Cw;2I!1rwsbSoD}a=hzP9>UxaY=rgU@Mn@1uV56?h0;YF!llM>2D znfhZQy^6ABQW|G!%+*7tR%eHwvhAzm$w*zeK}J#SQzl+~=``#68f*`q3%93aGy{)9~^ zlwf~Q7oW)4-br_P_o>JFh`F+PfJbXZlddlcip>S@J68|%mS@!$Xiu0pi(W(GWpe*o zl9-)UgfRJsYgWGtkH_5%~R66el1M#@?Yp!_WZCkv3Ldi?H zoy6J=kVA{k2=LM%JyZ-sd}^b&vI1d z>vuIzMa&q#Gm?8tU68qS(~C|r7nm#UH)L1KcDNA}E4T}Vs&-6K22CSu?a@kKOXZ>P z{cS0uOcvi1;pDgQIYn@lJ82>2ht4-_E+5)6DP|Y84N`Ot$Y;7w42}ButwCiK`zYF! zd_qg_164Y1bFNT-vWLy}z!A0JU%NMEy?=V;YRsZdJ<#hm9%7-*Lcb+QfkmSglvuZj zZ{+17VO z90?OZk?b(K5BgJ&<0x}e$1MlTVT=Z&MsMlI^DvS&ijb?;W7d|b$9WH=gHYU3)4=;L zNZ^g}CIupGIs`gtbUtR1A19e4T+ntlj=Gb6=Xa@CeHNt{>(m3?7LTw^{c|F#qndNF z)lt-Q$~)K(A*P;uE-sWU_}`p=6`kA`|C%xM)_rxbq-r3gM&G;@!uHFF-0yk>JcPhU z1dw}?V7mJe-#+`E=ZMKIea{13Y+F|o^zf0oqZCTJ6o^RgS4h!@AK6{FKGFyha2b1d zHy166i0+4@V8bio5;M68`%+08A^}4vQv-lQ${)mX; zuxu#s-6)4xhq9LLBVnYlIB^KM?}MwOvwTi|1!o!hSm#)qeOYvd3x8qy`Zl>Z>rz&L zJt=TXy{S+zs@Pyra#$G3mN=F1;8T5mj4J09nrK&i$e0(8bqc#0F-AVfP9^g_wIX~| zpyt-SB`vWh+2Qi>ofzGIVobOf+)ap-DSMxabnmCg8dWCPE?DnqA&Ud|inV)t1cvH2 zAHI>o#R|-}Df^td7v}ECkoGOHsppJ7Blc9$&VeozO&5n680#;Ltyx))aRk zo}9s&OH?UJwgOuYs?Y^W+hHG;%v9dR9snFjQZZC21osHPt<8Tey;eqcpeZTaVSTN0 zm@Pp=0HeoclNq}Mv{OZvtq-; zIU~yI5VUyC`|V(+f47TqPbp_TL1TT9lcXn}!0i+mM+64f)f(t7SU%8A>5*_UEQUQ; zM~(;kt^O=N*xbyvsMCK2h3lYgaCY#wf?FDExVJ@=R6XI(sWvgpVSWc_s71=%hV|0}LvR9w zzP3QNKt_gs0JnOh$9f*Se4bviB18r81>3L@eKqA6MZl+525{w~NNldqN0AHxcC1TlH&IY@Io z8|-YfCoAeNrx6_Gzt+C8X`1;m{+4!mxK*Jo0S$m`15v&X>sR6o7RwIs{dMQJST&%3 zew}=b0FVLn;)^{{BF$UqKgP06NqN9V#pYTa^99Jj`Xr8s>9?dxGlo%U@IYkxO&gZU zhLs8YBX%-&baDig*=I&lns9$b3$^M(e_?9>)oKpSTFI2M1Lq3>zdjJ)@vm7C0ljAx zd2j2WGUr7ifpFkIFyH&5nkh;n3l#kxrZur6FcXK=@X{ql11wWiKJHx89H%?Xs|*i3QMY$VHkZzyWpXk!5}G5lpqi@g z_UYa#8#W%vdg}$rQ@ReU0WbgI#_AaF29=V@Y7azsxR`7u0Kn-CbMa^84iec-pd4q@ zuar}jcGJGEG19!RAx{US2q01XuX4lG%ZaodF7KJt^!3fLYQT6!(u~(Z1BTj=LU$np zw82xr4j2UMb~Z#LWt0RnD2E*_0-+RDqAGb{jxKn1hDwt*4$J02uz9)Pw$raDx zWUJup5O;K>Lgm>ql4-{Q6v4ky--b-#1`EIn7=EpV+=hsv6a_7oP#3P*-93}DqX)Dq zdb?v~svbu9-GCguJ}Fy^2Q&F2rsWE8h$eb{s_}Kd!%o?O3gvf8O(}U&GVhkIAEaCe zNCH_=W*ElJO|L6{gpjlePU1>(KS1a$a__wtk+hSLDIY`*YfDL}@!5g`lu=@+tV4W( z2Ma+ASo=c}D!&3jdrfs_sqglz)i}!4Hw}_MVox7$#H0X;?;22*{;~|!5;H-r0p;TT zm)eGF-q|$^%n_k)0rAWTx_?^+FugdfIpunuYwuKLQa|d~ojZLm7NCY7(P$UKAJ#2Z ztLN&weV3Q}@0tV^qwKg56Q5m)S<=??y~ifm<=7WTQY5`_i~j3NpDSzs6jjnHQ$4VSn|9Ue9gbC2fW z#pp>CK$tqh=>G~FU= zB>}+dgfiQP4*cyWl>sIHGN%VnPo3DunS3PovZM~I?^R8N&N2;KV6$;&#aX}7v5<5? zSu^8Nl@h)je;*$5{m<56d~TH`TveMc8Rsfa9HyvL25FI{Jxz}OXCOfdd>ulYnzO4d zbTky>c83k~h=Hg(fMQRi>c0UAN&dD<^O%S+cSWN+GF0EvZ?%++1ehv74%~ze1gEmK zdYr&W0=_Nh{2JWB=jc@%E#0h}9Z8(MVW@W6RDQoj$xMe?Zpkx*8Yec|#8`UZ!}f5( z`=51EcUXMQBKt0>I@%Hxwh|)i1AXm00+>o7Jv;^Guz}}<2(bRT4Y3UoDGK_$zs$a2 zzea<{7&6v3qUjM0ZvR)Mi2!`4L>=0P^b-U>%?arLKZm5A0FQYD@mcHC$>f5_aM8D! zp9fT>!2kq(YgQDo4;57qYP}WRH~;=Ypz0{?w|+*9V*kZWz}UmI1oFk(Ht1?Swmfcz zdY09=R3ZWZ+44x&|2s`E<4YnhO|!_yAze3ZEnM!~hI&sr$be2gr05f%A0=2aLcqrB z3~&Y*nGG5mY2I0M5)NzGm*E!_dVr23LvxR+C%W)KN!y3~!<_yEW2r!(QNk7_=trG% zachN^aANl4^B*wId6oNMdbnV(TPT(QeKh?+L#q3~Vcb~bHU4F>Q&mE=>c^HQT(eA8 zJ6J1f;azq@9RU@%$TX7=NK*+!{nYng++8-*xr~Q}w|#Y^Y&vS}6~1-`_zU}9WrkS{MjC)xBnO*46a|4^^EB0>Zh zF+-X-1p2D|3zmJCKoq58gPY@#)da_i{+mih3es){gFRb7c`8!ODXm$EY3{r@Ic`HJ5!<45EN}B4p4Jq`&Z=;8yHl!N;#+JEmKvouSgK#I|%z3K`pvsv@JqxD#{ZhEOK0~jtwt~&(!i~JXDZj&Vx z1ttV_<&!5%ctFMmVsQyLp8R*dc7m2laznX0)Ini6?Fby~E1XT?f z>Bh-c_~N1dsfC&Gg*d+%zNrLP+b=reV)pt7lnH#d<>E?((Y_=8wIiv@K`vw4kR@{U zv?(hzDUI$sJl8i~ClQ5`R}L33HMp{^4CDLhY|Qk=!*d!HT)jSVBE8;0#fT2hPUp_h zT;}c<%`HRcrbDRlfjZddHg~nxg+KZKa5)3iGUFq(CUB3;KIj=Idl{}Rt}A@JSyPe2 zEUZWt(%^)zg?+HDi7tguN-KTNC%Z9`3S&9BTb`sxhR}2$g5qM%y4>22j9m0-0z*&b z!uLUW0*9M2Yqj(~F)CKhwFDvx0^~x1K?Mr&kQhSGn1KOh4oQf6;<^1F36!;CM~H{t zOZ|v-9t~iSE#nuP9{-%|v}ed5jI|wY5X7b}P0Nc#-$A;;vQ@vKTfuOCXgmp+H806s zhww-JuR@6*ozF;G-V_jeZoO|)P&2>AngW~_4%Xme0uD!!`;TDg!QRFS5c4lT7z(-> z6}IFq;^gV*%jKKCzl7W(pE`@m$OqLV-TIskQM|??Yj+XRA!G&H{Tlxx{sN$$+o-^k z4%16d+WMW1;%#Z2Vf}fBIaxw6+6nRIiI9HXam+STmu|{rFJf_ zjeqDI>YOK|XJ-D{L(I&zz|y-sKRGZkGEX)`xYGQHaqHk3FBBjF!Y=k7-Fy0N)X zYIjAB4;YUptK0xFlI<*37myEK5i5xROENC=Lyc6Iyz6dB%t zDGwYfFmrz~Gt{*QC5?EmxStwX3D=yJPhl54Vgm>UdWfDQ3A4;<3{+kE~^qA)WLxx4pQX?k`p-3y{@3bm0iEgyIvKqWOc2vrp6 zsm$B-c`N^}I7y{-HW_znaaANlQAoN`|RcEK0= zh_kx8`!$}C*B?zwPyL9V>^s{HM}9P4sqMW~%5Yq^k}yL15-9dg!57X~k;}pW+|u=R z8cx6rl4Er(+a-38_ie?xGEyXhn*C%p4unx+N@H1r_J<|hO820TTD7C9q|hM_mQbs< zYa~U8Fl=wqtW!>gY&^ z+3IZBFyemE2{!gGXu2@&CqDLu?K@6#W@Qslun9>mCl=&(C zc$JdX5;syx&T>1(1NVXx0pI*lR%Y@inS`;?PkD*y>B!OvEHPYrCG@fnSDXFyI=gV! zl;1|6EFBxifx>I6H(?JMwL;8(G2IufnAmTyU2*et9BJrL?fbBPwFc9@)H%(imb#=Si;byOaoILE_F~2-{+gVB;p>Ijh@U>REUBdRq8Yes z)r@J^$W+}|=%TW|BA6X&!}ZP`LBoNYckDYpl&0yWA{+$xYWtz$nnSLtF6M9-9bt?} z7sq@J+Y@}DkZ?7}`AduF$VgEfW`-Gf1m+GvyLZTgmIDR#uy}Z8l`5s0ORX&PhkFt> zDoxXQWg<#={f(&YI<5@W61|ZHmldqu3rfc))Kr!R6V~Yo!Y0%L&x+Dih>IzA?9L|g zY#NnPfB^bh&G#@Lg9x>+rD$%}E`#!M+dKO&$y*Z){VF|GR`EJxb5vaOBDd7KFx7YYj;3{Ds45Thnza2CHHw3+LuD^J!UjofqH8*&`ny|Z_3IxjWLgCCqdq-LISt~z zlalD#%9~Txg|_e`k6l1f-f@qzaGWHjRG&i7wC$8pTJf1tFXmVQQ^bGD-BFVIlMT&U zq7&L|XO@)pcWI(ovZCkpH^q65Vy$6Ss_<7W%=vxrX5=|ii{ck4skfqoLPb;;@SdjM z!!oF;ttORgp$^V!5=4jJtgn%M@T#}WOCz5eX>}9GlFPvp3)TU|#10V`I#i+rwG+^B zVv+1`7NOc=({N4+jUIe2_a9t$ao|XYn(7=iV>*#L?f@XinOh5^jv9}!MGx+v(65U{=WfYE!H#(0?MGDeQ2RwW@6*fMK z2y?2_b(O`aE?agaIk?T_Ak_yS-DqJ_*TQfdxGY_*NYXPNQs#ijfO`|7s|gW`;FseW zug@?naK2(_I&erb00xi-*{E?eiB!v4B)(}_kt^9;SdxTStgw19Ldk)7+I%&-*W#P} z)Og9fQTWGPb zjO!_3nULcb9l+?%+cVoALP^|Gtra_Lr#^yIy;ZBUQYlC#RITL%;KVppso~_QFs0!F z5L9v)D9V=a45Z&KU8H@{hF9mw3gS3-H8S>p3m+U992Mv%d1PnGLsH}xI)2)A>gjs= z=*`;BCX2U#-Qx_CFh}U@)$rA9Un3&8G=1*@wBjlV&3j(B!`)n#*^iZlU;&*Tj(HVn zpvS*npt`@Iv!XTudGu-R7aXLcp_JM2tuxP${gXn5xoG7w1~|d~S$F}Sd6IHQ%8&Hs zW^*YJ1_JaJTNI?zUj@9gl9jjcQ1u$%f*9ivmN91Ha<#?6Wl-+*@ENQbd65qs=N5YT z^edvb5Y3LVtf;hQRZdPKnXc>xkZcqIKo%_E@iLykmGiR}^Gg48pP&GrYv~ z4t7bI+I|0(tDOfqf~Ei5oXX^}s0#<$)-fYDpxCm7d#94=)sbOP17#dZ&IIouRKkKR z)MdTdg>|>q4sy{ES{>tNy@eApI%6VtMir2Gq|H$z15 z9r|5t_ktjTjl|yY;oP({G&CRk3`%`4W+XSARH%@$dxk&eLH7|E$U_CAJ`}q=EP*3L z94oH*f>o)a(aE$pVZq-AX;~y-L7<`R9UX?1Yg}S>aQ2Thf3{6H59z`GY{_ob^z1oLVovY=ke=r+NAv9#7b!SRan+ z=D~@EJT)oXE%rCF)=A9?L!Ew-;h*NyBME&XTig{TRf(2dhq*sZ zBcax)-mwmSh)mpW-AnnZCaD_0w;P~VryP{}{5k!H2EK@+5_3(INTp!1j0jJ*wkn$n z9qnDRImX>mg=WZ2%k*)B$~%X5#tS-$)}y`2@-osBXmQH?(6VS{p~~;G@+Oa8RZo`* zQ3o%g8^|n8SbW|>)s_#Az{^#f*~S|CtI`c`61%M*?I47;nC2@$>`OnmYt_IOXWQLj z^>yYcDqd5kG#eqt=$s>Bo0I?-Vf3-6mi!+#iq5Tz@^<+97gW_dp&$ zVW_^}8GX9(PET9W*%G?L`aG6yzEGJ3{erFxE6}MbT*Z%%LQ=pso<7fx0QZ@xUTK}X zz*vH)GZQ+Isn!d($LIpw7eS%}j-l5;JS8$cWq4=$7w0j0Vmp=QA>4SCmtf0TxrxYj z-BXP^B_{uB9D|U14hREAyL3uB1XGVu^j-ZCnH3H_&X1fpUjc}Z`7iA`Q!+XUshGNH zKC(bsg}X%>T=Fdo8oQo$1;-V1h0$f)x%$|ow=n7PQTrH$ACN3vCPdEp5N z2JwO!e2jMT?XNMXUwCnG4&jI=S}uUF>f7rzLCNx|@lT8+WhLJSW-BH5nSi$UT|(yY zCYl04DbX@$l_#H@)lRG}=+$yHnyLq{4P4r1GgqZ5^RMQ=2T!l6Q?lFBP1z}&qg zg!muR9*hM#Kk)N>QLK^X_PJiD&Y&MTR<{Ud_~+*N1&z< zuviM`c?TQd2kPo~;1r$?`c>-8;TTV{j}1vGCmybVwoUY?Ev>4!VEe6UZlVsvRE!8u z=z;ddW*WPJpquR~%4{Ulji^;*Re3b8c8|KE#qCsAuz`aHNw76uiFHcOPx*wNM z58|OWT|#o?2Ky?hKA(>IpuRtFvVDL>dA>V&P{*F>ZtLltw4rdrVW8vdY2kXnOP4BC z)u(WTxlBws-jN2x`&RuR=;~NnNstPL>yinL^JYo@Cpz4}ds?FRKZQ@O| zi~jgzA=WS{QSw2gxKL?+?^uO*CpijM+E?cw`%FztEY;f#FOp8YIvoP13w%e3!hF@I zfm}UuYy~~5Bc=I<)l)BOn>!8Y2!K5+T#%ew2E5{E6@T++`iKeHh;LFT9irFSitQKd zwjff?yyPu)L1n)89gxWO1{lHiSKS+dDWjaOnm-F}JVE|B{OQDSQJ6j(jbFXh>ZNb= zV1DWkV8Qx;6W7|Ahft%`;IDTnK<)qKJmF8-Ve$_Q9@r&+E;rch9Y8dc4n}G6gD^k5 zZAK=fMsDV@##5bbZ&-qcq=+iZ0bO3-ZT&p+-68lvBnrNvd9>2Vy&sy?~&v4QcTqDYNWfFg@K?ja)Jmgvf6?X3s{krlqpRKHa9#afS0F zRJV;X#yd5iwm+W8T3Cl)9s$G0l(q3kn)6oNKW3UT#U1kIYxn*5}))*v=x zMG2*6P;r&g_-g(ms6}+Sjrx{H7G|6+spv$$Q@?peiVGBKe_< zfk=i$Gy}5QtZ%%$gNb|B)=mGtk8j|3jH|;*)o=#+)C!JTdTzbKKUZr91>L_Qi+utO*CuUuIqEj!nHj+<@GwJ z?;1mchIR zLc@Q{hY@_%I(thy^A(kbAi084%qU>W)ccbJTERngyC5 zAw0XuGth!})jVCl4rN>;MFr7h$yLp2vsO6L zRHE3MczL&p{rT%Vn@@_fc5mS*Wc-bbv_H)s{M z**;jr)ti*pi`QGkWuC06jUX={tEs3NTM!wOm=YUZC?B1y^$B{m7+XC#Q7u|Su?UDh z<@ZfsbYeTXhYCM2K2aeyIUy=pLog}{&X7Xy)AahZg0CjaJz)%pCyc&-`-_kXL`)t_ zvXm1jL@K6QF$Vl+oh9a!MFNqyXo`(x=6%YC@FM#f+7yI$fS-}hxO048U3j^41n)-tXez@ACf+a0eLa z15%8wF2b_bKj@7K70sHB0U{kg8%D+Off$O$Ts+Qp>Ut9>$$N9&t?PmB5{bFNb=iX~ z^!zKbR&6B8jP@Pn_0iXqU4KK=h&`;qsEmD3_jo(H&R)k+p_f$>(%~WV+h!~I-^i$N z2-5$8Z1J`EfS<^|#rBo8gk+~A8O?U|0TWOzjFHD!O%GR4LKlgRX4P$X&ewhJ*$hD0TPz~rUke0(vse zUu-nuW7962HjRt{tuRPGH*k{7!5RFbr7|`F*KFgdKGQm@nD+}i?5>rT%(AO}S)A?= zEvqK%W2a#;NsS^D*l;v5@z^!#+Ff2Y7h)vmgBu?fH@Oic?t?|B>%H&Yi?|V>liWYW z?{3?qr^WCi(hkwka_;Tzq;t&Q+8GCDawGBsH#RYQ|NFPbRhKdPRs5TB@&Y>^ikACsY; zU6g4FtFPhb?DtW@Lc&}j9YQ_HKi)sjzumvczuvzJZ9pleriqJEEO=)zZ-$%JOj+vy zH-DztoaP{J2YZJ?aCBBde2jXw+psBrciSUN2Fm{j>XE?UzmB)vMGyHaBWI$^w1rJB zkHn5dOJ+9cK?3Mo0*?1#{rJEe)$C$+li&A@3b0x0FjlfMSCG}@DjKp7bs%*_K&Ufu zu@!LE)T%pH`-`L080zk92a_IP^*ICU5b$PHJ&1$yqjfdC6>JQGMKug$&5I)-5+`W~ z=K%PT|3zEG(Xgvk4+jvn0RQ(Q_WNt& zFdrHM*R>mTEd5nG%e98WT`$0#6w2p38=uEN%Ntt@upQfYU zlI`Y45Cw(~rTNeU0kWeikte`jsejMp9|WHo(7>UqS!i;UiBau!@*zC-gNvrlWmNyw z=>fRS2n4vg@_$sT0gj|*YsKCyTfx=hUCVv*mDfh@`=8qjVF-ZjuP6e4p7o&MjhKtM z;D@u974(&c$X@ZguseTRK)eMa&EFOsH)A%B`|`QXX^6Js@wUg7(E%kT0RnIw{Dv7^ zOLqOYtpBbhpUddFc+kDP5Y>+J#+7TdUdW1)gKNoqYbdAtkiK-_hyPPcegIW}%g%O< z7-22L$q~aRS|Cqnz8n05i-X6pg5z45r&zAXb`(@_WZ}r&>k6&~8O&?r%AEqmz@z*w z!~cu_1o|frT$MopyjVcBJq7-*KKJoH;8fnxC8OhE7}%Z}xc z6Hoql__qrGG4ebpFlm;|ZFqIyKzk=G0lq2^hTX*`>S+8z;mx}}$VLqC$bZ`6{z;7A z8^IzkEgV!TyOD1sy{6SDHom?K0j6!8k2~^yJj1Du+X@in+%MNI>B=3dY}7 zJ)p&P{M&7U#dZO7A58s!XHfa`hS()v+}4n_YhTgZsw}e@zb{% zn#t3eNNuyhxxS<*43i_Eul>Ij_BSQ2#j8lFNmwp%9vgPPtq5K7d8c>71Wo}O zJFdt$>*Tk9B>I0ic5GstRdVX37)!~AczE~A2;(YKs}ct=p@Qsj0$IlbUYI}arsQ;- zVH6i@&~?>Dgn+MVa6W_A(EqcW{!`2V@fkN|6FI~Lj5)hW!LiGutTy{eJJ5fm6+Lid z+5agUJe!`hKTKOTYDS5qO^~SWn1E;MS0}qf}S+RWrFj6<8Ui5#$X^xxe#aA)U60$1pO5lH6vJ zePJBob`PmU8llGzAor`!0C^(=zV3@0{$;YQ5%1IT9rLd-%L~20oq2By3>b6D09oBg zzy79An*~{d9u%Z{5QHBhO&;twG><>uUIWGvP^eCTEx*Y|f3myX}@Y6kuA&*NgpTCDf+|Nj6v@wRCI literal 0 HcmV?d00001 diff --git a/apd.sensors/packed-refs b/apd.sensors/packed-refs new file mode 100644 index 0000000..caeb497 --- /dev/null +++ b/apd.sensors/packed-refs @@ -0,0 +1,23 @@ +# pack-refs with: peeled fully-peeled sorted +9cdd7e08582bdf6c8d5cdb18044c56bd38cc40ff refs/heads/chapter01 +9bfe9c45b7e8601bbceb75f999fd85f7f54e95d0 refs/heads/chapter02 +5c63f2b9e1fa290514c33a4ab2c51533e28c8ee9 refs/heads/chapter02-ex01 +502ac10401067564123e4053e88323b03aceb3f5 refs/heads/chapter02-incorrect +a492d5a75a86245ad722ca1f008fdf9caa010981 refs/heads/chapter02-pyi +89298845361f18395f4324108461c0a11567e468 refs/heads/chapter03 +14fb06d963b1df89af6be63b237c6c1b745cc714 refs/heads/chapter04 +b5b8bba6928b6cb19d586dad8804d5464395bf15 refs/heads/chapter04-click-parsing +7457322b961eb00095d386121d2e846831e774b5 refs/heads/chapter04-click-subcommands +577a5e07457842629d4d67c43341bd0da970982c refs/heads/chapter04-configparser +f9bc4212f19c3fffc646a44fd1160df5a03f5850 refs/heads/chapter04-configparser-local +41eff0a016d15695686063ea39b59faa2ac7da7d refs/heads/chapter04-ex01 +d7a8bea379bbbf65df17f205f8758c79a4b746d2 refs/heads/chapter05 +d7a8bea379bbbf65df17f205f8758c79a4b746d2 refs/heads/chapter05-pintbased +f1bb92520e5ebbc75047e083180b9fe4a4e679ef refs/heads/chapter05-thirdpartywsgi +50175b31a34973bc9896132cbd019df1bd684508 refs/heads/chapter08 +6d670cab57cd4b51e79f3ac18c085d19f01b359d refs/heads/chapter10 +2e8e0d3c2c90cb10b86176c37f4dfc7fe8029491 refs/heads/chapter11 +653dd033e3d8d2fe275b31ba8d9127d48818a4c7 refs/heads/chapter11-ex01 +a0477f2290843792c977c771d34b06af4dd6a852 refs/heads/chapter12 +a0477f2290843792c977c771d34b06af4dd6a852 refs/heads/master +fe2b5e7ebb0199031b674e747a780b6793bdd1c6 refs/heads/old_master diff --git a/errata.md b/errata.md new file mode 100644 index 0000000..11e10af --- /dev/null +++ b/errata.md @@ -0,0 +1,13 @@ +# Errata for *Book Title* + +On **page xx** [Summary of error]: + +Details of error here. Highlight key pieces in **bold**. + +*** + +On **page xx** [Summary of error]: + +Details of error here. Highlight key pieces in **bold**. + +*** \ No newline at end of file

N3M3l!TSj358mdBNB!5kv!FauG`!{ zeJKyTT6BZPbl+(6NYKx_OV9VX4`>o{lGjFI8c3v)#LallzmjR~OcgH?RSu(68@1Yt zVJI^2njM*vqxerscv!S$G4#D@LV?lWm?Y|=HenyOcN@BK<1^E{nOujjF& zf4@(2a5Rd7`?bYZH70qoSEoDf^7lREzwL0?lQsL__F-L>Vd8OHh6g%is!@WgjwaXa zPE5&I<^klxOE{a_6E z%O8ujS(7n%TomKEVt|ie=876*0?DoEX;Li8hBp|%uDi?c)%_3#A+o;p-gQr05CBF_ z05Z!%DI(l@pu?NH_Fa%Ut`QLNiTm{%>alQ0O-;)Noex7L+YF@8(VTS^Q?3r)B45~M#V zU`{DY*@ZAY_xs_&kd#&WaN^djhX(;xsCCJl(El^8w5b)AA=~bI2AO1xFSiaOQd6> z?2s)v+V0M@_AAlb9|v$yB!=$1s>aaYeMA;hoCp~G*bmDu+aba-afRRCd*iINh=;E9 zIGR_f)Vs6_F=!SqE=cy1r*T?l`562gn#noDq97eY;ES!%Nc#nn)*gCm*JWldN}QTR zQ6z9G63KnebHf=cmBjrq{uY~nZ**+kv3LsQQ+HJ@jYnRvGRx-&Hq_4FIEa{=nZjlX z#y@$C0Y+yH&Y;>S`#yhG$=SdYB^cm0QpkL8t$CL1PhhPlrDg{ zsG(W0AQ+%&$$Ij@ZEQwBMB?pq?MVahzSDpWQ7^c0rqbJm#_sx5%XJ!o1!cpAP0p(!D0c=PwC2_`svR9hzljGAD{61_K&TPv0KXflDC|6%StA&1Sz`LJ*f^ z!N2EoYNi_NaBqmC&q7(z`Ozo43J znzV6vn(JfbxZhZ&ZvS!+lqb;ycm^4l-4f*ly!UCG3SVGapWKsgwpP4t0A_+Qn35P z`$jRwX7hbA!k@oI94HOtDg>^DbY15Xzw7RY<`tgK^_btkhk$3MCxOtEh7y)r2LNa; z!}k8u*>Z>{F4KVY?SGqcv>vVi`gU#ILajrHeb9?X!MyHO}XP9q3@8PnnU9Nx&LF;s!0l&Ql2z z*LoJI=$JF`A48v4w%PQHVg5GJeyBV>8O(#`X_v#H3*;9d)QmCNE7uQ;m3cZphyiOm z28Y&(%V+@K)susrxZrta;%IMzFvEp+BIkalWofeXdO~gv?x??SO}p4aajFG2!&pR! zNWbWOmmXcY)Bb$^9c#!Xzk<0@y+@h8<|Y@zHt!ywu}Mk2b+&Ra@7~AbR{zFzqV3aH zmN}dK+v?Art(_Wcxo2XYpFXbKcod!=`aL&~bCI?^H%0u3qaHa-cOMm_-B4;xev29& zy(oaeUw?pRg9dnT(M(8#kt103%mZN+3p%F(uK9#`^zns8dBoB%0Ce)=T&cD{T;=_( z8v)%G({LA3=_8RAE=j5C;GOQdh>{c)VRJ3vchNsiEL{AJsl)`qI-zSBySwo6|f_1>!E@1A-|{k91OzP@jb z;^CK5C~j5@8haj&#$D3~ev^&eb?_Mu!o@n!^AB@P`RemB%v%fGfkSSlokyuaJ8Etp6=L!H?8jvwP2rFjJEFUIaU%Q52#EqAD zahapBjS9f|r2NniUb>PbyOhZXxkdiewZVBv$uiNfsZJ!h_{>HnDVdCe7wDJmBrQZk zx&qtSimlZ4tjM6wm(t*28=IA+6D>Bli5H@n#Cg)IL@KP!Ncq;;?9vX60r@-{&;VtH zBmQ(^ew^`dd+j~u)^H|ugeqw%{pDYLg>`2M*f}p{|C^S}f;X=|NO?D5UlQ8as(DYg z!E~2SQ$Fd2qd)@Z0Q-KOC41zR=nc;11D@oYks#tBa_m~}L{N1@tWw7yG0owXsWP#o zHA&i@j4wP6F6O)$0)UertQwXzVp*E_BYl%%vOo7~-DFRP?XdTrRX)J3J#m+KqKUG;pHY>T@8};t#LqLuS*aWlM zOwnq*rJY=+sXi6?)0EmVb%OR?S5R92q?bFwzARaG7dlYfQ{#7)P?4*hTeO}65^ndY zJ-^ndUVO;>r}hI&hC^a{45gp)t9DRC1s})1zSn=|5b&-~ac$a9rp+QJUW@imY(Dbz zGlIZWdfk~?p__>w-wXE>CE4!}Fy)klc7QH9d)4UV1}fKL=}c4jf>l1mVao$;W<&p#Gn= zCH27j|N9o=-}rgCSfzmRupVlZ05x@)SM~I-!hxTmbI`*8)@nKn+17XC+MfJH1sF#O-P2x9j|X{NjjvKu@BXgFxmk4M3YZOy*>>ElA)8h z$DF<-Ol9*1`{tV$6SQAYtjk^zA@oPSx-2Hnn!>fDrjyMFXp)9yjmk#C4zRJZRXa_# zi3l*!qs|CVUfY*Y_$3~~S2`+fIokc|X=tkI(L?i_PSCaUoElF6Pl=->8At=85}5yu z$QadEX(=;KH-J|I_SMm_wzvrn9oaFXN0k6^c{&uG@gYn{*d$iIWvE&^d91_MaQEG{ z`HGaFfC<^(?$m!nrVEy1gp5%Y#eF8nh5i=D0FO+bBTB|t_iw-I9}`vcgp!s$ zFdR4ZpZ8aN(ELML&}YO5Vs5GjqG;N2DRd$gX-Rf89#M3t`5mXB@q4eD**?!hEy1r) zyH4cUA)^2K6=D!3xSRU^XFhZNYv^Wxvw5?FVIj}W-mAqdVlYMw}ur;dkTgd`xeIhPF zOdUoJDdC5ZNk6|b&Z|C0T`r^?`}3X+6O2amQ*hv_YnP`e|A2Ib9$F7e{%6exy(<1s zzdfVdH>-PEL=gT)*lo;s%FpQpAMhN#VQPVCe@o~hX3rYwhlYjQ4WI`yF9*N-k3N3< z{f$h{H()FxBOZD+cRo6f@383;s-T5ci5YtQ$+a4NN2HsqvBjZ4sJSiP_per7QVF0w zB12e9@WN~cyh+5Jf=?}bNy+*;0|fq-AOz74lfQ%+7|gfo3*sX*H8+Bz^|uboPX(UO zt(sX(Y&gRYp=OE1&*Cz}&su z`(=HSXt|4Yw|hmr3?a8>)v1~Z=%{!|*AEtl!s5TNS+FLg3!YVG(2Y}s2QJueYLS{g zRmT%<8}3~Jeb0Z;3>qhd2z~1PZQuNx(mRflz3UE3@`+Q$w@3meDe)-zY#;pPZw=gIt&b>FC3EghNJpT7N5ldOJ_o&lcXY_rusYG~vq1P5PCAL7m2%T5R9DXS3R1xjHMK(>PHneR{YhRC;r;^M-XpgoTwTT%rG6H^~He41B>= zI*Wh&?ZstJAmCyb3ccGiu*_n^O3lPAMx~`B?OaN1rDFaVh|d}`ahPE~%}Ql<3wtTf~Tv zp${B;V;>SVwuII!trQ4pTo{IjHRqEiW@dQXB~v~@4|UQunb1ZwH}gv2;=_HMxljZH zi{19>YByncDXkb*uo0s%!%} zL6ZEfQ44iP7p*fqOobp{`nsH8TJivlJ{|@XMVVz;o}X_2*RPa=UTpkI=xeF7@@Q*2 z2FkLGV}lRHYtJ!U6=imWfxo|_UOE27Tl`hyzbJuY34)Eg$p$j*wCI|v>t}#>O2x0h zMY`Y3cY1$QuyfdZe5fw_PWew_KUgv7QY40OEJQrYrYdc1t$kid1XO(M=F|iSuihPx zAuc_dgDd|qHiv=5tW@xoqC_ni@+g%3W^gN=aK5yXJKf{y&*bv?c2r=e2qwN=@3n=f zU(o);C{xCeUdp-Z>1ax%6-Ixx; zDeh=kkJhiG(|sJdyXw^jM4$k6ak%(aGV~7HSa=BIfW~fm862ILTebSmo{TRkFjmsA z9>?Oq!+bdEwUqm&3KbY_lnwm@9lUa(w3kA0h;y_g8E^gmfCF9tryI<>RlSyp7_9YR zGbyUFK?`6(WYomK@%DhRv_YJf$%SiFS*6-93Ryr_ugP=3Z032Z*jNtV+{){(7*op# zs=KL;)D&|^**S#oOT<7#qw|u?)Z0M>Uip3C6YmMK9guCi_1>j9c}`K1_<8WopXT;E z9V1_LoVLsh9z(%)x1fmnsj0c{GIzS<&;aGJL|>wYBo&G@x$f1^Yx0T{Xm;h9uAtUy zXJ1po7KNcx)qX7fDQ`g8H)&$r+V-R|JU)am-sk*ei;@CoNt_hZJaaHo{2pKH3IJ=# zjlL28uYBy5aaoq#?&*@A=DVJ3VI0S*8GieAl&4du3jB1%_Z6E+5hSj&0h3s{lmH;*!8Y!P-K|q!0X# zPpDa$%~~O4RvU+nhp%?{FUEXrHmaS&BCBs|06Zs;$mTWH=d+A}mG(5-&-;f&R#h$i zt*dRKWh)z+03>A?U1^DC(KHf8V`EX{GIOpCNvhpMswnj7LnU~t<~3>g5e$Fw2dLKA zE6U^zdgBDOiU$+V@iHg-|AfaEH=j@7&Ksk>5jtI_A=n=uLBE$hA z_|{X-Otd{R8O1tf_M=hKhxdlIrU}b+rUSA(vI1kUfj$xDL&e$vi{9LCQRrEceFom&ieypdy<+hx8rG@&oQ4^@iq z!Yy^`J9_Ue?MX!AcO5%;-(Rr!OoXVV>?+mB)s_W(nYW-^`-IR~g zaa`t)eMUA9ZJteY3{~z2NCT)GhGCMRC@Hoq{p^`JNGBjOBi}#OrU8GwE~1^x_Bc%e zQ<7yw+mIy){`0(5yJU4g>-{@CFzzUI;-~P`4m7B$;;dg?D0ozTR=NLG{#x=qMPs@j zo;WZ|Ot?Wrg3U>PpCd>_J6mue>Y@O@*!b48A3$EX`9<%8)IV;mxW$Ha4re)B!#-rO z&~8^_jV6Z52a(L_GarAB+EB;h zF%!^*sxun*tFrqekw3aWBGjjZgm_ki6mkKCWJfU%nC?FUnh-R(&IYl7EZA6Zx1!$w zJ$#MfnYcqiBF?;H1Y@$25TT6Z_RHC;&t6i(IVpr1kVlh+^y(M$m3$0_YxVB{DTT1xC>r||Cv4(g8bW*O{@v;pLNZCQ(HgnOLvyly7%R{)Q z_dl=5oRz9=6?Cnbm8sb1}I)G0x|K+<+^h{kk@5Nyn^a)Zht5LN|U1h>zPCeb*9dbtZ;(T<=EaV zizYs97MP%=Ezh#^?>X~bmQj$>-S(ij?YNLPN1OyTn&M42iWb$pD2Cofh9C^1v~Anf z3{hY^w(jH^^RK@Z4jxN*Ald|dq-joir+?pyHjL|O$1#`T{jbNi>lS&iXMv;-l};Uae~E-ubmJ!8e(xXpWji^vSYRoY z(k0v&U8Vz0iOHFJ%U);x4HfRO;EF=9HW2z^CFl_1>j1;^<9l47n$*=OCur+P>@V9@ zi~Bp?s0|7HL1xJN$T5mFy%$q6g{GE-6*u`2)U*~n&i`SA`qxM1)#$I&GICg^n4Sl| z@=($L_TQAa$o%t=eD?2ica)Q}x4IQu5rVG@R<%TdZmg!L7bjUHrg2~U+mE3TgqGS~ zqf~amyyHuiGuQ^##*UF~%=gVT%rejf_7kY@JP zDuWB7`K?|!4UO~HGZxz8&}5b`vEthYd`X*#CR^d16IR)-?is$KG`t12)Ctbzq>^Q% zC1Kv)yO#WR+!HfsQ54X-n2@@yeV$8r=0ISA6}i?lP!7{(HzGOq#jk0 z8IxJe_qp3L77gef9a;fWJ%vOvO@xwDTJP(tWfo`uiA=~45*-#0W2y99egqtfP_HSh zWx7fZfY$+=UxxPGskw*Rd21GxuDKT*I4WW6cZ)jQxZ!BZ2@9fBs3{~ip=N+W9EcA@ zRnPQJ&Y+vM|KX=*F8~05*(gw&G$jd~Kt$Syb?>Fo`ExupiGng=NUa`vlh4|LIDht~ zA{Tf@`TOTDC$OmZx^REJV5$cMs0dKO>UUvanx<4q(8X~<-FoCnKm$dR7M5iguvml> zeqmHn?^+ef6D1p-5C5aLH1ETbJCjvbmMjm`Jh5DpX%o*su9~~{bHs5nV=FbK<5+_sk3AX zxFiL-Du^KZbGg+k@VifIpy%{cBip8gUc_D_wgbFe5QBicGqPVu9K78}d{SkZ$na#Q_StE+jloL{E ze2meOa()0Xi5~S1?Qj-(dE`YKMZc5#$~Xw(>FCOq&Lg+g6#zzyczVUW&y~Ljbd;!d z&hg&UAe0V9#L*81x?_&{@`pz!r(A>xGym~Gs9$~Cr-wRV?>GlCa`1y?RaN|3`t9d46u53lwZlVZ)WIH0py@0OW@k!C zh(j%Z$&eV9zpsDnx65a_R?U@{@gN(+5p znQf*A0_X=KbvpoM*}KyEe0IP9{JeN24tFpN3`$!`iX$jQd6IuLz3R&LfQ`34;mZ9` z-y|ajEy*H5Lgr|zIy!OLt5wcr){LSLcIbSp8UA}eg_N{6!~SQS_5e^ z0I-*nmaGWA-xJej>9?nA%JUDnCfEM$ONEKLH+Leh>svCE)ypSqXZUupdJ5^!8DoX{ z`Aju`R<*+}>8+G4%IxOI+P~(0jtQ%~wVE2+cFl>fKeaB}o!m$6+OS!0{CH#SzI-n% zfcw(8>J)HKaXL-i#E2sLu3>6xG-A%smZ<#HD*t%g2Gva10YrRkvAV0i@~OG1ZVgR- z^!V6+$5WDt;$c7P&7tauUj}vS_>Kqc#pUr$So5H-0J`3QWIpUAKo8D~2`7WxefybC>^?_mFhr=*x1F$61e`YW}wimC42)vZ& z)BB<|oZE_=43j9Ad<;#*5CP-}kXzC?Y^to$TnAY7o=GyesW9kVle&g~%_DFIaOZb%AsY79H6FqXoYX zHS&BlayEv=y9x}U^R%G5V7}oiVkiFAQj0-BeDK7DC{D!EM7&$t8FlHUv|5F7MTx-R zC1sPOD`(8fY;?Ye2#u-_8d<+4K_l^ZJ8RZ3w~>+sQaSdK&uE&~+}9Y3fY3T-V6k|) zpA8F_Nv$7dp77U3t%PZ8hHIOCch{lH zh{Fd;*$=@}+-Z?VRn2;+UL`Cy|MZX;Ok%vWJ4ko_w_##SufKZ8Rg7v-MvUhsyW(Df z()8+>7r^I>v|Azo5VE`z~j`pK;T<^UslK!ag*Z)2(Nv6gH!!QyV2vFc;a_pw^ zFSChYKP)%dLg!dr-F&(?>lvSnJ~Ew9+X%Y z>B#kqEP_Mi1O4P7ZaS_< z1ia5+^ziJ3u76%>-ipHB-`7G*{i73@X@Agj?q;sAt2oQVx2EuZCrB3o zU(R$ah8XpY*H8bAQ=(Ye%!ZMVlR?@Kr=IQjd+hn0U#QRy>4KB!a9|OWo3VSgwTBaN zldbO8##7dZpJ*mOI^8VTjz8i4j*Ck7+Tz=#m}q#c7}+n^d>(nScs;RuvkNjYF(w~f zbKz?Pq2LWoANA#w>#Zh-;5%QDmpfSse+vu|u!~LaCCg@l;eKS8fvS8TiCNO?Pj3rl z_*%oxcM&4BKj*#89n#;^{fnKhR4z_?q?!-PZylj7v9HOG0gK#+*X3C%tR)y$M$EX~ ztU&g+qv`k_kV*-_VxR{{A4V?jZjeVz)QFhtXuExhZECxW7B6o8dgK2V5fp=zqF2O9 z-wI&CarZpQ=y`Jv4cnGLG_`6n4f)FLQrVm8isFA2ooxly$+L=i8G~W}G9x<16Gz8o z(L5V92orqGcaIlAqzAf0Z#bD=*K2BpNxP|%N{M~nr#Y0v@7FaF`UMC12B)IpZNzAl z5JcxM+5UdN{ft)svxt9dAv>Bv`552X{JGbwEPs$D-k88-MZvM0k{Y&+Xv3op7`^>o z4M$*@`21$OTfXzfWT^fG{V&1z%KYPHJv@+c_iBZ zJFmj=YyypW0+$V5Og^sqaU0QO75zKKtOuz|Kp4In`=}%&^g0zO)Yb5>U z^2)L2-F^YwOGQPOFV#aI)dwHz7dNJescvxx<%U3^pUcNB5Ta(H!;q zuqtFnYQ>lZK9J3kl1Ujzq-3dG`{lU44{B|=KcTARmQU!0^Qs-GI%cTC%V7|aEa+b2 zx>>OEb|(Qd=VOq&u`%1Ll}2r1`EQR<*D9NxWkpF@Its5hS8Og5qQ&7`ik;U=c8Ooi zdyJ`t=-+|lvd9xeU`mohA-qTCFk`^9REIqf!lh`yHF|(mBt~hm`PwU;Ec$YYK+gaY zpM_K&Dn3m)os-(6fv9ft%wE9Yg%@LpSwUqDB)GnF|D%pmT6@=@1cuGZIBEF--}M_w zG6>gnu43Gz6!S4a2i)eWdGW-AZ|l-zM-Z{h9f%w4@7S={8huIwh%DGtjAYi66*&Od zcJW*qE_TnBMLeEBe_gV@(w-mWOcAwi?&&|cVLr8I;FrmBi##z8uFN{T-Gv4R!E2y9zk_TlhqPk*KI?+E1c$fE(eJqeaESC~ZX zOFqz=yrirw>~;L@h8?dOI#f#r&MN@2WagB!LNaJr9&k`lv{25?neDQQ$+IX5nEg8? z6rc*sn(AuPGCca*(^G6f@{<_SdbC3b{q@t(0MZ4mCajK*bRXfus4x&;*1f`roKR@ZXu4*be~{zIQ`s5?V~b5-P6`fwSA+5wO|z094Q zubD7)aPI`Hff^hH;yFYFDp?5h#Wh#_ZMtWyWcy_oR7_Ycu@v`(TMnTSkez4jdo7m; z7a;fJIR2~bF*39GCN_&AEIM0Q7doB)%43#whn4}J^J%H`FRyJV8Jxzjf*ho_%Puu0 zwMJs5X^itIibnn#Egu;`{P3ZuOpHYy3U-lRMxw-G>R!|uvB=}V zesNMhX5uC!fZn(Ij);~rW>n4|a_zf{P6comYdkJfmmC9b)Wmw8!-DG-^!X@}mKReq zEK?n2+>GZVF8UN8t`ry-WdulH>R8Gh0$YN}zUloW6tcqJLHsl!NX3Y%7Y3#$U;cc~ zl<-tzoOpa+euaDUN&fAGJ1AB&1$4iTfbPrkO~3U6p3s@9c_u$7Om!)P&(ms>z=mFs$rFDeWYEjbf+8`|7uy2|x4C`SJ z)lZV6b_L&2k(cq^^vb7zZEgi48r};ED&f_iXcVgT=+M^MDlNkFCL}cQ_CXiO@>$$% z6qk`Fpyp(2sU(&;OEk}+I8>DR!#Vv!9jo6te;oNQUwL~Xy^MXLEz~`{0ghl4M5uYE zRK1x>A7~fWKYuOthwi61+w2LPyEc}2urjvR=mNebu?q-m+^LM#hqVAPiV~uxTNUeR z%UXSha&_PnWN{7LZ=jPUyERe{r4HORywzUK7F=B6RG%-$blio#^!yvAJP2xHC%`8M z^A~0ULHnd)CkbD+ykEQN#beV+63VT_12d(FhP_I(+v~eoEEMHO$z_4 zCD{LyuUx}^$NK$j_ixI?+qNEQvRBaCEXbZ_i$ia~Yd31(vQ7l;!SLp1IHG8gBjXt5 z%YD9|<*$2yo91-qO@Iyt&T~b$%k}kn8vF>BuXoCi^k|?Rq)nLu>3#JFTNqJ{6Lh+( zQl7!b(bJi`3H(M&ap$l0I|To^_i*c(pZ3(B2Y<)4QroaUnW9_Z*7OCJzKoX#^%;jrEF&5+f zH$$1I@95#J4N8`zfe_pM-hCuZ;i00?q;%T~(Lt@#*>n0j5j}Z7Foq${UUW)3{=7#5 zR0lXyZb!76ZeJ@FDbeFbm6v=Cjz?CPh+)8J_U@~)0#p5dA*4Pi`Sd~@h9H@aWV}-k z2^3h*Q5cnxR-;xlo#P*_3Eu!jHBs#Qi1*Dm2*#RoS+2cuePDkj;o$btb>gl1ahi?s ze)pCRsQkh1d^6Jr_@yo|9iW{f-SkHTE`{N#X)&n>Do(XkC!2GsY4PX)#l`UXslIuS z0XMYH#xAjc&xdC|B# z=RTd%j9SUdI>YH0b_+;17@}BaBCHKa7nrK??0WT$qgA>}UrybT+t?~O{={Ym6bGpM zB2qO9tz@yedZzR%bs&>$t4twvLL3mi>*%F?pcX-lsd~K;TL!6ugG-PPY}+3})5#6o zg$EiSXUnjB@wX>^=}fxxKElH=jKZ+0BZ$5tB-&<6v^A4GnW96SEIGXks*!1`oz;R( zE+K3z30XZZY!~Y`+D_I5i&@z63ug>=w+Fa!>1!ZxcL<9fT2RD;e^hq3Tlz^#*Zi0N z?l7pnR)!>LUe(jZ{5_hjgo=!s!EiE zhIBMotxCDw3ekV+W^6oFQopyo6%h^KRHmTotbf! zBXTnciTw}-zR2DnOsH=Tu+*K|T%RdR#$9zQ!KoWwoU$?Z-{Uj$w55eF2 z=Q$O#-;$g`?9ay)g=+kJhQL8>sA?YH{b-@GqZ$k-vX<}LHn2gz38CE)whE=i4O91_g>Lp z7*>18fC{NkVCx%IoAr@89@4pxcT z%CktMs~POcvZQOOJ&y4qTr~V11yC@%o(hxRvMJdytBxunwpn6oL3Qh6Ne5I&tByN? zTKX@Z77saI%{@S3qpM5;JlgLJJ!!E)TT1cKexX_GEmEAqHoN*8`_X)5J(O)17sX4T zOO$8rUY;P8eFZaG3TCiLZ~4w~0^1)7Y77@8f-{%5%x|tK^l?||dNjhWMy7!tI#_x_ zhq~Apj|i!GluQ(Qjzc)OV~6Fz8JA3nO8W5;Poh0?e~NiztmQbaE05gY;w%}Uxc2zp zI^bo{2M{;p73><-5Gu?3ndE$)0X5a{RM+<0RC!%TW3;S_Q!;!tZ|n^(L_0iJ3sg)I z;aNwRQQp2@J0XNjMOIxdW73=jQOy^p$WTXE;HXUmm88?^+L_%=4AojQiEs-c-LJF) zUzs^n*eb|pp9z?50cP7b2V*OJN@DaR&M~N zM7xWf5u&?K?W)xB0!2h&0&!$9&^P^CvC#S`J`F){Pft6+vcsmz5zv=IbN8CVt%7{x zY^YATwG>+h011@OZ#Op=O)u+NpoenTn8z6C<}QMcjQ5d(wl3U*>_f7emyI=T3q7KHst}bI1ywysnm` zS%+m=O={;(blpPOPTc$ZNo8646dkOx9iRTb8PIB<_H3y&_bdqmztxEHR^RnWtv#rU z!?yxdMJXJXFWRx%x$e;(84soqkI-%c2J3BZ%E;3QqIkyEshv@{pgEYjq6!-PPaP z&JGIm?AcO?US72W&0b~c5^0MN-)v=2y?pE1+68`&rxQ3 zlml*uolCOZLhD?gmhoB5;%V>pe>AI6cjW)K@8H<(k@d}+ zIdhc7eg6DS1Rm6T38TlFF&v4NXLt`|Q zk0CLqI=BtDAb`vE0!ob}qCCKp&9_y{7N_2wVY{20j*&GMqiNa=^Qm{<)XIn0ZKagg ziKvbbypa8}rkEJt3NZiCa)A+G-ZgHCA2y$KV z<3N7Of~hqX`)vaBI)k%zOtt@5nIjL_Gco#j>eLihS z`XZ-d7tZM4>58H<`<79Yao45*_|>f#-eujlYAH@bsZq}X=hFjh7`IO5{%rn^&2QL5 zJkY*nW|nY2(p*k~+^2bkjKSX6+^X6FzhnqTOC_8B3udlh)yw-qY#pis-ZT{~c;n<2U+CVcUYaN2LdpveN()3=C|T#0Fu=Ms(qhF|Yn#D;4OOUn+Uo1lQM|5p zvG!ZP*p+C&1|J{8ycTZ*ZhnG2+$wFJ1oo`dfIS8y7uk(j`H=9$gqjm! zaXjiP_@ko_qr+L()e~83eC0Yq`P!Dndp(Zd0vOVnx-t5}Dp-?rN->Sz-6qN(SqGA_ zNz|m+2OAH$4C7-y#lkeY-!{lv8j!)&`HsbL87bgpF_?k{ z)s7Sdo+5~jvzLE&cj9b!W*yPH+*a^th55lv=h3Pwe75&SwcsfD=Fkg~HGriH#C}xq zKIx;MBEArqfjBBFT-d$lZ_8UQ`KBaSMvf^0vHZAx;|kjWq*hmdgOs+)tAG*MT|tld zpg8*1KVP5h&ir61+{o4Rn&H~T?dFLt!oQ&i9bTu+B2o5b2T>S21=gF1V7P&GA>MOY zq*ie$n}ctkg!x75|G$n2GNW%ptb>FcCF8C0Y~Q#2L!c9L>LXd$^c1Gq(-VH8XiE+n z$q(%|X_L@4{q?rF4?Ia6#zU?BS8K2cBR<^s8+W*Xgjdagh54#NO}2P6%noiawq{b= zylrtTx^{e3sFLjt{Mu^k_q0hhQ2{jyLiMFprJ5eVS}qc4<7*2kjrxJky7)Q4id<07 zBT%=ijO__TlxE#b3kssKkYI2H2Gc|bSqNIphP~o2LegZm$<}lT+{C;jo=IRq>e$V*v4e>#cKu@fe-EElRJs`n79x zn%As0ecLX^C<)$#hC5LkYU%3CY<=71_WSB?UuYx?;?GBljY?~@@1)@o``}zujpI<@+zHGL@>@0fx~8&&HgK~HZ+iF?rnw@e#G(4@T;IHqFA#Ez|Ew2vtqPe3(#T`a zIzc-)^onE?icSNW<*yiqY59K5>6%06YV%@22ztfMIpH%u;wd$or10qMWg9fdja~Z* zm{yo$N|w$P%v`yW@cSadp}T;=d&k!utI4!0Em-vn8VM6-fXIBV;u1y zuO40Uywry+T`_&3{3ovVdE&c=%p*1vAVK~%5E$hTne_6SGcGq=IzpJ|2hxBFGO_C3 zewqEGHlQi%+HXnb@4VA(LOT}8T6yegEMqFhweUjhokBNvie6)yM30lPYVCeOR zQe38BkF8|CC$t=ri+AX-9wE7eQevm+8sEf^5Ywqu~3hX*kbleqj=j!w}qChKLTS#WtvBHbLQ~5&{W|EDouZM>P4D?xih0wGrO8{EGHB8nKazCNvcLDq|0iAlm$r+#?0IQ?hS%d}itj7Hs zfuNlK;4BlIYy>9`1)bgU@zcQ|wsG<{E5pIE3M-*BLe0jR1*K(qwXjt@#^CJ~z(+Lg zxJ-melYYK2L>#VyurUvfYUC1F7vUK=wC6(x!R>T0{Z!MUqZX<_M2zW_ES7&pid<2| zqCZ(!N0Plqmm?Uo(shLV891uZQKbol%tV8vD0G#%^RKsrY8a{p3T?){Uu>SQ0G>o8 zki8XmKr=cU+~5NtKTpeNaTOdklxap?lc4J+U^UX$Vfa6grFKy)<8rn;u3ep^2sJ z{^LBW@h{!6KJ%+P>8m?Eg#|kAPd^Wq#-6BF7;V&b`n^~vj|C_!V5ueFS$s|W?Kshx zpCE3TMD!%>yrA@=8O z_IG}1S^!`$o@dfux7C?qK4GKW0WveVxrm~`B__L%IRE9T(i8uCUAk)6=<4Ssn_h2s>Ki}o+iqobp?`~WlYl69X8AkN z@4U1msrz%>>0i-KUk!$Pz?xUUdqCKHttPI(oTDu6qE$)%z2>vd5`CEhtnF26hwgc)!*U)gjkbQ{{ z@Qo7q%S97$***LR$T%oUf_?sE^6rjo>o=)}@vb)do0^QZYdbXcQ&0k?QqJ}9Sg`yZ z)BgU-EkOhZZa_vk3q>L`G5v>ly{=!bxQ4#lLXgV>GTs`&&Yq7&=wW`^wEcg?|t zg%L_X3yN01De;f(2o-(1n58?v(c~uNFy|yB`*3L*gz8$%^h>^4ss%w{u~|-FbLSvct*!vLm81_IXc6W!|VKG{kKWIJ-a&meVze`}g}wR|KQh z?w^k|eEcNM-T+CS9#Ma@QDo)onH<~nMwJi!+K%p*ogdij)HUkEU(rGT-@3LaR^&&8 z+*F}ZDNUphpCAMLzCIaG(0B5zn-LpON6n0C7z6Lh%tq>;tyw=)Gr!y~eD*L7-uQnM z3rw8A$i!J^nbRzK;;)|#d6fPaNS_`Y8sYlGk5G(EPsM-F&lJAv;17B`w6FDu_mdUl zsv`Zy^o3vVu7;a@D&#tK?o<}|RFZrT;ShDbzr)cnHqrD5Ykayjd0H}kN8NckY1%8k zEFj9jxJ{KJ002#jMCP1JbH!6&)LwR*_W>T!P%N~lbyR8|-uFb0S@i^2GR0pB#h`>D zBS(f!f&rK*hZ&4aT`D$5+R+-bat-}mz_#!|zaWPrPAWtvqgm>>5%|nW;Qx_z9!m}? zTbF(y1_%#By!Qw<1L3`QPv6uz_jdQ+9f}%MghC*+bFFVBnH#bumv7GD>gQW3V{Ef{ zl_xq8h+dsY*05wWg+Skds3|X!Lx(-c@^tEJ_Bz+jq}iFz8KfD*m+uR+8=+9elDHCg?7sfA-A8N>(shi!l4T|-+z|AsF;b2E9oPRd-t~v zhxcXu|C`q~^JIW=Ux2DpE@xettItRk+nMZ{2D?-^Um*RYNbI5Owsy)n^0M9HvF?I< zu;DgeDg+XZ@;Onp?Z^O?j+E5PABp%|#i-Rv@>7{}BA!BZ>u>8Wt?Yey@v9cwr$uE+`^C0jD}06_@5|p6%-{*q(KsCFApbw}+_lm0#uHC) zQ?W1Ue+I3?HnN$?p-7PvrZyJ}l~lGy6+y(&E^2J?-ZUZtems~V4ScurV%9)pOP9V( z3@v2?4?n)Kt}y;=%eKcleuzFG*&`ijYB+k>A*{}(1AC=Nf^Rb=Ik=OEUumteDOR{t z8m-qZXu7HT+mOa-u^mq@D?hr939d;oV8u0YGM^I1K(Zxmwge*1TOc zwVinh5g4S?V0keOo)P)a;i+H1XgM6?3yq8hNv2wsS5I(sQi?P`9k^RTyh(w^-h@e~ zgz-tiwTGH0ykM72&fr2x;VFM5>^_jD__jz$mQ1X`BMwZo+;mVDNVLQ5p}3QWUV`R+ z8IGl256xYI))?wTu?2ajDS;X{V*iqf565f8SJKDAlVQ<*=qlS)Ks@?2UB z0QnJ>HOut?YkI3OtE)8lUxf3Wtb6h~kmLWU4YyRB_xR*Ar@EfWC9)Cir8xUyUZ^w( zTQ{khVRe)#g7}5gy!}%(;!AatF|-OJ4zC(hN^0BMmy@;mdC5)I1kDhH8iRv;2NdS4 zBQy_jReIwTdVKwZx3Md5#it0rwGSl35$-vmFz6!G4io%fV+Fvdg1+v* zA}FYH4eu=Nu&a9h?*Et#GnU^ys%B4=Q=5$#iW*FW2L9Fvz=;fGTWBL!fHP3B0;&K3 zA@Iugfe3=Yu%%8rBw=~Rn|&qfZ>2!fnd5m@W(;8a<}m$WVL+18Y( z^T0O2NS_?)TnPGW@1%i%z7=;+ocm%Pc24t}Q@yVvxM7$B`QIBxp5-8fJ^IZAm!-)1 zV#4OW*FFM%dm7&4)%6@@*cpg02$|*uHB{~9##_+9JH$J3$>bId<-V15$6%|7r&4t# zzSt}RJFsBC6Uo+WF(ZOCK7a>Y;F6sxMP@f*y^;Rrscec!#rJoFejwJOnk7_8_`ghV&^I=J-e9KB`e&2=dh3{$2^K7s^zaQ~3pgk@kt5uUXLX-{ z47U?N}@9oU2ST{t|)Q?SQ}&pDSzr0a}1Z`Z(9M?|Eq>(CTvCB z@0+SkZLoiw*0PNH!Yq+eCR+R9QC^DX;;k8bYlqI_&taNVqtf1f)myaLtl+CSB{Xd% z2f;UZ)m6AYIetL{tbWkdTKdjI6D*=eLtYMyi!R}b3lVJaxH24C>!a)QZTPxwGeLFg zaU}u=`Mxo}WG_*q?p)z+10e3*1(f&$kRzBTFn;Q9PIHE}Lsp-%1@H&y+W1475T@U; zm3c%2$Y!)H-rkk$x7rgMjyb{tkf6x9PoZYoBc4Cgo)^96fB!$9ec*GvQ}LxBpQAPD zpnxCnTfC3OGwmnjd^z-e>Tl_bTkLsbmG;HI`2_0Cf)aUjP1-A1ul42$Ju?|{BBr_- zckffbqz~$|DFH0(Ik{Rt;3*Dr-w8vS8iXlOKr<>{l?J~xc|G3CPFpZlsI7Z11S9ol zkKgg?91_eu9sYZwU@syxwk2f<5EOvr5SS^NBaEB#hSK@r{DzPat5=+Cj4h4<79b4Imgm)ym1{+h1baNhftvFp@WjuDh|Ty=^J1LmVd5D$Sm7>S zhNza$U|~seGkrJgb4n3)5W22Nd128XCalROJorwK5GTfjFt~9LcrEF!^c&%fL}e5J zl?BwPCJ?#K(!p%euS&l@LK;*d9oz~mgPrgy$PrJRtMdbp_wcM?h}>GeO3}?MN^AJg zT55bFGv8v(LYS=RQmeJ&ur8&0j z>oHJR-Wi~s1JpgVeq1@Qa>GFRXNFi8oXJX5o9@*Re%p|aL=bH7_4hjHN`Kc5PX~=m zz`H(Ytm2lIra}v*d{T=>6{}Z5K$wj6x7@|Ik1D`umDfinc5ragtN6a9%nAWOMu%@p zJUB$faQ!-XfN?+0?f8%_H9f4~IPwm025)wLu$O0KjsIu!Ny)^Jp4 z3ZzOs{|uo9vSHs!qC~Sy3NZ{a$!BVOYkM#s`gcu=XBsp#K0{hsbiu?em}M%v7DD3! zIfS5Z!dNaN%=6no%nL`p*aI}^Q!!uIxO%Vq!n#ngyg&9|Q?BypN254q>E-wLe$;nQ zG8cOdctH+~OlP}X=C=xxiVORXGYp&k2&%y>dtlHd*xNLo2I|KgR_qq>{yCz-JXu<} z04Cj9nBoL?I$k@uP7<(Mnw!dILE_Zi;K%*S>9lI(us9n-abDsR3RL0_BFgS;EA+vD z5pU}>Bt&CjlE2-7QSJM}K3`)o9(3Rik-_is24XaymMkjCGD4g&507nzdhSZ0H4?ee z=xIn9ukZZeyiKW1@u!{qBEkdxajl<4wDE82vNeZ^_uF?f|1){qqLAosKK^eWZ(8rq za<9rl7lh+$U~MQ-JEDi4O*r|eUi@Kw0nE`6JD-yv>a<;eyR`KcdQ&8bt7laRfnw*K2o`5zr`&-dV( z{i@-lxB3I`6mUu?3Ww%|Gc2g<@!y&pX25euf_9wcuk+E~_>fRt>kfZ&<;>}?boJ%e z_+yuegLkpqMFV>T3iDppIgwmU`b8vj@+c46Jv#P$hc>$UfMKrp_rW`R^>YHKzX1cM z8g+0%+230N7SG}46{jtT;8|4B=L?6N7uX1PH;0e#5ffF2F4th+_tI~U;APQnxAG{* zSyo4`tQjZhWV<$v)kaQ58=9*4YlXaHlNEj484>l^WLq*Ms4me=iEnRH`|{=blhOZ~ zyKF90i+5YdzMab0Yzhg1qu@LmzDu5UJ1J)Zsgb6wWn5|7XCV?=!>@T{p zu3Cu3@ss&+d? zcCl<_UEX3T$et0MtYDWkdlKhHaKR}@NaOd?qgV@4ty7x)%(3_|rLasfx(QhP9UFH1 zZ99o?$MFk$cVb~`XJT!K_0V)=zo$<+ppx6x!7RtLmy~TNg4ti{Y5Av*00O=hkp+&t z^nm^;(%iavul3u2_xaV_ug3SQJ;&Ymjnycm^Mx+owey?rz+tWhT|7LR$2JBzh8>*pTc@l&n-hREXrR^pr;o;;Z2;UaQ@ZDHOjz7b~?DTVLMTrWup*%}2_j9JGMzU~OvS9g)FuEvlhOI0BJ)>!HaYVjKE;$=nvj_xUp zyn5bg%Rk;A)|U3&jwUXIlHRWAKCx%eg0i?hKCZ_zR=^=XBw!8w*biTBpv(wD6!s>N(Gx08$^`DMS{_9Q4 zo3+B3Z{=1*L0y&u`-gt-GV&{FV4WU!cF>$}3;ao(5RBV`dmx6B2||E{m;)1)a#Ht^{sdh499suw2rMc&U_6mWsR#NC-@?&@cd!pcUSNLW> z*p1Ln&dm;A7EX*{q1}iH^KET%Yl^q73e(qi2?sN-y2#8?mi|*9DNnnl&9KsUVlu*$ z`zR;P$1;>{S_L!T7OY_+>Sw5fSp;0@2H znw0V2kJR}|QvqLm!2VfR^u}#gzpBwU{cdobHkvgP#O`RiK+OH5Nqz=W6s!noE+V3# zX`7863?ij0E!`K0bcs+b|25LZ$VtOuzzOR0X&xu1wkB7C5hTymu62mXp9^F#nS~5` zs(*OX!+&!H0?RM8q-u!uTb;m@rn}$^7#o*xmaTHxph(y77AYAm;e0pP$F&d5V5G73 zKGlUXRi5c#1C}Yqe-(L+6^L zF$Y1YoA`yh--Nyr$;YO=F|RkUS;;OI%c^*_!>}`5pslKYA-r9+GXF@Q@8^l`t&USJ z?_m=4^&$H9uTSCE6eoh1a@oJ^*VP9DcV#67o3&P3lAtTEm)R>DLLl#m*ERXe6dl@c zZ2Vl4?y@ra0RL97Ja0goa>d51IsM5W z-$*l>%;)npvU?X<>89eHyZ+sMkiCgX`GGU28M&%_zw@REYGigg`W|*(9+r4VxyCj^ddD^pMx;G`=&K*= zM2#AUHftk=g?;#GhlXis3H@NY{p%H@J{jOaw~$Dd_$|x%pp(F|Mkhsjxp-+Kld9hC5dMkBb-aq;t%U%!7nc# zZMI&)ZvHZ$c+=F+hPM@=j!nXc!N|&Dv8l>H>sLtDb`IY79lH$|-O2n*lz`FR0UBM_ z0qDe(!LNmFNop^DH?AbkSJ+BD%7c?;F}Ux!s@|_#uduq6L8Td2dgM-B}W;bl@ruS zaMll)>CyB9N+FluWfC1?L+0pJUj=tzvDkUS{AzDrz#MFYefX}lL@nFEtt#>g=3nW| z>-s6iPaH=p%>&*0J30F37sXmJWdG9IvzWluIon_>V3e0MW(!4nKJ_;=@SImik-$mL zDWb-Mefw`jr2&t0Y(082zE9Oa9Vz@NKELtzw}*{cyfAsOS(=gn`Tf;UTURZe23@lY zoQL16|7(L^hhlOF$1jVS`Pb-$51`#9rFX1RxT|H%_%rT${C-NQyv3Pa_qUJi9}o$% z-4|xZBeKlF?x1J)Q$?EW2O_PX7SybQ?$30zxV7?zb+lSFJ}#^8fY_NS&i zQdV6*LC3#7@Kw>U$@Fn6Q3R=vA}rT;f01ap5TAWmO4DM-MV;HuT~^>-1;xLGJpEpi z`)8g*jO;5PUAwlmfA+G+%2V}hZb(}3C2niDviRjQTX(4mnTC&@%%=gf>Z?(avw3$v zG({W%egr9Rog-J#Mc-&iA5?+u)tMaEsip66z{?f-!NP!<<-?j~=4lYfUX6_*Rmq4; zTOxn=SK~o!^nQ;PYX?@hY1D*5+NL2s3S((5j_0?D;YcM_!4-W&+du9U(eHk9?VD&* z=I24P;52+XyOv_pU-m2Ww60S(5gv;Wn0JTU9?f9j2|Y+sTe2Vk2k9{*{F`KQG&hg% zdMx0J2}+e3N#SNi9{1ases!!2HS@+A9Hj_`za`lB81~>6Q&K^lzBuj(%rd2;i6KmMb|Me&jL5Hb?S&@SbhGzm-k znAgyhHsmZG$yn^T0oQoP(JXqx4i>QkUq3I*6uuGjC;qJ+2G$o^IUFNmR2Q`dX&?_r zIKEO8%5L~rmfF&CDvmbSM8p`2&Bf zIzXOwnLM^TleVVj5=dk)OL*NpNLCSd1Td@ry&rImtj6G*ia&W#p(K`-8eYs#CiyIndNOkV&GlJ}%)!DJX~LwGy5+=gStq?51wxB9 zP1N{3r*#9dSGEcBOsdRLS$ZEeI%i#8D@fl&!v~d!I=4#jc!w_oQWx^D9bWe`Z6jEv z=UEXbq~m?%vmg7DBV!PR{>-8*iX3 zI3wO~JNw{;A;AmR{t!i^w-sPE`fkU-(T(?BQMhDsWuzG?R_-{qKMvW}9#kdLg==dR zwR?%d=H53Wn*B>l8$ zoO7+`k_ciBX-{9Dj+b1_8U|^WZE|3>I9m~XAD zcLTK?Ces=QMhs&+c4R}s?x=|pEoU}Gk#_`t>jl3Ljf=B)On<#6$blLbrV%i-ZzFaI zy+#Gc>x(yebktcYIpe4TzBNgXf|p)WiJWA%;y311#dh^y#^Je}kL}Q(5cg4INx4PP zUAHpG+EC!bL7epT9XX{D;W5gS?OH(=UoZdqlO_W)|BpYB_VOQpI-k>y`T3AfQeTIW zrP5@5!h>j4{FsUA!6o}#kYY`l9Hu_&@B4d3rLffK+J1}B1qDi=n?}Rm^pOFmA}m4U zV{dCkswjU%hkh|uiavw&UJ%_(PYwpf&#dACx)K8_K9Ic{Gj>xJfafN@aBuj6L+}_k zd#3m5C`ty!D-0At*}d%gwiH+<5IlwJErM4~kci*i&6O3t1a@AbXi3Op;56`ZD^Nr! z%Yjr^JRnt**{`s)h)_sriM)Z$oXa35nM|pStZ~%dfeXRE@GFv_ zNyKbJ;kR&W$B-A-4u`@*9J1yYErjC`_Ee_K7_QQ@^Nb72JPBb6+Ru(8#mlImMy0IP zAFlkt7E7rl*J;aHHZ3Q`N71CaJibiu-(E1k&9Yzp!x~aXi0Mr~9Ef&glxc8D0?=1l z;Z1@{OtD*wt}uHPnqZKSarKn}dE;ki8k}@o6pFDx+y}tc30Z4?G`B6LZFcmf4iSW( zF-r$xOrxxjrjWuw9Mi)oXSa5bTXE`kf&&0SqST{J0Jo#P9cIMyAMcd5^w*^E>AZa< zEru33k!fjy_+zlYzEgV3-F2r+2b`)`aUev*Dc+ScCz0(B-BeIBN$5~1jH7QgK-%Bq zub<(XXcplGeS90*ZGS7@jwCv5C>m~{DM8|qZ+s)n@p77InEPp*ya=z%~ zu84hkhu?Od{(xi3kYy_?Flt~sKWP)Y>x z*)*J^8YdIVY;pAJVC-t(3g6v2zGZD6Q6H@vuIT&{bCowL69q+EGppfh9XB%Y(;9Yw zfL9fkxp%4VnbYuF37AV2PDq9bV0i)ffudBF{$b=c zNQuSVglI5_Sp6oXFpxk5E>Jdn3Mr;l4%pXdr)mdteB}0m+WUJ>ceL;HHGJNfS=Bh6 zN5D;iMJqMi2zF^F-v?UNn^GJ)oaxAEsJ!$^`YfQ~IoZeqBTAv0p7=8wuXt5KK)n9> zqtdppeTv+<;XyWv3ttkS1^6BpwLE9?@U`aCAae22m_{o5U}zWwtW6^G-OA9kA9m_n zYHqa1C;@>50LA=Z#|NKq(7kY4%Ev16mq$NRerO_p!R`5G$Cm}fk-LY)QoRc+&@dRD zaoov=Y|Pqv;DrQh4J=$k`IzMtpDrz2WU!JR0rIq6YK->|TV9|)KkM7c!(5NE&XRed z-}Fq%a^RBVi<8HjX1{{ObjUxxC30n;fuAhI1|@CSuSox4ZQFo zxV5KX=brf#lll-14WtY86WE}9>y)G!GhLw0Xp&~Gj77;Ke$j9P}-CyJI_L@1& z(f@GCAe>nA=HEv*gReZ#>~(+)PLYRrOlv{cvkV+;KGVy$5i80bXQo?9+oa)A>&rmN z19#%F+6KTh;X!pJ^Q0G`puxLNN0eNeKTvca%j!Wp(NHEwB4VS-nBwU)_3GyDX4bD9 zoVg(@Zw5DRH-k>MtC8~9ZipUg!@MUK>BO%-qaQ!9SxtKEaxUK z4~sN(Mh{JgkkIU@*o!_io)XlKAYYd7%ay$YzF+0>TZqHJv| zbH(EmTGCbng-Ig$ZY=B?!2%c721Tat*~%CZu_dX;Q?L15Sd{Nix}628GuDF5zM`Y5 z-wJrY?qREOov&z=T%$Xl5{(E`OlUJC#Z_#pl$xWI*gV{kzgly}=cWBt@wZMoq`^?I zKKZ9iR}AGHLP%{{_QCb4Aow9rxJSAk8wd`{jj2SXM`@U?d|T3oJdN1oQH_0XoGfF z2`jYgic^<-hg?!Pl$)VPiX(<7wIt{Z$Ve}?=U0z51hrFRKvVN{oWL7RiMiY~#wR@v z-z$c3uJWyx#w=V5Z-7_*jyDtWC2jlGYjB$me}GQOcCq&|kn11#$X#rSI<@2`;FsTF zUsVSm`^22n3G&9ddVVibGq;qOXBG%kj%zsyhG=AbSddfqrgY-7S*qb{3TBGd%(&mit^el3Vt##iir_t-BzwN>JP?anxk({o7o`RY>aeUo z6s&?bFI_8Dea8%un@hyBH)dJ}a;80agh8CAK7rB$HW5lPvplq`yXJ#D6eIoTw@Lm) zQLn&)ozi?4+GI!Kl6KQfQ&0s!{3!yA`F9k9x&Xmlcy{4DrA=&hm?}^r{LqxuOBVqm44TPNen$$mo)bH6K4%A5Qv!wvz z5*(MrS#T>h8w0|O0|dCYwV*VhYY&ei^jm$*M_r344u*3@h}$;Gea%(L5P*!{rXj68 zfxDSHC-e2HAx2STJ6&a{-(}N3>tbc*Wb+!f=q%A~`3V%hOy0z?e&Tow12Rx;iOzW8 z6FWPN+-(HcrF~b3G|&=B^y3x4fEl-rG)SR+ze6YgTqYc#f4y2!is^ONnO<-&_52uf z=MZP`=)+RVNgkizQ8I3VSA~fpVF=B8BKrE{6Dq&kufyTy%-o_!LQ5)S3Gb*Rsgv!M zX}&D4F}`$SM3iOrJyCtTIyQSA{p(M838HUgtR$72{1(K8YphjYKl+RBG!Y}WQBfI} z-k-3yoWr~iHB+$pa_lz*xRzF9wmK_M@zZ&awMbfLN1v_bsAfN3d7V) zL{Yi+m>qN43Tv)jF-`@QV%9zo|ETsf?2k7Jqy;~<=Wn>Vak57d)LIJ!_Z%>EhV2X*4kNL!3Z;Rgy3 zacXIK_RQ~_@+_^(h-UBAa)!_bPQQiap)A#fTWi8XX=ZZHusoTI?+q@ep#?yON2^tT zqzyJmb;0OyoDoXJ&(OeJ&zmAJ7~N9?Lb2%Yc~&PzfNF$JhXY#Xv3xT1rv2G8pE%axW-rGOPIUeTu7`BLTJ>U2FY~}ax#$weh!jJWy*4vi?*e&u74XO^8(aCte1`K*iWN!UY@VI zbNZ-C*bkMxVWvdBkclxo(2ENGc0yh`N`%AXC^D?5oe%ocGbpH%Wx@6}zq#&Cl^s2S zesRsH7|O|ns)WnYV;@lO0CHZ;VR-7aFMs{w_&PbbokaWD&0&99s8W9Ot7p#Gozd^1 zH?c>EM9WnTwipimC`HQzIAPV+w96rVp@b4Pny0g2cU~W``yHRv-5;b$6`IhK$81vs zm4WEQK9uyOPv$$^VOSX-!0;>@`_3+`;??hYGm^0<6H5R;bn~4a^)MrA3{L}VdPv~@2I<)jW|(s}{)#2|L4 ztJK8F^v^kxzg6vh?>LQr-^sD+{bp)gotF}@xNWMB*k6n8x26f$A-ID70>uK(7t_ZQyCU^7mVUZ}|ze2K9jK zmIR-O+9X#@1Dy&33uR6#OrY64uy@bIzI(~Pz$&LUZXOA-MzQ|2ck0R-^24dE4Gi`j zT`d?b&X47{zdf1PnvlvHrk?oOs3YIHT`$*wNXXC89g=_$!}xsu#+0lIl6DIzT(smf zJ@DuY2Zn`afl{~#TSm@w>a(jF25 znBLSU{9xP?-#lDd8E?bsK`X8*j4X;ev3p_IamjPr{ksPA)c`UbUkwmh^s!{r{c9BP z=s$l{yOTMxf;pA-=>Nv+3DSE^CS7HlYIb3Lq)!84IojVctKz(x04S0a?3cd|p*?Zt zO3+0gjqGo`7XR5}34y%){!pW=GBY0z=Sco2%7%wFD?S-PND5gPiE$0z9as=Czp}~E z7m~s{e)fG3GDz{PeEY({;qWg$H$Vq|!n1(R=(az!{TtImU8$32c z9J=$f>Ld$1XXO{VsiW>R3nV^+9(M#7ht;JhS{h4@Z%9g6&=}L%Q6d5{Yf+-=CiE=) z(BY|fgewYWK&g)<78(R_nM)!$sQ>lb!b*}8ZYVHKT+)t-s*cu#DlpslDaWnHvRA}x zgkK+#-0JLH7Y8Z~t}rsD1QA27AULVX2=Q_IPfvZQ1vFzeOgW-xTiu)iQnL97UQ3LG zzgR8PGxsqP^-A`xyp#AU*tI}hJ~GLfE%ji4C+~Y5_&P14f^Qg=Cw*ItW?2NgyL%y0*dOA86Evras;s|3U@eozx@6J6O!!~ingMNVmBFzO>#;acm<9f}~)n#BuTs%`wW@Y~nJ z;DCy4kg%Kn?H7J7!ePB}z)FCi;3&0jbnW;>^?!TcwxtIxUmtp3<_ zwXEs3t^5%7B(K__nO9(?a+h?5mJZ{qRpa`Tw+Cy|Q37^IYgVMd;5`+((ZJ)xa$Q5j z&Au_#)E7?WukZW*gtDK0KZ98^9-jW$b5Omxr^h7QL95(b3i%p-u_3lzYU z;nCRQfV1!49$rJS5|u6IbWya`%9QDz7h73nllE1T=s034KkAp``KYvch4t*3QZCPn z`uj{p;|*Sq;-s^;tk1y#!}_5hG9EH(q70>2fV?`hDMm85FqU*k_bhiwfUL6v#Wz^; zNDH|WB%%^v*ys98e!Y=x($heIvU`=Z>q@Y1j%6xm*m$Wq4*X*ynKreK+@g-6~`wuqALKhYF^Kv zo;Zmc$ZHuSbD@eXnlS4K_Q9z#e_!?=xBaj|xy&IiDJk0S$lGA{^9F>c`vAXpWVp2P zB?Y+7SrEBblG%>C%cCrK&?R}apD>EVkMoF#tw{VsKqSt6{EV(92>RgV37&M4@7T@6 zkrYIy*oly+OU2FT4*&Pc1o_i{6j&a0`~ChtU5PI2=`FcXjO;;65A4?`O}0<>o^dHC zLJ0$d!_yQFLh5#%FO5*#`qnmZP$jD`Sw}HXGxogk{dOIp3*!v~9X7ytThg?yvyZrh zC|G>*H0Ba!QIewCYic;uPmDKuox|K4`zE5^{`Qa0TpPbSzIk!2n4Ekp&GocGCr(Wx z^YuFnz)baoc5fkUPl zD|ol{9^@7&i`9n0n^&jeei_a+tMKUAPjzOt$!d_;Xa;hGukAefDn21`3(`@UF?7Vz z^qF6b;C(?P0qKg1YNnGzELhGe7I}xUN#xpVV!=rB*dM;9zXclBwJsfK&leMS0*bxw zFUQIA?nBjrWYqOC`Uc^PID%uTZfH5bX;DNk#!W}+)>1&AqO9^2##-H9E&um5E7eo= z7@BVLCll`I4WchFZ$H2z91>U=C;`VrgbEGlAct*foAtzzk!K0a^8F9hKvD!3$HbY? zD*ZLr{U82yLk96t&M9ig+V8LZ`-Q2q=KYw(hbMCnK~SHCSYyi)7A{1a@0*s4v&2;P z6Dt(;iM{UFlk>L}70KmQFY~_TtCX9a~EQQyFPs7(lpY+e@UQh3zp_8;!^{$s& zZmZ=l*X?MBHay`IUrBtQcNi5ysfNG6qVT37OSlgmJy4yDgXiWh*X$S~5?`zzB!;~B zQVcPl`Js!rUL4GXVIS>c=Xd;tWk5BA*;`TfDRP2J)ed3hzJBY>xWUZ+d*17h6x9kB zJ#3Je3%EAoHV?$~03gL5`29yP*bzZ)ig=z+DO}T+Fn;lH$bRRc1W)mTm!T_a{_mgq zo=YMjUYi7H{gsToW@xvo-Z7APUE68w>S(dIc^pi#lJ=UJ_vI^scVI9>BT3FUaU_^E z`s@vWegZDVGuipFZ|L98Ed2mUI)eej{4cJ~V@XmbTelCy0Ih~-2sD9=8Cq-2(_gat zoOAncE2}}JSw#}=+rPaQII!MF7(MPap>9I99=q$o@57y}!HIrqN8_euuCws`q;V+3 z#EBY~igYUEI*k0^+W6N896JQ3eWHqF)tyt+^-@Gp>1Whb#3tN=pFN^m;Ie-FCruBMN zg5G+(u0cmc5hx$r8bH|uvMH^FPjxlY(I;GCkUo=oBwQ_pQ7l0=(4eztaUPZ`% zA2&s9#A=@IyWKSYjiFDMRyB5Ahu6Xo$_k)X-_>?ykmX#B(Nc1~A=W5weVACt-C{jU z{HolLG^)@MT4)05duP{|3NSIzFfR0k&w$7~6?NWb&XH1$P zkhAGrOxpIU5tv#hPR-ua0Lj$ctV}`$))z+ZY}~U^2BPPd7Svof(aokILva58AMe%n z2j-y2(({}PpFtRm9|A8USvuZsmF!ffE5n}R?*$Nb(ZPWVzDUX%GHRdul3>FEdGXs5 ze@9^j{ZRrt&4a+_v5kb57xwO<=P>+x{PjFK)s3a3o>j>Y`;mbS+fjoTs|02P2gOU|a`6XTix*C&0L4D^ zA7~#4P^dDurwWZ`(RMQW5x-QApa=!AV>QX5uKD-dc;1<@mCiK}SlTCLnA>RuY=?0R z@bB4UJO+ytK6+2n30Rn0NSeAT6X^9}OUBL=Fx4!8-LqpV!4Dxboj5QtalCvv#bqJ7 zsUbPsR1^u1NzZ~2H3f&Jtw7#hKT62VB-`-I8YiMGgG><4Kj=5OkrbUWbA84MF)G)xm_D{kJ7rdp zpeBrm!R4M_<^9I*uaSTFPLs=8NS;mR`Z0Qk6hI)%!QN;&u1Y7*mi6HXN27|5fLnw` zxh(DKp{wfI?A=CD@PiWcs*x?%x&@2?_oc{f4jT#egDTAqTD^{;@jSNzp*2^#9-Lp9 zI~G^4zU|fTXOuQvOi%4557^{#r?$l=FTw320QV2f=Q^e8G3VqTWzkG=0#x7k!5IvGA0|0js4#>RjpWjxd_haQ6(L#Os8`fKjAKfmYYe zU%K3Fw8}czic#Ywc*nXwox9&)51ZtIHuW3UMOM@FuCZkL*76{9!9(`vcgWi8S~Lmb z>tg%0U=DTkPi+s=g>DW9a&SUw+(D4~8NJTJy6-5k>3mcop;~yvzS)MWtb|kMs_G z%)A^)AaSzH8bZ9XzVX5BBBA+2Ze&RiclUZ%y^c2(vlwJy?BCCRlnZ2mC>xl+qK9CZ zb)OT;z?398@Jla?vCc3J*{pNPN^xvFHIN7JO^$8SN@$(f;vv$!X)dZba@0Z|{i^yCowzhV zFW{Ys=qUpmYe{JCif566*9z7SGI8_$zK!>Qe?LQNY7&6Ef-t=X{jOP+z!c91*N0<- z_e1O-_IDJxFRGn$VSN>IzsQ)W4~PpT5-q6J?OOEp{fYcm4a*n9Q|r$0(L4{R4>*cF zKm+*WU7KwuF;Fg35}t6EmLcYZrc_+tiI1+#wf%JC6FL7020{)w2}2vNVPl4R{kk%< ztuP(}!=~7>CQ&`6F_((_;JIRQLuzn^YlFFhP!&xX2{=oA_#ZDFHU!w)qjBLpUSP~Z(%$0(eopSFdc(0>r5)9O;2BVVW zic|r?{Cw>e8>3t+YGx>*kHl1SSr}P&Ti;T7Ap)hCS5jXcv8o~iKQ6ikbghUYE5Zp# zP++cB&l>SxiJ#0D@%XqIevfJEZ*@o}bDz|=BdfmHjhZSv)xU^EzD#5rKcJ;|yFX7L z%tG>^5!P#Id0NJe9^onE`sD^l0{ibdg%YN82(ZIlj2gaDFH3w(TnlWzP%8UY*>Qb>%8;VaJ8a3H?jIXP;4}K5W>f zzcmclCx=@0+vgnbD@>H(ZhMW1k}$yC&wz&faL}|G8whYe^Y|r$F3~?r$0b>(SlRZ3 zXe3pE#GodK7S8V`=x@1+QdplcrPoMttNf;k>$kWCZpo$p=qPVbDWmqAL`}s9%7@+T zezfz|sKjN^LjZiCGK%nuK7;^cjXbozK8daidKbdTVnj|Xs>%RzgYMNN8OfAKyPbcTLopBUyZhdRh=4Czhs2!kzGeJzk`_ zm?>n4@r_#~0;Ra@x2wCpde?8E6X^uWUp>1F-1S8%Ylz;KOb-cj7B<241w2r-0nfMB66)>kvFW2Dtq4uriMWg(8-s<5V)h<`2W{Ot(x*iaa&U7^T{wqCV7EEyvPoUmcwtFDviSDJcsu$>B`b7q zHx^qOjLho@g=!muu;GEEyV1$$t^vsL%ww*RT7`0No0CBEo+bc)mT(W#pIIHkZPOQ{ zj_qjhwe;8!#q`~*iW6{B5UCSgx1pg6|Axa~JO%MXbB6sRaR;dIji#~Dxw|vz6Y|`@ za3_*$UIy1p`K5Fr9?sbAR+rN30211@Sj&r-G@9a~Il&UW=Ar$gC^npa3aK544H9Jn zd`^30N^6o)W)W$V5!-cG++(T6-6S7aZRKU8d*P16j`vc7Ym`M{_P zA)qR*2F}{$O$R=3wrrRQ4b=juX|rwaEeD*V?$mlLR&R%I|EEdo2Dd$t>?wBEV1{$I zcfN=;CC~y=Ce-y~a7oAfd$)rkb2@ITznK*3XV4?1IbpMSkC(0c2c@W+t426Q%FoIEmRzxIa*tnYu7(^!KDE-^oipp*mh`1_`~s*Es&{kwOFZEB zW4e#B;-PiBy~97~B#GDhCUKDH?u9KBvBg{MZIz#w?hg6V|G^?; zI(RIJ&E4K=Vr!uN>qWqd@pAE0${6t4&$1XX?xZ!>jflI2TTG zPSRp`;mbkMI4tLPE}L>;0_dx5Z+|1P?*Xpq&PnnqCqPLcTLJLkagwE%?HyXo;;}Tw zt6B`F=uWli#Pm7pJ|yZT;}`T%10yMg@d;XEe7}q*=LrasV4fpw?oTJ4a@CE&;vEsA zxW}i*H0l=a=8ww1Z{B6ugjyPeDHuuozFZ?b&2d8P^dn(9+T!Y+GwUI$HXRVK+q+Z^ zsjP0L@e+I!pw!iCK!;=L7>4`l zRiU{s&^Ki(mf%|hDwalOdrDB%gsAX6Wlud{`F-XgoQ5EhI(`em{sE@DDPdCmJoz&kSrNk~x=VUY+UsHf(BY_P=>sjp4q? z9ph)!wZ|*!H<>1zpPc;ESUnJiYq%N^ zb+E4My}ZK#1+(XsYRWVvulNC;8%*{YVUsnrmcI9Kch=W(Tw|G0b*|bae!Yg<8cFt7 zYzSz#9>Y?>A55U%5Xb-o3#x8}E}BVlv>+3#RkyLAp)MTwl>N?E9jwa5K^;&ull8Da zd(&^}TPEZY1gwKfuWJJOPfK@^y$PPPLE}uVk8~98*WaaVKds{(w4tDya=8fmd{Axl zO^kd=>Y5nqV}0R-KBhSgYxO7~x%hl%p$D_gLpuWt#!6Hlzbr)>N3_t5L5-~#qXOpz z-Fuw;BGUP(?SRqhZq$FpmeZi|$3+s=;J;aulME$-#Tn9alMwpVzZq<@v>Uejw! z6>FUudn!yA-4z7gNFF-ybnA_u#=(jfgUWO51P~&)BOke!k@fK_SCk)kL-si+YJ}ha z#IDPim92_ZUq`%~6y?q@v3-{6>&Cz_K^ZJE!TxD@w4K+@(#0v@-WA}>=^3nJXA7Pg zPCOV6>ey>^X(-+IyImmW5)j;$N@)W~f$5$+i6@sCPfOauLDw8IzJ+P2e%>KrxtWq# zRokdbjq?eEp;F%?e0@91yND%5MGE9DQ^4j7b%tE%*Dak%^C(kz>J6leCz}ZvF*+Ev zq_quU2Wwc=`!CJKzm3~?$AY!Y_BFt9K2_Le-QPHLz~uSM5bFKySVf0i#gWq;nrJC1 z*L${oq!VTRCdxkmx8Te0C;ab!HF?O6MLY?LiO;oPOnoT22zv>TnUamUciqIR!h_@{ zX{OZ+6MA3fXqVSU#dtf2``}-BS|emDGasCGzvLn)KlSQ$HI`PhLw+xI_yiGXfXoOw!2(2@V{BLNOES~9@nBJHp^ zqIeGsl0Jn&Cmwhy1}>jZ5fLaIDKNPo_Rwa8ij)TWgM_~~!5taSgD7N8++Ex`d%II} zq#aI7JLhe!u2@XY>Z_rANRTYv?q_(*se9ru5s1y;I%YG7#Q4mO2^Ma?`f)xK(p@|c#1uE z?^+Hb?Nu|)$UBWQJGcc<`|xQ|blbJ+bBb^`bL0pSeBFg|ppDK2x&Sd)tV&bg8~^29 z>OadB7CUZoP^$etT-+hxc!Zjg#xuiuu#AUw{_T1OVw(ap0IJ;cNBm%GAiGo{iPVvx znqgmyT+{%c(8$km=Ldi*b!xufv*LoQs))A-QdIR~g{e0hN7rVKkEii%e?12(fb9|;af0n%DdHKbW1Uj+_Ie*Y}{ti-U zy&r2ojrKA$jsK_t_hu$m;9Y9vB-e=N2FIcRy{<~$K0%lxhZI%g4D-~<&ENB`@F~86 zmrXGqZ;Iaxf+YzaXlYL$l7^$DdgFyOf96a=1pdGjQUVqVP008*?Vw?v636xPhx8TH zH}~NaFo7h)@(vQW;=%6AG}2J10R9Y_`0X@)J8^#8yO8Z`KN<&bS|pE_Nr$_}?`)L4 z4@BG%{pJBHX&C>vRAPGKxysrvp-ERccO?skIfl0o25EyWW6%Uj!~EO9Fm)cTmH(SQE2L_oINdW@qV^Dh?U9){}DT(n1L? zfOgF-?4VKOdh^*34e%VK8F%DKSa^~9(*mBia+7!s+OwfZj!LBe>REGKNa|KGaV1ac z+Vp1Q=9xeMowfxK+*|oYN_7)Dme8+V7tp_F&Zs#Biv&)v!z6zvgmciI*2k!;DpaxM#7!9Af#{+T8vQDmCp0B(qU!H0b z!-O$N#4kw6z9~bVNE5|&e$e6NYV;TzXcZfDOb%SpS#5rh*ky9Mm3N<*aE+6mocNri zo+Q!IiihJ6LfGs~O&F=)_W{9NkNfxxPI@7>^w9F(XXFXfE02X80u={$LSC{X2YNvU zAmCjC0M5A$86O?>(O@*DOvW7|R=tQorGO9Y88qF`V{X6w;NEQR#Mo{@lOpx(5-UD7 zGqABSc9MdygBQ)h>wX%~gy0T`kT?Pp_Okqtfv82|mi=+6U32VXeGla4Eu2e z(M!lc#;Jm=s%McxSXVHH~h zp{rhWIF7qDwpSHyvH&+be)c>vBqXrg;n!s@{Jme2c9tYGzluojTxhgXge=4F%yywKP&)w!IZvXfy(2^qa%l;98T>v1+Uu{#Ia_mtGqKJmQLQ=m>5v<_A6KBgW*1TwpF0d1QpuPxGWJtC=_u zY}cM&8U`gGDL>ir=)lJwj5#SNkp#~d)1lF#AZR`R?G@dJ8HK<(?R)UB*}t&_*fn^D zQ1~kb57}CMh*SqX9@;(8aDB70DdunX`&&WOL;Z71YS0vrjTOUeUZ$a=V!+vOKTe-G z?@g@HLw`_6VDx7U0xO5nJ_Hab=YO79QB`M>8H<9B%Lwmq?^5+p%`nv4A^+~{14hg` zsxER413%od4!qT+lMz^DSLg3J+stAkGE8mG!1_Jb_!54zJ-DUTYfls$OO)(w24Y&E z`@=DD43nd`6&8R97@cz%IAQNt0wwb)p6Hw0Qw|b=Ne^@W+SoGD0&RbAs#)^c&4Jgn zJEzv2Iz}SR&bGIwS3UcI4QaSBZ!e>Pbm0IaTP;cWt^9laATg#8Qp2vYn|PG^AfOUh zvn+%c*IXJI<<=Vh0=|aMVO|U+rJ} zp-jRQN8Q0WdYJ+SS*T1+E+n9sx&lW@a-dg?pvG5JW^Ks!Jtj?kDK@Mkt{ybEGW&a3 z=tsZ|K`-eyP^8M@68#O1(`*hS8?IaT>$}TwR=m0@@HQ}rUhj0jJzGD--OhUeSL45~ zm22v%HM&{@tG=MzfAgKlHb2}RYOcfHPUC8#Vu86r0MQl!A%06_t^e$xt|Fbu%>ghb zLA68QV2t@$U(SQx(0)JlRK1%UbfDK-}AYBkK3 z@iW>F&U}U1pC#k6+qHczPNPxPlJLZma$+U2`-YRB6~@_BTNf^dby8R8DU6U8HDcrl zM8uX6n}XZbIMHefEw(kA8g(817dHyCTT~ctBPSqnQiC8u2V^myhWgfCf~->_)n#IZ zQf5(CvQBcYo}*O~%EdF!&n9UGYdPjT2td`QR*WnecfN#cLbae$%1={waJvT z=h>1L_>bd*Z4oV71&Wu)4%I_f`l}UYnHZU4-9MeV?oeWFu=oyf`uZpoM(P>Vtip26 zMY=onTiOS4BCH^3NPRA{qf9IL#3N)zZkLAasIaiJ>S_Vg9|~alL1%p985qKRf)HE; zTCy?b3jTL~sU0D+YMgg5ta%D!pn84^c3y=bljQNfJUab4U*YF9mCp)8H8ZLb zJ9EQ`X%&ke_j|uML9>jH1avU+^pBh+>8zAr#c++LyePA!$is4%s0CjwshoKLPsmlB z#tyn8#ukGCjR8VWkG}7L zL9#Q?7iLr{WQjdJcH`JJvKn4w1?g2;jJ?(aSSQh%&UyjEKaJiUn08l!(q86dc);wU zHaq9aHQ5}anBb=i+~63rAJB!;Rp>nvzJIwDMdIycH#7w)6s`2aV-{gs;xN;H*a?S7 zChhNV)r+eCc7N0rhY$>lVM(GQ#S}$HIJK^yC-*GRrK@K(D2UBgJ6ZD5$`LK{3g=sz zcujnXfGcib=cC!w)56PQ{z0}O#c9Hq*1|II!pB$O1#6}JCSTcWH?tzi<2P8s45Dadw{xO&#`YJsp z1;!0gV^|ZSwEo^oyb3L+PxMua7Xdlevuung5O7#KQUu&K{BCf{nu;Ug$08OWhN-eO z1%Ky>0lQ#=9{|xkWhG41UzlLnHI^~z6ET{D_A8w1+SpFq4~AwBu(EI40KP{WJD?3Kig6ff(IB!m zarWPp=K*JK{=v_kz%|DEeJw&xCv(r>2MaydA6>lXp$!O426Vn28uvqH8>F>1_ z!(gfF9cPS`8SM+-^{x*cMNUJ{dEFTGe#aOoLT->>M`e@`J74<#?#fK=0zZ5q@KtvARaWvF+mQHk&*Ks{^Z zwLNg#B*P!E2 zM6k;OTfkxecsXFj&F8JCp0DVVL)vervZZ|3SUL~cfnxo6v};C^#nWpJOikofd&yxu z&MB4Vr#|MSrA!?48f#hI>BdR#*Zga5lV!dwGT)vE>gKZJt9Wak^5gjKMC^Xug5cS} z6lBGV6rxD0EEL{uPK`*iNt8jF>uj1A?Bzk$bK;En{JmhB`}Ca^m0qew@G2Mz{;H^? zJxIf_GyL|rZ2IDL&(nP<4#vRZ*u*u1L_M!5XgkN7Bmyi} zF!J+1uaAqH%9t+-zO}wEi}E{X5szN_hTl=R4~Io?>+b!JtMZa^^;S&jB*H;S-fy{-$PpFa zY!Ybt_t(C2EBy0ptu5Fe6kw9!tkRq{fv57{3|5!re24?UqdQ{kR4Wv>3WfYWLWx*nz3UPTYMAm=o7yhoWoy-;T6yd7hlg2HfSO+l7 zEZQxk;g_spo40#ckVo2+i0(!g$DVqQ?Kq!zf^O%o+&x#4aRpn?UCW;|``ZMbQco5X zf+H#_{6|X#=Kyl%W!XVSMMe@T#eoXO_07l;`);3dV*EaIsr!TB~HXAm$-A2 z1i0o(0AYWMj1ynP}eGgFzZtt6N9Hd8-OIb2juD&!w8b@N--=>2<5)*`dZKjXa` z1F63&vKSqJK9^Vl#)Cr&$9rMFqc>2BgjaKXeWm8lc*2Y*+a%hYFgv`5J7cC3^}|19>vF@lVL}U^K>=zNvA+K zO=sf3@e^2GfrAU;NL(Ac$O%UFF-qci_G|)RTa+s`R~MOxpzIIhsKGC|j@b-?s&>Kk z7arb<#f1rj!=QTh*b#~l;e*KEuo&N;8!xvUcxb*x6GX2IYpUhuYQtNsScX#hrAKn} z0U`Kjc+1YJX<^ZF{3k;ju}D9FJ81Z@gU@AKS*ep7-fAo=*Oni=Cd*BsmCPJm5YmYdAfSmboL{Z1~4d4X`kU&7CF;Nr*eq>`g_YFyj&H;su%J8%tp3qHvvW6=y`! z;^^V03f@_z`*d9=Km(7j;IuSBlXv9Saw4AWypeDJCS$BpTC*|^JOl3b%vO{StnV6A ztm@PTeETSHK`i@5LY%EDm{HV7Xh2DeD^|2j`DwMn$bTb6Qnftb4oQdU1Pi{5{p~0E zzk3zcxaLf`sGUo+&#$=Hw_R2uI;^M70T6)g^)aY-Ov{>UARwq}1B2)waOT z0gOB1(=w($sT};WIv-qTv~RXh zy~qnu64)3Zmvtf|qsn}M4Lsi^Q%m(tVh2iX%VQEbtztml`JcymwOZcu+QZ6E?5LHl zbxEq{4&!lY!%IXJ+HtW)w?8y^VORvd#&W9Js8wbbSj3k_N-iedm7TP}-;>~K>xq2O z|2Cn;dIaH#WR;M>o%EF9PCL1O>>lzN0_2?XxUG$#pYwzvuo%?e*}da#-Ll`d7GcFl z@HBLlSRb%AsC(=q-V{}Pl{aH?;6VX z1e1Gmaqk)!_8G%YpTdIXlrW_O>ph%79mMDPWsErGf$Is1R}xE%YdSp3KbPdA8E?pS z`hWFH5Divm^~<7!=P^>ljA*o@5!f)jA(INieB!fF)N>|m+n zUI1RNXsIbuEULl8ZBI1(;jC+Mrf7dR%eP!O8_fxP5$tV3ecuLR^+26@3PZ%<&1wY9{03wxlXnOtoCQ+0 zX>BgNBVax)91hZPVd41CwQQ|C`8vo&OmV~u;0j>fVYd7eA^6qEMl%=XJ=wy1|IB8vxOc z2@Da?2bQb1{iO^hg+qPrhY81o4pQeZ8J@RP?v;|c6>C9!5hwYWeUq~s0UFpYYYb3& z>wvI_mF<{|?VzG{jYQH_*m%Fvb0UIloZV#3Bv|hHL{sDCemMa|N zU~YBDn(x0*sHA`GLHqX!xKePauO$Iv?=#*ca}&4@*xW;(xCbcW#oo{+4WuEH5z63N z5pytcwcWPG%x>8DQTtp2aFz49tNOXoS$RwXh|qpE#X&EU+BWcn+LqqThAo0jeYp_E zj(PO$tRHKR4$>8{vQ=VD9G^>YJQtg8;h7Zxdf8QT27T1U5hL(9`{rlAeBx0;Xg$OF z{IyH&b=vBl;EcC{!0)d4me4@>+V*HaTr6qjXc2Joy(nhho&^o|OFblR%^$||(s%iW zEb?Cl>YKi4vZ-Be0>cO(B|OdS8`;eFS0FH1fk*wYO{4Z{Z$90>vQI0g5r}buRMEU< zktH3Sg|g>O9v8q)AnYc6xk)jON8l?BHELKZ%80@v=|-XWrI$#Q^1(S^6_e4wImn-d z0I-iO9g>STxKz-dP~usoP^E535bQ42M$fG4+jpg=A0$Gc8no@ET45H{w1$O%71 z38VV2NP|}lmJdRx2LsGd9Om(EGE6yFZ%=7Qp#|Q4!QQ%9Q7B;T1D2*i!~N3p3V6u9 z+ytb`jcX(Ar%T2{Nv>>L5srR2#!eMe2OQ@w&?|gQp!cH>!Cu3;^!2^mm*u)dht4JR z{J#vfyS7f&4{3gm57=SKmF^!WeE@t*VzB^{kzyGi`bGZxJLgyuY4u;{4C@u+)LqF! z`Zh)MBJNgJs1lu}7qgEJL=abc+r47B7pJw9sql9V^NjX)t*bCTuoVROQd)QB(kv7y2ZchdG)vWsd!X3@6ofzMrw*5gyLf^N+tu` z^vhl$0T&g<4#0^R(l04caA&J%`5kF40>pJJ<p7rbDu z(HXIL+*LuO4OAo+@Ki2VFYra5^5c|SfY%b|OWd1~-x4M$M1z1KUn%i3=@J%RLKpaW zaizI%!+-o_68O=@9{%0UufV;TU@<9@SK%^*mfapo*og50P|+85^I&^mLBYRwsN_^p zM&zsqG*7xSAG0ne#2QiBXstz%4a#cYYW@%a6Eq+9 zljV|@6lr{SYni$VdaBt!tIsjNR=yST-~N(|r)by_Ox3^c#yVO$N_1n;lV>@&zxo42 zaR}=%43EqR`G?>#m$*Ode9Ly(vc~|^HZ^MT3s7A-&5-|PR zXXBEGWFS{Er*-ImFIkeP)g|O3-iT^Zk&38=;F!!m{*DbRkEa?QYSDw?yCg^|xPFbT8WSUyx&B$>p1xU2gE!#g#e*ed*WyI4+7dE4lexH zoq%WIo~VyL$-O|c%Lo{>>dn+>A0v-%stPxSsN;)-K4-Wcoa|@-xS}2C4Q$fPI`@~K zF$e>7AO!!j7oeElTHV;6^g9BF=_Gz`RKEI}!O=;m;{HFj-fLG@TwBpK0rYwZhy;Pz*8h9(MqSrn<)uLtV6g!qN*Xriqc z?|ka_06*j^Av_Q=SH8J)R+Otay2uUkG(;rdD}{!-sr`-rKl<2K?$R9|2R+?`!SWka zJSFlK;TQ<@gyVOD;lK<+Bl^WE_Y2y{gNl;>-KB!32UrH(Zh;w}R49)N3p7<>!Ua;# zz{2lh_f7uskmLiIh8zNS-d+vR-{x^~0JDcw0Y?keCvZ-`{Yr?$P=ZW0qx@Rrae|K;><2m?EdA5aih$Hu5?RMr zKqsd7LFn5QD@uZYui^gU2W`3RO5)pxt8mEt7J58PGH=|PbIa&Hgv__fuj`Xh)BUi8 zf@go)YBBX%>1HrOhU^^~AoY39gNKQ`cAl4{_=0au1Me*3T4=_L`$8xzm2a#ZN(b<~ zYMCuE<6`uTl2_|w`3CxHb}$d2!c=QUEyJy zJlhsDD%ja+CTJ}`)Gb2pGIFs&kq)TT%ZqfE^uJk-Q>XVA-#x|$NBjZ>m{v-~9(V&T9EsMrUOB%!v{6>6)lN zU(SYkT6t-u|sA&m~`kw`+4;jh19_2;`@s}&$id?bgmz@aNFB%UF49m)k@(;`iWMY-PM1}a0D|3 zkm_*)0G^)a5?9dvz&Eyoe8ly*Scg08k)B3OAb7BIDDNT34$RKwqebpoyczP=!MFc@ zzNB^2QUY-Pyl$_BPv=XZn`C*9HW!eZtw7}QH7=wN=(YV6=0FIo9P*KV=n|0V;+|aL zEJdH^jn3v5rIiDmsDlOv_is~_Kk_Z}Rn22&6q<(o&Yq0GuJBia;xTxJ$qj+$x3V8VcBC?f zuRcK}wOH_>2k4)dB8V6>FEcShCpi8`IIrU09Iw=x%J?59U3sYZdyc1GY`^ZZ-Hqw+6i@GCsDH{1m(xpt?}_AC2HAd zwLi5PlrvSA=&xp(Z(6R|7Or^)(&%VWG?89zbav8@!bP~4S$f;e`|>iG{ej1-{i{Cz zv3uyvP~o)(+6UZC^d^(k%ZKfg9bQsUO8~;&^ocU&_vGIj2eB8mkMb-BIXDZl)@|L~ z=$kel$2@{l_&cAbRgWRn_|GkG5!9KEiepm;EYq<|ICzPeMm~!Jewt+Hrtr}DjENvv zD8R+2>x~dwPAmfwZ)B3VX?_B2Nm(9925pVEtL)|UOi{}m=#Me~ZYUTo#puk4tE-{; z+gfNrC$j>k&;3o!3#V6wppRj(kusL87kU*7=RDY?qezASvJeMLc z2bFWSUb}wXO3Zp?mb){J=XT14q#V@|>i+i8l%rl&009RVM`e*yx31>fUDW`A+^fPa zbRA}$a(8<&ggOu=zuBpQ;Eo zBhZ^pNBu9|iK_ELvYdZlns8OB1f<8ZG6z6W{pv57JZYHsdAKe7IT|RSLL#psPz}Q$ z`<6T!%{df&6MM4(*@E(cQ^xJA1;ZBB^`2QG$eyn0UO+w08eC~626+B*KnZPABztnz ze%Z_qr0#{vtBn=kp$;WKjc<=%u&HVmW#o4je;_mNN z+pAeyBRTCQdMMvC9M-V!v|~qzM?=5&(u)rAb0A?JB+BQ?9g6?8kD(y&y_dS$bGVoD*_CweI* z5eIU45&QSO)JB+o9F}WjHNQ-!5##U!|7;IvQeZ!W0uR6Vzt(FCzuLswXA@gJ9cMxV zGt;Z+D45FsfkZI1^D{X~yB8PFZSs=FASnXy_f*_4A_^=_lgg};R`^JtoK|5wfnCU) zs4xx0sqh8_m%3FSptXv@1v@9f99DCOH4TGva@fyOlv8_VP@#wz(VXa zf1%cn)z;Q&GPr9E5z?%p-tnU?DJ0idG?K8 zUEb>S1zLK_EU1BVkes--W20z7rWu><+?sw`+qx`~{|Qc(>ng6zCY$S%5981348>%j zOp&Rwt%>gTtJ+}j&J*oPG##MExoU__j3E?!)e$Jqnl6FG_2+?-c^S=K8c&4&QHCw} z|G8J+NZ*vT!9=4N1aNWxSa;FURQh-Cnh4=5-8n=1;oO*B^boBKM(6(!YL9)3Sjs}a z4!KJ@?_-AEQC{nbXcIN9_xGlkfa!MOE)5ZHOEpeSB5dUq2Eyo-hm1<`{bz`TLrutI z1r)%!5QS0Z!eEKr-G?86D1Zh59_mmm9n({^v)KSPK7w%)j8o}k$Pb)l@cU!_Ual^7 zS=rNs5o{2O&qVR}tY|sc6{l5Y`o#?zVu!~8zb4z|+~X3r!pz(+N|E#9pD4EZu5d{P zM0F>|2v$mICMda8yyBR~9TRVcQw%`+UBE@cHMv2-5dG#Z;6FTZQk|~~oI{vtJGC0j z*^Hd(Bx_!#R__h zE}I-Xe|ku_Iw0=pDlX;P*JUSQO-D`t(kL=rir=Vc-ZT_%2KT?DvE@(b6RMVY0I0`advUe)^?S%9zy~MM(kn+VEVbmMl#j!4?v~c-45-> zuuL0dc36IN{0_Efs*FQ>LNP`(SdidB$`$M18tWo9sTq2r)Fx`M5pyWzOPqh_nXg{` z`XC6Q^97SSZGP|^-_aUD0K8P&AoTTYaY)oH=tP^JvcHy(kf0ksjIA=z1KG#LP>jr$ z#>Db>A5f0t$D2g}zs!m4$%{kItFEyrffQ^24ceuVufPDsv1~bPVI|5AIa#mTG1UY)W6$c^NsW4nj?du16KDl_$LBX88>9&+TBByVL za(K90#Kx*(J*yU-3Vk2nWFy z6Cc%nb_uOJXcpyIf@p|kW3A7@E85F;s( zp92CIIZj^-8)x)ihk)SWy?bKw79;7`*|q#K&1dVhL=#6y4cF)eXnJBz87wMzQoI^~*Y>zjt3& z-s|5psZ{Czd1gi0NH6+k+;|re2ZC@+foMkKPovoHjM-IJQFvj+?vOTk?*5wnC6>$k z8K3QNXR9L}8l~pt;V|^?JfAVRC^}4dv`e@925STZm*81L(s%V6#NHasi!piG?k+R# z&X`TR*ZiDG^~+wA+^X9edL>BwmhrWi2#If0ht&wYA=yMh=Zs(-9FG7_?Q7W~RNTRX zwljOyVafbpWl~2OZdp;Nbqr%IUlNjOs(j~eLcQ-NGn{#QsiVgmLIiR>f3*vIjgA0A zv=MA8?dO4>7ZYtt?4#9x=gaMo{+ai;Rz2ITxj38d##6OES9k0!f742)MN(ZvP+;tb z&uk-i#!!+Xj$XbQ65cslWqz>5jsB*XE^$>UYS?$TOJbnNCn8G6njBfO*y4;9Ydc_? zk3z$jEVVgertsaeT7DqGaP-4tC#x?(10hRXk8Hd=M~MGEOX4Fi7xPi~XK?1=`xdQ) zh4F2tgQHvEE2zC8Tdv=`0*HT=zLq0%iW#S96jA!MV7m7(ole%9NmW#-Fh0S zIpyH5Vl(;Y;Z|}a6oqi&RuBr#0ch8FWVL&FHeX%(GHl|Ep^FeC4=4|=1nxnPR2eqRmK{f4|m>2i}N)#m-ne9hK0EBvcQy}zaKq<}|3tstLe;u#oA|r~n;njJ- zFk3nN$+QzVj+jM8nDZAxW92y9m<$Wk%i|1m-Y@@_q(mEUaGNOtV(c?$a0=>oIlX%? z^;<)n#JT7m+)xJa4Dvf{_W357%)Y2PHLQGNZod*2@GcHpmXh$*JLM$)k^L&k`P-JR z_@BEFzhGuCVVf*Yp(lAU-UfZzRx9aA{9^v260^LhAI^lSj zRdMyAbE7Sqx-QZ2M|Ty+%hWfOsWwNFr|_ZMxx;YQL{K}@}srbKSmxqp8dHi)Dz z5LcA6M|2Pz%;+Wl>N*FTXcGG}af~yW@s|8i|R zTDq8lU?m=JlWe`9!YX&{BCjxcI_M=1v1s9}ZZUDN zVLk@DRwN)#FM2qJL;9+QTtq>m542YP7)!P`Qw zE(}w$T}TL2g*AmCTwt_xSL1wpL6Y2mb~osLj%@>Q1{IcQ!vVg@s2e!ib(JXfnJnRd z!z9{FPXJ-Kl-;4l4eY*6@lHJd&ov7sW_ZokXeG|Rk=WPyj@SNzb7?u>Q_DZd)vX>6 z+aWX&YR&ti9uKqHd2#1uHL0g9b@`(gUTZm4{V5W_3L& z@rIYIF{Iek`@5IhvDVFMZzg_QEDUd&JsFv=PhS&u^04{DzPZ`lp(%U#gs?b_$)hz# zXZrmaagf@BWunk1*8dh1h`;@VKW0Uj$OPz9A145NI=Ylu!Z$(h zY7BFBtOHvkn`G(12LLo24;XBhltBE$zHj$$E2?p(i!LP(mt0^lDw}Jt88?aOP>x*0 zwJLTN4AP8gNmYpUIrh^dG_qLBRd&S!!(`m zQqw7y4+htCQ~W?sQ7t>Qp(#F!l{}Cx1NUkhyBB+m5*XuXT4>B1+yKSzPaw86g#b?r z_{(iOw&JI)dK?K0%i^~%U4c@l9jhpR3bQ$h0!($$W)F!Q$k_(B&sd)pmgLQWofrMM z8xowAM6TO6$NlekGeT8+Y46PN#RQv(uwOCo=Gs>_BW%_5lK-9y2u}9zte)v#>$#tk z>8z^yBH4!-A?@S%aI;$5V}e?-W2FH#+t)^ET;*s^3p}N!popWwAyct0TsZ$aBcja^ zMw2IvX_B#*Uo} z>CUU3=Cp(obHS)&Y!X}O(Sc&l&`s9=^L&`;!3=MszZVz*=!Ga+k9C_r4!qLYzumdS zoc66yTDJKuqF|FSStg$(^uJED$O(KVv0<`LNT0K$*KJje2`!BEY%ew#iIK z(3j-{&VY{!(Xzby6mCV^bW#a2gV#N9f#0!7KTlAN(U6y#nC-9To$3y3{X2UU;3INS z$OCMmIVKa<{kRHbt7HssD`L~d+XQzU=%4X3kA6!=Mg5_7ka2*u2uZ*?hz+o2H!inu z79RxQkS3@E4}!Lebpv2up3}5ZfFK`%I#!ryGr;+tEcxbM2bs{@6Im#d6oP{{B&Se-1OUZ$t3RP9-On z0skbj`J#r-dD2MuH2ioGF0n2&_Q=mfY9FrPJVH z6G7Asb@W>CH2opjPAw{^lLt<~*0q7O)c?rsT4Q^UZtJ3gqQyg_Q?TH?uC_6`V7a8~ z;ejRo7VstZYX9t48C2+}d?Os>Br@kE4LUeQmSX|swUKVi&2l6P8lL&rE|PoNlP`jl z9UZsT>YMQ2J%Q^!>M4L&!fgEvoP}{-1wH`H2V-46Rq8eafZi(JK^5!|YGn`5BOI z0H49QMhj%pZ@r+Vc^hE?K!$oc)`tgFV)?>8cGTYqkqpnLxnNYIkKXT<#ay^?Mhi_ zEU;Tmt(2DA^8v&8Fx${7`FC7JYxvIJgS6R|`QJY}AMCQRuTFV@!a(pPn!VbT(=lTh zl=>mEQ=gK?+#qg8>4)B5P|Z+@pgjzq$?^#-J43ReWI^DO@BE0&+$xAGj1uYdDjiI9 zr<2hBOohhqEr_+VvyUWBd(@1VxExe(HT6VK0}4LaaJVEIf{ff9VWERe-Jp|6H zYa1jarY9s(|LDHD&rjpfEO<=(V;*VqEng0gh;VWx30|_-i2@e6>$e5$h-82Emjcuj zycdEF-Gjd|3J>4#_jlX4(u^>2o&OpOem-rP4?K;uXZ&;?u__RkLxr3ArE8hwP`eU9 zf?Tuii%_cXAm7ErTpQ|g6@{ONV=!KUzw(RR=E4pR8>Wq9fUUp!>v7M7Q$Ye_3oI-} zX@Bq<{G2bmXAGmf9j+T(VtQD~hDB+*v;SML9|K=eL*6?QK zZ?2~#ePN3YbALyQ*&Monzc?vPys9H&!$6uvV1)kAU{RvxNh*TN)1sjifloNXziYr; z;8`n^2ra3<+m<8|rf*&*$yAa-cajK&c}Jk`9=ozg(NPEnEGI z_zu%hy$GLHA29BXl}WG=)Ed06E=a1(5;u=~oe zl0jkyep6S-e5?g-?30w|`IydwfuhYEk}{J! z4;1GGck(+c3xVO>h=j5120?sq_32^&l+u49$0%Z$fS)5yx{d#~y$rL|3 zb!Gl*fEC8l86Y#`Ps$odz@C!keS2yMr#s@{-GVgEYgea zT5weM38swa17)Yu#`zpMEaWH2{F8+W+V;rC$sP&$v^p=5qIYxIqbOxRt-ovIL4qBW zNsoTp0#O!sX0Md;?+W79Ajr#90sVQ?!yjgTe)A{))a~{#N7`SOWi>?jBaa@>m3Ek( zH-W&^Nq$Jou-7x{r?(&ARdLerF427f9v^Hoo7%#20CjpxX^*49c2IH6TQ0hLp*GnQ z3*4Gd2vRLJ0)PmMGB}r4Ndc4zXyF0xdtlm9=|YeIfYk7iG#Z9a+z`L6H` zPa(oL98T#LQ#F~QWD%r9|9&zQ2+{*tCIKBPP}9;{XsB0Cr%LEyzJ)t?Bbf%KTQj2m z+5>*Hc89!G$VPUBq(u*cf(Ph;$6R1)ix9Ob0h==MW!brJ{So+ zNiIG^_9z%mxLjhbK9?Bm+i6|4sXa!D1Cq*?m6b7$hS?4SgbM!M(F%JWbM5#V(3&Ea zKCYADW$|4!UAujA)T<2)!NC|n4ei&Z>>W0!&$-SwM46QN(N^@bOa-S(HyG0)O?w2F z3XpE*c8wzUQ}KcN^7emyeHK=lE;ap~GW8lTzvGfYbNTZdz8ZO;0>W845Dd}s@+Dvr zx7bT+E~opnlyo_B=`$uGrICMdbVadV zXL9OtE+%Grm~nUq(x5Y#Wjjj0zl%g5%Kug<@eGP<<8Fwg)dlVD0Z`|IBWXixh&2IM zFsn-zoydqh@EL?HIX8MYp+!s&%s+erZuMb!aU^_78FaVujbUUu99i*L#xx@o@FDfk z7QN)_iV|JemXGZN0Mey8V>1ps)CgG0%QK<}F2u{nZ}nm?%&MB#E>FU!C!x2o}rOvI#E@u$lzsti?x_(`22;g^=F1@)7!_Rwr z*CcfUohgRr4Ag7{8e0d1TeiI;K!0C0_w1`k?0$!~tuwBK9%_8O-0lxGp?^n7x~WC) zNhV_Q9ipF%OFrzs^}J)X#!oFcQ<+L+Ooi9Z7$GGOLzywsgo2+f6aPkm3$tmQDuVw; z`An{AqTHW>^{U{)XyW_TBMWXr6t>o4Vb||j8_jNXZJ2qj1Ps4{{M*y{%_Px%H618< zRU`yw?w!90&=Nrx<{ZKVnq4v~eQJE*u8}~8kHe=Gp#)h`PX3AIbzHz$3rL#;`}27s zlT3=qZfwiKB|NZ!f&wlHqv#;p8E3esNV#RY38yvy;1;U3VAF7?zUY7#YL0xTRv zd>Q8b#IN^Zee+6fM6i#8ws9Gx&^Xj-3X!(QyWqr+B`?vIJgZwKGTIl4A5HEtLKw4S z31oUYND}N1A4f?D0zxDNBDuwXE}OIf0QO50M}P}pGP3#5^$chBwo*=#IByj?N1uZa zqBKei2`a5di=k~3s@M~_1>wWc{MK89liM3g!gSk=!b0O1{#KmDjPB=u#>x?uU$R6A zUu)htc~@mPXTJ#f4e5a)j?ga{NYK}mmS>ZLS4WSR8%`6HAqxq4J{A3{>$eEta_YO- zxP}}IiuxrswOua^lsljqt|s1|O9$nrY>JD*PvgNLTr=slq)em4gQ^eAJL*2LnA?CJ$bYmIgl!rEY}7j-C7BHLGaCflqFBcc>_iTK!H7d+ulTyKnB zBJCs@_|n)F&1gLVX?7kCk1m5wSt1*htD{p^zSl)pwZWx;d4tue z-kZS_5Sl5rX6Rb#39pKZ`J0eF@%1&`}8}u5IWjFbfnE3w45M414j& zS&4y|pNJN90*rnc)?fH#xzq&);Ew6KVgm+6UYmUL;K8o(+wTpzo-Wy^&fD*W%uH5p z-}oSJNBGBO|MG1mx)IL=4v?P62<6vu4xZdP$MnSh(dP`G?fTSYHUQ6n$XHPf;=D~>Su ziz~BNRPW8aK^)LOEh+oQ(ZIM5+BF1V5W2J#rY}If$=R*dUMkB4_-n3LMp(G2Uj2T3 zewW$0M5Yb2voB>2PYPr7^RlVV<284=%o&Y;^ZSq@qCf4@OKtdU5jrdodDwR(Tye>r z+=(At%KyvPScXNFeY%9uZpC^Vrt+etGb8l2m7Gh57+tT=tPJtS}Ip9*4g|Hg-w*R=4}i5Q((DgfY0{?m_cZTDUl zGSniEa6ZT`5R?&xy9X$Z(fV3MauENqKBO=`kM^Fala{=IwF1ap4nT%Z)0EQF*ypRG z6j#O-o`Gvfxo0wafNfqcoa=f^uKYzf{OE$$jH>cjh~H+gPzpuCTjLmWg6_oXyj6Y0 zHwR0qmtAx|%dc*INN~^dta$y|2b{Ne3mbssAKXI#gww(@;Xr5$Si~0%AYd0m7X*oO z$Mh^Fi83}%L%xlcru})yF+wEn70tpM<%9X>JcFl;o8VPtMD9jKtNPKKyTk#k|0RpgtM^BfAPp0(|%} zlO%DFXL4vKjRSku}Az9EQ)78_^Lp1|1-u_8$$+DEK*r((AvE67F(g0saAKncskLzF}qf zGOxfr4uyxskBnZpZ|<-|53>LQ%MO2MM(J}_;vF;^yBU=<0^>KX*z{E&hZ=OvK5P&7 z`}v=Gw+`gT|I8w?#N!c& z(Tw7L9~(8fSF@>Pyc<|atrYRbT@NHfc>(f4@Rh=4T5jbugZ;1dGOmsqEE|c1s9u)v zf34YyW1NClIb5v7(J%DZto|dMD*_3=Yl6xf2i^zP<+Bf9C5{?vt;zkO*vku}=40Rn zCfBR9WIwC#z>-kDHh&e+EUdc;* zaK0sp=$~s)FNjn-=+V)vw`FQ(wNNZKg4iKw(_hWX(om&PH7e2bi2Q?y$$8oN=zImh zGw`bm|Ecn9M6Rm*jxMBA@C5=G_*1}ka<?=vp)}Zp5b%(MmRpF4m1c175~>9amF2kQOx!QVFiQouS0{oX*-|2H(jiO2)ZlbB;OBsLP3BLz>Hkijjt_1Xn3VxUncrMIcY=$ya?%m zk|^-lX=`({@ktmr&{p+-Kn|K!=Mp;)!s;m=VSAy@uHNiLGt7yT8KP~AtTzAz4M|Oa zk_!vf^sH)+{v{s`dI8!H^hKn(t@NAA{O&z}+XwQfG`p;7;dntIEc7GQ3 zwQa8id7JVxfUPzHFcydb9{9hQ{5!5otg`51zSoEarmE$~6`R^snhKy>DSgjU)!RWF zWG@w!skj&K&)s&HTLaXENWuRj*Hx07O79ph6Z#!oI^OrEurO=cS44nvF3BKr2kb*7 z!-hizKfDi*c=JiU9)p1MJZB=WLFgcS4f{kR60}A`K)k)eV5zMIMe2ZL|J-<<2lo9Y za%4JKTmx6TRtwwA@Yf%dt;h@-(^Lf+ZtlqRh!`H5X?Y`*MWb&ADcr?nfOdKb?3o6} z4+nz|Fw_X)v6It~_Qzc>oqxx()N6`9KGIuaY67Pz0iJXQY`m4BfhEqvPVvbV*XDnJ zcWZKBu@A-7oAH#D*1NpDx5|DoCpcWUkM-Nb5&82}I5H~Mm*z9!*f)L`-#{d?$wbJK z<2X{}fI5DQji6uLf9m?Bn|S0aj)}X}S=cl@*TbyDm(sulIte>Ip^I54G$1QzAE+L+ zl>KgqtNng|_-DE9usm=tf9KMC=W>z<-;!G(_ngnNA3(LyF$!YDgbr>;{D|=3xUcii zrlxZ{>Y%k5?G#^dTC*3opxmQ8NO)!1AHHu~ooD(FC+C;P%i;KYVBfs9LWv9a+d{zc zyy>m#TPCxImN~XH0_ZO&mPhAa5>723D1mVFUe=|cc}!o;dS_X%V7Yz`)Q5H@ST!~# zD~iRVyMZftjo~}^>iA=@LDHgJbO8D*c%xM!M6u$1Dr^#jm)0YfRBMP*ECkS=t4BY% znTeFJh=Bn8_g5rD{wskozc6gr{aOYaQpuFkb%!5Y5E9+*vuFu8!Nnt)4`yJVM^O5E zwE>+$S=*a?ub!zjgewT0!ImCb9y$G|lja-vftVHSwUxZEQ}rJYS|L?j98&@VOa8nu zsgKwKfzd7fygeB=XqJ8^+1sS1)oH%T=m#DZ+oY$-_fM!KGq$Fs9T|2HRJ8Dd4*+#J zF7f^`S1gVH5a%rVMrh4GFD$q@ln5d7(Qv7m50Un8A;yy7x=b`(xz zUh3h1=Q;S6EbzDL>Yf078!-0EmdjxOqvtx;s6BJ&I%Nk9tq{HQ*)GfM^DPP3bf!#v zu`5D`viO-F%jib%%lgio7sjzuV?i}zqNIAiE3YUicVL9ypeRWR7()MHS)pNl;{Hs? z-yA9ddTyFHv*SaQq&Cpyd*v~}IPsh3Gjk-)<5jpfr$z(c5zhAc+l*UJwlze%1a1nn zPrwx~>8P6{Ts9Th+jfkpZ2;vKEcM+Aj+F9`HL*%^_qortkxKAP1?j&dgQ!S3?UCq! z6s_s72$G=Qb2_@FF`}{ zMcPUYh{*ehM89^=nXCo`a&zo~W&Pa{>48r{!Q}LJ?`=5DWG_KlN{6ysO$M*5l`RO& zBm4nO3HoeGzy|sSCd;hd08o9-^9+rLXJszYcF6(+Xpd+Lg~=M8_AW(f91oQTT3-T5 z*+B3j{$F2QWBDm-fa)hHqW7}%a|CI&z*8VCb4!o)uaw5lOFpf^X`7D)Z~rLK?3muC zuhYNPV42lmUE!M_bYCO!{%r_2qRw$K;}`<}k{P^PL>^v^o)!oM9X;gC{)8HyKHado<6ub57%+#ox%P^Aj7UsNREy#p?1EsNzfrA-BZ7i4v$qwM1r zM*#e`1qz5+^^ZA~QwrMcb^Xvl0{$&Rtv?JtSM*@CQ9Lrsp*IpsT!TjPufpmAl|6)BO$$=VL0`S zy|Dd1=P4*m-|x=({iG$7Ec_LzP4TgW>zYx53+VTJgWzw;LeRBJn7$OZEw`~H$EB1& zv0Vz-oZh~M5O2v(tIO1+zb!PhLY@#oNK1^vj)r0l&YJ;Vva(AGm060N4Y44f=L&{z zw-W0JEOHx-t4{}j+~kc$zHtC|r*up)6Fy+|Y(HlD$F+D1!!QQ_Yb{zNtgk-J#9;sr z^AF4W8W~MVa^LGVERh#p!cJL;xZbKq^vfgoXmz^~Md<~BI~ST#?|#`>z#DNYdl^S^o{^~JVsOIlpd zIk!}P8t46KB@JdI?f+xzJC+?qwss$g0p1M(3Gal58CH1jpZ=oi?$iB8Tt(ENc4)K7 z%(Xs~D-GJ;4g5R6MO@aLrx#e^9t0;4GK6LbXRPm3>VI2Nqx`^if%&Mg+^nz%TBAjH zFx!;wQ>1tv6W37L*^E1iRHq9Nz8l`foU0~Hl#_)6$rb7k4l0Njn^#A*Rgi}hnmEhx zo6{M=Tqh>L6PYHV!y5%wOYfL|9M^u@4JUR`y7G$H#`9^1H~bC1#}n$V+d{F(Khi)l zmEW~c^I9*HxvJ*%1zzD3bengJ3f&*aSu2Sm=N{H<`Jxn zB7@P`C*XkLpPVV4N3=YfBJywuFV02vO3+7V6;Y@q?#J2K?cE=B!5bUlElC3A9t47t zPoup>zaEJiGVn#*nOcLCo@2pJ%bYn#OK6p+9GQXYe5FsuYt8BO8;4thf$FBng#aG( z2xfv0O5z}Du1!dzWa0#9GOhNlahh;Q!|~VnKnicGo%y-N@-FD;^WmDxJVkIH;Hs`y-Uc;Zcfzc*}yOD(fSJHQ2NpCcp z7nSHrHhp3Nnxe;3z@e&A7g<()NQX6)dw_gVO;dejP=^<}Tm=bg_XfA`CEgDdS^N(f zCe|ZPztA+lJ*(T(8MDm+gqQ>QqIZk;b%zxDG@07*pEV*{EjaEeNB4z+A4H>oh-7rM zMt8Q{G8zbr0v|OU4Mz<~DjJZTe4?hT7 zQ~+&YJ;~g*KYx{(5QrEiNn>{4oXUEZFIjwaA9(mAd`>9&r;bitCkPi{Oj7Vokbw3` zC`y~_@KgjcLJCx3%CG!i4Ufk{^yU&pV207Mecb{STcT#^K>CvoP>y!J6k-tj6@5K7 zTpm#f&Sg#Qf7M{Xj9(rx-X6b_%q2r9$P!pOvk{i6pbg>QeaP@aVIm`O z!m5c*`Dn{dXvp3FWCPkiG0MzEgz2HaX0NcY;4MYzF6Bx{Vd0r?44luD!=^#AHH0;x zom>Y_XNpDm6D9#o&*Xy+MDj(9w#JcqCYYA)%m0kkn-zY8d{#+I?FbmNF*D$W$^&*z zeI|Sd!JU5Pac}fl$xe!r;`ft7Aje#5o#tJD7GO}LbvR{qwVHLdJ~08I0ex~In}q|8 z-zi5E=_ZjN%@pfV{N~Oe+owJctc_2^sVNU&Wep7}je`VaNFccmQP7EZ6-ZWWTi-cX zQ1Oo@;+R+Gn%xitDJvn1R;IbG2jx<@jJlnnq)5A8KaUH5Xy*R;$o*6XMKRN;GTopaK z@^|B_m+v(?jHopCFxBs5xGn;*U+udjNG!sS4+g^D=eq@3Xt;JNczDm{HDdqK>D*kt z_7ydw&Crpa11ZKAH^cOrxPvZu8n=+#`Q~x3drZPc-F{!1Y8i&TW(+Ub^a9F8oZSXl z8vSmZ@ZynU-sq%Hy$_L{v-rFLuvnJ@CLgazrtb01-l(AQV>!MG=isHj$D6cJNjk@+ zW=AqK7jGwZkdT+y@?-s5i)X?vLyVl}sA3PAa()v4dP?9~B#nhLaa-3n6p1Kq0Ay4K*{O|$_X$(485>e9uKLiS8BgD@O>dkuA?`3 z7DnKJ(Yq*qixH{^(mEjCUKp<9cQJe|Eue!|_|Kp)Nm5f)rVw=2K7->WFp+YMtTxuL z+wgC}1}Hb;C4HOwS4(Of>uU(@?{r8n%NvAjdyo#B-ARmF5`t)2Dlnazu}Jb>O^|~* zP=3e>`o2@j2kEoM4TMgNBm&j`NPhKVc?tQnfvveN?t_)LcrmN^Nf#fXeehkFtw<6F z$YLf=B#c+V|D9)4-@+Z%pDrTrPgeyE{3+e~k;BvAJ^8`n5_TYbgEVNDgAeGAp7{!`aQZby*jDRd`t>%P%#V|M#z$7#FRQ`R*I{E) zFg^Z*g}kM5Qv%zLSW`ASr>r@yb06)g*=phAs%S(iXeartFWD_;FR@WRN%=s4bz6up zCA2`1VQnzXk46JYeSjwPM(Ga?CmR>ynGwW7iXp#6kpIh}1DN|W3)G-!vENc$chM-` z$Apl@m^`gOB1L)-&!%aH>Xm z+|fjZawVQ1kZW&c06afAtMzSvr7879sTzHr6UP`q&Y=tR^pou)D=dvBU)@K>lJry0 z8dWCFQN;;TQH3TjZ)VQz$A|7$SoCEi$%!A=8?76Yk}h%KQsYUW-wEP?8!mqHgvEt^ zwt95>Y7IdX!FoWb#6j;#bT&8t+z~}|WA#g|B$38AfvKtl1khqMGf*GNf5wfW=gtwQ z*C0lK1%S>*t7(aUg>MNTfC?5Oc$K`G;c<6GF+BA$FM!8=>N6w7(RHTop4)5skdqil z1xWPiMdRBHUiuAfcJQ=iWI)i{Lk#IHN|7!Ek1b^U&R@k4uRLkc;#J~f2BWqIVu&o5 zIG8EuT)pELU{oQy{c4)=+*`wXCMGTBwVld3BhP~W{%1WB5vg!wlI3={7#gQ{Jd)n7 z64c9aguQgWsa388{CwX)Z(Dr%1FV^4Y2QVA8R!zrl|@Nv|8Vc}{glYJtNkP&N9L;K z7!Kk}L)b@Zw=64AWWX$|>sh^Nbm@bE{ddydUlAMTKkK`e!sp2$u%MYUWO`ADvlrJT zy1$&`7w*p1zLR?unB^e5p^ggD`76w$C!M(2Y;)>Ay6ttOMaN~Pe?tUJK|4$uXT!ue zsq%zXRj95(kfR!{n>L`d-h(&lAN;Gl>K<2qHQex>6K(;TMOnc3W$)pEv=*K0@1i?R zgz=vgQglA{*GtxU5Ik4WT)$vMP}nD8q~mgG>`Ev$PN@01rw9Rj>b+Er{}NwfnBrtJIKh zU&B}xKxlSVmfE$9v@ECdw{@c&ERQ}W2J0mIk0+G$&Lq&ldYisBl?2z6)m5BG)o+{d_ir4y)Mx{ z=}j@yA1-pY|8fzUe{woqrInd)Zy|eQ%O8qA=*6q#RK0A#Y*qSEKv0Vv?3pi8WkrKqf_8h(B@5=Za2;g zsS;e^&csfTO!|Z@Xq<%x9z0ozR%NqR z-}f^P7G9n!=6roen+G{UbIYv&bm5pcXMY;?GaK<-SwN4v*zSkG9@!eh7EbbLNg7{E zh^O>nj){&3R{}!C+uh)If$f48Ky5$guk$13z~!B|AM2Q+!kr&P4v`w?w}4s)DPAF# z8K`1AkB)!D1^(Z0%5;c-;TZ{z`$ENyp7tQ3qDqa}fW&>+=+j?>h6 zI*ynrTI#`VpcQCG@=beR4)^8+ZQUlkB~RYyXmKrz zkyfH42Zy23j&9Yf!TZGh3G@+vV&&6pv@LM(XpnGYCb;j`1i;J?;y-3~6VEJZCw}4q zP^U4f9qq;~cM*p}Y1^VX+P=%E5V4VklGg4bMJH!*(NvKEfzASAPws1{wglzR<$uTK zLk+l$7WxJF+YS{Q8U2jS^W2QQ5^M+eVpr3hCQABviFY!@A30RWXt7VCAb9OP>V5)> z#>?=gUyBU8jJ3db#T~=4Mg6A&H=}z|*u2N9+L+wY zJLa#re&-=V3||tvh7snsQT#rBi7psq&R$Gha(K_ld{z3pAZ&&t+dA-8#yX`|#c_h_ zbwWZDsnw>fK@89&hQb;gB1|vM@Uc9&ry9b;J&p0a=PG|)PhDc3Egw8STZf6gp@{st z()1P$kq5S98M?6<%8OmlZY>T=-#@4IXR>9vkgH1C{dG-&!>NR$cx%01alf-BDo zy8Dg?|E&W9@6F3^2%CHyEpEJ;x_tzOVNWZ%S%qNqrpdgZn~ql1D^3`N8L}2Yb<0z6 z7nqEr9OrTPGzU(c@aSywWz!v~7N1FQmhkXLXTBZ#bG@F_4LBTpFtp7vq2wQBX~UUZ z{+(i+r2tm~hQr4ARTpISDl%WuPpqMw^*ZpJM>*vNe&w$Vek9XTWe_ahFr`v6UA%gD z8)q@Wb+<1|D&Hf***?%WF_Ezcu|0Y9kZzBHI_7H#cpu0AuVEm~;^pZ+XWL`RnCIE`0yend;0|g1!6k`37tf$pAe-!oTpE zi{GDhC>d3uLWQD&1X!~3J?)TQl`a^69%o{vlK=_!Dhqg2>6<5uXWBHiYDBcio~XK_ zs;YTuhT{HhK#2+I<8ktcAVHsBji_*2b|D6EGn^WiURL!PA2#8^?Hh5t>4a%s^nLPQ*^T#PlQlz!DoT&7}-m%u{ zGp>__N6VXcU)A1n0LqKZJLSm<`YRTUidzNnN=`qpXCxcv+V9x6>Pz3?1J@6RpQ-GN79g680rz(lSz~zoihX(+Eg!Ula(8B4d$yLEFRzM3Vq0g0Sct5oY=|mg`3}V z)jsb)C2hWETzdR0@`t~z=TUSb+GKinFM37{-a5K66oV)rk7nzs7S*xK&$N5SQ#cHD zvh~7J&^CI9*`VdMc8;P86O~`S%rbo~Jd8gh<%ajM)Y+;6hzElSO$1+rF$HmQbcrh9 zg82*Mwk>8xnU;;&6%i0OZ5PyYc`In2$^YRj>+sPqTp`lRn+^d!AjqS*8fTJ+Vx0P; z4O|~qAE?G({#-h0nuTnFNPGDkcF->V4ucOA1wCLieED=JMxyW6n|m9No-FH;p#is` zh6wR7Ow0U)`v~->EZ0dbi(-x-yfK>@MLb&f%+kx^9dfs7A4u)P&D>u2|I-lmV>J8N zDKQaC3`gFU$==!Bq9WebEl%)`By4`|IG z+-EoQc+Q|i06D8d! zYc?$KWNBVqf=n^-X|sIQJ6TgXoC}S1F+=F5DG&P0lS01n!dSK&K(up3wkvL7U(nZd z=N1~NXTd!KfK#3r83y{IqZ8DBo+t@hFnC68dts!Gzly1s8Z{?J@K3u0nA`~qM)#+e z%p4>V7+k>u5NND7nfL$dM(wzzOPZ$*6f0n~s9zJq0Yn)!S;49ue4|ufWO&}3;iA@+ zzt3Awh?Oibtb$Wy)Nhp7cmmZiyQQ?>^{~i3zdvRqiYXXp`gzzqdZZ?4vJEpG@c(KD zTgB24cjCJzZ8`GNxi*A9-?vH!OgKlM-z58^<|u}jF3GNp(4EL+u&H^_IfYJ;oO--aM5dz|G6ovDzyr-Z5av_kwh4RlQv9U; zcs%74(0z?a6mB6?`@5wtrg<;QfV-Wy!}$Jv#TXGH_8SEH-1f}J&pk>z9nBhssc$hE zwb_p)RoqN=Q?34P!dGLw*cxYY`n`|vl_QlPIC%EOBN&7P5N*@C!vhq|u0dF3r~^Uc z2Ard2rbVIkziYKY#!R^wVY?Nd6X;kor9;^%ss1Rr*j$b`t&NLnokE2>&eopjOjn`!jvZyl%`Pe?S(RroOp$&AnlM9l zTSKk$kKS7jWcaHljpI&m5Md5yI{n}MQNQR{x%T1gdN=tmb5J5pms|7OZ(30L{rEu& zeSvC^a&f<_3k)oHf#k(`%NcsC&`7wCcgxrXTv43|iU>WLxhZ zlgrOpuCdySW}6atUE{)yO=yt!w8V(ljh~I3FTaxihGk zS=k`z06Ui6qtU~9`N-|`&m8oq`G;>;nztKpWC0=rg}j8<@rzFCv~ss6@nOp*1N>}Q zi#q)S5g?+tiG9bHyze}Mj?YNk#dVZ2e!*+a@uaWh@BbN_6t<(DRK@9AkU9gs3M0=O1;;v&4(2hXDMRdA;U+351F?a! zygxOYPjBcS;d4unKgI>vueVb`fXzSZ0?O3DJb$+mF7Atc230e)Ah6rtn#or`#E(0S z=oKqp|6pG8O%{KGgLV9VL_NKp_=i8h;{!%t5TFZAFhR*dPQ5?q@s0eKA~=*Jd7Hm4 z*R`Zp&x`@Yn!;Jn3X7L#yLUcK`k*{@wMnszz>d6gt`j@{))XUP^nwiW`<-{|lowXn zkR4^^d{>cs0v9|E-l%DeF@$x|SgWq|i8HJAGC_#__P+B41N%J6gyvV1(Wo4`;X6BS z==Fbkm5+HMv_aAa7lNiJhPgBYL@2o0vpm|VmeX^$yR?^RLTTsxiHChgFZE7p3CG-Bo@Rk+zvaAWR(oSXqHKQ@% zyGg8e2dGF)UI3{C??;!=Q7zNVzR(`|rPiJ*H*%k7-y$#iA8w(U>oq@DMzUC3yvVKhZ(YMzWFl{jvics)HN&HKitG zmU`}Tab41B1gV1~Bv%WZq-XmmHJEp0=E&dsL)77WTRWXnQ}T(J1-V)tLuK6~-=PLc zY#Ws964SHvAw(#?zDPIQqQuT#4Y~SMyW0t#%k$c;t6Q4AY3&|*nUSaV+?-?#?ujFq z?liBZR~0+>0Qywp(=>@gugy55g|FYe?OtpW2aE_DiW|xlH02}XF~`yb?$)0%_L>Tt z`j43#ppIghQCERj3+&OZ6iuKczqRxfl_;G7;|w6!)f2xtC!Dwf4fu-^>jrxAX$k-q%@jERa!&ola2zA7*7RhY=;)65yMHw9NGTE~4bWz!_~nyywC$lv zZ8WwOwtho9oc9b3(nC*Rqlqe=X;!G;gXmg={tA7HiTUK<3>5nAQhT=}$r-s_#eUgK zi`R}6Oe_4Z;aWCE4%ojv#V;n<=D*MOASBsVo8Y6q3ZGigH4f$c%x*j66PaT?$*tQQ zddqbFn^XUC?b`_l9}sw6r_2g;X+27+viJAa4i*9EfR5WOC zF%@uy*sRgY1G9XRi5}0GALux>1CDk-gEbN?Nuohba``JHydhxo4WUW6_!H}Fs8M0N zdyWl1^cH|Yj?&7jNX`$mt>nW0yXD-M&GhmMY0uF@cKZ{905@ByEZ7C12Fl=`Y0aT4 zT)I!=WJ<={7W=NXbWMSb^}_b(zD%myGF$)ce;LkTyQcD*maXkO@hwac-W%p54KSlk zUBANo<-SAJkvL`ND^2mLQhyViO}X{sq@?ek^(2N8-|oGqI0tNqH`Uc8));a1QE;Y@ z(Uqq^IISh+gBvh_V#CIYZ7uA&_fp?o$Zi!1XDJzw-%h*B5YA8-m_wSlsABuzbN4wv zBP*W>skQ~oVy4;w4+Jnfh-9B6%q@ddZtC;;l|0NZ!g)?jvy!gQfA=pF#?snoC;~TnK(|(N()N}6QrF4gen9IpR zQ}%22_dW~HFV1Sk-Z6Kb3)?1=^#Q)i&b|P14C*tjUJtyc_bCfDnBS23JaW_T743x37K=+bP&t)z5gE}&PdpBf&K1&zVhDR2-G(4Jt2W# zo{7F|drObpq(v*}b;8`zI)&3vc_-$M4)aEtzt$W)OZKtzh`&5|z@)%c6x0Eb)=3mK zK{W@--+h^84#1gYJiXl`^GJILVw+Q#!p&BH{$76~vB2-{pf^ka7+er0t1%NMkXY9v zmD%@JWq#ZV4Iu7eIQ&IkfBRY0%ocU*>{!p9N=g#EzAAaWJ2yUF;^3 za&bmmeBP8Jxcj{z+-VNkg?@;_PTO*Q;DwGeIRrN!g!%AG%##Bh|R~y1>YVV*l3gU&Rm% z&|5Z#rgr#4(P{xNZilxZyl;UH#tGvvHxqg{tSYm2s{4(3X3;YptEb|V09(IQ7_}HC zb!}NrMab)MQh{NC6?}dLpP(X5Pa1yz3DDOVo~)B2RMY z_~UuD%prhRCPOnnAT?L=;kxbZqbs{QyA_q+Cv3k1Xfo6g*rB$sVeoS%fAN>EnfY$q zb%nz>bQsb9_Ve@d4TNgC)`m2Eg-=~mFn~Z^&Nkr_2kF@v^3aJ=XgL#SVV983UtA6j(1@pgw0U}dVg&0iQ645yOh)XmHItZ1o9HDN5d zD>D2pv?)yF+#Y*Yo@MDl1P~0|Z_-yEE?@2#h|}Ye_Hl>k+wP&spcJJg)B!AAb2}ue9{gSUsef`r2(cufI zi<4r&WT4lW6ypCUB;=RJ#hHpwq?C=DJY}TDemEwK#P+*L_`Rm@ufQ|E{rP{ef+I)2 ztkyb5H2jL3B-z=^Zx&(49!hgJmdaGOh(4$+CTqDq+(cdW<7`vAD7kkt2_pdV4n8lB z03bsL{b?SxgF@9snV994kZk>$pc$2d;wDDn(nV;*7dgY$PR%M z)p>#(EoUc4Z3%%=k1s^b&S{b1cS8#KXMcg{cvM+XdHgQ^*FRD$keWs zsOEEIU*7M>EIfMdfz>}c^7Eg3$-*VPgjEzq?<>IW%bB6672|xDs<=Z;U{dn!7DghA zGx~K|^R?pBLcIAxv){r@@!uKV^Y7CcpIU@tDfB--O#iJ%n)Us6Al&rAC-hOAe*b5l z_a(o^Wi6017Mt-GR}<(@)QxY@Zt!f9o1vjJv7nUu!uPR`nOZhL*VXCn(@%R>!A@YfG~j6>tY58S#4JyA8l= zrJ*YyZ=*x2VI7XVM~3Z-ggh^dCmf!boi}x6ChJMss5xgo5_CP1xgj$DbtrlzWGf)2f;iwgF`Ak;Tp%GclZo3*3hldJ<&DJxx0( zyT~(0fjO8p)+sEPLiQGt*w|iTBnl%|pz_!eBB-j8NcsdivC|x(Wfiv(+)A3|k{YN8 zc>*-|YjT=@)jz+7)1huAjn|nJMp*r4-3muU#)1%GQD{SvjgQ~bf8K$Q>m}_W;?cVg zrhz4@sy4*&H=<=?f$ zxrZH}qkgEZYP$vA5oKG@@(nF?C41zj6%uX9S?bSPR(1F$R<-garJ*+#Cv2_f{jtKd z!T)?qN1$1RkvcC9j@A6mXN$?yK1Z;?+A~rTI5^f#y+4^sKlUCYUxb-GdRfJHBly)y zBW(C9*4~Wb;DKAbdT6_X%$T_U(>H_bhK{$Pw7+z}^XKdiuaq5%dd#sNkRB`r4*uCM z6ek~LAY7f9t$3zApsr%Rlvu_6+NEH+oyte@)3)*R_zdrnoEXU_$3jc)eDhW9H+3Pd%al+G*NjFi0F}`|GW0=wdQ_< zo5CuCSuZ}ZH1n~e0ev9oj5){}2l-nUee(>Zcfk(|vNWS8`t}dRxC9CfoCU*7Pc>bY%m2r<%{xj;; z>~gzfCEJ~2#p^()h#yw2ARksf<+w@9OK;~0>qnnoB>>$6`WaphFN7vkLArNemC;kU zdC{PKGxzoi@k}#gxksqCCRIBJ0+Z1~b13-}Gu#W04l>yITT{~oxa+;w*DeuakiJQX6@Yn^C=w^Jny{z_ z40jY93c=*U*7SCpAU{x5MREcR>{J**e`}O7X92^*dzGib)3GojOUD1O>7{TAr z!ZXUT?N9Un;!9>ztagVVhbG*g8TZCTrZe0Z*pO#sjxB!Y2b$`33Wfp%9CFo%VpXj7*FL4fzfeN4Lf z0HR(+7?6z+Rr~9l{wW`Ze1J8R?YPs4_KK6#s)*X?XdE4CHih-*4^lIdOoaNhMeTL$ ziH~gCnUs%Dlw%5jpgUNW&i!xAh+DEQ%M}@>m%_DC?CR9Y7OrLGOIrK z{P3;th>Q3itapdY{vzJ^MIN%ex+jNu@ly;V5tx}rFHRt1uIlzGSJ5u^_3$$lPW4x0 zFg&+@Pt$1x-~5#VB`iVX+A~x$(4ulbNxRxB5Z_rRQ;hV=uVg>^%l27p^GjNJD2#;5 zRs3D!%f&`TBH2hExqAZ{!9&rha+ASJh`;t#-fDjG9&n@DDP+<30kEuE&(0?jK_z#H zZKFgqrnhcJXzUNReP7;euj=w$DNCW(URTjsBPdo#TmR=Dj?Xla4}a+{`ThT zgj~UEhHLih2W44qk3bshK5LO4^ewxl#I2cMT+I8OGs?=TKG?L(95=!qDDz);y71l9 zhBgh=wX7_KiZwIl1F!)qd^tGm-;_#U!?PPdh)I^)ht$vz|($28%lb- z`k5HupEVA@&p1el8(V3r9AWFpyL@#=TU&_!9+bhj_TO15XjmzJAqb;bJ>L%j1xuS(^Q| zp8jwB{%>`~WI3u3v>i&rAu^iwHS_P^b5rcG{?@nQX$S>0@HFpKXJLQW_GpiMeOC2* z&UznG=C73^=bqREwzF#?U3>mEr(BfZ>wA2=*SYI&T~)Uo#d97!BGlgU7UT+P$nN9e zS8io+!}TVDNU3SW4eazQCM5GyQq65jAwh%zHkkYQ&;ahjp~}gFfJQEm3>|Ch zWvbsgZ0XF0bb2oPXn3W%c(7v&dU!TqLa`uNRj_pmp15c~h> zoo^YV2{b|I@$ojsXTtaUpR)!ywQAqk!^JJTajAR1V+c~Hg7QN?KL~$wUv6j!42eB> zN$4~D9)*Rbx~r^ZO^I>hJ1bjubw&QjlMSbg;`n00POvVRcgaLP_|i<$b~7pSeaj6C z0rNghseL^3Z#}~yEuOfep_zlu3E+5uQay868t&&rTHTQoyPG8fPQ8F2poYIIz|e`? zr~ARxOhbGgX%_wBwWBYKFV$4b!g@g==A@mh0Of! z6OpEgzR;0Nf^}Ma_*>$Pf6tuY9*5#P*t~E$>y=3CBCaEUVp9r zC0t2|JTL!#d@N^+tCnD~0x_}9V!_**XjmJPNA`+I6~3Z(Gf8@Y6zS%q4#(v zx4TsZ02%aFxJ;2Ko5gW_uSXtaK#A|lV52?kqWf>}@q;22yTIo`V%6j{8bABKFzmDD z)!OF@RNH)b%^`EI_(TG(0I-zHXOUK1bVDb)>!@PsWrz?sInC?S@?!tqq+h1e`I!EA zgU}0HD)AZL(|_SGF+PUaeuL%raMdkG8aZIc8dh5Vj@m6REO> z?>iYn(!=I?YB)xeUg1rl2Ow^_^?)2eQeaOVq+Gl@rzAB%4~hiiSW{CZ*KnarZHR8=`~w9Zxh+P(#&ojr-~Z?LA!3cZ@7S z$-Q!n?4WJc+4kJVO?)m&IXszd0v=RT%s*+N}XdTxZ zTpoOQE%%0j+4IB=RJ=H|g{FE`CZ0Udnp1kPnB;3~3zv+kQ^e5#&RcO>8~?LV#sae- z&eL027@I~vVUa%?=BB8!b;#3<-|w5f4nkHanvjvPjd~o%NXNr3s|4b5llWoz$ zGtXQ$!JmW}cCy`Um?hDB2kA}aX4n+{0ta%}w5YoeBGj!`I?tc4P+zt>hzQqS{YTK{G9d}g;s2EqknHVS3aST5a8`16Z2C;X(b_3aL8PD^I&Y1tKwMi+z zZfk0+;S%vTEcK(J1&g)W>fRjzn9fTAg=yn1Hrr5*y~ydAyhR^|#^UMMZ8AlZ7m{{G zC}f;Qcy4!R@BH9*Ym3__F^e=W12F-Uns3VkT+~PC)t?Qh0GnT5ufM#@2oeYlEZrQK zq$^qtu(W(|FE)}AMEhAnfx!6P>Y%9#fT2F@E*tO#pNM)n{U`4*Gw*ZGRPCzq4z{H3UcFYUCH6b5K`>Wu4%^-OexZ+3 zop86Lk;{HhI@5kx4;ngW<&;(Gxv{rl$7f$%tjlWXcAOG#WJosvSQX-k2)pqQ(#!)1 ze~8r!vozEk(gd!vm@U4p-dqyZaNsRmrU`5!tnwX;+Bp__eQMtKAodgr^VayZow-1b zo7@7G8O!&q=O(SGigFEmSnF*A_xm zE=egl%zhm!DB&Wr=2&uf>#Dk?XRs*Xl`$v&KSNdh zFm6vX5~88;u&3o@%P@9u`{KGCp1NEBZBo+eSU~mJs0 zycZEiYl(;Zt_9z~^cPvWCw1l$aO^CSdA$WqD}nWA&r+;g%(@0~ZW7${BB8ebdN{(t zxqZRp#j0qRc1mr_MSBKvmH!>I$aA0d9S$T-WIQX!)OTU*Y}#k6(dYR@Z8;_lVJmY~ zdzOpg`%%o6DsW_;NJhdiL83)o-w((&sSkzO&>Sv4b#A`TM)AT^?h8`Cb5gw@e6O;a z{=(!)x1_oS`5C;aAswPrWzf^*-^+~PzpI#*-U-X1x06)6b>9PR0a5P_`#Zj7ecvz+ zt!ehFLnFFdi*nc~QWrhtgmit~9ra-#m0=eY6?lqYff@Yt;V92s8vJ_o-Z6TNK^)l~ zdKNo?cjl^Z9w0_cejpjGQt#h=;XnW6(EO}dhiQ#}gP$|^mN;dZp2^HxjPL_PEgb>O z0he!>k7r?~`YhALE%GzV|LNh^wv=-Rz~A%B5&m>DD z<5sRtaDtrP>ud6Kj=(3+&^}So1N9%5K7lKHX<1I2&I}kF{0T-sOh-ns_P#AQijAeR z*-@)b5`;N3d#VT4&w9!FeM!UCC>S>PAQ!sbqsVR-iO1W{byi{y($y>C$B+<>pXU63 zauylt5R;p(eLv!@f^rM%I<)SO#wMuU1-dDTCoY1s^~jOEuI22(*YU;ne)>9B;cysX z>WzV>Q}Lx}l`=&~yR7`H?b35ENhE-O60K+Ff2XXxV&P`$cieT!kSx!LAu(l@=~K-( z5b+^ynvzLVZ&U>~C}7YedNEXexnRG4-!Ra(0CL_;aUho068Al>(`#~;`16FDb0jeO z)Z1Y*=|iS9;v>KRXAD0+HXI4$198ITlX?rd#dWuv